diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index eded3c0d..135ae186 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -74,6 +74,6 @@ jobs: - name: Run tests shell: bash -l {0} run: | - PYTEST_ARGS="--nbval-lax --nbval-current-env --nbval-cell-timeout=1800" - pytest $PYTEST_ARGS - + PYTEST_ARGS="--nbval-lax --nbval-current-env --nbval-cell-timeout=7200" + PYTEST_IGNORE="--ignore=notebooks/custom_kinfraglib/2_3_custom_filters_paper.ipynb" + pytest $PYTEST_ARGS $PYTEST_IGNORE diff --git a/README.md b/README.md index 58d3c0e0..475db58c 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # KinFragLib: Kinase-focused fragment library -[![GitHub Actions Build Status](https://github.com/volkamerlab/KinFragLib/workflows/CI/badge.svg)](https://github.com/volkamerlab/KinFragLib/actions?query=workflow%3ACI) +[![GitHub Actions Build Status](https://github.com/volkamerlab/KinFragLib/actions/workflows/ci.yml/badge.svg)](https://github.com/volkamerlab/KinFragLib/actions?query=branch%3Amaster+workflow%3ACI) ![KinFragLib workflow](./docs/img/toc_github_kinfraglib.png) @@ -10,12 +10,14 @@ You can retrieve the repository state for the published KinFragLib paper in rele ## Table of contents -- [Description](#description) - [Repository content](#repository-content) +- [Description](#description) - [Quick start](#quick-start) - [Contact](#contact) - [License](#license) - [Citation](#citation) +- [List of publications](#list-of-publications) + ## Repository content @@ -23,10 +25,13 @@ This repository holds the following resources: 1. Fragment library data and a link to the combinatorial library data. 2. *Quick start* notebook explaining how to load and use the fragment library. -3. Notebooks covering the full analyses regarding the fragment and combinatorial libraries as described in -the corresponding paper. +3. Notebooks + + 3.1. *KinFragLib*: Notebooks covering the full analyses regarding the fragment and combinatorial libraries as described in + the corresponding paper. + 3.2. *CustomKinFragLib*: Notebooks providing a custom filtering framework to reduce the fragment library size. -Please find detailed description of files in `data/` and `notebooks/` in the folders' `README` files. +Please find detailed descriptions of files in `data/` and `notebooks/` in the folders' `README` files. ## Description @@ -34,7 +39,7 @@ Please find detailed description of files in `data/` and `notebooks/` in the fol Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. -Fragment-based drug design has proven useful as one approach to develop novel kinase inhibitors. +Fragment-based drug design has proven useful as one approach to developing novel kinase inhibitors. Usually, fragment-based methods follow a knowledge-driven approach, i.e., optimizing a focused set of fragments into molecular hits. @@ -46,9 +51,11 @@ well as back pocket 1 and 2 (B1 and B2), based on defined pocket-spanning residu Each co-crystallized ligand is fragmented using the BRICS algorithm and its fragments are assigned to the respective subpocket they occupy. Following this approach, a fragment library is created with respective subpocket pools. This fragment library enables -an in-depth analysis of the chemical space of known kinase inhibitors, and can be used to enumerate recombined +an in-depth analysis of the chemical space of known kinase inhibitors and can be used to enumerate recombined fragments in order to generate novel potential inhibitors. +We have added an extension with *CustomKinFragLib* which provides a pipeline to filter the fragments in KinFragLib checking for unwanted substructures (PAINS and Brenk et al.), drug-likeness (Rule of Three and QED), synthesizability (similarity to buyable building blocks and SYBA) and pairwise retrosynthesizability. Each filter can be (de-)activated and the parameters can be modified by the user to create a customized filtered fragment library. + ## Quick start 1. Clone this repository. @@ -98,7 +105,7 @@ We are looking forward to hearing from you! ## License -This resource is licensed under the [MIT](https://opensource.org/licenses/MIT) license, a permissive open source license. +This resource is licensed under the [MIT](https://opensource.org/licenses/MIT) license, a permissive open-source license. ## Citation @@ -146,5 +153,3 @@ Backenköhler M, Groß J, Wolf V, Volkamer A. - **Constructing Innovative Covalent and Noncovalent Compound Libraries: Insights from 3D Protein–Ligand Interactions** Xiaohe Xu, Weijie Han, Xiangzhen Ning, Chengdong Zang, Chengcheng Xu, Chen Zeng, Chengtao Pu, Yanmin Zhang, Yadong Chen, and Haichun Liu *Journal of Chemical Information and Modeling* **2024**[10.1021/acs.jcim.3c01689](https://pubs.acs.org/doi/10.1021/acs.jcim.3c01689) - - diff --git a/data/README.md b/data/README.md index 14b42e9e..3b2f8d37 100644 --- a/data/README.md +++ b/data/README.md @@ -9,3 +9,6 @@ Overview of data content: - `fragment_library_reduced/`: Reduced fragment library: Select a diverse set of fragments (per subpocket) for recombination starting from the filtered fragment library. - `combinatorial_library/`: Combinatorial library based on the reduced fragment library. - `external/`: Data from external resources. +- `filters/`: Data used for custom filters. +- `fragment_library_custom_filtered/`: Custom filtered fragment library: Pre-filtered (remove pool X, deduplicate per subpocket, remove unfragmented ligands, remove all fragments that connect only to pool X), and filtered for unwanted substructures (PAINS and Brenk), drug-likeness (Ro3 and QED), synthesizability (buyable building blocks and SYBA) and pairwise retrosynthesizability (using ASKCOS). +- `fragment_library_old/`: Full fragment library v1.1.0 which was described in the KinFragLib paper. diff --git a/data/combinatorial_library/README.md b/data/combinatorial_library/README.md index cff84477..e0c701e6 100644 --- a/data/combinatorial_library/README.md +++ b/data/combinatorial_library/README.md @@ -9,13 +9,13 @@ In order to run the analysis notebooks, please download this dataset to this fol ## Raw data -- `combinatorial_library.json`: Full combinatorial library, please refer to `notebooks/4_1_combinatorial_library_data_preparation.ipynb` at https://github.com/volkamerlab/KinFragLib for detailed information about this data format +- `combinatorial_library.json`: Full combinatorial library, please refer to `notebooks/kinfraglib/4_1_combinatorial_library_data_preparation.ipynb` at https://github.com/volkamerlab/KinFragLib for detailed information about this data format - `combinatorial_library_deduplicated.json`: Deduplicated combinatorial library (based on InChIs) - `chembl_standardized_inchi.csv`: Standardized ChEMBL 33 molecules in the form of InChI strings. ## Processed data -Data extracted from `combinatorial_library_deduplicated.json`, performed in `notebooks/4_1_combinatorial_library_data_preparation.ipynb` at https://github.com/volkamerlab/KinFragLib. +Data extracted from `combinatorial_library_deduplicated.json`, performed in `notebooks/kinfraglib/4_1_combinatorial_library_data_preparation.ipynb` at https://github.com/volkamerlab/KinFragLib. - `n_atoms.csv`: Number of atoms for each recombined ligand - `ro5.csv`: Number of ligands that fulfill Lipinski's rule of five (Ro5) and its individual criteria; number of ligands in total diff --git a/data/filters/Brenk/README.md b/data/filters/Brenk/README.md new file mode 100644 index 00000000..f4395605 --- /dev/null +++ b/data/filters/Brenk/README.md @@ -0,0 +1,3 @@ +# Brenk et al. + +- `unwanted_substructures.csv`: File with unwanted substructures provided by Brenk et al. [(Chem. Med. Chem. (2008), 3, 535-44)](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.200700139) containing the name and the SMARTS string of the unwanted substructure. \ No newline at end of file diff --git a/data/filters/Brenk/unwanted_substructures.csv b/data/filters/Brenk/unwanted_substructures.csv new file mode 100644 index 00000000..d2ad1faa --- /dev/null +++ b/data/filters/Brenk/unwanted_substructures.csv @@ -0,0 +1,105 @@ +name smarts +>2EsterGroups C(=O)O[C,H1].C(=O)O[C,H1].C(=O)O[C,H1] +2-haloPyridine n1c([F,Cl,Br,I])cccc1 +acidHalide C(=O)[Cl,Br,I,F] +acyclic-C=C-O C=[C!r]O +acylCyanide N#CC(=O) +acylHydrazine C(=O)N[NH2] +aldehyde [CH1](=O) +Aliphatic-long-chain [R0;D2][R0;D2][R0;D2][R0;D2] +alkyl-halide [CX4][Cl,Br,I] +amidotetrazole c1nnnn1C=O +aniline c1cc([NH2])ccc1 +azepane [CH2R2]1N[CH2R2][CH2R2][CH2R2][CH2R2][CH2R2]1 +Azido-group N=[N+]=[N-] +Azo-group N#N +azocane [CH2R2]1N[CH2R2][CH2R2][CH2R2][CH2R2][CH2R2][CH2R2]1 +benzidine [cR2]1[cR2][cR2]([Nv3X3,Nv4X4])[cR2][cR2][cR2]1[cR2]2[cR2][cR2][cR2]([Nv3X3,Nv4X4])[cR2][cR2]2 +betaketo/anhydride [C,c](=O)[CX4,CR0X3,O][C,c](=O) +biotin-analogue C12C(NC(N1)=O)CSC2 +Carbo-cation/anion [C+,c+,C-,c-] +catechol c1c([OH])c([OH,NH2,NH])ccc1 +charged-oxygen/sulfur-atoms [O+,o+,S+,s+] +chinone C1(=[O,N])C=CC(=[O,N])C=C1 +chinone C1(=[O,N])C(=[O,N])C=CC=C1 +conjugated-nitrile-group C=[C!r]C#N +crown-ether [OR2,NR2]@[CR2]@[CR2]@[OR2,NR2]@[CR2]@[CR2]@[OR2,NR2] +cumarine c1ccc2c(c1)ccc(=O)o2 +cyanamide N[CH2]C#N +cyanate/aminonitrile/thiocyanate [N,O,S]C#N +cyanohydrins N#CC[OH] +cycloheptane [CR2]1[CR2][CR2][CR2][CR2][CR2][CR2]1 +cycloheptane [CR2]1[CR2][CR2]cc[CR2][CR2]1 +cyclooctane [CR2]1[CR2][CR2][CR2][CR2][CR2][CR2][CR2]1 +cyclooctane [CR2]1[CR2][CR2]cc[CR2][CR2][CR2]1 +diaminobenzene [cR2]1[cR2]c([N+0X3R0,nX3R0])c([N+0X3R0,nX3R0])[cR2][cR2]1 +diaminobenzene [cR2]1[cR2]c([N+0X3R0,nX3R0])[cR2]c([N+0X3R0,nX3R0])[cR2]1 +diaminobenzene [cR2]1[cR2]c([N+0X3R0,nX3R0])[cR2][cR2]c1([N+0X3R0,nX3R0]) +diazo-group [N!R]=[N!R] +diketo-group [C,c](=O)[C,c](=O) +disulphide SS +enamine [CX2R0][NX3R0] +ester-of-HOBT C(=O)Onnn +four-member-lactones C1(=O)OCC1 +halogenated-ring c1cc([Cl,Br,I,F])cc([Cl,Br,I,F])c1[Cl,Br,I,F] +halogenated-ring c1ccc([Cl,Br,I,F])c([Cl,Br,I,F])c1[Cl,Br,I,F] +heavy-metal [Hg,Fe,As,Sb,Zn,Se,se,Te,B,Si] +het-C-het-not-in-ring [NX3R0,NX4R0,OR0,SX2R0][CX4][NX3R0,NX4R0,OR0,SX2R0] +hydantoin C1NC(=O)NC(=O)1 +hydrazine N[NH2] +hydroquinone [OH]c1ccc([OH,NH2,NH])cc1 +hydroxamic-acid C(=O)N[OH] +imine C=[N!R] +imine N=[CR0][N,n,O,S] +iodine I +isocyanate N=C=O +isolate-alkene [$([CH2]),$([CH][CX4]),$(C([CX4])[CX4])]=[$([CH2]),$([CH][CX4]),$(C([CX4])[CX4])] +ketene C=C=O +methylidene-1,3-dithiole S1C=CSC1=S +Michael-acceptor C=!@CC=[O,S] +Michael-acceptor [$([CH]),$(CC)]#CC(=O)[C,c] +Michael-acceptor [$([CH]),$(CC)]#CS(=O)(=O)[C,c] +Michael-acceptor C=C(C=O)C=O +Michael-acceptor [$([CH]),$(CC)]#CC(=O)O[C,c] +N-oxide [NX2,nX3][OX1] +N-acyl-2-amino-5-mercapto-1,3,4-thiadiazole s1c(S)nnc1NC=O +N-C-halo NC[F,Cl,Br,I] +N-halo [NX3,NX4][F,Cl,Br,I] +N-hydroxyl-pyridine n[OH] +nitro-group [N+](=O)[O-] +N-nitroso [#7]-N=O +oxime [C,c]=N[OH] +oxime [C,c]=NOC=O +Oxygen-nitrogen-single-bond [OR0,NR0][OR0,NR0] +perfluorinated-chain [CX4](F)(F)[CX4](F)F +peroxide OO +phenol-ester c1ccccc1OC(=O)[#6] +phenyl-carbonate c1ccccc1OC(=O)O +phosphor-P-phthalimide [cR,CR]~C(=O)NC(=O)~[cR,CR] +Polycyclic-aromatic-hydrocarbon a1aa2a3a(a1)A=AA=A3=AA=A2 +Polycyclic-aromatic-hydrocarbon a21aa3a(aa1aaaa2)aaaa3 +Polycyclic-aromatic-hydrocarbon a31a(a2a(aa1)aaaa2)aaaa3 +polyene [CR0]=[CR0][CR0]=[CR0] +quaternary-nitrogen [s,S,c,C,n,N,o,O]~[nX3+,NX3+](~[s,S,c,C,n,N])~[s,S,c,C,n,N] +quaternary-nitrogen [s,S,c,C,n,N,o,O]~[n+,N+](~[s,S,c,C,n,N,o,O])(~[s,S,c,C,n,N,o,O])~[s,S,c,C,n,N,o,O] +quaternary-nitrogen [*]=[N+]=[*] +saponine-derivative O1CCCCC1OC2CCC3CCCCC3C2 +silicon-halogen [Si][F,Cl,Br,I] +stilbene c1ccccc1C=Cc2ccccc2 +sulfinic-acid [SX3](=O)[O-,OH] +Sulfonic-acid [C,c]S(=O)(=O)O[C,c] +Sulfonic-acid S(=O)(=O)[O-,OH] +sulfonyl-cyanide S(=O)(=O)C#N +sulfur-oxygen-single-bond [SX2]O +sulphate OS(=O)(=O)[O-] +sulphur-nitrogen-single-bond [SX2H0][N] +Thiobenzothiazole c12ccccc1(SC(S)=N2) +thiobenzothiazole c12ccccc1(SC(=S)N2) +Thiocarbonyl-group [C,c]=S +thioester SC=O +thiol [S-] +thiol [SH] +Three-membered-heterocycle *1[O,S,N]*1 +triflate OS(=O)(=O)C(F)(F)F +triphenyl-methylsilyl [SiR0,CR0](c1ccccc1)(c2ccccc2)(c3ccccc3) +triple-bond C#C diff --git a/data/filters/Enamine/Enamine_Building_Blocks.sdf b/data/filters/Enamine/Enamine_Building_Blocks.sdf new file mode 100644 index 00000000..81442c66 --- /dev/null +++ b/data/filters/Enamine/Enamine_Building_Blocks.sdf @@ -0,0 +1,40906 @@ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 2 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 5 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 28 31 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4418 3.8810 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5565 4.8847 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2447 6.3519 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8181 6.8154 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5062 8.2826 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6209 9.2863 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0475 8.8228 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3594 7.3556 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 19 20 2 0 + 20 21 1 0 + 21 22 2 0 + 22 23 1 0 + 23 24 2 0 + 16 25 2 0 + 25 26 1 0 + 26 27 1 0 + 27 28 2 0 + 10 5 1 0 + 28 12 1 0 + 27 15 1 0 + 24 19 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 3 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7376 1.7885 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8559 3.0020 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 4 8 2 0 + 8 9 1 0 + 9 2 1 0 + 7 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -4.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -4.0981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -1.0981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 9 13 2 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + -1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3823 -6.2346 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.8458 -4.8080 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 2 13 1 0 + 13 14 1 0 + 14 15 1 0 + 12 4 1 0 + 15 13 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 12 2 1 0 + 12 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 6.4952 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 5.9462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 4.4462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 8 13 1 0 + 13 14 1 0 + 14 15 2 0 + 14 16 1 0 + 16 2 1 0 + 16 6 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 5 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.3299 5.6152 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2114 6.1554 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 2 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 -2.1855 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0967 5.1517 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 7 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -7.9510 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -9.4182 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -10.1682 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -9.1645 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 2 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 11 5 1 0 + 17 13 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 5 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 2 1 0 +M CHG 2 6 1 8 -1 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 27 30 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 10.3923 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 1 0 + 17 24 1 0 + 24 25 2 0 + 12 26 1 0 + 26 27 2 0 + 27 4 1 0 + 27 9 1 0 + 25 14 1 0 + 23 18 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -2.5981 -8.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5981 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 6 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 15 17 1 0 + 17 18 2 0 + 18 7 1 0 + 17 10 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 3.1891 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 3 1 0 + 12 7 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 12 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 14 16 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4418 -3.8810 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0715 -4.4911 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2283 -5.9829 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6955 -6.2947 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4455 -4.9957 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 4 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 1 1 0 + 12 3 1 0 + 9 5 2 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2114 6.1554 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 13 9 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 5 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 3 1 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 3 2 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 29 31 0 0 0 0 0 0 0 0999 V2000 + 7.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 15 21 2 0 + 21 22 1 0 + 22 23 1 0 + 23 24 1 0 + 24 25 1 0 + 25 26 1 0 + 21 27 1 0 + 27 28 2 0 + 7 29 2 0 + 29 3 1 0 + 28 9 1 0 + 28 13 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 6 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 3 1 0 +M CHG 2 7 1 9 -1 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.0260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 9 5 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 11 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 5 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 17 19 0 0 0 0 0 0 0 0999 V2000 + -4.0819 0.6918 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2418 -4.0539 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5537 -5.5211 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2546 -6.2711 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1399 -5.2674 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 6 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 2 2 0 + 17 5 1 0 + 13 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 3.1891 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 2.1855 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 2 1 0 + 13 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 0.4775 -7.0740 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8478 -6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 6 13 1 0 + 13 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 3 2 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 4 12 1 0 + 12 13 2 0 + 13 1 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -4.8531 5.8786 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4266 6.3421 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0000 6.8056 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8901 7.7687 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9630 4.9155 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4958 4.6036 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4921 5.7184 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 3.1771 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 2.7135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9140 1.9635 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0287 2.9672 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0287 0.9598 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 16 18 1 0 + 16 8 1 0 + 15 10 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 3 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 3 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 18 21 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5798 4.0454 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0471 4.3573 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7971 3.0583 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2643 2.7464 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.7278 1.3198 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.7241 0.2051 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.2569 0.5170 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7934 1.9435 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 6 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 1 1 0 + 17 4 1 0 + 15 7 2 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 8 12 1 0 + 12 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 6 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 4 1 0 +M CHG 2 7 1 9 -1 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 3 2 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2114 6.1554 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 13 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4593 -2.5134 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1275 -0.4182 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3641 -2.8452 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 2 0 + 9 12 1 0 + 8 13 1 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 19 21 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 3 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 18 19 2 0 + 19 2 1 0 + 10 5 1 0 + 19 13 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 8 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 8 12 1 0 + 12 13 2 0 + 13 2 1 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + 2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5838 -3.3357 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7406 -4.8275 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5271 -5.7092 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1568 -5.0991 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 3 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 3 1 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 4 1 0 + 13 8 1 0 +M CHG 2 2 1 3 -1 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.1940 5.2311 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8602 3.7687 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5191 3.1792 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 1.3515 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8471 2.6391 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7286 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2286 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 -1.3515 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 -1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 6 2 1 0 + 12 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 8.0260 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 11 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3250 -2.9520 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3177 -5.1814 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 12 14 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5912 2.1155 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3412 0.8165 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3375 -0.2982 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 6 1 1 0 + 12 8 2 0 + 12 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 15 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3375 2.6853 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1807 4.1771 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8104 4.7872 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5969 3.9055 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 1 1 0 + 12 4 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 3 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8855 -0.1771 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 4 1 0 + 12 8 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 7 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 1 0 + 10 14 2 0 + 14 15 1 0 + 15 4 1 0 + 14 6 1 0 +M CHG 2 11 1 13 -1 +M END +$$$$ + + RDKit 2D + + 16 18 0 0 0 0 0 0 0 0999 V2000 + -4.3764 3.7611 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4408 8.1628 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9044 9.5893 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4371 9.2775 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 2 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 7 5 1 0 + 16 8 1 0 + 15 11 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5981 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 5 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -7.3573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 6 + 5 6 1 0 + 4 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 15 7 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 26 28 0 0 0 0 0 0 0 0999 V2000 + -3.4408 8.1628 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2114 6.1554 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8995 7.6226 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4446 4.6115 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8712 5.0750 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9859 4.0713 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4125 4.5348 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7244 6.0021 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6097 7.0058 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1831 6.5422 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 9 18 2 0 + 18 19 1 0 + 19 20 2 0 + 20 21 1 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 21 25 1 0 + 25 26 2 0 + 26 7 1 0 + 17 12 1 0 + 25 18 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.7760 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 6 0 0 0 0 0 0 0 0999 V2000 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 +M CHG 2 3 -1 8 1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -2.5981 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -8.8573 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 -7.3573 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2010 -7.3573 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 2 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 12 4 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 3.7548 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3250 2.9520 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3250 -2.9520 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 4 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 10 5 1 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 3 1 0 + 13 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 22 24 0 0 0 0 0 0 0 0999 V2000 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 5.1962 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 9 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 21 3 1 0 + 19 5 1 0 + 18 11 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 33 36 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 5.1962 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 9 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 1 0 + 23 24 2 0 + 23 25 1 0 + 25 26 2 0 + 26 27 1 0 + 27 28 1 0 + 28 29 1 0 + 29 30 1 0 + 30 31 1 0 + 31 32 1 0 + 32 33 1 0 + 21 3 1 0 + 33 28 1 0 + 19 5 1 0 + 18 11 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 -1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -1.0981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 16 2 0 + 5 3 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 20 22 0 0 0 0 0 0 0 0999 V2000 + 1.8478 -9.0619 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -7.5702 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -6.8202 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -5.3529 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0819 -0.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5085 -0.2283 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7701 -2.1590 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -6.5665 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 16 2 0 + 15 17 1 0 + 14 18 2 0 + 18 19 1 0 + 5 20 2 0 + 20 2 1 0 + 19 8 2 0 + 18 11 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 4 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 11 14 1 0 + 14 15 2 0 + 15 4 1 0 + 15 8 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 7 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 5.2500 2.7990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -0.2010 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 8 1 0 + 17 11 1 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + 4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7548 -2.1855 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1814 -2.6490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4933 -4.1162 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 3 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 1 1 0 + 8 4 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M CHG 2 3 -1 10 1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 8 3 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 8 3 2 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7187 3.7336 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3025 4.0051 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1458 5.4969 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 6 12 1 0 + 12 13 1 0 + 13 4 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + -1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3823 -6.2346 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.8458 -4.8080 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 2 13 1 0 + 13 14 1 0 + 14 15 1 0 + 12 4 1 0 + 15 13 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 30 33 0 0 0 0 0 0 0 0999 V2000 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 10.5933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9510 9.8433 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 16 17 2 0 + 16 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 14 22 1 0 + 22 23 1 0 + 22 24 2 0 + 9 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 28 29 1 0 + 28 30 2 0 + 27 3 1 0 + 25 5 1 0 + 24 11 1 0 + 21 19 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 24 28 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0819 -0.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5085 -0.2283 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.6232 -1.2320 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.3114 -2.6992 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.4261 -3.7029 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -8.8527 -3.2394 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.9674 -4.2431 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.4309 -5.6697 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -11.4346 -4.5550 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -12.8612 -4.0914 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -13.5422 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.8787 -3.4359 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.1977 -4.7724 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8848 -3.1627 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7701 -2.1590 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 13 23 1 0 + 23 24 2 0 + 6 1 1 0 + 24 10 1 0 + 9 4 1 0 + 18 16 1 0 + 22 19 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8855 -0.1771 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 4 1 0 + 12 8 2 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 3 0 + 7 10 1 0 + 10 11 2 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6904 -6.5871 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 6 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0967 5.1517 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 8 12 2 0 + 12 4 1 0 +M CHG 2 9 1 11 -1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 -2.1855 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 4 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 15 0 0 0 0 0 0 0 0999 V2000 + 2.9356 3.2537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5090 3.7172 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1971 5.1844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2294 5.6480 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3442 4.6443 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 3.1771 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9140 1.9635 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 2.7135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 10 2 1 0 + 10 6 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 5 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 -6.4952 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 -5.9462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7010 -4.4462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 2 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 9 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4589 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3405 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4589 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 1 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1317 -2.6836 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5583 -3.1471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5583 -4.6471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1317 -5.1106 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 2 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 10 6 2 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 2 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 2.2760 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 3 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 30 31 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7010 5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2990 4.4462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 3 0 + 12 15 1 0 + 15 16 2 0 + 16 17 1 0 + 7 18 2 0 + 18 19 1 0 + 19 20 2 0 + 20 21 1 0 + 21 22 2 0 + 21 23 1 0 + 23 24 1 0 + 24 25 1 0 + 25 26 1 1 + 25 27 1 0 + 27 28 1 0 + 27 29 1 0 + 27 30 1 0 + 20 5 1 0 + 16 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 6 10 1 0 + 10 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 24 27 0 0 0 0 0 0 0 0999 V2000 + -6.4268 0.3631 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1149 1.8303 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2296 2.8340 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4446 4.6115 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8712 5.0750 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1831 6.5422 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0684 7.5459 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3802 9.0132 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6418 7.0824 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3299 5.6152 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 11 10 1 6 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 1 + 14 16 1 0 + 16 17 1 0 + 9 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 1 0 + 23 24 2 0 + 24 4 1 0 + 23 7 1 0 + 17 11 1 0 + 22 18 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 8 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 2.9520 -4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 8 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.0260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6131 -3.4430 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3177 -5.1814 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6860 -6.2961 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 9 5 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 1 0 + 13 3 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 24 26 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4418 3.8810 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0152 4.3445 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5565 4.8847 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2447 6.3519 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3594 7.3556 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0475 8.8228 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8181 6.8154 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2966 5.8117 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7232 6.2752 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0351 7.7425 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4617 8.2060 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9204 8.7462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5062 8.2826 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6209 9.2863 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 3 0 + 12 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 18 20 1 0 + 20 21 2 0 + 21 22 1 0 + 8 23 2 0 + 23 24 1 0 + 24 2 2 0 + 23 5 1 0 + 21 15 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 4.6564 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 3 0 + 10 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 5 1 0 + 15 9 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.8478 -6.4639 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 1 0 + 12 2 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 6.5490 0.9510 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 0.2010 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -2.7990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 3 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 9 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 7.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 2 0 + 6 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 13 15 1 0 + 15 16 1 0 + 16 17 2 0 + 16 18 1 0 + 14 9 1 0 + 18 12 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -5.2500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -0.5773 -4.2803 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 6 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 36 39 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 3 0 + 8 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 1 0 + 23 24 1 0 + 23 25 1 0 + 25 26 1 0 + 15 27 2 0 + 27 28 1 0 + 28 29 1 0 + 27 30 1 0 + 30 31 2 0 + 5 32 2 0 + 32 33 1 0 + 32 34 1 0 + 34 35 2 0 + 35 36 1 0 + 35 3 1 0 + 31 7 1 0 + 31 13 1 0 + 26 20 1 0 +M END +$$$$ + + RDKit 2D + + 34 36 0 0 0 0 0 0 0 0999 V2000 + 7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7500 6.4952 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7010 5.9462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2990 4.4462 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 15 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 28 29 1 0 + 28 30 2 0 + 20 31 2 0 + 10 32 1 0 + 32 33 1 0 + 32 34 2 0 + 34 7 1 0 + 31 12 1 0 + 27 22 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 7 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 27 30 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 10.3923 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 1 0 + 17 24 1 0 + 24 25 2 0 + 12 26 1 0 + 26 27 2 0 + 27 4 1 0 + 27 9 1 0 + 25 14 1 0 + 23 18 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 7 14 2 0 + 14 3 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 3 1 0 + 12 8 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 7 12 2 0 + 12 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 9 12 2 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 7 10 2 0 + 10 11 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 32 34 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 -9.0933 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.7500 -9.0933 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 14 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 1 0 + 25 26 1 0 + 26 27 1 0 + 27 28 1 0 + 28 29 1 0 + 29 30 1 0 + 30 31 1 0 + 24 32 2 0 + 32 2 1 0 + 10 3 1 0 + 32 13 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 11 2 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -4.6883 2.2939 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 3 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.4775 -7.0740 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8478 -6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0613 -7.3456 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 7 16 2 0 + 16 4 1 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 14 16 1 0 + 13 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -7.3573 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 5 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 3 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -2.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 -5.9462 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 -4.4462 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 62 68 0 0 0 0 0 0 0 0999 V2000 + -3.2010 -5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7990 -4.4462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0490 -3.1471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4510 -4.6471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.4672 -2.9099 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6240 -4.4017 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2537 -5.0118 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -12.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -15.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -16.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -17.2500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -18.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -19.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -21.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -21.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -21.7500 9.0933 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -23.2500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -24.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -25.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -26.2500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -25.5000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -24.0000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -23.5365 11.8189 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -24.7500 12.7006 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -24.7500 14.2006 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -23.4510 14.9506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -23.4510 16.4506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -24.7500 17.2006 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -24.7500 18.7006 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -26.0490 16.4506 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -26.0490 14.9506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -27.3481 14.2006 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -25.9635 11.8189 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -27.3901 12.2824 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 5 7 2 0 + 5 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 11 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 28 29 1 0 + 29 30 1 0 + 30 31 1 0 + 31 32 1 0 + 32 33 1 0 + 33 34 1 0 + 34 35 1 0 + 35 36 1 0 + 36 37 1 0 + 37 38 1 0 + 38 39 1 0 + 39 40 1 0 + 40 41 1 0 + 41 42 1 0 + 42 43 2 0 + 42 44 1 0 + 44 45 1 0 + 45 46 2 0 + 46 47 1 0 + 47 48 2 0 + 48 49 1 0 + 49 50 2 0 + 50 51 1 0 + 51 52 1 0 + 52 53 1 0 + 53 54 1 0 + 54 55 1 0 + 55 56 1 0 + 56 57 2 0 + 56 58 1 0 + 58 59 1 0 + 59 60 2 0 + 52 61 1 0 + 61 62 2 0 + 27 8 1 0 + 50 45 1 0 + 59 53 1 0 + 25 10 1 0 + 61 49 1 0 + 21 13 1 0 + 20 16 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 4 2 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 4.0981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.0981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 2 0 + 11 14 1 0 + 10 15 2 0 + 15 2 1 0 + 15 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 5 9 1 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 6 + 4 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 6 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 32 36 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.5490 7.2452 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 7.9952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -15.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -16.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -17.5607 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -18.6213 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -17.5607 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 12 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 2 0 + 22 24 1 0 + 24 25 1 0 + 25 26 1 0 + 26 27 1 0 + 16 28 2 0 + 7 29 2 0 + 29 30 1 0 + 30 31 2 0 + 31 32 1 0 + 32 2 1 0 + 31 5 1 0 + 28 9 1 0 + 15 13 1 0 + 27 24 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2990 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 5 9 1 0 + 9 10 2 0 + 10 2 1 0 + 8 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 2 1 0 +M CHG 2 8 1 10 -1 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 5 1 0 + 15 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4805 3.1132 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9620 2.8786 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7273 1.3970 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 4 9 2 0 + 9 10 1 0 + 10 2 1 0 + 8 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 5 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 3 0 + 9 12 2 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9918 2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3037 4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0046 4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8478 6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4775 7.0740 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8899 3.9684 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 10 13 1 0 + 6 14 2 0 + 14 2 1 0 + 13 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 3.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -0.5773 -4.2803 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 6 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 14 16 0 0 0 0 0 0 0 0999 V2000 + 3.0344 0.7954 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8209 1.6771 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8209 3.1771 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 3.6406 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2158 5.0109 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7076 5.1677 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5893 3.9542 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9792 2.5838 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4874 2.4271 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 10 2 1 0 + 9 4 1 0 + 14 10 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 3.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.1476 -2.1380 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3515 -3.9342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -4.5850 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3515 -3.9342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 16 18 0 0 0 0 0 0 0 0999 V2000 + 3.1476 -2.1380 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3515 -3.9342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -4.5850 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1121 -6.0808 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1273 -6.9258 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4787 -6.2750 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5908 -4.7792 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3515 -3.9342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 2 1 0 + 8 3 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -6.4289 -8.5179 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1170 -7.0506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2317 -6.0469 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6904 -6.5871 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 -2.1855 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 9 1 0 + 17 12 1 0 +M END +$$$$ + + RDKit 2D + + 16 18 0 0 0 0 0 0 0 0999 V2000 + 3.1476 -2.1380 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6852 -2.4718 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3515 -3.9342 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -4.5850 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1121 -6.0808 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1273 -6.9258 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4787 -6.2750 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5908 -4.7792 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3515 -3.9342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 2 1 0 + 8 3 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9918 2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3037 4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0046 4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8899 3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 6 12 2 0 + 12 2 1 0 + 11 7 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -5.1814 -2.6490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 -2.1855 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 4 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 2.2135 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -3.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.8478 -6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 2 0 + 12 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 1 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 5 7 2 0 + 5 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 6 + 10 12 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 2 0 + 4 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 11 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 4 0 0 0 0 0 0 0 0999 V2000 + 2.3660 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 1 + 7 9 1 0 + 3 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 4 11 1 0 + 11 12 2 0 + 12 1 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 6.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 6.1517 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 6 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 15 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 2 0 + 13 2 1 0 + 23 18 1 0 + 9 5 1 0 +M CHG 2 17 -1 24 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 +M END +$$$$ + + RDKit 2D + + 35 36 0 0 0 0 0 0 0 0999 V2000 + -1.6409 -1.4428 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7455 -2.9392 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7418 -4.0539 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0537 -5.5211 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.2454 -6.2711 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.3601 -5.2674 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2127 -3.2511 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2164 -2.1363 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3311 -3.1400 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1017 -1.1326 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2201 -1.0216 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6762 -4.6776 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2496 -5.1412 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1028 -4.2141 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1398 -6.1042 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 3.5126 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 4.7261 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 4.2626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 2.7626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 2.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.0000 5.7261 0.0000 Fe 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 8 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 2 21 1 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 21 26 1 0 + 26 27 1 0 + 26 28 1 0 + 26 29 1 0 + 30 31 1 0 + 31 32 1 0 + 32 33 1 0 + 33 34 1 0 + 7 3 1 0 + 14 9 1 0 + 20 15 1 0 + 34 30 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2418 1.4558 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5537 2.9231 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2546 3.6731 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1399 2.6694 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 4 11 1 0 + 11 12 2 0 + 12 1 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3601 5.2674 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2454 6.2711 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0537 5.5211 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7418 4.0539 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 15 2 0 + 15 4 1 0 + 14 10 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 2.7760 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 7 2 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 2 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 2 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 5 4 1 6 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2990 1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7010 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 6 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 6 15 1 0 + 15 16 1 0 + 16 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 1 + 6 7 1 0 + 5 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 -3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 -1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 -3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 4 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 6 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2418 1.4558 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5537 2.9231 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2546 3.6731 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1399 2.6694 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 4 11 1 0 + 11 12 2 0 + 12 1 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.3907 1.0037 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3907 -1.0037 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 3 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3177 -5.1814 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5981 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 1 6 + 6 8 1 0 + 8 9 2 0 + 8 10 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 5 9 1 0 + 9 10 2 0 + 10 2 1 0 +M CHG 2 6 1 8 -1 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 7 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 8 0 0 0 0 0 0 0 0999 V2000 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5981 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 +M CHG 2 9 -1 10 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 6 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 1 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 3 7 1 0 + 7 8 1 0 +M CHG 2 3 1 4 -1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 2.7760 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 8 11 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 1 + 5 7 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 1 + 4 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 1 + 4 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 1 + 4 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 5.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 6 + 4 6 1 0 + 6 7 1 1 + 6 8 1 0 + 8 9 2 0 + 8 10 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + -2.5981 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 +M CHG 2 2 1 3 -1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M CHG 2 3 -1 12 1 +M END +$$$$ + + RDKit 2D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2500 0.0000 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 10 18 2 0 + 18 6 1 0 + 17 12 1 0 +M CHG 2 5 -1 19 1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 2 0 + 11 3 1 0 +M CHG 2 8 1 10 -1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 6 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7548 -2.1855 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 12 3 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 4.6740 -4.8322 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 4 11 1 0 + 11 12 2 0 + 12 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.3273 -2.9812 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1399 -2.6694 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2546 -3.6731 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5537 -2.9231 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2418 -1.4558 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 6 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.0978 -5.1648 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2546 -3.6731 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5537 -2.9231 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2418 -1.4558 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1399 -2.6694 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 5 11 1 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0037 -4.7220 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0037 -4.7220 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 13 15 2 0 + 13 5 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 1 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.9786 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2286 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9786 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7286 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 1.3515 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 -1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 -1.3515 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 7 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 +M CHG 2 6 -1 7 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 5.9462 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 7.2452 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 1 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 +M CHG 2 2 1 11 -1 +M END +$$$$ + + RDKit 2D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7500 0.0000 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 2 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 9 4 1 0 + 18 13 1 0 +M CHG 2 12 -1 19 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 8 3 1 0 +M CHG 2 9 1 11 -1 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.8302 1.1491 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8302 -1.1491 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7990 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 +M CHG 2 2 1 9 -1 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 2.7760 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 2 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 7 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 1 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 14 13 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 4.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 5.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 5.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 6.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 4 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 6 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 38 37 0 0 0 0 0 0 0 0999 V2000 + 9.4952 -12.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.9952 -12.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -13.6471 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 6.4952 -14.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9952 -14.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -12.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -11.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -10.6471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -9.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -8.3971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 -8.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -9.1471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 -6.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -6.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -0.5490 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8481 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -14.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -15.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -16.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -18.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -18.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -18.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -16.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 11.1423 -15.8971 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 12.1423 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 13.1423 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 16 19 1 0 + 19 20 1 0 + 16 21 1 0 + 21 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 3 29 1 0 + 29 30 1 0 + 30 31 2 0 + 31 32 1 0 + 32 33 2 0 + 33 34 1 0 + 34 35 2 0 + 35 36 1 0 + 27 22 1 0 + 35 30 1 0 +M CHG 4 3 1 16 1 37 -1 38 -1 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 5 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 3 1 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 6 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 9.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 1 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 4 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 13 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.3907 1.0037 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3907 -1.0037 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 6 11 2 0 + 11 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 10 13 2 0 + 13 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4462 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 5 8 2 0 +M END +$$$$ + + RDKit 2D + + 17 16 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -3.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3971 -3.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -5.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -6.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -7.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3971 -3.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8971 -3.7500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3971 -5.2500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3971 -2.2500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 9 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 3.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9510 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 1 0 + 6 8 2 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 2.7990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 1 0 + 6 8 2 0 + 6 9 2 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 2.7990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 1 0 + 6 8 2 0 + 6 9 2 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3213 -4.0667 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5688 -3.1036 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2844 -2.1766 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 7 10 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 1 + 7 9 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 -1.8481 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0819 -0.6918 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 9 4 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 2 11 1 0 + 11 12 1 0 + 11 13 2 0 + 11 14 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 3 0 + 6 7 1 0 + 7 8 3 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 4 7 1 0 + 7 8 1 0 + 8 2 2 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 5 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 9 12 2 0 + 12 3 1 0 +M END +$$$$ + + RDKit 2D + + 27 27 0 0 0 0 0 0 0 0999 V2000 + 5.3971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3971 -1.8481 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 6.6962 -1.0981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0981 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 -1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2010 -3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2010 -4.8481 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0981 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1471 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6471 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3971 -4.4462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 8 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 8 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 2 0 + 4 24 1 0 + 24 25 1 0 + 24 26 1 0 + 17 12 1 0 + 23 18 1 0 +M CHG 2 4 1 27 -1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 8.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 6 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 3 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 11 7 2 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 7 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 32 35 0 0 0 0 0 0 0 0999 V2000 + 4.6740 -4.8322 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 11.6913 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 12.9904 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 3 0 + 17 20 1 0 + 20 21 2 0 + 9 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 27 29 1 0 + 29 30 2 0 + 30 31 1 0 + 5 32 1 0 + 32 2 1 0 + 23 6 1 0 + 30 24 1 0 + 21 14 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5981 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0981 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 7.8481 3.8971 0.0000 N 0 0 0 0 0 2 0 0 0 0 0 0 + 0.0000 4.8971 0.0000 I 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 3 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 2 0 +M CHG 4 3 1 10 1 11 -1 12 -1 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 -2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 -1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 -0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 7.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M CHG 2 2 1 5 -1 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 10 0 0 0 0 0 0 0 0999 V2000 + 3.7760 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 1 + 6 7 1 0 + 5 8 1 0 + 8 9 1 6 + 8 10 1 0 + 10 11 1 6 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 6 + 6 7 1 0 + 5 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 3 0 + 8 11 1 0 + 11 12 1 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 1 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 4.0607 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0116 -2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6097 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3107 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 2 0 + 4 7 1 0 + 8 7 1 1 + 8 9 1 0 + 9 10 1 0 + 10 11 1 1 + 11 12 1 0 + 10 13 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 4.0607 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0116 -2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6097 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3107 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 2 0 + 4 7 1 0 + 8 7 1 1 + 8 9 1 0 + 9 10 1 0 + 10 11 1 1 + 11 12 1 0 + 10 13 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 6.5490 0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9510 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 2 0 + 6 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 2 0 + 3 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.4775 -7.0740 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8478 -6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 6 14 1 0 + 14 3 2 0 + 13 7 1 0 +M END +$$$$ + + RDKit 2D + + 31 33 0 0 0 0 0 0 0 0999 V2000 + 6.4289 -8.5179 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1170 -7.0506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6904 -6.5871 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4933 -4.1162 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5838 -3.3357 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7406 -4.8275 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5271 -5.7092 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1568 -5.0991 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2317 -6.0469 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9199 -4.5797 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.6583 -6.5105 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 9.7730 -5.5068 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 11.1996 -5.9703 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 11.5115 -7.4375 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 12.3143 -4.9666 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 9.4612 -4.0396 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.1493 -2.5723 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 10.9284 -3.7277 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 7.9939 -4.3514 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 19 20 2 0 + 2 21 1 0 + 21 22 2 0 + 21 23 1 0 + 23 24 1 0 + 24 25 1 0 + 25 26 2 0 + 25 27 1 0 + 24 28 1 0 + 28 29 1 0 + 28 30 1 0 + 28 31 1 0 + 20 8 1 0 + 14 9 1 0 + 20 15 1 0 +M END +$$$$ + + RDKit 2D + + 32 34 0 0 0 0 0 0 0 0999 V2000 + 5.6535 -8.4772 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1170 -7.0506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5805 -5.6241 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6904 -6.5871 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4933 -4.1162 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9520 -4.6564 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5838 -3.3357 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7406 -4.8275 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5271 -5.7092 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1568 -5.0991 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5436 -7.5142 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.8555 -8.9814 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.6583 -6.5105 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 10.0849 -6.9740 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 11.1996 -5.9703 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 12.6262 -6.4338 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 10.8878 -4.5031 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 10.3968 -8.4412 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 10.7086 -9.9084 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 11.8640 -8.1294 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 8.9295 -8.7531 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 2 22 1 0 + 22 23 2 0 + 22 24 1 0 + 24 25 1 0 + 25 26 1 0 + 26 27 2 0 + 26 28 1 0 + 25 29 1 0 + 29 30 1 0 + 29 31 1 0 + 29 32 1 0 + 21 9 1 0 + 15 10 1 0 + 21 16 1 0 +M END +$$$$ + + RDKit 2D + + 20 22 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4510 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0490 0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 -5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -6.6962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0490 -4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0490 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 2 0 + 9 12 1 0 + 7 13 2 0 + 2 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 14 18 1 0 + 18 19 1 0 + 19 20 1 0 + 13 3 1 0 + 17 15 1 0 + 20 18 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 4.6160 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1160 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1160 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 3 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 1 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 6 10 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 11 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9510 2.0490 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 0.2010 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 -1.8481 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.0490 -3.1471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 -1.8481 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 2 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 2 0 + 10 12 1 0 +M CHG 4 4 1 6 -1 10 1 12 -1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 2 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 3 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 9 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9725 -3.6438 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5460 -4.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 5 1 1 0 + 8 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 13 12 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3433 -3.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -0.9510 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 10.3923 -3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M CHG 2 2 1 5 -1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 6 + 6 8 1 0 + 8 9 1 0 + 9 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 17 19 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 9 16 2 0 + 16 17 1 0 + 17 3 1 0 + 17 6 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 8.2500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 6.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 0.2010 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -2.7990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 26 30 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8400 2.3345 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.3400 2.3345 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.8035 3.7611 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.1738 4.3712 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -8.3306 5.8630 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.1171 6.7447 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2739 8.2364 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.5729 8.9864 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2610 10.4537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7693 10.6105 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0193 11.9095 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1591 9.2401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7468 6.1345 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5900 4.6428 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 2 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 18 25 1 0 + 25 26 2 0 + 11 3 2 0 + 26 12 1 0 + 10 6 1 0 + 26 15 1 0 + 24 19 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 3 0 +M END +$$$$ + + RDKit 2D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 4.0981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 1.0981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 6 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 6 16 1 0 + 16 17 1 0 + 17 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 1 + 8 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2990 1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7010 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 2 0 + 3 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 13 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 10 13 2 0 + 13 6 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 7 14 2 0 + 14 3 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 16 18 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3618 2.7479 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8107 3.1362 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1989 1.6873 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1399 -2.6694 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2546 -3.6731 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5537 -2.9231 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2418 -1.4558 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 4 15 1 0 + 15 16 2 0 + 16 1 1 0 + 9 6 1 0 + 14 10 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 1 + 6 7 2 0 + 6 8 1 0 + 5 9 1 0 + 9 10 1 0 + 10 2 1 0 +M CHG 2 6 1 8 -1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 -1.8481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 0.5490 7.2452 0.0000 N 0 0 0 0 0 2 0 0 0 0 0 0 + 5.2990 0.0000 0.0000 Br 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 2 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 2 0 +M CHG 4 2 1 10 1 11 -1 12 -1 +M END +$$$$ + + RDKit 2D + + 8 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5981 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 +M CHG 2 2 1 8 -1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.8302 1.1491 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8302 -1.1491 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5981 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 +M CHG 2 2 1 9 -1 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8297 -1.9033 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.2000 -1.2931 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.4135 -2.1748 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 3 0 + 5 12 2 0 + 12 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 4 7 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 2 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 7 13 2 0 + 13 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 4 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 7 12 1 0 + 12 13 2 0 + 13 4 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 7 10 1 0 + 10 11 2 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 2 7 1 0 + 7 8 2 0 + 7 9 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 0.4895 -5.3743 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1595 -4.4101 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 32 35 0 0 0 0 0 0 0 0999 V2000 + 1.5000 -7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8817 -3.9826 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3083 -4.4462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3083 -5.9462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5218 -6.8278 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3650 -8.3196 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5785 -9.2013 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.9488 -8.5912 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.1056 -7.0994 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.8921 -6.2177 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8817 -6.4097 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 2 0 + 10 20 1 0 + 20 21 2 0 + 3 22 1 0 + 22 23 1 0 + 23 24 2 0 + 24 25 1 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 28 29 2 0 + 29 30 1 0 + 30 31 2 0 + 25 32 1 0 + 21 7 1 0 + 32 22 2 0 + 19 14 1 0 + 31 26 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 13 12 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -3.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -6.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6962 -6.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6962 -6.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -7.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 1 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 8.0260 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 8.0260 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.0607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8107 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 8 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.8107 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5607 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8107 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7760 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 3 0 + 6 9 1 0 + 9 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 1 + 6 8 1 0 + 8 9 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 3 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 14 15 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 16 0 0 0 0 0 0 0 0999 V2000 + 1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7010 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 5 4 1 6 + 5 6 1 0 + 7 6 1 6 + 7 8 1 0 + 9 8 1 6 + 9 10 1 0 + 11 10 1 1 + 11 12 1 0 + 11 13 1 0 + 9 14 1 0 + 13 5 1 0 + 14 5 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 6 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 5 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + -1.0409 -8.3049 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5773 -6.8783 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -6.5665 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -7.5702 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -6.8202 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -5.3529 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9955 -4.2382 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4627 -4.5501 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 6 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 2 0 + 19 20 1 0 + 9 3 1 0 + 19 13 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 4.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 5.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 6 + 5 6 1 0 + 6 7 2 0 + 4 8 1 0 + 8 9 2 0 + 8 10 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 3 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 1.7500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 +M CHG 2 5 -1 6 1 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -7.3573 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5981 -8.1073 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 11 2 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 2 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 4.0537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7221 4.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0211 4.0537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0211 2.5537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7221 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 6 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 1 1 0 + 14 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + -3.7548 -2.1855 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4933 -4.1162 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1814 -2.6490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 2 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 1 1 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 5.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 6.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 4.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 8 10 1 0 +M END +$$$$ + + RDKit 2D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 1 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 12 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 25 24 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -18.1865 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -16.8875 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -15.5885 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -14.2894 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -12.9904 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -11.6913 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -10.3923 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 7.2990 -1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7010 -3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2990 0.0000 0.0000 Br 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 2 0 + 20 21 1 0 + 21 22 2 0 + 22 23 1 0 + 23 24 2 0 + 24 19 1 0 +M CHG 2 13 1 25 -1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 2.7760 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 11 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 11 1 0 + 11 12 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 7 2 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 -5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -6.6962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 1 0 + 11 12 1 0 + 9 4 1 0 + 12 10 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 5 12 1 0 + 12 13 2 0 + 13 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 29 32 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 -6.4952 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -9.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 -7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -10.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -15.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -14.2500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -12.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 2 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 2 0 + 19 21 1 0 + 21 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 18 28 1 0 + 28 29 1 0 + 14 5 1 0 + 29 15 1 0 + 13 8 1 0 + 27 22 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 2 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 6.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 6.1517 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 6 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 15 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 2 0 + 13 2 1 0 + 23 18 1 0 + 9 5 1 0 +M CHG 2 17 -1 24 1 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 9 4 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1160 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 2.5981 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 5 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 5 14 1 0 + 14 15 2 0 + 15 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 4 11 1 0 + 11 12 2 0 + 12 1 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 5 8 1 0 + 8 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.1213 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1213 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7331 -2.5095 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 7 2 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 5 14 1 0 + 14 15 2 0 + 15 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 7.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 1 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -9.0933 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -10.3923 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -11.6913 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -11.6913 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -12.9904 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -14.2894 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -14.2894 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -12.9904 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 + 2 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 19 20 2 0 + 20 21 1 0 + 21 22 2 0 + 13 7 1 0 + 22 17 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 2 0 + 3 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 3 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.0037 -4.7220 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0037 -4.7220 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 7.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 2 0 + 5 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 5 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 2 7 1 0 + 7 8 2 0 + 7 9 2 0 + 7 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 +M END +$$$$ + + RDKit 2D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 4.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 6 + 6 7 1 0 + 5 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 2 0 + 9 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 12 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 6 10 1 0 + 10 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 7 10 1 0 + 10 11 2 0 + 11 4 1 0 +M CHG 2 3 -1 12 1 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 11 6 1 0 +M CHG 2 12 1 14 -1 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 2 0 + 4 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2010 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 1.8481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 8 11 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 5.4786 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9786 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2286 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9786 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7286 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 1.3515 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5574 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9088 -1.4008 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1482 -0.5558 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4997 -1.2067 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6118 -2.7025 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3724 -3.5475 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0209 -2.8966 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3846 -1.6852 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0777 -1.3515 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 9 16 1 0 + 16 17 1 0 + 17 5 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 4.8971 0.0000 Li 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 9 4 1 0 +M CHG 2 12 -1 13 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 4.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 2 0 + 6 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 4.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 +M CHG 2 6 -1 7 1 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 6 5 1 1 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 6 + 9 11 1 0 + 11 12 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 8 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4912 4.7648 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 4.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 23 26 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5490 0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5490 6.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 5.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 7 17 2 0 + 2 18 1 0 + 18 19 1 0 + 19 20 1 0 + 20 21 1 0 + 21 22 1 0 + 22 23 1 0 + 17 3 1 0 + 23 18 1 0 + 12 10 1 0 + 16 14 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 1 + 6 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 1 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 5 13 1 0 + 13 14 2 0 + 14 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 6 14 2 0 + 14 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.7760 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -3.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 7 10 1 0 + 10 11 1 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 6 12 1 0 + 12 13 2 0 + 13 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3313 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6304 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6304 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9294 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3313 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3313 -3.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 3 1 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 7 3 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 4.8107 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3107 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 5 3 1 6 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 5 1 0 +M END +$$$$ + + RDKit 2D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -5.3529 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -6.8202 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -7.5702 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8478 -9.0619 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 0.4775 -9.6721 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0613 -9.9436 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.8899 -6.5665 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 4.3037 0.0000 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 1 0 + 2 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 11 4 1 0 + 17 12 1 0 +M CHG 4 8 1 10 -1 18 -1 19 1 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.1213 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1213 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7331 -2.5095 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 7 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 3 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 7 15 1 0 + 15 16 1 0 + 16 4 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.5607 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5607 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0607 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 6 16 2 0 + 16 2 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 7.2990 -1.8481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7010 -3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6491 0.9642 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6491 -0.9642 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7981 -1.9284 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6132 0.1849 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6849 -2.1132 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 9 8 1 1 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 6 + 12 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 12 18 1 0 + 18 19 1 0 + 19 9 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -1.5000 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 1.7500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 +M CHG 2 10 -1 11 1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 6 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 7.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 3 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -3.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 15 1 0 + 15 16 1 0 + 16 5 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 18 16 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 6.4952 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -4.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.4462 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.1962 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.6962 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4462 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4462 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.5981 0.0000 I 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 5 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 +M CHG 2 5 1 18 -1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -5.1962 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8481 0.0000 0.0000 Br 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 3 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 +M CHG 2 3 1 12 -1 +M END +$$$$ + + RDKit 2D + + 8 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5981 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 +M CHG 2 2 1 8 -1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M CHG 2 2 1 5 -1 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8481 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 3 7 1 0 + 7 8 1 0 +M CHG 2 3 1 4 -1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8297 -1.9033 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 5 9 1 0 + 9 2 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 35 36 0 0 0 0 0 0 0 0999 V2000 + -1.6409 -1.4428 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7455 -2.9392 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7418 -4.0539 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0537 -5.5211 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.2454 -6.2711 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.3601 -5.2674 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2127 -3.2511 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2164 -2.1363 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3311 -3.1400 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1017 -1.1326 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2201 -1.0216 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6762 -4.6776 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2496 -5.1412 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1028 -4.2141 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1398 -6.1042 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 3.5126 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 4.7261 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 4.2626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 2.7626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 2.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.0000 5.7261 0.0000 Fe 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 8 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 2 21 1 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 21 26 1 0 + 26 27 1 0 + 26 28 1 0 + 26 29 1 0 + 30 31 1 0 + 31 32 1 0 + 32 33 1 0 + 33 34 1 0 + 7 3 1 0 + 14 9 1 0 + 20 15 1 0 + 34 30 1 0 +M END +$$$$ + + RDKit 2D + + 11 10 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -3.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 1 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 3 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 2.5607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0607 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3107 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3107 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6097 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3107 2.7990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 4 10 1 0 + 10 2 1 0 + 9 7 1 0 +M END +$$$$ + + RDKit 2D + + 29 31 0 0 0 0 0 0 0 0999 V2000 + -12.9041 -9.3825 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -11.7894 -8.3788 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -10.3628 -8.8423 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -10.0510 -10.3095 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -11.1657 -11.3132 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -9.2481 -7.8386 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.8215 -8.3021 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7068 -7.2984 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2802 -7.7620 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9684 -9.2292 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1655 -6.7583 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6983 -7.0701 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0882 -8.4404 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9483 -5.7711 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3223 -5.2665 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6213 -4.5165 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 2 0 + 17 18 1 0 + 18 19 2 0 + 18 20 1 0 + 20 21 1 0 + 21 22 2 0 + 22 23 1 0 + 23 24 2 0 + 24 25 1 0 + 24 26 1 0 + 26 27 2 0 + 15 28 2 0 + 28 29 1 0 + 28 11 1 0 + 27 17 1 0 + 27 21 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 10 5 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4593 -2.5134 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1275 -0.4182 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3641 -2.8452 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 5 10 2 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 4 4 0 0 0 0 0 0 0 0999 V2000 + 2.3660 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 -1.0216 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 5 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 7.2452 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5981 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 +M CHG 2 2 1 10 -1 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 +M END +$$$$ + + RDKit 2D + + 15 17 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 2.5537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4231 4.0537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7221 4.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0211 4.0537 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0211 2.5537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7221 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 6 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 1 1 0 + 14 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.0037 -4.7220 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0037 -4.7220 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 7 12 1 0 + 12 13 2 0 + 13 4 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3601 5.2674 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2454 6.2711 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4022 7.7629 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0537 5.5211 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7418 4.0539 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 7 15 2 0 + 15 3 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 2 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -6.4949 3.6501 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4912 4.7648 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4875 5.8795 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.6059 5.7685 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3764 3.7611 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 8 1 0 + 15 11 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 4 10 1 0 + 10 11 2 0 + 11 1 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 6 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 2 11 1 0 + 11 12 1 0 + 11 13 2 0 + 11 14 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 7 10 1 0 + 10 11 2 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 9 2 0 + 7 10 1 0 + 10 11 1 0 + 11 12 1 0 + 6 13 1 0 + 13 14 2 0 + 14 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 2 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 5 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 8 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0819 -0.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5085 -0.2283 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7701 -2.1590 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 7 14 2 0 + 14 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -3.4408 8.1628 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 4 13 1 0 + 13 14 2 0 + 14 1 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 15 14 0 0 0 0 0 0 0 0999 V2000 + 6.3481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -3.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 3 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 9 1 0 +M CHG 2 3 1 15 -1 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 8 12 1 0 + 12 13 2 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 7 10 2 0 + 6 11 1 0 + 11 12 2 0 + 12 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 9 12 1 0 + 12 13 2 0 + 13 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 2 0 + 12 1 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.0260 2.7990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0260 -0.2010 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 -3.1235 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 6 9 1 0 + 9 10 1 0 + 9 2 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 +M END +$$$$ + + RDKit 2D + + 38 37 0 0 0 0 0 0 0 0999 V2000 + 9.4952 -12.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.9952 -12.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -13.6471 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 6.4952 -14.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9952 -14.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -12.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -11.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -10.6471 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -9.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9462 -8.3971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 -8.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -9.1471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 -6.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -6.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -0.5490 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8481 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -14.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -15.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -16.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2452 -18.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.5442 -18.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -18.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -16.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 11.1423 -15.8971 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 12.1423 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 13.1423 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 16 19 1 0 + 19 20 1 0 + 16 21 1 0 + 21 22 1 0 + 22 23 2 0 + 23 24 1 0 + 24 25 2 0 + 25 26 1 0 + 26 27 2 0 + 27 28 1 0 + 3 29 1 0 + 29 30 1 0 + 30 31 2 0 + 31 32 1 0 + 32 33 2 0 + 33 34 1 0 + 34 35 2 0 + 35 36 1 0 + 27 22 1 0 + 35 30 1 0 +M CHG 4 3 1 16 1 37 -1 38 -1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 2 0 + 6 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 9 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 4 12 1 0 + 12 13 2 0 + 13 1 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 4 2 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.2820 -1.5126 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7455 -2.9392 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2127 -3.2511 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7418 -4.0539 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0537 -5.5211 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2454 -6.2711 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3601 -5.2674 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 4 2 1 6 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 8 4 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -5.3529 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -6.8202 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -7.5702 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -6.5665 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 2 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 9 4 1 0 + 14 10 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.6380 5.6918 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2990 -1.8481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 3.3481 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 2 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 +M CHG 2 2 1 10 -1 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 4.6160 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1160 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M CHG 2 1 -1 2 1 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 21 22 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 1 0 + 16 17 2 0 + 16 18 1 0 + 18 19 1 0 + 19 20 2 0 + 8 21 2 0 + 21 3 1 0 + 19 13 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 5.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 4.8971 0.0000 Br 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 9 18 1 0 + 18 19 2 0 + 19 6 1 0 + 17 12 1 0 +M CHG 2 2 1 20 -1 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -5.3971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5490 -4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 6 14 1 0 + 14 15 1 0 + 15 16 1 0 + 13 7 1 0 + 16 14 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 16 18 0 0 0 0 0 0 0 0999 V2000 + -4.3764 3.7611 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6380 5.6918 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7527 6.6955 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4408 8.1628 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9044 9.5893 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4371 9.2775 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 2 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 7 5 1 0 + 16 8 1 0 + 15 11 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -3.9535 3.1099 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9462 5.3393 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0646 5.2283 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 5 1 0 + 12 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 3 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 5 1 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 3 6 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -6.4289 -8.5179 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1170 -7.0506 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6904 -6.5871 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 2 0 + 16 7 1 0 + 16 11 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 -5.8573 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 3 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 2 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -1.9635 -4.0247 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5838 -2.1155 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 8 14 1 0 + 14 15 1 0 + 15 5 1 0 + 13 9 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 9.0933 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 7.7942 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 2 0 + 13 15 1 0 + 7 16 2 0 + 16 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -0.5773 -4.2803 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 6 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5981 0.0000 0.0000 Cl 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 +M CHG 2 2 1 9 -1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.6491 0.9642 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6491 -0.9642 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 5.1962 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0490 4.6471 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 3.1471 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 8 14 2 0 + 14 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 8 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.9955 -1.6402 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6740 -4.8322 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8308 -6.3240 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8875 -3.9505 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 3 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 13 15 1 0 + 12 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9918 2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3037 4.2221 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0046 4.9721 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8478 6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8899 3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 7 14 2 0 + 14 3 1 0 + 13 8 2 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 7 14 2 0 + 14 3 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 2 0 + 8 11 1 0 + 11 12 1 0 + 12 13 1 0 + 7 14 2 0 + 14 3 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 9 16 2 0 + 16 5 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 7 14 2 0 + 14 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2844 -2.1766 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5688 -3.1036 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3213 -4.0667 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9510 4.6471 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 +M CHG 2 2 1 9 -1 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 1 + 4 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 5 8 2 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7548 -2.1855 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8373 -5.6601 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 4 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 16 2 1 0 + 16 10 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 5 13 1 0 + 13 14 2 0 + 14 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1160 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 35 36 0 0 0 0 0 0 0 0999 V2000 + -1.6409 -1.4428 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7455 -2.9392 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7418 -4.0539 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0537 -5.5211 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.2454 -6.2711 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.3601 -5.2674 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2127 -3.2511 0.0000 P 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2164 -2.1363 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3311 -3.1400 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1017 -1.1326 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2201 -1.0216 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6762 -4.6776 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2496 -5.1412 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1028 -4.2141 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1398 -6.1042 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 3.5126 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 4.7261 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 4.2626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + -1.0323 2.7626 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.3943 2.2990 0.0000 C 0 0 0 0 0 3 0 0 0 0 0 0 + 0.0000 5.7261 0.0000 Fe 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 8 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 19 20 1 0 + 2 21 1 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 21 26 1 0 + 26 27 1 0 + 26 28 1 0 + 26 29 1 0 + 30 31 1 0 + 31 32 1 0 + 32 33 1 0 + 33 34 1 0 + 7 3 1 0 + 14 9 1 0 + 20 15 1 0 + 34 30 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 3.1160 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 8 9 2 0 + 7 10 2 0 + 10 11 1 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 14 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5912 2.1155 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3412 0.8165 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3375 -0.2982 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 6 1 1 0 + 12 8 2 0 + 12 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1989 -4.2853 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8107 -5.7342 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3618 -5.3460 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 8 16 2 0 + 16 17 1 0 + 17 18 2 0 + 18 19 1 0 + 18 6 1 0 + 15 12 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 2.4510 -4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -3.1471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 15 9 1 0 +M END +$$$$ + + RDKit 2D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 4 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 2 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 16 17 2 0 + 16 18 1 0 + 15 19 2 0 + 19 20 1 0 + 19 10 1 0 +M CHG 2 16 1 18 -1 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 2 0 + 3 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -4.3786 -5.1199 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 3 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 2.5981 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1459 -3.7548 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3250 -2.9520 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 3 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1328 3.1443 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0967 5.1517 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3828 1.2990 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 6.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1328 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 6.1517 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 6 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 15 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 19 2 0 + 19 20 1 0 + 20 21 2 0 + 21 22 1 0 + 22 23 2 0 + 13 2 1 0 + 23 18 1 0 + 9 5 1 0 +M CHG 2 17 -1 24 1 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 8 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 1 0 + 12 13 2 0 + 13 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 3 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 +M CHG 2 6 -1 7 1 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 2 0 +M END +$$$$ + + RDKit 2D + + 6 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 1.7500 0.0000 Na 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 +M CHG 2 5 -1 6 1 +M END +$$$$ + + RDKit 2D + + 5 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.0000 3.2500 0.0000 K 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M CHG 2 4 -1 5 1 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 2 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 1 2 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 3 2 1 6 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 6 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0967 5.1517 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 7 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 5 8 1 0 + 8 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 3 2 1 1 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 5 3 1 1 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 7 2 1 0 + 15 10 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 7 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5000 -5.1962 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 2 0 + 17 8 1 0 + 17 12 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 8 11 2 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 8 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 2.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 1 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 3 1 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 2 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 1 0 + 7 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 2 2 0 + 15 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 2 0 + 10 12 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 5 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 1 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 3 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 5 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 6 1 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 -1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + 1.9409 10.8275 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3674 10.3639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7940 9.9004 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8310 11.7905 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9039 8.9374 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9076 7.8226 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3748 8.1345 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4441 6.3961 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1251 5.0595 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7886 4.3786 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3250 2.9520 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6161 1.0216 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0890 3.1235 0.0000 O 0 0 0 0 0 1 0 0 0 0 0 0 + 2.1076 5.7151 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3748 0.0000 0.0000 Li 0 0 0 0 0 15 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 17 18 1 0 + 18 19 2 0 + 18 20 1 0 + 10 21 1 0 + 21 8 1 0 + 17 13 2 0 +M CHG 2 20 -1 22 1 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.9499 4.2246 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 9 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 18 20 0 0 0 0 0 0 0 0999 V2000 + -10.3946 0.4398 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -8.9681 0.9033 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -8.6562 2.3705 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2296 2.8340 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1149 1.8303 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6883 2.2939 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5736 1.2902 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.4268 0.3631 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.8533 -0.1004 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 2 0 + 15 16 1 0 + 5 17 1 0 + 17 18 2 0 + 18 2 1 0 + 16 8 1 0 + 16 12 2 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0967 5.1517 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 7 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 -5.9462 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -6.6962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 2 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 6 4 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0000 -5.1073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 2 1 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 5.0260 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5260 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 5 11 1 0 + 11 12 2 0 + 12 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 11 12 0 0 0 0 0 0 0 0999 V2000 + -2.9520 -4.6564 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 3 1 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 5 11 1 0 + 11 12 2 0 + 12 2 1 0 + 10 6 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 9 14 1 0 + 14 15 2 0 + 14 16 1 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 3 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 9.0933 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 7.7942 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 1 0 + 10 19 2 0 + 19 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 5 8 1 0 + 8 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 4.6740 -4.8322 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 4 11 2 0 + 11 12 1 0 + 12 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + -3.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 3 1 0 + 12 7 1 0 +M END +$$$$ + + RDKit 2D + + 12 13 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3083 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8817 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 5 11 1 0 + 11 12 2 0 + 12 2 1 0 + 10 6 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 5.1962 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 6.4952 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 7.7942 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 9.0933 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 7.7942 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 5 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 1 0 + 10 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 5 10 1 0 + 10 11 2 0 + 11 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 10 1 0 + 7 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 13 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 4 7 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 3 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3481 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8481 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 3 6 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 2.5981 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 I 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -3.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 5 8 2 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 8 13 1 0 + 13 14 2 0 + 14 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 12 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7942 -1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0933 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.8433 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.3433 2.0490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 10.3923 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 5 10 1 0 + 10 11 2 0 + 11 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 6 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 4 7 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 6.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 6 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 4 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0490 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4510 -2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 6 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 6 11 2 0 + 11 12 1 0 + 11 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2458 1.6317 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8578 -2.6401 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.4775 -7.0740 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8478 -6.4639 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9955 -1.6402 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 7 14 1 0 + 14 3 1 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 1 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 3.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 -2.5981 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 9 14 2 0 + 14 4 1 0 +M END +$$$$ + + RDKit 2D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 5 1 0 +M END +$$$$ + + RDKit 2D + + 3 2 0 0 0 0 0 0 0 0999 V2000 + 1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6471 -0.5490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 2.0490 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 2 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2500 3.8971 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2010 3.3481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7990 1.8481 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 9 14 2 0 + 14 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 10 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9672 0.3119 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1240 1.8037 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7537 2.4138 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 1 1 0 + 8 4 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 7 7 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 3 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 5.2500 -1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 15 1 0 + 15 16 1 0 + 16 5 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -0.0967 5.1517 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4086 3.6844 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8351 3.2209 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1470 1.7537 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7062 2.6807 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 + 9 10 1 0 + 7 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 9 8 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0490 -0.5490 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 2.0490 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 3.3481 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7990 3.3481 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5490 4.6471 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 5.9462 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 8 9 1 0 +M END +$$$$ + + RDKit 2D + + 10 9 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0981 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -3.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 3 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 +M END +$$$$ + + RDKit 2D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5000 2.5981 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 1 0 + 4 5 2 0 + 4 6 1 0 + 6 7 1 0 + 2 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 2 0 + 13 8 1 0 +M END +$$$$ + + RDKit 2D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 6.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 5 4 1 6 + 5 6 1 0 + 6 7 2 0 + 6 8 1 0 + 5 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 8 7 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4952 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -1.5000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 +M END +$$$$ + + RDKit 2D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 3.8971 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 3.8971 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 5.1962 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 6 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 8 13 1 0 + 13 14 2 0 + 13 15 1 0 + 7 16 2 0 + 16 3 1 0 +M END +$$$$ + + RDKit 2D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.7500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 -1.2990 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 1 0 + 2 5 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 2 0 + 8 15 1 0 + 15 16 1 0 + 16 5 1 0 + 14 9 1 0 +M END +$$$$ + + RDKit 2D + + 4 4 0 0 0 0 0 0 0 0999 V2000 + 2.3660 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8660 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4330 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + -2.6401 -3.1891 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 -2.7256 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0000 -3.6073 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2135 -2.7256 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 2 1 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 5 4 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 1 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 +M END +$$$$ + + RDKit 2D + + 10 11 0 0 0 0 0 0 0 0999 V2000 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 2.5981 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 6 1 1 0 + 10 4 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 2 1 0 +M END +$$$$ + + RDKit 2D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 2.5981 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2500 1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0000 0.0000 0.0000 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 1 0 + 3 4 2 0 + 3 5 1 0 + 2 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 6 1 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 4.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 S 0 0 0 0 0 6 0 0 0 0 0 0 + 3.0000 1.5000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 -1.5000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2 1 1 6 + 2 3 2 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 2 0 + 10 5 1 0 +M END +$$$$ + + RDKit 2D + + 6 5 0 0 0 0 0 0 0 0999 V2000 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1962 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8971 2.2500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 +M END +$$$$ + + RDKit 2D + + 4 3 0 0 0 0 0 0 0 0999 V2000 + -1.2990 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2990 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5981 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 2 1 0 +M END +$$$$ + + RDKit 2D + + 8 8 0 0 0 0 0 0 0 0999 V2000 + 3.7500 -1.2990 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 2 0 + 6 7 1 0 + 7 8 2 0 + 8 3 1 0 +M END +$$$$ + + RDKit 2D + + 6 6 0 0 0 0 0 0 0 0999 V2000 + 2.7760 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 2 2 0 +M END +$$$$ + + RDKit 2D + + 5 5 0 0 0 0 0 0 0 0999 V2000 + 1.2760 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 0.7500 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0323 -0.7500 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3943 -1.2135 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 5 1 2 0 +M END +$$$$ + + RDKit 2D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 4.8308 -6.3240 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6740 -4.8322 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3037 -4.2221 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 -2.7549 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 -2.5981 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7500 -1.2990 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8899 -3.9684 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0046 -4.9721 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 2 0 + 5 12 1 0 + 12 13 2 0 + 13 3 1 0 + 11 6 1 0 +M END +$$$$ diff --git a/data/filters/Enamine/README.md b/data/filters/Enamine/README.md new file mode 100644 index 00000000..741fe7c1 --- /dev/null +++ b/data/filters/Enamine/README.md @@ -0,0 +1,14 @@ +# Enamine Building Blocks Comparison +We use an RDKit-based substructure search to identify Enamine Building Blocks matching our fragments. +The created building block file is used in +`notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb`. + +## Enamine Building Blocks +To perform a substructure match, we need to first download the building blocks from the [Enamine website](https://enamine.net/building-blocks/building-blocks-catalog). Please deposit the building blocks SDF file in the `../data/filters/Enamine` folder. + + +## Substructure search +To save computational runtime, we have implemented the substructure search of fragments in our library with the Enamine building blocks separately. It is generated by executing the `kinfraglib/filters/enamine_substructures.py` file which performs a substructure search of a given fragment library against the Enamine building blocks. If a substructure is found, the smallest matching Enamine building block is written to `data/filters/Enamine/Enamine_Building_Blocks.sdf`: +```bash +python3 kinfraglib/filters/enamine_substructures.py -e data/filters/Enamine/enamine_building_blocks_original.sdf -f data/fragment_library -o data/filters/Enamine/Enamine_Building_Blocks.sdf +``` diff --git a/data/filters/README.md b/data/filters/README.md new file mode 100644 index 00000000..e2073133 --- /dev/null +++ b/data/filters/README.md @@ -0,0 +1,5 @@ +# Filters Data + +- `Brenk`: Folder containing the `unwanted_substructures.csv` provided by Brenk et al. +- `Enamine`: Folder containing the `Enamine_Building_Blocks.sdf` file created with `kinfraglib/filters/enamine_substructures.py`. +- `retrosynthesizability`: Folder containing `retro.txt` in which all retrosynthetic pathways that were previously requested (or will potentially be assembled in future queries) are stored. \ No newline at end of file diff --git a/data/filters/retrosynthesizability/README.md b/data/filters/retrosynthesizability/README.md new file mode 100644 index 00000000..304cba9d --- /dev/null +++ b/data/filters/retrosynthesizability/README.md @@ -0,0 +1,5 @@ +# retrosynthesizability data + +- `retro.txt`: File containing the results that were already assembled in previous queries for fragment pairs or those that will be queried in future searches. It contains \[pair SMILES\]; \[child(ren) 1 SMILES\]; \[child(ren) 2 SMILES\]; \[plausibility/ies\] for every requested fragment pair. + +**Note:** The ASKCOS results for the given KinFragLib data are already precomputed, thus ASKCOS does not need to be installed to successfully run this notebook. However, if the notebook is executed on new data, the ASKCOS needs to be installed beforehand. To install ASKCOS, please follow the installation given at [https://askcos-docs.mit.edu/](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html). \ No newline at end of file diff --git a/data/filters/retrosynthesizability/retro.txt b/data/filters/retrosynthesizability/retro.txt new file mode 100644 index 00000000..2caa2d49 --- /dev/null +++ b/data/filters/retrosynthesizability/retro.txt @@ -0,0 +1,48586 @@ +CNC(=O)c1ccccc1-c1cnc2[nH]cc(N)c2c1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.99967360496521, 0.9971798658370972] +CCOc1ccccc1-c1cnc2[nH]cc(N)c2c1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999862313270569, 0.9998555779457092, 0.9973525404930115, 0.9903301000595093, 0.8669643402099609] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2[nH]cc(N)c2c1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9994645714759827, 0.9988350868225098, 0.9589805603027344] +Nc1c[nH]c2ncc(-c3ccnc4ccccc34)cc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Brc1ccnc2ccccc12', 'Nc1c[nH]c2ncc(Cl)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccnc2ccccc12', 'Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccnc2ccccc12']; [0.9999194145202637, 0.9963984489440918, 0.9929924607276917, 0.9816426634788513] +CCn1cc(-c2cnc3[nH]cc(N)c3c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999940395355225, 0.9986475706100464] +CP(C)(=O)c1ccccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccccc3OC(F)(F)F)cc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'FC(F)(F)Oc1ccccc1Br']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999774694442749, 0.9994050860404968, 0.9959591627120972, 0.9925793409347534] +Cc1nnc(-c2ccccc2-c2cnc3[nH]cc(N)c3c2)[nH]1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnc4[nH]cc(N)c4c3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9971938729286194] +NC(=O)c1ccccc1-c1cnc2[nH]cc(N)c2c1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999915957450867, 0.9999704360961914, 0.999005913734436, 0.9883054494857788, 0.9583431482315063] +Nc1c[nH]c2ncc(-c3cnn(Cc4ccccc4)c3)cc12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999902248382568, 0.9994637370109558, 0.981293261051178] +Nc1c[nH]c2ncc(-c3ccccc3C(=O)[O-])cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cc(Cl)ccc3Cl)cc12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999842643737793, 0.9984503388404846] +Nc1c[nH]c2ncc(-c3cccc(NC(=O)c4ccccc4)c3)cc12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [1.0, 0.9999914169311523] +Cc1ccc(-c2cnc3[nH]cc(N)c3c2)c(Br)c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cnn(CCO)c3)cc12; [None]; [None]; [0] +COc1cnc(-c2cnc3[nH]cc(N)c3c2)nc1; [None]; [None]; [0] +Nc1c[nH]c2ncc([C@@H](N)c3ccco3)cc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc3[nH]cc(N)c3c2)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc3[nH]cc(N)c3c2)cs1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cnc4ccccn34)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['c1ccn2ccnc2c1']; [0.992957353591919] +Cc1nc(C)c(-c2cnc3[nH]cc(N)c3c2)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999898672103882] +Nc1c[nH]c2ncc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3c(Cl)cccc3Cl)cc12; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9998747110366821, 0.9959887266159058] +Nc1c[nH]c2ncc(-c3cccc(Br)c3)cc12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Brc1cccc(Br)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999868869781494, 0.9996781349182129, 0.9996026754379272, 0.9869924783706665] +Cc1ccc(Cl)c(-c2cnc3[nH]cc(N)c3c2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9998884201049805, 0.9986701607704163, 0.9951398372650146, 0.8401960134506226] +Nc1c[nH]c2ncc(-c3cnn4ncccc34)cc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.999984085559845] +Nc1c[nH]c2ncc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc4ccccc4c3)cc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Brc1ccc2ccccc2c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999991655349731, 0.9999485015869141, 0.9998874664306641, 0.9972556233406067] +Nc1nccc(-c2cnc3[nH]cc(N)c3c2)n1; [None]; [None]; [0] +Cc1c(-c2cnc3[nH]cc(N)c3c2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnc2[nH]cc(N)c2c1; ['NC(=O)c1c(F)cccc1Br']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9998327493667603] +Nc1c[nH]c2ncc(-c3c[nH]nc3C(F)(F)F)cc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999942183494568] +CC(C)(C)c1cnc(Cc2cnc3[nH]cc(N)c3c2)o1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc(CC(=O)[O-])c3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cncc4ccccc34)cc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc4[nH]cc(N)c4c3)cc2)cn1; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc4[nH]cc(N)c4c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9999991655349731, 0.9999972581863403, 0.999626100063324] +Nc1[nH]nc2cc(-c3cnc4[nH]cc(N)c4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cnc4[nH]cc(N)c4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc(CO)c3)cc12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1']; [0.9999873638153076, 0.9998226165771484, 0.9923000335693359, 0.9904541969299316, 0.9593309164047241, 0.9097204804420471] +Nc1c[nH]c2ncc(-c3cccc(O)c3)cc12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cccc(O)c1']; [0.9999313354492188, 0.9977777004241943] +Nc1c[nH]c2ncc(-c3ccc(-c4cn[nH]c4)cc3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cc4ccccc4[nH]3)cc12; [None]; [None]; [0] +CC(C)n1cc(-c2cnc3[nH]cc(N)c3c2)nn1; [None]; [None]; [0] +CCCn1cnc(-c2cnc3[nH]cc(N)c3c2)n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc3[nH]cc(N)c3c2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9997594952583313, 0.9990617036819458, 0.9358139038085938] +Nc1c[nH]c2ncc(-c3csc4ncncc34)cc12; ['Brc1csc2ncncc12']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9926137924194336] +CSc1nc(-c2cnc3[nH]cc(N)c3c2)c[nH]1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]cc(N)c3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999995231628418, 0.9999977350234985] +Nc1ncncc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(F)cc3C(F)(F)F)cc12; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999339580535889, 0.9997808933258057, 0.9960755705833435] +CCNc1nc2ccc(-c3cnc4[nH]cc(N)c4c3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc3[nH]cc(N)c3c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncccc12']; [0.9999996423721313, 0.9999569654464722, 0.9999017715454102, 0.998272180557251, 0.8489699959754944] +Cn1cc(-c2cnc3[nH]cc(N)c3c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999911785125732, 0.9926719665527344] +CCCn1cc(-c2cnc3[nH]cc(N)c3c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999916553497314, 0.9990894794464111] +COc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9999872446060181, 0.9999492764472961, 0.9988491535186768] +CC[C@H](CO)c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(Cc3c(F)cccc3F)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cc[nH]c(=O)c3)cc12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.999996542930603] +Nc1c[nH]c2ncc(-c3cnn4ccccc34)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc4c3C(=O)CC4)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['O=C1CCc2cccc(Br)c21']; [0.9692015647888184] +C[S@](=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999948740005493, 0.9997528195381165] +CC(C)(N)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CC(C)(N)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.7777039408683777] +CN(c1ncccc1Cc1cnc2[nH]cc(N)c2c1)S(C)(=O)=O; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [1.0, 0.9999665021896362, 0.9999260902404785] +CCNS(=O)(=O)c1ccccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cnc3[nH]cc(N)c3c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999963641166687, 0.9998267889022827] +Nc1c[nH]c2ncc(-c3cc4c(=O)[nH]ccc4o3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2[nH]cc(N)c2c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999994039535522, 0.9999567270278931, 0.9999020099639893, 0.999744176864624] +Nc1c[nH]c2ncc(-c3c[nH]c4cnccc34)cc12; ['Nc1c[nH]c2ncc(Br)cc12', 'Brc1c[nH]c2cnccc12', 'Nc1c[nH]c2ncc(Cl)cc12']; ['OB(O)c1c[nH]c2cnccc12', 'Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9864266514778137, 0.9633036851882935, 0.9495233297348022] +Nc1c[nH]c2ncc(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.999998927116394, 0.9999015927314758, 0.999751091003418, 0.9358227252960205] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999951124191284, 0.9998332262039185, 0.999445915222168] +Nc1c[nH]c2ncc(-c3cnc4[nH]ccc4c3)cc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999279975891113] +CNC(=O)c1c(F)cccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc([C@H](CO)Cc3ccccc3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9999982118606567, 0.9999964237213135, 0.998098611831665] +Nc1c[nH]c2ncc([C@H](CO)c3ccccc3)cc12; [None]; [None]; [0] +CC1(c2cnc3[nH]cc(N)c3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3c(F)cccc3Cl)cc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1c(F)cccc1Cl']; [1.0, 0.9999958872795105] +CS(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]cc(N)c3c2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999523162841797, 0.9998248815536499] +Cc1cc(-c2cnc3[nH]cc(N)c3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(C(=O)c4ccccc4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999978542327881, 0.9999871253967285, 0.9999183416366577, 0.9992111921310425, 0.9263921976089478] +Nc1c[nH]c2ncc(-c3cn(Cc4ccccc4)nn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['c1ccc(Cn2ccnn2)cc1']; [0.998584508895874] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc3[nH]cc(N)c3c2)[nH]1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CCc1cc(-c2cnc3[nH]cc(N)c3c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cnc3[nH]cc(N)c3c2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cnc3[nH]cc(N)c3c2)nc(N)n1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3[nH]cc(N)c3c2)n1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +Nc1cncc(-c2cnc3[nH]cc(N)c3c2)n1; ['Nc1c[nH]c2ncc(Br)cc12']; ['Nc1cncc(Br)n1']; [0.9967283010482788] +Cn1cc(C(N)=O)cc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc4ccsc34)cc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999994039535522, 0.9996533989906311, 0.9934408664703369] +CNC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)s1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc4nnsc34)cc12; ['Brc1cccc2nnsc12']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.989699125289917] +CC1(C)Oc2ccc(-c3cnc4[nH]cc(N)c4c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4[nH]cc(N)c4c3)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +Nc1c[nH]c2ncc(CCCNC(=O)c3cccs3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3c[nH]c4cccnc34)cc12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999840259552002, 0.9994358420372009] +Nc1c[nH]c2ncc(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc3[nH]cc(N)c3c2)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc2[nH]cc(N)c2c1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999935626983643, 0.9999340772628784, 0.9998198747634888, 0.995064377784729] +Nc1c[nH]c2ncc(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(CCCNC(=O)C3CCC3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc3[nH]cc(N)c3c2)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.99986332654953, 0.9992890357971191, 0.998286247253418, 0.9779765605926514] +COc1ncccc1-c1cnc2[nH]cc(N)c2c1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999803304672241, 0.9997379779815674, 0.9991724491119385, 0.9988257884979248, 0.968682050704956] +CCOc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999988079071045, 0.9999130964279175, 0.9998346567153931, 0.9266902208328247] +CC(=O)N(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.999998927116394] +CS(=O)(=O)c1cccc(-c2cnc3[nH]cc(N)c3c2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999998211860657, 0.9999282360076904, 0.999821662902832, 0.9997698068618774] +CN(C)S(=O)(=O)c1cccc(-c2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2cnc3[nH]cc(N)c3c2)cnn1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc3[nH]cc(N)c3c2)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9938762187957764] +COc1cc(-c2cnc3[nH]cc(N)c3c2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999932050704956, 0.9986509084701538, 0.9984676837921143, 0.9544070959091187] +COc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999970197677612, 0.999626636505127, 0.9995445013046265] +Nc1c[nH]c2ncc(-c3cccc(NC(=O)C4CC4)c3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9994385242462158] +Cc1nc(C(C)(C)O)sc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]cc(N)c3c2)sn1; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9959366321563721, 0.9864901304244995] +Cc1ccc2ncn(-c3cnc4[nH]cc(N)c4c3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9990639686584473, 0.9986554384231567] +Nc1c[nH]c2ncc(-c3nccc4ccccc34)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3nc4ccccc4[nH]3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(C(=O)[O-])cc3)cc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999986290931702, 0.9999973773956299, 0.9999301433563232, 0.9998133182525635, 0.9460282921791077] +Nc1c[nH]c2ncc(Nc3ncccn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['Nc1ncccn1']; [0.9883698225021362] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4[nH]cc(N)c4c3)cc2)CC1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc(C4CCNCC4)c3)cc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnc4[nH]cc(N)c4c3)cn2)c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(C(=O)Nc4ccccc4)cc3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(OCCO)cc3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(Nc3ccncn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['Nc1ccncn1']; [0.9996946454048157] +Nc1c[nH]c2ncc(-c3ccc(C(=O)N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999998807907104, 0.9999986290931702, 0.9999881386756897, 0.9998405575752258, 0.9852915406227112] +CC(=O)NCc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(C(=O)N4CCOCC4)cn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999838471412659] +Nc1c[nH]c2ncc(-c3ccc(C(F)(F)F)cc3)cc12; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999989867210388, 0.9999386668205261, 0.9999294281005859, 0.9764727354049683] +CN(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999996423721313, 0.9999824166297913, 0.9609896540641785] +C[C@H](O)COc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc4c(c3)CS(=O)(=O)C4)cc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9999994039535522, 0.9999518394470215, 0.9998605847358704, 0.9988462924957275, 0.9561293125152588] +Nc1c[nH]c2ncc(-c3ccc(Br)cc3)cc12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(Br)cc1']; [0.9999954700469971, 0.9983375072479248] +Nc1c[nH]c2ncc([C@H]3CCN(C(=O)c4ccccc4)C3)cc12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9998255968093872, 0.9996805191040039, 0.9208683967590332] +CS(=O)(=O)N1CCC(c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc3[nH]cc(N)c3c2)nc(N)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9984768629074097] +CC(=O)N1CCCN(c2cccc(-c3cnc4[nH]cc(N)c4c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc3[nH]cc(N)c3c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [1.0, 0.9999992847442627, 0.9999678134918213, 0.9997926950454712] +Nc1c[nH]c2ncc(-c3ccn4nccc4n3)cc12; ['Clc1ccn2nccc2n1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999325275421143] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.999983549118042, 0.9999779462814331, 0.9990894794464111, 0.9983811378479004, 0.9961310625076294] +COc1ccc(Cl)cc1-c1cnc2[nH]cc(N)c2c1; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999333620071411, 0.9981757998466492, 0.9914308190345764, 0.9473095536231995] +Nc1c[nH]c2ncc(-c3c[nH]c4ccccc34)cc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9995944499969482, 0.941779613494873] +Nc1c[nH]c2ncc(-c3ccc4c(c3)CCO4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Brc1ccc2c(c1)CCO2']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999996423721313, 0.9999551773071289, 0.9999157190322876, 0.9995405077934265] +Nc1c[nH]c2ncc(-c3ccccc3-n3cccn3)cc12; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]cc(N)c3c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999966621398926, 0.9993408918380737] +COc1cc(OC)c(-c2cnc3[nH]cc(N)c3c2)cc1Cl; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc4c3OCO4)cc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9999975562095642, 0.9993571043014526, 0.995913028717041] +CC(C)c1ccc2nc(-c3cnc4[nH]cc(N)c4c3)[nH]c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cc(-c4ccccc4)[nH]n3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3scc4c3OCCO4)cc12; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999949336051941] +Nc1c[nH]c2ncc(-c3cnc4ccccc4c3)cc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1cnc2ccccc2c1']; [0.9999806880950928, 0.9977017641067505] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999997615814209, 0.9999994039535522, 0.9999409914016724, 0.9998111724853516, 0.855064868927002] +CC(C)(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999991655349731, 0.9999051094055176, 0.9871526956558228] +Nc1c[nH]c2ncc(-c3cc4ccccc4s3)cc12; ['Nc1c[nH]c2ncc(Br)cc12', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C']; ['OB(O)c1cc2ccccc2s1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999034404754639, 0.9998534917831421] +CCN1CCN(Cc2ccc(-c3cnc4[nH]cc(N)c4c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999812841415405, 0.9999720454216003, 0.9868291020393372] +CSc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999986886978149, 0.9998044371604919, 0.9996856451034546, 0.7765963673591614] +Nc1nc(-c2cnc3[nH]cc(N)c3c2)cs1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]cc(N)c3c2)nc(N)n1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(F)cc3Cl)cc12; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Fc1ccc(Br)c(Cl)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(F)cc1Cl', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999982118606567, 0.999886155128479, 0.9978026747703552] +Nc1c[nH]c2ncc(-c3ccc4c(c3)CCC(=O)N4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999985694885254, 0.9972368478775024] +Nc1c[nH]c2ncc(-c3ncc(Br)cn3)cc12; [None]; [None]; [0] +CC1(COc2cnc3[nH]cc(N)c3c2)COC1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccn(-c4cccc(Cl)c4)n3)cc12; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999993443489075, 0.9999115467071533, 0.9998157024383545, 0.9983624219894409] +CCc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999988079071045, 0.99982088804245, 0.9997851848602295, 0.8378153443336487] +Nc1c[nH]c2ncc(-c3ccc(Cl)cc3Cl)cc12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Clc1ccc(Br)c(Cl)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999955892562866, 0.9998881816864014, 0.9981943368911743, 0.9928157329559326] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]cc(N)c3c2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999994039535522, 0.9999974966049194] +COc1ccc(CNc2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +Nc1c[nH]c2ncc(NC3CN(C(=O)C4CC4)C3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc4ccc(O)cc34)cc12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999748468399048] +Nc1c[nH]c2ncc(-c3ncc4cccn4n3)cc12; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]cc(N)c3c2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999979138374329, 0.9998998641967773, 0.9980503916740417] +Nc1c[nH]c2ncc(-c3cc4ccccn4n3)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2cnc3[nH]cc(N)c3c2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999969005584717, 0.9999723434448242, 0.9999250173568726, 0.9282206296920776] +COc1cc(-c2cnc3[nH]cc(N)c3c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999997615814209, 0.9999849796295166, 0.9998394250869751, 0.9998205304145813] +CC1(C)Cc2cc(-c3cnc4[nH]cc(N)c4c3)ccc2O1; [None]; [None]; [0] +Cc1csc2c(-c3cnc4[nH]cc(N)c4c3)ncnc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ncc(Cl)cn3)cc12; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]cc(N)c3c2)nn1C; ['Cc1cc(N)nn1C']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9868496656417847] +CNC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999998211860657, 0.9999358654022217, 0.9998311996459961] +COc1ccc2cccc(-c3cnc4[nH]cc(N)c4c3)c2c1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]cc(N)c3c2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9846575260162354, 0.8666074872016907] +Nc1c[nH]c2ncc(NC(=O)c3ccco3)cc12; ['NC(=O)c1ccco1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9884151816368103] +Nc1cc(-c2cnc3[nH]cc(N)c3c2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(Nc2cnc3[nH]cc(N)c3c2)sc1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3[nH]cc(N)c3c2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999954700469971, 0.9998845458030701] +Nc1c[nH]c2ncc(Cc3ccc(S(=O)(=O)CCO)cc3)cc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc4cn[nH]c4c3)cc12; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Brc1ccc2cn[nH]c2c1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.999997615814209, 0.9999957084655762, 0.9995965957641602] +CCNC(=O)N1CCC(c2cnc3[nH]cc(N)c3c2)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3cnc4[nH]cc(N)c4c3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9998754262924194] +CC(C)(C)c1ccc(C(=O)Nc2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cc12; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3[nH]cc(N)c3c1)cn2C; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3cc4ccccc4o3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['OB(O)c1cc2ccccc2o1']; [0.9999672174453735] +CNC(=O)c1ccc(OC)c(-c2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ncc4sccc4n3)cc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc4[nH]cc(N)c4c3)[nH]c2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(OC(F)(F)F)cc3)cc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'FC(F)(F)Oc1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999997019767761, 0.9999210834503174, 0.9996492266654968, 0.9757124185562134] +Nc1c[nH]c2ncc(-c3cc(-c4cccnc4)ccn3)cc12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CCc1cccc(-c2cnc3[nH]cc(N)c3c2)n1; ['CCc1cccc(Br)n1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9966133236885071] +Nc1c[nH]c2ncc(-c3cccc(NC(=O)N4CCCC4)c3)cc12; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ncn4c3CCCC4)cc12; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnc4[nH]cc(N)c4c3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [1.0, 0.9999993443489075, 0.9999990463256836, 0.9999589920043945] +CN(C)c1ccc(-c2cnc3[nH]cc(N)c3c2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; [0.9999996423721313, 0.9999454617500305, 0.9997998476028442, 0.9716150760650635] +CC(=O)N1CCC(n2cc(-c3cnc4[nH]cc(N)c4c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999974966049194] +CC(C)(O)c1ccc2cc(-c3cnc4[nH]cc(N)c4c3)[nH]c2c1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]cc(N)c3c2)cc(C)c1OCCO; [None]; [None]; [0] +Nc1c[nH]c2ncc(NC(=O)c3cccc(OC(F)(F)F)c3)cc12; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc4[nH]cc(N)c4c3)ccc21; [None]; [None]; [0] +Nc1c[nH]c2ncc(-c3ccc(CCO)cc3)cc12; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Br)cc12']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1']; [0.9999961853027344, 0.9999881386756897, 0.9991523027420044, 0.9984848499298096, 0.8754873871803284, 0.8644145727157593] +Nc1c[nH]c2ncc(-c3cccc(N4CCCC4=O)c3)cc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9999858140945435] +Cc1ncc(-c2ccc(-c3cnc4[nH]cc(N)c4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2[nH]cc(N)c2c1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.971322238445282] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.9831100106239319] +CCNC(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1c[nH]c2ncc(Br)cc12', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999117255210876, 0.9998927116394043] +Nc1c[nH]c2ncc(Nc3ccc(F)cn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['Nc1ccc(F)cn1']; [0.9691864252090454] +Nc1c[nH]c2ncc(Nc3ccccn3)cc12; ['Nc1c[nH]c2ncc(Br)cc12']; ['Nc1ccccn1']; [0.9986002445220947] +Cc1cc(Nc2cnc3[nH]cc(N)c3c2)ncc1F; ['Cc1cc(N)ncc1F']; ['Nc1c[nH]c2ncc(Br)cc12']; [0.971198320388794] +COc1cc(N2CCNCC2)ccc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Cn1nc(-c2cnc3[nH]cc(N)c3c2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]cc(N)c3c2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3[nH]cc(N)c3c2)c1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(O)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc4ncccc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3c(Cl)ccc4c3OCO4)c12; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2[nH]cc(N)c2c1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3n[nH]c4ccccc34)c12; [None]; [None]; [0] +CCc1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999963045120239, 0.9999136924743652, 0.8187494277954102] +Nc1ncnn2ccc(-c3ccc(Cl)c(O)c3)c12; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999935626983643, 0.9999269843101501, 0.9983584880828857] +Nc1ncnn2ccc(-c3c(Cl)cccc3Cl)c12; ['Nc1ncnn2ccc(Br)c12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.999864935874939] +COc1cc(C(N)=O)ccc1-c1ccn2ncnc(N)c12; ['COc1cc(C(N)=O)ccc1Br']; ['Nc1ncnn2cccc12']; [0.9303272366523743] +NC(=O)c1ccc(-c2ccn3ncnc(N)c23)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1cccc(F)c1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999822378158569, 0.9999743700027466, 0.9969528913497925, 0.9947014451026917, 0.7526558637619019] +Nc1ncnn2ccc(-c3ccc(O)cc3Cl)c12; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; ['Nc1ncnn2ccc(Br)c12', 'OB(O)c1ccc(O)cc1Cl', 'Oc1cccc(Cl)c1']; [0.9999660849571228, 0.999906063079834, 0.8630719184875488] +Nc1ncnn2ccc(-c3ccc(O)cc3F)c12; ['Nc1ncnn2ccc(Br)c12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1ncnn2ccc(Br)c12']; ['OB(O)c1ccc(O)cc1F', 'Nc1ncnn2ccc(Br)c12', 'Oc1ccc(Br)c(F)c1']; [0.9999735355377197, 0.9999661445617676, 0.995599627494812] +COc1ccc(F)cc1-c1ccn2ncnc(N)c12; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12']; [0.9999607801437378, 0.9999529123306274, 0.9760602116584778, 0.936208963394165] +Nc1nccc(-c2ccn3ncnc(N)c23)n1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccn4ncnc(N)c34)cc2[nH]1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)c12; [None]; [None]; [0] +COc1cc(-c2ccn3ncnc(N)c23)ccc1O; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(C(=O)[O-])cc3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cn[nH]c3Cl)c12; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccn3ncnc(N)c23)o1; [None]; [None]; [0] +Nc1ncnn2ccc(COc3cccc(Cl)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(Br)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc4ccccc4c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(O)c(F)c3)c12; [None]; [None]; [0] +Cn1cc(-c2ccn3ncnc(N)c23)c2ccccc21; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(O)cc3O)c12; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnn4ncccc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3c[nH]c4cnccc34)c12; [None]; [None]; [0] +Nc1cc(-c2ccn3ncnc(N)c23)ccn1; [None]; [None]; [0] +Nc1ncnn2ccc(COc3ccccc3Cl)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(F)c(Cl)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc([C@H](CO)c3ccccc3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(CCc3ccc(Cl)cc3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3[nH]cnc3-c3ccc(F)cc3)c12; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(O)ccc3Cl)c12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnc(O)c(Cl)c3)c12; [None]; [None]; [0] +NC(=O)c1cc(-c2ccn3ncnc(N)c23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +COc1ccc(-c2ccn3ncnc(N)c23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccn4ncnc(N)c34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccn4ncnc(N)c34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnc4[nH]ccc4c3)c12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cncc(O)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc4c(c3)CC(=O)N4)c12; [None]; [None]; [0] +CNc1nccc(-c2ccn3ncnc(N)c23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccn3ncnc(N)c23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(C(F)F)n[nH]3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccncc3Cl)c12; [None]; [None]; [0] +CCc1sccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc4c(c3)CCN4)c12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Nc1ncnn2ccc(Br)c12']; ['Nc1ncnn2ccc(Br)c12', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999995231628418, 0.9999932646751404] +Nc1ncnn2ccc(-c3cc(Cl)c(O)c(Cl)c3)c12; [None]; [None]; [0] +CNc1nc(-c2ccn3ncnc(N)c23)ncc1F; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(O)n4nccc4n3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(Br)cc3F)c12; [None]; [None]; [0] +Cc1oc(-c2ccn3ncnc(N)c23)cc1C(=O)[O-]; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(O)cc(Br)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3[nH]nc4ccc(F)cc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(C(=O)NC4CC4)cc3)c12; [None]; [None]; [0] +Cc1cc(-c2ccn3ncnc(N)c23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccn4ncnc(N)c34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccn3ncnc(N)c23)cc(C)c1O; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(F)c(O)c(F)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc4c(=O)[nH][nH]c4c3)c12; [None]; [None]; [0] +CSc1cccc(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ocnc3-c3ccc(F)cc3)c12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccn2ncnc(N)c12; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1ncnn2ccc(Br)c12']; [0.9995294809341431] +Cc1onc(-c2ccccc2)c1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)c12; [None]; [None]; [0] +CCOc1ccccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +CCn1cc(-c2ccn3ncnc(N)c23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999839067459106, 0.9995536804199219] +CC(C)S(=O)(=O)c1ccccc1-c1ccn2ncnc(N)c12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1ncnn2ccc(Br)c12']; [0.9999919533729553] +COC(C)(C)CCc1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(Cc3cc(F)cc(F)c3)c12; ['Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(CCl)c1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12']; [0.9998292922973633, 0.9990506172180176, 0.8889963626861572] +Nc1ncnn2ccc(-c3ccccc3C(=O)[O-])c12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccnc4ccccc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnn(Cc4ccccc4)c3)c12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; ['Nc1ncnn2ccc(Br)c12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999914169311523, 0.9998209476470947, 0.9465648531913757] +Cc1nnc(-c2ccccc2-c2ccn3ncnc(N)c23)[nH]1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(C(F)(F)F)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccccc3OC(F)(F)F)c12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccn4ncnc(N)c34)cc2c1=O; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnn(CCO)c3)c12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccn3ncnc(N)c23)cs1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(NC(=O)c4ccccc4)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-n3ncc4cccc(F)c4c3=O)c12; [None]; [None]; [0] +COc1cnc(-c2ccn3ncnc(N)c23)nc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc(Cl)ccc3Cl)c12; [None]; [None]; [0] +Cc1nc(C)c(-c2ccn3ncnc(N)c23)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999872446060181, 0.9954139590263367] +CNc1nc(C)c(-c2ccn3ncnc(N)c23)s1; [None]; [None]; [0] +CC(C)C(=O)COc1ccn2ncnc(N)c12; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cc1ccc(-c2ccn3ncnc(N)c23)c(Br)c1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnc4cccnn34)c12; ['Nc1ncnn2ccc(Br)c12']; ['c1cnn2ccnc2c1']; [0.9999995231628418] +Nc1ncnn2ccc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(NCc3cccnc3)c12; ['NCc1cccnc1']; ['Nc1ncnn2ccc(Br)c12']; [0.9999899864196777] +Nc1ncnn2ccc(Nc3cccnc3)c12; ['Nc1cccnc1']; ['Nc1ncnn2ccc(Br)c12']; [0.9998177886009216] +Nc1ncnn2ccc(NCCc3c[nH]cn3)c12; ['NCCc1c[nH]cn1']; ['Nc1ncnn2ccc(Br)c12']; [0.9993073344230652] +Cc1ccc(Cl)c(-c2ccn3ncnc(N)c23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12']; [0.9999040365219116, 0.9977415800094604, 0.9689275026321411] +Nc1ncnn2ccc(-n3cnc4ccccc43)c12; ['Nc1ncnn2ccc(Br)c12']; ['c1ccc2[nH]cnc2c1']; [0.999995231628418] +Cc1c(-c2ccn3ncnc(N)c23)sc(=O)n1C; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3c[nH]nc3C(F)(F)F)c12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1ncnn2ccc(Br)c12']; [0.9999978542327881] +Nc1ncnn2ccc(NC(=O)c3cccs3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cncc4ccccc34)c12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Nc1ncnn2ccc(Br)c12', 'Brc1cncc2ccccc12']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'OB(O)c1cncc2ccccc12', 'Nc1ncnn2ccc(Br)c12']; [0.9999973773956299, 0.9999765157699585, 0.9999399185180664, 0.999491810798645] +Nc1ncnn2ccc(NCCc3ccccc3)c12; ['NCCc1ccccc1']; ['Nc1ncnn2ccc(Br)c12']; [0.998340904712677] +NC(=O)c1c(F)cccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccn4ncnc(N)c34)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [1.0, 0.998866081237793] +Nc1ncnn2ccc(NCc3ccc(Cl)cc3)c12; ['NCc1ccc(Cl)cc1']; ['Nc1ncnn2ccc(Br)c12']; [0.9999083280563354] +Nc1[nH]nc2cc(-c3ccn4ncnc(N)c34)ccc12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(CC(=O)[O-])c3)c12; [None]; [None]; [0] +Cn1ncc2cc(-c3ccn4ncnc(N)c34)ccc21; [None]; [None]; [0] +CN1c2ccc(-c3ccn4ncnc(N)c34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(-c4cn[nH]c4)cc3)c12; [None]; [None]; [0] +CCCn1cnc(-c2ccn3ncnc(N)c23)n1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(CO)c3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(NCc3ccccc3F)c12; ['NCc1ccccc1F']; ['Nc1ncnn2ccc(Br)c12']; [0.9999710321426392] +COc1cc(-c2ccn3ncnc(N)c23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncnn2ccc(Nc3ccncc3)c12; [None]; [None]; [0] +CC(C)n1cc(-c2ccn3ncnc(N)c23)nn1; [None]; [None]; [0] +CSc1nc(-c2ccn3ncnc(N)c23)c[nH]1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc4ccccc4[nH]3)c12; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C']; ['Nc1ncnn2ccc(Br)c12']; [0.9999979734420776] +Nc1ncnn2ccc(-c3csc4ncncc34)c12; [None]; [None]; [0] +CC(C)c1oncc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +N#CCCc1cccc(-c2ccn3ncnc(N)c23)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999799132347107, 0.9904279708862305] +Nc1nc(-c2ccn3ncnc(N)c23)cs1; [None]; [None]; [0] +Nc1ncnn2ccc(CCc3c[nH]nn3)c12; [None]; [None]; [0] +Nc1ncncc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccn3ncnc(N)c23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncnn2ccc(Br)c12']; [0.9999943971633911] +CCNc1nc2ccc(-c3ccn4ncnc(N)c34)cc2s1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(F)cc3C(F)(F)F)c12; ['Nc1ncnn2ccc(Br)c12', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ncnn2ccc(Br)c12']; [0.9999402761459351, 0.9935910701751709] +Nc1ncnn2ccc(Oc3ccccn3)c12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccn3ncnc(N)c23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Nc1ncnn2ccc(Br)c12']; [0.9999948740005493, 0.9999483823776245, 0.999884843826294, 0.9984935522079468, 0.9626001119613647] +Nc1ncnn2ccc(NC(=O)c3c(Cl)cccc3Cl)c12; ['NC(=O)c1c(Cl)cccc1Cl']; ['Nc1ncnn2ccc(Br)c12']; [0.921574592590332] +CS(=O)(=O)C1CCN(c2ccn3ncnc(N)c23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Nc1ncnn2ccc(Br)c12']; [0.9990596771240234] +NC(=O)CCCc1ccn2ncnc(N)c12; [None]; [None]; [0] +CCCn1cc(-c2ccn3ncnc(N)c23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.999996542930603, 0.9998400211334229] +COc1ccc(-c2ccn3ncnc(N)c23)cc1Cl; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cnn4ccccc34)c12; [None]; [None]; [0] +CC(C)(COc1ccn2ncnc(N)c12)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ncnn2ccc(Br)c12']; [0.9998738765716553] +Nc1ncnn2ccc(-c3cccc4c3C(=O)CC4)c12; ['Nc1ncnn2ccc(Br)c12']; ['O=C1CCc2cccc(Br)c21']; [0.980803906917572] +Nc1ncnn2ccc(-c3cc[nH]c(=O)c3)c12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccn2ncnc(N)c12; ['CCNS(=O)(=O)c1ccccc1Br']; ['Nc1ncnn2ccc(Br)c12']; [0.9797388315200806] +CCN(CC)c1ccn2ncnc(N)c12; ['CCNCC']; ['Nc1ncnn2ccc(Br)c12']; [0.9966953992843628] +COc1cc(CCc2ccn3ncnc(N)c23)cc(OC)c1; [None]; [None]; [0] +COc1ccncc1Nc1ccn2ncnc(N)c12; ['COc1ccncc1N']; ['Nc1ncnn2ccc(Br)c12']; [0.9999663829803467] +C[C@@H](Oc1ccn2ncnc(N)c12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc4c(=O)[nH]ccc4o3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(Nc3cnccc3-c3ccccc3)c12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +Nc1ncnn2ccc(Nc3cnc4ccccc4c3)c12; ['Nc1cnc2ccccc2c1']; ['Nc1ncnn2ccc(Br)c12']; [0.9999630451202393] +CC(C)(C)c1ccc(-c2ccn3ncnc(N)c23)cc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cc4c(=O)[nH]cc(Br)c4s3)c12; [None]; [None]; [0] +COc1cccc(F)c1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccn3ncnc(N)c23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12']; [0.9999984502792358, 0.9999877214431763, 0.8924225568771362] +Nc1ncnn2ccc(-c3ccc(N4CCOCC4)cc3)c12; [None]; [None]; [0] +Cc1cc(-c2ccn3ncnc(N)c23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CN(c1ccn2ncnc(N)c12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-n3ccc(CO)n3)c12; ['Nc1ncnn2ccc(Br)c12']; ['OCc1cc[nH]n1']; [0.9954082369804382] +CC1(c2ccn3ncnc(N)c23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccn2ncnc(N)c12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ncnn2ccc(-n3cnc(CCO)c3)c12; [None]; [None]; [0] +C[C@@H](Nc1ccn2ncnc(N)c12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Nc1ncnn2ccc(Br)c12']; [0.9201229810714722] +C[C@H](Nc1ccn2ncnc(N)c12)C(C)(C)O; [None]; [None]; [0] +Nc1ncnn2ccc(-c3c(F)cccc3Cl)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-n3ncc4c(O)cccc43)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-n3ncc4ccccc43)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3nc4ccc(O)cc4[nH]3)c12; [None]; [None]; [0] +COc1ccc(-c2ccn3ncnc(N)c23)c(OC)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccn3ncnc(N)c23)[nH]1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccc(C(=O)c4ccccc4)cc3)c12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccn3ncnc(N)c23)CC1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1nnc(-c2ccn3ncnc(N)c23)s1; ['NNC(N)=S']; ['Nc1ncnn2ccc(C(=O)O)c12']; [0.7863948345184326] +Nc1ncnn2ccc(Cc3nnc4ccc(-c5ccccc5)nn34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ccn(CC[NH3+])n3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(CCC(=O)NCc3ccccn3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccn3ncnc(N)c23)s1; ['CNC(=O)c1ccc(Br)s1']; ['Nc1ncnn2ccc(Br)c12']; [0.9962154030799866] +Nc1ncnn2ccc(CS(=O)(=O)NCc3ccccn3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +CCc1cc(-c2ccn3ncnc(N)c23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccn3ncnc(N)c23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccn3ncnc(N)c23)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +Nc1ncnn2ccc(Oc3ccc(C[NH3+])cc3F)c12; [None]; [None]; [0] +Nc1cncc(-c2ccn3ncnc(N)c23)n1; ['Nc1cncc(Br)n1']; ['Nc1ncnn2ccc(Br)c12']; [0.9968740940093994] +Nc1ncnn2ccc(-c3cccc4ccsc34)c12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1ncnn2ccc(Br)c12']; ['Nc1ncnn2ccc(Br)c12', 'OB(O)c1cccc2ccsc12']; [1.0, 0.9999741315841675] +CC1(C)Oc2ccc(-c3ccn4ncnc(N)c34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccn4ncnc(N)c34)c2)cc1; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccn3ncnc(N)c23)CC1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccn3ncnc(N)c23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccn3ncnc(N)c23)nc2ccccc12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3c[nH]c4cccnc34)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cn(CCO)cn3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccn2ncnc(N)c12; [None]; [None]; [0] +COc1ccc(Oc2ccn3ncnc(N)c23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Nc1ncnn2ccc(Br)c12']; [0.9940469264984131] +COc1ncccc1-c1ccn2ncnc(N)c12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br']; ['Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2ccc(Br)c12', 'Nc1ncnn2cccc12']; [0.9999906420707703, 0.9995554685592651, 0.9942346811294556, 0.8210105895996094] +COc1ccc(OC)c(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccn3ncnc(N)c23)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccn3ncnc(N)c23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccn3ncnc(N)c23)cnn1; [None]; [None]; [0] +Nc1ncnn2ccc(N3CC=C(c4c[nH]c5ccccc45)CC3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(N3CCC(c4nc5ccccc5[nH]4)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cccnc3)c12; [None]; [None]; [0] +Nc1ncnn2ccc(-c3cccc(NC(=O)C4CCNCC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(OCC(=O)C(C)C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCc3cccnc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3cccs3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCCc3c[nH]cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCCc3ccccc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCc3ccc(Cl)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N3CCC(S(C)(=O)=O)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3c(Cl)cccc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCc3ccccc3F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3ccncc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3csc(N)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Oc3ccccn3)c12; [None]; [None]; [0] +CCN(CC)c1c[nH]c2ncnc(NC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(OCC(C)(C)S(C)(=O)=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cnc4ccccc4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(O[C@H](C)c3c(Cl)cncc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cnccc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cnccc3-c3ccccc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N[C@@H](C)C(=O)NCC(F)(F)F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Oc3ccc(C[NH3+])cc3F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc(N)c4ccccc4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N[C@H](C)C(C)(C)O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N[C@@H](C)C(C)(C)O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Oc3ccc(OC)c(F)c3F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N3CC=C(c4c[nH]c5ccccc45)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(N3CCC(c4nc5ccccc5[nH]4)CC3)c12; [None]; [None]; [0] +CCOc1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(OC)c(OC)c(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(S(C)(=O)=O)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3sc(C(C)(C)O)nc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccnc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(NC(=O)C4CCNCC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N(C)C(C)=O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3cnc4ccc(C)cc43)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N4CCOCC4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(O)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc4cccnn34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(NC(=O)C4CC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C#N)ccc3O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc4ccccc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(N)=O)cc3)c12; ['CNc1ncnc2[nH]ccc12']; ['NC(=O)c1ccc(Br)cc1']; [0.9981307983398438] +CNc1ncnc2[nH]cc(Nc3ncccn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)Nc4ccccc4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(CC(=O)N4CCN(C(C)=O)CC4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cc(C)ns3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nccc4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)[O-])cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn(Cc4cccc(C#N)c4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OCCO)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(CNC(C)=O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N4CCOCC4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(C4CCNCC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N4CCOCC4)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3ccncn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(=O)(=O)NC)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(F)(F)F)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)CS(=O)(=O)C4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC[C@@H](C)O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(=O)(=O)N(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC[C@H](C)O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3sc(C)nc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(C3CCN(S(C)(=O)=O)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc([C@H]3CCN(C(=O)c4ccccc4)C3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C(C)C)nc(N)n3)c12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(Br)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(N4CCCN(C(C)=O)CC4)c3)c12; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N(C)C)c(Cl)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(=O)(=O)NC)cc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3-n3cccn3)c12; [None]; [None]; [0] +CCCOc1ccc(-c2c[nH]c3ncnc(NC)c23)nc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccn4nccc4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(Cl)ccc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(C(=O)[O-])c3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c[nH]c4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)CCO4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(Cl)c(OC)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(O)c(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc4ccc(C(C)C)cc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(NC(C)=O)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4c3OCO4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(-c4ccccc4)[nH]n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(C)(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc4ccccc4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N4CCOCC4)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(C)(C)C)nc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3scc4c3OCCO4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3cccc(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(SC)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4ccccc4s3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(OCC3(C)COC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc([C@@H]3CC[C@@H](NC(C)=O)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccn(-c4cccc(Cl)c4)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(F)cc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C)nc(N)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)CCC(=O)N4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC)c(OC)c3)c12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3c[nH]c4ncnc(NC)c34)cc2)CC1; [None]; [None]; [0] +CCc1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc(Br)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(Cl)cc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N4CCC[C@@H]4C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NCc3ccc(OC)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(C)nc3C(F)(F)F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N4CCOCC4)c(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc4cccn4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC3CN(C(=O)C4CC4)C3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4ccccn4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)CC(C)(C)O4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(OC)c(OC)cc3F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4ccc(O)cc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4ccc(OC)cc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(Cl)c(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn(CCO)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc(Cl)cn3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cc(C)n(C)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3nc(C)c(C)s3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncnc4c(C)csc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(OC)c(Br)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3ccco3)c12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)nc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(CS(C)(=O)=O)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(N)nc4[nH]ccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Cc3ccc(S(=O)(=O)CCO)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Cc3ccc(C(N)=O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4cc(OC)ccc4o3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(OC)cc(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4cn[nH]c4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3ccc(C(C)(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc([C@@H]3CC[C@@H](OC)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(C)c4ccc(OC)cc34)c12; [None]; [None]; [0] +CCNC(=O)N1CCC(c2c[nH]c3ncnc(NC)c23)CC1; [None]; [None]; [0] +CCn1cc(-c2c[nH]c3ncnc(NC)c23)cn1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4ccccc4o3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C[NH+](C)C)cc3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2c[nH]c3ncnc(NC)c23)c1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(C)nc3C(C)C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(-c4cccnc4)ccn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(Br)cn3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc4sccc4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3cc(OC)ccc3F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc4ccc(OC)cc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC(F)(F)F)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(NC(=O)N4CCCC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(cnn4C)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C)c(OCCO)c(C)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(C)c4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4ccc(C(C)(C)O)cc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(C)n[nH]c4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N(C)C)nc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)c(Cl)nn4C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncn4c3CCCC4)c12; [None]; [None]; [0] +CCc1cccc(-c2c[nH]c3ncnc(NC)c23)n1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(N4CCCC4=O)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(NC(=O)c3cccc(OC(F)(F)F)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N(C)C)cc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn(C4CCN(C(C)=O)CC4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(-c4cnn(C)c4)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N4CCOCC4)cc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(C)(=O)=O)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(-c4cnc(C)n4C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(CCO)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(N4CCNCC4)cc3OC)c12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3cc(C)c(F)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)N(C)C)cn3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)c(OC)c1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C(C)(C)O)n(C)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(S(C)(=O)=O)ccc3Cl)c12; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3ccc(F)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Nc3ccccn3)c12; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c2ncnc(NC)c12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c2ncnc(NC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C(=O)NCCO)ccc3C)c12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2c[nH]c3ncnc(NC)c23)c1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3S(=O)(=O)C(C)C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3-c3nnc(C)[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Cc3cc(F)cc(F)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCC(C)(C)OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(C(F)(F)F)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3OC(F)(F)F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn(Cc4ccccc4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3C(N)=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccnc4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3P(C)(C)=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4ncn(C)c(=O)c4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(NC(=O)c4ccccc4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(Cl)ccc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccccc3C(=O)[O-])c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C)cc3Br)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3csc(C(C)(C)C)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc(OC)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3ncc4cccc(F)c4c3=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(Br)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c(C)nc4ccccn34)c12; [None]; [None]; [0] +CNc1nc(C)c(-c2c[nH]c3ncnc(NC)c23)s1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c(Cl)cccc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3sc(N)nc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C)ccc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4ccccc4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccnc(N)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3sc(=O)n(C)c3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c[nH]nc3C(F)(F)F)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3cnc4ccccc43)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(CC(=O)[O-])c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn4ncccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cncc4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(F)c3C(N)=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(-c4cnn(C)c4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(N)[nH]nc4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(c3)CS(=O)(=O)N4C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(-c4cn[nH]c4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(C(C)C)nn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)[O-])c(OC)c3)c12; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3ncnc(NC)c23)n1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(CO)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnoc3C(C)C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c[nH]c(SC)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3csc4ncncc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCc3c[nH]nn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4ccccc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(CCC#N)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(F)cc3C(F)(F)F)c12; [None]; [None]; [0] +CCNc1nc2ccc(-c3c[nH]c4ncnc(NC)c34)cc2s1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnn4ccccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cncnc3N)c12; [None]; [None]; [0] +CCCn1cc(-c2c[nH]c3ncnc(NC)c23)cn1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC)c(Cl)c3)c12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c[nH]c3ncnc(NC)c23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCNC(=O)CC(C)(C)O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCCC(N)=O)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc([S@](C)=O)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc[nH]c(=O)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4c3C(=O)CC4)c12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c2ncnc(NC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c(F)cccc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cncc(OC(C)C)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCc3cc(OC)cc(OC)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(C)(C)N)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4c(=O)[nH]ccc4o3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc4c(=O)[nH]cc(Br)c4s3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc4[nH]ccc4c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c[nH]c4cnccc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(C)(=O)=O)cc3)c12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c[nH]c2ncnc(NC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(C3(C)CCN(S(C)(=O)=O)CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C)nn3-c3cccc(Cl)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3ccc(CO)n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c(F)cccc3Cl)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(OC)cc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3cnc(CCO)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc4ccc(O)cc4[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3ncc4ccccc43)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-n3ncc4c(O)cccc43)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3[nH]c(SC)nc3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc(C(=O)c4ccccc4)cc3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nncn3C(C)C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccn(CC[NH3+])n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(Cc3nnc4ccc(-c5ccccc5)nn34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CCC(=O)NCc3ccccn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(CS(=O)(=O)NCc3ccccn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nnc(N)s3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +CCc1cc(-c2c[nH]c3ncnc(NC)c23)nc(N)n1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C(N)=O)cn3C)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(C(C)(C)O)n3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ncnc(NC)c23)s1; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c3ncnc(NC)c23)nc(N)n1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cncc(N)n3)c12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c3ncnc(NC)c23)CC1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4ccsc34)c12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c4ncnc(NC)c34)c2)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnc(NC(C)=O)[nH]3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3c[nH]c4cccnc34)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(C#N)ccc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cn(CCO)cn3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cc(OC)ccc3OC)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc([C@H]3CC[C@@](C)(O)CC3)c12; [None]; [None]; [0] +c1ccc2nc(-c3cnn4cccnc34)ncc2c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Ic1cnn2cccnc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ncc2ccccc2n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1ccc2ncncc2c1']; [0.9999996423721313, 0.9999951720237732, 0.999967098236084, 0.9999052286148071, 0.976047158241272] +CC(=O)N(C)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1', 'Brc1cnn2cccnc12']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'CC(=O)N(C)c1ccccc1']; [0.9999995231628418, 0.9999990463256836, 0.9999921321868896, 0.9995014667510986, 0.9938414096832275, 0.987248420715332, 0.9779316782951355] +CS(=O)(=O)c1cccc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'CS(=O)(=O)c1ccccc1']; [1.0, 1.0, 1.0, 0.999998152256012, 0.9999964833259583, 0.9999964237213135, 0.9999865293502808, 0.9999328851699829, 0.9997052550315857, 0.9855259656906128] +COc1ncccc1-c1cnn2cccnc12; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnn2cccnc12', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1I']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1I', 'Ic1cnn2cccnc12', 'COc1ncccc1B(O)O', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12']; [0.9999959468841553, 0.9999908208847046, 0.999985933303833, 0.9999446868896484, 0.9997325539588928, 0.9996819496154785, 0.9991973042488098, 0.9984639883041382, 0.9980958700180054, 0.9959602355957031, 0.9564815759658813] +CCOc1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cccc(S(=O)(=O)N(C)C)c3)c12; [None]; [None]; [0] +CNc1ncnc2[nH]cc(-c3cnnc(N(C)C)c3)c12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnn2cccnc12; ['Brc1cnn2cccnc12', 'Cc1csc(C(C)(C)O)n1']; ['Cc1csc(C(C)(C)O)n1', 'Ic1cnn2cccnc12']; [0.9999743700027466, 0.9988864660263062] +Cc1ccc2ncn(-c3cnn4cccnc34)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Cc1ccc2nc[nH]c2c1']; ['OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'OB(O)c1cnn2cccnc12']; [0.9959096908569336, 0.9935457706451416, 0.9933476448059082, 0.9925127029418945, 0.9911686778068542, 0.9787462949752808] +c1cnn2c(-c3cnn4cccnc34)cnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999915361404419, 0.9999904632568359, 0.9999740123748779, 0.9998375177383423] +COc1cc(-c2cnn3cccnc23)cc(OC)c1OC; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'COC(CC(OC)OC)OC', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Brc1cnn2cccnc12', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'Brc1cnn2cccnc12', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'Brc1cnn2cccnc12', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12']; ['COc1cc(Br)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(-c2c[nH]nc2N)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Ic1cnn2cccnc12', 'COc1cc(B(O)O)cc(OC)c1OC', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COc1cc(I)cc(OC)c1OC', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(Br)cc(OC)c1OC', 'c1cnc2ccnn2c1', 'O=C(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cccc(OC)c1OC']; [0.9999997615814209, 0.9999997019767761, 0.9999995231628418, 0.999999463558197, 0.9999991655349731, 0.9999969005584717, 0.9999821186065674, 0.9999799728393555, 0.9999785423278809, 0.9999749660491943, 0.9999731183052063, 0.9998960494995117, 0.9998133182525635, 0.9988460540771484, 0.9987227320671082, 0.9941321611404419, 0.9935621619224548, 0.9266223311424255] +Cc1cc(Nc2cnn3cccnc23)sn1; ['Brc1cnn2cccnc12']; ['Cc1cc(N)sn1']; [0.9999220371246338] +O=C(Nc1cccc(-c2cnn3cccnc23)c1)C1CC1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C(Nc1cccc(Br)c1)C1CC1', 'Brc1cnn2cccnc12']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'OB(O)c1cnn2cccnc12', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999998807907104, 0.9999359846115112, 0.999921977519989] +COc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COC(CC(OC)OC)OC', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Brc1cnn2cccnc12', 'COc1ccccc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1ccc(-c2cn[nH]c2N)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'COc1ccccc1', 'Ic1cnn2cccnc12']; [1.0, 0.9999997019767761, 0.9999994039535522, 0.9999990463256836, 0.9999979734420776, 0.9999973773956299, 0.9999951124191284, 0.9999914169311523, 0.9999762773513794, 0.9999635219573975, 0.9999136924743652, 0.9997530579566956, 0.9995980858802795, 0.9994436502456665, 0.999293327331543, 0.999269962310791, 0.9988747835159302, 0.994691014289856, 0.99139404296875] +O=C([O-])c1ccc(-c2cnn3cccnc23)cc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1']; [0.9910732507705688] +c1cnc2c(-c3ccc(N4CCOCC4)cc3)cnn2c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'O=C(ON1CCOCC1)c1ccccc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1ccc(-c2cnn3cccnc23)cc1']; [1.0, 1.0, 0.9999996423721313, 0.9999994039535522, 0.9999994039535522, 0.9999990463256836, 0.9999983310699463, 0.9999979734420776, 0.9999911785125732, 0.999981164932251, 0.9999557137489319, 0.9998077750205994, 0.9997596740722656, 0.9994152784347534] +N#Cc1ccc(O)c(-c2cnn3cccnc23)c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cnn4cccnc34)nc2c1; ['Brc1nc2ccccc2[nH]1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Ic1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'CCOC(=O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1nc2ccccc2[nH]1', 'O=Cc1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Nc1ccccc1N', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9999816417694092, 0.9999661445617676, 0.9996601343154907, 0.9994544982910156, 0.9987376928329468, 0.9984973669052124, 0.99798583984375, 0.9956226348876953, 0.9839001893997192, 0.9747745990753174, 0.9035782217979431] +Oc1cccc(-c2cnn3cccnc23)c1; [None]; [None]; [0] +c1cnc(Nc2cnn3cccnc23)nc1; ['Clc1ncccn1', 'Brc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Fc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; [0.9983847141265869, 0.9973337650299072, 0.9963403344154358, 0.9914173483848572, 0.9828224778175354, 0.9826326370239258, 0.978776216506958, 0.9737626910209656, 0.8610852956771851] +NC(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12']; [1.0, 0.9999996423721313, 0.9999991655349731, 0.9999986886978149, 0.9999918937683105, 0.9999892711639404, 0.9999775886535645, 0.999923586845398, 0.9990679025650024, 0.996609091758728, 0.9960411787033081, 0.9909488558769226] +c1ccc2c(-c3cnn4cccnc34)nccc2c1; ['Brc1nccc2ccccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1nccc2ccccc12', 'Brc1cnn2cccnc12', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1nccc2ccccc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1nccc2ccccc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Clc1nccc2ccccc12', 'Brc1nccc2ccccc12', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [0.9999905824661255, 0.999978244304657, 0.9999517202377319, 0.9998133182525635, 0.9997211694717407, 0.9995253086090088, 0.9987913370132446, 0.9943228960037231, 0.9451733827590942, 0.7527765035629272] +O=C(Nc1ccccc1)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'OB(O)c1cnn2cccnc12', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12']; [1.0, 0.9999998807907104, 0.9999990463256836, 0.9999825954437256, 0.9999797344207764, 0.9999667406082153, 0.9993435144424438, 0.9983698129653931, 0.9916453957557678] +CC(=O)NCc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnn2cccnc12', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999997615814209, 0.9999991655349731, 0.999995231628418, 0.9999946355819702, 0.9999542236328125, 0.9997167587280273] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnn4cccnc34)cc2)CC1; [None]; [None]; [0] +c1cc(-c2cnn3cccnc23)cc(C2CCNCC2)c1; ['CC(C)(C)OC(=O)N1CCC(c2cccc(Br)c2)CC1', 'Brc1cccc(C2CCNCC2)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cccc(C2CCNCC2)c1', 'Clc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['OB(O)c1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cccc(C2CCNCC2)c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12']; [0.9999989867210388, 0.9999966025352478, 0.9999797344207764, 0.9971519708633423, 0.993531346321106, 0.972366452217102] +OCCOc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OCCOc1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Cl)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'OCCOc1ccc(Cl)cc1']; [1.0, 0.9999998807907104, 0.9999996423721313, 0.9999994039535522, 0.9999936819076538, 0.9999932050704956, 0.9999834299087524, 0.9999788999557495, 0.9998763203620911, 0.9995030164718628, 0.9993939399719238, 0.9993422031402588] +c1cnc2c(Nc3ccncn3)cnn2c1; ['Clc1ccncn1', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Fc1ccncn1', 'Brc1ccncn1']; ['Nc1cnn2cccnc12', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; [0.9992620944976807, 0.9990476369857788, 0.9973691701889038, 0.9938297271728516, 0.9786636233329773] +N#Cc1cccc(Cn2cc(-c3cnn4cccnc34)cn2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cnn3cccnc23)nc1)N1CCOCC1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'OB(O)c1cnn2cccnc12']; [1.0, 1.0] +O=C(c1ccc(-c2cnn3cccnc23)cc1)N1CCOCC1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Brc1cnn2cccnc12', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccccc1)N1CCOCC1']; [1.0, 1.0, 0.9999997615814209, 0.9999997615814209, 0.9999992847442627, 0.9999983310699463, 0.999997615814209, 0.9999963045120239, 0.9999253749847412, 0.999915361404419, 0.9999090433120728, 0.9997192621231079, 0.9995538592338562, 0.9992419481277466, 0.9747365713119507] +CNS(=O)(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccccc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'CNS(=O)(=O)c1ccccc1', 'Ic1cnn2cccnc12']; [1.0, 1.0, 0.9999986886978149, 0.9999972581863403, 0.9999947547912598, 0.9999869465827942, 0.9998921155929565, 0.999671220779419, 0.9974656105041504, 0.9928242564201355, 0.9405035376548767, 0.8928995132446289] +O=S1(=O)Cc2ccc(-c3cnn4cccnc34)cc2C1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Brc1cnn2cccnc12', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=C(O)c1cnn2cccnc12']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'OB(O)c1cnn2cccnc12', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'c1cnc2ccnn2c1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999998211860657, 0.9999867677688599, 0.9998471736907959, 0.9992965459823608, 0.9982343912124634] +Cc1nc(C)c(-c2cnn3cccnc23)s1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1nc(C)c(Br)s1', 'Brc1cnn2cccnc12', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'OB(O)c1cnn2cccnc12', 'Cc1csc(C)n1', 'Ic1cnn2cccnc12']; [1.0, 0.9999991655349731, 0.9999613761901855, 0.9989389181137085, 0.9974642992019653] +FC(F)(F)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccccc1', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'CC1(C)COB(c2ccc(C(F)(F)F)cc2)OC1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'FC(F)(F)c1ccccc1']; [1.0, 1.0, 1.0, 0.9999998211860657, 0.9999997615814209, 0.9999995231628418, 0.9999991655349731, 0.9999990463256836, 0.9999974966049194, 0.9999961853027344, 0.99994957447052, 0.9998717308044434, 0.9998476505279541, 0.9996174573898315, 0.9995824694633484, 0.9995240569114685, 0.9991129040718079, 0.9988580942153931, 0.9887429475784302, 0.986417293548584] +C[C@H](O)COc1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnn3cccnc23)cc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CCN', 'CCNS(=O)(=O)c1ccccc1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'c1ccc(-c2cnn3cccnc23)cc1', 'Ic1cnn2cccnc12']; [0.9999997615814209, 0.9999967813491821, 0.9999951124191284, 0.9999945163726807, 0.999935507774353, 0.9998964667320251, 0.9998320937156677, 0.9996248483657837, 0.9957345724105835, 0.993492603302002] +CC(C)c1cc(-c2cnn3cccnc23)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12']; [0.999992847442627, 0.999933123588562] +CS(=O)(=O)N1CCC(c2cnn3cccnc23)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnn3cccnc23)nc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCCOc1ccc(Br)nc1', 'Brc1cnn2cccnc12']; ['CCCOc1ccc(Br)nc1', 'OB(O)c1cnn2cccnc12', 'CCCOc1ccc(Br)nc1']; [0.999997615814209, 0.9999972581863403, 0.9999110698699951] +CCN(CC)C(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Brc1cnn2cccnc12', 'CCN(CC)C(=O)c1ccccc1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Ic1cnn2cccnc12', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'CCN(CC)C(=O)c1ccccc1', 'Ic1cnn2cccnc12']; [1.0, 1.0, 1.0, 1.0, 0.9999984502792358, 0.9999978542327881, 0.999994158744812, 0.9999791383743286, 0.9999571442604065, 0.9999369382858276, 0.9998682737350464, 0.9916003346443176, 0.9649560451507568] +CN(C)c1ccc(-c2cnn3cccnc23)cc1Cl; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'Brc1cnn2cccnc12', 'CN(C)c1ccccc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'CN(C)c1ccccc1Cl', 'Ic1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.9999998807907104, 0.999995768070221, 0.9999929666519165, 0.9999910593032837, 0.999920129776001, 0.999888002872467, 0.9890733957290649, 0.9809761047363281, 0.9448867440223694] +O=C(c1ccccc1)N1CC[C@H](c2cnn3cccnc23)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnn4cccnc34)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnn2cccnc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3cccnc23)c(C)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Brc1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Brc1cnn2cccnc12']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Ic1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.9999995231628418, 0.9999980926513672, 0.9999799728393555, 0.9999769926071167, 0.999962329864502, 0.9999397993087769, 0.9983406066894531] +c1cnc2c(-c3ccn4nccc4n3)cnn2c1; ['Ic1ccn2nccc2n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ccn2nccc2n1']; ['OB(O)c1cnn2cccnc12', 'Ic1ccn2nccc2n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'Clc1ccn2nccc2n1', 'OB(O)c1cnn2cccnc12']; [0.9999992847442627, 0.9999980926513672, 0.9999939203262329, 0.9999853372573853, 0.999984622001648, 0.9999632835388184] +c1ccc(-n2cccn2)c(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Brc1cnn2cccnc12', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Ic1cnn2cccnc12', 'Clc1ccccc1-n1cccn1', 'Brc1cnn2cccnc12', 'OB(O)c1ccccc1-n1cccn1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Clc1ccccc1-n1cccn1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1ccccc1-n1cccn1', 'c1cnc2ccnn2c1', 'Brc1cnn2cccnc12', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1cnn2cccnc12', 'c1ccc(-n2cccn2)cc1', 'c1cnc2ccnn2c1']; [1.0, 1.0, 0.9999986886978149, 0.9999971389770508, 0.9999935626983643, 0.9999877214431763, 0.9999661445617676, 0.9999661445617676, 0.9999563097953796, 0.9998002648353577, 0.9994919300079346, 0.9990127682685852] +COc1ccc(Cl)cc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Br', 'Brc1cnn2cccnc12', 'COc1ccc(Cl)cc1I', 'Brc1cnn2cccnc12', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I']; ['COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1ccc(Cl)cc1[Mg]Br', 'c1cnc2ccnn2c1', 'COc1ccc(Cl)cc1Br', 'OB(O)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12']; [0.9999959468841553, 0.999995231628418, 0.9999947547912598, 0.9999816417694092, 0.9999703764915466, 0.9999674558639526, 0.9999352693557739, 0.9999254941940308, 0.9999057650566101, 0.9998537302017212, 0.9998317956924438, 0.9990084171295166, 0.9982551336288452, 0.9965050220489502, 0.9953782558441162, 0.9948992729187012, 0.9944013357162476, 0.9672329425811768] +c1ccc2c(-c3cnn4cccnc34)c[nH]c2c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Clc1c[nH]c2ccccc12']; ['Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1cnn2cccnc12']; [0.9999922513961792, 0.9999878406524658, 0.9999599456787109, 0.9999364614486694, 0.9998272061347961, 0.9991888999938965, 0.9970260858535767, 0.9954972267150879, 0.9873923659324646] +CC(C)c1ccc2nc(-c3cnn4cccnc34)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cnn2cccnc12']; [0.9999985098838806] +c1ccc(-c2cc(-c3cnn4cccnc34)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'Brc1cnn2cccnc12', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'Brc1cnn2cccnc12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CC(=O)Nc1cccc(Br)c1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1']; [0.9999997615814209, 0.9999992251396179, 0.9999985098838806, 0.9999970197677612, 0.9999948740005493, 0.999966561794281, 0.9999324083328247, 0.9999023079872131, 0.9997661709785461, 0.999690055847168, 0.9981623888015747] +COc1cc(OC)c(-c2cnn3cccnc23)cc1Cl; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)CCO4)cnn2c1; [None]; [None]; [0] +c1cnc2c(-c3scc4c3OCCO4)cnn2c1; ['Brc1cnn2cccnc12', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'c1scc2c1OCCO2']; [0.9999995231628418, 0.9999727010726929] +c1cc2c(c(-c3cnn4cccnc34)c1)OCO2; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Ic1cnn2cccnc12', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cccc2c1OCO2', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12']; [0.9999992847442627, 0.9999964237213135, 0.9999938011169434, 0.999990701675415, 0.999971866607666, 0.9999400973320007, 0.9999319314956665, 0.999775767326355, 0.998969316482544, 0.9956396222114563] +CC(C)(C)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccccc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CC(C)(C)c1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'CC(C)(C)c1ccccc1', 'Ic1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999986886978149, 0.9999986290931702, 0.999995231628418, 0.9999935030937195, 0.9999650120735168, 0.9999477863311768, 0.9998189210891724, 0.9995812177658081, 0.9995222687721252, 0.9986754655838013, 0.9808249473571777, 0.963684618473053] +COc1cc(-c2cnn3cccnc23)ccc1O; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'Brc1cnn2cccnc12', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1cnn2cccnc12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'Ic1cnn2cccnc12', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1cc(I)ccc1O', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COc1cc(Br)ccc1O', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.9999993443489075, 0.9999983906745911, 0.999997615814209, 0.9999905824661255, 0.9999508857727051, 0.9999323487281799, 0.9998538494110107, 0.9998104572296143, 0.9997186064720154, 0.9993200898170471, 0.9991425275802612, 0.9977525472640991, 0.9973556995391846, 0.9908421635627747, 0.9669904708862305, 0.9614430665969849] +CN(C)C(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'Brc1cnn2cccnc12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccccc1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.9999980330467224, 0.9999973177909851, 0.9999948740005493, 0.999972939491272, 0.9999293088912964, 0.9998595714569092, 0.8829233646392822] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnn2cccnc12; [None]; [None]; [0] +c1ccc2ncc(-c3cnn4cccnc34)cc2c1; ['Brc1cnn2cccnc12', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnc2ccccc2c1', 'Ic1cnn2cccnc12', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnc2ccccc2c1', 'Ic1cnn2cccnc12', 'Clc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Brc1cnn2cccnc12']; [0.9999995231628418, 0.999999463558197, 0.9999986886978149, 0.9999974966049194, 0.9999971389770508, 0.9999890327453613, 0.9999388456344604, 0.9999322891235352, 0.9997138977050781, 0.9996246099472046, 0.9996023178100586, 0.9995276927947998] +CC(C)(C)c1ccc(-c2cnn3cccnc23)cn1; ['Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccccn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'CC(C)(C)c1ccc(Br)cn1', 'OB(O)c1cnn2cccnc12']; [1.0, 0.9999997615814209, 0.9999997615814209, 0.9999978542327881, 0.9999858140945435, 0.9999642372131348, 0.9999629259109497, 0.9997608661651611, 0.9995741844177246, 0.9975053071975708] +COc1cccc(C(=O)Nc2cnn3cccnc23)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1', 'COC(=O)c1cccc(OC)c1', 'CCOC(=O)c1cccc(OC)c1', 'Brc1cnn2cccnc12', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'O=[N+]([O-])c1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'COc1cccc(C(N)=O)c1', 'Nc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'O=[N+]([O-])c1cnn2cccnc12']; [0.9999445676803589, 0.999583899974823, 0.9994633197784424, 0.9994373917579651, 0.9989241361618042, 0.9988536834716797, 0.9969950914382935, 0.9959956407546997, 0.9847280979156494] +Nc1nc(-c2cnn3cccnc23)cs1; [None]; [None]; [0] +CC1(COc2cnn3cccnc23)COC1; ['Brc1cnn2cccnc12', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['CC1(CO)COC1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.9985703825950623, 0.9971622228622437, 0.9132779836654663] +Clc1cccc(-n2ccc(-c3cnn4cccnc34)n2)c1; ['Brc1cnn2cccnc12']; ['Clc1cccc(-n2cccn2)c1']; [0.999677300453186] +c1ccc2sc(-c3cnn4cccnc34)cc2c1; ['Brc1cc2ccccc2s1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Ic1cnn2cccnc12', 'Brc1cc2ccccc2s1', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'OB(O)c1cc2ccccc2s1', 'Ic1cc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'Ic1cnn2cccnc12', 'OB(O)c1cc2ccccc2s1', 'OB(O)c1cnn2cccnc12', 'c1ccc2sccc2c1']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.9999992847442627, 0.9999974966049194, 0.9999974966049194, 0.9999958276748657, 0.9999842643737793, 0.999970555305481] +CSc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1', 'CSc1ccccc1', 'Brc1cnn2cccnc12']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Cl)cc1', 'CSc1ccc(I)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CSc1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'CSc1ccccc1']; [1.0, 0.9999997615814209, 0.9999970197677612, 0.9999953508377075, 0.9999867677688599, 0.9999833703041077, 0.9999130964279175, 0.9999112486839294, 0.9998619556427002, 0.9998122453689575, 0.9993546009063721, 0.9978316426277161, 0.9975504875183105, 0.9962104558944702, 0.9940556287765503, 0.9295870065689087, 0.8556691408157349] +Cc1cc(-c2cnn3cccnc23)nc(N)n1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Brc1cnn2cccnc12']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1cc(Br)nc(N)n1']; [0.999996542930603, 0.9999940395355225, 0.9999668598175049, 0.9999449849128723, 0.9995015263557434] +CC(=O)N[C@@H]1CC[C@@H](c2cnn3cccnc23)CC1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnn4cccnc34)cc2)CC1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Brc1cnn2cccnc12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Brc1cnn2cccnc12']; ['CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Ic1cnn2cccnc12', 'CCN1CCN(Cc2ccc([Zn]Br)cc2)CC1', 'OB(O)c1cnn2cccnc12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9999977350234985, 0.9999933242797852, 0.9999783635139465, 0.9997806549072266, 0.9997634887695312, 0.9986260533332825] +Fc1ccc(-c2cnn3cccnc23)c(Cl)c1; ['COC(CC(OC)OC)OC', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Brc1cnn2cccnc12', 'Fc1ccc(I)c(Cl)c1', 'Brc1cnn2cccnc12', 'Fc1ccc(I)c(Cl)c1', 'Fc1cccc(Cl)c1', 'Brc1cnn2cccnc12', 'Fc1ccc(I)c(Cl)c1', 'Fc1cccc(Cl)c1']; ['Nc1n[nH]cc1-c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Fc1ccc([Mg]Br)c(Cl)c1', 'OB(O)c1cnn2cccnc12', 'Fc1ccc(I)c(Cl)c1', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'Fc1cccc(Cl)c1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1']; [1.0, 1.0, 0.9999995231628418, 0.9999992251396179, 0.9999972581863403, 0.9999966621398926, 0.9999964237213135, 0.9999912977218628, 0.9999768733978271, 0.9999648332595825, 0.9999548196792603, 0.9999164938926697, 0.9996007680892944, 0.9987390637397766, 0.9987291097640991, 0.9974744319915771, 0.9915692210197449] +Brc1cnc(-c2cnn3cccnc23)nc1; ['Brc1cnc(I)nc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1', 'Brc1cncnc1', 'Brc1cncnc1']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ncc(Br)cn1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12']; [0.9999994039535522, 0.999995768070221, 0.9999904632568359, 0.9999625086784363, 0.9999315738677979, 0.9993174076080322, 0.9832873344421387, 0.8127350807189941, 0.8064811825752258] +O=C(C1CC1)N1CC(Nc2cnn3cccnc23)C1; [None]; [None]; [0] +COc1ccc(CNc2cnn3cccnc23)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'Brc1cnn2cccnc12', 'COc1ccc(CN)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C(OC)OC)cc1']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'COc1ccc(CN)cc1', 'Ic1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; [0.999241292476654, 0.9990390539169312, 0.9977697134017944, 0.9976360201835632, 0.9968609809875488, 0.9256623983383179, 0.8454527258872986] +O=C1CCc2cc(-c3cnn4cccnc34)ccc2N1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'Brc1cnn2cccnc12', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'Ic1cnn2cccnc12', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'c1cnc2ccnn2c1', 'O=C1CCc2cc(Br)ccc2N1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'O=C1CCc2ccccc2N1']; [0.9999995827674866, 0.9999961853027344, 0.9999944567680359, 0.9999798536300659, 0.9999111890792847, 0.9998992681503296, 0.9997982978820801, 0.9996963739395142, 0.9996001124382019, 0.9995110034942627, 0.9989720582962036, 0.9785649180412292, 0.8164166212081909] +CCc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCc1ccc(B(O)O)cc1', 'Brc1cnn2cccnc12', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1', 'Brc1cnn2cccnc12']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'CCc1ccc(I)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CCc1ccc([Mg]Br)cc1', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'CCc1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'CCc1ccccc1']; [0.9999998211860657, 0.999999463558197, 0.9999967813491821, 0.9999955892562866, 0.9999760389328003, 0.9999728798866272, 0.9998831748962402, 0.9998786449432373, 0.9998469948768616, 0.9990076422691345, 0.9986205101013184, 0.9963119029998779, 0.995919942855835, 0.9943060874938965, 0.9885914325714111, 0.985457181930542, 0.9847826957702637, 0.7755817174911499] +COc1ccc(-c2cnn3cccnc23)cc1OC; ['Brc1cnn2cccnc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1ccc(B(O)O)cc1OC', 'COC(CC(OC)OC)OC', 'Brc1cnn2cccnc12', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'Brc1cnn2cccnc12', 'COc1ccc(Cl)cc1OC', 'Brc1cnn2cccnc12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1cnn2cccnc12', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'Ic1cnn2cccnc12', 'COc1ccc(-c2cn[nH]c2N)cc1OC', 'COc1ccc(I)cc1OC', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1ccc(Br)cc1OC', 'OB(O)c1cnn2cccnc12', 'COc1ccccc1OC']; [1.0, 0.9999995231628418, 0.9999991655349731, 0.9999969005584717, 0.9999954700469971, 0.9999871253967285, 0.9999656677246094, 0.9999497532844543, 0.9999474287033081, 0.9999079704284668, 0.9999078512191772, 0.9998904466629028, 0.9998394250869751, 0.9997797012329102, 0.9990361928939819, 0.9804507493972778] +Clc1ccc(-c2cnn3cccnc23)c(Cl)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Clc1ccc(Br)c(Cl)c1', 'Brc1cnn2cccnc12', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'Brc1cnn2cccnc12', 'Clc1ccc(I)c(Cl)c1', 'Clc1cccc(Cl)c1', 'Brc1cnn2cccnc12', 'Clc1cccc(Cl)c1']; ['Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1cnn2cccnc12', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'Clc1cccc(Cl)c1', 'c1cnc2ccnn2c1']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.9999970197677612, 0.9999943971633911, 0.9999919533729553, 0.9999853372573853, 0.9999531507492065, 0.9999441504478455, 0.9999421238899231, 0.9998437166213989, 0.9995287656784058, 0.9983246326446533, 0.9957811832427979, 0.9768465757369995] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +c1cc2cnc(-c3cnn4cccnc34)nn2c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ncc2cccn2n1']; ['Clc1ncc2cccn2n1', 'OB(O)c1cnn2cccnc12']; [0.999998927116394, 0.9998796582221985] +Cn1cc(-c2cnn3cccnc23)c(C(F)(F)F)n1; ['Brc1cnn2cccnc12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Brc1cnn2cccnc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Ic1cnn2cccnc12', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [1.0, 1.0, 1.0, 1.0, 0.9999996423721313, 0.999998152256012, 0.9999977350234985, 0.9999963045120239] +c1ccn2nc(-c3cnn4cccnc34)cc2c1; ['Brc1cc2ccccn2n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cc2ccccn2n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999997615814209, 0.999996542930603, 0.9999849796295166, 0.9999786615371704] +COc1cc(-c2cnn3cccnc23)ccc1N1CCOCC1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnn4cccnc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnn4cccnc34)c2c1; [None]; [None]; [0] +Clc1cnc(-c2cnn3cccnc23)nc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1cnc(I)nc1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'CSc1ncc(Cl)cn1', 'Brc1cnn2cccnc12']; ['Clc1cnc(I)nc1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Clc1cncnc1']; [0.9999991655349731, 0.9999976754188538, 0.9999927282333374, 0.9998410940170288, 0.9993702173233032, 0.9967478513717651, 0.9254290461540222, 0.9185038208961487] +COc1cc(F)c(-c2cnn3cccnc23)cc1OC; [None]; [None]; [0] +Oc1ccc2cccc(-c3cnn4cccnc34)c2c1; [None]; [None]; [0] +COc1cc(-c2cnn3cccnc23)ccc1Cl; ['Brc1cnn2cccnc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Brc1cnn2cccnc12', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'Brc1cnn2cccnc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Ic1cnn2cccnc12', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1cc(Cl)ccc1Cl', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(Br)ccc1Cl', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'COc1ccccc1Cl']; [1.0, 1.0, 1.0, 1.0, 0.9999991655349731, 0.9999973177909851, 0.9999972581863403, 0.999995231628418, 0.9999948740005493, 0.9999942779541016, 0.9999834299087524, 0.9999679327011108, 0.9999589920043945, 0.9998126029968262, 0.989619255065918, 0.9693700075149536] +Cc1nc(Nc2cnn3cccnc23)sc1C; ['Cc1nc(Br)sc1C', 'Brc1cnn2cccnc12', 'Cc1nc(Cl)sc1C']; ['Nc1cnn2cccnc12', 'Cc1nc(N)sc1C', 'Nc1cnn2cccnc12']; [0.9999942779541016, 0.9999756813049316, 0.9999723434448242] +Cc1csc2c(-c3cnn4cccnc34)ncnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1csc2c(Cl)ncnc12']; ['Cc1csc2c(Cl)ncnc12', 'OB(O)c1cnn2cccnc12']; [0.9999651908874512, 0.9975457191467285] +OCCn1cc(-c2cnn3cccnc23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OCCn1cc(Br)cn1', 'Brc1cnn2cccnc12']; ['Ic1cnn2cccnc12', 'OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(Br)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Br)cn1', 'c1cnc2ccnn2c1', 'OCCn1cccn1']; [1.0, 1.0, 0.9999998807907104, 0.9999997019767761, 0.999999463558197, 0.9999989867210388, 0.9999980926513672, 0.9999902844429016, 0.9999028444290161, 0.999894380569458, 0.999541163444519, 0.985742449760437, 0.9843528270721436] +Cc1cc(Nc2cnn3cccnc23)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(N)nn1C', 'Brc1cnn2cccnc12']; ['Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1cc(N)nn1C']; [0.9999111890792847, 0.9998694062232971, 0.9998307228088379] +CNC(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnn2cccnc12', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [1.0, 1.0, 0.9999994039535522, 0.9999967813491821, 0.9999778270721436, 0.9999741315841675, 0.9996591806411743] +O=C(Nc1cnn2cccnc12)c1ccco1; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1']; [0.9998394250869751, 0.9979358315467834] +CCNC(=O)c1ccc(-c2cnn3cccnc23)nc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCNC(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCNC(=O)c1ccc(Br)nc1']; ['CCNC(=O)c1ccc(Cl)nc1', 'OB(O)c1cnn2cccnc12', 'CCNC(=O)c1ccc(Br)nc1', 'OB(O)c1cnn2cccnc12']; [0.9999939799308777, 0.999992847442627, 0.9999912977218628, 0.9999848008155823] +Nc1cc(-c2cnn3cccnc23)c2cc[nH]c2n1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999992847442627, 0.9998112916946411, 0.9975506663322449] +NC(=O)c1ccc(Cc2cnn3cccnc23)cc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C']; ['NC(=O)c1ccc(CBr)cc1']; [0.9997518062591553] +COc1cc(-c2cnn3cccnc23)c(OC)cc1Br; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'Brc1cnn2cccnc12', 'COc1cc(Br)c(OC)cc1Br']; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(B(O)O)c(OC)cc1Br', 'OB(O)c1cnn2cccnc12']; [0.9999997615814209, 0.9999657273292542, 0.9999392032623291, 0.9988023042678833, 0.9986635446548462, 0.9940264821052551, 0.9491077661514282] +COc1cc(OC)cc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1cnn2cccnc12', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'Brc1cnn2cccnc12', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'Brc1cnn2cccnc12']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'Ic1cnn2cccnc12', 'COc1cc(Cl)cc(OC)c1', 'Ic1cnn2cccnc12', 'COc1cc(OC)cc(B(O)O)c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1cc(Br)cc(OC)c1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cccc(OC)c1']; [1.0, 1.0, 1.0, 0.9999998211860657, 0.999998927116394, 0.9999982118606567, 0.999998152256012, 0.9999858140945435, 0.9999847412109375, 0.9999780654907227, 0.9995274543762207, 0.9994053840637207, 0.9932650327682495, 0.8809995055198669] +CCNC(=O)N1CCC(c2cnn3cccnc23)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnn2cccnc12; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnn3cccnc23)c1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cnn3cccnc23)cc1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnn3cccnc13)cn2C; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnn3cccnc23)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnn3cccnc23)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CCOC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'Brc1cnn2cccnc12', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'O=[N+]([O-])c1cnn2cccnc12', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'Nc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'O=[N+]([O-])c1cnn2cccnc12']; [0.9999917149543762, 0.9999642372131348, 0.9999467134475708, 0.9998712539672852, 0.9998176097869873, 0.999350368976593, 0.9992083311080933, 0.9987152814865112, 0.9913542866706848] +c1cnc2c(-c3ccc4cn[nH]c4c3)cnn2c1; ['Brc1cnn2cccnc12', 'Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1ccc2cn[nH]c2c1', 'Brc1cnn2cccnc12', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Ic1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1cnn2cccnc12', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [1.0, 1.0, 1.0, 0.9999998807907104, 0.9999992251396179, 0.9999988079071045, 0.9999942779541016, 0.9999881982803345, 0.9999822974205017, 0.998735785484314, 0.9967500567436218, 0.9907913208007812] +CCn1cc(-c2cnn3cccnc23)cn1; ['Brc1cnn2cccnc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CCn1cc(Br)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnn2cccnc12', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(B(O)O)cn1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CCn1cccn1', 'CCn1cc(Br)cn1', 'c1cnc2ccnn2c1']; [0.9999997615814209, 0.9999997615814209, 0.9999997615814209, 0.9999979734420776, 0.9999975562095642, 0.9999804496765137, 0.9999687075614929, 0.9999517202377319, 0.9988949298858643, 0.9985724687576294, 0.9964361190795898, 0.9945008754730225, 0.8939937353134155] +CNC(=O)c1ccc(OC)c(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'OB(O)c1cnn2cccnc12']; [0.999997615814209, 0.9986591339111328] +c1ccc2oc(-c3cnn4cccnc34)cc2c1; ['Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1cc2ccccc2o1', 'Clc1cc2ccccc2o1', 'Brc1cnn2cccnc12']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1ccc2occc2c1']; [0.9999197721481323, 0.9999055862426758, 0.998824954032898, 0.9979745149612427, 0.9873301982879639] +COc1ccc2oc(-c3cnn4cccnc34)cc2c1; [None]; [None]; [0] +c1cnc2c(-c3ncc4sccc4n3)cnn2c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ncc2sccc2n1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12']; ['Clc1ncc2sccc2n1', 'OB(O)c1cnn2cccnc12', 'Clc1ncc2sccc2n1', 'c1ncc2sccc2n1', 'c1ncc2sccc2n1']; [0.9999967217445374, 0.9999489784240723, 0.9999475479125977, 0.9945216178894043, 0.960028350353241] +c1cncc(-c2ccnc(-c3cnn4cccnc34)c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnn3cccnc23)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnn2cccnc12; ['Brc1cnn2cccnc12', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.9999998211860657, 0.9999990463256836, 0.999998927116394] +COc1ccc2nc(-c3cnn4cccnc34)[nH]c2c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1ccc(N)c(N)c1', 'COc1ccc([N+](=O)[O-])c(N)c1', 'COc1ccc(N)c([N+](=O)[O-])c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc2nc(Cl)[nH]c2c1', 'CCOC(=O)c1cnn2cccnc12', 'COc1ccc2nc[nH]c2c1', 'COc1ccc2nc[nH]c2c1']; ['COc1ccc2nc(Cl)[nH]c2c1', 'O=Cc1cnn2cccnc12', 'O=Cc1cnn2cccnc12', 'O=Cc1cnn2cccnc12', 'O=C(Cl)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COc1ccc(N)c(N)c1', 'Nc1cnn2cccnc12', 'Ic1cnn2cccnc12']; [0.9999976754188538, 0.9999971985816956, 0.9999960660934448, 0.9999862909317017, 0.9999567866325378, 0.999902606010437, 0.9998615980148315, 0.9992179870605469, 0.9806504249572754, 0.9542853832244873] +COc1ccc(F)c(C(=O)Nc2cnn3cccnc23)c1; ['COc1ccc(F)c(C(=O)O)c1', 'Brc1cnn2cccnc12', 'COc1ccc(F)c(C(N)=O)c1']; ['Nc1cnn2cccnc12', 'COc1ccc(F)c(C(N)=O)c1', 'Nc1cnn2cccnc12']; [0.9999446272850037, 0.999785304069519, 0.9992780685424805] +Cn1cc(Br)cc1-c1cnn2cccnc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnn3cccnc23)c1)N1CCCC1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'FC(F)(F)Oc1ccc(I)cc1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'Brc1cnn2cccnc12', 'FC(F)(F)Oc1ccccc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'FC(F)(F)Oc1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'FC(F)(F)Oc1ccccc1', 'Ic1cnn2cccnc12']; [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999998807907104, 0.9999996423721313, 0.9999992251396179, 0.9999990463256836, 0.9999979734420776, 0.9999958872795105, 0.9999947547912598, 0.9999576807022095] +Cn1cc(-c2cnn3cccnc23)c2ccccc21; ['Brc1cnn2cccnc12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1cnn2cccnc12']; [0.9999992847442627, 0.9999951124191284] +CCc1cccc(-c2cnn3cccnc23)n1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCc1cccc(Br)n1', 'Brc1cnn2cccnc12', 'CCc1ccccn1', 'Brc1cnn2cccnc12']; ['CCc1cccc(Br)n1', 'OB(O)c1cnn2cccnc12', 'CCc1cccc(Br)n1', 'OB(O)c1cnn2cccnc12', 'CCc1ccccn1']; [0.9999938011169434, 0.9999474883079529, 0.9990668892860413, 0.9977730512619019, 0.9747116565704346] +c1cnc2c(-c3ncn4c3CCCC4)cnn2c1; ['Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; ['c1ncn2c1CCCC2', 'c1ncn2c1CCCC2']; [0.8923567533493042, 0.8671315908432007] +CN(C)c1ccc(-c2cnn3cccnc23)cn1; ['Brc1cnn2cccnc12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'Brc1cnn2cccnc12', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1cnn2cccnc12', 'CN(C)c1ccc(Br)cn1', 'Brc1cnn2cccnc12']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnn2cccnc12', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Cl)cn1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CN(C)c1ccc(I)cn1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'CN(C)c1ccc(Br)cn1', 'Ic1cnn2cccnc12', 'CN(C)c1ccccn1']; [0.9999994039535522, 0.9999977946281433, 0.9999964237213135, 0.9999925494194031, 0.9999856948852539, 0.9999523162841797, 0.9998003244400024, 0.9995893239974976, 0.9992344379425049, 0.9989320039749146, 0.9976989030838013, 0.9957836866378784, 0.9954093098640442, 0.9913845062255859, 0.8166979551315308] +Cn1ncc2cc(-c3cnn4cccnc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnn4cccnc34)ccc12; ['Brc1cnn2cccnc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Brc1cnn2cccnc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Brc1cnn2cccnc12']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Ic1cnn2cccnc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Ic1cnn2cccnc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 1.0, 1.0, 0.9999988079071045, 0.9999979734420776, 0.9999920129776001, 0.999985933303833, 0.9980761408805847] +CC(=O)N1CCC(n2cc(-c3cnn4cccnc34)cn2)CC1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnn4cccnc34)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnn4cccnc34)ccc21; [None]; [None]; [0] +Cc1cc(-c2cnn3cccnc23)cc(C)c1OCCO; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'Brc1cnn2cccnc12', 'O=C1CCCN1c1cccc(Cl)c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'Ic1cnn2cccnc12', 'O=C1CCCN1c1cccc(Cl)c1', 'OB(O)c1cnn2cccnc12', 'O=C1CCCN1c1cccc(Br)c1', 'OB(O)c1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.9999995231628418, 0.9998480677604675, 0.9995968341827393, 0.9995120763778687] +CN(C)C(=O)c1ccc(-c2cnn3cccnc23)c(Cl)c1; ['CN(C)C(=O)c1cccc(Cl)c1', 'Brc1cnn2cccnc12']; ['Ic1cnn2cccnc12', 'CN(C)C(=O)c1cccc(Cl)c1']; [0.9698110818862915, 0.9487978219985962] +OCCc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OCCc1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12', 'OCCc1ccc(I)cc1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'OCCc1ccc(Cl)cc1', 'c1cnc2ccnn2c1']; [0.9999997615814209, 0.999998927116394, 0.9999975562095642, 0.9999948740005493, 0.9999669790267944, 0.9999445676803589, 0.9998555779457092, 0.9994986057281494, 0.9953272342681885, 0.9883332252502441, 0.9075888395309448, 0.8871503472328186, 0.8508585691452026] +CNC(=O)c1ccc(-c2cnn3cccnc23)c(OC)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999982714653015, 0.9999968409538269, 0.9999817609786987, 0.9995814561843872] +Cc1ncc(-c2ccc(-c3cnn4cccnc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnn2cccnc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br', 'Brc1cnn2cccnc12']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'OB(O)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(S(C)(=O)=O)ccc1Br']; [0.9999997615814209, 0.999987781047821, 0.9999439716339111, 0.9998410940170288, 0.999800980091095] +Cc1cc(N2CCOCC2)ccc1-c1cnn2cccnc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnn3cccnc23)cc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999983906745911, 0.9999980926513672, 0.9999819993972778, 0.9999803304672241, 0.9997738003730774] +Fc1ccc(Nc2cnn3cccnc23)nc1; ['Fc1ccc(Br)nc1', 'Ic1cnn2cccnc12', 'Fc1ccc(Cl)nc1', 'Brc1cnn2cccnc12', 'Fc1ccc(F)nc1']; ['Nc1cnn2cccnc12', 'Nc1ccc(F)cn1', 'Nc1cnn2cccnc12', 'Nc1ccc(F)cn1', 'Nc1cnn2cccnc12']; [0.9998462200164795, 0.9998112916946411, 0.999544084072113, 0.9993468523025513, 0.9975638389587402] +Cc1cc(Nc2cnn3cccnc23)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Brc1cnn2cccnc12']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Cc1cc(N)ncc1F']; [0.999990701675415, 0.9999861717224121, 0.999979555606842, 0.9999574422836304] +CN(C)C(=O)c1ccc(-c2cnn3cccnc23)nc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1']; ['CN(C)C(=O)c1ccc(Cl)nc1', 'OB(O)c1cnn2cccnc12', 'CN(C)C(=O)c1ccc(Br)nc1', 'OB(O)c1cnn2cccnc12']; [0.9999997019767761, 0.9999991655349731, 0.9999985694885254, 0.9999866485595703] +CCNC(=O)Cc1ccc(-c2cnn3cccnc23)cc1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12']; [0.9999985694885254, 0.9996857643127441] +c1ccc(Nc2cnn3cccnc23)nc1; ['Brc1ccccn1', 'Clc1ccccn1', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Fc1ccccn1']; ['Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1cnn2cccnc12']; [0.9985044598579407, 0.9968621730804443, 0.9918602108955383, 0.9896163940429688, 0.9860098361968994] +COc1cc(N2CCNCC2)ccc1-c1cnn2cccnc12; [None]; [None]; [0] +Cn1nc(-c2cnn3cccnc23)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [1.0, 0.9999808073043823, 0.9999556541442871] +Cc1ccc(C(=O)NCCO)cc1-c1cnn2cccnc12; [None]; [None]; [0] +c1ccc2c(-c3cnn4cccnc34)n[nH]c2c1; ['Brc1n[nH]c2ccccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1n[nH]c2ccccc12', 'Ic1n[nH]c2ccccc12', 'Brc1cnn2cccnc12', 'Clc1n[nH]c2ccccc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1n[nH]c2ccccc12', 'OB(O)c1cnn2cccnc12']; [0.9999953508377075, 0.9999877214431763, 0.9998213648796082, 0.9985058903694153, 0.997980535030365, 0.9958059787750244, 0.9885473847389221] +Clc1ccc2c(c1-c1cnn3cccnc13)OCO2; ['Brc1cnn2cccnc12', 'Ic1cnn2cccnc12']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.999976396560669, 0.9998900294303894] +Clc1cccc(Cl)c1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Clc1cccc(Cl)c1I', 'Ic1cnn2cccnc12', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cnn2cccnc12', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.999996542930603, 0.9999951124191284, 0.9999524354934692, 0.9999045729637146, 0.9997137784957886, 0.9995638132095337, 0.9973660111427307] +c1cc(-c2cnn3cccnc23)c2cccnc2c1; ['Brc1cnn2cccnc12', 'Brc1cccc2ncccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cccc2ncccc12', 'Ic1cnn2cccnc12', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Clc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Ic1cccc2ncccc12']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cccc2ncccc12', 'Ic1cnn2cccnc12', 'OB(O)c1cccc2ncccc12', 'Clc1cccc2ncccc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'O=C(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.9999987483024597, 0.9999984502792358, 0.9999954700469971, 0.999990701675415, 0.9999841451644897, 0.9999271035194397, 0.999924898147583, 0.9999136924743652, 0.9999003410339355, 0.9998897910118103, 0.9991798400878906, 0.9984943866729736, 0.9977489709854126, 0.9965599179267883, 0.9959430694580078, 0.9953845143318176, 0.9944275617599487, 0.9595117568969727] +CNC(=O)c1ccc(C)c(-c2cnn3cccnc23)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn3cccnc23)c(F)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'NC(=O)c1ccc(Br)c(F)c1', 'Ic1cnn2cccnc12', 'NC(=O)c1ccc(Cl)c(F)c1']; ['NC(=O)c1ccc(Br)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Ic1cnn2cccnc12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'OB(O)c1cnn2cccnc12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'OB(O)c1cnn2cccnc12']; [0.9999998807907104, 0.9999992251396179, 0.9999953508377075, 0.9999898672103882, 0.9999894499778748, 0.9999866485595703, 0.999984860420227, 0.9979375600814819] +Fc1ccc(Oc2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.999930739402771, 0.999821662902832, 0.9993152618408203] +Oc1cc(-c2cnn3cccnc23)ccc1Cl; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'OB(O)c1ccc(Cl)c(O)c1', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Cl)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'c1cnc2ccnn2c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(Cl)ccc1Cl', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1']; [1.0, 0.9999988079071045, 0.9999979734420776, 0.9999979138374329, 0.9999971389770508, 0.9999934434890747, 0.9999858736991882, 0.999933660030365, 0.9999295473098755, 0.9997909069061279, 0.9972763061523438, 0.9905617237091064, 0.9836757183074951, 0.9719750881195068] +Oc1ccc(-c2cnn3cccnc23)c(Cl)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Oc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1cnn2cccnc12', 'Oc1ccc(I)c(Cl)c1', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12']; ['Oc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(I)c(Cl)c1', 'Ic1cnn2cccnc12', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'Oc1ccc(I)c(Cl)c1', 'c1cnc2ccnn2c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(Cl)c1']; [0.9999993443489075, 0.9999974370002747, 0.999995768070221, 0.9999900460243225, 0.999944806098938, 0.99993896484375, 0.9999310970306396, 0.9997581839561462, 0.9994884729385376, 0.9989446401596069, 0.9948351383209229, 0.963593602180481, 0.7722171545028687] +COc1cc(C(N)=O)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1Br', 'Brc1cnn2cccnc12']; ['COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999996423721313, 0.9999992847442627, 0.9999953508377075, 0.9998537302017212, 0.9998306035995483, 0.9980250597000122] +Nc1nccc(-c2cnn3cccnc23)n1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1nccc(I)n1', 'Nc1nccc(Br)n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1nccc(Cl)n1', 'Nc1ncccn1', 'Brc1cnn2cccnc12']; ['Nc1nccc(Br)n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Nc1nccc(Cl)n1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Nc1nccc(Cl)n1']; [0.9999905824661255, 0.9998878240585327, 0.999866247177124, 0.9997847080230713, 0.9978407621383667, 0.9970760345458984, 0.9904311299324036] +Oc1ccc(-c2cnn3cccnc23)c(F)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'Ic1cnn2cccnc12']; ['Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Br)c(F)c1', 'Oc1cccc(F)c1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'Oc1cccc(F)c1']; [0.9999997615814209, 0.9999991655349731, 0.9999978542327881, 0.9999876022338867, 0.9999852180480957, 0.9999749660491943, 0.9999709129333496, 0.9999629259109497, 0.9997799396514893, 0.999505877494812, 0.9994586110115051, 0.997995913028717, 0.9973845481872559] +COc1ccc(F)cc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnn2cccnc12', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'Brc1cnn2cccnc12', 'COc1ccc(F)cc1Br', 'Brc1cnn2cccnc12']; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnn2cccnc12', 'COc1ccc(F)cc1B(O)O', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COc1ccc(F)cc1[Mg]Br', 'c1cnc2ccnn2c1', 'COc1ccc(F)cc1Br']; [0.9999997615814209, 0.9999995827674866, 0.9999980926513672, 0.9999914169311523, 0.9999896287918091, 0.9999776482582092, 0.9998707175254822, 0.9994246959686279, 0.9982783794403076] +COC(=O)c1ccc(-c2cnn3cccnc23)o1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'COC(=O)c1ccc(Cl)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'Brc1cnn2cccnc12', 'COC(=O)c1ccco1']; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COC(=O)c1ccco1', 'Nc1cnn2cccnc12']; [0.9999954104423523, 0.999503493309021, 0.9994133710861206, 0.9988515973091125, 0.9977434277534485, 0.9964380860328674, 0.99405837059021] +Clc1[nH]ncc1-c1cnn2cccnc12; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Br', 'Brc1cnn2cccnc12', 'COc1cc(F)ccc1I', 'Brc1cnn2cccnc12', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1I', 'Brc1cnn2cccnc12', 'COc1cccc(F)c1']; ['COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnn2cccnc12', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1B(O)O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'COc1cc(F)ccc1[Mg]Br', 'c1cnc2ccnn2c1', 'COc1cc(F)ccc1Br', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'COc1cccc(F)c1', 'Ic1cnn2cccnc12']; [0.9999995231628418, 0.9999995231628418, 0.9999987483024597, 0.9999956488609314, 0.9999899864196777, 0.9999891519546509, 0.9999868869781494, 0.9999797344207764, 0.999972403049469, 0.9999432563781738, 0.9998675584793091, 0.9996496438980103, 0.9995670318603516, 0.9988316893577576, 0.9983913898468018, 0.9974042177200317, 0.9872899055480957, 0.9766591787338257] +Cc1nc2c(F)cc(-c3cnn4cccnc34)cc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'COC(CC(OC)OC)OC', 'Brc1cccc(I)c1', 'Brc1cnn2cccnc12', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['Ic1cnn2cccnc12', 'Nc1n[nH]cc1-c1cccc(Br)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'O=C(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.999998927116394, 0.9999988675117493, 0.9999980330467224, 0.9999973773956299, 0.9999889135360718, 0.9999576210975647, 0.9999302625656128, 0.9999114871025085, 0.9993859529495239, 0.9992232322692871, 0.9981422424316406, 0.996673583984375, 0.9902744889259338, 0.9205658435821533] +Oc1ccc(-c2ccc(-c3cnn4cccnc34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(CCc2cnn3cccnc23)ccc1O; [None]; [None]; [0] +c1ccc2cc(-c3cnn4cccnc34)ccc2c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1ccc2ccccc2c1', 'COC(CC(OC)OC)OC', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Ic1ccc2ccccc2c1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1n[nH]cc1-c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'O=C(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1ccc2ccccc2c1']; [1.0, 0.9999995827674866, 0.9999995231628418, 0.9999994039535522, 0.9999984502792358, 0.9999978542327881, 0.9999967813491821, 0.9999963641166687, 0.9999919533729553, 0.9999372959136963, 0.9999072551727295, 0.9999013543128967, 0.9995613098144531, 0.9993905425071716, 0.9991451501846313, 0.9962447881698608, 0.9855791330337524] +Oc1ccc(-c2cnn3cccnc23)cc1F; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Oc1ccc(Br)cc1F', 'OB(O)c1cnn2cccnc12', 'Oc1ccc(I)cc1F', 'Brc1cnn2cccnc12']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Oc1ccc(Br)cc1F', 'Ic1cnn2cccnc12', 'Oc1ccc(I)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Cl)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Br)cc1F', 'c1cnc2ccnn2c1', 'Oc1ccc(Cl)cc1F', 'c1cnc2ccnn2c1', 'Oc1ccccc1F']; [1.0, 1.0, 0.9999997615814209, 0.9999988079071045, 0.9999971389770508, 0.9999942183494568, 0.9999924898147583, 0.9999855160713196, 0.999953031539917, 0.9997564554214478, 0.9989350438117981, 0.99696284532547, 0.9964578151702881, 0.9153131246566772] +COC(=O)c1ccc(Cl)c(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'Ic1cnn2cccnc12', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [1.0, 1.0, 1.0, 0.999999463558197, 0.9999984502792358, 0.999997615814209, 0.9999971389770508, 0.9999699592590332, 0.9998996257781982, 0.9998102188110352, 0.9989398717880249, 0.9978880882263184] +c1cnn2ncc(-c3cnn4cccnc34)c2c1; ['Brc1cnn2ncccc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.9999964237213135, 0.9999946355819702, 0.9999747276306152, 0.9996259808540344, 0.9973198175430298] +Oc1ccc(-c2cnn3cccnc23)c(O)c1; [None]; [None]; [0] +Nc1cc(-c2cnn3cccnc23)ccn1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1', 'Brc1cnn2cccnc12']; ['Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Nc1cc(Br)ccn1']; [0.9999995827674866, 0.999999463558197, 0.9999994039535522, 0.9999994039535522, 0.9999983310699463, 0.9999820590019226, 0.9999704360961914, 0.9999701976776123, 0.9999348521232605, 0.9997482299804688, 0.9997223019599915, 0.9977190494537354, 0.9961333274841309] +c1cnc2c(-c3c[nH]c4cnccc34)cnn2c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Ic1cnn2cccnc12', 'Brc1c[nH]c2cnccc12', 'Brc1cnn2cccnc12']; ['Ic1c[nH]c2cnccc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1c[nH]c2cnccc12', 'Brc1cnn2cccnc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999982118606567, 0.9999921321868896, 0.9996649622917175, 0.9970791339874268, 0.9969940185546875, 0.9855071306228638, 0.9835606217384338] +Cc1ccc2[nH]ncc2c1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; ['Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999984502792358, 0.9999743700027466, 0.9999580383300781, 0.9999113082885742] +Clc1ccccc1OCc1cnn2cccnc12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; ['Oc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1']; [0.9999991655349731, 0.9999977350234985, 0.9997693300247192, 0.9995664954185486] +Fc1ccc(-c2nc[nH]c2-c2cnn3cccnc23)cc1; ['Fc1ccc(-c2c[nH]cn2)cc1', 'Fc1ccc(-c2c[nH]cn2)cc1', 'Brc1cnn2cccnc12', 'Fc1ccc(-c2cnc[nH]2)cc1']; ['OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Fc1ccc(-c2c[nH]cn2)cc1', 'Ic1cnn2cccnc12']; [0.9999560117721558, 0.9998964071273804, 0.9998118281364441, 0.9998085498809814] +NC(=O)c1cc(-c2cnn3cccnc23)c[nH]1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'NC(=O)c1cc(Br)c[nH]1']; ['NC(=O)c1cc(Br)c[nH]1', 'OB(O)c1cnn2cccnc12']; [0.9999969005584717, 0.9983034729957581] +Cc1ccc(CO)cc1-c1cnn2cccnc12; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Brc1cnn2cccnc12', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1Br', 'Brc1cnn2cccnc12', 'Cc1ccc(CO)cc1I']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Ic1cnn2cccnc12', 'Cc1ccc(CO)cc1Cl', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1ccc(CO)cc1B(O)O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Cc1ccc(CO)cc1Br', 'c1cnc2ccnn2c1']; [0.9999980330467224, 0.9999969005584717, 0.9999940991401672, 0.999971866607666, 0.9999451637268066, 0.9990109801292419, 0.9989923238754272, 0.9988312721252441, 0.9880107641220093, 0.9825575351715088, 0.9562817811965942, 0.9372246265411377, 0.8666654825210571] +Fc1ccc(-c2cnn3cccnc23)cc1Cl; ['Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Fc1ccc(Br)cc1Cl', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Brc1cnn2cccnc12', 'Fc1ccccc1Cl', 'Fc1ccccc1Cl', 'Fc1ccc(Cl)cc1Cl']; ['OB(O)c1ccc(F)c(Cl)c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'c1cnc2ccnn2c1', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'c1cnc2ccnn2c1', 'O=C(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'Fc1ccccc1Cl', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1']; [1.0, 1.0, 1.0, 1.0, 1.0, 0.9999998211860657, 0.9999996423721313, 0.9999996423721313, 0.999998927116394, 0.9999986886978149, 0.9999974966049194, 0.9999938011169434, 0.99998539686203, 0.9999756217002869, 0.999972403049469, 0.9999462366104126, 0.9999428987503052, 0.9998262524604797, 0.9997519254684448, 0.9997316598892212, 0.9837561845779419, 0.9654082655906677, 0.9520718455314636, 0.8799099922180176] +Oc1ncc(-c2cnn3cccnc23)cc1Cl; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Oc1ncc(I)cc1Cl', 'OB(O)c1cnn2cccnc12', 'Oc1ncc(Br)cc1Cl']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncccc1Cl', 'Oc1ncccc1Cl', 'c1cnc2ccnn2c1', 'Oc1ncc(Cl)cc1Cl', 'c1cnc2ccnn2c1']; [0.9999997019767761, 0.999998927116394, 0.9999985694885254, 0.9999982118606567, 0.9996708035469055, 0.9976274371147156, 0.9958072900772095, 0.9806952476501465, 0.9633331894874573, 0.9205772876739502, 0.8725475072860718, 0.8546656370162964] +NC(=O)Nc1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'NC(=O)Nc1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'NC(=O)Nc1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12']; [0.9999989867210388, 0.999993085861206, 0.9918333292007446] +Cc1nc2ccc(-c3cnn4cccnc34)cc2[nH]1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Brc1cnn2cccnc12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Ic1cnn2cccnc12', 'Cc1nc2ccc(Cl)cc2[nH]1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999996423721313, 0.9999995231628418, 0.9999995231628418, 0.9999865293502808, 0.9998133778572083, 0.9910699129104614, 0.9781448841094971] +c1cnc2c(-c3cnc4[nH]ccc4c3)cnn2c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999998211860657, 0.9999996423721313, 0.999999463558197, 0.999999463558197, 0.9999983310699463, 0.9999918937683105, 0.9999748468399048, 0.9999226331710815, 0.9997340440750122, 0.9996770620346069, 0.9989434480667114, 0.998414158821106, 0.9936416149139404] +CS(=O)(=O)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Brc1cnn2cccnc12', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1cnn2cccnc12', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CS(=O)(=O)c1ccc(Br)cc1', 'c1cnc2ccnn2c1', 'CS(=O)(=O)c1ccccc1', 'c1cnc2ccnn2c1']; [1.0, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999994039535522, 0.9999994039535522, 0.9999991655349731, 0.9999939203262329, 0.9999827742576599, 0.9999275803565979, 0.9997219443321228, 0.998225212097168, 0.9963462352752686] +CCOc1cccc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(Br)c1', 'Brc1cnn2cccnc12', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(Br)c1', 'Ic1cnn2cccnc12', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'CCOc1cccc(Br)c1', 'c1cnc2ccnn2c1']; [0.9999989867210388, 0.9999970197677612, 0.9999969601631165, 0.9999954700469971, 0.9999730587005615, 0.9999586343765259, 0.9999570250511169, 0.9999135732650757, 0.9998285174369812, 0.9995724558830261, 0.9962361454963684, 0.9787466526031494] +CNC(=O)c1cccc2cc(-c3cnn4cccnc34)ccc12; [None]; [None]; [0] +c1ccc2sc(-c3cnn4cccnc34)nc2c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Nc1ccccc1S', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Clc1nc2ccccc2s1']; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=Cc1cnn2cccnc12', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'O=C(O)c1cnn2cccnc12', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; [0.9999986886978149, 0.999997615814209, 0.9999939203262329, 0.999987006187439, 0.9999807476997375, 0.9999597072601318, 0.9999589920043945, 0.9998862743377686, 0.9998403787612915, 0.9993316531181335, 0.998967170715332] +CNc1nccc(-c2cnn3cccnc23)n1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CNc1nccc(Br)n1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CNc1nccc(Cl)n1', 'Brc1cnn2cccnc12']; ['CNc1nccc(Br)n1', 'OB(O)c1cnn2cccnc12', 'CNc1nccc(Cl)n1', 'OB(O)c1cnn2cccnc12', 'CNc1nccc(Cl)n1']; [0.9999867677688599, 0.9999117851257324, 0.9998958110809326, 0.9993956089019775, 0.9941385984420776] +Oc1cncc(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; ['Oc1cncc(Br)c1', 'Oc1cncc(I)c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Oc1cncc(Cl)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(I)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Cl)c1']; [0.9999991655349731, 0.9999991059303284, 0.9999974370002747, 0.9999798536300659, 0.9999771118164062, 0.9999378323554993, 0.9999233484268188, 0.999602198600769, 0.9981573820114136, 0.9951865077018738, 0.972672700881958] +O=C1Cc2cc(-c3cnn4cccnc34)ccc2N1; ['Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'O=C1Cc2cc(I)ccc2N1', 'Ic1cnn2cccnc12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'Brc1cnn2cccnc12', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Ic1cnn2cccnc12', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'OB(O)c1cnn2cccnc12', 'O=C1Cc2cc(Br)ccc2N1', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'O=C1Cc2cc(Br)ccc2N1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1']; [0.9999986886978149, 0.9999918937683105, 0.9999890327453613, 0.9999504089355469, 0.9999159574508667, 0.9999039173126221, 0.9995947480201721, 0.9994161128997803, 0.9993126392364502, 0.9991177320480347, 0.9990294575691223, 0.9989032745361328, 0.9909486770629883, 0.9894983768463135, 0.9749714136123657, 0.9656243324279785] +COc1cc(CCc2cnn3cccnc23)cc(OC)c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnn2cccnc12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnn4cccnc34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnn3cccnc23)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1Br']; ['CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [1.0, 0.9999997019767761, 0.999957799911499, 0.9980303049087524] +Cc1cc(O)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1I', 'Brc1cnn2cccnc12', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1Br', 'Brc1cnn2cccnc12', 'Cc1cc(O)ccc1I']; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1cc(O)ccc1Br', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Cc1cccc(O)c1', 'c1cnc2ccnn2c1']; [0.9999996423721313, 0.9999902248382568, 0.9999881982803345, 0.9999604821205139, 0.9999492764472961, 0.9999032020568848, 0.9996691942214966, 0.9995144605636597, 0.9988008141517639, 0.9984588027000427, 0.997186541557312, 0.919503390789032, 0.8957337141036987] +CCc1cc(O)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnn2cccnc12', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br', 'Brc1cnn2cccnc12', 'CCc1cccc(O)c1']; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CCc1cc(O)ccc1Br', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'CCc1cccc(O)c1', 'Ic1cnn2cccnc12']; [0.999993085861206, 0.9999712705612183, 0.9997332096099854, 0.9995938539505005, 0.9986523389816284, 0.9971611499786377, 0.9963456392288208, 0.9638472199440002, 0.7976881265640259] +CN(c1cccc(Cl)c1)c1cnn2cccnc12; ['CNc1cccc(Cl)c1', 'Brc1cnn2cccnc12']; ['Ic1cnn2cccnc12', 'CNc1cccc(Cl)c1']; [0.9976547360420227, 0.9053019285202026] +Clc1cnccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1cnn2cccnc12', 'Clc1cnccc1Br', 'Clc1cnccc1Br', 'Ic1cnn2cccnc12', 'Clc1cnccc1I']; ['Clc1cnccc1Br', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Clc1cnccc1I', 'Ic1cnn2cccnc12', 'OB(O)c1ccncc1Cl', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1ccncc1Cl', 'Ic1cnn2cccnc12']; [0.999997615814209, 0.9999961853027344, 0.9999911189079285, 0.9999570250511169, 0.9997907876968384, 0.9997148513793945, 0.9992759227752686, 0.9988750219345093, 0.9846614003181458] +CCc1sccc1-c1cnn2cccnc12; [None]; [None]; [0] +CNc1nc(-c2cnn3cccnc23)ncc1F; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CNc1nc(Cl)ncc1F']; ['CNc1nc(Cl)ncc1F', 'OB(O)c1cnn2cccnc12']; [0.9999994039535522, 0.999946117401123] +FC(F)c1cc(-c2cnn3cccnc23)[nH]n1; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)CCN4)cnn2c1; ['Brc1cnn2cccnc12', 'Brc1ccc2c(c1)CCN2', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Ic1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12']; [1.0, 0.9999995231628418, 0.9999963641166687, 0.9999902248382568, 0.9999464154243469, 0.9997653961181641, 0.9993246793746948] +Oc1c(Cl)cc(-c2cnn3cccnc23)cc1Cl; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Brc1cnn2cccnc12', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cnn2cccnc12']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Ic1cnn2cccnc12', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'c1cnc2ccnn2c1', 'Oc1c(Cl)cccc1Cl', 'c1cnc2ccnn2c1', 'Oc1c(Cl)cc(Cl)cc1Cl']; [0.9999997615814209, 0.999998927116394, 0.9999974966049194, 0.9999971389770508, 0.9998738169670105, 0.9997332692146301, 0.9994891881942749, 0.9987082481384277, 0.9958423376083374, 0.9101114869117737, 0.8155105113983154, 0.7964414358139038, 0.7707748413085938] +Cc1oc(-c2cnn3cccnc23)cc1C(=O)[O-]; [None]; [None]; [0] +c1cnc2c(Nc3ccncc3)cnn2c1; ['Nc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Ic1ccncc1', 'Brc1ccncc1', 'Clc1ccncc1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; [0.9999783039093018, 0.9998183250427246, 0.9996602535247803, 0.9996167421340942, 0.9990444183349609, 0.9972904324531555] +O=c1[nH]c2ccc(-c3cnn4cccnc34)cc2[nH]1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'Brc1cnn2cccnc12', 'O=c1[nH]c2ccc(Cl)cc2[nH]1']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'Ic1cnn2cccnc12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'OB(O)c1cnn2cccnc12']; [1.0, 0.9999992847442627, 0.9999991655349731, 0.9999986886978149, 0.9999979734420776, 0.9999905824661255, 0.9999289512634277, 0.9999102354049683, 0.9994630217552185, 0.9925005435943604] +Oc1cc(-c2cnn3cccnc23)nc2ccnn12; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Ic1cnn2cccnc12', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Cl', 'Brc1cnn2cccnc12', 'Fc1cccc(Br)c1', 'Brc1cnn2cccnc12']; ['Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Ic1cnn2cccnc12', 'Fc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Fc1cc(Br)ccc1Br', 'Ic1cnn2cccnc12', 'Fc1cccc(Br)c1']; [0.9999997019767761, 0.9999992251396179, 0.9999979138374329, 0.9999959468841553, 0.9999933242797852, 0.9999904632568359, 0.9999847412109375, 0.9999578595161438, 0.9999573230743408, 0.9999500513076782, 0.9998305439949036, 0.9997258186340332, 0.9997062683105469, 0.9992019534111023, 0.9988157749176025, 0.9984046220779419, 0.9873108863830566, 0.9109230041503906] +Fc1ccc2n[nH]c(-c3cnn4cccnc34)c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn2cccnc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'Brc1cnn2cccnc12', 'O=C(NC1CC1)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(Br)cc1', 'Ic1cnn2cccnc12', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'O=C(NC1CC1)c1ccc(Br)cc1', 'c1cnc2ccnn2c1']; [1.0, 1.0, 1.0, 1.0, 0.9999992847442627, 0.9999991655349731, 0.9999951124191284, 0.9999594688415527, 0.9997678995132446, 0.9990766048431396] +Cc1cc(-c2cnn3cccnc23)cc(C)c1O; ['Brc1cnn2cccnc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Brc1cnn2cccnc12', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Brc1cnn2cccnc12', 'Cc1cc(I)cc(C)c1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Ic1cnn2cccnc12', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1cc(B(O)O)cc(C)c1O', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Ic1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Cc1cccc(C)c1O', 'c1cnc2ccnn2c1']; [0.9999990463256836, 0.999997615814209, 0.9999933242797852, 0.999981164932251, 0.99974524974823, 0.9997063279151917, 0.9996963143348694, 0.9994932413101196, 0.9979699850082397, 0.9693462252616882, 0.9658292531967163, 0.9595999717712402, 0.9393739700317383, 0.7522963285446167] +CN(c1cccc2[nH]ncc12)c1cnn2cccnc12; ['CNc1cccc2[nH]ncc12', 'Brc1cnn2cccnc12']; ['Ic1cnn2cccnc12', 'CNc1cccc2[nH]ncc12']; [0.9999715685844421, 0.9998760223388672] +Oc1cc(Br)cc(-c2cnn3cccnc23)c1; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'OB(O)c1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Oc1cc(Br)cc(I)c1']; ['Oc1cc(Br)cc(I)c1', 'Ic1cnn2cccnc12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Cl)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'c1cnc2ccnn2c1']; [0.9999998807907104, 0.999998927116394, 0.9999964237213135, 0.9999955892562866, 0.9999916553497314, 0.9999895691871643, 0.9999895095825195, 0.9999728202819824, 0.9993448853492737, 0.9971147775650024, 0.9476304054260254] +Cc1cc(-c2cnn3cccnc23)ccc1C(N)=O; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Brc1cnn2cccnc12']; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'Cc1cc(Br)ccc1C(N)=O']; [1.0, 1.0, 1.0, 1.0, 0.9999986886978149, 0.9999967813491821, 0.999991774559021, 0.9998894333839417, 0.9996927976608276] +Cc1nc2ccc(-c3cnn4cccnc34)cc2o1; ['Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Brc1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Ic1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'c1cnc2ccnn2c1', 'c1cnc2ccnn2c1']; [1.0, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999960660934448, 0.9999899864196777, 0.999870240688324, 0.9998062252998352, 0.9980486631393433, 0.9922561049461365, 0.8475877046585083] +Oc1c(F)cc(-c2cnn3cccnc23)cc1F; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Brc1cnn2cccnc12', 'Oc1c(F)cc(Br)cc1F', 'Ic1cnn2cccnc12', 'Oc1c(F)cc(I)cc1F']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Oc1c(F)cc(Br)cc1F', 'Ic1cnn2cccnc12', 'Oc1c(F)cc(I)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cccc1F', 'c1cnc2ccnn2c1', 'Oc1c(F)cccc1F', 'c1cnc2ccnn2c1']; [0.9999995231628418, 0.9999982714653015, 0.9999970197677612, 0.9999954700469971, 0.9998459219932556, 0.9997918605804443, 0.9997528195381165, 0.9996100664138794, 0.9987975358963013, 0.9942421317100525, 0.9905315041542053, 0.9675590991973877, 0.9615069627761841, 0.9140538573265076] +c1ccc2c(COc3cnn4cccnc34)cccc2c1; ['Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OCc1cccc2ccccc12']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'c1cnc2ccnn2c1']; [0.9938231706619263, 0.9115794897079468, 0.8666082620620728] +Fc1ccc(-c2ncoc2-c2cnn3cccnc23)cc1; ['Brc1cnn2cccnc12']; ['Fc1ccc(-c2cocn2)cc1']; [0.9999573230743408] +O=c1[nH][nH]c2cc(-c3cnn4cccnc34)ccc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1']; [0.9999998211860657, 0.9999731183052063, 0.9994632005691528] +CSc1cccc(-c2cnn3cccnc23)c1; ['Brc1cnn2cccnc12', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B(O)O)c1', 'Brc1cnn2cccnc12', 'CSc1cccc(Br)c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'Ic1cnn2cccnc12', 'CSc1cccc(Cl)c1', 'CSc1cccc(B(O)O)c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12', 'CSc1cccc(Br)c1', 'c1cnc2ccnn2c1']; [0.9999997615814209, 0.9999983310699463, 0.9999982118606567, 0.9999951124191284, 0.999901294708252, 0.9995631575584412, 0.9993876218795776, 0.9989840388298035, 0.9975895881652832, 0.9903759956359863] +Cc1onc(-c2ccccc2)c1-c1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1I']; ['Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'Ic1cnn2cccnc12']; [0.9999955892562866, 0.9999945163726807, 0.9999864101409912, 0.9997866153717041, 0.9735519886016846] +Fc1ccc(Oc2cnn3cccnc23)c(F)c1; ['Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'OB(O)c1cnn2cccnc12']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999229907989502, 0.9989178776741028, 0.995719850063324] +Fc1ccc(COc2cnn3cccnc23)c(F)c1; ['Ic1cnn2cccnc12']; ['OCc1ccc(F)cc1F']; [0.9999092817306519] +Fc1cccc(Cl)c1CNc1cnn2cccnc12; ['CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Brc1cnn2cccnc12', 'Ic1cnn2cccnc12', 'Fc1cccc(Cl)c1CBr', 'Nc1cnn2cccnc12', 'O=Cc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CCl', 'N#Cc1c(F)cccc1Cl']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Nc1cnn2cccnc12', 'O=Cc1c(F)cccc1Cl', 'O=[N+]([O-])c1cnn2cccnc12', 'Nc1cnn2cccnc12', 'Nc1cnn2cccnc12']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.9999990463256836, 0.9999983310699463, 0.9999955296516418, 0.9999874830245972, 0.9992163181304932] +CCOc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCOc1ccc(Br)cc1', 'CCOc1ccc(F)cc1', 'CCOc1ccc(I)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9944623708724976, 0.9842532873153687, 0.9715052843093872] +Fc1ccc(CCc2cnn3cccnc23)c(F)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9817391633987427] +c1ccc2nc(Nc3cc(C4CC4)[nH]n3)ncc2c1; ['Clc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999980926513672, 0.9999935626983643] +CS(=O)(=O)c1cccc(Nc2cc(C3CC3)[nH]n2)c1; ['CS(=O)(=O)c1cccc(Br)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9999834299087524] +COc1ncccc1Nc1cc(C2CC2)[nH]n1; ['COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1I', 'COc1ncccc1F']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9998782873153687, 0.9986022710800171, 0.9960289001464844, 0.9848796129226685] +c1cnn2c(Nc3cc(C4CC4)[nH]n3)cnc2c1; ['Clc1cnc2cccnn12', 'Brc1cnc2cccnn12']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999991655349731, 0.9999977350234985] +COc1cc(Nc2cc(C3CC3)[nH]n2)cc(OC)c1OC; ['COc1cc(Br)cc(OC)c1OC']; ['Nc1cc(C2CC2)[nH]n1']; [0.9980170726776123] +Clc1ccc(-c2[nH]ncc2-c2cnn3cccnc23)cc1; [None]; [None]; [0] +c1ccc2c(CCc3cnn4cccnc34)c[nH]c2c1; [None]; [None]; [0] +COc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['COc1ccc(F)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9260819554328918, 0.9067448377609253, 0.8770418167114258] +N#Cc1ccc(O)c(Nc2cc(C3CC3)[nH]n2)c1; ['N#Cc1ccc(O)c(I)c1', 'CCOc1cc(C#N)ccc1O', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(Br)c1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9994269609451294, 0.9993802905082703, 0.9992783069610596, 0.9992496967315674] +Oc1cccc(Nc2cc(C3CC3)[nH]n2)c1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['Oc1cccc(Br)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(I)c1']; [0.9928750991821289, 0.9852980375289917, 0.9695760011672974] +c1cc(N2CCOCC2)ccc1Nc1cc(C2CC2)[nH]n1; ['Nc1cc(C2CC2)[nH]n1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999988079071045, 0.9997678995132446, 0.9994808435440063] +c1ccc2[nH]c(Nc3cc(C4CC4)[nH]n3)nc2c1; ['Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.996617317199707, 0.9940914511680603] +Cc1nc(C(C)(C)O)sc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(C3CC3)[nH]n2)c1)C1CC1; ['Nc1cc(C2CC2)[nH]n1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9998635053634644] +c1ccc2c(Nc3cc(C4CC4)[nH]n3)nccc2c1; ['Clc1nccc2ccccc12', 'Brc1nccc2ccccc12']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9998751878738403, 0.9989261627197266] +Cc1ccc2ncn(Nc3cc(C4CC4)[nH]n3)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9933919906616211, 0.9814721345901489] +N#Cc1cccc(Cn2cc(Nc3cc(C4CC4)[nH]n3)cn2)c1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['Nc1cc(C2CC2)[nH]n1']; ['O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9881057739257812] +c1cc(Nc2cc(C3CC3)[nH]n2)cc(C2CCNCC2)c1; ['Brc1cccc(C2CCNCC2)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9994791150093079] +O=C(c1ccc(Nc2cc(C3CC3)[nH]n2)nc1)N1CCOCC1; ['Nc1cc(C2CC2)[nH]n1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999973773956299] +CC(=O)NCc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CC(=O)NCc1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.8752908706665039] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3cc(C4CC4)[nH]n3)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(C3CC3)[nH]n2)cc1)N1CCOCC1; ['Nc1cc(C2CC2)[nH]n1']; ['O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9998382329940796] +OCCOc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Cl)cc1']; [0.999470591545105, 0.9994670152664185, 0.9959428310394287] +c1cnc(NNc2cc(C3CC3)[nH]n2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.901045560836792] +FC(F)(F)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Fc1ccc(C(F)(F)F)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9914227724075317, 0.9792352914810181, 0.7802084684371948] +C[C@H](O)COc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9986644983291626, 0.9968686103820801] +CN(C)S(=O)(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9990327954292297, 0.9965827465057373] +CS(=O)(=O)N1CCC(Nc2cc(C3CC3)[nH]n2)CC1; ['CS(=O)(=O)N1CCC(=O)CC1']; ['Nc1cc(C2CC2)[nH]n1']; [0.999825119972229] +C[C@@H](O)COc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3cc(C4CC4)[nH]n3)cc2C1; ['Nc1cc(C2CC2)[nH]n1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999849200248718] +Nc1ncc(CNc2cc(C3CC3)[nH]n2)cn1; ['Nc1cc(C2CC2)[nH]n1']; ['Nc1ncc(C=O)cn1']; [0.9472793936729431] +CCNS(=O)(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9425241947174072] +CC(C)c1cc(Nc2cc(C3CC3)[nH]n2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9984351992607117] +Brc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['Brc1ccc(Br)cc1', 'Fc1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9765910506248474, 0.9493952989578247] +CCCOc1ccc(Nc2cc(C3CC3)[nH]n2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9997572302818298] +COc1ccc(CNc2cc(C3CC3)[nH]n2)cc1; ['COc1ccc(CO)cc1', 'COc1ccc(CBr)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9940888285636902, 0.8676820993423462] +CN(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1Cl; ['CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(F)cc1Cl']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999355673789978, 0.9994216561317444] +Cc1nc(C)c(Nc2cc(C3CC3)[nH]n2)s1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3cc(C4CC4)[nH]n3)c2)CC1; [None]; [None]; [0] +c1cc2nc(Nc3cc(C4CC4)[nH]n3)ccn2n1; ['Clc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Brc1ccn2nccc2n1']; ['Nc1cc(C2CC2)n[nH]1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999974966049194, 0.9999889135360718, 0.9999465942382812] +CNS(=O)(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9976990222930908] +CCN(CC)C(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(F)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9993115067481995, 0.9985494613647461, 0.9955565929412842, 0.9911839962005615] +O=C(c1ccccc1)N1CC[C@H](Nc2cc(C3CC3)[nH]n2)C1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1cc(C2CC2)[nH]n1; ['COc1ccc(Cl)cc1F', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999080896377563, 0.9997583627700806, 0.99965900182724] +c1ccc(-n2cccn2)c(Nc2cc(C3CC3)[nH]n2)c1; ['Nc1cc(C2CC2)[nH]n1', 'Brc1ccccc1-n1cccn1', 'Fc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1']; ['OB(O)c1ccccc1-n1cccn1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999977946281433, 0.9999937415122986, 0.9999923706054688, 0.9999754428863525] +Cc1c(Nc2cc(C3CC3)[nH]n2)cccc1C(=O)[O-]; [None]; [None]; [0] +COc1cc(OC)c(Nc2cc(C3CC3)[nH]n2)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl']; ['Nc1cc(C2CC2)[nH]n1']; [0.9984762072563171] +c1ccc2c(Nc3cc(C4CC4)[nH]n3)c[nH]c2c1; ['Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Nc1cc(C2CC2)[nH]n1', 'Clc1c[nH]c2ccccc12']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1cc(C2CC2)[nH]n1']; [0.9988634586334229, 0.9985862970352173, 0.9951609969139099, 0.994564950466156] +c1cc2c(cc1Nc1cc(C3CC3)[nH]n1)CCO2; ['Nc1cc(C2CC2)[nH]n1', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2']; ['OB(O)c1ccc2c(c1)CCO2', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999960660934448, 0.999962329864502, 0.9998099207878113, 0.9987931251525879] +c1ccc(-c2cc(Nc3cc(C4CC4)[nH]n3)n[nH]2)cc1; [None]; [None]; [0] +c1cc(Nc2cc(C3CC3)[nH]n2)c2c(c1)OCO2; ['Nc1cc(C2CC2)[nH]n1', 'Brc1cccc2c1OCO2', 'Fc1cccc2c1OCO2', 'Ic1cccc2c1OCO2']; ['OB(O)c1cccc2c1OCO2', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9967213869094849, 0.9963825941085815, 0.9938974976539612, 0.9926884174346924] +COc1cc(Nc2cc(C3CC3)[nH]n2)ccc1O; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1ccccc1O']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9981582164764404, 0.9968670606613159, 0.9945192337036133, 0.9837579727172852] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2cc(C3CC3)[nH]n2)c1; ['CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9994173049926758, 0.9981672763824463, 0.9886895418167114] +CC(C)c1ccc2nc(Nc3cc(C4CC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(F)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9930285811424255, 0.987478494644165, 0.9313228130340576] +Fc1ccc2nc(CNc3cc(C4CC4)[nH]n3)[nH]c2c1F; [None]; [None]; [0] +c1ccc2ncc(Nc3cc(C4CC4)[nH]n3)cc2c1; ['Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9995771646499634, 0.99603271484375] +CN(C)C(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(F)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999533891677856, 0.9982810616493225, 0.994693398475647, 0.9916252493858337, 0.9848529696464539] +CC(C)(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cn1; ['CC(C)(C)c1ccc(Br)cn1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9992862939834595] +c1ccc2[nH]c(CNc3cc(C4CC4)[nH]n3)nc2c1; ['Nc1cc(C2CC2)[nH]n1', 'ClCc1nc2ccccc2[nH]1', 'BrCc1nc2ccccc2[nH]1']; ['O=Cc1nc2ccccc2[nH]1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9986394047737122, 0.9968810081481934, 0.9929640889167786] +Fc1ccc2[nH]c(CNc3cc(C4CC4)[nH]n3)nc2c1F; [None]; [None]; [0] +Nc1nc(Nc2cc(C3CC3)[nH]n2)cs1; [None]; [None]; [0] +Cc1ccc(Nc2cc(C3CC3)[nH]n2)c(=O)[nH]1; ['Cc1ccc(I)c(=O)[nH]1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9931823015213013] +c1c(Nc2scc3c2OCCO3)n[nH]c1C1CC1; [None]; [None]; [0] +c1ccc(CCCNc2cc(C3CC3)[nH]n2)cc1; ['Nc1cc(C2CC2)[nH]n1', 'Ic1cc(C2CC2)[nH]n1', 'BrCCCc1ccccc1', 'ICCCc1ccccc1', 'Nc1cc(C2CC2)[nH]n1']; ['O=CCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'OCCCc1ccccc1']; [0.9933212995529175, 0.9718924760818481, 0.9233030080795288, 0.9207128286361694, 0.8852283954620361] +COc1cccc(C(=O)NNc2cc(C3CC3)[nH]n2)c1; [None]; [None]; [0] +CSc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9997909665107727, 0.9874547719955444] +CCN1CCN(Cc2ccc(Nc3cc(C4CC4)[nH]n3)cc2)CC1; ['CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9488469362258911] +CC[C@@H](CO)Nc1cc(C2CC2)[nH]n1; ['CC[C@H](N)CO']; ['Oc1cc(C2CC2)[nH]n1']; [0.97816002368927] +Cc1cc(Nc2cc(C3CC3)[nH]n2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9990017414093018] +Clc1cccc(-n2ccc(Nc3cc(C4CC4)[nH]n3)n2)c1; [None]; [None]; [0] +Fc1ccc(Nc2cc(C3CC3)[nH]n2)c(Cl)c1; ['Fc1ccc(Br)c(Cl)c1', 'Nc1cc(C2CC2)[nH]n1', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1', 'Fc1ccc(F)c(Cl)c1']; ['Nc1cc(C2CC2)[nH]n1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999877214431763, 0.9999724626541138, 0.9998829364776611, 0.9947882294654846, 0.9946663975715637] +OC[C@H](Cc1ccccc1)Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2cc(C3CC3)[nH]n2)CC1; [None]; [None]; [0] +Brc1cnc(Nc2cc(C3CC3)[nH]n2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.999993085861206, 0.9999861717224121, 0.9999551773071289, 0.9999485611915588, 0.9987920522689819, 0.9942175149917603, 0.9622055292129517] +O=C1CCc2cc(Nc3cc(C4CC4)[nH]n3)ccc2N1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(F)ccc2N1', 'O=C1CCc2cc(I)ccc2N1']; [0.9992430806159973, 0.9975599646568298, 0.9959493279457092, 0.9951524138450623] +COc1ccc(Nc2cc(C3CC3)[nH]n2)cc1OC; ['COc1ccc(F)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9984839558601379, 0.9982278347015381, 0.9918650388717651] +CCc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(F)cc1', 'CCc1ccc(Cl)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9906757473945618, 0.9869791269302368, 0.9848759174346924, 0.9743735790252686] +c1ncn(CCCNc2cc(C3CC3)[nH]n2)n1; [None]; [None]; [0] +c1ccc2sc(Nc3cc(C4CC4)[nH]n3)cc2c1; [None]; [None]; [0] +Clc1ccc(Nc2cc(C3CC3)[nH]n2)c(Cl)c1; ['Clc1ccc(Br)c(Cl)c1', 'Nc1cc(C2CC2)[nH]n1', 'Clc1ccc(I)c(Cl)c1', 'Fc1ccc(Cl)cc1Cl', 'Clc1ccc(Cl)c(Cl)c1']; ['Nc1cc(C2CC2)[nH]n1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.999971866607666, 0.9999366998672485, 0.9997972846031189, 0.9992945790290833, 0.9963517785072327] +COc1cc(Nc2cc(C3CC3)[nH]n2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [1.0, 0.9999993443489075] +C[C@H]1CCCN1C(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; [None]; [None]; [0] +c1ccn2nc(Nc3cc(C4CC4)[nH]n3)cc2c1; ['Brc1cc2ccccn2n1', 'Clc1cc2ccccn2n1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9997409582138062, 0.9993619918823242] +Cn1cc(Nc2cc(C3CC3)[nH]n2)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999988079071045, 0.9999963045120239, 0.9999871253967285] +CC1(C)Cc2cc(Nc3cc(C4CC4)[nH]n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Nc3cc(C4CC4)[nH]n3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9987838268280029] +Oc1ccc2cccc(Nc3cc(C4CC4)[nH]n3)c2c1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(I)c2c1']; [0.9996360540390015, 0.998526930809021] +Cc1csc2c(Nc3cc(C4CC4)[nH]n3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1cc(C2CC2)[nH]n1']; [0.9999765753746033] +COc1cc(Nc2cc(C3CC3)[nH]n2)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.999947190284729, 0.9995440244674683, 0.999366044998169, 0.9978002309799194, 0.8438766002655029] +COc1cc(F)c(Nc2cc(C3CC3)[nH]n2)cc1OC; ['COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(F)cc1OC']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999797344207764, 0.9999756813049316] +Clc1cnc(Nc2cc(C3CC3)[nH]n2)nc1; ['Clc1cnc(Cl)nc1', 'Clc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CSc1ncc(Cl)cn1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999551773071289, 0.999940037727356, 0.9950430393218994, 0.9864157438278198] +c1cc2cnc(Nc3cc(C4CC4)[nH]n3)nn2c1; [None]; [None]; [0] +OCCn1cc(Nc2cc(C3CC3)[nH]n2)cn1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1']; [0.9999918937683105, 0.9999397397041321] +CNC(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999545812606812, 0.9923964738845825, 0.9868706464767456, 0.9217857122421265] +COc1ccc(OC)c(CNc2cc(C3CC3)[nH]n2)c1; ['COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(CCl)c1']; ['Nc1cc(C2CC2)[nH]n1', 'Ic1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9788486957550049, 0.9746972918510437, 0.9401255249977112, 0.9016082286834717] +CCNC(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9982573390007019, 0.989972710609436] +COc1cc(Nc2cc(C3CC3)[nH]n2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9990339279174805, 0.998825192451477, 0.9809951782226562] +CO[C@@H]1CC[C@@H](Nc2cc(C3CC3)[nH]n2)CC1; ['CO[C@H]1CC[C@H](N)CC1']; ['Ic1cc(C2CC2)[nH]n1']; [0.988017201423645] +COc1cc(CS(C)(=O)=O)ccc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CC3)[nH]n2)cc(OC)c1; ['COc1cc(F)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9976010322570801, 0.9880702495574951, 0.9688212871551514] +COc1ccc2c(c1)c(Nc1cc(C3CC3)[nH]n1)cn2C; [None]; [None]; [0] +c1cc2cn[nH]c2cc1Nc1cc(C2CC2)[nH]n1; ['Nc1cc(C2CC2)[nH]n1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Fc1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; ['OB(O)c1ccc2cn[nH]c2c1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999983310699463, 0.9999034404754639, 0.9997763633728027, 0.9993717670440674, 0.9878098964691162] +O=C(Nc1cn[nH]c1)c1cccc(Nc2cc(C3CC3)[nH]n2)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2cc(C3CC3)[nH]n2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2cc(C3CC3)[nH]n2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9953453540802002] +CCn1cc(Nc2cc(C3CC3)[nH]n2)cn1; ['CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999589920043945, 0.9994574785232544, 0.9979941844940186] +Nc1cc(Nc2cc(C3CC3)[nH]n2)c2cc[nH]c2n1; [None]; [None]; [0] +c1cc2nc(Nc3cc(C4CC4)[nH]n3)ncc2s1; ['Clc1ncc2sccc2n1']; ['Nc1cc(C2CC2)[nH]n1']; [1.0] +COc1ccc2oc(Nc3cc(C4CC4)[nH]n3)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1cc(C2CC2)[nH]n1; ['CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9997910261154175, 0.9986687898635864] +c1cncc(-c2ccnc(Nc3cc(C4CC4)[nH]n3)c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2cc(C3CC3)[nH]n2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Fc1ccc(OC(F)(F)F)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9997963905334473, 0.9993257522583008, 0.9570256471633911] +c1ccc2oc(Nc3cc(C4CC4)[nH]n3)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(C3CC3)[nH]n2)c1)N1CCCC1; [None]; [None]; [0] +Cn1cc(Nc2cc(C3CC3)[nH]n2)c2ccccc21; [None]; [None]; [0] +CCc1cccc(Nc2cc(C3CC3)[nH]n2)n1; ['CCc1cccc(Br)n1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9983503818511963] +c1c(Nc2ncn3c2CCCC3)n[nH]c1C1CC1; [None]; [None]; [0] +Cn1ncc2cc(Nc3cc(C4CC4)[nH]n3)ccc21; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999998807907104, 0.9999986886978149, 0.9999943375587463, 0.9999111890792847] +CN(C)c1ccc(Nc2cc(C3CC3)[nH]n2)cn1; ['CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999707937240601, 0.9999277591705322] +COc1ccc2nc(Nc3cc(C4CC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3cc(C4CC4)[nH]n3)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3cc(C4CC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +O=C(NNc1cc(C2CC2)[nH]n1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1cc(Nc2cc(C3CC3)[nH]n2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3cc(C4CC4)[nH]n3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(F)ccc12']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9999960064888, 0.9999262094497681, 0.999741792678833, 0.9993315935134888] +OCCc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(F)cc1']; [0.9950479865074158, 0.9943832159042358, 0.9782540798187256, 0.8675785660743713] +O=C1CCCN1c1cccc(Nc2cc(C3CC3)[nH]n2)c1; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; ['O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.9998716115951538, 0.9998354911804199] +CN(C)C(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1cc(C2CC2)[nH]n1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1cc(C2CC2)[nH]n1']; [0.9999432563781738] +Cc1ncc(-c2ccc(Nc3cc(C4CC4)[nH]n3)cc2)n1C; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3cc(C4CC4)[nH]n3)cn2)CC1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9958345890045166] +Cc1cc(N2CCOCC2)ccc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.900711178779602, 0.7878860831260681] +CN(C)C(=O)c1ccc(Nc2cc(C3CC3)[nH]n2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1cc(C2CC2)[nH]n1', 'Nc1cc(C2CC2)[nH]n1']; [0.9994281530380249, 0.998116135597229] +CS(=O)(=O)c1ccc(Cl)c(Nc2cc(C3CC3)[nH]n2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9999486804008484] +CCNC(=O)Cc1ccc(Nc2cc(C3CC3)[nH]n2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1cc(C2CC2)[nH]n1']; [0.9996587038040161] +Cn1nc(Nc2cc(C3CC3)[nH]n2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2cc(C3CC3)[nH]n2)c1; [None]; [None]; [0] +CCOc1ccccc1-c1ncnc2[nH]cc(Cl)c12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9992698431015015, 0.9884510040283203] +Cc1ccc(C(=O)NCCO)cc1Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncnc2[nH]cc(Cl)c12; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncncc12']; [0.9736643433570862, 0.9024181962013245] +CC(C)S(=O)(=O)c1ccccc1-c1ncnc2[nH]cc(Cl)c12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9965698719024658] +Clc1c[nH]c2ncnc(-c3ccnc4ccccc34)c12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccnc2ccccc12']; [0.9999308586120605, 0.9704252481460571] +C[C@H](CS(C)(=O)=O)Nc1cc(C2CC2)[nH]n1; [None]; [None]; [0] +CCn1cc(-c2ncnc3[nH]cc(Cl)c23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9999755620956421] +CP(C)(=O)c1ccccc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ncnc2[nH]cc(Cl)c12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999216794967651, 0.998132586479187] +FC(F)(F)c1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['Clc1c[nH]c2ncnc(Cl)c12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C']; ['OB(O)c1cccc(C(F)(F)F)c1', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999251365661621, 0.9998739957809448] +COC(C)(C)CCc1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ncnc2[nH]cc(Cl)c12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'NC(=O)c1ccccc1B(O)O']; [0.9994240999221802, 0.7747204303741455] +Cc1nnc(-c2ccccc2-c2ncnc3[nH]cc(Cl)c23)[nH]1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cnn(Cc4ccccc4)c3)c12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999963045120239, 0.9999401569366455] +Fc1cc(F)cc(Cc2ncnc3[nH]cc(Cl)c23)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ncnc4[nH]cc(Cl)c34)cc2c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1)c1ccccc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.999732255935669, 0.9988563656806946] +OCCn1cc(-c2ncnc3[nH]cc(Cl)c23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OCCn1cc(B(O)O)cn1']; [0.9998927116394043, 0.9992090463638306] +Clc1ccc(Cl)c(-c2ncnc3[nH]cc(Cl)c23)c1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999194145202637, 0.9711370468139648] +CC(C)C(=O)COc1ncnc2[nH]cc(Cl)c12; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1ncnc2[nH]cc(Cl)c12', 'Oc1ncnc2[nH]cc(Cl)c12']; [0.9883891344070435, 0.9778422713279724] +Cc1ccc(-c2ncnc3[nH]cc(Cl)c23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9786489009857178] +Clc1c[nH]c2ncnc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ncnc3[nH]cc(Cl)c23)cs1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3[nH]cc(Cl)c23)s1; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3[nH]cc(Cl)c23)s1; [None]; [None]; [0] +COc1cnc(-c2ncnc3[nH]cc(Cl)c23)nc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ncnc2[nH]cc(Cl)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9852110147476196] +Cc1nc2ccccn2c1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cccc(Br)c3)c12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc(Br)c1']; [0.9998844861984253, 0.9993696808815002] +Cc1ccc(Cl)c(-c2ncnc3[nH]cc(Cl)c23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9995089173316956, 0.9682102203369141] +Clc1c[nH]c2ncnc(NCc3cccnc3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NCc1cccnc1']; [0.9998921155929565] +Clc1c[nH]c2ncnc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cnn4ncccc34)c12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.99953693151474] +Clc1c[nH]c2ncnc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3ccc4ccccc4c3)c12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc2ccccc2c1']; [0.9996635913848877, 0.9993488788604736] +Clc1c[nH]c2ncnc(NCCc3c[nH]cn3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NCCc1c[nH]cn1']; [0.9916191101074219] +Clc1c[nH]c2ncnc(Nc3cccnc3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Nc1cccnc1']; [0.999836802482605] +Clc1c[nH]c2ncnc(-c3cnc4cccnn34)c12; [None]; [None]; [0] +O=C(Nc1ncnc2[nH]cc(Cl)c12)c1cccs1; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NC(=O)c1cccs1']; [0.8910027742385864] +Clc1c[nH]c2ncnc(-n3cnc4ccccc43)c12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ncnc2[nH]cc(Cl)c12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9998146295547485] +Clc1c[nH]c2ncnc(NCCc3ccccc3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NCCc1ccccc1']; [0.9988319277763367] +Clc1c[nH]c2ncnc(-c3cncc4ccccc34)c12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cncc2ccccc12']; [0.9999909400939941, 0.9888918995857239] +NC(=O)c1c(F)cccc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Nc1nccc(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +Cc1c(-c2ncnc3[nH]cc(Cl)c23)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ncnc4[nH]cc(Cl)c34)cc2)cn1; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999988079071045] +Cn1ncc2cc(-c3ncnc4[nH]cc(Cl)c34)ccc21; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.999992847442627, 0.9999655485153198] +Clc1ccc(CNc2ncnc3[nH]cc(Cl)c23)cc1; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NCc1ccc(Cl)cc1']; [0.9999713897705078] +O=C([O-])Cc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; [None]; [None]; [0] +Oc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['Clc1c[nH]c2ncnc(Cl)c12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9965798854827881, 0.9743977785110474] +Clc1c[nH]c2ncnc(-c3ccc(-c4cn[nH]c4)cc3)c12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999962449073792, 0.9997912645339966] +Nc1[nH]nc2cc(-c3ncnc4[nH]cc(Cl)c34)ccc12; [None]; [None]; [0] +OCc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OCc1cccc(B(O)O)c1']; [0.9921116828918457, 0.9522063732147217] +Fc1ccccc1CNc1ncnc2[nH]cc(Cl)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NCc1ccccc1F']; [0.9996809959411621] +Clc1c[nH]c2ncnc(Nc3ccncc3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Nc1ccncc1']; [0.9998500347137451] +CCCn1cnc(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +CN1c2ccc(-c3ncnc4[nH]cc(Cl)c34)cc2CS1(=O)=O; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3csc4ncncc34)c12; [None]; [None]; [0] +COc1cc(-c2ncnc3[nH]cc(Cl)c23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ncnc3[nH]cc(Cl)c23)nn1; [None]; [None]; [0] +CSc1nc(-c2ncnc3[nH]cc(Cl)c23)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['Clc1c[nH]c2ncnc(Cl)c12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9952443838119507] +CC(C)c1oncc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(CCc3c[nH]nn3)c12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9999475479125977] +Nc1ncncc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Fc1ccc(-c2ncnc3[nH]cc(Cl)c23)c(C(F)(F)F)c1; ['Clc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9995789527893066] +Clc1c[nH]c2ncnc(Oc3ccccn3)c12; ['Brc1ccccn1', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Oc1ncnc2[nH]cc(Cl)c12', 'Oc1ccccn1']; [0.9919610023498535, 0.9192242622375488] +Clc1c[nH]c2ncnc(-c3cc4ccccc4[nH]3)c12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9985237121582031, 0.996120810508728] +Nc1nc(-c2ncnc3[nH]cc(Cl)c23)cs1; [None]; [None]; [0] +Cn1cc(-c2ncnc3[nH]cc(Cl)c23)c2ccccc21; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.999718427658081] +O=C(Nc1ncnc2[nH]cc(Cl)c12)c1c(Cl)cccc1Cl; ['Clc1c[nH]c2ncnc(Cl)c12']; ['NC(=O)c1c(Cl)cccc1Cl']; [0.9656791687011719] +CS(=O)(=O)C1CCN(c2ncnc3[nH]cc(Cl)c23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9880179166793823] +CCNc1nc2ccc(-c3ncnc4[nH]cc(Cl)c34)cc2s1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cnn4ccccc34)c12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn2ccccc12']; [0.9994047284126282, 0.9927738308906555] +COc1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999361038208008, 0.9992666244506836] +CCCn1cc(-c2ncnc3[nH]cc(Cl)c23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.999993085861206, 0.9998366236686707] +CC(C)(O)CC(=O)NCCc1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CC(C)(COc1ncnc2[nH]cc(Cl)c12)S(C)(=O)=O; [None]; [None]; [0] +O=c1cc(-c2ncnc3[nH]cc(Cl)c23)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Clc1c[nH]c2ncncc12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'O=c1cc(I)cc[nH]1']; [0.9998029470443726, 0.9092576503753662] +NC(=O)CCCc1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; [None]; [None]; [0] +C[C@@H](Oc1ncnc2[nH]cc(Cl)c12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9857856035232544] +CCN(CC)c1ncnc2[nH]cc(Cl)c12; ['CCNCC']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9599670767784119] +[NH3+]Cc1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1C(F)(F)F; [None]; [None]; [0] +O=C1CCc2cccc(-c3ncnc4[nH]cc(Cl)c34)c21; [None]; [None]; [0] +COc1ccncc1Nc1ncnc2[nH]cc(Cl)c12; ['COc1ccncc1N']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.999801516532898] +COc1cc(CCc2ncnc3[nH]cc(Cl)c23)cc(OC)c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ncnc4[nH]cc(Cl)c34)cc12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.99992835521698, 0.9978272914886475] +Clc1c[nH]c2ncnc(Nc3cnccc3-c3ccccc3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Nc1cnccc1-c1ccccc1']; [0.9996339082717896] +CC(C)Oc1cncc(-c2ncnc3[nH]cc(Cl)c23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999982118606567, 0.999604344367981] +COc1cccc(F)c1-c1ncnc2[nH]cc(Cl)c12; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999508857727051, 0.9968581199645996] +Clc1c[nH]c2ncnc(Nc3cnc4ccccc4c3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['Nc1cnc2ccccc2c1']; [0.9964016675949097] +Clc1c[nH]c2ncnc(-c3c[nH]c4cnccc34)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9971221685409546] +Clc1c[nH]c2ncnc(-c3cnc4[nH]ccc4c3)c12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999966621398926, 0.9996775388717651] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999799728393555, 0.9992185235023499] +CNS(=O)(=O)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.999922513961792, 0.9989749193191528] +O=c1[nH]cc(Br)c2sc(-c3ncnc4[nH]cc(Cl)c34)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3ccc(N4CCOCC4)cc3)c12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999338388442993, 0.999752938747406] +CS(=O)(=O)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999911785125732, 0.998399019241333] +C[C@H](Nc1ncnc2[nH]cc(Cl)c12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ncnc2[nH]cc(Cl)c12)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.8780598640441895] +CN(c1ncnc2[nH]cc(Cl)c12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ncnc3[nH]cc(Cl)c23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](Nc1ncnc2[nH]cc(Cl)c12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.8780598640441895] +Fc1cccc(Cl)c1-c1ncnc2[nH]cc(Cl)c12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1c(F)cccc1Cl']; [0.9999759197235107, 0.9991369843482971] +Cc1cc(-c2ncnc3[nH]cc(Cl)c23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-n3ncc4ccccc43)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['c1ccc2[nH]ncc2c1']; [0.9775562286376953] +OCc1ccn(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +OCCc1cn(-c2ncnc3[nH]cc(Cl)c23)cn1; [None]; [None]; [0] +CSc1nc(C)c(-c2ncnc3[nH]cc(Cl)c23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]cc(Cl)c23)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9997784495353699, 0.9981642365455627] +O=C(c1ccccc1)c1ccc(-c2ncnc3[nH]cc(Cl)c23)cc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9996929168701172, 0.9936952590942383] +Clc1c[nH]c2ncnc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +Oc1ccc2nc(-c3ncnc4[nH]cc(Cl)c34)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3[nH]cc(Cl)c23)CC1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(Cc3nnc4ccc(-c5ccccc5)nn34)c12; [None]; [None]; [0] +O=C(CCc1ncnc2[nH]cc(Cl)c12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ncnc2[nH]cc(Cl)c12)NCc1ccccn1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +CCc1cc(-c2ncnc3[nH]cc(Cl)c23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3[nH]cc(Cl)c23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ncnc3[nH]cc(Cl)c23)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3[nH]cc(Cl)c23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnc2[nH]cc(Cl)c12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncnc3[nH]cc(Cl)c23)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ncnc3[nH]cc(Cl)c23)c(F)c1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3cccc4ccsc34)c12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Clc1c[nH]c2ncnc(Cl)c12']; ['Clc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc2ccsc12']; [0.9999728202819824, 0.9851217865943909] +Clc1c[nH]c2ncnc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4[nH]cc(Cl)c34)c2)cc1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncnc4[nH]cc(Cl)c34)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2ncnc3[nH]cc(Cl)c23)n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncnc3[nH]cc(Cl)c23)[nH]1; [None]; [None]; [0] +Clc1c[nH]c2ncnc(-c3c[nH]c4cccnc34)c12; [None]; [None]; [0] +Nc1nc(-c2ncnc3[nH]cc(Cl)c23)nc2ccccc12; [None]; [None]; [0] +COc1ccc(Oc2ncnc3[nH]cc(Cl)c23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9906094074249268] +COc1ccc(C#N)cc1-c1ncnc2[nH]cc(Cl)c12; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9999302625656128, 0.9964020848274231] +Clc1c[nH]c2ncnc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncnc3[nH]cc(Cl)c23)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.9990875720977783, 0.9926172494888306] +COc1ncccc1-c1ncnc2[nH]cc(Cl)c12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncncc12']; [0.9999467134475708, 0.9947237968444824, 0.9625352621078491] +Clc1c[nH]c2ncnc(N3CCC(c4nc5ccccc5[nH]4)CC3)c12; ['Clc1c[nH]c2ncnc(Cl)c12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9973017573356628] +OCCn1cnc(-c2ncnc3[nH]cc(Cl)c23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ncnc3[nH]cc(Cl)c23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Clc1c[nH]c2ncnc(Cl)c12', 'Clc1c[nH]c2ncnc(Cl)c12']; [0.999984622001648, 0.9997761249542236] +Clc1c[nH]c2ncnc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncnc2[nH]cc(C)c12; ['CNC(=O)c1ccccc1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9508247971534729] +Clc1c[nH]c2ncnc(N3CC=C(c4c[nH]c5ccccc45)CC3)c12; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Clc1c[nH]c2ncnc(Cl)c12']; [0.9979232549667358] +C[C@@]1(O)CC[C@H](c2ncnc3[nH]cc(Cl)c23)CC1; [None]; [None]; [0] +CCOc1ccccc1-c1ncnc2[nH]cc(C)c12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9989439845085144, 0.9976093769073486] +O=C(Nc1cccc(-c2ncnc3[nH]cc(Cl)c23)c1)C1CCNCC1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ncnc3[nH]cc(C)c23)[nH]1; [None]; [None]; [0] +CN(C)c1cc(-c2ncnc3[nH]cc(Cl)c23)cnn1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccccc3S(=O)(=O)C(C)C)c12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9988219141960144] +Cc1c[nH]c2ncnc(-c3ccccc3P(C)(C)=O)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccnc4ccccc34)c12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccnc2ccccc12']; [0.999773383140564, 0.9756783246994019] +CCn1cc(-c2ncnc3[nH]cc(C)c23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9997955560684204, 0.9951208233833313] +Cc1c[nH]c2ncnc(-c3ccccc3OC(F)(F)F)c12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9996854662895203, 0.9984363317489624] +Cc1c[nH]c2ncnc(-c3cccc(C(F)(F)F)c3)c12; ['Cc1c[nH]c2ncnc(Cl)c12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C']; ['OB(O)c1cccc(C(F)(F)F)c1', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9994246959686279, 0.99931800365448] +Cc1c[nH]c2ncnc(-c3ccccc3C(=O)[O-])c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccccc3C(N)=O)c12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'NC(=O)c1ccccc1B(O)O']; [0.9992833733558655, 0.9175350666046143] +Cc1c[nH]c2ncnc(-c3cnn(Cc4ccccc4)c3)c12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999856352806091, 0.9995130300521851] +Cc1c[nH]c2ncnc(-c3ccc4ncn(C)c(=O)c4c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(NC(=O)c4ccccc4)c3)c12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9980317950248718, 0.9948540329933167] +Cc1c[nH]c2ncnc(Cc3cc(F)cc(F)c3)c12; [None]; [None]; [0] +COC(C)(C)CCc1ncnc2[nH]cc(C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cc(Cl)ccc3Cl)c12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999876022338867, 0.9828313589096069] +Cc1c[nH]c2ncnc(-c3cnn(CCO)c3)c12; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OCCn1cc(B(O)O)cn1']; [0.9992043972015381, 0.996674656867981] +Cc1ccc(-c2ncnc3[nH]cc(C)c23)c(Br)c1; ['Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1ccc(B(O)O)c(Br)c1']; [0.9885660409927368] +Cc1c[nH]c2ncnc(OCC(=O)C(C)C)c12; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Cc1c[nH]c2ncnc(O)c12', 'Cc1c[nH]c2ncnc(O)c12']; [0.968140721321106, 0.9345158338546753] +Cc1c[nH]c2ncnc(-c3csc(C(C)(C)C)n3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-n3ncc4cccc(F)c4c3=O)c12; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3[nH]cc(C)c23)s1; [None]; [None]; [0] +COc1cnc(-c2ncnc3[nH]cc(C)c23)nc1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3[nH]cc(C)c23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnc2[nH]cc(C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3c(Cl)cccc3Cl)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9474964141845703] +Cc1c[nH]c2ncnc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(Br)c3)c12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc(Br)c1']; [0.9995250701904297, 0.9966219663619995] +Cc1nc2ccccn2c1-c1ncnc2[nH]cc(C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(NCc3cccnc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['NCc1cccnc1']; [0.9999159574508667] +Cc1ccc(Cl)c(-c2ncnc3[nH]cc(C)c23)c1; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; [0.9998441934585571, 0.9789637327194214] +Cc1c[nH]c2ncnc(-c3ccc4ccccc4c3)c12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc2ccccc2c1']; [0.9996857643127441, 0.9980684518814087] +Cc1c[nH]c2ncnc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cnn4ncccc34)c12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9997820854187012] +Cc1c[nH]c2ncnc(Nc3cccnc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['Nc1cccnc1']; [0.9997625350952148] +Cc1c[nH]c2ncnc(NCCc3c[nH]cn3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['NCCc1c[nH]cn1']; [0.9968357086181641] +Cc1c[nH]c2ncnc(NC(=O)c3cccs3)c12; ['Cc1c[nH]c2ncnc(N)c12', 'Cc1c[nH]c2ncnc(N)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1', 'NC(=O)c1cccs1']; [0.9968965649604797, 0.9935365915298462, 0.9928195476531982] +Cc1c[nH]c2ncnc(-c3cnc4cccnn34)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3c[nH]nc3C(F)(F)F)c12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9996516704559326] +Cc1c[nH]c2ncnc(-c3ccnc(N)n3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3sc(=O)n(C)c3C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(NCCc3ccccc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['NCCc1ccccc1']; [0.9996346235275269] +Cc1c[nH]c2ncnc(-c3cncc4ccccc34)c12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cncc2ccccc12']; [0.9999213218688965, 0.99789959192276] +Cc1c[nH]c2ncnc(-c3cccc(F)c3C(N)=O)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(-c4cnn(C)c4)cc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999866485595703] +Cc1c[nH]c2ncnc(-n3cnc4ccccc43)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(NCc3ccc(Cl)cc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['NCc1ccc(Cl)cc1']; [0.9998289346694946] +Cc1c[nH]c2ncnc(-c3ccc4c(cnn4C)c3)c12; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999746084213257, 0.999685525894165] +Cc1c[nH]c2ncnc(-c3cccc(CC(=O)[O-])c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(O)c3)c12; ['Cc1c[nH]c2ncnc(Cl)c12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9952550530433655, 0.8527116775512695] +Cc1c[nH]c2ncnc(-c3ccc4c(N)[nH]nc4c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(-c4cn[nH]c4)cc3)c12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999863505363464, 0.9985073804855347] +Cc1c[nH]c2ncnc(-c3cccc(CO)c3)c12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OCc1cccc(B(O)O)c1']; [0.982571005821228, 0.9672666788101196] +Cc1c[nH]c2ncnc(Nc3ccncc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2nc[nH]c(=O)c12', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Cc1c[nH]c2ncnc(N)c12']; [0.9999672174453735, 0.9941544532775879, 0.953472375869751] +Cc1c[nH]c2ncnc(-c3ccc4c(c3)CS(=O)(=O)N4C)c12; [None]; [None]; [0] +CCCn1cnc(-c2ncnc3[nH]cc(C)c23)n1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(NCc3ccccc3F)c12; [None]; [None]; [0] +COc1cc(-c2ncnc3[nH]cc(C)c23)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cn(C(C)C)nn3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(CCc3c[nH]nn3)c12; [None]; [None]; [0] +CSc1nc(-c2ncnc3[nH]cc(C)c23)c[nH]1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3csc4ncncc34)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(CCC#N)c3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9979966282844543] +Cc1c[nH]c2ncnc(-c3cncnc3N)c12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncnc3[nH]cc(C)c23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9988888502120972] +Cc1c[nH]c2ncnc(-c3ccc(F)cc3C(F)(F)F)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9995753765106201] +Cc1c[nH]c2ncnc(Oc3ccccn3)c12; ['Brc1ccccn1', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(O)c12', 'Oc1ccccn1']; [0.9864178895950317, 0.97632896900177] +Cc1c[nH]c2ncnc(-c3cnoc3C(C)C)c12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ncnc3[nH]cc(C)c23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9940533638000488, 0.9917989373207092] +Cc1c[nH]c2ncnc(-c3cc4ccccc4[nH]3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3csc(N)n3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(NC(=O)c3c(Cl)cccc3Cl)c12; ['Cc1c[nH]c2ncnc(N)c12', 'Cc1c[nH]c2ncnc(N)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9979884624481201, 0.9977748394012451, 0.9946221113204956] +CCNc1nc2ccc(-c3ncnc4[nH]cc(C)c34)cc2s1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(N3CCC(S(C)(=O)=O)CC3)c12; ['CS(=O)(=O)C1CCNCC1']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9989607334136963] +Cc1c[nH]c2ncnc(-c3cn(C)c4ccccc34)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9992623329162598] +Cc1c[nH]c2ncnc(OCC(C)(C)S(C)(=O)=O)c12; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]cc(C)c23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9997948408126831, 0.992546558380127] +Cc1c[nH]c2ncnc(-c3cnn4ccccc34)c12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn2ccccc12']; [0.9998722076416016, 0.9937123656272888] +Cc1c[nH]c2ncnc(CCCC(N)=O)c12; [None]; [None]; [0] +CCCn1cc(-c2ncnc3[nH]cc(C)c23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999272227287292, 0.9981719851493835] +Cc1c[nH]c2ncnc(-c3cc[nH]c(=O)c3)c12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9968347549438477] +Cc1c[nH]c2ncnc(-c3ccc(C(C)(C)N)cc3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc4c3C(=O)CC4)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(CCNC(=O)CC(C)(C)O)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(O[C@H](C)c3c(Cl)cncc3Cl)c12; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9982410669326782] +Cc1c[nH]c2ncnc(-c3ccc([S@](C)=O)cc3)c12; ['CS(=O)c1ccc(B(O)O)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9480007886886597] +CCN(CC)c1ncnc2[nH]cc(C)c12; ['CCNCC']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9260753393173218] +CCNS(=O)(=O)c1ccccc1-c1ncnc2[nH]cc(C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cc4c(=O)[nH]ccc4o3)c12; [None]; [None]; [0] +COc1ccncc1Nc1ncnc2[nH]cc(C)c12; ['COc1ccncc1N', 'COc1ccncc1Br', 'COc1ccncc1N']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(N)c12', 'Cc1c[nH]c2nc[nH]c(=O)c12']; [0.9998437166213989, 0.9995346069335938, 0.9913922548294067] +Cc1c[nH]c2ncnc(Nc3cnccc3-c3ccccc3)c12; ['Cc1c[nH]c2ncnc(Cl)c12', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Cc1c[nH]c2ncnc(N)c12']; [0.9997109770774841, 0.9935867786407471] +Cc1c[nH]c2ncnc(-c3cncc(OC(C)C)c3)c12; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999723434448242, 0.9995138645172119] +Cc1c[nH]c2ncnc(-c3ccc(C(C)(C)C)cc3)c12; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9997516870498657, 0.9858072996139526] +COc1cccc(F)c1-c1ncnc2[nH]cc(C)c12; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9997915029525757, 0.9890334606170654] +Cc1c[nH]c2ncnc(Nc3cnc4ccccc4c3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['Nc1cnc2ccccc2c1']; [0.997666597366333] +Cc1c[nH]c2ncnc(-c3c[nH]c4cnccc34)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c[nH]c2cnccc12']; [0.997931957244873] +COc1cc(CCc2ncnc3[nH]cc(C)c23)cc(OC)c1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cnc4[nH]ccc4c3)c12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999769926071167, 0.9995541572570801] +CNC(=O)c1c(F)cccc1-c1ncnc2[nH]cc(C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)c12; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999134540557861, 0.9981639981269836] +CNS(=O)(=O)c1ccc(-c2ncnc3[nH]cc(C)c23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9995689392089844, 0.9941954612731934] +Cc1c[nH]c2ncnc(-c3ccc(N4CCOCC4)cc3)c12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999285936355591, 0.9986156225204468] +Cc1c[nH]c2ncnc(-c3cc4c(=O)[nH]cc(Br)c4s3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(S(C)(=O)=O)cc3)c12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999737739562988, 0.9957107901573181] +Cc1c[nH]c2ncnc(N[C@@H](C)C(=O)NCC(F)(F)F)c12; [None]; [None]; [0] +Cc1cc(-c2ncnc3[nH]cc(C)c23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(C3(C)CCN(S(C)(=O)=O)CC3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(N[C@@H](C)C(C)(C)O)c12; ['C[C@H](N)C(C)(C)O']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9604829549789429] +Cc1c[nH]c2ncnc(N[C@H](C)C(C)(C)O)c12; ['C[C@@H](N)C(C)(C)O']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9604829549789429] +Cc1c[nH]c2ncnc(-c3c(F)cccc3Cl)c12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1c(F)cccc1Cl']; [0.9999833106994629, 0.997827410697937] +Cc1c[nH]c2ncnc(-n3ccc(CO)n3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-n3cnc(CCO)c3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]cc(C)c23)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999181032180786, 0.9996216893196106] +Cc1c[nH]c2ncnc(-c3ccc(C(=O)c4ccccc4)cc3)c12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9994776844978333, 0.9690396785736084] +Cc1c[nH]c2ncnc(-n3ncc4c(O)cccc43)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-n3ncc4ccccc43)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nc4ccc(O)cc4[nH]3)c12; [None]; [None]; [0] +CSc1nc(C)c(-c2ncnc3[nH]cc(C)c23)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3[nH]cc(C)c23)CC1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nncn3C(C)C)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccn(CC[NH3+])n3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(CCC(=O)NCc3ccccn3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(Cc3nnc4ccc(-c5ccccc5)nn34)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +CCc1cc(-c2ncnc3[nH]cc(C)c23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3[nH]cc(C)c23)nc(N)n1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(CS(=O)(=O)NCc3ccccn3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nnc(N)s3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cc(C(N)=O)cn3C)c12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3[nH]cc(C)c23)s1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(C(C)(C)O)n3)c12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4[nH]cc(C)c34)c2)cc1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc4ccsc34)c12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Cc1c[nH]c2ncnc(Cl)c12']; ['Cc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc2ccsc12']; [0.9999059438705444, 0.9725282192230225] +C[C@@H2]NC(=O)N1CCC(c2ncnc3[nH]cc(C)c23)CC1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(Oc3ccc(C[NH3+])cc3F)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3c[nH]c4cccnc34)c12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9965800046920776] +Cc1c[nH]c2ncnc(-c3cncc(N)n3)c12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncnc3[nH]cc(C)c23)[nH]1; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3nc(N)c4ccccc4n3)c12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncnc2[nH]cc(C)c12; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9998573064804077, 0.9982631206512451] +Cc1c[nH]c2ncnc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +COc1ccc(Oc2ncnc3[nH]cc(C)c23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9939925670623779] +COc1ccc(OC)c(-c2ncnc3[nH]cc(C)c23)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9957443475723267, 0.9899402856826782] +COc1ncccc1-c1ncnc2[nH]cc(C)c12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999538660049438, 0.9965331554412842] +Cc1c[nH]c2ncnc(-c3cn(CCO)cn3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cccc(S(=O)(=O)N(C)C)c3)c12; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Cc1c[nH]c2ncnc(Cl)c12', 'Cc1c[nH]c2ncnc(Cl)c12']; [0.9999179840087891, 0.9996867179870605] +Cc1c[nH]c2ncnc(N3CCC(c4nc5ccccc5[nH]4)CC3)c12; ['Cc1c[nH]c2ncnc(Cl)c12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9997371435165405] +Cc1c[nH]c2ncnc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccccc3C(=O)NC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O']; [0.9881236553192139, 0.9779325723648071] +CCOc1ccccc1-c1ncnc2[nH]cc(CC)c12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.993771493434906, 0.9889253973960876] +Cc1c[nH]c2ncnc(N3CC=C(c4c[nH]c5ccccc45)CC3)c12; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Cc1c[nH]c2ncnc(Cl)c12']; [0.9999752044677734] +Cc1c[nH]c2ncnc(-c3cccc(NC(=O)C4CCNCC4)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccccc3-c3nnc(C)[nH]3)c12; [None]; [None]; [0] +Cc1c[nH]c2ncnc(-c3cnnc(N(C)C)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccccc3S(=O)(=O)C(C)C)c12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9992567300796509] +Cc1c[nH]c2ncnc([C@H]3CC[C@@](C)(O)CC3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccnc4ccccc34)c12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccnc2ccccc12']; [0.9996839761734009, 0.9959880113601685] +CCc1c[nH]c2ncnc(-c3cccc(C(F)(F)F)c3)c12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999481439590454, 0.9997601509094238] +CCc1c[nH]c2ncnc(-c3cnn(CC)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; [0.9998630285263062, 0.9990638494491577] +CCc1c[nH]c2ncnc(-c3ccccc3OC(F)(F)F)c12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9993798136711121, 0.9978455305099487] +CCc1c[nH]c2ncnc(-c3ccccc3P(C)(C)=O)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(CCC(C)(C)OC)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccccc3C(N)=O)c12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'NC(=O)c1ccccc1B(O)O']; [0.9950541257858276, 0.9224333167076111] +CCc1c[nH]c2ncnc(-c3cnn(Cc4ccccc4)c3)c12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999905824661255, 0.9997543096542358] +CCc1c[nH]c2ncnc(-c3ccc4ncn(C)c(=O)c4c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Cc3cc(F)cc(F)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cnn(CCO)c3)c12; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OCCn1cc(B(O)O)cn1']; [0.9998934268951416, 0.9997003078460693] +CCc1c[nH]c2ncnc(-c3cccc(NC(=O)c4ccccc4)c3)c12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999477863311768, 0.9940410852432251] +CCc1c[nH]c2ncnc(-c3cc(Cl)ccc3Cl)c12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.999832272529602, 0.9867955446243286] +CCc1c[nH]c2ncnc(-c3ccccc3C(=O)[O-])c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(C)cc3Br)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Cc1ccc(B(O)O)c(Br)c1']; [0.993863046169281] +CCc1c[nH]c2ncnc(-c3csc(C(C)(C)C)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ncc(OC)cn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3sc(C)nc3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-n3ncc4cccc(F)c4c3=O)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(OCC(=O)C(C)C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3sc(N)nc3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3sc(NC)nc3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3c(Cl)cccc3Cl)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9291780591011047] +CCc1c[nH]c2ncnc(-c3cccc(Br)c3)c12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc(Br)c1']; [0.9999006390571594, 0.9979569911956787] +CCc1c[nH]c2ncnc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3c(C)nc4ccccn34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cc(C)ccc3Cl)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; [0.9990735054016113, 0.9429339170455933] +CCc1c[nH]c2ncnc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(NCc3cccnc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NCc1cccnc1']; [0.999913215637207] +CCc1c[nH]c2ncnc(-c3ccc4ccccc4c3)c12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc2ccccc2c1']; [0.9997841119766235, 0.999381422996521] +CCc1c[nH]c2ncnc(Nc3cccnc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Nc1cccnc1']; [0.9986112117767334] +CCc1c[nH]c2ncnc(-c3cnn4ncccc34)c12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9996682405471802] +CCc1c[nH]c2ncnc(NCCc3c[nH]cn3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NCCc1c[nH]cn1']; [0.9778381586074829] +CCc1c[nH]c2ncnc(NC(=O)c3cccs3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-n3cnc4ccccc43)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cnc4cccnn34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccnc(N)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3c[nH]nc3C(F)(F)F)c12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9998818635940552] +CCc1c[nH]c2ncnc(-c3cccc(F)c3C(N)=O)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(NCCc3ccccc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NCCc1ccccc1']; [0.9984842538833618] +CCc1c[nH]c2ncnc(-c3sc(=O)n(C)c3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cncc4ccccc34)c12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cncc2ccccc12']; [0.9999658465385437, 0.9964154362678528] +CCc1c[nH]c2ncnc(-c3ccc(-c4cnn(C)c4)cc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999921321868896] +CCc1c[nH]c2ncnc(-c3ccc4c(cnn4C)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999809861183167, 0.9999469518661499] +CCc1c[nH]c2ncnc(NCc3ccc(Cl)cc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NCc1ccc(Cl)cc1']; [0.9998772144317627] +CCc1c[nH]c2ncnc(-c3ccc(-c4cn[nH]c4)cc3)c12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999954700469971, 0.9997038841247559] +CCc1c[nH]c2ncnc(-c3cccc(CC(=O)[O-])c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc(O)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9849152565002441, 0.9847819209098816] +CCc1c[nH]c2ncnc(-c3ccc4c(N)[nH]nc4c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Nc3ccncc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Nc1ccncc1']; [0.9997268915176392] +CCc1c[nH]c2ncnc(-c3cccc(CO)c3)c12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OCc1cccc(B(O)O)c1']; [0.9991154670715332, 0.9606237411499023] +CCc1c[nH]c2ncnc(NCc3ccccc3F)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NCc1ccccc1F']; [0.9997998476028442] +CCc1c[nH]c2ncnc(-c3ccc4c(c3)CS(=O)(=O)N4C)c12; [None]; [None]; [0] +CCCn1cnc(-c2ncnc3[nH]cc(CC)c23)n1; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cn(C(C)C)nn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3csc4ncncc34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3c[nH]c(SC)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(C(=O)[O-])c(OC)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cnoc3C(C)C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(CCc3c[nH]nn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc(CCC#N)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9951956868171692] +CCc1c[nH]c2ncnc(-c3cncnc3N)c12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncnc3[nH]cc(CC)c23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9997571110725403] +CCc1c[nH]c2ncnc(-c3ccc(F)cc3C(F)(F)F)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999085664749146] +CCc1c[nH]c2ncnc(Oc3ccccn3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Oc1ccccn1']; [0.9912778735160828] +CCc1c[nH]c2ncnc(-c3cc4ccccc4[nH]3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(NC(=O)c3c(Cl)cccc3Cl)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['NC(=O)c1c(Cl)cccc1Cl']; [0.9993417263031006] +CCc1c[nH]c2ncnc(-c3cccc(NC(C)=O)c3)c12; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9998195767402649, 0.9813786745071411] +CCc1c[nH]c2ncnc(N3CCC(S(C)(=O)=O)CC3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['CS(=O)(=O)C1CCNCC1']; [0.9997215270996094] +CCc1c[nH]c2ncnc(-c3cn(C)c4ccccc34)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9979488849639893] +CCNc1nc2ccc(-c3ncnc4[nH]cc(CC)c34)cc2s1; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3csc(N)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(OC)c(Cl)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; [0.9999372363090515, 0.9991989135742188] +CCc1c[nH]c2ncnc(-c3cnn4ccccc34)c12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnn2ccccc12']; [0.9999171495437622, 0.9995154142379761] +CCc1c[nH]c2ncnc(OCC(C)(C)S(C)(=O)=O)c12; [None]; [None]; [0] +CCCn1cc(-c2ncnc3[nH]cc(CC)c23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9999884963035583, 0.9999060034751892] +CCc1c[nH]c2ncnc(-c3cc[nH]c(=O)c3)c12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9996585845947266] +CCc1c[nH]c2ncnc(CCCC(N)=O)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc4c3C(=O)CC4)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(CCNC(=O)CC(C)(C)O)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(C(C)(C)N)cc3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(O[C@H](C)c3c(Cl)cncc3Cl)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['C[C@@H](O)c1c(Cl)cncc1Cl']; [0.9980678558349609] +CCc1c[nH]c2ncnc(N(CC)CC)c12; ['CCNCC']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9715273380279541] +CCc1c[nH]c2ncnc(-c3ccc([S@](C)=O)cc3)c12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncnc2[nH]cc(CC)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Nc3cnccc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccncc1N']; [0.9999840259552002] +CCc1c[nH]c2ncnc(-c3cc4c(=O)[nH]ccc4o3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Nc3cnccc3-c3ccccc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Nc1cnccc1-c1ccccc1']; [0.9999324083328247] +CCc1c[nH]c2ncnc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(C(C)(C)C)cc3)c12; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9996711611747742, 0.9847603440284729] +CCc1c[nH]c2ncnc(-c3cncc(OC(C)C)c3)c12; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9999148845672607, 0.9990231990814209] +CCc1c[nH]c2ncnc(Nc3cnc4ccccc4c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['Nc1cnc2ccccc2c1']; [0.9985071420669556] +CCc1c[nH]c2ncnc(-c3c(F)cccc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; [0.9996849298477173, 0.9978493452072144] +CCc1c[nH]c2ncnc(-c3c[nH]c4cnccc34)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9599572420120239] +CCc1c[nH]c2ncnc(CCc3cc(OC)cc(OC)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)c12; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; [0.9999706745147705, 0.9986110329627991] +CCc1c[nH]c2ncnc(-c3cnc4[nH]ccc4c3)c12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999876022338867, 0.9996980428695679] +CCc1c[nH]c2ncnc(-c3cc4c(=O)[nH]cc(Br)c4s3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(N4CCOCC4)cc3)c12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999495148658752, 0.9993166923522949] +CCc1c[nH]c2ncnc(-c3ccc(S(=O)(=O)NC)cc3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999096393585205, 0.9974473714828491] +CCc1c[nH]c2ncnc(-c3ccc(S(C)(=O)=O)cc3)c12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999921321868896, 0.9993085861206055] +CCc1c[nH]c2ncnc(-c3cccc(F)c3C(=O)NC)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(N[C@@H](C)C(=O)NCC(F)(F)F)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(C3(C)CCN(S(C)(=O)=O)CC3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(N[C@@H](C)C(C)(C)O)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['C[C@H](N)C(C)(C)O']; [0.8207387328147888] +CCc1c[nH]c2ncnc(N[C@H](C)C(C)(C)O)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['C[C@@H](N)C(C)(C)O']; [0.8207387328147888] +CCc1c[nH]c2ncnc(-c3c(F)cccc3Cl)c12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1c(F)cccc1Cl']; [0.9999891519546509, 0.9994800090789795] +CCc1c[nH]c2ncnc(-c3cc(C)nn3-c3cccc(Cl)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-n3cnc(CCO)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-n3ccc(CO)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(OC)cc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; [0.9998577237129211, 0.998979389667511] +CCc1c[nH]c2ncnc(-c3ccc(C(=O)c4ccccc4)cc3)c12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9998068809509277, 0.9855166673660278] +CCc1c[nH]c2ncnc(-n3ncc4ccccc43)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-n3ncc4c(O)cccc43)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3nc4ccc(O)cc4[nH]3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3[nH]c(SC)nc3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc([C@@H]3CC[C@@H](NC(C)=O)CC3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3nncn3C(C)C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccn(CC[NH3+])n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Cc3nnc4ccc(-c5ccccc5)nn34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(CCC(=O)NCc3ccccn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(CS(=O)(=O)NCc3ccccn3)c12; [None]; [None]; [0] +CCc1cc(-c2ncnc3[nH]cc(CC)c23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3[nH]cc(CC)c23)nc(N)n1; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc(C(=O)NC)s3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3nnc(N)s3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cc(C(N)=O)cn3C)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc(C(C)(C)O)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Oc3ccc(C[NH3+])cc3F)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(C3CCN(C(=O)N[C@@H2]C)CC3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc(C(=O)Nc4ccc(C(=O)NC)cc4)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc4ccsc34)c12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CCc1c[nH]c2ncnc(Cl)c12', 'OB(O)c1cccc2ccsc12']; [0.9997626543045044, 0.9756346940994263] +CCc1c[nH]c2ncnc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cncc(N)n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3c[nH]c4cccnc34)c12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.9992979764938354] +CCc1c[nH]c2ncnc(-c3cnc(NC(C)=O)[nH]3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(Oc3ccc(OC)c(F)c3F)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccc(O)c(F)c1F']; [0.9976781606674194] +CCc1c[nH]c2ncnc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cc(C#N)ccc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; [0.9998258352279663, 0.998868465423584] +CCc1c[nH]c2ncnc(-c3nc(N)c4ccccc4n3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cc(OC)ccc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; [0.9961681365966797, 0.9923169612884521] +CCc1c[nH]c2ncnc(-c3cn(CCO)cn3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc(-c3cccnc3OC)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; [0.9996748566627502, 0.9909720420837402] +CCc1c[nH]c2ncnc(N3CCC(c4nc5ccccc5[nH]4)CC3)c12; ['CCc1c[nH]c2ncnc(Cl)c12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9992884397506714] +CCc1c[nH]c2ncnc(-c3cccc(S(=O)(=O)N(C)C)c3)c12; ['CCc1c[nH]c2ncnc(Cl)c12', 'CCc1c[nH]c2ncnc(Cl)c12']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; [0.9999573230743408, 0.9993787407875061] +CCc1c[nH]c2ncnc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['CNC(=O)c1ccccc1B(O)O', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9938482046127319, 0.9904669523239136, 0.974789023399353] +CCOc1ccccc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ncnc2[nH]ccc12', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'CCOc1ccccc1B(O)O', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999852776527405, 0.999936044216156, 0.9997743368148804, 0.9995365142822266, 0.9989448189735413, 0.9969774484634399] +CCc1c[nH]c2ncnc(N3CC=C(c4c[nH]c5ccccc45)CC3)c12; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['CCc1c[nH]c2ncnc(Cl)c12']; [0.999968409538269] +CCc1c[nH]c2ncnc(-c3cccc(NC(=O)C4CCNCC4)c3)c12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9995971322059631, 0.9987179040908813, 0.9953190088272095] +Cc1nnc(-c2ccccc2-c2ncnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +c1ccc2c(-c3ncnc4[nH]ccc34)ccnc2c1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Brc1ccnc2ccccc12']; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'c1ncc2cc[nH]c2n1']; [0.9999831318855286, 0.9993222951889038, 0.9990766048431396, 0.9987364411354065, 0.9956163167953491, 0.9941087365150452] +CCc1c[nH]c2ncnc(-c3cnnc(N(C)C)c3)c12; [None]; [None]; [0] +CCc1c[nH]c2ncnc([C@H]3CC[C@@](C)(O)CC3)c12; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncnc3[nH]ccc23)c1; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C']; ['OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Clc1ncnc2[nH]ccc12']; [0.999977707862854, 0.9999293088912964, 0.9998998641967773] +Fc1cc(F)cc(Cc2ncnc3[nH]ccc23)c1; [None]; [None]; [0] +CCn1cc(-c2ncnc3[nH]ccc23)cn1; ['Brc1ncnc2[nH]ccc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCOS(=O)(=O)c1ccc(C)cc1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1']; [0.9999902248382568, 0.9999739527702332, 0.9998975992202759, 0.9998923540115356, 0.998833417892456, 0.9961497187614441] +FC(F)(F)Oc1ccccc1-c1ncnc2[nH]ccc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999881982803345, 0.9998816251754761, 0.9995996952056885, 0.9995838403701782, 0.9981634616851807] +COC(C)(C)CCc1ncnc2[nH]ccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnc2[nH]ccc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; [0.9998906254768372, 0.9989678263664246, 0.9856430888175964, 0.9550787210464478, 0.9356380701065063] +c1ccc(Cn2cc(-c3ncnc4[nH]ccc34)cn2)cc1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12', 'ClCc1ccccc1']; ['Ic1ncnc2[nH]ccc12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1']; [0.9999916553497314, 0.9999759793281555, 0.9999700784683228, 0.9998311996459961, 0.9491138458251953] +Cn1cnc2ccc(-c3ncnc4[nH]ccc34)cc2c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3[nH]ccc23)c1)c1ccccc1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1ncnc2[nH]ccc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999440908432007, 0.9997878670692444, 0.9997596144676208, 0.9982376098632812] +CP(C)(=O)c1ccccc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +OCCn1cc(-c2ncnc3[nH]ccc23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCI', 'Cc1ccc(S(=O)(=O)OCCO)cc1', 'Clc1ncnc2[nH]ccc12', 'C1CO1', 'OCCCl', 'OCCBr']; ['Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'Clc1ncnc2[nH]ccc12', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1', 'OCCn1cc(B(O)O)cn1', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1']; [0.999893069267273, 0.9998042583465576, 0.9997667670249939, 0.9992611408233643, 0.99756920337677, 0.995279848575592, 0.9941890835762024, 0.9900839328765869, 0.9788851737976074, 0.9396296739578247, 0.9375618696212769] +Clc1ccc(Cl)c(-c2ncnc3[nH]ccc23)c1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.999263346195221, 0.9928842782974243, 0.9507116079330444] +CC(C)C(=O)COc1ncnc2[nH]ccc12; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1ncnc2[nH]ccc12', 'Oc1ncnc2[nH]ccc12']; [0.9188715219497681, 0.8034557104110718] +Cc1ccc(-c2ncnc3[nH]ccc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9803444147109985, 0.9591189622879028] +CC(C)(C)c1nc(-c2ncnc3[nH]ccc23)cs1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ncnc4[nH]ccc34)[nH]2)cc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3[nH]ccc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3[nH]ccc23)s1; [None]; [None]; [0] +COc1cnc(-c2ncnc3[nH]ccc23)nc1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9983289837837219, 0.9932165145874023, 0.9240705966949463] +Brc1cccc(-c2ncnc3[nH]ccc23)c1; ['Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; ['OB(O)c1cccc(Br)c1', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1cccc(Br)c1']; [0.9997377395629883, 0.9986580610275269, 0.9974515438079834] +c1cc(Cn2cncn2)cc(-c2ncnc3[nH]ccc23)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ncnc3[nH]ccc23)c1; ['Brc1ncnc2[nH]ccc12', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B(O)O)c1', 'Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9994316101074219, 0.9990129470825195, 0.9959768652915955, 0.9179004430770874] +c1ccn2c(-c3ncnc4[nH]ccc34)cnc2c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +c1cncc(CNc2ncnc3[nH]ccc23)c1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'NCc1cccnc1', 'Nc1ncnc2[nH]ccc12', 'BrCc1cccnc1']; ['NCc1cccnc1', 'NCc1cccnc1', 'O=c1[nH]cnc2[nH]ccc12', 'O=Cc1cccnc1', 'Nc1ncnc2[nH]ccc12']; [0.9999958872795105, 0.9998507499694824, 0.9950469732284546, 0.9912039041519165, 0.8411055207252502] +c1ccc2cc(-c3ncnc4[nH]ccc34)ccc2c1; ['Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; ['OB(O)c1ccc2ccccc2c1', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1ccc2ccccc2c1']; [0.9999640583992004, 0.9998641014099121, 0.999530553817749] +c1cncc(Nc2ncnc3[nH]ccc23)c1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12']; ['Nc1cccnc1', 'Nc1cccnc1']; [0.9999340772628784, 0.9997845888137817] +c1cnn2ncc(-c3ncnc4[nH]ccc34)c2c1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; [0.999883770942688, 0.9979445338249207] +c1cnn2c(-c3ncnc4[nH]ccc34)cnc2c1; [None]; [None]; [0] +Cc1c(-c2ncnc3[nH]ccc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +O=C(Nc1ncnc2[nH]ccc12)c1cccs1; ['Brc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12']; ['NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.999030590057373, 0.9985907077789307, 0.997725784778595, 0.9928520321846008] +c1ccc2c(c1)ncn2-c1ncnc2[nH]ccc12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9998965263366699, 0.9995900392532349, 0.9900202751159668] +c1nc(NCCc2c[nH]cn2)c2cc[nH]c2n1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9998096227645874, 0.9995014071464539, 0.993252158164978, 0.9182944297790527] +c1ccc(CCNc2ncnc3[nH]ccc23)cc1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12']; ['NCCc1ccccc1', 'NCCc1ccccc1']; [0.9999617338180542, 0.9995661973953247] +NC(=O)c1c(F)cccc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +c1ccc2c(-c3ncnc4[nH]ccc34)cncc2c1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'F[B-](F)(F)c1cncc2ccccc12']; [0.9999751448631287, 0.9999684691429138, 0.9996709227561951, 0.9983091354370117, 0.9878667593002319, 0.8234026432037354] +Cn1cc(-c2ccc(-c3ncnc4[nH]ccc34)cc2)cn1; ['Clc1ncnc2[nH]ccc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999920129776001] +Cn1ncc2cc(-c3ncnc4[nH]ccc34)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Ic1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999997615814209, 0.9999988079071045, 0.9999951720237732, 0.9999447464942932] +c1nc(-c2ccc(-c3cn[nH]c3)cc2)c2cc[nH]c2n1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999983310699463, 0.9999886155128479, 0.9999401569366455] +Clc1ccc(CNc2ncnc3[nH]ccc23)cc1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'NCc1ccc(Cl)cc1', 'Clc1ccc(CBr)cc1', 'Nc1ncnc2[nH]ccc12']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=c1[nH]cnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12', 'O=Cc1ccc(Cl)cc1']; [0.999992847442627, 0.9999868869781494, 0.9995625019073486, 0.967660129070282, 0.9401942491531372] +Nc1[nH]nc2cc(-c3ncnc4[nH]ccc34)ccc12; [None]; [None]; [0] +OCc1cccc(-c2ncnc3[nH]ccc23)c1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'Clc1ncnc2[nH]ccc12', 'OCc1cccc(B(O)O)c1']; [0.9998853206634521, 0.9996218681335449, 0.9995534420013428, 0.9977734088897705, 0.9909414052963257, 0.9835178852081299] +Oc1cccc(-c2ncnc3[nH]ccc23)c1; ['Clc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Clc1ncnc2[nH]ccc12']; [0.9941858649253845, 0.8862830400466919] +O=C([O-])Cc1cccc(-c2ncnc3[nH]ccc23)c1; [None]; [None]; [0] +Fc1ccccc1CNc1ncnc2[nH]ccc12; ['Clc1ncnc2[nH]ccc12']; ['NCc1ccccc1F']; [0.999997615814209] +c1cc(Nc2ncnc3[nH]ccc23)ccn1; ['Clc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ncnc2[nH]ccc12']; [0.9999780058860779, 0.9999240636825562, 0.9721132516860962] +CCCn1cnc(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +CN1c2ccc(-c3ncnc4[nH]ccc34)cc2CS1(=O)=O; [None]; [None]; [0] +c1nc(-c2csc3ncncc23)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)n1cc(-c2ncnc3[nH]ccc23)nn1; [None]; [None]; [0] +COc1cc(-c2ncnc3[nH]ccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2ncnc3[nH]ccc23)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnc3[nH]ccc23)c1; ['Brc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9999926090240479, 0.9998815059661865, 0.9998204708099365] +CC(C)c1oncc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncnc3[nH]ccc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1ncnc2[nH]ccc12']; [0.9998630285263062] +Nc1ncncc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12']; ['Nc1ncncc1Br']; [0.9933244585990906] +c1nc(CCc2c[nH]nn2)c2cc[nH]c2n1; [None]; [None]; [0] +Fc1ccc(-c2ncnc3[nH]ccc23)c(C(F)(F)F)c1; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.998520016670227, 0.9912279844284058] +c1ccc(Oc2ncnc3[nH]ccc23)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Brc1ncnc2[nH]ccc12', 'Fc1ccccn1', 'Clc1ncnc2[nH]ccc12']; ['Oc1ncnc2[nH]ccc12', 'Oc1ncnc2[nH]ccc12', 'Oc1ccccn1', 'Oc1ncnc2[nH]ccc12', 'Oc1ccccn1']; [0.9969086050987244, 0.9815222024917603, 0.9483969807624817, 0.9477681517601013, 0.9300574660301208] +c1ccc2[nH]c(-c3ncnc4[nH]ccc34)cc2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ncnc3[nH]ccc23)c1; ['CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9991469979286194, 0.9988386631011963, 0.9914253354072571] +O=C(Nc1ncnc2[nH]ccc12)c1c(Cl)cccc1Cl; ['Brc1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9995909333229065, 0.9987043738365173, 0.9973478317260742, 0.9966980218887329] +Cn1cc(-c2ncnc3[nH]ccc23)c2ccccc21; ['Clc1ncnc2[nH]ccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9892000555992126] +CCNc1nc2ccc(-c3ncnc4[nH]ccc34)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ncnc3[nH]ccc23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Clc1ncnc2[nH]ccc12']; [0.9998224973678589] +COc1ccc(-c2ncnc3[nH]ccc23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.999951183795929, 0.9999175667762756, 0.9987074136734009] +Nc1nc(-c2ncnc3[nH]ccc23)cs1; [None]; [None]; [0] +CC(C)(COc1ncnc2[nH]ccc12)S(C)(=O)=O; [None]; [None]; [0] +c1ccn2ncc(-c3ncnc4[nH]ccc34)c2c1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.9999892711639404, 0.9999728202819824, 0.9997870326042175, 0.9992361068725586, 0.9972296953201294] +CCCn1cc(-c2ncnc3[nH]ccc23)cn1; ['Brc1ncnc2[nH]ccc12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCI']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'c1nc(-c2cn[nH]c2)c2cc[nH]c2n1']; [0.9999932050704956, 0.9999897480010986, 0.999958872795105, 0.9999476075172424, 0.9995518922805786, 0.9730852842330933] +NC(=O)CCCc1ncnc2[nH]ccc12; [None]; [None]; [0] +O=C1CCc2cccc(-c3ncnc4[nH]ccc34)c21; [None]; [None]; [0] +O=c1cc(-c2ncnc3[nH]ccc23)cc[nH]1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; [0.9999602437019348, 0.9991693496704102] +C[C@@H](Oc1ncnc2[nH]ccc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Clc1ncnc2[nH]ccc12']; [0.9913510084152222] +CC(C)(N)c1ccc(-c2ncnc3[nH]ccc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +CCN(CC)c1ncnc2[nH]ccc12; ['CCNCC', 'CCNCC', 'Brc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'O=c1[nH]cnc2[nH]ccc12', 'CCNCC']; [0.980599045753479, 0.9753580093383789, 0.974438488483429] +C[S@](=O)c1ccc(-c2ncnc3[nH]ccc23)cc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ncnc2[nH]ccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ncnc3[nH]ccc23)cc1C(F)(F)F; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ncnc4[nH]ccc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ncnc2[nH]ccc12; ['COc1ccncc1N', 'COc1ccncc1Br', 'COc1ccncc1N']; ['Clc1ncnc2[nH]ccc12', 'Nc1ncnc2[nH]ccc12', 'O=c1[nH]cnc2[nH]ccc12']; [0.9999599456787109, 0.9980229735374451, 0.9836450815200806] +CC(C)(C)c1ccc(-c2ncnc3[nH]ccc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999440908432007, 0.9995687007904053, 0.998129665851593] +c1ccc(-c2ccncc2Nc2ncnc3[nH]ccc23)cc1; ['Clc1ncnc2[nH]ccc12', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Nc1ncnc2[nH]ccc12']; [0.9999065399169922, 0.9986246824264526] +COc1cccc(F)c1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'Brc1ncnc2[nH]ccc12', 'COc1cccc(F)c1B(O)O']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'COc1cccc(F)c1B(O)O', 'Clc1ncnc2[nH]ccc12']; [0.9999866485595703, 0.9999819397926331, 0.9998546242713928, 0.9997098445892334, 0.9995520114898682, 0.9994055032730103] +c1ccc2ncc(Nc3ncnc4[nH]ccc34)cc2c1; ['Clc1ncnc2[nH]ccc12']; ['Nc1cnc2ccccc2c1']; [0.9980199337005615] +CC(C)Oc1cncc(-c2ncnc3[nH]ccc23)c1; ['Brc1ncnc2[nH]ccc12', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ncnc2[nH]ccc12', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'CC(C)Oc1cncc(B(O)O)c1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.999997615814209, 0.999995231628418, 0.99998939037323, 0.9999417662620544, 0.9995967149734497, 0.9981107115745544] +COc1cc(CCc2ncnc3[nH]ccc23)cc(OC)c1; [None]; [None]; [0] +c1cc2c(-c3ncnc4[nH]ccc34)c[nH]c2cn1; ['Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9997042417526245, 0.9685290455818176] +O=c1[nH]cc(Br)c2sc(-c3ncnc4[nH]ccc34)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncnc3[nH]ccc23)cc1; ['Brc1ncnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ncnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ncnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]ccc12']; [0.9999830722808838, 0.9998857975006104, 0.9995450377464294, 0.9981827735900879] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnc3[nH]ccc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ncnc2[nH]ccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1ncnc2[nH]ccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999840259552002, 0.9997211694717407, 0.999600887298584, 0.9992901086807251] +CNC(=O)c1c(F)cccc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +c1nc(-c2cnc3[nH]ccc3c2)c2cc[nH]c2n1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999987483024597, 0.9999903440475464, 0.9999608397483826, 0.9999527931213379, 0.9998586177825928, 0.9978806376457214] +c1nc(-c2ccc(N3CCOCC3)cc2)c2cc[nH]c2n1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1ncnc2[nH]ccc12']; ['Ic1ncnc2[nH]ccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999978542327881, 0.9999908208847046, 0.9999890327453613, 0.9999547004699707] +CS(=O)(=O)c1ccc(-c2ncnc3[nH]ccc23)cc1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.999998927116394, 0.9999884366989136, 0.9999762773513794, 0.999907374382019, 0.9997240304946899, 0.9994653463363647] +C[C@H](Nc1ncnc2[nH]ccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ncnc2[nH]ccc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'Brc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'C[C@H](N)C(C)(C)O']; [0.922858715057373, 0.8849494457244873] +CC1(c2ncnc3[nH]ccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ncnc2[nH]ccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +C[C@@H](Nc1ncnc2[nH]ccc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Clc1ncnc2[nH]ccc12']; [0.922858715057373] +Fc1cccc(Cl)c1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'Clc1ncnc2[nH]ccc12', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [0.9999951124191284, 0.9999383687973022, 0.9999306201934814, 0.9998180866241455, 0.9990366697311401] +OCCc1cn(-c2ncnc3[nH]ccc23)cn1; [None]; [None]; [0] +c1nc(-c2ccc(-n3cncn3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1cc(-c2ncnc3[nH]ccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]ccc23)c(OC)c1; ['Brc1ncnc2[nH]ccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ncnc2[nH]ccc12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1ncnc2[nH]ccc12', 'COc1ccc(B(O)O)c(OC)c1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999728202819824, 0.999870777130127, 0.9995554685592651, 0.9991463422775269, 0.9988971948623657] +O=C(c1ccccc1)c1ccc(-c2ncnc3[nH]ccc23)cc1; ['Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1ncnc2[nH]ccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]ccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999879598617554, 0.999956488609314, 0.9997602701187134, 0.9992009997367859, 0.9991192817687988, 0.9906454682350159] +CSc1nc(C)c(-c2ncnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ncnc2[nH]ccc12; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ncnc2[nH]ccc12; [None]; [None]; [0] +Oc1ccc2nc(-c3ncnc4[nH]ccc34)[nH]c2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3[nH]ccc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +c1nc(-c2nncn2C2CC2)c2cc[nH]c2n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ncnc5[nH]ccc45)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1ncnc2[nH]ccc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ncnc2[nH]ccc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4[nH]ccc34)nn2)cc1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ncnc3[nH]ccc23)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3[nH]ccc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnc2[nH]ccc12; [None]; [None]; [0] +CCc1cc(-c2ncnc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4[nH]ccc34)c2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3ncnc4[nH]ccc34)nc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ncnc3[nH]ccc23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncnc3[nH]ccc23)CC1; [None]; [None]; [0] +c1cc(-c2ncnc3[nH]ccc23)c2sccc2c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9997950792312622, 0.9991593360900879, 0.994988203048706, 0.938745379447937] +c1cc(-c2ncnc3[nH]ccc23)c2snnc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncnc4[nH]ccc34)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2ncnc3[nH]ccc23)n1; [None]; [None]; [0] +c1cnc2c(-c3ncnc4[nH]ccc34)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Clc1ncnc2[nH]ccc12']; [0.9975446462631226] +COc1ccc(C#N)cc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ncnc2[nH]ccc12', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1ncnc2[nH]ccc12', 'COc1ccc(C#N)cc1B(O)O', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999942779541016, 0.9999842643737793, 0.9999737739562988, 0.9999560117721558, 0.9998805522918701, 0.9997206330299377] +c1ccc2nc(-c3ncnc4[nH]ccc34)ncc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ncnc3[nH]ccc23)nc2ccccc12; [None]; [None]; [0] +OCCn1cnc(-c2ncnc3[nH]ccc23)c1; [None]; [None]; [0] +COc1ccc(Oc2ncnc3[nH]ccc23)c(F)c1F; ['Brc1ncnc2[nH]ccc12', 'COc1ccc(O)c(F)c1F']; ['COc1ccc(O)c(F)c1F', 'Clc1ncnc2[nH]ccc12']; [0.9962990283966064, 0.9893008470535278] +COc1ccc(OC)c(-c2ncnc3[nH]ccc23)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Ic1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9981816411018372, 0.9980639219284058, 0.9950365424156189, 0.9925572872161865] +CN(C)S(=O)(=O)c1cccc(-c2ncnc3[nH]ccc23)c1; ['Brc1ncnc2[nH]ccc12', 'Brc1ncnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ncnc2[nH]ccc12']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; [0.9999992847442627, 0.9999963045120239, 0.9999961853027344, 0.9999892115592957, 0.999945878982544, 0.9999186992645264, 0.9969014525413513] +COc1ncccc1-c1ncnc2[nH]ccc12; ['Brc1ncnc2[nH]ccc12', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ncnc2[nH]ccc12', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12', 'COc1ncccc1B(O)O', 'Ic1ncnc2[nH]ccc12', 'Clc1ncnc2[nH]ccc12']; [0.9999852180480957, 0.9999773502349854, 0.9998505115509033, 0.9989792108535767, 0.9982308745384216, 0.9913426637649536] +c1ccc2[nH]c(C3CCN(c4ncnc5[nH]ccc45)CC3)nc2c1; ['Clc1ncnc2[nH]ccc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9997718334197998] +c1nc(-c2ncc3cc[nH]c3n2)c2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CNC(=O)c1ccccc1B(O)O']; ['CNC(=O)c1ccccc1B(O)O', 'Clc1ncnc2ccccc12']; [0.998666524887085, 0.9924081563949585] +C1=C(c2c[nH]c3ccccc23)CCN(c2ncnc3[nH]ccc23)C1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'Brc1ncnc2[nH]ccc12']; ['Clc1ncnc2[nH]ccc12', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; [0.9999824166297913, 0.9998341798782349] +CCOc1ccccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Brc1ncnc2ccccc12']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'CCOc1ccccc1Br']; [0.9999722242355347, 0.9997444152832031, 0.9993520975112915, 0.9976580142974854, 0.9838494062423706] +O=C(Nc1cccc(-c2ncnc3[nH]ccc23)c1)C1CCNCC1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ncnc3[nH]ccc23)CC1; [None]; [None]; [0] +COC(C)(C)CCc1ncnc2ccccc12; ['COC(C)(C)CBr']; ['Cc1ncnc2ccccc12']; [0.9046578407287598] +CN(C)c1cc(-c2ncnc3[nH]ccc23)cnn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ncnc2ccccc12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Cc1ncnc2ccccc12', 'Fc1cc(F)cc(CCl)c1', 'Clc1ncnc2ccccc12', 'Cc1cc(F)cc(F)c1']; ['Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Mg]Cl)c1', 'Fc1cc(F)cc(Br)c1', 'c1ccc2ncncc2c1', 'Fc1cc(F)cc(CBr)c1', 'c1ccc2ncncc2c1']; [0.999911367893219, 0.9998003244400024, 0.9985675811767578, 0.9975805282592773, 0.9941663146018982, 0.9920799136161804, 0.9919472336769104, 0.7925311923027039] +CC(C)S(=O)(=O)c1ccccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1ncnc2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1Br', 'c1ccc2ncncc2c1']; [0.9999630451202393, 0.9998434782028198, 0.9995710253715515, 0.9990359544754028, 0.9982845187187195] +CCn1cc(-c2ncnc3ccccc23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9984170198440552, 0.9589900970458984] +FC(F)(F)c1cccc(-c2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C']; ['OB(O)c1cccc(C(F)(F)F)c1', 'Clc1ncnc2ccccc12']; [0.9996939301490784, 0.9990787506103516] +FC(F)(F)Oc1ccccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['OB(O)c1ccccc1OC(F)(F)F', 'Clc1ncnc2ccccc12', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1']; [0.9998834133148193, 0.9997568130493164, 0.9996405839920044, 0.9213687777519226] +c1ccc2c(-c3ncnc4ccccc34)ccnc2c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Br[Mg]c1ccnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Brc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Brc1ncnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.999901294708252, 0.9988114833831787, 0.994171679019928, 0.9914422035217285, 0.9770492911338806, 0.9765504598617554, 0.9735912084579468, 0.7882795929908752] +O=C([O-])c1ccccc1-c1ncnc2ccccc12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4ccccc34)cn2)cc1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ncnc2ccccc12']; ['Clc1ncnc2ccccc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9983425140380859, 0.9935360550880432] +NC(=O)c1ccccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnc2ccccc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B1OCCCO1']; [0.9999786615371704, 0.9993298053741455, 0.9978978037834167, 0.9744323492050171, 0.9723290801048279, 0.9708939790725708] +Cc1nnc(-c2ccccc2-c2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ncnc4ccccc34)cc2c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3ccccc23)c1)c1ccccc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1ncnc2ccccc12']; [0.9997178316116333, 0.9984188079833984, 0.9958141446113586] +OCCn1cc(-c2ncnc3ccccc23)cn1; [None]; [None]; [0] +CC(C)C(=O)COc1ncnc2ccccc12; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ncnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.8530799150466919, 0.7611643671989441] +Clc1ccc(Cl)c(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ncnc2ccccc12', 'Clc1ccc(Cl)cc1']; ['OB(O)c1cc(Cl)ccc1Cl', 'Clc1ncnc2ccccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ncnc2ccccc12']; [0.9999538064002991, 0.9997648000717163, 0.9987425804138184, 0.8720798492431641] +Cc1nc2ccccn2c1-c1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2c(-c3cnc4ccccn34)ncnc2c1; [None]; [None]; [0] +Cc1ccc(-c2ncnc3ccccc23)c(Br)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Cc1ccc(B(O)O)c(Br)c1', 'Brc1ncnc2ccccc12', 'Cc1ccc(B(O)O)c(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Clc1ncnc2ccccc12', 'Cc1ccc(Br)c(Br)c1', 'c1ccc2ncncc2c1']; [0.9997233748435974, 0.9991343021392822, 0.9979145526885986, 0.9834694862365723, 0.8859063982963562] +c1ccc(-c2ncc(-c3ncnc4ccccc34)[nH]2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3ccccc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12']; ['Cc1csc(N)n1']; [0.9813045263290405] +CC(C)(C)c1nc(-c2ncnc3ccccc23)cs1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ncnc2ccccc12; [None]; [None]; [0] +COc1cnc(-c2ncnc3ccccc23)nc1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3ccccc23)s1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ncnc2ccccc12; ['Clc1ncnc2ccccc12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9802865982055664] +Cc1ccc(Cl)c(-c2ncnc3ccccc23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9994384050369263, 0.9946371912956238] +Brc1cccc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Clc1ncnc2ccccc12', 'OB(O)c1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'Clc1ncnc2ccccc12', 'OB(O)c1cccc(Br)c1', 'c1ccc2ncncc2c1']; [0.9995397925376892, 0.9982975721359253, 0.9981215000152588, 0.9677407741546631] +c1cncc(CNc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'NCc1cccnc1', 'Brc1ncnc2ccccc12', 'NCc1cccnc1']; ['NCc1cccnc1', 'Oc1ncnc2ccccc12', 'NCc1cccnc1', 'O=c1[nH]cnc2ccccc12']; [0.9999910593032837, 0.9999405145645142, 0.9999300241470337, 0.997699499130249] +c1ccc2cc(-c3ncnc4ccccc34)ccc2c1; ['Clc1ncnc2ccccc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C']; ['OB(O)c1ccc2ccccc2c1', 'Clc1ncnc2ccccc12']; [0.9998727440834045, 0.9996104836463928] +Cc1c(-c2ncnc3ccccc23)sc(=O)n1C; [None]; [None]; [0] +c1cncc(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1cccnc1', 'Clc1cccnc1', 'Ic1cccnc1', 'Brc1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9997968673706055, 0.9996918439865112, 0.9980448484420776, 0.9954091906547546, 0.9524680376052856, 0.8809769749641418] +c1ccc2c(-n3cnc4ccccc43)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.999982476234436, 0.9999717473983765] +O=C(Nc1ncnc2ccccc12)c1cccs1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999113082885742, 0.9997808933258057, 0.9994189739227295, 0.9864643216133118] +c1ccc2c(NCCc3c[nH]cn3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NCCc1c[nH]cn1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'O=c1[nH]cnc2ccccc12']; [0.999939501285553, 0.999853253364563, 0.9992077350616455] +c1ccc2c(-c3cnn4ncccc34)ncnc2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Clc1ncnc2ccccc12']; [0.9994041919708252] +c1cc(Cn2cncn2)cc(-c2ncnc3ccccc23)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ncnc2ccccc12; [None]; [None]; [0] +c1ccc(CCNc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'NCCc1ccccc1']; ['NCCc1ccccc1', 'O=c1[nH]cnc2ccccc12']; [0.9999939203262329, 0.9992804527282715] +FC(F)(F)c1n[nH]cc1-c1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['FC(F)(F)c1n[nH]cc1Br', 'Clc1ncnc2ccccc12']; [0.9868208169937134, 0.9606546759605408] +Nc1nccc(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +c1ccc2c(-c3cnc4cccnn34)ncnc2c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ncnc4ccccc34)cc2)cn1; ['Clc1ncnc2ccccc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9996614456176758] +c1ccc2c(-c3ncnc4ccccc34)cncc2c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Br[Mg]c1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1ncnc2ccccc12', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'OB(O)c1cncc2ccccc12', 'c1ccc2ncncc2c1', 'Clc1ncnc2ccccc12']; [0.9999799132347107, 0.9997133016586304, 0.9995471239089966, 0.9988987445831299, 0.9986070990562439, 0.9983373880386353, 0.9979850053787231, 0.99788498878479, 0.9977116584777832, 0.99366295337677] +Nc1[nH]nc2cc(-c3ncnc4ccccc34)ccc12; ['Brc1ncnc2ccccc12', 'Nc1[nH]nc2cc(Br)ccc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'c1ccc2ncncc2c1']; [0.9926248788833618, 0.9653428196907043] +Clc1ccc(CNc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'NCc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'O=c1[nH]cnc2ccccc12']; [0.999970555305481, 0.9992510080337524] +CN1c2ccc(-c3ncnc4ccccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ncnc4ccccc34)ccc21; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1']; [0.9999963641166687, 0.9998966455459595, 0.9998236894607544, 0.9646345376968384, 0.9612778425216675] +O=C([O-])Cc1cccc(-c2ncnc3ccccc23)c1; [None]; [None]; [0] +c1ccc2c(Nc3ccncc3)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccncc1', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998751878738403, 0.9998661279678345, 0.9992587566375732, 0.9729118943214417] +c1ccc2c(-c3ccc(-c4cn[nH]c4)cc3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Clc1ncnc2ccccc12', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Clc1ncnc2ccccc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Brc1ncnc2ccccc12']; [0.9999960660934448, 0.9999490976333618, 0.9995877742767334, 0.9985820055007935, 0.9976334571838379] +Fc1ccccc1CNc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['NCc1ccccc1F', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999966025352478, 0.9999919533729553, 0.9992635250091553] +OCc1cccc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'Clc1ncnc2ccccc12']; [0.9995089173316956, 0.9987373948097229, 0.9926831722259521, 0.9908734560012817] +Oc1cccc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1']; [0.9998985528945923, 0.9973452091217041, 0.9893024563789368] +CCCn1cnc(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +COc1cc(-c2ncnc3ccccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ncnc3ccccc23)nn1; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9998360872268677] +c1ccc2c(CCc3c[nH]nn3)ncnc2c1; [None]; [None]; [0] +c1ccc2c(-c3csc4ncncc34)ncnc2c1; [None]; [None]; [0] +CSc1nc(-c2ncnc3ccccc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncnc4ccccc34)cc2c1; ['Brc1ncnc2ccccc12', 'Brc1c[nH]c2ccccc12']; ['CC(C)(C)OC(=O)n1c(B(O)O)cc2ccccc21', 'c1ccc2ncncc2c1']; [1.0, 0.9964805841445923] +CCC(=O)Nc1ccc(-c2ncnc3ccccc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1ncnc2ccccc12']; [0.9989110231399536] +Nc1ncncc1-c1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12']; ['Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9917278289794922, 0.9907373785972595] +c1ccc(Oc2ncnc3ccccc23)nc1; ['Clc1ncnc2ccccc12', 'Clc1ccccn1', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Fc1ccccn1', 'Brc1ccccn1', 'Ic1ccccn1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12']; ['[O-]c1ccccn1', 'Oc1ncnc2ccccc12', '[O-]c1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'Oc1ccccn1', '[O-][n+]1ccccc1']; [0.999382734298706, 0.9991165399551392, 0.9981352686882019, 0.9937334656715393, 0.9900963306427002, 0.9747386574745178, 0.937767744064331, 0.9299492835998535, 0.8815407752990723, 0.8093900084495544] +Fc1ccc(-c2ncnc3ccccc23)c(C(F)(F)F)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'OB(O)c1ccc(F)cc1C(F)(F)F']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'c1ccc2ncncc2c1']; [0.9999217391014099, 0.9979564547538757, 0.997697114944458, 0.996757984161377, 0.9913139343261719] +NC(=O)CCCc1ncnc2ccccc12; [None]; [None]; [0] +O=C(Nc1ncnc2ccccc12)c1c(Cl)cccc1Cl; ['Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['O=C(O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl']; [0.9998581409454346, 0.999842643737793, 0.9996106028556824, 0.9646506309509277] +CCNc1nc2ccc(-c3ncnc4ccccc34)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ncnc3ccccc23)CC1; ['CS(=O)(=O)C1CCNCC1', 'Brc1ncnc2ccccc12', 'CS(=O)(=O)C1CCNCC1']; ['Clc1ncnc2ccccc12', 'CS(=O)(=O)C1CCNCC1', 'Oc1ncnc2ccccc12']; [0.9999539852142334, 0.9989253878593445, 0.9981297850608826] +CC(=O)Nc1cccc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9999089241027832, 0.9993807673454285, 0.9968096017837524, 0.9961817264556885] +Nc1nc(-c2ncnc3ccccc23)cs1; [None]; [None]; [0] +CC(C)(COc1ncnc2ccccc12)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2ncnc3ccccc23)c2ccccc21; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9997602701187134, 0.9915003776550293, 0.9911624193191528] +COc1ccc(-c2ncnc3ccccc23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9998486042022705, 0.9995468854904175] +CCCn1cc(-c2ncnc3ccccc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9997338056564331, 0.9889984726905823] +CC(C)(O)CC(=O)NCCc1ncnc2ccccc12; [None]; [None]; [0] +O=c1cc(-c2ncnc3ccccc23)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Clc1ncnc2ccccc12']; [0.9912555813789368] +COc1cc(CCc2ncnc3ccccc23)cc(OC)c1; ['COc1cc(CCl)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1']; ['Cc1ncnc2ccccc12', 'Cc1ncnc2ccccc12']; [0.9947149753570557, 0.981829822063446] +c1ccc2c(-c3cnn4ccccc34)ncnc2c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ncnc2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1']; [0.9999305009841919, 0.9995371103286743, 0.9992102980613708, 0.9984449148178101, 0.9954624772071838, 0.995197057723999, 0.9742885828018188] +O=C1CCc2cccc(-c3ncnc4ccccc34)c21; [None]; [None]; [0] +C[C@@H](Oc1ncnc2ccccc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1ncnc2ccccc12', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1ncnc2ccccc12', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9854806661605835, 0.980322539806366, 0.9404823780059814, 0.8771758079528809] +CC(C)(N)c1ccc(-c2ncnc3ccccc23)cc1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ncnc3ccccc23)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9974615573883057, 0.9697410464286804] +CCN(CC)c1ncnc2ccccc12; ['CCNCC', 'Brc1ncnc2ccccc12', 'CCNCC']; ['Clc1ncnc2ccccc12', 'CCNCC', 'O=c1[nH]cnc2ccccc12']; [0.9996904134750366, 0.9990877509117126, 0.9951623678207397] +CCNS(=O)(=O)c1ccccc1-c1ncnc2ccccc12; [None]; [None]; [0] +COc1ccncc1Nc1ncnc2ccccc12; ['COc1ccncc1N', 'Brc1ncnc2ccccc12', 'COc1ccncc1Br', 'COc1ccncc1I', 'COc1ccncc1N']; ['Clc1ncnc2ccccc12', 'COc1ccncc1N', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9998916983604431, 0.9998081922531128, 0.9991316795349121, 0.9989782571792603, 0.9978417158126831] +c1ccc(-c2ccncc2Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Nc1ncnc2ccccc12']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'OB(O)c1cnccc1-c1ccccc1']; [0.9999816417694092, 0.9999498724937439, 0.9988081455230713, 0.9979463815689087, 0.9892153739929199] +CC(C)(C)c1ccc(-c2ncnc3ccccc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9992262721061707, 0.99788498878479] +[NH3+]Cc1ccc(-c2ncnc3ccccc23)cc1C(F)(F)F; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ncnc4ccccc34)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1']; [0.999992847442627, 0.999990701675415, 0.9999294281005859, 0.9998982548713684, 0.9958822727203369] +c1ccc2ncc(Nc3ncnc4ccccc34)cc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1ncnc2ccccc12', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'OB(O)c1cnc2ccccc2c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999837875366211, 0.9993458390235901, 0.9980144500732422, 0.9961780309677124, 0.9939932823181152, 0.9677269458770752, 0.9636020660400391, 0.9173876047134399, 0.8411366939544678] +COc1cccc(F)c1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'Brc1ncnc2ccccc12', 'COc1cccc(F)c1', 'COc1cccc(F)c1Br']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'COc1cccc(F)c1Br', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1']; [0.999987006187439, 0.999947190284729, 0.9998393058776855, 0.9998201727867126, 0.9996898174285889, 0.9994274377822876, 0.9987492561340332, 0.9985673427581787, 0.9978858828544617, 0.9954369068145752] +O=c1[nH]cc(Br)c2sc(-c3ncnc4ccccc34)cc12; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cnccc34)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Clc1ncnc2ccccc12']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1ccc2ncncc2c1', 'Clc1ncnc2ccccc12', 'c1cc2cc[nH]c2cn1']; [0.9998906850814819, 0.9980742931365967, 0.9974737167358398, 0.9951039552688599, 0.9589219689369202] +CNC(=O)c1c(F)cccc1-c1ncnc2ccccc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ncnc2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ncnc2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2ccccc12']; [0.9999569654464722, 0.9996523261070251, 0.9993574619293213, 0.9969702959060669] +c1ccc2c(-c3cnc4[nH]ccc4c3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1ncnc2ccccc12', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1ncnc2ccccc12', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1ncnc2ccccc12', 'c1ccc2ncncc2c1']; [0.9999889135360718, 0.9999409914016724, 0.9994586110115051, 0.998862087726593, 0.9947451949119568, 0.9073066711425781] +CNS(=O)(=O)c1ccc(-c2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ncnc2ccccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ncnc2ccccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2ccccc12']; [0.9998470544815063, 0.9988831281661987, 0.994530200958252, 0.9756186604499817] +c1ccc2c(-c3ccc(N4CCOCC4)cc3)ncnc2c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1ncnc2ccccc12', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ncnc2ccccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ncnc2ccccc12']; [0.9999837875366211, 0.9997439384460449, 0.9994759559631348, 0.973759651184082] +C[C@H](Nc1ncnc2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1ncnc2ccccc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Clc1ncnc2ccccc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2ccccc12']; [0.9999915957450867, 0.9998364448547363, 0.9997125864028931, 0.9969245195388794] +CC1(c2ncnc3ccccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ncnc2ccccc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'Brc1ncnc2ccccc12', 'C[C@H](N)C(C)(C)O']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'C[C@H](N)C(C)(C)O', 'Oc1ncnc2ccccc12']; [0.9985202550888062, 0.9941515922546387, 0.9890918731689453, 0.80387282371521] +CN(c1ncnc2ccccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@@H](Nc1ncnc2ccccc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'Brc1ncnc2ccccc12', 'C[C@@H](N)C(C)(C)O']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'C[C@@H](N)C(C)(C)O', 'Oc1ncnc2ccccc12']; [0.9985202550888062, 0.9941515922546387, 0.9890918731689453, 0.80387282371521] +OCc1ccn(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'OB(O)c1c(F)cccc1Cl']; ['OB(O)c1c(F)cccc1Cl', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1ncnc2ccccc12', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'c1ccc2ncncc2c1']; [0.999977707862854, 0.9999310970306396, 0.9994655251502991, 0.9984803795814514, 0.9984036684036255, 0.9858881235122681] +c1ccc2c(c1)cnn2-c1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'c1ccc2[nH]ncc2c1', 'Brc1ncnc2ccccc12']; ['c1ccc2[nH]ncc2c1', 'c1ccc2ncncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9999421238899231, 0.9994751214981079, 0.9990822076797485] +Cc1cc(-c2ncnc3ccccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +c1ccc2c(-c3ccc(-n4cncn4)cc3)ncnc2c1; [None]; [None]; [0] +OCCc1cn(-c2ncnc3ccccc23)cn1; [None]; [None]; [0] +CSc1nc(C)c(-c2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ncnc3ccccc23)c(OC)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'Brc1ncnc2ccccc12', 'COc1cccc(OC)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'COc1ccc(Br)c(OC)c1', 'Clc1ncnc2ccccc12']; [0.9999949932098389, 0.9999740719795227, 0.999916672706604, 0.9998543858528137, 0.9974700808525085, 0.9956040978431702, 0.978262186050415] +Oc1ccc2nc(-c3ncnc4ccccc34)[nH]c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ncnc2ccccc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ncnc3ccccc23)cc1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ncnc5ccccc45)n3n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +c1ccc2c(-c3nncn3C3CC3)ncnc2c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnc2ccccc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3ccccc23)CC1; [None]; [None]; [0] +O=C(CCc1ncnc2ccccc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ncnc2ccccc12)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2ncnc3ccccc23)nc(N)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4ccccc34)nn2)cc1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3ccccc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ncnc3ccccc23)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3ccccc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnc2ccccc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +c1ccc2sc(-c3ncnc4ccccc34)nc2c1; ['Brc1ncnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Cc1ncnc2ccccc12']; ['c1ccc2scnc2c1', 'Clc1ncnc2ccccc12', 'Nc1ccccc1']; [0.9993934631347656, 0.9942781329154968, 0.980993926525116] +[NH3+]Cc1ccc(Oc2ncnc3ccccc23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncnc3ccccc23)CC1; [None]; [None]; [0] +c1cc(-c2ncnc3ccccc23)c2sccc2c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1cccc2ccsc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Clc1ncnc2ccccc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'c1ccc2ncncc2c1']; [0.9999954104423523, 0.9998641610145569, 0.998558521270752, 0.9896630048751831, 0.9429098963737488] +c1ccc2c(-c3cccc4nnsc34)ncnc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncnc4ccccc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4ccccc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ncnc3ccccc23)n1; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cccnc34)ncnc2c1; ['Brc1ncnc2ccccc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Ic1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'c1ccc2ncncc2c1', 'Clc1ncnc2ccccc12']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1', 'c1cnc2cc[nH]c2c1', 'c1cnc2cc[nH]c2c1']; [0.9999738931655884, 0.9955391883850098, 0.9931809902191162, 0.9926186800003052, 0.9802581667900085, 0.9464554190635681] +CC(=O)Nc1ncc(-c2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2ncnc3ccccc23)c1; [None]; [None]; [0] +c1ccc2nc(-c3ncnc4ccccc34)ncc2c1; [None]; [None]; [0] +COc1ccc(Oc2ncnc3ccccc23)c(F)c1F; ['Brc1ncnc2ccccc12', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['COc1ccc(O)c(F)c1F', 'Oc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.9988541007041931, 0.9958246946334839, 0.9950743913650513, 0.9843642711639404, 0.9360504746437073, 0.9136466979980469, 0.8774888515472412] +Nc1nc(-c2ncnc3ccccc23)nc2ccccc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncnc3ccccc23)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)cc1']; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; [0.9994934797286987, 0.9962270259857178, 0.9945340752601624, 0.8411888480186462] +c1ccc2c(-c3ncc4cc[nH]c4n3)ncnc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncnc2ccccc12; [None]; [None]; [0] +COc1ncccc1-c1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ccccn1', 'Brc1ncnc2ccccc12', 'COc1ncccc1Br']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1', 'Clc1ncnc2ccccc12', 'COc1ncccc1Br', 'c1ccc2ncncc2c1']; [0.999985933303833, 0.9998847246170044, 0.9998378753662109, 0.9991500377655029, 0.9978638291358948, 0.9964266419410706, 0.9947205781936646, 0.9941122531890869, 0.9905226230621338, 0.9893375635147095] +c1ccc2[nH]c(C3CCN(c4ncnc5ccccc45)CC3)nc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2ncncc2c1']; [0.9998756647109985, 0.9994555711746216, 0.9979006052017212, 0.9966362118721008] +CN(C)S(=O)(=O)c1cccc(-c2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ncnc2ccccc12']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'c1ccc2ncncc2c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; [0.999976396560669, 0.999962329864502, 0.9998515248298645, 0.9997348785400391, 0.9993191361427307, 0.9956278800964355] +CNC(=O)c1ccccc1-c1ccc2[nH]nc(C)c2c1; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.999998152256012, 0.9999945759773254, 0.9999904632568359, 0.9999483227729797, 0.9994573593139648, 0.9980961084365845, 0.9874005913734436, 0.9828822612762451, 0.9050477743148804] +CCOc1ccccc1-c1ccc2[nH]nc(C)c2c1; ['CCOc1ccccc1Br', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Cl', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Cl', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999911785125732, 0.9999822378158569, 0.9998869299888611, 0.9998680353164673, 0.9997289180755615, 0.9994990825653076, 0.9989386796951294, 0.9841513633728027, 0.9557734131813049] +COC(C)(C)CCc1ccc2[nH]nc(C)c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccccc3S(=O)(=O)C(C)C)cc12; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999946355819702, 0.9999566674232483, 0.9983915090560913] +C[C@@]1(O)CC[C@H](c2ncnc3ccccc23)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2ncnc3ccccc23)cnn1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ncnc3ccccc23)C1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3[nH]nc(C)c3c2)[nH]1; [None]; [None]; [0] +Cc1n[nH]c2ccc(Cc3cc(F)cc(F)c3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccccc12']; ['Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(CCl)c1']; [0.9989354610443115, 0.9756331443786621] +CCn1cc(-c2ccc3[nH]nc(C)c3c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [1.0, 0.9999998807907104, 0.9999997615814209, 0.9999996423721313, 0.9999971985816956, 0.999996542930603, 0.9999937415122986, 0.999991238117218, 0.9999891519546509, 0.9997602701187134, 0.9972243309020996] +Cc1n[nH]c2ccc(-c3ccccc3C(=O)[O-])cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12']; ['O=C([O-])c1ccccc1']; [0.9771898984909058] +Cc1n[nH]c2ccc(-c3ccccc3P(C)(C)=O)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccccc3OC(F)(F)F)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'Cc1n[nH]c2ccc(Br)cc12', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl', 'Cc1n[nH]c2ccc(Cl)cc12', 'FC(F)(F)Oc1ccccc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br']; [0.9999983310699463, 0.9999874830245972, 0.9999803304672241, 0.9999788999557495, 0.9999726414680481, 0.9999446272850037, 0.9999428987503052, 0.9999097585678101, 0.9997709393501282, 0.9994354248046875, 0.9992795586585999, 0.9986580014228821, 0.9967710375785828, 0.9961790442466736] +Cc1n[nH]c2ccc(-c3cccc(C(F)(F)F)c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12']; ['FC(F)(F)c1cccc(Br)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Cl)c1', 'Cc1n[nH]c2ccc(Cl)cc12', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'FC(F)(F)c1cccc(Cl)c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Cl)c1', 'FC(F)(F)c1cccc(Br)c1', 'F[B-](F)(F)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1cccc(Br)c1']; [0.9999988079071045, 0.9999982118606567, 0.9999954700469971, 0.9999915957450867, 0.9999903440475464, 0.9999855756759644, 0.9999842643737793, 0.9999768733978271, 0.9999735355377197, 0.9999452829360962, 0.9998816847801208, 0.9997510313987732, 0.9996309280395508, 0.999505341053009, 0.9981603622436523, 0.9977942705154419, 0.9764035940170288, 0.9189814329147339] +Cc1n[nH]c2ccc(-c3ccnc4ccccc34)cc12; ['Brc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccnc2ccccc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'OB(O)c1ccnc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999982118606567, 0.9999935030937195, 0.9999893307685852, 0.9999656677246094, 0.9999633431434631, 0.9999074935913086, 0.9998111724853516, 0.9995989799499512, 0.9930001497268677, 0.9836349487304688, 0.9824917316436768, 0.8931760191917419] +Cc1n[nH]c2ccc(-c3ccccc3C(N)=O)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'Cc1n[nH]c2ccc(Br)cc12', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'Cc1n[nH]c2ccc(Cl)cc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br']; [0.9999929666519165, 0.9999926090240479, 0.9999827146530151, 0.9999819993972778, 0.9999663829803467, 0.9999288320541382, 0.9999040365219116, 0.9995096921920776, 0.9989017248153687, 0.9987921714782715, 0.9985499382019043, 0.9414854049682617] +Cc1n[nH]c2ccc(-c3cnn(Cc4ccccc4)c3)cc12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(Cl)cc12', 'Brc1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'Ic1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'c1ccc(Cn2cccn2)cc1']; [0.9999997615814209, 0.9999982118606567, 0.9999961853027344, 0.9999946355819702, 0.9999933242797852, 0.9999860525131226, 0.9997525215148926, 0.9995321035385132, 0.9738528728485107] +Cc1n[nH]c2ccc(-c3ccc4ncn(C)c(=O)c4c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999975562095642, 0.9999959468841553, 0.9866857528686523] +Cc1n[nH]c2ccc(-c3csc(C(C)(C)C)n3)cc12; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; ['Cc1n[nH]c2ccc(Br)cc12']; [0.9999992847442627] +Cc1n[nH]c2ccc(-c3cnn(CCO)c3)cc12; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'OCCn1cc(I)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999997615814209, 0.9999995827674866, 0.9999991655349731, 0.9999987483024597, 0.9999986886978149, 0.9999966025352478, 0.9999837875366211, 0.9999797344207764, 0.9995325207710266, 0.9985257983207703] +COc1cnc(-c2ccc3[nH]nc(C)c3c2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999916553497314, 0.999987006187439, 0.9999099373817444, 0.9948668479919434] +Cc1n[nH]c2ccc(-c3cc(Cl)ccc3Cl)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Cc1n[nH]c2ccc(Cl)cc12', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Cl)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)cc1']; [0.9999974966049194, 0.9999940991401672, 0.9999879598617554, 0.9999580383300781, 0.9999326467514038, 0.9999246597290039, 0.9999204874038696, 0.9998598098754883, 0.9998303651809692, 0.9986897706985474, 0.9985335469245911, 0.9869663119316101, 0.9414246082305908] +Cc1n[nH]c2ccc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(OCC(=O)C(C)C)cc12; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Cc1n[nH]c2ccc(O)cc12', 'Cc1n[nH]c2ccc(O)cc12']; [0.9954898357391357, 0.9767754673957825] +Cc1ccc(-c2ccc3[nH]nc(C)c3c2)c(Br)c1; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999638795852661, 0.9998760223388672, 0.99981689453125, 0.9988305568695068, 0.9929009675979614, 0.9210923910140991, 0.9045871496200562, 0.8293962478637695] +Cc1n[nH]c2ccc(-c3cnc4ccccn34)cc12; ['Brc1cnc2ccccn12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cnc2ccccn12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Ic1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12']; [0.9999992847442627, 0.999998927116394, 0.9999980330467224, 0.9999951720237732, 0.9999909400939941, 0.9999324083328247, 0.999714732170105, 0.9833064079284668] +Cc1n[nH]c2ccc(-c3cccc(NC(=O)c4ccccc4)c3)cc12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'O=C(Nc1ccccc1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9999988079071045, 0.99998939037323, 0.9999577403068542, 0.9999516010284424, 0.9997265338897705, 0.9992735385894775, 0.9988003373146057, 0.9872027635574341] +Cc1nc(C)c(-c2ccc3[nH]nc(C)c3c2)s1; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999994039535522, 0.9999969601631165, 0.9999836087226868, 0.9826540350914001] +Cc1nc2ccccn2c1-c1ccc2[nH]nc(C)c2c1; ['Cc1cn2ccccc2n1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1cn2ccccc2n1', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1nc2ccccn2c1Br', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'Cc1nc2ccccn2c1I', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1nc2ccccn2c1C(=O)O']; [0.9999995231628418, 0.999997615814209, 0.9999970197677612, 0.9999946355819702, 0.9999924302101135, 0.9999860525131226, 0.9984540939331055] +Cc1n[nH]c2ccc(-c3cnc4cccnn34)cc12; ['Brc1cnc2cccnn12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999962449073792] +CNc1nc(C)c(-c2ccc3[nH]nc(C)c3c2)s1; ['CNc1nc(C)c(Br)s1', 'CNc1nc(C)c(Br)s1', 'CNc1nc(C)cs1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999925494194031, 0.9997910261154175, 0.9953866600990295] +Cc1nc(N)sc1-c1ccc2[nH]nc(C)c2c1; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Cc1nc(N)sc1Br', 'Cc1nc(N)sc1I', 'Cc1nc(N)sc1Br']; [0.9999988079071045, 0.9999977350234985, 0.9999893307685852] +Cc1n[nH]c2ccc(-c3c(Cl)cccc3Cl)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'Fc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; [0.9999977946281433, 0.9999963045120239, 0.9999734163284302, 0.9998811483383179, 0.9998739957809448, 0.9998515844345093, 0.9997928142547607, 0.9987163543701172, 0.9981476068496704, 0.9909459948539734, 0.9905565977096558, 0.9712908267974854, 0.9321140646934509] +Cc1n[nH]c2ccc(-n3ncc4cccc(F)c4c3=O)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(NCc3cccnc3)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'BrCc1cccnc1', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['NCc1cccnc1', 'Cc1n[nH]c2ccc(N)cc12', 'O=Cc1cccnc1', 'NCc1cccnc1']; [0.9991753101348877, 0.9971892833709717, 0.990280032157898, 0.9144687652587891] +Cc1n[nH]c2ccc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3[nH]nc(C)c3c2)c1; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [0.9999924898147583, 0.9999667406082153, 0.9999481439590454, 0.9999184608459473, 0.9999113082885742, 0.999861478805542, 0.9997473955154419, 0.9994587898254395, 0.9990567564964294, 0.9977861642837524, 0.9723199605941772, 0.9650861024856567] +Cc1n[nH]c2ccc(-c3cnn4ncccc34)cc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; [0.999998152256012, 0.9999977946281433] +Cc1n[nH]c2ccc(-c3cccc(Br)c3)cc12; ['Brc1cccc(I)c1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Clc1cccc(Br)c1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'OB(O)c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'F[B-](F)(F)c1cccc(Br)c1']; [0.9999963045120239, 0.9999890923500061, 0.9999871253967285, 0.9999708533287048, 0.9999678134918213, 0.9998939037322998, 0.9998363256454468, 0.9993504285812378, 0.9993356466293335, 0.9990167617797852, 0.9639074802398682, 0.9546102285385132, 0.8531230688095093] +Cc1n[nH]c2ccc(-c3ccnc(N)n3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Nc1nccc(Br)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [1.0, 1.0, 0.9999998211860657, 0.9999995827674866, 0.9999963641166687, 0.9999951124191284, 0.9999518990516663] +Cc1n[nH]c2ccc(Nc3cccnc3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Brc1cccnc1', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(N)cc12']; ['Nc1cccnc1', 'Nc1cccnc1', 'Fc1cccnc1', 'OB(O)c1cccnc1', 'Cc1n[nH]c2ccc(N)cc12', 'Clc1cccnc1', 'Nc1cccnc1', 'Ic1cccnc1']; [0.9999800324440002, 0.9998112916946411, 0.9995220899581909, 0.9994186162948608, 0.9992427229881287, 0.9970318078994751, 0.9949480295181274, 0.9884458780288696] +Cc1n[nH]c2ccc(NCCc3c[nH]cn3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9999953508377075, 0.9985203742980957, 0.939572811126709] +Cc1n[nH]c2ccc(NC(=O)c3cccs3)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999874234199524, 0.9999850988388062] +Cc1n[nH]c2ccc(-n3cnc4ccccc43)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9987765550613403, 0.9926942586898804] +Cc1n[nH]c2ccc(-c3cccc(F)c3C(N)=O)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; [0.9999998807907104, 0.9999953508377075, 0.9999894499778748, 0.9999184608459473] +Cc1n[nH]c2ccc(-c3cccc(CC(=O)[O-])c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12']; ['O=C([O-])Cc1ccccc1']; [0.9828200340270996] +Cc1n[nH]c2ccc(-c3cncc4ccccc34)cc12; ['Brc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1cncc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Ic1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Clc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Ic1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9999995231628418, 0.9999971389770508, 0.9999968409538269, 0.999994695186615, 0.9999825954437256, 0.9999722838401794, 0.9999688863754272, 0.9999188780784607, 0.9998775720596313, 0.9990910291671753, 0.9982882142066956, 0.966206431388855] +Cc1n[nH]c2ccc(-c3c[nH]nc3C(F)(F)F)cc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br']; [0.9999988079071045, 0.9999972581863403, 0.9999958872795105, 0.9999921321868896] +Cc1n[nH]c2ccc(-c3ccc4ccccc4c3)cc12; ['Brc1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Brc1ccc2ccccc2c1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'Ic1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'F[B-](F)(F)c1ccc2ccccc2c1', 'c1ccc2ccccc2c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12', 'c1ccc2ccccc2c1']; [0.999995231628418, 0.9999945163726807, 0.9999803304672241, 0.999980092048645, 0.999974250793457, 0.999950647354126, 0.9999132752418518, 0.9999127388000488, 0.9999004602432251, 0.9998441934585571, 0.999595046043396, 0.9994620680809021, 0.9993515014648438, 0.9990535974502563, 0.9989005327224731, 0.997430682182312, 0.9742565155029297, 0.8512144088745117] +Cc1n[nH]c2ccc(-c3sc(=O)n(C)c3C)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(NCCc3ccccc3)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'BrCCc1ccccc1']; ['ClCCc1ccccc1', 'O=CCc1ccccc1', 'NCCc1ccccc1', 'Cc1n[nH]c2ccc(N)cc12']; [0.9946726560592651, 0.9915043711662292, 0.9869165420532227, 0.972637414932251] +Cc1n[nH]c2ccc(NCc3ccc(Cl)cc3)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Clc1ccc(CBr)cc1', 'O=Cc1ccc(Cl)cc1', 'ClCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.999900221824646, 0.9992623329162598, 0.9991260766983032, 0.9972392320632935, 0.9969557523727417, 0.9304497241973877] +Cc1n[nH]c2ccc(-c3ccc(-c4cnn(C)c4)cc3)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999997615814209, 0.9999994039535522, 0.9999247789382935] +Cc1n[nH]c2ccc(-c3ccc4c(cnn4C)c3)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2ccccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999998211860657, 0.9999997615814209, 0.9999996423721313, 0.9999994039535522, 0.9999992847442627, 0.9999992847442627, 0.9999979734420776, 0.9999914765357971, 0.9999912977218628, 0.9999222755432129, 0.9999021291732788, 0.9998073577880859, 0.9210245609283447, 0.9072233438491821] +Cc1n[nH]c2ccc(-c3ccc4c(c3)CS(=O)(=O)N4C)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccc4c(N)[nH]nc4c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Cl)ccc12']; [0.9999997615814209, 0.99996417760849, 0.9983292818069458, 0.9958097338676453] +CCCn1cnc(-c2ccc3[nH]nc(C)c3c2)n1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3cccc(O)c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'OB(O)c1cccc(O)c1', 'Cc1n[nH]c2ccc(Cl)cc12', 'Oc1cccc(Br)c1']; [0.9999927282333374, 0.9999896287918091, 0.9999721050262451, 0.9999005794525146, 0.999890148639679, 0.9998733401298523, 0.9998676180839539, 0.9992480278015137, 0.9991098046302795, 0.9972535371780396, 0.9970963597297668, 0.9795017242431641] +Cc1n[nH]c2ccc(-c3cccc(CO)c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'OCc1cccc(Cl)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(Cl)c1']; [0.9999974966049194, 0.9999947547912598, 0.9999890923500061, 0.9999192357063293, 0.9998771548271179, 0.9998483061790466, 0.9996674060821533, 0.9993146657943726, 0.9963487386703491, 0.9904415607452393, 0.8806301355361938, 0.8212512731552124] +Cc1n[nH]c2ccc(Nc3ccncc3)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccncc1', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Cc1n[nH]c2ccc(N)cc12', 'c1cc[n+](-c2ccncc2)cc1', 'Clc1ccncc1', 'Ic1ccncc1', 'Fc1ccncc1', 'Nc1ccncc1']; [0.999977707862854, 0.9999637603759766, 0.9999223947525024, 0.9997984170913696, 0.9994944334030151, 0.9993457794189453, 0.997947633266449, 0.9971387386322021, 0.9963531494140625] +Cc1n[nH]c2ccc(-c3ccc(-c4cn[nH]c4)cc3)cc12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999998211860657, 0.9999992251396179, 0.9999985098838806, 0.9999957084655762, 0.9999744892120361, 0.9998685121536255, 0.999417781829834, 0.9991137385368347] +Cc1n[nH]c2ccc(NCc3ccccc3F)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F']; [0.9993323087692261, 0.9988418817520142, 0.9977909922599792, 0.9976117610931396, 0.9949148893356323] +Cc1n[nH]c2ccc(-c3cn(C(C)C)nn3)cc12; ['C#Cc1ccc2[nH]nc(C)c2c1', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['CC(C)N=[N+]=[N-]', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999951124191284, 0.9999755620956421, 0.9997764229774475] +CSc1nc(-c2ccc3[nH]nc(C)c3c2)c[nH]1; ['CSc1ncc[nH]1']; ['Cc1n[nH]c2ccc(Br)cc12']; [0.9414240121841431] +Cc1n[nH]c2ccc(-c3csc4ncncc34)cc12; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999982714653015, 0.9999969005584717, 0.9842236042022705] +COc1cc(-c2ccc3[nH]nc(C)c3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3csc(N)n3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Nc1nc(Br)cs1', 'Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1']; [0.9999998807907104, 0.9999986290931702, 0.9999858140945435] +Cc1n[nH]c2ccc(-c3cncnc3N)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'Nc1ncncc1Br']; [0.9999997615814209, 0.9999995231628418, 0.9999960660934448, 0.9999939203262329, 0.9999892711639404, 0.999727725982666, 0.999496340751648, 0.9910371899604797] +Cc1n[nH]c2ccc(-c3cccc(CCC#N)c3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; [0.999987006187439, 0.999983549118042, 0.9999474287033081, 0.9992917776107788, 0.9756782054901123] +CCNc1nc2ccc(-c3ccc4[nH]nc(C)c4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3[nH]nc(C)c3c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [0.9999882578849792, 0.999920129776001] +Cc1n[nH]c2ccc(-c3cc4ccccc4[nH]3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'C#Cc1ccc2[nH]nc(C)c2c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Ic1cc2ccccc2[nH]1', 'Cc1n[nH]c2ccc(Br)cc12', 'Ic1cc2ccccc2[nH]1', 'Nc1ccccc1C=C(Br)Br', 'OB(O)c1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'Nc1ccccc1I', 'Clc1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999973773956299, 0.9999971389770508, 0.9999967813491821, 0.9999864101409912, 0.999974250793457, 0.9999560117721558, 0.9999550580978394, 0.9999465942382812, 0.9997683167457581, 0.9997417330741882, 0.9985673427581787] +Cc1n[nH]c2ccc(CCc3c[nH]nn3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccc(F)cc3C(F)(F)F)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccccc12']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; [0.9999959468841553, 0.9999940395355225, 0.9999694228172302, 0.9999659061431885, 0.9999405741691589, 0.9999226331710815, 0.9998399615287781, 0.9997289776802063, 0.9992973804473877, 0.9988510608673096, 0.9986937046051025, 0.9982613921165466, 0.8196903467178345] +Cc1n[nH]c2ccc(Oc3ccccn3)cc12; ['Cc1n[nH]c2ccc(O)cc12', 'Brc1ccccn1', 'Cc1n[nH]c2ccc(O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Clc1ccccn1', 'Cc1n[nH]c2ccc(O)cc12', 'Fc1ccccn1', 'Oc1ccccn1']; [0.9998176097869873, 0.9988911151885986, 0.9986782073974609, 0.9811621308326721] +Cc1n[nH]c2ccc(-c3cnoc3C(C)C)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(NC(=O)c3c(Cl)cccc3Cl)cc12; ['Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'COC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Cc1n[nH]c2ccc(N)cc12']; [0.9999880790710449, 0.9998331069946289, 0.9992702007293701] +CC(=O)Nc1cccc(-c2ccc3[nH]nc(C)c3c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'CC(=O)Nc1ccccc1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccccc12']; [0.9999994039535522, 0.9999971389770508, 0.9999884963035583, 0.9999821186065674, 0.9999557137489319, 0.9999402761459351, 0.9995554685592651, 0.9988423585891724, 0.9967899322509766, 0.9962546825408936, 0.9958465695381165, 0.9870107769966125, 0.9108015298843384] +Cc1n[nH]c2ccc(CCCC(N)=O)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N3CCC(S(C)(=O)=O)CC3)cc12; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9996047019958496, 0.9682931900024414] +COc1ccc(-c2ccc3[nH]nc(C)c3c2)cc1Cl; ['COc1ccc(Br)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12']; [0.9999979138374329, 0.9999978542327881, 0.9999933242797852, 0.9999862313270569, 0.9999630451202393, 0.9999597072601318, 0.999918520450592, 0.9999138712882996, 0.9998989105224609, 0.9998931884765625, 0.9994354844093323, 0.9989744424819946, 0.9987562894821167, 0.9951672554016113, 0.9932405948638916, 0.8752399682998657] +Cc1n[nH]c2ccc(-c3cn(C)c4ccccc34)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999898672103882, 0.9997448921203613] +Cc1n[nH]c2ccc(CCNC(=O)CC(C)(C)O)cc12; [None]; [None]; [0] +CCCn1cc(-c2ccc3[nH]nc(C)c3c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [1.0, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999992251396179, 0.9999984502792358, 0.9999967813491821, 0.9999960064888, 0.999947190284729, 0.9997445344924927] +Cc1n[nH]c2ccc(-c3cnn4ccccc34)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Ic1cnn2ccccc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Ic1cnn2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Clc1cnn2ccccc12', 'Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'OB(O)c1cnn2ccccc12']; [1.0, 0.9999998211860657, 0.9999997615814209, 0.9999995231628418, 0.9999957084655762, 0.9999943971633911, 0.9999853372573853, 0.9999417066574097, 0.9998310208320618, 0.9941100478172302, 0.988914966583252] +Cc1n[nH]c2ccc(OCC(C)(C)S(C)(=O)=O)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3cccc4c3C(=O)CC4)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999992847442627, 0.9999769330024719, 0.9999620914459229, 0.999576210975647, 0.9222070574760437] +Cc1n[nH]c2ccc(-c3cc[nH]c(=O)c3)cc12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(Br)cc[nH]1']; [0.9999986886978149, 0.9999983310699463, 0.9999964237213135, 0.9999791383743286, 0.9999656677246094, 0.9999469518661499, 0.9997305870056152, 0.999589204788208, 0.9991986751556396, 0.9896225929260254] +Cc1n[nH]c2ccc(-c3ccc(C(C)(C)N)cc3)cc12; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1cccc(Br)c1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999589920043945, 0.9995782375335693, 0.9991471171379089, 0.9936909675598145, 0.8202292919158936] +CCNS(=O)(=O)c1ccccc1-c1ccc2[nH]nc(C)c2c1; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1', 'CCNS(=O)(=O)c1ccccc1Br']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999970197677612, 0.9999290108680725, 0.99967360496521, 0.9587660431861877] +Cc1n[nH]c2ccc(-c3ccc([S@](C)=O)cc3)cc12; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(Br)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; [0.9999390244483948, 0.9998480081558228, 0.9998375177383423, 0.9994458556175232] +COc1cc(CCc2ccc3[nH]nc(C)c3c2)cc(OC)c1; [None]; [None]; [0] +Cc1n[nH]c2ccc(O[C@H](C)c3c(Cl)cncc3Cl)cc12; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(O)cc12']; [0.9999861121177673, 0.9999721050262451] +Cc1n[nH]c2ccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +CCN(CC)c1ccc2[nH]nc(C)c2c1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3cc4c(=O)[nH]ccc4o3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['O=c1[nH]ccc2oc(Br)cc12', 'O=c1[nH]ccc2oc(Br)cc12']; [0.9999982118606567, 0.9999971389770508] +COc1ccncc1Nc1ccc2[nH]nc(C)c2c1; ['COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1F', 'COc1ccncc1B(O)O']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(N)cc12']; [0.9999967217445374, 0.9999915957450867, 0.99998939037323, 0.999988317489624, 0.9999772310256958, 0.9999622106552124, 0.9999396204948425, 0.9999071359634399] +Cc1n[nH]c2ccc(-c3cncc(OC(C)C)c3)cc12; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [1.0, 0.9999998807907104, 0.999997615814209, 0.9999970197677612, 0.9999819993972778, 0.9997859597206116, 0.9997647404670715] +Cc1n[nH]c2ccc(Nc3cnccc3-c3ccccc3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cnccc1-c1ccccc1', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Nc1cnccc1-c1ccccc1', 'Cc1n[nH]c2ccc(N)cc12', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999979734420776, 0.9999959468841553, 0.9999901056289673, 0.9999803304672241, 0.9993256330490112] +Cc1n[nH]c2ccc(Nc3cnc4ccccc4c3)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(N)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1cnc2ccccc2c1', 'Cc1n[nH]c2ccc(N)cc12']; ['Nc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Cc1n[nH]c2ccc(N)cc12', 'Ic1cnc2ccccc2c1']; [0.9999796152114868, 0.9998965263366699, 0.9998300075531006, 0.9997246265411377, 0.9996756315231323] +COc1cccc(F)c1-c1ccc2[nH]nc(C)c2c1; ['COc1cccc(F)c1Br', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1', 'COc1cccc(F)c1Br']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12']; [0.9999986886978149, 0.9999982118606567, 0.9999969005584717, 0.9999949336051941, 0.9999865293502808, 0.9999644160270691, 0.999947190284729, 0.9998554587364197, 0.9998306035995483, 0.9997842311859131, 0.9996050596237183, 0.9973240494728088, 0.9950308799743652, 0.9938503503799438, 0.9793859124183655, 0.7634247541427612] +Cc1n[nH]c2ccc(-c3ccc(C(C)(C)C)cc3)cc12; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccccc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999984502792358, 0.999995768070221, 0.9999935626983643, 0.9999920129776001, 0.9999862909317017, 0.9999814033508301, 0.9999781847000122, 0.9999398589134216, 0.9999257326126099, 0.999832272529602, 0.9997960329055786, 0.9997130632400513, 0.9990538954734802, 0.9987220168113708, 0.9837183952331543] +Cc1n[nH]c2ccc(-c3c[nH]c4cnccc34)cc12; ['Brc1c[nH]c2cnccc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1c[nH]c2cnccc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1c[nH]c2cnccc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Ic1c[nH]c2cnccc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999982118606567, 0.9999925494194031, 0.999957263469696, 0.9999164342880249, 0.9939502477645874, 0.9868687391281128] +CNC(=O)c1c(F)cccc1-c1ccc2[nH]nc(C)c2c1; ['CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1F']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9998005628585815, 0.9913047552108765, 0.9307206869125366] +Cc1n[nH]c2ccc(-c3cnc4[nH]ccc4c3)cc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Clc1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(Cl)cc12', 'Ic1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Cc1n[nH]c2ccc(Br)cc12', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 1.0, 1.0, 1.0, 0.9999997615814209, 0.9999989867210388, 0.9999975562095642, 0.9999949932098389, 0.9999936819076538, 0.9999676942825317, 0.9998191595077515] +Cc1n[nH]c2ccc(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)cc12; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999973773956299, 0.9999898076057434, 0.9999831914901733, 0.9999661445617676, 0.9998821020126343, 0.9994270205497742, 0.9901182651519775] +CNS(=O)(=O)c1ccc(-c2ccc3[nH]nc(C)c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.99996417760849, 0.9999078512191772, 0.9998747706413269, 0.9998708963394165, 0.9997233152389526, 0.9985885620117188, 0.9983323812484741, 0.9977712631225586, 0.8965616226196289] +Cc1n[nH]c2ccc(-c3ccc(N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(Br)cc12', 'Brc1ccc(N2CCOCC2)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(Cl)cc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(Br)cc12', 'Clc1ccc(N2CCOCC2)cc1', 'Cc1n[nH]c2ccc(Cl)cc12']; [1.0, 0.9999993443489075, 0.9999991059303284, 0.9999990463256836, 0.9999988675117493, 0.999997615814209, 0.9999930262565613, 0.9999919533729553, 0.9999618530273438, 0.9999574422836304, 0.999951183795929, 0.9996980428695679, 0.9994552135467529, 0.9980707168579102] +Cc1n[nH]c2ccc(-c3ccc(S(C)(=O)=O)cc3)cc12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc([B-](F)(F)F)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999976754188538, 0.9999959468841553, 0.9999948740005493, 0.9999932050704956, 0.9999929666519165, 0.9999606609344482, 0.9999575614929199, 0.9999566078186035, 0.9998492002487183, 0.9997444152832031, 0.998899519443512, 0.9901406764984131, 0.985901951789856, 0.9647842645645142] +Cc1cc(-c2ccc3[nH]nc(C)c3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1n[nH]c2ccc(C3(C)CCN(S(C)(=O)=O)CC3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N[C@@H](C)C(C)(C)O)cc12; ['C[C@H](N)C(C)(C)O']; ['Cc1n[nH]c2ccc(Br)cc12']; [0.9933681488037109] +Cc1n[nH]c2ccc(-n3ccc(CO)n3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N[C@@H](C)C(=O)NCC(F)(F)F)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N[C@H](C)C(C)(C)O)cc12; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9994409084320068, 0.9933681488037109] +Cc1n[nH]c2ccc(-n3cnc(CCO)c3)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['OCCc1c[nH]cn1', 'OCCc1cnc[nH]1']; [0.9993630051612854, 0.9993491172790527] +Cc1n[nH]c2ccc(-c3c(F)cccc3Cl)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Fc1cccc(Cl)c1Br', 'Cc1n[nH]c2ccc(Br)cc12', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl', 'Cc1n[nH]c2ccc(Cl)cc12', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1']; [0.9999986886978149, 0.9999970197677612, 0.9999935626983643, 0.9999787211418152, 0.9999380111694336, 0.9999345541000366, 0.9999247789382935, 0.9998812675476074, 0.9997316598892212, 0.9994652271270752, 0.9985998868942261, 0.9982816576957703, 0.9964449405670166, 0.9221788644790649, 0.8499427437782288] +Cc1n[nH]c2ccc(-c3nc4ccc(O)cc4[nH]3)cc12; ['Cc1n[nH]c2ccc(C=O)cc12', 'Cc1n[nH]c2ccc(C=O)cc12', 'Cc1n[nH]c2ccc(C(=O)O)cc12', 'Cc1n[nH]c2ccc(C=O)cc12']; ['Nc1ccc(O)cc1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1[N+](=O)[O-]']; [0.9993895292282104, 0.9972386956214905, 0.9891521334648132, 0.9511924982070923] +Cc1n[nH]c2ccc(-n3ncc4ccccc43)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9737161993980408, 0.8960388898849487] +Cc1n[nH]c2ccc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +COc1ccc(-c2ccc3[nH]nc(C)c3c2)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999960064888, 0.9999731779098511, 0.9999616742134094, 0.9999605417251587, 0.9999381303787231, 0.9999127984046936, 0.9997087121009827, 0.9995706081390381, 0.9994183778762817, 0.9969615936279297, 0.9939777851104736, 0.9916481971740723, 0.9854123592376709, 0.9646097421646118] +Cc1n[nH]c2ccc(-n3ncc4c(O)cccc43)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9962742924690247, 0.8693504333496094] +CSc1nc(C)c(-c2ccc3[nH]nc(C)c3c2)[nH]1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccc(C(=O)c4ccccc4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Cc1n[nH]c2ccc(Cl)cc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccccc1', 'Cc1n[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccccc1']; [0.9999972581863403, 0.9999827146530151, 0.9999790191650391, 0.9999785423278809, 0.9999747276306152, 0.9999505281448364, 0.9999006986618042, 0.9997200965881348, 0.9994928240776062, 0.999402642250061, 0.9994009733200073, 0.9989044666290283, 0.9982110261917114, 0.9584154486656189, 0.947157621383667, 0.937829852104187, 0.7954546213150024] +Cc1n[nH]c2ccc(CCC(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3[nH]nc(C)c3c2)CC1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3nncn3C(C)C)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3nnc(N)s3)cc12; ['Cc1n[nH]c2ccc(C#N)cc12', 'Cc1n[nH]c2ccc(C(=O)O)cc12']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999836683273315, 0.9999771118164062] +CCc1cc(-c2ccc3[nH]nc(C)c3c2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(Cl)nc(N)n1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; [0.999996542930603, 0.9999850988388062] +Cc1n[nH]c2ccc(-c3cn(Cc4ccccc4)nn3)cc12; ['BrCc1ccccc1', 'C#Cc1ccc2[nH]nc(C)c2c1', 'Cc1n[nH]c2ccc(Br)cc12']; ['C#Cc1ccc2[nH]nc(C)c2c1', '[N-]=[N+]=NCc1ccccc1', 'c1ccc(Cn2ccnn2)cc1']; [0.9999991655349731, 0.999998927116394, 0.9987833499908447] +Cc1n[nH]c2ccc(-c3cc(C(N)=O)cn3C)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(Cc3nnc4ccc(-c5ccccc5)nn34)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3[nH]nc(C)c3c2)s1; ['CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Cl)s1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; [0.9999921321868896, 0.9999701976776123, 0.9992635846138] +Cc1n[nH]c2ccc(-c3cccc(C(C)(C)O)n3)cc12; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999935626983643, 0.9999901056289673, 0.9999347925186157, 0.9997913241386414, 0.9984329342842102] +CCCCc1cc(-c2ccc3[nH]nc(C)c3c2)nc(N)n1; [None]; [None]; [0] +Cc1n[nH]c2ccc(CS(=O)(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3nc4ccccc4s3)cc12; ['Cc1n[nH]c2ccc(C=O)cc12', 'Brc1nc2ccccc2s1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1nc2ccccc2s1', 'Cc1n[nH]c2ccc(Br)cc12']; ['Nc1ccccc1S', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'c1ccc2scnc2c1']; [0.9999977946281433, 0.9999936819076538, 0.9999736547470093, 0.9999485015869141, 0.9998570084571838, 0.9994311332702637] +Cc1n[nH]c2ccc(-c3cccc4ccsc34)cc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1cccc2ccsc12', 'Clc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999994039535522, 0.9999967813491821, 0.999984860420227, 0.9999531507492065, 0.9999493360519409, 0.9995735883712769, 0.9995706081390381, 0.9681070446968079] +Cc1n[nH]c2ccc(-c3cncc(N)n3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9999987483024597, 0.9999986886978149, 0.9999978542327881, 0.9999967813491821, 0.9882149696350098] +Cc1n[nH]c2ccc(Oc3ccc(C[NH3+])cc3F)cc12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3[nH]nc(C)c3c2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4[nH]nc(C)c4c3)c2)cc1; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3cccc4nnsc34)cc12; ['Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1cccc2nnsc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1cccc2nnsc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999992847442627, 0.9999922513961792, 0.9999449849128723, 0.9880690574645996] +Cc1n[nH]c2ccc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)cc12; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999294877052307, 0.9994006156921387, 0.9773691892623901, 0.7511261105537415] +Cc1n[nH]c2ccc(-c3nc(N)c4ccccc4n3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Nc1nc(Cl)nc2ccccc12', 'Nc1nc(Cl)nc2ccccc12']; [0.9999428391456604, 0.999441385269165] +Cc1n[nH]c2ccc(-c3ncc4ccccc4n3)cc12; ['Brc1ncc2ccccc2n1', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1ncc2ccccc2n1', 'Cc1n[nH]c2ccc(B(O)O)cc12']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Clc1ncc2ccccc2n1', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Clc1ncc2ccccc2n1']; [0.9999972581863403, 0.9999948740005493, 0.9999940395355225, 0.9999799728393555] +Cc1n[nH]c2ccc(-c3c[nH]c4cccnc34)cc12; ['Cc1n[nH]c2ccc(B(O)O)cc12', 'Brc1c[nH]c2cccnc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Brc1c[nH]c2cccnc12']; ['Ic1c[nH]c2cccnc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Ic1c[nH]c2cccnc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Clc1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999997615814209, 0.9999995231628418, 0.9999994039535522, 0.9999991655349731, 0.9999911785125732, 0.9999864101409912, 0.9999697208404541, 0.9994691014289856] +Cc1n[nH]c2ccc(-c3ncc4cc[nH]c4n3)cc12; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12']; ['Clc1ncc2cc[nH]c2n1', 'Clc1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [1.0, 0.9999970197677612, 0.9986735582351685] +COc1ccc(Oc2ccc3[nH]nc(C)c3c2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(O)cc12', 'Cc1n[nH]c2ccc(O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [0.9999030828475952, 0.9997888207435608, 0.9997624158859253, 0.9995711445808411, 0.9964245557785034, 0.9601418972015381] +COc1ccc(C#N)cc1-c1ccc2[nH]nc(C)c2c1; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccc(Br)cc12']; [0.9999994039535522, 0.9999992847442627, 0.999998927116394, 0.9999957084655762, 0.999995231628418, 0.9999951720237732, 0.9999877214431763, 0.9999866485595703, 0.9999738931655884, 0.9998324513435364, 0.9997246861457825, 0.9995486736297607, 0.9994704723358154, 0.9986538290977478, 0.9985665678977966, 0.993511974811554, 0.9426658153533936, 0.9042192101478577, 0.8385629653930664] +CC(=O)Nc1ncc(-c2ccc3[nH]nc(C)c3c2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3[nH]nc(C)c3c2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccccc12']; [0.999998927116394, 0.9999979734420776, 0.9999961853027344, 0.999990701675415, 0.9999741315841675, 0.9999316334724426, 0.9999226331710815, 0.9999175667762756, 0.999841570854187, 0.9986132383346558, 0.9981122612953186, 0.9971108436584473, 0.9959712028503418, 0.9946140050888062, 0.9918889403343201, 0.8270421028137207, 0.795718789100647] +Cc1n[nH]c2ccc(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +COc1ncccc1-c1ccc2[nH]nc(C)c2c1; ['COc1ncccc1Br', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1B(O)O']; ['Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [0.9999994039535522, 0.9999973177909851, 0.9999929070472717, 0.9999815225601196, 0.9999815225601196, 0.9999364018440247, 0.9999356269836426, 0.9999164342880249, 0.9996730089187622, 0.9994274973869324, 0.9993888139724731, 0.9991158246994019, 0.9972611665725708, 0.9965765476226807] +Cc1n[nH]c2ccc(-c3cccc(S(=O)(=O)N(C)C)c3)cc12; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B3OC(C)(C)C(C)(C)O3)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(B(O)O)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12', 'Cc1n[nH]c2ccccc12']; [0.9999995231628418, 0.9999994039535522, 0.9999864101409912, 0.9999762177467346, 0.9999722242355347, 0.9980351328849792, 0.9979426264762878, 0.9959326386451721, 0.9717954993247986] +Cc1n[nH]c2ccc(N3CC=C(c4c[nH]c5ccccc45)CC3)cc12; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; [0.9999933242797852, 0.999893307685852] +CNC(=O)c1ccccc1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br', 'Brc1ccnc2[nH]ccc12', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'CNC(=O)c1ccccc1B(O)O', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999744892120361, 0.9999066591262817, 0.9993107318878174, 0.9990454912185669, 0.9989213943481445, 0.9988284111022949, 0.9952532052993774, 0.8610454201698303] +Cc1n[nH]c2ccc(-c3cnnc(N(C)C)c3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(N3CCC(c4nc5ccccc5[nH]4)CC3)cc12; ['Cc1n[nH]c2ccc(Br)cc12', 'Cc1n[nH]c2ccc(Cl)cc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9998866319656372, 0.9921215772628784] +Cc1n[nH]c2ccc([C@H]3CC[C@@](C)(O)CC3)cc12; [None]; [None]; [0] +Cc1n[nH]c2ccc(-c3cccc(NC(=O)C4CCNCC4)c3)cc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccnc2[nH]ccc12; ['CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1ccnc2[nH]ccc12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9999791979789734, 0.9999432563781738, 0.9997696876525879, 0.9996068477630615, 0.9976533651351929] +CCOc1ccccc1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CCOc1ccccc1Cl', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12']; [0.9999921321868896, 0.9999886751174927, 0.999981164932251, 0.9999790787696838, 0.9999704360961914, 0.9999682903289795, 0.9999641180038452, 0.9998277425765991, 0.9998209476470947, 0.9997127056121826, 0.9994169473648071, 0.905724048614502] +Fc1cc(F)cc(Cc2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12']; ['Fc1cc(F)cc(C[Zn]Br)c1']; [0.999673068523407] +CP(C)(=O)c1ccccc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999989867210388, 0.9999972581863403, 0.9999945163726807, 0.9999927878379822, 0.9999845623970032, 0.9999755620956421, 0.9999744296073914, 0.9999551773071289, 0.9997720718383789, 0.9997708201408386] +FC(F)(F)c1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'FC(F)(F)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999988079071045, 0.9999919533729553, 0.9999881982803345, 0.99997478723526, 0.9999443888664246, 0.999910831451416, 0.9994705319404602, 0.9969751238822937] +CCn1cc(-c2ccnc3[nH]ccc23)cn1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccnc2[nH]ccc12', 'CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccnc2[nH]ccc12', 'CCn1cc(Br)cn1', 'Clc1ccnc2[nH]ccc12', 'CCn1cc(B(O)O)cn1', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999986290931702, 0.9999951124191284, 0.9999899864196777, 0.9999898672103882, 0.9999344348907471, 0.9999153017997742, 0.9998212456703186, 0.998785138130188, 0.9964955449104309, 0.994396448135376, 0.9783927798271179] +c1ccc(Cn2cc(-c3ccnc4[nH]ccc34)cn2)cc1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Brc1cnn(Cc2ccccc2)c1', 'Clc1ccnc2[nH]ccc12', 'Brc1cnn(Cc2ccccc2)c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999980926513672, 0.9999947547912598, 0.999993085861206, 0.9999927282333374, 0.9999784231185913, 0.9999566078186035, 0.9995631575584412, 0.9967751502990723] +COC(C)(C)CCc1ccnc2[nH]ccc12; [None]; [None]; [0] +c1ccc2c(-c3ccnc4[nH]ccc34)ccnc2c1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2ccccc12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Brc1ccnc2[nH]ccc12', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2ccccc12', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'O=c1cc[nH]c2[nH]ccc12', 'Brc1ccnc2ccccc12', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2ccccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Ic1ccnc2ccccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2[nH]ccc12', 'c1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'c1cnc2[nH]ccc2c1', 'c1ccc2ncccc2c1']; [0.9999916553497314, 0.9999875426292419, 0.9999805688858032, 0.9999755620956421, 0.9999459981918335, 0.9999414682388306, 0.9999347925186157, 0.9999275207519531, 0.9999220371246338, 0.9997662305831909, 0.9996857643127441, 0.9996592998504639, 0.9995176792144775, 0.999257504940033, 0.9819218516349792, 0.9275929927825928, 0.8850614428520203, 0.8431943655014038, 0.8059848546981812] +Cn1cnc2ccc(-c3ccnc4[nH]ccc34)cc2c1=O; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1ccnc2[nH]ccc12']; [0.9998611807823181, 0.9998327493667603] +NC(=O)c1ccccc1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'NC(=O)c1ccccc1I', 'Brc1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1Br', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1Cl', 'Clc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'OB(O)c1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1B(O)O', 'OB(O)c1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1B(O)O', 'OB(O)c1ccnc2[nH]ccc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999704360961914, 0.9999393224716187, 0.9998960494995117, 0.9993682503700256, 0.9991999268531799, 0.9981458783149719, 0.9973399043083191, 0.995402455329895, 0.9910131692886353, 0.9898298978805542, 0.9610104560852051, 0.9579290151596069, 0.8175913095474243] +c1ccc(-c2ncc(-c3ccnc4[nH]ccc34)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccnc3[nH]ccc23)cn1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; ['OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Br)cn1', 'Clc1ccnc2[nH]ccc12', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Br)cn1']; [0.9999837279319763, 0.9999828338623047, 0.999961256980896, 0.9999395608901978, 0.9998680353164673, 0.9998244047164917, 0.9997900724411011, 0.9997427463531494, 0.9989475011825562, 0.9948278665542603, 0.9883641004562378, 0.985701322555542, 0.9771859645843506] +O=C(Nc1cccc(-c2ccnc3[nH]ccc23)c1)c1ccccc1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999978542327881, 0.9999954700469971, 0.9997793436050415, 0.9997556209564209, 0.9971380233764648] +COc1cnc(-c2ccnc3[nH]ccc23)nc1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1cncnc1', 'Brc1ccnc2[nH]ccc12']; ['COc1cnc(Br)nc1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'COc1cnc(Cl)nc1', 'Ic1ccnc2[nH]ccc12', 'COc1cncnc1']; [0.9994462132453918, 0.9969819784164429, 0.9969539642333984, 0.9939810037612915, 0.8817017078399658, 0.7540931701660156] +Clc1ccc(Cl)c(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1cc(Cl)ccc1Cl', 'Ic1ccnc2[nH]ccc12', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999921917915344, 0.9999701380729675, 0.9999650716781616, 0.9999611377716064, 0.9998792409896851, 0.999864399433136, 0.9998306632041931, 0.9996711015701294, 0.9986778497695923, 0.9970380067825317, 0.9959439039230347, 0.9729094505310059] +CC(C)C(=O)COc1ccnc2[nH]ccc12; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.993772029876709, 0.9767645597457886] +CC(C)(C)c1nc(-c2ccnc3[nH]ccc23)cs1; [None]; [None]; [0] +Cc1ccc(-c2ccnc3[nH]ccc23)c(Br)c1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1ccnc2[nH]ccc12']; ['Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Cc1ccc(B(O)O)c(Br)c1']; [0.9998452663421631, 0.9994714260101318, 0.9881488680839539, 0.9822626709938049, 0.9681477546691895] +Cc1nc2ccccn2c1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br']; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999727010726929, 0.9999678134918213, 0.9997870922088623, 0.998120903968811] +O=c1c2c(F)cccc2cnn1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +c1cnn2c(-c3ccnc4[nH]ccc34)cnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999940395355225, 0.9999781250953674, 0.9996709823608398, 0.9986623525619507] +c1ccn2c(-c3ccnc4[nH]ccc34)cnc2c1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.999981164932251, 0.999948263168335, 0.9999403953552246, 0.9994825124740601, 0.9994701147079468, 0.999276876449585, 0.9981176853179932] +Cc1nc(C)c(-c2ccnc3[nH]ccc23)s1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cc1nc(C)c(Br)s1', 'Brc1ccnc2[nH]ccc12']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'OB(O)c1ccnc2[nH]ccc12', 'Cc1csc(C)n1']; [0.999995231628418, 0.9999749660491943, 0.9986164569854736, 0.978870153427124] +CNc1nc(C)c(-c2ccnc3[nH]ccc23)s1; [None]; [None]; [0] +Brc1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Brc1cccc(Br)c1', 'Clc1ccnc2[nH]ccc12', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999899864196777, 0.9999874234199524, 0.9999495148658752, 0.9998887777328491, 0.9996153116226196, 0.999539852142334, 0.9983755350112915, 0.9970124959945679, 0.9908678531646729] +Cc1ccc(Cl)c(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cc1ccc(Cl)c(B(O)O)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Cc1ccc(Cl)c(I)c1', 'Clc1ccnc2[nH]ccc12', 'Cc1ccc(Cl)c(Cl)c1']; [0.9999661445617676, 0.9997653365135193, 0.9997199773788452, 0.9997091293334961, 0.9989433288574219, 0.9987094402313232, 0.9984277486801147, 0.9979016780853271, 0.9977121353149414, 0.9880476593971252, 0.9034263491630554] +Cc1nc(N)sc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1cccc(Cl)c1Br', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1', 'Clc1ccnc2[nH]ccc12']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1c(Cl)cccc1Cl']; [0.9998239278793335, 0.9998219013214111, 0.9997320175170898, 0.999709963798523, 0.998466432094574, 0.9983730316162109, 0.9975513219833374, 0.9885745644569397, 0.9708621501922607] +c1cc(Cn2cncn2)cc(-c2ccnc3[nH]ccc23)c1; [None]; [None]; [0] +c1cncc(CNc2ccnc3[nH]ccc23)c1; ['Fc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'BrCc1cccnc1']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'Nc1ccnc2[nH]ccc12']; [0.9990323185920715, 0.9988902807235718, 0.9984332919120789, 0.9982398152351379, 0.9970024824142456, 0.987951397895813] +Cc1c(-c2ccnc3[nH]ccc23)sc(=O)n1C; [None]; [None]; [0] +c1ccc2cc(-c3ccnc4[nH]ccc34)ccc2c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccc2ccccc2c1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccc2ccccc2c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccc2ccccc2c1']; [0.9999994039535522, 0.9999959468841553, 0.9999946355819702, 0.9999890327453613, 0.9999863505363464, 0.9999411106109619, 0.9997019171714783, 0.9997013807296753] +Nc1nccc(-c2ccnc3[nH]ccc23)n1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1nccc(Cl)n1']; ['Nc1nccc(Br)n1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Nc1nccc(Cl)n1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999711513519287, 0.9998834133148193, 0.9998275637626648, 0.9997278451919556, 0.9984669089317322] +c1cnn2ncc(-c3ccnc4[nH]ccc34)c2c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999902248382568, 0.9999693632125854, 0.9993500709533691] +c1cncc(Nc2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Ic1cccnc1', 'Nc1cccnc1', 'Clc1cccnc1', 'Brc1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12']; [0.9995630383491516, 0.9972814321517944, 0.9971926212310791, 0.9969333410263062, 0.9954508543014526, 0.9937702417373657, 0.9378080368041992] +c1ccc2c(c1)ncn2-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9753216505050659, 0.9672985672950745, 0.9562201499938965, 0.8976819515228271, 0.7915759086608887] +c1cc(NCCc2c[nH]cn2)c2cc[nH]c2n1; ['Ic1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'NCCc1c[nH]cn1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9952183961868286, 0.988479495048523, 0.9847011566162109, 0.9731155037879944, 0.9607880711555481] +O=C(Nc1ccnc2[nH]ccc12)c1cccs1; ['Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'COC(=O)c1cccs1', 'Clc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'NC(=O)c1cccs1', 'CCOC(=O)c1cccs1', 'Ic1ccnc2[nH]ccc12']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1', 'Nc1ccnc2[nH]ccc12', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'NC(=O)c1cccs1']; [0.9992589950561523, 0.9981767535209656, 0.9981229305267334, 0.9914897680282593, 0.9807497262954712, 0.9769790172576904, 0.9721455574035645, 0.9710223078727722] +FC(F)(F)c1n[nH]cc1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1I']; ['FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1I', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.999998927116394, 0.9999959468841553, 0.9999914169311523, 0.9998168349266052, 0.9997900724411011, 0.9994931817054749] +c1ccc2c(-c3ccnc4[nH]ccc34)cncc2c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Clc1cncc2ccccc12', 'Brc1ccnc2[nH]ccc12']; ['Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'Ic1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Brc1cncc2ccccc12']; [0.9999971389770508, 0.9999935626983643, 0.9999895691871643, 0.9999867081642151, 0.9999748468399048, 0.9997960329055786, 0.9994587898254395, 0.9993593692779541, 0.9991245269775391, 0.9960161447525024, 0.9895943999290466, 0.9740794897079468] +NC(=O)c1c(F)cccc1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999611973762512, 0.9999002814292908, 0.9975513219833374, 0.9936327934265137] +c1ccc(CCNc2ccnc3[nH]ccc23)cc1; ['Fc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'BrCCc1ccccc1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccnc2[nH]ccc12']; [0.9868364930152893, 0.9782896041870117, 0.9758984446525574, 0.9568586349487305, 0.8847309350967407] +Cn1cc(-c2ccc(-c3ccnc4[nH]ccc34)cc2)cn1; ['Brc1ccnc2[nH]ccc12', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Clc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Ic1ccnc2[nH]ccc12', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'OB(O)c1ccnc2[nH]ccc12']; [1.0, 0.9999996423721313, 0.9999942183494568, 0.9999732971191406, 0.9992802143096924] +Cn1ncc2cc(-c3ccnc4[nH]ccc34)ccc21; ['Brc1ccnc2[nH]ccc12', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Cn1ncc2cc(Br)ccc21', 'Clc1ccnc2[nH]ccc12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Ic1ccnc2[nH]ccc12', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'OB(O)c1ccnc2[nH]ccc12', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999997615814209, 0.9999984502792358, 0.9999957084655762, 0.9999780654907227, 0.9997615218162537, 0.9996029734611511] +c1cc(-c2ccc(-c3cn[nH]c3)cc2)c2cc[nH]c2n1; ['Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [1.0, 0.9988307952880859] +Clc1ccc(CNc2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'Nc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'NCc1ccc(Cl)cc1', 'Cc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Oc1ccnc2[nH]ccc12', '[N-]=[N+]=Nc1ccnc2[nH]ccc12']; [0.9994942545890808, 0.999419093132019, 0.997360110282898, 0.9973320960998535, 0.9960533976554871, 0.9954243302345276, 0.9839694499969482, 0.9408339262008667, 0.9154584407806396] +CN1c2ccc(-c3ccnc4[nH]ccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccnc4[nH]ccc34)ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1[nH]nc2cc(Br)ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1[nH]nc2cc(Cl)ccc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Nc1[nH]nc2cc(Cl)ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.999997615814209, 0.9997470378875732, 0.999302864074707, 0.9838939309120178] +CCCn1cnc(-c2ccnc3[nH]ccc23)n1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccnc3[nH]ccc23)c1; [None]; [None]; [0] +Oc1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Clc1ccnc2[nH]ccc12', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1']; [0.9999822974205017, 0.9999136924743652, 0.9995495080947876, 0.9994896650314331, 0.9994454383850098, 0.9993798732757568, 0.9989274740219116, 0.9930907487869263, 0.9689435958862305, 0.9649455547332764] +OCc1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1']; [0.999987006187439, 0.9999518394470215, 0.9994687438011169, 0.9991469383239746, 0.9983997941017151, 0.9973881244659424, 0.997282087802887, 0.9656152725219727, 0.894661009311676, 0.7961353063583374] +Fc1ccccc1CNc1ccnc2[nH]ccc12; ['Fc1ccccc1CBr', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12']; ['Nc1ccnc2[nH]ccc12', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F']; [0.9999051094055176, 0.9997931718826294, 0.9989302158355713, 0.994167685508728, 0.9898682832717896, 0.9797082543373108] +c1cc(Nc2ccnc3[nH]ccc23)ccn1; ['Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Brc1ccncc1', 'Ic1ccncc1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Nc1ccncc1', 'Nc1ccnc2[nH]ccc12']; [0.9999017715454102, 0.999901294708252, 0.9997210502624512, 0.9996779561042786, 0.9995436072349548, 0.9992641806602478, 0.9985261559486389] +COc1cc(-c2ccnc3[nH]ccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ccnc3[nH]ccc23)nn1; [None]; [None]; [0] +CSc1nc(-c2ccnc3[nH]ccc23)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'N#CCCc1cccc(Br)c1']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999608993530273, 0.9998518228530884, 0.9996204376220703, 0.9993631839752197, 0.9738391637802124] +c1ccc2[nH]c(-c3ccnc4[nH]ccc34)cc2c1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1cc2ccccc2[nH]1']; ['Clc1cc2ccccc2[nH]1', 'OB(O)c1ccnc2[nH]ccc12']; [0.999335765838623, 0.9978926181793213] +Nc1nc(-c2ccnc3[nH]ccc23)cs1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1']; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999973773956299, 0.9999721050262451, 0.9993985891342163, 0.9935004711151123] +c1cc(-c2csc3ncncc23)c2cc[nH]c2n1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12']; [0.9998086094856262, 0.9931895732879639] +CCC(=O)Nc1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9999924898147583, 0.999961256980896, 0.9998657703399658] +Nc1ncncc1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'Brc1ccnc2[nH]ccc12']; ['Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Nc1ncncc1Br']; [0.9999966621398926, 0.9999648332595825, 0.9998759031295776, 0.9997282028198242, 0.9995871782302856, 0.9954195022583008, 0.9755859375] +Fc1ccc(-c2ccnc3[nH]ccc23)c(C(F)(F)F)c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'Fc1ccc(I)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccnc2[nH]ccc12', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999769330024719, 0.9999696016311646, 0.9999088048934937, 0.9997885227203369, 0.9997739791870117, 0.9996366500854492, 0.9988025426864624] +CC(C)c1oncc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +c1ccc(Oc2ccnc3[nH]ccc23)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'Clc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'O=[N+]([O-])c1ccnc2[nH]ccc12']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9999464750289917, 0.9999141693115234, 0.9994642734527588, 0.9985588788986206, 0.9966844320297241, 0.9929227828979492, 0.9856268167495728, 0.8956218957901001] +c1cc(CCc2c[nH]nn2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'Brc1ccnc2[nH]ccc12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999948740005493, 0.9999856352806091, 0.9999544620513916, 0.999914288520813, 0.9997282028198242, 0.9994329810142517, 0.9991280436515808, 0.9966787099838257, 0.9942665100097656, 0.9861698746681213] +CCNc1nc2ccc(-c3ccnc4[nH]ccc34)cc2s1; [None]; [None]; [0] +O=C(Nc1ccnc2[nH]ccc12)c1c(Cl)cccc1Cl; ['Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12']; ['O=C(O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9988396167755127, 0.9984593391418457, 0.997370183467865, 0.9958305358886719, 0.9683812856674194, 0.9500828981399536, 0.9032784104347229] +Cn1cc(-c2ccnc3[nH]ccc23)c2ccccc21; ['Brc1ccnc2[nH]ccc12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Clc1ccnc2[nH]ccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccnc2[nH]ccc12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.999977171421051, 0.9998403191566467, 0.9998106360435486] +CS(=O)(=O)C1CCN(c2ccnc3[nH]ccc23)CC1; ['Brc1ccnc2[nH]ccc12', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Ic1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9964243173599243, 0.9961947202682495, 0.9942847490310669, 0.9878246188163757, 0.9435244798660278] +COc1ccc(-c2ccnc3[nH]ccc23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Brc1ccnc2[nH]ccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Ic1ccnc2[nH]ccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999982714653015, 0.9999963641166687, 0.9999741315841675, 0.9999736547470093, 0.9999667406082153, 0.9998482465744019, 0.9994500875473022, 0.998723030090332, 0.9960747957229614, 0.9958490133285522] +CC(C)(COc1ccnc2[nH]ccc12)S(C)(=O)=O; [None]; [None]; [0] +c1ccn2ncc(-c3ccnc4[nH]ccc34)c2c1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Clc1ccnc2[nH]ccc12', 'Brc1cnn2ccccc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999964833259583, 0.9999946355819702, 0.9999912977218628, 0.9999852776527405, 0.9999529719352722, 0.9995447397232056, 0.9992978572845459] +NC(=O)CCCc1ccnc2[nH]ccc12; [None]; [None]; [0] +O=c1cc(-c2ccnc3[nH]ccc23)cc[nH]1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=c1cc(Br)cc[nH]1']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999791383743286, 0.9983906745910645, 0.9904651641845703] +CCCn1cc(-c2ccnc3[nH]ccc23)cn1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'Clc1ccnc2[nH]ccc12', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9999984502792358, 0.9999962449073792, 0.9999873638153076, 0.9999842047691345, 0.9999557733535767, 0.9999110698699951, 0.998962938785553, 0.9984940886497498] +CC(C)(O)CC(=O)NCCc1ccnc2[nH]ccc12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12']; [0.9985795021057129, 0.8325806856155396] +CCNS(=O)(=O)c1ccccc1-c1ccnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999687671661377, 0.9970359802246094] +C[S@](=O)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9998960494995117, 0.9787276983261108] +C[C@@H](Oc1ccnc2[nH]ccc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9915054440498352, 0.9894279837608337, 0.891563892364502] +O=C1CCc2cccc(-c3ccnc4[nH]ccc34)c21; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=C1CCc2cccc(Br)c21', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=C1CCc2cccc(Cl)c21', 'Brc1ccnc2[nH]ccc12', 'O=C1CCc2cccc(Br)c21']; ['O=C1CCc2cccc(Br)c21', 'OB(O)c1ccnc2[nH]ccc12', 'O=C1CCc2cccc(Cl)c21', 'OB(O)c1ccnc2[nH]ccc12', 'O=C1CCc2cccc(Br)c21', 'c1cnc2[nH]ccc2c1']; [0.9998815059661865, 0.9997287392616272, 0.998751163482666, 0.9921728372573853, 0.990710973739624, 0.7929531335830688] +[NH3+]Cc1ccc(-c2ccnc3[nH]ccc23)cc1C(F)(F)F; [None]; [None]; [0] +COc1cc(CCc2ccnc3[nH]ccc23)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CC(C)Oc1cncc(Br)c1', 'Brc1ccnc2[nH]ccc12', 'CC(C)Oc1cncc(Br)c1', 'Brc1ccnc2[nH]ccc12']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC(C)Oc1cncc(B(O)O)c1', 'OB(O)c1ccnc2[nH]ccc12', 'CC(C)Oc1cncc(Br)c1']; [0.9999978542327881, 0.9999920725822449, 0.9999784231185913, 0.9966989755630493, 0.993653416633606] +COc1ccncc1Nc1ccnc2[nH]ccc12; ['COc1ccncc1Br', 'COc1ccncc1Cl', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N', 'Brc1ccnc2[nH]ccc12']; ['Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1ccncc1N']; [0.9999639391899109, 0.9999284744262695, 0.9999135732650757, 0.9998704195022583, 0.9996808767318726, 0.999646782875061] +O=c1[nH]ccc2oc(-c3ccnc4[nH]ccc34)cc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=c1[nH]ccc2oc(Br)cc12']; ['O=c1[nH]ccc2oc(Br)cc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9998669624328613, 0.9913243055343628] +CC(C)(C)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]ccc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.999996542930603, 0.999993085861206, 0.9999707937240601, 0.9998840093612671, 0.9995594620704651, 0.9995325803756714, 0.995405912399292, 0.991567075252533] +c1ccc(-c2ccncc2Nc2ccnc3[nH]ccc23)cc1; ['Brc1cnccc1-c1ccccc1', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['Nc1ccnc2[nH]ccc12', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999791383743286, 0.9999179840087891, 0.999650239944458, 0.9993019104003906] +c1ccc2ncc(Nc3ccnc4[nH]ccc34)cc2c1; ['Nc1cnc2ccccc2c1', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Clc1ccnc2[nH]ccc12', 'Clc1cnc2ccccc2c1']; ['OB(O)c1ccnc2[nH]ccc12', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccnc2[nH]ccc12', 'Nc1ccnc2[nH]ccc12', 'Nc1cnc2ccccc2c1', 'Nc1ccnc2[nH]ccc12']; [0.9996142387390137, 0.9994681477546692, 0.9974011182785034, 0.9943885803222656, 0.9914611577987671, 0.9853769540786743, 0.9823532700538635] +COc1cccc(F)c1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'Brc1ccnc2[nH]ccc12', 'COc1cccc(F)c1Cl', 'Brc1ccnc2[nH]ccc12', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'Ic1ccnc2[nH]ccc12', 'COc1cccc(F)c1I', 'Clc1ccnc2[nH]ccc12', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Cl', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1cccc(F)c1Br', 'OB(O)c1ccnc2[nH]ccc12', 'COc1cccc(F)c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'Ic1ccnc2[nH]ccc12']; [0.9999980926513672, 0.9999963641166687, 0.9999950528144836, 0.9999881982803345, 0.9999784231185913, 0.999960720539093, 0.9999312162399292, 0.9998982548713684, 0.9998924732208252, 0.999582052230835, 0.9993754029273987, 0.9989750385284424, 0.997879147529602, 0.9464737176895142, 0.9314222931861877, 0.9255722761154175, 0.8902539610862732] +O=c1[nH]cc(Br)c2sc(-c3ccnc4[nH]ccc34)cc12; [None]; [None]; [0] +c1cc(-c2cnc3[nH]ccc3c2)c2cc[nH]c2n1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Brc1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Clc1ccnc2[nH]ccc12', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Brc1cnc2[nH]ccc2c1']; [0.9999998211860657, 0.9999948143959045, 0.9999744892120361, 0.9998799562454224, 0.999562680721283, 0.9990410804748535, 0.9987949132919312, 0.9987446069717407] +c1cc2c(-c3ccnc4[nH]ccc34)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Ic1c[nH]c2cnccc12', 'Clc1ccnc2[nH]ccc12', 'Brc1c[nH]c2cnccc12']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999802112579346, 0.9999730587005615, 0.9998853206634521, 0.9996688365936279, 0.9990934729576111, 0.9984997510910034, 0.9909032583236694] +CNS(=O)(=O)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccnc2[nH]ccc12', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.999994695186615, 0.999992847442627, 0.99997878074646, 0.9997251033782959, 0.9996705055236816, 0.9989647269248962, 0.9970073699951172, 0.987402617931366, 0.964759349822998] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]ccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999985694885254, 0.9999971985816956, 0.9999896287918091, 0.9998087882995605, 0.9998027086257935, 0.9997268915176392, 0.9935506582260132, 0.9718459248542786] +CNC(=O)c1c(F)cccc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]ccc12', 'CS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999992847442627, 0.9997928738594055, 0.9995406866073608, 0.9992228746414185, 0.9828203916549683, 0.9803225994110107] +c1cc(-c2ccc(N3CCOCC3)cc2)c2cc[nH]c2n1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccnc2[nH]ccc12', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999997615814209, 0.9999983906745911, 0.9999943375587463, 0.999992847442627, 0.999914288520813, 0.9997658729553223, 0.9996542930603027, 0.9994443655014038, 0.9992048740386963, 0.9980078935623169, 0.9976527094841003, 0.992466926574707] +Cc1cc(-c2ccnc3[nH]ccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CN(c1ccnc2[nH]ccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ccnc3[nH]ccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccnc2[nH]ccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ccnc2[nH]ccc12)C(C)(C)O; ['Brc1ccnc2[nH]ccc12', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['C[C@H](N)C(C)(C)O', 'Fc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9898131489753723, 0.961120069026947, 0.959011971950531, 0.8810330629348755] +OCc1ccn(-c2ccnc3[nH]ccc23)n1; ['Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9907211065292358, 0.8482245802879333] +OCCc1cn(-c2ccnc3[nH]ccc23)cn1; ['Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12']; ['OCCc1cnc[nH]1', 'OCCc1c[nH]cn1']; [0.9720368385314941, 0.9623191356658936] +C[C@@H](Nc1ccnc2[nH]ccc12)C(C)(C)O; ['Brc1ccnc2[nH]ccc12', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['C[C@@H](N)C(C)(C)O', 'Fc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9898131489753723, 0.961120069026947, 0.959011971950531, 0.9347552061080933, 0.8810330629348755] +Oc1ccc2nc(-c3ccnc4[nH]ccc34)[nH]c2c1; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; ['O=C(O)c1ccnc2[nH]ccc12', 'O=Cc1ccnc2[nH]ccc12']; [0.9990111589431763, 0.9979504346847534] +Fc1cccc(Cl)c1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Fc1cccc(Cl)c1I', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1I']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Ic1ccnc2[nH]ccc12', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Ic1ccnc2[nH]ccc12', 'c1cnc2[nH]ccc2c1']; [0.9999995231628418, 0.9999977350234985, 0.9999962449073792, 0.9999946355819702, 0.9999865889549255, 0.9999783039093018, 0.9999756813049316, 0.9999735355377197, 0.9999611377716064, 0.9998583793640137, 0.997528076171875, 0.9790867567062378, 0.8743892908096313] +c1cc(-c2ccc(-n3cncn3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccnc2[nH]ccc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccnc3[nH]ccc23)cc1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Clc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1']; [0.9999950528144836, 0.9999943375587463, 0.9999717473983765, 0.9999152421951294, 0.9997917413711548, 0.9996455311775208, 0.9996281862258911, 0.9992132186889648, 0.9980266690254211, 0.9978922605514526, 0.9899705648422241] +c1ccc2c(c1)cnn2-c1ccnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]ccc23)c(OC)c1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'Brc1ccnc2[nH]ccc12', 'COc1cccc(OC)c1', 'COc1cccc(OC)c1', 'Brc1ccnc2[nH]ccc12']; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'COc1ccc(I)c(OC)c1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1ccc(Cl)c(OC)c1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'COc1ccc(Br)c(OC)c1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1cccc(OC)c1']; [0.9999921321868896, 0.9999920725822449, 0.9999842643737793, 0.9999802708625793, 0.9999796152114868, 0.9999793171882629, 0.9999715685844421, 0.9999266862869263, 0.9999241232872009, 0.9998955130577087, 0.9995295405387878, 0.9990302324295044, 0.9960776567459106, 0.9959741830825806, 0.9871463775634766, 0.9791068434715271, 0.9623372554779053] +CC(C)n1cnnc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccnc3[nH]ccc23)n1; [None]; [None]; [0] +c1cc(-c2nncn2C2CC2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccnc3[nH]ccc23)CC1; [None]; [None]; [0] +CCc1cc(-c2ccnc3[nH]ccc23)nc(N)n1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999655485153198, 0.9994791150093079] +c1ccc(Cn2cc(-c3ccnc4[nH]ccc34)nn2)cc1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccnc5[nH]ccc45)n3n2)cc1; [None]; [None]; [0] +Nc1nnc(-c2ccnc3[nH]ccc23)s1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'NNC(N)=S', 'Nc1nnc(Br)s1']; ['Nc1nnc(Br)s1', 'O=C(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999979138374329, 0.9998629689216614, 0.9998457431793213] +CCCCc1cc(-c2ccnc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccnc3[nH]ccc23)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9995578527450562, 0.9987847208976746, 0.9959897994995117, 0.9900853633880615] +CNC(=O)c1ccc(-c2ccnc3[nH]ccc23)s1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999985694885254, 0.9982207417488098] +O=C(CCc1ccnc2[nH]ccc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccnc2[nH]ccc12)NCc1ccccn1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccnc2[nH]ccc12; [None]; [None]; [0] +c1ccc2sc(-c3ccnc4[nH]ccc34)nc2c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'Brc1nc2ccccc2s1']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'O=Cc1ccnc2[nH]ccc12', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999875426292419, 0.999902606010437, 0.9995200634002686, 0.999314546585083, 0.9992372989654541] +Nc1cncc(-c2ccnc3[nH]ccc23)n1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Brc1ccnc2[nH]ccc12']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Nc1cncc(Br)n1']; [0.9998852610588074, 0.9996662139892578, 0.9978532195091248, 0.9492474794387817, 0.9286012053489685] +C[C@@H2]NC(=O)N1CCC(c2ccnc3[nH]ccc23)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc4[nH]ccc34)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccnc4[nH]ccc34)nc2NC1=O; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'Brc1ccnc2[nH]ccc12', 'CC1(C)Oc2cccnc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O', 'Brc1ccnc2[nH]ccc12']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'OB(O)c1ccnc2[nH]ccc12', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'OB(O)c1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'CC1(C)Oc2cccnc2NC1=O']; [0.9997773170471191, 0.9972705841064453, 0.9875304698944092, 0.9818340539932251, 0.9463883638381958, 0.9459868669509888] +c1cc(-c2ccnc3[nH]ccc23)c2sccc2c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999996423721313, 0.9999864101409912, 0.9999747276306152, 0.9965728521347046] +[NH3+]Cc1ccc(Oc2ccnc3[nH]ccc23)c(F)c1; [None]; [None]; [0] +c1cc(-c2ccnc3[nH]ccc23)c2snnc2c1; ['Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Clc1cccc2nnsc12']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999895095825195, 0.9982357025146484, 0.9853907823562622] +Nc1nc(-c2ccnc3[nH]ccc23)nc2ccccc12; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12']; ['Nc1nc(Cl)nc2ccccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.997749924659729, 0.9950788617134094] +c1ccc2nc(-c3ccnc4[nH]ccc34)ncc2c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Ic1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12']; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ncc2ccccc2n1', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1']; [0.9999948143959045, 0.999966025352478, 0.9997119903564453, 0.9993795156478882, 0.9964048266410828, 0.9927883148193359] +c1cnc2c(-c3ccnc4[nH]ccc34)c[nH]c2c1; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Ic1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999217987060547, 0.9999008178710938, 0.9997135400772095, 0.9995384812355042, 0.9885705709457397, 0.9731875061988831] +c1cc(-c2ncc3cc[nH]c3n2)c2cc[nH]c2n1; ['CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Clc1ncc2cc[nH]c2n1', 'Brc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1ccnc2[nH]ccc12', 'c1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [0.9998987317085266, 0.9991922378540039, 0.9384126663208008, 0.8953884840011597] +OCCn1cnc(-c2ccnc3[nH]ccc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccnc3[nH]ccc23)[nH]1; [None]; [None]; [0] +COc1ccc(Oc2ccnc3[nH]ccc23)c(F)c1F; ['Brc1ccnc2[nH]ccc12', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc([N+](=O)[O-])c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['COc1ccc(O)c(F)c1F', 'Oc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'O=[N+]([O-])c1ccnc2[nH]ccc12']; [0.9998959302902222, 0.9998531341552734, 0.9998098015785217, 0.9996675252914429, 0.9990639686584473, 0.9990580081939697, 0.997268795967102, 0.9928804636001587, 0.9788404703140259, 0.9774295687675476] +COc1ccc(C#N)cc1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'COc1ccc(C#N)cc1B(O)O', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'Brc1ccnc2[nH]ccc12']; ['COc1ccc(C#N)cc1B(O)O', 'Ic1ccnc2[nH]ccc12', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'Ic1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'COc1ccc(C#N)cc1Br']; [0.9999879598617554, 0.9999802708625793, 0.9999797344207764, 0.9999783039093018, 0.9999722838401794, 0.9999644160270691, 0.9999624490737915, 0.9999420642852783, 0.9999002814292908, 0.999846339225769, 0.9997963905334473, 0.9991495609283447, 0.9988976716995239, 0.9969300031661987, 0.9857345819473267] +COc1ncccc1-c1ccnc2[nH]ccc12; ['Brc1ccnc2[nH]ccc12', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'Brc1ccnc2[nH]ccc12', 'Brc1ccnc2[nH]ccc12', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1B(O)O', 'Brc1ccnc2[nH]ccc12']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1ncccc1Br']; [0.9999966621398926, 0.999992847442627, 0.9999911785125732, 0.9999794960021973, 0.9999712705612183, 0.9999048709869385, 0.9998682141304016, 0.9997506141662598, 0.9997318983078003, 0.9991916418075562, 0.9983830451965332, 0.9981734752655029, 0.9886313676834106] +COc1ccc(OC)c(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'COc1ccc(OC)c(B(O)O)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'Brc1ccnc2[nH]ccc12', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'Brc1ccnc2[nH]ccc12', 'COc1ccc(OC)c(I)c1']; ['COc1ccc(OC)c(B(O)O)c1', 'Ic1ccnc2[nH]ccc12', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(I)c1', 'Clc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'COc1ccc(OC)c(Br)c1', 'Ic1ccnc2[nH]ccc12']; [0.999923586845398, 0.9998687505722046, 0.9998146295547485, 0.9997047185897827, 0.9996787309646606, 0.999557614326477, 0.9994344115257263, 0.9994113445281982, 0.9986401200294495, 0.9986151456832886, 0.9959143400192261, 0.9938494563102722, 0.9904711246490479, 0.976600170135498, 0.959311842918396] +CN(C)S(=O)(=O)c1cccc(-c2ccnc3[nH]ccc23)c1; ['Brc1ccnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccnc3[nH]ccc23)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Clc1ccnc2[nH]ccc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; [0.9999994039535522, 0.999998927116394, 0.9999935626983643, 0.9999822378158569, 0.9998626708984375, 0.9998480081558228, 0.9978307485580444, 0.9977771043777466] +CN(C)c1cc(-c2ccnc3[nH]ccc23)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccnc5[nH]ccc45)CC3)nc2c1; ['Brc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999129772186279, 0.9998732805252075, 0.9995696544647217, 0.9990125298500061] +O=C(Nc1cccc(-c2ccnc3[nH]ccc23)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc(N)c(O)c1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9964784979820251, 0.9917672872543335] +C[C@@]1(O)CC[C@H](c2ccnc3[nH]ccc23)CC1; [None]; [None]; [0] +CCOc1ccccc1-c1cnc(N)c(O)c1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999279975891113, 0.9990353584289551, 0.9951364994049072, 0.9122372269630432] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccnc3[nH]ccc23)C1; ['Brc1ccnc2[nH]ccc12', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'CC(C)(C)OC(=O)N1CC=C(c2c[nH]c3ccccc23)CC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'Fc1ccnc2[nH]ccc12', 'OB(O)c1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]ccc12', 'c1cnc2[nH]ccc2c1']; [0.9999433755874634, 0.9997771978378296, 0.9997010231018066, 0.999536395072937, 0.9993140697479248, 0.9951887130737305, 0.9835882186889648, 0.8932708501815796] +CC(C)S(=O)(=O)c1ccccc1-c1cnc(N)c(O)c1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1ncc(Br)cc1O']; [0.9936360716819763] +Cc1nnc(-c2ccccc2-c2cnc(N)c(O)c2)[nH]1; [None]; [None]; [0] +CCn1cc(-c2cnc(N)c(O)c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Nc1ncc(Br)cc1O']; [0.9934908151626587] +CP(C)(=O)c1ccccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2ccnc3ccccc23)cc1O; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9989380836486816, 0.9313629865646362, 0.9170242547988892, 0.8891470432281494] +Nc1ncc(-c2cccc(C(F)(F)F)c2)cc1O; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.999935507774353, 0.996652364730835, 0.9930139780044556] +Nc1ncc(-c2ccccc2OC(F)(F)F)cc1O; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'FC(F)(F)Oc1ccccc1Br']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc(Br)cc1O']; [0.9998937845230103, 0.9985964298248291, 0.9894719123840332, 0.9414010047912598] +NC(=O)c1ccccc1-c1cnc(N)c(O)c1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.999937891960144, 0.9938862323760986, 0.9586596488952637] +Nc1ncc(-c2cnn(Cc3ccccc3)c2)cc1O; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C']; ['Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9987256526947021, 0.9936269521713257] +Cn1cnc2ccc(-c3cnc(N)c(O)c3)cc2c1=O; [None]; [None]; [0] +Nc1ncc(-c2cnn(CCO)c2)cc1O; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OCCn1cc(B(O)O)cn1']; [0.9951616525650024, 0.7813783884048462] +COc1ccc(F)cc1[C@@H](C)c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2C(=O)[O-])cc1O; [None]; [None]; [0] +Nc1ncc(-c2cnc(-c3ccccc3)[nH]2)cc1O; [None]; [None]; [0] +Nc1ncc([C@@H](N)c2ccco2)cc1O; [None]; [None]; [0] +COc1cnc(-c2cnc(N)c(O)c2)nc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)c3ccccc3)c2)cc1O; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9998438358306885, 0.9985954761505127] +Nc1ncc(-c2cc(Cl)ccc2Cl)cc1O; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9998462200164795, 0.9950056076049805, 0.9807454943656921] +Cc1ccc(-c2cnc(N)c(O)c2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ncc(Br)cc1O']; [0.7653462290763855] +Nc1ncc(-c2cnc3ccccn23)cc1O; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc(N)c(O)c2)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1']; ['Nc1ncc(Br)cc1O']; [0.9999947547912598] +CC(C)(C)c1nc(-c2cnc(N)c(O)c2)cs1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc(N)c(O)c2)s1; [None]; [None]; [0] +Nc1ncc(-c2cnc3cccnn23)cc1O; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)cccc2Cl)cc1O; ['Nc1ncc(Br)cc1O']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9977924823760986] +Cc1nc(N)sc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2cccc(Br)c2)cc1O; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cccc(Br)c1']; [0.9976954460144043, 0.9661389589309692] +Nc1nccc(-c2cnc(N)c(O)c2)n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cnc(N)c(O)c2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9994634389877319, 0.9971351623535156, 0.9891685843467712] +Nc1ncc(-c2cccc(Cn3cncn3)c2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2cnn3ncccc23)cc1O; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.9999512434005737] +Nc1ncc(-c2ccc3ccccc3c2)cc1O; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999873638153076, 0.9988298416137695, 0.987459659576416] +NC(=O)c1c(F)cccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2c[nH]nc2C(F)(F)F)cc1O; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.9943735599517822] +Nc1ncc(-c2cncc3ccccc23)cc1O; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'OB(O)c1cncc2ccccc12']; [0.9994171261787415, 0.9993522763252258, 0.752225399017334] +Cc1c(-c2cnc(N)c(O)c2)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc(N)c(O)c3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['Nc1ncc(Br)cc1O']; [0.9999980926513672] +Nc1ncc(-c2ccc3c(N)[nH]nc3c2)cc1O; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc(N)c(O)c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999977946281433, 0.9999769926071167, 0.999801754951477] +Nc1ncc(-c2cccc(CC(=O)[O-])c2)cc1O; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cnc(N)c(O)c2)o1; [None]; [None]; [0] +CN1c2ccc(-c3cnc(N)c(O)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ncc(-c2ccc(-c3cn[nH]c3)cc2)cc1O; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999951124191284, 0.9950825572013855, 0.9796387553215027] +Nc1ncc(-c2cccc(CO)c2)cc1O; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1']; [0.9998579025268555, 0.9988037347793579, 0.9671136736869812, 0.9310058355331421] +Nc1ncc(-c2cccc(O)c2)cc1O; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cccc(O)c1']; [0.9983015060424805, 0.9920704364776611] +CC(C)n1cc(-c2cnc(N)c(O)c2)nn1; [None]; [None]; [0] +Nc1ncc(-c2csc3ncncc23)cc1O; ['Brc1csc2ncncc12']; ['Nc1ncc(Br)cc1O']; [0.8882710933685303] +CCCn1cnc(-c2cnc(N)c(O)c2)n1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3[nH]2)cc1O; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc(N)c(O)c2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.976584255695343, 0.9761160612106323] +CSc1nc(-c2cnc(N)c(O)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2cncnc2N)cc1O; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc(N)c(O)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(Br)cc1O']; [0.9999402165412903] +Nc1ncc(-c2ccc(F)cc2C(F)(F)F)cc1O; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9989480972290039, 0.9980155229568481] +CC(=O)Nc1cccc(-c2cnc(N)c(O)c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999061822891235, 0.9975454807281494, 0.9910160303115845, 0.8027022480964661] +Nc1ncc(Cc2c(F)cccc2F)cc1O; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(O)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999946355819702, 0.9992018342018127, 0.9974380731582642, 0.8656874895095825] +CC[C@H](CO)c1cnc(N)c(O)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnc(N)c(O)c3)cc2s1; [None]; [None]; [0] +Nc1ncc(-c2cnn3ccccc23)cc1O; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.9999843835830688, 0.999908447265625, 0.9992504119873047, 0.9963364005088806] +Cn1cc(-c2cnc(N)c(O)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1ncc(Br)cc1O']; [0.9996550679206848] +CCCn1cc(-c2cnc(N)c(O)c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9980045557022095, 0.8078176975250244] +Nc1ncc(-c2cc[nH]c(=O)c2)cc1O; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.9992570877075195] +Nc1ncc(-c2cccc3c2C(=O)CC3)cc1O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O']; [0.9916564226150513] +CS(=O)(=O)c1cccc(Cc2cnc(N)c(O)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cc1O; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cnc(N)c(O)c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999843239784241, 0.9979026913642883] +CN(c1ncccc1Cc1cnc(N)c(O)c1)S(C)(=O)=O; [None]; [None]; [0] +Nc1ncc(-c2cc3c(=O)[nH]ccc3o2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cnccc23)cc1O; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc(N)c(O)c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999966621398926, 0.9998166561126709, 0.9996538758277893, 0.923181414604187] +Nc1ncc(-c2cc3c(=O)[nH]cc(Br)c3s2)cc1O; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2cnc3[nH]ccc3c2)cc1O; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999812245368958, 0.9943314790725708] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999597072601318, 0.998399019241333, 0.9938192963600159] +Nc1ncc([C@H](CO)c2ccccc2)cc1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999133348464966, 0.9955170154571533] +Nc1ncc(-c2ccc(N3CCOCC3)cc2)cc1O; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999996423721313, 0.9999856948852539] +Nc1ncc([C@H](CO)Cc2ccccc2)cc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.999984622001648, 0.9993292093276978, 0.9965528845787048] +Nc1ncc(-c2c(F)cccc2Cl)cc1O; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1c(F)cccc1Cl']; [0.999993622303009, 0.9992713928222656] +CC1(c2cnc(N)c(O)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1ncc(-c2ccc(-n3cncn3)cc2)cc1O; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(O)c2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999109506607056, 0.9986187219619751, 0.9965113997459412] +Nc1ncc(-c2ccc(C(=O)c3ccccc3)cc2)cc1O; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999797344207764, 0.9998455047607422] +Cc1cc(-c2cnc(N)c(O)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc(N)c(O)c2)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2nncn2C2CC2)cc1O; [None]; [None]; [0] +CCc1cc(-c2cnc(N)c(O)c2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(-c2cn(Cc3ccccc3)nn2)cc1O; [None]; [None]; [0] +Nc1nnc(-c2cnc(N)c(O)c2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc(N)c(O)c2)n1; ['CC(C)(O)c1cccc(Br)n1']; ['Nc1ncc(Br)cc1O']; [0.9957072138786316] +Nc1ncc(-c2ccn(CC[NH3+])n2)cc1O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(O)c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +CCCCc1cc(-c2cnc(N)c(O)c2)nc(N)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cnc(N)c(O)c3)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2cnc(N)c(O)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc(N)c(O)c3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ccsc23)cc1O; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999963045120239, 0.9983758926391602, 0.923619270324707] +Nc1ncc(-c2cccc3nnsc23)cc1O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +Nc1ncc(CCCNC(=O)c2cccs2)cc1O; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc(N)c(O)c2)[nH]1; [None]; [None]; [0] +Nc1ncc(CCCNC(=O)C2CCC2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2ncc3ccccc3n2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cccnc23)cc1O; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.999442994594574] +Nc1ncc(-c2ncc3cc[nH]c3n2)cc1O; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc(N)c(O)c1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.999983549118042, 0.9987629055976868, 0.9897575974464417, 0.9431648254394531] +Nc1ncc(-c2cn(CCO)cn2)cc1O; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cnc(N)c(O)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc(N)c(O)c2)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9988921284675598, 0.988492488861084, 0.963668704032898] +C[C@@]1(O)CC[C@H](c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)c(O)c1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9997916221618652, 0.9990999698638916, 0.9951529502868652, 0.9809925556182861, 0.8225181102752686] +CN(C)S(=O)(=O)c1cccc(-c2cnc(N)c(O)c2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999909400939941, 0.9860134124755859] +CCOc1ccc(-c2cnc(N)c(O)c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999947547912598, 0.9996650218963623] +CC(=O)N(C)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999618530273438, 0.9996205568313599] +CS(=O)(=O)c1cccc(-c2cnc(N)c(O)c2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999897480010986, 0.9968558549880981, 0.9879258871078491] +COc1cc(-c2cnc(N)c(O)c2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999116659164429, 0.943601131439209] +Cc1nc(C(C)(C)O)sc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc(N)c(O)c2)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9955391883850098, 0.9637643098831177] +CN(C)c1cc(-c2cnc(N)c(O)c2)cnn1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(O)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999823570251465, 0.9989340305328369] +Cc1ccc2ncn(-c3cnc(N)c(O)c3)c2c1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3[nH]2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)C3CC3)c2)cc1O; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(O)c2)sn1; ['Cc1cc(N)sn1']; ['Nc1ncc(Br)cc1O']; [0.9940177798271179] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc(N)c(O)c3)cc2)CC1; [None]; [None]; [0] +Nc1ncc(-c2nccc3ccccc23)cc1O; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)[O-])cc2)cc1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.99997878074646, 0.999536395072937, 0.9975261688232422] +N#Cc1cccc(Cn2cc(-c3cnc(N)c(O)c3)cn2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)Nc3ccccc3)cc2)cc1O; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999722242355347, 0.9991483688354492] +Nc1ncc(Nc2ncccn2)cc1O; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc(N)c(O)c2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999275207519531, 0.9977923631668091, 0.9931539297103882] +Nc1ncc(-c2cccc(C3CCNCC3)c2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2ccc(OCCO)cc2)cc1O; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999628663063049, 0.9986411929130554, 0.9978442192077637] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cc2)cc1O; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9999972581863403, 0.9998732209205627, 0.9979641437530518] +Nc1ncc(Nc2ccncn2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cn2)cc1O; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CS(=O)(=O)C3)cc1O; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(F)(F)F)cc2)cc1O; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999643564224243, 0.9989299774169922] +CN(C)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999951124191284, 0.9996781349182129] +CN(C)S(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999897480010986, 0.9984180927276611] +CC(C)c1cc(-c2cnc(N)c(O)c2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9920735359191895, 0.9866107702255249] +CS(=O)(=O)N1CCC(c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc(N)c(O)c3)c2)CC1; [None]; [None]; [0] +Nc1ncc([C@H]2CCN(C(=O)c3ccccc3)C2)cc1O; [None]; [None]; [0] +CCCOc1ccc(-c2cnc(N)c(O)c2)nc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2)cc1O; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(Br)cc1']; [0.9997944235801697, 0.9849790334701538] +CCN(CC)C(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999936819076538, 0.9995454549789429, 0.9956469535827637] +CN(C)c1ccc(-c2cnc(N)c(O)c2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999847412109375, 0.9203228950500488] +Nc1ncc(-c2ccn3nccc3n2)cc1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(O)c2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999063014984131, 0.9556782841682434, 0.9404511451721191] +COc1ccc(Cl)cc1-c1cnc(N)c(O)c1; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9995003342628479, 0.994330883026123, 0.9698084592819214, 0.7883908748626709] +Cc1c(C(=O)[O-])cccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2-n2cccn2)cc1O; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ncc(Br)cc1O', 'Nc1ncccc1O']; [0.9999122619628906, 0.9986981749534607, 0.9852510690689087, 0.9757739901542664, 0.9469181299209595] +Nc1ncc(-c2c[nH]c3ccccc23)cc1O; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.9973861575126648] +Nc1ncc(-c2ccc3c(c2)CCO3)cc1O; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999922513961792, 0.9995495080947876] +COc1cc(OC)c(-c2cnc(N)c(O)c2)cc1Cl; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc(N)c(O)c3)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(O)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999895095825195, 0.9970862865447998, 0.994158148765564] +Nc1ncc(-c2cccc3c2OCO3)cc1O; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Brc1cccc2c1OCO2']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1ncc(Br)cc1O']; [0.9999914169311523, 0.9903766512870789, 0.9699093103408813, 0.9344351887702942] +Nc1ncc(-c2cnc3ccccc3c2)cc1O; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cnc2ccccc2c1']; [0.9998139142990112, 0.930977463722229] +Nc1ncc(-c2cc(-c3ccccc3)[nH]n2)cc1O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999927282333374, 0.999420166015625] +Nc1ncc(-c2scc3c2OCCO3)cc1O; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c(O)c2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.999983549118042, 0.9957789182662964, 0.9432594776153564] +Nc1nc(-c2cnc(N)c(O)c2)cs1; [None]; [None]; [0] +CC1(COc2cnc(N)c(O)c2)COC1; [None]; [None]; [0] +Nc1ncc(-c2ccn(-c3cccc(Cl)c3)n2)cc1O; [None]; [None]; [0] +CSc1ccc(-c2cnc(N)c(O)c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999683499336243, 0.9973278045654297, 0.9923867583274841] +Nc1ncc(-c2cc3ccccc3s2)cc1O; ['CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Nc1ncc(Br)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1cc2ccccc2s1']; [0.9997760057449341, 0.9994012117385864] +COc1cccc(C(=O)Nc2cnc(N)c(O)c2)c1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(O)c2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2Cl)cc1O; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Fc1ccc(Br)c(Cl)c1', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ncc(Br)cc1O', 'OB(O)c1ccc(F)cc1Cl']; [0.9999290704727173, 0.9978935718536377, 0.9762996435165405, 0.9575805068016052] +CCN1CCN(Cc2ccc(-c3cnc(N)c(O)c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9997613430023193, 0.9991906881332397] +Nc1ncc(-c2ccc3c(c2)CCC(=O)N3)cc1O; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.999028205871582] +Nc1ncc(-c2ncc(Br)cn2)cc1O; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(O)c2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O']; [0.999988317489624, 0.9989507794380188] +CCc1ccc(-c2cnc(N)c(O)c2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999926090240479, 0.9989582300186157, 0.998897910118103] +COc1ccc(CNc2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)cc2Cl)cc1O; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Clc1ccc(Br)c(Cl)c1']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ncc(Br)cc1O']; [0.9998503923416138, 0.9987291097640991, 0.9927211403846741, 0.8270782828330994] +Nc1ncc(-c2ncc3cccn3n2)cc1O; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(O)c2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999608993530273, 0.9999510645866394] +Nc1ncc(-c2cc3ccccn3n2)cc1O; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c(O)c2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999836683273315, 0.9998389482498169, 0.9992930889129639, 0.9954744577407837, 0.9817385673522949] +CC1(C)Cc2cc(-c3cnc(N)c(O)c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc(N)c(O)c3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Nc1ncc(Br)cc1O']; [0.9425612092018127] +Nc1ncc(-c2cccc3ccc(O)cc23)cc1O; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.99980628490448] +Nc1ncc(NC2CN(C(=O)C3CC3)C2)cc1O; [None]; [None]; [0] +COc1cc(F)c(-c2cnc(N)c(O)c2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.99997878074646, 0.9979311227798462, 0.9923806190490723, 0.7624571919441223] +COc1cc(-c2cnc(N)c(O)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999932050704956, 0.9995633959770203, 0.996727705001831] +Nc1ncc(-c2ncc(Cl)cn2)cc1O; [None]; [None]; [0] +Cc1nc(Nc2cnc(N)c(O)c2)sc1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999769926071167, 0.9989383220672607, 0.997596263885498] +Cc1cc(Nc2cnc(N)c(O)c2)nn1C; [None]; [None]; [0] +Cc1csc2c(-c3cnc(N)c(O)c3)ncnc12; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c(O)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(O)c2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9644910097122192, 0.8879246711730957] +CCNC(=O)c1ccc(-c2cnc(N)c(O)c2)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2ccco2)cc1O; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Nc1ncc(Cc2ccc(S(=O)(=O)CCO)cc2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cc1O; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc(N)c(O)c2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9998370409011841, 0.9943791627883911, 0.9590898752212524] +CO[C@@H]1CC[C@@H](c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc(N)c(O)c2)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3cnc(N)c(O)c3)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc(N)c(O)c1)cn2C; [None]; [None]; [0] +Nc1ncc(-c2ccc3cn[nH]c3c2)cc1O; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Brc1ccc2cn[nH]c2c1']; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ncc(Br)cc1O']; [0.9999867677688599, 0.9986421465873718, 0.9973554611206055, 0.9016646146774292] +CNC(=O)c1ccc(OC)c(-c2cnc(N)c(O)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3o2)cc1O; ['Nc1ncc(Br)cc1O']; ['OB(O)c1cc2ccccc2o1']; [0.9985458850860596] +C[NH+](C)Cc1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ncc3sccc3n2)cc1O; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3cccnc3)ccn2)cc1O; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc(N)c(O)c1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1ccn(C)n1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9997972846031189, 0.9997129440307617, 0.8926273584365845] +Cn1cc(Br)cc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc(N)c(O)c3)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)N3CCCC3)c2)cc1O; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc(N)c(O)c3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc(N)c(O)c2)c1; [None]; [None]; [0] +CCc1cccc(-c2cnc(N)c(O)c2)n1; ['CCc1cccc(Br)n1']; ['Nc1ncc(Br)cc1O']; [0.8971434831619263] +Cc1cc(-c2cnc(N)c(O)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc(N)c(O)c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(O)c2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; [0.9999774098396301, 0.9962559938430786, 0.9733713865280151] +Cc1n[nH]c2cc(-c3cnc(N)c(O)c3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O', 'Nc1ncc(Br)cc1O']; [0.9999992847442627, 0.9999952912330627, 0.9999814033508301, 0.9989186525344849] +CC(=O)N1CCC(n2cc(-c3cnc(N)c(O)c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1ncc(Br)cc1O']; [0.9999335408210754] +Nc1ncc(-c2cccc(N3CCCC3=O)c2)cc1O; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1ncc(Br)cc1O']; [0.9989482164382935] +Nc1ncc(-c2ncn3c2CCCC3)cc1O; [None]; [None]; [0] +Nc1ncc(-c2ccc(CCO)cc2)cc1O; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O', 'Nc1ncc(Cl)cc1O']; ['Nc1ncc(Br)cc1O', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1']; [0.9999639391899109, 0.9990337491035461, 0.9889194965362549] +Nc1ncc(NC(=O)c2cccc(OC(F)(F)F)c2)cc1O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(O)c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc(N)c(O)c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc(N)c(O)c1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1ncc(Br)cc1O']; [0.9059714674949646] +CNC(=O)c1ccc(-c2cnc(N)c(O)c2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ncc(Br)cc1O']; [0.9997586011886597] +COc1cc(N2CCNCC2)ccc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1O']; [0.997151255607605] +CN(C)C(=O)c1ccc(-c2cnc(N)c(O)c2)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ncc(Br)cc1O']; [0.8425862789154053] +CCNC(=O)Cc1ccc(-c2cnc(N)c(O)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2cnc(N)c(O)c2)cc1C(C)(C)O; [None]; [None]; [0] +Nc1ncc(Nc2ccc(F)cn2)cc1O; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(O)c2)ncc1F; [None]; [None]; [0] +Nc1ncc(Nc2ccccn2)cc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc(N)c(O)c2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc(N)c(O)c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc(N)c(O)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ncccn1; ['CNC(=O)c1ccccc1Br', 'Brc1ncccn1', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1F']; ['Nc1ncccn1', 'CNC(=O)c1ccccc1N', 'Nc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1']; [0.9926450252532959, 0.988416314125061, 0.976299524307251, 0.9702796339988708, 0.9621850252151489, 0.9407326579093933, 0.936091423034668, 0.9067413806915283] +CCOc1ccccc1Nc1ncccn1; ['CCOc1ccccc1N', 'Brc1ncccn1', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1Cl', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1N']; ['Clc1ncccn1', 'CCOc1ccccc1N', 'Nc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1']; [0.9980959892272949, 0.9977697730064392, 0.9929987788200378, 0.9883325695991516, 0.9877851009368896, 0.9735585451126099, 0.9725499749183655, 0.955936074256897, 0.9531468152999878, 0.9364726543426514, 0.9207822680473328] +COC(C)(C)CCNc1ncccn1; ['COC(C)(C)CCN']; ['Clc1ncccn1']; [0.9947349429130554] +CC(C)S(=O)(=O)c1ccccc1Nc1ncccn1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1N', 'Brc1ncccn1', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N']; ['Nc1ncccn1', 'Clc1ncccn1', 'CC(C)S(=O)(=O)c1ccccc1N', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9976773262023926, 0.9960468411445618, 0.9953987002372742, 0.9946087002754211, 0.9766231179237366, 0.9590548872947693, 0.9582710266113281, 0.933281421661377] +Fc1cc(F)cc(CNc2ncccn2)c1; ['Fc1cc(F)cc(CCl)c1', 'Brc1ncccn1', 'Fc1ncccn1', 'Fc1cc(F)cc(CBr)c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'NCc1cc(F)cc(F)c1']; ['Nc1ncccn1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'Nc1ncccn1', 'OCc1cc(F)cc(F)c1', 'O=Cc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'O=c1nccc[nH]1']; [0.9998822212219238, 0.9998703598976135, 0.9998432397842407, 0.9997785687446594, 0.9996063113212585, 0.9995603561401367, 0.999470591545105, 0.9993656873703003, 0.998975932598114, 0.9986432194709778, 0.9977396130561829, 0.8985844850540161] +CP(C)(=O)c1ccccc1Nc1ncccn1; ['CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N', 'Brc1ncccn1', 'CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N']; ['Clc1ncccn1', 'CSc1ncccn1', 'CP(C)(=O)c1ccccc1N', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; [0.9997165203094482, 0.9994500875473022, 0.999242901802063, 0.9992309808731079, 0.9988390207290649] +c1cnc(Nc2ccnc3ccccc23)nc1; ['Clc1ncccn1', 'Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'CSc1ncccn1', 'CC(=O)Nc1ncccn1']; ['Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccnc2ccccc12', 'Clc1ccnc2ccccc12']; [0.9996442794799805, 0.9989042282104492, 0.9986560344696045, 0.9974650144577026, 0.994489312171936, 0.994152843952179, 0.968353271484375, 0.8788095712661743, 0.8684730529785156] +CCn1cc(Nc2ncccn2)cn1; ['Brc1ncccn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1']; ['CCn1cc(N)cn1', 'Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9983541965484619, 0.9962956309318542, 0.995639443397522, 0.9952177405357361, 0.9874931573867798, 0.9865978360176086, 0.9818862676620483, 0.9813492298126221] +FC(F)(F)c1cccc(Nc2ncccn2)c1; ['Nc1ncccn1', 'Ic1ncccn1', 'Brc1ncccn1', 'CS(=O)c1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'FC(F)(F)c1cccc(I)c1', 'CS(=O)(=O)c1ncccn1', 'Fc1cccc(C(F)(F)F)c1', 'CS(=O)(=O)c1ncccn1', 'FC(F)(F)c1cccc(Br)c1', 'Nc1cccc(C(F)(F)F)c1']; ['OB(O)c1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1ncccn1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1ncccn1', 'O=CNc1cccc(C(F)(F)F)c1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9994258880615234, 0.9989892244338989, 0.9988781213760376, 0.9914087057113647, 0.9904943704605103, 0.9896067380905151, 0.9868345856666565, 0.985739529132843, 0.970283567905426, 0.9240950345993042, 0.9138869047164917, 0.8545310497283936, 0.8086479902267456] +FC(F)(F)Oc1ccccc1Nc1ncccn1; ['Brc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'FC(F)(F)Oc1ccccc1Br', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Fc1ncccn1', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'Fc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncccn1']; ['Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncccn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncccn1', 'Nc1ncccn1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncccn1', 'Nc1ncccn1', 'Oc1ccccc1OC(F)(F)F']; [0.9999341368675232, 0.9997429847717285, 0.9997023940086365, 0.9996918439865112, 0.9992700815200806, 0.9989025592803955, 0.9975177049636841, 0.9971169233322144, 0.996823787689209, 0.9950409531593323, 0.9925457835197449, 0.992478609085083, 0.9915722608566284, 0.9389979839324951] +Cc1nnc(-c2ccccc2Nc2ncccn2)[nH]1; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1ncccn1; ['NC(=O)c1ccccc1Br', 'Clc1ncccn1', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1F', 'NC(=O)c1ccccc1B(O)O']; ['Nc1ncccn1', 'NC(=O)c1ccccc1N', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9813228845596313, 0.9752973914146423, 0.9388028383255005, 0.9332095384597778, 0.9076114296913147] +c1ccc(Cn2cc(Nc3ncccn3)cn2)cc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9962932467460632, 0.9942651987075806, 0.9941697120666504, 0.992617130279541, 0.9879976511001587, 0.9127812385559082, 0.819894552230835] +Cn1cnc2ccc(Nc3ncccn3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ncccn1']; [0.9987126588821411] +c1ccc(-c2ncc(Nc3ncccn3)[nH]2)cc1; [None]; [None]; [0] +O=C([O-])c1ccccc1Nc1ncccn1; [None]; [None]; [0] +OCCn1cc(Nc2ncccn2)cn1; ['Clc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'Brc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9992830753326416, 0.9983417987823486, 0.9944223165512085, 0.9939230680465698, 0.9880234003067017, 0.9876798391342163, 0.9683235883712769] +O=C(Nc1cccc(Nc2ncccn2)c1)c1ccccc1; ['O=c1onc(-c2ccccc2)o1']; ['c1ccc(Nc2ncccn2)cc1']; [0.9935614466667175] +CC(C)(C)c1nc(Nc2ncccn2)cs1; [None]; [None]; [0] +COc1cnc(Nc2ncccn2)nc1; ['Brc1ncccn1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['COc1cnc(N)nc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9980270862579346, 0.9962834119796753, 0.9896706342697144, 0.9892387390136719, 0.9690015316009521, 0.9466037750244141, 0.9363142848014832, 0.9235876798629761, 0.8923317193984985] +Clc1ccc(Cl)c(Nc2ncccn2)c1; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1', 'Fc1cc(Cl)ccc1Cl', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cc(Cl)ccc1Cl', 'CSc1ncccn1', 'Clc1ccc(Cl)c(Cl)c1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1ncccn1', 'OB(O)c1cc(Cl)ccc1Cl', 'Oc1cc(Cl)ccc1Cl', 'Nc1ncccn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1ncccn1']; [0.999699056148529, 0.999539852142334, 0.9995366334915161, 0.9992034435272217, 0.9990862607955933, 0.9989040493965149, 0.9977521300315857, 0.9963029623031616, 0.9958959817886353, 0.9937140345573425, 0.8043050169944763] +CC(C)C(=O)CONc1ncccn1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1Nc1ncccn1; [None]; [None]; [0] +Cc1nc2ccccn2c1Nc1ncccn1; ['Brc1ncccn1', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'CS(=O)(=O)c1ncccn1', 'Cc1nc2ccccn2c1Br', 'CSc1ncccn1']; ['Cc1nc2ccccn2c1N', 'Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Cc1nc2ccccn2c1N', 'Nc1ncccn1', 'Cc1nc2ccccn2c1N']; [0.9999275207519531, 0.9997334480285645, 0.9995789527893066, 0.9992460012435913, 0.9987996816635132, 0.9980090260505676, 0.9950175881385803] +c1cnc(Nc2cnc3ccccn23)nc1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1ncccn1', 'Brc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12']; [0.9986628293991089, 0.9924198389053345, 0.9918570518493652, 0.9854215383529663, 0.9766248464584351, 0.9749797582626343, 0.936981737613678, 0.9305270910263062, 0.8925426602363586] +Cc1nc(C)c(Nc2ncccn2)s1; [None]; [None]; [0] +CNc1nc(C)c(Nc2ncccn2)s1; [None]; [None]; [0] +Cc1nc(N)sc1Nc1ncccn1; [None]; [None]; [0] +c1cnc(Nc2cnc3cccnn23)nc1; ['Brc1cnc2cccnn12', 'Clc1ncccn1', 'Clc1cnc2cccnn12']; ['Nc1ncccn1', 'Nc1cnc2cccnn12', 'Nc1ncccn1']; [0.9998970031738281, 0.9998012185096741, 0.9994392395019531] +Clc1cccc(Cl)c1Nc1ncccn1; ['Clc1cccc(Cl)c1Br', 'Clc1ncccn1', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Nc1c(Cl)cccc1Cl', 'Fc1c(Cl)cccc1Cl', 'Nc1ncccn1']; ['Nc1ncccn1', 'Nc1c(Cl)cccc1Cl', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'OB(O)c1c(Cl)cccc1Cl']; [0.999618649482727, 0.9993458986282349, 0.9989871978759766, 0.998970627784729, 0.9985487461090088, 0.9982265830039978, 0.9846542477607727] +c1cnc(Nc2cccc(Cn3cncn3)c2)nc1; ['Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1']; [0.9999542236328125, 0.9999418258666992, 0.9998996257781982] +Brc1cccc(Nc2ncccn2)c1; ['Fc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Brc1cccc(I)c1', 'Clc1cccc(Br)c1', 'CS(=O)c1ncccn1', 'Fc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Nc1cccc(Br)c1']; ['Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cccc(Br)c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999873161315918, 0.9998502731323242, 0.9998427629470825, 0.9992166757583618, 0.9986201524734497, 0.9982097148895264, 0.9965863227844238, 0.9960745573043823, 0.9934082627296448, 0.9931313991546631, 0.9845131635665894, 0.9670567512512207, 0.9643005728721619] +Cc1ccc(Cl)c(Nc2ncccn2)c1; ['Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(F)c1', 'Cc1ccc(Cl)c(O)c1', 'COc1cc(C)ccc1Cl', 'Cc1ccc(Cl)c(N)c1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995391964912415, 0.9976453185081482, 0.9926784038543701, 0.9908372163772583, 0.9869222640991211, 0.9850060939788818, 0.9734090566635132, 0.9721648693084717] +c1cnc(NNCc2cccnc2)nc1; [None]; [None]; [0] +Cc1c(Nc2ncccn2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(Nc2ncccn2)n1; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Ic1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'Brc1ncccn1', 'Fc1ncccn1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1']; [0.998468279838562, 0.9966390132904053, 0.9937078952789307, 0.9912387132644653, 0.9751547574996948, 0.9651288986206055, 0.9010269045829773] +c1cnc(Nc2cnn3ncccc23)nc1; ['Brc1cnn2ncccc12']; ['Nc1ncccn1']; [0.9834383726119995] +c1cnc(Nc2ccc3ccccc3c2)nc1; ['Ic1ncccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Fc1ccc2ccccc2c1']; ['Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995086193084717, 0.9994708299636841, 0.9992938041687012, 0.9986605644226074, 0.9970688223838806, 0.995460569858551, 0.9893676042556763, 0.9874218702316284, 0.9807745814323425, 0.9655544757843018, 0.891416072845459, 0.8474957942962646, 0.8054816722869873] +c1cnc(NNc2cccnc2)nc1; [None]; [None]; [0] +c1cnc(Nn2cnc3ccccc32)nc1; [None]; [None]; [0] +c1cnc(NNCCc2c[nH]cn2)nc1; [None]; [None]; [0] +O=C(NNc1ncccn1)c1cccs1; ['NNc1ncccn1', 'NNc1ncccn1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9977772235870361, 0.8729928731918335] +O=C([O-])Cc1cccc(Nc2ncccn2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1Nc1ncccn1; ['Clc1ncccn1', 'Brc1ncccn1', 'Ic1ncccn1', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1']; ['Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F']; [0.9989564418792725, 0.9980859756469727, 0.9968855977058411, 0.9947266578674316, 0.9946392774581909, 0.9939572811126709, 0.9860455989837646, 0.9840911030769348, 0.9648799896240234] +NC(=O)c1c(F)cccc1Nc1ncccn1; ['Clc1ncccn1', 'NC(=O)c1c(F)cccc1Br', 'Ic1ncccn1']; ['NC(=O)c1c(N)cccc1F', 'Nc1ncccn1', 'NC(=O)c1c(N)cccc1F']; [0.9957263469696045, 0.986086368560791, 0.9826323986053467] +c1cnc(Nc2cncc3ccccc23)nc1; ['Clc1ncccn1', 'Brc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Fc1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ncccn1', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12']; ['Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'OB(O)c1cncc2ccccc12', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998949766159058, 0.9998377561569214, 0.9998255968093872, 0.9996092319488525, 0.9992233514785767, 0.9990842938423157, 0.9989092350006104, 0.9969652891159058, 0.9967427849769592, 0.996100664138794, 0.9898127913475037, 0.9861966371536255, 0.975798487663269] +c1ccc(CCNNc2ncccn2)cc1; ['ClCCc1ccccc1']; ['NNc1ncccn1']; [0.9632569551467896] +Cn1cc(-c2ccc(Nc3ncccn3)cc2)cn1; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Clc1ncccn1', 'Brc1ncccn1', 'CSc1ncccn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['Fc1ncccn1', 'Ic1ncccn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Nc1ncccn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1']; [0.9999710917472839, 0.9999603033065796, 0.9999511241912842, 0.9998685121536255, 0.9998559951782227, 0.9998447895050049, 0.9996457695960999, 0.9996367692947388] +Nc1[nH]nc2cc(Nc3ncccn3)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['Nc1ncccn1']; [0.9853326082229614] +CN1c2ccc(Nc3ncccn3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(Nc3ncccn3)ccc21; ['Brc1ncccn1', 'Cn1ncc2cc(N)ccc21', 'Clc1ncccn1', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Cn1ncc2cc(Br)ccc21', 'CS(=O)c1ncccn1', 'Cn1ncc2cc(Cl)ccc21']; ['Cn1ncc2cc(N)ccc21', 'Ic1ncccn1', 'Cn1ncc2cc(N)ccc21', 'Nc1ncccn1', 'Nc1ncccn1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Nc1ncccn1', 'Cn1ncc2cc(N)ccc21', 'Nc1ncccn1']; [0.9999827742576599, 0.9999785423278809, 0.9998835921287537, 0.9998830556869507, 0.999463677406311, 0.9992952346801758, 0.9992934465408325, 0.9990465641021729, 0.9986869096755981, 0.9896364212036133] +c1cnc(Nc2ccc(-c3cn[nH]c3)cc2)nc1; ['Fc1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ncccn1']; [0.9999736547470093, 0.9997082948684692, 0.9995179176330566, 0.9994117617607117, 0.998470664024353, 0.9953646659851074] +Clc1ccc(CNNc2ncccn2)cc1; [None]; [None]; [0] +CCCn1cnc(Nc2ncccn2)n1; ['Brc1ncccn1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1']; ['CCCn1cnc(N)n1', 'Clc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1']; [0.9877983331680298, 0.9708942770957947, 0.9625207185745239, 0.8970350027084351, 0.8929072618484497, 0.8581525087356567, 0.852755069732666] +Oc1cccc(Nc2ncccn2)c1; ['Brc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cccc(O)c1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(F)c1', 'Nc1ncccn1']; [0.9994227886199951, 0.9984782934188843, 0.9912060499191284, 0.980518102645874, 0.9791543483734131, 0.9663047194480896, 0.9581004977226257, 0.9307036399841309, 0.8198040723800659] +OCc1cccc(Nc2ncccn2)c1; ['Ic1ncccn1', 'CS(=O)c1ncccn1', 'Clc1ncccn1', 'Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1']; ['Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(B(O)O)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(I)c1']; [0.9976606369018555, 0.9937871694564819, 0.9906395673751831, 0.9897158145904541, 0.9682357311248779, 0.9618839025497437, 0.9016808271408081, 0.8663198947906494] +COc1cc(Nc2ncccn2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cnc(NNc2ccncc2)nc1; ['Clc1ccncc1']; ['NNc1ncccn1']; [0.9104702472686768] +CC(C)n1cc(Nc2ncccn2)nn1; ['CC(C)n1cc(N)nn1', 'Brc1ncccn1', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1']; ['Fc1ncccn1', 'CC(C)n1cc(N)nn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ncccn1']; [0.9957531690597534, 0.9955662488937378, 0.9950566291809082, 0.9934687614440918, 0.9912822246551514, 0.9898103475570679] +Fc1ccccc1CNNc1ncccn1; [None]; [None]; [0] +CSc1nc(Nc2ncccn2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1Nc1ncccn1; [None]; [None]; [0] +c1cnc(NCCc2c[nH]nn2)nc1; ['Fc1ncccn1', 'CSc1ncccn1', 'Clc1ncccn1', 'Brc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1']; [0.9989465475082397, 0.9982266426086426, 0.9946728944778442, 0.9918650388717651, 0.9864711761474609, 0.9840383529663086, 0.9708911180496216] +c1cnc(Nc2csc3ncncc23)nc1; ['Brc1csc2ncncc12']; ['Nc1ncccn1']; [0.9993579983711243] +c1cnc(Nc2cc3ccccc3[nH]2)nc1; ['Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1']; ['Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1']; [0.9912625551223755, 0.9862579107284546, 0.8917368650436401] +N#CCCc1cccc(Nc2ncccn2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9975420832633972, 0.7630939483642578] +Nc1nc(Nc2ncccn2)cs1; ['Nc1nc(Cl)cs1', 'Clc1ncccn1', 'NC(N)=S', 'Fc1ncccn1']; ['Nc1ncccn1', 'Nc1csc(N)n1', 'O=C(CCl)Nc1ncccn1', 'Nc1csc(N)n1']; [0.9993234276771545, 0.996975302696228, 0.9930343627929688, 0.9719158411026001] +Nc1ncncc1Nc1ncccn1; ['Clc1ncccn1', 'Brc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cncnc1N']; ['Nc1cncnc1N', 'Nc1cncnc1N', 'Nc1cncnc1N', 'Nc1ncncc1F', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Nc1ncccn1']; [0.9992125630378723, 0.9980771541595459, 0.9879796504974365, 0.9860424399375916, 0.974488377571106, 0.97154301404953, 0.9637742042541504, 0.9247848987579346] +CCNc1nc2ccc(Nc3ncccn3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(Nc2ncccn2)cc1; ['CCC(=O)Nc1ccc(N)cc1']; ['Clc1ncccn1']; [0.9801129698753357] +Fc1ccc(Nc2ncccn2)c(C(F)(F)F)c1; ['Brc1ncccn1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'CS(=O)(=O)c1ncccn1', 'Fc1ccc(F)c(C(F)(F)F)c1', 'Nc1ccc(F)cc1C(F)(F)F', 'CSc1ncccn1']; ['Nc1ccc(F)cc1C(F)(F)F', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ncccn1', 'O=CNc1ccc(F)cc1C(F)(F)F', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccc(F)cc1C(F)(F)F']; [0.9994912147521973, 0.9986830949783325, 0.9982271790504456, 0.9971185326576233, 0.9920037984848022, 0.9918380975723267, 0.9909239411354065, 0.9908332824707031, 0.9891794323921204, 0.9834588170051575, 0.921912431716919, 0.8735712766647339] +NC(=O)CCCNc1ncccn1; ['Brc1ncccn1', 'CSc1ncccn1', 'Clc1ncccn1', None, 'COC(=O)CCCNc1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['NCCCC(N)=O', 'NCCCC(N)=O', 'NCCCC(N)=O', None, 'N', 'NCCCC(N)=O']; [0.9945244789123535, 0.994243860244751, 0.9928322434425354, 0, 0.965023398399353, 0.9561847448348999] +O=C(Nc1cnn2cccnc12)c1cccc(OC(F)(F)F)c1; ['Nc1cnn2cccnc12', None, 'Brc1cnn2cccnc12', 'Nc1cnn2cccnc12', 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'Ic1cnn2cccnc12', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', None, 'NC(=O)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=[N+]([O-])c1cnn2cccnc12', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'Nc1cnn2cccnc12']; [0.9999991655349731, 0, 0.9999989867210388, 0.9999963641166687, 0.9999823570251465, 0.9999684691429138, 0.9999486207962036] +Cc1ccc(Nc2ncccn2)c(Br)c1; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Brc1ncccn1', 'CSc1ncccn1', 'Cc1ccc(Br)c(Br)c1', None, 'Cc1ccc(Nc2ncccn2)cc1']; ['Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Nc1ncccn1', None, 'O=C1CCC(=O)N1Br']; [0.9999446868896484, 0.9998139142990112, 0.9993436932563782, 0.9992162585258484, 0.9982763528823853, 0.9980637431144714, 0.9919553399085999, 0, 0.8675734400749207] +CCN(CC)c1ccnc2[nH]ccc12; ['CCNCC', 'CCNCC', 'CCNCC', None, 'Brc1ccnc2[nH]ccc12', None]; ['Fc1ccnc2[nH]ccc12', 'Ic1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', None, 'CCNCC', None]; [0.9918164014816284, 0.9897913932800293, 0.9719640612602234, 0, 0.8908982276916504, 0] +Brc1ccc(-c2cnn3cccnc23)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cnn2cccnc12', 'Brc1ccc(I)cc1', 'COC(CC(OC)OC)OC', 'Brc1ccc(Br)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'COC(CC(OC)OC)OC', 'Brc1ccc(I)cc1', 'Ic1cnn2cccnc12', 'Brc1cnn2cccnc12', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', None]; ['Ic1cnn2cccnc12', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Nc1n[nH]cc1-c1ccc(Br)cc1', 'CC1(C)OB(c2cnn3cccnc23)OC1(C)C', 'Clc1ccc(Br)cc1', 'Nc1[nH]ncc1-c1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'OB(O)c1cnn2cccnc12', 'OB(O)c1cnn2cccnc12', 'c1cnc2ccnn2c1', 'O=C(O)c1cnn2cccnc12', None]; [1.0, 0.9999998807907104, 0.9999991059303284, 0.9999975562095642, 0.9999940395355225, 0.9999831914901733, 0.9999824166297913, 0.9999747276306152, 0.9999678134918213, 0.9999638199806213, 0.9994088411331177, 0.9992466568946838, 0.9984493851661682, 0.9931459426879883, 0.967018187046051, 0.9391117095947266, 0] +CC(C)(C)c1ccc(-c2cnc(N)c(O)c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', None]; ['Nc1ncc(Br)cc1O', 'Nc1ncc(Br)cc1O', None]; [0.9999940395355225, 0.9996793270111084, 0] +Nc1ncc(-c2ccc(OC(F)(F)F)cc2)cc1O; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1ncc(Br)cc1O', None]; ['Nc1ncc(Br)cc1O', 'OB(O)c1ccc(OC(F)(F)F)cc1', None]; [0.9999984502792358, 0.9998629093170166, 0] +Nc1ncc(-c2nc3ccccc3s2)cc1O; [None]; [None]; [0] +O=C(NNc1ncccn1)c1c(Cl)cccc1Cl; ['NNc1ncccn1', 'NNc1ncccn1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9984596371650696, 0.9953693151473999] +CC(C)(O)CC(=O)NCCNc1ncccn1; ['CCOC(=O)CC(C)(C)O', 'COC(=O)CC(C)(C)O', None, 'CC(C)(O)CC(=O)O', 'CC(C)(O)CC(=O)[O-]']; ['NCCNc1ncccn1', 'NCCNc1ncccn1', None, 'NCCNc1ncccn1', 'NCCNc1ncccn1']; [0.9998857975006104, 0.99986732006073, 0, 0.9981753826141357, 0.9937137365341187] +CC(=O)Nc1cccc(Nc2ncccn2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['Clc1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9954639673233032, 0.9946264028549194, 0.9943639039993286, 0.9907364845275879, 0.9765021800994873, 0.923608660697937, 0.899644136428833] +CC(C)(CONc1ncccn1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(Nc2ncccn2)cc1Cl; ['Brc1ncccn1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(F)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(O)cc1Cl', 'COc1ccc(N)cc1Cl']; ['COc1ccc(N)cc1Cl', 'Nc1ncccn1', 'CSc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998841285705566, 0.9995675086975098, 0.9992868900299072, 0.9990959167480469, 0.9990178942680359, 0.9978023767471313, 0.9956622123718262, 0.99549400806427, 0.9899135828018188, 0.9886301755905151, 0.9789599776268005] +c1ccc(ONc2ncccn2)nc1; [None]; [None]; [0] +c1cnc(Nc2cnn3ccccc23)nc1; ['Clc1ncccn1', 'Clc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'Brc1cnn2ccccc12', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1']; ['Nc1cnn2ccccc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1ncccn1', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12']; [0.9988768696784973, 0.998404860496521, 0.9980650544166565, 0.9968835115432739, 0.9935954809188843, 0.992013692855835, 0.9890134930610657, 0.9661184549331665, 0.9566143751144409, 0.9161983132362366] +CCCn1cc(Nc2ncccn2)cn1; ['Brc1ncccn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1']; ['CCCn1cc(N)cn1', 'Fc1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998255968093872, 0.9996902942657471, 0.9995121955871582, 0.9987920522689819, 0.9985977411270142, 0.9985314607620239, 0.9979831576347351, 0.9967917203903198, 0.9960330128669739] +Cn1cc(Nc2ncccn2)c2ccccc21; [None]; [None]; [0] +COc1cc(CCNc2ncccn2)cc(OC)c1; ['COc1cc(CCN)cc(OC)c1', 'Brc1ncccn1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(CCO)cc(OC)c1']; ['Fc1ncccn1', 'COc1cc(CCN)cc(OC)c1', 'Clc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999626874923706, 0.9993740320205688, 0.9992913007736206, 0.9963754415512085, 0.9956656694412231, 0.9942091107368469, 0.9940581321716309, 0.9857909679412842, 0.9514689445495605] +O=c1cc(Nc2ncccn2)cc[nH]1; ['Brc1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1cc[nH]c(=O)c1']; ['Nc1cc[nH]c(=O)c1', 'O=c1cc(I)cc[nH]1', 'Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(F)cc[nH]1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(O)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'Nc1cc[nH]c(=O)c1', 'Nc1ncccn1']; [0.9993586540222168, 0.9979023933410645, 0.9967278242111206, 0.995041012763977, 0.9944323301315308, 0.9927002787590027, 0.9580620527267456, 0.9542893767356873, 0.9460359811782837, 0.9255255460739136, 0.9189660549163818] +CC(C)(N)c1ccc(Nc2ncccn2)cc1; ['CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['Clc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1']; [0.9777992963790894, 0.918440580368042, 0.825874924659729] +O=C1CCc2cccc(Nc3ncccn3)c21; ['Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncccn1']; ['Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(F)c21', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncccn1', 'O=C1CCc2cccc(O)c21']; [0.9998055696487427, 0.9997149705886841, 0.9982767105102539, 0.9978930950164795, 0.9967799186706543, 0.9916462898254395, 0.9893976449966431, 0.9786347150802612, 0.973676323890686, 0.9669780731201172, 0.9419866800308228] +CS(=O)(=O)C1CCN(Nc2ncccn2)CC1; [None]; [None]; [0] +CCN(CC)Nc1ncccn1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1Nc1ncccn1; ['CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1Br']; ['Clc1ncccn1', 'Nc1ncccn1']; [0.9699939489364624, 0.9623515009880066] +C[S@](=O)c1ccc(Nc2ncccn2)cc1; ['CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1']; ['CSc1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ccc(N)cc1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9941579103469849, 0.9799401760101318, 0.9599010944366455, 0.9327211380004883, 0.7854651212692261] +[NH3+]Cc1ccc(Nc2ncccn2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)Oc1cncc(Nc2ncccn2)c1; ['CC(C)Oc1cncc(Br)c1']; ['Nc1ncccn1']; [0.9986101388931274] +CC(C)(C)c1ccc(Nc2ncccn2)cc1; ['CC(C)(C)c1ccc(N)cc1', 'Brc1ncccn1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)Br']; ['Clc1ncccn1', 'CC(C)(C)c1ccc(N)cc1', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'c1ccc(Nc2ncccn2)cc1']; [0.9997421503067017, 0.9995255470275879, 0.9993968605995178, 0.9986710548400879, 0.9977325201034546, 0.9934903383255005, 0.990325927734375, 0.9891538619995117, 0.9876046180725098, 0.9577782154083252, 0.9565244913101196, 0.9228006601333618, 0.8152050375938416] +COc1cccc(F)c1Nc1ncccn1; ['COc1cccc(F)c1N', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1N', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1N', 'COc1cccc(F)c1I', 'COc1cccc(F)c1F']; ['CSc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995381832122803, 0.9995025396347046, 0.9989807605743408, 0.9980568885803223, 0.9905658960342407, 0.9866454601287842, 0.9437257647514343, 0.7612846493721008] +c1cnc(NNc2cnc3ccccc3c2)nc1; ['Clc1cnc2ccccc2c1']; ['NNc1ncccn1']; [0.9839504957199097] +O=c1[nH]cc(Br)c2sc(Nc3ncccn3)cc12; [None]; [None]; [0] +C[C@@H](ONc1ncccn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +c1ccc(-c2ccncc2NNc2ncccn2)cc1; [None]; [None]; [0] +c1cnc(Nc2c[nH]c3cnccc23)nc1; ['Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.942968487739563, 0.8605237603187561] +O=c1[nH]ccc2oc(Nc3ncccn3)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1Nc1ncccn1; [None]; [None]; [0] +COc1ccncc1NNc1ncccn1; [None]; [None]; [0] +c1cnc(Nc2cnc3[nH]ccc3c2)nc1; ['Fc1ncccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Clc1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'CS(=O)(=O)c1ncccn1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cnc2[nH]ccc2c1', 'Nc1ncccn1']; [0.9997997283935547, 0.9994864463806152, 0.9994090795516968, 0.9993343353271484, 0.9985592365264893, 0.9965921640396118, 0.991797685623169, 0.9914495944976807, 0.9895687699317932, 0.9856715202331543] +CNS(=O)(=O)c1ccc(Nc2ncccn2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(F)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Clc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9991939067840576, 0.9813209176063538, 0.95184326171875, 0.9425253868103027, 0.9046791791915894, 0.9027289748191833, 0.8909609317779541, 0.8885218501091003] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ncccn2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'Brc1ncccn1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(F)cc1']; ['Fc1ncccn1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9999308586120605, 0.9995685815811157, 0.9995608329772949, 0.9992550015449524, 0.9875109791755676, 0.9823120832443237, 0.9818904399871826, 0.9737762212753296] +CC1(Nc2ncccn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2ncccn2)cc1; ['CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'Brc1ncccn1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(F)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Fc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ccc(N)cc1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999872088432312, 0.9997237920761108, 0.9996230602264404, 0.9988629817962646, 0.99794602394104, 0.9972766637802124, 0.9799243807792664, 0.9799095988273621, 0.9778224229812622, 0.972144603729248, 0.9591236114501953] +c1cnc(Nc2ccc(N3CCOCC3)cc2)nc1; ['Fc1ncccn1', 'Clc1ncccn1', 'Brc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9999603033065796, 0.9998504519462585, 0.9997761249542236, 0.9997661113739014, 0.9996622800827026, 0.9995285272598267, 0.9981523156166077, 0.9946013689041138, 0.9881513118743896, 0.9754212498664856, 0.9050272703170776] +Cc1cc(Nc2ncccn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1Nc1ncccn1; ['Fc1cccc(Cl)c1Br', 'Clc1ncccn1', 'Nc1ncccn1', 'Fc1cccc(Cl)c1I', 'Nc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1F', 'Fc1cccc(Cl)c1', 'Nc1ncccn1']; ['Nc1ncccn1', 'Nc1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Oc1c(F)cccc1Cl']; [0.9998036026954651, 0.9996335506439209, 0.9996116161346436, 0.9993054866790771, 0.9988336563110352, 0.9980349540710449, 0.9959604144096375, 0.8997349739074707, 0.8731081485748291] +CN(Nc1ncccn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](NNc1ncccn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +c1cnc(Nc2ccc(-n3cncn3)cc2)nc1; ['Brc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; [0.9998745918273926, 0.9997057914733887, 0.9978739619255066, 0.9975903630256653, 0.9972349405288696] +OCCc1cn(Nc2ncccn2)cn1; [None]; [None]; [0] +OCc1ccn(Nc2ncccn2)n1; [None]; [None]; [0] +C[C@H](NNc1ncccn1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](NNc1ncccn1)C(C)(C)O; [None]; [None]; [0] +Oc1ccc2nc(Nc3ncccn3)[nH]c2c1; [None]; [None]; [0] +c1cnc(Nn2ncc3ccccc32)nc1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(Nc2ncccn2)cc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; ['Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1']; [0.9980732202529907, 0.9980037808418274, 0.9953215718269348, 0.9927271604537964, 0.9893662929534912, 0.9884656667709351, 0.9836108684539795, 0.9746649265289307, 0.9509662985801697, 0.9456861019134521, 0.7682538032531738] +COc1ccc(Nc2ncccn2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'Brc1ncccn1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(O)c(OC)c1']; ['Nc1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'COc1ccc(N)c(OC)c1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9981715679168701, 0.9974456429481506, 0.9961809515953064, 0.9960062503814697, 0.9939626455307007, 0.9926049709320068, 0.9921126365661621, 0.9913549423217773, 0.9893749952316284, 0.9803723096847534, 0.9331594705581665, 0.9214547276496887] +CSc1nc(C)c(Nc2ncccn2)[nH]1; [None]; [None]; [0] +Oc1cccc2c1cnn2Nc1ncccn1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(CNc4ncccn4)n3n2)cc1; ['NNc1ccc(-c2ccccc2)nn1']; ['O=C(O)CNc1ncccn1']; [0.9999476671218872] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncccn2)CC1; [None]; [None]; [0] +O=C(CCNc1ncccn1)NCc1ccccn1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ncccn1; [None]; [None]; [0] +CCc1cc(Nc2ncccn2)nc(N)n1; ['Brc1ncccn1', 'CCc1cc(Cl)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1']; ['CCc1cc(N)nc(N)n1', 'Nc1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1']; [0.9967788457870483, 0.9948815107345581, 0.9866605997085571, 0.9637843370437622, 0.9590059518814087] +c1ccc(Cn2cc(Nc3ncccn3)nn2)cc1; [None]; [None]; [0] +Nc1nnc(Nc2ncccn2)s1; [None]; [None]; [0] +c1cnc(Nc2nncn2C2CC2)nc1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2ncccn2)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ncccn2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9991934299468994, 0.9880746603012085] +c1cnc(Nc2nc3ccccc3s2)nc1; ['Clc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Clc1ncccn1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1nc2ccccc2s1']; [0.9997624158859253, 0.9996931552886963, 0.9980155825614929] +C[C@@H2]NC(=O)N1CCC(Nc2ncccn2)CC1; [None, None, 'CCN=C=O', None, 'CCN', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)Oc1ccccc1', 'CCNC(=O)OCC', 'CCNC(=O)OC', 'CCNC=O', 'CCNC(=O)OC(C)(C)C']; [None, None, 'c1cnc(NC2CCNCC2)nc1', None, 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'Clc1ncccn1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1']; [0, 0, 0.9997484683990479, 0, 0.9996781349182129, 0.9991199970245361, 0.9990590810775757, 0.9972183704376221, 0.9971777200698853, 0.9950313568115234, 0.9896218776702881, 0.9861370325088501] +Cn1cc(C(N)=O)cc1Nc1ncccn1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncccn2)s1; [None]; [None]; [0] +O=S(=O)(CNc1ncccn1)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(Nc2ncccn2)nc(N)n1; [None]; [None]; [0] +Nc1cncc(Nc2ncccn2)n1; ['Nc1cncc(Cl)n1']; ['Nc1ncccn1']; [0.9962175488471985] +c1cnc(Nc2cccc3ccsc23)nc1; ['Fc1cccc2ccsc12', 'Brc1cccc2ccsc12']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9901152849197388, 0.990070104598999] +CC1(C)Oc2ccc(Nc3ncccn3)nc2NC1=O; ['CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'Brc1ncccn1', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O']; ['Ic1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'Clc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9939640760421753, 0.9929500818252563, 0.9929036498069763, 0.9921876788139343, 0.9854180812835693, 0.981016993522644, 0.9677400588989258, 0.8224178552627563] +c1cnc(Nc2cccc3nnsc23)nc1; ['Clc1ncccn1', 'Brc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Nc1ncccn1']; [0.9997304677963257, 0.9968225955963135] +Nc1nc(Nc2ncccn2)nc2ccccc12; ['Clc1ncccn1', 'Nc1nc(Cl)nc2ccccc12', 'Brc1ncccn1']; ['Nc1nc(N)c2ccccc2n1', 'Nc1ncccn1', 'Nc1nc(N)c2ccccc2n1']; [0.9883410930633545, 0.9827256798744202, 0.9823855757713318] +c1cnc(Nc2ncc3ccccc3n2)nc1; ['Fc1ncccn1', 'Clc1ncccn1', 'Brc1ncccn1', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1']; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.9995556473731995, 0.9993768334388733, 0.9991142749786377, 0.9990119934082031, 0.9977551698684692, 0.9973183870315552, 0.9863635301589966, 0.9813281297683716, 0.9211736917495728] +[NH3+]Cc1ccc(ONc2ncccn2)c(F)c1; [None]; [None]; [0] +c1cnc(Nc2c[nH]c3cccnc23)nc1; ['Ic1c[nH]c2cccnc12', 'Fc1ncccn1', 'Brc1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12', 'Clc1ncccn1', 'Brc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1']; ['Nc1ncccn1', 'Nc1c[nH]c2cccnc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12']; [0.9968488216400146, 0.9849661588668823, 0.9834364652633667, 0.9831700325012207, 0.9810316562652588, 0.9758321642875671, 0.9593905806541443, 0.89995276927948] +CC(=O)Nc1ncc(Nc2ncccn2)[nH]1; [None]; [None]; [0] +c1cnc(Nc2ncc3cc[nH]c3n2)nc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Clc1ncc2cc[nH]c2n1', 'CS(=O)c1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncccn1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1']; [0.9998611211776733, 0.9998444318771362, 0.9993292093276978, 0.9988270998001099, 0.9978090524673462, 0.9973105192184448, 0.9957702159881592] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ncccn3)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ncccn1; ['Brc1ncccn1', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1F', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N']; ['COc1ccc(C#N)cc1N', 'Clc1ncccn1', 'Fc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9999793767929077, 0.9999136328697205, 0.999811589717865, 0.9993691444396973, 0.9992797374725342, 0.9992644190788269, 0.9991520047187805, 0.999035120010376, 0.998346209526062, 0.9983125925064087, 0.9875423908233643] +C[C@@]1(O)CC[C@H](Nc2ncccn2)CC1; ['Brc1ncccn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['C[C@]1(O)CC[C@@H](N)CC1', 'Clc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; [0.9998502731323242, 0.9990634322166443, 0.9988850355148315, 0.9987701773643494, 0.9960881471633911, 0.9914151430130005, 0.9905598759651184] +OCCn1cnc(Nc2ncccn2)c1; [None]; [None]; [0] +COc1ncccc1Nc1ncccn1; ['Brc1ncccn1', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1N', 'COc1ncccc1B(O)O', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1F', 'COc1ncccc1N']; ['COc1ncccc1N', 'Clc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1']; [0.9993231296539307, 0.9989448189735413, 0.9976167678833008, 0.9975996613502502, 0.9966131448745728, 0.9962778091430664, 0.9953995943069458, 0.9937430620193481, 0.9925308227539062, 0.9819822907447815, 0.9724639654159546, 0.9336603879928589] +COc1ccc(OC)c(Nc2ncccn2)c1; ['COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'Brc1ncccn1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(N)c1']; ['Clc1ncccn1', 'Fc1ncccn1', 'COc1ccc(OC)c(N)c1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998217225074768, 0.9996286630630493, 0.9994192719459534, 0.9993724226951599, 0.9987123608589172, 0.9981580376625061, 0.9975352883338928, 0.9968826770782471, 0.9968779683113098, 0.9776335954666138] +CN(C)c1cc(Nc2ncccn2)cnn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(Nc2ncccn2)c1; ['Brc1ncccn1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1']; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'Clc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9998036026954651, 0.9985195994377136, 0.9980555772781372, 0.9968565106391907, 0.9947772026062012, 0.9941647052764893, 0.993330717086792, 0.9918241500854492, 0.9714522361755371] +CCOc1ccc(Nc2ncccn2)cc1; ['CCOc1ccc(N)cc1', 'Brc1ncccn1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(I)cc1']; ['Clc1ncccn1', 'CCOc1ccc(N)cc1', 'CSc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9985442161560059, 0.9971696734428406, 0.9963417053222656, 0.9954162240028381, 0.9895788431167603, 0.9856427311897278, 0.9806914329528809, 0.9795490503311157, 0.9647308588027954, 0.9083175659179688] +CC(=O)N(C)c1ccc(Nc2ncccn2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'Brc1ncccn1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(O)cc1']; ['Nc1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'CC(=O)N(C)c1ccc(N)cc1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9999234676361084, 0.9985419511795044, 0.9967910647392273, 0.9940235614776611, 0.9925469160079956, 0.9902677536010742, 0.9856581091880798, 0.9801263809204102, 0.9299397468566895, 0.9246606826782227, 0.8008891940116882] +CS(=O)(=O)c1cccc(Nc2ncccn2)c1; ['CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(F)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Clc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.999554455280304, 0.9983533620834351, 0.9968520402908325, 0.9870403409004211, 0.9834259748458862, 0.9649222493171692] +O=C(Nc1cccc(Nc2ncccn2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc(ONc2ncccn2)c(F)c1F; [None]; [None]; [0] +COc1cc(Nc2ncccn2)cc(OC)c1OC; ['Brc1ncccn1', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['COc1cc(N)cc(OC)c1OC', 'Fc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9996948838233948, 0.9983758926391602, 0.997847318649292, 0.9978452920913696, 0.9971580505371094, 0.9948567152023315, 0.9944329261779785, 0.994074285030365, 0.9875442385673523, 0.9795904755592346] +c1cnc(NN2CCC(c3nc4ccccc4[nH]3)CC2)nc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1ncccn1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(Nc2ncccn2)C1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2ncccn2)cc1; ['Clc1ncccn1']; ['Nc1ccc(C(=O)[O-])cc1']; [0.9023450613021851] +O=C(Nc1cccc(Nc2ncccn2)c1)C1CC1; ['Clc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9998313188552856, 0.997788667678833, 0.9870325326919556] +COc1ccc(Nc2ncccn2)cc1; ['COc1ccc(N)cc1', 'Brc1ncccn1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1']; ['Clc1ncccn1', 'COc1ccc(N)cc1', 'Fc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9990895986557007, 0.9987640380859375, 0.9987356662750244, 0.9951974153518677, 0.9946274757385254, 0.9916876554489136, 0.9873035550117493, 0.977523684501648, 0.9688970446586609, 0.9548417329788208, 0.9541966915130615, 0.8991984128952026, 0.7978538274765015] +c1cnc(Nc2nc3ccccc3[nH]2)nc1; ['Brc1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'CSc1ncccn1', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995757341384888, 0.9995023012161255, 0.998497486114502, 0.9984149932861328, 0.9975571632385254, 0.9971182346343994, 0.9967184066772461, 0.9912780523300171, 0.983610987663269, 0.9720316529273987] +c1cnc(Nc2nccc3ccccc23)nc1; ['Ic1ncccn1', 'Brc1ncccn1', 'Brc1nccc2ccccc12', 'Clc1ncccn1', 'Clc1nccc2ccccc12', 'CSc1ncccn1']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1ncccn1', 'Nc1nccc2ccccc12', 'Nc1ncccn1', 'Nc1nccc2ccccc12']; [0.9996817111968994, 0.999638557434082, 0.9995507001876831, 0.998908281326294, 0.9987517595291138, 0.9860154390335083] +N#Cc1ccc(O)c(Nc2ncccn2)c1; ['Clc1ncccn1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(F)c1', 'N#Cc1ccc(O)c(O)c1']; ['N#Cc1ccc(O)c(N)c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9996616840362549, 0.9919194579124451, 0.9883570075035095, 0.9769513010978699, 0.9621100425720215, 0.9291043281555176, 0.917059600353241, 0.8012349605560303] +NC(=O)c1ccc(Nc2ncccn2)cc1; ['Clc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ncccn1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(F)cc1']; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'NC(=O)c1ccc(N)cc1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999569296836853, 0.9990174174308777, 0.9973048567771912, 0.9916869401931763, 0.9900379180908203, 0.9872547388076782, 0.966361403465271, 0.8791098594665527] +O=C(Nc1ccccc1)c1ccc(Nc2ncccn2)cc1; ['Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; [0.9992033243179321, 0.9791724681854248, 0.7967357039451599] +Cc1ccc2ncn(Nc3ncccn3)c2c1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2ncccn2)cc1; ['CC(=O)NCc1ccc(N)cc1', 'Brc1ncccn1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCO']; ['Clc1ncccn1', 'CC(=O)NCc1ccc(N)cc1', 'CS(=O)(=O)c1ncccn1', 'c1ccc(Nc2ncccn2)cc1']; [0.9996787309646606, 0.9995400905609131, 0.9967814087867737, 0.8072373270988464] +O=C(c1ccc(Nc2ncccn2)nc1)N1CCOCC1; ['Nc1ncccn1', 'Clc1ncccn1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999733567237854, 0.9998759627342224] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ncccn3)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncccn2)cc1)N1CCOCC1; ['Clc1ncccn1', 'Ic1ncccn1', 'Brc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; [0.999933660030365, 0.9999121427536011, 0.999904990196228, 0.9998233318328857, 0.9998034238815308, 0.9997344613075256, 0.9993683099746704, 0.9987070560455322, 0.9977079629898071, 0.9786478281021118] +OCCOc1ccc(Nc2ncccn2)cc1; ['Ic1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Cl)cc1']; [0.9975362420082092, 0.9972553253173828, 0.9941630363464355, 0.9834574460983276, 0.9809139966964722, 0.8828545808792114] +c1cnc(Nc2cccc(C3CCNCC3)c2)nc1; ['CC(C)(C)OC(=O)N1CCC(c2cccc(N)c2)CC1', 'Clc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'Brc1cccc(C2CCNCC2)c1', 'CS(=O)(=O)c1ncccn1']; ['Clc1ncccn1', 'Nc1cccc(C2CCNCC2)c1', 'Nc1cccc(C2CCNCC2)c1', 'Nc1cccc(C2CCNCC2)c1', 'Nc1ncccn1', 'Nc1cccc(C2CCNCC2)c1']; [0.9999997615814209, 0.9999053478240967, 0.9996752738952637, 0.9989532232284546, 0.9967397451400757, 0.9924666881561279] +c1cnc(NNc2ncccn2)nc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3ncccn3)cc2C1; ['Ic1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'Brc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ncccn1']; [0.9994282126426697, 0.9993283748626709, 0.9990222454071045, 0.9986980557441711, 0.9923284649848938, 0.9888505935668945, 0.9631710052490234, 0.9586474895477295, 0.9292638301849365] +FC(F)(F)c1ccc(Nc2ncccn2)cc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'FC(F)(F)c1ccc(Br)cc1', 'CS(=O)(=O)c1ncccn1', 'FC(F)(F)c1ccc(I)cc1', 'Fc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1']; ['Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ncccn1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995733499526978, 0.9983328580856323, 0.9983310699462891, 0.9979301691055298, 0.9977718591690063, 0.9949190616607666, 0.9930224418640137, 0.9898242950439453, 0.9891179203987122, 0.984386682510376, 0.8801244497299194, 0.8796131014823914] +N#Cc1cccc(Cn2cc(Nc3ncccn3)cn2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2ncccn2)CC1; ['Brc1ncccn1', None, 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)Cl', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CC(C)(C)OC(=O)N1CCC(Nc2ncccn2)CC1', 'CS(=O)(=O)N1CCC(=O)CC1', 'COc1ncccn1']; ['CS(=O)(=O)N1CCC(N)CC1', None, 'Clc1ncccn1', 'c1cnc(NC2CCNCC2)nc1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)(=O)Cl', 'Nc1ncccn1', 'CS(=O)(=O)N1CCC(N)CC1']; [0.9996880292892456, 0, 0.9992403388023376, 0.9991360306739807, 0.9978830814361572, 0.9935833215713501, 0.9915378093719482, 0.9855140447616577, 0.8641607761383057] +CN(C)c1ccc(Nc2ncccn2)cc1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'Brc1ncccn1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(I)cc1']; ['Clc1ncccn1', 'Fc1ncccn1', 'CN(C)c1ccc(N)cc1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9993094801902771, 0.9992661476135254, 0.9977637529373169, 0.9954746961593628, 0.99382084608078, 0.9933826327323914, 0.9916337728500366, 0.9737133979797363, 0.9548023343086243, 0.9315251111984253, 0.8809890747070312, 0.8498508930206299, 0.7711745500564575] +CN(C)S(=O)(=O)c1ccc(Nc2ncccn2)cc1; ['Brc1ncccn1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1']; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'Clc1ncccn1', 'Fc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9991350173950195, 0.9989862442016602, 0.9981147646903992, 0.9925738573074341, 0.9912061095237732, 0.9907805919647217, 0.9897231459617615, 0.9885047674179077, 0.9790253043174744, 0.9683449268341064, 0.9580238461494446] +CC(C)c1cc(Nc2ncccn2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1ncccn1']; [0.9995452165603638] +Oc1ccccc1CNc1ncccn1; ['Brc1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1']; ['NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'OCc1ccccc1O', 'O=Cc1ccccc1O', 'NCc1ccccc1O']; [0.9968594908714294, 0.9960662126541138, 0.9956177473068237, 0.9884366989135742, 0.985612154006958, 0.9683780670166016, 0.9556001424789429, 0.9174980521202087] +CCNS(=O)(=O)c1ccc(Nc2ncccn2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCN', 'CCNS(=O)(=O)c1ccc(F)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1']; ['Clc1ncccn1', 'Nc1ncccn1', 'c1ccc(Nc2ncccn2)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.995510995388031, 0.9773509502410889, 0.8988107442855835, 0.894897997379303, 0.8112823367118835, 0.7777748107910156] +CCCOc1ccc(Nc2ncccn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ncccn1']; [0.9990631341934204] +O=C(c1ccccc1)N1CC[C@H](Nc2ncccn2)C1; [None]; [None]; [0] +Brc1ccc(Nc2ncccn2)cc1; ['Clc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Brc1ncccn1', 'Brc1ccc(I)cc1', 'CSc1ncccn1', 'Fc1ccc(Br)cc1', 'Nc1ncccn1', 'Nc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', None]; ['Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ncccn1', 'Nc1ccc(Br)cc1', 'Nc1ncccn1', 'OB(O)c1ccc(Br)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', None]; [0.9994709491729736, 0.9993188381195068, 0.9982643127441406, 0.9967488646507263, 0.9890611171722412, 0.9889267683029175, 0.988631010055542, 0.9839546084403992, 0.9629734754562378, 0.9593378305435181, 0.9579818248748779, 0.8890494108200073, 0.8856548070907593, 0] +Nc1ncc(CNc2ncccn2)cn1; [None]; [None]; [0] +COc1ccc(CNc2ncccn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'Brc1ncccn1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(CN)cc1']; ['Fc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'COc1ccc(CN)cc1', 'Nc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'O=c1nccc[nH]1']; [0.99466472864151, 0.9939944744110107, 0.9939887523651123, 0.9934796094894409, 0.9933533668518066, 0.9929454326629639, 0.9922385215759277, 0.9911600351333618, 0.987479567527771, 0.9658107757568359, 0.931277871131897, 0.8260922431945801] +c1cnc(Nc2ccn3nccc3n2)nc1; ['Clc1ncccn1', 'Fc1ncccn1', 'Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999099969863892, 0.999807596206665, 0.9997592568397522, 0.9995663166046143, 0.9982972145080566, 0.9973083734512329] +CCN(CC)C(=O)c1ccc(Nc2ncccn2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'Brc1ncccn1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Clc1ncccn1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'Fc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.998296320438385, 0.9981206655502319, 0.9970184564590454, 0.9968286156654358, 0.9964199066162109, 0.9954725503921509, 0.9953581690788269, 0.9944783449172974, 0.9918360114097595, 0.9857239723205566] +CN(C)c1ccc(Nc2ncccn2)cc1Cl; ['Brc1ncccn1', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(F)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['CN(C)c1ccc(N)cc1Cl', 'CSc1ncccn1', 'Ic1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9990826845169067, 0.9977959394454956, 0.9967952966690063, 0.9965046644210815, 0.9911398887634277, 0.9856916666030884, 0.9806481599807739, 0.9768872261047363, 0.8867413401603699, 0.847241997718811] +CC(=O)N1CCCN(c2cccc(Nc3ncccn3)c2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncccn2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ncccn1']; [0.9993776082992554] +c1cnc(Nc2ccc3c(c2)CCO3)nc1; ['Fc1ncccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995627999305725, 0.9994876384735107, 0.9990372657775879, 0.9980001449584961, 0.9967753887176514, 0.9936107397079468, 0.9893184900283813, 0.9572963714599609, 0.906802773475647] +Cc1c(Nc2ncccn2)cccc1C(=O)[O-]; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1ncccn1; ['Brc1ncccn1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1O', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N']; ['COc1ccc(Cl)cc1N', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1']; [0.9996617436408997, 0.9995909929275513, 0.9990140795707703, 0.9981664419174194, 0.9968312382698059, 0.9958021640777588, 0.9951580166816711, 0.9948818683624268, 0.9900982975959778, 0.9897371530532837, 0.9710730314254761] +COc1cc(OC)c(Nc2ncccn2)cc1Cl; ['Brc1ncccn1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N']; ['COc1cc(OC)c(Cl)cc1N', 'Fc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.99363112449646, 0.9884105324745178, 0.9850404262542725, 0.9818500280380249, 0.9798839092254639, 0.9043316841125488, 0.8427553176879883] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ncccn1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Ic1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9996417760848999, 0.9994602799415588, 0.9986028671264648] +c1ccc(-c2cc(Nc3ncccn3)n[nH]2)cc1; ['Clc1ncccn1', 'Ic1ncccn1']; ['Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1']; [0.9382731914520264, 0.7742952108383179] +c1cnc(Nc2c[nH]c3ccccc23)nc1; ['Clc1ncccn1', 'CS(=O)c1ncccn1', 'Fc1ncccn1', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1ncccn1', 'Ic1c[nH]c2ccccc12', 'Nc1ncccn1', 'Ic1ncccn1']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1c[nH]c2ccccc12', 'Nc1ncccn1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.9823970794677734, 0.9683035612106323, 0.9621767997741699, 0.9388134479522705, 0.9154003858566284, 0.9133667945861816, 0.9023879766464233, 0.8639243841171265, 0.8197534084320068] +c1cnc(Nc2ccccc2-n2cccn2)nc1; ['Brc1ccccc1-n1cccn1', 'Fc1ncccn1', 'Fc1ccccc1-n1cccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Clc1ccccc1-n1cccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ccccc1-n1cccn1', 'CSc1ncccn1']; ['Nc1ncccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncccn1', 'OB(O)c1ccccc1-n1cccn1', 'Oc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncccn1', 'Nc1ccccc1-n1cccn1']; [0.9997719526290894, 0.9994853734970093, 0.9994218945503235, 0.9993855953216553, 0.9991792440414429, 0.9991588592529297, 0.9987893104553223, 0.9959272146224976, 0.9954990148544312, 0.990900993347168, 0.9864501357078552, 0.9541083574295044] +COc1cc(Nc2ncccn2)ccc1O; ['Brc1ncccn1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(N)ccc1O']; ['COc1cc(N)ccc1O', 'Nc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9994215965270996, 0.9981399774551392, 0.9969637393951416, 0.9964148998260498, 0.9963500499725342, 0.9954031705856323, 0.9711634516716003, 0.9669711589813232, 0.8979090452194214, 0.8268744945526123, 0.7550082802772522] +c1cnc(Nc2cccc3c2OCO3)nc1; ['Ic1ncccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1cccc2c1OCO2']; ['Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1ncccn1']; [0.9989930987358093, 0.9981762766838074, 0.9978262186050415, 0.9969537854194641, 0.9939124584197998, 0.9926121830940247, 0.9839416146278381, 0.9660550355911255, 0.9523084759712219, 0.9308399558067322] +Fc1ccc2nc(CNc3ncccn3)[nH]c2c1F; ['Nc1ccc(F)c(F)c1N']; ['O=C(O)CNc1ncccn1']; [0.9994624853134155] +Fc1ccc2[nH]c(CNc3ncccn3)nc2c1F; ['Nc1ccc(F)c(F)c1N']; ['O=C(O)CNc1ncccn1']; [0.999260663986206] +CC(C)(C)c1ccc(Nc2ncccn2)cn1; ['Brc1ncccn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['CC(C)(C)c1ccc(N)cn1', 'Clc1ncccn1', 'Fc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1']; [0.9986106157302856, 0.9982509613037109, 0.9973807334899902, 0.9959508180618286, 0.9935988187789917, 0.9922387599945068, 0.9893996715545654, 0.9863721132278442, 0.9478681087493896] +c1cnc(NCc2nc3ccccc3[nH]2)nc1; ['Nc1ccccc1N', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'ClCc1nc2ccccc2[nH]1', 'Brc1ncccn1', 'Nc1ncccn1', 'BrCc1nc2ccccc2[nH]1', 'Ic1ncccn1', 'CSc1ncccn1']; ['O=C(O)CNc1ncccn1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'OCc1nc2ccccc2[nH]1', 'Nc1ncccn1', 'NCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1', 'Nc1ncccn1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1']; [0.999710202217102, 0.9948990941047668, 0.9947116374969482, 0.9856826066970825, 0.9782198667526245, 0.9724866151809692, 0.9685784578323364, 0.9457818269729614, 0.94512939453125, 0.9166470766067505] +CN(C)C(=O)c1ccc(Nc2ncccn2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'Brc1ncccn1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Clc1ncccn1', 'CN(C)C(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9992718696594238, 0.9972698092460632, 0.9963706731796265, 0.9928051233291626, 0.9891857504844666, 0.9843680262565613, 0.9742604494094849, 0.9508450031280518, 0.8769679665565491] +c1cnc(Nc2cnc3ccccc3c2)nc1; ['Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Brc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Clc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9997057914733887, 0.9996229410171509, 0.9987865686416626, 0.9987025260925293, 0.9965261220932007, 0.9944465756416321, 0.9919511675834656, 0.9898761510848999, 0.9898349642753601, 0.9633529186248779, 0.9557998180389404, 0.941756010055542] +COc1cccc(C(=O)NNc2ncccn2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1', 'CCOC(=O)c1cccc(OC)c1']; ['NNc1ncccn1', 'NNc1ncccn1', 'NNc1ncccn1', 'NNc1ncccn1']; [0.9999890923500061, 0.9998819231987, 0.9946639537811279, 0.9870578050613403] +Cc1ccc(Nc2ncccn2)c(=O)[nH]1; ['Cc1ccc(I)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'CS(=O)c1ncccn1', 'Cc1ccc(N)c(=O)[nH]1', 'Brc1ncccn1']; ['Nc1ncccn1', 'Clc1ncccn1', 'Cc1ccc(N)c(=O)[nH]1', 'Fc1ncccn1', 'Cc1ccc(N)c(=O)[nH]1']; [0.9148823022842407, 0.8994625806808472, 0.8916192054748535, 0.8904691934585571, 0.871333122253418] +c1ccc(CCCNc2ncccn2)cc1; ['Clc1ncccn1', 'Fc1ncccn1', 'Brc1ncccn1', 'ClCCCc1ccccc1', 'BrCCCc1ccccc1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'NCCCc1ccccc1', 'Nc1ncccn1', 'Nc1ncccn1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1ncccn1', 'Nc1ncccn1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=c1nccc[nH]1', 'OCCCc1ccccc1', 'O=CCCc1ccccc1']; [0.9998106956481934, 0.999761700630188, 0.9995130300521851, 0.9979556798934937, 0.997157096862793, 0.9962540864944458, 0.99611496925354, 0.9953547120094299, 0.9951902627944946, 0.9899191856384277, 0.9839363098144531, 0.9820610284805298] +c1cnc(Nc2cc3ccccc3s2)nc1; ['CS(=O)c1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1']; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1']; [0.9756922721862793, 0.9670681357383728, 0.9536606073379517, 0.9114680290222168] +CSc1ccc(Nc2ncccn2)cc1; ['CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'Brc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ccc(N)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(N)cc1']; ['Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9993212223052979, 0.9986550807952881, 0.9983360767364502, 0.9970358610153198, 0.9900125861167908, 0.9848968386650085, 0.9811941385269165, 0.9525635242462158, 0.8351386785507202, 0.8270554542541504, 0.8169811964035034] +Cc1cc(Nc2ncccn2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Brc1ncccn1', 'Cc1cc(N)nc(N)n1', 'CSc1ncccn1', 'Cc1cc(N)nc(N)n1']; ['Nc1ncccn1', 'Cc1cc(N)nc(N)n1', 'Clc1ncccn1', 'Cc1cc(N)nc(N)n1', 'Fc1ncccn1']; [0.9994680881500244, 0.9697937965393066, 0.9594610929489136, 0.875357985496521, 0.8130974769592285] +CC[C@@H](CO)Nc1ncccn1; ['CC[C@H](N)CO', 'Brc1ncccn1', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO']; ['Clc1ncccn1', 'CC[C@H](N)CO', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9968657493591309, 0.9952396154403687, 0.9910858273506165, 0.9796868562698364, 0.9444886445999146] +OC[C@H](Cc1ccccc1)Nc1ncccn1; ['Brc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9988168478012085, 0.9963381886482239, 0.9961658716201782, 0.9929323196411133, 0.9820420145988464] +CCN1CCN(Cc2ccc(Nc3ncccn3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['CSc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Fc1ncccn1']; [0.9926856756210327, 0.9909836053848267, 0.9872816801071167, 0.9857240915298462, 0.9420205354690552, 0.908826470375061] +CC(C)c1ccc2nc(Nc3ncccn3)[nH]c2c1; [None]; [None]; [0] +Fc1ccc(Nc2ncccn2)c(Cl)c1; ['Fc1ccc(Br)c(Cl)c1', 'Nc1ncccn1', 'Clc1ncccn1', 'Fc1ccc(I)c(Cl)c1', 'Nc1ccc(F)cc1Cl', 'Nc1ncccn1', 'Fc1ccc(F)c(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1']; ['Nc1ncccn1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ncccn1', 'Nc1ncccn1', 'Oc1ccc(F)cc1Cl', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995640516281128, 0.9974188208580017, 0.9959772825241089, 0.9928553104400635, 0.975031316280365, 0.9594548940658569, 0.9356708526611328, 0.8545566201210022] +Brc1cnc(Nc2ncccn2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1ncccn1', 'Brc1ncccn1', 'Fc1ncc(Br)cn1', 'Ic1ncccn1', 'Brc1cnc(Br)nc1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncccn1', 'Nc1ncc(Br)cn1', 'Nc1ncccn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncccn1', 'Nc1ncc(Br)cn1', 'Nc1ncccn1']; [0.9976135492324829, 0.9966468811035156, 0.9963881373405457, 0.9862003922462463, 0.9819151163101196, 0.9807097911834717, 0.9796841144561768, 0.9766137599945068, 0.9144439697265625, 0.8789104223251343, 0.8647468090057373, 0.8399035930633545] +c1cnc(Nc2scc3c2OCCO3)nc1; [None]; [None]; [0] +Clc1cccc(-n2ccc(Nc3ncccn3)n2)c1; [None]; [None]; [0] +CCc1ccc(Nc2ncccn2)cc1; ['CCc1ccc(N)cc1', 'Brc1ncccn1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Cl)cc1']; ['Clc1ncccn1', 'CCc1ccc(N)cc1', 'Fc1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9991446137428284, 0.998226523399353, 0.995269775390625, 0.9945781230926514, 0.9822818040847778, 0.9782159328460693, 0.9684604406356812, 0.9471893310546875, 0.943759560585022, 0.9108901023864746, 0.8273987770080566, 0.7506709694862366] +c1cnc(NCCCn2cncn2)nc1; ['Fc1ncccn1', 'Clc1ncccn1', 'Brc1ncccn1', 'Nc1ncccn1', 'NCCCn1cncn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'OCCCn1cncn1', 'Nc1ncccn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.998918890953064, 0.9984561800956726, 0.9975297451019287, 0.9958442449569702, 0.9932699203491211, 0.993051290512085, 0.9913263916969299, 0.9903430938720703, 0.9808942079544067] +COc1ccc(Nc2ncccn2)cc1OC; ['Brc1ncccn1', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(F)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Cl)cc1OC']; ['COc1ccc(N)cc1OC', 'CSc1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998674988746643, 0.9997200965881348, 0.9995512962341309, 0.999363124370575, 0.9978328943252563, 0.9974478483200073, 0.9969951510429382, 0.9958529472351074, 0.9956827759742737, 0.9700646996498108, 0.9649066925048828, 0.9419126510620117] +COc1cc(Nc2ncccn2)ccc1N1CCOCC1; ['Brc1ncccn1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['COc1cc(N)ccc1N1CCOCC1', 'CSc1ncccn1', 'Nc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1']; [0.9999935030937195, 0.9999903440475464, 0.9999459981918335, 0.9999386072158813, 0.9999202489852905, 0.9998999834060669, 0.9992455244064331, 0.9989893436431885] +Clc1ccc(Nc2ncccn2)c(Cl)c1; ['Clc1ccc(Br)c(Cl)c1', 'Nc1ncccn1', 'Ic1ncccn1', 'Fc1ccc(Cl)cc1Cl', 'Clc1ncccn1', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'Clc1cccc(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Nc1ncccn1']; ['Nc1ncccn1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ncccn1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Oc1ccc(Cl)cc1Cl']; [0.9993898868560791, 0.9989137649536133, 0.9969139099121094, 0.996670663356781, 0.9966118931770325, 0.9958534836769104, 0.9838500022888184, 0.9761797189712524, 0.9630889296531677, 0.8920218348503113] +c1cnc(Nc2ncc3cccn3n2)nc1; ['Clc1ncc2cccn2n1']; ['Nc1ncccn1']; [0.9975333213806152] +c1cnc(Nc2cc3ccccn3n2)nc1; ['Clc1ncccn1', 'Brc1cc2ccccn2n1', 'Clc1cc2ccccn2n1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; ['Nc1cc2ccccn2n1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1']; [0.9991556406021118, 0.9991085529327393, 0.9989819526672363, 0.9982060194015503, 0.997111439704895, 0.9962124824523926] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +Cn1cc(Nc2ncccn2)c(C(F)(F)F)n1; ['Brc1ncccn1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'CS(=O)c1ncccn1', 'CSc1ncccn1']; ['Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ncccn1', 'Ic1ncccn1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ncccn1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9986774921417236, 0.997517466545105, 0.993958592414856, 0.9931433200836182, 0.9925352334976196, 0.9871976375579834, 0.9868485927581787, 0.9711875915527344] +O=C1CCc2cc(Nc3ncccn3)ccc2N1; ['Brc1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ncccn1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(O)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(F)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ncccn1', 'O=C1CCc2cc(I)ccc2N1']; [0.9996128082275391, 0.999276876449585, 0.9991632699966431, 0.9987035989761353, 0.9981586933135986, 0.9977020621299744, 0.9930700063705444, 0.9860802888870239, 0.9844185709953308, 0.9744631052017212, 0.9639721512794495, 0.958655595779419] +Cc1csc2c(Nc3ncccn3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1ncccn1']; [0.9969445466995239] +COc1ccc2cccc(Nc3ncccn3)c2c1; ['COc1ccc2cccc(N)c2c1', 'Brc1ncccn1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1']; ['Fc1ncccn1', 'COc1ccc2cccc(N)c2c1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9996154308319092, 0.9995802640914917, 0.9995685815811157, 0.9994478225708008, 0.9991409778594971, 0.9871069192886353, 0.9776411056518555, 0.9748498201370239] +Oc1ccc2cccc(Nc3ncccn3)c2c1; ['Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; ['Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(F)c2c1', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(Cl)c2c1']; [0.9870373010635376, 0.9855536222457886, 0.9741699695587158, 0.9714545607566833, 0.9529260993003845] +Clc1cnc(Nc2ncccn2)nc1; ['Clc1cnc(I)nc1', 'Brc1ncccn1', 'Clc1cnc(Br)nc1', 'Fc1ncccn1', 'Ic1ncccn1', 'Clc1cnc(Cl)nc1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CS(=O)c1ncc(Cl)cn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncc(Cl)cn1', 'CS(=O)(=O)c1ncc(Cl)cn1']; ['Nc1ncccn1', 'Nc1ncc(Cl)cn1', 'Nc1ncccn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncccn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncc(Cl)cn1', 'Nc1ncccn1', 'O=CNc1ncccn1']; [0.9905904531478882, 0.9851326942443848, 0.9846292734146118, 0.9798616170883179, 0.9573919773101807, 0.9436778426170349, 0.9311739206314087, 0.9218277931213379, 0.9057600498199463, 0.9016333818435669, 0.8835732936859131, 0.8089653253555298, 0.7639428973197937] +CNC(=O)c1ccc(Nc2ncccn2)cc1; ['CNC(=O)c1ccc(N)cc1', 'Brc1ncccn1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Clc1ncccn1', 'CNC(=O)c1ccc(N)cc1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9990698099136353, 0.9990558624267578, 0.995447039604187, 0.9935153722763062, 0.993403434753418, 0.9907664060592651, 0.987203061580658, 0.9799404740333557, 0.9747928380966187, 0.9721865653991699, 0.892676830291748] +COc1cc(Nc2ncccn2)ccc1Cl; ['Brc1ncccn1', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(F)ccc1Cl']; ['COc1cc(N)ccc1Cl', 'CSc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1']; [0.9999918937683105, 0.9998104572296143, 0.9996858239173889, 0.9993431568145752, 0.999241828918457, 0.9988921880722046, 0.9970472455024719, 0.9948857426643372, 0.9946421384811401, 0.9918550848960876] +CCNC(=O)c1ccc(Nc2ncccn2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9928180575370789, 0.9705363512039185] +COc1cc(Nc2ncccn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1O']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9976483583450317, 0.9716696739196777, 0.7574638724327087] +COc1cc(F)c(Nc2ncccn2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'Brc1ncccn1', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC']; ['Clc1ncccn1', 'COc1cc(N)c(F)cc1OC', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1']; [0.9993079900741577, 0.9989548921585083, 0.9973199367523193, 0.9900873899459839, 0.989851713180542, 0.9867841005325317, 0.9710864424705505, 0.9704653024673462, 0.9577774405479431] +COc1ccc(OC)c(CNc2ncccn2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'Brc1ncccn1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(CBr)c1']; ['Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'COc1ccc(OC)c(CN)c1', 'CSc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9995393753051758, 0.9993035793304443, 0.9989386796951294, 0.9977174997329712, 0.9948017001152039, 0.9922647476196289, 0.987386167049408, 0.9869191646575928, 0.9795519113540649] +CO[C@@H]1CC[C@@H](Nc2ncccn2)CC1; ['Brc1ncccn1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['CO[C@H]1CC[C@H](N)CC1', 'Clc1ncccn1', 'Ic1ncccn1', 'Fc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9998961687088013, 0.9996242523193359, 0.9993574023246765, 0.9980270862579346, 0.9968308210372925, 0.9833559989929199] +CCNC(=O)N1CCC(Nc2ncccn2)CC1; [None, None, 'CCN=C=O', None, 'CCN', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)Oc1ccccc1', 'CCNC(=O)OCC', 'CCNC(=O)OC', 'CCNC=O', 'CCNC(=O)OC(C)(C)C']; [None, None, 'c1cnc(NC2CCNCC2)nc1', None, 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'Clc1ncccn1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1', 'c1cnc(NC2CCNCC2)nc1']; [0, 0, 0.9997484683990479, 0, 0.9996781349182129, 0.9991199970245361, 0.9990590810775757, 0.9972183704376221, 0.9971777200698853, 0.9950313568115234, 0.9896218776702881, 0.9861370325088501] +Nc1cc(Nc2ncccn2)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ncccn1']; [0.9900184273719788] +CC1(C)Cc2cc(Nc3ncccn3)ccc2O1; [None]; [None]; [0] +COc1cc(Nc2ncccn2)cc(OC)c1; ['Brc1ncccn1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(F)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(O)cc(OC)c1', 'COc1cc(N)cc(OC)c1']; ['COc1cc(N)cc(OC)c1', 'Ic1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998074769973755, 0.9993178248405457, 0.9992135763168335, 0.9991369247436523, 0.9979236125946045, 0.9967711567878723, 0.9952014684677124, 0.9881446361541748, 0.9860566258430481, 0.9845501184463501, 0.9829015731811523, 0.9820294380187988, 0.9724355936050415, 0.8867813348770142] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ncccn2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1ncccn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2ncccn2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1']; ['Clc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1']; [0.9970363974571228, 0.9900208711624146, 0.9161098599433899, 0.9118621349334717, 0.8063274025917053] +c1cnc(Nc2ccc3cn[nH]c3c2)nc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Brc1ccc2cn[nH]c2c1', 'Nc1ncccn1', 'Ic1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; ['Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ncccn1', 'Oc1ccc2cn[nH]c2c1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998524188995361, 0.9996398687362671, 0.9995774626731873, 0.9994491338729858, 0.9993500113487244, 0.9990066885948181, 0.9985963106155396, 0.9949716329574585, 0.9892768859863281, 0.9757628440856934, 0.8262870907783508] +c1cnc(Nc2ncc3sccc3n2)nc1; ['Clc1ncc2sccc2n1']; ['Nc1ncccn1']; [0.9996931552886963] +COc1ccc2c(c1)c(Nc1ncccn1)cn2C; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1ncccn1; ['CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9992797374725342, 0.9931339025497437] +c1cnc(Nc2cc(-c3cccnc3)ccn2)nc1; ['Brc1ncccn1', 'Clc1ncccn1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9986854791641235, 0.9980384111404419] +COc1ccc(F)c(C(=O)NNc2ncccn2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1ncccn1']; [0.998623251914978] +C[NH+](C)Cc1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +COc1ccc2nc(Nc3ncccn3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1ncccn1']; [0.9917352199554443] +Cn1cc(Br)cc1Nc1ncccn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncccn2)c1)N1CCCC1; [None]; [None]; [0] +c1cnc(Nc2cc3ccccc3o2)nc1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2ncccn2)cc1; ['Brc1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Fc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Fc1ccc(OC(F)(F)F)cc1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9999626874923706, 0.999744713306427, 0.999627411365509, 0.9995168447494507, 0.9994899034500122, 0.9993847012519836, 0.998690128326416, 0.9984437823295593, 0.996741771697998, 0.9953947067260742, 0.9788601994514465, 0.9248538613319397] +COc1ccc2oc(Nc3ncccn3)cc2c1; [None]; [None]; [0] +CCc1cccc(Nc2ncccn2)n1; ['CCc1cccc(N)n1', 'Brc1ncccn1', 'CCc1cccc(N)n1', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1']; ['Ic1ncccn1', 'CCc1cccc(N)n1', 'Clc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1', 'Fc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1']; [0.9985669851303101, 0.9980952739715576, 0.9954541921615601, 0.9948646426200867, 0.9880683422088623, 0.9842737317085266, 0.9599156379699707, 0.8833165168762207] +CN(C)c1ccc(Nc2ncccn2)cn1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(N)cn1', 'Brc1ncccn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(F)cn1']; ['Nc1ncccn1', 'Clc1ncccn1', 'CN(C)c1ccc(N)cn1', 'Nc1ncccn1', 'Fc1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9973333477973938, 0.9969598054885864, 0.9949581027030945, 0.9877721667289734, 0.9869312047958374, 0.9857944250106812, 0.9854257702827454, 0.9795119762420654, 0.9731582403182983, 0.9700600504875183, 0.905284583568573] +c1cnc(Nc2ncn3c2CCCC3)nc1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2ncccn2)c1; ['Brc1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.9993538856506348, 0.9982520341873169, 0.995309591293335, 0.9845309257507324, 0.9708036184310913, 0.9687024354934692, 0.9250386953353882] +Cc1n[nH]c2cc(Nc3ncccn3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; ['Nc1ncccn1', 'Clc1ncccn1', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999974250793457, 0.9997962713241577, 0.9997960329055786, 0.9988724589347839, 0.998302161693573, 0.9936326742172241] +O=C(NNc1ncccn1)c1cccc(OC(F)(F)F)c1; ['NNc1ncccn1', 'NNc1ncccn1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NNc1ncccn1']; [0.999998927116394, 0.9999815225601196, 0.9974387288093567] +CC(=O)N1CCC(n2cc(Nc3ncccn3)cn2)CC1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3ncccn3)ccc21; [None]; [None]; [0] +OCCc1ccc(Nc2ncccn2)cc1; ['CSc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Brc1ncccn1', 'Nc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(B(O)O)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1']; [0.9989043474197388, 0.9966623783111572, 0.9948533773422241, 0.9899533987045288, 0.9871640205383301, 0.9863694906234741, 0.9779460430145264, 0.9201858043670654, 0.9132164120674133] +Cc1cc(Nc2ncccn2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncccn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ncccn1; ['COc1cc(N2CCN(C(=O)OC(C)(C)C)CC2)ccc1N']; ['Clc1ncccn1']; [0.9999805688858032] +CC(C)(O)c1ccc2cc(Nc3ncccn3)[nH]c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncccn2)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; ['Nc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1']; [0.9587773084640503, 0.9326997995376587, 0.8365014791488647, 0.7827613949775696] +Cc1cc(N2CCOCC2)ccc1Nc1ncccn1; ['Cc1cc(N2CCOCC2)ccc1N', 'Brc1ncccn1', 'Cc1cc(N2CCOCC2)ccc1N', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['Clc1ncccn1', 'Cc1cc(N2CCOCC2)ccc1N', 'Ic1ncccn1', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; [0.9999946355819702, 0.9999734163284302, 0.9998738765716553, 0.9997625946998596, 0.9997234344482422, 0.9996650218963623] +COc1cc(S(C)(=O)=O)ccc1Nc1ncccn1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N']; ['Clc1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9997329711914062, 0.9992694854736328, 0.9925026893615723, 0.9909511804580688] +CN(C)C(=O)c1ccc(Nc2ncccn2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9974479675292969, 0.9831383228302002] +Cc1ncc(-c2ccc(Nc3ncccn3)cc2)n1C; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncccn2)cc1; ['Brc1ncccn1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['CCNC(=O)c1ccc(N)cc1', 'Clc1ncccn1', 'Ic1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ncccn1']; [0.9973533153533936, 0.9943038821220398, 0.9843242168426514, 0.9369661211967468, 0.9222046136856079, 0.7756831049919128] +CCNC(=O)Cc1ccc(Nc2ncccn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ncccn1']; [0.9679957032203674] +CNC(=O)c1ccc(C)c(Nc2ncccn2)c1; ['Brc1ncccn1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['CNC(=O)c1ccc(C)c(N)c1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1']; [0.9995735883712769, 0.9989855885505676, 0.9868893623352051, 0.9794695973396301, 0.9739154577255249] +Cn1nc(Nc2ncccn2)cc1C(C)(C)O; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1ncccn1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ncccn2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9995778799057007, 0.8717236518859863] +CC(=O)N(C)c1ccc(NC(=O)c2ccccc2)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9998583793640137, 0.9997572302818298, 0.9989203214645386, 0.9988374710083008, 0.973760724067688] +O=C(Nc1ncc2ccccc2n1)c1ccccc1; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1']; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9996750950813293, 0.999382734298706, 0.9979322552680969, 0.9559475183486938] +COc1ncccc1NC(=O)c1ccccc1; ['COc1ccccn1', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1[N+](=O)[O-]', 'COc1ncccc1Cl', 'COc1ncccc1I', 'COC(=O)c1ccccc1', 'COc1ncccc1Br']; ['O=c1onc(-c2ccccc2)o1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'COc1ncccc1N', 'NC(=O)c1ccccc1']; [0.9995648860931396, 0.998274564743042, 0.9982510805130005, 0.9868385791778564, 0.9838486909866333, 0.9689050316810608, 0.962105393409729, 0.9518688917160034, 0.8999314308166504] +O=C(Nc1cnc2cccnn12)c1ccccc1; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1cnc2cccnn12', 'Nc1cnc2cccnn12']; [0.9999945759773254, 0.9990427494049072, 0.9978582859039307, 0.995632529258728] +Cc1ccc2ncn(NC(=O)c3ccccc3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(NC(=O)c2ccccc2)c1; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c([N+](=O)[O-])c1', 'COC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'N#Cc1ccc(O)c(N)c1']; [0.9958670139312744, 0.9943886995315552, 0.9928708076477051, 0.9888609647750854, 0.9218552112579346, 0.9046832323074341] +CS(=O)(=O)c1cccc(NC(=O)c2ccccc2)c1; [None, 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)[O-]', 'CS(=O)(=O)c1cccc(N)c1', 'COC(=O)c1ccccc1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CCOC(=O)c1ccccc1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc([N+](=O)[O-])c1', 'CS(=O)(=O)c1cccc(N)c1']; [None, 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'CS(=O)(=O)c1cccc(N)c1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'CS(=O)(=O)c1cccc(N)c1', 'O=C(F)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=Cc1ccccc1']; [0, 0.9993065595626831, 0.9992536902427673, 0.9983749389648438, 0.9978346824645996, 0.9975508451461792, 0.9928358793258667, 0.9928320646286011, 0.9919456839561462, 0.9872196912765503, 0.9794865250587463, 0.9786905646324158, 0.8392168283462524] +C[C@H](CS(C)(=O)=O)Nc1ncccn1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccccc2)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', None, 'COc1cc(N)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'CCOC(=O)c1ccccc1', 'COc1cccc(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COC(=O)c1ccccc1', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Brc1ccccc1', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'CN(C)C(=O)c1ccccc1', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', None, 'O=C(Cl)c1ccccc1', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COc1cc(N)cc(OC)c1OC', '[N-]=[N+]=NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(F)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'COc1cc(N)cc(OC)c1OC', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'COc1cc(N=C=O)cc(OC)c1OC', 'NC(=O)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'COc1cc(N)cc(OC)c1OC', 'NNC(=O)c1ccccc1', 'OCc1ccccc1', 'O=Cc1ccccc1']; [0.9999454617500305, 0.9998042583465576, 0, 0.9992548227310181, 0.9992163777351379, 0.9978150725364685, 0.9974446296691895, 0.9958423376083374, 0.9955254793167114, 0.9913662672042847, 0.9911929368972778, 0.9911452531814575, 0.9908915758132935, 0.9898883104324341, 0.9861922264099121, 0.9829086661338806, 0.981526255607605, 0.960765540599823, 0.955379843711853, 0.9323772192001343, 0.90627521276474, 0.8975805044174194, 0.8886514902114868] +Cc1ccc(C(=O)NCCO)cc1Nc1ncccn1; [None]; [None]; [0] +O=C(Nc1cccc(O)c1)c1ccccc1; ['Ic1ccccc1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', None, 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'N#Cc1ccccc1', 'N#Cc1ccccc1', 'Nc1cccc(O)c1', 'NC(=O)c1ccccc1', 'C=CCOC(=O)c1ccccc1', 'Nc1cccc(O)c1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', None, 'Nc1cccc(O)c1', 'CCOC(=O)c1ccccc1']; ['Nc1cccc(O)c1', 'O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1nnc2ccccc21', None, 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'O=C(O)c1ccccc1', 'Oc1cccc(I)c1', 'Nc1cccc(O)c1', 'O=C(O)C(=O)c1ccccc1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1', None, 'O=C(F)c1ccccc1', 'Nc1cccc(O)c1']; [0.9979384541511536, 0.9879906177520752, 0.987296998500824, 0, 0.9842195510864258, 0.9835739135742188, 0.983232855796814, 0.982684850692749, 0.98204106092453, 0.9791197776794434, 0.9543775320053101, 0.9520196318626404, 0.9261974096298218, 0.9062473773956299, 0.8614069223403931, 0, 0.8080093860626221, 0.7546200752258301] +CCOc1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(Nc1nc2ccccc2[nH]1)c1ccccc1; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1']; [0.9985606670379639, 0.9966294765472412, 0.9952825307846069] +Cc1nc(C(C)(C)O)sc1NC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NNc1ncccn1)c1ccccc1; ['NNc1ncccn1', 'NNc1ncccn1', 'NNc1ncccn1', 'CCOC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'NNc1ncccn1']; [0.9998612403869629, 0.9975065588951111, 0.9950792789459229, 0.9365760087966919] +O=C(Nc1cccc(NC(=O)C2CC2)c1)c1ccccc1; [None, 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'COC(=O)c1ccccc1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'NC(=O)c1ccccc1', 'CCOC(=O)C1CC1', 'NC(=O)c1ccccc1', 'O=C(Cl)C1CC1', 'Nc1cccc(NC(=O)C2CC2)c1', 'NC(=O)C1CC1']; [None, 'O=C(Cl)C1CC1', 'O=C(Cl)c1ccccc1', 'O=C(O)C1CC1', 'O=C(c1ccccc1)n1ccnc1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Nc1cccc(Br)c1)C1CC1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc([N+](=O)[O-])c1)c1ccccc1', 'O=C(Br)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; [0, 0.99934983253479, 0.9983747005462646, 0.9978141784667969, 0.9974058866500854, 0.9967377781867981, 0.996687650680542, 0.9964714050292969, 0.9833470582962036, 0.9802144765853882, 0.9618321657180786, 0.9400245547294617, 0.9354981184005737, 0.9099216461181641] +COc1ccc(NC(=O)c2ccccc2)cc1; ['COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(N=C=O)cc1', 'COc1ccccc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'Brc1ccccc1', 'COc1ccccc1', None, 'CCCC[Sn](CCCC)(CCCC)c1ccccc1', 'COS(=O)(=O)OC', 'COc1ccc(N=C=O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1', None, 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N=C=O)cc1', 'Brc1ccccc1', 'COc1ccc(N=C=O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COC(=O)c1ccccc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1', 'COc1ccc([N+](=O)[O-])cc1', 'COc1ccc(N=C=O)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CCOC(=O)c1ccccc1', 'CI', 'C(#Cc1ccccc1)c1ccccc1', 'CO', 'COc1ccc(N=C=O)cc1', 'C[Si](C)(C)C=[N+]=[N-]', None, 'COc1ccc([N+](=O)[O-])cc1', 'COc1ccc(N)cc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(N=[N+]=[N-])cc1', 'COc1ccc(NC=O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N=[N+]=[N-])cc1', 'COc1ccc(N)cc1', 'COc1ccc(N=[N+]=[N-])cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(I)cc1', 'Brc1ccccc1', 'CO', 'COc1ccccc1', 'COc1ccc(NC(C)=O)cc1', 'CBr', 'COc1ccc(C(=O)[O-])cc1', 'C[O-]', 'COc1ccc(NC(C)=O)cc1', 'CN(C)C(=O)c1ccccc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(Cl)c1ccccc1', 'N#Cc1ccccc1', 'OB(O)c1ccccc1', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'Ic1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'COc1ccc(N)cc1', 'O=c1onc(-c2ccccc2)o1', None, 'COc1ccc(N=C=O)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'Ic1ccccc1', 'N#Cc1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', None, 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'c1ccc(B2OCCCO2)cc1', 'COc1ccc(N=C=O)cc1', 'C[Sn](C)(C)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'COc1ccc(N)cc1', 'NC(=O)c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'c1ccccc1', 'NC(=O)c1ccccc1', 'COc1ccc(N)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'COc1ccc(N)cc1', 'O=C(Nc1ccc(I)cc1)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', None, 'O=C(O)c1ccccc1', 'O=C(Br)c1ccccc1', 'NC(=O)c1ccccc1', 'O=Cc1ccccc1', 'Ic1ccccc1', 'O=C(F)c1ccccc1', 'N#CC(=O)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'O=C(S)c1ccccc1', 'NC(=O)c1ccccc1', 'OCc1ccccc1', 'NC(=O)c1ccccc1', 'NCc1ccccc1', 'COc1ccc(NC=O)cc1', 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'Cc1ccccc1', 'COc1ccc(N)cc1']; [0.9998633861541748, 0.9993616938591003, 0.999312698841095, 0.9987844228744507, 0.9987387657165527, 0.9984543323516846, 0.9984091520309448, 0.9982460737228394, 0.9978471994400024, 0.9973742961883545, 0, 0.9965949058532715, 0.996113121509552, 0.9958525896072388, 0.9957605600357056, 0.9955743551254272, 0, 0.9945791959762573, 0.9935392737388611, 0.993370771408081, 0.9927834272384644, 0.9921823740005493, 0.9920699596405029, 0.9918093085289001, 0.9911945462226868, 0.9903258085250854, 0.988994836807251, 0.9885625839233398, 0.9870476126670837, 0.9840576648712158, 0.9840414524078369, 0.9816651344299316, 0.9810343980789185, 0.9804013967514038, 0.9762019515037537, 0.9758427143096924, 0, 0.9667710065841675, 0.9612901210784912, 0.9583336710929871, 0.9572863578796387, 0.9497485756874084, 0.9490676522254944, 0.9472995400428772, 0.9427971839904785, 0.9421388506889343, 0.9396913051605225, 0.9396046996116638, 0.9391301870346069, 0.9367658495903015, 0.9302629232406616, 0.9207359552383423, 0.9063471555709839, 0.8961705565452576, 0.8628427982330322, 0.8335486650466919, 0.7927150130271912, 0.7821208238601685, 0.7565017342567444] +O=C(Nc1nccc2ccccc12)c1ccccc1; ['Nc1nccc2ccccc12', 'Brc1nccc2ccccc12', 'C#Cc1ccccc1', 'Clc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'CC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1nccc2ccccc12', 'NC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1nccc2ccccc12', '[O-][n+]1ccc2ccccc2c1', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12']; [0.9999498128890991, 0.9998809099197388, 0.9998549222946167, 0.9997292757034302, 0.9996122717857361, 0.9992680549621582, 0.9966606497764587, 0.9926871061325073, 0.9775606393814087, 0.8053821325302124] +O=C([O-])c1ccc(NC(=O)c2ccccc2)cc1; ['Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1', 'O=C([O-])c1ccccc1', 'Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9999211430549622, 0.9921582937240601, 0.9759531021118164, 0.9454280138015747, 0.9207492470741272, 0.8406447172164917, 0.7958269119262695] +O=C(Nc1ccc(N2CCOCC2)cc1)c1ccccc1; ['Ic1ccccc1', 'Brc1ccccc1', 'C1COCCN1', 'Nc1ccc(N2CCOCC2)cc1', None, 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'COC(=O)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', 'CCOC(=O)c1ccccc1', 'C1COCCN1', 'Nc1ccc(N2CCOCC2)cc1', 'BrCCOCCBr', 'C1COCCN1', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'ClCCOCCCl', 'Ic1ccc(N2CCOCC2)cc1', 'ICCOCCI', 'O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'NNC(=O)c1ccccc1', 'C=CCOC(=O)c1ccccc1', 'Clc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'O=C(Cl)c1ccccc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(NC(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)n1nnc2ccccc21', None, 'O=C(Cl)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Oc1ccccc1)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', 'O=C(Nc1ccc(I)cc1)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1ccc(NC(=O)c2ccccc2)cc1', 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'N#Cc1ccccc1', 'O=C([O-])c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(NC(=O)c2ccccc2)cc1', 'NC(=O)c1ccccc1', 'Nc1ccc(NC(=O)c2ccccc2)cc1', 'c1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'O=Cc1ccccc1', 'c1ccc(N2CCOCC2)cc1', 'O=C(Br)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'NC(=O)c1ccccc1', 'OCc1ccccc1', 'O=[N+]([O-])c1ccc(N2CCOCC2)cc1']; [0.9999731779098511, 0.9999698996543884, 0.9999316930770874, 0.9999109506607056, 0, 0.9995927214622498, 0.9995373487472534, 0.9993950128555298, 0.9993327856063843, 0.9993267059326172, 0.999284565448761, 0.9989196062088013, 0.9984967112541199, 0.9983811974525452, 0.9979686141014099, 0.997383713722229, 0.9970373511314392, 0.9970318675041199, 0.9962723255157471, 0.9946836233139038, 0.9941412210464478, 0.993852972984314, 0.9917024374008179, 0.991637110710144, 0.9903267621994019, 0.9874783754348755, 0.986382246017456, 0.9838088154792786, 0.9828115701675415, 0.9561135172843933, 0.9402830600738525, 0.9190985560417175, 0.8652756214141846] +N#Cc1cccc(Cn2cc(NC(=O)c3ccccc3)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccc(I)cc1', None, 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccc(Br)cc1', 'O=C(Cl)C(=O)Cl', 'NC(=O)c1ccc([N+](=O)[O-])cc1', None, 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(Cl)cc1', 'N', None, 'NC(=O)c1ccc(N)cc1', 'NC(N)=O']; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccccc1', None, 'O=C(Br)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(Cl)c1ccccc1', None, 'O=C(O)C(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', None, 'OCc1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1']; [0.9998618364334106, 0.9994672536849976, 0.9992510080337524, 0.9980406761169434, 0.9978522062301636, 0.9947280883789062, 0, 0.9906857013702393, 0.9882178902626038, 0.9844107627868652, 0.979004979133606, 0.9778441190719604, 0, 0.9580923318862915, 0.9515213966369629, 0.9165277481079102, 0, 0.8962169885635376, 0.8154162168502808] +O=C(Nc1ccc(OCCO)cc1)c1ccccc1; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', None, 'Nc1ccc(OCCO)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'Nc1ccc(OCCO)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'Cc1ccc(S(=O)(=O)OCCO)cc1', 'CCOC(=O)c1ccccc1', 'C1CO1', 'Nc1ccc(OCCO)cc1', 'NC(=O)c1ccccc1', 'O=C(Nc1ccc(I)cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'Cc1ccc(S(=O)(=O)CCO)cc1', 'Nc1ccc(OCCO)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', None, 'O=C(O)c1ccccc1', 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'O=C(Cl)c1ccccc1']; ['O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', None, 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'OCCCl', 'OCCOc1ccc(Br)cc1', 'Nc1ccc(OCCO)cc1', 'OCCBr', 'O=C(c1ccccc1)n1ccnc1', 'OCCI', 'OCCOc1ccc(I)cc1', 'O=C1OCCO1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'Nc1ccc(OCCO)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'Nc1ccc(OCCO)cc1', 'OCCO', 'OCCOc1ccc(Cl)cc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S', 'OCCO', None, 'O=[N+]([O-])c1ccc(OCCO)cc1', 'OCCO', 'O=[N+]([O-])c1ccc(OCCO)cc1']; [0.9992084503173828, 0.9992016553878784, 0, 0.9980059266090393, 0.9974836111068726, 0.9970884323120117, 0.9970507025718689, 0.9964183568954468, 0.9955268502235413, 0.9936242699623108, 0.9913081526756287, 0.9911166429519653, 0.9909340143203735, 0.9899997711181641, 0.9878400564193726, 0.9792745113372803, 0.9783248901367188, 0.975261926651001, 0.9391978979110718, 0.9379824995994568, 0.9265819787979126, 0.9261207580566406, 0, 0.8847557306289673, 0.8811948299407959, 0.8607974648475647] +O=C(Nc1cccc(C2CCNCC2)c1)c1ccccc1; ['Nc1cccc(C2CCNCC2)c1', 'Nc1cccc(C2CCNCC2)c1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9996943473815918, 0.998767614364624] +O=C(Nc1ccc(C(=O)N2CCOCC2)cn1)c1ccccc1; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'NC(=O)c1ccccc1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(O)c1ccccc1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999948143959045, 0.9999874830245972, 0.9999064803123474, 0.9998146295547485, 0.9997584223747253] +C[C@H](O)COc1ccc(NC(=O)c2ccccc2)cc1; ['C[C@H]1CO1', 'C[C@H](O)CCl']; ['O=C(Nc1ccc(O)cc1)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1']; [0.9991512298583984, 0.9961715936660767] +CNS(=O)(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'NC(=O)c1ccccc1']; [0.9982026219367981, 0.9979145526885986, 0.9956014752388, 0.9955459833145142, 0.9899886846542358, 0.7731990814208984] +CC(=O)NCc1ccc(NC(=O)c2ccccc2)cc1; ['CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccccc1', 'CC(=O)NCc1ccc(F)cc1', 'CC(=O)NCO']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9997425675392151, 0.9993137121200562, 0.9985440969467163, 0.997870683670044, 0.9977250099182129, 0.9947016835212708, 0.9944161772727966, 0.98563551902771, 0.9771121740341187, 0.961439311504364, 0.8693305253982544, 0.8615618944168091] +O=C(Nc1ccc(C(=O)Nc2ccccc2)cc1)c1ccccc1; [None, 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'NC(=O)c1ccccc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Ic1ccccc1', 'Brc1ccccc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', None, 'Nc1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'COC(=O)c1ccccc1', 'O=C(Nc1ccc(B(O)O)cc1)c1ccccc1', 'Nc1ccccc1', None]; [None, 'O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)n1ccnc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C=Nc1ccccc1', 'O=C(Nc1ccc(I)cc1)c1ccccc1', None]; [0, 0.9973033666610718, 0.9685919284820557, 0.9613486528396606, 0.9382060766220093, 0.932391881942749, 0.9191992282867432, 0.8445842266082764, 0.8405648469924927, 0, 0.82305908203125, 0.8159592747688293, 0.8108316659927368, 0.8024281859397888, 0.7967560291290283, 0.7886163592338562, 0.7855721116065979, 0] +CC(=O)N1CCN(C(=O)Cc2ccc(NC(=O)c3ccccc3)cc2)CC1; [None]; [None]; [0] +Cc1nc(C)c(NC(=O)c2ccccc2)s1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(NC(=O)c2ccccc2)cc1; ['C[C@@H]1CO1', 'C[C@@H](O)CCl', 'C[C@@H](O)CO']; ['O=C(Nc1ccc(O)cc1)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1']; [0.9991512298583984, 0.9961715936660767, 0.9741454124450684] +CN(C)S(=O)(=O)c1ccc(NC(=O)c2ccccc2)cc1; [None, 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [None, 'O=C(Cl)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(F)c1ccccc1', 'NC(=O)c1ccccc1']; [0, 0.999830961227417, 0.9997917413711548, 0.9992214441299438, 0.9986515045166016, 0.9984174370765686, 0.9983705878257751, 0.9846400022506714, 0.9843292236328125] +O=C(Nc1ccc(C(=O)N2CCOCC2)cc1)c1ccccc1; [None]; [None]; [0] +CC(C)c1cc(NC(=O)c2ccccc2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['NC(=O)c1ccccc1']; [0.9891107082366943] +CS(=O)(=O)N1CCC(NC(=O)c2ccccc2)CC1; ['CS(=O)(=O)Cl', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', None, 'Brc1ccccc1', None, 'COC(=O)c1ccccc1', 'CS(=O)(=O)N1CCC(=O)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CC(C)(C)OC(=O)NC1CCN(S(C)(=O)=O)CC1']; ['O=C(NC1CCNCC1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Ic1ccccc1', 'O=C(O)c1ccccc1', None, 'CS(=O)(=O)N1CCC(N)CC1', None, 'CS(=O)(=O)N1CCC(N)CC1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9999581575393677, 0.9998037815093994, 0.9996752738952637, 0.9995720982551575, 0, 0.9992337226867676, 0, 0.9986106157302856, 0.9970301985740662, 0.9963781833648682, 0.9547698497772217] +Nc1ncc(CNC(=O)c2ccccc2)cn1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CS(=O)(=O)C2)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccccc1O)c1ccccc1; ['NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'CC(C)(C)OOC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'NCc1ccccc1O', 'N#Cc1ccccc1', 'ClCc1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NCc1ccccc1O', 'O=C(NCO)c1ccccc1', None]; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(Cl)c1ccccc1', 'O=C(ON1C(=O)CCC1=O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', '[N-]=[N+]=NC(=O)c1ccccc1', 'NCc1ccccc1O', 'NCc1ccccc1O', 'OCc1ccccc1O', 'NCc1ccccc1O', 'OCc1ccccc1', 'Oc1ccccc1', None]; [0.9999849200248718, 0.9998573064804077, 0.9997769594192505, 0.9995884895324707, 0.9995098114013672, 0.9992456436157227, 0.9991828203201294, 0.9974305629730225, 0.9970388412475586, 0.9947401285171509, 0.9943386316299438, 0.992255687713623, 0.9883573055267334, 0.9851807355880737, 0.9769401550292969, 0.976739764213562, 0.9760435819625854, 0.9618709683418274, 0] +O=C(Nc1ccc(C(F)(F)F)cc1)c1ccccc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['O=C(Cl)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9983556270599365, 0.9961490631103516, 0.9959145784378052, 0.9905722141265869, 0.990212082862854, 0.9031388759613037] +CCCOc1ccc(NC(=O)c2ccccc2)nc1; ['CCCOc1ccc(Br)nc1']; ['NC(=O)c1ccccc1']; [0.9994455575942993] +O=C(Nc1ccn2nccc2n1)c1ccccc1; ['Nc1ccn2nccc2n1', 'C#Cc1ccccc1', 'Clc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'Nc1ccn2nccc2n1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999830722808838, 0.9999779462814331, 0.9999492168426514, 0.9998837113380432, 0.9997941851615906, 0.9994726777076721, 0.9969401359558105] +CC(=O)N1CCCN(c2cccc(NC(=O)c3ccccc3)c2)CC1; ['CC(=O)N1CCCNCC1']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999706745147705] +O=C(N[C@H]1CCN(C(=O)c2ccccc2)C1)c1ccccc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccccc2)cc1Cl; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', None, 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CCOC(=O)c1ccccc1', 'CN(C)c1ccc([N+](=O)[O-])cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(Br)c1ccccc1', 'CN(C)c1ccc(N)cc1Cl', 'O=C(Cl)c1ccccc1', 'O=Cc1ccccc1']; [0.9998007416725159, 0.9995994567871094, 0.9993596076965332, 0.998654305934906, 0.9977136850357056, 0.9976061582565308, 0, 0.9968114495277405, 0.9949014186859131, 0.9947576522827148, 0.9932723641395569, 0.9727744460105896, 0.9687455296516418] +O=C(Nc1ccc(Br)cc1)c1ccccc1; ['Nc1ccc(Br)cc1', 'Ic1ccccc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', None, 'Ic1ccccc1', 'Brc1ccc(I)cc1', 'COC(=O)c1ccccc1', 'Nc1ccc(Br)cc1', 'Brc1ccccc1', 'Brc1ccccc1', 'Nc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'NC(=O)c1ccccc1', 'Brc1ccc(I)cc1', 'C(#Cc1ccccc1)c1ccccc1', 'O=C=Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'O=C=Nc1ccc(Br)cc1', None, 'O=C=Nc1ccc(Br)cc1', 'Brc1ccccc1', 'C[Sn](C)(C)c1ccccc1', 'Ic1ccccc1', 'Brc1ccccc1', 'CCCC[Sn](CCCC)(CCCC)c1ccccc1', 'CO[Si](OC)(OC)c1ccc(Br)cc1', 'CCOC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'Brc1ccccc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'N#CC(=O)c1ccccc1', 'Nc1ccc(Br)cc1', None, 'NC(=O)c1ccccc1', 'NNC(=O)c1ccccc1', 'C=CCOC(=O)c1ccccc1', 'Brc1ccc(Br)cc1', 'CC(=O)Nc1ccc(Br)cc1', 'O=C(O)c1ccccc1', 'Nc1ccc(Br)cc1', 'CN(C)C(=O)c1ccccc1', 'Brc1ccc(-n2cnnn2)cc1']; ['O=C(Cl)c1ccccc1', 'Nc1ccc(Br)cc1', 'O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'O=C=Nc1ccc(Br)cc1', 'N#Cc1ccccc1', 'Nc1ccc(Br)cc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'Nc1ccc(Br)cc1', 'O=C(O)c1ccccc1', 'N#Cc1ccccc1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'NC(=O)c1ccccc1', 'Nc1ccc(Br)cc1', 'c1ccc(B2OCCCO2)cc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'NCc1ccccc1', 'c1ccccc1', None, 'OB(O)c1ccccc1', 'N#Cc1ccccc1', 'O=C=Nc1ccc(Br)cc1', 'O=CNc1ccc(Br)cc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'O=C=Nc1ccc(Br)cc1', 'NC(=O)c1ccccc1', 'Nc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'O=[N+]([O-])c1ccc(Br)cc1', 'O=C=Nc1ccc(Br)cc1', 'O=C=Nc1ccc(Br)cc1', 'O=C(F)c1ccccc1', 'O=C(Br)c1ccccc1', 'Nc1ccc(Br)cc1', 'O=C(O)C(=O)c1ccccc1', None, 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=[N+]([O-])c1ccc(Br)cc1', 'O=Cc1ccccc1', 'Nc1ccc(Br)cc1', 'O=Cc1ccccc1']; [0.9998467564582825, 0.9997671842575073, 0.9996300935745239, 0.9994306564331055, 0.9993000626564026, 0, 0.9989639520645142, 0.9989446401596069, 0.9984921216964722, 0.9984041452407837, 0.9980587363243103, 0.9974702596664429, 0.9974672198295593, 0.9974615573883057, 0.9955927729606628, 0.995378851890564, 0.9951620101928711, 0.9946572780609131, 0.9942272901535034, 0.9937483072280884, 0.9936935901641846, 0, 0.9936045408248901, 0.9935799837112427, 0.9934468269348145, 0.992533802986145, 0.9921234250068665, 0.9919105172157288, 0.9916515350341797, 0.991316556930542, 0.990601658821106, 0.9866188764572144, 0.9818727374076843, 0.9803133606910706, 0.9778367877006531, 0.9727945327758789, 0.9702000617980957, 0.9597199559211731, 0, 0.949900209903717, 0.911376953125, 0.8886958360671997, 0.8872451782226562, 0.8610366582870483, 0.8606919050216675, 0.8416974544525146, 0.8207510709762573, 0.7839613556861877] +Cc1c(NC(=O)c2ccccc2)cccc1C(=O)[O-]; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccccc2)c(C)c1; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccccc12)c1ccccc1; ['Nc1c[nH]c2ccccc12', 'O=c1onc(-c2ccccc2)o1', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'O=C=Nc1c[nH]c2ccccc12', 'N#CC(=O)c1ccccc1', None, 'Brc1ccccc1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['O=C(c1ccccc1)n1ccnc1', 'c1ccc2[nH]ccc2c1', 'O=C(Cl)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'O=C(O)c1ccccc1', 'c1ccccc1', 'Nc1c[nH]c2ccccc12', None, 'O=C=Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'O=[N+]([O-])c1c[nH]c2ccccc12', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9983377456665039, 0.9981783628463745, 0.996021032333374, 0.9959414005279541, 0.9947401285171509, 0.9927708506584167, 0.9920909404754639, 0.9899516105651855, 0.9752999544143677, 0.9736465215682983, 0, 0.9614298343658447, 0.954864501953125, 0.9427962303161621, 0.935032844543457, 0.933099627494812, 0.9099153876304626, 0.7816068530082703, 0.7765756845474243] +COc1cc(OC)c(NC(=O)c2ccccc2)cc1Cl; ['COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', None, 'Brc1ccccc1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'COc1cc(OC)c([N+](=O)[O-])cc1Cl', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', None, 'COc1cc(OC)c(N=C=O)cc1Cl', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=Cc1ccccc1']; [0.999332070350647, 0.9975482225418091, 0, 0.9958055019378662, 0.9955717325210571, 0.9947694540023804, 0.990940511226654, 0.9873644113540649, 0.9635307192802429, 0.9260892868041992, 0.826388955116272] +O=C(Nc1cc(-c2ccccc2)[nH]n1)c1ccccc1; ['Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1', 'COC(=O)c1ccccc1']; ['O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Nc1cc(-c2ccccc2)[nH]n1']; [0.9937306642532349, 0.9899557828903198, 0.9856903553009033, 0.8614708185195923] +COc1ccc(Cl)cc1NC(=O)c1ccccc1; ['COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'Brc1ccccc1', 'COc1ccc(Cl)cc1N=C=O', None, 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'CCOC(=O)c1ccccc1', 'COc1ccc(Cl)cc1[N+](=O)[O-]', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'Brc1ccccc1', 'COc1ccc(Cl)cc1N=C=O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N=C=O', 'COC(=O)c1ccccc1', 'COc1ccc(Cl)cc1N=C=O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'C=CCOC(=O)c1ccccc1', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'CN(C)C(=O)c1ccccc1', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1[N+](=O)[O-]', 'COc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1N']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'N#Cc1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'COc1ccc(Cl)cc1N', 'c1ccc(B2OCCCO2)cc1', None, 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COc1ccc(Cl)cc1N', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(F)c1ccccc1', 'COc1ccc(Cl)cc1N=C=O', 'C[Sn](C)(C)c1ccccc1', 'NCc1ccccc1', 'Ic1ccccc1', 'COc1ccc(Cl)cc1N', 'c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Br)c1ccccc1', 'COc1ccc(Cl)cc1N', 'O=C(O)C(=O)c1ccccc1', 'N#CC(=O)c1ccccc1', 'COc1ccc(Cl)cc1N', 'O=Cc1ccccc1', 'NNC(=O)c1ccccc1', 'O=Cc1ccccc1', 'N#Cc1ccccc1', 'OCc1ccccc1']; [0.9999210834503174, 0.9996577501296997, 0.9996194839477539, 0.9993626475334167, 0.9992915391921997, 0.9991893768310547, 0, 0.9990230798721313, 0.9990048408508301, 0.998436450958252, 0.998233437538147, 0.9980236291885376, 0.9979450106620789, 0.997725248336792, 0.997320830821991, 0.9973113536834717, 0.9972411394119263, 0.9969154596328735, 0.9965770244598389, 0.995851457118988, 0.9947375059127808, 0.993956983089447, 0.9924116134643555, 0.9893958568572998, 0.9862856268882751, 0.9855702519416809, 0.9795690774917603, 0.979255199432373, 0.9790943264961243, 0.9627561569213867, 0.9472717642784119, 0.9256348609924316, 0.9222567081451416, 0.9213563203811646, 0.8943526744842529] +O=C(Nc1ccc2c(c1)CCO2)c1ccccc1; ['Ic1ccccc1', 'Brc1ccccc1', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'COC(=O)c1ccccc1', 'Brc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'CCOC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Brc1ccccc1', 'N#Cc1ccccc1', 'Nc1ccc2c(c1)CCO2', 'NNC(=O)c1ccccc1', 'Clc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'O=C(Cl)c1ccccc1']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc2c(c1)CCO2', 'NC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'O=C=Nc1ccc2c(c1)CCO2', 'c1ccc2c(c1)CCO2', 'OCc1ccccc1', 'Nc1ccc2c(c1)CCO2', 'NC(=O)c1ccccc1', 'O=Cc1ccccc1', 'O=[N+]([O-])c1ccc2c(c1)CCO2']; [0.9998154640197754, 0.9997907280921936, 0.9996613264083862, 0.9996559619903564, 0.9995962381362915, 0.9994521141052246, 0.9993162155151367, 0.9992365837097168, 0.9990234375, 0.9985368847846985, 0.9983806610107422, 0.9983322620391846, 0.9980299472808838, 0.982513427734375, 0.9796340465545654, 0.9713488221168518, 0.961933970451355, 0.9419534206390381, 0.9404265284538269] +O=C(Nc1ccccc1-n1cccn1)c1ccccc1; [None]; [None]; [0] +CC(=O)Nc1cccc(NC(=O)c2ccccc2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Cl', 'CC(=O)Nc1cccc(N)c1', None, 'CC(=O)OC(C)=O', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(N)=O', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)n1ccnc1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(NC(C)=O)c1', 'CC(=O)O', 'CC(=O)Br', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Cl', 'CC(N)=O', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc([N+](=O)[O-])c1', 'CC(=O)NN']; ['O=C(c1ccccc1)n1ccnc1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'O=C(Cl)c1ccccc1', None, 'Nc1cccc(NC(=O)c2ccccc2)c1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(F)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'N#Cc1ccccc1', 'O=C(Nc1cccc([N+](=O)[O-])c1)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'O=C(Br)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; [0.9990934133529663, 0.9937304258346558, 0.9927632808685303, 0, 0.9871755838394165, 0.985650897026062, 0.9842112064361572, 0.9823774099349976, 0.9802398085594177, 0.9755043387413025, 0.9654315710067749, 0.965263307094574, 0.9550322890281677, 0.9491068124771118, 0.9380974769592285, 0.9363762736320496, 0.9275327920913696, 0.9271237254142761, 0.9262130260467529, 0.9192670583724976, 0.8786357045173645, 0.8610206842422485, 0.852638304233551, 0.8156025409698486, 0.8155566453933716] +COc1cc(C(=O)N2CCOCC2)ccc1NC(=O)c1ccccc1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', None, 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'CCOC(=O)c1ccccc1', 'Brc1ccccc1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COC(=O)c1ccccc1', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['O=C(Cl)c1ccccc1', None, 'O=C(O)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'O=C([O-])c1ccccc1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'O=Cc1ccccc1']; [0.9999653100967407, 0, 0.9995973110198975, 0.9995856881141663, 0.9993234872817993, 0.9987051486968994, 0.9972623586654663, 0.9970375299453735, 0.9963065385818481, 0.9551628828048706] +O=C(NCc1nc2c(F)c(F)ccc2[nH]1)c1ccccc1; ['Nc1ccc(F)c(F)c1N']; ['O=C(O)CNC(=O)c1ccccc1']; [0.9998055100440979] +CC(C)c1ccc2nc(NC(=O)c3ccccc3)[nH]c2c1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccccc2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', None, 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'COc1cc(N)ccc1O', 'CO', 'CN(C)C(=O)c1ccccc1', 'COc1cc([N+](=O)[O-])ccc1O', 'COc1ccccc1O', 'COc1cc(I)ccc1O']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', None, 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'NC(=O)c1ccccc1', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'NC(=O)c1ccccc1', 'O=C(Nc1ccc(O)cc1)c1ccccc1', 'COc1cc(N)ccc1O', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9999493956565857, 0.9991388320922852, 0.9972425699234009, 0.9967547655105591, 0, 0.9899872541427612, 0.9838089346885681, 0.9817702770233154, 0.978020191192627, 0.967255711555481, 0.9262478947639465, 0.8888131976127625, 0.8634293675422668, 0.8606173396110535, 0.8574160933494568, 0.8182042837142944] +O=C(NCc1nc2ccc(F)c(F)c2[nH]1)c1ccccc1; ['Nc1ccc(F)c(F)c1N', 'CCOC(=O)CNC(=O)c1ccccc1']; ['O=C(O)CNC(=O)c1ccccc1', 'Nc1ccc(F)c(F)c1N']; [0.9993455410003662, 0.9993217587471008] +O=C(Nc1cnc2ccccc2c1)c1ccccc1; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'O=c1onc(-c2ccccc2)o1', 'COC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Clc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'c1ccc2ncccc2c1', 'Nc1cnc2ccccc2c1', 'O=[N+]([O-])c1cnc2ccccc2c1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9999476075172424, 0.9993034601211548, 0.9988096952438354, 0.996994137763977, 0.9969599843025208, 0.9958333969116211, 0.9924472570419312, 0.9754436016082764, 0.9735116362571716] +CC(C)(C)c1ccc(NC(=O)c2ccccc2)cn1; ['CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['O=C(Cl)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'NC(=O)c1ccccc1']; [0.9999589323997498, 0.99979567527771, 0.9992870688438416, 0.9990444183349609, 0.9974360466003418] +Nc1nc(NC(=O)c2ccccc2)cs1; ['Nc1csc(N)n1', 'Nc1csc(N)n1']; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1']; [0.9876919984817505, 0.9790726900100708] +CC(=O)N[C@@H]1CC[C@@H](NC(=O)c2ccccc2)CC1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2[nH]1)c1ccccc1; ['Nc1ccccc1N', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'ClCc1nc2ccccc2[nH]1', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'NCc1nc2ccccc2[nH]1', 'CC(C)(C)OC(=O)NCc1nc2ccccc2[nH]1']; ['O=C(O)CNC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(ON1C(=O)CCC1=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'O=C([O-])c1ccccc1', 'O=C(O)c1ccccc1']; [0.9997572898864746, 0.9991469383239746, 0.9985600709915161, 0.998382031917572, 0.9982209801673889, 0.988589346408844, 0.9868022203445435, 0.9731262922286987, 0.9578792452812195, 0.9420866370201111] +O=C(Nc1cccc2c1OCO2)c1ccccc1; [None]; [None]; [0] +COc1cccc(C(=O)NNC(=O)c2ccccc2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)NN)c1', 'COc1cccc(C(=O)NN)c1', 'COc1cccc(C(=O)O)c1']; ['NNC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'NNC(=O)c1ccccc1']; [0.9958382844924927, 0.9931640625, 0.9779635071754456, 0.9545363187789917] +O=C(Nc1scc2c1OCCO2)c1ccccc1; [None]; [None]; [0] +O=C(Nc1ccn(-c2cccc(Cl)c2)n1)c1ccccc1; [None]; [None]; [0] +Cc1ccc(NC(=O)c2ccccc2)c(=O)[nH]1; ['Cc1cccc(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'CCOC(=O)c1ccccc1', 'Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'COC(=O)c1ccccc1']; ['O=c1onc(-c2ccccc2)o1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'Cc1ccc(N)c(=O)[nH]1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'Cc1ccc(N)c(=O)[nH]1']; [0.9992091655731201, 0.9906315803527832, 0.9899346828460693, 0.9815893173217773, 0.9677611589431763, 0.9543811082839966, 0.9530118703842163] +O=C(Nc1cc2ccccc2s1)c1ccccc1; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1', 'Brc1cc2ccccc2s1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9998592138290405, 0.9984273910522461, 0.8533871173858643] +CN(C)C(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CCOC(=O)c1ccccc1', 'CN(C)S(=O)(=O)n1ccnc1', 'CNC', 'CNC', 'CN(C)C(=O)c1ccccc1', 'CN(C)S(=O)(=O)Cl', 'CN(C)C(=O)c1ccc([N+](=O)[O-])cc1', 'CN(C)C=O', 'CN(C)C(=O)c1ccc(I)cc1', 'CC(=O)N(C)C', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)Cl', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)Cl']; ['O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'COC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'CN(C)C(=O)c1ccc(N)cc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'COC(=O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Nc1ccc(Br)cc1)c1ccccc1', 'O=Cc1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9995858669281006, 0.9995476007461548, 0.9995380640029907, 0.9993751049041748, 0.9993734359741211, 0.9991570711135864, 0.9984382390975952, 0.99653160572052, 0.9960261583328247, 0.9954166412353516, 0.9858051538467407, 0.9727212190628052, 0.9710265398025513, 0.9700011014938354, 0.960705041885376, 0.9564656019210815, 0.9496527910232544, 0.9476426839828491, 0.9392063617706299, 0.8621492385864258, 0.7645267248153687] +CC(C)(C)c1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccccc2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(Br)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(N)nc(N)n1']; ['NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9958101511001587, 0.9955153465270996, 0.9875595569610596, 0.9287717342376709, 0.8757893443107605] +O=C(Nc1ncc(Br)cn1)c1ccccc1; ['Nc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1']; ['O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9998868703842163, 0.9985935688018799, 0.9936398267745972] +O=C(NCCCc1ccccc1)c1ccccc1; ['NCCCc1ccccc1', None, 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'ClCc1ccccc1', 'NCCCc1ccccc1', 'Clc1ccccc1', 'Cc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'Brc1ccccc1', None, 'NCCCc1ccccc1', 'Ic1ccccc1', 'N#Cc1ccccc1', 'BrCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'CCOC(=O)c1ccccc1', 'CC(C)(C)OOC(=O)c1ccccc1', 'C=COC(=O)c1ccccc1', 'NCCCc1ccccc1', 'NC(=O)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'N#CC(=O)c1ccccc1', 'CC(C)(C)OC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'NCCCc1ccccc1', 'NC(=O)c1ccccc1', 'N#CCCc1ccccc1', 'NCCCc1ccccc1', 'CC1(C)OB(CCCc2ccccc2)OC1(C)C', 'O=C=NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'CC(=O)c1ccccc1', 'CN(C)C(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', None, 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'NCCCc1ccccc1', 'O=C(ON1C(=O)CCC1=O)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'OCc1ccccc1', 'NCCCc1ccccc1', None, 'O=C(O)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(F)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=C(Br)c1ccccc1', 'OB(O)CCCc1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S', 'O=C([O-])c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=C(S)c1ccccc1', 'NCCCc1ccccc1', 'O=C(Cl)c1ccccc1', 'NNC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'c1ccccc1', 'O=Cc1ccccc1', 'O=C(OCc1ccccc1)c1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'OCCCc1ccccc1', 'O=CCCc1ccccc1']; [0.9999897480010986, 0, 0.9997339844703674, 0.9996384978294373, 0.9994690418243408, 0.9994219541549683, 0.9992913007736206, 0.999282717704773, 0.9992388486862183, 0.9991570711135864, 0.9986751079559326, 0.9983921051025391, 0, 0.9980208277702332, 0.9979433417320251, 0.9963191747665405, 0.9955410957336426, 0.9952682256698608, 0.9952453374862671, 0.9946492910385132, 0.9934955835342407, 0.9934453368186951, 0.9929629564285278, 0.9925059080123901, 0.9923294186592102, 0.9922503232955933, 0.9899959564208984, 0.9890170097351074, 0.9887073040008545, 0.9885945320129395, 0.9878878593444824, 0.9848098754882812, 0.9814668893814087, 0.9745132327079773, 0.9741125106811523, 0.9741019010543823, 0.9672733545303345, 0.9663534164428711, 0.9497193098068237, 0.9400151371955872, 0.9295045137405396, 0.9219033122062683, 0.8817957043647766] +CCN1CCN(Cc2ccc(NC(=O)c3ccccc3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', None, 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', None, 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'COC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Br)c1ccccc1', None, 'O=Cc1ccccc1']; [0.9993901252746582, 0, 0.9981538653373718, 0.9981297850608826, 0.9977796673774719, 0.9967793226242065, 0.9950008392333984, 0.982421338558197, 0, 0.9359524250030518] +CC[C@@H](CO)NC(=O)c1ccccc1; ['CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CCOC(=O)c1ccccc1', 'CC(C)(C)OOC(=O)c1ccccc1', 'CC[C@H](N)CO', 'C=COC(=O)c1ccccc1', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@@H](CO)NC(C)=O']; ['O=C(O)c1ccccc1', 'N#Cc1ccccc1', 'O=C(Cl)c1ccccc1', 'Cc1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COC(=O)c1ccccc1', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'O=C(S)c1ccccc1', 'CC[C@H](N)CO', 'ClCc1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S', 'N#CC(=O)c1ccccc1', 'O=Cc1ccccc1', 'OCc1ccccc1', 'O=C(OCc1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1']; [0.999945878982544, 0.9999364614486694, 0.9999237656593323, 0.9999226331710815, 0.9994702935218811, 0.9992380142211914, 0.9992293119430542, 0.9990631341934204, 0.9987103343009949, 0.9981716275215149, 0.9980472326278687, 0.9974960088729858, 0.9966387748718262, 0.9965642690658569, 0.9952332973480225, 0.9950479865074158, 0.9921959042549133, 0.9892247915267944, 0.9847832918167114, 0.7913597822189331] +O=C1CCc2cc(NC(=O)c3ccccc3)ccc2N1; ['Ic1ccccc1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'COC(=O)c1ccccc1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'NC(=O)c1ccccc1', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C(Cl)c1ccccc1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2ccccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=Cc1ccccc1', 'O=C1CCc2cc([N+](=O)[O-])ccc2N1']; [0.9990018606185913, 0.9988308548927307, 0.9981085062026978, 0.9978255033493042, 0.9973984360694885, 0.9957274198532104, 0.9953038096427917, 0.9875591993331909, 0.9832450747489929, 0.9666122198104858, 0.8626428842544556, 0.7884787321090698] +CSc1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(F)cc1Cl)c1ccccc1; ['Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1cccc(Cl)c1', 'COC(=O)c1ccccc1', 'Ic1ccccc1', 'CCOC(=O)c1ccccc1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'C=CCOC(=O)c1ccccc1', 'Nc1ccc(F)cc1Cl', 'C(#Cc1ccccc1)c1ccccc1', 'Fc1ccc(I)c(Cl)c1', None, 'Nc1ccc(F)cc1Cl', 'O=C(Cl)c1ccccc1', 'Fc1ccc(I)c(Cl)c1', 'N#CC(=O)c1ccccc1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'NC(=O)c1ccccc1', 'CC(=O)Nc1ccc(F)cc1Cl']; ['O=C(Cl)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'N#Cc1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'Nc1ccc(F)cc1Cl', 'O=C(F)c1ccccc1', 'Nc1ccc(F)cc1Cl', 'N#Cc1ccccc1', None, 'O=C(Br)c1ccccc1', 'O=[N+]([O-])c1ccc(F)cc1Cl', 'NCc1ccccc1', 'Nc1ccc(F)cc1Cl', 'O=C(O)C(=O)c1ccccc1', 'O=Cc1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(F)cc1Cl', 'Cc1ccccc1']; [0.9990875720977783, 0.9987480044364929, 0.9985595941543579, 0.9985065460205078, 0.9963370561599731, 0.9961180686950684, 0.9959729313850403, 0.995417058467865, 0.9951326251029968, 0.9922101497650146, 0.9901843070983887, 0.9898685216903687, 0.9897336959838867, 0.9876788258552551, 0, 0.9734021425247192, 0.9579061269760132, 0.9523931741714478, 0.9480082988739014, 0.9362529516220093, 0.9332037568092346, 0.9184864163398743, 0.8850418925285339, 0.8717100620269775, 0.8189151883125305] +O=C(NCCCn1cncn1)c1ccccc1; ['NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'COC(=O)c1ccccc1']; ['O=C(ON1C(=O)CCC1=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'NCCCn1cncn1']; [0.9997772574424744, 0.9997092485427856, 0.9994598627090454, 0.9988280534744263, 0.9987374544143677, 0.9976855516433716] +O=C(N[C@H](CO)Cc1ccccc1)c1ccccc1; ['N[C@H](CO)Cc1ccccc1', 'NC(CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'ClCc1ccccc1', 'N#Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'CCOC(=O)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'CC(C)(C)OOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'NC(=O)c1ccccc1', 'C=COC(=O)c1ccccc1', 'N#CC(=O)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'CC(=O)N[C@H](CO)Cc1ccccc1']; ['O=C(O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'OCc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=C(S)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=Cc1ccccc1', 'O=C(Cl)c1ccccc1']; [0.999981701374054, 0.999981701374054, 0.9999516010284424, 0.9998794794082642, 0.9998631477355957, 0.9994547367095947, 0.9994019269943237, 0.9993789196014404, 0.9993628263473511, 0.999154806137085, 0.9989721775054932, 0.9988579750061035, 0.9983744621276855, 0.9978874921798706, 0.9978559613227844, 0.9965925216674805, 0.9963568449020386, 0.9959813356399536, 0.9855419993400574, 0.7809640765190125] +C[C@H]1CCCN1C(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['C[C@H]1CCCN1', 'C[C@H]1CCCN1C(=O)OC(C)(C)C']; ['O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1']; [0.9976922273635864, 0.9569191932678223] +O=C(Nc1cc2ccccn2n1)c1ccccc1; ['Nc1cc2ccccn2n1', 'O=c1onc(-c2ccccc2)o1', 'Nc1cc2ccccn2n1', '[N-]=[N+]=NC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'c1ccn2nccc2c1', 'O=C(O)c1ccccc1', 'c1ccn2nccc2c1']; [0.9996795654296875, 0.9976582527160645, 0.9963557720184326, 0.8014353513717651] +O=C(Nc1ncc2cccn2n1)c1ccccc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccccc2)cc1OC; ['COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccccc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', None, 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccccc1OC', 'C(#Cc1ccccc1)c1ccccc1', 'COc1ccc(N)cc1OC', 'Brc1ccccc1', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc([N+](=O)[O-])cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc([N+](=O)[O-])cc1OC', 'COc1ccc(N=C=O)cc1OC', 'CCCC[Sn](CCCC)(CCCC)c1ccccc1', 'Brc1ccccc1', 'C=CCOC(=O)c1ccccc1', 'COc1ccc(I)cc1OC', 'COc1ccc(N)cc1OC', 'CN(C)C(=O)c1ccccc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', None, 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'N#Cc1ccccc1', 'COc1ccc(N)cc1OC', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'Ic1ccccc1', 'O=C(F)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Br)c1ccccc1', 'c1ccc(B2OCCCO2)cc1', 'N#CC(=O)c1ccccc1', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'c1ccccc1', 'NC(=O)c1ccccc1', 'OB(O)c1ccccc1', 'C[Sn](C)(C)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'Ic1ccccc1', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(N=C=O)cc1OC', 'COc1ccc(N)cc1OC', 'NCc1ccccc1', 'NNC(=O)c1ccccc1', 'COc1ccc(N)cc1OC']; [0.9999841451644897, 0.9998201131820679, 0.9997234344482422, 0.9994637966156006, 0.9993865489959717, 0.9991408586502075, 0, 0.9990713596343994, 0.9988133311271667, 0.9987090826034546, 0.9980796575546265, 0.9969185590744019, 0.9969158172607422, 0.9967312812805176, 0.9966273307800293, 0.9953281879425049, 0.9947291612625122, 0.9935690760612488, 0.9913249015808105, 0.985870361328125, 0.9837382435798645, 0.9814845323562622, 0.9796411991119385, 0.9770179986953735, 0.9748117923736572, 0.9741895198822021, 0.9734551906585693, 0.9714483022689819, 0.9693635702133179, 0.967816174030304, 0.9577596187591553, 0.9533048272132874, 0.9527513980865479, 0.9515010714530945, 0.9167861938476562, 0.902682363986969, 0.9013252258300781, 0.8676173090934753, 0.8673952221870422] +Cn1cc(NC(=O)c2ccccc2)c(C(F)(F)F)n1; ['Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'NC(=O)c1ccccc1']; [0.9991136193275452, 0.9974468946456909, 0.9971373081207275, 0.9942797422409058, 0.9671562910079956, 0.9177889823913574] +CCc1ccc(NC(=O)c2ccccc2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'Brc1ccccc1', 'CCc1ccc(N)cc1', None, 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(N=C=O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N=C=O)cc1', 'C(#Cc1ccccc1)c1ccccc1', 'CCc1ccc(N=C=O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccccc1', 'Brc1ccccc1', 'CCc1ccc(N=[N+]=[N-])cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N=C=O)cc1', 'CCOC(=O)c1ccccc1', 'CCc1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccccc1', 'CCc1ccc(N=[N+]=[N-])cc1', 'CCc1ccc(N=C=O)cc1', 'CCc1ccc(N)cc1', 'C=CCOC(=O)c1ccccc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccccc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N=[N+]=[N-])cc1', 'CCc1ccc([N+](=O)[O-])cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc([N+](=O)[O-])cc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'Ic1ccccc1', 'O=C(Cl)c1ccccc1', 'N#Cc1ccccc1', 'CCc1ccc(N)cc1', 'COC(=O)c1ccccc1', None, 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'N#Cc1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'c1ccc(B2OCCCO2)cc1', 'NCc1ccccc1', 'OB(O)c1ccccc1', 'CCc1ccc(N)cc1', 'Ic1ccccc1', 'NC(=O)c1ccccc1', 'O=C(F)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'CCc1ccc(N=C=O)cc1', 'O=Cc1ccccc1', 'O=C(Br)c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'C[Sn](C)(C)c1ccccc1', 'CCc1ccc(N)cc1', 'NC(=O)c1ccccc1', 'CCc1ccc(N=C=O)cc1', 'OCc1ccccc1', 'c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'CCc1ccc(N)cc1', 'O=C(O)C(=O)c1ccccc1', 'N#CC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'N#Cc1ccccc1', 'O=Cc1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S', 'CN(C)C(=O)c1ccccc1', 'OCc1ccccc1', 'O=C(S)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9997075796127319, 0.9990944266319275, 0.9989272952079773, 0.9984980821609497, 0.9981340765953064, 0.9981123805046082, 0, 0.9972729086875916, 0.9972241520881653, 0.9971307516098022, 0.9964103698730469, 0.9950507283210754, 0.9947130084037781, 0.9931260347366333, 0.9929050207138062, 0.9920387268066406, 0.9889829158782959, 0.9879388809204102, 0.9866387248039246, 0.9864302277565002, 0.9863234758377075, 0.9856023788452148, 0.9854715466499329, 0.9850872755050659, 0.9843513369560242, 0.984207272529602, 0.980948269367218, 0.9787663221359253, 0.9777853488922119, 0.9741359949111938, 0.97148597240448, 0.9693882465362549, 0.966355562210083, 0.9657735824584961, 0.965573251247406, 0.9627212285995483, 0.9542384743690491, 0.9523501396179199, 0.9462635517120361, 0.9402352571487427, 0.9284621477127075, 0.9232392907142639, 0.8860957622528076, 0.7652455568313599] +COc1cc(NC(=O)c2ccccc2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', None, 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COC(=O)c1ccccc1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'CCOC(=O)c1ccccc1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['O=C(c1ccccc1)n1ccnc1', None, 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'COc1cc(N)ccc1N1CCOCC1', 'NC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COc1cc(N)ccc1N1CCOCC1', 'O=Cc1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1']; [0.9999685883522034, 0, 0.9996931552886963, 0.9995585680007935, 0.9990622997283936, 0.9988187551498413, 0.9987833499908447, 0.9978773593902588, 0.9962731599807739, 0.9952537417411804] +O=C(Nc1ccc(Cl)cc1Cl)c1ccccc1; ['Clc1cccc(Cl)c1', 'O=C=Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1ccccc1', 'Clc1cccc(Cl)c1', 'O=C=Nc1ccc(Cl)cc1Cl', 'Ic1ccccc1', 'Brc1ccccc1', 'Brc1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'C[Sn](C)(C)c1ccccc1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'O=C=Nc1ccc(Cl)cc1Cl', 'CCOC(=O)c1ccccc1', 'Clc1cccc(Cl)c1', 'COC(=O)c1ccccc1', 'Ic1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'O=C(Cl)c1ccccc1', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'C=CCOC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', None, 'Ic1ccccc1', 'O=C(O)c1ccccc1', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'C(#Cc1ccccc1)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'NC(=O)c1ccccc1', 'Clc1cccc(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'N#CC(=O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'O=C(O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl']; ['O=c1onc(-c2ccccc2)o1', 'OB(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C=Nc1ccc(Cl)cc1Cl', 'N#Cc1ccccc1', 'c1ccc(B2OCCCO2)cc1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'O=C=Nc1ccc(Cl)cc1Cl', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C=Nc1ccc(Cl)cc1Cl', 'N#Cc1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'c1ccccc1', 'Nc1ccc(Cl)cc1Cl', '[N-]=[N+]=NC(=O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'O=C=Nc1ccc(Cl)cc1Cl', 'O=C(c1ccccc1)n1ccnc1', 'O=[N+]([O-])c1ccc(Cl)cc1Cl', 'N#Cc1ccccc1', 'O=C(F)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'O=C(O)c1ccccc1', None, 'O=CNc1ccc(Cl)cc1Cl', 'O=C=Nc1ccc(Cl)cc1Cl', 'NC(=O)c1ccccc1', 'NCc1ccccc1', 'O=C(Br)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'O=C(O)C(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(Cl)cc1Cl', 'O=Cc1ccccc1', 'O=CNc1ccc(Cl)cc1Cl', 'OCc1ccccc1']; [0.9994022846221924, 0.9992299675941467, 0.9984697699546814, 0.9981508255004883, 0.997671365737915, 0.9972671270370483, 0.9969563484191895, 0.9967387914657593, 0.996552586555481, 0.9965420961380005, 0.9955229759216309, 0.994766116142273, 0.9940712451934814, 0.9922964572906494, 0.9918060302734375, 0.9914718866348267, 0.9912851452827454, 0.9862823486328125, 0.9846920371055603, 0.9815548658370972, 0.9795635938644409, 0.9773340225219727, 0.9771772027015686, 0.9750782251358032, 0.9731349945068359, 0, 0.962491512298584, 0.9571902751922607, 0.9553669691085815, 0.95152747631073, 0.9453715682029724, 0.9387479424476624, 0.910372793674469, 0.9100741147994995, 0.8964117765426636, 0.8768471479415894, 0.8696587085723877, 0.869286060333252, 0.8672479391098022, 0.8458863496780396, 0.8269811868667603] +O=C(Nc1cccc2ccc(O)cc12)c1ccccc1; ['Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', None, 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'Nc1cccc2ccc(O)cc12', 'NC(=O)c1ccccc1', 'Nc1cccc2ccc(O)cc12', 'NC(=O)c1ccccc1', 'C=CCOC(=O)c1ccccc1', 'N#Cc1ccccc1', 'NNC(=O)c1ccccc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', None, 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'O=C(F)c1ccccc1', 'Oc1ccc2cccc(I)c2c1', 'OCc1ccccc1', 'Oc1ccc2cccc(Br)c2c1', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(I)c2c1', 'Nc1cccc2ccc(O)cc12']; [0.998780369758606, 0.9980608820915222, 0.9937261343002319, 0.9931845664978027, 0.9923940300941467, 0, 0.9910944700241089, 0.9781401753425598, 0.9515290260314941, 0.936872661113739, 0.9308762550354004, 0.8949192762374878, 0.8884810209274292, 0.869944155216217, 0.8420218825340271] +O=C(Nc1ncc(Cl)cn1)c1ccccc1; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Clc1cnc(I)nc1', 'Nc1ncc(Cl)cn1', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'Clc1cnc(Cl)nc1']; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'NC(=O)c1ccccc1']; [0.999136745929718, 0.9990599751472473, 0.9982771277427673, 0.9969799518585205, 0.9907549619674683, 0.9867581129074097, 0.9743798971176147] +Cc1csc2c(NC(=O)c3ccccc3)ncnc12; ['Cc1csc2c(Cl)ncnc12', 'Cc1csc2c(=O)[nH]cnc12']; ['NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9995182752609253, 0.9985746145248413] +COc1cc(NC(=O)c2ccccc2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', None, 'COc1cc(N)ccc1Cl', 'COC(=O)c1ccccc1', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'CCOC(=O)c1ccccc1', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1ccccc1Cl', 'CN(C)C(=O)c1ccccc1', 'COc1cc([N+](=O)[O-])ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1ccccc1Cl']; ['O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', None, 'O=C(Oc1ccccc1)c1ccccc1', 'COc1cc(N)ccc1Cl', 'O=C(Br)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'N#CC(=O)c1ccccc1', 'COc1cc(N)ccc1Cl', 'NC(=O)c1ccccc1', 'O=C(O)C(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'COc1cc(N)ccc1Cl', 'O=C(Cl)c1ccccc1', 'O=Cc1ccccc1', 'OCc1ccccc1', 'N#Cc1ccccc1']; [0.9997212886810303, 0.9994615316390991, 0.9987945556640625, 0.9987763166427612, 0, 0.998613715171814, 0.9963558316230774, 0.9958410263061523, 0.9946286678314209, 0.9938865900039673, 0.9920558333396912, 0.9910625219345093, 0.9907708168029785, 0.9871290326118469, 0.9815165996551514, 0.9766097068786621, 0.9374268054962158, 0.9004340171813965, 0.8168177604675293, 0.810286283493042] +CC1(C)Cc2cc(NC(=O)c3ccccc3)ccc2O1; [None]; [None]; [0] +COc1cc(F)c(NC(=O)c2ccccc2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', None, 'COc1cc(N)c(F)cc1OC', 'COc1ccc(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'C(#Cc1ccccc1)c1ccccc1', 'COc1cc(F)c([N+](=O)[O-])cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'CN(C)C(=O)c1ccccc1', 'COc1cc(N)c(F)cc1OC', 'C=CCOC(=O)c1ccccc1', 'COc1cc(N)c(F)cc1OC']; ['O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', None, 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'N#CC(=O)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'COc1cc(N)c(F)cc1OC', 'O=C(Cl)c1ccccc1', 'O=C(Br)c1ccccc1', 'O=C(F)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'N#Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=Cc1ccccc1', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'NC(=O)c1ccccc1', 'COc1cc(N)c(F)cc1OC', 'O=C(O)C(=O)c1ccccc1']; [0.9995335340499878, 0.9994512796401978, 0.9972226619720459, 0.9952843189239502, 0, 0.9946064949035645, 0.994229257106781, 0.9921934604644775, 0.9915277361869812, 0.9854916334152222, 0.9831029772758484, 0.980903685092926, 0.9786653518676758, 0.9765325784683228, 0.9713505506515503, 0.9482196569442749, 0.9431846141815186, 0.93352210521698, 0.9303337335586548, 0.9052702188491821, 0.9039368629455566, 0.8957915902137756, 0.8508744239807129] +O=C(Nc1cnn(CCO)c1)c1ccccc1; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'NC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'OCCn1cc(Br)cn1']; [0.999943733215332, 0.999596357345581, 0.9113259315490723] +CCNC(=O)c1ccc(NC(=O)c2ccccc2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc[n+]([O-])c1', 'CCNC(=O)c1ccc(Cl)nc1']; ['NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9977717995643616, 0.9973616003990173, 0.992042064666748] +CNC(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CCOC(=O)c1ccccc1', None, 'Brc1ccccc1', 'CNC(=O)c1ccc(Br)cc1', 'CN', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC=O', 'C(#Cc1ccccc1)c1ccccc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'Ic1ccccc1', 'CNC(=O)c1ccc(N)cc1', None, 'CNC(=O)c1ccc(N)cc1', 'N#Cc1ccccc1', 'COC(=O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(Br)c1ccccc1', 'N#Cc1ccccc1', 'O=C(Nc1ccc(I)cc1)c1ccccc1', 'CNC(=O)c1ccc(N)cc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9995438456535339, 0.9957519769668579, 0.98895263671875, 0.9849594831466675, 0.9842557907104492, 0.9837988615036011, 0.9750727415084839, 0.9742045402526855, 0.9683060646057129, 0.9660611152648926, 0.966039776802063, 0.9568114280700684, 0, 0.9472258687019348, 0.9352431297302246, 0.8620578050613403, 0.8441193103790283, 0.8433126211166382, 0.8380000591278076, 0.8168215751647949, 0.7658044099807739, 0.7533766031265259] +CO[C@@H]1CC[C@@H](NC(=O)c2ccccc2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'COC(=O)c1ccccc1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(ON1C(=O)CCC1=O)c1ccccc1', 'CO[C@H]1CC[C@H](N)CC1', 'N#CC(=O)c1ccccc1', 'O=Cc1ccccc1']; [0.9997744560241699, 0.9991797208786011, 0.9951130151748657, 0.9934155941009521, 0.99186110496521, 0.9882038831710815, 0.9729260802268982] +COc1ccc2cccc(NC(=O)c3ccccc3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'Brc1ccccc1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2ccccc2c1', 'COc1ccc2cccc(N)c2c1', None, 'COc1ccc2cccc(N)c2c1', 'C(#Cc1ccccc1)c1ccccc1', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2ccccc2c1', 'CN(C)C(=O)c1ccccc1', 'COc1ccc2cccc(N)c2c1', 'C=CCOC(=O)c1ccccc1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(Cl)c1ccccc1', 'COc1ccc2cccc(N)c2c1', 'O=C(O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'Ic1ccccc1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(F)c1ccccc1', 'N#CC(=O)c1ccccc1', 'N#Cc1ccccc1', 'O=C(Br)c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1', 'N#Cc1ccccc1', 'COc1ccc2cccc(N)c2c1', 'O=C(O)C(=O)c1ccccc1', 'COc1ccc2cccc(N)c2c1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'OCc1ccccc1', 'O=Cc1ccccc1']; [0.999835729598999, 0.9994767308235168, 0.9992481470108032, 0.9987730979919434, 0.9981076717376709, 0.9977118968963623, 0.996148407459259, 0, 0.9958175420761108, 0.994562029838562, 0.9943809509277344, 0.9942417144775391, 0.9928470253944397, 0.9908475279808044, 0.9878020882606506, 0.9868781566619873, 0.9831414818763733, 0.9709777235984802, 0.9489542841911316, 0.9474467635154724, 0.9440701603889465, 0.9401645064353943, 0.9349805116653442, 0.9067742228507996, 0.8982977867126465, 0.8207126259803772] +CCNC(=O)N1CCC(NC(=O)c2ccccc2)CC1; [None, 'CCNC(=O)N1CCC(N)CC1', 'CCN=C=O', 'CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1', 'CCNC(=O)OC']; [None, 'O=C(O)c1ccccc1', 'O=C(NC1CCNCC1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(NC1CCNCC1)c1ccccc1', 'O=C(NC1CCNCC1)c1ccccc1', 'O=C(NC1CCNCC1)c1ccccc1']; [0, 0.9995673298835754, 0.9990140199661255, 0.9975594282150269, 0.9942973852157593, 0.99399733543396, 0.9791730642318726] +COc1cc(NC(=O)c2ccccc2)c(OC)cc1Br; ['COc1ccc(OC)c(Br)c1', 'COc1cc(I)c(OC)cc1Br', None, 'COc1ccc(OC)c(Br)c1', 'COc1cc([N+](=O)[O-])c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', None]; ['O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', None, 'N#Cc1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', None]; [0.9979062080383301, 0.9953033924102783, 0, 0.9787390232086182, 0.9773546457290649, 0.9708127975463867, 0.9589439630508423, 0] +O=C(Nc1cccc(C(=O)Nc2cn[nH]c2)c1)c1ccccc1; ['Nc1cn[nH]c1']; ['O=C(O)c1cccc(NC(=O)c2ccccc2)c1']; [0.9698486328125] +COc1ccc(OC)c(CNC(=O)c2ccccc2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1NC(=O)c1ccccc1; [None]; [None]; [0] +CCn1cc(NC(=O)c2ccccc2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9995352029800415, 0.9783223271369934] +O=C(Nc1ccc2cn[nH]c2c1)c1ccccc1; ['Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', None, 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'O=c1onc(-c2ccccc2)o1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'O=Cc1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'c1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9998208284378052, 0.9997727870941162, 0.9995608329772949, 0.9994782209396362, 0, 0.9994115829467773, 0.9993798136711121, 0.9983721971511841, 0.9980961084365845, 0.997228741645813, 0.9905329942703247, 0.9481357336044312, 0.9404993057250977] +COc1ccc2c(c1)c(NC(=O)c1ccccc1)cn2C; ['COc1ccc2c(ccn2C)c1']; ['O=c1onc(-c2ccccc2)o1']; [0.9999312162399292] +Nc1cc(NC(=O)c2ccccc2)c2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(NC(=O)c2ccccc2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', None, 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'Brc1ccccc1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c([N+](=O)[O-])c1', 'CCOC(=O)c1ccccc1']; ['O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', None, 'O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'CNC(=O)c1ccc(OC)c(N)c1', 'COC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'CNC(=O)c1ccc(OC)c(N)c1']; [0.9971175193786621, 0.9955244064331055, 0, 0.9906439781188965, 0.9832520484924316, 0.9787492752075195, 0.9452152252197266, 0.9139546155929565, 0.8472853899002075, 0.8156046867370605, 0.7841325402259827] +COc1cc(NC(=O)c2ccccc2)cc(OC)c1; [None]; [None]; [0] +O=C(Nc1ncc2sccc2n1)c1ccccc1; ['Clc1ncc2sccc2n1']; ['NC(=O)c1ccccc1']; [0.9817258715629578] +O=C(Nc1cc2ccccc2o1)c1ccccc1; ['O=C(Cl)c1ccccc1']; ['O=[N+]([O-])c1cc2ccccc2o1']; [0.851880669593811] +Cn1cc(Br)cc1NC(=O)c1ccccc1; [None]; [None]; [0] +COc1ccc2nc(NC(=O)c3ccccc3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1', 'COc1ccc(N)c(N)c1']; ['NC(=O)c1ccccc1', 'N#CNC(=O)c1ccccc1']; [0.9972654581069946, 0.9961919784545898] +CC(C)c1nn(C)cc1NC(=O)c1ccccc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNC(=O)c2ccccc2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNC(=O)c1ccccc1']; [0.9477367401123047] +COc1ccc2oc(NC(=O)c3ccccc3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(NC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(Nc1cc(-c2cccnc2)ccn1)c1ccccc1; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9997055530548096, 0.9992769956588745, 0.9991846084594727, 0.9989943504333496, 0.9979908466339111] +O=C(Nc1ncn2c1CCCC2)c1ccccc1; [None]; [None]; [0] +CCc1cccc(NC(=O)c2ccccc2)n1; ['CCc1cccc(N)n1', 'C#Cc1ccccc1', 'CCc1cccc[n+]1[O-]', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'CCc1cccc(N)n1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'COC(=O)c1ccccc1', 'O=Cc1ccccc1', 'CCc1cccc(N)n1']; [0.9996954202651978, 0.9993993043899536, 0.999321699142456, 0.9980334043502808, 0.9968932867050171, 0.9968569874763489, 0.9959739446640015, 0.9453704357147217, 0.9311856627464294] +Cn1cc(NC(=O)c2ccccc2)c2ccccc21; ['Cn1ccc2ccccc21']; ['O=c1onc(-c2ccccc2)o1']; [0.9991514682769775] +Cn1ncc2cc(NC(=O)c3ccccc3)ccc21; ['Cn1ncc2cc(N)ccc21', 'Brc1ccccc1', None, 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(N)ccc21', 'COC(=O)c1ccccc1', 'CCOC(=O)c1ccccc1', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2ccccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc([N+](=O)[O-])ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc([N+](=O)[O-])ccc21']; ['O=C(Cl)c1ccccc1', 'Cn1ncc2cc(N)ccc21', None, 'NC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(Br)c1ccccc1', 'O=Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccccc1']; [0.9999809265136719, 0.999970555305481, 0, 0.9999218583106995, 0.9998563528060913, 0.9998190402984619, 0.9997870922088623, 0.9996922016143799, 0.9996631741523743, 0.9994900226593018, 0.9994654655456543, 0.9990643858909607, 0.9987081289291382, 0.9984532594680786, 0.9941132068634033, 0.9935028553009033, 0.9925161600112915, 0.9910353422164917, 0.984007716178894] +CN(C)c1ccc(NC(=O)c2ccccc2)cn1; ['CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc([N+](=O)[O-])cn1', 'CN(C)c1ccc(Cl)cn1']; ['O=C(Cl)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9997401237487793, 0.9992339611053467, 0.9988919496536255, 0.9963082075119019, 0.9947941303253174, 0.9920345544815063, 0.8645856380462646, 0.8294636011123657] +O=C(Nc1cccc(NC(=O)N2CCCC2)c1)c1ccccc1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(NC(=O)c3ccccc3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(NC(=O)c3ccccc3)ccc12; ['Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'COC(=O)c1ccccc1', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'CCOC(=O)c1ccccc1', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', None, 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(F)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'Cc1n[nH]c2cc(N)ccc12', 'NC(=O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Cc1n[nH]c2cc(N)ccc12', 'O=C(Oc1ccccc1)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', None, 'O=Cc1ccccc1', 'NC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'O=C(Br)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1']; [0.9999476671218872, 0.9999188184738159, 0.9997872114181519, 0.9997221231460571, 0.9996598958969116, 0.9995880126953125, 0.9994609355926514, 0.9992638826370239, 0, 0.9990455508232117, 0.998832643032074, 0.9979239702224731, 0.997850775718689, 0.9958615899085999, 0.9956521987915039] +O=C(Nc1ccc(OC(F)(F)F)cc1)c1ccccc1; [None]; [None]; [0] +O=C(Nc1cccc(N2CCCC2=O)c1)c1ccccc1; ['Brc1ccccc1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'CCOC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1']; ['Nc1cccc(N2CCCC2=O)c1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc([N+](=O)[O-])c1']; [0.9998775720596313, 0.9992924928665161, 0.9991104602813721, 0.9957945346832275, 0.9956005811691284, 0.9954885244369507, 0.9751687049865723] +CC(C)(O)c1ccc2cc(NC(=O)c3ccccc3)[nH]c2c1; [None]; [None]; [0] +O=C(NNC(=O)c1cccc(OC(F)(F)F)c1)c1ccccc1; ['NNC(=O)c1ccccc1', 'NNC(=O)c1cccc(OC(F)(F)F)c1', 'NNC(=O)c1cccc(OC(F)(F)F)c1', 'NNC(=O)c1ccccc1', 'NNC(=O)c1cccc(OC(F)(F)F)c1', 'NNC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', '[N-]=[N+]=NC(=O)c1ccccc1']; [0.9994434714317322, 0.9990056157112122, 0.9943889379501343, 0.9930976629257202, 0.9843553304672241, 0.8015868663787842] +Cc1cc(NC(=O)c2ccccc2)cc(C)c1OCCO; [None]; [None]; [0] +O=C(Nc1ccc(CCO)cc1)c1ccccc1; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'COC(=O)c1ccccc1', 'O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'NC(=O)c1ccccc1']; ['O=C(Cl)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccccc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'O=C(O)C(=O)c1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S', 'O=Cc1ccccc1', 'OCCc1ccc(Cl)cc1']; [0.9993811845779419, 0.9990320205688477, 0.9989529848098755, 0.9926247596740723, 0.9918564558029175, 0.9851556420326233, 0.98216712474823, 0.9770757555961609, 0.9375638961791992, 0.9005662202835083, 0.8618378639221191, 0.8255994915962219] +CN(C)C(=O)c1ccc(NC(=O)c2ccccc2)c(Cl)c1; ['CN(C)C(=O)c1cccc(Cl)c1']; ['O=c1onc(-c2ccccc2)o1']; [0.9823235869407654] +CC(=O)N1CCC(n2cc(NC(=O)c3ccccc3)cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccccc2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', None, 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; ['O=C(Oc1c(F)c(F)c(F)c(F)c1F)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Cl)c1ccccc1', 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', None, 'COC(=O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1']; [0.9935946464538574, 0.9687978625297546, 0.9682786464691162, 0.9601521492004395, 0.9498428702354431, 0, 0.8857253789901733, 0.8684060573577881] +COc1cc(S(C)(=O)=O)ccc1NC(=O)c1ccccc1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', None, 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'CCOC(=O)c1ccccc1', 'COC(=O)c1ccccc1', 'COc1cc(S(C)(=O)=O)ccc1[N+](=O)[O-]', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N']; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', None, 'O=C(c1ccccc1)n1ccnc1', 'O=C(O)c1ccccc1', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'O=C(Cl)c1ccccc1', 'NC(=O)c1ccccc1', 'O=Cc1ccccc1', 'NC(=O)c1ccccc1']; [0.9995478391647339, 0.9992902278900146, 0.9990454316139221, 0, 0.9984610080718994, 0.9979802370071411, 0.9971352815628052, 0.9920411109924316, 0.99155592918396, 0.9811079502105713, 0.9684813022613525, 0.9563838243484497] +Cc1ncc(-c2ccc(NC(=O)c3ccccc3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccccc2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1']; ['NC(=O)c1ccccc1']; [0.9992919564247131] +Cc1cc(N2CCOCC2)ccc1NC(=O)c1ccccc1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccccc2)cc1; ['CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCN', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCN', 'Brc1ccccc1', None, None, 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc([N+](=O)[O-])cc1', 'CCNC(=O)c1ccc(N)cc1']; ['O=C(c1ccccc1)n1nnc2ccccc21', 'O=C(c1ccccc1)n1ccnc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', 'O=C(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1', 'COC(=O)c1ccccc1', 'COC(=O)c1ccc(NC(=O)c2ccccc2)cc1', 'O=C(O)c1ccccc1', 'Ic1ccccc1', 'NC(=O)c1ccccc1', 'O=C(O)c1ccc(NC(=O)c2ccccc2)cc1', 'CCNC(=O)c1ccc(N)cc1', None, None, 'O=C(Cl)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'NC(=O)c1ccccc1', 'O=C(Br)c1ccccc1', 'CCOC(=O)c1ccccc1', 'O=C(O)c1ccccc1', 'O=C(c1ccccc1)N1CCSC1=S']; [0.9992204904556274, 0.9931511878967285, 0.9924551844596863, 0.9910167455673218, 0.9905254244804382, 0.9853981137275696, 0.9832350015640259, 0.9832239151000977, 0.9791845083236694, 0.9784818887710571, 0.9759516716003418, 0, 0, 0.9692202806472778, 0.9679257869720459, 0.9589828252792358, 0.9387855529785156, 0.9303549528121948, 0.8500881195068359, 0.837706446647644] +COc1cc(-c2cnn(C)c2)ccc1NC(=O)c1ccccc1; [None]; [None]; [0] +Cn1nc(NC(=O)c2ccccc2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(NC(=O)c2ccccc2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', None, 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CCOC(=O)c1ccccc1', 'CN', 'CNC(=O)c1ccc(C)c(N)c1', None]; ['O=C(Cl)c1ccccc1', 'O=C(OC(=O)c1ccccc1)c1ccccc1', None, 'O=C(O)c1ccccc1', 'O=C(Oc1ccccc1)c1ccccc1', 'COC(=O)c1ccccc1', 'CNC(=O)c1ccc(C)c(N)c1', 'Cc1ccc(C(=O)O)cc1NC(=O)c1ccccc1', 'O=Cc1ccccc1', None]; [0.9975893497467041, 0.9962165951728821, 0, 0.9940215349197388, 0.9859141111373901, 0.9490766525268555, 0.9079494476318359, 0.8931409120559692, 0.7971247434616089, 0] +COc1cc(N2CCNCC2)ccc1NC(=O)c1ccccc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(NC(=O)c2ccccc2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['NC(=O)c1ccccc1']; [0.9979662299156189] +CCOc1ccccc1-c1cnc2ccc(N)nn12; ['CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999829530715942, 0.9999685287475586, 0.9979199767112732] +CS(=O)(=O)c1ccc(Cl)c(NC(=O)c2ccccc2)c1; ['CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c([N+](=O)[O-])c1']; ['O=c1onc(-c2ccccc2)o1', 'NC(=O)c1ccccc1', 'O=C(Cl)c1ccccc1']; [0.9862021803855896, 0.9814413785934448, 0.9141629934310913] +CNC(=O)c1ccccc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +CCn1cc(-c2cnc3ccc(N)nn23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.9999852776527405] +CP(C)(=O)c1ccccc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)NC(=O)c1ccccc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1NC(=O)c1ccccc1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc(C(F)(F)F)c3)n2n1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999970197677612, 0.9995920658111572] +Nc1ccc2ncc(-c3ccnc4ccccc34)n2n1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1ccnc2ccccc12']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccnc2ccccc12', 'Nc1ccc2nccn2n1']; [0.9999779462814331, 0.9992220401763916, 0.9837334156036377] +Nc1ccc2ncc(-c3ccccc3OC(F)(F)F)n2n1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'FC(F)(F)Oc1ccccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccc2nccn2n1']; [0.9999997615814209, 0.9999978542327881, 0.999988853931427] +Nc1ccc2ncc(-c3ccccc3C(=O)[O-])n2n1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cnc3ccc(N)nn23)[nH]1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnc2ccc(N)nn12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999885559082031, 0.9977898597717285, 0.8877944946289062] +Nc1ccc2ncc(-c3cnn(Cc4ccccc4)c3)n2n1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [1.0, 0.9999980926513672] +Cn1cnc2ccc(-c3cnc4ccc(N)nn34)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ccc2nccn2n1', 'Nc1ccc2ncc(Br)n2n1']; [0.9999561309814453, 0.9995312690734863] +COc1ccc(F)cc1[C@@H](C)c1cnc2ccc(N)nn12; [None]; [None]; [0] +Cc1ccc(-c2cnc3ccc(N)nn23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ccc2ncc(Br)n2n1']; [0.9758389592170715] +Nc1ccc2ncc(-c3cccc(NC(=O)c4ccccc4)c3)n2n1; ['Nc1ccc2ncc(Br)n2n1']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999963641166687] +Nc1ccc2ncc(-c3cnn(CCO)c3)n2n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OCCn1cc(B(O)O)cn1']; [1.0, 0.9999974966049194] +Nc1ccc2ncc(-c3cc(Cl)ccc3Cl)n2n1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Clc1ccc(Cl)c(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1ccc2nccn2n1']; [0.9999991655349731, 0.9999295473098755, 0.9994973540306091] +Nc1ccc2ncc(-c3cnc(-c4ccccc4)[nH]3)n2n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc3ccc(N)nn23)cs1; [None]; [None]; [0] +Nc1ccc2ncc([C@@H](N)c3ccco3)n2n1; [None]; [None]; [0] +COc1cnc(-c2cnc3ccc(N)nn23)nc1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cnc4ccccn34)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc(Cn4cncn4)c3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3c(Cl)cccc3Cl)n2n1; ['Nc1ccc2ncc(Br)n2n1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9992043375968933, 0.992800235748291, 0.9469714164733887] +Cc1nc(C)c(-c2cnc3ccc(N)nn23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc3ccc(N)nn23)s1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc(Br)c3)n2n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cccc(Br)c1', 'Nc1ccc2nccn2n1']; [0.9999958276748657, 0.9997293949127197, 0.9987330436706543] +Cc1ccc(Cl)c(-c2cnc3ccc(N)nn23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999871253967285, 0.9998660087585449, 0.9959560632705688, 0.9935654997825623] +Cc1nc2ccccn2c1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc4ccccc4c3)n2n1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1ccc2ccccc2c1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc2nccn2n1']; [0.9999998807907104, 0.9999979734420776, 0.9998914003372192] +Nc1ccc2ncc(-c3cnn4ncccc34)n2n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999992251396179] +Cc1nc(N)sc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnc2ccc(N)nn12; ['NC(=O)c1c(F)cccc1Br']; ['Nc1ccc2nccn2n1']; [0.999962568283081] +Nc1ccc2ncc(-c3cnc4cccnn34)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3c[nH]nc3C(F)(F)F)n2n1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.9996205568313599] +Nc1ccc2ncc(-c3ccc4c(N)[nH]nc4c3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cncc4ccccc34)n2n1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1cncc2ccccc12']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cncc2ccccc12', 'Nc1ccc2nccn2n1']; [0.9999992847442627, 0.9999353885650635, 0.9965630173683167] +Nc1ccc2ncc(-c3ccnc(N)n3)n2n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc4ccc(N)nn34)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +Cn1ncc2cc(-c3cnc4ccc(N)nn34)ccc21; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 1.0] +Nc1ccc2ncc(-c3ccc(-c4cn[nH]c4)cc3)n2n1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999990463256836, 0.9999210834503174] +Nc1ccc2ncc(-c3cccc(O)c3)n2n1; ['Nc1ccc2ncc(Br)n2n1']; ['OB(O)c1cccc(O)c1']; [0.9999662637710571] +Cc1c(-c2cnc3ccc(N)nn23)sc(=O)n1C; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cnc3ccc(N)nn23)o1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc(CC(=O)[O-])c3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3csc4ncncc34)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc(CO)c3)n2n1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999998807907104, 0.9999771118164062, 0.998725414276123] +CN1c2ccc(-c3cnc4ccc(N)nn34)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cnc3ccc(N)nn23)n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc3ccc(N)nn23)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999902844429016, 0.9995810389518738] +CC(C)n1cc(-c2cnc3ccc(N)nn23)nn1; [None]; [None]; [0] +CSc1nc(-c2cnc3ccc(N)nn23)c[nH]1; [None]; [None]; [0] +COc1cc(-c2cnc3ccc(N)nn23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc3ccc(N)nn23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +Nc1ccc2ncc(-c3ccc(F)cc3C(F)(F)F)n2n1; ['Nc1ccc2ncc(Br)n2n1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999925494194031, 0.9326149821281433, 0.9179089665412903] +Nc1ccc2ncc(-c3cncnc3N)n2n1; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; ['Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9932721257209778, 0.944251537322998] +Nc1ccc2ncc(Cc3c(F)cccc3F)n2n1; [None]; [None]; [0] +COc1ccc(-c2cnc3ccc(N)nn23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.9999973177909851] +CC(=O)Nc1cccc(-c2cnc3ccc(N)nn23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [0.9999996423721313, 0.9999978542327881] +Nc1ccc2ncc(-c3cc4ccccc4[nH]3)n2n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnc4ccc(N)nn34)cc2s1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cnn4ccccc34)n2n1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1cnn2ccccc12']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cnn2ccccc12', 'Nc1ccc2nccn2n1']; [1.0, 0.9999986290931702, 0.9859553575515747] +CCCn1cc(-c2cnc3ccc(N)nn23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.9999969005584717] +Cn1cc(-c2cnc3ccc(N)nn23)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999997615814209] +CC[C@H](CO)c1cnc2ccc(N)nn12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CC(C)(N)c1ccc(Br)cc1']; ['Nc1ccc2nccn2n1']; [0.8524917364120483] +C[S@](=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999953508377075] +Nc1ccc2ncc(-c3cccc4c3C(=O)CC4)n2n1; ['Nc1ccc2nccn2n1']; ['O=C1CCc2cccc(Br)c21']; [0.8187258243560791] +Nc1ccc2ncc(-c3cc[nH]c(=O)c3)n2n1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1ccc2nccn2n1']; ['Nc1ccc2ncc(Br)n2n1', 'O=c1cc(Br)cc[nH]1']; [0.999998927116394, 0.9864789247512817] +CCNS(=O)(=O)c1ccccc1-c1cnc2ccc(N)nn12; ['CCNS(=O)(=O)c1ccccc1Br']; ['Nc1ccc2ncc(Br)n2n1']; [0.9973360896110535] +Nc1ccc2ncc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)n2n1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999992847442627, 0.9991938471794128, 0.8925038576126099] +CC(C)Oc1cncc(-c2cnc3ccc(N)nn23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.9999995231628418] +CS(=O)(=O)c1cccc(Cc2cnc3ccc(N)nn23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2ccc(N)nn12; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Cl']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999995231628418, 0.9999511241912842, 0.9998127222061157, 0.9997241497039795, 0.9994738101959229, 0.997718334197998] +CN(c1ncccc1Cc1cnc2ccc(N)nn12)S(C)(=O)=O; [None]; [None]; [0] +Nc1ccc2ncc(-c3c[nH]c4cnccc34)n2n1; ['Nc1ccc2ncc(Br)n2n1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9963945150375366] +Nc1ccc2ncc(-c3cnc4[nH]ccc4c3)n2n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999960660934448] +Nc1ccc2ncc(-c3cc4c(=O)[nH]ccc4o3)n2n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999993443489075, 0.9995176792144775, 0.9990285634994507] +CNC(=O)c1c(F)cccc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc([C@H](CO)c3ccccc3)n2n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.999993085861206, 0.9990990161895752] +Nc1ccc2ncc(-c3ccc(N4CCOCC4)cc3)n2n1; ['Nc1ccc2ncc(Br)n2n1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 1.0] +CNS(=O)(=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999951124191284, 0.9984864592552185, 0.9984077215194702] +Nc1ccc2ncc(-c3cc4c(=O)[nH]cc(Br)c4s3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3c(F)cccc3Cl)n2n1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Nc1ccc2ncc(Br)n2n1', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'OB(O)c1c(F)cccc1Cl', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999997615814209, 0.9999672174453735, 0.9999406337738037, 0.9999246597290039, 0.9995567202568054] +Nc1ccc2ncc([C@H](CO)Cc3ccccc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(-n4cncn4)cc3)n2n1; [None]; [None]; [0] +CC1(c2cnc3ccc(N)nn23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(C(=O)c4ccccc4)cc3)n2n1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; ['Nc1ccc2ncc(Br)n2n1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [1.0, 0.9999983310699463, 0.904578447341919] +COc1ccc(-c2cnc3ccc(N)nn23)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999982118606567, 0.9999682903289795, 0.9998732209205627] +Cc1cc(-c2cnc3ccc(N)nn23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc3ccc(N)nn23)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3ccc(N)nn23)CC1; [None]; [None]; [0] +Nc1ccc2ncc(-c3nncn3C3CC3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cn(Cc4ccccc4)nn3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccn(CC[NH3+])n3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3nnc(N)s3)n2n1; [None]; [None]; [0] +CCc1cc(-c2cnc3ccc(N)nn23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cnc3ccc(N)nn23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3ccc(N)nn23)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3ccc(N)nn23)s1; [None]; [None]; [0] +Nc1ccc2ncc(-c3nc4ccccc4s3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc4ccsc34)n2n1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1cccc2ccsc12']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cccc2ccsc12', 'Nc1ccc2nccn2n1']; [1.0, 0.9999849796295166, 0.9852690696716309] +Nc1ccc2ncc(-c3cccc4nnsc34)n2n1; ['Brc1cccc2nnsc12']; ['Nc1ccc2nccn2n1']; [0.9219381809234619] +C[C@@H2]NC(=O)N1CCC(c2cnc3ccc(N)nn23)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4ccc(N)nn34)c2)cc1; [None]; [None]; [0] +Nc1ccc2ncc(-c3c[nH]c4cccnc34)n2n1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999967217445374] +CC1(C)Oc2ccc(-c3cnc4ccc(N)nn34)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2cnc3ccc(N)nn23)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc2ccc(N)nn12; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999963641166687, 0.999994158744812, 0.9937836527824402] +Nc1ccc2ncc(CCCNC(=O)C3CCC3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(CCCNC(=O)c3cccs3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ncc4ccccc4n3)n2n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc3ccc(N)nn23)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc3ccc(N)nn23)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999890327453613, 0.9999822974205017, 0.9968847036361694] +Nc1ccc2ncc(-c3cn(CCO)cn3)n2n1; [None]; [None]; [0] +COc1ncccc1-c1cnc2ccc(N)nn12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1I']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999974370002747, 0.9999219179153442, 0.9574821591377258, 0.9040896892547607] +Nc1ccc2ncc(-c3ncc4cc[nH]c4n3)n2n1; [None]; [None]; [0] +CN(C)c1cc(-c2cnc3ccc(N)nn23)cnn1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(Cl)c(O)c3)n2n1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999996423721313, 0.9999990463256836] +NC(=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999996423721313, 0.9999787211418152] +Nc1ccc2ncc(Oc3ccc(F)cc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cccc4ncccc34)n2n1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Brc1cccc2ncccc12']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cccc2ncccc12', 'Nc1ccc2nccn2n1']; [0.9999990463256836, 0.9995200037956238, 0.9960576295852661] +Nc1ccc2ncc(-c3n[nH]c4ccccc34)n2n1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnc3ccc(N)nn23)CC1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(-c3c(Cl)ccc4c3OCO4)n2n1; ['Nc1ccc2ncc(Br)n2n1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9995105862617493] +CN(C)S(=O)(=O)c1cccc(-c2cnc3ccc(N)nn23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.999984860420227, 0.99997878074646, 0.9998202323913574] +NC(=O)c1ccc(-c2cnc3ccc(N)nn23)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [0.9999991655349731, 0.9999581575393677] +Nc1ccc2ncc(-c3ccc(O)cc3Cl)n2n1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(O)cc1Cl']; [0.9999968409538269, 0.999800443649292] +COc1cc(C(N)=O)ccc1-c1cnc2ccc(N)nn12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999967813491821] +COc1ccc(F)cc1-c1cnc2ccc(N)nn12; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999990463256836, 0.9999791383743286, 0.9782168865203857] +COc1cc(-c2cnc3ccc(N)nn23)ccc1O; ['COc1cc(B(O)O)ccc1O']; ['Nc1ccc2ncc(Br)n2n1']; [0.999989926815033] +COc1cc(F)ccc1-c1cnc2ccc(N)nn12; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999996423721313, 0.9999855756759644, 0.9999369382858276] +Nc1ccc2ncc(-c3ccc(O)cc3F)n2n1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1']; [0.9999930262565613, 0.9999098181724548, 0.9732270240783691] +Nc1ccc2ncc(-c3ccc(C(=O)[O-])cc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(O)c(F)c3)n2n1; ['Nc1ccc2ncc(Br)n2n1']; ['OB(O)c1ccc(O)c(F)c1']; [0.9999985098838806] +COC(=O)c1ccc(Cl)c(-c2cnc3ccc(N)nn23)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999995231628418, 0.9997954964637756, 0.9983088970184326] +Cc1nc2c(F)cc(-c3cnc4ccc(N)nn34)cc2[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3ccc(N)nn23)o1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(F)c(Cl)c3)n2n1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(F)c(Cl)c1']; [1.0, 0.9999992251396179] +Nc1cc(-c2cnc3ccc(N)nn23)ccn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999998211860657, 0.9999808073043823, 0.9998725652694702, 0.999051034450531] +Nc1ccc2ncc(-c3ccc(-c4ccc(O)cc4O)cc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cn[nH]c3Cl)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(COc3ccccc3Cl)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(O)cc3O)n2n1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc2ccc(N)nn12; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999822378158569, 0.9990655183792114, 0.965265154838562] +Nc1ccc2ncc(-c3cnc(O)c(Cl)c3)n2n1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +Nc1ccc2ncc(-c3cc(O)ccc3Cl)n2n1; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cc(O)ccc1Cl']; [0.9999914169311523, 0.9969441890716553] +Cc1ccc(CO)cc1-c1cnc2ccc(N)nn12; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999978542327881, 0.999711275100708, 0.8871492147445679] +COc1ccc(-c2cnc3ccc(N)nn23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999996423721313, 0.9999942779541016, 0.9999886751174927] +COc1cc(CCc2cnc3ccc(N)nn23)ccc1O; [None]; [None]; [0] +CCOc1cccc(-c2cnc3ccc(N)nn23)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999997615814209, 0.9999763369560242, 0.9988813400268555] +Cc1nc2ccc(-c3cnc4ccc(N)nn34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +COc1cc(OC)cc(-c2cnc3ccc(N)nn23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; [0.9999997615814209, 0.9999949932098389, 0.994918942451477, 0.9890385866165161, 0.9862473011016846] +NC(=O)c1cc(-c2cnc3ccc(N)nn23)c[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3ccc(N)nn23)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +Nc1ccc2ncc(-c3ccc4c(c3)CC(=O)N4)n2n1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'O=C1Cc2cc(B(O)O)ccc2N1']; [0.9999997615814209, 0.9999938011169434] +Nc1ccc2ncc(-c3cncc(O)c3)n2n1; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1', 'Nc1ccc2nccn2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(I)c1']; [1.0, 0.9999620914459229, 0.9977487325668335, 0.9957271814346313] +Nc1ccc2ncc(-c3[nH]cnc3-c3ccc(F)cc3)n2n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc2ccc(N)nn12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999881982803345] +CCc1cc(O)c(F)cc1-c1cnc2ccc(N)nn12; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ccc2ncc(Br)n2n1']; [0.9999994039535522] +Cc1cc(O)ccc1-c1cnc2ccc(N)nn12; ['Cc1cc(O)ccc1B(O)O']; ['Nc1ccc2ncc(Br)n2n1']; [0.9962247610092163] +CNC(=O)c1cccc2cc(-c3cnc4ccc(N)nn34)ccc12; [None]; [None]; [0] +Nc1ccc2ncc(-c3cc(C(F)F)n[nH]3)n2n1; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc3ccc(N)nn23)c1C; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccncc3Cl)n2n1; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Clc1cnccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccncc1Cl', 'Nc1ccc2nccn2n1']; [0.9999990463256836, 0.9999512434005737, 0.9991304278373718] +CCc1sccc1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(-c3cc(Cl)c(O)c(Cl)c3)n2n1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [1.0, 0.9999570250511169] +COc1cc(CCc2cnc3ccc(N)nn23)cc(OC)c1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc4c(c3)CCN4)n2n1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc2c(c1)CCN2']; [1.0, 0.9999992847442627] +CNc1nccc(-c2cnc3ccc(N)nn23)n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc4[nH]c(=O)[nH]c4c3)n2n1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [1.0, 0.9999987483024597] +C[C@H](CC(N)=O)c1cnc2ccc(N)nn12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc4ccc(N)nn34)ccc12; [None]; [None]; [0] +Nc1ccc2ncc(-c3ccc(Br)cc3F)n2n1; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1', 'Fc1cc(Br)ccc1Br']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1ccc(Br)cc1F', 'Nc1ccc2nccn2n1']; [0.9999929666519165, 0.9990144968032837, 0.9971375465393066] +Nc1ccc2ncc(Nc3ccncc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3[nH]nc4ccc(F)cc34)n2n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3ccc(N)nn23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1']; [1.0, 0.9999988079071045] +Cc1oc(-c2cnc3ccc(N)nn23)cc1C(=O)[O-]; [None]; [None]; [0] +CNc1nc(-c2cnc3ccc(N)nn23)ncc1F; [None]; [None]; [0] +Nc1ccc2ncc(-c3cc(O)n4nccc4n3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cc(O)cc(Br)c3)n2n1; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cc(O)cc(Br)c1']; [0.9999824166297913, 0.993861973285675] +Nc1ccc2ncc(-c3ccc(C(=O)NC4CC4)cc3)n2n1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [1.0, 0.9999995231628418] +Cc1cc(-c2cnc3ccc(N)nn23)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999987483024597, 0.9998607635498047, 0.947982668876648] +Nc1ccc2ncc(-c3cc(F)c(O)c(F)c3)n2n1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Nc1ccc2ncc(Br)n2n1']; ['Nc1ccc2ncc(Br)n2n1', 'OB(O)c1cc(F)c(O)c(F)c1']; [1.0, 0.9999845623970032] +CSc1cccc(-c2cnc3ccc(N)nn23)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [0.9999997615814209, 0.9998736381530762, 0.9940544366836548] +Cc1cc(-c2cnc3ccc(N)nn23)ccc1C(N)=O; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(OCc3cccc4ccccc34)n2n1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4ccc(N)nn34)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2ncc(Br)n2n1', 'Nc1ccc2nccn2n1']; [1.0, 0.9999997615814209, 0.9999862909317017] +Nc1ccc2ncc(Oc3ccc(F)cc3F)n2n1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(OCc3ccc(F)cc3F)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(NCc3c(F)cccc3Cl)n2n1; ['NCc1c(F)cccc1Cl']; ['Nc1ccc2ncc(Br)n2n1']; [1.0] +Nc1ccc2ncc(-c3ccc4c(=O)[nH][nH]c4c3)n2n1; [None]; [None]; [0] +Cc1c(-c2cccc(O)c2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OB(O)c1cccc(O)c1', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Oc1cccc(I)c1']; [0.9996669292449951, 0.9989535808563232, 0.974777102470398] +Cc1onc(-c2ccccc2)c1-c1cnc2ccc(N)nn12; [None]; [None]; [0] +Nc1ccc2ncc(CCc3c[nH]c4ccccc34)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3ocnc3-c3ccc(F)cc3)n2n1; [None]; [None]; [0] +Nc1ccc2ncc(-c3cn[nH]c3-c3ccc(Cl)cc3)n2n1; [None]; [None]; [0] +Cc1c(-c2c(Cl)ccc3c2OCO3)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9996082186698914] +Cc1c(-c2ccc(Cl)c(O)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999097585678101, 0.9998674988746643] +CNS(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2C)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999504089355469, 0.9997353553771973] +Nc1ccc2ncc(CCc3ccc(F)cc3F)n2n1; [None]; [None]; [0] +Cc1c(-c2cccc3ncccc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ccc(C(N)=O)cc2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999924898147583, 0.9999644160270691] +Cc1c(Oc2ccc(F)cc2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Oc1ccc(F)cc1']; [0.9994254112243652] +Cc1c(-c2ccc(C(N)=O)cc2F)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999889135360718, 0.9999340772628784] +Cc1c(-c2c(Cl)cccc2Cl)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br']; [0.9996529221534729, 0.984756588935852, 0.9779961109161377] +COc1cc(C(N)=O)ccc1-c1ccc2nc[nH]c(=O)c2c1C; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999850988388062] +Cc1c(-c2n[nH]c3ccccc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ccc(O)cc2Cl)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OB(O)c1ccc(O)cc1Cl', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Oc1ccc(Br)c(Cl)c1']; [0.9999716281890869, 0.9998599290847778, 0.8709554672241211] +COc1ccc(F)cc1-c1ccc2nc[nH]c(=O)c2c1C; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999512434005737, 0.9998389482498169, 0.9676675796508789] +Cc1c(-c2ccc(O)cc2F)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc(O)cc1F']; [0.9999628067016602, 0.9999309182167053] +Cc1c(-c2ccnc(N)n2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2C)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.999886155128479, 0.9997916221618652] +Cc1nc2c(F)cc(-c3ccc4nc[nH]c(=O)c4c3C)cc2[nH]1; [None]; [None]; [0] +Cc1c(-c2cn[nH]c2Cl)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2cccc(Br)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Brc1cccc(Br)c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cccc(Br)c1', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9998993873596191, 0.9992358088493347, 0.7592908143997192] +Cc1c(-c2ccc3ccccc3c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Brc1ccc2ccccc2c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc2ccccc2c1', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999891519546509, 0.9999852180480957, 0.9090089797973633] +COc1cc(F)ccc1-c1ccc2nc[nH]c(=O)c2c1C; [None]; [None]; [0] +Cc1c(-c2ccc(C(=O)[O-])cc2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ccc(-c3ccc(O)cc3O)cc2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2C)o1; ['COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999951124191284, 0.9999375343322754, 0.997260332107544, 0.9724167585372925] +Cc1c(-c2ccc(O)c(F)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc(O)c(F)c1']; [0.9999850988388062, 0.9999207854270935] +Cc1c(-c2cn(C)c3ccccc23)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.999968409538269] +COC(=O)c1ccc(Cl)c(-c2ccc3nc[nH]c(=O)c3c2C)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999741911888123, 0.9978299736976624] +Cc1c(-c2ccc(F)c(Cl)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl']; [0.9999982118606567, 0.999990701675415, 0.964755654335022] +Cc1c(-c2ccc(O)cc2O)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ccnc(N)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1']; [0.9999866485595703, 0.9999425411224365, 0.9780480861663818, 0.7646859884262085] +Cc1c(-c2cc(O)ccc2Cl)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cc(O)ccc1Cl']; [0.9995539784431458, 0.9974279403686523] +Cc1c(-c2cnn3ncccc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2c[nH]c3cnccc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +COc1cc(CCc2ccc3nc[nH]c(=O)c3c2C)ccc1O; [None]; [None]; [0] +Cc1c(-c2[nH]cnc2-c2ccc(F)cc2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.9653626680374146] +Cc1ccc2[nH]ncc2c1-c1ccc2nc[nH]c(=O)c2c1C; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1ccc2[nH]ncc2c1I']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1cccc2nc[nH]c(=O)c12']; [0.9999921321868896, 0.9999243021011353, 0.9995427131652832, 0.9942031502723694, 0.9571619033813477] +Cc1ccc(CO)cc1-c1ccc2nc[nH]c(=O)c2c1C; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; [0.9999992847442627, 0.9992806315422058] +Cc1c(COc2ccccc2Cl)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +COc1ccc(-c2ccc3nc[nH]c(=O)c3c2C)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999822378158569, 0.9999544620513916, 0.9574519395828247] +COc1cc(OC)cc(-c2ccc3nc[nH]c(=O)c3c2C)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999778270721436, 0.9999397993087769, 0.9983895421028137, 0.8297044038772583] +Cc1c(-c2cnc(O)c(Cl)c2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2cnc3[nH]ccc3c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999990463256836, 0.9999985694885254] +Cc1c(-c2c[nH]c(C(N)=O)c2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc[nH]c(=O)c4c3C)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3nc[nH]c(=O)c3c2C)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4nc[nH]c(=O)c4c3C)ccc12; [None]; [None]; [0] +Cc1c(-c2ccc(S(C)(=O)=O)cc2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999954700469971, 0.9999768137931824, 0.9259178638458252] +COc1cc(CCc2ccc3nc[nH]c(=O)c3c2C)cc(OC)c1; [None]; [None]; [0] +Cc1c(-c2ccc(NC(N)=O)cc2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2cncc(O)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9998173117637634, 0.9964137077331543, 0.8078056573867798] +Cc1c(-c2ccc3c(c2)CC(=O)N3)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.9999621510505676, 0.9999345541000366, 0.9952605962753296] +Cc1c(-c2nc3ccccc3s2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4nc[nH]c(=O)c4c3C)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2nc[nH]c(=O)c2c1C; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999223947525024] +CCc1cc(O)c(F)cc1-c1ccc2nc[nH]c(=O)c2c1C; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999985694885254, 0.9991151094436646] +Cc1c(N(C)c2cccc(Cl)c2)ccc2nc[nH]c(=O)c12; ['CNc1cccc(Cl)c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9957348108291626] +Cc1cc(O)ccc1-c1ccc2nc[nH]c(=O)c2c1C; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br']; [0.9998615384101868, 0.9998288154602051, 0.8346105217933655] +CNc1nccc(-c2ccc3nc[nH]c(=O)c3c2C)n1; [None]; [None]; [0] +Cc1c([C@H](C)CC(N)=O)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3nc[nH]c(=O)c3c2C)c1C; [None]; [None]; [0] +CCc1sccc1-c1ccc2nc[nH]c(=O)c2c1C; [None]; [None]; [0] +Cc1c(-c2cc(Cl)c(O)c(Cl)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999492764472961, 0.9998401999473572] +Cc1c(-c2cc(C(F)F)n[nH]2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +CNc1nc(-c2ccc3nc[nH]c(=O)c3c2C)ncc1F; [None]; [None]; [0] +Cc1c(-c2ccncc2Cl)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccncc1Cl']; [0.9999732971191406, 0.9999362230300903] +Cc1c(-c2ccc3c(c2)CCN3)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Brc1ccc2c(c1)CCN2']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999943971633911, 0.9999920129776001, 0.9955952167510986, 0.8958778381347656] +Cc1c(Nc2ccncc2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Nc1ccncc1']; [0.999517560005188] +Cc1c(-c2cc(O)n3nccc3n2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Oc1ccnc2ccnn12']; [0.990933895111084] +CNC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2C)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999887943267822, 0.9999222755432129] +Cc1c(-c2ccc(Br)cc2F)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1ccc(Br)cc1F']; [0.9999752640724182, 0.998541533946991] +Cc1oc(-c2ccc3nc[nH]c(=O)c3c2C)cc1C(=O)[O-]; [None]; [None]; [0] +Cc1c(N(C)c2cccc3[nH]ncc23)ccc2nc[nH]c(=O)c12; ['CNc1cccc2[nH]ncc12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9994529485702515] +Cc1c(-c2ccc3[nH]c(=O)[nH]c3c2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2cc(O)cc(Br)c2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OB(O)c1cc(O)cc(Br)c1', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Oc1cc(Br)cc(Br)c1']; [0.9998461604118347, 0.9955416917800903, 0.8022881746292114] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2C)ccc1C(N)=O; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [0.9999808073043823] +Cc1c(-c2c(N)cnn2C)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ccc(C(=O)NC3CC3)cc2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999973773956299, 0.999977707862854, 0.8943432569503784] +Cc1nc2ccc(-c3ccc4nc[nH]c(=O)c4c3C)cc2o1; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999988079071045, 0.9999973773956299, 0.9607164859771729] +Cc1c(-c2[nH]nc3ccc(F)cc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2C)cc(C)c1O; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O']; [0.9998512268066406, 0.998884916305542, 0.8383252024650574] +Cc1c(-c2cc(F)c(O)c(F)c2)ccc2nc[nH]c(=O)c12; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F']; [0.9999222755432129, 0.9991631507873535, 0.8011717796325684] +CSc1cccc(-c2ccc3nc[nH]c(=O)c3c2C)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1']; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1c(Br)ccc2nc[nH]c(=O)c12']; [0.9999794960021973, 0.9998385906219482] +Cc1c(Oc2ccc(F)cc2F)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['Oc1ccc(F)cc1F']; [0.9998505115509033] +Cc1c(OCc2cccc3ccccc23)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OCc1cccc2ccccc12']; [0.9772262573242188] +Cc1c(-c2ccc3c(=O)[nH][nH]c3c2)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['O=c1[nH][nH]c2cc(Br)ccc12']; [0.9484413862228394] +Cc1c(NCc2c(F)cccc2Cl)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12', 'Cc1cccc2nc[nH]c(=O)c12']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9997876882553101, 0.9601233005523682] +Cc1c(OCc2ccc(F)cc2F)ccc2nc[nH]c(=O)c12; ['Cc1c(Br)ccc2nc[nH]c(=O)c12']; ['OCc1ccc(F)cc1F']; [0.9964447021484375] +Cc1c(CCc2c[nH]c3ccccc23)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2nc[nH]c(=O)c2c1C; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999253153800964, 0.9998611211776733, 0.9994800090789795, 0.9915848970413208] +Cc1c(-c2cn[nH]c2-c2ccc(Cl)cc2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +Cc1c(-c2ocnc2-c2ccc(F)cc2)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +CCOc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9997897148132324, 0.999763011932373, 0.9996315240859985, 0.999171257019043, 0.9991168975830078, 0.9959350228309631, 0.9845979809761047, 0.9808130264282227] +Cc1c(CCc2ccc(F)cc2F)ccc2nc[nH]c(=O)c12; [None]; [None]; [0] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9994116425514221, 0.9975824356079102, 0.9930301904678345, 0.9912262558937073, 0.9632750153541565, 0.960098147392273] +CS(=O)(=O)c1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999861121177673, 0.9999856948852539, 0.9999266862869263, 0.9998064041137695, 0.9992743730545044, 0.9876998662948608] +COc1ncccc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1I', 'COc1ncccc1Br']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.999884843826294, 0.9998495578765869, 0.9998151063919067, 0.9995338916778564, 0.9995266199111938, 0.9988316893577576, 0.9973318576812744, 0.9969058036804199, 0.995742678642273, 0.9784385561943054, 0.8871418237686157] +Cc1ccc2ncn(-c3ccc4nc[nH]c(=O)c4c3)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['O=c1[nH]cnc2ccc(F)cc12', 'O=c1[nH]cnc2ccc(F)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9837929010391235, 0.9697085022926331, 0.9469281435012817, 0.8753118515014648, 0.8136820793151855] +COc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9993355870246887, 0.9992401599884033, 0.9988961815834045, 0.9984475374221802, 0.9968704581260681, 0.9934324026107788, 0.9702699184417725, 0.9627360105514526, 0.9553725719451904] +O=c1[nH]cnc2ccc(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc3nc[nH]c(=O)c3c2)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.999441921710968, 0.9968693256378174, 0.9737077951431274] +O=c1[nH]cnc2ccc(-c3ccc(N4CCOCC4)cc3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999955892562866, 0.9999940395355225, 0.999984622001648, 0.9999823570251465, 0.9999536275863647, 0.9998592138290405, 0.9997261762619019, 0.9996814131736755, 0.9845675826072693] +O=c1[nH]cnc2ccc(-c3cccc(O)c3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'O=c1[nH]cnc2ccc(I)cc12', 'Oc1cccc(I)c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9994896054267883, 0.9928112626075745, 0.9794079065322876, 0.971451461315155, 0.896818220615387, 0.8951220512390137, 0.7736467123031616] +O=C(Nc1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1)C1CC1; ['O=C(Nc1cccc(Br)c1)C1CC1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9638358354568481] +Cc1nc(C(C)(C)O)sc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3nc4ccccc4[nH]3)cc12; ['Nc1ccccc1N']; ['O=C(O)c1ccc2nc[nH]c(=O)c2c1']; [0.9882681369781494] +O=C([O-])c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999736547470093, 0.9999654293060303, 0.999885618686676, 0.9997881650924683, 0.9997328519821167, 0.997975766658783] +O=c1[nH]cnc2ccc(Nc3ncccn3)cc12; ['Clc1ncccn1', 'Brc1ncccn1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ncccn1', 'Nc1ncccn1', 'CSc1ncccn1']; ['Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ncccn1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1']; [0.9999326467514038, 0.9996899366378784, 0.9988073110580444, 0.9975262880325317, 0.9972124695777893, 0.9944674968719482, 0.9932897686958313, 0.9918520450592041] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2)CC1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3nccc4ccccc34)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(OCCO)cc3)cc12; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999431371688843, 0.9999095797538757, 0.9996285438537598, 0.999430775642395, 0.997428297996521] +O=C(c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999988079071045, 0.9999978542327881, 0.9999975562095642, 0.9999869465827942, 0.9999867081642151, 0.9999752044677734, 0.9999415874481201, 0.9998601675033569, 0.9958866834640503] +O=c1[nH]cnc2ccc(-c3cccc(C4CCNCC4)c3)cc12; ['Brc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9979808926582336, 0.859656572341919] +CC(=O)NCc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999755620956421, 0.999931275844574, 0.9998849630355835, 0.999843418598175, 0.9989227652549744, 0.996180534362793, 0.9823780059814453] +N#Cc1cccc(Cn2cc(-c3ccc4nc[nH]c(=O)c4c3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2ccc3nc[nH]c(=O)c3c2)nc1)N1CCOCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9989564418792725, 0.998096227645874, 0.9962895512580872, 0.9908215999603271, 0.9878678321838379] +CN(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999604225158691, 0.9999262094497681, 0.9998867511749268, 0.99986332654953, 0.9996777176856995, 0.9986066222190857, 0.9970679879188538, 0.9955297112464905, 0.8403912782669067] +O=c1[nH]cnc2ccc(-c3ccc(C(F)(F)F)cc3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'FC(F)(F)c1ccc(Br)cc1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9998952150344849, 0.9998912811279297, 0.9996737241744995, 0.9995522499084473, 0.9989736676216125, 0.9977538585662842, 0.7925242781639099] +O=c1[nH]cnc2ccc(-c3ccc4c(c3)CS(=O)(=O)C4)cc12; ['O=S1(=O)Cc2ccc(Br)cc2C1']; ['O=c1[nH]cnc2ccc(I)cc12']; [0.9935572147369385] +Cc1nc(C)c(-c2ccc3nc[nH]c(=O)c3c2)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9961111545562744, 0.9909043908119202, 0.9636904001235962] +CN(C)S(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccccc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999874830245972, 0.9999719858169556, 0.9999487400054932, 0.9999377727508545, 0.9997844696044922, 0.9990646243095398, 0.9226264953613281, 0.7802884578704834] +C[C@@H](O)COc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc4nc[nH]c(=O)c4c3)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3nc[nH]c(=O)c3c2)nc(N)n1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(Br)cc3)cc12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccc(Br)cc1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(Br)cc1', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(Br)cc1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999178647994995, 0.9995447397232056, 0.9990127086639404, 0.9989147186279297, 0.9909797310829163, 0.9893394708633423, 0.9719911217689514, 0.9218313694000244, 0.8971469402313232] +O=C(c1ccccc1)N1CC[C@H](c2ccc3nc[nH]c(=O)c3c2)C1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999879598617554, 0.9999727010726929, 0.9998928308486938, 0.878282904624939] +CCN(CC)C(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999946355819702, 0.9999866485595703, 0.9999691247940063, 0.9999650716781616, 0.9998471736907959, 0.9995677471160889, 0.9994761943817139, 0.998898446559906, 0.989344596862793, 0.961199164390564] +CCCOc1ccc(-c2ccc3nc[nH]c(=O)c3c2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9931203126907349, 0.9906882047653198, 0.9807651042938232, 0.9764794111251831, 0.8651978969573975] +CS(=O)(=O)N1CCC(c2ccc3nc[nH]c(=O)c3c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1[Mg]Br']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9995473027229309, 0.9989417791366577, 0.9984979629516602, 0.9975942373275757, 0.9943492412567139, 0.9694242477416992, 0.8035470247268677] +O=c1[nH]cnc2ccc(-c3ccn4nccc4n3)cc12; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc3nc[nH]c(=O)c3c2)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9981553554534912, 0.8002088069915771] +Cc1c(C(=O)[O-])cccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccccc3-n3cccn3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1ccccc1-n1cccn1']; ['OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccccc1-n1cccn1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999850988388062, 0.9999554753303528, 0.9999430179595947, 0.9999209642410278, 0.9998816251754761, 0.9997478723526001, 0.9984164237976074, 0.983502984046936] +O=c1[nH]cnc2ccc(-c3ccc4c(c3)CCO4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'Brc1ccc2c(c1)CCO2', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Ic1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc2c(c1)CCO2', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccc2c(c1)CCO2', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc2c(c1)CCO2', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9998750686645508, 0.9998198747634888, 0.9997638463973999, 0.9993979334831238, 0.9993926882743835, 0.9993797540664673, 0.9986909627914429, 0.9971309304237366, 0.8991721868515015] +CC(C)c1ccc2nc(-c3ccc4nc[nH]c(=O)c4c3)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9992972612380981, 0.9984424114227295, 0.9984030723571777, 0.9968559741973877, 0.9868867993354797, 0.9540371894836426] +O=c1[nH]cnc2ccc(-c3c[nH]c4ccccc34)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cccc4c3OCO4)cc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cccc2c1OCO2', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1cccc2c1OCO2']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1cccc2c1OCO2', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.999988317489624, 0.9999877214431763, 0.9999688863754272, 0.9999473094940186, 0.9999395608901978, 0.9999111890792847, 0.9999028444290161, 0.999130129814148, 0.9915437698364258] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9984328746795654, 0.9977728128433228, 0.9974218606948853, 0.9970764517784119, 0.9847500324249268, 0.984306812286377, 0.9069743156433105] +CC(C)(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9996767044067383, 0.9996306896209717, 0.9993212223052979, 0.9991660118103027, 0.9969261884689331, 0.9896507263183594, 0.9846241474151611, 0.9804010391235352] +O=c1[nH]cnc2ccc(-c3cnc4ccccc4c3)cc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'Ic1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1cnc2ccccc2c1', 'Br[Zn]c1cnc2ccccc2c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cnc2ccccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999171495437622, 0.9995822906494141, 0.9993691444396973, 0.9993677735328674, 0.9973220825195312, 0.9951122999191284, 0.9902724623680115, 0.9788808822631836, 0.9597707390785217, 0.9263546466827393] +CN(C)C(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999959468841553, 0.999982476234436, 0.9999785423278809, 0.9999697208404541, 0.9998054504394531, 0.9983478784561157, 0.9980687499046326, 0.9969065189361572, 0.8930454254150391] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc3nc[nH]c(=O)c3c2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; ['Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1']; [0.999887228012085, 0.9996762275695801] +O=c1[nH]cnc2ccc(-c3cc4ccccc4s3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'O=c1[nH]cnc2ccc(Br)cc12', 'Brc1cc2ccccc2s1']; ['OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'O=c1[nH]cnc2ccc(Br)cc12', 'c1ccc2sccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999369382858276, 0.9999149441719055, 0.9991095066070557, 0.9933825731277466, 0.9801554679870605] +CSc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.999743640422821, 0.9996458292007446, 0.9994237422943115, 0.9988230466842651, 0.9976894855499268, 0.9931093454360962, 0.8579168319702148, 0.8568812608718872] +O=c1[nH]cnc2ccc(-c3scc4c3OCCO4)cc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999679327011108, 0.9999231100082397, 0.9999181032180786, 0.9994485378265381, 0.9990664124488831, 0.9975876808166504, 0.9954123497009277, 0.9658873677253723] +Nc1nc(-c2ccc3nc[nH]c(=O)c3c2)cs1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cc(-c4ccccc4)[nH]n3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(F)cc3Cl)cc12; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Fc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999157786369324, 0.9998456835746765, 0.9998006820678711, 0.9995642900466919, 0.9858498573303223, 0.9633406400680542] +CCN1CCN(Cc2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999168515205383, 0.9996974468231201, 0.9949499368667603, 0.9874578714370728] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2)nc(N)n1; [None]; [None]; [0] +O=C1CCc2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.99997878074646, 0.9999436140060425, 0.9997736215591431, 0.9971712827682495, 0.9780556559562683] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3nc[nH]c(=O)c3c2)CC1; [None]; [None]; [0] +COc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9988142251968384, 0.998220682144165, 0.997969388961792, 0.9979016780853271, 0.9978359937667847, 0.9950723648071289, 0.9846326112747192, 0.9502378106117249] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(Cl)cc3Cl)cc12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Clc1ccc(Br)c(Cl)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccc(Cl)cc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(Cl)cc1Cl', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(Cl)cc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999182224273682, 0.9998018741607666, 0.9997968673706055, 0.9994451403617859, 0.9984449148178101, 0.9942770004272461, 0.9847086668014526, 0.9621021747589111, 0.8974688053131104] +CCc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc([Mg]Br)cc1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999418258666992, 0.9999375343322754, 0.9997844696044922, 0.9989372491836548, 0.9987790584564209, 0.9888403415679932, 0.9873855113983154, 0.9719140529632568, 0.9429764747619629, 0.758301854133606] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999963641166687, 0.9999772310256958, 0.9999151825904846, 0.9998847246170044, 0.9518684148788452] +O=c1[nH]cnc2ccc(-c3ccn(-c4cccc(Cl)c4)n3)cc12; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc4nc[nH]c(=O)c4c3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9059772491455078] +Cn1cc(-c2ccc3nc[nH]c(=O)c3c2)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999526739120483, 0.9998548030853271, 0.999595046043396, 0.9992960691452026, 0.9987896084785461, 0.9985475540161133, 0.9981311559677124, 0.9972198605537415] +O=c1[nH]cnc2ccc(-c3ncc(Br)cn3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ncc4cccn4n3)cc12; [None]; [None]; [0] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999619722366333, 0.999939501285553, 0.9999133348464966, 0.9997466802597046, 0.9991967678070068, 0.9873457551002502, 0.9461873769760132] +COc1cc(F)c(-c2ccc3nc[nH]c(=O)c3c2)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9997381567955017, 0.9995195865631104, 0.9988710880279541, 0.9984204769134521, 0.9943061470985413, 0.993161678314209, 0.9077684879302979] +O=c1[nH]cnc2ccc(-c3cccc4ccc(O)cc34)cc12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9981952905654907, 0.9941291213035583, 0.9760546088218689] +CC1(C)Cc2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc2O1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cnn(CCO)c3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; ['OCCn1cc(B(O)O)cn1', 'O=c1[nH]cnc2ccc(I)cc12', 'OCCn1cc(B(O)O)cn1', 'O=c1[nH]cnc2ccc(Br)cc12', 'OCCn1cc(B(O)O)cn1', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999634027481079, 0.999828577041626, 0.9992184042930603, 0.9989252090454102, 0.9963825941085815, 0.9903565645217896] +O=c1[nH]cnc2ccc(-c3cc4ccccn4n3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ncc(Cl)cn3)cc12; [None]; [None]; [0] +Cc1csc2c(-c3ccc4nc[nH]c(=O)c4c3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3nc[nH]c(=O)c3c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2ccc3nc[nH]c(=O)c3c2)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9997859001159668, 0.9994343519210815, 0.9993846416473389, 0.9992562532424927, 0.9970279335975647, 0.9961849451065063, 0.9954668283462524, 0.9900375604629517, 0.8637233972549438] +NC(=O)c1ccc(Cc2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(Cc3ccc(S(=O)(=O)CCO)cc3)cc12; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3nc[nH]c(=O)c3c2)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4nc[nH]c(=O)c4c3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1', 'COc1ccc2occc2c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1']; [0.9997915029525757, 0.9997755885124207, 0.9967678785324097, 0.9663176536560059, 0.9214184284210205] +COc1ccc2c(c1)c(-c1ccc3nc[nH]c(=O)c3c1)cn2C; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc4cn[nH]c4c3)cc12; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1ccc2cn[nH]c2c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc2cn[nH]c2c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999854564666748, 0.9999817609786987, 0.9999809265136719, 0.9999116659164429, 0.9996985197067261, 0.9993510246276855, 0.999222457408905, 0.9378548860549927] +CCNC(=O)N1CCC(c2ccc3nc[nH]c(=O)c3c2)CC1; [None]; [None]; [0] +CCn1cc(-c2ccc3nc[nH]c(=O)c3c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999604225158691, 0.9999291896820068, 0.9998304843902588, 0.9996987581253052, 0.9991929531097412, 0.9979531764984131, 0.7648768424987793] +O=c1[nH]cnc2ccc(-c3cc4ccccc4o3)cc12; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999191164970398, 0.9998311400413513, 0.9047247171401978, 0.8740737438201904, 0.8389396071434021] +C[NH+](C)Cc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4nc[nH]c(=O)c4c3)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['O=C(O)c1ccc2nc[nH]c(=O)c2c1']; [0.9990051984786987] +CC(C)c1nn(C)cc1-c1ccc2nc[nH]c(=O)c2c1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.999453067779541, 0.9989288449287415, 0.9958814382553101, 0.9680287837982178, 0.9102811813354492] +COc1ccc(F)c(C(=O)Nc2ccc3nc[nH]c(=O)c3c2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F']; ['Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1']; [0.9996960163116455, 0.9993453621864319] +O=c1[nH]cnc2ccc(-c3ncc4sccc4n3)cc12; ['O=c1[nH]cnc2ccc(I)cc12']; ['c1ncc2sccc2n1']; [0.9680469632148743] +CNC(=O)c1ccc(OC)c(-c2ccc3nc[nH]c(=O)c3c2)c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cc(-c4cccnc4)ccn3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(OC(F)(F)F)cc3)cc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999979734420776, 0.9999977350234985, 0.9999897480010986, 0.9999773502349854, 0.9999538660049438, 0.9998586177825928, 0.9993990659713745, 0.9991276264190674, 0.9943645000457764] +O=C(Nc1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1)N1CCCC1; [None]; [None]; [0] +Cn1cc(-c2ccc3nc[nH]c(=O)c3c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9997031688690186, 0.9991025924682617] +Cn1cc(Br)cc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999930262565613, 0.9999864101409912, 0.9999862313270569, 0.9999565482139587, 0.9999028444290161, 0.9997822046279907, 0.9994899034500122, 0.9989312887191772, 0.9541783332824707] +Cn1ncc2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc21; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999988079071045, 0.9999982118606567, 0.9999967813491821, 0.9999960660934448, 0.9999796152114868, 0.9999551773071289, 0.9998766183853149, 0.9997499585151672, 0.9774785041809082] +O=c1[nH]cnc2ccc(-c3ncn4c3CCCC4)cc12; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4nc[nH]c(=O)c4c3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc([Mg]Br)cn1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.999984860420227, 0.99996018409729, 0.9998687505722046, 0.99985271692276, 0.9995434284210205, 0.9973328113555908, 0.9971150159835815, 0.9908531904220581, 0.9585390090942383, 0.916456937789917] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2)cc(C)c1OCCO; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc4nc[nH]c(=O)c4c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9999772310256958] +O=C(Nc1ccc2nc[nH]c(=O)c2c1)c1cccc(OC(F)(F)F)c1; ['Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1ccc2nc[nH]c(=O)c2c1']; [0.9999963045120239, 0.9999864101409912, 0.9997503757476807] +CCc1cccc(-c2ccc3nc[nH]c(=O)c3c2)n1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.999987006187439, 0.9999604821205139, 0.9999123215675354, 0.9995682239532471, 0.9833766222000122] +O=c1[nH]cnc2ccc(-c3ccc(CCO)cc3)cc12; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.999883770942688, 0.9998459815979004, 0.9996057152748108, 0.9985799789428711, 0.9978581070899963, 0.9786484241485596, 0.949893593788147, 0.8966161012649536] +Cc1ncc(-c2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2)n1C; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc21; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9995336532592773, 0.8494101166725159] +Cc1cc(N2CCOCC2)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9997711181640625, 0.997830867767334, 0.9961853623390198] +CCNC(=O)Cc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.7769815921783447] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3nc[nH]c(=O)c3c2)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9996137619018555, 0.9990323781967163, 0.9974173307418823, 0.9621061086654663, 0.9494227170944214] +CNC(=O)c1ccc(C)c(-c2ccc3nc[nH]c(=O)c3c2)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9810413122177124] +Cn1nc(-c2ccc3nc[nH]c(=O)c3c2)cc1C(C)(C)O; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3c(Cl)ccc4c3OCO4)cc12; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9997159242630005, 0.9994950294494629, 0.9279304146766663] +O=c1[nH]cnc2ccc(-c3ccc(Cl)c(O)c3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9997960329055786, 0.9996353387832642, 0.9990187287330627, 0.9989959597587585, 0.9901859164237976] +O=c1[nH]cnc2ccc(-c3cccc4ncccc34)cc12; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Ic1cccc2ncccc12', 'Ic1cccc2ncccc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1cccc2ncccc12']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1cccc2ncccc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cccc2ncccc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cccc2ncccc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9998865723609924, 0.9998627305030823, 0.9992778897285461, 0.998676061630249, 0.9977142214775085, 0.9971969723701477, 0.9849531054496765, 0.9247395992279053, 0.9175950288772583, 0.8984106183052063] +NC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999345541000366, 0.9999039173126221, 0.999517560005188, 0.9987287521362305, 0.9979578256607056, 0.9346469640731812] +O=c1[nH]cnc2ccc(Oc3ccc(F)cc3)cc12; ['Fc1ccc(Br)cc1', 'O=c1[nH]cnc2ccc(Br)cc12', 'Fc1ccc(F)cc1', 'O=c1[nH]cnc2ccc(F)cc12', 'Fc1ccc(Cl)cc1', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1', 'O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1', 'O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1']; [0.998105525970459, 0.9980135560035706, 0.9689292907714844, 0.9601778388023376, 0.9208993911743164, 0.9022222757339478] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999209642410278, 0.9997586607933044] +O=c1[nH]cnc2ccc(-c3c(Cl)cccc3Cl)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'Clc1cccc(Cl)c1Br', 'O=c1[nH]cnc2ccc(Br)cc12', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['OB(O)c1c(Cl)cccc1Cl', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1c(Cl)cccc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1c(Cl)cccc1Cl']; [0.9997043609619141, 0.999420702457428, 0.9992061257362366, 0.9975405931472778, 0.9422712922096252, 0.8284426331520081] +O=c1[nH]cnc2ccc(-c3ccc(O)cc3Cl)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12']; ['OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Oc1ccc(Br)c(Cl)c1']; [0.998782753944397, 0.997684121131897, 0.9912329912185669, 0.9770311713218689, 0.9661861658096313] +O=c1[nH]cnc2ccc(-c3n[nH]c4ccccc34)cc12; ['Brc1n[nH]c2ccccc12']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.8578919172286987] +COc1ccc(F)cc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9994938373565674, 0.9994169473648071, 0.9994133114814758, 0.9985016584396362, 0.9954864978790283, 0.9904071688652039, 0.8934953212738037] +O=c1[nH]cnc2ccc(-c3ccc(O)cc3F)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; ['OB(O)c1ccc(O)cc1F', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(O)cc1F', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1']; [0.9992202520370483, 0.9980282783508301, 0.9965479373931885, 0.9930531978607178, 0.9663386344909668, 0.9363788366317749, 0.9038481712341309, 0.8829166889190674] +COc1cc(F)ccc1-c1ccc2nc[nH]c(=O)c2c1; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1Br']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999028444290161, 0.9999006986618042, 0.9998473525047302, 0.9996228218078613, 0.9995545148849487, 0.9995160698890686, 0.9986262321472168, 0.99748694896698, 0.9911949634552002, 0.9110302925109863] +Nc1nccc(-c2ccc3nc[nH]c(=O)c3c2)n1; ['Nc1nccc(Br)n1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.923163890838623] +COC(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)o1; ['COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9998497366905212, 0.9997429847717285, 0.9924583435058594, 0.9790887832641602, 0.8657156229019165, 0.8636674880981445] +O=c1[nH]cnc2ccc(-c3cccc(Br)c3)cc12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cccc(Br)c1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.999796450138092, 0.9995023012161255, 0.9946354627609253, 0.9943408966064453, 0.9694982767105103, 0.9556984901428223, 0.9379293918609619] +O=c1[nH]cnc2ccc(-c3ccc4ccccc4c3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'Brc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc2ccccc2c1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc2ccccc2c1', 'c1ccc2ccccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9998558759689331, 0.9997930526733398, 0.9997638463973999, 0.9997426271438599, 0.999545693397522, 0.9989049434661865, 0.8118741512298584, 0.786194920539856] +O=c1[nH]cnc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)cc12; [None]; [None]; [0] +COc1cc(CCc2ccc3nc[nH]c(=O)c3c2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3nc[nH]c(=O)c3c2)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9997957944869995, 0.9993975162506104, 0.9989790916442871, 0.9958045482635498, 0.9935716986656189, 0.985695481300354, 0.9828082323074341] +Cc1nc2c(F)cc(-c3ccc4nc[nH]c(=O)c4c3)cc2[nH]1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cn[nH]c3Cl)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ccc(O)c(F)c3)cc12; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1']; [0.9998069405555725, 0.9997093677520752, 0.9996484518051147, 0.9992944002151489, 0.9974862337112427, 0.9903873205184937] +O=c1[nH]cnc2ccc(-c3cnn4ncccc34)cc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.999977707862854] +O=c1[nH]cnc2ccc(-c3ccc(O)cc3O)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3c[nH]c4cnccc34)cc12; ['O=c1[nH]cnc2ccc(I)cc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.7997715473175049] +O=c1[nH]cnc2ccc(-c3ccc(F)c(Cl)c3)cc12; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Fc1ccc(Br)cc1Cl']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(F)c(Cl)c1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc(F)c(Cl)c1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc(F)c(Cl)c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999923706054688, 0.9999896883964539, 0.9999818801879883, 0.9999508857727051, 0.9999373555183411, 0.9996419548988342, 0.9995876550674438, 0.9965949058532715, 0.9594222903251648] +Nc1cc(-c2ccc3nc[nH]c(=O)c3c2)ccn1; ['Nc1cc(B(O)O)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999791383743286, 0.9999336004257202, 0.9998729228973389, 0.9998378753662109, 0.9995138049125671, 0.999369740486145, 0.9981822967529297, 0.9975813627243042, 0.7510935068130493] +O=c1[nH]cnc2ccc(-c3cc(O)ccc3Cl)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C']; ['OB(O)c1cc(O)ccc1Cl', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cc(O)ccc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.992194414138794, 0.9403482675552368, 0.9273642301559448, 0.8288025856018066] +Cc1ccc(CO)cc1-c1ccc2nc[nH]c(=O)c2c1; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999539256095886, 0.999839723110199, 0.9993399381637573, 0.9972907304763794, 0.9958679676055908, 0.9938783049583435, 0.8282513618469238, 0.7987899780273438] +Cc1ccc2[nH]ncc2c1-c1ccc2nc[nH]c(=O)c2c1; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999159574508667, 0.9999086856842041, 0.999893069267273, 0.9998469948768616, 0.9969804286956787, 0.9968976974487305, 0.9962683916091919, 0.9832507371902466, 0.8636610507965088] +O=c1[nH]cnc2ccc(-c3cnc(O)c(Cl)c3)cc12; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Oc1ncc(I)cc1Cl']; [0.9998183846473694, 0.9995150566101074, 0.9955434799194336, 0.9575924277305603] +O=c1[nH]cnc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(COc3ccccc3Cl)cc12; [None]; [None]; [0] +CCOc1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.999693751335144, 0.9996829032897949, 0.9994897842407227, 0.9989025592803955, 0.998537540435791, 0.9974578619003296, 0.9964200258255005, 0.9861994385719299] +NC(=O)c1cc(-c2ccc3nc[nH]c(=O)c3c2)c[nH]1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cnc4[nH]ccc4c3)cc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1cnc2[nH]ccc2c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1cnc2[nH]ccc2c1', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999916553497314, 0.9999844431877136, 0.999981701374054, 0.9998414516448975, 0.999727189540863, 0.9988903999328613, 0.9949054718017578] +CS(=O)(=O)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12']; [0.9999371767044067, 0.9998818039894104, 0.9998599290847778, 0.9998505115509033, 0.9994669556617737, 0.9992505311965942, 0.9853171110153198, 0.9559044241905212] +Cc1nc2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc12; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4nc[nH]c(=O)c4c3)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999128580093384, 0.9999076128005981, 0.9998133182525635, 0.9994775056838989, 0.9992730617523193, 0.9964156150817871, 0.980455756187439, 0.9353994131088257] +O=c1[nH]cnc2ccc(-c3cncc(O)c3)cc12; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C']; ['O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cncc(O)c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9978036880493164, 0.9974774122238159, 0.9906042218208313, 0.9901338815689087, 0.7862148284912109, 0.770788848400116] +O=c1[nH]cnc2ccc(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +COc1cc(CCc2ccc3nc[nH]c(=O)c3c2)cc(OC)c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3nc[nH]c(=O)c3c2)n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2nc[nH]c(=O)c2c1; ['CNc1cccc(Cl)c1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9504708647727966] +Cc1cc(O)ccc1-c1ccc2nc[nH]c(=O)c2c1; ['Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9925937652587891, 0.9506716728210449, 0.9119704961776733] +Cc1n[nH]c2cc(N(C)c3ccc4nc[nH]c(=O)c4c3)ccc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cc(C(F)F)n[nH]3)cc12; ['FC(F)c1cc[nH]n1']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9900962710380554] +O=c1[nH]cnc2ccc(-c3ccncc3Cl)cc12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Clc1cnccc1I', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9998064041137695, 0.9996905326843262, 0.9987209439277649, 0.9982951879501343, 0.9950921535491943, 0.9696685075759888] +CCc1cc(O)c(F)cc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cc(Cl)c(O)c(Cl)c3)cc12; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.989347517490387, 0.9784843921661377, 0.9708434343338013, 0.9507921934127808, 0.7957515716552734] +Cc1n[nH]c(-c2ccc3nc[nH]c(=O)c3c2)c1C; [None]; [None]; [0] +O=c1[nH]cnc2ccc(Nc3ccncc3)cc12; ['Clc1ccncc1', 'Nc1ccncc1', 'Brc1ccncc1', 'Ic1ccncc1', 'Nc1ccncc1', 'CCOc1ccncc1', 'Nc1ccncc1', 'Fc1ccncc1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccncc1']; ['Nc1ccc2nc[nH]c(=O)c2c1', 'O=c1[nH]cnc2ccc(I)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'Nc1ccc2nc[nH]c(=O)c2c1', 'O=c1[nH]cnc2ccc(Br)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'c1cc[n+](-c2ccncc2)cc1', 'O=C(O)c1cnccc1Cl', 'O=c1[nH]cnc2ccc(F)cc12']; [0.9984496831893921, 0.9981883764266968, 0.9978629350662231, 0.9961674213409424, 0.9958449602127075, 0.9911987781524658, 0.9788054823875427, 0.9510500431060791, 0.9505323171615601, 0.909277081489563, 0.9069309234619141] +O=c1[nH]c2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2[nH]1; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9998295307159424, 0.9997509717941284, 0.9991535544395447, 0.9988889694213867, 0.9976485967636108] +O=c1[nH]cnc2ccc(-c3ccc4c(c3)CCN4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'O=c1[nH]cnc2ccc(Cl)cc12', 'Brc1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2']; ['O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1ccc2c(c1)CCN2', 'O=c1[nH]cnc2ccc(Br)cc12', 'OB(O)c1ccc2c(c1)CCN2', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1ccc2c(c1)CCN2', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.999992847442627, 0.9999870657920837, 0.9999477863311768, 0.9998390674591064, 0.9998229146003723, 0.999459981918335, 0.9978389143943787, 0.9776837825775146] +CN(c1ccc2nc[nH]c(=O)c2c1)c1cccc2[nH]ncc12; ['CNc1cccc2[nH]ncc12']; ['O=c1[nH]cnc2ccc(Br)cc12']; [0.9205940365791321] +O=c1[nH]cnc2ccc(-c3cc(O)n4nccc4n3)cc12; [None]; [None]; [0] +CNc1nc(-c2ccc3nc[nH]c(=O)c3c2)ncc1F; [None]; [None]; [0] +Cc1oc(-c2ccc3nc[nH]c(=O)c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc3nc[nH]c(=O)c3c2)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999950528144836, 0.9999934434890747, 0.9999823570251465, 0.9999669194221497, 0.9999134540557861, 0.9996356964111328, 0.9996250867843628, 0.9993516802787781, 0.9783452153205872] +O=c1[nH]cnc2ccc(-c3cc(O)cc(Br)c3)cc12; ['O=c1[nH]cnc2ccc(I)cc12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['OB(O)c1cc(O)cc(Br)c1', 'O=c1[nH]cnc2ccc(I)cc12', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1']; [0.9995007514953613, 0.982284426689148, 0.9819676876068115, 0.922080397605896] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999583959579468, 0.9999107122421265, 0.9998788237571716] +O=c1[nH]cnc2ccc(-c3ccc(Br)cc3F)cc12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3[nH]nc4ccc(F)cc34)cc12; [None]; [None]; [0] +CSc1cccc(-c2ccc3nc[nH]c(=O)c3c2)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999024868011475, 0.9997583031654358, 0.9986512660980225, 0.9982931017875671, 0.9971097707748413, 0.9934971928596497, 0.9795430898666382] +O=c1[nH]cnc2ccc(-c3cc(F)c(O)c(F)c3)cc12; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9994938969612122, 0.9984005093574524, 0.9978040456771851, 0.9831866025924683, 0.9817254543304443, 0.8360817432403564] +Cc1cc(-c2ccc3nc[nH]c(=O)c3c2)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O']; ['O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9723708033561707, 0.9437215328216553, 0.8393144607543945] +Cc1nc2ccc(-c3ccc4nc[nH]c(=O)c4c3)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; [0.9999579191207886, 0.9997665882110596, 0.9996908903121948, 0.9995906352996826, 0.9989550113677979, 0.997703492641449, 0.9948854446411133, 0.8103452920913696] +O=c1[nH]cnc2ccc(OCc3cccc4ccccc34)cc12; ['ClCc1cccc2ccccc12', 'BrCc1cccc2ccccc12', 'O=c1[nH]cnc2ccc(O)cc12', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12']; ['O=c1[nH]cnc2ccc(O)cc12', 'O=c1[nH]cnc2ccc(O)cc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9941145181655884, 0.9856113195419312, 0.9698213338851929, 0.9044800996780396, 0.8310309648513794] +O=c1[nH]cnc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(Oc3ccc(F)cc3F)cc12; ['Fc1ccc(Br)c(F)c1', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Fc1ccc(Cl)c(F)c1', 'O=c1[nH]cnc2ccc(O)cc12', 'Fc1ccc(I)c(F)c1', 'Fc1ccc(F)c(F)c1', 'O=c1[nH]cnc2ccc(F)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12', 'O=[N+]([O-])c1ccc(F)cc1F', 'O=c1[nH]cnc2ccc([N+](=O)[O-])cc12']; ['O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'O=c1[nH]cnc2ccc(O)cc12', 'OB(O)c1ccc(F)cc1F', 'O=c1[nH]cnc2ccc(O)cc12', 'O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'O=c1[nH]cnc2ccc(O)cc12', 'Oc1ccc(F)cc1F']; [0.9999300241470337, 0.9998605251312256, 0.9997987747192383, 0.9997928142547607, 0.999265193939209, 0.9991225004196167, 0.9982025027275085, 0.9969814419746399, 0.9948066473007202, 0.914757251739502, 0.8602522611618042] +O=c1[nH]cnc2ccc(NCc3c(F)cccc3Cl)cc12; ['Nc1ccc2nc[nH]c(=O)c2c1', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; ['O=Cc1c(F)cccc1Cl', 'O=c1[nH]cnc2ccc(I)cc12', 'O=c1[nH]cnc2ccc(Br)cc12', 'Nc1ccc2nc[nH]c(=O)c2c1', 'O=c1[nH]cnc2ccc(F)cc12', 'O=c1[nH]cnc2ccc(Cl)cc12']; [0.9999282360076904, 0.9999122619628906, 0.9996392726898193, 0.998988151550293, 0.9840312004089355, 0.937579333782196] +O=c1[nH]cnc2ccc(CCc3c[nH]c4ccccc34)cc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2nc[nH]c(=O)c2c1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(OCc3ccc(F)cc3F)cc12; [None]; [None]; [0] +O=c1[nH]cnc2ccc(-c3ocnc3-c3ccc(F)cc3)cc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cccc(O)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cccc4ncccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(Cl)ccc4c3OCO4)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(Cl)c(O)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3n[nH]c4ccccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +O=c1[nH]cnc2ccc(CCc3ccc(F)cc3F)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(Cl)cccc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(N)=O)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(N)=O)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(O)cc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(O)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc(N)n3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +Cc1nc2ccc(Oc3ccc(F)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(F)c4nc(C)[nH]c4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +Cc1nc2ccc(-c3cn[nH]c3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(-c2ccc3nc(C)[nH]c(=O)c3c2C)ccc1O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)o1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)[O-])cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(C)[nH]c(=O)c3c2C)ccc1O; [None]; [None]; [0] +Cc1nc2ccc(-c3cccc(Br)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(O)c(F)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4ccccc4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3nc(C)[nH]c(=O)c3c2C)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3cn(C)c4ccccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(F)c(Cl)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(O)cc3O)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc(N)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn4ncccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c[nH]c4cnccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(COc3ccccc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(O)ccc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(C)ccc4[nH]ncc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc(O)c(Cl)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c[nH]c(C(N)=O)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3nc(C)[nH]c(=O)c3c2C)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(CO)ccc3C)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)cc1OC; [None]; [None]; [0] +CCOc1cccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4[nH]ccc4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4nc(C)[nH]c(=O)c4c3C)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(C)[nH]c4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(NC(N)=O)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cncc(O)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(S(C)(=O)=O)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3nc4ccccc4s3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(C)[nH]c(=O)c3c2C)cc(OC)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)CC(=O)N4)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +CNc1nccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)n1; [None]; [None]; [0] +Cc1nc2ccc([C@H](C)CC(N)=O)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(N(C)c3ccc4c(C)n[nH]c4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(O)cc3C)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(N(C)c3cccc(Cl)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3[nH]nc(C)c3C)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccncc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(C(F)F)n[nH]3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(Cl)c(O)c(Cl)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)CCN4)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(O)n4nccc4n3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(C(=O)[O-])c(C)o3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CNc1nc(-c2ccc3nc(C)[nH]c(=O)c3c2C)ncc1F; [None]; [None]; [0] +CCc1sccc1-c1ccc2nc(C)[nH]c(=O)c2c1C; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(Br)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(Nc3ccncc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3[nH]nc4ccc(F)cc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(N)=O)c(C)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(N(C)c3cccc4[nH]ncc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(N)cnn3C)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(O)cc(Br)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)NC4CC4)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(C)oc4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(C)c(O)c(C)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CSc1cccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc(C)[nH]c(=O)c3c2C)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc(F)c(O)c(F)c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(CCc3c[nH]c4ccccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(OCc3cccc4ccccc34)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3ocnc3-c3ccc(F)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(Oc3ccc(F)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(-c4ccccc4)noc3C)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CCOc1ccc(Nc2ncnc3ccccc23)cc1; ['CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(N)cc1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9996767044067383, 0.9834665060043335, 0.9819670915603638] +Cc1nc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(OCc3ccc(F)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +Cc1nc2ccc(NCc3c(F)cccc3Cl)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2ncnc3ccccc23)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(N)cc1']; ['Clc1ncnc2ccccc12', 'CC(=O)N(C)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9993852376937866, 0.9992055892944336, 0.9905309081077576, 0.9333199262619019, 0.8572019338607788, 0.7801622152328491] +c1ccc2nc(Nc3ncnc4ccccc34)ncc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1']; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999912977218628, 0.9999775886535645, 0.9998683929443359, 0.997165322303772] +CS(=O)(=O)c1cccc(Nc2ncnc3ccccc23)c1; ['CS(=O)(=O)c1cccc(N)c1', 'Brc1ncnc2ccccc12', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Clc1ncnc2ccccc12', 'CS(=O)(=O)c1cccc(N)c1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9998310804367065, 0.9995797276496887, 0.9926104545593262, 0.9887877702713013] +c1ccc2c(Nc3cnc4cccnn34)ncnc2c1; ['Clc1ncnc2ccccc12']; ['Nc1cnc2cccnn12']; [0.9999935030937195] +Cc1ccc2ncn(Nc3ncnc4ccccc34)c2c1; [None]; [None]; [0] +COc1cc(Nc2ncnc3ccccc23)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'Brc1ncnc2ccccc12', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Clc1ncnc2ccccc12', 'COc1cc(N)cc(OC)c1OC', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999374151229858, 0.9999353885650635, 0.9957442283630371, 0.9957200288772583, 0.9912292957305908] +COc1ncccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1N']; ['COc1ncccc1N', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999810457229614, 0.9999637603759766, 0.9998385906219482, 0.9987587928771973, 0.9985361099243164, 0.9982775449752808, 0.9956731200218201] +Oc1cccc(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Nc1cccc(O)c1', 'Nc1ncnc2ccccc12']; ['Nc1cccc(O)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1cccc(Br)c1']; [0.9995831251144409, 0.9945292472839355, 0.9776215553283691] +COc1ccc(Nc2ncnc3ccccc23)cc1; ['COc1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'COc1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999933123588562, 0.9998421669006348, 0.9986100196838379, 0.9875825643539429] +c1ccc2[nH]c(Nc3ncnc4ccccc34)nc2c1; ['Clc1ncnc2ccccc12', 'Nc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'O=c1[nH]cnc2ccccc12']; [0.9982953071594238, 0.977814793586731] +Cc1nc2ccc(CCc3ccc(F)cc3F)c(C)c2c(=O)[nH]1; [None]; [None]; [0] +c1ccc2c(Nc3ccc(N4CCOCC4)cc3)ncnc2c1; ['Clc1ncnc2ccccc12', 'Nc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999500513076782, 0.9996142983436584, 0.9959743022918701] +O=C(Nc1cccc(Nc2ncnc3ccccc23)c1)C1CC1; ['Clc1ncnc2ccccc12', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999997079372406, 0.9999281167984009, 0.9990246295928955] +N#Cc1ccc(O)c(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(F)c1', 'N#Cc1ccc(O)c(I)c1']; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9988092184066772, 0.9967174530029297, 0.9933961629867554, 0.9576988816261292, 0.9566942453384399, 0.9552809596061707, 0.8932359218597412, 0.8897799849510193] +Cc1cc(NNc2ncnc3ccccc23)sn1; [None]; [None]; [0] +c1cnc(NNc2ncnc3ccccc23)nc1; ['Clc1ncnc2ccccc12']; ['NNc1ncccn1']; [0.9999715685844421] +O=C([O-])c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1']; [0.993318498134613, 0.9536214470863342] +NC(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1']; ['NC(=O)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995771646499634, 0.9940825700759888, 0.9344470500946045] +c1ccc2c(Nc3ncnc4ccccc34)nccc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Brc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9974648356437683, 0.99617600440979, 0.9928191900253296, 0.9885367155075073, 0.9297879934310913] +c1cc(Nc2ncnc3ccccc23)cc(C2CCNCC2)c1; ['Clc1ncnc2ccccc12']; ['Nc1cccc(C2CCNCC2)c1']; [0.999960720539093] +Cc1nc(C(C)(C)O)sc1Nc1ncnc2ccccc12; [None]; [None]; [0] +OCCOc1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc(OCCO)cc1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'O=c1[nH]cnc2ccccc12']; [0.9998054504394531, 0.9997868537902832, 0.9874942302703857] +N#Cc1cccc(Cn2cc(Nc3ncnc4ccccc34)cn2)c1; [None]; [None]; [0] +c1ccc2c(NNc3ccncn3)ncnc2c1; ['Clc1ncnc2ccccc12', 'Clc1ccncn1']; ['NNc1ccncn1', 'NNc1ncnc2ccccc12']; [0.998616099357605, 0.9949873685836792] +CC(=O)NCc1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)NCc1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999701976776123, 0.9990463256835938, 0.9828959107398987, 0.7914868593215942] +O=C(c1ccc(Nc2ncnc3ccccc23)nc1)N1CCOCC1; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Brc1ncnc2ccccc12']; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999996423721313, 0.9999995231628418, 0.9999982118606567] +O=C(Nc1ccccc1)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ncnc2ccccc12']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999615550041199, 0.99994957447052, 0.9994429349899292, 0.9987810850143433, 0.9970167875289917] +CNS(=O)(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'CNS(=O)(=O)c1ccc(N)cc1', 'Nc1ncnc2ccccc12']; [0.9997513294219971, 0.9975543022155762, 0.997477650642395, 0.9363213181495667] +O=S1(=O)Cc2ccc(Nc3ncnc4ccccc34)cc2C1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ncnc2ccccc12', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=c1[nH]cnc2ccccc12', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ncnc2ccccc12']; [0.9999959468841553, 0.9999939203262329, 0.9998743534088135, 0.9987781047821045, 0.998668909072876] +O=C(c1ccc(Nc2ncnc3ccccc23)cc1)N1CCOCC1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ncnc2ccccc12', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=c1[nH]cnc2ccccc12', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Oc1ncnc2ccccc12', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'O=C(c1ccc(F)cc1)N1CCOCC1']; [0.9999904632568359, 0.9999873638153076, 0.9999589920043945, 0.9999547004699707, 0.9996412992477417, 0.999540388584137, 0.992318868637085, 0.991234302520752] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ncnc4ccccc34)cc2)CC1; [None]; [None]; [0] +FC(F)(F)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999414682388306, 0.9998384714126587, 0.9982298016548157, 0.9957189559936523] +CN(C)c1ccc(Nc2ncnc3ccccc23)cc1; ['CN(C)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1']; ['Clc1ncnc2ccccc12', 'CN(C)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999920129776001, 0.9999200105667114, 0.9986221790313721, 0.991690993309021, 0.9736113548278809] +C[C@H](O)COc1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +CC(C)c1cc(Nc2ncnc3ccccc23)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1ncnc2ccccc12']; [0.9405522346496582] +CS(=O)(=O)N1CCC(Nc2ncnc3ccccc23)CC1; ['CS(=O)(=O)N1CCC(N)CC1', 'Brc1ncnc2ccccc12', 'CS(=O)(=O)N1CCC(=O)CC1']; ['Clc1ncnc2ccccc12', 'CS(=O)(=O)N1CCC(N)CC1', 'Nc1ncnc2ccccc12']; [0.9999926686286926, 0.9999822974205017, 0.9972528219223022] +CN(C)S(=O)(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1']; ['Clc1ncnc2ccccc12', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999363422393799, 0.999811589717865, 0.9996222257614136, 0.9963179230690002, 0.9927395582199097, 0.9809039235115051] +C[C@@H](O)COc1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +Cc1nc(C)c(Nc2ncnc3ccccc23)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(F)cc1']; ['CCNS(=O)(=O)c1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9980424642562866, 0.9967361688613892, 0.9756990075111389, 0.8813045024871826, 0.8505281209945679] +CCCOc1ccc(Nc2ncnc3ccccc23)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ncnc2ccccc12']; [0.9996707439422607] +Brc1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc(Br)cc1', 'Brc1ccc(Br)cc1']; ['Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998253583908081, 0.9996298551559448, 0.997450590133667, 0.9715163707733154] +CN(C)c1ccc(Nc2ncnc3ccccc23)cc1Cl; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9996265172958374, 0.9992902278900146, 0.9956778883934021] +c1ccc2c(Nc3ccn4nccc4n3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ncnc2ccccc12']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'O=c1ccn2nccc2[nH]1']; [0.999998927116394, 0.9999988079071045, 0.9999947547912598, 0.9999773502349854, 0.9999668002128601, 0.9904067516326904] +CNS(=O)(=O)c1ccc(Nc2ncnc3ccccc23)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ncnc2ccccc12']; [0.98175048828125] +COc1ccc(Cl)cc1Nc1ncnc2ccccc12; ['COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9996284246444702, 0.9993506669998169] +O=C(c1ccccc1)N1CC[C@H](Nc2ncnc3ccccc23)C1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(F)cc1']; ['CCN(CC)C(=O)c1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998815059661865, 0.9998607635498047, 0.9986826777458191, 0.9949093461036682, 0.9918498992919922, 0.9855546951293945, 0.9540919065475464] +c1ccc2c(Nc3c[nH]c4ccccc34)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9994268417358398, 0.9993842840194702, 0.9985959529876709, 0.9589307308197021] +c1ccc(-n2cccn2)c(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1']; ['Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999781847000122, 0.9999274015426636, 0.9998937845230103, 0.9997228384017944, 0.9982881546020508, 0.998196005821228] +c1ccc2c(Nc3ccc4c(c3)CCO4)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999842047691345, 0.9999568462371826, 0.9996242523193359, 0.9989814758300781, 0.9988812208175659] +CC(=O)N1CCCN(c2cccc(Nc3ncnc4ccccc34)c2)CC1; [None]; [None]; [0] +COc1cc(OC)c(Nc2ncnc3ccccc23)cc1Cl; ['Brc1ncnc2ccccc12', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Cl)cc1N', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999047517776489, 0.9995443820953369, 0.998530387878418, 0.977196455001831] +CC(=O)Nc1cccc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(N)c1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999912977218628, 0.9999673962593079, 0.9994157552719116, 0.9950158596038818, 0.9899888038635254] +c1ccc(-c2cc(Nc3ncnc4ccccc34)n[nH]2)cc1; ['Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1cc(-c2ccccc2)[nH]n1']; ['Nc1cc(-c2ccccc2)n[nH]1', 'Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1', 'O=c1[nH]cnc2ccccc12']; [0.999916672706604, 0.9999157190322876, 0.9997041821479797, 0.9946837425231934] +Cc1c(Nc2ncnc3ccccc23)cccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3ncnc4ccccc34)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['CC(C)(C)c1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999779462814331, 0.9999758005142212, 0.9986451864242554, 0.9931169748306274, 0.9870613813400269] +CN(C)C(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'CN(C)C(=O)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999905824661255, 0.9999792575836182, 0.9988674521446228, 0.9985647797584534, 0.9981335401535034] +c1cc(Nc2ncnc3ccccc23)c2c(c1)OCO2; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2']; ['Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998618364334106, 0.9967694878578186, 0.985052227973938, 0.9805549383163452, 0.9774167537689209] +COc1cc(Nc2ncnc3ccccc23)ccc1O; ['Brc1ncnc2ccccc12', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O']; ['COc1cc(N)ccc1O', 'Clc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9998985528945923, 0.9995823502540588, 0.9915813207626343, 0.9886491298675537, 0.9827075004577637] +Nc1nc(Nc2ncnc3ccccc23)cs1; ['Clc1ncnc2ccccc12', 'Nc1nc(Cl)cs1']; ['Nc1csc(N)n1', 'Nc1ncnc2ccccc12']; [0.9996235370635986, 0.9972227215766907] +COc1cccc(C(=O)NNc2ncnc3ccccc23)c1; ['COc1cccc(C(=O)NN)c1', 'COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; ['Clc1ncnc2ccccc12', 'NNc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; [0.9999676942825317, 0.9998764991760254, 0.999092698097229] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ncnc2ccccc12; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'Brc1ncnc2ccccc12', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Clc1ncnc2ccccc12', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.9999785423278809, 0.9999715685844421, 0.9998856782913208, 0.9998281002044678] +CC(C)(C)c1ccc(Nc2ncnc3ccccc23)cn1; ['Brc1ncnc2ccccc12', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['CC(C)(C)c1ccc(N)cn1', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9998372197151184, 0.9995863437652588, 0.9801191091537476, 0.9730249643325806] +Clc1cccc(-n2ccc(Nc3ncnc4ccccc34)n2)c1; [None]; [None]; [0] +Fc1ccc(Nc2ncnc3ccccc23)c(Cl)c1; ['Clc1ncnc2ccccc12', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1']; ['Nc1ccc(F)cc1Cl', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999724626541138, 0.9998354911804199, 0.9997463226318359] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncnc3ccccc23)CC1; [None]; [None]; [0] +Cc1cc(Nc2ncnc3ccccc23)nc(N)n1; ['Cc1cc(N)nc(N)n1', 'Cc1cc(Cl)nc(N)n1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9972350597381592, 0.9964288473129272] +CSc1ccc(Nc2ncnc3ccccc23)cc1; ['CSc1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CSc1ccc(N)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'CSc1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998770952224731, 0.9992810487747192, 0.9905909299850464, 0.9500513076782227, 0.9196540117263794] +c1ccc2sc(Nc3ncnc4ccccc34)cc2c1; ['Clc1ncnc2ccccc12', 'Nc1cc2ccccc2s1']; ['Nc1cc2ccccc2s1', 'O=c1[nH]cnc2ccccc12']; [0.9985301494598389, 0.9772917032241821] +CCN1CCN(Cc2ccc(Nc3ncnc4ccccc34)cc2)CC1; ['Brc1ncnc2ccccc12', 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'Clc1ncnc2ccccc12']; [0.9980703592300415, 0.997305691242218] +CCc1ccc(Nc2ncnc3ccccc23)cc1; ['CCc1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'CCc1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998364448547363, 0.9995512962341309, 0.9949084520339966, 0.9751942753791809] +COc1ccc(Nc2ncnc3ccccc23)cc1OC; ['Brc1ncnc2ccccc12', 'COc1ccc(N)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(I)cc1OC']; ['COc1ccc(N)cc1OC', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999947547912598, 0.9999784231185913, 0.9996370077133179, 0.9994751214981079, 0.9933114647865295] +Brc1cnc(Nc2ncnc3ccccc23)nc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999136924743652, 0.9998584985733032, 0.999833345413208, 0.9995859265327454, 0.9981347322463989] +COc1ccc(CNNc2ncnc3ccccc23)cc1; ['COc1ccc(CNN)cc1']; ['Clc1ncnc2ccccc12']; [0.9662915468215942] +Clc1ccc(Nc2ncnc3ccccc23)c(Cl)c1; ['Clc1ncnc2ccccc12', 'Nc1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1']; ['Nc1ccc(Cl)cc1Cl', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999428987503052, 0.9997639060020447, 0.999502420425415] +O=C1CCc2cc(Nc3ncnc4ccccc34)ccc2N1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ncnc2ccccc12', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Oc1ncnc2ccccc12', 'O=C1CCc2cc(Br)ccc2N1', 'O=c1[nH]cnc2ccccc12', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(F)ccc2N1']; [0.9999783635139465, 0.9999707937240601, 0.9996477365493774, 0.9979606866836548, 0.9971015453338623, 0.995568037033081, 0.9953910708427429, 0.9830033779144287] +c1ccc2c(Nc3scc4c3OCCO4)ncnc2c1; [None]; [None]; [0] +CC1(CONc2ncnc3ccccc23)COC1; [None]; [None]; [0] +COc1cc(Nc2ncnc3ccccc23)ccc1N1CCOCC1; ['Brc1ncnc2ccccc12', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['COc1cc(N)ccc1N1CCOCC1', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [1.0, 0.9999983310699463, 0.9999923706054688, 0.9999816417694092] +Cn1cc(Nc2ncnc3ccccc23)c(C(F)(F)F)n1; ['Clc1ncnc2ccccc12']; ['Cn1cc(N)c(C(F)(F)F)n1']; [0.9981859922409058] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +c1ccc2c(Nc3ncc4cccn4n3)ncnc2c1; ['Clc1ncc2cccn2n1']; ['Nc1ncnc2ccccc12']; [0.9999828338623047] +COc1ccc2cccc(Nc3ncnc4ccccc34)c2c1; ['Brc1ncnc2ccccc12', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['COc1ccc2cccc(N)c2c1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9997951984405518, 0.9993726015090942, 0.9970393776893616, 0.9920883178710938] +COc1cc(Nc2ncnc3ccccc23)ccc1Cl; ['Brc1ncnc2ccccc12', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(N)ccc1Cl', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999966621398926, 0.9999194145202637, 0.9998117685317993, 0.9995883703231812] +c1ccc2c(Nc3cc4ccccn4n3)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Brc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Clc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998151063919067, 0.9996954798698425, 0.9989321231842041, 0.9979674816131592, 0.9962494373321533] +COc1cc(F)c(Nc2ncnc3ccccc23)cc1OC; ['Brc1ncnc2ccccc12', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['COc1cc(N)c(F)cc1OC', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999377727508545, 0.9998315572738647, 0.9994714260101318, 0.9832898378372192] +Oc1ccc2cccc(Nc3ncnc4ccccc34)c2c1; ['Brc1ncnc2ccccc12', 'Nc1cccc2ccc(O)cc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1cccc2ccc(O)cc12', 'O=c1[nH]cnc2ccccc12', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(Cl)c2c1']; [0.9989765882492065, 0.9925657510757446, 0.9916208982467651, 0.9855575561523438, 0.9563872814178467] +Clc1cnc(Nc2ncnc3ccccc23)nc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1cnc(Cl)nc1', 'Clc1cnc(Br)nc1', 'CSc1ncc(Cl)cn1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998654723167419, 0.9994490146636963, 0.9991068840026855, 0.9986640214920044, 0.923421323299408] +Cc1csc2c(Nc3ncnc4ccccc34)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1ncnc2ccccc12']; [0.9988189935684204] +CC1(C)Cc2cc(Nc3ncnc4ccccc34)ccc2O1; [None]; [None]; [0] +Cc1nc(NNc2ncnc3ccccc23)sc1C; ['Cc1nc(NN)sc1C']; ['Clc1ncnc2ccccc12']; [0.997980535030365] +O=C(C1CC1)N1CC(NNc2ncnc3ccccc23)C1; [None]; [None]; [0] +Cc1cc(NNc2ncnc3ccccc23)nn1C; ['Cc1cc(Cl)nn1C']; ['NNc1ncnc2ccccc12']; [0.9911031723022461] +OCCn1cc(Nc2ncnc3ccccc23)cn1; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9999585151672363, 0.8981866836547852] +O=C(NNc1ncnc2ccccc12)c1ccco1; ['Clc1ncnc2ccccc12', 'NNc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; ['NNC(=O)c1ccco1', 'O=C(Cl)c1ccco1', 'O=C(O)c1ccco1']; [0.9965686798095703, 0.9922438859939575, 0.9200353622436523] +CCNC(=O)c1ccc(Nc2ncnc3ccccc23)nc1; ['CCNC(=O)c1ccc(Cl)nc1', 'CCNC(=O)c1ccc(Br)nc1']; ['Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9987850189208984, 0.9904793500900269] +COc1cc(CS(C)(=O)=O)ccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +COc1cc(Nc2ncnc3ccccc23)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1ncnc2ccccc12']; [0.9571856260299683] +NC(=O)c1ccc(CNc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NCc1ccc(C(N)=O)cc1']; ['NCc1ccc(C(N)=O)cc1', 'NCc1ccc(C(N)=O)cc1', 'O=c1[nH]cnc2ccccc12']; [0.999997615814209, 0.9999964833259583, 0.9996010065078735] +CO[C@@H]1CC[C@@H](Nc2ncnc3ccccc23)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'Brc1ncnc2ccccc12', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['Clc1ncnc2ccccc12', 'CO[C@H]1CC[C@H](N)CC1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.9999973177909851, 0.9999918341636658, 0.9998390674591064, 0.9997351169586182] +CCNC(=O)N1CCC(Nc2ncnc3ccccc23)CC1; [None]; [None]; [0] +COc1cc(Nc2ncnc3ccccc23)cc(OC)c1; ['Brc1ncnc2ccccc12', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['COc1cc(N)cc(OC)c1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9997295141220093, 0.9996857047080994, 0.9982450604438782, 0.9779731035232544, 0.959058940410614] +CNC(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CNC(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(F)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Clc1ncnc2ccccc12', 'CNC(=O)c1ccc(N)cc1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998887181282043, 0.999860405921936, 0.9990795254707336, 0.9989504814147949, 0.9973746538162231, 0.9963552951812744, 0.976416826248169, 0.920315682888031, 0.8555324077606201] +c1ccc2c(Nc3ccc4cn[nH]c4c3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999987483024597, 0.9999971389770508, 0.9997409582138062, 0.9916901588439941] +CC(C)(C)c1ccc(C(=O)NNc2ncnc3ccccc23)cc1; ['CC(C)(C)c1ccc(C(=O)NN)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1']; ['Clc1ncnc2ccccc12', 'NNc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; [0.9999631643295288, 0.9998505115509033, 0.9983206987380981] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ncnc3ccccc23)c1; [None]; [None]; [0] +CCn1cc(Nc2ncnc3ccccc23)cn1; ['CCn1cc(N)cn1', 'Brc1ncnc2ccccc12', 'CCn1cc(N)cn1', 'CCn1cc(Br)cn1']; ['Clc1ncnc2ccccc12', 'CCn1cc(N)cn1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9997682571411133, 0.9995976686477661, 0.999298095703125, 0.8015844821929932] +COc1ccc2oc(Nc3ncnc4ccccc34)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1ncnc3ccccc13)cn2C; [None]; [None]; [0] +c1cncc(-c2ccnc(Nc3ncnc4ccccc34)c2)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9999103546142578, 0.9998966455459595] +c1ccc2oc(Nc3ncnc4ccccc34)cc2c1; [None]; [None]; [0] +c1ccc2c(Nc3ncc4sccc4n3)ncnc2c1; ['Clc1ncc2sccc2n1']; ['Nc1ncnc2ccccc12']; [0.9999973773956299] +O=S(=O)(CCO)c1ccc(CNc2ncnc3ccccc23)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1ncnc2ccccc12; ['CC(C)c1nn(C)cc1Br']; ['Nc1ncnc2ccccc12']; [0.9965423345565796] +Nc1cc(Nc2ncnc3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2ncnc3ccccc23)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Clc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9997342824935913, 0.9983269572257996, 0.993941068649292, 0.984110951423645] +FC(F)(F)Oc1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999969482421875, 0.999884843826294, 0.9987771511077881, 0.99424809217453, 0.9902337789535522] +Cn1cc(Nc2ncnc3ccccc23)c2ccccc21; [None]; [None]; [0] +CCc1cccc(Nc2ncnc3ccccc23)n1; ['CCc1cccc(N)n1', 'Brc1ncnc2ccccc12', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1']; ['Clc1ncnc2ccccc12', 'CCc1cccc(N)n1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999836683273315, 0.9999790191650391, 0.9993732571601868, 0.9988001585006714] +C[NH+](C)Cc1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2ncnc3ccccc23)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1ncnc2ccccc12']; [0.9995749592781067] +Cn1cc(Br)cc1Nc1ncnc2ccccc12; [None]; [None]; [0] +Cn1ncc2cc(Nc3ncnc4ccccc34)ccc21; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Cn1ncc2cc(N)ccc21']; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'O=c1[nH]cnc2ccccc12']; [0.9999979734420776, 0.999988317489624, 0.9998984932899475] +COc1ccc2nc(Nc3ncnc4ccccc34)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3ncnc4ccccc34)ccc21; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncnc3ccccc23)c1)N1CCCC1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncnc3ccccc23)cn1; ['CN(C)c1ccc(N)cn1', 'Brc1ncnc2ccccc12', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(I)cn1']; ['Clc1ncnc2ccccc12', 'CN(C)c1ccc(N)cn1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999721050262451, 0.9999703168869019, 0.999558687210083, 0.9989289045333862, 0.9956026077270508, 0.993003249168396] +Cc1n[nH]c2cc(Nc3ncnc4ccccc34)ccc12; ['Brc1ncnc2ccccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Cc1n[nH]c2cc(N)ccc12', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999986290931702, 0.9999891519546509, 0.999584436416626, 0.9969080686569214] +O=C(NNc1ncnc2ccccc12)c1cccc(OC(F)(F)F)c1; ['Clc1ncnc2ccccc12', 'NNc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; ['NNC(=O)c1cccc(OC(F)(F)F)c1', 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999992847442627, 0.9999970197677612, 0.999941349029541] +OCCc1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc(CCO)cc1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'O=c1[nH]cnc2ccccc12', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.9997463226318359, 0.9995397329330444, 0.9880520105361938, 0.9743329286575317, 0.9422605037689209] +O=C1CCCN1c1cccc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.999998152256012, 0.9999946355819702, 0.9984844923019409, 0.9980888366699219] +Cc1cc(Nc2ncnc3ccccc23)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncnc3ccccc23)c(Cl)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3ncnc4ccccc34)[nH]c2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1ncnc2ccccc12; ['Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.999995231628418, 0.9999810457229614] +COc1cc(S(C)(=O)=O)ccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N']; ['COc1cc(S(C)(=O)=O)ccc1N', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.999983549118042, 0.9999656677246094, 0.9989638328552246, 0.9957695007324219] +COc1cc(-c2cnn(C)c2)ccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2c(Nc3ncn4c3CCCC4)ncnc2c1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CCNC(=O)c1ccc(N)cc1']; ['Clc1ncnc2ccccc12']; [0.9996587038040161] +Cc1ncc(-c2ccc(Nc3ncnc4ccccc34)cc2)n1C; [None]; [None]; [0] +Fc1ccc(NNc2ncnc3ccccc23)nc1; ['Clc1ncnc2ccccc12']; ['NNc1ccc(F)cn1']; [0.9993243217468262] +CCNC(=O)Cc1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3ncnc4ccccc34)cn2)CC1; [None]; [None]; [0] +c1ccc(NNc2ncnc3ccccc23)nc1; ['Clc1ncnc2ccccc12']; ['NNc1ccccn1']; [0.9998072385787964] +CNC(=O)c1ccc(Nc2ncnc3ccccc23)c(OC)c1; ['Brc1ncnc2ccccc12', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(N)c(OC)c1', 'Clc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9941734075546265, 0.9937294721603394, 0.9660824537277222, 0.8241573572158813] +Cc1cc(NNc2ncnc3ccccc23)ncc1F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ncnc3ccccc23)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ncnc2ccccc12']; [0.9984528422355652] +CNC(=O)c1ccc(C)c(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['CNC(=O)c1ccc(C)c(N)c1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9997963905334473, 0.9995923042297363, 0.9946305751800537] +CN(C)C(=O)c1ccc(Nc2ncnc3ccccc23)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999914765357971, 0.999407172203064] +Cc1ccc(C(=O)NCCO)cc1Nc1ncnc2ccccc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +COC(C)(C)CCNc1ncnc2ccccc12; ['COC(C)(C)CCN', 'Brc1ncnc2ccccc12', 'COC(C)(C)CCN']; ['Clc1ncnc2ccccc12', 'COC(C)(C)CCN', 'O=c1[nH]cnc2ccccc12']; [0.9998661279678345, 0.9997115135192871, 0.9961901307106018] +CCOc1ccccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1Br']; ['CCOc1ccccc1N', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999494194984436, 0.9991825819015503, 0.9902851581573486, 0.9802689552307129] +CNC(=O)c1ccccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1F']; ['CNC(=O)c1ccccc1N', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999596118927002, 0.995909571647644, 0.9957695603370667, 0.9913897514343262, 0.9904734492301941, 0.9884403944015503, 0.8687835931777954] +Fc1cc(F)cc(CNc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1']; ['NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [1.0, 0.9999990463256836, 0.9999970197677612, 0.998309850692749] +FC(F)(F)c1cccc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999866485595703, 0.9996466040611267, 0.9992645978927612, 0.9147892594337463] +Cn1nc(Nc2ncnc3ccccc23)cc1C(C)(C)O; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'FC(F)(F)Oc1ccccc1Br', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncnc2ccccc12', 'FC(F)(F)Oc1ccccc1I']; ['Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncnc2ccccc12']; [0.9999076128005981, 0.9980530738830566, 0.997148334980011, 0.9874958992004395, 0.986594021320343, 0.9838896989822388] +c1ccc2c(Nc3ncnc4ccccc34)ccnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12']; ['Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999901294708252, 0.999808669090271, 0.9993313550949097, 0.9961830973625183, 0.9889623522758484, 0.9669538140296936] +O=C([O-])c1ccccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1ncnc2ccccc12; ['CC(C)S(=O)(=O)c1ccccc1N', 'Brc1ncnc2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Clc1ncnc2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1N', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999279797077179, 0.9990630149841309, 0.997063398361206, 0.9948394298553467] +Cn1cnc2ccc(Nc3ncnc4ccccc34)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ncnc2ccccc12']; [0.9989112615585327] +CP(C)(=O)c1ccccc1Nc1ncnc2ccccc12; ['CP(C)(=O)c1ccccc1N']; ['Clc1ncnc2ccccc12']; [0.9999139308929443] +NC(=O)c1ccccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1F', 'NC(=O)c1ccccc1Cl']; ['NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1N', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9985731244087219, 0.9958896636962891, 0.9900339245796204, 0.9499995708465576, 0.9050368070602417, 0.7760764360427856] +CC(C)(C)c1nc(Nc2ncnc3ccccc23)cs1; [None]; [None]; [0] +Clc1ccc(Cl)c(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Nc1cc(Cl)ccc1Cl']; ['Nc1cc(Cl)ccc1Cl', 'O=c1[nH]cnc2ccccc12']; [0.999908983707428, 0.9998517036437988] +c1ccc(Cn2cc(Nc3ncnc4ccccc34)cn2)cc1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1ncnc2ccccc12']; [0.999835193157196, 0.999748945236206, 0.9683884382247925] +O=C(Nc1cccc(Nc2ncnc3ccccc23)c1)c1ccccc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; ['Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.9999760985374451, 0.9999760389328003, 0.9995521903038025, 0.9988089799880981] +Cc1ccc(Nc2ncnc3ccccc23)c(Br)c1; ['Brc1ncnc2ccccc12', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1']; ['Cc1ccc(N)c(Br)c1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999828934669495, 0.9999798536300659, 0.9999702572822571] +CC(C)C(=O)CONc1ncnc2ccccc12; [None]; [None]; [0] +COc1cnc(Nc2ncnc3ccccc23)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'Brc1ncnc2ccccc12', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Nc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'COc1cnc(N)nc1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12']; [0.999854564666748, 0.9998534917831421, 0.9995704889297485, 0.9990995526313782, 0.9967743158340454, 0.9966322183609009] +Cc1nc2ccccn2c1Nc1ncnc2ccccc12; ['Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1N']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999784231185913, 0.9999269247055054, 0.9987722039222717] +c1ccc2c(Nc3cnc4ccccn34)ncnc2c1; ['Brc1ncnc2ccccc12', 'Brc1cnc2ccccn12', 'Clc1ncnc2ccccc12', 'Clc1cnc2ccccn12', 'Nc1cnc2ccccn12']; ['Nc1cnc2ccccn12', 'Nc1ncnc2ccccc12', 'Nc1cnc2ccccn12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9991987943649292, 0.9991871118545532, 0.998755693435669, 0.9909476041793823, 0.9693381190299988] +Clc1cccc(Cl)c1Nc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'Nc1c(Cl)cccc1Cl']; ['Nc1c(Cl)cccc1Cl', 'O=c1[nH]cnc2ccccc12']; [0.9998719692230225, 0.9995981454849243] +c1ccc(-c2ncc(Nc3ncnc4ccccc34)[nH]2)cc1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cccc(Cn2cncn2)c1']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'O=c1[nH]cnc2ccccc12']; [0.9999996423721313, 0.9999958276748657, 0.9998408555984497] +Cc1ccc(Cl)c(Nc2ncnc3ccccc23)c1; ['Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995298981666565, 0.9990929365158081, 0.992277979850769] +Brc1cccc(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Brc1cccc(I)c1', 'Nc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999958872795105, 0.9999450445175171, 0.9995061159133911, 0.999314546585083, 0.9991145133972168] +Nc1nccc(Nc2ncnc3ccccc23)n1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccnc(N)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(=O)[nH]1']; ['Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995219707489014, 0.9992941617965698, 0.9972256422042847, 0.9946718811988831, 0.9889378547668457, 0.8295882940292358] +Cc1nnc(-c2ccccc2Nc2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1Nc1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2cc(Nc3ncnc4ccccc34)ccc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1']; ['Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999806880950928, 0.9999122619628906, 0.9981369972229004, 0.9973073601722717, 0.9904336929321289, 0.9858041405677795] +c1ccc2c(Nn3cnc4ccccc43)ncnc2c1; ['Clc1ncnc2ccccc12']; ['Nn1cnc2ccccc21']; [0.999642014503479] +c1ccc2c(Nc3cnn4ncccc34)ncnc2c1; [None]; [None]; [0] +Cc1c(Nc2ncnc3ccccc23)sc(=O)n1C; [None]; [None]; [0] +c1cncc(NNc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12']; ['NNc1cccnc1']; [0.9959245324134827] +c1cncc(CNNc2ncnc3ccccc23)c1; [None]; [None]; [0] +O=C(NNc1ncnc2ccccc12)c1cccs1; ['NNc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; ['O=C(Cl)c1cccs1', 'NNC(=O)c1cccs1', 'O=C(O)c1cccs1']; [0.998371958732605, 0.9969338178634644, 0.9199610948562622] +c1ccc2c(NNCCc3c[nH]cn3)ncnc2c1; [None]; [None]; [0] +c1ccc(CCNNc2ncnc3ccccc23)cc1; [None]; [None]; [0] +c1ccc2c(Nc3ncnc4ccccc34)cncc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12']; ['Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999876022338867, 0.9999771118164062, 0.9976514577865601, 0.9964474439620972, 0.9914896488189697] +CNc1nc(C)c(Nc2ncnc3ccccc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1Nc1ncnc2ccccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(Nc3ncnc4ccccc34)cc2)cn1; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['O=c1[nH]cnc2ccccc12', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Nc1ncnc2ccccc12']; [1.0, 0.9999992251396179, 0.9999957084655762, 0.999954342842102] +Clc1ccc(CNNc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12']; ['NNCc1ccc(Cl)cc1']; [0.8974387645721436] +FC(F)(F)c1n[nH]cc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1c[nH]nc1C(F)(F)F', 'FC(F)(F)c1n[nH]cc1Br']; ['Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999822378158569, 0.9998452663421631, 0.9992669820785522, 0.9967271685600281] +NC(=O)c1c(F)cccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(N)cccc1F', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9994704723358154, 0.9990013837814331, 0.9799207448959351, 0.96198970079422] +CCCn1cnc(Nc2ncnc3ccccc23)n1; ['CCCn1cnc(N)n1']; ['Clc1ncnc2ccccc12']; [0.9996733665466309] +CN1c2ccc(Nc3ncnc4ccccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Fc1ccccc1CNNc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', None]; ['NNCc1ccccc1F', None]; [0.9960345029830933, 0] +CC(C)n1cc(Nc2ncnc3ccccc23)nn1; ['Brc1ncnc2ccccc12', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1']; ['CC(C)n1cc(N)nn1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.999967634677887, 0.999906063079834, 0.9998743534088135] +OCc1cccc(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1cccc(CO)c1']; ['Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'O=c1[nH]cnc2ccccc12']; [0.9998644590377808, 0.9998610019683838, 0.9984408617019653] +Nc1[nH]nc2cc(Nc3ncnc4ccccc34)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['Nc1ncnc2ccccc12']; [0.997073769569397] +c1ccc2c(Nc3ccc(-c4cn[nH]c4)cc3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999972581863403, 0.9999774098396301, 0.9995241165161133, 0.9991580247879028] +CSc1nc(Nc2ncnc3ccccc23)c[nH]1; [None]; [None]; [0] +c1ccc2c(NCCc3c[nH]nn3)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'NCCc1c[nH]nn1']; ['NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'O=c1[nH]cnc2ccccc12']; [0.9999967813491821, 0.9999823570251465, 0.9992226362228394] +COc1cc(Nc2ncnc3ccccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncnc4ccccc34)cc2c1; ['Nc1cc2ccccc2[nH]1', 'Clc1ncnc2ccccc12']; ['O=c1[nH]cnc2ccccc12', 'Nc1cc2ccccc2[nH]1']; [0.9923823475837708, 0.953026533126831] +c1ccc2c(Nc3csc4ncncc34)ncnc2c1; ['Brc1csc2ncncc12']; ['Nc1ncnc2ccccc12']; [0.9974914789199829] +O=C([O-])Cc1cccc(Nc2ncnc3ccccc23)c1; [None]; [None]; [0] +N#CCCc1cccc(Nc2ncnc3ccccc23)c1; ['N#CCCc1cccc(Br)c1']; ['Nc1ncnc2ccccc12']; [0.7603206634521484] +Nc1ncncc1Nc1ncnc2ccccc12; ['Clc1ncnc2ccccc12']; ['Nc1cncnc1N']; [0.9981032609939575] +Fc1ccc(Nc2ncnc3ccccc23)c(C(F)(F)F)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1']; ['Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999657869338989, 0.9999607801437378, 0.9995818138122559, 0.9980597496032715, 0.9961779713630676, 0.9907653331756592] +CCC(=O)Nc1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1']; ['CCC(=O)Nc1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.998346209526062, 0.997134804725647, 0.9934837818145752, 0.9806762337684631, 0.9043365716934204] +O=C(NNc1ncnc2ccccc12)c1c(Cl)cccc1Cl; ['NNc1ncnc2ccccc12', 'NNc1ncnc2ccccc12']; ['O=C(O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl']; [0.9889044761657715, 0.9885549545288086] +NC(=O)CCCNc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'NCCCC(N)=O', 'NC(=O)CCCCl']; ['NCCCC(N)=O', 'NCCCC(N)=O', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.999977707862854, 0.9999601244926453, 0.9995872974395752, 0.8615190982818604] +CCNc1nc2ccc(Nc3ncnc4ccccc34)cc2s1; [None]; [None]; [0] +COc1ccc(Nc2ncnc3ccccc23)cc1Cl; ['Brc1ncnc2ccccc12', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['COc1ccc(N)cc1Cl', 'O=c1[nH]cnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999653697013855, 0.9996439218521118, 0.9995843172073364, 0.9927628040313721] +c1ccc2c(NNc3ccncc3)ncnc2c1; [None]; [None]; [0] +CC(C)(CONc1ncnc2ccccc12)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCNc1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2c(Nc3cnn4ccccc34)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Clc1cnn2ccccc12']; ['Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999950528144836, 0.9999932050704956, 0.9999525547027588, 0.9974232316017151, 0.9955023527145386, 0.9871056079864502] +CCCn1cc(Nc2ncnc3ccccc23)cn1; ['CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'Brc1ncnc2ccccc12', 'CCCn1cc(Br)cn1']; ['O=c1[nH]cnc2ccccc12', 'Clc1ncnc2ccccc12', 'CCCn1cc(N)cn1', 'Nc1ncnc2ccccc12']; [0.9999614953994751, 0.9998841285705566, 0.999830424785614, 0.989456295967102] +COc1cc(CCNc2ncnc3ccccc23)cc(OC)c1; ['COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.999992847442627, 0.9980157613754272] +CS(=O)(=O)C1CCN(Nc2ncnc3ccccc23)CC1; [None]; [None]; [0] +O=c1cc(Nc2ncnc3ccccc23)cc[nH]1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cc[nH]c(=O)c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1[nH]cnc2ccccc12', 'O=c1cc(F)cc[nH]1', 'O=c1cc(Cl)cc[nH]1']; [0.9999992847442627, 0.9999961853027344, 0.9986100196838379, 0.9948179721832275, 0.9943118095397949] +O=C1CCc2cccc(Nc3ncnc4ccccc34)c21; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncnc2ccccc12']; ['Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Oc1ncnc2ccccc12', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=C1CCc2cccc(F)c21']; [0.9999123811721802, 0.9995351433753967, 0.9991742372512817, 0.9942333698272705, 0.9939532279968262, 0.9922353029251099, 0.9905027151107788, 0.847542941570282] +C[S@](=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['Brc1ncnc2ccccc12', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(O)cc1']; ['CS(=O)c1ccc(N)cc1', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998428821563721, 0.9998343586921692, 0.9868593215942383, 0.9627785682678223] +c1ccc(ONc2ncnc3ccccc23)nc1; [None]; [None]; [0] +CC(C)(N)c1ccc(Nc2ncnc3ccccc23)cc1; ['CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9968279600143433, 0.8421049118041992] +CCNS(=O)(=O)c1ccccc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1Br']; ['CCNS(=O)(=O)c1ccccc1N', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9951063394546509, 0.9909319877624512, 0.8562293648719788, 0.852558434009552] +C[C@@H](ONc1ncnc2ccccc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CC(C)c1oncc1Nc1ncnc2ccccc12; [None]; [None]; [0] +COc1cccc(F)c1Nc1ncnc2ccccc12; ['COc1cccc(F)c1N', 'COc1cccc(F)c1N']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999850988388062, 0.9990016222000122] +CC(C)Oc1cncc(Nc2ncnc3ccccc23)c1; ['CC(C)Oc1cncc(Br)c1']; ['Nc1ncnc2ccccc12']; [0.9984044432640076] +O=c1[nH]ccc2oc(Nc3ncnc4ccccc34)cc12; [None]; [None]; [0] +c1ccc(-c2ccncc2NNc2ncnc3ccccc23)cc1; [None]; [None]; [0] +c1ccc2ncc(NNc3ncnc4ccccc34)cc2c1; ['Clc1ncnc2ccccc12']; ['NNc1cnc2ccccc2c1']; [0.9997941851615906] +c1ccc2c(Nc3c[nH]c4cnccc34)ncnc2c1; ['Brc1c[nH]c2cnccc12']; ['Nc1ncnc2ccccc12']; [0.9946789741516113] +COc1ccncc1NNc1ncnc2ccccc12; [None]; [None]; [0] +CCN(CC)Nc1ncnc2ccccc12; [None]; [None]; [0] +CC1(Nc2ncnc3ccccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cc(Nc2ncnc3ccccc23)n(-c2cccc(Cl)c2)n1; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1']; ['Clc1ncnc2ccccc12']; [0.9994144439697266] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999306201934814, 0.9998738169670105, 0.9784929752349854, 0.9692097902297974] +CS(=O)(=O)c1ccc(Nc2ncnc3ccccc23)cc1; ['CS(=O)(=O)c1ccc(N)cc1', 'Brc1ncnc2ccccc12', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncnc2ccccc12', 'CS(=O)(=O)c1ccc(N)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999170303344727, 0.9998384714126587, 0.9950175285339355, 0.9913170337677002, 0.9870564937591553, 0.9779130816459656] +O=c1[nH]cc(Br)c2sc(Nc3ncnc4ccccc34)cc12; [None]; [None]; [0] +c1ccc2c(Nc3cnc4[nH]ccc4c3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1cnc2[nH]ccc2c1', 'Clc1ncnc2ccccc12', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'O=c1[nH]cnc2ccccc12', 'Nc1cnc2[nH]ccc2c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999966621398926, 0.9996259212493896, 0.9994346499443054, 0.9993608593940735, 0.9980467557907104, 0.9965447187423706] +CNC(=O)c1c(F)cccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(Nc2ncnc3ccccc23)cc1C(F)(F)F; [None]; [None]; [0] +Fc1cccc(Cl)c1Nc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'Nc1c(F)cccc1Cl']; ['Nc1c(F)cccc1Cl', 'O=c1[nH]cnc2ccccc12']; [0.9999520778656006, 0.9998971223831177] +CN(Nc1ncnc2ccccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](NNc1ncnc2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +c1ccc2c(Nc3ccc(-n4cncn4)cc3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999865293502808, 0.999915361404419, 0.9955676794052124, 0.967548131942749] +C[C@@H](NNc1ncnc2ccccc12)C(C)(C)O; [None]; [None]; [0] +c1ccc2c(c1)cnn2Nc1ncnc2ccccc12; [None]; [None]; [0] +C[C@H](NNc1ncnc2ccccc12)C(C)(C)O; [None]; [None]; [0] +OCCc1cn(Nc2ncnc3ccccc23)cn1; [None]; [None]; [0] +COc1ccc(Nc2ncnc3ccccc23)c(OC)c1; ['COc1ccc(N)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(N)c(OC)c1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9996674060821533, 0.9932688474655151, 0.9911283254623413] +O=C(c1ccccc1)c1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ncnc2ccccc12', 'Nc1ccc(C(=O)c2ccccc2)cc1']; ['Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=c1[nH]cnc2ccccc12', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Oc1ncnc2ccccc12']; [0.9997036457061768, 0.9995959401130676, 0.9951751232147217, 0.994387686252594, 0.9851577877998352, 0.9757639169692993] +OCc1ccn(Nc2ncnc3ccccc23)n1; [None]; [None]; [0] +Oc1cccc2c1cnn2Nc1ncnc2ccccc12; [None]; [None]; [0] +O=C(CCNc1ncnc2ccccc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(CNc4ncnc5ccccc45)n3n2)cc1; [None]; [None]; [0] +CSc1nc(C)c(Nc2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +c1ccc(Cn2cc(Nc3ncnc4ccccc34)nn2)cc1; [None]; [None]; [0] +CCc1cc(Nc2ncnc3ccccc23)nc(N)n1; ['CCc1cc(N)nc(N)n1', 'CCc1cc(Cl)nc(N)n1', 'CCc1cc(=O)[nH]c(N)n1', 'CCc1cc(N)nc(N)n1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9993319511413574, 0.9976031184196472, 0.9939516186714172, 0.9873674511909485] +c1ccc2c(Nc3nncn3C3CC3)ncnc2c1; [None]; [None]; [0] +Oc1ccc2nc(Nc3ncnc4ccccc34)[nH]c2c1; [None]; [None]; [0] +Nc1nnc(Nc2ncnc3ccccc23)s1; ['Clc1ncnc2ccccc12']; ['Nc1nnc(N)s1']; [0.9993646144866943] +O=S(=O)(CNc1ncnc2ccccc12)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(Nc2ncnc3ccccc23)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ncnc3ccccc23)CC1; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ncnc3ccccc23)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999017715454102, 0.9998071193695068] +c1ccc2sc(Nc3ncnc4ccccc34)nc2c1; ['Clc1ncnc2ccccc12', 'Brc1nc2ccccc2s1']; ['Nc1nc2ccccc2s1', 'Nc1ncnc2ccccc12']; [0.9999798536300659, 0.9999059438705444] +[NH3+]Cc1ccc(ONc2ncnc3ccccc23)c(F)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2ncnc3ccccc23)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ncnc4ccccc34)nc2NC1=O; ['CC1(C)Oc2ccc(N)nc2NC1=O', 'Brc1ncnc2ccccc12', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Clc1ncnc2ccccc12', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'Nc1ncnc2ccccc12']; [0.9998847246170044, 0.9998787641525269, 0.9983409643173218] +Nc1cncc(Nc2ncnc3ccccc23)n1; ['Clc1ncnc2ccccc12', 'Nc1cncc(Cl)n1']; ['Nc1cncc(N)n1', 'Nc1ncnc2ccccc12']; [0.9999862909317017, 0.9970840811729431] +CNC(=O)c1ccc(Nc2ncnc3ccccc23)s1; [None]; [None]; [0] +Nc1nc(Nc2ncnc3ccccc23)nc2ccccc12; ['Clc1ncnc2ccccc12', 'Nc1nc(Cl)nc2ccccc12']; ['Nc1nc(N)c2ccccc2n1', 'Nc1ncnc2ccccc12']; [0.9986634254455566, 0.9968112111091614] +CC(C)n1cnnc1Nc1ncnc2ccccc12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1ncnc2ccccc12; [None]; [None]; [0] +c1ccc2c(Nc3c[nH]c4cccnc34)ncnc2c1; ['Clc1ncnc2ccccc12']; ['Nc1c[nH]c2cccnc12']; [0.9999806880950928] +c1ccc2c(Nc3cccc4nnsc34)ncnc2c1; ['Clc1ncnc2ccccc12', 'Brc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Nc1ncnc2ccccc12']; [0.9999645948410034, 0.9997491240501404] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ncnc4ccccc34)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ncnc2ccccc12; ['COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1Br']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995194673538208, 0.996079683303833, 0.9958124160766602] +c1ccc2c(Nc3ncc4cc[nH]c4n3)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Clc1ncc2cc[nH]c2n1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncnc2ccccc12']; [0.9999988079071045, 0.9999945163726807, 0.9999151229858398] +OCCn1cnc(Nc2ncnc3ccccc23)c1; [None]; [None]; [0] +COc1ccc(OC)c(Nc2ncnc3ccccc23)c1; ['COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9994885921478271, 0.997106671333313] +C[C@@]1(O)CC[C@H](Nc2ncnc3ccccc23)CC1; ['C[C@]1(O)CC[C@@H](N)CC1', 'Brc1ncnc2ccccc12', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; ['Clc1ncnc2ccccc12', 'C[C@]1(O)CC[C@@H](N)CC1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999896287918091, 0.9999822378158569, 0.9998006820678711, 0.9979158043861389, 0.997262179851532] +CN(C)S(=O)(=O)c1cccc(Nc2ncnc3ccccc23)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'Brc1ncnc2ccccc12', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Clc1ncnc2ccccc12', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999721646308899, 0.9999589323997498, 0.9991471767425537, 0.9989416599273682] +CC(=O)Nc1ncc(Nc2ncnc3ccccc23)[nH]1; [None]; [None]; [0] +c1cc(Nc2ncnc3ccccc23)c2sccc2c1; [None]; [None]; [0] +Clc1ccc2c(c1Nc1ncnc3ccccc13)OCO2; ['Clc1ncnc2ccccc12', 'Nc1c(Cl)ccc2c1OCO2']; ['Nc1c(Cl)ccc2c1OCO2', 'O=c1[nH]cnc2ccccc12']; [0.9999858140945435, 0.998589038848877] +CN(C)c1cc(Nc2ncnc3ccccc23)cnn1; [None]; [None]; [0] +Oc1cc(Nc2ncnc3ccccc23)ccc1Cl; ['Clc1ncnc2ccccc12', 'Nc1ccc(Cl)c(O)c1', 'Nc1ncnc2ccccc12']; ['Nc1ccc(Cl)c(O)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1cc(Br)ccc1Cl']; [0.9967625141143799, 0.9874681234359741, 0.9377870559692383] +c1cc(Nc2ncnc3ccccc23)c2cccnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Brc1cccc2ncccc12', 'Nc1cccc2ncccc12', 'Ic1cccc2ncccc12']; ['Nc1cccc2ncccc12', 'Nc1cccc2ncccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9996659159660339, 0.9996287822723389, 0.9968909025192261, 0.9951481819152832, 0.9935396909713745] +c1ccc2c(Nc3n[nH]c4ccccc34)ncnc2c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12']; ['Nc1n[nH]c2ccccc12', 'Nc1n[nH]c2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998263716697693, 0.9984737634658813, 0.991148054599762, 0.947312593460083] +O=C(Nc1cccc(Nc2ncnc3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc(ONc2ncnc3ccccc23)c(F)c1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1Nc1ncnc2ccccc12; ['COc1cc(C(N)=O)ccc1N']; ['Clc1ncnc2ccccc12']; [0.9990968704223633] +NC(=O)c1ccc(Nc2ncnc3ccccc23)c(F)c1; ['Clc1ncnc2ccccc12', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(N)c(F)c1', 'NC(=O)c1ccc(F)c(F)c1']; ['NC(=O)c1ccc(N)c(F)c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999966025352478, 0.9992355108261108, 0.9987622499465942, 0.9976393580436707, 0.9928489923477173] +Oc1ccc(Nc2ncnc3ccccc23)c(Cl)c1; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ccc(O)cc1Cl']; ['Nc1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'O=c1[nH]cnc2ccccc12']; [0.9977530241012573, 0.9955906867980957, 0.99043869972229] +COc1ccc(F)cc1Nc1ncnc2ccccc12; ['COc1ccc(F)cc1N', 'COc1ccc(F)cc1N']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9998375177383423, 0.998744547367096] +Oc1ccc(Nc2ncnc3ccccc23)c(F)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(O)cc1F', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc(O)cc1F', 'Nc1ccc(O)cc1F', 'O=c1[nH]cnc2ccccc12', 'Oc1ccc(Br)c(F)c1', 'Oc1ccc(Cl)c(F)c1']; [0.9999556541442871, 0.9997708201408386, 0.9986980557441711, 0.9983518123626709, 0.996819257736206] +COc1cc(F)ccc1Nc1ncnc2ccccc12; ['COc1cc(F)ccc1N', 'COc1cc(F)ccc1N']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9996893405914307, 0.9926568269729614] +c1ccc2[nH]c(C3CCN(Nc4ncnc5ccccc45)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(Nc2ncnc3ccccc23)C1; [None]; [None]; [0] +COC(=O)c1ccc(Nc2ncnc3ccccc23)o1; ['COC(=O)c1ccc(N)o1']; ['Clc1ncnc2ccccc12']; [0.9993860125541687] +Clc1[nH]ncc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cn[nH]c1Cl']; ['Nc1cn[nH]c1Cl', 'Nc1cn[nH]c1Cl', 'O=c1[nH]cnc2ccccc12']; [0.9996402859687805, 0.9996383190155029, 0.9967648983001709] +COC(=O)c1ccc(Cl)c(Nc2ncnc3ccccc23)c1; ['COC(=O)c1ccc(Cl)c(N)c1', 'COC(=O)c1ccc(Cl)c(N)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['O=c1[nH]cnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998416304588318, 0.9997548460960388, 0.9920045137405396] +Oc1ccc(Nc2ncnc3ccccc23)cc1F; ['Clc1ncnc2ccccc12', 'Nc1ccc(O)c(F)c1']; ['Nc1ccc(O)c(F)c1', 'O=c1[nH]cnc2ccccc12']; [0.9995579719543457, 0.9970216751098633] +Fc1ccc(Nc2ncnc3ccccc23)cc1Cl; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl']; ['Nc1ccc(F)c(Cl)c1', 'Nc1ccc(F)c(Cl)c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999926090240479, 0.9995913505554199, 0.9988927841186523, 0.9961315393447876, 0.9895145893096924] +Cc1nc2c(F)cc(Nc3ncnc4ccccc34)cc2[nH]1; [None]; [None]; [0] +Clc1cccc(OCNc2ncnc3ccccc23)c1; [None]; [None]; [0] +Clc1ccc(CCNc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'NCCc1ccc(Cl)cc1']; ['NCCc1ccc(Cl)cc1', 'O=c1[nH]cnc2ccccc12']; [0.9999479055404663, 0.9995690584182739] +OC[C@@H](Nc1ncnc2ccccc12)c1ccccc1; ['Clc1ncnc2ccccc12', 'N[C@H](CO)c1ccccc1', 'Brc1ncnc2ccccc12', 'N[C@H](CO)c1ccccc1']; ['N[C@H](CO)c1ccccc1', 'O=c1[nH]cnc2ccccc12', 'N[C@H](CO)c1ccccc1', 'Oc1ncnc2ccccc12']; [0.9999464750289917, 0.9998466372489929, 0.9997861385345459, 0.9906666278839111] +Nc1cc(Nc2ncnc3ccccc23)ccn1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1ccnc(N)c1']; ['Nc1ccnc(N)c1', 'Nc1ccnc(N)c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999800324440002, 0.9999446868896484, 0.9987479448318481, 0.9818084239959717, 0.981706976890564, 0.9659907817840576, 0.9496973752975464] +Clc1ccccc1OCNc1ncnc2ccccc12; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Cc1ccc2[nH]ncc2c1N', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1N']; ['Cc1ccc2[nH]ncc2c1N', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999993443489075, 0.9999963045120239, 0.9998712539672852, 0.9997164011001587] +Oc1ccc(Nc2ncnc3ccccc23)c(O)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc(O)cc1O', 'Nc1ncnc2ccccc12']; ['Nc1ccc(O)cc1O', 'Nc1ccc(O)cc1O', 'O=c1[nH]cnc2ccccc12', 'Oc1ccc(Br)c(O)c1']; [0.9995182752609253, 0.9994159936904907, 0.9932746887207031, 0.9805499315261841] +Oc1ccc(Cl)c(Nc2ncnc3ccccc23)c1; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1cc(O)ccc1Cl']; ['Nc1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1', 'O=c1[nH]cnc2ccccc12']; [0.9997587203979492, 0.9974926710128784, 0.9963672161102295] +Cc1ccc(CO)cc1Nc1ncnc2ccccc12; ['Brc1ncnc2ccccc12', 'Cc1ccc(CO)cc1N', 'Cc1ccc(CO)cc1N', 'Cc1ccc(CO)cc1N', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I']; ['Cc1ccc(CO)cc1N', 'Clc1ncnc2ccccc12', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995708465576172, 0.9983724355697632, 0.9949029088020325, 0.9852955341339111, 0.9851624965667725, 0.9501336216926575] +Oc1ncc(Nc2ncnc3ccccc23)cc1Cl; ['Nc1cnc(O)c(Cl)c1', 'Clc1ncnc2ccccc12', 'Nc1cnc(O)c(Cl)c1', 'Nc1ncnc2ccccc12']; ['O=c1[nH]cnc2ccccc12', 'Nc1cnc(O)c(Cl)c1', 'Oc1ncnc2ccccc12', 'Oc1ncc(Br)cc1Cl']; [0.9993131160736084, 0.9925788640975952, 0.9719828367233276, 0.9113117456436157] +Oc1ccc(-c2ccc(Nc3ncnc4ccccc34)cc2)c(O)c1; [None]; [None]; [0] +CCOc1cccc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'CCOc1cccc(N)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(N)c1']; ['CCOc1cccc(N)c1', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999024868011475, 0.9991637468338013, 0.9794294834136963, 0.8340651392936707] +Fc1ccc(-c2nc[nH]c2Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +NC(=O)c1cc(Nc2ncnc3ccccc23)c[nH]1; ['NC(=O)c1cc(Br)c[nH]1']; ['Nc1ncnc2ccccc12']; [0.9044349789619446] +Cc1nc2ccc(Nc3ncnc4ccccc34)cc2[nH]1; ['Brc1ncnc2ccccc12', 'Cc1nc2cc(N)ccc2[nH]1', 'Cc1nc2ccc(N)cc2[nH]1', 'Cc1nc2ccc(N)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; ['Cc1nc2ccc(N)cc2[nH]1', 'Clc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999868273735046, 0.9999757409095764, 0.9999529123306274, 0.9974879026412964, 0.9661270976066589] +Oc1cncc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cncc(O)c1', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1cncc(O)c1', 'Nc1cncc(O)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1cncc(Br)c1', 'Oc1cncc(Cl)c1']; [0.9999526739120483, 0.9990599155426025, 0.9966650009155273, 0.9598333835601807, 0.8810908794403076] +CNc1nccc(Nc2ncnc3ccccc23)n1; ['CNc1nccc(N)n1', 'CNc1nccc(Cl)n1', 'Brc1ncnc2ccccc12', 'CNc1nccc(Br)n1']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'CNc1nccc(N)n1', 'Nc1ncnc2ccccc12']; [0.9999836087226868, 0.9999619722366333, 0.9999486207962036, 0.9997515678405762] +O=C1Cc2cc(Nc3ncnc4ccccc34)ccc2N1; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc2c(c1)CC(=O)N2', 'Nc1ccc2c(c1)CC(=O)N2', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc2c(c1)CC(=O)N2', 'Nc1ccc2c(c1)CC(=O)N2', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.9998683929443359, 0.9998118877410889, 0.9984289407730103, 0.9921748638153076, 0.9776623845100403, 0.9667845964431763, 0.9611775875091553] +CCc1cc(O)ccc1Nc1ncnc2ccccc12; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl']; ['Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9986932277679443, 0.9947850704193115] +Clc1cnccc1Nc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'Nc1ccncc1Cl', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'Clc1ccncc1Cl']; ['Nc1ccncc1Cl', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999575018882751, 0.9997740983963013, 0.9996283054351807, 0.9993311166763306, 0.9929103851318359] +Cc1cc(O)ccc1Nc1ncnc2ccccc12; ['Cc1cc(O)ccc1N', 'Cc1cc(O)ccc1N', 'Cc1cc(O)ccc1Br']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9996111392974854, 0.9981900453567505, 0.9970991015434265] +Cc1n[nH]c(Nc2ncnc3ccccc23)c1C; ['Cc1n[nH]c(N)c1C', 'Brc1ncnc2ccccc12', 'Cc1n[nH]c(N)c1C']; ['Clc1ncnc2ccccc12', 'Cc1n[nH]c(N)c1C', 'O=c1[nH]cnc2ccccc12']; [0.9999613761901855, 0.9999504089355469, 0.999443769454956] +CNc1nc(Nc2ncnc3ccccc23)ncc1F; ['CNc1nc(Cl)ncc1F', 'CNc1nc(N)ncc1F', 'CNc1nc(N)ncc1F']; ['Nc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9999375343322754, 0.9998456835746765, 0.9993884563446045] +NC(=O)Nc1ccc(Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +Oc1c(Cl)cc(Nc2ncnc3ccccc23)cc1Cl; ['Clc1ncnc2ccccc12', 'Nc1cc(Cl)c(O)c(Cl)c1', 'Nc1cc(Cl)c(O)c(Cl)c1', 'Nc1ncnc2ccccc12']; ['Nc1cc(Cl)c(O)c(Cl)c1', 'O=c1[nH]cnc2ccccc12', 'Oc1ncnc2ccccc12', 'Oc1c(Cl)cc(Br)cc1Cl']; [0.9955639839172363, 0.9910036325454712, 0.9777108430862427, 0.8390664458274841] +FC(F)c1cc(Nc2ncnc3ccccc23)[nH]n1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cc(C(F)F)n[nH]1']; ['Nc1cc(C(F)F)n[nH]1', 'Nc1cc(C(F)F)n[nH]1', 'O=c1[nH]cnc2ccccc12']; [0.9999077320098877, 0.9991689920425415, 0.9972480535507202] +c1ccc2c(Nc3ccc4c(c3)CCN4)ncnc2c1; ['Clc1ncnc2ccccc12', 'Nc1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2']; ['Nc1ccc2c(c1)CCN2', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999161958694458, 0.9990730285644531, 0.9909573197364807] +CCc1cc(O)c(F)cc1Nc1ncnc2ccccc12; [None]; [None]; [0] +O=c1[nH]c2ccc(Nc3ncnc4ccccc34)cc2[nH]1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ccc2[nH]c(=O)[nH]c2c1', 'Nc1ncnc2ccccc12']; ['Nc1ccc2[nH]c(=O)[nH]c2c1', 'Nc1ccc2[nH]c(=O)[nH]c2c1', 'O=c1[nH]cnc2ccccc12', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999890327453613, 0.9999697804450989, 0.9981496334075928, 0.994688868522644] +CNC(=O)c1cccc2cc(Nc3ncnc4ccccc34)ccc12; [None]; [None]; [0] +Fc1cc(Br)ccc1Nc1ncnc2ccccc12; ['Clc1ncnc2ccccc12', 'Brc1ncnc2ccccc12', 'Nc1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br']; ['Nc1ccc(Br)cc1F', 'Nc1ccc(Br)cc1F', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999822378158569, 0.9999668598175049, 0.9997963309288025, 0.9950665831565857] +Cc1oc(Nc2ncnc3ccccc23)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1cc(Nc2ncnc3ccccc23)nc2ccnn12; [None]; [None]; [0] +CCc1sccc1Nc1ncnc2ccccc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(Nc2ncnc3ccccc23)cc1; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; ['Nc1ccc(C(=O)NC2CC2)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999874234199524, 0.999111533164978, 0.9952595233917236] +Cc1nc2ccc(Nc3ncnc4ccccc34)cc2o1; ['Cc1nc2ccc(N)cc2o1', 'Cc1nc2ccc(N)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999966621398926, 0.9999430179595947, 0.9992198944091797] +Cc1cc(Nc2ncnc3ccccc23)cc(C)c1O; ['Brc1ncnc2ccccc12', 'Cc1cc(N)cc(C)c1O', 'Cc1cc(N)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; ['Cc1cc(N)cc(C)c1O', 'Clc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9995652437210083, 0.998382568359375, 0.988677442073822, 0.975558340549469, 0.845396101474762] +Oc1c(F)cc(Nc2ncnc3ccccc23)cc1F; ['Clc1ncnc2ccccc12', 'Nc1cc(F)c(O)c(F)c1', 'Nc1cc(F)c(O)c(F)c1']; ['Nc1cc(F)c(O)c(F)c1', 'Oc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12']; [0.9989297389984131, 0.9974634647369385, 0.9937278032302856] +Cc1cc(Nc2ncnc3ccccc23)ccc1C(N)=O; ['Brc1ncnc2ccccc12', 'Cc1cc(N)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(N)ccc1C(N)=O', 'Cc1cc(N)ccc1C(N)=O']; ['Cc1cc(N)ccc1C(N)=O', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9999363422393799, 0.9999099373817444, 0.9962482452392578, 0.9886287450790405, 0.9786611795425415] +Oc1cc(Br)cc(Nc2ncnc3ccccc23)c1; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1cc(O)cc(Br)c1']; ['Nc1cc(O)cc(Br)c1', 'Nc1cc(O)cc(Br)c1', 'O=c1[nH]cnc2ccccc12']; [0.9997456669807434, 0.9994909763336182, 0.9963208436965942] +CSc1cccc(Nc2ncnc3ccccc23)c1; ['CSc1cccc(N)c1', 'Brc1ncnc2ccccc12', 'CSc1cccc(N)c1', 'CSc1cccc(N)c1', 'CSc1cccc(Br)c1']; ['Clc1ncnc2ccccc12', 'CSc1cccc(N)c1', 'O=c1[nH]cnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998331069946289, 0.9996093511581421, 0.9876465797424316, 0.8869014978408813, 0.7754696011543274] +Cc1onc(-c2ccccc2)c1Nc1ncnc2ccccc12; ['Cc1onc(-c2ccccc2)c1N', 'Cc1onc(-c2ccccc2)c1I']; ['Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12']; [0.9998527765274048, 0.9960012435913086] +CCOc1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['CCOc1ccccc1C=O', 'CCOc1ccccc1C(=O)O', 'CCOc1ccccc1C=O']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999905228614807, 0.9999773502349854, 0.9994008541107178] +O=c1[nH][nH]c2cc(Nc3ncnc4ccccc34)ccc12; ['Brc1ncnc2ccccc12', 'Clc1ncnc2ccccc12', 'Nc1ncnc2ccccc12', 'Nc1ccc2c(=O)[nH][nH]c2c1', 'Nc1ccc2c(=O)[nH][nH]c2c1', 'Nc1ncnc2ccccc12']; ['Nc1ccc2c(=O)[nH][nH]c2c1', 'Nc1ccc2c(=O)[nH][nH]c2c1', 'O=c1[nH][nH]c2cc(Br)ccc12', 'Nc1ncnc2ccccc12', 'O=c1[nH]cnc2ccccc12', 'O=c1[nH][nH]c2cc(F)ccc12']; [0.9999991655349731, 0.9999929666519165, 0.9994160532951355, 0.9993665814399719, 0.9992976188659668, 0.9811586737632751] +Fc1ccc2n[nH]c(Nc3ncnc4ccccc34)c2c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['CNC(=O)c1ccccc1B(O)O']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9905884861946106] +CC(C)S(=O)(=O)c1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9906119108200073] +Fc1cc(F)cc(Cc2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'N#CCc1cc(F)cc(F)c1', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; ['O=CCc1cc(F)cc(F)c1', 'O=CCc1cc(F)cc(F)c1', 'Nc1cc(Br)cnc1N', 'O=C(Cl)Cc1cc(F)cc(F)c1', 'O=C(O)Cc1cc(F)cc(F)c1']; [0.9999975562095642, 0.9999947547912598, 0.9999932646751404, 0.9999924898147583, 0.9999881386756897] +Brc1cnc2[nH]c(-c3ccnc4ccccc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=C(O)c1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9998896718025208, 0.9996776580810547, 0.9966919422149658, 0.9107514023780823] +FC(F)(F)Oc1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; ['O=Cc1ccccc1OC(F)(F)F', 'O=C(O)c1ccccc1OC(F)(F)F']; [0.9999982714653015, 0.9999947547912598] +Fc1ccc(-c2ncoc2Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2Nc2ncnc3ccccc23)cc1; [None]; [None]; [0] +CCn1cc(-c2nc3cc(Br)cnc3[nH]2)cn1; ['CCn1cc(C=O)cn1', 'CCn1cc(C(=O)O)cn1', 'CCn1cc(C=O)cn1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999785423278809, 0.999977171421051, 0.9994794726371765] +FC(F)(F)c1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1']; [0.999991238117218, 0.9999880790710449, 0.9999822974205017, 0.9997026920318604, 0.9995253086090088] +CP(C)(=O)c1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['CP(C)(=O)c1ccccc1C(=O)O']; ['Nc1cc(Br)cnc1N']; [0.9998263716697693] +COC(C)(C)CCc1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1C(=O)O', 'Clc1nc2cc(Br)cnc2[nH]1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'NC(=O)c1ccccc1B(O)O']; [0.9991627335548401, 0.998956561088562, 0.9251533150672913] +Brc1cnc2[nH]c(-c3cnn(Cc4ccccc4)c3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=C(O)c1cnn(Cc2ccccc2)c1', 'O=Cc1cnn(Cc2ccccc2)c1', 'O=Cc1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999964833259583, 0.9999944567680359, 0.9996212720870972, 0.9973125457763672] +Cc1nnc(-c2ccccc2-c2nc3cc(Br)cnc3[nH]2)[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1)c1ccccc1; ['Nc1cc(Br)cnc1N', 'Brc1cnc2[nH]c(-c3ccccc3)nc2c1']; ['O=C(O)c1cccc(NC(=O)c2ccccc2)c1', 'O=c1onc(-c2ccccc2)o1']; [0.9997328519821167, 0.9993032813072205] +Brc1cnc2[nH]c(-c3cnc(-c4ccccc4)[nH]3)nc2c1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl']; [0.9999334812164307, 0.999886691570282, 0.9416996240615845] +Cn1cnc2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2c1=O; [None]; [None]; [0] +Cc1ccc(-c2nc3cc(Br)cnc3[nH]2)c(Br)c1; ['Cc1ccc(C(=O)O)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999425411224365, 0.9998565912246704, 0.9873193502426147] +O=C([O-])c1ccccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +OCCn1cc(-c2nc3cc(Br)cnc3[nH]2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc3cc(Br)cnc3[nH]2)cs1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc3cc(Br)cnc3[nH]2)s1; ['Cc1nc(C)c(C=O)s1']; ['Nc1cc(Br)cnc1N']; [0.9873158931732178] +Brc1cnc2[nH]c(-c3cnc4ccccn34)nc2c1; ['Nc1cc(Br)cnc1N']; ['O=Cc1cnc2ccccn12']; [0.9996811151504517] +O=c1c2c(F)cccc2cnn1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1nc2cc(Br)cnc2[nH]1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl']; [0.999950647354126, 0.9989470839500427, 0.9886691570281982, 0.9461431503295898] +COc1cnc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +Brc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1cccc(Br)c1', 'O=C(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'O=Cc1cccc(Br)c1']; [0.9999818801879883, 0.9998591542243958, 0.9998193383216858, 0.9994155168533325] +Cc1ccc(Cl)c(-c2nc3cc(Br)cnc3[nH]2)c1; ['Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(C(=O)O)c1', 'Cc1ccc(Cl)c(C=O)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9998751878738403, 0.9995616674423218, 0.954460620880127] +Cc1c(-c2nc3cc(Br)cnc3[nH]2)sc(=O)n1C; [None]; [None]; [0] +Brc1cnc2[nH]c(NCc3cccnc3)nc2c1; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['S=C=NCc1cccnc1', 'NCc1cccnc1']; [0.9990708231925964, 0.9986533522605896] +CNc1nc(C)c(-c2nc3cc(Br)cnc3[nH]2)s1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cnn4ncccc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1cnn2ncccc12', 'O=C(O)c1cnn2ncccc12', 'O=Cc1cnn2ncccc12']; [0.9999711513519287, 0.9997953176498413, 0.9976320266723633] +Brc1cnc2[nH]c(-c3cnc4cccnn34)nc2c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Cc1nc(N)sc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3ccc4ccccc4c3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc2ccccc2c1', 'O=C(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'O=Cc1ccc2ccccc2c1']; [0.9999561905860901, 0.9997811317443848, 0.999046802520752, 0.9988260269165039] +O=C(Nc1nc2cc(Br)cnc2[nH]1)c1cccs1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NC(=O)c1cccs1']; [0.9944794774055481] +CC(C)C(=O)COc1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cccc(Cn4cncn4)c3)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(NCCc3c[nH]cn3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NCCc1c[nH]cn1']; [0.8876898288726807] +Brc1cnc2[nH]c(Nc3cccnc3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N']; ['Nc1cccnc1', 'S=C=Nc1cccnc1']; [0.9924306869506836, 0.7879620790481567] +Brc1cnc2[nH]c(-c3cncc4ccccc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1cncc2ccccc12', 'O=C(O)c1cncc2ccccc12', 'O=Cc1cncc2ccccc12']; [0.9998540878295898, 0.9992345571517944, 0.990673303604126] +Nc1nccc(-c2nc3cc(Br)cnc3[nH]2)n1; [None]; [None]; [0] +Brc1cnc2[nH]c(NCCc3ccccc3)nc2c1; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['S=C=NCCc1ccccc1', 'NCCc1ccccc1']; [0.9749329090118408, 0.9052406549453735] +FC(F)(F)c1n[nH]cc1-c1nc2cc(Br)cnc2[nH]1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F', 'Clc1nc2cc(Br)cnc2[nH]1', 'O=Cc1c[nH]nc1C(F)(F)F']; [0.999996542930603, 0.9999951124191284, 0.999929666519165, 0.9995554685592651] +NC(=O)c1c(F)cccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Cn1ncc2cc(-c3nc4cc(Br)cnc4[nH]3)ccc21; ['Cn1ncc2cc(C=O)ccc21', 'Cn1ncc2cc(C(=O)O)ccc21', 'Cn1ncc2cc(C=O)ccc21']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999764561653137, 0.9998064041137695, 0.998986005783081] +Cn1cc(-c2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2)cn1; ['Cn1cc(-c2ccc(C(=O)O)cc2)cn1']; ['Nc1cc(Br)cnc1N']; [0.999951958656311] +Brc1cnc2[nH]c(-n3cnc4ccccc43)nc2c1; [None]; [None]; [0] +Clc1ccc(CNc2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['S=C=NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9994910359382629, 0.9914355874061584] +O=C([O-])Cc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +Oc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=Cc1cccc(O)c1', 'O=C(O)c1cccc(O)c1', 'O=Cc1cccc(O)c1', 'OB(O)c1cccc(O)c1']; [0.9998306035995483, 0.9970936179161072, 0.9750897288322449, 0.9677547216415405] +Nc1[nH]nc2cc(-c3nc4cc(Br)cnc4[nH]3)ccc12; [None]; [None]; [0] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +OCc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1cccc(CO)c1', 'O=C(O)c1cccc(CO)c1', 'OCc1cccc(B(O)O)c1', 'O=Cc1cccc(CO)c1']; [0.9995570182800293, 0.9941048622131348, 0.9921020269393921, 0.9692112803459167] +Brc1cnc2[nH]c(Nc3ccncc3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1ccncc1']; [0.9990035891532898] +Brc1cnc2[nH]c(-c3ccc(-c4cn[nH]c4)cc3)nc2c1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['Clc1nc2cc(Br)cnc2[nH]1', 'O=C(O)c1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1']; [0.9999850392341614, 0.9999823570251465, 0.9999291896820068, 0.9992887377738953, 0.9986066818237305, 0.9868664741516113] +Fc1ccccc1CNc1nc2cc(Br)cnc2[nH]1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NCc1ccccc1F']; [0.9996248483657837] +CC(C)c1oncc1-c1nc2cc(Br)cnc2[nH]1; ['CC(C)c1oncc1C(=O)O']; ['Nc1cc(Br)cnc1N']; [0.9995616674423218] +CN1c2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2nc3cc(Br)cnc3[nH]2)n1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3csc4ncncc34)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(CCc3c[nH]nn3)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cc4ccccc4[nH]3)nc2c1; ['Nc1cc(Br)cnc1N']; ['O=Cc1cc2ccccc2[nH]1']; [0.9998793601989746] +CC(C)n1cc(-c2nc3cc(Br)cnc3[nH]2)nn1; [None]; [None]; [0] +Fc1ccc(-c2nc3cc(Br)cnc3[nH]2)c(C(F)(F)F)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F']; [0.9999986290931702, 0.9999979734420776, 0.9997467994689941] +Nc1nc(-c2nc3cc(Br)cnc3[nH]2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1nc2cc(Br)cnc2[nH]1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N']; ['Nc1ncncc1C(=O)O', 'Nc1ncncc1C=O', 'Nc1ncncc1C=O']; [0.9999768733978271, 0.9998810291290283, 0.9998587369918823] +CCC(=O)Nc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2s1; [None]; [None]; [0] +N#CCCc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2nc3cc(Br)cnc3[nH]2)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9959384799003601] +NC(=O)CCCc1nc2cc(Br)cnc2[nH]1; ['NC(=O)CCCC(=O)O']; ['Nc1cc(Br)cnc1N']; [0.9996851682662964] +Brc1cnc2[nH]c(Oc3ccccn3)nc2c1; ['Fc1ccccn1', 'Brc1ccccn1']; ['Oc1nc2cc(Br)cnc2[nH]1', 'Oc1nc2cc(Br)cnc2[nH]1']; [0.9993641376495361, 0.9991613626480103] +O=C(Nc1nc2cc(Br)cnc2[nH]1)c1c(Cl)cccc1Cl; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NC(=O)c1c(Cl)cccc1Cl']; [0.9995067119598389] +CC(=O)Nc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)Nc1cccc(C=O)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; [0.9998831748962402, 0.9985901117324829] +COc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1Cl; ['COc1ccc(C(=O)O)cc1Cl', 'COc1ccc(C=O)cc1Cl', 'COc1ccc(C=O)cc1Cl']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999929070472717, 0.999989926815033, 0.9990688562393188] +CSc1nc(-c2nc3cc(Br)cnc3[nH]2)c[nH]1; [None]; [None]; [0] +CC(C)(COc1nc2cc(Br)cnc2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2nc3cc(Br)cnc3[nH]2)c2ccccc21; ['Cn1cc(C=O)c2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21', 'Cn1cc(C=O)c2ccccc21']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999979138374329, 0.9999786615371704, 0.999930202960968] +Brc1cnc2[nH]c(-c3cnn4ccccc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1', 'Brc1cnc2[nH]cnc2c1']; ['O=C(O)c1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12']; [0.9999951720237732, 0.9999902844429016, 0.9992440342903137, 0.996928334236145, 0.9708616733551025] +COc1cc(CCc2nc3cc(Br)cnc3[nH]2)cc(OC)c1; ['COc1cc(CCC=O)cc(OC)c1', 'COc1cc(CCC(=O)O)cc(OC)c1', 'CCOC(=O)CCc1cc(OC)cc(OC)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; [0.999672532081604, 0.999632716178894, 0.9994807243347168] +CCCn1cc(-c2nc3cc(Br)cnc3[nH]2)cn1; ['CCCn1cc(C(=O)O)cn1', 'CCCn1cc(C=O)cn1', 'CCCn1cc(C=O)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999995231628418, 0.9999990463256836, 0.9999600648880005, 0.9997870922088623] +O=c1cc(-c2nc3cc(Br)cnc3[nH]2)cc[nH]1; ['Nc1cc(Br)cnc1N']; ['O=C(O)c1cc[nH]c(=O)c1']; [0.9974215030670166] +CC(C)(O)CC(=O)NCCc1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3nc4cc(Br)cnc4[nH]3)c21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1nc2cc(Br)cnc2[nH]1; ['Brc1cnc2[nH]c(-c3ccccc3)nc2c1']; ['CCN']; [0.7724350094795227] +C[S@](=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CS(=O)c1ccc(C(=O)O)cc1']; ['Nc1cc(Br)cnc1N']; [0.9996521472930908] +CCN(CC)c1nc2cc(Br)cnc2[nH]1; ['CCNCC']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9027231335639954] +C[C@@H](Oc1nc2cc(Br)cnc2[nH]1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.983037531375885] +[NH3+]Cc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999624490737915, 0.999779462814331, 0.9979748725891113] +CC(C)(N)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3nc4cc(Br)cnc4[nH]3)cc12; ['Nc1cc(Br)cnc1N']; ['O=Cc1cc2c(=O)[nH]ccc2o1']; [0.9998182058334351] +CC(C)Oc1cncc(-c2nc3cc(Br)cnc3[nH]2)c1; ['CC(C)Oc1cncc(C=O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(C=O)c1', 'CC(C)Oc1cncc(C(=O)O)c1']; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N']; [0.9990069270133972, 0.9988642930984497, 0.9900575876235962, 0.9858194589614868] +COc1ccncc1Nc1nc2cc(Br)cnc2[nH]1; ['COc1ccncc1N']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9944766759872437] +Brc1cnc2[nH]c(Nc3cnc4ccccc4c3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1cnc2ccccc2c1']; [0.9915937781333923] +O=c1[nH]cc(Br)c2sc(-c3nc4cc(Br)cnc4[nH]3)cc12; [None]; [None]; [0] +Brc1cnc2[nH]c(Nc3cnccc3-c3ccccc3)nc2c1; [None]; [None]; [0] +CC1(c2nc3cc(Br)cnc3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3c[nH]c4cnccc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1c[nH]c2cnccc12', 'O=C(O)c1c[nH]c2cnccc12', 'O=Cc1c[nH]c2cnccc12']; [0.9999805688858032, 0.9996397495269775, 0.9968612790107727] +Brc1cnc2[nH]c(-c3cnc4[nH]ccc4c3)nc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['Clc1nc2cc(Br)cnc2[nH]1', 'OB(O)c1cnc2[nH]ccc2c1', 'O=Cc1cnc2[nH]ccc2c1', 'O=Cc1cnc2[nH]ccc2c1', 'O=C(O)c1cnc2[nH]ccc2c1', 'O=Cc1cnc2[nH]ccc2c1']; [0.9999286532402039, 0.9997881650924683, 0.9995416402816772, 0.9995272755622864, 0.9987149238586426, 0.9964474439620972] +COc1cccc(F)c1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3ccc(N4CCOCC4)cc3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc(N2CCOCC2)cc1', 'O=C(O)c1ccc(N2CCOCC2)cc1', 'O=Cc1ccc(N2CCOCC2)cc1']; [0.999984860420227, 0.9999809861183167, 0.999616265296936] +CS(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CS(=O)(=O)c1ccc(C(=O)O)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999942779541016, 0.9999558925628662, 0.9997649788856506] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(C(=O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]c(-c3ccccc3)nc2c1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'CC(C)(C)N']; [0.9999669790267944, 0.9997080564498901, 0.9843069314956665, 0.98429274559021] +CN(c1nc2cc(Br)cnc2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2nc3cc(Br)cnc3[nH]2)n1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['OCc1cc[nH]n1']; [0.9733244180679321] +Cc1cc(-c2nc3cc(Br)cnc3[nH]2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999838471412659, 0.9997729659080505, 0.9971675872802734, 0.9961962699890137, 0.9928832650184631] +C[C@H](Nc1nc2cc(Br)cnc2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1nc2cc(Br)cnc2[nH]1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=C(O)c1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [1.0, 0.9999979734420776, 0.9998514652252197, 0.9988627433776855] +Brc1cnc2[nH]c(-n3ncc4ccccc43)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['c1ccc2[nH]ncc2c1']; [0.9941821098327637] +C[C@H](Nc1nc2cc(Br)cnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +COc1ccc(-c2nc3cc(Br)cnc3[nH]2)c(OC)c1; ['COc1ccc(C(=O)O)c(OC)c1', 'COc1ccc(C=O)c(OC)c1', 'COc1ccc(C=O)c(OC)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999077320098877, 0.9998548030853271, 0.9930118918418884] +O=C(c1ccccc1)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc(C(=O)c2ccccc2)cc1', 'O=C(O)c1ccc(C(=O)c2ccccc2)cc1', 'O=Cc1ccc(C(=O)c2ccccc2)cc1']; [0.9993613362312317, 0.999221682548523, 0.9960089921951294] +C[C@@H](Nc1nc2cc(Br)cnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3ccc(-n4cncn4)cc3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1', 'O=C(O)c1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1']; [0.9999988079071045, 0.9999979734420776, 0.9999968409538269, 0.9998773336410522] +CC(=O)N[C@@H]1CC[C@@H](c2nc3cc(Br)cnc3[nH]2)CC1; [None]; [None]; [0] +CSc1nc(C)c(-c2nc3cc(Br)cnc3[nH]2)[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3nc4cc(Br)cnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +OCCc1cn(-c2nc3cc(Br)cnc3[nH]2)cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +O=C(CCc1nc2cc(Br)cnc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3nncn3C3CC3)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(Cc3nnc4ccc(-c5ccccc5)nn34)nc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2nc3cc(Br)cnc3[nH]2)n1; [None]; [None]; [0] +O=S(=O)(Cc1nc2cc(Br)cnc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2nc3cc(Br)cnc3[nH]2)nc(N)n1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cn(Cc4ccccc4)nn3)nc2c1; [None]; [None]; [0] +CCCCc1cc(-c2nc3cc(Br)cnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)s1; [None]; [None]; [0] +Nc1nnc(-c2nc3cc(Br)cnc3[nH]2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc3cc(Br)cnc3[nH]2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cccc4ccsc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=Cc1cccc2ccsc12', 'O=C(O)c1cccc2ccsc12', 'O=Cc1cccc2ccsc12', 'O=C(Cl)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9990948438644409, 0.9948390126228333, 0.9867357015609741, 0.9810969829559326, 0.9628888368606567] +C[C@@H2]NC(=O)N1CCC(c2nc3cc(Br)cnc3[nH]2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2nc3cc(Br)cnc3[nH]2)c(F)c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cccc4nnsc34)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3nc4ccccc4s3)nc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc4cc(Br)cnc4[nH]3)c2)cc1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3c[nH]c4cccnc34)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1c[nH]c2cccnc12', 'O=C(O)c1c[nH]c2cccnc12', 'O=Cc1c[nH]c2cccnc12']; [0.9999790787696838, 0.9998781681060791, 0.9979466795921326] +COc1ccc(C#N)cc1-c1nc2cc(Br)cnc2[nH]1; ['COc1ccc(C#N)cc1C=O', 'COc1ccc(C#N)cc1C(=O)O', 'COc1ccc(C#N)cc1C=O']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999786615371704, 0.999941349029541, 0.9966485500335693] +CC1(C)Oc2ccc(-c3nc4cc(Br)cnc4[nH]3)nc2NC1=O; [None]; [None]; [0] +Nc1nc(-c2nc3cc(Br)cnc3[nH]2)nc2ccccc12; [None]; [None]; [0] +Nc1cncc(-c2nc3cc(Br)cnc3[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nc3cc(Br)cnc3[nH]2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc3cc(Br)cnc3[nH]2)c1; ['COc1ccc(OC)c(C(=O)O)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(C=O)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999872446060181, 0.9999608993530273, 0.96650230884552] +Brc1cnc2[nH]c(-c3ncc4ccccc4n3)nc2c1; [None]; [None]; [0] +OCCn1cnc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +Brc1cnc2[nH]c(N3CCC(c4nc5ccccc5[nH]4)CC3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9989147186279297] +Brc1cnc2[nH]c(-c3ncc4cc[nH]c4n3)nc2c1; [None]; [None]; [0] +COc1ccc(Oc2nc3cc(Br)cnc3[nH]2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc3cc(Br)cnc3[nH]2)CC1; [None]; [None]; [0] +CCOc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CCOc1ccc(C(=O)O)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999765157699585, 0.9999615550041199, 0.997201681137085] +COc1ncccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +Brc1cnc2[nH]c(N3CC=C(c4c[nH]c5ccccc45)CC3)nc2c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9998713731765747] +CN(C)c1cc(-c2nc3cc(Br)cnc3[nH]2)cnn1; [None]; [None]; [0] +COc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['COc1ccc(C(=O)O)cc1', 'COc1ccc(C(O)S(=O)(=O)[O-])cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999648928642273, 0.9997820258140564, 0.9997037649154663, 0.9973720908164978] +CS(=O)(=O)c1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; ['CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(C(=O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999988079071045, 0.9999985694885254, 0.9999895095825195, 0.998624324798584] +N#Cc1ccc(O)c(-c2nc3cc(Br)cnc3[nH]2)c1; ['N#Cc1ccc(O)c(C=O)c1', 'N#Cc1ccc(O)c(C(=O)O)c1', 'N#Cc1ccc(O)c(C=O)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9997071027755737, 0.9897536635398865, 0.9744670391082764] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)cc(OC)c1OC; ['COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.999958872795105, 0.9998050928115845, 0.9948588609695435, 0.9916552305221558] +O=C(Nc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1)C1CC1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Cc1cc(Nc2nc3cc(Br)cnc3[nH]2)sn1; ['Cc1cc(N)sn1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9937370419502258] +Cc1ccc2ncn(-c3nc4cc(Br)cnc4[nH]3)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(C(=O)O)cc1', 'NC(=O)c1ccc(C=O)cc1', None, 'Clc1nc2cc(Br)cnc2[nH]1', 'NC(=O)c1ccc(C=O)cc1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', None, 'NC(=O)c1ccc(B(O)O)cc1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999827146530151, 0.9999312162399292, 0.999403715133667, 0, 0.9981764554977417, 0.9921436905860901] +Brc1cnc2[nH]c(Nc3ncccn3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1ncccn1']; [0.9995516538619995] +O=C(Nc1ccccc1)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; ['O=C(O)c1ccc(C(=O)Nc2ccccc2)cc1', 'O=Cc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9998562932014465, 0.9996938705444336] +O=C([O-])c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc(OCCO)cc1', 'O=C(O)c1ccc(OCCO)cc1', 'O=Cc1ccc(OCCO)cc1']; [0.9999366998672485, 0.9998682737350464, 0.9810547232627869] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2)CC1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3nccc4ccccc34)nc2c1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'O=C(O)c1ccc(C(=O)N2CCOCC2)cc1', 'O=Cc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9999966621398926, 0.9999823570251465, 0.999947190284729, 0.9998220205307007] +N#Cc1cccc(Cn2cc(-c3nc4cc(Br)cnc4[nH]3)cn2)c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(Nc3ccncn3)nc2c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1ccncn1']; [0.9904406666755676] +FC(F)(F)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1']; [0.9999972581863403, 0.9999664425849915, 0.9975311160087585] +CC(=O)NCc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cccc(C4CCNCC4)c3)nc2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999531507492065, 0.9998080730438232, 0.9986695051193237] +O=C(c1ccc(-c2nc3cc(Br)cnc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nc3cc(Br)cnc3[nH]2)CC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CCNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]c(-c3ccccc3)nc2c1']; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'CCN']; [0.999660849571228, 0.9777976274490356, 0.9423130750656128] +Brc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1']; [0.9999349117279053, 0.9996935725212097, 0.9952982664108276] +O=S1(=O)Cc2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2C1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]cnc2c1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; [0.999990701675415, 0.9974169731140137, 0.9917521476745605, 0.974097490310669] +CC(=O)N1CCCN(c2cccc(-c3nc4cc(Br)cnc4[nH]3)c2)CC1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(C(=O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999987483024597, 0.9999284148216248, 0.999418318271637] +Brc1cnc2[nH]c(-c3ccn4nccc4n3)nc2c1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nc3cc(Br)cnc3[nH]2)C1; [None]; [None]; [0] +CCCOc1ccc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc2cc(Br)cnc2[nH]1; ['COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1C=O']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999661445617676, 0.9999488592147827, 0.9561628103256226] +CC(C)c1cc(-c2nc3cc(Br)cnc3[nH]2)nc(N)n1; [None]; [None]; [0] +COc1cc(OC)c(-c2nc3cc(Br)cnc3[nH]2)cc1Cl; ['COc1cc(OC)c(C=O)cc1Cl', 'COc1cc(OC)c(C=O)cc1Cl']; ['Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999352097511292, 0.9929486513137817] +Cc1c(C(=O)[O-])cccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999849796295166, 0.9988471865653992] +Brc1cnc2[nH]c(-c3ccccc3-n3cccn3)nc2c1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'O=C(O)c1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999668598175049, 0.9999550580978394, 0.9998964071273804, 0.9942203760147095, 0.9866698980331421] +CN(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1Cl; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cccc4c3OCO4)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=C(O)c1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9997844696044922, 0.9995571374893188, 0.9862163662910461] +Brc1cnc2[nH]c(-c3c[nH]c4ccccc34)nc2c1; [None]; [None]; [0] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)ccc1O; ['COc1cc(C=O)ccc1O', 'COc1cc(C(=O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(C=O)ccc1O']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9981117248535156, 0.9965961575508118, 0.9851317405700684, 0.8220693469047546] +Brc1cnc2[nH]c(-c3scc4c3OCCO4)nc2c1; ['Nc1cc(Br)cnc1N']; ['O=Cc1scc2c1OCCO2']; [0.9999626874923706] +Brc1cnc2[nH]c(-c3ccc4c(c3)CCO4)nc2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nc4cc(Br)cnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cnc4ccccc4c3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N']; ['O=Cc1cnc2ccccc2c1', 'O=Cc1cnc2ccccc2c1', 'O=C(O)c1cnc2ccccc2c1']; [0.9997568130493164, 0.9963573217391968, 0.9915440082550049] +COc1cccc(C(=O)Nc2nc3cc(Br)cnc3[nH]2)c1; ['COc1cccc(C(N)=O)c1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9994145035743713] +Clc1cccc(-n2ccc(-c3nc4cc(Br)cnc4[nH]3)n2)c1; [None]; [None]; [0] +CC1(COc2nc3cc(Br)cnc3[nH]2)COC1; ['CC1(CO)COC1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9870805740356445] +Brc1cnc2[nH]c(-c3cc4ccccc4s3)nc2c1; ['Nc1cc(Br)cnc1N']; ['O=Cc1cc2ccccc2s1']; [0.9997074604034424] +CSc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CSc1ccc(C(=O)O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999380111694336, 0.9999090433120728, 0.9979122877120972, 0.9803072214126587] +CN(C)C(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CN(C)C(=O)c1ccc(C(=O)O)cc1', 'CN(C)C(=O)c1ccc(C=O)cc1', 'CN(C)C(=O)c1ccc(C=O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999817609786987, 0.9999501705169678, 0.9994679689407349, 0.9994641542434692] +CC(C)(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cn1; ['CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(C(=O)O)cn1', 'CC(C)(C)c1ccc(C=O)cn1']; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999451637268066, 0.9995906352996826, 0.9995403289794922, 0.9993055462837219] +Fc1ccc(-c2nc3cc(Br)cnc3[nH]2)c(Cl)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc(F)cc1Cl', 'O=C(O)c1ccc(F)cc1Cl', 'O=Cc1ccc(F)cc1Cl']; [0.9999985694885254, 0.9999977350234985, 0.9989739656448364] +Brc1cnc2[nH]c(-c3cc(-c4ccccc4)[nH]n3)nc2c1; [None]; [None]; [0] +CCc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CCc1ccc(C(=O)O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(C=O)cc1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999518990516663, 0.9999009370803833, 0.9970913529396057] +Clc1ccc(-c2nc3cc(Br)cnc3[nH]2)c(Cl)c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; ['O=Cc1ccc(Cl)cc1Cl', 'O=C(O)c1ccc(Cl)cc1Cl']; [0.9999512434005737, 0.9999405145645142] +COc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1OC; ['COc1ccc(C=O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(C(=O)O)cc1OC', 'COc1ccc(C=O)cc1OC']; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9998164176940918, 0.9988572001457214, 0.9983036518096924, 0.9927544593811035] +O=C1CCc2cc(-c3nc4cc(Br)cnc4[nH]3)ccc2N1; ['Nc1cc(Br)cnc1N']; ['O=C1CCc2cc(C(=O)O)ccc2N1']; [0.999913215637207] +COc1ccc(CNc2nc3cc(Br)cnc3[nH]2)cc1; ['COc1ccc(CN=C=S)cc1', 'COc1ccc(CN)cc1']; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9992263317108154, 0.9987632632255554] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2)CC1; [None]; [None]; [0] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9998096227645874] +Brc1cnc2[nH]c(-c3cc4ccccn4n3)nc2c1; ['Nc1cc(Br)cnc1N']; ['O=Cc1cc2ccccn2n1']; [0.9980869293212891] +O=C(C1CC1)N1CC(Nc2nc3cc(Br)cnc3[nH]2)C1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc4cc(Br)cnc4[nH]3)c2c1; ['COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1']; ['Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999144077301025, 0.996909499168396] +COc1cc(F)c(-c2nc3cc(Br)cnc3[nH]2)cc1OC; ['COc1cc(F)c(C(=O)O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999954700469971, 0.9999945163726807, 0.9998418092727661] +Brc1cnc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)ccc1Cl; ['COc1cc(C=O)ccc1Cl', 'COc1cc(C(=O)O)ccc1Cl', 'COc1cc(C=O)ccc1Cl']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999496340751648, 0.9997618794441223, 0.9814099073410034] +CC1(C)Cc2cc(-c3nc4cc(Br)cnc4[nH]3)ccc2O1; ['CC1(C)Cc2cc(C=O)ccc2O1']; ['Nc1cc(Br)cnc1N']; [0.9999815225601196] +Cc1nc(Nc2nc3cc(Br)cnc3[nH]2)sc1C; ['Cc1nc(N)sc1C']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.999744713306427] +Brc1cnc2[nH]c(-c3ncc4cccn4n3)nc2c1; [None]; [None]; [0] +Cc1cc(-c2nc3cc(Br)cnc3[nH]2)nc(N)n1; [None]; [None]; [0] +Oc1ccc2cccc(-c3nc4cc(Br)cnc4[nH]3)c2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12']; [0.9998420476913452, 0.9997612237930298, 0.9771209359169006] +Cn1cc(-c2nc3cc(Br)cnc3[nH]2)c(C(F)(F)F)n1; ['Cn1cc(C=O)c(C(F)(F)F)n1', 'Clc1nc2cc(Br)cnc2[nH]1', 'Cn1cc(C(=O)O)c(C(F)(F)F)n1', 'Cn1cc(C=O)c(C(F)(F)F)n1', 'Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1cc(Br)cnc1N', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9999974966049194, 0.999994158744812, 0.9999890327453613, 0.9999722838401794, 0.99968421459198] +Cc1cc(Nc2nc3cc(Br)cnc3[nH]2)nn1C; ['Cc1cc(N)nn1C']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9993510246276855] +CNC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(C=O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; [0.9999905824661255, 0.9976786375045776, 0.9948911666870117] +CCNC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +O=C(Nc1nc2cc(Br)cnc2[nH]1)c1ccco1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NC(=O)c1ccco1']; [0.9974798560142517] +COc1cc(-c2nc3cc(Br)cnc3[nH]2)c(OC)cc1Br; ['COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999160170555115, 0.9998778104782104, 0.9981542825698853, 0.9978176355361938] +CCNC(=O)N1CCC(c2nc3cc(Br)cnc3[nH]2)CC1; [None]; [None]; [0] +Cc1csc2c(-c3nc4cc(Br)cnc4[nH]3)ncnc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3cc(Br)cnc3[nH]2)cc1; ['NC(=O)c1ccc(CC(=O)O)cc1']; ['Nc1cc(Br)cnc1N']; [0.9989412426948547] +CO[C@@H]1CC[C@@H](c2nc3cc(Br)cnc3[nH]2)CC1; ['CO[C@H]1CC[C@H](C(=O)O)CC1']; ['Nc1cc(Br)cnc1N']; [0.999914824962616] +O=S(=O)(CCO)c1ccc(Cc2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N']; ['O=C(O)Cc1ccc(S(=O)(=O)CCO)cc1']; [0.9710965156555176] +Clc1cnc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3ccc4cn[nH]c4c3)nc2c1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=Cc1ccc2cn[nH]c2c1', 'O=C(O)c1ccc2cn[nH]c2c1', 'O=Cc1ccc2cn[nH]c2c1']; [0.9996440410614014, 0.9992338418960571, 0.9340915083885193] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +COc1ccc2oc(-c3nc4cc(Br)cnc4[nH]3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(C=O)cc2c1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N']; [0.9994810819625854, 0.9986280202865601] +COc1cc(OC)cc(-c2nc3cc(Br)cnc3[nH]2)c1; ['COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(C=O)cc(OC)c1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1[N+](=O)[O-]', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999333024024963, 0.9998693466186523, 0.999724268913269, 0.9992396235466003, 0.9934450387954712] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nc3cc(Br)cnc3[nH]2)cc1; ['CC(C)(C)c1ccc(C(N)=O)cc1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9989731907844543] +Brc1cnc2[nH]c(-c3cc4ccccc4o3)nc2c1; ['Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=Cc1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9998401999473572, 0.9997429251670837] +Nc1cc(-c2nc3cc(Br)cnc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3ncc4sccc4n3)nc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc3cc(Br)cnc3[nH]1)cn2C; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc2cc(Br)cnc2[nH]1; ['CC(C)c1nn(C)cc1C=O', 'CC(C)c1nn(C)cc1C(=O)O', 'CC(C)c1nn(C)cc1C=O']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999709129333496, 0.9998562335968018, 0.9961033463478088] +FC(F)(F)Oc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; ['O=C(O)c1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1']; [0.9999980926513672, 0.9999973773956299, 0.9994373917579651] +COc1ccc(F)c(C(=O)Nc2nc3cc(Br)cnc3[nH]2)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9991946220397949] +CNC(=O)c1ccc(OC)c(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +Brc1cnc2[nH]c(-c3cc(-c4cccnc4)ccn3)nc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CCc1cccc(-c2nc3cc(Br)cnc3[nH]2)n1; ['CCc1cccc(C#N)n1', 'CCc1cccc(C=O)n1']; ['Nc1cc(Br)cnc1N', 'Nc1cc(Br)cnc1N']; [0.9999436140060425, 0.9999243021011353] +O=C(Nc1cccc(-c2nc3cc(Br)cnc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +Cc1cc(-c2nc3cc(Br)cnc3[nH]2)cc(C)c1OCCO; ['Cc1cc(C=O)cc(C)c1OCCO']; ['Nc1cc(Br)cnc1N']; [0.9947423934936523] +Cc1n[nH]c2cc(-c3nc4cc(Br)cnc4[nH]3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(C(=O)O)ccc12']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N']; [0.999943733215332, 0.9999419450759888] +Cn1nc(Cl)c2cc(-c3nc4cc(Br)cnc4[nH]3)ccc21; [None]; [None]; [0] +COc1ccc2nc(-c3nc4cc(Br)cnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(C=O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(C(=O)O)cn1', 'CN(C)c1ccc(C=O)cn1']; ['Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Clc1nc2cc(Br)cnc2[nH]1', 'Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9997724294662476, 0.997543454170227, 0.9967575669288635, 0.9957671165466309, 0.9643186330795288] +O=C(Nc1nc2cc(Br)cnc2[nH]1)c1cccc(OC(F)(F)F)c1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999516010284424] +OCCc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; ['Nc1cc(Br)cnc1N', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Clc1nc2cc(Br)cnc2[nH]1']; ['O=C(O)c1ccc(CCO)cc1', 'Clc1nc2cc(Br)cnc2[nH]1', 'OCCc1ccc(B(O)O)cc1']; [0.9994407296180725, 0.9990882873535156, 0.8240949511528015] +Brc1cnc2[nH]c(-c3ncn4c3CCCC4)nc2c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nc4cc(Br)cnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc4cc(Br)cnc4[nH]3)cc2)n1C; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nc4cc(Br)cnc4[nH]3)cn2)CC1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc2cc(Br)cnc2[nH]1; ['Cc1cc(N2CCOCC2)ccc1C=O', 'Cc1cc(N2CCOCC2)ccc1C=O']; ['Nc1cc(Br)cnc1N', 'Nc1ncc(Br)cc1[N+](=O)[O-]']; [0.9999228715896606, 0.9963936805725098] +CN(C)C(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9998257160186768] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3cc(Br)cnc3[nH]2)nc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Cc1cc(Nc2nc3cc(Br)cnc3[nH]2)ncc1F; ['Cc1cc(N)ncc1F']; ['Clc1nc2cc(Br)cnc2[nH]1']; [0.9798771142959595] +Brc1cnc2[nH]c(Nc3ccccn3)nc2c1; ['N#CNc1ccccn1', 'Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1cc(Br)cnc1N', 'Nc1ccccn1']; [0.9976174831390381, 0.9965994358062744] +Fc1ccc(Nc2nc3cc(Br)cnc3[nH]2)nc1; ['Clc1nc2cc(Br)cnc2[nH]1']; ['Nc1ccc(F)cn1']; [0.9985888600349426] +CCNC(=O)Cc1ccc(-c2nc3cc(Br)cnc3[nH]2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3cc(Br)cnc3[nH]2)c1; ['CS(=O)(=O)c1ccc(Cl)c(C(=O)O)c1']; ['Nc1cc(Br)cnc1N']; [0.9999793767929077] +COc1cc(S(C)(=O)=O)ccc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +Cn1nc(-c2nc3cc(Br)cnc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9900573492050171, 0.8980648517608643, 0.8532043099403381] +CNC(=O)c1ccc(C)c(-c2nc3cc(Br)cnc3[nH]2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nc2cc(Br)cnc2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cn3c(Cl)cnc3cn2)c1; ['CS(=O)(=O)c1cccc(Br)c1']; ['Clc1cnc2cnccn12']; [0.9176487922668457] +COc1cc(-c2cn3c(Cl)cnc3cn2)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9717831611633301, 0.9163284301757812, 0.7742392420768738] +COc1ncccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Oc1cccc(-c2cn3c(Cl)cnc3cn2)c1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1']; [0.9558718800544739, 0.8189667463302612] +Cc1ccc2ncn(-c3cn4c(Cl)cnc4cn3)c2c1; [None]; [None]; [0] +COc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9803029298782349, 0.8532812595367432] +Clc1cnc2cnc(-c3cnc4cccnn34)cn12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc(N4CCOCC4)cc3)cn12; ['Brc1ccc(N2CCOCC2)cc1']; ['Clc1cnc2cnccn12']; [0.9671492576599121] +CC(=O)N(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ncc4ccccc4n3)cn12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Cc1cc(Nc2cn3c(Cl)cnc3cn2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['Clc1cnc2cnccn12']; ['NC(=O)c1ccc(B(O)O)cc1']; [0.9748655557632446] +Clc1cnc2cnc(-c3nc4ccccc4[nH]3)cn12; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn3c(Cl)cnc3cn2)c1)C1CC1; [None]; [None]; [0] +Clc1cnc2cnc(Nc3ncccn3)cn12; [None]; [None]; [0] +OCCOc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['Clc1cnc2cnccn12']; ['OCCOc1ccc(I)cc1']; [0.9181163311004639] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cn4c(Cl)cnc4cn3)cc2)CC1; [None]; [None]; [0] +Clc1cnc2cnc(-c3nccc4ccccc34)cn12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cn4c(Cl)cnc4cn3)cn2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cn3c(Cl)cnc3cn2)cc1)N1CCOCC1; ['Clc1cnc2cnccn12']; ['O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9993168115615845] +Clc1cnc2cnc(Nc3ccncn3)cn12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9987668991088867, 0.9934576153755188, 0.9056894779205322] +C[C@H](O)COc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2cn3c(Cl)cnc3cn2)nc1)N1CCOCC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9849897623062134, 0.8918259143829346] +C[C@@H](O)COc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9536571502685547, 0.7720669507980347] +Clc1cnc2cnc(-c3cccc(C4CCNCC4)c3)cn12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cn4c(Cl)cnc4cn3)cc2C1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc(Br)cc3)cn12; ['Clc1cnc2cnccn12', 'Brc1ccc(I)cc1']; ['OB(O)c1ccc(Br)cc1', 'Clc1cnc2cnccn12']; [0.9720456600189209, 0.8937721252441406] +O=C(c1ccccc1)N1CC[C@H](c2cn3c(Cl)cnc3cn2)C1; [None]; [None]; [0] +Cc1nc(C)c(-c2cn3c(Cl)cnc3cn2)s1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cn4c(Cl)cnc4cn3)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cn3c(Cl)cnc3cn2)nc(N)n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.982675313949585, 0.8587992191314697] +CNS(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)c(C)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1Cl; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccccc3-n3cccn3)cn12; ['Brc1ccccc1-n1cccn1', 'Clc1cnc2cnccn12', 'Clc1ccccc1-n1cccn1']; ['Clc1cnc2cnccn12', 'OB(O)c1ccccc1-n1cccn1', 'Clc1cnc2cnccn12']; [0.994999885559082, 0.9894229769706726, 0.7803276777267456] +COc1ccc(Cl)cc1-c1cn2c(Cl)cnc2cn1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9881906509399414, 0.9660908579826355, 0.9193109273910522] +Clc1cnc2cnc(-c3ccc4c(c3)CCO4)cn12; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1ccc2c(c1)CCO2']; ['OB(O)c1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Clc1cnc2cnccn12']; [0.9998036026954651, 0.9993246793746948, 0.9930412769317627] +COc1cc(OC)c(-c2cn3c(Cl)cnc3cn2)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl']; ['Clc1cnc2cnccn12']; [0.7885204553604126] +CCCOc1ccc(-c2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +Clc1cnc2cnc(-c3c[nH]c4ccccc34)cn12; ['Brc1c[nH]c2ccccc12']; ['Clc1cnc2cnccn12']; [0.7614655494689941] +CC(=O)Nc1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cccc4c3OCO4)cn12; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Ic1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.8576347827911377, 0.8097345232963562] +COc1cc(-c2cn3c(Cl)cnc3cn2)ccc1O; ['COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9798369407653809, 0.9796853065490723] +CC(C)(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9916936159133911, 0.9192521572113037] +Clc1cnc2cnc(-c3cnc4ccccc4c3)cn12; ['Clc1cnc2cnccn12']; ['OB(O)c1cnc2ccccc2c1']; [0.9633697867393494] +Clc1cnc2cnc(-c3cc(-c4ccccc4)[nH]n3)cn12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cn4c(Cl)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccn4nccc4n3)cn12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cn1; ['CC(C)(C)c1ccc(Br)cn1']; ['Clc1cnc2cnccn12']; [0.8116586208343506] +CC1(COc2cn3c(Cl)cnc3cn2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CSc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CSc1ccc(B(O)O)cc1']; ['Clc1cnc2cnccn12']; [0.9201592206954956] +Clc1cnc2cnc(-c3cc4ccccc4s3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3scc4c3OCCO4)cn12; [None]; [None]; [0] +O=C1CCc2cc(-c3cn4c(Cl)cnc4cn3)ccc2N1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9073333740234375, 0.9030550718307495] +Fc1ccc(-c2cn3c(Cl)cnc3cn2)c(Cl)c1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Fc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1']; [0.9887986779212952, 0.9851366281509399, 0.9622501134872437] +CCN1CCN(Cc2ccc(-c3cn4c(Cl)cnc4cn3)cc2)CC1; [None]; [None]; [0] +COc1ccc(-c2cn3c(Cl)cnc3cn2)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9875496625900269, 0.9854176640510559, 0.9259175062179565] +Clc1cccc(-n2ccc(-c3cn4c(Cl)cnc4cn3)n2)c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +CCc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CCc1ccc(B(O)O)cc1']; ['Clc1cnc2cnccn12']; [0.9422497749328613] +Nc1nc(-c2cn3c(Cl)cnc3cn2)cs1; [None]; [None]; [0] +COc1ccc(CNc2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Clc1ccc(-c2cn3c(Cl)cnc3cn2)c(Cl)c1; ['Clc1cnc2cnccn12', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1']; ['OB(O)c1ccc(Cl)cc1Cl', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9282618761062622, 0.8927282094955444, 0.7695309519767761] +Cc1cc(-c2cn3c(Cl)cnc3cn2)nc(N)n1; [None]; [None]; [0] +COc1cc(-c2cn3c(Cl)cnc3cn2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9995388984680176, 0.9805448055267334] +Clc1cnc2cnc(-c3ncc(Br)cn3)cn12; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Cn1cc(-c2cn3c(Cl)cnc3cn2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc2cccc(-c3cn4c(Cl)cnc4cn3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Clc1cnc2cnccn12']; [0.9503291249275208] +Oc1ccc2cccc(-c3cn4c(Cl)cnc4cn3)c2c1; ['Clc1cnc2cnccn12']; ['Oc1ccc2cccc(I)c2c1']; [0.8006728887557983] +COc1cc(-c2cn3c(Cl)cnc3cn2)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9983917474746704, 0.9935608506202698, 0.9815117120742798] +COc1cc(F)c(-c2cn3c(Cl)cnc3cn2)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC']; ['Clc1cnc2cnccn12']; [0.9901894330978394] +CC1(C)Cc2cc(-c3cn4c(Cl)cnc4cn3)ccc2O1; [None]; [None]; [0] +OCCn1cc(-c2cn3c(Cl)cnc3cn2)cn1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ncc4cccn4n3)cn12; [None]; [None]; [0] +Cc1nc(Nc2cn3c(Cl)cnc3cn2)sc1C; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cn3c(Cl)cnc3cn2)C1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cc4ccccn4n3)cn12; [None]; [None]; [0] +Cc1cc(Nc2cn3c(Cl)cnc3cn2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CNC(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2cnccn12']; [0.9717099070549011] +COc1cc(-c2cn3c(Cl)cnc3cn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br']; ['Clc1cnc2cnccn12']; [0.9971505999565125] +Cc1csc2c(-c3cn4c(Cl)cnc4cn3)ncnc12; [None]; [None]; [0] +O=C(Nc1cn2c(Cl)cnc2cn1)c1ccco1; [None]; [None]; [0] +Clc1cnc(-c2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +Nc1cc(-c2cn3c(Cl)cnc3cn2)c2cc[nH]c2n1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cn3c(Cl)cnc3cn2)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9936039447784424, 0.8362091779708862] +NC(=O)c1ccc(Cc2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cn3c(Cl)cnc3cn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cn4c(Cl)cnc4cn3)cc2c1; [None]; [None]; [0] +CCn1cc(-c2cn3c(Cl)cnc3cn2)cn1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc4cn[nH]c4c3)cn12; ['Clc1cnc2cnccn12']; ['OB(O)c1ccc2cn[nH]c2c1']; [0.9928273558616638] +CO[C@@H]1CC[C@@H](c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cc4ccccc4o3)cn12; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +COc1ccc2nc(-c3cn4c(Cl)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1']; [0.99993896484375, 0.999610960483551, 0.9991941452026367, 0.9558538198471069] +CNC(=O)c1ccc(OC)c(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cc(-c4cccnc4)ccn3)cn12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn3c(Cl)cnc3cn2)c1)N1CCCC1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ncc4sccc4n3)cn12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Cn1cc(-c2cn3c(Cl)cnc3cn2)c2ccccc21; [None]; [None]; [0] +Cn1ncc2cc(-c3cn4c(Cl)cnc4cn3)ccc21; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21']; [0.9977793097496033, 0.9647841453552246] +Cc1n[nH]c2cc(-c3cn4c(Cl)cnc4cn3)ccc12; ['Cc1n[nH]c2cc(Br)ccc12']; ['Clc1cnc2cnccn12']; [0.8077150583267212] +CN(C)c1ccc(-c2cn3c(Cl)cnc3cn2)cn1; ['CN(C)c1ccc(B(O)O)cn1']; ['Clc1cnc2cnccn12']; [0.9907284379005432] +Cn1nc(Cl)c2cc(-c3cn4c(Cl)cnc4cn3)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cn4c(Cl)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cn4c(Cl)cnc4cn3)cn2)CC1; [None]; [None]; [0] +CCc1cccc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +Cc1cc(-c2cn3c(Cl)cnc3cn2)cc(C)c1OCCO; [None]; [None]; [0] +O=C(Nc1cn2c(Cl)cnc2cn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +OCCc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cn2c(Cl)cnc2cn1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Clc1cnc2cnccn12']; [0.882169246673584] +O=C1CCCN1c1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ncn4c3CCCC4)cn12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cn4c(Cl)cnc4cn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CCNC(=O)c1ccc(I)cc1']; ['Clc1cnc2cnccn12']; [0.9022763967514038] +CN(C)C(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cnc2cnc(Nc3ccccn3)cn12; [None]; [None]; [0] +Fc1ccc(Nc2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)c(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cn3c(Cl)cnc3cn2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Clc1cnc2cnccn12']; [0.7693756818771362] +Cc1cc(Nc2cn3c(Cl)cnc3cn2)ncc1F; [None]; [None]; [0] +CCOc1ccccc1-c1cn2c(Cl)cnc2cn1; ['CCOc1ccccc1B(O)O']; ['Clc1cnc2cnccn12']; [0.8149462938308716] +CCNC(=O)Cc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Cn1nc(-c2cn3c(Cl)cnc3cn2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccnc4ccccc34)cn12; ['Brc1ccnc2ccccc12', 'Clc1cnc2cnccn12']; ['Clc1cnc2cnccn12', 'Ic1ccnc2ccccc12']; [0.9816439747810364, 0.9721918106079102] +CP(C)(=O)c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +COC(C)(C)CCc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cn3c(Cl)cnc3cn2)c1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Cl)c1']; [0.9988971948623657, 0.9981239438056946, 0.9607377052307129, 0.8598517775535583] +Cc1ccc(C(=O)NCCO)cc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cn3c(Cl)cnc3cn2)[nH]1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cn2c(Cl)cnc2cn1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl']; [0.9955500364303589, 0.9934592247009277, 0.971814751625061, 0.8335632085800171] +NC(=O)c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn3c(Cl)cnc3cn2)c1)c1ccccc1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cn4c(Cl)cnc4cn3)cc2c1=O; [None]; [None]; [0] +Clc1cnc2cnc(-c3cnn(Cc4ccccc4)c3)cn12; [None]; [None]; [0] +Cc1ccc(-c2cn3c(Cl)cnc3cn2)c(Br)c1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cn3c(Cl)cnc3cn2)c1; ['Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9698814153671265, 0.8351974487304688] +CC(C)(C)c1nc(-c2cn3c(Cl)cnc3cn2)cs1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cnc(-c4ccccc4)[nH]3)cn12; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +COc1cnc(-c2cn3c(Cl)cnc3cn2)nc1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cn2c(Cl)cnc2cn1; ['Clc1cccc(Cl)c1I', 'Clc1cnc2cnccn12', 'Clc1cccc(Cl)c1Br']; ['Clc1cnc2cnccn12', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cnc2cnccn12']; [0.9905312061309814, 0.9814126491546631, 0.9368709921836853] +Clc1cnc2cnc(-c3cccc(Br)c3)cn12; ['Clc1cnc2cnccn12', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9985118508338928, 0.9893186092376709, 0.8970681428909302] +Cc1nc2ccccn2c1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cccc(Cn4cncn4)c3)cn12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cn3c(Cl)cnc3cn2)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9690000414848328, 0.9115941524505615] +CC(C)C(=O)COc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cnc2cnc(NCc3cccnc3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc4ccccc4c3)cn12; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1']; [0.9835327863693237, 0.870115339756012] +Clc1cnc2cnc(-c3cnc4ccccn34)cn12; [None]; [None]; [0] +CNc1nc(C)c(-c2cn3c(Cl)cnc3cn2)s1; [None]; [None]; [0] +Clc1cnc2cnc(-n3cnc4ccccc43)cn12; [None]; [None]; [0] +Clc1cnc2cnc(Nc3cccnc3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(NCCc3c[nH]cn3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3cnn4ncccc34)cn12; [None]; [None]; [0] +O=C(Nc1cn2c(Cl)cnc2cn1)c1cccs1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cncc4ccccc34)cn12; [None]; [None]; [0] +Cc1c(-c2cn3c(Cl)cnc3cn2)sc(=O)n1C; [None]; [None]; [0] +Clc1cnc2cnc(NCCc3ccccc3)cn12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cn2c(Cl)cnc2cn1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br']; [0.9940084218978882, 0.9910775423049927] +Nc1nccc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cn4c(Cl)cnc4cn3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cn4c(Cl)cnc4cn3)cc2CS1(=O)=O; [None]; [None]; [0] +Clc1ccc(CNc2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc(-c4cn[nH]c4)cc3)cn12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cn4c(Cl)cnc4cn3)cc2)cn1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(Nc3ccncc3)cn12; [None]; [None]; [0] +Fc1ccccc1CNc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +OCc1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +Clc1cnc2cnc(-c3csc4ncncc34)cn12; ['Brc1csc2ncncc12']; ['Clc1cnc2cnccn12']; [0.9725863933563232] +COc1cc(-c2cn3c(Cl)cnc3cn2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +Nc1ncncc1-c1cn2c(Cl)cnc2cn1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Nc1ncncc1I', 'Nc1ncncc1Br']; [0.9761745929718018, 0.8785202503204346] +CSc1nc(-c2cn3c(Cl)cnc3cn2)c[nH]1; [None]; [None]; [0] +CC(C)n1cc(-c2cn3c(Cl)cnc3cn2)nn1; [None]; [None]; [0] +N#CCCc1cccc(-c2cn3c(Cl)cnc3cn2)c1; ['Clc1cnc2cnccn12']; ['N#CCCc1cccc(B(O)O)c1']; [0.8990476727485657] +Clc1cnc2cnc(CCc3c[nH]nn3)cn12; [None]; [None]; [0] +CC(C)c1oncc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cnc2cnc(Oc3ccccn3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3cc4ccccc4[nH]3)cn12; [None]; [None]; [0] +Fc1ccc(-c2cn3c(Cl)cnc3cn2)c(C(F)(F)F)c1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1']; [0.9951819181442261, 0.9949177503585815, 0.9879653453826904, 0.7959978580474854] +O=C(Nc1cn2c(Cl)cnc2cn1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +CC(C)(COc1cn2c(Cl)cnc2cn1)S(C)(=O)=O; [None]; [None]; [0] +CCNc1nc2ccc(-c3cn4c(Cl)cnc4cn3)cc2s1; [None]; [None]; [0] +COc1ccc(-c2cn3c(Cl)cnc3cn2)cc1Cl; ['COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9990544319152832, 0.9978550672531128, 0.9921337366104126] +CCC(=O)Nc1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cnn4ccccc34)cn12; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnn2ccccc12']; ['Ic1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Clc1cnc2cnccn12']; [0.9931579828262329, 0.8989502787590027, 0.8734379410743713] +CCCn1cc(-c2cn3c(Cl)cnc3cn2)cn1; ['CCCn1cc(Br)cn1']; ['Clc1cnc2cnccn12']; [0.9345029592514038] +O=c1cc(-c2cn3c(Cl)cnc3cn2)cc[nH]1; ['Clc1cnc2cnccn12']; ['O=c1cc(I)cc[nH]1']; [0.8997504115104675] +CCNS(=O)(=O)c1ccccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +NC(=O)CCCc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +C[C@@H](Oc1cn2c(Cl)cnc2cn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=C1CCc2cccc(-c3cn4c(Cl)cnc4cn3)c21; [None]; [None]; [0] +CCN(CC)c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cn3c(Cl)cnc3cn2)cc1C(F)(F)F; [None]; [None]; [0] +COc1ccncc1Nc1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cn3c(Cl)cnc3cn2)c1; ['CC(C)Oc1cncc(Br)c1']; ['Clc1cnc2cnccn12']; [0.9875104427337646] +Clc1cnc2cnc(Nc3cnccc3-c3ccccc3)cn12; [None]; [None]; [0] +COc1cccc(F)c1-c1cn2c(Cl)cnc2cn1; ['COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Cl']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9994179010391235, 0.9941258430480957, 0.9905980825424194, 0.9240922927856445] +Clc1cnc2cnc(Nc3cnc4ccccc4c3)cn12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(CCc2cn3c(Cl)cnc3cn2)cc(OC)c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cn4c(Cl)cnc4cn3)cc12; [None]; [None]; [0] +Clc1cnc2cnc(-c3cnc4[nH]ccc4c3)cn12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['CS(=O)(=O)c1ccc(I)cc1']; ['Clc1cnc2cnccn12']; [0.98134446144104] +O=c1[nH]cc(Br)c2sc(-c3cn4c(Cl)cnc4cn3)cc12; [None]; [None]; [0] +Clc1cnc2cnc(-c3c[nH]c4cnccc34)cn12; [None]; [None]; [0] +CC1(c2cn3c(Cl)cnc3cn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cn2c(Cl)cnc2cn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +OCCc1cn(-c2cn3c(Cl)cnc3cn2)cn1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cn2c(Cl)cnc2cn1; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl']; [0.9998189210891724, 0.9976558685302734, 0.997272253036499, 0.9829511642456055] +Cc1cc(-c2cn3c(Cl)cnc3cn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Clc1cnc2cnc(-n3ncc4ccccc43)cn12; [None]; [None]; [0] +C[C@H](Nc1cn2c(Cl)cnc2cn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ccc(-n4cncn4)cc3)cn12; [None]; [None]; [0] +C[C@@H](Nc1cn2c(Cl)cnc2cn1)C(C)(C)O; [None]; [None]; [0] +COc1ccc(-c2cn3c(Cl)cnc3cn2)c(OC)c1; ['COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9159376621246338, 0.8641408681869507, 0.8385593891143799] +C[C@H](Nc1cn2c(Cl)cnc2cn1)C(C)(C)O; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cn3c(Cl)cnc3cn2)cc1; ['Clc1cnc2cnccn12']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9854071140289307] +Clc1cnc2cnc(-c3nncn3C3CC3)cn12; [None]; [None]; [0] +CC(C)n1cnnc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cn3c(Cl)cnc3cn2)[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3cn4c(Cl)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +Clc1cnc2cnc(Cc3nnc4ccc(-c5ccccc5)nn34)cn12; [None]; [None]; [0] +O=C(CCc1cn2c(Cl)cnc2cn1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cn2c(Cl)cnc2cn1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2cn3c(Cl)cnc3cn2)s1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cn(Cc4ccccc4)nn3)cn12; [None]; [None]; [0] +CCc1cc(-c2cn3c(Cl)cnc3cn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cn3c(Cl)cnc3cn2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cn2c(Cl)cnc2cn1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3c(Cl)cnc3cn2)s1; [None]; [None]; [0] +Clc1cnc2cnc(-c3cccc4ccsc34)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3cccc4nnsc34)cn12; ['Brc1cccc2nnsc12']; ['Clc1cnc2cnccn12']; [0.7597771883010864] +[NH3+]Cc1ccc(Oc2cn3c(Cl)cnc3cn2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cn4c(Cl)cnc4cn3)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cn4c(Cl)cnc4cn3)nc2NC1=O; [None]; [None]; [0] +Clc1cnc2cnc(-c3nc4ccccc4s3)cn12; [None]; [None]; [0] +Clc1cnc2cnc(-c3c[nH]c4cccnc34)cn12; [None]; [None]; [0] +COc1ccc(Oc2cn3c(Cl)cnc3cn2)c(F)c1F; [None]; [None]; [0] +Nc1cncc(-c2cn3c(Cl)cnc3cn2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cn2c(Cl)cnc2cn1; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9852461218833923, 0.9733878970146179, 0.7779959440231323] +CC(=O)Nc1ncc(-c2cn3c(Cl)cnc3cn2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cn3c(Cl)cnc3cn2)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1']; ['Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; [0.9990736842155457, 0.9968463182449341, 0.9665625691413879, 0.9268221259117126] +Nc1nc(-c2cn3c(Cl)cnc3cn2)nc2ccccc12; [None]; [None]; [0] +Clc1cnc2cnc(N3CCC(c4nc5ccccc5[nH]4)CC3)cn12; [None]; [None]; [0] +OCCn1cnc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +CCOc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999998211860657, 0.9999940395355225] +C[C@@]1(O)CC[C@H](c2cn3c(Cl)cnc3cn2)CC1; [None]; [None]; [0] +Clc1cnc2cnc(-c3ncc4cc[nH]c4n3)cn12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cn3c(Cl)cnc3cn2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999992847442627, 0.9999898672103882, 0.9999622106552124, 0.9848450422286987] +O=C(Nc1cccc(-c2cn3c(Cl)cnc3cn2)c1)C1CCNCC1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ncc4ccccc4n3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Clc1ncc2ccccc2n1']; [0.9999986886978149] +CN(C)c1cc(-c2cn3c(Cl)cnc3cn2)cnn1; [None]; [None]; [0] +Clc1cnc2cnc(N3CC=C(c4c[nH]c5ccccc45)CC3)cn12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc3c(N)n[nH]c3c2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CS(=O)(=O)c1cccc(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999997615814209, 0.9999997615814209, 0.9999940395355225, 0.9999504089355469] +COc1cc(-c2ccc3c(N)n[nH]c3c2)cc(OC)c1OC; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['COc1cc(Br)cc(OC)c1OC', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.999998927116394, 0.999991774559021, 0.9999054074287415] +COc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None, None]; [None, None]; [0, 0] +COc1ncccc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['COc1ncccc1Br', 'Nc1n[nH]c2cc(Br)ccc12', 'COc1ncccc1I', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999980926513672, 0.9999948740005493, 0.9999609589576721, 0.9997574090957642, 0.9844273924827576, 0.961260974407196] +Nc1n[nH]c2cc(-c3cnc4cccnn34)ccc12; ['Brc1cnc2cccnn12']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [1.0] +Nc1n[nH]c2cc(-c3ccc(N4CCOCC4)cc3)ccc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [1.0, 0.9999998211860657] +Nc1n[nH]c2cc(-c3cccc(O)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999978542327881, 0.9999966621398926, 0.9999865293502808, 0.9999781847000122, 0.9996775388717651, 0.9750223159790039] +Cc1nc(C(C)(C)O)sc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc3c(N)n[nH]c3c2)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; ['N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999512434005737, 0.9999024271965027, 0.9992480278015137, 0.8826415538787842, 0.8629716634750366] +Nc1n[nH]c2cc(-c3ccc(C(=O)[O-])cc3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3nc4ccccc4[nH]3)ccc12; ['Nc1ccccc1N']; ['Nc1n[nH]c2cc(C(=O)O)ccc12']; [0.9913748502731323] +Nc1n[nH]c2cc(-c3cccc(NC(=O)C4CC4)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999992847442627, 0.9953502416610718] +Nc1n[nH]c2cc(-c3nccc4ccccc34)ccc12; ['Brc1nccc2ccccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Clc1nccc2ccccc12', 'OB(O)c1nccc2ccccc12']; [0.9999972581863403, 0.99998939037323, 0.9997429847717285] +N#Cc1cccc(Cn2cc(-c3ccc4c(N)n[nH]c4c3)cn2)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc4c(N)n[nH]c4c3)c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(C(=O)Nc4ccccc4)cc3)ccc12; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.9999992847442627, 0.9999969005584717, 0.9999847412109375, 0.9999449849128723, 0.9996640682220459] +CC(=O)NCc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999995827674866, 0.9999868869781494, 0.9999711513519287, 0.9982794523239136, 0.9715399742126465] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4c(N)n[nH]c4c3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'NC(=O)c1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12', 'NC(=O)c1ccc(I)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'NC(=O)c1ccc(Cl)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999994039535522, 0.9999921321868896, 0.9999905824661255, 0.9999818205833435, 0.9999258518218994, 0.9998247623443604, 0.9996159076690674, 0.9970675706863403, 0.970818281173706] +Nc1n[nH]c2cc(-c3cccc(C4CCNCC4)c3)ccc12; ['Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [1.0] +Nc1n[nH]c2cc(-c3ccc(OCCO)cc3)ccc12; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'OCCOc1ccc(Cl)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Cl)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999998211860657, 0.9999959468841553, 0.9999909996986389, 0.9999817609786987, 0.9999784827232361, 0.9998807907104492, 0.9993476867675781, 0.9989510178565979, 0.9957277774810791, 0.9953649044036865, 0.9640935659408569] +Nc1n[nH]c2cc(-c3ccc(C(=O)N4CCOCC4)cc3)ccc12; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1n[nH]c2cc(Cl)ccc12', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 1.0, 1.0, 0.9999997019767761, 0.9999984502792358, 0.9999938011169434, 0.9999852180480957, 0.9998588562011719] +CNS(=O)(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Nc1n[nH]c2cc(Br)ccc12', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999984502792358, 0.9999538660049438] +Nc1n[nH]c2cc(-c3ccc(C(=O)N4CCOCC4)cn3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1']; [1.0] +Nc1n[nH]c2cc(-c3ccc4c(c3)CS(=O)(=O)C4)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999964237213135] +CN(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)c1ccc(B(O)O)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'Nc1n[nH]c2cc(Br)ccc12']; [1.0, 0.9999994039535522, 0.9999987483024597, 0.9999985098838806] +Nc1n[nH]c2cc(Nc3ncccn3)ccc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999996423721313, 0.9999960660934448, 0.9999910593032837, 0.9999880790710449, 0.9997855424880981] +C[C@@H](O)COc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3c(N)n[nH]c3c2)s1; ['Cc1csc(C)n1']; ['Nc1n[nH]c2cc(Br)ccc12']; [0.9766291379928589] +CCNS(=O)(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999833106994629, 0.9999777674674988, 0.9997421503067017, 0.999480664730072, 0.9733426570892334] +C[C@H](O)COc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +Nc1n[nH]c2cc(Cc3ccccc3O)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(C(F)(F)F)cc3)ccc12; [None]; [None]; [0] +Nc1ncc(Cc2ccc3c(N)n[nH]c3c2)cn1; [None]; [None]; [0] +Nc1n[nH]c2cc([C@H]3CCN(C(=O)c4ccccc4)C3)ccc12; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3c(N)n[nH]c3c2)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc3c(N)n[nH]c3c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1Cl; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; ['CN(C)c1ccc(Br)cc1Cl', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999996423721313, 0.9999995827674866] +CC(=O)N1CCCN(c2cccc(-c3ccc4c(N)n[nH]c4c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc3c(N)n[nH]c3c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)c(C)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999938607215881, 0.9999525547027588, 0.997468113899231, 0.995975911617279] +COc1ccc(Cl)cc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999959468841553, 0.9999956488609314, 0.9999709129333496, 0.9999342560768127] +Nc1n[nH]c2cc(-c3ccccc3-n3cccn3)ccc12; ['Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999997019767761, 0.9999988079071045, 0.9999916553497314, 0.9899938702583313] +CCN(CC)C(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +COc1ccc(Cc2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccn4nccc4n3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(Br)cc3)ccc12; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc4c(N)n[nH]c4c3)[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc3c(N)n[nH]c3c2)cc1Cl; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cccc4c3OCO4)ccc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Nc1n[nH]c2cc(Br)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'OB(O)c1cccc2c1OCO2']; [0.999999463558197, 0.9999994039535522, 0.9999666810035706] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2ccc3c(N)n[nH]c3c2)ccc1O; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(Br)ccc1O', 'Nc1n[nH]c2cc(Br)ccc12', 'COc1cc(I)ccc1O', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999991655349731, 0.9999973177909851, 0.9999939203262329, 0.9995609521865845, 0.9893440008163452] +CC(=O)Nc1cccc(-c2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3c[nH]c4ccccc34)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3scc4c3OCCO4)ccc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [1.0, 0.9999995231628418] +Nc1n[nH]c2cc(-c3cnc4ccccc4c3)ccc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Brc1cnc2ccccc2c1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Clc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Nc1n[nH]c2cc(Cl)ccc12', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999997615814209, 0.9999997615814209, 0.9999969005584717, 0.9999935030937195, 0.9999860525131226, 0.9999500513076782, 0.9992576837539673, 0.9989190697669983] +CN(C)C(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CN(C)C(=O)c1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999998807907104, 0.9999984502792358, 0.9999980926513672, 0.99991774559021] +CC(C)(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [1.0, 1.0, 0.9999920129776001, 0.9989117980003357] +Nc1n[nH]c2cc(Cc3nc4c(F)c(F)ccc4[nH]3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc4c(c3)CCO4)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc(-c4ccccc4)[nH]n3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(Cc3nc4ccc(F)c(F)c4[nH]3)ccc12; [None]; [None]; [0] +CSc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', None, None, 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CSc1ccc(B(O)O)cc1']; ['Nc1n[nH]c2cc(Br)ccc12', None, None, 'CSc1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999984502792358, 0, 0, 0.9999800324440002, 0.9999635815620422] +Cc1ccc(-c2ccc3c(N)n[nH]c3c2)c(=O)[nH]1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Cc1ccc(I)c(=O)[nH]1']; [0.9999598264694214] +Nc1n[nH]c2cc(-c3ccn(-c4cccc(Cl)c4)n3)ccc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3c(N)n[nH]c3c2)CC1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc4ccccc4s3)ccc12; ['Brc1cc2ccccc2s1']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [0.9999988079071045] +COc1cccc(C(=O)Nc2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Nc1n[nH]c2cc(Cc3nc4ccccc4[nH]3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(F)cc3Cl)ccc12; ['Nc1n[nH]c2cc(Br)ccc12']; ['OB(O)c1ccc(F)cc1Cl']; [0.9998942613601685] +CCN1CCN(Cc2ccc(-c3ccc4c(N)n[nH]c4c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.999993085861206, 0.9999879598617554, 0.9997086524963379] +Nc1n[nH]c2cc(CCCc3ccccc3)ccc12; [None]; [None]; [0] +Cc1cc(-c2ccc3c(N)n[nH]c3c2)nc(N)n1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1']; [1.0, 0.999998927116394] +Nc1nc(-c2ccc3c(N)n[nH]c3c2)cs1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ncc(Br)cn3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc4c(c3)CCC(=O)N4)ccc12; [None]; [None]; [0] +CC[C@@H](CO)c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc([C@H](CO)Cc3ccccc3)ccc12; [None]; [None]; [0] +COc1cc(-c2ccc3c(N)n[nH]c3c2)ccc1N1CCOCC1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['COc1cc(Br)ccc1N1CCOCC1']; [1.0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc4c(N)n[nH]c4c3)ccc2O1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(Cl)cc3Cl)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(CCCn3cncn3)ccc12; [None]; [None]; [0] +Cn1cc(-c2ccc3c(N)n[nH]c3c2)c(C(F)(F)F)n1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ncc4cccn4n3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc4ccccn4n3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cccc4ccc(O)cc34)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ncc(Cl)cn3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Clc1cnc(Cl)nc1']; [0.9999387264251709] +COc1ccc2cccc(-c3ccc4c(N)n[nH]c4c3)c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cnn(CCO)c3)ccc12; [None]; [None]; [0] +COc1cc(-c2ccc3c(N)n[nH]c3c2)ccc1Cl; [None]; [None]; [0] +Cc1csc2c(-c3ccc4c(N)n[nH]c4c3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +COc1cc(F)c(-c2ccc3c(N)n[nH]c3c2)cc1OC; [None]; [None]; [0] +Nc1cc(-c2ccc3c(N)n[nH]c3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3c(N)n[nH]c3c2)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['COc1cc(Br)cc(OC)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'COc1cc(I)cc(OC)c1']; [0.9999983310699463, 0.9999977946281433, 0.999994158744812, 0.9999886751174927] +COc1cc(-c2ccc3c(N)n[nH]c3c2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3c(N)n[nH]c3c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc3c(N)n[nH]c3c2)CC1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)ccc12; [None]; [None]; [0] +COc1ccc(OC)c(Cc2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3c(N)n[nH]c3c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4c(N)n[nH]c4c3)cc2c1; [None]; [None]; [0] +CCn1cc(-c2ccc3c(N)n[nH]c3c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CCn1cc(Br)cn1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999997615814209, 0.9999994039535522, 0.9999899864196777, 0.9999885559082031] +Nc1n[nH]c2cc(-c3ccc4cn[nH]c4c3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc4ccccc4o3)ccc12; ['Nc1n[nH]c2cc(Br)ccc12']; ['OB(O)c1cc2ccccc2o1']; [0.9999916553497314] +Cn1cc(Br)cc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4c(N)n[nH]c4c3)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['Nc1n[nH]c2cc(C(=O)O)ccc12']; [0.9998416900634766] +CNC(=O)c1ccc(OC)c(-c2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ncc4sccc4n3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Clc1ncc2sccc2n1']; [1.0] +CC(C)c1nn(C)cc1-c1ccc2c(N)n[nH]c2c1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; [0.9999985694885254, 0.9999985098838806] +Nc1n[nH]c2cc(-c3cc(-c4cccnc4)ccn3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(OC(F)(F)F)cc3)ccc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 0.9999997019767761, 0.9999992847442627, 0.9999988079071045, 0.9999327659606934] +Cn1cc(-c2ccc3c(N)n[nH]c3c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1n[nH]c2cc(Br)ccc12']; [0.9999933838844299] +COc1ccc(F)c(C(=O)Nc2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4c(N)n[nH]c4c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21']; ['Nc1n[nH]c2cc(Br)ccc12', 'Cn1ncc2cc(Br)ccc21', 'Nc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 0.9999998211860657] +Nc1n[nH]c2cc(-c3ncn4c3CCCC4)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cccc(NC(=O)N4CCCC4)c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4c(N)n[nH]c4c3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999963045120239, 0.9999963045120239, 0.9999621510505676] +CN(C)c1ccc(-c2ccc3c(N)n[nH]c3c2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 0.9999998807907104, 0.9999983310699463, 0.9989207983016968] +CC(=O)N1CCC(n2cc(-c3ccc4c(N)n[nH]c4c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1n[nH]c2cc(Br)ccc12']; [1.0] +Cc1cc(-c2ccc3c(N)n[nH]c3c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4c(N)n[nH]c4c3)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4c(N)n[nH]c4c3)[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(NC(=O)c3cccc(OC(F)(F)F)c3)ccc12; [None]; [None]; [0] +CCc1cccc(-c2ccc3c(N)n[nH]c3c2)n1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cccc(N4CCCC4=O)c3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(CCO)cc3)ccc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999954700469971, 0.9373208284378052] +Cc1ncc(-c2ccc(-c3ccc4c(N)n[nH]c4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)c(OC)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999866485595703, 0.9999620318412781, 0.9975309371948242, 0.7997164726257324] +CCNC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['CCNC(=O)c1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12', 'CCNC(=O)c1ccc(I)cc1', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999979734420776, 0.9999908208847046, 0.9999879002571106, 0.9998866319656372, 0.9923478364944458] +CCNC(=O)Cc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999989867210388, 0.9810335636138916] +Cc1cc(N2CCOCC2)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3c(N)n[nH]c3c2)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; [0.9999904632568359] +CN(C)C(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)nc1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'Nc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 0.9993902444839478] +COc1cc(N2CCNCC2)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3c(Cl)ccc4c3OCO4)ccc12; ['Nc1n[nH]c2cc(Br)ccc12']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9996417760848999] +Nc1n[nH]c2cc(-c3cccc4ncccc34)ccc12; ['Brc1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'OB(O)c1cccc2ncccc12']; [0.9999997615814209, 0.9999992847442627, 0.999964714050293] +Nc1n[nH]c2cc(-c3ccc(Cl)c(O)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Oc1cc(Br)ccc1Cl', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'Nc1n[nH]c2cc(Cl)ccc12', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999842643737793, 0.9999831914901733, 0.9999806880950928, 0.9999139904975891, 0.9992094039916992, 0.9879381060600281] +Nc1n[nH]c2cc(-c3c(Cl)cccc3Cl)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999954700469971, 0.9999924898147583, 0.9997338056564331] +CNC(=O)c1ccc(C)c(-c2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Cn1nc(-c2ccc3c(N)n[nH]c3c2)cc1C(C)(C)O; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(O)cc3Cl)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C']; ['Oc1ccc(Br)c(Cl)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(I)c(Cl)c1', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9998966455459595, 0.9998224973678589, 0.9994446039199829, 0.992108941078186, 0.8831144571304321] +C[C@H](CS(C)(=O)=O)c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['COc1cc(C(N)=O)ccc1Br', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999927878379822, 0.9999783635139465, 0.9989961385726929] +NC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)c(F)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; ['NC(=O)c1ccc(Br)c(F)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'NC(=O)c1ccc(Cl)c(F)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999949932098389, 0.9999932646751404, 0.9999163150787354, 0.9994431734085083, 0.9991399049758911, 0.9877874851226807, 0.9798084497451782] +COc1ccc(F)cc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O']; ['COc1ccc(F)cc1Br', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999996423721313, 0.9999991655349731, 0.9999903440475464] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(O)cc3F)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Oc1ccc(Br)c(F)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1ccc(I)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Nc1n[nH]c2cc(Cl)ccc12', 'Oc1ccc(I)c(F)c1', 'OB(O)c1ccc(O)cc1F']; [0.999915599822998, 0.9996910095214844, 0.9996064901351929, 0.9984830021858215, 0.9610786437988281, 0.8920454978942871, 0.806147575378418] +COc1cc(F)ccc1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COc1cc(F)ccc1B(O)O']; ['COc1cc(F)ccc1Br', 'Nc1n[nH]c2cc(Br)ccc12', 'COc1cc(F)ccc1I', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999955892562866, 0.9999910593032837, 0.999988317489624, 0.9999158382415771] +Nc1n[nH]c2cc(Oc3ccc(F)cc3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3n[nH]c4ccccc34)ccc12; [None]; [None]; [0] +Nc1nccc(-c2ccc3c(N)n[nH]c3c2)n1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1']; [1.0, 0.9999998807907104] +Cc1nc2c(F)cc(-c3ccc4c(N)n[nH]c4c3)cc2[nH]1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(-c4ccc(O)cc4O)cc3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9999706745147705, 0.9172112941741943] +COC(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)o1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1']; ['COC(=O)c1ccc(Br)o1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.999998152256012, 0.9999960064888, 0.9998394846916199, 0.995067834854126] +Nc1n[nH]c2cc(-c3ccc(O)c(F)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; ['Oc1ccc(Br)cc1F', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1ccc(I)cc1F', 'Nc1n[nH]c2cc(Cl)ccc12', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F']; [0.9999969005584717, 0.9999940395355225, 0.9999904632568359, 0.9999503493309021, 0.9997799396514893, 0.9966312646865845, 0.9061558842658997] +Nc1n[nH]c2cc(-c3cccc(Br)c3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cn[nH]c3Cl)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3c[nH]c4cnccc34)ccc12; ['Brc1c[nH]c2cnccc12', 'Nc1n[nH]c2cc(Br)ccc12']; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'OB(O)c1c[nH]c2cnccc12']; [0.9999973773956299, 0.9936580657958984] +COC(=O)c1ccc(Cl)c(-c2ccc3c(N)n[nH]c3c2)c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['COC(=O)c1ccc(Cl)c(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'COC(=O)c1ccc(Cl)c(I)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999959468841553, 0.9999842643737793, 0.9999629259109497, 0.9993097186088562, 0.9984714984893799, 0.9984710216522217, 0.996830940246582, 0.8472477197647095] +Nc1n[nH]c2cc(-c3cnn4ncccc34)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(O)cc3O)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Oc1ccc(Br)c(O)c1']; [0.9998295307159424] +COc1cc(CCc2ccc3c(N)n[nH]c3c2)ccc1O; [None]; [None]; [0] +Nc1cc(-c2ccc3c(N)n[nH]c3c2)ccn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1']; ['Nc1n[nH]c2cc(Br)ccc12', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999997615814209, 0.9999997615814209, 0.9999995231628418, 0.9999970197677612, 0.9999911189079285, 0.9999530911445618, 0.9980684518814087] +Cc1ccc2[nH]ncc2c1-c1ccc2c(N)n[nH]c2c1; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['Cc1ccc2[nH]ncc2c1I']; [0.9999977350234985] +Nc1n[nH]c2cc(-c3cc(O)ccc3Cl)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'OB(O)c1cc(O)ccc1Cl']; [0.999812662601471, 0.9997717142105103, 0.9988892078399658, 0.9975506067276001] +Nc1n[nH]c2cc(-c3ccc4ccccc4c3)ccc12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(COc3ccccc3Cl)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cnc(O)c(Cl)c3)ccc12; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3c(N)n[nH]c3c2)c[nH]1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(F)c(Cl)c3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3[nH]cnc3-c3ccc(F)cc3)ccc12; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4c(N)n[nH]c4c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(N)n[nH]c4c3)cc2[nH]1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(N)n[nH]c3c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cnc4[nH]ccc4c3)ccc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3c(N)n[nH]c3c2)cc1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3nc4ccccc4s3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cncc(O)c3)ccc12; [None]; [None]; [0] +CCOc1cccc(-c2ccc3c(N)n[nH]c3c2)c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc4c(c3)CC(=O)N4)ccc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3c(N)n[nH]c3c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4c(N)n[nH]c4c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3c(N)n[nH]c3c2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc(C(F)F)n[nH]3)ccc12; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +CNc1nc(-c2ccc3c(N)n[nH]c3c2)ncc1F; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['CNc1nc(Cl)ncc1F']; [1.0] +Nc1n[nH]c2cc(-c3ccc4c(c3)CCN4)ccc12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1ccc2c(c1)CCN2', 'Nc1n[nH]c2cc(Br)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2']; [1.0, 0.9999997019767761, 0.9999653100967407] +Nc1n[nH]c2cc(-c3cc(O)n4nccc4n3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc(Cl)c(O)c(Cl)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Oc1c(Cl)cc(Br)cc1Cl', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1c(Cl)cc(I)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999970197677612, 0.9999870657920837, 0.9999626278877258, 0.9998750686645508, 0.9909725189208984, 0.8615171909332275] +Nc1n[nH]c2cc(-c3ccc(Br)cc3F)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F']; [0.999956488609314, 0.9678033590316772] +Nc1n[nH]c2cc(-c3ccc4[nH]c(=O)[nH]c4c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; ['O=c1[nH]c2ccc(I)cc2[nH]1', 'Nc1n[nH]c2cc(Br)ccc12', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [0.999994158744812, 0.9999939203262329, 0.9999939203262329, 0.9999439716339111, 0.9982432126998901] +Nc1n[nH]c2cc(Nc3ccncc3)ccc12; ['Nc1ccncc1', 'Nc1ccncc1']; ['Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999483823776245, 0.9886360168457031] +Cn1ncc(N)c1-c1ccc2c(N)n[nH]c2c1; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3[nH]nc4ccc(F)cc34)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3cc(O)cc(Br)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12']; ['Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1cc(Br)cc(Br)c1']; [0.9999945163726807, 0.9999843835830688, 0.9998732209205627, 0.9992096424102783, 0.9990387558937073, 0.9865175485610962] +Nc1n[nH]c2cc(-c3ccncc3Cl)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc(C(=O)NC4CC4)cc3)ccc12; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; ['Nc1n[nH]c2cc(Br)ccc12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [1.0, 0.9999991655349731, 0.9999991059303284, 0.9999986886978149, 0.9998955726623535, 0.9983673095703125] +Cc1oc(-c2ccc3c(N)n[nH]c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(N)n[nH]c4c3)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Nc1n[nH]c2cc(Br)ccc12', 'Cc1nc2ccc(Br)cc2o1', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999998807907104, 0.9999997019767761, 0.9999983310699463, 0.9999980926513672, 0.9999526739120483, 0.9989633560180664] +CSc1cccc(-c2ccc3c(N)n[nH]c3c2)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CSc1cccc(B(O)O)c1']; ['Nc1n[nH]c2cc(Br)ccc12', 'CSc1cccc(Br)c1', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999990463256836, 0.9999974966049194, 0.9998272657394409] +Nc1n[nH]c2cc(-c3cc(F)c(O)c(F)c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Nc1n[nH]c2cc(Br)ccc12', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Nc1n[nH]c2cc(Cl)ccc12']; ['Oc1c(F)cc(Br)cc1F', 'Nc1n[nH]c2cc(Br)ccc12', 'Oc1c(F)cc(I)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Nc1n[nH]c2cc(Cl)ccc12', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9999982118606567, 0.9999942183494568, 0.9999924302101135, 0.9999771118164062, 0.9998835325241089, 0.999232292175293] +Cc1cc(-c2ccc3c(N)n[nH]c3c2)cc(C)c1O; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O']; ['Cc1cc(Br)cc(C)c1O', 'Nc1n[nH]c2cc(Br)ccc12', 'Cc1cc(I)cc(C)c1O', 'Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12', 'Nc1n[nH]c2cc(Br)ccc12']; [0.9999728798866272, 0.9999480247497559, 0.9998152852058411, 0.998931884765625, 0.9671480655670166, 0.930463433265686] +Nc1n[nH]c2cc(CCc3c[nH]c4ccccc34)ccc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2c(N)n[nH]c2c1; ['Cc1onc(-c2ccccc2)c1B(O)O']; ['Nc1n[nH]c2cc(Br)ccc12']; [0.9999638795852661] +CN(c1ccc2c(N)n[nH]c2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1n[nH]c2cc(OCc3cccc4ccccc34)ccc12; [None]; [None]; [0] +Cc1cc(-c2ccc3c(N)n[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +Nc1n[nH]c2cc(-c3ccc4c(=O)[nH][nH]c4c3)ccc12; ['CC1(C)OB(c2ccc3c(N)n[nH]c3c2)OC1(C)C']; ['O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999984502792358] +Nc1n[nH]c2cc(-c3ocnc3-c3ccc(F)cc3)ccc12; [None]; [None]; [0] +Nc1n[nH]c2cc(NCc3c(F)cccc3Cl)ccc12; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; ['Nc1n[nH]c2cc(Br)ccc12', 'Nc1n[nH]c2cc(F)ccc12', 'Nc1n[nH]c2cc(Cl)ccc12']; [0.9999796152114868, 0.9928997755050659, 0.9863165616989136] +Nc1n[nH]c2cc(Oc3ccc(F)cc3F)ccc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999967813491821] +CCOc1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Cl)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999997615814209, 0.9999794960021973, 0.999954879283905, 0.9998593926429749, 0.9998272061347961, 0.9995220303535461, 0.9990426301956177] +Cc1cn2c(-c3cccc(S(C)(=O)=O)c3)cnc2cn1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999996423721313, 0.9999711513519287, 0.9999312162399292] +Nc1n[nH]c2cc(-c3cn[nH]c3-c3ccc(Cl)cc3)ccc12; [None]; [None]; [0] +COc1ncccc1-c1cnc2cnc(C)cn12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999857544898987, 0.998162567615509, 0.9303877353668213, 0.9116674065589905, 0.9067400693893433, 0.8600720167160034] +Nc1n[nH]c2cc(OCc3ccc(F)cc3F)ccc12; [None]; [None]; [0] +COc1cc(-c2cnc3cnc(C)cn23)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999638199806213, 0.9999579191207886, 0.9998637437820435, 0.9998000860214233, 0.9991703033447266] +Cc1ccc2ncn(-c3cnc4cnc(C)cn34)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9401754140853882, 0.939850926399231] +Cc1cn2c(-c3cnc4cccnn34)cnc2cn1; ['Brc1cnc2cccnn12']; ['Cc1cn2c(Br)cnc2cn1']; [0.9994614720344543] +Cc1cn2c(-c3sc(C(C)(C)O)nc3C)cnc2cn1; [None]; [None]; [0] +Nc1n[nH]c2cc(CCc3ccc(F)cc3F)ccc12; [None]; [None]; [0] +COc1ccc(-c2cnc3cnc(C)cn23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccccc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999989867210388, 0.9999656081199646, 0.9999557733535767, 0.9997168779373169, 0.9997115135192871, 0.9985926151275635, 0.9968761801719666, 0.8200119137763977] +Cc1cn2c(-c3cccc(O)c3)cnc2cn1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1']; [0.9999839663505554, 0.9998589754104614, 0.998694658279419, 0.9981145858764648] +Cc1cn2c(-c3ncc4ccccc4n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(N4CCOCC4)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Clc1ccc(N2CCOCC2)cc1']; [1.0, 0.9999983906745911, 0.9999883770942688, 0.9999554753303528, 0.9999340772628784, 0.9995209574699402] +Cc1cn2c(-c3cc(C#N)ccc3O)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9985778331756592, 0.9844589233398438, 0.9812721014022827, 0.9671370983123779] +Cc1cn2c(-c3cccc(NC(=O)C4CC4)c3)cnc2cn1; ['Cc1cn2ccnc2cn1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999595880508423] +Cc1cn2c(Nc3cc(C)ns3)cnc2cn1; ['Cc1cc(N)sn1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999697208404541] +Cc1cn2c(-c3ccc(C(N)=O)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999996423721313, 0.9999493360519409] +Cc1cn2c(-c3ccc(C(=O)[O-])cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(Nc3ncccn3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Nc1ncccn1']; [0.9922919273376465] +CC(=O)NCc1ccc(-c2cnc3cnc(C)cn23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.999998152256012, 0.9999405145645142, 0.991517186164856] +Cc1cn2c(-c3cnn(Cc4cccc(C#N)c4)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3nccc4ccccc34)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Brc1nccc2ccccc12']; ['Clc1nccc2ccccc12', 'Cc1cn2c(Br)cnc2cn1']; [0.9998929500579834, 0.9925746321678162] +Cc1cn2c(-c3ccc(C(=O)Nc4ccccc4)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3nc4ccccc4[nH]3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(=O)N4CCOCC4)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [1.0, 0.999994158744812] +Cc1cn2c(-c3cccc(C4CCNCC4)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(Nc3ccncn3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Nc1ccncn1']; [0.9811347126960754] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4cnc(C)cn34)cc2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999958276748657, 0.9998839497566223] +Cc1cn2c(-c3ccc(OCCO)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(F)(F)F)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccccc1']; [1.0, 0.9999982118606567, 0.999992847442627, 0.9999703168869019, 0.999930739402771, 0.999692440032959, 0.80401611328125] +Cc1cn2c(-c3ccc(OC[C@H](C)O)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(=O)N4CCOCC4)cn3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3sc(C)nc3C)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1csc(C)n1', 'Cc1nc(C)c(Br)s1']; [0.9996089935302734, 0.9979042410850525] +Cc1cn2c(-c3ccc4c(c3)CS(=O)(=O)C4)cnc2cn1; ['Cc1cn2ccnc2cn1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.999944806098938] +Cc1cn2c(-c3ccc(N(C)C)cc3)cnc2cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccccc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999997019767761, 0.9999967217445374, 0.9999904036521912, 0.9999651908874512, 0.999927818775177, 0.9996462464332581, 0.9880697727203369] +Cc1cn2c(-c3ccc(OC[C@@H](C)O)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(S(=O)(=O)N(C)C)cc3)cnc2cn1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999998211860657, 0.9999943971633911, 0.999987781047821, 0.9999104738235474, 0.9999027252197266, 0.9996673464775085] +CCNS(=O)(=O)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999293088912964, 0.9965485334396362] +Cc1cn2c(-c3ccc(Br)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'CO[Si](OC)(OC)c1ccc(Br)cc1', 'Cc1cn2ccnc2cn1', 'Brc1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Cc1cn2ccnc2cn1', 'Clc1ccc(Br)cc1', 'Cc1cn2ccnc2cn1']; [0.9999985694885254, 0.9999732375144958, 0.9997298717498779, 0.9997020959854126, 0.9995721578598022, 0.996234655380249, 0.9885172247886658] +Cc1cn2c(C3CCN(S(C)(=O)=O)CC3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c([C@H]3CCN(C(=O)c4ccccc4)C3)cnc2cn1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999997615814209, 0.9999531507492065, 0.9996808767318726, 0.9990878105163574] +Cc1cn2c(-c3cc(C(C)C)nc(N)n3)cnc2cn1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc4cnc(C)cn34)c2)CC1; [None]; [None]; [0] +Cc1cn2c(-c3ccn4nccc4n3)cnc2cn1; ['Brc1ccn2nccc2n1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999828934669495] +CCCOc1ccc(-c2cnc3cnc(C)cn23)nc1; [None]; [None]; [0] +Cc1cn2c(-c3cccc(C(=O)[O-])c3C)cnc2cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3cnc(C)cn23)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999901056289673, 0.9987994432449341, 0.9717825651168823] +Cc1cn2c(-c3ccccc3-n3cccn3)cnc2cn1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccccc1-n1cccn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Cc1cn2ccnc2cn1', 'Clc1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1']; [1.0, 0.9999916553497314, 0.9999874830245972, 0.999984622001648, 0.9999569654464722, 0.9792811870574951] +Cc1cn2c(-c3ccc(N(C)C)c(Cl)c3)cnc2cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnc2cnc(C)cn12; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Cl']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999849200248718, 0.9998425245285034, 0.9997700452804565, 0.9988991022109985, 0.9987553954124451, 0.9789096117019653] +Cc1cn2c(-c3c[nH]c4ccccc34)cnc2cn1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Brc1c[nH]c2ccccc12', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Cc1cn2ccnc2cn1', 'c1ccc2[nH]ccc2c1']; [0.9999678134918213, 0.9981473088264465, 0.9967985153198242, 0.9958345890045166, 0.8658580780029297] +Cc1cn2c(-c3ccc4c(c3)CCO4)cnc2cn1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccc2c(c1)CCO2', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Cc1cn2ccnc2cn1', 'Clc1ccc2c(c1)CCO2']; [0.9999997615814209, 0.9999963045120239, 0.9999240636825562, 0.9999169707298279, 0.999839723110199, 0.9735615253448486] +CC(=O)Nc1cccc(-c2cnc3cnc(C)cn23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999985694885254, 0.999984085559845] +COc1cc(-c2cnc3cnc(C)cn23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999969005584717, 0.9999589323997498, 0.9998247623443604, 0.999256432056427] +Cc1cn2c(-c3scc4c3OCCO4)cnc2cn1; ['Cc1cn2ccnc2cn1']; ['c1scc2c1OCCO2']; [0.9999631643295288] +Cc1cn2c(-c3nc4ccc(C(C)C)cc4[nH]3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cccc4c3OCO4)cnc2cn1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1cccc2c1OCO2']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Cc1cn2c(Br)cnc2cn1']; [0.9999682903289795, 0.9988111257553101, 0.9985127449035645, 0.9979963302612305, 0.9974657893180847, 0.989930272102356] +COc1cc(OC)c(-c2cnc3cnc(C)cn23)cc1Cl; [None]; [None]; [0] +Cc1cn2c(-c3cnc4ccccc4c3)cnc2cn1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1cnc2ccccc2c1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Cc1cn2ccnc2cn1', 'Clc1cnc2ccccc2c1']; [0.999991774559021, 0.9997960329055786, 0.9997447729110718, 0.999692440032959, 0.9986931085586548, 0.9978856444358826] +Cc1cn2c(-c3ccc(C(=O)N(C)C)cc3)cnc2cn1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999997615814209, 0.9999759197235107, 0.9999499320983887, 0.9994193315505981] +Cc1cn2c(-c3ccc(C(C)(C)C)cc3)cnc2cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999996423721313, 0.9999837875366211, 0.9999546408653259, 0.9997761249542236, 0.9997689723968506, 0.9928990602493286] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2cnc(C)cn12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3cnc(C)cn23)c1; ['COc1cccc(C(N)=O)c1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9884262084960938] +Cc1cn2c(-c3ccc(C(C)(C)C)nc3)cnc2cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999985098838806, 0.9999699592590332, 0.9996074438095093, 0.9993926882743835] +Cc1cn2c(-c3csc(N)n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc4ccccc4s3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Brc1cc2ccccc2s1']; ['OB(O)c1cc2ccccc2s1', 'Cc1cn2ccnc2cn1']; [0.9998629093170166, 0.9956412315368652] +CSc1ccc(-c2cnc3cnc(C)cn23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999963641166687, 0.9998819828033447, 0.999512791633606, 0.9994701743125916, 0.9864165782928467, 0.9216321706771851] +Cc1cn2c(OCC3(C)COC3)cnc2cn1; ['CC1(CO)COC1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9942936897277832] +Cc1cn2c(-c3cc(-c4ccccc4)[nH]n3)cnc2cn1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnc4cnc(C)cn34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999841451644897, 0.9992260932922363, 0.9944045543670654] +COc1ccc(-c2cnc3cnc(C)cn23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999984502792358, 0.999994158744812, 0.9998781085014343, 0.9998434782028198, 0.9995582103729248, 0.9963787794113159] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3cnc(C)cn23)CC1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(F)cc3Cl)cnc2cn1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'O=C(O)c1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1']; [0.9999998807907104, 0.9999884963035583, 0.9999851584434509, 0.9995524883270264, 0.9992793202400208, 0.9808789491653442, 0.9408745169639587] +Cc1cn2c(-c3ccc(C(=O)N4CCC[C@@H]4C)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccn(-c4cccc(Cl)c4)n3)cnc2cn1; [None]; [None]; [0] +CCc1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999994039535522, 0.9999566078186035, 0.9995322823524475, 0.9984334707260132, 0.9973576068878174, 0.9618823528289795] +COc1ccc(CNc2cnc3cnc(C)cn23)cc1; ['COc1ccc(CN)cc1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9991171360015869] +Cc1cn2c(-c3ccc(Cl)cc3Cl)cnc2cn1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.999997615814209, 0.9998551607131958, 0.9995915293693542, 0.9979652166366577, 0.9949365854263306] +Cc1cn2c(-c3ccc4c(c3)CCC(=O)N4)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(C)nc(N)n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc4ccccn4n3)cnc2cn1; ['Brc1cc2ccccn2n1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9991588592529297] +Cc1cn2c(-c3ncc(Br)cn3)cnc2cn1; [None]; [None]; [0] +COc1cc(-c2cnc3cnc(C)cn23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [1.0, 0.9999875426292419] +Cc1cn2c(NC3CN(C(=O)C4CC4)C3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4c(c3)CC(C)(C)O4)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cn(C)nc3C(F)(F)F)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1']; [0.9999865293502808, 0.9998162984848022, 0.9982556700706482, 0.9961683750152588, 0.9781231880187988, 0.9660289287567139, 0.955016016960144] +COc1ccc2cccc(-c3cnc4cnc(C)cn34)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Cc1cn2ccnc2cn1']; [0.9979685544967651] +COc1cc(-c2cnc3cnc(C)cn23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [1.0, 0.999998927116394, 0.999998927116394, 0.9999925494194031, 0.9999920129776001, 0.9884011745452881] +Cc1cn2c(-c3ncc4cccn4n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(Nc3nc(C)c(C)s3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Cc1nc(N)sc1C']; [0.999984622001648] +Cc1cn2c(-c3cccc4ccc(O)cc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(Nc3cc(C)n(C)n3)cnc2cn1; ['Cc1cc(N)nn1C']; ['Cc1cn2c(Br)cnc2cn1']; [0.999677300453186] +Cc1cn2c(-c3cnn(CCO)c3)cnc2cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9992263317108154, 0.9986743927001953, 0.9815475344657898] +CNC(=O)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999986290931702, 0.9999039173126221] +COc1cc(F)c(-c2cnc3cnc(C)cn23)cc1OC; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3cnc(C)cn23)nc1; ['CCNC(=O)c1ccc(Br)nc1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9998313188552856] +Cc1cn2c(NC(=O)c3ccco3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['NC(=O)c1ccco1']; [0.9863941073417664] +Cc1cn2c(-c3ncc(Cl)cn3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(N)nc4[nH]ccc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ncnc4c(C)csc34)cnc2cn1; [None]; [None]; [0] +COc1cc(-c2cnc3cnc(C)cn23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2cnc(C)cn12; [None]; [None]; [0] +Cc1cn2c(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cnc2cn1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3cnc(C)cn23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999687075614929, 0.9999526739120483, 0.9995330572128296, 0.9994613528251648, 0.9952762126922607, 0.9937819242477417] +Cc1cn2c(Cc3ccc(S(=O)(=O)CCO)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(NC(=O)c3ccc(C(C)(C)C)cc3)cnc2cn1; ['CC(C)(C)c1ccc(C(N)=O)cc1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9948921203613281] +Cc1cn2c(-c3ccc4cn[nH]c4c3)cnc2cn1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccc2cn[nH]c2c1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Cc1cn2ccnc2cn1']; [0.9999995231628418, 0.9999926090240479, 0.9998706579208374, 0.9991542100906372, 0.9982118010520935] +COc1ccc2oc(-c3cnc4cnc(C)cn34)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999669194221497] +CCNC(=O)N1CCC(c2cnc3cnc(C)cn23)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc3cnc(C)cn23)CC1; [None]; [None]; [0] +Cc1cn2c(Cc3ccc(C(N)=O)cc3)cnc2cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3cnc(C)cn13)cn2C; ['COc1ccc2c(ccn2C)c1']; ['Cc1cn2ccnc2cn1']; [0.9947441220283508] +CCn1cc(-c2cnc3cnc(C)cn23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(S(=O)(=O)Cl)cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999842047691345, 0.9998518228530884, 0.9997256994247437, 0.9991645812988281, 0.9984806776046753, 0.9635002017021179] +Cc1cn2c(-c3cc4ccccc4o3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['OB(O)c1cc2ccccc2o1']; [0.9999685883522034] +Cc1cn2c(-c3ccc(C[NH+](C)C)cc3)cnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc3cnc(C)cn23)c1; [None]; [None]; [0] +Cc1cn2c(-c3cn(C)nc3C(C)C)cnc2cn1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1ccn(C)n1', 'CC(C)c1nn(C)cc1Br']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9991337656974792, 0.9901490211486816, 0.9646980166435242, 0.8367034792900085] +COc1ccc2nc(-c3cnc4cnc(C)cn34)[nH]c2c1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(OC(F)(F)F)cc3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'Cc1cn2c(Br)cnc2cn1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'FC(F)(F)Oc1ccccc1']; [1.0, 1.0, 0.9999997615814209, 0.9999992251396179, 0.9999957084655762, 0.9999949336051941, 0.9983504414558411] +COc1ccc(F)c(C(=O)Nc2cnc3cnc(C)cn23)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9995347857475281] +Cc1cn2c(-c3cccc(NC(=O)N4CCCC4)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(Br)cn3C)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(-c4cccnc4)ccn3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ncc4sccc4n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cn(C)c4ccccc34)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999983310699463, 0.9010301828384399] +CCc1cccc(-c2cnc3cnc(C)cn23)n1; ['CCc1cccc(Br)n1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9825465679168701] +Cc1cn2c(-c3ccc4c(C)n[nH]c4c3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 0.9999978542327881, 0.9922782182693481] +Cc1cn2c(-c3ccc(N(C)C)nc3)cnc2cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Cl)cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999995231628418, 0.9999921917915344, 0.9996360540390015, 0.9989060163497925, 0.9985531568527222, 0.8758835792541504] +Cc1cn2c(-c3cc4ccc(C(C)(C)O)cc4[nH]3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(C)c(OCCO)c(C)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4c(cnn4C)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cccc(N4CCCC4=O)c3)cnc2cn1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999986886978149] +Cc1cn2c(NC(=O)c3cccc(OC(F)(F)F)c3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9998806118965149] +Cc1cn2c(-c3ncn4c3CCCC4)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4c(c3)c(Cl)nn4C)cnc2cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc4cnc(C)cn34)cn2)CC1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(CCO)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.9999978542327881, 0.9997400045394897, 0.9943103790283203, 0.984887421131134, 0.979475200176239] +Cc1cn2c(-c3ccc(-c4cnc(C)n4C)cc3)cnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3cnc(C)cn23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9999121427536011, 0.9434312582015991] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2cnc(C)cn12; ['COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; [0.9963388442993164, 0.9938637018203735] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2cnc(C)cn12; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(=O)N(C)C)cc3Cl)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(N4CCOCC4)cc3C)cnc2cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.999991774559021, 0.9996805191040039, 0.9975359439849854, 0.9860191345214844] +COc1cc(N2CCNCC2)ccc1-c1cnc2cnc(C)cn12; [None]; [None]; [0] +Cc1cn2c(Nc3cc(C)c(F)cn3)cnc2cn1; ['Cc1cc(N)ncc1F']; ['Cc1cn2c(Br)cnc2cn1']; [0.9995288848876953] +Cc1cn2c(Nc3ccccn3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Nc1ccccn1']; [0.9962359666824341] +Cc1cn2c(Nc3ccc(F)cn3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Nc1ccc(F)cn1']; [0.9994924068450928] +CCNC(=O)Cc1ccc(-c2cnc3cnc(C)cn23)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9991377592086792] +Cc1cn2c(-c3ccc(C(=O)N(C)C)cn3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(S(C)(=O)=O)ccc3Cl)cnc2cn1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Cc1cn2ccnc2cn1']; [0.9993559718132019] +Cc1cn2c(-c3ccc(Cl)c(O)c3)cnc2cn1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl']; [0.9999966621398926, 0.9999731779098511, 0.9996602535247803, 0.9960488677024841] +Cc1cn2c(-c3cc(C(C)(C)O)n(C)n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3c(Cl)ccc4c3OCO4)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'Clc1ccc2c(c1)OCO2']; [0.999352753162384, 0.9987138509750366, 0.913013756275177] +Cc1cn2c(Oc3ccc(F)cc3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Oc1ccc(F)cc1']; [0.9999017715454102] +Cc1cn2c(-c3cccc4ncccc34)cnc2cn1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1cccc2ncccc12']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cccc2ncccc12', 'Ic1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Cc1cn2ccnc2cn1']; [0.9999797344207764, 0.997043251991272, 0.96392822265625, 0.9612432718276978, 0.9426283240318298] +Cc1cn2c(-c3c(Cl)cccc3Cl)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl']; [0.9994816780090332, 0.9990824460983276, 0.9979007244110107, 0.997024655342102, 0.9380079507827759] +Cc1cn2c(-c3ccc(C(N)=O)cc3F)cnc2cn1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999994039535522, 0.9999233484268188] +COc1cc(C(N)=O)ccc1-c1cnc2cnc(C)cn12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999874234199524] +Cc1cn2c(-c3ccc(O)cc3Cl)cnc2cn1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1']; [0.9999823570251465, 0.9992637038230896, 0.9988751411437988, 0.9771825671195984] +CNC(=O)c1ccc(C)c(-c2cnc3cnc(C)cn23)c1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(O)cc3F)cnc2cn1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'OB(O)c1ccc(O)cc1F']; [0.9999842643737793, 0.9981436729431152, 0.9932190179824829, 0.9920623302459717, 0.9773731827735901] +Cc1cn2c(-c3cc(C(=O)NCCO)ccc3C)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccnc(N)n3)cnc2cn1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc2cnc(C)cn12; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999964833259583, 0.9999574422836304, 0.999840259552002, 0.999406099319458, 0.9993279576301575, 0.7703158855438232] +Cc1cn2c(-c3n[nH]c4ccccc34)cnc2cn1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3cnc(C)cn23)o1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc2cnc(C)cn12; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1C(=O)O', 'COc1cccc(F)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999915361404419, 0.9999216794967651, 0.9998326897621155, 0.9998027086257935, 0.9993985891342163, 0.9992858171463013, 0.9986978769302368, 0.9977905750274658, 0.995311975479126, 0.8000907897949219] +Cc1cn2c(-c3cc(F)c4nc(C)[nH]c4c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cn[nH]c3Cl)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4ccccc4c3)cnc2cn1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccc2ccccc2c1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Cc1cn2ccnc2cn1', 'Clc1ccc2ccccc2c1']; [0.9999986886978149, 0.9999786615371704, 0.999458909034729, 0.9994121789932251, 0.9993271827697754, 0.9949612617492676] +Cc1cn2c(-c3cccc(Br)c3)cnc2cn1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(I)c1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1cccc(Br)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Cc1cn2ccnc2cn1']; [0.9999958276748657, 0.9997826814651489, 0.9997677206993103, 0.9995564222335815, 0.9975371360778809, 0.9897457361221313] +Cc1cn2c(-c3ccc(O)c(F)c3)cnc2cn1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F']; [0.9999996423721313, 0.9999980926513672, 0.9998515844345093] +Cc1cn2c(-c3ccc(-c4ccc(O)cc4O)cc3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9719597101211548, 0.9470939636230469] +Cc1cn2c(-c3cnn4ncccc34)cnc2cn1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999995231628418, 0.9995590448379517] +Cc1cn2c(-c3ccc(F)c(Cl)c3)cnc2cn1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccccc1Cl']; [1.0, 0.9999991655349731, 0.9999989867210388, 0.9999984502792358, 0.999981164932251, 0.9991785287857056, 0.9953616261482239] +Cc1cn2c(-c3ccc(O)cc3O)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccnc(N)c3)cnc2cn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1']; [0.9999969005584717, 0.99974524974823, 0.9978339672088623, 0.9968181848526001, 0.9949804544448853] +COC(=O)c1ccc(Cl)c(-c2cnc3cnc(C)cn23)c1; [None]; [None]; [0] +COc1cc(CCc2cnc3cnc(C)cn23)ccc1O; [None]; [None]; [0] +Cc1cn2c(-c3c[nH]c4cnccc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3c(C)ccc4[nH]ncc34)cnc2cn1; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1Br']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999992847442627, 0.9998446702957153, 0.9955487251281738, 0.9910368919372559, 0.9487858414649963] +Cc1cn2c(COc3ccccc3Cl)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3c[nH]c(C(N)=O)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cc(O)ccc3Cl)cnc2cn1; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cc(O)ccc1Cl']; [0.9998317956924438, 0.9893598556518555] +Cc1cn2c(-c3cnc(O)c(Cl)c3)cnc2cn1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Oc1ncc(I)cc1Cl', 'Oc1ncccc1Cl']; [0.9999963045120239, 0.9997496604919434, 0.9987688660621643] +Cc1cn2c(-c3ccc4nc(C)[nH]c4c3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999998211860657, 0.9989875555038452] +Cc1cn2c(-c3cnc4[nH]ccc4c3)cnc2cn1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999997019767761, 0.9999878406524658] +Cc1cn2c(-c3ccc(NC(N)=O)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Cc1cn2c(Br)cnc2cn1']; [0.9999997019767761] +CCOc1cccc(-c2cnc3cnc(C)cn23)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc([Mg]Br)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999960660934448, 0.9999432563781738, 0.9993504285812378, 0.9987227916717529, 0.9969125986099243, 0.9948667883872986] +Cc1cn2c(-c3cc(CO)ccc3C)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3[nH]cnc3-c3ccc(F)cc3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(S(C)(=O)=O)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [1.0, 0.9999511241912842, 0.9999232292175293, 0.9990336894989014, 0.9974989295005798, 0.9922641515731812, 0.9606266021728516] +CNC(=O)c1cccc2cc(-c3cnc4cnc(C)cn34)ccc12; [None]; [None]; [0] +Cc1cn2c(-c3cncc(O)c3)cnc2cn1; ['Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1']; ['OB(O)c1cncc(O)c1', 'Oc1cncc(I)c1', 'Cc1cn2c(Br)cnc2cn1', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1']; [0.9996514320373535, 0.9995743036270142, 0.9995328187942505, 0.9986239671707153, 0.9970762729644775] +COc1cc(CCc2cnc3cnc(C)cn23)cc(OC)c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc2cnc(C)cn12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9998244047164917, 0.9364757537841797] +CCc1cc(O)c(F)cc1-c1cnc2cnc(C)cn12; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999942779541016, 0.996401309967041] +Cc1cn2c(-c3nc4ccccc4s3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(N(C)c3ccc4c(C)n[nH]c4c3)cnc2cn1; [None]; [None]; [0] +CNc1nccc(-c2cnc3cnc(C)cn23)n1; [None]; [None]; [0] +Cc1cn2c(-c3cc(C(F)F)n[nH]3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(N(C)c3cccc(Cl)c3)cnc2cn1; ['CNc1cccc(Cl)c1']; ['Cc1cn2c(Br)cnc2cn1']; [0.989223837852478] +Cc1cn2c(-c3ccc(O)cc3C)cnc2cn1; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9998616576194763, 0.9821397662162781, 0.9110580682754517] +Cc1cn2c(-c3[nH]nc(C)c3C)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4c(c3)CC(=O)N4)cnc2cn1; [None]; [None]; [0] +Cc1cn2c([C@H](C)CC(N)=O)cnc2cn1; [None]; [None]; [0] +CCc1sccc1-c1cnc2cnc(C)cn12; [None]; [None]; [0] +Cc1cn2c(-c3ccncc3Cl)cnc2cn1; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br', 'Nc1ccncc1Cl', 'O=C(O)c1ccncc1Cl', 'Clc1ccncc1Cl']; [0.999997615814209, 0.9999234080314636, 0.9998413920402527, 0.9998279809951782, 0.9992738962173462, 0.9992146492004395, 0.9964139461517334, 0.9782291650772095, 0.9659737348556519] +Cc1cn2c(-c3cc(Cl)c(O)c(Cl)c3)cnc2cn1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cccc1Cl']; [0.9999842643737793, 0.9997339248657227, 0.8389605283737183] +Cc1cn2c(-c3ccc4c(c3)CCN4)cnc2cn1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Brc1ccc2c(c1)CCN2']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'Cc1cn2ccnc2cn1']; [0.9999997615814209, 0.9999741315841675, 0.9988004565238953, 0.9946945905685425] +Cc1cn2c(Nc3ccncc3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Nc1ccncc1']; [0.9958451390266418] +Cc1cn2c(-c3ccc4[nH]c(=O)[nH]c4c3)cnc2cn1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1']; [0.9999982118606567, 0.9999841451644897, 0.9997628927230835, 0.9988640546798706, 0.9983038306236267] +Cc1cn2c(-c3ccc(Br)cc3F)cnc2cn1; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1Br']; [0.9999938011169434, 0.9989411234855652, 0.9989196062088013, 0.9931470155715942, 0.9927178025245667, 0.9456089735031128] +Cc1cn2c(-c3cc(O)cc(Br)c3)cnc2cn1; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1']; [0.9999101161956787, 0.9982402324676514, 0.985683798789978] +Cc1cn2c(-c3cc(C(=O)[O-])c(C)o3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(N)=O)c(C)c3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc(C(=O)NC4CC4)cc3)cnc2cn1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999932646751404, 0.994834303855896, 0.9697166681289673] +CNc1nc(-c2cnc3cnc(C)cn23)ncc1F; [None]; [None]; [0] +Cc1cn2c(-c3cc(O)n4nccc4n3)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3[nH]nc4ccc(F)cc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3c(N)cnn3C)cnc2cn1; [None]; [None]; [0] +CSc1cccc(-c2cnc3cnc(C)cn23)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9999886751174927, 0.999523401260376, 0.9977309703826904, 0.9783406257629395, 0.964269757270813] +Cc1cn2c(-c3cc(F)c(O)c(F)c3)cnc2cn1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Cc1cn2c(Br)cnc2cn1']; ['Cc1cn2c(Br)cnc2cn1', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9999949932098389, 0.9999659657478333] +Cc1cn2c(N(C)c3cccc4[nH]ncc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3ccc4nc(C)oc4c3)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999993443489075, 0.999998927116394, 0.999994158744812, 0.9997690916061401] +Cc1cn2c(-c3cc(C)c(O)c(C)c3)cnc2cn1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O']; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; [0.9989460706710815, 0.9816879630088806, 0.976152777671814, 0.9000101089477539] +Cc1cn2c(-c3ccc4c(=O)[nH][nH]c4c3)cnc2cn1; ['Cc1cn2ccnc2cn1']; ['O=c1[nH][nH]c2cc(Br)ccc12']; [0.980610728263855] +Cc1cn2c(OCc3cccc4ccccc34)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(Oc3ccc(F)cc3F)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['Oc1ccc(F)cc1F']; [0.9999834299087524] +Cc1cn2c(NCc3c(F)cccc3Cl)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9999933242797852, 0.9998825788497925] +CC(=O)N(C)c1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; [0.9999998211860657] +Cc1cn2c(-c3c(-c4ccccc4)noc3C)cnc2cn1; ['Cc1cn2ccnc2cn1', 'Cc1cn2c(Br)cnc2cn1', 'Cc1cn2ccnc2cn1']; ['Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; [0.9999352097511292, 0.9998772144317627, 0.9975671768188477] +Cc1cn2c(OCc3ccc(F)cc3F)cnc2cn1; ['Cc1cn2c(Br)cnc2cn1']; ['OCc1ccc(F)cc1F']; [0.9982390403747559] +Cc1cn2c(-c3ocnc3-c3ccc(F)cc3)cnc2cn1; [None]; [None]; [0] +CCOc1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccccc1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CCOc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CCOc1ccc(Br)cc1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999998807907104, 0.9999997615814209, 0.9999962449073792, 0.9999932050704956, 0.9999798536300659, 0.9999443888664246, 0.9999403357505798, 0.9997917413711548, 0.9997540712356567, 0.9997045993804932, 0.9989511966705322, 0.9981603622436523, 0.9861632585525513, 0.9299588203430176] +Cc1cn2c(CCc3c[nH]c4ccccc34)cnc2cn1; [None]; [None]; [0] +COc1ncccc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'Brc1cnc2cnccn12', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1I']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'COc1ncccc1B(O)O', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999986886978149, 0.9999927282333374, 0.9999895691871643, 0.999895453453064, 0.9998242855072021, 0.9997365474700928, 0.9973376393318176, 0.9617594480514526, 0.9575645923614502, 0.8233938217163086] +CS(=O)(=O)c1cccc(-c2cnc3cnccn23)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Brc1cnc2cnccn12', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Clc1cnc2cnccn12']; [1.0, 0.9999996423721313, 0.9999963045120239, 0.9999958276748657, 0.9999939799308777, 0.9999663829803467, 0.9998749494552612] +Cc1cn2c(CCc3ccc(F)cc3F)cnc2cn1; [None]; [None]; [0] +Cc1cn2c(-c3cn[nH]c3-c3ccc(Cl)cc3)cnc2cn1; [None]; [None]; [0] +COc1cc(-c2cnc3cnccn23)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Brc1cnc2cnccn12', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'Brc1cnc2cnccn12', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Ic1cnc2cnccn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1cc(B(O)O)cc(OC)c1OC', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999969005584717, 0.9999958276748657, 0.9999891519546509, 0.9999614357948303, 0.9999446272850037, 0.9999387264251709, 0.999922513961792, 0.9998819828033447, 0.9998356699943542, 0.9985834956169128] +Cc1nc(C(C)(C)O)sc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12']; ['Cc1csc(C(C)(C)O)n1']; [0.9742485284805298] +Cc1ccc2ncn(-c3cnc4cnccn34)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Clc1cnc2cnccn12', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12']; [0.9914283752441406, 0.9885831475257874, 0.9878976345062256, 0.9852399826049805, 0.8875443935394287] +COc1ccc(-c2cnc3cnccn23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccccc1', 'COc1ccc(Cl)cc1']; ['Ic1cnc2cnccn12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999996423721313, 0.9999996423721313, 0.9999971389770508, 0.9999931454658508, 0.9999536275863647, 0.9999431371688843, 0.999915361404419, 0.9998834133148193, 0.9997862577438354, 0.9991365671157837, 0.9988464117050171, 0.9961389303207397, 0.9838739037513733, 0.9766881465911865] +c1cnn2c(-c3cnc4cnccn34)cnc2c1; [None]; [None]; [0] +Oc1cccc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1cccc(O)c1', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1cccc(O)c1', 'c1cn2ccnc2cn1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.999996542930603, 0.9999964833259583, 0.9999725818634033, 0.9999492764472961, 0.9997851848602295, 0.9996485710144043, 0.9995827674865723, 0.9990984201431274, 0.9988349676132202, 0.9906718730926514] +c1cn2c(-c3ccc(N4CCOCC4)cc3)cnc2cn1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Clc1cnc2cnccn12']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'Brc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1ccc(N2CCOCC2)cc1']; [1.0, 1.0, 0.9999998807907104, 0.9999997615814209, 0.9999982118606567, 0.999993085861206, 0.9999808073043823, 0.9999638795852661, 0.9999597072601318, 0.999796450138092, 0.9993960857391357, 0.7532943487167358] +Cc1cc(Nc2cnc3cnccn23)sn1; ['Brc1cnc2cnccn12', 'Cc1cc(N)sn1']; ['Cc1cc(N)sn1', 'Clc1cnc2cnccn12']; [0.9997677206993103, 0.9996769428253174] +c1ccc2[nH]c(-c3cnc4cnccn34)nc2c1; ['Nc1ccccc1N', 'N#Cc1cnc2cnccn12', 'Nc1ccccc1N']; ['O=C(O)c1cnc2cnccn12', 'Nc1ccccc1N', 'O=Cc1cnc2cnccn12']; [0.9998697638511658, 0.9998056888580322, 0.9973117709159851] +c1ccc2nc(-c3cnc4cnccn34)ncc2c1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cnc3cnccn23)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3cnccn23)c1)C1CC1; ['O=C(Nc1cccc(Br)c1)C1CC1']; ['c1cn2ccnc2cn1']; [0.9999856948852539] +c1ccc2c(-c3cnc4cnccn34)nccc2c1; ['Brc1cnc2cnccn12', 'Brc1nccc2ccccc12', 'Brc1cnc2cnccn12', 'Brc1nccc2ccccc12', 'Brc1cnc2cnccn12']; ['Clc1nccc2ccccc12', 'Clc1cnc2cnccn12', 'Brc1nccc2ccccc12', 'c1cn2ccnc2cn1', 'c1ccc2cnccc2c1']; [0.9995860457420349, 0.9968961477279663, 0.9921309947967529, 0.9867032170295715, 0.9379912614822388] +NC(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'NC(=O)c1ccc(Br)cc1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1']; [1.0, 0.9999996423721313, 0.9999992847442627, 0.999998152256012, 0.999972939491272, 0.9999587535858154, 0.9982568025588989] +N#Cc1ccc(O)c(-c2cnc3cnccn23)c1; ['Ic1cnc2cnccn12', 'N#Cc1ccc(O)c(Br)c1', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'N#Cc1ccc(O)c(I)c1']; ['N#Cc1ccc(O)c(B(O)O)c1', 'c1cn2ccnc2cn1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1', 'c1cn2ccnc2cn1']; [0.9989756345748901, 0.9984480142593384, 0.996572732925415, 0.9935839176177979, 0.9900364875793457, 0.9877982139587402] +c1cnc(Nc2cnc3cnccn23)nc1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9995396137237549, 0.9955860376358032] +N#Cc1cccc(Cn2cc(-c3cnc4cnccn34)cn2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4cnccn34)cc2)CC1; [None]; [None]; [0] +c1cc(-c2cnc3cnccn23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999998211860657, 0.9999982118606567, 0.9999762773513794, 0.99996417760849] +c1cc(Nc2cnc3cnccn23)ncn1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9991648197174072, 0.9935933351516724] +CC(=O)NCc1ccc(-c2cnc3cnccn23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CC(=O)NCc1ccc(Br)cc1']; [1.0, 0.9999995231628418, 0.9999968409538269, 0.9999948740005493, 0.9999630451202393, 0.9998408555984497, 0.998144805431366, 0.9890191555023193] +O=C(c1ccc(-c2cnc3cnccn23)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'c1cn2ccnc2cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999972581863403, 0.9999943971633911, 0.9999927878379822, 0.9995592832565308] +OCCOc1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999995231628418, 0.9999966621398926, 0.9999796152114868, 0.9999010562896729, 0.99970543384552, 0.9955925941467285, 0.9950798749923706] +FC(F)(F)c1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Clc1cnc2cnccn12', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccccc1']; ['Ic1cnc2cnccn12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [1.0, 1.0, 1.0, 1.0, 0.9999994039535522, 0.9999990463256836, 0.9999974370002747, 0.9999974370002747, 0.9999964237213135, 0.9999837875366211, 0.9997690916061401, 0.9989374876022339, 0.9892632961273193] +CNS(=O)(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999991655349731, 0.9999990463256836, 0.9999948740005493, 0.9999381303787231, 0.9998524188995361] +C[C@H](O)COc1ccc(-c2cnc3cnccn23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc3cnccn23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Br)cc1', 'Brc1cnc2cnccn12', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccccc1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CN(C)c1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'CN(C)c1ccc(Br)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999992251396179, 0.999998927116394, 0.9999961853027344, 0.9999828338623047, 0.9999659061431885, 0.9999417066574097, 0.9999344944953918, 0.9997663497924805, 0.999763011932373, 0.9984352588653564, 0.9964454174041748, 0.9877538681030273] +Cc1nc(C)c(-c2cnc3cnccn23)s1; ['Brc1cnc2cnccn12', 'Cc1nc(C)c(Br)s1']; ['Cc1csc(C)n1', 'c1cn2ccnc2cn1']; [0.9991894960403442, 0.9977115392684937] +O=C(c1ccc(-c2cnc3cnccn23)nc1)N1CCOCC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc2cnccn12']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999996423721313, 0.9999992251396179, 0.9999865889549255, 0.9999856948852539, 0.9999707341194153, 0.9999477863311768, 0.9998593330383301, 0.9990795850753784] +CCNS(=O)(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2cnccn12']; [0.9999511241912842] +O=S1(=O)Cc2ccc(-c3cnc4cnccn34)cc2C1; [None]; [None]; [0] +Brc1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Brc1ccc(I)cc1', 'OB(O)c1ccc(Br)cc1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1']; ['Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'OB(O)c1ccc(Br)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12']; [1.0, 0.9999995231628418, 0.9999986290931702, 0.9999978542327881, 0.9999797344207764, 0.9999633431434631, 0.9999315738677979, 0.9996417760848999, 0.9978431463241577, 0.9977308511734009, 0.9952579736709595, 0.9919282793998718] +CCCOc1ccc(-c2cnc3cnccn23)nc1; ['CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1', 'Brc1cnc2cnccn12']; ['c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CCCOc1ccc(Br)nc1']; [0.9999978542327881, 0.9999964833259583, 0.9999938011169434] +CC(C)c1cc(-c2cnc3cnccn23)nc(N)n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999997615814209, 0.9999990463256836, 0.9999790191650391, 0.9999328255653381, 0.9998990297317505, 0.9992614388465881] +CS(=O)(=O)N1CCC(c2cnc3cnccn23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cnc3cnccn23)C1; [None]; [None]; [0] +c1cn2c(-c3ccn4nccc4n3)cnc2cn1; ['Ic1ccn2nccc2n1']; ['c1cn2ccnc2cn1']; [0.9999979734420776] +CC(=O)N1CCCN(c2cccc(-c3cnc4cnccn34)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3cnccn23)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Brc1cnc2cnccn12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CN(C)c1ccc(Br)cc1Cl']; [0.9999997615814209, 0.9999997019767761, 0.9999989867210388, 0.9999476671218872, 0.9999201893806458] +CNS(=O)(=O)c1ccc(-c2cnc3cnccn23)c(C)c1; ['Brc1cnc2cnccn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.9999974370002747, 0.9999822974205017, 0.9998249411582947, 0.9996670484542847, 0.9996397495269775, 0.9775751829147339] +c1cn2c(-c3ccc4c(c3)CCO4)cnc2cn1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [1.0, 0.9999997615814209, 0.9999995827674866, 0.9999980926513672, 0.9999962449073792, 0.9999932646751404, 0.9999784231185913, 0.9999678134918213, 0.9998964071273804, 0.992689847946167] +c1ccc(-n2cccn2)c(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Brc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Clc1cnc2cnccn12', 'Clc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccccc1-n1cccn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999997615814209, 0.9999996423721313, 0.9999994039535522, 0.9999991655349731, 0.9999978542327881, 0.9999967813491821, 0.9999900460243225, 0.9999878406524658, 0.9999628067016602, 0.9998306035995483, 0.9995313286781311, 0.9962253570556641] +COc1ccc(Cl)cc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'Brc1cnc2cnccn12', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Cl']; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'COc1ccc(Cl)cc1B(O)O', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12']; [0.9999887943267822, 0.9999818801879883, 0.9999605417251587, 0.999923586845398, 0.999895453453064, 0.9989262223243713, 0.9988880157470703, 0.9986002445220947, 0.9915937185287476, 0.9841052293777466, 0.9634476900100708, 0.9405355453491211, 0.9342608451843262] +Cc1c(C(=O)[O-])cccc1-c1cnc2cnccn12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1cnc2cnccn12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12']; [0.9999996423721313, 0.9999986886978149, 0.9999923706054688, 0.9999866485595703, 0.9999781847000122, 0.9997907876968384, 0.9900047779083252] +CC(C)c1ccc2nc(-c3cnc4cnccn34)[nH]c2c1; [None]; [None]; [0] +c1ccc2c(-c3cnc4cnccn34)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1c[nH]c2ccccc12', 'Brc1cnc2cnccn12', 'Ic1c[nH]c2ccccc12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1ccc2[nH]ccc2c1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cnc2cnccn12', 'OB(O)c1c[nH]c2ccccc12', 'c1cn2ccnc2cn1', 'OB(O)c1c[nH]c2ccccc12', 'c1cn2ccnc2cn1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1cn2ccnc2cn1']; [0.9999791383743286, 0.9999070167541504, 0.9997393488883972, 0.9985107183456421, 0.9967628717422485, 0.9899314641952515, 0.9810994863510132, 0.969853401184082, 0.9102379679679871, 0.8230738043785095] +COc1cc(OC)c(-c2cnc3cnccn23)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl', 'Brc1cnc2cnccn12', 'COc1ccc(Cl)c(OC)c1', 'COc1cc(OC)c(Br)cc1Cl']; ['c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'COc1cc(OC)c(Br)cc1Cl', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.998946487903595, 0.9969199299812317, 0.9919614791870117, 0.9804725646972656, 0.9575088024139404] +CC(C)(C)c1ccc(-c2cnc3cnccn23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccccc1']; ['Ic1cnc2cnccn12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999994039535522, 0.9999986886978149, 0.9999930262565613, 0.9999915957450867, 0.9999651908874512, 0.999961256980896, 0.9999604821205139, 0.9996687173843384, 0.99681556224823, 0.98255455493927, 0.9453670978546143] +COc1cc(-c2cnc3cnccn23)ccc1O; ['Brc1cnc2cnccn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1cnc2cnccn12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1cc(B(O)O)ccc1O', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999982118606567, 0.999998152256012, 0.9999873638153076, 0.9999678134918213, 0.9998700618743896, 0.9997690916061401, 0.9997563362121582, 0.999650239944458, 0.9989141821861267] +c1cc2c(c(-c3cnc4cnccn34)c1)OCO2; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'OB(O)c1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Brc1cnc2cnccn12', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'OB(O)c1cccc2c1OCO2', 'c1ccc2c(c1)OCO2']; [0.9999960660934448, 0.9999804496765137, 0.9999332427978516, 0.9999306797981262, 0.999878466129303, 0.999795138835907, 0.9995853900909424, 0.9992843866348267, 0.9989238977432251, 0.9987590312957764, 0.9983018636703491, 0.8304698467254639] +c1ccc2ncc(-c3cnc4cnccn34)cc2c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999973773956299, 0.9999970197677612, 0.9999873638153076, 0.999984860420227, 0.9999567866325378, 0.9999442100524902, 0.9998728036880493, 0.9997053146362305, 0.999320387840271, 0.998773992061615, 0.9954846501350403] +CN(C)C(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Ic1cnc2cnccn12', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999997019767761, 0.9999663829803467, 0.9999457001686096, 0.999780535697937] +c1cn2c(-c3scc4c3OCCO4)cnc2cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3cnccn23)cn1; ['Brc1cnc2cnccn12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Brc1cnc2cnccn12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999997615814209, 0.9999995231628418, 0.9999974370002747, 0.9999973773956299, 0.9999905824661255, 0.9999867677688599, 0.9999857544898987, 0.9999827146530151, 0.9998162984848022, 0.999770998954773] +c1ccc(-c2cc(-c3cnc4cnccn34)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3cnccn23)c1; ['COc1cccc(C(N)=O)c1']; ['Clc1cnc2cnccn12']; [0.919938325881958] +c1ccc2sc(-c3cnc4cnccn34)cc2c1; ['Brc1cnc2cnccn12']; ['OB(O)c1cc2ccccc2s1']; [0.9999810457229614] +CC1(COc2cnc3cnccn23)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'Brc1cnc2cnccn12', 'CC1(CO)COC1']; ['Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC1(CO)COC1', 'c1cn2ccnc2cn1']; [0.998534083366394, 0.9981427192687988, 0.9976785778999329, 0.9921656847000122] +CSc1ccc(-c2cnc3cnccn23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(Br)cc1', 'Brc1cnc2cnccn12', 'CSc1ccc(Cl)cc1', 'CSc1ccc(Cl)cc1']; ['Ic1cnc2cnccn12', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CSc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'CSc1ccc(Br)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999998807907104, 0.9999995231628418, 0.9999977350234985, 0.9999967217445374, 0.9999582767486572, 0.999954342842102, 0.999893307685852, 0.999731183052063, 0.9996896982192993, 0.998465359210968, 0.9972429275512695, 0.9955284595489502, 0.990649938583374, 0.962033212184906] +Nc1nc(-c2cnc3cnccn23)cs1; [None]; [None]; [0] +Cc1cc(-c2cnc3cnccn23)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnc4cnccn34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Brc1cnc2cnccn12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9999966621398926, 0.9999903440475464, 0.9998146295547485, 0.9997522830963135, 0.9995008707046509, 0.9993609189987183] +Fc1ccc(-c2cnc3cnccn23)c(Cl)c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Ic1cnc2cnccn12', 'Fc1ccc(Br)c(Cl)c1', 'Brc1cnc2cnccn12', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Brc1cnc2cnccn12', 'Fc1ccc(I)c(Cl)c1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Fc1ccc(Cl)c(Cl)c1', 'O=C(O)c1ccc(F)cc1Cl']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(F)cc1Cl', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(F)cc1Cl', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'Fc1ccc(Br)c(Cl)c1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc([Mg]Br)c(Cl)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999990463256836, 0.9999986886978149, 0.9999967813491821, 0.9999953508377075, 0.999983549118042, 0.9999828338623047, 0.9999812841415405, 0.9999730587005615, 0.9999498724937439, 0.9997209310531616, 0.9962431192398071, 0.9925276041030884] +COc1ccc(-c2cnc3cnccn23)cc1OC; ['Brc1cnc2cnccn12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Brc1cnc2cnccn12', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccccc1OC', 'COc1ccc(Cl)cc1OC']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'COc1ccc(B(O)O)cc1OC', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999989867210388, 0.9999980330467224, 0.9999903440475464, 0.9999896287918091, 0.9999821782112122, 0.9999655485153198, 0.9999326467514038, 0.9998441934585571, 0.9992448091506958, 0.9979754686355591, 0.994245171546936, 0.9075595140457153, 0.8680423498153687] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3cnccn23)CC1; [None]; [None]; [0] +CCc1ccc(-c2cnc3cnccn23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'Brc1cnc2cnccn12', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CCc1ccc(Cl)cc1', 'CCc1ccc(Cl)cc1']; ['Ic1cnc2cnccn12', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'CCc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CCc1ccc(Br)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999995231628418, 0.9999991655349731, 0.9999936819076538, 0.9999718070030212, 0.999886691570282, 0.999868631362915, 0.9998613595962524, 0.9995997548103333, 0.9993987083435059, 0.9993751049041748, 0.9968703985214233, 0.9840556979179382, 0.9494882822036743] +COc1ccc(CNc2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'COc1ccc(CN)cc1']; ['COc1ccc(CN)cc1', 'Clc1cnc2cnccn12']; [0.9993110299110413, 0.9957149028778076] +Clc1ccc(-c2cnc3cnccn23)c(Cl)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Brc1cnc2cnccn12', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'Clc1cnc2cnccn12', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1cccc(Cl)c1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(Cl)cc1Cl', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'OB(O)c1ccc(Cl)cc1Cl', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999974966049194, 0.9999964833259583, 0.9999797940254211, 0.9999775886535645, 0.9999164342880249, 0.9998992681503296, 0.999897301197052, 0.9998650550842285, 0.9994643330574036, 0.9991183876991272, 0.978887677192688, 0.967934787273407, 0.8356753587722778] +O=C1CCc2cc(-c3cnc4cnccn34)ccc2N1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cnc4cnccn34)n2)c1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3cnccn23)cc1; [None]; [None]; [0] +Brc1cnc(-c2cnc3cnccn23)nc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cnc3cnccn23)C1; [None]; [None]; [0] +c1ccn2nc(-c3cnc4cnccn34)cc2c1; ['Brc1cc2ccccn2n1', 'Brc1cnc2cnccn12', 'Brc1cc2ccccn2n1']; ['Clc1cnc2cnccn12', 'Clc1cc2ccccn2n1', 'Brc1cnc2cnccn12']; [0.9999842643737793, 0.9998759627342224, 0.9996576309204102] +COc1ccc2cccc(-c3cnc4cnccn34)c2c1; ['COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999375939369202, 0.9989371299743652] +CC1(C)Cc2cc(-c3cnc4cnccn34)ccc2O1; [None]; [None]; [0] +Cn1cc(-c2cnc3cnccn23)c(C(F)(F)F)n1; ['Brc1cnc2cnccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Clc1cnc2cnccn12', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Brc1cnc2cnccn12', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Clc1cnc2cnccn12', 'Cn1ccc(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'O=C(O)c1cnc2cnccn12', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [1.0, 0.9999998807907104, 0.9999992251396179, 0.9999978542327881, 0.999997079372406, 0.9999969601631165, 0.9999967217445374, 0.9999942779541016, 0.9999940991401672, 0.9999710321426392, 0.9999547004699707, 0.9999083280563354, 0.9998302459716797, 0.9998277425765991] +Oc1ccc2cccc(-c3cnc4cnccn34)c2c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(I)c2c1']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999955892562866, 0.9999944567680359, 0.999954104423523, 0.9988676309585571, 0.9971925020217896] +COc1cc(-c2cnc3cnccn23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1cnc2cnccn12', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999998807907104, 0.999998152256012, 0.9999960660934448, 0.9999685883522034, 0.9997879266738892] +COc1cc(-c2cnc3cnccn23)ccc1Cl; ['Brc1cnc2cnccn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cnc2cnccn12', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1cc(B(O)O)ccc1Cl', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [1.0, 1.0, 0.9999996423721313, 0.9999994039535522, 0.9999989867210388, 0.9999984502792358, 0.9999966025352478, 0.9999940395355225, 0.9999873638153076, 0.999969482421875, 0.9736396670341492, 0.9157639741897583] +c1cc2cnc(-c3cnc4cnccn34)nn2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cnc3cnccn23)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Brc1cnc2cnccn12', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Brc1cnc2cnccn12', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'Brc1cnc2cnccn12', 'COc1cc(F)c(Br)cc1OC']; ['Ic1cnc2cnccn12', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'COc1cc(F)c(B(O)O)cc1OC', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'COc1cc(F)c(Br)cc1OC', 'O=C(O)c1cnc2cnccn12']; [0.9999996423721313, 0.9999992847442627, 0.999996542930603, 0.9999951124191284, 0.999988853931427, 0.9999884366989136, 0.9999605417251587, 0.9999580383300781, 0.9998913407325745, 0.9998629689216614, 0.9996999502182007] +Cc1nc(Nc2cnc3cnccn23)sc1C; ['Cc1nc(N)sc1C']; ['Clc1cnc2cnccn12']; [0.9998172521591187] +OCCn1cc(-c2cnc3cnccn23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1cnc2cnccn12', 'OCCn1cc(Br)cn1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'OCCn1cc(B(O)O)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'OCCn1cc(B(O)O)cn1', 'c1cn2ccnc2cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999979734420776, 0.9999879002571106, 0.9999412298202515, 0.9999108910560608, 0.9997612237930298, 0.9991234540939331, 0.9989131093025208, 0.9978275299072266] +Cc1cc(Nc2cnc3cnccn23)nn1C; ['Cc1cc(N)nn1C', 'Brc1cnc2cnccn12']; ['Clc1cnc2cnccn12', 'Cc1cc(N)nn1C']; [0.9996899962425232, 0.9991892576217651] +CNC(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cnccn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Ic1cnc2cnccn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12']; [1.0, 0.9999995827674866, 0.9999983310699463, 0.999997615814209, 0.999885082244873, 0.9998541474342346] +Cc1csc2c(-c3cnc4cnccn34)ncnc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3cnccn23)nc1; ['Brc1cnc2cnccn12']; ['CCNC(=O)c1ccc(Br)nc1']; [0.999883770942688] +O=C(Nc1cnc2cnccn12)c1ccco1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['NC(=O)c1ccco1', 'NC(=O)c1ccco1']; [0.9893444776535034, 0.9863361120223999] +NC(=O)c1ccc(Cc2cnc3cnccn23)cc1; ['Clc1cnc2cnccn12']; ['NC(=O)c1ccc(CBr)cc1']; [0.9622694253921509] +Clc1cnc(-c2cnc3cnccn23)nc1; [None]; [None]; [0] +Nc1cc(-c2cnc3cnccn23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cnc3cnccn23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1cnc2cnccn12', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'COc1cc(OC)cc(B(O)O)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999983906745911, 0.9999982714653015, 0.9999958276748657, 0.9999842643737793, 0.99996417760849, 0.9999476671218872, 0.9997307062149048, 0.9996867775917053, 0.9996659159660339, 0.9975855350494385, 0.997413158416748, 0.9774722456932068] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnc3cnccn23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3cnccn13)cn2C; ['COc1ccc2c(ccn2C)c1']; ['c1cn2ccnc2cn1']; [0.9993440508842468] +COc1ccc2oc(-c3cnc4cnccn34)cc2c1; ['Brc1cnc2cnccn12']; ['COc1ccc2oc(B(O)O)cc2c1']; [0.9994374513626099] +O=S(=O)(CCO)c1ccc(Cc2cnc3cnccn23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['CC(C)(C)c1ccc(C(N)=O)cc1', 'Clc1cnc2cnccn12']; [0.9919875860214233, 0.8432629704475403] +c1cn2c(-c3ccc4cn[nH]c4c3)cnc2cn1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999997615814209, 0.9999992847442627, 0.9999963045120239, 0.9999961853027344, 0.999992847442627, 0.9999719858169556, 0.9995051622390747, 0.9994286894798279, 0.9984529614448547, 0.9254458546638489] +CCNC(=O)N1CCC(c2cnc3cnccn23)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc3cnccn23)CC1; [None]; [None]; [0] +CCn1cc(-c2cnc3cnccn23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cnc2cnccn12', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Cl)cn1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CCn1cc(B(O)O)cn1']; [0.9999972581863403, 0.9999727010726929, 0.9999584555625916, 0.9999299645423889, 0.9998924732208252, 0.9993892908096313, 0.9986798167228699, 0.9971421957015991, 0.9945492744445801] +c1ccc2oc(-c3cnc4cnccn34)cc2c1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9998047351837158, 0.9994872212409973] +COc1ccc2nc(-c3cnc4cnccn34)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1']; ['O=C(O)c1cnc2cnccn12', 'N#Cc1cnc2cnccn12', 'O=Cc1cnc2cnccn12']; [0.9999585747718811, 0.9999377131462097, 0.9998013973236084] +C[NH+](C)Cc1ccc(-c2cnc3cnccn23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc3cnccn23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cnc4cnccn34)c2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc3cnccn23)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Clc1cnc2cnccn12']; [0.9991051554679871] +FC(F)(F)Oc1ccc(-c2cnc3cnccn23)cc1; ['FC(F)(F)Oc1ccc(Br)cc1', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Clc1cnc2cnccn12', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1']; ['c1cn2ccnc2cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999998211860657, 0.9999998211860657, 0.9999997615814209, 0.9999991655349731, 0.9999930262565613, 0.999955415725708] +O=C(Nc1cccc(-c2cnc3cnccn23)c1)N1CCCC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1ccn(C)n1']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999947547912598, 0.9999927282333374, 0.9999920129776001, 0.9996093511581421, 0.9995251893997192, 0.9992077946662903, 0.9985218048095703, 0.9958384037017822] +c1cn2c(-c3ncc4sccc4n3)cnc2cn1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc2cnccn12; [None]; [None]; [0] +Cn1cc(-c2cnc3cnccn23)c2ccccc21; ['Brc1cnc2cnccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Clc1cnc2cnccn12', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1cnc2cnccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'c1cn2ccnc2cn1']; [0.9999994039535522, 0.999998152256012, 0.9999639987945557, 0.8987825512886047] +CCc1cccc(-c2cnc3cnccn23)n1; ['CCc1cccc(Br)n1', 'CCc1cccc(Br)n1', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CCc1cccc(Br)n1', 'CCc1ccccn1']; [0.9999322891235352, 0.9996291399002075, 0.9976745843887329, 0.9095960855484009] +Cc1n[nH]c2cc(-c3cnc4cnccn34)ccc12; ['Brc1cnc2cnccn12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Brc1cnc2cnccn12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999995827674866, 0.9999990463256836, 0.9999990463256836, 0.9999974966049194, 0.9999897480010986, 0.9999879598617554, 0.9971311092376709] +c1cn2c(-c3ncn4c3CCCC4)cnc2cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc4cnccn34)cn2)CC1; ['Brc1cnc2cnccn12', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'Clc1cnc2cnccn12']; [0.999994158744812, 0.9999852180480957] +CN(C)c1ccc(-c2cnc3cnccn23)cn1; ['Brc1cnc2cnccn12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cnc2cnccn12', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1cnc2cnccn12', 'CN(C)c1ccc(I)cn1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CN(C)c1ccc(B(O)O)cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'CN(C)c1ccc(Br)cn1', 'c1cn2ccnc2cn1']; [0.9999996423721313, 0.9999996423721313, 0.9999960064888, 0.9999950528144836, 0.9999903440475464, 0.9999691247940063, 0.9999659061431885, 0.999297022819519, 0.9990919828414917, 0.9981707334518433] +O=C(Nc1cnc2cnccn12)c1cccc(OC(F)(F)F)c1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999925494194031, 0.9999191761016846] +Cn1ncc2cc(-c3cnc4cnccn34)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1cnc2cnccn12', 'Cn1ncc2cc(B(O)O)ccc21', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Brc1cnc2cnccn12', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'c1cn2ccnc2cn1', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'Cn1ncc2cc(Br)ccc21', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [1.0, 1.0, 1.0, 1.0, 1.0, 0.9999996423721313, 0.999998927116394, 0.9999977350234985, 0.9999755620956421, 0.9999634027481079, 0.9997241497039795, 0.9984023571014404, 0.9963235855102539] +O=C1CCCN1c1cccc(-c2cnc3cnccn23)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'O=C1CCCN1c1cccc(Br)c1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'c1cn2ccnc2cn1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999998211860657, 0.9999983310699463, 0.9999973773956299, 0.9999427795410156, 0.9980833530426025] +CC(C)(O)c1ccc2cc(-c3cnc4cnccn34)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc4cnccn34)ccc21; [None]; [None]; [0] +OCCc1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999994039535522, 0.9999984502792358, 0.999987781047821, 0.9999873638153076, 0.999904990196228, 0.9997150301933289, 0.9947053790092468, 0.9926671981811523] +Cc1ncc(-c2ccc(-c3cnc4cnccn34)cc2)n1C; [None]; [None]; [0] +Cc1cc(-c2cnc3cnccn23)cc(C)c1OCCO; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3cnccn23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1cnc2cnccn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Ic1cnc2cnccn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1cnc2cnccn12']; [0.9999967813491821, 0.9999785423278809, 0.999970018863678] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3cnccn23)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cnccn12', 'CCNC(=O)c1ccc(Br)cc1']; [0.9999982714653015, 0.9999827146530151, 0.9999816417694092, 0.9999352693557739, 0.9965606927871704] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +Cc1cc(Nc2cnc3cnccn23)ncc1F; ['Brc1cnc2cnccn12', 'Cc1cc(N)ncc1F']; ['Cc1cc(N)ncc1F', 'Clc1cnc2cnccn12']; [0.9997973442077637, 0.9985187649726868] +c1ccc(Nc2cnc3cnccn23)nc1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Nc1ccccn1', 'Nc1ccccn1']; [0.9998645782470703, 0.9992035627365112] +CN(C)C(=O)c1ccc(-c2cnc3cnccn23)nc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc2cnccn12; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc3cnccn23)cc1; ['CCNC(=O)Cc1ccc(Br)cc1', 'Brc1cnc2cnccn12']; ['c1cn2ccnc2cn1', 'CCNC(=O)Cc1ccc(Br)cc1']; [0.9974789023399353, 0.996921181678772] +Fc1ccc(Nc2cnc3cnccn23)nc1; ['Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1']; [0.9999363422393799, 0.9999351501464844, 0.9999258518218994] +Cn1nc(-c2cnc3cnccn23)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3cnccn23)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'Brc1cnc2cnccn12', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1']; ['c1cn2ccnc2cn1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999980926513672, 0.9999334812164307, 0.999859094619751, 0.999017596244812] +Oc1cc(-c2cnc3cnccn23)ccc1Cl; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999960660934448, 0.9999955892562866, 0.9999803304672241, 0.9999631643295288, 0.999856173992157, 0.9989721775054932, 0.9977824687957764] +Fc1ccc(Oc2cnc3cnccn23)cc1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9997541904449463, 0.9992036819458008] +Clc1cccc(Cl)c1-c1cnc2cnccn12; ['Ic1cnc2cnccn12', 'OB(O)c1c(Cl)cccc1Cl', 'Brc1cnc2cnccn12', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cnc2cnccn12', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1Cl']; ['OB(O)c1c(Cl)cccc1Cl', 'c1cn2ccnc2cn1', 'OB(O)c1c(Cl)cccc1Cl', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1c(Cl)cccc1Cl', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999607801437378, 0.9999183416366577, 0.9999141097068787, 0.9998880624771118, 0.9993691444396973, 0.9988582134246826, 0.9960386753082275, 0.990301251411438, 0.9851515293121338, 0.9137271642684937] +Clc1ccc2c(c1-c1cnc3cnccn13)OCO2; ['Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'OB(O)c1c(Cl)ccc2c1OCO2', 'Clc1cnc2cnccn12', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'c1cn2ccnc2cn1', 'OB(O)c1c(Cl)ccc2c1OCO2', 'c1cn2ccnc2cn1']; [0.9999740123748779, 0.9999722242355347, 0.9999656677246094, 0.9993453025817871, 0.9834247827529907] +c1cc(-c2cnc3cnccn23)c2cccnc2c1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Clc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'Clc1cnc2cnccn12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Brc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999964833259583, 0.9999924898147583, 0.9999701976776123, 0.9999691247940063, 0.9996778964996338, 0.9995896816253662, 0.999298095703125, 0.9992327690124512, 0.9979117512702942, 0.9964685440063477, 0.9944930672645569, 0.9772313237190247, 0.9314374923706055, 0.9109318256378174, 0.7883460521697998] +NC(=O)c1ccc(-c2cnc3cnccn23)c(F)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Ic1cnc2cnccn12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'Clc1cnc2cnccn12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999990463256836, 0.9999979734420776, 0.9999898672103882, 0.9999886155128479, 0.9999265670776367, 0.9999024868011475] +CNC(=O)c1ccc(C)c(-c2cnc3cnccn23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2cnccn12; [None]; [None]; [0] +Oc1ccc(-c2cnc3cnccn23)c(Cl)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1cnc2cnccn12', 'Oc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Brc1cnc2cnccn12', 'Oc1ccc(I)c(Cl)c1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(O)cc1Cl', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(O)cc1Cl', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1']; [0.9999942779541016, 0.9999758005142212, 0.9999356865882874, 0.9998540282249451, 0.9998041391372681, 0.9998008012771606, 0.9995355606079102, 0.9987177848815918, 0.9976413249969482, 0.9963259696960449] +COc1cc(C(N)=O)ccc1-c1cnc2cnccn12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cnccn12', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; ['Ic1cnc2cnccn12', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999967813491821, 0.999995231628418, 0.9999918937683105, 0.9980676174163818] +c1ccc2c(-c3cnc4cnccn34)n[nH]c2c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3cnccn23)c(F)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Brc1cnc2cnccn12', 'Oc1ccc(Br)c(F)c1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Cl)c(F)c1']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1ccc(O)cc1F', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(O)cc1F', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999952912330627, 0.9999899864196777, 0.9999785423278809, 0.9999092817306519, 0.9998043179512024, 0.9997318387031555, 0.999661922454834, 0.9981712102890015, 0.9974991083145142, 0.9949585199356079] +Nc1nccc(-c2cnc3cnccn23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cnccn12', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'Brc1cnc2cnccn12', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Cl']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'COc1ccc(F)cc1B(O)O', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1ccc(F)cc1[Mg]Br', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999996423721313, 0.9999979734420776, 0.999994158744812, 0.9999929666519165, 0.9999836683273315, 0.9999819397926331, 0.999945878982544, 0.9999212622642517, 0.9999203681945801, 0.99966961145401, 0.9994394779205322, 0.9992901086807251, 0.9981310963630676] +Cc1nc2c(F)cc(-c3cnc4cnccn34)cc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2cnc3cnccn23)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'OB(O)c1cccc(Br)c1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cccc(I)c1', 'Clc1cccc(Br)c1', 'Brc1cnc2cnccn12', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'c1cn2ccnc2cn1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1cccc(Br)c1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999994039535522, 0.9999955296516418, 0.9999926090240479, 0.9999918937683105, 0.9999911785125732, 0.9999574422836304, 0.9999439716339111, 0.9997120499610901, 0.9996691942214966, 0.9990900754928589, 0.9957906007766724] +c1ccc2cc(-c3cnc4cnccn34)ccc2c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1cnc2cnccn12', 'OB(O)c1ccc2ccccc2c1', 'Clc1cnc2cnccn12', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1ccc2ccccc2c1', 'Clc1cnc2cnccn12', 'OB(O)c1ccc2ccccc2c1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc2ccccc2c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999988079071045, 0.9999987483024597, 0.999997615814209, 0.9999927282333374, 0.9999866485595703, 0.9999426603317261, 0.9999390244483948, 0.9998191595077515, 0.9994116425514221, 0.9990594387054443, 0.9878551959991455, 0.9536728262901306] +Clc1[nH]ncc1-c1cnc2cnccn12; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3cnccn23)o1; ['COC(=O)c1ccc(B(O)O)o1']; ['Clc1cnc2cnccn12']; [0.997635006904602] +COc1cc(F)ccc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'Brc1cnc2cnccn12', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'Brc1cnc2cnccn12', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1C(=O)O']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'COc1cc(F)ccc1B(O)O', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'COc1cc(F)ccc1Br', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999994039535522, 0.9999980330467224, 0.999995231628418, 0.9999867081642151, 0.9999836683273315, 0.9999831914901733, 0.999977707862854, 0.9999738931655884, 0.9999406933784485, 0.9999381899833679, 0.9999118447303772, 0.9998362064361572, 0.9990558624267578, 0.9975966215133667] +Oc1ccc(-c2ccc(-c3cnc4cnccn34)cc2)c(O)c1; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Brc1cnc2cnccn12']; ['c1cn2ccnc2cn1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9894245862960815, 0.9638450145721436] +Oc1ccc(-c2cnc3cnccn23)cc1F; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'OB(O)c1ccc(O)c(F)c1', 'Clc1cnc2cnccn12', 'Oc1ccc(Br)cc1F', 'Oc1ccccc1F']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1ccc(O)c(F)c1', 'Clc1cnc2cnccn12', 'OB(O)c1ccc(O)c(F)c1', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(O)c(F)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999997615814209, 0.9999996423721313, 0.9999978542327881, 0.9999967813491821, 0.9999966621398926, 0.9999948740005493, 0.9999876022338867, 0.9999637007713318, 0.8064911365509033] +Oc1ccc(-c2cnc3cnccn23)c(O)c1; ['Oc1ccc(Br)c(O)c1', 'Brc1cnc2cnccn12', 'Oc1cccc(O)c1']; ['c1cn2ccnc2cn1', 'Oc1ccc(Br)c(O)c1', 'c1cn2ccnc2cn1']; [0.9974402189254761, 0.958428144454956, 0.8379964232444763] +Fc1ccc(-c2cnc3cnccn23)cc1Cl; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Fc1ccc(Br)cc1Cl', 'Brc1cnc2cnccn12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Clc1cnc2cnccn12', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccccc1Cl']; ['Ic1cnc2cnccn12', 'OB(O)c1ccc(F)c(Cl)c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(F)c(Cl)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'OB(O)c1ccc(F)c(Cl)c1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [1.0, 1.0, 1.0, 1.0, 0.9999996423721313, 0.9999995231628418, 0.9999980926513672, 0.9999979734420776, 0.9999971985816956, 0.9999969005584717, 0.9976972341537476, 0.9954218864440918, 0.9484254121780396] +COc1cc(CCc2cnc3cnccn23)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc3cnccn23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3cnc4cnccn34)c2c1; [None]; [None]; [0] +Clc1ccccc1OCc1cnc2cnccn12; [None]; [None]; [0] +c1cc2c(-c3cnc4cnccn34)c[nH]c2cn1; [None]; [None]; [0] +Nc1cc(-c2cnc3cnccn23)ccn1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'Oc1ccc(Cl)c(Br)c1', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'c1cn2ccnc2cn1', 'OB(O)c1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl']; [0.9999746084213257, 0.9989032745361328, 0.9985378980636597, 0.9982173442840576, 0.9883201122283936] +Cc1ccc2[nH]ncc2c1-c1cnc2cnccn12; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cnccn12', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cnccn12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1Br', 'Brc1cnc2cnccn12', 'Cc1ccc2[nH]ncc2c1I']; ['Ic1cnc2cnccn12', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cnccn12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Cc1ccc2[nH]ncc2c1Br', 'c1cn2ccnc2cn1']; [0.9999992847442627, 0.999998927116394, 0.9999935626983643, 0.999733030796051, 0.9994776248931885, 0.9991312623023987, 0.9962040185928345, 0.9956328868865967, 0.9943375587463379, 0.9923044443130493, 0.9908732175827026] +Oc1ncc(-c2cnc3cnccn23)cc1Cl; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncccc1Cl']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999979734420776, 0.9999977946281433, 0.9999876618385315, 0.997097373008728, 0.9878670573234558, 0.9826961755752563] +NC(=O)c1cc(-c2cnc3cnccn23)c[nH]1; ['NC(=O)c1cc(Br)c[nH]1']; ['c1cn2ccnc2cn1']; [0.9800025224685669] +CCOc1cccc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'Brc1cnc2cnccn12', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(Br)c1', 'Brc1cnc2cnccn12', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1', 'Brc1cnc2cnccn12']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CCOc1cccc(B(O)O)c1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'CCOc1cccc(Br)c1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'CCOc1cccc([Mg]Br)c1']; [0.9999991655349731, 0.9999978542327881, 0.9999786019325256, 0.9999744892120361, 0.9999688863754272, 0.9998676776885986, 0.9997146129608154, 0.9996851682662964, 0.9994121193885803, 0.9989174604415894, 0.9987159967422485, 0.9976792335510254, 0.9968959093093872] +Cc1ccc(CO)cc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Cl']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999957084655762, 0.9999852180480957, 0.9999432563781738, 0.9989035725593567, 0.9986371994018555, 0.9982798099517822, 0.9975219964981079, 0.9962087273597717, 0.9902870655059814, 0.9809673428535461] +Cc1nc2ccc(-c3cnc4cnccn34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Brc1cnc2cnccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1']; ['Ic1cnc2cnccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12']; [0.9999997019767761, 0.9999995231628418, 0.9999979734420776, 0.9995117783546448, 0.999321699142456, 0.8543294668197632] +c1cn2c(-c3cnc4[nH]ccc4c3)cnc2cn1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2cnccn12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999994039535522, 0.9999979734420776, 0.999997615814209, 0.9999783039093018, 0.9999661445617676] +NC(=O)Nc1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Clc1cnc2cnccn12']; [1.0, 0.9999988079071045, 0.9999973773956299] +Fc1ccc(-c2nc[nH]c2-c2cnc3cnccn23)cc1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnc4cnccn34)ccc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999996423721313, 0.9999994039535522, 0.9999808073043823, 0.9999703764915466, 0.999936044216156, 0.9999287724494934, 0.9999046325683594, 0.9980039596557617, 0.9967290163040161] +Oc1cncc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Oc1cncc(I)c1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1cncc(O)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'c1cn2ccnc2cn1']; [0.99996018409729, 0.9998795986175537, 0.9996237754821777, 0.998940110206604, 0.998481273651123, 0.9972859621047974, 0.996321439743042, 0.996062159538269, 0.9904072880744934] +COc1cc(CCc2cnc3cnccn23)cc(OC)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cnc4cnccn34)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'Clc1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12', 'O=C1Cc2cc(I)ccc2N1', 'Brc1cnc2cnccn12', 'O=C1Cc2cc(Cl)ccc2N1']; ['Ic1cnc2cnccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Clc1cnc2cnccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'c1cn2ccnc2cn1', 'O=C1Cc2cc(Br)ccc2N1', 'c1cn2ccnc2cn1']; [0.9999935626983643, 0.9999871253967285, 0.9999645948410034, 0.9999555349349976, 0.9997450113296509, 0.999634861946106, 0.999617338180542, 0.9994969367980957, 0.9992871880531311, 0.9979135990142822, 0.9966535568237305, 0.9949387907981873, 0.9679973125457764] +CCc1cc(O)ccc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9999532699584961] +c1ccc2sc(-c3cnc4cnccn34)nc2c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'CCc1cc(O)c(F)cc1Br']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'c1cn2ccnc2cn1']; [0.9999996423721313, 0.9998232126235962] +CN(c1cccc(Cl)c1)c1cnc2cnccn12; ['CNc1cccc(Cl)c1', 'Brc1cnc2cnccn12']; ['Clc1cnc2cnccn12', 'CNc1cccc(Cl)c1']; [0.9946284294128418, 0.9761642813682556] +CNc1nccc(-c2cnc3cnccn23)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc4cnccn34)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc2cnccn12; ['Brc1cnc2cnccn12', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B(O)O', 'Brc1cnc2cnccn12', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Cc1cc(O)ccc1B(O)O', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999885559082031, 0.9999524354934692, 0.9999226927757263, 0.9997318387031555, 0.9980063438415527, 0.9974762201309204, 0.9973196983337402, 0.9464747905731201] +CCc1sccc1-c1cnc2cnccn12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc2cnccn12; [None]; [None]; [0] +Clc1cnccc1-c1cnc2cnccn12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1cnc2cnccn12', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'Clc1cnc2cnccn12', 'Clc1ccncc1Cl', 'Clc1cnccc1Br', 'Clc1ccncc1Cl']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'Clc1cnc2cnccn12', 'OB(O)c1ccncc1Cl', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'OB(O)c1ccncc1Cl', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12']; [0.9999861717224121, 0.9999575614929199, 0.9998103380203247, 0.9996358752250671, 0.9994475841522217, 0.9992574453353882, 0.999046266078949, 0.9989845752716064, 0.9915720224380493, 0.9810696840286255, 0.9714831709861755, 0.8553752899169922] +FC(F)c1cc(-c2cnc3cnccn23)[nH]n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnc3cnccn23)cc1Cl; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999876618385315, 0.9999856948852539, 0.999453604221344, 0.9985043406486511, 0.9975545406341553] +Cc1n[nH]c(-c2cnc3cnccn23)c1C; [None]; [None]; [0] +c1cc(Nc2cnc3cnccn23)ccn1; ['Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9994684457778931, 0.999463677406311, 0.998694121837616] +c1cn2c(-c3ccc4c(c3)CCN4)cnc2cn1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Brc1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Clc1cnc2cnccn12', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'c1cn2ccnc2cn1', 'Brc1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999991655349731, 0.999998152256012, 0.9999945163726807, 0.9999902248382568, 0.9997462034225464, 0.999585747718811, 0.9974021911621094, 0.9938456416130066, 0.9842183589935303] +O=c1[nH]c2ccc(-c3cnc4cnccn34)cc2[nH]1; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Brc1cnc2cnccn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Clc1cnc2cnccn12', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=C(O)c1cnc2cnccn12', 'O=c1[nH]c2ccc(I)cc2[nH]1']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Ic1cnc2cnccn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Clc1cnc2cnccn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'c1cn2ccnc2cn1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'c1cn2ccnc2cn1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'c1cn2ccnc2cn1']; [0.9999974370002747, 0.9999966621398926, 0.9999957084655762, 0.9999891519546509, 0.9999881982803345, 0.9999841451644897, 0.9999587535858154, 0.99992835521698, 0.9994498491287231, 0.9993536472320557] +Fc1cc(Br)ccc1-c1cnc2cnccn12; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Brc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl', 'Brc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br']; [0.9999974966049194, 0.9999929666519165, 0.9999903440475464, 0.9999843835830688, 0.9999301433563232, 0.999782919883728, 0.9995133876800537, 0.9995026588439941, 0.9994168877601624, 0.9992564916610718, 0.9982905387878418, 0.9955043792724609] +CNc1nc(-c2cnc3cnccn23)ncc1F; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnc3cnccn23)c1; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Oc1cc(Br)cc(Br)c1']; ['Ic1cnc2cnccn12', 'OB(O)c1cc(O)cc(Br)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'c1cn2ccnc2cn1']; [0.9999968409538269, 0.9999889135360718, 0.9999655485153198, 0.9998835325241089, 0.9981751441955566, 0.9806605577468872] +Cc1oc(-c2cnc3cnccn23)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1cc(-c2cnc3cnccn23)nc2ccnn12; [None]; [None]; [0] +Cc1cc(-c2cnc3cnccn23)ccc1C(N)=O; ['Brc1cnc2cnccn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12']; [1.0, 1.0, 1.0] +Cc1cc(-c2cnc3cnccn23)cc(C)c1O; ['Brc1cnc2cnccn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Brc1cnc2cnccn12', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(I)cc(C)c1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Ic1cnc2cnccn12', 'Cc1cc(B(O)O)cc(C)c1O', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.999980092048645, 0.9999513030052185, 0.9998658895492554, 0.9988271594047546, 0.9982279539108276, 0.9948738813400269, 0.9947404861450195, 0.9928961396217346, 0.9725449085235596, 0.9720920324325562] +CN(c1cccc2[nH]ncc12)c1cnc2cnccn12; ['CNc1cccc2[nH]ncc12', 'Brc1cnc2cnccn12']; ['Clc1cnc2cnccn12', 'CNc1cccc2[nH]ncc12']; [0.9979537725448608, 0.9910929203033447] +O=C(NC1CC1)c1ccc(-c2cnc3cnccn23)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Brc1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'Brc1cnc2cnccn12', 'O=C(NC1CC1)c1ccc(Br)cc1']; ['Ic1cnc2cnccn12', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Clc1cnc2cnccn12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'c1cn2ccnc2cn1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'c1cn2ccnc2cn1']; [1.0, 1.0, 0.9999995231628418, 0.9999992251396179, 0.9999829530715942, 0.9999812841415405, 0.9999717473983765, 0.9970927238464355, 0.9966893792152405] +Cc1nc2ccc(-c3cnc4cnccn34)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Brc1cnc2cnccn12', 'Cc1nc2ccc(B(O)O)cc2o1', 'Brc1cnc2cnccn12', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Ic1cnc2cnccn12', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Clc1cnc2cnccn12', 'Cc1nc2ccc(B(O)O)cc2o1', 'O=C(O)c1cnc2cnccn12', 'c1cn2ccnc2cn1']; [0.9999997615814209, 0.9999997019767761, 0.9999994039535522, 0.9999992847442627, 0.9999988079071045, 0.9999972581863403, 0.9998172521591187, 0.9997879266738892] +Fc1ccc2n[nH]c(-c3cnc4cnccn34)c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc2cnccn12; [None]; [None]; [0] +CSc1cccc(-c2cnc3cnccn23)c1; ['Brc1cnc2cnccn12', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'Brc1cnc2cnccn12', 'CSc1cccc(Br)c1', 'CSc1cccc([Mg]Br)c1', 'Brc1cnc2cnccn12', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CSc1cccc(B(O)O)c1', 'c1cn2ccnc2cn1', 'Clc1cnc2cnccn12', 'CSc1cccc(Br)c1', 'c1cn2ccnc2cn1', 'O=C(O)c1cnc2cnccn12', 'O=C(O)c1cnc2cnccn12']; [0.9999991655349731, 0.9999986886978149, 0.999997615814209, 0.999927282333374, 0.9999041557312012, 0.9998573064804077, 0.9998515844345093, 0.9993292689323425, 0.9973427057266235, 0.9931377172470093, 0.9930338859558105, 0.9926425218582153, 0.9483584761619568] +Oc1c(F)cc(-c2cnc3cnccn23)cc1F; ['Brc1cnc2cnccn12', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'Brc1cnc2cnccn12']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Ic1cnc2cnccn12', 'Clc1cnc2cnccn12', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1', 'Oc1c(F)cc(Br)cc1F']; [0.9999982714653015, 0.9999982118606567, 0.9999843835830688, 0.9999580383300781, 0.9997867345809937, 0.9996405839920044, 0.9988847970962524, 0.9985418915748596, 0.9898858070373535] +Fc1ccc(Oc2cnc3cnccn23)c(F)c1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999953508377075, 0.9999614953994751] +c1ccc2c(COc3cnc4cnccn34)cccc2c1; ['Clc1cnc2cnccn12', 'Brc1cnc2cnccn12']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9760012626647949, 0.9241148233413696] +Cc1onc(-c2ccccc2)c1-c1cnc2cnccn12; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Brc1cnc2cnccn12', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; ['Ic1cnc2cnccn12', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Clc1cnc2cnccn12', 'c1cn2ccnc2cn1', 'c1cn2ccnc2cn1']; [0.9999653100967407, 0.9999297857284546, 0.9996788501739502, 0.9994763731956482, 0.9992014169692993] +Fc1ccc(COc2cnc3cnccn23)c(F)c1; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12', 'Ic1cnc2cnccn12']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999699592590332, 0.9999271631240845, 0.9999139308929443] +CC(=O)N(C)c1ccc(Nc2nccs2)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'Brc1nccs1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Clc1nccs1', 'CC(=O)N(C)c1ccc(N)cc1', 'Nc1nccs1']; [0.9983896613121033, 0.9941354990005493, 0.9666482210159302] +Fc1cccc(Cl)c1CNc1cnc2cnccn12; ['Brc1cnc2cnccn12', 'Clc1cnc2cnccn12']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [1.0, 0.9999995231628418] +Fc1ccc(CCc2cnc3cnccn23)c(F)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cnc4cnccn34)ccc12; [None]; [None]; [0] +c1ccc2nc(Nc3nccs3)ncc2c1; ['Clc1ncc2ccccc2n1', 'Clc1nccs1', 'Brc1nccs1']; ['Nc1nccs1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.999982476234436, 0.9999677538871765, 0.9999584555625916] +CCOc1ccc(Nc2nccs2)cc1; ['CCOc1ccc(NC(N)=S)cc1', None, 'CCOC(CCl)OCC', 'CCOC(Cl)CCl', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'Brc1nccs1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Cl)cc1']; ['O=CCCl', None, 'CCOc1ccc(NC(N)=S)cc1', 'CCOc1ccc(NC(N)=S)cc1', 'Clc1nccs1', 'Nc1nccs1', 'CCOc1ccc(N)cc1', 'Nc1nccs1', 'Nc1nccs1']; [0.999805212020874, 0, 0.9993444681167603, 0.9989145398139954, 0.9841145873069763, 0.9817869663238525, 0.9809805154800415, 0.9548736214637756, 0.8745454549789429] +c1ccc2c(CCc3cnc4cnccn34)c[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnc3cnccn23)cc1; [None]; [None]; [0] +COc1cc(Nc2nccs2)cc(OC)c1OC; ['COc1cc(NC(N)=S)cc(OC)c1OC', 'CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Brc1nccs1', 'COc1cc(N)cc(OC)c1OC']; ['O=CCCl', 'COc1cc(NC(N)=S)cc(OC)c1OC', None, 'COc1cc(NC(N)=S)cc(OC)c1OC', 'Nc1nccs1', 'Nc1nccs1', 'COc1cc(N)cc(OC)c1OC', 'Clc1nccs1']; [0.9998977184295654, 0.9998354315757751, 0, 0.9994285106658936, 0.9980688095092773, 0.9967077970504761, 0.9956492185592651, 0.994957447052002] +c1cnn2c(Nc3nccs3)cnc2c1; ['Brc1cnc2cccnn12', 'Clc1nccs1', 'Clc1cnc2cccnn12', 'Brc1nccs1']; ['Nc1nccs1', 'Nc1cnc2cccnn12', 'Nc1nccs1', 'Nc1cnc2cccnn12']; [0.9999983310699463, 0.99998939037323, 0.9999830722808838, 0.999979555606842] +COc1ncccc1Nc1nccs1; ['Brc1nccs1', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1Cl']; ['COc1ncccc1N', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9995642900466919, 0.9989532232284546, 0.9986100196838379, 0.9978227615356445, 0.9973345994949341] +COc1ccc(Nc2nccs2)cc1; ['COc1ccc(NC(N)=S)cc1', 'CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'Brc1nccs1', 'COc1ccc(N)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; ['O=CCCl', 'COc1ccc(NC(N)=S)cc1', None, 'COc1ccc(NC(N)=S)cc1', 'COc1ccc(N)cc1', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9998743534088135, 0.9998571276664734, 0, 0.9992698431015015, 0.9886114597320557, 0.9864925146102905, 0.9730252027511597, 0.9657438397407532] +CS(=O)(=O)c1cccc(Nc2nccs2)c1; ['Brc1nccs1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['CS(=O)(=O)c1cccc(N)c1', 'Nc1nccs1', 'Clc1nccs1']; [0.9999392032623291, 0.9997433423995972, 0.9995107650756836] +Cc1ccc2ncn(Nc3nccs3)c2c1; [None]; [None]; [0] +Oc1cccc(Nc2nccs2)c1; ['Brc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9914925694465637, 0.9869503974914551, 0.9867111444473267] +N#Cc1ccc(O)c(Nc2nccs2)c1; ['Clc1nccs1', 'CSc1nccs1', 'Brc1nccs1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(F)c1']; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.999885082244873, 0.9997299313545227, 0.999541163444519, 0.9991694688796997, 0.9984954595565796, 0.9983400106430054] +Clc1ccc(-c2[nH]ncc2-c2cnc3cnccn23)cc1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2nccs2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3nccs3)nc2c1; ['Brc1nccs1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nccs1', 'Nc1nccs1']; [0.991905689239502, 0.9860093593597412, 0.9763376712799072] +c1ccc2c(Nc3nccs3)nccc2c1; ['Clc1nccs1', 'Brc1nccs1', 'Clc1nccc2ccccc12', 'Brc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1nccs1', 'Nc1nccs1']; [0.9998780488967896, 0.9997424483299255, 0.9995241165161133, 0.9994942545890808] +O=C([O-])c1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +c1csc(Nc2ccc(N3CCOCC3)cc2)n1; ['CSc1nccs1', 'Brc1nccs1', 'Clc1nccs1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.999963641166687, 0.9996731281280518, 0.9992602467536926, 0.99919193983078, 0.9989501237869263, 0.9905158281326294] +NC(=O)c1ccc(Nc2nccs2)cc1; ['Clc1nccs1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(F)cc1', 'NC(=O)c1ccc(Cl)cc1']; ['NC(=O)c1ccc(N)cc1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9987576007843018, 0.9971503019332886, 0.9933254718780518, 0.9796260595321655, 0.9696266055107117] +O=C(Nc1ccccc1)c1ccc(Nc2nccs2)cc1; ['Brc1nccs1', 'Clc1nccs1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1']; [0.999932050704956, 0.9992523789405823] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3nccs3)cc2)CC1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1nccs1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3nccs3)cn2)c1; [None]; [None]; [0] +O=C(c1ccc(Nc2nccs2)nc1)N1CCOCC1; ['Nc1nccs1', 'Clc1nccs1', 'Brc1nccs1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999990463256836, 0.9999860525131226, 0.999945878982544] +c1cc(Nc2nccs2)cc(C2CCNCC2)c1; [None]; [None]; [0] +OCCOc1ccc(Nc2nccs2)cc1; ['Clc1nccs1', 'Nc1nccs1', 'Brc1nccs1']; ['Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1', 'Nc1ccc(OCCO)cc1']; [0.997631847858429, 0.997314453125, 0.9963047504425049] +O=C(c1ccc(Nc2nccs2)cc1)N1CCOCC1; ['Brc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Clc1nccs1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1']; [0.9998914003372192, 0.9998641610145569, 0.9996812343597412, 0.9996128678321838] +FC(F)(F)c1ccc(Nc2nccs2)cc1; ['CCOC(CCl)OCC', 'NC(=S)Nc1ccc(C(F)(F)F)cc1', None, 'CCOC(Cl)CCl', 'Brc1nccs1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'Clc1nccs1']; ['NC(=S)Nc1ccc(C(F)(F)F)cc1', 'O=CCCl', None, 'NC(=S)Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1ccc(C(F)(F)F)cc1']; [0.9998637437820435, 0.9997162222862244, 0, 0.9983444213867188, 0.9972047805786133, 0.996161699295044, 0.9947609901428223, 0.9944066405296326] +CNS(=O)(=O)c1ccc(Nc2nccs2)cc1; ['Brc1nccs1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['CNS(=O)(=O)c1ccc(N)cc1', 'Clc1nccs1', 'Nc1nccs1']; [0.9985287189483643, 0.9940046668052673, 0.9784865379333496] +CN(C)c1ccc(Nc2nccs2)cc1; ['CCOC(CCl)OCC', None, 'CN(C)c1ccc(NC(N)=S)cc1', 'CCOC(Cl)CCl', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'Brc1nccs1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1']; ['CN(C)c1ccc(NC(N)=S)cc1', None, 'O=CCCl', 'CN(C)c1ccc(NC(N)=S)cc1', 'CSc1nccs1', 'Clc1nccs1', 'CN(C)c1ccc(N)cc1', 'Nc1nccs1', 'Nc1nccs1']; [0.999966561794281, 0, 0.9998072385787964, 0.9998048543930054, 0.9995647668838501, 0.9985964298248291, 0.997709333896637, 0.984428882598877, 0.9828416109085083] +Oc1ccccc1CNc1nccs1; ['Clc1nccs1', 'Brc1nccs1', 'Nc1nccs1']; ['NCc1ccccc1O', 'NCc1ccccc1O', 'O=Cc1ccccc1O']; [0.9995198249816895, 0.9971096515655518, 0.9316476583480835] +O=S1(=O)Cc2ccc(Nc3nccs3)cc2C1; ['Brc1nccs1', 'CSc1nccs1', 'Nc1nccs1', 'Clc1nccs1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9999832510948181, 0.9999491572380066, 0.9999057054519653, 0.9998087882995605] +c1cnc(NNc2nccs2)nc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Nc2nccs2)cc1; ['Brc1nccs1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1']; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CSc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Clc1nccs1']; [0.9997623562812805, 0.9994792342185974, 0.9990965127944946, 0.9985266327857971, 0.9984092116355896] +Cc1nc(C)c(Nc2nccs2)s1; ['Cc1nc(C)c(Br)s1']; ['Nc1nccs1']; [0.9997200965881348] +CC(=O)NCc1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2nccs2)CC1; ['Brc1nccs1', 'CS(=O)(=O)N1CCC(=O)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1']; ['CS(=O)(=O)N1CCC(N)CC1', 'Nc1nccs1', 'Clc1nccs1', 'CSc1nccs1']; [0.9999747276306152, 0.9999545216560364, 0.9994450807571411, 0.9990955591201782] +CC(C)c1cc(Nc2nccs2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1nccs1']; [0.9939768314361572] +Brc1ccc(Nc2nccs2)cc1; ['NC(=S)Nc1ccc(Br)cc1', 'CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'Clc1nccs1', 'Brc1ccc(I)cc1', 'Brc1nccs1', 'Brc1ccc(Br)cc1', None]; ['O=CCCl', 'NC(=S)Nc1ccc(Br)cc1', None, 'NC(=S)Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1nccs1', 'Nc1ccc(Br)cc1', 'Nc1nccs1', None]; [0.99998539686203, 0.999983549118042, 0, 0.9996973276138306, 0.9970217943191528, 0.9954094290733337, 0.9687461256980896, 0.9629809260368347, 0] +CCNS(=O)(=O)c1ccc(Nc2nccs2)cc1; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'Brc1nccs1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCN']; ['Nc1nccs1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'Clc1nccs1', 'c1ccc(Nc2nccs2)cc1']; [0.9887264966964722, 0.9863747358322144, 0.9796571731567383, 0.9618552923202515] +Nc1ncc(CNc2nccs2)cn1; ['Nc1ncc(CO)cn1', 'Nc1ncc(C=O)cn1']; ['Nc1nccs1', 'Nc1nccs1']; [0.9942513704299927, 0.9872534871101379] +CCCOc1ccc(Nc2nccs2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1nccs1']; [0.9999257326126099] +CC(=O)N1CCCN(c2cccc(Nc3nccs3)c2)CC1; ['CC(=O)N1CCCNCC1']; ['Fc1cccc(Nc2nccs2)c1']; [0.9998800754547119] +COc1ccc(CNc2nccs2)cc1; ['CCOC(CBr)OCC', 'COc1ccc(CNC(N)=S)cc1', 'CCOC(CCl)OCC', 'CCOC(Cl)CCl', 'COc1ccc(CN)cc1', 'Brc1nccs1', 'COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(CCl)cc1']; ['COc1ccc(CNC(N)=S)cc1', 'O=CCCl', 'COc1ccc(CNC(N)=S)cc1', 'COc1ccc(CNC(N)=S)cc1', 'Clc1nccs1', 'COc1ccc(CN)cc1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9999986886978149, 0.9999983310699463, 0.9999960660934448, 0.9999904632568359, 0.9998983144760132, 0.9997701048851013, 0.9980924725532532, 0.9976557493209839, 0.9945776462554932, 0.9889274835586548] +CN(C)c1ccc(Nc2nccs2)cc1Cl; ['Brc1nccs1', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(F)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CNC']; ['CN(C)c1ccc(N)cc1Cl', 'Nc1nccs1', 'Nc1nccs1', 'Clc1nccs1', 'Clc1ccc(Nc2nccs2)cc1Cl']; [0.9996626377105713, 0.9979040622711182, 0.9962621927261353, 0.9895692467689514, 0.9586217999458313] +c1csc(Nc2ccn3nccc3n2)n1; ['Brc1nccs1', 'Brc1ccn2nccc2n1', 'Clc1nccs1', 'Clc1ccn2nccc2n1']; ['Nc1ccn2nccc2n1', 'Nc1nccs1', 'Nc1ccn2nccc2n1', 'Nc1nccs1']; [0.999997615814209, 0.9999953508377075, 0.9999927282333374, 0.9999920129776001] +c1ccc(-n2cccn2)c(Nc2nccs2)c1; ['Brc1ccccc1-n1cccn1', 'Brc1nccs1', 'Clc1nccs1', 'Fc1ccccc1-n1cccn1']; ['Nc1nccs1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1nccs1']; [0.9999979734420776, 0.9999915957450867, 0.9999904632568359, 0.9999784827232361] +COc1ccc(Cl)cc1Nc1nccs1; ['COc1ccc(Cl)cc1NC(N)=S', 'CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'Brc1nccs1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Br']; ['O=CCCl', 'COc1ccc(Cl)cc1NC(N)=S', None, 'COc1ccc(Cl)cc1NC(N)=S', 'COc1ccc(Cl)cc1N', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9999896287918091, 0.9999810457229614, 0, 0.9999709129333496, 0.9999521970748901, 0.9997999668121338, 0.9997182488441467, 0.9996655583381653] +Cc1c(Nc2nccs2)cccc1C(=O)[O-]; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2nccs2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1nccs1']; [0.9999418258666992] +CCN(CC)C(=O)c1ccc(Nc2nccs2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'Brc1nccs1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['CSc1nccs1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9998172521591187, 0.9997414946556091, 0.9994863271713257, 0.9989811182022095, 0.9985636472702026] +COc1cc(OC)c(Nc2nccs2)cc1Cl; ['Brc1nccs1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Cl)cc1N', 'Clc1nccs1', 'Nc1nccs1']; [0.999244213104248, 0.9984133243560791, 0.995103120803833] +O=C(c1ccccc1)N1CC[C@H](Nc2nccs2)C1; [None]; [None]; [0] +c1ccc2c(Nc3nccs3)c[nH]c2c1; ['Clc1nccs1', 'Brc1c[nH]c2ccccc12', 'Brc1nccs1', 'Clc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1nccs1', 'Nc1c[nH]c2ccccc12', 'Nc1nccs1']; [0.9965949058532715, 0.9810588359832764, 0.970834493637085, 0.9138666987419128] +c1csc(Nc2ccc3c(c2)CCO3)n1; ['Brc1nccs1', 'Clc1nccs1', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1nccs1', 'Nc1nccs1']; [0.9990561008453369, 0.9972602725028992, 0.9961378574371338, 0.9947687983512878] +COc1cc(Nc2nccs2)ccc1O; ['Brc1nccs1', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1cc(N)ccc1O', 'Clc1nccs1', 'Nc1nccs1']; [0.9968369603157043, 0.99461829662323, 0.9874777793884277] +CC(=O)Nc1cccc(Nc2nccs2)c1; ['Brc1nccs1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['CC(=O)Nc1cccc(N)c1', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9996958374977112, 0.9992160797119141, 0.997390866279602, 0.9805209636688232] +c1cc(Nc2nccs2)c2c(c1)OCO2; ['Brc1cccc2c1OCO2', 'CSc1nccs1', 'Brc1nccs1', 'Ic1cccc2c1OCO2', 'Clc1nccs1']; ['Nc1nccs1', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1nccs1', 'Nc1cccc2c1OCO2']; [0.9987596869468689, 0.9984827041625977, 0.9903759956359863, 0.9897592663764954, 0.9875749349594116] +Fc1ccc2nc(CNc3nccs3)[nH]c2c1F; ['Nc1ccc(F)c(F)c1N']; ['O=C(O)CNc1nccs1']; [0.9999455213546753] +Fc1ccc2[nH]c(CNc3nccs3)nc2c1F; ['Nc1ccc(F)c(F)c1N']; ['O=C(O)CNc1nccs1']; [0.9994862675666809] +CC(C)(C)c1ccc(Nc2nccs2)cc1; ['CC(C)(C)c1ccc(NC(N)=S)cc1', 'CC(C)(C)c1ccc(NC(N)=S)cc1', 'CC(C)(C)c1ccc(NC(N)=S)cc1', None, 'CC(C)(C)c1ccc(NC(N)=S)cc1', 'Brc1nccs1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['CCOC(CCl)OCC', 'CCOC(CBr)OCC', 'O=CCCl', None, 'CCOC(Cl)CCl', 'CC(C)(C)c1ccc(N)cc1', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9999896287918091, 0.9999779462814331, 0.9999585151672363, 0, 0.9998377561569214, 0.9997715353965759, 0.9993877410888672, 0.998813271522522, 0.9981864094734192] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1nccs1; ['Brc1nccs1', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'Clc1nccs1']; [0.9998164176940918, 0.9996713995933533] +c1ccc(-c2cc(Nc3nccs3)n[nH]2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2nccs2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'Brc1nccs1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Clc1nccs1', 'Nc1nccs1', 'CN(C)C(=O)c1ccc(N)cc1', 'Nc1nccs1']; [0.9994412064552307, 0.998879075050354, 0.998406708240509, 0.9955536127090454] +c1ccc2[nH]c(CNc3nccs3)nc2c1; ['Nc1ccccc1N', 'ClCc1nc2ccccc2[nH]1', 'Clc1nccs1', 'Nc1nccs1', 'Brc1nccs1']; ['O=C(O)CNc1nccs1', 'Nc1nccs1', 'NCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1']; [0.9999717473983765, 0.9995068311691284, 0.9991198778152466, 0.9969761371612549, 0.9963537454605103] +Nc1nc(Nc2nccs2)cs1; ['NC(N)=S']; ['O=C(CCl)Nc1nccs1']; [0.9991193413734436] +c1ccc2ncc(Nc3nccs3)cc2c1; ['Clc1nccs1', 'Brc1nccs1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9955875873565674, 0.9909634590148926, 0.989641547203064, 0.9526923894882202, 0.9378404021263123] +CC(C)c1ccc2nc(Nc3nccs3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2nccs2)cn1; ['Brc1nccs1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['CC(C)(C)c1ccc(N)cn1', 'Nc1nccs1', 'Clc1nccs1']; [0.9994643926620483, 0.9985435009002686, 0.9985177516937256] +COc1cccc(C(=O)NNc2nccs2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; ['NNc1nccs1', 'NNc1nccs1']; [0.994775116443634, 0.9926365613937378] +c1ccc(CCCNc2nccs2)cc1; ['NC(=S)NCCCc1ccccc1', 'CCOC(CBr)OCC', 'CCOC(CCl)OCC', 'CCOC(Cl)CCl', 'Clc1nccs1', 'Brc1nccs1', 'ClCCCc1ccccc1', 'BrCCCc1ccccc1', 'Nc1nccs1', 'Nc1nccs1']; ['O=CCCl', 'NC(=S)NCCCc1ccccc1', 'NC(=S)NCCCc1ccccc1', 'NC(=S)NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1nccs1', 'Nc1nccs1', 'O=CCCc1ccccc1', 'OCCCc1ccccc1']; [0.9999937415122986, 0.9999912977218628, 0.9999856948852539, 0.9999418258666992, 0.999705970287323, 0.9977346658706665, 0.992531418800354, 0.988985538482666, 0.9776580929756165, 0.9418538808822632] +Cc1ccc(Nc2nccs2)c(=O)[nH]1; ['Brc1nccs1', 'Cc1ccc(N)c(=O)[nH]1']; ['Cc1ccc(N)c(=O)[nH]1', 'Clc1nccs1']; [0.8853893876075745, 0.8810757398605347] +c1ccc2sc(Nc3nccs3)cc2c1; ['Brc1cc2ccccc2s1', 'Clc1nccs1']; ['Nc1nccs1', 'Nc1cc2ccccc2s1']; [0.9946265816688538, 0.9910456538200378] +CSc1ccc(Nc2nccs2)cc1; ['CCOC(CCl)OCC', 'CCOC(Cl)CCl', 'CSc1ccc(NC(N)=S)cc1', None, 'Brc1nccs1', 'CSc1ccc(N)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; ['CSc1ccc(NC(N)=S)cc1', 'CSc1ccc(NC(N)=S)cc1', 'O=CCCl', None, 'CSc1ccc(N)cc1', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.999963641166687, 0.9997565746307373, 0.9996789693832397, 0, 0.998239278793335, 0.9961404204368591, 0.9840051531791687, 0.9770985841751099] +Clc1cccc(-n2ccc(Nc3nccs3)n2)c1; [None]; [None]; [0] +CC[C@@H](CO)Nc1nccs1; ['CC[C@H](N)CO', 'Brc1nccs1']; ['Clc1nccs1', 'CC[C@H](N)CO']; [0.9996752738952637, 0.998842716217041] +CC(=O)N[C@@H]1CC[C@@H](Nc2nccs2)CC1; [None]; [None]; [0] +Cc1cc(Nc2nccs2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Brc1nccs1']; ['Nc1nccs1', 'Cc1cc(N)nc(N)n1']; [0.9978606700897217, 0.9676898717880249] +c1csc(Nc2scc3c2OCCO3)n1; [None]; [None]; [0] +Fc1ccc(Nc2nccs2)c(Cl)c1; ['Fc1ccc(Br)c(Cl)c1', 'Brc1nccs1', 'Clc1nccs1', 'Fc1ccc(I)c(Cl)c1']; ['Nc1nccs1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1nccs1']; [0.9999792575836182, 0.99985671043396, 0.9995916485786438, 0.9991723299026489] +Brc1cnc(Nc2nccs2)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1nccs1']; ['Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1ncc(Br)cn1']; [0.9998205304145813, 0.9991855621337891, 0.9932221174240112, 0.9885746240615845] +COc1ccc(Nc2nccs2)cc1OC; ['Brc1nccs1', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(I)cc1OC']; ['COc1ccc(N)cc1OC', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9993816614151001, 0.9980413913726807, 0.995246410369873, 0.9918162226676941] +OC[C@H](Cc1ccccc1)Nc1nccs1; ['Brc1nccs1', 'Clc1nccs1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9998661279678345, 0.9997349977493286] +O=C1CCc2cc(Nc3nccs3)ccc2N1; ['Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Brc1nccs1', 'Nc1nccs1']; ['O=C1CCc2cc(Br)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(F)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Cl)ccc2N1']; [0.9993373155593872, 0.9990483522415161, 0.9986110925674438, 0.998530387878418, 0.9984235167503357, 0.9777005910873413] +Clc1ccc(Nc2nccs2)c(Cl)c1; ['CCOC(CCl)OCC', None, 'NC(=S)Nc1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'CCOC(Cl)CCl', 'Brc1nccs1', 'Clc1nccs1']; ['NC(=S)Nc1ccc(Cl)cc1Cl', None, 'O=CCCl', 'Nc1nccs1', 'NC(=S)Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl']; [0.9999960064888, 0, 0.9999650716781616, 0.9999477863311768, 0.999944269657135, 0.9998899698257446, 0.999523937702179] +CCc1ccc(Nc2nccs2)cc1; ['CCOC(CBr)OCC', 'CCc1ccc(NC(N)=S)cc1', 'CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'CCc1ccc(N)cc1', 'Brc1nccs1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1']; ['CCc1ccc(NC(N)=S)cc1', 'O=CCCl', 'CCc1ccc(NC(N)=S)cc1', None, 'CCc1ccc(NC(N)=S)cc1', 'Clc1nccs1', 'CCc1ccc(N)cc1', 'Nc1nccs1', 'Nc1nccs1']; [0.999969482421875, 0.99994957447052, 0.9999262094497681, 0, 0.9995455741882324, 0.9948031306266785, 0.9924732446670532, 0.9822876453399658, 0.9746999740600586] +c1csc(NCCCn2cncn2)n1; ['CSc1nccs1', 'Clc1nccs1', 'Brc1nccs1']; ['NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.9999505281448364, 0.9999451041221619, 0.999618649482727] +CCN1CCN(Cc2ccc(Nc3nccs3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Brc1nccs1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['CSc1nccs1', 'Nc1nccs1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'Nc1nccs1', 'Clc1nccs1']; [0.9984806776046753, 0.9971129894256592, 0.9758315086364746, 0.8694177865982056, 0.8174636363983154] +c1ccn2nc(Nc3nccs3)cc2c1; ['Clc1nccs1', 'Brc1nccs1', 'Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1nccs1', 'Nc1nccs1']; [0.9999176263809204, 0.9996663331985474, 0.9994325041770935, 0.999325692653656] +Cn1cc(Nc2nccs2)c(C(F)(F)F)n1; ['Cn1cc(I)c(C(F)(F)F)n1', 'Clc1nccs1', 'Brc1nccs1']; ['Nc1nccs1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.999976396560669, 0.9999620914459229, 0.999961256980896] +c1cc2cnc(Nc3nccs3)nn2c1; ['Clc1ncc2cccn2n1']; ['Nc1nccs1']; [0.9999727010726929] +COc1ccc2cccc(Nc3nccs3)c2c1; ['COc1ccc2cccc(N)c2c1', 'Brc1nccs1', 'COc1ccc2cccc(Br)c2c1']; ['Clc1nccs1', 'COc1ccc2cccc(N)c2c1', 'Nc1nccs1']; [0.9999693632125854, 0.9998186826705933, 0.9997717142105103] +C[C@H]1CCCN1C(=O)c1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +Clc1cnc(Nc2nccs2)nc1; ['Brc1nccs1', 'CS(=O)c1ncc(Cl)cn1', 'Clc1cnc(Cl)nc1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CSc1ncc(Cl)cn1']; ['Nc1ncc(Cl)cn1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9976409077644348, 0.9964909553527832, 0.994960606098175, 0.9943971037864685, 0.9738820791244507] +Oc1ccc2cccc(Nc3nccs3)c2c1; ['Nc1nccs1', 'Clc1nccs1', 'Brc1nccs1']; ['Oc1ccc2cccc(Br)c2c1', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12']; [0.9995466470718384, 0.9990355968475342, 0.9977301359176636] +Cc1csc2c(Nc3nccs3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1nccs1']; [0.9999779462814331] +COc1cc(F)c(Nc2nccs2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'Brc1nccs1', 'COc1cc(F)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC']; ['Clc1nccs1', 'COc1cc(N)c(F)cc1OC', 'Nc1nccs1', 'Nc1nccs1', 'CSc1nccs1']; [0.9995597004890442, 0.9994082450866699, 0.9993270635604858, 0.9992750883102417, 0.9992542266845703] +COc1cc(Nc2nccs2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'Brc1nccs1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['CSc1nccs1', 'COc1cc(N)ccc1N1CCOCC1', 'Nc1nccs1', 'Clc1nccs1']; [0.9999979734420776, 0.9999878406524658, 0.9999786615371704, 0.9999008774757385] +COc1cc(Nc2nccs2)ccc1Cl; ['Brc1nccs1', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(N)ccc1Cl', 'Nc1nccs1', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9998342990875244, 0.9996858835220337, 0.9988551735877991, 0.9959790706634521, 0.8594577312469482] +CNC(=O)c1ccc(Nc2nccs2)cc1; ['CNC(=O)c1ccc(N)cc1', 'Brc1nccs1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['Clc1nccs1', 'CNC(=O)c1ccc(N)cc1', 'Nc1nccs1', 'Nc1nccs1']; [0.9988610744476318, 0.9980449080467224, 0.9947246313095093, 0.994193971157074] +OCCn1cc(Nc2nccs2)cn1; ['CSc1nccs1', 'Clc1nccs1', 'Nc1nccs1', 'Brc1nccs1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1', 'Nc1cnn(CCO)c1']; [0.9999875426292419, 0.9998552799224854, 0.9995141625404358, 0.9967478513717651] +CCNC(=O)c1ccc(Nc2nccs2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['Nc1nccs1', 'Nc1nccs1']; [0.9995008111000061, 0.9956700205802917] +COc1cc(Nc2nccs2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1nccs1', 'Nc1nccs1']; [0.9987422227859497, 0.9348070621490479] +CO[C@@H]1CC[C@@H](Nc2nccs2)CC1; ['Brc1nccs1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['CO[C@H]1CC[C@H](N)CC1', 'Clc1nccs1', 'CSc1nccs1']; [0.9999550580978394, 0.9998301267623901, 0.9995614290237427] +COc1ccc(OC)c(CNc2nccs2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(CO)c1']; ['Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9997998476028442, 0.9985611438751221, 0.9973056316375732, 0.9839792251586914, 0.9804280996322632] +Nc1cc(Nc2nccs2)c2cc[nH]c2n1; ['Nc1cc(Cl)c2cc[nH]c2n1']; ['Nc1nccs1']; [0.9262804985046387] +CC1(C)Cc2cc(Nc3nccs3)ccc2O1; [None]; [None]; [0] +COc1cc(Nc2nccs2)cc(OC)c1; ['COc1cc(N)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'Brc1nccs1', 'COc1cc(I)cc(OC)c1', 'COc1cc(F)cc(OC)c1']; ['Clc1nccs1', 'Nc1nccs1', 'COc1cc(N)cc(OC)c1', 'Nc1nccs1', 'Nc1nccs1']; [0.9971050024032593, 0.9948714971542358, 0.9937717914581299, 0.9920392036437988, 0.9877592325210571] +COc1cc(CS(C)(=O)=O)ccc1Nc1nccs1; [None]; [None]; [0] +c1csc(Nc2ccc3cn[nH]c3c2)n1; ['CCOC(CCl)OCC', 'CCOC(CBr)OCC', 'CCOC(Cl)CCl', 'Brc1nccs1', 'Clc1nccs1', 'NC(=S)Nc1ccc2cn[nH]c2c1', None, 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['NC(=S)Nc1ccc2cn[nH]c2c1', 'NC(=S)Nc1ccc2cn[nH]c2c1', 'NC(=S)Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'O=CCCl', None, 'Nc1nccs1', 'Nc1nccs1']; [0.9999936819076538, 0.9999933838844299, 0.9999476075172424, 0.999936580657959, 0.9998489618301392, 0.9998151063919067, 0, 0.9991872906684875, 0.9990260601043701] +CCn1cc(Nc2nccs2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(Br)cn1', 'Brc1nccs1']; ['Clc1nccs1', 'Nc1nccs1', 'CCn1cc(N)cn1']; [0.9970695376396179, 0.9957824349403381, 0.9821110367774963] +CCNC(=O)N1CCC(Nc2nccs2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2nccs2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1nccs1)cn2C; [None]; [None]; [0] +c1csc(Nc2ncc3sccc3n2)n1; ['Clc1ncc2sccc2n1']; ['Nc1nccs1']; [0.9999899864196777] +c1ccc2oc(Nc3nccs3)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1nccs1; ['CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I']; ['Nc1nccs1', 'Nc1nccs1']; [0.9999580979347229, 0.9998733997344971] +CNC(=O)c1ccc(OC)c(Nc2nccs2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'Brc1nccs1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Clc1nccs1', 'CNC(=O)c1ccc(OC)c(N)c1', 'Nc1nccs1']; [0.9999402761459351, 0.9998904466629028, 0.997871458530426] +c1cncc(-c2ccnc(Nc3nccs3)c2)c1; ['Clc1nccs1']; ['Nc1cc(-c2cccnc2)ccn1']; [0.9998558759689331] +COc1ccc(F)c(C(=O)NNc2nccs2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1nccs1']; [0.9983680248260498] +FC(F)(F)Oc1ccc(Nc2nccs2)cc1; ['NC(=S)Nc1ccc(OC(F)(F)F)cc1', None, 'CCOC(CCl)OCC', 'Clc1nccs1', 'Brc1nccs1', 'CCOC(Cl)CCl', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1']; ['O=CCCl', None, 'NC(=S)Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'NC(=S)Nc1ccc(OC(F)(F)F)cc1', 'Nc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.999947726726532, 0, 0.9998889565467834, 0.9998672604560852, 0.9998472332954407, 0.9992310404777527, 0.9990462064743042, 0.9980539083480835, 0.9937480688095093] +COc1ccc2nc(Nc3nccs3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1nccs1']; [0.9920376539230347] +CCc1cccc(Nc2nccs2)n1; ['CCc1cccc(N)n1', 'Brc1nccs1', 'CCc1cccc(Br)n1']; ['Clc1nccs1', 'CCc1cccc(N)n1', 'Nc1nccs1']; [0.9998399615287781, 0.9998255968093872, 0.9957676529884338] +Cn1cc(Nc2nccs2)c2ccccc21; [None]; [None]; [0] +COc1ccc2oc(Nc3nccs3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2nccs2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2nccs2)c1)N1CCCC1; [None]; [None]; [0] +c1csc(Nc2ncn3c2CCCC3)n1; [None]; [None]; [0] +Cn1ncc2cc(Nc3nccs3)ccc21; ['CCOC(CCl)OCC', None, 'CCOC(Cl)CCl', 'Cn1ncc2cc(NC(N)=S)ccc21', 'CSc1nccs1', 'Brc1nccs1', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Clc1nccs1', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(N)ccc21']; ['Cn1ncc2cc(NC(N)=S)ccc21', None, 'Cn1ncc2cc(NC(N)=S)ccc21', 'O=CCCl', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Nc1nccs1', 'Nc1nccs1', 'Cn1ncc2cc(N)ccc21', 'Nc1nccs1', 'Nc1nccs1']; [0.9999991655349731, 0, 0.9999844431877136, 0.9999827146530151, 0.999972939491272, 0.9999655485153198, 0.9999625086784363, 0.9999347925186157, 0.9998315572738647, 0.9978843927383423, 0.9977651238441467] +Cn1cc(Br)cc1Nc1nccs1; [None]; [None]; [0] +CN(C)c1ccc(Nc2nccs2)cn1; ['Brc1nccs1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(N)cn1']; ['CN(C)c1ccc(N)cn1', 'Nc1nccs1', 'Clc1nccs1']; [0.99951171875, 0.9985102415084839, 0.997774600982666] +Cc1n[nH]c2cc(Nc3nccs3)ccc12; ['Brc1nccs1', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(F)ccc12']; ['Cc1n[nH]c2cc(N)ccc12', 'Clc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; [0.9999927282333374, 0.9999874830245972, 0.9999718070030212, 0.999848484992981] +Cn1nc(Cl)c2cc(Nc3nccs3)ccc21; [None]; [None]; [0] +O=C(NNc1nccs1)c1cccc(OC(F)(F)F)c1; ['NNc1nccs1', 'NNc1nccs1']; ['O=C(O)c1cccc(OC(F)(F)F)c1', 'O=C(Cl)c1cccc(OC(F)(F)F)c1']; [0.999971866607666, 0.9999713897705078] +Cc1cc(Nc2nccs2)cc(C)c1OCCO; [None]; [None]; [0] +OCCc1ccc(Nc2nccs2)cc1; ['CSc1nccs1', 'Clc1nccs1', 'Brc1nccs1', 'Nc1nccs1', 'Nc1nccs1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.999695897102356, 0.9952998161315918, 0.9750126600265503, 0.9542346596717834, 0.9442707300186157] +O=C1CCCN1c1cccc(Nc2nccs2)c1; ['Brc1nccs1', 'CSc1nccs1', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1', 'Fc1cccc(Nc2nccs2)c1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Cl)c1', 'O=C1CCCN1']; [0.9996949434280396, 0.9996936321258545, 0.9984581470489502, 0.9959820508956909, 0.994813859462738, 0.9822048544883728] +CN(C)C(=O)c1ccc(Nc2nccs2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3nccs3)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1nccs1; ['CSc1nccs1', 'Cc1cc(N2CCOCC2)ccc1N', 'Brc1nccs1']; ['Cc1cc(N2CCOCC2)ccc1N', 'Clc1nccs1', 'Cc1cc(N2CCOCC2)ccc1N']; [0.9999986290931702, 0.9999954104423523, 0.9999920129776001] +CC(C)(O)c1ccc2cc(Nc3nccs3)[nH]c2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1nccs1; ['Brc1nccs1', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N']; ['COc1cc(S(C)(=O)=O)ccc1N', 'Nc1nccs1', 'Clc1nccs1']; [0.9998013973236084, 0.9992218017578125, 0.9990816116333008] +CNC(=O)c1ccc(Nc2nccs2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'Brc1nccs1']; ['Clc1nccs1', 'Nc1nccs1', 'CNC(=O)c1ccc(N)c(OC)c1']; [0.9545831680297852, 0.9481094479560852, 0.9446457624435425] +CCNC(=O)c1ccc(Nc2nccs2)cc1; ['Brc1nccs1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['CCNC(=O)c1ccc(N)cc1', 'Nc1nccs1', 'Clc1nccs1', 'Nc1nccs1']; [0.9978295564651489, 0.9975974559783936, 0.9969017505645752, 0.9918497800827026] +COc1cc(N2CCNCC2)ccc1Nc1nccs1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1nccs1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2nccs2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1nccs1']; [0.9932325482368469] +CS(=O)(=O)c1ccc(Cl)c(Nc2nccs2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1nccs1']; [0.9999508857727051] +CN(C)C(=O)c1ccc(Nc2nccs2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1nccs1', 'Nc1nccs1']; [0.9999555945396423, 0.9998461008071899] +CC(C)C(=O)COCc1ccc2c(c1)OCO2; ['CC(C)C(=O)CCl']; ['OCc1ccc2c(c1)OCO2']; [0.9575509428977966] +CNC(=O)c1ccc(C)c(Nc2nccs2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'Brc1nccs1']; ['Clc1nccs1', 'CNC(=O)c1ccc(C)c(N)c1']; [0.9997893571853638, 0.9996208548545837] +c1cncc(NCc2ccc3c(c2)OCO3)c1; ['BrCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'Ic1cccnc1', 'Fc1cccnc1', 'Brc1cccnc1', 'Clc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; [0.9992787837982178, 0.9974179267883301, 0.9949876070022583, 0.993804395198822, 0.9894288778305054, 0.9883463382720947, 0.9851691126823425, 0.984729528427124] +CC(=O)N1CCC(n2cc(Nc3nccs3)cn2)CC1; [None]; [None]; [0] +O=C(NCc1ccc2c(c1)OCO2)c1cccs1; ['NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'CCOC(=O)c1cccs1', 'NCc1ccc2c(c1)OCO2', 'COC(=O)c1cccs1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'OCc1cccs1', 'NCc1ccc2c(c1)OCO2', 'O=Cc1cccs1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2']; [0.9999397993087769, 0.9996753931045532, 0.9985076785087585, 0.9966020584106445, 0.9960978031158447, 0.9948545694351196, 0.9895737171173096, 0.8814644813537598] +c1cncc(CNCc2ccc3c(c2)OCO3)c1; ['O=Cc1ccc2c(c1)OCO2', 'BrCc1cccnc1', 'NCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'ClCc1cccnc1', 'BrCc1ccc2c(c1)OCO2', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1ccc2c(c1)OCO2']; ['[N-]=[N+]=NCc1cccnc1', 'NCc1ccc2c(c1)OCO2', 'OCc1cccnc1', 'NCc1cccnc1', 'NCc1ccc2c(c1)OCO2', 'NCc1cccnc1', 'O=Cc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'O=Cc1cccnc1']; [0.9994670152664185, 0.9990640878677368, 0.9988887310028076, 0.9986965656280518, 0.9980895519256592, 0.9980239272117615, 0.9976445436477661, 0.9967928528785706, 0.9862234592437744] +Cc1ccc(C(=O)NCCO)cc1Nc1nccs1; [None]; [None]; [0] +Cn1nc(Nc2nccs2)cc1C(C)(C)O; [None]; [None]; [0] +Fc1ccccc1CNCc1ccc2c(c1)OCO2; ['ClCc1ccc2c(c1)OCO2', 'Fc1ccccc1CCl', 'BrCc1ccc2c(c1)OCO2', 'Fc1ccccc1CBr', 'NCc1ccccc1F', 'NCc1ccc2c(c1)OCO2', 'NCc1ccccc1F', 'NCc1ccc2c(c1)OCO2']; ['NCc1ccccc1F', 'NCc1ccc2c(c1)OCO2', 'NCc1ccccc1F', 'NCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'OCc1ccccc1F', 'OCc1ccc2c(c1)OCO2', 'O=Cc1ccccc1F']; [0.9998786449432373, 0.9995310306549072, 0.999294638633728, 0.9991272687911987, 0.9985983371734619, 0.9983035326004028, 0.9981289505958557, 0.9809526205062866] +Clc1ccc(CNCc2ccc3c(c2)OCO3)cc1; ['Clc1ccc(CBr)cc1', 'BrCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'ClCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'ClCc1ccc2c(c1)OCO2', 'NCc1ccc(Cl)cc1', 'NCc1ccc2c(c1)OCO2', 'N#Cc1ccc2c(c1)OCO2']; ['NCc1ccc2c(c1)OCO2', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc2c(c1)OCO2', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9986213445663452, 0.9978593587875366, 0.9967669248580933, 0.993406355381012, 0.993388295173645, 0.9926887154579163, 0.9847744703292847, 0.9814333915710449, 0.8743369579315186] +c1ccc(OCc2ccc3c(c2)OCO3)nc1; ['ClCc1ccc2c(c1)OCO2', 'Clc1ccccn1', 'BrCc1ccc2c(c1)OCO2', 'Brc1ccccn1', 'Ic1ccccn1', 'OCc1ccc2c(c1)OCO2', 'Fc1ccccn1']; ['Oc1ccccn1', 'OCc1ccc2c(c1)OCO2', 'Oc1ccccn1', 'OCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'Oc1ccccn1', 'OCc1ccc2c(c1)OCO2']; [0.9928356409072876, 0.9924380779266357, 0.98114013671875, 0.9394737482070923, 0.8980876207351685, 0.8312169909477234, 0.7731643319129944] +c1ccc(CCNCc2ccc3c(c2)OCO3)cc1; ['ClCCc1ccccc1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'ClCc1ccc2c(c1)OCO2', 'BrCc1ccc2c(c1)OCO2', 'NCCc1ccccc1', 'NCc1ccc2c(c1)OCO2', 'CS(=O)(=O)OCCc1ccccc1', 'BrCCc1ccccc1', 'ICCc1ccccc1', 'NCCc1ccccc1', 'NCc1ccc2c(c1)OCO2', 'NCCc1ccccc1', 'C=Cc1ccccc1', 'N#Cc1ccc2c(c1)OCO2']; ['NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCCc1ccccc1', 'NCCc1ccccc1', 'O=Cc1ccc2c(c1)OCO2', 'O=CCc1ccccc1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'OCCc1ccccc1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCCc1ccccc1']; [0.9995303153991699, 0.99950110912323, 0.999491810798645, 0.9991182088851929, 0.9986439943313599, 0.997758686542511, 0.9976744055747986, 0.9975507259368896, 0.9959850311279297, 0.9929916262626648, 0.9862077236175537, 0.9824212789535522, 0.9746663570404053, 0.9534074068069458] +c1nc(CCNCc2ccc3c(c2)OCO3)c[nH]1; ['BrCc1ccc2c(c1)OCO2', 'NCCc1c[nH]cn1', 'ClCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCCc1c[nH]cn1']; ['NCCc1c[nH]cn1', 'O=Cc1ccc2c(c1)OCO2', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCc1ccc2c(c1)OCO2']; [0.9996887445449829, 0.999645471572876, 0.9975011348724365, 0.9971466064453125, 0.9933127760887146] +c1cc(NCc2ccc3c(c2)OCO3)ccn1; ['CC1(C)OB(c2ccncc2)OC1(C)C', 'NCc1ccc2c(c1)OCO2', 'BrCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'Ic1ccncc1', 'Brc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'O=Cc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'Fc1ccncc1', 'N#Cc1ccc2c(c1)OCO2']; ['NCc1ccc2c(c1)OCO2', 'OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'O=[N+]([O-])c1ccncc1', 'O=[N+]([O-])c1ccncc1', 'NCc1ccc2c(c1)OCO2', 'Nc1ccncc1']; [0.999955952167511, 0.9997948408126831, 0.9997705221176147, 0.999572217464447, 0.9989862442016602, 0.9989237785339355, 0.997585117816925, 0.997573733329773, 0.9950253963470459, 0.9933301210403442, 0.9907506704330444, 0.9852184057235718, 0.9583775997161865] +C[C@H](CS(C)(=O)=O)Nc1nccs1; [None]; [None]; [0] +CC(C)(COCc1ccc2c(c1)OCO2)S(C)(=O)=O; [None]; [None]; [0] +CCN(CC)Cc1ccc2c(c1)OCO2; ['CCNCC', 'BrCc1ccc2c(c1)OCO2', 'CCNCC', 'CCN(C=O)CC', 'CCNCC', None, 'CC(=O)OCc1ccc2c(c1)OCO2', None, None, 'Brc1ccc2c(c1)OCO2', 'CCNCC', None, 'CCN(CC)C[B-](F)(F)F', None]; ['ClCc1ccc2c(c1)OCO2', 'CCNCC', 'OCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', None, 'CCNCC', None, None, 'CCN(CC)C[B-](F)(F)F', 'N#Cc1ccc2c(c1)OCO2', None, 'Clc1ccc2c(c1)OCO2', None]; [0.9965105652809143, 0.9768334627151489, 0.9746347665786743, 0.9653290510177612, 0.9501650929450989, 0, 0.9256238341331482, 0, 0, 0.9014930725097656, 0.8152292966842651, 0, 0.7934510111808777, 0] +COc1ccncc1NCc1ccc2c(c1)OCO2; ['COc1ccncc1F', 'COc1ccncc1Cl', 'BrCc1ccc2c(c1)OCO2', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1B1OC(C)(C)C(C)(C)O1', 'COc1ccncc1N']; ['NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'COc1ccncc1N', 'ClCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2']; [0.9998799562454224, 0.9998631477355957, 0.9995853304862976, 0.9991888403892517, 0.9989122152328491, 0.9980733394622803, 0.9919228553771973, 0.9914456605911255, 0.970977246761322] +Nc1nc(Cc2ccc3c(c2)OCO3)cs1; [None]; [None]; [0] +c1ccc2ncc(NCc3ccc4c(c3)OCO4)cc2c1; ['ClCc1ccc2c(c1)OCO2', 'BrCc1ccc2c(c1)OCO2', 'Ic1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; [0.9997570514678955, 0.9996830224990845, 0.9995034337043762, 0.995241641998291, 0.9926127195358276, 0.9923961162567139, 0.9852714538574219, 0.969068169593811] +c1ccc(-c2ccncc2NCc2ccc3c(c2)OCO3)cc1; ['NCc1ccc2c(c1)OCO2', 'Brc1cnccc1-c1ccccc1', 'ClCc1ccc2c(c1)OCO2', 'BrCc1ccc2c(c1)OCO2', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['OB(O)c1cnccc1-c1ccccc1', 'NCc1ccc2c(c1)OCO2', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'O=Cc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2']; [0.9967880249023438, 0.9955192804336548, 0.9933546185493469, 0.9826405048370361, 0.8979318141937256, 0.8172237873077393] +C[C@@H](OCc1ccc2c(c1)OCO2)c1c(Cl)cncc1Cl; ['BrCc1ccc2c(c1)OCO2', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'OCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; [0.9962995052337646, 0.9880671501159668, 0.9856435060501099, 0.9603941440582275] +O=C(NCc1ccc2c(c1)OCO2)c1c(Cl)cccc1Cl; ['Clc1cccc(Cl)c1Br', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'BrCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', None, None, None, 'NCc1ccc2c(c1)OCO2', 'Cc1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'NCc1ccc2c(c1)OCO2', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl', 'Cc1ccc2c(c1)OCO2', 'CC(=O)c1c(Cl)cccc1Cl', 'ClCc1ccc2c(c1)OCO2', 'NC(=O)c1c(Cl)cccc1Cl', 'N#Cc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; ['NCc1ccc2c(c1)OCO2', 'O=C(Cl)c1c(Cl)cccc1Cl', 'OCc1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', None, None, None, 'O=Cc1c(Cl)cccc1Cl', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'O=C([O-])c1c(Cl)cccc1Cl', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'NC(=O)c1c(Cl)cccc1Cl', 'NCc1ccc2c(c1)OCO2', 'NC(=O)c1c(Cl)cccc1Cl', 'O=Cc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'O=C=NCc1ccc2c(c1)OCO2']; [0.9999949932098389, 0.999767541885376, 0.9992194771766663, 0.9989290237426758, 0.998832106590271, 0, 0, 0, 0.9963767528533936, 0.9938161373138428, 0.9889370203018188, 0.9882336854934692, 0.9873054623603821, 0.9810214042663574, 0.9801304340362549, 0.9799603223800659, 0.9732950925827026, 0.9666199684143066, 0.914677083492279, 0.912399411201477, 0.863612949848175] +CS(=O)(=O)C1CCN(Cc2ccc3c(c2)OCO3)CC1; ['CS(=O)(=O)C1CCNCC1', 'BrCc1ccc2c(c1)OCO2', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', None, 'BrCc1ccc2c(c1)OCO2', 'CC(C)(C)OC(=O)N1CCC(S(C)(=O)=O)CC1']; ['ClCc1ccc2c(c1)OCO2', 'CS(=O)(=O)C1CCNCC1', 'OCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', None, 'CC(C)(C)OC(=O)N1CCC(S(C)(=O)=O)CC1', 'O=Cc1ccc2c(c1)OCO2']; [0.9999952912330627, 0.9999780654907227, 0.9999520778656006, 0.9997209906578064, 0, 0.9986278414726257, 0.9770384430885315] +C[C@H](NCc1ccc2c(c1)OCO2)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](NCc1ccc2c(c1)OCO2)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'BrCc1ccc2c(c1)OCO2', 'CC(=O)C(C)(C)O', 'C[C@H](N)C(C)(C)O', None]; ['ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'C[C@H](N)C(C)(C)O', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', None]; [0.9977971315383911, 0.996512234210968, 0.9930680990219116, 0.9781990051269531, 0.9755061864852905, 0] +C[C@@H](NCc1ccc2c(c1)OCO2)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'BrCc1ccc2c(c1)OCO2', 'C[C@@H](N)C(C)(C)O', 'CC(=O)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'C[C@@H](N)C(C)(C)O', 'NCc1ccc2c(c1)OCO2', 'NCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'N#Cc1ccc2c(c1)OCO2']; [0.9977971315383911, 0.996512234210968, 0.9930680990219116, 0.9875591993331909, 0.9781990051269531, 0.9755061864852905, 0.9273946285247803] +c1ccc2[nH]c(C3CCN(Cc4ccc5c(c4)OCO5)CC3)nc2c1; ['BrCc1ccc2c(c1)OCO2', 'Nc1ccccc1N', 'BrCc1ccc2c(c1)OCO2', 'ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; ['CC(C)(C)OC(=O)N1CCC(c2nc3ccccc3[nH]2)CC1', 'O=C(O)C1CCN(Cc2ccc3c(c2)OCO3)CC1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999934434890747, 0.9999780654907227, 0.9999725818634033, 0.9999502301216125, 0.9998865127563477] +CN(Cc1ccc2c(c1)OCO2)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2c(c1)OCO2; ['CNC(=O)c1ccccc1Br', 'Brc1ccc2c(c1)OCO2', 'CNC(=O)c1ccccc1', 'CN', 'CNC(=O)c1ccccc1']; ['OB(O)c1ccc2c(c1)OCO2', 'CNC(=O)c1ccccc1B(O)O', 'OB(O)c1ccc2c(c1)OCO2', 'O=C(O)c1ccccc1-c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; [0.9999903440475464, 0.9999679327011108, 0.9996793270111084, 0.9903948307037354, 0.9284170866012573] +Nc1nc(Cc2ccc3c(c2)OCO3)nc2ccccc12; ['N#Cc1ccccc1N']; ['O=C(O)Cc1ccc2c(c1)OCO2']; [0.9935653805732727] +C1=C(c2c[nH]c3ccccc23)CCN(Cc2ccc3c(c2)OCO3)C1; ['BrCc1ccc2c(c1)OCO2', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'ClCc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; [0.9999973177909851, 0.9999853372573853, 0.9993755221366882] +COc1ccc(OCc2ccc3c(c2)OCO3)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'BrCc1ccc2c(c1)OCO2', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F']; ['ClCc1ccc2c(c1)OCO2', 'COc1ccc(O)c(F)c1F', 'OCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2']; [0.9924163818359375, 0.9920908212661743, 0.9914251565933228, 0.970503568649292, 0.8109228014945984] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2c(c1)OCO2; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1ccc2c(c1)OCO2', 'CC(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1cccc2c1OCO2']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'OB(O)c1ccc2c(c1)OCO2', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; [0.9999918341636658, 0.9999872446060181, 0.9999772310256958, 0.9999004006385803, 0.999815046787262, 0.9993777275085449] +Cc1nnc(-c2ccccc2-c2ccc3c(c2)OCO3)[nH]1; [None]; [None]; [0] +[NH3+]Cc1ccc(OCc2ccc3c(c2)OCO3)c(F)c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CCn1cc(-c2ccc3c(c2)OCO3)cn1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'Brc1ccc2c(c1)OCO2', 'CCn1cc(Br)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2c(c1)OCO2']; ['CCn1cc(Br)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'CCn1cc(B(O)O)cn1', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'CCn1cccn1']; [0.999990701675415, 0.9999889135360718, 0.9999866485595703, 0.9999564290046692, 0.9999431371688843, 0.9998815655708313, 0.9998670816421509, 0.9998337626457214, 0.999674916267395, 0.99806809425354, 0.9849762916564941] +Fc1cc(F)cc(Cc2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +O=C(Nc1cccc(Cc2ccc3c(c2)OCO3)c1)C1CCNCC1; [None]; [None]; [0] +c1ccc2c(-c3ccc4c(c3)OCO4)ccnc2c1; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1ccnc2ccccc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Clc1ccnc2ccccc12', 'Brc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1ccnc2ccccc12', 'Clc1ccc2c(c1)OCO2', 'OB(O)c1ccnc2ccccc12', 'Br[Mg]c1ccc2c(c1)OCO2', 'Brc1ccnc2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1ccnc2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'OCc1ccnc2ccccc12', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'OB(O)c1ccnc2ccccc12', 'c1ccc2c(c1)OCO2', 'Clc1ccnc2ccccc12', 'c1ccc2c(c1)OCO2', 'c1ccc2ncccc2c1', 'c1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2']; [0.9999985694885254, 0.9999966621398926, 0.9999881982803345, 0.9999806880950928, 0.999975323677063, 0.9999555945396423, 0.9999315142631531, 0.9998902678489685, 0.9998522996902466, 0.999833345413208, 0.9991645216941833, 0.9989603757858276, 0.9960800409317017, 0.9957762956619263, 0.9923181533813477, 0.99222731590271, 0.9888652563095093, 0.9514347910881042, 0.9199949502944946, 0.906522274017334, 0.8928642272949219] +COC(C)(C)CCc1ccc2c(c1)OCO2; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4c(c3)OCO4)cn2)cc1; ['Brc1ccc2c(c1)OCO2', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1ccc2c(c1)OCO2', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1ccc2c(c1)OCO2', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999969005584717, 0.9999929070472717, 0.9999924898147583, 0.9999889731407166, 0.9999731779098511, 0.9999715685844421, 0.9999704360961914, 0.9999246597290039, 0.9997516870498657, 0.9990499019622803, 0.9925568103790283] +Cn1cnc2ccc(-c3ccc4c(c3)OCO4)cc2c1=O; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O', 'Brc1ccc2c(c1)OCO2']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1ccc2c(c1)OCO2', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999877214431763, 0.9999499917030334, 0.9728171825408936] +FC(F)(F)c1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2c(c1)OCO2; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'O=C([O-])c1ccccc1']; ['O=C([O-])c1ccccc1', 'OB(O)c1ccc2c(c1)OCO2']; [0.9837793111801147, 0.9831008315086365] +O=c1c2c(F)cccc2cnn1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3c(c2)OCO3)cs1; ['CC(C)(C)C(N)=S', 'Brc1ccc2c(c1)OCO2', 'CC(C)(C)c1nccs1']; ['O=C(CBr)c1ccc2c(c1)OCO2', 'CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'OB(O)c1ccc2c(c1)OCO2']; [0.9999997615814209, 0.9999932050704956, 0.9998338222503662] +c1ccc(-c2ncc(-c3ccc4c(c3)OCO4)[nH]2)cc1; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.9994086027145386, 0.8266990780830383] +OCCn1cc(-c2ccc3c(c2)OCO3)cn1; ['Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(I)cn1', 'Ic1ccc2c(c1)OCO2', 'OCCn1cc(Br)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999930262565613, 0.9999830722808838, 0.9999823570251465, 0.9999814033508301, 0.9999804496765137, 0.9999431371688843, 0.9999347925186157, 0.9998565912246704] +FC(F)(F)Oc1ccccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2c(c1)OCO2; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ccc2c(c1)OCO2', 'Oc1ccc2c(c1)OCO2']; [0.9972937107086182, 0.9521664381027222] +NC(=O)c1ccccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +COc1cnc(-c2ccc3c(c2)OCO3)nc1; ['COc1cnc(Br)nc1', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'COc1cnc(Cl)nc1', 'Br[Mg]c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'COc1cncnc1', 'COc1cncnc1']; ['OB(O)c1ccc2c(c1)OCO2', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc2c(c1)OCO2', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; [0.9999679327011108, 0.9999171495437622, 0.99991375207901, 0.9998369216918945, 0.9998212456703186, 0.9985777735710144, 0.9907695055007935, 0.9600590467453003, 0.8485455513000488] +c1ccn2c(-c3ccc4c(c3)OCO4)cnc2c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.999998927116394, 0.9999972581863403, 0.9999931454658508, 0.9999903440475464, 0.9998281002044678, 0.9998207688331604, 0.999649167060852, 0.9951415061950684, 0.9940333366394043, 0.986740231513977] +O=C(Nc1cccc(-c2ccc3c(c2)OCO3)c1)c1ccccc1; ['Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Clc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'O=C(Nc1ccccc1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ccc2c(c1)OCO2', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1', 'OB(O)c1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'O=C(Nc1ccccc1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9999897480010986, 0.999985933303833, 0.9999517202377319, 0.9998491406440735, 0.99983811378479, 0.9997925758361816, 0.9990800023078918, 0.9990562796592712, 0.9977867603302002, 0.9967586994171143, 0.9198256731033325, 0.7519456148147583] +Cc1nc2ccccn2c1-c1ccc2c(c1)OCO2; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Cc1nc2ccccn2c1I', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1', 'Brc1ccc2c(c1)OCO2', 'Cc1cn2ccccc2n1', 'Brc1ccc2c(c1)OCO2', 'Cc1cn2ccccc2n1']; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Cc1cn2ccccc2n1', 'Clc1ccc2c(c1)OCO2', 'Cc1nc2ccccn2c1C(=O)O', 'c1ccc2c(c1)OCO2']; [0.9999986886978149, 0.9999977350234985, 0.9999957084655762, 0.9999924898147583, 0.9999918937683105, 0.9999718070030212, 0.9999469518661499, 0.9997977018356323, 0.998997688293457, 0.9961550235748291] +c1cnn2c(-c3ccc4c(c3)OCO4)cnc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'c1cnn2ccnc2c1']; [1.0, 0.9999977946281433, 0.9999905824661255] +Cc1nc(N)sc1-c1ccc2c(c1)OCO2; ['Cc1nc(N)sc1Br', 'CC(=O)Cc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'NC(N)=S', 'Cc1csc(N)n1']; [0.9999852776527405, 0.9994924664497375, 0.9886057376861572] +Cc1nc(C)c(-c2ccc3c(c2)OCO3)s1; ['Brc1ccc2c(c1)OCO2', 'Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'Brc1ccc2c(c1)OCO2', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Cc1csc(C)n1', 'Clc1ccc2c(c1)OCO2']; [0.9999697208404541, 0.9999383687973022, 0.9998374581336975, 0.9967932105064392, 0.9937371015548706, 0.9550318717956543] +CNc1nc(C)c(-c2ccc3c(c2)OCO3)s1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +Cc1ccc(-c2ccc3c(c2)OCO3)c(Br)c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2ccc3c(c2)OCO3)c1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; ['c1ccc(Cn2cncn2)cc1', 'c1ccc(Cn2cncn2)cc1', 'c1ccc(Cn2cncn2)cc1', 'c1ccc(Cn2cncn2)cc1']; [0.9997010827064514, 0.9969633221626282, 0.946100115776062, 0.921630859375] +c1cncc(CNc2ccc3c(c2)OCO3)c1; ['NCc1cccnc1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'BrCc1cccnc1', 'Fc1ccc2c(c1)OCO2', 'ClCc1cccnc1', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'O=Cc1cccnc1']; ['OB(O)c1ccc2c(c1)OCO2', 'NCc1cccnc1', 'Nc1ccc2c(c1)OCO2', 'NCc1cccnc1', 'Nc1ccc2c(c1)OCO2', 'NCc1cccnc1', 'NCc1cccnc1', 'OCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'O=[N+]([O-])c1ccc2c(c1)OCO2']; [0.9998939037322998, 0.9988648891448975, 0.9987305402755737, 0.9975818395614624, 0.9974088668823242, 0.9970207214355469, 0.9963971376419067, 0.9945038557052612, 0.9824275970458984, 0.972812831401825, 0.9541381597518921] +Clc1cccc(Cl)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Brc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +c1cncc(Nc2ccc3c(c2)OCO3)c1; ['Nc1cccnc1', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1cccnc1', 'Ic1cccnc1', 'Clc1cccnc1', 'Clc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1cccnc1', 'OB(O)c1cccnc1']; [0.9999753832817078, 0.9998780488967896, 0.9996260404586792, 0.9995615482330322, 0.9989792704582214, 0.9982953071594238, 0.997708797454834, 0.9963937997817993] +Cc1c(-c2ccc3c(c2)OCO3)sc(=O)n1C; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)OCO2)c1cccs1; ['Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CCOC(=O)c1cccs1', 'COC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'NC(=O)c1cccs1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2']; [0.9999934434890747, 0.9999428391456604, 0.9982658624649048, 0.9964851140975952, 0.9950779676437378] +Nc1nccc(-c2ccc3c(c2)OCO3)n1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1ccc2c(c1)OCO2; ['OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9994697570800781, 0.9979428052902222, 0.9900667667388916, 0.9560826420783997, 0.9394901990890503] +c1cnn2ncc(-c3ccc4c(c3)OCO4)c2c1; [None]; [None]; [0] +c1nc(CCNc2ccc3c(c2)OCO3)c[nH]1; ['NCCc1c[nH]cn1', 'Brc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9999369382858276, 0.9938064813613892, 0.9897384643554688, 0.9570304155349731, 0.9487437009811401, 0.848311185836792] +c1ccc2cc(-c3ccc4c(c3)OCO4)ccc2c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc2c(c1)OCO2; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'Ic1ccc2c(c1)OCO2']; ['NC(=O)c1c(F)cccc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'NC(=O)c1ccccc1F']; [0.9999997615814209, 0.9999969005584717, 0.9747816324234009] +O=C([O-])Cc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +c1ccc2c(-c3ccc4c(c3)OCO4)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4c(c3)OCO4)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4c(c3)OCO4)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4c(c3)OCO4)cc2CS1(=O)=O; [None]; [None]; [0] +Clc1ccc(CNc2ccc3c(c2)OCO3)cc1; ['Clc1ccc(CBr)cc1', 'NCc1ccc(Cl)cc1', 'Ic1ccc2c(c1)OCO2', 'ClCc1ccc(Cl)cc1', 'Nc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'O=[N+]([O-])c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'O=Cc1ccc(Cl)cc1']; ['Nc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'NCc1ccc(Cl)cc1', 'Nc1ccc2c(c1)OCO2', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'O=[N+]([O-])c1ccc2c(c1)OCO2']; [0.9996120929718018, 0.9981434345245361, 0.9956024885177612, 0.9936056733131409, 0.9928703904151917, 0.9896047115325928, 0.9812233448028564, 0.9797146320343018, 0.9671249389648438, 0.9558398127555847] +Cn1ncc2cc(-c3ccc4c(c3)OCO4)ccc21; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3c(c2)OCO3)nn1; ['C#Cc1ccc2c(c1)OCO2', 'CC(C)n1ccnn1']; ['CC(C)N=[N+]=[N-]', 'Ic1ccc2c(c1)OCO2']; [0.9999937415122986, 0.998640775680542] +c1cc(-c2ccc3c(c2)OCO3)ccc1-c1cn[nH]c1; [None]; [None]; [0] +c1cc(Nc2ccc3c(c2)OCO3)ccn1; ['Nc1ccncc1', 'Brc1ccncc1', 'Brc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Clc1ccncc1', 'Ic1ccncc1', 'Ic1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Fc1ccncc1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccncc1', 'CC(=O)Nc1ccc2c(c1)OCO2', 'CC(=O)Nc1ccncc1', 'Nc1ccc2c(c1)OCO2', 'Brc1ccncc1', 'Brc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccncc1', 'OB(O)c1ccncc1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccncc1', 'Oc1ccc2c(c1)OCO2', 'Ic1ccncc1', 'Ic1ccc2c(c1)OCO2', 'Oc1ccncc1', 'CC(=O)Nc1ccc2c(c1)OCO2', 'CC(=O)Nc1ccncc1']; [0.9999598264694214, 0.9998846054077148, 0.9998766183853149, 0.9998616576194763, 0.9997168779373169, 0.9996730089187622, 0.9996728301048279, 0.9993386268615723, 0.9985340237617493, 0.995482861995697, 0.9950286746025085, 0.9945360422134399, 0.9812592267990112, 0.9808824062347412, 0.9802372455596924, 0.9791377186775208, 0.9788739681243896] +Fc1ccccc1CNc1ccc2c(c1)OCO2; ['NCc1ccccc1F', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'COC(OC)c1ccccc1F', 'Fc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'Nc1ccc2c(c1)OCO2', 'NCc1ccccc1F']; [0.9998139142990112, 0.9996558427810669, 0.999380350112915, 0.9954968094825745, 0.995071530342102, 0.9856234788894653, 0.9780450463294983, 0.9683136940002441, 0.961852490901947, 0.9152394533157349] +CCCn1cnc(-c2ccc3c(c2)OCO3)n1; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)OCO3)ccc1C(=O)[O-]; [None]; [None]; [0] +Oc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +OCc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)OCO3)cs1; ['NC(N)=S', 'CC(=O)c1ccc2c(c1)OCO2', None]; ['O=C(CBr)c1ccc2c(c1)OCO2', 'NC(N)=S', None]; [0.9999967217445374, 0.9999767541885376, 0] +Nc1ncncc1-c1ccc2c(c1)OCO2; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Nc1ncncc1I', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', None, 'Brc1ccc2c(c1)OCO2']; ['Nc1ncncc1I', 'OB(O)c1ccc2c(c1)OCO2', 'Nc1ncncc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', None, 'Nc1ncncc1Br']; [0.9999997615814209, 0.9999994039535522, 0.9999984502792358, 0.9999973773956299, 0.999974250793457, 0, 0.9988135099411011] +c1cc2c(cc1CCc1c[nH]nn1)OCO2; ['Cc1c[nH]nn1', 'BrCc1ccc2c(c1)OCO2']; ['ClCc1ccc2c(c1)OCO2', 'Cc1c[nH]nn1']; [0.9363176822662354, 0.8193329572677612] +c1ncc2c(-c3ccc4c(c3)OCO4)csc2n1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; [0.999995231628418, 0.9999806880950928, 0.999935507774353] +CC(C)c1oncc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CSc1nc(-c2ccc3c(c2)OCO3)c[nH]1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc4c(c3)OCO4)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +c1ccc(Oc2ccc3c(c2)OCO3)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Brc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Ic1ccccn1', 'Fc1ccccn1', 'Oc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; ['Oc1ccc2c(c1)OCO2', 'Oc1ccc2c(c1)OCO2', '[O-]c1ccccn1', '[O-]c1ccccn1', 'Oc1ccc2c(c1)OCO2', 'Oc1ccc2c(c1)OCO2', '[O-][n+]1ccccc1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.999722957611084, 0.9985207319259644, 0.9974755048751831, 0.9971424341201782, 0.9951934218406677, 0.9951804280281067, 0.9936424493789673, 0.9832686185836792, 0.981032133102417, 0.9650359749794006, 0.9646655321121216] +CCNc1nc2ccc(-c3ccc4c(c3)OCO4)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +Fc1ccc(-c2ccc3c(c2)OCO3)c(C(F)(F)F)c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3c(c2)OCO3)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1ccc2c(c1)OCO2', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CS(=O)(=O)C1CCNCC1', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; [0.9988107681274414, 0.9864329695701599, 0.9856442213058472, 0.9805091023445129, 0.9600614309310913] +CC(C)(O)CC(=O)NCCc1ccc2c(c1)OCO2; ['CCOC(=O)CC(C)(C)O', 'CC(C)(O)CC#N', 'COC(=O)CC(C)(C)O', 'CC(C)(O)CC(=O)[O-]', 'CC(C)(O)CC(=O)O']; ['NCCc1ccc2c(c1)OCO2', 'NCCc1ccc2c(c1)OCO2', 'NCCc1ccc2c(c1)OCO2', 'NCCc1ccc2c(c1)OCO2', 'NCCc1ccc2c(c1)OCO2']; [0.9994931221008301, 0.9992989897727966, 0.9985356330871582, 0.998306393623352, 0.9940743446350098] +Cn1cc(-c2ccc3c(c2)OCO3)c2ccccc21; ['Brc1ccc2c(c1)OCO2', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Brc1ccc2c(c1)OCO2', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Clc1ccc2c(c1)OCO2', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2c(c1)OCO2', 'Cn1ccc2ccccc21', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Cn1ccc2ccccc21', 'Nc1ccc2c(c1)OCO2']; [0.9999175667762756, 0.9997144937515259, 0.9993431568145752, 0.9991737604141235, 0.997805118560791, 0.9966192245483398, 0.9872769713401794] +O=C(Nc1ccc2c(c1)OCO2)c1c(Cl)cccc1Cl; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Nc1ccc2c(c1)OCO2', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', None, 'Ic1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Nc1ccc2c(c1)OCO2', 'O=C(Cl)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'Ic1ccc2c(c1)OCO2', 'Clc1cccc(Cl)c1', 'COC(=O)c1c(Cl)cccc1Cl']; ['Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'O=C(Cl)c1c(Cl)cccc1Cl', 'O=C=Nc1ccc2c(c1)OCO2', 'O=C=Nc1ccc2c(c1)OCO2', 'NCc1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', None, 'NC(=O)c1c(Cl)cccc1Cl', 'OCc1c(Cl)cccc1Cl', 'Nc1ccc2c(c1)OCO2', 'O=C=Nc1ccc2c(c1)OCO2', 'O=Cc1c(Cl)cccc1Cl', 'O=[N+]([O-])c1ccc2c(c1)OCO2', 'c1cc2c(cc1-n1cnnn1)OCO2', 'N#Cc1c(Cl)cccc1Cl', 'O=C=Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2']; [0.9999659657478333, 0.9999238848686218, 0.9992947578430176, 0.9991186261177063, 0.9990328550338745, 0.9985027313232422, 0.9978958368301392, 0.9965288639068604, 0, 0.9945025444030762, 0.9938478469848633, 0.9833230972290039, 0.9807835817337036, 0.9756699800491333, 0.9756292104721069, 0.9745631217956543, 0.9609323740005493, 0.9265731573104858, 0.8691081404685974] +NC(=O)CCCc1ccc2c(c1)OCO2; [None]; [None]; [0] +CC(C)(COc1ccc2c(c1)OCO2)S(C)(=O)=O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +c1ccn2ncc(-c3ccc4c(c3)OCO4)c2c1; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Clc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1cnn2ccccc12', 'Ic1ccc2c(c1)OCO2', 'Brc1cnn2ccccc12', 'Oc1ccc2c(c1)OCO2', 'NNc1ccc2c(c1)OCO2', 'Clc1cnn2ccccc12', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1cnn2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'c1ccn2nccc2c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'OB(O)c1cnn2ccccc12', 'O=C(O)c1cnn2ccccc12', 'O=C(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'c1ccc2c(c1)OCO2', 'c1ccn2nccc2c1', 'c1ccc2c(c1)OCO2', 'c1ccn2nccc2c1', 'c1ccn2nccc2c1', 'c1ccc2c(c1)OCO2', 'c1ccn2nccc2c1']; [0.9999978542327881, 0.9999969005584717, 0.9999937415122986, 0.9999912977218628, 0.9999867677688599, 0.9999080896377563, 0.9999046325683594, 0.9998750686645508, 0.9998499751091003, 0.9995772838592529, 0.9984361529350281, 0.9976675510406494, 0.9963895082473755, 0.9959933757781982, 0.9951144456863403, 0.9909303188323975, 0.988654375076294, 0.986258864402771, 0.9717534780502319, 0.869483232498169, 0.8677560091018677, 0.8330086469650269, 0.8149509429931641] +CCCn1cc(-c2ccc3c(c2)OCO3)cn1; ['Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CCCn1cc(I)cn1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccc2c(c1)OCO2', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2c(c1)OCO2']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(Br)cn1', 'OB(O)c1ccc2c(c1)OCO2', 'CCCn1cc(I)cn1', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'CCCn1cc(B(O)O)cn1', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CCCn1cccn1']; [0.9999962449073792, 0.9999953508377075, 0.9999911785125732, 0.9999911189079285, 0.9999847412109375, 0.9999819993972778, 0.9999692440032959, 0.9999658465385437, 0.999915599822998, 0.9951472282409668] +COc1ccc(-c2ccc3c(c2)OCO3)cc1Cl; [None]; [None]; [0] +O=c1cc(-c2ccc3c(c2)OCO3)cc[nH]1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'O=c1cc(Br)cc[nH]1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'O=c1cc(Cl)cc[nH]1']; ['O=c1cc(Br)cc[nH]1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'O=c1cc(Cl)cc[nH]1', 'OB(O)c1ccc2c(c1)OCO2']; [0.9999164342880249, 0.9998577237129211, 0.9996567964553833, 0.9994795918464661, 0.9983883500099182, 0.9982165694236755] +C[S@](=O)c1ccc(-c2ccc3c(c2)OCO3)cc1; ['Brc1ccc2c(c1)OCO2', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2c(c1)OCO2']; [0.9996720552444458, 0.9985839128494263] +CC(C)(N)c1ccc(-c2ccc3c(c2)OCO3)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2']; [0.999942421913147, 0.999830961227417, 0.9974985718727112, 0.9971153736114502] +[NH3+]Cc1ccc(-c2ccc3c(c2)OCO3)cc1C(F)(F)F; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4c(c3)OCO4)c21; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)OCO3)cc(OC)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +CCN(CC)c1ccc2c(c1)OCO2; [None, None, None, 'CCI', 'CCBr', None, 'CCNc1ccc2c(c1)OCO2', 'CCOS(=O)(=O)OCC', 'CCCl', 'CC(=O)O', None, 'Brc1ccc2c(c1)OCO2', 'CCOP(=O)(OCC)OCC', None, 'CCNCC', 'CCNCC']; [None, None, None, 'CCNc1ccc2c(c1)OCO2', 'CCNc1ccc2c(c1)OCO2', None, 'CCOS(=O)(=O)OCC', 'Nc1ccc2c(c1)OCO2', 'CCNc1ccc2c(c1)OCO2', 'CCNc1ccc2c(c1)OCO2', None, 'CCNCC', 'Nc1ccc2c(c1)OCO2', None, 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; [0, 0, 0, 0.9800348281860352, 0.9776213765144348, 0, 0.9748237133026123, 0.9722459316253662, 0.9721982479095459, 0.918694794178009, 0, 0.91517174243927, 0.9060512185096741, 0, 0.8709053993225098, 0.8659018278121948] +C[C@@H](Oc1ccc2c(c1)OCO2)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4c(c3)OCO4)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2c(c1)OCO2; ['COc1ccncc1N', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'COc1ccncc1Cl', 'COc1ccncc1B(O)O', 'COc1ccncc1Br', 'Brc1ccc2c(c1)OCO2', 'COc1ccncc1F', 'COc1ccncc1N', 'COc1ccncc1B1OC(C)(C)C(C)(C)O1', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N']; ['OB(O)c1ccc2c(c1)OCO2', 'COc1ccncc1N', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'COc1ccncc1N', 'Nc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2']; [0.9999745488166809, 0.9999734163284302, 0.9999711513519287, 0.9997017979621887, 0.9995698928833008, 0.9992398023605347, 0.9990959167480469, 0.998670756816864, 0.9985733032226562, 0.9982472062110901, 0.9982428550720215, 0.9980581998825073] +CC(C)Oc1cncc(-c2ccc3c(c2)OCO3)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'Brc1ccc2c(c1)OCO2', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1ccc2c(c1)OCO2', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1ccc2c(c1)OCO2', 'Br[Mg]c1ccc2c(c1)OCO2', 'CC(C)Oc1cccnc1', 'Brc1ccc2c(c1)OCO2']; ['Ic1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CC(C)Oc1cncc(B(O)O)c1', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1', 'Ic1ccc2c(c1)OCO2', 'CC(C)Oc1cccnc1']; [0.999999463558197, 0.9999991655349731, 0.999998927116394, 0.9999983310699463, 0.9999949932098389, 0.9999934434890747, 0.9999744892120361, 0.9999736547470093, 0.9997315406799316, 0.9996894598007202, 0.9992959499359131, 0.9979804158210754, 0.9884381294250488, 0.9287534952163696] +c1ccc(-c2ccncc2Nc2ccc3c(c2)OCO3)cc1; ['Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999786019325256, 0.9998070001602173, 0.9997659921646118, 0.999716579914093, 0.9994980692863464, 0.9952061176300049, 0.9855520725250244] +c1ccc2ncc(Nc3ccc4c(c3)OCO4)cc2c1; ['Nc1cnc2ccccc2c1', 'Brc1ccc2c(c1)OCO2', 'Ic1cnc2ccccc2c1', 'Nc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Fc1cnc2ccccc2c1', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'Nc1cnc2ccccc2c1', 'Nc1ccc2c(c1)OCO2', 'OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2c(c1)OCO2', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Oc1ccc2c(c1)OCO2', 'Oc1cnc2ccccc2c1']; [0.9999420046806335, 0.9999148845672607, 0.9998229742050171, 0.9997603893280029, 0.999464750289917, 0.999359130859375, 0.9993525743484497, 0.9988337755203247, 0.99852454662323, 0.9983215928077698, 0.997660756111145, 0.9940346479415894] +CNC(=O)c1c(F)cccc1-c1ccc2c(c1)OCO2; ['CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1F']; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; [0.9861762523651123, 0.970203161239624, 0.8147870898246765] +c1cc2cc(-c3ccc4c(c3)OCO4)cnc2[nH]1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1ccc2c(c1)OCO2']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Brc1cnc2[nH]ccc2c1']; [0.9999996423721313, 0.9999989867210388, 0.9999986886978149, 0.9999986290931702, 0.9999959468841553, 0.9999938011169434, 0.9999912977218628, 0.9999863505363464, 0.9999818801879883, 0.9999797344207764, 0.9999796748161316, 0.9999518394470215, 0.9993345737457275] +CC(C)(C)c1ccc(-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4c(c3)OCO4)cc12; [None]; [None]; [0] +c1cc2c(-c3ccc4c(c3)OCO4)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'Brc1ccc2c(c1)OCO2', 'Brc1c[nH]c2cnccc12', 'Ic1ccc2c(c1)OCO2']; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1c[nH]c2cnccc12', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1c[nH]c2cnccc12']; [0.9999687671661377, 0.9999666810035706, 0.9998615384101868, 0.9997848272323608, 0.9808672666549683, 0.940651535987854, 0.8111949563026428] +Cc1cc(-c2ccc3c(c2)OCO3)n(-c2cccc(Cl)c2)n1; ['CC(=O)/C=C/c1ccc2c(c1)OCO2']; ['NNc1cccc(Cl)c1']; [0.9984800815582275] +CNS(=O)(=O)c1ccc(-c2ccc3c(c2)OCO3)cc1; ['Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2c(c1)OCO2', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2c(c1)OCO2', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2']; [0.9999474287033081, 0.9999104738235474, 0.9998831748962402, 0.9998183250427246, 0.9997882843017578, 0.9997092485427856, 0.9996559023857117, 0.9996213316917419, 0.9995146989822388, 0.9993492364883423, 0.9806532859802246] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3c(c2)OCO3)cc1; ['Brc1ccc2c(c1)OCO2', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2c(c1)OCO2', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccccc1', 'Brc1ccc2c(c1)OCO2']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Ic1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999872446060181, 0.9999765157699585, 0.9999759793281555, 0.9999484419822693, 0.9999467134475708, 0.9998626708984375, 0.9996614456176758, 0.9995505809783936, 0.9993910789489746, 0.9981222748756409, 0.997380793094635, 0.823816180229187] +CS(=O)(=O)c1ccc(-c2ccc3c(c2)OCO3)cc1; ['Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(C(=O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(I)cc1', 'Ic1ccc2c(c1)OCO2', 'CS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccc2c(c1)OCO2', 'O=C(O)c1ccc2c(c1)OCO2']; [0.9999863505363464, 0.9999776482582092, 0.9999729990959167, 0.9999696612358093, 0.9999653697013855, 0.9999574422836304, 0.9999485611915588, 0.9999368190765381, 0.9999077320098877, 0.9998873472213745, 0.9998579621315002, 0.9998456239700317, 0.9998049139976501, 0.9990560412406921, 0.9692032337188721, 0.9104065895080566, 0.88541579246521] +C[C@H](Nc1ccc2c(c1)OCO2)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1ccc2c(c1)OCO2)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2ccc3c(c2)OCO3)n1; ['OB(O)c1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9998469352722168, 0.9939092993736267, 0.9808748960494995, 0.7924805283546448] +c1cc(N2CCOCC2)ccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ccc2c(c1)OCO2; ['OB(O)c1ccc2c(c1)OCO2', 'NNc1ccc2c(c1)OCO2', 'Cc1ccccc1N', 'Fc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'c1ccc2[nH]ncc2c1']; ['c1ccc2[nH]ncc2c1', 'O=Cc1ccccc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'c1ccc2n[nH]cc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2c(c1)OCO2']; [0.999993085861206, 0.9999802708625793, 0.9999697804450989, 0.9992370009422302, 0.9992237091064453, 0.9992091655731201, 0.9981331825256348, 0.9978209733963013, 0.9972730875015259, 0.8937125205993652] +C[C@@H](Nc1ccc2c(c1)OCO2)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'Brc1ccc2c(c1)OCO2', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'CC(=O)C(C)(C)O']; ['OB(O)c1ccc2c(c1)OCO2', 'C[C@@H](N)C(C)(C)O', 'Ic1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2']; [0.9996649026870728, 0.9966833591461182, 0.982501745223999, 0.9347201585769653, 0.9269547462463379, 0.9104862809181213] +CC1(c2ccc3c(c2)OCO3)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +OCCc1cn(-c2ccc3c(c2)OCO3)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc2c(c1)OCO2)C(C)(C)O; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4c(c3)OCO4)[nH]c2c1; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; ['O=C(O)c1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2']; [0.9973959922790527, 0.9865918159484863] +Fc1cccc(Cl)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2c(c1)OCO2; [None]; [None]; [0] +c1ncn(-c2ccc(-c3ccc4c(c3)OCO4)cc2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)OCO3)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3c(c2)OCO3)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3c(c2)OCO3)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5c(c4)OCO5)n3n2)cc1; ['NNc1ccc(-c2ccccc2)nn1', 'NNc1ccc(-c2ccccc2)nn1']; ['O=C(O)Cc1ccc2c(c1)OCO2', 'O=C(Cl)Cc1ccc2c(c1)OCO2']; [0.9998011589050293, 0.9996442794799805] +Nc1nnc(-c2ccc3c(c2)OCO3)s1; ['N#Cc1ccc2c(c1)OCO2', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2c(c1)OCO2']; [0.9998763203620911, 0.999557375907898] +c1cc2c(cc1-c1nncn1C1CC1)OCO2; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3c(c2)OCO3)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4c(c3)OCO4)nn2)cc1; ['BrCc1ccccc1', 'C#Cc1ccc2c(c1)OCO2', 'C#Cc1ccc2c(c1)OCO2']; ['C#Cc1ccc2c(c1)OCO2', '[N-]=[N+]=NCc1ccccc1', 'ClCc1ccccc1']; [1.0, 1.0, 0.9999996423721313] +O=C(CCc1ccc2c(c1)OCO2)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(c2)OCO3)s1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1ccc2c(c1)OCO2']; [0.9999971389770508, 0.9999951124191284] +CCc1cc(-c2ccc3c(c2)OCO3)nc(N)n1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2c(c1)OCO2)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3c(c2)OCO3)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3c(c2)OCO3)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3c(c2)OCO3)c(F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Nc1cncc(-c2ccc3c(c2)OCO3)n1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Brc1ccc2c(c1)OCO2']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'OB(O)c1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Nc1cncc(Cl)n1']; [0.999998927116394, 0.9999967813491821, 0.9999960660934448, 0.9999921917915344, 0.9999774694442749] +C[C@@H2]NC(=O)N1CCC(c2ccc3c(c2)OCO3)CC1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4c(c3)OCO4)nc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3c(c2)OCO3)[nH]1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4c(c3)OCO4)nc2NC1=O; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)OCO3)nc2ccccc12; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12', 'N#Cc1ccccc1Br', 'N#Cc1ccccc1N', 'Ic1ccc2c(c1)OCO2']; ['Nc1nc(Cl)nc2ccccc12', 'OB(O)c1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'O=C(Cl)c1ccc2c(c1)OCO2', 'Nc1ncnc2ccccc12']; [0.9999769926071167, 0.9999651908874512, 0.9998841285705566, 0.9986053705215454, 0.9868544936180115] +c1ccc2nc(-c3ccc4c(c3)OCO4)ncc2c1; ['N=C(N)c1ccc2c(c1)OCO2', 'N=C(N)c1ccc2c(c1)OCO2', 'Brc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Brc1ccc2c(c1)OCO2', 'BrCc1ccccc1Br', 'NCc1ccccc1N', 'Nc1ccccc1CO', 'NCc1ccccc1N', 'Ic1ccc2c(c1)OCO2']; ['O=Cc1ccccc1I', 'NCc1ccccc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ncc2ccccc2n1', 'O=Cc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'O=Cc1ccc2c(c1)OCO2', 'OCc1ccc2c(c1)OCO2', 'c1ccc2ncncc2c1']; [1.0, 0.9999972581863403, 0.9999854564666748, 0.9999716281890869, 0.9999353885650635, 0.9998655319213867, 0.9998645782470703, 0.9996962547302246, 0.9995080828666687, 0.9994202256202698, 0.9730183482170105] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4c(c3)OCO4)c2)cc1; [None]; [None]; [0] +c1cc(-c2ccc3c(c2)OCO3)c2sccc2c1; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)OCO4)c[nH]c2c1; ['Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'Brc1ccc2c(c1)OCO2', 'Clc1c[nH]c2cccnc12', 'Brc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1c[nH]c2cccnc12']; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'OB(O)c1ccc2c(c1)OCO2', 'c1cnc2cc[nH]c2c1', 'c1cnc2cc[nH]c2c1', 'F[B-](F)(F)c1ccc2c(c1)OCO2']; [0.9999995231628418, 0.9999991655349731, 0.9999942779541016, 0.9999844431877136, 0.9999650716781616, 0.9996098279953003, 0.9980849027633667, 0.99688720703125, 0.9954930543899536] +c1cc(-c2ccc3c(c2)OCO3)c2snnc2c1; [None]; [None]; [0] +c1cc2cnc(-c3ccc4c(c3)OCO4)nc2[nH]1; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Clc1ncc2cc[nH]c2n1', 'Brc1ccc2c(c1)OCO2', 'Clc1ncc2cc[nH]c2n1', 'Ic1ccc2c(c1)OCO2']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1ccc2c(c1)OCO2', 'c1ncc2cc[nH]c2n1', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'c1ncc2cc[nH]c2n1']; [0.9999938011169434, 0.9999221563339233, 0.9939858317375183, 0.9925516843795776, 0.9740934371948242] +COc1ccc(C#N)cc1-c1ccc2c(c1)OCO2; ['COc1ccc(C#N)cc1I', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'Brc1ccc2c(c1)OCO2', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Cl', 'Brc1ccc2c(c1)OCO2', 'Br[Zn]c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'Brc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'Br[Mg]c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'Br[Mg]c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1', 'COc1ccc(C#N)cc1Cl', 'Br[Mg]c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1', 'Brc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Br', 'Brc1ccc2c(c1)OCO2']; ['OB(O)c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1I', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Nc1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'Oc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Br', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Cl', 'c1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1F', 'Ic1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1', 'COc1ccc2c(c1)OCO2', 'COc1ccc(C#N)cc1OC']; [0.9999983310699463, 0.9999970197677612, 0.9999937415122986, 0.9999935626983643, 0.9999929666519165, 0.9999916553497314, 0.999990701675415, 0.9999827146530151, 0.9999781847000122, 0.999962329864502, 0.9999310374259949, 0.9999193549156189, 0.9999184012413025, 0.9999181032180786, 0.9998660087585449, 0.9997909069061279, 0.9997893571853638, 0.9997501373291016, 0.9997053742408752, 0.999578595161438, 0.9995732307434082, 0.9995541572570801, 0.9994990825653076, 0.9993124008178711, 0.9989111423492432, 0.9988662004470825, 0.9982075691223145, 0.9977915287017822, 0.9975885152816772, 0.9972648620605469, 0.9964751601219177, 0.9924831390380859, 0.9897516965866089, 0.9863259792327881, 0.9773455858230591, 0.9748462438583374, 0.9718793034553528, 0.9717233777046204, 0.9609936475753784, 0.95906662940979] +CN(C)c1cc(-c2ccc3c(c2)OCO3)cnn1; [None]; [None]; [0] +COc1ncccc1-c1ccc2c(c1)OCO2; ['CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'COc1ncccc1I', 'COc1ncccc1Br', 'CC1(C)OB(c2ccc3c(c2)OCO3)OC1(C)C', 'Brc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'Brc1ccc2c(c1)OCO2', 'COc1ncccc1Cl', 'Brc1ccc2c(c1)OCO2', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'Brc1ccc2c(c1)OCO2', 'Br[Mg]c1ccc2c(c1)OCO2', 'COc1ccccn1', 'COc1ncccc1Br', 'Br[Mg]c1ccc2c(c1)OCO2', 'COc1ccccn1']; ['COc1ncccc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'COc1ncccc1I', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2c(c1)OCO2', 'COc1ncccc1Cl', 'Ic1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2', 'F[B-](F)(F)c1ccc2c(c1)OCO2', 'COc1ncccc1Br', 'COc1ncccc1Br', 'OB(O)c1ccc2c(c1)OCO2', 'c1ccc2c(c1)OCO2', 'COc1ncccc1Cl', 'Ic1ccc2c(c1)OCO2']; [0.9999933242797852, 0.9999914169311523, 0.9999873042106628, 0.9999871253967285, 0.9999794363975525, 0.9999788999557495, 0.999954342842102, 0.9999523162841797, 0.9999467730522156, 0.9999172687530518, 0.9998944401741028, 0.9998373985290527, 0.9998003244400024, 0.9997512102127075, 0.9995710849761963, 0.9995580315589905, 0.9990907907485962, 0.9924083948135376, 0.9912006855010986, 0.9910062551498413, 0.9811055660247803, 0.8278014659881592] +OCCn1cnc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3c(c2)OCO3)c(F)c1F; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccc5c(c4)OCO5)CC3)nc2c1; ['OB(O)c1ccc2c(c1)OCO2', 'Ic1ccc2c(c1)OCO2', 'Brc1ccc2c(c1)OCO2', 'Fc1ccc2c(c1)OCO2', 'Clc1ccc2c(c1)OCO2']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.999751627445221, 0.9959976673126221, 0.9951474666595459, 0.9839338064193726, 0.8457244634628296] +COc1ccc(OC)c(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3c(c2)OCO3)CC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CN', 'CNC(=O)c1ccccc1', 'CNC(=O)c1ccccc1B(O)O', 'CN', None]; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'COC(=O)c1ccccc1-c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1', 'O=C(O)c1ccccc1-c1ccc(O)cc1', None]; [0.9999954700469971, 0.9999882578849792, 0.9999594688415527, 0.9999421238899231, 0.9998010993003845, 0.9992750883102417, 0.9966129064559937, 0.9935756325721741, 0.9921448230743408, 0.9919023513793945, 0] +COC(C)(C)CCc1ccc(O)cc1; ['CC(C)(O)CCc1ccc(O)cc1', 'CC(C)(O)CCc1ccc(O)cc1', 'CC(C)(O)CCc1ccc(O)cc1']; ['C[Si](C)(C)C=[N+]=[N-]', 'CO', 'COS(=O)(=O)OC']; [0.943371057510376, 0.9264558553695679, 0.8762520551681519] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3c(c2)OCO3)C1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(O)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc(O)cc2)[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3c(c2)OCO3)c1)C1CCNCC1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc(O)cc1; [None]; [None]; [0] +Oc1ccc(Cc2cc(F)cc(F)c2)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc(O)cc2)cn1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Cl)cn1', 'CCn1cccn1', 'CCn1cc(B(O)O)cn1', 'CCOS(=O)(=O)c1ccc(C)cc1', 'CCBr', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Cl)cc1']; [0.9999297857284546, 0.9999294281005859, 0.9998817443847656, 0.9995436668395996, 0.9991421699523926, 0.9976837635040283, 0.9959675073623657, 0.9957846403121948, 0.9840730428695679, 0.920068621635437, 0.882643461227417, 0.8780727386474609, 0.8733111619949341] +CP(C)(=O)c1ccccc1-c1ccc(O)cc1; [None]; [None]; [0] +Oc1ccc(-c2ccnc3ccccc23)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc(O)cc3)cc2c1=O; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1ccc(O)cc1']; [0.9990797638893127, 0.9973547458648682] +O=C([O-])c1ccccc1-c1ccc(O)cc1; [None]; [None]; [0] +Oc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +Oc1ccc(-c2ccccc2OC(F)(F)F)cc1; [None]; [None]; [0] +Oc1ccc(-c2cnn(Cc3ccccc3)c2)cc1; ['Brc1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'OCc1ccccc1', 'BrCc1ccccc1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'ClCc1ccccc1', 'OB(O)c1ccc(O)cc1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'c1ccc(Cn2cccn2)cc1']; [0.9999516010284424, 0.9999282360076904, 0.9999256134033203, 0.999880313873291, 0.9997270107269287, 0.9997170567512512, 0.9993383884429932, 0.9992690682411194, 0.9942878484725952, 0.9910697937011719, 0.9902951717376709, 0.9729346036911011, 0.8429244756698608] +NC(=O)c1ccccc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', None, 'NC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', None, 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I', None, 'O=C(Cl)C(=O)Cl', 'NC(=O)c1ccccc1I', None]; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'OB(O)c1ccc(O)cc1', 'NC(=O)c1ccccc1Cl', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', None, 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccccc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', None, 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', None, 'O=C(O)c1ccccc1-c1ccc(O)cc1', 'Oc1ccccc1', None]; [0.999974250793457, 0.999954342842102, 0.9996496438980103, 0.9994304180145264, 0.999218225479126, 0.9990333318710327, 0.9981991052627563, 0, 0.9957410097122192, 0.9956408143043518, 0.9939272403717041, 0.9908934831619263, 0.9888309240341187, 0.98082435131073, 0.9786258935928345, 0, 0.9683774709701538, 0.9597876667976379, 0, 0.8926914930343628, 0.8837171196937561, 0] +Oc1ccc(-c2cnc(-c3ccccc3)[nH]2)cc1; ['OB(O)c1ccc(O)cc1']; ['c1ccc(-c2ncc[nH]2)cc1']; [0.9954827427864075] +CC(C)(C)c1nc(-c2ccc(O)cc2)cs1; ['CC(C)(C)C(N)=S']; ['O=C(CBr)c1ccc(O)cc1']; [0.9999992847442627] +COc1cnc(-c2ccc(O)cc2)nc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'COc1cnc(Cl)nc1', 'CBr', 'CO']; ['COc1cnc(Cl)nc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(-c2ncc(O)cn2)cc1', 'Oc1ccc(-c2ncc(O)cn2)cc1']; [0.9998464584350586, 0.9934146404266357, 0.895869255065918, 0.7535176873207092] +CC(C)C(=O)COc1ccc(O)cc1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ccc(O)cc1', 'Oc1ccc(O)cc1']; [0.9551677703857422, 0.8623310327529907] +OCCn1cc(-c2ccc(O)cc2)cn1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'C1CO1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'OCCI', 'OCCCl', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'OCCBr', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'Cc1ccc(S(=O)(=O)OCCO)cc1', 'OCCn1cc(B(O)O)cn1']; ['OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'OCCn1cc(I)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Cl)cn1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Br)cc1', 'OCCn1cc(Br)cn1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'OCCn1cc(Br)cn1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Cl)cc1']; [0.9999217987060547, 0.9998679161071777, 0.99985671043396, 0.9998207092285156, 0.9998120069503784, 0.9997442960739136, 0.9990442395210266, 0.9989867210388184, 0.9981326460838318, 0.9978070259094238, 0.9960992932319641, 0.9958536624908447, 0.9957054853439331, 0.988091766834259, 0.9828678369522095, 0.982623815536499, 0.9410830140113831, 0.9396533966064453] +Cc1ccc(-c2ccc(O)cc2)c(Br)c1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1']; [0.9999889135360718, 0.9999467134475708, 0.9980556964874268, 0.994721531867981, 0.9679073095321655, 0.9590117931365967, 0.9568296670913696, 0.9080487489700317, 0.7979535460472107] +O=C(Nc1cccc(-c2ccc(O)cc2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc(O)cc1; [None]; [None]; [0] +Oc1ccc(-c2cnc3ccccn23)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1cnc2ccccn12', 'OB(O)c1ccc(O)cc1', 'Clc1cnc2ccccn12', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccccc1', 'Oc1ccc(Cl)cc1']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'Clc1cnc2ccccn12', 'OB(O)c1ccc(O)cc1', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(O)cc1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999987483024597, 0.9999986886978149, 0.9999911785125732, 0.9999796748161316, 0.9999343752861023, 0.9999094009399414, 0.9998501539230347, 0.9996484518051147, 0.9989475011825562, 0.985265851020813, 0.9542009830474854] +Oc1ccc(-c2cc(Cl)ccc2Cl)cc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1']; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccccc1']; [0.9999842643737793, 0.999940037727356, 0.9998002052307129, 0.999684751033783, 0.9996294975280762, 0.9994381070137024, 0.9964417219161987, 0.9659948945045471] +Cc1nc(N)sc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC(=O)Cc1ccc(O)cc1', 'Cc1nc(N)sc1Br']; ['Cc1nc(N)sc1Br', 'NC(N)=S', 'OB(O)c1ccc(O)cc1']; [0.9999932050704956, 0.999977171421051, 0.9999090433120728] +Cc1nc(C)c(-c2ccc(O)cc2)s1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1', 'Cc1nc(C)c(Br)s1']; ['Cc1nc(C)c(Br)s1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccccc1', 'Oc1ccccc1']; [0.9999926090240479, 0.999843955039978, 0.9998139142990112, 0.9997923374176025, 0.9945394992828369, 0.9551795721054077, 0.941247284412384] +CNc1nc(C)c(-c2ccc(O)cc2)s1; [None]; [None]; [0] +Oc1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999997615814209, 0.9999972581863403, 0.9999687671661377, 0.9999047517776489, 0.9914877414703369, 0.9815346598625183, 0.9500178098678589] +Oc1ccc(NCc2cccnc2)cc1; ['Nc1ccc(O)cc1', 'NCc1cccnc1', 'BrCc1cccnc1', 'ClCc1cccnc1', 'Nc1ccc(O)cc1', 'NCc1cccnc1']; ['OCc1cccnc1', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'O=Cc1cccnc1', 'Oc1ccc(Br)cc1']; [0.9803539514541626, 0.9626411199569702, 0.9352404475212097, 0.8014117479324341, 0.7961478233337402, 0.779151439666748] +Oc1ccc(-c2cccc(Cn3cncn3)c2)cc1; [None]; [None]; [0] +Oc1ccc(-c2c(Cl)cccc2Cl)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Cl)cc1']; [0.9999948740005493, 0.9999881386756897, 0.9998975396156311, 0.9998873472213745, 0.9997220039367676, 0.999488115310669, 0.9993540644645691, 0.999284565448761, 0.998637318611145, 0.9980361461639404, 0.9942016005516052, 0.992548942565918, 0.9917964339256287, 0.9830490946769714, 0.953883171081543, 0.9525431394577026, 0.9460455179214478, 0.8849872350692749, 0.8823021650314331, 0.868213415145874] +Oc1ccc(Nc2cccnc2)cc1; ['Nc1cccnc1', 'Clc1cccnc1', 'Nc1cccnc1', 'Brc1cccnc1']; ['OB(O)c1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Nc1ccc(O)cc1']; [0.9949966669082642, 0.8742954134941101, 0.8529335260391235, 0.8492991924285889] +Nc1nccc(-c2ccc(O)cc2)n1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', None, None]; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', None, None]; [0.9999983310699463, 0.9999927878379822, 0.9998666048049927, 0.9995138049125671, 0.9990917444229126, 0, 0] +Oc1ccc(-n2cnc3ccccc32)cc1; ['OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(I)cc1', None, 'Oc1ccc(Cl)cc1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', None, 'c1ccc2[nH]cnc2c1']; [0.99830561876297, 0.9979196190834045, 0.9889084100723267, 0.9862328767776489, 0, 0.9621729850769043] +Cc1ccc(Cl)c(-c2ccc(O)cc2)c1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cc1ccc(Cl)c(Br)c1', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'C=CCOc1ccc(B(O)O)cc1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'C=CCOc1ccc(Br)cc1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c([Mg]Br)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc(O)cc1', 'Cc1ccc(Cl)c(Br)c1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Cc1ccc(Cl)c(Br)c1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Oc1ccc(Cl)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1']; [0.999995231628418, 0.9999548196792603, 0.9999344944953918, 0.9994915723800659, 0.999104380607605, 0.999000608921051, 0.9988020062446594, 0.9973896741867065, 0.996544361114502, 0.9959235191345215, 0.9948728084564209, 0.9937098026275635, 0.9928140640258789, 0.991661787033081, 0.9900466799736023, 0.9865989089012146, 0.9825987815856934, 0.9736146330833435, 0.9731395244598389, 0.9578355550765991, 0.9555110931396484, 0.949683666229248, 0.8602232933044434, 0.8303922414779663, 0.7987745404243469] +Oc1ccc(-c2cnn3ncccc23)cc1; ['Brc1cnn2ncccc12', 'Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccccc1']; [0.9999958872795105, 0.9999166131019592, 0.9997372031211853, 0.9996739625930786, 0.8278113007545471] +Oc1ccc(-c2cccc(Br)c2)cc1; ['Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'Nc1cccc(Br)c1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1cccc(I)c1', 'OB(O)c1cccc(Br)c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', None, 'Nc1ccc(O)cc1', 'C=CCOc1ccc(Br)cc1', 'OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Clc1cccc(Br)c1', None, None, 'OB(O)c1cccc(Br)c1', 'Brc1cccc(I)c1', 'Br[Mg]c1cccc(Br)c1', None, 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1ccc(O)cc1', 'Clc1cccc(Br)c1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'C=CCOc1ccc(B(O)O)cc1', 'Oc1ccc(Br)cc1', None, 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', None, None, 'Oc1ccc(Cl)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(Br)cc1', None, 'Oc1ccc(Cl)cc1', 'Oc1ccc([B-](F)(F)F)cc1']; [0.9999896287918091, 0.9999648928642273, 0.9999011754989624, 0.9997813701629639, 0.9996302127838135, 0.9996229410171509, 0.9996228218078613, 0.9994530081748962, 0.9994316101074219, 0.9993249773979187, 0.9989805221557617, 0.9989144802093506, 0.9979820251464844, 0, 0.9967167973518372, 0.9949604272842407, 0.993399977684021, 0.9913727045059204, 0.9858615398406982, 0, 0, 0.9549782276153564, 0.9546922445297241, 0.935454249382019, 0, 0.8948796987533569, 0.8220558762550354] +O=C(Nc1ccc(O)cc1)c1cccs1; ['Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'CCOC(=O)c1cccs1', 'COC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1']; [0.997748076915741, 0.9976741671562195, 0.9815385341644287, 0.9442577362060547, 0.905124306678772, 0.8631538152694702] +Oc1ccc(NCCc2c[nH]cn2)cc1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Oc1ccc(I)cc1', 'Oc1ccc(O)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1']; [0.9945951104164124, 0.9617376327514648, 0.9532612562179565, 0.9363884925842285, 0.934748649597168] +Oc1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +Cc1c(-c2ccc(O)cc2)sc(=O)n1C; [None]; [None]; [0] +Oc1ccc(NCCc2ccccc2)cc1; ['Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'NCCc1ccccc1', 'CS(=O)(=O)OCCc1ccccc1', 'ICCc1ccccc1', 'ClCCc1ccccc1', 'Nc1ccc(O)cc1', 'NCCc1ccccc1', 'BrCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'O=CCc1ccccc1', 'Oc1ccc(Br)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(F)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Cl)cc1']; [0.9949790835380554, 0.9921377897262573, 0.9917666912078857, 0.9861859083175659, 0.9817062020301819, 0.9757879972457886, 0.9751499891281128, 0.9660826921463013, 0.9010797142982483, 0.8700721263885498, 0.828345537185669] +NC(=O)c1c(F)cccc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1']; [0.9999988079071045, 0.9999901652336121, 0.9999170899391174, 0.998763918876648] +O=C([O-])Cc1cccc(-c2ccc(O)cc2)c1; [None]; [None]; [0] +Oc1ccc(-c2c[nH]nc2C(F)(F)F)cc1; [None]; [None]; [0] +Oc1ccc(-c2cncc3ccccc23)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc(O)cc3)cc2)cn1; [None]; [None]; [0] +Oc1ccc(NCc2ccc(Cl)cc2)cc1; ['Nc1ccc(O)cc1', 'Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'O=[N+]([O-])c1ccc(O)cc1', 'NCc1ccc(Cl)cc1']; ['OCc1ccc(Cl)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'OCc1ccc(Cl)cc1', 'Oc1ccc(I)cc1']; [0.9969849586486816, 0.9947034120559692, 0.983137845993042, 0.9619719982147217, 0.9582558870315552] +Nc1[nH]nc2cc(-c3ccc(O)cc3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc(O)cc3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(O)cc3)ccc21; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Oc1ccc(I)cc1', 'Cn1ncc2cc(Cl)ccc21', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Cn1ncc2cc(Br)ccc21', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1']; [0.9999995231628418, 0.9999989867210388, 0.9999977350234985, 0.9999955892562866, 0.9999923706054688, 0.9999907612800598, 0.999988317489624, 0.9999845027923584, 0.999980092048645, 0.9999191164970398, 0.9998918175697327, 0.999880850315094, 0.9997043013572693, 0.9995685815811157, 0.9981600046157837, 0.909637451171875] +Oc1ccc(-c2ccc(-c3cn[nH]c3)cc2)cc1; ['CC1(C)OB(c2ccc(-c3ccc(O)cc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3ccc(O)cc3)cc2)OC1(C)C', 'Brc1cn[nH]c1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2cn[nH]c2)OC1(C)C', 'CC1(C)OB(c2cn[nH]c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1cn[nH]c1', 'Clc1cn[nH]c1', 'CC1(C)OB(c2cn[nH]c2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Ic1cn[nH]c1', 'OB(O)c1cn[nH]c1', 'Brc1cn[nH]c1', 'OB(O)c1cn[nH]c1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; ['Clc1cn[nH]c1', 'Ic1cn[nH]c1', 'CC1(C)OB(c2ccc(-c3ccc(O)cc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(-c2ccc(I)cc2)cc1', 'Oc1ccc(-c2ccc(Br)cc2)cc1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(-c2ccc(I)cc2)cc1', 'OB(O)c1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(-c2ccc(Cl)cc2)cc1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(-c2ccc(Br)cc2)cc1', 'OB(O)c1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(-c2ccc(Cl)cc2)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1']; [0.9999629259109497, 0.9999178647994995, 0.9999117851257324, 0.9998413324356079, 0.9998413324356079, 0.9998144507408142, 0.9997109174728394, 0.9996393918991089, 0.9995844960212708, 0.9995844960212708, 0.9990953207015991, 0.9985765218734741, 0.9972795248031616, 0.9970998167991638, 0.9959756135940552, 0.9956996440887451, 0.9936659336090088, 0.9923145771026611, 0.9754070043563843, 0.9410170316696167, 0.9410170316696167, 0.8744764924049377, 0.8744764924049377] +CCCn1cnc(-c2ccc(O)cc2)n1; [None]; [None]; [0] +Oc1ccc(Nc2ccncc2)cc1; ['Nc1ccncc1', 'Nc1ccc(O)cc1', 'Clc1ccncc1', 'Nc1ccc(O)cc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; ['OB(O)c1ccc(O)cc1', 'OB(O)c1ccncc1', 'Nc1ccc(O)cc1', 'c1cc[n+](-c2ccncc2)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1']; [0.9951428771018982, 0.9894673824310303, 0.9018548727035522, 0.8986576795578003, 0.8444077968597412, 0.823520839214325, 0.785818338394165] +Oc1ccc(NCc2ccccc2F)cc1; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'NCc1ccccc1F', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'O=Cc1ccc(O)cc1']; [0.9981274008750916, 0.9971717596054077, 0.9971057176589966, 0.9944040179252625, 0.9325000047683716, 0.9235974550247192, 0.907431423664093, 0.8958778977394104] +Oc1ccc(-c2cccc(O)c2)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', None, 'OB(O)c1cccc(O)c1', None, 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', None, 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', None, 'OB(O)c1ccc(O)cc1', None, None, None, None, None, 'Oc1ccc(Br)cc1']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', None, 'Oc1ccc(I)cc1', None, 'Oc1cccc(Cl)c1', 'Oc1cccc(Br)c1', 'Oc1ccc(I)cc1', None, 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', None, 'Oc1cccc(Cl)c1', None, None, None, None, None, 'Oc1cccc(Br)c1']; [0.9999957084655762, 0.9999899864196777, 0.9999663233757019, 0, 0.9998530149459839, 0, 0.9994503259658813, 0.9992108345031738, 0.998871386051178, 0, 0.9981225728988647, 0.9971638917922974, 0.9958441853523254, 0.9953740239143372, 0, 0.9905928373336792, 0, 0, 0, 0, 0, 0.7701084613800049] +CC(C)n1cc(-c2ccc(O)cc2)nn1; ['CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1']; [0.999720573425293, 0.9956085681915283] +COc1cc(-c2ccc(O)cc2)ccc1C(=O)[O-]; [None]; [None]; [0] +OCc1cccc(-c2ccc(O)cc2)c1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OCc1cccc(B(O)O)c1', None, None, None, 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OB(O)c1ccc(O)cc1', 'OCc1cccc(Br)c1']; ['OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1', 'Oc1ccc(I)cc1', None, None, None, 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'OCc1cccc(Cl)c1', 'Oc1ccc(I)cc1']; [0.9999799728393555, 0.9999704360961914, 0.9998771548271179, 0.9997676610946655, 0.9995734691619873, 0.9987446069717407, 0.997344970703125, 0, 0, 0, 0.947487473487854, 0.9332674741744995, 0.9300181865692139, 0.8612841367721558] +Nc1nc(-c2ccc(O)cc2)cs1; ['NC(N)=S', 'NC(N)=S', 'CC(=O)c1ccc(O)cc1', None, None, None]; ['O=C(CBr)c1ccc(O)cc1', 'O=C(CCl)c1ccc(O)cc1', 'NC(N)=S', None, None, None]; [0.9999947547912598, 0.9999907612800598, 0.9999798536300659, 0, 0, 0] +Oc1ccc(-c2csc3ncncc23)cc1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'OB(O)c1ccc(O)cc1', 'Oc1ccccc1']; [0.999993085861206, 0.9999106526374817, 0.9998587369918823, 0.7686889171600342] +Oc1ccc(-c2cc3ccccc3[nH]2)cc1; ['Ic1cc2ccccc2[nH]1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1cc2ccccc2[nH]1', 'OB(O)c1ccc(O)cc1', 'CC(=O)c1ccc(O)cc1', None, None, None, 'Nc1ccccc1']; ['OB(O)c1ccc(O)cc1', 'Clc1cc2ccccc2[nH]1', 'Oc1ccc(Br)cc1', 'c1ccc2[nH]ccc2c1', 'NNc1ccccc1', None, None, None, 'O=C(CBr)c1ccc(O)cc1']; [0.9999569654464722, 0.9975404739379883, 0.9948590993881226, 0.9930810332298279, 0.987822413444519, 0, 0, 0, 0.8755496144294739] +CSc1nc(-c2ccc(O)cc2)c[nH]1; [None]; [None]; [0] +Oc1ccc(CCc2c[nH]nn2)cc1; [None]; [None]; [0] +Nc1ncncc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Nc1ncncc1I', None, 'Nc1ncncc1Br', 'Nc1ncncc1Cl']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'OB(O)c1ccc(O)cc1', None, 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1']; [0.9999957084655762, 0.9999870657920837, 0.9995560050010681, 0, 0.999130129814148, 0.9714733362197876] +CC(C)c1oncc1-c1ccc(O)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc(O)cc3)cc2s1; [None]; [None]; [0] +NC(=O)CCCc1ccc(O)cc1; ['O=C(O)CCCc1ccc(O)cc1', 'CC(C)COC(=O)Cl', 'O=C(Cl)C(=O)Cl', 'O=C(O)CCCc1ccc(O)cc1', None]; ['O=C(n1ccnc1)n1ccnc1', 'O=C(O)CCCc1ccc(O)cc1', 'O=C(O)CCCc1ccc(O)cc1', '[NH4+]', None]; [0.9964101910591125, 0.9950199723243713, 0.9897193908691406, 0.9848698377609253, 0] +N#CCCc1cccc(-c2ccc(O)cc2)c1; [None]; [None]; [0] +Oc1ccc(Oc2ccccn2)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Clc1ccccn1', None, None, 'Brc1ccccn1', None]; ['Oc1ccccn1', 'Oc1ccc(O)cc1', None, None, 'Oc1ccc(O)cc1', None]; [0.9770601987838745, 0.9209177494049072, 0, 0, 0.7961050271987915, 0] +CCC(=O)Nc1ccc(-c2ccc(O)cc2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)O', 'CCC(=O)OC(=O)CC', 'CCC(=O)Cl', 'CCOC(=N)CC', 'CCC(=O)N1CCSC1=S', 'CCOC(=O)CC', 'CCC(N)=O', 'CCC(=O)OC']; ['Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(-c2ccc(I)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1']; [0.9998025298118591, 0.9996647834777832, 0.998273491859436, 0.9957057237625122, 0.9893345236778259, 0.9844307899475098, 0.9556539058685303, 0.9529013633728027, 0.9309182167053223, 0.9055779576301575, 0.8490003347396851] +Oc1ccc(-c2ccc(F)cc2C(F)(F)F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(O)cc1)c1c(Cl)cccc1Cl; ['Nc1ccc(O)cc1', None, 'Nc1ccc(O)cc1', 'NC(=O)c1c(Cl)cccc1Cl', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', None, 'O=C(O)c1c(Cl)cccc1Cl', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1']; [0.9983749389648438, 0, 0.9934186935424805, 0.9436237812042236, 0.8965054750442505, 0.7865508794784546] +CC(C)(O)CC(=O)NCCc1ccc(O)cc1; ['COC(=O)CC(C)(C)O', 'CCOC(=O)CC(C)(C)O', 'CC(C)(O)CC(=O)[O-]', 'CC(C)(O)CC(=O)O']; ['NCCc1ccc(O)cc1', 'NCCc1ccc(O)cc1', 'NCCc1ccc(O)cc1', 'NCCc1ccc(O)cc1']; [0.9980239272117615, 0.9960771203041077, 0.98850417137146, 0.9870537519454956] +CS(=O)(=O)C1CCN(c2ccc(O)cc2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['O=C1CCC(=O)CC1', 'Oc1ccc(I)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1']; [0.9984238147735596, 0.979483962059021, 0.942787230014801, 0.9146271347999573, 0.7703914642333984] +CC(=O)Nc1cccc(-c2ccc(O)cc2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(O)cc2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1']; [0.9993603229522705, 0.9973165988922119, 0.9547662734985352] +CCCn1cc(-c2ccc(O)cc2)cn1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cccn1', 'CCCI', 'CCCBr']; ['CCCn1cc(Br)cn1', 'CCCn1cc(I)cn1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1', 'Oc1ccc(-c2cn[nH]c2)cc1']; [0.9999933242797852, 0.9999822974205017, 0.9999611973762512, 0.9999284744262695, 0.9998136758804321, 0.999549150466919, 0.999461829662323, 0.9994363784790039, 0.988544225692749, 0.9860184192657471, 0.9834400415420532, 0.9612149000167847, 0.9602088928222656] +CC(C)(COc1ccc(O)cc1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2)cc1Cl; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'C=CCOc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(I)cc1Cl', 'C=CCOc1ccc(Br)cc1', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['COc1ccc(Br)cc1Cl', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Oc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1Cl', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Nc1ccc(O)cc1', 'COc1ccc(Br)cc1Cl', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1Cl', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Cl)cc1']; [0.9999898076057434, 0.999976396560669, 0.9999541640281677, 0.9999428987503052, 0.9999282360076904, 0.9999246001243591, 0.9999068975448608, 0.9994862079620361, 0.9994698762893677, 0.9991979598999023, 0.9990701675415039, 0.9986622929573059, 0.9961508512496948, 0.994764506816864, 0.9945807456970215, 0.9927991628646851, 0.9926316738128662, 0.9922022819519043, 0.9849423170089722, 0.9845287203788757, 0.9842245578765869, 0.9095003604888916, 0.8386386632919312, 0.7657150030136108] +Oc1ccc(-c2cnn3ccccc23)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'OB(O)c1ccc(O)cc1', 'Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'c1ccn2nccc2c1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccccc1', 'Oc1ccccc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1']; [0.9999989867210388, 0.9999980926513672, 0.99992835521698, 0.999780535697937, 0.9997513294219971, 0.9997243881225586, 0.9996063709259033, 0.9990870952606201, 0.9962927103042603, 0.9944608211517334, 0.9928390979766846, 0.9500560760498047, 0.9324967265129089, 0.9231607913970947, 0.9024409055709839] +COc1cc(CCc2ccc(O)cc2)cc(OC)c1; [None, None]; [None, None]; [0, 0] +[NH3+]Cc1ccc(-c2ccc(O)cc2)cc1C(F)(F)F; [None]; [None]; [0] +O=c1cc(-c2ccc(O)cc2)cc[nH]1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Cl)cc[nH]1']; ['O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'O=c1cc(Cl)cc[nH]1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'O=c1cc(Br)cc[nH]1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1']; [0.9998778104782104, 0.999674916267395, 0.998948335647583, 0.9987027049064636, 0.9968912601470947, 0.9954466819763184, 0.9945610761642456, 0.9920424222946167, 0.9793153405189514, 0.9461886882781982] +C[S@](=O)c1ccc(-c2ccc(O)cc2)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', None, 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', None, 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1']; [0.9995982646942139, 0.9995982646942139, 0.9994779825210571, 0, 0.9884012937545776, 0.9884012937545776] +CC(C)(N)c1ccc(-c2ccc(O)cc2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', None, 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', None, 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1']; [0.9996681809425354, 0.9994274377822876, 0, 0.8658891916275024, 0.7750399112701416] +C[C@@H](Oc1ccc(O)cc1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1ccc(I)cc1']; [0.8463863134384155] +O=C1CCc2cccc(-c3ccc(O)cc3)c21; [None]; [None]; [0] +CCN(CC)c1ccc(O)cc1; ['CCNCC', None, None, 'CCI', 'CCNCC', None, None, 'CCBr']; ['O=C1CCC(=O)CC1', None, None, 'CCNc1ccc(O)cc1', 'Oc1ccc(I)cc1', None, None, 'CCNc1ccc(O)cc1']; [0.9897527694702148, 0, 0, 0.9401441812515259, 0.8819899559020996, 0, 0, 0.8302382230758667] +CCNS(=O)(=O)c1ccccc1-c1ccc(O)cc1; [None]; [None]; [0] +COc1ccncc1Nc1ccc(O)cc1; ['COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1B(O)O', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1I']; ['OB(O)c1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Nc1ccc(O)cc1']; [0.9976468086242676, 0.9971988201141357, 0.9957295656204224, 0.9944465160369873, 0.988400399684906, 0.9849011301994324, 0.9681063890457153, 0.9625107049942017] +Oc1ccc(Nc2cnccc2-c2ccccc2)cc1; ['Nc1cnccc1-c1ccccc1', 'Nc1ccc(O)cc1', 'Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['OB(O)c1ccc(O)cc1', 'OB(O)c1cnccc1-c1ccccc1', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1']; [0.9992173910140991, 0.9978922605514526, 0.9964906573295593, 0.9947468042373657, 0.9851269125938416, 0.9476528763771057] +O=c1[nH]ccc2oc(-c3ccc(O)cc3)cc12; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'O=c1[nH]ccc2oc(Br)cc12', 'O=c1[nH]ccc2occc12', 'O=c1[nH]ccc2occc12']; ['O=c1[nH]ccc2oc(Br)cc12', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1']; [0.999964714050293, 0.998950719833374, 0.9769729375839233, 0.808226466178894] +CC(C)Oc1cncc(-c2ccc(O)cc2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1']; ['Oc1ccc(I)cc1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1']; [0.9999985694885254, 0.999998152256012, 0.9999980926513672, 0.999868631362915, 0.9985096454620361, 0.9977543354034424, 0.8533411026000977] +Oc1ccc(Nc2cnc3ccccc3c2)cc1; ['Nc1ccc(O)cc1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['OB(O)c1cnc2ccccc2c1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(F)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Nc1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Cl)cc1']; [0.9974961280822754, 0.9971659183502197, 0.9856432676315308, 0.9693731069564819, 0.9613896608352661, 0.9571530818939209, 0.9570634365081787, 0.9443638920783997, 0.9062185287475586, 0.9012172818183899] +O=c1[nH]cc(Br)c2sc(-c3ccc(O)cc3)cc12; [None]; [None]; [0] +Oc1ccc(-c2c[nH]c3cnccc23)cc1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1']; [0.9999866485595703, 0.9999583959579468, 0.9998471736907959, 0.991101861000061, 0.9876214265823364] +Oc1ccc(-c2cnc3[nH]ccc3c2)cc1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1']; [0.9999992251396179, 0.9999878406524658, 0.9999199509620667, 0.9998701810836792, 0.9997982978820801, 0.9997605085372925, 0.9995286464691162, 0.9992098808288574, 0.9854084253311157, 0.7767539024353027] +CC(C)(C)c1ccc(-c2ccc(O)cc2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc(O)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(O)cc2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Oc1ccc(I)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1']; [0.9988707304000854, 0.9976750612258911, 0.9976750612258911, 0.9971668720245361, 0.9948583841323853, 0.9948583841323853, 0.9788920879364014, 0.9788920879364014, 0.967117428779602, 0.967117428779602] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc(O)cc2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1ccc(I)cc1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'Oc1ccc(Cl)cc1']; [0.9998908042907715, 0.9997797012329102, 0.9997797012329102, 0.9991856813430786, 0.9983890056610107, 0.9974963665008545, 0.9974963665008545, 0.9830224514007568, 0.9830224514007568, 0.9827852249145508, 0.9627177715301514] +CN(c1ccc(O)cc1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ccc(O)cc2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Oc1ccc(-c2ccc(N3CCOCC3)cc2)cc1; ['Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'ClCCOCCCl', 'C1COCCN1', 'BrCCOCCBr', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'C1COCCN1', 'O=C(ON1CCOCC1)c1ccccc1', 'Brc1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'Clc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Oc1ccc(Br)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Oc1ccc(I)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(-c2ccc(I)cc2)cc1', 'Nc1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2ccc(Br)cc2)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2ccc(Cl)cc2)cc1', 'Oc1ccc(-c2ccc(F)cc2)cc1', 'Oc1ccc(-c2ccccc2)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(-c2ccc(O)cc2)cc1', 'Oc1ccccc1']; [0.9999945163726807, 0.9999945163726807, 0.999993622303009, 0.999993622303009, 0.9999785423278809, 0.9999785423278809, 0.9999593496322632, 0.9999593496322632, 0.999744713306427, 0.9995969533920288, 0.9995969533920288, 0.9994229078292847, 0.9994229078292847, 0.9994145035743713, 0.9992803335189819, 0.9992803335189819, 0.9986127614974976, 0.9977086782455444, 0.9973102807998657, 0.9967861175537109, 0.9950606822967529, 0.9950606822967529, 0.9841774106025696, 0.9792765378952026, 0.9702584743499756, 0.9599289894104004, 0.9541178941726685, 0.8746727108955383, 0.8342355489730835, 0.7675671577453613] +Cc1cc(-c2ccc(O)cc2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc(O)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc(O)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc(O)cc1)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Oc1ccc(Br)cc1']; [0.816360592842102] +CS(=O)(=O)c1ccc(-c2ccc(O)cc2)cc1; [None]; [None]; [0] +C[C@@H](Nc1ccc(O)cc1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['OB(O)c1ccc(O)cc1', 'Nc1ccc(O)cc1', 'Oc1ccc(Br)cc1']; [0.9876829385757446, 0.8184527158737183, 0.816360592842102] +OCc1ccn(-c2ccc(O)cc2)n1; ['OB(O)c1ccc(O)cc1', 'OCc1cc[nH]n1']; ['OCc1cc[nH]n1', 'Oc1ccc(I)cc1']; [0.9975812435150146, 0.9758497476577759] +OCCc1cn(-c2ccc(O)cc2)cn1; ['OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1']; ['Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1']; [0.9883308410644531, 0.9750230312347412, 0.9522585868835449] +Oc1ccc(-c2c(F)cccc2Cl)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1Br']; ['Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(I)cc1', 'Oc1ccccc1']; [0.9999988079071045, 0.999992847442627, 0.9999668598175049, 0.9999619126319885, 0.9999145865440369, 0.999876081943512, 0.9997979998588562, 0.9988013505935669, 0.9984316229820251, 0.9982931613922119, 0.9959834814071655, 0.9951882362365723, 0.9929409623146057, 0.9920246601104736, 0.989075243473053, 0.8761966228485107, 0.7615326642990112] +Oc1ccc(-c2ccc(-n3cncn3)cc2)cc1; ['Oc1ccc(-c2ccc(Br)cc2)cc1']; ['c1nc[nH]n1']; [0.9990696907043457] +Oc1ccc(-n2ncc3ccccc32)cc1; [None]; [None]; [0] +Oc1ccc(-n2ncc3c(O)cccc32)cc1; [None]; [None]; [0] +Oc1ccc(-c2nc3ccc(O)cc3[nH]2)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc(O)cc2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc(O)cc2)cc1; [None]; [None]; [0] +Oc1ccc(-c2nncn2C2CC2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(O)cc2)CC1; [None]; [None]; [0] +O=C(CCc1ccc(O)cc1)NCc1ccccn1; ['NCc1ccccn1', 'O=C(O)CCc1ccc(O)cc1', 'CCOC(=O)CCc1ccc(O)cc1', 'NCc1ccccn1', 'COC(=O)CCc1ccc(O)cc1']; ['O=C(O)CCc1ccc(O)cc1', '[N-]=[N+]=NCc1ccccn1', 'NCc1ccccn1', 'O=C(CCc1ccc(O)cc1)ON1C(=O)CCC1=O', 'NCc1ccccn1']; [0.9997620582580566, 0.998616099357605, 0.9955435991287231, 0.9954797029495239, 0.9937946796417236] +Oc1ccc(Cc2nnc3ccc(-c4ccccc4)nn23)cc1; ['NNc1ccc(-c2ccccc2)nn1']; ['O=C(O)Cc1ccc(O)cc1']; [0.9999492764472961] +CC(C)n1cnnc1-c1ccc(O)cc1; [None]; [None]; [0] +Nc1nnc(-c2ccc(O)cc2)s1; ['N#Cc1ccc(O)cc1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc(O)cc1']; [0.999994158744812, 0.9999567866325378] +CCCCc1cc(-c2ccc(O)cc2)nc(N)n1; [None]; [None]; [0] +CCc1cc(-c2ccc(O)cc2)nc(N)n1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'OB(O)c1ccc(O)cc1']; [0.9999992847442627, 0.9999834299087524] +[NH3+]CCn1ccc(-c2ccc(O)cc2)n1; [None]; [None]; [0] +O=S(=O)(Cc1ccc(O)cc1)NCc1ccccn1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc(O)cc2)CC1; ['CCN=C=O', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1', 'CCNC=O', 'CCNC(=O)OCC']; ['Oc1ccc(C2CCNCC2)cc1', 'Oc1ccc(C2CCNCC2)cc1', 'Oc1ccc(C2CCNCC2)cc1', 'Oc1ccc(C2CCNCC2)cc1', 'Oc1ccc(C2CCNCC2)cc1']; [0.9998711347579956, 0.997634768486023, 0.9964724779129028, 0.9954383373260498, 0.9878508448600769] +CNC(=O)c1ccc(-c2ccc(O)cc2)s1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1', 'CN']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1ccc(O)cc1', 'O=C(O)c1ccc(-c2ccc(O)cc2)s1']; [0.9999986290931702, 0.999992847442627, 0.9995529055595398] +CC(C)(O)c1cccc(-c2ccc(O)cc2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1']; [0.9999921321868896, 0.999774694442749, 0.9996896982192993, 0.9860543608665466, 0.8597139120101929] +Oc1ccc(-c2cn(Cc3ccccc3)nn2)cc1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc(O)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc(O)cc2)n1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', None]; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', None]; [0.9999818801879883, 0.9999608993530273, 0.9998518228530884, 0.9990832805633545, 0] +CC1(C)Oc2ccc(-c3ccc(O)cc3)nc2NC1=O; ['CC1(C)Oc2ccc(Br)nc2NC1=O']; ['OB(O)c1ccc(O)cc1']; [0.9824125170707703] +Oc1ccc(-c2cccc3nnsc23)cc1; ['Brc1cccc2nnsc12', 'Brc1cccc2nnsc12']; ['OB(O)c1ccc(O)cc1', 'Oc1ccccc1']; [0.9997384548187256, 0.9484442472457886] +[NH3+]Cc1ccc(Oc2ccc(O)cc2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(O)cc3)c2)cc1; ['CNC(=O)c1ccc(N)cc1', None]; ['O=C(O)c1cccc(-c2ccc(O)cc2)c1', None]; [0.9998095631599426, 0] +Oc1ccc(-c2nc3ccccc3s2)cc1; [None]; [None]; [0] +Oc1ccc(-c2cccc3ccsc23)cc1; [None]; [None]; [0] +Nc1nc(-c2ccc(O)cc2)nc2ccccc12; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12']; ['Nc1nc(Cl)nc2ccccc12', 'OB(O)c1ccc(O)cc1']; [0.9993480443954468, 0.9964353442192078] +CC(=O)Nc1ncc(-c2ccc(O)cc2)[nH]1; [None]; [None]; [0] +Oc1ccc(-c2c[nH]c3cccnc23)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Ic1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Clc1c[nH]c2cccnc12']; ['Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'OB(O)c1ccc(O)cc1', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'OB(O)c1ccc(O)cc1', 'Clc1c[nH]c2cccnc12', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1']; [0.9999731183052063, 0.9999679327011108, 0.9999334812164307, 0.9998965263366699, 0.9989464282989502, 0.9986273050308228, 0.9963862299919128, 0.9911009073257446, 0.9880002737045288] +Oc1ccc(-c2ncc3ccccc3n2)cc1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Nc1ccccc1CO', 'Oc1ccc(I)cc1']; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'O=Cc1ccc(O)cc1', 'c1ccc2ncncc2c1']; [0.9999895095825195, 0.9999551773071289, 0.9994454383850098, 0.9989272356033325, 0.9881044030189514, 0.9206953048706055] +Oc1ccc(-c2ncc3cc[nH]c3n2)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'Clc1ncc2cc[nH]c2n1']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1ccc(O)cc1']; [0.9999802112579346, 0.9991297721862793] +COc1ccc(C#N)cc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'CC(C)(C)[Si](C)(C)Oc1ccc(Br)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(B(O)O)cc1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'C=CCOc1ccc(B(O)O)cc1', 'C=CCOc1ccc(Br)cc1', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br']; ['COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1']; [0.9999889135360718, 0.9999686479568481, 0.9999463558197021, 0.9998285174369812, 0.9997333288192749, 0.9995107650756836, 0.9995094537734985, 0.999098002910614, 0.9982476830482483, 0.9980466365814209, 0.9978398084640503, 0.9976764917373657, 0.9968513250350952, 0.9960265159606934, 0.9956921935081482, 0.9955805540084839, 0.9921071529388428, 0.9901218414306641, 0.9843683242797852, 0.982367992401123, 0.9786142110824585, 0.9785041809082031, 0.930169939994812, 0.9215387105941772, 0.8375765085220337] +COc1ncccc1-c1ccc(O)cc1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ccccn1', 'COc1ncccc1Cl']; ['COc1ncccc1Br', 'COc1ncccc1I', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1']; [0.9999960660934448, 0.9999839067459106, 0.9998633861541748, 0.9997073411941528, 0.999207079410553, 0.999165415763855, 0.9983745813369751, 0.9973549842834473, 0.997136116027832, 0.9954192638397217, 0.992387056350708, 0.9836823344230652, 0.9753657579421997, 0.8394128084182739, 0.80301833152771] +COc1ccc(Oc2ccc(O)cc2)c(F)c1F; ['COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1cccc(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Oc1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(O)cc1', 'Oc1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(O)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1']; [0.9968564510345459, 0.9963840246200562, 0.9932215213775635, 0.9385097622871399, 0.9085246324539185, 0.8941481709480286, 0.8871479630470276, 0.8637411594390869] +OCCn1cnc(-c2ccc(O)cc2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc(O)cc2)c1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccccc1']; [0.9999877214431763, 0.9999150037765503, 0.9998772144317627, 0.9997773766517639, 0.9995166063308716, 0.9994961023330688, 0.9969221353530884, 0.9954041242599487, 0.9713718891143799] +COc1ccc(OC)c(-c2ccc(O)cc2)c1; ['CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(O)cc2)OC1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'C=CCOc1ccc(B(O)O)cc1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'C=CCOc1ccc(Br)cc1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(Br)c1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'COc1ccc(OC)c(Br)c1', 'Oc1ccc(I)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'COc1ccc(OC)c(B(O)O)c1', 'Oc1ccc(Br)cc1', 'Oc1ccc([B-](F)(F)F)cc1', 'Nc1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Oc1ccc(I)cc1', 'Oc1ccccc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Br)cc1', 'OB(O)c1ccc(O)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccc(I)cc1']; [0.9999934434890747, 0.9999904632568359, 0.9999319314956665, 0.9998239278793335, 0.9997895956039429, 0.9996286630630493, 0.9992461800575256, 0.9989776611328125, 0.9974936246871948, 0.997489333152771, 0.9972898960113525, 0.9970519542694092, 0.996796727180481, 0.9949463605880737, 0.9930868744850159, 0.9903088808059692, 0.984951376914978, 0.9770052433013916, 0.9764006733894348, 0.9522519111633301, 0.9511896371841431, 0.9456276893615723, 0.9361611008644104, 0.8984928131103516, 0.879335880279541, 0.8704489469528198, 0.8584526181221008, 0.8366113901138306, 0.8258307576179504] +CNC(=O)c1ccccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CNC(=O)c1ccccc1B(O)O', 'Brc1ccc2n[nH]cc2c1', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1']; ['CNC(=O)c1ccccc1Br', 'Ic1ccc2n[nH]cc2c1', 'CNC(=O)c1ccccc1B(O)O', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1']; [0.9999979734420776, 0.9987709522247314, 0.9855291247367859, 0.9057021141052246, 0.8631193041801453] +O=C(Nc1cccc(-c2ccc(O)cc2)c1)C1CCNCC1; ['Nc1cccc(-c2ccc(O)cc2)c1', 'COC(=O)C1CCNCC1']; ['O=C(O)C1CCNCC1', 'Nc1cccc(-c2ccc(O)cc2)c1']; [0.9999399185180664, 0.9994379281997681] +CCOc1ccccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Brc1ccc2n[nH]cc2c1', 'CCOc1ccccc1B(O)O', 'Brc1ccc2n[nH]cc2c1']; ['CCOc1ccccc1Br', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccc2n[nH]cc2c1', 'CCOc1ccccc1Cl', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CCOc1ccccc1B(O)O', 'Clc1ccc2n[nH]cc2c1', 'CCOc1ccccc1Br']; [0.9999932646751404, 0.9999849796295166, 0.9999779462814331, 0.9999374151229858, 0.9999009966850281, 0.9997130632400513, 0.9962993860244751, 0.9899322986602783, 0.9155498743057251] +Oc1ccc(N2CC=C(c3c[nH]c4ccccc34)CC2)cc1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Oc1ccc(I)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(Br)cc1']; [0.9977750182151794, 0.9900369644165039, 0.986461877822876] +C[C@@]1(O)CC[C@H](c2ccc(O)cc2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc(O)cc2)cnn1; [None]; [None]; [0] +Oc1ccc(N2CCC(c3nc4ccccc4[nH]3)CC2)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3n[nH]cc3c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2n[nH]cc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1ccc2n[nH]cc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1ccc2n[nH]cc2c1']; [0.9999986886978149, 0.9998716115951538, 0.9988080859184265, 0.9860063791275024, 0.9217545390129089] +COC(C)(C)CCc1ccc2n[nH]cc2c1; [None]; [None]; [0] +CCn1cc(-c2ccc3n[nH]cc3c2)cn1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2n[nH]cc2c1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2n[nH]cc2c1', 'CCn1cc(Br)cn1', 'Ic1ccc2n[nH]cc2c1', 'CCn1cc(B(O)O)cn1', 'Clc1ccc2n[nH]cc2c1']; [0.9999990463256836, 0.999998927116394, 0.9999978542327881, 0.999997615814209, 0.998954176902771, 0.9953521490097046, 0.9873573780059814] +CP(C)(=O)c1ccccc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['FC(F)(F)Oc1ccccc1Br', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'Clc1ccc2n[nH]cc2c1', 'FC(F)(F)Oc1ccccc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br']; [0.9999891519546509, 0.9999629259109497, 0.9999568462371826, 0.9999175667762756, 0.9998780488967896, 0.9993959665298462, 0.9987672567367554, 0.989567220211029, 0.9723700284957886, 0.9670364856719971] +c1ccc2c(-c3ccc4n[nH]cc4c3)ccnc2c1; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'OB(O)c1ccnc2ccccc12']; [0.9999982714653015, 0.9999910593032837, 0.999942421913147, 0.999823808670044, 0.9997904300689697, 0.9685366153717041] +FC(F)(F)c1cccc(-c2ccc3n[nH]cc3c2)c1; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Cl)c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1']; [0.9999924302101135, 0.9999904036521912, 0.9999762773513794, 0.999968409538269, 0.9999644756317139, 0.9999470710754395, 0.999427080154419, 0.9993760585784912, 0.9991636276245117, 0.997084379196167, 0.9939693212509155, 0.9209796190261841] +NC(=O)c1ccccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1Cl', 'Clc1ccc2n[nH]cc2c1', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999968409538269, 0.9999943971633911, 0.9999862313270569, 0.9999502897262573, 0.9998993873596191, 0.99981689453125, 0.9997967481613159, 0.9991550445556641, 0.9980663061141968, 0.9741544723510742, 0.9551416635513306, 0.8423552513122559] +c1ccc(Cn2cc(-c3ccc4n[nH]cc4c3)cn2)cc1; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999994039535522, 0.9999984502792358, 0.9999974966049194, 0.9999960660934448, 0.9997141361236572, 0.9991848468780518, 0.9945437908172607] +Fc1cc(F)cc(Cc2ccc3n[nH]cc3c2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4n[nH]cc4c3)cc2c1=O; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999949932098389, 0.8229226469993591] +CC(C)C(=O)COc1ccc2n[nH]cc2c1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ccc2n[nH]cc2c1', 'Oc1ccc2n[nH]cc2c1']; [0.9004079103469849, 0.8924225568771362] +CC(C)(C)c1nc(-c2ccc3n[nH]cc3c2)cs1; ['Brc1ccc2n[nH]cc2c1']; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; [0.9999997615814209] +COc1cnc(-c2ccc3n[nH]cc3c2)nc1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1cncnc1', 'Brc1ccc2n[nH]cc2c1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'Ic1ccc2n[nH]cc2c1', 'COc1cncnc1']; [0.9999871253967285, 0.9999867081642151, 0.9186849594116211, 0.8642450571060181] +Cc1nc2ccccn2c1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1']; [0.9999986886978149, 0.9999895095825195] +Clc1ccc(Cl)c(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc2n[nH]cc2c1']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc2n[nH]cc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1', 'Ic1ccc2n[nH]cc2c1', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999980926513672, 0.9999953508377075, 0.9999536275863647, 0.9999361038208008, 0.9996752738952637, 0.9995717406272888, 0.9975420236587524, 0.9763858318328857, 0.9699047803878784, 0.8942055702209473, 0.8307859897613525] +OCCn1cc(-c2ccc3n[nH]cc3c2)cn1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.999998927116394, 0.9999988079071045, 0.9999985098838806, 0.9999945163726807, 0.9999886751174927, 0.9996170997619629, 0.9977858662605286, 0.9972392320632935, 0.9721158146858215] +c1ccn2c(-c3ccc4n[nH]cc4c3)cnc2c1; ['Brc1cnc2ccccn12', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'c1ccn2ccnc2c1']; [0.9999997615814209, 0.9983706474304199] +O=C(Nc1cccc(-c2ccc3n[nH]cc3c2)c1)c1ccccc1; [None]; [None]; [0] +c1cnn2c(-c3ccc4n[nH]cc4c3)cnc2c1; ['Brc1cnc2cccnn12']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; [1.0] +Cc1nc(C)c(-c2ccc3n[nH]cc3c2)s1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Ic1ccc2n[nH]cc2c1']; [0.9999944567680359, 0.914959192276001] +CNc1nc(C)c(-c2ccc3n[nH]cc3c2)s1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['CNc1nc(C)c(Br)s1', 'CNc1nc(C)cs1']; [0.9999532699584961, 0.9406347274780273] +c1ccc(-c2ncc(-c3ccc4n[nH]cc4c3)[nH]2)cc1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cc1csc(N)n1']; ['Cc1nc(N)sc1Br', 'Ic1ccc2n[nH]cc2c1']; [0.9999993443489075, 0.9717558026313782] +O=c1c2c(F)cccc2cnn1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1cccc(Cl)c1Br', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Ic1ccc2n[nH]cc2c1', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'Fc1c(Cl)cccc1Cl', 'Fc1ccc2n[nH]cc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; [0.9999967217445374, 0.9999933838844299, 0.9999333620071411, 0.9997469186782837, 0.9984431862831116, 0.9973223209381104, 0.9868105053901672, 0.9270651340484619, 0.8839582204818726, 0.8208679556846619, 0.76988685131073, 0.7670173645019531] +c1cncc(CNc2ccc3n[nH]cc3c2)c1; ['Ic1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9989742040634155, 0.992993950843811, 0.9924957752227783, 0.9586019515991211] +Cc1ccc(Cl)c(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Ic1ccc2n[nH]cc2c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; [0.9999978542327881, 0.9999827146530151, 0.9997786283493042, 0.9997761845588684, 0.9997295141220093, 0.9980247020721436, 0.9949012994766235, 0.931060791015625, 0.8617457151412964] +Cc1ccc(-c2ccc3n[nH]cc3c2)c(Br)c1; [None]; [None]; [0] +Brc1cccc(-c2ccc3n[nH]cc3c2)c1; ['Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1cccc(Br)c1', 'Clc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Brc1cccc(Br)c1']; [0.9999824166297913, 0.9999691843986511, 0.9999691247940063, 0.9999383687973022, 0.999868631362915, 0.9998306035995483, 0.998072624206543, 0.9863662123680115, 0.9525429606437683, 0.8689679503440857] +c1cc(Cn2cncn2)cc(-c2ccc3n[nH]cc3c2)c1; [None]; [None]; [0] +c1cnn2ncc(-c3ccc4n[nH]cc4c3)c2c1; ['Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; [0.9999884963035583] +c1ccc2c(c1)ncn2-c1ccc2n[nH]cc2c1; ['Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9193971157073975, 0.9109970331192017] +O=C(Nc1ccc2n[nH]cc2c1)c1cccs1; ['Clc1ccc2n[nH]cc2c1']; ['NC(=O)c1cccs1']; [0.9780352115631104] +c1cncc(Nc2ccc3n[nH]cc3c2)c1; ['Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; ['Nc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1']; [0.998517632484436, 0.9973941445350647, 0.9926479458808899, 0.9849938154220581] +O=C([O-])Cc1cccc(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; ['O=C([O-])Cc1ccccc1']; [0.7531381249427795] +Nc1nccc(-c2ccc3n[nH]cc3c2)n1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [1.0, 0.9999997615814209, 0.9999997615814209, 0.99992436170578, 0.997637152671814] +c1ccc2cc(-c3ccc4n[nH]cc4c3)ccc2c1; ['Brc1ccc2n[nH]cc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999902844429016, 0.9999902844429016, 0.9999861717224121, 0.999966025352478, 0.999966025352478, 0.99701988697052, 0.9933655261993408, 0.9854880571365356] +c1nc(CCNc2ccc3n[nH]cc3c2)c[nH]1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'NCCc1c[nH]cn1', 'Fc1ccc2n[nH]cc2c1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Oc1ccc2n[nH]cc2c1', 'NCCc1c[nH]cn1']; [0.9999760389328003, 0.9996660947799683, 0.99259352684021, 0.9916737079620361, 0.9897985458374023, 0.9831831455230713] +Cc1c(-c2ccc3n[nH]cc3c2)sc(=O)n1C; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Cl', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Clc1ccc2n[nH]cc2c1', 'FC(F)(F)c1n[nH]cc1Br']; [0.9999814629554749, 0.9999765753746033, 0.9999009370803833, 0.9998874664306641, 0.9998756647109985, 0.9997928142547607, 0.999760627746582, 0.9931699633598328, 0.9699962139129639] +NC(=O)c1c(F)cccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br']; [1.0, 0.9999960660934448, 0.9974785447120667] +c1ccc2c(-c3ccc4n[nH]cc4c3)cncc2c1; ['Brc1cncc2ccccc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9999992251396179, 0.9999951124191284, 0.9999940991401672, 0.9997170567512512, 0.9938406944274902, 0.9925363063812256, 0.9584511518478394] +c1ccc(CCNc2ccc3n[nH]cc3c2)cc1; ['Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'NCCc1ccccc1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'Oc1ccc2n[nH]cc2c1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.989909827709198, 0.9545862674713135, 0.9391924738883972, 0.8637393712997437, 0.8274593353271484] +Clc1ccc(CNc2ccc3n[nH]cc3c2)cc1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9996412992477417, 0.9984524846076965, 0.9891846179962158, 0.9633446931838989, 0.9297163486480713] +Cn1cc(-c2ccc(-c3ccc4n[nH]cc4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4n[nH]cc4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4n[nH]cc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4n[nH]cc4c3)ccc21; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Ic1ccc2n[nH]cc2c1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.999999463558197, 0.999999463558197, 0.9999990463256836, 0.9999990463256836, 0.9999934434890747, 0.9999934434890747, 0.9999206066131592, 0.9997695684432983, 0.9997695684432983, 0.9995054006576538, 0.9980178475379944, 0.9887397289276123] +c1cc(-c2ccc3n[nH]cc3c2)ccc1-c1cn[nH]c1; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1ccc2n[nH]cc2c1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc2n[nH]cc2c1']; [0.9999980926513672, 0.9999969005584717, 0.99998939037323, 0.9999867677688599, 0.9999644756317139, 0.9990049004554749, 0.9939119815826416, 0.9818521738052368, 0.9382301568984985] +Oc1cccc(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999743700027466, 0.99996018409729, 0.9998425245285034, 0.9997162222862244, 0.9992389678955078, 0.998069703578949, 0.9964721202850342, 0.9936630725860596, 0.9905047416687012, 0.961016058921814, 0.9547200202941895, 0.8408322334289551] +CCCn1cnc(-c2ccc3n[nH]cc3c2)n1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2n[nH]cc2c1; ['Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.995894193649292, 0.9606577157974243, 0.9581562280654907, 0.896888256072998] +c1cc(Nc2ccc3n[nH]cc3c2)ccn1; ['Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9988818168640137, 0.9970742464065552, 0.9926436543464661, 0.9827536344528198] +OCc1cccc(-c2ccc3n[nH]cc3c2)c1; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(Br)c1', 'Ic1ccc2n[nH]cc2c1', 'OCc1cccc(I)c1', 'Clc1ccc2n[nH]cc2c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1']; [0.999991774559021, 0.999991238117218, 0.9999836683273315, 0.9999821186065674, 0.9998717308044434, 0.9998236894607544, 0.9990495443344116, 0.996344804763794, 0.992273211479187, 0.9604718089103699, 0.8600057363510132, 0.8586486577987671] +CC(C)n1cc(-c2ccc3n[nH]cc3c2)nn1; ['Brc1ccc2n[nH]cc2c1']; ['CC(C)n1ccnn1']; [0.999071478843689] +COc1cc(-c2ccc3n[nH]cc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc4n[nH]cc4c3)cc2c1; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC(=O)c1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Clc1cc2ccccc2[nH]1', 'NNc1ccccc1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999830722808838, 0.9998957514762878, 0.9851605892181396, 0.9290435314178467, 0.9112875461578369] +Nc1nc(-c2ccc3n[nH]cc3c2)cs1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC(=O)c1ccc2n[nH]cc2c1']; ['Nc1nc(Br)cs1', 'NC(N)=S']; [0.9999997019767761, 0.9997164607048035] +c1ncc2c(-c3ccc4n[nH]cc4c3)csc2n1; ['Brc1csc2ncncc12']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; [0.9999994039535522] +N#CCCc1cccc(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; [0.9999467730522156, 0.9970434308052063, 0.9965811371803284, 0.9939078092575073, 0.9602304697036743, 0.8498198986053467] +c1cc2n[nH]cc2cc1CCc1c[nH]nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +CSc1nc(-c2ccc3n[nH]cc3c2)c[nH]1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Br']; [0.9999997019767761, 0.9999995231628418, 0.9999696016311646, 0.9999310970306396, 0.9987152814865112, 0.9941010475158691] +CCC(=O)Nc1ccc(-c2ccc3n[nH]cc3c2)cc1; ['Brc1ccc2n[nH]cc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; [0.9999933242797852, 0.9999886751174927, 0.9999126195907593] +c1ccc(Oc2ccc3n[nH]cc3c2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'Ic1ccccn1', 'Brc1ccc2n[nH]cc2c1']; ['Oc1ccc2n[nH]cc2c1', 'Oc1ccc2n[nH]cc2c1', 'Oc1ccc2n[nH]cc2c1', 'Oc1ccc2n[nH]cc2c1', 'Oc1ccccn1']; [0.9988961219787598, 0.997186541557312, 0.9962482452392578, 0.9794645309448242, 0.8126780986785889] +Fc1ccc(-c2ccc3n[nH]cc3c2)c(C(F)(F)F)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1cccc(C(F)(F)F)c1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Ic1ccc2n[nH]cc2c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Ic1ccc2n[nH]cc2c1']; [0.9999994039535522, 0.9999879598617554, 0.9999853372573853, 0.9999852776527405, 0.9995126724243164, 0.9989960193634033, 0.9958881735801697, 0.9949021339416504, 0.9681214094161987, 0.7616608142852783] +O=C(Nc1ccc2n[nH]cc2c1)c1c(Cl)cccc1Cl; ['Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9973422288894653, 0.9772124290466309] +CS(=O)(=O)C1CCN(c2ccc3n[nH]cc3c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Ic1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9541293382644653, 0.909446120262146] +CC(=O)Nc1cccc(-c2ccc3n[nH]cc3c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2n[nH]cc2c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1ccccc1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'c1ccc2n[nH]cc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; [0.9999982118606567, 0.9999957084655762, 0.9999575614929199, 0.9999439120292664, 0.9998717904090881, 0.9891465902328491, 0.9888610243797302, 0.9788862466812134, 0.9675216674804688, 0.9627770185470581, 0.930323600769043] +CC(C)(COc1ccc2n[nH]cc2c1)S(C)(=O)=O; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4n[nH]cc4c3)cc2s1; [None]; [None]; [0] +NC(=O)CCCc1ccc2n[nH]cc2c1; [None]; [None]; [0] +Cn1cc(-c2ccc3n[nH]cc3c2)c2ccccc21; ['Brc1ccc2n[nH]cc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1']; [0.9999927878379822, 0.9999681115150452, 0.982512891292572] +COc1ccc(-c2ccc3n[nH]cc3c2)cc1Cl; ['Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(Br)cc1Cl', 'Brc1ccc2n[nH]cc2c1', 'COc1ccc(B(O)O)cc1Cl', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'COc1ccccc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(I)cc1Cl', 'Clc1ccc2n[nH]cc2c1', 'COc1ccc(Cl)cc1Cl', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(I)cc1Cl', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(Br)cc1Cl', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; [0.9999948740005493, 0.9999929666519165, 0.9999696016311646, 0.9999605417251587, 0.9999315738677979, 0.9997228384017944, 0.999397873878479, 0.9988213777542114, 0.9906701445579529, 0.9845749139785767, 0.9822676181793213, 0.9695532321929932, 0.9047684073448181, 0.8879518508911133] +CC(C)(O)CC(=O)NCCc1ccc2n[nH]cc2c1; [None]; [None]; [0] +CCCn1cc(-c2ccc3n[nH]cc3c2)cn1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2n[nH]cc2c1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(I)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2n[nH]cc2c1', 'CCCn1cc(Br)cn1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CCCn1cc(B(O)O)cn1', 'Clc1ccc2n[nH]cc2c1']; [0.9999998807907104, 0.9999998211860657, 0.9999995231628418, 0.9999994039535522, 0.9999983310699463, 0.9996163845062256, 0.9985800385475159, 0.9976695775985718] +c1ccn2ncc(-c3ccc4n[nH]cc4c3)c2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1cnn2ccccc12', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [1.0, 0.9999998807907104, 0.9999961256980896, 0.999987006187439, 0.9971791505813599, 0.9890324473381042] +COc1cc(CCc2ccc3n[nH]cc3c2)cc(OC)c1; ['COc1cc(CBr)cc(OC)c1']; ['Cc1ccc2n[nH]cc2c1']; [0.8643347024917603] +O=C1CCc2cccc(-c3ccc4n[nH]cc4c3)c21; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999995231628418, 0.9999730587005615, 0.9997416734695435, 0.9414435625076294] +C[S@](=O)c1ccc(-c2ccc3n[nH]cc3c2)cc1; ['Brc1ccc2n[nH]cc2c1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CS(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2n[nH]cc2c1', 'CS(=O)c1ccc(Br)cc1', 'Ic1ccc2n[nH]cc2c1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2n[nH]cc2c1']; [0.9999736547470093, 0.9999537467956543, 0.9998310804367065, 0.9951286315917969, 0.9829748868942261, 0.9692044258117676] +[NH3+]Cc1ccc(-c2ccc3n[nH]cc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; ['CCNS(=O)(=O)c1ccccc1Br']; [0.9999990463256836] +CCN(CC)c1ccc2n[nH]cc2c1; ['CCNCC', 'Brc1ccc2n[nH]cc2c1', 'CCNCC']; ['Ic1ccc2n[nH]cc2c1', 'CCNCC', 'Clc1ccc2n[nH]cc2c1']; [0.93965744972229, 0.7923377752304077, 0.7872704267501831] +O=c1cc(-c2ccc3n[nH]cc3c2)cc[nH]1; [None]; [None]; [0] +C[C@@H](Oc1ccc2n[nH]cc2c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.994686484336853, 0.9585716724395752] +COc1ccncc1Nc1ccc2n[nH]cc2c1; ['Brc1ccc2n[nH]cc2c1', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1N']; ['COc1ccncc1N', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9995249509811401, 0.9995114207267761, 0.9993261694908142, 0.9992032051086426] +CC(C)(N)c1ccc(-c2ccc3n[nH]cc3c2)cc1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccc3n[nH]cc3c2)cc1; ['Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9996042251586914, 0.9995172023773193, 0.9974737167358398, 0.9945520162582397] +O=c1[nH]ccc2oc(-c3ccc4n[nH]cc4c3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3n[nH]cc3c2)c1; ['CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Clc1ccc2n[nH]cc2c1', 'CC(C)Oc1cncc(Br)c1']; [0.9999998807907104, 0.9999997615814209, 0.9999995827674866, 0.999997615814209, 0.9997743368148804, 0.9988054037094116, 0.9975135922431946, 0.9954436421394348] +c1cc2cc(-c3ccc4n[nH]cc4c3)cnc2[nH]1; ['Brc1cnc2[nH]ccc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999997615814209, 0.9976207613945007, 0.9963480234146118] +O=c1[nH]cc(Br)c2sc(-c3ccc4n[nH]cc4c3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'COc1cccc(F)c1B(O)O']; ['COc1cccc(F)c1Br', 'Ic1ccc2n[nH]cc2c1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'Clc1ccc2n[nH]cc2c1']; [0.9999992251396179, 0.9999964237213135, 0.9999953508377075, 0.9999938011169434, 0.9999926090240479, 0.9999653100967407, 0.9999338388442993, 0.9997178316116333, 0.9985437989234924, 0.995769202709198, 0.9890693426132202, 0.9820841550827026] +CC(C)(C)c1ccc(-c2ccc3n[nH]cc3c2)cc1; ['Brc1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(I)cc1', 'Ic1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Clc1ccc2n[nH]cc2c1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccccc1']; [0.9999995231628418, 0.9999984502792358, 0.9999974966049194, 0.9999938607215881, 0.9999916553497314, 0.9999797344207764, 0.9995089769363403, 0.9994533061981201, 0.9993377923965454, 0.9987611770629883, 0.9954696893692017, 0.9841855764389038, 0.7758972644805908] +c1ccc2ncc(Nc3ccc4n[nH]cc4c3)cc2c1; ['Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9998012781143188, 0.9989773035049438, 0.9968538284301758, 0.9937417507171631] +CNC(=O)c1c(F)cccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CNC(=O)c1ccccc1F']; ['CNC(=O)c1ccccc1F', 'Ic1ccc2n[nH]cc2c1']; [0.999886155128479, 0.9244918823242188] +c1cc2c(-c3ccc4n[nH]cc4c3)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12']; [0.9999832510948181, 0.999974250793457] +CNS(=O)(=O)c1ccc(-c2ccc3n[nH]cc3c2)cc1; ['Brc1ccc2n[nH]cc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2n[nH]cc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccc2n[nH]cc2c1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Ic1ccc2n[nH]cc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2n[nH]cc2c1']; [0.9999692440032959, 0.9999600648880005, 0.9998888373374939, 0.9997804164886475, 0.99965500831604, 0.9962125420570374, 0.9922221302986145, 0.9800928235054016] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3n[nH]cc3c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2n[nH]cc2c1']; ['Ic1ccc2n[nH]cc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999977350234985, 0.9999961853027344, 0.9999703764915466, 0.9999531507492065, 0.9998385906219482, 0.9984500408172607, 0.9976440072059631, 0.9948475360870361, 0.8617216348648071] +CC1(c2ccc3n[nH]cc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccc2n[nH]cc2c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'Brc1ccc2n[nH]cc2c1', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Ic1ccc2n[nH]cc2c1', 'C[C@H](N)C(C)(C)O', 'Oc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; [0.9866859912872314, 0.961766242980957, 0.9240989685058594, 0.8978991508483887, 0.7670964002609253] +c1cc(N2CCOCC2)ccc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +CN(c1ccc2n[nH]cc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2ccc3n[nH]cc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3n[nH]cc3c2)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc2n[nH]cc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCCc1cn(-c2ccc3n[nH]cc3c2)cn1; ['Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9959520101547241, 0.9951598644256592] +C[C@@H](Nc1ccc2n[nH]cc2c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'Brc1ccc2n[nH]cc2c1', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Ic1ccc2n[nH]cc2c1', 'C[C@@H](N)C(C)(C)O', 'Fc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; [0.9866859912872314, 0.961766242980957, 0.8978991508483887, 0.7670964002609253] +OCc1ccn(-c2ccc3n[nH]cc3c2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1']; ['Fc1cccc(Cl)c1Br', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1I', 'Ic1ccc2n[nH]cc2c1', 'Fc1cccc(Cl)c1Cl', 'Clc1ccc2n[nH]cc2c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [0.9999997615814209, 0.9999973773956299, 0.9999956488609314, 0.999995231628418, 0.9999754428863525, 0.9999611377716064, 0.999671459197998, 0.9986221790313721, 0.9838894605636597] +c1ccc2c(c1)cnn2-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +COc1ccc(-c2ccc3n[nH]cc3c2)c(OC)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'Brc1ccc2n[nH]cc2c1', 'COc1ccc(B(O)O)c(OC)c1']; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(Cl)c(OC)c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(B(O)O)c(OC)c1', 'Clc1ccc2n[nH]cc2c1']; [0.9999898672103882, 0.9999792575836182, 0.9999619722366333, 0.9999300837516785, 0.9998600482940674, 0.9997692704200745, 0.9950283169746399, 0.9719505310058594, 0.9584415555000305] +Oc1cccc2c1cnn2-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +c1ncn(-c2ccc(-c3ccc4n[nH]cc4c3)cc2)n1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4n[nH]cc4c3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3n[nH]cc3c2)[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3n[nH]cc3c2)cc1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3n[nH]cc3c2)CC1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4n[nH]cc4c3)nn2)cc1; ['Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1']; [0.9979078769683838, 0.9890785217285156] +Nc1nnc(-c2ccc3n[nH]cc3c2)s1; ['N#Cc1ccc2n[nH]cc2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2n[nH]cc2c1']; [0.9999006986618042, 0.9975078701972961] +c1cc2n[nH]cc2cc1-c1nncn1C1CC1; [None]; [None]; [0] +O=C(CCc1ccc2n[nH]cc2c1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2n[nH]cc2c1)NCc1ccccn1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3n[nH]cc3c2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5n[nH]cc5c4)n3n2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3n[nH]cc3c2)s1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; ['CNC(=O)c1ccc(Br)s1']; [0.9999969005584717] +CCc1cc(-c2ccc3n[nH]cc3c2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3n[nH]cc3c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; [0.9999916553497314, 0.9998894333839417] +CCCCc1cc(-c2ccc3n[nH]cc3c2)nc(N)n1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4n[nH]cc4c3)nc2c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'Brc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'O=Cc1ccc2n[nH]cc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Ic1ccc2n[nH]cc2c1', 'Brc1nc2ccccc2s1']; [0.9999948740005493, 0.9997974038124084, 0.998525857925415, 0.997650682926178, 0.9968132972717285, 0.9728953838348389] +CC1(C)Oc2ccc(-c3ccc4n[nH]cc4c3)nc2NC1=O; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)Oc2cccnc2NC1=O']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'Ic1ccc2n[nH]cc2c1']; [0.9998884201049805, 0.8838001489639282] +Nc1cncc(-c2ccc3n[nH]cc3c2)n1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9999986886978149, 0.9999966621398926, 0.9831498265266418] +[NH3+]Cc1ccc(Oc2ccc3n[nH]cc3c2)c(F)c1; [None]; [None]; [0] +c1cc(-c2ccc3n[nH]cc3c2)c2sccc2c1; ['Brc1ccc2n[nH]cc2c1', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1', 'Clc1cccc2ccsc12', 'Clc1ccc2n[nH]cc2c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999992847442627, 0.9999969005584717, 0.999994158744812, 0.9999637603759766, 0.9999330043792725, 0.987873375415802, 0.9351886510848999] +C[C@@H2]NC(=O)N1CCC(c2ccc3n[nH]cc3c2)CC1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +c1cc(-c2ccc3n[nH]cc3c2)c2snnc2c1; ['Brc1cccc2nnsc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1cccc2nnsc12', 'Brc1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1cccc2nnsc12', 'Ic1ccc2n[nH]cc2c1', 'Brc1cccc2nnsc12']; [0.9999992251396179, 0.9999916553497314, 0.9996989965438843, 0.9561947584152222] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4n[nH]cc4c3)c2)cc1; [None]; [None]; [0] +c1ccc2nc(-c3ccc4n[nH]cc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'c1ccc2ncncc2c1']; [0.9999934434890747, 0.999974250793457, 0.9290667772293091] +c1cnc2c(-c3ccc4n[nH]cc4c3)c[nH]c2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C']; ['Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Clc1c[nH]c2cccnc12']; [0.9999973773956299, 0.9999894499778748, 0.9999486207962036, 0.9998618364334106] +c1cc2cnc(-c3ccc4n[nH]cc4c3)nc2[nH]1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Ic1ccc2n[nH]cc2c1']; ['Clc1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [0.999992847442627, 0.9720755219459534] +Nc1nc(-c2ccc3n[nH]cc3c2)nc2ccccc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3n[nH]cc3c2)[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3n[nH]cc3c2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2n[nH]cc2c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1', 'COc1ccc(OC)c(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1', 'COc1ccc(OC)cc1']; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Cl)c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'COc1ccc(OC)c(B(O)O)c1', 'Clc1ccc2n[nH]cc2c1', 'COc1ccc(OC)cc1', 'Ic1ccc2n[nH]cc2c1']; [0.9999982118606567, 0.9999973177909851, 0.9999262094497681, 0.9998879432678223, 0.9994726181030273, 0.9991716742515564, 0.9962561130523682, 0.9959577322006226, 0.9799211025238037, 0.9754070043563843, 0.9543681144714355] +COc1ncccc1-c1ccc2n[nH]cc2c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'Brc1ccc2n[nH]cc2c1', 'COc1ncccc1B(O)O', 'Brc1ccc2n[nH]cc2c1', 'COc1ncccc1B(O)O', 'Brc1ccc2n[nH]cc2c1']; ['COc1ncccc1Br', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1Cl', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'Ic1ccc2n[nH]cc2c1', 'COc1ncccc1B(O)O', 'Clc1ccc2n[nH]cc2c1', 'COc1ncccc1Br']; [0.9999970197677612, 0.9999916553497314, 0.9999837875366211, 0.9999714493751526, 0.9999713897705078, 0.9999401569366455, 0.9996665716171265, 0.999091386795044, 0.9982829093933105, 0.9856865406036377, 0.9775567054748535, 0.9698606729507446] +CN(C)S(=O)(=O)c1cccc(-c2ccc3n[nH]cc3c2)c1; ['CC1(C)OB(c2ccc3n[nH]cc3c2)OC1(C)C', 'Brc1ccc2n[nH]cc2c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ccc2n[nH]cc2c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccc2n[nH]cc2c1', 'Clc1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'Ic1ccc2n[nH]cc2c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Clc1ccc2n[nH]cc2c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; [0.9999945163726807, 0.9999929666519165, 0.9999880790710449, 0.9998997449874878, 0.9994606375694275, 0.9976116418838501, 0.9973177313804626, 0.989649772644043, 0.9608607292175293] +COc1ccc(Oc2ccc3n[nH]cc3c2)c(F)c1F; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccccc1Br', 'Brc1ccc2[nH]ncc2c1', 'CNC(=O)c1ccccc1']; ['CNC(=O)c1ccccc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'CNC(=O)c1ccccc1B(O)O', 'OB(O)c1ccc2[nH]ncc2c1']; [0.9999991655349731, 0.9999974966049194, 0.9999597072601318, 0.9776341915130615] +C[C@@]1(O)CC[C@H](c2ccc3n[nH]cc3c2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3n[nH]cc3c2)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccc5n[nH]cc5c4)CC3)nc2c1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2[nH]ncc2c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2[nH]ncc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Clc1ccc2[nH]ncc2c1']; [0.9999979734420776, 0.9999960660934448, 0.9999914169311523, 0.9999619722366333, 0.9999420642852783, 0.9963058233261108, 0.9808334112167358] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3n[nH]cc3c2)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3n[nH]cc3c2)c1)C1CCNCC1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3[nH]ncc3c2)c1; ['Fc1cc(F)cc(CCl)c1']; ['c1ccc2[nH]ncc2c1']; [0.7620078921318054] +CP(C)(=O)c1ccccc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Cl', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1', 'Brc1ccc2[nH]ncc2c1']; ['FC(F)(F)Oc1ccccc1Br', 'Ic1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1Cl', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'Ic1ccc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1']; [0.9999987483024597, 0.9999953508377075, 0.9999930262565613, 0.9999920725822449, 0.9999891519546509, 0.9999785423278809, 0.9999746084213257, 0.9999552965164185, 0.9999414086341858, 0.9999136924743652, 0.9999006390571594, 0.9997670650482178, 0.9997485876083374, 0.9985605478286743, 0.9951614141464233, 0.9864867925643921, 0.9334328174591064] +Cn1cnc2ccc(-c3ccc4[nH]ncc4c3)cc2c1=O; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O', 'Brc1ccc2[nH]ncc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1ccc2[nH]ncc2c1', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999995231628418, 0.9999986290931702, 0.989549994468689] +c1ccc2c(-c3ccc4[nH]ncc4c3)ccnc2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc3[nH]ncc3c2)c1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'FC(F)(F)c1cccc(Cl)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'FC(F)(F)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'FC(F)(F)c1cccc(Cl)c1', 'Clc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'FC(F)(F)c1cccc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'c1ccc2[nH]ncc2c1', 'FC(F)(F)c1cccc(Cl)c1', 'F[B-](F)(F)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1ccccc1', 'c1ccc2[nH]ncc2c1']; [0.9999992847442627, 0.9999992847442627, 0.9999992847442627, 0.999998152256012, 0.9999980926513672, 0.9999978542327881, 0.9999972581863403, 0.9999963045120239, 0.999995231628418, 0.9999877214431763, 0.999983549118042, 0.9999822974205017, 0.9999730587005615, 0.9999693632125854, 0.9999460577964783, 0.999919056892395, 0.9997316598892212, 0.9995964169502258, 0.998757541179657, 0.998383641242981, 0.9982249140739441, 0.9981045722961426, 0.8420597314834595, 0.8051093816757202] +CCn1cc(-c2ccc3[nH]ncc3c2)cn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)cn2)cc1; ['Ic1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999985694885254, 0.9999971389770508, 0.9999932050704956, 0.9999930262565613, 0.9999919533729553, 0.9999908208847046, 0.9999908208847046, 0.9999721050262451, 0.9991194009780884, 0.9989991188049316, 0.9976632595062256, 0.9860721826553345] +NC(=O)c1ccccc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1Cl', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1B(O)O', 'Clc1ccc2[nH]ncc2c1']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1B(O)O', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'c1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br', 'c1ccc2[nH]ncc2c1', 'NC(=O)c1ccccc1Br']; [0.9999967813491821, 0.999993622303009, 0.9999927282333374, 0.9999916553497314, 0.9999889135360718, 0.9999815821647644, 0.9999608993530273, 0.9999545812606812, 0.9998832941055298, 0.9996081590652466, 0.9995675086975098, 0.9995431900024414, 0.9992234706878662, 0.9982584714889526, 0.9911386966705322, 0.9892854690551758, 0.986657977104187, 0.9735623598098755, 0.9413263201713562, 0.814521312713623] +CC(C)(C)c1nc(-c2ccc3[nH]ncc3c2)cs1; ['Brc1ccc2[nH]ncc2c1']; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; [0.9999994039535522] +c1ccc(-c2ncc(-c3ccc4[nH]ncc4c3)[nH]2)cc1; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.9999082088470459, 0.9333949089050293] +CC(C)C(=O)COc1ccc2[nH]ncc2c1; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1']; [0.9991710186004639, 0.99908447265625] +COc1cnc(-c2ccc3[nH]ncc3c2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'COc1cncnc1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Ic1ccc2[nH]ncc2c1', 'COc1cncnc1']; [0.9999871253967285, 0.9999692440032959, 0.9999682903289795, 0.999962329864502, 0.9997532367706299, 0.9779424667358398, 0.957706093788147] +Clc1ccc(Cl)c(-c2ccc3[nH]ncc3c2)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc(Cl)cc1']; ['Clc1ccc(Cl)c(Br)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc(Cl)c(I)c1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Ic1ccc2[nH]ncc2c1']; [0.9999969601631165, 0.9999951720237732, 0.9999933242797852, 0.9999927282333374, 0.9998926520347595, 0.9998807907104492, 0.9998680353164673, 0.9998635053634644, 0.9998123645782471, 0.9995911121368408, 0.9990901947021484, 0.9984557032585144, 0.9954224228858948, 0.9855819940567017, 0.9843060970306396, 0.8875945806503296] +O=C(Nc1cccc(-c2ccc3[nH]ncc3c2)c1)c1ccccc1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999996423721313, 0.9999979734420776, 0.9999752044677734, 0.9999477863311768, 0.9999333620071411, 0.9981194734573364] +c1ccn2c(-c3ccc4[nH]ncc4c3)cnc2c1; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2ccccn12', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2[nH]ncc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999997615814209, 0.9999995231628418, 0.9999990463256836, 0.9999985694885254, 0.9999956488609314, 0.9999935626983643, 0.9996967315673828, 0.9921319484710693, 0.9847440719604492] +Cc1ccc(-c2ccc3[nH]ncc3c2)c(Br)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1cccc(Br)c1', 'Brc1ccc2[nH]ncc2c1']; ['Cc1ccc(I)c(Br)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Cc1ccc(I)c(Br)c1']; [0.9999788403511047, 0.9999398589134216, 0.9999158978462219, 0.9998133182525635, 0.9996718168258667, 0.9993417263031006, 0.9973344802856445, 0.9869362115859985, 0.9832216501235962, 0.9641560316085815, 0.9595489501953125, 0.903347373008728] +Cc1nc2ccccn2c1-c1ccc2[nH]ncc2c1; ['Cc1nc2ccccn2c1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1Br', 'Brc1ccc2[nH]ncc2c1', 'Cc1cn2ccccc2n1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Cc1cn2ccccc2n1', 'Ic1ccc2[nH]ncc2c1', 'Cc1nc2ccccn2c1Br']; [0.999998927116394, 0.9999988079071045, 0.9999985694885254, 0.9999971389770508, 0.9999922513961792, 0.9999105334281921, 0.9998887181282043, 0.9881078004837036] +OCCn1cc(-c2ccc3[nH]ncc3c2)cn1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3[nH]ncc3c2)s1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CNc1nc(C)c(Br)s1']; ['CNc1nc(C)c(Br)s1', 'OB(O)c1ccc2[nH]ncc2c1']; [0.9999145269393921, 0.9997155666351318] +c1cnn2c(-c3ccc4[nH]ncc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1ccc2[nH]ncc2c1', 'c1cnn2ccnc2c1']; [1.0, 1.0, 1.0, 0.9999997019767761, 0.9997537732124329] +Cc1nc(N)sc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1nc(N)sc1Br', 'Brc1ccc2[nH]ncc2c1', 'Cc1csc(N)n1']; ['Cc1nc(N)sc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'Cc1csc(N)n1', 'Ic1ccc2[nH]ncc2c1']; [0.9999983310699463, 0.9999849796295166, 0.995557427406311, 0.9951289296150208] +c1cncc(CNc2ccc3[nH]ncc3c2)c1; ['Ic1ccc2[nH]ncc2c1', 'BrCc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'ClCc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'O=Cc1cccnc1']; ['NCc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'OCc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=[N+]([O-])c1ccc2[nH]ncc2c1']; [0.9999002814292908, 0.999653697013855, 0.9995509386062622, 0.9994000792503357, 0.9989727735519409, 0.9988641142845154, 0.996187686920166, 0.9672008752822876, 0.8384650349617004] +Cc1nc(C)c(-c2ccc3[nH]ncc3c2)s1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Brc1ccc2[nH]ncc2c1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Cc1csc(C)n1', 'Ic1ccc2[nH]ncc2c1']; [0.9999980330467224, 0.9999973773956299, 0.9999914169311523, 0.9999874234199524, 0.9934191703796387, 0.9903819561004639] +c1cc(Cn2cncn2)cc(-c2ccc3[nH]ncc3c2)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; ['c1ccc(Cn2cncn2)cc1', 'c1ccc(Cn2cncn2)cc1', 'c1ccc(Cn2cncn2)cc1']; [0.9993841648101807, 0.8278599977493286, 0.801075279712677] +Cc1ccc(Cl)c(-c2ccc3[nH]ncc3c2)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(Br)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(I)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(I)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Clc1ccc2[nH]ncc2c1']; [0.9999963045120239, 0.9999775886535645, 0.9999681711196899, 0.9999592304229736, 0.9998519420623779, 0.9994792342185974, 0.9994632601737976, 0.9993435144424438, 0.9993393421173096, 0.9991668462753296, 0.9984314441680908, 0.9933109283447266, 0.9730069637298584, 0.9367433786392212, 0.894884467124939] +Brc1cccc(-c2ccc3[nH]ncc3c2)c1; ['Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1cccc(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; [0.999993085861206, 0.9999922513961792, 0.9999737739562988, 0.9999735355377197, 0.9999677538871765, 0.9999672174453735, 0.9998359680175781, 0.9997917413711548, 0.9997859597206116, 0.9995698928833008, 0.9994381666183472, 0.9994226694107056, 0.995357871055603, 0.9673575758934021, 0.8552365899085999] +Clc1cccc(Cl)c1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1cccc(Cl)c1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1Br', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1Br', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1Cl', 'Fc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Fc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1']; ['Clc1cccc(Cl)c1I', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Ic1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1[Zn]Br', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Ic1ccc2[nH]ncc2c1']; [0.9999966621398926, 0.9999939203262329, 0.999990701675415, 0.9999904632568359, 0.9999807476997375, 0.9999772310256958, 0.9999521970748901, 0.9999502897262573, 0.9999163150787354, 0.9994772672653198, 0.9993253946304321, 0.9989660382270813, 0.998960554599762, 0.998284101486206, 0.9897409677505493, 0.9848679900169373, 0.9840143918991089, 0.9822381734848022, 0.8542053699493408] +c1cncc(Nc2ccc3[nH]ncc3c2)c1; ['Nc1cccnc1', 'Brc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1cccnc1', 'Ic1cccnc1', 'Ic1ccc2[nH]ncc2c1', 'Clc1cccnc1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'OB(O)c1cccnc1', 'Nc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1cccnc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1cccnc1', 'Nc1cccnc1']; [0.9998677968978882, 0.9994692802429199, 0.9994131326675415, 0.999353289604187, 0.9984679222106934, 0.9982659220695496, 0.9977280497550964, 0.9966360330581665, 0.9852103590965271, 0.9793316125869751] +Nc1nccc(-c2ccc3[nH]ncc3c2)n1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Nc1ncccn1']; ['Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'OB(O)c1ccc2[nH]ncc2c1']; [0.9999998807907104, 0.9999996423721313, 0.9999992251396179, 0.9999988079071045, 0.9999957084655762, 0.9999895095825195, 0.9999867081642151, 0.9996756911277771, 0.9989303946495056] +c1ccc2c(c1)ncn2-c1ccc2[nH]ncc2c1; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9997314214706421, 0.9764970541000366, 0.9268592596054077] +O=C(Nc1ccc2[nH]ncc2c1)c1cccs1; ['Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'COC(=O)c1cccs1', 'CCOC(=O)c1cccs1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.9999555349349976, 0.9998213052749634, 0.9977468848228455, 0.9962835907936096, 0.988764762878418, 0.9672881364822388] +c1nc(CCNc2ccc3[nH]ncc3c2)c[nH]1; ['NCCc1c[nH]cn1', 'Ic1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'NCCc1c[nH]cn1', 'N#CCc1c[nH]cn1', 'Clc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Oc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'NCCc1c[nH]cn1']; [0.9999989867210388, 0.9999920129776001, 0.9998149275779724, 0.9994962215423584, 0.9994663000106812, 0.9989871978759766, 0.9982061982154846, 0.9964460730552673] +c1cnn2ncc(-c3ccc4[nH]ncc4c3)c2c1; ['Brc1cnn2ncccc12', 'Brc1ccc2[nH]ncc2c1', 'Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; [0.9999983906745911, 0.9999943971633911, 0.9999943971633911, 0.9999935626983643, 0.9995375275611877] +c1ccc2cc(-c3ccc4[nH]ncc4c3)ccc2c1; ['Brc1ccc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2ccccc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc2ccccc2c1', 'Ic1ccc2[nH]ncc2c1', 'c1ccc2ccccc2c1', 'c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'F[B-](F)(F)c1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc2ccccc2c1', 'c1ccc2ccccc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2ccccc2c1', 'c1ccc2[nH]ncc2c1']; [0.9999946355819702, 0.9999946355819702, 0.9999757409095764, 0.9999721646308899, 0.9999721646308899, 0.9999687671661377, 0.9999243021011353, 0.9999243021011353, 0.9999083280563354, 0.9999083280563354, 0.9999022483825684, 0.9998476505279541, 0.9998076558113098, 0.9998076558113098, 0.9997792840003967, 0.9995263814926147, 0.9992514252662659, 0.9990005493164062, 0.9990005493164062, 0.9981052875518799, 0.9981052875518799, 0.9948457479476929, 0.9810382127761841, 0.9796812534332275, 0.9796812534332275, 0.9784604907035828, 0.9636022448539734, 0.9328432083129883, 0.8193053007125854] +NC(=O)c1c(F)cccc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1']; [0.9999983310699463, 0.9999745488166809, 0.9999113082885742] +Cc1c(-c2ccc3[nH]ncc3c2)sc(=O)n1C; [None]; [None]; [0] +c1ccc(CCNc2ccc3[nH]ncc3c2)cc1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'NCCc1ccccc1', 'ClCCc1ccccc1', 'Ic1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'ICCc1ccccc1', 'CS(=O)(=O)OCCc1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'N#CCc1ccccc1', 'BrCCc1ccccc1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'C=Cc1ccccc1', 'Brc1ccc2[nH]ncc2c1', 'NCCc1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['NCCc1ccccc1', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'NCCc1ccccc1', 'O=CCc1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'OCCc1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'NCCc1ccccc1', 'Oc1ccc2[nH]ncc2c1', 'O=C(O)Cc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9999257326126099, 0.9999129772186279, 0.9994071125984192, 0.9990285634994507, 0.9984543323516846, 0.9975878596305847, 0.9970095157623291, 0.9967647790908813, 0.9965788125991821, 0.9957246780395508, 0.995685338973999, 0.9897077083587646, 0.9864262938499451, 0.9829553365707397, 0.9765795469284058, 0.9748533964157104, 0.8700743913650513] +c1ccc2c(-c3ccc4[nH]ncc4c3)cncc2c1; ['Brc1cncc2ccccc12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1cncc2ccccc12', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Br[Mg]c1cncc2ccccc12']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1cncc2ccccc12', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Ic1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Clc1ccc2[nH]ncc2c1']; [0.9999996423721313, 0.9999983310699463, 0.9999978542327881, 0.9999975562095642, 0.9999974966049194, 0.9999871253967285, 0.9999842047691345, 0.9999731779098511, 0.9999439716339111, 0.9998359680175781, 0.9997955560684204, 0.9997619986534119, 0.9994368553161621, 0.9993412494659424, 0.9984607696533203, 0.9955195188522339, 0.9755838513374329, 0.8381913304328918] +FC(F)(F)c1n[nH]cc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4[nH]ncc4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4[nH]ncc4c3)ccc12; [None]; [None]; [0] +Clc1ccc(CNc2ccc3[nH]ncc3c2)cc1; ['Clc1ccc(CBr)cc1', 'Ic1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'ClCc1ccc(Cl)cc1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'O=Cc1ccc(Cl)cc1']; ['Nc1ccc2[nH]ncc2c1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=CCc1ccc(Cl)cc1', 'Nc1ccc2[nH]ncc2c1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=[N+]([O-])c1ccc2[nH]ncc2c1']; [0.9999755620956421, 0.9999619722366333, 0.9999257326126099, 0.999856173992157, 0.9996871948242188, 0.9995015859603882, 0.9994844198226929, 0.9989312887191772, 0.9969744682312012, 0.9882850050926208] +CN1c2ccc(-c3ccc4[nH]ncc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4[nH]ncc4c3)ccc21; [None]; [None]; [0] +CCCn1cnc(-c2ccc3[nH]ncc3c2)n1; [None]; [None]; [0] +c1cc(-c2ccc3[nH]ncc3c2)ccc1-c1cn[nH]c1; [None]; [None]; [0] +c1cc(Nc2ccc3[nH]ncc3c2)ccn1; ['Nc1ccc2[nH]ncc2c1', 'Nc1ccncc1', 'Brc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccncc1', 'Ic1ccncc1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccncc1', 'Fc1ccc2[nH]ncc2c1', 'Fc1ccncc1', 'Clc1ccc2[nH]ncc2c1']; ['OB(O)c1ccncc1', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccncc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccncc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccncc1']; [0.9999836683273315, 0.9999494552612305, 0.999443769454956, 0.9992775917053223, 0.9990606307983398, 0.9989197254180908, 0.9966041445732117, 0.9935588836669922, 0.9834321141242981, 0.954073429107666, 0.7730287909507751] +Fc1ccccc1CNc1ccc2[nH]ncc2c1; ['Ic1ccc2[nH]ncc2c1', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['NCc1ccccc1F', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'O=CCc1ccccc1F', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.9998855590820312, 0.9998817443847656, 0.9996839761734009, 0.9990209341049194, 0.9985263347625732, 0.9983785152435303, 0.9975888133049011, 0.9931306838989258, 0.989494800567627] +Oc1cccc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +OCc1cccc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3[nH]ncc3c2)nn1; ['C#Cc1ccc2[nH]ncc2c1', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1', 'Brc1ccc2[nH]ncc2c1']; ['CC(C)N=[N+]=[N-]', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CC(C)n1ccnn1']; [0.9999983310699463, 0.999967098236084, 0.9997209310531616, 0.9996464252471924] +COc1cc(-c2ccc3[nH]ncc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ncc2c(-c3ccc4[nH]ncc4c3)csc2n1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Brc1csc2ncncc12']; [0.9999994039535522, 0.9999972581863403, 0.9989983439445496, 0.941109299659729] +Nc1nc(-c2ccc3[nH]ncc3c2)cs1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'CC(=O)c1ccc2[nH]ncc2c1', None]; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'NC(N)=S', None]; [0.9999998807907104, 0.9999996423721313, 0.9999995231628418, 0.9999955892562866, 0.9993143677711487, 0] +CSc1nc(-c2ccc3[nH]ncc3c2)c[nH]1; ['CSc1ncc[nH]1']; ['OB(O)c1ccc2[nH]ncc2c1']; [0.9920755624771118] +c1cc2[nH]ncc2cc1CCc1c[nH]nn1; ['BrCc1ccc2[nH]ncc2c1']; ['Cc1c[nH]nn1']; [0.8351500630378723] +CC(C)c1oncc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1ncncc1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1ncncc1Br', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1ncncc1Cl', 'Brc1ccc2[nH]ncc2c1']; ['Nc1ncncc1I', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1ncncc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1ncncc1Br']; [0.9999994039535522, 0.9999974370002747, 0.9999961256980896, 0.9999896287918091, 0.9999039173126221, 0.9996432065963745, 0.9981918334960938, 0.9926068186759949] +c1ccc2[nH]c(-c3ccc4[nH]ncc4c3)cc2c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CCC(=O)Nc1ccccc1', 'c1ccc2[nH]ncc2c1']; [0.9999995231628418, 0.9999986290931702, 0.9999743700027466, 0.9997023344039917, 0.9995694160461426] +Fc1ccc(-c2ccc3[nH]ncc3c2)c(C(F)(F)F)c1; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'c1ccc2[nH]ncc2c1']; [0.9999992847442627, 0.9999991655349731, 0.9999985694885254, 0.999995768070221, 0.9999933242797852, 0.9999914169311523, 0.9999881386756897, 0.9999871253967285, 0.9999749660491943, 0.9998714327812195, 0.9992973804473877, 0.999031126499176, 0.9976544976234436, 0.9911983013153076, 0.7929918169975281] +CCNc1nc2ccc(-c3ccc4[nH]ncc4c3)cc2s1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +c1ccc(Oc2ccc3[nH]ncc3c2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'OB(O)c1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['Oc1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9999978542327881, 0.9999933242797852, 0.9998866319656372, 0.9983483552932739, 0.9965036511421204, 0.995766282081604, 0.984478235244751, 0.8005074858665466] +O=C(Nc1ccc2[nH]ncc2c1)c1c(Cl)cccc1Cl; ['Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', None, 'Brc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'Clc1ccc2[nH]ncc2c1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', None, 'NC(=O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'O=[N+]([O-])c1ccc2[nH]ncc2c1', 'NC(=O)c1c(Cl)cccc1Cl']; [0.999991238117218, 0.9999759197235107, 0.9999639391899109, 0, 0.9998090267181396, 0.9996523857116699, 0.9994848966598511, 0.9991525411605835, 0.9955545663833618, 0.9761109948158264] +CC(=O)Nc1cccc(-c2ccc3[nH]ncc3c2)c1; ['Brc1ccc2[nH]ncc2c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'c1ccc2[nH]ncc2c1']; [0.9999994039535522, 0.9999992847442627, 0.9999970197677612, 0.9999878406524658, 0.9999740719795227, 0.9999572038650513, 0.9999024271965027, 0.9998980760574341, 0.998968780040741, 0.9987493753433228, 0.998238205909729, 0.9973973035812378, 0.9432035684585571] +CS(=O)(=O)C1CCN(c2ccc3[nH]ncc3c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'CS(=O)(=O)C1CCNCC1']; [0.9999555349349976, 0.9996819496154785, 0.9895737171173096, 0.9857926964759827] +CC(C)(COc1ccc2[nH]ncc2c1)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2ccc3[nH]ncc3c2)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2ccc3[nH]ncc3c2)cc1Cl; [None]; [None]; [0] +c1ccn2ncc(-c3ccc4[nH]ncc4c3)c2c1; [None]; [None]; [0] +CCCn1cc(-c2ccc3[nH]ncc3c2)cn1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CCCn1cc(I)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(Cl)cn1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(I)cn1', 'Clc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CCCn1cc(Br)cn1', 'CCCn1cccn1']; [0.9999997019767761, 0.9999995231628418, 0.9999994039535522, 0.9999991655349731, 0.9999990463256836, 0.9999976754188538, 0.9999921321868896, 0.9999916553497314, 0.9999858140945435, 0.9999815225601196, 0.9999103546142578, 0.9998307824134827, 0.9994183778762817, 0.9978189468383789, 0.9020795822143555] +NC(=O)CCCc1ccc2[nH]ncc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3[nH]ncc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2[nH]ncc2c1; [None]; [None]; [0] +O=c1cc(-c2ccc3[nH]ncc3c2)cc[nH]1; ['Brc1ccc2[nH]ncc2c1', 'O=c1cc(I)cc[nH]1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Cl)cc[nH]1', None, 'Ic1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'OB(O)c1ccc2[nH]ncc2c1', 'O=c1cc(Cl)cc[nH]1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', None, 'O=c1cccc[nH]1']; [0.9999947547912598, 0.9999861717224121, 0.99998539686203, 0.9999799728393555, 0.999973475933075, 0.9999265670776367, 0.999770998954773, 0.9994778633117676, 0.9993847608566284, 0, 0.7663703560829163] +O=C1CCc2cccc(-c3ccc4[nH]ncc4c3)c21; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C']; ['O=C1CCc2cccc(Br)c21', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2ccccc21']; [0.9999954700469971, 0.9999945163726807, 0.9999754428863525, 0.9999455213546753, 0.9989667534828186, 0.9347497224807739, 0.929817795753479] +COc1cc(CCc2ccc3[nH]ncc3c2)cc(OC)c1; ['BrCc1ccc2[nH]ncc2c1']; ['COc1cc(C)cc(OC)c1']; [0.8736375570297241] +CCNS(=O)(=O)c1ccccc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1', 'Brc1ccc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccccc1']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccccc1Br', 'Ic1ccc2[nH]ncc2c1']; [0.9999983906745911, 0.9999305605888367, 0.9997824430465698, 0.9947105646133423, 0.9868121147155762, 0.9045013785362244] +C[S@](=O)c1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CS(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Cl)cc1', 'Brc1ccc2[nH]ncc2c1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(Br)cc1', 'Ic1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CS(=O)c1ccc(Br)cc1']; [0.9999948740005493, 0.9999803304672241, 0.9999533891677856, 0.9998986721038818, 0.999741792678833, 0.9997050166130066, 0.9991766214370728, 0.9991135597229004, 0.9973418116569519, 0.994076669216156, 0.8686419725418091] +C[C@@H](Oc1ccc2[nH]ncc2c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1ccc2[nH]ncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Ic1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; [0.9999303817749023, 0.9988683462142944, 0.9988416433334351, 0.9986053705215454, 0.8516781330108643] +CCN(CC)c1ccc2[nH]ncc2c1; [None, None, None, None, 'CCNCC', None, 'CCNCC', 'Brc1ccc2[nH]ncc2c1', 'CCNCC', 'CCNCC']; [None, None, None, None, 'OB(O)c1ccc2[nH]ncc2c1', None, 'Ic1ccc2[nH]ncc2c1', 'CCNCC', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; [0, 0, 0, 0, 0.9952646493911743, 0, 0.9890698194503784, 0.9522089958190918, 0.9117066860198975, 0.7711560726165771] +COc1ccncc1Nc1ccc2[nH]ncc2c1; ['COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1Br', 'COc1ccncc1Cl', 'COc1ccncc1B(O)O', 'COc1ccncc1F', 'COc1ccncc1N', 'COc1ccncc1N', 'Brc1ccc2[nH]ncc2c1', 'COc1ccncc1N']; ['OB(O)c1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'COc1ccncc1N', 'Clc1ccc2[nH]ncc2c1']; [0.999974250793457, 0.9999667406082153, 0.9999514818191528, 0.9999327659606934, 0.9999297857284546, 0.9998849630355835, 0.99986732006073, 0.9997926950454712, 0.9996490478515625, 0.9995566606521606] +CC(C)(N)c1ccc(-c2ccc3[nH]ncc3c2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4[nH]ncc4c3)cc12; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=c1[nH]ccc2oc(Br)cc12']; ['O=c1[nH]ccc2oc(Br)cc12', 'OB(O)c1ccc2[nH]ncc2c1']; [0.9999980330467224, 0.9999918937683105] +c1ccc(-c2ccncc2Nc2ccc3[nH]ncc3c2)cc1; ['Nc1cnccc1-c1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'Brc1cnccc1-c1ccccc1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1ccc2[nH]ncc2c1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999979734420776, 0.9999957084655762, 0.999987006187439, 0.9998959302902222, 0.9998549818992615, 0.9994562864303589, 0.9912406206130981] +CC(C)(C)c1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccccc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Clc1ccc2[nH]ncc2c1', 'CC(C)(C)c1ccccc1', 'Ic1ccc2[nH]ncc2c1']; [1.0, 0.9999996423721313, 0.9999991655349731, 0.9999988079071045, 0.9999979734420776, 0.9999972581863403, 0.9999948740005493, 0.9999920129776001, 0.9999920129776001, 0.9999867081642151, 0.9999849796295166, 0.9999774694442749, 0.9999150037765503, 0.9999114274978638, 0.9999090433120728, 0.9977995157241821, 0.9965474009513855, 0.9877299666404724, 0.9622293710708618, 0.9170953035354614] +c1ccc2ncc(Nc3ccc4[nH]ncc4c3)cc2c1; ['Nc1ccc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Ic1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1cnc2ccccc2c1', 'Clc1ccc2[nH]ncc2c1']; ['OB(O)c1cnc2ccccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1']; [0.9999189972877502, 0.999889075756073, 0.9995988607406616, 0.9983819723129272, 0.9983327388763428, 0.9980003833770752, 0.9969809055328369, 0.9954231977462769, 0.9946304559707642, 0.8956480026245117] +COc1cccc(F)c1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'COc1cccc(F)c1', 'COc1cccc(F)c1B(O)O', 'Brc1ccc2[nH]ncc2c1']; ['COc1cccc(F)c1Br', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'COc1cccc(F)c1']; [0.9999998211860657, 0.9999997615814209, 0.9999997615814209, 0.9999997615814209, 0.9999996423721313, 0.9999995231628418, 0.9999990463256836, 0.9999969005584717, 0.9999967813491821, 0.9999914169311523, 0.9999853372573853, 0.9999817609786987, 0.9999648332595825, 0.9989367723464966, 0.9988647699356079, 0.9987980723381042, 0.9869277477264404] +CNC(=O)c1c(F)cccc1-c1ccc2[nH]ncc2c1; ['CNC(=O)c1ccccc1F']; ['OB(O)c1ccc2[nH]ncc2c1']; [0.9654746055603027] +CC(C)Oc1cncc(-c2ccc3[nH]ncc3c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1ccc2[nH]ncc2c1', 'CC(C)Oc1cccnc1', 'Brc1ccc2[nH]ncc2c1']; ['Ic1ccc2[nH]ncc2c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC(C)Oc1cncc(B(O)O)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC(C)Oc1cncc(Br)c1', 'Ic1ccc2[nH]ncc2c1', 'CC(C)Oc1cccnc1']; [1.0, 0.9999998807907104, 0.9999997615814209, 0.9999978542327881, 0.9999967813491821, 0.9999945759773254, 0.9999925494194031, 0.9999854564666748, 0.9998428225517273, 0.9989405870437622, 0.9925258159637451, 0.8564150333404541] +O=c1[nH]cc(Br)c2sc(-c3ccc4[nH]ncc4c3)cc12; [None]; [None]; [0] +c1cc2cc(-c3ccc4[nH]ncc4c3)cnc2[nH]1; ['Brc1cnc2[nH]ccc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2[nH]ccc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; [1.0, 0.9999998807907104, 0.9999992847442627, 0.999998927116394, 0.9999980926513672, 0.9999969005584717, 0.9999947547912598, 0.9999945163726807, 0.9999943971633911, 0.9999874830245972, 0.9999738335609436, 0.9999487400054932, 0.9999336004257202, 0.9996107816696167, 0.9993806481361389] +c1cc2c(-c3ccc4[nH]ncc4c3)c[nH]c2cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CN', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2[nH]ncc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'c1ccc(-c2ccc3[nH]ncc3c2)cc1', 'Ic1ccc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999983310699463, 0.9999966025352478, 0.9999815821647644, 0.9999774694442749, 0.9999583959579468, 0.9999063014984131, 0.9998214244842529, 0.9997693300247192, 0.9994771480560303, 0.9993624687194824, 0.9836311936378479, 0.9721229672431946, 0.7875507473945618] +C[C@H](Nc1ccc2[nH]ncc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2ccc3[nH]ncc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3[nH]ncc3c2)cc1; [None]; [None]; [0] +CN(c1ccc2[nH]ncc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +CC1(c2ccc3[nH]ncc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Brc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Clc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999998807907104, 0.9999996423721313, 0.9999991655349731, 0.9999983310699463, 0.9999982714653015, 0.9999977946281433, 0.9999966025352478, 0.9999894499778748, 0.9999891519546509, 0.9999862909317017, 0.9999709129333496, 0.9999431371688843, 0.9998561143875122, 0.9991096258163452, 0.9946037530899048, 0.9926066398620605, 0.9911851286888123, 0.9824094176292419, 0.9808489084243774] +OCc1ccn(-c2ccc3[nH]ncc3c2)n1; ['OB(O)c1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9999883770942688, 0.9996301531791687, 0.9993994235992432] +C[C@H](Nc1ccc2[nH]ncc2c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'Brc1ccc2[nH]ncc2c1', 'C[C@H](N)C(C)(C)O']; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Nc1ccc2[nH]ncc2c1', 'C[C@H](N)C(C)(C)O', 'Oc1ccc2[nH]ncc2c1']; [0.9956561326980591, 0.9881603717803955, 0.9546619653701782, 0.834557056427002, 0.7915948033332825] +C[C@@H](Nc1ccc2[nH]ncc2c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'C[C@@H](N)C(C)(C)O']; [0.9956561326980591, 0.9881603717803955, 0.834557056427002] +OCCc1cn(-c2ccc3[nH]ncc3c2)cn1; ['Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1']; ['OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1']; [0.9995445609092712, 0.9993031024932861, 0.9990261197090149, 0.9980118274688721, 0.7925100326538086] +c1ncn(-c2ccc(-c3ccc4[nH]ncc4c3)cc2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Brc1ccc2[nH]ncc2c1', 'Fc1cccc(Cl)c1Br', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1I', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Cl', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1ccc2[nH]ncc2c1', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1']; ['Fc1cccc(Cl)c1Br', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Fc1cccc(Cl)c1I', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl', 'Clc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1c(F)cccc1Cl', 'c1ccc2[nH]ncc2c1', 'Fc1cccc(Cl)c1Br', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; [0.9999998211860657, 0.9999994039535522, 0.9999993443489075, 0.9999988079071045, 0.9999986886978149, 0.9999986886978149, 0.9999979138374329, 0.9999966621398926, 0.9999908208847046, 0.9999892711639404, 0.9999818801879883, 0.9999037981033325, 0.9998136758804321, 0.9997905492782593, 0.9990231990814209, 0.9988206624984741, 0.9979571104049683, 0.9804527759552002, 0.972775936126709, 0.9694164991378784, 0.9542489051818848] +Oc1ccc2nc(-c3ccc4[nH]ncc4c3)[nH]c2c1; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; ['O=Cc1ccc2[nH]ncc2c1', 'O=Cc1ccc2[nH]ncc2c1', 'O=C(O)c1ccc2[nH]ncc2c1']; [0.9957053065299988, 0.990955114364624, 0.7923805713653564] +Oc1cccc2c1cnn2-c1ccc2[nH]ncc2c1; ['Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Fc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.99965500831604, 0.9990215301513672, 0.9841514229774475, 0.8707374930381775] +COc1ccc(-c2ccc3[nH]ncc3c2)c(OC)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(B(O)O)c(OC)c1', 'Brc1ccc2[nH]ncc2c1']; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'COc1ccc(I)c(OC)c1', 'Clc1ccc2[nH]ncc2c1', 'COc1ccc(Br)c(OC)c1']; [0.999994695186615, 0.9999852776527405, 0.9999851584434509, 0.9999794960021973, 0.9999595880508423, 0.9999575614929199, 0.9999557733535767, 0.9998833537101746, 0.9997693300247192, 0.9992837905883789, 0.9990082383155823, 0.9988338947296143, 0.9988316893577576, 0.9983543157577515, 0.957779049873352] +c1cc2[nH]ncc2cc1-c1nncn1C1CC1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3[nH]ncc3c2)cc1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'O=C(c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Clc1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'OB(O)c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccccc1', 'OB(O)c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999982118606567, 0.9999948740005493, 0.9999934434890747, 0.9999880194664001, 0.9999845623970032, 0.9999668598175049, 0.999943733215332, 0.9999077320098877, 0.9998536109924316, 0.9997032880783081, 0.9996655583381653, 0.9995155334472656, 0.9993807673454285, 0.998146653175354, 0.9976879358291626, 0.9970198273658752, 0.9966601133346558, 0.9778234958648682, 0.9713040590286255, 0.9601742029190063, 0.8951354026794434, 0.8704501390457153] +c1ccc2c(c1)cnn2-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3[nH]ncc3c2)CC1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)cc1; ['C#Cc1ccc2[nH]ncc2c1', 'BrCc1ccccc1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['[N-]=[N+]=NCc1ccccc1', 'C#Cc1ccc2[nH]ncc2c1', 'c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1']; [1.0, 0.9999995827674866, 0.9997586011886597, 0.9991363883018494] +O=C(CCc1ccc2[nH]ncc2c1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2ccc3[nH]ncc3c2)s1; ['N#Cc1ccc2[nH]ncc2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2[nH]ncc2c1']; [0.9999409914016724, 0.9996364116668701] +CC(C)n1cnnc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5[nH]ncc5c4)n3n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3[nH]ncc3c2)n1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2[nH]ncc2c1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2ccc3[nH]ncc3c2)nc(N)n1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1', 'Brc1ccc2[nH]ncc2c1']; ['CCc1cc(Cl)nc(N)n1', 'OB(O)c1ccc2[nH]ncc2c1', 'CCc1cc(Cl)nc(N)n1']; [0.9999893307685852, 0.9999707341194153, 0.9999014139175415] +CNC(=O)c1ccc(-c2ccc3[nH]ncc3c2)s1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Cl)s1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1cccs1']; [0.9999991655349731, 0.999995768070221, 0.9999285936355591, 0.9972031116485596, 0.9644882678985596] +CCCCc1cc(-c2ccc3[nH]ncc3c2)nc(N)n1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4[nH]ncc4c3)nc2c1; ['Brc1nc2ccccc2s1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1ccccc1S', 'Brc1nc2ccccc2s1', None, 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1nc2ccccc2s1', 'O=Cc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', None, 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Ic1ccc2[nH]ncc2c1']; [0.9999971985816956, 0.9999912977218628, 0.9999756813049316, 0.9999756217002869, 0, 0.9996877908706665, 0.9994833469390869, 0.9993791580200195, 0.9987914562225342] +CC(C)(O)c1cccc(-c2ccc3[nH]ncc3c2)n1; [None]; [None]; [0] +Nc1cncc(-c2ccc3[nH]ncc3c2)n1; ['Nc1cncc(Br)n1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Nc1cncc(Cl)n1', 'Brc1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'OB(O)c1ccc2[nH]ncc2c1', 'Nc1cncc(Br)n1']; [0.999998927116394, 0.999998927116394, 0.9999986886978149, 0.9999937415122986, 0.9945279359817505] +[NH3+]Cc1ccc(Oc2ccc3[nH]ncc3c2)c(F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2[nH]ncc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4[nH]ncc4c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4[nH]ncc4c3)c2)cc1; [None]; [None]; [0] +c1cc(-c2ccc3[nH]ncc3c2)c2sccc2c1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'Clc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Brc1cccc2ccsc12', 'Brc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Brc1cccc2ccsc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Ic1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Clc1cccc2ccsc12', 'Ic1ccc2[nH]ncc2c1', 'Brc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'Clc1ccc2[nH]ncc2c1']; [0.9999995827674866, 0.9999969005584717, 0.999996542930603, 0.9999796152114868, 0.9999792575836182, 0.9999595880508423, 0.9999171495437622, 0.9998809099197388, 0.9996602535247803, 0.9993483424186707, 0.9991916418075562, 0.9835889339447021, 0.9695110321044922, 0.8213284015655518] +C[C@@H2]NC(=O)N1CCC(c2ccc3[nH]ncc3c2)CC1; [None]; [None]; [0] +c1cc(-c2ccc3[nH]ncc3c2)c2snnc2c1; ['Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Brc1ccc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1cccc2nnsc12', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1cccc2nnsc12']; [0.9999992847442627, 0.9999985694885254, 0.9999911785125732, 0.9999840259552002, 0.9999538660049438, 0.9963787794113159] +c1ccc2nc(-c3ccc4[nH]ncc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; ['OB(O)c1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2[nH]ncc2c1', 'Clc1ncc2ccccc2n1', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1']; [0.9999940395355225, 0.9999805688858032, 0.999932050704956, 0.9999270439147949, 0.993000328540802, 0.9824742674827576] +CC(=O)Nc1ncc(-c2ccc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3[nH]ncc3c2)nc2ccccc12; [None]; [None]; [0] +c1cc2cnc(-c3ccc4[nH]ncc4c3)nc2[nH]1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Clc1ncc2cc[nH]c2n1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1ccc2[nH]ncc2c1', 'c1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [0.9999960064888, 0.9999755620956421, 0.998662531375885, 0.9664374589920044, 0.9499568343162537] +c1cnc2c(-c3ccc4[nH]ncc4c3)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3[nH]ncc3c2)c(F)c1F; ['COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc([N+](=O)[O-])c(F)c1F']; ['Oc1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1', 'COc1ccc(O)c(F)c1F', 'Fc1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'Oc1ccc2[nH]ncc2c1']; [0.9999908208847046, 0.9999853372573853, 0.9999714493751526, 0.9999649524688721, 0.9999515414237976, 0.998093843460083, 0.9980238676071167, 0.9946035146713257, 0.9785299897193909] +COc1ccc(C#N)cc1-c1ccc2[nH]ncc2c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(C#N)cc1I', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B(O)O', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1']; ['COc1ccc(C#N)cc1I', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1Br', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1Cl', 'Ic1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1', 'Clc1ccc2[nH]ncc2c1', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'Clc1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1']; [0.9999992847442627, 0.9999992251396179, 0.9999986886978149, 0.9999972581863403, 0.9999958872795105, 0.9999938011169434, 0.9999901652336121, 0.9999897480010986, 0.9999801516532898, 0.9999772906303406, 0.9999704360961914, 0.9999486207962036, 0.9995574951171875, 0.9993550777435303, 0.9991227388381958, 0.9985588788986206, 0.9936519861221313, 0.9885385036468506, 0.9826663732528687, 0.9394345283508301] +COc1ccc(OC)c(-c2ccc3[nH]ncc3c2)c1; ['CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(Br)c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(Cl)c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(OC)c(B(O)O)c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)cc1', 'Brc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(I)c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(OC)cc1', 'Clc1ccc2[nH]ncc2c1', 'COc1ccc(OC)c(Br)c1', 'Clc1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ccc(OC)cc1', 'c1ccc2[nH]ncc2c1']; [0.9999985694885254, 0.9999982118606567, 0.9999971389770508, 0.9999903440475464, 0.9999722242355347, 0.999963104724884, 0.9999464154243469, 0.9999361038208008, 0.9999147057533264, 0.9998072385787964, 0.9997148513793945, 0.9992712140083313, 0.998523473739624, 0.9982811808586121, 0.9893454313278198, 0.9795043468475342, 0.9068009853363037, 0.8580892086029053, 0.7622402906417847] +COc1ncccc1-c1ccc2[nH]ncc2c1; ['Brc1ccc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'CC1(C)OB(c2ccc3[nH]ncc3c2)OC1(C)C', 'COc1ncccc1Br', 'COc1ncccc1Cl', 'Brc1ccc2[nH]ncc2c1', 'COc1ncccc1Br', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2[nH]ncc2c1', 'Brc1ccc2[nH]ncc2c1', 'COc1ncccc1B(O)O', 'Brc1ccc2[nH]ncc2c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'Ic1ccc2[nH]ncc2c1', 'COc1ncccc1I', 'OB(O)c1ccc2[nH]ncc2c1', 'Ic1ccc2[nH]ncc2c1', 'COc1ncccc1Cl', 'OB(O)c1ccc2[nH]ncc2c1', 'OB(O)c1ccc2[nH]ncc2c1', 'COc1ncccc1B(O)O', 'Ic1ccc2[nH]ncc2c1', 'Clc1ccc2[nH]ncc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1I', 'Clc1ccc2[nH]ncc2c1', 'COc1ncccc1Br']; [0.9999869465827942, 0.9999847412109375, 0.9999841451644897, 0.999982476234436, 0.9999793767929077, 0.9999785423278809, 0.9999164342880249, 0.9998904466629028, 0.9998353719711304, 0.9997768402099609, 0.999610424041748, 0.9995947480201721, 0.9995816946029663, 0.9985164403915405, 0.9973081350326538, 0.9679188132286072] +CN(C)c1cc(-c2ccc3[nH]ncc3c2)cnn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3[nH]ncc3c2)c1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccc5[nH]ncc5c4)CC3)nc2c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3[nH]ncc3c2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3[nH]ncc3c2)c1)C1CCNCC1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3[nH]ncc3c2)C1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +COC(C)(C)CCc1cc(NC(N)=O)cs1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(NC(N)=O)cs2)[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Cc2cc(F)cc(F)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccccc2OC(F)(F)F)c1; [None]; [None]; [0] +CCn1cc(-c2cc(NC(N)=O)cs2)cn1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccccc2C(N)=O)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(NC(N)=O)cs3)cc2c1=O; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(NC(N)=O)cs2)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(NC(=O)c3ccccc3)c2)c1; [None]; [None]; [0] +COc1cnc(-c2cc(NC(N)=O)cs2)nc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-n2ncc3cccc(F)c3c2=O)c1; [None]; [None]; [0] +Cc1ccc(-c2cc(NC(N)=O)cs2)c(Br)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cc(NC(N)=O)cs1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(NC(N)=O)cs2)s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(NC(N)=O)cs2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(NCc2cccnc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccnc(N)n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-n2cnc3ccccc32)c1; [None]; [None]; [0] +Cc1c(-c2cc(NC(N)=O)cs2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2cccnc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(NCCc2c[nH]cn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(NC(=O)c2cccs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(F)c2C(N)=O)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(CC(=O)[O-])c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(NC(N)=O)cs3)cc2)cn1; [None]; [None]; [0] +NC(=O)Nc1csc(NCCc2ccccc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(NC(N)=O)cs3)ccc21; [None]; [None]; [0] +CN1c2ccc(-c3cc(NC(N)=O)cs3)cc2CS1(=O)=O; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3c(N)[nH]nc3c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(CO)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(NCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cc(NC(N)=O)cs2)n1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(O)c2)c1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)ccc1C(=O)[O-]; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2ccncc2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(NC(N)=O)cs2)nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CSc1nc(-c2cc(NC(N)=O)cs2)c[nH]1; [None]; [None]; [0] +NC(=O)Nc1csc(NCc2ccccc2F)c1; [None]; [None]; [0] +NC(=O)Nc1csc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2csc3ncncc23)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2csc(N)n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cncnc2N)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(NC(N)=O)cs3)cc2s1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(F)cc2C(F)(F)F)c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)CCCc1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(Oc2ccccn2)c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(NC(N)=O)cs1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(NC(=O)c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +CC(C)(COc1cc(NC(N)=O)cs1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc(NC(N)=O)cs2)cc1Cl; [None]; [None]; [0] +Cn1cc(-c2cc(NC(N)=O)cs2)c2ccccc21; [None]; [None]; [0] +CCCn1cc(-c2cc(NC(N)=O)cs2)cn1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc3c2C(=O)CC3)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc[nH]c(=O)c2)c1; [None]; [None]; [0] +COc1cc(CCc2cc(NC(N)=O)cs2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c1; [None]; [None]; [0] +C[C@@H](Oc1cc(NC(N)=O)cs1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +CCN(CC)c1cc(NC(N)=O)cs1; [None]; [None]; [0] +COc1ccncc1Nc1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2cnccc2-c2ccccc2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC1(c2cc(NC(N)=O)cs2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CN(c1cc(NC(N)=O)cs1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +C[C@H](Nc1cc(NC(N)=O)cs1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2cc(NC(N)=O)cs2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +NC(=O)Nc1csc(-n2ccc(CO)n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c(F)cccc2Cl)c1; [None]; [None]; [0] +C[C@H](Nc1cc(NC(N)=O)cs1)C(C)(C)O; [None]; [None]; [0] +NC(=O)Nc1csc(-n2cnc(CCO)c2)c1; [None]; [None]; [0] +C[C@@H](Nc1cc(NC(N)=O)cs1)C(C)(C)O; [None]; [None]; [0] +NC(=O)Nc1csc(-n2ncc3ccccc32)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-n2ncc3c(O)cccc32)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(NC(N)=O)cs2)[nH]1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(=O)c3ccccc3)cc2)c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(N)=O)cs2)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(CCC(=O)NCc2ccccn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(CS(=O)(=O)NCc2ccccn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCCCc1cc(-c2cc(NC(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nnc(N)s2)c1; [None]; [None]; [0] +CCc1cc(-c2cc(NC(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(NC(N)=O)cs2)n1; [None]; [None]; [0] +NC(=O)Nc1csc(Oc2ccc(C[NH3+])cc2F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(NC(N)=O)cs2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(NC(N)=O)cs3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(NC(N)=O)cs3)c2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cncc(N)n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(NC(N)=O)cs2)[nH]1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +COc1ccc(Oc2cc(NC(N)=O)cs2)c(F)c1F; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(NC(N)=O)cs2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +CCOc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)cc(OC)c1OC; [None]; [None]; [0] +COc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(NC(N)=O)cs3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(NC(=O)C3CC3)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(NC(N)=O)cs3)cc2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(N)=O)cc2)c1; [None]; [None]; [0] +Cc1cc(Nc2cc(NC(N)=O)cs2)sn1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2nccc3ccccc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2ncccn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(=O)Nc3ccccc3)cc2)c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc(NC(N)=O)cs3)cn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(OCCO)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(=O)N3CCOCC3)cc2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2ccncn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(=O)N3CCOCC3)cn2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(C(F)(F)F)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3c(c2)CS(=O)(=O)C3)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc([C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(NC(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(Br)cc2)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(NC(N)=O)cs2)cc1Cl; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(NC(N)=O)cs3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(NC(N)=O)cs2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccn3nccc3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(NC(N)=O)cs2)c(C)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccccc2-n2cccn2)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(NC(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(NC(N)=O)cs2)cc1Cl; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3c(c2)CCO3)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cnc3ccccc3c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(NC(N)=O)cs2)cn1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)ccc1O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc3c2OCO3)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +CC1(COc2cc(NC(N)=O)cs2)COC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3ccccc3s2)c1; [None]; [None]; [0] +Cc1cc(-c2cc(NC(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(NC(N)=O)cs3)cc2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(F)cc2Cl)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(Cl)cc2Cl)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3c(c2)CCC(=O)N3)c1; [None]; [None]; [0] +CCc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(N)=O)cs2)cc1OC; [None]; [None]; [0] +Cn1cc(-c2cc(NC(N)=O)cs2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc(CNc2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(NC2CN(C(=O)C3CC3)C2)c1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)ccc1N1CCOCC1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(NC(N)=O)cs3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(NC(N)=O)cs3)c2c1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)ccc1Cl; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(NC(N)=O)cs2)cc1OC; [None]; [None]; [0] +Cc1csc2c(-c3cc(NC(N)=O)cs3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cc(NC(N)=O)cs2)sc1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +Cc1cc(Nc2cc(NC(N)=O)cs2)nn1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(N)=O)cs2)nc1; [None]; [None]; [0] +COc1cc(-c2cc(NC(N)=O)cs2)c(OC)cc1Br; [None]; [None]; [0] +NC(=O)Nc1csc(Cc2ccc(C(N)=O)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(NC(=O)c2ccco2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(Cc2ccc(S(=O)(=O)CCO)cc2)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(NC(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(NC(N)=O)cs1)cn2C; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(NC(N)=O)cs3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc3cn[nH]c3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cc3ccccc3o2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(NC(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +CCc1cccc(-c2cc(NC(N)=O)cs2)n1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc(NC(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(-c2cc(NC(N)=O)cs2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(NC(N)=O)cs2)cn1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(NC(N)=O)cs3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(NC(N)=O)cs3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(NC(N)=O)cs3)cn2)CC1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2ccc(CCO)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(-c2cccc(N3CCCC3=O)c2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(NC(=O)c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(NC(N)=O)cs2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc(NC(N)=O)cs3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(NC(N)=O)cs2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc(NC(N)=O)cs2)cc1C(C)(C)O; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2ccc(F)cn2)c1; [None]; [None]; [0] +NC(=O)Nc1csc(Nc2ccccn2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(NC(N)=O)cs2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(NC(N)=O)cs2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(NC(N)=O)cs2)c1; [None]; [None]; [0] +Cc1cc(Nc2cc(NC(N)=O)cs2)ncc1F; [None]; [None]; [0] +Oc1cc(-c2c[nH]c3ncc(Cl)cc23)ccc1Cl; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9987786412239075, 0.9938327074050903] +Cc1ccc(C(=O)NCCO)cc1-c1cc(NC(N)=O)cs1; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3ncc(Cl)cc23)c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Oc1cccc(Br)c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1']; [0.9999409914016724, 0.9999046325683594, 0.9998011589050293, 0.9997779130935669, 0.9980746507644653, 0.9879612326622009] +Clc1cnc2[nH]cc(-c3cccc4ncccc34)c2c1; ['Brc1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12']; [0.9999987483024597, 0.9999974966049194, 0.9999958276748657, 0.9997939467430115, 0.9997321367263794, 0.9987095594406128] +Clc1cnc2[nH]cc(-c3c(Cl)ccc4c3OCO4)c2c1; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9999608993530273, 0.9999583959579468, 0.9987521171569824] +Clc1cnc2[nH]cc(-c3n[nH]c4ccccc34)c2c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['Ic1n[nH]c2ccccc12']; [0.9999830722808838] +Clc1cnc2[nH]cc(-c3c(Cl)cccc3Cl)c2c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999875426292419, 0.9998430013656616, 0.9997944831848145, 0.9982657432556152] +CNS(=O)(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999958872795105, 0.9999927282333374, 0.9995794296264648, 0.9972895979881287, 0.9971027970314026, 0.9924387335777283] +Fc1ccc(Oc2c[nH]c3ncc(Cl)cc23)cc1; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9996157288551331, 0.9964839816093445] +NC(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)c(F)c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['NC(=O)c1ccc(Br)c(F)c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999997019767761, 0.9999994039535522, 0.9999966621398926, 0.999830961227417, 0.9998239278793335] +Oc1ccc(-c2c[nH]c3ncc(Cl)cc23)c(Cl)c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Oc1ccc(Br)c(Cl)c1', 'Clc1cnc2[nH]cc(I)c2c1', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl']; [0.9999985694885254, 0.9999868869781494, 0.999930202960968, 0.9998972415924072] +COc1cc(C(N)=O)ccc1-c1c[nH]c2ncc(Cl)cc12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'COc1cc(C(N)=O)ccc1Br']; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'COc1cc(C(N)=O)ccc1Br', 'Clc1cnc2[nH]ccc2c1']; [0.9999984502792358, 0.9999978542327881, 0.9999964833259583, 0.9493290185928345] +NC(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', None, 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'N']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'NC(=O)c1ccc(Br)cc1', None, 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'O=C(O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1']; [0.9999982118606567, 0.9999963641166687, 0.9994803667068481, 0, 0.9986512064933777, 0.997761607170105, 0.9962059855461121] +COc1ccc(F)cc1-c1c[nH]c2ncc(Cl)cc12; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999856948852539, 0.9999761581420898, 0.9998981952667236] +Oc1ccc(-c2c[nH]c3ncc(Cl)cc23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2c[nH]c3ncc(Cl)cc23)n1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['Nc1nccc(Cl)n1']; [0.9998623132705688] +COc1cc(F)ccc1-c1c[nH]c2ncc(Cl)cc12; ['COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999375939369202, 0.9994356632232666] +COc1cc(-c2c[nH]c3ncc(Cl)cc23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'COc1cc(Br)ccc1O', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; [0.9999914765357971, 0.9999865293502808, 0.9999600648880005, 0.9993435144424438, 0.9963880777359009] +O=C([O-])c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; [None]; [None]; [0] +Clc1cnc2[nH]cc(-c3cccc(Br)c3)c2c1; ['Clc1cnc2[nH]cc(Cl)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; ['OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9986523389816284, 0.9985760450363159, 0.9973326325416565] +COC(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)o1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1']; ['COC(=O)c1ccc(Br)o1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; [0.999981164932251, 0.9924545288085938, 0.990027666091919] +COc1cc(CCc2c[nH]c3ncc(Cl)cc23)ccc1O; ['COc1cc(CCO)ccc1O']; ['Clc1cnc2[nH]ccc2c1']; [0.9047818183898926] +Clc1cnc2[nH]cc(-c3ccc4ccccc4c3)c2c1; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9996848106384277, 0.999683141708374, 0.9988067150115967] +Cn1cc(-c2c[nH]c3ncc(Cl)cc23)c2ccccc21; ['Clc1cnc2[nH]cc(Br)c2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999989867210388] +Oc1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1F; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1']; [0.9999991655349731, 0.9999896883964539, 0.9988917708396912, 0.9973456859588623] +Cc1nc2c(F)cc(-c3c[nH]c4ncc(Cl)cc34)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3c[nH]c4ncc(Cl)cc34)cc2)c(O)c1; [None]; [None]; [0] +Clc1cnc2[nH]cc(-c3cn[nH]c3Cl)c2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2c[nH]c3ncc(Cl)cc23)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999985694885254, 0.999995231628418, 0.9999916553497314, 0.998854398727417, 0.9967528581619263, 0.993178129196167, 0.9923841953277588] +Nc1cc(-c2c[nH]c3ncc(Cl)cc23)ccn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Nc1cc(Br)ccn1', 'Clc1cnc2[nH]cc(I)c2c1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999905824661255, 0.9999823570251465, 0.9999812245368958, 0.9946804642677307, 0.9871425628662109, 0.9839479923248291, 0.9120001792907715] +Clc1cnc2[nH]cc(-c3c[nH]c4cnccc34)c2c1; ['Brc1c[nH]c2cnccc12', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999803304672241, 0.999138355255127, 0.9970777034759521] +Clc1cnc2[nH]cc(COc3ccccc3Cl)c2c1; [None]; [None]; [0] +Fc1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1Cl; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1']; [0.9999997019767761, 0.9999721050262451, 0.9999181628227234, 0.9992818832397461] +Cc1ccc2[nH]ncc2c1-c1c[nH]c2ncc(Cl)cc12; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Cc1ccc2[nH]ncc2c1Br', 'Clc1cnc2[nH]cc(Br)c2c1']; [0.9999985098838806, 0.9999947547912598, 0.999701738357544] +Oc1ccc(-c2c[nH]c3ncc(Cl)cc23)c(O)c1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999953508377075, 0.9997057914733887, 0.9995549917221069, 0.9989702701568604] +Oc1ccc(Cl)c(-c2c[nH]c3ncc(Cl)cc23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1c[nH]c2ncc(Cl)cc12; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O']; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; [0.9999949932098389, 0.9988418817520142, 0.9960194826126099] +Oc1ncc(-c2c[nH]c3ncc(Cl)cc23)cc1Cl; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Oc1ncc(Br)cc1Cl']; [0.9999990463256836, 0.9999752044677734] +Fc1ccc(-c2nc[nH]c2-c2c[nH]c3ncc(Cl)cc23)cc1; [None]; [None]; [0] +NC(=O)c1cc(-c2c[nH]c3ncc(Cl)cc23)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2c[nH]c3ncc(Cl)cc23)c1; ['CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999238848686218, 0.9996139407157898, 0.9993751049041748] +Clc1cnc2[nH]cc(-c3cnc4[nH]ccc4c3)c2c1; ['Clc1cnc2[nH]cc(Br)c2c1']; ['OB(O)c1cnc2[nH]ccc2c1']; [0.9999052286148071] +Cc1nc2ccc(-c3c[nH]c4ncc(Cl)cc34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; ['Clc1cnc2[nH]cc(Br)c2c1']; [0.9999845027923584] +Clc1cnc2[nH]cc(-c3cnn4ncccc34)c2c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['Clc1cnc2[nH]cc(Br)c2c1', 'NC(=O)Nc1ccc(Br)cc1']; [0.9999991655349731, 0.9991052746772766] +Clc1cnc2[nH]cc(-c3nc4ccccc4s3)c2c1; ['Clc1cnc2[nH]cc(Br)c2c1']; ['c1ccc2scnc2c1']; [0.9999895691871643] +CS(=O)(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [1.0, 0.9999996423721313, 0.9997972249984741, 0.999693751335144, 0.9980838894844055] +COc1cc(OC)cc(-c2c[nH]c3ncc(Cl)cc23)c1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]c3ncc(Cl)cc23)c1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Oc1cncc(Br)c1', 'Oc1cncc(I)c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1']; [0.9998664855957031, 0.9998605251312256, 0.999858021736145, 0.9997600317001343, 0.9946296215057373, 0.9854937791824341] +O=C1Cc2cc(-c3c[nH]c4ncc(Cl)cc34)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(Cl)c2c1', 'Clc1cnc2[nH]ccc2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Clc1cnc2[nH]cc(Cl)c2c1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.9999817609786987, 0.9999754428863525, 0.9998747706413269, 0.9997243285179138, 0.9995898008346558, 0.9990276098251343, 0.9964456558227539, 0.996393084526062, 0.9825390577316284, 0.9186104536056519] +CNc1nccc(-c2c[nH]c3ncc(Cl)cc23)n1; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.999753475189209] +CCc1cc(O)c(F)cc1-c1c[nH]c2ncc(Cl)cc12; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)c(F)cc1Br', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; [0.9999997019767761, 0.9999975562095642, 0.9999974966049194] +CNC(=O)c1cccc2cc(-c3c[nH]c4ncc(Cl)cc34)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c[nH]c2ncc(Cl)cc12; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B(O)O']; ['Cc1cc(O)ccc1Br', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; [0.9999972581863403, 0.9999598264694214, 0.9999442100524902, 0.9993358850479126, 0.9992657899856567] +C[C@H](CC(N)=O)c1c[nH]c2ncc(Cl)cc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1c[nH]c2ncc(Cl)cc12; [None]; [None]; [0] +Cc1n[nH]c(-c2c[nH]c3ncc(Cl)cc23)c1C; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3ncc(Cl)cc23)cc(OC)c1; [None]; [None]; [0] +FC(F)c1cc(-c2c[nH]c3ncc(Cl)cc23)[nH]n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3c[nH]c4ncc(Cl)cc34)ccc12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1c[nH]c2ncc(Cl)cc12; ['CNc1cccc(Cl)c1']; ['Clc1cnc2[nH]cc(Br)c2c1']; [0.9846674203872681] +Clc1cnc2[nH]cc(-c3ccc4c(c3)CCN4)c2c1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C']; ['Clc1cnc2[nH]cc(I)c2c1']; [0.9999979138374329] +Oc1c(Cl)cc(-c2c[nH]c3ncc(Cl)cc23)cc1Cl; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999985098838806, 0.9999955892562866, 0.9999462366104126, 0.9977520704269409, 0.9962862730026245] +Oc1cc(-c2c[nH]c3ncc(Cl)cc23)nc2ccnn12; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3c[nH]c4ncc(Cl)cc34)cc2[nH]1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [0.9999769926071167, 0.9998220205307007] +Clc1cnc2[nH]cc(Nc3ccncc3)c2c1; ['Clc1cnc2[nH]cc(Cl)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9981892108917236, 0.9975311756134033, 0.9921988248825073] +Fc1cc(Br)ccc1-c1c[nH]c2ncc(Cl)cc12; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; ['OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F']; [0.9999298453330994, 0.9994199275970459] +Cc1oc(-c2c[nH]c3ncc(Cl)cc23)cc1C(=O)[O-]; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c2ncc(Cl)cc12; [None]; [None]; [0] +CNc1nc(-c2c[nH]c3ncc(Cl)cc23)ncc1F; [None]; [None]; [0] +Cn1ncc(N)c1-c1c[nH]c2ncc(Cl)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CN', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', None, 'CNC(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1', 'CNC(=O)c1ccc(Br)cc1', 'O=C(O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', None, 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999991059303284, 0.9999988079071045, 0.9999971389770508, 0.9998502731323242, 0.9997868537902832, 0.9994197487831116, 0.999211311340332, 0, 0.9987906217575073] +Clc1cnc2[nH]cc(-c3ccncc3Cl)c2c1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2c[nH]c3ncc(Cl)cc23)c1; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; ['OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1']; [0.9998424053192139, 0.9988340139389038] +Cc1cc(-c2c[nH]c3ncc(Cl)cc23)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999980926513672, 0.999996542930603] +O=C(NC1CC1)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'NC1CC1', 'Clc1cnc2[nH]cc(Br)c2c1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'O=C(O)c1ccc(-c2c[nH]c3ncc(Cl)cc23)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [1.0, 0.9999997615814209, 0.9999990463256836, 0.9999871253967285, 0.999970555305481, 0.999967098236084, 0.9997146725654602] +Cc1nc2ccc(-c3c[nH]c4ncc(Cl)cc34)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Cc1nc2ccc(B(O)O)cc2o1']; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Cc1nc2ccc(Br)cc2o1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999994039535522, 0.999998927116394, 0.9999949932098389, 0.9999816417694092, 0.9999669790267944, 0.9998012781143188] +Fc1ccc2n[nH]c(-c3c[nH]c4ncc(Cl)cc34)c2c1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c3ncc(Cl)cc23)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; ['Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Cc1cc(Br)cc(C)c1O', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Br)c2c1']; [0.9999504089355469, 0.9999165534973145, 0.9994123578071594, 0.9550446271896362, 0.9533585906028748] +CN(c1cccc2[nH]ncc12)c1c[nH]c2ncc(Cl)cc12; [None]; [None]; [0] +CSc1cccc(-c2c[nH]c3ncc(Cl)cc23)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'CSc1cccc(Br)c1', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; [0.9999963641166687, 0.999961256980896, 0.9953763484954834, 0.9899132251739502] +Oc1c(F)cc(-c2c[nH]c3ncc(Cl)cc23)cc1F; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1']; ['Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Oc1c(F)cc(Br)cc1F', 'Clc1cnc2[nH]cc(Cl)c2c1', 'Oc1c(F)cc(I)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9999969005584717, 0.9999871253967285, 0.9999840259552002, 0.999972403049469, 0.9999548196792603, 0.998578667640686, 0.9958393573760986] +O=c1[nH][nH]c2cc(-c3c[nH]c4ncc(Cl)cc34)ccc12; [None]; [None]; [0] +Fc1ccc(Oc2c[nH]c3ncc(Cl)cc23)c(F)c1; ['Clc1cnc2[nH]cc(Br)c2c1']; ['Oc1ccc(F)cc1F']; [0.9999419450759888] +Fc1cccc(Cl)c1CNc1c[nH]c2ncc(Cl)cc12; ['Clc1cnc2[nH]cc(Br)c2c1', 'Nc1c[nH]c2ncc(Cl)cc12', 'Fc1cccc(Cl)c1CCl']; ['NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'Nc1c[nH]c2ncc(Cl)cc12']; [0.9999994039535522, 0.9999980926513672, 0.9999074935913086] +Cc1onc(-c2ccccc2)c1-c1c[nH]c2ncc(Cl)cc12; ['CC1(C)OB(c2c[nH]c3ncc(Cl)cc23)OC1(C)C', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Cc1onc(-c2ccccc2)c1I', 'Clc1cnc2[nH]cc(Br)c2c1', 'Clc1cnc2[nH]cc(I)c2c1', 'Clc1cnc2[nH]cc(Cl)c2c1']; [0.9999992847442627, 0.9999967217445374, 0.9999952912330627, 0.9999282360076904] +Clc1cnc2[nH]cc(OCc3cccc4ccccc34)c2c1; ['Clc1cnc2[nH]cc(Br)c2c1']; ['OCc1cccc2ccccc12']; [0.7937412858009338] +Clc1ccc(-c2[nH]ncc2-c2c[nH]c3ncc(Cl)cc23)cc1; [None]; [None]; [0] +Fc1ccc(COc2c[nH]c3ncc(Cl)cc23)c(F)c1; [None]; [None]; [0] +Oc1cccc(-c2cc3ccncc3o2)c1; ['Oc1cccc(I)c1']; ['c1cc2ccoc2cn1']; [0.9932980537414551] +Clc1cnc2[nH]cc(CCc3c[nH]c4ccccc34)c2c1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3o2)c2cccnc2c1; ['Nc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Brc1cccc2ncccc12', 'C#Cc1cccc2ncccc12']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'Oc1cnccc1I']; [0.9990900158882141, 0.9989824295043945, 0.998619556427002, 0.973558783531189] +Oc1cc(-c2cc3ccncc3o2)ccc1Cl; ['Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9820374250411987, 0.9659525156021118] +CNS(=O)(=O)c1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2c[nH]c3ncc(Cl)cc23)cc1; [None]; [None]; [0] +Clc1ccc2c(c1-c1cc3ccncc3o1)OCO2; [None]; [None]; [0] +Fc1ccc(CCc2c[nH]c3ncc(Cl)cc23)c(F)c1; [None]; [None]; [0] +Fc1ccc(Oc2cc3ccncc3o2)cc1; ['Oc1ccc(F)cc1']; ['c1cc2ccoc2cn1']; [0.7509346604347229] +NC(=O)c1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cc2ccncc2o1; ['C#Cc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'Nc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1', 'O=S(=O)(Cl)c1c(Cl)cccc1Cl']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9997713565826416, 0.9988947510719299, 0.9986520409584045, 0.9980415105819702, 0.9810433387756348, 0.8581806421279907, 0.8474056720733643] +c1ccc2c(-c3cc4ccncc4o3)n[nH]c2c1; [None]; [None]; [0] +Oc1ccc(-c2cc3ccncc3o2)c(Cl)c1; ['Oc1ccc(I)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1', 'Nc1ccc(O)cc1Cl', 'Oc1cccc(Cl)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9924274682998657, 0.9916942119598389, 0.9441125988960266, 0.8282334804534912] +COc1ccc(F)cc1-c1cc2ccncc2o1; ['COc1ccc(F)cc1Br', 'C#Cc1cc(F)ccc1OC', 'COc1ccc(F)cc1N']; ['c1cc2ccoc2cn1', 'Oc1cnccc1I', 'c1cc2ccoc2cn1']; [0.999979555606842, 0.9999760985374451, 0.9997931122779846] +COc1cc(C(N)=O)ccc1-c1cc2ccncc2o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccncc3o2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cc3ccncc3o2)c(F)c1; ['Oc1ccc(I)c(F)c1']; ['c1cc2ccoc2cn1']; [0.9916276335716248] +COc1cc(F)ccc1-c1cc2ccncc2o1; ['COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1N']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999093413352966, 0.9998328685760498, 0.998076319694519] +Nc1nccc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cc4ccncc4o3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cc2ccncc2o1; [None]; [None]; [0] +Brc1cccc(-c2cc3ccncc3o2)c1; ['C#Cc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Nc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9998967051506042, 0.9917150735855103, 0.9890450835227966, 0.971739649772644] +Oc1ccc(-c2ccc(-c3cc4ccncc4o3)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2cc3ccncc3o2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc3ccncc3o2)o1; [None]; [None]; [0] +COc1cc(CCc2cc3ccncc3o2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +Oc1ccc(-c2cc3ccncc3o2)cc1F; [None]; [None]; [0] +c1ccc2cc(-c3cc4ccncc4o3)ccc2c1; ['C#Cc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999257326126099, 0.9981014132499695, 0.9974454045295715, 0.9946002960205078] +Oc1ccc(-c2cc3ccncc3o2)c(O)c1; [None]; [None]; [0] +c1cnn2ncc(-c3cc4ccncc4o3)c2c1; ['Brc1cnn2ncccc12']; ['c1cc2ccoc2cn1']; [0.9905445575714111] +COC(=O)c1ccc(Cl)c(-c2cc3ccncc3o2)c1; ['COC(=O)c1ccc(Cl)c(N)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9993981122970581, 0.9967547655105591, 0.9948982000350952] +Cn1cc(-c2cc3ccncc3o2)c2ccccc21; [None]; [None]; [0] +c1cc2c(-c3cc4ccncc4o3)c[nH]c2cn1; [None]; [None]; [0] +Fc1ccc(-c2cc3ccncc3o2)cc1Cl; ['C#Cc1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Nc1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999743103981018, 0.9994164705276489, 0.9992547035217285, 0.9988045692443848] +Clc1ccccc1OCc1cc2ccncc2o1; [None]; [None]; [0] +Nc1cc(-c2cc3ccncc3o2)ccn1; ['Nc1ccnc(N)c1']; ['c1cc2ccoc2cn1']; [0.9836423397064209] +Oc1ccc(Cl)c(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cc2ccncc2o1; [None]; [None]; [0] +Oc1ncc(-c2cc3ccncc3o2)cc1Cl; ['Oc1ncc(Br)cc1Cl']; ['c1cc2ccoc2cn1']; [0.9153121709823608] +NC(=O)c1cc(-c2cc3ccncc3o2)c[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cc2ccncc2o1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc4ccncc4o3)cc2[nH]1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +c1cc2cc(-c3cnc4[nH]ccc4c3)oc2cn1; [None]; [None]; [0] +COc1ccc(-c2cc3ccncc3o2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc4ccncc4o3)ccc12; [None]; [None]; [0] +CCOc1cccc(-c2cc3ccncc3o2)c1; ['CCOc1cccc(I)c1', 'CCOc1cccc(N)c1', 'CCOc1cccc(Br)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9972721338272095, 0.9968013763427734, 0.9956321716308594] +COc1cc(CCc2cc3ccncc3o2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['c1cc2ccoc2cn1']; [0.857025146484375] +CS(=O)(=O)c1ccc(-c2cc3ccncc3o2)cc1; ['C#Cc1ccc(S(C)(=O)=O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(N)cc1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999676942825317, 0.9981777667999268, 0.9831039905548096, 0.9570475816726685] +NC(=O)Nc1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cc4ccncc4o3)nc2c1; ['Nc1ccccc1S']; ['O=Cc1cc2ccncc2o1']; [0.999864399433136] +Oc1cncc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc2ccncc2o1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc2ccncc2o1; ['CCc1cc(O)ccc1Br']; ['c1cc2ccoc2cn1']; [0.9880019426345825] +O=C1Cc2cc(-c3cc4ccncc4o3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cc2ccncc2o1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc2ccncc2o1; [None]; [None]; [0] +CNc1nccc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +Clc1cnccc1-c1cc2ccncc2o1; ['C#Cc1ccncc1Cl', 'Clc1cnccc1I', 'Nc1ccncc1Cl', 'Clc1cnccc1Br']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.998261034488678, 0.9769314527511597, 0.9718930721282959, 0.9279178380966187] +Cc1n[nH]c2cc(N(C)c3cc4ccncc4o3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cc3ccncc3o2)c1C; [None]; [None]; [0] +FC(F)c1cc(-c2cc3ccncc3o2)[nH]n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cc3ccncc3o2)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2cc3ccncc3o2)ncc1F; [None]; [None]; [0] +CCc1sccc1-c1cc2ccncc2o1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cc2ccncc2o1; [None]; [None]; [0] +c1cc2cc(-c3ccc4c(c3)CCN4)oc2cn1; [None]; [None]; [0] +Cc1oc(-c2cc3ccncc3o2)cc1C(=O)[O-]; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3ccncc3o2)cc1; ['CNC(=O)c1ccc(I)cc1']; ['c1cc2ccoc2cn1']; [0.9869919419288635] +O=c1[nH]c2ccc(-c3cc4ccncc4o3)cc2[nH]1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cc2ccncc2o1; ['C#Cc1ccc(Br)cc1F', 'Nc1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999765157699585, 0.9986035227775574, 0.995898962020874] +Cn1ncc(N)c1-c1cc2ccncc2o1; [None]; [None]; [0] +Oc1cc(-c2cc3ccncc3o2)nc2ccnn12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cc4ccncc4o3)c2c1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cc3ccncc3o2)c1; ['Oc1cc(Br)cc(I)c1']; ['c1cc2ccoc2cn1']; [0.8070722818374634] +Cc1cc(-c2cc3ccncc3o2)ccc1C(N)=O; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cc3ccncc3o2)cc1; ['O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9995219707489014, 0.9979454278945923] +c1cc(Nc2cc3ccncc3o2)ccn1; [None]; [None]; [0] +Cc1nc2ccc(-c3cc4ccncc4o3)cc2o1; ['Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(N)cc2o1', 'Cc1nc2ccc(Cl)cc2o1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9975606203079224, 0.9895174503326416, 0.8069713711738586] +Oc1c(F)cc(-c2cc3ccncc3o2)cc1F; ['Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9280121922492981, 0.8888545036315918] +Cc1cc(-c2cc3ccncc3o2)cc(C)c1O; ['Cc1cc(N)cc(C)c1O']; ['c1cc2ccoc2cn1']; [0.9113614559173584] +CSc1cccc(-c2cc3ccncc3o2)c1; ['CSc1cccc(N)c1']; ['c1cc2ccoc2cn1']; [0.9987636804580688] +CN(c1cc2ccncc2o1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cc2ccncc2o1; ['Cc1onc(-c2ccccc2)c1N', 'Cc1onc(-c2ccccc2)c1I']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9996219873428345, 0.9995036721229553] +O=c1[nH][nH]c2cc(-c3cc4ccncc4o3)ccc12; [None]; [None]; [0] +c1ccc2c(CCc3cc4ccncc4o3)c[nH]c2c1; [None]; [None]; [0] +Fc1ccc(Oc2cc3ccncc3o2)c(F)c1; [None]; [None]; [0] +c1ccc2c(COc3cc4ccncc4o3)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +Fc1ccc(COc2cc3ccncc3o2)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2cc3ccncc3o2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2ccncc2o1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2ccncc2o1; ['CCOc1ccccc1Br', 'CCOc1ccccc1N']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9983574151992798, 0.9972043037414551] +Fc1cccc(Cl)c1CNc1cc2ccncc2o1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2ccncc2o1; ['CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.995825469493866, 0.9920565485954285] +CP(C)(=O)c1ccccc1-c1cc2ccncc2o1; ['CP(C)(=O)c1ccccc1N']; ['c1cc2ccoc2cn1']; [0.9892823696136475] +COC(C)(C)CCc1cc2ccncc2o1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3ccncc3o2)[nH]1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cc2ccncc2o1; ['C#Cc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'Nc1ccccc1OC(F)(F)F']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999139308929443, 0.9998574256896973, 0.99950110912323, 0.99944007396698] +CCn1cc(-c2cc3ccncc3o2)cn1; ['CCn1cc(Br)cn1']; ['c1cc2ccoc2cn1']; [0.8145719766616821] +FC(F)(F)c1cccc(-c2cc3ccncc3o2)c1; ['C#Cc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999521970748901, 0.9997464418411255, 0.9997216463088989, 0.999525249004364] +c1ccc2c(-c3cc4ccncc4o3)ccnc2c1; ['Brc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'C#Cc1ccnc2ccccc12']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'Oc1cnccc1I']; [0.9620441198348999, 0.9224314093589783, 0.9080532789230347, 0.8632349967956543, 0.8435304164886475] +NC(=O)c1ccccc1-c1cc2ccncc2o1; ['NC(=O)c1ccccc1N']; ['c1cc2ccoc2cn1']; [0.8294664621353149] +Fc1cc(F)cc(Cc2cc3ccncc3o2)c1; ['C#Cc1cc(F)cc(F)c1', 'Fc1cc(F)cc(CBr)c1']; ['O=Cc1ccncc1O', 'c1cc2ccoc2cn1']; [0.9953048229217529, 0.9564905762672424] +Cn1cnc2ccc(-c3cc4ccncc4o3)cc2c1=O; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4ccncc4o3)cn2)cc1; ['Brc1cnn(Cc2ccccc2)c1']; ['c1cc2ccoc2cn1']; [0.990334153175354] +O=C([O-])c1ccccc1-c1cc2ccncc2o1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cc4ccncc4o3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cc3ccncc3o2)cn1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cc3ccncc3o2)c1; ['Clc1ccc(Cl)c(I)c1', 'Nc1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.999634861946106, 0.9993976354598999, 0.9990967512130737] +O=c1c2c(F)cccc2cnn1-c1cc2ccncc2o1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3ccncc3o2)c1)c1ccccc1; [None]; [None]; [0] +Cc1ccc(-c2cc3ccncc3o2)c(Br)c1; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(Br)c(Br)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9998670816421509, 0.999495804309845, 0.9824638366699219] +CC(C)(C)c1nc(-c2cc3ccncc3o2)cs1; [None]; [None]; [0] +COc1cnc(-c2cc3ccncc3o2)nc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2ccncc2o1; [None]; [None]; [0] +c1ccn2c(-c3cc4ccncc4o3)cnc2c1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2ccncc2o1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3ccncc3o2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2ccncc2o1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3ccncc3o2)c1; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(N)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9970036745071411, 0.9960813522338867] +c1cnn2c(-c3cc4ccncc4o3)cnc2c1; [None]; [None]; [0] +c1cncc(Nc2cc3ccncc3o2)c1; [None]; [None]; [0] +O=C(Nc1cc2ccncc2o1)c1cccs1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3ccncc3o2)s1; [None]; [None]; [0] +c1cncc(CNc2cc3ccncc3o2)c1; [None]; [None]; [0] +Cc1c(-c2cc3ccncc3o2)sc(=O)n1C; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cc2ccncc2o1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cc2ccncc2o1; ['FC(F)(F)c1n[nH]cc1Br']; ['c1cc2ccoc2cn1']; [0.9927784204483032] +NC(=O)c1c(F)cccc1-c1cc2ccncc2o1; [None]; [None]; [0] +c1ccc2c(-c3cc4ccncc4o3)cncc2c1; ['Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Nc1cncc2ccccc12']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9942119121551514, 0.9925007820129395, 0.9881761074066162] +c1cc2cc(NCCc3c[nH]cn3)oc2cn1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4ccncc4o3)ccc21; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.999997079372406, 0.998814582824707, 0.9984585046768188, 0.9951299428939819, 0.8684187531471252] +c1ccc(CCNc2cc3ccncc3o2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4ccncc4o3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc4ccncc4o3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc4ccncc4o3)cc2CS1(=O)=O; [None]; [None]; [0] +CC(C)n1cc(-c2cc3ccncc3o2)nn1; ['CC(C)n1ccnn1']; ['c1cc2ccoc2cn1']; [0.9997971057891846] +OCc1cccc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +c1cc2cc(-c3ccc(-c4cn[nH]c4)cc3)oc2cn1; [None]; [None]; [0] +Clc1ccc(CNc2cc3ccncc3o2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +c1cc2cc(-c3csc4ncncc34)oc2cn1; ['Brc1csc2ncncc12']; ['c1cc2ccoc2cn1']; [0.8653385639190674] +c1cc2cc(CCc3c[nH]nn3)oc2cn1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cc4ccncc4o3)cc2c1; ['Clc1cc2ccccc2[nH]1']; ['c1cc2ccoc2cn1']; [0.9488289952278137] +COc1cc(-c2cc3ccncc3o2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(-c2cc3ccncc3o2)cs1; [None]; [None]; [0] +CSc1nc(-c2cc3ccncc3o2)c[nH]1; [None]; [None]; [0] +Fc1ccccc1CNc1cc2ccncc2o1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3ccncc3o2)c1; ['N#CCCc1cccc(Br)c1']; ['c1cc2ccoc2cn1']; [0.9984285831451416] +CC(C)c1oncc1-c1cc2ccncc2o1; [None]; [None]; [0] +Nc1ncncc1-c1cc2ccncc2o1; [None]; [None]; [0] +Fc1ccc(-c2cc3ccncc3o2)c(C(F)(F)F)c1; ['Nc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9995172619819641, 0.9994589686393738, 0.9949346780776978] +CC(=O)Nc1cccc(-c2cc3ccncc3o2)c1; ['C#Cc1cccc(NC(C)=O)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999418258666992, 0.9992773532867432, 0.996884822845459] +CCC(=O)Nc1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +NC(=O)CCCc1cc2ccncc2o1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4ccncc4o3)cc2s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2ccncc2o1; [None]; [None]; [0] +c1ccc(Oc2cc3ccncc3o2)nc1; [None]; [None]; [0] +O=C(Nc1cc2ccncc2o1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +c1ccn2ncc(-c3cc4ccncc4o3)c2c1; ['Ic1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.99985271692276, 0.9997879862785339, 0.9975457191467285] +COc1ccc(-c2cc3ccncc3o2)cc1Cl; [None]; [None]; [0] +CC(C)(COc1cc2ccncc2o1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cc3ccncc3o2)cn1; ['CCCn1cc(Br)cn1']; ['c1cc2ccoc2cn1']; [0.9972301721572876] +O=c1cc(-c2cc3ccncc3o2)cc[nH]1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3ccncc3o2)CC1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc4ccncc4o3)c21; ['O=C1CCc2cccc(Br)c21']; ['c1cc2ccoc2cn1']; [0.9875415563583374] +CCNS(=O)(=O)c1ccccc1-c1cc2ccncc2o1; ['CCNS(=O)(=O)c1ccccc1']; ['c1cc2ccoc2cn1']; [0.9292480945587158] +C[S@](=O)c1ccc(-c2cc3ccncc3o2)cc1; ['CS(=O)c1ccc(Br)cc1']; ['c1cc2ccoc2cn1']; [0.8474876880645752] +CC(C)(N)c1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc3ccncc3o2)cc1C(F)(F)F; [None]; [None]; [0] +C[C@@H](Oc1cc2ccncc2o1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3ccncc3o2)cc1; ['C#Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(N)cc1']; ['Oc1cnccc1I', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9998447895050049, 0.9950690269470215, 0.9938784837722778, 0.967753529548645] +CC(C)Oc1cncc(-c2cc3ccncc3o2)c1; ['CC(C)Oc1cncc(Br)c1']; ['c1cc2ccoc2cn1']; [0.9983909726142883] +O=c1[nH]ccc2oc(-c3cc4ccncc4o3)cc12; [None]; [None]; [0] +CCN(CC)c1cc2ccncc2o1; [None]; [None]; [0] +COc1ccncc1Nc1cc2ccncc2o1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cc3ccncc3o2)cc1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc4ccncc4o3)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2ccncc2o1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3ccncc3o2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2ccncc2o1; ['COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1N']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9997864365577698, 0.9996346235275269, 0.9991543292999268] +CN(c1cc2ccncc2o1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2cc3ccncc3o2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +c1ccc2ncc(Nc3cc4ccncc4o3)cc2c1; [None]; [None]; [0] +c1cc2cc(-c3ccc(N4CCOCC4)cc3)oc2cn1; [None]; [None]; [0] +C[C@H](Nc1cc2ccncc2o1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCCc1cn(-c2cc3ccncc3o2)cn1; [None]; [None]; [0] +OCc1ccn(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +Cc1cc(-c2cc3ccncc3o2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cc2ccncc2o1; ['Fc1cccc(Cl)c1I', 'O=S(=O)(Cl)c1c(F)cccc1Cl']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999924898147583, 0.9906346797943115] +C[C@H](Nc1cc2ccncc2o1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc2ccncc2o1)C(C)(C)O; [None]; [None]; [0] +c1cc2cc(-c3ccc(-n4cncn4)cc3)oc2cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cc2ccncc2o1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc4ccncc4o3)[nH]c2c1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cc2ccncc2o1; [None]; [None]; [0] +COc1ccc(-c2cc3ccncc3o2)c(OC)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3ccncc3o2)[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc3ccncc3o2)cc1; ['O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9850338697433472, 0.9814081192016602, 0.8168011903762817] +CC(=O)N[C@@H]1CC[C@@H](c2cc3ccncc3o2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2ccncc2o1; [None]; [None]; [0] +O=S(=O)(Cc1cc2ccncc2o1)NCc1ccccn1; [None]; [None]; [0] +c1cc2cc(-c3nncn3C3CC3)oc2cn1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cc5ccncc5o4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cc2ccncc2o1)NCc1ccccn1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4ccncc4o3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2cc3ccncc3o2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc3ccncc3o2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc3ccncc3o2)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3ccncc3o2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2ccncc2o1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3o2)c2sccc2c1; ['Brc1cccc2ccsc12']; ['c1cc2ccoc2cn1']; [0.9319136738777161] +CC(C)(O)c1cccc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3o2)c2snnc2c1; ['Nc1cccc2nnsc12', 'Brc1cccc2nnsc12']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.994085431098938, 0.973495364189148] +CC1(C)Oc2ccc(-c3cc4ccncc4o3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4ccncc4o3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc3ccncc3o2)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3ccncc3o2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc3ccncc3o2)c(F)c1; [None]; [None]; [0] +c1cnc2c(-c3cc4ccncc4o3)c[nH]c2c1; ['Brc1c[nH]c2cccnc12']; ['c1cc2ccoc2cn1']; [0.8449984788894653] +CC(=O)Nc1ncc(-c2cc3ccncc3o2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc3ccncc3o2)nc2ccccc12; [None]; [None]; [0] +c1cc2cc(-c3ncc4cc[nH]c4n3)oc2cn1; [None]; [None]; [0] +c1ccc2nc(-c3cc4ccncc4o3)ncc2c1; [None]; [None]; [0] +OCCn1cnc(-c2cc3ccncc3o2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2ccncc2o1; ['COc1ncccc1Br', 'COc1ncccc1N']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9977931976318359, 0.9960142374038696] +COc1ccc(C#N)cc1-c1cc2ccncc2o1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3ccncc3o2)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9991748332977295, 0.9975073337554932] +COc1ccc(OC)c(-c2cc3ccncc3o2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)cc1']; ['c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1', 'c1cc2ccoc2cn1']; [0.9999765157699585, 0.99992835521698, 0.9996014833450317, 0.955070972442627] +Oc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1']; [0.9999905228614807, 0.9997328519821167] +O=C(Nc1cccc(-c2cc3ccncc3o2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc(Oc2cc3ccncc3o2)c(F)c1F; [None]; [None]; [0] +CN(C)c1cc(-c2cc3ccncc3o2)cnn1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3s2)c2cccnc2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999996423721313, 0.9999927878379822, 0.9998975396156311, 0.9996251463890076, 0.998294472694397, 0.9980931282043457] +C[C@@]1(O)CC[C@H](c2cc3ccncc3o2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999990463256836, 0.9999862909317017] +c1ccc2[nH]c(C3CCN(c4cc5ccncc5o4)CC3)nc2c1; [None]; [None]; [0] +Oc1cc(-c2cc3ccncc3s2)ccc1Cl; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cc3ccncc3o2)C1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999855160713196, 0.9996640682220459] +c1ccc2c(-c3cc4ccncc4s3)n[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccncc3s2)c(F)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.999998927116394, 0.9999825954437256, 0.9994838237762451] +COc1cc(C(N)=O)ccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999992251396179, 0.999657392501831] +Clc1cccc(Cl)c1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Clc1cccc(Cl)c1Br', 'Brc1cc2ccncc2s1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; ['OB(O)c1c(Cl)cccc1Cl', 'c1cc2ccsc2cn1', 'Clc1cccc(Cl)c1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9998809099197388, 0.998955488204956, 0.9982890486717224, 0.9977025389671326, 0.9504504203796387, 0.9274068474769592] +Clc1ccc2c(c1-c1cc3ccncc3s1)OCO2; [None]; [None]; [0] +Oc1ccc(-c2cc3ccncc3s2)c(Cl)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl']; [0.9999970197677612, 0.9998461008071899] +Oc1ccc(-c2cc3ccncc3s2)c(F)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'OB(O)c1ccc(O)cc1F']; [0.9999848008155823, 0.9998602867126465] +Nc1nccc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +COc1cc(-c2cc3ccncc3s2)ccc1O; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.999981164932251, 0.9973921775817871] +O=C([O-])c1ccc(-c2cc3ccncc3s2)cc1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cc2ccncc2s1; [None]; [None]; [0] +Fc1ccc(Oc2cc3ccncc3s2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc3ccncc3s2)o1; ['Brc1cc2ccncc2s1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1']; ['COC(=O)c1ccc(B(O)O)o1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9996293783187866, 0.9822081327438354, 0.7620983719825745] +COc1cc(F)ccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999978542327881, 0.9999948143959045, 0.9997574090957642, 0.9996812343597412, 0.9994394779205322, 0.9974602460861206] +Oc1ccc(-c2ccc(-c3cc4ccncc4s3)cc2)c(O)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cc2ccncc2s1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cc4ccncc4s3)cc2[nH]1; [None]; [None]; [0] +c1ccc2cc(-c3cc4ccncc4s3)ccc2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1ccc2ccccc2c1', 'Brc1cc2ccncc2s1', 'Ic1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'c1cc2ccsc2cn1', 'Brc1ccc2ccccc2c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.999991774559021, 0.9999565482139587, 0.9988425970077515, 0.9982154369354248, 0.9970704317092896, 0.9632027745246887] +Oc1ccc(-c2cc3ccncc3s2)cc1F; [None]; [None]; [0] +Brc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'OB(O)c1cccc(Br)c1', 'Brc1cc2ccncc2s1', 'Brc1cccc(Br)c1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'c1cc2ccsc2cn1', 'OB(O)c1cccc(Br)c1', 'c1cc2ccsc2cn1', 'Brc1cccc(Br)c1']; [0.9998900890350342, 0.9995421171188354, 0.9993206262588501, 0.9745885729789734, 0.9493948221206665] +Oc1ccc(-c2cc3ccncc3s2)c(O)c1; [None]; [None]; [0] +Clc1ccccc1OCc1cc2ccncc2s1; ['Fc1ccccc1Cl', 'Clc1ccccc1Br', 'OCc1cc2ccncc2s1', 'Clc1ccccc1I', 'Clc1ccccc1Cl']; ['OCc1cc2ccncc2s1', 'OCc1cc2ccncc2s1', 'Oc1ccccc1Cl', 'OCc1cc2ccncc2s1', 'OCc1cc2ccncc2s1']; [0.9968216419219971, 0.9948841333389282, 0.9948736429214478, 0.9681342840194702, 0.9324429035186768] +c1cc2c(-c3cc4ccncc4s3)c[nH]c2cn1; ['Brc1cc2ccncc2s1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9849487543106079] +Fc1ccc(-c2cc3ccncc3s2)cc1Cl; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Brc1cc2ccncc2s1', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccccc1Cl']; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc(F)c(Cl)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'Fc1ccc(Br)cc1Cl', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [1.0, 0.9999996423721313, 0.9999942779541016, 0.9999882578849792, 0.9999686479568481, 0.9999630451202393, 0.970572829246521, 0.928283154964447] +Nc1cc(-c2cc3ccncc3s2)ccn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Nc1cc(Br)ccn1']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'c1cc2ccsc2cn1']; [0.9999937415122986, 0.9997748732566833, 0.9984090924263] +COC(=O)c1ccc(Cl)c(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'Brc1cc2ccncc2s1', 'COC(=O)c1ccc(Cl)cc1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'COC(=O)c1ccc(Cl)cc1', 'c1cc2ccsc2cn1']; [0.9999992251396179, 0.9998951554298401, 0.9997586011886597, 0.9994887113571167, 0.9193626046180725, 0.9047479033470154, 0.7648097276687622] +c1cnn2ncc(-c3cc4ccncc4s3)c2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'c1cc2ccsc2cn1']; [0.9999990463256836, 0.9993168115615845, 0.9960646033287048] +Cn1cc(-c2cc3ccncc3s2)c2ccccc21; [None]; [None]; [0] +COc1cc(CCc2cc3ccncc3s2)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl']; [0.9999783039093018, 0.999606728553772] +Cc1ccc2[nH]ncc2c1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cc1ccc2[nH]ncc2c1Br']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'c1cc2ccsc2cn1']; [0.9999978542327881, 0.9997859597206116, 0.991457998752594] +Fc1ccc(-c2nc[nH]c2-c2cc3ccncc3s2)cc1; ['Fc1ccc(-c2c[nH]cn2)cc1']; ['c1cc2ccsc2cn1']; [0.99111008644104] +Cc1ccc(CO)cc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cc1ccc(CO)cc1Br']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'c1cc2ccsc2cn1']; [0.9999935030937195, 0.999155580997467, 0.9955965280532837] +NC(=O)c1cc(-c2cc3ccncc3s2)c[nH]1; [None]; [None]; [0] +Oc1ncc(-c2cc3ccncc3s2)cc1Cl; ['Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; [0.9999957084655762] +c1cc2cc(-c3cnc4[nH]ccc4c3)sc2cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'c1cc2ccsc2cn1']; [0.9999995827674866, 0.9999889135360718, 0.993855893611908] +CS(=O)(=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'c1cc2ccsc2cn1']; [0.9999997019767761, 0.9999805688858032, 0.9850311279296875] +NC(=O)Nc1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; [0.9999991655349731] +COc1cc(OC)cc(-c2cc3ccncc3s2)c1; [None]; [None]; [0] +COc1ccc(-c2cc3ccncc3s2)cc1OC; [None]; [None]; [0] +CCOc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'c1cc2ccsc2cn1']; [0.9999973773956299, 0.9999895095825195, 0.9993146657943726] +Cc1nc2ccc(-c3cc4ccncc4s3)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc4ccncc4s3)ccc12; [None]; [None]; [0] +O=C1Cc2cc(-c3cc4ccncc4s3)ccc2N1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999383687973022, 0.9999066591262817, 0.9993245005607605, 0.9921865463256836] +CCc1cc(O)c(F)cc1-c1cc2ccncc2s1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9999889135360718] +Oc1cncc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Oc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1', 'c1cc2ccsc2cn1']; [0.9999737739562988, 0.996163010597229, 0.9343030452728271] +CNc1nccc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +COc1cc(CCc2cc3ccncc3s2)cc(OC)c1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O']; [0.9999891519546509, 0.9998106360435486] +c1ccc2sc(-c3cc4ccncc4s3)nc2c1; ['Nc1ccccc1S', 'c1cc2ccsc2cn1']; ['O=Cc1cc2ccncc2s1', 'c1ccc2scnc2c1']; [0.9998655915260315, 0.9912444353103638] +Cc1n[nH]c(-c2cc3ccncc3s2)c1C; [None]; [None]; [0] +FC(F)c1cc(-c2cc3ccncc3s2)[nH]n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cc3ccncc3s2)cc1Cl; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999974966049194, 0.9998972415924072] +C[C@H](CC(N)=O)c1cc2ccncc2s1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cc2ccncc2s1; [None]; [None]; [0] +Clc1cnccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Clc1cnccc1Br', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'c1cc2ccsc2cn1', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br', 'Clc1cccnc1']; [0.9999939799308777, 0.9989759922027588, 0.9984986782073975, 0.9984372854232788, 0.7753113508224487] +c1cc2cc(-c3ccc4c(c3)CCN4)sc2cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999945163726807, 0.9998892545700073, 0.9980716705322266, 0.9742599725723267] +CCc1sccc1-c1cc2ccncc2s1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cc4ccncc4s3)ccc12; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cc4ccncc4s3)cc2[nH]1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'c1cc2ccsc2cn1']; [0.9999812841415405, 0.9999679923057556, 0.9774161577224731] +CNc1nc(-c2cc3ccncc3s2)ncc1F; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Fc1cc(Br)ccc1Br', 'Brc1cc2ccncc2s1', 'Fc1cc(Br)ccc1I']; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'c1cc2ccsc2cn1', 'Fc1cc(Br)ccc1Br', 'c1cc2ccsc2cn1']; [0.9999925494194031, 0.9998602867126465, 0.9987386465072632, 0.9978934526443481, 0.9974040985107422] +CNC(=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CNC(=O)c1ccc(Br)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'c1cc2ccsc2cn1']; [1.0, 0.9999974370002747, 0.9997168183326721, 0.998881995677948] +Oc1cc(Br)cc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['OB(O)c1cc(O)cc(Br)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; [0.9997923970222473, 0.9997320175170898] +Cc1oc(-c2cc3ccncc3s2)cc1C(=O)[O-]; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cc4ccncc4s3)c2c1; [None]; [None]; [0] +Cc1cc(-c2cc3ccncc3s2)ccc1C(N)=O; ['Brc1cc2ccncc2s1', 'Cc1cc(Br)ccc1C(N)=O', 'Brc1cc2ccncc2s1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'c1cc2ccsc2cn1', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999997615814209, 0.9990786910057068, 0.9989049434661865] +O=C(NC1CC1)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'O=C(NC1CC1)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'c1cc2ccsc2cn1']; [1.0, 0.9999995231628418, 0.9999412298202515, 0.9985359907150269] +c1cc(Nc2cc3ccncc3s2)ccn1; [None]; [None]; [0] +Oc1cc(-c2cc3ccncc3s2)nc2ccnn12; [None]; [None]; [0] +Cc1cc(-c2cc3ccncc3s2)cc(C)c1O; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9999962449073792, 0.9947191476821899] +Oc1c(F)cc(-c2cc3ccncc3s2)cc1F; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9999986290931702, 0.9998809099197388] +Cc1nc2ccc(-c3cc4ccncc4s3)cc2o1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cc1nc2ccc(Br)cc2o1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'c1cc2ccsc2cn1']; [0.9999979734420776, 0.9999971985816956, 0.9960072040557861] +Cn1ncc(N)c1-c1cc2ccncc2s1; [None]; [None]; [0] +CSc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'Brc1cc2ccncc2s1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'CSc1cccc(Br)c1']; [0.9999992251396179, 0.9999231100082397, 0.9995702505111694, 0.9985086917877197, 0.9948058128356934, 0.9934895038604736] +CN(c1cc2ccncc2s1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.9999039173126221] +O=c1[nH][nH]c2cc(-c3cc4ccncc4s3)ccc12; [None]; [None]; [0] +c1ccc2c(CCc3cc4ccncc4s3)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3cc4ccncc4s3)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cc3ccncc3s2)cc1; [None]; [None]; [0] +Fc1ccc(COc2cc3ccncc3s2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2ccncc2s1; ['CNC(=O)c1ccccc1']; ['c1cc2ccsc2cn1']; [0.9725143313407898] +Fc1cccc(Cl)c1CNc1cc2ccncc2s1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cc3ccncc3s2)cc1; [None]; [None]; [0] +Fc1ccc(Oc2cc3ccncc3s2)c(F)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CCOc1ccccc1Br', 'CCOc1ccccc1Cl']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999988079071045, 0.9999915361404419, 0.9998693466186523, 0.9996155500411987, 0.9956666231155396] +Cc1nnc(-c2ccccc2-c2cc3ccncc3s2)[nH]1; [None]; [None]; [0] +Fc1ccc(CCc2cc3ccncc3s2)c(F)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'c1cc2ccsc2cn1']; [0.9999855756759644, 0.9996901154518127] +Fc1cc(F)cc(Cc2cc3ccncc3s2)c1; ['Fc1cc(F)cc(CBr)c1']; ['c1cc2ccsc2cn1']; [0.9975059032440186] +CP(C)(=O)c1ccccc1-c1cc2ccncc2s1; [None]; [None]; [0] +CCn1cc(-c2cc3ccncc3s2)cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CCn1cc(Br)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'c1cc2ccsc2cn1']; [0.9999994039535522, 0.9998881816864014, 0.987300455570221, 0.8563123941421509] +COC(C)(C)CCc1cc2ccncc2s1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'FC(F)(F)Oc1ccccc1I', 'Brc1cc2ccncc2s1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Cl', 'FC(F)(F)Oc1ccccc1']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'c1cc2ccsc2cn1', 'FC(F)(F)Oc1ccccc1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [1.0, 0.999997615814209, 0.999908447265625, 0.9998975396156311, 0.9998233318328857, 0.9992891550064087, 0.9839234352111816] +Cn1cnc2ccc(-c3cc4ccncc4s3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['c1cc2ccsc2cn1']; [0.9986461400985718] +O=C([O-])c1ccccc1-c1cc2ccncc2s1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'FC(F)(F)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'OB(O)c1cccc(C(F)(F)F)c1', 'c1cc2ccsc2cn1']; [0.9999995231628418, 0.9999876618385315, 0.9995793104171753] +c1ccc(Cn2cc(-c3cc4ccncc4s3)cn2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cnn(Cc2ccccc2)c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1cc2ccsc2cn1']; [0.9999998807907104, 0.9999700784683228, 0.9872658252716064] +NC(=O)c1ccccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1Cl']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999932050704956, 0.9998095035552979, 0.9958840608596802, 0.988628625869751, 0.9727365970611572] +c1ccc2c(-c3cc4ccncc4s3)ccnc2c1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cc4ccncc4s3)[nH]2)cc1; ['Brc1cc2ccncc2s1']; ['c1ccc(-c2ncc[nH]2)cc1']; [0.9747284650802612] +O=C(Nc1cccc(-c2cc3ccncc3s2)c1)c1ccccc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [1.0, 0.9999921321868896] +CC(C)(C)c1nc(-c2cc3ccncc3s2)cs1; ['CC(C)(C)c1nccs1']; ['c1cc2ccsc2cn1']; [0.8928254842758179] +c1ccn2c(-c3cc4ccncc4s3)cnc2c1; ['Brc1cc2ccncc2s1']; ['c1ccn2ccnc2c1']; [0.9999258518218994] +Clc1ccc(Cl)c(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Clc1ccc(Cl)c(Br)c1']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1cc(Cl)ccc1Cl', 'c1cc2ccsc2cn1']; [0.9999953508377075, 0.9999632835388184, 0.9995753169059753] +Cc1nc2ccccn2c1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['Cc1nc2ccccn2c1Br']; [0.9996911883354187] +Cc1ccc(-c2cc3ccncc3s2)c(Br)c1; ['Brc1cc2ccncc2s1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1cc2ccncc2s1']; ['Cc1ccc(B(O)O)c(Br)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'Cc1ccc(Br)c(Br)c1']; [0.991783618927002, 0.9475730657577515, 0.7850944995880127, 0.7571786046028137] +OCCn1cc(-c2cc3ccncc3s2)cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'OCCn1cc(Br)cn1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'c1cc2ccsc2cn1']; [0.9999990463256836, 0.9999772310256958, 0.9259330034255981] +Cc1nc(C)c(-c2cc3ccncc3s2)s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cc1nc(C)c(Br)s1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'c1cc2ccsc2cn1']; [0.9999445080757141, 0.9886112213134766, 0.9844822287559509] +COc1cnc(-c2cc3ccncc3s2)nc1; [None]; [None]; [0] +c1cnn2c(-c3cc4ccncc4s3)cnc2c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cc3ccncc3s2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2ccncc2s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999656677246094, 0.9999336004257202, 0.9993993639945984, 0.9983435869216919] +O=c1c2c(F)cccc2cnn1-c1cc2ccncc2s1; [None]; [None]; [0] +O=C(Nc1cc2ccncc2s1)c1cccs1; [None]; [None]; [0] +c1cncc(CNc2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1']; ['NCc1cccnc1']; [0.999941349029541] +CNc1nc(C)c(-c2cc3ccncc3s2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2ccncc2s1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['c1ccc2[nH]cnc2c1']; [0.9998108744621277] +NC(=O)c1c(F)cccc1-c1cc2ccncc2s1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; [0.9999994039535522] +c1ccc2c(-c3cc4ccncc4s3)cncc2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Brc1cncc2ccccc12', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1ccc2cnccc2c1']; [0.9999992847442627, 0.9998172521591187, 0.9995113611221313, 0.9960496425628662, 0.9856525659561157, 0.9694346189498901, 0.9470494985580444] +c1cncc(Nc2cc3ccncc3s2)c1; [None]; [None]; [0] +c1cc2cc(NCCc3c[nH]cn3)sc2cn1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4ccncc4s3)cc2)cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'c1cc2ccsc2cn1']; [0.9999998807907104, 0.9998657703399658, 0.9980153441429138] +Cc1c(-c2cc3ccncc3s2)sc(=O)n1C; [None]; [None]; [0] +CN1c2ccc(-c3cc4ccncc4s3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4ccncc4s3)ccc21; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999992847442627, 0.9999992251396179, 0.9982172250747681, 0.9978150129318237] +O=C([O-])Cc1cccc(-c2cc3ccncc3s2)c1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc4ccncc4s3)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['c1cc2ccsc2cn1']; [0.9991651773452759] +Fc1ccccc1CNc1cc2ccncc2s1; [None]; [None]; [0] +Clc1ccc(CNc2cc3ccncc3s2)cc1; [None]; [None]; [0] +c1ccc(CCNc2cc3ccncc3s2)cc1; [None]; [None]; [0] +CC(C)n1cc(-c2cc3ccncc3s2)nn1; ['CC(C)n1ccnn1']; ['c1cc2ccsc2cn1']; [0.9986138343811035] +c1cc2cc(-c3ccc(-c4cn[nH]c4)cc3)sc2cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'c1cc2ccsc2cn1']; [0.9999995231628418, 0.999993085861206, 0.975772500038147] +OCc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(B(O)O)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999889135360718, 0.9998011589050293, 0.9837076663970947, 0.9606268405914307] +CSc1nc(-c2cc3ccncc3s2)c[nH]1; ['Brc1cc2ccncc2s1']; ['CSc1ncc[nH]1']; [0.9977490901947021] +c1cc2cc(-c3csc4ncncc34)sc2cn1; ['Brc1csc2ncncc12']; ['c1cc2ccsc2cn1']; [0.9785229563713074] +CCCn1cnc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cc4ccncc4s3)cc2c1; ['Brc1cc2ccncc2s1']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C']; [0.9999984502792358] +Nc1nc(-c2cc3ccncc3s2)cs1; [None]; [None]; [0] +COc1cc(-c2cc3ccncc3s2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; [0.9999988079071045] +c1cc2cc(CCc3c[nH]nn3)sc2cn1; [None]; [None]; [0] +Nc1ncncc1-c1cc2ccncc2s1; [None]; [None]; [0] +Fc1ccc(-c2cc3ccncc3s2)c(C(F)(F)F)c1; ['Brc1cc2ccncc2s1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Brc1cc2ccncc2s1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Brc1cc2ccncc2s1', 'Fc1cccc(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'c1cc2ccsc2cn1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'Fc1cccc(C(F)(F)F)c1', 'c1cc2ccsc2cn1']; [0.9999983906745911, 0.9999216794967651, 0.999910831451416, 0.9998914003372192, 0.9992192983627319, 0.9953349828720093, 0.8787672519683838] +N#CCCc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'N#CCCc1cccc(Br)c1', 'Brc1cc2ccncc2s1']; ['N#CCCc1cccc(B(O)O)c1', 'c1cc2ccsc2cn1', 'N#CCCc1cccc(Br)c1']; [0.999976396560669, 0.9964410066604614, 0.9903068542480469] +O=C(Nc1cc2ccncc2s1)c1c(Cl)cccc1Cl; ['Brc1cc2ccncc2s1']; ['NC(=O)c1c(Cl)cccc1Cl']; [0.9999250173568726] +CC(C)c1oncc1-c1cc2ccncc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3ccncc3s2)CC1; ['Brc1cc2ccncc2s1']; ['CS(=O)(=O)C1CCNCC1']; [0.9997129440307617] +CCNc1nc2ccc(-c3cc4ccncc4s3)cc2s1; [None]; [None]; [0] +CC(C)(COc1cc2ccncc2s1)S(C)(=O)=O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'c1cc2ccsc2cn1']; [0.9999998211860657, 0.999968409538269, 0.9989465475082397] +COc1ccc(-c2cc3ccncc3s2)cc1Cl; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Brc1cc2ccncc2s1', 'COc1ccccc1Cl', 'COc1ccc(Cl)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'COc1ccc(Br)cc1Cl', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999997615814209, 0.9999974370002747, 0.9999753832817078, 0.9999151229858398, 0.9996764659881592, 0.9460115432739258, 0.7861151695251465] +c1ccn2ncc(-c3cc4ccncc4s3)c2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'Brc1cnn2ccccc12', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999994039535522, 0.9998486638069153, 0.9996994137763977, 0.9977047443389893, 0.9957302808761597] +CCCn1cc(-c2cc3ccncc3s2)cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CCCn1cc(Br)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'c1cc2ccsc2cn1']; [1.0, 0.999972939491272, 0.9924013614654541] +c1ccc(Oc2cc3ccncc3s2)nc1; [None]; [None]; [0] +NC(=O)CCCc1cc2ccncc2s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2ccncc2s1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'c1cc2ccsc2cn1']; [0.9999964237213135, 0.9996674060821533, 0.91047203540802] +CCN(CC)c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['CCNCC']; [0.9993809461593628] +CCNS(=O)(=O)c1ccccc1-c1cc2ccncc2s1; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1']; ['c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9991575479507446, 0.9874007701873779] +O=c1cc(-c2cc3ccncc3s2)cc[nH]1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'CC(C)(N)c1ccc(Br)cc1']; ['CC(C)(N)c1ccc(Br)cc1', 'c1cc2ccsc2cn1']; [0.9949119091033936, 0.910670280456543] +[NH3+]Cc1ccc(-c2cc3ccncc3s2)cc1C(F)(F)F; [None]; [None]; [0] +C[C@@H](Oc1cc2ccncc2s1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc4ccncc4s3)c21; ['O=C1CCc2cccc(Br)c21', 'Brc1cc2ccncc2s1']; ['c1cc2ccsc2cn1', 'O=C1CCc2cccc(Br)c21']; [0.9994736313819885, 0.9990389347076416] +CC(C)(C)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999998807907104, 0.9999884366989136, 0.9998675584793091, 0.9997020959854126, 0.9922569990158081] +CC(C)Oc1cncc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CC(C)Oc1cncc(Br)c1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'c1cc2ccsc2cn1']; [0.9999992847442627, 0.9999514818191528, 0.998873233795166] +c1ccc(-c2ccncc2Nc2cc3ccncc3s2)cc1; [None]; [None]; [0] +c1ccc2ncc(Nc3cc4ccncc4s3)cc2c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc4ccncc4s3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc2ccncc2s1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2ccncc2s1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc4ccncc4s3)cc12; [None]; [None]; [0] +c1cc2cc(-c3ccc(N4CCOCC4)cc3)sc2cn1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [1.0, 0.9999994039535522, 0.9955678582191467, 0.9753512740135193] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'c1cc2ccsc2cn1']; [1.0, 0.9999932050704956, 0.9936230182647705] +CNC(=O)c1c(F)cccc1-c1cc2ccncc2s1; [None]; [None]; [0] +CC1(c2cc3ccncc3s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +OCc1ccn(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +CN(c1cc2ccncc2s1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2cc3ccncc3s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1']; ['c1ccc2[nH]ncc2c1']; [0.9973204135894775] +C[C@H](Nc1cc2ccncc2s1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1cc2ccncc2s1)C(C)(C)O; [None]; [None]; [0] +OCCc1cn(-c2cc3ccncc3s2)cn1; [None]; [None]; [0] +c1cc2cc(-c3ccc(-n4cncn4)cc3)sc2cn1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9999997019767761, 0.9999975562095642, 0.9999898672103882, 0.9999167919158936, 0.9996457099914551, 0.8975262641906738] +Oc1cccc2c1cnn2-c1cc2ccncc2s1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3ccncc3s2)[nH]1; [None]; [None]; [0] +C[C@@H](Nc1cc2ccncc2s1)C(C)(C)O; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc3ccncc3s2)cc1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'c1cc2ccsc2cn1']; [0.9999994039535522, 0.9999480843544006, 0.9925987720489502] +Oc1ccc2nc(-c3cc4ccncc4s3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(-c2cc3ccncc3s2)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2ccncc2s1; [None]; [None]; [0] +c1cc2cc(-c3nncn3C3CC3)sc2cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3ccncc3s2)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cc5ccncc5s4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cc2ccncc2s1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2cc3ccncc3s2)nc(N)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4ccncc4s3)nn2)cc1; ['Brc1cc2ccncc2s1']; ['c1ccc(Cn2ccnn2)cc1']; [0.9983763694763184] +O=S(=O)(Cc1cc2ccncc2s1)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3ccncc3s2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2ccncc2s1; [None]; [None]; [0] +CCCCc1cc(-c2cc3ccncc3s2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc3ccncc3s2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc3ccncc3s2)c(F)c1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3s2)c2sccc2c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cccc2ccsc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'Brc1cccc2ccsc12', 'c1cc2ccsc2cn1']; [0.9999996423721313, 0.9992908239364624, 0.9948546886444092, 0.8769150972366333] +C[C@@H2]NC(=O)N1CCC(c2cc3ccncc3s2)CC1; [None]; [None]; [0] +Nc1cncc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +c1cc(-c2cc3ccncc3s2)c2snnc2c1; ['Brc1cc2ccncc2s1', 'Brc1cccc2nnsc12', 'Clc1cccc2nnsc12']; ['Brc1cccc2nnsc12', 'c1cc2ccsc2cn1', 'c1cc2ccsc2cn1']; [0.9997689723968506, 0.9978407621383667, 0.9907996654510498] +CC1(C)Oc2ccc(-c3cc4ccncc4s3)nc2NC1=O; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3ccncc3s2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4ccncc4s3)c2)cc1; [None]; [None]; [0] +c1cnc2c(-c3cc4ccncc4s3)c[nH]c2c1; ['Brc1cc2ccncc2s1', 'Brc1c[nH]c2cccnc12', 'c1cc2ccsc2cn1']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'c1cc2ccsc2cn1', 'c1cnc2cc[nH]c2c1']; [0.9999990463256836, 0.9971883893013, 0.9087273478507996] +c1ccc2nc(-c3cc4ccncc4s3)ncc2c1; [None]; [None]; [0] +c1cc2cc(-c3ncc4cc[nH]c4n3)sc2cn1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3ccncc3s2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc3ccncc3s2)nc2ccccc12; [None]; [None]; [0] +OCCn1cnc(-c2cc3ccncc3s2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2ccncc2s1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'COc1ncccc1Br']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'c1cc2ccsc2cn1']; [0.999998152256012, 0.9999675750732422, 0.9988878965377808] +COc1ccc(C#N)cc1-c1cc2ccncc2s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3ccncc3s2)c1; ['Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'Brc1cc2ccncc2s1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'c1cc2ccsc2cn1']; [0.999997615814209, 0.9999690651893616, 0.9957773685455322, 0.9943299293518066] +COc1ccc(Oc2cc3ccncc3s2)c(F)c1F; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cc3ccncc3s2)C1; ['Brc1cc2ccncc2s1']; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; [0.999957799911499] +COc1ccc(OC)c(-c2cc3ccncc3s2)c1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4cc5ccncc5s4)CC3)nc2c1; ['Brc1cc2ccncc2s1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999083876609802] +O=C(Nc1cccc(-c2cc3ccncc3s2)c1)C1CCNCC1; [None]; [None]; [0] +CN(C)c1cc(-c2cc3ccncc3s2)cnn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccnc(NC(C)=O)c1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; [0.9999977350234985, 0.9999861717224121, 0.9999161958694458, 0.9995832443237305] +C[C@@]1(O)CC[C@H](c2cc3ccncc3s2)CC1; [None]; [None]; [0] +CCOc1ccccc1-c1ccnc(NC(C)=O)c1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Cl', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1']; [0.9999961256980896, 0.999994158744812, 0.9999908208847046, 0.9999308586120605, 0.9999285936355591, 0.9998507499694824, 0.9998033046722412, 0.999127984046936, 0.9970993995666504, 0.9920513033866882, 0.8540598154067993] +CC(=O)Nc1cc(-c2ccccc2S(=O)(=O)C(C)C)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; [0.9999984502792358, 0.9999569654464722, 0.9999535083770752, 0.9988280534744263] +CC(=O)Nc1cc(Cc2cc(F)cc(F)c2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Fc1cc(F)cc(CBr)c1']; [0.9992398023605347] +CCn1cc(-c2ccnc(NC(C)=O)c2)cn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1']; [0.9999964237213135, 0.9999954700469971, 0.9999871850013733, 0.9999828338623047, 0.999977171421051, 0.9999470114707947, 0.999775767326355] +CC(=O)Nc1cc(-c2ccccc2P(C)(C)=O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccccc2OC(F)(F)F)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1']; [0.999998927116394, 0.9999986290931702, 0.9999870657920837, 0.9999791383743286, 0.9999330639839172, 0.9996490478515625, 0.9930199384689331] +CC(=O)Nc1cc(-c2cccc(C(F)(F)F)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.999992847442627, 0.9999670386314392, 0.9999032020568848, 0.9998599886894226, 0.999807596206665, 0.9988465309143066] +CC(=O)Nc1cc(-c2ccccc2-c2nnc(C)[nH]2)ccn1; [None]; [None]; [0] +COC(C)(C)CCc1ccnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccccc2C(=O)[O-])ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(Cc3ccccc3)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'Brc1cnn(Cc2ccccc2)c1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999995827674866, 0.9999995231628418, 0.999996542930603, 0.9999940395355225, 0.9999899864196777, 0.9999847412109375, 0.9999748468399048, 0.9996355772018433] +CC(=O)Nc1cc(-c2ccccc2C(N)=O)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1']; [0.9999884963035583, 0.9999808669090271, 0.9999666213989258, 0.9999279975891113, 0.9999089241027832, 0.9998428821563721, 0.9997847080230713, 0.9988603591918945, 0.9647985696792603, 0.7877073287963867] +CC(=O)Nc1cc(-c2ccnc3ccccc23)ccn1; ['Brc1ccnc2ccccc12', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'Brc1ccnc2ccccc12', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', 'CC(=O)Nc1cc(Br)ccn1', 'OB(O)c1ccnc2ccccc12']; [0.9999925494194031, 0.9999853372573853, 0.9998783469200134, 0.9998575448989868, 0.9996989965438843, 0.9996376037597656, 0.9984868764877319, 0.9944689273834229, 0.9943403005599976] +CC(=O)Nc1cc(-c2ccc3ncn(C)c(=O)c3c2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999432563781738, 0.9996949434280396, 0.9968202710151672] +CC(=O)Nc1cc(-c2csc(C(C)(C)C)n2)ccn1; ['CC(=O)Nc1cc(I)ccn1']; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; [0.9999954700469971] +CC(=O)Nc1cc(-c2cnn(CCO)c2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cccn1']; [0.9999914169311523, 0.9999880194664001, 0.9999840259552002, 0.9999628067016602, 0.9999399185180664, 0.9997986555099487, 0.9997806549072266, 0.9992764592170715, 0.9705231785774231] +COc1cnc(-c2ccnc(NC(C)=O)c2)nc1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9987640380859375, 0.997916579246521] +CC(=O)Nc1cc(-c2ccc(C)cc2Br)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; [0.9994760751724243, 0.9994251132011414, 0.9990125894546509, 0.9828472137451172, 0.9349910020828247] +CC(=O)Nc1cc(-c2cnc(-c3ccccc3)[nH]2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(C)nc3ccccn23)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Cc1nc2ccccn2c1Br']; [0.9999847412109375] +CC(=O)Nc1cc(-c2cc(Cl)ccc2Cl)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1ccccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1ccccn1']; ['Clc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)cc1', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999973773956299, 0.9999956488609314, 0.9999947547912598, 0.99998539686203, 0.9999664425849915, 0.999955952167511, 0.9995578527450562, 0.9993062019348145, 0.9981670379638672, 0.997886061668396, 0.9642326831817627, 0.9571380615234375, 0.9542670249938965] +CC(=O)Nc1cc(-c2cccc(NC(=O)c3ccccc3)c2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(OCC(=O)C(C)C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-n2ncc3cccc(F)c3c2=O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3ccccn23)ccn1; ['Brc1cnc2ccccn12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Brc1cnc2ccccn12']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CC(=O)Nc1cc(Br)ccn1']; [0.9999954700469971, 0.9999949932098389, 0.9999654293060303, 0.9975138902664185] +CC(=O)Nc1cc(-c2sc(C)nc2C)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Cc1nc(C)c(Br)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; [0.9999970197677612, 0.9992275238037109, 0.9666585922241211] +CNc1nc(C)c(-c2ccnc(NC(C)=O)c2)s1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CNc1nc(C)c(Br)s1', 'CNc1nc(C)cs1']; [0.999996542930603, 0.9998863339424133] +CC(=O)Nc1cc(-c2sc(N)nc2C)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Cc1nc(N)sc1Br']; [0.9999992847442627] +CC(=O)Nc1cc(-c2cnc3cccnn23)ccn1; ['Brc1cnc2cccnn12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Brc1cnc2cccnn12', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Clc1cnc2cccnn12', 'CC(=O)Nc1cc(Br)ccn1', 'c1cnn2ccnc2c1']; [0.9999979734420776, 0.999994158744812, 0.9997286200523376, 0.9993841648101807] +CC(=O)Nc1cc(-c2cccc(Br)c2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'Brc1cccc(Br)c1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9998876452445984, 0.9998616576194763, 0.9997997283935547, 0.9997608661651611, 0.9966318607330322, 0.9955562949180603] +CC(=O)Nc1cc(NCc2cccnc2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'BrCc1cccnc1', 'CC(=O)Nc1cc(C=O)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['NCc1cccnc1', 'ClCc1cccnc1', 'NCc1cccnc1', 'CC(=O)Nc1cc(N)ccn1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=Cc1cccnc1', 'OCc1cccnc1']; [0.9937118291854858, 0.9882989525794983, 0.9792536497116089, 0.9743400812149048, 0.965908944606781, 0.938854455947876, 0.9296210408210754, 0.8162161111831665] +CC(=O)Nc1cc(-c2cc(C)ccc2Cl)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1ccccn1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1']; [0.9999808073043823, 0.9999797344207764, 0.9999663233757019, 0.9999281167984009, 0.9998463988304138, 0.9998462200164795, 0.9981083273887634, 0.9826816320419312, 0.9792803525924683, 0.8185821175575256] +CC(=O)Nc1cc(-c2c(Cl)cccc2Cl)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999978542327881, 0.9999967217445374, 0.9999914169311523, 0.9999473094940186, 0.9999138712882996, 0.9998399019241333, 0.9997033476829529, 0.9995790719985962, 0.9970899820327759, 0.9469209909439087] +CC(=O)Nc1cc(-c2ccnc(N)n2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1']; [0.9999814033508301, 0.9999120235443115] +CC(=O)Nc1cc(-c2cccc(Cn3cncn3)c2)ccn1; ['CC(=O)Nc1cc(I)ccn1']; ['c1ccc(Cn2cncn2)cc1']; [0.9551675319671631] +CC(=O)Nc1cc(-c2cnn3ncccc23)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'Brc1cnn2ncccc12', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; [0.9999996423721313, 0.9999986886978149, 0.9999966621398926, 0.9999872446060181] +CC(=O)Nc1cc(-c2ccc3ccccc3c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'Brc1ccc2ccccc2c1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'OB(O)c1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999947547912598, 0.9999849200248718, 0.9999589323997498, 0.9999083876609802, 0.9998689889907837, 0.9991652965545654] +CC(=O)Nc1cc(-n2cnc3ccccc32)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9921602010726929, 0.8419474363327026] +CC(=O)Nc1cc(Nc2cccnc2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'Brc1cccnc1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['Nc1cccnc1', 'OB(O)c1cccnc1', 'Nc1cccnc1', 'CC(=O)Nc1cc(N)ccn1', 'Ic1cccnc1', 'Nc1cccnc1', 'Clc1cccnc1']; [0.9990910291671753, 0.9989978075027466, 0.9962694644927979, 0.9949911832809448, 0.9902985095977783, 0.9894555807113647, 0.9851614832878113] +CC(=O)Nc1cc(NC(=O)c2cccs2)ccn1; ['CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(N)=O', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'O=C(Nc1ccnc(Cl)c1)c1cccs1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.999871015548706, 0.9997811317443848, 0.9992533922195435, 0.9970836639404297, 0.9922976493835449] +CC(=O)Nc1cc(NCCc2c[nH]cn2)ccn1; ['CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'O=C(O)Cc1c[nH]cn1']; [0.9981085062026978, 0.9962381720542908, 0.9918810129165649, 0.9825855493545532] +CC(=O)Nc1cc(-c2sc(=O)n(C)c2C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cncc3ccccc23)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'Brc1cncc2ccccc12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'Brc1cncc2ccccc12', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'Brc1cncc2ccccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC(=O)Nc1cc(I)ccn1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Clc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'CC(=O)Nc1cc(Br)ccn1']; [0.9999998211860657, 0.9999995231628418, 0.999998927116394, 0.9999953508377075, 0.9999944567680359, 0.9999911189079285, 0.9999908208847046, 0.999974250793457, 0.9998965263366699, 0.9994919300079346, 0.9986096620559692] +CC(=O)Nc1cc(-c2cccc(CC(=O)[O-])c2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]nc2C(F)(F)F)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(F)c2C(N)=O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(NCCc2ccccc2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'BrCCc1ccccc1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'ClCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'ICCc1ccccc1', 'CS(=O)(=O)OCCc1ccccc1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'CC(=O)Nc1cc(N)ccn1', 'O=CCc1ccccc1', 'COC(Cc1ccccc1)OC', 'N#CCc1ccccc1', 'CN(C)CCc1ccccc1', 'O=C(Cl)Cc1ccccc1', 'OCCc1ccccc1', 'O=CCCc1ccccc1', 'O=C(O)Cc1ccccc1']; [0.999771237373352, 0.9985737800598145, 0.9957377910614014, 0.9930727481842041, 0.9909992218017578, 0.9904846549034119, 0.984215497970581, 0.9797183275222778, 0.9739663600921631, 0.9621638655662537, 0.9584708213806152, 0.95624840259552, 0.947034478187561, 0.9374616146087646, 0.9113501310348511, 0.9075236916542053, 0.8664383888244629, 0.8075995445251465] +CC(=O)Nc1cc(-c2ccc(-c3cnn(C)c3)cc2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999997615814209, 0.9999926090240479, 0.9999898672103882] +CC(=O)Nc1cc(-c2ccc3c(cnn3C)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2ccccc21']; [0.9999997615814209, 0.9999997615814209, 0.9999983310699463, 0.9999959468841553, 0.9999859929084778, 0.9999661445617676, 0.9731159210205078] +CC(=O)Nc1cc(-c2ccc3c(N)[nH]nc3c2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(NCc2ccc(Cl)cc2)ccn1; ['CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9995312094688416, 0.9992481470108032, 0.9992091655731201, 0.9940450191497803, 0.9935402870178223, 0.9786279201507568, 0.8992040157318115] +CC(=O)Nc1cc(-c2ccc3c(c2)CS(=O)(=O)N3C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(CO)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1']; [0.9999760389328003, 0.9999510645866394, 0.9999146461486816, 0.9997693300247192, 0.9992798566818237, 0.9989715218544006, 0.998420238494873, 0.9974672794342041, 0.9902383089065552] +CC(=O)Nc1cc(-c2cccc(O)c2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; [0.9998122453689575, 0.999744176864624, 0.9996364712715149, 0.9995049834251404, 0.9992351531982422, 0.9991278648376465, 0.9949048757553101, 0.9915575981140137] +CC(=O)Nc1cc(Nc2ccncc2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'Brc1ccncc1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Nc1ccncc1', 'CC(=O)Nc1cc(N)ccn1', 'Clc1ccncc1', 'Ic1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9980826377868652, 0.9975584745407104, 0.9973872303962708, 0.9961256384849548, 0.9947118759155273, 0.9872153997421265] +CC(=O)Nc1cc(NCc2ccccc2F)ccn1; ['CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(C=O)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['Fc1ccccc1CCl', 'Fc1ccccc1CBr', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'OCc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F']; [0.9998602271080017, 0.9997374415397644, 0.9979236125946045, 0.994698166847229, 0.990341305732727, 0.9642815589904785, 0.9426907300949097, 0.8759148716926575] +CC(=O)Nc1cc(-c2ccc(-c3cn[nH]c3)cc2)ccn1; [None]; [None]; [0] +COc1cc(-c2ccnc(NC(C)=O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2ccnc(NC(C)=O)c2)n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C(C)C)nn2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2csc3ncncc23)ccn1; ['Brc1csc2ncncc12']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; [0.9999972581863403] +CC(=O)Nc1cc(-c2cc3ccccc3[nH]2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Ic1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1']; [0.9999961853027344, 0.9996776580810547] +CSc1nc(-c2ccnc(NC(C)=O)c2)c[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2csc(N)n2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1']; [0.9999984502792358, 0.9999918937683105] +CC(=O)Nc1cc(CCc2c[nH]nn2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(CCC#N)c2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.999981701374054, 0.9998989105224609, 0.9998852014541626, 0.9983183145523071] +CC(=O)Nc1cc(-c2cncnc2N)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.999997615814209, 0.9999933242797852, 0.9916436672210693] +CC(=O)Nc1cc(-c2cnoc2C(C)C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(Oc2ccccn2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9769203066825867, 0.9151104092597961] +CCNc1nc2ccc(-c3ccnc(NC(C)=O)c3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(F)cc2C(F)(F)F)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1ccccn1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999932646751404, 0.9999622106552124, 0.9999516010284424, 0.9998009204864502, 0.9993672966957092, 0.7810457348823547] +CCC(=O)Nc1ccc(-c2ccnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(NC(=O)c2c(Cl)cccc2Cl)ccn1; ['CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(N)ccn1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9999011754989624, 0.9995087385177612] +CC(=O)Nc1cccc(-c2ccnc(NC(C)=O)c2)c1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999876022338867, 0.9999723434448242, 0.9999620914459229, 0.9998132586479187, 0.9997485876083374, 0.9995258450508118, 0.9995105862617493, 0.9988076090812683, 0.9986463785171509, 0.9632984399795532] +CC(=O)Nc1cc(N2CCC(S(C)(=O)=O)CC2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; [0.9994964599609375, 0.9801105856895447] +CC(=O)Nc1cc(CCCC(N)=O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)c3ccccc23)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999880194664001, 0.9999874830245972, 0.9996728897094727] +COc1ccc(-c2ccnc(NC(C)=O)c2)cc1Cl; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1ccccn1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl']; [0.9999995231628418, 0.9999960660934448, 0.9999954700469971, 0.9999925494194031, 0.9999772310256958, 0.9996978044509888, 0.9915899038314819, 0.9882278442382812, 0.9146761894226074] +CCCn1cc(-c2ccnc(NC(C)=O)c2)cn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; [0.9999991655349731, 0.9999983906745911, 0.9999927282333374, 0.9999918937683105, 0.9999899864196777, 0.9999879002571106, 0.9999595880508423] +CC(=O)Nc1cc(-c2cccc3c2C(=O)CC3)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['O=C1CCc2cccc(Br)c21']; [0.9999977350234985] +CC(=O)Nc1cc(-c2cnn3ccccc23)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'Brc1cnn2ccccc12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1ccccn1', 'CC(=O)Nc1ccccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'Brc1cnn2ccccc12', 'CC(=O)Nc1ccccn1']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12', 'c1ccn2nccc2c1', 'CC(=O)Nc1ccccn1', 'Clc1cnn2ccccc12']; [0.9999998807907104, 0.9999997019767761, 0.9999994039535522, 0.9999977946281433, 0.9999972581863403, 0.9999971389770508, 0.9999944567680359, 0.9999903440475464, 0.9999130964279175, 0.9986245632171631, 0.9977118968963623, 0.9946066737174988, 0.9758456945419312, 0.8760052919387817, 0.8565064668655396] +CC(=O)Nc1cc(CCNC(=O)CC(C)(C)O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(OCC(C)(C)S(C)(=O)=O)ccn1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccnc(NC(C)=O)c1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['CCNS(=O)(=O)c1ccccc1Br']; [0.9999980330467224] +CC(=O)Nc1cc(-c2ccc(C(C)(C)N)cc2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1']; [0.9999810457229614, 0.9990065693855286, 0.8689117431640625] +CC(=O)Nc1cc(-c2cc[nH]c(=O)c2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc([S@](C)=O)cc2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Cl)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccccc1']; [0.9999982118606567, 0.9999977350234985, 0.9999952912330627, 0.9999939203262329, 0.9999554753303528, 0.999940037727356, 0.9998977184295654, 0.9990817308425903, 0.9975613355636597, 0.9282453060150146, 0.8679562211036682] +CCN(CC)c1ccnc(NC(C)=O)c1; [None, None, 'CC(=O)Nc1cc(Br)ccn1']; [None, None, 'CCNCC']; [0, 0, 0.8696693181991577] +CC(=O)Nc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)ccn1; [None]; [None]; [0] +COc1cc(CCc2ccnc(NC(C)=O)c2)cc(OC)c1; [None]; [None]; [0] +CC(=O)Nc1cc(O[C@H](C)c2c(Cl)cncc2Cl)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cncc(OC(C)C)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; [1.0, 0.9999997615814209, 0.9999983310699463, 0.9999968409538269, 0.9999961853027344, 0.9999408721923828, 0.9996333122253418] +CC(=O)Nc1cc(-c2cc3c(=O)[nH]ccc3o2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)ccn1; [None]; [None]; [0] +COc1ccncc1Nc1ccnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(C)(C)C)cc2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccccc1']; [0.9999997019767761, 0.9999995231628418, 0.9999988079071045, 0.9999988079071045, 0.9999934434890747, 0.9999934434890747, 0.9999924898147583, 0.9999703168869019, 0.999967634677887, 0.9999402165412903, 0.9999284744262695, 0.9936032295227051, 0.9857856631278992] +CC(=O)Nc1cc(Nc2cnc3ccccc3c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'Brc1cnc2ccccc2c1', 'CC(=O)Nc1cc(N)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['Nc1cnc2ccccc2c1', 'CC(=O)Nc1cc(N)ccn1', 'Ic1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9999128580093384, 0.9998065233230591, 0.9994970560073853, 0.9986756443977356, 0.99826580286026] +CC(=O)Nc1cc(Nc2cnccc2-c2ccccc2)ccn1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccnc(NC(C)=O)c1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1ccccn1', 'CC(=O)Nc1ccccn1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O']; [1.0, 1.0, 0.9999998807907104, 0.9999995231628418, 0.9999992847442627, 0.9999992847442627, 0.999997615814209, 0.9999972581863403, 0.9999945163726807, 0.9999661445617676, 0.9999656677246094, 0.9997963905334473, 0.9918047189712524, 0.9383407831192017] +CC(=O)Nc1cc(-c2c[nH]c3cnccc23)ccn1; ['Brc1c[nH]c2cnccc12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999839663505554, 0.9999678730964661, 0.9720213413238525, 0.9557363986968994, 0.9257185459136963] +CC(=O)Nc1cc(-c2cnc3[nH]ccc3c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'Brc1cnc2[nH]ccc2c1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'CC(=O)Nc1cc(Br)ccn1']; [1.0, 0.9999996423721313, 0.9999949932098389, 0.9999948143959045, 0.9999929666519165, 0.9999802112579346, 0.999825119972229, 0.9997117519378662] +CNS(=O)(=O)c1ccc(-c2ccnc(NC(C)=O)c2)cc1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999957084655762, 0.9999816417694092, 0.9999734163284302, 0.999963641166687, 0.9997456073760986] +CC(=O)Nc1cc(-c2ccc(S(C)(=O)=O)cc2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999991655349731, 0.9999987483024597, 0.9999986886978149, 0.9999985694885254, 0.999980092048645] +CC(=O)Nc1cc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [1.0, 0.9999998807907104, 0.9999985694885254, 0.9999984502792358, 0.9999970197677612, 0.9999967813491821, 0.999963641166687, 0.9998493194580078, 0.9454734325408936] +CC(=O)Nc1cc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)ccn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cc(C2(C)CCN(S(C)(=O)=O)CC2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N3CCOCC3)cc2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(N[C@@H](C)C(=O)NCC(F)(F)F)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(N[C@H](C)C(C)(C)O)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; [0.9678149223327637, 0.8625861406326294] +CC(=O)Nc1cc(-n2cnc(CCO)c2)ccn1; ['CC(=O)Nc1cc(I)ccn1']; ['OCCc1cnc[nH]1']; [0.9962701797485352] +CC(=O)Nc1cc(-c2c(F)cccc2Cl)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1', 'OB(O)c1c(F)cccc1Cl']; [0.9999998211860657, 0.9999995231628418, 0.9999993443489075, 0.9999985694885254, 0.9999983310699463, 0.9999933242797852, 0.9999916553497314, 0.9999874830245972, 0.9999797344207764, 0.9999167919158936, 0.9991434812545776, 0.9983269572257996] +CC(=O)Nc1cc(-c2cc(C)nn2-c2cccc(Cl)c2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(N[C@@H](C)C(C)(C)O)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-n2ccc(CO)n2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nc3ccc(O)cc3[nH]2)ccn1; ['CC(=O)Nc1cc(C(=O)O)ccn1', 'CC(=O)Nc1cc(C=O)ccn1']; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; [0.9999524354934692, 0.9992383718490601] +CC(=O)Nc1cc(-c2ccc(-n3cncn3)cc2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1']; ['c1ccc(-n2cncn2)cc1', 'c1ccc(-n2cncn2)cc1']; [0.9987931251525879, 0.9971848726272583] +COc1ccc(-c2ccnc(NC(C)=O)c2)c(OC)c1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1']; [0.9999918937683105, 0.9999817609786987, 0.9999687671661377, 0.999844491481781, 0.9998437166213989, 0.999793291091919, 0.9997287392616272, 0.9991871118545532, 0.9990807175636292, 0.998558759689331, 0.998536229133606, 0.964613676071167, 0.919902503490448] +CC(=O)Nc1cc(-n2ncc3ccccc32)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-n2ncc3c(O)cccc32)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)c3ccccc3)cc2)ccn1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc(NC(C)=O)c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc([C@@H]2CC[C@@H](NC(C)=O)CC2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nncn2C(C)C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nncn2C2CC2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nnc(N)s2)ccn1; ['CC(=O)Nc1cc(C(=O)O)ccn1']; ['NNC(N)=S']; [0.9999266862869263] +CC(=O)Nc1cc(-c2ccn(CC[NH3+])n2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(CCC(=O)NCc2ccccn2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(CS(=O)(=O)NCc2ccccn2)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(NC(C)=O)c2)s1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['CNC(=O)c1ccc(Br)s1']; [0.9999972581863403] +CCc1cc(-c2ccnc(NC(C)=O)c2)nc(N)n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(Cc3ccccc3)nn2)ccn1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc(NC(C)=O)c2)nc(N)n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C(C)(C)O)n2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; [0.9999336004257202, 0.9989913702011108, 0.9943720102310181] +CC(=O)Nc1cc(-c2cncc(N)n2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1']; [0.999944806098938, 0.9998266100883484] +CC(=O)Nc1cc(-c2cc(C(N)=O)cn2C)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['CC1(C)Oc2ccc(Br)nc2NC1=O']; [0.9993996620178223] +CC(=O)Nc1cc(-c2cccc3ccsc23)ccn1; ['CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'Brc1cccc2ccsc12', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999997615814209, 0.9999997019767761, 0.9999969601631165, 0.9999927878379822, 0.9999716281890869, 0.999625563621521] +CC(=O)Nc1cc(Oc2ccc(C[NH3+])cc2F)ccn1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccnc(NC(C)=O)c2)CC1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nc3ccccc3s2)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc(NC(C)=O)c3)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc3ccccc3n2)ccn1; ['Brc1ncc2ccccc2n1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'Clc1ncc2ccccc2n1']; [0.9999192953109741, 0.9997734427452087] +CC(=O)Nc1cc(-c2cccc3nnsc23)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nc(N)c3ccccc3n2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc3cc[nH]c3n2)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Clc1ncc2cc[nH]c2n1']; [0.9999889135360718] +CC(=O)Nc1cc(-c2cnc(NC(C)=O)[nH]2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]c3cccnc23)ccn1; ['CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'Brc1c[nH]c2cccnc12', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1']; ['Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Clc1c[nH]c2cccnc12']; [0.9999934434890747, 0.9999886751174927, 0.9999842643737793, 0.999976396560669, 0.9995359182357788, 0.999500036239624] +COc1ccc(Oc2ccnc(NC(C)=O)c2)c(F)c1F; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; [0.9999531507492065, 0.9994139671325684, 0.9983660578727722] +COc1ccc(C#N)cc1-c1ccnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(S(=O)(=O)N(C)C)c2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; [0.9999961853027344, 0.9999960660934448, 0.9998674392700195, 0.9996209144592285, 0.9995391368865967, 0.9942203760147095] +COc1ncccc1-c1ccnc(NC(C)=O)c1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(B2OC(C)(C)C(C)(C)O2)ccn1', 'CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1', 'CC(=O)Nc1cc(Br)ccn1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; [0.9999604225158691, 0.9999457597732544, 0.9999445676803589, 0.9996588230133057, 0.9996334314346313, 0.9994089603424072, 0.9986879825592041, 0.9985060691833496, 0.9971588850021362, 0.9941978454589844, 0.9672347903251648] +CC(=O)Nc1cc([C@H]2CC[C@@](C)(O)CC2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(CCO)cn2)ccn1; [None]; [None]; [0] +CC(=O)Nc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)ccn1; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9990025758743286, 0.9779113531112671] +COc1ccc(OC)c(-c2ccnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)ccn1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['CC(=O)Nc1cc(Br)ccn1', 'CC(=O)Nc1cc(I)ccn1', 'CC(=O)Nc1cc(Cl)ccn1']; [0.9998873472213745, 0.9994012117385864, 0.9910478591918945] +CC(=O)Nc1cc(-c2cnnc(N(C)C)c2)ccn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(Cl)c2cccnc2c1O; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999452233314514, 0.9999430179595947, 0.9998873472213745, 0.9973999261856079] +CC(=O)Nc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)ccn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(Cc2cc(F)cc(F)c2)cc(Cl)c2cccnc12; ['Fc1cc(F)cc(CCl)c1', 'Cc1cc(F)cc(F)c1', 'Fc1cc(F)cc(CCl)c1', 'OCc1cc(F)cc(F)c1', 'Cc1cc(F)cc(F)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1ccc(Cl)c2cccnc12', 'Oc1ccc(Cl)c2cccnc12', 'Oc1ccc(Cl)c2cccnc12']; [0.9965269565582275, 0.9878184795379639, 0.9629455208778381, 0.9594159126281738, 0.8089922070503235] +COC(C)(C)CCc1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(-c2ccnc3ccccc23)cc(Cl)c2cccnc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9997493028640747, 0.9887913465499878, 0.9800397157669067] +Cc1nnc(-c2ccccc2-c2cc(Cl)c3cccnc3c2O)[nH]1; [None]; [None]; [0] +CCn1cc(-c2cc(Cl)c3cccnc3c2O)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.999955415725708, 0.9986909627914429, 0.9978578090667725] +O=C([O-])c1ccccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(-c2cccc(C(F)(F)F)c2)cc(Cl)c2cccnc12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999911785125732, 0.9998667240142822, 0.9997050762176514, 0.9977902173995972] +NC(=O)c1ccccc1-c1cc(Cl)c2cccnc2c1O; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999940395355225, 0.9975420236587524, 0.9779806733131409] +Oc1c(-c2ccccc2OC(F)(F)F)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2cnn(Cc3ccccc3)c2)cc(Cl)c2cccnc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(Cl)c3cccnc3c2O)cs1; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'CC(C)(C)c1nccs1']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12']; [0.9999978542327881, 0.9824302792549133] +Cn1cnc2ccc(-c3cc(Cl)c4cccnc4c3O)cc2c1=O; [None]; [None]; [0] +Oc1c(-c2cnc(-c3ccccc3)[nH]2)cc(Cl)c2cccnc12; [None]; [None]; [0] +OCCn1cc(-c2cc(Cl)c3cccnc3c2O)cn1; [None]; [None]; [0] +Oc1c(-c2cc(Cl)ccc2Cl)cc(Cl)c2cccnc12; ['OB(O)c1cc(Cl)ccc1Cl']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9972416162490845] +O=C(Nc1cccc(-c2cc(Cl)c3cccnc3c2O)c1)c1ccccc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9999819993972778, 0.9999532699584961, 0.9999352693557739, 0.9998825788497925] +Cc1ccc(-c2cc(Cl)c3cccnc3c2O)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(Cl)c2cccnc2c1O; ['Cc1cn2ccccc2n1']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9926567673683167] +Oc1c(-c2cnc3ccccn23)cc(Cl)c2cccnc12; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; ['c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9989213347434998, 0.9936497211456299] +CC(C)C(=O)COc1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +COc1cnc(-c2cc(Cl)c3cccnc3c2O)nc1; [None]; [None]; [0] +Oc1c(-c2c(Cl)cccc2Cl)cc(Cl)c2cccnc12; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9965344667434692, 0.9916585683822632] +Cc1ccc(Cl)c(-c2cc(Cl)c3cccnc3c2O)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9952952861785889, 0.9902160167694092] +Cc1nc(C)c(-c2cc(Cl)c3cccnc3c2O)s1; [None]; [None]; [0] +Oc1c(-c2cnc3cccnn23)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(NCc2cccnc2)cc(Cl)c2cccnc12; ['NCc1cccnc1']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9271436929702759] +Oc1c(-c2cccc(Cn3cncn3)c2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2cccc(Br)c2)cc(Cl)c2cccnc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(Cl)c3cccnc3c2O)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(Nc2cccnc2)cc(Cl)c2cccnc12; ['Nc1cccnc1', 'Nc1cccnc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9677952527999878, 0.8967747092247009] +Oc1c(-c2ccc3ccccc3c2)cc(Cl)c2cccnc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Oc1c(Br)cc(Cl)c2cccnc12']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'c1ccc2ccccc2c1']; [0.9999982118606567, 0.9999866485595703, 0.9999727010726929, 0.9993842840194702, 0.829463005065918] +O=C(Nc1cc(Cl)c2cccnc2c1O)c1cccs1; ['NC(=O)c1cccs1', 'NC(=O)c1cccs1']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12']; [0.9688392281532288, 0.9656298160552979] +Cc1c(-c2cc(Cl)c3cccnc3c2O)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +Oc1c(-n2cnc3ccccc32)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(NCCc2c[nH]cn2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2c[nH]nc2C(F)(F)F)cc(Cl)c2cccnc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9998387098312378] +Oc1c(NCCc2ccccc2)cc(Cl)c2cccnc12; ['NCCc1ccccc1']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.8792424201965332] +NC(=O)c1c(F)cccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(-c2cncc3ccccc23)cc(Cl)c2cccnc12; ['OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9962018728256226, 0.9009884595870972] +Nc1[nH]nc2cc(-c3cc(Cl)c4cccnc4c3O)ccc12; [None]; [None]; [0] +Oc1c(-c2cnn3ncccc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(Cl)c4cccnc4c3O)cc2)cn1; [None]; [None]; [0] +Oc1c(NCc2ccc(Cl)cc2)cc(Cl)c2cccnc12; ['NCc1ccc(Cl)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9699559807777405] +CN1c2ccc(-c3cc(Cl)c4cccnc4c3O)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(Cl)c4cccnc4c3O)ccc21; [None]; [None]; [0] +Oc1c(-c2ccc(-c3cn[nH]c3)cc2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1cccc(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +OCc1cccc(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +Oc1c(NCc2ccccc2F)cc(Cl)c2cccnc12; ['NCc1ccccc1F']; ['Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9003947973251343] +Oc1c(Nc2ccncc2)cc(Cl)c2cccnc12; ['Nc1ccncc1', 'Nc1ccncc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9833508133888245, 0.8230695724487305] +CCCn1cnc(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(Cl)c3cccnc3c2O)nn1; ['CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.999564528465271, 0.9994180202484131] +COc1cc(-c2cc(Cl)c3cccnc3c2O)ccc1C(=O)[O-]; [None]; [None]; [0] +Oc1c(-c2csc3ncncc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +Nc1nc(-c2cc(Cl)c3cccnc3c2O)cs1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(Cl)c3cccnc3c2O)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9988284111022949, 0.9973068237304688, 0.9904959201812744] +Oc1c(-c2cc3ccccc3[nH]2)cc(Cl)c2cccnc12; [None]; [None]; [0] +CSc1nc(-c2cc(Cl)c3cccnc3c2O)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Nc1ncncc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(Cl)c4cccnc4c3O)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; [None]; [None]; [0] +Oc1c(-c2ccc(F)cc2C(F)(F)F)cc(Cl)c2cccnc12; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9998718500137329, 0.9996336102485657, 0.9942625164985657] +Oc1c(CCc2c[nH]nn2)cc(Cl)c2cccnc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(Cl)c3cccnc3c2O)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999432563781738, 0.9999431371688843, 0.9998389482498169, 0.9997464418411255, 0.998002290725708] +Oc1c(Oc2ccccn2)cc(Cl)c2cccnc12; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(Cl)c3cccnc3c2O)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9767259955406189, 0.8996173739433289] +O=C(Nc1cc(Cl)c2cccnc2c1O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +NC(=O)CCCc1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +COc1ccc(-c2cc(Cl)c3cccnc3c2O)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999986886978149, 0.9999983906745911, 0.9999767541885376, 0.9999507665634155, 0.9981977343559265] +Oc1c(-c2cnn3ccccc23)cc(Cl)c2cccnc12; ['OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9989323616027832, 0.9872277975082397] +CC(C)(COc1cc(Cl)c2cccnc2c1O)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2cc(Cl)c3cccnc3c2O)c2ccccc21; [None]; [None]; [0] +O=c1cc(-c2cc(Cl)c3cccnc3c2O)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9999738931655884] +CCCn1cc(-c2cc(Cl)c3cccnc3c2O)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999985098838806, 0.9999937415122986, 0.9998992681503296, 0.9998016357421875, 0.9963628053665161] +[NH3+]Cc1ccc(-c2cc(Cl)c3cccnc3c2O)cc1C(F)(F)F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9997344017028809] +CCN(CC)c1cc(Cl)c2cccnc2c1O; ['CCNCC', 'CCNCC', 'CCNCC']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9948005676269531, 0.9922319650650024, 0.9355677366256714] +COc1cc(CCc2cc(Cl)c3cccnc3c2O)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc(Cl)c4cccnc4c3O)c21; [None]; [None]; [0] +C[C@@H](Oc1cc(Cl)c2cccnc2c1O)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc(Cl)c4cccnc4c3O)cc12; [None]; [None]; [0] +Oc1c(Nc2cnccc2-c2ccccc2)cc(Cl)c2cccnc12; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9992827773094177, 0.9959665536880493] +CC(C)(C)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999986886978149, 0.9997940063476562, 0.9996145963668823, 0.9945989847183228] +COc1ccncc1Nc1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc(Cl)c4cccnc4c3O)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(Cl)c3cccnc3c2O)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12']; [0.999957799911499, 0.9999266862869263, 0.9997533559799194] +Oc1c(Nc2cnc3ccccc3c2)cc(Cl)c2cccnc12; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9967223405838013, 0.9925000667572021] +COc1cccc(F)c1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999836683273315, 0.9994382858276367, 0.9987043142318726, 0.9953687787055969] +Oc1c(-c2c[nH]c3cnccc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2cnc3[nH]ccc3c2)cc(Cl)c2cccnc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12']; [0.9999935030937195, 0.9998207092285156, 0.9997913837432861, 0.9995821714401245, 0.9983360767364502, 0.9742687344551086] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12']; [0.9999995231628418, 0.9999984502792358, 0.9999954700469971, 0.9997481107711792, 0.999688446521759, 0.999061107635498, 0.944096565246582] +CNC(=O)c1c(F)cccc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(-c2ccc(N3CCOCC3)cc2)cc(Cl)c2cccnc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc(N2CCOCC2)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12', 'Oc1ccc(Cl)c2cccnc12']; [0.999999463558197, 0.9999747276306152, 0.9999735951423645, 0.9999693036079407, 0.999325692653656, 0.9127011895179749] +CS(=O)(=O)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [1.0, 0.9999822378158569, 0.9999799132347107, 0.9988284111022949] +C[C@H](Nc1cc(Cl)c2cccnc2c1O)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12']; [0.9323843121528625, 0.9290460348129272] +CN(c1cc(Cl)c2cccnc2c1O)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@@H](Nc1cc(Cl)c2cccnc2c1O)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Oc1c(Br)cc(Cl)c2cccnc12']; [0.9290460348129272] +CC1(c2cc(Cl)c3cccnc3c2O)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1cc(Cl)c2cccnc2c1O)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCCc1cn(-c2cc(Cl)c3cccnc3c2O)cn1; [None]; [None]; [0] +Cc1cc(-c2cc(Cl)c3cccnc3c2O)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Oc1c(-c2c(F)cccc2Cl)cc(Cl)c2cccnc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(I)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9999799728393555, 0.9995971918106079, 0.9980800151824951, 0.9933133125305176] +OCc1ccn(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +Oc1c(-n2ncc3ccccc32)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +Oc1c(-c2ccc(-n3cncn3)cc2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(Cl)c4cccnc4c3O)[nH]c2c1; [None]; [None]; [0] +COc1ccc(-c2cc(Cl)c3cccnc3c2O)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9998722672462463, 0.9974455237388611] +O=C(c1ccccc1)c1ccc(-c2cc(Cl)c3cccnc3c2O)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(Cl)c3cccnc3c2O)[nH]1; [None]; [None]; [0] +Oc1c(-c2nncn2C2CC2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(Cc2nnc3ccc(-c4ccccc4)nn23)cc(Cl)c2cccnc12; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(Cl)c3cccnc3c2O)CC1; [None]; [None]; [0] +O=C(CCc1cc(Cl)c2cccnc2c1O)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cc(Cl)c2cccnc2c1O)NCc1ccccn1; [None]; [None]; [0] +Oc1c(-c2cn(Cc3ccccc3)nn2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Nc1nnc(-c2cc(Cl)c3cccnc3c2O)s1; [None]; [None]; [0] +CCc1cc(-c2cc(Cl)c3cccnc3c2O)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc(Cl)c3cccnc3c2O)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(Cl)c3cccnc3c2O)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc(Cl)c3cccnc3c2O)c(F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(Cl)c4cccnc4c3O)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(Cl)c3cccnc3c2O)CC1; [None]; [None]; [0] +Oc1c(-c2cccc3nnsc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2cccc3ccsc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2nc3ccccc3s2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Nc1cncc(-c2cc(Cl)c3cccnc3c2O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(Cl)c4cccnc4c3O)c2)cc1; [None]; [None]; [0] +Oc1c(-c2c[nH]c3cccnc23)cc(Cl)c2cccnc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(Cl)c3cccnc3c2O)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(Cl)c2cccnc2c1O; [None]; [None]; [0] +COc1ccc(Oc2cc(Cl)c3cccnc3c2O)c(F)c1F; [None]; [None]; [0] +Nc1nc(-c2cc(Cl)c3cccnc3c2O)nc2ccccc12; [None]; [None]; [0] +Oc1c(-c2ncc3cc[nH]c3n2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(-c2ncc3ccccc3n2)cc(Cl)c2cccnc12; [None]; [None]; [0] +COc1ncccc1-c1cc(Cl)c2cccnc2c1O; ['COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['Oc1c(Br)cc(Cl)c2cccnc12', 'Oc1c(Cl)cc(Cl)c2cccnc12']; [0.9995884895324707, 0.9945998191833496] +C[C@@]1(O)CC[C@H](c2cc(Cl)c3cccnc3c2O)CC1; [None]; [None]; [0] +OCCn1cnc(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(Cl)c3cccnc3c2O)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(Cl)c3cccnc3c2O)cnn1; [None]; [None]; [0] +Oc1c(N2CCC(c3nc4ccccc4[nH]3)CC2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1c(N2CC=C(c3c[nH]c4ccccc34)CC2)cc(Cl)c2cccnc12; [None]; [None]; [0] +Oc1cccc(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Brc1cnc2nc[nH]c2c1']; ['OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Clc1cnc2nc[nH]c2c1', 'Oc1cccc(Br)c1']; [0.9987040758132935, 0.9976836442947388, 0.9973060488700867, 0.958294153213501, 0.8538227081298828] +c1cc(-c2cnc3nc[nH]c3c2)c2cccnc2c1; ['Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cccc2ncccc12', 'Clc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Clc1cnc2nc[nH]c2c1', 'OB(O)c1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Brc1cnc2nc[nH]c2c1', 'OB(O)c1cccc2ncccc12']; [0.9999908208847046, 0.9997601509094238, 0.9997468590736389, 0.9995140433311462, 0.9952008128166199, 0.9911340475082397] +Clc1ccc2c(c1-c1cnc3nc[nH]c3c1)OCO2; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9967004060745239, 0.8407561779022217] +O=C(Nc1cccc(-c2cc(Cl)c3cccnc3c2O)c1)C1CCNCC1; [None]; [None]; [0] +Oc1cc(-c2cnc3nc[nH]c3c2)ccc1Cl; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9998623132705688, 0.9993102550506592, 0.9745973348617554] +CNS(=O)(=O)c1ccc(-c2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2nc[nH]c2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999922513961792, 0.9998178482055664, 0.9994951486587524, 0.9969967603683472, 0.846076488494873] +c1ccc2c(-c3cnc4nc[nH]c4c3)n[nH]c2c1; ['Brc1cnc2nc[nH]c2c1']; ['Clc1n[nH]c2ccccc12']; [0.9663439989089966] +Clc1cccc(Cl)c1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; [0.9999369382858276, 0.9991310834884644, 0.996533989906311, 0.9755595922470093, 0.940060019493103] +Fc1ccc(Oc2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9991707801818848, 0.9972319602966309] +Oc1ccc(-c2cnc3nc[nH]c3c2)c(Cl)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C']; ['OB(O)c1ccc(O)cc1Cl', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'Clc1cnc2nc[nH]c2c1']; [0.9980510473251343, 0.9926943182945251, 0.960810661315918, 0.8460807800292969] +NC(=O)c1ccc(-c2cnc3nc[nH]c3c2)cc1; [None]; [None]; [0] +Oc1ccc(-c2cnc3nc[nH]c3c2)c(F)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['OB(O)c1ccc(O)cc1F', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1']; [0.9979147911071777, 0.9976538419723511, 0.9805657863616943, 0.8889667391777039] +NC(=O)c1ccc(-c2cnc3nc[nH]c3c2)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnc2nc[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2nc[nH]c2c1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'Brc1cnc2nc[nH]c2c1', 'COc1ccc(F)cc1[Mg]Br']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'Clc1cnc2nc[nH]c2c1', 'COc1ccc(F)cc1Br', 'Clc1cnc2nc[nH]c2c1', 'c1cnc2nc[nH]c2c1', 'c1cnc2nc[nH]c2c1', 'COc1ccc(F)cc1', 'Clc1cnc2nc[nH]c2c1']; [0.9999622702598572, 0.9997817277908325, 0.9968953132629395, 0.9961425065994263, 0.9943593740463257, 0.9741817712783813, 0.9372497200965881, 0.8682897090911865, 0.7987695336341858] +Nc1nccc(-c2cnc3nc[nH]c3c2)n1; ['Brc1cnc2nc[nH]c2c1']; ['Nc1nccc(Cl)n1']; [0.9998412132263184] +Clc1[nH]ncc1-c1cnc2nc[nH]c2c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'Clc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br']; [0.9999158382415771, 0.9998536109924316, 0.999467134475708, 0.998694896697998, 0.998680830001831, 0.9627441167831421] +O=C([O-])c1ccc(-c2cnc3nc[nH]c3c2)cc1; [None]; [None]; [0] +COc1cc(-c2cnc3nc[nH]c3c2)ccc1O; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Clc1cnc2nc[nH]c2c1']; [0.9999746084213257, 0.9888328313827515, 0.9293495416641235] +Cc1nc2c(F)cc(-c3cnc4nc[nH]c4c3)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3cnc4nc[nH]c4c3)cc2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3nc[nH]c3c2)o1; [None]; [None]; [0] +COc1cc(CCc2cnc3nc[nH]c3c2)ccc1O; [None]; [None]; [0] +Oc1ccc(-c2cnc3nc[nH]c3c2)cc1F; ['Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Clc1cnc2nc[nH]c2c1', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F']; [0.9999675750732422, 0.9996961355209351, 0.9991130828857422, 0.9944984316825867, 0.8925622701644897] +Brc1cccc(-c2cnc3nc[nH]c3c2)c1; [None]; [None]; [0] +c1ccc2cc(-c3cnc4nc[nH]c4c3)ccc2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'Clc1cnc2nc[nH]c2c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'Clc1cnc2nc[nH]c2c1']; [0.999879777431488, 0.9984567761421204, 0.9983775615692139, 0.9975615739822388, 0.9683254957199097, 0.9334741830825806] +Cn1cc(-c2cnc3nc[nH]c3c2)c2ccccc21; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999022483825684, 0.9960343837738037] +c1cnn2ncc(-c3cnc4nc[nH]c4c3)c2c1; ['Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; [0.9999932050704956] +Oc1ccc(-c2cnc3nc[nH]c3c2)c(O)c1; [None]; [None]; [0] +c1cc2c(-c3cnc4nc[nH]c4c3)c[nH]c2cn1; [None]; [None]; [0] +Nc1cc(-c2cnc3nc[nH]c3c2)ccn1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl']; [0.9816747903823853, 0.9740280508995056] +Fc1ccc(-c2cnc3nc[nH]c3c2)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnc3nc[nH]c3c2)cc1; [None]; [None]; [0] +Oc1ncc(-c2cnc3nc[nH]c3c2)cc1Cl; ['Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; [0.9999443292617798] +Cc1ccc2[nH]ncc2c1-c1cnc2nc[nH]c2c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2nc[nH]c2c1', 'Cc1ccc(CO)cc1B(O)O', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2nc[nH]c2c1', 'Cc1ccc(CO)cc1B(O)O', 'Clc1cnc2nc[nH]c2c1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I']; [0.9999493360519409, 0.9988672733306885, 0.9985954761505127, 0.9911623001098633, 0.981998860836029, 0.9755421876907349] +Clc1ccccc1OCc1cnc2nc[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnc3nc[nH]c3c2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'Clc1cnc2nc[nH]c2c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; [0.9999691247940063, 0.9991669654846191, 0.9943186044692993, 0.9919281005859375, 0.9457365274429321] +COc1ccc(-c2cnc3nc[nH]c3c2)cc1OC; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'COc1ccc(B(O)O)cc1OC', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'Clc1cnc2nc[nH]c2c1', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC']; [0.9999953508377075, 0.9994283318519592, 0.9978156089782715, 0.9960627555847168, 0.9192041158676147] +CCOc1cccc(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CCOc1cccc(B(O)O)c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'Clc1cnc2nc[nH]c2c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1']; [0.9999887943267822, 0.9995502233505249, 0.998631477355957, 0.9863831996917725, 0.8849663734436035] +CNC(=O)c1cccc2cc(-c3cnc4nc[nH]c4c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4nc[nH]c4c3)cc2[nH]1; [None]; [None]; [0] +c1nc2ncc(-c3cnc4[nH]ccc4c3)cc2[nH]1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2nc[nH]c2c1']; [0.9999991655349731, 0.9998981952667236, 0.9998043179512024, 0.9995790123939514, 0.9853405952453613] +NC(=O)Nc1ccc(-c2cnc3nc[nH]c3c2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cnc4nc[nH]c4c3)nc2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; [0.9999372959136963, 0.9995006322860718, 0.9992936849594116] +COc1cc(CCc2cnc3nc[nH]c3c2)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2nc[nH]c2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'Clc1cnc2nc[nH]c2c1', 'CS(=O)(=O)c1ccc([B-](F)(F)F)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999995827674866, 0.9999862909317017, 0.9999858140945435, 0.9997084736824036, 0.9993671178817749, 0.997613251209259, 0.9732806086540222] +Oc1cncc(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9969611167907715, 0.987271249294281, 0.9869428277015686, 0.8492411375045776] +O=C1Cc2cc(-c3cnc4nc[nH]c4c3)ccc2N1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Clc1cnc2nc[nH]c2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999754428863525, 0.9999221563339233, 0.9975483417510986, 0.9967957735061646, 0.9835712909698486, 0.8956179618835449] +Cc1cc(O)ccc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Cc1cc(O)ccc1B(O)O']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Clc1cnc2nc[nH]c2c1']; [0.9955002069473267, 0.9946658611297607, 0.9796836972236633] +CCc1cc(O)ccc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2nc[nH]c2c1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2nc[nH]c2c1', 'CCc1cc(O)ccc1Br']; [0.9998149871826172, 0.9957154989242554, 0.8552156686782837] +CCc1cc(O)c(F)cc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2nc[nH]c2c1']; [0.9999611973762512, 0.9994531869888306] +CNc1nccc(-c2cnc3nc[nH]c3c2)n1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc2nc[nH]c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc4nc[nH]c4c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc3nc[nH]c3c2)c1C; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1']; ['CNc1cccc(Cl)c1']; [0.9756032228469849] +Oc1c(Cl)cc(-c2cnc3nc[nH]c3c2)cc1Cl; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Clc1cnc2nc[nH]c2c1']; [0.9997786283493042, 0.9914000034332275, 0.9685348868370056] +Clc1cnccc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)COB(c2ccncc2Cl)OC1', 'OB(O)c1ccncc1Cl', 'Clc1cnc2nc[nH]c2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccncc1Cl', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl']; [0.9999711513519287, 0.999803364276886, 0.999535083770752, 0.9988762140274048, 0.9973611831665039, 0.9972484111785889, 0.9800273180007935, 0.9790310859680176] +FC(F)c1cc(-c2cnc3nc[nH]c3c2)[nH]n1; [None]; [None]; [0] +CNc1nc(-c2cnc3nc[nH]c3c2)ncc1F; [None]; [None]; [0] +CCc1sccc1-c1cnc2nc[nH]c2c1; [None]; [None]; [0] +c1nc2ncc(-c3ccc4c(c3)CCN4)cc2[nH]1; ['Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Clc1cnc2nc[nH]c2c1', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Brc1cnc2nc[nH]c2c1']; [1.0, 0.999993085861206, 0.9999841451644897, 0.9998511672019958, 0.9997817277908325, 0.9991486072540283] +CNC(=O)c1ccc(-c2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2nc[nH]c2c1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2nc[nH]c2c1', 'CNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2nc[nH]c2c1']; [0.9999966621398926, 0.9999420642852783, 0.9998489618301392, 0.9984695315361023] +c1cc(Nc2cnc3nc[nH]c3c2)ccn1; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['Nc1ccncc1', 'Nc1ccncc1']; [0.9988745450973511, 0.9970730543136597] +Oc1cc(-c2cnc3nc[nH]c3c2)nc2ccnn12; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br']; [0.9984728097915649, 0.9924163818359375, 0.992178201675415, 0.9504250884056091, 0.9288817644119263] +Fc1ccc2n[nH]c(-c3cnc4nc[nH]c4c3)c2c1; ['Brc1cnc2nc[nH]c2c1']; ['Fc1ccc2n[nH]cc2c1']; [0.9999200105667114] +O=c1[nH]c2ccc(-c3cnc4nc[nH]c4c3)cc2[nH]1; [None]; [None]; [0] +Cc1oc(-c2cnc3nc[nH]c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc2nc[nH]c2c1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnc3nc[nH]c3c2)c1; ['Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['OB(O)c1cc(O)cc(Br)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'Clc1cnc2nc[nH]c2c1']; [0.990847110748291, 0.9851187467575073, 0.9726008176803589, 0.9056578278541565] +O=C(NC1CC1)c1ccc(-c2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Clc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'Clc1cnc2nc[nH]c2c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999994039535522, 0.9999887347221375, 0.9999616742134094, 0.9994683265686035, 0.9894611835479736] +CN(c1cnc2nc[nH]c2c1)c1cccc2[nH]ncc12; ['CNc1cccc2[nH]ncc12']; ['Clc1cnc2nc[nH]c2c1']; [0.7534213066101074] +Cc1nc2ccc(-c3cnc4nc[nH]c4c3)cc2o1; ['Brc1cnc2nc[nH]c2c1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Clc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999979734420776, 0.9999914169311523, 0.999989926815033, 0.999977707862854, 0.9941854476928711] +Cc1cc(-c2cnc3nc[nH]c3c2)ccc1C(N)=O; ['Brc1cnc2nc[nH]c2c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Brc1cnc2nc[nH]c2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Clc1cnc2nc[nH]c2c1', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999798536300659, 0.9999457597732544, 0.8767433166503906] +Cc1cc(-c2cnc3nc[nH]c3c2)cc(C)c1O; ['Brc1cnc2nc[nH]c2c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Brc1cnc2nc[nH]c2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Clc1cnc2nc[nH]c2c1', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9994584918022156, 0.9897617101669312, 0.9046717286109924] +Oc1c(F)cc(-c2cnc3nc[nH]c3c2)cc1F; ['Brc1cnc2nc[nH]c2c1', 'Brc1cnc2nc[nH]c2c1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'OB(O)c1cc(F)c(O)c(F)c1', 'Clc1cnc2nc[nH]c2c1', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9998898506164551, 0.9972535371780396, 0.9955425262451172, 0.9717520475387573, 0.9678671956062317] +CSc1cccc(-c2cnc3nc[nH]c3c2)c1; ['Brc1cnc2nc[nH]c2c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cnc2nc[nH]c2c1', 'CSc1cccc(B(O)O)c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cnc2nc[nH]c2c1', 'CSc1cccc(B(O)O)c1', 'Clc1cnc2nc[nH]c2c1']; [0.9999780654907227, 0.9998886585235596, 0.9667195081710815, 0.9365500211715698] +Cc1onc(-c2ccccc2)c1-c1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Clc1cnc2nc[nH]c2c1']; [0.9999111294746399, 0.99881911277771] +O=c1[nH][nH]c2cc(-c3cnc4nc[nH]c4c3)ccc12; [None]; [None]; [0] +c1ccc2c(CCc3cnc4nc[nH]c4c3)c[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnc3nc[nH]c3c2)cc1; [None]; [None]; [0] +Fc1ccc(Oc2cnc3nc[nH]c3c2)c(F)c1; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9998705983161926, 0.9987276792526245] +Fc1ccc(COc2cnc3nc[nH]c3c2)c(F)c1; ['Brc1cnc2nc[nH]c2c1']; ['OCc1ccc(F)cc1F']; [0.9909413456916809] +Fc1cccc(Cl)c1CNc1cnc2nc[nH]c2c1; ['Brc1cnc2nc[nH]c2c1', 'Clc1cnc2nc[nH]c2c1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.999919593334198, 0.9975377321243286] +Clc1ccc(-c2[nH]ncc2-c2cnc3nc[nH]c3c2)cc1; ['Brc1cnc2nc[nH]c2c1']; ['Clc1ccc(-c2ccn[nH]2)cc1']; [0.9166643619537354] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cccc2ncccc12; ['CNc1cccc2ncccc12']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9987363815307617] +c1ccc2c(COc3cnc4nc[nH]c4c3)cccc2c1; [None]; [None]; [0] +Fc1ccc(CCc2cnc3nc[nH]c3c2)c(F)c1; ['OCCc1ccc(F)cc1F', 'Fc1ccc(CCBr)c(F)c1']; ['c1cnc2nc[nH]c2c1', 'c1cnc2nc[nH]c2c1']; [0.9145119190216064, 0.9045315384864807] +CN(c1ccc2ncn(C)c(=O)c2c1)c1n[nH]c2ccccc12; ['CNc1n[nH]c2ccccc12']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.912796676158905] +CN(c1ccc2ncn(C)c(=O)c2c1)c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1c(Cl)cccc1Cl; ['CNc1c(Cl)cccc1Cl']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9989510774612427] +CN(c1cccc(O)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CCc1ccc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc1; [None]; [None]; [0] +CN(c1ccc(Cl)c(O)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +COc1ccc(F)cc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc(C(N)=O)cc1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COc1cc(F)ccc1N(C)c1ccc2ncn(C)c(=O)c2c1; ['CNc1ccc(F)cc1OC']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9996455907821655] +COc1cc(C(N)=O)ccc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccc(O)cc1F; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccnc(N)n1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cn[nH]c1Cl; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccc(O)cc1Cl; [None]; [None]; [0] +CN(c1cccc(Br)c1)c1ccc2ncn(C)c(=O)c2c1; ['CNc1cccc(Br)c1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9515060782432556] +CN(c1ccc2ccccc2c1)c1ccc2ncn(C)c(=O)c2c1; ['CNc1ccc2ccccc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9142594337463379] +Cc1nc2c(F)cc(N(C)c3ccc4ncn(C)c(=O)c4c3)cc2[nH]1; [None]; [None]; [0] +CN(c1ccc(-c2ccc(O)cc2O)cc1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COc1cc(N(C)c2ccc3ncn(C)c(=O)c3c2)ccc1O; [None]; [None]; [0] +CN(c1ccc(C(=O)[O-])cc1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(COc1cccc(Cl)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COC(=O)c1ccc(N(C)c2ccc3ncn(C)c(=O)c3c2)o1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cn(C)c2ccccc12; [None]; [None]; [0] +CN(c1ccc(O)c(F)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(N(C)c2ccc3ncn(C)c(=O)c3c2)c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccc(O)cc1O; [None]; [None]; [0] +CN(c1ccc(F)c(Cl)c1)c1ccc2ncn(C)c(=O)c2c1; ['CNc1ccc(F)c(Cl)c1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.99953293800354] +CN(c1ccc2ncn(C)c(=O)c2c1)[C@H](CO)c1ccccc1; ['CN[C@H](CO)c1ccccc1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9184964895248413] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cnn2ncccc12; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1c[nH]c2cnccc12; [None]; [None]; [0] +CN(CCc1ccc(Cl)cc1)c1ccc2ncn(C)c(=O)c2c1; ['CNCCc1ccc(Cl)cc1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9999443888664246] +CN(c1ccnc(N)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(COc1ccccc1Cl)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +CN(c1cnc(O)c(Cl)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1c[nH]c(C(N)=O)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cc(O)ccc1Cl; [None]; [None]; [0] +COc1cc(OC)cc(N(C)c2ccc3ncn(C)c(=O)c3c2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COc1ccc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc1OC; [None]; [None]; [0] +CN(c1ccc(S(C)(=O)=O)cc1)c1ccc2ncn(C)c(=O)c2c1; ['CNc1ccc(S(C)(=O)=O)cc1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9977601766586304] +Cc1nc2ccc(N(C)c3ccc4ncn(C)c(=O)c4c3)cc2[nH]1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1nc2ccccc2s1; ['CNc1nc2ccccc2s1']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9995914101600647] +CN(c1ccc(NC(N)=O)cc1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CCOc1cccc(N(C)c2ccc3ncn(C)c(=O)c3c2)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(N(C)c3ccc4ncn(C)c(=O)c4c3)ccc12; [None]; [None]; [0] +CN(c1cnc2[nH]ccc2c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1cncc(O)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2c(c1)CC(=O)N2)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CNc1nccc(N(C)c2ccc3ncn(C)c(=O)c3c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccncc1Cl; [None]; [None]; [0] +Cc1cc(O)ccc1N(C)c1ccc2ncn(C)c(=O)c2c1; ['CNc1ccc(O)cc1C']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.776464581489563] +CCc1cc(O)c(F)cc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1n[nH]c(N(C)c2ccc3ncn(C)c(=O)c3c2)c1C; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +CNc1nc(N(C)c2ccc3ncn(C)c(=O)c3c2)ncc1F; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ccc(Br)cc1F; ['CNc1ccc(Br)cc1F']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9944821000099182] +CN(c1ccc2c(c1)CCN2)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cc(O)n2nccc2n1; [None]; [None]; [0] +CN(c1cc(Cl)c(O)c(Cl)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1oc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +CCc1sccc1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2[nH]c(=O)[nH]c2c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc1; [None]; [None]; [0] +CN(c1cc(O)cc(Br)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc(C(=O)NC2CC2)cc1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1cc(N(C)c2ccc3ncn(C)c(=O)c3c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(N(C)c2ccc3ncn(C)c(=O)c3c2)cc(C)c1O; [None]; [None]; [0] +Cc1nc2ccc(N(C)c3ccc4ncn(C)c(=O)c4c3)cc2o1; [None]; [None]; [0] +CN(c1cc(F)c(O)c(F)c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['CNC(=O)c1ccccc1B(O)O', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9993505477905273, 0.9984753131866455, 0.9963637590408325, 0.9856723546981812, 0.9700965285301208] +CSc1cccc(N(C)c2ccc3ncn(C)c(=O)c3c2)c1; [None]; [None]; [0] +CN(c1ccc2c(=O)[nH][nH]c2c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CCOc1ccccc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.999967098236084, 0.9999595284461975, 0.9999330043792725, 0.999213695526123, 0.9992028474807739, 0.992355465888977] +Cc1nnc(-c2ccccc2-c2ncnc3nc[nH]c23)[nH]1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1N(C)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +CN(c1ccc2ncn(C)c(=O)c2c1)c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncnc3nc[nH]c23)c1; ['Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C']; ['OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Clc1ncnc2nc[nH]c12']; [0.999981164932251, 0.9999003410339355, 0.9996939897537231] +COC(C)(C)CCc1ncnc2nc[nH]c12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1ccc2c(-c3ncnc4nc[nH]c34)ccnc2c1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; ['Clc1ncnc2nc[nH]c12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9956259727478027, 0.993192195892334, 0.9639244675636292] +CCn1cc(-c2ncnc3nc[nH]c23)cn1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; [0.9999419450759888, 0.9995138645172119, 0.9977095723152161, 0.993815004825592] +O=C([O-])c1ccccc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'FC(F)(F)Oc1ccccc1Br', 'Clc1ncnc2nc[nH]c12', 'FC(F)(F)Oc1ccccc1I']; ['OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Clc1ncnc2nc[nH]c12', 'OB(O)c1ccccc1OC(F)(F)F', 'c1ncc2[nH]cnc2n1', 'FC(F)(F)Oc1ccccc1Br', 'c1ncc2[nH]cnc2n1']; [0.9999487400054932, 0.999829888343811, 0.9993423223495483, 0.9987888336181641, 0.9984869956970215, 0.9980983734130859, 0.9956893920898438] +Fc1cc(F)cc(Cc2ncnc3nc[nH]c23)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ncnc2nc[nH]c12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'NC(=O)c1ccccc1B(O)O']; ['Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'c1ncc2[nH]cnc2n1']; [0.9999270439147949, 0.99986732006073, 0.998772144317627, 0.9869273900985718, 0.9698077440261841, 0.9665631055831909, 0.929375946521759, 0.8537496328353882] +c1ccc(Cn2cc(-c3ncnc4nc[nH]c34)cn2)cc1; ['Ic1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1']; ['OB(O)c1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999762773513794, 0.9999366998672485, 0.999860405921936, 0.9994201064109802, 0.999009907245636, 0.9941599369049072, 0.9694086313247681] +O=C(Nc1cccc(-c2ncnc3nc[nH]c23)c1)c1ccccc1; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1ncnc2nc[nH]c12']; [0.9999576807022095, 0.9997910261154175, 0.9996155500411987, 0.9991803169250488] +CC(C)C(=O)COc1ncnc2nc[nH]c12; ['CC(C)C(=O)CBr']; ['Oc1ncnc2nc[nH]c12']; [0.77607661485672] +Cn1cnc2ccc(-c3ncnc4nc[nH]c34)cc2c1=O; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ncnc2nc[nH]c12']; ['OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ncnc2nc[nH]c12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999219179153442, 0.9998706579208374, 0.998930811882019, 0.9952619075775146] +OCCn1cc(-c2ncnc3nc[nH]c23)cn1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ncnc4nc[nH]c34)[nH]2)cc1; [None]; [None]; [0] +COc1cnc(-c2ncnc3nc[nH]c23)nc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ncnc3nc[nH]c23)cs1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3nc[nH]c23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3nc[nH]c23)s1; [None]; [None]; [0] +Cc1ccc(-c2ncnc3nc[nH]c23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Brc1ncnc2nc[nH]c12', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; ['Ic1ncnc2nc[nH]c12', 'Cc1ccc(B(O)O)c(Br)c1', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.9995546340942383, 0.9989352226257324, 0.9974314570426941, 0.9713952541351318] +Cc1nc(N)sc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12']; ['Cc1csc(N)n1']; [0.8596956729888916] +Clc1cccc(Cl)c1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1cccc(Cl)c1Br', 'Clc1ncnc2nc[nH]c12', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'c1ncc2[nH]cnc2n1', 'OB(O)c1c(Cl)cccc1Cl', 'c1ncc2[nH]cnc2n1']; [0.9991974830627441, 0.9990912675857544, 0.9844481945037842, 0.9651614427566528, 0.9563244581222534] +Cc1nc2ccccn2c1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1cncc(CNc2ncnc3nc[nH]c23)c1; ['Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'NCc1cccnc1', 'CSc1ncnc2nc[nH]c12']; ['NCc1cccnc1', 'NCc1cccnc1', 'O=c1[nH]cnc2nc[nH]c12', 'NCc1cccnc1']; [0.9999966025352478, 0.9999443292617798, 0.9999256134033203, 0.9995650053024292] +Brc1cccc(-c2ncnc3nc[nH]c23)c1; ['Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C']; ['OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Clc1ncnc2nc[nH]c12']; [0.9999469518661499, 0.9987635612487793, 0.9987220764160156] +c1ccn2c(-c3ncnc4nc[nH]c34)cnc2c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ncnc3nc[nH]c23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ncnc2nc[nH]c12', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Ic1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Cc1ccc(Cl)c(B(O)O)c1', 'c1ncc2[nH]cnc2n1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; [0.9999593496322632, 0.9999302625656128, 0.9998472929000854, 0.9984326362609863, 0.9983479976654053, 0.9950845241546631, 0.9931701421737671] +c1cnn2c(-c3ncnc4nc[nH]c34)cnc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ncnc4nc[nH]c34)ccc2c1; ['Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.9999334812164307, 0.999457061290741, 0.9294956922531128] +Cc1c(-c2ncnc3nc[nH]c23)sc(=O)n1C; [None]; [None]; [0] +O=C(Nc1ncnc2nc[nH]c12)c1cccs1; ['Clc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12']; ['NC(=O)c1cccs1', 'O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9997957944869995, 0.9884753823280334, 0.9794971942901611] +c1ccc2c(c1)ncn2-c1ncnc2nc[nH]c12; ['Clc1ncnc2nc[nH]c12']; ['c1ccc2[nH]cnc2c1']; [0.9988504648208618] +c1nc(NCCc2c[nH]cn2)c2[nH]cnc2n1; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CSc1ncnc2nc[nH]c12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.999497652053833, 0.998763382434845, 0.9968517422676086] +c1cncc(Nc2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Ic1cccnc1', 'Ic1ncnc2nc[nH]c12', 'Nc1cccnc1', 'Brc1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'Nc1ncnc2nc[nH]c12', 'Nc1cccnc1', 'O=c1[nH]cnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12']; [0.9999454021453857, 0.9999288320541382, 0.999873161315918, 0.9997337460517883, 0.9995466470718384, 0.957545280456543] +c1cc(Cn2cncn2)cc(-c2ncnc3nc[nH]c23)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Clc1ncnc2nc[nH]c12']; [0.9998557567596436, 0.9430029988288879] +c1cnn2ncc(-c3ncnc4nc[nH]c34)c2c1; ['Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Clc1ncnc2nc[nH]c12']; [0.9999841451644897, 0.9991790056228638] +c1ccc(CCNc2ncnc3nc[nH]c23)cc1; ['Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CSc1ncnc2nc[nH]c12']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9997807741165161, 0.9995381236076355, 0.9978095293045044] +c1ccc2c(-c3ncnc4nc[nH]c34)cncc2c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1ncnc2nc[nH]c12']; ['Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1', 'OB(O)c1cncc2ccccc12']; [0.9999166131019592, 0.9998016357421875, 0.9992767572402954, 0.9992064237594604, 0.9980565309524536, 0.9970072507858276, 0.9953969120979309, 0.9897042512893677] +Nc1nccc(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +Clc1ccc(CNc2ncnc3nc[nH]c23)cc1; ['NCc1ccc(Cl)cc1', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CSc1ncnc2nc[nH]c12']; ['O=c1[nH]cnc2nc[nH]c12', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9999890327453613, 0.9999605417251587, 0.9998977184295654, 0.9995952844619751] +CCCn1cnc(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ncnc4nc[nH]c34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ncnc4nc[nH]c34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ncnc4nc[nH]c34)cc2CS1(=O)=O; [None]; [None]; [0] +OCc1cccc(-c2ncnc3nc[nH]c23)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; ['Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1']; [0.9999717473983765, 0.9987122416496277, 0.9984697699546814, 0.9904010891914368] +Oc1cccc(-c2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(I)c1']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.9999629259109497, 0.9998065233230591, 0.9993342757225037, 0.9988723397254944, 0.8870320320129395, 0.7653567790985107] +O=C([O-])Cc1cccc(-c2ncnc3nc[nH]c23)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3ncnc4nc[nH]c34)ccc21; [None]; [None]; [0] +c1nc(-c2ccc(-c3cn[nH]c3)cc2)c2[nH]cnc2n1; [None]; [None]; [0] +c1cc(Nc2ncnc3nc[nH]c23)ccn1; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Nc1ccncc1', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'O=c1[nH]cnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12']; [0.9999902248382568, 0.999981701374054, 0.9999746680259705, 0.9968422651290894] +Fc1ccccc1CNc1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'NCc1ccccc1F', 'Clc1ncnc2nc[nH]c12', 'CSc1ncnc2nc[nH]c12']; ['NCc1ccccc1F', 'O=c1[nH]cnc2nc[nH]c12', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.9999997615814209, 0.9999979734420776, 0.9999976754188538, 0.9998579621315002] +c1nc(-c2csc3ncncc23)c2[nH]cnc2n1; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9999821186065674, 0.9999330639839172, 0.9998255968093872] +CC(C)n1cc(-c2ncnc3nc[nH]c23)nn1; [None]; [None]; [0] +COc1cc(-c2ncnc3nc[nH]c23)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncnc4nc[nH]c34)cc2c1; [None]; [None]; [0] +CSc1nc(-c2ncnc3nc[nH]c23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1nc(CCc2c[nH]nn2)c2[nH]cnc2n1; [None]; [None]; [0] +c1ccc(Oc2ncnc3nc[nH]c23)nc1; ['Clc1ncnc2nc[nH]c12']; ['Oc1ccccn1']; [0.7649750113487244] +CCC(=O)Nc1ccc(-c2ncnc3nc[nH]c23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1ncnc2nc[nH]c12']; [0.9979289770126343] +Nc1ncncc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Nc1ncncc1Br', 'Nc1ncncc1I']; ['Nc1ncncc1Br', 'Nc1ncncc1Br', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.999612033367157, 0.9989458322525024, 0.99863600730896, 0.9599129557609558] +O=C(Nc1ncnc2nc[nH]c12)c1c(Cl)cccc1Cl; ['Brc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12']; ['NC(=O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9997191429138184, 0.9932510852813721, 0.9901003241539001, 0.967109739780426] +Nc1nc(-c2ncnc3nc[nH]c23)cs1; [None]; [None]; [0] +Fc1ccc(-c2ncnc3nc[nH]c23)c(C(F)(F)F)c1; ['Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Fc1ccc(I)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'c1ncc2[nH]cnc2n1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'c1ncc2[nH]cnc2n1']; [0.9999557733535767, 0.9999368190765381, 0.9997602701187134, 0.9995834827423096, 0.9990980625152588, 0.9990562796592712, 0.9969778060913086] +CC(=O)Nc1cccc(-c2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.9998520016670227, 0.9993849396705627, 0.9965951442718506, 0.9944267272949219, 0.9919435381889343, 0.9821151494979858] +CS(=O)(=O)C1CCN(c2ncnc3nc[nH]c23)CC1; ['Brc1ncnc2nc[nH]c12', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Clc1ncnc2nc[nH]c12']; [0.9884670972824097, 0.9829292297363281] +CCNc1nc2ccc(-c3ncnc4nc[nH]c34)cc2s1; [None]; [None]; [0] +Cn1cc(-c2ncnc3nc[nH]c23)c2ccccc21; ['Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9970110654830933, 0.9954330921173096] +NC(=O)CCCc1ncnc2nc[nH]c12; [None]; [None]; [0] +CC(C)(COc1ncnc2nc[nH]c12)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ncnc2nc[nH]c12; [None]; [None]; [0] +COc1ccc(-c2ncnc3nc[nH]c23)cc1Cl; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'Brc1ncnc2nc[nH]c12', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'Ic1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'COc1ccc(Br)cc1Cl', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999958872795105, 0.9999921321868896, 0.9999920129776001, 0.9999717473983765, 0.9997701644897461, 0.9980988502502441, 0.985926628112793, 0.9770107269287109, 0.9729814529418945] +c1ccn2ncc(-c3ncnc4nc[nH]c34)c2c1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'Clc1ncnc2nc[nH]c12', 'OB(O)c1cnn2ccccc12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999915361404419, 0.9999629855155945, 0.999896764755249, 0.9998192191123962, 0.9993649125099182, 0.9951874017715454, 0.9896596074104309] +CCCn1cc(-c2ncnc3nc[nH]c23)cn1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1']; [0.9999896287918091, 0.9998680949211121, 0.9997715353965759, 0.9994872808456421, 0.9661783576011658] +C[S@](=O)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['Brc1ncnc2nc[nH]c12']; ['CS(=O)c1ccc(B(O)O)cc1']; [0.9988409280776978] +CCN(CC)c1ncnc2nc[nH]c12; ['CCNCC', 'Brc1ncnc2nc[nH]c12', 'CCNCC', 'CCNCC']; ['O=c1[nH]cnc2nc[nH]c12', 'CCNCC', 'Clc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12']; [0.997673511505127, 0.9975351095199585, 0.997248649597168, 0.9917832016944885] +[NH3+]Cc1ccc(-c2ncnc3nc[nH]c23)cc1C(F)(F)F; [None]; [None]; [0] +C[C@@H](Oc1ncnc2nc[nH]c12)c1c(Cl)cncc1Cl; ['Brc1ncnc2nc[nH]c12', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1ncnc2nc[nH]c12']; [0.9995871782302856, 0.9470698237419128] +CCNS(=O)(=O)c1ccccc1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12']; ['CCNS(=O)(=O)c1ccccc1Br']; [0.9716835021972656] +O=C1CCc2cccc(-c3ncnc4nc[nH]c34)c21; [None]; [None]; [0] +O=c1cc(-c2ncnc3nc[nH]c23)cc[nH]1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ncnc3nc[nH]c23)cc1; [None]; [None]; [0] +COc1cc(CCc2ncnc3nc[nH]c23)cc(OC)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1ncnc2nc[nH]c12']; [0.9971942901611328] +COc1ccncc1Nc1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1Br', 'COc1ccncc1N']; ['COc1ccncc1N', 'Clc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12', 'O=c1[nH]cnc2nc[nH]c12']; [0.9999952912330627, 0.9999935626983643, 0.9999631643295288, 0.9999374151229858, 0.9998913407325745] +c1ccc2ncc(Nc3ncnc4nc[nH]c34)cc2c1; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'O=c1[nH]cnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12', 'Nc1ncnc2nc[nH]c12']; [0.999994158744812, 0.9999651908874512, 0.99970543384552, 0.9960424900054932, 0.9899357557296753] +COc1cccc(F)c1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'Clc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999948740005493, 0.9999846816062927, 0.9998782873153687, 0.9998732805252075, 0.9998193383216858, 0.9965188503265381, 0.9658454656600952] +O=c1[nH]ccc2oc(-c3ncnc4nc[nH]c34)cc12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ncnc3nc[nH]c23)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ncnc3nc[nH]c23)c1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ncnc4nc[nH]c34)cc12; [None]; [None]; [0] +c1cc2c(-c3ncnc4nc[nH]c34)c[nH]c2cn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1nc(-c2cnc3[nH]ccc3c2)c2[nH]cnc2n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['Brc1ncnc2nc[nH]c12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ncnc2nc[nH]c12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ncnc2nc[nH]c12']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2nc[nH]c12', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999256134033203, 0.9992043972015381, 0.9991073608398438, 0.9980378150939941, 0.9878013134002686, 0.8231912851333618] +CNS(=O)(=O)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ncnc2nc[nH]c12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ncnc2nc[nH]c12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Ic1ncnc2nc[nH]c12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ncnc2nc[nH]c12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; [0.999945878982544, 0.9997757077217102, 0.9984291791915894, 0.998116135597229, 0.9979404807090759, 0.9918078780174255] +c1nc(-c2ccc(N3CCOCC3)cc2)c2[nH]cnc2n1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ncnc2nc[nH]c12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'c1ncc2[nH]cnc2n1']; [0.9999943375587463, 0.9999792575836182, 0.9995090961456299, 0.9987696409225464, 0.8232808113098145] +CC1(c2ncnc3nc[nH]c23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ncnc2nc[nH]c12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ncnc2nc[nH]c12', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2nc[nH]c12']; [0.999997615814209, 0.999994158744812, 0.9998971223831177, 0.9998407959938049, 0.9997395277023315, 0.9977984428405762] +C[C@H](Nc1ncnc2nc[nH]c12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ncnc2nc[nH]c12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'CSc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12']; ['O=c1[nH]cnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Oc1ncnc2nc[nH]c12', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; [0.9987179040908813, 0.9982618093490601, 0.9980130195617676, 0.9973658323287964, 0.996636688709259, 0.9953568577766418] +C[C@@H](Nc1ncnc2nc[nH]c12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'CSc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12']; ['O=c1[nH]cnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; [0.9987179040908813, 0.9980130195617676, 0.996636688709259, 0.9953568577766418] +OCCc1cn(-c2ncnc3nc[nH]c23)cn1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ncnc2nc[nH]c12; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Clc1ncnc2nc[nH]c12', 'Fc1cccc(Cl)c1I']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'Ic1ncnc2nc[nH]c12', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'OB(O)c1c(F)cccc1Cl', 'c1ncc2[nH]cnc2n1']; [0.9999879598617554, 0.9999653697013855, 0.9999651908874512, 0.9998995661735535, 0.9998237490653992, 0.9995447397232056, 0.9990873336791992, 0.9984778761863708, 0.9927006959915161] +OCc1ccn(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ncnc2nc[nH]c12; ['Clc1ncnc2nc[nH]c12']; ['Oc1cccc2[nH]ncc12']; [0.9531297087669373] +Cc1cc(-c2ncnc3nc[nH]c23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1nc(-c2ccc(-n3cncn3)cc2)c2[nH]cnc2n1; [None]; [None]; [0] +Oc1ccc2nc(-c3ncnc4nc[nH]c34)[nH]c2c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ncnc3nc[nH]c23)cc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; ['Ic1ncnc2nc[nH]c12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Clc1ncnc2nc[nH]c12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'c1ncc2[nH]cnc2n1']; [0.9999655485153198, 0.9999425411224365, 0.9994531273841858, 0.999176025390625, 0.9983747005462646, 0.9871472120285034, 0.9810209274291992] +COc1ccc(-c2ncnc3nc[nH]c23)c(OC)c1; ['Brc1ncnc2nc[nH]c12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ncnc2nc[nH]c12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ncnc2nc[nH]c12', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['COc1ccc(B(O)O)c(OC)c1', 'Ic1ncnc2nc[nH]c12', 'Ic1ncnc2nc[nH]c12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'COc1ccc(Br)c(OC)c1', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999938011169434, 0.9999905228614807, 0.99998939037323, 0.9999867677688599, 0.9999751448631287, 0.9998252391815186, 0.9992426633834839, 0.9987916350364685, 0.9985215663909912] +CSc1nc(C)c(-c2ncnc3nc[nH]c23)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1nc(-c2nncn2C2CC2)c2[nH]cnc2n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3nc[nH]c23)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ncnc5nc[nH]c45)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1ncnc2nc[nH]c12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ncnc2nc[nH]c12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4nc[nH]c34)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ncnc3nc[nH]c23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3nc[nH]c23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ncnc3nc[nH]c23)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3nc[nH]c23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +c1cc(-c2ncnc3nc[nH]c23)c2sccc2c1; ['Brc1ncnc2nc[nH]c12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Clc1ncnc2nc[nH]c12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999963641166687, 0.9996131658554077, 0.998584508895874, 0.9723190069198608] +C[C@@H2]NC(=O)N1CCC(c2ncnc3nc[nH]c23)CC1; [None]; [None]; [0] +c1ccc2sc(-c3ncnc4nc[nH]c34)nc2c1; [None]; [None]; [0] +c1cc(-c2ncnc3nc[nH]c23)c2snnc2c1; ['Brc1cccc2nnsc12']; ['c1ncc2[nH]cnc2n1']; [0.9207368493080139] +CC1(C)Oc2ccc(-c3ncnc4nc[nH]c34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4nc[nH]c34)c2)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ncnc3nc[nH]c23)c(F)c1; [None]; [None]; [0] +Nc1cncc(-c2ncnc3nc[nH]c23)n1; [None]; [None]; [0] +c1ccc2nc(-c3ncnc4nc[nH]c34)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3ncnc4nc[nH]c34)c[nH]c2c1; [None]; [None]; [0] +Nc1nc(-c2ncnc3nc[nH]c23)nc2ccccc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncnc3nc[nH]c23)[nH]1; [None]; [None]; [0] +c1nc(-c2ncc3cc[nH]c3n2)c2[nH]cnc2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncnc2nc[nH]c12; [None]; [None]; [0] +COc1ccc(Oc2ncnc3nc[nH]c23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Clc1ncnc2nc[nH]c12']; [0.9766747951507568] +COc1ccc(OC)c(-c2ncnc3nc[nH]c23)c1; ['Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'Clc1ncnc2nc[nH]c12', 'c1ncc2[nH]cnc2n1', 'c1ncc2[nH]cnc2n1']; [0.9999395608901978, 0.9999393820762634, 0.9999237060546875, 0.9970043301582336, 0.9943100214004517, 0.9902864098548889, 0.9764046669006348, 0.9628168344497681] +OCCn1cnc(-c2ncnc3nc[nH]c23)c1; [None]; [None]; [0] +COc1ncccc1-c1ncnc2nc[nH]c12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ncnc2nc[nH]c12', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; ['Ic1ncnc2nc[nH]c12', 'COc1ncccc1B(O)O', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12']; [0.999955415725708, 0.9996110796928406, 0.9985382556915283, 0.9985024333000183] +c1ccc2[nH]c(C3CCN(c4ncnc5nc[nH]c45)CC3)nc2c1; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'O=c1[nH]cnc2nc[nH]c12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9998977184295654, 0.9990787506103516, 0.9984245300292969] +CN(C)S(=O)(=O)c1cccc(-c2ncnc3nc[nH]c23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ncnc2nc[nH]c12', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Ic1ncnc2nc[nH]c12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'Clc1ncnc2nc[nH]c12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Clc1ncnc2nc[nH]c12']; [0.9999936819076538, 0.9999912977218628, 0.9999663829803467, 0.9999460577964783, 0.9996511936187744, 0.9995403289794922, 0.9922691583633423, 0.9902278184890747] +CN(C)c1cc(-c2ncnc3nc[nH]c23)cnn1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ncnc3nc[nH]c23)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3nc[nH]c23)c1)C1CCNCC1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ncnc3nc[nH]c23)CC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +c1ccc2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ncc2c1; [None]; [None]; [0] +COc1ncccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +COc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc(OC)c1OC; [None]; [None]; [0] +COc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +Oc1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +c1cnn2c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cnc2c1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +Cc1cc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)sn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)nc2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2)CC1; [None]; [None]; [0] +c1cnc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +c1ccc2c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)nccc2c1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cn2)c1; [None]; [None]; [0] +c1cc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)ncn1; [None]; [None]; [0] +O=C(c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1)N1CCOCC1; [None]; [None]; [0] +c1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc(C2CCNCC2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2C1; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)s1; [None]; [None]; [0] +CC(C)c1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc(N)n1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cn3c(-c4cn[nH]c4)cnc3cn2)C1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cn3c(-c4cn[nH]c4)cnc3cn2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +Brc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +c1cc2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccn2n1; [None]; [None]; [0] +c1ccc2c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1Cl; [None]; [None]; [0] +c1cc2c(cc1-c1cn3c(-c4cn[nH]c4)cnc3cn1)CCO2; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +c1cc2c(c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c1)OCO2; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +c1ccc2ncc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2c1; [None]; [None]; [0] +COc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)ccc1O; [None]; [None]; [0] +c1ccc(-c2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)n[nH]2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +c1n[nH]cc1-c1cnc2cnc(-c3scc4c3OCCO4)cn12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cn1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)n2)c1; [None]; [None]; [0] +Nc1nc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cs1; [None]; [None]; [0] +CC1(COc2cn3c(-c4cn[nH]c4)cnc3cn2)COC1; [None]; [None]; [0] +CSc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cn3c(-c4cn[nH]c4)cnc3cn2)CC1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +COc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1OC; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2)CC1; [None]; [None]; [0] +CCc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +O=C1CCc2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccc2N1; [None]; [None]; [0] +Fc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(Cl)c1; [None]; [None]; [0] +Brc1cnc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Cc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc(N)n1; [None]; [None]; [0] +Clc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(Cl)c1; [None]; [None]; [0] +COc1ccc(CNc2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)C1; [None]; [None]; [0] +c1cc2cnc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)nn2c1; [None]; [None]; [0] +COc1ccc2cccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c2c1; [None]; [None]; [0] +Cn1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1cc(F)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1OC; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccc2O1; [None]; [None]; [0] +COc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)ccc1Cl; [None]; [None]; [0] +Oc1ccc2cccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c2c1; [None]; [None]; [0] +OCCn1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cn1; [None]; [None]; [0] +Clc1cnc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +Cc1cc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)nn1C; [None]; [None]; [0] +Cc1csc2c(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Nc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)sc1C; [None]; [None]; [0] +O=C(Nc1cn2c(-c3cn[nH]c3)cnc2cn1)c1ccco1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +COc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cn3c(-c4cn[nH]c4)cnc3cn2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cn3c(-c4cn[nH]c4)cnc3cn2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cn3c(-c4cn[nH]c4)cnc3cn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +c1cc2cn[nH]c2cc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CCn1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cn1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +c1cc2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ncc2s1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +Cn1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c2ccccc21; [None]; [None]; [0] +CCc1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)n1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)[nH]c2c1; [None]; [None]; [0] +c1n[nH]cc1-c1cnc2cnc(-c3ncn4c3CCCC4)cn12; [None]; [None]; [0] +Cc1cc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)ccc12; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1cn2c(-c3cn[nH]c3)cnc2cn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(Cl)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cn2)CC1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cn4c(-c5cn[nH]c5)cnc4cn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +Cc1cc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)ncc1F; [None]; [None]; [0] +c1ccc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +Fc1ccc(Nc2cn3c(-c4cn[nH]c4)cnc3cn2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cn3c(-c4cn[nH]c4)cnc3cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +CCOc1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999998807907104, 0.9999973773956299, 0.9947012662887573] +Cc1ccc(C(=O)NCCO)cc1-c1cn2c(-c3cn[nH]c3)cnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cn3c(-c4cn[nH]c4)cnc3cn2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +COc1ncccc1-c1cn2ccnc2c(N)n1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1I']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999879002571106, 0.9997134208679199, 0.9895070791244507, 0.9767900705337524, 0.941054105758667, 0.9137978553771973] +CS(=O)(=O)c1cccc(-c2cn3ccnc3c(N)n2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999951124191284, 0.9993942975997925] +Nc1nc(-c2ncc3ccccc3n2)cn2ccnc12; [None]; [None]; [0] +COc1cc(-c2cn3ccnc3c(N)n2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999856948852539, 0.9999797344207764, 0.9953140616416931, 0.9936527013778687] +Cc1ccc2ncn(-c3cn4ccnc4c(N)n3)c2c1; ['Cc1ccc2nc[nH]c2c1']; ['Nc1nc(Br)cn2ccnc12']; [0.999432384967804] +Nc1nc(-c2cccc(O)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cccc(O)c1']; [0.9999988079071045, 0.9999372959136963] +Cc1nc(C(C)(C)O)sc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +COc1ccc(-c2cn3ccnc3c(N)n2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999997615814209, 0.9999812245368958, 0.9868535995483398, 0.978547215461731] +N#Cc1ccc(O)c(-c2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +Nc1nc(-c2cnc3cccnn23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(N3CCOCC3)cc2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(C(=O)[O-])cc2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2nc3ccccc3[nH]2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cccc(NC(=O)C3CC3)c2)cn2ccnc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['NC(=O)c1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999749660491943] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cn4ccnc4c(N)n3)cc2)CC1; [None]; [None]; [0] +Nc1nc(Nc2ncccn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2nccc3ccccc23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cccc(C3CCNCC3)c2)cn2ccnc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999997019767761, 0.9999889135360718] +Nc1nc(-c2ccc(C(=O)Nc3ccccc3)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [1.0, 0.9999983310699463, 0.999028205871582] +N#Cc1cccc(Cn2cc(-c3cn4ccnc4c(N)n3)cn2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc(OCCO)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OCCOc1ccc(B(O)O)cc1']; [0.999998927116394, 0.9999616146087646] +Nc1nc(-c2ccc(C(=O)N3CCOCC3)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999997615814209, 0.9999970197677612, 0.9998126029968262] +Nc1nc(-c2ccc(C(F)(F)F)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999961256980896, 0.9998639225959778, 0.9988204836845398] +CNS(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999984502792358, 0.999898374080658, 0.7585279941558838] +CN(C)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999884963035583, 0.9948049783706665, 0.9883968830108643] +C[C@H](O)COc1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +Nc1nc(-c2ccc(C(=O)N3CCOCC3)cn2)cn2ccnc12; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)CS(=O)(=O)C3)cn2ccnc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999997615814209, 0.9999840259552002, 0.9961713552474976] +Cc1nc(C)c(-c2cn3ccnc3c(N)n2)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9998745322227478, 0.940837025642395] +Nc1nc(Cc2ccccc2O)cn2ccnc12; [None]; [None]; [0] +Nc1nc([C@H]2CCN(C(=O)c3ccccc3)C2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(Br)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(Br)cc1', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999980926513672, 0.9996174573898315, 0.9993703961372375, 0.9041517972946167] +Nc1ncc(Cc2cn3ccnc3c(N)n2)cn1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cn3ccnc3c(N)n2)nc1; [None]; [None]; [0] +CC(C)c1cc(-c2cn3ccnc3c(N)n2)nc(N)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cn4ccnc4c(N)n3)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cn3ccnc3c(N)n2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9881478548049927, 0.9743949174880981] +CCN(CC)C(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999987483024597, 0.999727725982666] +Cc1c(C(=O)[O-])cccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999906420707703, 0.9998603463172913, 0.997539758682251] +COc1ccc(Cl)cc1-c1cn2ccnc2c(N)n1; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.999997615814209, 0.9999822378158569] +Nc1nc(-c2c[nH]c3ccccc23)cn2ccnc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999845027923584, 0.9997000694274902] +Nc1nc(-c2ccccc2-n2cccn2)cn2ccnc12; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Brc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccccc1-n1cccn1', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999995231628418, 0.9999977946281433, 0.9999853372573853, 0.9281361103057861] +COc1ccc(Cc2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +COc1cc(OC)c(-c2cn3ccnc3c(N)n2)cc1Cl; [None]; [None]; [0] +COc1cc(-c2cn3ccnc3c(N)n2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999982118606567, 0.9992759227752686] +Nc1nc(-c2ccc3c(c2)CCO3)cn2ccnc12; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Ic1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999991655349731, 0.9999917149543762, 0.9987051486968994, 0.9968627095222473] +Nc1nc(-c2ccn3nccc3n2)cn2ccnc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cn3ccnc3c(N)n2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999991655349731, 0.9999809265136719] +Nc1nc(-c2cccc3c2OCO3)cn2ccnc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Ic1cccc2c1OCO2']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cccc2c1OCO2', 'Nc1nccn2ccnc12']; [0.9999938011169434, 0.9996168613433838, 0.9951509237289429] +CC(C)c1ccc2nc(-c3cn4ccnc4c(N)n3)[nH]c2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2cc(-c3ccccc3)[nH]n2)cn2ccnc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999932050704956, 0.9983843564987183, 0.9937002658843994] +Nc1nc(-c2cnc3ccccc3c2)cn2ccnc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cnc2ccccc2c1', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999982118606567, 0.9996018409729004, 0.9985836744308472] +CN(C)C(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999935030937195] +CC(C)(C)c1ccc(-c2cn3ccnc3c(N)n2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999987483024597, 0.9996637105941772] +Nc1nc(Cc2nc3ccc(F)c(F)c3[nH]2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2scc3c2OCCO3)cn2ccnc12; [None]; [None]; [0] +Nc1nc(Cc2nc3c(F)c(F)ccc3[nH]2)cn2ccnc12; [None]; [None]; [0] +Cc1ccc(-c2cn3ccnc3c(N)n2)c(=O)[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cn3ccnc3c(N)n2)c1; ['COc1cccc(C(N)=O)c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9995501041412354] +Nc1nc(Cc2nc3ccccc3[nH]2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cc3ccccc3s2)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['OB(O)c1cc2ccccc2s1']; [0.9999995231628418] +CC(=O)N[C@@H]1CC[C@@H](c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CSc1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999994039535522, 0.9999474287033081] +Nc1nc(CCCc2ccccc2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cn3ccnc3c(N)n2)cs1; [None]; [None]; [0] +Nc1nc(-c2ccn(-c3cccc(Cl)c3)n2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(F)cc2Cl)cn2ccnc12; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(F)cc1Cl']; [0.9999966621398926, 0.9999631643295288] +Nc1nc(-c2ncc(Br)cn2)cn2ccnc12; [None]; [None]; [0] +CCc1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999995827674866, 0.9999722242355347] +COc1ccc(-c2cn3ccnc3c(N)n2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.999998927116394, 0.9999730587005615, 0.9938446283340454] +CCN1CCN(Cc2ccc(-c3cn4ccnc4c(N)n3)cc2)CC1; [None]; [None]; [0] +CC[C@@H](CO)c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)CCC(=O)N3)cn2ccnc12; [None]; [None]; [0] +Cc1cc(-c2cn3ccnc3c(N)n2)nc(N)n1; [None]; [None]; [0] +Nc1nc(-c2ccc(Cl)cc2Cl)cn2ccnc12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999938011169434, 0.9999651908874512] +Nc1nc([C@H](CO)Cc2ccccc2)cn2ccnc12; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +COc1cc(-c2cn3ccnc3c(N)n2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999991655349731, 0.9991186857223511, 0.9935067892074585] +Nc1nc(-c2cccc3ccc(O)cc23)cn2ccnc12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1nc(Br)cn2ccnc12']; [0.9999830722808838] +Nc1nc(-c2ncc3cccn3n2)cn2ccnc12; [None]; [None]; [0] +Cn1cc(-c2cn3ccnc3c(N)n2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999983310699463, 0.9999971389770508] +Nc1nc(CCCn2cncn2)cn2ccnc12; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cn4ccnc4c(N)n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cn4ccnc4c(N)n3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cn3ccnc3c(N)n2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999998211860657, 0.9999995231628418] +COc1cc(-c2cn3ccnc3c(N)n2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999924898147583, 0.9995629787445068] +Nc1nc(-c2cnn(CCO)c2)cn2ccnc12; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OCCn1cc(B(O)O)cn1']; [0.9999676942825317, 0.9988678693771362] +Nc1nc(-c2ncc(Cl)cn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cc3ccccn3n2)cn2ccnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cn3ccnc3c(N)n2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1csc2c(-c3cn4ccnc4c(N)n3)ncnc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cn3ccnc3c(N)n2)nc1; [None]; [None]; [0] +Nc1nc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cn2ccnc12; [None]; [None]; [0] +COc1cc(-c2cn3ccnc3c(N)n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(OC)cc(-c2cn3ccnc3c(N)n2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999958872795105, 0.9999924898147583, 0.9970421195030212] +Nc1nc(-c2ccc3cn[nH]c3c2)cn2ccnc12; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc2cn[nH]c2c1']; [1.0, 0.9999996423721313] +COc1ccc2oc(-c3cn4ccnc4c(N)n3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999737739562988] +CCn1cc(-c2cn3ccnc3c(N)n2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999995231628418, 0.9999500513076782] +COc1cc(CS(C)(=O)=O)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cn3ccnc3c(N)n1)cn2C; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cn3ccnc3c(N)n2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9784464836120605] +CCNC(=O)N1CCC(c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cn2ccnc2c(N)n1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999996423721313] +C[NH+](C)Cc1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +Nc1nc(-c2cc3ccccc3o2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(OC(F)(F)F)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 0.9999997019767761] +COc1ccc2nc(-c3cn4ccnc4c(N)n3)[nH]c2c1; [None]; [None]; [0] +Nc1nc(-c2cc(-c3cccnc3)ccn2)cn2ccnc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cn3ccnc3c(N)n2)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9998871088027954] +Cn1cc(-c2cn3ccnc3c(N)n2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1nc(Br)cn2ccnc12']; [0.9999980330467224] +Nc1nc(-c2cccc(NC(=O)N3CCCC3)c2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ncc3sccc3n2)cn2ccnc12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cn4ccnc4c(N)n3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999997019767761] +CN(C)c1ccc(-c2cn3ccnc3c(N)n2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999986886978149, 0.9993276596069336, 0.9988343119621277] +Cc1cc(-c2cn3ccnc3c(N)n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cn4ccnc4c(N)n3)ccc21; [None]; [None]; [0] +Cn1ncc2cc(-c3cn4ccnc4c(N)n3)ccc21; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 1.0] +CC(=O)N1CCC(n2cc(-c3cn4ccnc4c(N)n3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999994039535522] +CCc1cccc(-c2cn3ccnc3c(N)n2)n1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cn4ccnc4c(N)n3)[nH]c2c1; [None]; [None]; [0] +Nc1nc(-c2ncn3c2CCCC3)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cccc(N3CCCC3=O)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'O=C1CCCN1c1cccc(Br)c1']; [0.999998927116394, 0.9963864088058472] +Nc1nc(NC(=O)c2cccc(OC(F)(F)F)c2)cn2ccnc12; ['NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999956488609314] +Nc1nc(-c2ccc(CCO)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1']; [0.9999985694885254, 0.9999479651451111, 0.9803379774093628] +Cc1ncc(-c2ccc(-c3cn4ccnc4c(N)n3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3ccnc3c(N)n2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3ccnc3c(N)n2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.999997079372406, 0.9972474575042725] +CCNC(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999967813491821] +CCNC(=O)Cc1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cn3ccnc3c(N)n2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cn2ccnc2c(N)n1; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1nc(Br)cn2ccnc12']; [0.9999674558639526] +Cn1nc(-c2cn3ccnc3c(N)n2)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccccc1-c1cn2ccnc2c(N)n1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999986290931702, 0.9999804496765137, 0.9987355470657349] +C[C@H](CS(C)(=O)=O)c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cn2ccnc2c(N)n1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999462962150574, 0.9995145797729492] +Cc1ccc(C(=O)NCCO)cc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cn3ccnc3c(N)n2)[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +COC(C)(C)CCc1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2ccccc2OC(F)(F)F)cn2ccnc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999994039535522, 0.9999464750289917] +Nc1nc(-c2ccnc3ccccc23)cn2ccnc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Nc1nc(Br)cn2ccnc12', 'Ic1ccnc2ccccc12']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'OB(O)c1ccnc2ccccc12', 'Nc1nccn2ccnc12']; [0.9999955892562866, 0.9996193647384644, 0.9995189905166626, 0.9576050043106079] +Nc1nc(-c2cccc(C(F)(F)F)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1nccn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.999999463558197, 0.9999872446060181, 0.99997878074646, 0.9942904114723206] +Nc1nc(-c2ccccc2C(=O)[O-])cn2ccnc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cn2ccnc2c(N)n1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999685287475586, 0.9985582828521729] +Nc1nc(-c2cnn(Cc3ccccc3)c2)cn2ccnc12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999992251396179, 0.9998769164085388] +Nc1nc(Cc2cc(F)cc(F)c2)cn2ccnc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cn4ccnc4c(N)n3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1nc(Br)cn2ccnc12']; [0.9885081052780151] +Nc1nc(-c2cccc(NC(=O)c3ccccc3)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999995231628418, 0.9999860525131226] +Nc1nc(-c2cc(Cl)ccc2Cl)cn2ccnc12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.999992847442627, 0.9999182820320129] +CC(C)(C)c1nc(-c2cn3ccnc3c(N)n2)cs1; [None]; [None]; [0] +Cc1ccc(-c2cn3ccnc3c(N)n2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9913469552993774] +Nc1nc(-c2cnc(-c3ccccc3)[nH]2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-n2ncc3cccc(F)c3c2=O)cn2ccnc12; [None]; [None]; [0] +COc1cnc(-c2cn3ccnc3c(N)n2)nc1; [None]; [None]; [0] +CC(C)C(=O)COc1cn2ccnc2c(N)n1; [None]; [None]; [0] +CNc1nc(C)c(-c2cn3ccnc3c(N)n2)s1; [None]; [None]; [0] +Nc1nc(-c2c(Cl)cccc2Cl)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'Nc1nccn2ccnc12']; [0.9989361763000488, 0.9772809743881226] +Cc1nc(N)sc1-c1cn2ccnc2c(N)n1; ['Cc1csc(N)n1']; ['Nc1nc(Br)cn2ccnc12']; [0.9928896427154541] +Nc1nc(-c2cccc(Br)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cccc(Br)c1']; [0.9999973773956299, 0.9997649788856506] +Nc1nc(-c2cccc(Cn3cncn3)c2)cn2ccnc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cn3ccnc3c(N)n2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999899864196777, 0.9999005198478699] +Cc1nc2ccccn2c1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2cnc3ccccn23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(NCc2cccnc2)cn2ccnc12; ['NCc1cccnc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9999381303787231] +Nc1nc(NC(=O)c2cccs2)cn2ccnc12; ['NC(=O)c1cccs1']; ['Nc1nc(Br)cn2ccnc12']; [0.9991819858551025] +Cc1c(-c2cn3ccnc3c(N)n2)sc(=O)n1C; [None]; [None]; [0] +Nc1nc(-c2ccc3ccccc3c2)cn2ccnc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc2ccccc2c1', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999997615814209, 0.9999898672103882, 0.9946476221084595, 0.9911680221557617] +Nc1nc(Nc2cccnc2)cn2ccnc12; ['Nc1cccnc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9987668395042419] +Nc1nc(-c2cnn3ncccc23)cn2ccnc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1nc(Br)cn2ccnc12']; [0.9999987483024597] +Nc1nc(NCCc2c[nH]cn2)cn2ccnc12; ['NCCc1c[nH]cn1']; ['Nc1nc(Br)cn2ccnc12']; [0.9994741678237915] +Nc1nc(-n2cnc3ccccc32)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['c1ccc2[nH]cnc2c1']; [0.999986469745636] +Nc1nc(-c2c[nH]nc2C(F)(F)F)cn2ccnc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12', 'Nc1nccn2ccnc12']; [0.9999957084655762, 0.9891520142555237, 0.9392626285552979] +Nc1nc(NCCc2ccccc2)cn2ccnc12; ['NCCc1ccccc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9997537732124329] +NC(=O)c1c(F)cccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2cncc3ccccc23)cn2ccnc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cncc2ccccc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [0.999991774559021, 0.9989681243896484, 0.9976691007614136, 0.9336022138595581] +Cn1cc(-c2ccc(-c3cn4ccnc4c(N)n3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9986729025840759] +Nc1[nH]nc2cc(-c3cn4ccnc4c(N)n3)ccc12; [None]; [None]; [0] +Nc1nccc(-c2cn3ccnc3c(N)n2)n1; [None]; [None]; [0] +Nc1nc(NCc2ccc(Cl)cc2)cn2ccnc12; ['NCc1ccc(Cl)cc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9998641014099121] +Nc1nc(-c2cccc(CC(=O)[O-])c2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(-c3cn[nH]c3)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [1.0, 0.9999474287033081] +Nc1nc(-c2cccc(CO)c2)cn2ccnc12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OCc1cccc(B(O)O)c1']; [0.9999894499778748, 0.9987407922744751] +Nc1nc(Nc2ccncc2)cn2ccnc12; ['Nc1ccncc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9977434873580933] +Nc1nc(NCc2ccccc2F)cn2ccnc12; ['NCc1ccccc1F']; ['Nc1nc(Br)cn2ccnc12']; [0.9999765753746033] +CN1c2ccc(-c3cn4ccnc4c(N)n3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cn3ccnc3c(N)n2)n1; [None]; [None]; [0] +COc1cc(-c2cn3ccnc3c(N)n2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(-c2csc3ncncc23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cc3ccccc3[nH]2)cn2ccnc12; [None]; [None]; [0] +CC(C)n1cc(-c2cn3ccnc3c(N)n2)nn1; [None]; [None]; [0] +CSc1nc(-c2cn3ccnc3c(N)n2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(CCc2c[nH]nn2)cn2ccnc12; [None]; [None]; [0] +N#CCCc1cccc(-c2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc(F)cc2C(F)(F)F)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999828934669495] +Nc1ncncc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +Nc1nc(Oc2ccccn2)cn2ccnc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cn4ccnc4c(N)n3)cc2s1; [None]; [None]; [0] +Nc1nc(-c2cnn3ccccc23)cn2ccnc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cnn2ccccc12']; [0.9999998211860657, 0.9999940395355225] +CS(=O)(=O)C1CCN(c2cn3ccnc3c(N)n2)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Nc1nc(Br)cn2ccnc12']; [0.9937896728515625] +Nc1nc(NC(=O)c2c(Cl)cccc2Cl)cn2ccnc12; ['NC(=O)c1c(Cl)cccc1Cl']; ['Nc1nc(Br)cn2ccnc12']; [0.9993715882301331] +COc1ccc(-c2cn3ccnc3c(N)n2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999910593032837, 0.9944486618041992] +CC(C)(COc1cn2ccnc2c(N)n1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cn3ccnc3c(N)n2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999994039535522, 0.9999046325683594] +NC(=O)CCCc1cn2ccnc2c(N)n1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cn2ccnc2c(N)n1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +C[C@@H](Oc1cn2ccnc2c(N)n1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1nc(Br)cn2ccnc12']; [0.7535112500190735] +Nc1nc(-c2cccc3c2C(=O)CC3)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['O=C1CCc2cccc(Br)c21']; [0.9906988143920898] +CCNS(=O)(=O)c1ccccc1-c1cn2ccnc2c(N)n1; ['CCNS(=O)(=O)c1ccccc1Br']; ['Nc1nc(Br)cn2ccnc12']; [0.9817866086959839] +CCN(CC)c1cn2ccnc2c(N)n1; ['CCNCC']; ['Nc1nc(Br)cn2ccnc12']; [0.9635626077651978] +Nc1nc(-c2cc[nH]c(=O)c2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cn2ccnc12; [None]; [None]; [0] +COc1ccncc1Nc1cn2ccnc2c(N)n1; ['COc1ccncc1N']; ['Nc1nc(Br)cn2ccnc12']; [0.9996314644813538] +C[S@](=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; [None]; [None]; [0] +COc1cc(CCc2cn3ccnc3c(N)n2)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cn3ccnc3c(N)n2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.999998152256012, 0.999847948551178] +COc1cccc(F)c1-c1cn2ccnc2c(N)n1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; [1.0, 0.9999994039535522, 0.9999371767044067] +Nc1nc(Nc2cnccc2-c2ccccc2)cn2ccnc12; ['Nc1cnccc1-c1ccccc1']; ['Nc1nc(Br)cn2ccnc12']; [0.9993361234664917] +Nc1nc(-c2cc3c(=O)[nH]ccc3o2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(Nc2cnc3ccccc3c2)cn2ccnc12; ['Nc1cnc2ccccc2c1']; ['Nc1nc(Br)cn2ccnc12']; [0.9998445510864258] +Nc1nc(-c2cc3c(=O)[nH]cc(Br)c3s2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cnc3[nH]ccc3c2)cn2ccnc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999991655349731] +CS(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [1.0, 0.9999887943267822, 0.9879102110862732] +CNC(=O)c1c(F)cccc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cn3ccnc3c(N)n2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999997615814209, 0.9999916553497314, 0.9700420498847961] +Nc1nc(-c2c[nH]c3cnccc23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-n2ccc(CO)n2)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['OCc1cc[nH]n1']; [0.9770684242248535] +CN(c1cn2ccnc2c(N)n1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2cn3ccnc3c(N)n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cn2ccnc2c(N)n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1cn2ccnc2c(N)n1)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Nc1nc(Br)cn2ccnc12']; [0.8003117442131042] +Nc1nc(-c2c(F)cccc2Cl)cn2ccnc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1c(F)cccc1Cl']; [0.9999995827674866, 0.9999818801879883] +C[C@@H](Nc1cn2ccnc2c(N)n1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Nc1nc(Br)cn2ccnc12']; [0.8003117442131042] +CC1(c2cn3ccnc3c(N)n2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1nc(-n2ncc3c(O)cccc32)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-n2ncc3ccccc32)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-n2cnc(CCO)c2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccc(-n3cncn3)cc2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2nc3ccc(O)cc3[nH]2)cn2ccnc12; [None]; [None]; [0] +COc1ccc(-c2cn3ccnc3c(N)n2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.999997615814209, 0.9999653100967407] +Nc1nc(-c2ccc(C(=O)c3ccccc3)cc2)cn2ccnc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1nc(Br)cn2ccnc12', 'Nc1nccn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.9999996423721313, 0.9999911785125732, 0.9937198758125305] +CSc1nc(C)c(-c2cn3ccnc3c(N)n2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +Nc1nc(-c2nncn2C2CC2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2ccn(CC[NH3+])n2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(CCC(=O)NCc2ccccn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(CS(=O)(=O)NCc2ccccn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cn(Cc3ccccc3)nn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(Cc2nnc3ccc(-c4ccccc4)nn23)cn2ccnc12; [None]; [None]; [0] +CCc1cc(-c2cn3ccnc3c(N)n2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cn3ccnc3c(N)n2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cn3ccnc3c(N)n2)n1; [None]; [None]; [0] +CCCCc1cc(-c2cn3ccnc3c(N)n2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cn2ccnc2c(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn3ccnc3c(N)n2)s1; [None]; [None]; [0] +Nc1nc(Oc2ccc(C[NH3+])cc2F)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cccc3ccsc23)cn2ccnc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1nc(Br)cn2ccnc12']; ['Nc1nc(Br)cn2ccnc12', 'OB(O)c1cccc2ccsc12']; [0.9999998211860657, 0.9999593496322632] +Nc1nc(-c2nc3ccccc3s2)cn2ccnc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cn4ccnc4c(N)n3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cn3ccnc3c(N)n2)n1; [None]; [None]; [0] +Nc1nc(-c2cccc3nnsc23)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3cccnc23)cn2ccnc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cn4ccnc4c(N)n3)nc2NC1=O; [None]; [None]; [0] +COc1ccc(Oc2cn3ccnc3c(N)n2)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Nc1nc(Br)cn2ccnc12']; [0.9888778924942017] +Nc1nc(-c2cn3ccnc3c(N)n2)nc2ccccc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cn2ccnc2c(N)n1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999989867210388, 0.9999927282333374, 0.9990089535713196] +COc1ccc(OC)c(-c2cn3ccnc3c(N)n2)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Nc1nc(Br)cn2ccnc12', 'Nc1nc(Br)cn2ccnc12']; [0.9999942779541016, 0.9999809265136719] +CC(=O)Nc1ncc(-c2cn3ccnc3c(N)n2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cn(CCO)cn2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(N2CCC(c3nc4ccccc4[nH]3)CC2)cn2ccnc12; ['Nc1nc(Br)cn2ccnc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999558925628662] +Nc1nc(-c2ncc3cc[nH]c3n2)cn2ccnc12; [None]; [None]; [0] +Nc1nc(-c2cccc(NC(=O)C3CCNCC3)c2)cn2ccnc12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cn3ccnc3c(N)n2)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cn3ccnc3c(N)n2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cn3ccnc3c(N)n2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999409914016724, 0.9987295866012573] +Nc1nc(N2CC=C(c3c[nH]c4ccccc34)CC2)cn2ccnc12; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999245405197144, 0.9968353509902954, 0.943422794342041] +Cn1cc(-c2cccc(S(C)(=O)=O)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999973773956299, 0.9998184442520142, 0.999753475189209, 0.9968735575675964] +Cc1nc(C(C)(C)O)sc1-c1cc(N)c(=O)n(C)c1; ['Cc1csc(C(C)(C)O)n1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9757300615310669] +COc1ncccc1-c1cc(N)c(=O)n(C)c1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9997805953025818, 0.9996662139892578, 0.9966851472854614, 0.9951131343841553, 0.9872124195098877] +COc1cc(-c2cc(N)c(=O)n(C)c2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9998223185539246, 0.9936051368713379, 0.7828793525695801] +Cc1ccc2ncn(-c3cc(N)c(=O)n(C)c3)c2c1; ['Cc1ccc2nc[nH]c2c1']; ['Cn1cc(Br)cc(N)c1=O']; [0.895352840423584] +COc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9998974800109863, 0.9987539052963257, 0.973178505897522, 0.9349555969238281] +Cn1cc(-c2cc(C#N)ccc2O)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['N#Cc1ccc(O)c(B(O)O)c1']; [0.9930503368377686] +Cn1cc(-c2cccc(O)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc(O)c1']; [0.9958255290985107, 0.9928819537162781] +Cn1cc(-c2ccc(N3CCOCC3)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1ccc(N2CCOCC2)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cn1cc(Br)cc(N)c1=O']; [0.9999973773956299, 0.9999666213989258, 0.9998356103897095, 0.9980403780937195, 0.9965646862983704, 0.8597521185874939] +Cn1cc(-c2cnc3cccnn23)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ncc3ccccc3n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cccc(NC(=O)C3CC3)c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(C(N)=O)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9998214244842529, 0.9987645149230957, 0.9970879554748535, 0.9689465165138245] +Cn1cc(-c2nccc3ccccc23)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['OB(O)c1nccc2ccccc12']; [0.9983625411987305] +Cn1cc(-c2nc3ccccc3[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)[O-])cc2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cnn(Cc3cccc(C#N)c3)c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Cn1cc(Cl)cc(N)c1=O', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999832510948181, 0.9993324875831604, 0.9990683794021606, 0.8816516399383545] +Cn1cc(-c2ccc(OCCO)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999373555183411, 0.9977109432220459, 0.9639975428581238] +Cn1cc(-c2cccc(C3CCNCC3)c2)cc(N)c1=O; ['Brc1cccc(C2CCNCC2)c1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9802279472351074] +Cn1cc(Nc2ncccn2)cc(N)c1=O; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)c(=O)n(C)c3)cc2)CC1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999741315841675, 0.9996809959411621, 0.9779362678527832] +Cn1cc(-c2ccc(C(=O)N3CCOCC3)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9999978542327881, 0.9999582767486572, 0.9995330572128296, 0.9855732917785645] +CNS(=O)(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9984415769577026, 0.9890126585960388, 0.9865753054618835] +C[C@H](O)COc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(F)(F)F)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999530911445618, 0.9985026121139526, 0.9520589709281921] +C[C@@H](O)COc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999707937240601, 0.9997274279594421, 0.9993361234664917, 0.9771461486816406, 0.7698399424552917] +Cn1cc(-c2ccc(C(=O)N3CCOCC3)cn2)cc(N)c1=O; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9997280836105347, 0.9968982934951782, 0.9930373430252075, 0.8102083206176758] +Cn1cc(-c2ccc3c(c2)CS(=O)(=O)C3)cc(N)c1=O; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)c(=O)n(C)c2)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999423027038574, 0.9739270210266113] +CCNS(=O)(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9833638668060303] +CCCOc1ccc(-c2cc(N)c(=O)n(C)c2)nc1; ['CCCOc1ccc(Br)nc1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9919954538345337] +Cn1cc(C2CCN(S(C)(=O)=O)CC2)cc(N)c1=O; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)c(=O)n(C)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(Br)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(Br)cc1']; [0.9997848272323608, 0.9912557005882263] +Cn1cc(Cc2cnc(N)nc2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(Cc2ccccc2O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc([C@H]2CCN(C(=O)c3ccccc3)C2)cc(N)c1=O; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(N)c(=O)n(C)c3)c2)CC1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999938011169434, 0.9998115301132202, 0.9976953268051147, 0.8868544101715088] +Cc1c(C(=O)[O-])cccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9923356771469116, 0.9757647514343262, 0.8805853128433228] +CN(C)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(N)c(=O)n(C)c1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9988449811935425, 0.9988381266593933] +Cn1cc(-c2ccccc2-n2cccn2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1ccccc1-n1cccn1']; ['OB(O)c1ccccc1-n1cccn1', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1ccccc1-n1cccn1', 'Cn1cc(Br)cc(N)c1=O']; [0.9999344348907471, 0.9997172355651855, 0.9929081797599792, 0.9882639050483704, 0.9450820684432983] +Cn1cc(-c2ccn3nccc3n2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['c1cnc2ccnn2c1']; [0.9333846569061279] +Cn1cc(-c2c[nH]c3ccccc23)cc(N)c1=O; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O']; [0.9979132413864136] +COc1ccc(Cc2cc(N)c(=O)n(C)c2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(N)c(=O)n(C)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9996097683906555, 0.9918242692947388, 0.8273870944976807] +Cn1cc(-c2ccc3c(c2)CCO3)cc(N)c1=O; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1ccc2c(c1)CCO2']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Cn1cc(Br)cc(N)c1=O']; [0.9999829530715942, 0.999842643737793, 0.9918006658554077, 0.9913499355316162] +CC(=O)Nc1cccc(-c2cc(N)c(=O)n(C)c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9998036623001099, 0.9994142055511475, 0.958023726940155] +COc1cc(OC)c(-c2cc(N)c(=O)n(C)c2)cc1Cl; [None]; [None]; [0] +Cn1cc(-c2cccc3c2OCO3)cc(N)c1=O; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1cccc2c1OCO2']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Cn1cc(Br)cc(N)c1=O']; [0.9998552799224854, 0.9992800951004028, 0.9899406433105469, 0.7719535827636719] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2cnc3ccccc3c2)cc(N)c1=O; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Brc1cnc2ccccc2c1', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cnc2ccccc2c1', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cnc2ccccc2c1']; [0.9999650716781616, 0.9879340529441833, 0.8516565561294556, 0.8159470558166504] +Cn1cc(-c2ccc(C(C)(C)C)cc2)cc(N)c1=O; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999843835830688, 0.9996795058250427, 0.9929234981536865] +Cn1cc(-c2cc(-c3ccccc3)[nH]n2)cc(N)c1=O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.999982476234436, 0.9998146295547485, 0.9993699789047241, 0.9797415733337402] +CC(C)c1ccc2nc(-c3cc(N)c(=O)n(C)c3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(C)(C)C)nc2)cc(N)c1=O; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999328255653381, 0.998176097869873, 0.9909327626228333] +Cn1cc(Cc2nc3c(F)c(F)ccc3[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2csc(N)n2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1nc(Cl)cs1']; [0.8655186295509338] +Cc1ccc(-c2cc(N)c(=O)n(C)c2)c(=O)[nH]1; [None]; [None]; [0] +Cn1cc(-c2scc3c2OCCO3)cc(N)c1=O; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)c(=O)n(C)c2)CC1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9996875524520874, 0.9971094131469727, 0.9955078363418579, 0.9361664056777954] +COc1cccc(C(=O)Nc2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +Cn1cc(-c2cc3ccccc3s2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['c1ccc2sccc2c1', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1']; [0.9964885711669922, 0.9962843656539917, 0.9938790798187256, 0.8123548030853271] +Cn1cc(Cc2nc3ccc(F)c(F)c3[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(CCCc2ccccc2)cc(N)c1=O; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(N)c(=O)n(C)c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9991880655288696, 0.9873255491256714] +Cn1cc(-c2ccc(F)cc2Cl)cc(N)c1=O; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1']; [0.9998583793640137, 0.999369204044342, 0.9768201112747192] +Cn1cc(Cc2nc3ccccc3[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccn(-c3cccc(Cl)c3)n2)cc(N)c1=O; [None]; [None]; [0] +Cc1cc(-c2cc(N)c(=O)n(C)c2)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2cc(N)c(=O)n(C)c2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9998406767845154, 0.9964116811752319, 0.9411661028862, 0.750336229801178] +CCc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999209642410278, 0.9962784051895142, 0.9216467142105103] +Cn1cc(-c2ccc(Cl)cc2Cl)cc(N)c1=O; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9996700882911682, 0.9989770650863647] +CC[C@@H](CO)c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc([C@H](CO)Cc2ccccc2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)CCC(=O)N3)cc(N)c1=O; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999876022338867, 0.9995214343070984, 0.9671937823295593] +COc1cc(-c2cc(N)c(=O)n(C)c2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9999300241470337] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)CC(C)(C)O3)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cc(N)c(=O)n(C)c2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9997613430023193, 0.9992551207542419, 0.9932465553283691, 0.9235225319862366] +COc1ccc2cccc(-c3cc(N)c(=O)n(C)c3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9466912746429443] +COc1cc(F)c(-c2cc(N)c(=O)n(C)c2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.999173641204834, 0.9981650114059448, 0.9870116710662842] +Cn1cc(-c2ncc(Br)cn2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cccc3ccc(O)cc23)cc(N)c1=O; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O']; [0.9969038367271423] +COc1cc(-c2cc(N)c(=O)n(C)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999926686286926, 0.9998691082000732, 0.9997336864471436, 0.9862749576568604, 0.8813743591308594] +Cn1cc(-c2ncc3cccn3n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cc3ccccn3n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(CCCn2cncn2)cc(N)c1=O; [None]; [None]; [0] +Cc1csc2c(-c3cc(N)c(=O)n(C)c3)ncnc12; [None]; [None]; [0] +Cn1cc(-c2cnn(CCO)c2)cc(N)c1=O; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O', 'OCCn1cc(B(O)O)cn1', 'Cn1cc(Cl)cc(N)c1=O']; [0.994795560836792, 0.9315276145935059, 0.8725844621658325] +CNC(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9998300075531006, 0.9978125095367432] +Cn1cc(-c2cc(N)nc3[nH]ccc23)cc(N)c1=O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +Cn1cc(-c2ncc(Cl)cn2)cc(N)c1=O; [None]; [None]; [0] +COc1cc(-c2cc(N)c(=O)n(C)c2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)c(=O)n(C)c2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9995050430297852, 0.9948457479476929, 0.8965247869491577] +COc1ccc2oc(-c3cc(N)c(=O)n(C)c3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9993716478347778] +CO[C@@H]1CC[C@@H](c2cc(N)c(=O)n(C)c2)CC1; [None]; [None]; [0] +CCn1cc(-c2cc(N)c(=O)n(C)c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9982725381851196, 0.8985801935195923, 0.8985463380813599] +CCNC(=O)N1CCC(c2cc(N)c(=O)n(C)c2)CC1; [None]; [None]; [0] +Cn1cc(-c2ccc3cn[nH]c3c2)cc(N)c1=O; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1ccc2cn[nH]c2c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1ccc2cn[nH]c2c1', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc2cn[nH]c2c1', 'Cn1cc(Br)cc(N)c1=O']; [0.9999915957450867, 0.9998519420623779, 0.9998198747634888, 0.9998145699501038, 0.9985405206680298, 0.9439491033554077] +Cn1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cc(N)c1=O; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(N)c(=O)n(C)c1)cn2C; [None]; [None]; [0] +Cn1cc(-c2cc3ccccc3o2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['OB(O)c1cc2ccccc2o1']; [0.9986473321914673] +CNC(=O)c1ccc(OC)c(-c2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +Cn1cc(-c2cccc(NC(=O)N3CCCC3)c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(C[NH+](C)C)cc2)cc(N)c1=O; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(-c3cccnc3)ccn2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ncc3sccc3n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(OC(F)(F)F)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; [0.9999982714653015, 0.9996062517166138, 0.9966928958892822, 0.7946524620056152] +Cn1cc(-c2cn(C)c3ccccc23)cc(N)c1=O; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Cn1cc(Br)cc(N)c1=O']; [0.999055027961731] +COc1ccc2nc(-c3cc(N)c(=O)n(C)c3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2ccc3c(cnn3C)c2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999996423721313, 0.999995231628418, 0.9999294281005859, 0.9987875819206238, 0.9900164604187012] +CCc1cccc(-c2cc(N)c(=O)n(C)c2)n1; [None]; [None]; [0] +Cn1cc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)cc(N)c1=O; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)c(=O)n(C)c2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999551177024841, 0.9988015294075012, 0.8926104307174683, 0.8646882772445679] +Cc1n[nH]c2cc(-c3cc(N)c(=O)n(C)c3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999939799308777, 0.9999887943267822, 0.9998149275779724, 0.9996602535247803, 0.9975131750106812, 0.9931517243385315] +Cc1cc(-c2cc(N)c(=O)n(C)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)c(Cl)nn3C)cc(N)c1=O; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)c(=O)n(C)c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9999901056289673] +Cn1cc(-c2ncn3c2CCCC3)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(NC(=O)c2cccc(OC(F)(F)F)c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(CCO)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O', 'OCCc1ccc(B(O)O)cc1', 'Cn1cc(Cl)cc(N)c1=O']; [0.9998078942298889, 0.9950574636459351, 0.9932068586349487] +Cn1cc(-c2cccc(N3CCCC3=O)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9998095631599426, 0.9762362837791443] +CN(C)C(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9993153214454651, 0.9750634431838989] +Cc1ncc(-c2ccc(-c3cc(N)c(=O)n(C)c3)cc2)n1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9974101185798645, 0.8867921233177185] +COc1cc(N2CCNCC2)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['Cn1cc(Br)cc(N)c1=O']; [0.8530140519142151] +Cn1cc(-c2cc(S(C)(=O)=O)ccc2Cl)cc(N)c1=O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)c(=O)n(C)c1; ['CNC(=O)c1ccccc1B(O)O']; ['Cn1cc(Br)cc(N)c1=O']; [0.9985560178756714] +CCOc1ccccc1-c1cc(N)c(=O)n(C)c1; ['CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9995783567428589, 0.9993337988853455, 0.9707095623016357] +Cn1nc(-c2cc(N)c(=O)n(C)c2)cc1C(C)(C)O; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)c(=O)n(C)c1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9996596574783325, 0.998875617980957] +Cc1nnc(-c2ccccc2-c2cc(N)c(=O)n(C)c2)[nH]1; [None]; [None]; [0] +Cn1cc(-c2ccnc3ccccc23)cc(N)c1=O; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Brc1ccnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccnc2ccccc12', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9972207546234131, 0.9941583871841431, 0.8870266675949097, 0.7650104761123657] +COC(C)(C)CCc1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2ccccc2OC(F)(F)F)cc(N)c1=O; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br']; [0.9995734691619873, 0.9988596439361572, 0.990277111530304, 0.8497036695480347] +Cn1cc(-c2cccc(C(F)(F)F)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc(C(F)(F)F)c1', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1']; [0.999943733215332, 0.9978771209716797, 0.9945998787879944, 0.9715862274169922, 0.9521317481994629, 0.9479957222938538] +Cn1cc(-c2ccccc2C(N)=O)cc(N)c1=O; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'NC(=O)c1ccccc1B(O)O', 'Cn1cc(Cl)cc(N)c1=O', 'NC(=O)c1ccccc1B(O)O']; [0.9910116195678711, 0.9827218055725098, 0.9585787057876587, 0.818257212638855] +Cn1cc(-c2ccccc2P(C)(C)=O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cnn(Cc3ccccc3)c2)cc(N)c1=O; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9998890161514282, 0.9979202747344971, 0.9876536130905151] +Cn1cc(Cc2cc(F)cc(F)c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2csc(C(C)(C)C)n2)cc(N)c1=O; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9999083280563354] +Cn1cc(-c2ccc3ncn(C)c(=O)c3c2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9873865842819214] +Cn1cc(-c2cccc(NC(=O)c3ccccc3)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999829530715942, 0.9999281167984009] +Cn1cc(-c2ccccc2C(=O)[O-])cc(N)c1=O; [None]; [None]; [0] +Cc1ccc(-c2cc(N)c(=O)n(C)c2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Cn1cc(Br)cc(N)c1=O']; [0.8487625122070312] +Cn1cc(-c2cc(Cl)ccc2Cl)cc(N)c1=O; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999325275421143, 0.9983566403388977, 0.9894803762435913] +Cn1cc(-c2cnc3ccccn23)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['c1ccn2ccnc2c1']; [0.9962588548660278] +Cn1cc(-c2cnc(-c3ccccc3)[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(N)c(=O)n(C)c1; ['Cc1csc(N)n1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9004570245742798] +Cn1cc(-c2cccc(Br)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9994394183158875, 0.9947014451026917, 0.8911867141723633] +Cn1cc(-n2ncc3cccc(F)c3c2=O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2c(Cl)cccc2Cl)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Clc1cccc(Cl)c1Br', 'Cn1cc(Cl)cc(N)c1=O']; ['OB(O)c1c(Cl)cccc1Cl', 'Cn1cc(Br)cc(N)c1=O', 'OB(O)c1c(Cl)cccc1Cl']; [0.9986922740936279, 0.9914366006851196, 0.7895023822784424] +CC(C)C(=O)COc1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +COc1cnc(-c2cc(N)c(=O)n(C)c2)nc1; [None]; [None]; [0] +Cn1cc(-c2cccc(Cn3cncn3)c2)cc(N)c1=O; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(N)c(=O)n(C)c2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9967798590660095, 0.9716808795928955, 0.9435137510299683] +Cc1nc2ccccn2c1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(NCc2cccnc2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['NCc1cccnc1']; [0.9600803256034851] +CNc1nc(C)c(-c2cc(N)c(=O)n(C)c2)s1; [None]; [None]; [0] +Cn1cc(Nc2cccnc2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1cccnc1']; [0.9908705949783325] +Cn1cc(-c2ccc3ccccc3c2)cc(N)c1=O; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1ccc2ccccc2c1']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Cn1cc(Br)cc(N)c1=O']; [0.9999571442604065, 0.9992550611495972, 0.9850318431854248, 0.8665062189102173] +Cn1cc(NC(=O)c2cccs2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccnc(N)n2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1nccc(Br)n1']; [0.9306291937828064] +Cn1cc(-c2cnn3ncccc23)cc(N)c1=O; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999978542327881, 0.9999203085899353, 0.9874671697616577] +Cn1cc(-n2cnc3ccccc32)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['c1ccc2[nH]cnc2c1']; [0.8292297124862671] +Cn1cc(NCCc2c[nH]cn2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9756686091423035, 0.9576752185821533] +Cn1cc(-c2cncc3ccccc23)cc(N)c1=O; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Brc1cncc2ccccc12']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1cncc2ccccc12', 'Cn1cc(Br)cc(N)c1=O']; [0.9998956918716431, 0.9997575283050537, 0.9988148212432861, 0.8894637823104858] +Cn1cc(-c2c[nH]nc2C(F)(F)F)cc(N)c1=O; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'FC(F)(F)c1cc[nH]n1']; [0.999599814414978, 0.9397035241127014] +Cc1c(-c2cc(N)c(=O)n(C)c2)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(-c2cccc(F)c2C(N)=O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(N)c(=O)n(C)c3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999980330467224, 0.9999189376831055, 0.9535021781921387] +Cn1cc(NCCc2ccccc2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc3c(N)[nH]nc3c2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9667412042617798] +Cn1cc(-c2cccc(CC(=O)[O-])c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(NCc2ccc(Cl)cc2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9388001561164856, 0.7928297519683838] +Cn1cc(-c2cccc(CO)c2)cc(N)c1=O; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1']; [0.9996931552886963, 0.9952058792114258, 0.986971378326416, 0.8914569616317749] +Cn1cc(Nc2ccncc2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1ccncc1']; [0.9770856499671936] +Cn1cc(-c2ccc(-c3cn[nH]c3)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.999993085861206, 0.9999016523361206, 0.9977000951766968, 0.9781062006950378] +Cn1cc(NCc2ccccc2F)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['NCc1ccccc1F', 'NCc1ccccc1F']; [0.96705561876297, 0.8679929971694946] +CCCn1cnc(-c2cc(N)c(=O)n(C)c2)n1; [None]; [None]; [0] +Cn1cc(-c2csc3ncncc23)cc(N)c1=O; ['Brc1csc2ncncc12']; ['Cn1cc(Br)cc(N)c1=O']; [0.8428652286529541] +CN1c2ccc(-c3cc(N)c(=O)n(C)c3)cc2CS1(=O)=O; [None]; [None]; [0] +COc1cc(-c2cc(N)c(=O)n(C)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Cn1cc(-c2cc3ccccc3[nH]2)cc(N)c1=O; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C']; ['Cn1cc(Br)cc(N)c1=O']; [0.9943779110908508] +CC(C)n1cc(-c2cc(N)c(=O)n(C)c2)nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(CCc2c[nH]nn2)cc(N)c1=O; [None]; [None]; [0] +CSc1nc(-c2cc(N)c(=O)n(C)c2)c[nH]1; [None]; [None]; [0] +Cn1cc(-c2cccc(CCC#N)c2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9985119104385376, 0.9732867479324341] +CCC(=O)Nc1ccc(-c2cc(N)c(=O)n(C)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9999541640281677] +Cn1cc(-c2ccc(F)cc2C(F)(F)F)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9997857809066772, 0.9979749321937561] +Cn1cc(NC(=O)c2c(Cl)cccc2Cl)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(N2CCC(S(C)(=O)=O)CC2)cc(N)c1=O; ['CS(=O)(=O)C1CCNCC1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9899928569793701] +Cn1cc(-c2cncnc2N)cc(N)c1=O; [None]; [None]; [0] +COc1ccc(-c2cc(N)c(=O)n(C)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999570846557617, 0.9996968507766724, 0.9981469511985779, 0.9901878237724304, 0.95257568359375, 0.8627617359161377] +CCNc1nc2ccc(-c3cc(N)c(=O)n(C)c3)cc2s1; [None]; [None]; [0] +Cn1cc(-c2cnn3ccccc23)cc(N)c1=O; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cnn2ccccc12', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999984502792358, 0.9999980330467224, 0.9999739527702332, 0.989471971988678] +Cn1cc(CCCC(N)=O)cc(N)c1=O; [None]; [None]; [0] +CCCn1cc(-c2cc(N)c(=O)n(C)c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9996381402015686, 0.9937121272087097, 0.9747445583343506] +Cn1cc(CCNC(=O)CC(C)(C)O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(OCC(C)(C)S(C)(=O)=O)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(Oc2ccccn2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cc[nH]c(=O)c2)cc(N)c1=O; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'O=c1cc(Br)cc[nH]1']; [0.9998612403869629, 0.7983044385910034] +Cn1cc(-c2cccc3c2C(=O)CC3)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['O=C1CCc2cccc(Br)c21']; [0.9304490089416504] +Cn1cc(-c2ccc([S@](C)=O)cc2)cc(N)c1=O; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9990347623825073, 0.9945520162582397, 0.9925292730331421, 0.9334271550178528] +CCNS(=O)(=O)c1ccccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(C)(C)N)cc2)cc(N)c1=O; [None]; [None]; [0] +CCN(CC)c1cc(N)c(=O)n(C)c1; ['CCNCC', 'CCNCC']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(F)cc([N+](=O)[O-])c1=O']; [0.9353538751602173, 0.9317299127578735] +Cn1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cc(N)c1=O; [None]; [None]; [0] +C[C@@H](Oc1cc(N)c(=O)n(C)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +COc1ccncc1Nc1cc(N)c(=O)n(C)c1; ['COc1ccncc1N']; ['Cn1cc(Br)cc(N)c1=O']; [0.9924542903900146] +CC(C)Oc1cncc(-c2cc(N)c(=O)n(C)c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9999930262565613, 0.9977409243583679] +COc1cccc(F)c1-c1cc(N)c(=O)n(C)c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.999882161617279, 0.996182382106781, 0.9790679216384888, 0.963854193687439] +Cn1cc(Nc2cnccc2-c2ccccc2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Nc1cnccc1-c1ccccc1']; [0.9935544729232788] +COc1cc(CCc2cc(N)c(=O)n(C)c2)cc(OC)c1; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]ccc3c2)cc(N)c1=O; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Brc1cnc2[nH]ccc2c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Cn1cc(Br)cc(N)c1=O']; [0.9999960660934448, 0.9999417066574097, 0.9981034398078918, 0.9907959699630737, 0.8302161693572998] +Cn1cc(-c2cc3c(=O)[nH]ccc3o2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(Nc2cnc3ccccc3c2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3cnccc23)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)cc(N)c1=O; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999191761016846, 0.9987843632698059, 0.9965598583221436, 0.9100784063339233] +Cn1cc(-c2ccc(S(C)(=O)=O)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O']; [0.9999632835388184, 0.9996228218078613, 0.9981957077980042, 0.9681257009506226] +CNC(=O)c1c(F)cccc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +CN(c1cc(N)c(=O)n(C)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cn1cc(-n2cnc(CCO)c2)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['OCCc1c[nH]cn1']; [0.783415675163269] +Cn1cc(C2(C)CCN(S(C)(=O)=O)CC2)cc(N)c1=O; [None]; [None]; [0] +C[C@@H](Nc1cc(N)c(=O)n(C)c1)C(C)(C)O; [None]; [None]; [0] +C[C@H](Nc1cc(N)c(=O)n(C)c1)C(C)(C)O; [None]; [None]; [0] +Cc1cc(-c2cc(N)c(=O)n(C)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cn1cc(-n2ccc(CO)n2)cc(N)c1=O; [None]; [None]; [0] +C[C@H](Nc1cc(N)c(=O)n(C)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1cc(-c2c(F)cccc2Cl)cc(N)c1=O; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br']; [0.9999893307685852, 0.9997299909591675, 0.9990624189376831] +Cn1cc(-c2ccc(-n3cncn3)cc2)cc(N)c1=O; [None]; [None]; [0] +COc1ccc(-c2cc(N)c(=O)n(C)c2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9993072748184204, 0.9985270500183105, 0.9842976331710815, 0.9227277040481567] +Cn1cc(-c2ccc(C(=O)c3ccccc3)cc2)cc(N)c1=O; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Cn1cc(Cl)cc(N)c1=O', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9998894929885864, 0.9989075660705566, 0.9951003789901733, 0.9075887203216553] +Cn1cc(-n2ncc3c(O)cccc32)cc(N)c1=O; ['Cn1cc(Br)cc(N)c1=O']; ['Oc1cccc2[nH]ncc12']; [0.8109592795372009] +CSc1nc(C)c(-c2cc(N)c(=O)n(C)c2)[nH]1; [None]; [None]; [0] +Cn1cc(-c2nc3ccc(O)cc3[nH]2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-n2ncc3ccccc32)cc(N)c1=O; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2nncn2C2CC2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(Cc2nnc3ccc(-c4ccccc4)nn23)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(CCC(=O)NCc2ccccn2)cc(N)c1=O; [None]; [None]; [0] +CCc1cc(-c2cc(N)c(=O)n(C)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(CS(=O)(=O)NCc2ccccn2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccn(CC[NH3+])n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cn(Cc3ccccc3)nn2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cccc(C(C)(C)O)n2)cc(N)c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)c(=O)n(C)c2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)c(=O)n(C)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(-c2nnc(N)s2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2nc3ccccc3s2)cc(N)c1=O; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['Cn1cc(Br)cc(N)c1=O']; [0.9986443519592285] +Cn1cc(C(N)=O)cc1-c1cc(N)c(=O)n(C)c1; [None]; [None]; [0] +Cn1cc(-c2cccc3ccsc23)cc(N)c1=O; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Cn1cc(Br)cc(N)c1=O', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Cn1cc(Cl)cc(N)c1=O']; ['Cn1cc(Br)cc(N)c1=O', 'OB(O)c1cccc2ccsc12', 'Cn1cc(Cl)cc(N)c1=O', 'OB(O)c1cccc2ccsc12']; [0.9999395608901978, 0.9995521306991577, 0.9989483952522278, 0.976952850818634] +Cn1cc(Oc2ccc(C[NH3+])cc2F)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)cc(N)c1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(N)c(=O)n(C)c2)CC1; [None]; [None]; [0] +Cn1cc(-c2cncc(N)n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cccc3nnsc23)cc(N)c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)c(=O)n(C)c3)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(N)c(=O)n(C)c1; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Cl)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.999491810798645, 0.9982810020446777, 0.9897071123123169, 0.9864136576652527, 0.8890078663825989] +COc1ccc(Oc2cc(N)c(=O)n(C)c2)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Cn1cc(Br)cc(N)c1=O']; [0.9229609370231628] +Cn1cc(-c2ncc3cc[nH]c3n2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2nc(N)c3ccccc3n2)cc(N)c1=O; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)c(=O)n(C)c2)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1']; ['Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O', 'Cn1cc(Br)cc(N)c1=O']; [0.9992303252220154, 0.991331934928894, 0.8239333629608154] +CC(=O)Nc1ncc(-c2cc(N)c(=O)n(C)c2)[nH]1; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3cccnc23)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(-c2cn(CCO)cn2)cc(N)c1=O; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)c(=O)n(C)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(N)c(=O)n(C)c2)cnn1; [None]; [None]; [0] +Cn1cc([C@H]2CC[C@@](C)(O)CC2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)cc(N)c1=O; [None]; [None]; [0] +Cn1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)cc(N)c1=O; [None]; [None]; [0] +CCOc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCOc1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999880790710449, 0.9999276399612427, 0.9998509883880615, 0.9996147155761719, 0.9982497096061707, 0.9910612106323242] +Cn1cc(-c2cccc(NC(=O)C3CCNCC3)c2)cc(N)c1=O; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +COc1ncccc1-c1ccnc2[nH]cnc12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccnc2[nH]cnc12']; ['Ic1ccnc2[nH]cnc12', 'COc1ncccc1B(O)O']; [0.9985531568527222, 0.9948725700378418] +CS(=O)(=O)c1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999996423721313, 0.9999968409538269, 0.9999666213989258, 0.9999268054962158, 0.9998815059661865, 0.9985314607620239] +c1ccc2nc(-c3ccnc4[nH]cnc34)ncc2c1; ['Ic1ccnc2[nH]cnc12']; ['c1ccc2ncncc2c1']; [0.8085482120513916] +COc1cc(-c2ccnc3[nH]cnc23)cc(OC)c1OC; ['Brc1ccnc2[nH]cnc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'Brc1ccnc2[nH]cnc12', 'COc1cc(B(O)O)cc(OC)c1OC']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'COc1cc(B(O)O)cc(OC)c1OC', 'Clc1ccnc2[nH]cnc12']; [0.9999755620956421, 0.9999687671661377, 0.9996753931045532, 0.9995660781860352, 0.9992200136184692, 0.9912927150726318] +c1cnn2c(-c3ccnc4[nH]cnc34)cnc2c1; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'COc1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999954700469971, 0.9999721050262451, 0.9999212622642517, 0.9994141459465027, 0.9988751411437988, 0.9914921522140503] +Cc1nc(C(C)(C)O)sc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccnc4[nH]cnc34)c2c1; [None]; [None]; [0] +Oc1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Clc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999260902404785, 0.9997941851615906, 0.998223602771759, 0.9974567294120789, 0.9932820796966553, 0.9576037526130676, 0.8529123067855835] +N#Cc1ccc(O)c(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccnc3[nH]cnc23)c1)C1CC1; ['Brc1ccnc2[nH]cnc12']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.985621452331543] +c1cc(-c2ccc(N3CCOCC3)cc2)c2nc[nH]c2n1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999997019767761, 0.999997615814209, 0.9999899864196777, 0.9999834299087524, 0.9999560117721558, 0.999667227268219] +c1ccc2[nH]c(-c3ccnc4[nH]cnc34)nc2c1; ['Nc1ccccc1N']; ['O=C(O)c1ccnc2[nH]cnc12']; [0.998826801776886] +O=C([O-])c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'NC(=O)c1ccc(B(O)O)cc1', 'Clc1ccnc2[nH]cnc12', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999992847442627, 0.9999932050704956, 0.9999579191207886, 0.999954104423523, 0.9997857809066772, 0.9987437129020691] +c1cnc(Nc2ccnc3[nH]cnc23)nc1; ['Brc1ccnc2[nH]cnc12', 'Brc1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'Ic1ccnc2[nH]cnc12', 'Fc1ncccn1']; ['Nc1ncccn1', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ncccn1', 'Nc1ccnc2[nH]cnc12']; [0.9961916208267212, 0.9888739585876465, 0.9838985204696655, 0.9669123888015747, 0.9610403776168823, 0.9601932764053345] +Cc1cc(Nc2ccnc3[nH]cnc23)sn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccnc4[nH]cnc34)cc2)CC1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999996423721313, 0.9999959468841553, 0.999955952167511, 0.9998109936714172, 0.9996913075447083, 0.9961026906967163] +c1ccc2c(-c3ccnc4[nH]cnc34)nccc2c1; [None]; [None]; [0] +c1cc(-c2ccnc3[nH]cnc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999970197677612, 0.9999833703041077, 0.9999350309371948, 0.9993292093276978, 0.9957205057144165] +N#Cc1cccc(Cn2cc(-c3ccnc4[nH]cnc34)cn2)c1; [None]; [None]; [0] +OCCOc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2ccnc3[nH]cnc23)nc1)N1CCOCC1; ['Brc1ccnc2[nH]cnc12']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999929666519165] +O=C(c1ccc(-c2ccnc3[nH]cnc23)cc1)N1CCOCC1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'c1cnc2[nH]cnc2c1', 'c1cnc2[nH]cnc2c1']; [0.9999997019767761, 0.9999994039535522, 0.9999933242797852, 0.9999923706054688, 0.9999917149543762, 0.9998922348022461, 0.9795945286750793, 0.9215555191040039, 0.7924373745918274] +c1cc(Nc2ccnc3[nH]cnc23)ncn1; ['Brc1ccnc2[nH]cnc12', 'Clc1ccncn1', 'Nc1ccnc2[nH]cnc12']; ['Nc1ccncn1', 'Nc1ccnc2[nH]cnc12', 'O=c1ccnc[nH]1']; [0.9993909597396851, 0.9970122575759888, 0.984009861946106] +C[C@H](O)COc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999954700469971, 0.9999895095825195, 0.9999686479568481, 0.9994288682937622, 0.9993100166320801, 0.9949826002120972] +C[C@@H](O)COc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999986886978149, 0.9999920725822449, 0.9999322295188904, 0.9999148845672607, 0.9998281002044678, 0.9980419874191284] +O=S1(=O)Cc2ccc(-c3ccnc4[nH]cnc34)cc2C1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999988079071045, 0.9999871253967285, 0.9999510645866394, 0.9998995065689087, 0.9993969202041626, 0.9968959093093872] +CCNS(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccnc2[nH]cnc12']; [0.9993870854377747, 0.9931992292404175] +CN(C)S(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccnc3[nH]cnc23)s1; [None]; [None]; [0] +CC(C)c1cc(-c2ccnc3[nH]cnc23)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2ccnc3[nH]cnc23)C1; [None]; [None]; [0] +CCCOc1ccc(-c2ccnc3[nH]cnc23)nc1; ['Brc1ccnc2[nH]cnc12']; ['CCCOc1ccc(Br)nc1']; [0.9926930665969849] +Brc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1']; [0.9999885559082031, 0.9999852180480957, 0.9998853206634521, 0.9969993829727173, 0.9943032264709473, 0.9494266510009766] +COc1ccc(Cl)cc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'COc1ccc(Cl)cc1B(O)O']; ['COc1ccc(Cl)cc1B(O)O', 'Clc1ccnc2[nH]cnc12']; [0.9997869729995728, 0.9735821485519409] +c1cc(-c2ccn3nccc3n2)c2nc[nH]c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)c(C)c1; ['Brc1ccnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Brc1ccnc2[nH]cnc12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9999880790710449, 0.9996589422225952, 0.9994614720344543, 0.9990903735160828] +CN(C)c1ccc(-c2ccnc3[nH]cnc23)cc1Cl; ['Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(Br)cc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)c1ccc(Br)cc1Cl', 'c1cnc2[nH]cnc2c1']; [0.9999995231628418, 0.9999983310699463, 0.999988317489624, 0.9856435060501099, 0.9706180095672607] +CCN(CC)C(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1ccnc2[nH]cnc12', 'CCN(CC)C(=O)c1ccc(I)cc1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'c1cnc2[nH]cnc2c1']; [0.9999964237213135, 0.9999874830245972, 0.9999458193778992, 0.9990603923797607, 0.998958170413971, 0.9915886521339417, 0.9435052871704102, 0.8893917798995972] +c1ccc2c(-c3ccnc4[nH]cnc34)c[nH]c2c1; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1c[nH]c2ccccc12']; [0.967606782913208] +c1ccc(-n2cccn2)c(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1ccccc1-n1cccn1']; [0.9996771812438965, 0.9993734359741211, 0.9968712329864502, 0.9923170804977417, 0.9789857864379883, 0.8277119398117065] +CC(=O)N1CCCN(c2cccc(-c3ccnc4[nH]cnc34)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +COc1cc(OC)c(-c2ccnc3[nH]cnc23)cc1Cl; [None]; [None]; [0] +c1cc(-c2ccc3c(c2)CCO3)c2nc[nH]c2n1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999964237213135, 0.9999905824661255, 0.999772310256958, 0.9995789527893066, 0.9880346059799194] +CC(=O)Nc1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccnc2[nH]cnc12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'c1cnc2[nH]cnc2c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999927282333374, 0.9999470710754395, 0.9998459815979004, 0.9996020793914795, 0.99775630235672, 0.9953242540359497, 0.9936544895172119, 0.9883651733398438, 0.8904175758361816] +c1cc2c(c(-c3ccnc4[nH]cnc34)c1)OCO2; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9998878240585327, 0.999567985534668, 0.9945454597473145, 0.9701646566390991] +CC(C)c1ccc2nc(-c3ccnc4[nH]cnc34)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]cnc23)ccc1O; ['Brc1ccnc2[nH]cnc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1ccnc2[nH]cnc12', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'COc1cc(B(O)O)ccc1O', 'Clc1ccnc2[nH]cnc12']; [0.9999925494194031, 0.9999798536300659, 0.9997929930686951, 0.999657154083252, 0.9996336102485657, 0.927588939666748] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999987483024597, 0.999988317489624, 0.9998853802680969, 0.9995938539505005, 0.99654221534729] +c1cc(-c2scc3c2OCCO3)c2nc[nH]c2n1; [None]; [None]; [0] +c1ccc2ncc(-c3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1cnc2ccccc2c1', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999921321868896, 0.99986732006073, 0.9995355606079102, 0.9989153146743774, 0.9983827471733093, 0.9742195010185242] +CN(C)C(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999968409538269, 0.999992311000824, 0.9999604225158691, 0.99965500831604, 0.9992956519126892, 0.9976099729537964] +CC(C)(C)c1ccc(-c2ccnc3[nH]cnc23)cn1; ['Brc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Brc1ccnc2[nH]cnc12']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CC(C)(C)c1ccc(Br)cn1']; [0.9999926090240479, 0.9999644756317139, 0.9998598098754883, 0.9990516901016235, 0.9948972463607788, 0.9748800992965698, 0.9079321622848511] +Nc1nc(-c2ccnc3[nH]cnc23)cs1; [None]; [None]; [0] +CC1(COc2ccnc3[nH]cnc23)COC1; ['CC1(CBr)COC1', 'CC1(CCl)COC1']; ['Oc1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12']; [0.9744751453399658, 0.9481498003005981] +c1ccc(-c2cc(-c3ccnc4[nH]cnc34)n[nH]2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccnc3[nH]cnc23)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1', 'COc1cccc(C(=O)Oc2ccccc2)c1', 'COc1cccc(C(=O)Cl)c1', 'CCOC(=O)c1cccc(OC)c1']; ['Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'O=[N+]([O-])c1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; [0.9995533227920532, 0.9984521865844727, 0.9979654550552368, 0.9963648319244385, 0.9896118640899658, 0.9840275049209595] +CC(=O)N[C@@H]1CC[C@@H](c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +CSc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CSc1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999899864196777, 0.9999554753303528, 0.999549388885498, 0.9971343278884888, 0.9905198812484741, 0.8938184380531311] +Clc1cccc(-n2ccc(-c3ccnc4[nH]cnc34)n2)c1; [None]; [None]; [0] +c1ccc2sc(-c3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1cc2ccccc2s1']; [0.9999339580535889] +Fc1ccc(-c2ccnc3[nH]cnc23)c(Cl)c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [0.9998940825462341, 0.9985281229019165, 0.9891005754470825] +CCN1CCN(Cc2ccc(-c3ccnc4[nH]cnc34)cc2)CC1; [None]; [None]; [0] +CCc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCc1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999930262565613, 0.9999164342880249, 0.9998018741607666, 0.9982025027275085, 0.9888147115707397, 0.9669748544692993] +O=C1CCc2cc(-c3ccnc4[nH]cnc34)ccc2N1; [None]; [None]; [0] +COc1ccc(CNc2ccnc3[nH]cnc23)cc1; ['COc1ccc(CN)cc1', 'Brc1ccnc2[nH]cnc12', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['Ic1ccnc2[nH]cnc12', 'COc1ccc(CN)cc1', 'Clc1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; [0.9950475096702576, 0.9942150115966797, 0.9141894578933716, 0.8603988885879517, 0.8545653223991394] +Clc1ccc(-c2ccnc3[nH]cnc23)c(Cl)c1; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1ccc(Cl)cc1Cl']; [0.9998747110366821] +Cc1cc(-c2ccnc3[nH]cnc23)nc(N)n1; [None]; [None]; [0] +Brc1cnc(-c2ccnc3[nH]cnc23)nc1; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]cnc23)cc1OC; [None]; [None]; [0] +c1cc2cnc(-c3ccnc4[nH]cnc34)nn2c1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +c1ccn2nc(-c3ccnc4[nH]cnc34)cc2c1; [None]; [None]; [0] +Cn1cc(-c2ccnc3[nH]cnc23)c(C(F)(F)F)n1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Clc1ccnc2[nH]cnc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9999159574508667, 0.9997587203979492, 0.9997257590293884, 0.9992271661758423, 0.8331474661827087] +O=C(C1CC1)N1CC(Nc2ccnc3[nH]cnc23)C1; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]cnc23)ccc1N1CCOCC1; [None]; [None]; [0] +Oc1ccc2cccc(-c3ccnc4[nH]cnc34)c2c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Ic1ccnc2[nH]cnc12']; [0.9997448921203613, 0.996574878692627] +COc1cc(F)c(-c2ccnc3[nH]cnc23)cc1OC; ['Brc1ccnc2[nH]cnc12', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['COc1cc(F)c(B(O)O)cc1OC', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.999265193939209, 0.9989665746688843, 0.9728606939315796, 0.9199970960617065] +CC1(C)Cc2cc(-c3ccnc4[nH]cnc34)ccc2O1; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]cnc23)ccc1Cl; ['Brc1ccnc2[nH]cnc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Brc1ccnc2[nH]cnc12', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Brc1ccnc2[nH]cnc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'COc1cc(B(O)O)ccc1Cl', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'c1cnc2[nH]cnc2c1', 'c1cnc2[nH]cnc2c1', 'COc1cc(Br)ccc1Cl']; [0.9999979734420776, 0.9999953508377075, 0.9999394416809082, 0.9997979402542114, 0.9997435808181763, 0.9830396175384521, 0.9568649530410767, 0.9070749878883362, 0.779196560382843] +COc1ccc2cccc(-c3ccnc4[nH]cnc34)c2c1; [None]; [None]; [0] +Cc1csc2c(-c3ccnc4[nH]cnc34)ncnc12; [None]; [None]; [0] +Clc1cnc(-c2ccnc3[nH]cnc23)nc1; [None]; [None]; [0] +OCCn1cc(-c2ccnc3[nH]cnc23)cn1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9998964071273804, 0.9998928308486938, 0.9981963038444519, 0.9979205131530762, 0.9939322471618652, 0.9626109600067139, 0.7934455871582031] +Cc1cc(Nc2ccnc3[nH]cnc23)nn1C; ['Brc1ccnc2[nH]cnc12', 'Cc1cc(Br)nn1C', 'Cc1cc(Cl)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(N)nn1C']; ['Cc1cc(N)nn1C', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999082088470459, 0.999447226524353, 0.9972900152206421, 0.9834216833114624, 0.9660317897796631] +CNC(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CNC(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999985694885254, 0.9999863505363464, 0.9999585151672363, 0.9996715188026428, 0.9980413913726807, 0.9943920373916626] +Cc1nc(Nc2ccnc3[nH]cnc23)sc1C; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]cnc23)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'Brc1ccnc2[nH]cnc12']; ['Ic1ccnc2[nH]cnc12', 'COc1cc(B(O)O)c(OC)cc1Br']; [0.9897918701171875, 0.9623286128044128] +O=C(Nc1ccnc2[nH]cnc12)c1ccco1; ['Nc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; ['O=C(Cl)c1ccco1', 'NC(=O)c1ccco1', 'O=C(O)c1ccco1']; [0.9830272197723389, 0.8981776237487793, 0.7955157160758972] +Nc1cc(-c2ccnc3[nH]cnc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccnc3[nH]cnc23)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccnc2[nH]cnc12', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]cnc12', 'COc1cc(OC)cc(B(O)O)c1', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999839067459106, 0.9999455213546753, 0.999814510345459, 0.9996127486228943, 0.9994858503341675, 0.9932383894920349] +NC(=O)c1ccc(Cc2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'Brc1ccnc2[nH]cnc12']; ['COc1ccc2oc(B(O)O)cc2c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'COc1ccc2occc2c1']; [0.9998726844787598, 0.9998538494110107, 0.9985147714614868, 0.9526022672653198] +COc1cc(CS(C)(=O)=O)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +c1ccc2oc(-c3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9999475479125977, 0.9998524785041809, 0.9987748861312866] +CC(C)(C)c1ccc(C(=O)Nc2ccnc3[nH]cnc23)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CCOC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1ccnc2[nH]cnc12', 'O=[N+]([O-])c1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; [0.9999183416366577, 0.9994896054267883, 0.9994544982910156, 0.9985330104827881, 0.9942628145217896, 0.9211481213569641, 0.818333625793457] +c1cc(-c2ccc3cn[nH]c3c2)c2nc[nH]c2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CCn1cc(-c2ccnc3[nH]cnc23)cn1; ['Brc1ccnc2[nH]cnc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccnc2[nH]cnc12', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCn1cc(B(O)O)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999424815177917, 0.9999197721481323, 0.9994754791259766, 0.9963787198066711, 0.9911927580833435, 0.968447208404541] +COc1ccc2c(c1)c(-c1ccnc3[nH]cnc13)cn2C; [None]; [None]; [0] +c1cc(-c2ncc3sccc3n2)c2nc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9998862743377686, 0.9985318183898926, 0.993682861328125] +c1cncc(-c2ccnc(-c3ccnc4[nH]cnc34)c2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccnc3[nH]cnc23)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F']; ['Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; [0.9967719316482544, 0.9959020614624023] +Cn1cc(Br)cc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +COc1ccc2nc(-c3ccnc4[nH]cnc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +Cn1cc(-c2ccnc3[nH]cnc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccnc4[nH]cnc34)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccnc3[nH]cnc23)c1)N1CCCC1; [None]; [None]; [0] +Cc1cc(-c2ccnc3[nH]cnc23)cc(C)c1OCCO; [None]; [None]; [0] +CCc1cccc(-c2ccnc3[nH]cnc23)n1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccnc4[nH]cnc34)ccc21; ['Brc1ccnc2[nH]cnc12', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'c1cnc2[nH]cnc2c1', 'c1cnc2[nH]cnc2c1']; [1.0, 0.999999463558197, 0.9999948740005493, 0.9999939203262329, 0.9999914765357971, 0.9993187189102173, 0.9943422079086304, 0.973934531211853, 0.9644378423690796] +CN(C)c1ccc(-c2ccnc3[nH]cnc23)cn1; ['Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'Brc1ccnc2[nH]cnc12']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)c1ccc(B(O)O)cn1', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)c1ccc(I)cn1']; [0.9999919533729553, 0.9999825954437256, 0.9996768236160278, 0.9990371465682983, 0.9976959824562073, 0.988343358039856, 0.9822231531143188, 0.9641520977020264] +CC(=O)N1CCC(n2cc(-c3ccnc4[nH]cnc34)cn2)CC1; ['Brc1ccnc2[nH]cnc12']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; [0.9999992847442627] +O=C(Nc1ccnc2[nH]cnc12)c1cccc(OC(F)(F)F)c1; ['Nc1ccnc2[nH]cnc12', None, 'Nc1ccnc2[nH]cnc12', 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'COC(=O)c1cccc(OC(F)(F)F)c1', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', None, 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=[N+]([O-])c1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999929666519165, 0, 0.9998666048049927, 0.9991990923881531, 0.9979574680328369, 0.964741587638855, 0.9335265159606934] +c1cc(-c2ncn3c2CCCC3)c2nc[nH]c2n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccnc4[nH]cnc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccnc4[nH]cnc34)ccc12; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +OCCc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccnc4[nH]cnc34)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccnc3[nH]cnc23)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['CCNC(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9997015595436096, 0.9981654286384583, 0.9948146343231201] +COc1cc(-c2cnn(C)c2)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc3[nH]cnc23)c(OC)c1; ['Brc1ccnc2[nH]cnc12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9998434782028198, 0.997995138168335, 0.9918160438537598] +Cn1nc(-c2ccnc3[nH]cnc23)cc1C(C)(C)O; [None]; [None]; [0] +Cc1cc(Nc2ccnc3[nH]cnc23)ncc1F; ['Brc1ccnc2[nH]cnc12', 'Cc1cc(Br)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F']; ['Cc1cc(N)ncc1F', 'Nc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; [0.9998544454574585, 0.9998389482498169, 0.9995328783988953, 0.9992607831954956, 0.9977813363075256] +Fc1ccc(Nc2ccnc3[nH]cnc23)nc1; ['Fc1ccc(Br)nc1', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Fc1ccc(Cl)nc1']; ['Nc1ccnc2[nH]cnc12', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccnc2[nH]cnc12']; [0.998856782913208, 0.9988402724266052, 0.9988288879394531, 0.996412992477417] +CS(=O)(=O)c1ccc(Cl)c(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1ccc(Nc2ccnc3[nH]cnc23)nc1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccccn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccccn1']; ['Nc1ccccn1', 'Nc1ccnc2[nH]cnc12', 'Nc1ccccn1', 'Nc1ccnc2[nH]cnc12']; [0.9954190254211426, 0.9866759777069092, 0.9564416408538818, 0.9326849579811096] +CN(C)C(=O)c1ccc(-c2ccnc3[nH]cnc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'CNC(=O)c1ccccc1B(O)O']; ['CNC(=O)c1ccccc1B(O)O', 'Ic1ccnc2[nH]cnc12']; [0.9984501600265503, 0.9645837545394897] +CCOc1ccccc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999421238899231, 0.9997761845588684, 0.9989091157913208, 0.9937481880187988, 0.9888584017753601] +CC(C)S(=O)(=O)c1ccccc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; [0.9996418952941895] +CNC(=O)c1ccc(C)c(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12']; ['Fc1cc(F)cc(C[Zn]Br)c1']; [0.9987953901290894] +O=C([O-])c1ccccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1ccc2c(-c3ccnc4[nH]cnc34)ccnc2c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9992181062698364, 0.983702540397644, 0.9130868315696716] +FC(F)(F)Oc1ccccc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999855756759644, 0.999821662902832, 0.999771237373352, 0.9959133267402649, 0.9888795614242554] +NC(=O)c1ccccc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'NC(=O)c1ccccc1Br', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'NC(=O)c1ccccc1B(O)O', 'c1cnc2[nH]cnc2c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; [0.9998945593833923, 0.9986916780471802, 0.9971246123313904, 0.9929054379463196, 0.9672056436538696, 0.803722620010376, 0.7967212200164795] +COC(C)(C)CCc1ccnc2[nH]cnc12; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999904036521912, 0.9999569654464722, 0.9999029636383057, 0.9997960329055786, 0.9996179342269897, 0.9979702830314636] +CP(C)(=O)c1ccccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccnc4[nH]cnc34)cc2c1=O; ['Brc1ccnc2[nH]cnc12']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9096544981002808] +Cc1nnc(-c2ccccc2-c2ccnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +COc1cnc(-c2ccnc3[nH]cnc23)nc1; ['Brc1ccnc2[nH]cnc12']; ['COc1cncnc1']; [0.9355196952819824] +c1ccc(Cn2cc(-c3ccnc4[nH]cnc34)cn2)cc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9995043277740479, 0.983705461025238, 0.9225274324417114] +c1ccc(-c2ncc(-c3ccnc4[nH]cnc34)[nH]2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccnc3[nH]cnc23)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9953312277793884] +CC(C)C(=O)COc1ccnc2[nH]cnc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccnc3[nH]cnc23)cs1; [None]; [None]; [0] +c1ccn2c(-c3ccnc4[nH]cnc34)cnc2c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +Cc1ccc(-c2ccnc3[nH]cnc23)c(Br)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccnc3[nH]cnc23)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Ic1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9988569021224976, 0.9948877096176147, 0.956107497215271, 0.8967047929763794, 0.7798928022384644] +Brc1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9998993873596191, 0.9998772144317627, 0.9991477727890015, 0.9968602657318115, 0.9958227276802063, 0.963396430015564] +c1cncc(CNc2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; ['NCc1cccnc1', 'O=Cc1cccnc1']; [0.9885063171386719, 0.9833078384399414] +Nc1nccc(-c2ccnc3[nH]cnc23)n1; ['Brc1ccnc2[nH]cnc12']; ['Nc1nccc(Cl)n1']; [0.9950649738311768] +c1cc(Cn2cncn2)cc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1cncc(Nc2ccnc3[nH]cnc23)c1; ['Clc1cccnc1', 'Brc1ccnc2[nH]cnc12']; ['Nc1ccnc2[nH]cnc12', 'Nc1cccnc1']; [0.9424036741256714, 0.8880152702331543] +c1ccc2cc(-c3ccnc4[nH]cnc34)ccc2c1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999961256980896, 0.9999772906303406, 0.9999594688415527, 0.9998998641967773, 0.999500572681427] +c1cc(NCCc2c[nH]cn2)c2nc[nH]c2n1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9763633012771606, 0.9451960921287537] +O=C(Nc1ccnc2[nH]cnc12)c1cccs1; ['Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'COC(=O)c1cccs1', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1', 'Nc1ccnc2[nH]cnc12', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.998298168182373, 0.99726402759552, 0.9959644079208374, 0.9895801544189453, 0.9749470949172974] +Cc1c(-c2ccnc3[nH]cnc23)sc(=O)n1C; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1cnn2ncc(-c3ccnc4[nH]cnc34)c2c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Ic1ccnc2[nH]cnc12']; [0.9999401569366455, 0.9996340274810791] +NC(=O)c1c(F)cccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1ccc2c(-c3ccnc4[nH]cnc34)cncc2c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9997986555099487, 0.9997659921646118, 0.9991669058799744, 0.9272185564041138] +c1ccc(CCNc2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'ClCCc1ccccc1', 'Ic1ccnc2[nH]cnc12']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccnc2[nH]cnc12', 'NCCc1ccccc1']; [0.9842870235443115, 0.8960549235343933, 0.8336800336837769, 0.8290569186210632] +Cn1cc(-c2ccc(-c3ccnc4[nH]cnc34)cc2)cn1; ['Brc1ccnc2[nH]cnc12', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Clc1ccnc2[nH]cnc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Ic1ccnc2[nH]cnc12', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [1.0, 0.9999997019767761, 0.9999970197677612] +O=C([O-])Cc1cccc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +Clc1ccc(CNc2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'NCc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'Oc1ccnc2[nH]cnc12']; [0.9984943270683289, 0.997010350227356, 0.9316023588180542, 0.9075697660446167, 0.8778778910636902] +Nc1[nH]nc2cc(-c3ccnc4[nH]cnc34)ccc12; [None]; [None]; [0] +OCc1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1']; [0.9999622702598572, 0.9998777508735657, 0.9994125366210938, 0.9965742826461792, 0.9879266619682312, 0.9625712037086487] +Fc1ccccc1CNc1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.9991716146469116, 0.992638111114502, 0.9043149352073669] +CN1c2ccc(-c3ccnc4[nH]cnc34)cc2CS1(=O)=O; [None]; [None]; [0] +c1cc(Nc2ccnc3[nH]cnc23)ccn1; ['Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccnc2[nH]cnc12']; [0.99869704246521, 0.800607442855835, 0.7849059700965881] +c1cc(-c2ccc(-c3cn[nH]c3)cc2)c2nc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]cnc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2ccnc3[nH]cnc23)n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C']; [0.9999799132347107] +Nc1ncncc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CC(C)n1cc(-c2ccnc3[nH]cnc23)nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CSc1nc(-c2ccnc3[nH]cnc23)c[nH]1; [None]; [None]; [0] +c1cc(-c2csc3ncncc23)c2nc[nH]c2n1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9999686479568481, 0.9993658661842346, 0.9989385604858398] +CCC(=O)Nc1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.9999915957450867, 0.9999066591262817, 0.9998056888580322] +c1cc(CCc2c[nH]nn2)c2nc[nH]c2n1; [None]; [None]; [0] +Fc1ccc(-c2ccnc3[nH]cnc23)c(C(F)(F)F)c1; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999515414237976, 0.9993381500244141, 0.997849702835083] +c1ccc(Oc2ccnc3[nH]cnc23)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1']; ['Oc1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12']; [0.9847257137298584, 0.9809781312942505, 0.9072486162185669] +CC(C)(COc1ccnc2[nH]cnc12)S(C)(=O)=O; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccnc3[nH]cnc23)CC1; ['Brc1ccnc2[nH]cnc12', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.999222993850708, 0.9984365701675415, 0.9918195009231567] +O=C(Nc1ccnc2[nH]cnc12)c1c(Cl)cccc1Cl; ['Nc1ccnc2[nH]cnc12', 'O=C(Cl)c1c(Cl)cccc1Cl', 'COC(=O)c1c(Cl)cccc1Cl', 'Nc1ccnc2[nH]cnc12', 'CCOC(=O)c1c(Cl)cccc1Cl', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=[N+]([O-])c1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'O=C(O)c1c(Cl)cccc1Cl', 'Nc1ccnc2[nH]cnc12', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9997261166572571, 0.9986696243286133, 0.9982079267501831, 0.9981039762496948, 0.9813632965087891, 0.9625661373138428, 0.9398369789123535] +CCNc1nc2ccc(-c3ccnc4[nH]cnc34)cc2s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccnc2[nH]cnc12; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]cnc23)cc1Cl; [None]; [None]; [0] +NC(=O)CCCc1ccnc2[nH]cnc12; [None]; [None]; [0] +CCCn1cc(-c2ccnc3[nH]cnc23)cn1; ['Brc1ccnc2[nH]cnc12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccnc2[nH]cnc12', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CCCn1cc(B(O)O)cn1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.999995231628418, 0.9999872446060181, 0.9999194741249084, 0.9990832805633545, 0.9954702258110046, 0.9813234806060791] +[NH3+]Cc1ccc(-c2ccnc3[nH]cnc23)cc1C(F)(F)F; [None]; [None]; [0] +O=c1cc(-c2ccnc3[nH]cnc23)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccnc4[nH]cnc34)c21; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CCN(CC)c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12']; ['CCNCC']; [0.8520296812057495] +C[S@](=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CS(=O)c1ccc(B(O)O)cc1', 'Brc1ccnc2[nH]cnc12', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ccnc2[nH]cnc12']; [0.9999959468841553, 0.9997274875640869, 0.9995222091674805, 0.9835934638977051] +c1ccn2ncc(-c3ccnc4[nH]cnc34)c2c1; [None]; [None]; [0] +C[C@@H](Oc1ccnc2[nH]cnc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Ic1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12']; [0.9887857437133789, 0.8798302412033081] +COc1cc(CCc2ccnc3[nH]cnc23)cc(OC)c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccnc4[nH]cnc34)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccnc4[nH]cnc34)cc12; [None]; [None]; [0] +c1ccc2ncc(Nc3ccnc4[nH]cnc34)cc2c1; ['Brc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12', 'Nc1ccnc2[nH]cnc12']; [0.9992119073867798, 0.9960745573043823, 0.9948652982711792, 0.9296175241470337, 0.9216314554214478, 0.9078761339187622] +c1cc2c(-c3ccnc4[nH]cnc34)c[nH]c2cn1; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9092187881469727] +COc1cccc(F)c1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccnc2[nH]cnc12', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Ic1ccnc2[nH]cnc12', 'COc1cccc(F)c1B(O)O', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12']; [0.9999426603317261, 0.9993249177932739, 0.9990259408950806, 0.9887311458587646, 0.9865745306015015] +COc1ccncc1Nc1ccnc2[nH]cnc12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +c1cc(-c2cnc3[nH]ccc3c2)c2nc[nH]c2n1; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1ccnc2[nH]cnc12', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; [0.9999986886978149, 0.9999430179595947, 0.9999337196350098, 0.9998276233673096, 0.9964731931686401, 0.9928576946258545] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccnc2[nH]cnc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccnc2[nH]cnc12']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999995231628418, 0.9999957084655762, 0.9999873638153076, 0.9999179840087891, 0.9996287822723389, 0.9982390403747559, 0.9591975212097168] +CS(=O)(=O)c1ccc(-c2ccnc3[nH]cnc23)cc1; ['Brc1ccnc2[nH]cnc12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1ccnc2[nH]cnc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'c1cnc2[nH]cnc2c1']; [0.9999995827674866, 0.9999979734420776, 0.9999808669090271, 0.9997960329055786, 0.999605119228363, 0.9965981245040894, 0.795067548751831] +CNC(=O)c1c(F)cccc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CN(c1ccnc2[nH]cnc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ccnc3[nH]cnc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccnc2[nH]cnc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2ccnc3[nH]cnc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; ['OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [0.9998787641525269, 0.9915459156036377, 0.9879804849624634] +OCc1ccn(-c2ccnc3[nH]cnc23)n1; [None]; [None]; [0] +OCCc1cn(-c2ccnc3[nH]cnc23)cn1; [None]; [None]; [0] +C[C@H](Nc1ccnc2[nH]cnc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccnc2[nH]cnc12)C(C)(C)O; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]cnc23)c(OC)c1; ['Brc1ccnc2[nH]cnc12', 'COc1ccc(B(O)O)c(OC)c1']; ['COc1ccc(B(O)O)c(OC)c1', 'Clc1ccnc2[nH]cnc12']; [0.999853253364563, 0.9924278259277344] +Oc1ccc2nc(-c3ccnc4[nH]cnc34)[nH]c2c1; [None]; [None]; [0] +c1cc(-c2ccc(-n3cncn3)cc2)c2nc[nH]c2n1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccnc2[nH]cnc12; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ccnc2[nH]cnc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccnc3[nH]cnc23)cc1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1cc(-c2nncn2C2CC2)c2nc[nH]c2n1; [None]; [None]; [0] +O=C(CCc1ccnc2[nH]cnc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccnc5[nH]cnc45)n3n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccnc3[nH]cnc23)n1; [None]; [None]; [0] +Nc1nnc(-c2ccnc3[nH]cnc23)s1; ['NNC(N)=S']; ['O=C(O)c1ccnc2[nH]cnc12']; [0.9994771480560303] +CCc1cc(-c2ccnc3[nH]cnc23)nc(N)n1; ['Brc1ccnc2[nH]cnc12']; ['CCc1cc(Cl)nc(N)n1']; [0.9997286796569824] +O=S(=O)(Cc1ccnc2[nH]cnc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccnc4[nH]cnc34)nn2)cc1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc3[nH]cnc23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccnc3[nH]cnc23)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccnc3[nH]cnc23)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc3[nH]cnc23)s1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccnc4[nH]cnc34)nc2NC1=O; [None]; [None]; [0] +c1cc(-c2ccnc3[nH]cnc23)c2sccc2c1; ['Brc1ccnc2[nH]cnc12']; ['OB(O)c1cccc2ccsc12']; [0.9998339414596558] +C[C@@H2]NC(=O)N1CCC(c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +Nc1cncc(-c2ccnc3[nH]cnc23)n1; ['Brc1ccnc2[nH]cnc12']; ['Nc1cncc(Br)n1']; [0.7515826225280762] +Cn1cc(C(N)=O)cc1-c1ccnc2[nH]cnc12; [None]; [None]; [0] +c1ccc2sc(-c3ccnc4[nH]cnc34)nc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc4[nH]cnc34)c2)cc1; [None]; [None]; [0] +c1cc(-c2ccnc3[nH]cnc23)c2snnc2c1; [None]; [None]; [0] +Nc1nc(-c2ccnc3[nH]cnc23)nc2ccccc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12']; ['COc1ccc(OC)c(B(O)O)c1']; [0.9997224807739258] +c1cnc2c(-c3ccnc4[nH]cnc34)c[nH]c2c1; [None]; [None]; [0] +c1cc(-c2ncc3cc[nH]c3n2)c2nc[nH]c2n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +COc1ccc(Oc2ccnc3[nH]cnc23)c(F)c1F; ['Brc1ccnc2[nH]cnc12', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F']; ['COc1ccc(O)c(F)c1F', 'Oc1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Oc1ccnc2[nH]cnc12']; [0.9991507530212402, 0.9986745119094849, 0.9455541372299194, 0.8987452387809753] +COc1ccc(C#N)cc1-c1ccnc2[nH]cnc12; ['Brc1ccnc2[nH]cnc12', 'Brc1ccnc2[nH]cnc12', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12']; [0.999854564666748, 0.9997725486755371, 0.9996644854545593, 0.9984960556030273, 0.9979512691497803, 0.9919223785400391] +CN(C)S(=O)(=O)c1cccc(-c2ccnc3[nH]cnc23)c1; ['Brc1ccnc2[nH]cnc12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccnc2[nH]cnc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ccnc2[nH]cnc12']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ccnc2[nH]cnc12', 'Clc1ccnc2[nH]cnc12', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; [0.9999996423721313, 0.999997615814209, 0.9999823570251465, 0.9999439716339111, 0.9998393654823303, 0.9989216327667236, 0.9948000311851501] +OCCn1cnc(-c2ccnc3[nH]cnc23)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccnc3[nH]cnc23)CC1; [None]; [None]; [0] +CCOc1ccccc1Nc1ccncc1OC; ['CCOc1ccccc1Br', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1Cl', 'CCOc1ccccc1N']; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1O']; [0.9999030828475952, 0.9997219443321228, 0.9995171427726746, 0.9963133335113525, 0.9774909019470215] +COc1cnccc1Nc1ccccc1S(=O)(=O)C(C)C; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N']; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N']; [0.9999536275863647, 0.9999046325683594, 0.9987183809280396, 0.9872338771820068] +O=C(Nc1cccc(-c2ccnc3[nH]cnc23)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ccncc1OC; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1B(O)O', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N']; [0.9999513030052185, 0.9997854232788086, 0.9995049238204956, 0.9991751313209534, 0.9991745352745056, 0.9968128204345703, 0.9680787324905396] +c1ccc2[nH]c(C3CCN(c4ccnc5[nH]cnc45)CC3)nc2c1; [None]; [None]; [0] +COc1cnccc1Nc1ccnc2ccccc12; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'Brc1ccnc2ccccc12', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1O']; ['Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'COc1cnccc1N', 'Nc1ccnc2ccccc12', 'Oc1ccnc2ccccc12', 'Nc1ccnc2ccccc12']; [0.9999675750732422, 0.9999642372131348, 0.9999463558197021, 0.9999169707298279, 0.9996628165245056, 0.9993329644203186, 0.9978930950164795] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccnc3[nH]cnc23)C1; [None]; [None]; [0] +CN(C)c1cc(-c2ccnc3[nH]cnc23)cnn1; [None]; [None]; [0] +COc1cnccc1Nc1cccc(C(F)(F)F)c1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I']; ['OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'Fc1cccc(C(F)(F)F)c1', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'FC(F)(F)c1cccc(Cl)c1', 'Nc1cccc(C(F)(F)F)c1']; [0.9999839067459106, 0.9999662041664124, 0.9999498128890991, 0.9999005198478699, 0.9998663663864136, 0.9998259544372559, 0.9993178248405457, 0.9992177486419678, 0.9991607666015625] +CCn1cc(Nc2ccncc2OC)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(Br)cn1']; ['COc1cnccc1B(O)O', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N']; [0.9998019933700562, 0.9987063407897949, 0.9982234835624695, 0.9961844086647034, 0.9846010804176331] +COc1cnccc1Nc1ccccc1P(C)(C)=O; ['COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1O', 'COc1ccncc1OC']; ['CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N']; [0.9999560117721558, 0.9996281862258911, 0.9905403256416321, 0.8760756850242615] +COc1cnccc1Nc1ccccc1OC(F)(F)F; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1O']; ['FC(F)(F)Oc1ccccc1Br', 'Nc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'Nc1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Cl', 'Fc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F']; [0.9999969601631165, 0.9999923706054688, 0.9999920129776001, 0.9999632835388184, 0.9999374747276306, 0.9999077320098877, 0.9998070001602173, 0.9997445940971375, 0.9956303834915161] +COc1cnccc1N[C@H](C)c1cc(F)ccc1OC; [None]; [None]; [0] +COc1cnccc1Nc1ccccc1C(=O)[O-]; ['COc1cnccc1N']; ['O=C([O-])c1ccccc1F']; [0.952114462852478] +COc1cnccc1Nc1ccccc1-c1nnc(C)[nH]1; [None]; [None]; [0] +COc1cnccc1Nc1ccc2ncn(C)c(=O)c2c1; ['COc1cnccc1N']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9999949932098389] +COc1cnccc1Nc1ccccc1C(N)=O; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br']; ['NC(=O)c1ccccc1F', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1N']; [0.9996814727783203, 0.996490478515625, 0.994432806968689, 0.9895457029342651, 0.9789432287216187, 0.9450330138206482] +COc1cnccc1Nc1cnn(Cc2ccccc2)c1; ['COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'COc1cnccc1N']; [0.9998554587364197, 0.999826192855835, 0.9997459650039673, 0.9989938735961914] +COc1cnccc1Nc1cc(Cl)ccc1Cl; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1O']; ['Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl']; [0.9999807476997375, 0.9999716877937317, 0.9999584555625916, 0.999903678894043, 0.9938937425613403] +COc1cnccc1Nc1ccc(C)cc1Br; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(Br)c(Br)c1']; [0.9999949336051941, 0.9999735355377197, 0.9987891912460327, 0.9987298846244812] +COc1cnccc1Nc1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +COc1cnc(Nc2ccncc2OC)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br']; [0.9999351501464844, 0.9998549222946167, 0.9996744394302368, 0.9988676905632019] +COc1cnccc1Nc1cnn(CCO)c1; ['COc1cnccc1Br', 'COc1cnccc1N']; ['Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9997182488441467, 0.990428626537323] +COc1cnccc1Nc1cccc(NC(=O)c2ccccc2)c1; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1B(O)O']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; [0.9999896287918091, 0.9999626278877258, 0.9999094009399414, 0.999707818031311] +COc1cnccc1Nc1cnc2ccccn12; ['COc1cnccc1N', 'COc1cnccc1N', 'Brc1cnc2ccccn12', 'COc1cnccc1I', 'COc1cnccc1Br']; ['Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'COc1cnccc1N', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12']; [0.9999316930770874, 0.9982571601867676, 0.997732400894165, 0.9931946992874146, 0.881182849407196] +COc1cnccc1Nc1cnc2cccnn12; ['COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'Brc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'COc1cnccc1N']; [0.9999719858169556, 0.9999274015426636, 0.9999032020568848, 0.9998635649681091] +COc1cnccc1Nc1c(C)nc2ccccn12; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br']; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1Br', 'Cc1nc2ccccn2c1N']; [0.9999874830245972, 0.9999642372131348, 0.9999587535858154, 0.9999150037765503] +COc1cnccc1Nc1sc(C)nc1C; [None]; [None]; [0] +COc1cnccc1Nc1c(Cl)cccc1Cl; ['COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1O']; ['Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Nc1c(Cl)cccc1Cl']; [0.9999709129333496, 0.9999425411224365, 0.9999326467514038, 0.9993002414703369, 0.9976535439491272] +COc1cnccc1N[C@@H](N)c1ccco1; [None]; [None]; [0] +COc1cnccc1Nc1cc(C)ccc1Cl; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1O', 'COc1cnccc1N']; ['Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(O)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(Cl)c1']; [0.9999783039093018, 0.9999513626098633, 0.999626874923706, 0.9995830059051514, 0.999454140663147, 0.9944643974304199, 0.9860334396362305] +COc1cnccc1Nc1cccc(Cn2cncn2)c1; ['COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1I']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1']; [0.9999985694885254, 0.9999980926513672, 0.9999942779541016] +COc1cnccc1Nc1cccc(Br)c1; ['Brc1cccc(I)c1', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'Brc1cccc(Br)c1', 'COc1cnccc1N', 'COc1cnccc1O', 'COc1cnccc1Br']; ['COc1cnccc1N', 'OB(O)c1cccc(Br)c1', 'Fc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'COc1cnccc1N', 'Oc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1']; [0.9999943971633911, 0.9999887943267822, 0.9999727010726929, 0.9998792409896851, 0.9998695850372314, 0.9997100830078125, 0.999405026435852, 0.9990038871765137, 0.9958575963973999, 0.9838945865631104] +COc1cnccc1Nc1ccnc(N)n1; ['COc1cnccc1N', 'COc1cnccc1Br']; ['Nc1nccc(Cl)n1', 'Nc1ccnc(N)n1']; [0.9999800324440002, 0.9998016357421875] +COc1cnccc1Nc1ccc2ccccc2c1; ['COc1cnccc1N', 'COc1cnccc1N', 'Brc1ccc2ccccc2c1', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N']; ['OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'COc1cnccc1N', 'Nc1ccc2ccccc2c1', 'Fc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F']; [0.9999586939811707, 0.9998642802238464, 0.9998140335083008, 0.9997552633285522, 0.9997440576553345, 0.9996359348297119, 0.9995647072792053, 0.9995309114456177, 0.9991999864578247] +COc1cnccc1Nc1csc(C(C)(C)C)n1; [None]; [None]; [0] +COc1cnccc1NCc1ncc(C(C)(C)C)o1; ['CC(C)(C)c1cnc(CBr)o1', 'CC(C)(C)c1cnc(CCl)o1']; ['COc1cnccc1N', 'COc1cnccc1N']; [0.9968934059143066, 0.9659047722816467] +COc1cnccc1Nc1cnn2ncccc12; ['Brc1cnn2ncccc12']; ['COc1cnccc1N']; [0.9992949962615967] +CNc1nc(C)c(Nc2ccncc2OC)s1; [None]; [None]; [0] +COc1cnccc1Nc1sc(N)nc1C; [None]; [None]; [0] +COc1cnccc1Nc1cccc(F)c1C(N)=O; ['COc1cnccc1Br', 'COc1cnccc1N']; ['NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(F)cccc1Br']; [0.9980098009109497, 0.997934877872467] +COc1cnccc1Nc1c[nH]nc1C(F)(F)F; ['COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I']; ['Nc1c[nH]nc1C(F)(F)F', 'FC(F)(F)c1n[nH]cc1Br', 'Nc1c[nH]nc1C(F)(F)F']; [0.9998922348022461, 0.9998252391815186, 0.9997035264968872] +COc1cnccc1Nc1cncc2ccccc12; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'Brc1cncc2ccccc12', 'COc1cnccc1Br', 'COc1cnccc1O', 'COc1cccnc1']; ['Clc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'COc1cnccc1N', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12']; [0.9999732971191406, 0.9999086260795593, 0.9997588396072388, 0.9996473789215088, 0.9995898008346558, 0.9991762042045593, 0.9979276657104492, 0.994651198387146] +COc1cnccc1Nc1ccc(-c2cnn(C)c2)cc1; ['COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1B(O)O']; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1']; [0.9999977350234985, 0.9999946355819702, 0.9999915361404419, 0.9999774694442749] +COc1cnccc1Nc1sc(=O)n(C)c1C; [None]; [None]; [0] +COc1cnccc1Nc1cccc(O)c1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1']; [0.9997612237930298, 0.999710202217102, 0.9984595775604248, 0.9939064383506775] +CCCn1cnc(Nc2ccncc2OC)n1; ['CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1']; ['COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1I']; [0.9997339844703674, 0.9996463060379028, 0.9903596639633179] +COc1cnccc1Nc1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +COc1cnccc1Nc1cccc(CO)c1; ['COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N']; ['Nc1cccc(CO)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(F)c1', 'OCc1cccc(Cl)c1']; [0.999233067035675, 0.9992177486419678, 0.9977100491523743, 0.9968891143798828, 0.9967199563980103, 0.9941086769104004, 0.9916830062866211, 0.7923917174339294] +COc1cnccc1Nc1ccc2c(cnn2C)c1; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1B(O)O', 'COc1cnccc1N']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(F)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Cl)ccc21']; [0.9999994039535522, 0.9999972581863403, 0.9999967217445374, 0.9999958872795105, 0.9999750852584839, 0.9999508857727051, 0.9999284148216248, 0.9998632669448853] +COc1cnccc1Nc1cn(C(C)C)nn1; ['CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1']; ['COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1Br']; [0.9999549984931946, 0.9996697306632996, 0.9993239641189575] +COc1cnccc1Nc1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +COc1cnccc1Nc1ccc(-c2cn[nH]c2)cc1; ['COc1cnccc1Br', 'Brc1ccc(-c2cn[nH]c2)cc1', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'COc1cnccc1N', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'Fc1ccc(-c2cn[nH]c2)cc1']; [0.9999778866767883, 0.9999151229858398, 0.9999102354049683, 0.998637318611145, 0.9975204467773438] +COc1cnccc1Nc1ccc(C(=O)[O-])c(OC)c1; [None]; [None]; [0] +COc1cnccc1Nc1csc2ncncc12; ['Brc1csc2ncncc12']; ['COc1cnccc1N']; [0.9993032217025757] +COc1cnccc1Nc1c[nH]c(SC)n1; [None]; [None]; [0] +COc1cnccc1Nc1cc2ccccc2[nH]1; ['COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1N']; ['Fc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1']; [0.9995702505111694, 0.9866281151771545, 0.9791646003723145, 0.9771608710289001] +COc1cnccc1Nc1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +COc1cnccc1Nc1cccc(CCC#N)c1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(F)c1']; [0.9999951720237732, 0.9998568296432495, 0.9998489022254944] +COc1cnccc1Nc1ccc(F)cc1C(F)(F)F; ['COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N']; ['Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1']; [0.9999676942825317, 0.9998944997787476, 0.9998234510421753] +CCNc1nc2ccc(Nc3ccncc3OC)cc2s1; [None]; [None]; [0] +CC[C@H](CO)Nc1ccncc1OC; ['CC[C@@H](N)CO', 'CC[C@@H](N)CO', 'CC[C@@H](N)CO']; ['COc1cnccc1Br', 'COc1cnccc1O', 'COc1cnccc1I']; [0.998921275138855, 0.9981330037117004, 0.9975779056549072] +COc1cnccc1NCc1c(F)cccc1F; ['COc1cnccc1N', 'COc1cnccc1B1OC(C)(C)C(C)(C)O1', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1O']; ['Fc1cccc(F)c1CBr', 'NCc1c(F)cccc1F', 'O=Cc1c(F)cccc1F', 'NCc1c(F)cccc1F', 'Fc1cccc(F)c1CCl', 'NCc1c(F)cccc1F', 'OCc1c(F)cccc1F', 'NCc1c(F)cccc1F']; [0.9999959468841553, 0.9999914765357971, 0.9999897480010986, 0.9999847412109375, 0.999982476234436, 0.9999507665634155, 0.9989528656005859, 0.998229444026947] +COc1cnccc1Nc1cncnc1N; ['COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N']; ['Nc1cncnc1N', 'Nc1ncncc1I', 'Nc1cncnc1N', 'Nc1ncncc1Br']; [0.9868529438972473, 0.9843589663505554, 0.9622146487236023, 0.9388824701309204] +CCC(=O)Nc1ccc(Nc2ccncc2OC)cc1; ['CCC(=O)Nc1ccc(N)cc1']; ['COc1cnccc1Br']; [0.9981272220611572] +COc1ccc(Nc2ccncc2OC)cc1Cl; ['COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(F)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1O']; [0.9999116659164429, 0.9995747804641724, 0.9995652437210083, 0.9995088577270508, 0.9986540675163269, 0.9975703954696655, 0.9868096709251404, 0.9625463485717773] +COc1cnccc1Nc1cnoc1C(C)C; [None]; [None]; [0] +COc1cnccc1Nc1cccc(NC(C)=O)c1; ['CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(F)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(N)c1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1I']; [0.9999847412109375, 0.9999736547470093, 0.9999697804450989, 0.9999679923057556, 0.999859631061554, 0.9994704723358154, 0.9990577101707458] +COc1cnccc1Nc1cnn2ccccc12; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'Brc1cnn2ccccc12', 'COc1cnccc1O', 'COc1cnccc1B(O)O', 'COc1cnccc1I', 'COc1cnccc1Br']; ['Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12', 'COc1cnccc1N', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12']; [0.9999872446060181, 0.999984860420227, 0.9999768733978271, 0.9999525547027588, 0.9997212886810303, 0.9993767738342285, 0.9993683099746704, 0.9873262643814087] +CCCn1cc(Nc2ccncc2OC)cn1; ['CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1']; ['COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N']; [0.9998958110809326, 0.9997978806495667, 0.9996435046195984, 0.9994637966156006, 0.9992773532867432, 0.994210422039032] +COc1cnccc1NCc1cccc(S(C)(=O)=O)c1; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br']; ['CS(=O)(=O)c1cccc(CBr)c1', 'CS(=O)(=O)c1cccc(CN)c1', 'CS(=O)(=O)c1cccc(CCl)c1', 'CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(CN)c1']; [0.9999949932098389, 0.9999739527702332, 0.9999550580978394, 0.9999527931213379, 0.9998982548713684] +COc1cnccc1Nc1cc[nH]c(=O)c1; ['COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N']; ['Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(Cl)cc[nH]1']; [0.9999716281890869, 0.9999615550041199, 0.9999500513076782, 0.9998812675476074, 0.9996110796928406] +COc1cnccc1Nc1cn(C)c2ccccc12; [None]; [None]; [0] +COc1cnccc1Nc1ccc(C(C)(C)N)cc1; ['CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['COc1cnccc1Br', 'COc1cnccc1N']; [0.9941021203994751, 0.950060248374939] +CCNS(=O)(=O)c1ccccc1Nc1ccncc1OC; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1N']; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br']; [0.9991909265518188, 0.9989172220230103, 0.9826868772506714] +COc1cnccc1Nc1ccc([S@](C)=O)cc1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N']; ['CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(F)cc1', 'CS(=O)c1ccc(Cl)cc1']; [0.9996933937072754, 0.9974618554115295, 0.996851921081543, 0.9956274032592773, 0.9955713748931885, 0.9683627486228943, 0.9307864904403687] +COc1cnccc1Nc1cccc2c1C(=O)CC2; ['COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1O']; ['O=C1CCc2cccc(Br)c21', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(Cl)c21', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(F)c21', 'Nc1cccc2c1C(=O)CC2']; [0.9992759227752686, 0.9984046220779419, 0.9981838464736938, 0.9975787401199341, 0.9893202185630798, 0.9834909439086914, 0.9823901057243347] +COc1cnccc1NCc1cccnc1N(C)S(C)(=O)=O; ['CN(c1ncccc1CN)S(C)(=O)=O', 'CN(c1ncccc1CN)S(C)(=O)=O', 'CN(c1ncccc1CN)S(C)(=O)=O', 'CN(c1ncccc1C#N)S(C)(=O)=O']; ['COc1cnccc1I', 'COc1cnccc1O', 'COc1cnccc1Br', 'COc1cnccc1N']; [0.9998956918716431, 0.9991456270217896, 0.9989591240882874, 0.9748727083206177] +COc1cnccc1Nc1cncc(OC(C)C)c1; ['CC(C)Oc1cncc(Br)c1']; ['COc1cnccc1N']; [0.9998143911361694] +COc1cnccc1Nc1c(F)cccc1OC; ['COc1cccc(F)c1N', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1N', 'COc1cccc(F)c1I']; ['COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N']; [0.9999748468399048, 0.9999639391899109, 0.9999541640281677, 0.9983553290367126] +COc1cnccc1Nc1ccc(C(C)(C)C)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1O']; [0.9998548030853271, 0.9997547268867493, 0.9996875524520874, 0.9996308088302612, 0.9993823766708374, 0.9989423751831055, 0.9984707832336426, 0.9979644417762756, 0.9900602698326111] +COc1cnccc1N[C@H](CO)c1ccccc1; ['COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1C=O', 'COc1cnccc1O']; ['N[C@H](CO)c1ccccc1', 'N[C@H](CO)c1ccccc1', 'N[C@H](CO)c1ccccc1', 'N[C@H](CO)c1ccccc1']; [0.9986120462417603, 0.9983115792274475, 0.9914156198501587, 0.9834439754486084] +COc1cnccc1Nc1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +COc1cnccc1Nc1cnc2[nH]ccc2c1; ['Brc1cnc2[nH]ccc2c1', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1I']; ['COc1cnccc1N', 'Clc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1']; [0.9998530149459839, 0.9998353719711304, 0.9996607303619385, 0.9993507862091064, 0.9989180564880371] +COc1cnccc1Nc1ccc(S(=O)(=O)NC(C)(C)C)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(F)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1']; ['COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I']; [0.9961782693862915, 0.966403603553772, 0.887762725353241, 0.8734742403030396] +COc1cnccc1N[C@H](CO)Cc1ccccc1; ['COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1O', 'COc1cnccc1C=O']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9998105764389038, 0.999699592590332, 0.9996093511581421, 0.9986321926116943, 0.9982782006263733] +COc1cnccc1Nc1c[nH]c2cnccc12; ['COc1cnccc1N', 'Brc1c[nH]c2cnccc12']; ['Ic1c[nH]c2cnccc12', 'COc1cnccc1N']; [0.9996687173843384, 0.9945982694625854] +CNS(=O)(=O)c1ccc(Nc2ccncc2OC)cc1; ['CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(F)cc1']; ['COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N']; [0.9991429448127747, 0.9921950101852417, 0.9805865287780762, 0.8347939252853394, 0.827934741973877, 0.787930965423584, 0.7727457284927368] +COc1cnccc1Nc1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +COc1cnccc1Nc1ccc(N2CCOCC2)cc1; ['COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1B(O)O', 'COc1cnccc1I', 'COc1cnccc1N', 'Brc1ccc(N2CCOCC2)cc1', 'COc1cnccc1N']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'COc1cnccc1N', 'Clc1ccc(N2CCOCC2)cc1']; [0.9999977350234985, 0.9999937415122986, 0.9999933242797852, 0.9999895095825195, 0.999976634979248, 0.9999546408653259, 0.9997706413269043] +COc1cnccc1Nc1c(F)cccc1Cl; ['COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1N']; ['Nc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Nc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl']; [0.999990701675415, 0.9999866485595703, 0.9999575614929199, 0.999910831451416, 0.9990546703338623] +COc1cnccc1Nc1cc(C)nn1-c1cccc(Cl)c1; ['COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1B(O)O']; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1', 'Cc1cc(N)n(-c2cccc(Cl)c2)n1', 'Cc1cc(N)n(-c2cccc(Cl)c2)n1']; [0.999955952167511, 0.999547004699707, 0.9932132959365845] +CNC(=O)c1c(F)cccc1Nc1ccncc1OC; [None]; [None]; [0] +COc1cnccc1NC1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1cnccc1Nc1ccc(-n2cncn2)cc1; ['COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1O', 'COc1cnccc1N', 'COc1cnccc1N']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Oc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; [0.9999725222587585, 0.9999595880508423, 0.9999516010284424, 0.9999192953109741, 0.999835729598999, 0.9997539520263672] +COc1cnccc1Nc1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +COc1cnccc1Nc1ccc(S(C)(=O)=O)cc1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1Br', 'COc1cnccc1O']; ['CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(F)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1']; [0.9998636245727539, 0.9995712637901306, 0.9995306730270386, 0.9994193315505981, 0.9989356994628906, 0.9985054731369019, 0.9982892274856567, 0.9971902966499329, 0.9950020909309387] +COc1ccc(Nc2ccncc2OC)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(F)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(N)c(OC)c1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1B1OC(C)(C)C(C)(C)O1', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1O']; [0.999700665473938, 0.9996682405471802, 0.999550461769104, 0.9993739128112793, 0.9991894960403442, 0.9991813898086548, 0.9985067844390869, 0.9980294108390808, 0.9979766607284546, 0.9958353638648987, 0.9550230503082275] +COc1cnccc1Nc1ccc(C(=O)c2ccccc2)cc1; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1O', 'COc1cnccc1N']; ['O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(F)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(O)cc1']; [0.9998485445976257, 0.9997903108596802, 0.9997837543487549, 0.9997804164886475, 0.9997718930244446, 0.9989100098609924, 0.9973265528678894, 0.9965578317642212, 0.9897799491882324, 0.9887136220932007] +CCc1cc(Nc2ccncc2OC)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1']; ['COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1B(O)O']; [0.9999957084655762, 0.9999916553497314, 0.9999126195907593] +COc1cnccc1N[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +CCCCc1cc(Nc2ccncc2OC)nc(N)n1; [None]; [None]; [0] +COc1cnccc1Nc1[nH]c(SC)nc1C; [None]; [None]; [0] +COc1cnccc1Nc1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +COc1cnccc1Nc1nncn1C1CC1; [None]; [None]; [0] +COc1cnccc1Nc1cccc(C(C)(C)O)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['COc1cnccc1N', 'COc1cnccc1N']; [0.9999884963035583, 0.9998763799667358] +COc1cnccc1Nc1ccn(CC[NH3+])n1; [None]; [None]; [0] +COc1cnccc1Nc1nncn1C(C)C; [None]; [None]; [0] +COc1cnccc1Nc1nc2ccccc2s1; ['Brc1nc2ccccc2s1', 'COc1cnccc1N', 'COc1cnccc1Br']; ['COc1cnccc1N', 'Clc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9999817609786987, 0.9999709129333496, 0.9996086359024048] +COc1cnccc1Nc1nnc(N)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ccncc2OC)CC1; ['CCNC(=O)N1CCC(N)CC1']; ['COc1cnccc1Br']; [0.9996651411056519] +CNC(=O)c1ccc(Nc2ccncc2OC)s1; [None]; [None]; [0] +COc1cnccc1Nc1cncc(N)n1; ['COc1cnccc1N', 'COc1cnccc1N']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.999983549118042, 0.9998818039894104] +COc1cnccc1Nc1ccc2c(n1)NC(=O)C(C)(C)O2; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O']; ['COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1O']; [0.9988004565238953, 0.988357424736023, 0.90956711769104, 0.8637356758117676] +COc1cnccc1Nc1cccc2ccsc12; ['Brc1cccc2ccsc12']; ['COc1cnccc1N']; [0.9993693828582764] +COc1cnccc1NCCCNC(=O)c1cccs1; [None]; [None]; [0] +COc1cnccc1Nc1cccc2nnsc12; ['COc1cnccc1N', 'Brc1cccc2nnsc12', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1O', 'COc1cccnc1', 'COc1cnccc1N']; ['Clc1cccc2nnsc12', 'COc1cnccc1N', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'c1ccc2snnc2c1']; [0.9999925494194031, 0.9999808073043823, 0.9999626874923706, 0.9999361634254456, 0.9998540878295898, 0.8281289935112, 0.7914594411849976] +COc1cnccc1NCCCNC(=O)C1CCC1; [None]; [None]; [0] +COc1cnccc1Nc1cc(C(N)=O)cn1C; [None]; [None]; [0] +COc1cnccc1Nc1c[nH]c2cccnc12; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'Brc1c[nH]c2cccnc12']; ['Ic1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'COc1cnccc1N']; [0.9999809265136719, 0.9991261959075928, 0.9987473487854004, 0.9981943368911743, 0.995011568069458] +COc1cnccc1Nc1ncc2ccccc2n1; ['Brc1ncc2ccccc2n1', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br']; ['COc1cnccc1N', 'Clc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.9999992847442627, 0.9999967813491821, 0.9999881982803345, 0.9999867677688599] +COc1cnccc1NCc1ccccc1NS(C)(=O)=O; ['COc1cnccc1I', 'COc1cnccc1N', 'COc1cnccc1Br']; ['CS(=O)(=O)Nc1ccccc1CN', 'CS(=O)(=O)Nc1ccccc1C=O', 'CS(=O)(=O)Nc1ccccc1CN']; [0.9998284578323364, 0.999670684337616, 0.9964839220046997] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ccncc3OC)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ccncc1OC; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1O', 'COc1ccc(C#N)cc1F', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1O']; [0.9999918937683105, 0.999981701374054, 0.9999521970748901, 0.9999397993087769, 0.9999386668205261, 0.9999275207519531, 0.9999064207077026, 0.9998388290405273, 0.9998306035995483, 0.9998142719268799] +COc1ccc(OC)c(Nc2ccncc2OC)c1; ['COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(O)c1']; ['COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1O', 'COc1cnccc1N']; [0.9995533227920532, 0.9995232224464417, 0.9991164207458496, 0.9981215000152588, 0.9952080845832825, 0.9913141131401062, 0.9897238612174988] +COc1cnccc1Nc1cn(CCO)cn1; [None]; [None]; [0] +COc1cnccc1Nc1cccnc1OC; ['COc1cnccc1Br', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1N', 'COc1cnccc1I']; ['COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1N']; [0.9998605251312256, 0.9997515678405762, 0.9990360736846924, 0.9985686540603638, 0.997955322265625, 0.9884772896766663] +COc1cnccc1Nc1cccc(S(=O)(=O)N(C)C)c1; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1']; ['COc1cnccc1N', 'COc1cnccc1I', 'COc1cnccc1Br', 'COc1cnccc1N', 'COc1cnccc1B(O)O']; [0.9999861717224121, 0.9999827146530151, 0.999893069267273, 0.9998313188552856, 0.9987550973892212] +COc1cnccc1N[C@H]1CC[C@@](C)(O)CC1; ['COc1cnccc1Br', 'COc1cnccc1I', 'COc1cnccc1B(O)O', 'COc1cnccc1N', 'COc1cnccc1O', 'COc1ccncc1OC']; ['C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; [0.9999205470085144, 0.9993966817855835, 0.9992225766181946, 0.9977127313613892, 0.9970685243606567, 0.9761133193969727] +COc1cnccc1Nc1cnc(NC(C)=O)[nH]1; [None]; [None]; [0] +COc1cnccc1Nc1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1cnccc1Nc1cnnc(N(C)C)c1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3cnc4ccc(C)cc43)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(S(C)(=O)=O)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N(C)C(C)=O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccnc3OC)nc12; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(OC)c(OC)c(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc4ccccc4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(O)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N4CCOCC4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C#N)ccc3O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3sc(C(C)(C)O)nc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3ncccn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc4cccnn34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)[O-])cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(N)=O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(NC(=O)C4CC4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(CC(=O)N4CCN(C(C)=O)CC4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc4ccccc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nccc4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)Nc4ccccc4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn(Cc4cccc(C#N)c4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OCCO)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(=O)(=O)NC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(CNC(C)=O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N4CCOCC4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(F)(F)F)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC[C@H](C)O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C4CCNCC4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC[C@@H](C)O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)CS(=O)(=O)C4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N4CCOCC4)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(=O)(=O)N(C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N(C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3sc(C)nc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(C3CCN(S(C)(=O)=O)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3cnc(N)nc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3ccccc3O)nc12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@H]3CCN(C(=O)c4ccccc4)C3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(C)C)nc(N)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(Br)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N(C)C)c(Cl)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(=O)(=O)NC)cc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(N4CCCN(C(C)=O)CC4)c3)nc12; [None]; [None]; [0] +CCCOc1ccc(-c2cc(N)n3ncc(CC)c3n2)nc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C(=O)[O-])c3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N(CC)CC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3-n3cccn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(Cl)c(OC)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(Cl)ccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3ccc(OC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccn4nccc4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c[nH]c4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)CCO4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4c3OCO4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(O)c(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(NC(C)=O)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N4CCOCC4)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc4ccc(C(C)C)cc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(-c4ccccc4)[nH]n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(C)(C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc4ccccc4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(C)(C)C)nc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3nc4ccc(F)c(F)c4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3scc4c3OCCO4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3nc4c(F)c(F)ccc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N(C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3nc4ccccc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@@H]3CC[C@@H](NC(C)=O)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C)[nH]c3=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3csc(N)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NC(=O)c3cccc(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(SC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCCc3ccccc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccn(-c4cccc(Cl)c4)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(F)cc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(CN4CCN(CC)CC4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4ccccc4s3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)CCC(=O)N4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C)nc(N)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@@H](CC)CO)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@H](CO)Cc3ccccc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC)c(OC)c3)nc12; [None]; [None]; [0] +CCc1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(Cl)cc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc(Br)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(C)nc3C(F)(F)F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N4CCOCC4)c(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N4CCC[C@@H]4C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4ccc(O)cc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc4cccn4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCCn3cncn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(OC)c(OC)cc3F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(Cl)c(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)CC(C)(C)O4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4ccccn4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4ccc(OC)cc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn(CCO)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)NC)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(OC)c(Br)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncnc4c(C)csc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc(Cl)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(N)nc4[nH]ccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(OC)cc(OC)c3)nc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)n3ncc(CC)c3n2)nc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(CS(C)(=O)=O)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3cc(OC)ccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@@H]3CC[C@@H](OC)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4cn[nH]c4c3)nc12; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(N)n3ncc(CC)c3n2)CC1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn(CC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(C)c4ccc(OC)cc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4cc(OC)ccc4o3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C[NH+](C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(-c4cccnc4)ccn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(=O)NC)ccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NC(=O)c3cc(OC)ccc3F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4ccccc4o3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC(F)(F)F)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc4sccc4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(Br)cn3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(C)nc3C(C)C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(C)c4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(NC(=O)N4CCCC4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc4ccc(OC)cc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N(C)C)nc3)nc12; [None]; [None]; [0] +CCc1cccc(-c2cc(N)n3ncc(CC)c3n2)n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncn4c3CCCC4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(C)n[nH]c4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(cnn4C)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4ccc(C(C)(C)O)cc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C)c(OCCO)c(C)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(N4CCCC4=O)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(CCO)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)c(Cl)nn4C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn(C4CCN(C(C)=O)CC4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NC(=O)c3cccc(OC(F)(F)F)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(-c4cnc(C)n4C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(-c4cnn(C)c4)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N(C)C)cc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N4CCOCC4)cc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(C)(=O)=O)cc3OC)nc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)NC)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(N4CCNCC4)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(C)(C)O)n(C)n3)nc12; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)N(C)C)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc([C@H](C)CS(C)(=O)=O)nc12; [None]; [None]; [0] +CCOc1ccccc1-c1cc(N)n2ncc(CC)c2n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(S(C)(=O)=O)ccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(=O)NCCO)ccc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(=O)NC)ccc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3S(=O)(=O)C(C)C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3C(=O)NC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3OC(F)(F)F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccnc4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C(F)(F)F)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCC(C)(C)OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3P(C)(C)=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3cc(F)cc(F)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3C(N)=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn(Cc4ccccc4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3-c3nnc(C)[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccccc3C(=O)[O-])nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4ncn(C)c(=O)c4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(Cl)ccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(NC(=O)c4ccccc4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3csc(C(C)(C)C)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C)cc3Br)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc(-c4ccccc4)[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc(OC)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3ncc4cccc(F)c4c3=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c(Cl)cccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(Br)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(OCC(=O)C(C)C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C)ccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3sc(NC)nc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc4ccccn34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3sc(N)nc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c(C)nc4ccccn34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4ccccc4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NCc3cccnc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn4ncccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3cccnc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(Cn4cncn4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NCCc3c[nH]cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NC(=O)c3cccs3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NCCc3ccccc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3sc(=O)n(C)c3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccnc(N)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3cnc4ccccc43)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cncc4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(F)c3C(N)=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NCc3ccc(Cl)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(CC(=O)[O-])c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(-c4cnn(C)c4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c[nH]nc3C(F)(F)F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(N)[nH]nc4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(c3)CS(=O)(=O)N4C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3ccncc3)nc12; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)n3ncc(CC)c3n2)n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(-c4cn[nH]c4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(CO)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)[O-])c(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(C(C)C)nn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(NCc3ccccc3F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3csc4ncncc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cncnc3N)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnoc3C(C)C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c[nH]c(SC)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4ccccc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCc3c[nH]nn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(CCC#N)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(F)cc3C(F)(F)F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Oc3ccccn3)nc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)n3ncc(CC)c3n2)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(N)n4ncc(CC)c4n3)cc2s1; [None]; [None]; [0] +CCc1cnn2c(N)cc(NC(=O)c3c(Cl)cccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnn4ccccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N3CCC(S(C)(=O)=O)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCCC(N)=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC)c(Cl)c3)nc12; [None]; [None]; [0] +CCCn1cc(-c2cc(N)n3ncc(CC)c3n2)cn1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc[nH]c(=O)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCNC(=O)CC(C)(C)O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(OCC(C)(C)S(C)(=O)=O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(O[C@H](C)c3c(Cl)cncc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4c3C(=O)CC4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N(CC)CC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(C)(C)N)cc3)nc12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(N)n2ncc(CC)c2n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCc3cc(OC)cc(OC)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3cnccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc([S@](C)=O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cncc(OC(C)C)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3cnc4ccccc4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4c(=O)[nH]cc(Br)c4s3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c[nH]c4cnccc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c(F)cccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Nc3cnccc3-c3ccccc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc4c(=O)[nH]ccc4o3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(C)(=O)=O)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(F)c3C(=O)NC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc4[nH]ccc4c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(C3(C)CCN(S(C)(=O)=O)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3ccc(CO)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N[C@H](C)C(C)(C)O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N[C@@H](C)C(C)(C)O)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(N[C@@H](C)C(=O)NCC(F)(F)F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C)nn3-c3cccc(Cl)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3cnc(CCO)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3ncc4ccccc43)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-n3ncc4c(O)cccc43)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c(F)cccc3Cl)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(OC)cc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)c4ccccc4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(-n4cncn4)cc3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nncn3C(C)C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccn(CC[NH3+])n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nncn3C3CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc4ccc(O)cc4[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3[nH]c(SC)nc3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Cc3nnc4ccc(-c5ccccc5)nn34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CCC(=O)NCc3ccccn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(CS(=O)(=O)NCc3ccccn3)nc12; [None]; [None]; [0] +CCc1cc(-c2cc(N)n3ncc(CC)c3n2)nc(N)n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(C3CCN(C(=O)N[C@@H2]C)CC3)nc12; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)n3ncc(CC)c3n2)nc(N)n1; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(Cc4ccccc4)nn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nnc(N)s3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C(C)(C)O)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc(C(=O)NC)s3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Oc3ccc(C[NH3+])cc3F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4ccsc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C(N)=O)cn3C)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc4ccccc4s3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cncc(N)n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(C(=O)Nc4ccc(C(=O)NC)cc4)c3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3c[nH]c4cccnc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3nc(N)c4ccccc4n3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc4nnsc34)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnc(NC(C)=O)[nH]3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cn(CCO)cn3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(Oc3ccc(OC)c(F)c3F)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(C#N)ccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cc(OC)ccc3OC)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3ncc4cc[nH]c4n3)nc12; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ccncn1; ['CNC(=O)c1ccccc1N', 'Brc1ccncn1', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1F']; ['Clc1ccncn1', 'CNC(=O)c1ccccc1N', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9988288879394531, 0.9943996071815491, 0.9867684841156006, 0.784049391746521] +CCOc1ccccc1Nc1ccncn1; ['CCOc1ccccc1N', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1N', 'Brc1ccncn1', 'CCOc1ccccc1Br', 'CCOc1ccccc1N', 'CCOc1ccccc1F']; ['Ic1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'CCOc1ccccc1N', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9951993227005005, 0.9950167536735535, 0.992742657661438, 0.9833123087882996, 0.9370262622833252, 0.857354998588562, 0.8457521200180054] +CCc1cnn2c(N)cc([C@H]3CC[C@@](C)(O)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cccc(S(=O)(=O)N(C)C)c3)nc12; [None]; [None]; [0] +COC(C)(C)CCNc1ccncn1; ['COC(C)(C)CCN', 'COC(C)(C)CCN', 'Brc1ccncn1', 'COC(C)(C)CCN', 'COC(C)(C)CCN', 'COC(C)(C)CCN']; ['Clc1ccncn1', 'Fc1ccncn1', 'COC(C)(C)CCN', 'Ic1ccncn1', 'c1cncnc1', 'Nc1ccncn1']; [0.9982047080993652, 0.998101532459259, 0.9973239898681641, 0.9872840642929077, 0.8967632055282593, 0.8396854996681213] +CCc1cnn2c(N)cc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc12; [None]; [None]; [0] +CCc1cnn2c(N)cc(-c3cnnc(N(C)C)c3)nc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1ccncn1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1ccncn1', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N']; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'CC(C)S(=O)(=O)c1ccccc1N', 'Ic1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9997426271438599, 0.9995975494384766, 0.9995368123054504, 0.9992148876190186, 0.9990460872650146, 0.9983792901039124, 0.9478709697723389, 0.9123588800430298] +CP(C)(=O)c1ccccc1Nc1ccncn1; ['CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N', 'Brc1ccncn1']; ['Clc1ccncn1', 'Fc1ccncn1', 'CP(C)(=O)c1ccccc1N']; [0.9992151260375977, 0.9823647737503052, 0.982277512550354] +c1ccc2c(Nc3ccncn3)ccnc2c1; ['Clc1ccncn1', 'Brc1ccnc2ccccc12', 'Brc1ccncn1', 'Fc1ccncn1', 'Fc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12']; ['Nc1ccnc2ccccc12', 'Nc1ccncn1', 'Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9997069835662842, 0.9996175765991211, 0.998481810092926, 0.9982080459594727, 0.9972928762435913, 0.9969925284385681, 0.9912418127059937, 0.9846402406692505, 0.9554113149642944] +Fc1cc(F)cc(CNc2ccncn2)c1; ['Fc1cc(F)cc(CCl)c1', 'Clc1ccncn1', 'Ic1ccncn1', 'Fc1cc(F)cc(CBr)c1', 'NCc1cc(F)cc(F)c1', 'Nc1ccncn1', 'Brc1ccncn1', 'Nc1ccncn1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'Fc1ccncn1']; ['Nc1ccncn1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'Nc1ccncn1', 'Oc1ccncn1', 'OCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'O=Cc1cc(F)cc(F)c1', 'O=c1ccnc[nH]1', 'c1cncnc1', 'NCc1cc(F)cc(F)c1']; [0.9999972581863403, 0.999984860420227, 0.9999827146530151, 0.9999746084213257, 0.9999665021896362, 0.9999617338180542, 0.9999600052833557, 0.999945878982544, 0.9999372959136963, 0.999830961227417, 0.9996656179428101] +CCc1cnn2c(N)cc(N3CC=C(c4c[nH]c5ccccc45)CC3)nc12; [None]; [None]; [0] +CCn1cc(Nc2ccncn2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'Brc1ccncn1', 'CCn1cc(Br)cn1', 'CCn1cc(I)cn1']; ['Clc1ccncn1', 'Fc1ccncn1', 'CCn1cc(N)cn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999727010726929, 0.9997683763504028, 0.9997484087944031, 0.9967060685157776, 0.9899313449859619] +FC(F)(F)c1cccc(Nc2ccncn2)c1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'Ic1ccncn1', 'FC(F)(F)c1cccc(Cl)c1', 'Fc1cccc(C(F)(F)F)c1', 'Fc1ccncn1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', None]; ['OB(O)c1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(C(F)(F)F)c1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', None]; [0.9998817443847656, 0.999847412109375, 0.9995381832122803, 0.9994471669197083, 0.9994430541992188, 0.9992164373397827, 0.9991223812103271, 0.9976939558982849, 0.9976431131362915, 0.9969373941421509, 0.9896552562713623, 0] +CCc1cnn2c(N)cc(-c3cccc(NC(=O)C4CCNCC4)c3)nc12; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1ccncn1; ['Clc1ccncn1', 'NC(=O)c1ccccc1I', 'Brc1ccncn1', 'NC(=O)c1ccccc1Br', None]; ['NC(=O)c1ccccc1N', 'Nc1ccncn1', 'NC(=O)c1ccccc1N', 'Nc1ccncn1', None]; [0.9906644821166992, 0.9690015912055969, 0.9186846017837524, 0.887239933013916, 0] +c1ccc(Cn2cc(Nc3ccncn3)cn2)cc1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999935030937195, 0.9999734163284302, 0.9998723268508911, 0.9998183250427246, 0.9993021488189697] +FC(F)(F)Oc1ccccc1Nc1ccncn1; ['Ic1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'Brc1ccncn1', 'Fc1ccccc1OC(F)(F)F', 'Fc1ccncn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Cl']; ['Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccncn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9997503757476807, 0.9997122287750244, 0.9992866516113281, 0.9992081522941589, 0.9991273880004883, 0.9987701177597046, 0.9923079609870911, 0.9891325235366821, 0.9703343510627747, 0.9590994119644165, 0.9351187348365784] +Cn1cnc2ccc(Nc3ccncn3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ccncn1']; [0.999475359916687] +O=C([O-])c1ccccc1Nc1ccncn1; [None]; [None]; [0] +OCCn1cc(Nc2ccncn2)cn1; ['Clc1ccncn1']; ['Nc1cnn(CCO)c1']; [0.9999986886978149] +O=C(Nc1cccc(Nc2ccncn2)c1)c1ccccc1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; ['Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Oc1ccncn1', 'Nc1ccncn1']; [0.9998914003372192, 0.999858021736145, 0.9991564750671387, 0.9980309009552002, 0.9912713766098022] +Cc1nnc(-c2ccccc2Nc2ccncn2)[nH]1; [None]; [None]; [0] +Cc1nc2ccccn2c1Nc1ccncn1; ['Cc1nc2ccccn2c1N']; ['Clc1ccncn1']; [0.9998711943626404] +Clc1ccc(Cl)c(Nc2ccncn2)c1; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccncn1', 'Fc1ccncn1', 'Clc1ccc(Cl)c(I)c1', 'Brc1ccncn1', 'Nc1cc(Cl)ccc1Cl', 'Fc1cc(Cl)ccc1Cl', 'Nc1ccncn1', 'Nc1cc(Cl)ccc1Cl']; ['Nc1ccncn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1ccncn1', 'Nc1cc(Cl)ccc1Cl', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1ccncn1']; [0.9966897964477539, 0.9941699504852295, 0.993224024772644, 0.9927502274513245, 0.9914946556091309, 0.9910441040992737, 0.983069658279419, 0.9827035665512085, 0.9385508298873901] +Cc1ccc(Nc2ccncn2)c(Br)c1; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(F)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1ccncn1']; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Cc1ccc(N)c(Br)c1']; [0.9996820688247681, 0.9995431900024414, 0.9987300634384155, 0.997393012046814, 0.9959233999252319, 0.9921106100082397, 0.9896426796913147, 0.9334228038787842, 0.9322605729103088] +COc1cnc(Nc2ccncn2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccncn1', 'COc1cnc(N)nc1']; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'COc1cnc(N)nc1', 'O=c1ccnc[nH]1']; [0.9965187311172485, 0.9959754347801208, 0.9959632158279419, 0.9942187666893005, 0.9909160137176514] +c1ccn2c(Nc3ccncn3)cnc2c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1ccncn1', 'Clc1cnc2ccccn12', 'Brc1ccncn1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1cnc2ccccn12', 'Nc1ccncn1', 'Nc1cnc2ccccn12']; [0.9985984563827515, 0.9976269006729126, 0.9901293516159058, 0.9808570742607117, 0.897896409034729] +CC(C)(C)c1nc(Nc2ccncn2)cs1; [None]; [None]; [0] +c1cnn2c(Nc3ccncn3)cnc2c1; ['Clc1ccncn1']; ['Nc1cnc2cccnn12']; [0.9999914765357971] +CC(C)C(=O)CONc1ccncn1; [None]; [None]; [0] +c1ccc(-c2ncc(Nc3ccncn3)[nH]2)cc1; [None]; [None]; [0] +Cc1nc(C)c(Nc2ccncn2)s1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1Nc1ccncn1; [None]; [None]; [0] +Clc1cccc(Cl)c1Nc1ccncn1; ['Ic1ccncn1', 'Clc1cccc(Cl)c1Br', 'Nc1c(Cl)cccc1Cl', 'Nc1ccncn1', 'Brc1ccncn1', 'Clc1ccncn1', 'Clc1cccc(Cl)c1I', 'Fc1ccncn1', 'Fc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Nc1c(Cl)cccc1Cl']; ['Nc1c(Cl)cccc1Cl', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1ccncn1', 'Nc1c(Cl)cccc1Cl', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998852014541626, 0.9997475147247314, 0.9997409582138062, 0.9996800422668457, 0.999639630317688, 0.999571681022644, 0.9994497895240784, 0.9991359710693359, 0.9989079236984253, 0.9968762397766113, 0.991337776184082] +Brc1cccc(Nc2ccncn2)c1; ['Nc1ccncn1', 'Clc1ccncn1', 'Ic1ccncn1', 'Brc1cccc(I)c1', 'Fc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Fc1ccncn1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Nc1ccncn1', 'Brc1ccncn1']; ['OB(O)c1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(Br)c1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Oc1cccc(Br)c1', 'Nc1cccc(Br)c1']; [0.9999829530715942, 0.9999679923057556, 0.9999147653579712, 0.9999071955680847, 0.9997413158416748, 0.9997349977493286, 0.9997348785400391, 0.9992823600769043, 0.9989100694656372, 0.9976475238800049, 0.9968879222869873, 0.994105339050293] +Nc1nccc(Nc2ccncn2)n1; ['Clc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Nc1ccncn1']; ['Nc1ccnc(N)n1', 'Nc1nccc(Br)n1', 'Nc1ccnc(N)n1', 'Nc1nccc(Cl)n1']; [0.9825084805488586, 0.9741654992103577, 0.899773120880127, 0.8817353248596191] +Cc1ccc(Cl)c(Nc2ccncn2)c1; ['Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Brc1ccncn1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Cc1ccc(Cl)c(N)c1']; [0.9911272525787354, 0.9785618782043457, 0.9709991216659546, 0.9552668333053589, 0.941450297832489, 0.9199716448783875, 0.9061422348022461] +c1cc(Cn2cncn2)cc(Nc2ccncn2)c1; ['Clc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1', 'Nc1cccc(Cn2cncn2)c1']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1ccncn1']; [0.9999964237213135, 0.9999181032180786, 0.9998477697372437, 0.9992195963859558] +c1cnn2ncc(Nc3ccncn3)c2c1; ['Brc1cnn2ncccc12']; ['Nc1ccncn1']; [0.998961865901947] +c1ccc2c(c1)ncn2Nc1ccncn1; ['Clc1ccncn1']; ['Nn1cnc2ccccc21']; [0.9661760926246643] +Cc1nc(N)sc1Nc1ccncn1; [None]; [None]; [0] +O=C(NNc1ccncn1)c1cccs1; ['NNc1ccncn1', 'Clc1ccncn1', 'NNc1ccncn1', 'NNc1ccncn1']; ['O=C(Cl)c1cccs1', 'NNC(=O)c1cccs1', 'O=C(O)c1cccs1', '[N-]=[N+]=NC(=O)c1cccs1']; [0.9870997071266174, 0.9793512225151062, 0.9608954191207886, 0.8327634334564209] +CNc1nc(C)c(Nc2ccncn2)s1; [None]; [None]; [0] +c1cncc(NNc2ccncn2)c1; ['Clc1ccncn1', 'Brc1cccnc1']; ['NNc1cccnc1', 'NNc1ccncn1']; [0.9686205387115479, 0.7535244226455688] +c1ccc2cc(Nc3ccncn3)ccc2c1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Ic1ccc2ccccc2c1', 'Fc1ccncn1', 'Brc1ccc2ccccc2c1', 'Fc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccncn1', 'Nc1ccc2ccccc2c1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9997358918190002, 0.9996724128723145, 0.9994426965713501, 0.9981381893157959, 0.9973680973052979, 0.9962174892425537, 0.9899135828018188, 0.9893474578857422, 0.9740896224975586, 0.9432161450386047] +NC(=O)c1c(F)cccc1Nc1ccncn1; ['Clc1ccncn1', 'Brc1ccncn1']; ['NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(N)cccc1F']; [0.998687744140625, 0.9759951829910278] +c1cncc(CNNc2ccncn2)c1; [None]; [None]; [0] +Cc1c(Nc2ccncn2)sc(=O)n1C; [None]; [None]; [0] +c1ccc(CCNNc2ccncn2)cc1; ['Clc1ccncn1', 'BrCCc1ccccc1']; ['NNCCc1ccccc1', 'NNc1ccncn1']; [0.9984466433525085, 0.9706434607505798] +c1ccc2c(Nc3ccncn3)cncc2c1; ['Clc1ccncn1', 'Brc1ccncn1', 'Brc1cncc2ccccc12', 'Fc1ccncn1', 'Clc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Fc1cncc2ccccc12', 'Nc1ccncn1', 'Nc1ccncn1', 'Ic1cncc2ccccc12']; ['Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ccncn1', 'Nc1cncc2ccccc12', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Nc1ccncn1']; [0.999794602394104, 0.9980769157409668, 0.9967809915542603, 0.9948571920394897, 0.986086368560791, 0.9837178587913513, 0.9797632694244385, 0.9741496443748474, 0.9718594551086426, 0.9391169548034668] +FC(F)(F)c1n[nH]cc1Nc1ccncn1; ['FC(F)(F)c1n[nH]cc1Br', 'Clc1ccncn1', 'Brc1ccncn1']; ['Nc1ccncn1', 'Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F']; [0.9997485876083374, 0.9996600151062012, 0.9980037212371826] +Cn1cc(-c2ccc(Nc3ccncn3)cc2)cn1; ['Clc1ccncn1', 'Brc1ccncn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1']; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1']; [0.9999998807907104, 0.999999463558197, 0.9999986886978149, 0.9999938607215881, 0.99998939037323] +CCCn1cnc(Nc2ccncn2)n1; ['CCCn1cnc(N)n1', 'Brc1ccncn1']; ['Clc1ccncn1', 'CCCn1cnc(N)n1']; [0.9986025094985962, 0.9926173686981201] +Nc1[nH]nc2cc(Nc3ccncn3)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['Nc1ccncn1']; [0.9996949434280396] +Cn1ncc2cc(Nc3ccncn3)ccc21; ['Brc1ccncn1', 'Cn1ncc2cc(B(O)O)ccc21', 'Clc1ccncn1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(F)ccc21', 'Cn1ncc2cc(O)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['Cn1ncc2cc(N)ccc21', 'Nc1ccncn1', 'Cn1ncc2cc(N)ccc21', 'Ic1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999986886978149, 0.9999975562095642, 0.9999940395355225, 0.9999874830245972, 0.9999634027481079, 0.999951958656311, 0.9998807907104492, 0.9995762705802917, 0.998683512210846, 0.9979538917541504, 0.9978430271148682, 0.9923372268676758] +c1cc(Nc2ccc(-c3cn[nH]c3)cc2)ncn1; ['Clc1ccncn1', 'Brc1ccncn1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Fc1ccncn1', 'Nc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccncn1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'O=c1ccnc[nH]1']; [0.9999642968177795, 0.9999120235443115, 0.9999053478240967, 0.999674916267395, 0.9980075359344482] +O=C([O-])Cc1cccc(Nc2ccncn2)c1; [None]; [None]; [0] +Oc1cccc(Nc2ccncn2)c1; ['Clc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(O)c1']; ['Nc1cccc(O)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(F)c1', 'O=c1ccnc[nH]1']; [0.9988511800765991, 0.9976850152015686, 0.9969277381896973, 0.9935353994369507, 0.9897967576980591, 0.9848961234092712, 0.976664125919342] +c1cc(NNCCc2c[nH]cn2)ncn1; [None]; [None]; [0] +c1cc(NNc2ccncn2)ccn1; ['Clc1ccncn1', 'Clc1ccncc1']; ['NNc1ccncc1', 'NNc1ccncn1']; [0.9762694835662842, 0.956741452217102] +Clc1ccc(CNNc2ccncn2)cc1; [None]; [None]; [0] +CN1c2ccc(Nc3ccncn3)cc2CS1(=O)=O; [None]; [None]; [0] +CC(C)n1cc(Nc2ccncn2)nn1; ['CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1', 'Brc1ccncn1']; ['Clc1ccncn1', 'Fc1ccncn1', 'CC(C)n1cc(N)nn1']; [0.9978053569793701, 0.9927555322647095, 0.9900540113449097] +Fc1ccccc1CNNc1ccncn1; ['Clc1ccncn1']; ['NNCc1ccccc1F']; [0.9903537034988403] +OCc1cccc(Nc2ccncn2)c1; ['Clc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(CO)c1', 'Nc1ccncn1']; ['Nc1cccc(CO)c1', 'OCc1cccc(B(O)O)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(I)c1', 'O=c1ccnc[nH]1', 'OCc1cccc(Br)c1']; [0.9996744394302368, 0.9954870939254761, 0.9949918985366821, 0.9942295551300049, 0.9891889691352844, 0.9801464080810547, 0.9710274934768677] +COc1cc(Nc2ccncn2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(Nc2ccncn2)c[nH]1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ccncn3)cc2c1; ['Nc1cc2ccccc2[nH]1', 'Clc1ccncn1', 'Fc1cc2ccccc2[nH]1', 'Fc1ccncn1', 'Brc1ccncn1']; ['O=c1ccnc[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1ccncn1', 'Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1']; [0.9951115846633911, 0.9791330099105835, 0.9783139228820801, 0.9349802732467651, 0.8236438035964966] +c1cc(NCCc2c[nH]nn2)ncn1; ['Clc1ccncn1', 'NCCc1c[nH]nn1', 'Brc1ccncn1', 'Ic1ccncn1', 'Fc1ccncn1', 'NCCc1c[nH]nn1']; ['NCCc1c[nH]nn1', 'O=c1ccnc[nH]1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'Nc1ccncn1']; [0.9997812509536743, 0.9994463324546814, 0.9985780715942383, 0.9972749948501587, 0.9934489727020264, 0.989911675453186] +c1cc(Nc2csc3ncncc23)ncn1; ['Brc1csc2ncncc12']; ['Nc1ccncn1']; [0.9999874234199524] +Nc1nc(Nc2ccncn2)cs1; ['Clc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1']; ['Nc1csc(N)n1', 'Nc1nc(Cl)cs1', 'Nc1csc(N)n1']; [0.9991418123245239, 0.9946032762527466, 0.8066179156303406] +Nc1ncncc1Nc1ccncn1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; ['Nc1cncnc1N', 'Nc1cncnc1N', 'Nc1cncnc1N', 'Nc1ncncc1Br']; [0.9982647895812988, 0.9621145725250244, 0.9074623584747314, 0.7873384356498718] +NC(=O)CCCNc1ccncn1; ['Clc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1']; ['NCCCC(N)=O', 'NCCCC(N)=O', 'NCCCC(N)=O']; [0.9936954975128174, 0.9903846979141235, 0.9835295081138611] +Fc1ccc(Nc2ccncn2)c(C(F)(F)F)c1; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Nc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(F)c(C(F)(F)F)c1', 'Nc1ccc(F)cc1C(F)(F)F', 'Fc1ccncn1']; ['Nc1ccncn1', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccc(F)cc1C(F)(F)F']; [0.9985522031784058, 0.9985189437866211, 0.9977459907531738, 0.9968047142028809, 0.9946141242980957, 0.9864622950553894, 0.969022810459137, 0.9564090967178345, 0.9196100234985352] +CCC(=O)Nc1ccc(Nc2ccncn2)cc1; ['CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1', 'Brc1ccncn1', 'CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1']; ['Oc1ccncn1', 'Clc1ccncn1', 'CCC(=O)Nc1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9958733320236206, 0.9933551549911499, 0.9840219020843506, 0.9799657464027405, 0.9713738560676575] +N#CCCc1cccc(Nc2ccncn2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(F)c1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999824166297913, 0.999756932258606, 0.9939838647842407] +O=C(NNc1ccncn1)c1c(Cl)cccc1Cl; ['NNc1ccncn1', 'NNc1ccncn1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9833267331123352, 0.9183663725852966] +CCNc1nc2ccc(Nc3ccncn3)cc2s1; [None]; [None]; [0] +CC(C)c1oncc1Nc1ccncn1; [None]; [None]; [0] +Cn1cc(Nc2ccncn2)c2ccccc21; [None]; [None]; [0] +c1ccc(ONc2ccncn2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCNc1ccncn1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ccncn2)c1; ['CC(=O)Nc1cccc(N)c1', 'Brc1ccncn1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(F)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(N)c1']; ['Clc1ccncn1', 'CC(=O)Nc1cccc(N)c1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999080896377563, 0.9997625350952148, 0.9996970295906067, 0.9996861219406128, 0.999545693397522, 0.9993098378181458, 0.9989599585533142, 0.9926760196685791] +c1ccn2ncc(Nc3ccncn3)c2c1; ['Clc1ccncn1', 'Brc1cnn2ccccc12', 'Clc1cnn2ccccc12', 'Brc1ccncn1', 'Ic1cnn2ccccc12', 'Fc1ccncn1', 'Nc1cnn2ccccc12']; ['Nc1cnn2ccccc12', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cnn2ccccc12', 'Nc1ccncn1', 'Nc1cnn2ccccc12', 'O=c1ccnc[nH]1']; [0.9999536871910095, 0.9992754459381104, 0.9988738298416138, 0.9986262321472168, 0.9982532262802124, 0.9960571527481079, 0.9878581762313843] +COc1ccc(Nc2ccncn2)cc1Cl; ['COc1ccc(B(O)O)cc1Cl', 'Brc1ccncn1', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(F)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Cl)cc1Cl']; ['Nc1ccncn1', 'COc1ccc(N)cc1Cl', 'Fc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Oc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999160766601562, 0.9999096989631653, 0.9997228384017944, 0.9996812343597412, 0.9996211528778076, 0.9994618892669678, 0.9992561340332031, 0.9991906881332397, 0.9991638660430908, 0.9985739588737488, 0.994611918926239, 0.8436598181724548] +CCCn1cc(Nc2ccncn2)cn1; ['Brc1ccncn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(I)cn1']; ['CCCn1cc(N)cn1', 'Clc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999983310699463, 0.9999971389770508, 0.9999822378158569, 0.9998184442520142, 0.9996592998504639] +CC(C)(N)c1ccc(Nc2ccncn2)cc1; ['CC(C)(N)c1ccc(N)cc1']; ['Clc1ccncn1']; [0.9920196533203125] +CS(=O)(=O)C1CCN(Nc2ccncn2)CC1; [None]; [None]; [0] +O=C1CCc2cccc(Nc3ccncn3)c21; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1cccc2c1C(=O)CC2', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1cccc2c1C(=O)CC2', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc2c1C(=O)CC2']; ['Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(Br)c21', 'O=c1ccnc[nH]1', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1ccncn1', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(F)c21', 'Oc1ccncn1']; [0.9992230534553528, 0.9991050958633423, 0.9909384846687317, 0.9898894429206848, 0.9894793033599854, 0.9719139337539673, 0.9663976430892944, 0.9426931738853455, 0.9294381141662598] +O=c1cc(Nc2ccncn2)cc[nH]1; ['Clc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; ['Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(Br)cc[nH]1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(F)cc[nH]1', 'O=c1cc(Cl)cc[nH]1']; [0.999917209148407, 0.9997340440750122, 0.9994558095932007, 0.9992357492446899, 0.998864471912384, 0.9947748184204102, 0.9758515357971191] +CC(C)(CONc1ccncn1)S(C)(=O)=O; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1Nc1ccncn1; ['CCNS(=O)(=O)c1ccccc1N', 'Brc1ccncn1', 'CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1Br']; ['Clc1ccncn1', 'CCNS(=O)(=O)c1ccccc1N', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9899742603302002, 0.9624980092048645, 0.9610223770141602, 0.9354910850524902] +COc1cc(CCNc2ccncn2)cc(OC)c1; ['COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'Brc1ccncn1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCO)cc(OC)c1']; ['Clc1ccncn1', 'O=c1ccnc[nH]1', 'COc1cc(CCN)cc(OC)c1', 'Ic1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9993099570274353, 0.9933182001113892, 0.9838210940361023, 0.9814141988754272, 0.9717981219291687, 0.9351837635040283, 0.7769280076026917, 0.7629824876785278] +C[S@](=O)c1ccc(Nc2ccncn2)cc1; ['CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(N)cc1', 'Brc1ccncn1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(N)cc1', 'CS(=O)c1ccc(F)cc1', 'CS(=O)c1ccc(O)cc1']; ['Nc1ccncn1', 'Clc1ccncn1', 'CS(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9987863302230835, 0.9968092441558838, 0.996353030204773, 0.9941083192825317, 0.9763641357421875, 0.8971821069717407, 0.854403018951416, 0.7697913646697998] +CCN(CC)Nc1ccncn1; [None]; [None]; [0] +COc1ccncc1NNc1ccncn1; [None]; [None]; [0] +c1ccc(-c2ccncc2NNc2ccncn2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(Nc2ccncn2)c1; ['CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9999963045120239, 0.99989253282547] +CC(C)(C)c1ccc(Nc2ccncn2)cc1; ['CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(N)cc1', 'Brc1ccncn1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(F)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Cl)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Ic1ccncn1', 'CC(C)(C)c1ccc(N)cc1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998680949211121, 0.9998233318328857, 0.9996100664138794, 0.9994101524353027, 0.9994040131568909, 0.998427152633667, 0.9979044198989868, 0.996680736541748, 0.9924836158752441, 0.9857211112976074, 0.9849123358726501] +COc1cccc(F)c1Nc1ccncn1; ['COc1cccc(F)c1N', 'COc1cccc(F)c1Br', 'Brc1ccncn1', 'COc1cccc(F)c1N', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1I', 'COc1cccc(F)c1N']; ['Clc1ccncn1', 'Nc1ccncn1', 'COc1cccc(F)c1N', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1']; [0.999772310256958, 0.9995408058166504, 0.9992146492004395, 0.9988335967063904, 0.9877314567565918, 0.977615475654602, 0.9744389057159424] +[NH3+]Cc1ccc(Nc2ccncn2)cc1C(F)(F)F; [None]; [None]; [0] +C[C@@H](ONc1ccncn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +c1ccc2ncc(NNc3ccncn3)cc2c1; ['Clc1ccncn1', 'Fc1ccncn1']; ['NNc1cnc2ccccc2c1', 'NNc1cnc2ccccc2c1']; [0.9976818561553955, 0.8962225914001465] +O=c1[nH]cc(Br)c2sc(Nc3ccncn3)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(Nc3ccncn3)cc12; [None]; [None]; [0] +c1cc(Nc2c[nH]c3cnccc23)ncn1; ['Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9943926334381104, 0.9936928749084473] +CNS(=O)(=O)c1ccc(Nc2ccncn2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccncn1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(F)cc1', 'CNS(=O)(=O)c1ccc(N)cc1']; ['Clc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'CNS(=O)(=O)c1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9950375556945801, 0.9902461767196655, 0.9838658571243286, 0.950102686882019, 0.9283832311630249, 0.9131314754486084, 0.8832384347915649, 0.8778260946273804] +CNC(=O)c1c(F)cccc1Nc1ccncn1; [None]; [None]; [0] +c1cc(Nc2cnc3[nH]ccc3c2)ncn1; ['Clc1ccncn1', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Fc1ccncn1', 'Brc1ccncn1']; ['Nc1cnc2[nH]ccc2c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1']; [0.9995752573013306, 0.9992601871490479, 0.9986330270767212, 0.9984230995178223, 0.9983869791030884] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ccncn2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccncn1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(F)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999182820320129, 0.9997698068618774, 0.9990042448043823, 0.9984797835350037, 0.9955748319625854, 0.9953312277793884, 0.9785837531089783, 0.9738996028900146] +Cc1cc(Nc2ccncn2)n(-c2cccc(Cl)c2)n1; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1', 'Brc1ccncn1']; ['Clc1ccncn1', 'Cc1cc(N)n(-c2cccc(Cl)c2)n1']; [0.91668701171875, 0.8314312100410461] +c1cc(Nc2ccc(N3CCOCC3)cc2)ncn1; ['Clc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1', 'Nc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999982476234436, 0.999904453754425, 0.9999024271965027, 0.999823808670044, 0.9998102188110352, 0.999496340751648, 0.999437689781189, 0.9941324591636658] +CC1(Nc2ccncn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2ccncn2)cc1; ['CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'Brc1ccncn1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(F)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'CS(=O)(=O)c1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998214244842529, 0.9996602535247803, 0.9996193647384644, 0.9995303153991699, 0.999512791633606, 0.9990275502204895, 0.9983581304550171, 0.9974946975708008, 0.9967095851898193, 0.992942214012146, 0.9914405345916748] +c1ccc2c(c1)cnn2Nc1ccncn1; ['Clc1ccncn1']; ['Nn1ncc2ccccc21']; [0.999427318572998] +Fc1cccc(Cl)c1Nc1ccncn1; ['Nc1ccncn1', 'Fc1cccc(Cl)c1Br', 'Ic1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Fc1cccc(Cl)c1I', 'Nc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1F', 'Fc1cccc(Cl)c1Cl', 'Nc1c(F)cccc1Cl', 'Fc1ccncn1']; ['OB(O)c1c(F)cccc1Cl', 'Nc1ccncn1', 'Nc1c(F)cccc1Cl', 'Nc1c(F)cccc1Cl', 'Nc1c(F)cccc1Cl', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1c(F)cccc1Cl']; [0.9998847246170044, 0.9998650550842285, 0.9998065233230591, 0.9997614622116089, 0.9993724226951599, 0.999225378036499, 0.998420000076294, 0.9968376159667969, 0.9940375089645386, 0.9875707626342773, 0.9707201719284058] +CN(Nc1ccncn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +c1cc(Nc2ccc(-n3cncn3)cc2)ncn1; ['Clc1ccncn1', 'Ic1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Oc1ccc(-n2cncn2)cc1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.9999598264694214, 0.9999533295631409, 0.9999078512191772, 0.9997650384902954, 0.9981101751327515, 0.9980998635292053, 0.9969305992126465] +C[C@H](NNc1ccncn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(Nc2ccncn2)n1; [None]; [None]; [0] +C[C@@H](NNc1ccncn1)C(C)(C)O; [None]; [None]; [0] +C[C@H](NNc1ccncn1)C(C)(C)O; [None]; [None]; [0] +OCCc1cn(Nc2ccncn2)cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2Nc1ccncn1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(Nc2ccncn2)cc1; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=c1ccnc[nH]1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(F)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1']; [0.9978313446044922, 0.9968913793563843, 0.9960434436798096, 0.9945995211601257, 0.994143009185791, 0.9882462024688721, 0.9415267705917358, 0.8895989656448364, 0.7576303482055664] +COc1ccc(Nc2ccncn2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(F)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'Brc1ccncn1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(N)c(OC)c1']; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'COc1ccc(N)c(OC)c1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999896764755249, 0.9991773366928101, 0.9984089732170105, 0.9982918500900269, 0.9979264736175537, 0.9947516918182373, 0.9941896796226501, 0.9874764680862427, 0.9814621210098267, 0.9470571279525757] +c1cc(Nc2nncn2C2CC2)ncn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ccncn2)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(CNc4ccncn4)n3n2)cc1; [None]; [None]; [0] +Oc1ccc2nc(Nc3ccncn3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(Nc2ccncn2)[nH]1; [None]; [None]; [0] +CCc1cc(Nc2ccncn2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'Brc1ccncn1']; ['Nc1ccncn1', 'Clc1ccncn1', 'CCc1cc(N)nc(N)n1']; [0.9887639880180359, 0.9879170656204224, 0.9538664817810059] +O=C(CCNc1ccncn1)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(Nc2ccncn2)nc(N)n1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ccncn1; [None]; [None]; [0] +Nc1nnc(Nc2ccncn2)s1; [None]; [None]; [0] +c1ccc(Cn2cc(Nc3ccncn3)nn2)cc1; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ccncn2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9988266229629517, 0.9575929045677185] +Cn1cc(C(N)=O)cc1Nc1ccncn1; [None]; [None]; [0] +c1ccc2sc(Nc3ccncn3)nc2c1; ['Brc1nc2ccccc2s1', 'Clc1ccncn1', 'Clc1nc2ccccc2s1', 'Brc1ccncn1']; ['Nc1ccncn1', 'Nc1nc2ccccc2s1', 'Nc1ccncn1', 'Nc1nc2ccccc2s1']; [0.9998940229415894, 0.9998347759246826, 0.9996671676635742, 0.9996650815010071] +O=S(=O)(CNc1ccncn1)NCc1ccccn1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ccncn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ccncn2)s1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2ccncn2)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ccncn3)nc2NC1=O; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'Brc1ccncn1']; ['Nc1ccncn1', 'Clc1ccncn1', 'CC1(C)Oc2ccc(N)nc2NC1=O']; [0.9983561038970947, 0.9873579740524292, 0.9818159341812134] +c1cc(Nc2ccncn2)c2sccc2c1; ['Brc1cccc2ccsc12']; ['Nc1ccncn1']; [0.9979590177536011] +Nc1cncc(Nc2ccncn2)n1; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; ['Nc1cncc(N)n1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9987009763717651, 0.9732269644737244, 0.8341437578201294] +[NH3+]Cc1ccc(ONc2ccncn2)c(F)c1; [None]; [None]; [0] +c1cc(Nc2ccncn2)c2snnc2c1; ['Clc1ccncn1', 'Brc1ccncn1', 'Brc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1ccncn1']; [0.999940037727356, 0.9999122619628906, 0.9995852112770081] +c1ccc2nc(Nc3ccncn3)ncc2c1; ['Clc1ccncn1', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Brc1ccncn1']; ['Nc1ncc2ccccc2n1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ncc2ccccc2n1']; [0.9999456405639648, 0.9998255968093872, 0.9998012781143188, 0.9997885227203369] +Nc1nc(Nc2ccncn2)nc2ccccc12; ['Clc1ccncn1', 'Nc1nc(N)c2ccccc2n1', 'Brc1ccncn1', 'Nc1ccncn1']; ['Nc1nc(N)c2ccccc2n1', 'O=c1ccnc[nH]1', 'Nc1nc(N)c2ccccc2n1', 'Nc1nc(Cl)nc2ccccc12']; [0.9944056272506714, 0.9838581085205078, 0.9067447781562805, 0.859373152256012] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ccncn3)c2)cc1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](Nc2ccncn2)CC1; ['C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'Brc1ccncn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; ['Clc1ccncn1', 'Fc1ccncn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'O=c1ccnc[nH]1', 'c1cncnc1']; [0.9997215270996094, 0.9989572167396545, 0.9967162609100342, 0.9961832761764526, 0.9589976668357849] +COc1ccc(ONc2ccncn2)c(F)c1F; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ccncn1; ['COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'Brc1ccncn1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1F', 'COc1ccc(C#N)cc1N']; ['Clc1ccncn1', 'Ic1ccncn1', 'COc1ccc(C#N)cc1N', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999371767044067, 0.9999260306358337, 0.9998636245727539, 0.9998317956924438, 0.9998317956924438, 0.9998176097869873, 0.9991140365600586, 0.9989801645278931, 0.9984599351882935, 0.998238742351532, 0.9978052377700806] +c1cc(Nc2ncc3cc[nH]c3n2)ncn1; ['Clc1ccncn1', 'Clc1ncc2cc[nH]c2n1', 'Brc1ccncn1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ccncn1', 'Nc1ncc2cc[nH]c2n1']; [0.9999916553497314, 0.9999532699584961, 0.999951183795929] +c1cnc2c(Nc3ccncn3)c[nH]c2c1; ['Ic1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'Clc1ccncn1', 'Clc1c[nH]c2cccnc12', 'Fc1ccncn1', 'Brc1ccncn1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1c[nH]c2cccnc12', 'Nc1ccncn1', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12']; [0.9983920454978943, 0.9968990087509155, 0.9953703284263611, 0.9905304908752441, 0.9856882095336914, 0.9817312955856323] +COc1ncccc1Nc1ccncn1; ['Brc1ccncn1', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1F']; ['COc1ncccc1N', 'Ic1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9983424544334412, 0.9983257055282593, 0.9982322454452515, 0.9921252727508545, 0.99127197265625, 0.9901432991027832, 0.9884418249130249, 0.9815945625305176, 0.9249835014343262, 0.8707693815231323] +COc1ccc(OC)c(Nc2ccncn2)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'Brc1ccncn1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(F)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(O)c1']; ['Nc1ccncn1', 'Clc1ccncn1', 'Ic1ccncn1', 'COc1ccc(OC)c(N)c1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.99946129322052, 0.9992977976799011, 0.9992666244506836, 0.9980143308639526, 0.9979469180107117, 0.9977619647979736, 0.9968252182006836, 0.9938545227050781, 0.9920973777770996, 0.9882504940032959, 0.9724010229110718, 0.9302899837493896] +CC(=O)Nc1ncc(Nc2ccncn2)[nH]1; [None]; [None]; [0] +OCCn1cnc(Nc2ccncn2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(Nc2ccncn2)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'Brc1ccncn1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1']; ['Clc1ccncn1', 'Ic1ccncn1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9999946355819702, 0.9999842643737793, 0.9999788403511047, 0.9999294877052307, 0.9999045133590698, 0.9994657039642334, 0.9981648921966553] +CC(=O)N(C)c1ccc(Nc2ccncn2)cc1; ['Brc1ccncn1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1']; ['CC(=O)N(C)c1ccc(N)cc1', 'Clc1ccncn1', 'Nc1ccncn1', 'Oc1ccncn1', 'O=c1ccnc[nH]1']; [0.9990360736846924, 0.9988093972206116, 0.9979770183563232, 0.9952602386474609, 0.994849443435669] +CCOc1ccc(Nc2ccncn2)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(N)cc1', 'Brc1ccncn1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(F)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Cl)cc1']; ['Nc1ccncn1', 'Ic1ccncn1', 'CCOc1ccc(N)cc1', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999606728553772, 0.998937726020813, 0.998779833316803, 0.9985612034797668, 0.9978244304656982, 0.9920438528060913, 0.9917535781860352, 0.9888811707496643, 0.9801390171051025, 0.9416111707687378, 0.9005797505378723] +CN(C)c1cc(Nc2ccncn2)cnn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ccncn2)c1)C1CCNCC1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2ccncn2)c1; ['CS(=O)(=O)c1cccc(N)c1', 'Brc1ccncn1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Clc1ccncn1', 'CS(=O)(=O)c1cccc(N)c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1']; [0.9999697804450989, 0.9999607801437378, 0.9999167919158936, 0.9995547533035278, 0.9988380670547485, 0.9970025420188904] +COc1cc(Nc2ccncn2)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'Brc1ccncn1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC']; ['Nc1ccncn1', 'Clc1ccncn1', 'COc1cc(N)cc(OC)c1OC', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Ic1ccncn1', 'O=c1ccnc[nH]1']; [0.9999157786369324, 0.9998340606689453, 0.9994516372680664, 0.9994478225708008, 0.9992187023162842, 0.9984241724014282, 0.9975196123123169, 0.9962347745895386] +Cc1ccc2ncn(Nc3ccncn3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2ccncn2)c1; ['N#Cc1ccc(O)c(N)c1', 'Clc1ccncn1', 'Brc1ccncn1', 'N#Cc1ccc(O)c(Br)c1', 'Fc1ccncn1', 'N#Cc1ccc(O)c(F)c1', 'N#Cc1ccc(O)c(Cl)c1']; ['O=c1ccnc[nH]1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'Nc1ccncn1', 'N#Cc1ccc(O)c(N)c1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9994232654571533, 0.9983782172203064, 0.9898763298988342, 0.9775839447975159, 0.9526063203811646, 0.9456813335418701, 0.8876878023147583] +C1=C(c2c[nH]c3ccccc23)CCN(Nc2ccncn2)C1; [None]; [None]; [0] +COc1ccc(Nc2ccncn2)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'Brc1ccncn1', 'COc1ccc(Br)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1', 'COc1ccc(F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(N)cc1']; ['Nc1ccncn1', 'Clc1ccncn1', 'COc1ccc(N)cc1', 'Nc1ccncn1', 'Ic1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9995610117912292, 0.9983114004135132, 0.997583270072937, 0.9973543286323547, 0.9951282739639282, 0.9934073090553284, 0.9930066466331482, 0.9910570383071899, 0.9852178692817688, 0.936001181602478, 0.9344786405563354] +c1ccc2[nH]c(C3CCN(Nc4ccncn4)CC3)nc2c1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ccncn2)c1)C1CC1; ['Clc1ccncn1', 'Brc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc(Br)c1)C1CC1', 'O=c1ccnc[nH]1', 'Oc1ccncn1', 'Nc1ccncn1']; [0.9999970197677612, 0.9999728798866272, 0.9999370574951172, 0.9999361038208008, 0.9999333620071411, 0.9998965263366699] +c1ccc2c(Nc3ccncn3)nccc2c1; ['Clc1ccncn1', 'Brc1ccncn1', 'Clc1nccc2ccccc12', 'Brc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1ccncn1', 'Nc1ccncn1']; [0.998579204082489, 0.9979701042175293, 0.9932810068130493, 0.9656301736831665] +O=C([O-])c1ccc(Nc2ccncn2)cc1; ['Clc1ccncn1', 'Fc1ccncn1', 'Nc1ccc(C(=O)[O-])cc1']; ['Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1', 'Oc1ccncn1']; [0.9022217988967896, 0.8760596513748169, 0.8702143430709839] +c1cnc(NNc2ccncn2)nc1; ['Clc1ccncn1']; ['NNc1ncccn1']; [0.9630916118621826] +c1ccc2[nH]c(Nc3ccncn3)nc2c1; ['Clc1ccncn1', 'Brc1nc2ccccc2[nH]1', 'Brc1ccncn1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccncn1', 'Nc1nc2ccccc2[nH]1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9945874214172363, 0.9882640838623047, 0.9841709136962891, 0.9619155526161194, 0.9451302289962769, 0.8118637800216675] +NC(=O)c1ccc(Nc2ccncn2)cc1; ['Clc1ccncn1', 'Brc1ccncn1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(N)cc1', 'Fc1ccncn1', 'NC(=O)c1ccc(F)cc1']; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'NC(=O)c1ccc(N)cc1', 'Nc1ccncn1']; [0.999764084815979, 0.999252438545227, 0.9991121292114258, 0.9913582801818848, 0.9894577860832214, 0.9681024551391602] +Cc1nc(C(C)(C)O)sc1Nc1ccncn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2ccncn2)cc1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Fc1ccncn1', 'Nc1ccncn1']; ['O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Oc1ccncn1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; [0.9994357228279114, 0.999336838722229, 0.999107837677002, 0.99859219789505, 0.987402081489563, 0.7714699506759644] +c1cc(Nc2ccncn2)cc(C2CCNCC2)c1; ['Clc1ccncn1']; ['Nc1cccc(C2CCNCC2)c1']; [0.9999940395355225] +O=C(c1ccc(Nc2ccncn2)nc1)N1CCOCC1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.99997878074646, 0.9999345541000366, 0.9995889067649841] +CC(=O)NCc1ccc(Nc2ccncn2)cc1; ['CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(N)cc1', 'Brc1ccncn1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(F)cc1']; ['Nc1ccncn1', 'Clc1ccncn1', 'CC(=O)NCc1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9990065693855286, 0.9987790584564209, 0.9969781637191772, 0.9932750463485718, 0.9561012983322144] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ccncn3)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(Nc2ccncn2)cc1)N1CCOCC1; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; ['O=c1ccnc[nH]1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Oc1ccncn1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(F)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; [0.9999960660934448, 0.9999544620513916, 0.9999383687973022, 0.9999364614486694, 0.999883234500885, 0.99985671043396, 0.9987270832061768, 0.9950989484786987, 0.9857547879219055] +OCCOc1ccc(Nc2ccncn2)cc1; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccc(OCCO)cc1', 'Nc1ccncn1']; ['Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'O=c1ccnc[nH]1', 'OCCOc1ccc(Cl)cc1']; [0.9998148679733276, 0.9991725087165833, 0.9989762306213379, 0.998700737953186, 0.9968018531799316, 0.9919676184654236, 0.7953316569328308] +C[C@H](O)COc1ccc(Nc2ccncn2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3ccncn3)cn2)c1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2ccncn2)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1ccncn1; ['Clc1ccncn1', 'NCc1ccccc1O', 'Fc1ccncn1', 'Brc1ccncn1']; ['NCc1ccccc1O', 'O=c1ccnc[nH]1', 'NCc1ccccc1O', 'NCc1ccccc1O']; [0.9810971021652222, 0.975614070892334, 0.9558059573173523, 0.9446545839309692] +FC(F)(F)c1ccc(Nc2ccncn2)cc1; ['Nc1ccncn1', 'Ic1ccncn1', 'Clc1ccncn1', 'FC(F)(F)c1ccc(Br)cc1', 'Brc1ccncn1', 'FC(F)(F)c1ccc(I)cc1', 'Fc1ccncn1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'Fc1ccc(C(F)(F)F)cc1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccncn1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccncn1', 'Nc1ccc(C(F)(F)F)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999657154083252, 0.9986070990562439, 0.997784435749054, 0.9972541332244873, 0.9968024492263794, 0.9952211380004883, 0.9605939388275146, 0.955370306968689, 0.9016280770301819, 0.8142445087432861, 0.8139597177505493] +CN(C)c1ccc(Nc2ccncn2)cc1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1ccncn1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(N)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'CN(C)c1ccc(N)cc1', 'Nc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9996912479400635, 0.9995654225349426, 0.9990827441215515, 0.9982068538665771, 0.997302770614624, 0.9972615242004395, 0.9963960647583008, 0.9922151565551758, 0.9916451573371887, 0.9860778450965881, 0.9826148152351379] +CN(C)S(=O)(=O)c1ccc(Nc2ccncn2)cc1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Brc1ccncn1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998416900634766, 0.999502420425415, 0.9994785189628601, 0.9992462396621704, 0.9989582300186157, 0.9978280067443848, 0.995705246925354, 0.9947783946990967] +CS(=O)(=O)N1CCC(Nc2ccncn2)CC1; ['CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(=O)CC1', 'Brc1ccncn1']; ['Clc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'CS(=O)(=O)N1CCC(N)CC1']; [0.9997847676277161, 0.9996286034584045, 0.9991020560264587, 0.9982344508171082] +CC(C)c1cc(Nc2ccncn2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1ccncn1']; [0.9570874571800232] +O=S1(=O)Cc2ccc(Nc3ccncn3)cc2C1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9999800324440002, 0.9999769926071167, 0.9999452829360962, 0.9999409914016724, 0.9999207854270935, 0.9992043972015381] +CCNS(=O)(=O)c1ccc(Nc2ccncn2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccncn1', 'CCNS(=O)(=O)c1ccc(N)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'Fc1ccncn1']; [0.9795728921890259, 0.9598826169967651, 0.8680974245071411, 0.8641625642776489] +CCCOc1ccc(Nc2ccncn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ccncn1']; [0.9975341558456421] +O=C(c1ccccc1)N1CC[C@H](Nc2ccncn2)C1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ccncn2)cc1Cl; ['Brc1ccncn1', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(F)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['CN(C)c1ccc(N)cc1Cl', 'Nc1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998390674591064, 0.9994542002677917, 0.9992282390594482, 0.9989303946495056, 0.9961774349212646, 0.9939431548118591] +Brc1ccc(Nc2ccncn2)cc1; ['Clc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Brc1ccc(I)cc1', 'Nc1ccc(Br)cc1', 'Fc1ccncn1', 'Nc1ccc(Br)cc1', 'Fc1ccc(Br)cc1', 'Brc1ccncn1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1']; ['Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccc(Br)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccc(Br)cc1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.998821496963501, 0.9988080263137817, 0.9986206293106079, 0.9979127049446106, 0.9945076704025269, 0.9881702661514282, 0.9776879549026489, 0.9451135993003845, 0.9283880591392517, 0.8228669166564941, 0.7798658609390259] +Nc1ncc(CNc2ccncn2)cn1; [None]; [None]; [0] +COc1ccc(CNc2ccncn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CCl)cc1', 'Brc1ccncn1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(CN)cc1']; ['Clc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'COc1ccc(CN)cc1', 'Nc1ccncn1', 'Oc1ccncn1', 'Nc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'c1cncnc1']; [0.9993387460708618, 0.9991054534912109, 0.997707724571228, 0.9976761341094971, 0.9975548982620239, 0.9973800182342529, 0.9961298108100891, 0.9947330355644226, 0.9903382062911987, 0.970502495765686, 0.8556181192398071] +CCN(CC)C(=O)c1ccc(Nc2ccncn2)cc1; ['Brc1ccncn1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(F)cc1']; ['CCN(CC)C(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Clc1ccncn1', 'Oc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9965195059776306, 0.9963662624359131, 0.9961435794830322, 0.9918708801269531, 0.9910156726837158, 0.9868577718734741, 0.9610196948051453, 0.9608198404312134] +CNS(=O)(=O)c1ccc(Nc2ccncn2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ccncn1']; [0.9989417195320129] +c1cc(Nc2ccn3nccc3n2)ncn1; ['Clc1ccncn1', 'Brc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Brc1ccncn1', 'Nc1ccncn1']; ['Nc1ccn2nccc2n1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccn2nccc2n1', 'O=c1ccn2nccc2[nH]1']; [0.9998916387557983, 0.999772846698761, 0.9997007846832275, 0.9993623495101929, 0.9985944628715515, 0.7691186666488647] +c1ccc(-n2cccn2)c(Nc2ccncn2)c1; ['Clc1ccncn1', 'Brc1ccccc1-n1cccn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Fc1ccccc1-n1cccn1', 'Brc1ccncn1', 'Clc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1']; ['Nc1ccccc1-n1cccn1', 'Nc1ccncn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccncn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.999927282333374, 0.9998634457588196, 0.9998003840446472, 0.9992077946662903, 0.9990736246109009, 0.9989352226257324, 0.99830162525177, 0.9483824968338013] +CC(=O)N1CCCN(c2cccc(Nc3ccncn3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1ccncn1; ['COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1F', 'COc1ccc(Cl)cc1N', 'Brc1ccncn1', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Cl']; ['Ic1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'COc1ccc(Cl)cc1N', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998537302017212, 0.9998347759246826, 0.9996199607849121, 0.9995397329330444, 0.9991788864135742, 0.9990823864936829, 0.9990229606628418, 0.9989936351776123, 0.9988182187080383, 0.9953531622886658, 0.9952360987663269] +c1ccc2c(Nc3ccncn3)c[nH]c2c1; ['Clc1ccncn1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Fc1ccncn1', 'Brc1ccncn1', 'Clc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1ccncn1']; [0.9981120824813843, 0.9836804866790771, 0.9816532731056213, 0.9815658330917358, 0.9590935707092285, 0.9372239112854004, 0.9286983013153076] +Cc1c(Nc2ccncn2)cccc1C(=O)[O-]; [None]; [None]; [0] +c1cc(Nc2ccc3c(c2)CCO3)ncn1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Brc1ccc2c(c1)CCO2', 'Nc1ccncn1', 'Ic1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccncn1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9998960494995117, 0.9998770952224731, 0.9997106790542603, 0.9997010231018066, 0.9994956851005554, 0.9994121789932251, 0.9988865852355957, 0.9500092267990112] +COc1cc(OC)c(Nc2ccncn2)cc1Cl; ['COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl', 'Brc1ccncn1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N']; ['Ic1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'COc1cc(OC)c(Cl)cc1N', 'O=c1ccnc[nH]1', 'Clc1ccncn1', 'Nc1ccncn1']; [0.9991522431373596, 0.9988470673561096, 0.9987709522247314, 0.9982309341430664, 0.9963476657867432, 0.9954369068145752, 0.9843509793281555] +c1ccc(-c2cc(Nc3ccncn3)n[nH]2)cc1; ['Clc1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1']; ['Nc1cc(-c2ccccc2)n[nH]1', 'Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1']; [0.9971376657485962, 0.9938514828681946, 0.7600222826004028] +c1cc(Nc2ccncn2)c2c(c1)OCO2; ['Fc1ccncn1', 'Ic1cccc2c1OCO2', 'Clc1ccncn1', 'Nc1ccncn1', 'Ic1ccncn1', 'Brc1cccc2c1OCO2', 'Fc1cccc2c1OCO2', 'Brc1ccncn1', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2']; ['Nc1cccc2c1OCO2', 'Nc1ccncn1', 'Nc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc2c1OCO2', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9986217021942139, 0.9981032013893127, 0.9970812201499939, 0.9968581199645996, 0.9967163801193237, 0.9942270517349243, 0.9931643009185791, 0.9770302176475525, 0.8752986788749695, 0.8024721145629883] +COc1cc(Nc2ccncn2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'Brc1ccncn1', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Cl)ccc1O']; ['O=c1ccnc[nH]1', 'Clc1ccncn1', 'COc1cc(N)ccc1O', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Oc1ccncn1', 'Nc1ccncn1']; [0.9995622038841248, 0.9993445873260498, 0.9992346167564392, 0.9972493648529053, 0.9938520193099976, 0.9888430833816528, 0.9762077331542969, 0.9065035581588745] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ccncn1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'Brc1ccncn1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['O=c1ccnc[nH]1', 'Clc1ccncn1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'Oc1ccncn1', 'Fc1ccncn1']; [0.9999632835388184, 0.9998339414596558, 0.9983909130096436, 0.9971814751625061, 0.9967800378799438] +Fc1ccc2nc(CNc3ccncn3)[nH]c2c1F; [None]; [None]; [0] +c1ccc2ncc(Nc3ccncn3)cc2c1; ['Nc1ccncn1', 'Clc1ccncn1', 'Ic1ccncn1', 'Brc1ccncn1', 'Fc1cnc2ccccc2c1', 'Fc1ccncn1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccncn1', 'Nc1cnc2ccccc2c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.9996033906936646, 0.9990595579147339, 0.9962047338485718, 0.9933580160140991, 0.9919754266738892, 0.991801381111145, 0.9797084927558899, 0.9766419529914856, 0.9687513113021851, 0.9627431035041809] +CN(C)C(=O)c1ccc(Nc2ccncn2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'Brc1ccncn1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(F)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Clc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'CN(C)C(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Oc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999354362487793, 0.9990379810333252, 0.9989060163497925, 0.9983198642730713, 0.9979352951049805, 0.9971858859062195, 0.9966017603874207, 0.9938828349113464, 0.9929211735725403, 0.9726431369781494] +c1ccc2[nH]c(CNc3ccncn3)nc2c1; ['Clc1ccncn1', 'ClCc1nc2ccccc2[nH]1', 'Ic1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1', 'BrCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'Nc1ccncn1']; ['NCc1nc2ccccc2[nH]1', 'Nc1ccncn1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'O=Cc1nc2ccccc2[nH]1']; [0.9996262788772583, 0.9964380860328674, 0.9895426630973816, 0.9887332320213318, 0.9730621576309204, 0.9528334736824036, 0.9398741126060486, 0.8938374519348145] +CC(C)(C)c1ccc(Nc2ccncn2)cn1; ['Brc1ccncn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['CC(C)(C)c1ccc(N)cn1', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Ic1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9998723268508911, 0.9997410178184509, 0.999737024307251, 0.9996522068977356, 0.9996294975280762, 0.9994043707847595, 0.9988434910774231, 0.9745883345603943] +Fc1ccc2[nH]c(CNc3ccncn3)nc2c1F; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3ccncn3)[nH]c2c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2ccncn2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1', 'COC(=O)c1cccc(OC)c1', 'COc1cccc(C(=O)NN)c1', 'CCOC(=O)c1cccc(OC)c1']; ['NNc1ccncn1', 'NNc1ccncn1', 'NNc1ccncn1', 'Clc1ccncn1', 'NNc1ccncn1']; [0.9978102445602417, 0.9974108934402466, 0.9662162065505981, 0.9584489464759827, 0.9385526180267334] +c1ccc(CCCNc2ccncn2)cc1; ['Clc1ccncn1', 'Fc1ccncn1', 'ICCCc1ccccc1', 'ClCCCc1ccccc1', 'Ic1ccncn1', 'COc1ccncn1', 'Brc1ccncn1', 'NCCCc1ccccc1', 'BrCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1ccncn1', 'Nc1ccncn1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1ccncn1', 'Nc1ccncn1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'c1cncnc1', 'Nc1ccncn1', 'OCCCc1ccccc1', 'O=CCCc1ccccc1']; [0.9997924566268921, 0.9975632429122925, 0.9972411394119263, 0.9964936375617981, 0.9952981472015381, 0.9936321973800659, 0.9930931329727173, 0.9926680326461792, 0.9724032878875732, 0.9722674489021301, 0.9694175720214844, 0.8951660394668579, 0.8289740085601807] +c1ccc2sc(Nc3ccncn3)cc2c1; ['Clc1ccncn1']; ['Nc1cc2ccccc2s1']; [0.9988958835601807] +CSc1ccc(Nc2ccncn2)cc1; ['CSc1ccc(B(O)O)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'Brc1ccncn1', 'CSc1ccc(N)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(Cl)cc1']; ['Nc1ccncn1', 'Ic1ccncn1', 'Clc1ccncn1', 'CSc1ccc(N)cc1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9993115663528442, 0.9991544485092163, 0.9988404512405396, 0.9984695911407471, 0.9977513551712036, 0.9921386241912842, 0.9916059374809265, 0.9615240097045898, 0.9541552066802979, 0.8325341939926147] +Cc1cc(Nc2ccncn2)nc(N)n1; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(Cl)nc(N)n1']; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1']; [0.9751448631286621, 0.9547531604766846, 0.9406173229217529] +c1cc(Nc2scc3c2OCCO3)ncn1; [None]; [None]; [0] +Clc1cccc(-n2ccc(Nc3ccncn3)n2)c1; [None]; [None]; [0] +Cc1ccc(Nc2ccncn2)c(=O)[nH]1; [None]; [None]; [0] +CC[C@@H](CO)Nc1ccncn1; ['CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'Brc1ccncn1']; ['Clc1ccncn1', 'Oc1ccncn1', 'Ic1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'CC[C@H](N)CO']; [0.9980834722518921, 0.9969472289085388, 0.9940184950828552, 0.9871468544006348, 0.9672770500183105, 0.9420453906059265] +Fc1ccc(Nc2ccncn2)c(Cl)c1; ['Fc1ccc(Br)c(Cl)c1', 'Ic1ccncn1', 'Nc1ccc(F)cc1Cl', 'Brc1ccncn1', 'Clc1ccncn1', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccncn1', 'Fc1ccc(F)c(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1']; ['Nc1ccncn1', 'Nc1ccc(F)cc1Cl', 'O=c1ccnc[nH]1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ccncn1', 'Nc1ccc(F)cc1Cl', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9997354745864868, 0.9988548755645752, 0.9988064169883728, 0.998212993144989, 0.9973402619361877, 0.9963167905807495, 0.9431666135787964, 0.9376306533813477, 0.8221173286437988] +OC[C@H](Cc1ccccc1)Nc1ccncn1; ['Clc1ccncn1', 'N[C@H](CO)Cc1ccccc1', 'Ic1ccncn1', 'Brc1ccncn1', 'N[C@H](CO)Cc1ccccc1', 'Fc1ccncn1']; ['N[C@H](CO)Cc1ccccc1', 'Oc1ccncn1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=c1ccnc[nH]1', 'N[C@H](CO)Cc1ccccc1']; [0.9996538162231445, 0.9959601163864136, 0.994472861289978, 0.9895937442779541, 0.9838052988052368, 0.9736043214797974] +CCN1CCN(Cc2ccc(Nc3ccncn3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'Brc1ccncn1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Clc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'Nc1ccncn1']; [0.9964377880096436, 0.9808306694030762, 0.9772861003875732, 0.9705104827880859, 0.9528926610946655] +Brc1cnc(Nc2ccncn2)nc1; ['Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Clc1ccncn1', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1ccncn1', 'CS(=O)c1ncc(Br)cn1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ncc(Br)cn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ncc(Br)cn1', 'Nc1ccncn1']; [0.9999653100967407, 0.9998794794082642, 0.9998724460601807, 0.9997833967208862, 0.9956341981887817, 0.9930578470230103, 0.9884897470474243, 0.9661324620246887] +O=C1CCc2cc(Nc3ccncn3)ccc2N1; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Fc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccncn1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccncn1']; ['O=C1CCc2cc(Br)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Oc1ccncn1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(F)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=c1ccnc[nH]1', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccncn1', 'O=C1CCc2cc(Cl)ccc2N1']; [0.9999564290046692, 0.9999486207962036, 0.9999407529830933, 0.9996765851974487, 0.9996764659881592, 0.999470591545105, 0.999463677406311, 0.9992794990539551, 0.998822808265686, 0.9932430982589722] +CCc1ccc(Nc2ccncn2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(B(O)O)cc1', 'Brc1ccncn1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(F)cc1', 'CCc1ccc(Cl)cc1']; ['Clc1ccncn1', 'Nc1ccncn1', 'CCc1ccc(N)cc1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9986411333084106, 0.9982764720916748, 0.9978528022766113, 0.9977179169654846, 0.997018575668335, 0.9964275360107422, 0.9935126304626465, 0.9833934903144836, 0.9713147878646851, 0.9661029577255249, 0.8986452221870422] +COc1ccc(Nc2ccncn2)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'Brc1ccncn1', 'COc1ccc(N)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(F)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(N)cc1OC']; ['Nc1ccncn1', 'COc1ccc(N)cc1OC', 'Clc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999804496765137, 0.999956488609314, 0.9999129176139832, 0.9997044801712036, 0.9992187023162842, 0.9989240169525146, 0.9988503456115723, 0.9977770447731018, 0.9953485727310181, 0.9946292638778687] +Clc1ccc(Nc2ccncn2)c(Cl)c1; ['Nc1ccc(Cl)cc1Cl', 'Nc1ccncn1', 'Brc1ccncn1', 'Clc1ccc(Br)c(Cl)c1', 'Ic1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'Fc1ccc(Cl)cc1Cl']; ['O=c1ccnc[nH]1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccncn1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9991626739501953, 0.9989885091781616, 0.9976524114608765, 0.9967359304428101, 0.9963719844818115, 0.9955356121063232, 0.994774341583252, 0.9846513271331787, 0.9818517565727234, 0.9763302803039551] +COc1cc(Nc2ccncn2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1ccncn1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['Clc1ccncn1', 'Nc1ccncn1', 'COc1cc(N)ccc1N1CCOCC1', 'Fc1ccncn1', 'O=c1ccnc[nH]1']; [0.9999992847442627, 0.9999961853027344, 0.9999923706054688, 0.9999901652336121, 0.9999104738235474] +c1cc(NCCCn2cncn2)ncn1; ['Clc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1']; ['NCCCn1cncn1', 'OCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.9997682571411133, 0.9977490305900574, 0.9969769716262817, 0.9956519603729248] +c1cc2cnc(Nc3ccncn3)nn2c1; ['Clc1ncc2cccn2n1']; ['Nc1ccncn1']; [0.9992898106575012] +Cn1cc(Nc2ccncn2)c(C(F)(F)F)n1; ['Clc1ccncn1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Brc1ccncn1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1']; ['Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ccncn1', 'Fc1ccncn1']; [0.9999551177024841, 0.9996882677078247, 0.9996455907821655, 0.9996061325073242, 0.9984792470932007, 0.9946564435958862] +c1ccn2nc(Nc3ccncn3)cc2c1; ['Clc1ccncn1', 'Fc1ccncn1', 'Brc1cc2ccccn2n1', 'Brc1ccncn1', 'Clc1cc2ccccn2n1', 'Nc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1ccncn1', 'Nc1cc2ccccn2n1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.9991878271102905, 0.995326817035675, 0.9801602363586426, 0.9713304042816162, 0.9672648906707764, 0.9008610248565674] +Oc1ccc2cccc(Nc3ccncn3)c2c1; ['Nc1ccncn1', 'Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; ['Oc1ccc2cccc(Br)c2c1', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Cl)c2c1']; [0.9980684518814087, 0.9971922636032104, 0.9956319332122803, 0.9849692583084106, 0.9722908735275269] +Cc1csc2c(Nc3ccncn3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1ccncn1']; [0.9993298053741455] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ccncn2)cc1; [None]; [None]; [0] +Clc1cnc(Nc2ccncn2)nc1; ['Clc1cnc(I)nc1', 'Brc1ccncn1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'Clc1ccncn1', 'CSc1ncc(Cl)cn1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CS(=O)c1ncc(Cl)cn1']; ['Nc1ccncn1', 'Nc1ncc(Cl)cn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ncc(Cl)cn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9997748732566833, 0.9992787837982178, 0.9992200136184692, 0.9989568591117859, 0.9986863136291504, 0.9950394630432129, 0.9906871318817139, 0.9818032383918762] +COc1ccc2cccc(Nc3ccncn3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'Brc1ccncn1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(O)c2c1']; ['Clc1ccncn1', 'Ic1ccncn1', 'COc1ccc2cccc(N)c2c1', 'Fc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9997182488441467, 0.9995599389076233, 0.9992823600769043, 0.9987542629241943, 0.9982844591140747, 0.995282769203186, 0.9835737943649292, 0.9703196287155151] +COc1cc(Nc2ccncn2)ccc1Cl; ['Brc1ccncn1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(N)ccc1Cl']; ['COc1cc(N)ccc1Cl', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999808073043823, 0.9999539852142334, 0.99979567527771, 0.9997621774673462, 0.9997082948684692, 0.999680757522583, 0.9995992183685303, 0.9992982745170593, 0.9974623918533325] +COc1cc(F)c(Nc2ccncn2)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'Brc1ccncn1', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(F)cc1OC']; ['Nc1ccncn1', 'Clc1ccncn1', 'Ic1ccncn1', 'COc1cc(N)c(F)cc1OC', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9999682903289795, 0.9999634027481079, 0.9998846054077148, 0.999883770942688, 0.9996072053909302, 0.9994949698448181, 0.9971518516540527, 0.9956972002983093] +CCNC(=O)c1ccc(Nc2ccncn2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9929825067520142, 0.9744556546211243] +CNC(=O)c1ccc(Nc2ccncn2)cc1; ['CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(Br)cc1', 'Brc1ccncn1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(F)cc1']; ['Nc1ccncn1', 'Clc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'CNC(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9996234178543091, 0.9992746114730835, 0.9986310005187988, 0.9984732866287231, 0.9983620643615723, 0.997031569480896, 0.9869650602340698, 0.7992385029792786] +Nc1cc(Nc2ccncn2)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ccncn1']; [0.9770692586898804] +CO[C@@H]1CC[C@@H](Nc2ccncn2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'Brc1ccncn1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['Clc1ccncn1', 'CO[C@H]1CC[C@H](N)CC1', 'Ic1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1']; [0.9999647736549377, 0.9998969435691833, 0.9998394250869751, 0.9998306632041931, 0.9998178482055664] +CCNC(=O)N1CCC(Nc2ccncn2)CC1; [None]; [None]; [0] +COc1cc(Nc2ccncn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9981273412704468, 0.997270941734314, 0.9192901849746704] +COc1ccc(OC)c(CNc2ccncn2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'Brc1ccncn1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(CO)c1']; ['Clc1ccncn1', 'Fc1ccncn1', 'COc1ccc(OC)c(CN)c1', 'O=c1ccnc[nH]1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9991720914840698, 0.9972248673439026, 0.9970839023590088, 0.9960198402404785, 0.9914277195930481, 0.9765356779098511, 0.9665790796279907, 0.8004580140113831] +CC1(C)Cc2cc(Nc3ccncn3)ccc2O1; [None]; [None]; [0] +COc1cc(Nc2ccncn2)cc(OC)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(F)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'Brc1ccncn1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(N)cc(OC)c1']; ['Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Clc1ccncn1', 'COc1cc(N)cc(OC)c1', 'Fc1ccncn1', 'Ic1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.9994078874588013, 0.9982791543006897, 0.9973517656326294, 0.996849536895752, 0.9949218034744263, 0.9650682210922241, 0.9606514573097229, 0.9596843719482422, 0.9577826857566833, 0.945636510848999] +COc1cc(CS(C)(=O)=O)ccc1Nc1ccncn1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ccncn2)c1; [None]; [None]; [0] +c1cc(Nc2ccc3cn[nH]c3c2)ncn1; ['Clc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Fc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; ['Nc1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Nc1ccncn1']; [0.9999996423721313, 0.9999994039535522, 0.999993085861206, 0.9999924898147583, 0.9999737739562988, 0.9999246597290039, 0.9999161958694458, 0.9998769164085388, 0.9971182942390442] +COc1ccc2c(c1)c(Nc1ccncn1)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2ccncn2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'Brc1ccncn1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Clc1ccncn1', 'CNC(=O)c1ccc(OC)c(N)c1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.9994635581970215, 0.9992870092391968, 0.9922977089881897, 0.9540279507637024] +c1cncc(-c2ccnc(Nc3ccncn3)c2)c1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9996907711029053, 0.9988008141517639, 0.9946244955062866] +c1cc(Nc2ncc3sccc3n2)ncn1; ['Clc1ncc2sccc2n1']; ['Nc1ccncn1']; [0.9999971389770508] +CC(C)c1nn(C)cc1Nc1ccncn1; ['CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9977728128433228, 0.9969485998153687] +c1ccc2oc(Nc3ccncn3)cc2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2ccncn2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1ccncn1']; [0.9971984028816223] +COc1ccc2nc(Nc3ccncn3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1ccncn1']; [0.949921190738678] +COc1ccc2oc(Nc3ccncn3)cc2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2ccncn2)cc1; ['Nc1ccncn1', 'Brc1ccncn1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Ic1ccncn1', 'Clc1ccncn1', 'Nc1ccc(OC(F)(F)F)cc1', 'Fc1ccncn1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Fc1ccc(OC(F)(F)F)cc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'O=c1ccnc[nH]1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.999982476234436, 0.9998800754547119, 0.999871015548706, 0.9998685121536255, 0.9997549057006836, 0.9997400045394897, 0.9990572929382324, 0.9971692562103271, 0.9962990283966064, 0.9952189922332764, 0.9821706414222717] +C[NH+](C)Cc1ccc(Nc2ccncn2)cc1; [None]; [None]; [0] +CCc1cccc(Nc2ccncn2)n1; ['CCc1cccc(N)n1', 'CCc1cccc(Br)n1', 'Brc1ccncn1', 'CCc1cccc(N)n1']; ['Clc1ccncn1', 'Nc1ccncn1', 'CCc1cccc(N)n1', 'O=c1ccnc[nH]1']; [0.9890400171279907, 0.9861125946044922, 0.9802313446998596, 0.9594522714614868] +c1cc(Nc2ncn3c2CCCC3)ncn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ccncn2)c1)N1CCCC1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1ccncn1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ccncn2)cn1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(N)cn1', 'Brc1ccncn1', 'CN(C)c1ccc(F)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Cl)cn1']; ['Nc1ccncn1', 'Clc1ccncn1', 'CN(C)c1ccc(N)cn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'O=c1ccnc[nH]1', 'Fc1ccncn1', 'Nc1ccncn1']; [0.999940037727356, 0.9998937845230103, 0.9998422861099243, 0.9997565746307373, 0.9995630979537964, 0.9995318651199341, 0.9993873834609985, 0.9971109628677368, 0.9897787570953369] +O=C(NNc1ccncn1)c1cccc(OC(F)(F)F)c1; ['NNc1ccncn1', 'NNc1ccncn1', 'Clc1ccncn1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NNC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999822378158569, 0.9999334812164307, 0.9997216463088989] +Cc1n[nH]c2cc(Nc3ccncn3)ccc12; ['Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(F)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Brc1ccncn1', 'Cc1n[nH]c2cc(N)ccc12']; ['Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1', 'Cc1n[nH]c2cc(N)ccc12', 'O=c1ccnc[nH]1']; [0.9999984502792358, 0.9999940395355225, 0.9999796152114868, 0.9999756813049316, 0.9999699592590332, 0.9999617338180542, 0.9999358057975769] +Cn1nc(Cl)c2cc(Nc3ccncn3)ccc21; [None]; [None]; [0] +OCCc1ccc(Nc2ccncn2)cc1; ['Clc1ccncn1', 'Brc1ccncn1', 'Nc1ccc(CCO)cc1', 'Nc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'O=c1ccnc[nH]1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1', 'Nc1ccc(CCO)cc1']; [0.9987759590148926, 0.9906457662582397, 0.9904713034629822, 0.9902557730674744, 0.987495481967926, 0.9832444190979004] +O=C1CCCN1c1cccc(Nc2ccncn2)c1; ['Clc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cccc(N2CCCC2=O)c1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1', 'Nc1ccncn1']; [0.9999599456787109, 0.9998891353607178, 0.9993816614151001, 0.9993499517440796, 0.9925726652145386, 0.9842823147773743] +Cc1cc(Nc2ccncn2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ccncn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1ccncn1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br', 'Brc1ccncn1', 'COc1cc(S(C)(=O)=O)ccc1N']; ['Clc1ccncn1', 'Nc1ccncn1', 'COc1cc(S(C)(=O)=O)ccc1N', 'Fc1ccncn1']; [0.9999286532402039, 0.9998465776443481, 0.9997226595878601, 0.9987988471984863] +CNC(=O)c1ccc(Nc2ccncn2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'Brc1ccncn1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Clc1ccncn1', 'CNC(=O)c1ccc(N)c(OC)c1', 'Nc1ccncn1']; [0.9826880693435669, 0.9762611389160156, 0.9733092784881592] +CC(=O)N1CCC(n2cc(Nc3ccncn3)cn2)CC1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1ccncn1; ['Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Brc1ccncn1']; ['Clc1ccncn1', 'Fc1ccncn1', 'O=c1ccnc[nH]1', 'Cc1cc(N2CCOCC2)ccc1N']; [0.9999997019767761, 0.9999955892562866, 0.9999841451644897, 0.9999508857727051] +Cc1ncc(-c2ccc(Nc3ccncn3)cc2)n1C; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3ccncn3)[nH]c2c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ccncn1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ccncn2)cc1; ['Brc1ccncn1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(N)cc1']; ['CCNC(=O)c1ccc(N)cc1', 'Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'Fc1ccncn1']; [0.9954718351364136, 0.988470196723938, 0.9837977886199951, 0.9146347045898438, 0.8988192677497864] +COc1cc(-c2cnn(C)c2)ccc1Nc1ccncn1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ccncn2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ccncn1']; [0.999818742275238] +CNC(=O)c1ccc(C)c(Nc2ccncn2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'Brc1ccncn1']; ['Clc1ccncn1', 'CNC(=O)c1ccc(C)c(N)c1']; [0.999245822429657, 0.994499921798706] +CCNC(=O)Cc1ccc(Nc2ccncn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ccncn1']; [0.9995776414871216] +CN(C)C(=O)c1ccc(Nc2ccncn2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ccncn1', 'Nc1ccncn1']; [0.9980361461639404, 0.993618369102478] +CNC(=O)c1ccccc1Nc1ncc(Br)cn1; ['CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1N', 'Brc1cnc(I)nc1', 'CNC(=O)c1ccccc1N', 'Brc1cnc(Br)nc1', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1N']; ['Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CNC(=O)c1ccccc1N', 'CS(=O)(=O)c1ncc(Br)cn1', 'CNC(=O)c1ccccc1N', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; [0.9960912466049194, 0.9894319176673889, 0.9877166748046875, 0.9865599870681763, 0.9724889993667603, 0.9711710214614868, 0.9652658700942993, 0.9316859245300293, 0.9272143840789795, 0.8393816947937012] +CCOc1ccccc1Nc1ncc(Br)cn1; ['CCOc1ccccc1N', 'Brc1cnc(I)nc1', 'CCOc1ccccc1F', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'Brc1cnc(Br)nc1', 'CCOc1ccccc1Br', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1N']; ['Clc1ncc(Br)cn1', 'CCOc1ccccc1N', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CCOc1ccccc1N', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'FC(F)(F)COc1ncc(Br)cn1']; [0.999862790107727, 0.9992287158966064, 0.9987172484397888, 0.9985071420669556, 0.9979733824729919, 0.9941798448562622, 0.992580771446228, 0.9909935593605042, 0.9860638380050659, 0.8516033887863159] +COC(C)(C)CCNc1ncc(Br)cn1; ['COC(C)(C)CCN', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'COC(C)(C)CCN', 'COC(C)(C)CC=O']; ['Clc1ncc(Br)cn1', 'COC(C)(C)CCN', 'COC(C)(C)CCN', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9985470175743103, 0.9949885606765747, 0.9860986471176147, 0.9618709087371826, 0.798766016960144] +CC(C)S(=O)(=O)c1ccccc1Nc1ncc(Br)cn1; ['Brc1cnc(I)nc1', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1N']; ['CC(C)S(=O)(=O)c1ccccc1N', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.999908447265625, 0.9997831583023071, 0.9987243413925171, 0.9941107034683228, 0.9875674247741699] +Fc1cc(F)cc(CNc2ncc(Br)cn2)c1; ['Brc1cnc(Br)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Fc1cc(F)cc(CBr)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'NCc1cc(F)cc(F)c1']; ['NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'O=Cc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'Nc1ncc(Br)cn1', 'NCc1cc(F)cc(F)c1', 'OCc1cc(F)cc(F)c1', 'NCc1cc(F)cc(F)c1', 'O=c1ncc(Br)c[nH]1']; [0.9999783039093018, 0.999911904335022, 0.9998899698257446, 0.9998743534088135, 0.9996665716171265, 0.9996589422225952, 0.9995640516281128, 0.9995274543762207, 0.9987512826919556, 0.9924736022949219] +Cc1ccc(C(=O)NCCO)cc1Nc1ccncn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1Nc1ncc(Br)cn1; ['CP(C)(=O)c1ccccc1N', 'Brc1cnc(Br)nc1', 'CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N']; ['Clc1ncc(Br)cn1', 'CP(C)(=O)c1ccccc1N', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9997563362121582, 0.9994816780090332, 0.9991518259048462, 0.9973591566085815, 0.9965870380401611] +Cn1nc(Nc2ccncn2)cc1C(C)(C)O; [None]; [None]; [0] +CCn1cc(Nc2ncc(Br)cn2)cn1; ['CCn1cc(N)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CCn1cc(I)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(Br)cn1']; ['Clc1ncc(Br)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999483823776245, 0.999821662902832, 0.9995490908622742, 0.999489426612854, 0.9992388486862183, 0.9950023889541626, 0.9885168075561523] +FC(F)(F)c1cccc(Nc2ncc(Br)cn2)c1; ['Brc1cnc(I)nc1', 'FC(F)(F)c1cccc(I)c1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Fc1cccc(C(F)(F)F)c1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1cccc(C(F)(F)F)c1', 'Nc1ncc(Br)cn1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1ncc(Br)cn1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1cccc(C(F)(F)F)c1', 'O=CNc1cccc(C(F)(F)F)c1', 'Nc1ncc(Br)cn1']; [0.9999772310256958, 0.9999463558197021, 0.9998389482498169, 0.9993773698806763, 0.9987291097640991, 0.9983004331588745, 0.9968199133872986, 0.9953700304031372, 0.9880358576774597, 0.9836642742156982, 0.9485254287719727] +Brc1cnc(Nc2ccnc3ccccc23)nc1; ['Clc1ncc(Br)cn1', 'Clc1ccnc2ccccc12', 'Fc1ccnc2ccccc12', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Ic1ccnc2ccccc12', 'Brc1ccnc2ccccc12']; ['Nc1ccnc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ccnc2ccccc12', 'Nc1ccnc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9998310804367065, 0.9988610744476318, 0.9980002641677856, 0.9976049065589905, 0.9970242381095886, 0.996291995048523, 0.9673882722854614] +C[C@H](CS(C)(=O)=O)Nc1ccncn1; [None]; [None]; [0] +O=C([O-])c1ccccc1Nc1ncc(Br)cn1; ['Nc1ncc(Br)cn1']; ['O=C([O-])c1ccccc1F']; [0.9336056709289551] +NC(=O)c1ccccc1Nc1ncc(Br)cn1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1']; ['NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1N', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1N', 'NC(=O)c1ccccc1N']; [0.9923266768455505, 0.9891011714935303, 0.9774655103683472, 0.9699491858482361, 0.8878020644187927, 0.8543111085891724, 0.8453788161277771, 0.7601757049560547] +Cn1cnc2ccc(Nc3ncc(Br)cn3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ncc(Br)cn1']; [0.9970174431800842] +FC(F)(F)Oc1ccccc1Nc1ncc(Br)cn1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'FC(F)(F)Oc1ccccc1I', 'Brc1cnc(Br)nc1', 'FC(F)(F)Oc1ccccc1Br', 'Fc1ccccc1OC(F)(F)F', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncc(Br)cn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ccccc1OC(F)(F)F', 'Nc1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999829530715942, 0.9999673962593079, 0.9998100996017456, 0.999714732170105, 0.9997122883796692, 0.9991365671157837, 0.9990347623825073, 0.9985942840576172, 0.9970507025718689, 0.9913983345031738] +Cc1nnc(-c2ccccc2Nc2ncc(Br)cn2)[nH]1; [None]; [None]; [0] +Brc1cnc(Nc2cnn(Cc3ccccc3)c2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Ic1cnn(Cc2ccccc2)c1', 'CS(=O)c1ncc(Br)cn1', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1ncc(Br)cn1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1ncc(Br)cn1']; [0.9998465776443481, 0.9998021125793457, 0.9995559453964233, 0.9982991218566895, 0.995581865310669, 0.9903942346572876, 0.9873530864715576, 0.9750146269798279] +O=C(Nc1cccc(Nc2ncc(Br)cn2)c1)c1ccccc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; [0.9999948740005493, 0.9999916553497314, 0.9999669790267944, 0.9999001622200012, 0.9991069436073303, 0.9966747760772705] +COc1cnc(Nc2ncc(Br)cn2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'Brc1cnc(I)nc1', 'COc1cnc(N)nc1', 'Brc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'COc1cnc(N)nc1', 'Fc1ncc(Br)cn1', 'COc1cnc(N)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9949468374252319, 0.9949468374252319, 0.9834713935852051, 0.9489985704421997, 0.946324348449707, 0.946324348449707, 0.8025234937667847, 0.7811049222946167] +CC(C)C(=O)CONc1ncc(Br)cn1; [None]; [None]; [0] +OCCn1cc(Nc2ncc(Br)cn2)cn1; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9999821186065674, 0.9980340003967285, 0.9921813011169434, 0.9491846561431885] +Clc1ccc(Cl)c(Nc2ncc(Br)cn2)c1; ['Fc1ncc(Br)cn1', 'Clc1ccc(Cl)c(I)c1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Fc1cc(Cl)ccc1Cl', 'Clc1ncc(Br)cn1', 'Clc1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1cc(Cl)ccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl']; [0.9998902082443237, 0.9998877048492432, 0.9997806549072266, 0.9987059831619263, 0.998044490814209, 0.997828483581543, 0.9951353073120117, 0.9930456876754761, 0.9917008876800537, 0.9653598666191101, 0.9545589685440063] +CC(C)(C)c1nc(Nc2ncc(Br)cn2)cs1; [None]; [None]; [0] +Cc1nc2ccccn2c1Nc1ncc(Br)cn1; ['Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'Cc1nc2ccccn2c1Br', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'Nc1ncc(Br)cn1', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N']; [0.9999435544013977, 0.9999167919158936, 0.9997446537017822, 0.9996509552001953, 0.9983078837394714, 0.9976769685745239, 0.9966970682144165, 0.9830892086029053] +Cc1nc(C)c(Nc2ncc(Br)cn2)s1; [None]; [None]; [0] +Cc1ccc(Nc2ncc(Br)cn2)c(Br)c1; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Brc1cnc(I)nc1', 'Cc1ccc(I)c(Br)c1', 'Brc1cnc(Br)nc1', 'Cc1ccc(F)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'CSc1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Cc1ccc(N)c(Br)c1', 'Nc1ncc(Br)cn1', 'Cc1ccc(N)c(Br)c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Cc1ccc(N)c(Br)c1']; [0.9999940395355225, 0.9999765157699585, 0.9999622702598572, 0.9999448657035828, 0.999886155128479, 0.9996281266212463, 0.998860239982605, 0.9975811243057251] +Brc1cnc(Nc2cnc3ccccn23)nc1; ['Clc1cnc2ccccn12', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc2ccccn12', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ncc(Br)cn1', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1ncc(Br)cn1', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12']; [0.999815821647644, 0.999779462814331, 0.9995628595352173, 0.9995614886283875, 0.9992883205413818, 0.9862596988677979, 0.9808391332626343, 0.9654364585876465, 0.9616696834564209] +Brc1cnc(Nc2cnc(-c3ccccc3)[nH]2)nc1; [None]; [None]; [0] +Brc1cnc(Nc2cnc3cccnn23)nc1; ['Clc1ncc(Br)cn1', 'Clc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1ncc(Br)cn1']; [0.9999969005584717, 0.9999760389328003] +Brc1cnc(NNCc2cccnc2)nc1; [None]; [None]; [0] +Clc1cccc(Cl)c1Nc1ncc(Br)cn1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'CS(=O)(=O)c1ncc(Br)cn1', 'Fc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1c(Cl)cccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999954104423523, 0.9999867677688599, 0.9999854564666748, 0.9999771118164062, 0.9999732971191406, 0.9999583959579468, 0.9999380707740784, 0.9998941421508789, 0.9997537732124329, 0.9993641376495361, 0.99860018491745] +Brc1cnc(Nc2cccc(Cn3cncn3)c2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1']; [0.9999964237213135, 0.9999839067459106, 0.9999682307243347, 0.9999271035194397, 0.9994017481803894, 0.9980406761169434] +CNc1nc(C)c(Nc2ncc(Br)cn2)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(Nc2ncc(Br)cn2)c1; ['Cc1ccc(Cl)c(I)c1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(F)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1cnc(Br)nc1', 'Cc1ccc(Cl)c(Br)c1', 'CSc1ncc(Br)cn1']; ['Nc1ncc(Br)cn1', 'Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1', 'Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Cc1ccc(Cl)c(N)c1', 'Nc1ncc(Br)cn1', 'Cc1ccc(Cl)c(N)c1']; [0.9996377229690552, 0.9987019300460815, 0.9915878772735596, 0.9912631511688232, 0.9885772466659546, 0.9882237911224365, 0.9863294959068298, 0.9743475914001465, 0.9672413468360901, 0.9482119083404541] +Brc1cnc(Nc2cccc(Br)c2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Brc1cccc(I)c1', 'Brc1cnc(Br)nc1', 'Fc1cccc(Br)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cccc(Br)c1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1ncc(Br)cn1', 'Nc1cccc(Br)c1', 'Nc1ncc(Br)cn1', 'Nc1cccc(Br)c1', 'Nc1ncc(Br)cn1', 'Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'O=CNc1cccc(Br)c1']; [0.9999790191650391, 0.9999457597732544, 0.9998927712440491, 0.9997571110725403, 0.9997336864471436, 0.9995037317276001, 0.9991735219955444, 0.998935341835022, 0.9986989498138428, 0.997025191783905, 0.9963814616203308, 0.9922722578048706] +Brc1cnc(Nc2cnn3ncccc23)nc1; ['Brc1cnn2ncccc12']; ['Nc1ncc(Br)cn1']; [0.9044945240020752] +Nc1nccc(Nc2ncc(Br)cn2)n1; ['Brc1cnc(I)nc1', 'Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1']; ['Nc1ccnc(N)n1', 'Nc1nccc(Cl)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'Nc1nccc(Br)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1', 'Nc1ccnc(N)n1']; [0.998841404914856, 0.9988361597061157, 0.9987435340881348, 0.9910656809806824, 0.9601340293884277, 0.944642186164856, 0.9068000316619873, 0.8943694233894348] +O=C(NNc1ncc(Br)cn1)c1cccs1; ['NNc1ncc(Br)cn1', 'NNc1ncc(Br)cn1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9998903870582581, 0.9926555156707764] +O=c1c2c(F)cccc2cnn1Nc1ncc(Br)cn1; [None]; [None]; [0] +Brc1cnc(Nc2ccc3ccccc3c2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Fc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1ccc2ccccc2c1']; ['Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'O=CNc1ccc2ccccc2c1', 'Nc1ncc(Br)cn1']; [0.9999884366989136, 0.9999715089797974, 0.9999538064002991, 0.9996298551559448, 0.9992495179176331, 0.9990887641906738, 0.9986830949783325, 0.9982079267501831, 0.998184084892273, 0.9967458248138428, 0.9933121800422668, 0.9552503228187561] +FC(F)(F)c1n[nH]cc1Nc1ncc(Br)cn1; ['Clc1ncc(Br)cn1']; ['Nc1c[nH]nc1C(F)(F)F']; [0.9999574422836304] +Cc1c(Nc2ncc(Br)cn2)sc(=O)n1C; [None]; [None]; [0] +Brc1cnc(NNCCc2ccccc2)nc1; ['ClCCc1ccccc1']; ['NNc1ncc(Br)cn1']; [0.9360785484313965] +NC(=O)c1c(F)cccc1Nc1ncc(Br)cn1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'NC(=O)c1c(F)cccc1Br']; ['NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(N)cccc1F', 'NC(=O)c1c(N)cccc1F', 'Nc1ncc(Br)cn1']; [0.9998798370361328, 0.9997100830078125, 0.9950817823410034, 0.9833342432975769, 0.9789124131202698] +Brc1cnc(Nn2cnc3ccccc32)nc1; [None]; [None]; [0] +Cc1nc(N)sc1Nc1ncc(Br)cn1; [None]; [None]; [0] +Brc1cnc(Nc2cncc3ccccc23)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Clc1cncc2ccccc12', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Fc1cncc2ccccc12', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Nc1ncc(Br)cn1']; ['Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'OB(O)c1cncc2ccccc12']; [0.9999310970306396, 0.9997088313102722, 0.9996929168701172, 0.9994270205497742, 0.9993059039115906, 0.9991113543510437, 0.9953466653823853, 0.9951591491699219, 0.9944285154342651, 0.9935082197189331, 0.9789535999298096, 0.7985227108001709] +Cn1cc(-c2ccc(Nc3ncc(Br)cn3)cc2)cn1; ['Clc1ncc(Br)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Fc1ncc(Br)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Nc1ncc(Br)cn1']; [0.9999983906745911, 0.999997079372406, 0.9999638795852661, 0.9998980760574341, 0.9998108148574829, 0.9997349977493286, 0.9996878504753113] +Brc1cnc(NNCCc2c[nH]cn2)nc1; [None]; [None]; [0] +Brc1cnc(NNc2cccnc2)nc1; [None]; [None]; [0] +CCCn1cnc(Nc2ncc(Br)cn2)n1; ['CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'CCCn1cnc(N)n1', 'Brc1cnc(Br)nc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CCCn1cnc(N)n1']; [0.998954176902771, 0.9951072931289673, 0.9860888719558716, 0.9824476838111877, 0.9809704422950745] +O=C([O-])Cc1cccc(Nc2ncc(Br)cn2)c1; [None]; [None]; [0] +Cn1ncc2cc(Nc3ncc(Br)cn3)ccc21; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1cnc(Br)nc1', 'Cn1ncc2cc(I)ccc21', 'CS(=O)(=O)c1ncc(Br)cn1', 'Cn1ncc2cc(F)ccc21', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Cn1ncc2cc(N)ccc21', 'Nc1ncc(Br)cn1', 'Cn1ncc2cc(N)ccc21', 'Nc1ncc(Br)cn1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Nc1ncc(Br)cn1']; [0.9999951124191284, 0.9999943971633911, 0.9999831914901733, 0.9998865723609924, 0.9998852610588074, 0.9998693466186523, 0.9998090267181396, 0.9996476769447327, 0.9992133975028992, 0.9983378648757935, 0.9953270554542542] +Nc1[nH]nc2cc(Nc3ncc(Br)cn3)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['Nc1ncc(Br)cn1']; [0.9930697679519653] +Brc1cnc(Nc2ccc(-c3cn[nH]c3)cc2)nc1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ncc(Br)cn1']; [0.9999964833259583, 0.9999936819076538, 0.9998161792755127, 0.9994701147079468, 0.9993003606796265, 0.9941388368606567] +Oc1cccc(Nc2ncc(Br)cn2)c1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(I)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9998619556427002, 0.999854326248169, 0.9989356994628906, 0.995384156703949, 0.9825624227523804, 0.9663074016571045] +Brc1cnc(NNc2ccncc2)nc1; ['Clc1ccncc1']; ['NNc1ncc(Br)cn1']; [0.9595500826835632] +Fc1ccccc1CNNc1ncc(Br)cn1; ['NNc1ncc(Br)cn1']; ['O=Cc1ccccc1F']; [0.9598925113677979] +Brc1cnc(NCCc2c[nH]nn2)nc1; ['Clc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1', 'NCCc1c[nH]nn1']; [0.9983357191085815, 0.9967900514602661, 0.970320999622345, 0.9572083950042725] +CC(C)n1cc(Nc2ncc(Br)cn2)nn1; ['CC(C)n1cc(N)nn1', 'Brc1cnc(I)nc1', 'CC(C)n1cc(N)nn1', 'Brc1cnc(Br)nc1', 'CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1']; ['Clc1ncc(Br)cn1', 'CC(C)n1cc(N)nn1', 'Fc1ncc(Br)cn1', 'CC(C)n1cc(N)nn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9998822212219238, 0.9998165369033813, 0.9995900392532349, 0.999199390411377, 0.9987936019897461, 0.9966394901275635] +CN1c2ccc(Nc3ncc(Br)cn3)cc2CS1(=O)=O; [None]; [None]; [0] +CSc1nc(Nc2ncc(Br)cn2)c[nH]1; [None]; [None]; [0] +Brc1cnc(Nc2csc3ncncc23)nc1; ['Brc1csc2ncncc12']; ['Nc1ncc(Br)cn1']; [0.9919440150260925] +OCc1cccc(Nc2ncc(Br)cn2)c1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(I)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(B(O)O)c1']; [0.9997706413269043, 0.9995399117469788, 0.9938770532608032, 0.9778735637664795, 0.9741557836532593, 0.9736676216125488, 0.8809889554977417, 0.8467611074447632] +Brc1cnc(Nc2cc3ccccc3[nH]2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Clc1cc2ccccc2[nH]1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; ['Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1ncc(Br)cn1', 'Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1']; [0.9986108541488647, 0.9985256791114807, 0.9968079328536987, 0.9959607720375061, 0.9958134889602661, 0.995654821395874] +CC(C)c1oncc1Nc1ncc(Br)cn1; [None]; [None]; [0] +COc1cc(Nc2ncc(Br)cn2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(Nc2ncc(Br)cn2)cs1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1csc(N)n1', 'Nc1csc(N)n1', 'Nc1csc(N)n1']; [0.9999289512634277, 0.9981864094734192, 0.9957301616668701] +NC(=O)CCCNc1ncc(Br)cn1; ['Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['NCCCC(N)=O', 'NCCCC(N)=O', 'NCCCC(N)=O']; [0.9945789575576782, 0.9927310943603516, 0.9777735471725464] +CCNc1nc2ccc(Nc3ncc(Br)cn3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(Nc2ncc(Br)cn2)cc1; ['CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1']; ['Clc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; [0.9995886087417603, 0.9802776575088501] +Fc1ccc(Nc2ncc(Br)cn2)c(C(F)(F)F)c1; ['Clc1ncc(Br)cn1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(F)c(C(F)(F)F)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ccc(F)cc1C(F)(F)F', 'Nc1ncc(Br)cn1', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'O=CNc1ccc(F)cc1C(F)(F)F', 'Nc1ccc(F)cc1C(F)(F)F']; [0.9999723434448242, 0.9999479651451111, 0.9998992681503296, 0.9996272325515747, 0.9992337822914124, 0.9982059001922607, 0.9978958368301392, 0.9881867170333862, 0.9528262615203857] +N#CCCc1cccc(Nc2ncc(Br)cn2)c1; [None]; [None]; [0] +Nc1ncncc1Nc1ncc(Br)cn1; ['Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1']; ['Nc1cncnc1N', 'Nc1ncncc1I', 'Nc1cncnc1N', 'Nc1cncnc1N']; [0.9972182512283325, 0.9713089466094971, 0.8958753347396851, 0.8666691780090332] +O=C(NNc1ncc(Br)cn1)c1c(Cl)cccc1Cl; ['NNc1ncc(Br)cn1', 'NNc1ncc(Br)cn1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9998753070831299, 0.9997665882110596] +Clc1ccc(CNNc2ncc(Br)cn2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ncc(Br)cn2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'Brc1cnc(Br)nc1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CC(=O)Nc1cccc(N)c1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999881386756897, 0.9999533891677856, 0.999627947807312, 0.9995697736740112, 0.9985357522964478, 0.9972103834152222, 0.8839486837387085] +CC(C)(O)CC(=O)NCCNc1ncc(Br)cn1; [None]; [None]; [0] +COc1ccc(Nc2ncc(Br)cn2)cc1Cl; ['COc1ccc(N)cc1Cl', 'COc1ccc(F)cc1Cl', 'Brc1cnc(I)nc1', 'COc1ccc(I)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(N)cc1Cl', 'Brc1cnc(Br)nc1', 'COc1ccc(NC=O)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1ccc(N)cc1Cl', 'Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1ccc(N)cc1Cl', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999896883964539, 0.9999710321426392, 0.9999216794967651, 0.9998906850814819, 0.9998077750205994, 0.9997395873069763, 0.9995380640029907, 0.9994670152664185, 0.9984375238418579, 0.9978217482566833, 0.9978128671646118, 0.9972261786460876] +CC(C)(CONc1ncc(Br)cn1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(Nc2ncc(Br)cn2)cn1; ['CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(I)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(Br)cn1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999895095825195, 0.999958872795105, 0.9998999834060669, 0.9998979568481445, 0.9997404217720032, 0.9994552731513977, 0.998259425163269, 0.9960289001464844] +Brc1cnc(Nc2cnn3ccccc23)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Ic1cnn2ccccc12', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Brc1cnn2ccccc12', 'CSc1ncc(Br)cn1']; ['Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1cnn2ccccc12']; [0.9999502897262573, 0.999750018119812, 0.9996887445449829, 0.9992923736572266, 0.9983544945716858, 0.9958082437515259, 0.9931443333625793, 0.9895563721656799, 0.9709931015968323] +Cn1cc(Nc2ncc(Br)cn2)c2ccccc21; [None]; [None]; [0] +CC(C)(N)c1ccc(Nc2ncc(Br)cn2)cc1; ['CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(N)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9993289113044739, 0.9987540245056152, 0.9768489599227905] +CS(=O)(=O)C1CCN(Nc2ncc(Br)cn2)CC1; [None]; [None]; [0] +COc1cc(CCNc2ncc(Br)cn2)cc(OC)c1; ['COc1cc(CCN)cc(OC)c1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCO)cc(OC)c1']; ['Clc1ncc(Br)cn1', 'COc1cc(CCN)cc(OC)c1', 'COc1cc(CCN)cc(OC)c1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'O=c1ncc(Br)c[nH]1', 'Nc1ncc(Br)cn1']; [0.9994465112686157, 0.9943699836730957, 0.9859972596168518, 0.9857369661331177, 0.984860360622406, 0.9752664566040039, 0.9737725257873535, 0.9663534164428711] +O=C1CCc2cccc(Nc3ncc(Br)cn3)c21; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(Cl)c21', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'Nc1ncc(Br)cn1', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(F)c21']; [0.999868631362915, 0.9995226263999939, 0.9991543292999268, 0.999142050743103, 0.9979590177536011, 0.9911677837371826, 0.9814618825912476, 0.9786696434020996, 0.9634003639221191, 0.9617652297019958, 0.9277357459068298] +CCNS(=O)(=O)c1ccccc1Nc1ncc(Br)cn1; ['CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1Br']; ['Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9669356346130371, 0.8825203776359558] +Brc1cnc(NOc2ccccn2)nc1; [None]; [None]; [0] +C[S@](=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CS(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'CS(=O)c1ccc(N)cc1']; [0.9992769956588745, 0.9942607879638672] +CCN(CC)Nc1ncc(Br)cn1; [None]; [None]; [0] +O=c1cc(Nc2ncc(Br)cn2)cc[nH]1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'Nc1cc[nH]c(=O)c1', 'CCSc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', None, 'Nc1ncc(Br)cn1']; ['Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(F)cc[nH]1', 'Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(Cl)cc[nH]1', 'Nc1ncc(Br)cn1', 'Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', None, 'O=c1cc(Br)cc[nH]1']; [0.9999285936355591, 0.999914824962616, 0.9997990131378174, 0.9996509552001953, 0.9994621276855469, 0.998798668384552, 0.997550368309021, 0.9955519437789917, 0.9941246509552002, 0.9909572005271912, 0.9862270355224609, 0.9710714221000671, 0, 0.9175152778625488] +O=c1[nH]cc(Br)c2sc(Nc3ncc(Br)cn3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(Nc2ncc(Br)cn2)c1; ['CC(C)Oc1cncc(Br)c1']; ['Nc1ncc(Br)cn1']; [0.9657735824584961] +C[C@@H](ONc1ncc(Br)cn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +[NH3+]Cc1ccc(Nc2ncc(Br)cn2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncc(Br)cn2)cc1; ['CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CC(C)(C)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1cnc(Nc2ccccc2)nc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CC(C)(C)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CC(C)(C)c1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CC(C)(C)O']; [0.9999843835830688, 0.9999831914901733, 0.9999538660049438, 0.9993571043014526, 0.9991602897644043, 0.9985677599906921, 0.9963526725769043, 0.994497537612915, 0.9898489713668823, 0.9163869023323059] +COc1cccc(F)c1Nc1ncc(Br)cn1; ['COc1cccc(F)c1N', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'COc1cccc(F)c1N', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1NC=O', 'COc1cccc(F)c1F']; ['Clc1ncc(Br)cn1', 'COc1cccc(F)c1N', 'COc1cccc(F)c1N', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999927878379822, 0.999976634979248, 0.9999361038208008, 0.9998682737350464, 0.9996727705001831, 0.9980642795562744, 0.9855735301971436, 0.9846850633621216] +Brc1cnc(Nc2c[nH]c3cnccc23)nc1; ['Ic1c[nH]c2cnccc12']; ['Nc1ncc(Br)cn1']; [0.9835289716720581] +Brc1cnc(NNc2cnc3ccccc3c2)nc1; [None]; [None]; [0] +Brc1cnc(Nc2cnc3[nH]ccc3c2)nc1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999832510948181, 0.9999539852142334, 0.9999171495437622, 0.9997192621231079, 0.9993627071380615, 0.9967337846755981, 0.9953525066375732, 0.9921932220458984, 0.90282142162323] +Brc1cnc(NNc2cnccc2-c2ccccc2)nc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(Nc3ncc(Br)cn3)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.99996417760849, 0.9856300950050354, 0.9734848737716675] +CC1(Nc2ncc(Br)cn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1ccncc1NNc1ncc(Br)cn1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999949932098389, 0.9999680519104004, 0.9999610185623169, 0.99958735704422, 0.998042643070221, 0.9969444274902344] +CNC(=O)c1c(F)cccc1Nc1ncc(Br)cn1; [None]; [None]; [0] +Brc1cnc(Nc2ccc(N3CCOCC3)cc2)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Ic1ccc(N2CCOCC2)cc1', 'CS(=O)c1ncc(Br)cn1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ncc(Br)cn1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ncc(Br)cn1']; [0.9999966025352478, 0.9999883770942688, 0.9999734163284302, 0.9997804164886475, 0.9997277855873108, 0.9993648529052734, 0.9983530044555664, 0.998226523399353, 0.9965521097183228, 0.9928139448165894] +CS(=O)(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(F)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999996542930603, 0.9999935030937195, 0.9999703168869019, 0.9998964071273804, 0.9994365572929382, 0.9991703033447266, 0.9987578988075256, 0.9987497329711914, 0.9958689212799072] +Cc1cc(Nc2ncc(Br)cn2)n(-c2cccc(Cl)c2)n1; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1']; ['Clc1ncc(Br)cn1']; [0.9916526079177856] +Fc1cccc(Cl)c1Nc1ncc(Br)cn1; ['Fc1cccc(Cl)c1I', 'Brc1cnc(Br)nc1', 'Clc1ncc(Br)cn1', 'Fc1cccc(Cl)c1Cl', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1F', 'CSc1ncc(Br)cn1']; ['Nc1ncc(Br)cn1', 'Nc1c(F)cccc1Cl', 'Nc1c(F)cccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1c(F)cccc1Cl']; [0.9999945759773254, 0.999990701675415, 0.9999877214431763, 0.9999408721923828, 0.9999274015426636, 0.9998995065689087, 0.9998658299446106, 0.9997842907905579, 0.9993733167648315] +CN(Nc1ncc(Br)cn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Brc1cnc(Nc2ccc(-n3cncn3)cc2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; [0.9999861717224121, 0.9999783039093018, 0.9999674558639526, 0.9996917247772217, 0.9994083046913147, 0.9972139596939087, 0.9942359924316406] +OCCc1cn(Nc2ncc(Br)cn2)cn1; [None]; [None]; [0] +C[C@@H](NNc1ncc(Br)cn1)C(C)(C)O; [None]; [None]; [0] +OCc1ccn(Nc2ncc(Br)cn2)n1; [None]; [None]; [0] +C[C@H](NNc1ncc(Br)cn1)C(C)(C)O; [None]; [None]; [0] +C[C@H](NNc1ncc(Br)cn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Brc1cnc(Nn2ncc3ccccc32)nc1; [None]; [None]; [0] +COc1ccc(Nc2ncc(Br)cn2)c(OC)c1; ['COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(N)c(OC)c1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9998623132705688, 0.9997850656509399, 0.9997729063034058, 0.9995904564857483, 0.9967865943908691, 0.9954522848129272, 0.9952932000160217, 0.993465781211853] +O=C(c1ccccc1)c1ccc(Nc2ncc(Br)cn2)cc1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Nc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(F)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9998652338981628, 0.9998211860656738, 0.9997689723968506, 0.9973570108413696, 0.9969573020935059, 0.9965883493423462, 0.9935401678085327, 0.9876335263252258, 0.9618231058120728, 0.9185781478881836] +Oc1cccc2c1cnn2Nc1ncc(Br)cn1; [None]; [None]; [0] +CSc1nc(C)c(Nc2ncc(Br)cn2)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncc(Br)cn2)CC1; [None]; [None]; [0] +Brc1cnc(NCc2nnc3ccc(-c4ccccc4)nn23)nc1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ncc(Br)cn1; [None]; [None]; [0] +Oc1ccc2nc(Nc3ncc(Br)cn3)[nH]c2c1; [None]; [None]; [0] +O=C(CCNc1ncc(Br)cn1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(Nc2ncc(Br)cn2)s1; ['Clc1ncc(Br)cn1']; ['Nc1nnc(N)s1']; [0.9994722604751587] +CCc1cc(Nc2ncc(Br)cn2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'CCc1cc(N)nc(N)n1', 'Brc1cnc(Br)nc1']; ['Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CCc1cc(N)nc(N)n1']; [0.9999030828475952, 0.9994165301322937, 0.996661365032196, 0.983188271522522, 0.9810230135917664, 0.9567334651947021] +Brc1cnc(Nc2cn(Cc3ccccc3)nn2)nc1; [None]; [None]; [0] +Brc1cnc(Nc2nncn2C2CC2)nc1; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ncc(Br)cn2)n1; ['CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9997309446334839, 0.9961479902267456] +Brc1cnc(Nc2nc3ccccc3s2)nc1; ['Clc1ncc(Br)cn1', 'Brc1nc2ccccc2s1']; ['Nc1nc2ccccc2s1', 'Nc1ncc(Br)cn1']; [0.9999274015426636, 0.9998782873153687] +[NH3+]CCn1ccc(Nc2ncc(Br)cn2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1ncc(Br)cn1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ncc(Br)cn3)nc2NC1=O; ['Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O']; ['CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9999070167541504, 0.999136209487915, 0.9990577697753906, 0.9967160820960999, 0.9920457601547241] +CCCCc1cc(Nc2ncc(Br)cn2)nc(N)n1; [None]; [None]; [0] +O=S(=O)(CNc1ncc(Br)cn1)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncc(Br)cn2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ncc(Br)cn2)CC1; ['CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)N1CCC(N)CC1']; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9999488592147827, 0.9992817044258118] +Brc1cnc(Nc2cccc3ccsc23)nc1; ['Brc1cccc2ccsc12']; ['Nc1ncc(Br)cn1']; [0.9266772866249084] +Brc1cnc(Nc2cccc3nnsc23)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CCSc1ncc(Br)cn1', 'Brc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1cccc2nnsc12', 'Nc1ncc(Br)cn1']; [0.999968945980072, 0.9992920160293579, 0.9981931447982788, 0.992942214012146, 0.9822202920913696, 0.9742699861526489] +Nc1cncc(Nc2ncc(Br)cn2)n1; ['Clc1ncc(Br)cn1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; ['Nc1cncc(N)n1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9966590404510498, 0.9910258054733276, 0.7670160531997681] +Brc1cnc(Nc2ncc3ccccc3n2)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Clc1ncc2ccccc2n1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'FC(F)(F)COc1ncc(Br)cn1', 'Brc1ncc2ccccc2n1']; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc(Br)cn1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc(Br)cn1']; [0.9997673034667969, 0.9995355606079102, 0.9990432262420654, 0.9986541867256165, 0.9972156286239624, 0.9969087243080139, 0.9894921779632568, 0.9636622667312622, 0.8942388892173767] +Nc1nc(Nc2ncc(Br)cn2)nc2ccccc12; ['Clc1ncc(Br)cn1', 'Nc1nc(Cl)nc2ccccc12', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1']; ['Nc1nc(N)c2ccccc2n1', 'Nc1ncc(Br)cn1', 'Nc1nc(N)c2ccccc2n1', 'Nc1nc(N)c2ccccc2n1']; [0.9980950355529785, 0.9940586686134338, 0.9595890045166016, 0.7779533863067627] +Brc1cnc(Nc2ncc3cc[nH]c3n2)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1ncc2cc[nH]c2n1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc(Br)cn1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1']; [0.9999582171440125, 0.9998807907104492, 0.9998489618301392, 0.9995030164718628, 0.9993788599967957, 0.996208906173706, 0.9920057058334351] +[NH3+]Cc1ccc(ONc2ncc(Br)cn2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ncc(Br)cn3)c2)cc1; [None]; [None]; [0] +Brc1cnc(Nc2c[nH]c3cccnc23)nc1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Brc1c[nH]c2cccnc12']; ['Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12', 'Nc1ncc(Br)cn1']; [0.9998162388801575, 0.9997238516807556, 0.9985568523406982, 0.9974064826965332, 0.9921998381614685, 0.9890707731246948, 0.9707101583480835] +COc1ccc(C#N)cc1Nc1ncc(Br)cn1; ['COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'COc1ccc(C#N)cc1F', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1Br']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999955296516418, 0.999994158744812, 0.9999851584434509, 0.9999843835830688, 0.9999603033065796, 0.9999457597732544, 0.9998981952667236, 0.999260425567627, 0.9950725436210632] +OCCn1cnc(Nc2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1ncccc1Nc1ncc(Br)cn1; ['COc1ncccc1N', 'Brc1cnc(I)nc1', 'COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1N', 'Brc1cnc(Br)nc1', 'COc1ncccc1N', 'COc1ncccc1F', 'COc1ncccc1Br']; ['Clc1ncc(Br)cn1', 'COc1ncccc1N', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'COc1ncccc1N', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999146461486816, 0.9996604919433594, 0.9990395307540894, 0.9984508752822876, 0.9978631138801575, 0.9953408241271973, 0.9946418404579163, 0.9868290424346924, 0.978262186050415] +COc1ccc(OC)c(Nc2ncc(Br)cn2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(F)c1', 'Brc1cnc(I)nc1', 'COc1ccc(OC)c(N)c1', 'Brc1cnc(Br)nc1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(Br)c1']; ['Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1ccc(OC)c(N)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1ccc(OC)c(N)c1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9997313618659973, 0.9995772838592529, 0.9992474913597107, 0.998621940612793, 0.9980841875076294, 0.9952100515365601, 0.9849967956542969, 0.9726802110671997, 0.9288725852966309] +C[C@@]1(O)CC[C@H](Nc2ncc(Br)cn2)CC1; ['C[C@]1(O)CC[C@@H](N)CC1', 'Brc1cnc(I)nc1', 'C[C@]1(O)CC[C@@H](N)CC1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'Fc1ncc(Br)cn1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; [0.9999977350234985, 0.999997615814209, 0.9999881982803345, 0.9999699592590332, 0.9999687671661377, 0.9999614953994751, 0.9997771978378296] +CN(C)S(=O)(=O)c1cccc(Nc2ncc(Br)cn2)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'Brc1cnc(I)nc1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'Brc1cnc(Br)nc1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Clc1ncc(Br)cn1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CSc1ncc(Br)cn1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999895095825195, 0.9999706745147705, 0.9997745752334595, 0.9996230602264404, 0.9995510578155518, 0.9991147518157959, 0.9907180070877075] +CC(=O)Nc1ncc(Nc2ncc(Br)cn2)[nH]1; [None]; [None]; [0] +CN(C)c1cc(Nc2ncc(Br)cn2)cnn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncc(Br)cn2)c1)C1CCNCC1; [None]; [None]; [0] +CCOc1ccc(Nc2ncc(Br)cn2)cc1; ['CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(F)cc1', 'CCOc1ccc(I)cc1', 'Brc1cnc(Br)nc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CCOc1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CCOc1ccc(N)cc1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999575018882751, 0.9999326467514038, 0.9997549653053284, 0.9978793859481812, 0.9974896907806396, 0.9972010850906372, 0.9968781471252441, 0.9959380626678467, 0.9944485425949097, 0.9892553091049194, 0.9829108715057373] +COc1ccc(ONc2ncc(Br)cn2)c(F)c1F; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2ncc(Br)cn2)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CC(=O)N(C)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CC(=O)N(C)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CC(=O)N(C)c1ccc(N)cc1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999632835388184, 0.9999086856842041, 0.9998048543930054, 0.998881459236145, 0.9986367225646973, 0.9959008097648621, 0.9917901158332825, 0.9732301831245422] +CS(=O)(=O)c1cccc(Nc2ncc(Br)cn2)c1; ['CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(F)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999921321868896, 0.9999591708183289, 0.999883770942688, 0.9996514916419983, 0.9991493225097656, 0.9989029765129089, 0.9986907243728638, 0.9963153600692749, 0.9703506231307983] +Cc1nc(C(C)(C)O)sc1Nc1ncc(Br)cn1; [None]; [None]; [0] +Brc1cnc(NN2CCC(c3nc4ccccc4[nH]3)CC2)nc1; [None]; [None]; [0] +COc1ccc(Nc2ncc(Br)cn2)cc1; ['COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(NC=O)cc1', 'COc1ccc(B(O)O)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999677538871765, 0.9999403357505798, 0.9997255802154541, 0.998390257358551, 0.9979580640792847, 0.9974483847618103, 0.996169924736023, 0.993537187576294, 0.9918138980865479, 0.9857096672058105, 0.9841090440750122, 0.9777034521102905] +O=C(Nc1cccc(Nc2ncc(Br)cn2)c1)C1CC1; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999961853027344, 0.9999581575393677, 0.9996247291564941, 0.9845044612884521] +Brc1cnc(NN2CC=C(c3c[nH]c4ccccc34)CC2)nc1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1']; ['Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1']; [0.9968888759613037, 0.7634415030479431] +COc1cc(Nc2ncc(Br)cn2)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'Brc1cnc(I)nc1', 'COc1cc(N)cc(OC)c1OC', 'Brc1cnc(Br)nc1', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Clc1ncc(Br)cn1', 'COc1cc(N)cc(OC)c1OC', 'Fc1ncc(Br)cn1', 'COc1cc(N)cc(OC)c1OC', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999976634979248, 0.9999143481254578, 0.9998631477355957, 0.999805212020874, 0.9997493624687195, 0.9996971487998962, 0.9996950626373291, 0.9995691776275635, 0.997104287147522, 0.9958135485649109] +N#Cc1ccc(O)c(Nc2ncc(Br)cn2)c1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(F)c1', 'N#Cc1ccc(O)c(Br)c1', 'CSc1ncc(Br)cn1']; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'N#Cc1ccc(O)c(N)c1']; [0.9998672008514404, 0.9996047019958496, 0.9989334940910339, 0.9982125759124756, 0.9971805810928345, 0.9970343112945557, 0.9769247770309448, 0.9703478813171387] +Brc1cnc(Nc2nc3ccccc3[nH]2)nc1; ['Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Ic1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1ncc(Br)cn1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999390840530396, 0.9999333620071411, 0.999886155128479, 0.9997328519821167, 0.998986542224884, 0.9989066123962402, 0.9987038373947144, 0.9984667301177979, 0.9983104467391968, 0.9982723593711853, 0.996471643447876, 0.992936372756958] +Brc1cnc(Nc2nccc3ccccc23)nc1; ['Fc1ncc(Br)cn1', 'Clc1nccc2ccccc12', 'Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1nccc2ccccc12', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1nccc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12']; [0.9999818801879883, 0.9999687075614929, 0.9999467134475708, 0.9999377727508545, 0.9994575381278992, 0.9988310933113098, 0.9979453086853027, 0.9798246026039124] +NC(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'NC(=O)c1ccc(I)cc1', 'CSc1ncc(Br)cn1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(F)cc1']; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'NC(=O)c1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999489784240723, 0.9999016523361206, 0.997668981552124, 0.9974831342697144, 0.9948481321334839, 0.988229513168335, 0.969582200050354, 0.9694567918777466] +Brc1cnc(NNc2ncccn2)nc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2ncc(Br)cn2)cc1; ['CC(=O)NCc1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC(=O)NCc1ccc(N)cc1']; ['Clc1ncc(Br)cn1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9999639987945557, 0.9997228384017944, 0.9989457130432129, 0.9985100030899048] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ncc(Br)cn3)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncc(Br)cn2)nc1)N1CCOCC1; ['Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999939203262329, 0.9999936819076538] +O=C(c1ccc(Nc2ncc(Br)cn2)cc1)N1CCOCC1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; [0.9999978542327881, 0.9999971985816956, 0.99996018409729, 0.9998614192008972, 0.9997817277908325, 0.9988223314285278, 0.9987854957580566, 0.9890992641448975] +Cc1ccc2ncn(Nc3ncc(Br)cn3)c2c1; [None]; [None]; [0] +Brc1cnc(Nc2cccc(C3CCNCC3)c2)nc1; ['CC(C)(C)OC(=O)N1CCC(c2cccc(N)c2)CC1', 'Clc1ncc(Br)cn1', 'Brc1cccc(C2CCNCC2)c1']; ['Clc1ncc(Br)cn1', 'Nc1cccc(C2CCNCC2)c1', 'Nc1ncc(Br)cn1']; [1.0, 0.999992847442627, 0.9827694296836853] +O=C(Nc1ccccc1)c1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9999573230743408, 0.9999276399612427, 0.9998093843460083, 0.9996140003204346, 0.9985584616661072, 0.9955214262008667, 0.9836143255233765] +OCCOc1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'FC(F)(F)COc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999227523803711, 0.9997742176055908, 0.9948318600654602, 0.9933410882949829, 0.9912780523300171, 0.9173076152801514, 0.890114963054657] +C[C@H](O)COc1ccc(Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3ncc(Br)cn3)cc2C1; ['Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9999662637710571, 0.9999262094497681, 0.9998726844787598, 0.9992808103561401, 0.9965901374816895, 0.9902600049972534, 0.9695380926132202, 0.9395433664321899] +FC(F)(F)c1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'FC(F)(F)c1ccc(I)cc1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; ['Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ncc(Br)cn1', 'Nc1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ncc(Br)cn1', 'Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1']; [0.999963641166687, 0.999934732913971, 0.9998589754104614, 0.9994996190071106, 0.99944007396698, 0.9989631175994873, 0.9988681077957153, 0.9979312419891357, 0.9963092803955078, 0.995076596736908] +Oc1ccccc1CNc1ncc(Br)cn1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'O=Cc1ccccc1O', 'NCc1ccccc1O']; [0.9981081485748291, 0.9975589513778687, 0.9933769106864929, 0.9747704267501831, 0.9725532531738281, 0.96923828125, 0.8847627639770508] +N#Cc1cccc(Cn2cc(Nc3ncc(Br)cn3)cn2)c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncc(Br)cn2)cc1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999687075614929, 0.999936044216156, 0.9998988509178162, 0.9989451766014099, 0.9988832473754883, 0.9971058964729309, 0.9968692064285278, 0.9918087720870972, 0.9877086877822876, 0.9825038909912109, 0.9732509851455688] +CS(=O)(=O)N1CCC(Nc2ncc(Br)cn2)CC1; ['CS(=O)(=O)N1CCC(N)CC1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(=O)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CCSc1ncc(Br)cn1', 'COc1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1']; [0.9999951720237732, 0.9999829530715942, 0.9998955726623535, 0.9997687935829163, 0.9997682571411133, 0.9997671246528625, 0.9996777176856995, 0.9985981583595276, 0.9967321157455444] +CCNS(=O)(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc(Nc2ccccc2)nc1']; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CCN']; [0.9999114274978638, 0.9918726682662964, 0.9901461601257324, 0.9676087498664856] +CN(C)S(=O)(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc(I)nc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CSc1ncc(Br)cn1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999600648880005, 0.9998548030853271, 0.9995437860488892, 0.9995421767234802, 0.9993706941604614, 0.9981569051742554, 0.9977306127548218, 0.9968928098678589, 0.9968901872634888, 0.996216893196106, 0.9953752756118774] +CC(C)c1cc(Nc2ncc(Br)cn2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1ncc(Br)cn1']; [0.9998224973678589] +Nc1ncc(CNc2ncc(Br)cn2)cn1; [None]; [None]; [0] +CCCOc1ccc(Nc2ncc(Br)cn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ncc(Br)cn1']; [0.997032642364502] +Brc1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1ccc(I)cc1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1ccc(Br)cc1', 'Nc1ncc(Br)cn1', 'Fc1ccc(Br)cc1']; ['Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Nc1ncc(Br)cn1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'O=CNc1ccc(Br)cc1', 'Nc1ncc(Br)cn1', 'OB(O)c1ccc(Br)cc1', 'Nc1ncc(Br)cn1']; [0.9999630451202393, 0.9999405145645142, 0.9998149871826172, 0.9987856149673462, 0.9984503388404846, 0.9947774410247803, 0.9943974018096924, 0.9941009283065796, 0.9887238144874573, 0.9838714599609375, 0.9831534028053284, 0.9683653116226196] +COc1ccc(CNc2ncc(Br)cn2)cc1; ['COc1ccc(CN)cc1', 'Brc1cnc(Br)nc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'Brc1cnc(I)nc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', None, 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['Clc1ncc(Br)cn1', 'COc1ccc(CN)cc1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1ccc(CN)cc1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'O=c1ncc(Br)c[nH]1', None, 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9987980127334595, 0.9979557991027832, 0.9973001480102539, 0.9964427947998047, 0.995231032371521, 0.9934792518615723, 0.9933834075927734, 0.987967848777771, 0.9855607748031616, 0, 0.9831565022468567, 0.9487505555152893] +CCN(CC)C(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999943733215332, 0.9998770952224731, 0.9996994733810425, 0.9992876052856445, 0.9992402791976929, 0.9991800785064697, 0.9982908368110657, 0.9941524863243103] +Brc1cnc(Nc2ccn3nccc3n2)nc1; ['Clc1ncc(Br)cn1', 'Clc1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1ccn2nccc2n1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ccn2nccc2n1']; [0.999998927116394, 0.9999904632568359, 0.9997678995132446, 0.9996522665023804] +CN(C)c1ccc(Nc2ncc(Br)cn2)cc1Cl; ['Brc1cnc(I)nc1', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(F)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'Brc1cnc(Br)nc1', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['CN(C)c1ccc(N)cc1Cl', 'Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CN(C)c1ccc(N)cc1Cl', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9995605945587158, 0.9983807802200317, 0.9971194267272949, 0.9960165619850159, 0.9939950704574585, 0.9925857782363892, 0.984095573425293, 0.9792245626449585, 0.8913088440895081] +Brc1cnc(Nc2c[nH]c3ccccc23)nc1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1c[nH]c2ccccc12']; [0.9995391964912415, 0.9989676475524902, 0.9972147941589355, 0.9923165440559387, 0.9905364513397217, 0.9284409284591675, 0.8967148065567017] +O=C(c1ccccc1)N1CC[C@H](Nc2ncc(Br)cn2)C1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncc(Br)cn2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ncc(Br)cn1']; [0.9981732368469238] +COc1ccc(Cl)cc1Nc1ncc(Br)cn1; ['COc1ccc(Cl)cc1N', 'Brc1cnc(I)nc1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1F', 'COc1ccc(Cl)cc1N', 'Brc1cnc(Br)nc1', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1N']; ['Fc1ncc(Br)cn1', 'COc1ccc(Cl)cc1N', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1ccc(Cl)cc1N', 'Clc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; [0.9999229907989502, 0.9995567798614502, 0.9995207190513611, 0.9994388818740845, 0.9990462064743042, 0.9986844062805176, 0.9979296922683716, 0.9940077066421509, 0.9805953502655029, 0.968245267868042] +COc1cc(OC)c(Nc2ncc(Br)cn2)cc1Cl; ['Brc1cnc(I)nc1', 'COc1cc(OC)c(Cl)cc1N', 'Brc1cnc(Br)nc1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Cl)cc1N', 'Fc1ncc(Br)cn1', 'COc1cc(OC)c(Cl)cc1N', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9990984201431274, 0.9983350038528442, 0.9924193620681763, 0.9808675646781921, 0.9807625412940979, 0.9536311626434326, 0.7711922526359558] +CC(=O)N1CCCN(c2cccc(Nc3ncc(Br)cn3)c2)CC1; [None]; [None]; [0] +Brc1cnc(Nc2ccc3c(c2)CCO3)nc1; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Ic1ccc2c(c1)CCO2', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Brc1ccc2c(c1)CCO2']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ncc(Br)cn1', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Nc1ncc(Br)cn1']; [0.999921977519989, 0.9998971223831177, 0.9997947216033936, 0.9977705478668213, 0.9957919716835022, 0.9956552982330322, 0.992270827293396, 0.9836786985397339] +Brc1cnc(Nc2ccccc2-n2cccn2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Clc1ccccc1-n1cccn1', 'Brc1cnc(Br)nc1', 'Fc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncc(Br)cn1', 'Nc1ccccc1-n1cccn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1']; [0.9999804496765137, 0.9999780654907227, 0.9999666213989258, 0.999840259552002, 0.9994559288024902, 0.9992623329162598, 0.9991593956947327, 0.997992217540741, 0.9930180311203003, 0.9889746904373169] +Cc1c(Nc2ncc(Br)cn2)cccc1C(=O)[O-]; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ncc(Br)cn1; ['Brc1cnc(I)nc1', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9999878406524658, 0.9999779462814331, 0.999510645866394] +Brc1cnc(Nc2cccc3c2OCO3)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Ic1cccc2c1OCO2', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cccc2c1OCO2', 'CS(=O)c1ncc(Br)cn1']; ['Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1ncc(Br)cn1', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1ncc(Br)cn1', 'Nc1cccc2c1OCO2']; [0.9998759627342224, 0.9998173713684082, 0.9994964599609375, 0.998652994632721, 0.9974183440208435, 0.996084451675415, 0.9870458841323853, 0.9814058542251587] +COc1cc(Nc2ncc(Br)cn2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(I)ccc1O', 'Brc1cnc(Br)nc1', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1cc(N)ccc1O', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999885082244873, 0.9998029470443726, 0.9988171458244324, 0.9988131523132324, 0.9987579584121704, 0.9980918169021606, 0.9964123368263245, 0.987329363822937] +Brc1cnc(Nc2cc(-c3ccccc3)[nH]n2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1']; ['Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1']; [0.999787449836731, 0.998559832572937, 0.9937466979026794] +Brc1cnc(Nc2cnc3ccccc3c2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Ic1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999939799308777, 0.9999925494194031, 0.9999838471412659, 0.9999568462371826, 0.999772310256958, 0.9996617436408997, 0.9986924529075623, 0.9972522258758545, 0.9970470070838928, 0.9953268766403198, 0.9470954537391663] +Fc1ccc2nc(CNc3ncc(Br)cn3)[nH]c2c1F; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncc(Br)cn2)cn1; ['CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'Brc1cnc(I)nc1', 'CC(C)(C)c1ccc(N)cn1', 'Brc1cnc(Br)nc1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999505281448364, 0.9999476671218872, 0.9998259544372559, 0.999516487121582, 0.9993427991867065, 0.995992124080658, 0.9955278635025024] +Fc1ccc2[nH]c(CNc3ncc(Br)cn3)nc2c1F; [None]; [None]; [0] +Brc1cnc(NCc2nc3ccccc3[nH]2)nc1; ['Clc1ncc(Br)cn1', 'ClCc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['NCc1nc2ccccc2[nH]1', 'Nc1ncc(Br)cn1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1']; [0.9967713356018066, 0.993896484375, 0.9905247688293457, 0.9893567562103271, 0.9774816632270813, 0.971419632434845, 0.9121308326721191] +CN(C)C(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Clc1ncc(Br)cn1', 'CN(C)C(=O)c1ccc(N)cc1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CN(C)C(=O)c1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999415278434753, 0.9997105598449707, 0.9997023344039917, 0.9988731145858765, 0.9981838464736938, 0.9979472756385803, 0.99489426612854, 0.9814780950546265, 0.9095235466957092] +Brc1cnc(NCCCc2ccccc2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'ClCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'Nc1ncc(Br)cn1', 'O=c1ncc(Br)c[nH]1', 'OCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=CCCc1ccccc1', 'NCCCc1ccccc1']; [0.9997650384902954, 0.9993953108787537, 0.997275173664093, 0.996433675289154, 0.9886853098869324, 0.9869967103004456, 0.9853051900863647, 0.9827960729598999, 0.9757388830184937, 0.972774088382721] +Cc1ccc(Nc2ncc(Br)cn2)c(=O)[nH]1; ['Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'Cc1ccc(I)c(=O)[nH]1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'Nc1ncc(Br)cn1', 'Cc1ccc(N)c(=O)[nH]1']; [0.9973345994949341, 0.9972538352012634, 0.9909862279891968, 0.9473636150360107, 0.9307206869125366, 0.9245538115501404] +COc1cccc(C(=O)NNc2ncc(Br)cn2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)NN)c1']; ['NNc1ncc(Br)cn1', 'NNc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; [0.9999966025352478, 0.9999558329582214, 0.9045252799987793] +Brc1cnc(Nc2cc3ccccc3s2)nc1; ['Clc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Fc1ncc(Br)cn1']; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1']; [0.9979730844497681, 0.9930483102798462, 0.9875273704528809] +CSc1ccc(Nc2ncc(Br)cn2)cc1; ['CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ccc(I)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999701976776123, 0.9999548196792603, 0.9998868107795715, 0.9982457160949707, 0.9972410202026367, 0.9965717792510986, 0.9918399453163147, 0.990713357925415, 0.9697605967521667] +CC[C@@H](CO)Nc1ncc(Br)cn1; ['CC[C@H](N)CO', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO']; ['Clc1ncc(Br)cn1', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; [0.999233603477478, 0.9975953102111816, 0.9957828521728516, 0.9891557693481445, 0.977370023727417, 0.8183953762054443] +Clc1cccc(-n2ccc(Nc3ncc(Br)cn3)n2)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3ncc(Br)cn3)[nH]c2c1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1ncc(Br)cn1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9992562532424927, 0.9987583756446838, 0.9984228610992432, 0.9945917129516602, 0.9481620788574219] +Brc1cnc(Nc2ncc(Br)cn2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Fc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9980932474136353, 0.992794394493103, 0.9648534059524536, 0.9219497442245483, 0.8070656061172485] +Cc1cc(Nc2ncc(Br)cn2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(Br)nc(N)n1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Cc1cc(N)nc(N)n1', 'Brc1cnc(Br)nc1']; ['Nc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Fc1ncc(Br)cn1', 'Cc1cc(N)nc(N)n1']; [0.9998781681060791, 0.9985705614089966, 0.9895163178443909, 0.9608407020568848, 0.9587420225143433, 0.9552845358848572, 0.8439788222312927] +Fc1ccc(Nc2ncc(Br)cn2)c(Cl)c1; ['Fc1ccc(I)c(Cl)c1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Fc1ccc(F)c(Cl)c1', 'CSc1ncc(Br)cn1']; ['Nc1ncc(Br)cn1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ccc(F)cc1Cl']; [0.9999580979347229, 0.9999544620513916, 0.9999455213546753, 0.9995805621147156, 0.9995791912078857, 0.9993491172790527, 0.9983747005462646, 0.9734617471694946] +O=C1CCc2cc(Nc3ncc(Br)cn3)ccc2N1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(F)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999741315841675, 0.9999656677246094, 0.9999594688415527, 0.9999216794967651, 0.9997016787528992, 0.9995704889297485, 0.9991970658302307, 0.9986554980278015, 0.9982081651687622, 0.9927629232406616] +COc1ccc(Nc2ncc(Br)cn2)cc1OC; ['COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(F)cc1OC', 'Brc1cnc(I)nc1', 'COc1ccc(N)cc1OC', 'Brc1cnc(Br)nc1', 'COc1ccc(I)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(Br)cc1OC']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1ccc(N)cc1OC', 'CSc1ncc(Br)cn1', 'COc1ccc(N)cc1OC', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999976634979248, 0.9999735355377197, 0.9999392032623291, 0.9999034404754639, 0.9998893737792969, 0.9997533559799194, 0.9997040033340454, 0.9996985197067261, 0.9988361597061157, 0.9986510276794434] +CCN1CCN(Cc2ccc(Nc3ncc(Br)cn3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'Brc1cnc(I)nc1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'Brc1cnc(Br)nc1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Clc1ncc(Br)cn1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9997069835662842, 0.9988499283790588, 0.9973323941230774, 0.9934359788894653, 0.9726349115371704, 0.9071540832519531, 0.8774929046630859] +CCc1ccc(Nc2ncc(Br)cn2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CCc1ccc(N)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(F)cc1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999865293502808, 0.9999371767044067, 0.9998804330825806, 0.9991171360015869, 0.9989646673202515, 0.9986621141433716, 0.9985880851745605, 0.9936447143554688, 0.9909306168556213, 0.9888873100280762, 0.988278865814209] +Brc1cnc(NCCCn2cncn2)nc1; ['Brc1cnc(Br)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.999306321144104, 0.9993048310279846, 0.9964988231658936, 0.9947471618652344, 0.9839802980422974, 0.9776699542999268] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +Clc1ccc(Nc2ncc(Br)cn2)c(Cl)c1; ['Fc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1ccc(I)c(Cl)c1', 'Brc1cnc(Br)nc1', 'Fc1ccc(Cl)cc1Cl', 'Clc1ncc(Br)cn1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; ['Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ncc(Br)cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'O=CNc1ccc(Cl)cc1Cl']; [0.9999340772628784, 0.999893069267273, 0.9998431205749512, 0.9997086524963379, 0.9993138313293457, 0.9989999532699585, 0.9986732006072998, 0.9980309009552002, 0.9973974227905273, 0.9970982074737549, 0.9825748205184937, 0.9398840665817261] +Brc1cnc(Nc2cc3ccccn3n2)nc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Clc1cc2ccccn2n1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'Brc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1ncc(Br)cn1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1ncc(Br)cn1']; [0.9999940395355225, 0.9999431371688843, 0.9997924566268921, 0.999728798866272, 0.9993730187416077, 0.9989192485809326, 0.998395562171936] +Brc1cnc(Nc2scc3c2OCCO3)nc1; [None]; [None]; [0] +Brc1cnc(Nc2ncc3cccn3n2)nc1; ['Clc1ncc2cccn2n1']; ['Nc1ncc(Br)cn1']; [0.9986714720726013] +Cn1cc(Nc2ncc(Br)cn2)c(C(F)(F)F)n1; ['Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Brc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'CSc1ncc(Br)cn1']; ['Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Nc1ncc(Br)cn1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9999837875366211, 0.9999734163284302, 0.9999459981918335, 0.9999264478683472, 0.9998685121536255, 0.9996336698532104, 0.998324990272522, 0.997808575630188, 0.9949644804000854] +COc1cc(Nc2ncc(Br)cn2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'Brc1cnc(I)nc1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'Brc1cnc(Br)nc1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'COc1cc(N)ccc1N1CCOCC1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1cc(N)ccc1N1CCOCC1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999982714653015, 0.9999977350234985, 0.9999963045120239, 0.9999918937683105, 0.9999842643737793, 0.9999768733978271, 0.9996614456176758, 0.9988662004470825] +Oc1ccc2cccc(Nc3ncc(Br)cn3)c2c1; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Br)c2c1']; [0.9992432594299316, 0.9986094236373901, 0.9523448944091797] +Cc1csc2c(Nc3ncc(Br)cn3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1ncc(Br)cn1']; [0.9997644424438477] +COc1ccc2cccc(Nc3ncc(Br)cn3)c2c1; ['COc1ccc2cccc(N)c2c1', 'Brc1cnc(I)nc1', 'COc1ccc2cccc(N)c2c1', 'Brc1cnc(Br)nc1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['Clc1ncc(Br)cn1', 'COc1ccc2cccc(N)c2c1', 'Fc1ncc(Br)cn1', 'COc1ccc2cccc(N)c2c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9998619556427002, 0.9996393918991089, 0.9995708465576172, 0.999206006526947, 0.9991103410720825, 0.992525577545166, 0.9558200836181641, 0.9292146563529968] +COc1cc(Nc2ncc(Br)cn2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'Brc1cnc(I)nc1', 'COc1cc(F)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Brc1cnc(Br)nc1', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Fc1ncc(Br)cn1', 'COc1cc(N)ccc1Cl', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1cc(N)ccc1Cl', 'Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.999997079372406, 0.9999914169311523, 0.9999879598617554, 0.9999840259552002, 0.999981164932251, 0.9999560117721558, 0.9999525547027588, 0.9999112486839294, 0.9996088743209839, 0.999422550201416] +COc1cc(F)c(Nc2ncc(Br)cn2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'Brc1cnc(Br)nc1', 'COc1cc(F)c(F)cc1OC', 'Brc1cnc(I)nc1', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC']; ['Clc1ncc(Br)cn1', 'COc1cc(N)c(F)cc1OC', 'Nc1ncc(Br)cn1', 'COc1cc(N)c(F)cc1OC', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1']; [0.9999433159828186, 0.9993816614151001, 0.9991635084152222, 0.9987910389900208, 0.9983174800872803, 0.9961485862731934, 0.9842539429664612] +Clc1cnc(Nc2ncc(Br)cn2)nc1; ['Brc1cnc(I)nc1', 'Clc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Clc1cnc(Cl)nc1', 'Brc1cnc(Br)nc1', 'Clc1cnc(Br)nc1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Cl)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Cl)cn1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Br)cn1']; [0.9963802695274353, 0.9963802695274353, 0.9808260202407837, 0.9565047025680542, 0.9565047025680542, 0.9423792362213135, 0.9423792362213135, 0.9005728960037231, 0.9005728960037231, 0.866849422454834, 0.866849422454834] +CNC(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CNC(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'CNC(=O)c1ccc(N)cc1', 'Brc1cnc(Br)nc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(F)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Clc1ncc(Br)cn1', 'CNC(=O)c1ccc(N)cc1', 'Fc1ncc(Br)cn1', 'CNC(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999496936798096, 0.999829888343811, 0.9997632503509521, 0.9989384412765503, 0.9984045028686523, 0.9979449510574341, 0.9959915280342102, 0.9930647611618042, 0.9899418354034424, 0.9370571970939636, 0.865164577960968] +CCNC(=O)c1ccc(Nc2ncc(Br)cn2)nc1; ['CCNC(=O)c1ccc(Cl)nc1', 'CCNC(=O)c1ccc(Br)nc1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9973528385162354, 0.9945801496505737] +COc1cc(Nc2ncc(Br)cn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br']; ['Nc1ncc(Br)cn1']; [0.9994895458221436] +Nc1cc(Nc2ncc(Br)cn2)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ncc(Br)cn1']; [0.9677048921585083] +CCNC(=O)N1CCC(Nc2ncc(Br)cn2)CC1; ['CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)N1CCC(N)CC1']; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9999488592147827, 0.9992817044258118] +COc1ccc(OC)c(CNc2ncc(Br)cn2)c1; ['COc1ccc(OC)c(CN)c1', 'Brc1cnc(Br)nc1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(C=O)c1', 'Brc1cnc(I)nc1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(CN)c1']; ['Clc1ncc(Br)cn1', 'COc1ccc(OC)c(CN)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'COc1ccc(OC)c(CN)c1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'O=c1ncc(Br)c[nH]1']; [0.9997287392616272, 0.9990938901901245, 0.9990670680999756, 0.9983241558074951, 0.9975954294204712, 0.996359646320343, 0.9962005615234375, 0.9922695159912109, 0.9880536794662476, 0.9772929549217224] +CC1(C)Cc2cc(Nc3ncc(Br)cn3)ccc2O1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2ncc(Br)cn2)CC1; ['Brc1cnc(I)nc1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'Brc1cnc(Br)nc1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['CO[C@H]1CC[C@H](N)CC1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CO[C@H]1CC[C@H](N)CC1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9999873638153076, 0.9999825358390808, 0.9999188184738159, 0.9998705983161926, 0.999819278717041, 0.9997121095657349, 0.998993992805481] +COc1cc(CS(C)(=O)=O)ccc1Nc1ncc(Br)cn1; [None]; [None]; [0] +COc1ccc2oc(Nc3ncc(Br)cn3)cc2c1; [None]; [None]; [0] +COc1cc(Nc2ncc(Br)cn2)cc(OC)c1; ['COc1cc(N)cc(OC)c1', 'Brc1cnc(I)nc1', 'COc1cc(N)cc(OC)c1', 'COc1cc(F)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'Brc1cnc(Br)nc1', 'COc1cc(I)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['Clc1ncc(Br)cn1', 'COc1cc(N)cc(OC)c1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'COc1cc(N)cc(OC)c1', 'Nc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999513030052185, 0.9999329447746277, 0.999907374382019, 0.9995181560516357, 0.9994606375694275, 0.9990909099578857, 0.9976401329040527, 0.9920254349708557, 0.9909974336624146, 0.9867036938667297, 0.9823931455612183] +CNC(=O)c1ccc(OC)c(Nc2ncc(Br)cn2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'Brc1cnc(I)nc1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Clc1ncc(Br)cn1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9993869066238403, 0.9927664995193481, 0.9774140119552612, 0.8600371479988098] +Brc1cnc(Nc2ccc3cn[nH]c3c2)nc1; ['CC(C)(C)OC(=O)n1ncc2ccc(N)cc21', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['Clc1ncc(Br)cn1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999998807907104, 0.999970555305481, 0.9999700784683228, 0.9997164011001587, 0.9996244311332703, 0.9993312358856201, 0.9989208579063416, 0.9981104135513306, 0.9961929321289062, 0.987862229347229] +COc1ccc2c(c1)c(Nc1ncc(Br)cn1)cn2C; [None]; [None]; [0] +Brc1cnc(Nc2ncc3sccc3n2)nc1; ['Clc1ncc2sccc2n1']; ['Nc1ncc(Br)cn1']; [0.9992040991783142] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ncc(Br)cn2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1ncc(Br)cn1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9988620281219482, 0.9978095293045044] +Brc1cnc(Nc2cc3ccccc3o2)nc1; [None]; [None]; [0] +Brc1cnc(Nc2cc(-c3cccnc3)ccn2)nc1; ['Clc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9999477863311768, 0.9996323585510254, 0.997564435005188] +O=C(Nc1cccc(Nc2ncc(Br)cn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2ncc(Br)cn2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1ncc(Br)cn1']; [0.9998838901519775] +Cn1cc(Br)cc1Nc1ncc(Br)cn1; [None]; [None]; [0] +COc1ccc2nc(Nc3ncc(Br)cn3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1ncc(Br)cn1']; [0.9943132400512695] +CCc1cccc(Nc2ncc(Br)cn2)n1; ['Brc1cnc(I)nc1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'Brc1cnc(Br)nc1', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1']; ['CCc1cccc(N)n1', 'Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CCc1cccc(N)n1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; [0.9999514818191528, 0.9997918605804443, 0.9995326995849609, 0.996679961681366, 0.9919619560241699, 0.9917649030685425, 0.975522518157959] +FC(F)(F)Oc1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'Fc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'FC(F)(F)Oc1ccc(I)cc1', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Fc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)COc1ncc(Br)cn1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ncc(Br)cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ccc(OC(F)(F)F)cc1']; [0.9999943971633911, 0.9999750852584839, 0.9999647736549377, 0.999931812286377, 0.9997838735580444, 0.9996848106384277, 0.9995386600494385, 0.99952232837677, 0.999343752861023, 0.9985355138778687, 0.9963904619216919, 0.9941843748092651] +C[NH+](C)Cc1ccc(Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +Brc1cnc(Nc2ncn3c2CCCC3)nc1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3ncc(Br)cn3)ccc12; ['Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Cc1n[nH]c2cc(Br)ccc12']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Nc1ncc(Br)cn1']; [0.9999973773956299, 0.9999960064888, 0.9998359680175781, 0.9995939135551453, 0.9995045065879822, 0.9987987875938416] +CN(C)c1ccc(Nc2ncc(Br)cn2)cn1; ['Brc1cnc(I)nc1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'Brc1cnc(Br)nc1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1']; ['CN(C)c1ccc(N)cn1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CN(C)c1ccc(N)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9993675351142883, 0.9991339445114136, 0.9981565475463867, 0.9979021549224854, 0.9939137697219849, 0.9894750118255615, 0.9806615114212036, 0.9769407510757446, 0.9659558534622192] +Cn1nc(Cl)c2cc(Nc3ncc(Br)cn3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3ncc(Br)cn3)cn2)CC1; [None]; [None]; [0] +O=C(NNc1ncc(Br)cn1)c1cccc(OC(F)(F)F)c1; ['NNc1ncc(Br)cn1', 'NNc1ncc(Br)cn1', 'CSc1ncc(Br)cn1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NNC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999997615814209, 0.9999980926513672, 0.9971082210540771] +Cc1cc(Nc2ncc(Br)cn2)cc(C)c1OCCO; [None]; [None]; [0] +OCCc1ccc(Nc2ncc(Br)cn2)cc1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CSc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'Nc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1']; [0.9999685287475586, 0.9998331069946289, 0.9992009401321411, 0.9986362457275391, 0.9973858594894409, 0.9969061017036438, 0.9854999780654907, 0.9853640198707581] +O=C1CCCN1c1cccc(Nc2ncc(Br)cn2)c1; ['Clc1ncc(Br)cn1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999691843986511, 0.9998806715011597, 0.9984112977981567, 0.9982371926307678, 0.9971882700920105, 0.9864938259124756, 0.9069480895996094] +CN(C)C(=O)c1ccc(Nc2ncc(Br)cn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ncc(Br)cn1; ['COc1cc(N2CCN(C(=O)OC(C)(C)C)CC2)ccc1N']; ['Clc1ncc(Br)cn1']; [0.9999979734420776] +Cc1ncc(-c2ccc(Nc3ncc(Br)cn3)cc2)n1C; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncc(Br)cn2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'Brc1cnc(I)nc1', 'CNC(=O)c1ccc(N)c(OC)c1', 'Brc1cnc(Br)nc1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Clc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CNC(=O)c1ccc(N)c(OC)c1', 'Nc1ncc(Br)cn1']; [0.9983773231506348, 0.9972143173217773, 0.9970637559890747, 0.9830317497253418, 0.974686861038208, 0.9439109563827515] +CCNC(=O)c1ccc(Nc2ncc(Br)cn2)cc1; ['CCNC(=O)c1ccc(N)cc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['Clc1ncc(Br)cn1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9998847246170044, 0.9994205236434937, 0.9993067979812622, 0.9979907274246216, 0.9933157563209534, 0.9868723154067993] +CN(C)C(=O)c1ccc(Nc2ncc(Br)cn2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9990525245666504, 0.9929061532020569] +CC(C)(O)c1ccc2cc(Nc3ncc(Br)cn3)[nH]c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ncc(Br)cn2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.99288010597229, 0.9207754135131836] +CCNC(=O)Cc1ccc(Nc2ncc(Br)cn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ncc(Br)cn1']; [0.9971135258674622] +COc1cc(S(C)(=O)=O)ccc1Nc1ncc(Br)cn1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'Brc1cnc(Br)nc1', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N']; ['Fc1ncc(Br)cn1', 'Clc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'COc1cc(S(C)(=O)=O)ccc1N', 'Nc1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9999973177909851, 0.9999964237213135, 0.9999814033508301, 0.9999749660491943, 0.9997992515563965, 0.9997968673706055] +Cc1cc(N2CCOCC2)ccc1Nc1ncc(Br)cn1; ['Cc1cc(N2CCOCC2)ccc1N', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; ['Clc1ncc(Br)cn1', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; [0.9999991655349731, 0.9999622106552124, 0.9999591112136841, 0.9998650550842285, 0.9994471073150635, 0.9993293285369873] +CNC(=O)c1ccc(C)c(Nc2ncc(Br)cn2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'Brc1cnc(Br)nc1', 'Brc1cnc(I)nc1', 'CNC(=O)c1ccc(C)c(N)c1']; ['Clc1ncc(Br)cn1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CS(=O)(=O)c1ncc(Br)cn1']; [0.9995415806770325, 0.9953186511993408, 0.9924637079238892, 0.9749703407287598] +COc1cc(-c2cnn(C)c2)ccc1Nc1ncc(Br)cn1; [None]; [None]; [0] +Cn1nc(Nc2ncc(Br)cn2)cc1C(C)(C)O; [None]; [None]; [0] +COC(C)(C)CCc1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CCOc1ccccc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1ncc(Br)cn1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1ncc(Br)cn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(C(F)(F)F)c2)n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', None]; ['Nc1nccc(-c2cccc(C(F)(F)F)c2)n1', 'Nc1nccc(-c2cccc(C(F)(F)F)c2)n1', None]; [0.999322772026062, 0.9988579154014587, 0] +CC(=O)Nc1nccc(-c2ccccc2-c2nnc(C)[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Cc2cc(F)cc(F)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccccc2S(=O)(=O)C(C)C)n1; [None]; [None]; [0] +CCn1cc(-c2ccnc(NC(C)=O)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccccc2C(=O)[O-])n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccccc2P(C)(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccccc2OC(F)(F)F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccccc2C(N)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnn(Cc3ccccc3)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccnc3ccccc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnn(CCO)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc(Cl)ccc2Cl)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3ncn(C)c(=O)c3c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2ncc3cccc(F)c3c2=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2csc(C(C)(C)C)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(OCC(=O)C(C)C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(NC(=O)c3ccccc3)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(C)cc2Br)n1; [None]; [None]; [0] +COc1cnc(-c2ccnc(NC(C)=O)n2)nc1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(Br)c2)n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', None]; ['Nc1nccc(-c2cccc(Br)c2)n1', 'Nc1nccc(-c2cccc(Br)c2)n1', None]; [0.9991868138313293, 0.9984700679779053, 0] +CC(=O)Nc1nccc(-c2c(C)nc3ccccn23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2sc(C)nc2C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2sc(N)nc2C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NCc2cccnc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc(C)ccc2Cl)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3ccccc3c2)n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O']; ['Nc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1']; [0.9880730509757996, 0.9862591028213501] +CNc1nc(C)c(-c2ccnc(NC(C)=O)n2)s1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2sc(=O)n(C)c2C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NCCc2c[nH]cn2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccnc(N)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NC(=O)c2cccs2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Nc2cccnc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2cnc3ccccc32)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnn3ncccc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NCCc2ccccc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2c[nH]nc2C(F)(F)F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(CC(=O)[O-])c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(F)c2C(N)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cncc3ccccc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(-c3cnn(C)c3)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NCc2ccc(Cl)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3c(N)[nH]nc3c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3c(cnn3C)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccnc(NC(C)=O)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(-c3cn[nH]c3)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(O)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3c(c2)CS(=O)(=O)N3C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Nc2ccncc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(NCc2ccccc2F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(CO)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cn(C(C)C)nn2)n1; [None]; [None]; [0] +COc1cc(-c2ccnc(NC(C)=O)n2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2csc3ncncc23)n1; [None]; [None]; [0] +CSc1nc(-c2ccnc(NC(C)=O)n2)c[nH]1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnoc2C(C)C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(CCc2c[nH]nn2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(CCC#N)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2csc(N)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(F)cc2C(F)(F)F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Oc2ccccn2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cncnc2N)n1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccnc(NC(C)=O)n2)cc1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cn(C)c3ccccc23)n1; ['CC(N)=O']; ['Cn1cc(-c2ccnc(Cl)n2)c2ccccc21']; [0.9985566139221191] +CC(=O)Nc1nccc(NC(=O)c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccnc(NC(C)=O)n3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1nccc(CCCC(N)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N2CCC(S(C)(=O)=O)CC2)n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccnc(NC(C)=O)n2)c1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnn3ccccc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(OCC(C)(C)S(C)(=O)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(CCNC(=O)CC(C)(C)O)n1; [None]; [None]; [0] +COc1ccc(-c2ccnc(NC(C)=O)n2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)n1; [None]; [None]; [0] +CCCn1cc(-c2ccnc(NC(C)=O)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(C(C)(C)N)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(O[C@H](C)c2c(Cl)cncc2Cl)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc([S@](C)=O)cc2)n1; [None]; [None]; [0] +CCN(CC)c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc[nH]c(=O)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc3c2C(=O)CC3)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cncc(OC(C)C)c2)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(C(C)(C)C)cc2)n1; [None]; [None]; [0] +COc1ccncc1Nc1ccnc(NC(C)=O)n1; [None]; [None]; [0] +COc1cc(CCc2ccnc(NC(C)=O)n2)cc(OC)c1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc3c(=O)[nH]ccc3o2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Nc2cnc3ccccc3c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc3c(=O)[nH]cc(Br)c3s2)n1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Nc2cnccc2-c2ccccc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnc3[nH]ccc3c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(C2(C)CCN(S(C)(=O)=O)CC2)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc(NC(C)=O)n2)cc1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(N3CCOCC3)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(S(C)(=O)=O)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N[C@H](C)C(C)(C)O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N[C@@H](C)C(C)(C)O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc(C)nn2-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2c(F)cccc2Cl)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2ccc(CO)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(-n3cncn3)cc2)n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', 'CC(=O)O', None]; ['Nc1nccc(-c2ccc(-n3cncn3)cc2)n1', 'Nc1nccc(-c2ccc(-n3cncn3)cc2)n1', 'Nc1nccc(-c2ccc(-n3cncn3)cc2)n1', None]; [0.9997854232788086, 0.999386191368103, 0.9984222054481506, 0] +CC(=O)Nc1nccc(N[C@@H](C)C(=O)NCC(F)(F)F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2ncc3ccccc32)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2cnc(CCO)c2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc(NC(C)=O)n2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccnc(NC(C)=O)n2)c(OC)c1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc(C(=O)c3ccccc3)cc2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nc3ccc(O)cc3[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-n2ncc3c(O)cccc32)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nncn2C2CC2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nncn2C(C)C)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Cc2nnc3ccc(-c4ccccc4)nn23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc([C@@H]2CC[C@@H](NC(C)=O)CC2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccn(CC[NH3+])n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(CS(=O)(=O)NCc2ccccn2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(CCC(=O)NCc2ccccn2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCc1cc(-c2ccnc(NC(C)=O)n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc(NC(C)=O)n2)nc(N)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nnc(N)s2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(Oc2ccc(C[NH3+])cc2F)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cc(C(N)=O)cn2C)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(NC(C)=O)n2)s1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(C(C)(C)O)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccnc(NC(C)=O)n2)CC1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc3ccsc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc(NC(C)=O)n3)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc3nnsc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cncc(N)n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2nc(N)c3ccccc3n2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnc(NC(C)=O)[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2c[nH]c3cccnc23)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +COc1ccc(Oc2ccnc(NC(C)=O)n2)c(F)c1F; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cn(CCO)cn2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccnc(NC(C)=O)n2)c1; [None]; [None]; [0] +CC(=O)Nc1nccc([C@H]2CC[C@@](C)(O)CC2)n1; [None]; [None]; [0] +COc1ncccc1-c1ccnc(NC(C)=O)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N2CCC(c3nc4ccccc4[nH]3)CC2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cccc(S(=O)(=O)N(C)C)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(-c2cnnc(N(C)C)c2)n1; [None]; [None]; [0] +CC(=O)Nc1nccc(N2CC=C(c3c[nH]c4ccccc34)CC2)n1; [None]; [None]; [0] +COc1cc[nH]c1C=Cc1c[nH]c2ccccc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9908338785171509, 0.9582844972610474] +COc1cc(O)cc(C=Cc2[nH]ccc2OC)c1; [None]; [None]; [0] +Clc1cc(Nc2ncc3ccccc3n2)n2nccc2n1; ['Clc1ncc2ccccc2n1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1ncc2ccccc2n1']; [0.9999392032623291, 0.9971565008163452] +CC(=O)Nc1nccc(-c2cccc(NC(=O)C3CCNCC3)c2)n1; [None]; [None]; [0] +COc1cc(C=Cc2[nH]ccc2OC)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2cc(Cl)nc3ccnn23)c1; ['CS(=O)(=O)c1cccc(N)c1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9912950992584229] +COc1cc(C=Cc2[nH]ccc2OC)ccc1O; [None]; [None]; [0] +Clc1cc(Nc2cnc3cccnn23)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1', 'Clc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1cc(Cl)nc2ccnn12']; [0.9995127320289612, 0.9989581108093262] +COc1cc[nH]c1C=Cc1cc(O)cc(O)c1; [None]; [None]; [0] +COc1cc[nH]c1C=C1C(=O)Nc2ccccc21; [None]; [None]; [0] +Oc1cccc(Nc2cc(Cl)nc3ccnn23)c1; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; ['Oc1cccc(I)c1', 'Nc1cccc(O)c1']; [0.9994717836380005, 0.936015248298645] +N#Cc1ccc(O)c(Nc2cc(Cl)nc3ccnn23)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'Clc1cc(Cl)n2nccc2n1', 'N#Cc1ccc(O)c(Cl)c1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'N#Cc1ccc(O)c(N)c1', 'Nc1cc(Cl)nc2ccnn12']; [0.9999181628227234, 0.9994256496429443, 0.9990248680114746, 0.9966684579849243, 0.9893786311149597] +Clc1cc(Nc2ccc(N3CCOCC3)cc2)n2nccc2n1; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1cc(Cl)nc2ccnn12']; [0.9999992847442627, 0.9999622106552124, 0.9999172687530518] +Cc1ccc2ncn(Nc3cc(Cl)nc4ccnn34)c2c1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(Cl)nc3ccnn23)c1)C1CC1; [None]; [None]; [0] +Clc1cc(Nc2nc3ccccc3[nH]2)n2nccc2n1; [None]; [None]; [0] +CCOc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Clc1cc(Nc2nccc3ccccc23)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1', 'Clc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1cc(Cl)nc2ccnn12']; [0.9907358288764954, 0.9892457723617554] +O=C([O-])c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccc(C(=O)[O-])cc1']; [0.9421203136444092] +NC(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['NC(=O)c1ccc(Br)cc1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'NC(=O)c1ccc(N)cc1']; [0.9944121837615967, 0.9928171634674072] +COc1ncccc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9913010597229004] +COc1cc(Nc2cc(Cl)nc3ccnn23)cc(OC)c1OC; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3cc(Cl)nc4ccnn34)cn2)c1; [None]; [None]; [0] +OCCOc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; ['OCCOc1ccc(Br)cc1', 'Nc1ccc(OCCO)cc1']; [0.9979150295257568, 0.9961448907852173] +COc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(Cl)nc3ccnn23)cc1)N1CCOCC1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1']; [0.9999328851699829] +CC(=O)NCc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CC(=O)NCc1ccc(N)cc1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9809345602989197] +Clc1cc(Nc2cccc(C3CCNCC3)c2)n2nccc2n1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(Cl)nc3ccnn23)nc1)N1CCOCC1; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999980330467224, 0.9999966621398926] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3cc(Cl)nc4ccnn34)cc2)CC1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3cc(Cl)nc4ccnn34)cc2C1; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9979522824287415, 0.9972123503684998] +CN(C)S(=O)(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9999529719352722, 0.9967272281646729, 0.9947328567504883] +Clc1cc(NNc2ncccn2)n2nccc2n1; [None]; [None]; [0] +Oc1ccccc1CNc1cc(Cl)nc2ccnn12; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['NCc1ccccc1O', 'O=Cc1ccccc1O']; [0.991279661655426, 0.987923264503479] +C[C@H](O)COc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Cc1nc(C)c(Nc2cc(Cl)nc3ccnn23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2cc(Cl)nc3ccnn23)CC1; ['CS(=O)(=O)N1CCC(=O)CC1', 'CS(=O)(=O)N1CCC(N)CC1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9999673962593079, 0.9977434873580933] +CCNS(=O)(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(F)cc1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.987382173538208, 0.9190500974655151, 0.7866207361221313] +Nc1ncc(CNc2cc(Cl)nc3ccnn23)cn1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3cc(Cl)nc4ccnn34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Nc2cc(Cl)nc3ccnn23)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9999799728393555] +O=C(c1ccccc1)N1CC[C@H](Nc2cc(Cl)nc3ccnn23)C1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1Cl; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9966417551040649, 0.9965887665748596] +CCN(CC)C(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9997633695602417, 0.9739190340042114, 0.9324702024459839] +Clc1cc(Nc2ccn3nccc3n2)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1', 'Clc1ccn2nccc2n1']; ['Nc1ccn2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9965790510177612, 0.9961340427398682] +CNS(=O)(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Cc1c(Nc2cc(Cl)nc3ccnn23)cccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1cc(Nc2cc(Cl)nc3ccnn23)nc(N)n1; [None]; [None]; [0] +Clc1cc(Nc2ccccc2-n2cccn2)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccccc1-n1cccn1']; [0.9989739656448364] +Clc1cc(Nc2c[nH]c3ccccc23)n2nccc2n1; ['Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'OB(O)c1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.998211145401001, 0.9964948296546936, 0.9884408712387085, 0.8046053647994995] +FC(F)(F)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +COc1cc(OC)c(Nc2cc(Cl)nc3ccnn23)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9980079531669617, 0.9963338971138] +Clc1cc(Nc2ccc3c(c2)CCO3)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccc2c(c1)CCO2']; [0.9997854232788086] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1cc(Cl)nc2ccnn12; ['COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Clc1cc(Cl)n2nccc2n1']; [0.999969482421875] +Clc1cc(Nc2cc(-c3ccccc3)[nH]n2)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(-c2ccccc2)[nH]n1']; [0.9772590398788452] +CC(=O)Nc1cccc(Nc2cc(Cl)nc3ccnn23)c1; ['CC(=O)Nc1cccc(N)c1']; ['Clc1cc(Cl)n2nccc2n1']; [0.941144585609436] +COc1cc(Nc2cc(Cl)nc3ccnn23)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9995623826980591, 0.9917693138122559, 0.9821851253509521, 0.9620872139930725] +Clc1cc(Nc2ccc(Br)cc2)n2nccc2n1; [None]; [None]; [0] +COc1ccc(CNc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Fc1ccc2nc(CNc3cc(Cl)nc4ccnn34)[nH]c2c1F; [None]; [None]; [0] +Fc1ccc2[nH]c(CNc3cc(Cl)nc4ccnn34)nc2c1F; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.999758243560791, 0.986548900604248, 0.9651303291320801] +CNS(=O)(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)c(C)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3cc(Cl)nc4ccnn34)[nH]c2c1; [None]; [None]; [0] +Clc1cc(NCc2nc3ccccc3[nH]2)n2nccc2n1; ['ClCc1nc2ccccc2[nH]1', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'O=Cc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1']; [0.9903792142868042, 0.9698641896247864, 0.9645622968673706] +Nc1nc(Nc2cc(Cl)nc3ccnn23)cs1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2cc(Cl)nc3ccnn23)CC1; [None]; [None]; [0] +Clc1cc(Nc2cccc3c2OCO3)n2nccc2n1; [None]; [None]; [0] +Clc1cc(NCCCc2ccccc2)n2nccc2n1; [None]; [None]; [0] +Cc1ccc(Nc2cc(Cl)nc3ccnn23)c(=O)[nH]1; ['Cc1ccc(I)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9859333038330078, 0.8463683128356934] +Clc1cc(Nc2scc3c2OCCO3)n2nccc2n1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2cc(Cl)nc3ccnn23)c1; ['COc1cccc(C(=O)NN)c1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9868017435073853] +Clc1cccc(-n2ccc(Nc3cc(Cl)nc4ccnn34)n2)c1; [None]; [None]; [0] +CC[C@@H](CO)Nc1cc(Cl)nc2ccnn12; ['CC[C@H](N)CO']; ['Clc1cc(Cl)n2nccc2n1']; [0.9971694350242615] +OC[C@H](Cc1ccccc1)Nc1cc(Cl)nc2ccnn12; ['Clc1cc(Cl)n2nccc2n1']; ['N[C@H](CO)Cc1ccccc1']; [0.9995753765106201] +CCN1CCN(Cc2ccc(Nc3cc(Cl)nc4ccnn34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9999914169311523, 0.9984292984008789, 0.9956075549125671] +O=C1CCc2cc(Nc3cc(Cl)nc4ccnn34)ccc2N1; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12']; ['Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9998548030853271, 0.9998350143432617, 0.9998185038566589] +Clc1cc(Nc2ncc(Br)cn2)n2nccc2n1; ['Clc1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'CS(=O)(=O)c1ncc(Br)cn1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1ncc(Br)cn1']; [0.9996155500411987, 0.9993090033531189, 0.9986410140991211, 0.9981845617294312] +CC(C)(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Clc1cc(Nc2cnc3ccccc3c2)n2nccc2n1; [None]; [None]; [0] +Cc1cc(Nc2cc(Cl)nc3ccnn23)nc(N)n1; [None]; [None]; [0] +Clc1ccc(Nc2cc(Cl)nc3ccnn23)c(Cl)c1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1ccc(Cl)cc1Cl']; [0.9994015693664551] +CC(C)(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cn1; [None]; [None]; [0] +Clc1cc(Nc2ncc3cccn3n2)n2nccc2n1; ['Clc1ncc2cccn2n1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9999573826789856] +C[C@H]1CCCN1C(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +COc1cc(Nc2cc(Cl)nc3ccnn23)ccc1N1CCOCC1; ['COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.999994158744812, 0.9999760389328003] +Clc1cc(Nc2cc3ccccn3n2)n2nccc2n1; ['Clc1cc2ccccn2n1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc2ccccn2n1']; [0.999843418598175, 0.9964814782142639] +Cn1cc(Nc2cc(Cl)nc3ccnn23)c(C(F)(F)F)n1; ['Cn1cc(I)c(C(F)(F)F)n1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9999814033508301, 0.9999372959136963] +COc1ccc2cccc(Nc3cc(Cl)nc4ccnn34)c2c1; ['COc1ccc2cccc(N)c2c1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9961569905281067] +CSc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Clc1cc(Nc2cc3ccccc3s2)n2nccc2n1; [None]; [None]; [0] +Clc1cc(NCCCn2cncn2)n2nccc2n1; [None]; [None]; [0] +Fc1ccc(Nc2cc(Cl)nc3ccnn23)c(Cl)c1; [None]; [None]; [0] +CC1(C)Cc2cc(Nc3cc(Cl)nc4ccnn34)ccc2O1; [None]; [None]; [0] +Clc1cnc(Nc2cc(Cl)nc3ccnn23)nc1; ['Clc1cnc(I)nc1', 'CS(=O)c1ncc(Cl)cn1', 'Clc1cnc(Cl)nc1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Nc1ncc(Cl)cn1']; [0.9999583959579468, 0.999746561050415, 0.9996405839920044, 0.9994816780090332, 0.9963547587394714] +Cc1csc2c(Nc3cc(Cl)nc4ccnn34)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1cc(Cl)nc2ccnn12']; [0.9988555908203125] +Oc1ccc2cccc(Nc3cc(Cl)nc4ccnn34)c2c1; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Br)c2c1', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Cl)c2c1']; [0.9997179508209229, 0.9991980791091919, 0.9701654314994812, 0.9385839700698853] +CNC(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CNC(=O)c1ccc(N)cc1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9766351580619812] +OCCn1cc(Nc2cc(Cl)nc3ccnn23)cn1; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['OCCn1cc(I)cn1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.999983549118042, 0.9980477094650269, 0.989931046962738] +COc1ccc(Nc2cc(Cl)nc3ccnn23)cc1OC; [None]; [None]; [0] +CCc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2cc(Cl)nc3ccnn23)CC1; ['CO[C@H]1CC[C@H](N)CC1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9975473284721375] +CCNC(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)nc1; ['CCNC(=O)c1ccc(Cl)nc1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9806288480758667] +CCNC(=O)N1CCC(Nc2cc(Cl)nc3ccnn23)CC1; ['CCNC(=O)N1CCC(N)CC1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9947601556777954] +Nc1cc(Nc2cc(Cl)nc3ccnn23)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9787371754646301] +O=C(Nc1cn[nH]c1)c1cccc(Nc2cc(Cl)nc3ccnn23)c1; [None]; [None]; [0] +COc1cc(Nc2cc(Cl)nc3ccnn23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +Clc1cc(Nc2ccc3cn[nH]c3c2)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1', 'Brc1ccc2cn[nH]c2c1']; ['Nc1ccc2cn[nH]c2c1', 'Nc1cc(Cl)nc2ccnn12']; [0.9999176263809204, 0.9990003108978271] +COc1ccc2c(c1)c(Nc1cc(Cl)nc3ccnn13)cn2C; [None]; [None]; [0] +CCn1cc(Nc2cc(Cl)nc3ccnn23)cn1; ['CCn1cc(I)cn1', 'CCn1cc(N)cn1', 'CCn1cc(Br)cn1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.9998358488082886, 0.9758404493331909, 0.9003323316574097] +CNC(=O)c1ccc(OC)c(Nc2cc(Cl)nc3ccnn23)c1; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(N)c1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9988251328468323, 0.9977201223373413] +COc1cc(F)c(Nc2cc(Cl)nc3ccnn23)cc1OC; [None]; [None]; [0] +COc1cc(Nc2cc(Cl)nc3ccnn23)ccc1Cl; [None]; [None]; [0] +Clc1cc(Nc2cc3ccccc3o2)n2nccc2n1; [None]; [None]; [0] +Clc1cc(Nc2cc(-c3cccnc3)ccn2)n2nccc2n1; ['Clc1cc(Cl)n2nccc2n1']; ['Nc1cc(-c2cccnc2)ccn1']; [0.9991130232810974] +Clc1cc(Nc2ncc3sccc3n2)n2nccc2n1; ['Clc1ncc2sccc2n1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9999481439590454] +CC(C)c1nn(C)cc1Nc1cc(Cl)nc2ccnn12; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12']; [0.9999982118606567, 0.9999950528144836] +COc1ccc2nc(Nc3cc(Cl)nc4ccnn34)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1cc(Cl)nc2ccnn12']; [0.9695931673049927] +COc1ccc2oc(Nc3cc(Cl)nc4ccnn34)cc2c1; [None]; [None]; [0] +COc1ccc(OC)c(CNc2cc(Cl)nc3ccnn23)c1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(Cl)nc3ccnn23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2cc(Cl)nc3ccnn23)c1; [None]; [None]; [0] +CCc1cccc(Nc2cc(Cl)nc3ccnn23)n1; ['CCc1cccc(Br)n1', 'CCc1cccc(N)n1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9990881681442261, 0.982621431350708] +COc1cc(Nc2cc(Cl)nc3ccnn23)cc(OC)c1; [None]; [None]; [0] +Cn1cc(Nc2cc(Cl)nc3ccnn23)c2ccccc21; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Clc1cc(Nc2ncn3c2CCCC3)n2nccc2n1; [None]; [None]; [0] +Cc1cc(Nc2cc(Cl)nc3ccnn23)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3cc(Cl)nc4ccnn34)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; [0.999998927116394, 0.9994737505912781, 0.9993536472320557] +Cn1cc(Br)cc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3cc(Cl)nc4ccnn34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2cc(Cl)nc3ccnn23)c1; ['Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12']; ['Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.99683678150177, 0.9952415227890015, 0.9472224712371826] +O=C(NNc1cc(Cl)nc2ccnn12)c1cccc(OC(F)(F)F)c1; ['Clc1cc(Cl)n2nccc2n1']; ['NNC(=O)c1cccc(OC(F)(F)F)c1']; [0.9997555613517761] +OCCc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1', 'Nc1cc(Cl)nc2ccnn12']; ['OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1']; [0.9999703764915466, 0.9999102354049683, 0.9949018955230713, 0.9929349422454834] +CC(C)(O)c1ccc2cc(Nc3cc(Cl)nc4ccnn34)[nH]c2c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3cc(Cl)nc4ccnn34)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1cc(Cl)nc2ccnn12; ['COc1cc(S(C)(=O)=O)ccc1N']; ['Clc1cc(Cl)n2nccc2n1']; [0.9990811944007874] +Cc1cc(N2CCOCC2)ccc1Nc1cc(Cl)nc2ccnn12; ['Cc1cc(N2CCOCC2)ccc1N']; ['Clc1cc(Cl)n2nccc2n1']; [0.9999992251396179] +CNC(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9933090806007385, 0.9236017465591431] +Cn1ncc2cc(Nc3cc(Cl)nc4ccnn34)ccc21; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)cc1; ['CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1']; ['Nc1cc(Cl)nc2ccnn12', 'Clc1cc(Cl)n2nccc2n1']; [0.9913287162780762, 0.9167076945304871] +CCNC(=O)Cc1ccc(Nc2cc(Cl)nc3ccnn23)cc1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3cc(Cl)nc4ccnn34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(Cl)nc3ccnn23)cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2cc(Cl)nc3ccnn23)c1; ['CNC(=O)c1ccc(C)c(N)c1']; ['Clc1cc(Cl)n2nccc2n1']; [0.9236432909965515] +CN(C)C(=O)c1ccc(Nc2cc(Cl)nc3ccnn23)nc1; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1']; ['Nc1cc(Cl)nc2ccnn12', 'Nc1cc(Cl)nc2ccnn12']; [0.9996242523193359, 0.999420166015625] +CNC(=O)c1ccccc1-c1cnn2c(N)ccnc12; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1ccnc2c(Br)cnn12']; [0.9999829530715942] +Cn1nc(Nc2cc(Cl)nc3ccnn23)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2cc(Cl)nc3ccnn23)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cnn3c(N)ccnc23)[nH]1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnn2c(N)ccnc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999730587005615, 0.9999005794525146, 0.9996825456619263, 0.9983757734298706] +CCOc1ccccc1-c1cnn2c(N)ccnc12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999997615814209, 0.9999979734420776, 0.999997079372406, 0.9999898672103882, 0.9999318718910217, 0.9997234344482422] +Nc1ccnc2c(Cc3cc(F)cc(F)c3)cnn12; ['Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(CCl)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [0.9999955892562866, 0.9999740123748779, 0.9998347759246826, 0.9994388222694397] +C[C@H](CS(C)(=O)=O)Nc1cc(Cl)nc2ccnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccccc3OC(F)(F)F)cnn12; ['Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [1.0, 1.0, 1.0, 0.999999463558197, 0.9999793767929077] +CP(C)(=O)c1ccccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +COC(C)(C)CCc1cnn2c(N)ccnc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnn2c(N)ccnc12; ['NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.999812662601471, 0.9984563589096069] +Nc1ccnc2c(-c3ccccc3C(=O)[O-])cnn12; [None]; [None]; [0] +CCn1cc(-c2cnn3c(N)ccnc23)cn1; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(C(F)(F)F)c3)cnn12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnn4c(N)ccnc34)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ccnc2c(Br)cnn12']; [0.8133761882781982] +Nc1ccnc2c(-c3cnn(Cc4ccccc4)c3)cnn12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1ccnc2c(Cl)cnn12']; [0.9999998807907104, 0.9999996423721313, 0.9999990463256836, 0.9999964237213135, 0.9999924898147583] +Nc1ccnc2c(-c3cnc(-c4ccccc4)[nH]3)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.9875659346580505, 0.9867751598358154] +COc1cnc(-c2cnn3c(N)ccnc23)nc1; ['COc1cncnc1']; ['Nc1ccnc2c(Br)cnn12']; [0.9900602698326111] +Nc1ccnc2c(-c3cnn(CCO)c3)cnn12; ['Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['OCCn1cc(B(O)O)cn1', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OCCn1cc(B(O)O)cn1', 'Nc1ccnc2c(Cl)cnn12', 'OCCn1cc(Br)cn1']; [0.999998927116394, 0.9999988079071045, 0.9999969005584717, 0.9999816417694092, 0.9999420642852783, 0.9919499158859253] +Nc1ccnc2c(-c3ccnc4ccccc34)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cc(Cl)ccc3Cl)cnn12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [1.0, 1.0, 0.9999867677688599, 0.9999797344207764, 0.9968947172164917] +CC(C)C(=O)COc1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(NC(=O)c4ccccc4)c3)cnn12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999997615814209, 0.9999972581863403, 0.9999971985816956] +Cc1ccc(-c2cnn3c(N)ccnc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9998571872711182, 0.9920438528060913, 0.9859336614608765] +Nc1ccnc2c(-c3cnc4ccccn34)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.9998650550842285, 0.9998517036437988, 0.9998397827148438] +Cc1nc2ccccn2c1-c1cnn2c(N)ccnc12; ['Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999963641166687, 0.9999808669090271, 0.9974957704544067] +CNc1nc(C)c(-c2cnn3c(N)ccnc23)s1; ['CNc1nc(C)cs1']; ['Nc1ccnc2c(Br)cnn12']; [0.995901346206665] +Nc1ccnc2c(-c3cnc4cccnn34)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['c1cnn2ccnc2c1']; [0.9993183612823486] +Cc1nc(N)sc1-c1cnn2c(N)ccnc12; ['Cc1csc(N)n1']; ['Nc1ccnc2c(Br)cnn12']; [0.9886554479598999] +Nc1ccnc2c(-n3ncc4cccc(F)c4c3=O)cnn12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnn3c(N)ccnc23)cs1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnn3c(N)ccnc23)s1; [None]; [None]; [0] +Nc1ccnc2c(-c3c(Cl)cccc3Cl)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [0.9999957084655762, 0.9999803304672241, 0.9992331266403198, 0.9944733381271362, 0.9911311268806458] +Cc1ccc(Cl)c(-c2cnn3c(N)ccnc23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999997019767761, 0.9999994039535522, 0.9999839663505554, 0.9999510049819946, 0.997381329536438] +Nc1ccnc2c(NCc3cccnc3)cnn12; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999731779098511, 0.9999522566795349, 0.9999402165412903] +Nc1ccnc2c(-c3ccc4ccccc4c3)cnn12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999997615814209, 0.9999996423721313, 0.9999992847442627, 0.9999992251396179, 0.9999701976776123] +Nc1nccc(-c2cnn3c(N)ccnc23)n1; ['Nc1ccnc2c(Br)cnn12']; ['Nc1nccc(Cl)n1']; [0.9790368676185608] +Nc1ccnc2c(Nc3cccnc3)cnn12; ['Nc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9998160600662231, 0.9992555379867554, 0.9984549283981323] +Nc1ccnc2c(-c3cccc(Cn4cncn4)c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cnn4ncccc34)cnn12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999924898147583, 0.9999862909317017, 0.9022641181945801] +Nc1ccnc2c(-c3cccc(Br)c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(NCCc3c[nH]cn3)cnn12; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9942089319229126, 0.9809274673461914, 0.9762424230575562] +Cc1c(-c2cnn3c(N)ccnc23)sc(=O)n1C; [None]; [None]; [0] +Nc1ccnc2c(-c3c[nH]nc3C(F)(F)F)cnn12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999991655349731, 0.9999924302101135] +Nc1ccnc2c(NCCc3ccccc3)cnn12; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9992632865905762, 0.9973984956741333, 0.9971967935562134] +Nc1ccnc2c(NC(=O)c3cccs3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cncc4ccccc34)cnn12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Brc1cncc2ccccc12']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Nc1ccnc2c(Br)cnn12']; [0.9999984502792358, 0.9999978542327881, 0.9999191761016846, 0.9995578527450562, 0.9981048107147217, 0.9954841136932373] +Nc1[nH]nc2cc(-c3cnn4c(N)ccnc34)ccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnn4c(N)ccnc34)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 0.9996041059494019] +Nc1ccnc2c(-n3cnc4ccccc43)cnn12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(CC(=O)[O-])c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(NCc3ccc(Cl)cc3)cnn12; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999015927314758, 0.999714732170105, 0.9981949329376221] +Nc1ccnc2c(-c3ccc(-c4cn[nH]c4)cc3)cnn12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Nc1ccnc2ccnn12']; [1.0, 0.9999998807907104, 0.9999996423721313, 0.9999735355377197, 0.9988552331924438] +Cn1ncc2cc(-c3cnn4c(N)ccnc34)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999997615814209, 0.9999997615814209, 0.9999723434448242, 0.9927347898483276] +Nc1ccnc2c(Nc3ccncc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9999944567680359, 0.9999674558639526, 0.9999576210975647] +Nc1ccnc2c(-c3cccc(O)c3)cnn12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Nc1ccnc2c(I)cnn12', 'Oc1cccc(Br)c1']; [0.9999958872795105, 0.9999874830245972, 0.9999803304672241, 0.9999765157699585, 0.984444260597229] +CN1c2ccc(-c3cnn4c(N)ccnc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ccnc2c(NCc3ccccc3F)cnn12; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999920129776001, 0.9999846816062927, 0.9999361038208008] +Nc1ccnc2c(-c3cccc(CO)c3)cnn12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'Nc1ccnc2c(Cl)cnn12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999995231628418, 0.9999992251396179, 0.9999935030937195, 0.9999904632568359, 0.9999884963035583, 0.9996129274368286, 0.9922096133232117] +CC(C)n1cc(-c2cnn3c(N)ccnc23)nn1; [None]; [None]; [0] +CCCn1cnc(-c2cnn3c(N)ccnc23)n1; [None]; [None]; [0] +COc1cc(-c2cnn3c(N)ccnc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1ccnc2c(-c3csc4ncncc34)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cc4ccccc4[nH]3)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['OB(O)c1cc2ccccc2[nH]1']; [0.9999944567680359] +Nc1ccnc2c(CCc3c[nH]nn3)cnn12; [None]; [None]; [0] +CSc1nc(-c2cnn3c(N)ccnc23)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ncncc1-c1cnn2c(N)ccnc12; ['Nc1ccnc2c(Br)cnn12']; ['Nc1ncncc1Br']; [0.9993578791618347] +CCC(=O)Nc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999997615814209, 0.9999997019767761, 0.9999974966049194] +Nc1nc(-c2cnn3c(N)ccnc23)cs1; [None]; [None]; [0] +Nc1ccnc2c(Oc3ccccn3)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['Oc1ccccn1']; [0.9991106986999512] +Nc1ccnc2c(-c3ccc(F)cc3C(F)(F)F)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccnc2c(Br)cnn12']; [0.9999958276748657, 0.9999942779541016, 0.999591588973999, 0.9988293051719666] +Nc1ccnc2c(NC(=O)c3c(Cl)cccc3Cl)cnn12; [None]; [None]; [0] +NC(=O)CCCc1cnn2c(N)ccnc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnn3c(N)ccnc23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999997615814209, 0.9999988079071045, 0.9999967813491821, 0.9999936819076538, 0.9999250769615173, 0.9941925406455994] +CCNc1nc2ccc(-c3cnn4c(N)ccnc34)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cnn3c(N)ccnc23)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9995744228363037, 0.9982835054397583] +CC(C)(COc1cnn2c(N)ccnc12)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2cnn3c(N)ccnc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cnn2c(N)ccnc12; [None]; [None]; [0] +CCCn1cc(-c2cnn3c(N)ccnc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999998211860657, 0.9999997019767761, 0.9999988079071045, 0.9999948740005493, 0.9999913573265076, 0.999548077583313] +COc1ccc(-c2cnn3c(N)ccnc23)cc1Cl; [None]; [None]; [0] +Nc1ccnc2c(-c3cnn4ccccc34)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc4c3C(=O)CC4)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9822430610656738, 0.9695515632629395] +Nc1ccnc2c(-c3cc[nH]c(=O)c3)cnn12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Br)cc[nH]1']; [0.9999994039535522, 0.9999991655349731, 0.9988824129104614, 0.9253181219100952] +C[S@](=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999998211860657, 0.9999980330467224, 0.9999958276748657] +CCNS(=O)(=O)c1ccccc1-c1cnn2c(N)ccnc12; ['CCNS(=O)(=O)c1ccccc1Br']; ['Nc1ccnc2c(Br)cnn12']; [0.9996854662895203] +C[C@@H](Oc1cnn2c(N)ccnc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999687671661377, 0.9994913339614868] +CC(C)(N)c1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +CCN(CC)c1cnn2c(N)ccnc12; ['CCNCC', 'CCNCC', 'CCNCC']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9997208714485168, 0.999295711517334, 0.9991804957389832] +COc1cc(CCc2cnn3c(N)ccnc23)cc(OC)c1; [None]; [None]; [0] +Nc1ccnc2c(Nc3cnc4ccccc4c3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9999994039535522, 0.9999825358390808, 0.9999322891235352] +COc1ccncc1Nc1cnn2c(N)ccnc12; ['COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1N']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999958276748657, 0.9999911189079285, 0.9999873638153076] +CC(C)(C)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.999998927116394, 0.9999983310699463, 0.9999524354934692, 0.9978479146957397] +CC(C)Oc1cncc(-c2cnn3c(N)ccnc23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999992847442627, 0.9999989867210388, 0.9999974966049194, 0.9999961256980896, 0.9999631643295288, 0.9682755470275879] +Nc1ccnc2c(-c3cc4c(=O)[nH]ccc4o3)cnn12; [None]; [None]; [0] +COc1cccc(F)c1-c1cnn2c(N)ccnc12; ['COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [1.0, 1.0, 1.0, 1.0, 0.9999978542327881, 0.999996542930603, 0.9999874234199524] +Nc1ccnc2c(Nc3cnccc3-c3ccccc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999780654907227, 0.9998619556427002, 0.9998430013656616] +Nc1ccnc2c(-c3cnc4[nH]ccc4c3)cnn12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ccnc2c(Cl)cnn12', 'Brc1cnc2[nH]ccc2c1']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999998807907104, 0.9998610615730286, 0.9990543127059937] +Nc1ccnc2c(-c3c[nH]c4cnccc34)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9992895126342773, 0.9981687068939209] +CNC(=O)c1c(F)cccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)cnn12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.9999995231628418, 0.9999558925628662, 0.99196857213974] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999997615814209, 0.9999997019767761, 0.9999977946281433, 0.9999721050262451, 0.9993494153022766] +Nc1ccnc2c(-c3ccc(N4CCOCC4)cc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccnc2c(I)cnn12']; [1.0, 1.0, 1.0, 1.0] +CN(c1cnn2c(N)ccnc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2cnn3c(N)ccnc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC1(c2cnn3c(N)ccnc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +C[C@H](Nc1cnn2c(N)ccnc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ccnc2c(-n3ccc(CO)n3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9999151229858398, 0.9997895359992981] +C[C@H](Nc1cnn2c(N)ccnc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9938349723815918, 0.9674299955368042, 0.7765201330184937] +C[C@@H](Nc1cnn2c(N)ccnc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9938349723815918, 0.9674299955368042, 0.7765201330184937] +Nc1ccnc2c(-c3c(F)cccc3Cl)cnn12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(I)cnn12', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.9999459385871887] +Nc1ccnc2c(-n3ncc4ccccc43)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['c1ccc2[nH]ncc2c1']; [0.9979147911071777] +Nc1ccnc2c(-n3cnc(CCO)c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3nc4ccc(O)cc4[nH]3)cnn12; [None]; [None]; [0] +COc1ccc(-c2cnn3c(N)ccnc23)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999969005584717, 0.9999946355819702, 0.9999697804450989, 0.9999218583106995, 0.9995966553688049, 0.9984408617019653] +Nc1ccnc2c(-n3ncc4c(O)cccc43)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(-n4cncn4)cc3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C(=O)c4ccccc4)cc3)cnn12; [None]; [None]; [0] +CSc1nc(C)c(-c2cnn3c(N)ccnc23)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +Nc1ccnc2c(-c3nncn3C3CC3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(Cc3nnc4ccc(-c5ccccc5)nn34)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccn(CC[NH3+])n3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(CCC(=O)NCc3ccccn3)cnn12; [None]; [None]; [0] +CCc1cc(-c2cnn3c(N)ccnc23)nc(N)n1; ['CCc1cc(Cl)nc(N)n1']; ['Nc1ccnc2c(Br)cnn12']; [0.9897418022155762] +Nc1ccnc2c(CS(=O)(=O)NCc3ccccn3)cnn12; [None]; [None]; [0] +CCCCc1cc(-c2cnn3c(N)ccnc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cnn3c(N)ccnc23)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +Nc1ccnc2c(-c3nc4ccccc4s3)cnn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn3c(N)ccnc23)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnn3c(N)ccnc23)n1; [None]; [None]; [0] +Nc1ccnc2c(-c3cn(Cc4ccccc4)nn3)cnn12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc4ccsc34)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9998865127563477, 0.9998127222061157] +CC1(C)Oc2ccc(-c3cnn4c(N)ccnc34)nc2NC1=O; [None]; [None]; [0] +Nc1ccnc2c(Oc3ccc(C[NH3+])cc3F)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc4nnsc34)cnn12; [None]; [None]; [0] +Nc1cncc(-c2cnn3c(N)ccnc23)n1; [None]; [None]; [0] +Nc1nc(-c2cnn3c(N)ccnc23)nc2ccccc12; [None]; [None]; [0] +Nc1ccnc2c(-c3ncc4ccccc4n3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3c[nH]c4cccnc34)cnn12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12']; [0.9999974370002747] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnn4c(N)ccnc34)c2)cc1; [None]; [None]; [0] +Nc1ccnc2c(-c3ncc4cc[nH]c4n3)cnn12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnn2c(N)ccnc12; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999997615814209, 0.9999991655349731, 0.9999990463256836, 0.9999988079071045, 0.99998939037323, 0.9997508525848389] +COc1ccc(Oc2cnn3c(N)ccnc23)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999679327011108, 0.9998265504837036, 0.9990959763526917] +CC(=O)Nc1ncc(-c2cnn3c(N)ccnc23)[nH]1; [None]; [None]; [0] +COc1ncccc1-c1cnn2c(N)ccnc12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999992251396179, 0.9999494552612305, 0.9999485015869141, 0.9988933801651001] +COc1ccc(OC)c(-c2cnn3c(N)ccnc23)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999974966049194, 0.9999903440475464, 0.9999769926071167, 0.9999501705169678, 0.9990458488464355, 0.9981065392494202] +CN(C)S(=O)(=O)c1cccc(-c2cnn3c(N)ccnc23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 0.9999997615814209, 0.9999989867210388, 0.9999748468399048, 0.9999607801437378, 0.9994674921035767, 0.9991008043289185] +Nc1ccnc2c(-c3cn(CCO)cn3)cnn12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +Nc1ccnc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cnn12; [None]; [None]; [0] +CCOc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Br)cc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2ccnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999995231628418, 0.999999463558197, 0.999964714050293, 0.9999125003814697, 0.9995535612106323] +CC(=O)N(C)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2ccnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.9997168779373169, 0.9961478114128113, 0.9779185056686401] +Nc1ccnc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(NC(=O)C4CCNCC4)c3)cnn12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnn3c(N)ccnc23)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 1.0, 0.9999977350234985, 0.999995231628418, 0.9999054670333862] +CN(C)c1cc(-c2cnn3c(N)ccnc23)cnn1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +COc1ccc(-c2cnn3c(N)ccnc23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 0.9999997615814209, 0.999999463558197, 0.9999986886978149, 0.9999597072601318] +Cc1ccc2ncn(-c3cnn4c(N)ccnc34)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2[nH]cnc2c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9995892643928528, 0.9977196455001831, 0.997566282749176] +Nc1ccnc2c(-c3nccc4ccccc34)cnn12; ['Brc1nccc2ccccc12']; ['Nc1ccnc2c(Br)cnn12']; [0.9977801442146301] +COc1cc(-c2cnn3c(N)ccnc23)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999996423721313, 0.999998927116394, 0.999997615814209, 0.9999966621398926, 0.9998987913131714, 0.9981591701507568] +Nc1ccnc2c(-c3cccc(NC(=O)C4CC4)c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C(=O)[O-])cc3)cnn12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnn3c(N)ccnc23)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999974966049194, 0.9999775290489197, 0.924527645111084] +Nc1ccnc2c(-c3nc4ccccc4[nH]3)cnn12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [1.0, 1.0, 0.9999997019767761, 0.9999997019767761, 0.999546468257904, 0.9993890523910522] +Nc1ccnc2c(Nc3ncccn3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9907574653625488, 0.95730060338974] +Nc1ccnc2c(-c3cccc(C4CCNCC4)c3)cnn12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999997019767761, 0.9999996423721313, 0.9999989867210388, 0.9999974966049194] +Nc1ccnc2c(-c3ccc(C(=O)Nc4ccccc4)cc3)cnn12; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 1.0, 0.9999996423721313, 0.9999995231628418] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnn4c(N)ccnc34)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnn4c(N)ccnc34)cn2)c1; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(OCCO)cc3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C(=O)N4CCOCC4)cc3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C(=O)N4CCOCC4)cn3)cnn12; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc4c(c3)CS(=O)(=O)C4)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(C(F)(F)F)cc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc2c(Cl)cnn12', 'FC(F)(F)c1ccc(Br)cc1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 1.0, 0.9999947547912598, 0.9999269247055054] +C[C@H](O)COc1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999980926513672, 0.9999976754188538, 0.999969482421875, 0.9991496205329895] +CC(C)c1cc(-c2cnn3c(N)ccnc23)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1ccnc2c(Br)cnn12']; [0.9996997714042664] +CN(C)S(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2ccnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 0.9999992847442627, 0.9999992251396179, 0.9999875426292419, 0.999944269657135, 0.9990377426147461] +CCNS(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999996423721313, 0.9999994039535522, 0.9999104142189026, 0.9994865655899048] +CS(=O)(=O)N1CCC(c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +Nc1ccnc2c(Cc3ccccc3O)cnn12; [None]; [None]; [0] +Nc1ncc(Cc2cnn3c(N)ccnc23)cn1; [None]; [None]; [0] +CCCOc1ccc(-c2cnn3c(N)ccnc23)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ccnc2c(Br)cnn12']; [0.9996490478515625] +Nc1ccnc2c(-c3ccc(Br)cc3)cnn12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Brc1ccc(Br)cc1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccnc2ccnn12']; [1.0, 0.9999997019767761, 0.9999995231628418, 0.9999891519546509, 0.9999607801437378, 0.9957670569419861] +COc1ccc(Cc2cnn3c(N)ccnc23)cc1; ['COc1ccc(CCl)cc1', 'COc1ccc(C[Zn]Cl)cc1', 'COc1ccc(CCl)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [0.9998381733894348, 0.9997215270996094, 0.9804258346557617] +Nc1ccnc2c(-c3ccn4nccc4n3)cnn12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3c(N)ccnc23)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999989867210388, 0.9999850988388062, 0.999982476234436] +CC(=O)N1CCCN(c2cccc(-c3cnn4c(N)ccnc34)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c([C@H]3CCN(C(=O)c4ccccc4)C3)cnn12; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999996423721313, 0.9999996423721313, 0.9999994039535522, 0.9999808073043823, 0.9996480941772461] +Nc1ccnc2c(-c3ccccc3-n3cccn3)cnn12; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [1.0, 1.0, 0.9999953508377075, 0.9999926090240479, 0.9990015029907227] +CN(C)c1ccc(-c2cnn3c(N)ccnc23)cc1Cl; [None]; [None]; [0] +Nc1ccnc2c(-c3c[nH]c4ccccc34)cnn12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999942779541016, 0.9958339929580688, 0.9894190430641174] +COc1ccc(Cl)cc1-c1cnn2c(N)ccnc12; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999997615814209, 0.9999988675117493, 0.9999983906745911, 0.9999974966049194, 0.9999426603317261, 0.9999056458473206] +Nc1ccnc2c(-c3ccc4c(c3)CCO4)cnn12; ['Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Brc1ccc2c(c1)CCO2']; ['OB(O)c1ccc2c(c1)CCO2', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 0.9999998211860657, 0.9999866485595703, 0.9999021291732788] +Nc1ccnc2c(-c3cccc4c3OCO4)cnn12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9999998211860657, 0.9999997615814209, 0.9999799728393555, 0.9999021291732788, 0.9992135763168335] +Nc1ccnc2c(-c3scc4c3OCCO4)cnn12; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12']; [0.9999998211860657] +COc1cc(-c2cnn3c(N)ccnc23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999995827674866, 0.9999995231628418, 0.9999887943267822, 0.9999784231185913, 0.9978353977203369] +COc1cc(OC)c(-c2cnn3c(N)ccnc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnn4c(N)ccnc34)[nH]c2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cnc4ccccc4c3)cnn12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Brc1cnc2ccccc2c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ccnc2c(Br)cnn12']; [0.9999992251396179, 0.9999982118606567, 0.9999954104423523, 0.9999790191650391, 0.9998276829719543, 0.9963090419769287] +Nc1ccnc2c(-c3cc(-c4ccccc4)[nH]n3)cnn12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999997615814209, 0.999998927116394] +CC(C)(C)c1ccc(-c2cnn3c(N)ccnc23)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999979734420776, 0.9999971389770508, 0.999663770198822, 0.9983327388763428] +Nc1ccnc2c(Cc3nc4ccc(F)c(F)c4[nH]3)cnn12; [None]; [None]; [0] +Cc1ccc(-c2cnn3c(N)ccnc23)c(=O)[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Nc1ccnc2c(CCCc3ccccc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Br[Zn]CCCc1ccccc1']; ['OB(O)CCCc1ccccc1', 'Nc1ccnc2c(Br)cnn12']; [0.9995505809783936, 0.9992052316665649] +Nc1ccnc2c(-c3cc4ccccc4s3)cnn12; ['CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1cc2ccccc2s1']; [0.9999997019767761, 0.9999996423721313] +CSc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999998807907104, 0.9999998211860657, 0.9999991655349731, 0.9999983906745911, 0.999794065952301, 0.9985507726669312] +Nc1ccnc2c(-c3ccn(-c4cccc(Cl)c4)n3)cnn12; [None]; [None]; [0] +Cc1cc(-c2cnn3c(N)ccnc23)nc(N)n1; [None]; [None]; [0] +Nc1ccnc2c(Cc3nc4c(F)c(F)ccc4[nH]3)cnn12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnn4c(N)ccnc34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999997615814209, 0.9999995231628418, 0.999983549118042] +Nc1ccnc2c(-c3ncc(Br)cn3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(Cc3nc4ccccc4[nH]3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(F)cc3Cl)cnn12; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [1.0, 1.0, 0.9999992847442627, 0.9999924898147583, 0.9996764659881592] +Nc1ccnc2c(-c3ccc4c(c3)CCC(=O)N4)cnn12; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999994039535522, 0.9999938011169434, 0.9986106157302856] +COc1ccc(-c2cnn3c(N)ccnc23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 0.9999997615814209, 0.9999985694885254, 0.9999970197677612, 0.9999687075614929, 0.9998455047607422] +CCc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.999999463558197, 0.9999984502792358, 0.999991774559021, 0.9999711513519287, 0.9987908601760864, 0.9919155836105347] +Nc1ccnc2c(-c3ccc(Cl)cc3Cl)cnn12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl']; [1.0, 1.0, 0.9999986290931702, 0.9999963641166687, 0.9996163845062256] +CC[C@@H](CO)c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c([C@H](CO)Cc3ccccc3)cnn12; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +Cn1cc(-c2cnn3c(N)ccnc23)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 0.9999998211860657] +Nc1ccnc2c(-c3cc4ccccn4n3)cnn12; [None]; [None]; [0] +COc1cc(-c2cnn3c(N)ccnc23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 1.0, 0.9999974966049194] +Nc1ccnc2c(CCCn3cncn3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ncc(Cl)cn3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ncc4cccn4n3)cnn12; [None]; [None]; [0] +COc1ccc2cccc(-c3cnn4c(N)ccnc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cnn3c(N)ccnc23)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 1.0, 0.9999995231628418, 0.9999989867210388, 0.9999709129333496] +Nc1ccnc2c(-c3cccc4ccc(O)cc34)cnn12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12']; [1.0] +Cc1csc2c(-c3cnn4c(N)ccnc34)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [1.0, 1.0, 0.9999997615814209, 0.999999463558197] +COc1cc(-c2cnn3c(N)ccnc23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999997615814209, 0.9999992251396179, 0.9999492168426514, 0.9996368288993835] +CCNC(=O)N1CCC(c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +Nc1cc(-c2cnn3c(N)ccnc23)c2cc[nH]c2n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnn4c(N)ccnc34)ccc2O1; [None]; [None]; [0] +COc1cc(-c2cnn3c(N)ccnc23)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9998131990432739, 0.996002733707428, 0.9914611577987671, 0.9780975580215454, 0.9491605162620544] +COc1ccc(OC)c(Cc2cnn3c(N)ccnc23)c1; ['COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(C[Zn]Cl)c1', 'COc1ccc(OC)c(CCl)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2ccnn12']; [0.9999017119407654, 0.9996638894081116, 0.9938748478889465] +CCNC(=O)c1ccc(-c2cnn3c(N)ccnc23)nc1; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cnn12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnn3c(N)ccnc23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999996423721313, 0.9999995231628418, 0.9999990463256836, 0.9999988079071045, 0.9999504089355469, 0.9853650331497192] +Nc1ccnc2c(-c3ccc4cn[nH]c4c3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 0.9999997615814209] +COc1cc(CS(C)(=O)=O)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnn3c(N)ccnc23)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnn3c(N)ccnc13)cn2C; [None]; [None]; [0] +Nc1ccnc2c(-c3cc4ccccc4o3)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['OB(O)c1cc2ccccc2o1']; [0.999963641166687] +CNC(=O)c1ccc(OC)c(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Nc1ccnc2c(-c3ncc4sccc4n3)cnn12; [None]; [None]; [0] +COc1ccc2oc(-c3cnn4c(N)ccnc34)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnn2c(N)ccnc12; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0] +C[NH+](C)Cc1ccc(-c2cnn3c(N)ccnc23)cc1; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(OC(F)(F)F)cc3)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc2c(Cl)cnn12', 'FC(F)(F)Oc1ccc(Br)cc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 1.0, 0.9999982118606567, 0.9999963641166687] +Nc1ccnc2c(-c3cc(-c4cccnc4)ccn3)cnn12; [None]; [None]; [0] +COc1ccc2nc(-c3cnn4c(N)ccnc34)[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc(NC(=O)N4CCCC4)c3)cnn12; [None]; [None]; [0] +CCc1cccc(-c2cnn3c(N)ccnc23)n1; ['CCc1cccc(Br)n1']; ['Nc1ccnc2c(Br)cnn12']; [0.99082350730896] +Nc1ccnc2c(-c3ncn4c3CCCC4)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; ['c1ncn2c1CCCC2', 'c1ncn2c1CCCC2']; [0.9809199571609497, 0.954444944858551] +CC(=O)N1CCC(n2cc(-c3cnn4c(N)ccnc34)cn2)CC1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnn4c(N)ccnc34)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 1.0, 1.0, 1.0, 0.999987006187439] +Nc1ccnc2c(NC(=O)c3cccc(OC(F)(F)F)c3)cnn12; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnn4c(N)ccnc34)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn3c(N)ccnc23)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999997615814209, 0.9999994039535522, 0.9999982118606567, 0.9999961853027344, 0.9999095797538757, 0.9936641454696655] +Nc1ccnc2c(-c3cccc(N4CCCC4=O)c3)cnn12; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999996423721313, 0.9999995231628418, 0.9999986886978149, 0.9912575483322144] +Cn1nc(Cl)c2cc(-c3cnn4c(N)ccnc34)ccc21; [None]; [None]; [0] +Cc1cc(-c2cnn3c(N)ccnc23)cc(C)c1OCCO; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(CCO)cc3)cnn12; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1']; [0.9999992251396179, 0.9999987483024597, 0.999996542930603, 0.9999951124191284, 0.9994555711746216, 0.9785162806510925] +CNC(=O)c1ccc(-c2cnn3c(N)ccnc23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999916553497314, 0.9999836683273315] +COc1cc(S(C)(=O)=O)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnn3c(N)ccnc23)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999989867210388, 0.999992847442627] +COc1cc(-c2cnn(C)c2)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ccnc2c(Br)cnn12']; [0.9994610548019409] +CN(C)C(=O)c1ccc(-c2cnn3c(N)ccnc23)nc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnn4c(N)ccnc34)cc2)n1C; [None]; [None]; [0] +Cn1nc(-c2cnn3c(N)ccnc23)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3n[nH]c4ccccc34)cnn12; ['Brc1n[nH]c2ccccc12']; ['Nc1ccnc2c(Br)cnn12']; [0.9998816847801208] +Nc1ccnc2c(Oc3ccc(F)cc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9999719858169556, 0.9998035430908203] +Nc1ccnc2c(-c3ccc(Cl)c(O)c3)cnn12; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999986886978149, 0.9999982118606567] +Nc1ccnc2c(-c3c(Cl)ccc4c3OCO4)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9999957084655762, 0.9999926090240479, 0.9985106587409973] +NC(=O)c1ccc(-c2cnn3c(N)ccnc23)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999988675117493, 0.9999932050704956, 0.9999552965164185, 0.9999417066574097, 0.9984228014945984] +C[C@H](CS(C)(=O)=O)c1cnn2c(N)ccnc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Nc1ccnc2c(-c3cccc4ncccc34)cnn12; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnn2c(N)ccnc12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999983310699463, 0.9999962449073792, 0.9978286623954773] +Nc1ccnc2c(-c3ccc(O)cc3Cl)cnn12; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(O)cc1Cl']; [0.9999995231628418, 0.9999902248382568] +Nc1ccnc2c(-c3ccc(O)cc3F)cnn12; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc(O)cc1F']; [0.999993085861206, 0.999967634677887, 0.9999521970748901] +COc1ccc(F)cc1-c1cnn2c(N)ccnc12; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 0.9999997615814209, 0.9999994039535522, 0.9999964237213135, 0.9999554753303528, 0.9999223947525024] +COc1cc(F)ccc1-c1cnn2c(N)ccnc12; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999997615814209, 0.9999995231628418, 0.9999960660934448, 0.9999958872795105, 0.9999121427536011, 0.9997316002845764] +Nc1ccnc2c(-c3ccc(O)c(F)c3)cnn12; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc(O)c(F)c1']; [0.9999996423721313, 0.9999904632568359] +COC(=O)c1ccc(-c2cnn3c(N)ccnc23)o1; ['COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999315738677979, 0.9932683110237122] +Nc1ccnc2c(-c3cn[nH]c3Cl)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(-c4ccc(O)cc4O)cc3)cnn12; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnn3c(N)ccnc23)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 0.9999998211860657, 0.9999279379844666, 0.9999058246612549, 0.9932839870452881] +COc1cc(CCc2cnn3c(N)ccnc23)ccc1O; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(O)cc3O)cnn12; [None]; [None]; [0] +Nc1ccnc2c(COc3ccccc3Cl)cnn12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn4c(N)ccnc34)cc2[nH]1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnn2c(N)ccnc12; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999972581863403, 0.9999969005584717, 0.9999943971633911] +Nc1cc(-c2cnn3c(N)ccnc23)ccn1; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(F)c(Cl)c3)cnn12; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Fc1ccc(Br)cc1Cl']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999641180038452, 0.9994141459465027] +NC(=O)c1cc(-c2cnn3c(N)ccnc23)c[nH]1; [None]; [None]; [0] +Nc1ccnc2c(-c3cnc(O)c(Cl)c3)cnn12; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999991655349731, 0.9999989867210388] +Nc1ccnc2c(-c3cc(O)ccc3Cl)cnn12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnn2c(N)ccnc12; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999996423721313, 0.9999967813491821, 0.9999964237213135, 0.9999122619628906, 0.9985589385032654, 0.9978328347206116, 0.9926036596298218] +Nc1ccnc2c(-c3[nH]cnc3-c3ccc(F)cc3)cnn12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn4c(N)ccnc34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 0.9999997615814209] +Nc1ccnc2c(-c3ccc4c(c3)CC(=O)N4)cnn12; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C']; ['O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [0.9999994039535522, 0.9999992847442627, 0.9999992251396179, 0.9999963045120239] +NC(=O)Nc1ccc(-c2cnn3c(N)ccnc23)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [1.0, 1.0] +Nc1ccnc2c(-c3cncc(O)c3)cnn12; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9999986886978149, 0.9999967813491821, 0.9999769926071167, 0.9996799230575562, 0.9772505760192871] +CNc1nccc(-c2cnn3c(N)ccnc23)n1; ['CNc1nccc(Cl)n1']; ['Nc1ccnc2c(Br)cnn12']; [0.9992483258247375] +CCOc1cccc(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnn4c(N)ccnc34)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnn2c(N)ccnc12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ccnc2c(Br)cnn12']; [0.9999979734420776] +Cc1cc(O)ccc1-c1cnn2c(N)ccnc12; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999972581863403, 0.9999945163726807, 0.9999834299087524] +Nc1ccnc2c(-c3ccncc3Cl)cnn12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl']; [0.9999973177909851, 0.9999955892562866, 0.9999171495437622, 0.9999027848243713, 0.9891905784606934] +Cc1n[nH]c2cc(N(C)c3cnn4c(N)ccnc34)ccc12; [None]; [None]; [0] +CCc1sccc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnn2c(N)ccnc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnn3c(N)ccnc23)c1C; [None]; [None]; [0] +Nc1ccnc2c(-c3cc(Cl)c(O)c(Cl)c3)cnn12; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999990463256836, 0.9999971389770508, 0.9998742938041687] +Nc1ccnc2c(-c3cc(C(F)F)n[nH]3)cnn12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc4c(c3)CCN4)cnn12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C']; ['Nc1ccnc2c(Br)cnn12', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Nc1ccnc2c(I)cnn12']; [1.0, 0.9999982118606567, 0.9999979734420776, 0.9999977946281433] +CCc1cc(O)c(F)cc1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc4[nH]c(=O)[nH]c4c3)cnn12; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Nc1ccnc2c(I)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Nc1ccnc2c(I)cnn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [0.9999997615814209, 0.9999996423721313, 0.9999995231628418, 0.9999994039535522] +CNc1nc(-c2cnn3c(N)ccnc23)ncc1F; [None]; [None]; [0] +Nc1ccnc2c(-c3cc(O)n4nccc4n3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc(Br)cc3F)cnn12; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Fc1cc(Br)ccc1Br', 'Nc1ccnc2c(Cl)cnn12', 'Fc1cc(Br)ccc1Br']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'Nc1ccnc2ccnn12', 'OB(O)c1ccc(Br)cc1F', 'Nc1ccnc2c(Br)cnn12']; [0.9999977350234985, 0.9999960660934448, 0.9999939203262329, 0.9998704791069031, 0.9991917610168457, 0.9988466501235962, 0.9973124265670776] +Nc1ccnc2c(-c3ccc(C(=O)NC4CC4)cc3)cnn12; ['Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['O=C(NC1CC1)c1ccc(B(O)O)cc1', 'Nc1ccnc2c(Br)cnn12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [1.0, 1.0, 1.0, 0.9999955296516418] +Nc1ccnc2c(-c3cc(O)cc(Br)c3)cnn12; ['Nc1ccnc2c(I)cnn12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Nc1ccnc2c(Br)cnn12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['OB(O)c1cc(O)cc(Br)c1', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cc(O)cc(Br)c1', 'Nc1ccnc2c(Br)cnn12', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1']; [0.9999997615814209, 0.9999922513961792, 0.999984860420227, 0.9999614953994751, 0.9998009204864502, 0.9956024885177612] +Cc1cc(-c2cnn3c(N)ccnc23)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12']; [1.0, 1.0] +Cc1oc(-c2cnn3c(N)ccnc23)cc1C(=O)[O-]; [None]; [None]; [0] +Cc1cc(-c2cnn3c(N)ccnc23)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; [0.9999995231628418, 0.9999994039535522, 0.9999891519546509, 0.999952495098114] +Cc1nc2ccc(-c3cnn4c(N)ccnc34)cc2o1; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(Br)cnn12']; [1.0, 1.0, 1.0, 1.0, 0.9999996423721313, 0.995085597038269] +Nc1ccnc2c(-c3[nH]nc4ccc(F)cc34)cnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn2c(N)ccnc12; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1cnn2c(N)ccnc12; [None]; [None]; [0] +Nc1ccnc2c(-c3cc(F)c(O)c(F)c3)cnn12; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9999991059303284, 0.9999983906745911, 0.9999948740005493, 0.9999646544456482] +Nc1ccnc2c(Oc3ccc(F)cc3F)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999909996986389, 0.9999397993087769] +CSc1cccc(-c2cnn3c(N)ccnc23)c1; [None]; [None]; [0] +Nc1ccnc2c(-c3ccc4c(=O)[nH][nH]c4c3)cnn12; [None]; [None]; [0] +Nc1ccnc2c(CCc3c[nH]c4ccccc34)cnn12; [None]; [None]; [0] +Nc1ccnc2c(OCc3cccc4ccccc34)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12', 'Nc1ccnc2c(I)cnn12']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9930096864700317, 0.965622067451477, 0.9639970064163208] +Cc1onc(-c2ccccc2)c1-c1cnn2c(N)ccnc12; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [0.9999997615814209, 0.9999992251396179, 0.9999881386756897] +Nc1ccnc2c(OCc3ccc(F)cc3F)cnn12; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999793171882629, 0.9999629259109497, 0.9997216463088989] +CCOc1ccccc1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'CCOc1ccccc1B(O)O']; ['CCOc1ccccc1B(O)O', 'Clc1ncnc2[nH]cnc12']; [0.9967851042747498, 0.9963754415512085] +Nc1ccnc2c(NCc3c(F)cccc3Cl)cnn12; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; ['Nc1ccnc2c(Br)cnn12', 'Nc1ccnc2c(I)cnn12', 'Nc1ccnc2c(Cl)cnn12']; [1.0, 1.0, 0.9999892711639404] +CNC(=O)c1ccccc1-c1ncnc2[nH]cnc12; ['CNC(=O)c1ccccc1B(O)O', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'CNC(=O)c1ccccc1B(O)O']; [0.9915010929107666, 0.9914373159408569] +CC(C)S(=O)(=O)c1ccccc1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1ncnc2[nH]cnc12']; [0.9993680715560913, 0.9983235597610474] +Nc1ccnc2c(-c3ocnc3-c3ccc(F)cc3)cnn12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ncnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +c1ccc2c(-c3ncnc4[nH]cnc34)ccnc2c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9923958778381348, 0.9898360967636108] +Nc1ccnc2c(-c3cn[nH]c3-c3ccc(Cl)cc3)cnn12; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999624490737915, 0.9986259937286377] +FC(F)(F)Oc1ccccc1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.999022901058197, 0.997779130935669] +CCn1cc(-c2ncnc3[nH]cnc23)cn1; ['Brc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Clc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; [0.9975799918174744, 0.9971883296966553, 0.9964412450790405, 0.9922264814376831] +Nc1ccnc2c(CCc3ccc(F)cc3F)cnn12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnc2[nH]cnc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; [0.9991851449012756, 0.9976865649223328, 0.9718723893165588, 0.9315145611763] +COC(C)(C)CCc1ncnc2[nH]cnc12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4[nH]cnc34)cn2)cc1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9997904300689697, 0.999494194984436, 0.9994625449180603, 0.9991950988769531] +Cn1cnc2ccc(-c3ncnc4[nH]cnc34)cc2c1=O; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ncnc3[nH]cnc23)c1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9966385960578918, 0.9835103750228882] +Cc1ccc(-c2ncnc3[nH]cnc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'Cc1ccc(B(O)O)c(Br)c1']; [0.94864821434021, 0.8632153272628784] +OCCn1cc(-c2ncnc3[nH]cnc23)cn1; ['Clc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ncnc2[nH]cnc12']; ['OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'Clc1ncnc2[nH]cnc12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; [0.997918426990509, 0.9923039674758911, 0.9922251105308533, 0.9745584726333618] +O=C(Nc1cccc(-c2ncnc3[nH]cnc23)c1)c1ccccc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ncnc3[nH]cnc23)s1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ncnc4[nH]cnc34)[nH]2)cc1; [None]; [None]; [0] +COc1cnc(-c2ncnc3[nH]cnc23)nc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnc3[nH]cnc23)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ncnc3[nH]cnc23)cs1; [None]; [None]; [0] +CC(C)C(=O)COc1ncnc2[nH]cnc12; [None]; [None]; [0] +Brc1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9995502233505249, 0.996620774269104] +Clc1cccc(Cl)c1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9269866943359375, 0.8525816202163696] +c1ccn2c(-c3ncnc4[nH]cnc34)cnc2c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B(O)O)c1', 'Clc1ncnc2[nH]cnc12']; [0.9781688451766968, 0.970230221748352] +c1cncc(CNc2ncnc3[nH]cnc23)c1; ['Clc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'Brc1ncnc2nc[nH]c12', 'CSc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'NCc1cccnc1']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=c1[nH]cnc2[nH]cnc12']; [0.9999901056289673, 0.9999791979789734, 0.999907374382019, 0.9990307092666626, 0.9986538887023926, 0.9982514977455139] +c1ccc2cc(-c3ncnc4[nH]cnc34)ccc2c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1']; [0.9999682903289795, 0.9993232488632202] +c1cncc(Nc2ncnc3[nH]cnc23)c1; ['Clc1ncnc2[nH]cnc12']; ['Nc1cccnc1']; [0.9875390529632568] +c1ccc2c(c1)ncn2-c1ncnc2[nH]cnc12; ['Clc1ncnc2[nH]cnc12']; ['c1ccc2[nH]cnc2c1']; [0.9996910095214844] +c1cnn2ncc(-c3ncnc4[nH]cnc34)c2c1; ['Brc1ncnc2[nH]cnc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Clc1ncnc2[nH]cnc12']; [0.9988537430763245, 0.9974822998046875] +c1nc(NCCc2c[nH]cn2)c2nc[nH]c2n1; ['Clc1ncnc2[nH]cnc12', 'Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Brc1ncnc2[nH]cnc12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9988390207290649, 0.9988036155700684, 0.9985659122467041, 0.9865788221359253] +O=C(Nc1ncnc2[nH]cnc12)c1cccs1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12', 'Nc1ncnc2[nH]cnc12', 'CSc1ncnc2[nH]cnc12', 'Nc1ncnc2[nH]cnc12']; ['NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'O=C(Cl)c1cccs1', 'NC(=O)c1cccs1', 'O=C(O)c1cccs1']; [0.9978538155555725, 0.9976311922073364, 0.9928186535835266, 0.9719154834747314, 0.9626922011375427] +Cc1c(-c2ncnc3[nH]cnc23)sc(=O)n1C; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Clc1ncnc2[nH]cnc12']; [0.9989821910858154, 0.9956190586090088] +c1cnn2c(-c3ncnc4[nH]cnc34)cnc2c1; [None]; [None]; [0] +Nc1nccc(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +c1ccc2c(-c3ncnc4[nH]cnc34)cncc2c1; ['Clc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12']; ['OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9933494329452515, 0.9805196523666382] +c1ccc(CCNc2ncnc3[nH]cnc23)cc1; ['Clc1ncnc2nc[nH]c12', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'NCCc1ccccc1', 'Brc1ncnc2[nH]cnc12']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'O=c1[nH]cnc2[nH]cnc12', 'NCCc1ccccc1']; [0.9997485876083374, 0.9988692998886108, 0.9988042116165161, 0.9974592924118042, 0.9862403869628906] +NC(=O)c1c(F)cccc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2ncnc3[nH]cnc23)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ncnc4[nH]cnc34)cc2)cn1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999995231628418, 0.999992847442627] +Clc1ccc(CNc2ncnc3[nH]cnc23)cc1; ['NCc1ccc(Cl)cc1', 'Brc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'Clc1ncnc2nc[nH]c12', 'Brc1ncnc2[nH]cnc12', 'CSc1ncnc2[nH]cnc12']; ['O=c1[nH]cnc2[nH]cnc12', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9999575614929199, 0.9999541640281677, 0.9999359250068665, 0.9999143481254578, 0.9995256066322327, 0.9989707469940186] +Nc1[nH]nc2cc(-c3ncnc4[nH]cnc34)ccc12; [None]; [None]; [0] +Cn1ncc2cc(-c3ncnc4[nH]cnc34)ccc21; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999987483024597, 0.9999330043792725] +c1nc(-c2ccc(-c3cn[nH]c3)cc2)c2nc[nH]c2n1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999923706054688, 0.9999892711639404, 0.9999070167541504] +O=C([O-])Cc1cccc(-c2ncnc3[nH]cnc23)c1; [None]; [None]; [0] +c1cc(Nc2ncnc3[nH]cnc23)ccn1; ['Clc1ncnc2[nH]cnc12']; ['Nc1ccncc1']; [0.999539315700531] +Oc1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; [0.9995403289794922, 0.9931601881980896, 0.9667004346847534] +Fc1ccccc1CNc1ncnc2[nH]cnc12; ['Brc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'Clc1ncnc2nc[nH]c12', 'NCc1ccccc1F', 'Brc1ncnc2[nH]cnc12']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'O=c1[nH]cnc2[nH]cnc12', 'NCc1ccccc1F']; [0.9999712705612183, 0.9999428391456604, 0.9999308586120605, 0.9998962879180908, 0.999557375907898] +OCc1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1']; [0.9967893362045288, 0.9866559505462646] +c1nc(-c2csc3ncncc23)c2nc[nH]c2n1; [None]; [None]; [0] +CCCn1cnc(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +CN1c2ccc(-c3ncnc4[nH]cnc34)cc2CS1(=O)=O; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9999550580978394, 0.9997729063034058] +COc1cc(-c2ncnc3[nH]cnc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2ncnc3[nH]cnc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CC(C)n1cc(-c2ncnc3[nH]cnc23)nn1; [None]; [None]; [0] +Nc1ncncc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncnc3[nH]cnc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1ncnc2[nH]cnc12']; [0.999901294708252] +c1nc(CCc2c[nH]nn2)c2nc[nH]c2n1; [None]; [None]; [0] +Fc1ccc(-c2ncnc3[nH]cnc23)c(C(F)(F)F)c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9991022348403931, 0.9976934194564819] +CC(=O)Nc1cccc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1']; ['CC(=O)Nc1cccc(B(O)O)c1', 'Clc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; [0.9997868537902832, 0.9977453947067261, 0.9967164993286133] +O=C(Nc1ncnc2[nH]cnc12)c1c(Cl)cccc1Cl; ['Clc1ncnc2[nH]cnc12', 'Nc1ncnc2[nH]cnc12', 'Nc1ncnc2[nH]cnc12']; ['NC(=O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9894465804100037, 0.9842723608016968, 0.9581085443496704] +c1ccc(Oc2ncnc3[nH]cnc23)nc1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncnc4[nH]cnc34)cc2c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ncnc3[nH]cnc23)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'CS(=O)(=O)C1CCNCC1']; [0.999836266040802, 0.9985778331756592, 0.9908448457717896] +Cn1cc(-c2ncnc3[nH]cnc23)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]cnc23)cc1Cl; ['Brc1ncnc2[nH]cnc12', 'COc1ccc(B(O)O)cc1Cl']; ['COc1ccc(B(O)O)cc1Cl', 'Clc1ncnc2[nH]cnc12']; [0.9999460577964783, 0.9986186027526855] +Nc1nc(-c2ncnc3[nH]cnc23)cs1; [None]; [None]; [0] +NC(=O)CCCc1ncnc2[nH]cnc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3ncnc4[nH]cnc34)cc2s1; [None]; [None]; [0] +c1ccn2ncc(-c3ncnc4[nH]cnc34)c2c1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.9669293761253357, 0.9562162160873413] +CC(C)(COc1ncnc2[nH]cnc12)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2ncnc3[nH]cnc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ncnc2[nH]cnc12', 'CCCn1cc(B(O)O)cn1', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'CCCn1cc(B(O)O)cn1', 'Clc1ncnc2[nH]cnc12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; [0.9984033107757568, 0.9982885122299194, 0.9981520175933838, 0.9976757168769836] +CC(C)(N)c1ccc(-c2ncnc3[nH]cnc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]cnc12']; [0.9999464750289917, 0.9997727870941162, 0.9926002025604248] +O=c1cc(-c2ncnc3[nH]cnc23)cc[nH]1; ['Brc1ncnc2[nH]cnc12', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Clc1ncnc2[nH]cnc12']; [0.9998049139976501, 0.9985939264297485] +CCN(CC)c1ncnc2[nH]cnc12; ['CCNCC', 'CCNCC', 'CCNCC']; ['Clc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'O=c1[nH]cnc2[nH]cnc12']; [0.9891810417175293, 0.9485961198806763, 0.922519862651825] +C[C@@H](Oc1ncnc2[nH]cnc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'C[C@@H](O)c1c(Cl)cncc1Cl']; [0.996310830116272, 0.9896386861801147] +O=C1CCc2cccc(-c3ncnc4[nH]cnc34)c21; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ncnc2[nH]cnc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['CC(C)(C)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]cnc12']; [0.9998114109039307, 0.9989964962005615] +O=c1[nH]ccc2oc(-c3ncnc4[nH]cnc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ncnc2[nH]cnc12; ['COc1ccncc1N']; ['Clc1ncnc2[nH]cnc12']; [0.9999212026596069] +COc1cc(CCc2ncnc3[nH]cnc23)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'CC(C)Oc1cncc(B(O)O)c1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Clc1ncnc2[nH]cnc12']; [0.9999873042106628, 0.9999678134918213, 0.9996763467788696] +c1ccc(-c2ccncc2Nc2ncnc3[nH]cnc23)cc1; ['Clc1ncnc2[nH]cnc12']; ['Nc1cnccc1-c1ccccc1']; [0.9999647736549377] +c1ccc2ncc(Nc3ncnc4[nH]cnc34)cc2c1; ['Clc1ncnc2[nH]cnc12']; ['Nc1cnc2ccccc2c1']; [0.9992275238037109] +COc1cccc(F)c1-c1ncnc2[nH]cnc12; ['Brc1ncnc2[nH]cnc12', 'COc1cccc(F)c1B(O)O']; ['COc1cccc(F)c1B(O)O', 'Clc1ncnc2[nH]cnc12']; [0.9945837259292603, 0.9918774366378784] +c1nc(-c2cnc3[nH]ccc3c2)c2nc[nH]c2n1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9998117089271545, 0.9994372725486755] +c1cc2c(-c3ncnc4[nH]cnc34)c[nH]c2cn1; ['Clc1ncnc2[nH]cnc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9632034301757812] +[NH3+]Cc1ccc(-c2ncnc3[nH]cnc23)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]cnc12']; [0.9999641180038452, 0.9994798898696899] +CNC(=O)c1c(F)cccc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]cnc12']; [0.9997674226760864, 0.9975807666778564] +CNS(=O)(=O)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ncnc2[nH]cnc12']; [0.9996902942657471, 0.9960259199142456] +c1nc(-c2ccc(N3CCOCC3)cc2)c2nc[nH]c2n1; ['Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999974966049194, 0.9999178647994995] +O=c1[nH]cc(Br)c2sc(-c3ncnc4[nH]cnc34)cc12; [None]; [None]; [0] +C[C@@H](Nc1ncnc2[nH]cnc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'Brc1ncnc2[nH]cnc12', 'C[C@@H](N)C(C)(C)O']; ['Clc1ncnc2[nH]cnc12', 'C[C@@H](N)C(C)(C)O', 'Clc1ncnc2nc[nH]c12']; [0.9209954738616943, 0.9110873937606812, 0.8978464603424072] +C[C@H](Nc1ncnc2[nH]cnc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'Brc1ncnc2[nH]cnc12', 'C[C@H](N)C(C)(C)O']; ['Clc1ncnc2[nH]cnc12', 'C[C@H](N)C(C)(C)O', 'Clc1ncnc2nc[nH]c12']; [0.9209954738616943, 0.9110873937606812, 0.8978464603424072] +C[C@H](Nc1ncnc2[nH]cnc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1ncnc2[nH]cnc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ncnc3[nH]cnc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ncnc2[nH]cnc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [0.9997016191482544, 0.9995636940002441, 0.9972522258758545] +Cc1cc(-c2ncnc3[nH]cnc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +c1nc(-c2ccc(-n3cncn3)cc2)c2nc[nH]c2n1; [None]; [None]; [0] +OCc1ccn(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +COc1ccc(-c2ncnc3[nH]cnc23)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'COc1ccc(B(O)O)c(OC)c1']; [0.9994522333145142, 0.9992115497589111] +OCCc1cn(-c2ncnc3[nH]cnc23)cn1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ncnc3[nH]cnc23)cc1; ['Brc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999823570251465, 0.9999521374702454, 0.9983844757080078] +c1ccc2c(c1)cnn2-c1ncnc2[nH]cnc12; [None]; [None]; [0] +Oc1ccc2nc(-c3ncnc4[nH]cnc34)[nH]c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CSc1nc(C)c(-c2ncnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnc3[nH]cnc23)CC1; [None]; [None]; [0] +c1nc(-c2nncn2C2CC2)c2nc[nH]c2n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +O=S(=O)(Cc1ncnc2[nH]cnc12)NCc1ccccn1; [None]; [None]; [0] +O=C(CCc1ncnc2[nH]cnc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ncnc5[nH]cnc45)n3n2)cc1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnc4[nH]cnc34)nn2)cc1; [None]; [None]; [0] +Nc1nnc(-c2ncnc3[nH]cnc23)s1; [None]; [None]; [0] +CCCCc1cc(-c2ncnc3[nH]cnc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3[nH]cnc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnc2[nH]cnc12; [None]; [None]; [0] +CCc1cc(-c2ncnc3[nH]cnc23)nc(N)n1; [None]; [None]; [0] +c1ccc2sc(-c3ncnc4[nH]cnc34)nc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnc4[nH]cnc34)c2)cc1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +c1cc(-c2ncnc3[nH]cnc23)c2sccc2c1; ['Brc1ncnc2[nH]cnc12', 'Brc1ncnc2[nH]cnc12', 'Clc1ncnc2[nH]cnc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999692440032959, 0.997602105140686, 0.9701766967773438] +[NH3+]Cc1ccc(Oc2ncnc3[nH]cnc23)c(F)c1; [None]; [None]; [0] +c1cc(-c2ncnc3[nH]cnc23)c2snnc2c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncnc3[nH]cnc23)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncnc4[nH]cnc34)nc2NC1=O; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncnc2[nH]cnc12; ['COc1ccc(C#N)cc1B(O)O']; ['Clc1ncnc2[nH]cnc12']; [0.9969007968902588] +Nc1nc(-c2ncnc3[nH]cnc23)nc2ccccc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncnc3[nH]cnc23)[nH]1; [None]; [None]; [0] +c1ccc2nc(-c3ncnc4[nH]cnc34)ncc2c1; [None]; [None]; [0] +COc1ccc(Oc2ncnc3[nH]cnc23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Clc1ncnc2[nH]cnc12']; [0.9964499473571777] +Nc1cncc(-c2ncnc3[nH]cnc23)n1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncnc3[nH]cnc23)c1; ['Brc1ncnc2[nH]cnc12', 'COc1ccc(OC)c(B(O)O)c1']; ['COc1ccc(OC)c(B(O)O)c1', 'Clc1ncnc2[nH]cnc12']; [0.9953933358192444, 0.9770642518997192] +COc1ncccc1-c1ncnc2[nH]cnc12; ['COc1ncccc1B(O)O', 'Brc1ncnc2[nH]cnc12']; ['Clc1ncnc2[nH]cnc12', 'COc1ncccc1B(O)O']; [0.9768826365470886, 0.9723693132400513] +c1cnc2c(-c3ncnc4[nH]cnc34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ncnc5[nH]cnc45)CC3)nc2c1; ['Clc1ncnc2nc[nH]c12', 'Clc1ncnc2[nH]cnc12', 'O=c1[nH]cnc2[nH]cnc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999293088912964, 0.9996037483215332, 0.9994204640388489] +OCCn1cnc(-c2ncnc3[nH]cnc23)c1; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +c1nc(-c2ncc3cc[nH]c3n2)c2nc[nH]c2n1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ncnc3[nH]cnc23)C1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Clc1ncnc2[nH]cnc12']; [0.999881386756897] +CC(=O)N(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ncnc3[nH]cnc23)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)cc(OC)c1OC; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnc3[nH]cnc23)c1)C1CCNCC1; [None]; [None]; [0] +CN(C)c1cc(-c2ncnc3[nH]cnc23)cnn1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(N)n4ncc(Br)c4n3)c2c1; [None]; [None]; [0] +COc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cnc3cccnn23)nc2c(Br)cnn12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ncnc3[nH]cnc23)CC1; [None]; [None]; [0] +Nc1cc(-c2ccc(N3CCOCC3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2ncc3ccccc3n2)nc2c(Br)cnn12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(-c2cccc(O)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CC3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)[O-])cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Nc2ncccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2nccc3ccccc23)nc2c(Br)cnn12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc(N)n4ncc(Br)c4n3)cn2)c1; [None]; [None]; [0] +Nc1cc(-c2ccc(OCCO)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(F)(F)F)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc(C3CCNCC3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)nc2c(Br)cnn12; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)n3ncc(Br)c3n2)s1; [None]; [None]; [0] +Nc1cc(Cc2ccccc2O)nc2c(Br)cnn12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)n3ncc(Br)c3n2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(Cc2cc(N)n3ncc(Br)c3n2)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc(Br)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)nc2c(Br)cnn12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1Cl; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(N)n4ncc(Br)c4n3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cc2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccccc2-n2cccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)c(C)c1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(N)n3ncc(Br)c3n2)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3ccccc23)nc2c(Br)cnn12; ['Ic1c[nH]c2ccccc12']; ['Nc1ccnc2c(Br)cnn12']; [0.9991388320922852] +Nc1cc(-c2ccn3nccc3n2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc3c2OCO3)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)ccc1O; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(N)n3ncc(Br)c3n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(N)n4ncc(Br)c4n3)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCO3)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccc3c2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cc(-c3ccccc3)[nH]n2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2scc3c2OCCO3)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Cc2nc3ccc(F)c(F)c3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Cc2nc3c(F)c(F)ccc3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; ['CSc1ccc(B(O)O)cc1']; ['Nc1ccnc2c(Br)cnn12']; [0.999478280544281] +Nc1nc(-c2cc(N)n3ncc(Br)c3n2)cs1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2)CC1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3s2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Cc2nc3ccccc3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1ccc(-c2cc(N)n3ncc(Br)c3n2)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCC(=O)N3)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1OC; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2Cl)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1cc(-c2cc(N)n3ncc(Br)c3n2)nc(N)n1; [None]; [None]; [0] +CCc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(Cl)cc2Cl)nc2c(Br)cnn12; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ncc(Br)cn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc([C@H](CO)Cc2ccccc2)nc2c(Br)cnn12; [None]; [None]; [0] +CC[C@@H](CO)c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(CCCn2cncn2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc(-c2ncc3cccn3n2)nc2c(Br)cnn12; [None]; [None]; [0] +Cn1cc(-c2cc(N)n3ncc(Br)c3n2)c(C(F)(F)F)n1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccc(O)cc23)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)ccc1Cl; [None]; [None]; [0] +Nc1cc(-c2cc3ccccn3n2)nc2c(Br)cnn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(N)n3ncc(Br)c3n2)cc1OC; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(N)n4ncc(Br)c4n3)c2c1; [None]; [None]; [0] +Nc1cc(-c2cnn(CCO)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1csc2c(-c3cc(N)n4ncc(Br)c4n3)ncnc12; [None]; [None]; [0] +Nc1cc(-c2ncc(Cl)cn2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)c(OC)cc1Br; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(N)n4ncc(Br)c4n3)ccc2O1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(-c2cc(N)n3ncc(Br)c3n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)nc1; [None]; [None]; [0] +Nc1cc(-c2ccc3cn[nH]c3c2)nc2c(Br)cnn12; [None]; [None]; [0] +CCn1cc(-c2cc(N)n3ncc(Br)c3n2)cn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(N)n3ncc(Br)c3n1)cn2C; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(N)n4ncc(Br)c4n3)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(-c2ccc(OC(F)(F)F)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cc(-c3cccnc3)ccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3o2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc2nc(-c3cc(N)n4ncc(Br)c4n3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2cc(N)n3ncc(Br)c3n2)c2ccccc21; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(-c2ncc3sccc3n2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc(N)n4ncc(Br)c4n3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(N)n4ncc(Br)c4n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cn1; [None]; [None]; [0] +CCc1cccc(-c2cc(N)n3ncc(Br)c3n2)n1; [None]; [None]; [0] +Nc1cc(-c2ncn3c2CCCC3)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1cc(-c2cc(N)n3ncc(Br)c3n2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(N)n4ncc(Br)c4n3)ccc12; [None]; [None]; [0] +Nc1cc(-c2ccc(CCO)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(N3CCCC3=O)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(N)n4ncc(Br)c4n3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)n4ncc(Br)c4n3)cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)c(OC)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Cn1nc(-c2cc(N)n3ncc(Br)c3n2)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2ccnc3ccccc23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccccc2OC(F)(F)F)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(C(F)(F)F)c2)nc2c(Br)cnn12; [None]; [None]; [0] +COC(C)(C)CCc1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cnn(Cc3ccccc3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Cc2cc(F)cc(F)c2)nc2c(Br)cnn12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(N)n3ncc(Br)c3n2)[nH]1; [None]; [None]; [0] +Nc1cc(-c2ccccc2C(=O)[O-])nc2c(Br)cnn12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)c3ccccc3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2c1=O; [None]; [None]; [0] +Nc1cc(-c2cnc(-c3ccccc3)[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cc(Cl)ccc2Cl)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(N)n3ncc(Br)c3n2)cs1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)n3ncc(Br)c3n2)c(Br)c1; [None]; [None]; [0] +Nc1cc(-c2c(Cl)cccc2Cl)nc2c(Br)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9978978037834167] +Nc1cc(-n2ncc3cccc(F)c3c2=O)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(Br)c2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1cnc(-c2cc(N)n3ncc(Br)c3n2)nc1; [None]; [None]; [0] +CC(C)C(=O)COc1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccn23)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(N)n3ncc(Br)c3n2)s1; [None]; [None]; [0] +Nc1cc(NCc2cccnc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc3ccccc3c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(NCCc2c[nH]cn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cnn3ncccc23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Nc2cccnc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-n2cnc3ccccc32)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(Cn3cncn3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(NCCc2ccccc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2c[nH]nc2C(F)(F)F)nc2c(Br)cnn12; [None]; [None]; [0] +Cc1c(-c2cc(N)n3ncc(Br)c3n2)sc(=O)n1C; [None]; [None]; [0] +Nc1cc(-c2cncc3ccccc23)nc2c(Br)cnn12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1nccc(-c2cc(N)n3ncc(Br)c3n2)n1; [None]; [None]; [0] +Nc1cc(-c2cccc(CC(=O)[O-])c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccs2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(NCc2ccc(Cl)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc(CO)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Nc2ccncc2)nc2c(Br)cnn12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2)cn1; [None]; [None]; [0] +Nc1cc(NCc2ccccc2F)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(-c3cn[nH]c3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc(N)n4ncc(Br)c4n3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)n3ncc(Br)c3n2)n1; [None]; [None]; [0] +COc1cc(-c2cc(N)n3ncc(Br)c3n2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cc(N)n3ncc(Br)c3n2)nn1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]nn2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CSc1nc(-c2cc(N)n3ncc(Br)c3n2)c[nH]1; [None]; [None]; [0] +Nc1cc(-c2csc3ncncc23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2C(F)(F)F)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Oc2ccccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(N)n4ncc(Br)c4n3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +Nc1ncncc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +COc1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1Cl; [None]; [None]; [0] +Nc1cc(NC(=O)c2c(Cl)cccc2Cl)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cnn3ccccc23)nc2c(Br)cnn12; [None]; [None]; [0] +CCCn1cc(-c2cc(N)n3ncc(Br)c3n2)cn1; [None]; [None]; [0] +NC(=O)CCCc1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CC(C)(COc1cc(N)n2ncc(Br)c2n1)S(C)(=O)=O; [None]; [None]; [0] +Nc1cc(-c2cc[nH]c(=O)c2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +CCN(CC)c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +C[C@@H](Oc1cc(N)n2ncc(Br)c2n1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +COc1cc(CCc2cc(N)n3ncc(Br)c3n2)cc(OC)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc3c2C(=O)CC3)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +COc1ccncc1Nc1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]ccc3o2)nc2c(Br)cnn12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(Nc2cnc3ccccc3c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Nc2cnccc2-c2ccccc2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cnccc23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]ccc3c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)nc2c(Br)cnn12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Cc1cc(-c2cc(N)n3ncc(Br)c3n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1cc(-n2ccc(CO)n2)nc2c(Br)cnn12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2c(F)cccc2Cl)nc2c(Br)cnn12; ['Nc1ccnc2c(Br)cnn12']; ['OB(O)c1c(F)cccc1Cl']; [0.999981164932251] +C[C@@H](Nc1cc(N)n2ncc(Br)c2n1)C(C)(C)O; [None]; [None]; [0] +CC1(c2cc(N)n3ncc(Br)c3n2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc(N)n2ncc(Br)c2n1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1cc(N)n2ncc(Br)c2n1)C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-n2cnc(CCO)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-n2ncc3ccccc32)nc2c(Br)cnn12; [None]; [None]; [0] +C[C@H](Nc1cc(N)n2ncc(Br)c2n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)c3ccccc3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc(-c2cc(N)n3ncc(Br)c3n2)c(OC)c1; [None]; [None]; [0] +Nc1cc(-n2ncc3c(O)cccc32)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2nc3ccc(O)cc3[nH]2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccc(-n3cncn3)cc2)nc2c(Br)cnn12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(N)n3ncc(Br)c3n2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(-c2nncn2C2CC2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(CCC(=O)NCc2ccccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2ccn(CC[NH3+])n2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cn(Cc3ccccc3)nn2)nc2c(Br)cnn12; [None]; [None]; [0] +CCc1cc(-c2cc(N)n3ncc(Br)c3n2)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +Nc1cc(CS(=O)(=O)NCc2ccccn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1nnc(-c2cc(N)n3ncc(Br)c3n2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)n3ncc(Br)c3n2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(N)n3ncc(Br)c3n2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +Nc1cc(Oc2ccc(C[NH3+])cc2F)nc2c(Br)cnn12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(N)n4ncc(Br)c4n3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)n3ncc(Br)c3n2)s1; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3s2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cncc(-c2cc(N)n3ncc(Br)c3n2)n1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccsc23)nc2c(Br)cnn12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)n4ncc(Br)c4n3)c2)cc1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cccnc23)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cccc3nnsc23)nc2c(Br)cnn12; [None]; [None]; [0] +COc1ccc(Oc2cc(N)n3ncc(Br)c3n2)c(F)c1F; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(N)n2ncc(Br)c2n1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(N)n3ncc(Br)c3n2)[nH]1; [None]; [None]; [0] +Nc1cc(-c2cn(CCO)cn2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1nc(-c2cc(N)n3ncc(Br)c3n2)nc2ccccc12; [None]; [None]; [0] +Nc1cc(-c2ncc3cc[nH]c3n2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)nc2c(Br)cnn12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(N)n3ncc(Br)c3n2)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)n3ncc(Br)c3n2)c1; [None]; [None]; [0] +Nc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)nc2c(Br)cnn12; [None]; [None]; [0] +CN(C)c1cc(-c2cc(N)n3ncc(Br)c3n2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ncc3ccccc3n2)cn2c(Br)cnc12; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)cc(OC)c1OC; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)nc2c(Br)cnn12; [None]; [None]; [0] +Nc1cc(-c2cnc3cccnn23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(O)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(N3CCOCC3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +COc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(N)c4ncc(Br)n4c3)c2c1; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CC3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2)CC1; [None]; [None]; [0] +Nc1cc(-c2nccc3ccccc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)[O-])cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Nc2ncccn2)cn2c(Br)cnc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc(N)c4ncc(Br)n4c3)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc(C3CCNCC3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(OCCO)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(F)(F)F)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)cn2c(Br)cnc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)c3ncc(Br)n3c2)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(Cc2ccccc2O)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1ncc(Cc2cc(N)c3ncc(Br)n3c2)cn1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)c3ncc(Br)n3c2)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +Nc1cc(-c2ccc(Br)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(N)c4ncc(Br)n4c3)c2)CC1; [None]; [None]; [0] +Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc(Cc2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(N)c3ncc(Br)n3c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2ccn3nccc3n2)cn2c(Br)cnc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(N)c2ncc(Br)n2c1; ['COc1ccc(Cl)cc1I']; ['Nc1cccn2c(Br)cnc12']; [0.9013351202011108] +CCN(CC)C(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccccc2-n2cccn2)cn2c(Br)cnc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)c(C)c1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCO3)cn2c(Br)cnc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(N)c3ncc(Br)n3c2)cc1Cl; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3ccccc23)cn2c(Br)cnc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)ccc1O; [None]; [None]; [0] +Nc1cc(-c2cccc3c2OCO3)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(N)c4ncc(Br)n4c3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; ['CC(C)(C)c1ccc(I)cc1']; ['Nc1cccn2c(Br)cnc12']; [0.8893083333969116] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2scc3c2OCCO3)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Cc2nc3ccc(F)c(F)c3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cc(-c3ccccc3)[nH]n2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccc3c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Cc2nc3c(F)c(F)ccc3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)c3ncc(Br)n3c2)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1nc(-c2cc(N)c3ncc(Br)n3c2)cs1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3s2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Cc2nc3ccccc3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2Cl)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ncc(Br)cn2)cn2c(Br)cnc12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cc(N)c3ncc(Br)n3c2)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1OC; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCC(=O)N3)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc([C@H](CO)Cc2ccccc2)cn2c(Br)cnc12; [None]; [None]; [0] +CCc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(Cl)cc2Cl)cn2c(Br)cnc12; [None]; [None]; [0] +CC[C@@H](CO)c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccn3n2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(N)c4ncc(Br)n4c3)c2c1; [None]; [None]; [0] +Nc1cc(CCCn2cncn2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ncc3cccn3n2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc3ccc(O)cc23)cn2c(Br)cnc12; [None]; [None]; [0] +Cn1cc(-c2cc(N)c3ncc(Br)n3c2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(N)c3ncc(Br)n3c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)ccc1Cl; ['COc1cc(I)ccc1Cl']; ['Nc1cccn2c(Br)cnc12']; [0.9590010643005371] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cnn(CCO)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(N)c4ncc(Br)n4c3)ccc2O1; [None]; [None]; [0] +Cc1csc2c(-c3cc(N)c4ncc(Br)n4c3)ncnc12; [None]; [None]; [0] +Nc1cc(-c2ncc(Cl)cn2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Nc1cc(-c2cc(N)c3ncc(Br)n3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(N)c3ncc(Br)n3c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc(N)c4ncc(Br)n4c3)cc2c1; [None]; [None]; [0] +CCn1cc(-c2cc(N)c3ncc(Br)n3c2)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc3cn[nH]c3c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3o2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ncc3sccc3n2)cn2c(Br)cnc12; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(OC(F)(F)F)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cc(-c3cccnc3)ccn2)cn2c(Br)cnc12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(N)c4ncc(Br)n4c3)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CCc1cccc(-c2cc(N)c3ncc(Br)n3c2)n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(N)c3ncc(Br)n3c2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc(N)c4ncc(Br)n4c3)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2ncn3c2CCCC3)cn2c(Br)cnc12; [None]; [None]; [0] +Cc1cc(-c2cc(N)c3ncc(Br)n3c2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cn1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(N)c4ncc(Br)n4c3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)c4ncc(Br)n4c3)cn2)CC1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(N)c4ncc(Br)n4c3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(N)c4ncc(Br)n4c3)ccc12; [None]; [None]; [0] +Nc1cc(-c2cccc(N3CCCC3=O)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(CCO)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc(N)c3ncc(Br)n3c2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)nc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)c2ncc(Br)n2c1; ['CNC(=O)c1ccccc1I']; ['Nc1cccn2c(Br)cnc12']; [0.908534586429596] +CNC(=O)c1ccc(C)c(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +COC(C)(C)CCc1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(N)c3ncc(Br)n3c2)[nH]1; [None]; [None]; [0] +Nc1cc(-c2ccccc2OC(F)(F)F)cn2c(Br)cnc12; ['FC(F)(F)Oc1ccccc1Br']; ['Nc1cccn2c(Br)cnc12']; [0.90995854139328] +Nc1cc(-c2cccc(C(F)(F)F)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccnc3ccccc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Cc2cc(F)cc(F)c2)cn2c(Br)cnc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cnn(Cc3ccccc3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2c1=O; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2ccccc2C(=O)[O-])cn2c(Br)cnc12; [None]; [None]; [0] +COc1cnc(-c2cc(N)c3ncc(Br)n3c2)nc1; [None]; [None]; [0] +Nc1cc(-c2cc(Cl)ccc2Cl)cn2c(Br)cnc12; [None]; [None]; [0] +Cc1ccc(-c2cc(N)c3ncc(Br)n3c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(N)c3ncc(Br)n3c2)cs1; [None]; [None]; [0] +Nc1cc(-n2ncc3cccc(F)c3c2=O)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)c3ccccc3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)C(=O)COc1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccn23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cnc(-c3ccccc3)[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2c(Cl)cccc2Cl)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(Br)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Nc1cc(NCc2cccnc2)cn2c(Br)cnc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(N)c3ncc(Br)n3c2)s1; [None]; [None]; [0] +Nc1cc(-c2ccc3ccccc3c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1nccc(-c2cc(N)c3ncc(Br)n3c2)n1; [None]; [None]; [0] +Nc1cc(-c2cccc(Cn3cncn3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Cc1c(-c2cc(N)c3ncc(Br)n3c2)sc(=O)n1C; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccs2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cnn3ncccc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2c[nH]nc2C(F)(F)F)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(NCCc2c[nH]cn2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-n2cnc3ccccc32)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Nc2cccnc2)cn2c(Br)cnc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cncc3ccccc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(CC(=O)[O-])c2)cn2c(Br)cnc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2)cn1; [None]; [None]; [0] +Nc1cc(NCCc2ccccc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc(N)c4ncc(Br)n4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1cc(NCc2ccc(Cl)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cccc(CO)c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(-c3cn[nH]c3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)c3ncc(Br)n3c2)n1; [None]; [None]; [0] +Nc1cc(Nc2ccncc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(NCc2ccccc2F)cn2c(Br)cnc12; [None]; [None]; [0] +COc1cc(-c2cc(N)c3ncc(Br)n3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc(-c2csc3ncncc23)cn2c(Br)cnc12; [None]; [None]; [0] +CSc1nc(-c2cc(N)c3ncc(Br)n3c2)c[nH]1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(N)c3ncc(Br)n3c2)nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]nn2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Nc1ncncc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2C(F)(F)F)cn2c(Br)cnc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(N)c4ncc(Br)n4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(NC(=O)c2c(Cl)cccc2Cl)cn2c(Br)cnc12; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +COc1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1Cl; [None]; [None]; [0] +Nc1cc(Oc2ccccn2)cn2c(Br)cnc12; [None]; [None]; [0] +NC(=O)CCCc1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cnn3ccccc23)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CCCn1cc(-c2cc(N)c3ncc(Br)n3c2)cn1; [None]; [None]; [0] +CC(C)(COc1cc(N)c2ncc(Br)n2c1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cccc3c2C(=O)CC3)cn2c(Br)cnc12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CCN(CC)c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(-c2cc[nH]c(=O)c2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1cc(CCc2cc(N)c3ncc(Br)n3c2)cc(OC)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(N)c2ncc(Br)n2c1; ['COc1cccc(F)c1Br']; ['Nc1cccn2c(Br)cnc12']; [0.9937354922294617] +CC(C)Oc1cncc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +C[C@@H](Oc1cc(N)c2ncc(Br)n2c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]ccc3o2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccncc1Nc1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(Nc2cnccc2-c2ccccc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(Nc2cnc3ccccc3c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cnccc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]ccc3c2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)cn2c(Br)cnc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +Nc1cc(-n2ccc(CO)n2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)cc1; [None]; [None]; [0] +CC1(c2cc(N)c3ncc(Br)n3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc(N)c2ncc(Br)n2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +C[C@H](Nc1cc(N)c2ncc(Br)n2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1cc(-c2c(F)cccc2Cl)cn2c(Br)cnc12; ['Fc1cccc(Cl)c1Br']; ['Nc1cccn2c(Br)cnc12']; [0.9912669658660889] +C[C@@H](Nc1cc(N)c2ncc(Br)n2c1)C(C)(C)O; [None]; [None]; [0] +Cc1cc(-c2cc(N)c3ncc(Br)n3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1cc(-n2ncc3c(O)cccc32)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-n2cnc(CCO)c2)cn2c(Br)cnc12; [None]; [None]; [0] +C[C@H](Nc1cc(N)c2ncc(Br)n2c1)C(C)(C)O; [None]; [None]; [0] +Nc1cc(-c2ccc(-n3cncn3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-n2ncc3ccccc32)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc(-c2cc(N)c3ncc(Br)n3c2)c(OC)c1; ['COc1ccc(I)c(OC)c1']; ['Nc1cccn2c(Br)cnc12']; [0.9408190250396729] +Nc1cc(-c2nc3ccc(O)cc3[nH]2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)c3ccccc3)cc2)cn2c(Br)cnc12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(N)c3ncc(Br)n3c2)[nH]1; [None]; [None]; [0] +Nc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2nncn2C2CC2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ccn(CC[NH3+])n2)cn2c(Br)cnc12; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +Nc1cc(CCC(=O)NCc2ccccn2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cn(Cc3ccccc3)nn2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(CS(=O)(=O)NCc2ccccn2)cn2c(Br)cnc12; [None]; [None]; [0] +CCc1cc(-c2cc(N)c3ncc(Br)n3c2)nc(N)n1; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3s2)cn2c(Br)cnc12; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)c3ncc(Br)n3c2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(N)c3ncc(Br)n3c2)n1; [None]; [None]; [0] +Nc1nnc(-c2cc(N)c3ncc(Br)n3c2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)c3ncc(Br)n3c2)s1; [None]; [None]; [0] +Nc1cc(Oc2ccc(C[NH3+])cc2F)cn2c(Br)cnc12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(N)c4ncc(Br)n4c3)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2cc(N)c3ncc(Br)n3c2)n1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccsc23)cn2c(Br)cnc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)c4ncc(Br)n4c3)c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc3nnsc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2ncc3cc[nH]c3n2)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1nc(-c2cc(N)c3ncc(Br)n3c2)nc2ccccc12; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cccnc23)cn2c(Br)cnc12; [None]; [None]; [0] +Nc1cc(-c2cn(CCO)cn2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(N)c2ncc(Br)n2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(N)c3ncc(Br)n3c2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)c3ncc(Br)n3c2)c1; ['COc1ccc(OC)c(I)c1']; ['Nc1cccn2c(Br)cnc12']; [0.9421110153198242] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)c3ncc(Br)n3c2)c1; [None]; [None]; [0] +Nc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)cn2c(Br)cnc12; [None]; [None]; [0] +COc1ccc(Oc2cc(N)c3ncc(Br)n3c2)c(F)c1F; [None]; [None]; [0] +CCc1ccc(-c2ccc(N(C)C(C)=O)cc2)o1; [None]; [None]; [0] +CCOc1ccc(-c2ccc(CC)o2)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(S(=O)(=O)Cl)cc1', 'CCOc1ccccc1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.9997808933258057, 0.99956876039505, 0.9994004964828491, 0.9978436231613159, 0.9928290247917175, 0.9687318205833435, 0.9635717272758484] +C[C@@]1(O)CC[C@H](c2cc(N)c3ncc(Br)n3c2)CC1; [None]; [None]; [0] +Nc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)cn2c(Br)cnc12; [None]; [None]; [0] +CN(C)c1cc(-c2cc(N)c3ncc(Br)n3c2)cnn1; [None]; [None]; [0] +CCc1ccc(-c2cccnc2OC)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1N']; [0.9797987937927246, 0.9583979249000549, 0.864990234375] +CCc1ccc(-c2cccc(S(C)(=O)=O)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(S(=O)(=O)Cl)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1ccccc1']; [0.9991908073425293, 0.9989495277404785, 0.9985368251800537, 0.9982872009277344, 0.7504079341888428] +CCc1ccc(-c2cc(OC)c(OC)c(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(S(=O)(=O)Cl)cc(OC)c1OC', 'COc1cc(C(=O)O)cc(OC)c1OC']; [0.9997758269309998, 0.9994875192642212, 0.9986698031425476, 0.9956569671630859, 0.9937103986740112] +CCc1ccc(-c2ncc3ccccc3n2)o1; [None]; [None]; [0] +CCc1ccc(-c2sc(C(C)(C)O)nc2C)o1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)cn2c(Br)cnc12; [None]; [None]; [0] +CCc1ccc(-c2nc3ccccc3[nH]2)o1; ['CCc1ccc(C=O)o1']; ['Nc1ccccc1N']; [0.99959397315979] +CCc1ccc(-c2ccc(OC)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(S(=O)(=O)Cl)cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc([N+]#N)cc1']; [0.9998214244842529, 0.9996938705444336, 0.9988778829574585, 0.998724639415741, 0.9942031502723694, 0.9933961033821106, 0.9906479120254517] +CCc1ccc(-c2cccc(O)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Cl)c1']; [0.9943493604660034, 0.9940352439880371, 0.9883952140808105, 0.9859438538551331] +CCc1ccc(-n2cnc3ccc(C)cc32)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(NC(=O)C3CC3)c2)o1; ['CCc1ccco1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9998096823692322] +CCc1ccc(-c2ccc(N3CCOCC3)cc2)o1; ['CCc1ccco1', 'Brc1ccc(N2CCOCC2)cc1', 'CCc1ccco1', 'CCc1ccco1']; ['Ic1ccc(N2CCOCC2)cc1', 'CCc1ccco1', 'Clc1ccc(N2CCOCC2)cc1', 'c1ccc(N2CCOCC2)cc1']; [0.9999808073043823, 0.9999767541885376, 0.9998757243156433, 0.9939104318618774] +CCc1ccc(-c2cc(C#N)ccc2O)o1; [None]; [None]; [0] +CCc1ccc(-c2nccc3ccccc23)o1; ['Brc1nccc2ccccc12', 'CCc1ccco1']; ['CCc1ccco1', 'Clc1nccc2ccccc12']; [0.9984596967697144, 0.9756296277046204] +CCc1ccc(-c2cnc3cccnn23)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(N)=O)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(Cl)cc1']; [0.9994956254959106, 0.9950814247131348, 0.9891775846481323] +CCc1ccc(-c2ccc(C(=O)[O-])cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(CNC(C)=O)cc2)o1; ['CC(=O)NCc1ccc(Br)cc1']; ['CCc1ccco1']; [0.9992231130599976] +CCc1ccc(Nc2cc(C)ns2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(OCCO)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Cl)cc1']; [0.9975794553756714, 0.9963129758834839, 0.9300574660301208] +CCc1ccc(-c2cccc(C3CCNCC3)c2)o1; [None]; [None]; [0] +CCc1ccc(Nc2ncccn2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(=O)Nc3ccccc3)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2cnn(Cc3cccc(C#N)c3)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(S(=O)(=O)NC)cc2)o1; ['CCc1ccco1', 'CCc1ccco1']; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9891605973243713, 0.9853441715240479] +CCc1ccc(-c2ccc(C(F)(F)F)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'O=S(=O)(Cl)c1ccc(C(F)(F)F)cc1']; [0.9999819993972778, 0.999961256980896, 0.9997408390045166, 0.9996230602264404, 0.9993576407432556] +CCc1ccc(-c2ccc(C(=O)N3CCOCC3)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(=O)N3CCOCC3)cn2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(N(C)C)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(S(=O)(=O)Cl)cc1', 'CN(C)c1ccc([N+]#N)cc1']; [0.9999411106109619, 0.9999350309371948, 0.9998714923858643, 0.9997540712356567, 0.9992929100990295, 0.9920419454574585, 0.9859606027603149] +CCc1ccc(-c2ccc3c(c2)CS(=O)(=O)C3)o1; ['CCc1ccco1', 'CCc1ccco1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9997169375419617, 0.9989981651306152] +CCc1ccc(-c2sc(C)nc2C)o1; ['CCc1ccco1']; ['Cc1csc(C)n1']; [0.9879786968231201] +CCc1ccc(-c2ccc(OC[C@@H](C)O)cc2)o1; [None]; [None]; [0] +CCc1ccc(Nc2ccncn2)o1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc(CC)o2)cc1; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccccc1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.9982640147209167, 0.9980025887489319, 0.9280229210853577] +CCc1ccc(-c2ccc(S(=O)(=O)N(C)C)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(S(=O)(=O)Cl)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [0.9995527267456055, 0.9992026090621948, 0.9985938668251038, 0.9984796643257141] +CCc1ccc(-c2ccc(OC[C@H](C)O)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(Br)cc2)o1; ['Brc1ccc(I)cc1', 'CCc1ccco1', 'Brc1ccc(Br)cc1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'Nc1ccc(Br)cc1', 'CCc1ccco1', 'O=C(O)c1ccc(Br)cc1', 'O=S(=O)(Cl)c1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'N#[N+]c1ccc(Br)cc1']; [0.9998721480369568, 0.9993143081665039, 0.9983525276184082, 0.997961163520813, 0.9977895021438599, 0.9967960715293884, 0.9931789636611938] +CCCOc1ccc(-c2ccc(CC)o2)nc1; ['CCCOc1ccc(Br)nc1']; ['CCc1ccco1']; [0.9938375949859619] +CCc1ccc(-c2ccc(C(=O)N(CC)CC)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(N3CCCN(C(C)=O)CC3)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(S(=O)(=O)NC)cc2C)o1; ['CCc1ccco1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.9988019466400146] +CCc1ccc(-c2cc(C(C)C)nc(N)n2)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(C(=O)[O-])c2C)o1; [None]; [None]; [0] +CCc1ccc(-c2ccn3nccc3n2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(N(C)C)c(Cl)c2)o1; ['CCc1ccco1', 'CCc1ccco1']; ['CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; [0.9998778104782104, 0.9995794296264648] +CCc1ccc(-c2cc(Cl)ccc2OC)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1[N+]#N', 'COc1ccc(Cl)cc1S(=O)(=O)Cl']; [0.999870777130127, 0.9995023012161255, 0.9994865655899048, 0.9983001351356506, 0.9975309371948242, 0.9949517250061035, 0.9928708076477051, 0.9913238286972046] +CCc1ccc(-c2c[nH]c3ccccc23)o1; ['Brc1c[nH]c2ccccc12', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'Clc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.999099850654602, 0.9946972131729126, 0.9689812064170837] +CCc1ccc([C@H]2CCN(C(=O)c3ccccc3)C2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(Cl)c(OC)cc2OC)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(S(=O)(=O)Cl)cc1Cl', 'COc1ccc(Cl)c(OC)c1']; [0.9992787837982178, 0.9978350400924683, 0.9740486145019531, 0.9302754998207092] +CCc1ccc(C2CCN(S(C)(=O)=O)CC2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccccc2-n2cccn2)o1; ['Brc1ccccc1-n1cccn1', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1']; [0.9999510645866394, 0.9998542070388794, 0.9989756345748901] +CCc1ccc(-c2ccc3c(c2)CCO3)o1; ['Brc1ccc2c(c1)CCO2', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'Ic1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'O=S(=O)(Cl)c1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'O=C(O)c1ccc2c(c1)CCO2']; [0.9999336004257202, 0.9998289346694946, 0.9991475343704224, 0.9933960437774658, 0.9900968074798584, 0.9889590740203857] +CCc1ccc(-c2cccc(NC(C)=O)c2)o1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)Nc1cccc(S(=O)(=O)Cl)c1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.9979414939880371, 0.995201587677002, 0.973814845085144, 0.9734253883361816] +CCc1ccc(-c2cnc3ccccc3c2)o1; ['Brc1cnc2ccccc2c1', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; [0.99958336353302, 0.9981792569160461, 0.9980413913726807] +CCc1ccc(-c2scc3c2OCCO3)o1; ['CCc1ccco1']; ['c1scc2c1OCCO2']; [0.9997866153717041] +CCc1ccc(-c2ccc(C(C)(C)C)cc2)o1; ['CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(S(=O)(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.9999361634254456, 0.9998912811279297, 0.9995859861373901, 0.9991752505302429, 0.9974391460418701, 0.9963440299034119] +CCc1ccc(-c2cccc3c2OCO3)o1; ['Brc1cccc2c1OCO2', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CCc1ccco1', 'Ic1cccc2c1OCO2', 'O=C(O)c1cccc2c1OCO2', 'Nc1cccc2c1OCO2']; [0.9999864101409912, 0.9998367428779602, 0.9994688034057617, 0.9980332851409912] +CCc1ccc(-c2nc3ccc(C(C)C)cc3[nH]2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(O)c(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Cl)ccc1O']; [0.9959194660186768, 0.9886538982391357, 0.9867682456970215, 0.9086076021194458] +CCc1ccc(-c2ccc(C(C)(C)C)nc2)o1; ['CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(S(=O)(=O)Cl)cn1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.9991660118103027, 0.998461902141571, 0.9107599258422852] +CCc1ccc(-c2ccc(C(=O)N(C)C)cc2)o1; ['CCc1ccco1']; ['CN(C)C(=O)c1ccc(Br)cc1']; [0.9999082088470459] +CCc1ccc(-c2csc(N)n2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(SC)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CSc1ccc(Br)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(C(=O)O)cc1', 'CSc1ccc(Cl)cc1', 'CSc1ccc(S(=O)(=O)Cl)cc1']; [0.9997920989990234, 0.9997860193252563, 0.999674916267395, 0.9967052936553955, 0.9957603216171265, 0.9953736066818237] +CCc1ccc(-c2cc3ccccc3s2)o1; ['CCc1ccco1']; ['c1ccc2sccc2c1']; [0.9997714757919312] +CCc1ccc(-c2ccc(CN3CCN(CC)CC3)cc2)o1; ['CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['CCc1ccco1']; [0.9768971800804138] +CCc1ccc(-c2ccc(C(=O)N3CCOCC3)cc2OC)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(-c3ccccc3)[nH]n2)o1; [None]; [None]; [0] +CCc1ccc(NC(=O)c2cccc(OC)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2ncc(Br)cn2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(F)cc2Cl)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'Nc1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'O=S(=O)(Cl)c1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1']; [0.9998400211334229, 0.9992640018463135, 0.998940110206604, 0.9966760873794556, 0.9879762530326843, 0.8878278136253357] +CCc1ccc([C@@H]2CC[C@@H](NC(C)=O)CC2)o1; [None]; [None]; [0] +CCc1ccc(OCC2(C)COC2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccn(-c3cccc(Cl)c3)n2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(OC)c(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(S(=O)(=O)Cl)cc1OC', 'COc1ccc(C(=O)O)cc1OC']; [0.9996640682220459, 0.9994797110557556, 0.9993259310722351, 0.998471736907959, 0.998400866985321, 0.9936494827270508, 0.9699804782867432] +CCc1ccc(-c2ccc(CC)o2)cc1; ['CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(C(=O)O)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(S(=O)(=O)Cl)cc1']; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; [0.999506950378418, 0.9993154406547546, 0.9986106157302856, 0.9956386089324951, 0.992053747177124, 0.9869967699050903, 0.986901044845581] +CCc1ccc(-c2ccc(Cl)cc2Cl)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', None, 'CCc1ccco1']; ['Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'O=S(=O)(Cl)c1ccc(Cl)cc1Cl', None, 'Clc1ccc(Cl)c(Cl)c1']; [0.9995752573013306, 0.9995555877685547, 0.9992490410804749, 0.9672663807868958, 0, 0.8358615636825562] +CCc1ccc(-c2cc(C)nc(N)n2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc3c(c2)CCC(=O)N3)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2cn(C)nc2C(F)(F)F)o1; ['CCc1ccco1']; ['Cn1cc(Br)c(C(F)(F)F)n1']; [0.9998747706413269] +CCc1ccc(-c2cccc3ccc(OC)cc23)o1; ['CCc1ccco1', 'CCc1ccco1']; ['COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1']; [0.9990705251693726, 0.9962729811668396] +CCc1ccc(NCc2ccc(OC)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(N3CCOCC3)c(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999698400497437, 0.9999560117721558] +CCc1ccc(-c2ccc3c(c2)CC(C)(C)O3)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc3ccc(O)cc23)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(Cl)c2c1', 'Nc1cccc2ccc(O)cc12']; [0.9933198690414429, 0.9863637685775757, 0.9375208020210266, 0.8345433473587036] +CCc1ccc(-c2ncc(Cl)cn2)o1; [None]; [None]; [0] +CCc1ccc(-c2ncc3cccn3n2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(OC)c(OC)cc2F)o1; ['CCc1ccco1', 'CCc1ccco1']; ['COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC']; [0.9999581575393677, 0.9995408654212952] +CCc1ccc(NC2CN(C(=O)C3CC3)C2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccccn3n2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(Cl)c(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(S(=O)(=O)Cl)ccc1Cl', 'COc1cc(C(=O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; [0.9999406337738037, 0.9999194741249084, 0.9996646642684937, 0.9977811574935913, 0.9918529391288757, 0.9660201668739319] +CCc1ccc(-c2cnn(CCO)c2)o1; ['CCc1ccco1']; ['OCCn1cc(Br)cn1']; [0.998326301574707] +CCc1ccc(-c2ccc(C(=O)NC)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(S(=O)(=O)Cl)cc1']; [0.9994968175888062, 0.9993399381637573, 0.999029278755188, 0.9859824180603027, 0.9743270874023438] +CCNC(=O)c1ccc(-c2ccc(CC)o2)nc1; [None]; [None]; [0] +CCc1ccc(-c2ncnc3c(C)csc23)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(N)nc3[nH]ccc23)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(OC)c(Br)cc2OC)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1']; [0.9993781447410583, 0.9918386936187744, 0.9851189851760864, 0.9660423398017883, 0.8068146705627441] +CCc1ccc(Nc2cc(C)n(C)n2)o1; [None]; [None]; [0] +CCc1ccc(Nc2nc(C)c(C)s2)o1; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccco2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(CS(C)(=O)=O)cc2OC)o1; [None]; [None]; [0] +CCc1ccc(Cc2ccc(S(=O)(=O)CCO)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(OC)cc(OC)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cccc(OC)c1']; [0.99994957447052, 0.9998929500579834, 0.9998642206192017, 0.9991332292556763, 0.9985195994377136, 0.9982955455780029, 0.8377500772476196] +CCc1ccc(Cc2ccc(C(N)=O)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)o1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc(CC)o2)CC1; [None]; [None]; [0] +CCc1ccc(-c2cn(C)c3ccc(OC)cc23)o1; [None]; [None]; [0] +CCc1ccc([C@@H]2CC[C@@H](OC)CC2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc3cn[nH]c3c2)o1; ['Brc1ccc2cn[nH]c2c1']; ['CCc1ccco1']; [0.9860192537307739] +CCc1ccc(-c2cnn(CC)c2)o1; ['CCc1ccco1']; ['CCn1cc(Br)cn1']; [0.9903764724731445] +CCc1ccc(-c2cc(C(=O)NC)ccc2OC)o1; ['CCc1ccco1', 'CCc1ccco1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(N)c1']; [0.9985472559928894, 0.9893797636032104] +CCc1ccc(-c2ncc3sccc3n2)o1; [None]; [None]; [0] +CCc1ccc(-c2cn(C)nc2C(C)C)o1; ['CC(C)c1nn(C)cc1Br']; ['CCc1ccco1']; [0.999264121055603] +CCc1ccc(-c2cc(-c3cccnc3)ccn2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C[NH+](C)C)cc2)o1; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccc(C(C)(C)C)cc2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(OC(F)(F)F)cc2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'O=S(=O)(Cl)c1ccc(OC(F)(F)F)cc1']; [0.9999995231628418, 0.9999985098838806, 0.999992847442627, 0.9999803900718689, 0.9999727010726929] +CCc1ccc(-c2cc3cc(OC)ccc3o2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccccc3o2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(Br)cn2C)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(NC(=O)N3CCCC3)c2)o1; [None]; [None]; [0] +CCc1cccc(-c2ccc(CC)o2)n1; ['CCc1cccc(Br)n1']; ['CCc1ccco1']; [0.9991737604141235] +CCc1ccc(-c2cn(C)c3ccccc23)o1; [None]; [None]; [0] +CCc1ccc(-c2nc3ccc(OC)cc3[nH]2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc3c(cnn3C)c2)o1; ['CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1', 'CCc1ccco1']; ['Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(S(=O)(=O)Cl)ccc21']; [0.99982750415802, 0.9996460676193237, 0.9990992546081543, 0.9164037704467773] +CCc1ccc(-c2cc(C)c(OCCO)c(C)c2)o1; [None]; [None]; [0] +CCc1ccc(NC(=O)c2cc(OC)ccc2F)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(N(C)C)nc2)o1; ['CCc1ccco1']; ['CN(C)c1ccc(Br)cn1']; [0.9995245933532715] +CCc1ccc(-c2ccc3c(C)n[nH]c3c2)o1; ['CCc1ccco1', 'CCc1ccco1']; ['Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(N)ccc12']; [0.9989633560180664, 0.993721604347229] +CCc1ccc(-c2ncn3c2CCCC3)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(CCO)cc2)o1; ['CCc1ccco1', 'CCc1ccco1']; ['OCCc1ccc(Br)cc1', 'OCCc1ccc(Cl)cc1']; [0.997588038444519, 0.8394960165023804] +CCc1ccc(-c2ccc3c(c2)c(Cl)nn3C)o1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)o1; [None]; [None]; [0] +CCc1ccc(-c2cccc(N3CCCC3=O)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2cnn(C3CCN(C(C)=O)CC3)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(-c3cnc(C)n3C)cc2)o1; [None]; [None]; [0] +CCc1ccc(NC(=O)c2cccc(OC(F)(F)F)c2)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(=O)NC)cc2OC)o1; ['CCc1ccco1', 'CCc1ccco1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; [0.9991942048072815, 0.9812362790107727] +CCc1ccc(-c2ccc(-c3cnn(C)c3)cc2OC)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(=O)N(C)C)cc2Cl)o1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(CC)o2)cc1; ['CCNC(=O)c1ccc(Br)cc1']; ['CCc1ccco1']; [0.9997625350952148] +CCc1ccc(-c2ccc(N3CCOCC3)cc2C)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(S(C)(=O)=O)cc2OC)o1; [None]; [None]; [0] +CCc1ccc(-c2ccc(N3CCNCC3)cc2OC)o1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc(CC)o2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['CCc1ccco1']; [0.9999816417694092] +CCc1ccc(-c2ccc(C(=O)N(C)C)cn2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(S(C)(=O)=O)ccc2Cl)o1; ['CCc1ccco1', 'CCc1ccco1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(S(=O)(=O)Cl)c1']; [0.9941763281822205, 0.9836204051971436] +CCc1ccc(Nc2ccccn2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(C(C)(C)O)n(C)n2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(C(=O)NC)ccc2C)o1; ['CCc1ccco1']; ['CNC(=O)c1ccc(C)c(N)c1']; [0.9932186603546143] +CCc1ccc(Nc2ccc(F)cn2)o1; [None]; [None]; [0] +CCOc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CCc1ccc(Nc2cc(C)c(F)cn2)o1; [None]; [None]; [0] +CCc1ccc(-c2cc(C(=O)NCCO)ccc2C)o1; [None]; [None]; [0] +COc1cc(-c2ccnc(Nc3ccccc3)n2)cc(OC)c1OC; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccnc(Nc4ccccc4)n3)c2c1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ncc4ccccc4n3)n2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +COc1ncccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['COc1ccc(C(=O)C=CN(C)C)cc1', 'COc1ccc(-c2ccnc(Cl)n2)cc1', 'Brc1ccccc1', 'COc1ccc(-c2ccnc(N)n2)cc1', 'COc1ccc(-c2ccnc(SC)n2)cc1']; ['N=C(N)Nc1ccccc1', 'Nc1ccccc1', 'COc1ccc(-c2ccnc(N)n2)cc1', 'Ic1ccccc1', 'Nc1ccccc1']; [0.999994158744812, 0.9999306201934814, 0.9988176226615906, 0.9978083372116089, 0.9970487356185913] +Cc1cc(Nc2ccnc(Nc3ccccc3)n2)sn1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cnc4cccnn34)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ccc(N4CCOCC4)cc3)n2)cc1; ['CN(C)C=CC(=O)c1ccc(N2CCOCC2)cc1']; ['N=C(N)Nc1ccccc1']; [1.0] +N#Cc1ccc(O)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Oc1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3nccc4ccccc34)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3nc4ccccc4[nH]3)n2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccnc(Nc3ccccc3)n2)c1)C1CC1; [None]; [None]; [0] +c1ccc(Nc2nccc(Nc3ncccn3)n2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccnc(Nc4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccnc(Nc4ccccc4)n3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(Nc3ccncn3)n2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1)N1CCOCC1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cccc(C4CCNCC4)c3)n2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['CN(C)/C=C/C(=O)c1ccc(C(F)(F)F)cc1', 'CN(C)C=CC(=O)c1ccc(C(F)(F)F)cc1', 'Brc1ccccc1', 'Ic1ccccc1', 'Clc1ccccc1']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1', 'Nc1nccc(-c2ccc(C(F)(F)F)cc2)n1', 'Nc1nccc(-c2ccc(C(F)(F)F)cc2)n1', 'Nc1nccc(-c2ccc(C(F)(F)F)cc2)n1']; [0.9999995231628418, 0.9999995231628418, 0.9999570846557617, 0.999866247177124, 0.9997093677520752] +OCCOc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2ccnc(Nc3ccccc3)n2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccnc(Nc3ccccc3)n2)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['c1ccc(Nc2ncccn2)cc1']; [0.9981634616851807] +CN(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3ccnc(Nc4ccccc4)n3)cc2C1; [None]; [None]; [0] +Brc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['CN(C)/C=C/C(=O)c1ccc(Br)cc1', 'CN(C)C=CC(=O)c1ccc(Br)cc1', 'Clc1nccc(-c2ccc(Br)cc2)n1', 'Ic1ccccc1', 'Brc1ccccc1']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1', 'Nc1ccccc1', 'Nc1nccc(-c2ccc(Br)cc2)n1', 'Nc1nccc(-c2ccc(Br)cc2)n1']; [0.9999995231628418, 0.9999995231628418, 0.9999732971191406, 0.9997051954269409, 0.980894923210144] +CS(=O)(=O)N1CCC(c2ccnc(Nc3ccccc3)n2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccnc(Nc4ccccc4)n3)c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2ccnc(Nc3ccccc3)n2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2ccnc(Nc3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccnc(Nc2ccccc2)n1; ['COc1ccc(Cl)cc1-c1ccnc(Cl)n1']; ['Nc1ccccc1']; [0.9996005296707153] +CCCOc1ccc(-c2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ccn4nccc4n3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3c[nH]c4ccccc34)n2)cc1; ['Clc1nccc(-c2c[nH]c3ccccc23)n1']; ['Nc1ccccc1']; [0.9999985694885254] +c1ccc(Nc2nccc(-c3ccccc3-n3cccn3)n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)c(C)c1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ccc4c(c3)CCO4)n2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccnc(Nc3ccccc3)n2)c1; ['CC(=O)Nc1cccc(C(=O)C=CN(C)C)c1']; ['N=C(N)Nc1ccccc1']; [0.9999984502792358] +COc1cc(OC)c(-c2ccnc(Nc3ccccc3)n2)cc1Cl; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cc(-c4ccccc4)[nH]n3)n2)cc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccnc(Nc4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cccc4c3OCO4)n2)cc1; [None]; [None]; [0] +COc1cc(-c2ccnc(Nc3ccccc3)n2)ccc1O; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['CN(C)/C=C/C(=O)c1ccc(C(C)(C)C)cc1', 'CN(C)C=CC(=O)c1ccc(C(C)(C)C)cc1']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1']; [0.9999996423721313, 0.9999996423721313] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3scc4c3OCCO4)n2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cnc4ccccc4c3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccnc(Nc3ccccc3)n2)CC1; [None]; [None]; [0] +CC1(COc2ccnc(Nc3ccccc3)n2)COC1; [None]; [None]; [0] +CSc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3ccnc(Nc4ccccc4)n3)n2)c1; [None]; [None]; [0] +Nc1nc(-c2ccnc(Nc3ccccc3)n2)cs1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cc4ccccc4s3)n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccnc(Nc4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1OC; ['COc1ccc(C(=O)C=CN(C)C)cc1OC']; ['N=C(N)Nc1ccccc1']; [0.9999996423721313] +Fc1ccc(-c2ccnc(Nc3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3ccnc(Nc4ccccc4)n3)ccc2N1; [None]; [None]; [0] +Clc1ccc(-c2ccnc(Nc3ccccc3)n2)c(Cl)c1; ['CN(C)/C=C/C(=O)c1ccc(Cl)cc1Cl', 'CN(C)C=CC(=O)c1ccc(Cl)cc1Cl']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1']; [0.9999667406082153, 0.9999667406082153] +CCc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Brc1cnc(-c2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1cc(-c2ccnc(Nc3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +COc1ccc(CNc2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +COc1cc(-c2ccnc(Nc3ccccc3)n2)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2ccnc(Nc3ccccc3)n2)C1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ncc4cccn4n3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cc4ccccn4n3)n2)cc1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccnc(Nc4ccccc4)n3)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccnc(Nc4ccccc4)n3)ccc2O1; [None]; [None]; [0] +Cn1cc(-c2ccnc(Nc3ccccc3)n2)c(C(F)(F)F)n1; [None]; [None]; [0] +Oc1ccc2cccc(-c3ccnc(Nc4ccccc4)n3)c2c1; [None]; [None]; [0] +Cc1nc(Nc2ccnc(Nc3ccccc3)n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2ccnc(Nc3ccccc3)n2)nn1C; [None]; [None]; [0] +Cc1csc2c(-c3ccnc(Nc4ccccc4)n3)ncnc12; [None]; [None]; [0] +COc1cc(F)c(-c2ccnc(Nc3ccccc3)n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccnc(Nc3ccccc3)n2)ccc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccnc(Nc3ccccc3)n2)cn1; [None]; [None]; [0] +Clc1cnc(-c2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +O=C(Nc1ccnc(Nc2ccccc2)n1)c1ccco1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +COc1cc(-c2ccnc(Nc3ccccc3)n2)c(OC)cc1Br; [None]; [None]; [0] +Nc1cc(-c2ccnc(Nc3ccccc3)n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccnc(Nc3ccccc3)n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccnc(Nc4ccccc4)n3)cc2c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccnc(Nc3ccccc3)n2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccnc(Nc3ccccc3)n2)CC1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cc4ccccc4o3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ccc4cn[nH]c4c3)n2)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CCn1cc(-c2ccnc(Nc3ccccc3)n2)cn1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cc(-c4cccnc4)ccn3)n2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cn1cc(-c2ccnc(Nc3ccccc3)n2)c2ccccc21; ['Cn1cc(-c2ccnc(Cl)n2)c2ccccc21']; ['Nc1ccccc1']; [0.9999840259552002] +c1ccc(Nc2nccc(-c3ncc4sccc4n3)n2)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; ['FC(F)(F)Oc1ccc(-c2ccnc(Cl)n2)cc1']; ['Nc1ccccc1']; [0.9999851584434509] +O=C(Nc1cccc(-c2ccnc(Nc3ccccc3)n2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3ccnc(Nc4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccnc(Nc3ccccc3)n2)cn1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccnc(Nc4ccccc4)n3)ccc21; [None]; [None]; [0] +CCc1cccc(-c2ccnc(Nc3ccccc3)n2)n1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ncn4c3CCCC4)n2)cc1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccnc(Nc4ccccc4)n3)ccc12; [None]; [None]; [0] +Cc1cc(-c2ccnc(Nc3ccccc3)n2)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccnc(Nc4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccnc(Nc2ccccc2)n1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccnc(Nc4ccccc4)n3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccnc(Nc4ccccc4)n3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +OCCc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccnc(Nc4ccccc4)n3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Cc1cc(Nc2ccnc(Nc3ccccc3)n2)ncc1F; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Fc1ccc(Nc2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)c(OC)c1; [None]; [None]; [0] +c1ccc(Nc2nccc(Nc3ccccn3)n2)cc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Cn1nc(-c2ccnc(Nc3ccccc3)n2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Oc1cc(-c2ccnc(Nc3ccccc3)n2)ccc1Cl; [None]; [None]; [0] +Fc1ccc(Oc2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Clc1ccc2c(c1-c1ccnc(Nc3ccccc3)n1)OCO2; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nc(N)ncc2F)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9887787699699402] +COc1ccc(-c2nc(N)ncc2F)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9998705983161926, 0.9998670220375061, 0.9994888305664062, 0.9968655109405518] +Cc1nc(C(C)(C)O)sc1-c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(O)c2)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Nc1ncc(F)c(Cl)n1']; [0.9967964291572571, 0.9862264394760132] +Nc1ncc(F)c(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(N3CCOCC3)cc2)n1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ncc(F)c(Cl)n1']; [0.9999921321868896, 0.9999685287475586, 0.99970543384552] +Nc1ncc(F)c(-c2cnc3cccnn23)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(NC(=O)C3CC3)c2)n1; [None]; [None]; [0] +Nc1ncc(F)c(Nc2ncccn2)n1; ['Nc1ncc(F)c(Cl)n1']; ['Nc1ncccn1']; [0.9998950958251953] +Nc1ncc(F)c(-c2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999738931655884, 0.9998672008514404, 0.999337911605835] +Nc1ncc(F)c(-c2ccc(C(=O)Nc3ccccc3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999966025352478, 0.9999770522117615, 0.9998492002487183] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc(N)ncc3F)cc2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cccc4ncccc34)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3n[nH]c4ccccc34)n2)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(-c2ccnc(Nc3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(-c2ccnc(Nc3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2ccnc(Nc3ccccc3)n2)n1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccnc(Nc4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)o1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3ccnc(Nc4ccccc4)n3)cc2)c(O)c1; [None]; [None]; [0] +Brc1cccc(-c2ccnc(Nc3ccccc3)n2)c1; ['CN(C)/C=C/C(=O)c1cccc(Br)c1', 'CN(C)C=CC(=O)c1cccc(Br)c1', 'Clc1nccc(-c2cccc(Br)c2)n1', 'Ic1ccccc1', 'Fc1ccccc1', 'Brc1ccccc1']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1', 'Nc1ccccc1', 'Nc1nccc(-c2cccc(Br)c2)n1', 'Nc1nccc(-c2cccc(Br)c2)n1', 'Nc1nccc(-c2cccc(Br)c2)n1']; [0.9999990463256836, 0.9999990463256836, 0.9999732971191406, 0.999774694442749, 0.9930840134620667, 0.9835649728775024] +c1ccc(Nc2nccc(-c3ccc4ccccc4c3)n2)cc1; ['CN(C)/C=C/C(=O)c1ccc2ccccc2c1', 'CN(C)C=CC(=O)c1ccc2ccccc2c1', 'Clc1nccc(-c2ccc3ccccc3c2)n1', 'Brc1ccccc1', 'Ic1ccccc1', 'Clc1ccccc1', 'Nc1nccc(-c2ccc3ccccc3c2)n1']; ['N=C(N)Nc1ccccc1', 'N=C(N)Nc1ccccc1', 'Nc1ccccc1', 'Nc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1', 'c1ccccc1']; [0.999997615814209, 0.999997615814209, 0.99997878074646, 0.9996859431266785, 0.9995401501655579, 0.9985185861587524, 0.9645218849182129] +COc1cc(CCc2ccnc(Nc3ccccc3)n2)ccc1O; [None]; [None]; [0] +Oc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1F; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Clc1ccccc1OCc1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1; [None]; [None]; [0] +Oc1ccc(-c2ccnc(Nc3ccccc3)n2)c(O)c1; [None]; [None]; [0] +Fc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1Cl; [None]; [None]; [0] +Nc1cc(-c2ccnc(Nc3ccccc3)n2)ccn1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3c[nH]c4cnccc34)n2)cc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Oc1ncc(-c2ccnc(Nc3ccccc3)n2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2ccnc(Nc3ccccc3)n2)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc(Nc4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccnc(Nc4ccccc4)n3)ccc12; [None]; [None]; [0] +COc1cc(CCc2ccnc(Nc3ccccc3)n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3nc4ccccc4s3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3cnc4[nH]ccc4c3)n2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccnc(Nc4ccccc4)n3)ccc2N1; [None]; [None]; [0] +Oc1cncc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccnc(Nc4ccccc4)n3)ccc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccnc(Nc3ccccc3)n2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Cc1n[nH]c(-c2ccnc(Nc3ccccc3)n2)c1C; [None]; [None]; [0] +FC(F)c1cc(-c2ccnc(Nc3ccccc3)n2)[nH]n1; [None]; [None]; [0] +Clc1cnccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CCc1sccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CNc1nc(-c2ccnc(Nc3ccccc3)n2)ncc1F; [None]; [None]; [0] +Cc1oc(-c2ccnc(Nc3ccccc3)n2)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1c(Cl)cc(-c2ccnc(Nc3ccccc3)n2)cc1Cl; [None]; [None]; [0] +c1ccc(Nc2nccc(Nc3ccncc3)n2)cc1; [None]; [None]; [0] +c1ccc(Nc2nccc(-c3ccc4c(c3)CCN4)n2)cc1; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3ccnc(Nc4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Oc1cc(-c2ccnc(Nc3ccccc3)n2)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +CN(c1ccnc(Nc2ccccc2)n1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3ccnc(Nc4ccccc4)n3)c2c1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +Cc1cc(-c2ccnc(Nc3ccccc3)n2)cc(C)c1O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc(Nc4ccccc4)n3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccnc(Nc3ccccc3)n2)ccc1C(N)=O; [None]; [None]; [0] +Oc1c(F)cc(-c2ccnc(Nc3ccccc3)n2)cc1F; [None]; [None]; [0] +c1ccc(Nc2nccc(OCc3cccc4ccccc34)n2)cc1; [None]; [None]; [0] +Fc1ccc(Oc2ccnc(Nc3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccnc(Nc2ccccc2)n1; ['Cc1onc(-c2ccccc2)c1C(=O)C=CN(C)C']; ['N=C(N)Nc1ccccc1']; [0.9999988079071045] +CSc1cccc(-c2ccnc(Nc3ccccc3)n2)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3ccnc(Nc4ccccc4)n3)ccc12; [None]; [None]; [0] +Fc1ccc(CCc2ccnc(Nc3ccccc3)n2)c(F)c1; [None]; [None]; [0] +c1ccc(Nc2nccc(CCc3c[nH]c4ccccc34)n2)cc1; [None]; [None]; [0] +Fc1ccc(COc2ccnc(Nc3ccccc3)n2)c(F)c1; [None]; [None]; [0] +CCOc1ccc(-c2nc(N)ncc2F)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999810457229614, 0.9998295307159424, 0.9996622800827026, 0.9976252913475037] +Fc1cccc(Cl)c1CNc1ccnc(Nc2ccccc2)n1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ccnc(Nc3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc(N)ncc2F)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(F)c(Cl)n1']; [0.9999920129776001] +CS(=O)(=O)c1cccc(-c2nc(N)ncc2F)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999943971633911, 0.9999810457229614] +COc1ncccc1-c1nc(N)ncc1F; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; [0.9997417330741882, 0.9980201721191406, 0.996918797492981, 0.9850576519966125] +Cc1ccc2ncn(-c3nc(N)ncc3F)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9982163906097412, 0.9971970319747925] +COc1cc(-c2nc(N)ncc2F)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; [0.9982085227966309, 0.997977614402771, 0.9957196712493896, 0.9940418004989624] +Nc1ncc(F)c(-c2ccc(OCCO)cc2)n1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OCCOc1ccc(B(O)O)cc1']; [0.9998266100883484, 0.9995402097702026] +Nc1ncc(F)c(-c2nccc3ccccc23)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(C(=O)N3CCOCC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999996423721313, 0.9999971985816956, 0.9999382495880127] +N#Cc1cccc(Cn2cc(-c3nc(N)ncc3F)cn2)c1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(C3CCNCC3)c2)n1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc(N)ncc2F)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999807476997375, 0.999825656414032] +Nc1ncc(F)c(-c2ccc(C(F)(F)F)cc2)n1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ncc(F)c(Cl)n1']; [0.9998427629470825, 0.9997923970222473, 0.9997366666793823, 0.9989928007125854] +CN(C)S(=O)(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999953508377075, 0.9997491836547852] +Nc1ncc(F)c(-c2ccc(C(=O)N3CCOCC3)cn2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(N)ncc2F)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999209046363831, 0.9998764991760254, 0.9997215270996094, 0.9991006851196289] +Nc1ncc(F)c(-c2ccc3c(c2)CS(=O)(=O)C3)n1; ['Nc1ncc(F)c(Cl)n1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9930977821350098] +C[C@@H](O)COc1ccc(-c2nc(N)ncc2F)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc(N)ncc2F)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc(N)ncc2F)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(F)c(Cl)n1']; [0.9998513460159302] +CS(=O)(=O)N1CCC(c2nc(N)ncc2F)CC1; [None]; [None]; [0] +Nc1ncc(F)c(Cc2ccccc2O)n1; [None]; [None]; [0] +Nc1ncc(Cc2nc(N)ncc2F)cn1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(Br)cc2)n1; ['Nc1ncc(F)cn1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', None, 'Brc1ccc(Br)cc1']; ['OB(O)c1ccc(Br)cc1', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(Br)cc1', None, 'Nc1ncc(F)c(Cl)n1']; [0.9997243881225586, 0.9993283152580261, 0.9968754649162292, 0, 0.82059246301651] +Nc1ncc(F)c([C@H]2CCN(C(=O)c3ccccc3)C2)n1; [None]; [None]; [0] +CC(C)c1cc(-c2nc(N)ncc2F)nc(N)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(N)ncc2F)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999964833259583, 0.9987814426422119] +CCN(CC)C(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999939203262329, 0.9998795986175537, 0.9989887475967407] +CC(=O)N1CCCN(c2cccc(-c3nc(N)ncc3F)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2nc(N)ncc2F)nc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc(N)ncc1F; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.999658465385437, 0.9987072944641113] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2F)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999929666519165, 0.9999560117721558] +Cc1c(C(=O)[O-])cccc1-c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccccc2-n2cccn2)n1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999564290046692, 0.9998519420623779, 0.9998029470443726, 0.9966133236885071] +COc1cc(OC)c(-c2nc(N)ncc2F)cc1Cl; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3c(c2)CCO3)n1; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Brc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C']; ['OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999970197677612, 0.9999855160713196, 0.9999834895133972, 0.9999752044677734] +Nc1ncc(F)c(-c2c[nH]c3ccccc23)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['OB(O)c1c[nH]c2ccccc12', 'Nc1ncc(F)c(Cl)n1']; [0.9995699524879456, 0.9986590147018433] +COc1ccc(Cc2nc(N)ncc2F)cc1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccn3nccc3n2)n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc(N)ncc2F)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999256730079651, 0.9998592734336853, 0.9948480129241943] +COc1cc(-c2nc(N)ncc2F)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9980617761611938, 0.9935175180435181] +Nc1ncc(F)c(-c2cccc3c2OCO3)n1; ['Brc1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.999479353427887, 0.9993845224380493, 0.9915386438369751, 0.9893836975097656] +Nc1ncc(F)c(-c2scc3c2OCCO3)n1; ['Nc1ncc(F)cn1']; ['c1scc2c1OCCO2']; [0.9970398545265198] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc(N)ncc1F; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc(N)ncc2F)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.999951958656311, 0.9999058842658997, 0.9989539384841919, 0.9897489547729492] +CC(C)c1ccc2nc(-c3nc(N)ncc3F)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(-c3ccccc3)[nH]n2)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999995231628418, 0.9999783039093018, 0.9992908239364624] +CC(C)(C)c1ccc(-c2nc(N)ncc2F)cn1; ['CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999411106109619, 0.9996767044067383, 0.9987109899520874, 0.9959635734558105] +Nc1ncc(F)c(-c2cnc3ccccc3c2)n1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; [0.998361349105835, 0.9982450604438782, 0.9970979690551758, 0.9689215421676636, 0.8273842334747314] +Nc1ncc(F)c(Cc2nc3ccc(F)c(F)c3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(F)c(Cc2nc3c(F)c(F)ccc3[nH]2)n1; [None]; [None]; [0] +Cc1ccc(-c2nc(N)ncc2F)c(=O)[nH]1; [None]; [None]; [0] +Nc1ncc(F)c(-c2csc(N)n2)n1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nc(N)ncc2F)c1; ['COc1cccc(C(N)=O)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9991230368614197] +Nc1ncc(F)c(CCCc2ccccc2)n1; ['ICCCc1ccccc1', 'BrCCCc1ccccc1']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9823628664016724, 0.9753379821777344] +CC(=O)N[C@@H]1CC[C@@H](c2nc(N)ncc2F)CC1; [None]; [None]; [0] +CSc1ccc(-c2nc(N)ncc2F)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999648332595825, 0.9999196529388428, 0.9997918605804443, 0.9995908737182617] +Nc1ncc(F)c(-c2cc3ccccc3s2)n1; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; ['OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1', 'c1ccc2sccc2c1']; [0.9999444484710693, 0.9946827292442322, 0.9608844518661499] +Nc1ncc(F)c(Cc2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccn(-c3cccc(Cl)c3)n2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(F)cc2Cl)n1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Fc1ccc(Br)c(Cl)c1', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(F)cc1Cl']; [0.9999414086341858, 0.9967778921127319, 0.9959819316864014, 0.9936450719833374] +CCN1CCN(Cc2ccc(-c3nc(N)ncc3F)cc2)CC1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3c(c2)CCC(=O)N3)n1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9984649419784546] +COc1ccc(-c2nc(N)ncc2F)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.99985671043396, 0.9993793964385986, 0.9988067150115967, 0.9978723526000977] +CC[C@@H](CO)c1nc(N)ncc1F; [None]; [None]; [0] +Cc1cc(-c2nc(N)ncc2F)nc(N)n1; [None]; [None]; [0] +CCc1ccc(-c2nc(N)ncc2F)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.999780535697937, 0.9996217489242554, 0.9974011182785034, 0.9846916198730469] +Nc1ncc(F)c(-c2ccc(Cl)cc2Cl)n1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.999921441078186, 0.9990493059158325, 0.9936910271644592, 0.9924124479293823] +Nc1ncc(F)c([C@H](CO)Cc2ccccc2)n1; [None]; [None]; [0] +Cn1cc(-c2nc(N)ncc2F)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9997268915176392, 0.9995385408401489] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc(N)ncc2F)cc1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ncc(Br)cn2)n1; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2F)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999703168869019, 0.9999637603759766] +CC1(C)Cc2cc(-c3nc(N)ncc3F)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc(N)ncc3F)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9991512298583984] +Nc1ncc(F)c(-c2cccc3ccc(O)cc23)n1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9983335733413696] +Nc1ncc(F)c(CCCn2cncn2)n1; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2F)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999871253967285, 0.999970555305481, 0.9998064041137695, 0.9993772506713867] +Nc1ncc(F)c(-c2ncc3cccn3n2)n1; [None]; [None]; [0] +COc1cc(F)c(-c2nc(N)ncc2F)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.998603105545044, 0.9963849782943726, 0.9937322735786438, 0.8754697442054749] +Nc1ncc(F)c(-c2cnn(CCO)c2)n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9897481203079224] +Nc1ncc(F)c(-c2cc3ccccn3n2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.999998152256012, 0.9999905824661255, 0.999841570854187] +COc1cc(-c2nc(N)ncc2F)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9993517398834229, 0.9984786510467529, 0.979752242565155] +Nc1cc(-c2nc(N)ncc2F)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ncc(F)c(Cl)n1']; [0.9803323745727539] +Cc1csc2c(-c3nc(N)ncc3F)ncnc12; [None]; [None]; [0] +Nc1ncc(F)c(-c2ncc(Cl)cn2)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc(N)ncc2F)nc1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(C(=O)Nc3cn[nH]c3)c2)n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc(N)ncc2F)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9999390244483948, 0.9997714757919312, 0.9991896748542786, 0.9950674772262573] +COc1ccc(OC)c(Cc2nc(N)ncc2F)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nc(N)ncc1F; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc(N)ncc2F)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc(N)ncc1F)cn2C; ['COc1ccc2c(ccn2C)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9998195171356201] +CCn1cc(-c2nc(N)ncc2F)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Nc1ncc(F)c(Cl)n1']; [0.9755163788795471] +CCNC(=O)N1CCC(c2nc(N)ncc2F)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nc(N)ncc2F)c1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3cn[nH]c3c2)n1; ['CC(=O)n1ncc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ncc(F)c(Cl)n1']; [0.9999926090240479, 0.9991083145141602, 0.991412341594696] +COc1ccc2oc(-c3nc(N)ncc3F)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc(N)ncc1F; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ncc(F)c(Cl)n1']; [0.9997606873512268] +C[NH+](C)Cc1ccc(-c2nc(N)ncc2F)cc1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc3ccccc3o2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(-c3cccnc3)ccn2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(OC(F)(F)F)cc2)n1; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(Br)cc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.999999463558197, 0.9999985694885254, 0.9999974966049194, 0.9999773502349854] +COc1ccc(F)c(C(=O)Nc2nc(N)ncc2F)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9938273429870605] +COc1ccc2nc(-c3nc(N)ncc3F)[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2ncc3sccc3n2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(NC(=O)N3CCCC3)c2)n1; [None]; [None]; [0] +Cn1cc(-c2nc(N)ncc2F)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9998875856399536, 0.9898892641067505] +Cn1ncc2cc(-c3nc(N)ncc3F)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9999254941940308, 0.9999047517776489, 0.9977399706840515, 0.9739218950271606] +CN(C)c1ccc(-c2nc(N)ncc2F)cn1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999680519104004, 0.9997614622116089, 0.9993987083435059, 0.9756007194519043] +Cc1cc(-c2nc(N)ncc2F)cc(C)c1OCCO; [None]; [None]; [0] +CCc1cccc(-c2nc(N)ncc2F)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ncn3c2CCCC3)n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nc(N)ncc3F)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc(N)ncc3F)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999083280563354, 0.999835729598999] +CC(C)(O)c1ccc2cc(-c3nc(N)ncc3F)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(N3CCCC3=O)c2)n1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9999522566795349] +Nc1ncc(F)c(-c2ccc(CCO)cc2)n1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OCCc1ccc(B(O)O)cc1']; [0.9979088306427002, 0.9916419982910156] +Nc1ncc(F)c(NC(=O)c2cccc(OC(F)(F)F)c2)n1; ['NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9998786449432373] +CC(=O)N1CCC(n2cc(-c3nc(N)ncc3F)cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2F)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9999752044677734] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2F)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc(N)ncc1F; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1ncc(F)c(Cl)n1']; [0.9999642372131348] +COc1cc(N2CCNCC2)ccc1-c1nc(N)ncc1F; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc(N)ncc1F; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc(N)ncc1F; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc(N)ncc3F)cc2)n1C; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc(N)ncc2F)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9957312345504761] +CCNC(=O)Cc1ccc(-c2nc(N)ncc2F)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1']; [0.9997621178627014] +CCNC(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(F)c(Cl)n1']; [0.9998759031295776] +Nc1ncc(F)c(-c2c(Cl)ccc3c2OCO3)n1; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9955694079399109, 0.9861880540847778] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2F)nc1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(Cl)c(O)c2)n1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9997820854187012, 0.9997725486755371] +C[C@H](CS(C)(=O)=O)c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2c(Cl)cccc2Cl)n1; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9991323947906494, 0.9987839460372925] +CNC(=O)c1ccc(C)c(-c2nc(N)ncc2F)c1; [None]; [None]; [0] +Cn1nc(-c2nc(N)ncc2F)cc1C(C)(C)O; [None]; [None]; [0] +Nc1ncc(F)c(Oc2ccc(F)cc2)n1; ['Nc1ncc(F)c(Cl)n1']; ['Oc1ccc(F)cc1']; [0.9995613694190979] +Cc1ccc(C(=O)NCCO)cc1-c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(O)cc2F)n1; ['Nc1ncc(F)c(Cl)n1']; ['OB(O)c1ccc(O)cc1F']; [0.9806004762649536] +Nc1ncc(F)c(-c2cccc3ncccc23)n1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'Nc1ncc(F)c(Cl)n1', 'Brc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1cccc2ncccc12', 'Nc1ncc(F)cn1', 'Nc1ncc(F)cn1', 'OB(O)c1cccc2ncccc12']; [0.9997621178627014, 0.9995279908180237, 0.9956046938896179, 0.9896613359451294, 0.9633772373199463, 0.9593285918235779] +Nc1ncc(F)c(-c2ccc(O)cc2Cl)n1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(O)cc1Cl']; [0.9993774890899658, 0.9945744872093201] +COc1ccc(F)cc1-c1nc(N)ncc1F; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9999562501907349, 0.9993898868560791] +COc1cc(C(N)=O)ccc1-c1nc(N)ncc1F; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999759197235107, 0.9996979236602783] +NC(=O)c1ccc(-c2nc(N)ncc2F)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9998383522033691, 0.9996689558029175, 0.9989113211631775] +COc1cc(F)ccc1-c1nc(N)ncc1F; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999058246612549, 0.9996678829193115, 0.9995511770248413, 0.9993308186531067] +Nc1ncc(F)c(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +COC(=O)c1ccc(-c2nc(N)ncc2F)o1; ['COC(=O)c1ccc(B(O)O)o1']; ['Nc1ncc(F)c(Cl)n1']; [0.9997613430023193] +Nc1ncc(F)c(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cccc(Br)c2)n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', None]; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', None]; [0.999683678150177, 0.9996669888496399, 0.9996514320373535, 0] +Nc1nccc(-c2nc(N)ncc2F)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nc(N)ncc3F)cc2[nH]1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(O)c(F)c2)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C']; ['OB(O)c1ccc(O)c(F)c1', 'Nc1ncc(F)c(Cl)n1']; [0.9942272305488586, 0.9897007942199707] +Nc1ncc(F)c(-c2ccc3ccccc3c2)n1; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', None, 'Brc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc(F)c(Cl)n1', None, 'Nc1ncc(F)c(Cl)n1']; [0.9998447895050049, 0.999794602394104, 0.9993729591369629, 0, 0.994658350944519] +COC(=O)c1ccc(Cl)c(-c2nc(N)ncc2F)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999916553497314, 0.9995273351669312] +Nc1ncc(F)c(-c2ccc(-c3ccc(O)cc3O)cc2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cnn3ncccc23)n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9996552467346191] +Nc1cc(-c2nc(N)ncc2F)ccn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.999943733215332, 0.9960601329803467, 0.980574369430542] +COc1cc(CCc2nc(N)ncc2F)ccc1O; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(O)ccc2Cl)n1; ['Nc1ncc(F)c(Cl)n1']; ['OB(O)c1cc(O)ccc1Cl']; [0.9789260029792786] +Nc1ncc(F)c(-c2ccc(F)c(Cl)c2)n1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Fc1ccc(Br)cc1Cl']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Nc1ncc(F)c(Cl)n1']; [0.999957263469696, 0.9996445178985596, 0.9992073178291321, 0.9970911741256714] +Nc1ncc(F)c(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1nc(N)ncc1F; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9950834512710571, 0.9801296591758728] +Cc1ccc2[nH]ncc2c1-c1nc(N)ncc1F; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; [0.999936044216156, 0.9961104393005371, 0.9949925541877747, 0.9936853647232056] +Nc1ncc(F)c(-c2ccc(O)cc2O)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cnc(O)c(Cl)c2)n1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.9955391883850098] +Nc1ncc(F)c(COc2ccccc2Cl)n1; [None]; [None]; [0] +NC(=O)c1cc(-c2nc(N)ncc2F)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2nc(N)ncc2F)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9998633861541748, 0.999599814414978, 0.9994682669639587, 0.9686890244483948] +Nc1ncc(F)c(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cnc3[nH]ccc3c2)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C']; ['OB(O)c1cnc2[nH]ccc2c1', 'Nc1ncc(F)c(Cl)n1']; [0.9990934133529663, 0.9917643666267395] +NC(=O)Nc1ccc(-c2nc(N)ncc2F)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Nc1ncc(F)c(Cl)n1']; [0.999929666519165] +Cc1nc2ccc(-c3nc(N)ncc3F)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9993993043899536, 0.7885511517524719] +CS(=O)(=O)c1ccc(-c2nc(N)ncc2F)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9999992847442627, 0.9999908208847046, 0.9999839067459106, 0.9999359846115112] +CNC(=O)c1cccc2cc(-c3nc(N)ncc3F)ccc12; [None]; [None]; [0] +COc1cc(CCc2nc(N)ncc2F)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9973344802856445] +Nc1ncc(F)c(-c2nc3ccccc3s2)n1; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['Nc1ncc(F)c(Cl)n1']; [0.999886691570282] +Nc1ncc(F)c(-c2cncc(O)c2)n1; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1cncc(O)c1']; [0.9480329751968384, 0.9425772428512573] +CCc1cc(O)ccc1-c1nc(N)ncc1F; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ncc(F)c(Cl)n1']; [0.9998133182525635] +CCc1cc(O)c(F)cc1-c1nc(N)ncc1F; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ncc(F)c(Cl)n1']; [0.9985145330429077] +Cc1cc(O)ccc1-c1nc(N)ncc1F; ['Cc1cc(O)ccc1B(O)O']; ['Nc1ncc(F)c(Cl)n1']; [0.9898176193237305] +Nc1ncc(F)c(-c2ccc3c(c2)CC(=O)N3)n1; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Nc1ncc(F)c(Cl)n1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9996371269226074, 0.9995812177658081, 0.9990739822387695, 0.9600033760070801] +CN(c1cccc(Cl)c1)c1nc(N)ncc1F; ['CNc1cccc(Cl)c1']; ['Nc1ncc(F)c(Cl)n1']; [0.9992625713348389] +Cc1n[nH]c2cc(N(C)c3nc(N)ncc3F)ccc12; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccncc2Cl)n1; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Clc1cnccc1Br', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccncc1Cl', 'Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccncc1Cl']; [0.9997037649154663, 0.9974907040596008, 0.976921558380127, 0.9325852394104004] +CCc1sccc1-c1nc(N)ncc1F; [None]; [None]; [0] +CNc1nccc(-c2nc(N)ncc2F)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(Cl)c(O)c(Cl)c2)n1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9991416335105896, 0.9790467023849487] +C[C@H](CC(N)=O)c1nc(N)ncc1F; [None]; [None]; [0] +Cc1n[nH]c(-c2nc(N)ncc2F)c1C; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3c(c2)CCN3)n1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc2c(c1)CCN2']; [0.9990866184234619, 0.9975889921188354] +Nc1ncc(F)c(Nc2ccncc2)n1; ['Nc1ccncc1']; ['Nc1ncc(F)c(Cl)n1']; [0.9999493360519409] +Nc1ncc(F)c(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3[nH]c(=O)[nH]c3c2)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Nc1ncc(F)c(Cl)n1']; [0.9994837641716003, 0.9983632564544678] +CNc1nc(-c2nc(N)ncc2F)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc(Br)cc2F)n1; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1']; ['Nc1ncc(F)c(Cl)n1', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F']; [0.9967437982559204, 0.9940720200538635, 0.9938812255859375] +Cc1oc(-c2nc(N)ncc2F)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +CN(c1nc(N)ncc1F)c1cccc2[nH]ncc12; ['CNc1nc(N)ncc1F', 'Brc1cccc2[nH]ncc12', 'CNc1cccc2[nH]ncc12']; ['Ic1cccc2[nH]ncc12', 'CNc1nc(N)ncc1F', 'Nc1ncc(F)c(Cl)n1']; [0.9999854564666748, 0.9999830722808838, 0.9997309446334839] +Nc1ncc(F)c(-c2cc(O)cc(Br)c2)n1; ['Nc1ncc(F)c(Cl)n1']; ['OB(O)c1cc(O)cc(Br)c1']; [0.9899730682373047] +Cc1cc(-c2nc(N)ncc2F)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9893888235092163, 0.8708855509757996] +Nc1ncc(F)c(-c2ccc(C(=O)NC3CC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; ['Nc1ncc(F)c(Cl)n1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999924898147583, 0.999970555305481, 0.9995871782302856] +Cc1nc2ccc(-c3nc(N)ncc3F)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.99998939037323, 0.9999078512191772] +Cc1cc(-c2nc(N)ncc2F)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9999868869781494, 0.9966347813606262] +CSc1cccc(-c2nc(N)ncc2F)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1']; ['Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1', 'Nc1ncc(F)c(Cl)n1']; [0.9998278617858887, 0.998181939125061, 0.9941117763519287, 0.9917868971824646] +Cn1ncc(N)c1-c1nc(N)ncc1F; [None]; [None]; [0] +Nc1ncc(F)c(-c2cc(F)c(O)c(F)c2)n1; ['Nc1ncc(F)c(Cl)n1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C']; ['OB(O)c1cc(F)c(O)c(F)c1', 'Nc1ncc(F)c(Cl)n1']; [0.9876550436019897, 0.9839414358139038] +Nc1ncc(F)c(OCc2cccc3ccccc23)n1; ['Nc1ncc(F)c(Cl)n1']; ['OCc1cccc2ccccc12']; [0.9943153262138367] +Nc1ncc(F)c(-c2[nH]nc3ccc(F)cc23)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2ccc3c(=O)[nH][nH]c3c2)n1; [None]; [None]; [0] +Nc1ncc(F)c(Oc2ccc(F)cc2F)n1; ['Nc1ncc(F)c(Cl)n1']; ['Oc1ccc(F)cc1F']; [0.9999727010726929] +Nc1ncc(F)c(OCc2ccc(F)cc2F)n1; ['Nc1ncc(F)c(Cl)n1']; ['OCc1ccc(F)cc1F']; [0.9997962117195129] +Nc1ncc(F)c(NCc2c(F)cccc2Cl)n1; ['NCc1c(F)cccc1Cl']; ['Nc1ncc(F)c(Cl)n1']; [0.9999856352806091] +Cc1onc(-c2ccccc2)c1-c1nc(N)ncc1F; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Nc1ncc(F)cn1', 'Nc1ncc(F)c(Cl)n1']; [0.9999359846115112, 0.9997332692146301] +Nc1ncc(F)c(CCc2c[nH]c3ccccc23)n1; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cccc(O)c3)c12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1']; [0.9999243021011353, 0.999877393245697, 0.9935773611068726, 0.9920392036437988] +Nc1ncc(F)c(-c2ocnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +Nc1ncc(F)c(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +Nc1ncc(F)c(CCc2ccc(F)cc2F)n1; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ccc(Cl)c(O)c3)c12; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999921917915344, 0.9999352693557739, 0.9985975623130798, 0.9969557523727417] +CNS(=O)(=O)c1ccc(-c2c[nH]c3nccc(OC)c23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999866485595703, 0.999966025352478, 0.9945822954177856, 0.9928054809570312] +COc1ccnc2[nH]cc(-c3c(Cl)ccc4c3OCO4)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9955613613128662, 0.9927127957344055] +COc1ccnc2[nH]cc(-c3cccc4ncccc34)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3c(Cl)cccc3Cl)c12; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(I)c12']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1']; [0.9895524978637695, 0.9855501651763916, 0.9359447360038757, 0.9279308319091797, 0.7961934804916382] +COc1ccnc2[nH]cc(Oc3ccc(F)cc3)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9985905885696411, 0.998484194278717] +COc1ccnc2[nH]cc(-c3ccc(C(N)=O)cc3)c12; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999971389770508, 0.9999964833259583, 0.9980385303497314, 0.9949867725372314, 0.8102460503578186, 0.8092222213745117, 0.7685786485671997] +COc1ccnc2[nH]cc(-c3ccc(C(N)=O)cc3F)c12; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999934434890747, 0.9999871850013733, 0.996759295463562, 0.9914474487304688, 0.9851101636886597, 0.9848737716674805, 0.8709352016448975] +COc1ccnc2[nH]cc(-c3n[nH]c4ccccc34)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ccc(O)cc3Cl)c12; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(I)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(I)c(Cl)c1', 'Oc1cccc(Cl)c1']; [0.9999594688415527, 0.999946117401123, 0.9997501969337463, 0.9990192651748657, 0.9723520278930664, 0.7521388530731201] +COc1cc(C(N)=O)ccc1-c1c[nH]c2nccc(OC)c12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1Br']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999871253967285, 0.9999856352806091, 0.9115666151046753, 0.9067955017089844] +COc1ccc(F)cc1-c1c[nH]c2nccc(OC)c12; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9998561143875122, 0.9997888803482056, 0.9985931515693665, 0.9972647428512573] +COc1ccnc2[nH]cc(-c3ccc(O)cc3F)c12; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccc(O)cc1F', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1']; [0.9999513626098633, 0.9999256730079651, 0.9977290630340576, 0.9854344129562378, 0.9824368953704834] +COc1cc(F)ccc1-c1c[nH]c2nccc(OC)c12; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999243021011353, 0.9998349547386169, 0.9979752898216248, 0.9953062534332275] +COc1ccnc2[nH]cc(-c3ccnc(N)n3)c12; ['CO']; ['Nc1nccc(-c2c[nH]c3ncccc23)n1']; [0.9578861594200134] +COc1cc(-c2c[nH]c3nccc(OC)c23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999862909317017, 0.9999852180480957, 0.9966037273406982, 0.993327260017395, 0.8285762667655945] +COc1ccnc2[nH]cc(-c3ccc(C(=O)[O-])cc3)c12; [None]; [None]; [0] +COC(=O)c1ccc(-c2c[nH]c3nccc(OC)c23)o1; ['COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9954444169998169, 0.9873785972595215, 0.7934131622314453] +COc1ccnc2[nH]cc(-c3cn[nH]c3Cl)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cccc(Br)c3)c12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999967813491821, 0.9999666213989258, 0.9954066276550293, 0.99347984790802, 0.9890512228012085, 0.9825513362884521, 0.9200513362884521] +COc1ccnc2[nH]cc(-c3ccc(O)c(F)c3)c12; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1']; [0.9999987483024597, 0.9999970197677612, 0.9994549751281738, 0.9990627765655518] +COc1ccnc2[nH]cc(-c3cc(F)c4nc(C)[nH]c4c3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ccc4ccccc4c3)c12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'Brc1ccc2ccccc2c1', 'COc1ccnc2[nH]ccc12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'COc1ccnc2[nH]cc(Br)c12', 'Ic1ccc2ccccc2c1']; [0.9999973773956299, 0.9999945163726807, 0.9998195767402649, 0.9993551969528198, 0.9983909130096436, 0.9888195991516113, 0.9311589002609253] +COc1ccnc2[nH]cc(-c3ccc(-c4ccc(O)cc4O)cc3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cn(C)c4ccccc34)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9998989105224609] +COc1cc(CCc2c[nH]c3nccc(OC)c23)ccc1O; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ccc(O)cc3O)c12; ['COc1ccnc2[nH]cc(I)c12']; ['Oc1cccc(O)c1']; [0.7511435747146606] +COc1ccnc2[nH]cc(-c3cnn4ncccc34)c12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['COc1ccnc2[nH]cc(Br)c12']; [0.999800443649292] +COc1ccnc2[nH]cc(-c3ccc(F)c(Cl)c3)c12; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl']; [1.0, 1.0, 0.999996542930603, 0.9999947547912598, 0.9999809861183167, 0.9999626874923706] +COc1ccnc2[nH]cc(-c3ccnc(N)c3)c12; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999960064888, 0.9999939203262329, 0.9984105825424194, 0.9963418245315552, 0.9840691089630127] +COc1ccnc2[nH]cc(COc3ccccc3Cl)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3[nH]cnc3-c3ccc(F)cc3)c12; ['COc1ccnc2[nH]cc(I)c12']; ['Fc1ccc(-c2cnc[nH]2)cc1']; [0.9987733364105225] +COc1ccnc2[nH]cc(-c3c(C)ccc4[nH]ncc34)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; [0.9999970197677612, 0.9999966621398926, 0.9981831908226013, 0.9970153570175171, 0.9928176999092102] +COC(=O)c1ccc(Cl)c(-c2c[nH]c3nccc(OC)c23)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999865293502808, 0.9998646974563599, 0.9993594884872437, 0.9984844923019409, 0.9976398944854736, 0.9970955848693848, 0.9914649128913879, 0.9826863408088684] +COc1ccnc2[nH]cc(-c3c[nH]c4cnccc34)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9962002038955688, 0.9429609775543213] +COc1ccnc2[nH]cc(-c3cc(O)ccc3Cl)c12; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'OB(O)c1cc(O)ccc1Cl']; [0.997207522392273, 0.8505991697311401] +COc1ccnc2[nH]cc(-c3cnc(O)c(Cl)c3)c12; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'Oc1ncc(Br)cc1Cl']; [0.9999986886978149, 0.9999967813491821, 0.9306538701057434] +COc1ccnc2[nH]cc(-c3c[nH]c(C(N)=O)c3)c12; ['COc1ccnc2[nH]cc(I)c12']; ['NC(=O)c1cc(Br)c[nH]1']; [0.9269903302192688] +COc1ccnc2[nH]cc(-c3cc(CO)ccc3C)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O']; [0.9999833106994629, 0.9999766945838928, 0.9810856580734253, 0.9692896008491516] +COc1cc(OC)cc(-c2c[nH]c3nccc(OC)c23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999934434890747, 0.9999815225601196, 0.9996392130851746, 0.9994300603866577, 0.9719256162643433] +COc1ccc(-c2c[nH]c3nccc(OC)c23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; [0.9999947547912598, 0.9999935626983643, 0.9993888139724731, 0.9976874589920044, 0.9734891653060913, 0.8314934968948364] +CCOc1cccc(-c2c[nH]c3nccc(OC)c23)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; [0.9999878406524658, 0.9999866485595703, 0.9996433258056641, 0.9977124929428101, 0.9785556793212891, 0.9466243982315063, 0.9421247243881226] +COc1ccnc2[nH]cc(-c3cnc4[nH]ccc4c3)c12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'Brc1cnc2[nH]ccc2c1']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999992251396179, 0.9999991655349731, 0.9998047351837158, 0.9997782707214355, 0.9974280595779419] +COc1ccnc2[nH]cc(-c3ccc(NC(N)=O)cc3)c12; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9999995231628418, 0.9999982714653015] +COc1ccnc2[nH]cc(-c3ccc4nc(C)[nH]c4c3)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; [0.9999992847442627, 0.9999938607215881] +COc1ccnc2[nH]cc(-c3ccc(S(C)(=O)=O)cc3)c12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]ccc12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; [0.9999986886978149, 0.9999985694885254, 0.9993225336074829, 0.9979456067085266, 0.9203850030899048] +COc1ccnc2[nH]cc(-c3nc4ccccc4s3)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['c1ccc2scnc2c1']; [0.9997668266296387] +COc1ccnc2[nH]cc(-c3cncc(O)c3)c12; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9989238977432251, 0.973039984703064, 0.8472055196762085] +COc1ccnc2[nH]cc(-c3ccc4c(c3)CC(=O)N4)c12; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.999985933303833, 0.9999750852584839, 0.9998589754104614, 0.9994399547576904, 0.9242457151412964] +CNC(=O)c1cccc2cc(-c3c[nH]c4nccc(OC)c34)ccc12; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3nccc(OC)c23)cc(OC)c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1c[nH]c2nccc(OC)c12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; [0.9997060298919678, 0.999491810798645] +CNc1nccc(-c2c[nH]c3nccc(OC)c23)n1; ['CNc1nccc(Cl)n1']; ['COc1ccnc2[nH]cc(Br)c12']; [0.9927500486373901] +CCc1cc(O)c(F)cc1-c1c[nH]c2nccc(OC)c12; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; [0.9999959468841553, 0.9999933242797852, 0.9982549548149109] +COc1ccnc2[nH]cc(-c3ccc(O)cc3C)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B(O)O']; [0.9990754127502441, 0.998110294342041, 0.9825462102890015, 0.9673559665679932] +COc1ccnc2[nH]cc([C@H](C)CC(N)=O)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3[nH]nc(C)c3C)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(N(C)c3ccc4c(C)n[nH]c4c3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ccncc3Cl)c12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; ['COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl']; [0.9996232986450195, 0.9983761310577393, 0.9981000423431396] +COc1ccnc2[nH]cc(N(C)c3cccc(Cl)c3)c12; ['CNc1cccc(Cl)c1']; ['COc1ccnc2[nH]cc(Br)c12']; [0.9963093996047974] +CCc1sccc1-c1c[nH]c2nccc(OC)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cc(Cl)c(O)c(Cl)c3)c12; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cccc1Cl']; [0.9999921917915344, 0.9999719858169556, 0.9987142086029053, 0.9983094930648804, 0.9751027226448059, 0.943789005279541] +COc1ccnc2[nH]cc(-c3ccc4c(c3)CCN4)c12; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2']; [0.999998152256012, 0.9999971389770508, 0.9990821480751038, 0.9980779886245728] +COc1ccnc2[nH]cc(-c3cc(C(F)F)n[nH]3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(Nc3ccncc3)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['Nc1ccncc1']; [0.8840155601501465] +COc1ccnc2[nH]cc(-c3ccc4[nH]c(=O)[nH]c4c3)c12; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999984502792358, 0.9999938011169434, 0.9999061822891235, 0.9998632073402405, 0.9774106740951538] +COc1ccnc2[nH]cc(-c3ccc(Br)cc3F)c12; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F']; [0.9999978542327881, 0.9997013807296753, 0.994731068611145] +CNc1nc(-c2c[nH]c3nccc(OC)c23)ncc1F; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cc(O)n4nccc4n3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cc(C(=O)[O-])c(C)o3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3[nH]nc4ccc(F)cc34)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['Fc1ccc2n[nH]cc2c1']; [0.9997473955154419] +CNC(=O)c1ccc(-c2c[nH]c3nccc(OC)c23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; [0.9999939799308777, 0.9999868273735046, 0.9939985275268555, 0.9779001474380493] +COc1ccnc2[nH]cc(-c3cc(O)cc(Br)c3)c12; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccnc2[nH]cc(I)c12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12', 'COc1ccnc2[nH]cc(Br)c12']; ['COc1ccnc2[nH]cc(I)c12', 'OB(O)c1cc(O)cc(Br)c1', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1']; [0.99996417760849, 0.9996073246002197, 0.9989588260650635, 0.9962949156761169, 0.9909713268280029, 0.9078685641288757] +COc1ccnc2[nH]cc(-c3c(N)cnn3C)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3cc(C)c(O)c(C)c3)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9999749660491943, 0.9997670650482178, 0.9815471172332764, 0.9550173282623291] +COc1ccnc2[nH]cc(-c3ccc(C(N)=O)c(C)c3)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999998211860657, 0.9999995827674866, 0.9897870421409607] +COc1ccnc2[nH]cc(N(C)c3cccc4[nH]ncc34)c12; ['CNc1cccc2[nH]ncc12']; ['COc1ccnc2[nH]cc(Br)c12']; [0.9990783929824829] +COc1ccnc2[nH]cc(-c3ccc4nc(C)oc4c3)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [1.0, 0.9999975562095642, 0.9999963641166687, 0.9999948143959045, 0.9816776514053345] +COc1ccnc2[nH]cc(-c3ccc(C(=O)NC4CC4)cc3)c12; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]ccc12']; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1']; [0.9999995231628418, 0.9999994039535522, 0.9998470544815063, 0.999523401260376, 0.9905063509941101, 0.934824526309967] +COc1ccnc2[nH]cc(-c3cc(F)c(O)c(F)c3)c12; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]ccc12']; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cc(Br)cc1F']; [0.9999767541885376, 0.9999690055847168, 0.9936581254005432, 0.9879878163337708, 0.9862555265426636, 0.9026747345924377, 0.8715542554855347, 0.8021377325057983] +COc1ccnc2[nH]cc(-c3cccc(SC)c3)c12; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1']; [0.9999883770942688, 0.9999334216117859, 0.9804231524467468, 0.9121039509773254] +COc1ccnc2[nH]cc(Oc3ccc(F)cc3F)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['Oc1ccc(F)cc1F']; [0.9999198913574219] +COc1ccnc2[nH]cc(-c3ccc4c(=O)[nH][nH]c4c3)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(-c3ocnc3-c3ccc(F)cc3)c12; ['COc1ccnc2[nH]cc(Br)c12']; ['Fc1ccc(-c2cocn2)cc1']; [0.9992460012435913] +COc1ccnc2[nH]cc(-c3c(-c4ccccc4)noc3C)c12; ['COc1ccnc2[nH]cc(Br)c12', 'COc1ccnc2[nH]cc(I)c12']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; [0.999912679195404, 0.9998258352279663] +COc1ccnc2[nH]cc(-c3cn[nH]c3-c3ccc(Cl)cc3)c12; ['COc1ccnc2[nH]cc(I)c12']; ['Clc1ccc(-c2ccn[nH]2)cc1']; [0.9155975580215454] +COc1ccnc2[nH]cc(OCc3cccc4ccccc34)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(NCc3c(F)cccc3Cl)c12; ['COc1ccnc2[nH]cc(I)c12', 'COc1ccnc2[nH]cc(Br)c12']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9996642470359802, 0.9994901418685913] +COc1ccnc2[nH]cc(CCc3c[nH]c4ccccc34)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(OCc3ccc(F)cc3F)c12; [None]; [None]; [0] +COc1ccnc2[nH]cc(CCc3ccc(F)cc3F)c12; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccnc4ccccc34)c12; ['Ic1ccnc2ccccc12']; ['Oc1ccnc2[nH]ccc12']; [0.950659453868866] +Cc1nnc(-c2ccccc2-c2c[nH]c3nccc(O)c23)[nH]1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cccc(C(F)(F)F)c3)c12; ['FC(F)(F)c1cccc(I)c1']; ['Oc1ccnc2[nH]ccc12']; [0.9845964908599854] +CCn1cc(-c2c[nH]c3nccc(O)c23)cn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccccc3OC(F)(F)F)c12; ['FC(F)(F)Oc1ccccc1I']; ['Oc1ccnc2[nH]ccc12']; [0.9969963431358337] +NC(=O)c1ccccc1-c1c[nH]c2nccc(O)c12; ['NC(=O)c1ccccc1Br']; ['Oc1ccnc2[nH]ccc12']; [0.9973093271255493] +Oc1ccnc2[nH]cc(-c3cnn(Cc4ccccc4)c3)c12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +OCCn1cc(-c2c[nH]c3nccc(O)c23)cn1; [None]; [None]; [0] +Cn1cnc2ccc(-c3c[nH]c4nccc(O)c34)cc2c1=O; [None]; [None]; [0] +N[C@@H](c1ccco1)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnc(-c4ccccc4)[nH]3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cc(Cl)ccc3Cl)c12; [None]; [None]; [0] +COc1cnc(-c2c[nH]c3nccc(O)c23)nc1; [None]; [None]; [0] +Cc1ccc(-c2c[nH]c3nccc(O)c23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3nccc(O)c23)c1)c1ccccc1; [None]; [None]; [0] +Cc1nc(N)sc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CNc1nc(C)c(-c2c[nH]c3nccc(O)c23)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c3nccc(O)c23)cs1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnc4ccccn34)c12; [None]; [None]; [0] +Cc1nc(C)c(-c2c[nH]c3nccc(O)c23)s1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnc4cccnn34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c(Cl)cccc3Cl)c12; ['Clc1cccc(Cl)c1Br']; ['Oc1ccnc2[nH]ccc12']; [0.9953336715698242] +Oc1ccnc2[nH]cc(-c3cccc(Br)c3)c12; ['Brc1cccc(I)c1']; ['Oc1ccnc2[nH]ccc12']; [0.9180818796157837] +Oc1ccnc2[nH]cc(-c3cccc(Cn4cncn4)c3)c12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c[nH]c3nccc(O)c23)c1; ['Cc1ccc(Cl)c(I)c1']; ['Oc1ccnc2[nH]ccc12']; [0.9970498085021973] +Nc1nccc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc4ccccc4c3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnn4ncccc34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c[nH]nc3C(F)(F)F)c12; ['FC(F)(F)c1n[nH]cc1Br']; ['Oc1ccnc2[nH]ccc12']; [0.9947634935379028] +NC(=O)c1c(F)cccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Cc1c(-c2c[nH]c3nccc(O)c23)sc(=O)n1C; [None]; [None]; [0] +Cn1ncc2cc(-c3c[nH]c4nccc(O)c34)ccc21; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2c[nH]c3nccc(O)c23)o1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3c[nH]c4nccc(O)c34)ccc12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cncc4ccccc34)c12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3c[nH]c4nccc(O)c34)cc2)cn1; [None]; [None]; [0] +CN1c2ccc(-c3c[nH]c4nccc(O)c34)cc2CS1(=O)=O; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3nccc(O)c23)c1; ['Oc1cccc(I)c1']; ['Oc1ccnc2[nH]ccc12']; [0.8822482824325562] +OCc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc(-c4cn[nH]c4)cc3)c12; [None]; [None]; [0] +COc1cc(-c2c[nH]c3nccc(O)c23)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +CC(C)n1cc(-c2c[nH]c3nccc(O)c23)nn1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3csc4ncncc34)c12; [None]; [None]; [0] +CSc1nc(-c2c[nH]c3nccc(O)c23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cc4ccccc4[nH]3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc(F)cc3C(F)(F)F)c12; [None]; [None]; [0] +Nc1ncncc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +N#CCCc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(Cc3c(F)cccc3F)c12; ['OCc1c(F)cccc1F']; ['Oc1ccnc2[nH]ccc12']; [0.997771680355072] +CC[C@H](CO)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CCNc1nc2ccc(-c3c[nH]c4nccc(O)c34)cc2s1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3nccc(O)c23)cc1Cl; ['COc1ccc(I)cc1Cl']; ['Oc1ccnc2[nH]ccc12']; [0.9497954845428467] +CCC(=O)Nc1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3nccc(O)c23)c2ccccc21; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnn4ccccc34)c12; ['Ic1cnn2ccccc12']; ['Oc1ccnc2[nH]ccc12']; [0.9994499683380127] +CCCn1cc(-c2c[nH]c3nccc(O)c23)cn1; [None]; [None]; [0] +O=C1CCc2cccc(-c3c[nH]c4nccc(O)c34)c21; ['O=C1CCc2cccc(Br)c21']; ['Oc1ccnc2[nH]ccc12']; [0.9843313694000244] +CC(=O)Nc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2c[nH]c3nccc(O)c23)cc1C(F)(F)F; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +O=c1cc(-c2c[nH]c3nccc(O)c23)cc[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; ['CC(C)(C)c1ccc(I)cc1']; ['Oc1ccnc2[nH]ccc12']; [0.8894717693328857] +CN(c1ncccc1Cc1c[nH]c2nccc(O)c12)S(C)(=O)=O; [None]; [None]; [0] +CC(C)Oc1cncc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1c[nH]c2nccc(O)c12; ['COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.9999128580093384, 0.9992722868919373, 0.9493974447250366] +O=c1[nH]ccc2oc(-c3c[nH]c4nccc(O)c34)cc12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cnc4[nH]ccc4c3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c[nH]c4cnccc34)c12; [None]; [None]; [0] +OC[C@H](c1ccccc1)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3c[nH]c4nccc(O)c34)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CC1(c2c[nH]c3nccc(O)c23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c(F)cccc3Cl)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc(-n4cncn4)cc3)c12; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3nccc(O)c23)c(OC)c1; ['COc1ccc(I)c(OC)c1']; ['Oc1ccnc2[nH]ccc12']; [0.9864591360092163] +Oc1ccnc2[nH]cc(-c3ccc(N4CCOCC4)cc3)c12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; ['O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.9746893644332886, 0.9177994728088379] +Cc1cc(-c2c[nH]c3nccc(O)c23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2c[nH]c3nccc(O)c23)[nH]1; [None]; [None]; [0] +CCc1cc(-c2c[nH]c3nccc(O)c23)nc(N)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3nncn3C3CC3)c12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c3nccc(O)c23)CC1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cn(Cc4ccccc4)nn3)c12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c3nccc(O)c23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3nccc(O)c23)s1; [None]; [None]; [0] +Nc1nnc(-c2c[nH]c3nccc(O)c23)s1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3nc4ccccc4s3)c12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c3nccc(O)c23)CC1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +Nc1cncc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cccc4ccsc34)c12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3c[nH]c4nccc(O)c34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c4nccc(O)c34)c2)cc1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cccc4nnsc34)c12; [None]; [None]; [0] +O=C(NCCCc1c[nH]c2nccc(O)c12)C1CCC1; [None]; [None]; [0] +O=C(NCCCc1c[nH]c2nccc(O)c12)c1cccs1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c[nH]c4cccnc34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ncc4ccccc4n3)c12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c3nccc(O)c23)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +OCCn1cnc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2c[nH]c3nccc(O)c23)c1; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.9436293840408325, 0.9263660907745361] +COc1ncccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ncc4cc[nH]c4n3)c12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1c[nH]c2nccc(O)c12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c[nH]c3nccc(O)c23)CC1; [None]; [None]; [0] +Oc1cc(-c2c[nH]c3nccc(O)c23)ccc1Cl; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3c(Cl)ccc4c3OCO4)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cccc4ncccc34)c12; ['Ic1cccc2ncccc12']; ['Oc1ccnc2[nH]ccc12']; [0.849661111831665] +Oc1ccnc2[nH]cc(-c3n[nH]c4ccccc34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(Oc3ccc(F)cc3)c12; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; ['NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.974449872970581, 0.9502968788146973] +NC(=O)c1ccc(-c2c[nH]c3nccc(O)c23)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccc(-c2c[nH]c3nccc(O)c23)c(Cl)c1; [None]; [None]; [0] +CN(C)c1cc(-c2c[nH]c3nccc(O)c23)cnn1; [None]; [None]; [0] +COc1ccc(F)cc1-c1c[nH]c2nccc(O)c12; ['COc1ccc(F)cc1Br']; ['Oc1ccnc2[nH]ccc12']; [0.989221453666687] +Oc1ccc(-c2c[nH]c3nccc(O)c23)c(F)c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +COc1cc(-c2c[nH]c3nccc(O)c23)ccc1O; ['COc1cc(I)ccc1O']; ['Oc1ccnc2[nH]ccc12']; [0.7574918866157532] +Oc1ccc(-c2ccc(-c3c[nH]c4nccc(O)c34)cc2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2c[nH]c3nccc(O)c23)o1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3c[nH]c4nccc(O)c34)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2c[nH]c3nccc(O)c23)cc1F; [None]; [None]; [0] +O=C([O-])c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cn[nH]c3Cl)c12; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3nccc(O)c23)ccn1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc(F)c(Cl)c3)c12; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Oc1ccc(-c2c[nH]c3nccc(O)c23)c(O)c1; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3nccc(O)c23)ccc1O; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1c[nH]c2nccc(O)c12; ['Cc1ccc2[nH]ncc2c1Br']; ['Oc1ccnc2[nH]ccc12']; [0.9927336573600769] +Oc1ccnc2[nH]cc(-c3[nH]cnc3-c3ccc(F)cc3)c12; [None]; [None]; [0] +Oc1ncc(-c2c[nH]c3nccc(O)c23)cc1Cl; [None]; [None]; [0] +Oc1ccnc2[nH]cc(COc3ccccc3Cl)c12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3nccc(O)c23)cc1OC; ['COc1ccc(I)cc1OC']; ['Oc1ccnc2[nH]ccc12']; [0.9147540330886841] +COc1cc(OC)cc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +NC(=O)c1cc(-c2c[nH]c3nccc(O)c23)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3c[nH]c4nccc(O)c34)cc2[nH]1; [None]; [None]; [0] +O=C1Cc2cc(-c3c[nH]c4nccc(O)c34)ccc2N1; ['O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; ['Oc1ccnc2[nH]ccc12', 'Oc1ccnc2[nH]ccc12']; [0.9628691673278809, 0.9387571811676025] +CNC(=O)c1cccc2cc(-c3c[nH]c4nccc(O)c34)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3nccc(O)c23)cc(OC)c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CNc1nccc(-c2c[nH]c3nccc(O)c23)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1c[nH]c2nccc(O)c12; ['CCc1cc(O)c(F)cc1Br']; ['Oc1ccnc2[nH]ccc12']; [0.9910281300544739] +Cc1n[nH]c2cc(N(C)c3c[nH]c4nccc(O)c34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2c[nH]c3nccc(O)c23)c1C; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccncc3Cl)c12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2c[nH]c3nccc(O)c23)cc1Cl; ['Oc1c(Cl)cc(Br)cc1Cl']; ['Oc1ccnc2[nH]ccc12']; [0.9857469797134399] +Oc1ccnc2[nH]cc(-c3ccc4c(c3)CCN4)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cc(C(F)F)n[nH]3)c12; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +CNc1nc(-c2c[nH]c3nccc(O)c23)ncc1F; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cc(O)n4nccc4n3)c12; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3c[nH]c4nccc(O)c34)cc2[nH]1; [None]; [None]; [0] +Cc1oc(-c2c[nH]c3nccc(O)c23)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ccc(Br)cc3F)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(Nc3ccncc3)c12; [None]; [None]; [0] +Cn1ncc(N)c1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3[nH]nc4ccc(F)cc34)c12; [None]; [None]; [0] +Cc1cc(-c2c[nH]c3nccc(O)c23)ccc1C(N)=O; ['Cc1cc(Br)ccc1C(N)=O']; ['Oc1ccnc2[nH]ccc12']; [0.998985767364502] +Cc1nc2ccc(-c3c[nH]c4nccc(O)c34)cc2o1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2c[nH]c3nccc(O)c23)cc1; ['O=C(NC1CC1)c1ccc(Br)cc1']; ['Oc1ccnc2[nH]ccc12']; [0.9953120946884155] +Cc1cc(-c2c[nH]c3nccc(O)c23)cc(C)c1O; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1c(F)cc(-c2c[nH]c3nccc(O)c23)cc1F; ['Oc1c(F)cc(Br)cc1F']; ['Oc1ccnc2[nH]ccc12']; [0.7778676152229309] +O=c1[nH][nH]c2cc(-c3c[nH]c4nccc(O)c34)ccc12; [None]; [None]; [0] +CSc1cccc(-c2c[nH]c3nccc(O)c23)c1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(Oc3ccc(F)cc3F)c12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1c[nH]c2nccc(O)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(OCc3cccc4ccccc34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3ocnc3-c3ccc(F)cc3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(CCc3c[nH]c4ccccc34)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(OCc3ccc(F)cc3F)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(-c3cn[nH]c3-c3ccc(Cl)cc3)c12; [None]; [None]; [0] +Oc1ccnc2[nH]cc(NCc3c(F)cccc3Cl)c12; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N(C)C(C)=O)cc2)cn1; [None]; [None]; [0] +Oc1ccnc2[nH]cc(CCc3ccc(F)cc3F)c12; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncc3ccccc3n2)cn1; [None]; [None]; [0] +CCOc1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(S(C)(=O)=O)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2sc(C(C)(C)O)nc2C)cn1; [None]; [None]; [0] +COc1ncccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnc3cccnn23)cn1; [None]; [None]; [0] +COc1ccc(-n2cnc(NC(C)=O)c2)cc1; ['CC(N)=O']; ['COc1ccc(-n2cnc(Br)c2)cc1']; [0.9979821443557739] +COc1cc(-n2cnc(NC(C)=O)c2)cc(OC)c1OC; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(O)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-n2cnc3ccc(C)cc32)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N3CCOCC3)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)[O-])cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C#N)ccc2O)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2nc3ccccc3[nH]2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(NC(=O)C3CC3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2nccc3ccccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(N)=O)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(Nc2ncccn2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)Nc3ccccc3)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(OCCO)cc2)cn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(C3CCNCC3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnn(Cc3cccc(C#N)c3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)N3CCOCC3)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(F)(F)F)cc2)cn1; ['CC(N)=O']; ['FC(F)(F)c1ccc(-n2cnc(Br)c2)cc1']; [0.9998184442520142] +CC(=O)Nc1cn(-c2ccc(C(=O)N3CCOCC3)cn2)cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(OC[C@H](C)O)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(OC[C@@H](C)O)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N(C)C)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CS(=O)(=O)C3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2sc(C)nc2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(S(=O)(=O)N(C)C)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(C2CCN(S(C)(=O)=O)CC2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C(C)C)nc(N)n2)cn1; [None]; [None]; [0] +CCCOc1ccc(-n2cnc(NC(C)=O)c2)nc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn([C@H]2CCN(C(=O)c3ccccc3)C2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(Br)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(N3CCCN(C(C)=O)CC3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(C(=O)[O-])c2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccn3nccc3n2)cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N(C)C)c(Cl)c2)cn1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccccc2-n2cccn2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c[nH]c3ccccc23)cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2cnc(NC(C)=O)c2)c(C)c1; [None]; [None]; [0] +COc1cc(OC)c(-n2cnc(NC(C)=O)c2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CCO3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2nc3ccc(C(C)C)cc3[nH]2)cn1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +COc1cc(-n2cnc(NC(C)=O)c2)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(-c3ccccc3)[nH]n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc3c2OCO3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(C)(C)C)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnc3ccccc3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2scc3c2OCCO3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)N(C)C)cc2)cn1; [None]; [None]; [0] +COc1cccc(C(=O)Nn2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(C)(C)C)nc2)cn1; [None]; [None]; [0] +CSc1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn([C@@H]2CC[C@@H](NC(C)=O)CC2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2csc(N)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc3ccccc3s2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccn(-c3cccc(Cl)c3)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncc(Br)cn2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C)nc(N)n2)cn1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-n3cnc(NC(C)=O)c3)cc2)CC1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(F)cc2Cl)cn1; [None]; [None]; [0] +COc1ccc(-n2cnc(NC(C)=O)c2)cc1OC; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CCC(=O)N3)cn1; [None]; [None]; [0] +CCc1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncc3cccn3n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(Cl)cc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc3ccccn3n2)cn1; [None]; [None]; [0] +COc1cc(-n2cnc(NC(C)=O)c2)ccc1N1CCOCC1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CC(C)(C)O3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cn(C)nc2C(F)(F)F)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc3ccc(O)cc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncc(Cl)cn2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncnc3c(C)csc23)cn1; [None]; [None]; [0] +COc1ccc2cccc(-n3cnc(NC(C)=O)c3)c2c1; [None]; [None]; [0] +COc1cc(-n2cnc(NC(C)=O)c2)ccc1Cl; [None]; [None]; [0] +COc1cc(F)c(-n2cnc(NC(C)=O)c2)cc1OC; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2cnc(NC(C)=O)c2)nc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnn(CCO)c2)cn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](n2cnc(NC(C)=O)c2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +COc1cc(-n2cnc(NC(C)=O)c2)c(OC)cc1Br; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(n2cnc(NC(C)=O)c2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +COc1ccc2oc(-n3cnc(NC(C)=O)c3)cc2c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3cn[nH]c3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-n1cnc(NC(C)=O)c1)cn2C; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C[NH+](C)C)cc2)cn1; [None]; [None]; [0] +CCn1cc(-n2cnc(NC(C)=O)c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncc3sccc3n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc3ccccc3o2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(-c3cccnc3)ccn2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(Br)cn2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cn(C)nc2C(C)C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(NC(=O)N3CCCC3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(OC(F)(F)F)cc2)cn1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nn2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +COc1ccc2nc(-n3cnc(NC(C)=O)c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-n2cnc(NC(C)=O)c2)n1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cn(C)c3ccccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc3ccc(C(C)(C)O)cc3[nH]2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ncn3c2CCCC3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(cnn3C)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N(C)C)nc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)c(Cl)nn3C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C)c(OCCO)c(C)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(C)n[nH]c3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnn(C3CCN(C(C)=O)CC3)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(N3CCCC3=O)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(CCO)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(NC(=O)c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)N(C)C)cc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(-c3cnc(C)n3C)cc2)cn1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(N3CCOCC3)cc2C)cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)N(C)C)cn2)cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-n2cnc(NC(C)=O)c2)c(OC)c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-n2cnc(NC(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C(C)(C)O)n(C)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(S(C)(=O)=O)ccc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(Cl)c(O)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C(=O)NCCO)ccc2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c(Cl)ccc3c2OCO3)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc3ncccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c(Cl)cccc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(O)cc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(N)=O)cc2F)cn1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +COc1ccc(F)cc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(O)cc2F)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(F)c3nc(C)[nH]c3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccnc(N)n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cccc(Br)c2)cn1; ['Brc1cccc(-n2cnc(Br)c2)c1']; ['CC(N)=O']; [0.9942610859870911] +COc1cc(F)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cn[nH]c2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(-c3ccc(O)cc3O)cc2)cn1; [None]; [None]; [0] +COC(=O)c1ccc(-n2cnc(NC(C)=O)c2)o1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3ccccc3c2)cn1; [None]; [None]; [0] +COc1cc(CCn2cnc(NC(C)=O)c2)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(O)cc2O)cn1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(O)c(F)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnn3ncccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccnc(N)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c[nH]c3cnccc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(COc2ccccc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(F)c(Cl)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c(C)ccc3[nH]ncc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(O)ccc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnc(O)c(Cl)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(CO)ccc2C)cn1; [None]; [None]; [0] +CCOc1cccc(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c[nH]c(C(N)=O)c2)cn1; [None]; [None]; [0] +COc1cc(CCn2cnc(NC(C)=O)c2)cc(OC)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3nc(C)[nH]c3c2)cn1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-n3cnc(NC(C)=O)c3)ccc12; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cnc3[nH]ccc3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(S(C)(=O)=O)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(NC(N)=O)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cncc(O)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2nc3ccccc3s2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn([C@H](C)CC(N)=O)cn1; [None]; [None]; [0] +CNc1nccc(-n2cnc(NC(C)=O)c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CC(=O)N3)cn1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2[nH]nc(C)c2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(O)cc2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(Cl)c(O)c(Cl)c2)cn1; [None]; [None]; [0] +CNc1nc(-n2cnc(NC(C)=O)c2)ncc1F; [None]; [None]; [0] +CCc1sccc1-n1cnc(NC(C)=O)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccncc2Cl)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C(=O)[O-])c(C)o2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(c2)CCN3)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(Br)cc2F)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(O)cc(Br)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3[nH]c(=O)[nH]c3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3nc(C)oc3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(C)c(O)c(C)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2[nH]nc3ccc(F)cc23)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(=O)NC3CC3)cc2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc(C(N)=O)c(C)c2)cn1; [None]; [None]; [0] +CSc1cccc(-n2cnc(NC(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2c(-c3ccccc3)noc2C)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cc(F)c(O)c(F)c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(CCc2c[nH]c3ccccc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CCOc1ccccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ccc3c(=O)[nH][nH]c3c2)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2ocnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1cc(F)cc(F)c1; [None]; [None]; [0] +CC(=O)Nc1cn(CCc2ccc(F)cc2F)cn1; [None]; [None]; [0] +CC(=O)Nc1cn(-c2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1P(C)(C)=O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccnc2ccccc12; [None]; [None]; [0] +COC(C)(C)CCNc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1OC(F)(F)F; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1S(=O)(=O)C(C)C; [None]; [None]; [0] +CCn1cc(Nc2c(C)cnc3ccnn23)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1C(N)=O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2Nc2c(C)cnc3ccnn23)[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnn(CCO)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(NC(=O)c2ccccc2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(Cl)ccc1Cl; [None]; [None]; [0] +COc1cnc(Nc2c(C)cnc3ccnn23)nc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c(C)nc2ccccn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1csc(C(C)(C)C)n1; [None]; [None]; [0] +Cc1ccc(Nc2c(C)cnc3ccnn23)c(Br)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnc2ccccn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnc2cccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c(Cl)cccc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +Cc1ccc(Cl)c(Nc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(Br)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NOCC(=O)C(C)C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccnc(N)n1; [None]; [None]; [0] +CNc1nc(C)c(Nc2c(C)cnc3ccnn23)s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2ccccc2c1; [None]; [None]; [0] +Cc1nc(C)c(Nc2c(C)cnc3ccnn23)s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1sc(N)nc1C; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNc1cccnc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNC(=O)c1cccs1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNCc1cccnc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1sc(=O)n(C)c1C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(F)c1C(N)=O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cncc2ccccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnn2ncccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNCCc1ccccc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(-c2cnn(C)c2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(cnn2C)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1cnc2ccccc21; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNCCc1c[nH]cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +CCCn1cnc(Nc2c(C)cnc3ccnn23)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(C(C)C)nn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(CO)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNc1ccncc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(O)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNCc1ccccc1F; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2ccccc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCc1c[nH]nn1; [None]; [None]; [0] +CSc1nc(Nc2c(C)cnc3ccnn23)c[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1csc(N)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNCc1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cncnc1N; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(CCC#N)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnoc1C(C)C; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCCC(N)=O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1csc2ncncc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +CCC(=O)Nc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNC(=O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +COc1ccc(Nc2c(C)cnc3ccnn23)cc1Cl; [None]; [None]; [0] +CCNc1nc2ccc(Nc3c(C)cnc4ccnn34)cc2s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnn2ccccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NOc1ccccn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCNC(=O)CC(C)(C)O; [None]; [None]; [0] +CCCn1cc(Nc2c(C)cnc3ccnn23)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(C)c2ccccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN1CCC(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NOCC(C)(C)S(C)(=O)=O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(C)(C)N)cc1; [None]; [None]; [0] +COc1cc(CCNc2c(C)cnc3ccnn23)cc(OC)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc2c1C(=O)CC2; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc([S@](C)=O)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc[nH]c(=O)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CCN(CC)Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NO[C@H](C)c1c(Cl)cncc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +COc1cccc(F)c1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNc1cnc2ccccc2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNc1cnccc1-c1ccccc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cncc(OC(C)C)c1; [None]; [None]; [0] +COc1ccncc1NNc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(S(=O)(=O)NC(C)(C)C)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +Cc1cc(Nc2c(C)cnc3ccnn23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnc2[nH]ccc2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c[nH]c2cnccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NC1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c(F)cccc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN[C@@H](C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1ccc(CO)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN[C@@H](C)C(C)(C)O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1cnc(CCO)c1; [None]; [None]; [0] +COc1ccc(Nc2c(C)cnc3ccnn23)c(OC)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN[C@H](C)C(C)(C)O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)c2ccccc2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1ncc2ccccc21; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nn1ncc2c(O)cccc21; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nncn1C1CC1; [None]; [None]; [0] +CSc1nc(C)c(Nc2c(C)cnc3ccnn23)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2c(C)cnc3ccnn23)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nncn1C(C)C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccn(CC[NH3+])n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nnc(N)s1; [None]; [None]; [0] +CCc1cc(Nc2c(C)cnc3ccnn23)nc(N)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCC(=O)NCc1ccccn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCS(=O)(=O)NCc1ccccn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nc2ccccc2s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(C(N)=O)cn1C; [None]; [None]; [0] +CCCCc1cc(Nc2c(C)cnc3ccnn23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2c(C)cnc3ccnn23)s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(C(C)(C)O)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2c(C)cnc3ccnn23)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NOc1ccc(C[NH3+])cc1F; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cncc(N)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc2nnsc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nc(N)c2ccccc2n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc2ccccc2n1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2c(C)cnc3ccnn23)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3c(C)cnc4ccnn34)c2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1N[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Nc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc2ccsc12; [None]; [None]; [0] +COc1ncccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(S(=O)(=O)N(C)C)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(CCO)cn1; [None]; [None]; [0] +COc1ccc(ONc2c(C)cnc3ccnn23)c(F)c1F; [None]; [None]; [0] +CCOc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnnc(N(C)C)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)cc(OC)c1OC; [None]; [None]; [0] +Cc1cnc2ccnn2c1NN1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +COc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(C#N)ccc1O; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nccc2ccccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +Cc1ccc2ncn(Nc3c(C)cnc4ccnn34)c2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3c(C)cnc4ccnn34)cc2)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNc1ncccn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(OCCO)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(N(C)C)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1ccccc1O; [None]; [None]; [0] +Cc1cnc2ccnn2c1NC1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(Br)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1cnc(N)nc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1N[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +COc1ccc(CNc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccn2nccc2n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccccc1-n1cccn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3c(C)cnc4ccnn34)c2)CC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +COc1cc(OC)c(Nc2c(C)cnc3ccnn23)cc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1c[nH]c2ccccc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)CCO2; [None]; [None]; [0] +CCCOc1ccc(Nc2c(C)cnc3ccnn23)nc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc2c1OCO2; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)ccc1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2c(C)cnc3ccnn23)c(C)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cnc2ccccc2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(Nc2c(C)cnc3ccnn23)c(=O)[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +CSc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1scc2c1OCCO2; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCCc1ccccc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1nc2ccc(F)c(F)c2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2ccccc2s1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCc1nc2c(F)c(F)ccc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(F)cc1Cl; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Nc3c(C)cnc4ccnn34)cc2)CC1; [None]; [None]; [0] +CC[C@@H](CO)Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cc(Nc2c(C)cnc3ccnn23)nc(N)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1N[C@H](CO)Cc1ccccc1; [None]; [None]; [0] +CCc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +COc1ccc(Nc2c(C)cnc3ccnn23)cc1OC; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc(Br)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(Cl)cc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NCCCn1cncn1; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2ccccn2n1; [None]; [None]; [0] +COc1ccc2cccc(Nc3c(C)cnc4ccnn34)c2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +COc1cc(F)c(Nc2c(C)cnc3ccnn23)cc1OC; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)ccc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc2ccc(O)cc12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncnc2c(C)csc12; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc(Cl)cn1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc2cccn2n1; [None]; [None]; [0] +COc1ccc(OC)c(CNc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2c(C)cnc3ccnn23)CC1; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)cc(OC)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2c(C)cnc3ccnn23)CC1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2c(C)cnc3ccnn23)nc1; [None]; [None]; [0] +COc1cc(Nc2c(C)cnc3ccnn23)c(OC)cc1Br; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2cn[nH]c2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1c(C)cnc3ccnn13)cn2C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +COc1ccc2oc(Nc3c(C)cnc4ccnn34)cc2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2ccccc2o1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(Br)cn1C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncc2sccc2n1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cn(C)nc1C(C)C; [None]; [None]; [0] +COc1ccc2nc(Nc3c(C)cnc4ccnn34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Nc2c(C)cnc3ccnn23)n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(N(C)C)nc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(C)n[nH]c2c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +Cc1cnc2ccnn2c1NNC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(CCO)cc1; [None]; [None]; [0] +Cc1cc(Nc2c(C)cnc3ccnn23)cc(C)c1OCCO; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2c(C)cnc3ccnn23)c(OC)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3c(C)cnc4ccnn34)cn2)CC1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2c(C)cnc3ccnn23)c1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N(C)C(C)=O)cc2)n[nH]1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CC(=O)Nc1cc(Br)n[nH]1']; [0.9999866485595703] +CCNC(=O)Cc1ccc(Nc2c(C)cnc3ccnn23)cc1; [None]; [None]; [0] +Cc1cnc2ccnn2c1Nc1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +Cc1cnc2ccnn2c1N[C@H](C)CS(C)(=O)=O; [None]; [None]; [0] +CCOc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)O', 'CC(=O)OC(C)=O', 'CC(=O)Cl', None]; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(-c2cc(N)[nH]n2)cc1', 'CCOc1ccc(-c2cc(N)[nH]n2)cc1', 'CCOc1ccc(-c2cc(N)[nH]n2)cc1', None]; [0.9999931454658508, 0.9998102188110352, 0.9997897148132324, 0.9997614026069641, 0.9994184970855713, 0] +Cc1ccc(C(=O)NCCO)cc1Nc1c(C)cnc2ccnn12; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(S(C)(=O)=O)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; [0.9999997019767761, 0.9999945163726807] +COc1cc(-c2cc(NC(C)=O)[nH]n2)cc(OC)c1OC; ['CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Nc1cc(Br)n[nH]1', None, 'CC(=O)Cl', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(-c2cc(N)[nH]n2)cc(OC)c1OC', 'COc1cc(-c2cc(N)[nH]n2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', None, 'COc1cc(-c2cc(N)[nH]n2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC']; [0.9998754262924194, 0.9998084306716919, 0.9993744492530823, 0, 0.9987369775772095, 0.9976935386657715] +COc1ncccc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; [0.999321460723877, 0.9533495903015137] +CC(=O)Nc1cc(-c2ncc3ccccc3n2)n[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', None]; ['COc1ccc(B(O)O)cc1', 'COc1ccc(-c2cc(N)[nH]n2)cc1', 'COc1ccc(-c2cc(N)[nH]n2)cc1', 'COc1ccc(-c2cc(N)[nH]n2)cc1', None]; [0.9998055100440979, 0.9995421171188354, 0.9993247985839844, 0.998444676399231, 0] +CC(=O)Nc1cc(-c2sc(C(C)(C)O)nc2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N3CCOCC3)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999995231628418, 0.9999923706054688] +CC(=O)Nc1cc(-c2cc(C#N)ccc2O)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(I)c1']; [0.9569092392921448, 0.8176559209823608] +CC(=O)Nc1cc(-c2cccc(O)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(I)c1']; [0.9969502687454224, 0.9889146089553833, 0.8690063953399658] +CC(=O)Nc1cc(-c2cccc(NC(=O)C3CC3)c2)n[nH]1; ['CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9963140487670898, 0.9832805395126343] +CC(=O)Nc1cc(-n2cnc3ccc(C)cc32)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3cccnn23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(N)=O)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999983906745911, 0.9999783039093018, 0.9940832257270813, 0.9918168783187866, 0.9707085490226746] +CC(=O)Nc1cc(-c2ccc(C(=O)[O-])cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(Nc2ncccn2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nccc3ccccc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999994039535522, 0.999963641166687, 0.989275336265564] +CC(=O)Nc1cc(-c2nc3ccccc3[nH]2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(Cc3cccc(C#N)c3)c2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OCCO)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1']; [0.9999991655349731, 0.9999011754989624] +CC(=O)NCc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; [0.9999982118606567, 0.9999396800994873, 0.9756439924240112] +CNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9993846416473389] +CC(=O)Nc1cc(-c2cccc(C3CCNCC3)c2)n[nH]1; ['Brc1cccc(C2CCNCC2)c1']; ['CC(=O)Nc1cc(Br)n[nH]1']; [0.9490702748298645] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999957084655762, 0.9968510866165161] +CC(=O)Nc1cc(-c2ccc(N(C)C)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; [0.999990701675415, 0.9997707605361938] +CC(=O)Nc1cc(-c2ccc(C(F)(F)F)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', None]; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1cc(-c2ccc(C(F)(F)F)cc2)n[nH]1', 'Nc1cc(-c2ccc(C(F)(F)F)cc2)n[nH]1', 'Nc1cc(-c2ccc(C(F)(F)F)cc2)n[nH]1', None]; [0.9999971389770508, 0.9999160766601562, 0.9998651742935181, 0.999699592590332, 0.9994363784790039, 0] +CC(=O)Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)n[nH]1; ['CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9824218153953552, 0.7840189933776855] +CC(=O)Nc1cc(-c2ccc(S(=O)(=O)N(C)C)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [0.9999994039535522, 0.9998674392700195, 0.9883166551589966, 0.9754427671432495] +CC(=O)Nc1cc(C2CCN(S(C)(=O)=O)CC2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC[C@H](C)O)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC[C@@H](C)O)cc2)n[nH]1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2sc(C)nc2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Br)cc2)n[nH]1; ['CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', None, 'CC(=O)Nc1cc(Br)n[nH]1']; ['Nc1cc(-c2ccc(Br)cc2)n[nH]1', 'Nc1cc(-c2ccc(Br)cc2)n[nH]1', 'Nc1cc(-c2ccc(Br)cc2)n[nH]1', None, 'OB(O)c1ccc(Br)cc1']; [0.9998542666435242, 0.9998042583465576, 0.9994641542434692, 0, 0.9955365657806396] +CC(=O)Nc1cc(-c2cccc(N3CCCN(C(C)=O)CC3)c2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N(C)C)c(Cl)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; [0.9999995231628418] +CC(=O)Nc1cc(-c2cc(C(C)C)nc(N)n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)n[nH]1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [0.9999992847442627, 0.9999139308929443, 0.9907741546630859] +CNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)c(C)c1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.997805655002594] +CCCOc1ccc(-c2cc(NC(C)=O)[nH]n2)nc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C(=O)[O-])c2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccccc2-n2cccn2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1']; [0.9999195337295532, 0.9989628791809082] +COc1ccc(Cl)cc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)O', None, 'CC(=O)Cl', 'CC(=O)OC(C)=O', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['COc1ccc(Cl)cc1-c1cc(N)[nH]n1', None, 'COc1ccc(Cl)cc1-c1cc(N)[nH]n1', 'COc1ccc(Cl)cc1-c1cc(N)[nH]n1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I']; [0.9999258518218994, 0, 0.9998049139976501, 0.9997769594192505, 0.9995551109313965, 0.9990679025650024, 0.9990309476852417, 0.9948726892471313] +CC(=O)Nc1cc(-c2ccn3nccc3n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]c3ccccc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; [0.9986035227775574, 0.9953961968421936, 0.761397123336792] +CC(=O)Nc1cc(-c2ccc3c(c2)CCO3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'Ic1ccc2c(c1)CCO2']; [0.9999642372131348, 0.9998160004615784, 0.9994609355926514, 0.9992648363113403, 0.9938775300979614, 0.9924729466438293] +CC(=O)Nc1cccc(-c2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999586343765259, 0.9990649223327637, 0.9919641017913818, 0.9873138666152954] +CC(=O)Nc1cc(-c2nc3ccc(C(C)C)cc3[nH]2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc3c2OCO3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'OB(O)c1cccc2c1OCO2']; [0.9995927810668945, 0.9899094104766846] +COc1cc(-c2cc(NC(C)=O)[nH]n2)ccc1O; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O']; [0.9998706579208374, 0.9956724643707275, 0.9933502674102783, 0.9917879700660706, 0.8406418561935425] +CC(=O)Nc1cc(-c2cc(-c3ccccc3)[nH]n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(C)(C)C)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', 'CC(=O)Nc1cc(Br)n[nH]1', None]; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(-c2cc(N)[nH]n2)cc1', 'CC(C)(C)c1ccc(-c2cc(N)[nH]n2)cc1', 'CC(C)(C)c1ccc(-c2cc(N)[nH]n2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', None]; [0.9999984502792358, 0.9999245405197144, 0.9998599290847778, 0.9998557567596436, 0.9997771382331848, 0] +COc1cc(OC)c(-c2cc(NC(C)=O)[nH]n2)cc1Cl; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3ccccc3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1']; [0.9999898672103882, 0.999876856803894] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; [0.9999983310699463, 0.9999398589134216] +CC(=O)Nc1cc(-c2ccc(C(C)(C)C)nc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; [0.9999934434890747, 0.999889612197876] +COc1cccc(C(=O)Nc2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cccc(C(N)=O)c1']; [0.9881452918052673] +CSc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; [0.9999942779541016, 0.9997310638427734] +CC(=O)Nc1cc(-c2scc3c2OCCO3)n[nH]1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(NC(C)=O)[nH]n3)cc2)CC1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9999787211418152, 0.9828537702560425] +CC(=O)Nc1cc(-c2ccc(F)cc2Cl)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1']; [0.9997408390045166, 0.9995300769805908, 0.9968948364257812, 0.9964719414710999, 0.9632570743560791] +CC(=O)Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2csc(N)n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc([C@@H]2CC[C@@H](NC(C)=O)CC2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CCC(=O)N3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1']; [0.9997475147247314, 0.992451548576355, 0.9790099859237671] +CC(=O)Nc1cc(-c2cc3ccccc3s2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C)nc(N)n2)n[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1OC; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Cl', None, 'CC(=O)Nc1ccn[nH]1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(-c2cc(N)[nH]n2)cc1OC', 'COc1ccc(-c2cc(N)[nH]n2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(-c2cc(N)[nH]n2)cc1OC', None, 'COc1ccc(I)cc1OC']; [0.9999287128448486, 0.999561071395874, 0.999291181564331, 0.999180793762207, 0.9974123239517212, 0, 0.9927968978881836] +CCc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', 'CC(=O)Nc1cc(Br)n[nH]1', None, 'CC(=O)Nc1ccn[nH]1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(-c2cc(N)[nH]n2)cc1', 'CCc1ccc(-c2cc(N)[nH]n2)cc1', 'CCc1ccc(-c2cc(N)[nH]n2)cc1', 'CCc1ccc(B(O)O)cc1', None, 'CCc1ccc(I)cc1']; [0.9999936819076538, 0.9998914003372192, 0.9996541738510132, 0.999407172203064, 0.999018669128418, 0, 0.9686427712440491] +CC(=O)Nc1cc(-c2ccc(Cl)cc2Cl)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9993524551391602, 0.9988014101982117] +COc1cc(-c2cc(NC(C)=O)[nH]n2)ccc1N1CCOCC1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.999982476234436, 0.9805687665939331] +CC(=O)Nc1cc(-c2cc3ccccn3n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)nc2C(F)(F)F)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9997432231903076, 0.9994335174560547] +CC(=O)Nc1cc(-c2ccc3c(c2)CC(C)(C)O3)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc(Br)cn2)n[nH]1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(NC(C)=O)[nH]n2)cc1OC; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC']; [0.9995549917221069, 0.9995394349098206] +CC(=O)Nc1cc(-c2ncc3cccn3n2)n[nH]1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)[nH]n2)ccc1Cl; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; [0.9999969601631165, 0.9998929500579834, 0.9998301267623901, 0.999667763710022, 0.999641478061676, 0.9968811869621277] +CC(=O)Nc1cc(-c2cccc3ccc(O)cc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; [0.9967074990272522] +CNC(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; [0.9999986886978149, 0.9999619722366333] +CC(=O)Nc1cc(-c2cnn(CCO)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1']; [0.9989957809448242, 0.9965534210205078] +COc1ccc2cccc(-c3cc(NC(C)=O)[nH]n3)c2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc(Cl)cn2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(N)nc3[nH]ccc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Nc1cc(Br)c2cc[nH]c2n1']; [0.9797544479370117] +CC(=O)Nc1cc(-c2ncnc3c(C)csc23)n[nH]1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)[nH]n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', None, 'CC(=O)Cl']; ['COc1cc(OC)cc(-c2cc(N)[nH]n2)c1', 'COc1cc(OC)cc(-c2cc(N)[nH]n2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', None, 'COc1cc(OC)cc(-c2cc(N)[nH]n2)c1']; [0.9996979236602783, 0.9996585249900818, 0.9995932579040527, 0.9995180368423462, 0, 0.998376727104187] +CO[C@@H]1CC[C@@H](c2cc(NC(C)=O)[nH]n2)CC1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)nc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3cn[nH]c3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1']; [0.9999988079071045, 0.99998539686203] +CCNC(=O)N1CCC(c2cc(NC(C)=O)[nH]n2)CC1; [None]; [None]; [0] +CCn1cc(-c2cc(NC(C)=O)[nH]n2)cn1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; [0.9960647821426392, 0.9682551622390747] +COc1ccc2c(c1)c(-c1cc(NC(C)=O)[nH]n1)cn2C; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)n[nH]1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(NC(C)=O)[nH]n3)cc2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)nc2C(C)C)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; [0.9997637271881104] +CNC(=O)c1ccc(OC)c(-c2cc(NC(C)=O)[nH]n2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C[NH+](C)C)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC(F)(F)F)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 0.999981164932251] +CC(=O)Nc1cc(-c2cc(Br)cn2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3ccccc3o2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc3sccc3n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(-c3cccnc3)ccn2)n[nH]1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['COc1ccc(F)c(C(N)=O)c1']; [0.9936814308166504] +CC(=O)Nc1cc(-c2cn(C)c3ccccc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9995994567871094] +CC(=O)Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)n[nH]1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(NC(C)=O)[nH]n3)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(cnn3C)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999996423721313, 0.9999978542327881, 0.9997386336326599, 0.9977366924285889] +CC(=O)Nc1cc(-c2ccc(N(C)C)nc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1']; [0.9999933838844299, 0.9999049305915833] +CC(=O)Nc1cc(-c2cc(C)c(OCCO)c(C)c2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncn3c2CCCC3)n[nH]1; [None]; [None]; [0] +CCc1cccc(-c2cc(NC(C)=O)[nH]n2)n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(C3CCN(C(C)=O)CC3)c2)n[nH]1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['CC(=O)Nc1cc(Br)n[nH]1']; [0.9999557733535767] +CC(=O)Nc1cc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(C)n[nH]c3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; [0.9999990463256836, 0.9999943971633911, 0.9998506307601929, 0.9985058307647705, 0.9984445571899414, 0.9974992871284485] +CC(=O)Nc1cc(-c2cccc(N3CCCC3=O)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9996638894081116, 0.997964084148407, 0.9356591701507568] +CC(=O)Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9952198266983032] +CC(=O)Nc1cc(-c2ccc3c(c2)c(Cl)nn3C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(CCO)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1']; [0.9999953508377075, 0.9992448687553406, 0.9749757051467896] +CNC(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)c(OC)c1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; [0.9997013807296753] +COc1cc(S(C)(=O)=O)ccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N3CCOCC3)cc2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(-c3cnc(C)n3C)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cc2Cl)n[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CCNC(=O)c1ccc(B(O)O)cc1']; [0.999969482421875] +COc1cc(N2CCNCC2)ccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(C)(C)O)n(C)n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc3ncccc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'Ic1cccc2ncccc12']; [0.9997086524963379, 0.9972203969955444, 0.9967591762542725, 0.946117639541626, 0.9362741708755493, 0.8287544250488281] +CC(=O)Nc1cc(-c2cc(S(C)(=O)=O)ccc2Cl)n[nH]1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(NC(C)=O)[nH]n2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(NC(C)=O)[nH]n2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(=O)NCCO)ccc2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cn2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(Cl)ccc3c2OCO3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9915241003036499, 0.918315052986145] +CC(=O)Nc1cc(-c2ccc(Cl)c(O)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['OB(O)c1ccc(Cl)c(O)c1']; [0.9983295202255249] +CC(=O)Nc1cc(-c2c(Cl)cccc2Cl)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br']; [0.9987637996673584, 0.9643001556396484, 0.9570616483688354] +CC(=O)Nc1cc(Oc2ccc(F)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Oc1ccc(F)cc1']; [0.9958724975585938] +CC(=O)Nc1cc(-c2ccc(C(N)=O)cc2F)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['NC(=O)c1ccc(B(O)O)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9998677968978882, 0.9997787475585938, 0.9818576574325562, 0.9781734943389893] +CC(=O)Nc1cc(-c2ccc(O)cc2F)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['OB(O)c1ccc(O)cc1F', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Oc1ccc(I)c(F)c1']; [0.9979802370071411, 0.9944261312484741, 0.9702642560005188] +COc1ccc(F)cc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O']; [0.9995206594467163, 0.998916506767273, 0.9978379011154175] +CC(=O)Nc1cc(-c2ccc(O)cc2Cl)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(I)c(Cl)c1']; [0.9975025057792664, 0.9036465883255005] +COc1cc(C(N)=O)ccc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9996892213821411] +CC(=O)Nc1cc(-c2n[nH]c3ccccc23)n[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O']; [0.9996452331542969, 0.998816967010498] +CC(=O)Nc1cc(-c2cccc(Br)c2)n[nH]1; ['CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', None, 'CC(=O)Cl', 'CC(=O)Nc1cc(Br)n[nH]1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['Nc1cc(-c2cccc(Br)c2)n[nH]1', 'Nc1cc(-c2cccc(Br)c2)n[nH]1', 'OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', None, 'Nc1cc(-c2cccc(Br)c2)n[nH]1', 'OB(O)c1cccc(Br)c1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1']; [0.9996792078018188, 0.9996747970581055, 0.9992885589599609, 0.9991210103034973, 0, 0.9978575110435486, 0.9963101148605347, 0.9705121517181396, 0.924186110496521] +CC(=O)Nc1cc(-c2ccnc(N)n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3ccccc3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', None]; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'Nc1cc(-c2ccc3ccccc3c2)n[nH]1', 'Nc1cc(-c2ccc3ccccc3c2)n[nH]1', 'Nc1cc(-c2ccc3ccccc3c2)n[nH]1', None]; [0.9999852180480957, 0.9999253749847412, 0.9995985627174377, 0.9991949200630188, 0.9960632920265198, 0] +CC(=O)Nc1cc(-c2cn[nH]c2Cl)n[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc(NC(C)=O)[nH]n2)o1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)c(F)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'OB(O)c1ccc(O)c(F)c1']; [0.9999111294746399, 0.9883191585540771] +CC(=O)Nc1cc(-c2ccc(-c3ccc(O)cc3O)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(F)c3nc(C)[nH]c3c2)n[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(N)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; [0.9994180202484131, 0.9822664260864258, 0.9727892875671387, 0.965518593788147, 0.9505431652069092, 0.9486511945724487, 0.9257610440254211, 0.8182476758956909] +COc1cc(CCc2cc(NC(C)=O)[nH]n2)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)cc2O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn3ncccc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]c3cnccc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9829069375991821] +CC(=O)Nc1cc(-c2ccnc(N)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1']; [0.9999884366989136, 0.9994643926620483, 0.9912791848182678, 0.9438060522079468] +CC(=O)Nc1cc(-c2ccc(F)c(Cl)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl']; [0.9999998211860657, 0.9999834895133972, 0.9999494552612305, 0.9999291896820068, 0.9999127388000488] +CC(=O)Nc1cc(-c2c(C)ccc3[nH]ncc23)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999915361404419, 0.9989573955535889] +CC(=O)Nc1cc(-c2cc(O)ccc2Cl)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(COc2ccccc2Cl)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(CO)ccc2C)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; [0.9985545873641968, 0.8964066505432129] +CC(=O)Nc1cc(-c2cnc(O)c(Cl)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; [0.9999350309371948] +CC(=O)Nc1cc(-c2[nH]cnc2-c2ccc(F)cc2)n[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1']; [0.9999738335609436, 0.9991437196731567, 0.989575982093811] +CC(=O)Nc1cc(-c2ccc(NC(N)=O)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; [0.9999947547912598] +CC(=O)Nc1cc(-c2ccc(S(C)(=O)=O)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999988079071045, 0.9997832775115967] +CC(=O)Nc1cc(-c2cnc3[nH]ccc3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999974966049194] +CC(=O)Nc1cc(-c2c[nH]c(C(N)=O)c2)n[nH]1; [None]; [None]; [0] +COc1cc(CCc2cc(NC(C)=O)[nH]n2)cc(OC)c1; ['CC(=O)O', 'CC(=O)OC(C)=O', None, 'CC(=O)Cl']; ['COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1', 'COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1', None, 'COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1']; [0.998889684677124, 0.9978073835372925, 0, 0.9951902627944946] +CC(=O)Nc1cc(-c2ccc3nc(C)[nH]c3c2)n[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc(NC(C)=O)[nH]n3)ccc12; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cncc(O)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1']; [0.9994250535964966, 0.9809746742248535] +CC(=O)Nc1cc(-c2nc3ccccc3s2)n[nH]1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9918686151504517] +CC(=O)Nc1cc(-c2ccc3c(c2)CC(=O)N3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.99989914894104, 0.9991087913513184, 0.9981817007064819, 0.97664475440979, 0.9721521735191345, 0.7682559490203857] +CCc1cc(O)c(F)cc1-c1cc(NC(C)=O)[nH]n1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; [0.9991828203201294] +CC(=O)Nc1cc(-c2ccc(O)cc2C)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1cc(O)ccc1B(O)O']; [0.9771791696548462] +CC(=O)Nc1cc([C@H](C)CC(N)=O)n[nH]1; [None]; [None]; [0] +CNc1nccc(-c2cc(NC(C)=O)[nH]n2)n1; [None]; [None]; [0] +CC(=O)Nc1cc(N(C)c2ccc3c(C)n[nH]c3c2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2[nH]nc(C)c2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccncc2Cl)n[nH]1; ['CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1ccn[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['OB(O)c1ccncc1Cl', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'Clc1cnccc1Br']; [0.9998437166213989, 0.9998123645782471, 0.9997609257698059, 0.997992753982544, 0.9945088624954224, 0.9833488464355469] +CC(=O)Nc1cc(-c2cc(C(F)F)n[nH]2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(N(C)c2cccc(Cl)c2)n[nH]1; [None]; [None]; [0] +CCc1sccc1-c1cc(NC(C)=O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(Cl)c(O)c(Cl)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999145865440369, 0.9987050890922546] +CC(=O)Nc1cc(-c2ccc3[nH]c(=O)[nH]c3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [0.999900221824646, 0.9998908042907715] +CC(=O)Nc1cc(-c2ccc3c(c2)CCN3)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999841451644897, 0.9972988367080688] +CC(=O)Nc1cc(Nc2ccncc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Nc1ccncc1']; [0.9788811206817627] +CC(=O)Nc1cc(-c2cc(C(=O)[O-])c(C)o2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Br)cc2F)n[nH]1; [None, 'CC(=O)OC(C)=O', 'CC(=O)O', 'CC(=O)Cl', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; [None, 'Nc1cc(-c2ccc(Br)cc2F)n[nH]1', 'Nc1cc(-c2ccc(Br)cc2F)n[nH]1', 'Nc1cc(-c2ccc(Br)cc2F)n[nH]1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I']; [0, 0.9996120929718018, 0.999610424041748, 0.9993356466293335, 0.9980303049087524, 0.9965726733207703, 0.986640214920044] +CNc1nc(-c2cc(NC(C)=O)[nH]n2)ncc1F; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(N)cnn2C)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(N)=O)c(C)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [0.9999952912330627] +CC(=O)Nc1cc(-c2cc(O)n3nccc3n2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)NC3CC3)cc2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1ccn[nH]1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999982118606567, 0.9998770952224731, 0.9740128517150879, 0.8615612983703613] +CC(=O)Nc1cc(-c2cc(O)cc(Br)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['OB(O)c1cc(O)cc(Br)c1']; [0.9991651773452759] +CC(=O)Nc1cc(-c2ccc3nc(C)oc3c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1nc2ccc(B(O)O)cc2o1']; [0.9999980926513672] +CC(=O)Nc1cc(N(C)c2cccc3[nH]ncc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C)c(O)c(C)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1cc(B(O)O)cc(C)c1O']; [0.9944982528686523] +CSc1cccc(-c2cc(NC(C)=O)[nH]n2)c1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1']; [0.9999692440032959, 0.9982601404190063] +CC(=O)Nc1cc(-c2cc(F)c(O)c(F)c2)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1', 'CC(=O)Nc1cc(Br)n[nH]1']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9995924234390259, 0.9951354265213013] +CC(=O)Nc1cc(-c2[nH]nc3ccc(F)cc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(Oc2ccc(F)cc2F)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Oc1ccc(F)cc1F']; [0.9992159605026245] +CC(=O)Nc1cc(-c2c(-c3ccccc3)noc2C)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.9999372363090515] +CC(=O)Nc1cc(CCc2c[nH]c3ccccc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(OCc2cccc3ccccc23)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(OCc2ccc(F)cc2F)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['OCc1ccc(F)cc1F']; [0.947816014289856] +CC(=O)Nc1cc(NCc2c(F)cccc2Cl)n[nH]1; ['CC(=O)Nc1cc(Br)n[nH]1']; ['NCc1c(F)cccc1Cl']; [0.9999353885650635] +CC(=O)Nc1cc(-c2ocnc2-c2ccc(F)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(=O)[nH][nH]c3c2)n[nH]1; [None]; [None]; [0] +C(=Cc1c[nH]c2ccccc12)c1ccc2ncccc2c1; ['Brc1ccc2ncccc2c1', 'C=Cc1c[nH]c2ccccc12', 'O=C(O)Cc1ccc2ncccc2c1', 'Cc1c[nH]c2ccccc12', 'BrCc1ccc2ncccc2c1', 'C=Cc1c[nH]c2ccccc12', 'Cc1ccc2ncccc2c1', 'O=C(O)Cc1c[nH]c2ccccc12']; ['C=Cc1c[nH]c2ccccc12', 'Ic1ccc2ncccc2c1', 'O=Cc1c[nH]c2ccccc12', 'O=Cc1ccc2ncccc2c1', 'O=Cc1c[nH]c2ccccc12', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'O=Cc1c[nH]c2ccccc12', 'O=Cc1ccc2ncccc2c1']; [0.9997051954269409, 0.9996970295906067, 0.9981001615524292, 0.9977142810821533, 0.9976412653923035, 0.9843809604644775, 0.9767599105834961, 0.8876492381095886] +COc1cc(C=Cc2ccc3ncccc3c2)cc(OC)c1; ['CCOP(=O)(Cc1cc(OC)cc(OC)c1)OCC', 'BrCc1ccc2ncccc2c1', 'COc1cc(CBr)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(CC(=O)O)cc(OC)c1', 'COc1cc(C)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1']; ['O=Cc1ccc2ncccc2c1', 'COc1cc(C=O)cc(OC)c1', 'O=Cc1ccc2ncccc2c1', 'O=C(O)Cc1ccc2ncccc2c1', 'O=Cc1ccc2ncccc2c1', 'O=Cc1ccc2ncccc2c1', 'Cc1ccc2ncccc2c1']; [0.9999754428863525, 0.99965500831604, 0.9995478391647339, 0.9993724822998047, 0.9990888833999634, 0.9986323118209839, 0.9979277849197388] +CC(=O)Nc1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(CCc2ccc(F)cc2F)n[nH]1; [None]; [None]; [0] +COc1cc(O)cc(C=Cc2ccc3ncccc3c2)c1; [None, None, 'COc1cc(O)cc(C=O)c1', 'BrCc1ccc2ncccc2c1', 'COc1cc(O)cc(C=O)c1', 'COc1cc(O)cc(C=O)c1', 'COc1cc(C)cc(O)c1']; [None, None, 'O=C(O)Cc1ccc2ncccc2c1', 'COc1cc(O)cc(C=O)c1', 'O=Cc1ccc2ncccc2c1', 'Cc1ccc2ncccc2c1', 'O=Cc1ccc2ncccc2c1']; [0, 0, 0.9862314462661743, 0.9820444583892822, 0.9798263311386108, 0.8785619735717773, 0.8635447025299072] +Oc1cc(O)cc(C=Cc2ccc3ncccc3c2)c1; [None, 'O=C(O)Cc1ccc2ncccc2c1', 'O=Cc1cc(O)cc(O)c1', 'O=C(O)Cc1cc(O)cc(O)c1', 'BrCc1ccc2ncccc2c1', 'Cc1cc(O)cc(O)c1', 'Cc1ccc2ncccc2c1']; [None, 'O=Cc1cc(O)cc(O)c1', 'O=Cc1ccc2ncccc2c1', 'O=Cc1ccc2ncccc2c1', 'O=Cc1cc(O)cc(O)c1', 'O=Cc1ccc2ncccc2c1', 'O=Cc1cc(O)cc(O)c1']; [0, 0.998375415802002, 0.9960423707962036, 0.9951698184013367, 0.9929664134979248, 0.9434620141983032, 0.8886660933494568] +CCOc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C=Cc2ccc3ncccc3c2)ccc1O; ['C=Cc1ccc(O)c(OC)c1', 'Brc1ccc2ncccc2c1', 'C=Cc1ccc(O)c(OC)c1', None, None, 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'COc1cc(C=O)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(CC(=O)O)ccc1O']; ['OB(O)c1ccc2ncccc2c1', 'C=Cc1ccc(O)c(OC)c1', 'Ic1ccc2ncccc2c1', None, None, 'Clc1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'O=Cc1ccc2ncccc2c1', 'O=C(O)Cc1ccc2ncccc2c1', 'O=Cc1ccc2ncccc2c1']; [0.9986454248428345, 0.997873067855835, 0.9976056814193726, 0, 0, 0.9825385212898254, 0.9795804023742676, 0.9541739821434021, 0.9459315538406372, 0.9203032851219177] +CC(=O)Nc1cc(-c2ccc(N(C)C(C)=O)cc2)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)n[nH]2)cc(OC)c1OC; ['CC(=O)OC(C)=O', 'CC(=O)Cl', 'CC(=O)O', None]; ['COc1cc(-c2cc(N)n[nH]2)cc(OC)c1OC', 'COc1cc(-c2cc(N)n[nH]2)cc(OC)c1OC', 'COc1cc(-c2cc(N)n[nH]2)cc(OC)c1OC', None]; [0.9939955472946167, 0.993882417678833, 0.9567134976387024, 0] +COc1ncccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1ccc2ncccc2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(S(C)(=O)=O)c2)[nH]n1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', 'CC(=O)O']; ['COc1ccc(-c2cc(N)n[nH]2)cc1', 'COc1ccc(-c2cc(N)n[nH]2)cc1', 'COc1ccc(-c2cc(N)n[nH]2)cc1']; [0.9881291389465332, 0.9855111837387085, 0.9568341374397278] +CC(=O)Nc1cc(-c2ncc3ccccc3n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2sc(C(C)(C)O)nc2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(O)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N3CCOCC3)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C#N)ccc2O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-n2cnc3ccc(C)cc32)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3cccnn23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(Nc2ncccn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(NC(=O)C3CC3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(N)=O)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nc3ccccc3[nH]2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)[O-])cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nccc3ccccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C3CCNCC3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(Cc3cccc(C#N)c3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OCCO)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)[nH]n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(F)(F)F)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N(C)C)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC[C@H](C)O)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC[C@@H](C)O)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2sc(C)nc2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(S(=O)(=O)N(C)C)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(C2CCN(S(C)(=O)=O)CC2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(C)C)nc(N)n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Br)cc2)[nH]n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', 'CC(=O)O']; ['Nc1cc(-c2ccc(Br)cc2)[nH]n1', 'Nc1cc(-c2ccc(Br)cc2)[nH]n1', 'Nc1cc(-c2ccc(Br)cc2)[nH]n1']; [0.988959550857544, 0.9736894369125366, 0.9520397782325745] +CCNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(N3CCCN(C(C)=O)CC3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N(C)C)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(NC(C)=O)n[nH]2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)c(C)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C(=O)[O-])c2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccn3nccc3n2)[nH]n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccccc2-n2cccn2)[nH]n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CCO3)[nH]n1; ['CC(=O)Nc1cc[nH]n1']; ['Ic1ccc2c(c1)CCO2']; [0.9535560607910156] +CC(=O)Nc1cc(-c2c[nH]c3ccccc23)[nH]n1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(NC(C)=O)n[nH]2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2nc3ccc(C(C)C)cc3[nH]2)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)n[nH]2)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(-c3ccccc3)[nH]n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(C)(C)C)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc3c2OCO3)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cc2)[nH]n1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3ccccc3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(C)(C)C)nc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2scc3c2OCCO3)[nH]n1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc([C@@H]2CC[C@@H](NC(C)=O)CC2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2csc(N)n2)[nH]n1; [None]; [None]; [0] +CSc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1OC; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3ccccc3s2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(F)cc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CCC(=O)N3)[nH]n1; ['CC(=O)Nc1cc[nH]n1', 'CC(=O)Nc1cc[nH]n1']; ['O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1']; [0.9360413551330566, 0.8601679801940918] +CCN1CCN(Cc2ccc(-c3cc(NC(C)=O)n[nH]3)cc2)CC1; [None]; [None]; [0] +CCc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C)nc(N)n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc(Br)cn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Cl)cc2Cl)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)n[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)nc2C(F)(F)F)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc3cccn3n2)[nH]n1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(NC(C)=O)n[nH]2)cc1OC; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3ccccn3n2)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)n[nH]2)ccc1Cl; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc3ccc(O)cc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CC(C)(C)O3)[nH]n1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(NC(C)=O)n[nH]3)c2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(CCO)c2)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cc(NC(C)=O)n[nH]2)c(OC)cc1Br; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc(Cl)cn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncnc3c(C)csc23)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(N)nc3[nH]ccc23)[nH]n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(NC(C)=O)n[nH]2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(NC(C)=O)n[nH]2)CC1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)[nH]n1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(NC(C)=O)n[nH]3)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(NC(C)=O)n[nH]1)cn2C; [None]; [None]; [0] +CCn1cc(-c2cc(NC(C)=O)n[nH]2)cn1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3cn[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C[NH+](C)C)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3ccccc3o2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(Br)cn2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(-c3cccnc3)ccn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncc3sccc3n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(OC(F)(F)F)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)nc2C(C)C)[nH]n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(NC(C)=O)n[nH]3)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn(C)c3ccccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(cnn3C)c2)[nH]n1; [None]; [None]; [0] +CCc1cccc(-c2cc(NC(C)=O)n[nH]2)n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N(C)C)nc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ncn3c2CCCC3)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C)c(OCCO)c(C)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)c(Cl)nn3C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn(C3CCN(C(C)=O)CC3)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(C)n[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(N3CCCC3=O)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(CCO)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cc2Cl)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(-c3cnc(C)n3C)cc2)[nH]n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(N3CCOCC3)cc2C)[nH]n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)c(OC)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(C)(C)O)n(C)n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)N(C)C)cn2)[nH]n1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(NC(C)=O)n[nH]2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(S(C)(=O)=O)ccc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(=O)NCCO)ccc2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(Cl)ccc3c2OCO3)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(Cl)cccc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc3ncccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)cc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Cl)c(O)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2n[nH]c3ccccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)cc2F)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(N)=O)cc2F)[nH]n1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(Oc2ccc(F)cc2)[nH]n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cccc(Br)c2)[nH]n1; ['CC(=O)Cl', 'CC(=O)OC(C)=O', 'CC(=O)O', None]; ['Nc1cc(-c2cccc(Br)c2)[nH]n1', 'Nc1cc(-c2cccc(Br)c2)[nH]n1', 'Nc1cc(-c2cccc(Br)c2)[nH]n1', None]; [0.9957995414733887, 0.9885192513465881, 0.9647164344787598, 0] +CC(=O)Nc1cc(-c2ccnc(N)n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(F)c3nc(C)[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(-c3ccc(O)cc3O)cc2)[nH]n1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc(NC(C)=O)n[nH]2)o1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3ccccc3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cn[nH]c2Cl)[nH]n1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)c(F)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnn3ncccc23)[nH]n1; [None]; [None]; [0] +COc1cc(CCc2cc(NC(C)=O)n[nH]2)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)cc2O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]c3cnccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(COc2ccccc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(F)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(O)ccc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccnc(N)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc(O)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(CO)ccc2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(C)ccc3[nH]ncc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2[nH]cnc2-c2ccc(F)cc2)[nH]n1; [None]; [None]; [0] +COc1cc(CCc2cc(NC(C)=O)n[nH]2)cc(OC)c1; ['CC(=O)Cl']; ['COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1']; [0.9973999857902527] +CCOc1cccc(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc(NC(C)=O)n[nH]3)ccc12; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c[nH]c(C(N)=O)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3nc(C)[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cnc3[nH]ccc3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cncc(O)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(NC(N)=O)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(S(C)(=O)=O)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CC(=O)N3)[nH]n1; ['CC(=O)Nc1cc[nH]n1']; ['O=C1Cc2cc(B(O)O)ccc2N1']; [0.9973176717758179] +CC(=O)Nc1cc(-c2nc3ccccc3s2)[nH]n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(O)cc2C)[nH]n1; [None]; [None]; [0] +CNc1nccc(-c2cc(NC(C)=O)n[nH]2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CC(=O)Nc1cc([C@H](C)CC(N)=O)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2[nH]nc(C)c2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccncc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(N(C)c2ccc3c(C)n[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(F)F)n[nH]2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(Cl)c(O)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(N(C)c2cccc(Cl)c2)[nH]n1; [None]; [None]; [0] +CCc1sccc1-c1cc(NC(C)=O)n[nH]1; [None]; [None]; [0] +CNc1nc(-c2cc(NC(C)=O)n[nH]2)ncc1F; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(c2)CCN3)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C(=O)[O-])c(C)o2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(O)n3nccc3n2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(Br)cc2F)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(Nc2ccncc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(N)cnn2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(=O)NC3CC3)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(N(C)c2cccc3[nH]ncc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2[nH]nc3ccc(F)cc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3[nH]c(=O)[nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc(C(N)=O)c(C)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3nc(C)oc3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(O)cc(Br)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(C)c(O)c(C)c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2cc(F)c(O)c(F)c2)[nH]n1; [None]; [None]; [0] +CSc1cccc(-c2cc(NC(C)=O)n[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ccc3c(=O)[nH][nH]c3c2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2c(-c3ccccc3)noc2C)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(Oc2ccc(F)cc2F)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(-c2ocnc2-c2ccc(F)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(CCc2c[nH]c3ccccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(OCc2cccc3ccccc23)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(NCc2c(F)cccc2Cl)[nH]n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CC(=O)N(C)c1ccc(C(=O)O)cc1', 'Brc1ccc(-c2nc3ccccc3[nH]2)cc1', 'CNC(C)=O']; ['Nc1ccccc1N', 'CNC(C)=O', 'Clc1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.999819278717041, 0.9875208139419556, 0.9317476749420166] +CCOc1ccc(-c2nc3ccccc3[nH]2)cc1; ['CCOc1ccc(CN)cc1', 'CCOc1ccc(CBr)cc1', 'CCOc1ccc(CO)cc1', 'CCOc1ccc(CO)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C=NO)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C(=O)O)cc1', 'CCOc1ccc(C#N)cc1', 'CCOc1ccc(C(=O)Cl)cc1']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9969398975372314, 0.9942835569381714, 0.9940199851989746, 0.9925746917724609, 0.9882485866546631, 0.9866262674331665, 0.9828326106071472, 0.9801127910614014, 0.9701652526855469, 0.9395438432693481] +CC(=O)Nc1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cc(CCc2ccc(F)cc2F)[nH]n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2nc3ccccc3[nH]2)c1; ['Brc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(C(=O)O)c1', 'CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(C(=O)Cl)c1']; ['CS(=O)(=O)c1cccc(B(O)O)c1', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; [0.9999457001686096, 0.9997779726982117, 0.9995745420455933, 0.9995524883270264, 0.9993048906326294, 0.9985247850418091] +COc1cc(-c2nc3ccccc3[nH]2)cc(OC)c1OC; ['CCOC(=N)c1cc(OC)c(OC)c(OC)c1', 'COc1cc(C(=N)N)cc(OC)c1OC', 'COc1cc(CN)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C#N)cc(OC)c1OC', 'COc1cc(C=NO)cc(OC)c1OC', 'COc1cc(CO)cc(OC)c1OC', 'COc1cc(CBr)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C(=O)Cl)cc(OC)c1OC', 'COc1cc(C(=O)C(=O)O)cc(OC)c1OC']; ['Nc1ccccc1N', 'Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9997518062591553, 0.9997438192367554, 0.9995899200439453, 0.9994065761566162, 0.999252438545227, 0.9989172220230103, 0.9986350536346436, 0.9977763891220093, 0.9966951608657837, 0.9958925843238831, 0.9952009916305542, 0.9798803329467773] +CC(=O)Nc1cc(OCc2ccc(F)cc2F)[nH]n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cnc4cccnn34)nc2c1; ['Nc1ccccc1N', 'Nc1ccccc1N']; ['O=C(O)c1cnc2cccnn12', 'O=Cc1cnc2cccnn12']; [0.9999966621398926, 0.9999594688415527] +COc1ncccc1-c1nc2ccccc2[nH]1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1C=O', 'COc1ncccc1B(O)O', 'CO', 'COc1ncccc1C(=O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1C=O', 'C[O-]', 'CCOC(=O)c1cccnc1OC', None, 'COc1ncccc1I', None]; ['Ic1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Ic1nc2ccccc2[nH]1', 'Clc1ncccc1-c1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1[N+](=O)[O-]', 'Clc1ncccc1-c1nc2ccccc2[nH]1', 'Nc1ccccc1N', None, 'c1ccc2[nH]cnc2c1', None]; [0.9999092817306519, 0.9996554851531982, 0.9996110200881958, 0.9987704753875732, 0.9987671971321106, 0.9987136125564575, 0.9986865520477295, 0.9985865950584412, 0.9951416850090027, 0, 0.9855283498764038, 0] +Cc1nc(C(C)(C)O)sc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1ccc2ncn(-c3nc4ccccc4[nH]3)c2c1; [None]; [None]; [0] +c1ccc2nc(-c3nc4ccccc4[nH]3)ncc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3ccccc3[nH]2)c1)C1CC1; ['Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'CCOC(=O)C1CC1', 'COC(=O)C1CC1', 'NC(=O)C1CC1']; ['O=C(Cl)C1CC1', 'O=C(O)C1CC1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1']; [0.9999985694885254, 0.9999935626983643, 0.9998599290847778, 0.9998537302017212, 0.9996626973152161] +COc1ccc(-c2nc3ccccc3[nH]2)cc1; ['COc1ccc(C(=N)N)cc1', 'CCOC(=N)c1ccc(OC)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(C(O)S(=O)(=O)[O-])cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=Nc2ccccc2)cc1', None, 'COc1ccc(CO)cc1', 'COc1ccc(C#N)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(C=NO)cc1', None, 'COc1ccc(C=O)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C(=O)Cl)cc1', 'COc1ccc(C(=O)C(=O)O)cc1', 'COS(=O)(=O)OC', 'CO', None, 'CBr']; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', None, 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', None, 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', None, 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9998131394386292, 0.9995143413543701, 0.9991601705551147, 0.9989502429962158, 0.9988753795623779, 0.9987767338752747, 0.9971988201141357, 0, 0.9956583976745605, 0.995342493057251, 0.9944860935211182, 0.9938056468963623, 0, 0.9895694851875305, 0.9811294674873352, 0.9764150381088257, 0.9732156991958618, 0.92915278673172, 0.8664861917495728, 0, 0.7644507884979248] +Oc1cccc(-c2nc3ccccc3[nH]2)c1; ['Clc1nc2ccccc2[nH]1', None, None, 'Nc1ccccc1N', 'Nc1ccccc1N', None, 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', None]; ['OB(O)c1cccc(O)c1', None, None, 'OCc1cccc(O)c1', 'O=Cc1cccc(O)c1', None, 'O=Cc1cccc(O)c1', 'O=C(O)c1cccc(O)c1', 'Oc1cccc(CBr)c1', None]; [0.9968057870864868, 0, 0, 0.9786532521247864, 0.9748700261116028, 0, 0.9475373029708862, 0.9375016093254089, 0.9036753177642822, 0] +Cc1cc(Nc2nc3ccccc3[nH]2)sn1; ['Cc1cc(N)sn1']; ['Clc1nc2ccccc2[nH]1']; [0.9650564193725586] +N#Cc1ccc(O)c(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc(N4CCOCC4)cc3)nc2c1; [None]; [None]; [0] +c1ccc2c(-c3nc4ccccc4[nH]3)nccc2c1; ['Nc1ccccc1N', 'N#Cc1nccc2ccccc12', 'Cc1nccc2ccccc12', 'Nc1ccccc1N']; ['O=C(O)c1nccc2ccccc12', 'Nc1ccccc1N', 'Nc1ccccc1N', 'O=Cc1nccc2ccccc12']; [0.9993243217468262, 0.999255895614624, 0.9991999864578247, 0.9971520900726318] +NC(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(C(=O)O)cc1', None, 'Clc1nc2ccccc2[nH]1', None, 'N', 'NC(=O)c1ccc(C=O)cc1', 'NC(=O)c1ccc(C=O)cc1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', None, 'NC(=O)c1ccc(B(O)O)cc1', None, 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; [0.9999730587005615, 0.9999033212661743, 0.9995838403701782, 0, 0.995144248008728, 0, 0.9894378781318665, 0.973371684551239, 0.9546568393707275] +O=C(Nc1ccccc1)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['Nc1ccccc1', 'Nc1ccccc1N', 'Nc1ccccc1N']; ['O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=C(O)c1ccc(C(=O)Nc2ccccc2)cc1', 'O=Cc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9999504685401917, 0.9998757839202881, 0.9797526001930237] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4ccccc4[nH]3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2nc3ccccc3[nH]2)cc1; ['Cc1ccc(S(=O)(=O)OCCO)cc1', 'Nc1ccccc1N', 'O=C1OCCO1', 'OCCCl', 'OCCBr', 'Nc1ccccc1N', 'OCCI', 'Nc1ccccc1N', None, 'OCCO', 'Brc1ccc(-c2nc3ccccc3[nH]2)cc1', 'OCCCBr', 'Clc1ccc(-c2nc3ccccc3[nH]2)cc1']; ['Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=C(O)c1ccc(OCCO)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'OCCOc1ccc(CO)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=Cc1ccc(OCCO)cc1', None, 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'OCCO', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'OCCO']; [0.9976290464401245, 0.9945172071456909, 0.9931943416595459, 0.9923896193504333, 0.9898927211761475, 0.989662766456604, 0.9890510439872742, 0.981839120388031, 0, 0.9649306535720825, 0.9438456296920776, 0.7997938990592957, 0.7935007810592651] +O=C(c1ccc(-c2nc3ccccc3[nH]2)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'C1COCCN1', 'CC(C)(C)OC(=O)N1CCOCC1', 'Nc1ccccc1N']; ['Clc1nc2ccccc2[nH]1', 'O=C(O)c1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=Cc1ccc(C(=O)N2CCOCC2)cc1']; [0.9999946355819702, 0.9999856948852539, 0.9999667406082153, 0.9999571442604065, 0.9991601705551147, 0.9990827441215515] +N#Cc1cccc(Cn2cc(-c3nc4ccccc4[nH]3)cn2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1', 'Brc1nc2ccccc2[nH]1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1nc2ccccc2[nH]1']; [0.9978983402252197, 0.9832184314727783, 0.9784337282180786, 0.9772305488586426] +c1cc(-c2nc3ccccc3[nH]2)cc(C2CCNCC2)c1; ['Nc1ccccc1N']; ['O=C(O)c1cccc(C2CCNCC2)c1']; [0.9999327659606934] +C[C@H](O)COc1ccc(-c2nc3ccccc3[nH]2)cc1; ['Cc1ccc(S(=O)(=O)OC[C@H](C)O)cc1', 'C[C@H](O)CCl', 'C[C@H](O)CO', 'C[C@H]1COC(=O)O1', 'C[C@H](O)CO']; ['Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Fc1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9981008172035217, 0.9954217672348022, 0.9881777763366699, 0.9757424592971802, 0.8567590713500977] +CC(=O)NCc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc3ccccc3[nH]2)cc1; ['Cc1ccc(S(=O)(=O)OC[C@@H](C)O)cc1', 'C[C@@H](O)CCl', 'C[C@@H](O)CO', 'C[C@@H]1COC(=O)O1', 'Brc1ccc(-c2nc3ccccc3[nH]2)cc1', 'C[C@@H](O)CO', 'C[C@@H](O)CO']; ['Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Oc1ccc(-c2nc3ccccc3[nH]2)cc1', 'C[C@@H](O)CO', 'Clc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Fc1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9981008172035217, 0.9954217672348022, 0.9881777763366699, 0.9757424592971802, 0.9638769626617432, 0.9619235992431641, 0.8567590713500977] +FC(F)(F)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['N=C(N)c1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'NCc1ccc(C(F)(F)F)cc1', 'CCOC(=N)c1ccc(C(F)(F)F)cc1', None, 'Nc1ccccc1N', 'FC(F)(F)c1ccc(CBr)cc1', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'N#Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; ['Nc1ccccc1I', 'O=C(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', None, 'OCc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'OCc1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'ON=Cc1ccc(C(F)(F)F)cc1', 'O=C(Cl)c1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'O=C(O)C(=O)c1ccc(C(F)(F)F)cc1']; [0.9998630285263062, 0.9997982978820801, 0.9997564554214478, 0.9996051788330078, 0, 0.9987351894378662, 0.9976627826690674, 0.9966831207275391, 0.9966381788253784, 0.9958738088607788, 0.9951472282409668, 0.9944572448730469, 0.9933812618255615, 0.9912586212158203] +O=C(c1ccc(-c2nc3ccccc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CN(C)c1ccc(C(=N)N)cc1', 'CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(CO)cc1', 'CN(C)c1ccc(CBr)cc1', 'CN(C)c1ccc(CN)cc1', 'CN(C)c1ccc(C#N)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C(=O)Cl)cc1', 'CN(C)c1ccc(C=O)cc1', None, None, None]; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', None, None, None]; [0.9999048709869385, 0.9998911619186401, 0.9998632669448853, 0.9998048543930054, 0.9997460842132568, 0.9992468357086182, 0.9962817430496216, 0.9962148666381836, 0.9880151748657227, 0, 0, 0] +CS(=O)(=O)N1CCC(c2nc3ccccc3[nH]2)CC1; [None, 'CC(C)(C)OC(=O)N1CCC(c2nc3ccccc3[nH]2)CC1', 'CS(=O)(=O)Cl']; [None, 'CS(=O)(=O)Cl', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0, 0.9921205043792725, 0.9765127897262573] +CN(C)S(=O)(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(CBr)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)Cl)cc1', 'CN(C)S(=O)(=O)c1ccc(C#N)cc1', 'Brc1nc2ccccc2[nH]1', 'CN(C)S(=O)(=O)c1ccc(CN)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)O)cc1']; ['c1ccc2[nH]cnc2c1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9980714917182922, 0.9960613250732422, 0.9946139454841614, 0.9924619197845459, 0.9890400171279907, 0.9837018847465515, 0.9807100296020508] +Cc1nc(C)c(-c2nc3ccccc3[nH]2)s1; ['Cc1nc(C)c(C=O)s1']; ['Nc1ccccc1N']; [0.9934995174407959] +CCNS(=O)(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CCNS(=O)(=O)c1ccc(C(=O)O)cc1', 'Brc1nc2ccccc2[nH]1']; ['Nc1ccccc1N', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9984885454177856, 0.9825241565704346] +O=S1(=O)Cc2ccc(-c3nc4ccccc4[nH]3)cc2C1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nc3ccccc3[nH]2)C1; [None]; [None]; [0] +Brc1ccc(-c2nc3ccccc3[nH]2)cc1; ['CCOC(=N)c1ccc(Br)cc1', 'N=C(N)c1ccc(Br)cc1', 'NCc1ccc(Br)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'BrCc1ccc(Br)cc1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'N#Cc1ccc(Br)cc1', 'Nc1ccccc1N']; ['Nc1ccccc1N', 'Nc1ccccc1I', 'Nc1ccccc1N', 'OCc1ccc(Br)cc1', 'O=C(O)c1ccc(Br)cc1', 'OCc1ccc(Br)cc1', 'ON=Cc1ccc(Br)cc1', 'Nc1ccccc1N', 'O=C(Cl)c1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'Nc1ccccc1N', 'O=C(O)C(=O)c1ccc(Br)cc1']; [0.9996581077575684, 0.9996565580368042, 0.999176561832428, 0.9989365935325623, 0.9988429546356201, 0.9982002973556519, 0.9978604912757874, 0.9973177909851074, 0.9959604740142822, 0.995780348777771, 0.9939903616905212, 0.991647481918335, 0.9733856320381165] +CC(C)c1cc(-c2nc3ccccc3[nH]2)nc(N)n1; ['CC(C)c1cc(C(=O)O)nc(N)n1']; ['Nc1ccccc1N']; [0.9685941934585571] +CC(=O)N1CCCN(c2cccc(-c3nc4ccccc4[nH]3)c2)CC1; ['Brc1cccc(-c2nc3ccccc3[nH]2)c1', 'CC(=O)N1CCCNCC1']; ['CC(=O)N1CCCNCC1', 'Fc1cccc(-c2nc3ccccc3[nH]2)c1']; [0.9997588396072388, 0.998146653175354] +CCCOc1ccc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ccccc3[nH]2)c(C)c1; ['Brc1nc2ccccc2[nH]1']; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9995267391204834] +c1ccc2[nH]c(-c3ccn4nccc4n3)nc2c1; ['Cc1ccn2nccc2n1']; ['Nc1ccccc1N']; [0.9860385656356812] +COc1ccc(Cl)cc1-c1nc2ccccc2[nH]1; ['COc1ccc(Cl)cc1C(=N)N', 'COc1ccc(Cl)cc1CBr', 'COc1ccc(Cl)cc1CN', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1CO', 'COc1ccc(Cl)cc1C#N', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1C(=O)Cl']; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; [0.9998487830162048, 0.9996415376663208, 0.9989405870437622, 0.9983320832252502, 0.9980357885360718, 0.9979965686798096, 0.9970336556434631, 0.9814680814743042, 0.9775410890579224] +Cc1c(C(=O)[O-])cccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', None, 'CCN(CC)C(=O)c1ccc(C(=O)O)cc1', None, 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCNCC', 'CCN(CC)C(=O)OC(C)(C)C', None]; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', None, 'Nc1ccccc1N', None, 'Clc1nc2ccccc2[nH]1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', None]; [0.9999955892562866, 0.9999942779541016, 0.9999898076057434, 0, 0.9997808337211609, 0, 0.999738335609436, 0.9996874332427979, 0.9938186407089233, 0] +c1ccc2[nH]c(-c3c[nH]c4ccccc34)nc2c1; ['N#Cc1c[nH]c2ccccc12', 'Nc1ccccc1N', 'Nc1ccccc1N', 'NCc1c[nH]c2ccccc12', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'CCOC(=O)c1c[nH]c2ccccc12', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; ['Nc1ccccc1N', 'OCc1c[nH]c2ccccc12', 'O=C(O)c1c[nH]c2ccccc12', 'Nc1ccccc1N', 'ON=Cc1c[nH]c2ccccc12', 'O=C(O)C(=O)c1c[nH]c2ccccc12', 'O=Cc1c[nH]c2ccccc12', 'Nc1ccccc1N', 'O=Cc1c[nH]c2ccccc12', 'O=C(Cl)c1c[nH]c2ccccc12']; [0.9998999834060669, 0.9998700618743896, 0.999652624130249, 0.9995923042297363, 0.9994882345199585, 0.9994568824768066, 0.999320387840271, 0.9993103742599487, 0.996385395526886, 0.9886976480484009] +CN(C)c1ccc(-c2nc3ccccc3[nH]2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Brc1nc2ccccc2[nH]1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; ['Clc1nc2ccccc2[nH]1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Ic1nc2ccccc2[nH]1']; [0.99985271692276, 0.999771237373352, 0.9995979070663452] +c1ccc(-n2cccn2)c(-c2nc3ccccc3[nH]2)c1; ['Brc1nc2ccccc2[nH]1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'NCc1ccccc1-n1cccn1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Clc1nc2ccccc2[nH]1', 'N#Cc1ccccc1-n1cccn1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1nc2ccccc2[nH]1', 'OB(O)c1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'O=C(O)c1ccccc1-n1cccn1', 'OCc1ccccc1-n1cccn1', 'Nc1ccccc1N', 'ON=Cc1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccccc1N']; [0.999989926815033, 0.9999635219573975, 0.9998159408569336, 0.9996848106384277, 0.9995287656784058, 0.9994586706161499, 0.9994066953659058, 0.9993937015533447, 0.9982267022132874, 0.9981116056442261, 0.9452065229415894] +COc1cc(OC)c(-c2nc3ccccc3[nH]2)cc1Cl; ['COc1cc(OC)c(C=O)cc1Cl', 'COc1cc(OC)c(C=O)cc1Cl']; ['Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; [0.997269868850708, 0.9972553253173828] +CC(=O)Nc1cccc(-c2nc3ccccc3[nH]2)c1; ['CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)OC(C)=O', 'CC(=O)Cl', 'CC(=O)O', 'CC(=O)Nc1cccc(C=O)c1', None, 'CC(=O)OC(C)=O', 'CC(=O)Nc1cccc(C=O)c1']; ['Nc1ccccc1N', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1ccccc1N', None, 'O=[N+]([O-])c1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1ccccc1[N+](=O)[O-]']; [0.9999599456787109, 0.9998886585235596, 0.9998789429664612, 0.9992210268974304, 0.9967747926712036, 0, 0.9892598390579224, 0.9713244438171387] +COc1cc(-c2nc3ccccc3[nH]2)ccc1O; ['COc1cc(C(=O)O)ccc1O', 'COc1cc(CO)ccc1O', 'COc1cc(C=O)ccc1O']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9984858632087708, 0.9423882961273193, 0.9210423231124878] +c1ccc2[nH]c(-c3ccc4c(c3)CCO4)nc2c1; ['Brc1nc2ccccc2[nH]1', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Brc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'NCc1ccc2c(c1)CCO2', 'Clc1nc2ccccc2[nH]1']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'O=Cc1ccc2c(c1)CCO2', 'O=C(Cl)c1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'O=C(O)c1ccc2c(c1)CCO2', 'OCc1ccc2c(c1)CCO2', 'Nc1ccccc1N', 'OB(O)c1ccc2c(c1)CCO2']; [0.9996892213821411, 0.9980310797691345, 0.9974323511123657, 0.9961618185043335, 0.9954642057418823, 0.9946286678314209, 0.992663562297821, 0.9925722479820251, 0.9887398481369019] +c1ccc(-c2cc(-c3nc4ccccc4[nH]3)n[nH]2)cc1; ['Nc1ccccc1N', 'Cc1cc(-c2ccccc2)[nH]n1']; ['O=C(O)c1cc(-c2ccccc2)[nH]n1', 'Nc1ccccc1N']; [0.9997438192367554, 0.8628884553909302] +c1ccc2[nH]c(-c3scc4c3OCCO4)nc2c1; ['Nc1ccccc1N']; ['O=Cc1scc2c1OCCO2']; [0.9998772144317627] +CC(C)(C)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CC(C)(C)c1ccc(C(=N)N)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(CO)cc1', 'CC(C)(C)c1ccc(C#N)cc1', 'CC(C)(C)c1ccc(CO)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(CBr)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C=NO)cc1', 'CC(C)(C)c1ccc(C(=O)C(=O)O)cc1']; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9998962879180908, 0.9997998476028442, 0.9996934533119202, 0.9991742372512817, 0.999083399772644, 0.998997688293457, 0.9989123344421387, 0.9988910555839539, 0.9987263679504395, 0.997738242149353, 0.9967107772827148, 0.9948135614395142] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +c1cc2c(c(-c3nc4ccccc4[nH]3)c1)OCO2; ['Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'NCc1cccc2c1OCO2', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'BrCc1cccc2c1OCO2', 'Nc1ccccc1N', 'Nc1ccccc1N']; ['OCc1cccc2c1OCO2', 'OCc1cccc2c1OCO2', 'Nc1ccccc1N', 'O=Cc1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'O=C(O)c1cccc2c1OCO2', 'Nc1ccccc1N', 'O=C(Cl)c1cccc2c1OCO2', 'O=C(O)C(=O)c1cccc2c1OCO2']; [0.9998346567153931, 0.9993928670883179, 0.9988110661506653, 0.9982892274856567, 0.9982229471206665, 0.9975008368492126, 0.9935598373413086, 0.9914073944091797, 0.9831194877624512, 0.9334232807159424] +c1ccc2ncc(-c3nc4ccccc4[nH]3)cc2c1; ['Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'CCOC(=O)c1cnc2ccccc2c1']; ['O=Cc1cnc2ccccc2c1', 'O=Cc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'O=C(O)c1cnc2ccccc2c1', 'Nc1ccccc1N']; [0.9995958805084229, 0.9995516538619995, 0.9972625970840454, 0.9949321746826172, 0.9923686981201172] +CC(C)c1ccc2nc(-c3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1nc2ccccc2[nH]1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CNC', 'CN(C)C(=O)c1ccc(C(=O)O)cc1', None, 'CN(C)C(=O)c1ccc(C=O)cc1']; ['Clc1nc2ccccc2[nH]1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1nc2ccccc2[nH]1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'Nc1ccccc1N', None, 'Nc1ccccc1N']; [0.9999940395355225, 0.9999889731407166, 0.9998566508293152, 0.9998302459716797, 0.9998300075531006, 0, 0.9898499250411987] +COc1cccc(C(=O)Nc2nc3ccccc3[nH]2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1', 'COC(=O)c1cccc(OC)c1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9995083808898926, 0.9991914629936218, 0.9666649103164673] +Clc1cccc(-n2ccc(-c3nc4ccccc4[nH]3)n2)c1; [None]; [None]; [0] +CC1(COc2nc3ccccc3[nH]2)COC1; ['Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CO)COC1', 'CC1(CBr)COC1', 'CC1(CO)COC1']; ['Oc1nc2ccccc2[nH]1', 'Oc1nc2ccccc2[nH]1', 'Oc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9886865019798279, 0.9455928206443787, 0.8376137018203735, 0.8244560360908508] +Nc1nc(-c2nc3ccccc3[nH]2)cs1; [None, 'Nc1ccccc1N']; [None, 'Nc1nc(C=O)cs1']; [0, 0.9354655742645264] +CC(C)(C)c1ccc(-c2nc3ccccc3[nH]2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(C#N)cn1', 'CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(C(=O)O)cn1']; ['Ic1nc2ccccc2[nH]1', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N']; [0.9999650716781616, 0.999106764793396, 0.998939037322998, 0.9980276823043823, 0.9969155788421631, 0.9802262783050537] +CSc1ccc(-c2nc3ccccc3[nH]2)cc1; ['CSc1ccc(CBr)cc1', 'CSc1ccc(CN)cc1', 'CSc1ccc(CO)cc1', 'CSc1ccc(C(=O)O)cc1', 'CSc1ccc(CO)cc1', 'CSc1ccc(C#N)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C(=O)Cl)cc1', 'CSc1ccc(C(=O)C(=O)O)cc1', 'CSc1ccc(C=O)cc1']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; [0.9992153644561768, 0.9979628920555115, 0.9971559047698975, 0.9962738752365112, 0.9940401911735535, 0.9936755299568176, 0.9922932386398315, 0.9867267608642578, 0.9786770343780518, 0.9775431156158447] +CC(=O)N[C@@H]1CC[C@@H](c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +c1ccc2sc(-c3nc4ccccc4[nH]3)cc2c1; ['Nc1ccccc1N']; ['O=Cc1cc2ccccc2s1']; [0.9816935062408447] +COc1ccc(-c2nc3ccccc3[nH]2)cc1OC; ['COc1ccc(C(=N)N)cc1OC', 'COc1ccc(C=NO)cc1OC', 'COc1ccc(C#N)cc1OC', 'CCOC(=N)c1ccc(OC)c(OC)c1', 'COc1ccc(C=O)cc1OC', 'COc1ccc(C(=O)O)cc1OC', 'COc1ccc(C(=O)Cl)cc1OC', 'COc1ccc(C=O)cc1OC', 'COc1ccc(CN)cc1OC', 'COc1ccc(CO)cc1OC', 'COc1ccc(CBr)cc1OC']; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9994617700576782, 0.9985011219978333, 0.9977694749832153, 0.9963631629943848, 0.9927412271499634, 0.9898266792297363, 0.9882023930549622, 0.9808622598648071, 0.9604936838150024, 0.9506794214248657, 0.9466317892074585] +Brc1cnc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +Fc1ccc(-c2nc3ccccc3[nH]2)c(Cl)c1; ['N=C(N)c1ccc(F)cc1Cl', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'NCc1ccc(F)cc1Cl', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Fc1ccc(CBr)c(Cl)c1', 'N#Cc1ccc(F)cc1Cl', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1']; ['Nc1ccccc1I', 'OCc1ccc(F)cc1Cl', 'OCc1ccc(F)cc1Cl', 'O=Cc1ccc(F)cc1Cl', 'Nc1ccccc1N', 'O=Cc1ccc(F)cc1Cl', 'O=C(O)c1ccc(F)cc1Cl', 'Nc1ccccc1N', 'Nc1ccccc1N', 'ON=Cc1ccc(F)cc1Cl', 'O=C(Cl)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [0.999975860118866, 0.9999555349349976, 0.999881386756897, 0.9998776316642761, 0.9998561143875122, 0.9998393058776855, 0.999649703502655, 0.9995232820510864, 0.9994403123855591, 0.9986600279808044, 0.997233510017395, 0.9951479434967041] +CCc1ccc(-c2nc3ccccc3[nH]2)cc1; ['CCc1ccc(CBr)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(CO)cc1', 'CCc1ccc(C(=O)O)cc1', 'CCc1ccc(CO)cc1', 'CCc1ccc(C#N)cc1', 'CCc1ccc(CN)cc1', 'CCc1ccc(C(=O)Cl)cc1', 'CCc1ccc(C(=O)C(=O)O)cc1']; ['Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9985058307647705, 0.9963980913162231, 0.990056037902832, 0.9895555973052979, 0.9883114099502563, 0.9820777773857117, 0.9640875458717346, 0.9636224508285522, 0.9333856701850891, 0.9142906665802002] +Cc1cc(-c2nc3ccccc3[nH]2)nc(N)n1; ['Cc1cc(C(=O)O)nc(N)n1', 'Cc1cc(C)nc(N)n1']; ['Nc1ccccc1N', 'Nc1ccccc1N']; [0.9936274290084839, 0.9906859397888184] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['C[C@H]1CCCN1', 'C[C@H]1CCCN1C(=O)OC(C)(C)C']; ['O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9999434351921082, 0.9997084736824036] +COc1ccc(CNc2nc3ccccc3[nH]2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN=C=S)cc1', 'Brc1nc2ccccc2[nH]1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'CCS(=O)(=O)c1nc2ccccc2[nH]1', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['O=S(=O)(O)c1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'COc1ccc(CN)cc1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'COc1ccc(CN)cc1', 'Nc1nc2ccccc2[nH]1', 'O=S(=O)(Cc1ccccc1)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9991673827171326, 0.9990221261978149, 0.9989597797393799, 0.9984546899795532, 0.9981753826141357, 0.9971606731414795, 0.9952471256256104, 0.9923372268676758, 0.9904329776763916, 0.9879042506217957, 0.9221564531326294] +Clc1ccc(-c2nc3ccccc3[nH]2)c(Cl)c1; ['N=C(N)c1ccc(Cl)cc1Cl', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'NCc1ccc(Cl)cc1Cl', 'Nc1ccccc1N', 'N#Cc1ccc(Cl)cc1Cl', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Clc1ccc(CBr)c(Cl)c1']; ['Nc1ccccc1I', 'OCc1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl', 'Nc1ccccc1N', 'O=Cc1ccc(Cl)cc1Cl', 'Nc1ccccc1N', 'O=C(O)c1ccc(Cl)cc1Cl', 'O=C(Cl)c1ccc(Cl)cc1Cl', 'ON=Cc1ccc(Cl)cc1Cl', 'Nc1ccccc1N']; [0.9999206066131592, 0.9997538328170776, 0.9997134208679199, 0.9996861219406128, 0.9994214177131653, 0.9992730617523193, 0.9985005259513855, 0.9975267648696899, 0.9942138195037842, 0.9528303146362305] +O=C1CCc2cc(-c3nc4ccccc4[nH]3)ccc2N1; ['Brc1nc2ccccc2[nH]1', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'N#Cc1ccc2c(c1)CCC(=O)N2', 'Nc1ccccc1N']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'O=C1CCc2cc(C(=O)O)ccc2N1']; [0.9996418952941895, 0.998471736907959, 0.9861060380935669, 0.9678062796592712] +CCN1CCN(Cc2ccc(-c3nc4ccccc4[nH]3)cc2)CC1; ['CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'CCN1CCN(Cc2ccc(C(=O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'Brc1nc2ccccc2[nH]1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN(CCCl)CCCl']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Ic1nc2ccccc2[nH]1', 'Nc1ccccc1[N+](=O)[O-]', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Clc1nc2ccccc2[nH]1', 'NCc1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9997621774673462, 0.9995256066322327, 0.9992977380752563, 0.9991653561592102, 0.998710572719574, 0.9963480234146118, 0.9444169998168945] +c1ccc2[nH]c(-c3cc4ccccn4n3)nc2c1; ['Nc1ccccc1N', 'Nc1ccccc1N']; ['O=Cc1cc2ccccn2n1', 'O=C(O)c1cc2ccccn2n1']; [0.9951704740524292, 0.9902746677398682] +O=C(C1CC1)N1CC(Nc2nc3ccccc3[nH]2)C1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc4ccccc4[nH]3)c2c1; ['COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1']; ['Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; [0.999527633190155, 0.9984338283538818] +CC1(C)Cc2cc(-c3nc4ccccc4[nH]3)ccc2O1; ['CC1(C)Cc2cc(C=O)ccc2O1']; ['Nc1ccccc1N']; [0.9983420372009277] +Oc1ccc2cccc(-c3nc4ccccc4[nH]3)c2c1; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; ['O=C(O)c1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12']; [0.9958977699279785, 0.9920983910560608, 0.9324640035629272] +Cn1cc(-c2nc3ccccc3[nH]2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Brc1nc2ccccc2[nH]1', 'Cn1cc(C=O)c(C(F)(F)F)n1', 'Cn1cc(C=O)c(C(F)(F)F)n1', 'Cn1cc(C(=O)O)c(C(F)(F)F)n1', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; ['Ic1nc2ccccc2[nH]1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9999920129776001, 0.9999909400939941, 0.9999678730964661, 0.9999430179595947, 0.9998295307159424, 0.9998013973236084, 0.9991482496261597] +COc1cc(-c2nc3ccccc3[nH]2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1nc2ccccc2[nH]1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Ic1nc2ccccc2[nH]1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Clc1nc2ccccc2[nH]1']; [0.9997924566268921, 0.9995682239532471, 0.9994094371795654] +COc1cc(-c2nc3ccccc3[nH]2)ccc1Cl; ['COc1cc(C#N)ccc1Cl', 'COc1cc(C=O)ccc1Cl', 'COc1cc(CBr)ccc1Cl', 'COc1cc(C(=O)O)ccc1Cl', 'COc1cc(CN)ccc1Cl', 'COc1cc(C=O)ccc1Cl', 'COc1cc(CO)ccc1Cl']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; [0.9962186813354492, 0.9912266731262207, 0.9878969192504883, 0.9833477735519409, 0.9745786190032959, 0.9530972242355347, 0.9054234027862549] +Cc1nc(Nc2nc3ccccc3[nH]2)sc1C; ['Cc1nc(Br)sc1C']; ['Nc1nc2ccccc2[nH]1']; [0.9986295700073242] +COc1cc(F)c(-c2nc3ccccc3[nH]2)cc1OC; ['COc1cc(F)c(C(=O)O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C#N)cc1OC', 'COc1cc(F)c(C=O)cc1OC', None]; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', None]; [0.9994174242019653, 0.9988953471183777, 0.9981238842010498, 0.9967383146286011, 0] +Clc1cnc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +Cc1cc(Nc2nc3ccccc3[nH]2)nn1C; ['Brc1nc2ccccc2[nH]1', 'Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C']; ['Cc1cc(N)nn1C', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9988992214202881, 0.9969673156738281, 0.9960780143737793] +OCCn1cc(-c2nc3ccccc3[nH]2)cn1; ['Brc1nc2ccccc2[nH]1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1nc2ccccc2[nH]1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999449253082275, 0.999779224395752, 0.9976455569267273, 0.9827876091003418] +c1ccc2[nH]c(-c3ncc4cccn4n3)nc2c1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3ccccc3[nH]2)cc1; ['NC(=O)c1ccc(CC(=O)O)cc1']; ['Nc1ccccc1N']; [0.9994246363639832] +Nc1cc(-c2nc3ccccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CN', 'Brc1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(C(=O)O)cc1', None, 'CNC(=O)OC(C)(C)C', 'CNC(=O)c1ccc(C=O)cc1']; ['Clc1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1nc2ccccc2[nH]1', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'Nc1ccccc1N', None, 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', 'Nc1ccccc1N']; [0.9999051690101624, 0.9997963905334473, 0.9985852837562561, 0.9978573322296143, 0.9973766803741455, 0.9961545467376709, 0, 0.9817805886268616, 0.8338465094566345] +COc1cc(-c2nc3ccccc3[nH]2)c(OC)cc1Br; ['COc1cc(CO)c(OC)cc1Br', 'COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(CO)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N']; [0.9987606406211853, 0.9979368448257446, 0.9977155327796936, 0.9976996183395386, 0.9940827488899231, 0.9918512105941772] +O=C(Nc1nc2ccccc2[nH]1)c1ccco1; ['Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['O=C(O)c1ccco1', 'NC(=O)c1ccco1', 'O=C(Cl)c1ccco1']; [0.9903197288513184, 0.9569144248962402, 0.9523797035217285] +Cc1csc2c(-c3nc4ccccc4[nH]3)ncnc12; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nc3ccccc3[nH]2)cc1; ['Nc1ccccc1N']; ['O=C(O)Cc1ccc(S(=O)(=O)CCO)cc1']; [0.9885886907577515] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3ccccc3[nH]2)c1; ['Nc1cn[nH]c1', 'COC(=O)c1cccc(-c2nc3ccccc3[nH]2)c1']; ['O=C(O)c1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cn[nH]c1']; [0.9999963045120239, 0.9998337030410767] +CCNC(=O)N1CCC(c2nc3ccccc3[nH]2)CC1; [None, 'CCN', None, 'CCN=C=O', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1', 'CCNC=O', 'CCNC(=O)OCC']; [None, 'c1ccc2[nH]c(C3CCNCC3)nc2c1', None, 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0, 0.9999852180480957, 0, 0.9996854662895203, 0.9992423057556152, 0.9984841346740723, 0.9849720001220703, 0.9807596206665039] +COc1ccc2oc(-c3nc4ccccc4[nH]3)cc2c1; ['COc1ccc2oc(C=O)cc2c1']; ['Nc1ccccc1N']; [0.9928624629974365] +CO[C@@H]1CC[C@@H](c2nc3ccccc3[nH]2)CC1; ['CO[C@H]1CC[C@H](C(=O)O)CC1']; ['Nc1ccccc1N']; [0.999069094657898] +COc1ccc2c(c1)c(-c1nc3ccccc3[nH]1)cn2C; ['COc1ccc2c(c1)c(C=O)cn2C', 'COc1ccc2c(c1)c(C(=O)O)cn2C']; ['Nc1ccccc1N', 'Nc1ccccc1N']; [0.9999685287475586, 0.9996663331985474] +COc1cc(OC)cc(-c2nc3ccccc3[nH]2)c1; ['COc1cc(OC)cc(C(=N)N)c1', 'COc1cc(CN)cc(OC)c1', 'COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(CO)cc(OC)c1', 'COc1cc(C#N)cc(OC)c1', 'COc1cc(OC)cc(C(=O)C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(CO)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1', 'COc1cc(OC)cc(C(=O)Cl)c1']; ['Nc1ccccc1I', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9999065399169922, 0.9995403289794922, 0.9989227652549744, 0.9974921345710754, 0.995797872543335, 0.9953146576881409, 0.9950666427612305, 0.9907311201095581, 0.9900375604629517, 0.98072350025177, 0.9608895778656006] +CC(C)(C)c1ccc(C(=O)Nc2nc3ccccc3[nH]2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9996339082717896, 0.9995435476303101, 0.9979609847068787] +c1ccc2[nH]c(-c3ccc4cn[nH]c4c3)nc2c1; ['Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'NCc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N']; ['O=Cc1ccc2cn[nH]c2c1', 'O=Cc1ccc2cn[nH]c2c1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'OCc1ccc2cn[nH]c2c1', 'OCc1ccc2cn[nH]c2c1', 'O=C(O)c1ccc2cn[nH]c2c1']; [0.9898013472557068, 0.9835054278373718, 0.9573018550872803, 0.951529860496521, 0.9464337825775146, 0.9334477186203003, 0.8684763312339783] +c1ccc2oc(-c3nc4ccccc4[nH]3)cc2c1; ['NCc1cc2ccccc2o1', 'Nc1ccccc1N']; ['Nc1ccccc1N', 'O=Cc1cc2ccccc2o1']; [0.9963898062705994, 0.994174599647522] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc2ccccc2[nH]1; ['Cn1cc(Br)cc1C(=O)O']; ['Nc1ccccc1N']; [0.9993380308151245] +c1cncc(-c2ccnc(-c3nc4ccccc4[nH]3)c2)c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncc4sccc4n3)nc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3ccccc3[nH]2)c1)N1CCCC1; ['C1CCNC1', None, 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1']; ['Nc1cccc(-c2nc3ccccc3[nH]2)c1', None, 'O=C(Oc1ccccc1)N1CCCC1', 'O=C(Cl)N1CCCC1']; [0.9999818205833435, 0, 0.9996621608734131, 0.9993190765380859] +CC(C)c1nn(C)cc1-c1nc2ccccc2[nH]1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1nc2ccccc2[nH]1', 'CC(C)c1nn(C)cc1C(=O)O', 'CC(C)c1nn(C)cc1C=O']; ['Ic1nc2ccccc2[nH]1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9999011158943176, 0.9999001026153564, 0.9995532631874084, 0.9976125359535217] +COc1ccc(F)c(C(=O)Nc2nc3ccccc3[nH]2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Nc1nc2ccccc2[nH]1']; [0.9996426105499268] +CCn1cc(-c2nc3ccccc3[nH]2)cn1; [None]; [None]; [0] +CCc1cccc(-c2nc3ccccc3[nH]2)n1; ['CCc1cccc(C#N)n1', 'CCc1cccc(C=O)n1', 'CCc1cccc(C(=O)O)n1', 'CCc1cccc(C)n1']; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0.9988047480583191, 0.9954560399055481, 0.9942443370819092, 0.9861135482788086] +CNC(=O)c1ccc(OC)c(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2nc3ccccc3[nH]2)cc1; ['N=C(N)c1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1N', 'NCc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(CBr)cc1', 'Nc1ccccc1N', 'N#Cc1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; ['Nc1ccccc1I', 'O=C(Cl)c1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'O=C(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1N', 'O=Cc1ccc(OC(F)(F)F)cc1', 'OCc1ccc(OC(F)(F)F)cc1', 'ON=Cc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1']; [0.9999681711196899, 0.9998781681060791, 0.9997519254684448, 0.9997199773788452, 0.9996788501739502, 0.9994282722473145, 0.9993571639060974, 0.9991363883018494, 0.9985642433166504, 0.9958613514900208] +Cn1cc(-c2nc3ccccc3[nH]2)c2ccccc21; ['Cn1cc(C=O)c2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21']; ['Nc1ccccc1N', 'Nc1ccccc1N']; [0.999894380569458, 0.9998793601989746] +C[NH+](C)Cc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(-c2nc3ccccc3[nH]2)cc(C)c1OCCO; ['Cc1cc(C=O)cc(C)c1OCCO']; ['Nc1ccccc1N']; [0.9744330048561096] +CC(C)(O)c1ccc2cc(-c3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncn4c3CCCC4)nc2c1; [None]; [None]; [0] +COc1ccc2nc(-c3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc4ccccc4[nH]3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(C(=O)O)ccc12']; ['Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N']; [0.9997636079788208, 0.9912309050559998] +O=C(Nc1nc2ccccc2[nH]1)c1cccc(OC(F)(F)F)c1; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.999919593334198, 0.9998373985290527] +CN(C)c1ccc(-c2nc3ccccc3[nH]2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CNC', 'CN(C)c1ccc(CN)cn1', None, 'CN(C)c1ccc(C(=O)O)cn1', 'CN(C)c1ccc(CO)cn1', 'Brc1nc2ccccc2[nH]1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(C=O)cn1', 'CN(C)c1ccc(B(O)O)cn1', None, None, 'CN(C)c1ccc(C=O)cn1', 'CN(C)c1ccc(I)cn1']; ['Ic1nc2ccccc2[nH]1', 'Clc1ccc(-c2nc3ccccc3[nH]2)cn1', 'Nc1ccccc1N', None, 'Nc1ccccc1N', 'Nc1ccccc1N', 'CN(C)c1ccc(B(O)O)cn1', 'Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Ic1nc2ccccc2[nH]1', None, None, 'Nc1ccccc1[N+](=O)[O-]', 'c1ccc2[nH]cnc2c1']; [0.9998176097869873, 0.9992285370826721, 0.9990077018737793, 0, 0.998602569103241, 0.9985119104385376, 0.998423159122467, 0.9971449375152588, 0.9963326454162598, 0.994693398475647, 0, 0, 0.9652960300445557, 0.9094816446304321] +Cn1nc(Cl)c2cc(-c3nc4ccccc4[nH]3)ccc21; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3ccccc3[nH]2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Brc1nc2ccccc2[nH]1', 'Nc1cccc(-c2nc3ccccc3[nH]2)c1', 'Nc1ccccc1N', 'Brc1cccc(-c2nc3ccccc3[nH]2)c1']; ['Clc1nc2ccccc2[nH]1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C(Cl)CCCCl', 'O=C(O)c1cccc(N2CCCC2=O)c1', 'O=C1CCCN1']; [0.9999100565910339, 0.9999058246612549, 0.9994902610778809, 0.9994114637374878, 0.9981778264045715] +Cn1ncc2cc(-c3nc4ccccc4[nH]3)ccc21; [None]; [None]; [0] +OCCc1ccc(-c2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'N#Cc1ccc(CCO)cc1', 'NCc1ccc(CCO)cc1', 'Clc1nc2ccccc2[nH]1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'O=C(O)c1ccc(CCO)cc1', 'Clc1nc2ccccc2[nH]1', 'OCCc1ccc(CBr)cc1', 'OCCc1ccc(CO)cc1', 'OCCc1ccc(CO)cc1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'OCCc1ccc(B(O)O)cc1']; [0.9996297359466553, 0.9991399049758911, 0.9987229704856873, 0.9966349005699158, 0.9956858158111572, 0.9953922033309937, 0.9901382923126221, 0.9857332706451416, 0.8507048487663269] +CC(=O)N1CCC(n2cc(-c3nc4ccccc4[nH]3)cn2)CC1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc2ccccc2[nH]1; ['Cc1cc(N2CCOCC2)ccc1C=O']; ['Nc1ccccc1N']; [0.9998717308044434] +Cc1ncc(-c2ccc(-c3nc4ccccc4[nH]3)cc2)n1C; ['Brc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Brc1ccc(-c2nc3ccccc3[nH]2)cc1', 'Brc1ccc(-c2nc3ccccc3[nH]2)cc1']; ['Cc1ncc(Br)n1C', 'Cc1nccn1C', 'CCCC[Sn](CCCC)(CCCC)c1cnc(C)n1C']; [0.9984637498855591, 0.9964967966079712, 0.9649125337600708] +CN(C)C(=O)c1ccc(-c2nc3ccccc3[nH]2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3ccccc3[nH]2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1nc2ccccc2[nH]1']; ['Clc1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; [0.9998719692230225, 0.9998036026954651] +CCNC(=O)c1ccc(-c2nc3ccccc3[nH]2)cc1; ['CCN', None, 'CCNC(=O)c1ccc(C(=O)O)cc1', 'CCNC(=O)OC(C)(C)C']; ['O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1', None, 'Nc1ccccc1N', 'O=C(O)c1ccc(-c2nc3ccccc3[nH]2)cc1']; [0.9998409748077393, 0, 0.9995875954627991, 0.9960064888000488] +Cc1cc(Nc2nc3ccccc3[nH]2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; [0.9965609908103943, 0.9962175488471985, 0.9874749183654785, 0.9855896830558777, 0.974631667137146] +c1ccc(Nc2nc3ccccc3[nH]2)nc1; ['Clc1ccccn1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Brc1ccccn1', 'Fc1ccccn1', 'Ic1nc2ccccc2[nH]1', 'N#CNc1ccccn1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccccn1', 'Nc1ccccc1N', 'Nc1ccccn1']; [0.9975563287734985, 0.9972543120384216, 0.9934558868408203, 0.9930845499038696, 0.9913498163223267, 0.9659792184829712, 0.9545568823814392, 0.8876502513885498] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3ccccc3[nH]2)c1; ['CS(=O)(=O)c1ccc(Cl)c(C(=O)O)c1']; ['Nc1ccccc1N']; [0.9945858716964722] +Fc1ccc(Nc2nc3ccccc3[nH]2)nc1; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'Fc1ccc(Br)nc1', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Fc1ccc(Cl)nc1', 'Ic1nc2ccccc2[nH]1', 'Fc1ccc(F)nc1', 'CSc1nc2ccccc2[nH]1']; ['Nc1ccc(F)cn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(F)cn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(F)cn1']; [0.9892618656158447, 0.9871442317962646, 0.9787194132804871, 0.9758408069610596, 0.96129310131073, 0.9592561721801758, 0.9259417653083801, 0.8997752666473389] +COc1cc(N2CCNCC2)ccc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +Cn1nc(-c2nc3ccccc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2nccnc2[nH]1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['c1cnc2[nH]ccc2n1', 'c1cnc2[nH]ccc2n1']; [0.9820165634155273, 0.9103277921676636] +CCOc1ccccc1-c1cc2nccnc2[nH]1; ['CCOc1ccccc1C#N', 'CCOc1ccccc1Br']; ['Cc1cnccn1', 'c1cnc2[nH]ccc2n1']; [0.9996918439865112, 0.9917303323745728] +Cc1ccc(C(=O)NCCO)cc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1cccc(C(F)(F)F)c1']; [0.9994217157363892] +FC(F)(F)Oc1ccccc1-c1cc2nccnc2[nH]1; ['Cc1cnccn1']; ['N#Cc1ccccc1OC(F)(F)F']; [0.9989362359046936] +CP(C)(=O)c1ccccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1cc2nccnc2[nH]1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3nccnc3[nH]2)[nH]1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4[nH]3)ccnc2c1; ['Brc1ccnc2ccccc12', 'Cc1cnccn1']; ['c1cnc2[nH]ccc2n1', 'N#Cc1ccnc2ccccc12']; [0.9956486225128174, 0.9602835178375244] +CCn1cc(-c2cc3nccnc3[nH]2)cn1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4nccnc4[nH]3)cn2)cc1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +OCCn1cc(-c2cc3nccnc3[nH]2)cn1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4nccnc4[nH]3)cc2c1=O; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1cc(Cl)ccc1Cl']; [0.9936346411705017] +O=C(Nc1cccc(-c2cc3nccnc3[nH]2)c1)c1ccccc1; [None]; [None]; [0] +Cc1ccc(-c2cc3nccnc3[nH]2)c(Br)c1; ['Cc1ccc(C#N)c(Br)c1']; ['Cc1cnccn1']; [0.97332763671875] +CC(C)(C)c1nc(-c2cc3nccnc3[nH]2)cs1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cc4nccnc4[nH]3)[nH]2)cc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2nccnc2[nH]1; [None]; [None]; [0] +COc1cnc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3nccnc3[nH]2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3nccnc3[nH]2)s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1cccc(Br)c1']; [0.895031750202179] +c1ccn2c(-c3cc4nccnc4[nH]3)cnc2c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1cccc(Cn2cncn2)c1']; [0.9992073774337769] +Cc1ccc(Cl)c(-c2cc3nccnc3[nH]2)c1; ['Cc1ccc(Cl)c(C#N)c1']; ['Cc1cnccn1']; [0.9894291758537292] +Clc1cccc(Cl)c1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +c1ccc2cc(-c3cc4nccnc4[nH]3)ccc2c1; ['Cc1cnccn1']; ['N#Cc1ccc2ccccc2c1']; [0.9990349411964417] +c1cnn2c(-c3cc4nccnc4[nH]3)cnc2c1; [None]; [None]; [0] +Cc1c(-c2cc3nccnc3[nH]2)sc(=O)n1C; [None]; [None]; [0] +c1cnn2ncc(-c3cc4nccnc4[nH]3)c2c1; [None]; [None]; [0] +Nc1nccc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +c1cncc(Nc2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +c1cncc(CNc2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cc2nccnc2[nH]1; [None]; [None]; [0] +c1cnc2[nH]c(NCCc3c[nH]cn3)cc2n1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2[nH]1)c1cccs1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4[nH]3)cncc2c1; ['Cc1cnccn1']; ['N#Cc1cncc2ccccc12']; [0.9984707832336426] +O=C([O-])Cc1cccc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4nccnc4[nH]3)cc2)cn1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4nccnc4[nH]3)ccc21; ['Cc1cnccn1']; ['Cn1ncc2cc(C#N)ccc21']; [0.9999474287033081] +c1ccc(CCNc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ccc(-c4cn[nH]c4)cc3)cc2n1; ['Cc1cnccn1']; ['N#Cc1ccc(-c2cn[nH]c2)cc1']; [0.9885693192481995] +Oc1cccc(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1cccc(O)c1']; [0.9956724643707275] +OCc1cccc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc4nccnc4[nH]3)ccc12; [None]; [None]; [0] +CCCn1cnc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +CN1c2ccc(-c3cc4nccnc4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +Clc1ccc(CNc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +Fc1ccccc1CNc1cc2nccnc2[nH]1; [None]; [None]; [0] +c1cc(Nc2cc3nccnc3[nH]2)ccn1; [None]; [None]; [0] +CSc1nc(-c2cc3nccnc3[nH]2)c[nH]1; [None]; [None]; [0] +CC(C)n1cc(-c2cc3nccnc3[nH]2)nn1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +c1cnc2[nH]c(-c3csc4ncncc34)cc2n1; [None]; [None]; [0] +c1cnc2[nH]c(CCc3c[nH]nn3)cc2n1; [None]; [None]; [0] +Fc1ccc(-c2cc3nccnc3[nH]2)c(C(F)(F)F)c1; ['Cc1cnccn1']; ['N#Cc1ccc(F)cc1C(F)(F)F']; [0.9970762729644775] +Nc1ncncc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4nccnc4[nH]3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +Nc1nc(-c2cc3nccnc3[nH]2)cs1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3nccnc3[nH]2)c1; ['CC(=O)Nc1cccc(C#N)c1']; ['Cc1cnccn1']; [0.9920556545257568] +Cn1cc(-c2cc3nccnc3[nH]2)c2ccccc21; ['Cc1cnccn1']; ['Cn1cc(C#N)c2ccccc21']; [0.8861616849899292] +N#CCCc1cccc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +NC(=O)CCCc1cc2nccnc2[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3[nH]2)cc1Cl; ['COc1ccc(C#N)cc1Cl']; ['Cc1cnccn1']; [0.9988526105880737] +CC(C)(COc1cc2nccnc2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +c1ccn2ncc(-c3cc4nccnc4[nH]3)c2c1; ['Cc1cnccn1']; ['N#Cc1cnn2ccccc12']; [0.9959173202514648] +O=C(Nc1cc2nccnc2[nH]1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +c1ccc(Oc2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2nccnc2[nH]1; [None]; [None]; [0] +CCCn1cc(-c2cc3nccnc3[nH]2)cn1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +O=c1cc(-c2cc3nccnc3[nH]2)cc[nH]1; ['Cc1cnccn1']; ['N#Cc1cc[nH]c(=O)c1']; [0.7790846824645996] +[NH3+]Cc1ccc(-c2cc3nccnc3[nH]2)cc1C(F)(F)F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc4nccnc4[nH]3)c21; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](Oc1cc2nccnc2[nH]1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +COc1cc(CCc2cc3nccnc3[nH]2)cc(OC)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CC(C)(C)c1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9979771971702576] +CCN(CC)c1cc2nccnc2[nH]1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2nccnc2[nH]1; ['COc1cccc(F)c1C#N']; ['Cc1cnccn1']; [0.972770094871521] +O=c1[nH]cc(Br)c2sc(-c3cc4nccnc4[nH]3)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc4nccnc4[nH]3)cc12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +COc1ccncc1Nc1cc2nccnc2[nH]1; [None]; [None]; [0] +c1cnc2[nH]c(-c3cnc4[nH]ccc4c3)cc2n1; ['Cc1cnccn1']; ['N#Cc1cnc2[nH]ccc2c1']; [0.7830769419670105] +CC(C)Oc1cncc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +c1cc2c(-c3cc4nccnc4[nH]3)c[nH]c2cn1; ['Cc1cnccn1']; ['N#Cc1c[nH]c2cnccc12']; [0.998116672039032] +c1ccc2ncc(Nc3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9897872805595398] +c1cnc2[nH]c(-c3ccc(N4CCOCC4)cc3)cc2n1; ['Cc1cnccn1']; ['N#Cc1ccc(N2CCOCC2)cc1']; [0.9998695254325867] +CS(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CS(=O)(=O)c1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9985275864601135] +CNC(=O)c1c(F)cccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CC1(c2cc3nccnc3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc2nccnc2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cc2nccnc2[nH]1; ['Cc1cnccn1']; ['N#Cc1c(F)cccc1Cl']; [0.8113018274307251] +C[C@H](Nc1cc2nccnc2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2cc3nccnc3[nH]2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCCc1cn(-c2cc3nccnc3[nH]2)cn1; [None]; [None]; [0] +C[C@H](Nc1cc2nccnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +OCc1ccn(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3[nH]2)c(OC)c1; ['COc1ccc(C#N)c(OC)c1']; ['Cc1cnccn1']; [0.9905492067337036] +C[C@@H](Nc1cc2nccnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +c1cnc2[nH]c(-c3ccc(-n4cncn4)cc3)cc2n1; ['Cc1cnccn1']; ['N#Cc1ccc(-n2cncn2)cc1']; [0.9982544183731079] +c1ccc2c(c1)cnn2-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc4nccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cc2nccnc2[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; ['c1cnc2[nH]ccc2n1', 'c1cnc2[nH]ccc2n1', 'c1cnc2[nH]ccc2n1']; [0.9996337294578552, 0.983577311038971, 0.9800161719322205] +CSc1nc(C)c(-c2cc3nccnc3[nH]2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +c1cnc2[nH]c(-c3nncn3C3CC3)cc2n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cc5nccnc5[nH]4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cc2nccnc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cc2nccnc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2cc3nccnc3[nH]2)s1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4nccnc4[nH]3)nn2)cc1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3[nH]2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc3nccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CCc1cc(-c2cc3nccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +c1cc(-c2cc3nccnc3[nH]2)c2sccc2c1; ['Cc1cnccn1']; ['N#Cc1cccc2ccsc12']; [0.9006550908088684] +C[C@@H2]NC(=O)N1CCC(c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc3nccnc3[nH]2)c(F)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4nccnc4[nH]3)nc2NC1=O; [None]; [None]; [0] +c1ccc2sc(-c3cc4nccnc4[nH]3)nc2c1; [None]; [None]; [0] +Nc1cncc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4nccnc4[nH]3)c2)cc1; [None]; [None]; [0] +c1cnc2c(-c3cc4nccnc4[nH]3)c[nH]c2c1; ['Cc1cnccn1']; ['N#Cc1c[nH]c2cccnc12']; [0.97664475440979] +CC(=O)Nc1ncc(-c2cc3nccnc3[nH]2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc3nccnc3[nH]2)nc2ccccc12; [None]; [None]; [0] +c1cc(-c2cc3nccnc3[nH]2)c2snnc2c1; [None]; [None]; [0] +OCCn1cnc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2nccnc2[nH]1; ['COc1ccc(C#N)cc1C#N', 'COc1ccc(C#N)cc1I']; ['Cc1cnccn1', 'c1cnc2[nH]ccc2n1']; [0.9970155954360962, 0.9967366456985474] +c1cnc2[nH]c(-c3ncc4cc[nH]c4n3)cc2n1; [None]; [None]; [0] +c1ccc2nc(-c3cc4nccnc4[nH]3)ncc2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3nccnc3[nH]2)c1; ['CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(C#N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['c1cnc2[nH]ccc2n1', 'Cc1cnccn1', 'c1cnc2[nH]ccc2n1']; [0.9999680519104004, 0.9999474287033081, 0.9989359378814697] +COc1ncccc1-c1cc2nccnc2[nH]1; ['COc1ncccc1C#N', 'COc1ncccc1Br']; ['Cc1cnccn1', 'c1cnc2[nH]ccc2n1']; [0.9780703186988831, 0.9240494966506958] +C[C@@]1(O)CC[C@H](c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +COc1ccc(Oc2cc3nccnc3[nH]2)c(F)c1F; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +CCOc1ccc(-c2cc3nccnc3[nH]2)cc1; ['CCOc1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9983424544334412] +CN(C)c1cc(-c2cc3nccnc3[nH]2)cnn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc3nccnc3[nH]2)c1; ['CS(=O)(=O)c1cccc(C#N)c1']; ['Cc1cnccn1']; [0.9994946718215942] +c1ccc2[nH]c(C3CCN(c4cc5nccnc5[nH]4)CC3)nc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3[nH]2)cc(OC)c1OC; ['COc1cc(C#N)cc(OC)c1OC']; ['Cc1cnccn1']; [0.9984171986579895] +CC(=O)N(C)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CC(=O)N(C)c1ccc(Br)cc1']; ['c1cnc2[nH]ccc2n1']; [0.9916926622390747] +C1=C(c2c[nH]c3ccccc23)CCN(c2cc3nccnc3[nH]2)C1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3[nH]2)cc1; ['COc1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9945788383483887] +Cc1nc(C(C)(C)O)sc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1ccc(O)c(C#N)c1']; [0.9930610060691833] +c1ccc2[nH]c(-c3cc4nccnc4[nH]3)nc2c1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc4nccnc4[nH]3)c2c1; [None]; [None]; [0] +Cc1cc(Nc2cc3nccnc3[nH]2)sn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4nccnc4[nH]3)cc2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3[nH]2)c1)C1CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3nccnc3[nH]2)cc1; ['CC(=O)NCc1ccc(Br)cc1']; ['c1cnc2[nH]ccc2n1']; [0.9910904169082642] +c1ccc2c(-c3cc4nccnc4[nH]3)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4nccnc4[nH]3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2cc3nccnc3[nH]2)cc1)N1CCOCC1; [None]; [None]; [0] +OCCOc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['Cc1cnccn1']; ['N#Cc1ccc(C(F)(F)F)cc1']; [0.9981917142868042] +CN(C)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CN(C)c1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9962197542190552] +C[C@H](O)COc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +c1cc(Nc2cc3nccnc3[nH]2)ncn1; [None]; [None]; [0] +O=C(c1ccc(-c2cc3nccnc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cc4nccnc4[nH]3)cc2C1; [None]; [None]; [0] +c1cc(-c2cc3nccnc3[nH]2)cc(C2CCNCC2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(C#N)cc1']; ['c1cnc2[nH]ccc2n1', 'Cc1cnccn1']; [0.9997018575668335, 0.999474048614502] +O=C(c1ccccc1)N1CC[C@H](c2cc3nccnc3[nH]2)C1; [None]; [None]; [0] +Brc1ccc(-c2cc3nccnc3[nH]2)cc1; ['Cc1cnccn1']; ['N#Cc1ccc(Br)cc1']; [0.9842429161071777] +CC(C)c1cc(-c2cc3nccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4nccnc4[nH]3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2nccnc2[nH]1; ['COc1ccc(Cl)cc1C#N']; ['Cc1cnccn1']; [0.9789301753044128] +CCCOc1ccc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3nccnc3[nH]2)cc1Cl; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cc3nccnc3[nH]2)c1; ['Cc1cnccn1']; ['N#Cc1ccccc1-n1cccn1']; [0.9514799118041992] +CNS(=O)(=O)c1ccc(-c2cc3nccnc3[nH]2)c(C)c1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ccc4c(c3)CCO4)cc2n1; ['Cc1cnccn1']; ['N#Cc1ccc2c(c1)CCO2']; [0.9816240072250366] +c1ccc2c(-c3cc4nccnc4[nH]3)c[nH]c2c1; ['OB(O)c1c[nH]c2ccccc12', 'Cc1cnccn1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; ['c1cnc2[nH]ccc2n1', 'N#Cc1c[nH]c2ccccc12', 'c1cnc2[nH]ccc2n1', 'c1cnc2[nH]ccc2n1']; [0.9945973753929138, 0.9855668544769287, 0.9751451015472412, 0.9738051891326904] +CCN(CC)C(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ccn4nccc4n3)cc2n1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3[nH]2)ccc1O; ['COc1cc(C#N)ccc1O']; ['Cc1cnccn1']; [0.9989314675331116] +CC(C)c1ccc2nc(-c3cc4nccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +c1ccc2ncc(-c3cc4nccnc4[nH]3)cc2c1; ['Cc1cnccn1']; ['N#Cc1cnc2ccccc2c1']; [0.9983210563659668] +COc1cc(OC)c(-c2cc3nccnc3[nH]2)cc1Cl; [None]; [None]; [0] +c1cc2c(c(-c3cc4nccnc4[nH]3)c1)OCO2; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3nccnc3[nH]2)cn1; ['CC(C)(C)c1ccc(C#N)cn1']; ['Cc1cnccn1']; [0.9990161657333374] +COc1cccc(C(=O)Nc2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cc4nccnc4[nH]3)n[nH]2)cc1; [None]; [None]; [0] +CSc1ccc(-c2cc3nccnc3[nH]2)cc1; ['CSc1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9969840049743652] +CN(C)C(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +Fc1ccc(-c2cc3nccnc3[nH]2)c(Cl)c1; ['Cc1cnccn1']; ['N#Cc1ccc(F)cc1Cl']; [0.9957091212272644] +CCN1CCN(Cc2ccc(-c3cc4nccnc4[nH]3)cc2)CC1; [None]; [None]; [0] +c1cnc2[nH]c(-c3scc4c3OCCO4)cc2n1; [None]; [None]; [0] +CC1(COc2cc3nccnc3[nH]2)COC1; [None]; [None]; [0] +CCc1ccc(-c2cc3nccnc3[nH]2)cc1; ['CCc1ccc(C#N)cc1']; ['Cc1cnccn1']; [0.9985195398330688] +COc1ccc(-c2cc3nccnc3[nH]2)cc1OC; ['COc1ccc(C#N)cc1OC']; ['Cc1cnccn1']; [0.9990246295928955] +Clc1cccc(-n2ccc(-c3cc4nccnc4[nH]3)n2)c1; [None]; [None]; [0] +Clc1ccc(-c2cc3nccnc3[nH]2)c(Cl)c1; ['Cc1cnccn1']; ['N#Cc1ccc(Cl)cc1Cl']; [0.9986045360565186] +Cc1cc(-c2cc3nccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +c1ccc2sc(-c3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +O=C1CCc2cc(-c3cc4nccnc4[nH]3)ccc2N1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3[nH]2)ccc1N1CCOCC1; ['COc1cc(C#N)ccc1N1CCOCC1']; ['Cc1cnccn1']; [0.9998193979263306] +Brc1cnc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +c1cc2cnc(-c3cc4nccnc4[nH]3)nn2c1; [None]; [None]; [0] +c1ccn2nc(-c3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cc3nccnc3[nH]2)C1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4nccnc4[nH]3)c2c1; ['COc1ccc2cccc(C#N)c2c1']; ['Cc1cnccn1']; [0.9783585667610168] +COc1cc(-c2cc3nccnc3[nH]2)ccc1Cl; ['COc1cc(C#N)ccc1Cl']; ['Cc1cnccn1']; [0.9852281808853149] +COc1ccc(CNc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +COc1cc(F)c(-c2cc3nccnc3[nH]2)cc1OC; ['COc1cc(F)c(C#N)cc1OC']; ['Cc1cnccn1']; [0.9970369338989258] +Oc1ccc2cccc(-c3cc4nccnc4[nH]3)c2c1; [None]; [None]; [0] +Cn1cc(-c2cc3nccnc3[nH]2)c(C(F)(F)F)n1; [None]; [None]; [0] +Cc1nc(Nc2cc3nccnc3[nH]2)sc1C; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc4nccnc4[nH]3)ccc2O1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CNC(=O)c1ccc(Br)cc1']; ['c1cnc2[nH]ccc2n1']; [0.9632072448730469] +Cc1csc2c(-c3cc4nccnc4[nH]3)ncnc12; [None]; [None]; [0] +Nc1cc(-c2cc3nccnc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3[nH]2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['c1cnc2[nH]ccc2n1', 'c1cnc2[nH]ccc2n1']; [0.9747525453567505, 0.8111262917518616] +Cc1cc(Nc2cc3nccnc3[nH]2)nn1C; [None]; [None]; [0] +Clc1cnc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2[nH]1)c1ccco1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3nccnc3[nH]2)c1; ['COc1cc(C#N)cc(OC)c1']; ['Cc1cnccn1']; [0.9891577959060669] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ccc4cn[nH]c4c3)cc2n1; ['Cc1cnccn1']; ['N#Cc1ccc2cn[nH]c2c1']; [0.9931004047393799] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc3nccnc3[nH]2)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3nccnc3[nH]1)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3nccnc3[nH]2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1']; ['c1cnc2[nH]ccc2n1']; [0.9833632707595825] +C[NH+](C)Cc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ncc4sccc4n3)cc2n1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cc3nccnc3[nH]2)cc1; ['Cc1cnccn1']; ['N#Cc1ccc(OC(F)(F)F)cc1']; [0.999906063079834] +COc1ccc(F)c(C(=O)Nc2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cc4nccnc4[nH]3)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3cc4nccnc4[nH]3)cc2c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc4nccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4nccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3nccnc3[nH]2)cn1; [None]; [None]; [0] +c1cnc2[nH]c(-c3ncn4c3CCCC4)cc2n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc4nccnc4[nH]3)ccc21; [None]; [None]; [0] +CCc1cccc(-c2cc3nccnc3[nH]2)n1; [None]; [None]; [0] +Cc1cc(-c2cc3nccnc3[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2[nH]1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4nccnc4[nH]3)ccc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2nccnc2[nH]1; ['Cc1cc(N2CCOCC2)ccc1C#N']; ['Cc1cnccn1']; [0.9983808994293213] +CC(=O)N1CCC(n2cc(-c3cc4nccnc4[nH]3)cn2)CC1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2nccnc2[nH]1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['c1cnc2[nH]ccc2n1']; [0.969743013381958] +OCCc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccnc3[nH]2)cc1; ['CCNC(=O)c1ccc(Br)cc1']; ['c1cnc2[nH]ccc2n1']; [0.9945089817047119] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3nccnc3[nH]2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3[nH]2)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1']; ['c1cnc2[nH]ccc2n1']; [0.9699718952178955] +Cc1ncc(-c2ccc(-c3cc4nccnc4[nH]3)cc2)n1C; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3nccnc3[nH]2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +Cn1nc(-c2cc3nccnc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1cc2c([nH]1)CCCC2; ['O=C1Cc2ccccc2N1']; ['O=Cc1cc2c([nH]1)CCCC2']; [0.9998728632926941] +O=C1Nc2ccccc2C1=C1C(=O)Nc2ccccc21; ['O=C1Nc2ccccc2C1=O', 'O=C1Cc2ccccc2N1']; ['O=C1Nc2ccccc2C1=O', 'O=C1Nc2ccccc2C1=O']; [0.8539717197418213, 0.8400348424911499] +Fc1ccc(Nc2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +Cc1cc(Nc2cc3nccnc3[nH]2)ncc1F; [None]; [None]; [0] +c1ccc(Nc2cc3nccnc3[nH]2)nc1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1cnn(CCO)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)OC(C)=O']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'c1ccc2scnc2c1', 'CN(C)c1ccc(-c2nc3ccccc3s2)cc1']; [0.999990701675415, 0.9977675676345825, 0.993842363357544] +CNC(=O)c1ccc(C)c(-c2cc3nccnc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(C=C2C(=O)Nc3ccccc32)cc1OC; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc2nccnc2[nH]1; [None]; [None]; [0] +CCOc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CCOc1ccc(CC(=O)O)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(CN)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(CO)cc1', 'Brc1nc2ccccc2s1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C(=O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(CN)cc1', 'CCOc1ccc(C#N)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(C(=O)Cl)cc1', 'CCOc1ccc(CN)cc1', 'CCOc1ccc(CCl)cc1', 'CCOc1ccc(C(C)=O)cc1', 'C=Cc1ccc(OCC)cc1', 'CCOc1ccc(CO)cc1', 'CCOc1ccc(CC(=O)O)cc1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'CCOc1ccc(C(=O)O)cc1', 'CCO', 'CCOc1ccc(CN)cc1', 'CCOc1ccc(S(=O)(=O)NN)cc1', 'CCOc1ccc(C=O)cc1', 'CCI', 'CCOS(=O)(=O)OCC', 'CCOc1ccccc1', 'CCO', 'CCBr', 'Brc1nc2ccccc2s1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'O=[N+]([O-])c1ccccc1Cl', 'O=[N+]([O-])c1ccccc1I', 'c1ccc2scnc2c1', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1I', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'CCOc1ccc(B(O)O)cc1', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'Nc1ccccc1S', 'CCOc1ccc(I)cc1', 'c1ccc2scnc2c1', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Clc1nc2ccccc2s1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'CCO', 'c1ccc2scnc2c1', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'CCOc1ccccc1']; [0.9999980926513672, 0.999962329864502, 0.9999593496322632, 0.9999004602432251, 0.9998681545257568, 0.9998586177825928, 0.9998458623886108, 0.9998167753219604, 0.9998131990432739, 0.9997368454933167, 0.9995932579040527, 0.9995630383491516, 0.9994993805885315, 0.9994106292724609, 0.9992192387580872, 0.9991884827613831, 0.999186635017395, 0.9991508722305298, 0.9990705251693726, 0.9984172582626343, 0.9980034828186035, 0.996161699295044, 0.9961611032485962, 0.9953168630599976, 0.9946689605712891, 0.9940088987350464, 0.9913359880447388, 0.9900399446487427, 0.9880555868148804, 0.9850600957870483, 0.9800375699996948, 0.9766315221786499, 0.97181236743927, 0.9608761072158813, 0.9553968906402588, 0.9503391981124878] +Cc1[nH]c(C=C2C(=O)Nc3ccccc32)c(C)c1C; [None]; [None]; [0] +COc1ncccc1-c1nc2ccccc2s1; ['Brc1nc2ccccc2s1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1nc2ccccc2s1', 'COc1ncccc1CN', 'COc1ncccc1CO', 'COc1ncccc1C=O', 'COc1ncccc1CN', 'C[O-]', 'COc1ncccc1C(F)(F)F', 'Brc1nc2ccccc2s1', 'CO', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1ncccc1C(=O)O', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COS(=O)(=O)C(F)(F)F', 'CI', None, 'COc1ncccc1C#N', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1C=O', 'Brc1nc2ccccc2s1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Clc1nc2ccccc2s1', 'COc1ncccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Clc1ncccc1-c1nc2ccccc2s1', 'Nc1ccccc1S', 'COc1ncccc1B(O)O', 'Clc1ncccc1-c1nc2ccccc2s1', 'COc1ncccc1I', 'Nc1ccccc1S', 'COc1ncccc1Br', 'Oc1ncccc1-c1nc2ccccc2s1', 'Oc1ncccc1-c1nc2ccccc2s1', None, 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1ccccn1']; [0.9999915361404419, 0.9999760389328003, 0.9999610185623169, 0.9999560117721558, 0.9999434351921082, 0.9999357461929321, 0.9998578429222107, 0.9998342990875244, 0.9997910261154175, 0.9996948838233948, 0.9996549487113953, 0.9995979070663452, 0.9995846748352051, 0.9994266033172607, 0.998806357383728, 0.998361349105835, 0, 0.9960944056510925, 0.9952002763748169, 0.9872708916664124, 0.9653076529502869, 0.872538685798645] +C[NH+](C)Cc1ccc(C=C2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +Cc1cc(C)c(C=C2C(=O)Nc3ccccc32)[nH]1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc2ccccc2s1; [None]; [None]; [0] +COc1cc(-c2nc3ccccc3s2)cc(OC)c1OC; ['COc1cc(CC(=O)O)cc(OC)c1OC', 'COc1cc(CN)cc(OC)c1OC', 'Brc1nc2ccccc2s1', 'COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(CN)cc(OC)c1OC', 'COc1cc(CN)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Brc1nc2ccccc2s1', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'Brc1nc2ccccc2s1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(C(C)=O)cc(OC)c1OC', 'COc1cc(C#N)cc(OC)c1OC', 'COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C(=O)Cl)cc(OC)c1OC', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1cc(CC(=O)O)cc(OC)c1OC', 'COc1cc(CO)cc(OC)c1OC', 'COc1cc(CCl)cc(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cc(C(=O)CC#N)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C(=O)C(=O)O)cc(OC)c1OC', 'Brc1nc2ccccc2s1', 'COc1cc(CN)cc(OC)c1OC', 'COc1cc(CO)cc(OC)c1OC']; ['O=[N+]([O-])c1ccccc1Cl', 'O=[N+]([O-])c1ccccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1I', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Clc1nc2ccccc2s1', 'COc1cc(I)cc(OC)c1OC', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'COc1cc(B(O)O)cc(OC)c1OC', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'COc1cc(I)cc(OC)c1OC', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1cccc(OC)c1OC', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999881982803345, 0.9999825954437256, 0.9999789595603943, 0.9999774694442749, 0.9999611377716064, 0.9999029636383057, 0.9998770952224731, 0.9998724460601807, 0.9998675584793091, 0.9998129606246948, 0.9998055100440979, 0.9997817277908325, 0.9997813701629639, 0.9996528625488281, 0.9996298551559448, 0.999586820602417, 0.9995826482772827, 0.9992234110832214, 0.9991156458854675, 0.9988815784454346, 0.9986042976379395, 0.9978635311126709, 0.9977569580078125, 0.9970778226852417, 0.9965851902961731, 0.9958380460739136, 0.9956064224243164, 0.9938005208969116, 0.9936039447784424, 0.9844134449958801, 0.9832533597946167, 0.9603242874145508] +CS(=O)(=O)c1cccc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(C#N)c1', 'CS(=O)(=O)c1cccc(C(=O)Cl)c1', 'Brc1cccc(-c2nc3ccccc3s2)c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Brc1nc2ccccc2s1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(C(=O)O)c1', 'Brc1nc2ccccc2s1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'CS(=O)[O-]', 'CS(=O)(=O)c1cccc(Br)c1', 'CSc1nc2ccccc2s1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'CS(=O)(=O)c1cccc(Br)c1']; [0.9999951124191284, 0.9999935030937195, 0.99997878074646, 0.9999442100524902, 0.9997541308403015, 0.9996845722198486, 0.9996035099029541, 0.9994926452636719, 0.9993032217025757, 0.998988151550293, 0.9810120463371277, 0.9535526037216187] +N#Cc1ccc(O)c(-c2nc3ccccc3s2)c1; ['N#Cc1ccc(O)c(C(=O)O)c1', 'N#Cc1ccc(O)c(C=O)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(I)c1', 'Brc1nc2ccccc2s1', 'Oc1ccccc1-c1nc2ccccc2s1', 'N#Cc1ccc(O)c(C=O)c1']; ['Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'N#Cc1ccc(O)c(B(O)O)c1', '[C-]#N', 'c1ccc2scnc2c1']; [0.9999828338623047, 0.9999616146087646, 0.9984379410743713, 0.9961371421813965, 0.9933923482894897, 0.9775898456573486, 0.9606304168701172] +O=C(Nc1cccc(-c2nc3ccccc3s2)c1)C1CC1; ['Nc1cccc(-c2nc3ccccc3s2)c1', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'CCOC(=O)C1CC1', 'COC(=O)C1CC1', 'Nc1cccc(-c2nc3ccccc3s2)c1']; ['O=C(O)C1CC1', 'O=C(Cl)C1CC1', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'O=CC1CC1']; [0.9999973773956299, 0.9999966621398926, 0.9999771118164062, 0.999856173992157, 0.9996521472930908] +c1ccc2nc(-c3nc4ccccc4s3)ncc2c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3nc4ccccc4s3)c2c1; [None]; [None]; [0] +c1ccc2sc(-c3cnc4cccnn34)nc2c1; [None]; [None]; [0] +c1ccc2sc(-c3ccc(N4CCOCC4)cc3)nc2c1; ['NCc1ccc(N2CCOCC2)cc1', 'Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'ClCCOCCCl', 'C1COCCN1', 'ICCOCCI', 'BrCCOCCBr', 'Brc1nc2ccccc2s1', 'C1COCCN1']; ['O=[N+]([O-])c1ccccc1Cl', 'OB(O)c1ccc(N2CCOCC2)cc1', 'O=C(O)c1ccc(N2CCOCC2)cc1', 'O=Cc1ccc(N2CCOCC2)cc1', 'c1ccc2scnc2c1', 'C1COCCN1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'c1ccc2scnc2c1', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1ccc(-c2nc3ccccc3s2)cc1', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc(N2CCOCC2)cc1', 'COc1ccc(-c2nc3ccccc3s2)cc1']; [0.9999920725822449, 0.9999889135360718, 0.999983012676239, 0.9999727010726929, 0.9999319314956665, 0.9998759031295776, 0.9998407363891602, 0.9996471405029297, 0.9990439414978027, 0.9989699721336365, 0.9988183975219727, 0.9986554384231567, 0.9984153509140015, 0.9818001389503479, 0.9050332903862] +COc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'COc1ccc(C=O)cc1', 'COc1ccc(CC(=O)O)cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(CN)cc1', 'Brc1nc2ccccc2s1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(CO)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1ccc(C=O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(C#N)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C(=O)Cl)cc1', 'COc1ccc(C(F)(F)F)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C(C)=O)cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(S(=O)[O-])cc1', 'COc1ccc(CC(=O)O)cc1', 'COc1ccccc1', 'COc1ccc(C(=O)C(=O)O)cc1', 'C=Cc1ccc(OC)cc1', 'Brc1nc2ccccc2s1', 'COc1ccc(CCl)cc1', 'COS(=O)(=O)OC', 'COc1ccc(C=O)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(S(=O)(=O)NN)cc1', 'CO', None]; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'O=[N+]([O-])c1ccccc1Cl', 'COc1ccc(B(O)O)cc1', 'Clc1nc2ccccc2s1', 'Nc1ccccc1I', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'COc1ccc(I)cc1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1ccccc1', 'Nc1ccccc1S', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Clc1ccc(-c2nc3ccccc3s2)cc1', None]; [0.9999970197677612, 0.9999929666519165, 0.9999819993972778, 0.9999108910560608, 0.9999058246612549, 0.9998894333839417, 0.9998695254325867, 0.9997716546058655, 0.9997522830963135, 0.9996119141578674, 0.9995245933532715, 0.999313473701477, 0.9992218613624573, 0.9991406202316284, 0.9991008043289185, 0.9987003803253174, 0.9986088871955872, 0.9984277486801147, 0.9969706535339355, 0.9956281185150146, 0.994970977306366, 0.9935998320579529, 0.9927690625190735, 0.9916464686393738, 0.989280104637146, 0.9866832494735718, 0.986298143863678, 0.98530513048172, 0.9832674264907837, 0.980782151222229, 0.9762778282165527, 0.9667712450027466, 0.9647696018218994, 0.9587100744247437, 0.919874370098114, 0] +Cc1cc(Nc2nc3ccccc3s2)sn1; ['Brc1nc2ccccc2s1', 'Cc1cc(N)sn1']; ['Cc1cc(N)sn1', 'Clc1nc2ccccc2s1']; [0.9984204769134521, 0.9963963031768799] +Oc1cccc(-c2nc3ccccc3s2)c1; ['Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'O=C(O)Cc1cccc(O)c1', 'N#Cc1cccc(O)c1', 'Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'Brc1nc2ccccc2s1', 'Nc1ccccc1SSc1ccccc1N', None, 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'C=Cc1cccc(O)c1', None, 'O=Cc1cccc(O)c1']; ['O=Cc1cccc(O)c1', 'O=Cc1cccc(O)c1', 'O=C(O)c1cccc(O)c1', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(O)c1', 'O=Cc1cccc(O)c1', None, 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None, 'c1ccc2scnc2c1']; [0.9999926090240479, 0.9999878406524658, 0.9999760389328003, 0.9999760389328003, 0.9999750852584839, 0.999972403049469, 0.9999347925186157, 0.999556303024292, 0.9992706775665283, 0, 0.9953582286834717, 0.9949979186058044, 0.9944751858711243, 0, 0.969473659992218] +O=C([O-])c1ccc(-c2nc3ccccc3s2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', None, None]; ['NC(=O)c1ccc(B(O)O)cc1', None, None]; [0.9998536109924316, 0, 0] +c1ccc2c(-c3nc4ccccc4s3)nccc2c1; ['Nc1ccccc1S', 'Nc1ccccc1S', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nccc2ccccc12', 'Cc1nccc2ccccc12', 'Cc1nccc2ccccc12', '[O-][n+]1ccc2ccccc2c1']; ['O=C(O)c1nccc2ccccc12', 'O=Cc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'c1ccc2scnc2c1', 'Nc1ccccc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9998732209205627, 0.9998488426208496, 0.9993325471878052, 0.9992913007736206, 0.9984968900680542, 0.9877180457115173, 0.9436992406845093] +CC(=O)NCc1ccc(-c2nc3ccccc3s2)cc1; ['CC(=O)OC(C)=O', 'CC(=O)Cl', 'CC(=O)O', None]; ['NCc1ccc(-c2nc3ccccc3s2)cc1', 'NCc1ccc(-c2nc3ccccc3s2)cc1', 'NCc1ccc(-c2nc3ccccc3s2)cc1', None]; [0.9998551607131958, 0.999728262424469, 0.9977885484695435, 0] +O=C(Nc1ccccc1)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1', 'Brc1nc2ccccc2s1', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccccc1S']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=[N+]([O-])c1ccccc1', 'O=Cc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9999992251396179, 0.9999894499778748, 0.9999525547027588, 0.9999181032180786, 0.9995574355125427] +c1ccc2[nH]c(-c3nc4ccccc4s3)nc2c1; [None]; [None]; [0] +OCCOc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'O=C1OCCO1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'OCCBr', 'Nc1ccccc1S', 'OCCCl', 'OCCI', 'OCCOc1ccc(Br)cc1', 'Cc1ccc(S(=O)(=O)OCCO)cc1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'OCCOc1ccc(I)cc1', None, 'OCCO', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'OCCCBr']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(I)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(B(O)O)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'O=Cc1ccc(OCCO)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'OCCO', 'c1ccc2scnc2c1', None, 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'OCCO', 'Oc1ccc(-c2nc3ccccc3s2)cc1']; [0.9999978542327881, 0.9998980760574341, 0.999276876449585, 0.9990560412406921, 0.9987547397613525, 0.9986139535903931, 0.9981509447097778, 0.9978458881378174, 0.9972100257873535, 0.9967207908630371, 0.995293140411377, 0.9949280023574829, 0.9939718246459961, 0, 0.9870280027389526, 0.9354718923568726, 0.8773701190948486] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4ccccc4s3)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nc4ccccc4s3)cn2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3ccccc3s2)cc1)N1CCOCC1; ['Brc1nc2ccccc2s1', 'C1COCCN1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1ccccc1S', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; ['O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'O=Cc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccccc1)N1CCOCC1']; [0.9999967217445374, 0.9999966621398926, 0.9999600648880005, 0.9999270439147949, 0.9998942613601685, 0.9998756647109985, 0.9070873260498047] +C[C@H](O)COc1ccc(-c2nc3ccccc3s2)cc1; ['C[C@@H]1CO1', 'C[C@H]1CO1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'C[C@H](O)CCl', 'C[C@H](O)CO', 'C[C@H]1COC(=O)O1', 'Cc1ccc(S(=O)(=O)OC[C@H](C)O)cc1', 'C[C@H](O)CO']; ['Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'C[C@H](O)CO', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccc(-c2nc3ccccc3s2)cc1']; [0.9999489784240723, 0.9999489784240723, 0.998897910118103, 0.9987533092498779, 0.9977912902832031, 0.9968078136444092, 0.9962165951728821, 0.9084675908088684] +C[C@@H](O)COc1ccc(-c2nc3ccccc3s2)cc1; ['C[C@H]1CO1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'C[C@@H](O)CCl', 'C[C@@H](O)CO', 'C[C@@H]1COC(=O)O1', 'Cc1ccc(S(=O)(=O)OC[C@@H](C)O)cc1']; ['Oc1ccc(-c2nc3ccccc3s2)cc1', 'C[C@@H](O)CO', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1', 'Oc1ccc(-c2nc3ccccc3s2)cc1']; [0.9999490976333618, 0.998897910118103, 0.9987533092498779, 0.9977912902832031, 0.9968078136444092, 0.9962165951728821] +CNS(=O)(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1', 'Brc1nc2ccccc2s1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999597072601318, 0.9999035596847534, 0.9994305372238159, 0.99932461977005] +c1cc(-c2nc3ccccc3s2)cc(C2CCNCC2)c1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nc3ccccc3s2)CC1; [None, 'CS(=O)(=O)Cl', 'CC(C)(C)OC(=O)N1CCC(c2nc3ccccc3s2)CC1']; [None, 'c1ccc2sc(C3CCNCC3)nc2c1', 'CS(=O)(=O)Cl']; [0, 0.999974250793457, 0.9992092847824097] +Cc1nc(C)c(-c2nc3ccccc3s2)s1; ['Cc1nc(C)c(C=O)s1']; ['Nc1ccccc1S']; [0.9930851459503174] +FC(F)(F)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'O=Cc1ccc(C(F)(F)F)cc1', 'Brc1nc2ccccc2s1', 'O=C(O)Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1I', 'NCc1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccccc1S', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Clc1nc2ccccc2s1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'N#Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1S', 'NCc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'FC(F)(F)c1ccc(C(F)(F)F)cc1', 'NCc1ccc(C(F)(F)F)cc1', 'O=S([O-])c1ccc(C(F)(F)F)cc1', 'C=Cc1ccc(C(F)(F)F)cc1', 'O=C(O)c1ccc(C(F)(F)F)cc1', 'OCc1ccc(C(F)(F)F)cc1', 'CC(=O)c1ccc(C(F)(F)F)cc1', 'O=C(O)Cc1ccc(C(F)(F)F)cc1', 'NCc1ccc(C(F)(F)F)cc1', 'O=C(O)C(=O)c1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(CCl)cc1', 'N#CCC(=O)c1ccc(C(F)(F)F)cc1', 'Brc1nc2ccccc2s1', 'CC[Si](CC)(CC)C(F)(F)F', 'FC(F)(F)c1ccccc1']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'O=[N+]([O-])c1ccccc1I', 'OB(O)c1ccc(C(F)(F)F)cc1', 'O=[N+]([O-])c1ccccc1Cl', 'O=Cc1ccc(C(F)(F)F)cc1', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'O=C(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'O=Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1I', 'OCc1ccc(C(F)(F)F)cc1', 'O=C(Cl)c1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'FC(F)(F)c1ccccc1', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1']; [0.9999986290931702, 0.9999984502792358, 0.9999752640724182, 0.9999680519104004, 0.9999626874923706, 0.9999584555625916, 0.9999516010284424, 0.9999118447303772, 0.9999099969863892, 0.9998711347579956, 0.9998165965080261, 0.9998061656951904, 0.9996552467346191, 0.9995204210281372, 0.9994866847991943, 0.9994704723358154, 0.9993451237678528, 0.9991421699523926, 0.9982122182846069, 0.9974161386489868, 0.9953248500823975, 0.9935684204101562, 0.992068886756897, 0.9915075898170471, 0.9899624586105347, 0.9882454872131348, 0.9840019345283508, 0.9839808940887451, 0.9823507070541382, 0.9784295558929443, 0.925402045249939, 0.9018114805221558, 0.8969113826751709, 0.8248872756958008] +CN(C)S(=O)(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CN(C)S(=O)(=O)c1ccc(C#N)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)Cl)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CNC']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc(-c2nc3ccccc3s2)cc1']; [0.9999927878379822, 0.9998341202735901, 0.9996851682662964, 0.9996300935745239, 0.9985895156860352, 0.991159200668335] +O=S1(=O)Cc2ccc(-c3nc4ccccc4s3)cc2C1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3ccccc3s2)nc1)N1CCOCC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1']; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9997578859329224] +CC(=O)N1CCCN(c2cccc(-c3nc4ccccc4s3)c2)CC1; ['Brc1cccc(-c2nc3ccccc3s2)c1']; ['CC(=O)N1CCCNCC1']; [0.9999847412109375] +CCCOc1ccc(-c2nc3ccccc3s2)nc1; ['CCCOc1ccc(Br)nc1']; ['c1ccc2scnc2c1']; [0.9998650550842285] +CN(C)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(CC(=O)O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(CN)cc1', 'CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(CO)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1nc2ccccc2s1', 'CN(C)c1ccc(C=O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(CN)cc1', 'CN(C)c1ccc(C#N)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(CN)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CC(=O)c1ccc(N(C)C)cc1', 'CN(C)c1ccc(C(=O)Cl)cc1', 'Brc1ccc(-c2nc3ccccc3s2)cc1', 'CN(C)c1ccc(CO)cc1', 'COS(=O)(=O)OC', 'CN(C)c1ccc(C(=O)O)cc1', 'C=Cc1ccc(N(C)C)cc1', None, 'CN(C)c1ccc(CC(=O)O)cc1', 'Brc1nc2ccccc2s1', 'CN(C)c1ccccc1', 'CNC', None, 'CN(C)c1ccc(CN)cc1', 'CN(C)c1ccc(C=O)cc1', None]; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1nc2ccccc2s1', 'O=[N+]([O-])c1ccccc1Cl', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'CN(C)c1ccc(B(O)O)cc1', 'Nc1ccccc1I', 'CN(C)c1ccc(Br)cc1', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'Nc1ccccc1I', 'Nc1ccccc1S', 'CN(C)c1ccc(I)cc1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'CNC', 'c1ccc2scnc2c1', 'Nc1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None, 'c1ccc2scnc2c1', 'CN(C)c1ccccc1', 'c1ccc2scnc2c1', 'Clc1ccc(-c2nc3ccccc3s2)cc1', None, 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None]; [0.9999980926513672, 0.9999959468841553, 0.9999911785125732, 0.99998939037323, 0.9999874830245972, 0.9999659061431885, 0.9999655485153198, 0.9999428987503052, 0.9999337196350098, 0.9999154806137085, 0.9999083876609802, 0.9999072551727295, 0.9998576641082764, 0.9998260736465454, 0.9998137950897217, 0.9997315406799316, 0.9996572136878967, 0.9996333122253418, 0.999169111251831, 0.9989745616912842, 0.9989476799964905, 0.9988844990730286, 0.9974550008773804, 0.9949357509613037, 0.9936157464981079, 0.9926123023033142, 0.9913564920425415, 0, 0.9875436425209045, 0.9857914447784424, 0.9781636595726013, 0.977039098739624, 0, 0.9742024540901184, 0.9631243348121643, 0] +Brc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'O=Cc1ccc(Br)cc1', 'O=C(O)Cc1ccc(Br)cc1', 'NCc1ccc(Br)cc1', 'Nc1ccccc1I', 'OB(O)c1ccc(Br)cc1', 'Nc1ccccc1S', 'NCc1ccc(Br)cc1', 'Nc1ccccc1SSc1ccccc1N', 'Brc1ccc(I)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'N#Cc1ccc(Br)cc1', 'Nc1ccccc1S', 'FC(F)(F)c1ccc(Br)cc1', 'NCc1ccc(Br)cc1', 'Clc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CC(=O)c1ccc(Br)cc1', 'OCc1ccc(Br)cc1', 'O=C(O)Cc1ccc(Br)cc1', 'ClCc1ccc(Br)cc1', 'O=C(O)C(=O)c1ccc(Br)cc1', 'O=C(O)c1ccc(Br)cc1', 'O=S([O-])c1ccc(Br)cc1', 'C=Cc1ccc(Br)cc1', 'NCc1ccc(Br)cc1', 'O=C1CCC(=O)N1Br', 'O=Cc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', None]; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'O=[N+]([O-])c1ccccc1Cl', 'O=Cc1ccc(Br)cc1', 'c1ccc2scnc2c1', 'O=C(O)c1ccc(Br)cc1', 'Nc1ccccc1I', 'O=Cc1ccc(Br)cc1', 'c1ccc2scnc2c1', 'O=Cc1ccc(Br)cc1', 'OCc1ccc(Br)cc1', 'Nc1ccccc1S', 'O=C(Cl)c1ccc(Br)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc(-c2nc3ccccc3s2)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None]; [0.99996417760849, 0.9999454021453857, 0.9999284744262695, 0.9997166395187378, 0.9996821880340576, 0.9995037317276001, 0.9992284178733826, 0.9989277720451355, 0.9987245202064514, 0.9986696243286133, 0.9982632398605347, 0.9982334971427917, 0.9980935454368591, 0.9980705976486206, 0.9967705607414246, 0.9955782890319824, 0.9954392910003662, 0.9940916299819946, 0.9852341413497925, 0.9840000867843628, 0.9773299694061279, 0.9755210876464844, 0.9678691625595093, 0.9655364155769348, 0.9654805660247803, 0.9530302286148071, 0.9487440586090088, 0.9465619325637817, 0.9421937465667725, 0.9338730573654175, 0] +c1ccc2sc(-c3ccn4nccc4n3)nc2c1; ['Cc1ccn2nccc2n1', 'Brc1nc2ccccc2s1']; ['c1ccc2scnc2c1', 'c1cnc2ccnn2c1']; [0.99576735496521, 0.9950515031814575] +CCN(CC)C(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCNCC']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'c1ccc2scnc2c1', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1']; [0.9999996423721313, 0.9999823570251465, 0.9999771118164062, 0.9999597668647766, 0.9998952150344849, 0.9998835325241089] +CC(C)c1cc(-c2nc3ccccc3s2)nc(N)n1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nc3ccccc3s2)C1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ccccc3s2)cc1Cl; ['Brc1nc2ccccc2s1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', None]; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', None]; [0.9999933242797852, 0.9999364614486694, 0.997724175453186, 0] +CNS(=O)(=O)c1ccc(-c2nc3ccccc3s2)c(C)c1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9999840259552002, 0.9996137619018555] +Cc1c(C(=O)[O-])cccc1-c1nc2ccccc2s1; [None]; [None]; [0] +c1ccc2sc(-c3c[nH]c4ccccc34)nc2c1; ['Nc1ccccc1S', 'Nc1ccccc1S', 'Brc1nc2ccccc2s1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1nc2ccccc2s1']; ['O=C(O)c1c[nH]c2ccccc12', 'O=Cc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'OB(O)c1c[nH]c2ccccc12']; [0.9999992847442627, 0.9999967813491821, 0.9999879598617554, 0.999765157699585, 0.99941086769104, 0.9993430972099304, 0.9987877607345581] +COc1ccc(Cl)cc1-c1nc2ccccc2s1; ['COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1CN', 'Brc1nc2ccccc2s1', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1CN', 'Brc1nc2ccccc2s1', 'COc1ccc(Cl)cc1CO', 'COc1ccc(Cl)cc1CCl', 'COc1ccc(Cl)cc1CN', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1ccc(Cl)cc1C(=O)Cl', 'COc1ccc(Cl)cc1C#N', 'COc1ccc(Cl)cc1C(F)(F)F', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1CC(=O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1C(C)=O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1CN', 'COc1ccc(Cl)cc1CC(=O)O', 'COc1ccc(Cl)cc1CO', 'COc1ccc(Cl)cc1']; ['O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1I', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'COc1ccc(Cl)cc1B(O)O', 'Nc1ccccc1S', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'COc1ccc(Cl)cc1Br', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1SSc1ccccc1N', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999972581863403, 0.9999969005584717, 0.9999960660934448, 0.9999951124191284, 0.999993085861206, 0.9999901652336121, 0.9999884366989136, 0.9999874830245972, 0.9999803304672241, 0.9999759197235107, 0.9999731779098511, 0.9999569654464722, 0.9999451637268066, 0.9999178647994995, 0.9999160766601562, 0.9999117851257324, 0.9999115467071533, 0.9999068975448608, 0.9999051094055176, 0.9998935461044312, 0.9998753666877747, 0.9995714426040649, 0.9993316531181335, 0.9964118003845215, 0.9948976635932922, 0.9940288066864014, 0.9938039779663086, 0.977180004119873] +c1ccc(-c2cc(-c3nc4ccccc4s3)n[nH]2)cc1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2nc3ccccc3s2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)OC(C)=O', 'CC(=O)Nc1cccc(C=O)c1', 'CC(=O)Nc1cccc(CN)c1', 'CC(=O)Nc1cccc(C(F)(F)F)c1', 'CC(=O)Nc1cccc(C=O)c1', 'Brc1nc2ccccc2s1', 'CC(=O)Cl', 'Brc1cccc(-c2nc3ccccc3s2)c1', 'CC(=O)Nc1cccc(C=O)c1', 'CC(=O)Nc1cccc(CCl)c1', 'CC(=O)O', 'CC(=O)Nc1cccc(Br)c1', None, 'CC(=O)Nc1cccc(C=O)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Nc1ccccc1S', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1I', 'CC(=O)Nc1cccc(B(O)O)c1', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'CC(N)=O', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1cccc(-c2nc3ccccc3s2)c1', 'c1ccc2scnc2c1', None, 'c1ccc2scnc2c1']; [0.9999991059303284, 0.9999865293502808, 0.9999248385429382, 0.9999191761016846, 0.999911904335022, 0.999890923500061, 0.9998331069946289, 0.9998307228088379, 0.9997825622558594, 0.999739408493042, 0.9997327327728271, 0.9997249841690063, 0.9995750188827515, 0.9991506338119507, 0, 0.9725146293640137] +c1ccc2sc(-c3ccc4c(c3)CCO4)nc2c1; ['Brc1nc2ccccc2s1', 'NCc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ccccc1I', 'Brc1ccc2c(c1)CCO2', 'Nc1ccccc1S', 'NCc1ccc2c(c1)CCO2', 'Brc1nc2ccccc2s1', 'Ic1ccc2c(c1)CCO2', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'N#Cc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Clc1nc2ccccc2s1', 'O=C(O)c1ccc2c(c1)CCO2', 'Nc1ccccc1SSc1ccccc1N', 'Brc1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ccccc1I', 'Clc1nc2ccccc2s1', 'O=Cc1ccc2c(c1)CCO2', 'c1ccc2scnc2c1', 'OCc1ccc2c(c1)CCO2', 'Nc1ccccc1S', 'OB(O)c1ccc2c(c1)CCO2', 'c1ccc2scnc2c1', 'O=C(Cl)c1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'O=C(O)c1ccc2c(c1)CCO2', 'Nc1ccccc1S', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'OB(O)c1ccc2c(c1)CCO2', 'c1ccc2scnc2c1', 'O=Cc1ccc2c(c1)CCO2', 'Brc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'Ic1ccc2c(c1)CCO2', 'c1ccc2c(c1)CCO2']; [0.9999943971633911, 0.9999807476997375, 0.9999771118164062, 0.9999709725379944, 0.9999192953109741, 0.999891996383667, 0.9998698234558105, 0.9998126029968262, 0.9998115301132202, 0.9997234344482422, 0.999645471572876, 0.9995828866958618, 0.9991995096206665, 0.9990003108978271, 0.9987245798110962, 0.9982085227966309, 0.9978196620941162, 0.9976581931114197, 0.996329665184021, 0.9963050484657288, 0.9691410064697266] +CC(C)c1ccc2nc(-c3nc4ccccc4s3)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2nc3ccccc3s2)ccc1O; ['Brc1nc2ccccc2s1', 'COc1cc(C(=O)O)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(C#N)ccc1O', 'COc1cc(C(F)(F)F)ccc1O', 'COc1cc(CC(=O)O)ccc1O', 'Brc1nc2ccccc2s1', 'COc1cc(I)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(C=O)ccc1O', 'C=Cc1ccc(O)c(OC)c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'COc1cc(B(O)O)ccc1O', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2scnc2c1']; [0.99997878074646, 0.9998933672904968, 0.99988853931427, 0.9997687339782715, 0.9997396469116211, 0.9996434450149536, 0.9994242191314697, 0.9989035725593567, 0.9988435506820679, 0.9976121783256531, 0.9973642826080322, 0.9793115854263306] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2ccccc2s1; [None]; [None]; [0] +c1cc2c(c(-c3nc4ccccc4s3)c1)OCO2; ['Brc1nc2ccccc2s1', 'NCc1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'NCc1cccc2c1OCO2', 'Nc1ccccc1I', 'Brc1nc2ccccc2s1', 'Brc1cccc2c1OCO2', 'Nc1ccccc1S', 'NCc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Brc1cccc2c1OCO2', 'Clc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Nc1ccccc1SSc1ccccc1N', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'O=C(O)c1cccc2c1OCO2', 'CC(=O)c1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'c1ccc2c(c1)OCO2', 'NCc1cccc2c1OCO2', 'O=C(O)C(=O)c1cccc2c1OCO2']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'O=[N+]([O-])c1ccccc1Cl', 'Clc1nc2ccccc2s1', 'Nc1ccccc1I', 'O=Cc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'c1ccc2scnc2c1', 'OCc1cccc2c1OCO2', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'O=C(O)c1cccc2c1OCO2', 'O=C(Cl)c1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'OB(O)c1cccc2c1OCO2', 'c1ccc2c(c1)OCO2', 'O=Cc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999819397926331, 0.9999332427978516, 0.9999207258224487, 0.9998317360877991, 0.9997869729995728, 0.9997686743736267, 0.9996234178543091, 0.9995880126953125, 0.9995124340057373, 0.9994694590568542, 0.9991902709007263, 0.9991510510444641, 0.9987876415252686, 0.99817955493927, 0.9975386261940002, 0.9962758421897888, 0.9954975247383118, 0.994176983833313, 0.9941060543060303, 0.9898508787155151, 0.988471269607544, 0.9875373840332031, 0.9451791048049927, 0.9061011075973511] +Nc1nc(-c2nc3ccccc3s2)cs1; ['NC(N)=S']; ['O=C(CBr)c1nc2ccccc2s1']; [0.9999774694442749] +CC(C)(C)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(CC(=O)O)cc1', 'Brc1nc2ccccc2s1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(/C(Cl)=C/C=O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(CO)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C#N)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(C(F)(F)F)cc1', 'CC(=O)c1ccc(C(C)(C)C)cc1', 'C=Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(CC(=O)O)cc1', 'CC(C)(C)c1ccc(CO)cc1', 'CC(C)(C)c1ccc(CCl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(=O)C(=O)O)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(C(=O)CC#N)cc1', 'CC(C)(C)c1ccc(S(=O)(=O)NN)cc1', 'CC(C)(C)c1ccccc1', 'Brc1nc2ccccc2s1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'CC(C)(C)c1ccc(B(O)O)cc1', 'c1ccc2scnc2c1', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'CC(C)(C)c1ccccc1']; [0.9999986886978149, 0.9999819993972778, 0.9999790191650391, 0.9999480843544006, 0.9999139904975891, 0.9999046325683594, 0.9999018311500549, 0.9998972415924072, 0.9998732209205627, 0.9998424053192139, 0.9997837543487549, 0.9996588230133057, 0.9996049404144287, 0.9995788335800171, 0.99957674741745, 0.9995191097259521, 0.9994469881057739, 0.9994133710861206, 0.9990107417106628, 0.9985535144805908, 0.9980028867721558, 0.9967421293258667, 0.9942941665649414, 0.9908772706985474, 0.9906381368637085, 0.990181028842926, 0.9882161617279053, 0.9872784614562988, 0.9859075546264648, 0.9815693497657776, 0.9512730836868286, 0.9426968693733215, 0.888791024684906, 0.8095596432685852] +CN(C)C(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CNC', 'CN(C)C(=O)c1ccc(C=O)cc1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccccc1S']; [0.9999973773956299, 0.9999537467956543, 0.9998205304145813, 0.9991222620010376] +CC(C)(C)c1ccc(-c2nc3ccccc3s2)cn1; ['Brc1nc2ccccc2s1', 'CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(C#N)cn1', 'Brc1nc2ccccc2s1', 'CC(C)(C)c1ccc(C(=O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Brc1nc2ccccc2s1', 'CC(C)(C)c1ccc(C=O)cn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Nc1ccccc1S', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Clc1nc2ccccc2s1', 'CC(C)(C)c1ccc(Br)cn1', 'c1ccc2scnc2c1']; [0.9999960660934448, 0.9998196959495544, 0.9998006820678711, 0.9997954368591309, 0.9997495412826538, 0.9995901584625244, 0.999569296836853, 0.9992684125900269, 0.9888812899589539, 0.9714166522026062] +CC1(COc2nc3ccccc3s2)COC1; ['CC1(CO)COC1', 'Brc1nc2ccccc2s1', 'CC1(CI)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CBr)COC1', 'CC1(CCl)COC1', 'CC1(CO)COC1']; ['Clc1nc2ccccc2s1', 'CC1(CO)COC1', 'Oc1nc2ccccc2s1', 'Oc1nc2ccccc2s1', 'Oc1nc2ccccc2s1', 'Oc1nc2ccccc2s1', 'Oc1nc2ccccc2s1']; [0.9975236654281616, 0.9964348077774048, 0.9957737922668457, 0.9951010942459106, 0.9926701784133911, 0.9925308227539062, 0.9859437346458435] +COc1cccc(C(=O)Nc2nc3ccccc3s2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Oc2ccccc2)c1', 'COc1cccc(C=O)c1']; ['Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9999836683273315, 0.9999721050262451, 0.9999473690986633, 0.9959521293640137] +c1ccc2sc(-c3scc4c3OCCO4)nc2c1; ['Nc1ccccc1S', 'c1ccc2scnc2c1']; ['O=Cc1scc2c1OCCO2', 'c1scc2c1OCCO2']; [0.999994695186615, 0.9999904632568359] +Clc1cccc(-n2ccc(-c3nc4ccccc4s3)n2)c1; ['OB(O)c1cccc(Cl)c1', 'Clc1cccc(I)c1', 'Clc1cccc(Br)c1', 'Fc1cccc(Cl)c1', 'Clc1cccc(Cl)c1']; ['c1ccc2sc(-c3cc[nH]n3)nc2c1', 'c1ccc2sc(-c3cc[nH]n3)nc2c1', 'c1ccc2sc(-c3cc[nH]n3)nc2c1', 'c1ccc2sc(-c3cc[nH]n3)nc2c1', 'c1ccc2sc(-c3cc[nH]n3)nc2c1']; [0.9999896287918091, 0.9999895095825195, 0.9999830722808838, 0.9986321330070496, 0.9985837936401367] +CC(=O)N[C@@H]1CC[C@@H](c2nc3ccccc3s2)CC1; [None]; [None]; [0] +c1ccc2ncc(-c3nc4ccccc4s3)cc2c1; [None]; [None]; [0] +CSc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CSc1ccc(C(=O)O)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(CO)cc1', 'CSc1ccc(CC(=O)O)cc1', 'CSc1ccc(C(=O)Cl)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C#N)cc1', 'CSc1ccc(CN)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(C(F)(F)F)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(CN)cc1', 'C[S-]', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C(C)=O)cc1', 'CSc1ccc(CN)cc1', 'CSc1ccc(I)cc1', 'Brc1nc2ccccc2s1', 'CSc1ccc(CCl)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CSc1ccc(CC(=O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(CO)cc1', 'CSc1ccc(C(=O)O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(CN)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Nc1ccccc1S', 'Clc1nc2ccccc2s1', 'O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'Nc1ccccc1I', 'c1ccc2scnc2c1', 'CSc1ccc(B(O)O)cc1', 'Nc1ccccc1S', 'CSc1ccc(I)cc1', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.999991238117218, 0.9999877214431763, 0.999986469745636, 0.999980628490448, 0.9999507069587708, 0.9999473094940186, 0.999941349029541, 0.999931275844574, 0.9998987317085266, 0.9998890161514282, 0.99988853931427, 0.9997383952140808, 0.9997288584709167, 0.9997050762176514, 0.9996746778488159, 0.9996209144592285, 0.9995783567428589, 0.9995660781860352, 0.9992883205413818, 0.9991745948791504, 0.9988541603088379, 0.998323917388916, 0.9975004196166992, 0.9972336292266846, 0.9970417618751526, 0.9966846704483032, 0.9952712059020996, 0.9885253310203552, 0.9839416742324829] +CCN1CCN(Cc2ccc(-c3nc4ccccc4s3)cc2)CC1; ['CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'CCN1CCNCC1', None]; ['Nc1ccccc1S', 'Cc1ccc(-c2nc3ccccc3s2)cc1', None]; [0.9991743564605713, 0.976994514465332, 0] +Cc1cc(-c2nc3ccccc3s2)nc(N)n1; [None]; [None]; [0] +c1ccc2sc(-c3nc4ccccc4s3)cc2c1; [None]; [None]; [0] +Fc1ccc(-c2nc3ccccc3s2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3nc4ccccc4s3)ccc2N1; [None]; [None]; [0] +COc1ccc(CNc2nc3ccccc3s2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN=C=S)cc1', 'Brc1nc2ccccc2s1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(C=O)cc1']; ['Clc1nc2ccccc2s1', 'CS(=O)(=O)c1nc2ccccc2s1', 'Nc1ccccc1I', 'COc1ccc(CN)cc1', 'Nc1nc2ccccc2s1', 'Fc1nc2ccccc2s1', 'CSc1nc2ccccc2s1', 'Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9995967149734497, 0.9995549321174622, 0.998833179473877, 0.9986596703529358, 0.997363269329071, 0.9951423406600952, 0.992951512336731, 0.951117992401123, 0.8718792796134949] +Brc1cnc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['C[C@H]1CCCN1']; ['O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1']; [0.9999997615814209] +COc1ccc(-c2nc3ccccc3s2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(CC(=O)O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(CN)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(CO)cc1', 'CCc1ccc(C(=O)O)cc1', 'CCc1ccc(CN)cc1', 'Brc1nc2ccccc2s1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(C(C)=O)cc1', 'CCc1ccc(C#N)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(C(F)(F)F)cc1', 'CCc1ccc(CN)cc1', 'CCc1ccc(C(=O)Cl)cc1', 'CCc1ccc(CCl)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(CO)cc1', 'CCc1ccc(C(=O)O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(CC(=O)O)cc1', 'CCc1ccc(C(=O)CC#N)cc1', 'CCc1ccc(C(=O)C(=O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCc1ccc(CN)cc1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1I', 'CCc1ccc(B(O)O)cc1', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Clc1nc2ccccc2s1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'CCc1ccc(I)cc1', 'c1ccc2scnc2c1']; [0.9999884366989136, 0.9999487400054932, 0.9998269081115723, 0.999721884727478, 0.9996670484542847, 0.9994719624519348, 0.9994096755981445, 0.9992810487747192, 0.9991334676742554, 0.9990155696868896, 0.9987442493438721, 0.9986811876296997, 0.9983479976654053, 0.9982638359069824, 0.9980218410491943, 0.9979185461997986, 0.9970723986625671, 0.9960073828697205, 0.9954485893249512, 0.9908691644668579, 0.9902931451797485, 0.9888025522232056, 0.9806396961212158, 0.9792399406433105, 0.974788248538971, 0.9715248346328735, 0.9652755260467529, 0.9614499807357788, 0.9544872641563416] +O=C(C1CC1)N1CC(Nc2nc3ccccc3s2)C1; [None]; [None]; [0] +Clc1ccc(-c2nc3ccccc3s2)c(Cl)c1; ['O=Cc1ccc(Cl)cc1Cl', 'Nc1ccccc1I', 'Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'NCc1ccc(Cl)cc1Cl', 'Nc1ccccc1S', 'Brc1nc2ccccc2s1', 'NCc1ccc(Cl)cc1Cl', 'NCc1ccc(Cl)cc1Cl', 'O=C(O)Cc1ccc(Cl)cc1Cl', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccccc1SSc1ccccc1N', 'Clc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccccc1S', 'ClCc1ccc(Cl)cc1Cl', 'N#Cc1ccc(Cl)cc1Cl', 'CC(=O)c1ccc(Cl)cc1Cl', 'Clc1nc2ccccc2s1', 'Nc1ccccc1S', 'Clc1cccc(Cl)c1', 'O=C(O)c1ccc(Cl)cc1Cl', 'OCc1ccc(Cl)cc1Cl', 'Clc1ccc(-c2nc3ccccc3s2)cc1', 'O=C(O)Cc1ccc(Cl)cc1Cl', 'NCc1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl', None]; ['O=[N+]([O-])c1ccccc1I', 'O=Cc1ccc(Cl)cc1Cl', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'O=C(O)c1ccc(Cl)cc1Cl', 'O=[N+]([O-])c1ccccc1Cl', 'OCc1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'O=Cc1ccc(Cl)cc1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'O=C(Cl)c1ccc(Cl)cc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'OB(O)c1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'O=C1CCC(=O)N1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None]; [0.9999997615814209, 0.9999969005584717, 0.9999948740005493, 0.9999924898147583, 0.9999902248382568, 0.999984622001648, 0.9999834299087524, 0.9999820590019226, 0.9999819993972778, 0.9999618530273438, 0.9999557733535767, 0.9999525547027588, 0.9999226927757263, 0.9999026656150818, 0.9998428821563721, 0.9998142719268799, 0.9996549487113953, 0.9995942115783691, 0.9995167255401611, 0.9995068311691284, 0.9986768960952759, 0.9966635704040527, 0.9899756908416748, 0.9896754622459412, 0.9881448745727539, 0.9877479672431946, 0.9854185581207275, 0] +c1ccc2sc(-c3cc4ccccn4n3)nc2c1; ['Nc1ccccc1S', 'Brc1cc2ccccn2n1']; ['O=C(O)c1cc2ccccn2n1', 'c1ccc2scnc2c1']; [0.9952596426010132, 0.9720534086227417] +Cn1cc(-c2nc3ccccc3s2)c(C(F)(F)F)n1; ['Cn1cc(C=O)c(C(F)(F)F)n1', 'Cn1cc(C(=O)Cl)c(C(F)(F)F)n1', 'Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Nc1ccccc1S', 'Nc1ccccc1S', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999995231628418, 0.999992847442627, 0.999992311000824, 0.999957799911499, 0.9999104142189026, 0.9997506141662598] +COc1cc(-c2nc3ccccc3s2)ccc1N1CCOCC1; ['Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1nc2ccccc2s1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'c1ccc2scnc2c1', 'COc1ccccc1N1CCOCC1']; [0.9999957084655762, 0.9998555183410645, 0.9997747540473938, 0.9952380657196045] +COc1ccc2cccc(-c3nc4ccccc4s3)c2c1; ['COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(CC(=O)O)c2c1', 'COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C#N)c2c1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(CC(=O)O)c2c1', 'COc1ccc2cccc(C=O)c2c1']; ['O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999889135360718, 0.999961256980896, 0.9999492764472961, 0.9986879825592041, 0.9980425238609314, 0.997231662273407, 0.9971276521682739, 0.992895245552063, 0.9079290628433228] +CC1(C)Cc2cc(-c3nc4ccccc4s3)ccc2O1; ['CC1(C)Cc2cc(C=O)ccc2O1']; ['Nc1ccccc1S']; [0.9999822974205017] +c1ccc2sc(-c3ncc4cccn4n3)nc2c1; [None]; [None]; [0] +Cc1nc(Nc2nc3ccccc3s2)sc1C; ['Cc1nc(N)sc1C', 'Cc1nc(Cl)sc1C']; ['Clc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9987407326698303, 0.9960970282554626] +COc1cc(-c2nc3ccccc3s2)ccc1Cl; ['COc1cc(C=O)ccc1Cl', 'COc1cc(C=O)ccc1Cl', 'Brc1nc2ccccc2s1', 'COc1cc(C(=O)O)ccc1Cl', 'COc1cc(CN)ccc1Cl', 'COc1cc(C#N)ccc1Cl', 'COc1cc(CO)ccc1Cl', 'COc1cc(CN)ccc1Cl', 'COc1cc(C=O)ccc1Cl', 'COc1cc(C(C)=O)ccc1Cl', 'COc1cc(C(F)(F)F)ccc1Cl', 'COc1cc(CN)ccc1Cl', 'Brc1nc2ccccc2s1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Brc1nc2ccccc2s1', 'COc1cc(C=O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(CO)ccc1Cl', 'COc1cc(C=O)ccc1Cl', 'COc1ccccc1Cl', 'COc1cc(CN)ccc1Cl', 'Brc1nc2ccccc2s1']; ['O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1I', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'COc1cc(I)ccc1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1cc(B(O)O)ccc1Cl', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1ccccc1Cl']; [0.9999985098838806, 0.9999979734420776, 0.9999970197677612, 0.9999903440475464, 0.9999872446060181, 0.9999796748161316, 0.9999792575836182, 0.9999774694442749, 0.9999749660491943, 0.9999663829803467, 0.9999524354934692, 0.9999486804008484, 0.9999359846115112, 0.9999232292175293, 0.9998264312744141, 0.9997813105583191, 0.9997544288635254, 0.9997491836547852, 0.9902133941650391, 0.9849337339401245, 0.947746753692627, 0.8997802734375, 0.8428727388381958] +Oc1ccc2cccc(-c3nc4ccccc4s3)c2c1; [None]; [None]; [0] +Cc1cc(Nc2nc3ccccc3s2)nn1C; ['Cc1cc(Cl)nn1C', 'Cc1cc(N)nn1C']; ['Nc1nc2ccccc2s1', 'Clc1nc2ccccc2s1']; [0.9997948408126831, 0.9996472597122192] +OCCn1cc(-c2nc3ccccc3s2)cn1; [None]; [None]; [0] +COc1cc(F)c(-c2nc3ccccc3s2)cc1OC; ['Brc1nc2ccccc2s1', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C(=O)O)cc1OC', 'Brc1nc2ccccc2s1', 'COc1cc(F)c(C#N)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1ccc(F)cc1OC', 'Brc1nc2ccccc2s1']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Nc1ccccc1I', 'O=[N+]([O-])c1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'COc1cc(F)c(B(O)O)cc1OC', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1ccc(F)cc1OC']; [0.9999904632568359, 0.9999856948852539, 0.9999853372573853, 0.9999648332595825, 0.9998949766159058, 0.9998569488525391, 0.999725341796875, 0.9996823072433472, 0.9996386766433716, 0.9891109466552734, 0.9871396422386169, 0.9761006832122803] +CNC(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CN', None, 'CNC(=O)c1ccc(C=O)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1', None, 'Nc1ccccc1S']; [0.999993085861206, 0.9999100565910339, 0.9998629093170166, 0, 0.9831891059875488] +Clc1cnc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3s2)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['c1ccc2scnc2c1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.997589111328125, 0.9903210401535034] +O=C(Nc1nc2ccccc2s1)c1ccco1; ['Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1']; [0.9994553327560425, 0.9990875720977783] +Cc1csc2c(-c3nc4ccccc4s3)ncnc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3ccccc3s2)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc3ccccc3s2)CC1; ['CO[C@H]1CC[C@H](C(=O)O)CC1']; ['Nc1ccccc1S']; [0.9990032315254211] +CCNC(=O)c1ccc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nc3ccccc3s2)cc1; ['Nc1ccccc1S']; ['O=C(O)Cc1ccc(S(=O)(=O)CCO)cc1']; [0.9980460405349731] +CCNC(=O)N1CCC(c2nc3ccccc3s2)CC1; [None, 'CCN', None, 'CCN=C=O', None, 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1']; [None, 'c1ccc2sc(C3CCNCC3)nc2c1', None, 'c1ccc2sc(C3CCNCC3)nc2c1', None, 'c1ccc2sc(C3CCNCC3)nc2c1', 'c1ccc2sc(C3CCNCC3)nc2c1']; [0, 0.9999179840087891, 0, 0.999768853187561, 0, 0.9986915588378906, 0.9976624250411987] +COc1cc(-c2nc3ccccc3s2)c(OC)cc1Br; ['COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(CO)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br', 'Brc1nc2ccccc2s1', 'COc1cc(Br)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1', 'COc1cc(C=O)c(OC)cc1Br', 'Brc1nc2ccccc2s1']; ['Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'COc1cc(B(O)O)c(OC)cc1Br', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1ccc(OC)c(Br)c1']; [0.9999853372573853, 0.9999829530715942, 0.999931812286377, 0.999031662940979, 0.9977561235427856, 0.9938717484474182, 0.9921736717224121, 0.9832234382629395] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3ccccc3s2)c1; ['Nc1cn[nH]c1']; ['O=C(Cl)c1cccc(-c2nc3ccccc3s2)c1']; [0.9999997615814209] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2ccccc2s1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nc3ccccc3s2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9999817609786987, 0.9999591112136841, 0.9989758729934692] +COc1ccc2c(c1)c(-c1nc3ccccc3s1)cn2C; ['COc1ccc2c(c1)c(C=O)cn2C', 'COc1ccc2c(c1)c(C(=O)O)cn2C']; ['Nc1ccccc1S', 'Nc1ccccc1S']; [0.999993085861206, 0.9999648332595825] +c1ccc2sc(-c3ccc4cn[nH]c4c3)nc2c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Brc1nc2ccccc2s1', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Ic1ccc2cn[nH]c2c1', None]; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'O=Cc1ccc2cn[nH]c2c1', 'Clc1nc2ccccc2s1', 'OB(O)c1ccc2cn[nH]c2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'c1ccc2scnc2c1', 'Ic1ccc2cn[nH]c2c1', 'c1ccc2scnc2c1', None]; [0.9999988079071045, 0.9999979138374329, 0.9999954700469971, 0.9999780058860779, 0.999970555305481, 0.999947190284729, 0.9999402761459351, 0.9999008774757385, 0] +CCn1cc(-c2nc3ccccc3s2)cn1; ['CCn1cc(C(=O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1']; ['Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999475479125977, 0.9992988705635071, 0.9963804483413696] +COc1ccc2oc(-c3nc4ccccc4s3)cc2c1; ['COc1ccc2oc(C=O)cc2c1']; ['Nc1ccccc1S']; [0.9999704360961914] +COc1cc(OC)cc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(CC(=O)O)cc(OC)c1', 'Brc1nc2ccccc2s1', 'COc1cc(C#N)cc(OC)c1', 'COc1cc(CN)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'Brc1nc2ccccc2s1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1cc(CN)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(C(C)=O)c1', 'COc1cc(OC)cc(C(=O)Cl)c1', 'COc1cc(CN)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(CO)cc(OC)c1', 'COc1cc(OC)cc(C(=O)CC#N)c1', 'COc1cc(CCl)cc(OC)c1', 'COc1cc(OC)cc(C(=O)C(=O)O)c1', 'COc1cc(CC(=O)O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(CN)cc(OC)c1', 'Brc1nc2ccccc2s1', 'COc1cccc(OC)c1', 'COc1cc(CO)cc(OC)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'COc1cc(I)cc(OC)c1', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1I', 'COc1cc(OC)cc(B(O)O)c1', 'c1ccc2scnc2c1', 'Clc1nc2ccccc2s1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'COc1cc(I)cc(OC)c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1I', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'COc1cccc(OC)c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999905824661255, 0.9999785423278809, 0.9999659061431885, 0.9999599456787109, 0.9999390840530396, 0.9999223351478577, 0.9998576641082764, 0.9998359680175781, 0.9998353719711304, 0.9998083114624023, 0.9996088147163391, 0.9994641542434692, 0.9993767142295837, 0.999315619468689, 0.9992204904556274, 0.9991317987442017, 0.9989464282989502, 0.9989378452301025, 0.9985014200210571, 0.998045802116394, 0.9973684549331665, 0.9971680045127869, 0.9958311319351196, 0.9941010475158691, 0.9937766790390015, 0.9864407777786255, 0.9631465673446655, 0.9503532648086548, 0.9430730938911438, 0.9362087845802307, 0.9023904800415039] +c1ccc2oc(-c3nc4ccccc4s3)cc2c1; ['Nc1ccccc1S', 'Nc1ccccc1S']; ['O=C(Cl)c1cc2ccccc2o1', 'O=Cc1cc2ccccc2o1']; [0.9999301433563232, 0.9994481205940247] +O=C(Nc1cccc(-c2nc3ccccc3s2)c1)N1CCCC1; [None, 'Nc1cccc(-c2nc3ccccc3s2)c1']; [None, 'O=C(Cl)N1CCCC1']; [0, 0.9998998641967773] +C[NH+](C)Cc1ccc(-c2nc3ccccc3s2)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc2ccccc2s1; ['Brc1nc2ccccc2s1', 'CC(C)c1nn(C)cc1C=O', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999805092811584, 0.9999459981918335, 0.9994596242904663, 0.9986956715583801] +Cn1cc(Br)cc1-c1nc2ccccc2s1; ['Cn1cc(Br)cc1C(=O)O']; ['Nc1ccccc1S']; [0.9999948143959045] +CNC(=O)c1ccc(OC)c(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nc3ccccc3s2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)c(C=O)c1']; ['Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; [0.9996938705444336, 0.9964179992675781] +c1cncc(-c2ccnc(-c3nc4ccccc4s3)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'O=Cc1ccc(OC(F)(F)F)cc1', 'Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Nc1ccccc1I', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Nc1ccccc1S', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Clc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Nc1ccccc1S', 'FC(F)(F)Oc1ccc(Br)cc1', 'N#Cc1ccc(OC(F)(F)F)cc1', 'NCc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'Nc1ccccc1SSc1ccccc1N', 'Nc1ccccc1S', 'NCc1ccc(OC(F)(F)F)cc1', 'O=C(O)Cc1ccc(OC(F)(F)F)cc1', 'CC(=O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1S', 'NCc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(CCl)cc1', 'OCc1ccc(OC(F)(F)F)cc1', 'NCc1ccc(OC(F)(F)F)cc1', 'O=C(O)c1ccc(OC(F)(F)F)cc1', 'O=C(O)Cc1ccc(OC(F)(F)F)cc1', 'N#CCC(=O)c1ccc(OC(F)(F)F)cc1', 'Brc1nc2ccccc2s1', 'O=Cc1ccc(OC(F)(F)F)cc1']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Clc1nc2ccccc2s1', 'O=[N+]([O-])c1ccccc1I', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'O=C(Cl)c1ccc(OC(F)(F)F)cc1', 'c1ccc2scnc2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'O=C(O)c1ccc(OC(F)(F)F)cc1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1I', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'OCc1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1S', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'FC(F)(F)Oc1ccccc1', 'c1ccc2scnc2c1']; [0.9999998211860657, 0.9999995827674866, 0.9999977946281433, 0.999996542930603, 0.9999923706054688, 0.9999909400939941, 0.9999886751174927, 0.9999874830245972, 0.9999866485595703, 0.9999842643737793, 0.9999803900718689, 0.9999796152114868, 0.9999744892120361, 0.9999701976776123, 0.9999622106552124, 0.9999513626098633, 0.9999273419380188, 0.9999155402183533, 0.9998846054077148, 0.9998676776885986, 0.9997981786727905, 0.9997867345809937, 0.9995983242988586, 0.999302327632904, 0.9986996650695801, 0.9986735582351685, 0.9986724853515625, 0.997081995010376, 0.996457576751709, 0.9960672855377197, 0.9946540594100952] +c1ccc2sc(-c3ncc4sccc4n3)nc2c1; [None]; [None]; [0] +CCc1cccc(-c2nc3ccccc3s2)n1; ['CCc1cccc(C=O)n1', 'CCc1cccc(C)n1', 'CCc1cccc(C(=O)O)n1', 'CCc1cccc(Br)n1', 'CCc1cccc[n+]1[O-]', 'CCc1cccc(C)n1']; ['Nc1ccccc1S', 'Nc1ccccc1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9986926317214966, 0.9983593821525574, 0.9978461861610413, 0.9974032640457153, 0.9973968267440796, 0.9964128732681274] +Cc1cc(-c2nc3ccccc3s2)cc(C)c1OCCO; ['Cc1cc(C=O)cc(C)c1OCCO']; ['Nc1ccccc1S']; [0.9912843704223633] +Cn1cc(-c2nc3ccccc3s2)c2ccccc21; ['Cn1cc(C=O)c2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21', 'Cn1cc(C(=O)Cl)c2ccccc21', 'Cn1cc(C#N)c2ccccc21']; ['Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S']; [0.9999945759773254, 0.9999823570251465, 0.9999074935913086, 0.9998880624771118] +COc1ccc2nc(-c3nc4ccccc4s3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3nc4ccccc4s3)ccc21; ['Brc1nc2ccccc2s1', 'Clc1nc2ccccc2s1', 'Cn1ncc2cc(C=O)ccc21', 'Cn1ncc2cc(C#N)ccc21', 'Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Cn1ncc2cc(I)ccc21', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(C(=O)O)ccc21']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'c1ccc2scnc2c1', 'Cn1ncc2cc(Br)ccc21', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999970197677612, 0.9999945759773254, 0.9999944567680359, 0.9999916553497314, 0.9999890327453613, 0.999515950679779, 0.9994169473648071, 0.9993084073066711, 0.9982733726501465, 0.921242356300354] +c1ccc2sc(-c3ncn4c3CCCC4)nc2c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nc4ccccc4s3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ccccc3s2)cn1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'CN(C)c1ccc(C(=O)O)cn1', None, 'CNC', 'CN(C)c1ccc(C=O)cn1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', None, None, None]; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'Nc1ccccc1S', None, 'Clc1ccc(-c2nc3ccccc3s2)cn1', 'Nc1ccccc1S', 'CN(C)c1ccc(Br)cn1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', None, None, None]; [0.9999984502792358, 0.9999576210975647, 0.999915361404419, 0, 0.9998225569725037, 0.9996646642684937, 0.9996333718299866, 0.9995818138122559, 0.9987421035766602, 0, 0, 0] +Cc1n[nH]c2cc(-c3nc4ccccc4s3)ccc12; ['Brc1nc2ccccc2s1', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Clc1nc2ccccc2s1', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999989867210388, 0.9999958276748657, 0.9999438524246216, 0.9992144107818604, 0.9987462759017944, 0.9967277646064758] +O=C(Nc1nc2ccccc2s1)c1cccc(OC(F)(F)F)c1; ['Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1', 'Nc1nc2ccccc2s1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=Cc1cccc(OC(F)(F)F)c1']; [0.9999991655349731, 0.9999969005584717, 0.9998165965080261] +Cn1nc(Cl)c2cc(-c3nc4ccccc4s3)ccc21; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'Brc1cccc(-c2nc3ccccc3s2)c1', 'Nc1cccc(-c2nc3ccccc3s2)c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1', 'O=C(Cl)CCCCl']; [0.9999935626983643, 0.999785304069519, 0.9996112585067749] +CC(=O)N1CCC(n2cc(-c3nc4ccccc4s3)cn2)CC1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc4ccccc4s3)cc2)n1C; ['Brc1ccc(-c2nc3ccccc3s2)cc1', 'Brc1ccc(-c2nc3ccccc3s2)cc1']; ['Cc1ncc(C(=O)O)n1C', 'Cc1nccn1C']; [0.9999450445175171, 0.9992282390594482] +OCCc1ccc(-c2nc3ccccc3s2)cc1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1S', 'Brc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'O=C(O)c1ccc(CCO)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999955892562866, 0.9996629953384399, 0.9987829327583313, 0.9944261908531189, 0.9908736944198608, 0.9783928394317627] +Cc1cc(N2CCOCC2)ccc1-c1nc2ccccc2s1; ['Cc1cc(N2CCOCC2)ccc1C=O']; ['Nc1ccccc1S']; [0.9999914169311523] +CCNC(=O)c1ccc(-c2nc3ccccc3s2)cc1; ['CCN']; ['O=C(Cl)c1ccc(-c2nc3ccccc3s2)cc1']; [0.9995968341827393] +CNC(=O)c1ccc(-c2nc3ccccc3s2)c(OC)c1; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['CNC(=O)c1ccc(Br)c(OC)c1']; [0.999933123588562] +CN(C)C(=O)c1ccc(-c2nc3ccccc3s2)c(Cl)c1; [None]; [None]; [0] +Fc1ccc(Nc2nc3ccccc3s2)nc1; ['Fc1ccc(Br)nc1', 'Clc1nc2ccccc2s1', 'Fc1ccc(Cl)nc1', 'Brc1nc2ccccc2s1']; ['Nc1nc2ccccc2s1', 'Nc1ccc(F)cn1', 'Nc1nc2ccccc2s1', 'Nc1ccc(F)cn1']; [0.9999914169311523, 0.9999771118164062, 0.9999051094055176, 0.9993641376495361] +COc1cc(S(C)(=O)=O)ccc1-c1nc2ccccc2s1; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'c1ccc2scnc2c1']; [0.9995349645614624, 0.9979926347732544] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2ccccc2s1; [None]; [None]; [0] +Cc1cc(Nc2nc3ccccc3s2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(N)ncc1F', 'Brc1nc2ccccc2s1', 'Cc1cc(Cl)ncc1F']; ['Nc1nc2ccccc2s1', 'Clc1nc2ccccc2s1', 'Cc1cc(N)ncc1F', 'Nc1nc2ccccc2s1']; [0.999523937702179, 0.9991886615753174, 0.9991236925125122, 0.9990893602371216] +CCNC(=O)Cc1ccc(-c2nc3ccccc3s2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ccccc3s2)nc1; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)Cl']; ['c1ccc2scnc2c1', 'c1ccc(-c2nc3ccccc3s2)nc1']; [0.9994588494300842, 0.8719947338104248] +c1ccc(Nc2nc3ccccc3s2)nc1; ['Brc1nc2ccccc2s1', 'Clc1ccccn1', 'Clc1nc2ccccc2s1', 'Brc1ccccn1', None]; ['Nc1ccccn1', 'Nc1nc2ccccc2s1', 'Nc1ccccn1', 'Nc1nc2ccccc2s1', None]; [0.9999483823776245, 0.9995208978652954, 0.9994014501571655, 0.998660147190094, 0] +COc1cc(N2CCNCC2)ccc1-c1nc2ccccc2s1; [None]; [None]; [0] +Cn1nc(-c2nc3ccccc3s2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2ccncc2c1; ['CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'Brc1ccc2ccncc2c1', 'CNC(=O)c1ccccc1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CNC(=O)c1ccccc1B(O)O', 'OB(O)c1ccc2ccncc2c1']; [0.9999971389770508, 0.9999933242797852, 0.9999901056289673, 0.99991774559021, 0.9994719624519348] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3ccccc3s2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CS(=O)(=O)c1ccc(Cl)c(C(=O)O)c1']; ['c1ccc2scnc2c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'c1ccc2scnc2c1']; [0.9994096755981445, 0.9989670515060425, 0.9567488431930542] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2ccncc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1ccc2cnccc2c1', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Brc1cccc2ccncc12', 'Brc1ccc2ccncc2c1', 'CC(C)S(=O)(=O)c1ccccc1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'OB(O)c1ccc2ccncc2c1', 'c1ccc2cnccc2c1']; [0.9999936819076538, 0.999993085861206, 0.9999780654907227, 0.9999731779098511, 0.9999535083770752, 0.9999469518661499, 0.9996931552886963, 0.998380184173584, 0.9809993505477905, 0.8713136911392212] +CCOc1ccccc1-c1ccc2ccncc2c1; ['Brc1ccc2ccncc2c1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Brc1ccc2ccncc2c1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Cl', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'CCOc1ccccc1Br', 'CCOc1ccccc1[Mg]Br', 'CCOc1ccccc1B(O)O']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CCOc1ccccc1B(O)O', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CCOc1ccccc1[Mg]Br', 'CCOc1ccccc1Cl', 'CCOc1ccccc1Br', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'c1ccc2cnccc2c1']; [0.9999868869781494, 0.9999808073043823, 0.9999591112136841, 0.9998193979263306, 0.9997027516365051, 0.9996902942657471, 0.9996062517166138, 0.9988628625869751, 0.9979840517044067, 0.9963470697402954, 0.9934400320053101, 0.9838026762008667, 0.9784837961196899, 0.976948618888855, 0.8946855664253235] +Cc1ccc(C(=O)NCCO)cc1-c1nc2ccccc2s1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2ccncc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3ccncc3c2)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3ccncc3c2)c1; [None]; [None]; [0] +CCn1cc(-c2ccc3ccncc3c2)cn1; ['Brc1ccc2ccncc2c1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Br)cn1', 'CCn1cccn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2ccncc2c1', 'CCn1cc(Cl)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2ccncc2c1', 'CCn1cc(Br)cn1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CCn1cc(B(O)O)cn1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'CCn1cc(I)cn1', 'Ic1ccc2ccncc2c1', 'CCn1cc(Br)cn1', 'CCn1cccn1']; [0.9999997019767761, 0.9999996423721313, 0.999995231628418, 0.9999949932098389, 0.9999743700027466, 0.9999655485153198, 0.9999643564224243, 0.9999237060546875, 0.9998512268066406, 0.9998379945755005, 0.9996088147163391, 0.9985951781272888, 0.9953067898750305, 0.9904885292053223] +CP(C)(=O)c1ccccc1-c1ccc2ccncc2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc4ccncc4c3)ccnc2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2ccncc2c1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Brc1ccc2ccncc2c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Cl', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'OB(O)c1ccccc1OC(F)(F)F', 'Brc1ccc2ccncc2c1']; ['Ic1ccc2ccncc2c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1Cl', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1[Zn]Br', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'FC(F)(F)Oc1ccccc1']; [0.9999908208847046, 0.9999860525131226, 0.9999847412109375, 0.9999724626541138, 0.9999589920043945, 0.9999258518218994, 0.9999104738235474, 0.999882698059082, 0.9996925592422485, 0.9996557235717773, 0.9994887113571167, 0.9986753463745117, 0.998585045337677, 0.9969332218170166, 0.996891975402832, 0.9963967204093933, 0.9951044917106628, 0.9949120879173279, 0.9928721189498901, 0.9921973943710327, 0.9880329966545105, 0.9367212057113647, 0.9168444275856018, 0.883739173412323, 0.8313749432563782] +Cn1cnc2ccc(-c3ccc4ccncc4c3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999960660934448, 0.9933782815933228] +FC(F)(F)c1cccc(-c2ccc3ccncc3c2)c1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'FC(F)(F)c1cccc(Cl)c1', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'FC(F)(F)c1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'FC(F)(F)c1cccc(I)c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'FC(F)(F)c1ccccc1', 'Brc1ccc2ccncc2c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'COc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'Ic1ccc2ccncc2c1', 'FC(F)(F)c1cccc(Cl)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'FC(F)(F)c1cccc(Br)c1', 'Ic1ccc2ccncc2c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1ccc2ccncc2c1', 'FC(F)(F)c1cccc(Br)c1', 'Fc1ccc2ccncc2c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'Oc1cccc(C(F)(F)F)c1', 'c1ccc2cnccc2c1', 'Oc1ccc2ccncc2c1']; [0.9999990463256836, 0.9999942183494568, 0.9999938607215881, 0.9999932050704956, 0.9999849796295166, 0.9999809265136719, 0.9999784827232361, 0.9999725222587585, 0.9999542832374573, 0.9999332427978516, 0.9998775720596313, 0.9998564720153809, 0.9997749328613281, 0.999720573425293, 0.9994529485702515, 0.9991886019706726, 0.9988231658935547, 0.9952126741409302, 0.9916108846664429, 0.9899495840072632, 0.9890502691268921, 0.9869868159294128, 0.9160988926887512, 0.913989245891571, 0.8788538575172424, 0.7718091607093811] +NC(=O)c1ccccc1-c1ccc2ccncc2c1; ['NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'NC(=O)c1ccccc1Br', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1Cl', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'NC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'OB(O)c1ccc2ccncc2c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999920129776001, 0.9999899864196777, 0.9999872446060181, 0.9999833703041077, 0.9999760985374451, 0.9999584555625916, 0.9998966455459595, 0.9998607039451599, 0.9997523427009583, 0.9997502565383911, 0.9996935129165649, 0.9819114804267883] +c1ccc(Cn2cc(-c3ccc4ccncc4c3)cn2)cc1; ['Brc1ccc2ccncc2c1', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Ic1ccc2ccncc2c1', 'c1ccc(Cn2cccn2)cc1', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999997615814209, 0.9999982118606567, 0.9999977350234985, 0.9999938011169434, 0.9999886751174927, 0.9999816417694092, 0.9999756813049316, 0.999968409538269, 0.9998629093170166, 0.9997470378875732, 0.9996380805969238, 0.999602735042572, 0.9984854459762573, 0.963982343673706] +O=C([O-])c1ccccc1-c1ccc2ccncc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ccncc3c2)c1)c1ccccc1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999995827674866, 0.9999986886978149, 0.9999730587005615, 0.9999376535415649] +OCCn1cc(-c2ccc3ccncc3c2)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1']; ['Ic1ccc2ccncc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1']; [0.9999988079071045, 0.9999985694885254, 0.9999983310699463, 0.9999901056289673, 0.9999852180480957, 0.9999555349349976, 0.9999471306800842] +c1ccc(-c2ncc(-c3ccc4ccncc4c3)[nH]2)cc1; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.9999312162399292, 0.8140467405319214] +CC(C)C(=O)COc1ccc2ccncc2c1; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1']; [0.981045663356781, 0.9710668325424194] +CC(C)(C)c1nc(-c2ccc3ccncc3c2)cs1; ['Brc1ccc2ccncc2c1', 'CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'CC(C)(C)c1nccs1', 'Brc1ccc2ccncc2c1']; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC(C)(C)c1nccs1']; [0.9999997615814209, 0.9999995827674866, 0.9998728036880493, 0.9973262548446655] +Clc1ccc(Cl)c(-c2ccc3ccncc3c2)c1; ['Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc2ccncc2c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1', 'Clc1ccc(Cl)cc1']; [0.9999972581863403, 0.9999929666519165, 0.9999921321868896, 0.9999810457229614, 0.9999798536300659, 0.9999736547470093, 0.9999596476554871, 0.9999352693557739, 0.9997895359992981, 0.9992104768753052, 0.999022901058197, 0.9964209794998169, 0.99588942527771, 0.9910743236541748, 0.940483570098877, 0.9120038747787476, 0.9036677479743958, 0.779503583908081] +Cc1ccc(-c2ccc3ccncc3c2)c(Br)c1; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Cc1ccc(B(O)O)c(Br)c1']; [0.9999483823776245, 0.9997912049293518, 0.9991681575775146, 0.9959719181060791, 0.9950233101844788, 0.9819715619087219] +c1ccn2c(-c3ccc4ccncc4c3)cnc2c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999997615814209, 0.999998927116394, 0.9999979734420776, 0.9999934434890747, 0.9998840093612671, 0.9995934963226318, 0.999538779258728, 0.9900909662246704, 0.9729398488998413] +c1cnn2c(-c3ccc4ccncc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999498128890991] +COc1cnc(-c2ccc3ccncc3c2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccc2ccncc2c1', 'COc1cncnc1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'COc1cnc(Cl)nc1', 'Ic1ccc2ccncc2c1', 'COc1cncnc1']; [0.9999887943267822, 0.999887228012085, 0.9985061287879944, 0.966739296913147, 0.9454805254936218] +O=c1c2c(F)cccc2cnn1-c1ccc2ccncc2c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2ccncc2c1; ['Cc1nc2ccccn2c1I', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1Br', 'Brc1ccc2ccncc2c1', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Cc1cn2ccccc2n1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Cc1nc2ccccn2c1Br']; [0.9999997615814209, 0.9999997615814209, 0.9999977350234985, 0.9999918937683105, 0.9999903440475464, 0.9995758533477783, 0.9983429908752441] +Cc1nc(C)c(-c2ccc3ccncc3c2)s1; ['Brc1ccc2ccncc2c1', 'Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Brc1ccc2ccncc2c1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Cc1csc(C)n1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; [0.9999961853027344, 0.9999936819076538, 0.9999809265136719, 0.9967571496963501, 0.9923257231712341, 0.8998883962631226] +CNc1nc(C)c(-c2ccc3ccncc3c2)s1; ['CNc1nc(C)c(Br)s1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'CNc1nc(C)cs1']; [0.999975323677063, 0.9992906451225281] +Cc1nc(N)sc1-c1ccc2ccncc2c1; ['Cc1nc(N)sc1I', 'Cc1nc(N)sc1Br', 'Brc1ccc2ccncc2c1', 'Cc1csc(N)n1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Cc1csc(N)n1', 'Ic1ccc2ccncc2c1']; [0.999992311000824, 0.9999922513961792, 0.9641004800796509, 0.8925281167030334] +Cc1ccc(Cl)c(-c2ccc3ccncc3c2)c1; ['Cc1ccc(Cl)c(Br)c1', 'Brc1ccc2ccncc2c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2ccncc2c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2ccncc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)cc1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['OB(O)c1ccc2ccncc2c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Ic1ccc2ccncc2c1', 'Cc1ccc(Cl)c(I)c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'c1ccc2cnccc2c1']; [0.9999833106994629, 0.9999797344207764, 0.9999779462814331, 0.9999595880508423, 0.9999204874038696, 0.99991774559021, 0.9998443126678467, 0.9998064041137695, 0.9981020092964172, 0.9971715211868286, 0.8092855215072632, 0.7931987047195435] +c1cncc(CNc2ccc3ccncc3c2)c1; ['NCc1cccnc1', 'ClCc1cccnc1', 'BrCc1cccnc1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'NCc1cccnc1', 'Nc1ccc2ccncc2c1', 'NCc1cccnc1', 'CN(C)Cc1cccnc1', 'O=Cc1cccnc1', 'O=[N+]([O-])c1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'OCc1cccnc1', 'NCc1cccnc1', 'O=Cc1ccc2ccncc2c1', 'O=Cc1cccnc1', 'Oc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'O=[N+]([O-])c1ccc2ccncc2c1', 'OCc1cccnc1']; [0.9999537467956543, 0.9997380971908569, 0.9992030262947083, 0.9991104602813721, 0.9990190267562866, 0.997657299041748, 0.9961142539978027, 0.9928854703903198, 0.9842245578765869, 0.9803929924964905, 0.9769626259803772, 0.9404233694076538, 0.85389643907547, 0.8028004169464111] +c1cc(Cn2cncn2)cc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +Cc1c(-c2ccc3ccncc3c2)sc(=O)n1C; [None]; [None]; [0] +c1cncc(Nc2ccc3ccncc3c2)c1; ['Nc1cccnc1', 'Brc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Clc1cccnc1', 'Ic1ccc2ccncc2c1', 'Fc1cccnc1', 'Fc1ccc2ccncc2c1', 'Brc1cccnc1', 'Ic1cccnc1']; ['OB(O)c1ccc2ccncc2c1', 'Nc1cccnc1', 'OB(O)c1cccnc1', 'Nc1cccnc1', 'O=S(=O)(Oc1cccnc1)C(F)(F)F', 'Nc1ccc2ccncc2c1', 'Nc1cccnc1', 'Nc1ccc2ccncc2c1', 'Nc1cccnc1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1']; [0.9999672174453735, 0.9986217021942139, 0.9974923133850098, 0.996069073677063, 0.9953592419624329, 0.9951184391975403, 0.994210958480835, 0.9936709403991699, 0.991865873336792, 0.9915133118629456, 0.9837467670440674] +Clc1cccc(Cl)c1-c1ccc2ccncc2c1; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1I', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Clc1cccc(Cl)c1', 'Clc1ccc2ccncc2c1', 'Clc1cccc(Cl)c1', 'Brc1ccc2ccncc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'Brc1ccc2ccncc2c1']; ['Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1[Zn]Br', 'Clc1cccc(Cl)c1Br', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Oc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'OB(O)c1ccc2ccncc2c1', 'Clc1cccc(Cl)c1Br', 'Ic1ccc2ccncc2c1', 'Clc1cccc(Cl)c1', 'Oc1ccc2ccncc2c1', 'COc1c(Cl)cccc1Cl']; [0.9999947547912598, 0.9999943971633911, 0.9999909996986389, 0.99998939037323, 0.9999730587005615, 0.9998841285705566, 0.9998083114624023, 0.9996142387390137, 0.9995023012161255, 0.9992787837982178, 0.9986124038696289, 0.9981580972671509, 0.9980444312095642, 0.9975121021270752, 0.9973585605621338, 0.9934147596359253, 0.9922009706497192, 0.9858831763267517, 0.9821658134460449, 0.9388906955718994] +Nc1nccc(-c2ccc3ccncc3c2)n1; ['Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [0.9999994039535522, 0.9999967217445374, 0.9999893307685852, 0.9999232888221741, 0.9998108148574829] +Brc1cccc(-c2ccc3ccncc3c2)c1; ['Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Brc1cccc2ccncc12', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc(Br)cc1', 'Clc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1ccc2cnccc2c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1ccccc1Br', 'Brc1ccc2ccncc2c1', 'Br[Mg]c1cccc(Br)c1', 'Clc1ccc2ccncc2c1', 'Brc1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Br[Mg]c1cccc(Br)c1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1cccc(Br)c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1cccc(Br)c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Brc1cccc(I)c1', 'Clc1ccc2ccncc2c1', 'O=C(O)c1cccc(Br)c1', 'Clc1ccc2ccncc2c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Fc1ccc2ccncc2c1']; [0.9999501705169678, 0.9999498724937439, 0.9998372793197632, 0.9997537732124329, 0.9996570348739624, 0.9994690418243408, 0.9994311332702637, 0.999172031879425, 0.9989428520202637, 0.9967504143714905, 0.9946355223655701, 0.99381422996521, 0.9933693408966064, 0.9929381608963013, 0.9902812242507935, 0.9855768084526062, 0.9745677709579468, 0.9575151205062866, 0.9373499155044556, 0.9228496551513672, 0.8465588092803955, 0.7676258087158203, 0.7580727338790894, 0.7523776292800903] +O=C(Nc1ccc2ccncc2c1)c1cccs1; ['Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'COC(=O)c1cccs1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'CCOC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccc2ccncc2c1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'Nc1ccc2ccncc2c1']; [0.9999362826347351, 0.9995933771133423, 0.9938845634460449, 0.9938315153121948, 0.9908567667007446, 0.9855899214744568] +c1ccc2c(c1)ncn2-c1ccc2ccncc2c1; ['OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9999475479125977, 0.9984543323516846, 0.9978830814361572, 0.9725291132926941, 0.9635635018348694] +c1cnn2ncc(-c3ccc4ccncc4c3)c2c1; ['Brc1cnn2ncccc12', 'Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Brc1cnn2ncccc12']; [0.9999943375587463, 0.999951958656311, 0.9999431371688843, 0.9690356850624084] +NC(=O)c1c(F)cccc1-c1ccc2ccncc2c1; ['NC(=O)c1c(F)cccc1Br']; ['OB(O)c1ccc2ccncc2c1']; [0.9999960660934448] +c1cc2ccc(NCCc3c[nH]cn3)cc2cn1; ['NCCc1c[nH]cn1', 'Ic1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'NCCc1c[nH]cn1', 'N#CCc1c[nH]cn1', 'Nc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Oc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'O=C(O)Cc1c[nH]cn1']; [0.9999988675117493, 0.9999600648880005, 0.9996412992477417, 0.9996296167373657, 0.9994146227836609, 0.9994061589241028, 0.9974707365036011, 0.9972999095916748, 0.980868935585022] +c1ccc2cc(-c3ccc4ccncc4c3)ccc2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc4ccncc4c3)cncc2c1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Br[Zn]c1cncc2ccccc12', 'OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1cncc2ccccc12', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'Brc1cncc2ccccc12', 'Clc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Ic1cncc2ccccc12', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [0.9999953508377075, 0.9999875426292419, 0.9999831914901733, 0.9999630451202393, 0.9999291300773621, 0.9998732805252075, 0.9998565912246704, 0.9997723698616028, 0.9997559785842896, 0.9997072219848633, 0.9996137619018555, 0.999473512172699, 0.9994118809700012, 0.9988672733306885, 0.9973385334014893, 0.9966630339622498, 0.9902402758598328, 0.9760507941246033, 0.9599093198776245, 0.9061525464057922, 0.8617801666259766] +c1ccc(CCNc2ccc3ccncc3c2)cc1; ['NCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'ClCCc1ccccc1', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'COC(Cc1ccccc1)OC', 'ICCc1ccccc1', 'Nc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'BrCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'Fc1ccc2ccncc2c1', 'C=Cc1ccccc1', 'N#CCc1ccccc1', 'Nc1ccc2ccncc2c1', 'CS(=O)(=O)OCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'O=CCc1ccccc1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)CCc1ccccc1', 'Nc1ccc2ccncc2c1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'O=CCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'O=CCc1ccccc1', 'Nc1ccc2ccncc2c1', 'NCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'OCCc1ccccc1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'O=C(O)Cc1ccccc1', 'O=[N+]([O-])c1ccc2ccncc2c1']; [0.9999635219573975, 0.9998685121536255, 0.9994785785675049, 0.9993236064910889, 0.9984079599380493, 0.9978759288787842, 0.9965999126434326, 0.9952285289764404, 0.994957447052002, 0.9940313696861267, 0.993960976600647, 0.9934612512588501, 0.9922753572463989, 0.9897516965866089, 0.9894959926605225, 0.9878528118133545, 0.9744418859481812, 0.9712017178535461, 0.8891781568527222, 0.8713401556015015, 0.7862516641616821] +FC(F)(F)c1n[nH]cc1-c1ccc2ccncc2c1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4ccncc4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4ccncc4c3)ccc12; [None]; [None]; [0] +Clc1ccc(CNc2ccc3ccncc3c2)cc1; ['NCc1ccc(Cl)cc1', 'Ic1ccc2ccncc2c1', 'Clc1ccc(CBr)cc1', 'Brc1ccc2ccncc2c1', 'ClCc1ccc(Cl)cc1', 'Fc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'O=Cc1ccc(Cl)cc1']; ['OB(O)c1ccc2ccncc2c1', 'NCc1ccc(Cl)cc1', 'Nc1ccc2ccncc2c1', 'NCc1ccc(Cl)cc1', 'Nc1ccc2ccncc2c1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=CCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=[N+]([O-])c1ccc2ccncc2c1']; [0.999985933303833, 0.9998038411140442, 0.9998022317886353, 0.9995143413543701, 0.9992257952690125, 0.9987632036209106, 0.9985324144363403, 0.9953265190124512, 0.9934481382369995, 0.9790180921554565, 0.9496643543243408] +CN1c2ccc(-c3ccc4ccncc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4ccncc4c3)ccc21; [None]; [None]; [0] +c1cc2ccc(-c3ccc(-c4cn[nH]c4)cc3)cc2cn1; [None]; [None]; [0] +c1cc(Nc2ccc3ccncc3c2)ccn1; ['CC1(C)OB(c2ccncc2)OC1(C)C', 'Nc1ccc2ccncc2c1', 'Nc1ccncc1', 'Brc1ccc2ccncc2c1', 'Brc1ccncc1', 'Ic1ccncc1', 'Ic1ccc2ccncc2c1', 'Clc1ccncc1', 'Clc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Fc1ccncc1', 'Nc1ccncc1', 'Nc1ccc2ccncc2c1']; ['Nc1ccc2ccncc2c1', 'OB(O)c1ccncc1', 'OB(O)c1ccc2ccncc2c1', 'Nc1ccncc1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccncc1', 'Nc1ccc2ccncc2c1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccncc1', 'CC(=O)Nc1ccncc1', 'Oc1ccncc1', 'Nc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'c1ccncc1']; [0.9999895095825195, 0.9999799728393555, 0.9999713897705078, 0.9997616410255432, 0.9995596408843994, 0.9991734027862549, 0.9986823797225952, 0.9979097843170166, 0.997686505317688, 0.9960272312164307, 0.9959304332733154, 0.9933347702026367, 0.9913887977600098, 0.9897377490997314, 0.9808000326156616, 0.7573049664497375] +OCc1cccc(-c2ccc3ccncc3c2)c1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(Br)c1']; [0.9999943971633911, 0.9999903440475464, 0.9999483227729797, 0.9998375773429871, 0.999811053276062, 0.9993674755096436, 0.9992012977600098, 0.9989446401596069, 0.9972003698348999, 0.9924284219741821, 0.9860715270042419, 0.8850727081298828] +Fc1ccccc1CNc1ccc2ccncc2c1; ['NCc1ccccc1F', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'COC(OC)c1ccccc1F', 'N#Cc1ccccc1F', 'NCc1ccccc1F']; ['OB(O)c1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'OCc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'O=[N+]([O-])c1ccc2ccncc2c1']; [0.9999783039093018, 0.9996916055679321, 0.9996600151062012, 0.9995719194412231, 0.9987739324569702, 0.9978617429733276, 0.9972984790802002, 0.9903607368469238, 0.9898934364318848, 0.9895211458206177, 0.9255092144012451, 0.8976805210113525] +CCCn1cnc(-c2ccc3ccncc3c2)n1; [None]; [None]; [0] +Oc1cccc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3ccncc3c2)nn1; ['CC(C)n1ccnn1', 'Brc1ccc2ccncc2c1']; ['Ic1ccc2ccncc2c1', 'CC(C)n1ccnn1']; [0.9999890327453613, 0.9999855756759644] +COc1cc(-c2ccc3ccncc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(-c2ccc3ccncc3c2)cs1; ['CC(=O)c1ccc2ccncc2c1', None]; ['NC(N)=S', None]; [0.9992382526397705, 0] +CSc1nc(-c2ccc3ccncc3c2)c[nH]1; ['Brc1ccc2ccncc2c1']; ['CSc1ncc[nH]1']; [0.8248032331466675] +c1cc2ccc(-c3csc4ncncc34)cc2cn1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Brc1csc2ncncc12']; [0.9999996423721313, 0.9996381998062134, 0.9884348511695862] +c1cc2ccc(CCc3c[nH]nn3)cc2cn1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3ccncc3c2)cc1; ['Brc1ccc2ccncc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; [0.9999998211860657, 0.9999997019767761, 0.9999972581863403] +c1ccc2[nH]c(-c3ccc4ccncc4c3)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2ccncc2c1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2ccncc2c1; ['Nc1ncncc1Br', 'Nc1ncncc1I', 'Ic1ccc2ccncc2c1', 'Nc1ncncc1Cl', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Nc1ncncc1Br', 'OB(O)c1ccc2ccncc2c1', 'Nc1ncncc1Br', 'Nc1ccncn1']; [0.9999985694885254, 0.9999955892562866, 0.9999638795852661, 0.9999373555183411, 0.9994858503341675, 0.9975669384002686] +CCNc1nc2ccc(-c3ccc4ccncc4c3)cc2s1; [None]; [None]; [0] +c1ccc(Oc2ccc3ccncc3c2)nc1; ['Clc1ccccn1', 'Brc1ccc2ccncc2c1', 'Brc1ccccn1', 'Fc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Fc1ccccn1', 'Ic1ccccn1', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['Oc1ccc2ccncc2c1', '[O-]c1ccccn1', 'Oc1ccc2ccncc2c1', '[O-]c1ccccn1', 'Oc1ccccn1', 'Oc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9942054748535156, 0.9936946630477905, 0.9871851801872253, 0.9859895706176758, 0.9629659652709961, 0.958773136138916, 0.9411001205444336, 0.9128881692886353, 0.8526173830032349] +O=C(Nc1ccc2ccncc2c1)c1c(Cl)cccc1Cl; ['Nc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', None, 'COC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', None, 'Nc1ccc2ccncc2c1']; [0.9999459981918335, 0.9998925924301147, 0.9998258948326111, 0.9998202323913574, 0, 0.9982613325119019] +CC(=O)Nc1cccc(-c2ccc3ccncc3c2)c1; ['Brc1ccc2ccncc2c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999994039535522, 0.9999988675117493, 0.9999933242797852, 0.9999837279319763, 0.9999405145645142, 0.9998944401741028, 0.9998489618301392, 0.9998407363891602, 0.9974639415740967, 0.9972983598709106, 0.9838672876358032] +CS(=O)(=O)C1CCN(c2ccc3ccncc3c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'CS(=O)(=O)C1CCNCC1']; [0.9999778866767883, 0.9995173811912537, 0.9992721080780029, 0.9989847540855408, 0.997890055179596] +Fc1ccc(-c2ccc3ccncc3c2)c(C(F)(F)F)c1; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Brc1cccc2ccncc12', 'Brc1ccc2ccncc2c1', 'Brc1ccc2cnccc2c1', 'Fc1cc(Br)cc(C(F)(F)F)c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'Fc1cccc(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'COc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc2ccncc2c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Oc1ccc(F)cc1C(F)(F)F', 'Oc1ccc2ccncc2c1']; [0.9999982714653015, 0.9999964833259583, 0.9999940991401672, 0.9999940395355225, 0.9999892711639404, 0.9999865889549255, 0.9999781847000122, 0.99997478723526, 0.9999052286148071, 0.9998816847801208, 0.999631941318512, 0.9991410374641418, 0.9974738359451294, 0.9970959424972534, 0.9968398809432983, 0.9967981576919556, 0.9967465996742249, 0.9851628541946411, 0.9836224317550659, 0.9816031455993652, 0.957599401473999, 0.9011890292167664, 0.8231509327888489, 0.750115156173706] +Cn1cc(-c2ccc3ccncc3c2)c2ccccc21; ['Brc1ccc2ccncc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'NNc1ccc2ccncc2c1']; [0.9999977350234985, 0.9999772310256958, 0.9998193979263306, 0.9959800243377686, 0.9124318361282349] +CC(C)(O)CC(=O)NCCc1ccc2ccncc2c1; [None]; [None]; [0] +NC(=O)CCCc1ccc2ccncc2c1; [None]; [None]; [0] +CCCn1cc(-c2ccc3ccncc3c2)cn1; ['Brc1ccc2ccncc2c1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cccn1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2ccncc2c1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2ccncc2c1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CCCn1cc(B(O)O)cn1', 'Clc1ccc2ccncc2c1', 'CCCn1cc(Br)cn1']; [1.0, 0.9999995231628418, 0.999998927116394, 0.9999979138374329, 0.9999929070472717, 0.9999881982803345, 0.9999879002571106, 0.9999547004699707, 0.9999387264251709, 0.9999375343322754, 0.9993674755096436] +CC(C)(COc1ccc2ccncc2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3ccncc3c2)cc1Cl; ['Brc1ccc2ccncc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'Brc1ccc2ccncc2c1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Brc1ccc2ccncc2c1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'Brc1ccc2ccncc2c1', 'COc1ccc(O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'Brc1ccc2ccncc2c1', 'COc1ccc(I)cc1Cl', 'Brc1ccc2ccncc2c1', 'COc1ccccc1Cl', 'COc1ccc(Br)cc1Cl', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(C(=O)O)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'COc1ccc(I)cc1Cl', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'COc1ccc(B(O)O)cc1Cl', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'COc1ccc([Mg]Br)cc1Cl', 'OB(O)c1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'COc1ccc(Cl)cc1Cl', 'C[Sn](C)(C)c1ccc2ccncc2c1', 'COc1ccc(Br)cc1Cl', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'COc1ccccc1Cl', 'COc1ccc(O)cc1Cl', 'Oc1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [0.999998927116394, 0.9999953508377075, 0.9999918341636658, 0.999944806098938, 0.9999055862426758, 0.9998995065689087, 0.999874472618103, 0.9998527765274048, 0.9998037815093994, 0.9981162548065186, 0.9979212284088135, 0.995854377746582, 0.9928091764450073, 0.9914703369140625, 0.9910668134689331, 0.9907755851745605, 0.989389181137085, 0.9879482984542847, 0.986077070236206, 0.9815233945846558, 0.9649035930633545, 0.948094367980957, 0.9307963848114014, 0.9156006574630737, 0.9087967276573181, 0.8989419937133789, 0.8669420480728149, 0.7576197385787964] +c1ccn2ncc(-c3ccc4ccncc4c3)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3ccncc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2ccncc2c1; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br', 'Brc1ccc2ccncc2c1', 'CCNS(=O)(=O)c1ccccc1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CCNS(=O)(=O)c1ccccc1Br', 'Ic1ccc2ccncc2c1']; [0.9998806715011597, 0.9998638033866882, 0.9875435829162598, 0.98468416929245] +CC(C)(N)c1ccc(-c2ccc3ccncc3c2)cc1; ['CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1']; [0.9992944002151489, 0.998014509677887] +O=c1cc(-c2ccc3ccncc3c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4ccncc4c3)c21; [None]; [None]; [0] +C[C@@H](Oc1ccc2ccncc2c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1ccc2ccncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Oc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; [0.9999991655349731, 0.9995988607406616, 0.998673141002655, 0.9963027238845825, 0.9943692684173584, 0.9943692684173584, 0.9907711744308472, 0.9075000286102295] +C[S@](=O)c1ccc(-c2ccc3ccncc3c2)cc1; ['Brc1ccc2ccncc2c1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2ccncc2c1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(Cl)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1']; [0.9999994039535522, 0.999996542930603, 0.9999915957450867, 0.9999879598617554, 0.9999759197235107, 0.999933123588562, 0.9998636245727539] +COc1cc(CCc2ccc3ccncc3c2)cc(OC)c1; [None]; [None]; [0] +CCN(CC)c1ccc2ccncc2c1; ['CCNCC', None, None, None, None, 'CCNCC', 'CCNCC', 'CCNCC', 'Brc1ccc2cnccc2c1', 'Brc1ccc2ccncc2c1', 'Brc1cccc2ccncc12', None, None]; ['OB(O)c1ccc2ccncc2c1', None, None, None, None, 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'CCNCC', 'CCNCC', 'CCNCC', None, None]; [0.995080292224884, 0, 0, 0, 0, 0.9908391833305359, 0.9905295968055725, 0.9708520174026489, 0.9580422639846802, 0.948516845703125, 0.8985778093338013, 0, 0] +COc1ccncc1Nc1ccc2ccncc2c1; ['COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2ccncc2c1', 'COc1ccncc1I', 'COc1ccncc1N', 'COc1ccncc1B(O)O', 'COc1ccncc1F']; ['OB(O)c1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'COc1ccncc1N', 'Nc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1']; [0.999982476234436, 0.9999086856842041, 0.9998142719268799, 0.99970543384552, 0.9996989965438843, 0.999698281288147, 0.9995378255844116, 0.9992692470550537, 0.999207615852356, 0.9991859197616577, 0.9986070394515991] +c1ccc(-c2ccncc2Nc2ccc3ccncc3c2)cc1; ['Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Nc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9999948143959045, 0.9999521970748901, 0.9999300241470337, 0.999881386756897, 0.9995729327201843, 0.9989297389984131, 0.9987821578979492] +O=c1[nH]ccc2oc(-c3ccc4ccncc4c3)cc12; [None]; [None]; [0] +c1ccc2ncc(Nc3ccc4ccncc4c3)cc2c1; ['Nc1ccc2ccncc2c1', 'Nc1cnc2ccccc2c1', 'Brc1ccc2ccncc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1cnc2ccccc2c1', 'Fc1ccc2ccncc2c1', 'Nc1cnc2ccccc2c1']; ['OB(O)c1cnc2ccccc2c1', 'OB(O)c1ccc2ccncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1ccc2ccncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2ccncc2c1', 'Nc1cnc2ccccc2c1', 'c1ccc2cnccc2c1']; [0.9999679327011108, 0.9999634027481079, 0.9998581409454346, 0.9995836019515991, 0.9995509386062622, 0.9992703795433044, 0.9991054534912109, 0.9990115165710449, 0.9984582662582397, 0.9983950853347778, 0.9811335802078247] +CC(C)Oc1cncc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3ccncc3c2)cc1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4ccncc4c3)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2ccncc2c1; ['CNC(=O)c1ccccc1F']; ['OB(O)c1ccc2ccncc2c1']; [0.96636962890625] +c1cc2ccc(-c3cnc4[nH]ccc4c3)cc2cn1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'Ic1ccc2ccncc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1ccc2ccncc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1ccc2ccncc2c1', 'Brc1cnc2[nH]ccc2c1', 'C[Sn](C)(C)c1ccc2ccncc2c1']; [0.9999997615814209, 0.9999991655349731, 0.9999979734420776, 0.999997615814209, 0.9999953508377075, 0.9999945759773254, 0.9999931454658508, 0.9999910593032837, 0.9999910593032837, 0.9999071955680847, 0.9989005327224731, 0.9986691474914551] +COc1cccc(F)c1-c1ccc2ccncc2c1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3ccncc3c2)cc1; ['Brc1ccc2ccncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ccncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2ccncc2c1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999998211860657, 0.9999997019767761, 0.9999980926513672, 0.9999971389770508, 0.9999899864196777, 0.9805979132652283] +CNS(=O)(=O)c1ccc(-c2ccc3ccncc3c2)cc1; ['Brc1ccc2ccncc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ccncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1']; [0.9999992251396179, 0.9999986886978149, 0.9999940395355225, 0.9999915361404419, 0.9999867677688599, 0.9999864101409912, 0.9999743700027466, 0.9904484748840332] +c1cc2ccc(-c3c[nH]c4cnccc34)cc2cn1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ccncc3c2)cc1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ccncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2ccncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2ccncc2c1', 'CS(=O)(=O)c1ccccc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'Ic1ccc2ccncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2ccncc2c1']; [1.0, 1.0, 0.9999996423721313, 0.9999989867210388, 0.9999987483024597, 0.9999987483024597, 0.9999983310699463, 0.9999970197677612, 0.9999955892562866, 0.9998793601989746, 0.9994022846221924, 0.995330810546875, 0.8937339782714844] +c1cc2ccc(-c3ccc(N4CCOCC4)cc3)cc2cn1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2ccncc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc2ccncc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Clc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'c1ccc(N2CCOCC2)cc1', 'Brc1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'c1ccc(N2CCOCC2)cc1', 'c1ccc(N2CCOCC2)cc1']; [1.0, 1.0, 0.9999998211860657, 0.9999997615814209, 0.9999995231628418, 0.9999994039535522, 0.9999992847442627, 0.9999991059303284, 0.9999990463256836, 0.9999935030937195, 0.9999891519546509, 0.9999616742134094, 0.9999189376831055, 0.9999182224273682, 0.9999173283576965, 0.9998833537101746, 0.9994800090789795, 0.9889236688613892, 0.9845050573348999, 0.85575932264328] +C[C@H](Nc1ccc2ccncc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ccc2ccncc2c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'Brc1ccc2ccncc2c1', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Ic1ccc2ccncc2c1', 'C[C@H](N)C(C)(C)O', 'Fc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1']; [0.9984045028686523, 0.9896900057792664, 0.9738965034484863, 0.9621381759643555, 0.7926677465438843] +CN(c1ccc2ccncc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2ccc3ccncc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](Nc1ccc2ccncc2c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'Brc1ccc2ccncc2c1', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'C[C@@H](N)C(C)(C)O', 'Fc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1']; [0.9992305636405945, 0.9984045028686523, 0.9896900057792664, 0.9738965034484863, 0.9621381759643555, 0.7926677465438843] +OCc1ccn(-c2ccc3ccncc3c2)n1; ['OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.999994158744812, 0.9998571872711182, 0.9998084306716919, 0.9977853298187256] +Cc1cc(-c2ccc3ccncc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCCc1cn(-c2ccc3ccncc3c2)cn1; ['OB(O)c1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1', 'OCCc1cnc[nH]1']; [0.9999964237213135, 0.9999954700469971, 0.9999868869781494, 0.9999832510948181, 0.9997233152389526, 0.9995697140693665] +Oc1cccc2c1cnn2-c1ccc2ccncc2c1; ['Brc1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9994844198226929, 0.998742401599884, 0.9943549036979675] +Fc1cccc(Cl)c1-c1ccc2ccncc2c1; ['Brc1ccc2ccncc2c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Ic1ccc2ccncc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1', 'OB(O)c1c(F)cccc1Cl', 'Clc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1c(F)cccc1Cl', 'Clc1ccc2ccncc2c1', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1Br', 'OB(O)c1ccc2ccncc2c1', 'Oc1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'Oc1ccc2ccncc2c1', 'O=C(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1', 'O=C(O)c1ccc2ccncc2c1', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [1.0, 1.0, 1.0, 1.0, 1.0, 0.9999997615814209, 0.9999997019767761, 0.9999995231628418, 0.9999995231628418, 0.9999990463256836, 0.9999909400939941, 0.9999874830245972, 0.99998539686203, 0.9999767541885376, 0.9999735355377197, 0.999747097492218, 0.9994183778762817, 0.999373197555542, 0.9992355704307556, 0.9979536533355713, 0.9919536113739014, 0.9603021144866943, 0.8810787200927734] +c1ccc2c(c1)cnn2-c1ccc2ccncc2c1; [None]; [None]; [0] +c1cc2ccc(-c3ccc(-n4cncn4)cc3)cc2cn1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4ccncc4c3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(-c2ccc3ccncc3c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3ccncc3c2)cc1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2ccncc2c1; [None]; [None]; [0] +c1cc2ccc(-c3nncn3C3CC3)cc2cn1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3ccncc3c2)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ccncc3c2)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3ccncc3c2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5ccncc5c4)n3n2)cc1; [None]; [None]; [0] +Nc1nnc(-c2ccc3ccncc3c2)s1; ['N#Cc1ccc2ccncc2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2ccncc2c1']; [0.9999695420265198, 0.9996564984321594] +CCc1cc(-c2ccc3ccncc3c2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'Brc1ccc2ccncc2c1', 'CCc1ccnc(N)n1']; ['OB(O)c1ccc2ccncc2c1', 'CCc1cc(Cl)nc(N)n1', 'Ic1ccc2ccncc2c1']; [0.9999971389770508, 0.9999681711196899, 0.9973954558372498] +CNC(=O)c1ccc(-c2ccc3ccncc3c2)s1; ['CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Cl)s1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CNC(=O)c1ccc(Br)s1']; [0.9999978542327881, 0.9999923706054688, 0.9990980625152588] +c1ccc(Cn2cc(-c3ccc4ccncc4c3)nn2)cc1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2ccncc2c1)NCc1ccccn1; [None]; [None]; [0] +O=C(CCc1ccc2ccncc2c1)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3ccncc3c2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3ccncc3c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'Brc1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1ccccn1']; [0.9999967217445374, 0.9997795820236206, 0.9985663890838623, 0.9065779447555542] +Cn1cc(C(N)=O)cc1-c1ccc2ccncc2c1; [None]; [None]; [0] +Nc1cncc(-c2ccc3ccncc3c2)n1; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Brc1ccc2ccncc2c1']; ['OB(O)c1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'Nc1cncc(Br)n1']; [0.9999934434890747, 0.9999932646751404, 0.9942928552627563] +c1cc(-c2ccc3ccncc3c2)c2sccc2c1; ['Brc1ccc2ccncc2c1', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Ic1ccc2ccncc2c1', 'Brc1ccc2ccncc2c1', 'Clc1cccc2ccsc12', 'Brc1cccc2ccsc12', 'Clc1ccc2ccncc2c1']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Ic1ccc2ccncc2c1', 'Clc1ccc2ccncc2c1', 'OB(O)c1ccc2ccncc2c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'OB(O)c1cccc2ccsc12']; [0.9999997615814209, 0.9999963641166687, 0.9999809861183167, 0.9999711513519287, 0.9999133348464966, 0.9997260570526123, 0.9997251033782959, 0.99899822473526, 0.9949699640274048] +c1ccc2sc(-c3ccc4ccncc4c3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4ccncc4c3)nc2NC1=O; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3ccncc3c2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4ccncc4c3)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3ccncc3c2)CC1; [None]; [None]; [0] +c1cc(-c2ccc3ccncc3c2)c2snnc2c1; [None]; [None]; [0] +Nc1nc(-c2ccc3ccncc3c2)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3ccc4ccncc4c3)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3ccc4ccncc4c3)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3ccncc3c2)[nH]1; [None]; [None]; [0] +c1cc2ccc(-c3ncc4cc[nH]c4n3)cc2cn1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2ccncc2c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3ccncc3c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3ccncc3c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2ccncc2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3ccncc3c2)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cncc(Cl)c1; ['CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1']; ['OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1']; [0.999940037727356, 0.999764084815979, 0.9971014261245728] +CN(C)c1cc(-c2ccc3ccncc3c2)cnn1; [None]; [None]; [0] +COC(C)(C)CCc1cncc(Cl)c1; ['COC(C)(C)CBr']; ['Cc1cncc(Cl)c1']; [0.8128707408905029] +c1ccc2[nH]c(C3CCN(c4ccc5ccncc5c4)CC3)nc2c1; [None]; [None]; [0] +CCOc1ccccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1[Mg]Br', 'CCOc1ccccc1Cl', 'CCOc1ccccc1Br']; ['CCOc1ccccc1Br', 'Clc1cncc(Br)c1', 'CCOc1ccccc1Cl', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.999995231628418, 0.9999948740005493, 0.9999217391014099, 0.9998757839202881, 0.9997895956039429, 0.9993758201599121, 0.9991098046302795, 0.9990825653076172, 0.9984469413757324, 0.9964148998260498, 0.9938740134239197, 0.9937415719032288, 0.9919657707214355, 0.9901576638221741] +CC(C)S(=O)(=O)c1ccccc1-c1cncc(Cl)c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1cccc(Br)c1', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Br)c1', 'Clc1cnccc1Br', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(I)c1']; [0.9999990463256836, 0.9999759197235107, 0.9998780488967896, 0.9991967678070068, 0.9985662698745728, 0.997250497341156, 0.9941805601119995, 0.9928712248802185, 0.9748752117156982, 0.9143296480178833] +Cc1nnc(-c2ccccc2-c2cncc(Cl)c2)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)cc(F)c2)OC1(C)C', 'ClCc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Fc1cc(F)cc(CCl)c1', 'Clc1cncc(Br)c1', 'Clc1cccnc1']; ['Fc1cc(F)cc(CCl)c1', 'ClCc1cncc(Cl)c1', 'OB(O)c1cc(F)cc(F)c1', 'Fc1cc(F)cc(CBr)c1', 'OB(O)c1cncc(Cl)c1', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(CBr)c1']; [0.9999881386756897, 0.9999256730079651, 0.9994125366210938, 0.999037504196167, 0.9989234209060669, 0.9984179735183716, 0.9229224920272827] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3ccncc3c2)C1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'Brc1ccc2ccncc2c1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['OB(O)c1ccc2ccncc2c1', 'Ic1ccc2ccncc2c1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'Clc1ccc2ccncc2c1', 'Fc1ccc2ccncc2c1']; [0.9999932050704956, 0.9999452829360962, 0.9999024868011475, 0.9997056126594543, 0.9995806217193604] +CCn1cc(-c2cncc(Cl)c2)cn1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1']; ['CCn1cc(I)cn1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CCn1cc(Br)cn1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999779462814331, 0.9998705387115479, 0.999855637550354, 0.9998031258583069, 0.9969381093978882, 0.9960769414901733, 0.9881157875061035] +CP(C)(=O)c1ccccc1-c1cncc(Cl)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ccncc3c2)c1)C1CCNCC1; [None]; [None]; [0] +Clc1cncc(-c2ccnc3ccccc23)c1; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Clc1cncc(Br)c1', 'Ic1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Clc1cncc(I)c1', 'Clc1ccnc2ccccc12', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Brc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', None, 'Clc1cncc(Cl)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'Ic1ccnc2ccccc12', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', None, 'OB(O)c1ccnc2ccccc12']; [0.9999961853027344, 0.999991774559021, 0.9999901652336121, 0.999956488609314, 0.9998244047164917, 0.9992854595184326, 0.9991312026977539, 0.9990695118904114, 0.9987524747848511, 0.9984782934188843, 0.9963510036468506, 0.9942526817321777, 0.9938807487487793, 0.9911507368087769, 0.9908978343009949, 0.9874011278152466, 0, 0.9747515916824341] +FC(F)(F)Oc1ccccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'Clc1cncc([Mg]Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'FC(F)(F)Oc1ccccc1Cl', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', None, 'Clc1cccnc1', 'Clc1cccnc1', 'Clc1cccnc1']; ['FC(F)(F)Oc1ccccc1Br', 'Clc1cncc(Br)c1', 'FC(F)(F)Oc1ccccc1I', 'Clc1cncc(I)c1', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1', None, 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl']; [0.9999996423721313, 0.9999995231628418, 0.9999991655349731, 0.9999973773956299, 0.9999785423278809, 0.9999321699142456, 0.9999240040779114, 0.999923586845398, 0.999871015548706, 0.9998562335968018, 0.9998195171356201, 0.9990081191062927, 0.9987891912460327, 0.9982609748840332, 0.998103141784668, 0.9980159997940063, 0.9976392388343811, 0.9959311485290527, 0, 0.9907907247543335, 0.9807257652282715, 0.8292821645736694] +FC(F)(F)c1cccc(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'FC(F)(F)c1cccc(I)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc([Zn]Br)c1', 'FC(F)(F)c1cccc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'FC(F)(F)c1cccc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'FC(F)(F)c1cccc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', None]; ['Clc1cncc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cncc(Cl)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1cccc(C(F)(F)F)c1', 'F[B-](F)(F)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'FC(F)(F)c1cccc(Br)c1', None]; [0.9999995231628418, 0.9999991655349731, 0.9999988079071045, 0.9999973177909851, 0.9999960660934448, 0.9999940991401672, 0.9999450445175171, 0.999911904335022, 0.9997985363006592, 0.9997941851615906, 0.9996821284294128, 0.9995895624160767, 0.9995193481445312, 0.9992448091506958, 0.9989215135574341, 0.9987124800682068, 0.9985296726226807, 0.998154878616333, 0.9976153373718262, 0.9972068667411804, 0.996338963508606, 0.9961289167404175, 0.9883645176887512, 0] +Clc1cncc(-c2cnn(Cc3ccccc3)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Clc1cncc(I)c1', 'Brc1cnn(Cc2ccccc2)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; ['Ic1cnn(Cc2ccccc2)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999972581863403, 0.9999971389770508, 0.9999955892562866, 0.9999932646751404, 0.9999840259552002, 0.999876856803894, 0.9998193979263306, 0.9993366003036499, 0.9987388849258423, 0.9970505237579346, 0.8961354494094849] +Cn1cnc2ccc(-c3cncc(Cl)c3)cc2c1=O; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O', 'Clc1cncc(Br)c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1cncc(Cl)c1', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.999996542930603, 0.9998502731323242, 0.9975642561912537] +O=C([O-])c1ccccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C']; ['O=C([O-])c1ccccc1']; [0.9996509552001953] +CC(C)(C)c1nc(-c2cncc(Cl)c2)cs1; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; ['Clc1cncc(Br)c1']; [0.9999996423721313] +NC(=O)c1ccccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'NC(=O)c1ccccc1Cl', 'Clc1cncc(Br)c1']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'Clc1cncc(Br)c1', 'NC(=O)c1ccccc1Cl', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1cncc(Cl)c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'OB(O)c1cncc(Cl)c1', 'NC(=O)c1ccccc1Br']; [0.9999988079071045, 0.9999977350234985, 0.9999896287918091, 0.999977707862854, 0.9999769926071167, 0.9999545812606812, 0.9999040365219116, 0.9997948408126831, 0.9997401237487793, 0.9990922808647156, 0.9983741044998169, 0.9971507787704468, 0.996856689453125, 0.9957639575004578, 0.9924386739730835, 0.9478838443756104] +Clc1cncc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +OCCn1cc(-c2cncc(Cl)c2)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1']; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OCCn1cc(Br)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999826550483704, 0.9999358654022217, 0.9999134540557861, 0.9997931718826294, 0.9980517625808716, 0.9979540109634399] +CC(C)C(=O)COc1cncc(Cl)c1; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1']; [0.9984707832336426, 0.9984531402587891] +COc1cnc(-c2cncc(Cl)c2)nc1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [0.9996736645698547, 0.991804301738739, 0.9249463081359863] +O=C(Nc1cccc(-c2cncc(Cl)c2)c1)c1ccccc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9999995827674866, 0.9999995231628418, 0.9999972581863403, 0.9999540448188782, 0.999847412109375, 0.999293327331543, 0.999147891998291, 0.9384286999702454, 0.7833060026168823] +Clc1cncc(-c2cc(Cl)ccc2Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1ccc(Cl)c(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)cc1']; ['Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc([Zn]Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1cncc(Br)c1', 'Clc1cncc([Mg]Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1cncc(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cccnc1', 'Clc1cncc(I)c1']; [0.9999992847442627, 0.9999990463256836, 0.9999972581863403, 0.9999896287918091, 0.9999589920043945, 0.9999479055404663, 0.9999258518218994, 0.9999074935913086, 0.9998818635940552, 0.9998565316200256, 0.9997378587722778, 0.9997302889823914, 0.9995729327201843, 0.9994829893112183, 0.9994127750396729, 0.9991663694381714, 0.9984920024871826, 0.9983769655227661, 0.9975948333740234, 0.9823125004768372, 0.9641513824462891, 0.9388001561164856, 0.920952320098877, 0.7997928857803345] +Clc1cncc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1cncc(Cl)c1', 'Brc1cnc2ccccn12', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cnc2ccccn12', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cnc2ccccn12', 'Clc1cncc(Cl)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1cncc(Cl)c1', 'c1ccn2ccnc2c1', 'OB(O)c1cncc(Cl)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1cncc(Cl)c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Clc1cncc(Br)c1', 'O=C(O)c1cnc2ccccn12']; [0.9999991655349731, 0.9999929666519165, 0.9999803304672241, 0.9998878836631775, 0.9997426271438599, 0.999741792678833, 0.999691367149353, 0.9991301894187927, 0.9987077713012695, 0.9982250928878784, 0.9971294403076172, 0.9310627579689026] +Cc1ccc(-c2cncc(Cl)c2)c(Br)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Cc1ccc(I)c(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999983310699463, 0.9999667406082153, 0.9996649622917175, 0.9986324310302734, 0.9974589347839355, 0.9749091863632202, 0.9489423632621765, 0.856187105178833, 0.8545677661895752] +Cc1nc2ccccn2c1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br']; ['Cc1nc2ccccn2c1Br', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [0.999995768070221, 0.9999772310256958, 0.999929666519165, 0.9998888969421387, 0.9998229146003723, 0.9977632761001587] +Cc1nc(C)c(-c2cncc(Cl)c2)s1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1']; [0.9999991655349731, 0.9999974966049194, 0.9997757077217102, 0.9990077018737793, 0.9942564368247986, 0.9704611897468567] +CNc1nc(C)c(-c2cncc(Cl)c2)s1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CNc1nc(C)c(Br)s1', 'CNc1nc(C)cs1']; ['CNc1nc(C)c(Br)s1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999994039535522, 0.999926745891571, 0.9988653659820557] +Cc1nc(N)sc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1csc(N)n1']; ['Cc1nc(N)sc1Br', 'Clc1cncc(Br)c1']; [0.9999995231628418, 0.9985226392745972] +Clc1cncc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12']; [1.0, 0.9999994039535522, 0.9999889135360718, 0.9998468160629272, 0.9994730949401855, 0.9963454604148865, 0.9690340757369995] +Clc1cncc(NCc2cccnc2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'BrCc1cccnc1', 'Nc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'ClCc1cccnc1', 'Nc1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; ['NCc1cccnc1', 'Nc1cncc(Cl)c1', 'OCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'Nc1cncc(Cl)c1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.999711275100708, 0.9996655583381653, 0.9983408451080322, 0.997644305229187, 0.9972493648529053, 0.9960120916366577, 0.9954299330711365, 0.9913222193717957, 0.9608808755874634] +Clc1cncc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +Cc1c(-c2cncc(Cl)c2)sc(=O)n1C; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(I)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cccnc1']; [0.9999995231628418, 0.9999992847442627, 0.9999960064888, 0.9999938011169434, 0.9999675750732422, 0.9999538660049438, 0.9999520778656006, 0.9999234676361084, 0.9999232888221741, 0.9997742176055908, 0.9997468590736389, 0.999687671661377, 0.9996476173400879, 0.9989426136016846, 0.9983633756637573, 0.997956395149231, 0.9969592094421387, 0.9899019598960876, 0.9723190665245056, 0.9591344594955444] +Clc1cncc(-c2cccc(Br)c2)c1; ['Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Clc1cncc(Br)c1', 'Brc1cccc(Br)c1', 'Clc1cncc(Cl)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc([Zn]Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cccc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1']; [0.9999970197677612, 0.999980092048645, 0.9999662637710571, 0.9999271631240845, 0.9999172687530518, 0.998708963394165, 0.9985683560371399, 0.9984443187713623, 0.997429609298706, 0.9964717030525208, 0.9922595620155334, 0.9889740943908691, 0.982926607131958, 0.9816480875015259, 0.9756914377212524, 0.9690659046173096, 0.9681663513183594, 0.9390559196472168, 0.8701834678649902] +O=c1c2c(F)cccc2cnn1-c1cncc(Cl)c1; [None]; [None]; [0] +Clc1cncc(-c2c(Cl)cccc2Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cccc(Cl)c1Br', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cccc(Cl)c1I', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cncc(Cl)c1', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I']; ['Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cncc(I)c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cccnc1', 'Clc1cccnc1']; [0.9999998211860657, 0.9999997615814209, 0.9999973773956299, 0.9999933242797852, 0.999992311000824, 0.9999598264694214, 0.9999417662620544, 0.9999098181724548, 0.9998838901519775, 0.9998449087142944, 0.9998279809951782, 0.999764621257782, 0.9997581243515015, 0.9990242123603821, 0.9973896741867065, 0.997179388999939, 0.9961485862731934, 0.9089910984039307, 0.8509039878845215] +Nc1nccc(-c2cncc(Cl)c2)n1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Nc1nccc(Br)n1', 'Clc1cncc(Br)c1', 'Nc1nccc(I)n1', 'Clc1cncc(Br)c1', 'Nc1nccc(Cl)n1', 'Nc1ncccn1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'OB(O)c1cncc(Cl)c1', 'Nc1nccc(Br)n1', 'OB(O)c1cncc(Cl)c1', 'Nc1nccc(Cl)n1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [1.0, 0.9999996423721313, 0.9999890327453613, 0.9999810457229614, 0.9999724626541138, 0.9999573230743408, 0.9997212886810303, 0.9995489716529846] +O=C(Nc1cncc(Cl)c1)c1cccs1; ['Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9994156956672668, 0.999363124370575] +Clc1cncc(Nc2cccnc2)c1; ['Nc1cccnc1', 'Clc1cncc(Br)c1', 'Nc1cccnc1', 'Ic1cccnc1', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Brc1cccnc1', 'Clc1cncc(I)c1', 'Clc1cccnc1']; ['OB(O)c1cncc(Cl)c1', 'Nc1cccnc1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Nc1cncc(Cl)c1', 'OB(O)c1cccnc1', 'O=S(=O)(Oc1cccnc1)C(F)(F)F', 'Nc1cncc(Cl)c1', 'Nc1cccnc1', 'Nc1cncc(Cl)c1']; [0.9980132579803467, 0.9955120086669922, 0.9946334362030029, 0.9939717054367065, 0.9921265840530396, 0.9917241334915161, 0.9914815425872803, 0.9862004518508911, 0.9105807542800903] +Clc1cncc(-c2cnn3ncccc23)c1; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1']; [0.9999994039535522, 0.9999994039535522, 0.9999831914901733, 0.9998140335083008, 0.9989101886749268] +Clc1cncc(NCCc2c[nH]cn2)c1; ['Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9994360208511353, 0.9993405342102051, 0.9978737831115723, 0.9966198205947876] +Clc1cncc(-c2ccc3ccccc3c2)c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'Brc1ccc2ccccc2c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Ic1ccc2ccccc2c1', 'Clc1cncc(Br)c1', 'Brc1ccc2ccccc2c1', 'Clc1cncc([Zn]Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Brc1ccc2ccccc2c1', 'Clc1cncc(I)c1', 'Clc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Br[Mg]c1ccc2ccccc2c1', 'Clc1cncc(Br)c1']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Ic1ccc2ccccc2c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'Clc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccc2ccccc2c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'F[B-](F)(F)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1cncc(Cl)c1', 'c1ccc2ccccc2c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'c1ccc2ccccc2c1']; [0.9999986886978149, 0.9999984502792358, 0.9999977350234985, 0.9999958276748657, 0.9999866485595703, 0.9999809265136719, 0.9999774098396301, 0.9999616146087646, 0.9999257326126099, 0.9998921751976013, 0.9998610019683838, 0.9998230934143066, 0.9997471570968628, 0.9995061159133911, 0.9994997978210449, 0.999457836151123, 0.9991652965545654, 0.9989511966705322, 0.997960090637207, 0.9968891143798828, 0.9950162172317505, 0.9937599897384644, 0.9929448366165161, 0.9891936779022217, 0.9828788638114929] +Clc1cncc(-n2cnc3ccccc32)c1; ['Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9965258836746216, 0.9964138269424438, 0.995662271976471, 0.9936143159866333] +FC(F)(F)c1n[nH]cc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Cl', 'Clc1cncc(Br)c1']; ['FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'FC(F)(F)c1n[nH]cc1Br']; [0.9999974966049194, 0.9999945163726807, 0.999957263469696, 0.9999308586120605, 0.9997298717498779, 0.999340295791626, 0.9987635612487793, 0.9979189038276672] +NC(=O)c1c(F)cccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [1.0, 0.9999627470970154, 0.9984337091445923] +Clc1cncc(NCCc2ccccc2)c1; ['Clc1cncc(Br)c1', 'BrCCc1ccccc1', 'ICCc1ccccc1', 'Clc1cncc(I)c1', 'NCCc1ccccc1', 'Nc1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'ClCCc1ccccc1', 'Clc1cncc(Cl)c1', 'N#CCc1ccccc1']; ['NCCc1ccccc1', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'NCCc1ccccc1', 'Oc1cncc(Cl)c1', 'O=CCCc1ccccc1', 'NCCc1ccccc1', 'O=CCc1ccccc1', 'Nc1cncc(Cl)c1', 'NCCc1ccccc1', 'Nc1cncc(Cl)c1']; [0.9991159439086914, 0.9984915256500244, 0.9981598258018494, 0.99712073802948, 0.9954771399497986, 0.9943224191665649, 0.9940556883811951, 0.9911988973617554, 0.989619255065918, 0.9885866641998291, 0.9735773205757141] +Cn1cc(-c2ccc(-c3cncc(Cl)c3)cc2)cn1; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Cl)c1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Clc1cncc(Br)c1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'OB(O)c1cncc(Cl)c1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999997615814209, 0.9999985098838806, 0.9999980926513672, 0.9984360933303833, 0.9918789863586426] +Clc1cncc(-c2cncc3ccccc23)c1; ['Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1cncc(Br)c1', 'Clc1cncc([Zn]Br)c1', 'Br[Zn]c1cncc2ccccc12', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Brc1cncc2ccccc12', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1cncc(Cl)c1', 'Br[Mg]c1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1cncc(Br)c1', 'Brc1cncc2ccccc12', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Ic1cncc2ccccc12', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc2ccccc12', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Ic1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Clc1cncc(I)c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Clc1cncc([Mg]Br)c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'OB(O)c1cncc2ccccc12', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'F[B-](F)(F)c1cncc2ccccc12', 'F[B-](F)(F)c1cncc(Cl)c1', 'c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [0.9999992251396179, 0.999998927116394, 0.9999970197677612, 0.9999918937683105, 0.9999683499336243, 0.9999251365661621, 0.999900221824646, 0.9998385310173035, 0.9998152256011963, 0.9997440576553345, 0.9994285702705383, 0.9993053674697876, 0.9989812970161438, 0.9987032413482666, 0.9981540441513062, 0.996650218963623, 0.9961579442024231, 0.9940260648727417, 0.9938533306121826, 0.9937043190002441, 0.9933940172195435, 0.9913539886474609, 0.9895237684249878, 0.9778493642807007, 0.9471017718315125, 0.8157968521118164] +Clc1ccc(CNc2cncc(Cl)c2)cc1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1ccc(CBr)cc1', 'Nc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'ClCc1ccc(Cl)cc1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Nc1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'NCc1ccc(Cl)cc1', 'COc1cncc(Cl)c1']; ['NCc1ccc(Cl)cc1', 'Nc1cncc(Cl)c1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Nc1cncc(Cl)c1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=[N+]([O-])c1cncc(Cl)c1', 'NCc1ccc(Cl)cc1']; [0.9999925494194031, 0.9998983144760132, 0.9996469616889954, 0.9995428919792175, 0.9992929697036743, 0.9986370801925659, 0.9983067512512207, 0.9954549074172974, 0.9933194518089294, 0.9887557029724121, 0.8326336145401001] +Nc1[nH]nc2cc(-c3cncc(Cl)c3)ccc12; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Nc1[nH]nc2cc(Br)ccc12', 'Clc1cncc(Br)c1', 'Nc1[nH]nc2cc(Cl)ccc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'OB(O)c1cncc(Cl)c1', 'Nc1[nH]nc2cc(Br)ccc12', 'OB(O)c1cncc(Cl)c1']; [1.0, 0.9997050762176514, 0.9971636533737183, 0.9591965675354004] +CN1c2ccc(-c3cncc(Cl)c3)cc2CS1(=O)=O; [None]; [None]; [0] +OCc1cccc(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc([Zn]Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1']; ['OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(I)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999960660934448, 0.999993085861206, 0.9999563694000244, 0.9999308586120605, 0.999884843826294, 0.9998766779899597, 0.99855637550354, 0.9972184896469116, 0.9963172078132629, 0.9936195015907288, 0.9879487752914429, 0.9734266400337219, 0.9729881286621094, 0.96832275390625, 0.9327216148376465, 0.7532566785812378] +Oc1cccc(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc([Zn]Br)c1', 'OB(O)c1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Br)c1']; [0.999997079372406, 0.999996542930603, 0.9999812841415405, 0.9999804496765137, 0.9997951984405518, 0.999575674533844, 0.999352216720581, 0.9982713460922241, 0.9963811039924622, 0.9957053065299988, 0.9937219619750977, 0.9461795687675476, 0.8731691837310791] +O=C([O-])Cc1cccc(-c2cncc(Cl)c2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cncc(Cl)c2)n1; [None]; [None]; [0] +Clc1cncc(Nc2ccncc2)c1; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Nc1cncc(Cl)c1', 'Nc1ccncc1', 'Ic1ccncc1', 'Brc1ccncc1', 'Clc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Clc1ccncc1', 'Fc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'OB(O)c1ccncc1', 'OB(O)c1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1']; [0.9990693926811218, 0.9987173080444336, 0.9986327886581421, 0.9984484910964966, 0.9959943294525146, 0.9868564605712891, 0.9847948551177979, 0.9831836819648743, 0.9731662273406982, 0.955223798751831] +CC(C)n1cc(-c2cncc(Cl)c2)nn1; ['C#Cc1cncc(Cl)c1', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['CC(C)N=[N+]=[N-]', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999973773956299, 0.9999419450759888, 0.9999164342880249, 0.9996629357337952] +Fc1ccccc1CNc1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Fc1ccccc1CBr', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Fc1ccccc1CCl', 'Nc1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'Nc1cncc(Cl)c1']; ['NCc1ccccc1F', 'Nc1cncc(Cl)c1', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'Nc1cncc(Cl)c1', 'OCc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F']; [0.9999938607215881, 0.9999831914901733, 0.9999772310256958, 0.999878466129303, 0.9997779130935669, 0.999772310256958, 0.9995712041854858, 0.9995158910751343, 0.9966777563095093] +Cn1ncc2cc(-c3cncc(Cl)c3)ccc21; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Cn1ncc2cc(I)ccc21', 'Clc1cncc(Cl)c1', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Cn1ncc2cc(Cl)ccc21', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cccnc1', 'Clc1cncc(I)c1']; ['Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'OB(O)c1cncc(Cl)c1', 'Cn1ncc2cc(B(O)O)ccc21', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1cncc(Cl)c1', 'Cn1ncc2cc(I)ccc21', 'OB(O)c1cncc(Cl)c1', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2ccccc21']; [0.9999998807907104, 0.9999998807907104, 0.9999998211860657, 0.9999995231628418, 0.9999994039535522, 0.999997615814209, 0.9999971389770508, 0.9999921917915344, 0.9999896287918091, 0.9999880790710449, 0.9999862909317017, 0.9999783039093018, 0.9999653697013855, 0.9999340176582336, 0.9999020099639893, 0.9993211627006531, 0.9993106722831726, 0.9992924928665161, 0.998998761177063, 0.9943063259124756, 0.9695879220962524, 0.7910035252571106, 0.7571972012519836] +Clc1cncc(-c2ccc(-c3cn[nH]c3)cc2)c1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'Brc1cn[nH]c1']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(-c2ccccc2)c1']; [0.9999994039535522, 0.9999991655349731, 0.9999986886978149, 0.9999929666519165, 0.9999854564666748, 0.9996711015701294, 0.9992426037788391, 0.9985491633415222, 0.99300616979599, 0.9900000095367432, 0.9766175746917725, 0.8496540784835815] +COc1cc(-c2cncc(Cl)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cncc(Cl)c2)c[nH]1; [None]; [None]; [0] +Clc1cncc(-c2csc3ncncc23)c1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1']; [0.9999914169311523, 0.9993898868560791] +Nc1nc(-c2cncc(Cl)c2)cs1; ['CC(=O)c1cncc(Cl)c1', None, 'Nc1nc(Cl)cs1']; ['NC(N)=S', None, 'OB(O)c1cncc(Cl)c1']; [0.9999812245368958, 0, 0.9987110495567322] +Clc1cncc(-c2cc3ccccc3[nH]2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Ic1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'CC(=O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; ['Ic1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'NNc1ccccc1', 'OB(O)c1cc2ccccc2[nH]1']; [0.9999961853027344, 0.999929666519165, 0.9998877048492432, 0.9950743913650513, 0.9911879301071167, 0.972303569316864, 0.9584540128707886] +CC(C)c1oncc1-c1cncc(Cl)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'N#CCCc1cccc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; ['N#CCCc1cccc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; [0.9999960660934448, 0.9996745586395264, 0.9994999170303345, 0.9974004030227661, 0.9961763620376587, 0.9827719330787659] +CCC(=O)Nc1ccc(-c2cncc(Cl)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1']; [0.9999991655349731, 0.9999979734420776, 0.9999570846557617] +Clc1cncc(Oc2ccccn2)c1; ['Brc1ccccn1', 'Clc1ccccn1', 'Fc1ccccn1', 'Ic1ccccn1', 'Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1']; ['Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9996778964996338, 0.9995110034942627, 0.9991564750671387, 0.9982397556304932, 0.9966238737106323, 0.9949798583984375, 0.9899778366088867, 0.9356567859649658] +Nc1ncncc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', None, 'Nc1ncncc1Cl', 'Clc1cncc(Br)c1']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Nc1ncncc1I', 'Nc1ncncc1Br', None, 'OB(O)c1cncc(Cl)c1', 'Nc1ncncc1Br']; [0.9999997615814209, 0.9999991655349731, 0.9999136328697205, 0.9998838901519775, 0.9998047351837158, 0.9997425079345703, 0, 0.9966927766799927, 0.9847182035446167] +Fc1ccc(-c2cncc(Cl)c2)c(C(F)(F)F)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc([Zn]Br)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Clc1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Clc1cccnc1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1cncc(Cl)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; [0.9999982118606567, 0.9999750852584839, 0.9999524354934692, 0.9999427795410156, 0.9999309778213501, 0.9999299645423889, 0.9999223947525024, 0.9998904466629028, 0.9997286796569824, 0.9995003938674927, 0.999416172504425, 0.9994038343429565, 0.999321460723877, 0.9988977313041687, 0.9984121322631836, 0.9981290102005005, 0.7867045402526855] +CCNc1nc2ccc(-c3cncc(Cl)c3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cncc(Cl)c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999991655349731, 0.9999988675117493, 0.9999955892562866, 0.9999909400939941, 0.9984150528907776, 0.9981720447540283, 0.9979148507118225, 0.9950345754623413, 0.9943209886550903, 0.9896232485771179, 0.9811418652534485] +Clc1cncc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +O=C(Nc1cncc(Cl)c1)c1c(Cl)cccc1Cl; ['Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'O=C(Cl)c1c(Cl)cccc1Cl', 'Clc1cncc(Br)c1', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'COC(=O)c1c(Cl)cccc1Cl', 'Clc1cncc(Cl)c1', 'NC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=[N+]([O-])c1cncc(Cl)c1', 'NC(=O)c1c(Cl)cccc1Cl', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'NC(=O)c1c(Cl)cccc1Cl', 'O=[N+]([O-])c1cncc(Cl)c1']; [0.9999874234199524, 0.9999583959579468, 0.9998800754547119, 0.9998587369918823, 0.9997231960296631, 0.9997011423110962, 0.9993240237236023, 0.9989678859710693, 0.9985195398330688, 0.9912546873092651] +CS(=O)(=O)C1CCN(c2cncc(Cl)c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Fc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; [0.9998835325241089, 0.9998793601989746, 0.999303936958313, 0.998342752456665, 0.9970906972885132] +Cn1cc(-c2cncc(Cl)c2)c2ccccc21; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Cn1ccc2ccccc21', 'Clc1cncc(I)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cncc(Cl)c1', 'Cn1ccc2ccccc21']; [0.9999974370002747, 0.9999459981918335, 0.9985631704330444, 0.9972503185272217] +NC(=O)CCCc1cncc(Cl)c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cncc(Cl)c1; [None]; [None]; [0] +COc1ccc(-c2cncc(Cl)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccccc1Cl', 'COc1ccccc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Clc1cncc(Br)c1', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'COc1ccc(Cl)cc1Cl', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc([Zn]Br)c1', 'COc1ccc(I)cc1Cl', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'COc1ccc(Br)cc1Cl', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cccnc1']; [1.0, 0.9999998807907104, 0.9999997615814209, 0.999998927116394, 0.9999966621398926, 0.9999920725822449, 0.9999920129776001, 0.9999904036521912, 0.9999712705612183, 0.9999665021896362, 0.9999648928642273, 0.9999223947525024, 0.9998906850814819, 0.999821126461029, 0.9997686147689819, 0.9997467994689941, 0.9991352558135986, 0.9975786209106445, 0.997236430644989, 0.98981773853302, 0.973676860332489, 0.9713137149810791, 0.7943568825721741] +CC(C)(COc1cncc(Cl)c1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cncc(Cl)c2)cn1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(I)cn1', 'Clc1cncc(Br)c1', 'CCCn1cc(Br)cn1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999972581863403, 0.9999890327453613, 0.999984622001648, 0.9999833106994629, 0.9999551773071289, 0.9997735619544983, 0.9995790719985962, 0.998668909072876, 0.995331346988678] +O=c1cc(-c2cncc(Cl)c2)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(I)cc[nH]1', 'Clc1cncc(Br)c1', 'O=c1cc(Br)cc[nH]1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'O=c1cc(I)cc[nH]1', 'OB(O)c1cncc(Cl)c1']; [0.9999932646751404, 0.9998912215232849, 0.9975980520248413, 0.9971112012863159, 0.9951618909835815] +COc1cc(CCc2cncc(Cl)c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Clc1cncc(Br)c1']; [0.983440101146698] +CCNS(=O)(=O)c1ccccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1']; [0.9999986290931702, 0.9990501403808594, 0.9683473706245422, 0.9468165636062622] +C[S@](=O)c1ccc(-c2cncc(Cl)c2)cc1; ['CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1']; ['Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1']; [0.99988853931427, 0.997319221496582] +O=C1CCc2cccc(-c3cncc(Cl)c3)c21; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'Clc1cncc([Mg]Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'O=C1CCc2cccc(Cl)c21']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'OB(O)c1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'OB(O)c1cncc(Cl)c1']; [0.9999997019767761, 0.9999748468399048, 0.9994021058082581, 0.9988483190536499, 0.994522213935852, 0.991195797920227, 0.9893768429756165, 0.9870838522911072] +CC(C)(N)c1ccc(-c2cncc(Cl)c2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccccc1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1']; [1.0, 0.9999980330467224, 0.9999596476554871, 0.9984923601150513, 0.9981666803359985, 0.9809809923171997, 0.9693022966384888, 0.7524994015693665] +Clc1cncc(-c2cnn3ccccc23)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Brc1cnn2ccccc12', 'Clc1cncc(Br)c1']; ['Ic1cnn2ccccc12', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Ic1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12', 'c1ccn2nccc2c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cncc(Cl)c1', 'O=C(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'O=C(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'O=C(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'Clc1cncc(Br)c1', 'c1ccn2nccc2c1']; [1.0, 0.9999996423721313, 0.9999995827674866, 0.999998152256012, 0.9999912977218628, 0.9999833106994629, 0.9999757409095764, 0.9999643564224243, 0.999958872795105, 0.9999195337295532, 0.9997854828834534, 0.9997742176055908, 0.9997572898864746, 0.9996519088745117, 0.999618649482727, 0.999296247959137, 0.9987044334411621, 0.9982074499130249, 0.9975267648696899, 0.9921942353248596, 0.9891254305839539, 0.9513236284255981] +C[C@@H](Oc1cncc(Cl)c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Nc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; [0.9994907975196838, 0.9994907975196838, 0.99942946434021, 0.9988646507263184, 0.9986833930015564, 0.9986826777458191, 0.9923686981201172] +CCN(CC)c1cncc(Cl)c1; ['CCNCC', 'CCNCC', None, None, None, None, 'CCNCC']; ['O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Fc1cncc(Cl)c1', None, None, None, None, 'Clc1cncc(Br)c1']; [0.943837583065033, 0.9422202706336975, 0, 0, 0, 0, 0.7795147895812988] +COc1ccncc1Nc1cncc(Cl)c1; ['COc1ccncc1F', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1B(O)O', 'COc1ccncc1I', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1N']; ['Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1']; [0.999416172504425, 0.9989587068557739, 0.9988505840301514, 0.9982713460922241, 0.9982496500015259, 0.998088538646698, 0.9980875253677368, 0.9979263544082642, 0.9976846575737, 0.9958710670471191, 0.9861056804656982] +[NH3+]Cc1ccc(-c2cncc(Cl)c2)cc1C(F)(F)F; [None]; [None]; [0] +Clc1cncc(Nc2cnccc2-c2ccccc2)c1; ['Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Nc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Nc1cnccc1-c1ccccc1', 'Clc1cncc(I)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; ['OB(O)c1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.999171257019043, 0.9975157976150513, 0.9956073760986328, 0.9946985244750977, 0.987968921661377, 0.9867865443229675, 0.9403823614120483, 0.9354036450386047] +Clc1cncc(Nc2cnc3ccccc3c2)c1; ['Nc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Clc1cncc(Br)c1', 'Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Clc1cncc(Cl)c1']; ['OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Nc1cnc2ccccc2c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Nc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Nc1cnc2ccccc2c1']; [0.999525249004364, 0.9979901313781738, 0.9974451065063477, 0.9967203736305237, 0.9962272644042969, 0.9949509501457214, 0.9890903234481812, 0.9675858616828918, 0.9243820309638977] +CC(C)(C)c1ccc(-c2cncc(Cl)c2)cc1; ['CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc([Zn]Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999997615814209, 0.9999996423721313, 0.9999995827674866, 0.9999995231628418, 0.9999898672103882, 0.9999830722808838, 0.9999574422836304, 0.9999561309814453, 0.9998637437820435, 0.9998081922531128, 0.9997645616531372, 0.9996905326843262, 0.999560534954071, 0.9992631673812866, 0.9990102052688599, 0.9986965656280518, 0.9975066184997559, 0.996862530708313, 0.9958640336990356, 0.9928134679794312, 0.9827194213867188, 0.9674462080001831] +O=c1[nH]ccc2oc(-c3cncc(Cl)c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cncc(Cl)c3)cc12; [None]; [None]; [0] +Clc1cncc(-c2cnc3[nH]ccc3c2)c1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cncc(I)c1', 'Ic1cnc2[nH]ccc2c1', 'Clc1cncc(Br)c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cncc(Cl)c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Ic1cnc2[nH]ccc2c1', 'Clc1cncc(I)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999996423721313, 0.9999990463256836, 0.9999980330467224, 0.9999957084655762, 0.9999831318855286, 0.9999607801437378, 0.9999498128890991, 0.9998390674591064, 0.9997725486755371, 0.9997036457061768, 0.9972814917564392] +COc1cccc(F)c1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1I', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1', 'COc1cccc(F)c1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['COc1cccc(F)c1Br', 'Clc1cncc(Br)c1', 'COc1cccc(F)c1I', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'COc1cccc(F)c1Br', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'COc1cccc(F)c1I', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cccnc1', 'Clc1cccnc1']; [1.0, 0.9999998211860657, 0.9999995231628418, 0.9999983310699463, 0.9999955892562866, 0.9999857544898987, 0.9999839663505554, 0.9999768733978271, 0.9999641180038452, 0.9999630451202393, 0.9999505281448364, 0.9999443888664246, 0.9999376535415649, 0.9999140501022339, 0.9997698068618774, 0.9993337392807007, 0.9974632263183594, 0.9968538284301758, 0.9389722347259521, 0.9285380840301514] +CC(C)Oc1cncc(-c2cncc(Cl)c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'F[B-](F)(F)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999974966049194, 0.9999972581863403, 0.9999916553497314, 0.9999277591705322, 0.9998918771743774, 0.9998230934143066, 0.999608039855957, 0.9993740320205688, 0.9971049427986145, 0.9966757297515869, 0.9963788986206055, 0.9907225370407104] +CNC(=O)c1c(F)cccc1-c1cncc(Cl)c1; [None]; [None]; [0] +Clc1cncc(-c2c[nH]c3cnccc23)c1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Brc1c[nH]c2cnccc12']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1', 'F[B-](F)(F)c1cncc(Cl)c1']; [0.9999697208404541, 0.9999414682388306, 0.999137282371521, 0.9986528158187866, 0.9680255651473999, 0.9616698026657104, 0.9424178600311279, 0.9346945285797119, 0.9104741811752319, 0.8754246234893799] +CNS(=O)(=O)c1ccc(-c2cncc(Cl)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999935626983643, 0.9999908804893494, 0.9999614953994751, 0.9999344348907471, 0.9998458623886108, 0.9979034662246704, 0.9954818487167358, 0.9026864171028137, 0.9004642963409424] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cncc(Cl)c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [0.9999996423721313, 0.999998927116394, 0.9999970197677612, 0.9999802112579346, 0.9999555945396423, 0.9999535083770752, 0.9984726905822754, 0.9984148740768433, 0.9842180609703064] +OCc1ccn(-c2cncc(Cl)c2)n1; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Fc1cncc(Cl)c1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.999379575252533, 0.9991871118545532, 0.9985867738723755, 0.9971669912338257] +Clc1cncc(-c2ccc(N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1cncc(I)c1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Clc1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1ccc(N2CCOCC2)cc1', 'Clc1cncc(I)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1cncc(Cl)c1', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1cncc(Br)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1']; [1.0, 0.9999996423721313, 0.9999994039535522, 0.9999992847442627, 0.9999948740005493, 0.9999929666519165, 0.9999886751174927, 0.9999874830245972, 0.9999809265136719, 0.9999801516532898, 0.9999721646308899, 0.9999691843986511, 0.999923050403595, 0.9998806715011597, 0.9998756647109985, 0.9997413158416748, 0.999550461769104, 0.9991203546524048] +C[C@H](Nc1cncc(Cl)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cncc(Cl)c2)cc1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1']; ['CS(=O)(=O)c1ccc(I)cc1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'CS(=O)(=O)c1ccc(I)cc1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'CS(=O)(=O)c1ccc(Br)cc1']; [1.0, 0.9999998807907104, 0.9999997019767761, 0.9999991655349731, 0.9999921321868896, 0.9999765157699585, 0.999970555305481, 0.9999644160270691, 0.9999376535415649, 0.999400794506073, 0.9990194439888, 0.9981789588928223, 0.9976514577865601, 0.9971843957901001, 0.9945244789123535, 0.9589523077011108, 0.9552602767944336] +Cc1cc(-c2cncc(Cl)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cncc(Cl)c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; [0.9995326995849609, 0.9970545768737793, 0.9929713606834412, 0.9837385416030884] +C[C@@H](Nc1cncc(Cl)c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Cl)c1']; [0.9995326995849609, 0.9970545768737793, 0.9929713606834412, 0.9837385416030884] +CC1(c2cncc(Cl)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +OCCc1cn(-c2cncc(Cl)c2)cn1; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9966052770614624, 0.9914607405662537] +Clc1cncc(-n2ncc3ccccc32)c1; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'Nc1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Cc1ccccc1N']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2n[nH]cc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'OB(O)c1cncc(Cl)c1']; [0.9996073246002197, 0.9992496967315674, 0.9988006353378296, 0.9972046613693237, 0.9970260262489319, 0.9964548945426941, 0.9917428493499756, 0.9886279106140137] +Oc1ccc2nc(-c3cncc(Cl)c3)[nH]c2c1; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'CCOC(=O)c1cncc(Cl)c1', 'Nc1ccc(O)cc1[N+](=O)[O-]']; ['O=Cc1cncc(Cl)c1', 'O=C(O)c1cncc(Cl)c1', 'Nc1ccc(O)cc1N', 'O=Cc1cncc(Cl)c1']; [0.9945312738418579, 0.9776424765586853, 0.9709973335266113, 0.8936338424682617] +Fc1cccc(Cl)c1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1cncc(I)c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Br)c1', 'Fc1cccc(Cl)c1I', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Clc1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Fc1cccc(Cl)c1Cl', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cccnc1', 'Clc1cccnc1']; ['Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Clc1cncc(Br)c1', 'Fc1cccc(Cl)c1Br', 'Clc1cncc(I)c1', 'Fc1cccc(Cl)c1I', 'Clc1cncc(Cl)c1', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'OB(O)c1cncc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1cncc(Cl)c1', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I']; [1.0, 1.0, 1.0, 1.0, 0.9999997615814209, 0.9999994039535522, 0.999998927116394, 0.999997615814209, 0.9999975562095642, 0.9999966621398926, 0.9999962449073792, 0.9999923706054688, 0.9999918937683105, 0.9999871253967285, 0.9999870657920837, 0.9999833106994629, 0.9999698996543884, 0.9999414682388306, 0.9999250173568726, 0.9996153116226196, 0.9844279289245605, 0.9773628115653992, 0.9552193880081177, 0.9104611873626709] +CN(c1cncc(Cl)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +COc1ccc(-c2cncc(Cl)c2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1', 'COc1cccc(OC)c1']; ['Clc1cncc(Br)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'COc1ccc(Cl)c(OC)c1', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'COc1ccc(I)c(OC)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'COc1ccc(Br)c(OC)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1']; [0.9999938011169434, 0.9999916553497314, 0.9999886155128479, 0.9999539852142334, 0.9998211860656738, 0.9997676014900208, 0.999697208404541, 0.9995497465133667, 0.9995371103286743, 0.9994535446166992, 0.9994341135025024, 0.9993206262588501, 0.9988439083099365, 0.998304545879364, 0.9979873895645142, 0.9845902919769287, 0.9827507734298706, 0.9819966554641724, 0.966385006904602, 0.9055500030517578, 0.7502237558364868] +Clc1cncc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cncc(Cl)c1; ['Clc1cncc(I)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9997532367706299, 0.9992897510528564, 0.9991699457168579, 0.9912059307098389] +CC(C)n1cnnc1-c1cncc(Cl)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cncc(Cl)c2)cc1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1cncc(I)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Clc1cncc(Cl)c1', 'Clc1cncc([Mg]Br)c1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'Clc1cncc([Mg]Br)c1']; ['O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Cl)c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Cl)c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(F)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'OB(O)c1cncc(Cl)c1', 'O=C(c1ccccc1)c1ccc(Cl)cc1']; [0.9999972581863403, 0.9999959468841553, 0.9999936819076538, 0.9999924898147583, 0.999786376953125, 0.9997732639312744, 0.9997645616531372, 0.9997165203094482, 0.9996590614318848, 0.9996280670166016, 0.999498188495636, 0.9994535446166992, 0.9968219995498657, 0.9909378886222839, 0.9848676919937134, 0.93989098072052, 0.934435248374939, 0.8862260580062866, 0.8285152316093445] +Clc1cncc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +O=S(=O)(Cc1cncc(Cl)c1)NCc1ccccn1; [None]; [None]; [0] +Clc1cncc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cncc(Cl)c2)[nH]1; [None]; [None]; [0] +Clc1cncc(-c2cn(Cc3ccccc3)nn2)c1; ['BrCc1ccccc1', 'C#Cc1cncc(Cl)c1', 'C#Cc1cncc(Cl)c1', 'Clc1cncc(Br)c1']; ['C#Cc1cncc(Cl)c1', 'ClCc1ccccc1', '[N-]=[N+]=NCc1ccccc1', 'c1ccc(Cn2ccnn2)cc1']; [1.0, 0.9999997615814209, 0.9999997019767761, 0.9998378753662109] +CC(=O)N[C@@H]1CC[C@@H](c2cncc(Cl)c2)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cncc(Cl)c2)n1; [None]; [None]; [0] +Nc1nnc(-c2cncc(Cl)c2)s1; ['NNC(N)=S']; ['O=C(O)c1cncc(Cl)c1']; [0.9998172521591187] +O=C(CCc1cncc(Cl)c1)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(Cl)c2)s1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1cncc(Cl)c1']; [0.9999988079071045, 0.9999428987503052] +CCc1cc(-c2cncc(Cl)c2)nc(N)n1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999994039535522, 0.9993969798088074, 0.9989957213401794] +CCCCc1cc(-c2cncc(Cl)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cncc(Cl)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cncc(Cl)c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1ccccn1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999994039535522, 0.999987006187439, 0.9999649524688721, 0.9996362328529358, 0.9977326393127441, 0.7703362703323364] +Clc1cncc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1I', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Clc1cncc(I)c1', 'NCc1cncc(Cl)c1', 'N#Cc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Brc1nc2ccccc2s1', 'Clc1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'O=Cc1cncc(Cl)c1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'O=Cc1cncc(Cl)c1', 'Clc1nc2ccccc2s1', 'O=Cc1cncc(Cl)c1', 'OCc1cncc(Cl)c1', 'O=C(O)c1cncc(Cl)c1', 'c1ccc2scnc2c1', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'c1ccc2scnc2c1']; [0.9999997615814209, 0.9999994039535522, 0.9999992847442627, 0.9999985098838806, 0.9999978542327881, 0.9999907612800598, 0.9999717473983765, 0.9999665021896362, 0.9999642372131348, 0.9999631643295288, 0.9999578595161438, 0.9999440908432007, 0.9999423027038574, 0.9998860955238342, 0.999093770980835, 0.9978018999099731] +Nc1cncc(-c2cncc(Cl)c2)n1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1']; [0.9999989867210388, 0.9999908208847046, 0.9998384714126587, 0.9983935356140137] +Clc1cncc(-c2cccc3ccsc23)c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Brc1cccc2ccsc12', 'Brc1cccc2ccsc12', 'Clc1cccc2ccsc12', 'Clc1cncc(Cl)c1', 'Brc1cccc2ccsc12']; ['Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cccc2ccsc12', 'Clc1cncc(Br)c1']; [0.9999997615814209, 0.9999996423721313, 0.9999954104423523, 0.9999905824661255, 0.998554527759552, 0.9968985319137573, 0.9958570599555969, 0.995221734046936, 0.9933250546455383, 0.9911293983459473, 0.987460732460022, 0.8551745414733887] +CC1(C)Oc2ccc(-c3cncc(Cl)c3)nc2NC1=O; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1']; [0.9999603033065796, 0.9923967123031616, 0.9374726414680481, 0.8675639629364014] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cncc(Cl)c3)c2)cc1; [None]; [None]; [0] +Clc1cncc(-c2cccc3nnsc23)c1; ['Brc1cccc2nnsc12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Clc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Brc1cccc2nnsc12']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1cccc2nnsc12', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc([Mg]Br)c1']; [1.0, 0.9999951124191284, 0.9998623132705688, 0.9995369911193848, 0.9972667694091797, 0.9921340942382812, 0.991509199142456, 0.9864901304244995] +C[C@@H2]NC(=O)N1CCC(c2cncc(Cl)c2)CC1; [None]; [None]; [0] +Nc1nc(-c2cncc(Cl)c2)nc2ccccc12; ['Nc1nc(Cl)nc2ccccc12', 'N#Cc1ccccc1Br']; ['OB(O)c1cncc(Cl)c1', 'O=Cc1cncc(Cl)c1']; [0.9995957016944885, 0.9991064071655273] +Clc1cncc(-c2ncc3ccccc3n2)c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1ncc2ccccc2n1', 'Nc1ccccc1CO', 'BrCc1ccccc1Br', 'NCc1ccccc1N', 'Clc1cncc(Br)c1', 'Clc1ncc2ccccc2n1', 'NCc1ccccc1N', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1ncc2ccccc2n1']; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'OB(O)c1cncc(Cl)c1', 'O=Cc1cncc(Cl)c1', 'O=Cc1cncc(Cl)c1', 'O=Cc1cncc(Cl)c1', 'Clc1ncc2ccccc2n1', 'OB(O)c1cncc(Cl)c1', 'OCc1cncc(Cl)c1', 'Clc1ncc2ccccc2n1', 'c1ccc2ncncc2c1', 'F[B-](F)(F)c1cncc(Cl)c1']; [0.9999991655349731, 0.9999860525131226, 0.9994553327560425, 0.9991872310638428, 0.9984961152076721, 0.9982610940933228, 0.9943342208862305, 0.9938580989837646, 0.9930267333984375, 0.9918422698974609, 0.9895130395889282, 0.980615496635437] +[NH3+]Cc1ccc(Oc2cncc(Cl)c2)c(F)c1; [None]; [None]; [0] +Clc1cncc(-c2ncc3cc[nH]c3n2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Clc1ncc2cc[nH]c2n1']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1cncc(Cl)c1']; [0.9999908208847046, 0.9977388978004456] +Clc1cncc(-c2c[nH]c3cccnc23)c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12']; ['Clc1cncc(Br)c1', 'Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'OB(O)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'F[B-](F)(F)c1cncc(Cl)c1']; [0.999994158744812, 0.9999905824661255, 0.9999493360519409, 0.9984729290008545, 0.9980616569519043, 0.995926022529602, 0.9829851388931274, 0.970770001411438] +CC(=O)Nc1ncc(-c2cncc(Cl)c2)[nH]1; [None]; [None]; [0] +COc1ccc(Oc2cncc(Cl)c2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc([N+](=O)[O-])c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Oc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Cl)c1', 'O=[N+]([O-])c1cncc(Cl)c1']; [0.9999642372131348, 0.9998149871826172, 0.9992877244949341, 0.9992707967758179, 0.9962620735168457, 0.9960842728614807, 0.9946533441543579, 0.9850621223449707, 0.9609503149986267, 0.766026496887207] +COc1ccc(C#N)cc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1']; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'COc1ccc(C#N)cc1Cl', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'COc1ccc(C#N)cc1I', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'COc1ccc(C#N)cc1Br', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'Clc1cccnc1', 'Clc1cncc(Br)c1']; [0.9999995231628418, 0.9999988079071045, 0.9999959468841553, 0.9999925494194031, 0.9999839067459106, 0.9999819993972778, 0.9999814629554749, 0.9999794960021973, 0.9999666213989258, 0.9999289512634277, 0.9999154210090637, 0.999894917011261, 0.9998908638954163, 0.999869704246521, 0.9997482895851135, 0.999417781829834, 0.9993600249290466, 0.9992916584014893, 0.9992055892944336, 0.9985005855560303, 0.9975554943084717, 0.9224522113800049, 0.7716425657272339] +COc1ccc(OC)c(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'CCCC[Sn](CCCC)(CCCC)c1cncc(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(I)c1']; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(I)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'COc1ccc(OC)c(Br)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cccnc1']; [0.9999992251396179, 0.9999984502792358, 0.9999808073043823, 0.9999665021896362, 0.9999657869338989, 0.9999586343765259, 0.9999346137046814, 0.9998868703842163, 0.9998742341995239, 0.99984210729599, 0.9997231960296631, 0.9995229244232178, 0.9990782141685486, 0.9988009929656982, 0.9981789588928223, 0.9972277879714966, 0.9968274235725403, 0.9890333414077759, 0.9122809767723083, 0.9065479040145874, 0.7811439037322998] +COc1ncccc1-c1cncc(Cl)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ccccn1', 'COc1ccccn1', 'COc1ncccc1I', 'COc1ncccc1Br']; ['COc1ncccc1Br', 'Clc1cncc(Br)c1', 'COc1ncccc1I', 'Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(I)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F', 'Clc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'F[B-](F)(F)c1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Cl)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(I)c1', 'Clc1cccnc1', 'Clc1cccnc1']; [0.9999995827674866, 0.9999991655349731, 0.9999988079071045, 0.9999868273735046, 0.9999797344207764, 0.9999445080757141, 0.9998365640640259, 0.9998284578323364, 0.9995763301849365, 0.9990964531898499, 0.9981126189231873, 0.9977729916572571, 0.9973817467689514, 0.9952083826065063, 0.9877008199691772, 0.8855992555618286, 0.884941577911377, 0.7971943020820618, 0.7715722322463989] +OCCn1cnc(-c2cncc(Cl)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cncc(Cl)c2)cnn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cncc(Cl)c2)c1; ['CC1(C)OB(c2cncc(Cl)c2)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(I)c1', 'OB(O)c1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Clc1cncc(Br)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F']; [0.9999983906745911, 0.999997615814209, 0.9999583959579468, 0.999947726726532, 0.9996358752250671, 0.9991660118103027, 0.9986131191253662, 0.9946627616882324, 0.9934994578361511, 0.9853298664093018] +Clc1cncc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; ['Clc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Clc1cncc(Cl)c1', 'Fc1cncc(Cl)c1', 'O=S(=O)(Oc1cncc(Cl)c1)C(F)(F)F']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999167919158936, 0.999649703502655, 0.9977969527244568, 0.9976353645324707, 0.9975042343139648] +Clc1cncc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Clc1cncc(Br)c1', 'Fc1cncc(Cl)c1', 'Clc1cncc(I)c1', 'Clc1cncc(Cl)c1']; [0.9997857809066772, 0.9996969699859619, 0.99931800365448, 0.9908826351165771] +O=C(Nc1cccc(-c2cncc(Cl)c2)c1)C1CCNCC1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cncc(Cl)c2)CC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1cc2c(O)cncc2s1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3c(O)cncc3s2)[nH]1; [None]; [None]; [0] +Oc1cncc2sc(-c3ccnc4ccccc34)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ccccc3OC(F)(F)F)cc12; [None]; [None]; [0] +CCn1cc(-c2cc3c(O)cncc3s2)cn1; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cnn(Cc4ccccc4)c3)cc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4c(O)cncc4s3)cc2c1=O; [None]; [None]; [0] +OCCn1cc(-c2cc3c(O)cncc3s2)cn1; [None]; [None]; [0] +N[C@@H](c1ccco1)c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cc(Cl)ccc3Cl)cc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3c(O)cncc3s2)c1)c1ccccc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc3c(O)cncc3s2)cs1; [None]; [None]; [0] +COc1cnc(-c2cc3c(O)cncc3s2)nc1; [None]; [None]; [0] +Cc1ccc(-c2cc3c(O)cncc3s2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3cnc4ccccn34)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3c(O)cncc3s2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3c(O)cncc3s2)s1; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc(Br)c3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc4ccccc4c3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cnn4ncccc34)cc12; [None]; [None]; [0] +Nc1nccc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +Cc1c(-c2cc3c(O)cncc3s2)sc(=O)n1C; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cc3c(O)cncc3s2)o1; [None]; [None]; [0] +Oc1cncc2sc(-c3cncc4ccccc34)cc12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(-c3c[nH]nc3C(F)(F)F)cc12; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4c(O)cncc4s3)ccc21; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4c(O)cncc4s3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc4c(O)cncc4s3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc4c(O)cncc4s3)cc2CS1(=O)=O; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(-c4cn[nH]c4)cc3)cc12; [None]; [None]; [0] +OCc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +Oc1cncc2sc(-c3csc4ncncc34)cc12; [None]; [None]; [0] +CC(C)n1cc(-c2cc3c(O)cncc3s2)nn1; [None]; [None]; [0] +COc1cc(-c2cc3c(O)cncc3s2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cc3c(O)cncc3s2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3cc4ccccc4[nH]3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(F)cc3C(F)(F)F)cc12; [None]; [None]; [0] +Nc1ncncc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4c(O)cncc4s3)cc2s1; [None]; [None]; [0] +CC[C@H](CO)c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(Cc3c(F)cccc3F)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(-c3cnn4ccccc34)cc12; [None]; [None]; [0] +Cn1cc(-c2cc3c(O)cncc3s2)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2cc3c(O)cncc3s2)cc1Cl; [None]; [None]; [0] +CCCn1cc(-c2cc3c(O)cncc3s2)cn1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc3c(O)cncc3s2)cc1C(F)(F)F; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc4c(O)cncc4s3)c21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +O=c1cc(-c2cc3c(O)cncc3s2)cc[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +CN(c1ncccc1Cc1cc2c(O)cncc2s1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc4c(O)cncc4s3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc4c(O)cncc4s3)cc12; [None]; [None]; [0] +OC[C@H](c1ccccc1)c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3c[nH]c4cnccc34)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(N4CCOCC4)cc3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cnc4[nH]ccc4c3)cc12; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)c1cc2c(O)cncc2s1; [None]; [None]; [0] +CC1(c2cc3c(O)cncc3s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +Oc1cncc2sc(-c3c(F)cccc3Cl)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +COc1ccc(-c2cc3c(O)cncc3s2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3c(O)cncc3s2)[nH]1; [None]; [None]; [0] +Cc1cc(-c2cc3c(O)cncc3s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3c(O)cncc3s2)CC1; [None]; [None]; [0] +Oc1cncc2sc(-c3cn(Cc4ccccc4)nn3)cc12; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +CCc1cc(-c2cc3c(O)cncc3s2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc3c(O)cncc3s2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Nc1nnc(-c2cc3c(O)cncc3s2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3c(O)cncc3s2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(O)cncc3s2)s1; [None]; [None]; [0] +Oc1cncc2sc(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc4ccsc34)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4c(O)cncc4s3)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4c(O)cncc4s3)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +O=C(NCCCc1cc2c(O)cncc2s1)c1cccs1; [None]; [None]; [0] +O=C(NCCCc1cc2c(O)cncc2s1)C1CCC1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3c(O)cncc3s2)[nH]1; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc4nnsc34)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +OCCn1cnc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(-c3c[nH]c4cccnc34)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc3c(O)cncc3s2)CC1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3cccc4ncccc34)cc12; [None]; [None]; [0] +CN(C)c1cc(-c2cc3c(O)cncc3s2)cnn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(-c3c(Cl)ccc4c3OCO4)cc12; [None]; [None]; [0] +Oc1cc(-c2cc3c(O)cncc3s2)ccc1Cl; [None]; [None]; [0] +Oc1cncc2sc(-c3n[nH]c4ccccc34)cc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3c(O)cncc3s2)c(F)c1; [None]; [None]; [0] +Oc1cncc2sc(Oc3ccc(F)cc3)cc12; [None]; [None]; [0] +Oc1ccc(-c2cc3c(O)cncc3s2)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2cc3c(O)cncc3s2)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cc4c(O)cncc4s3)cc2[nH]1; [None]; [None]; [0] +Oc1cncc2sc(-c3cn[nH]c3Cl)cc12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3cc4c(O)cncc4s3)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2cc3c(O)cncc3s2)ccc1O; [None]; [None]; [0] +Oc1ccc(-c2cc3c(O)cncc3s2)cc1F; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc3c(O)cncc3s2)o1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +Oc1ccc(-c2cc3c(O)cncc3s2)c(O)c1; [None]; [None]; [0] +COc1cc(CCc2cc3c(O)cncc3s2)ccc1O; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(F)c(Cl)c3)cc12; [None]; [None]; [0] +Nc1cc(-c2cc3c(O)cncc3s2)ccn1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1cncc2sc(COc3ccccc3Cl)cc12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(-c3[nH]cnc3-c3ccc(F)cc3)cc12; [None]; [None]; [0] +Oc1ncc(-c2cc3c(O)cncc3s2)cc1Cl; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cc3c(O)cncc3s2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc4c(O)cncc4s3)ccc12; [None]; [None]; [0] +COc1ccc(-c2cc3c(O)cncc3s2)cc1OC; [None]; [None]; [0] +Cc1nc2ccc(-c3cc4c(O)cncc4s3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +COc1cc(CCc2cc3c(O)cncc3s2)cc(OC)c1; [None]; [None]; [0] +Oc1cncc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cc4c(O)cncc4s3)ccc2N1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cc2c(O)cncc2s1; [None]; [None]; [0] +CNc1nccc(-c2cc3c(O)cncc3s2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1n[nH]c(-c2cc3c(O)cncc3s2)c1C; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cc4c(O)cncc4s3)ccc12; [None]; [None]; [0] +Oc1cncc2sc(-c3cc(C(F)F)n[nH]3)cc12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cc2c(O)cncc2s1; [None]; [None]; [0] +Cc1oc(-c2cc3c(O)cncc3s2)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cc3c(O)cncc3s2)cc1Cl; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc4c(c3)CCN4)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ccncc3Cl)cc12; [None]; [None]; [0] +CCc1sccc1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CNc1nc(-c2cc3c(O)cncc3s2)ncc1F; [None]; [None]; [0] +Oc1cncc2sc(-c3cc(O)n4nccc4n3)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ccc(Br)cc3F)cc12; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cc4c(O)cncc4s3)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +Oc1cncc2sc(Nc3ccncc3)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +Oc1cncc2sc(-c3[nH]nc4ccc(F)cc34)cc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cc4c(O)cncc4s3)cc2o1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Oc1c(F)cc(-c2cc3c(O)cncc3s2)cc1F; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cc3c(O)cncc3s2)cc1; [None]; [None]; [0] +CN(c1cc2c(O)cncc2s1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1cc(-c2cc3c(O)cncc3s2)ccc1C(N)=O; [None]; [None]; [0] +CSc1cccc(-c2cc3c(O)cncc3s2)c1; [None]; [None]; [0] +Cc1cc(-c2cc3c(O)cncc3s2)cc(C)c1O; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cc4c(O)cncc4s3)ccc12; [None]; [None]; [0] +Oc1cncc2sc(OCc3cccc4ccccc34)cc12; [None]; [None]; [0] +Oc1cncc2sc(-c3ocnc3-c3ccc(F)cc3)cc12; [None]; [None]; [0] +Oc1cncc2sc(CCc3c[nH]c4ccccc34)cc12; [None]; [None]; [0] +Oc1cncc2sc(Oc3ccc(F)cc3F)cc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['CNC(=O)c1ccccc1Br', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999983310699463, 0.9999768733978271, 0.999879002571106, 0.9951198101043701, 0.9915213584899902] +Cc1onc(-c2ccccc2)c1-c1cc2c(O)cncc2s1; [None]; [None]; [0] +CCOc1ccccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O']; ['CCOc1ccccc1Br', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CCOc1ccccc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999932050704956, 0.9999796152114868, 0.999954879283905, 0.9999502897262573, 0.9998529553413391, 0.9996978044509888, 0.999523401260376, 0.9917140007019043, 0.9913798570632935] +Oc1cncc2sc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc12; [None]; [None]; [0] +Oc1cncc2sc(OCc3ccc(F)cc3F)cc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc(N)c(Cl)c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999933838844299, 0.9999656677246094, 0.9981730580329895, 0.9580962657928467] +Cc1nnc(-c2ccccc2-c2cnc(N)c(Cl)c2)[nH]1; [None]; [None]; [0] +CCn1cc(-c2cnc(N)c(Cl)c2)cn1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(I)cn1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'CCn1cc(Br)cn1', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999810457229614, 0.9999464750289917, 0.9999009370803833, 0.9998777508735657, 0.9985479116439819, 0.9801206588745117] +CP(C)(=O)c1ccccc1-c1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1ncc(Cc2cc(F)cc(F)c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1']; ['Fc1cc(F)cc(CBr)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999963045120239, 0.9997816681861877, 0.9995620250701904, 0.9974284172058105] +Oc1cncc2sc(NCc3c(F)cccc3Cl)cc12; [None]; [None]; [0] +Nc1ncc(-c2ccnc3ccccc23)cc1Cl; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Brc1ccnc2ccccc12', 'Nc1ncc(Cl)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1ccnc2ccccc12', 'Nc1ncc(Br)cc1Cl']; [0.999998927116394, 0.9999707937240601, 0.9999238848686218, 0.9999167919158936, 0.9996541738510132, 0.9955597519874573, 0.9951266050338745, 0.9213339686393738, 0.8755916357040405] +COC(C)(C)CCc1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2OC(F)(F)F)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'FC(F)(F)Oc1ccccc1Br', 'Nc1ncc(Cl)cc1Cl', 'FC(F)(F)Oc1ccccc1']; ['FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc(Br)cc1Cl']; [0.9999977350234985, 0.9999936819076538, 0.9999929666519165, 0.9999878406524658, 0.9999688267707825, 0.9998944997787476, 0.9997462034225464, 0.9968323707580566, 0.9952229261398315, 0.9777598977088928] +Oc1cncc2sc(CCc3ccc(F)cc3F)cc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(F)(F)F)c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'Nc1ncc(Br)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'Nc1ncc(Cl)cc1Cl', 'FC(F)(F)c1cccc(Br)c1']; ['FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc(Br)cc1Cl']; [0.9999991655349731, 0.9999990463256836, 0.9999979734420776, 0.9999970197677612, 0.9999933838844299, 0.9999522566795349, 0.9999152421951294, 0.99983811378479, 0.9988570809364319, 0.9976955652236938, 0.9876986742019653] +Nc1ncc(-c2cnn(Cc3ccccc3)c2)cc1Cl; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Cl)cc1Cl', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999967813491821, 0.9999967813491821, 0.9999764561653137, 0.9998239278793335, 0.9991512298583984] +Nc1ncc(-c2ccccc2C(=O)[O-])cc1Cl; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnc(N)c(Cl)c3)cc2c1=O; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Nc1ncc(Br)cc1Cl']; [0.9999997615814209, 0.9966288208961487] +Nc1ncc(-c2cnn(CCO)c2)cc1Cl; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OCCn1cc(Br)cn1', 'Nc1ncc(Cl)cc1Cl', 'OCCn1cc(B(O)O)cn1']; [0.999983549118042, 0.9998994469642639, 0.9998358488082886, 0.9985780119895935, 0.9890400171279907] +NC(=O)c1ccccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'NC(=O)c1ccccc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999885559082031, 0.9999839663505554, 0.9999805092811584, 0.9999673366546631, 0.9997648000717163, 0.9992989897727966, 0.9979349374771118, 0.9973630309104919, 0.962051272392273, 0.9487728476524353] +Nc1ncc(-c2cnc(-c3ccccc3)[nH]2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2cc(Cl)ccc2Cl)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Nc1ncc(Cl)cc1Cl']; ['Clc1ccc(Cl)c(Br)c1', 'Nc1ncc(Br)cc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999976754188538, 0.9999805688858032, 0.9999749660491943, 0.9999287128448486, 0.9998677968978882, 0.9996737837791443, 0.9996318817138672, 0.9983939528465271, 0.9983043670654297, 0.9894316792488098, 0.9411547780036926] +Cc1ccc(-c2cnc(N)c(Cl)c2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9997044801712036, 0.9810624122619629, 0.9348840117454529] +CC(C)C(=O)COc1cnc(N)c(Cl)c1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Nc1ncc(O)cc1Cl', 'Nc1ncc(O)cc1Cl']; [0.96625155210495, 0.9097592830657959] +Nc1ncc(-c2cnc3ccccn23)cc1Cl; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999994039535522, 0.9999974966049194, 0.9998264312744141, 0.9775347113609314] +COc1cnc(-c2cnc(N)c(Cl)c2)nc1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999756813049316, 0.9999316930770874] +Nc1ncc(-c2cccc(NC(=O)c3ccccc3)c2)cc1Cl; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Nc1ncc(Cl)cc1Cl']; [0.9999951124191284, 0.9999901056289673, 0.9999816417694092, 0.9997793436050415, 0.9994857311248779] +Cc1nc2ccccn2c1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1']; ['Cc1nc2ccccn2c1Br', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999949932098389, 0.9999659657478333, 0.9999206066131592] +Cc1nc(C)c(-c2cnc(N)c(Cl)c2)s1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999980330467224, 0.9999964833259583, 0.9999802708625793, 0.9868068695068359] +Nc1ncc(-c2cnc3cccnn23)cc1Cl; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9990352392196655] +Cc1nc(N)sc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cc1csc(N)n1']; ['Cc1nc(N)sc1Br', 'Nc1ncc(Br)cc1Cl']; [0.999998927116394, 0.9994041919708252] +CNc1nc(C)c(-c2cnc(N)c(Cl)c2)s1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CNc1nc(C)cs1']; ['CNc1nc(C)c(Br)s1', 'Nc1ncc(Br)cc1Cl']; [0.9999992251396179, 0.9958145618438721] +Cc1ccc(Cl)c(-c2cnc(N)c(Cl)c2)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999974966049194, 0.9999765157699585, 0.9999582171440125, 0.9998583793640137, 0.9997588396072388, 0.9994683861732483, 0.9994449615478516, 0.9994099140167236, 0.9896762371063232, 0.9676107168197632] +CC(C)(C)c1nc(-c2cnc(N)c(Cl)c2)cs1; [None]; [None]; [0] +Nc1ncc(-c2cccc(Br)c2)cc1Cl; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Brc1cccc(I)c1', 'Nc1ncc(Cl)cc1Cl']; ['Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cccc(Br)c1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cccc(Br)c1']; [0.9999939203262329, 0.9999578595161438, 0.9999306201934814, 0.9998482465744019, 0.9946491718292236, 0.985360860824585, 0.9109512567520142] +Nc1ncc(NCc2cccnc2)cc1Cl; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9998922348022461, 0.9931873679161072, 0.9882913827896118, 0.807181715965271] +Nc1ncc(-c2cccc(Cn3cncn3)c2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-n2ncc3cccc(F)c3c2=O)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)cccc2Cl)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1cccc(Cl)c1I', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Clc1cccc(Cl)c1Br', 'Nc1ncc(Cl)cc1Cl']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999983906745911, 0.9999969005584717, 0.9999779462814331, 0.9999568462371826, 0.9999173879623413, 0.9996718764305115, 0.9989334940910339, 0.9715217351913452] +Nc1ncc(Nc2cccnc2)cc1Cl; ['Nc1cccnc1', 'Nc1cccnc1']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl']; [0.9936165809631348, 0.9875025749206543] +Nc1ncc(-c2ccc3ccccc3c2)cc1Cl; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Ic1ccc2ccccc2c1', 'Nc1ncc(Cl)cc1Cl', 'Brc1ccc2ccccc2c1']; ['Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc(Br)cc1Cl']; [0.9999977946281433, 0.9999943971633911, 0.9999909996986389, 0.9999871253967285, 0.9999762773513794, 0.999897837638855, 0.999891996383667, 0.9979581832885742, 0.9830681085586548] +Cc1c(-c2cnc(N)c(Cl)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1ncc(NCCc2c[nH]cn2)cc1Cl; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Nc1ncc(F)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9985320568084717, 0.9965381622314453, 0.9938569068908691, 0.9577746391296387] +Nc1ncc(NC(=O)c2cccs2)cc1Cl; ['NC(=O)c1cccs1']; ['Nc1ncc(Br)cc1Cl']; [0.9647870063781738] +Nc1ncc(-n2cnc3ccccc32)cc1Cl; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(I)cc1Cl']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9968938827514648, 0.9838390350341797, 0.980184018611908] +NC(=O)c1c(F)cccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['NC(=O)c1c(F)cccc1Br']; [0.9999998211860657] +Nc1ncc(NCCc2ccccc2)cc1Cl; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl']; [0.984817385673523, 0.952917218208313, 0.9511715173721313] +Nc1ncc(-c2cncc3ccccc23)cc1Cl; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Brc1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Nc1ncc(I)cc1Cl', 'Ic1cncc2ccccc12', 'Nc1ncc(Br)cc1Cl', 'Brc1cncc2ccccc12']; ['Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Ic1cncc2ccccc12', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cncc2ccccc12', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cncc2ccccc12', 'Nc1ncc(Br)cc1Cl']; [0.9999940395355225, 0.9999903440475464, 0.9999791979789734, 0.9999691247940063, 0.9999152421951294, 0.9997665882110596, 0.9992063045501709, 0.9939706325531006, 0.9750926494598389, 0.9156365394592285] +Nc1ncc(-c2c[nH]nc2C(F)(F)F)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['FC(F)(F)c1n[nH]cc1Br', 'Nc1ncc(Br)cc1Cl']; [0.999996542930603, 0.9999696016311646] +Nc1nccc(-c2cnc(N)c(Cl)c2)n1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; ['Nc1nccc(I)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [0.9999995231628418, 0.9999994039535522, 0.9999977350234985, 0.9996967315673828, 0.9995295405387878] +Cn1cc(-c2ccc(-c3cnc(N)c(Cl)c3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['Nc1ncc(Br)cc1Cl', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999998807907104, 0.9999997019767761] +Nc1ncc(-c2cnn3ncccc23)cc1Cl; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncccc1Cl']; [0.9999990463256836, 0.9999957084655762, 0.9999924898147583, 0.9999331831932068, 0.9937112331390381, 0.8795660734176636] +Nc1ncc(-c2ccc3c(N)[nH]nc3c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9999991655349731] +Nc1ncc(NCc2ccc(Cl)cc2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.999999463558197, 0.9997062087059021, 0.9965535402297974, 0.9964280128479004, 0.9633139371871948] +CN1c2ccc(-c3cnc(N)c(Cl)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc(N)c(Cl)c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1ncc(Br)cc1Cl', 'Cn1ncc2cc(Br)ccc21', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999998807907104, 0.9999997615814209, 0.9999997615814209, 0.9999995827674866, 0.9999994039535522, 0.9999972581863403, 0.9999945163726807, 0.9999911785125732, 0.9999150633811951, 0.9998712539672852, 0.9752320647239685] +Nc1ncc(-c2ccc(-c3cn[nH]c3)cc2)cc1Cl; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Nc1ncc(Br)cc1Cl']; [0.9999979734420776, 0.9999966621398926, 0.999994158744812, 0.9999257922172546, 0.9989084005355835, 0.9964209198951721, 0.9625065326690674] +Nc1ncc(-c2cccc(CO)c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; ['OCc1cccc(Br)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'Nc1ncc(Cl)cc1Cl', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999910593032837, 0.9999880790710449, 0.9999867677688599, 0.999927282333374, 0.9998588562011719, 0.9994425773620605, 0.9942656755447388, 0.9936326146125793, 0.8976752758026123, 0.8842477202415466] +Nc1ncc(-c2cccc(O)c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999938011169434, 0.9999920129776001, 0.99989914894104, 0.9998841881752014, 0.9997937083244324, 0.9932142496109009, 0.968146026134491, 0.8616917133331299] +Nc1ncc(NCc2ccccc2F)cc1Cl; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9995874166488647, 0.9947783946990967, 0.9797787070274353, 0.8870776891708374] +Nc1ncc(-c2cccc(CC(=O)[O-])c2)cc1Cl; [None]; [None]; [0] +Nc1ncc(Nc2ccncc2)cc1Cl; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9995999336242676, 0.997805655002594, 0.9221543073654175] +CCCn1cnc(-c2cnc(N)c(Cl)c2)n1; [None]; [None]; [0] +CC(C)n1cc(-c2cnc(N)c(Cl)c2)nn1; ['CC(C)n1ccnn1']; ['Nc1ncc(I)cc1Cl']; [0.999924898147583] +N#CCCc1cccc(-c2cnc(N)c(Cl)c2)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['N#CCCc1cccc(Br)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999872446060181, 0.9999209046363831, 0.9990679025650024, 0.9863460659980774, 0.9421236515045166] +COc1cc(-c2cnc(N)c(Cl)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncc(-c2csc3ncncc23)cc1Cl; ['Brc1csc2ncncc12']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; [0.9999666213989258] +Nc1ncc(-c2cc3ccccc3[nH]2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['Ic1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'OB(O)c1cc2ccccc2[nH]1']; [0.9999992251396179, 0.9999773502349854, 0.9991447925567627] +Nc1nc(-c2cnc(N)c(Cl)c2)cs1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1']; [0.9999955892562866, 0.9999165534973145] +Nc1ncc(-c2cncnc2N)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9999970197677612, 0.9999940395355225, 0.9580233097076416] +CSc1nc(-c2cnc(N)c(Cl)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc(N)c(Cl)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnc(N)c(Cl)c3)cc2s1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2C(F)(F)F)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Nc1ncc(Br)cc1Cl', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Nc1ncc(Cl)cc1Cl', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Nc1ncc(I)cc1Cl', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ncc(Br)cc1Cl']; [0.9999997019767761, 0.999993085861206, 0.9999921321868896, 0.9999872446060181, 0.9999732971191406, 0.9999371767044067, 0.9998511075973511, 0.9988666772842407, 0.9953285455703735] +Nc1ncc(CCc2c[nH]nn2)cc1Cl; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999976754188538, 0.9999960660934448, 0.9999268054962158] +Nc1ncc(Oc2ccccn2)cc1Cl; ['Brc1ccccn1', 'Clc1ccccn1', 'Fc1ccccn1']; ['Nc1ncc(O)cc1Cl', 'Nc1ncc(O)cc1Cl', 'Nc1ncc(O)cc1Cl']; [0.9989438056945801, 0.9982750415802002, 0.9978348016738892] +NC(=O)CCCc1cnc(N)c(Cl)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc(N)c(Cl)c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999973773956299, 0.9999967813491821, 0.9999943971633911, 0.9999747276306152, 0.9999430179595947, 0.9996504783630371, 0.988334596157074, 0.9683551788330078] +CS(=O)(=O)C1CCN(c2cnc(N)c(Cl)c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9998992681503296, 0.9998389482498169, 0.9993364214897156] +Nc1ncc(NC(=O)c2c(Cl)cccc2Cl)cc1Cl; ['NC(=O)c1c(Cl)cccc1Cl', 'Nc1ncc([N+](=O)[O-])cc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; ['Nc1ncc(I)cc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9995337128639221, 0.9988266229629517, 0.98714679479599] +COc1ccc(-c2cnc(N)c(Cl)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1ncc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'COc1ccc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999997615814209, 0.9999997615814209, 0.9999995827674866, 0.9999994039535522, 0.999997615814209, 0.9999960660934448, 0.9999915361404419, 0.9999904632568359, 0.9999834299087524, 0.9999488592147827, 0.9997630715370178, 0.9918397665023804] +CCCn1cc(-c2cnc(N)c(Cl)c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ncc(Br)cc1Cl', 'CCCn1cc(Br)cn1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999895095825195, 0.9999889135360718, 0.999988853931427, 0.9999086260795593, 0.9985567927360535] +CC(C)(COc1cnc(N)c(Cl)c1)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c(Cl)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999929666519165, 0.999983549118042, 0.9998296499252319, 0.9939590692520142] +Nc1ncc(-c2cc[nH]c(=O)c2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(I)cc[nH]1']; [0.9999309182167053, 0.9999189376831055, 0.9999122023582458, 0.9998826384544373, 0.9995039105415344, 0.9894554018974304] +CC(C)(O)CC(=O)NCCc1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1ncc(-c2cccc3c2C(=O)CC3)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999942183494568, 0.999078631401062, 0.9627461433410645] +COc1cc(CCc2cnc(N)c(Cl)c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1']; ['Nc1ncc(Br)cc1Cl', 'Cc1cnc(N)c(Cl)c1']; [0.9947474002838135, 0.7650340795516968] +C[S@](=O)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1Cl']; [0.9998936653137207] +CCNS(=O)(=O)c1ccccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br']; ['CCNS(=O)(=O)c1ccccc1Br', 'Nc1ncc(Br)cc1Cl']; [0.9999955892562866, 0.9630995988845825] +CC(C)(N)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; [0.9999988079071045, 0.9999187588691711, 0.972954511642456] +Nc1ncc(-c2cnn3ccccc23)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'Nc1ncc(Br)cc1Cl', 'Ic1cnn2ccccc12', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Brc1cnn2ccccc12', 'Nc1ncc(I)cc1Cl']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cnn2ccccc12', 'Clc1cnn2ccccc12', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(I)cc1Cl', 'OB(O)c1cnn2ccccc12', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1cnn2ccccc12', 'O=C(O)c1cnn2ccccc12', 'Nc1ncc(Br)cc1Cl', 'c1ccn2nccc2c1']; [1.0, 0.9999994039535522, 0.9999992847442627, 0.9999982118606567, 0.9999955892562866, 0.9999831318855286, 0.9999706745147705, 0.9998446106910706, 0.999681293964386, 0.9996772408485413, 0.9914644360542297, 0.9826489686965942, 0.9577656984329224, 0.9566528797149658] +C[C@@H](Oc1cnc(N)c(Cl)c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ncc(F)cc1Cl', 'Nc1ncc(O)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9961808919906616, 0.9878782629966736, 0.870754599571228] +CCN(CC)c1cnc(N)c(Cl)c1; ['CCNCC', 'CCNCC', 'CCNCC']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9842175245285034, 0.9827077984809875, 0.8058233261108398] +Nc1ncc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cc1Cl; [None]; [None]; [0] +COc1ccncc1Nc1cnc(N)c(Cl)c1; ['COc1ccncc1N', 'COc1ccncc1N']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9976116418838501, 0.9561718106269836] +CC(C)(C)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', None]; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', None]; [1.0, 0.9999997019767761, 0.9999991655349731, 0.9999973773956299, 0.9999803304672241, 0.9999748468399048, 0.9988100528717041, 0.9944146871566772, 0] +Nc1ncc(Nc2cnc3ccccc3c2)cc1Cl; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9975042343139648, 0.9367040395736694] +COc1cccc(F)c1-c1cnc(N)c(Cl)c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br']; ['Nc1ncc(Br)cc1Cl', 'COc1cccc(F)c1Br', 'Nc1ncc(I)cc1Cl', 'COc1cccc(F)c1I', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncccc1Cl']; [1.0, 1.0, 0.9999995827674866, 0.9999995231628418, 0.9999988079071045, 0.9999977350234985, 0.9999914169311523, 0.9998769760131836, 0.9997895956039429, 0.9806528091430664] +CC(C)Oc1cncc(-c2cnc(N)c(Cl)c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [1.0, 0.9999996423721313, 0.9999996423721313, 0.9999988079071045, 0.9999221563339233, 0.9996033906936646, 0.9849262237548828] +Nc1ncc(Nc2cnccc2-c2ccccc2)cc1Cl; ['Nc1cnccc1-c1ccccc1']; ['Nc1ncc(Br)cc1Cl']; [0.9860936403274536] +Nc1ncc(-c2cc3c(=O)[nH]ccc3o2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2cnc3[nH]ccc3c2)cc1Cl; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl', 'Ic1cnc2[nH]ccc2c1', 'Nc1ncc(I)cc1Cl', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ncc(Cl)cc1Cl', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ncc(Br)cc1Cl']; [0.999998927116394, 0.9999983310699463, 0.9999979138374329, 0.9999963045120239, 0.9999953508377075, 0.9999896883964539, 0.9999614357948303, 0.9997959136962891, 0.998860776424408, 0.9441500902175903] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999982118606567, 0.9999918937683105, 0.999972939491272, 0.9998164772987366, 0.8472388982772827] +Nc1ncc(-c2c[nH]c3cnccc23)cc1Cl; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Nc1ncc(I)cc1Cl', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'Nc1ncc(I)cc1Cl', 'OB(O)c1c[nH]c2cnccc12', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999970197677612, 0.9998922944068909, 0.9980225563049316, 0.9566798806190491, 0.9275079965591431, 0.7735289335250854] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Br)cc1Cl', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999918341636658, 0.9999906420707703, 0.9999468326568604, 0.9995979070663452, 0.9899502396583557] +CNC(=O)c1c(F)cccc1-c1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1ncc(-c2cc3c(=O)[nH]cc(Br)c3s2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2ccc(N3CCOCC3)cc2)cc1Cl; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ncc(Cl)cc1Cl', 'Clc1ccc(N2CCOCC2)cc1', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1']; [1.0, 1.0, 0.9999997615814209, 0.9999991655349731, 0.9999980330467224, 0.9999954700469971, 0.9999951124191284, 0.9999946355819702, 0.9999289512634277] +CS(=O)(=O)c1ccc(-c2cnc(N)c(Cl)c2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Nc1ncc(I)cc1Cl', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [1.0, 1.0, 0.9999998211860657, 0.9999997019767761, 0.9999988079071045, 0.9999949932098389, 0.9999911785125732, 0.9999903440475464, 0.999987006187439, 0.9989451169967651, 0.9947815537452698] +Cc1cc(-c2cnc(N)c(Cl)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC1(c2cnc(N)c(Cl)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1ncc(-n2ccc(CO)n2)cc1Cl; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9920074939727783, 0.9754544496536255, 0.9734165072441101] +CN(c1cnc(N)c(Cl)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1cnc(N)c(Cl)c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9858401417732239, 0.8607885837554932, 0.8498381972312927] +C[C@@H](Nc1cnc(N)c(Cl)c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9858401417732239, 0.8607885837554932, 0.8498381972312927] +C[C@H](Nc1cnc(N)c(Cl)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ncc(-c2c(F)cccc2Cl)cc1Cl; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Fc1cccc(Cl)c1I', 'Nc1ncc(I)cc1Cl', 'Fc1cccc(Cl)c1Br', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'NNc1c(F)cccc1Cl']; ['Nc1ncc(Br)cc1Cl', 'Fc1cccc(Cl)c1Br', 'Nc1ncc(I)cc1Cl', 'Fc1cccc(Cl)c1I', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncc(Br)cc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncccc1Cl']; [1.0, 1.0, 0.9999994039535522, 0.9999992251396179, 0.9999991655349731, 0.9999978542327881, 0.9999884366989136, 0.9999878406524658, 0.9996201992034912, 0.8874915838241577] +Nc1ncc(-n2cnc(CCO)c2)cc1Cl; ['Nc1ncc(Br)cc1Cl']; ['OCCc1c[nH]cn1']; [0.9949625134468079] +Nc1ncc(-n2ncc3ccccc32)cc1Cl; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(I)cc1Cl']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9990705847740173, 0.9981846809387207, 0.9946231842041016] +Nc1ncc(-n2ncc3c(O)cccc32)cc1Cl; ['Nc1ncc(F)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9996329545974731, 0.9989768266677856, 0.9893699884414673, 0.8760343790054321] +COc1ccc(-c2cnc(N)c(Cl)c2)c(OC)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['COc1ccc(Br)c(OC)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'COc1ccc(I)c(OC)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999933242797852, 0.9999895095825195, 0.9999779462814331, 0.9999718070030212, 0.9999463558197021, 0.9993927478790283, 0.9992600679397583, 0.9860891103744507, 0.9797194004058838] +Nc1ncc(-c2ccc(C(=O)c3ccccc3)cc2)cc1Cl; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl']; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Nc1ncc(Cl)cc1Cl', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999980926513672, 0.9999957084655762, 0.9999946355819702, 0.999988317489624, 0.9999796152114868, 0.9999148845672607, 0.9999102354049683, 0.999323844909668, 0.9992060661315918, 0.9794795513153076, 0.7945472002029419] +Nc1ncc(-c2ccc(-n3cncn3)cc2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2nc3ccc(O)cc3[nH]2)cc1Cl; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc(N)c(Cl)c2)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)c(Cl)c2)CC1; [None]; [None]; [0] +Nc1ncc(CCC(=O)NCc2ccccn2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2nncn2C2CC2)cc1Cl; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1nnc(-c2cnc(N)c(Cl)c2)s1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['Nc1nnc(Br)s1']; [0.9999854564666748] +CCc1cc(-c2cnc(N)c(Cl)c2)nc(N)n1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'Nc1ncc(Br)cc1Cl']; [0.9999997019767761, 0.9991785287857056] +Nc1ncc(-c2cn(Cc3ccccc3)nn2)cc1Cl; ['Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl']; ['c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1']; [0.9999819993972778, 0.9999136328697205] +Nc1ncc(-c2ccn(CC[NH3+])n2)cc1Cl; [None]; [None]; [0] +Nc1ncc(Cc2nnc3ccc(-c4ccccc4)nn23)cc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(Cl)c2)s1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['CNC(=O)c1ccc(Br)s1']; [0.9999997019767761] +CC(C)(O)c1cccc(-c2cnc(N)c(Cl)c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(Br)cc1Cl']; [0.999998927116394, 0.9999953508377075, 0.9990761280059814] +Nc1ncc(CS(=O)(=O)NCc2ccccn2)cc1Cl; [None]; [None]; [0] +CCCCc1cc(-c2cnc(N)c(Cl)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc(N)c(Cl)c1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3s2)cc1Cl; ['Brc1nc2ccccc2s1', 'Nc1ncc(Br)cc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', None]; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'c1ccc2scnc2c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', None]; [0.9999986290931702, 0.9999023079872131, 0.9998584985733032, 0.9998582601547241, 0] +Nc1cncc(-c2cnc(N)c(Cl)c2)n1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1cncc(Cl)n1']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Nc1ncc(Br)cc1Cl']; [0.999997615814209, 0.9999955296516418, 0.9970360994338989] +Nc1ncc(-c2cccc3ccsc23)cc1Cl; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; ['Nc1ncc(Br)cc1Cl', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999990463256836, 0.9999886751174927, 0.9999497532844543, 0.9990419149398804, 0.9305752515792847] +CC1(C)Oc2ccc(-c3cnc(N)c(Cl)c3)nc2NC1=O; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)Oc2cccnc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999821186065674, 0.9453600645065308, 0.889998733997345] +Nc1ncc(-c2cccc3nnsc23)cc1Cl; ['Brc1cccc2nnsc12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Brc1cccc2nnsc12']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1cccc2nnsc12', 'Nc1ncc(Br)cc1Cl']; [0.9999979734420776, 0.9999512434005737, 0.9789674282073975] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc(N)c(Cl)c3)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc(N)c(Cl)c2)CC1; [None]; [None]; [0] +Nc1ncc(-c2ncc3ccccc3n2)cc1Cl; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Clc1ncc2ccccc2n1']; [0.9999617338180542, 0.9998727440834045] +Nc1ncc(Oc2ccc(C[NH3+])cc2F)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cccnc23)cc1Cl; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ncc(Br)cc1Cl', 'Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'Nc1ncc(I)cc1Cl']; [0.9999862909317017, 0.9999634027481079, 0.9999169111251831, 0.9994900226593018] +Nc1ncc(-c2ncc3cc[nH]c3n2)cc1Cl; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C']; ['Clc1ncc2cc[nH]c2n1']; [0.9999836683273315] +Nc1ncc(-c2nc(N)c3ccccc3n2)cc1Cl; ['Nc1ncc(I)cc1Cl']; ['Nc1ncnc2ccccc12']; [0.991847038269043] +COc1ccc(C#N)cc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br']; ['COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'COc1ccc(C#N)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncccc1Cl']; [0.9999997615814209, 0.9999995827674866, 0.9999987483024597, 0.9999985098838806, 0.9999979138374329, 0.9999963045120239, 0.9999924898147583, 0.9999909400939941, 0.9999784231185913, 0.9999602437019348, 0.9992953538894653, 0.9992721080780029, 0.9983800649642944] +CC(=O)Nc1ncc(-c2cnc(N)c(Cl)c2)[nH]1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)c(Cl)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1B(O)O']; ['COc1ncccc1Br', 'Nc1ncc(Br)cc1Cl', 'COc1ncccc1I', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999980330467224, 0.999990701675415, 0.9999855756759644, 0.9999525547027588, 0.9999291896820068, 0.9999223351478577, 0.9995355606079102, 0.998863160610199, 0.9938016533851624, 0.988142728805542] +COc1ccc(Oc2cnc(N)c(Cl)c2)c(F)c1F; ['COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1ncc(O)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(O)cc1Cl', 'Nc1ncc(F)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999372959136963, 0.9999297261238098, 0.998021125793457, 0.9966241717338562, 0.984182596206665, 0.9203670024871826] +Nc1ncc(-c2cn(CCO)cn2)cc1Cl; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc(N)c(Cl)c2)c1; ['CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1']; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'COc1ccc(OC)c(Cl)c1', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncccc1Cl', 'Nc1ncc(Br)cc1Cl']; [0.9999983310699463, 0.9999970197677612, 0.999995768070221, 0.9999914169311523, 0.9999881982803345, 0.9999383687973022, 0.9999328255653381, 0.9999146461486816, 0.9998593330383301, 0.9971635937690735, 0.9911531805992126, 0.8608968257904053, 0.831739604473114] +CN(C)S(=O)(=O)c1cccc(-c2cnc(N)c(Cl)c2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnc(N)c(Cl)c2)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(Br)cc1Cl', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.999997615814209, 0.9999972581863403, 0.9999971985816956, 0.9999237656593323, 0.9999188780784607, 0.998694658279419, 0.9912086129188538, 0.9389470815658569] +Nc1ncc(N2CC=C(c3c[nH]c4ccccc34)CC2)cc1Cl; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Nc1ncc(F)cc1Cl', 'Nc1ncc(Br)cc1Cl', 'Nc1ncc(I)cc1Cl', 'Nc1ncc(Cl)cc1Cl']; [0.9999576807022095, 0.999884843826294, 0.9998348951339722, 0.991916298866272] +Nc1ncc(N2CCC(c3nc4ccccc4[nH]3)CC2)cc1Cl; ['Nc1ncc(Br)cc1Cl', 'Nc1ncc(F)cc1Cl']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9998209476470947, 0.9992538690567017] +Nc1ncc(-c2cccc(NC(=O)C3CCNCC3)c2)cc1Cl; [None]; [None]; [0] +CN(C)c1cc(-c2cnc(N)c(Cl)c2)cnn1; [None]; [None]; [0] +Oc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Oc1cccc(Br)c1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'c1cnc2ccncc2c1']; [0.9999997615814209, 0.999978244304657, 0.9976348876953125, 0.7606613636016846] +C[C@@]1(O)CC[C@H](c2cnc(N)c(Cl)c2)CC1; [None]; [None]; [0] +c1cnc2c(-c3cccc4ncccc34)cncc2c1; [None]; [None]; [0] +Oc1cc(-c2cncc3cccnc23)ccc1Cl; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl']; [0.9999982118606567, 0.9999591112136841, 0.941215991973877] +Fc1ccc(Oc2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['Oc1ccc(F)cc1']; [0.9984314441680908] +CNS(=O)(=O)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999989867210388, 0.9999669790267944, 0.969606876373291] +Clc1ccc2c(c1-c1cncc3cccnc13)OCO2; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'Brc1cncc2cccnc12', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'Clc1cccc(Cl)c1', 'c1cnc2ccncc2c1', 'O=C(O)c1cncc2cccnc12']; [0.9999672174453735, 0.9989055395126343, 0.9954094290733337, 0.9953126311302185, 0.9683083295822144, 0.8968767523765564, 0.8677185773849487, 0.8120476007461548] +NC(=O)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999998807907104, 0.999995231628418, 0.9977395534515381, 0.9860026836395264, 0.8896418809890747] +c1cnc2c(-c3n[nH]c4ccccc34)cncc2c1; ['Brc1cncc2cccnc12']; ['c1ccc2[nH]ncc2c1']; [0.9321088790893555] +NC(=O)c1ccc(-c2cncc3cccnc23)c(F)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9999980926513672, 0.9999305009841919, 0.9989506006240845] +COc1cc(C(N)=O)ccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999993443489075, 0.9837257862091064] +Oc1ccc(-c2cncc3cccnc23)c(Cl)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1']; [0.9999922513961792, 0.999793291091919, 0.9799500703811646] +Oc1ccc(-c2cncc3cccnc23)c(F)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1']; [0.9999823570251465, 0.9985424280166626, 0.9864954948425293] +COc1cc(F)ccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'Brc1cncc2cccnc12']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'COc1cccc(F)c1']; [0.9999948740005493, 0.9999667406082153, 0.9999024868011475, 0.9936809539794922, 0.988100528717041, 0.9862326383590698, 0.9749760627746582, 0.7867038249969482] +COc1ccc(F)cc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'Brc1cncc2cccnc12']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'COc1ccc(F)cc1']; [0.9999935626983643, 0.9999055862426758, 0.9993271827697754, 0.9988393187522888, 0.9972442388534546, 0.868523359298706] +Cc1nc2c(F)cc(-c3cncc4cccnc34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cncc2cccnc12; [None]; [None]; [0] +Nc1nccc(-c2cncc3cccnc23)n1; [None]; [None]; [0] +COc1cc(-c2cncc3cccnc23)ccc1O; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999997615814209, 0.9999512434005737, 0.997194230556488, 0.8860199451446533, 0.8722251653671265] +Oc1ccc(-c2ccc(-c3cncc4cccnc34)cc2)c(O)c1; ['Brc1cncc2cccnc12']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9965429902076721] +COC(=O)c1ccc(-c2cncc3cccnc23)o1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1']; [0.9999924898147583, 0.9992891550064087, 0.9992150068283081, 0.9974889755249023] +O=C([O-])c1ccc(-c2cncc3cccnc23)cc1; [None]; [None]; [0] +Brc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cccc(I)c1', 'OB(O)c1cccc(Br)c1', 'Brc1cncc2cccnc12', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Brc1cncc2cccnc12', 'c1cnc2ccncc2c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Brc1cncc2cccnc12', 'c1cnc2ccncc2c1']; [0.9999947547912598, 0.9997000098228455, 0.997525155544281, 0.9891946315765381, 0.9388272166252136, 0.9157323837280273, 0.8811748027801514] +Cn1cc(-c2cncc3cccnc23)c2ccccc21; ['Brc1cncc2cccnc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999950528144836] +c1ccc2cc(-c3cncc4cccnc34)ccc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1ccc2ccccc2c1', 'Br[Mg]c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Ic1ccc2ccccc2c1', 'F[B-](F)(F)c1ccc2ccccc2c1', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1ccc2ccccc2c1']; [0.9999995231628418, 0.9999974370002747, 0.9999917149543762, 0.9999586343765259, 0.9996784329414368, 0.9993606209754944, 0.9990190267562866, 0.9986613988876343, 0.8957237005233765, 0.8847798109054565, 0.8796694278717041] +Oc1ccc(-c2cncc3cccnc23)cc1F; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Oc1ccc(Br)cc1F']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'c1cnc2ccncc2c1']; [0.9999995827674866, 0.9999865293502808, 0.9986422657966614, 0.9262114763259888] +COc1cc(CCc2cncc3cccnc23)ccc1O; [None]; [None]; [0] +c1cnc2c(-c3cnn4ncccc34)cncc2c1; ['Brc1cncc2cccnc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; [0.9999836683273315] +COC(=O)c1ccc(Cl)c(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999987483024597, 0.9996424913406372, 0.999439001083374, 0.9935815334320068, 0.9923109412193298, 0.8426982164382935] +c1cnc2c(-c3c[nH]c4cnccc34)cncc2c1; ['Brc1cncc2cccnc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.997148871421814] +Nc1cc(-c2cncc3cccnc23)ccn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999997615814209, 0.9999697208404541, 0.9989916086196899] +Fc1ccc(-c2cncc3cccnc23)cc1Cl; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Brc1cncc2cccnc12']; ['OB(O)c1ccc(F)c(Cl)c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'Fc1ccccc1Cl']; [1.0, 1.0, 0.9999992251396179, 0.9999891519546509, 0.9999600648880005, 0.9998928308486938, 0.9986261129379272, 0.9938497543334961, 0.9921063184738159, 0.9650448560714722] +Oc1ccc(Cl)c(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12']; ['OB(O)c1cc(O)ccc1Cl']; [0.9970627427101135] +Clc1ccccc1OCc1cncc2cccnc12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br']; [0.9999922513961792, 0.9939517974853516, 0.98891282081604, 0.8533428907394409] +Oc1ncc(-c2cncc3cccnc23)cc1Cl; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Oc1ncc(Br)cc1Cl']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(Br)cc1Cl', 'Oc1ncccc1Cl', 'c1cnc2ccncc2c1']; [0.9999991655349731, 0.9963080883026123, 0.9925715923309326, 0.7877287864685059] +Fc1ccc(-c2nc[nH]c2-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.9976610541343689] +Oc1ccc(-c2cncc3cccnc23)c(O)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1cncc2cccnc12', 'COc1cc(I)cc(OC)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'c1cnc2ccncc2c1', 'COc1cccc(OC)c1', 'c1cnc2ccncc2c1']; [0.9999998807907104, 0.9999994039535522, 0.9999927282333374, 0.9994115829467773, 0.9993203282356262, 0.9982464909553528, 0.935688853263855, 0.8533477187156677] +Cc1ccc2[nH]ncc2c1-c1cncc2cccnc12; [None]; [None]; [0] +COc1ccc(-c2cncc3cccnc23)cc1OC; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(NN)cc1OC', 'Brc1cncc2cccnc12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc(Br)cc1OC', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'COc1ccccc1OC']; [0.9999997615814209, 0.9999929666519165, 0.9999867677688599, 0.999444842338562, 0.9986303448677063, 0.996807336807251, 0.9952853918075562, 0.984485387802124, 0.8702641725540161, 0.7991160750389099] +NC(=O)c1cc(-c2cncc3cccnc23)c[nH]1; [None]; [None]; [0] +c1cnc2c(-c3cnc4[nH]ccc4c3)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cncc2cccnc12']; [0.9999997019767761, 0.9999992847442627, 0.9997515678405762] +Cc1nc2ccc(-c3cncc4cccnc34)cc2[nH]1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999994039535522, 0.9887193441390991] +CCOc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CCOc1cccc(B(O)O)c1', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'c1cnc2ccncc2c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc(Br)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999995231628418, 0.9999972581863403, 0.999955415725708, 0.9987947344779968, 0.9981231689453125, 0.9948936104774475, 0.9706606864929199, 0.9240537285804749] +NC(=O)Nc1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; [0.9999998211860657] +CS(=O)(=O)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'CS(=O)(=O)c1ccccc1']; [1.0, 0.9999982118606567, 0.9999946355819702, 0.999285101890564, 0.9936294555664062, 0.9701827764511108, 0.9697239398956299] +c1cnc2c(-c3nc4ccccc4s3)cncc2c1; ['Brc1cncc2cccnc12', 'Nc1ccccc1S', 'Brc1cncc2cccnc12', 'Nc1ccccc1S']; ['c1ccc2scnc2c1', 'O=C(O)c1cncc2cccnc12', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'O=Cc1cncc2cccnc12']; [0.9999696612358093, 0.9999637603759766, 0.9999063014984131, 0.9997850060462952] +CNC(=O)c1cccc2cc(-c3cncc4cccnc34)ccc12; [None]; [None]; [0] +O=C1Cc2cc(-c3cncc4cccnc34)ccc2N1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999964237213135, 0.9999498128890991, 0.9992423057556152, 0.9858828186988831] +Oc1cncc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9999524354934692, 0.9997386932373047, 0.9593172669410706] +COc1cc(CCc2cncc3cccnc23)cc(OC)c1; [None]; [None]; [0] +CNc1nccc(-c2cncc3cccnc23)n1; ['Brc1cncc2cccnc12']; ['CNc1nccc(Cl)n1']; [0.9986929893493652] +C[C@H](CC(N)=O)c1cncc2cccnc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; [0.9999980926513672] +CCc1cc(O)ccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'CCc1cc(O)ccc1Br']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'c1cnc2ccncc2c1']; [0.9999536275863647, 0.9573792219161987] +CN(c1cccc(Cl)c1)c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['CNc1cccc(Cl)c1']; [0.9507346153259277] +Cc1n[nH]c(-c2cncc3cccnc23)c1C; ['Brc1cncc2cccnc12']; ['Cc1c[nH]nc1C']; [0.9982612133026123] +Cc1cc(O)ccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Cc1cc(O)ccc1Br']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br', 'c1cnc2ccncc2c1']; [0.9999557137489319, 0.9980085492134094, 0.9451949596405029, 0.7691357731819153] +Cc1n[nH]c2cc(N(C)c3cncc4cccnc34)ccc12; [None]; [None]; [0] +FC(F)c1cc(-c2cncc3cccnc23)[nH]n1; ['Brc1cncc2cccnc12']; ['FC(F)c1cc[nH]n1']; [0.9589252471923828] +CCc1sccc1-c1cncc2cccnc12; [None]; [None]; [0] +Clc1cnccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Clc1cnccc1I', 'Clc1cnccc1Br']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)COB(c2ccncc2Cl)OC1', 'OB(O)c1ccncc1Cl', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9998970627784729, 0.9996632933616638, 0.9985661506652832, 0.9030817747116089, 0.8748281002044678] +Oc1c(Cl)cc(-c2cncc3cccnc23)cc1Cl; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl']; [0.9999995231628418, 0.9999862909317017, 0.9978995323181152] +Oc1cc(-c2cncc3cccnc23)nc2ccnn12; ['Brc1cncc2cccnc12']; ['Oc1ccnc2ccnn12']; [0.9989728927612305] +CNc1nc(-c2cncc3cccnc23)ncc1F; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)CCN4)cncc2c1; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cncc4cccnc34)cc2[nH]1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1']; [0.9999994039535522, 0.9999967813491821, 0.999939501285553] +Cc1oc(-c2cncc3cccnc23)cc1C(=O)[O-]; [None]; [None]; [0] +c1cnc2c(Nc3ccncc3)cncc2c1; ['Brc1cncc2cccnc12']; ['Nc1ccncc1']; [0.9999529123306274] +Fc1cc(Br)ccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1ccc(Br)cc1F', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'c1cnc2ccncc2c1', 'Fc1cccc(Br)c1']; [0.9999696016311646, 0.9981814622879028, 0.9934476613998413, 0.979705274105072, 0.8930186629295349, 0.8343110680580139] +Fc1ccc2n[nH]c(-c3cncc4cccnc34)c2c1; ['Brc1cncc2cccnc12']; ['Fc1ccc2n[nH]cc2c1']; [0.9998881816864014] +CNC(=O)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; [1.0, 0.9999990463256836, 0.9989302158355713] +Cn1ncc(N)c1-c1cncc2cccnc12; [None]; [None]; [0] +Cc1cc(-c2cncc3cccnc23)ccc1C(N)=O; ['Brc1cncc2cccnc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [1.0] +O=C(NC1CC1)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'O=C(NC1CC1)c1ccc(I)cc1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'c1cnc2ccncc2c1']; [1.0, 0.9999995231628418, 0.9998857975006104, 0.9872834086418152] +Oc1cc(Br)cc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1']; [0.9999985694885254, 0.9999750256538391, 0.9963180422782898] +CN(c1cccc2[nH]ncc12)c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['CNc1cccc2[nH]ncc12']; [0.9999955892562866] +Cc1nc2ccc(-c3cncc4cccnc34)cc2o1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [1.0, 0.9999997615814209, 0.9981505870819092] +Cc1cc(-c2cncc3cccnc23)cc(C)c1O; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Cc1cc(B(O)O)cc(C)c1O', 'Brc1cncc2cccnc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'c1cnc2ccncc2c1', 'Cc1cccc(C)c1O']; [0.9999986886978149, 0.9998406171798706, 0.987250566482544, 0.9546467065811157, 0.8937331438064575] +Oc1c(F)cc(-c2cncc3cccnc23)cc1F; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cccc1F', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.999998152256012, 0.999847412109375, 0.9919548034667969, 0.9363340139389038, 0.8934926986694336, 0.792803168296814] +O=c1[nH][nH]c2cc(-c3cncc4cccnc34)ccc12; ['Brc1cncc2cccnc12']; ['O=c1[nH][nH]c2cc(Br)ccc12']; [0.9991708993911743] +CSc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc(Br)c1']; [0.9999984502792358, 0.9997678995132446, 0.9982379674911499, 0.9430272579193115] +c1ccc2c(COc3cncc4cccnc34)cccc2c1; ['Brc1cncc2cccnc12']; ['OCc1cccc2ccccc12']; [0.8796461820602417] +Fc1ccc(Oc2cncc3cccnc23)c(F)c1; ['Brc1cncc2cccnc12']; ['Oc1ccc(F)cc1F']; [0.9999363422393799] +Cc1onc(-c2ccccc2)c1-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.9999987483024597] +Fc1ccc(-c2ncoc2-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['Fc1ccc(-c2cocn2)cc1']; [0.9999775886535645] +Fc1ccc(COc2cncc3cccnc23)c(F)c1; ['Brc1cncc2cccnc12']; ['OCc1ccc(F)cc1F']; [0.9995259046554565] +Fc1cccc(Cl)c1CNc1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['NCc1c(F)cccc1Cl']; [1.0] +Clc1ccc(-c2[nH]ncc2-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['Clc1ccc(-c2ccn[nH]2)cc1']; [0.9715218544006348] +c1cnc2c(CCc3c[nH]c4ccccc34)cncc2c1; [None]; [None]; [0] +Fc1ccc(CCc2cncc3cccnc23)c(F)c1; ['Brc1cncc2cccnc12']; ['Fc1ccc(CCBr)c(F)c1']; [0.9998893737792969] +Cc1nnc(-c2ccccc2-c2cncc3cccnc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; [0.9998942017555237] +CNC(=O)c1ccccc1-c1cncc2cccnc12; [None]; [None]; [0] +CCOc1ccccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CCOc1ccccc1B(O)O', 'Brc1cncc2cccnc12', 'CCOc1ccccc1Br', 'Brc1cncc2cccnc12']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'c1cnc2ccncc2c1', 'CCOc1ccccc1Br', 'c1cnc2ccncc2c1', 'CCOc1ccccc1']; [0.9999810457229614, 0.9998941421508789, 0.9922901391983032, 0.9818246364593506, 0.9778180122375488, 0.9636162519454956] +Fc1cc(F)cc(Cc2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'O=Cc1cc(F)cc(F)c1', 'Fc1cc(F)cc(CCl)c1', 'O=Cc1cc(F)cc(F)c1']; ['Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(CBr)c1', 'c1cnc2c(c1)CNCC2', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999995231628418, 0.9999986290931702, 0.9999910593032837, 0.9999872446060181, 0.9999443292617798, 0.9652700424194336, 0.8834291100502014] +CP(C)(=O)c1ccccc1-c1cncc2cccnc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cncc2cccnc12; [None]; [None]; [0] +CCn1cc(-c2cncc3cccnc23)cn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cccn1', 'c1cnc2ccncc2c1']; [0.9999995231628418, 0.999956488609314, 0.9984335899353027, 0.9876409769058228] +FC(F)(F)c1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'F[B-](F)(F)c1cccc(C(F)(F)F)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'FC(F)(F)c1ccccc1']; [1.0, 0.9999934434890747, 0.9999932646751404, 0.9999820590019226, 0.9996236562728882, 0.999274730682373, 0.9985238313674927, 0.9973524808883667, 0.9880294799804688, 0.7959513068199158] +c1cnc2c(-c3ccnc4ccccc34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1ccnc2ccccc12']; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1ccnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', 'c1cnc2ccncc2c1']; [0.9999858140945435, 0.9998786449432373, 0.9978545904159546, 0.9269727468490601] +FC(F)(F)Oc1ccccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'NNc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999994039535522, 0.9999929666519165, 0.9999863505363464, 0.9997339248657227, 0.999488353729248, 0.9993629455566406, 0.9990208745002747, 0.9990116953849792, 0.9837932586669922, 0.9136033654212952] +COC(C)(C)CCc1cncc2cccnc12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cncc4cccnc34)cn2)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1cnc2ccncc2c1']; [0.9999997615814209, 0.99998939037323, 0.9975879192352295] +NC(=O)c1ccccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999768137931824, 0.9969273805618286, 0.9775912165641785] +Cn1cnc2ccc(-c3cncc4cccnc34)cc2c1=O; ['Brc1cncc2cccnc12', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'c1cnc2ccncc2c1']; [0.9997435212135315, 0.7851253747940063] +CC(C)(C)c1nc(-c2cncc3cccnc23)cs1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'CC(C)(C)c1nccs1']; [1.0, 0.99519944190979] +OCCn1cc(-c2cncc3cccnc23)cn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999994039535522, 0.9999712705612183, 0.999100923538208] +c1ccc(-c2ncc(-c3cncc4cccnc34)[nH]2)cc1; ['Brc1cncc2cccnc12']; ['c1ccc(-c2ncc[nH]2)cc1']; [0.923535943031311] +Clc1ccc(Cl)c(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999862313270569, 0.9998081922531128, 0.9985588192939758, 0.9940284490585327, 0.9890117049217224, 0.8185281753540039] +CC(C)C(=O)COc1cncc2cccnc12; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Cc1cn2ccccc2n1']; ['Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1C(=O)O', 'c1cnc2ccncc2c1']; [0.9999299645423889, 0.9997024536132812, 0.9993640184402466, 0.9549481868743896] +Cc1ccc(-c2cncc3cccnc23)c(Br)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; [0.9929643869400024, 0.85565185546875] +O=C(Nc1cccc(-c2cncc3cccnc23)c1)c1ccccc1; [None]; [None]; [0] +c1cnc2c(-c3cnc4ccccn34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'c1ccn2ccnc2c1']; ['O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1cnc2ccncc2c1']; [0.999912440776825, 0.999875545501709, 0.9244928359985352] +COc1cnc(-c2cncc3cccnc23)nc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cncc2cccnc12; [None]; [None]; [0] +Cc1nc(C)c(-c2cncc3cccnc23)s1; ['Brc1cncc2cccnc12']; ['Cc1csc(C)n1']; [0.998304009437561] +CNc1nc(C)c(-c2cncc3cccnc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['Cc1csc(N)n1']; [0.9769068360328674] +c1cnc2c(-c3cnc4cccnn34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cnc2cccnn12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Clc1cnc2cccnn12', 'Brc1cncc2cccnc12', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12']; [0.999996542930603, 0.9999957084655762, 0.999977707862854, 0.9998778104782104] +c1cncc(CNc2cncc3cccnc23)c1; ['Brc1cncc2cccnc12']; ['NCc1cccnc1']; [0.9999805092811584] +Cc1c(-c2cncc3cccnc23)sc(=O)n1C; [None]; [None]; [0] +c1cnc2c(NCCc3c[nH]cn3)cncc2c1; ['Brc1cncc2cccnc12']; ['NCCc1c[nH]cn1']; [0.9971950054168701] +c1cncc(Nc2cncc3cccnc23)c1; ['Brc1cncc2cccnc12']; ['Nc1cccnc1']; [0.9999411106109619] +O=C(Nc1cncc2cccnc12)c1cccs1; [None]; [None]; [0] +c1cnc2c(-n3cnc4ccccc43)cncc2c1; ['Brc1cncc2cccnc12']; ['c1ccc2[nH]cnc2c1']; [0.9997115135192871] +Cc1ccc(Cl)c(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9998544454574585, 0.9989522695541382, 0.9936931133270264, 0.9804441928863525, 0.9715534448623657, 0.8969157338142395] +c1cc(Cn2cncn2)cc(-c2cncc3cccnc23)c1; [None]; [None]; [0] +c1ccc(CCNc2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['NCCc1ccccc1']; [0.9998679161071777] +FC(F)(F)c1n[nH]cc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br']; [0.9999852180480957, 0.9837827086448669] +c1ccc2c(-c3cncc4cccnc34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2ccccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'F[B-](F)(F)c1cncc2ccccc12', 'Brc1cncc2cccnc12']; [0.9999041557312012, 0.9994235038757324, 0.9987930059432983, 0.9960628747940063, 0.9940800666809082, 0.9519126415252686] +NC(=O)c1c(F)cccc1-c1cncc2cccnc12; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cncc4cccnc34)ccc12; ['Brc1cncc2cccnc12']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9997471570968628] +Clc1ccc(CNc2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['NCc1ccc(Cl)cc1']; [0.9999620914459229] +Cn1cc(-c2ccc(-c3cncc4cccnc34)cc2)cn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [1.0, 0.9995801448822021] +O=C([O-])Cc1cccc(-c2cncc3cccnc23)c1; [None]; [None]; [0] +CN1c2ccc(-c3cncc4cccnc34)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cncc3cccnc23)n1; [None]; [None]; [0] +Cn1ncc2cc(-c3cncc4cccnc34)ccc21; [None]; [None]; [0] +OCc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999995231628418, 0.9998754262924194, 0.999737024307251, 0.9905335903167725] +Fc1ccccc1CNc1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['NCc1ccccc1F']; [0.9999969601631165] +c1cnc2c(-c3ccc(-c4cn[nH]c4)cc3)cncc2c1; [None]; [None]; [0] +CC(C)n1cc(-c2cncc3cccnc23)nn1; ['Brc1cncc2cccnc12']; ['CC(C)n1ccnn1']; [0.9999382495880127] +CSc1nc(-c2cncc3cccnc23)c[nH]1; ['Brc1cncc2cccnc12']; ['CSc1ncc[nH]1']; [0.8711190223693848] +c1cnc2c(-c3csc4ncncc34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Brc1csc2ncncc12', 'c1ncc2ccsc2n1']; [0.9909073710441589, 0.9056971073150635] +COc1cc(-c2cncc3cccnc23)ccc1C(=O)[O-]; [None]; [None]; [0] +N#CCCc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9999948143959045] +c1ccc2[nH]c(-c3cncc4cccnc34)cc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'OB(O)c1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1']; [0.9999992847442627, 0.9999927878379822, 0.9739546775817871] +CC(C)c1oncc1-c1cncc2cccnc12; [None]; [None]; [0] +Nc1nc(-c2cncc3cccnc23)cs1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; [0.9999995827674866] +Fc1ccc(-c2cncc3cccnc23)c(C(F)(F)F)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999857544898987, 0.9996402263641357, 0.9952102303504944, 0.987686038017273, 0.983633279800415, 0.9423731565475464] +c1cnc2c(CCc3c[nH]nn3)cncc2c1; [None]; [None]; [0] +Nc1ncncc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['Nc1ncncc1Br']; [0.97722327709198] +c1ccc(Oc2cncc3cccnc23)nc1; ['Brc1cncc2cccnc12']; ['Oc1ccccn1']; [0.8531920313835144] +CC(=O)Nc1cccc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'c1cnc2ccncc2c1']; [1.0, 0.9999903440475464, 0.9996534585952759, 0.9993228912353516, 0.8657853007316589] +CCNc1nc2ccc(-c3cncc4cccnc34)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cncc3cccnc23)CC1; ['Brc1cncc2cccnc12']; ['CS(=O)(=O)C1CCNCC1']; [0.9923239946365356] +CC(C)(COc1cncc2cccnc12)S(C)(=O)=O; [None]; [None]; [0] +NC(=O)CCCc1cncc2cccnc12; [None]; [None]; [0] +COc1ccc(-c2cncc3cccnc23)cc1Cl; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(Br)cc1Cl', 'Brc1cncc2cccnc12', 'COc1ccc(NN)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'COc1ccc(Br)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl', 'c1cnc2ccncc2c1', 'COc1ccccc1Cl', 'c1cnc2ccncc2c1']; [1.0, 0.9999990463256836, 0.9999974966049194, 0.9997868537902832, 0.9996249675750732, 0.9996107816696167, 0.9986774921417236, 0.9982370734214783, 0.9796018600463867, 0.958269476890564] +CCCn1cc(-c2cncc3cccnc23)cn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; [1.0, 0.9999923706054688] +c1cnc2c(-c3cnn4ccccc34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1']; [0.999984860420227, 0.9999065399169922, 0.9993928670883179] +O=c1cc(-c2cncc3cccnc23)cc[nH]1; ['Brc1cncc2cccnc12']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; [0.9999996423721313] +CC(C)(O)CC(=O)NCCc1cncc2cccnc12; [None]; [None]; [0] +O=C(Nc1cncc2cccnc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +O=C1CCc2cccc(-c3cncc4cccnc34)c21; ['Brc1cncc2cccnc12', 'O=C1CCc2cccc(Br)c21']; ['O=C1CCc2cccc(Br)c21', 'c1cnc2ccncc2c1']; [0.9932413101196289, 0.9750465154647827] +CC(C)(N)c1ccc(-c2cncc3cccnc23)cc1; [None]; [None]; [0] +CCN(CC)c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['CCNCC']; [0.9882756471633911] +CCNS(=O)(=O)c1ccccc1-c1cncc2cccnc12; [None]; [None]; [0] +C[C@@H](Oc1cncc2cccnc12)c1c(Cl)cncc1Cl; ['Brc1cncc2cccnc12', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'c1cnc2ccncc2c1']; [0.9986988306045532, 0.9105995893478394] +[NH3+]Cc1ccc(-c2cncc3cccnc23)cc1C(F)(F)F; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cncc4cccnc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cncc2cccnc12; ['Brc1cncc2cccnc12', 'COc1ccncc1N']; ['COc1ccncc1N', 'c1cnc2ccncc2c1']; [0.9998186826705933, 0.9949236512184143] +c1ccc(-c2ccncc2Nc2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Nc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'c1cnc2ccncc2c1']; [0.9999756813049316, 0.9916772246360779] +C[S@](=O)c1ccc(-c2cncc3cccnc23)cc1; [None]; [None]; [0] +c1ccc2ncc(Nc3cncc4cccnc34)cc2c1; ['Brc1cncc2cccnc12']; ['Nc1cnc2ccccc2c1']; [0.999876856803894] +CC(C)(C)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1cncc2cccnc12', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(NN)cc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'c1cnc2ccncc2c1', 'CC(C)(C)c1ccccc1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [1.0, 0.9999960660934448, 0.999978244304657, 0.9999419450759888, 0.9998204708099365, 0.9967513084411621, 0.9900370836257935, 0.9842723608016968, 0.9838101267814636, 0.8076415061950684] +CC(C)Oc1cncc(-c2cncc3cccnc23)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'CC(C)Oc1cncc(Br)c1', 'Brc1cncc2cccnc12']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'c1cnc2ccncc2c1', 'CC(C)Oc1cccnc1']; [0.9999985694885254, 0.9999903440475464, 0.9991594552993774, 0.9903814196586609, 0.9460304975509644] +COc1cccc(F)c1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1cccc(F)c1B(O)O', 'Brc1cncc2cccnc12', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'c1cnc2ccncc2c1', 'COc1cccc(F)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [1.0, 0.999998927116394, 0.9999943971633911, 0.9999815225601196, 0.9996758699417114, 0.9995408058166504, 0.9995133280754089, 0.9975724816322327, 0.7872281670570374] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [1.0, 0.9999977946281433, 0.9989429116249084] +O=c1[nH]cc(Br)c2sc(-c3cncc4cccnc34)cc12; [None]; [None]; [0] +c1cnc2c(-c3ccc(N4CCOCC4)cc3)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1cncc2cccnc12', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [1.0, 0.9999995827674866, 0.9999947547912598, 0.9999812245368958, 0.999961256980896, 0.9349967241287231, 0.9052470922470093] +CC1(c2cncc3cccnc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cncc2cccnc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1cncc2cccnc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cncc2cccnc12; [None]; [None]; [0] +C[C@@H](Nc1cncc2cccnc12)C(C)(C)O; ['Brc1cncc2cccnc12']; ['C[C@@H](N)C(C)(C)O']; [0.9988418817520142] +Cc1cc(-c2cncc3cccnc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cncc2cccnc12)C(C)(C)O; ['Brc1cncc2cccnc12']; ['C[C@H](N)C(C)(C)O']; [0.9988418817520142] +OCCc1cn(-c2cncc3cccnc23)cn1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['OCCc1c[nH]cn1', 'OCCc1cnc[nH]1']; [0.9999958276748657, 0.9999685883522034] +OCc1ccn(-c2cncc3cccnc23)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Fc1cccc(Cl)c1Br', 'Brc1cncc2cccnc12', 'Fc1cccc(Cl)c1I', 'NNc1c(F)cccc1Cl']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'c1cnc2ccncc2c1', 'Fc1cccc(Cl)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [1.0, 0.9999994039535522, 0.9999982714653015, 0.9999966621398926, 0.9991790056228638, 0.9971778392791748, 0.9970805048942566, 0.9444733262062073] +c1cnc2c(-n3ncc4ccccc43)cncc2c1; ['Brc1cncc2cccnc12']; ['c1ccc2[nH]ncc2c1']; [0.9998632669448853] +Oc1cccc2c1cnn2-c1cncc2cccnc12; ['Brc1cncc2cccnc12']; ['Oc1cccc2[nH]ncc12']; [0.9993340969085693] +c1cnc2c(-c3ccc(-n4cncn4)cc3)cncc2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cncc4cccnc34)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cncc2cccnc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cncc3cccnc23)cc1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999991655349731, 0.9999887943267822, 0.9975510835647583, 0.9922910928726196, 0.9766957759857178] +COc1ccc(-c2cncc3cccnc23)c(OC)c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.999997615814209, 0.9999732971191406, 0.9998980760574341, 0.9946231842041016, 0.9929803609848022, 0.9412593841552734, 0.9318981170654297, 0.8477370142936707] +CSc1nc(C)c(-c2cncc3cccnc23)[nH]1; [None]; [None]; [0] +c1cnc2c(-c3nncn3C3CC3)cncc2c1; [None]; [None]; [0] +O=S(=O)(Cc1cncc2cccnc12)NCc1ccccn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cncc3cccnc23)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cncc5cccnc45)n3n2)cc1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cncc4cccnc34)nn2)cc1; ['Brc1cncc2cccnc12']; ['c1ccc(Cn2ccnn2)cc1']; [0.9997929334640503] +Nc1nnc(-c2cncc3cccnc23)s1; ['NNC(N)=S']; ['O=C(O)c1cncc2cccnc12']; [0.9613158106803894] +CCc1cc(-c2cncc3cccnc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc3cccnc23)s1; ['Brc1cncc2cccnc12']; ['CNC(=O)c1ccc(Br)s1']; [0.9996083378791809] +[NH3+]CCn1ccc(-c2cncc3cccnc23)n1; [None]; [None]; [0] +O=C(CCc1cncc2cccnc12)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(-c2cncc3cccnc23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cncc3cccnc23)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cncc4cccnc34)nc2NC1=O; ['Brc1cncc2cccnc12']; ['CC1(C)Oc2cccnc2NC1=O']; [0.9994196891784668] +c1cnc2c(-c3cccc4ccsc34)cncc2c1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'OB(O)c1cccc2ccsc12']; [0.9999980926513672, 0.9997695684432983] +Nc1cncc(-c2cncc3cccnc23)n1; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9977196455001831, 0.8701649308204651] +Cn1cc(C(N)=O)cc1-c1cncc2cccnc12; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cncc3cccnc23)c(F)c1; [None]; [None]; [0] +c1cnc2c(-c3cccc4nnsc34)cncc2c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cncc3cccnc23)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cncc4cccnc34)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cncc3cccnc23)[nH]1; [None]; [None]; [0] +c1cnc2c(-c3ncc4cc[nH]c4n3)cncc2c1; [None]; [None]; [0] +c1ccc2nc(-c3cncc4cccnc34)ncc2c1; [None]; [None]; [0] +Nc1nc(-c2cncc3cccnc23)nc2ccccc12; [None]; [None]; [0] +c1cnc2c(-c3c[nH]c4cccnc34)cncc2c1; [None]; [None]; [0] +OCCn1cnc(-c2cncc3cccnc23)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1', 'c1cnc2ccncc2c1']; [0.9999931454658508, 0.9999783039093018, 0.9999520182609558, 0.999347448348999, 0.997238278388977, 0.9971652030944824, 0.9967710971832275] +COc1ccc(Oc2cncc3cccnc23)c(F)c1F; ['Brc1cncc2cccnc12']; ['COc1ccc(O)c(F)c1F']; [0.9991236329078674] +COc1ncccc1-c1cncc2cccnc12; ['Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12', 'COc1ncccc1Br', 'Brc1cncc2cccnc12', 'Brc1cncc2cccnc12']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'c1cnc2ccncc2c1', 'COc1ncccc1Br', 'COc1ccccn1']; [0.9999597072601318, 0.9993693232536316, 0.9970254898071289, 0.985808253288269, 0.9795200824737549, 0.9553494453430176] +c1cnc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cncc2c1; ['Brc1cncc2cccnc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9991017580032349] +COc1ccc(OC)c(-c2cncc3cccnc23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cncc3cccnc23)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cncc3cccnc23)CC1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cncc3cccnc23)C1; ['Brc1cncc2cccnc12']; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; [0.9999591708183289] +O=C(Nc1cccc(-c2cncc3cccnc23)c1)C1CCNCC1; [None]; [None]; [0] +CN(C)c1cc(-c2cncc3cccnc23)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999992251396179, 0.9999990463256836] +CCOc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999995827674866, 0.9999968409538269, 0.9999967813491821, 0.999983549118042, 0.9999265670776367, 0.9983659982681274, 0.9948839545249939, 0.9115030765533447, 0.8313884735107422] +COc1ncccc1-c1n[nH]c2cc(C#N)ccc12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999986886978149, 0.9999960064888, 0.9999772310256958, 0.9999144077301025, 0.9998468160629272, 0.9989143013954163, 0.9511173963546753, 0.765608549118042] +CS(=O)(=O)c1cccc(-c2n[nH]c3cc(C#N)ccc23)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999986886978149, 0.9999980926513672, 0.9999960064888, 0.9999915361404419, 0.9998033046722412, 0.9963318109512329, 0.9889850616455078] +COc1cc(-c2n[nH]c3cc(C#N)ccc23)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999936819076538, 0.9999852180480957, 0.9999762773513794, 0.9999711513519287, 0.9998072981834412, 0.9987561702728271, 0.9954105615615845, 0.9239389896392822, 0.9187982082366943] +Cc1ccc2ncn(-c3n[nH]c4cc(C#N)ccc34)c2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +N#Cc1ccc2c(-c3ncc4ccccc4n3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3nc4ccccc4[nH]3)n[nH]c2c1; ['N#Cc1ccc2c(C(=O)O)n[nH]c2c1']; ['Nc1ccccc1N']; [0.9999247789382935] +N#Cc1ccc(O)c(-c2n[nH]c3cc(C#N)ccc23)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1']; [0.9981949329376221, 0.9940688014030457] +COc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999983310699463, 0.9999973177909851, 0.9999715685844421, 0.9999702572822571, 0.9992524981498718, 0.9965275526046753, 0.9331351518630981, 0.8965212106704712] +N#Cc1ccc2c(-c3cccc(O)c3)n[nH]c2c1; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1']; [0.9999966621398926, 0.9999924898147583, 0.9999606609344482, 0.9998581409454346, 0.9988812208175659, 0.989880383014679, 0.7895188331604004] +N#Cc1ccc2c(-c3cccc(NC(=O)C4CC4)c3)n[nH]c2c1; ['N#Cc1ccc2c(Br)n[nH]c2c1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9998195767402649] +N#Cc1ccc2c(-c3cnc4cccnn34)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(C(=O)[O-])cc3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(N4CCOCC4)cc3)n[nH]c2c1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3cc(C#N)ccc23)sn1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(C(N)=O)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999998211860657, 0.9999982118606567, 0.9999974966049194] +N#Cc1ccc2c(Nc3ncccn3)n[nH]c2c1; ['Clc1ncccn1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'CS(=O)c1ncccn1', 'CS(=O)(=O)c1ncccn1']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'Nc1ncccn1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9998555779457092, 0.9997670650482178, 0.9995095729827881, 0.9917505979537964] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3n[nH]c4cc(C#N)ccc34)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3n[nH]c4cc(C#N)ccc34)cn2)c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3nccc4ccccc34)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cccc(C4CCNCC4)c3)n[nH]c2c1; ['Brc1cccc(C2CCNCC2)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1']; [0.996563196182251] +CC(=O)NCc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999997615814209, 0.9999997615814209, 0.9999977350234985, 0.9999940395355225, 0.9992486834526062, 0.9974051713943481, 0.8705874681472778] +N#Cc1ccc2c(Nc3ccncn3)n[nH]c2c1; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'Clc1ccncn1', 'Fc1ccncn1', 'Brc1ccncn1']; ['Nc1ccncn1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999961256980896, 0.9999901652336121, 0.999957799911499, 0.99991774559021] +N#Cc1ccc2c(-c3ccc(C(=O)Nc4ccccc4)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 1.0, 0.9999989867210388, 0.9999974966049194] +N#Cc1ccc2c(-c3ccc(OCCO)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999997615814209, 0.9999990463256836, 0.9999837875366211, 0.999970018863678, 0.9672898054122925, 0.7949366569519043] +N#Cc1ccc2c(-c3ccc(C(=O)N4CCOCC4)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 1.0, 1.0, 0.9999998807907104, 0.9999291300773621] +CNS(=O)(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999988079071045, 0.9999987483024597, 0.9999908208847046, 0.9999903440475464, 0.961395263671875] +N#Cc1ccc2c(-c3ccc(C(=O)N4CCOCC4)cn3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc4c(c3)CS(=O)(=O)C4)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(C(F)(F)F)cc3)n[nH]c2c1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2n[nH]c3cc(C#N)ccc23)s1; ['Cc1csc(C)n1']; ['N#Cc1ccc2cn[nH]c2c1']; [0.96771240234375] +CN(C)S(=O)(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999871253967285, 0.9999856948852539, 0.9831229448318481] +C[C@H](O)COc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2n[nH]c3cc(C#N)ccc23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3n[nH]c4cc(C#N)ccc34)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2n[nH]c3cc(C#N)ccc23)nc(N)n1; [None]; [None]; [0] +N#Cc1ccc2c([C@H]3CCN(C(=O)c4ccccc4)C3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(Br)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'Brc1ccc(I)cc1', 'Cc1ccc(S(=O)(=O)NN=Cc2ccc(Br)cc2)cc1', 'N#Cc1ccc2cn[nH]c2c1', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1cccc([N+](=O)[O-])c1', 'OB(O)c1ccc(Br)cc1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999997615814209, 0.9999989867210388, 0.9999917149543762, 0.999944806098938, 0.9987455010414124, 0.9951267242431641, 0.9918587803840637, 0.9651646614074707, 0.9234129786491394] +CCCOc1ccc(-c2n[nH]c3cc(C#N)ccc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999750852584839, 0.9998881816864014, 0.9997888803482056, 0.9976416826248169, 0.9896645545959473] +N#Cc1ccc2c(-c3ccn4nccc4n3)n[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1n[nH]c2cc(C#N)ccc12; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999849796295166, 0.9999147653579712, 0.9999110698699951, 0.99660325050354, 0.9913904666900635, 0.9841638803482056] +N#Cc1ccc2c(-c3ccccc3-n3cccn3)n[nH]c2c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3n[nH]c4cc(C#N)ccc34)[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3c[nH]c4ccccc34)n[nH]c2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1c[nH]c2ccccc12', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999590516090393, 0.9999555945396423, 0.9999340772628784, 0.9995387196540833, 0.9746237993240356, 0.9634110331535339, 0.9126380681991577, 0.7959125638008118] +COc1cc(OC)c(-c2n[nH]c3cc(C#N)ccc23)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl']; ['N#Cc1ccc2c(Br)n[nH]c2c1']; [0.993755042552948] +N#Cc1ccc2c(-c3ccc4c(c3)CCO4)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cc(-c4ccccc4)[nH]n3)n[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2n[nH]c3cc(C#N)ccc23)c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3cc(C#N)ccc23)ccc1O; [None]; [None]; [0] +N#Cc1ccc2c(-c3cccc4c3OCO4)n[nH]c2c1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'Brc1cccc2c1OCO2', 'N#Cc1ccc2c(I)n[nH]c2c1', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'N#Cc1ccc2cn[nH]c2c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OB(O)c1cccc2c1OCO2', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1cccc2c1OCO2', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'OB(O)c1cccc2c1OCO2']; [0.9999976754188538, 0.9999939799308777, 0.9999897480010986, 0.9996507167816162, 0.9989527463912964, 0.9651266932487488, 0.9609049558639526, 0.9456839561462402] +COc1cc(C(=O)N2CCOCC2)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999995827674866, 0.9999995231628418, 0.9999946355819702, 0.9999939799308777, 0.9999372363090515, 0.9980500936508179, 0.9934959411621094, 0.9492693543434143, 0.8099378347396851] +CN(C)C(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [1.0, 1.0, 0.9999980926513672, 0.9999979734420776, 0.9970517754554749, 0.9949647188186646] +CC1(COc2n[nH]c3cc(C#N)ccc23)COC1; ['CC1(CO)COC1']; ['N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9987239837646484] +CC(C)(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [1.0, 0.9999996423721313, 0.999998927116394, 0.9999955296516418, 0.9991805553436279, 0.9650550484657288] +N#Cc1ccc2c(-c3cnc4ccccc4c3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3scc4c3OCCO4)n[nH]c2c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2n[nH]c3cc(C#N)ccc23)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999995231628418, 0.9999995231628418, 0.9996817708015442] +CC(=O)N[C@@H]1CC[C@@H](c2n[nH]c3cc(C#N)ccc23)CC1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccn(-c4cccc(Cl)c4)n3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3csc(N)n3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cc4ccccc4s3)n[nH]c2c1; ['N#Cc1ccc2cn[nH]c2c1']; ['c1ccc2sccc2c1']; [0.9966632127761841] +CSc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999986886978149, 0.9999975562095642, 0.9999871253967285, 0.9999817609786987, 0.9996082782745361, 0.973501443862915, 0.907274603843689] +CCN1CCN(Cc2ccc(-c3n[nH]c4cc(C#N)ccc34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999980926513672, 0.9999978542327881, 0.9923503398895264] +N#Cc1ccc2c(-c3ccc(F)cc3Cl)n[nH]c2c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'Fc1ccc(Br)c(Cl)c1', 'N#Cc1ccc2cn[nH]c2c1', 'Fc1ccc(Br)c(Cl)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(F)cc1Cl', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(F)cc1Cl', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(F)cc1Cl', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999959468841553, 0.9999855756759644, 0.9999781847000122, 0.9998950362205505, 0.9998007416725159, 0.9993469715118408, 0.9270273447036743, 0.8840545415878296] +Cc1cc(-c2n[nH]c3cc(C#N)ccc23)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999986290931702, 0.9999973773956299, 0.999988317489624, 0.9999828934669495, 0.9990584850311279, 0.9978490471839905, 0.9529225826263428, 0.9133642911911011] +N#Cc1ccc2c(-c3ccc4c(c3)CCC(=O)N4)n[nH]c2c1; [None]; [None]; [0] +CCc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999991655349731, 0.9999984502792358, 0.999975323677063, 0.9999729990959167, 0.9996589422225952, 0.9691040515899658, 0.8087106943130493] +COc1ccc(CNc2n[nH]c3cc(C#N)ccc23)cc1; ['COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999991655349731, 0.9999910593032837, 0.9999752640724182, 0.9999579191207886, 0.9999121427536011, 0.9998165369033813] +N#Cc1ccc2c(-c3ncc(Br)cn3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(Cl)cc3Cl)n[nH]c2c1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(I)c(Cl)c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'Clc1ccc(Br)c(Cl)c1', 'N#Cc1ccc2cn[nH]c2c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999955892562866, 0.9999852180480957, 0.9999783039093018, 0.9999016523361206, 0.9997966885566711, 0.9974292516708374, 0.9533777236938477] +C[C@H]1CCCN1C(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3cc(C#N)ccc23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [1.0, 1.0, 0.9999960660934448, 0.9998467564582825] +Cn1cc(-c2n[nH]c3cc(C#N)ccc23)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999994039535522, 0.9999994039535522, 0.999987006187439, 0.8925249576568604] +N#Cc1ccc2c(NC3CN(C(=O)C4CC4)C3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cccc4ccc(O)cc34)n[nH]c2c1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1']; [0.999984085559845, 0.9999587535858154] +N#Cc1ccc2c(-c3ncc4cccn4n3)n[nH]c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3n[nH]c4cc(C#N)ccc34)ccc2O1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cc4ccccn4n3)n[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3cc(C#N)ccc23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [1.0, 0.9999998211860657, 0.9999994039535522, 0.9999988079071045, 0.9999158382415771, 0.9956853985786438, 0.9890490770339966] +COc1ccc2cccc(-c3n[nH]c4cc(C#N)ccc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2n[nH]c3cc(C#N)ccc23)cc1OC; [None]; [None]; [0] +Cc1nc(Nc2n[nH]c3cc(C#N)ccc23)sc1C; ['Cc1nc(Br)sc1C']; ['N#Cc1ccc2c(N)n[nH]c2c1']; [0.999993085861206] +Cc1cc(Nc2n[nH]c3cc(C#N)ccc23)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C', 'Cc1cc(Br)nn1C']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999982118606567, 0.9999947547912598, 0.9999944567680359] +N#Cc1ccc2c(-c3cnn(CCO)c3)n[nH]c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999997019767761, 0.9999997019767761, 0.9999954700469971, 0.9999946355819702, 0.9976386427879333, 0.9803009033203125] +N#Cc1ccc2c(-c3cc(N)nc4[nH]ccc34)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ncc(Cl)cn3)n[nH]c2c1; [None]; [None]; [0] +Cc1csc2c(-c3n[nH]c4cc(C#N)ccc34)ncnc12; [None]; [None]; [0] +N#Cc1ccc2c(NC(=O)c3ccco3)n[nH]c2c1; ['N#Cc1ccc2c(N)n[nH]c2c1']; ['O=C(Cl)c1ccco1']; [0.9999925494194031] +CCNC(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)nc1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3cc(C#N)ccc23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +N#Cc1ccc2c(Cc3ccc(S(=O)(=O)CCO)cc3)n[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc2c(Cc3ccc(C(N)=O)cc3)n[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2n[nH]c3cc(C#N)ccc23)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999973773956299, 0.9999967813491821, 0.9999945163726807, 0.9999916553497314, 0.9998462200164795, 0.9645435810089111, 0.9507560133934021] +COc1ccc2c(c1)c(-c1n[nH]c3cc(C#N)ccc13)cn2C; ['COc1ccc2c(ccn2C)c1']; ['N#Cc1ccc2cn[nH]c2c1']; [0.9980952739715576] +CO[C@@H]1CC[C@@H](c2n[nH]c3cc(C#N)ccc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2n[nH]c3cc(C#N)ccc23)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2n[nH]c3cc(C#N)ccc23)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [1.0, 1.0, 0.9999951124191284] +N#Cc1ccc2c(-c3cccc(C(=O)Nc4cn[nH]c4)c3)n[nH]c2c1; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3cc(C#N)ccc23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999992251396179, 0.9999931454658508, 0.9999811053276062] +N#Cc1ccc2c(-c3ccc4cn[nH]c4c3)n[nH]c2c1; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'N#Cc1ccc2c(I)n[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'N#Cc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1']; ['OB(O)c1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999997615814209, 0.9999997615814209, 0.9999996423721313, 0.9999992847442627, 0.999971866607666, 0.9642135500907898, 0.931065022945404] +CNC(=O)c1ccc(OC)c(-c2n[nH]c3cc(C#N)ccc23)c1; ['CNC(=O)c1ccc(OC)c(Br)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9967942237854004] +COc1ccc2oc(-c3n[nH]c4cc(C#N)ccc34)cc2c1; [None]; [None]; [0] +N#Cc1ccc2c(-c3cc4ccccc4o3)n[nH]c2c1; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; ['OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1']; [0.9999793767929077, 0.931483268737793] +COc1ccc2nc(-c3n[nH]c4cc(C#N)ccc34)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['N#Cc1ccc2c(C(=O)O)n[nH]c2c1']; [0.9998265504837036] +C[NH+](C)Cc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1n[nH]c2cc(C#N)ccc12; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999759197235107, 0.9999713897705078, 0.9189146757125854] +COc1ccc(F)c(C(=O)Nc2n[nH]c3cc(C#N)ccc23)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999697804450989] +N#Cc1ccc2c(-c3cc(-c4cccnc4)ccn3)n[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +N#Cc1ccc2c(-c3ccc(OC(F)(F)F)cc3)n[nH]c2c1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc([Zn]I)cc1', 'FC(F)(F)Oc1ccc([Mg]Br)cc1', 'N#Cc1ccc2cn[nH]c2c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [1.0, 1.0, 0.9999997019767761, 0.9999992251396179, 0.9999984502792358, 0.9999967217445374, 0.9999868869781494, 0.9998688101768494, 0.9998505115509033, 0.9958304166793823, 0.9954725503921509] +N#Cc1ccc2c(-c3ncc4sccc4n3)n[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3cc(C#N)ccc23)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1']; [0.9999470710754395, 0.99993896484375] +N#Cc1ccc2c(-c3cccc(NC(=O)N4CCCC4)c3)n[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cn1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9994207620620728] +CCc1cccc(-c2n[nH]c3cc(C#N)ccc23)n1; [None]; [None]; [0] +N#Cc1ccc2c(-c3ncn4c3CCCC4)n[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3n[nH]c4cc(C#N)ccc34)ccc21; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3cc(C#N)ccc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3n[nH]c4cc(C#N)ccc34)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3n[nH]c4cc(C#N)ccc34)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3n[nH]c4cc(C#N)ccc34)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1']; [0.9999979138374329, 0.9999973773956299] +N#Cc1ccc2c(NC(=O)c3cccc(OC(F)(F)F)c3)n[nH]c2c1; ['N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [1.0, 1.0, 0.9999966621398926] +Cc1n[nH]c2cc(-c3n[nH]c4cc(C#N)ccc34)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999996423721313, 0.9999995231628418, 0.9999993443489075, 0.9999980330467224, 0.9999027252197266, 0.9998581409454346, 0.998275637626648, 0.9894216060638428, 0.986821174621582] +N#Cc1ccc2c(-c3cccc(N4CCCC4=O)c3)n[nH]c2c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(I)n[nH]c2c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [1.0, 0.9999998211860657, 0.9994194507598877, 0.9957036972045898] +N#Cc1ccc2c(-c3ccc(CCO)cc3)n[nH]c2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3n[nH]c4cc(C#N)ccc34)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1']; [0.9999887943267822, 0.9999738931655884, 0.9831206202507019] +CCNC(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['N#Cc1ccc2c(I)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2cn[nH]c2c1']; [0.9999966621398926, 0.9999959468841553, 0.9970664978027344, 0.9944164752960205, 0.9136868715286255] +Cc1cc(N2CCOCC2)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +N#Cc1ccc2c(Nc3ccc(F)cn3)n[nH]c2c1; ['Fc1ccc(Br)nc1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'Fc1ccc(Cl)nc1', 'Fc1ccc(F)nc1']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'Nc1ccc(F)cn1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999995827674866, 0.9999994039535522, 0.9999988079071045, 0.9999278783798218] +Cc1cc(Nc2n[nH]c3cc(C#N)ccc23)ncc1F; ['Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Br)ncc1F']; ['N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(Br)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999979734420776, 0.9999977946281433, 0.9999968409538269] +COc1cc(N2CCNCC2)ccc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +N#Cc1ccc2c(Nc3ccccn3)n[nH]c2c1; ['N#Cc1ccc2c(Br)n[nH]c2c1', 'Fc1ccccn1', 'Clc1ccccn1', 'Brc1ccccn1']; ['Nc1ccccn1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1', 'N#Cc1ccc2c(N)n[nH]c2c1']; [0.9999868273735046, 0.9999805688858032, 0.999951958656311, 0.9999313354492188] +CN(C)C(=O)c1ccc(-c2n[nH]c3cc(C#N)ccc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2n[nH]c3cc(C#N)ccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2n[nH]c3cc(C#N)ccc23)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['N#Cc1ccc2c(Br)n[nH]c2c1']; [0.987983226776123] +Cn1nc(-c2n[nH]c3cc(C#N)ccc23)cc1C(C)(C)O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1n[nH]c2cc(C#N)ccc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2n[nH]c3cc(C#N)ccc23)c1; [None]; [None]; [0] +CCOc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +COc1ncccc1-c1cc2ccccc2[nH]c1=O; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I']; [0.9994108080863953, 0.9987452030181885, 0.9986577033996582, 0.9960707426071167] +Cc1nc(C(C)(C)O)sc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc4ccccc4[nH]c3=O)c2c1; ['Cc1ccc2nc[nH]c2c1']; ['O=c1[nH]c2ccccc2cc1Cl']; [0.9685267210006714] +CS(=O)(=O)c1cccc(-c2cc3ccccc3[nH]c2=O)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccccc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9999979734420776, 0.9999797344207764, 0.9999700784683228, 0.9999608993530273, 0.9998515248298645, 0.9998049736022949, 0.9595489501953125] +O=C(Nc1cccc(-c2cc3ccccc3[nH]c2=O)c1)C1CC1; ['O=C(Nc1cccc(Br)c1)C1CC1']; ['O=c1ccc2ccccc2[nH]1']; [0.9984298944473267] +O=c1[nH]c2ccccc2cc1-c1cccc(O)c1; ['O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'O=c1ccc2ccccc2[nH]1']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'Oc1cccc(Br)c1']; [0.9993743896484375, 0.9982479214668274, 0.9975528120994568, 0.9963482618331909, 0.9932221174240112, 0.9465610980987549] +COc1cc(-c2cc3ccccc3[nH]c2=O)cc(OC)c1OC; [None]; [None]; [0] +COc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(C=C[N+](=O)[O-])cc1', 'COc1ccccc1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1ccc2ccccc2[nH]1', 'c1ccc(-c2cc3ccccc3[nH]2)cc1', 'O=c1[nH]c2ccccc2cc1I']; [0.9999603033065796, 0.9999374151229858, 0.9994522333145142, 0.9993035197257996, 0.9986672401428223, 0.9976617097854614, 0.9963844418525696, 0.9959648847579956, 0.9936622977256775, 0.9930126667022705, 0.9831048250198364, 0.9760725498199463, 0.9700312614440918] +O=c1[nH]c2ccccc2cc1-c1cnc2cccnn12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'Brc1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1']; [0.9999870657920837, 0.9999817609786987, 0.9998112320899963, 0.9997684955596924, 0.9996790885925293, 0.9991061091423035, 0.9982219934463501, 0.9964597225189209, 0.9957349300384521, 0.7621887922286987] +O=c1[nH]c2ccccc2cc1-c1nc2ccccc2[nH]1; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'CCOC(=O)c1cc2ccccc2[nH]c1=O']; ['O=Cc1cc2ccccc2[nH]c1=O', 'O=C(O)c1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1CO', 'Nc1ccccc1N']; [0.9961034655570984, 0.9918943643569946, 0.9767175316810608, 0.9731853008270264] +NC(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I']; [0.9998250007629395, 0.9997897148132324, 0.998901903629303, 0.9045592546463013] +Cc1cc(Nc2cc3ccccc3[nH]c2=O)sn1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1Nc1ncccn1; ['Brc1ncccn1', 'Fc1ncccn1', 'Clc1ncccn1', 'CS(=O)c1ncccn1', 'Nc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1ncccn1']; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O']; [0.9890827536582947, 0.983855128288269, 0.9830083250999451, 0.9739310145378113, 0.9645663499832153, 0.9596119523048401, 0.8130477666854858] +O=C([O-])c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1nccc2ccccc12; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I']; [0.9999901056289673, 0.9999717473983765, 0.9999257326126099] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4ccccc4[nH]c3=O)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4ccccc4[nH]c3=O)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I']; [0.9999610185623169, 0.9993114471435547, 0.9617094993591309] +O=C(c1ccc(-c2cc3ccccc3[nH]c2=O)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1']; [0.9999933242797852, 0.999979555606842, 0.9998432397842407, 0.9876317977905273] +O=c1[nH]c2ccccc2cc1-c1ccc(OCCO)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1Nc1ccncn1; ['Clc1ccncn1', 'Nc1cc2ccccc2[nH]c1=O', 'Fc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cc2ccccc2[nH]c1=O']; ['Nc1cc2ccccc2[nH]c1=O', 'O=c1ccnc[nH]1', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'Nc1ccncn1']; [0.9780644178390503, 0.9252549409866333, 0.8927398920059204, 0.8807889223098755, 0.8288395404815674, 0.78058922290802] +O=c1[nH]c2ccccc2cc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9997137784957886, 0.9991563558578491, 0.998401939868927, 0.9964499473571777] +O=C(c1ccc(-c2cc3ccccc3[nH]c2=O)nc1)N1CCOCC1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(C(F)(F)F)cc1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'O=[N+]([O-])C=Cc1ccc(C(F)(F)F)cc1', 'NNc1ccc(C(F)(F)F)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'c1ccc(-c2cc3ccccc3[nH]2)cc1', 'O=c1ccc2ccccc2[nH]1']; [0.9999723434448242, 0.9998853206634521, 0.9998733401298523, 0.999782383441925, 0.9991953372955322, 0.9978712797164917, 0.9945829510688782, 0.9910740852355957, 0.8927977681159973] +C[C@@H](O)COc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(C=C[N+](=O)[O-])cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccccc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1ccc2ccccc2[nH]1', 'c1ccc(-c2cc3ccccc3[nH]2)cc1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9999747276306152, 0.9999579191207886, 0.9994217157363892, 0.9990664124488831, 0.9981218576431274, 0.9981131553649902, 0.994617223739624, 0.993894636631012, 0.9907938838005066, 0.985781729221344, 0.9818642139434814, 0.9539984464645386, 0.9083325862884521] +CS(=O)(=O)N1CCC(c2cc3ccccc3[nH]c2=O)CC1; ['CS(=O)(=O)Cl', None, 'CS(=O)(=O)F']; ['O=c1[nH]c2ccccc2cc1C1CCNCC1', None, 'O=c1[nH]c2ccccc2cc1C1CCNCC1']; [0.9979865550994873, 0, 0.9837961196899414] +CN(C)S(=O)(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I']; [0.999950647354126, 0.9998600482940674, 0.9995643496513367, 0.9989941120147705, 0.9988669157028198, 0.996548056602478, 0.979156494140625, 0.9751826524734497, 0.9743427038192749, 0.9350277781486511] +Cc1nc(C)c(-c2cc3ccccc3[nH]c2=O)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1']; [0.9992054104804993, 0.9735497236251831, 0.8811628818511963] +CCNS(=O)(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I']; [0.9953230023384094, 0.9949671030044556, 0.9467244148254395] +CC(C)c1cc(-c2cc3ccccc3[nH]c2=O)nc(N)n1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3ccccc3[nH]c2=O)nc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(Br)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=[N+]([O-])C=Cc1ccc(Br)cc1', 'NNc1ccc(Br)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'c1ccc(-c2cc3ccccc3[nH]2)cc1', 'O=c1ccc2ccccc2[nH]1']; [0.9999628067016602, 0.9980206489562988, 0.9947330951690674, 0.9943721294403076, 0.98442542552948, 0.8355010151863098] +CCN(CC)C(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9999809265136719, 0.9999748468399048, 0.9992914199829102, 0.9990174770355225, 0.9955340623855591, 0.9881627559661865, 0.9838519096374512] +CNS(=O)(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)c(C)c1; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['O=c1[nH]c2ccccc2cc1I']; [0.9992125034332275] +O=c1[nH]c2ccccc2cc1-c1ccn2nccc2n1; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; ['c1cnc2ccnn2c1', 'c1cnc2ccnn2c1']; [0.9983564615249634, 0.9767040014266968] +Cc1c(C(=O)[O-])cccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cc3ccccc3[nH]c2=O)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4ccccc4[nH]c3=O)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1Cl; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2ccccc2[nH]c1=O; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9999392032623291, 0.9997051954269409, 0.9987198114395142, 0.9983263611793518, 0.9982528686523438, 0.9922927618026733, 0.9476455450057983] +CC(C)c1ccc2nc(-c3cc4ccccc4[nH]c3=O)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cc2ccccc2[nH]c1=O']; [0.9783626794815063] +O=c1[nH]c2ccccc2cc1-c1ccccc1-n1cccn1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cc3ccccc3[nH]c2=O)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3ccccc3[nH]c2=O)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1']; [0.9999798536300659, 0.9998822808265686, 0.9992583394050598, 0.9971669912338257, 0.9950141906738281] +O=c1[nH]c2ccccc2cc1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3[nH]c2=O)ccc1O; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(NN)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1']; [0.9999545812606812, 0.9997926354408264, 0.9995205998420715, 0.9520931839942932] +O=c1[nH]c2ccccc2cc1-c1cccc2c1OCO2; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1scc2c1OCCO2; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1cnc2ccccc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.999967098236084, 0.9999296069145203, 0.9993150234222412, 0.9983187913894653, 0.9954712390899658] +COc1cccc(C(=O)Nc2cc3ccccc3[nH]c2=O)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1', 'COc1cccc(C(N)=O)c1']; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9941893815994263, 0.9914608001708984, 0.8181442022323608, 0.7825108766555786] +CC1(COc2cc3ccccc3[nH]c2=O)COC1; ['Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CBr)COC1', 'CC1(CI)COC1', 'CC1(CO)COC1', 'CC1(CCl)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['O=c1[nH]c2ccccc2cc1O', 'O=c1[nH]c2ccccc2cc1O', 'O=c1[nH]c2ccccc2cc1O', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1O', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1O']; [0.9928070306777954, 0.9539300203323364, 0.923809289932251, 0.9141784310340881, 0.8907159566879272, 0.8584151268005371, 0.7912358045578003] +Nc1nc(-c2cc3ccccc3[nH]c2=O)cs1; [None]; [None]; [0] +CSc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Br)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1']; [0.9999755024909973, 0.9998975992202759, 0.9976205825805664, 0.9930897951126099, 0.9908517599105835, 0.9611169695854187, 0.9396862983703613] +CC(=O)N[C@@H]1CC[C@@H](c2cc3ccccc3[nH]c2=O)CC1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(F)cc1Cl; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'NNc1ccc(F)cc1Cl', 'Fc1cccc(Cl)c1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9998315572738647, 0.9996891021728516, 0.9996672868728638, 0.9996408224105835, 0.9980038404464722, 0.9950382709503174, 0.9776672720909119, 0.9720855951309204, 0.9322723746299744] +Cc1cc(-c2cc3ccccc3[nH]c2=O)nc(N)n1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4ccccc4[nH]c3=O)cc2)CC1; [None]; [None]; [0] +COc1ccc(-c2cc3ccccc3[nH]c2=O)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(C=C[N+](=O)[O-])cc1OC']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'c1ccc(-c2cc3ccccc3[nH]2)cc1']; [0.9999286532402039, 0.9999150037765503, 0.9995925426483154, 0.9992890357971191, 0.999194324016571, 0.9946321249008179, 0.9710137844085693] +O=c1[nH]c2ccccc2cc1-c1ncc(Br)cn1; [None]; [None]; [0] +O=C1CCc2cc(-c3cc4ccccc4[nH]c3=O)ccc2N1; [None]; [None]; [0] +COc1ccc(CNc2cc3ccccc3[nH]c2=O)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(CN)cc1']; ['O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1ccc2ccccc2[nH]1']; [0.9962999820709229, 0.9904254674911499, 0.9866798520088196, 0.9772651195526123, 0.9343776106834412, 0.7874219417572021] +O=c1[nH]c2ccccc2cc1-c1ccc(Cl)cc1Cl; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'Clc1ccc(Br)c(Cl)c1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=[N+]([O-])C=Cc1ccc(Cl)cc1Cl']; ['O=c1[nH]c2ccccc2cc1I', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'OB(O)c1ccc(Cl)cc1Cl', 'c1ccc(-c2cc3ccccc3[nH]2)cc1']; [0.9998388290405273, 0.9998053312301636, 0.9993079900741577, 0.9987930059432983, 0.997816801071167, 0.9550343751907349] +O=C(C1CC1)N1CC(Nc2cc3ccccc3[nH]c2=O)C1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ncc2cccn2n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3[nH]c2=O)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9999614953994751, 0.9998600482940674, 0.9996128082275391] +Cn1cc(-c2cc3ccccc3[nH]c2=O)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1']; [0.9998892545700073, 0.9998159408569336, 0.9991579055786133, 0.9975647926330566, 0.9951609373092651, 0.97356116771698] +CC1(C)Cc2cc(-c3cc4ccccc4[nH]c3=O)ccc2O1; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3[nH]c2=O)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1ccccc1Cl']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9999774098396301, 0.9999502897262573, 0.9998889565467834, 0.9996320009231567, 0.9993302822113037, 0.9989653825759888, 0.9976600408554077, 0.9965437650680542, 0.9385781288146973, 0.7589914798736572] +COc1cc(F)c(-c2cc3ccccc3[nH]c2=O)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1ccc(F)cc1OC']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1I']; [0.9992105960845947, 0.9987872838973999, 0.9982097148895264, 0.9836804866790771, 0.8066765069961548] +COc1ccc2cccc(-c3cc4ccccc4[nH]c3=O)c2c1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +Cc1csc2c(-c3cc4ccccc4[nH]c3=O)ncnc12; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1nc(Nc2cc3ccccc3[nH]c2=O)sc1C; ['Cc1nc(Br)sc1C', 'Cc1nc(Cl)sc1C', 'Cc1nc(N)sc1C']; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9994837045669556, 0.9979081749916077, 0.9386295080184937] +O=c1[nH]c2ccccc2cc1-c1cnn(CCO)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9999622106552124, 0.9999409914016724, 0.9997321367263794, 0.9995779991149902] +Cc1cc(Nc2cc3ccccc3[nH]c2=O)nn1C; ['Cc1cc(Br)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C', 'Cc1cc(N)nn1C']; ['Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9997175335884094, 0.9977039694786072, 0.9932582974433899, 0.9835641980171204] +O=C(Nc1cc2ccccc2[nH]c1=O)c1ccco1; ['Nc1cc2ccccc2[nH]c1=O']; ['O=C(Cl)c1ccco1']; [0.8675096035003662] +Nc1cc(-c2cc3ccccc3[nH]c2=O)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3[nH]c2=O)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)nc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3ccccc3[nH]c2=O)CC1; [None, None, 'CCN=C=O', 'CCN', None, 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1', 'CCNC(=O)OCC']; [None, None, 'O=c1[nH]c2ccccc2cc1C1CCNCC1', 'O=c1[nH]c2ccccc2cc1C1CCNCC1', None, 'O=c1[nH]c2ccccc2cc1C1CCNCC1', 'O=c1[nH]c2ccccc2cc1C1CCNCC1', 'O=c1[nH]c2ccccc2cc1C1CCNCC1']; [0, 0, 0.9994165897369385, 0.9993957281112671, 0, 0.9877196550369263, 0.9870513677597046, 0.87125563621521] +O=c1[nH]c2ccccc2cc1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc3ccccc3[nH]c2=O)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +COc1ccc2oc(-c3cc4ccccc4[nH]c3=O)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1', 'COc1ccc2occc2c1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O']; [0.9997271299362183, 0.9969251751899719, 0.9933096170425415, 0.9873143434524536] +CC(C)(C)c1ccc(C(=O)Nc2cc3ccccc3[nH]c2=O)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9991757869720459, 0.9982680082321167, 0.9844598174095154, 0.901559591293335] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3ccccc3[nH]c1=O)cn2C; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +CCn1cc(-c2cc3ccccc3[nH]c2=O)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'O=c1ccc2ccccc2[nH]1', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9994205236434937, 0.9990754127502441, 0.9885324835777283, 0.985404372215271, 0.982693076133728] +O=c1[nH]c2ccccc2cc1-c1cc2ccccc2o1; ['O=c1[nH]c2ccccc2cc1I', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'O=c1[nH]c2ccccc2cc1Cl', 'O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'O=c1[nH]c2ccccc2cc1Cl']; ['OB(O)c1cc2ccccc2o1', 'O=c1[nH]c2ccccc2cc1I', 'OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'c1ccc2occc2c1', 'O=c1[nH]c2ccccc2cc1Cl', 'c1ccc2occc2c1']; [0.9997857213020325, 0.9974101781845093, 0.9962459206581116, 0.9768665432929993, 0.9662361741065979, 0.9337748885154724, 0.808644711971283] +O=c1[nH]c2ccccc2cc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ncc2sccc2n1; [None]; [None]; [0] +COc1ccc2nc(-c3cc4ccccc4[nH]c3=O)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'CCOC(=O)c1cc2ccccc2[nH]c1=O', 'COc1ccc(N)c(N)c1']; ['O=C(O)c1cc2ccccc2[nH]c1=O', 'O=Cc1cc2ccccc2[nH]c1=O', 'COc1ccc(N)c(N)c1', 'O=c1[nH]c2ccccc2cc1CO']; [0.9979161024093628, 0.9976716041564941, 0.9910452365875244, 0.9901254177093506] +COc1ccc(F)c(C(=O)Nc2cc3ccccc3[nH]c2=O)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Nc1cc2ccccc2[nH]c1=O']; [0.9936596155166626] +CC(C)c1nn(C)cc1-c1cc2ccccc2[nH]c1=O; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9999504089355469, 0.9999066591262817] +Cn1cc(Br)cc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +CCc1cccc(-c2cc3ccccc3[nH]c2=O)n1; ['CCc1cccc(Br)n1']; ['O=c1[nH]c2ccccc2cc1I']; [0.8919768333435059] +O=C(Nc1cccc(-c2cc3ccccc3[nH]c2=O)c1)N1CCCC1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cn1cc(-c2cc3ccccc3[nH]c2=O)c2ccccc21; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-c2cc3ccccc3[nH]c2=O)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4ccccc4[nH]c3=O)[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4ccccc4[nH]c3=O)ccc21; [None]; [None]; [0] +O=C(Nc1cc2ccccc2[nH]c1=O)c1cccc(OC(F)(F)F)c1; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=c1[nH]c2ccccc2cc1Cl', 'Nc1cc2ccccc2[nH]c1=O']; [0.9997987747192383, 0.9990912079811096, 0.9647947549819946, 0.8009048104286194] +Cn1nc(Cl)c2cc(-c3cc4ccccc4[nH]c3=O)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3ccccc3[nH]c2=O)cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc4ccccc4[nH]c3=O)cn2)CC1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4ccccc4[nH]c3=O)ccc12; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1-c1ccc(CCO)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc4ccccc4[nH]c3=O)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3ccccc3[nH]c2=O)cc1; [None]; [None]; [0] +Cc1cc(Nc2cc3ccccc3[nH]c2=O)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl']; [0.9992642998695374, 0.9982943534851074, 0.9949660301208496, 0.9603373408317566] +CNC(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)c(OC)c1; [None]; [None]; [0] +O=c1[nH]c2ccccc2cc1Nc1ccc(F)cn1; ['Nc1ccc(F)cn1', 'Fc1ccc(Cl)nc1', 'Fc1ccc(Br)nc1', 'Nc1ccc(F)cn1', 'Fc1ccc(F)nc1']; ['O=c1[nH]c2ccccc2cc1I', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1Cl', 'Nc1cc2ccccc2[nH]c1=O']; [0.995431661605835, 0.9939683079719543, 0.9919984340667725, 0.9762268662452698, 0.9187177419662476] +CN(C)C(=O)c1ccc(-c2cc3ccccc3[nH]c2=O)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['O=c1[nH]c2ccccc2cc1Cl']; [0.9995322227478027] +O=c1[nH]c2ccccc2cc1Nc1ccccn1; ['Ic1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1', 'Brc1ccccn1', 'Clc1ccccn1', 'Nc1cc2ccccc2[nH]c1=O', 'Fc1ccccn1']; ['Nc1cc2ccccc2[nH]c1=O', 'O=c1[nH]c2ccccc2cc1I', 'O=c1[nH]c2ccccc2cc1Cl', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1cc2ccccc2[nH]c1=O', 'Nc1ccccn1', 'Nc1cc2ccccc2[nH]c1=O']; [0.9636859893798828, 0.9607928991317749, 0.9573345184326172, 0.9352616667747498, 0.9271214008331299, 0.8741112947463989, 0.8372927308082581] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3ccccc3[nH]c2=O)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['O=c1ccc2ccccc2[nH]1']; [0.99543696641922] +CCOc1ccccc1-c1c(Br)cnc2[nH]ncc12; ['CCOc1ccccc1B(O)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9993237257003784] +Cn1nc(-c2cc3ccccc3[nH]c2=O)cc1C(C)(C)O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc2ccccc2[nH]c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3ccccc3[nH]c2=O)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c(Br)cnc2[nH]ncc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9998478889465332] +COC(C)(C)CCc1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ccnc2ccccc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2c(Br)cnc3[nH]ncc23)[nH]1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['Clc1c(Br)cnc2[nH]ncc12']; ['OB(O)c1cccc(C(F)(F)F)c1']; [0.9994807243347168] +Fc1cc(F)cc(Cc2c(Br)cnc3[nH]ncc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1c(Br)cnc2[nH]ncc12; ['Clc1c(Br)cnc2[nH]ncc12', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I']; [0.9998518228530884, 0.9897545576095581] +NC(=O)c1ccccc1-c1c(Br)cnc2[nH]ncc12; ['Clc1c(Br)cnc2[nH]ncc12']; ['NC(=O)c1ccccc1B(O)O']; [0.9875626564025879] +CCn1cc(-c2c(Br)cnc3[nH]ncc23)cn1; [None]; [None]; [0] +Cn1cnc2ccc(-c3c(Br)cnc4[nH]ncc34)cc2c1=O; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +OCCn1cc(-c2c(Br)cnc3[nH]ncc23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9984959363937378] +Brc1cnc2[nH]ncc2c1-c1cnn(Cc2ccccc2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9996023774147034, 0.9993278980255127] +Brc1cnc2[nH]ncc2c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c(Br)cnc3[nH]ncc23)cs1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2c(Br)cnc3[nH]ncc23)c1; ['Clc1c(Br)cnc2[nH]ncc12']; ['OB(O)c1cc(Cl)ccc1Cl']; [0.99416583776474] +CC(C)C(=O)COc1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2c(Br)cnc3[nH]ncc23)c1)c1ccccc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9978992938995361] +COc1cnc(-c2c(Br)cnc3[nH]ncc23)nc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Cc1nc(C)c(-c2c(Br)cnc3[nH]ncc23)s1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cnc2ccccn12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cnc2cccnn12; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Cc1ccc(-c2c(Br)cnc3[nH]ncc23)c(Br)c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1NCc1cccnc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['NCc1cccnc1']; [0.9997428059577942] +Cc1ccc(Cl)c(-c2c(Br)cnc3[nH]ncc23)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Cc1ccc(Cl)c(I)c1']; [0.9901050329208374, 0.8392030000686646] +Brc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['Clc1c(Br)cnc2[nH]ncc12', 'Brc1cccc(I)c1']; ['OB(O)c1cccc(Br)c1', 'Brc1cnc2[nH]ncc2c1']; [0.9996176958084106, 0.9418841600418091] +Cc1nc(N)sc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Nc1nccc(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +CNc1nc(C)c(-c2c(Br)cnc3[nH]ncc23)s1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1Nc1cccnc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['Nc1cccnc1']; [0.9998369216918945] +Brc1cnc2[nH]ncc2c1NCCc1c[nH]cn1; ['Clc1c(Br)cnc2[nH]ncc12']; ['NCCc1c[nH]cn1']; [0.9939440488815308] +Brc1cnc2[nH]ncc2c1-c1ccc2ccccc2c1; ['Clc1c(Br)cnc2[nH]ncc12', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1']; [0.9999079704284668, 0.7977044582366943] +O=C(Nc1c(Br)cnc2[nH]ncc12)c1cccs1; [None]; [None]; [0] +Cc1c(-c2c(Br)cnc3[nH]ncc23)sc(=O)n1C; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1NCCc1ccccc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['NCCc1ccccc1']; [0.9972735047340393] +Brc1cnc2[nH]ncc2c1-n1cnc2ccccc21; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cncc2ccccc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OB(O)c1cncc2ccccc12']; [0.9996122121810913, 0.9994666576385498] +Brc1cnc2[nH]ncc2c1-c1cnn2ncccc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ccc(-c2cn[nH]c2)cc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9987781643867493] +Clc1ccc(CNc2c(Br)cnc3[nH]ncc23)cc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['NCc1ccc(Cl)cc1']; [0.9991154670715332] +O=C([O-])Cc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3c(Br)cnc4[nH]ncc34)ccc21; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12', 'Brc1cnc2[nH]ncc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21']; [0.9999960660934448, 0.9999911785125732, 0.9749777913093567] +Cn1cc(-c2ccc(-c3c(Br)cnc4[nH]ncc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3c(Br)cnc4[nH]ncc34)ccc12; [None]; [None]; [0] +Oc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['Clc1c(Br)cnc2[nH]ncc12']; ['OB(O)c1cccc(O)c1']; [0.9998573064804077] +Brc1cnc2[nH]ncc2c1Nc1ccncc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['Nc1ccncc1']; [0.9999641180038452] +OCc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OCc1cccc(B(O)O)c1']; [0.9962977766990662, 0.9952507615089417] +Fc1ccccc1CNc1c(Br)cnc2[nH]ncc12; ['Clc1c(Br)cnc2[nH]ncc12']; ['NCc1ccccc1F']; [0.9999837875366211] +CN1c2ccc(-c3c(Br)cnc4[nH]ncc34)cc2CS1(=O)=O; [None]; [None]; [0] +COc1cc(-c2c(Br)cnc3[nH]ncc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2c(Br)cnc3[nH]ncc23)nn1; [None]; [None]; [0] +CCCn1cnc(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +CSc1nc(-c2c(Br)cnc3[nH]ncc23)c[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +N#CCCc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['Clc1c(Br)cnc2[nH]ncc12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9998177289962769] +Nc1ncncc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1CCc1c[nH]nn1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9999275207519531] +Brc1cnc2[nH]ncc2c1-c1csc2ncncc12; [None]; [None]; [0] +Fc1ccc(-c2c(Br)cnc3[nH]ncc23)c(C(F)(F)F)c1; ['Clc1c(Br)cnc2[nH]ncc12', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1']; [0.9999263286590576, 0.8482016921043396] +CCNc1nc2ccc(-c3c(Br)cnc4[nH]ncc34)cc2s1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1Oc1ccccn1; ['Clc1c(Br)cnc2[nH]ncc12']; ['Oc1ccccn1']; [0.9854051470756531] +Nc1nc(-c2c(Br)cnc3[nH]ncc23)cs1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2c(Br)cnc3[nH]ncc23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9992237091064453] +CC(=O)Nc1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12']; [0.999213695526123, 0.9896107316017151] +O=C(Nc1c(Br)cnc2[nH]ncc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +NC(=O)CCCc1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +COc1ccc(-c2c(Br)cnc3[nH]ncc23)cc1Cl; ['COc1ccc(B(O)O)cc1Cl', 'Brc1cnc2[nH]ncc2c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'COc1ccc(I)cc1Cl']; [0.999900758266449, 0.9851167798042297] +Cn1cc(-c2c(Br)cnc3[nH]ncc23)c2ccccc21; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cnn2ccccc12; [None]; [None]; [0] +CCCn1cc(-c2c(Br)cnc3[nH]ncc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9999521374702454] +O=c1cc(-c2c(Br)cnc3[nH]ncc23)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9968396425247192] +CC(C)(COc1c(Br)cnc2[nH]ncc12)S(C)(=O)=O; [None]; [None]; [0] +O=C1CCc2cccc(-c3c(Br)cnc4[nH]ncc34)c21; [None]; [None]; [0] +CCN(CC)c1c(Br)cnc2[nH]ncc12; ['CCNCC']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9954433441162109] +C[S@](=O)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.988771915435791] +C[C@@H](Oc1c(Br)cnc2[nH]ncc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9516646862030029] +COc1cc(CCc2c(Br)cnc3[nH]ncc23)cc(OC)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2c(Br)cnc3[nH]ncc23)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; [None]; [None]; [0] +COc1ccncc1Nc1c(Br)cnc2[nH]ncc12; ['COc1ccncc1N']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9999686479568481] +CCNS(=O)(=O)c1ccccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1Nc1cnccc1-c1ccccc1; ['Clc1c(Br)cnc2[nH]ncc12']; ['Nc1cnccc1-c1ccccc1']; [0.9999891519546509] +CC(C)(C)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9995145201683044] +Brc1cnc2[nH]ncc2c1Nc1cnc2ccccc2c1; ['Clc1c(Br)cnc2[nH]ncc12']; ['Nc1cnc2ccccc2c1']; [0.999961256980896] +COc1cccc(F)c1-c1c(Br)cnc2[nH]ncc12; ['COc1cccc(F)c1B(O)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9999082088470459] +CC(C)Oc1cncc(-c2c(Br)cnc3[nH]ncc23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12']; [0.9999946355819702, 0.999971866607666] +O=c1[nH]cc(Br)c2sc(-c3c(Br)cnc4[nH]ncc34)cc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cnc2[nH]ccc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999912977218628, 0.9999909400939941] +O=c1[nH]ccc2oc(-c3c(Br)cnc4[nH]ncc34)cc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1c[nH]c2cnccc12; ['Clc1c(Br)cnc2[nH]ncc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9938128590583801] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9968990087509155] +CNS(=O)(=O)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.999091386795044] +CC1(c2c(Br)cnc3[nH]ncc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999955296516418, 0.9999707937240601] +CN(c1c(Br)cnc2[nH]ncc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1c(Br)cnc2[nH]ncc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9996659755706787] +C[C@H](Nc1c(Br)cnc2[nH]ncc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9962154626846313] +C[C@@H](Nc1c(Br)cnc2[nH]ncc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9962154626846313] +Cc1cc(-c2c(Br)cnc3[nH]ncc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCc1ccn(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +OCCc1cn(-c2c(Br)cnc3[nH]ncc23)cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-n1ncc2ccccc21; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +COc1ccc(-c2c(Br)cnc3[nH]ncc23)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'COc1ccc(I)c(OC)c1']; [0.9999388456344604, 0.9328690767288208] +Oc1ccc2nc(-c3c(Br)cnc4[nH]ncc34)[nH]c2c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c(Br)cnc3[nH]ncc23)cc1; ['Clc1c(Br)cnc2[nH]ncc12', 'Brc1cnc2[nH]ncc2c1']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.9967563152313232, 0.989898681640625] +CSc1nc(C)c(-c2c(Br)cnc3[nH]ncc23)[nH]1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1nncn1C1CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c(Br)cnc3[nH]ncc23)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +CCc1cc(-c2c(Br)cnc3[nH]ncc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2c(Br)cnc3[nH]ncc23)s1; [None]; [None]; [0] +O=C(CCc1c(Br)cnc2[nH]ncc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1c(Br)cnc2[nH]ncc12)NCc1ccccn1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(Br)cnc3[nH]ncc23)s1; [None]; [None]; [0] +CCCCc1cc(-c2c(Br)cnc3[nH]ncc23)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c(Br)cnc3[nH]ncc23)CC1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c(Br)cnc2[nH]ncc12; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2c(Br)cnc3[nH]ncc23)c(F)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3c(Br)cnc4[nH]ncc34)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2c(Br)cnc3[nH]ncc23)n1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cccc2ccsc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Clc1c(Br)cnc2[nH]ncc12']; ['Clc1c(Br)cnc2[nH]ncc12', 'OB(O)c1cccc2ccsc12']; [0.9999972581863403, 0.9998488426208496] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c(Br)cnc4[nH]ncc34)c2)cc1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1cccc2nnsc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1nc2ccccc2s1; [None]; [None]; [0] +Nc1nc(-c2c(Br)cnc3[nH]ncc23)nc2ccccc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ncc2ccccc2n1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c(Br)cnc2[nH]ncc12; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12', 'COc1ccc(C#N)cc1I']; [0.999980092048645, 0.9999624490737915, 0.9908127188682556] +COc1ccc(Oc2c(Br)cnc3[nH]ncc23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.991557776927948] +CC(=O)Nc1ncc(-c2c(Br)cnc3[nH]ncc23)[nH]1; [None]; [None]; [0] +COc1ncccc1-c1c(Br)cnc2[nH]ncc12; ['COc1ncccc1B(O)O']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9990842342376709] +COc1ccc(OC)c(-c2c(Br)cnc3[nH]ncc23)c1; ['COc1ccc(OC)c(B(O)O)c1']; ['Clc1c(Br)cnc2[nH]ncc12']; [0.9990612268447876] +OCCn1cnc(-c2c(Br)cnc3[nH]ncc23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c(Br)cnc3[nH]ncc23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12']; [0.9998894929885864, 0.9975858926773071] +Brc1cnc2[nH]ncc2c1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c(Br)cnc3[nH]ncc23)CC1; [None]; [None]; [0] +Brc1cnc2[nH]ncc2c1N1CC=C(c2c[nH]c3ccccc23)CC1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'CC(C)(C)OC(=O)N1CC=C(c2c[nH]c3ccccc23)CC1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1c(Br)cnc2[nH]ncc12', 'Clc1c(Br)cnc2[nH]ncc12', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; [0.9998819828033447, 0.9998495578765869, 0.9919884204864502] +CNC(=O)c1ccccc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'Brc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccccc1B(O)O']; ['CNC(=O)c1ccccc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'CNC(=O)c1ccccc1I', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CNC(=O)c1ccccc1B(O)O', 'Clc1cnc2[nH]ncc2c1']; [0.9999921321868896, 0.9999861717224121, 0.9999837875366211, 0.9999523162841797, 0.9998986721038818, 0.9995825290679932, 0.9994853734970093] +Cc1nnc(-c2ccccc2-c2cnc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +CN(C)c1cc(-c2c(Br)cnc3[nH]ncc23)cnn1; [None]; [None]; [0] +CCOc1ccccc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'CCOc1ccccc1Cl', 'CCOc1ccccc1B(O)O', 'Brc1cnc2[nH]ncc2c1']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Cl', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CCOc1ccccc1Br']; [0.9999845623970032, 0.9999498724937439, 0.9999183416366577, 0.9998724460601807, 0.9998511075973511, 0.9998477697372437, 0.9994015693664551, 0.9993371963500977, 0.9992643594741821, 0.9982678890228271, 0.9979656934738159, 0.9878276586532593] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2[nH]ncc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1cnc2[nH]ncc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1cnc2[nH]ncc2c1', 'CC(C)S(=O)(=O)c1ccccc1Br']; [0.9999830722808838, 0.9998515248298645, 0.9998384714126587, 0.9994052648544312, 0.9985091686248779, 0.984329104423523] +O=C(Nc1cccc(-c2c(Br)cnc3[nH]ncc23)c1)C1CCNCC1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CCn1cc(-c2cnc3[nH]ncc3c2)cn1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CCn1cc(I)cn1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1']; [0.9999039173126221, 0.9998310804367065, 0.9995852708816528, 0.9993053674697876, 0.987493634223938] +COC(C)(C)CCc1cnc2[nH]ncc2c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnc3[nH]ncc3c2)c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'FC(F)(F)c1cccc(I)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'FC(F)(F)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'FC(F)(F)c1cccc(Cl)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'FC(F)(F)c1cccc(Cl)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1']; [0.9999675750732422, 0.9999602437019348, 0.9999473094940186, 0.9999231100082397, 0.9999134540557861, 0.9998689889907837, 0.9998364448547363, 0.9997817873954773, 0.9997372627258301, 0.9996187090873718, 0.999423623085022, 0.9994211196899414, 0.9950385689735413, 0.9874786734580994, 0.9565383195877075] +FC(F)(F)Oc1ccccc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Cl', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1I']; ['FC(F)(F)Oc1ccccc1Br', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'Ic1cnc2[nH]ncc2c1', 'c1cnc2[nH]ncc2c1']; [0.9999929666519165, 0.9999854564666748, 0.999972939491272, 0.999940037727356, 0.999935507774353, 0.9999116659164429, 0.999888002872467, 0.9998676180839539, 0.9997316598892212, 0.9992347359657288, 0.9983102083206177, 0.992973804473877, 0.9720934629440308, 0.8235712051391602] +c1ccc2c(-c3cnc4[nH]ncc4c3)ccnc2c1; ['Brc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'Ic1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Clc1ccnc2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccnc2ccccc12', 'Clc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccnc2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1ccnc2ccccc12']; [0.9999926686286926, 0.9999778270721436, 0.999934196472168, 0.9998866319656372, 0.9996945261955261, 0.9996672868728638, 0.9992399215698242, 0.9985221028327942, 0.9953566789627075, 0.9921372532844543] +O=C([O-])c1ccccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnc4[nH]ncc4c3)cc2c1=O; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O', 'Brc1cnc2[nH]ncc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999791383743286, 0.9999168515205383, 0.9857659935951233] +c1ccc(Cn2cc(-c3cnc4[nH]ncc4c3)cn2)cc1; ['Ic1cnn(Cc2ccccc2)c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999408721923828, 0.9998363852500916, 0.9997446537017822, 0.9997169971466064, 0.9993644952774048, 0.9990577697753906, 0.9989975094795227, 0.9947863817214966] +c1ccc(-c2ncc(-c3cnc4[nH]ncc4c3)[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1Br', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'NC(=O)c1ccccc1Cl', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'OB(O)c1cnc2[nH]ncc2c1', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1Br']; [0.9999938607215881, 0.999961256980896, 0.9999487400054932, 0.9999351501464844, 0.9999334812164307, 0.9998693466186523, 0.9996945858001709, 0.9996707439422607, 0.9991114735603333, 0.9974268674850464, 0.9961756467819214, 0.9958579540252686, 0.9103900194168091] +COc1cnc(-c2cnc3[nH]ncc3c2)nc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9993520975112915, 0.9990507960319519, 0.9985880255699158] +OCCn1cc(-c2cnc3[nH]ncc3c2)cn1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C']; ['OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'Ic1cnc2[nH]ncc2c1', 'OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'Clc1cnc2[nH]ncc2c1']; [0.9999266862869263, 0.9998900890350342, 0.9998519420623779, 0.9998311996459961, 0.9992085099220276, 0.9988532066345215, 0.9950112104415894, 0.9936480522155762, 0.989868700504303] +CC(C)C(=O)COc1cnc2[nH]ncc2c1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1']; [0.9088585376739502, 0.8655592799186707] +Clc1ccc(Cl)c(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'OB(O)c1cc(Cl)ccc1Cl', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1']; [0.9999933242797852, 0.9999808073043823, 0.9999797344207764, 0.9999692440032959, 0.9999361038208008, 0.999616265296936, 0.9993758201599121, 0.9987039566040039, 0.9960343837738037, 0.9859755039215088] +O=C(Nc1cccc(-c2cnc3[nH]ncc3c2)c1)c1ccccc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999964237213135, 0.9999574422836304, 0.9999027848243713, 0.9998665452003479, 0.9998571276664734, 0.999625563621521] +Cc1nc2ccccn2c1-c1cnc2[nH]ncc2c1; ['Cc1nc2ccccn2c1I', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1nc2ccccn2c1Br']; ['OB(O)c1cnc2[nH]ncc2c1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999906420707703, 0.9999828338623047, 0.999980628490448, 0.9999788999557495] +c1ccn2c(-c3cnc4[nH]ncc4c3)cnc2c1; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2ccccn12']; ['OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999920129776001, 0.9999916553497314, 0.9999895095825195, 0.9999738335609436, 0.9999548196792603, 0.9999058842658997] +Cc1nc(C)c(-c2cnc3[nH]ncc3c2)s1; ['Brc1cnc2[nH]ncc2c1', 'Cc1nc(C)c(Br)s1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Brc1cnc2[nH]ncc2c1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cc1nc(C)c(Br)s1', 'Ic1cnc2[nH]ncc2c1', 'Cc1csc(C)n1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; [0.9999774694442749, 0.9999735951423645, 0.9999706745147705, 0.9998936653137207, 0.9733816385269165, 0.9634163975715637, 0.9311343431472778] +Cc1ccc(-c2cnc3[nH]ncc3c2)c(Br)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Cc1ccc(I)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cc1ccc(Br)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; [0.9999362230300903, 0.9998120069503784, 0.9996892809867859, 0.9979884624481201, 0.9970452785491943, 0.9949411153793335, 0.8849760293960571, 0.8415324687957764] +Cc1nc(N)sc1-c1cnc2[nH]ncc2c1; ['Cc1nc(N)sc1Br']; ['OB(O)c1cnc2[nH]ncc2c1']; [0.9999884366989136] +c1cnn2c(-c3cnc4[nH]ncc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999977350234985, 0.9999887943267822] +CC(C)(C)c1nc(-c2cnc3[nH]ncc3c2)cs1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Ic1cnc2[nH]ncc2c1', 'Clc1cccc(Cl)c1I', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999814033508301, 0.9999723434448242, 0.9999639987945557, 0.9998801946640015, 0.9998793601989746, 0.999313235282898, 0.9893743991851807] +O=c1c2c(F)cccc2cnn1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +c1cncc(CNc2cnc3[nH]ncc3c2)c1; ['Ic1cnc2[nH]ncc2c1', 'BrCc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'ClCc1cccnc1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['NCc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9992085695266724, 0.9990599155426025, 0.9961613416671753, 0.9958604574203491, 0.9945487976074219, 0.984109103679657, 0.9700609445571899] +Cc1ccc(Cl)c(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1cnc2[nH]ncc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Brc1cnc2[nH]ncc2c1']; ['Cc1ccc(Cl)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2[nH]ncc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cc1ccc(Cl)c(Br)c1']; [0.9999836087226868, 0.9999635219573975, 0.9999513626098633, 0.9998955726623535, 0.9996398687362671, 0.9993348121643066, 0.9989639520645142, 0.9986139535903931, 0.9975894689559937, 0.99463951587677, 0.980010986328125, 0.9213659763336182] +Brc1cccc(-c2cnc3[nH]ncc3c2)c1; ['Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cccc(Br)c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Clc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999551177024841, 0.9999436140060425, 0.9999006986618042, 0.9998873472213745, 0.9998779892921448, 0.9998199939727783, 0.9996625185012817, 0.9996606111526489, 0.999584436416626, 0.9995821714401245, 0.9991856813430786, 0.9982509613037109, 0.972439706325531, 0.9193776845932007] +c1cc(Cn2cncn2)cc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +c1cnn2ncc(-c3cnc4[nH]ncc4c3)c2c1; [None]; [None]; [0] +c1cncc(Nc2cnc3[nH]ncc3c2)c1; ['Nc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cccnc1', 'Ic1cccnc1', 'Fc1cnc2[nH]ncc2c1', 'Fc1cccnc1']; ['OB(O)c1cnc2[nH]ncc2c1', 'O=S(=O)(Oc1cccnc1)C(F)(F)F', 'Nc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'OB(O)c1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cccnc1', 'Nc1cnc2[nH]ncc2c1']; [0.9990465641021729, 0.9988351464271545, 0.9914203882217407, 0.9885290861129761, 0.984815239906311, 0.9822782278060913, 0.9796128273010254, 0.9775643944740295, 0.9751025438308716, 0.9742978811264038, 0.9594849348068237] +O=C(Nc1cnc2[nH]ncc2c1)c1cccs1; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.999854564666748, 0.9996244311332703, 0.9804772138595581, 0.9131397008895874] +CNc1nc(C)c(-c2cnc3[nH]ncc3c2)s1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cnc2[nH]ncc2c1; ['Fc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9389084577560425, 0.9093628525733948, 0.889389157295227] +c1nc(CCNc2cnc3[nH]ncc3c2)c[nH]1; ['NCCc1c[nH]cn1', 'Fc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'NCCc1c[nH]cn1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'N#CCc1c[nH]cn1', 'Nc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Oc1cnc2[nH]ncc2c1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Nc1cnc2[nH]ncc2c1', 'O=C(O)Cc1c[nH]cn1']; [0.9993815422058105, 0.9988170266151428, 0.9984254837036133, 0.9960806369781494, 0.9879434108734131, 0.9659914970397949, 0.9540876150131226, 0.9334195256233215, 0.8374749422073364] +c1ccc2cc(-c3cnc4[nH]ncc4c3)ccc2c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'OB(O)c1ccc2ccccc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc2ccccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1ccc2ccccc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999948740005493, 0.999984860420227, 0.9999663233757019, 0.9999560713768005, 0.9999383687973022, 0.9998743534088135, 0.9998413324356079, 0.999786376953125, 0.9997026920318604, 0.9996877312660217, 0.9996858239173889, 0.9995914697647095, 0.9992947578430176, 0.9980906248092651, 0.9970616698265076, 0.9826135635375977] +Nc1nccc(-c2cnc3[nH]ncc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999932050704956, 0.9999910593032837, 0.9999642372131348, 0.9999459981918335, 0.9999047517776489] +FC(F)(F)c1n[nH]cc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I']; ['FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.999963104724884, 0.999959409236908, 0.9999591112136841, 0.9999423027038574] +c1ccc(CCNc2cnc3[nH]ncc3c2)cc1; ['ClCCc1ccccc1', 'BrCCc1ccccc1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'O=CCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9945948123931885, 0.9849465489387512, 0.9705144166946411, 0.9704500436782837, 0.9542237520217896] +c1ccc2c(-c3cnc4[nH]ncc4c3)cncc2c1; ['Brc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cncc2ccccc12', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cncc2ccccc12']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Ic1cncc2ccccc12', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Clc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999948740005493, 0.9999837875366211, 0.9999816417694092, 0.9999756217002869, 0.9999573230743408, 0.999954879283905, 0.9999449253082275, 0.9999279975891113, 0.9998859167098999, 0.9997885227203369, 0.9992853403091431, 0.996918797492981, 0.996844470500946, 0.9960231184959412, 0.9935909509658813, 0.9910407662391663] +Cc1c(-c2cnc3[nH]ncc3c2)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc4[nH]ncc4c3)cc2)cn1; ['Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Brc1cnc2[nH]ncc2c1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Ic1cnc2[nH]ncc2c1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999973773956299, 0.999988317489624, 0.9999881982803345, 0.9999663829803467, 0.9973955750465393, 0.9179238080978394] +NC(=O)c1c(F)cccc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999808073043823, 0.9998833537101746, 0.9995040893554688, 0.9990143775939941] +Nc1[nH]nc2cc(-c3cnc4[nH]ncc4c3)ccc12; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Cl)ccc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999977946281433, 0.9997975826263428, 0.8681188821792603] +Clc1ccc(CNc2cnc3[nH]ncc3c2)cc1; ['Clc1ccc(CBr)cc1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'ClCc1ccc(Cl)cc1', 'Fc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Nc1cnc2[nH]ncc2c1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9994481801986694, 0.9989500045776367, 0.9983705282211304, 0.9976308345794678, 0.9962882995605469, 0.9771398305892944, 0.9733413457870483, 0.8720105886459351] +O=C([O-])Cc1cccc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +Oc1cccc(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['Oc1cccc(I)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Oc1cccc(Br)c1']; [0.9998430013656616, 0.9998083114624023, 0.999578058719635, 0.9995737075805664, 0.9992793202400208, 0.999266505241394, 0.9988203644752502, 0.9971076250076294, 0.9962462186813354, 0.9747589826583862, 0.8000165224075317] +c1cc(-c2cnc3[nH]ncc3c2)ccc1-c1cn[nH]c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999974966049194, 0.9999175071716309, 0.9998955726623535, 0.9995717406272888, 0.9987195730209351, 0.9969485998153687, 0.9331482648849487] +OCc1cccc(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['OCc1cccc(I)c1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(Br)c1', 'Ic1cnc2[nH]ncc2c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'Clc1cnc2[nH]ncc2c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1']; [0.9999393224716187, 0.9999319314956665, 0.9998795986175537, 0.9996737241744995, 0.9996316432952881, 0.9993363618850708, 0.9985719919204712, 0.9977866411209106, 0.997300386428833, 0.9918280839920044, 0.9916043877601624, 0.974535346031189, 0.8277958035469055] +Cn1ncc2cc(-c3cnc4[nH]ncc4c3)ccc21; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Cn1ncc2cc(I)ccc21', 'Clc1cnc2[nH]ncc2c1', 'Cn1ncc2cc(Br)ccc21', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cn1ncc2cc(Cl)ccc21', 'Brc1cnc2[nH]ncc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1ncc2cc(B(O)O)ccc21', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1ncc2cc(Cl)ccc21', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1ncc2cc(Br)ccc21']; [0.9999995231628418, 0.9999991655349731, 0.9999961853027344, 0.9999959468841553, 0.9999958276748657, 0.9999940991401672, 0.9999908804893494, 0.999984622001648, 0.9999727010726929, 0.9999701380729675, 0.9999687075614929, 0.9992436766624451, 0.9937248826026917] +Fc1ccccc1CNc1cnc2[nH]ncc2c1; ['Fc1ccccc1CCl', 'Nc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'O=Cc1ccccc1F']; [0.9980865716934204, 0.9722439050674438] +c1cc(Nc2cnc3[nH]ncc3c2)ccn1; ['Nc1cnc2[nH]ncc2c1', 'Nc1ccncc1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1ccncc1', 'Brc1ccncc1', 'Fc1ccncc1', 'Clc1ccncc1']; ['OB(O)c1ccncc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1']; [0.9998339414596558, 0.9991593956947327, 0.999143123626709, 0.9959748983383179, 0.9925543069839478, 0.992236852645874, 0.988091230392456, 0.9765455722808838, 0.9738624691963196, 0.967715859413147] +CC(C)n1cc(-c2cnc3[nH]ncc3c2)nn1; ['C#Cc1cnc2[nH]ncc2c1']; ['CC(C)N=[N+]=[N-]']; [0.9999974966049194] +CN1c2ccc(-c3cnc4[nH]ncc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ncc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2cnc3[nH]ncc3c2)n1; [None]; [None]; [0] +CSc1nc(-c2cnc3[nH]ncc3c2)c[nH]1; [None]; [None]; [0] +c1ncc2c(-c3cnc4[nH]ncc4c3)csc2n1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; [0.9999858140945435, 0.9999828338623047] +c1ccc2[nH]c(-c3cnc4[nH]ncc4c3)cc2c1; ['Clc1cc2ccccc2[nH]1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; ['OB(O)c1cnc2[nH]ncc2c1', 'Clc1cc2ccccc2[nH]1']; [0.9996153116226196, 0.9987471699714661] +Nc1nc(-c2cnc3[nH]ncc3c2)cs1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1nc(Br)cs1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1nc(Cl)cs1', 'CC(=O)c1cnc2[nH]ncc2c1', None]; ['Nc1nc(Br)cs1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1nc(Cl)cs1', 'OB(O)c1cnc2[nH]ncc2c1', 'NC(N)=S', None]; [0.9999969601631165, 0.9999960660934448, 0.9999915361404419, 0.9998936653137207, 0.9989640712738037, 0] +Nc1ncncc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1ncncc1Br', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'Brc1cnc2[nH]ncc2c1']; ['Nc1ncncc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1ncncc1I', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1ncncc1Br']; [0.9999879598617554, 0.9999872446060181, 0.9999634623527527, 0.9999265670776367, 0.9958451986312866, 0.9891982078552246] +N#CCCc1cccc(-c2cnc3[nH]ncc3c2)c1; ['Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'N#CCCc1cccc(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1']; [0.9997274279594421, 0.9995149374008179, 0.9994018077850342, 0.9993501901626587, 0.9986153841018677, 0.9666675329208374, 0.8337103128433228] +CCNc1nc2ccc(-c3cnc4[nH]ncc4c3)cc2s1; [None]; [None]; [0] +c1nc2[nH]ncc2cc1CCc1c[nH]nn1; [None]; [None]; [0] +Fc1ccc(-c2cnc3[nH]ncc3c2)c(C(F)(F)F)c1; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Brc1cnc2[nH]ncc2c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Fc1cccc(C(F)(F)F)c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1cnc2[nH]ncc2c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Ic1cnc2[nH]ncc2c1']; [0.9999942779541016, 0.9999934434890747, 0.9999915361404419, 0.9999877214431763, 0.9999783039093018, 0.9999400973320007, 0.9999143481254578, 0.9998936653137207, 0.9995529651641846, 0.994652271270752, 0.9333244562149048] +c1ccc(Oc2cnc3[nH]ncc3c2)nc1; ['Brc1ccccn1', 'Clc1ccccn1', 'Fc1ccccn1', 'Brc1cnc2[nH]ncc2c1']; ['Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'Oc1ccccn1']; [0.9997246861457825, 0.9995807409286499, 0.9961951971054077, 0.9690046310424805] +CC(C)c1oncc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1']; [0.9999946355819702, 0.9999806880950928] +O=C(Nc1cnc2[nH]ncc2c1)c1c(Cl)cccc1Cl; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'COC(=O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl', 'Nc1cnc2[nH]ncc2c1', 'CCOC(=O)c1c(Cl)cccc1Cl', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'Nc1cnc2[nH]ncc2c1', 'O=[N+]([O-])c1cnc2[nH]ncc2c1', 'O=C([O-])c1c(Cl)cccc1Cl', 'Nc1cnc2[nH]ncc2c1', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9999233484268188, 0.9998153448104858, 0.9984703063964844, 0.998058557510376, 0.9974186420440674, 0.9959063529968262, 0.9947118163108826, 0.9935550093650818, 0.9626381397247314] +CS(=O)(=O)C1CCN(c2cnc3[nH]ncc3c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1cnc2[nH]ncc2c1']; ['Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'CS(=O)(=O)C1CCNCC1']; [0.9999220371246338, 0.999830424785614, 0.999421238899231, 0.9983620643615723, 0.9975802898406982] +Cn1cc(-c2cnc3[nH]ncc3c2)c2ccccc21; ['Brc1cnc2[nH]ncc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999562501907349] +CC(C)(COc1cnc2[nH]ncc2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]ncc3c2)cc1Cl; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Ic1cnc2[nH]ncc2c1', 'COc1ccc(I)cc1Cl', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl']; [0.9999977350234985, 0.9999819397926331, 0.9999802112579346, 0.9999649524688721, 0.9999604225158691, 0.9999163150787354, 0.9999064207077026, 0.9996466636657715, 0.9995661973953247, 0.9993056058883667, 0.9991495609283447, 0.9984867572784424, 0.9978046417236328, 0.9371053576469421] +NC(=O)CCCc1cnc2[nH]ncc2c1; [None]; [None]; [0] +c1ccn2ncc(-c3cnc4[nH]ncc4c3)c2c1; ['Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnn2ccccc12', 'Clc1cnn2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.999998927116394, 0.9999963641166687, 0.9999910593032837, 0.9999825358390808, 0.9999513030052185, 0.9998900890350342, 0.9997888803482056, 0.9996070861816406, 0.9986996650695801] +CC(=O)Nc1cccc(-c2cnc3[nH]ncc3c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1cnc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1cnc2[nH]ncc2c1', 'CC(=O)Nc1cccc(Cl)c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Ic1cnc2[nH]ncc2c1', 'CC(=O)Nc1cccc(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.999994158744812, 0.9999939203262329, 0.9999125003814697, 0.999846875667572, 0.9998182058334351, 0.9993462562561035, 0.9991457462310791, 0.9989835023880005, 0.9987777471542358, 0.9936183094978333, 0.9841748476028442] +CCCn1cc(-c2cnc3[nH]ncc3c2)cn1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'Brc1cnc2[nH]ncc2c1']; ['CCCn1cc(I)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCCn1cc(Br)cn1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCCn1cc(B(O)O)cn1']; [0.9999750256538391, 0.9999634027481079, 0.999920129776001, 0.9998993873596191, 0.9998784065246582, 0.9998416900634766, 0.9996393918991089, 0.9986894726753235, 0.995414137840271] +O=c1cc(-c2cnc3[nH]ncc3c2)cc[nH]1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=c1cc(Br)cc[nH]1']; [0.999975323677063, 0.9996514320373535, 0.9993282556533813, 0.9967533349990845, 0.7834320664405823] +CC(C)(O)CC(=O)NCCc1cnc2[nH]ncc2c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9997585415840149, 0.9638615846633911, 0.8714780807495117] +C[S@](=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999817609786987, 0.9998359680175781, 0.9992467164993286, 0.996522068977356] +CCNS(=O)(=O)c1ccccc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'Brc1cnc2[nH]ncc2c1']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccccc1Br']; [0.9999744892120361, 0.9983749389648438, 0.9326562285423279] +COc1cc(CCc2cnc3[nH]ncc3c2)cc(OC)c1; [None]; [None]; [0] +CCN(CC)c1cnc2[nH]ncc2c1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cnc4[nH]ncc4c3)c21; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['O=C1CCc2cccc(Br)c21', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999921917915344, 0.9999814033508301, 0.9997549653053284, 0.9996470212936401, 0.9980931878089905, 0.9940146207809448] +C[C@@H](Oc1cnc2[nH]ncc2c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1cnc2[nH]ncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1cnc2[nH]ncc2c1']; [0.9980783462524414, 0.9933082461357117, 0.992310643196106, 0.9773163795471191, 0.9608633518218994] +[NH3+]Cc1ccc(-c2cnc3[nH]ncc3c2)cc1C(F)(F)F; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cnc3[nH]ncc3c2)cc1; ['Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.999885082244873, 0.9997564554214478, 0.9997298717498779, 0.997990071773529, 0.990969181060791, 0.9894331693649292, 0.9893163442611694] +CC(C)Oc1cncc(-c2cnc3[nH]ncc3c2)c1; ['Brc1cnc2[nH]ncc2c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; [0.999984860420227, 0.9999699592590332, 0.9999554753303528, 0.9996273517608643, 0.9992398023605347, 0.998262882232666, 0.9973821640014648, 0.922066330909729] +CC(C)(C)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; [0.9999991059303284, 0.9999942183494568, 0.9999914169311523, 0.9999809861183167, 0.9999806880950928, 0.9999663829803467, 0.9999529719352722, 0.9999518394470215, 0.999889612197876, 0.9993414282798767, 0.9993058443069458, 0.9717931151390076] +COc1ccncc1Nc1cnc2[nH]ncc2c1; ['COc1ccncc1B(O)O', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N', 'COc1ccncc1Br', 'COc1ccncc1Cl', 'COc1ccncc1F', 'COc1ccncc1N', 'COc1ccncc1N', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ccncc1N']; [0.9997944831848145, 0.9993706941604614, 0.9990348815917969, 0.9987269639968872, 0.9986343383789062, 0.9981158375740051, 0.997499942779541, 0.9945203065872192, 0.994342565536499, 0.9879965782165527] +O=c1[nH]ccc2oc(-c3cnc4[nH]ncc4c3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cccc(F)c1Br', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cccc(F)c1B(O)O', 'Brc1cnc2[nH]ncc2c1', 'COc1cccc(F)c1B(O)O', 'Brc1cnc2[nH]ncc2c1', 'COc1cccc(F)c1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cccc(F)c1Cl', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1cccc(F)c1I', 'Ic1cnc2[nH]ncc2c1', 'COc1cccc(F)c1B(O)O', 'Clc1cnc2[nH]ncc2c1', 'COc1cccc(F)c1Br', 'Ic1cnc2[nH]ncc2c1']; [0.9999986290931702, 0.9999986290931702, 0.9999980926513672, 0.9999954700469971, 0.9999943971633911, 0.9999922513961792, 0.999988317489624, 0.9999847412109375, 0.9999603033065796, 0.9998860359191895, 0.9997097253799438, 0.9988720417022705, 0.9879568815231323] +c1ccc2ncc(Nc3cnc4[nH]ncc4c3)cc2c1; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Clc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Fc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2[nH]ncc2c1', 'c1cnc2[nH]ncc2c1']; [0.9981249570846558, 0.9981249570846558, 0.996652364730835, 0.996652364730835, 0.9744230508804321, 0.9744230508804321, 0.9717041254043579, 0.9717041254043579, 0.9643430709838867, 0.9643430709838867, 0.77884840965271] +c1cc2c(-c3cnc4[nH]ncc4c3)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1c[nH]c2cnccc12']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'Brc1cnc2[nH]ncc2c1']; [0.9999717473983765, 0.9992144107818604, 0.9406498670578003, 0.8922012448310852, 0.8272236585617065] +O=c1[nH]cc(Br)c2sc(-c3cnc4[nH]ncc4c3)cc12; [None]; [None]; [0] +c1cc2cc(-c3cnc4[nH]ncc4c3)cnc2[nH]1; ['Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999988079071045, 0.9999988079071045, 0.999989926815033, 0.999989926815033, 0.9999828338623047, 0.9999828338623047, 0.9999793767929077, 0.9999793767929077, 0.9999494552612305, 0.9999494552612305, 0.9997750520706177, 0.9997750520706177, 0.9968822598457336] +c1cc(N2CCOCC2)ccc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1cnc2[nH]ncc2c1']; [0.9999996423721313, 0.9999986886978149, 0.9999985098838806, 0.9999979734420776, 0.9999939203262329, 0.9999934434890747, 0.9999923706054688, 0.9999882578849792, 0.9999805688858032, 0.9999750852584839, 0.9999492168426514, 0.9999116659164429, 0.9998396635055542, 0.9944891333580017] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999845623970032, 0.9999807476997375, 0.9999580979347229, 0.999826192855835, 0.9997530579566956, 0.9983124732971191, 0.9918515086174011, 0.9545455574989319] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999924302101135, 0.9999921321868896, 0.9999819993972778, 0.9999021887779236, 0.9998588562011719, 0.9998396635055542, 0.9995898604393005, 0.9933158159255981, 0.771830677986145] +CNC(=O)c1c(F)cccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999974370002747, 0.9999953508377075, 0.9999930262565613, 0.9999834299087524, 0.9999759197235107, 0.9999695420265198, 0.9999662637710571, 0.9999351501464844, 0.9999197721481323, 0.9995599985122681, 0.9983731508255005, 0.9965164661407471, 0.9958142638206482, 0.9686471223831177, 0.9038234353065491] +Cc1cc(-c2cnc3[nH]ncc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC1(c2cnc3[nH]ncc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](Nc1cnc2[nH]ncc2c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1']; [0.9896451234817505, 0.9086414575576782] +C[C@H](Nc1cnc2[nH]ncc2c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1']; [0.9896451234817505, 0.9086414575576782] +C[C@H](Nc1cnc2[nH]ncc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cnc3[nH]ncc3c2)n1; ['Brc1cnc2[nH]ncc2c1']; ['OCc1cc[nH]n1']; [0.9825723171234131] +CN(c1cnc2[nH]ncc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Fc1cccc(Cl)c1I', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['Fc1cccc(Cl)c1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1I', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl']; [0.9999997615814209, 0.999999463558197, 0.9999992847442627, 0.9999972581863403, 0.9999967813491821, 0.9999717473983765, 0.9999641180038452, 0.9990243315696716] +c1ccc2c(c1)cnn2-c1cnc2[nH]ncc2c1; ['OB(O)c1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9983986020088196, 0.9634510278701782, 0.9036052227020264, 0.853896975517273] +CSc1nc(C)c(-c2cnc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +OCCc1cn(-c2cnc3[nH]ncc3c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]ncc3c2)c(OC)c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(B(O)O)c(OC)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(Cl)c(OC)c1', 'Brc1cnc2[nH]ncc2c1', 'COc1cccc(OC)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(I)c(OC)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1ccc(B(O)O)c(OC)c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ccc(Cl)c(OC)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(Br)c(OC)c1', 'Ic1cnc2[nH]ncc2c1']; [0.9999754428863525, 0.9999243021011353, 0.9999111890792847, 0.9998781681060791, 0.9998548030853271, 0.9997994303703308, 0.9997661113739014, 0.9996521472930908, 0.9995067119598389, 0.9982835054397583, 0.9975119829177856, 0.9618983268737793, 0.7897480130195618] +Oc1ccc2nc(-c3cnc4[nH]ncc4c3)[nH]c2c1; ['Nc1ccc(O)cc1N']; ['O=Cc1cnc2[nH]ncc2c1']; [0.9556819796562195] +c1ncn(-c2ccc(-c3cnc4[nH]ncc4c3)cc2)n1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cnc2[nH]ncc2c1; ['Fc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.999243974685669, 0.9982287883758545, 0.9966716170310974, 0.9714462757110596] +O=C(c1ccccc1)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C(c1ccccc1)c1ccccc1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccccc1', 'OB(O)c1cnc2[nH]ncc2c1', 'c1cnc2[nH]ncc2c1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'c1cnc2[nH]ncc2c1']; [0.9999980926513672, 0.9999841451644897, 0.9999806880950928, 0.9999784827232361, 0.9999611973762512, 0.9999414086341858, 0.9999195337295532, 0.999801754951477, 0.9996961355209351, 0.99964839220047, 0.9994242191314697, 0.9989807605743408, 0.9973758459091187, 0.9901946187019348, 0.9845355153083801, 0.9829617738723755, 0.970532238483429, 0.9570527672767639, 0.7862852215766907] +[NH3+]CCn1ccc(-c2cnc3[nH]ncc3c2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cnc5[nH]ncc5c4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cnc2[nH]ncc2c1)NCc1ccccn1; [None]; [None]; [0] +c1nc2[nH]ncc2cc1-c1nncn1C1CC1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +Nc1nnc(-c2cnc3[nH]ncc3c2)s1; ['NNC(N)=S']; ['O=C(O)c1cnc2[nH]ncc2c1']; [0.993741512298584] +c1ccc(Cn2cc(-c3cnc4[nH]ncc4c3)nn2)cc1; ['C#Cc1cnc2[nH]ncc2c1']; ['[N-]=[N+]=NCc1ccccc1']; [0.9999990463256836] +O=S(=O)(Cc1cnc2[nH]ncc2c1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2cnc3[nH]ncc3c2)nc(N)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999970197677612, 0.9999488592147827] +CNC(=O)c1ccc(-c2cnc3[nH]ncc3c2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3[nH]ncc3c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Cl)n1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)(O)c1cccc(Br)n1']; [0.9999837875366211, 0.9999363422393799, 0.9998776912689209, 0.9991195201873779, 0.9917621612548828] +c1ccc2sc(-c3cnc4[nH]ncc4c3)nc2c1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'c1ccc2scnc2c1']; [0.9999951124191284, 0.9997332692146301, 0.9990534782409668] +CCCCc1cc(-c2cnc3[nH]ncc3c2)nc(N)n1; [None]; [None]; [0] +Nc1cncc(-c2cnc3[nH]ncc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1cncc(Br)n1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1cncc(Cl)n1']; ['Nc1cncc(Br)n1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1cncc(Cl)n1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999855756759644, 0.9999727010726929, 0.9999558329582214, 0.9999115467071533] +c1cc(-c2cnc3[nH]ncc3c2)c2sccc2c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Ic1cnc2[nH]ncc2c1', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cccc2ccsc12', 'Clc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cccc2ccsc12']; [0.9999951720237732, 0.9999232888221741, 0.999912440776825, 0.9998322129249573, 0.9998269081115723, 0.9995187520980835, 0.9994562864303589, 0.9976232051849365, 0.9927419424057007] +Cn1cc(C(N)=O)cc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +c1cc(-c2cnc3[nH]ncc3c2)c2snnc2c1; ['Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Clc1cccc2nnsc12']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999947547912598, 0.9998972415924072, 0.9991687536239624] +CC1(C)Oc2ccc(-c3cnc4[nH]ncc4c3)nc2NC1=O; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)Oc2cccnc2NC1=O']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'Ic1cnc2[nH]ncc2c1']; [0.9999585151672363, 0.9985549449920654, 0.8518283367156982, 0.8127366304397583] +[NH3+]Cc1ccc(Oc2cnc3[nH]ncc3c2)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4[nH]ncc4c3)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +Nc1nc(-c2cnc3[nH]ncc3c2)nc2ccccc12; ['N#Cc1ccccc1Br', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12']; ['O=Cc1cnc2[nH]ncc2c1', 'Nc1nc(Cl)nc2ccccc12', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999294281005859, 0.9995896816253662, 0.9991292953491211] +c1cnc2c(-c3cnc4[nH]ncc4c3)c[nH]c2c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1c[nH]c2cccnc12']; [0.9999582171440125, 0.9990686178207397, 0.9987186193466187, 0.9964191913604736] +c1ccc2nc(-c3cnc4[nH]ncc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1ccccc1CO', 'Clc1ncc2ccccc2n1', 'BrCc1ccccc1Br', 'Brc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ncc2ccccc2n1', 'O=Cc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=Cc1cnc2[nH]ncc2c1', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1', 'c1ccc2ncncc2c1']; [0.9998922944068909, 0.999860405921936, 0.9995285272598267, 0.9993348121643066, 0.9993025064468384, 0.9955500960350037, 0.9786890149116516, 0.9612451195716858, 0.9189191460609436] +COc1ccc(C#N)cc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2[nH]ncc2c1']; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(C#N)cc1B(O)O', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1ccc(C#N)cc1Br']; [0.9999881982803345, 0.999982476234436, 0.9999807476997375, 0.9999665021896362, 0.9999475479125977, 0.9999313354492188, 0.9998971223831177, 0.9998689889907837, 0.9998603463172913, 0.9998286366462708, 0.9997185468673706, 0.9913254976272583] +c1cc2cnc(-c3cnc4[nH]ncc4c3)nc2[nH]1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1ncc2cc[nH]c2n1']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9998406171798706, 0.9996809959411621] +COc1ccc(OC)c(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1ccc(OC)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ccc(OC)c(B(O)O)c1']; [0.9999712705612183, 0.9999490976333618, 0.999866247177124, 0.9998050928115845, 0.9997128248214722, 0.9990713596343994, 0.9987070560455322] +COc1ccc(Oc2cnc3[nH]ncc3c2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F']; ['OB(O)c1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'COc1ccc(O)c(F)c1F', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1']; [0.9998617768287659, 0.9996792078018188, 0.9993947744369507, 0.9991339445114136, 0.9985353946685791, 0.9908373355865479, 0.9771765470504761, 0.8844192028045654] +CC(=O)Nc1ncc(-c2cnc3[nH]ncc3c2)[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ncccc1I', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'COc1ncccc1Cl', 'COc1ncccc1B(O)O', 'Brc1cnc2[nH]ncc2c1', 'COc1ncccc1Br', 'Brc1cnc2[nH]ncc2c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ncccc1Cl', 'COc1ncccc1B(O)O', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ncccc1I', 'Ic1cnc2[nH]ncc2c1', 'COc1ncccc1Br']; [0.9999697208404541, 0.9999245405197144, 0.9998705983161926, 0.9998514652252197, 0.9998409748077393, 0.9997695684432983, 0.9997581243515015, 0.9996501207351685, 0.9994176626205444, 0.9993215799331665, 0.9992092847824097, 0.9990613460540771, 0.9988836050033569, 0.9980090260505676, 0.9964017868041992, 0.972021222114563] +C1=C(c2c[nH]c3ccccc23)CCN(c2cnc3[nH]ncc3c2)C1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'Brc1cnc2[nH]ncc2c1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'Clc1cnc2[nH]ncc2c1']; [0.9998534917831421, 0.9994581341743469, 0.9991431832313538, 0.9985799193382263] +c1ccc2[nH]c(C3CCN(c4cnc5[nH]ncc5c4)CC3)nc2c1; ['Brc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.999767541885376, 0.9973251223564148] +CN(C)c1cc(-c2cnc3[nH]ncc3c2)cnn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +CCOc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCOc1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1']; [0.9999969005584717, 0.9999620914459229, 0.999950647354126, 0.9999407529830933, 0.9999088644981384, 0.9999086856842041, 0.9999050498008728, 0.9997488856315613, 0.9996815323829651, 0.9992865324020386, 0.9982390403747559, 0.9969863891601562, 0.9199789762496948] +Cc1nc(C(C)(C)O)sc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1']; ['Cc1csc(C(C)(C)O)n1']; [0.9989373683929443] +CS(=O)(=O)c1cccc(-c2cnc3[nH]ncc3c2)c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Br)c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1cccc(Br)c1']; [0.9999977350234985, 0.9999958276748657, 0.9999819993972778, 0.9999740123748779, 0.9999610185623169, 0.9999233484268188, 0.9999213218688965, 0.9999099969863892, 0.9999067187309265, 0.9997738599777222, 0.9921743869781494] +CC(=O)N(C)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC(=O)N(C)c1ccccc1']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1', 'Ic1cnc2[nH]ncc2c1']; [0.9999990463256836, 0.9999924898147583, 0.9999877214431763, 0.9999771118164062, 0.9998635053634644, 0.9447088837623596, 0.8639371395111084, 0.7976629734039307] +COc1cc(-c2cnc3[nH]ncc3c2)cc(OC)c1OC; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(Br)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; [0.999919056892395, 0.9999165534973145, 0.9997961521148682, 0.9994083642959595, 0.999402642250061, 0.999284029006958, 0.9965131282806396, 0.9952377080917358, 0.9374686479568481] +O=C(Nc1cccc(-c2cnc3[nH]ncc3c2)c1)C1CCNCC1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc4[nH]ncc4c3)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Fc1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; [0.9925268888473511, 0.9839750528335571, 0.9677802324295044, 0.9217763543128967, 0.8610134124755859] +COc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(Br)cc1']; [0.999992847442627, 0.9999594688415527, 0.9999116063117981, 0.9998602867126465, 0.9998393058776855, 0.9998186826705933, 0.9995822310447693, 0.9991825819015503, 0.9961570501327515, 0.8541098833084106] +Cc1cc(Nc2cnc3[nH]ncc3c2)sn1; ['Cc1cc(N)sn1', 'Brc1cnc2[nH]ncc2c1', 'Cc1cc(N)sn1']; ['Clc1cnc2[nH]ncc2c1', 'Cc1cc(N)sn1', 'Ic1cnc2[nH]ncc2c1']; [0.9997018575668335, 0.9992520809173584, 0.9983341693878174] +N#Cc1ccc(O)c(-c2cnc3[nH]ncc3c2)c1; ['N#Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'N#Cc1ccc(O)c(Br)c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'N#Cc1ccc(O)c(Cl)c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9999509453773499, 0.9999464154243469, 0.9999158978462219, 0.9998905658721924, 0.9988291263580322, 0.9976097345352173, 0.9957761764526367, 0.9957603216171265, 0.9520388841629028] +c1ccc2[nH]c(-c3cnc4[nH]ncc4c3)nc2c1; ['Clc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Brc1nc2ccccc2[nH]1', 'CCOC(=O)c1cnc2[nH]ncc2c1', 'Nc1ccccc1N', 'Ic1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'O=Cc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1ccccc1N', 'O=C(O)c1cnc2[nH]ncc2c1', 'c1ccc2[nH]cnc2c1']; [0.9996796250343323, 0.9991616010665894, 0.9991146326065063, 0.9874494075775146, 0.948939859867096, 0.7884560823440552] +O=C([O-])c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C([O-])c1ccc(Cl)cc1']; ['O=C([O-])c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9701741337776184, 0.847286581993103] +c1cnc(Nc2cnc3[nH]ncc3c2)nc1; ['Fc1ncccn1', 'Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CS(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.999407172203064, 0.9989133477210999, 0.9982882738113403, 0.9971017241477966, 0.9893550872802734, 0.9867596626281738, 0.9590790867805481, 0.9509871006011963, 0.9406958818435669] +NC(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'NC(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'NC(=O)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'NC(=O)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999963641166687, 0.9999747276306152, 0.9999724626541138, 0.9999352693557739, 0.9999297857284546, 0.9998974800109863, 0.9997720718383789, 0.9997186064720154, 0.9994827508926392, 0.9978636503219604, 0.9884617328643799, 0.9828539490699768] +O=C(Nc1cccc(-c2cnc3[nH]ncc3c2)c1)C1CC1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C(Nc1cccc(Br)c1)C1CC1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999971389770508, 0.9998832941055298] +N#Cc1cccc(Cn2cc(-c3cnc4[nH]ncc4c3)cn2)c1; [None]; [None]; [0] +c1ccc2c(-c3cnc4[nH]ncc4c3)nccc2c1; ['Ic1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; ['OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1nccc2ccccc12']; [0.9999771118164062, 0.9998395442962646, 0.9998120069503784, 0.9996316432952881, 0.998753547668457] +O=C(Nc1ccccc1)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999995231628418, 0.9999945163726807, 0.9999902248382568, 0.9999771118164062, 0.999975323677063, 0.9999717473983765, 0.9997062087059021, 0.9996941089630127, 0.9976415634155273, 0.993055522441864] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4[nH]ncc4c3)cc2)CC1; [None]; [None]; [0] +c1cc(-c2cnc3[nH]ncc3c2)cc(C2CCNCC2)c1; ['Brc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999997615814209, 0.999984622001648, 0.9958717823028564] +OCCOc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Cl)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999946355819702, 0.9999775886535645, 0.9999678134918213, 0.9999476671218872, 0.9999388456344604, 0.9999377727508545, 0.999903678894043, 0.9998728036880493, 0.9997835159301758, 0.999038577079773, 0.9969110488891602, 0.9192548990249634] +CC(=O)NCc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999986886978149, 0.9999911785125732, 0.9999692440032959, 0.9999130964279175, 0.9998795986175537, 0.9996820688247681, 0.9981977939605713] +O=C(c1ccc(-c2cnc3[nH]ncc3c2)nc1)N1CCOCC1; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999963641166687, 0.9999858140945435, 0.9996917843818665] +c1cc(Nc2cnc3[nH]ncc3c2)ncn1; ['Nc1ccncn1', 'Clc1ccncn1', 'Fc1ccncn1', 'Ic1cnc2[nH]ncc2c1', 'Brc1ccncn1', 'Fc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1ccncn1', 'Nc1cnc2[nH]ncc2c1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9998965263366699, 0.9993901252746582, 0.9989233016967773, 0.9980524778366089, 0.9979858994483948, 0.9970672726631165, 0.9959353804588318] +O=C(c1ccc(-c2cnc3[nH]ncc3c2)cc1)N1CCOCC1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Clc1cnc2[nH]ncc2c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999996423721313, 0.9999990463256836, 0.9999988079071045, 0.9999980330467224, 0.9999942779541016, 0.9999939203262329, 0.9999918937683105, 0.9999916553497314, 0.9999657869338989, 0.9999447464942932, 0.9998500347137451, 0.9996272921562195, 0.9880738258361816] +FC(F)(F)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'FC(F)(F)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9999951124191284, 0.9999920129776001, 0.9999867081642151, 0.9999817609786987, 0.9999284744262695, 0.9999185800552368, 0.9998958110809326, 0.9997910857200623, 0.9997278451919556, 0.9994159936904907, 0.9968767166137695, 0.9520045518875122] +C[C@H](O)COc1ccc(-c2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)c1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Cl)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)c1ccc(I)cc1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cc1']; [0.9999990463256836, 0.9999935626983643, 0.9999910593032837, 0.9999854564666748, 0.9999830722808838, 0.9999810457229614, 0.9999784827232361, 0.9999659657478333, 0.9999526739120483, 0.9996575117111206, 0.9990004301071167, 0.9987055063247681, 0.9981952905654907, 0.9448413848876953] +O=S1(=O)Cc2ccc(-c3cnc4[nH]ncc4c3)cc2C1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=S1(=O)Cc2ccc(Br)cc2C1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999959468841553, 0.9999819397926331] +CN(C)S(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [0.9999994039535522, 0.9999976754188538, 0.999990701675415, 0.9999898672103882, 0.9999880790710449, 0.999986469745636, 0.9999589323997498, 0.9999569654464722, 0.9998430013656616, 0.9992718696594238, 0.9449558258056641] +C[C@@H](O)COc1ccc(-c2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc3[nH]ncc3c2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1']; [0.999990701675415, 0.9999473094940186] +CCNS(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'Brc1cnc2[nH]ncc2c1']; ['Ic1cnc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; [0.9999643564224243, 0.9999147653579712, 0.9998540878295898, 0.9995313286781311, 0.9919310808181763, 0.9691660404205322, 0.8603127598762512] +CCCOc1ccc(-c2cnc3[nH]ncc3c2)nc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCCOc1ccc(Br)nc1', 'Brc1cnc2[nH]ncc2c1']; ['CCCOc1ccc(Br)nc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCCOc1ccc(Br)nc1']; [0.9999940395355225, 0.9999754428863525, 0.994316816329956] +O=C(c1ccccc1)N1CC[C@H](c2cnc3[nH]ncc3c2)C1; [None]; [None]; [0] +Brc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccc(I)cc1', 'Brc1ccc(I)cc1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1ccc(I)cc1', 'Clc1ccc(Br)cc1', 'Brc1ccc(Br)cc1']; ['Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1']; [0.9999802112579346, 0.9999527335166931, 0.9999353885650635, 0.9998960494995117, 0.9998584985733032, 0.9997363090515137, 0.9997183084487915, 0.9993611574172974, 0.9975667595863342, 0.9973382949829102, 0.9955615997314453, 0.994682788848877, 0.9619861841201782, 0.9553269147872925, 0.9297877550125122] +c1cc2nc(-c3cnc4[nH]ncc4c3)ccn2n1; ['Clc1ccn2nccc2n1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1ccn2nccc2n1', 'Brc1ccn2nccc2n1']; ['OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccn2nccc2n1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; [0.9999887943267822, 0.9999867081642151, 0.9999854564666748, 0.9999650120735168] +CN(C)c1ccc(-c2cnc3[nH]ncc3c2)cc1Cl; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cc1Cl']; [0.9999991059303284, 0.9999980330467224, 0.9999897480010986, 0.9999748468399048, 0.9999291896820068, 0.9998505115509033, 0.986670196056366] +CC(=O)N1CCCN(c2cccc(-c3cnc4[nH]ncc4c3)c2)CC1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccccc1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [0.9999994039535522, 0.9999984502792358, 0.9999954700469971, 0.9999910593032837, 0.9999887943267822, 0.9999815821647644, 0.9999792575836182, 0.9999454021453857, 0.9997878074645996, 0.9992644190788269, 0.9992468953132629, 0.9991345405578613, 0.9990215301513672, 0.9942045211791992, 0.9922306537628174, 0.9885534048080444, 0.964623212814331] +COc1ccc(Cl)cc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(Cl)cc1B(O)O']; ['COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc(Cl)cc1B(O)O', 'Clc1cnc2[nH]ncc2c1']; [0.9999569654464722, 0.9999457597732544, 0.9998311996459961, 0.9997416734695435, 0.9997210502624512, 0.9992688894271851, 0.9984012842178345] +Cc1c(C(=O)[O-])cccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc4[nH]ncc4c3)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cnc2[nH]ncc2c1']; [0.9939159154891968] +c1ccc(-n2cccn2)c(-c2cnc3[nH]ncc3c2)c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Brc1ccccc1-n1cccn1', 'Clc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccccc1-n1cccn1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccccc1-n1cccn1', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999970197677612, 0.9999966621398926, 0.9999962449073792, 0.9999589920043945, 0.9999508857727051, 0.9999160766601562, 0.9990442395210266, 0.998904824256897] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]ncc3c2)c(C)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Brc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Brc1cnc2[nH]ncc2c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Clc1cnc2[nH]ncc2c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.999997079372406, 0.9999858140945435, 0.9999804496765137, 0.9999638795852661, 0.9999017715454102, 0.9998719692230225, 0.9994326829910278, 0.9993681311607361, 0.9896271228790283] +c1ccc2c(-c3cnc4[nH]ncc4c3)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'Brc1cnc2[nH]ncc2c1', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9998332262039185, 0.9995598793029785, 0.9914408922195435, 0.9914028644561768, 0.9889573454856873, 0.9560384154319763, 0.9258230924606323, 0.9193205833435059] +c1cc2c(cc1-c1cnc3[nH]ncc3c1)CCO2; ['Brc1ccc2c(c1)CCO2', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'Ic1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Clc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999942779541016, 0.9999915957450867, 0.999987006187439, 0.9999681711196899, 0.9999593496322632, 0.999954342842102, 0.9999532699584961, 0.9998999834060669, 0.9998778700828552, 0.9998327493667603, 0.9997431039810181, 0.9988992214202881, 0.9936394691467285] +COc1cc(OC)c(-c2cnc3[nH]ncc3c2)cc1Cl; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Br)cc1Cl', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9998759031295776, 0.9987996816635132] +c1ccc(-c2cc(-c3cnc4[nH]ncc4c3)n[nH]2)cc1; [None]; [None]; [0] +c1cc2c(c(-c3cnc4[nH]ncc4c3)c1)OCO2; ['Brc1cnc2[nH]ncc2c1', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Brc1cccc2c1OCO2']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cccc2c1OCO2', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cnc2[nH]ncc2c1']; [0.9999780058860779, 0.9999749660491943, 0.9999486207962036, 0.9998806715011597, 0.9998800754547119, 0.9996479749679565, 0.9980102777481079, 0.9970737099647522, 0.991301417350769, 0.9648309350013733] +COc1cc(-c2cnc3[nH]ncc3c2)ccc1O; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'Brc1cnc2[nH]ncc2c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(B(O)O)ccc1O', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(Br)ccc1O']; [0.9999885559082031, 0.9999281167984009, 0.9998563528060913, 0.9997849464416504, 0.9991649985313416, 0.9986633062362671, 0.9964559078216553, 0.9964317083358765, 0.9912537932395935, 0.887425422668457] +c1ccc2ncc(-c3cnc4[nH]ncc4c3)cc2c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2[nH]ncc2c1', 'Clc1cnc2ccccc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999276399612427, 0.9999276399612427, 0.9983789324760437, 0.9983789324760437, 0.9922296404838562, 0.9922296404838562, 0.9903399348258972, 0.9903399348258972] +c1nc2[nH]ncc2cc1-c1scc2c1OCCO2; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['Ic1cnc2[nH]ncc2c1', 'c1scc2c1OCCO2']; [0.9999028444290161, 0.9997375011444092] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(Br)cc1']; [0.9999997019767761, 0.9999980926513672, 0.9999958872795105, 0.9999905228614807, 0.9999900460243225, 0.9999843835830688, 0.9999741315841675, 0.9998424053192139, 0.9998066425323486, 0.999017596244812, 0.9962257742881775, 0.9530185461044312] +CC(C)(C)c1ccc(-c2cnc3[nH]ncc3c2)cn1; ['Brc1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cnc2[nH]ncc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(Br)cn1']; [0.9999892711639404, 0.9999504685401917, 0.9999297857284546, 0.9998769760131836, 0.9995228052139282, 0.9991655349731445, 0.9913018941879272, 0.9419106245040894] +COc1cccc(C(=O)Nc2cnc3[nH]ncc3c2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1', 'COc1cccc(C=O)c1', 'COc1cccc(C(=O)Cl)c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'O=[N+]([O-])c1cnc2[nH]ncc2c1']; [0.9999951124191284, 0.9999582171440125, 0.9992932081222534, 0.998805046081543, 0.9937737584114075] +CC1(COc2cnc3[nH]ncc3c2)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CBr)COC1', 'CC1(CI)COC1', 'Brc1cnc2[nH]ncc2c1', 'CC1(CO)COC1', 'CC1(CCl)COC1', 'CC1(CO)COC1']; ['Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'CC1(CO)COC1', 'Oc1cnc2[nH]ncc2c1', 'Oc1cnc2[nH]ncc2c1', 'O=[N+]([O-])c1cnc2[nH]ncc2c1']; [0.9992388486862183, 0.9990766048431396, 0.9970972537994385, 0.9947041273117065, 0.9914942979812622, 0.9869903326034546, 0.9573383331298828, 0.9406301975250244, 0.8617277145385742] +c1ccc2sc(-c3cnc4[nH]ncc4c3)cc2c1; ['Brc1cc2ccccc2s1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cc2ccccc2s1', 'Ic1cc2ccccc2s1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cc2ccccc2s1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cc2ccccc2s1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'OB(O)c1cc2ccccc2s1', 'Ic1cnc2[nH]ncc2c1', 'c1ccc2sccc2c1']; [0.9999808669090271, 0.9999299645423889, 0.9998838901519775, 0.9998360872268677, 0.9994450807571411, 0.9993109107017517, 0.9988940954208374, 0.9958836436271667, 0.9955273866653442] +CSc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CSc1ccc(I)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CSc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CSc1ccc(Cl)cc1', 'CSc1ccc(Br)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CSc1ccc(I)cc1', 'Ic1cnc2[nH]ncc2c1', 'CSc1ccc(Br)cc1', 'CSc1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CSc1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1']; [0.9999921917915344, 0.9999094009399414, 0.9998672604560852, 0.9998613595962524, 0.9998021125793457, 0.999683141708374, 0.9996017217636108, 0.9993105530738831, 0.9991565942764282, 0.9967306852340698, 0.9964542984962463, 0.9858607053756714, 0.8675135374069214] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cnc4[nH]ncc4c3)n2)c1; [None]; [None]; [0] +Fc1ccc(-c2cnc3[nH]ncc3c2)c(Cl)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Fc1ccc(Cl)c(Cl)c1']; ['Fc1ccc(Br)c(Cl)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999879598617554, 0.9999725818634033, 0.9999527931213379, 0.9999051094055176, 0.9998732209205627, 0.9998558759689331, 0.9996795058250427, 0.9993480443954468, 0.9992605447769165, 0.9943631887435913, 0.9908604621887207, 0.9776819944381714, 0.9762300848960876] +Cc1cc(-c2cnc3[nH]ncc3c2)nc(N)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cc1cc(Cl)nc(N)n1']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999707341194153, 0.9999192953109741, 0.9996199607849121] +CCN1CCN(Cc2ccc(-c3cnc4[nH]ncc4c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Brc1cnc2[nH]ncc2c1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9999721050262451, 0.9999213218688965, 0.9998814463615417, 0.9998267889022827, 0.9997737407684326, 0.909390926361084] +Brc1cnc(-c2cnc3[nH]ncc3c2)nc1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc(Br)nc1', 'Brc1cncnc1']; ['OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1ncc(Br)cn1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9984737634658813, 0.9979175925254822, 0.9971437454223633, 0.996574342250824, 0.9915541410446167, 0.8620786070823669] +COc1ccc(-c2cnc3[nH]ncc3c2)cc1OC; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'COc1ccc(Cl)cc1OC']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999970197677612, 0.9999861717224121, 0.9999780654907227, 0.9999707937240601, 0.9999700784683228, 0.9999027252197266, 0.9997949600219727, 0.9996917247772217, 0.9996743202209473, 0.9994641542434692, 0.999293327331543, 0.9987480044364929, 0.9982475638389587, 0.9810466170310974, 0.9739376306533813] +O=C1CCc2cc(-c3cnc4[nH]ncc4c3)ccc2N1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'O=C1CCc2cc(Cl)ccc2N1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C1CCc2cc(I)ccc2N1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'OB(O)c1cnc2[nH]ncc2c1', 'O=C1CCc2cc(Br)ccc2N1']; [0.999993622303009, 0.9999852180480957, 0.9999761581420898, 0.9999701976776123, 0.99992835521698, 0.9998375177383423, 0.9998308420181274, 0.9997316002845764, 0.9993936419487, 0.9993829131126404, 0.9990888237953186, 0.9913097023963928] +COc1ccc(CNc2cnc3[nH]ncc3c2)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'COc1ccc(CN)cc1']; [0.9995619058609009, 0.99878990650177, 0.9986457228660583, 0.9985606074333191, 0.9976365566253662, 0.9891106486320496, 0.9785830974578857, 0.8554546236991882] +CCc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCc1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ncc2c1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'Ic1cnc2[nH]ncc2c1', 'CCc1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CCc1ccc(I)cc1']; [0.9999949932098389, 0.9999607801437378, 0.9999604225158691, 0.9999547004699707, 0.9999465346336365, 0.9999219179153442, 0.9998180270195007, 0.9996774792671204, 0.9996504783630371, 0.9992421865463257, 0.9865081310272217, 0.9846298694610596] +Clc1ccc(-c2cnc3[nH]ncc3c2)c(Cl)c1; ['Brc1cnc2[nH]ncc2c1', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Clc1ccc(Cl)c(Cl)c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cccc(Cl)c1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1ccc(Br)c(Cl)c1', 'Ic1cnc2[nH]ncc2c1']; [0.9999326467514038, 0.9999143481254578, 0.9998852610588074, 0.9998838901519775, 0.9998489618301392, 0.9995003938674927, 0.9994084239006042, 0.9993003010749817, 0.9970312118530273, 0.9818177819252014, 0.8976199626922607, 0.7608402967453003] +COc1cc(-c2cnc3[nH]ncc3c2)ccc1N1CCOCC1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(Br)ccc1N1CCOCC1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999985694885254, 0.9999969601631165, 0.9999881982803345, 0.9999871850013733, 0.999975323677063, 0.9977986812591553] +c1cc2cnc(-c3cnc4[nH]ncc4c3)nn2c1; ['Clc1ncc2cccn2n1']; ['OB(O)c1cnc2[nH]ncc2c1']; [0.999881386756897] +O=C(C1CC1)N1CC(Nc2cnc3[nH]ncc3c2)C1; [None]; [None]; [0] +c1ccn2nc(-c3cnc4[nH]ncc4c3)cc2c1; ['Brc1cc2ccccn2n1', 'Brc1cc2ccccn2n1', 'Clc1cc2ccccn2n1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999598860740662, 0.9990615844726562, 0.9989429712295532] +Cn1cc(-c2cnc3[nH]ncc3c2)c(C(F)(F)F)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Brc1cnc2[nH]ncc2c1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; [0.9999924898147583, 0.9999877214431763, 0.999985933303833, 0.9999831914901733, 0.9999810457229614, 0.9999396800994873, 0.9999366998672485, 0.9994619488716125, 0.9608420133590698] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc4[nH]ncc4c3)c2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1ccc2cccc(Br)c2c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1ccc2cccc(Br)c2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1ccc2cccc(Br)c2c1']; [0.9999911785125732, 0.9999418258666992, 0.9907695651054382] +Oc1ccc2cccc(-c3cnc4[nH]ncc4c3)c2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(I)c2c1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(Br)c2c1', 'Ic1cnc2[nH]ncc2c1', 'Oc1ccc2cccc(Br)c2c1']; [0.9999544620513916, 0.9999405145645142, 0.9998447895050049, 0.9997913241386414, 0.9991276264190674, 0.9986392259597778, 0.8110983371734619] +COc1cc(-c2cnc3[nH]ncc3c2)ccc1Cl; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cnc2[nH]ncc2c1', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'Clc1cnc2[nH]ncc2c1', 'COc1cc(Br)ccc1Cl', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999995231628418, 0.9999994039535522, 0.9999983906745911, 0.9999964237213135, 0.9999887943267822, 0.999984860420227, 0.9999826550483704, 0.9999762773513794, 0.9999681115150452, 0.9999672174453735, 0.9999659061431885, 0.9997968673706055, 0.9990056157112122, 0.9985539317131042, 0.944266676902771] +COc1cc(F)c(-c2cnc3[nH]ncc3c2)cc1OC; ['Brc1cnc2[nH]ncc2c1', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(F)c(B(O)O)cc1OC', 'Brc1cnc2[nH]ncc2c1', 'COc1cc(F)c(Br)cc1OC', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1cc(F)c(Br)cc1OC', 'Clc1cnc2[nH]ncc2c1', 'COc1cc(F)c(B(O)O)cc1OC', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(F)c(Br)cc1OC']; [0.9999632835388184, 0.9998992085456848, 0.999825119972229, 0.9996942281723022, 0.999692440032959, 0.999527633190155, 0.999466061592102, 0.9982086420059204, 0.8410083055496216] +Clc1cnc(-c2cnc3[nH]ncc3c2)nc1; ['Clc1cnc(I)nc1', 'Clc1cnc(Br)nc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Clc1cnc(Cl)nc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CSc1ncc(Cl)cn1']; ['OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc(Cl)nc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc(Br)nc1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9998823404312134, 0.9997051954269409, 0.9995510578155518, 0.9994087219238281, 0.9991434812545776, 0.9907889366149902] +CC1(C)Cc2cc(-c3cnc4[nH]ncc4c3)ccc2O1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]ncc3c2)nn1C; ['Cc1cc(Br)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Cc1cc(N)nn1C']; [0.9999156594276428, 0.9997344017028809, 0.9993596076965332, 0.9988996982574463, 0.9938181638717651] +Cc1nc(Nc2cnc3[nH]ncc3c2)sc1C; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]ncc3c2)c2cc[nH]c2n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.9999956488609314, 0.9999715685844421, 0.9992902278900146, 0.9355181455612183] +CNC(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'Brc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(I)cc1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999989867210388, 0.9999909996986389, 0.9999865889549255, 0.9999850988388062, 0.9999823570251465, 0.9999788999557495, 0.9999469518661499, 0.9999371767044067, 0.999852180480957, 0.9998413920402527, 0.998647928237915, 0.9963871836662292] +O=C(Nc1cnc2[nH]ncc2c1)c1ccco1; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1', 'NC(=O)c1ccco1']; [0.9996169805526733, 0.9988337159156799, 0.8654114007949829] +CCNC(=O)c1ccc(-c2cnc3[nH]ncc3c2)nc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C']; ['CCNC(=O)c1ccc(Br)nc1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCNC(=O)c1ccc(Cl)nc1']; [0.9999969005584717, 0.9999915361404419, 0.9995256662368774, 0.9980052709579468] +COc1cc(-c2cnc3[nH]ncc3c2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; [0.9999684691429138, 0.9998944997787476, 0.9959794282913208, 0.9955776929855347, 0.9923101663589478, 0.9889523983001709, 0.9491567611694336, 0.8321622610092163] +Cc1csc2c(-c3cnc4[nH]ncc4c3)ncnc12; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3[nH]ncc3c2)c1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(OC)cc(B(O)O)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cnc2[nH]ncc2c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'Ic1cnc2[nH]ncc2c1', 'COc1cc(I)cc(OC)c1', 'Ic1cnc2[nH]ncc2c1', 'COc1cc(OC)cc(B(O)O)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; [0.9999586343765259, 0.9999231100082397, 0.999798595905304, 0.9997426271438599, 0.9997371435165405, 0.999472439289093, 0.9993329644203186, 0.9990120530128479, 0.9987378120422363, 0.9987272024154663, 0.9985857605934143, 0.9974486827850342, 0.9426742196083069] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3[nH]ncc3c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cnc4[nH]ncc4c3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'Brc1cnc2[nH]ncc2c1']; ['Clc1cnc2[nH]ncc2c1', 'COc1ccc2oc(B(O)O)cc2c1']; [0.9999357461929321, 0.9998811483383179] +c1cc2cn[nH]c2cc1-c1cnc2[nH]ncc2c1; ['Brc1cnc2[nH]ncc2c1', 'Brc1ccc2cn[nH]c2c1', 'Ic1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1ccc2cn[nH]c2c1', 'Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Clc1cnc2[nH]ncc2c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1cnc2[nH]ncc2c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Ic1ccc2cn[nH]c2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1ccc2cn[nH]c2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; [0.9999966025352478, 0.999989926815033, 0.9999794363975525, 0.9999752640724182, 0.9999721646308899, 0.9999516010284424, 0.9998985528945923, 0.9998977780342102, 0.999830424785614, 0.9998133182525635, 0.9992979764938354, 0.9988341927528381, 0.9970945119857788, 0.98020339012146, 0.9341075420379639] +NC(=O)c1ccc(Cc2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc3[nH]ncc3c2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CCOC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'O=[N+]([O-])c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; [0.9999880790710449, 0.9999582171440125, 0.9998452663421631, 0.9998103380203247, 0.9976977109909058, 0.9955540895462036, 0.9955188035964966, 0.9946972131729126] +CO[C@@H]1CC[C@@H](c2cnc3[nH]ncc3c2)CC1; [None]; [None]; [0] +c1cc2nc(-c3cnc4[nH]ncc4c3)ncc2s1; ['Clc1ncc2sccc2n1', 'Ic1cnc2[nH]ncc2c1']; ['OB(O)c1cnc2[nH]ncc2c1', 'c1ncc2sccc2n1']; [0.9995660781860352, 0.9956696033477783] +c1ccc2oc(-c3cnc4[nH]ncc4c3)cc2c1; ['Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9996181726455688, 0.9995102882385254] +CC(C)c1nn(C)cc1-c1cnc2[nH]ncc2c1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'Brc1cnc2[nH]ncc2c1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; [0.999991774559021, 0.9999802112579346, 0.9999390244483948, 0.9999061226844788, 0.9997246265411377, 0.9996554255485535, 0.9996364116668701] +COc1ccc2nc(-c3cnc4[nH]ncc4c3)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c([N+](=O)[O-])c1', 'COc1ccc(N)c(N)c1']; ['O=Cc1cnc2[nH]ncc2c1', 'O=Cc1cnc2[nH]ncc2c1', 'O=C(O)c1cnc2[nH]ncc2c1']; [0.9989681243896484, 0.9862990975379944, 0.928249716758728] +CNC(=O)c1ccc(OC)c(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999695420265198, 0.999417245388031] +O=C(Nc1cccc(-c2cnc3[nH]ncc3c2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc3[nH]ncc3c2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F', 'COc1ccc(F)c(C=O)c1', 'COc1ccc(F)c(C(N)=O)c1', 'Brc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'COc1ccc(F)c(C(N)=O)c1']; [0.9996196031570435, 0.9980119466781616, 0.9976888298988342, 0.9956060647964478, 0.9748103618621826] +C[NH+](C)Cc1ccc(-c2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['Brc1cnc2[nH]ncc2c1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Clc1cnc2[nH]ncc2c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; [1.0, 0.9999997615814209, 0.9999990463256836, 0.9999966621398926, 0.9999966025352478, 0.9999963045120239, 0.999994158744812, 0.9999545812606812, 0.9998956918716431, 0.999871015548706, 0.9998559951782227, 0.994831919670105] +c1cncc(-c2ccnc(-c3cnc4[nH]ncc4c3)c2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +CCc1cccc(-c2cnc3[nH]ncc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCc1cccc(Br)n1', 'Brc1cnc2[nH]ncc2c1']; ['CCc1cccc(Br)n1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCc1cccc(Br)n1']; [0.9999804496765137, 0.9995900988578796, 0.9019955396652222] +c1nc2[nH]ncc2cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]ncc3c2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]ncc3c2)cn1; ['Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)c1ccc(I)cn1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'CN(C)c1ccc(Br)cn1']; [0.9999915361404419, 0.9999716281890869, 0.9999604225158691, 0.999956488609314, 0.9999351501464844, 0.999740719795227, 0.9996880888938904, 0.999444305896759, 0.9971438646316528, 0.9884122610092163, 0.9878935813903809, 0.9867547154426575, 0.7770582437515259] +Cc1n[nH]c2cc(-c3cnc4[nH]ncc4c3)ccc12; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'Brc1cnc2[nH]ncc2c1', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Brc1cnc2[nH]ncc2c1']; ['Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 0.9999997615814209, 0.9999984502792358, 0.999997615814209, 0.9999968409538269, 0.9999959468841553, 0.9999942183494568, 0.9999823570251465, 0.9999406933784485, 0.9988785982131958] +CC(C)(O)c1ccc2cc(-c3cnc4[nH]ncc4c3)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc4[nH]ncc4c3)cn2)CC1; ['Brc1cnc2[nH]ncc2c1']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; [0.999996542930603] +O=C(Nc1cnc2[nH]ncc2c1)c1cccc(OC(F)(F)F)c1; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'Nc1cnc2[nH]ncc2c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'O=[N+]([O-])c1cnc2[nH]ncc2c1', 'O=Cc1cccc(OC(F)(F)F)c1', 'Nc1cnc2[nH]ncc2c1']; [0.9999988675117493, 0.9999721646308899, 0.9998209476470947, 0.999457836151123, 0.9978611469268799] +Cn1nc(Cl)c2cc(-c3cnc4[nH]ncc4c3)ccc21; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +OCCc1ccc(-c2cnc3[nH]ncc3c2)cc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2[nH]ncc2c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'Brc1cnc2[nH]ncc2c1']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'OB(O)c1cnc2[nH]ncc2c1', 'COc1cc(S(C)(=O)=O)ccc1Br']; [0.999967098236084, 0.999633252620697, 0.971554160118103] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc4[nH]ncc4c3)cc2)n1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]ncc3c2)c(OC)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999550580978394, 0.99993896484375, 0.9996941089630127, 0.9996483325958252, 0.9992634654045105] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ncc3c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]ncc3c2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Brc1cnc2[nH]ncc2c1', 'Cc1cc(N)ncc1F']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Cc1cc(N)ncc1F', 'Fc1cnc2[nH]ncc2c1']; [0.9998693466186523, 0.9995647072792053, 0.9939112663269043, 0.9909531474113464, 0.9889212846755981, 0.8077112436294556] +CCNC(=O)c1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ncc2c1', 'CCNC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['CCNC(=O)c1ccc(Br)cc1', 'Ic1cnc2[nH]ncc2c1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCNC(=O)c1ccc(I)cc1', 'Clc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1']; [0.9999926090240479, 0.9999894499778748, 0.9999852180480957, 0.9999706149101257, 0.9999677538871765, 0.9999457001686096, 0.9996050596237183] +Fc1ccc(Nc2cnc3[nH]ncc3c2)nc1; ['Fc1ccc(Br)nc1', 'Fc1ccc(Cl)nc1', 'Nc1ccc(F)cn1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Fc1ccc(F)nc1', 'Brc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1cnc2[nH]ncc2c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1']; [0.9995975494384766, 0.9991035461425781, 0.9965604543685913, 0.9949102401733398, 0.9836183786392212, 0.9792864322662354, 0.9660488367080688, 0.9535899758338928] +c1ccc(Nc2cnc3[nH]ncc3c2)nc1; ['Brc1ccccn1', 'Nc1ccccn1', 'Clc1ccccn1', 'Fc1ccccn1', 'Brc1cnc2[nH]ncc2c1', 'Ic1cnc2[nH]ncc2c1', 'Fc1cnc2[nH]ncc2c1', 'Clc1cnc2[nH]ncc2c1']; ['Nc1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1cnc2[nH]ncc2c1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1']; [0.9995285272598267, 0.9986841082572937, 0.9970089197158813, 0.9839717149734497, 0.9815149307250977, 0.978805422782898, 0.9461686611175537, 0.879906177520752] +CCNC(=O)Cc1ccc(-c2cnc3[nH]ncc3c2)cc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1', 'Brc1cnc2[nH]ncc2c1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'OB(O)c1cnc2[nH]ncc2c1', 'CCNC(=O)Cc1ccc(Br)cc1']; [0.9999947547912598, 0.9998236894607544, 0.9682797193527222] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ncc3c2)nc1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'OB(O)c1cnc2[nH]ncc2c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; [0.999996542930603, 0.999983549118042, 0.9999655485153198, 0.9999294281005859, 0.987511396408081] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3[nH]ncc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cnc3[nH]ncc3c2)OC1(C)C', 'Brc1cnc2[nH]ncc2c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'OB(O)c1cnc2[nH]ncc2c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; [0.9999966621398926, 0.9999445676803589, 0.9992388486862183, 0.8892751932144165] +Cn1nc(-c2cnc3[nH]ncc3c2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc3[nH]ncc3c2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2cc(F)cc(F)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccnc3ccccc23)s1; [None]; [None]; [0] +CCn1cc(-c2ccc(NC(N)=O)s2)cn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C(F)(F)F)c2)s1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2[nH]ncc2c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccccc2OC(F)(F)F)s1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc(NC(N)=O)s2)[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn(Cc3ccccc3)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccccc2C(N)=O)s1; [None]; [None]; [0] +COC(C)(C)CCc1ccc(NC(N)=O)s1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccccc2C(=O)[O-])s1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc(NC(N)=O)s3)cc2c1=O; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(NC(=O)c3ccccc3)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn(CCO)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc(-c3ccccc3)[nH]2)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc(NC(N)=O)s2)cs1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(Cl)ccc2Cl)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2ncc3cccc(F)c3c2=O)s1; [None]; [None]; [0] +COc1cnc(-c2ccc(NC(N)=O)s2)nc1; [None]; [None]; [0] +Cc1ccc(-c2ccc(NC(N)=O)s2)c(Br)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3ccccn23)s1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc(NC(N)=O)s1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc(NC(N)=O)s2)s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc(NC(N)=O)s2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c(Cl)cccc2Cl)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(Br)c2)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(Cn3cncn3)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3ccccc3c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3cccnn23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2cnc3ccccc32)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NCc2cccnc2)s1; [None]; [None]; [0] +Cc1c(-c2ccc(NC(N)=O)s2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)Nc1ccc(NC(=O)c2cccs2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn3ncccc23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2cccnc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cncc3ccccc23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NCCc2c[nH]cn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccnc(N)n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(F)c2C(N)=O)s1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc(NC(N)=O)s3)cc2)cn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(CC(=O)[O-])c2)s1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(NC(N)=O)s3)ccc21; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]nc2C(F)(F)F)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(N)[nH]nc3c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NCCc2ccccc2)s1; [None]; [None]; [0] +CN1c2ccc(-c3ccc(NC(N)=O)s3)cc2CS1(=O)=O; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(O)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(CO)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(-c3cn[nH]c3)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NCc2ccc(Cl)cc2)s1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(NC(N)=O)s2)n1; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ccc(NC(N)=O)s2)nn1; [None]; [None]; [0] +NC(=O)Nc1ccc(NCc2ccccc2F)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ccncc2)s1; [None]; [None]; [0] +CSc1nc(-c2ccc(NC(N)=O)s2)c[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2csc3ncncc23)s1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccc3[nH]2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(CCc2c[nH]nn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Oc2ccccn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(F)cc2C(F)(F)F)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cncnc2N)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2csc(N)n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NC(=O)c2c(Cl)cccc2Cl)s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc(NC(N)=O)s3)cc2s1; [None]; [None]; [0] +NC(=O)CCCc1ccc(NC(N)=O)s1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)s2)cc1Cl; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc(NC(N)=O)s1; [None]; [None]; [0] +Cn1cc(-c2ccc(NC(N)=O)s2)c2ccccc21; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn3ccccc23)s1; [None]; [None]; [0] +CCCn1cc(-c2ccc(NC(N)=O)s2)cn1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc[nH]c(=O)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3c2C(=O)CC3)s1; [None]; [None]; [0] +CC(C)(COc1ccc(NC(N)=O)s1)S(C)(=O)=O; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)s1; [None]; [None]; [0] +C[C@@H](Oc1ccc(NC(N)=O)s1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(NC(N)=O)s2)cc(OC)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3c(=O)[nH]ccc3o2)s1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c3cnccc23)s1; [None]; [None]; [0] +COc1ccncc1Nc1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3c(=O)[nH]cc(Br)c3s2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2cnccc2-c2ccccc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3[nH]ccc3c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(N3CCOCC3)cc2)s1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2cnc3ccccc3c2)s1; [None]; [None]; [0] +CC1(c2ccc(NC(N)=O)s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc(NC(N)=O)s1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c(F)cccc2Cl)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2ncc3ccccc32)s1; [None]; [None]; [0] +C[C@H](Nc1ccc(NC(N)=O)s1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2ccc(NC(N)=O)s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc(NC(N)=O)s1)C(C)(C)O; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2ccc(CO)n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2cnc(CCO)c2)s1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc(NC(N)=O)s2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)s2)c(OC)c1; [None]; [None]; [0] +C[C@@H](Nc1ccc(NC(N)=O)s1)C(C)(C)O; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)c3ccccc3)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(-n3cncn3)cc2)s1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2ncc3c(O)cccc32)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc3ccc(O)cc3[nH]2)s1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nncn2C2CC2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccn(CC[NH3+])n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2nnc3ccc(-c4ccccc4)nn23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(CCC(=O)NCc2ccccn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(CS(=O)(=O)NCc2ccccn2)s1; [None]; [None]; [0] +CCc1cc(-c2ccc(NC(N)=O)s2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn(Cc3ccccc3)nn2)s1; [None]; [None]; [0] +CCCCc1cc(-c2ccc(NC(N)=O)s2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nnc(N)s2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc(NC(N)=O)s2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(NC(N)=O)s2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc3ccccc3s2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3ccsc23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3nnsc23)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(Oc2ccc(C[NH3+])cc2F)s1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc(NC(N)=O)s3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(NC(N)=O)s3)c2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cncc(N)n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c3cccnc23)s1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(NC(N)=O)s2)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc(N)c3ccccc3n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3ccccc3n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3cc[nH]c3n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn(CCO)cn2)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +COc1ccc(Oc2ccc(NC(N)=O)s2)c(F)c1F; [None]; [None]; [0] +COc1ncccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(N2CC=C(c3c[nH]c4ccccc34)CC2)s1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc(NC(N)=O)s2)cnn1; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)cc(OC)c1OC; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)s1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc(NC(N)=O)s3)c2c1; [None]; [None]; [0] +NC(=O)Nc1ccc(N2CCC(c3nc4ccccc4[nH]3)CC2)s1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(NC(=O)C3CC3)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(N)=O)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)[O-])cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc3ccccc3[nH]2)s1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc(NC(N)=O)s3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2ccc(NC(N)=O)s2)sn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nccc3ccccc23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)N3CCOCC3)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ncccn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(OCCO)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)Nc3ccccc3)cc2)s1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccc(NC(N)=O)s3)cn2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C3CCNCC3)c2)s1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(F)(F)F)cc2)s1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)N3CCOCC3)cn2)s1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ccncn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)CS(=O)(=O)C3)s1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(Br)cc2)s1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc([C@H]2CCN(C(=O)c3ccccc3)C2)s1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc(NC(N)=O)s2)nc(N)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc(NC(N)=O)s3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(NC(N)=O)s2)cc1Cl; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)s2)c(C)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccccc2-n2cccn2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c3ccccc23)s1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc(NC(N)=O)s2)nc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)CCO3)s1; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc(NC(N)=O)s2)cc1Cl; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3c2OCO3)s1; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)ccc1O; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccn3nccc3n2)s1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3ccccc3c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(-c3ccccc3)[nH]n2)s1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2scc3c2OCCO3)s1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc(NC(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(NC(N)=O)s2)cn1; [None]; [None]; [0] +CSc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccn(-c3cccc(Cl)c3)n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(F)cc2Cl)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccc3s2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)CCC(=O)N3)s1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)s2)cc1OC; [None]; [None]; [0] +CC1(COc2ccc(NC(N)=O)s2)COC1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc(NC(N)=O)s3)cc2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Br)cn2)s1; [None]; [None]; [0] +CCc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(NC(N)=O)s2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(Cl)cc2Cl)s1; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)ccc1N1CCOCC1; [None]; [None]; [0] +Cn1cc(-c2ccc(NC(N)=O)s2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc(CNc2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc(NC(N)=O)s3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2ccc(NC(N)=O)s2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)ccc1Cl; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc(NC(N)=O)s3)ccc2O1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccn3n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3ccc(O)cc23)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(NC2CN(C(=O)C3CC3)C2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3cccn3n2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +Cc1csc2c(-c3ccc(NC(N)=O)s3)ncnc12; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)s2)c(OC)cc1Br; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Cl)cn2)s1; [None]; [None]; [0] +Cc1nc(Nc2ccc(NC(N)=O)s2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2ccc(NC(N)=O)s2)nn1C; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(N)nc3[nH]ccc23)s1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(NC(N)=O)s2)nc1; [None]; [None]; [0] +NC(=O)Nc1ccc(NC(=O)c2ccco2)s1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2ccc(C(N)=O)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2ccc(S(=O)(=O)CCO)cc2)s1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)s1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc(NC(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3cn[nH]c3c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccc3o2)s1; [None]; [None]; [0] +COc1ccc2oc(-c3ccc(NC(N)=O)s3)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc(NC(N)=O)s1)cn2C; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(OC(F)(F)F)cc2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(-c3cccnc3)ccn2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3sccc3n2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(NC(=O)N3CCCC3)c2)s1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc(NC(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(NC(N)=O)s2)cn1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc(NC(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc(NC(N)=O)s2)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc(NC(N)=O)s3)ccc12; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncn3c2CCCC3)s1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc(NC(N)=O)s3)ccc21; [None]; [None]; [0] +NC(=O)Nc1ccc(NC(=O)c2cccc(OC(F)(F)F)c2)s1; [None]; [None]; [0] +Cc1cc(-c2ccc(NC(N)=O)s2)cc(C)c1OCCO; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(N3CCCC3=O)c2)s1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(CCO)cc2)s1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc(NC(N)=O)s3)cn2)CC1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(NC(N)=O)s2)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(NC(N)=O)s2)c(OC)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc(NC(N)=O)s3)cc2)n1C; [None]; [None]; [0] +Cn1nc(-c2ccc(NC(N)=O)s2)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc(NC(N)=O)s2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(NC(N)=O)s2)nc1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ccc(F)cn2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc(NC(N)=O)s2)c1; [None]; [None]; [0] +Cc1cc(Nc2ccc(NC(N)=O)s2)ncc1F; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ccccn2)s1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc(NC(N)=O)s1; [None]; [None]; [0] +CCOc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +COc1ncccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +COc1cc(-c2[nH]nc3c2Cc2ccccc2-3)cc(OC)c1OC; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cnc2cccnn12; [None]; [None]; [0] +Cc1ccc2ncn(-c3[nH]nc4c3Cc3ccccc3-4)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1)C1CC1; [None]; [None]; [0] +Oc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +COc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)CC1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1cc(Nc2[nH]nc3c2Cc2ccccc2-3)sn1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1nccc2ccccc12; [None]; [None]; [0] +O=C([O-])c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1cnc(Nc2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3[nH]nc4c3Cc3ccccc3-4)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1cc(-c2[nH]nc3c2Cc2ccccc2-3)cc(C2CCNCC2)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1Nc1ccncn1; [None]; [None]; [0] +O=C(c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2[nH]nc3c2Cc2ccccc2-3)CC1; [None]; [None]; [0] +Cc1nc(C)c(-c2[nH]nc3c2Cc2ccccc2-3)s1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2[nH]nc3c2Cc2ccccc2-3)C1; [None]; [None]; [0] +CC(C)c1cc(-c2[nH]nc3c2Cc2ccccc2-3)nc(N)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3[nH]nc4c3Cc3ccccc3-4)c2)CC1; [None]; [None]; [0] +Brc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CCCOc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1Cl; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1c[nH]c2ccccc12; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(C)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2[nH]nc3c2Cc2ccccc2-3)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3[nH]nc4c3Cc3ccccc3-4)[nH]c2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3[nH]nc4c3Cc3ccccc3-4)n[nH]2)cc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cccc2c1OCO2; [None]; [None]; [0] +COc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1scc2c1OCCO2; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cnc2ccccc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cn1; [None]; [None]; [0] +Nc1nc(-c2[nH]nc3c2Cc2ccccc2-3)cs1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2[nH]nc3c2Cc2ccccc2-3)CC1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3[nH]nc4c3Cc3ccccc3-4)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cc2ccccc2s1; [None]; [None]; [0] +CSc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)CC1; [None]; [None]; [0] +CC1(COc2[nH]nc3c2Cc2ccccc2-3)COC1; [None]; [None]; [0] +Cc1cc(-c2[nH]nc3c2Cc2ccccc2-3)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1OC; [None]; [None]; [0] +Fc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(Cl)c1; [None]; [None]; [0] +Brc1cnc(-c2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +O=C1CCc2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc2N1; [None]; [None]; [0] +CCc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +COc1ccc(CNc2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2[nH]nc3c2Cc2ccccc2-3)C1; [None]; [None]; [0] +Clc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(Cl)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ncc2cccn2n1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccc1N1CCOCC1; [None]; [None]; [0] +COc1ccc2cccc(-c3[nH]nc4c3Cc3ccccc3-4)c2c1; [None]; [None]; [0] +Cn1cc(-c2[nH]nc3c2Cc2ccccc2-3)c(C(F)(F)F)n1; [None]; [None]; [0] +Oc1ccc2cccc(-c3[nH]nc4c3Cc3ccccc3-4)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc2O1; [None]; [None]; [0] +COc1cc(F)c(-c2[nH]nc3c2Cc2ccccc2-3)cc1OC; [None]; [None]; [0] +Clc1cnc(-c2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +Cc1csc2c(-c3[nH]nc4c3Cc3ccccc3-4)ncnc12; [None]; [None]; [0] +COc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2[nH]nc3c2Cc2ccccc2-3)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Cc1cc(Nc2[nH]nc3c2Cc2ccccc2-3)nn1C; [None]; [None]; [0] +Cc1nc(Nc2[nH]nc3c2Cc2ccccc2-3)sc1C; [None]; [None]; [0] +Nc1cc(-c2[nH]nc3c2Cc2ccccc2-3)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2[nH]nc3c2Cc2ccccc2-3)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +O=C(Nc1[nH]nc2c1Cc1ccccc1-2)c1ccco1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2[nH]nc3c2Cc2ccccc2-3)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2[nH]nc3c2Cc2ccccc2-3)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1[nH]nc3c1Cc1ccccc1-3)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3[nH]nc4c3Cc3ccccc3-4)cc2c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CCn1cc(-c2[nH]nc3c2Cc2ccccc2-3)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3[nH]nc4c3Cc3ccccc3-4)c2)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cc2ccccc2o1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ncc2sccc2n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1)N1CCCC1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +COc1ccc2nc(-c3[nH]nc4c3Cc3ccccc3-4)[nH]c2c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3[nH]nc4c3Cc3ccccc3-4)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2[nH]nc3c2Cc2ccccc2-3)c2ccccc21; [None]; [None]; [0] +CCc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)n1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-c2[nH]nc3c2Cc2ccccc2-3)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc12; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc21; [None]; [None]; [0] +O=C(Nc1[nH]nc2c1Cc1ccccc1-2)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3[nH]nc4c3Cc3ccccc3-4)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +OCCc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CNC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(OC)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Cn1nc(-c2[nH]nc3c2Cc2ccccc2-3)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +Fc1ccc(Nc2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +Cc1cc(Nc2[nH]nc3c2Cc2ccccc2-3)ncc1F; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1ccc(Nc2[nH]nc3c2Cc2ccccc2-3)nc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cccc2ncccc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1[nH]nc3c1Cc1ccccc1-3)OCO2; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1n[nH]c2ccccc12; [None]; [None]; [0] +Oc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccc1Cl; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Fc1ccc(Oc2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Oc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2[nH]nc3c2Cc2ccccc2-3)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Clc1[nH]ncc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3[nH]nc4c3Cc3ccccc3-4)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)o1; [None]; [None]; [0] +COc1cc(CCc2[nH]nc3c2Cc2ccccc2-3)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc2ccccc2c1; [None]; [None]; [0] +Oc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1F; [None]; [None]; [0] +Oc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1c[nH]c2cnccc12; [None]; [None]; [0] +Nc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cnn2ncccc12; [None]; [None]; [0] +Fc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1Cl; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +Oc1ncc(-c2[nH]nc3c2Cc2ccccc2-3)cc1Cl; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +NC(=O)c1cc(-c2[nH]nc3c2Cc2ccccc2-3)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2[nH]1; [None]; [None]; [0] +COc1cc(CCc2[nH]nc3c2Cc2ccccc2-3)cc(OC)c1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Oc1cncc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc2N1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1nc2ccccc2s1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CCc1cc(O)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CNc1nccc(-c2[nH]nc3c2Cc2ccccc2-3)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3[nH]nc4c3Cc3ccccc3-4)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2[nH]nc3c2Cc2ccccc2-3)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +FC(F)c1cc(-c2[nH]nc3c2Cc2ccccc2-3)[nH]n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2[nH]nc3c2Cc2ccccc2-3)cc1Cl; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Clc1cnccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CCc1sccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +CNc1nc(-c2[nH]nc3c2Cc2ccccc2-3)ncc1F; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2[nH]1; [None]; [None]; [0] +Oc1cc(-c2[nH]nc3c2Cc2ccccc2-3)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Cc1oc(-c2[nH]nc3c2Cc2ccccc2-3)cc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1Nc1ccncc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3[nH]nc4c3Cc3ccccc3-4)c2c1; [None]; [None]; [0] +Cc1cc(-c2[nH]nc3c2Cc2ccccc2-3)ccc1C(N)=O; [None]; [None]; [0] +CN(c1[nH]nc2c1Cc1ccccc1-2)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1nc2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2o1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +Cc1cc(-c2[nH]nc3c2Cc2ccccc2-3)cc(C)c1O; [None]; [None]; [0] +CSc1cccc(-c2[nH]nc3c2Cc2ccccc2-3)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3[nH]nc4c3Cc3ccccc3-4)ccc12; [None]; [None]; [0] +Fc1ccc(Oc2[nH]nc3c2Cc2ccccc2-3)c(F)c1; [None]; [None]; [0] +Oc1c(F)cc(-c2[nH]nc3c2Cc2ccccc2-3)cc1F; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1CCc1c[nH]c2ccccc12; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +c1ccc2c(c1)Cc1c-2n[nH]c1OCc1cccc2ccccc12; [None]; [None]; [0] +Nc1cnc(-c2cccc(O)c2)cn1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1cccc(O)c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999898672103882, 0.9999245405197144, 0.999855101108551, 0.9982454776763916, 0.9966546297073364] +Clc1ccc(-c2[nH]ncc2-c2[nH]nc3c2Cc2ccccc2-3)cc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Nc1cnc(-c2cccc3ncccc23)cn1; ['Brc1cccc2ncccc12', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Brc1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Brc1cccc2ncccc12']; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Ic1cccc2ncccc12', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'OB(O)c1cccc2ncccc12', 'Nc1cnc(Cl)cn1', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999953508377075, 0.9999921321868896, 0.999991774559021, 0.9999796152114868, 0.9998341798782349, 0.9997791051864624, 0.9997329115867615, 0.9977504014968872, 0.9945120811462402, 0.9507620334625244, 0.8187109231948853] +Fc1ccc(COc2[nH]nc3c2Cc2ccccc2-3)c(F)c1; [None]; [None]; [0] +Nc1cnc(-c2ccc(Cl)c(O)c2)cn1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1ccc(Cl)c(O)c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999923706054688, 0.9999620914459229, 0.9996030330657959, 0.9973937273025513] +Fc1cccc(Cl)c1CNc1[nH]nc2c1Cc1ccccc1-2; [None]; [None]; [0] +Fc1ccc(CCc2[nH]nc3c2Cc2ccccc2-3)c(F)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.999998927116394, 0.9999910593032837, 0.9999247789382935, 0.9988710880279541, 0.9229705333709717] +Nc1cnc(-c2c(Cl)ccc3c2OCO3)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9996297359466553, 0.9919977188110352] +Nc1cnc(Oc2ccc(F)cc2)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9998283386230469, 0.999064564704895, 0.9954978227615356] +Nc1cnc(-c2c(Cl)cccc2Cl)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999706745147705, 0.9994418025016785, 0.9983915090560913, 0.9650071859359741] +NC(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999991655349731, 0.9999940395355225, 0.9999567866325378, 0.9997603297233582, 0.9994891881942749, 0.9915972948074341] +Nc1cnc(-c2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccc(O)cc2Cl)cn1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1ccc(O)cc1Cl', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(O)cc1Cl']; [0.999970555305481, 0.9998894333839417, 0.998982310295105, 0.9859031438827515] +COc1cc(C(N)=O)ccc1-c1cnc(N)cn1; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999901652336121, 0.9998829364776611, 0.9924197196960449] +NC(=O)c1ccc(-c2cnc(N)cn2)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(Br)c(F)c1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999985694885254, 0.9999946355819702, 0.9999923706054688, 0.9999771118164062, 0.9999731183052063, 0.9998313188552856] +Nc1cnc(-c2ccc(O)cc2F)cn1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Nc1cnc(Cl)cn1', 'Oc1cccc(F)c1']; [0.9999931454658508, 0.9999849200248718, 0.999417781829834, 0.9992653131484985, 0.9986234307289124, 0.8887091279029846] +COc1ccc(F)cc1-c1cnc(N)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O']; ['COc1ccc(F)cc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [0.9999980330467224, 0.9999950528144836, 0.9999933242797852, 0.9999906420707703, 0.9999668598175049, 0.9999443292617798, 0.9997254610061646, 0.9990932941436768, 0.9971328973770142, 0.9449105262756348] +COc1cc(F)ccc1-c1cnc(N)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br']; ['COc1cc(F)ccc1Br', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1', 'Nc1cnccn1']; [0.9999988079071045, 0.9999971985816956, 0.999996542930603, 0.9999961853027344, 0.9999817609786987, 0.9999450445175171, 0.9997366666793823, 0.9993281960487366, 0.9987233281135559, 0.9841920137405396, 0.9718478322029114] +Cc1nc2c(F)cc(-c3cnc(N)cn3)cc2[nH]1; [None]; [None]; [0] +COc1cc(-c2cnc(N)cn2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999982118606567, 0.9999300241470337, 0.9999225735664368, 0.9854049682617188] +Nc1cnc(-c2ccc(C(=O)[O-])cc2)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccc(-c3ccc(O)cc3O)cc2)cn1; ['Nc1cnc(Br)cn1']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.993370532989502] +Nc1cnc(-c2cn[nH]c2Cl)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccnc(N)n2)cn1; [None]; [None]; [0] +Nc1cnc(-c2cccc(Br)c2)cn1; ['Nc1cnc(I)cn1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999719858169556, 0.9999390840530396, 0.9999280571937561, 0.9999197125434875, 0.9998838901519775, 0.9998167753219604, 0.9975698590278625, 0.9883075952529907] +Nc1cnc(-c2ccc(O)c(F)c2)cn1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1ccc(O)c(F)c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(O)c(F)c1']; [0.9999995231628418, 0.9999879598617554, 0.9999829530715942, 0.9983372688293457] +Nc1cnc(-c2ccc3ccccc3c2)cn1; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc2ccccc2c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999980330467224, 0.9999979734420776, 0.9999968409538269, 0.9999240636825562, 0.9997478723526001, 0.9992395639419556, 0.9972624778747559] +Cn1cc(-c2cnc(N)cn2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999585747718811, 0.9994951486587524] +COC(=O)c1ccc(Cl)c(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['COC(=O)c1ccc(Cl)c(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'COC(=O)c1ccc(Cl)c(I)c1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999986886978149, 0.9999983310699463, 0.9999982118606567, 0.9999821782112122, 0.9999626874923706, 0.9999154806137085, 0.9998130798339844, 0.9988181591033936, 0.9971142411231995, 0.9955590963363647] +COC(=O)c1ccc(-c2cnc(N)cn2)o1; [None]; [None]; [0] +Nc1cnc(-c2ccc(O)cc2O)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccnc(N)c2)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Br)ccn1']; ['Nc1cc(Br)ccn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [0.9999986886978149, 0.9999912977218628, 0.9999022483825684, 0.9997836947441101, 0.9982079267501831, 0.9947026371955872, 0.9942431449890137, 0.8625809550285339] +Nc1cnc(-c2cnn3ncccc23)cn1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999762773513794, 0.9996519684791565] +Nc1cnc(-c2c[nH]c3cnccc23)cn1; ['Brc1c[nH]c2cnccc12', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999482035636902, 0.9992979764938354, 0.9954515695571899, 0.9921119809150696] +Nc1cnc(-c2ccc(F)c(Cl)c2)cn1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1']; [1.0, 1.0, 0.9999997615814209, 0.9999996423721313, 0.9999984502792358, 0.9999542832374573] +COc1cc(CCc2cnc(N)cn2)ccc1O; [None]; [None]; [0] +Nc1cnc(-c2cc(O)ccc2Cl)cn1; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1cc(O)ccc1Cl', 'Nc1cnc(Cl)cn1', 'OB(O)c1cc(O)ccc1Cl']; [0.9999691247940063, 0.9994643926620483, 0.9975975751876831, 0.8354963064193726] +Nc1cnc(-c2cnc(O)c(Cl)c2)cn1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999980330467224, 0.999984622001648] +Cc1ccc(CO)cc1-c1cnc(N)cn1; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; [0.999981164932251, 0.9999649524688721, 0.9997542500495911, 0.9996513724327087, 0.9988709688186646, 0.9960460066795349] +Nc1cnc(COc2ccccc2Cl)cn1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc(N)cn1; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Nc1cnc(Br)cn1', 'Cc1ccc2[nH]ncc2c1Br', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999504089355469, 0.9992259740829468, 0.9990772008895874, 0.9934583902359009, 0.9829476475715637, 0.9016522765159607, 0.7778651714324951] +COc1cc(OC)cc(-c2cnc(N)cn2)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'COc1cc(Br)cc(OC)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999910593032837, 0.9999896287918091, 0.9999865293502808, 0.9999860525131226, 0.999769389629364, 0.9994074106216431, 0.964937686920166] +COc1ccc(-c2cnc(N)cn2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1cnc(Br)cn1', 'COc1ccc(Br)cc1OC', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [0.9999985694885254, 0.9999966621398926, 0.9999802112579346, 0.9999768733978271, 0.9999315142631531, 0.9995054602622986, 0.9991368055343628, 0.9986978769302368, 0.9598643779754639] +NC(=O)c1cc(-c2cnc(N)cn2)c[nH]1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C']; ['NC(=O)c1cc(Br)c[nH]1']; [0.9999785423278809] +CCOc1cccc(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999964237213135, 0.9999953508377075, 0.9999747276306152, 0.99996018409729, 0.9999357461929321, 0.999774694442749, 0.9962377548217773] +Nc1cnc(-c2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +Nc1cnc(-c2cnc3[nH]ccc3c2)cn1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 1.0, 0.9999991059303284, 0.9999973773956299, 0.9999039173126221] +Cc1nc2ccc(-c3cnc(N)cn3)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; ['Nc1cnc(Br)cn1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999997615814209, 0.9999986886978149, 0.9999963641166687, 0.997114896774292] +CNC(=O)c1cccc2cc(-c3cnc(N)cn3)ccc12; [None]; [None]; [0] +Nc1cnc(-c2cncc(O)c2)cn1; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1']; [0.9999982118606567, 0.9998180270195007, 0.9992236495018005, 0.765029788017273] +CS(=O)(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.999993622303009, 0.9999486207962036, 0.9988903403282166, 0.8665599822998047] +Nc1cnc(-c2ccc3c(c2)CC(=O)N3)cn1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(I)cn1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Nc1cnc(Cl)cn1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999823570251465, 0.9999488592147827, 0.9998781681060791, 0.9998078346252441, 0.9997849464416504, 0.9996867179870605, 0.9976227879524231, 0.9850884675979614, 0.9606799483299255] +COc1cc(CCc2cnc(N)cn2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Nc1cnc(Cl)cn1']; [0.8506474494934082] +NC(=O)Nc1ccc(-c2cnc(N)cn2)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'NC(=O)Nc1ccc(Br)cc1']; [0.9999990463256836, 0.999984622001648, 0.9999486207962036] +CCc1cc(O)ccc1-c1cnc(N)cn1; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Nc1cnc(Br)cn1', 'CCc1cc(O)ccc1Br', 'Nc1cnc(Cl)cn1']; [0.9999833703041077, 0.9999734163284302, 0.999035656452179] +Nc1cnc(-c2nc3ccccc3s2)cn1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc(N)cn1; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1cnc(Cl)cn1']; [0.9999861121177673] +Cc1n[nH]c(-c2cnc(N)cn2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc(N)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O']; ['Cc1cc(O)ccc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999909400939941, 0.9999773502349854, 0.9999321699142456, 0.9974260330200195, 0.9932914972305298, 0.9915890097618103] +CN(c1cccc(Cl)c1)c1cnc(N)cn1; ['CNc1cccc(Cl)c1']; ['Nc1cnc(Cl)cn1']; [0.9914077520370483] +Nc1cnc(-c2ccncc2Cl)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Clc1cnccc1Br']; ['OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccncc1Cl', 'Nc1cnc(Br)cn1']; [0.9998137354850769, 0.9996826648712158, 0.9994771480560303, 0.9993070363998413, 0.9601209163665771, 0.9424059391021729, 0.8483895659446716] +Cc1n[nH]c2cc(N(C)c3cnc(N)cn3)ccc12; [None]; [None]; [0] +CCc1sccc1-c1cnc(N)cn1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc(N)cn1; [None]; [None]; [0] +Nc1cnc(-c2cc(Cl)c(O)c(Cl)c2)cn1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9999880194664001, 0.9996917247772217, 0.9996887445449829, 0.9798040986061096] +CNc1nccc(-c2cnc(N)cn2)n1; [None]; [None]; [0] +Nc1cnc(-c2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccc3c(c2)CCN3)cn1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1ccc2c(c1)CCN2', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Brc1ccc2c(c1)CCN2', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999996423721313, 0.9999995231628418, 0.9999992847442627, 0.999994158744812, 0.9999452829360962, 0.999557614326477, 0.997382402420044, 0.9930018782615662] +Nc1cnc(-c2ccc3[nH]c(=O)[nH]c3c2)cn1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Nc1cnc(Cl)cn1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999979138374329, 0.99998939037323, 0.9999861121177673, 0.9999338388442993, 0.9988234043121338, 0.998264491558075] +Nc1cnc(Nc2ccncc2)cn1; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1cnc(N)cn1', 'Nc1ccncc1', 'Clc1ccncc1', 'Brc1ccncc1', 'Ic1ccncc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccncc1', 'Nc1cnc(F)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1']; [0.9992830157279968, 0.9970753192901611, 0.996299147605896, 0.9919553399085999, 0.9836595058441162, 0.9621107578277588, 0.9569031000137329] +Nc1cnc(-c2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +Cc1oc(-c2cnc(N)cn2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1cnc(-c2ccc(Br)cc2F)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Nc1cnc(I)cn1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Fc1cc(Br)ccc1Br', 'Nc1cnccn1', 'Fc1cc(Br)ccc1Br']; ['Fc1cc(Br)ccc1Br', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc(Br)cc1F', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc(Br)cc1F', 'Nc1cnccn1']; [0.9999982118606567, 0.9999978542327881, 0.9999946355819702, 0.9999939203262329, 0.9999515414237976, 0.9999098181724548, 0.9999041557312012, 0.9970611333847046, 0.9735246896743774, 0.9215930700302124] +CNc1nc(-c2cnc(N)cn2)ncc1F; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc(N)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'CNC(=O)c1ccc(Br)cc1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [0.9999997615814209, 0.9999983310699463, 0.999983549118042, 0.9999681115150452, 0.9999436140060425, 0.9998338222503662, 0.9855592250823975, 0.9447141885757446, 0.9133991003036499] +Nc1cnc(-c2cc(O)cc(Br)c2)cn1; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['Nc1cnc(Br)cn1', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Nc1cnc(Cl)cn1']; [0.9994216561317444, 0.9990084171295166, 0.9971349239349365, 0.98760986328125] +Nc1cnc(-c2ccc(C(=O)NC3CC3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [1.0, 0.9999988079071045, 0.9999980926513672, 0.999996542930603, 0.9999676942825317, 0.9964529275894165] +Cc1cc(-c2cnc(N)cn2)cc(C)c1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999221563339233, 0.998958945274353, 0.9948519468307495, 0.9483422636985779] +Nc1cnc(-c2[nH]nc3ccc(F)cc23)cn1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)cn2)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999969005584717, 0.9999830722808838, 0.982764720916748] +Nc1cnc(-c2cc(F)c(O)c(F)c2)cn1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F']; [0.9999793767929077, 0.9995377659797668, 0.9994250535964966, 0.9852596521377563, 0.9745752811431885] +Cc1nc2ccc(-c3cnc(N)cn3)cc2o1; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Cc1nc2ccc(Br)cc2o1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1', 'Nc1cnccn1']; [0.9999998807907104, 0.9999996423721313, 0.9999992847442627, 0.9999984502792358, 0.9999905228614807, 0.9999712705612183, 0.9995066523551941, 0.9953823089599609] +Nc1cnc(-c2ccc3c(=O)[nH][nH]c3c2)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999994039535522, 0.9998753070831299, 0.9991598129272461] +Nc1cnc(OCc2cccc3ccccc23)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.940349817276001, 0.9371355772018433, 0.9204419851303101] +CSc1cccc(-c2cnc(N)cn2)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1']; ['Nc1cnc(Br)cn1', 'CSc1cccc(Br)c1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1']; [0.9999980330467224, 0.9999977946281433, 0.999987006187439, 0.9999616146087646, 0.9998681545257568, 0.9986583590507507, 0.998654842376709, 0.9974874258041382, 0.9971573352813721, 0.9910352230072021] +Nc1cnc(Oc2ccc(F)cc2F)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999709725379944, 0.9999693632125854, 0.9991319179534912] +Cc1onc(-c2ccccc2)c1-c1cnc(N)cn1; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; [0.9999717473983765, 0.9999232292175293, 0.9990421533584595] +Nc1cnc(OCc2ccc(F)cc2F)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9998078346252441, 0.9994845986366272, 0.9491273164749146] +CN(c1cnc(N)cn1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1cnc(-c2ocnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +Nc1cnc(CCc2c[nH]c3ccccc23)cn1; [None]; [None]; [0] +Nc1cnc(NCc2c(F)cccc2Cl)cn1; ['NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'Nc1cnc(N)cn1', 'Fc1cccc(Cl)c1CCl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Nc1cnc(N)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(N)cn1', 'O=Cc1c(F)cccc1Cl', 'Nc1cnc(N)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1', 'OCc1c(F)cccc1Cl']; [0.999942421913147, 0.999847412109375, 0.999785304069519, 0.999458909034729, 0.9984465837478638, 0.9965156316757202, 0.9102739095687866] +CC(=O)N(C)c1ccc(-c2cnc(N)cn2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999995231628418, 0.9999949932098389, 0.9971791505813599] +Nc1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +CCOc1ccc(-c2cnc(N)cn2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'CCOc1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1', 'Nc1cnccn1', 'Nc1cnccn1']; [0.999998927116394, 0.9999985098838806, 0.9999942779541016, 0.9999842643737793, 0.999971866607666, 0.9999278783798218, 0.9989938735961914, 0.9951087236404419, 0.9389978051185608, 0.9189165830612183, 0.7990825176239014] +Nc1cnc(CCc2ccc(F)cc2F)cn1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnc(N)cn1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)cn1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Nc1cnc(Br)cn1', 'COc1ncccc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.999880313873291, 0.9996216297149658, 0.9991305470466614, 0.9968714714050293, 0.9961043000221252, 0.9915359616279602, 0.9520957469940186] +COc1cc(-c2cnc(N)cn2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1cnc(Br)cn1', 'COc1cc(Br)cc(OC)c1OC', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.999984860420227, 0.9999817609786987, 0.9999321699142456, 0.9999071359634399, 0.9997572898864746, 0.9990790486335754, 0.9979348182678223, 0.9977697134017944] +CS(=O)(=O)c1cccc(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Nc1cnc(Br)cn1', 'CS(=O)(=O)c1cccc(Br)c1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [1.0, 0.9999998211860657, 0.9999991655349731, 0.9999950528144836, 0.9999840259552002, 0.999962568283081, 0.9999290108680725, 0.9994621276855469] +Cc1ccc2ncn(-c3cnc(N)cn3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; [0.9647644758224487, 0.8986027836799622, 0.8775269985198975] +Nc1cnc(-c2cnc3cccnn23)cn1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)cn2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'COc1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999980926513672, 0.9999758005142212, 0.9999690055847168, 0.9999498128890991, 0.9995676279067993, 0.9986230731010437, 0.9928334951400757, 0.9910787343978882] +Nc1cnc(-c2ncc3ccccc3n2)cn1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['N#Cc1ccc(O)c(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; [0.9999966621398926, 0.9999666810035706, 0.9999635815620422, 0.9979142546653748] +Nc1cnc(-c2ccc(N3CCOCC3)cc2)cn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1cnc(Cl)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [1.0, 1.0, 0.9999997019767761, 0.9999996423721313, 0.9999986886978149, 0.9999979734420776, 0.9999978542327881, 0.9998738765716553, 0.9935876131057739] +Cc1cc(Nc2cnc(N)cn2)sn1; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9994114637374878, 0.9938677549362183] +Nc1cnc(Nc2ncccn2)cn1; ['Nc1cnc(Br)cn1', 'CSc1ncccn1', 'Fc1ncccn1', 'Brc1ncccn1']; ['Nc1ncccn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1']; [0.9500348567962646, 0.8288955688476562, 0.7658712863922119, 0.7542409300804138] +Nc1cnc(-c2nc3ccccc3[nH]2)cn1; ['Nc1ccccc1N', 'Nc1ccccc1N']; ['Nc1cnc(C=O)cn1', 'Nc1cnc(C(=O)O)cn1']; [0.9898786544799805, 0.9134840965270996] +Nc1cnc(-c2nccc3ccccc23)cn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc(N)cn2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [0.9999993443489075, 0.9999967813491821, 0.9999912977218628, 0.999962568283081, 0.9999555349349976, 0.9999079704284668, 0.9322841763496399] +N#Cc1cccc(Cn2cc(-c3cnc(N)cn3)cn2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc(N)cn3)cc2)CC1; [None]; [None]; [0] +Nc1cnc(-c2cccc(C3CCNCC3)c2)cn1; ['Brc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1']; [0.9999994039535522, 0.9995179176330566] +Nc1cnc(-c2ccc(C(=O)Nc3ccccc3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999998807907104, 0.999997615814209, 0.9999967813491821, 0.9999966621398926, 0.9999750852584839, 0.9999421238899231, 0.9995064735412598, 0.9983389377593994] +Nc1cnc(-c2cccc(NC(=O)C3CC3)c2)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccc(OCCO)cc2)cn1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; ['Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999996423721313, 0.9999989867210388, 0.999987006187439, 0.9999819993972778, 0.9999817609786987, 0.9999805688858032, 0.999158501625061, 0.9977074861526489, 0.9964032173156738, 0.82734215259552] +Nc1cnc(-c2ccc(C(=O)N3CCOCC3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1', 'Nc1cnccn1', 'Nc1cnccn1']; ['Nc1cnc(Br)cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999995231628418, 0.9999995231628418, 0.9999992847442627, 0.9999943971633911, 0.9999915957450867, 0.9999912977218628, 0.9998425841331482, 0.999275803565979, 0.9928956031799316, 0.9834941625595093, 0.9371770024299622] +Nc1cnc(Nc2ccncn2)cn1; ['Nc1ccncn1', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; [0.995692789554596, 0.9908854961395264, 0.8491414785385132, 0.8264605402946472] +Nc1cnc(-c2ccc(C(F)(F)F)cc2)cn1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999995827674866, 0.9999961853027344, 0.9999927282333374, 0.9999860525131226, 0.999936580657959, 0.9995065331459045, 0.9985983371734619] +Nc1cnc(-c2ccc3c(c2)CS(=O)(=O)C3)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999945163726807, 0.9949806928634644] +C[C@H](O)COc1ccc(-c2cnc(N)cn2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc(N)cn2)s1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)cn2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Br)cc1', None]; ['Nc1cnc(Br)cn1', 'CN(C)c1ccc(Br)cc1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', None]; [0.9999994039535522, 0.9999966621398926, 0.9999942779541016, 0.9999812841415405, 0.9997444748878479, 0.9996738433837891, 0.998652458190918, 0.9976913928985596, 0] +CN(C)S(=O)(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [1.0, 0.9999996423721313, 0.9999991655349731, 0.9999988079071045, 0.9999986886978149, 0.9999754428863525, 0.9999250173568726, 0.9997129440307617, 0.9996585845947266, 0.9934355616569519, 0.8671970367431641] +C[C@@H](O)COc1ccc(-c2cnc(N)cn2)cc1; [None]; [None]; [0] +Nc1cnc(-c2ccc(C(=O)N3CCOCC3)cn2)cn1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999681711196899, 0.9997327327728271, 0.9938278198242188] +Nc1cnc(-c2ccc(Br)cc2)cn1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1cnc(I)cn1', 'Brc1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Brc1ccc(Br)cc1', 'Brc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(Br)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.999993622303009, 0.9999879598617554, 0.9995841979980469, 0.9995096921920776, 0.9990643858909607, 0.9982994794845581, 0.9356939792633057, 0.9091633558273315] +CCCOc1ccc(-c2cnc(N)cn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1cnc(Br)cn1']; [0.9684230089187622] +CS(=O)(=O)N1CCC(c2cnc(N)cn2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc(N)cn2)nc(N)n1; [None]; [None]; [0] +Nc1cnc([C@H]2CCN(C(=O)c3ccccc3)C2)cn1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc(N)cn3)c2)CC1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc([B-](F)(F)F)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1', 'Nc1cnccn1', 'Nc1cnccn1']; [1.0, 0.9999995231628418, 0.9999991655349731, 0.9999958872795105, 0.9999948143959045, 0.9999536275863647, 0.9999064207077026, 0.9999019503593445, 0.9996750354766846, 0.9995381832122803, 0.9890838861465454, 0.926161527633667, 0.9085108041763306] +CN(C)c1ccc(-c2cnc(N)cn2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'CN(C)c1ccc(Br)cc1Cl', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [1.0, 1.0, 1.0, 0.9999991059303284, 0.9995171427726746, 0.9994736909866333, 0.9426397085189819] +CNS(=O)(=O)c1ccc(-c2cnc(N)cn2)c(C)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999960064888, 0.9999668002128601, 0.9997966289520264, 0.9995826482772827, 0.998978853225708, 0.9987730979919434, 0.998587429523468, 0.9847379326820374] +Cc1c(C(=O)[O-])cccc1-c1cnc(N)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccccc2-n2cccn2)cn1; ['Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1']; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999920725822449, 0.9999278783798218, 0.9998679161071777, 0.9997903108596802, 0.999547004699707, 0.9990111589431763, 0.9990065693855286, 0.9957716464996338, 0.9813719987869263] +COc1ccc(Cl)cc1-c1cnc(N)cn1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'COc1ccc(Cl)cc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999274015426636, 0.9999247789382935, 0.9999113082885742, 0.9998890161514282, 0.9998885989189148, 0.998679518699646, 0.9962037801742554, 0.8396998643875122] +Nc1cnc(-c2ccc3c(c2)CCO3)cn1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1cnc(I)cn1', 'Brc1ccc2c(c1)CCO2', 'Nc1cnc(Cl)cn1', 'Brc1ccc2c(c1)CCO2']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1cnccn1']; [0.9999994039535522, 0.9999992251396179, 0.9999909400939941, 0.9999827146530151, 0.9999564290046692, 0.999836802482605, 0.9995201230049133, 0.998807430267334] +Nc1cnc(-c2ccn3nccc3n2)cn1; [None]; [None]; [0] +Nc1cnc(-c2c[nH]c3ccccc23)cn1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'Nc1cnc(Cl)cn1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999700784683228, 0.999934196472168, 0.9996033906936646, 0.9992892742156982, 0.9982502460479736, 0.9905645847320557] +CC(=O)Nc1cccc(-c2cnc(N)cn2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1']; [0.999991774559021, 0.9999840259552002, 0.9999440312385559, 0.9998767375946045, 0.9997657537460327, 0.9996930360794067] +Nc1cnc(-c2cccc3c2OCO3)cn1; ['Brc1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Brc1cccc2c1OCO2', 'Brc1cccc2c1OCO2']; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9998437762260437, 0.9998283982276917, 0.9997905492782593, 0.9986720085144043, 0.9974286556243896, 0.9926068782806396, 0.97238689661026, 0.9653191566467285, 0.7978556156158447] +COc1cc(OC)c(-c2cnc(N)cn2)cc1Cl; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Br)cc1Cl', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999954104423523, 0.9940484762191772, 0.9298402070999146] +CC(C)c1ccc2nc(-c3cnc(N)cn3)[nH]c2c1; [None]; [None]; [0] +Nc1cnc(-c2cnc3ccccc3c2)cn1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999997615814209, 0.9999990463256836, 0.999997079372406, 0.9999944567680359, 0.9998565912246704] +CC(C)(C)c1ccc(-c2cnc(N)cn2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1']; [0.9999997615814209, 0.9999988079071045, 0.9999958276748657, 0.999991774559021, 0.9998804330825806, 0.9997865557670593] +Nc1cnc(-c2scc3c2OCCO3)cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)cn2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [1.0, 0.9999996423721313, 0.9999958276748657, 0.9999787211418152, 0.9994702339172363, 0.9990993738174438, 0.9984155893325806] +CN(C)C(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1', 'Nc1cnccn1']; [1.0, 1.0, 0.9999996423721313, 0.9999992847442627, 0.9999977946281433, 0.9999926090240479, 0.9999569654464722, 0.9999165534973145, 0.9974563121795654, 0.9538119435310364, 0.7937606573104858] +CC1(COc2cnc(N)cn2)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1']; [0.9919328093528748, 0.9621946811676025, 0.8895276784896851] +Nc1cnc(-c2cc(-c3ccccc3)[nH]n2)cn1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc(N)cn2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1']; ['Nc1cnc(N)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(F)cn1']; [0.9973963499069214, 0.9965221285820007, 0.9950443506240845, 0.9944812059402466, 0.8268470764160156] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc(N)cn1; [None]; [None]; [0] +Nc1cnc(-c2cc3ccccc3s2)cn1; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1']; ['OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'Nc1cnc(Br)cn1']; [0.9999719262123108, 0.9997450113296509, 0.9995907545089722] +CSc1ccc(-c2cnc(N)cn2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'CSc1ccc(Br)cc1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999993443489075, 0.9999966025352478, 0.9999746084213257, 0.9999517202377319, 0.9996969699859619, 0.9985210299491882, 0.9809910655021667] +Nc1cnc(-c2ccn(-c3cccc(Cl)c3)n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)cn2)CC1; [None]; [None]; [0] +Nc1cnc(-c2ccc3c(c2)CCC(=O)N3)cn1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; ['Nc1cnc(Br)cn1', 'O=C1CCc2cc(Br)ccc2N1', 'Nc1cnc(Cl)cn1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999767541885376, 0.9998877048492432, 0.9993138313293457, 0.9847134351730347, 0.9836769104003906] +Nc1cnc(-c2csc(N)n2)cn1; [None]; [None]; [0] +Nc1cnc(-c2ccc(F)cc2Cl)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'Nc1cnc(Cl)cn1', 'Fc1ccc(Br)c(Cl)c1']; ['Fc1ccc(Br)c(Cl)c1', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1cnccn1']; [0.9999985098838806, 0.999995768070221, 0.9999756813049316, 0.9999583959579468, 0.9999264478683472, 0.9983417987823486, 0.997377336025238, 0.878533124923706] +CCc1ccc(-c2cnc(N)cn2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'CCc1ccc(Br)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999997615814209, 0.9999985098838806, 0.9999937415122986, 0.9999933242797852, 0.9999836683273315, 0.9994038343429565, 0.9990066289901733, 0.9976397752761841, 0.997542679309845] +CCN1CCN(Cc2ccc(-c3cnc(N)cn3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1cnc(Br)cn1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999966621398926, 0.9999958872795105, 0.999981164932251, 0.9999213814735413, 0.9983437061309814, 0.9982761144638062] +COc1ccc(CNc2cnc(N)cn2)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1']; ['Nc1cnc(N)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(F)cn1']; [0.9985706210136414, 0.9975218176841736, 0.9972643852233887, 0.9953051805496216, 0.9913384914398193, 0.959528923034668] +Cc1cc(-c2cnc(N)cn2)nc(N)n1; [None]; [None]; [0] +Nc1cnc(-c2ccc(Cl)cc2Cl)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Clc1ccc(Br)c(Cl)c1']; ['Clc1ccc(Br)c(Cl)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1cnc(Cl)cn1']; [0.9999791383743286, 0.99996417760849, 0.9999524354934692, 0.9998779296875, 0.9998197555541992, 0.9993293285369873, 0.994563102722168, 0.8591312766075134] +Nc1cnc(NC2CN(C(=O)C3CC3)C2)cn1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc(N)cn2)cc1; [None]; [None]; [0] +Nc1cnc(-c2ncc(Br)cn2)cn1; [None]; [None]; [0] +COc1cc(-c2cnc(N)cn2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1cnc(Br)cn1', 'COc1cc(Br)ccc1N1CCOCC1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999996423721313, 0.9999988079071045, 0.9999082088470459, 0.9997777938842773, 0.9997594952583313] +Cn1cc(-c2cnc(N)cn2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; [0.9999986886978149, 0.9999912977218628, 0.9999655485153198, 0.9999203681945801] +Nc1cnc(-c2cc3ccccn3n2)cn1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc(N)cn3)ccc2O1; [None]; [None]; [0] +Nc1cnc(-c2cccc3ccc(O)cc23)cn1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999762773513794, 0.999182939529419] +COc1ccc2cccc(-c3cnc(N)cn3)c2c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1ccc2cccc(Br)c2c1']; ['COc1ccc2cccc(Br)c2c1', 'Nc1cnc(Cl)cn1']; [0.9999861121177673, 0.9922033548355103] +COc1cc(-c2cnc(N)cn2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1cnc(Br)cn1', 'COc1cc(Br)ccc1Cl', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [0.9999998211860657, 0.9999997615814209, 0.9999955892562866, 0.9999940395355225, 0.9999856948852539, 0.9993895292282104, 0.9985436201095581, 0.9969464540481567, 0.9317376613616943] +Nc1cnc(-c2ncc3cccn3n2)cn1; [None]; [None]; [0] +Nc1cnc(-c2ncc(Cl)cn2)cn1; [None]; [None]; [0] +Nc1cnc(-c2cnn(CCO)c2)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9998894929885864, 0.9993137121200562, 0.9985616207122803, 0.9941195249557495] +Cc1nc(Nc2cnc(N)cn2)sc1C; ['Cc1nc(N)sc1C', 'Cc1nc(N)sc1C', 'Cc1nc(Br)sc1C', 'Cc1nc(Cl)sc1C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1']; [0.9990463852882385, 0.9879321455955505, 0.9825791120529175, 0.8682761788368225] +Cc1cc(Nc2cnc(N)cn2)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C', 'Cc1cc(N)nn1C']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(F)cn1']; [0.9953089952468872, 0.982835590839386, 0.9784591197967529, 0.9732862710952759] +COc1cc(F)c(-c2cnc(N)cn2)cc1OC; [None]; [None]; [0] +Nc1cnc(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +COc1cc(-c2cnc(N)cn2)c(OC)cc1Br; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.999996542930603, 0.9997434616088867, 0.9992082118988037, 0.9981240630149841, 0.9966506958007812, 0.9935750961303711, 0.9057188034057617, 0.8480899930000305, 0.8302137851715088] +Cc1csc2c(-c3cnc(N)cn3)ncnc12; [None]; [None]; [0] +Nc1cnc(NC(=O)c2ccco2)cn1; ['NC(=O)c1ccco1', 'NC(=O)c1ccco1']; ['Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9915404319763184, 0.9868935346603394] +CCNC(=O)c1ccc(-c2cnc(N)cn2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc(N)cn1; [None]; [None]; [0] +Nc1cnc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cn1; [None]; [None]; [0] +Nc1cnc(Cc2ccc(S(=O)(=O)CCO)cc2)cn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc(N)cn2)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc(N)cn1)cn2C; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)cn2)cc1; [None]; [None]; [0] +Nc1cnc(-c2ccc3cn[nH]c3c2)cn1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'Brc1ccc2cn[nH]c2c1', 'Nc1cnccn1']; ['Nc1cnc(Br)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1cnc(Br)cn1', 'OB(O)c1ccc2cn[nH]c2c1']; [0.999998927116394, 0.9999979734420776, 0.9999858736991882, 0.9999109506607056, 0.9996216893196106, 0.9960172772407532, 0.9346534013748169] +CCn1cc(-c2cnc(N)cn2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999879598617554, 0.9997633695602417, 0.9994243383407593] +COc1ccc2oc(-c3cnc(N)cn3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9996839761734009, 0.9977786540985107] +CC(C)(C)c1ccc(C(=O)Nc2cnc(N)cn2)cc1; ['CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1cnc(Cl)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(F)cn1']; [0.9989690780639648, 0.9986430406570435, 0.9986358880996704, 0.9969727993011475, 0.9427793025970459] +CCNC(=O)N1CCC(c2cnc(N)cn2)CC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc(N)cn1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999964237213135, 0.9999523162841797] +CNC(=O)c1ccc(OC)c(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'Nc1cnc(Br)cn1']; [0.9999875426292419, 0.9962626099586487] +Nc1cnc(-c2cc3ccccc3o2)cn1; ['Nc1cnc(Br)cn1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'Nc1cnc(Cl)cn1']; ['OB(O)c1cc2ccccc2o1', 'Nc1cnc(Cl)cn1', 'OB(O)c1cc2ccccc2o1']; [0.9996992349624634, 0.9966871738433838, 0.9957966804504395] +Nc1cnc(-c2ccc(OC(F)(F)F)cc2)cn1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Nc1cnc(Br)cn1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1cnc(Cl)cn1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1cnc(Cl)cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; [1.0, 1.0, 0.9999995827674866, 0.9999988079071045, 0.9999884366989136, 0.9999697804450989, 0.9990697503089905] +C[NH+](C)Cc1ccc(-c2cnc(N)cn2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc(N)cn1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc(N)cn3)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1']; ['Nc1cnc(C=O)cn1', 'Nc1cnc(C(=O)O)cn1']; [0.9964650869369507, 0.9923975467681885] +Nc1cnc(-c2ncc3sccc3n2)cn1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc(N)cn2)c1; ['COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; [0.9997855424880981, 0.9996469616889954, 0.9995524883270264, 0.9046072959899902] +Nc1cnc(-c2cc(-c3cccnc3)ccn2)cn1; [None]; [None]; [0] +Nc1cnc(-c2cccc(NC(=O)N3CCCC3)c2)cn1; [None]; [None]; [0] +CCc1cccc(-c2cnc(N)cn2)n1; ['CCc1cccc(Br)n1']; ['Nc1cnc(Br)cn1']; [0.9741133451461792] +CN(C)c1ccc(-c2cnc(N)cn2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1cnc(Br)cn1', 'CN(C)c1ccc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999991655349731, 0.9999969601631165, 0.9999938607215881, 0.9999527931213379, 0.9994527101516724, 0.9982381463050842, 0.9919853210449219] +Cn1ncc2cc(-c3cnc(N)cn3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1cnc(Br)cn1', 'Cn1ncc2cc(Br)ccc21', 'Nc1cnc(I)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999974370002747, 0.9999972581863403, 0.9999175071716309, 0.9990864396095276, 0.9946720600128174] +Cc1n[nH]c2cc(-c3cnc(N)cn3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1cnc(Br)cn1', 'Cc1n[nH]c2cc(Br)ccc12', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [1.0, 1.0, 0.9999997019767761, 0.9999853372573853] +Cc1cc(-c2cnc(N)cn2)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc(N)cn3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc(N)cn3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc(N)cn3)cn2)CC1; [None]; [None]; [0] +Nc1cnc(-c2ncn3c2CCCC3)cn1; [None]; [None]; [0] +Nc1cnc(NC(=O)c2cccc(OC(F)(F)F)c2)cn1; ['Nc1cnc(N)cn1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'Nc1cnc(N)cn1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'Nc1cnc(Br)cn1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(F)cn1']; [0.9999647736549377, 0.9997063875198364, 0.9994338750839233, 0.9994307160377502, 0.9246445894241333] +Nc1cnc(-c2cccc(N3CCCC3=O)c2)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnccn1']; ['O=C1CCCN1c1cccc(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999985098838806, 0.9999983906745911, 0.999994158744812, 0.9999891519546509, 0.9985712766647339, 0.9907844066619873] +Nc1cnc(-c2ccc(CCO)cc2)cn1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Cl)cn1']; ['Nc1cnc(Br)cn1', 'Nc1cnc(I)cn1', 'OCCc1ccc(Br)cc1', 'Nc1cnc(Cl)cn1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1']; [0.9999967813491821, 0.9999848008155823, 0.9999834895133972, 0.9999324679374695, 0.9998874068260193, 0.9981023073196411, 0.9947844743728638, 0.9826462864875793] +Cc1ncc(-c2ccc(-c3cnc(N)cn3)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc(N)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)cn2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)cn2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Nc1cnc(Br)cn1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'Nc1cnc(I)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999864101409912, 0.9999823570251465, 0.9999589920043945, 0.9996322393417358, 0.9943100214004517] +COc1cc(S(C)(=O)=O)ccc1-c1cnc(N)cn1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnccn1']; [0.9999993443489075, 0.9978200197219849, 0.9958400726318359, 0.9545398950576782] +CCNC(=O)c1ccc(-c2cnc(N)cn2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'CCNC(=O)c1ccc(Br)cc1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(Br)cn1']; [0.9999752044677734, 0.999908447265625, 0.9999083876609802, 0.9926726222038269] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc(N)cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc(N)cn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc(N)cn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1cnc(Br)cn1', 'Nc1cnccn1']; [0.9979726672172546, 0.9239587187767029] +CN(C)C(=O)c1ccc(-c2cnc(N)cn2)nc1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1']; ['CN(C)C(=O)c1ccc(Cl)nc1', 'Nc1cnc(Br)cn1']; [0.9999092817306519, 0.869292140007019] +Cc1cc(Nc2cnc(N)cn2)ncc1F; ['Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(F)cn1']; [0.9981908202171326, 0.9957469701766968, 0.9905879497528076, 0.929812490940094, 0.9012933969497681] +Nc1cnc(Nc2ccc(F)cn2)cn1; ['Fc1ccc(Br)nc1', 'Nc1ccc(F)cn1', 'Fc1ccc(Cl)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1']; ['Nc1cnc(N)cn1', 'Nc1cnc(Br)cn1', 'Nc1cnc(N)cn1', 'Nc1cnc(Cl)cn1', 'Nc1cnc(I)cn1', 'Nc1cnc(F)cn1']; [0.9909070730209351, 0.9858001470565796, 0.9705549478530884, 0.9536471366882324, 0.9071592092514038, 0.7747569680213928] +Nc1cnc(Nc2ccccn2)cn1; ['Nc1ccccn1', 'Nc1cnc(N)cn1', 'Clc1ccccn1']; ['Nc1cnc(Br)cn1', 'O=S(=O)(Oc1ccccn1)C(F)(F)F', 'Nc1cnc(N)cn1']; [0.9381294250488281, 0.9378414750099182, 0.8780920505523682] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc(N)cn2)c1; ['CC1(C)OB(c2cnc(N)cn2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'Nc1cnc(Br)cn1', 'Nc1cnc(Cl)cn1']; [0.9999985098838806, 0.9936589002609253, 0.9882887601852417] +Cn1nc(-c2cnc(N)cn2)cc1C(C)(C)O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc(N)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc(N)cn2)c1; [None]; [None]; [0] +Oc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +c1cc(-c2cnc3[nH]c4cnccc4c3c2)c2cccnc2c1; [None]; [None]; [0] +Oc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccc1Cl; [None]; [None]; [0] +Clc1ccc2c(c1-c1cnc3[nH]c4cnccc4c3c1)OCO2; [None]; [None]; [0] +c1ccc2c(-c3cnc4[nH]c5cnccc5c4c3)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Fc1ccc(Oc2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Nc1nccc(-c2cnc3[nH]c4cnccc4c3c2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc4[nH]c5cnccc5c4c3)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(F)c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)o1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Brc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1cc(CCc2cnc3[nH]c4cnccc4c3c2)ccc1O; [None]; [None]; [0] +c1ccc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1F; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]c4cnccc4c3c2)c2ccccc21; [None]; [None]; [0] +c1cnn2ncc(-c3cnc4[nH]c5cnccc5c4c3)c2c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(O)c1; [None]; [None]; [0] +c1cc2c(-c3cnc4[nH]c5cnccc5c4c3)c[nH]c2cn1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Fc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +Oc1ncc(-c2cnc3[nH]c4cnccc4c3c2)cc1Cl; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnc3[nH]c4cnccc4c3c2)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3cnc4[nH]ccc4c3)cc12; [None]; [None]; [0] +COc1cc(CCc2cnc3[nH]c4cnccc4c3c2)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Oc1cncc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc2N1; [None]; [None]; [0] +c1ccc2sc(-c3cnc4[nH]c5cnccc5c4c3)nc2c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CNc1nccc(-c2cnc3[nH]c4cnccc4c3c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc4[nH]c5cnccc5c4c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc3[nH]c4cnccc4c3c2)c1C; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +FC(F)c1cc(-c2cnc3[nH]c4cnccc4c3c2)[nH]n1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Clc1cnccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CCc1sccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnc3[nH]c4cnccc4c3c2)cc1Cl; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ccc4c(c3)CCN4)cc12; [None]; [None]; [0] +CNc1nc(-c2cnc3[nH]c4cnccc4c3c2)ncc1F; [None]; [None]; [0] +Cc1oc(-c2cnc3[nH]c4cnccc4c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2[nH]1; [None]; [None]; [0] +Oc1cc(-c2cnc3[nH]c4cnccc4c3c2)nc2ccnn12; [None]; [None]; [0] +c1cc(Nc2cnc3[nH]c4cnccc4c3c2)ccn1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cnc4[nH]c5cnccc5c4c3)c2c1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +CN(c1cnc2[nH]c3cnccc3c2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]c4cnccc4c3c2)cc(C)c1O; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccc1C(N)=O; [None]; [None]; [0] +Oc1c(F)cc(-c2cnc3[nH]c4cnccc4c3c2)cc1F; [None]; [None]; [0] +CSc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc12; [None]; [None]; [0] +c1ccc2c(COc3cnc4[nH]c5cnccc5c4c3)cccc2c1; [None]; [None]; [0] +Fc1ccc(Oc2cnc3[nH]c4cnccc4c3c2)c(F)c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1ccc2c(CCc3cnc4[nH]c5cnccc5c4c3)c[nH]c2c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Fc1ccc(COc2cnc3[nH]c4cnccc4c3c2)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Fc1ccc(CCc2cnc3[nH]c4cnccc4c3c2)c(F)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1ccc2nc(-c3cnc4[nH]c5cnccc5c4c3)ncc2c1; [None]; [None]; [0] +COc1ncccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]c4cnccc4c3c2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc4[nH]c5cnccc5c4c3)c2c1; [None]; [None]; [0] +c1cnn2c(-c3cnc4[nH]c5cnccc5c4c3)cnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ccc(N4CCOCC4)cc3)cc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cnc4[nH]c5cnccc5c4c3)nc2c1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]c4cnccc4c3c2)sn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2)CC1; [None]; [None]; [0] +c1ccc2c(-c3cnc4[nH]c5cnccc5c4c3)nccc2c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cnc(Nc2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnc4[nH]c5cnccc5c4c3)cn2)c1; [None]; [None]; [0] +OCCOc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc(-c2cnc3[nH]c4cnccc4c3c2)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc(Nc2cnc3[nH]c4cnccc4c3c2)ncn1; [None]; [None]; [0] +O=C(c1ccc(-c2cnc3[nH]c4cnccc4c3c2)nc1)N1CCOCC1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2C1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc3[nH]c4cnccc4c3c2)s1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc3[nH]c4cnccc4c3c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cnc3[nH]c4cnccc4c3c2)C1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc3[nH]c4cnccc4c3c2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc4[nH]c5cnccc5c4c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1Cl; [None]; [None]; [0] +Brc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ccn4nccc4n3)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +c1ccc2c(-c3cnc4[nH]c5cnccc5c4c3)c[nH]c2c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc4[nH]c5cnccc5c4c3)[nH]c2c1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ccc4c(c3)CCO4)cc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cnc3[nH]c4cnccc4c3c2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cnc4[nH]c5cnccc5c4c3)n[nH]2)cc1; [None]; [None]; [0] +c1cc2c(c(-c3cnc4[nH]c5cnccc5c4c3)c1)OCO2; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1ccc2ncc(-c3cnc4[nH]c5cnccc5c4c3)cc2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3scc4c3OCCO4)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3[nH]c4cnccc4c3c2)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cn1; [None]; [None]; [0] +Nc1nc(-c2cnc3[nH]c4cnccc4c3c2)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cnc4[nH]c5cnccc5c4c3)n2)c1; [None]; [None]; [0] +CC1(COc2cnc3[nH]c4cnccc4c3c2)COC1; [None]; [None]; [0] +CSc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2)CC1; [None]; [None]; [0] +c1ccc2sc(-c3cnc4[nH]c5cnccc5c4c3)cc2c1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]c4cnccc4c3c2)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(Cl)c1; [None]; [None]; [0] +CCc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +O=C1CCc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cnc3[nH]c4cnccc4c3c2)C1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Clc1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccc1N1CCOCC1; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]c4cnccc4c3c2)c(C(F)(F)F)n1; [None]; [None]; [0] +c1cc2cnc(-c3cnc4[nH]c5cnccc5c4c3)nn2c1; [None]; [None]; [0] +c1ccn2nc(-c3cnc4[nH]c5cnccc5c4c3)cc2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc4[nH]c5cnccc5c4c3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cnc4[nH]c5cnccc5c4c3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cnc3[nH]c4cnccc4c3c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]c4cnccc4c3c2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2cnc3[nH]c4cnccc4c3c2)cn1; [None]; [None]; [0] +Clc1cnc(-c2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3cnc4[nH]c5cnccc5c4c3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cnc3[nH]c4cnccc4c3c2)sc1C; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]c4cnccc4c3c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]c4cnccc4c3c2)c(OC)cc1Br; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]c4cnccc4c3c2)nn1C; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +O=C(Nc1cnc2[nH]c3cnccc3c2c1)c1ccco1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc3[nH]c4cnccc4c3c2)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc3[nH]c4cnccc4c3c2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3[nH]c4cnccc4c3c1)cn2C; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ccc4cn[nH]c4c3)cc12; [None]; [None]; [0] +COc1ccc2oc(-c3cnc4[nH]c5cnccc5c4c3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +CCn1cc(-c2cnc3[nH]c4cnccc4c3c2)cn1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cnc4[nH]c5cnccc5c4c3)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3cnc4[nH]c5cnccc5c4c3)cc2c1; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ncc4sccc4n3)cc12; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc4[nH]c5cnccc5c4c3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc4[nH]c5cnccc5c4c3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +CCc1cccc(-c2cnc3[nH]c4cnccc4c3c2)n1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]c4cnccc4c3c2)cc(C)c1OCCO; [None]; [None]; [0] +c1cc2c(cn1)[nH]c1ncc(-c3ncn4c3CCCC4)cc12; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnc4[nH]c5cnccc5c4c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc4[nH]c5cnccc5c4c3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +O=C(Nc1cnc2[nH]c3cnccc3c2c1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc4[nH]c5cnccc5c4c3)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)c(OC)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc3[nH]c4cnccc4c3c2)cc1; [None]; [None]; [0] +Cn1nc(-c2cnc3[nH]c4cnccc4c3c2)cc1C(C)(C)O; [None]; [None]; [0] +Fc1ccc(Nc2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999973773956299, 0.9999937415122986, 0.9999656677246094, 0.9999509453773499, 0.9999101758003235, 0.9997918605804443, 0.9950121641159058, 0.9653383493423462] +CCOc1ccccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCOc1ccccc1Cl', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br']; ['CCOc1ccccc1Br', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'CCOc1ccccc1Cl', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999831914901733, 0.9999266862869263, 0.9998964071273804, 0.9995722770690918, 0.9993822574615479, 0.9992772936820984, 0.9992318749427795, 0.9989778399467468, 0.9935754537582397, 0.9922707080841064, 0.991479754447937, 0.8290602564811707] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]c4cnccc4c3c2)ncc1F; [None]; [None]; [0] +COC(C)(C)CCc1ccc(N)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc3[nH]c4cnccc4c3c2)c1; [None]; [None]; [0] +c1ccc(Nc2cnc3[nH]c4cnccc4c3c2)nc1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc(N)nc2)[nH]1; [None]; [None]; [0] +Nc1ccc(Cc2cc(F)cc(F)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Fc1cc(F)cc(C[Zn]Br)c1', 'CC1(C)OB(c2cc(F)cc(F)c2)OC1(C)C', 'Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(CBr)c1']; ['Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(CBr)c1', 'Nc1ccc(I)cn1', 'Nc1ccc(CCl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999862909317017, 0.9998573660850525, 0.9998070001602173, 0.9997854232788086, 0.9993913173675537, 0.9992752075195312, 0.9955008625984192, 0.9940799474716187, 0.9683018922805786] +CC(C)S(=O)(=O)c1ccccc1-c1ccc(N)nc1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999774694442749, 0.999846339225769, 0.9996471405029297, 0.9995967149734497, 0.9874898195266724, 0.9121971726417542] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2[nH]c3cnccc3c2c1; [None]; [None]; [0] +CCn1cc(-c2ccc(N)nc2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1ccc(I)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9999935626983643, 0.9999917149543762, 0.9999760389328003, 0.9999754428863525, 0.9999479651451111, 0.9999399781227112, 0.9999074935913086, 0.9999039173126221, 0.9997256994247437, 0.9993098974227905, 0.9988497495651245] +Nc1ccc(-c2ccnc3ccccc23)cn1; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1ccc(I)cn1', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', 'Brc1ccnc2ccccc12']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1ccnc2ccccc12', 'Nc1ccc(I)cn1', 'Clc1ccnc2ccccc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'OB(O)c1ccnc2ccccc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999927878379822, 0.9999566078186035, 0.9999285936355591, 0.9997689723968506, 0.9996907711029053, 0.9995381832122803, 0.9989784359931946, 0.9987801313400269, 0.9916314482688904, 0.9820805788040161, 0.9379845857620239, 0.87910395860672, 0.8581351041793823] +CP(C)(=O)c1ccccc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(-c2cccc(C(F)(F)F)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)c1cccc(Cl)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'Nc1ccc(Cl)cn1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Cl)c1']; ['FC(F)(F)c1cccc(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'FC(F)(F)c1cccc(I)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Cl)c1', 'Nc1ccc(Br)cn1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9999962449073792, 0.9999961853027344, 0.9999960064888, 0.9999952912330627, 0.9999908804893494, 0.9999902248382568, 0.9999899864196777, 0.9999662637710571, 0.999947190284729, 0.9999260902404785, 0.9999104738235474, 0.9999064207077026, 0.9998981952667236, 0.9932143688201904, 0.938147783279419] +Nc1ccc(-c2ccccc2OC(F)(F)F)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'FC(F)(F)Oc1ccccc1Cl', 'Nc1ccc(Cl)cn1', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1']; ['FC(F)(F)Oc1ccccc1Br', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'FC(F)(F)Oc1ccccc1I', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'FC(F)(F)Oc1ccccc1Cl', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999984502792358, 0.9999834895133972, 0.9999819397926331, 0.9999778866767883, 0.9999290704727173, 0.9999265670776367, 0.9999014735221863, 0.9998687505722046, 0.9998114109039307, 0.9993377327919006, 0.9991000890731812, 0.9978008270263672, 0.9967920184135437, 0.9720687866210938, 0.8446698784828186] +Cn1cnc2ccc(-c3ccc(N)nc3)cc2c1=O; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999980926513672, 0.9999874830245972, 0.9928634166717529] +Nc1ccc(-c2cnn(Cc3ccccc3)c2)cn1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(I)cn1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999934434890747, 0.9999907612800598, 0.9999902248382568, 0.9999881386756897, 0.999975323677063, 0.999962568283081, 0.9999617338180542, 0.9998903274536133, 0.9998771548271179] +NC(=O)c1ccccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999584555625916, 0.9998739957809448, 0.9998066425323486, 0.9997856616973877, 0.9997535347938538, 0.9994412660598755, 0.9990899562835693, 0.9979226589202881, 0.9978624582290649, 0.9899109601974487, 0.9449408054351807, 0.9218260645866394] +Nc1ccc(-c2cnn(CCO)c2)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(Cl)cn1', 'Nc1ccc(Br)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999936819076538, 0.9999910593032837, 0.9999855756759644, 0.9999837875366211, 0.9999759197235107, 0.9999678730964661, 0.9999263286590576, 0.9999129772186279, 0.999750018119812, 0.9997000694274902, 0.9995899200439453, 0.9993038177490234, 0.8250159025192261] +Nc1ccc(-c2ccccc2C(=O)[O-])cn1; [None]; [None]; [0] +Nc1ccc(-c2cnc(-c3ccccc3)[nH]2)cn1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc(N)nc1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Nc1ccc(O)cn1', 'Nc1ccc(O)cn1']; [0.9835445284843445, 0.7824629545211792] +Nc1ccc(-c2cc(Cl)ccc2Cl)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c(Br)c1', 'Nc1ccc(Cl)cn1']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999903440475464, 0.9999740123748779, 0.9999345541000366, 0.9999046325683594, 0.9998730421066284, 0.9996875524520874, 0.999363899230957, 0.9990194439888, 0.997469425201416, 0.9970141649246216, 0.9841700792312622, 0.9721492528915405, 0.8758435249328613] +COc1cnc(-c2ccc(N)nc2)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Nc1ccc(B(O)O)cn1']; [0.999929666519165, 0.9995876550674438, 0.9967358112335205] +Nc1ccc(-c2cccc(NC(=O)c3ccccc3)c2)cn1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999979734420776, 0.999996542930603, 0.9999899864196777, 0.9999894499778748, 0.9997676610946655] +Cc1ccc(-c2ccc(N)nc2)c(Br)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9999837279319763, 0.9999546408653259, 0.9998778104782104, 0.9995129108428955, 0.9975472688674927, 0.9797567129135132, 0.9783214330673218, 0.9774368405342102] +Cc1nc2ccccn2c1-c1ccc(N)nc1; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1Br']; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Cc1nc2ccccn2c1Br', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999823570251465, 0.9999779462814331, 0.9999775886535645, 0.9999731779098511, 0.9999628663063049, 0.9993823766708374, 0.9876936674118042] +CC(C)(C)c1nc(-c2ccc(N)nc2)cs1; [None]; [None]; [0] +Nc1ccc(-c2cnc3ccccn23)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Nc1ccc(B(O)O)cn1', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1']; ['Ic1cnc2ccccn12', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'c1ccn2ccnc2c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999971389770508, 0.9999966621398926, 0.9999942183494568, 0.9999628067016602, 0.9999216794967651, 0.9999211430549622, 0.9998787641525269, 0.9985876679420471, 0.9843174815177917, 0.7969951629638672] +Nc1ccc(-c2cnc3cccnn23)cn1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Nc1ccc(Br)cn1']; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'c1cnn2ccnc2c1']; [0.9999982714653015, 0.99998939037323, 0.9932535886764526] +Cc1nc(C)c(-c2ccc(N)nc2)s1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9999979734420776, 0.9999862313270569, 0.9999815225601196, 0.9999532699584961, 0.9948619604110718, 0.9918186664581299] +Cc1nc(N)sc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1nc(N)sc1Br', 'Cc1csc(N)n1']; ['Cc1nc(N)sc1Br', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999991655349731, 0.9999852180480957, 0.9886609315872192] +Nc1ccc(-c2cccc(Cn3cncn3)c2)cn1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc(N)nc2)s1; ['CNc1nc(C)cs1']; ['Nc1ccc(Br)cn1']; [0.990019679069519] +Nc1ccc(NCc2cccnc2)cn1; ['NCc1cccnc1', 'BrCc1cccnc1', 'ClCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'Nc1ccc(N)nc1', 'NCc1cccnc1', 'Nc1ccc(N)nc1']; ['Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(Br)cn1', 'OCc1cccnc1', 'Nc1ccc(Cl)cn1', 'O=Cc1cccnc1']; [0.999228298664093, 0.9979680776596069, 0.9935135245323181, 0.9895399808883667, 0.9616929292678833, 0.9424729347229004, 0.9088031053543091, 0.8316770195960999] +Cc1ccc(Cl)c(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Cc1ccc(Cl)c(Cl)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.999985933303833, 0.9999064207077026, 0.9998719692230225, 0.9998663663864136, 0.999793529510498, 0.9994544982910156, 0.9993529319763184, 0.9992105960845947, 0.9988535642623901, 0.9980859756469727, 0.9957748651504517, 0.9941794872283936, 0.9712940454483032, 0.9024732112884521] +Nc1ccc(-n2ncc3cccc(F)c3c2=O)cn1; [None]; [None]; [0] +Nc1ccc(-c2cccc(Br)c2)cn1; ['Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', None, 'Brc1cccc(Br)c1']; ['Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Nc1ccc(I)cn1', 'Clc1cccc(Br)c1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', None, 'Nc1ccc(Br)cn1']; [0.9999951124191284, 0.999993085861206, 0.9999861717224121, 0.9999662637710571, 0.9999631643295288, 0.9999332427978516, 0.9999024868011475, 0.9999022483825684, 0.9998677968978882, 0.9994618892669678, 0.9990964531898499, 0.998623251914978, 0.9941617250442505, 0, 0.9150816202163696] +Nc1ccc(-c2c(Cl)cccc2Cl)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Nc1ccc(I)cn1', 'Clc1cccc(Cl)c1I', 'Nc1ccc(Br)cn1', 'Clc1cccc(Cl)c1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Nc1ccc(Cl)cn1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccc(I)cn1', 'Clc1cccc(Cl)c1Cl', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999836087226868, 0.9999366998672485, 0.9998799562454224, 0.999819278717041, 0.9997148513793945, 0.9992859959602356, 0.9991934299468994, 0.9990026950836182, 0.9988700151443481, 0.9956603050231934, 0.9880974292755127, 0.9803889989852905, 0.958992600440979] +Nc1ccc(-c2ccnc(N)n2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9999977946281433, 0.9999897480010986, 0.9999802708625793, 0.9999733567237854, 0.9999492168426514, 0.9997377395629883, 0.9978722333908081, 0.8822119235992432] +Nc1ccc(Nc2cccnc2)cn1; ['Nc1ccc(Br)cn1', 'Brc1cccnc1', 'Nc1ccc(I)cn1', 'Clc1cccnc1']; ['Nc1cccnc1', 'Nc1ccc(N)nc1', 'Nc1cccnc1', 'Nc1ccc(N)nc1']; [0.901154637336731, 0.898674726486206, 0.8625998497009277, 0.7844439744949341] +Nc1ccc(NC(=O)c2cccs2)cn1; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9998688697814941, 0.9993953108787537] +Nc1ccc(NCCc2c[nH]cn2)cn1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Nc1ccc(I)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(Br)cn1']; [0.9989637732505798, 0.9865837097167969, 0.970168948173523] +Nc1ccc(-c2ccc3ccccc3c2)cn1; ['Brc1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ccc(I)cn1', 'Ic1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Clc1ccc2ccccc2c1', 'Nc1ccc(Cl)cn1', 'Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Nc1ccc(Br)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Clc1ccc2ccccc2c1', 'Nc1ccc(Cl)cn1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Ic1ccc2ccccc2c1', 'Nc1ccc(B(O)O)cn1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'c1ccc2ccccc2c1']; [0.9999988079071045, 0.9999963045120239, 0.9999908208847046, 0.9999894499778748, 0.9999874830245972, 0.9999873638153076, 0.9999867677688599, 0.9999830722808838, 0.9999809861183167, 0.9999713897705078, 0.9999642372131348, 0.999935507774353, 0.9998414516448975, 0.9997447729110718, 0.9971059560775757, 0.9481667876243591] +Nc1ccc(-c2cnn3ncccc23)cn1; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1']; [0.999991774559021, 0.9999783635139465, 0.999972403049469, 0.9999480247497559] +Cc1c(-c2ccc(N)nc2)sc(=O)n1C; [None]; [None]; [0] +Nc1ccc(-n2cnc3ccccc32)cn1; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9993679523468018, 0.996821939945221, 0.9465989470481873] +Nc1ccc(-c2c[nH]nc2C(F)(F)F)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Cl']; ['FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999629259109497, 0.9999586939811707, 0.999908447265625, 0.9997625350952148, 0.9997251033782959, 0.9996321201324463, 0.9972294569015503] +NC(=O)c1c(F)cccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; ['NC(=O)c1c(F)cccc1Br', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999988079071045, 0.9999891519546509, 0.9999592304229736] +Nc1ccc(NCCc2ccccc2)cn1; ['NCCc1ccccc1', 'ClCCc1ccccc1', 'BrCCc1ccccc1', 'NCCc1ccccc1', 'Nc1ccc(N)nc1']; ['Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(Br)cn1', 'O=CCc1ccccc1']; [0.9634778499603271, 0.9218425154685974, 0.8984273672103882, 0.896325409412384, 0.8170663118362427] +Nc1ccc(-c2cncc3ccccc23)cn1; ['Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Nc1ccc(Br)cn1', 'Clc1cncc2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1cncc2ccccc12', 'Nc1ccc(Cl)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Ic1cncc2ccccc12', 'Nc1ccc(Br)cn1', 'OB(O)c1cncc2ccccc12', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'OB(O)c1cncc2ccccc12', 'Nc1ccc(B(O)O)cn1', 'Clc1cncc2ccccc12', 'Nc1ccc(Br)cn1', 'OB(O)c1cncc2ccccc12']; [0.9999651312828064, 0.9999651312828064, 0.9999298453330994, 0.9998683333396912, 0.9997941255569458, 0.9997901916503906, 0.9995273351669312, 0.9991416931152344, 0.9949352741241455, 0.9946251511573792, 0.9919614195823669, 0.980739951133728, 0.9488798379898071, 0.9230645895004272] +Cn1cc(-c2ccc(-c3ccc(N)nc3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(B(O)O)cn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(Cl)cc2)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(-c2ccc(Cl)cc2)cn1']; [0.9999997019767761, 0.9999992251396179, 0.9999986886978149, 0.9999985694885254, 0.9999620914459229, 0.9999315142631531, 0.997726321220398, 0.9951055645942688] +CN1c2ccc(-c3ccc(N)nc3)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ccc(NCc2ccc(Cl)cc2)cn1; ['Clc1ccc(CBr)cc1', 'NCc1ccc(Cl)cc1', 'ClCc1ccc(Cl)cc1', 'Nc1ccc(N)nc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'COC(OC)c1ccc(Cl)cc1']; ['Nc1ccc(N)nc1', 'Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'OCc1ccc(Cl)cc1', 'Nc1ccc(F)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(N)nc1']; [0.999636173248291, 0.9968276023864746, 0.995488166809082, 0.9662827253341675, 0.9633992910385132, 0.925250768661499, 0.8904166221618652, 0.7559797763824463] +Nc1ccc(-c2cccc(CC(=O)[O-])c2)cn1; [None]; [None]; [0] +Nc1ccc(-c2cccc(O)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ccc(Cl)cn1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ccc(Br)cn1', None, None]; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Nc1ccc(Br)cn1', 'OB(O)c1cccc(O)c1', 'Nc1ccc(I)cn1', 'OB(O)c1cccc(O)c1', None, None]; [0.9999806880950928, 0.9999713897705078, 0.9999603033065796, 0.9998810291290283, 0.9998480081558228, 0.9996463060379028, 0.9995160102844238, 0.999052107334137, 0.9989173412322998, 0, 0] +Nc1ccc(-c2cccc(CO)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', None, None, 'Nc1ccc(Br)cn1']; ['OCc1cccc(Br)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'OCc1cccc(I)c1', 'Nc1ccc(Cl)cn1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1', None, None, 'OCc1cccc(Br)c1']; [0.9999889731407166, 0.9999845027923584, 0.9999811053276062, 0.9999803304672241, 0.999946117401123, 0.9999310374259949, 0.9999091029167175, 0.9998908042907715, 0.9986187219619751, 0.9982130527496338, 0.9973664879798889, 0, 0, 0.9609192609786987] +Nc1ccc(Nc2ccncc2)cn1; ['Nc1ccc(Br)cn1', 'Brc1ccncc1', 'Clc1ccncc1', 'Nc1ccc(Cl)cn1']; ['Nc1ccncc1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccncc1']; [0.9946812987327576, 0.9818152189254761, 0.9754244089126587, 0.8681505918502808] +Nc1ccc(-c2ccc3c(N)[nH]nc3c2)cn1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(N)nc2)n1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(N)nc3)ccc21; [None]; [None]; [0] +Nc1ccc(-c2ccc(-c3cn[nH]c3)cc2)cn1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2cn[nH]c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(Cl)cc2)cn1', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(-c2ccc(Cl)cc2)cn1', 'Clc1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1cn[nH]c1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999976754188538, 0.9999944567680359, 0.9999903440475464, 0.9999845027923584, 0.9999819993972778, 0.9999686479568481, 0.9999226331710815, 0.9995933175086975, 0.9993985295295715, 0.9992733001708984, 0.9990671277046204, 0.9987859725952148, 0.9976973533630371, 0.9878218173980713] +Nc1ccc(NCc2ccccc2F)cn1; ['Fc1ccccc1CCl', 'NCc1ccccc1F', 'Fc1ccccc1CBr', 'COC(OC)c1ccccc1F', 'Nc1ccc(N)nc1', 'NCc1ccccc1F', 'Nc1ccc(N)nc1']; ['Nc1ccc(N)nc1', 'Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'OCc1ccccc1F', 'Nc1ccc(Br)cn1', 'O=Cc1ccccc1F']; [0.9983837008476257, 0.9982963800430298, 0.9900851249694824, 0.9636424779891968, 0.9574878215789795, 0.9504055976867676, 0.9366621971130371] +COc1cc(-c2ccc(N)nc2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ccc(N)nc2)nn1; ['CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9990954995155334, 0.9985355734825134] +CSc1nc(-c2ccc(N)nc2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1']; ['N#CCCc1cccc(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999812841415405, 0.9999515414237976, 0.9998593330383301, 0.9996728897094727, 0.9989480972290039, 0.9979387521743774, 0.9817684888839722] +Nc1ccc(-c2csc3ncncc23)cn1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; [0.9999237060546875, 0.9998040199279785] +Nc1ccc(-c2csc(N)n2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'CC(=O)c1ccc(N)nc1']; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'NC(N)=S']; [0.9999980926513672, 0.9999868869781494, 0.9999768733978271, 0.999923586845398, 0.969221830368042] +Nc1ccc(-c2cc3ccccc3[nH]2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1cc2ccccc2[nH]1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cc2ccccc2[nH]1', 'CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC(=O)c1ccc(N)nc1']; ['Ic1cc2ccccc2[nH]1', 'Nc1ccc(B(O)O)cn1', 'Clc1cc2ccccc2[nH]1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'OB(O)c1cc2ccccc2[nH]1', 'NNc1ccccc1']; [0.9999988079071045, 0.9999933242797852, 0.9999352693557739, 0.9998550415039062, 0.9997538328170776, 0.9994810819625854, 0.757815957069397] +CCC(=O)Nc1ccc(-c2ccc(N)nc2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1']; [0.9999983310699463, 0.9999972581863403, 0.9999746084213257] +Nc1ccc(-c2ccc(F)cc2C(F)(F)F)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Nc1ccc(I)cn1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Nc1ccc(Br)cn1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Nc1ccc(Cl)cn1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Nc1ccc(B(O)O)cn1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccc(I)cn1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccc(Br)cn1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccc(Br)cn1']; [0.9999992847442627, 0.999995231628418, 0.9999879598617554, 0.9999760389328003, 0.9999700784683228, 0.9999678134918213, 0.9999537467956543, 0.9999270439147949, 0.9998558759689331, 0.9993627071380615, 0.9991832971572876, 0.9950828552246094] +Nc1ccc(CCc2c[nH]nn2)cn1; [None]; [None]; [0] +Nc1ccc(Oc2ccccn2)cn1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'Nc1ccc(F)cn1', 'Nc1ccc(Cl)cn1']; ['Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9980676174163818, 0.9977730512619019, 0.9922280311584473, 0.9215642213821411, 0.8398565649986267] +CC(C)c1oncc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(-c2cncnc2N)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; ['Nc1ncncc1I', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9999730587005615, 0.9999361038208008, 0.9999152421951294, 0.9999020099639893, 0.9970036745071411, 0.9962954521179199, 0.9954415559768677, 0.9943110346794128, 0.9526070356369019] +CCNc1nc2ccc(-c3ccc(N)nc3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc(N)nc2)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999992847442627, 0.999998927116394, 0.999997615814209, 0.999994158744812, 0.9999897480010986, 0.9999824166297913, 0.9999701976776123, 0.9998214244842529, 0.9986734390258789] +CS(=O)(=O)C1CCN(c2ccc(N)nc2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9994872808456421, 0.9911400079727173] +NC(=O)CCCc1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(NC(=O)c2c(Cl)cccc2Cl)cn1; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9997650384902954, 0.9992389678955078] +CC(C)(COc1ccc(N)nc1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2ccc(N)nc2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999973177909851, 0.9999967813491821, 0.999996542930603, 0.9999961853027344, 0.9999879598617554, 0.9999876022338867, 0.9999771118164062, 0.9998956322669983, 0.999885082244873] +COc1ccc(-c2ccc(N)nc2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1ccc(Br)cn1', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999996423721313, 0.9999995231628418, 0.9999982714653015, 0.9999974966049194, 0.999997079372406, 0.9999889731407166, 0.9999868869781494, 0.9999607801437378, 0.9999537467956543, 0.9999316930770874, 0.999837338924408, 0.9979401230812073, 0.9895018935203552] +CC(C)(O)CC(=O)NCCc1ccc(N)nc1; [None]; [None]; [0] +Cn1cc(-c2ccc(N)nc2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1']; [0.9997929334640503, 0.9996871948242188, 0.9983692765235901, 0.910034716129303] +Nc1ccc(-c2cc[nH]c(=O)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; ['O=c1cc(Br)cc[nH]1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'Nc1ccc(Cl)cn1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(Br)cc[nH]1']; [0.9999634027481079, 0.999962329864502, 0.9999184012413025, 0.9998810291290283, 0.999617338180542, 0.9992480278015137, 0.9991021156311035, 0.9978914260864258, 0.9961457252502441, 0.9947768449783325, 0.9661034941673279] +Nc1ccc(-c2cnn3ccccc23)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Clc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Ic1cnn2ccccc12', 'Nc1ccc(Cl)cn1', 'Nc1ccccn1', 'Nc1ccc(Br)cn1', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'c1ccn2nccc2c1', 'Nc1ccc(Br)cn1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'O=C(O)c1cnn2ccccc12', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999987483024597, 0.9999946355819702, 0.9999890327453613, 0.999976634979248, 0.9999555945396423, 0.9999374151229858, 0.9999315738677979, 0.9999147653579712, 0.9996519088745117, 0.9995932579040527, 0.999524712562561, 0.9986732006072998, 0.9972819089889526, 0.9960915446281433, 0.9849237203598022, 0.9779365062713623, 0.9770621657371521, 0.862133264541626] +Nc1ccc(-c2cccc3c2C(=O)CC3)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999855160713196, 0.9999490976333618, 0.9989748001098633, 0.9986664056777954, 0.9863467812538147, 0.8599820137023926] +CC(C)(N)c1ccc(-c2ccc(N)nc2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999949932098389, 0.9999551773071289, 0.9982086420059204, 0.9853464365005493] +C[S@](=O)c1ccc(-c2ccc(N)nc2)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ccc(Br)cn1']; [0.9996874332427979] +CCNS(=O)(=O)c1ccccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br']; ['CCNS(=O)(=O)c1ccccc1Br', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999707937240601, 0.9980268478393555, 0.8188368082046509] +COc1cc(CCc2ccc(N)nc2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Nc1ccc(Br)cn1']; [0.9289793968200684] +C[C@@H](Oc1ccc(N)nc1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ccc(O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(F)cn1']; [0.9963427782058716, 0.9932329654693604, 0.9355005025863647] +CCN(CC)c1ccc(N)nc1; ['CCNCC']; ['Nc1ccc(Br)cn1']; [0.7581002712249756] +COc1ccncc1Nc1ccc(N)nc1; ['COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1I']; ['Nc1ccc(N)nc1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; [0.9981339573860168, 0.9970266222953796, 0.995956301689148, 0.9948765635490417, 0.9947613477706909, 0.9700727462768555] +CC(C)Oc1cncc(-c2ccc(N)nc2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999998211860657, 0.9999988079071045, 0.9999986886978149, 0.999998152256012, 0.9999514818191528, 0.9999395608901978, 0.9999105930328369, 0.9998791217803955, 0.9930120706558228] +Nc1ccc(Nc2cnccc2-c2ccccc2)cn1; ['Nc1ccc(Br)cn1', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Nc1ccc(N)nc1']; [0.9983179569244385, 0.9968330264091492] +Nc1ccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(N)nc2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999998211860657, 0.9999994039535522, 0.9999991655349731, 0.9999977350234985, 0.9999970197677612, 0.9999920129776001, 0.9999916553497314, 0.9999899864196777, 0.9999863505363464, 0.9999754428863525, 0.999895453453064, 0.9998875856399536, 0.9998688697814941, 0.9998664855957031, 0.9998137354850769, 0.9879884719848633] +Nc1ccc(-c2cc3c(=O)[nH]cc(Br)c3s2)cn1; [None]; [None]; [0] +Nc1ccc(-c2cc3c(=O)[nH]ccc3o2)cn1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1']; ['COc1cccc(F)c1Br', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'COc1cccc(F)c1I', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999991655349731, 0.9999966025352478, 0.9999959468841553, 0.999989926815033, 0.9999868869781494, 0.9999862909317017, 0.9999639391899109, 0.9999263286590576, 0.9998711347579956, 0.9996720552444458, 0.9996604919433594, 0.9966475963592529, 0.994070827960968] +Nc1ccc(Nc2cnc3ccccc3c2)cn1; ['Nc1ccc(Br)cn1', 'Clc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Nc1ccc(Cl)cn1']; ['Nc1cnc2ccccc2c1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1cnc2ccccc2c1']; [0.9616950154304504, 0.9586375951766968, 0.9557483196258545, 0.8559459447860718] +Nc1ccc(-c2cnc3[nH]ccc3c2)cn1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ccc(Br)cn1']; [0.9999995231628418, 0.999995768070221, 0.9999939203262329, 0.999993085861206, 0.9999926090240479, 0.999974250793457, 0.9999645948410034, 0.9999547004699707, 0.9998080730438232, 0.9991822242736816, 0.9739986062049866] +CNS(=O)(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999802112579346, 0.9999730587005615, 0.9999702572822571, 0.9998575448989868, 0.9998108148574829, 0.9995357990264893, 0.998569667339325, 0.9981997609138489, 0.9945062398910522] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999986886978149, 0.9999986290931702, 0.9999974370002747, 0.999976396560669, 0.9997934103012085, 0.9992489814758301, 0.9989194273948669, 0.7661184072494507] +Nc1ccc(-c2ccc(N3CCOCC3)cc2)cn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Brc1ccc(N2CCOCC2)cc1', 'Nc1ccc(Cl)cn1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [1.0, 0.9999996423721313, 0.9999996423721313, 0.9999995231628418, 0.9999991655349731, 0.999998927116394, 0.9999984502792358, 0.9999982118606567, 0.9999978542327881, 0.9999943971633911, 0.9999942779541016, 0.9992496967315674] +Nc1ccc(-c2c[nH]c3cnccc23)cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Nc1ccc(I)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'OB(O)c1c[nH]c2cnccc12']; [0.9999634027481079, 0.9998496770858765, 0.992685079574585, 0.9870733022689819, 0.9472468495368958, 0.9365973472595215] +CNC(=O)c1c(F)cccc1-c1ccc(N)nc1; [None]; [None]; [0] +Cc1cc(-c2ccc(N)nc2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', None, 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', None, 'Nc1ccc(Br)cn1']; [0.9999998211860657, 0.9999996423721313, 0.999998927116394, 0.9999988079071045, 0.9999985694885254, 0.9999943971633911, 0.9999940395355225, 0.99998939037323, 0.9999872446060181, 0.9999608993530273, 0.9999525547027588, 0.9999198913574219, 0, 0.9296053051948547] +Nc1ccc(-n2ccc(CO)n2)cn1; ['Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9989773035049438, 0.9952197074890137] +CC1(c2ccc(N)nc2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccc(N)nc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1ccc(N)nc1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Nc1ccc(-c2c(F)cccc2Cl)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Fc1cccc(Cl)c1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1Br']; ['Fc1cccc(Cl)c1Br', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl', 'Nc1ccc(I)cn1', 'Fc1cccc(Cl)c1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999992251396179, 0.9999980330467224, 0.9999974966049194, 0.9999963045120239, 0.9999958872795105, 0.9999954700469971, 0.9999916553497314, 0.9999831914901733, 0.9999825954437256, 0.9999607801437378, 0.9998918771743774, 0.9998751282691956, 0.9989822506904602] +Nc1ccc(-n2cnc(CCO)c2)cn1; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(F)cn1']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1']; [0.999688982963562, 0.9996127486228943, 0.9987920522689819, 0.9292697906494141] +C[C@@H](Nc1ccc(N)nc1)C(C)(C)O; [None]; [None]; [0] +C[C@H](Nc1ccc(N)nc1)C(C)(C)O; [None]; [None]; [0] +Nc1ccc(-n2ncc3ccccc32)cn1; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9986989498138428, 0.8522468209266663] +Nc1ccc(-c2ccc(-n3cncn3)cc2)cn1; [None]; [None]; [0] +Nc1ccc(-c2nc3ccc(O)cc3[nH]2)cn1; ['Nc1ccc(C=O)cn1', 'Nc1ccc(C(=O)O)cn1']; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; [0.9975272417068481, 0.9942221641540527] +COc1ccc(-c2ccc(N)nc2)c(OC)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['COc1ccc(Br)c(OC)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'COc1ccc(I)c(OC)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'COc1ccc(Cl)c(OC)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999908208847046, 0.9999814033508301, 0.9999752640724182, 0.9999362230300903, 0.9999001026153564, 0.9998444318771362, 0.9997897148132324, 0.9997581243515015, 0.9997463226318359, 0.999199390411377, 0.9973635077476501, 0.996732234954834, 0.9952181577682495, 0.9680502414703369, 0.950661301612854] +Nc1ccc(-n2ncc3c(O)cccc32)cn1; ['Nc1ccc(I)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(Br)cn1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9957162141799927, 0.9910030961036682, 0.9845278263092041] +Nc1ccc(-c2ccc(C(=O)c3ccccc3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccccn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Nc1ccc(Cl)cn1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999961853027344, 0.9999890923500061, 0.9999886751174927, 0.9999860525131226, 0.9999775886535645, 0.9999685287475586, 0.9999509453773499, 0.9999309778213501, 0.999917209148407, 0.9997211694717407, 0.9997118711471558, 0.9992675185203552, 0.9986710548400879, 0.9985095262527466, 0.851722776889801] +CSc1nc(C)c(-c2ccc(N)nc2)[nH]1; [None]; [None]; [0] +Nc1ccc(CCC(=O)NCc2ccccn2)cn1; ['NCc1ccccn1', 'CC(C)(C)OC(=O)NCc1ccccn1', 'COC(=O)CCc1ccc(N)nc1']; ['Nc1ccc(CCC(=O)O)cn1', 'Nc1ccc(CCC(=O)O)cn1', 'NCc1ccccn1']; [0.9998461008071899, 0.9995360374450684, 0.9961048364639282] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(N)nc2)CC1; [None]; [None]; [0] +Nc1ccc(-c2nncn2C2CC2)cn1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(-c2ccn(CC[NH3+])n2)cn1; [None]; [None]; [0] +Nc1ccc(-c2nnc(N)s2)cn1; ['NNC(N)=S']; ['Nc1ccc(C(=O)O)cn1']; [0.9966965913772583] +Nc1ccc(Cc2nnc3ccc(-c4ccccc4)nn23)cn1; [None]; [None]; [0] +Nc1ccc(-c2cn(Cc3ccccc3)nn2)cn1; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; ['c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1']; [0.9999676942825317, 0.9994021654129028, 0.9989069104194641, 0.8476884365081787] +Nc1ccc(CS(=O)(=O)NCc2ccccn2)cn1; [None]; [None]; [0] +CCc1cc(-c2ccc(N)nc2)nc(N)n1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1', 'CCc1cc(Cl)nc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999985694885254, 0.9999954700469971, 0.9995363354682922] +CNC(=O)c1ccc(-c2ccc(N)nc2)s1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'Nc1ccc(B(O)O)cn1']; [0.9999984502792358, 0.9999537467956543] +CC(C)(O)c1cccc(-c2ccc(N)nc2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999971389770508, 0.9999409914016724, 0.9999409317970276, 0.99971604347229, 0.9959230422973633] +CCCCc1cc(-c2ccc(N)nc2)nc(N)n1; [None]; [None]; [0] +Nc1ccc(-c2nc3ccccc3s2)cn1; ['Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Nc1ccc(Br)cn1', None, 'CSc1nc2ccccc2s1', 'Nc1ccc(C(=O)O)cn1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'c1ccc2scnc2c1', None, 'Nc1ccc(B(O)O)cn1', 'Nc1ccccc1S', 'Nc1ccc(Br)cn1']; [0.9999957084655762, 0.9999451637268066, 0.9995783567428589, 0, 0.9984446167945862, 0.9965167045593262, 0.996459424495697] +CC1(C)Oc2ccc(-c3ccc(N)nc3)nc2NC1=O; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'Nc1ccc(B(O)O)cn1']; [0.9999037981033325, 0.9985499978065491] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(N)nc3)c2)cc1; ['CNC(=O)c1ccc(N)cc1']; ['Nc1ccc(-c2cccc(C(=O)O)c2)cn1']; [0.99991375207901] +Cn1cc(C(N)=O)cc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(-c2cncc(N)n2)cn1; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9999504685401917, 0.9999386668205261, 0.9998792409896851, 0.9998634457588196, 0.9980817437171936, 0.915886640548706] +C[C@@H2]NC(=O)N1CCC(c2ccc(N)nc2)CC1; [None]; [None]; [0] +Nc1ccc(-c2cccc3ccsc23)cn1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Brc1cccc2ccsc12', 'Clc1cccc2ccsc12', 'Nc1ccc(Cl)cn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1cccc2ccsc12']; [0.9999948143959045, 0.9999764561653137, 0.9999648332595825, 0.9996194839477539, 0.999346137046814, 0.9992595911026001, 0.9887661933898926, 0.982367217540741] +Nc1ccc(-c2cccc3nnsc23)cn1; ['Brc1cccc2nnsc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1cccc2nnsc12', 'Clc1cccc2nnsc12', 'Brc1cccc2nnsc12']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cccc2nnsc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999963045120239, 0.9998234510421753, 0.9997930526733398, 0.996138870716095, 0.9669763445854187] +Nc1ccc(Oc2ccc(C[NH3+])cc2F)cn1; [None]; [None]; [0] +Nc1ccc(-c2ncc3ccccc3n2)cn1; ['Brc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ncc2ccccc2n1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Clc1ncc2ccccc2n1', 'Nc1ccc(B(O)O)cn1']; [0.9999680519104004, 0.9995626211166382, 0.9995247721672058, 0.9972204566001892] +Nc1ccc(-c2nc(N)c3ccccc3n2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; ['Nc1nc(Cl)nc2ccccc12', 'Nc1nc(Cl)nc2ccccc12']; [0.9999040961265564, 0.9997102618217468] +Nc1ccc(-c2c[nH]c3cccnc23)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Clc1c[nH]c2cccnc12']; ['Ic1c[nH]c2cccnc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9998595714569092, 0.999669075012207, 0.9996116161346436, 0.9994367361068726, 0.9984744787216187, 0.9890745282173157, 0.9667481184005737] +Nc1ccc(-c2ncc3cc[nH]c3n2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ncc2cc[nH]c2n1']; ['Clc1ncc2cc[nH]c2n1', 'Nc1ccc(B(O)O)cn1']; [0.9998779892921448, 0.9952214956283569] +COc1ccc(Oc2ccc(N)nc2)c(F)c1F; ['COc1ccc(Br)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(F)cn1']; [0.9998491406440735, 0.998814046382904, 0.9965187311172485, 0.9597386717796326] +COc1ncccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ncccc1Br']; ['COc1ncccc1Br', 'Nc1ccc(Br)cn1', 'COc1ncccc1I', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999613761901855, 0.999883770942688, 0.9996567964553833, 0.999632716178894, 0.9988252520561218, 0.9976020455360413, 0.9969103932380676, 0.9948581457138062, 0.992190957069397, 0.9872998595237732, 0.7998204231262207] +COc1ccc(C#N)cc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O']; ['COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'COc1ccc(C#N)cc1Cl', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9999992847442627, 0.9999982118606567, 0.9999955892562866, 0.9999951720237732, 0.9999854564666748, 0.999977707862854, 0.9999711513519287, 0.999969482421875, 0.9999563694000244, 0.9999209046363831, 0.9999167919158936, 0.9998942613601685, 0.9996910095214844, 0.9987599849700928, 0.9974778294563293] +COc1ccc(OC)c(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'COc1ccc(OC)c(Cl)c1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999921321868896, 0.9999813437461853, 0.9999507069587708, 0.9999157190322876, 0.9998490810394287, 0.9997782707214355, 0.9997698068618774, 0.9993849992752075, 0.9989488124847412, 0.9987421035766602, 0.997822642326355, 0.9957956075668335, 0.9872111678123474, 0.9768288135528564] +Nc1ccc(-c2cn(CCO)cn2)cn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc(N)nc2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999995231628418, 0.999998927116394, 0.9999984502792358, 0.9999959468841553, 0.9999940395355225, 0.9999869465827942, 0.999976396560669, 0.999773383140564, 0.9993128776550293] +CN(C)c1cc(-c2ccc(N)nc2)cnn1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(N)nc2)[nH]1; [None]; [None]; [0] +Nc1ccc(N2CCC(c3nc4ccccc4[nH]3)CC2)cn1; ['Nc1ccc(Br)cn1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9998695850372314] +CC(=O)N(C)c1ccc(-c2ccc(N)nc2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999992847442627, 0.9999983310699463, 0.9999966621398926, 0.999990701675415, 0.9999403953552246, 0.9391167163848877] +Nc1ccc(N2CC=C(c3c[nH]c4ccccc34)CC2)cn1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(Cl)cn1']; [0.9999269247055054, 0.9998201131820679, 0.9984822869300842, 0.9969016313552856] +CCOc1ccc(-c2ccc(N)nc2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCOc1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(Br)cc1', 'CCBr', 'CCOc1ccccc1']; ['Nc1ccc(Br)cn1', 'CCOc1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CCOc1ccc(I)cc1', 'Nc1ccc(I)cn1', 'CCOc1ccc(Cl)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(Br)cn1']; [0.9999994039535522, 0.999998927116394, 0.9999982118606567, 0.999997615814209, 0.9999920129776001, 0.9999876618385315, 0.9999854564666748, 0.9999749660491943, 0.9999711513519287, 0.9999467134475708, 0.9999399185180664, 0.9999189972877502, 0.999863862991333, 0.999839186668396, 0.9911769032478333, 0.9864241480827332, 0.8642829060554504] +Nc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)cn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc(N)nc2)CC1; [None]; [None]; [0] +COc1cc(-c2ccc(N)nc2)cc(OC)c1OC; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999934434890747, 0.9999892711639404, 0.9999809265136719, 0.9999619722366333, 0.9999172687530518, 0.9997224807739258, 0.9995207786560059, 0.9988918304443359, 0.9984712600708008, 0.9950445294380188, 0.9867134690284729] +CS(=O)(=O)c1cccc(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccccc1']; ['CS(=O)(=O)c1cccc(Br)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [1.0, 1.0, 0.9999997615814209, 0.9999993443489075, 0.9999992251396179, 0.9999987483024597, 0.9999948143959045, 0.9999926090240479, 0.9999923706054688, 0.9999644160270691, 0.9997950792312622, 0.9279845952987671] +Cc1ccc2ncn(-c3ccc(N)nc3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(I)cn1']; [0.9968754053115845, 0.9845600128173828, 0.9562568664550781, 0.9055002927780151] +COc1ccc(-c2ccc(N)nc2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', None, 'CI', 'COc1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'COc1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', None, 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(Br)cn1']; [0.9999979734420776, 0.9999949932098389, 0.999992847442627, 0.9999897480010986, 0.9999679327011108, 0.9999645948410034, 0.9999328255653381, 0.9998823404312134, 0.999813437461853, 0.9997366070747375, 0.9997023940086365, 0.9994940757751465, 0.9994734525680542, 0.9994322061538696, 0.9990110397338867, 0.9985141754150391, 0, 0.9935034513473511, 0.8965939283370972] +Cc1nc(C(C)(C)O)sc1-c1ccc(N)nc1; ['Cc1csc(C(C)(C)O)n1', 'Cc1csc(C(C)(C)O)n1']; ['Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9989944696426392, 0.9988061189651489] +N#Cc1ccc(O)c(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['N#Cc1ccc(O)c(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1']; [0.9999925494194031, 0.99998939037323, 0.9999375939369202, 0.9997944831848145, 0.9993622303009033, 0.9947232007980347, 0.9900751113891602] +Nc1ccc(-c2cccc(NC(=O)C3CC3)c2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999982118606567, 0.9999918937683105] +Nc1ccc(-c2nc3ccccc3[nH]2)cn1; [None, 'Clc1nc2ccccc2[nH]1', 'Nc1ccc(C(=O)O)cn1', 'Nc1ccc(C=O)cn1', 'CCOC(=O)c1ccc(N)nc1', 'Nc1ccc(C=O)cn1']; [None, 'Nc1ccc(B(O)O)cn1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'Nc1ccccc1N']; [0, 0.970212996006012, 0.9523583054542542, 0.9172942638397217, 0.911941409111023, 0.9010513424873352] +Cc1cc(Nc2ccc(N)nc2)sn1; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.999876856803894, 0.9997777342796326] +NC(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', None, None]; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'NC(=O)c1ccc(Br)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', None, None]; [0.9999967217445374, 0.9999942779541016, 0.9999909400939941, 0.9999746680259705, 0.9999709129333496, 0.9999122619628906, 0.9998263716697693, 0.9995021820068359, 0.9990898370742798, 0.9966939687728882, 0, 0] +Nc1ccc(-c2nccc3ccccc23)cn1; ['Brc1nccc2ccccc12', 'Ic1nccc2ccccc12', 'Brc1nccc2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1nccc2ccccc12', 'Nc1ccc(Br)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Clc1nccc2ccccc12', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1nccc2ccccc12']; [0.9999749064445496, 0.9999560117721558, 0.9997391700744629, 0.9994015693664551, 0.9992289543151855, 0.9881883263587952] +Nc1ccc(-c2ccc(C(=O)[O-])cc2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; ['O=C([O-])c1ccc(Cl)cc1', 'O=C([O-])c1ccc(Cl)cc1']; [0.989654004573822, 0.7941446304321289] +Nc1ccc(Nc2ncccn2)cn1; ['Fc1ncccn1', 'Brc1ncccn1', 'CSc1ncccn1', 'Clc1ncccn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CS(=O)(=O)c1ncccn1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ccc(N)nc1']; [0.9864035844802856, 0.9859105348587036, 0.9840155839920044, 0.9779273271560669, 0.9717665910720825, 0.9702704548835754, 0.9446060657501221] +N#Cc1cccc(Cn2cc(-c3ccc(N)nc3)cn2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc(N)nc3)cc2)CC1; [None]; [None]; [0] +Nc1ccc(-c2cccc(C3CCNCC3)c2)cn1; ['Brc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; [0.9999998807907104, 0.9999951720237732] +CC(=O)NCc1ccc(-c2ccc(N)nc2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999974966049194, 0.9999955892562866, 0.9999946355819702, 0.9999673366546631, 0.9999239444732666, 0.999904453754425] +Nc1ccc(-c2ccc(C(=O)Nc3ccccc3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1', 'COC(=O)c1ccc(-c2ccc(N)nc2)cc1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Nc1ccccc1', 'Nc1ccccc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999996423721313, 0.9999990463256836, 0.999998927116394, 0.9999979734420776, 0.9999874830245972, 0.9999864101409912, 0.9997378587722778, 0.9992989301681519, 0.9952864646911621, 0.9628616571426392] +Nc1ccc(-c2ccc(C(=O)N3CCOCC3)cn2)cn1; ['Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999961853027344, 0.9999954700469971, 0.9999391436576843] +Nc1ccc(-c2ccc(C(=O)N3CCOCC3)cc2)cn1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'C1COCCN1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Nc1ccc(I)cn1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Nc1ccc(Cl)cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999998807907104, 0.9999996423721313, 0.9999995231628418, 0.9999992251396179, 0.9999988079071045, 0.9999983906745911, 0.9999983310699463, 0.9999943971633911, 0.9999938011169434, 0.9999916553497314, 0.9999330043792725, 0.9999040365219116, 0.9998713135719299, 0.9936529994010925] +Nc1ccc(Nc2ccncn2)cn1; ['Nc1ccc(B(O)O)cn1', 'Clc1ccncn1', 'Nc1ccc(Br)cn1', 'Brc1ccncn1', 'Nc1ccc(I)cn1', 'Fc1ccncn1']; ['Nc1ccncn1', 'Nc1ccc(N)nc1', 'Nc1ccncn1', 'Nc1ccc(N)nc1', 'Nc1ccncn1', 'Nc1ccc(N)nc1']; [0.9997398257255554, 0.9981311559677124, 0.9916499853134155, 0.9792612195014954, 0.9745508432388306, 0.9216833114624023] +C[C@H](O)COc1ccc(-c2ccc(N)nc2)cc1; ['C[C@H](O)CCl', 'C[C@H](O)CO']; ['Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1']; [0.9825143814086914, 0.9173554182052612] +C[C@@H](O)COc1ccc(-c2ccc(N)nc2)cc1; ['Cc1ccc(S(=O)(=O)OC[C@@H](C)O)cc1', 'C[C@@H](O)CCl', 'C[C@@H](O)CO']; ['Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1']; [0.9918549060821533, 0.9825143814086914, 0.9173554182052612] +Nc1ccc(-c2ccc(OCCO)cc2)cn1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Cc1ccc(S(=O)(=O)OCCO)cc1', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(-c2ccc(F)cc2)cn1', 'Nc1ccc(-c2ccc(Cl)cc2)cn1']; ['Nc1ccc(Br)cn1', 'OCCOc1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Cl)cc1', 'OCCCl', 'OCCOc1ccc(I)cc1', 'OCCI', 'OCCBr', 'Nc1ccc(-c2ccc(O)cc2)cn1', 'OCCO', 'OCCOc1ccc(Br)cc1', 'OCCO', 'OCCO']; [0.999998152256012, 0.9999980926513672, 0.9999952912330627, 0.9999887943267822, 0.9999710321426392, 0.9999395608901978, 0.9998655319213867, 0.999833345413208, 0.9997916221618652, 0.9996551275253296, 0.9995819330215454, 0.9992173910140991, 0.9986549615859985, 0.9985427260398865, 0.9969882965087891, 0.9810187816619873, 0.9587339162826538, 0.88963383436203, 0.8431997299194336] +Nc1ccc(-c2ccc(C(F)(F)F)cc2)cn1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)c1ccc(Cl)cc1', 'Nc1ccc(Cl)cn1', 'FC(F)(F)c1ccc(I)cc1', 'Nc1ccc(B(O)O)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Br)cc1', None]; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'FC(F)(F)c1ccc(Br)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(Br)cn1', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', None]; [0.9999995231628418, 0.9999983310699463, 0.9999977350234985, 0.9999970197677612, 0.9999969005584717, 0.9999952912330627, 0.9999932050704956, 0.9999901056289673, 0.9999877214431763, 0.9999607801437378, 0.9999483823776245, 0.999941349029541, 0.9999309778213501, 0.9999251961708069, 0.9998989701271057, 0.9910874962806702, 0] +CN(C)c1ccc(-c2ccc(N)nc2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccccc1']; ['Nc1ccc(Br)cn1', 'CN(C)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999995827674866, 0.999998927116394, 0.9999985098838806, 0.9999979138374329, 0.9999958276748657, 0.9999929666519165, 0.9999867677688599, 0.9999854564666748, 0.9999772310256958, 0.9999756813049316, 0.999951958656311, 0.9999072551727295, 0.9997940063476562, 0.9996781945228577, 0.9846086502075195, 0.942557692527771] +Nc1ccc(-c2ccc3c(c2)CS(=O)(=O)C3)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999945163726807, 0.9999895095825195, 0.9960876703262329] +CS(=O)(=O)N1CCC(c2ccc(N)nc2)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Nc1ccc(Cl)cn1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999991655349731, 0.9999985694885254, 0.9999943971633911, 0.9999938011169434, 0.9999933242797852, 0.9999872446060181, 0.9999867677688599, 0.9999600648880005, 0.9999563694000244, 0.9998015761375427, 0.9746537208557129] +CCNS(=O)(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999894499778748, 0.9999263882637024, 0.9994373917579651, 0.999374270439148, 0.9993546009063721, 0.9982609748840332] +Nc1ccc(-c2ccc(Br)cc2)cn1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'Nc1ccc(I)cn1', 'Brc1ccc(Br)cc1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1ccc(Br)cc1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Clc1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1']; ['Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Clc1ccc(Br)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9999955296516418, 0.999976634979248, 0.9999748468399048, 0.9999743103981018, 0.9999305009841919, 0.9999173879623413, 0.9997773170471191, 0.9995020627975464, 0.9993643164634705, 0.9976494312286377, 0.9953902363777161, 0.9940311908721924, 0.9937844276428223, 0.989547610282898, 0.9841021299362183] +CC(C)c1cc(-c2ccc(N)nc2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1ccnc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999985098838806, 0.9999809265136719, 0.9998956918716431, 0.9996978044509888] +CC(=O)N1CCCN(c2cccc(-c3ccc(N)nc3)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(N)nc2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1ccc(Br)cn1', 'CN(C)c1ccc(Br)cc1Cl', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [1.0, 0.9999998211860657, 0.9999992847442627, 0.9999817609786987, 0.9973196983337402] +Nc1ccc(-c2ccn3nccc3n2)cn1; ['Ic1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1']; ['Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccn2nccc2n1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999995231628418, 0.9999989867210388, 0.9999973773956299, 0.9999971985816956, 0.9999960660934448] +CCCOc1ccc(-c2ccc(N)nc2)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1']; ['CCCOc1ccc(Br)nc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999987483024597, 0.9999876022338867, 0.999911904335022, 0.9985489845275879] +CCN(CC)C(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCNCC', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1', 'Nc1ccc(Br)cn1']; [1.0, 0.9999997019767761, 0.9999996423721313, 0.9999995231628418, 0.9999984502792358, 0.9999958276748657, 0.9999929666519165, 0.9999741315841675, 0.9999725818634033, 0.9998005628585815, 0.9997231960296631, 0.9591733813285828] +CNS(=O)(=O)c1ccc(-c2ccc(N)nc2)c(C)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999923706054688, 0.9999803304672241, 0.9999699592590332, 0.9999276399612427, 0.9999003410339355, 0.9993467926979065, 0.9980998039245605, 0.9965903759002686, 0.9760242700576782] +Nc1ccc([C@H]2CCN(C(=O)c3ccccc3)C2)cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O']; ['COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'COc1ccc(Cl)cc1Cl', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9999799728393555, 0.999976396560669, 0.9999228715896606, 0.9999061822891235, 0.9997920989990234, 0.9995468854904175, 0.9994691610336304, 0.9992606043815613, 0.9991182088851929, 0.9989871978759766, 0.9895296096801758, 0.9623098373413086, 0.9597077369689941] +Cc1c(C(=O)[O-])cccc1-c1ccc(N)nc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc(N)nc3)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['Nc1ccc(C=O)cn1']; [0.9997321367263794] +Nc1ccc(-c2ccccc2-n2cccn2)cn1; ['Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccccc1-n1cccn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Brc1ccccc1-n1cccn1', 'Nc1ccccn1', 'Nc1ccc(Br)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Clc1ccccc1-n1cccn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1', 'Nc1ccc(Br)cn1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1']; [0.9999921321868896, 0.9999554753303528, 0.9999253749847412, 0.999924898147583, 0.9999115467071533, 0.999440610408783, 0.9992620348930359, 0.9991588592529297, 0.9991058111190796, 0.999008059501648, 0.987546443939209, 0.9635108709335327, 0.9551377296447754, 0.9315332770347595, 0.8945257663726807] +Nc1ccc(-c2c[nH]c3ccccc23)cn1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Nc1ccc(I)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1c[nH]c2ccccc12']; [0.9996236562728882, 0.9991070032119751, 0.9989444613456726, 0.9976609945297241, 0.9959786534309387, 0.979706346988678, 0.9762604236602783, 0.9294078350067139, 0.9267109632492065, 0.8179956674575806] +Nc1ccc(-c2ccc3c(c2)CCO3)cn1; ['Brc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Ic1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'Nc1ccc(Cl)cn1', 'Brc1ccc2c(c1)CCO2']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Ic1ccc2c(c1)CCO2', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccc(Br)cn1']; [0.9999992847442627, 0.9999992251396179, 0.9999971389770508, 0.999997079372406, 0.9999958872795105, 0.9999923706054688, 0.9999915361404419, 0.9999808073043823, 0.999944806098938, 0.9998941421508789, 0.9997704029083252, 0.9997475147247314] +COc1cc(OC)c(-c2ccc(N)nc2)cc1Cl; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Br)cc1Cl', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999872446060181, 0.9991270899772644, 0.9335303902626038] +COc1cc(-c2ccc(N)nc2)ccc1O; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(Br)ccc1O', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999943971633911, 0.9999889731407166, 0.9999592900276184, 0.9999431371688843, 0.9999145269393921, 0.9996013641357422, 0.9993864297866821] +Nc1ccc(-c2cccc3c2OCO3)cn1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Brc1cccc2c1OCO2', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Ic1cccc2c1OCO2', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1ccc(Br)cn1', 'OB(O)c1cccc2c1OCO2', 'c1ccc2c(c1)OCO2']; [0.9999884366989136, 0.9999781847000122, 0.9999573230743408, 0.999919593334198, 0.9998241662979126, 0.999683678150177, 0.9992421269416809, 0.9992213249206543, 0.9761146306991577, 0.9571682214736938, 0.8504363298416138] +Nc1ccc(-c2cnc3ccccc3c2)cn1; ['Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Ic1cnc2ccccc2c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Clc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Nc1ccc(Br)cn1', 'Ic1cnc2ccccc2c1', 'Nc1ccc(Cl)cn1', 'Brc1cnc2ccccc2c1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Clc1cnc2ccccc2c1', 'Nc1ccc(I)cn1', 'Ic1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ccc(Br)cn1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ccc(Br)cn1']; [0.9999905228614807, 0.9999850988388062, 0.9999757409095764, 0.9999678134918213, 0.9999607801437378, 0.9999378323554993, 0.9998053908348083, 0.9997836351394653, 0.9997397065162659, 0.9994218349456787, 0.9990385174751282, 0.9988244771957397, 0.9986500144004822, 0.9892176985740662, 0.9455080032348633] +CN(C)C(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CNC']; ['Nc1ccc(Br)cn1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'CN(C)C(=O)c1ccc(I)cc1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1']; [1.0, 0.9999998211860657, 0.9999997019767761, 0.9999992847442627, 0.9999982714653015, 0.9999959468841553, 0.999995231628418, 0.9999927282333374, 0.9999734163284302, 0.9998525381088257, 0.9990049600601196] +Nc1ccc(-c2cc(-c3ccccc3)[nH]n2)cn1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(-c2scc3c2OCCO3)cn1; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'c1scc2c1OCCO2']; [0.9999880194664001, 0.9999868273735046, 0.9999775290489197] +COc1cccc(C(=O)Nc2ccc(N)nc2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; [0.9995925426483154, 0.99856036901474] +CC1(COc2ccc(N)nc2)COC1; ['CC1(CI)COC1', 'CC1(CBr)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CCl)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(O)cn1', 'Nc1ccc(F)cn1']; [0.9991176724433899, 0.9981657266616821, 0.9947386384010315, 0.9907168745994568, 0.9547954201698303, 0.9479341506958008] +Nc1ccc(-c2cc3ccccc3s2)cn1; ['Brc1cc2ccccc2s1', 'Brc1cc2ccccc2s1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Ic1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9999756813049316, 0.999968409538269, 0.9999655485153198, 0.9997413158416748, 0.9997345209121704, 0.9996650218963623, 0.9987711906433105, 0.9547473192214966] +CSc1ccc(-c2ccc(N)nc2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CSc1ccc(I)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Cl)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CSc1ccc(Br)cc1', 'Nc1ccc(Cl)cn1', 'CSc1ccc(I)cc1', 'Nc1ccc(B(O)O)cn1', 'CSc1ccc(Cl)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999948740005493, 0.9999850988388062, 0.9999808669090271, 0.9999774694442749, 0.9999474287033081, 0.9998732805252075, 0.9998631477355957, 0.9998131990432739, 0.9993070363998413, 0.9992740154266357, 0.9984614849090576, 0.9979260563850403, 0.9929093718528748, 0.9923771023750305] +CC(C)(C)c1ccc(-c2ccc(N)nc2)cn1; ['CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999948740005493, 0.9999948740005493, 0.9999903440475464, 0.9999525547027588, 0.999910295009613, 0.9998523592948914, 0.9995352029800415, 0.9995352029800415, 0.9966182708740234, 0.9817869663238525] +CCN1CCN(Cc2ccc(-c3ccc(N)nc3)cc2)CC1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.999992847442627, 0.9999878406524658, 0.9999591112136841, 0.999884843826294, 0.9998644590377808, 0.9991670846939087, 0.8895713090896606] +Nc1ccc(-c2ccn(-c3cccc(Cl)c3)n2)cn1; [None]; [None]; [0] +Cc1cc(-c2ccc(N)nc2)nc(N)n1; ['Cc1cc(Br)nc(N)n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1cc(Cl)nc(N)n1', 'Cc1ccnc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Cc1cc(Br)nc(N)n1']; ['Nc1ccc(B(O)O)cn1', 'Cc1cc(Cl)nc(N)n1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999973177909851, 0.9999954700469971, 0.9999876022338867, 0.999847412109375, 0.9995084404945374, 0.9983352422714233] +Nc1ccc(-c2ccc3c(c2)CCC(=O)N3)cn1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999878406524658, 0.9999828338623047, 0.9999780654907227, 0.9999513626098633, 0.9998810291290283, 0.9998729825019836, 0.999842643737793, 0.9997926354408264, 0.9995542764663696, 0.9974982738494873, 0.9917566776275635] +Nc1ccc(-c2ncc(Br)cn2)cn1; ['Brc1cnc(I)nc1', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ncc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999474287033081, 0.9998527765274048, 0.9993189573287964, 0.9979844093322754, 0.9967694878578186, 0.9958221912384033] +Nc1ccc(-c2ccc(F)cc2Cl)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Fc1ccc(Cl)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Nc1ccc(Cl)cn1', 'Fc1cccc(Cl)c1']; ['Fc1ccc(Br)c(Cl)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Fc1ccc(I)c(Cl)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ccc(Br)cn1']; [0.9999980926513672, 0.9999974966049194, 0.9999966621398926, 0.9999856948852539, 0.999981164932251, 0.9999806880950928, 0.9999528527259827, 0.9998980164527893, 0.9998074769973755, 0.9995028972625732, 0.9979736804962158, 0.9943069219589233, 0.9941673278808594, 0.9097033739089966] +COc1ccc(-c2ccc(N)nc2)cc1OC; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Br)cc1OC']; ['COc1ccc(Br)cc1OC', 'Nc1ccc(Br)cn1', 'COc1ccc(I)cc1OC', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'COc1ccc(Cl)cc1OC', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999983310699463, 0.9999967813491821, 0.999991774559021, 0.9999852180480957, 0.999972403049469, 0.9999535083770752, 0.9999074935913086, 0.9999049305915833, 0.9998525977134705, 0.9997822046279907, 0.9995609521865845, 0.9986358880996704, 0.9918351173400879] +COc1ccc(CNc2ccc(N)nc2)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(I)cn1', 'Nc1ccc(N)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1']; [0.9994351863861084, 0.997562825679779, 0.9950047135353088, 0.9696294069290161, 0.9633516073226929, 0.9115651845932007, 0.8561105728149414] +CCc1ccc(-c2ccc(N)nc2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCc1ccc(I)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1']; ['Nc1ccc(Br)cn1', 'CCc1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'CCc1ccc(I)cc1', 'Nc1ccc(B(O)O)cn1', 'CCc1ccc(Cl)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999980926513672, 0.9999948740005493, 0.9999939203262329, 0.999989926815033, 0.9999858736991882, 0.9999337196350098, 0.9999269247055054, 0.9999129772186279, 0.9998014569282532, 0.9997622966766357, 0.9989914298057556, 0.9985084533691406, 0.9952960014343262, 0.8208900690078735] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc(N)nc2)cc1; ['C[C@H]1CCCN1']; ['Nc1ccc(-c2ccc(C(=O)O)cc2)cn1']; [0.9999734163284302] +COc1cc(-c2ccc(N)nc2)ccc1N1CCOCC1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['COc1cc(Br)ccc1N1CCOCC1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [1.0, 0.9999986886978149, 0.9999980330467224, 0.9999929070472717] +Nc1ccc(-c2ccc(Cl)cc2Cl)cn1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'Nc1ccc(Cl)cn1', 'Clc1ccc(Br)c(Cl)c1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccc(Br)cn1']; [0.9999847412109375, 0.999983012676239, 0.9999792575836182, 0.9999291896820068, 0.999871015548706, 0.9998466372489929, 0.9997934103012085, 0.999740719795227, 0.998960018157959, 0.9980161190032959, 0.99396812915802, 0.9806272983551025, 0.9753677845001221, 0.9601407051086426] +Nc1ccc(NC2CN(C(=O)C3CC3)C2)cn1; [None]; [None]; [0] +Nc1ccc(-c2cc3ccccn3n2)cn1; ['Brc1cc2ccccn2n1', 'Brc1cc2ccccn2n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cc2ccccn2n1']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'Clc1cc2ccccn2n1', 'Nc1ccc(B(O)O)cn1']; [0.9999991655349731, 0.9999949932098389, 0.9999944567680359, 0.999993622303009] +CC1(C)Cc2cc(-c3ccc(N)nc3)ccc2O1; [None]; [None]; [0] +Nc1ccc(-c2ncc3cccn3n2)cn1; ['Clc1ncc2cccn2n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C']; ['Nc1ccc(B(O)O)cn1', 'Clc1ncc2cccn2n1']; [0.999863862991333, 0.9997931718826294] +Cn1cc(-c2ccc(N)nc2)c(C(F)(F)F)n1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Cn1cc(I)c(C(F)(F)F)n1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999978542327881, 0.9999970197677612, 0.9999969601631165, 0.9999966621398926, 0.9999949932098389, 0.9999898672103882, 0.9999829530715942, 0.9999777674674988, 0.9999724626541138, 0.9999604225158691, 0.9999573230743408, 0.9999386668205261, 0.9997246265411377, 0.998630166053772, 0.9964132308959961] +Nc1ccc(-c2cccc3ccc(O)cc23)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Nc1ccc(B(O)O)cn1']; ['Oc1ccc2cccc(Br)c2c1', 'Nc1ccc(Br)cn1', 'Oc1ccc2cccc(I)c2c1', 'Nc1ccc(I)cn1', 'Oc1ccc2cccc(Br)c2c1']; [0.9999963045120239, 0.9999865293502808, 0.9999700784683228, 0.9999432563781738, 0.9998111128807068] +COc1ccc2cccc(-c3ccc(N)nc3)c2c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['COc1ccc2cccc(Br)c2c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999992847442627, 0.9999473094940186, 0.990201473236084] +COc1cc(F)c(-c2ccc(N)nc2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1ccc(F)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'COc1cc(F)c(Br)cc1OC', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999938011169434, 0.9999858140945435, 0.9999516010284424, 0.9999352693557739, 0.9998586773872375, 0.9997720718383789, 0.999457836151123, 0.9966261386871338, 0.9169762134552002, 0.8883827924728394] +COc1cc(-c2ccc(N)nc2)ccc1Cl; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'Nc1ccc(Br)cn1', 'COc1cc(I)ccc1Cl', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1']; [1.0, 0.9999997615814209, 0.9999997019767761, 0.9999990463256836, 0.9999980926513672, 0.9999945163726807, 0.9999916553497314, 0.9999901652336121, 0.9999822974205017, 0.9997676610946655, 0.9991974830627441, 0.9975264072418213] +Cc1csc2c(-c3ccc(N)nc3)ncnc12; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1csc2c(Cl)ncnc12']; ['Cc1csc2c(Cl)ncnc12', 'Nc1ccc(B(O)O)cn1']; [0.9999150633811951, 0.9998651742935181] +Nc1ccc(-c2ncc(Cl)cn2)cn1; ['Clc1cnc(I)nc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'CSc1ncc(Cl)cn1']; ['Nc1ccc(B(O)O)cn1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9998259544372559, 0.9998039603233337, 0.9994749426841736, 0.9992718696594238, 0.9979763031005859, 0.972441554069519] +Cc1cc(Nc2ccc(N)nc2)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C']; ['Nc1ccc(I)cn1', 'Nc1ccc(N)nc1']; [0.9974726438522339, 0.9929307699203491] +Cc1nc(Nc2ccc(N)nc2)sc1C; ['Cc1nc(N)sc1C', 'Cc1nc(N)sc1C']; ['Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999552965164185, 0.9998680949211121] +CNC(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CN', 'CNC(=O)c1ccc(B(O)O)cc1', None, 'CNC(=O)c1ccc(Cl)cc1', 'CCOC(=O)c1ccc(-c2ccc(N)nc2)cc1', 'CN']; ['Nc1ccc(Br)cn1', 'CNC(=O)c1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'CNC(=O)c1ccc(I)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1', 'Nc1ccc(Cl)cn1', None, 'Nc1ccc(B(O)O)cn1', 'CN', 'COC(=O)c1ccc(-c2ccc(N)nc2)cc1']; [0.9999996423721313, 0.9999992847442627, 0.9999986886978149, 0.9999967217445374, 0.999991774559021, 0.9999741315841675, 0.9999630451202393, 0.999893844127655, 0.9998476505279541, 0.9998347759246826, 0, 0.9994931221008301, 0.9987705945968628, 0.9984822273254395] +CCNC(=O)c1ccc(-c2ccc(N)nc2)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNC(=O)c1ccc(Br)nc1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNC(=O)c1ccc(Cl)nc1']; ['CCNC(=O)c1ccc(Br)nc1', 'Nc1ccc(B(O)O)cn1', 'CCNC(=O)c1ccc(Cl)nc1', 'Nc1ccc(B(O)O)cn1']; [0.9999970197677612, 0.9999886751174927, 0.9996594190597534, 0.9994694590568542] +COc1cc(-c2ccc(N)nc2)c(OC)cc1Br; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(I)c(OC)cc1Br', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['COc1cc(I)c(OC)cc1Br', 'Nc1ccc(B(O)O)cn1', 'COc1cc(Br)c(OC)cc1Br', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1']; [0.9999748468399048, 0.9999521970748901, 0.9982606172561646, 0.9976975917816162, 0.9946204423904419, 0.9790874123573303, 0.9579616785049438, 0.9353260397911072, 0.7913463115692139] +Nc1ccc(-c2cc(N)nc3[nH]ccc23)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1']; [0.9999933242797852, 0.9999080896377563, 0.9999030232429504, 0.998782753944397] +CCNC(=O)N1CCC(c2ccc(N)nc2)CC1; [None]; [None]; [0] +Nc1ccc(NC(=O)c2ccco2)cn1; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'NC(=O)c1ccco1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1', 'Nc1ccc(Br)cn1']; [0.9956910610198975, 0.9803895354270935, 0.8700692653656006] +NC(=O)c1ccc(Cc2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'NC(=O)c1ccc(CCl)cc1']; ['NC(=O)c1ccc(CBr)cc1', 'Nc1ccc(Br)cn1']; [0.9989907741546631, 0.9978796243667603] +COc1cc(OC)cc(-c2ccc(N)nc2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; ['Nc1ccc(Br)cn1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'Nc1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.9999985694885254, 0.9999972581863403, 0.9999948740005493, 0.9999877214431763, 0.999983549118042, 0.9999659061431885, 0.9999562501907349, 0.9999424815177917, 0.9999291896820068, 0.9999203681945801, 0.9999175667762756, 0.9999059438705444, 0.9994044303894043, 0.9993389844894409, 0.9977958798408508, 0.9854521751403809] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc(N)nc1; [None]; [None]; [0] +Nc1ccc(Cc2ccc(S(=O)(=O)CCO)cc2)cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc(N)nc1)cn2C; ['COc1ccc2c(ccn2C)c1', 'COc1ccc2c(ccn2C)c1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9983804225921631, 0.9965949058532715] +CC(C)(C)c1ccc(C(=O)Nc2ccc(N)nc2)cc1; ['CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; [0.9996540546417236, 0.9993294477462769] +Nc1ccc(-c2ccc3cn[nH]c3c2)cn1; ['Ic1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Ic1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Ic1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccc(Br)cn1', 'Clc1ccc2cn[nH]c2c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999940395355225, 0.99998939037323, 0.9999872446060181, 0.9999870657920837, 0.9999804496765137, 0.9999717473983765, 0.9999715089797974, 0.9999424815177917, 0.9999356269836426, 0.9998839497566223, 0.9997341632843018, 0.9996922016143799, 0.9995947480201721, 0.9991775751113892, 0.9889006614685059] +CO[C@@H]1CC[C@@H](c2ccc(N)nc2)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3ccc(N)nc3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1']; ['Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999603033065796, 0.9999368786811829] +Nc1ccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999966621398926, 0.9999657869338989, 0.9532877802848816] +Nc1ccc(-c2cc(-c3cccnc3)ccn2)cn1; [None]; [None]; [0] +Nc1ccc(-c2cc3ccccc3o2)cn1; ['Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9999049305915833, 0.9997643232345581] +Nc1ccc(-c2ncc3sccc3n2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Clc1ncc2sccc2n1']; ['Clc1ncc2sccc2n1', 'Nc1ccc(B(O)O)cn1']; [0.9999362230300903, 0.9996631145477295] +CC(C)c1nn(C)cc1-c1ccc(N)nc1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1']; [0.9999970197677612, 0.9999929666519165, 0.9999915361404419, 0.999988853931427, 0.9999587535858154, 0.9998940229415894, 0.9998413324356079, 0.94899582862854, 0.9297351241111755] +C[NH+](C)Cc1ccc(-c2ccc(N)nc2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc(N)nc2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Nc1ccc(N)nc1']; [0.9997900724411011] +COc1ccc2nc(-c3ccc(N)nc3)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c([N+](=O)[O-])c1']; ['Nc1ccc(C(=O)O)cn1', 'Nc1ccc(C=O)cn1', 'Nc1ccc(C=O)cn1']; [0.9965446591377258, 0.9943637847900391, 0.9826666116714478] +Nc1ccc(-c2cccc(NC(=O)N3CCCC3)c2)cn1; [None]; [None]; [0] +Nc1ccc(-c2ccc(OC(F)(F)F)cc2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'FC(F)(F)Oc1ccc(I)cc1', 'Nc1ccc(Br)cn1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', None, 'Nc1ccc(Cl)cn1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', None]; ['FC(F)(F)Oc1ccc(Br)cc1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Nc1ccc(B(O)O)cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', None, 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', None]; [1.0, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999992847442627, 0.999998927116394, 0.9999972581863403, 0.9999957084655762, 0.9999884963035583, 0, 0.9999816417694092, 0.9999758005142212, 0.999849796295166, 0] +Nc1ccc(-c2ncn3c2CCCC3)cn1; [None]; [None]; [0] +CCc1cccc(-c2ccc(N)nc2)n1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCc1cccc(Br)n1', 'CCc1cccc(Br)n1']; ['CCc1cccc(Br)n1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999959468841553, 0.9999468326568604, 0.8940754532814026] +Cn1cc(Br)cc1-c1ccc(N)nc1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc(N)nc3)ccc12; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Cc1n[nH]c2cc(Br)ccc12', 'Nc1ccc(Br)cn1', 'Cc1n[nH]c2cc(I)ccc12', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999997615814209, 0.9999997019767761, 0.9999994039535522, 0.9999988079071045, 0.9999985694885254, 0.9999979734420776, 0.9999977946281433, 0.9999970197677612, 0.9999966621398926, 0.9999966621398926, 0.9996517896652222] +CN(C)c1ccc(-c2ccc(N)nc2)cn1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1']; ['CN(C)c1ccc(Br)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'CN(C)c1ccc(I)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Br)cn1']; [0.999984622001648, 0.999984622001648, 0.999978244304657, 0.999978244304657, 0.9999066591262817, 0.9999066591262817, 0.9995205402374268, 0.9995205402374268, 0.9985907077789307, 0.9985907077789307, 0.997435450553894, 0.997435450553894, 0.9166558980941772] +CC(=O)N1CCC(n2cc(-c3ccc(N)nc3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9999985694885254, 0.9999967217445374] +Nc1ccc(-c2cccc(N3CCCC3=O)c2)cn1; ['Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1ccc(Br)cn1']; ['O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1', 'Nc1ccc(Br)cn1', 'O=C1CCCN1c1cccc(Cl)c1', 'O=C1CCCN1c1cccc(Cl)c1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999943971633911, 0.9999921321868896, 0.999964714050293, 0.999954342842102, 0.9999300241470337, 0.9999136924743652, 0.9998850226402283, 0.9872845411300659] +CC(C)(O)c1ccc2cc(-c3ccc(N)nc3)[nH]c2c1; [None]; [None]; [0] +Nc1ccc(NC(=O)c2cccc(OC(F)(F)F)c2)cn1; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999819993972778, 0.9998660087585449] +Cn1nc(Cl)c2cc(-c3ccc(N)nc3)ccc21; [None]; [None]; [0] +Nc1ccc(-c2ccc(CCO)cc2)cn1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; ['Nc1ccc(Br)cn1', 'OCCc1ccc(Br)cc1', 'Nc1ccc(I)cn1', 'Nc1ccc(Cl)cn1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(Br)cc1']; [0.9999969005584717, 0.9999936819076538, 0.9999912977218628, 0.9999796748161316, 0.9999761581420898, 0.9999223947525024, 0.9999023675918579, 0.9998666048049927, 0.9996906518936157, 0.9991707801818848, 0.9991648197174072, 0.9952114224433899, 0.8250493407249451] +Cc1cc(-c2ccc(N)nc2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc(N)nc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(N)nc2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc(N)nc3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc(N)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(N)nc2)c(OC)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Br)cn1']; [0.9999979734420776, 0.9999958276748657, 0.9999905824661255, 0.9999710917472839, 0.9998937845230103, 0.9396191835403442] +COc1cc(S(C)(=O)=O)ccc1-c1ccc(N)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999977946281433, 0.9999468326568604, 0.9632745981216431] +CCNC(=O)c1ccc(-c2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCN', 'CCN']; ['CCNC(=O)c1ccc(Br)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(-c2ccc(C(=O)O)cc2)cn1', 'COC(=O)c1ccc(-c2ccc(N)nc2)cc1']; [0.9999985694885254, 0.9999858140945435, 0.9999830722808838, 0.9999558925628662, 0.999914288520813, 0.9998950362205505, 0.9997962713241577, 0.9987322092056274] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc(N)nc1; [None]; [None]; [0] +Cc1cc(Nc2ccc(N)nc2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(Br)cn1', 'Nc1ccc(I)cn1']; [0.9997379779815674, 0.9996172785758972, 0.9973982572555542, 0.9881584644317627] +CN(C)C(=O)c1ccc(-c2ccc(N)nc2)nc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999980330467224, 0.9999568462371826, 0.9999271631240845, 0.9996282458305359, 0.96751868724823] +CCNC(=O)Cc1ccc(-c2ccc(N)nc2)cc1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999985694885254, 0.9999438524246216, 0.9720327258110046] +Nc1ccc(Nc2ccccn2)cn1; ['Brc1ccccn1', 'Clc1ccccn1', 'Nc1ccc(I)cn1', 'Nc1ccc(Br)cn1', 'Fc1ccccn1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccc(N)nc1']; [0.990397572517395, 0.9525889158248901, 0.9283058643341064, 0.9190627336502075, 0.8681883811950684] +Nc1ccc(Nc2ccc(F)cn2)cn1; ['Fc1ccc(Br)nc1', 'Fc1ccc(Cl)nc1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1', 'Nc1ccc(F)cn1', 'Fc1ccc(F)nc1']; ['Nc1ccc(N)nc1', 'Nc1ccc(N)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(I)cn1', 'Nc1ccc(N)nc1']; [0.998775839805603, 0.997256875038147, 0.9947748184204102, 0.9917905330657959, 0.9763046503067017, 0.9006361961364746] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc(N)nc2)c1; ['CC1(C)OB(c2ccc(N)nc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(B(O)O)cn1', 'Nc1ccc(Br)cn1']; [0.9999979734420776, 0.9999107718467712, 0.9924163222312927, 0.8772144913673401] +Cn1nc(-c2ccc(N)nc2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc(N)nc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc(N)nc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3cccc(C(N)=O)c3[nH]2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccccc3OC(F)(F)F)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12']; ['OB(O)c1ccccc1OC(F)(F)F']; [0.9746177196502686] +NC(=O)c1cccc2cc(-c3ccnc4ccccc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Cc3cc(F)cc(F)c3)[nH]c12; [None]; [None]; [0] +CCn1cc(-c2cc3cccc(C(N)=O)c3[nH]2)cn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; ['NC(=O)c1cccc2cc[nH]c12']; ['NC(=O)c1ccccc1B(O)O']; [0.824085533618927] +NC(=O)c1cccc2cc(-c3cccc(C(F)(F)F)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccccc3C(=O)[O-])[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnn(Cc4ccccc4)c3)[nH]c12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2c1=O; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnc(-c4ccccc4)[nH]3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc(Cl)ccc3Cl)[nH]c12; ['Clc1ccc(Cl)c(I)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9522770643234253] +CC(C)(C)c1nc(-c2cc3cccc(C(N)=O)c3[nH]2)cs1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3ncc4cccc(F)c4c3=O)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnn(CCO)c3)[nH]c12; [None]; [None]; [0] +COc1cnc(-c2cc3cccc(C(N)=O)c3[nH]2)nc1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)c(Br)c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3cccc(C(N)=O)c3[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnc4ccccn34)[nH]c12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3cccc(C(N)=O)c3[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnc4cccnn34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(Br)c3)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12']; ['OB(O)c1cccc(Br)c1']; [0.9952294826507568] +NC(=O)c1cccc2cc(-c3c(Cl)cccc3Cl)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(Cn4cncn4)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NCc3cccnc3)[nH]c12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +Cc1c(-c2cc3cccc(C(N)=O)c3[nH]2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnn4ncccc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccnc(N)n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4ccccc4c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3cccnc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3cnc4ccccc43)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NC(=O)c3cccs3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(CC(=O)[O-])c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cncc4ccccc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NCCc3c[nH]cn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3c[nH]nc3C(F)(F)F)[nH]c12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2)cn1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4c(N)[nH]nc4c3)[nH]c12; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4cccc(C(N)=O)c4[nH]3)ccc21; ['Cn1ncc2cc(I)ccc21']; ['NC(=O)c1cccc2cc[nH]c12']; [0.8598133325576782] +NC(=O)c1cccc2cc(NCCc3ccccc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(O)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(-c4cn[nH]c4)cc3)[nH]c12; [None]; [None]; [0] +CN1c2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cc3cccc(C(N)=O)c3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(CO)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NCc3ccc(Cl)cc3)[nH]c12; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cc3cccc(C(N)=O)c3[nH]2)nn1; [None]; [None]; [0] +NC(=O)c1cccc2cc(NCc3ccccc3F)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3ccncc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(CCc3c[nH]nn3)[nH]c12; [None]; [None]; [0] +CSc1nc(-c2cc3cccc(C(N)=O)c3[nH]2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; ['N#CCCc1cccc(B(O)O)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9917253255844116] +NC(=O)c1cccc2cc(-c3csc4ncncc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4ccccc4[nH]3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3csc(N)n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(F)cc3C(F)(F)F)[nH]c12; ['Fc1ccc(I)c(C(F)(F)F)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9746026992797852] +NC(=O)c1cccc2cc(-c3cncnc3N)[nH]c12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2s1; [None]; [None]; [0] +NC(=O)CCCc1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(Oc3ccccn3)[nH]c12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(NC(=O)c3c(Cl)cccc3Cl)[nH]c12; [None]; [None]; [0] +CC(C)(COc1cc2cccc(C(N)=O)c2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1Cl; ['COc1ccc(B(O)O)cc1Cl']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9555395245552063] +CS(=O)(=O)C1CCN(c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +Cn1cc(-c2cc3cccc(C(N)=O)c3[nH]2)c2ccccc21; [None]; [None]; [0] +CCCn1cc(-c2cc3cccc(C(N)=O)c3[nH]2)cn1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnn4ccccc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc[nH]c(=O)c3)[nH]c12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc4c3C(=O)CC4)[nH]c12; [None]; [None]; [0] +COc1cc(CCc2cc3cccc(C(N)=O)c3[nH]2)cc(OC)c1; [None]; [None]; [0] +C[C@@H](Oc1cc2cccc(C(N)=O)c2[nH]1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CCN(CC)c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4c(=O)[nH]ccc4o3)[nH]c12; [None]; [None]; [0] +COc1ccncc1Nc1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4c(=O)[nH]cc(Br)c4s3)[nH]c12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['NC(=O)c1cccc2cc[nH]c12', 'NC(=O)c1cccc2cc[nH]c12']; [0.9998694658279419, 0.833916187286377] +NC(=O)c1cccc2cc(Nc3cnccc3-c3ccccc3)[nH]c12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnc4[nH]ccc4c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3c[nH]c4cnccc34)[nH]c12; [None]; [None]; [0] +CC1(c2cc3cccc(C(N)=O)c3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3cnc4ccccc4c3)[nH]c12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CN(c1cc2cccc(C(N)=O)c2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(N4CCOCC4)cc3)[nH]c12; [None]; [None]; [0] +C[C@H](Nc1cc2cccc(C(N)=O)c2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3ccc(CO)n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3c(F)cccc3Cl)[nH]c12; ['Fc1cccc(Cl)c1I']; ['NC(=O)c1cccc2cc[nH]c12']; [0.8130050897598267] +C[C@H](Nc1cc2cccc(C(N)=O)c2[nH]1)C(C)(C)O; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3cnc(CCO)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3ncc4ccccc43)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(-n4cncn4)cc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-n3ncc4c(O)cccc43)[nH]c12; [None]; [None]; [0] +C[C@@H](Nc1cc2cccc(C(N)=O)c2[nH]1)C(C)(C)O; [None]; [None]; [0] +COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9517619609832764] +NC(=O)c1cccc2cc(-c3nc4ccc(O)cc4[nH]3)[nH]c12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3cccc(C(N)=O)c3[nH]2)[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(=O)c4ccccc4)cc3)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9991042017936707] +CC(C)n1cnnc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nncn3C3CC3)[nH]c12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(CCC(=O)NCc3ccccn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccn(CC[NH3+])n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Cc3nnc4ccc(-c5ccccc5)nn34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(CS(=O)(=O)NCc3ccccn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nnc(N)s3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cn(Cc4ccccc4)nn3)[nH]c12; [None]; [None]; [0] +CCc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(Oc3ccc(C[NH3+])cc3F)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nc4ccccc4s3)[nH]c12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4cccc(C(N)=O)c4[nH]3)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)nc2NC1=O; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc4ccsc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cncc(N)n3)[nH]c12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3cccc(C(N)=O)c3[nH]2)[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc4nnsc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nc(N)c4ccccc4n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc4ccccc4n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3c[nH]c4cccnc34)[nH]c12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2cccc(C(N)=O)c2[nH]1; ['COc1ccc(C#N)cc1B(O)O']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9718329906463623] +NC(=O)c1cccc2cc(-c3cn(CCO)cn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc4cc[nH]c4n3)[nH]c12; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; ['COc1ccc(OC)c(B(O)O)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9760820269584656] +COc1ccc(Oc2cc3cccc(C(N)=O)c3[nH]2)c(F)c1F; [None]; [None]; [0] +COc1ncccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(N3CCC(c4nc5ccccc5[nH]4)CC3)[nH]c12; [None]; [None]; [0] +CN(C)c1cc(-c2cc3cccc(C(N)=O)c3[nH]2)cnn1; [None]; [None]; [0] +CCOc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; ['CCOc1ccc(B(O)O)cc1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9998530149459839] +CN(C)S(=O)(=O)c1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(N3CC=C(c4c[nH]c5ccccc45)CC3)[nH]c12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(NC(=O)C4CCNCC4)c3)[nH]c12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC']; ['NC(=O)c1cccc2cc[nH]c12']; [0.8219327926635742] +COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; ['COc1ccc(B(O)O)cc1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9995684623718262] +Cc1nc(C(C)(C)O)sc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc4cccc(C(N)=O)c4[nH]3)c2c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(NC(=O)C4CC4)c3)[nH]c12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(=O)[O-])cc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nc4ccccc4[nH]3)[nH]c12; [None]; [None]; [0] +Cc1cc(Nc2cc3cccc(C(N)=O)c3[nH]2)sn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(=O)Nc4ccccc4)cc3)[nH]c12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4cccc(C(N)=O)c4[nH]3)cn2)c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(OCCO)cc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3ncccn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3nccc4ccccc34)[nH]c12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(=O)N4CCOCC4)cc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3ccncn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(=O)N4CCOCC4)cn3)[nH]c12; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(C4CCNCC4)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(C(F)(F)F)cc3)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12', 'FC(F)(F)c1ccc(I)cc1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'NC(=O)c1cccc2cc[nH]c12']; [0.9999642372131348, 0.9298263788223267] +CN(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4c(c3)CS(=O)(=O)C4)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc([C@H]3CCN(C(=O)c4ccccc4)C3)[nH]c12; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cc3cccc(C(N)=O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(Br)cc3)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12']; ['OB(O)c1ccc(Br)cc1']; [0.9971703290939331] +CCNS(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4cccc(C(N)=O)c4[nH]3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccn4nccc4n3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3c[nH]c4ccccc34)[nH]c12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)c(C)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2cccc(C(N)=O)c2[nH]1; ['COc1ccc(Cl)cc1B(O)O']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9697551131248474] +CCN(CC)C(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4c(c3)CCO4)[nH]c12; ['NC(=O)c1cccc2cc[nH]c12']; ['OB(O)c1ccc2c(c1)CCO2']; [0.992857038974762] +COc1cc(OC)c(-c2cc3cccc(C(N)=O)c3[nH]2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccccc3-n3cccn3)[nH]c12; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc(-c4ccccc4)[nH]n3)[nH]c12; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)ccc1O; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc4cccc(C(N)=O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cnc4ccccc4c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc4c3OCO4)[nH]c12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cn1; ['CC(C)(C)c1ccc(B(O)O)cn1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9951024055480957] +NC(=O)c1cccc2cc(-c3scc4c3OCCO4)[nH]c12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccn(-c4cccc(Cl)c4)n3)[nH]c12; [None]; [None]; [0] +CC1(COc2cc3cccc(C(N)=O)c3[nH]2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4ccccc4s3)[nH]c12; [None]; [None]; [0] +CSc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(F)cc3Cl)[nH]c12; ['Fc1ccc(I)c(Cl)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.8190150260925293] +Cc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2)CC1; [None]; [None]; [0] +COc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1OC; ['COc1ccc(B(O)O)cc1OC']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9525701999664307] +CCc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; ['CCc1ccc(B(O)O)cc1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9961729645729065] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc(Br)cn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4c(c3)CCC(=O)N4)[nH]c12; [None]; [None]; [0] +COc1ccc(CNc2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(Cl)cc3Cl)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NC3CN(C(=O)C4CC4)C3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc4cccn4n3)[nH]c12; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc4ccc(O)cc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4ccccn4n3)[nH]c12; [None]; [None]; [0] +Cn1cc(-c2cc3cccc(C(N)=O)c3[nH]2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4cccc(C(N)=O)c4[nH]3)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc4cccc(C(N)=O)c4[nH]3)ccc2O1; [None]; [None]; [0] +COc1cc(F)c(-c2cc3cccc(C(N)=O)c3[nH]2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)ccc1Cl; [None]; [None]; [0] +Cc1csc2c(-c3cc4cccc(C(N)=O)c4[nH]3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cc3cccc(C(N)=O)c3[nH]2)sc1C; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc(N)nc4[nH]ccc34)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc(Cl)cn3)[nH]c12; [None]; [None]; [0] +Cc1cc(Nc2cc3cccc(C(N)=O)c3[nH]2)nn1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +COc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)c(OC)cc1Br; [None]; [None]; [0] +NC(=O)c1cccc2cc(Cc3ccc(S(=O)(=O)CCO)cc3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(NC(=O)c3ccco3)[nH]c12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3cccc(C(N)=O)c3[nH]2)c1; ['COc1cc(OC)cc(B(O)O)c1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9827622771263123] +CCNC(=O)N1CCC(c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc3cccc(C(N)=O)c3[nH]2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc4cn[nH]c4c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)[nH]c12; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3cccc(C(N)=O)c3[nH]1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc4ccccc4o3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cc(-c4cccnc4)ccn3)[nH]c12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncc4sccc4n3)[nH]c12; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(NC(=O)N4CCCC4)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(OC(F)(F)F)cc3)[nH]c12; ['FC(F)(F)Oc1ccc(I)cc1']; ['NC(=O)c1cccc2cc[nH]c12']; [0.9513326287269592] +COc1ccc2nc(-c3cc4cccc(C(N)=O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4cccc(C(N)=O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ncn4c3CCCC4)[nH]c12; [None]; [None]; [0] +Cc1cc(-c2cc3cccc(C(N)=O)c3[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +CCc1cccc(-c2cc3cccc(C(N)=O)c3[nH]2)n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc4cccc(C(N)=O)c4[nH]3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc4cccc(C(N)=O)c4[nH]3)cn2)CC1; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3cccc(N4CCCC4=O)c3)[nH]c12; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4cccc(C(N)=O)c4[nH]3)ccc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)c(Cl)c1; [None]; [None]; [0] +NC(=O)c1cccc2cc(NC(=O)c3cccc(OC(F)(F)F)c3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(-c3ccc(CCO)cc3)[nH]c12; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc4cccc(C(N)=O)c4[nH]3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)c(OC)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +Cn1nc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3ccc(F)cn3)[nH]c12; [None]; [None]; [0] +NC(=O)c1cccc2cc(Nc3ccccn3)[nH]c12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3cccc(C(N)=O)c3[nH]2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3cccc(C(N)=O)c3[nH]2)c1; [None]; [None]; [0] +Cc1cc(Nc2cc3cccc(C(N)=O)c3[nH]2)ncc1F; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999996423721313, 0.9999990463256836, 0.9994097352027893] +CCOc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999992847442627, 0.9999992251396179, 0.9999735355377197, 0.9999052286148071, 0.9978177547454834] +COc1ncccc1-c1cccc(C(N)=O)n1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9947018027305603, 0.993525505065918, 0.9748991131782532, 0.9685225486755371] +COc1cc(-c2cccc(C(N)=O)n2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999438524246216, 0.9999421834945679, 0.999869704246521, 0.9995290040969849, 0.9956179857254028] +CS(=O)(=O)c1cccc(-c2cccc(C(N)=O)n2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999992251396179, 0.9999982118606567, 0.9999935626983643, 0.9999796152114868, 0.9999726414680481, 0.9970698356628418] +NC(=O)c1cccc(-c2cccc(O)c2)n1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9996912479400635, 0.9992333650588989, 0.9990614056587219, 0.9943140745162964, 0.881588339805603] +Cc1ccc(C(=O)NCCO)cc1-c1cc2cccc(C(N)=O)c2[nH]1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc(C(N)=O)n2)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9877835512161255, 0.9755275249481201] +Cc1ccc2ncn(-c3cccc(C(N)=O)n3)c2c1; [None]; [None]; [0] +COc1ccc(-c2cccc(C(N)=O)n2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', None]; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', None]; [0.9999983310699463, 0.9999975562095642, 0.9999727010726929, 0.9999215006828308, 0.994162380695343, 0] +NC(=O)c1cccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(N3CCOCC3)cc2)n1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999998211860657, 0.9999998211860657, 0.9999984502792358, 0.9999924898147583, 0.9999921917915344, 0.9997484683990479] +Cc1nc(C(C)(C)O)sc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2nc3ccccc3[nH]2)n1; [None, 'N']; [None, 'O=C(O)c1cccc(-c2nc3ccccc3[nH]2)n1']; [0, 0.854491114616394] +NC(=O)c1cccc(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999994039535522, 0.9999982118606567, 0.9999562501907349, 0.9999469518661499, 0.9797492027282715] +NC(=O)c1cccc(-c2nccc3ccccc23)n1; ['Brc1nccc2ccccc12']; ['NC(=O)c1cccc(Br)n1']; [0.9692074060440063] +NC(=O)c1cccc(Nc2ncccn2)n1; ['NC(=O)c1cccc(Cl)n1']; ['Nc1ncccn1']; [0.997267484664917] +NC(=O)c1cccc(-c2cccc(NC(=O)C3CC3)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(C(=O)Nc3ccccc3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999997615814209, 0.9999901056289673, 0.9999465942382812, 0.9973896741867065] +CC(=O)NCc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999992251396179, 0.999998152256012, 0.9999611377716064, 0.9998920559883118, 0.9748774170875549] +NC(=O)c1cccc(-c2cccc(C3CCNCC3)c2)n1; ['Brc1cccc(C2CCNCC2)c1']; ['NC(=O)c1cccc(Br)n1']; [0.9994064569473267] +N#Cc1cccc(Cn2cc(-c3cccc(C(N)=O)n3)cn2)c1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(OCCO)cc2)n1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999995827674866, 0.9999992847442627, 0.9999709129333496, 0.999860405921936] +NC(=O)c1cccc(-c2ccc(C(=O)N3CCOCC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; [0.9999998211860657, 0.9999995231628418, 0.9999985098838806, 0.9999843239784241, 0.9999570846557617, 0.9995719194412231, 0.9982340931892395] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc(C(N)=O)n3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3c(c2)CS(=O)(=O)C3)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(C(F)(F)F)cc2)n1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'FC(F)(F)c1ccc(Br)cc1', None]; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'NC(=O)c1cccc(Br)n1', None]; [0.9999988079071045, 0.9999964833259583, 0.9999935626983643, 0.9999449849128723, 0.999170184135437, 0] +CNS(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999973773956299, 0.9999943971633911, 0.999758780002594, 0.9996099472045898, 0.998231053352356, 0.9267038106918335] +C[C@H](O)COc1ccc(-c2cccc(C(N)=O)n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cccc(C(N)=O)n2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999994039535522, 0.9999986886978149, 0.9999761581420898, 0.9999245405197144, 0.9989402294158936] +NC(=O)c1cccc(-c2ccc(C(=O)N3CCOCC3)cn2)n1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc(C(N)=O)n2)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999997019767761, 0.9999996423721313, 0.9999721050262451, 0.999902606010437, 0.9954992532730103] +NC(=O)c1cccc(Cc2ccccc2O)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.999588131904602, 0.9990987181663513, 0.9553670287132263] +CCCOc1ccc(-c2cccc(C(N)=O)n2)nc1; ['CCCOc1ccc(Br)nc1']; ['NC(=O)c1cccc(Br)n1']; [0.9994625449180603] +NC(=O)c1cccc(-c2ccc(Br)cc2)n1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', None]; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', None]; [0.999998927116394, 0.9999889135360718, 0.9998654127120972, 0.9985817074775696, 0] +COc1ccc(Cc2cccc(C(N)=O)n2)cc1; ['COc1ccc(CBr)cc1']; ['NC(=O)c1cccc(Cl)n1']; [0.8672376275062561] +CN(C)c1ccc(-c2cccc(C(N)=O)n2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999982118606567, 0.9999950528144836, 0.9833260774612427] +CC(=O)N1CCCN(c2cccc(-c3cccc(C(N)=O)n3)c2)CC1; [None]; [None]; [0] +NC(=O)c1cccc(Cc2cnc(N)nc2)n1; [None]; [None]; [0] +NC(=O)c1cccc([C@H]2CCN(C(=O)c3ccccc3)C2)n1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc(C(N)=O)n2)nc(N)n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999998807907104, 0.9999998211860657, 0.999996542930603, 0.9999940395355225, 0.9999790787696838, 0.9998445510864258] +NC(=O)c1cccc(-c2ccccc2-n2cccn2)n1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9994107484817505, 0.9993349313735962, 0.987289547920227, 0.9831088185310364] +CNS(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9977182149887085, 0.9967434406280518, 0.9953463077545166, 0.9945169687271118, 0.9513348340988159] +NC(=O)c1cccc(-c2c[nH]c3ccccc23)n1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9933595657348633, 0.9914020299911499, 0.9065062999725342] +COc1ccc(Cl)cc1-c1cccc(C(N)=O)n1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999052286148071, 0.999754786491394, 0.9993067979812622, 0.9965308904647827, 0.9703818559646606] +Cc1c(C(=O)[O-])cccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccn3nccc3n2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3c(c2)CCO3)n1; ['NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'NC(=O)c1cccc(Cl)n1', 'Brc1ccc2c(c1)CCO2', 'NC(=O)c1ccccn1', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2']; ['OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1ccccn1', 'NC(=O)c1ccccn1']; [0.999998152256012, 0.9999974966049194, 0.9999862909317017, 0.9999821186065674, 0.9999654293060303, 0.9998074769973755, 0.9941776990890503, 0.9395475387573242, 0.919398307800293] +COc1cc(OC)c(-c2cccc(C(N)=O)n2)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl']; ['NC(=O)c1cccc(Br)n1']; [0.98919677734375] +CC(=O)Nc1cccc(-c2cccc(C(N)=O)n2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9999170899391174, 0.9998300075531006, 0.9995061159133911, 0.99801105260849] +COc1cc(-c2cccc(C(N)=O)n2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9999557137489319, 0.9999366998672485, 0.9989525079727173, 0.9981858730316162] +NC(=O)c1cccc(-c2cccc3c2OCO3)n1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9998435378074646, 0.9995242357254028, 0.9992498159408569, 0.9978445172309875] +CC(C)(C)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [1.0, 0.9999995827674866, 0.999993085861206, 0.9999576807022095, 0.9993858337402344] +NC(=O)c1cccc(Cc2nc3ccc(F)c(F)c3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1cccc(Cc2nc3c(F)c(F)ccc3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnc3ccccc3c2)n1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'Brc1cnc2ccccc2c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'NC(=O)c1cccc(Br)n1']; [0.9999967813491821, 0.9999964237213135, 0.9995402097702026, 0.9989886283874512, 0.9910281896591187] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [1.0, 0.9999997615814209, 0.9999940991401672, 0.9999874830245972] +CC(C)c1ccc2nc(-c3cccc(C(N)=O)n3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(C(N)=O)n2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999980330467224, 0.9999966621398926, 0.9997988939285278, 0.9994595050811768, 0.9970257878303528] +NC(=O)c1cccc(CCCc2ccccc2)n1; ['NC=O']; ['c1ccc(CCCc2ccccn2)cc1']; [0.8661230802536011] +NC(=O)c1cccc(Cc2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +Cc1ccc(-c2cccc(C(N)=O)n2)c(=O)[nH]1; [None]; [None]; [0] +NC(=O)c1cccc(-c2scc3c2OCCO3)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc(-c3ccccc3)[nH]n2)n1; [None]; [None]; [0] +CSc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', None]; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', None]; [0.9999955892562866, 0.9999867677688599, 0.9998689889907837, 0.9997904896736145, 0] +COc1cccc(C(=O)Nc2cccc(C(N)=O)n2)c1; ['COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; [0.9998736381530762, 0.9997323751449585, 0.9990136623382568] +NC(=O)c1cccc(-c2ccn(-c3cccc(Cl)c3)n2)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccc(C(N)=O)n3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999703764915466, 0.9999552965164185] +Cc1cc(-c2cccc(C(N)=O)n2)nc(N)n1; ['Cc1cc(Br)nc(N)n1']; ['NC(=O)c1cccc(Br)n1']; [0.9771425724029541] +NC(=O)c1cccc(-c2ccc(F)cc2Cl)n1; ['NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'NC(=O)c1cccc(Cl)n1']; ['OB(O)c1ccc(F)cc1Cl', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc(F)cc1Cl']; [0.9999902248382568, 0.9999798536300659, 0.9995917081832886, 0.9987580180168152] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +NC(=O)c1cccc(-c2csc(N)n2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc3ccccc3s2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3c(c2)CCC(=O)N3)n1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999179840087891, 0.9998619556427002, 0.9623377323150635] +COc1ccc(-c2cccc(C(N)=O)n2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999873638153076, 0.9999785423278809, 0.9999592304229736, 0.9997369647026062, 0.9959386587142944] +CCc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999993443489075, 0.9999992251396179, 0.9997702836990356, 0.9997285604476929, 0.9932271242141724] +NC(=O)c1cccc(-c2ccc(Cl)cc2Cl)n1; ['NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', None]; ['OB(O)c1ccc(Cl)cc1Cl', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc(Cl)cc1Cl', None]; [0.999940037727356, 0.9998575448989868, 0.9980610013008118, 0.9977828860282898, 0] +CC[C@@H](CO)c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc3ccccn3n2)n1; ['Brc1cc2ccccn2n1']; ['NC(=O)c1cccc(Br)n1']; [0.8299891948699951] +NC(=O)c1cccc(-c2ncc(Br)cn2)n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; [None]; [None]; [0] +NC(=O)c1cccc([C@H](CO)Cc2ccccc2)n1; [None]; [None]; [0] +COc1cc(-c2cccc(C(N)=O)n2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1ccccn1']; [0.9999977350234985, 0.9999914169311523, 0.9998481273651123, 0.8274619579315186] +NC(=O)c1cccc(CCCn2cncn2)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc(C(N)=O)n3)ccc2O1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc3ccc(O)cc23)n1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['NC(=O)c1cccc(Br)n1']; [0.9667012095451355] +COc1ccc2cccc(-c3cccc(C(N)=O)n3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cccc(C(N)=O)n2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999361634254456, 0.9998743534088135, 0.9997676610946655, 0.998252272605896, 0.9324367046356201] +COc1cc(-c2cccc(C(N)=O)n2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1ccccn1']; [0.9999995827674866, 0.9999974966049194, 0.9999886751174927, 0.9998915195465088, 0.9998065829277039, 0.9141454696655273] +NC(=O)c1cccc(-c2ncc3cccn3n2)n1; [None]; [None]; [0] +Cn1cc(-c2cccc(C(N)=O)n2)c(C(F)(F)F)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnn(CCO)c2)n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999117851257324, 0.9995091557502747, 0.9991075992584229] +CCNC(=O)c1ccc(-c2cccc(C(N)=O)n2)nc1; ['CCNC(=O)c1ccc(Br)nc1']; ['NC(=O)c1cccc(Br)n1']; [0.9986011385917664] +CNC(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999998211860657, 0.9999992847442627, 0.9999907612800598, 0.999984860420227, 0.9956316351890564] +NC(=O)c1cccc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +COc1cc(-c2cccc(C(N)=O)n2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9875006675720215, 0.8724843263626099] +COc1ccc(OC)c(Cc2cccc(C(N)=O)n2)c1; ['COc1ccc(OC)c(CBr)c1']; ['NC(=O)c1cccc(Cl)n1']; [0.9990698099136353] +COc1cc(OC)cc(-c2cccc(C(N)=O)n2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999213814735413, 0.9995827674865723, 0.9995419383049011, 0.999454140663147, 0.770727276802063] +CCNC(=O)N1CCC(c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +Cc1csc2c(-c3cccc(C(N)=O)n3)ncnc12; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ncc(Cl)cn2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3cn[nH]c3c2)n1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC=O']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'c1ccc(-c2ccc3cn[nH]c3c2)nc1']; [0.9999963045120239, 0.9999959468841553, 0.9999640583992004, 0.999779224395752, 0.9001492857933044] +COc1ccc2c(c1)c(-c1cccc(C(N)=O)n1)cn2C; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +CCn1cc(-c2cccc(C(N)=O)n2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999732971191406, 0.9998717308044434, 0.9989256858825684, 0.9985073208808899] +COc1ccc2oc(-c3cccc(C(N)=O)n3)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc(C(N)=O)n2)c1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc3ccccc3o2)n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc(C(N)=O)n2)cc1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc(NC(=O)N3CCCC3)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc(-c3cccnc3)ccn2)n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(OC(F)(F)F)cc2)n1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'FC(F)(F)Oc1ccc(Br)cc1', None, 'FC(F)(F)Oc1ccc(-c2ccccn2)cc1', 'FC(F)(F)Oc1ccc(I)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'NC(=O)c1cccc(Br)n1', None, 'NC=O', 'NC(=O)c1ccccn1']; [1.0, 1.0, 0.9999992847442627, 0.9999985098838806, 0.999868631362915, 0, 0.9886825084686279, 0.8263713121414185] +COc1ccc(F)c(C(=O)Nc2cccc(C(N)=O)n2)c1; ['COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; [0.9998608827590942, 0.9997918605804443, 0.9979299902915955] +Cn1cc(Br)cc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +Cn1cc(-c2cccc(C(N)=O)n2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9998795986175537, 0.9985364079475403] +NC(=O)c1cccc(-c2ncc3sccc3n2)n1; [None]; [None]; [0] +CCc1cccc(-c2cccc(C(N)=O)n2)n1; [None]; [None]; [0] +COc1ccc2nc(-c3cccc(C(N)=O)n3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc(C(N)=O)n3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999991655349731, 0.9999980330467224, 0.9999979734420776, 0.9999335408210754, 0.9956014156341553] +Cc1cc(-c2cccc(C(N)=O)n2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc(C(N)=O)n2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999978542327881, 0.9999960660934448, 0.9998925924301147, 0.99985671043396, 0.9882903695106506] +CC(=O)N1CCC(n2cc(-c3cccc(C(N)=O)n3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['NC(=O)c1cccc(Br)n1']; [0.9999991655349731] +Cc1n[nH]c2cc(-c3cccc(C(N)=O)n3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.999997615814209, 0.9999957084655762, 0.9999935626983643, 0.9999226927757263, 0.9993686676025391] +NC(=O)c1cccc(-c2cccc(N3CCCC3=O)c2)n1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999968409538269, 0.9999631643295288, 0.9996706247329712] +NC(=O)c1cccc(-c2ccc(CCO)cc2)n1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1']; [0.999998927116394, 0.9999973773956299, 0.9997787475585938, 0.9996083378791809, 0.9583780765533447] +NC(=O)c1cccc(NC(=O)c2cccc(OC(F)(F)F)c2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999756217002869, 0.9999525547027588, 0.999305248260498] +Cn1nc(Cl)c2cc(-c3cccc(C(N)=O)n3)ccc21; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccc(C(N)=O)n3)cc2)n1C; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc(C(N)=O)n3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ncn3c2CCCC3)n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(C(N)=O)n2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9994173049926758, 0.9993889331817627] +CCNC(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999784231185913, 0.9999518394470215, 0.9979575872421265] +CCNC(=O)Cc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['NC(=O)c1cccc(Br)n1']; [0.9997941255569458] +COc1cc(S(C)(=O)=O)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc(C(N)=O)n2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc(C(N)=O)n2)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(C(N)=O)n1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9998255968093872, 0.9993820786476135] +CN(C)C(=O)c1ccc(-c2cccc(C(N)=O)n2)c(Cl)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(C(N)=O)n1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9994202852249146, 0.9987268447875977, 0.998163104057312, 0.9848275184631348] +CNC(=O)c1ccc(C)c(-c2cccc(C(N)=O)n2)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc(C(N)=O)n1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['NC(=O)c1cccc(Br)n1']; [0.9939956068992615] +Cc1ccc(C(=O)NCCO)cc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc(C(N)=O)n2)[nH]1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cccc(C(N)=O)n1; [None]; [None]; [0] +Cn1nc(-c2cccc(C(N)=O)n2)cc1C(C)(C)O; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccnc3ccccc23)n1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9981725811958313, 0.9937883615493774, 0.971038818359375, 0.9646167755126953] +NC(=O)c1cccc(Cc2cc(F)cc(F)c2)n1; ['Fc1cc(F)cc(CBr)c1']; ['NC(=O)c1cccc(Cl)n1']; [0.9978544116020203] +NC(=O)c1cccc(-c2cccc(C(F)(F)F)c2)n1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', None, 'FC(F)(F)c1cccc(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', None, 'NC(=O)c1cccc(Br)n1']; [0.9999866485595703, 0.9999545216560364, 0.9999210834503174, 0.9993553757667542, 0, 0.9702288508415222] +NC(=O)c1cccc(-c2ccccc2OC(F)(F)F)n1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9998831748962402, 0.9998811483383179, 0.9998111724853516, 0.9991888999938965] +NC(=O)c1cccc(-c2ccccc2C(=O)[O-])n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnn(Cc3ccccc3)c2)n1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999955892562866, 0.999983549118042, 0.9999336004257202, 0.9999275207519531] +Cn1cnc2ccc(-c3cccc(C(N)=O)n3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['NC(=O)c1cccc(Br)n1']; [0.9862433075904846] +NC(=O)c1cccc(-c2ccccc2C(N)=O)n1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9991888999938965, 0.9990836977958679, 0.9967860579490662, 0.9955649375915527, 0.8003172278404236] +NC(=O)c1cccc(-c2cccc(NC(=O)c3ccccc3)c2)n1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999703168869019, 0.9999433755874634, 0.9998518228530884, 0.9991260766983032] +COC(C)(C)CCc1cccc(C(N)=O)n1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc(C(N)=O)n1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['NC(=O)c1cccc(O)n1', 'NC(=O)c1cccc(O)n1']; [0.9965508580207825, 0.9600217938423157] +NC(=O)c1cccc(-c2cc(Cl)ccc2Cl)n1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1cc(Cl)ccc1Cl', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9995294809341431, 0.9991965293884277, 0.9989550709724426, 0.9907686710357666] +Cc1ccc(-c2cccc(C(N)=O)n2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9819383025169373, 0.7548185586929321] +CC(C)(C)c1nc(-c2cccc(C(N)=O)n2)cs1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-n2ncc3cccc(F)c3c2=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc(Br)c2)n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'Brc1cccc(-c2ccccn2)c1', 'Brc1cccc(Br)c1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'NC=O', 'NC(=O)c1cccc(Br)n1']; [0.9999525547027588, 0.9995979070663452, 0.9995278120040894, 0.9988648891448975, 0.9946367740631104, 0.8348065614700317] +COc1cnc(-c2cccc(C(N)=O)n2)nc1; [None]; [None]; [0] +NC(=O)c1cccc(NCc2cccnc2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(Br)n1']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9994416832923889, 0.9990638494491577, 0.9962770938873291] +Cc1ccc(Cl)c(-c2cccc(C(N)=O)n2)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9982417225837708, 0.998146653175354, 0.9967210292816162, 0.9806482195854187, 0.7771591544151306] +NC(=O)c1cccc(-c2c(Cl)cccc2Cl)n1; ['NC(=O)c1cccc(Br)n1', 'Clc1cccc(Cl)c1Br', 'NC(=O)c1cccc(Cl)n1']; ['OB(O)c1c(Cl)cccc1Cl', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9996585249900818, 0.9972081184387207, 0.9920250177383423] +Cc1nc(N)sc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(Nc2cccnc2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['Nc1cccnc1', 'Nc1cccnc1']; [0.9951869249343872, 0.9650638103485107] +CNc1nc(C)c(-c2cccc(C(N)=O)n2)s1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cnn3ncccc23)n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['NC(=O)c1cccc(Cl)n1']; [0.9998606443405151] +NC(=O)c1cccc(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3ccccc3c2)n1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', 'Brc1ccc2ccccc2c1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc2ccccc2c1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1ccc2ccccc2c1', 'NC(=O)c1cccc(Br)n1']; [0.999992847442627, 0.9999886751174927, 0.9999639987945557, 0.9996775388717651, 0.9961776733398438] +NC(=O)c1cccc(-c2ccnc(N)n2)n1; ['NC(=O)c1cccc(Br)n1']; ['Nc1nccc(Br)n1']; [0.9798719882965088] +NC(=O)c1cccc(NCCc2c[nH]cn2)n1; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(Cl)n1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9996387958526611, 0.9980443716049194, 0.9968240857124329] +NC(=O)c1cccc(NC(=O)c2cccs2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-n2cnc3ccccc32)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2c[nH]nc2C(F)(F)F)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc(F)c2C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cncc3ccccc23)n1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9998499155044556, 0.9997975826263428, 0.9991937279701233, 0.9905705451965332] +NC(=O)c1cccc(NCCc2ccccc2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9976469278335571, 0.9960518479347229, 0.982930064201355] +Cn1cc(-c2ccc(-c3cccc(C(N)=O)n3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [1.0, 1.0] +NC(=O)c1cccc(-c2ccc(-c3cn[nH]c3)cc2)n1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999988079071045, 0.9998233318328857, 0.9996234178543091] +NC(=O)c1cccc(NCc2ccc(Cl)cc2)n1; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(Cl)n1']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9988024234771729, 0.9969366788864136, 0.9773238301277161] +Cc1c(-c2cccc(C(N)=O)n2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc(CC(=O)[O-])c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc3c(N)[nH]nc3c2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Br)ccc12']; [0.9994786977767944, 0.9679443836212158] +NC(=O)c1cccc(Nc2ccncc2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['Nc1ccncc1', 'Nc1ccncc1']; [0.9966479539871216, 0.9573043584823608] +NC(=O)c1cccc(-c2cccc(CO)c2)n1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'NC(=O)c1cccc(Cl)n1', None, 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OCc1cccc(B(O)O)c1', None, 'OCc1cccc(B(O)O)c1']; [0.9999117851257324, 0.999692440032959, 0.9954809546470642, 0, 0.9913630485534668] +NC(=O)c1cccc(NCc2ccccc2F)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.9998830556869507, 0.9998514652252197, 0.9992177486419678] +CN1c2ccc(-c3cccc(C(N)=O)n3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cccc(C(N)=O)n2)n1; [None]; [None]; [0] +COc1cc(-c2cccc(C(N)=O)n2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cccc(C(N)=O)n2)nn1; [None]; [None]; [0] +NC(=O)c1cccc(-c2csc3ncncc23)n1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CSc1nc(-c2cccc(C(N)=O)n2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc(C(N)=O)n2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9998446702957153, 0.9997667074203491, 0.9270212650299072] +NC(=O)c1cccc(-c2cncnc2N)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccc(F)cc2C(F)(F)F)n1; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9998822212219238, 0.999607264995575] +CCC(=O)Nc1ccc(-c2cccc(C(N)=O)n2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9999988675117493, 0.9999983906745911] +NC(=O)c1cccc(Oc2ccccn2)n1; ['Clc1ccccn1', 'NC(=O)c1cccc(Cl)n1', 'Brc1ccccn1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(O)n1', 'Oc1ccccn1', 'NC(=O)c1cccc(O)n1', 'Oc1ccccn1']; [0.9970397353172302, 0.9833195209503174, 0.876376748085022, 0.7933427095413208] +NC(=O)c1cccc(NC(=O)c2c(Cl)cccc2Cl)n1; ['NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9996160268783569, 0.9978641271591187, 0.9965173006057739] +NC(=O)c1cccc(CCc2c[nH]nn2)n1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc(C(N)=O)n2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999869465827942, 0.9998966455459595, 0.9997200965881348] +NC(=O)c1cccc(-c2cnn3ccccc23)n1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.9999876618385315, 0.999930202960968, 0.9997906684875488] +CC(C)(COc1cccc(C(N)=O)n1)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cccc(C(N)=O)n2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999982118606567, 0.9999873042106628, 0.9999337196350098, 0.9997742176055908] +CCNc1nc2ccc(-c3cccc(C(N)=O)n3)cc2s1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc[nH]c(=O)c2)n1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'O=c1cc(Br)cc[nH]1']; [0.999929666519165, 0.9997462034225464, 0.7519490718841553] +COc1ccc(-c2cccc(C(N)=O)n2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1ccccn1', 'NC(=O)c1ccccn1']; [0.9999994039535522, 0.9999974966049194, 0.9999918937683105, 0.9997571706771851, 0.9977681636810303, 0.9849311113357544, 0.9460546970367432] +NC(=O)CCCc1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc3c2C(=O)CC3)n1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc(C(N)=O)n2)cc1; [None]; [None]; [0] +C[C@@H](Oc1cccc(C(N)=O)n1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['NC(=O)c1cccc(Cl)n1']; [0.8444994688034058] +C[S@](=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999984502792358, 0.9999984502792358, 0.9998326301574707, 0.9998310804367065] +CCN(CC)c1cccc(C(N)=O)n1; ['CCNCC', 'CCNCC', 'CCNCC']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; [0.9971655011177063, 0.9717508554458618, 0.7779294848442078] +CC(C)(O)CC(=O)NCCc1cccc(C(N)=O)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +COc1ccncc1Nc1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cc3c(=O)[nH]ccc3o2)n1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc(C(N)=O)n2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999997615814209, 0.9999992847442627, 0.9998725652694702, 0.999512791633606, 0.994901716709137] +NC(=O)c1cccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(Nc2cnc3ccccc3c2)n1; ['NC(=O)c1cccc(Cl)n1']; ['Nc1cnc2ccccc2c1']; [0.9990394115447998] +COc1cc(CCc2cccc(C(N)=O)n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)c1cccc(Nc2cnccc2-c2ccccc2)n1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(C(N)=O)n1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1ccccn1', 'NC(=O)c1ccccn1']; [0.9999988079071045, 0.9999887347221375, 0.9999831914901733, 0.9999216198921204, 0.9998044967651367, 0.9313029050827026, 0.7790813446044922] +NC(=O)c1cccc(-c2cnc3[nH]ccc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999997615814209, 0.9999994039535522, 0.9999183416366577, 0.9997730851173401] +NC(=O)c1cccc(-c2c[nH]c3cnccc23)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9259768128395081, 0.921303927898407] +NC(=O)c1cccc(-c2cc3c(=O)[nH]cc(Br)c3s2)n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999990463256836, 0.9999988675117493, 0.9997681975364685, 0.99955153465271, 0.9228119850158691] +CS(=O)(=O)c1ccc(-c2cccc(C(N)=O)n2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [1.0, 0.9999995827674866, 0.9999862313270569, 0.9999580383300781, 0.9999544620513916, 0.9858330488204956] +CNC(=O)c1c(F)cccc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1cccc(-n2ccc(CO)n2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9996731281280518, 0.9984020590782166, 0.9692484140396118] +C[C@H](Nc1cccc(C(N)=O)n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1cccc(C(N)=O)n1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2cccc(C(N)=O)n2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc(C(N)=O)n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(C(N)=O)n1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc(C(N)=O)n1)C(C)(C)O; [None]; [None]; [0] +NC(=O)c1cccc(-n2ncc3ccccc32)n1; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9998569488525391, 0.9982261657714844] +NC(=O)c1cccc(-c2c(F)cccc2Cl)n1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'NC(=O)c1cccc(Cl)n1']; ['NC(=O)c1cccc(Br)n1', 'OB(O)c1c(F)cccc1Cl', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'OB(O)c1c(F)cccc1Cl']; [0.9999972581863403, 0.9999881982803345, 0.9999480247497559, 0.9997521638870239, 0.9986145496368408] +NC(=O)c1cccc(-c2ccc(-n3cncn3)cc2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-n2ncc3c(O)cccc32)n1; ['NC(=O)c1cccc(Cl)n1']; ['Oc1cccc2[nH]ncc12']; [0.999879777431488] +COc1ccc(-c2cccc(C(N)=O)n2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9994880557060242, 0.9993232488632202, 0.9993078708648682, 0.9965767860412598] +NC(=O)c1cccc(-c2ccc(C(=O)c3ccccc3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999805688858032, 0.9999687671661377, 0.9996027946472168, 0.9993788003921509, 0.8526124358177185] +NC(=O)c1cccc(-n2cnc(CCO)c2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2nc3ccc(O)cc3[nH]2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(C(N)=O)n2)[nH]1; [None]; [None]; [0] +NC(=O)c1cccc(-c2nncn2C2CC2)n1; [None]; [None]; [0] +CCc1cc(-c2cccc(C(N)=O)n2)nc(N)n1; [None]; [None]; [0] +NC(=O)c1cccc(CCC(=O)NCc2ccccn2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2ccn(CC[NH3+])n2)n1; [None]; [None]; [0] +NC(=O)c1cccc(CS(=O)(=O)NCc2ccccn2)n1; [None]; [None]; [0] +NC(=O)c1cccc(Cc2nnc3ccc(-c4ccccc4)nn23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(C(N)=O)n2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(C(N)=O)n2)nc(N)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2nnc(N)s2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc(C(N)=O)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc(C(N)=O)n2)n1; [None]; [None]; [0] +NC(=O)c1cccc(Oc2ccc(C[NH3+])cc2F)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc(C(N)=O)n3)nc2NC1=O; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc3ccsc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(C(N)=O)n3)c2)cc1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cccc3nnsc23)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2c[nH]c3cccnc23)n1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9992483258247375, 0.9991620779037476] +NC(=O)c1cccc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +NC(=O)c1cccc(-c2cncc(N)n2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(C(N)=O)n1; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9999573826789856, 0.9999411106109619, 0.9999144077301025, 0.9998917579650879] +CC(=O)Nc1ncc(-c2cccc(C(N)=O)n2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(C(N)=O)n2)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1']; [0.9999558925628662, 0.9998456239700317, 0.9994608163833618, 0.9988709688186646] +COc1ccc(Oc2cccc(C(N)=O)n2)c(F)c1F; ['COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['NC(=O)c1cccc(O)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(F)n1', 'NC(=O)c1cccc(O)n1', 'NC(=O)c1cccc(Br)n1']; [0.9997091293334961, 0.9989542961120605, 0.9965572357177734, 0.9959020614624023, 0.9869886040687561] +NC(=O)c1cccc(-c2cn(CCO)cn2)n1; [None]; [None]; [0] +NC(=O)c1cccc(N2CCC(c3nc4ccccc4[nH]3)CC2)n1; ['NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(F)n1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999628067016602, 0.9998437166213989, 0.9974664449691772] +NC(=O)c1cccc(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc(C(N)=O)n2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1', 'NC(=O)c1cccc(Cl)n1', 'NC(=O)c1cccc(Br)n1']; [0.9999969005584717, 0.9999939799308777, 0.9999309778213501, 0.9996968507766724, 0.9938418865203857] +NC(=O)c1cccc(N2CC=C(c3c[nH]c4ccccc34)CC2)n1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['NC(=O)c1cccc(Cl)n1']; [0.9999557137489319] +NC(=O)c1cccc(-c2nc(N)c3ccccc3n2)n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997019767761, 0.9999863505363464, 0.9989250302314758, 0.996326744556427] +NC(=O)c1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ncc4ccccc4n3)c2n1; ['Clc1ncc2ccccc2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'c1ccc2ncncc2c1']; [0.9998546838760376, 0.9925832748413086] +CCOc1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999996423721313, 0.9999863505363464, 0.9999523162841797, 0.9999344348907471, 0.9988460540771484, 0.9981138706207275, 0.9755165576934814] +COc1ncccc1-c1cccc2cnc(N)nc12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999562501907349, 0.9988488554954529, 0.9620335102081299, 0.9164817333221436] +CN(C)c1cc(-c2cccc(C(N)=O)n2)cnn1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cccc4cnc(N)nc34)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9830199480056763, 0.8354716300964355] +Cc1nc(C(C)(C)O)sc1-c1cccc2cnc(N)nc12; ['Cc1csc(C(C)(C)O)n1']; ['Nc1ncc2cccc(Br)c2n1']; [0.999193549156189] +C[C@@]1(O)CC[C@H](c2cccc(C(N)=O)n2)CC1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)nc23)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cccc(OC)c1OC']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.999998927116394, 0.999982476234436, 0.9999724626541138, 0.9999517202377319, 0.9995183944702148, 0.9970161318778992, 0.9174560308456421] +CS(=O)(=O)c1cccc(-c2cccc3cnc(N)nc23)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997615814209, 0.9999938607215881, 0.9999802112579346, 0.9998006224632263, 0.9890732765197754] +Nc1ncc2cccc(-c3cnc4cccnn34)c2n1; ['Brc1cnc2cccnn12', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12']; [0.9999780058860779, 0.9999747276306152, 0.9985648989677429, 0.9878476858139038] +COc1ccc(-c2cccc3cnc(N)nc23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccccc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.9999997615814209, 0.9999963045120239, 0.9999940395355225, 0.9999593496322632, 0.9999536275863647, 0.9995706677436829, 0.9983664155006409, 0.9980494976043701, 0.9014347791671753, 0.8965247273445129] +Nc1ncc2cccc(-c3ccc(C(=O)[O-])cc3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(N4CCOCC4)cc3)c2n1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.9999996423721313, 0.9999979734420776, 0.9999750256538391, 0.9999346733093262, 0.800956130027771] +Nc1ncc2cccc(-c3cccc(NC(=O)C4CC4)c3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999703168869019] +N#Cc1ccc(O)c(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(O)c3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3nc4ccccc4[nH]3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(Nc3ncccn3)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9999827146530151, 0.9985779523849487] +NC(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999998211860657, 0.999980092048645, 0.9999564290046692, 0.9997243881225586, 0.997855544090271] +Nc1ncc2cccc(-c3ccc(C(=O)Nc4ccccc4)cc3)c2n1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.999988853931427, 0.9999748468399048, 0.9998340010643005, 0.9991859197616577] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc4cnc(N)nc34)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc4cnc(N)nc34)cn2)c1; [None]; [None]; [0] +Nc1ncc2cccc(-c3nccc4ccccc34)c2n1; ['Clc1nccc2ccccc12', 'Nc1ncc2cccc(Br)c2n1', 'Brc1nccc2ccccc12', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1nccc2ccccc12', 'Nc1ncc2cccc(Br)c2n1', 'c1ccc2cnccc2c1']; [0.9999651312828064, 0.9997118711471558, 0.9991346597671509, 0.9213538765907288] +Nc1ncc2cccc(-c3ccc(OCCO)cc3)c2n1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999994039535522, 0.9998854398727417, 0.9978251457214355, 0.9944267272949219] +CC(=O)NCc1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [1.0, 0.9999913573265076, 0.9999761581420898, 0.9996280670166016, 0.998875617980957] +Nc1ncc2cccc(-c3ccc(C(=O)N4CCOCC4)cc3)c2n1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1']; ['Nc1ncc2cccc(Br)c2n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccccc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999998211860657, 0.9999985694885254, 0.999977707862854, 0.9999716281890869, 0.999733567237854, 0.7512403130531311] +Nc1ncc2cccc(-c3cccc(C4CCNCC4)c3)c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999931454658508, 0.9997512102127075, 0.9994882345199585, 0.9902275800704956, 0.9780063629150391] +Nc1ncc2cccc(-c3ccc(C(F)(F)F)cc3)c2n1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(Br)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.999998927116394, 0.9999970197677612, 0.9999476075172424, 0.9999045133590698, 0.9997508525848389, 0.9920014142990112, 0.9414209127426147, 0.9348137974739075] +CN(C)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997615814209, 0.9999765753746033, 0.9999717473983765, 0.999771237373352, 0.9992115497589111, 0.9984735250473022] +Nc1ncc2cccc(-c3ccc(C(=O)N4CCOCC4)cn3)c2n1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc4c(c3)CS(=O)(=O)C4)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999585151672363] +C[C@@H](O)COc1ccc(-c2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999998807907104, 0.9999862909317017, 0.9999580383300781, 0.9987385272979736, 0.9983545541763306, 0.9177615642547607] +Cc1nc(C)c(-c2cccc3cnc(N)nc23)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999974966049194, 0.9969395399093628] +Nc1ncc2cccc(Cc3ccccc3O)c2n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9993211627006531, 0.9945266246795654, 0.9902762174606323] +Nc1ncc(Cc2cccc3cnc(N)nc23)cn1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc3cnc(N)nc23)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cccc3cnc(N)nc23)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9986487627029419] +CC(=O)N1CCCN(c2cccc(-c3cccc4cnc(N)nc34)c2)CC1; [None]; [None]; [0] +Nc1ncc2cccc([C@H]3CCN(C(=O)c4ccccc4)C3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(Br)cc3)c2n1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Brc1ccc(Br)cc1', 'Brc1ccc(I)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1']; [0.9999939203262329, 0.9999029636383057, 0.9994540810585022, 0.9988909959793091, 0.9962432384490967, 0.9120802879333496, 0.7891578674316406] +CCN(CC)C(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999988079071045, 0.999790608882904, 0.9997514486312866, 0.9957449436187744, 0.9946783781051636, 0.8626197576522827] +CN(C)c1ccc(-c2cccc3cnc(N)nc23)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.9999861717224121, 0.9999170303344727] +Nc1ncc2cccc(-c3ccn4nccc4n3)c2n1; ['Clc1ccn2nccc2n1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999940395355225] +Cc1c(C(=O)[O-])cccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.999995231628418, 0.999929666519165, 0.99981689453125, 0.9975364208221436, 0.9951023459434509] +COc1ccc(Cc2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccc2cnc(N)nc12; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999895095825195, 0.9999380111694336, 0.9588194489479065] +Nc1ncc2cccc(-c3ccc4c(c3)CCO4)c2n1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Ic1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc2c(c1)CCO2', 'c1ccc2c(c1)CCO2', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.9999915361404419, 0.9999899864196777, 0.9999799728393555, 0.998475193977356, 0.9750077724456787, 0.9395006895065308] +Nc1ncc2cccc(-c3ccccc3-n3cccn3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3c[nH]c4ccccc34)c2n1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccc3cnc(N)nc23)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3cnc(N)nc23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999996423721313, 0.9999878406524658, 0.9999459385871887, 0.9997332096099854, 0.9994726777076721, 0.9842615127563477] +CC(C)c1ccc2nc(-c3cccc4cnc(N)nc34)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)nc23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999992251396179, 0.9999513626098633, 0.9992084503173828, 0.9977095127105713] +CC(C)(C)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccccc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.9999982118606567, 0.9999921321868896, 0.9999493956565857, 0.999809980392456, 0.99903404712677, 0.9925152063369751, 0.9500938653945923, 0.9302251935005188] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cc(-c4ccccc4)[nH]n3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc4c3OCO4)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3scc4c3OCCO4)c2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997615814209, 0.9999843239784241, 0.9999647736549377, 0.9990079998970032, 0.9987215995788574, 0.9205145239830017] +Nc1ncc2cccc(-c3cnc4ccccc4c3)c2n1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Brc1cnc2ccccc2c1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999984502792358, 0.9998910427093506, 0.9997605085372925, 0.9981299638748169, 0.9960633516311646] +CC(C)(C)c1ccc(-c2cccc3cnc(N)nc23)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2ccccc2n1']; [0.9999982118606567, 0.9998410940170288, 0.9997715950012207, 0.9962092041969299, 0.9933356642723083, 0.7869420051574707] +Nc1ncc2cccc(Cc3nc4c(F)c(F)ccc4[nH]3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(CCCc3ccccc3)c2n1; ['C=CCc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9634091854095459] +Cc1ccc(-c2cccc3cnc(N)nc23)c(=O)[nH]1; [None]; [None]; [0] +Nc1ncc2cccc(-c3csc(N)n3)c2n1; ['Nc1nc(Cl)cs1']; ['Nc1ncc2cccc(Br)c2n1']; [0.99992835521698] +Nc1ncc2cccc(Cc3nc4ccc(F)c(F)c4[nH]3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cc4ccccc4s3)c2n1; ['CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cc2ccccc2s1', 'Nc1ncc2cccc(Br)c2n1', 'c1ccc2sccc2c1', 'OB(O)c1cc2ccccc2s1']; [0.9999908804893494, 0.9999851584434509, 0.9999300837516785, 0.9991532564163208, 0.9983985424041748] +Nc1ncc2cccc(-c3ccn(-c4cccc(Cl)c4)n3)c2n1; ['Clc1cccc(-n2cccn2)c1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9415576457977295] +COc1cccc(C(=O)Nc2cccc3cnc(N)nc23)c1; ['COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9990682005882263, 0.9903029203414917] +CSc1ccc(-c2cccc3cnc(N)nc23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997615814209, 0.9999799132347107, 0.9999525547027588, 0.9999111890792847, 0.9985698461532593, 0.9959667325019836, 0.9295101761817932] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +Nc1ncc2cccc(Cc3nc4ccccc4[nH]3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(F)cc3Cl)c2n1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1cccc(Cl)c1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(F)cc1Cl']; [0.9999995827674866, 0.9999973773956299, 0.9999877214431763, 0.9995394349098206, 0.9990853071212769, 0.9965126514434814] +Nc1ncc2cccc(-c3ccc4c(c3)CCC(=O)N4)c2n1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2ccccc2N1']; [0.9999980330467224, 0.9998229742050171, 0.9996321201324463, 0.9918203949928284] +CCN1CCN(Cc2ccc(-c3cccc4cnc(N)nc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc3cnc(N)nc23)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Cc1cc(Br)nc(N)n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999901652336121, 0.9998661279678345] +Nc1ncc2cccc(-c3ncc(Br)cn3)c2n1; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)nc23)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccccc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.9999998807907104, 0.9999982714653015, 0.9999935030937195, 0.9999644160270691, 0.9998598098754883, 0.9995886087417603, 0.9917869567871094, 0.8879566192626953, 0.8136636018753052] +CC[C@@H](CO)c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(Cl)cc3Cl)c2n1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999990463256836, 0.9999903440475464, 0.9999816417694092, 0.9970173835754395, 0.9863605499267578] +CCc1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999996423721313, 0.9999723434448242, 0.9998914003372192, 0.9998902082443237, 0.997779130935669, 0.9976595640182495, 0.9974566698074341, 0.975447416305542] +Nc1ncc2cccc([C@H](CO)Cc3ccccc3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ncc4cccn4n3)c2n1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)nc23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.9999934434890747, 0.9999804496765137] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cc4ccccn4n3)c2n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc4cnc(N)nc34)ccc2O1; [None]; [None]; [0] +Nc1ncc2cccc(CCCn3cncn3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ncc(Cl)cn3)c2n1; ['Clc1cncnc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9813569784164429] +Cn1cc(-c2cccc3cnc(N)nc23)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999958276748657, 0.9999769926071167, 0.997429609298706] +COc1cc(-c2cccc3cnc(N)nc23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1ccccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 1.0, 0.9999997615814209, 0.9999916553497314, 0.9999830722808838, 0.9999382495880127, 0.9882243871688843, 0.9847533106803894, 0.9470455646514893] +COc1cc(F)c(-c2cccc3cnc(N)nc23)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999996423721313, 0.9999908208847046, 0.9984863996505737, 0.9974836707115173] +COc1ccc2cccc(-c3cccc4cnc(N)nc34)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9738240242004395] +Nc1ncc2cccc(-c3cccc4ccc(O)cc34)c2n1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999560117721558] +Cc1csc2c(-c3cccc4cnc(N)nc34)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Nc1ncc2cccc(Br)c2n1']; [0.975055456161499] +Nc1ncc2cccc(-c3cnn(CCO)c3)c2n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OCCn1cc(B(O)O)cn1', 'Nc1ncc2cccc(Cl)c2n1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999929666519165, 0.9993884563446045, 0.9992502331733704, 0.9940718412399292, 0.9895074367523193] +CNC(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.9999858736991882, 0.9999843239784241, 0.9987871646881104, 0.9984657168388367, 0.8759039640426636] +Nc1cc(-c2cccc3cnc(N)nc23)c2cc[nH]c2n1; ['Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9993405342102051] +COc1cc(-c2cccc3cnc(N)nc23)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9935641288757324, 0.9439637660980225, 0.9057326912879944] +CCNC(=O)N1CCC(c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cccc3cnc(N)nc23)c1; ['COc1ccc(OC)c(C[Zn]Cl)c1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9994437098503113] +COc1cc(OC)cc(-c2cccc3cnc(N)nc23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cccc(OC)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999984502792358, 0.9999814033508301, 0.9999803304672241, 0.999977171421051, 0.9993883967399597, 0.9973689913749695, 0.9095476269721985] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3cnc(N)nc23)nc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3cccc4cnc(N)nc34)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999551773071289, 0.9995155930519104, 0.9986187219619751] +COc1ccc2c(c1)c(-c1cccc3cnc(N)nc13)cn2C; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc4cn[nH]c4c3)c2n1; [None]; [None]; [0] +CCn1cc(-c2cccc3cnc(N)nc23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cccn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999827146530151, 0.9998224377632141, 0.9990842938423157, 0.9958212375640869, 0.9566525220870972] +Nc1ncc2cccc(-c3cc4ccccc4o3)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'Brc1cc2ccccc2o1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'F[B-](F)(F)c1cc2ccccc2o1']; ['OB(O)c1cc2ccccc2o1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999576807022095, 0.999598503112793, 0.9986417293548584, 0.9971075057983398, 0.9948553442955017, 0.9930644035339355] +Nc1ncc2cccc(-c3ncc4sccc4n3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ncc2sccc2n1']; [0.9967507123947144] +CNC(=O)c1ccc(OC)c(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc2cnc(N)nc12; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1ccn(C)n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999986290931702, 0.9984513521194458] +C[NH+](C)Cc1ccc(-c2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(OC(F)(F)F)cc3)c2n1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(Br)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.9999998807907104, 0.9999986886978149, 0.9999947547912598, 0.9999927282333374, 0.9999643564224243, 0.9992136359214783, 0.9988816380500793] +COc1ccc2nc(-c3cccc4cnc(N)nc34)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccc3cnc(N)nc23)c1; ['COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9996291995048523, 0.9970617294311523] +Nc1ncc2cccc(-c3cc(-c4cccnc4)ccn3)c2n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(NC(=O)N4CCCC4)c3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ncn4c3CCCC4)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ncn2c1CCCC2']; [0.9995819330215454] +Cn1cc(-c2cccc3cnc(N)nc23)c2ccccc21; [None]; [None]; [0] +CCc1cccc(-c2cccc3cnc(N)nc23)n1; [None]; [None]; [0] +Cc1cc(-c2cccc3cnc(N)nc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc4cnc(N)nc34)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc4cnc(N)nc34)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999974966049194] +CC(C)(O)c1ccc2cc(-c3cccc4cnc(N)nc34)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccc4cnc(N)nc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccc4cnc(N)nc34)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.9999995827674866, 0.9999977350234985, 0.9999955892562866, 0.999988853931427, 0.9999252557754517] +CN(C)c1ccc(-c2cccc3cnc(N)nc23)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999996423721313, 0.9999703168869019, 0.9999620914459229, 0.9992998838424683, 0.9955517053604126] +Nc1ncc2cccc(-c3cccc(N4CCCC4=O)c3)c2n1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999992251396179, 0.9999154806137085, 0.9995094537734985] +Nc1ncc2cccc(NC(=O)c3cccc(OC(F)(F)F)c3)c2n1; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999616146087646, 0.9995595812797546] +Cc1ncc(-c2ccc(-c3cccc4cnc(N)nc34)cc2)n1C; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(CCO)cc3)c2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)nc23)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3cnc(N)nc23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999973773956299] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999761581420898, 0.999591588973999, 0.9982428550720215] +CCNC(=O)Cc1ccc(-c2cccc3cnc(N)nc23)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9995865821838379] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)nc23)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9986351728439331] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +Cn1nc(-c2cccc3cnc(N)nc23)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2cnc(N)nc12; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1ncc2cccc(Br)c2n1']; [0.9992109537124634] +C[C@H](CS(C)(=O)=O)c1cccc2cnc(N)nc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2cnc(N)nc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9992018938064575, 0.9819279909133911] +CCOc1ccccc1-c1cccc2cnc(N)nc12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999915361404419, 0.999883234500885, 0.9867154359817505, 0.9728232622146606] +COC(C)(C)CCc1cccc2cnc(N)nc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3cnc(N)nc23)[nH]1; [None]; [None]; [0] +Nc1ncc2cccc(Cc3cc(F)cc(F)c3)c2n1; ['Fc1cc(F)cc(C[Zn]Br)c1']; ['Nc1ncc2cccc(Br)c2n1']; [0.999893069267273] +CP(C)(=O)c1ccccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccccc3C(=O)[O-])c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccccc3OC(F)(F)F)c2n1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Br']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1']; [0.999998927116394, 0.9999920129776001, 0.9982155561447144, 0.9978792667388916, 0.9393838047981262] +Nc1ncc2cccc(-c3cccc(C(F)(F)F)c3)c2n1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(I)c1', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1cccc(I)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1']; [0.9999997615814209, 0.9999942779541016, 0.9999940395355225, 0.9999020099639893, 0.9998395442962646, 0.9983112812042236, 0.9808494448661804, 0.8735204935073853] +Cn1cnc2ccc(-c3cccc4cnc(N)nc34)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999116063117981] +NC(=O)c1ccccc1-c1cccc2cnc(N)nc12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999681711196899, 0.9971062541007996, 0.8194988965988159] +Nc1ncc2cccc(-c3ccnc4ccccc34)c2n1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Br[Mg]c1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccnc2ccccc12', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccnc2ccccc12']; [0.9999758005142212, 0.9997183680534363, 0.9978058338165283, 0.9961955547332764, 0.9959295988082886, 0.993408739566803, 0.7548516988754272] +Nc1ncc2cccc(-c3cnn(Cc4ccccc4)c3)c2n1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999895691871643, 0.9998722076416016, 0.999659538269043, 0.9958721399307251, 0.9336224794387817] +Nc1ncc2cccc(-c3cnc(-c4ccccc4)[nH]3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ccc(-c2ncc[nH]2)cc1']; [0.980351448059082] +Cc1ccc(-c2cccc3cnc(N)nc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9880222678184509, 0.9139722585678101] +Nc1ncc2cccc(-c3cc(Cl)ccc3Cl)c2n1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Clc1ccc(Cl)c(Br)c1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1ncc2ccccc2n1']; [0.9999982118606567, 0.9999876022338867, 0.9943976998329163, 0.7931544184684753] +CC(C)(C)c1nc(-c2cccc3cnc(N)nc23)cs1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(NC(=O)c4ccccc4)c3)c2n1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [1.0, 0.9999947547912598, 0.9999563097953796, 0.9997581243515015] +CC(C)C(=O)COc1cccc2cnc(N)nc12; [None]; [None]; [0] +COc1cnc(-c2cccc3cnc(N)nc23)nc1; ['COc1cncnc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9527720212936401] +Nc1ncc2cccc(-c3cnc4ccccn34)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9997364282608032, 0.9650672078132629, 0.9575902819633484] +Cc1nc2ccccn2c1-c1cccc2cnc(N)nc12; ['Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2ccccc2n1']; [0.9998868703842163, 0.9867578744888306, 0.7971535921096802] +CNc1nc(C)c(-c2cccc3cnc(N)nc23)s1; ['CNc1nc(C)cs1']; ['Nc1ncc2cccc(Br)c2n1']; [0.999932050704956] +Nc1ncc2cccc(-n3ncc4cccc(F)c4c3=O)c2n1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2cnc(N)nc12; ['Cc1csc(N)n1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9968476295471191] +Cc1ccc(Cl)c(-c2cccc3cnc(N)nc23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999856948852539, 0.9999457597732544, 0.9804564118385315] +Nc1ncc2cccc(-c3c(Cl)cccc3Cl)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Clc1cccc(Cl)c1Br', 'Nc1ncc2cccc(Cl)c2n1']; ['OB(O)c1c(Cl)cccc1Cl', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9991320371627808, 0.9578779339790344, 0.8228710889816284] +Nc1ncc2cccc(-c3cccc(Br)c3)c2n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Brc1cccc(I)c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999396800994873, 0.9992382526397705, 0.9992364645004272, 0.9992300271987915, 0.986375093460083] +Nc1ncc2cccc(NCc3cccnc3)c2n1; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999901652336121, 0.9998619556427002, 0.9996029138565063] +Nc1ncc2cccc(-c3cccc(Cn4cncn4)c3)c2n1; [None]; [None]; [0] +Nc1nccc(-c2cccc3cnc(N)nc23)n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [0.9998540878295898, 0.9985756278038025] +Cc1c(-c2cccc3cnc(N)nc23)sc(=O)n1C; [None]; [None]; [0] +Nc1ncc2cccc(-c3cnn4ncccc34)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(NCCc3c[nH]cn3)c2n1; ['NCCc1c[nH]cn1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9988637566566467] +Nc1ncc2cccc(-n3cnc4ccccc43)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9957128167152405, 0.9790658950805664, 0.8945780992507935] +Nc1ncc2cccc(Nc3cccnc3)c2n1; ['Nc1cccnc1', 'Nc1cccnc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999117851257324, 0.9987772703170776] +Nc1ncc2cccc(-c3ccc4ccccc4c3)c2n1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Ic1ccc2ccccc2c1', 'Nc1ncc2cccc(Cl)c2n1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'c1ccc2ccccc2c1']; [0.9999995231628418, 0.9999978542327881, 0.9999940395355225, 0.9999845623970032, 0.999946117401123, 0.9999349117279053, 0.9994392395019531, 0.9859849214553833] +Nc1ncc2cccc(-c3c[nH]nc3C(F)(F)F)c2n1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999980330467224] +Nc1ncc2cccc(NCCc3ccccc3)c2n1; ['NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.992883563041687, 0.9883161783218384] +Nc1ncc2cccc(NC(=O)c3cccs3)c2n1; ['NC(=O)c1cccs1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9988260269165039] +Nc1ncc2cccc(-c3cncc4ccccc34)c2n1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Ic1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cncc2ccccc12', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cncc2ccccc12', 'c1ccc2cnccc2c1']; [0.9999915361404419, 0.9999796152114868, 0.9999456405639648, 0.9999369382858276, 0.999700665473938, 0.9982855319976807, 0.9920012950897217, 0.816777765750885] +Cn1cc(-c2ccc(-c3cccc4cnc(N)nc34)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.9999982118606567, 0.9996716976165771] +Nc1ncc2cccc(-c3cccc(CC(=O)[O-])c3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(NCc3ccc(Cl)cc3)c2n1; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999385476112366, 0.9991565942764282, 0.9944568872451782] +Nc1ncc2cccc(-c3ccc4c(N)[nH]nc4c3)c2n1; [None]; [None]; [0] +CN1c2ccc(-c3cccc4cnc(N)nc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(-c4cn[nH]c4)cc3)c2n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(CO)c3)c2n1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OCc1cccc(B(O)O)c1', 'Nc1ncc2cccc(Cl)c2n1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999978542327881, 0.9997520446777344, 0.9994773864746094, 0.9933217167854309, 0.986129879951477] +Nc1ncc2cccc(Nc3ccncc3)c2n1; ['Nc1ccncc1', 'Nc1ccncc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.999996542930603, 0.9998880624771118] +Nc1ncc2cccc(NCc3ccccc3F)c2n1; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.9999386072158813, 0.9933351278305054, 0.9749323129653931] +CC(C)n1cc(-c2cccc3cnc(N)nc23)nn1; ['CC(C)n1ccnn1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9996464252471924] +Nc1ncc2cccc(-c3csc4ncncc34)c2n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc3cnc(N)nc23)n1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)nc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cccc3cnc(N)nc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cc4ccccc4[nH]3)c2n1; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Clc1cc2ccccc2[nH]1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cc2ccccc2[nH]1', 'Nc1ncc2cccc(Br)c2n1', 'c1ccc2[nH]ccc2c1']; [0.9999990463256836, 0.9999961853027344, 0.9999900460243225, 0.999326229095459] +Nc1ncc2cccc(-c3cncnc3N)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(CCc3c[nH]nn3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(Oc3ccccn3)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9908180236816406, 0.853428304195404] +Nc1ncc2cccc(-c3ccc(F)cc3C(F)(F)F)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Nc1ncc2cccc(Cl)c2n1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ncc2ccccc2n1']; [0.9999948740005493, 0.9999709129333496, 0.999517560005188, 0.9987275004386902, 0.7952886819839478] +NC(=O)CCCc1cccc2cnc(N)nc12; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4cnc(N)nc34)cc2s1; [None]; [None]; [0] +Nc1ncc2cccc(NC(=O)c3c(Cl)cccc3Cl)c2n1; ['NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999563694000244, 0.9969055652618408] +CCC(=O)Nc1ccc(-c2cccc3cnc(N)nc23)cc1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3cnc(N)nc23)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9996249675750732, 0.9964454174041748, 0.9872839450836182] +CC(C)(COc1cccc2cnc(N)nc12)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cccc3cnc(N)nc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(C(=O)O)cn1', 'CCCn1cccn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999986886978149, 0.9999196529388428, 0.9998066425323486, 0.9708682894706726, 0.9459635019302368] +CC(C)(O)CC(=O)NCCc1cccc2cnc(N)nc12; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)nc23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [1.0, 0.9999996423721313, 0.9999967217445374, 0.999988317489624, 0.9999468326568604, 0.9996351003646851, 0.9995942711830139, 0.9866409301757812, 0.9769197702407837, 0.9529757499694824] +Nc1ncc2cccc(-c3cnn4ccccc34)c2n1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Brc1cnn2ccccc12', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cnn2ccccc12', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cnn2ccccc12']; [0.9999864101409912, 0.999846339225769, 0.994621992111206, 0.9526773691177368] +Nc1ncc2cccc(-c3cc[nH]c(=O)c3)c2n1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Br)cc[nH]1']; [0.9999996423721313, 0.9999803304672241, 0.9967988729476929] +Nc1ncc2cccc(-c3cccc4c3C(=O)CC4)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['O=C1CCc2cccc(Br)c21']; [0.9588571786880493] +C[S@](=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999995231628418, 0.9999417066574097] +CCN(CC)c1cccc2cnc(N)nc12; ['CCNCC', 'CCNCC', 'CCNCC']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.997600793838501, 0.9918282628059387, 0.9829551577568054] +C[C@@H](Oc1cccc2cnc(N)nc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.9988632202148438, 0.9982196092605591] +CCNS(=O)(=O)c1ccccc1-c1cccc2cnc(N)nc12; ['CCNS(=O)(=O)c1ccccc1Br']; ['Nc1ncc2cccc(Br)c2n1']; [0.8845163583755493] +CC(C)(N)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC(C)(N)c1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1']; [0.9954502582550049] +Nc1ncc2cccc(-c3cc4c(=O)[nH]ccc4o3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c2n1; [None]; [None]; [0] +COc1ccncc1Nc1cccc2cnc(N)nc12; ['COc1ccncc1N', 'COc1ccncc1N']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999675154685974, 0.9995620846748352] +Nc1ncc2cccc(Nc3cnccc3-c3ccccc3)c2n1; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999963045120239, 0.9998687505722046] +COc1cc(CCc2cccc3cnc(N)nc23)cc(OC)c1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cc4c(=O)[nH]cc(Br)c4s3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(Nc3cnc4ccccc4c3)c2n1; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999817609786987, 0.9991679191589355] +Nc1ncc2cccc(-c3cnc4[nH]ccc4c3)c2n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ncc2cccc(Cl)c2n1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ncc2cccc(Cl)c2n1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ncc2cccc(Br)c2n1']; [1.0, 0.999998927116394, 0.9999297857284546, 0.9998285174369812, 0.9997706413269043] +CC(C)Oc1cncc(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2cnc(N)nc12; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9999856948852539, 0.9999130964279175, 0.9991381764411926, 0.9926974773406982] +Nc1ncc2cccc(-c3c[nH]c4cnccc34)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9978828430175781] +CNC(=O)c1c(F)cccc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999988079071045, 0.9999499320983887, 0.9999135732650757, 0.998344898223877, 0.9968554973602295] +CN(c1cccc2cnc(N)nc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Nc1ncc2cccc(-n3ccc(CO)n3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['OCc1cc[nH]n1']; [0.9999653100967407] +CC1(c2cccc3cnc(N)nc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc3cnc(N)nc23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccccc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999997615814209, 0.9999694228172302, 0.9999408721923828, 0.9991443157196045, 0.9982602596282959, 0.8310549259185791] +Cc1cc(-c2cccc3cnc(N)nc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2cnc(N)nc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@@H](Nc1cccc2cnc(N)nc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.9912079572677612, 0.9300976991653442] +C[C@H](Nc1cccc2cnc(N)nc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1']; [0.9912079572677612, 0.9300976991653442] +Nc1ncc2cccc(-n3cnc(CCO)c3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['OCCc1c[nH]cn1']; [0.9999862313270569] +Nc1ncc2cccc(-c3c(F)cccc3Cl)c2n1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Fc1cccc(Cl)c1Br', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncc2cccc(Br)c2n1', 'OB(O)c1c(F)cccc1Cl']; [0.9999995827674866, 0.9999949932098389, 0.999947726726532, 0.997452974319458] +Nc1ncc2cccc(-n3ncc4ccccc43)c2n1; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(F)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9997957944869995, 0.9942432641983032, 0.9887189865112305] +Nc1ncc2cccc(-c3ccc(C(=O)c4ccccc4)cc3)c2n1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Nc1ncc2cccc(Cl)c2n1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccccc1']; [0.9999991655349731, 0.9999764561653137, 0.9995627999305725, 0.9988631010055542, 0.9947671890258789, 0.9542982578277588] +Nc1ncc2cccc(-c3ccc(-n4cncn4)cc3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-n3ncc4c(O)cccc43)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3nc4ccc(O)cc4[nH]3)c2n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3cnc(N)nc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)nc23)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3cn(Cc4ccccc4)nn3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ccc(Cn2ccnn2)cc1']; [0.991830587387085] +Nc1ncc2cccc(CCC(=O)NCc3ccccn3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ccn(CC[NH3+])n3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(CS(=O)(=O)NCc3ccccn3)c2n1; [None]; [None]; [0] +CCc1cc(-c2cccc3cnc(N)nc23)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1ccnc(N)n1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999536871910095, 0.9951003789901733] +Nc1ncc2cccc(-c3nncn3C3CC3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(Cc3nnc4ccc(-c5ccccc5)nn34)c2n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +Nc1ncc2cccc(-c3nnc(N)s3)c2n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3cnc(N)nc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3cnc(N)nc23)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3cnc(N)nc23)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4cnc(N)nc34)nc2NC1=O; ['CC1(C)Oc2cccnc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9975419640541077, 0.9855520129203796] +Cn1cc(C(N)=O)cc1-c1cccc2cnc(N)nc12; [None]; [None]; [0] +Nc1ncc2cccc(-c3nc4ccccc4s3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc4ccsc34)c2n1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; ['Nc1ncc2cccc(Br)c2n1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999970197677612, 0.9998301863670349, 0.9890080094337463] +Nc1ncc2cccc(-c3cccc4nnsc34)c2n1; [None]; [None]; [0] +Nc1cncc(-c2cccc3cnc(N)nc23)n1; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cnccn1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999102354049683, 0.9944155216217041, 0.8179775476455688] +Nc1ncc2cccc(Oc3ccc(C[NH3+])cc3F)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3c[nH]c4cccnc34)c2n1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ncc2cccc(Br)c2n1']; [0.9999967813491821] +Nc1ncc2cccc(-c3nc(N)c4ccccc4n3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(-c3ncc4cc[nH]c4n3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ncc2cc[nH]c2n1']; [0.9934986233711243] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4cnc(N)nc34)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2cnc(N)nc12; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.999992847442627, 0.9999728202819824, 0.9999407529830933, 0.9992934465408325, 0.9930216073989868, 0.988222599029541] +CC(=O)Nc1ncc(-c2cccc3cnc(N)nc23)[nH]1; [None]; [None]; [0] +COc1ccc(Oc2cccc3cnc(N)nc23)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1']; [0.9986853003501892, 0.9340364933013916] +Nc1ncc2cccc(-c3cn(CCO)cn3)c2n1; [None]; [None]; [0] +Nc1ncc2cccc(N3CCC(c4nc5ccccc5[nH]4)CC3)c2n1; ['Nc1ncc2cccc(Br)c2n1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999628067016602] +COc1ccc(OC)c(-c2cccc3cnc(N)nc23)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)cc1']; ['Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Br)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Cl)c2n1', 'Nc1ncc2cccc(Br)c2n1']; [0.9999765157699585, 0.9999685287475586, 0.9999369382858276, 0.9981577396392822, 0.9921813011169434, 0.9881897568702698, 0.9603571891784668] +CN(C)S(=O)(=O)c1cccc(-c2cccc3cnc(N)nc23)c1; [None]; [None]; [0] +Nc1ncc2cccc(-c3cccc(NC(=O)C4CCNCC4)c3)c2n1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3cnc(N)nc23)CC1; [None]; [None]; [0] +Nc1ncc2cccc(N3CC=C(c4c[nH]c5ccccc45)CC3)c2n1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3cnc(N)nc23)cnn1; [None]; [None]; [0] +Nc1ncc(-c2cccc(O)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ncccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)ccc3c2OCO3)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)c(O)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)cccc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(Oc2ccc(F)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Nc1ncc(-c2n[nH]c3ccccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2F)cc1-c1ccccc1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1nccc(-c2cnc(N)c(-c3ccccc3)c2)n1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)c2)ccc1O; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc(N)c(-c4ccccc4)c3)cc2[nH]1; [None]; [None]; [0] +Nc1ncc(-c2ccc(-c3ccc(O)cc3O)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cn[nH]c2Cl)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3ccccc3c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(Br)c2)cc1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)o1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)c(F)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)[O-])cc2)cc1-c1ccccc1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)c(-c3ccccc3)c2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)c(Cl)c2)cc1-c1ccccc1; ['NNc1ccccc1', 'NNc1ccc(F)c(Cl)c1']; ['Nc1ccc(-c2ccc(F)c(Cl)c2)cn1', 'Nc1ncccc1-c1ccccc1']; [0.9988113641738892, 0.9462230205535889] +Cn1cc(-c2cnc(N)c(-c3ccccc3)c2)c2ccccc21; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2O)cc1-c1ccccc1; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c(-c3ccccc3)c2)ccn1; [None]; [None]; [0] +Nc1ncc(COc2ccccc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cnccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cnn3ncccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc(O)ccc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1OC; [None]; [None]; [0] +Nc1ncc(-c2cnc(O)c(Cl)c2)cc1-c1ccccc1; [None]; [None]; [0] +CCOc1cccc(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnc(N)c(-c3ccccc3)c2)c[nH]1; [None]; [None]; [0] +Nc1ncc(-c2[nH]cnc2-c2ccc(F)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc(N)c(-c4ccccc4)c3)cc2[nH]1; [None]; [None]; [0] +Nc1ncc(-c2cnc3[nH]ccc3c2)cc1-c1ccccc1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)c(-c3ccccc3)c2)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnc(N)c(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3s2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cncc(O)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CC(=O)N3)cc1-c1ccccc1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +CNc1nccc(-c2cnc(N)c(-c3ccccc3)c2)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc(N)c(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc(N)c(-c3ccccc3)c2)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccncc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCN3)cc1-c1ccccc1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2cc(C(F)F)n[nH]2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc(Cl)c(O)c(Cl)c2)cc1-c1ccccc1; [None]; [None]; [0] +CCc1sccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2cc(O)n3nccc3n2)cc1-c1ccccc1; [None]; [None]; [0] +CNc1nc(-c2cnc(N)c(-c3ccccc3)c2)ncc1F; [None]; [None]; [0] +Nc1ncc(Nc2ccncc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2F)cc1-c1ccccc1; ['NNc1ccc(Br)cc1F']; ['Nc1ncccc1-c1ccccc1']; [0.7833437919616699] +Nc1ncc(-c2ccc3[nH]c(=O)[nH]c3c2)cc1-c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Cc1oc(-c2cnc(N)c(-c3ccccc3)c2)cc1C(=O)[O-]; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cc(O)cc(Br)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)NC3CC3)cc2)cc1-c1ccccc1; [None]; [None]; [0] +CN(c1cnc(N)c(-c2ccccc2)c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)c2)cc(C)c1O; [None]; [None]; [0] +Nc1ncc(-c2[nH]nc3ccc(F)cc23)cc1-c1ccccc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc(N)c(-c4ccccc4)c3)cc2o1; [None]; [None]; [0] +CSc1cccc(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2cc(F)c(O)c(F)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Oc2ccc(F)cc2F)cc1-c1ccccc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(OCc2cccc3ccccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(CCc2c[nH]c3ccccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ocnc2-c2ccc(F)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(=O)[nH][nH]c3c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1-c1ccccc1; [None]; [None]; [0] +CCOc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(OCc2ccc(F)cc2F)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(F)cc2F)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NCc2c(F)cccc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)c2)cc(OC)c1OC; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cnc3cccnn23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ncc3ccccc3n2)cc1-c1ccccc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(N3CCOCC3)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc(N)c(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)c2)sn1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)C3CC3)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3[nH]2)cc1-c1ccccc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(Nc2ncccn2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2nccc3ccccc23)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)Nc3ccccc3)cc2)cc1-c1ccccc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C3CCNCC3)c2)cc1-c1ccccc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc(N)c(-c4ccccc4)c3)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnc(N)c(-c4ccccc4)c3)cn2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(OCCO)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Nc2ccncn2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(F)(F)F)cc2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cn2)cc1-c1ccccc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc(N)c(-c3ccccc3)c2)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CS(=O)(=O)C3)cc1-c1ccccc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc(N)c(-c3ccccc3)c2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc([C@H]2CCN(C(=O)c3ccccc3)C2)cc1-c1ccccc1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc(N)c(-c3ccccc3)c2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2)cc1-c1ccccc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc(N)c(-c4ccccc4)c3)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc(N)c(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Nc1ncc(-c2ccn3nccc3n2)cc1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)c(C)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; ['CCN(CC)C(=O)c1ccc(I)cc1']; ['Nc1ncccc1-c1ccccc1']; [0.9018285870552063] +COc1ccc(Cl)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCO3)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3ccccc23)cc1-c1ccccc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2-n2cccn2)cc1-c1ccccc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc(N)c(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cnc(N)c(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; ['CC(C)(C)c1ccc(-c2ccc(N)nc2)cc1']; ['NNc1ccccc1']; [0.8790602087974548] +Nc1ncc(-c2cccc3c2OCO3)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3ccccc3)[nH]n2)cc1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2scc3c2OCCO3)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cnc3ccccc3c2)cc1-c1ccccc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CSc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; ['CSc1ccc(-c2ccc(N)nc2)cc1']; ['NNc1ccccc1']; [0.8844289779663086] +Nc1ncc(-c2cc3ccccc3s2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1nc(-c2cnc(N)c(-c3ccccc3)c2)cs1; [None]; [None]; [0] +CC1(COc2cnc(N)c(-c3ccccc3)c2)COC1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)c(-c3ccccc3)c2)CC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccn(-c3cccc(Cl)c3)n2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2Cl)cc1-c1ccccc1; [None]; [None]; [0] +CCc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ncc(Br)cn2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)cc2Cl)cc1-c1ccccc1; ['NNc1ccccc1']; ['Nc1ccc(-c2ccc(Cl)cc2Cl)cn1']; [0.8532218337059021] +CCN1CCN(Cc2ccc(-c3cnc(N)c(-c4ccccc4)c3)cc2)CC1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCC(=O)N3)cc1-c1ccccc1; [None]; [None]; [0] +COc1ccc(CNc2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)c2)nc(N)n1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)c2)ccc1N1CCOCC1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c(-c3ccccc3)c2)c(C(F)(F)F)n1; [None]; [None]; [0] +Nc1ncc(NC2CN(C(=O)C3CC3)C2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ncc3cccn3n2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccn3n2)cc1-c1ccccc1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc(N)c(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cnc(N)c(-c3ccccc3)c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)c2)ccc1Cl; ['COc1cc(NN)ccc1Cl']; ['Nc1ncccc1-c1ccccc1']; [0.7986218929290771] +Cc1csc2c(-c3cnc(N)c(-c4ccccc4)c3)ncnc12; [None]; [None]; [0] +Nc1ncc(-c2cnn(CCO)c2)cc1-c1ccccc1; [None]; [None]; [0] +Cc1nc(Nc2cnc(N)c(-c3ccccc3)c2)sc1C; [None]; [None]; [0] +Nc1ncc(-c2ncc(Cl)cn2)cc1-c1ccccc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc(N)c(-c4ccccc4)c3)ccc2O1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ccc(O)cc23)cc1-c1ccccc1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)c2)c(OC)cc1Br; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)c2)nn1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2ccco2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c(-c3ccccc3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(Cc2ccc(S(=O)(=O)CCO)cc2)cc1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3cnc(N)c(-c4ccccc4)c3)cc2c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc(N)c(-c3ccccc3)c2)CC1; [None]; [None]; [0] +Nc1ncc(-c2ccc3cn[nH]c3c2)cc1-c1ccccc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc(N)c(-c3ccccc3)c2)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc(N)c(-c3ccccc3)c1)cn2C; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cc1-c1ccccc1; [None]; [None]; [0] +CCn1cc(-c2cnc(N)c(-c3ccccc3)c2)cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3o2)cc1-c1ccccc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2ncc3sccc3n2)cc1-c1ccccc1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc(N)c(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3cccnc3)ccn2)cc1-c1ccccc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(OC(F)(F)F)cc2)cc1-c1ccccc1; ['NNc1ccccc1', 'NNc1ccc(OC(F)(F)F)cc1']; ['Nc1ccc(-c2ccc(OC(F)(F)F)cc2)cn1', 'Nc1ncccc1-c1ccccc1']; [0.9958198666572571, 0.9183902740478516] +Cn1cc(Br)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)N3CCCC3)c2)cc1-c1ccccc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cn1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc(N)c(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cnc(N)c(-c3ccccc3)c2)n1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)c2)cc(C)c1OCCO; [None]; [None]; [0] +Nc1ncc(-c2ncn3c2CCCC3)cc1-c1ccccc1; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc(N)c(-c4ccccc4)c3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnc(N)c(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc(N)c(-c4ccccc4)c3)cn2)CC1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc(N)c(-c4ccccc4)c3)ccc21; [None]; [None]; [0] +Nc1ncc(-c2cccc(N3CCCC3=O)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2cccc(OC(F)(F)F)c2)cc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(CCO)cc2)cc1-c1ccccc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc(N)c(-c4ccccc4)c3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +Cn1nc(-c2cnc(N)c(-c3ccccc3)c2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)c2)ncc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)c(OC)c1; [None]; [None]; [0] +Nc1ncc(Nc2ccc(F)cn2)cc1-c1ccccc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Nc1ncc(Nc2ccccn2)cc1-c1ccccc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc(N)c(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(F)ccc2O)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccccc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I']; [0.9999792575836182, 0.9999538660049438, 0.9996800422668457, 0.9992534518241882, 0.9964408874511719, 0.9659181833267212, 0.9044615626335144] +COc1ncccc1-c1cc(F)ccc1O; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Cl']; ['COc1ncccc1Br', 'Oc1ccc(F)cc1Br', 'COc1ncccc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O']; [0.9999721050262451, 0.9999644756317139, 0.9996052384376526, 0.9995353817939758, 0.9994573593139648, 0.9993016719818115, 0.9992166757583618, 0.9987793564796448, 0.9973850250244141, 0.9957758188247681, 0.9923086166381836] +Cc1ccc(C(=O)NCCO)cc1-c1cnc(N)c(-c2ccccc2)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(F)ccc2O)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Cl)c1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.999996542930603, 0.9999924302101135, 0.9999877214431763, 0.9999241828918457, 0.9998983144760132, 0.9995890259742737, 0.9994728565216064, 0.997200608253479, 0.9927821159362793, 0.9905235171318054] +CCOc1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc(N)c(-c3ccccc3)c2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(F)ccc1O; ['Cc1csc(C(C)(C)O)n1']; ['Oc1ccc(F)cc1Br']; [0.9982596635818481] +Cc1ccc2ncn(-c3cc(F)ccc3O)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O']; [0.9847577810287476, 0.9722951054573059, 0.865998387336731] +Oc1ccc(F)cc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.9999995231628418, 0.999995768070221, 0.9999408721923828, 0.9992624521255493] +COc1cc(-c2cc(F)ccc2O)cc(OC)c1OC; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1ccc(C(=O)O)c(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cccc(OC)c1OC']; ['COc1cc(Br)cc(OC)c1OC', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1cc(I)cc(OC)c1OC', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Cl', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O']; [0.9999326467514038, 0.9997318983078003, 0.9996614456176758, 0.9995546340942383, 0.9990196228027344, 0.9986092448234558, 0.9984883069992065, 0.9976767301559448, 0.9974013566970825, 0.9973549246788025, 0.9958155155181885, 0.9956629276275635, 0.9949157238006592, 0.9945881366729736, 0.984115481376648, 0.9662330150604248, 0.9604942202568054, 0.9471766352653503, 0.9438455700874329, 0.9356102347373962, 0.9340970516204834, 0.9269471168518066, 0.9161983728408813, 0.9025125503540039, 0.8046033382415771, 0.7555863261222839] +Oc1ccc(F)cc1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Oc1ccc(F)cc1Br', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1cc(F)ccc1O', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Ic1ccc(N2CCOCC2)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'c1ccc(N2CCOCC2)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1Cl', 'c1ccc(N2CCOCC2)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9999983906745911, 0.999990701675415, 0.9999576807022095, 0.9999528527259827, 0.9999496936798096, 0.9999314546585083, 0.9999253749847412, 0.9998674392700195, 0.9996538162231445, 0.9996508359909058, 0.9995107054710388, 0.9994228482246399, 0.9988002777099609, 0.9985533952713013, 0.9973087310791016, 0.9970333576202393, 0.9956915378570557, 0.994865894317627, 0.9912323355674744, 0.9901869297027588, 0.9860820770263672, 0.9610273838043213, 0.8456981182098389, 0.8333929777145386, 0.7590939998626709] +N#Cc1ccc(O)c(-c2cc(F)ccc2O)c1; [None]; [None]; [0] +Oc1cccc(-c2cc(F)ccc2O)c1; [None]; [None]; [0] +COc1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(F)ccc2O)c1)C1CC1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.9999583959579468, 0.9994922876358032, 0.9931150078773499] +Cc1cc(Nc2cc(F)ccc2O)sn1; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1O', 'Nc1cc(F)ccc1O']; [0.999311625957489, 0.999191403388977, 0.9915226101875305, 0.9836368560791016] +Oc1ccc(F)cc1-c1nc2ccccc2[nH]1; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]']; ['OCc1cc(F)ccc1O', 'O=Cc1cc(F)ccc1O', 'O=C(O)c1cc(F)ccc1O', 'O=Cc1cc(F)ccc1O']; [0.9982617497444153, 0.9965254068374634, 0.9916146993637085, 0.9759870767593384] +O=C([O-])c1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1']; [0.9569666385650635] +NC(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'NC(=O)c1ccc(Cl)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I']; [0.9999887347221375, 0.9999085068702698, 0.9994549751281738, 0.9991599321365356, 0.9988945722579956, 0.9987854957580566, 0.9985212087631226, 0.9970319867134094, 0.995451807975769, 0.9879204034805298, 0.9863142371177673, 0.9278374910354614, 0.8840880393981934, 0.8569592237472534, 0.8505105972290039, 0.7953079342842102] +Oc1ccc(F)cc1Nc1ncccn1; ['Nc1ncccn1', 'Clc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1cc(F)ccc1O']; ['Oc1ccc(F)cc1Br', 'Nc1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'Nc1ncccn1']; [0.9881044626235962, 0.9863905906677246, 0.9828431606292725, 0.9460746645927429, 0.8452964425086975, 0.7606483697891235, 0.7603594064712524] +Oc1ccc(F)cc1-c1nccc2ccccc12; ['Brc1nccc2ccccc12', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'OB(O)c1cc(F)ccc1O']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Clc1nccc2ccccc12', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'c1ccc2cnccc2c1']; [0.9999617338180542, 0.9989047050476074, 0.9987543821334839, 0.9926179647445679, 0.9653891324996948, 0.9243009686470032] +O=C(Nc1ccccc1)c1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl']; [0.999992847442627, 0.9999649524688721, 0.9996052980422974, 0.9993492364883423, 0.9993427991867065, 0.989507794380188, 0.8000776171684265, 0.785219669342041] +N#Cc1cccc(Cn2cc(-c3cc(F)ccc3O)cn2)c1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1cccc(C2CCNCC2)c1; ['Brc1cccc(C2CCNCC2)c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Clc1cccc(C2CCNCC2)c1', 'OB(O)c1cc(F)ccc1O']; [0.9999444484710693, 0.9912214279174805, 0.9881060719490051] +Oc1ccc(F)cc1Nc1ccncn1; ['Nc1ccncn1', 'Nc1cc(F)ccc1O', 'Clc1ccncn1', 'Nc1ccncn1', 'Nc1cc(F)ccc1O', 'Brc1ccncn1', 'Fc1ccncn1', 'Nc1ccncn1']; ['Oc1ccc(F)cc1Br', 'O=c1ccnc[nH]1', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1F', 'Oc1ccncn1', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl']; [0.9986881613731384, 0.9931327104568481, 0.9907151460647583, 0.9726836681365967, 0.962090015411377, 0.9575080871582031, 0.9504117965698242, 0.9425413608551025] +O=C(c1ccc(-c2cc(F)ccc2O)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Oc1ccc(F)cc1Br', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O']; [0.9999961853027344, 0.9999825358390808, 0.9998409152030945, 0.9998151659965515, 0.9997346997261047, 0.999701976776123, 0.9995757937431335, 0.9988553524017334, 0.9966080784797668, 0.9932979941368103, 0.9619048833847046, 0.9542165994644165, 0.9542117118835449, 0.8952931761741638] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(F)ccc3O)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(-c2cc(F)ccc2O)nc1)N1CCOCC1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'OB(O)c1cc(F)ccc1O']; [0.9999786615371704, 0.9999594688415527] +OCCOc1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccccc1', 'OB(O)c1cc(F)ccc1O']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'OCCOc1ccc(Cl)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(Br)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OCCOc1ccc(Cl)cc1']; [0.9999939203262329, 0.9999537467956543, 0.999843180179596, 0.999477744102478, 0.9991140365600586, 0.9986009001731873, 0.9979898929595947, 0.9972732663154602, 0.9952123165130615, 0.9912833571434021, 0.974909245967865, 0.889411211013794, 0.7759206295013428] +CC(=O)NCc1ccc(-c2cc(F)ccc2O)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I']; [0.9999922513961792, 0.9999334812164307, 0.9998501539230347, 0.9993308186531067, 0.998871922492981, 0.9986509084701538, 0.9563131332397461, 0.9259046316146851, 0.895182728767395] +CNS(=O)(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O']; [0.9999829530715942, 0.9999271631240845, 0.9996556043624878, 0.9995803236961365, 0.9989887475967407, 0.9979953169822693, 0.9970788955688477, 0.9780756831169128, 0.9353177547454834, 0.9028119444847107, 0.8902329802513123] +C[C@H](O)COc1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(F)ccc2O)s1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'Cc1nc(C)c(Br)s1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1']; [0.999992847442627, 0.9999822378158569, 0.9997870922088623, 0.9996007084846497, 0.9577780961990356] +O=S1(=O)Cc2ccc(-c3cc(F)ccc3O)cc2C1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br']; [0.9998545050621033, 0.9925504922866821, 0.9460196495056152, 0.8264250755310059] +CN(C)c1ccc(-c2cc(F)ccc2O)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc([B-](F)(F)F)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc([B-](F)(F)F)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1cccc(Cl)c1', 'CN(C)c1cccc(C=O)c1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CN(C)c1ccc(Br)cc1', 'Oc1ccc(F)cc1Cl', 'CN(C)c1ccc(I)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CN(C)c1ccc(Cl)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1']; [0.9999959468841553, 0.9999780654907227, 0.9999257326126099, 0.9998847246170044, 0.9997484683990479, 0.9997454881668091, 0.9995996356010437, 0.9993573427200317, 0.999228835105896, 0.9990994930267334, 0.998592734336853, 0.9968500137329102, 0.9958760142326355, 0.9939326047897339, 0.9922846555709839, 0.9914054870605469, 0.9908298254013062, 0.9896137118339539, 0.9779295325279236, 0.9716681241989136, 0.9714535474777222, 0.9583311080932617, 0.9152356386184692, 0.9126295447349548, 0.9118865728378296, 0.8900185227394104, 0.8820838332176208, 0.8238539099693298, 0.780015230178833, 0.764358401298523] +Oc1ccc(F)cc1-c1ccc(C(F)(F)F)cc1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'F[B-](F)(F)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'FC(F)(F)c1ccc(Br)cc1', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'CCO[Si](OCC)(OCC)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'F[B-](F)(F)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'FC(F)(F)c1ccc(Br)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'FC(F)(F)c1ccc(I)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'FC(F)(F)c1ccc(Cl)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1F', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1I', 'O=Cc1cc(O)ccc1F', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9999963045120239, 0.9999570250511169, 0.9999438524246216, 0.999854564666748, 0.9996894598007202, 0.9996886253356934, 0.9996772408485413, 0.9995359182357788, 0.9993860721588135, 0.9992977976799011, 0.9992731809616089, 0.9991226196289062, 0.9988902807235718, 0.998875081539154, 0.9981310963630676, 0.9972966909408569, 0.9966152906417847, 0.9946683645248413, 0.9932668805122375, 0.9927818775177002, 0.9915753602981567, 0.9905762672424316, 0.9809129238128662, 0.9774012565612793, 0.9705630540847778, 0.9692002534866333, 0.9600256681442261, 0.9592534303665161, 0.8767731189727783, 0.7935291528701782, 0.7613022923469543] +CN(C)S(=O)(=O)c1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(F)ccc2O)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1ccnc(N)n1', 'CC(C)c1ccnc(N)n1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O']; [0.9999549388885498, 0.9995638728141785, 0.99934983253479, 0.9991029500961304] +CCNS(=O)(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'CCNS(=O)(=O)c1ccccc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl']; [0.9997847080230713, 0.9991106986999512, 0.998664140701294, 0.997733473777771, 0.9974775314331055, 0.9823939800262451, 0.9695591926574707, 0.9559293985366821, 0.811396598815918, 0.8010560274124146] +CC(=O)N1CCCN(c2cccc(-c3cc(F)ccc3O)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(F)ccc2O)nc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1']; ['CCCOc1ccc(Br)nc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.9999700784683228, 0.9999333024024963, 0.9998459815979004] +CS(=O)(=O)N1CCC(c2cc(F)ccc2O)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cc(F)ccc2O)C1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ccc(Br)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(I)cc1', 'Br[Mg]c1ccc(Br)cc1', 'F[B-](F)(F)c1ccc(Br)cc1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(I)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'N#[N+]c1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'Brc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'Brc1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1', 'O=C(O)c1cc(O)ccc1F', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'O=Cc1cc(O)ccc1F']; [0.9999847412109375, 0.9999746084213257, 0.9995632171630859, 0.9983818531036377, 0.9974438548088074, 0.9965041279792786, 0.9946127533912659, 0.9945039749145508, 0.9941056370735168, 0.9931818246841431, 0.9914884567260742, 0.9887405037879944, 0.9806355237960815, 0.9660922288894653, 0.9583951234817505, 0.9443711638450623, 0.9126570224761963, 0.9115160703659058, 0.9070005416870117, 0.8207727074623108, 0.8022919297218323, 0.7781163454055786] +CN(C)c1ccc(-c2cc(F)ccc2O)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CN(C)c1ccc(Br)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I']; [0.9999979734420776, 0.9999921917915344, 0.999983549118042, 0.9997090697288513, 0.9994471073150635, 0.9992662668228149, 0.9988374710083008, 0.9945616722106934, 0.9231569766998291, 0.8648083806037903, 0.8481197953224182] +CCN(CC)C(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Oc1ccc(F)cc1Cl', 'CCN(CC)C(=O)c1ccc(I)cc1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1']; [0.9999990463256836, 0.9999944567680359, 0.9999821186065674, 0.9999592304229736, 0.9999582767486572, 0.9998904466629028, 0.9996732473373413, 0.9992867708206177, 0.9991599321365356, 0.9913352727890015, 0.9449001550674438, 0.8359447121620178] +Oc1ccc(F)cc1-c1ccn2nccc2n1; ['Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C']; ['OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Clc1ccn2nccc2n1']; [0.999557614326477, 0.9995460510253906, 0.9995262026786804, 0.998602032661438] +CNS(=O)(=O)c1ccc(-c2cc(F)ccc2O)c(C)c1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl']; [0.999995768070221, 0.999967098236084, 0.999729335308075, 0.9997172355651855, 0.999701738357544, 0.9994631409645081, 0.9993172287940979, 0.9982805252075195, 0.9933370351791382] +Cc1c(C(=O)[O-])cccc1-c1cc(F)ccc1O; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ccccc1-n1cccn1; ['Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Oc1ccc(F)cc1Br', 'Brc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Oc1ccc(F)cc1I', 'OB(O)c1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'c1ccc(-n2cccn2)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1Cl', 'c1ccc(-n2cccn2)cc1', 'Oc1ccc(F)cc1', 'OB(O)c1cc(F)ccc1O', 'c1ccc(-n2cccn2)cc1', 'c1ccc(-n2cccn2)cc1', 'Oc1ccccc1-n1cccn1']; [0.9999986886978149, 0.9999918937683105, 0.9999871850013733, 0.9999555349349976, 0.9999442100524902, 0.9999035596847534, 0.9997789859771729, 0.9976412653923035, 0.9972732067108154, 0.996492862701416, 0.9934022426605225, 0.988210916519165, 0.9807502031326294, 0.9399809837341309, 0.8518203496932983] +COc1ccc(Cl)cc1-c1cc(F)ccc1O; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1[N+]#N', 'COc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1']; ['COc1ccc(Cl)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'COc1ccc(Cl)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I']; [0.9999521970748901, 0.999859094619751, 0.9998375177383423, 0.9998301267623901, 0.9996230602264404, 0.9995781183242798, 0.9993687868118286, 0.9992053508758545, 0.9989663362503052, 0.998816192150116, 0.9967408180236816, 0.9962887763977051, 0.9950996041297913, 0.9910241961479187, 0.9876704216003418, 0.9873670339584351, 0.987208366394043, 0.9850895404815674, 0.9838393926620483, 0.9817558526992798, 0.9688215255737305, 0.9411420822143555, 0.9072360992431641, 0.9065076112747192, 0.8893470168113708, 0.8493082523345947] +Oc1ccc(F)cc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ccc2c(c1)CCO2; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'Oc1ccc(F)cc1Br']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Clc1ccc2c(c1)CCO2', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Cl', 'c1ccc2c(c1)CCO2']; [0.9999734163284302, 0.9999340772628784, 0.9999253749847412, 0.9997468590736389, 0.9996839761734009, 0.9995155334472656, 0.999240517616272, 0.999204695224762, 0.9972814321517944, 0.9969346523284912, 0.9962111711502075, 0.9959768056869507, 0.9853994846343994, 0.9795968532562256, 0.8193804025650024, 0.8095935583114624] +CC(C)c1ccc2nc(-c3cc(F)ccc3O)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cc(F)ccc1O']; [0.9996244311332703] +Oc1ccc(F)cc1-c1c[nH]c2ccccc12; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Oc1ccc(F)cc1I']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Ic1c[nH]c2ccccc12', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'c1ccc2[nH]ccc2c1', 'Clc1c[nH]c2ccccc12', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'c1ccc2[nH]ccc2c1']; [0.9999924898147583, 0.9999794363975525, 0.9998579025268555, 0.9997276663780212, 0.9991427659988403, 0.9989490509033203, 0.9988722801208496, 0.9987199306488037, 0.9938384294509888, 0.9897154569625854, 0.9842546582221985, 0.9721214771270752, 0.8154747486114502, 0.7793395519256592] +CC(=O)Nc1cccc(-c2cc(F)ccc2O)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1']; [0.9999737739562988, 0.9999730587005615, 0.999847948551178, 0.9996944665908813, 0.9994688034057617, 0.9987781643867493, 0.9985324144363403, 0.997190535068512, 0.9965858459472656, 0.9960293769836426, 0.9922360181808472, 0.9905444383621216, 0.9901635646820068, 0.9802964329719543, 0.9079616069793701] +COc1cc(OC)c(-c2cc(F)ccc2O)cc1Cl; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(OC)c(Br)cc1Cl', 'COc1ccc(Cl)c(OC)c1', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['COc1cc(OC)c(Br)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1']; [0.9995617866516113, 0.9991780519485474, 0.9967141151428223, 0.9925264120101929, 0.9897921085357666, 0.9845290780067444, 0.9491960406303406, 0.9219058752059937, 0.9152877330780029, 0.7855632305145264] +COc1cc(-c2cc(F)ccc2O)ccc1O; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(I)ccc1O', 'COc1ccccc1O', 'COc1ccccc1O']; ['COc1cc(Br)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'COc1cc(I)ccc1O', 'OB(O)c1cc(F)ccc1O', 'COc1cc(Cl)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O']; [0.9999250173568726, 0.9998974800109863, 0.9995989799499512, 0.9995971918106079, 0.9995803236961365, 0.999566912651062, 0.999316394329071, 0.9989119172096252, 0.9988135099411011, 0.9987497329711914, 0.9986759424209595, 0.9978429079055786, 0.996166467666626, 0.9925854206085205, 0.9915237426757812, 0.991049587726593, 0.9819849729537964, 0.9796067476272583, 0.9793636202812195, 0.9671720266342163, 0.9625822901725769, 0.9346851110458374, 0.934016227722168, 0.9251083731651306, 0.9219552278518677, 0.9012831449508667, 0.8862173557281494, 0.7953653335571289] +Oc1ccc(F)cc1-c1scc2c1OCCO2; ['Oc1ccc(F)cc1Br', 'CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'Oc1ccc(F)cc1I', 'CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'Oc1ccc(F)cc1']; ['c1scc2c1OCCO2', 'Oc1ccc(F)cc1Br', 'c1scc2c1OCCO2', 'Oc1ccc(F)cc1I', 'c1scc2c1OCCO2']; [0.9999956488609314, 0.999984622001648, 0.9999527931213379, 0.9999507665634155, 0.9992061257362366] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(F)ccc1O; [None]; [None]; [0] +Nc1nc(-c2cc(F)ccc2O)cs1; ['NC(N)=S', 'CC(=O)c1cc(F)ccc1O', 'NC(N)=S', None]; ['O=C(CBr)c1cc(F)ccc1O', 'NC(N)=S', 'O=C(CCl)c1cc(F)ccc1O', None]; [0.9999814033508301, 0.9998176097869873, 0.9995713233947754, 0] +Oc1ccc(F)cc1-c1cnc2ccccc2c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Br[Zn]c1cnc2ccccc2c1']; ['Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1I', 'Ic1cnc2ccccc2c1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I']; [0.9999815225601196, 0.9999656677246094, 0.9998352527618408, 0.9984859228134155, 0.9980064630508423, 0.9974997043609619, 0.9966333508491516, 0.9944970011711121, 0.9929247498512268, 0.9908173680305481, 0.9805657863616943] +CN(C)C(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', None, 'CN(C)C(=O)c1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'CN(C)C(=O)c1ccc(Cl)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', None, 'Oc1ccc(F)cc1']; [0.9999991655349731, 0.9999974966049194, 0.9999620318412781, 0.9999548196792603, 0.9998592734336853, 0.9997982978820801, 0.9997483491897583, 0.9997073411941528, 0.9996182918548584, 0.9996010065078735, 0.9992725253105164, 0.9982503652572632, 0.9938897490501404, 0.9889998435974121, 0.9766620993614197, 0, 0.7571814060211182] +CC(C)(C)c1ccc(-c2cc(F)ccc2O)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1']; [0.9999994039535522, 0.9999985694885254, 0.9999980926513672, 0.9998659491539001, 0.999846339225769, 0.9997127056121826, 0.9963134527206421, 0.8536326885223389] +COc1cccc(C(=O)Nc2cc(F)ccc2O)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)Oc2ccccc2)c1', 'COc1cccc(C(=O)O)c1']; ['Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O']; [0.9962158203125, 0.9912967085838318, 0.983823299407959] +Oc1ccc(F)cc1-c1ccn(-c2cccc(Cl)c2)n1; ['Clc1cccc(Br)c1', 'Clc1cccc(I)c1', 'Fc1cccc(Cl)c1', 'Clc1ccccc1']; ['Oc1ccc(F)cc1-c1cc[nH]n1', 'Oc1ccc(F)cc1-c1cc[nH]n1', 'Oc1ccc(F)cc1-c1cc[nH]n1', 'Oc1ccc(F)cc1-c1cc[nH]n1']; [0.9999971389770508, 0.999984622001648, 0.9998707175254822, 0.9963171482086182] +Oc1ccc(F)cc1-c1cccc2c1OCO2; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Oc1ccc(F)cc1Br', 'Ic1cccc2c1OCO2']; ['Oc1ccc(F)cc1Br', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Ic1cccc2c1OCO2', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1', 'c1ccc2c(c1)OCO2', 'Oc1ccc(F)cc1']; [0.9999707341194153, 0.9999704360961914, 0.9997797012329102, 0.9996864199638367, 0.9996753931045532, 0.9996275901794434, 0.9978946447372437, 0.9974604845046997, 0.9971942901611328, 0.994276762008667, 0.9937169551849365, 0.9335891604423523, 0.8547455072402954, 0.8243635892868042, 0.7999308109283447] +CC1(COc2cc(F)ccc2O)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'CC1(CI)COC1', 'CC1(CBr)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CO)COC1', 'CC1(CCl)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1O', 'Oc1ccc(F)cc1O', 'Oc1ccc(F)cc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1O', 'Oc1ccc(F)cc1O', 'Oc1ccc(F)cc1F']; [0.9992280006408691, 0.9908051490783691, 0.989202618598938, 0.9833426475524902, 0.9789474606513977, 0.9781830310821533, 0.9661942720413208, 0.9492900371551514, 0.9319796562194824] +CC(C)(C)c1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +CSc1ccc(-c2cc(F)ccc2O)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CSc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc([B-](F)(F)F)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1', 'Oc1ccc(F)cc1Br', 'CSc1ccc(I)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I']; [0.9999939203262329, 0.9999485015869141, 0.9995737671852112, 0.9995429515838623, 0.9980891942977905, 0.9975842237472534, 0.9970342516899109, 0.9962559938430786, 0.9962527751922607, 0.9955195784568787, 0.9911608695983887, 0.9834302663803101, 0.9744600057601929, 0.9678431749343872, 0.9536399245262146, 0.9472967386245728, 0.9394081830978394, 0.938833475112915, 0.8246943950653076, 0.7749053835868835] +Oc1ccc(F)cc1-c1cc2ccccc2s1; ['Brc1cc2ccccc2s1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'OB(O)c1cc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'OB(O)c1cc2ccccc2s1', 'Oc1ccc(F)cc1Br', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'Br[Mg]c1cc2ccccc2s1', 'Brc1cc2ccccc2s1', 'Oc1ccc(F)cc1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'c1ccc2sccc2c1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'c1ccc2sccc2c1']; [0.9999808073043823, 0.9999462366104126, 0.9999327659606934, 0.9999179244041443, 0.999854326248169, 0.9996169805526733, 0.9996016025543213, 0.9995012283325195, 0.9982869625091553, 0.9959684610366821, 0.9820837378501892] +CCN1CCN(Cc2ccc(-c3cc(F)ccc3O)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Oc1ccc(F)cc1Br', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl']; [0.9993941783905029, 0.9988260865211487, 0.9981049299240112, 0.9962685108184814, 0.976298987865448, 0.9295738935470581] +Cc1cc(-c2cc(F)ccc2O)nc(N)n1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Cc1ccnc(N)n1']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.9999834895133972, 0.9999570846557617, 0.9998266100883484, 0.9993941187858582, 0.9846459627151489] +O=C1CCc2cc(-c3cc(F)ccc3O)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'O=C1CCc2cc(Cl)ccc2N1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'O=C1CCc2cc(Br)ccc2N1', 'Oc1ccc(F)cc1Br', 'O=C1CCc2cc(I)ccc2N1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'O=C1CCc2cc(Cl)ccc2N1', 'Oc1ccc(F)cc1Br']; [0.9997720718383789, 0.999252438545227, 0.9986954927444458, 0.9983562231063843, 0.9931981563568115, 0.9887720346450806, 0.9866442084312439, 0.9744225740432739, 0.9698374271392822, 0.9355601668357849, 0.9145457744598389, 0.8235278725624084, 0.7914369106292725] +COc1ccc(CNc2cc(F)ccc2O)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(C=O)cc1']; ['Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O']; [0.9995501637458801, 0.9988213777542114, 0.9947246313095093, 0.983974039554596] +CC(=O)N[C@@H]1CC[C@@H](c2cc(F)ccc2O)CC1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ncc(Br)cn1; ['Clc1ncc(Br)cn1']; ['OB(O)c1cc(F)ccc1O']; [0.9975228309631348] +COc1ccc(-c2cc(F)ccc2O)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1cccc(C=O)c1OC', 'COc1ccccc1OC']; ['Oc1ccc(F)cc1Br', 'COc1ccc(Br)cc1OC', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1ccc(I)cc1OC', 'COc1ccc(Cl)cc1OC', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br']; [0.9999039173126221, 0.9998511672019958, 0.9997848868370056, 0.9997231364250183, 0.9997158646583557, 0.9995068311691284, 0.9990200996398926, 0.9990198612213135, 0.998367965221405, 0.9982460737228394, 0.9974650144577026, 0.9955101013183594, 0.9953836798667908, 0.9935958385467529, 0.9910235404968262, 0.989454984664917, 0.9806832075119019, 0.9798229932785034, 0.9780691266059875, 0.967724084854126, 0.9529815912246704, 0.9383344650268555, 0.9035285115242004, 0.8462001085281372, 0.8444420695304871, 0.8236879110336304, 0.7508231997489929] +O=C(C1CC1)N1CC(Nc2cc(F)ccc2O)C1; [None]; [None]; [0] +CCc1ccc(-c2cc(F)ccc2O)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccccc1', 'CCc1ccccc1', 'CCc1ccc(B(O)O)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CCc1ccc(Br)cc1', 'Oc1ccc(F)cc1Br', 'CCc1ccc(I)cc1', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1']; [0.999997615814209, 0.9999717473983765, 0.9998098015785217, 0.9997180700302124, 0.9987181425094604, 0.9986335039138794, 0.9982484579086304, 0.9981858730316162, 0.9980295896530151, 0.9976810216903687, 0.9919575452804565, 0.9867904782295227, 0.984649658203125, 0.9823645353317261, 0.9766738414764404, 0.9506397247314453, 0.9450922608375549, 0.9262352585792542, 0.8737736940383911, 0.8578223586082458] +Oc1ccc(F)cc1-c1ccc(F)cc1Cl; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc([Mg]Br)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'Fc1cccc(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1', 'Fc1ccc([Mg]Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1']; ['Oc1ccc(F)cc1Br', 'Fc1ccc(Br)c(Cl)c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1I']; [0.9999861121177673, 0.9999765157699585, 0.9999468922615051, 0.9996941089630127, 0.9996868371963501, 0.999669075012207, 0.9995309114456177, 0.9993870258331299, 0.9990453720092773, 0.9984503984451294, 0.9981275200843811, 0.9980854392051697, 0.9972167015075684, 0.9965211153030396, 0.9783782958984375, 0.9778735041618347, 0.9694949388504028, 0.9523175954818726, 0.9137780070304871, 0.8395751714706421, 0.7662860155105591, 0.7506552934646606] +Oc1ccc(F)cc1-c1ncc2cccn2n1; ['Clc1ncc2cccn2n1']; ['OB(O)c1cc(F)ccc1O']; [0.9932622313499451] +COc1cc(-c2cc(F)ccc2O)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1cc(Br)ccc1N1CCOCC1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl']; [0.9999603033065796, 0.9999290704727173, 0.9997254014015198, 0.9977438449859619, 0.9970570802688599, 0.9942935109138489, 0.9941250085830688, 0.9922160506248474, 0.905627965927124] +Oc1ccc(F)cc1-c1cc2ccccn2n1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Brc1cc2ccccn2n1', 'Clc1cc2ccccn2n1']; ['Clc1cc2ccccn2n1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.999725341796875, 0.9989626407623291, 0.9988967180252075] +Cn1cc(-c2cc(F)ccc2O)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.9999619126319885, 0.9999579787254333, 0.9999101161956787, 0.9994240999221802, 0.9991986751556396, 0.9986404180526733, 0.9980188608169556] +Oc1ccc(F)cc1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(F)ccc3O)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(F)ccc3O)c2c1; [None]; [None]; [0] +Cc1csc2c(-c3cc(F)ccc3O)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['OB(O)c1cc(F)ccc1O']; [0.9966635704040527] +COc1cc(-c2cc(F)ccc2O)ccc1Cl; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1cc(I)ccc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1', 'O=C(O)c1cc(O)ccc1F', 'Oc1ccc(F)cc1Cl', 'O=Cc1cc(O)ccc1F']; [0.9999912977218628, 0.999991238117218, 0.9999799728393555, 0.9999455213546753, 0.9999394416809082, 0.9998996257781982, 0.9998626112937927, 0.9998267889022827, 0.9997351169586182, 0.9995793700218201, 0.9981211423873901, 0.9970250129699707, 0.9949429631233215, 0.9915100336074829, 0.9870564937591553, 0.9733484983444214, 0.9205623865127563, 0.9057600498199463, 0.8548499345779419, 0.8504803776741028, 0.7662301659584045] +Oc1ccc(F)cc1-c1ncc(Cl)cn1; ['Clc1cnc(Cl)nc1']; ['OB(O)c1cc(F)ccc1O']; [0.9976264238357544] +Oc1ccc2cccc(-c3cc(F)ccc3O)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(F)ccc2O)cc1OC; [None]; [None]; [0] +OCCn1cc(-c2cc(F)ccc2O)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'OCCn1cc(B(O)O)cn1', 'OB(O)c1cc(F)ccc1O']; ['Oc1ccc(F)cc1Br', 'OCCn1cc(Br)cn1', 'Oc1ccc(F)cc1I', 'OCCn1cc(I)cn1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'Oc1ccc(F)cc1Cl', 'OCCn1cc(Cl)cn1']; [0.9999905824661255, 0.9999866485595703, 0.9999803304672241, 0.9999625086784363, 0.9998748302459717, 0.999791145324707, 0.9934812784194946, 0.9919278025627136, 0.9760128855705261, 0.9704807996749878, 0.9605273008346558] +Cc1nc(Nc2cc(F)ccc2O)sc1C; ['Cc1nc(N)sc1C', 'Cc1nc(Cl)sc1C', 'Cc1nc(Br)sc1C']; ['Oc1ccc(F)cc1Br', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O']; [0.999472975730896, 0.995658278465271, 0.9918557405471802] +Cc1cc(Nc2cc(F)ccc2O)nn1C; ['Cc1cc(Cl)nn1C']; ['Nc1cc(F)ccc1O']; [0.992458701133728] +CCNC(=O)c1ccc(-c2cc(F)ccc2O)nc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNC(=O)c1ccc(Br)nc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNC(=O)c1ccc(Cl)nc1']; ['CCNC(=O)c1ccc(Br)nc1', 'OB(O)c1cc(F)ccc1O', 'CCNC(=O)c1ccc(Cl)nc1', 'OB(O)c1cc(F)ccc1O']; [0.9999811053276062, 0.9998630285263062, 0.9995981454849243, 0.9992692470550537] +O=C(Nc1cc(F)ccc1O)c1ccco1; ['Nc1cc(F)ccc1O', 'NC(=O)c1ccco1']; ['O=C(Cl)c1ccco1', 'Oc1ccc(F)cc1I']; [0.9781826734542847, 0.8916450142860413] +CNC(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.9999960064888, 0.9999620914459229, 0.9998307824134827, 0.99961256980896, 0.9993740320205688, 0.9986166954040527, 0.9962257146835327, 0.9810792803764343, 0.9565089344978333, 0.9195801615715027] +Nc1cc(-c2cc(F)ccc2O)c2cc[nH]c2n1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.9999949932098389, 0.9999120235443115, 0.9993928670883179, 0.9923526048660278] +NC(=O)c1ccc(Cc2cc(F)ccc2O)cc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'NC(=O)c1ccc(CO)cc1', 'NC(=O)c1ccc(CCl)cc1']; ['NC(=O)c1ccc(CCl)cc1', 'NC(=O)c1ccc(CBr)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9997353553771973, 0.9970759153366089, 0.9650174379348755, 0.8935021162033081] +COc1cc(-c2cc(F)ccc2O)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(F)ccc1O; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(F)ccc2O)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cccc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1ccc(C(=O)O)c(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1cc(Br)cc(OC)c1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I']; [0.9999729990959167, 0.9999514818191528, 0.9998849630355835, 0.9998040199279785, 0.9997363686561584, 0.9996814727783203, 0.9994825124740601, 0.9993767738342285, 0.9990732669830322, 0.9990552067756653, 0.9989693760871887, 0.9986312985420227, 0.9984044432640076, 0.997861385345459, 0.9950339794158936, 0.9939014911651611, 0.9899368286132812, 0.9726269245147705, 0.9358737468719482, 0.8699262142181396, 0.8267648220062256, 0.806452751159668, 0.7598413228988647] +O=S(=O)(CCO)c1ccc(Cc2cc(F)ccc2O)cc1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(F)ccc1O)cn2C; ['COc1ccc2c(ccn2C)c1']; ['Oc1ccc(F)cc1I']; [0.9325879812240601] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc(F)ccc2O)c1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(F)ccc3O)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1']; ['Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I']; [0.9995468854904175, 0.9988241791725159, 0.9890784025192261, 0.9762991070747375, 0.956028163433075] +CC(C)(C)c1ccc(C(=O)Nc2cc(F)ccc2O)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1']; ['Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O']; [0.9998561143875122, 0.9996345043182373] +CCNC(=O)N1CCC(c2cc(F)ccc2O)CC1; [None]; [None]; [0] +Oc1ccc(F)cc1-c1ccc2cn[nH]c2c1; ['Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Ic1ccc2cn[nH]c2c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Clc1ccc2cn[nH]c2c1', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.9997692108154297, 0.9997653961181641, 0.9993595480918884, 0.9988381862640381, 0.9988217949867249, 0.998047947883606, 0.9977062940597534, 0.9970724582672119, 0.9955493211746216, 0.9905426502227783, 0.9416162967681885, 0.936238169670105, 0.8682475090026855] +CO[C@@H]1CC[C@@H](c2cc(F)ccc2O)CC1; [None]; [None]; [0] +CCn1cc(-c2cc(F)ccc2O)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Cl)cn1']; ['Oc1ccc(F)cc1Br', 'CCn1cc(Br)cn1', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.9999825954437256, 0.9999779462814331, 0.9999707937240601, 0.9995014667510986, 0.9991844892501831, 0.9828747510910034, 0.9592952728271484, 0.9498858451843262, 0.866814374923706] +CNC(=O)c1ccc(OC)c(-c2cc(F)ccc2O)c1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'OB(O)c1cc(F)ccc1O']; [0.9999547600746155, 0.9966323971748352] +Oc1ccc(F)cc1-c1cc2ccccc2o1; ['Brc1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'Ic1cc2ccccc2o1', 'Oc1ccc(F)cc1Br', 'Brc1cc2ccccc2o1', 'Clc1cc2ccccc2o1', 'Oc1ccc(F)cc1I', 'OB(O)c1cc2ccccc2o1', 'Nc1cc(F)ccc1O']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'c1ccc2occc2c1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'c1ccc2occc2c1', 'Oc1ccc(F)cc1Cl', 'c1ccc2occc2c1']; [0.9999748468399048, 0.9998730421066284, 0.9996863603591919, 0.9995988607406616, 0.9991240501403809, 0.9985598921775818, 0.9982022643089294, 0.9977251291275024, 0.9944148063659668, 0.9872695803642273, 0.966474711894989, 0.8741564154624939] +C[NH+](C)Cc1ccc(-c2cc(F)ccc2O)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(F)ccc1O; ['CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1I']; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O']; [0.9999592304229736, 0.9998843669891357, 0.9997910261154175, 0.9969640970230103, 0.9883627891540527] +COc1ccc2nc(-c3cc(F)ccc3O)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cc(F)ccc1O', 'OCc1cc(F)ccc1O', 'O=C(O)c1cc(F)ccc1O', 'O=Cc1cc(F)ccc1O']; [0.9992502927780151, 0.9984256029129028, 0.9975384473800659, 0.9758163094520569] +Oc1ccc(F)cc1-c1ncc2sccc2n1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Clc1ncc2sccc2n1']; ['Clc1ncc2sccc2n1', 'OB(O)c1cc(F)ccc1O']; [0.9999880790710449, 0.9978818893432617] +COc1ccc(F)c(C(=O)Nc2cc(F)ccc2O)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Nc1cc(F)ccc1O']; [0.9692434668540955] +Oc1ccc(F)cc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(F)ccc2O)c1)N1CCCC1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(F)ccc1O; [None]; [None]; [0] +Cn1cc(-c2cc(F)ccc2O)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I']; [0.9999572038650513, 0.962370753288269] +Oc1ccc(F)cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +CCc1cccc(-c2cc(F)ccc2O)n1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCc1cccc(Br)n1', 'CCc1cccc(Br)n1']; ['CCc1cccc(Br)n1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.9999678134918213, 0.995542049407959, 0.9941654801368713] +Oc1ccc(F)cc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(F)ccc3O)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['Oc1ccc(F)cc1Br', 'Cn1ncc2cc(Br)ccc21', 'Oc1ccc(F)cc1I', 'Cn1ncc2cc(I)ccc21', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.9999958276748657, 0.999993622303009, 0.9999833106994629, 0.9999774694442749, 0.9999752640724182, 0.999962329864502, 0.999925971031189, 0.9998738169670105, 0.9966771602630615, 0.9843511581420898] +CN(C)c1ccc(-c2cc(F)ccc2O)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(B(O)O)cn1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc([Zn]Br)cn1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(Br)cn1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CN(C)c1ccc(Br)cn1', 'Oc1ccc(F)cc1I', 'CN(C)c1ccc(I)cn1', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.9999951720237732, 0.9999832510948181, 0.9999779462814331, 0.9999417066574097, 0.9999387264251709, 0.9999276399612427, 0.9995748996734619, 0.998970091342926, 0.9986275434494019, 0.9934931397438049, 0.9795910716056824] +Cn1nc(Cl)c2cc(-c3cc(F)ccc3O)ccc21; [None]; [None]; [0] +Cc1cc(-c2cc(F)ccc2O)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(F)ccc3O)ccc12; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Cc1n[nH]c2cc(Br)ccc12', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Br', 'Cc1n[nH]c2cc(I)ccc12', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1Cl']; [0.9999744892120361, 0.9999680519104004, 0.9999024868011475, 0.999840497970581, 0.9998201131820679, 0.9997449517250061, 0.9991070032119751, 0.9984405040740967, 0.9981173872947693, 0.9921008348464966, 0.9893820285797119, 0.9795508980751038, 0.9555047750473022] +CC(=O)N1CCC(n2cc(-c3cc(F)ccc3O)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br']; [0.9999958276748657, 0.9999693632125854] +O=C(Nc1cc(F)ccc1O)c1cccc(OC(F)(F)F)c1; ['Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999110698699951, 0.999305248260498] +CC(C)(O)c1ccc2cc(-c3cc(F)ccc3O)[nH]c2c1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cc(F)ccc2O)c1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Cl)c1']; ['O=C1CCCN1c1cccc(Br)c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O', 'O=C1CCCN1c1cccc(Cl)c1', 'Oc1ccc(F)cc1Cl', 'OB(O)c1cc(F)ccc1O']; [0.9999370574951172, 0.9999271631240845, 0.9998383522033691, 0.9982591867446899, 0.9976665377616882, 0.992774486541748, 0.8474013805389404] +CN(C)C(=O)c1ccc(-c2cc(F)ccc2O)c(Cl)c1; ['CN(C)C(=O)c1cccc(Cl)c1']; ['Oc1ccc(F)cc1Br']; [0.9373503923416138] +CNC(=O)c1ccc(-c2cc(F)ccc2O)c(OC)c1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(Br)c(OC)c1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OB(O)c1cc(F)ccc1O']; [0.9999477863311768, 0.9999309778213501, 0.9996888637542725, 0.9640630483627319] +COc1cc(S(C)(=O)=O)ccc1-c1cc(F)ccc1O; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1']; [0.9999966621398926, 0.9998551607131958, 0.9785549640655518] +OCCc1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OB(O)c1cc(F)ccc1O', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OB(O)c1cc(F)ccc1O', 'OCCc1ccc(I)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Br)cc1']; ['Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OCCc1ccc(Br)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'Oc1ccc(F)cc1Cl', 'OCCc1ccc(I)cc1', 'Oc1ccc(F)cc1Br', 'OCCc1ccc(Cl)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I']; [0.9999604225158691, 0.999411404132843, 0.9992777109146118, 0.9990686178207397, 0.9925452470779419, 0.9921743869781494, 0.9917625188827515, 0.988003134727478, 0.9857836961746216, 0.9846783876419067, 0.9667352437973022, 0.9467160105705261, 0.9102538824081421] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(F)ccc1O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(F)ccc1O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['CCNC(=O)c1ccc(Br)cc1', 'Oc1ccc(F)cc1Br', 'Oc1ccc(F)cc1I', 'CCNC(=O)c1ccc(I)cc1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl']; [0.9998483657836914, 0.9996243715286255, 0.9993932247161865, 0.9992405772209167, 0.9964160323143005, 0.9859020113945007, 0.9225853681564331] +Cc1ncc(-c2ccc(-c3cc(F)ccc3O)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(F)ccc2O)nc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'OB(O)c1cc(F)ccc1O', 'CN(C)C(=O)c1ccc(Cl)nc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.9999886751174927, 0.9999634027481079, 0.9999522566795349, 0.999942421913147, 0.9984515309333801] +Oc1ccc(F)cc1Nc1ccccn1; ['Nc1ccccn1', 'Clc1ccccn1', 'Nc1ccccn1', 'Brc1ccccn1', 'Ic1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1', 'Fc1ccccn1']; ['Oc1ccc(F)cc1Br', 'Nc1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1F', 'Nc1cc(F)ccc1O']; [0.9985947608947754, 0.9968941807746887, 0.9925719499588013, 0.9894135594367981, 0.9841340780258179, 0.9748180508613586, 0.9692704081535339, 0.9628266096115112, 0.9457954168319702] +Cc1cc(Nc2cc(F)ccc2O)ncc1F; ['Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; ['Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1F']; [0.9998242259025574, 0.9994814395904541, 0.997164785861969, 0.9960509538650513, 0.9943014979362488, 0.9878677725791931, 0.9594645500183105] +Oc1ccc(F)cc1Nc1ccc(F)cn1; ['Fc1ccc(Br)nc1', 'Fc1ccc(I)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Fc1ccc(Cl)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Fc1ccc(F)nc1']; ['Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Br', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Nc1cc(F)ccc1O', 'Oc1ccc(F)cc1Cl', 'Oc1ccc(F)cc1F', 'Nc1cc(F)ccc1O']; [0.9990042448043823, 0.998845100402832, 0.9985131025314331, 0.9983292818069458, 0.9923875331878662, 0.9892943501472473, 0.9853858947753906, 0.9794265627861023, 0.9606199264526367] +CCNC(=O)Cc1ccc(-c2cc(F)ccc2O)cc1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1I', 'Oc1ccc(F)cc1Br']; [0.9999035596847534, 0.9935396909713745, 0.9841387271881104, 0.9531750679016113] +Cc1cc(N2CCOCC2)ccc1-c1cc(F)ccc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(F)ccc2O)c1; ['CC1(C)OB(c2cc(F)ccc2O)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'OB(O)c1cc(F)ccc1O', 'OB(O)c1cc(F)ccc1O', 'Oc1ccc(F)cc1Br']; [0.999997615814209, 0.9995794296264648, 0.9935525059700012, 0.9819890260696411] +Cn1nc(-c2cc(F)ccc2O)cc1C(C)(C)O; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3nccnc3c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(O)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CC(=O)N(C)c1ccccc1', 'Brc1ccc2nccnc2c1']; ['Ic1ccc2nccnc2c1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'CC(=O)N(C)c1ccc(Br)cc1', 'Ic1ccc2nccnc2c1', 'CC(=O)N(C)c1ccccc1']; [0.9999979734420776, 0.9999967813491821, 0.9999650120735168, 0.9999186992645264, 0.9998575448989868, 0.9995020627975464, 0.9992837905883789, 0.9986057877540588, 0.9941966533660889, 0.9883029460906982, 0.9644405841827393, 0.9431997537612915, 0.8961431980133057] +c1ccc2nc(-c3ccc4nccnc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'Nc1ccccc1CO', 'BrCc1ccccc1Br', 'NCc1ccccc1N', 'NCc1ccccc1N']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Clc1ncc2ccccc2n1', 'OB(O)c1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'OCc1ccc2nccnc2c1']; [0.9999806880950928, 0.9999780654907227, 0.9999740123748779, 0.999973475933075, 0.9971770644187927, 0.9961187243461609, 0.9941387176513672, 0.9918099641799927] +CNC(=O)c1ccc(C)c(-c2cc(F)ccc2O)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc3nccnc3c2)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Brc1ccc2nccnc2c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ccc2nccnc2c1', 'CS(=O)(=O)c1ccccc1', 'Brc1ccc2nccnc2c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['CS(=O)(=O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CS(=O)(=O)c1cccc(Br)c1', 'OB(O)c1ccc2nccnc2c1', 'CS(=O)(=O)c1ccccc1', 'c1ccc2nccnc2c1', 'c1ccc2nccnc2c1']; [0.9999984502792358, 0.9999979734420776, 0.9999960064888, 0.9999922513961792, 0.9999814033508301, 0.9999772906303406, 0.999963104724884, 0.9999262690544128, 0.9998631477355957, 0.9998246431350708, 0.996009349822998, 0.9923909306526184, 0.8519474267959595, 0.8236780166625977, 0.7600367665290833] +CCOc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +COc1ncccc1-c1ccc2nccnc2c1; ['Brc1ccc2nccnc2c1', 'COc1ncccc1I', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2nccnc2c1', 'COc1ncccc1B(O)O', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ccccn1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2nccnc2c1', 'COc1ncccc1I', 'COc1ncccc1Br', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'Clc1ccc2nccnc2c1', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'OB(O)c1ccc2nccnc2c1']; [0.9999891519546509, 0.9999860525131226, 0.9999828934669495, 0.9999755620956421, 0.999930739402771, 0.9999212026596069, 0.999813973903656, 0.9997833967208862, 0.9997674226760864, 0.9997441172599792, 0.9995603561401367, 0.998213529586792, 0.9981365203857422, 0.9874793291091919, 0.9731184244155884, 0.8444889187812805] +Cc1nc(C(C)(C)O)sc1-c1ccc2nccnc2c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(F)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc3nccnc3c2)cc(OC)c1OC; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(I)cc(OC)c1OC', 'Brc1ccc2nccnc2c1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cccc(OC)c1OC', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1cc([Mg]Br)cc(OC)c1OC', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1cc([Mg]Br)cc(OC)c1OC', 'Brc1ccc2nccnc2c1']; ['COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Clc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Ic1ccc2nccnc2c1', 'COc1cc([Mg]Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'Clc1ccc2nccnc2c1', 'COc1cccc(OC)c1OC']; [0.999983012676239, 0.9999791979789734, 0.9999784231185913, 0.9999469518661499, 0.9999160766601562, 0.9998688697814941, 0.9998505711555481, 0.9998407363891602, 0.9997891187667847, 0.9996058940887451, 0.9992395043373108, 0.998965859413147, 0.9970179200172424, 0.9903903007507324, 0.9889825582504272, 0.9836592674255371, 0.9646428227424622, 0.9575915336608887, 0.927476167678833, 0.8102086782455444] +c1cnn2c(-c3ccc4nccnc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999994039535522, 0.9999994039535522, 0.9998077154159546] +Cc1ccc2ncn(-c3ccc4nccnc4c3)c2c1; ['Brc1ccc2nccnc2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2[nH]cnc2c1', 'Brc1ccc2nccnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1']; ['Cc1ccc2[nH]cnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Fc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; [0.9996345043182373, 0.9990777373313904, 0.9986402988433838, 0.9983598589897156, 0.9972505569458008, 0.9950820207595825, 0.9608299136161804, 0.9431030750274658, 0.8059910535812378] +O=C(Nc1cccc(-c2ccc3nccnc3c2)c1)C1CC1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=C(Nc1cccc(Br)c1)C1CC1', 'Brc1ccc2nccnc2c1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'OB(O)c1ccc2nccnc2c1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999961853027344, 0.999987006187439, 0.9955706596374512] +c1ccc2[nH]c(-c3ccc4nccnc4c3)nc2c1; ['Nc1ccccc1N', 'N#Cc1ccc2nccnc2c1', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Nc1ccccc1N', 'NCc1ccc2nccnc2c1', 'BrCc1ccc2nccnc2c1', 'Nc1ccccc1N']; ['O=C(Cl)c1ccc2nccnc2c1', 'Nc1ccccc1N', 'O=Cc1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'O=C(O)c1ccc2nccnc2c1', 'Nc1ccccc1N', 'Nc1ccccc1N', 'OCc1ccc2nccnc2c1']; [0.9969886541366577, 0.9969044923782349, 0.995684027671814, 0.9863561391830444, 0.9862475395202637, 0.9807108044624329, 0.9744285941123962, 0.9568865895271301] +Cc1cc(Nc2ccc3nccnc3c2)sn1; ['Brc1ccc2nccnc2c1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Cc1cc(N)sn1', 'Nc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Oc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1']; [0.9997938275337219, 0.9996998310089111, 0.9994913935661316, 0.9984517097473145, 0.9976015090942383, 0.9903571605682373] +Oc1cccc(-c2ccc3nccnc3c2)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['Oc1cccc(I)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(Cl)c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1cccc(O)c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(Br)c1']; [0.9999690055847168, 0.9999489784240723, 0.999930739402771, 0.9998949766159058, 0.9995607137680054, 0.9995262622833252, 0.9995203018188477, 0.9995056986808777, 0.9990523457527161, 0.9988997578620911, 0.9979479312896729, 0.994873046875, 0.9753791689872742, 0.9129692316055298, 0.7828384637832642] +N#Cc1ccc(O)c(-c2ccc3nccnc3c2)c1; ['N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'N#Cc1ccc(O)c(Cl)c1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Br[Mg]c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'OB(O)c1ccc2nccnc2c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9999987483024597, 0.999981164932251, 0.9999651312828064, 0.9999078512191772, 0.9998948574066162, 0.9997618198394775, 0.9995472431182861, 0.9995201230049133, 0.9990983009338379, 0.9990489482879639, 0.9964221119880676, 0.9828051328659058, 0.9665045142173767, 0.9204316139221191] +O=C([O-])c1ccc(-c2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=C([O-])c1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1', 'OB(O)c1ccc2nccnc2c1', 'O=C([O-])c1ccccc1']; [0.9966671466827393, 0.9848192930221558, 0.8533711433410645] +c1cnc2cc(-c3ccc(N4CCOCC4)cc3)ccc2n1; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccc(N2CCOCC2)cc1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Ic1ccc2nccnc2c1', 'c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'c1ccc(N2CCOCC2)cc1', 'c1ccc2nccnc2c1', 'c1ccc(N2CCOCC2)cc1', 'c1ccc(N2CCOCC2)cc1', 'c1ccc2nccnc2c1', 'c1ccc(N2CCOCC2)cc1']; [0.9999996423721313, 0.9999995231628418, 0.9999971389770508, 0.9999970197677612, 0.9999966621398926, 0.999996542930603, 0.9999942779541016, 0.9999929666519165, 0.9999924898147583, 0.9999851584434509, 0.9999850988388062, 0.9999828338623047, 0.9999711513519287, 0.9999265670776367, 0.9998533725738525, 0.9997875690460205, 0.9997594356536865, 0.99954754114151, 0.999522864818573, 0.9995074272155762, 0.999372124671936, 0.9992105960845947, 0.9969505071640015, 0.9840383529663086, 0.9674882888793945, 0.9453223347663879, 0.8610020875930786] +COc1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(I)cc1', 'Brc1ccc2nccnc2c1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(F)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'COc1ccccc1', 'Brc1ccc2nccnc2c1', 'COc1ccc([Mg]Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1ccc([Mg]Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Clc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(B(O)O)cc1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(I)cc1', 'Fc1ccc2nccnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'COc1ccc([Mg]Br)cc1', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1', 'Clc1ccc2nccnc2c1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'OCc1ccc2nccnc2c1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc2nccnc2c1', 'COc1ccc(OC)cc1', 'COc1ccccc1']; [0.9999973177909851, 0.9999945163726807, 0.999988317489624, 0.9999833703041077, 0.9999817609786987, 0.9999597072601318, 0.999942421913147, 0.9999419450759888, 0.999895453453064, 0.9998583793640137, 0.9998186826705933, 0.9997673034667969, 0.9997429847717285, 0.9996795654296875, 0.9996629953384399, 0.9996254444122314, 0.9994752407073975, 0.9983245134353638, 0.9980980753898621, 0.9980205297470093, 0.997371256351471, 0.9969310760498047, 0.9962565898895264, 0.9958900213241577, 0.9958603382110596, 0.9946393966674805, 0.9940476417541504, 0.9937621355056763, 0.9937088489532471, 0.9929505586624146, 0.9890600442886353, 0.9850115776062012, 0.9687418937683105, 0.9666765928268433, 0.9609168767929077, 0.9300251007080078, 0.9143062829971313, 0.8774967193603516, 0.7511223554611206] +c1cnc(Nc2ccc3nccnc3c2)nc1; ['Nc1ncccn1', 'Brc1ncccn1', 'Ic1ncccn1', 'Clc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CSc1ncccn1', 'CS(=O)c1ncccn1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9999002814292908, 0.9994727373123169, 0.9990867376327515, 0.9990856051445007, 0.9945864081382751, 0.9924322366714478, 0.9906340837478638, 0.9894338846206665, 0.9775338172912598, 0.9117214679718018] +NC(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'NC(=O)c1ccc(Cl)cc1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'NC(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2nccnc2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999986886978149, 0.9999970197677612, 0.999994695186615, 0.9999898672103882, 0.9999834299087524, 0.999983012676239, 0.9999788999557495, 0.9999672174453735, 0.9999603033065796, 0.9998698234558105, 0.999722957611084, 0.9993528127670288, 0.9763511419296265] +c1ccc2c(-c3ccc4nccnc4c3)nccc2c1; ['Ic1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Clc1nccc2ccccc12', 'OB(O)c1nccc2ccccc12', 'c1ccc2cnccc2c1', 'Clc1nccc2ccccc12', 'c1ccc2cnccc2c1']; [0.9999969005584717, 0.999985933303833, 0.9999796748161316, 0.9998878240585327, 0.9998202323913574, 0.998046338558197, 0.9932221174240112, 0.9912946224212646, 0.7819228172302246] +N#Cc1cccc(Cn2cc(-c3ccc4nccnc4c3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'OB(O)c1ccc2nccnc2c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999995231628418, 0.9999992251396179, 0.9999977946281433, 0.9999968409538269, 0.9999966621398926, 0.9999929666519165, 0.9999587535858154, 0.9999518394470215, 0.9998435974121094, 0.995364785194397] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4nccnc4c3)cc2)CC1; [None]; [None]; [0] +c1cc(-c2ccc3nccnc3c2)cc(C2CCNCC2)c1; ['CC(C)(C)OC(=O)N1CCC(c2cccc(Br)c2)CC1', 'Brc1cccc(C2CCNCC2)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1cccc(C2CCNCC2)c1', 'Clc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cccc(C2CCNCC2)c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Brc1cccc(C2CCNCC2)c1']; [0.9999992847442627, 0.9999935626983643, 0.9999748468399048, 0.9999211430549622, 0.999832034111023, 0.9815147519111633, 0.927958607673645] +OCCOc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +c1cc(Nc2ccc3nccnc3c2)ncn1; ['Clc1ccncn1', 'Nc1ccncn1', 'Brc1ccncn1', 'Nc1ccc2nccnc2c1', 'Ic1ccncn1', 'Fc1ccncn1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1']; ['Nc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'O=c1ccnc[nH]1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1']; [0.9999891519546509, 0.9999721050262451, 0.9999191761016846, 0.999850869178772, 0.9998314380645752, 0.9996076822280884, 0.999458909034729, 0.998752236366272, 0.9950525760650635, 0.9667484760284424, 0.9663317203521729] +CC(=O)NCc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2ccc3nccnc3c2)nc1)N1CCOCC1; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C']; ['OB(O)c1ccc2nccnc2c1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [1.0, 0.9999998211860657] +O=C(c1ccc(-c2ccc3nccnc3c2)cc1)N1CCOCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2nccnc2c1']; ['Ic1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999814033508301, 0.9999687671661377, 0.9999234676361084, 0.9998911619186401, 0.9998841285705566, 0.9998323917388916, 0.9993776082992554, 0.9993396997451782, 0.9821285009384155, 0.8052841424942017] +C[C@H](O)COc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc3nccnc3c2)cc1; ['Br[Mg]c1ccc2nccnc2c1']; ['C[C@@H](O)COc1ccc(F)cc1']; [0.8610644340515137] +O=S1(=O)Cc2ccc(-c3ccc4nccnc4c3)cc2C1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Ic1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'OB(O)c1ccc2nccnc2c1', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999779462814331, 0.9998992681503296, 0.9983448386192322, 0.9945411682128906, 0.9765585660934448] +Cc1nc(C)c(-c2ccc3nccnc3c2)s1; ['Brc1ccc2nccnc2c1', 'Cc1nc(C)c(Br)s1', 'Brc1ccc2nccnc2c1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'OB(O)c1ccc2nccnc2c1', 'Cc1csc(C)n1', 'Ic1ccc2nccnc2c1']; [0.9999978542327881, 0.9999957084655762, 0.9985263347625732, 0.9956648349761963] +CCNS(=O)(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; [0.9999864101409912, 0.9999234676361084, 0.9998999834060669, 0.9998142719268799, 0.9988549947738647, 0.9986343383789062] +CN(C)S(=O)(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Brc1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccccc1', 'Br[Mg]c1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccccc1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccccc1', 'Ic1ccc2nccnc2c1', 'CN(C)S(=O)(=O)c1ccc(F)cc1', 'Clc1ccc2nccnc2c1']; [0.9999995231628418, 0.9999986290931702, 0.9999982118606567, 0.9999973773956299, 0.9999911785125732, 0.9999910593032837, 0.9999843239784241, 0.9999793767929077, 0.9999776482582092, 0.9999327659606934, 0.9999014735221863, 0.9998282790184021, 0.9981518983840942, 0.9943573474884033, 0.9825974106788635, 0.9178109169006348, 0.9026002883911133, 0.885150134563446, 0.759880542755127] +FC(F)(F)c1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3nccnc3c2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1']; [0.9999973773956299, 0.9999863505363464] +CS(=O)(=O)N1CCC(c2ccc3nccnc3c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2ccc3nccnc3c2)C1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc3nccnc3c2)nc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCCOc1ccc(Br)nc1', 'Brc1ccc2nccnc2c1']; ['CCCOc1ccc(Br)nc1', 'OB(O)c1ccc2nccnc2c1', 'CCCOc1ccc(Br)nc1']; [0.9999995231628418, 0.9999956488609314, 0.9998295307159424] +CC(=O)N1CCCN(c2cccc(-c3ccc4nccnc4c3)c2)CC1; [None]; [None]; [0] +Brc1ccc(-c2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc(I)cc1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'Brc1ccc(Br)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'OB(O)c1ccc(Br)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccccc1']; ['Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(I)cc1', 'F[B-](F)(F)c1ccc(Br)cc1', 'OCc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'OB(O)c1ccc2nccnc2c1']; [0.999997615814209, 0.9999926090240479, 0.9999828338623047, 0.9999749660491943, 0.9999591708183289, 0.9999387264251709, 0.9998785853385925, 0.9998340010643005, 0.999830424785614, 0.9998213052749634, 0.9998199939727783, 0.9996960759162903, 0.9990513920783997, 0.9987616539001465, 0.9961457252502441, 0.9958314895629883, 0.9954522848129272, 0.9953479170799255, 0.9942363500595093, 0.9937146902084351, 0.9911526441574097, 0.9812963008880615, 0.9786534309387207, 0.9555529356002808, 0.9518802165985107, 0.9175476431846619, 0.8438615798950195, 0.7977042198181152] +CN(C)c1ccc(-c2ccc3nccnc3c2)cc1Cl; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccccc1Cl', 'Brc1ccc2nccnc2c1', 'CN(C)c1ccc(Br)cc1Cl', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'CN(C)c1ccccc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)c1ccccc1Cl', 'Ic1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)c1ccc(Br)cc1Cl', 'Clc1ccc2nccnc2c1', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Ic1ccc2nccnc2c1']; [0.9999972581863403, 0.9999971985816956, 0.999997079372406, 0.9999804496765137, 0.999930739402771, 0.9997411966323853, 0.9997047185897827, 0.9989661574363708, 0.997368335723877, 0.9864746332168579, 0.9863320589065552, 0.981638491153717, 0.9811018705368042, 0.9321571588516235] +CCN(CC)C(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Ic1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccccc1', 'Clc1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Ic1ccc2nccnc2c1', 'CCN(CC)C(=O)c1ccc(F)cc1', 'COc1ccc2nccnc2c1', 'COc1ccc2nccnc2c1']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.9999986886978149, 0.9999978542327881, 0.999997615814209, 0.9999927282333374, 0.9999922513961792, 0.9999917149543762, 0.9999877214431763, 0.9999637603759766, 0.9998797178268433, 0.999761700630188, 0.9996936321258545, 0.9986387491226196, 0.9984996318817139, 0.9979482889175415, 0.9976065158843994, 0.9958646893501282, 0.9884425401687622, 0.9801616668701172, 0.9198316335678101] +c1cnc2cc(-c3ccn4nccc4n3)ccc2n1; ['Ic1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccn2nccc2n1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccn2nccc2n1', 'c1cnc2ccnn2c1']; [1.0, 0.9999963045120239, 0.9999949932098389, 0.9999945163726807, 0.9999911785125732, 0.9959724545478821, 0.9951601028442383] +CC(C)c1ccc2nc(-c3ccc4nccnc4c3)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1ccc2nccnc2c1']; [0.9990109205245972] +Cc1c(C(=O)[O-])cccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nccnc3c2)c(C)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Brc1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Brc1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Brc1ccc2nccnc2c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'OB(O)c1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Clc1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.999996542930603, 0.9999961853027344, 0.9999575614929199, 0.999854564666748, 0.9997822046279907, 0.9995746612548828, 0.9993677139282227, 0.9982118606567383, 0.9976345896720886, 0.9844582080841064] +c1ccc2c(-c3ccc4nccnc4c3)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Clc1c[nH]c2ccccc12', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1c[nH]c2ccccc12']; [0.9998759031295776, 0.9997854232788086, 0.999541163444519, 0.998288631439209, 0.9980040788650513, 0.9970656633377075, 0.9850088357925415, 0.9738559722900391, 0.9280405044555664, 0.9200340509414673] +COc1ccc(Cl)cc1-c1ccc2nccnc2c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1ccc(Cl)cc1I', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1Br', 'Brc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Cl', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1[Mg]Br', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1']; ['COc1ccc(Cl)cc1I', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Cl', 'Ic1ccc2nccnc2c1', 'COc1ccc(Cl)cc1I', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1B(O)O', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1I', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Br', 'Clc1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1ccc(Cl)cc1', 'COc1ccc(Cl)cc1[Mg]Br']; [0.9999982714653015, 0.9999855756759644, 0.9999723434448242, 0.9999583959579468, 0.9997988343238831, 0.9997806549072266, 0.9997124671936035, 0.9996516704559326, 0.9992880821228027, 0.998969554901123, 0.9987236261367798, 0.9980695247650146, 0.9978204965591431, 0.9971622228622437, 0.9907307028770447, 0.9830192923545837, 0.9724994897842407, 0.9709274768829346, 0.9666251540184021, 0.9635067582130432, 0.9538239240646362] +COc1cc(OC)c(-c2ccc3nccnc3c2)cc1Cl; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl', 'Brc1ccc2nccnc2c1', 'COc1ccc(Cl)c(OC)c1', 'Brc1ccc2nccnc2c1', 'COc1ccc(Cl)c(OC)c1']; ['COc1cc(OC)c(Br)cc1Cl', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1cc(OC)c(Br)cc1Cl', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)c(OC)c1', 'Ic1ccc2nccnc2c1']; [0.9999985098838806, 0.9999792575836182, 0.9999212026596069, 0.9978705048561096, 0.9955131411552429, 0.8452614545822144, 0.7774065732955933] +c1ccc(-n2cccn2)c(-c2ccc3nccnc3c2)c1; ['Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Ic1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Ic1ccc2nccnc2c1', 'Clc1ccccc1-n1cccn1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'c1ccc(-n2cccn2)cc1', 'Brc1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1', 'Clc1ccc2nccnc2c1', 'Clc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1', 'c1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'c1ccc(-n2cccn2)cc1']; [0.9999988079071045, 0.9999955892562866, 0.9999819397926331, 0.9999281167984009, 0.9999064207077026, 0.9998818635940552, 0.9998315572738647, 0.9998215436935425, 0.9997950792312622, 0.9995875358581543, 0.9992258548736572, 0.9986100792884827, 0.9985758066177368, 0.9982788562774658, 0.9981130361557007, 0.9978592395782471, 0.9720174074172974, 0.8692113757133484, 0.8602194786071777, 0.8360487222671509] +CC(=O)Nc1cccc(-c2ccc3nccnc3c2)c1; ['Brc1ccc2nccnc2c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'Brc1ccc2nccnc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1ccc2nccnc2c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999695420265198, 0.9999645352363586, 0.9999043941497803, 0.9998737573623657, 0.9997925162315369, 0.9995298385620117, 0.9994441270828247, 0.9981648325920105, 0.9930416345596313, 0.9873429536819458, 0.9409388303756714] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3ccc4nccnc4c3)n[nH]2)cc1; ['Ic1ccc2nccnc2c1']; ['c1ccc(-c2ccn[nH]2)cc1']; [0.9841660261154175] +c1cnc2cc(-c3ccc4c(c3)CCO4)ccc2n1; ['Brc1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2c(c1)CCO2', 'Clc1ccc2nccnc2c1', 'Brc1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'Ic1ccc2c(c1)CCO2']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2nccnc2c1', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2c(c1)CCO2', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2c(c1)CCO2', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2nccnc2c1', 'Clc1ccc2c(c1)CCO2', 'Clc1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'c1ccc2c(c1)CCO2', 'c1ccc2nccnc2c1']; [0.9999983906745911, 0.999997615814209, 0.9999942183494568, 0.9999900460243225, 0.9999836683273315, 0.9999771118164062, 0.9999744296073914, 0.9999694228172302, 0.999961256980896, 0.9999573230743408, 0.9999538660049438, 0.9998964071273804, 0.9998699426651001, 0.9995838403701782, 0.9990336894989014, 0.9986100792884827, 0.9972772002220154, 0.986729085445404, 0.9763468503952026, 0.960128903388977, 0.9321905970573425, 0.8877836465835571] +c1cc2c(c(-c3ccc4nccnc4c3)c1)OCO2; ['Brc1cccc2c1OCO2', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1cccc2c1OCO2', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Ic1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cccc2c1OCO2']; [0.9999990463256836, 0.9999990463256836, 0.9999964237213135, 0.9999959468841553, 0.9999958276748657, 0.9999951720237732, 0.9999856948852539, 0.9999845027923584, 0.9999730587005615, 0.9999541640281677, 0.9996482133865356, 0.9996411800384521, 0.9996035695075989] +c1cnc2cc(-c3scc4c3OCCO4)ccc2n1; ['Brc1ccc2nccnc2c1']; ['c1scc2c1OCCO2']; [0.9999973773956299] +COc1cc(-c2ccc3nccnc3c2)ccc1O; [None]; [None]; [0] +Nc1nc(-c2ccc3nccnc3c2)cs1; ['CC(=O)c1ccc2nccnc2c1', None]; ['NC(N)=S', None]; [0.9999977946281433, 0] +CC(C)(C)c1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc3nccnc3c2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1']; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1']; [0.9999957084655762, 0.9999710321426392, 0.9986370801925659] +c1ccc2ncc(-c3ccc4nccnc4c3)cc2c1; ['Brc1ccc2nccnc2c1', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Clc1cnc2ccccc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Brc1cnc2ccccc2c1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Zn]c1cnc2ccccc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Ic1cnc2ccccc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Ic1ccc2nccnc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Ic1ccc2nccnc2c1', 'Brc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999991655349731, 0.9999991059303284, 0.9999931454658508, 0.9999895691871643, 0.999988853931427, 0.9999817609786987, 0.9999589920043945, 0.9999485611915588, 0.9999305605888367, 0.9999212622642517, 0.999880313873291, 0.9996557235717773, 0.9995777606964111, 0.9990673065185547, 0.998060941696167, 0.9969848394393921, 0.9964998960494995, 0.9925340414047241] +CC1(COc2ccc3nccnc3c2)COC1; ['CC1(CBr)COC1', 'CC1(CI)COC1', 'Brc1ccc2nccnc2c1', 'CC1(CO)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CCl)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1']; ['Oc1ccc2nccnc2c1', 'Oc1ccc2nccnc2c1', 'CC1(CO)COC1', 'Ic1ccc2nccnc2c1', 'Oc1ccc2nccnc2c1', 'Oc1ccc2nccnc2c1', 'Oc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'O=[N+]([O-])c1ccc2nccnc2c1']; [0.9997090101242065, 0.9996777772903442, 0.9984750151634216, 0.9977715015411377, 0.9968409538269043, 0.9948313236236572, 0.9912852048873901, 0.9645532965660095, 0.9583090543746948, 0.7814640998840332] +CN(C)C(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(I)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(I)cc1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Ic1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(I)cc1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(I)cc1', 'Clc1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Ic1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccc(F)cc1']; [0.9999997615814209, 0.9999997615814209, 0.9999992251396179, 0.9999992251396179, 0.9999979138374329, 0.9999963045120239, 0.9999954700469971, 0.999995231628418, 0.9999923706054688, 0.999985933303833, 0.9999703764915466, 0.9999699592590332, 0.9999388456344604, 0.999921441078186, 0.9996980428695679, 0.9986094236373901, 0.9983106255531311, 0.998148500919342, 0.9925137162208557, 0.9695959091186523, 0.9554415941238403] +CC(C)(C)c1ccc(-c2ccc3nccnc3c2)cn1; ['Brc1ccc2nccnc2c1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1ccc2nccnc2c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'CC(C)(C)c1ccccn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'OB(O)c1ccc2nccnc2c1']; [0.9999996423721313, 0.999998927116394, 0.999997079372406, 0.9999948740005493, 0.9999937415122986, 0.9999802708625793, 0.9999704360961914, 0.9998524188995361, 0.9996365904808044, 0.999258279800415, 0.9990012645721436, 0.9326717853546143] +c1ccc2sc(-c3ccc4nccnc4c3)cc2c1; ['Brc1cc2ccccc2s1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1cc2ccccc2s1', 'Brc1cc2ccccc2s1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1cc2ccccc2s1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'c1ccc2sccc2c1', 'OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9999983310699463, 0.999998152256012, 0.9999954700469971, 0.9999927282333374, 0.9999858140945435, 0.9999685287475586, 0.9999678134918213, 0.9999647736549377, 0.9999591112136841] +Cc1cc(-c2ccc3nccnc3c2)nc(N)n1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Cc1cc(Cl)nc(N)n1']; ['Cc1cc(Cl)nc(N)n1', 'OB(O)c1ccc2nccnc2c1']; [0.9999991655349731, 0.9999945163726807] +Clc1cccc(-n2ccc(-c3ccc4nccnc4c3)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(I)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CSc1ccc(Br)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CSc1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CSc1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'CSc1ccc(Br)cc1', 'CSc1ccccc1', 'CSc1ccc(I)cc1', 'CSc1ccc([Mg]Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CSc1ccc(Cl)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CSc1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'CSc1ccc(Cl)cc1', 'Clc1ccc2nccnc2c1', 'CSc1ccc([B-](F)(F)F)cc1', 'CSc1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(I)cc1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1', 'Ic1ccc2nccnc2c1']; [0.999990701675415, 0.9999860525131226, 0.9999454617500305, 0.999929666519165, 0.9999151229858398, 0.9998610019683838, 0.9998154640197754, 0.9997739195823669, 0.9997246265411377, 0.9995287656784058, 0.999071478843689, 0.9986114501953125, 0.9962949752807617, 0.9928593635559082, 0.9849522709846497, 0.9840607643127441, 0.9774148464202881, 0.9739681482315063, 0.960309624671936, 0.9601324796676636, 0.944489061832428, 0.9382938146591187, 0.9263572692871094, 0.9177317023277283, 0.8567681312561035] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3nccnc3c2)CC1; [None]; [None]; [0] +Brc1cnc(-c2ccc3nccnc3c2)nc1; ['Brc1cnc(I)nc1', 'Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1cnc(Br)nc1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ncc(Br)cn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1']; [0.9999890327453613, 0.9999736547470093, 0.9998875856399536, 0.9998452067375183, 0.9997981786727905, 0.9995568990707397, 0.9960740804672241] +Fc1ccc(-c2ccc3nccnc3c2)c(Cl)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Fc1ccc(Cl)c(Cl)c1', 'Fc1cccc(Cl)c1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Fc1cccc(Cl)c1']; ['Fc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1ccc2nccnc2c1', 'Fc1ccc(I)c(Cl)c1', 'Clc1ccc2nccnc2c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1cccc(Cl)c1', 'Ic1ccc2nccnc2c1']; [0.999998927116394, 0.999993622303009, 0.9999908208847046, 0.9999902248382568, 0.999977707862854, 0.9999614953994751, 0.9999485015869141, 0.9999244213104248, 0.999900221824646, 0.9998422861099243, 0.9995591640472412, 0.9994432926177979, 0.999130368232727, 0.9964412450790405, 0.9929760098457336, 0.9806137681007385, 0.9794054627418518, 0.9153304100036621] +CCN1CCN(Cc2ccc(-c3ccc4nccnc4c3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Brc1ccc2nccnc2c1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Br[Zn]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['Ic1ccc2nccnc2c1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'OB(O)c1ccc2nccnc2c1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CCN1CCN(Cc2ccc([Zn]Br)cc2)CC1', 'CCN1CCN(Cc2ccccc2)CC1', 'CCN1CCN(Cc2ccc([Mg]Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9999814033508301, 0.9999616146087646, 0.9999414682388306, 0.999864399433136, 0.9994216561317444, 0.997917652130127, 0.996173083782196, 0.9929021596908569, 0.9881319999694824, 0.9869668483734131, 0.9718638062477112, 0.9243295788764954] +O=C1CCc2cc(-c3ccc4nccnc4c3)ccc2N1; ['Brc1ccc2nccnc2c1', 'O=C1CCc2cc(I)ccc2N1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Cl)ccc2N1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'O=C1CCc2cc(Br)ccc2N1', 'Ic1ccc2nccnc2c1', 'O=C1CCc2cc(I)ccc2N1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999312162399292, 0.9997591972351074, 0.9997278451919556, 0.9997128248214722, 0.999647855758667, 0.9994196891784668, 0.9985097050666809, 0.9981732964515686, 0.9976412057876587, 0.9910498857498169, 0.9404451847076416, 0.8917548656463623, 0.7832730412483215] +COc1ccc(CNc2ccc3nccnc3c2)cc1; ['COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'Brc1ccc2nccnc2c1', 'COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['Nc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1ccc(CN)cc1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1']; [0.9997920989990234, 0.9996782541275024, 0.9994264245033264, 0.9993458986282349, 0.9988172650337219, 0.9986193180084229, 0.9985790252685547, 0.996212363243103] +CCc1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CCc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'CCc1ccc([Mg]Br)cc1', 'Brc1ccc2nccnc2c1', 'CCc1ccc([Mg]Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'CCc1ccccc1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'Clc1ccc2nccnc2c1', 'CCc1ccc(Cl)cc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CCc1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CCc1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CCc1ccc([Mg]Br)cc1', 'Ic1ccc2nccnc2c1', 'CCc1ccc(Br)cc1', 'Clc1ccc2nccnc2c1', 'CCc1ccc(I)cc1', 'OB(O)c1ccc2nccnc2c1', 'CCc1ccc(Br)cc1', 'CCc1ccc(Cl)cc1']; [0.9999984502792358, 0.999994158744812, 0.9999895095825195, 0.9999794960021973, 0.9999711513519287, 0.9999457001686096, 0.9999072551727295, 0.999886155128479, 0.9998682141304016, 0.999748706817627, 0.9997084140777588, 0.9991266131401062, 0.9982203245162964, 0.9966063499450684, 0.9875211715698242, 0.983269453048706, 0.9813604950904846, 0.9741109013557434, 0.9638679623603821, 0.9622137546539307, 0.9463738203048706, 0.8362208604812622] +c1cc2cnc(-c3ccc4nccnc4c3)nn2c1; ['Clc1ncc2cccn2n1']; ['OB(O)c1ccc2nccnc2c1']; [0.9999327063560486] +O=C(C1CC1)N1CC(Nc2ccc3nccnc3c2)C1; [None]; [None]; [0] +Clc1ccc(-c2ccc3nccnc3c2)c(Cl)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Clc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Clc1ccc(I)c(Cl)c1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccc(Br)c(Cl)c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'Br[Mg]c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Fc1ccc(Cl)cc1Cl', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1cccc(Cl)c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Fc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'Clc1cccc(Cl)c1']; ['Clc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(I)c(Cl)c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc(I)c(Cl)c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc(Br)c(Cl)c1', 'F[B-](F)(F)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OCc1ccc2nccnc2c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1cccc(Cl)c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; [0.999996542930603, 0.9999895691871643, 0.9999816417694092, 0.9999806880950928, 0.9999532699584961, 0.9999472498893738, 0.999942421913147, 0.9999200105667114, 0.9998928308486938, 0.9996883869171143, 0.9993082284927368, 0.9989480376243591, 0.998849630355835, 0.9987475872039795, 0.9976128339767456, 0.9972560405731201, 0.9963213205337524, 0.9953734874725342, 0.9953325986862183, 0.993651807308197, 0.9935210943222046, 0.9862455129623413, 0.9780046343803406, 0.9623062610626221, 0.8449358940124512, 0.8348753452301025, 0.7808303236961365] +COc1ccc(-c2ccc3nccnc3c2)cc1OC; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ccc(B(O)O)cc1OC', 'COc1ccccc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Br)cc1OC', 'Brc1ccc2nccnc2c1', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(F)cc1OC', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccccc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccccc1OC']; ['COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1ccc(Cl)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'COc1ccc(Cl)cc1OC', 'Fc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1ccccc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; [0.9999600648880005, 0.9999475479125977, 0.9999470114707947, 0.9998496770858765, 0.9997309446334839, 0.999600887298584, 0.9995644092559814, 0.9995337724685669, 0.9994351863861084, 0.9993740320205688, 0.997951328754425, 0.9967660903930664, 0.9963197112083435, 0.9963096380233765, 0.9959539771080017, 0.9928060173988342, 0.9918529987335205, 0.9746640920639038, 0.9731577634811401, 0.9677624702453613, 0.965548038482666, 0.9636234641075134, 0.9625204801559448, 0.9446573257446289, 0.898308515548706, 0.864814817905426, 0.8647534251213074, 0.8440377712249756] +COc1cc(-c2ccc3nccnc3c2)ccc1N1CCOCC1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1ccc2nccnc2c1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1ccccc1N1CCOCC1', 'COc1ccccc1N1CCOCC1']; ['COc1cc(Br)ccc1N1CCOCC1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1ccccc1N1CCOCC1', 'c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; [0.999998152256012, 0.9999929666519165, 0.9999881982803345, 0.9999865293502808, 0.9999864101409912, 0.9999617338180542, 0.998417317867279, 0.9451010227203369, 0.9363448619842529, 0.8963053226470947, 0.8925608992576599] +Cn1cc(-c2ccc3nccnc3c2)c(C(F)(F)F)n1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1ccc2nccnc2c1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Cn1ccc(C(F)(F)F)n1', 'Brc1ccc2nccnc2c1']; ['Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'OB(O)c1ccc2nccnc2c1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1', 'Ic1ccc2nccnc2c1', 'Cn1cc(Br)c(C(F)(F)F)n1']; [0.9999980330467224, 0.9999976754188538, 0.9999974966049194, 0.9999933242797852, 0.9999932646751404, 0.9999876022338867, 0.9999744296073914, 0.9999665021896362, 0.9999538660049438, 0.9999337792396545, 0.9998924732208252, 0.9992365837097168, 0.998989462852478, 0.9981259107589722, 0.9970517158508301, 0.9954107403755188] +c1ccn2nc(-c3ccc4nccnc4c3)cc2c1; ['Brc1cc2ccccn2n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1', 'Brc1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cc2ccccn2n1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'c1ccn2nccc2c1']; [0.9999972581863403, 0.9999966025352478, 0.9999752640724182, 0.9999750852584839, 0.9985759258270264] +CC1(C)Cc2cc(-c3ccc4nccnc4c3)ccc2O1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc4nccnc4c3)c2c1; ['COc1ccc2ccccc2c1']; ['OB(O)c1ccc2nccnc2c1']; [0.877424955368042] +Cc1nc(Nc2ccc3nccnc3c2)sc1C; ['Cc1nc(Cl)sc1C', 'Brc1ccc2nccnc2c1', 'Cc1nc(Br)sc1C', 'Cc1nc(N)sc1C']; ['Nc1ccc2nccnc2c1', 'Cc1nc(N)sc1C', 'Nc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; [0.9999966025352478, 0.9999953508377075, 0.9999931454658508, 0.9999581575393677] +Clc1cnc(-c2ccc3nccnc3c2)nc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cnc(I)nc1', 'Clc1cnc(Br)nc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Clc1cnc(Cl)nc1', 'CSc1ncc(Cl)cn1', 'Clc1cncnc1']; ['Clc1cnc(I)nc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; [0.9999892711639404, 0.9999865293502808, 0.9999454021453857, 0.9999256730079651, 0.9998816251754761, 0.9998157024383545, 0.9968560934066772, 0.8604254722595215] +Oc1ccc2cccc(-c3ccc4nccnc4c3)c2c1; [None]; [None]; [0] +Cc1csc2c(-c3ccc4nccnc4c3)ncnc12; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Cc1csc2c(Cl)ncnc12']; ['Cc1csc2c(Cl)ncnc12', 'OB(O)c1ccc2nccnc2c1']; [0.9999675154685974, 0.9999015927314758] +Cc1cc(Nc2ccc3nccnc3c2)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C', 'Cc1cc(Br)nn1C', 'Brc1ccc2nccnc2c1', 'Cc1cc(N)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(N)nn1C']; ['OB(O)c1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Cc1cc(N)nn1C', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1']; [0.9999975562095642, 0.9999887943267822, 0.9999849796295166, 0.9999340772628784, 0.9999223947525024, 0.9992705583572388, 0.9992297887802124] +CCNC(=O)c1ccc(-c2ccc3nccnc3c2)nc1; ['CCNC(=O)c1ccc(Cl)nc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C']; ['OB(O)c1ccc2nccnc2c1', 'CCNC(=O)c1ccc(Cl)nc1']; [0.9999809861183167, 0.9999585747718811] +COc1cc(F)c(-c2ccc3nccnc3c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc3nccnc3c2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2ccc3nccnc3c2)cn1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; ['OCCn1cc(I)cn1', 'OCCn1cc(I)cn1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999992251396179, 0.9999967813491821, 0.9999943971633911, 0.9999916553497314, 0.9999781847000122, 0.9999756217002869, 0.9999681711196899, 0.9999374151229858, 0.9999198913574219, 0.9998273253440857, 0.9998071193695068, 0.9955462217330933, 0.9942253828048706] +CNC(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CNC(=O)c1ccc(Br)cc1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CNC(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccccc1', 'c1ccc2nccnc2c1']; [0.9999992847442627, 0.9999992847442627, 0.9999971389770508, 0.9999966621398926, 0.9999949932098389, 0.9999945759773254, 0.9999932050704956, 0.9999908208847046, 0.9999867081642151, 0.9999752044677734, 0.9999637603759766, 0.9999507665634155, 0.9999030232429504, 0.9996902346611023, 0.9903996586799622, 0.9899022579193115, 0.9832578897476196] +O=C(Nc1ccc2nccnc2c1)c1ccco1; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1']; [0.9999912977218628, 0.9997391700744629] +Nc1cc(-c2ccc3nccnc3c2)c2cc[nH]c2n1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Brc1ccc2nccnc2c1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'OB(O)c1ccc2nccnc2c1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'OB(O)c1ccc2nccnc2c1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.9999986886978149, 0.9999967813491821, 0.9999881982803345, 0.9999693632125854, 0.9793074131011963] +COc1cc(-c2ccc3nccnc3c2)c(OC)cc1Br; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(I)c(OC)cc1Br', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(Br)c(OC)cc1Br', 'Brc1ccc2nccnc2c1', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1', 'Brc1ccc2nccnc2c1', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br']; ['COc1cc(I)c(OC)cc1Br', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(Br)c(OC)cc1Br', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(I)c(OC)cc1Br', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(B(O)O)c(OC)cc1Br', 'Ic1ccc2nccnc2c1', 'c1ccc2nccnc2c1']; [0.9999995231628418, 0.9999995231628418, 0.9996874332427979, 0.9996650218963623, 0.9995429515838623, 0.9991181492805481, 0.9990464448928833, 0.9990202188491821, 0.9979641437530518, 0.9939432740211487, 0.929473876953125, 0.8254567384719849] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2ccc3nccnc3c2)cc1; ['ClCc1ccc2nccnc2c1']; ['O=S(=O)(CCO)c1ccc(Br)cc1']; [0.9904522895812988] +NC(=O)c1ccc(Cc2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'ClCc1ccc2nccnc2c1', 'NC(=O)c1ccc(CCl)cc1', 'BrCc1ccc2nccnc2c1', 'BrCc1ccc2nccnc2c1', 'NC(=O)c1ccc(CBr)cc1', 'Brc1ccc2nccnc2c1', 'BrCc1ccc2nccnc2c1']; ['ClCc1ccc2nccnc2c1', 'NC(=O)c1ccc(CCl)cc1', 'NC(=O)c1ccc(CBr)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'NC(=O)c1ccc(CBr)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999212622642517, 0.9998788833618164, 0.9998615980148315, 0.9998135566711426, 0.9998046159744263, 0.9997175931930542, 0.9990116357803345, 0.9987526535987854, 0.9474037289619446, 0.9461646676063538] +COc1cc(OC)cc(-c2ccc3nccnc3c2)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(F)cc(OC)c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1cc(OC)cc([Mg]Br)c1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'COc1cc(OC)cc(B(O)O)c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cccc(OC)c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'COc1cc(OC)cc(B(O)O)c1']; ['COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'Ic1ccc2nccnc2c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(I)cc(OC)c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'Ic1ccc2nccnc2c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(Br)cc(OC)c1', 'Fc1ccc2nccnc2c1', 'COc1cc(I)cc(OC)c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'OCc1ccc2nccnc2c1']; [0.9999935626983643, 0.9999911189079285, 0.99998939037323, 0.9999827146530151, 0.9999669194221497, 0.9999668598175049, 0.9999645948410034, 0.9999628067016602, 0.9999549984931946, 0.9999425411224365, 0.9999169707298279, 0.9998853206634521, 0.9998750686645508, 0.9998021125793457, 0.9997947812080383, 0.9989864826202393, 0.9989064931869507, 0.9982063174247742, 0.9966756105422974, 0.9944199919700623, 0.9926954507827759, 0.9909087419509888, 0.9907097816467285, 0.9879282712936401, 0.9867112040519714, 0.9824535846710205, 0.9797239303588867, 0.9192544221878052] +CCNC(=O)N1CCC(c2ccc3nccnc3c2)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3nccnc3c2)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2ccc3nccnc3c2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', None, 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CCOC(=O)c1ccc(C(C)(C)C)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['Nc1ccc2nccnc2c1', None, 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1']; [0.9999985694885254, 0, 0.9999852180480957, 0.999945342540741, 0.9999143481254578, 0.9976115226745605] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccc3nccnc3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3nccnc3c1)cn2C; ['Br[Mg]c1ccc2nccnc2c1']; ['COc1ccc2c(ccn2C)c1']; [0.9982532262802124] +c1cnc2cc(-c3ccc4cn[nH]c4c3)ccc2n1; ['Brc1ccc2cn[nH]c2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Clc1ccc2cn[nH]c2c1', 'Clc1ccc2nccnc2c1', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1ccc2cn[nH]c2c1', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Brc1ccc2nccnc2c1']; [0.9999984502792358, 0.9999980330467224, 0.9999977350234985, 0.9999961853027344, 0.9999871253967285, 0.9999849796295166, 0.9999675750732422, 0.9999434351921082, 0.9999349117279053, 0.9998582601547241, 0.9997990727424622, 0.9990090131759644, 0.9981800317764282, 0.9939730167388916] +CCn1cc(-c2ccc3nccnc3c2)cn1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2nccnc2c1', 'CCn1cc(Cl)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CCn1cc(Br)cn1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CCn1cc(B(O)O)cn1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CCn1cc(Br)cn1', 'CCn1cccn1']; [0.9999991655349731, 0.9999970197677612, 0.9999958276748657, 0.9999904036521912, 0.9999895095825195, 0.9999489784240723, 0.9999206066131592, 0.9996744394302368, 0.9996547698974609, 0.9995578527450562, 0.9983682632446289, 0.9919202327728271, 0.9245033860206604] +COc1ccc2oc(-c3ccc4nccnc4c3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +c1cnc2cc(-c3ncc4sccc4n3)ccc2n1; ['Clc1ncc2sccc2n1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C']; ['OB(O)c1ccc2nccnc2c1', 'Clc1ncc2sccc2n1']; [0.9999979138374329, 0.9999963045120239] +c1ccc2oc(-c3ccc4nccnc4c3)cc2c1; ['Brc1cc2ccccc2o1', 'C#Cc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Brc1cc2ccccc2o1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'O=S(=O)(Cl)c1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Oc1ccccc1I', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'c1ccc2occc2c1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'Ic1ccc2nccnc2c1', 'c1ccc2occc2c1']; [0.999997615814209, 0.9999822378158569, 0.9999470710754395, 0.9999237060546875, 0.9999207258224487, 0.9994041919708252, 0.9981361031532288, 0.9981024265289307, 0.9976369142532349, 0.9953011274337769, 0.9942679405212402, 0.9783860445022583] +CNC(=O)c1ccc(OC)c(-c2ccc3nccnc3c2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'CNC(=O)c1ccc(OC)c(Br)c1', 'Ic1ccc2nccnc2c1', 'CNC(=O)c1ccc(OC)cc1', 'CNC(=O)c1ccc(OC)c(Br)c1']; [0.9999872446060181, 0.9999634027481079, 0.9995545148849487, 0.9969481229782104, 0.9908370971679688] +COc1ccc2nc(-c3ccc4nccnc4c3)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1', 'BrCc1ccc2nccnc2c1', 'COc1ccc(N)c(N)c1', 'COc1ccc([N+](=O)[O-])c(N)c1', 'COc1ccc(N)c(N)c1', 'COc1ccc(N)c([N+](=O)[O-])c1']; ['O=C(Cl)c1ccc2nccnc2c1', 'O=C(O)c1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'COc1ccc(N)c(N)c1', 'NCc1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1', 'OCc1ccc2nccnc2c1', 'O=Cc1ccc2nccnc2c1']; [0.9988298416137695, 0.995468020439148, 0.9954374432563782, 0.9929602146148682, 0.9928556680679321, 0.9880319833755493, 0.9660079479217529, 0.9524487257003784] +COc1ccc(F)c(C(=O)Nc2ccc3nccnc3c2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F']; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1']; [0.9999908804893494, 0.9999569654464722] +CC(C)c1nn(C)cc1-c1ccc2nccnc2c1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'Brc1ccc2nccnc2c1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC(C)c1ccn(C)n1']; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1ccn(C)n1', 'Ic1ccc2nccnc2c1']; [0.9999970197677612, 0.9999943971633911, 0.9999920129776001, 0.999972403049469, 0.9999579787254333, 0.9999562501907349, 0.999915599822998, 0.9958678483963013, 0.9955363869667053, 0.9861475825309753, 0.9647878408432007] +Cn1cc(-c2ccc3nccnc3c2)c2ccccc21; ['Brc1ccc2nccnc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Clc1ccc2nccnc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2nccnc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999988079071045, 0.999987006187439, 0.9999796152114868] +Cn1cc(Br)cc1-c1ccc2nccnc2c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3ccc4nccnc4c3)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3nccnc3c2)c1)N1CCCC1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2ccc3nccnc3c2)cc1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4nccnc4c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc3nccnc3c2)n1; [None]; [None]; [0] +c1cnc2cc(-c3ncn4c3CCCC4)ccc2n1; ['OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1']; ['c1ncn2c1CCCC2', 'c1ncn2c1CCCC2', 'c1ncn2c1CCCC2']; [0.9998990297317505, 0.9945898056030273, 0.9148160219192505] +Cn1ncc2cc(-c3ccc4nccnc4c3)ccc21; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Cn1ncc2cc(Cl)ccc21', 'Clc1ccc2nccnc2c1', 'Cn1ncc2cc(Br)ccc21', 'Brc1ccc2nccnc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Cn1ncc2cc(Cl)ccc21', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'OB(O)c1ccc2nccnc2c1', 'Cn1ncc2cc(B(O)O)ccc21', 'Ic1ccc2nccnc2c1', 'Cn1ncc2cc(Br)ccc21']; [0.9999996423721313, 0.9999994039535522, 0.9999994039535522, 0.9999980330467224, 0.9999979734420776, 0.9999979734420776, 0.9999968409538269, 0.9999966621398926, 0.9999903440475464, 0.9999847412109375, 0.9999733567237854, 0.9999696016311646, 0.9998979568481445, 0.9998455047607422, 0.9951654672622681] +CC(=O)N1CCC(n2cc(-c3ccc4nccnc4c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'Brc1ccc2nccnc2c1']; ['Ic1ccc2nccnc2c1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; [0.9999975562095642, 0.9999963045120239] +Cc1n[nH]c2cc(-c3ccc4nccnc4c3)ccc12; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Brc1ccc2nccnc2c1', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Brc1ccc2nccnc2c1', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Brc1ccc2nccnc2c1']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Ic1ccc2nccnc2c1', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Cc1n[nH]c2cc(I)ccc12', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Cc1n[nH]c2cc(Br)ccc12']; [0.9999995231628418, 0.9999990463256836, 0.999998152256012, 0.9999914169311523, 0.9999872446060181, 0.9999862909317017, 0.9999836683273315, 0.9999626874923706, 0.9999372959136963, 0.9999306797981262, 0.999650776386261, 0.999176025390625, 0.9972129464149475] +CN(C)c1ccc(-c2ccc3nccnc3c2)cn1; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1ccc2nccnc2c1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc([Zn]Br)cn1', 'CN(C)c1ccc(Br)cn1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(I)cn1', 'Ic1ccc2nccnc2c1', 'CN(C)c1ccc(Cl)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'Clc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)c1ccc(I)cn1', 'Clc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(Cl)cn1']; [0.9999986886978149, 0.9999969601631165, 0.9999930262565613, 0.9999908804893494, 0.9999906420707703, 0.9999903440475464, 0.9999895095825195, 0.9999520778656006, 0.999920666217804, 0.9998865127563477, 0.9998759031295776, 0.9997788667678833, 0.9997397065162659, 0.9983958005905151, 0.9976798295974731, 0.99640291929245, 0.9899857640266418] +Cn1nc(Cl)c2cc(-c3ccc4nccnc4c3)ccc21; [None]; [None]; [0] +O=C(Nc1ccc2nccnc2c1)c1cccc(OC(F)(F)F)c1; ['Nc1ccc2nccnc2c1', None, 'Nc1ccc2nccnc2c1', 'COC(=O)c1cccc(OC(F)(F)F)c1', 'Nc1ccc2nccnc2c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', None, 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1ccc2nccnc2c1', 'O=Cc1cccc(OC(F)(F)F)c1']; [0.9999992847442627, 0, 0.9999938011169434, 0.9998592138290405, 0.9995878338813782] +O=C1CCCN1c1cccc(-c2ccc3nccnc3c2)c1; ['O=C1CCCN1c1cccc(Br)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'O=C1CCCN1c1cccc(Cl)c1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'O=C1CCCN1c1cccc(Br)c1', 'Ic1ccc2nccnc2c1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Cl)c1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999735355377197, 0.9999692440032959, 0.9999136328697205, 0.9998961687088013, 0.9997357130050659, 0.9995206594467163, 0.9986957907676697, 0.9670266509056091] +Cc1cc(-c2ccc3nccnc3c2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc4nccnc4c3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nccnc3c2)c(Cl)c1; [None]; [None]; [0] +OCCc1ccc(-c2ccc3nccnc3c2)cc1; ['Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'OB(O)c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Br[Mg]c1ccc2nccnc2c1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Ic1ccc2nccnc2c1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(B(O)O)cc1', 'Clc1ccc2nccnc2c1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(Cl)cc1']; [0.9999985694885254, 0.9999883770942688, 0.9999814033508301, 0.9999754428863525, 0.9999504089355469, 0.999923825263977, 0.9998124837875366, 0.9997968673706055, 0.9997608661651611, 0.9995543956756592, 0.9975638389587402, 0.9967325925827026, 0.9966205358505249, 0.9952073693275452, 0.9856675863265991, 0.9599894285202026, 0.9075207710266113, 0.8999454975128174] +Cc1cc(N2CCOCC2)ccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2nccnc2c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br', 'Brc1ccc2nccnc2c1', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'OB(O)c1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'COc1cc(S(C)(=O)=O)ccc1Br', 'c1ccc2nccnc2c1']; [0.999997615814209, 0.999994158744812, 0.9999914169311523, 0.998428463935852, 0.8861923217773438] +CNC(=O)c1ccc(-c2ccc3nccnc3c2)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; [0.9999978542327881, 0.9999958872795105, 0.999990701675415, 0.9999815821647644, 0.9996519684791565, 0.996015727519989] +Fc1ccc(Nc2ccc3nccnc3c2)nc1; ['Fc1ccc(Br)nc1', 'Fc1ccc(Cl)nc1', 'Fc1ccc(I)nc1', 'Nc1ccc(F)cn1', 'Ic1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1', 'Fc1ccc(F)nc1', 'Clc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1']; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc2nccnc2c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1']; [0.9999831914901733, 0.9999827146530151, 0.9997808933258057, 0.999748945236206, 0.9994159936904907, 0.9991327524185181, 0.997418224811554, 0.9782208800315857, 0.9034414291381836] +CCNC(=O)c1ccc(-c2ccc3nccnc3c2)cc1; ['CCNC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2nccnc2c1', 'CCNC(=O)c1ccc(Br)cc1', 'Br[Mg]c1ccc2nccnc2c1', 'Brc1ccc2nccnc2c1']; ['OB(O)c1ccc2nccnc2c1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1', 'CCNC(=O)c1ccc(I)cc1', 'Ic1ccc2nccnc2c1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(Br)cc1']; [0.999994158744812, 0.9999938011169434, 0.9999919533729553, 0.999991238117218, 0.9999878406524658, 0.9999752044677734, 0.9999392032623291, 0.9997286796569824, 0.9995281100273132, 0.9953192472457886, 0.9947974681854248] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc3nccnc3c2)cc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1', 'Brc1ccc2nccnc2c1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'OB(O)c1ccc2nccnc2c1', 'CCNC(=O)Cc1ccc(Br)cc1']; [0.9999948143959045, 0.9999243021011353, 0.9927421808242798] +CN(C)C(=O)c1ccc(-c2ccc3nccnc3c2)nc1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'Brc1ccc2nccnc2c1', 'CN(C)C(=O)c1cccnc1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'OB(O)c1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1', 'OB(O)c1ccc2nccnc2c1']; [0.9999997615814209, 0.9999995231628418, 0.9999990463256836, 0.9999986886978149, 0.9998295307159424, 0.7709331512451172] +Cc1cc(Nc2ccc3nccnc3c2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Brc1ccc2nccnc2c1', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Cc1cc(N)ncc1F', 'Ic1ccc2nccnc2c1', 'Clc1ccc2nccnc2c1']; [0.9999760389328003, 0.9999454021453857, 0.9987615346908569, 0.9971824884414673, 0.9809502363204956] +c1ccc(Nc2ccc3nccnc3c2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'Ic1ccccn1', 'Nc1ccccn1', 'Brc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Ic1ccc2nccnc2c1', 'CS(=O)(=O)c1ccccn1', '[N-]=[N+]=Nc1ccccn1', 'Clc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Fc1ccc2nccnc2c1']; ['Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'Nc1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'Nc1ccccn1', 'O=S(=O)(Oc1ccccn1)C(F)(F)F', 'Nc1ccccn1', 'Nc1ccc2nccnc2c1', 'c1ccc2nccnc2c1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1']; [0.9999198317527771, 0.9997217655181885, 0.9991723299026489, 0.9987365007400513, 0.9984263181686401, 0.997766375541687, 0.9970807433128357, 0.9944837093353271, 0.9873672723770142, 0.9622639417648315, 0.9594231247901917, 0.9347097873687744, 0.9062010049819946] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3nccnc3c2)c1; ['CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CC1(C)OB(c2ccc3nccnc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'Brc1ccc2nccnc2c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'OB(O)c1ccc2nccnc2c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'Ic1ccc2nccnc2c1', 'OB(O)c1ccc2nccnc2c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; [0.9999994039535522, 0.9999816417694092, 0.9999212622642517, 0.9999128580093384, 0.9984540343284607, 0.9901024103164673] +COc1cc(N2CCNCC2)ccc1-c1ccc2nccnc2c1; [None]; [None]; [0] +Cn1nc(-c2ccc3nccnc3c2)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccc(Nc2ccc(C)cn2)cc1; ['CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(F)cc1', 'CCOc1ccc(Cl)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9995472431182861, 0.9990628361701965, 0.9990603923797607, 0.9983240962028503, 0.9958853125572205, 0.9910844564437866, 0.9886512160301208, 0.9858583807945251, 0.9681113362312317] +CC(=O)N(C)c1ccc(Nc2ccc(C)cn2)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.999477744102478, 0.9992291927337646, 0.9990065097808838, 0.9851629734039307] +Cc1ccc(Nc2cccc(S(C)(=O)=O)c2)nc1; ['CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1']; [0.9999676942825317, 0.9998974800109863, 0.9995328187942505, 0.9991096258163452] +Cc1ccc(Nc2ncc3ccccc3n2)nc1; ['Cc1ccc(N)nc1', 'Brc1ncc2ccccc2n1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; ['Clc1ncc2ccccc2n1', 'Cc1ccc(N)nc1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1']; [0.999886155128479, 0.9998775720596313, 0.9998241662979126, 0.9997190833091736] +COc1ncccc1Nc1ccc(C)cn1; ['COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1N', 'COc1ncccc1Cl', 'COc1ncccc1F', 'COc1ncccc1B(O)O']; ['Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9979283809661865, 0.9966608285903931, 0.9964776039123535, 0.994842529296875, 0.9948069453239441, 0.994476318359375, 0.9883747100830078, 0.9714195132255554, 0.9537925720214844] +Cc1ccc(Nc2cnc3cccnn23)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12']; [0.9999735951423645, 0.9999731779098511] +COc1cc(Nc2ccc(C)cn2)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9997190237045288, 0.9996194839477539, 0.9952265024185181, 0.9950335025787354, 0.9894018173217773] +Cc1ccc(Nn2cnc3ccc(C)cc32)nc1; [None]; [None]; [0] +COc1ccc(Nc2ccc(C)cn2)cc1; ['COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1', 'COc1ccc(Cl)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9983111619949341, 0.9975830316543579, 0.9971987009048462, 0.9965330362319946, 0.9925631880760193, 0.9893025159835815, 0.9830549955368042, 0.9825018644332886, 0.9747114181518555, 0.9683762788772583] +Cc1ccc(Nc2cccc(O)c2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'Nc1cccc(O)c1', 'Oc1cccc(F)c1']; [0.9972357153892517, 0.9968416690826416, 0.9959477186203003, 0.9877686500549316, 0.9836851358413696, 0.9793112277984619, 0.9742168188095093, 0.9639114141464233, 0.9469488859176636] +Cc1ccc(Nc2ccc(N3CCOCC3)cc2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1ccc(N)nc1', 'Clc1ccc(N2CCOCC2)cc1']; [0.9998886585235596, 0.9996607303619385, 0.9996055364608765, 0.9989793300628662, 0.9966552257537842, 0.9948366284370422] +CNC(=O)c1ccc(C)c(-c2ccc3nccnc3c2)c1; [None]; [None]; [0] +Cc1ccc(Nc2cc(C#N)ccc2O)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1']; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(F)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(N)c1']; [0.9982712864875793, 0.9962284564971924, 0.9950922727584839, 0.9946147203445435, 0.9924103021621704, 0.987406849861145, 0.985192596912384, 0.9669493436813354] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2nccnc2c1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C(=O)[O-])cc2)nc1; ['Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1']; ['Nc1ccc(C(=O)[O-])cc1', 'Nc1ccc(C(=O)[O-])cc1']; [0.8813692331314087, 0.8054020404815674] +Cc1ccc(Nc2cccc(NC(=O)C3CC3)c2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9998948574066162, 0.9985139966011047, 0.9847854375839233, 0.9766064882278442] +Cc1ccc(Nc2nccc3ccccc23)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Brc1nccc2ccccc12', 'Cc1ccc(F)nc1']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'Cc1ccc(N)nc1', 'Nc1nccc2ccccc12']; [0.9997328519821167, 0.9992905259132385, 0.998214602470398, 0.9974586367607117, 0.9955204725265503] +Cc1ccc(Nc2ccc(C(N)=O)cc2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1']; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(I)cc1']; [0.9998458623886108, 0.9992822408676147, 0.9928315877914429] +Cc1ccc(Nc2nc3ccccc3[nH]2)nc1; ['Brc1nc2ccccc2[nH]1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'CSc1nc2ccccc2[nH]1', 'Cc1ccc(Br)nc1']; ['Cc1ccc(N)nc1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Cc1ccc(N)nc1', 'Nc1nc2ccccc2[nH]1']; [0.9848473072052002, 0.9819985628128052, 0.9753016233444214, 0.9719992280006409, 0.9488464593887329, 0.9293634295463562] +Cc1ccc(Nc2sc(C(C)(C)O)nc2C)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C(=O)Nc3ccccc3)cc2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; [0.9994760751724243, 0.9993025064468384, 0.9912156462669373, 0.9907720685005188, 0.8169330358505249] +Cc1ccc(Nc2cccc(C3CCNCC3)c2)nc1; ['Cc1ccc(Cl)nc1']; ['Nc1cccc(C2CCNCC2)c1']; [0.9988380670547485] +Cc1ccc(Nc2ccc(OCCO)cc2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Cl)cc1']; [0.9983647465705872, 0.997952938079834, 0.8910000920295715] +Cc1ccc(NNc2ncccn2)nc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ccc(C)cn3)cc2)CC1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C(=O)N3CCOCC3)cc2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1']; [0.999976396560669, 0.9999393224716187, 0.9997637271881104, 0.9993678331375122, 0.9993389248847961, 0.9915011525154114] +Cc1ccc(Nc2ccc(C(=O)N3CCOCC3)cn2)nc1; ['Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9998776912689209, 0.9998776912689209, 0.9996343851089478] +CNS(=O)(=O)c1ccc(Nc2ccc(C)cn2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(F)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9988929033279419, 0.9976553916931152, 0.9941989183425903, 0.9850814342498779, 0.9838117957115173, 0.9583654403686523] +CC(=O)NCc1ccc(Nc2ccc(C)cn2)cc1; ['CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1']; [0.9998791813850403, 0.9997496604919434, 0.9966415166854858] +Cc1ccc(Nc2ccc(C(F)(F)F)cc2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(C(F)(F)F)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'Fc1ccc(C(F)(F)F)cc1']; [0.9987741708755493, 0.9970086812973022, 0.9968996047973633, 0.991213321685791, 0.9907384514808655, 0.9815168380737305, 0.9499551057815552, 0.9174360036849976] +Cc1ccc(NCc2ccccc2O)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; ['NCc1ccccc1O', 'NCc1ccccc1O', 'NCc1ccccc1O', 'O=Cc1ccccc1O']; [0.9974846839904785, 0.9967614412307739, 0.9549604654312134, 0.9535694122314453] +Cc1ccc(Nc2ccc3c(c2)CS(=O)(=O)C3)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9998309016227722, 0.9995894432067871, 0.9994533061981201, 0.9979651570320129, 0.9941345453262329] +Cc1ccc(Nc2ccc(S(=O)(=O)N(C)C)cc2)nc1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9997560977935791, 0.9993898868560791, 0.9989489316940308, 0.9970520734786987, 0.9951781034469604, 0.994674801826477] +Cc1ccc(Nc2ccc(N(C)C)cc2)nc1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Cl)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9994046688079834, 0.9974526762962341, 0.9974162578582764, 0.994986891746521, 0.9916121959686279, 0.9911432266235352, 0.9874809384346008, 0.983497679233551, 0.9620588421821594] +Cc1ccc(Nc2ccc(OC[C@H](C)O)cc2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(OC[C@@H](C)O)cc2)nc1; [None]; [None]; [0] +Cc1ccc(NCc2cnc(N)nc2)nc1; ['Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ncc(CO)cn1', 'Nc1ncc(C=O)cn1']; [0.9329190254211426, 0.8619292974472046] +Cc1ccc(Nc2cnn(Cc3cccc(C#N)c3)c2)nc1; [None]; [None]; [0] +Cc1ccc(NC2CCN(S(C)(=O)=O)CC2)nc1; ['CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(=O)CC1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9999712109565735, 0.9999606609344482, 0.9998328685760498, 0.9996510744094849] +Cc1ccc(Nc2sc(C)nc2C)nc1; [None]; [None]; [0] +Cc1ccc(N[C@H]2CCN(C(=O)c3ccccc3)C2)nc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2ccc(C)cn2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(F)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9958304166793823, 0.9926179647445679, 0.9886755347251892, 0.9843312501907349, 0.9762307405471802, 0.9583426713943481] +Cc1ccc(Nc2cc(C(C)C)nc(N)n2)nc1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Cc1ccc(N)nc1']; [0.9719814658164978] +Cc1ccc(Nc2ccc(Br)cc2)nc1; ['Cc1ccc(I)nc1', 'Cc1ccc(Cl)nc1', 'Brc1ccc(I)cc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Brc1ccc(Br)cc1']; ['Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Cc1ccc(N)nc1', 'Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Fc1ccc(Br)cc1', 'Clc1ccc(Br)cc1', 'Cc1ccc(N)nc1']; [0.9991713762283325, 0.9983406662940979, 0.9914131164550781, 0.9876875877380371, 0.986966609954834, 0.9801141619682312, 0.9312636852264404, 0.9298430681228638, 0.8526816368103027] +CCCOc1ccc(Nc2ccc(C)cn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Cc1ccc(N)nc1']; [0.9929183125495911] +Cc1ccc(Nc2ccc(N(C)C)c(Cl)c2)nc1; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1']; [0.9996669292449951, 0.9979840517044067, 0.9895315170288086, 0.9797908067703247] +COc1ccc(CNc2ccc(C)cn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(O)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc[n+]([O-])c1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9993316531181335, 0.9991964101791382, 0.9991630911827087, 0.9989237785339355, 0.998812735080719, 0.998560905456543, 0.9983938932418823, 0.9980179667472839, 0.9978545308113098, 0.9672533273696899] +Cc1ccc(Nc2cccc(C(=O)[O-])c2C)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3ccc(C)cn3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1ccc(C)cn1; ['COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Cl']; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1']; [0.9998981356620789, 0.9995585680007935, 0.9993758201599121, 0.999374508857727, 0.9967573881149292, 0.9965463876724243] +CCN(CC)C(=O)c1ccc(Nc2ccc(C)cn2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(F)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9998108744621277, 0.9994971752166748, 0.9974928498268127, 0.9940317273139954, 0.9936559796333313, 0.9899499416351318, 0.9867098331451416] +Cc1ccc(Nc2ccn3nccc3n2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Brc1ccn2nccc2n1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Cc1ccc(N)nc1', 'Nc1ccn2nccc2n1', 'O=c1ccn2nccc2[nH]1']; [0.9999438524246216, 0.999742329120636, 0.9996511340141296, 0.9995366930961609, 0.9988480806350708, 0.9975993633270264] +CNS(=O)(=O)c1ccc(Nc2ccc(C)cn2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9998608827590942, 0.9995325803756714] +Cc1ccc(Nc2ccccc2-n2cccn2)nc1; ['Brc1ccccc1-n1cccn1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Cc1ccc(N)nc1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Fc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999476075172424, 0.9998594522476196, 0.999842643737793, 0.9995759129524231, 0.9993273019790649, 0.9992549419403076, 0.9981085062026978] +Cc1ccc(Nc2c[nH]c3ccccc23)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Cc1ccc(N)nc1']; [0.9928170442581177, 0.9921191930770874, 0.9842404723167419, 0.9786980152130127, 0.9776310920715332, 0.9744665622711182] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ccc(C)cn1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1']; [0.9999394416809082, 0.9999303817749023, 0.9999076128005981] +COc1cc(OC)c(Nc2ccc(C)cn2)cc1Cl; ['COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N']; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1']; [0.9990292191505432, 0.9986836910247803, 0.9986582398414612, 0.9947903156280518, 0.9797722101211548] +CC(=O)Nc1cccc(Nc2ccc(C)cn2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(F)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9995720386505127, 0.9995430707931519, 0.9981225728988647, 0.9956762790679932, 0.9939535856246948, 0.9905154705047607, 0.9852945804595947, 0.9822697639465332] +COc1cc(Nc2ccc(C)cn2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O']; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9972425699234009, 0.9929547309875488, 0.9923492670059204, 0.9919267892837524, 0.9887524247169495, 0.9866269826889038, 0.9844262003898621, 0.8901269435882568] +Cc1ccc(Nc2ccc3c(c2)CCO3)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Brc1ccc2c(c1)CCO2', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Cc1ccc(N)nc1', 'Ic1ccc2c(c1)CCO2', 'Fc1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2']; [0.9997395277023315, 0.9997220039367676, 0.9985208511352539, 0.9981599450111389, 0.9980322122573853, 0.9920730590820312, 0.9689141511917114, 0.9522519111633301] +Cc1ccc(Nc2cc(-c3ccccc3)[nH]n2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; ['Nc1cc(-c2ccccc2)[nH]n1', 'Nc1cc(-c2ccccc2)[nH]n1']; [0.9977951049804688, 0.9865164756774902] +Cc1ccc(Nc2cccc3c2OCO3)nc1; ['Brc1cccc2c1OCO2', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1']; ['Cc1ccc(N)nc1', 'Ic1cccc2c1OCO2', 'Fc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1cccc2c1OCO2']; [0.9933009147644043, 0.9928798675537109, 0.9921236038208008, 0.9920489192008972, 0.9908498525619507, 0.9900926947593689, 0.985459566116333] +Cc1ccc(Nc2ccc(C(C)(C)C)cc2)nc1; ['CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(F)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9996240735054016, 0.9995123147964478, 0.999186635017395, 0.9982032775878906, 0.9976111054420471, 0.9967020750045776, 0.9962797164916992, 0.9858589768409729, 0.9848415851593018] +Cc1ccc(NCc2nc3ccc(F)c(F)c3[nH]2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2cnc3ccccc3c2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Cc1ccc(N)nc1']; [0.9986610412597656, 0.9982457756996155, 0.9947786331176758, 0.9902487993240356, 0.985796332359314, 0.9382444024085999, 0.929789125919342, 0.8947832584381104, 0.7558103203773499] +Cc1ccc(NCc2nc3c(F)c(F)ccc3[nH]2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C(=O)N(C)C)cc2)nc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9996907711029053, 0.9985967874526978, 0.994498610496521, 0.993830680847168, 0.9929279088973999, 0.965658962726593] +Cc1ccc(Nc2nc3ccc(C(C)C)cc3[nH]2)nc1; [None]; [None]; [0] +Cc1ccc(NCc2nc3ccccc3[nH]2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'BrCc1nc2ccccc2[nH]1', 'Cc1ccc(F)nc1']; ['NCc1nc2ccccc2[nH]1', 'ClCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1', 'Cc1ccc(N)nc1', 'NCc1nc2ccccc2[nH]1']; [0.9994479417800903, 0.9986516237258911, 0.997671902179718, 0.9897360801696777, 0.9886237382888794, 0.9878435730934143] +Cc1ccc(Nc2ccc(C(C)(C)C)nc2)nc1; ['CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9998417496681213, 0.9984405040740967, 0.9983451962471008, 0.9979802370071411, 0.9960676431655884, 0.9959262013435364] +Cc1ccc(Nc2csc(N)n2)nc1; ['Cc1ccc(NC(=O)CCl)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1']; ['NC(N)=S', 'Nc1csc(N)n1', 'Nc1nc(Cl)cs1']; [0.9967577457427979, 0.9934136867523193, 0.9866983890533447] +COc1cccc(C(=O)NNc2ccc(C)cn2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)NN)c1']; ['Cc1ccc(NN)nc1', 'Cc1ccc(NN)nc1', 'Cc1ccc(Cl)nc1']; [0.9994257688522339, 0.9990004301071167, 0.9793568849563599] +CC(=O)N[C@@H]1CC[C@@H](Nc2ccc(C)cn2)CC1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C)[nH]c2=O)nc1; ['Cc1ccc(F)nc1', 'Cc1ccc(I)c(=O)[nH]1', 'Cc1ccc(Br)nc1']; ['Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)c(=O)[nH]1']; [0.9738800525665283, 0.9413121938705444, 0.9375496506690979] +Cc1ccc(NCCCc2ccccc2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc[n+]([O-])c1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'BrCCCc1ccccc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1cccnc1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'ClCCCc1ccccc1', 'ICCCc1ccccc1', 'Cc1ccc(N)nc1', 'NCCCc1ccccc1', 'O=CCCc1ccccc1', 'OCCCc1ccccc1', 'NCCCc1ccccc1']; [0.9997445344924927, 0.998959481716156, 0.9983163475990295, 0.9942886829376221, 0.9939600229263306, 0.9915690422058105, 0.9910616874694824, 0.9828917384147644, 0.9753013849258423, 0.9571834802627563, 0.9318761825561523, 0.8832239508628845] +CSc1ccc(Nc2ccc(C)cn2)cc1; ['CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9994446039199829, 0.9993294477462769, 0.9990525841712952, 0.9954208731651306, 0.992271900177002, 0.9896404147148132, 0.9836568236351013] +Cc1ccc(Nc2cc3ccccc3s2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1']; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1']; [0.9980485439300537, 0.995988130569458] +Cc1ccc(Nc2ccn(-c3cccc(Cl)c3)n2)nc1; [None]; [None]; [0] +CC[C@@H](CO)Nc1ccc(C)cn1; ['CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO']; ['Cc1ccc(O)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Br)nc1']; [0.9874095320701599, 0.9810366630554199, 0.9684436917304993, 0.9596278071403503, 0.950682520866394] +CCN1CCN(Cc2ccc(Nc3ccc(C)cn3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9983487129211426, 0.992523193359375, 0.9827560782432556, 0.9224101901054382] +Cc1ccc(Nc2ccc(F)cc2Cl)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1']; [0.9999518394470215, 0.9998109936714172, 0.9989025592803955, 0.9972226619720459, 0.9970606565475464, 0.958022952079773] +Cc1ccc(Nc2cc(C)nc(N)n2)nc1; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(N)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Cc1cc(N)nc(N)n1']; ['Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1']; [0.9872851371765137, 0.9869664311408997, 0.9794107675552368, 0.9033830761909485] +Cc1ccc(N[C@H](CO)Cc2ccccc2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(F)nc1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9896530508995056, 0.9198824167251587, 0.8736392259597778, 0.8562801480293274] +Cc1ccc(Nc2ncc(Br)cn2)nc1; ['Brc1cnc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'CSc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1']; ['Cc1ccc(N)nc1', 'Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Fc1ncc(Br)cn1', 'Nc1ncc(Br)cn1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9996997117996216, 0.999687910079956, 0.9987111687660217, 0.9981233477592468, 0.9923436045646667, 0.9873921871185303, 0.9869266748428345, 0.9826062917709351, 0.9612866640090942] +Cc1ccc(Nc2scc3c2OCCO3)nc1; [None]; [None]; [0] +CCc1ccc(Nc2ccc(C)cn2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Cl)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9995548129081726, 0.9986791610717773, 0.9984767436981201, 0.9950260519981384, 0.9948679208755493, 0.9942960739135742, 0.9936637878417969, 0.9768974184989929] +Cc1ccc(Nc2ccc(Cl)cc2Cl)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'Clc1ccc(I)c(Cl)c1', 'Nc1ccc(Cl)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Clc1ccc(Cl)c(Cl)c1']; [0.9997678995132446, 0.9990785121917725, 0.9985508918762207, 0.9973378777503967, 0.9941214919090271, 0.992979884147644, 0.9081761240959167] +COc1ccc(Nc2ccc(C)cn2)cc1OC; ['COc1ccc(N)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(F)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Cl)cc1OC']; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9997972249984741, 0.9994943737983704, 0.9994803667068481, 0.9987202286720276, 0.9980076551437378, 0.9972054958343506, 0.988822877407074, 0.9812780618667603] +COc1cc(Nc2ccc(C)cn2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9999809265136719, 0.9999732971191406, 0.9999033808708191, 0.9997618198394775] +Cc1ccc(NCCCn2cncn2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1']; ['NCCCn1cncn1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.998578667640686, 0.9967699646949768, 0.9876789450645447] +Cc1ccc(Nc2ccc3c(c2)CCC(=O)N3)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(F)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1']; [0.9999492168426514, 0.9996707439422607, 0.9994521141052246, 0.9986633062362671, 0.9830724596977234, 0.9683001041412354, 0.9457740783691406] +Cc1ccc(Nc2ncc3cccn3n2)nc1; ['Cc1ccc(N)nc1']; ['Clc1ncc2cccn2n1']; [0.9996321797370911] +Cc1ccc(Nc2cc3ccccn3n2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Brc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Clc1cc2ccccn2n1', 'Cc1ccc(N)nc1']; [0.999664843082428, 0.9986405968666077, 0.9977656602859497, 0.9970424175262451, 0.9966351985931396] +Cc1ccc(Nc2cn(C)nc2C(F)(F)F)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1']; ['Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9998376369476318, 0.9997832179069519, 0.9997079372406006, 0.9994699358940125, 0.9984077215194702] +Cc1ccc(Nc2ccc(C(=O)N3CCC[C@@H]3C)cc2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2cccc3ccc(O)cc23)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Cl)c2c1', 'Oc1ccc2cccc(F)c2c1']; [0.992986798286438, 0.9895985126495361, 0.9824509620666504, 0.9813361167907715, 0.9642632007598877, 0.950412392616272] +COc1cc(Nc2ccc(C)cn2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1']; [0.9999751448631287, 0.9996352195739746, 0.9990609884262085, 0.9990278482437134, 0.9983004331588745, 0.9977138042449951] +Cc1ccc(Nc2ncnc3c(C)csc23)nc1; ['Cc1ccc(N)nc1']; ['Cc1csc2c(Cl)ncnc12']; [0.9999281764030457] +Cc1ccc(Nc2ncc(Cl)cn2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'CSc1ncc(Cl)cn1', 'Cc1ccc(Cl)nc1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CS(=O)c1ncc(Cl)cn1']; ['Nc1ncc(Cl)cn1', 'Clc1cnc(I)nc1', 'Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'Nc1ncc(Cl)cn1', 'Cc1ccc(N)nc1', 'Nc1ncc(Cl)cn1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9971526861190796, 0.9969158172607422, 0.9930621385574341, 0.9923697710037231, 0.987242579460144, 0.9836159944534302, 0.9782443642616272, 0.9768469333648682, 0.9605376720428467] +COc1ccc2cccc(Nc3ccc(C)cn3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9998651742935181, 0.9997656345367432, 0.9997522830963135, 0.9993469715118408, 0.9950319528579712] +COc1cc(F)c(Nc2ccc(C)cn2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(F)cc1OC', 'CC(=O)Nc1ccc(C)cn1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'COc1cc(F)c(Br)cc1OC']; [0.9997722506523132, 0.9996860027313232, 0.9996050596237183, 0.9986963272094727, 0.9902150630950928, 0.9894731044769287, 0.9779191017150879] +CNC(=O)c1ccc(Nc2ccc(C)cn2)cc1; ['CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(F)cc1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9996152520179749, 0.9995349645614624, 0.9976577162742615, 0.995315432548523, 0.9947392344474792, 0.9910929203033447, 0.8968843817710876] +COc1cc(Nc2ccc(C)cn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9991267919540405, 0.9885752201080322, 0.92447829246521] +CCNC(=O)c1ccc(Nc2ccc(C)cn2)nc1; ['CCNC(=O)c1ccc(Cl)nc1', 'CCNC(=O)c1ccc(Br)nc1']; ['Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9889569878578186, 0.9848843216896057] +COc1ccc(OC)c(CNc2ccc(C)cn2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(C=O)c1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc[n+]([O-])c1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.999855637550354, 0.9993460178375244, 0.9992526769638062, 0.9988008737564087, 0.9984220266342163, 0.9957541227340698, 0.9956014752388, 0.9943984746932983, 0.9823272228240967] +CO[C@@H]1CC[C@@H](Nc2ccc(C)cn2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc[n+]([O-])c1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1']; [0.9999909400939941, 0.9999877214431763, 0.9999635219573975, 0.999741792678833] +Cc1ccc(Nc2cnn(CCO)c2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1']; [0.9999657869338989, 0.9992237091064453, 0.9972725510597229, 0.9824495315551758] +CCNC(=O)N1CCC(Nc2ccc(C)cn2)CC1; ['CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)N1CCC(N)CC1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; [0.9982341527938843, 0.9972683191299438] +COc1cc(Nc2ccc(C)cn2)cc(OC)c1; ['COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(F)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.999556839466095, 0.9951678514480591, 0.9933197498321533, 0.9926439523696899, 0.9791347980499268, 0.9770008325576782, 0.9700002670288086, 0.8727062344551086] +COc1cc(CS(C)(=O)=O)ccc1Nc1ccc(C)cn1; [None]; [None]; [0] +Cc1ccc(Nc2ccc3c(c2)CC(C)(C)O3)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc3cn[nH]c3c2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Brc1ccc2cn[nH]c2c1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Fc1ccc2cn[nH]c2c1', 'Cc1ccc(N)nc1', 'Ic1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1']; [0.999708890914917, 0.9993058443069458, 0.9990385174751282, 0.994936466217041, 0.9842225313186646, 0.9805130362510681, 0.8332056403160095] +Cc1ccc(Nc2cccc(C(=O)Nc3cn[nH]c3)c2)nc1; [None]; [None]; [0] +CCn1cc(Nc2ccc(C)cn2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(I)cn1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9991436004638672, 0.9990382194519043, 0.9969077706336975, 0.9698606729507446, 0.9601711630821228] +CNC(=O)c1ccc(OC)c(Nc2ccc(C)cn2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9988943338394165, 0.9988718032836914, 0.9981660842895508, 0.9871879816055298] +Cc1ccc(Nc2cc(N)nc3[nH]ccc23)nc1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1ccc(C)cn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(Nc3ccc(C)cn3)cc2c1; [None]; [None]; [0] +Cc1ccc(Nc2ncc3sccc3n2)nc1; ['Cc1ccc(N)nc1']; ['Clc1ncc2sccc2n1']; [0.9998674392700195] +Cc1ccc(Nc2cc(-c3cccnc3)ccn2)nc1; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9951569437980652, 0.9921164512634277, 0.987445592880249] +Cc1ccc(Nc2cn(C)nc2C(C)C)nc1; ['CC(C)c1nn(C)cc1Br']; ['Cc1ccc(N)nc1']; [0.9878928661346436] +COc1ccc(F)c(C(=O)NNc2ccc(C)cn2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Cc1ccc(NN)nc1']; [0.9995534420013428] +Cc1ccc(Nc2cc3ccccc3o2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(OC(F)(F)F)cc2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(I)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Fc1ccc(OC(F)(F)F)cc1']; [0.9999626874923706, 0.9999122619628906, 0.9998016953468323, 0.9997892379760742, 0.9997501969337463, 0.9997011423110962, 0.9982918500900269, 0.9981823563575745, 0.9915633201599121] +Cc1ccc(Nc2ccc(C[NH+](C)C)cc2)nc1; [None]; [None]; [0] +COc1ccc2nc(Nc3ccc(C)cn3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Cc1ccc(N)nc1']; [0.9739359021186829] +Cc1ccc(Nc2cccc(NC(=O)N3CCCC3)c2)nc1; [None]; [None]; [0] +CCc1cccc(Nc2ccc(C)cn2)n1; ['CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1']; [0.9995689988136292, 0.9974323511123657, 0.9937626123428345, 0.9888070821762085] +Cc1ccc(Nc2ccc3c(cnn3C)c2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(F)ccc21', 'Cn1ncc2cc(Cl)ccc21']; [0.9999709129333496, 0.9999634027481079, 0.9998799562454224, 0.9998557567596436, 0.9992125034332275, 0.9984666109085083, 0.9934094548225403, 0.9918489456176758] +Cc1ccc(Nc2cn(C)c3ccccc23)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ncn3c2CCCC3)nc1; [None]; [None]; [0] +Cc1ccc(Nc2cc(Br)cn2C)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(N(C)C)nc2)nc1; ['CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(F)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Cl)cn1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1']; [0.9994915723800659, 0.9963681101799011, 0.9960712194442749, 0.9949941635131836, 0.99399733543396, 0.9900646209716797, 0.8633124828338623] +Cc1ccc(Nc2cc(C)c(OCCO)c(C)c2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc3c(c2)c(Cl)nn3C)nc1; [None]; [None]; [0] +Cc1ccc(NNC(=O)c2cccc(OC(F)(F)F)c2)nc1; ['Cc1ccc(NN)nc1', 'Cc1ccc(NN)nc1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999663233757019, 0.9999032020568848] +Cc1ccc(Nc2cc3ccc(C(C)(C)O)cc3[nH]2)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc3c(C)n[nH]c3c2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(F)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [0.9999710321426392, 0.9998922348022461, 0.9998666048049927, 0.999712347984314, 0.9996554255485535] +Cc1ccc(Nc2ccc(CCO)cc2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(F)cc1']; [0.9990324974060059, 0.9988449215888977, 0.9934914112091064, 0.992031455039978, 0.9905548095703125, 0.989870548248291, 0.957425594329834, 0.879027247428894] +CC(=O)N1CCC(n2cc(Nc3ccc(C)cn3)cn2)CC1; [None]; [None]; [0] +Cc1ccc(Nc2cccc(N3CCCC3=O)c2)nc1; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.9999231100082397, 0.9999060034751892, 0.9991306066513062, 0.9908804893493652, 0.9835720062255859] +Cc1ccc(Nc2ccc(C(=O)N(C)C)cc2Cl)nc1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(N3CCOCC3)cc2C)nc1; ['Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; ['Cc1ccc(F)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1']; [0.9999992847442627, 0.9999970197677612, 0.999987006187439] +Cc1ccc(Nc2ccc(-c3cnc(C)n3C)cc2)nc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1ccc(C)cn1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1N']; ['Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1']; [0.9998008012771606, 0.9996736645698547, 0.9996259212493896, 0.9994758367538452] +COc1cc(N2CCNCC2)ccc1Nc1ccc(C)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ccc(C)cn2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(F)nc1']; [0.9914760589599609, 0.9888160228729248, 0.9876915216445923, 0.9593673944473267] +CCNC(=O)c1ccc(Nc2ccc(C)cn2)cc1; ['CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['Cc1ccc(Br)nc1', 'Cc1ccc(Cl)nc1', 'Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9985383749008179, 0.9976759552955627, 0.9952213764190674, 0.9927995204925537] +COc1cc(-c2cnn(C)c2)ccc1Nc1ccc(C)cn1; [None]; [None]; [0] +Cc1ccc(Nc2ccc(C(=O)N(C)C)cn2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Cc1ccc(N)nc1', 'Cc1ccc(N)nc1']; [0.9954307079315186, 0.9710572361946106] +CCNC(=O)Cc1ccc(Nc2ccc(C)cn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Cc1ccc(N)nc1']; [0.9951021671295166] +Cc1ccc(Nc2cc(S(C)(=O)=O)ccc2Cl)nc1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Cc1ccc(N)nc1']; [0.9996803998947144] +CNC(=O)c1ccc(C)c(Nc2ccc(C)cn2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['Cc1ccc(Cl)nc1', 'Cc1ccc(Br)nc1', 'Cc1ccc(F)nc1']; [0.998825192451477, 0.9970076084136963, 0.9941922426223755] +Cc1ccc(Nc2cc(C(C)(C)O)n(C)n2)nc1; [None]; [None]; [0] +Cc1ccc(N[C@H](C)CS(C)(=O)=O)nc1; [None]; [None]; [0] +Cc1ccc(Nc2cc(C(=O)NCCO)ccc2C)nc1; [None]; [None]; [0] +CCOc1ccc(-c2cc(CO)ncc2OC)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999963045120239, 0.9990842342376709] +COc1cnc(CO)cc1-c1cccnc1OC; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; [0.9999892711639404, 0.9944684505462646] +COc1cnc(CO)cc1-c1cccc(S(C)(=O)=O)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'CS(=O)(=O)c1cccc(B(O)O)c1']; [0.9999967813491821, 0.9987881183624268] +COc1cnc(CO)cc1-c1ccc(N(C)C(C)=O)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(OC)c(OC)c(OC)c1; ['COc1cc(B(O)O)cc(OC)c1OC']; ['COc1cnc(CO)cc1Br']; [0.9989877939224243] +COc1cnc(CO)cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(O)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cccc(O)c1']; [0.9998376369476318, 0.9612800478935242] +COc1ccc(-c2cc(CO)ncc2OC)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999953508377075, 0.9985052347183228] +COc1cnc(CO)cc1-c1cnc2cccnn12; [None]; [None]; [0] +COc1cnc(CO)cc1-n1cnc2ccc(C)cc21; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(C#N)ccc1O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999990463256836, 0.9999265074729919, 0.9995551109313965, 0.9994534254074097, 0.9634182453155518] +COc1cnc(CO)cc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(CC(=O)N2CCN(C(C)=O)CC2)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(N)=O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'NC(=O)c1ccc(B(O)O)cc1']; [0.999995231628418, 0.9986403584480286] +COc1cnc(CO)cc1-c1ccc(C(=O)Nc2ccccc2)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999997019767761, 0.9996594786643982] +COc1cnc(CO)cc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1Nc1ncccn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(OCCO)cc1; ['COc1cnc(CO)cc1Br']; ['OCCOc1ccc(B(O)O)cc1']; [0.994235634803772] +COc1cnc(CO)cc1-c1ccc(CNC(C)=O)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999994039535522, 0.9998019933700562, 0.7854118347167969] +COc1cnc(CO)cc1-c1nccc2ccccc12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(=O)N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9999998211860657, 0.999951958656311] +CNS(=O)(=O)c1ccc(-c2cc(CO)ncc2OC)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999724626541138, 0.9935626983642578] +COc1cnc(CO)cc1-c1ccc(C(F)(F)F)cc1; ['COc1cnc(CO)cc1Br']; ['OB(O)c1ccc(C(F)(F)F)cc1']; [0.9996284246444702] +COc1cnc(CO)cc1-c1ccc(N(C)C)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999966621398926, 0.999172568321228] +COc1cnc(CO)cc1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1sc(C)nc1C; ['COc1cnc(CO)cc1Br']; ['Cc1csc(C)n1']; [0.9878538846969604] +COc1cnc(CO)cc1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(S(=O)(=O)N(C)C)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.999997615814209, 0.9959287047386169] +COc1cnc(CO)cc1Cc1ccccc1O; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(CO)ncc2OC)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br']; [0.9989063739776611] +COc1cnc(CO)cc1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1cnc(CO)cc1Cc1cnc(N)nc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(N2CCCN(C(C)=O)CC2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(Br)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc(Br)cc1']; [0.9999917149543762, 0.9853745698928833] +COc1cnc(CO)cc1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +COc1cnc(CO)cc1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(N(C)C)c(Cl)c1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999985694885254, 0.9269426465034485] +COc1cnc(CO)cc1-c1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(CO)ncc2OC)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999995231628418, 0.9996821284294128] +CCCOc1ccc(-c2cc(CO)ncc2OC)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(CO)ncc2OC)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9998886585235596, 0.985598623752594] +COc1ccc(Cc2cc(CO)ncc2OC)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(CO)ncc1OC; ['COc1ccc(Cl)cc1B(O)O']; ['COc1cnc(CO)cc1Br']; [0.9977338314056396] +COc1cnc(CO)cc1-c1ccn2nccc2n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['COc1cnc(CO)cc1Br']; [0.9983605146408081] +COc1cnc(CO)cc1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(c1)CCO2; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc2c(c1)CCO2']; [0.999997615814209, 0.9997870922088623] +COc1cnc(CO)cc1-c1cccc(NC(C)=O)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999918937683105, 0.9989743828773499] +COc1cnc(CO)cc1-c1cccc2c1OCO2; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cccc2c1OCO2']; [0.9999685287475586, 0.9908703565597534] +COc1cnc(CO)cc1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +COc1cc(-c2cc(CO)ncc2OC)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999957084655762, 0.9993030428886414] +COc1cc(OC)c(-c2cc(CO)ncc2OC)cc1Cl; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1scc2c1OCCO2; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'c1scc2c1OCCO2']; [0.9999172687530518, 0.999862790107727] +COc1cnc(CO)cc1-c1ccc(C(C)(C)C)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999992847442627, 0.9993550777435303] +COc1cnc(CO)cc1-c1cnc2ccccc2c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'COc1cnc(CO)cc1Br', 'Brc1cnc2ccccc2c1']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cnc2ccccc2c1', 'COc1cnc(CO)cc1Br']; [0.9999977350234985, 0.9994372129440308, 0.9922847747802734] +COc1cnc(CO)cc1-c1ccc(C(C)(C)C)nc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999972581863403, 0.9995983839035034, 0.9434642195701599] +COc1cnc(CO)cc1-c1ccc(C(=O)N(C)C)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999996423721313, 0.9997971057891846] +COc1cnc(CO)cc1-c1csc(N)n1; [None]; [None]; [0] +COc1cnc(CO)cc1Cc1nc2ccc(F)c(F)c2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +COc1cnc(CO)cc1Cc1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C)[nH]c1=O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(SC)cc1; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; [0.9999966621398926, 0.9978961944580078] +COc1cnc(CO)cc1Cc1nc2c(F)c(F)ccc2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc2ccccc2s1; ['COc1cnc(CO)cc1Br']; ['c1ccc2sccc2c1']; [0.9891437292098999] +COc1cccc(C(=O)Nc2cc(CO)ncc2OC)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(CO)ncc3OC)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['COc1cnc(CO)cc1Br']; [0.9995033740997314] +COc1cnc(CO)cc1CCCc1ccccc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(C)nc(N)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(F)cc1Cl; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'COc1cnc(CO)cc1Br', 'COc1ccc(CO)nc1']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1']; [0.9999994039535522, 0.999976396560669, 0.9622998237609863] +CC[C@@H](CO)c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1ccc(-c2cc(CO)ncc2OC)cc1OC; ['COc1ccc(B(O)O)cc1OC']; ['COc1cnc(CO)cc1Br']; [0.9995397329330444] +CCc1ccc(-c2cc(CO)ncc2OC)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999974370002747, 0.9975118637084961] +COc1cnc(CO)cc1[C@H](CO)Cc1ccccc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(c1)CCC(=O)N2; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['COc1cnc(CO)cc1Br']; [0.9999892711639404] +COc1cnc(CO)cc1-c1ccc(Cl)cc1Cl; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999743700027466, 0.9993737936019897] +COc1cnc(CO)cc1-c1ncc(Br)cn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(N2CCOCC2)c(OC)c1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999101161956787, 0.9251965880393982] +COc1cnc(CO)cc1-c1cn(C)nc1C(F)(F)F; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1']; [0.9999980926513672, 0.9990676045417786, 0.9986263513565063] +COc1cnc(CO)cc1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ncc2cccn2n1; [None]; [None]; [0] +COc1cnc(CO)cc1CCCn1cncn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc2ccc(O)cc12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['COc1cnc(CO)cc1Br']; [0.9999186992645264] +COc1cc(-c2cc(CO)ncc2OC)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999992251396179, 0.9998880624771118] +COc1cc(F)c(-c2cc(CO)ncc2OC)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999569654464722, 0.9988085031509399] +COc1cnc(CO)cc1-c1ncc(Cl)cn1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(CO)ncc3OC)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(CO)ncc2OC)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999987483024597, 0.998988926410675] +COc1cnc(CO)cc1-c1cnn(CCO)c1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OCCn1cc(B(O)O)cn1']; [0.9999920129776001, 0.9991906881332397] +COc1cnc(CO)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2cc(CO)ncc2OC)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['COc1cnc(CO)cc1Br']; [0.7812749743461609] +COc1cnc(CO)cc1-c1ncnc2c(C)csc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(CO)ncc2OC)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999923706054688, 0.9964828491210938] +COc1cnc(CO)cc1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1[C@@H]1CC[C@@H](OC)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(CO)ncc2OC)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(CO)ncc2OC)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2cn[nH]c2c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc2cn[nH]c2c1']; [0.9999805092811584, 0.9996613264083862] +CCNC(=O)c1ccc(-c2cc(CO)ncc2OC)nc1; [None]; [None]; [0] +CCn1cc(-c2cc(CO)ncc2OC)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999865293502808, 0.9973570108413696] +COc1ccc2oc(-c3cc(CO)ncc3OC)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(CO)ncc2OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(CO)ncc1OC)cn2C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cn(C)nc1C(C)C; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1ccn(C)n1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999643564224243, 0.8955010175704956] +COc1cnc(CO)cc1-c1cc2ccccc2o1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(CO)ncc3OC)[nH]c2c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(Br)cn1C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ncc2sccc2n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(OC(F)(F)F)cc1; ['COc1cnc(CO)cc1Br']; ['OB(O)c1ccc(OC(F)(F)F)cc1']; [0.9999339580535889] +COc1cnc(CO)cc1-c1cn(C)c2ccccc12; ['COc1cnc(CO)cc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999926090240479] +COc1cnc(CO)cc1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(CO)ncc2OC)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(cnn2C)c1; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [0.9999983906745911, 0.9999624490737915] +COc1cnc(CO)cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(C)c(OCCO)c(C)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(N(C)C)nc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.999988317489624, 0.9994525909423828] +CCc1cccc(-c2cc(CO)ncc2OC)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(C)n[nH]c2c1; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; [0.9999948740005493, 0.9999455809593201] +COc1cnc(CO)cc1-c1cnn(C2CCN(C(C)=O)CC2)c1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['COc1cnc(CO)cc1Br']; [0.9999907612800598] +COc1cnc(CO)cc1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(CCO)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(CO)ncc2OC)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['COc1cnc(CO)cc1Br']; [0.9999244213104248] +COc1cnc(CO)cc1-c1ccc(N2CCOCC2)cc1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(CO)ncc2OC)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br']; [0.9996830821037292] +CCNC(=O)Cc1ccc(-c2cc(CO)ncc2OC)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['COc1cnc(CO)cc1Br']; [0.7688145637512207] +COc1cnc(CO)cc1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(CO)ncc1OC; ['CNC(=O)c1ccccc1B(O)O']; ['COc1cnc(CO)cc1Br']; [0.8061330318450928] +COc1cnc(CO)cc1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(CO)ncc1OC; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999915957450867, 0.999658465385437, 0.9926132559776306] +COc1cnc(CO)cc1[C@H](C)CS(C)(=O)=O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(C(=O)NCCO)ccc1C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccccc1-c1nnc(C)[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(CO)ncc2OC)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccccc1S(=O)(=O)C(C)C; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['COc1cnc(CO)cc1Br']; [0.9967023134231567] +COc1cnc(CO)cc1CCC(C)(C)OC; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccccc1C(=O)[O-]; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(C(F)(F)F)c1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999980926513672, 0.9996448159217834] +COc1cnc(CO)cc1-c1ccnc2ccccc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccnc2ccccc12']; [0.9999932050704956, 0.9993795156478882] +COc1cnc(CO)cc1-c1ccccc1OC(F)(F)F; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'COc1cnc(CO)cc1Br', 'COc1ccc(CO)nc1']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I']; [0.999997615814209, 0.9997208118438721, 0.8709895610809326] +COc1cnc(CO)cc1-c1ccccc1C(N)=O; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'NC(=O)c1ccccc1B(O)O']; [0.9997925758361816, 0.7949622869491577] +COc1cnc(CO)cc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccccc1P(C)(C)=O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cnn(Cc2ccccc2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999977350234985, 0.998607337474823] +COc1cnc(CO)cc1-c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +COc1cnc(CO)cc1OCC(=O)C(C)C; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['COc1cnc(CO)cc1O', 'COc1cnc(CO)cc1O']; [0.9912087917327881, 0.9573150873184204] +COc1cnc(CO)cc1-c1cccc(NC(=O)c2ccccc2)c1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999974966049194, 0.9988888502120972] +COc1cnc(CO)cc1-c1cc(Cl)ccc1Cl; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999717473983765, 0.9958510398864746] +COc1cnc(CO)cc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C)cc1Br; ['COc1cnc(CO)cc1Br']; ['Cc1ccc(B(O)O)c(Br)c1']; [0.8236628770828247] +COc1cnc(CO)cc1-c1cnc2ccccn12; [None]; [None]; [0] +COc1cnc(-c2cc(CO)ncc2OC)nc1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(CO)ncc2OC)s1; ['CNc1nc(C)cs1']; ['COc1cnc(CO)cc1Br']; [0.8613971471786499] +COc1cnc(CO)cc1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1sc(N)nc1C; ['COc1cnc(CO)cc1Br']; ['Cc1csc(N)n1']; [0.9443113803863525] +COc1cnc(CO)cc1-n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1c(Cl)cccc1Cl; ['COc1cnc(CO)cc1Br']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9873889088630676] +COc1cnc(CO)cc1-c1cccc(Br)c1; ['COc1cnc(CO)cc1Br']; ['OB(O)c1cccc(Br)c1']; [0.9767550230026245] +COc1cnc(CO)cc1-c1c(C)nc2ccccn12; [None]; [None]; [0] +COc1cnc(CO)cc1NCc1cccnc1; ['COc1cnc(CO)cc1Br']; ['NCc1cccnc1']; [0.9978981614112854] +COc1cnc(CO)cc1-c1cc(C)ccc1Cl; ['COc1cnc(CO)cc1Br']; ['Cc1ccc(Cl)c(B(O)O)c1']; [0.952710747718811] +COc1cnc(CO)cc1-c1ccnc(N)n1; [None]; [None]; [0] +COc1cnc(CO)cc1Nc1cccnc1; ['COc1cnc(CO)cc1Br']; ['Nc1cccnc1']; [0.9385885000228882] +COc1cnc(CO)cc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1NC(=O)c1cccs1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2ccccc2c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc2ccccc2c1']; [0.9999974966049194, 0.9998824596405029] +COc1cnc(CO)cc1NCCc1c[nH]cn1; ['COc1cnc(CO)cc1O', 'COc1cnc(CO)cc1Br']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9922810792922974, 0.9786362051963806] +COc1cnc(CO)cc1-c1sc(=O)n(C)c1C; [None]; [None]; [0] +COc1cnc(CO)cc1-n1cnc2ccccc21; [None]; [None]; [0] +COc1cnc(CO)cc1-c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(F)c1C(N)=O; ['COc1cnc(CO)cc1Br']; ['NC(=O)c1c(F)cccc1Br']; [0.9600978493690491] +COc1cnc(CO)cc1-c1cnn2ncccc12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cncc2ccccc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'COc1cnc(CO)cc1Br', 'Brc1cncc2ccccc12']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cncc2ccccc12', 'COc1cnc(CO)cc1Br']; [0.9999890923500061, 0.9941130876541138, 0.930990993976593] +COc1cnc(CO)cc1NCCc1ccccc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(-c2cnn(C)c2)cc1; ['COc1cnc(CO)cc1Br']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [1.0] +COc1cnc(CO)cc1-c1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +COc1cnc(CO)cc1NCc1ccc(Cl)cc1; ['COc1cnc(CO)cc1Br']; ['NCc1ccc(Cl)cc1']; [0.9784534573554993] +COc1cnc(CO)cc1-c1cccc(CO)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OCc1cccc(B(O)O)c1']; [0.9999848008155823, 0.9971495866775513] +COc1cnc(CO)cc1Nc1ccncc1; ['COc1cnc(CO)cc1Br']; ['Nc1ccncc1']; [0.8974868059158325] +COc1cnc(CO)cc1-c1ccc(-c2cn[nH]c2)cc1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999992847442627, 0.9997764229774475] +COc1cnc(CO)cc1-c1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +COc1cnc(CO)cc1NCc1ccccc1F; ['COc1cnc(CO)cc1Br']; ['NCc1ccccc1F']; [0.9993230104446411] +COc1cnc(CO)cc1-c1cn(C(C)C)nn1; ['CC(C)n1ccnn1']; ['COc1cnc(CO)cc1Br']; [0.9894194006919861] +COc1cc(-c2cc(CO)ncc2OC)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2cc(CO)ncc2OC)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1csc2ncncc12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1c[nH]c(SC)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(CCC#N)c1; ['COc1cnc(CO)cc1Br']; ['N#CCCc1cccc(B(O)O)c1']; [0.9981529116630554] +COc1cnc(CO)cc1-c1cnoc1C(C)C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cncnc1N; ['COc1cnc(CO)cc1Br']; ['Nc1ncncc1Br']; [0.9477903842926025] +COc1cnc(CO)cc1CCc1c[nH]nn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1Oc1ccccn1; ['COc1cnc(CO)cc1O', 'COc1cnc(CO)cc1O', 'Brc1ccccn1']; ['Clc1ccccn1', 'Fc1ccccn1', 'COc1cnc(CO)cc1O']; [0.9945105314254761, 0.9627310037612915, 0.9158791899681091] +CCC(=O)Nc1ccc(-c2cc(CO)ncc2OC)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(F)cc1C(F)(F)F; ['COc1cnc(CO)cc1Br']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.999944806098938] +COc1cnc(CO)cc1N1CCC(S(C)(=O)=O)CC1; ['COc1cnc(CO)cc1Br']; ['CS(=O)(=O)C1CCNCC1']; [0.9982495307922363] +CCNc1nc2ccc(-c3cc(CO)ncc3OC)cc2s1; [None]; [None]; [0] +COc1ccc(-c2cc(CO)ncc2OC)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999992847442627, 0.9999181628227234] +COc1cnc(CO)cc1NC(=O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +COc1cnc(CO)cc1CCCC(N)=O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cnn2ccccc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cnn2ccccc12']; [0.9999713897705078, 0.9985288381576538] +COc1cnc(CO)cc1OCC(C)(C)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cc(CO)ncc2OC)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999966621398926, 0.9992453455924988] +COc1cnc(CO)cc1CCNC(=O)CC(C)(C)O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc[nH]c(=O)c1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['COc1cnc(CO)cc1Br']; [0.9999531507492065] +COc1cnc(CO)cc1-c1cccc2c1C(=O)CC2; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc([S@](C)=O)cc1; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; [0.9999933242797852, 0.999140739440918] +COc1cnc(CO)cc1-c1ccc(C(C)(C)N)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1O[C@H](C)c1c(Cl)cncc1Cl; ['COc1cnc(CO)cc1O']; ['C[C@@H](O)c1c(Cl)cncc1Cl']; [0.9931079745292664] +CCNS(=O)(=O)c1ccccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1ccncc1Nc1cc(CO)ncc1OC; ['COc1ccncc1N']; ['COc1cnc(CO)cc1Br']; [0.9551812410354614] +COc1cnc(CO)cc1Nc1cnccc1-c1ccccc1; ['COc1cnc(CO)cc1Br']; ['Nc1cnccc1-c1ccccc1']; [0.9964385032653809] +COc1cnc(CO)cc1-c1cncc(OC(C)C)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.999982476234436, 0.9910387992858887] +COc1cc(CCc2cc(CO)ncc2OC)cc(OC)c1; [None]; [None]; [0] +CCN(CC)c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1cnc(CO)cc1Nc1cnc2ccccc2c1; ['COc1cnc(CO)cc1Br']; ['Nc1cnc2ccccc2c1']; [0.9904356002807617] +COc1cnc(CO)cc1-c1c(F)cccc1OC; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999963045120239, 0.998637318611145] +COc1cnc(CO)cc1-c1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cnc2[nH]ccc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cnc(CO)cc1Br', 'Brc1cnc2[nH]ccc2c1']; ['COc1cnc(CO)cc1Br', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1cnc(CO)cc1Br']; [0.9999995231628418, 0.9997855424880981, 0.9911816120147705] +CNC(=O)c1c(F)cccc1-c1cc(CO)ncc1OC; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(S(=O)(=O)NC(C)(C)C)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999954700469971, 0.9978594779968262] +COc1cnc(CO)cc1-c1ccc(S(C)(=O)=O)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.999998927116394, 0.9987024068832397] +COc1cnc(CO)cc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +COc1cnc(CO)cc1C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1cnc(CO)cc1N(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +COc1cnc(CO)cc1-n1ccc(CO)n1; ['COc1cnc(CO)cc1Br']; ['OCc1cc[nH]n1']; [0.9506417512893677] +COc1cnc(CO)cc1-c1c(F)cccc1Cl; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'OB(O)c1c(F)cccc1Cl']; [0.9999994039535522, 0.9999688863754272] +COc1cnc(CO)cc1-n1cnc(CCO)c1; ['COc1cnc(CO)cc1Br']; ['OCCc1c[nH]cn1']; [0.9881982803344727] +COc1cnc(CO)cc1-c1cc(C)nn1-c1cccc(Cl)c1; [None]; [None]; [0] +COc1cnc(CO)cc1N[C@@H](C)C(C)(C)O; [None]; [None]; [0] +COc1cnc(CO)cc1N[C@@H](C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +COc1cnc(CO)cc1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1N[C@H](C)C(C)(C)O; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-n1ncc2ccccc21; [None]; [None]; [0] +COc1cnc(CO)cc1-n1ncc2c(O)cccc21; [None]; [None]; [0] +COc1ccc(-c2cc(CO)ncc2OC)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.999975323677063, 0.9985705614089966] +COc1cnc(CO)cc1-c1ccc(C(=O)c2ccccc2)cc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'COc1cnc(CO)cc1Br']; ['COc1cnc(CO)cc1Br', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999988079071045, 0.9996359348297119] +COc1cnc(CO)cc1-c1[nH]c(SC)nc1C; [None]; [None]; [0] +COc1cnc(CO)cc1CCC(=O)NCc1ccccn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1nncn1C(C)C; [None]; [None]; [0] +COc1cnc(CO)cc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1nncn1C1CC1; [None]; [None]; [0] +COc1cnc(CO)cc1CS(=O)(=O)NCc1ccccn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +CCc1cc(-c2cc(CO)ncc2OC)nc(N)n1; ['CCc1ccnc(N)n1']; ['COc1cnc(CO)cc1Br']; [0.982829213142395] +COc1cnc(CO)cc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1nnc(N)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc(CO)ncc2OC)nc(N)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(C(C)(C)O)n1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cc(C(N)=O)cn1C; [None]; [None]; [0] +COc1cnc(CO)cc1-c1nc2ccccc2s1; [None]; [None]; [0] +COc1cnc(CO)cc1Oc1ccc(C[NH3+])cc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(CO)ncc2OC)s1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cncc(N)n1; ['COc1cnc(CO)cc1Br']; ['Nc1cncc(Cl)n1']; [0.9417738914489746] +COc1cnc(CO)cc1-c1cccc2ccsc12; ['COc1cnc(CO)cc1Br']; ['OB(O)c1cccc2ccsc12']; [0.9990901947021484] +C[C@@H2]NC(=O)N1CCC(c2cc(CO)ncc2OC)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(CO)ncc3OC)c2)cc1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc2nnsc12; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cnc(NC(C)=O)[nH]1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(CO)ncc1OC; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9998539686203003, 0.9950453042984009] +COc1cnc(CO)cc1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(CO)ncc2OC)c1; ['COc1ccc(OC)c(B(O)O)c1']; ['COc1cnc(CO)cc1Br']; [0.9978049993515015] +COc1cnc(CO)cc1Oc1ccc(OC)c(F)c1F; [None]; [None]; [0] +COc1cnc(CO)cc1[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(S(=O)(=O)N(C)C)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['COc1cnc(CO)cc1Br', 'COc1cnc(CO)cc1Br']; [0.9999980926513672, 0.994066596031189] +COc1cnc(CO)cc1-c1cn(CCO)cn1; [None]; [None]; [0] +CCOc1ccccc1-c1ccnc(CO)c1; ['CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Cl', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9996221661567688, 0.998740553855896, 0.9986922740936279, 0.9986332654953003, 0.9928389191627502] +CNC(=O)c1ccccc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['CNC(=O)c1ccccc1Br', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [0.9999963045120239, 0.999879002571106, 0.9998152256011963, 0.9992010593414307, 0.9979142546653748, 0.997745931148529] +COc1cnc(CO)cc1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +COc1cnc(CO)cc1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +COc1cnc(CO)cc1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +COc1cnc(CO)cc1N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccnc(CO)c2)[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1ccnc(CO)c1; [None]; [None]; [0] +CCn1cc(-c2ccnc(CO)c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1']; ['OCc1cc(Br)ccn1', 'CCn1cc(Br)cn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999960660934448, 0.9999909996986389, 0.9997305274009705, 0.999467670917511, 0.9986386895179749] +CC(C)S(=O)(=O)c1ccccc1-c1ccnc(CO)c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999948740005493, 0.9999058842658997, 0.9995951652526855, 0.9974503517150879, 0.9849045276641846] +CP(C)(=O)c1ccccc1-c1ccnc(CO)c1; [None]; [None]; [0] +OCc1cc(-c2ccccc2OC(F)(F)F)ccn1; ['OB(O)c1ccccc1OC(F)(F)F']; ['OCc1cc(I)ccn1']; [0.9998337030410767] +OCc1cc(-c2ccnc3ccccc23)ccn1; ['Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9999911189079285, 0.9999709129333496, 0.9989714622497559, 0.9980136752128601, 0.9970065355300903, 0.9938917756080627, 0.9595541954040527] +O=C([O-])c1ccccc1-c1ccnc(CO)c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['NC(=O)c1ccccc1Br', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [0.9999833106994629, 0.9999650716781616, 0.9998652935028076, 0.9984469413757324, 0.9982035756111145, 0.9949750900268555, 0.9698597192764282, 0.9524936676025391] +OCc1cc(-c2cccc(C(F)(F)F)c2)ccn1; [None]; [None]; [0] +OCc1cc(-c2cnn(Cc3ccccc3)c2)ccn1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; ['OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999985098838806, 0.9999984502792358, 0.9999966025352478, 0.9999916553497314, 0.9999138116836548, 0.9998257160186768, 0.9997206330299377, 0.9989080429077148, 0.9951539039611816] +OCc1cc(Cc2cc(F)cc(F)c2)ccn1; [None]; [None]; [0] +OCCn1cc(-c2ccnc(CO)c2)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; ['OCc1cc(Br)ccn1', 'OCCn1cc(Br)cn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999951124191284, 0.9999903440475464, 0.9999867677688599, 0.9999836683273315, 0.9998536109924316, 0.9993977546691895] +O=C(Nc1cccc(-c2ccnc(CO)c2)c1)c1ccccc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; ['OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9999775886535645, 0.9995558261871338, 0.9990875124931335] +Cn1cnc2ccc(-c3ccnc(CO)c3)cc2c1=O; [None]; [None]; [0] +COc1cnc(-c2ccnc(CO)c2)nc1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C']; ['COc1cnc(Cl)nc1']; [0.9998120069503784] +OCc1cc(-c2cnc(-c3ccccc3)[nH]2)ccn1; [None]; [None]; [0] +CC(C)C(=O)COc1ccnc(CO)c1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['OCc1cc(O)ccn1', 'OCc1cc(O)ccn1']; [0.9712024331092834, 0.9540293216705322] +Cc1nc(C)c(-c2ccnc(CO)c2)s1; ['Cc1csc(C)n1']; ['OCc1cc(Br)ccn1']; [0.989840030670166] +CC(C)(C)c1nc(-c2ccnc(CO)c2)cs1; [None]; [None]; [0] +OCc1cc(-c2cnc3ccccn23)ccn1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Brc1cnc2ccccn12']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999946355819702, 0.9999335408210754, 0.9999256134033203] +Cc1nc2ccccn2c1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br']; ['Cc1nc2ccccn2c1Br', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999123811721802, 0.9996740818023682, 0.9996154308319092] +OCc1cc(-c2cc(Cl)ccc2Cl)ccn1; [None]; [None]; [0] +Cc1ccc(-c2ccnc(CO)c2)c(Br)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccnc(CO)c2)s1; ['CNc1nc(C)cs1']; ['OCc1cc(Br)ccn1']; [0.9736939668655396] +OCc1cc(-c2cnc3cccnn23)ccn1; ['Clc1cnc2cccnn12']; ['OCc1cc(B(O)O)ccn1']; [0.9999769926071167] +Cc1nc(N)sc1-c1ccnc(CO)c1; ['Cc1nc(N)sc1Br', 'Cc1csc(N)n1', 'Cc1csc(N)n1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1']; [0.9999039173126221, 0.9166327714920044, 0.9067792892456055] +O=c1c2c(F)cccc2cnn1-c1ccnc(CO)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccnc(CO)c2)c1; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9993299245834351, 0.9986878633499146, 0.997543215751648] +OCc1cc(NCc2cccnc2)ccn1; ['NCc1cccnc1', 'Nc1ccnc(CO)c1', 'NCc1cccnc1', 'BrCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['OCc1cc(I)ccn1', 'O=Cc1cccnc1', 'OCc1cc(Cl)ccn1', 'Nc1ccnc(CO)c1', 'OCc1cc(Br)ccn1', 'OCc1cc(F)ccn1']; [0.9939627051353455, 0.9872308373451233, 0.9836009740829468, 0.9666936993598938, 0.9251037836074829, 0.9005426168441772] +OCc1cc(-c2cccc(Cn3cncn3)c2)ccn1; ['OCc1cc(I)ccn1']; ['c1ccc(Cn2cncn2)cc1']; [0.762855589389801] +OCc1cc(-c2c(Cl)cccc2Cl)ccn1; [None]; [None]; [0] +Nc1nccc(-c2ccnc(CO)c2)n1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999884366989136, 0.9999533891677856, 0.9996960163116455, 0.9993016719818115, 0.9985393285751343] +OCc1cc(-c2cccc(Br)c2)ccn1; [None]; [None]; [0] +OCc1cc(-c2cnn3ncccc23)ccn1; ['Brc1cnn2ncccc12']; ['OCc1cc(B(O)O)ccn1']; [0.9995824098587036] +OCc1cc(Nc2cccnc2)ccn1; ['Nc1cccnc1', 'Clc1cccnc1', 'Brc1cccnc1', 'Nc1cccnc1']; ['OCc1cc(Cl)ccn1', 'Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'OCc1cc(Br)ccn1']; [0.9924541115760803, 0.9686686992645264, 0.8938588500022888, 0.8594940900802612] +O=C(Nc1ccnc(CO)c1)c1cccs1; ['Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'COC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccnc(CO)c1']; [0.9998589754104614, 0.9997720718383789, 0.9964772462844849] +OCc1cc(-c2ccc3ccccc3c2)ccn1; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1']; ['OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9998767375946045, 0.9994949102401733, 0.9990924596786499] +OCc1cc(NCCc2c[nH]cn2)ccn1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Nc1ccnc(CO)c1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'N#CCc1c[nH]cn1']; ['Nc1ccnc(CO)c1', 'OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(F)ccn1', 'OCc1cc(Br)ccn1', 'OCCc1c[nH]cn1', 'OCc1cc(O)ccn1', 'O=[N+]([O-])c1ccnc(CO)c1', 'O=[N+]([O-])c1ccnc(CO)c1']; [0.9998756647109985, 0.9995782375335693, 0.999383807182312, 0.9974871873855591, 0.9972031116485596, 0.9958111047744751, 0.9720274209976196, 0.96266770362854, 0.8609095811843872] +OCc1cc(-n2cnc3ccccc32)ccn1; ['OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(F)ccn1', 'OCc1cc(Cl)ccn1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9840783476829529, 0.9748523235321045, 0.9297845959663391, 0.8869422674179077] +OCc1cc(-c2c[nH]nc2C(F)(F)F)ccn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br']; ['FC(F)(F)c1n[nH]cc1Br', 'OCc1cc(B(O)O)ccn1']; [0.9999911785125732, 0.9997822046279907] +Cc1c(-c2ccnc(CO)c2)sc(=O)n1C; [None]; [None]; [0] +OCc1cc(NCCc2ccccc2)ccn1; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'ClCCc1ccccc1', 'BrCCc1ccccc1', 'Nc1ccnc(CO)c1']; ['OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(F)ccn1', 'Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'O=CCc1ccccc1']; [0.9961773157119751, 0.9954720735549927, 0.9934755563735962, 0.9880555272102356, 0.9850108623504639, 0.9745734930038452, 0.9432671666145325] +NC(=O)c1c(F)cccc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br']; ['NC(=O)c1c(F)cccc1Br', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999992251396179, 0.9999300241470337, 0.9995171427726746, 0.9898515343666077] +OCc1cc(-c2cncc3ccccc23)ccn1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Clc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Brc1cncc2ccccc12']; ['OCc1cc(I)ccn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Ic1cncc2ccccc12', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'Clc1cncc2ccccc12', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [1.0, 0.9999997615814209, 0.9999983906745911, 0.9999976754188538, 0.9999938607215881, 0.9999894499778748, 0.9999850988388062, 0.9999836683273315, 0.9999080896377563, 0.9995039701461792, 0.999324381351471, 0.9980559349060059, 0.9725118279457092] +O=C([O-])Cc1cccc(-c2ccnc(CO)c2)c1; [None]; [None]; [0] +OCc1cc(NCc2ccc(Cl)cc2)ccn1; ['Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Nc1ccnc(CO)c1', 'NCc1ccc(Cl)cc1', 'Nc1ccnc(CO)c1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'OCc1cc(Br)ccn1', 'O=Cc1ccc(Cl)cc1', 'OCc1cc(I)ccn1', 'OCc1ccc(Cl)cc1', 'OCc1cc(Cl)ccn1', 'OCc1cc(F)ccn1']; [0.9997441172599792, 0.999055027961731, 0.9988198280334473, 0.9987776279449463, 0.9983876943588257, 0.9915738105773926, 0.9892407655715942, 0.9767361283302307] +Cn1cc(-c2ccc(-c3ccnc(CO)c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccnc(CO)c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccnc(CO)c3)cc2CS1(=O)=O; [None]; [None]; [0] +OCc1cc(-c2ccc(-c3cn[nH]c3)cc2)ccn1; ['OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9998649954795837, 0.9996798038482666] +Cn1ncc2cc(-c3ccnc(CO)c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['OCc1cc(Br)ccn1', 'Cn1ncc2cc(Br)ccc21', 'OCc1cc(I)ccn1', 'Cn1ncc2cc(I)ccc21', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999998211860657, 0.9999990463256836, 0.9999988079071045, 0.9999964833259583, 0.9999960660934448, 0.9999911785125732, 0.9999898672103882, 0.9999819993972778, 0.9999476075172424, 0.9992432594299316] +OCc1cc(NCc2ccccc2F)ccn1; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'NCc1ccccc1F']; ['Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'O=[N+]([O-])c1ccnc(CO)c1']; [0.9985752105712891, 0.9981985092163086, 0.9950865507125854, 0.990807056427002, 0.9892556667327881, 0.9585871696472168, 0.9334259033203125, 0.7898065447807312] +OCc1cc(Nc2ccncc2)ccn1; ['Nc1ccncc1', 'Nc1ccnc(CO)c1', 'Nc1ccncc1', 'Clc1ccncc1', 'Brc1ccncc1', 'Nc1ccncc1']; ['OCc1cc(B(O)O)ccn1', 'OB(O)c1ccncc1', 'OCc1cc(Cl)ccn1', 'Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'OCc1cc(Br)ccn1']; [0.9962758421897888, 0.9891468286514282, 0.9889693260192871, 0.9777427315711975, 0.9285985231399536, 0.8667596578598022] +OCc1cc(-c2cccc(O)c2)ccn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OCc1cc(B(O)O)ccn1', 'OB(O)c1cccc(O)c1']; ['Oc1cccc(Br)c1', 'OCc1cc(Br)ccn1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'Oc1cccc(Cl)c1', 'OCc1cc(Cl)ccn1']; [0.9998927116394043, 0.9995999336242676, 0.9993918538093567, 0.9987809658050537, 0.9984994530677795, 0.9927160739898682, 0.9901654124259949, 0.9805458188056946] +CCCn1cnc(-c2ccnc(CO)c2)n1; [None]; [None]; [0] +CC(C)n1cc(-c2ccnc(CO)c2)nn1; ['CC(C)n1ccnn1']; ['OCc1cc(I)ccn1']; [0.9992513060569763] +OCc1cccc(-c2ccnc(CO)c2)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1', None]; ['OCc1cccc(Br)c1', 'OCc1cc(Br)ccn1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Cl)c1', None]; [0.9999953508377075, 0.9999942779541016, 0.9996540546417236, 0.999561071395874, 0.9990440607070923, 0.9960172176361084, 0.9936363697052002, 0.9401761889457703, 0] +COc1cc(-c2ccnc(CO)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +OCc1cc(-c2cc3ccccc3[nH]2)ccn1; ['Clc1cc2ccccc2[nH]1']; ['OCc1cc(B(O)O)ccn1']; [0.9965516328811646] +OCc1cc(CCc2c[nH]nn2)ccn1; [None]; [None]; [0] +Nc1nc(-c2ccnc(CO)c2)cs1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Nc1nc(Br)cs1', 'CC(=O)c1ccnc(CO)c1', 'Nc1nc(Cl)cs1', None]; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1', 'OCc1cc(B(O)O)ccn1', 'NC(N)=S', 'OCc1cc(B(O)O)ccn1', None]; [0.9999699592590332, 0.9999123215675354, 0.9998853206634521, 0.999787449836731, 0.9992759823799133, 0] +CSc1nc(-c2ccnc(CO)c2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccnc(CO)c2)c1; [None]; [None]; [0] +Nc1ncncc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Nc1ncncc1Br']; ['Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Cl', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999990463256836, 0.9999984502792358, 0.9999902248382568, 0.9998456239700317, 0.9996762275695801, 0.9996601939201355, 0.9948073625564575, 0.9836785793304443] +OCc1cc(-c2csc3ncncc23)ccn1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccnc(CO)c1; [None]; [None]; [0] +OCc1cc(Oc2ccccn2)ccn1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1']; ['OCc1cc(O)ccn1', 'OCc1cc(O)ccn1', 'OCc1cc(O)ccn1']; [0.9985833168029785, 0.9812948703765869, 0.9727921485900879] +O=C(Nc1ccnc(CO)c1)c1c(Cl)cccc1Cl; ['Nc1ccnc(CO)c1', 'Nc1ccnc(CO)c1', 'COC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Nc1ccnc(CO)c1']; [0.9999122023582458, 0.9992636442184448, 0.9954266548156738] +CCC(=O)Nc1ccc(-c2ccnc(CO)c2)cc1; [None]; [None]; [0] +OCc1cc(-c2ccc(F)cc2C(F)(F)F)ccn1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccnc(CO)c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999679327011108, 0.9977138042449951, 0.9940415620803833, 0.9934788942337036, 0.9873844385147095] +NC(=O)CCCc1ccnc(CO)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccnc(CO)c3)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccnc(CO)c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(F)ccn1']; [0.9995616674423218, 0.993059515953064, 0.9915285110473633, 0.9885742664337158] +CC(C)(COc1ccnc(CO)c1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccnc(CO)c1; [None]; [None]; [0] +COc1ccc(-c2ccnc(CO)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl']; ['OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.999997615814209, 0.9997075796127319, 0.9995344281196594, 0.9994633197784424, 0.9959806203842163, 0.9770183563232422] +Cn1cc(-c2ccnc(CO)c2)c2ccccc21; [None]; [None]; [0] +CCCn1cc(-c2ccnc(CO)c2)cn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCCn1cc(I)cn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cccn1']; ['CCCn1cc(I)cn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'CCCn1cc(Br)cn1', 'OCc1cc(B(O)O)ccn1', 'CCCn1cc(Cl)cn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Br)ccn1']; [0.9999992847442627, 0.9999989867210388, 0.9999985694885254, 0.9999972581863403, 0.999990701675415, 0.9999821186065674, 0.9999475479125977, 0.9999259114265442, 0.9998342394828796, 0.9994945526123047, 0.9993250370025635, 0.8755332231521606] +OCc1cc(-c2cnn3ccccc23)ccn1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccnc(CO)c2)cc1C(F)(F)F; [None]; [None]; [0] +O=c1cc(-c2ccnc(CO)c2)cc[nH]1; ['O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.999260425567627, 0.9989759922027588] +O=C1CCc2cccc(-c3ccnc(CO)c3)c21; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21']; ['O=C1CCc2cccc(Br)c21', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999996423721313, 0.9999850392341614, 0.9997885227203369] +CC(C)(N)c1ccc(-c2ccnc(CO)c2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999693632125854, 0.9980259537696838, 0.8709794282913208] +CCNS(=O)(=O)c1ccccc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br']; ['CCNS(=O)(=O)c1ccccc1Br', 'OCc1cc(B(O)O)ccn1']; [0.9999956488609314, 0.9997704029083252] +C[S@](=O)c1ccc(-c2ccnc(CO)c2)cc1; ['CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9997837543487549, 0.9995894432067871] +COc1ccncc1Nc1ccnc(CO)c1; ['COc1ccncc1N', 'COc1ccncc1N']; ['OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [0.9991098046302795, 0.9958269596099854] +CCN(CC)c1ccnc(CO)c1; ['CCNCC', None, 'CCNCC']; ['OCc1cc(Cl)ccn1', None, 'OCc1cc(Br)ccn1']; [0.9049403667449951, 0, 0.7831662893295288] +C[C@@H](Oc1ccnc(CO)c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['OCc1cc(O)ccn1']; [0.9571022987365723] +OCc1cc(Nc2cnccc2-c2ccccc2)ccn1; ['Brc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['Nc1ccnc(CO)c1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9985398054122925, 0.9985126852989197, 0.9983183145523071] +CC(C)Oc1cncc(-c2ccnc(CO)c2)c1; ['CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999988079071045, 0.9999984502792358, 0.9998072385787964, 0.9990314245223999, 0.9982922673225403] +CC(C)(C)c1ccc(-c2ccnc(CO)c2)cc1; ['CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9997308850288391, 0.999690592288971, 0.9988753795623779] +COc1cc(CCc2ccnc(CO)c2)cc(OC)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O']; ['COc1cccc(F)c1Br', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999988079071045, 0.9999980330467224, 0.9999840259552002, 0.9998440742492676, 0.9997125267982483, 0.9990012645721436] +O=c1[nH]cc(Br)c2sc(-c3ccnc(CO)c3)cc12; [None]; [None]; [0] +OCc1cc(Nc2cnc3ccccc3c2)ccn1; ['Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Nc1ccnc(CO)c1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [0.9506289958953857, 0.9392843246459961, 0.8397166132926941] +O=c1[nH]ccc2oc(-c3ccnc(CO)c3)cc12; [None]; [None]; [0] +OCc1cc(-c2cnc3[nH]ccc3c2)ccn1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999997019767761, 0.9999995231628418, 0.9999994039535522, 0.9999988079071045, 0.9999988079071045, 0.999992847442627, 0.9999150633811951, 0.9998254179954529, 0.999613881111145, 0.9994149208068848, 0.9993311166763306, 0.9992926716804504, 0.9991945624351501, 0.992598295211792] +OCc1cc(-c2c[nH]c3cnccc23)ccn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12']; ['Ic1c[nH]c2cnccc12', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9998853206634521, 0.9998769760131836, 0.9833506345748901, 0.9640683531761169] +CNS(=O)(=O)c1ccc(-c2ccnc(CO)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999940395355225, 0.9999514818191528, 0.999943733215332, 0.9997873306274414, 0.9992530345916748, 0.9989187717437744, 0.9982743263244629, 0.9936354756355286, 0.9922424554824829, 0.9862382411956787] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccnc(CO)c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(Br)ccn1']; [0.9999985694885254, 0.9999920129776001, 0.9999915361404419, 0.9999299049377441, 0.9997454881668091, 0.9983872771263123, 0.9945003986358643, 0.9892812371253967] +CC1(c2ccnc(CO)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccnc(CO)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2ccnc(CO)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccnc(CO)c1; [None]; [None]; [0] +OCc1cc(-c2ccc(N3CCOCC3)cc2)ccn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'Ic1ccc(N2CCOCC2)cc1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'Clc1ccc(N2CCOCC2)cc1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Br)ccn1']; [0.9999998807907104, 0.9999998211860657, 0.9999997615814209, 0.9999994039535522, 0.999998927116394, 0.9999984502792358, 0.9999977350234985, 0.9999934434890747, 0.999991774559021, 0.9999897480010986, 0.9999868869781494, 0.9999734163284302, 0.9999632835388184, 0.9999551773071289, 0.9990526437759399] +CS(=O)(=O)c1ccc(-c2ccnc(CO)c2)cc1; ['CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9999231100082397, 0.9999107122421265, 0.999793291091919] +OCc1cc(-n2ccc(CO)n2)ccn1; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9991488456726074, 0.9964924454689026, 0.9790597558021545, 0.9366592764854431] +C[C@H](Nc1ccnc(CO)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1ccnc(CO)c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9940067529678345, 0.9792708158493042, 0.9415245056152344] +OCCc1cn(-c2ccnc(CO)c2)cn1; ['OCCc1c[nH]cn1', 'OCCc1cnc[nH]1', 'OCCc1cnc[nH]1', 'OCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; ['OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(F)ccn1']; [0.9994325637817383, 0.9993492364883423, 0.9989804029464722, 0.9988975524902344, 0.9826928973197937] +OCc1cc(-c2c(F)cccc2Cl)ccn1; ['OB(O)c1c(F)cccc1Cl']; ['OCc1cc(I)ccn1']; [0.9999418258666992] +C[C@@H](Nc1ccnc(CO)c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9940067529678345, 0.9792708158493042, 0.9415245056152344] +OCc1cc(-c2nc3ccc(O)cc3[nH]2)ccn1; ['Nc1ccc(O)cc1N']; ['O=Cc1ccnc(CO)c1']; [0.9944761991500854] +COc1ccc(-c2ccnc(CO)c2)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1']; [0.9997786283493042, 0.9994708299636841, 0.9989688992500305] +OCc1cc(-n2ncc3c(O)cccc32)ccn1; [None]; [None]; [0] +OCc1cc(-c2ccc(-n3cncn3)cc2)ccn1; [None]; [None]; [0] +OCc1cc(-n2ncc3ccccc32)ccn1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc(CO)c2)[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccnc(CO)c2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccnc(CO)c2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccnc(CO)c1; [None]; [None]; [0] +OCc1cc(-c2nncn2C2CC2)ccn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccnc(CO)c2)CC1; [None]; [None]; [0] +OCc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)ccn1; [None]; [None]; [0] +O=C(CCc1ccnc(CO)c1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2ccnc(CO)c2)s1; ['Nc1nnc(Br)s1']; ['OCc1cc(B(O)O)ccn1']; [0.9993471503257751] +O=S(=O)(Cc1ccnc(CO)c1)NCc1ccccn1; [None]; [None]; [0] +OCc1cc(-c2cn(Cc3ccccc3)nn2)ccn1; [None]; [None]; [0] +CCc1cc(-c2ccnc(CO)c2)nc(N)n1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CCc1cc(Cl)nc(N)n1', 'CCc1ccnc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999828338623047, 0.9998825192451477, 0.9998618364334106] +CNC(=O)c1ccc(-c2ccnc(CO)c2)s1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'OCc1cc(B(O)O)ccn1']; [0.9999874234199524, 0.9999039769172668] +CCCCc1cc(-c2ccnc(CO)c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccnc(CO)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccnc(CO)c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999595880508423, 0.9997544884681702, 0.9994603395462036, 0.996105968952179] +OCc1cc(-c2nc3ccccc3s2)ccn1; ['Nc1ccccc1S', 'Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; ['O=Cc1ccnc(CO)c1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1']; [0.9999803304672241, 0.9999802708625793, 0.9995838403701782, 0.9942982196807861] +Nc1cncc(-c2ccnc(CO)c2)n1; ['Nc1cncc(Cl)n1', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1']; ['OCc1cc(B(O)O)ccn1', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9999645948410034, 0.9999521374702454, 0.9999213218688965, 0.9996314644813538, 0.9913692474365234] +OCc1cc(-c2cccc3ccsc23)ccn1; ['Brc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1']; [0.9994814395904541, 0.9990628361701965] +CC1(C)Oc2ccc(-c3ccnc(CO)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc(CO)c3)c2)cc1; [None]; [None]; [0] +Nc1nc(-c2ccnc(CO)c2)nc2ccccc12; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12']; ['Nc1nc(Cl)nc2ccccc12', 'OCc1cc(B(O)O)ccn1']; [0.9999589920043945, 0.9993190765380859] +C[C@@H2]NC(=O)N1CCC(c2ccnc(CO)c2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccnc(CO)c2)c(F)c1; [None]; [None]; [0] +OCc1cc(-c2ncc3ccccc3n2)ccn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'Clc1ncc2ccccc2n1']; ['Clc1ncc2ccccc2n1', 'OCc1cc(B(O)O)ccn1']; [0.9999302625656128, 0.9974953532218933] +OCc1cc(-c2cccc3nnsc23)ccn1; [None]; [None]; [0] +OCc1cc(-c2c[nH]c3cccnc23)ccn1; ['Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12']; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'OCc1cc(B(O)O)ccn1']; [0.9999070167541504, 0.9859280586242676] +CC(=O)Nc1ncc(-c2ccnc(CO)c2)[nH]1; [None]; [None]; [0] +OCc1cc(-c2ncc3cc[nH]c3n2)ccn1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C']; ['Clc1ncc2cc[nH]c2n1']; [0.9999872446060181] +COc1ccc(C#N)cc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I']; ['COc1ccc(C#N)cc1Br', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1ccccn1']; [0.9999986886978149, 0.9999498724937439, 0.9995410442352295, 0.9991766810417175, 0.830468475818634] +COc1ncccc1-c1ccnc(CO)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['COc1ncccc1Br', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Br)ccn1']; [0.9999925494194031, 0.9999760389328003, 0.9989197254180908, 0.9982433319091797, 0.9978255033493042, 0.9971164464950562, 0.9969285130500793, 0.9437878727912903] +OCCn1cnc(-c2ccnc(CO)c2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccnc(CO)c2)c1; ['CC1(C)OB(c2ccnc(CO)c2)OC1(C)C', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'OCc1cc(Br)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(B(O)O)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1']; [0.9999910593032837, 0.9999832510948181, 0.9999827146530151, 0.9992244243621826, 0.9990208148956299, 0.9989253282546997, 0.9961168766021729] +COc1ccc(Oc2ccnc(CO)c2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(F)c(F)c1F']; ['OCc1cc(B(O)O)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(I)ccn1', 'OCc1cc(O)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(O)ccn1', 'OCc1cc(O)ccn1']; [0.9968581199645996, 0.9967663288116455, 0.9960314035415649, 0.9942612648010254, 0.9790823459625244, 0.9760860204696655, 0.920575737953186] +COc1ccc(OC)c(-c2ccnc(CO)c2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999281167984009, 0.9987658262252808, 0.9866565465927124] +CCOc1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CCOc1ccc(N)cc1', 'CCOc1ccc(N=C=S)cc1', 'CCOc1ccc(N=C=S)cc1', 'CCOc1ccc(N=C=S)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(N=C=S)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(O)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc(N)c(S)c1']; [0.9998311996459961, 0.9993336200714111, 0.9979521036148071, 0.9975323677062988, 0.9958364367485046, 0.9957926273345947, 0.9893075823783875] +CN(C)c1cc(-c2ccnc(CO)c2)cnn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccnc(CO)c2)CC1; [None]; [None]; [0] +COc1ncccc1Nc1nc2ccc(C)cc2s1; ['COc1ncccc1N', 'COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1I']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999613761901855, 0.9999322295188904, 0.9999125003814697, 0.9998994469642639] +Cc1ccc2nc(Nc3cccc(S(C)(=O)=O)c3)sc2c1; ['CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9997711181640625, 0.9996600151062012, 0.9995226263999939] +OCc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)ccn1; ['OCc1cc(I)ccn1', 'OCc1cc(Br)ccn1', 'OCc1cc(Cl)ccn1', 'OCc1cc(F)ccn1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9998841285705566, 0.9990594387054443, 0.9940469264984131, 0.988822340965271] +O=C(Nc1cccc(-c2ccnc(CO)c2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(Nc2nc3ccc(C)cc3s2)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'COc1cc(N=C=S)cc(OC)c1OC', 'COc1cc(N=C=S)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N=C=S)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; [0.999963641166687, 0.9999278783798218, 0.9998440742492676, 0.9983358383178711, 0.998140811920166, 0.9918289184570312] +OCc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)ccn1; [None]; [None]; [0] +Cc1ccc2nc(Nn3cnc4ccc(C)cc43)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cnc4cccnn34)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Brc1cnc2cccnn12', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1cnc2cccnn12', 'Cc1ccc2nc(N)sc2c1', 'Nc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [1.0, 1.0, 0.9999992251396179, 0.9999931454658508] +COc1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['COc1ccc(N=C=S)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N=C=S)cc1', 'COc1ccc(N=C=S)cc1', 'COc1ccc(N)cc1']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9997975826263428, 0.9997768402099609, 0.9995496273040771, 0.9972740411758423, 0.9924635887145996] +Cc1ccc2nc(Nc3cccc(NC(=O)C4CC4)c3)sc2c1; ['Cc1ccc2nc(Br)sc2c1']; ['Nc1cccc(NC(=O)C2CC2)c1']; [0.9993084073066711] +Cc1ccc2nc(Nc3cccc(O)c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9990765452384949, 0.9968846440315247, 0.9916096925735474] +Cc1ccc2nc(Nc3ccc(C(=O)[O-])cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1']; ['Nc1ccc(C(=O)[O-])cc1']; [0.9168210029602051] +Cc1ccc2nc(Nc3nc4ccccc4[nH]3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(N4CCOCC4)cc3)sc2c1; ['Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(O)c1', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; ['S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Cc1ccc2nc(N)sc2c1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1']; [0.9999927282333374, 0.9999866485595703, 0.999984085559845, 0.9999433755874634, 0.9997416734695435, 0.9995516538619995, 0.9993012547492981, 0.9989273548126221] +Cc1ccc2nc(Nc3cc(C#N)ccc3O)sc2c1; ['Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1']; ['N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1']; [0.9836685061454773, 0.9592298269271851, 0.9545019268989563] +Cc1ccc2nc(Nc3nccc4ccccc34)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Brc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'Cc1ccc2nc(N)sc2c1']; [0.9999574422836304, 0.9996019601821899, 0.9987945556640625, 0.9981274604797363] +Cc1ccc2nc(Nc3ncc4ccccc4n3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(NNc3ncccn3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C(N)=O)cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1']; ['NC(=O)c1ccc(N)cc1']; [0.9999717473983765] +Cc1ccc2nc(Nc3ccc(C(=O)Nc4ccccc4)cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1']; [0.999977707862854, 0.9998441934585571] +Cc1ccc2nc(Nc3sc(C(C)(C)O)nc3C)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C(=O)N4CCOCC4)cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999961853027344, 0.999987006187439, 0.9999680519104004] +Cc1ccc2nc(Nc3ccc(C(=O)N4CCOCC4)cn3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999987483024597, 0.9999953508377075, 0.9999624490737915] +Cc1ccc2nc(Nc3ccc(OCCO)cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999776482582092, 0.999545156955719, 0.9994959831237793] +Cc1ccc2nc(Nc3cccc(C4CCNCC4)c3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cnn(Cc4cccc(C#N)c4)c3)sc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999264478683472, 0.999873161315918, 0.999785840511322, 0.9996967911720276, 0.9989557862281799, 0.9984877109527588] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3nc4ccc(C)cc4s3)cc2)CC1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C(F)(F)F)cc3)sc2c1; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['FC(F)(F)c1ccc(N=C=S)cc1', 'FC(F)(F)c1ccc(N=C=S)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(N=C=S)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Nc1ccc(C(F)(F)F)cc1']; [0.9999916553497314, 0.9999915361404419, 0.999936044216156, 0.9997307062149048, 0.9995765089988708, 0.9994597434997559] +Cc1ccc2nc(Nc3ccc4c(c3)CS(=O)(=O)C4)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.999779224395752, 0.9996366500854492, 0.9995972514152527] +Cc1ccc2nc(Nc3ccc(N(C)C)cc3)sc2c1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N=C=S)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N=C=S)cc1', 'CN(C)c1ccc(Br)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999769926071167, 0.9999239444732666, 0.999640941619873, 0.9991806745529175, 0.9939684867858887] +CC(=O)NCc1ccc(Nc2nc3ccc(C)cc3s2)cc1; [None]; [None]; [0] +Cc1ccc2nc(NCc3ccccc3O)sc2c1; ['Cc1ccc2nc(Cl)sc2c1']; ['NCc1ccccc1O']; [0.9996662139892578] +Cc1ccc2nc(Nc3ccc(S(=O)(=O)N(C)C)cc3)sc2c1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.999959409236908, 0.9997272491455078, 0.9989372491836548, 0.9982007741928101] +Cc1ccc2nc(NC3CCN(S(C)(=O)=O)CC3)sc2c1; ['CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999542236328125, 0.9978926181793213] +Cc1ccc2nc(Nc3ccc(OC[C@H](C)O)cc3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(C(C)C)nc(N)n3)sc2c1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Cc1ccc2nc(N)sc2c1']; [0.9998570084571838] +Cc1ccc2nc(NCc3cnc(N)nc3)sc2c1; ['Cc1ccc2nc(N)sc2c1']; ['Nc1ncc(CO)cn1']; [0.9977165460586548] +Cc1ccc2nc(Nc3sc(C)nc3C)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(OC[C@@H](C)O)cc3)sc2c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N=C=S)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; [0.9997384548187256, 0.9996999502182007, 0.995459258556366] +Cc1ccc2nc(Nc3ccc(Br)cc3)sc2c1; ['Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1']; ['S=C=Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'S=C=Nc1ccc(Br)cc1', 'S=C=Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1']; [0.9999003410339355, 0.9998867511749268, 0.9972507953643799, 0.9919816851615906, 0.9792495369911194] +Cc1ccc2nc(N[C@H]3CCN(C(=O)c4ccccc4)C3)sc2c1; [None]; [None]; [0] +CCCOc1ccc(Nc2nc3ccc(C)cc3s2)nc1; ['CCCOc1ccc(Br)nc1']; ['Cc1ccc2nc(N)sc2c1']; [0.999694287776947] +Cc1ccc2nc(Nc3ccc(N(C)C)c(Cl)c3)sc2c1; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9996869564056396, 0.9989504814147949, 0.9989403486251831] +Cc1ccc2nc(Nc3ccn4nccc4n3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Brc1ccn2nccc2n1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1ccn2nccc2n1', 'Cc1ccc2nc(N)sc2c1', 'Nc1ccn2nccc2n1', 'Clc1ccn2nccc2n1']; [0.9999992251396179, 0.9999990463256836, 0.9999971389770508, 0.9999933838844299] +CCN(CC)C(=O)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999078512191772, 0.9993276596069336, 0.9992584586143494] +COc1ccc(CNc2nc3ccc(C)cc3s2)cc1; ['COc1ccc(CN=C=S)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(C=O)cc1']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999120235443115, 0.9996829032897949, 0.9985471963882446, 0.9975844621658325, 0.9907488822937012] +CNS(=O)(=O)c1ccc(Nc2nc3ccc(C)cc3s2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Cc1ccc2nc(N)sc2c1']; [0.9964807033538818] +COc1ccc(Cl)cc1Nc1nc2ccc(C)cc2s1; ['COc1ccc(Cl)cc1N=C=S', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N=C=S', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N=C=S', 'COc1ccc(Cl)cc1Br']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999783039093018, 0.9999442100524902, 0.9999291896820068, 0.9999281167984009, 0.999306321144104, 0.9985592365264893] +Cc1ccc2nc(Nc3ccccc3-n3cccn3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Brc1ccccc1-n1cccn1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Cc1ccc2nc(N)sc2c1', 'Clc1ccccc1-n1cccn1']; [1.0, 0.9999995231628418, 0.9999992847442627, 0.9999960660934448] +Cc1ccc2nc(Nc3c[nH]c4ccccc34)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Cc1ccc2nc(N)sc2c1']; [0.9950023889541626, 0.9936133623123169, 0.9243569374084473] +COc1cc(OC)c(Nc2nc3ccc(C)cc3s2)cc1Cl; ['COc1cc(OC)c(N=C=S)cc1Cl', 'COc1cc(OC)c(N=C=S)cc1Cl', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(N=C=S)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; [0.9998862743377686, 0.9997507929801941, 0.9996743202209473, 0.9989047646522522, 0.9976097345352173, 0.9899916648864746] +Cc1ccc2nc(Nc3ccc4c(c3)CCO4)sc2c1; ['Brc1ccc2c(c1)CCO2', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Cc1ccc2nc(N)sc2c1', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2']; [0.999820351600647, 0.9997853636741638, 0.9996313452720642] +CC(=O)Nc1cccc(Nc2nc3ccc(C)cc3s2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9996824264526367, 0.9977738261222839, 0.9960883259773254] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1nc2ccc(C)cc2s1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999953508377075, 0.999993622303009] +CC(=O)N1CCCN(c2cccc(Nc3nc4ccc(C)cc4s3)c2)CC1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cccc4c3OCO4)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Brc1cccc2c1OCO2']; ['Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Cc1ccc2nc(N)sc2c1']; [0.9937825202941895, 0.9845676422119141, 0.9609177112579346] +COc1cc(Nc2nc3ccc(C)cc3s2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9993752241134644, 0.9957561492919922, 0.980005145072937] +Cc1ccc2nc(NCc3nc4c(F)c(F)ccc4[nH]3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C(C)(C)C)cc3)sc2c1; ['CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999949932098389, 0.999993085861206, 0.9999676942825317, 0.9997982382774353, 0.9997926354408264, 0.9995004534721375] +Cc1ccc2nc(NCc3nc4ccc(F)c(F)c4[nH]3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cccc(C(=O)[O-])c3C)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C(C)(C)C)nc3)sc2c1; ['CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999606013298035, 0.9997347593307495] +Cc1ccc2nc(Nc3ccc(C(=O)N(C)C)cc3)sc2c1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(N)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.999994158744812, 0.9996563196182251, 0.99944007396698] +Cc1ccc2nc(Nc3cnc4ccccc4c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9997525215148926, 0.9992074966430664, 0.9928520321846008] +Cc1ccc2nc(NCc3nc4ccccc4[nH]3)sc2c1; ['Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['ClCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1']; [0.9964914917945862, 0.943230152130127] +Cc1ccc2nc(Nc3csc(N)n3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(C)[nH]c3=O)sc2c1; ['Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(N)c(=O)[nH]1', 'Cc1ccc(I)c(=O)[nH]1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9648301601409912, 0.9264845252037048, 0.8561545014381409] +Cc1ccc2nc(NCCCc3ccccc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'BrCCCc1ccccc1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'Cc1ccc2nc(N)sc2c1', 'OCCCc1ccccc1', 'O=CCCc1ccccc1']; [0.9998562335968018, 0.9993094205856323, 0.9941102266311646, 0.9776961803436279, 0.9275532364845276] +COc1cccc(C(=O)NNc2nc3ccc(C)cc3s2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1']; ['Cc1ccc2nc(NN)sc2c1', 'Cc1ccc2nc(NN)sc2c1']; [0.9998321533203125, 0.9998109936714172] +Cc1ccc2nc(Nc3ccn(-c4cccc(Cl)c4)n3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3nc4ccc(C(C)C)cc4[nH]3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc4ccccc4s3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1']; [0.9963252544403076, 0.9511065483093262] +CSc1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CSc1ccc(N=C=S)cc1', 'CSc1ccc(N=C=S)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N=C=S)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(Br)cc1']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999641180038452, 0.9999386668205261, 0.9999070167541504, 0.9996951818466187, 0.9990637898445129, 0.9905087351799011] +Cc1ccc2nc(Nc3scc4c3OCCO4)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(-c4ccccc4)[nH]n3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(C)nc(N)n3)sc2c1; ['Cc1cc(Cl)nc(N)n1']; ['Cc1ccc2nc(N)sc2c1']; [0.9998734593391418] +CC[C@@H](CO)Nc1nc2ccc(C)cc2s1; ['CC[C@H](N)CO', 'CC[C@H](N)CO']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9961971044540405, 0.9886217713356018] +Cc1ccc2nc(Nc3ncc(Br)cn3)sc2c1; ['Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Clc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9999539852142334, 0.9992198944091797] +Cc1ccc2nc(Nc3ccc4c(c3)CCC(=O)N4)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Br)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2']; [0.9997066259384155, 0.9987773299217224, 0.9986507296562195] +Cc1ccc2nc(N[C@H](CO)Cc3ccccc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9997909665107727, 0.9984630346298218] +Cc1ccc2nc(Nc3ccc(F)cc3Cl)sc2c1; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1']; ['Fc1ccc(N=C=S)c(Cl)c1', 'Fc1ccc(N=C=S)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(N=C=S)c(Cl)c1']; [0.9999774694442749, 0.9999747276306152, 0.9998390674591064, 0.9997783899307251, 0.9996505975723267, 0.9969700574874878] +CC(=O)N[C@@H]1CC[C@@H](Nc2nc3ccc(C)cc3s2)CC1; [None]; [None]; [0] +COc1ccc(Nc2nc3ccc(C)cc3s2)cc1OC; ['COc1ccc(N=C=S)cc1OC', 'COc1ccc(N=C=S)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N=C=S)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(Br)cc1OC']; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999784231185913, 0.9999703168869019, 0.999920129776001, 0.9997901916503906, 0.9994590878486633, 0.9986245036125183] +CCc1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(N=C=S)cc1', 'CCc1ccc(N=C=S)cc1', 'CCc1ccc(N=C=S)cc1', 'CCc1ccc(N)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9998081922531128, 0.9997003078460693, 0.9996004104614258, 0.999541163444519, 0.9972652196884155] +Cc1ccc2nc(Nc3ccc(Cl)cc3Cl)sc2c1; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(S)c1']; ['S=C=Nc1ccc(Cl)cc1Cl', 'S=C=Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'S=C=Nc1ccc(Cl)cc1Cl']; [0.9999579191207886, 0.9998868703842163, 0.9998741149902344, 0.9993925094604492, 0.9945234656333923] +Cc1ccc2nc(Nc3cc4ccccn4n3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Brc1cc2ccccn2n1']; ['Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Clc1cc2ccccn2n1', 'Cc1ccc2nc(N)sc2c1']; [0.9999856948852539, 0.9999213218688965, 0.9997938871383667, 0.9997089505195618] +Cc1ccc2nc(Nc3ncc4cccn4n3)sc2c1; ['Cc1ccc2nc(N)sc2c1']; ['Clc1ncc2cccn2n1']; [0.9999964833259583] +Cc1ccc2nc(NCCCn3cncn3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['NCCCn1cncn1', 'NCCCn1cncn1', 'OCCCn1cncn1']; [0.9999633431434631, 0.9998911619186401, 0.9656527042388916] +Cc1ccc2nc(Nc3cn(C)nc3C(F)(F)F)sc2c1; ['Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Cl)sc2c1']; ['Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9999958276748657, 0.9999932050704956, 0.999975860118866] +COc1ccc2cccc(Nc3nc4ccc(C)cc4s3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999446868896484, 0.9996790885925293] +Cc1ccc2nc(Nc3cccc4ccc(O)cc34)sc2c1; ['Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1']; ['Nc1cccc2ccc(O)cc12', 'Nc1cccc2ccc(O)cc12']; [0.9974978566169739, 0.9973554611206055] +Cc1ccc2nc(Nc3ccc(C(=O)N4CCC[C@@H]4C)cc3)sc2c1; [None]; [None]; [0] +COc1cc(F)c(Nc2nc3ccc(C)cc3s2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999884366989136, 0.9997420310974121, 0.99758380651474] +COc1cc(Nc2nc3ccc(C)cc3s2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999022483825684, 0.9997148513793945, 0.9995627403259277] +Cc1ccc2nc(Nc3ncnc4c(C)csc34)sc2c1; ['Cc1ccc2nc(N)sc2c1']; ['Cc1csc2c(Cl)ncnc12']; [0.9999954700469971] +COc1cc(Nc2nc3ccc(C)cc3s2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999896287918091, 0.9999877214431763, 0.9999055862426758] +CCN1CCN(Cc2ccc(Nc3nc4ccc(C)cc4s3)cc2)CC1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cnn(CCO)c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9999989867210388, 0.9999775290489197, 0.9998767375946045] +COc1cc(Nc2nc3ccc(C)cc3s2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9996891617774963, 0.8916200399398804] +CNC(=O)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999388456344604, 0.9996528625488281, 0.999632716178894, 0.999398946762085] +CCNC(=O)c1ccc(Nc2nc3ccc(C)cc3s2)nc1; ['CCNC(=O)c1ccc(Cl)nc1']; ['Cc1ccc2nc(N)sc2c1']; [0.9988864660263062] +Cc1ccc2nc(Nc3cc(N)nc4[nH]ccc34)sc2c1; ['Cc1ccc2nc(N)sc2c1']; ['Nc1cc(Cl)c2cc[nH]c2n1']; [0.8982442617416382] +COc1ccc(OC)c(CNc2nc3ccc(C)cc3s2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(C=O)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9998670816421509, 0.9992150664329529, 0.993773877620697, 0.9820062518119812] +Cc1ccc2nc(Nc3cccc(C(=O)Nc4cn[nH]c4)c3)sc2c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2nc3ccc(C)cc3s2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999402761459351, 0.9969562888145447] +CCNC(=O)N1CCC(Nc2nc3ccc(C)cc3s2)CC1; ['CCNC(=O)N1CCC(N)CC1']; ['Cc1ccc2nc(Cl)sc2c1']; [0.9999520778656006] +COc1cc(Nc2nc3ccc(C)cc3s2)cc(OC)c1; ['COc1cc(N=C=S)cc(OC)c1', 'COc1cc(N=C=S)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N=C=S)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Cc1ccc(N)c(Br)c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.999963104724884, 0.9999260902404785, 0.9999253749847412, 0.9971764087677002, 0.9961932897567749, 0.9906851053237915, 0.9709243178367615] +Cc1ccc2nc(Nc3ccc4cn[nH]c4c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc(N)c(I)c1', 'Cc1ccc2nc(Br)sc2c1', 'Brc1ccc2cn[nH]c2c1', 'Cc1ccc(N)c(S)c1']; ['Nc1ccc2cn[nH]c2c1', 'S=C=Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Cc1ccc2nc(N)sc2c1', 'S=C=Nc1ccc2cn[nH]c2c1']; [0.9999967217445374, 0.9999827146530151, 0.9999570846557617, 0.9999006986618042, 0.9996201992034912] +Cc1ccc2nc(Nc3ccc4c(c3)CC(C)(C)O4)sc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1nc3ccc(C)cc3s1)cn2C; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1nc2ccc(C)cc2s1; [None]; [None]; [0] +CCn1cc(Nc2nc3ccc(C)cc3s2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(Br)cn1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999914765357971, 0.999889612197876, 0.9997599124908447] +COc1ccc2oc(Nc3nc4ccc(C)cc4s3)cc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ncc4sccc4n3)sc2c1; ['Cc1ccc2nc(N)sc2c1']; ['Clc1ncc2sccc2n1']; [0.9999967813491821] +Cc1ccc2nc(Nc3cc(-c4cccnc4)ccn3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9999860525131226, 0.9999246001243591] +CNC(=O)c1ccc(OC)c(Nc2nc3ccc(C)cc3s2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999995231628418, 0.999997079372406, 0.9994772672653198] +Cc1ccc2nc(Nc3cn(C)nc3C(C)C)sc2c1; ['CC(C)c1nn(C)cc1Br']; ['Cc1ccc2nc(N)sc2c1']; [0.9997822046279907] +Cc1ccc2nc(Nc3ncc(Cl)cn3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(OC(F)(F)F)cc3)sc2c1; ['Cc1ccc(N)c(I)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc(N)c(S)c1', 'Cc1ccc2nc(N)sc2c1']; ['FC(F)(F)Oc1ccc(N=C=S)cc1', 'FC(F)(F)Oc1ccc(N=C=S)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(N=C=S)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; [0.9999991655349731, 0.9999983906745911, 0.999997079372406, 0.9999746680259705, 0.99994295835495, 0.9998973608016968] +COc1ccc(F)c(C(=O)NNc2nc3ccc(C)cc3s2)c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cccc(NC(=O)N4CCCC4)c3)sc2c1; [None]; [None]; [0] +CCc1cccc(Nc2nc3ccc(C)cc3s2)n1; ['CCc1cccc(N)n1', 'CCc1cccc(N)n1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9998551607131958, 0.999343991279602] +Cc1ccc2nc(Nc3cn(C)c4ccccc34)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ncn4c3CCCC4)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc4c(cnn4C)c3)sc2c1; ['Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999971985816956, 0.9999951720237732, 0.9999765157699585] +Cc1ccc2nc(Nc3ccc(C[NH+](C)C)cc3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(N(C)C)nc3)sc2c1; ['CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(N)cn1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999724626541138, 0.9998488426208496, 0.9996211528778076] +Cc1ccc2nc(Nc3cc4ccccc4o3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(Br)cn3C)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc4c(C)n[nH]c4c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; ['Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(N)ccc12']; [0.9999988079071045, 0.9999956488609314] +Cc1ccc2nc(Nc3cc(C)c(OCCO)c(C)c3)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc4c(c3)c(Cl)nn4C)sc2c1; [None]; [None]; [0] +COc1ccc2nc(Nc3nc4ccc(C)cc4s3)[nH]c2c1; [None]; [None]; [0] +Cc1ccc2nc(NNC(=O)c3cccc(OC(F)(F)F)c3)sc2c1; ['Cc1ccc2nc(NN)sc2c1', 'Cc1ccc2nc(NN)sc2c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999973773956299, 0.9999950528144836] +Cc1ccc2nc(Nc3ccc(C(=O)N(C)C)cc3Cl)sc2c1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(CCO)cc3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1']; [0.9998798370361328, 0.9993307590484619, 0.9967859983444214] +Cc1ccc2nc(Nc3ccc(-c4cnc(C)n4C)cc3)sc2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1nc2ccc(C)cc2s1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9999957084655762, 0.9999300241470337, 0.9996234178543091] +CC(=O)N1CCC(n2cc(Nc3nc4ccc(C)cc4s3)cn2)CC1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cccc(N4CCCC4=O)c3)sc2c1; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999817609786987, 0.9999246597290039, 0.9986415505409241] +COc1cc(N2CCNCC2)ccc1Nc1nc2ccc(C)cc2s1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc4ccc(C(C)(C)O)cc4[nH]3)sc2c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1nc2ccc(C)cc2s1; [None]; [None]; [0] +Cc1ccc2nc(Nc3ccc(N4CCOCC4)cc3C)sc2c1; ['Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999996423721313, 0.9999852180480957] +CNC(=O)c1ccc(Nc2nc3ccc(C)cc3s2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9998729825019836, 0.9996047019958496, 0.9995173215866089] +CCNC(=O)c1ccc(Nc2nc3ccc(C)cc3s2)cc1; ['CCNC(=O)c1ccc(N)cc1']; ['Cc1ccc2nc(Cl)sc2c1']; [0.9998902082443237] +CCNC(=O)Cc1ccc(Nc2nc3ccc(C)cc3s2)cc1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(S(C)(=O)=O)ccc3Cl)sc2c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Cc1ccc2nc(N)sc2c1']; [0.999814510345459] +CNC(=O)c1ccccc1-c1ncc(OC)cn1; ['CNC(=O)c1ccccc1B(O)O']; ['COc1cnc(Br)nc1']; [0.9953696727752686] +Cc1ccc2nc(Nc3cc(C(=O)NCCO)ccc3C)sc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2nc3ccc(C)cc3s2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['Cc1ccc2nc(Cl)sc2c1', 'Cc1ccc2nc(Br)sc2c1']; [0.9999963641166687, 0.9999942779541016] +Cc1ccc2nc(Nc3ccc(C(=O)N(C)C)cn3)sc2c1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Cc1ccc2nc(N)sc2c1', 'Cc1ccc2nc(N)sc2c1']; [0.9998552799224854, 0.9996019601821899] +Cc1ccc2nc(N[C@H](C)CS(C)(=O)=O)sc2c1; [None]; [None]; [0] +CCOc1ccccc1-c1ncc(OC)cn1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9995059967041016, 0.9985122084617615, 0.9980717897415161, 0.994338870048523, 0.9798373579978943] +COc1cnc(-c2ccccc2S(=O)(=O)C(C)C)nc1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9998019337654114, 0.9976507425308228] +COc1cnc(Cc2cc(F)cc(F)c2)nc1; ['COc1cnc(C=O)nc1', 'COc1cnc(C)nc1']; ['Fc1cc(F)cc(Br)c1', 'Fc1cc(F)cc(Br)c1']; [0.9805305004119873, 0.7715336084365845] +COc1cnc(-c2ccccc2P(C)(C)=O)nc1; [None]; [None]; [0] +Cc1ccc2nc(Nc3cc(C(C)(C)O)n(C)n3)sc2c1; [None]; [None]; [0] +CCn1cc(-c2ncc(OC)cn2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9991252422332764, 0.9986661076545715] +COc1cnc(-c2ccnc3ccccc23)nc1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cncnc1', 'Brc1ccnc2ccccc12', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'COc1cncnc1', 'Clc1ccnc2ccccc12']; [0.9999204874038696, 0.9997004270553589, 0.9996957778930664, 0.998963475227356, 0.9957352876663208, 0.8412677049636841, 0.8169223666191101, 0.8008863925933838] +COc1cnc(-c2cccc(C(F)(F)F)c2)nc1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1']; [0.9999918341636658, 0.9999716877937317, 0.9997234344482422, 0.9988194108009338, 0.9982011318206787, 0.9979158043861389, 0.9801536202430725, 0.9636701345443726] +COc1cnc(-c2ccccc2C(=O)[O-])nc1; [None]; [None]; [0] +COc1cnc(CCC(C)(C)OC)nc1; [None]; [None]; [0] +COc1cnc(-c2ccccc2OC(F)(F)F)nc1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I']; [0.9999457597732544, 0.9997556209564209, 0.9997107982635498, 0.9981529712677002, 0.9973393678665161, 0.9182486534118652] +COc1cnc(-c2ccccc2-c2nnc(C)[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccccc2C(N)=O)nc1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I']; [0.9991780519485474, 0.9988739490509033, 0.988018274307251, 0.9865940809249878, 0.7678921818733215] +COc1cnc(-c2cnn(Cc3ccccc3)c2)nc1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1']; [0.9999109506607056, 0.9997542500495911, 0.9980697631835938, 0.9905868768692017, 0.8296376466751099] +COc1cnc(-c2ncc(OC)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(NC(=O)c3ccccc3)c2)nc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999816417694092, 0.999336838722229, 0.9973185062408447] +COc1cnc(-c2cnn(CCO)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(Cl)ccc2Cl)nc1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1']; [0.9996554851531982, 0.9981729984283447, 0.9888491630554199, 0.9783439040184021, 0.9610238075256348, 0.9473226070404053, 0.9060957431793213] +COc1cnc(-c2ccc3ncn(C)c(=O)c3c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cnc(-c3ccccc3)[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C)cc2Br)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; [0.9850835800170898, 0.9357277154922485] +COc1cnc(OCC(=O)C(C)C)nc1; [None]; [None]; [0] +COc1cnc(-n2ncc3cccc(F)c3c2=O)nc1; [None]; [None]; [0] +COc1cnc(-c2sc(C)nc2C)nc1; [None]; [None]; [0] +COc1cnc(-c2csc(C(C)(C)C)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(Cl)cccc2Cl)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br']; [0.9903287887573242, 0.9399158954620361, 0.9267035722732544] +CNc1nc(C)c(-c2ncc(OC)cn2)s1; [None]; [None]; [0] +COc1cnc(-c2c(C)nc3ccccn23)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(Br)c2)nc1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1cncnc1', 'COc1cnc(Cl)nc1']; [0.999442994594574, 0.9993536472320557, 0.9953364133834839, 0.9919993877410889, 0.9403103590011597, 0.9186431765556335] +COc1cnc(-c2cnc3ccccn23)nc1; [None]; [None]; [0] +COc1cnc(-c2sc(N)nc2C)nc1; [None]; [None]; [0] +COc1cnc(-c2cnc3cccnn23)nc1; [None]; [None]; [0] +COc1cnc(NCc2cccnc2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'BrCc1cccnc1']; ['NCc1cccnc1', 'NCc1cccnc1', 'OCc1cccnc1', 'O=Cc1cccnc1', 'COc1cnc(N)nc1']; [0.9986988306045532, 0.9977070093154907, 0.9702169895172119, 0.9361279010772705, 0.8894113302230835] +COc1cnc(-c2cc(C)ccc2Cl)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1']; [0.9984928965568542, 0.9918813705444336, 0.9444727897644043, 0.8261319398880005] +COc1cnc(-c2cccc(Cn3cncn3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cnn3ncccc23)nc1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999246597290039, 0.9992691278457642] +COc1cnc(NC(=O)c2cccs2)nc1; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9990686178207397, 0.9934217929840088] +COc1cnc(Nc2cccnc2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'Brc1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'Ic1cccnc1', 'COc1cnc(N)nc1']; [0.9990780353546143, 0.9955981969833374, 0.9925767183303833, 0.9421766996383667] +COc1cnc(-n2cnc3ccccc32)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9999592304229736, 0.9998624324798584] +COc1cnc(NCCc2c[nH]cn2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9988263249397278, 0.9962648153305054, 0.9954828023910522, 0.9405454993247986] +COc1cnc(-c2ccc3ccccc3c2)nc1; ['COc1cnc(Br)nc1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'COc1cnc(Cl)nc1', 'Brc1ccc2ccccc2c1', 'COc1cncnc1', 'Brc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc2ccccc2c1', 'COc1cnc(Cl)nc1', 'Ic1ccc2ccccc2c1', 'COc1cncnc1']; [0.9999828338623047, 0.9999663829803467, 0.9999284148216248, 0.9997855424880981, 0.9992231130599976, 0.9035471677780151, 0.9017497301101685] +COc1cnc(-c2c[nH]nc2C(F)(F)F)nc1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'COc1cncnc1', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I']; [0.9997649192810059, 0.9539327621459961, 0.8159332275390625] +COc1cnc(-c2sc(=O)n(C)c2C)nc1; [None]; [None]; [0] +COc1cnc(NCCc2ccccc2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'ClCCc1ccccc1', 'O=CCc1ccccc1', 'OCCc1ccccc1']; [0.999498724937439, 0.9988850355148315, 0.9766463041305542, 0.9457308650016785, 0.9029151797294617] +COc1cnc(-c2ccnc(N)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2cncc3ccccc23)nc1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'Brc1cncc2ccccc12', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'F[B-](F)(F)c1cncc2ccccc12', 'COc1cncnc1', 'Ic1cncc2ccccc12']; [0.9999450445175171, 0.9999393820762634, 0.9998066425323486, 0.9997861385345459, 0.9993876218795776, 0.9937084913253784, 0.9925293922424316, 0.9751535058021545] +COc1cnc(-c2cccc(F)c2C(N)=O)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(-c3cnn(C)c3)cc2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999973773956299, 0.9999966621398926] +COc1cnc(NCc2ccc(Cl)cc2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Clc1ccc(CBr)cc1', 'O=Cc1ccc(Cl)cc1']; [0.9952973127365112, 0.9863979816436768, 0.9833959341049194, 0.9712390899658203, 0.8488886952400208] +COc1cnc(-c2ccc3c(N)[nH]nc3c2)nc1; [None]; [None]; [0] +CCCn1cnc(-c2ncc(OC)cn2)n1; [None]; [None]; [0] +COc1cnc(-c2cccc(CC(=O)[O-])c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(O)c2)nc1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cncnc1', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1']; [0.9997502565383911, 0.9992886781692505, 0.9991562962532043, 0.9397826790809631, 0.7729032039642334] +COc1cnc(-c2ccc(-c3cn[nH]c3)cc2)nc1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999756217002869, 0.9999722242355347, 0.9985229969024658, 0.997995138168335] +COc1cnc(-c2ccc3c(cnn3C)c2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999980926513672, 0.9999696612358093, 0.99996417760849, 0.9999567866325378, 0.8768543004989624, 0.7551072239875793] +COc1cnc(-c2cccc(CO)c2)nc1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1']; [0.9999156594276428, 0.9998872876167297, 0.9980822801589966, 0.9972239136695862, 0.9080531597137451] +COc1cnc(NCc2ccccc2F)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'Fc1ccccc1CBr', 'O=Cc1ccccc1F', 'OCc1ccccc1F']; [0.9997812509536743, 0.9993846416473389, 0.9969387054443359, 0.9865738153457642, 0.955920398235321] +COc1cnc(Nc2ccncc2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'Brc1cnc(Nc2ccncc2)nc1', 'COc1cnc(N)nc1', 'Brc1ccncc1', 'COc1cnc(N)nc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'CO', 'Ic1ccncc1', 'COc1cnc(N)nc1', 'Fc1ccncc1']; [0.9998489618301392, 0.9994345307350159, 0.9912880063056946, 0.989733874797821, 0.9881536960601807, 0.9772312045097351, 0.9612380266189575] +COc1cnc(-c2ccc3c(c2)CS(=O)(=O)N3C)nc1; [None]; [None]; [0] +COc1cnc(-c2csc3ncncc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(C(C)C)nn2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)[O-])c(OC)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2c[nH]c(SC)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2cnoc2C(C)C)nc1; [None]; [None]; [0] +COc1cnc(CCc2c[nH]nn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cncnc2N)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(CCC#N)c2)nc1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncc(OC)cn2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999567866325378, 0.9999483227729797] +CCNc1nc2ccc(-c3ncc(OC)cn3)cc2s1; [None]; [None]; [0] +COc1cnc(-c2cc3ccccc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(Oc2ccccn2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9914728403091431, 0.8847043514251709] +COc1cnc(-c2ccc(F)cc2C(F)(F)F)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; [0.9998708963394165, 0.9994131326675415, 0.9992215633392334, 0.7941479682922363] +COc1cnc(NC(=O)c2c(Cl)cccc2Cl)nc1; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1', 'CCOC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'COc1cnc(N)nc1']; [0.999218761920929, 0.9968104362487793, 0.9947251081466675, 0.9159978628158569] +COc1cnc(-c2cccc(NC(C)=O)c2)nc1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9999375343322754, 0.9999231100082397, 0.9978522062301636, 0.9969528317451477, 0.8668691515922546] +COc1cnc(N2CCC(S(C)(=O)=O)CC2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; [0.9992743730545044, 0.9966541528701782] +COc1cnc(-c2csc(N)n2)nc1; [None]; [None]; [0] +COc1cnc(OCC(C)(C)S(C)(=O)=O)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(C)c3ccccc23)nc1; ['COc1cnc(Br)nc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.999390721321106] +CCCn1cc(-c2ncc(OC)cn2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.999830961227417, 0.9997221231460571] +COc1cnc(-c2ccc(OC)c(Cl)c2)nc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999971389770508, 0.9999868869781494, 0.9999749660491943, 0.9997850656509399, 0.9990526437759399, 0.9811609983444214, 0.9526647329330444] +COc1cnc(-c2cnn3ccccc23)nc1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C']; ['COc1cnc(Br)nc1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'COc1cnc(Cl)nc1']; [0.9999735355377197, 0.9999427795410156, 0.9998360872268677, 0.9997508525848389] +COc1cnc(-c2cc[nH]c(=O)c2)nc1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['COc1cnc(Br)nc1']; [0.9976690411567688] +COc1cnc(CCCC(N)=O)nc1; [None]; [None]; [0] +COc1cnc(CCNC(=O)CC(C)(C)O)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc([S@](C)=O)cc2)nc1; [None]; [None]; [0] +CCN(CC)c1ncc(OC)cn1; ['CCNCC', 'CCNCC', 'CCN(CC)c1ncc(Br)cn1', 'CCN(CC)c1ncc(Br)cn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'C[O-]', 'CO']; [0.9862195253372192, 0.9855548739433289, 0.9128057956695557, 0.8782098293304443] +COc1cnc(O[C@H](C)c2c(Cl)cncc2Cl)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc3c2C(=O)CC3)nc1; [None]; [None]; [0] +COc1cnc(CCc2cc(OC)cc(OC)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)nc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncc(OC)cn1; [None]; [None]; [0] +COc1cnc(Nc2cnccc2OC)nc1; ['COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1I', 'COc1ccncc1Br']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; [0.9998803734779358, 0.9998612403869629, 0.9998282790184021, 0.9985415935516357, 0.9985029101371765] +COc1cnc(-c2ccc(C(C)(C)N)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cncc(OC(C)C)c2)nc1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999406337738037, 0.999936580657959, 0.9998360872268677, 0.999392569065094] +COc1cnc(Nc2cnccc2-c2ccccc2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'COc1cnc(N)nc1']; [0.9993666410446167, 0.9992543458938599, 0.9946919679641724] +COc1cnc(Nc2cnc3ccccc3c2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; [0.9997713565826416, 0.9997189044952393, 0.9617244005203247, 0.9407349824905396] +COc1cnc(-c2ccc(C(C)(C)C)cc2)nc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999809265136719, 0.9999520778656006, 0.9995044469833374, 0.9973316192626953, 0.9968216419219971, 0.9495649337768555, 0.8270552158355713] +CNC(=O)c1c(F)cccc1-c1ncc(OC)cn1; [None]; [None]; [0] +COc1cnc(-c2cc3c(=O)[nH]ccc3o2)nc1; [None]; [None]; [0] +COc1cnc(-c2c[nH]c3cnccc23)nc1; ['Brc1c[nH]c2cnccc12', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9842028617858887, 0.9731012582778931, 0.85671067237854] +COc1cnc(-c2cnc3[nH]ccc3c2)nc1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999714493751526, 0.999912440776825, 0.9997590780258179, 0.9995905756950378] +COc1cnc(-c2cc3c(=O)[nH]cc(Br)c3s2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(F)cccc2OC)nc1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999592304229736, 0.99986332654953, 0.9993326663970947, 0.9985551238059998, 0.9984346032142639, 0.9155164957046509, 0.8508232831954956] +CNS(=O)(=O)c1ccc(-c2ncc(OC)cn2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; [0.9997447729110718, 0.9994704723358154, 0.9973562359809875, 0.994017481803894] +COc1cnc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)nc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999790191650391, 0.9999629259109497, 0.9992479085922241, 0.9983790516853333] +COc1cnc(-c2ccc(N3CCOCC3)cc2)nc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccc(N2CCOCC2)cc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'COc1cnc(Cl)nc1']; [0.9999964237213135, 0.9999479651451111, 0.999718427658081, 0.9981822967529297] +COc1cnc(C2(C)CCN(S(C)(=O)=O)CC2)nc1; [None]; [None]; [0] +COc1cnc(N[C@@H](C)C(=O)NCC(F)(F)F)nc1; [None]; [None]; [0] +COc1cnc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(S(C)(=O)=O)cc2)nc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; [0.9999975562095642, 0.9999911785125732, 0.9997340440750122, 0.9994094967842102, 0.9986355304718018, 0.9788676500320435] +COc1cnc(-n2ccc(CO)n2)nc1; ['COc1cnc(Cl)nc1']; ['OCc1cc[nH]n1']; [0.987525463104248] +COc1cnc(N[C@H](C)C(C)(C)O)nc1; ['COc1cnc(Cl)nc1']; ['C[C@@H](N)C(C)(C)O']; [0.8368674516677856] +COc1cnc(-n2ncc3c(O)cccc32)nc1; ['COc1cnc(Cl)nc1']; ['Oc1cccc2[nH]ncc12']; [0.9936004877090454] +COc1cnc(N[C@@H](C)C(C)(C)O)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(C)nn2-c2cccc(Cl)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(OC)cc2OC)nc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.999713659286499, 0.9992083311080933, 0.9989144802093506, 0.9967852830886841, 0.9826762676239014, 0.7839386463165283] +COc1cnc(-c2ccc(-n3cncn3)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(F)cccc2Cl)nc1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br']; [0.9999851584434509, 0.9998713731765747, 0.9998528957366943, 0.997962474822998, 0.9977054595947266] +COc1cnc(-c2ccc(C(=O)c3ccccc3)cc2)nc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9998570680618286, 0.9995388984680176, 0.9980357885360718, 0.9902540445327759, 0.980919361114502] +COc1cnc(-n2ncc3ccccc32)nc1; [None]; [None]; [0] +COc1cnc(-n2cnc(CCO)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2nncn2C2CC2)nc1; [None]; [None]; [0] +COc1cnc(-c2nncn2C(C)C)nc1; [None]; [None]; [0] +COc1cnc(-c2[nH]c(SC)nc2C)nc1; [None]; [None]; [0] +COc1cnc(-c2nc3ccc(O)cc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccn(CC[NH3+])n2)nc1; [None]; [None]; [0] +COc1cnc(CS(=O)(=O)NCc2ccccn2)nc1; [None]; [None]; [0] +COc1cnc([C@@H]2CC[C@@H](NC(C)=O)CC2)nc1; [None]; [None]; [0] +COc1cnc(Cc2nnc3ccc(-c4ccccc4)nn23)nc1; [None]; [None]; [0] +COc1cnc(CCC(=O)NCc2ccccn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(Cc3ccccc3)nn2)nc1; [None]; [None]; [0] +COc1cnc(-c2nnc(N)s2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc(OC)cn2)s1; [None]; [None]; [0] +COc1cnc(-c2cccc(C(C)(C)O)n2)nc1; [None]; [None]; [0] +CCc1cc(-c2ncc(OC)cn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncc(OC)cn2)nc(N)n1; [None]; [None]; [0] +COc1cnc(-c2cc(C(N)=O)cn2C)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc3ccsc23)nc1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'COc1cnc(Br)nc1', 'Brc1cccc2ccsc12', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1cccc2ccsc12', 'COc1cnc(Cl)nc1', 'OB(O)c1cccc2ccsc12']; [0.9997958540916443, 0.9997804164886475, 0.9988081455230713, 0.9984191656112671] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncc(OC)cn3)c2)cc1; [None]; [None]; [0] +COc1cnc(Oc2ccc(C[NH3+])cc2F)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc3nnsc23)nc1; ['Brc1cccc2nnsc12']; ['COc1cnc(Cl)nc1']; [0.9997735619544983] +COc1cnc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncc(OC)cn2)CC1; [None]; [None]; [0] +COc1cnc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)nc1; [None]; [None]; [0] +COc1cnc(-c2cncc(N)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2c[nH]c3cccnc23)nc1; ['COc1cncnc1']; ['Ic1c[nH]c2cccnc12']; [0.8761301636695862] +COc1cnc(-c2cc(C#N)ccc2OC)nc1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999388456344604, 0.9999253749847412, 0.9998056888580322, 0.9996560215950012, 0.9995898008346558, 0.9813482761383057, 0.9779037833213806] +COc1cnc(-c2nc(N)c3ccccc3n2)nc1; [None]; [None]; [0] +COc1cnc(Oc2ccc(OC)c(F)c2F)nc1; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999091029167175, 0.9999053478240967] +COc1cnc(-c2cnc(NC(C)=O)[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ncc3ccccc3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2ncc3cc[nH]c3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(CCO)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccnc2OC)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br']; [0.9997255802154541, 0.9990460276603699, 0.9984264373779297, 0.9949800968170166, 0.9911403059959412, 0.8559856414794922] +COc1cnc(N2CCC(c3nc4ccccc4[nH]3)CC2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9994919300079346, 0.9991050958633423] +COc1cnc(-c2cc(OC)ccc2OC)nc1; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9998558163642883, 0.9997290372848511, 0.9997200965881348, 0.9991422891616821, 0.9972178936004639, 0.9583637118339539, 0.9529126286506653] +COc1cnc(-c2cccc(S(=O)(=O)N(C)C)c2)nc1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9999837875366211, 0.9999321699142456, 0.9997997283935547, 0.9992798566818237, 0.9933164119720459] +COc1cnc(N2CC=C(c3c[nH]c4ccccc34)CC2)nc1; ['CC(C)(C)OC(=O)N1CC=C(c2c[nH]c3ccccc23)CC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; [0.9999112486839294, 0.9996047019958496, 0.9987167119979858] +CCOc1ccc(-c2ncc(OC)cn2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9998993873596191, 0.9998019933700562, 0.9988234639167786, 0.9981126189231873, 0.9953055381774902] +COc1cnc(-c2ccc(N(C)C(C)=O)cc2)nc1; [None]; [None]; [0] +COc1cnc([C@H]2CC[C@@](C)(O)CC2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(S(C)(=O)=O)c2)nc1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; [0.9999960064888, 0.9999778866767883, 0.9997860193252563, 0.9990487098693848, 0.9989612102508545] +COc1cnc(-n2cnc3ccc(C)cc32)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; [0.9994686841964722, 0.9992963075637817, 0.9987226724624634] +COc1cnc(-c2cccc(NC(=O)C3CCNCC3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(OC)c(OC)c(OC)c2)nc1; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9996129274368286, 0.9995685815811157, 0.9993084669113159, 0.9984710812568665, 0.9953187704086304, 0.9794586896896362] +COc1cnc(-c2cnnc(N(C)C)c2)nc1; [None]; [None]; [0] +COc1ccc(-c2ncc(OC)cn2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Mg]Br)cc1', None, 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(B(O)O)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', None, 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9997997879981995, 0.9996652603149414, 0.9944065809249878, 0.9912132024765015, 0.9853932857513428, 0.9814386367797852, 0, 0.9586851596832275, 0.8991767764091492] +COc1cnc(-c2cc(C#N)ccc2O)nc1; ['COc1cnc(Cl)nc1']; ['N#Cc1ccc(O)c(B(O)O)c1']; [0.9987700581550598] +COc1cnc(-c2sc(C(C)(C)O)nc2C)nc1; [None]; [None]; [0] +COc1cnc(Nc2cc(C)ns2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1']; [0.9975824952125549, 0.9970777034759521] +COc1cnc(-c2ccc(C(=O)[O-])cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(NC(=O)C3CC3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(N)=O)cc2)nc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9998629093170166, 0.9998364448547363, 0.9853193759918213, 0.9793961644172668] +COc1cnc(-c2ccc(CNC(C)=O)cc2)nc1; ['CC(=O)NCc1ccc(B(O)O)cc1']; ['COc1cnc(Cl)nc1']; [0.9920029640197754] +COc1cnc(-c2cnn(Cc3cccc(C#N)c3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)Nc3ccccc3)cc2)nc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999812841415405, 0.9999475479125977, 0.9976186752319336, 0.9932613372802734] +COc1cnc(-c2ccc(OCCO)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)N3CCOCC3)cc2)nc1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [0.9999939203262329, 0.9999868869781494, 0.9998284578323364, 0.9995668530464172] +COc1cnc(-c2nccc3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(F)(F)F)cc2)nc1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'CO', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'Nc1cnc(-c2ccc(C(F)(F)F)cc2)nc1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9999899864196777, 0.999967098236084, 0.9996654987335205, 0.9990520477294922, 0.9985243678092957, 0.9919024705886841, 0.9279273152351379, 0.8837767839431763, 0.8267701864242554] +COc1cnc(-c2ccc(OC[C@H](C)O)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(OC[C@@H](C)O)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(C3CCNCC3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(S(=O)(=O)N(C)C)cc2)nc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9999608993530273, 0.999543309211731, 0.9988660216331482, 0.8673345446586609] +COc1cnc(-c2ccc(N(C)C)cc2)nc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc([B-](F)(F)F)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.999904990196228, 0.9998084902763367, 0.9983956813812256, 0.9978145360946655, 0.994511067867279, 0.9887871742248535, 0.9522680044174194, 0.8751299381256104] +CCNS(=O)(=O)c1ccc(-c2ncc(OC)cn2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(Cl)nc1']; [0.9979974031448364] +COc1cnc(-c2ccc3c(c2)CS(=O)(=O)C3)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)N3CCOCC3)cn2)nc1; [None]; [None]; [0] +COc1cnc(C2CCN(S(C)(=O)=O)CC2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(Br)cc2)nc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'Brc1ccc(I)cc1', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'COc1cncnc1', 'OB(O)c1ccc(Br)cc1']; [0.9998185038566589, 0.9996247291564941, 0.9576142430305481, 0.91929692029953, 0.8159210085868835, 0.7550501823425293] +COc1cnc([C@H]2CCN(C(=O)c3ccccc3)C2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(N(C)C)c(Cl)c2)nc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9999680519104004, 0.9965448379516602] +CCN(CC)C(=O)c1ccc(-c2ncc(OC)cn2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9999719858169556, 0.9999561309814453, 0.99239581823349, 0.9887701869010925, 0.9027763605117798] +COc1cnc(-c2cc(C(C)C)nc(N)n2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc(OC)cn2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9987921714782715, 0.9979619979858398] +COc1cnc(-c2cccc(N3CCCN(C(C)=O)CC3)c2)nc1; [None]; [None]; [0] +CCCOc1ccc(-c2ncc(OC)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(C(=O)[O-])c2C)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(Cl)ccc2OC)nc1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9995539784431458, 0.9993046522140503, 0.9967741966247559, 0.9955551624298096, 0.9919905662536621, 0.9173537492752075, 0.8445143699645996] +COc1cnc(-c2ccn3nccc3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccccc2-n2cccn2)nc1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccccc1-n1cccn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'COc1cncnc1']; [0.999966025352478, 0.9998739957809448, 0.9997916221618652, 0.9997209310531616, 0.9990156888961792, 0.9673429131507874] +COc1cnc(-c2c[nH]c3ccccc23)nc1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9824604988098145, 0.976869523525238, 0.9297921657562256] +COc1cnc(-c2ccc3c(c2)CCO3)nc1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccc2c(c1)CCO2', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'COc1cnc(Cl)nc1', 'Ic1ccc2c(c1)CCO2']; [0.9999887943267822, 0.999988317489624, 0.999923050403595, 0.999782919883728, 0.9997596740722656, 0.9592111706733704] +COc1cnc(-c2ccc(O)c(OC)c2)nc1; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9999624490737915, 0.9999210834503174, 0.9998587965965271, 0.9995167255401611, 0.75321364402771] +COc1cnc(-c2cccc3c2OCO3)nc1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1cccc2c1OCO2']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'COc1cncnc1']; [0.9999010562896729, 0.9991415739059448, 0.9985302686691284, 0.9984105825424194, 0.9898449182510376, 0.8843197226524353] +COc1cnc(-c2cc(Cl)c(OC)cc2OC)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)N3CCOCC3)cc2OC)nc1; [None]; [None]; [0] +COc1cnc(-c2nc3ccc(C(C)C)cc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)N(C)C)cc2)nc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; [0.9999153017997742, 0.9998487234115601, 0.9956259727478027, 0.9948532581329346] +COc1cnc(-c2scc3c2OCCO3)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(SC)cc2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(B(O)O)cc1']; [0.9998359680175781, 0.9997892379760742, 0.9961975812911987, 0.9940086603164673, 0.9826159477233887, 0.9771826267242432, 0.9394999742507935] +COc1cnc(-c2cnc3ccccc3c2)nc1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; [0.9999316930770874, 0.9997552633285522, 0.9994895458221436, 0.9985330104827881, 0.9178239107131958] +COc1cnc(NC(=O)c2cccc(OC)c2)nc1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(N)=O)c1']; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; [0.9999427199363708, 0.9992600679397583, 0.9893711805343628] +COc1cnc(-c2cc(-c3ccccc3)[nH]n2)nc1; [None]; [None]; [0] +COc1cnc(OCC2(C)COC2)nc1; ['CC1(CO)COC1']; ['COc1cnc(Cl)nc1']; [0.9574605226516724] +COc1cnc(-c2ccc(C(C)(C)C)nc2)nc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9999679327011108, 0.999762773513794, 0.996898889541626, 0.9871923923492432, 0.9857765436172485] +COc1cnc(-c2cc3ccccc3s2)nc1; ['COc1cnc(Br)nc1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'COc1cnc(Cl)nc1']; ['OB(O)c1cc2ccccc2s1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1cc2ccccc2s1']; [0.9994905591011047, 0.9994374513626099, 0.9992681741714478, 0.9981014728546143] +COc1cnc(-c2ncc(Br)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(F)cc2Cl)nc1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'COc1cnc(Br)nc1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'OB(O)c1ccc(F)cc1Cl', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1']; [0.9999545216560364, 0.9998394846916199, 0.999753475189209, 0.9978376626968384, 0.8370888233184814] +COc1cnc(-c2ccc3c(c2)CCC(=O)N3)nc1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999173879623413, 0.9987045526504517, 0.8469207286834717] +COc1cnc(-c2ccc(OC)c(OC)c2)nc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999568462371826, 0.9998300075531006, 0.9996746778488159, 0.9994048476219177, 0.9982458353042603, 0.9947564601898193, 0.9035980701446533, 0.852531909942627] +CCN1CCN(Cc2ccc(-c3ncc(OC)cn3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.999626874923706, 0.9976866245269775, 0.9829515814781189] +COc1cnc(-c2ccn(-c3cccc(Cl)c3)n2)nc1; [None]; [None]; [0] +COc1ccc(CNc2ncc(OC)cn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(C=O)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; [0.9951362609863281, 0.9931433200836182, 0.9902575016021729, 0.9844982624053955, 0.980944037437439, 0.916910707950592] +COc1cnc(-c2cc(C)nc(N)n2)nc1; [None]; [None]; [0] +COc1cnc(NC2CN(C(=O)C3CC3)C2)nc1; [None]; [None]; [0] +CCc1ccc(-c2ncc(OC)cn2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999803304672241, 0.9999768733978271, 0.9995419979095459, 0.9991119503974915, 0.9983570575714111, 0.9905217885971069, 0.807769775390625, 0.7558427453041077] +COc1cnc(-c2ccc(Cl)cc2Cl)nc1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'COc1cnc(Br)nc1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'OB(O)c1ccc(Cl)cc1Cl', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1']; [0.9998694658279419, 0.999848484992981, 0.998863697052002, 0.9965308904647827, 0.9621890783309937, 0.8164706230163574] +COc1cnc(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(C)nc2C(F)(F)F)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1']; [0.9999582171440125, 0.999792218208313, 0.9995114803314209, 0.9954148530960083, 0.9466611742973328] +COc1cnc(-c2ccc(N3CCOCC3)c(OC)c2)nc1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9999986290931702, 0.9999963045120239, 0.9999916553497314] +COc1cnc(-c2cc3ccccn3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc3ccc(OC)cc23)nc1; ['COc1ccc2cccc(Br)c2c1']; ['COc1cnc(Cl)nc1']; [0.9978507161140442] +COc1cnc(-c2ncc3cccn3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(Cl)c(OC)c2)nc1; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; [0.9999963045120239, 0.9999800324440002, 0.9999768733978271, 0.9998499155044556, 0.9992533326148987, 0.9940410852432251, 0.9890952706336975] +COc1cnc(-c2cc(OC)c(OC)cc2F)nc1; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; [0.9999725222587585, 0.999919056892395, 0.999862551689148, 0.9997564554214478, 0.9859433174133301] +COc1cnc(-c2ncc(Cl)cn2)nc1; [None]; [None]; [0] +COc1cnc(Nc2cc(C)n(C)n2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Cc1cc(N)nn1C', 'Cc1cc(Br)nn1C', 'Cc1cc(Cl)nn1C']; [0.9995851516723633, 0.9989755153656006, 0.9935556650161743] +COc1cnc(Nc2nc(C)c(C)s2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Cc1nc(N)sc1C', 'Cc1nc(Cl)sc1C', 'Cc1nc(Br)sc1C']; [0.9999240040779114, 0.9995204210281372, 0.9989761710166931] +COc1cnc(-c2ccc3c(c2)CC(C)(C)O3)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc(OC)cn2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; [0.9997972846031189, 0.9997352957725525, 0.9979867935180664, 0.9973991513252258, 0.7698800563812256] +COc1cnc(-c2ncnc3c(C)csc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(OC)c(Br)cc2OC)nc1; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1']; [0.9933247566223145, 0.9594094157218933] +COc1cnc(-c2cccc3ccc(O)cc23)nc1; [None]; [None]; [0] +COc1cnc(NC(=O)c2ccco2)nc1; ['COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; ['O=C(Cl)c1ccco1', 'NC(=O)c1ccco1']; [0.9832249283790588, 0.9255605936050415] +COc1cnc(-c2cc(N)nc3[nH]ccc23)nc1; [None]; [None]; [0] +COc1cnc(Cc2ccc(C(N)=O)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)nc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ncc(OC)cn2)CC1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc(OC)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(OC)cc(OC)c2)nc1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc([Mg]Br)c1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cnc(Cl)nc1']; [0.9983837604522705, 0.9979139566421509, 0.9974273443222046, 0.9947656393051147, 0.9751066565513611, 0.9304969310760498, 0.9258133172988892] +COc1cnc(-c2cc3cc(OC)ccc3o2)nc1; ['COc1ccc2oc(B(O)O)cc2c1']; ['COc1cnc(Br)nc1']; [0.9962285161018372] +COc1cnc(-c2ccc(CS(C)(=O)=O)cc2OC)nc1; [None]; [None]; [0] +COc1cnc(Cc2ccc(S(=O)(=O)CCO)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc3cn[nH]c3c2)nc1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1']; [0.999810516834259, 0.999776303768158, 0.9990949630737305, 0.9985325336456299, 0.779412031173706] +COc1cnc([C@@H]2CC[C@@H](OC)CC2)nc1; [None]; [None]; [0] +COc1cnc(NC(=O)c2ccc(C(C)(C)C)cc2)nc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; [0.9998750686645508, 0.9988362789154053, 0.9857707023620605, 0.9847815036773682] +CNC(=O)c1ccc(OC)c(-c2ncc(OC)cn2)c1; [None]; [None]; [0] +COc1cnc(-c2cn(C)c3ccc(OC)cc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cn(C)nc2C(C)C)nc1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9998514652252197, 0.9985927939414978] +COc1cnc(-c2ccc(C[NH+](C)C)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(NC(=O)N3CCCC3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc3ccccc3o2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(-c3cccnc3)ccn2)nc1; [None]; [None]; [0] +COc1cnc(NC(=O)c2cc(OC)ccc2F)nc1; ['COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)c(C(N)=O)c1']; ['COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; [0.9994844198226929, 0.9993090033531189] +COc1cnc(-c2cc(Br)cn2C)nc1; [None]; [None]; [0] +COc1cnc(-c2ncc3sccc3n2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(OC(F)(F)F)cc2)nc1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1', 'COc1cncnc1']; ['COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; [0.9999992251396179, 0.9999991655349731, 0.9999806880950928, 0.9999680519104004, 0.9998980164527893, 0.9970438480377197, 0.9950684905052185, 0.9576878547668457] +COc1cnc(-c2nc3ccc(OC)cc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(C)c(OCCO)c(C)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(N(C)C)nc2)nc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9996762275695801, 0.9995321035385132, 0.9949980974197388, 0.9940082430839539] +COc1cnc(-c2cnn(C3CCN(C(C)=O)CC3)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc3c(C)n[nH]c3c2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1', 'COc1cncnc1', 'COc1cncnc1']; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; [0.9999836683273315, 0.9999802112579346, 0.99980628490448, 0.9323447346687317, 0.8667846322059631] +COc1cnc(-c2ncn3c2CCCC3)nc1; [None]; [None]; [0] +COc1cnc(NC(=O)c2cccc(OC(F)(F)F)c2)nc1; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; [0.999991238117218, 0.9998198747634888, 0.9965659379959106] +CCc1cccc(-c2ncc(OC)cn2)n1; [None]; [None]; [0] +COc1cnc(-c2ccc(CCO)cc2)nc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'COc1cnc(Cl)nc1']; ['COc1cnc(Cl)nc1', 'OCCc1ccc(B(O)O)cc1']; [0.9997566342353821, 0.9928064346313477] +COc1cnc(-c2cccc(N3CCCC3=O)c2)nc1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['COc1cnc(Cl)nc1']; [0.9998427033424377] +COc1cnc(-c2ccc3c(c2)c(Cl)nn3C)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(S(C)(=O)=O)cc2OC)nc1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cnc(Cl)nc1']; [0.9937411546707153] +CNC(=O)c1ccc(-c2ncc(OC)cn2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.999636173248291, 0.9977482557296753] +COc1cnc(-c2ccc(-c3cnc(C)n3C)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(N3CCNCC3)cc2OC)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(-c3cnn(C)c3)cc2OC)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(N3CCOCC3)cc2C)nc1; [None]; [None]; [0] +COc1cnc(Nc2ccc(F)cn2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Br)nc1', 'COc1cnc(N)nc1']; ['Nc1ccc(F)cn1', 'Fc1ccc(Br)nc1', 'Nc1ccc(F)cn1', 'Fc1ccc(Cl)nc1']; [0.9985190629959106, 0.9982249140739441, 0.9977065324783325, 0.995118260383606] +CCNC(=O)c1ccc(-c2ncc(OC)cn2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9973756074905396, 0.9907188415527344] +COc1cnc(Nc2cc(C)c(F)cn2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F']; [0.9985805749893188, 0.9980648159980774, 0.9977641105651855, 0.9510475397109985] +COc1cnc(-c2ccc(C(=O)N(C)C)cc2Cl)nc1; [None]; [None]; [0] +COc1cnc(Nc2ccccn2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1', 'Brc1ccccn1', 'COc1cnc(N)nc1']; ['Nc1ccccn1', 'Nc1ccccn1', 'COc1cnc(N)nc1', 'Clc1ccccn1']; [0.9989659786224365, 0.9977457523345947, 0.9945957064628601, 0.9935175180435181] +CCNC(=O)Cc1ccc(-c2ncc(OC)cn2)cc1; [None]; [None]; [0] +Nc1nnc(-c2cccc(O)c2)s1; ['N#Cc1cccc(O)c1', 'NNC(N)=S', None]; ['NNC(N)=S', 'O=C(O)c1cccc(O)c1', None]; [0.995713472366333, 0.9902815818786621, 0] +COc1cnc(-c2cc(S(C)(=O)=O)ccc2Cl)nc1; ['COc1cncnc1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; [0.7787415385246277] +Nc1nnc(-c2cccc3ncccc23)s1; ['Nc1nnc(Br)s1', 'N#Cc1cccc2ncccc12', 'NNC(N)=S']; ['OB(O)c1cccc2ncccc12', 'NNC(N)=S', 'O=C(O)c1cccc2ncccc12']; [0.9999959468841553, 0.999985933303833, 0.9974315166473389] +Nc1nnc(-c2c(Cl)ccc3c2OCO3)s1; ['NNC(N)=S']; ['O=C(O)c1c(Cl)ccc2c1OCO2']; [0.994834303855896] +COc1cnc(-c2cc(C(C)(C)O)n(C)n2)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nnc(N)s2)cc1; ['CNS(=O)(=O)c1ccc(C#N)cc1', 'CNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['NNC(N)=S', 'NNC(N)=S', 'Nc1nnc(Br)s1']; [0.9998779296875, 0.9992340803146362, 0.9990801811218262] +Nc1nnc(-c2c(Cl)cccc2Cl)s1; ['NNC(N)=S']; ['O=C(O)c1c(Cl)cccc1Cl']; [0.9998549222946167] +Nc1nnc(-c2ccc(Cl)c(O)c2)s1; ['N#Cc1ccc(Cl)c(O)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc(Cl)c(O)c1']; [0.9999773502349854, 0.9999269247055054] +Nc1nnc(Oc2ccc(F)cc2)s1; ['Nc1nnc(Br)s1']; ['Oc1ccc(F)cc1']; [0.9954981803894043] +Nc1nnc(-c2ccc(O)cc2Cl)s1; ['NNC(N)=S', 'N#Cc1ccc(O)cc1Cl']; ['O=C(O)c1ccc(O)cc1Cl', 'NNC(N)=S']; [0.9998304843902588, 0.9978655576705933] +NC(=O)c1ccc(-c2nnc(N)s2)cc1; ['N#Cc1ccc(C(N)=O)cc1', 'NC(=O)c1ccc(C(=O)O)cc1', None]; ['NNC(N)=S', 'NNC(N)=S', None]; [0.9999972581863403, 0.9999735355377197, 0] +COc1cnc(-c2ccc(C(=O)N(C)C)cn2)nc1; [None]; [None]; [0] +Nc1nnc(-c2ccc(O)cc2F)s1; ['N#Cc1ccc(O)cc1F', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc(O)cc1F']; [0.9999845623970032, 0.9998959302902222] +CNC(=O)c1ccc(C)c(-c2ncc(OC)cn2)c1; [None]; [None]; [0] +COc1cnc(-c2cc(C(=O)NCCO)ccc2C)nc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nnc(N)s2)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1nnc(N)s1; ['COc1ccc(F)cc1C(=O)O', 'COc1ccc(F)cc1C#N']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999388456344604, 0.9999074339866638] +COc1cc(C(N)=O)ccc1-c1nnc(N)s1; [None]; [None]; [0] +COc1cc(F)ccc1-c1nnc(N)s1; ['COc1cc(F)ccc1C#N', 'COc1cc(F)ccc1C(=O)O']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999027252197266, 0.9996845722198486] +Nc1nnc(-c2cn[nH]c2Cl)s1; ['NNC(N)=S']; ['O=C(O)c1cn[nH]c1Cl']; [0.954146683216095] +COc1cc(-c2nnc(N)s2)ccc1O; ['COc1cc(C#N)ccc1O', 'COc1cc(C(=O)O)ccc1O']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999046325683594, 0.9990911483764648] +Nc1nnc(-c2ccc(-c3ccc(O)cc3O)cc2)s1; ['CC1(C)OB(c2ccc(-c3nnc(N)s3)cc2)OC1(C)C', 'Nc1nnc(-c2ccc(B(O)O)cc2)s1']; ['Oc1ccc(Br)c(O)c1', 'Oc1ccc(Br)c(O)c1']; [0.9999987483024597, 0.9997152090072632] +Nc1nnc(-c2cccc(Br)c2)s1; ['NNC(N)=S', 'N#Cc1cccc(Br)c1']; ['O=C(O)c1cccc(Br)c1', 'NNC(N)=S']; [0.9998984336853027, 0.9996802806854248] +Nc1nnc(-c2n[nH]c3ccccc23)s1; [None]; [None]; [0] +COc1cc(CCc2nnc(N)s2)ccc1O; ['COc1cc(CCC(=O)O)ccc1O']; ['NNC(N)=S']; [0.9993298053741455] +Nc1nnc(-c2ccc3ccccc3c2)s1; ['N#Cc1ccc2ccccc2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2ccccc2c1']; [0.9999899864196777, 0.9999329447746277] +Cn1cc(-c2nnc(N)s2)c2ccccc21; ['Cn1cc(C(=O)O)c2ccccc21', 'Cn1cc(C#N)c2ccccc21']; ['NNC(N)=S', 'NNC(N)=S']; [0.999937891960144, 0.9998793005943298] +Nc1nnc(-c2ccc(O)c(F)c2)s1; ['N#Cc1ccc(O)c(F)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc(O)c(F)c1']; [0.9999343156814575, 0.9997453689575195] +Nc1nnc(-c2ccc(C(=O)[O-])cc2)s1; [None]; [None]; [0] +Nc1nnc(-c2ccc(O)cc2O)s1; ['NNC(N)=S', 'N#Cc1ccc(O)cc1O', None]; ['O=C(O)c1ccc(O)cc1O', 'NNC(N)=S', None]; [0.9996666312217712, 0.9957171678543091, 0] +COC(=O)c1ccc(-c2nnc(N)s2)o1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2nnc(N)s2)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(C(=O)O)c1', 'COC(=O)c1ccc(Cl)c(C#N)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['Nc1nnc(Br)s1', 'NNC(N)=S', 'NNC(N)=S', 'Nc1nnc(Br)s1']; [0.9999569654464722, 0.9999454021453857, 0.999771773815155, 0.9791138172149658] +Nc1nnc(-c2cnn3ncccc23)s1; ['NNC(N)=S']; ['O=C(O)c1cnn2ncccc12']; [0.9990882873535156] +Nc1nnc(-c2c[nH]c3cnccc23)s1; ['NNC(N)=S']; ['O=C(O)c1c[nH]c2cnccc12']; [0.9664833545684814] +Nc1nnc(COc2ccccc2Cl)s1; ['N#CCOc1ccccc1Cl', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)COc1ccccc1Cl']; [0.9999813437461853, 0.9999688863754272] +Nc1nnc(-c2ccc(F)c(Cl)c2)s1; ['N#Cc1ccc(F)c(Cl)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc(F)c(Cl)c1']; [0.9999900460243225, 0.9993172287940979] +Cc1nc2c(F)cc(-c3nnc(N)s3)cc2[nH]1; [None]; [None]; [0] +Nc1nccc(-c2nnc(N)s2)n1; [None]; [None]; [0] +Nc1cc(-c2nnc(N)s2)ccn1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'NNC(N)=S', 'N#Cc1ccnc(N)c1', 'Nc1cc(B(O)O)ccn1', None]; ['Nc1nnc(Br)s1', 'Nc1cc(C(=O)O)ccn1', 'NNC(N)=S', 'Nc1nnc(Br)s1', None]; [1.0, 0.999853253364563, 0.9998341798782349, 0.9995448589324951, 0] +Nc1nnc(-c2cc(O)ccc2Cl)s1; ['N#Cc1cc(O)ccc1Cl', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1cc(O)ccc1Cl']; [0.9999593496322632, 0.999858021736145] +COc1ccc(-c2nnc(N)s2)cc1OC; ['COc1ccc(C#N)cc1OC', 'COc1ccc(C(=O)O)cc1OC']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999989867210388, 0.9999758005142212] +COc1cc(OC)cc(-c2nnc(N)s2)c1; ['COc1cc(C#N)cc(OC)c1', 'COc1cc(OC)cc(C(=O)O)c1']; ['NNC(N)=S', 'NNC(N)=S']; [0.9997379779815674, 0.9994622468948364] +Nc1nnc(-c2cnc(O)c(Cl)c2)s1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'NNC(N)=S']; ['Nc1nnc(Br)s1', 'O=C(O)c1cnc(O)c(Cl)c1']; [0.9999815225601196, 0.9943763017654419] +Cc1ccc(CO)cc1-c1nnc(N)s1; ['Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1C(=O)O']; ['Nc1nnc(Br)s1', 'NNC(N)=S']; [0.9969479441642761, 0.9817517995834351] +Cc1ccc2[nH]ncc2c1-c1nnc(N)s1; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1C(=O)O']; ['Nc1nnc(Br)s1', 'Nc1nnc(Br)s1', 'NNC(N)=S']; [0.9999942779541016, 0.9989867210388184, 0.997411847114563] +COc1cc(CCc2nnc(N)s2)cc(OC)c1; ['COc1cc(CCC(=O)O)cc(OC)c1']; ['NNC(N)=S']; [0.99979567527771] +CCOc1cccc(-c2nnc(N)s2)c1; ['CCOc1cccc(C#N)c1', 'CCOc1cccc(C(=O)O)c1']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999504089355469, 0.9968191385269165] +Cc1nc2ccc(-c3nnc(N)s3)cc2[nH]1; ['Cc1nc2ccc(C(=O)O)cc2[nH]1']; ['NNC(N)=S']; [0.9943639636039734] +CS(=O)(=O)c1ccc(-c2nnc(N)s2)cc1; ['CS(=O)(=O)c1ccc(C#N)cc1', 'CS(=O)(=O)c1ccc(C(=O)O)cc1']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999861717224121, 0.9999337196350098] +NC(=O)c1cc(-c2nnc(N)s2)c[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nnc(N)s2)cc1; ['Nc1ccc(-c2nnc(N)s2)cc1', None, 'NC(=O)Cl', 'NC(N)=O', 'NC(=O)Oc1ccccc1']; ['[N-]=C=O', None, 'Nc1ccc(-c2nnc(N)s2)cc1', 'Nc1ccc(-c2nnc(N)s2)cc1', 'Nc1ccc(-c2nnc(N)s2)cc1']; [0.9955567121505737, 0, 0.9886994957923889, 0.9548983573913574, 0.8266345262527466] +Nc1nnc(-c2cnc3[nH]ccc3c2)s1; ['Nc1nnc(Br)s1', 'NNC(N)=S']; ['OB(O)c1cnc2[nH]ccc2c1', 'O=C(O)c1cnc2[nH]ccc2c1']; [0.9999963045120239, 0.9982606172561646] +Nc1nnc(-c2ccc3c(c2)CC(=O)N3)s1; ['N#Cc1ccc2c(c1)CC(=O)N2', 'NNC(N)=S', 'Nc1nnc(Br)s1']; ['NNC(N)=S', 'O=C1Cc2cc(C(=O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1']; [0.9999806880950928, 0.9997992515563965, 0.999632716178894] +Nc1nnc(-c2cncc(O)c2)s1; ['Nc1nnc(Br)s1', 'NNC(N)=S']; ['OB(O)c1cncc(O)c1', 'O=C(O)c1cncc(O)c1']; [0.9989778399467468, 0.9978476762771606] +Nc1nnc(-c2[nH]cnc2-c2ccc(F)cc2)s1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1nnc(N)s1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1nnc(N)s1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1nnc(N)s1; ['Cc1cc(O)ccc1C(=O)O', 'Cc1cc(O)ccc1C#N']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999821186065674, 0.9999686479568481] +CNC(=O)c1cccc2cc(-c3nnc(N)s3)ccc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1nnc(N)s1; [None]; [None]; [0] +Nc1nnc(-c2nc3ccccc3s2)s1; [None]; [None]; [0] +Nc1nnc(-c2ccncc2Cl)s1; ['NNC(N)=S', 'N#Cc1ccncc1Cl']; ['O=C(O)c1ccncc1Cl', 'NNC(N)=S']; [0.9942891597747803, 0.9560710787773132] +Nc1nnc(-c2cc(Cl)c(O)c(Cl)c2)s1; ['N#Cc1cc(Cl)c(O)c(Cl)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9973185062408447, 0.9929065108299255] +CNc1nccc(-c2nnc(N)s2)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc3c(c2)CCN3)s1; ['NNC(N)=S']; ['O=C(O)c1ccc2c(c1)CCN2']; [0.9974616765975952] +Nc1nnc(-c2cc(C(F)F)n[nH]2)s1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3nnc(N)s3)ccc12; [None]; [None]; [0] +Cc1oc(-c2nnc(N)s2)cc1C(=O)[O-]; [None]; [None]; [0] +Cn1ncc(N)c1-c1nnc(N)s1; [None]; [None]; [0] +Nc1nnc(-c2ccc3[nH]c(=O)[nH]c3c2)s1; ['N#Cc1ccc2[nH]c(=O)[nH]c2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2[nH]c(=O)[nH]c2c1']; [0.9999972581863403, 0.9999804496765137] +Cc1n[nH]c(-c2nnc(N)s2)c1C; [None]; [None]; [0] +Nc1nnc(-c2ccc(Br)cc2F)s1; ['NNC(N)=S']; ['O=C(O)c1ccc(Br)cc1F']; [0.9999723434448242] +Nc1nnc(Nc2ccncc2)s1; ['Clc1ccncc1']; ['Nc1nnc(N)s1']; [0.9869903922080994] +CCc1sccc1-c1nnc(N)s1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1nnc(N)s1; [None]; [None]; [0] +Nc1nnc(-c2cc(O)cc(Br)c2)s1; ['N#Cc1cc(O)cc(Br)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1cc(O)cc(Br)c1']; [0.9996190071105957, 0.9989646673202515] +CNC(=O)c1ccc(-c2nnc(N)s2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(C#N)cc1', 'CNC(=O)c1ccc(C(=O)O)cc1', 'CN', 'CNC(=O)OC(C)(C)C']; ['Nc1nnc(Br)s1', 'Nc1nnc(Br)s1', 'NNC(N)=S', 'NNC(N)=S', 'Nc1nnc(-c2ccc(C(=O)O)cc2)s1', 'Nc1nnc(-c2ccc(C(=O)O)cc2)s1']; [1.0, 0.9999245405197144, 0.9998980760574341, 0.99959397315979, 0.9915001392364502, 0.9700895547866821] +Cc1nc2ccc(-c3nnc(N)s3)cc2o1; ['Cc1nc2ccc(C(=O)O)cc2o1']; ['NNC(N)=S']; [0.9876255989074707] +CNc1nc(-c2nnc(N)s2)ncc1F; [None]; [None]; [0] +Nc1nnc(-c2[nH]nc3ccc(F)cc23)s1; [None]; [None]; [0] +Cc1cc(-c2nnc(N)s2)ccc1C(N)=O; ['Cc1cc(Br)ccc1C(N)=O']; ['Nc1nncs1']; [0.9341399669647217] +Cc1cc(-c2nnc(N)s2)cc(C)c1O; ['Cc1cc(C#N)cc(C)c1O', 'Cc1cc(C(=O)O)cc(C)c1O']; ['NNC(N)=S', 'NNC(N)=S']; [0.999959409236908, 0.9998704195022583] +Nc1nnc(-c2cc(F)c(O)c(F)c2)s1; ['N#Cc1cc(F)c(O)c(F)c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1cc(F)c(O)c(F)c1']; [0.9995046257972717, 0.9986664056777954] +Nc1nnc(-c2ccc(C(=O)NC3CC3)cc2)s1; ['N#Cc1ccc(C(=O)NC2CC2)cc1', 'Nc1nnc(Br)s1', 'NNC(N)=S', 'NC1CC1']; ['NNC(N)=S', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(O)c1ccc(C(=O)NC2CC2)cc1', 'Nc1nnc(-c2ccc(C(=O)O)cc2)s1']; [0.9999985694885254, 0.9999463558197021, 0.9999291896820068, 0.999759316444397] +Nc1nnc(CCc2c[nH]c3ccccc23)s1; ['NNC(N)=S', 'N#CCCc1c[nH]c2ccccc12']; ['O=C(O)CCc1c[nH]c2ccccc12', 'NNC(N)=S']; [0.9998984932899475, 0.9996938705444336] +Nc1nnc(-c2cc(O)n3nccc3n2)s1; [None]; [None]; [0] +CSc1cccc(-c2nnc(N)s2)c1; ['CSc1cccc(C(=O)O)c1']; ['NNC(N)=S']; [0.9999569654464722] +Nc1nnc(Oc2ccc(F)cc2F)s1; ['Nc1nnc(Br)s1']; ['Oc1ccc(F)cc1F']; [0.9969716668128967] +Cc1onc(-c2ccccc2)c1-c1nnc(N)s1; ['Cc1onc(-c2ccccc2)c1C(=O)O']; ['NNC(N)=S']; [0.9989503026008606] +Nc1nnc(OCc2cccc3ccccc23)s1; [None]; [None]; [0] +Nc1nnc(CCc2ccc(F)cc2F)s1; ['NNC(N)=S']; ['O=C(O)CCc1ccc(F)cc1F']; [0.999970018863678] +Nc1nnc(NCc2c(F)cccc2Cl)s1; ['NCc1c(F)cccc1Cl']; ['Nc1nnc(Br)s1']; [0.9999897480010986] +CN(c1nnc(N)s1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1nnc(OCc2ccc(F)cc2F)s1; [None]; [None]; [0] +COc1ccc(C=C2Oc3ccccc3C2=O)cc1OC; [None, 'COc1ccc(C=O)cc1OC', None]; [None, 'O=C1COc2ccccc21', None]; [0, 0.9997442364692688, 0] +Nc1nnc(-c2ocnc2-c2ccc(F)cc2)s1; [None]; [None]; [0] +Nc1nnc(-c2cn[nH]c2-c2ccc(Cl)cc2)s1; [None]; [None]; [0] +Nc1nnc(-c2ccc3c(=O)[nH][nH]c3c2)s1; [None]; [None]; [0] +O=C1C(=Cc2cnn(CCO)c2)Oc2ccccc21; [None]; [None]; [0] +C[NH+](C)Cc1ccc(C=C2Oc3ccccc3C2=O)cc1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=C1Oc2ccccc2C1=O; [None]; [None]; [0] +O=C1C(=Cc2cc3c([nH]2)CCCC3)Oc2ccccc21; [None]; [None]; [0] +Cc1cc(C)c(C=C2Oc3ccccc3C2=O)[nH]1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cccc(O)c2)c1; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)(C)[Si](C)(C)Oc1cccc(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'CC(C)(C)[Si](C)(C)Oc1cccc(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Br)c1', 'C=CCOc1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)cc1C(=O)O', 'Cc1ccc(O)c(Br)c1']; ['OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Cc1ccc(O)c(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Oc1cccc(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Oc1cccc(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Oc1cccc(Br)c1', 'Oc1cccc([B-](F)(F)F)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc([B-](F)(F)F)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1']; [0.9998469352722168, 0.9994952082633972, 0.9993734359741211, 0.9992755651473999, 0.9989170432090759, 0.9978177547454834, 0.9975206851959229, 0.9974961280822754, 0.9969702959060669, 0.9964226484298706, 0.9953150749206543, 0.9950706958770752, 0.9938529133796692, 0.9930105209350586, 0.9910134077072144, 0.9852522015571594, 0.9591315984725952, 0.9377053380012512, 0.9263619780540466, 0.8928803205490112, 0.8066359758377075, 0.8048684597015381] +Cc1[nH]c(C=C2Oc3ccccc3C2=O)c(C)c1C; [None]; [None]; [0] +Cc1ccc(O)c(-c2cccc3ncccc23)c1; ['Brc1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cccc2ncccc12', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Brc1cccc2ncccc12', 'Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Cc1ccc(O)c(Br)c1', 'Br[Mg]c1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Cc1ccc(O)c(B(O)O)c1', 'Brc1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12', 'Cc1ccc(O)c(B(O)O)c1', 'OB(O)c1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Cc1ccc(O)c(I)c1', 'OB(O)c1cccc2ncccc12', 'Cc1ccc(O)c(Cl)c1', 'Ic1cccc2ncccc12', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Clc1cccc2ncccc12', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'OB(O)c1cccc2ncccc12', 'OCc1cccc2ncccc12']; [0.9999951124191284, 0.999956488609314, 0.9999165534973145, 0.999740719795227, 0.9991724491119385, 0.9991216659545898, 0.9979029893875122, 0.9975444674491882, 0.9975138902664185, 0.9968119859695435, 0.9946680068969727, 0.9916839599609375, 0.9909734725952148, 0.9903509616851807, 0.9693814516067505, 0.9493149518966675, 0.8321728110313416, 0.7760715484619141, 0.7549235224723816] +Cc1ccc(O)c(-c2ccc(Cl)c(O)c2)c1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9998165965080261, 0.9997013807296753, 0.9996800422668457, 0.9992789030075073, 0.9987527132034302, 0.99379563331604, 0.9925914406776428, 0.981427013874054, 0.9728682637214661, 0.9431909918785095, 0.8327747583389282] +CNS(=O)(=O)c1ccc(-c2cc(C)ccc2O)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1']; [0.9993770718574524, 0.9977972507476807, 0.9910213351249695, 0.9810365438461304, 0.9787540435791016, 0.9526923298835754, 0.8424134254455566] +Cc1ccc(O)c(-c2c(Cl)ccc3c2OCO3)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2ccc(C(N)=O)cc2)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'Cc1ccc(O)c(Cl)c1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9996682405471802, 0.9992555379867554, 0.9947627782821655, 0.9829362630844116, 0.9817883968353271, 0.9695864915847778, 0.956716001033783, 0.9091517329216003, 0.9063999652862549, 0.8665590882301331] +Cc1ccc(O)c(-c2n[nH]c3ccccc23)c1; ['Brc1n[nH]c2ccccc12', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1n[nH]c2ccccc12', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12', 'Cc1ccc(O)c(B(O)O)c1', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12']; [0.9998207092285156, 0.999144434928894, 0.9968964457511902, 0.9958160519599915, 0.966464102268219, 0.9584563970565796] +Cc1ccc(O)c(Oc2ccc(F)cc2)c1; ['Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(Br)c1']; ['Oc1ccc(F)cc1', 'OB(O)c1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9710637927055359, 0.9660232663154602, 0.9348231554031372] +Cc1ccc(O)c(-c2ccc(C(N)=O)cc2F)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)cc1']; ['NC(=O)c1ccc(Br)c(F)c1', 'Cc1ccc(O)c(Br)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'Cc1ccc(O)c(I)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'Cc1ccc(O)c(Cl)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9999122619628906, 0.9993484020233154, 0.9981490969657898, 0.9979317784309387, 0.9977074861526489, 0.9976985454559326, 0.997698187828064, 0.9770258665084839, 0.9752975702285767, 0.9744747877120972, 0.9151033163070679, 0.8835655450820923, 0.8807224035263062] +Cc1ccc(O)c(-c2c(Cl)cccc2Cl)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; [0.9998102188110352, 0.9989606142044067, 0.9973056316375732, 0.9948924779891968, 0.9911866188049316, 0.9861701726913452, 0.9822326898574829, 0.976852536201477, 0.9652217626571655, 0.9290689826011658, 0.9163142442703247, 0.9091261029243469, 0.8766629695892334, 0.8419718742370605, 0.7534936666488647] +COc1cc(C(N)=O)ccc1-c1cc(C)ccc1O; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9995637536048889, 0.9994832277297974, 0.9993919134140015, 0.995624303817749, 0.9791029691696167, 0.9713164567947388] +Cc1ccc(O)c(-c2ccc(O)cc2Cl)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Oc1ccc(Br)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Cl)c(Cl)c1']; [0.9999575614929199, 0.99981689453125, 0.9993956089019775, 0.9992220401763916, 0.9982081651687622, 0.9976046085357666, 0.9954005479812622, 0.9886648058891296, 0.9663952589035034, 0.922009289264679, 0.9140511751174927] +Cc1ccc(O)c(-c2ccnc(N)n2)c1; ['Cc1ccc(O)c(C(=O)C=CN(C)C)c1', 'Cc1ccc2occc(=O)c2c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['N=C(N)N', 'N=C(N)N', 'Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Cl)n1']; [0.9999854564666748, 0.9999825954437256, 0.999907374382019, 0.9998200535774231, 0.9995373487472534] +Cc1ccc(O)c(-c2cc(F)c3nc(C)[nH]c3c2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2ccc(O)cc2F)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C']; ['Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Cc1ccc(O)c(Br)c1', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Br)c(F)c1', 'Cc1ccc(O)c(I)c1', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Cl)c(F)c1', 'Oc1ccc(Br)c(F)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9999253749847412, 0.9989497661590576, 0.9986460208892822, 0.997668981552124, 0.9967892169952393, 0.9951748847961426, 0.994759202003479, 0.9939765930175781, 0.9936360716819763, 0.9838887453079224, 0.9555559158325195, 0.9470232725143433, 0.8819813132286072] +COc1ccc(F)cc1-c1cc(C)ccc1O; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1N', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1', 'COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1N', 'COc1ccc(F)cc1Cl']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)cc1']; [0.9999861717224121, 0.9999781847000122, 0.9999181032180786, 0.9999092817306519, 0.9998495578765869, 0.9998253583908081, 0.9996323585510254, 0.9993264675140381, 0.9992105960845947, 0.9991054534912109, 0.9987235069274902, 0.9979614615440369, 0.996509313583374, 0.9961461424827576, 0.9956608414649963, 0.9933517575263977, 0.9932947158813477, 0.9904485940933228, 0.9875103235244751, 0.9844412207603455, 0.9829827547073364, 0.9718598127365112, 0.9414697885513306, 0.9414035081863403, 0.9337713718414307, 0.9255033731460571, 0.871556282043457, 0.8531030416488647] +COc1cc(F)ccc1-c1cc(C)ccc1O; ['COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1I', 'COc1cc(F)cc(C(=O)O)c1', 'COc1cccc(F)c1']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)cc1C(=O)O', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1']; [0.999944806098938, 0.999931812286377, 0.9999217391014099, 0.9998794794082642, 0.9998219609260559, 0.9997966289520264, 0.9996411204338074, 0.9995393753051758, 0.9987497329711914, 0.9987385869026184, 0.9984247088432312, 0.9983423352241516, 0.9974074363708496, 0.9963201880455017, 0.9951639175415039, 0.9853987097740173, 0.9843921065330505, 0.9842512607574463, 0.9823816418647766, 0.9819053411483765, 0.9782820343971252, 0.935057520866394, 0.9290841817855835, 0.9197602272033691, 0.8888512253761292, 0.8221781253814697, 0.8201621770858765] +COc1cc(-c2cc(C)ccc2O)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccccc1O']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9996515512466431, 0.9993674755096436, 0.999291718006134, 0.9992680549621582, 0.9983196258544922, 0.9964437484741211, 0.9963690042495728, 0.9961491227149963, 0.9947071075439453, 0.9910396337509155, 0.9876365065574646, 0.9871119260787964, 0.9813751578330994, 0.9807701110839844, 0.977496862411499, 0.9682208895683289, 0.9426059722900391, 0.9406943917274475, 0.926608145236969, 0.9117713570594788, 0.8951389789581299, 0.7722535133361816] +Cc1ccc(O)c(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +COc1cc(CCc2cc(C)ccc2O)ccc1O; ['C=Cc1ccc(O)c(OC)c1', 'COc1cc(CCO)ccc1O']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)cc1']; [0.8787363171577454, 0.7870265245437622] +COC(=O)c1ccc(-c2cc(C)ccc2O)o1; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(B(O)O)o1']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9999693632125854, 0.9995180368423462, 0.9985003471374512, 0.9965757727622986, 0.9862063527107239, 0.9673349261283875, 0.931422770023346] +Cc1ccc(O)c(-c2ccc(-c3ccc(O)cc3O)cc2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cccc(Br)c2)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Brc1cccc(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Br[Mg]c1cccc(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Brc1cccc(I)c1', 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(I)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Br)c1', 'Brc1cccc(Br)c1', None, 'Br[Mg]c1cccc(Br)c1']; ['Cc1ccc(O)c(I)c1', 'OB(O)c1cccc(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1cccc(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Clc1cccc(Br)c1', 'Cc1ccc(O)c(I)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'OB(O)c1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Cc1ccc(O)c(I)c1', None, 'Cc1ccc(O)c(F)c1']; [0.9996816515922546, 0.9996510744094849, 0.9995448589324951, 0.9989343881607056, 0.9987963438034058, 0.9964016675949097, 0.9945491552352905, 0.9876331090927124, 0.987116277217865, 0.9851511120796204, 0.9796586036682129, 0.9608113765716553, 0.951444149017334, 0.9303330183029175, 0.894221305847168, 0.8933842182159424, 0.893090546131134, 0.8468848466873169, 0, 0.780888557434082] +Cc1ccc(O)c(-c2ccc(O)c(F)c2)c1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'Cc1ccc(O)c(Cl)c1', 'Oc1ccc(Cl)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Cl)cc1F', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1']; [0.9999264478683472, 0.999737024307251, 0.9994708299636841, 0.99851393699646, 0.9984946250915527, 0.9980037212371826, 0.9971927404403687, 0.9957460165023804, 0.9873270988464355, 0.9868162870407104, 0.983761191368103, 0.9551342725753784, 0.9290860295295715, 0.8550666570663452, 0.7550131678581238] +Cc1ccc(O)c(-c2cnn3ncccc23)c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9997904896736145, 0.9980428218841553] +Cc1ccc(O)c(-c2cn(C)c3ccccc23)c1; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9993501305580139, 0.983563244342804] +Cc1ccc(O)c(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2ccnc(N)c2)c1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.9996606111526489, 0.9996586441993713, 0.9993975162506104, 0.9991244673728943, 0.9981063604354858, 0.9978896379470825, 0.9959790706634521, 0.995591402053833, 0.9917792081832886, 0.9888461828231812] +Cc1ccc(O)c(-c2c[nH]c3cnccc23)c1; ['Brc1c[nH]c2cnccc12', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Brc1c[nH]c2cnccc12', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Brc1c[nH]c2cnccc12']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'Cc1ccc(O)c(B(O)O)c1', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1', 'Cc1ccc(O)cc1']; [0.9999576210975647, 0.9998052716255188, 0.9994276762008667, 0.9987005591392517, 0.9985702037811279, 0.9985231757164001, 0.9893714189529419, 0.9252206087112427] +Cc1ccc(O)c(COc2ccccc2Cl)c1; ['Cc1ccc(O)c(CO)c1', 'Cc1ccc(O)c(CO)c1', 'Cc1ccc(O)c(CO)c1']; ['Fc1ccccc1Cl', 'Clc1ccccc1Br', 'Clc1ccccc1I']; [0.8817171454429626, 0.8690992593765259, 0.8345065116882324] +Cc1ccc(O)c(-c2ccc(O)cc2O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc(C)ccc2O)c1; ['COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(N)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1']; [0.9996596574783325, 0.9995203614234924, 0.9994457960128784, 0.999184250831604, 0.997961163520813, 0.9978194236755371, 0.997773289680481, 0.9948239922523499, 0.9943056106567383, 0.9861555099487305, 0.9785158634185791, 0.9763733744621277, 0.9357939958572388, 0.8992801904678345, 0.8989640474319458, 0.8747545480728149, 0.8653849363327026, 0.8193873763084412, 0.8112243413925171] +Cc1ccc(O)c(-c2cc(O)ccc2Cl)c1; ['Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Oc1ccc(Cl)c(I)c1', 'OB(O)c1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1']; [0.9902578592300415, 0.9889161586761475, 0.9775629639625549, 0.960273027420044] +Cc1ccc(O)c(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2ccc(F)c(Cl)c2)c1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'O=C(O)c1cccc(F)c1Cl', 'O=Cc1cccc(F)c1Cl']; [0.9999850392341614, 0.9999772310256958, 0.9997141361236572, 0.999683141708374, 0.9989222884178162, 0.9988174438476562, 0.9987856149673462, 0.9984991550445557, 0.9980050325393677, 0.9943440556526184, 0.9921126365661621, 0.9919028282165527, 0.9839394092559814, 0.9754682183265686, 0.9535058736801147, 0.9305700063705444, 0.9115458726882935, 0.893869161605835, 0.8878960609436035, 0.8382505178451538, 0.7945535182952881] +Cc1ccc(O)c(-c2cnc(O)c(Cl)c2)c1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1ccc(O)c(Br)c1', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl']; [0.999845027923584, 0.9956912398338318, 0.9955083727836609, 0.9851254820823669, 0.9625945091247559, 0.8372881412506104] +Cc1ccc(O)c(-c2cc(CO)ccc2C)c1; ['Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1Cl']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9999867677688599, 0.9999611973762512, 0.9999550580978394, 0.9995990991592407, 0.998406171798706, 0.9954707026481628, 0.9909809827804565, 0.9905382394790649, 0.9502643346786499, 0.8651496171951294] +Cc1ccc(O)c(-c2c[nH]c(C(N)=O)c2)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1']; [0.9977928400039673, 0.9777694344520569] +COc1ccc(-c2cc(C)ccc2O)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccccc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Br)cc1OC']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1']; [0.999700665473938, 0.9996346235275269, 0.9996124505996704, 0.9989584684371948, 0.9978704452514648, 0.996770977973938, 0.9958947896957397, 0.9946205615997314, 0.9945634007453918, 0.9894363880157471, 0.9824072122573853, 0.979705810546875, 0.9751842021942139, 0.9732290506362915, 0.9661893844604492, 0.9572329521179199, 0.9403562545776367, 0.8965576887130737, 0.8732935786247253, 0.8385219573974609, 0.8128089308738708, 0.8119604587554932, 0.7643855214118958] +COc1cc(CCc2cc(C)ccc2O)cc(OC)c1; ['COc1cc(CCO)cc(OC)c1']; ['Cc1ccc(O)cc1']; [0.8797568082809448] +Cc1ccc(O)c(-c2c(C)ccc3[nH]ncc23)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(C)ccc2O)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(OC)cc([Mg]Br)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(Cl)c1']; [0.999880313873291, 0.9998311996459961, 0.9995254278182983, 0.9989630579948425, 0.9982339143753052, 0.9979631304740906, 0.9976012706756592, 0.9958781003952026, 0.9956719875335693, 0.993518590927124, 0.9918389320373535, 0.9906309843063354, 0.9898122549057007, 0.9894607067108154, 0.9882171154022217, 0.9719820022583008, 0.9700988531112671, 0.9663302898406982, 0.9195162057876587, 0.8398380279541016, 0.8038747906684875, 0.7637388706207275, 0.7520111203193665] +Cc1ccc(O)c(-c2ccc3nc(C)[nH]c3c2)c1; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.999495267868042, 0.9992324113845825, 0.99855637550354, 0.9783639907836914, 0.9672198295593262, 0.9495611190795898] +CCOc1cccc(-c2cc(C)ccc2O)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc([Mg]Br)c1']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9999315738677979, 0.9997549057006836, 0.9997416138648987, 0.999701976776123, 0.9993827939033508, 0.9989838600158691, 0.9986038208007812, 0.9950383901596069, 0.9914819002151489, 0.9914239645004272, 0.9850172996520996, 0.9848716259002686, 0.9705449342727661, 0.8421932458877563, 0.8406165838241577] +Cc1ccc(O)c(-c2cnc3[nH]ccc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1']; [0.9999673366546631, 0.9995142221450806, 0.999496340751648, 0.9986016750335693, 0.9961307644844055, 0.9918447136878967, 0.9899349212646484, 0.9878072738647461, 0.9824755191802979, 0.9708728790283203] +Cc1ccc(O)c(-c2ccc(NC(N)=O)cc2)c1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'NC(=O)Nc1ccc(Br)cc1']; [0.9998433589935303, 0.9997603893280029, 0.9602453708648682] +Cc1ccc(O)c(-c2ccc(S(C)(=O)=O)cc2)c1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9999672770500183, 0.9999469518661499, 0.9990042448043823, 0.997727632522583, 0.9962352514266968, 0.9961817264556885, 0.9949329495429993, 0.9857536554336548, 0.9808234572410583, 0.979458212852478, 0.9578568935394287, 0.9518623352050781, 0.9219964742660522] +Cc1ccc(O)c(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1', 'Cc1ccc(O)c(C=O)c1', 'Cc1ccc(O)c(C(=O)O)c1', 'Cc1ccc(O)c(C=O)c1', 'Cc1ccc(O)c(C=O)c1', 'Brc1nc2ccccc2s1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(C=O)c1']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'Nc1ccccc1SSc1ccccc1N', 'Cc1ccc(O)c(B(O)O)c1', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999426603317261, 0.9998618960380554, 0.9998555779457092, 0.9997482299804688, 0.9991776943206787, 0.9972366094589233, 0.9846471548080444, 0.8586139678955078] +Cc1ccc(O)c(-c2cncc(O)c2)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(OS(=O)(=O)C(F)(F)F)c([Si](C)(C)C)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Oc1cncc(Br)c1', 'Cc1ccc(O)c(I)c1', 'Oc1cncc(I)c1', 'Cc1ccc(O)c(Br)c1', 'Oc1cncc(I)c1', 'Oc1cncc(Br)c1', '[O-][n+]1cccc(O)c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Br)c1', 'Oc1cccnc1']; [0.999801516532898, 0.9990599155426025, 0.9984261989593506, 0.9982880353927612, 0.996598482131958, 0.988568127155304, 0.9883750081062317, 0.9853538274765015, 0.9692388772964478, 0.9677022099494934, 0.9035131931304932, 0.7869569659233093] +Cc1ccc(O)c(-c2ccc3c(c2)CC(=O)N3)c1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1']; ['Cc1ccc(O)c(Br)c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Cc1ccc(O)c(I)c1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'Cc1ccc(O)c(Cl)c1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.9994121193885803, 0.9992741346359253, 0.9991236925125122, 0.9969959259033203, 0.9944672584533691, 0.9924315810203552, 0.990997314453125, 0.9905976057052612, 0.9801523685455322, 0.9183002710342407, 0.8972763419151306, 0.8840529918670654, 0.8547385931015015, 0.8424030542373657] +CNC(=O)c1cccc2cc(-c3cc(C)ccc3O)ccc12; [None]; [None]; [0] +CNc1nccc(-c2cc(C)ccc2O)n1; ['CNC(=N)N', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['Cc1ccc(O)c(C(=O)C=CN(C)C)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9997237920761108, 0.9993318319320679, 0.9953935742378235] +CCc1cc(O)ccc1-c1cc(C)ccc1O; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br']; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1']; [0.999849259853363, 0.9991673827171326, 0.9990848302841187, 0.9966186881065369, 0.9949005246162415, 0.9942128658294678, 0.8675823211669922] +Cc1ccc(O)c(N(C)c2ccc3c(C)n[nH]c3c2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cc(C(F)F)n[nH]2)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2[nH]nc(C)c2C)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc(C)ccc1O; [None]; [None]; [0] +CNc1nc(-c2cc(C)ccc2O)ncc1F; ['CNc1nc(Cl)ncc1F']; ['Cc1ccc(O)c(B(O)O)c1']; [0.9980154633522034] +Cc1ccc(O)c(N(C)c2cccc(Cl)c2)c1; ['CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9888017177581787, 0.9571918249130249, 0.8877121806144714] +Cc1ccc(O)c(-c2ccc(O)cc2C)c1; [None]; [None]; [0] +CCc1sccc1-c1cc(C)ccc1O; [None]; [None]; [0] +Cc1ccc(O)c(-c2ccc3c(c2)CCN3)c1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Brc1ccc2c(c1)CCN2', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Brc1ccc2c(c1)CCN2']; ['Cc1ccc(O)c(Br)c1', 'OB(O)c1ccc2c(c1)CCN2', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'Cc1ccc(O)c(B(O)O)c1']; [0.9997051954269409, 0.9942224025726318, 0.990479588508606, 0.9881542921066284, 0.9844459295272827, 0.9526098966598511] +Cc1ccc(O)c(-c2ccncc2Cl)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Clc1cnccc1Br', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Clc1cnccc1Br', 'Clc1cnccc1I', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'Clc1ccncc1Cl', 'Clc1ccncc1Cl']; [0.9996073246002197, 0.9994627833366394, 0.99742192029953, 0.9955815672874451, 0.9937674403190613, 0.9931259155273438, 0.9914474487304688, 0.9892175197601318, 0.9875363111495972, 0.910412073135376] +Cc1ccc(O)c([C@H](C)CC(N)=O)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cc(Cl)c(O)c(Cl)c2)c1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'O=Cc1ccc(Cl)c(O)c1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cccc1Cl', 'Oc1c(Cl)cccc1Cl']; [0.9998831748962402, 0.9997545480728149, 0.9991581439971924, 0.9981613159179688, 0.9947292804718018, 0.9934588074684143, 0.989559531211853, 0.9845123887062073, 0.977964460849762, 0.9686408638954163, 0.8252636194229126, 0.8079205751419067, 0.7793042659759521] +Cc1ccc(O)c(-c2c(N)cnn2C)c1; [None]; [None]; [0] +Cc1ccc(O)c(Nc2ccncc2)c1; ['Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(N)c1', 'CCOc1cc(C)ccc1O', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(F)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Brc1ccncc1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1', 'CCOc1ccncc1', 'Cc1ccc(O)c(O)c1', 'COc1cc(C)ccc1O']; ['Nc1ccncc1', 'OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Ic1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Oc1ccncc1', 'Clc1ccncc1', 'Cc1ccc(O)c(N)c1', 'Nc1ccncc1', 'Nc1ccncc1', 'Cc1ccc(O)c(N)c1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9994319677352905, 0.9992871284484863, 0.9940894246101379, 0.9908790588378906, 0.9894082546234131, 0.9797970056533813, 0.9783048629760742, 0.9744953513145447, 0.9651318788528442, 0.9589118361473083, 0.9563030004501343, 0.9465057849884033, 0.9257510900497437, 0.8955747485160828, 0.8665492534637451, 0.8221255540847778, 0.8188002109527588] +Cc1ccc(O)c(-c2ccc3[nH]c(=O)[nH]c3c2)c1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1']; ['Cc1ccc(O)c(Br)c1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Cc1ccc(O)c(I)c1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'Cc1ccc(O)c(Cl)c1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.999754786491394, 0.9993431568145752, 0.9990731477737427, 0.9987478852272034, 0.9970420598983765, 0.9968078136444092, 0.995023250579834, 0.9915299415588379, 0.9888715744018555, 0.9822902083396912, 0.9747592210769653, 0.9571107625961304, 0.9549868702888489, 0.8887193202972412, 0.810497522354126] +Cc1ccc(O)c(-c2[nH]nc3ccc(F)cc23)c1; [None]; [None]; [0] +Cc1ccc(O)c(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(C)ccc2O)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(I)cc1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; [0.9998553991317749, 0.9998529553413391, 0.997246503829956, 0.9953708648681641, 0.9934874176979065, 0.9930035471916199, 0.9830455183982849, 0.9377254247665405, 0.9073269963264465] +Cc1ccc(O)c(-c2ccc(Br)cc2F)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1']; ['Fc1cc(Br)ccc1Br', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1I', 'Cc1ccc(O)c(Cl)c1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Cl']; [0.9998235106468201, 0.9993329048156738, 0.9989525675773621, 0.9988332986831665, 0.9986128807067871, 0.9964883327484131, 0.994362473487854, 0.990226149559021, 0.9834599494934082, 0.9789693355560303, 0.9739328622817993, 0.9618384838104248, 0.9514959454536438, 0.9192858934402466, 0.9078745245933533, 0.9076187014579773, 0.8910243511199951, 0.8105704188346863] +Cc1ccc(O)c(-c2cc(C(=O)[O-])c(C)o2)c1; [None]; [None]; [0] +Cc1ccc(O)c(N(C)c2cccc3[nH]ncc23)c1; ['CNc1cccc2[nH]ncc12']; ['Cc1ccc(O)c(Br)c1']; [0.9677789211273193] +Cc1ccc(O)c(-c2cc(O)cc(Br)c2)c1; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)cc1Br', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1']; ['OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Cc1ccc(O)c(I)c1', 'Oc1cc(Br)ccc1Br', 'Oc1cc(Br)cc(I)c1', 'O=C(O)c1ccc(Br)cc1O', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'O=Cc1ccc(Br)cc1O', 'Cc1ccc(O)c(Br)c1', 'O=C(O)c1ccc(O)cc1Br', 'Oc1cc(Cl)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1']; [0.9999459981918335, 0.9995894432067871, 0.9994373321533203, 0.9989999532699585, 0.9966802000999451, 0.99518883228302, 0.9942196607589722, 0.9906235337257385, 0.9824234247207642, 0.9778107404708862, 0.976290225982666, 0.9520158767700195, 0.9507665634155273, 0.9327137470245361, 0.9290012121200562, 0.8613735437393188, 0.8344895243644714, 0.7834306955337524] +Cc1ccc(O)c(-c2ccc(C(N)=O)c(C)c2)c1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1']; [0.9995364546775818, 0.9985973834991455, 0.9982138872146606, 0.9976884722709656, 0.9966244697570801, 0.9962255954742432, 0.944367527961731] +Cc1ccc(O)c(-c2ccc3nc(C)oc3c2)c1; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Cl)cc2o1']; [0.9999637603759766, 0.9999502897262573, 0.9999500513076782, 0.9999489188194275, 0.999110758304596, 0.9975689053535461, 0.9972736835479736, 0.9940011501312256] +Cc1ccc(O)c(-c2ccc(C(=O)NC3CC3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'Cc1ccc(O)c(Cl)c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999966621398926, 0.9999897480010986, 0.9998623728752136, 0.9997022747993469, 0.9996067881584167, 0.9994823932647705, 0.9993643760681152, 0.9981242418289185, 0.9969921112060547, 0.9875491857528687, 0.9875265955924988, 0.9399585127830505, 0.9252417087554932] +Cc1ccc(O)c(-c2ccc3c(=O)[nH][nH]c3c2)c1; ['Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9992794990539551, 0.9964171648025513] +CSc1cccc(-c2cc(C)ccc2O)c1; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Br)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc([Mg]Br)c1']; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(F)c1']; [0.9998410940170288, 0.9996179342269897, 0.9990060329437256, 0.9989161491394043, 0.9986180663108826, 0.9971338510513306, 0.9922664165496826, 0.9910377264022827, 0.9787225723266602, 0.9786393642425537, 0.9736088514328003, 0.9649655818939209, 0.9470252990722656, 0.9295929670333862, 0.9221910238265991, 0.8764365911483765, 0.8648033738136292, 0.8134332299232483] +Cc1ccc(O)c(-c2ocnc2-c2ccc(F)cc2)c1; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1']; ['Fc1ccc(-c2cocn2)cc1', 'Fc1ccc(-c2cocn2)cc1']; [0.999442458152771, 0.9971897602081299] +Cc1ccc(O)c(-c2cc(C)c(O)c(C)c2)c1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1ccc(O)c(B(O)O)c1']; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1cccc(C)c1O']; [0.9979380369186401, 0.9975186586380005, 0.9896759986877441, 0.9838763475418091, 0.976553738117218, 0.97640061378479, 0.9477682709693909, 0.937911868095398, 0.8583859205245972, 0.8565208911895752, 0.7915506958961487] +Cc1ccc(O)c(-c2cc(F)c(O)c(F)c2)c1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(Br)c1']; ['Cc1ccc(O)c(Br)c1', 'Oc1c(F)cc(Br)cc1F', 'Cc1ccc(O)c(I)c1', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'O=Cc1ccc(F)c(O)c1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cccc1F']; [0.9995633363723755, 0.9989171624183655, 0.9986836910247803, 0.994757890701294, 0.9892427325248718, 0.9842208623886108, 0.9837536811828613, 0.9563392400741577, 0.9487333297729492, 0.9451011419296265, 0.9193373918533325, 0.870856523513794, 0.752089262008667] +Cc1ccc(O)c(Oc2ccc(F)cc2F)c1; ['Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(O)c1']; ['Oc1ccc(F)cc1F', 'Fc1ccc(Br)c(F)c1', 'Oc1ccc(F)cc1F', 'OB(O)c1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Fc1ccc(I)c(F)c1', 'Fc1ccc(F)c(F)c1', 'Fc1ccc(Cl)c(F)c1']; [0.9986253976821899, 0.9943376779556274, 0.9922277927398682, 0.9893143177032471, 0.9265731573104858, 0.9158825874328613, 0.8496730327606201, 0.7817449569702148] +Cc1ccc(O)c(CCc2c[nH]c3ccccc23)c1; ['Cc1ccc(O)cc1']; ['OCCc1c[nH]c2ccccc12']; [0.8416460752487183] +Cc1ccc(O)c(-c2c(-c3ccccc3)noc2C)c1; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(B(O)O)c1', 'Cc1ccc(O)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(O)c(Cl)c1', 'Cc1ccc(O)cc1']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; [0.9998618960380554, 0.9997048377990723, 0.9992601871490479, 0.9970402121543884, 0.9952690601348877, 0.8007411956787109] +Cc1ccc(O)c(NCc2c(F)cccc2Cl)c1; ['Cc1ccc(O)c(I)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(N)c1', 'Cc1ccc(O)c(Cl)c1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'Fc1cccc(Cl)c1CCl', 'OCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9991302490234375, 0.9966394305229187, 0.9934691190719604, 0.9919487237930298, 0.972183346748352, 0.9404357075691223, 0.9166170358657837] +Cc1ccc(O)c(OCc2ccc(F)cc2F)c1; ['Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(Br)c1', 'Cc1ccc(O)c(O)c1']; ['Fc1ccc(CCl)c(F)c1', 'OCc1ccc(F)cc1F', 'Fc1ccc(CBr)c(F)c1']; [0.9902735352516174, 0.9896073341369629, 0.9744257926940918] +Cc1ccc(O)c(OCc2cccc3ccccc23)c1; ['Cc1ccc(O)c(O)c1', 'Cc1ccc(O)c(Br)c1', 'BrCc1cccc2ccccc12', 'Cc1ccc(O)c(F)c1']; ['ClCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'Cc1ccc(O)c(O)c1', 'OCc1cccc2ccccc12']; [0.9761487245559692, 0.8442956209182739, 0.844196081161499, 0.8002736568450928] +Cc1ccc(O)c(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +Cc1ccc(O)c(CCc2ccc(F)cc2F)c1; ['C=Cc1ccc(F)cc1F', 'Cc1ccc(O)cc1', 'Cc1ccc(O)c(I)c1', 'Cc1ccc(O)cc1']; ['Cc1ccc(O)c(I)c1', 'OCCc1ccc(F)cc1F', 'Fc1ccc(CCBr)c(F)c1', 'Fc1ccc(CCBr)c(F)c1']; [0.9923502206802368, 0.9825181365013123, 0.9721803665161133, 0.9477090835571289] +COc1cc(-c2cccc3ncccc23)ccc1O; ['Brc1cccc2ncccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'Br[Mg]c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'COc1cc(Cl)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cccc2ncccc12', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'Clc1cccc2ncccc12', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'OB(O)c1cccc2ncccc12']; [0.9999986886978149, 0.9999948143959045, 0.9999946355819702, 0.9999898672103882, 0.9998685121536255, 0.9998537302017212, 0.9996697902679443, 0.9996398687362671, 0.9996196627616882, 0.9988099932670593, 0.997262179851532, 0.995786726474762, 0.9683094024658203, 0.8718359470367432] +COc1cc(-c2cccc(O)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC(C)(C)[Si](C)(C)Oc1cccc(B(O)O)c1', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(N)ccc1O', 'CC(C)(C)[Si](C)(C)Oc1cccc(Br)c1', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1c(O)cccc1C(=O)O', 'COc1cc(Br)ccc1O', 'C=CCOc1cccc(B(O)O)c1', 'COc1cc(Cl)ccc1O', None, 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(I)ccc1O']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(I)c1', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(I)c1', 'Oc1cccc(I)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc([B-](F)(F)F)c1', 'OB(O)c1cccc(O)c1', 'COc1cc(B(O)O)ccc1O', 'Oc1cccc([B-](F)(F)F)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'COc1cc(Br)ccc1O', 'Oc1cccc(Br)c1', None, 'OB(O)c1cccc(O)c1', 'O=C(O)c1ccccc1O']; [0.9999784231185913, 0.9999610781669617, 0.9998863935470581, 0.9998692274093628, 0.9996479749679565, 0.9995118379592896, 0.9994430541992188, 0.999061644077301, 0.9978445768356323, 0.9976004362106323, 0.9974485039710999, 0.9973757266998291, 0.9973385334014893, 0.9962316155433655, 0.9944277405738831, 0.9936884641647339, 0.9934103488922119, 0.9934055805206299, 0.9932276010513306, 0.9917597770690918, 0.9853415489196777, 0.9842938184738159, 0.9841910600662231, 0.9586142897605896, 0.9534767866134644, 0.9427217841148376, 0.9063336849212646, 0, 0.821230411529541, 0.7940046787261963] +COc1cc(-c2c(Cl)ccc3c2OCO3)ccc1O; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccccc23)ccc1O; ['Brc1n[nH]c2ccccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1n[nH]c2ccccc12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12', 'Ic1n[nH]c2ccccc12', 'COc1cc(B(O)O)ccc1O', 'c1ccc2[nH]ncc2c1', 'Clc1n[nH]c2ccccc12']; [0.9999880790710449, 0.9999722838401794, 0.999294638633728, 0.9990929365158081, 0.9990056753158569, 0.9747445583343506, 0.9742932915687561] +CNS(=O)(=O)c1ccc(-c2ccc(O)c(OC)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O']; [0.999747633934021, 0.9995617866516113, 0.9993623495101929, 0.9992285966873169, 0.9984843730926514, 0.9971901178359985, 0.9943078756332397, 0.994194507598877, 0.9788089990615845, 0.9784913063049316, 0.9784646034240723, 0.8395803570747375] +COc1cc(-c2ccc(Cl)c(O)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)cc2)ccc1O; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', None, 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', None, 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1']; [0.9999880790710449, 0.999975323677063, 0.9998815655708313, 0.9998045563697815, 0.9997976422309875, 0.9992615580558777, 0.9991695880889893, 0.9924647808074951, 0.989529013633728, 0.9886458516120911, 0, 0.9715290069580078, 0.9513227343559265, 0.8056904673576355] +COc1cc(-c2c(Cl)cccc2Cl)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)cc2F)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O']; ['NC(=O)c1ccc(Br)c(F)c1', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.99998939037323, 0.9999488592147827, 0.9999374151229858, 0.9998891353607178, 0.9995774030685425, 0.9987510442733765, 0.997624397277832, 0.989725649356842, 0.907261848449707] +COc1cc(-c2ccc(C(N)=O)cc2OC)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(C(N)=O)ccc1Br']; ['COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(I)ccc1O', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(I)ccc1O']; [0.9999368190765381, 0.9998457431793213, 0.9997111558914185, 0.9985376596450806, 0.8233954906463623] +COc1cc(Oc2ccc(F)cc2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccnc(N)n2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1']; [0.999995231628418, 0.9999762773513794, 0.9998866319656372, 0.9978328943252563] +COc1cc(-c2ccc(O)cc2Cl)ccc1O; [None]; [None]; [0] +COc1cc(-c2cc(F)c3nc(C)[nH]c3c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2cn[nH]c2Cl)ccc1O; [None]; [None]; [0] +COc1cc(-c2cc(F)ccc2OC)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1cc(I)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccccc1O', 'COc1ccccc1O', 'COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1']; [0.9999921321868896, 0.9999735355377197, 0.9999076128005981, 0.9998632669448853, 0.9996640682220459, 0.99959397315979, 0.999571681022644, 0.9988069534301758, 0.9984056353569031, 0.9976081848144531, 0.9971591830253601, 0.9965870976448059, 0.9964948892593384, 0.9961504936218262, 0.9937916994094849, 0.9872696995735168, 0.9872579574584961, 0.9727195501327515, 0.9711761474609375, 0.944879949092865, 0.9121869802474976, 0.909765899181366, 0.7983006834983826, 0.7897452116012573] +COc1cc(-c2ccc(F)cc2OC)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1c(O)cccc1C(=O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)cc(C(=O)O)c1']; ['COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1B(O)O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1ccc(C(=O)O)cc1O', 'COc1cc(I)ccc1O']; [0.9999223947525024, 0.9998663067817688, 0.9997703433036804, 0.9997235536575317, 0.9996553659439087, 0.9995956420898438, 0.9995518326759338, 0.9994404911994934, 0.9992400407791138, 0.9969640970230103, 0.9962438344955444, 0.9952282309532166, 0.9935154914855957, 0.9847071766853333, 0.9752450585365295, 0.896575391292572, 0.8832353353500366, 0.796794056892395] +COc1cc(-c2ccc(O)cc2F)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(O)c(OC)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(I)ccc1O']; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O']; [0.9999229311943054, 0.9997130632400513, 0.998907744884491, 0.9974014759063721, 0.9941781163215637, 0.99191814661026, 0.9693896770477295, 0.9559036493301392, 0.912394106388092, 0.9091883301734924, 0.7541921138763428] +COc1cc(-c2ccc(-c3ccc(O)cc3O)cc2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9995511770248413, 0.9810693264007568, 0.9638516902923584] +COC(=O)c1ccc(-c2ccc(O)c(OC)c2)o1; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(C(=O)O)ccc1O']; [0.9999955892562866, 0.9999450445175171, 0.9997222423553467, 0.9979772567749023, 0.9940794706344604, 0.9919745922088623, 0.9717060327529907, 0.9628371000289917, 0.887566089630127, 0.8852554559707642, 0.873553991317749, 0.7939188480377197] +COc1cc(-c2ccc(C(=O)[O-])cc2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O']; ['O=C([O-])c1ccc(Cl)cc1']; [0.9973464012145996] +COc1cc(-c2cccc(Br)c2)ccc1O; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(I)c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'COc1cc(I)ccc1O', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(N)ccc1O', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Br[Mg]c1cccc(Br)c1', 'COc1cc(Br)ccc1O', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Clc1cccc(Br)c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'OB(O)c1cccc(Br)c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Nc1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'OB(O)c1cccc(Br)c1', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Br)ccc1O', 'F[B-](F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1c(O)cccc1C(=O)O', 'COc1cc([B-](F)(F)F)ccc1O']; [0.9999626874923706, 0.9999419450759888, 0.999862790107727, 0.9998441934585571, 0.9995333552360535, 0.9992374777793884, 0.9991909861564636, 0.9990345239639282, 0.997815728187561, 0.9975246787071228, 0.9942741990089417, 0.9891635179519653, 0.9879968166351318, 0.9864902496337891, 0.9680628776550293, 0.9670491218566895, 0.9630452394485474, 0.9605467319488525, 0.9465118646621704, 0.884921669960022, 0.8846011161804199, 0.8413573503494263, 0.8360863327980042] +COc1cc(CCc2ccc(O)c(OC)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc3ccccc3c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(O)c(F)c2)ccc1O; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O']; ['COc1cc(Br)ccc1O', 'Oc1ccc(Br)cc1F', 'COc1cc(I)ccc1O', 'Oc1ccc(I)cc1F', 'Oc1ccc(Cl)cc1F', 'COc1cc(Cl)ccc1O', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Cl)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Cl)cc1F', 'Oc1ccc(Br)cc1F']; [0.9999357461929321, 0.9999154806137085, 0.9998739957809448, 0.9995479583740234, 0.9993459582328796, 0.9991140961647034, 0.9975591897964478, 0.9946120381355286, 0.9942041039466858, 0.989059329032898, 0.975020706653595, 0.974311888217926, 0.9727815985679626, 0.9719976186752319, 0.9372802972793579, 0.8779420852661133, 0.8535391092300415, 0.8067985773086548] +COc1cc(-c2cn(C)c3ccccc23)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(O)c(OC)c2)c1; ['COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)cc1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1ccccc1O', 'COc1cc(Cl)ccc1O']; [0.9999942183494568, 0.999991774559021, 0.9999889135360718, 0.9999804496765137, 0.9999679923057556, 0.9999596476554871, 0.99994295835495, 0.9997299313545227, 0.99969482421875, 0.9995958805084229, 0.9995484352111816, 0.9991012811660767, 0.9982167482376099, 0.9977331161499023, 0.9953548908233643, 0.9644479751586914, 0.9264766573905945, 0.8243136405944824, 0.8116494417190552, 0.7590103149414062] +COc1cc(-c2cnn3ncccc23)ccc1O; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.9999885559082031, 0.9999778270721436, 0.9999192953109741, 0.9997566938400269] +COc1cc(-c2ccc(O)cc2O)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(I)ccc1O']; ['Oc1ccc(Br)c(O)c1', 'Oc1ccc(Br)c(O)c1', 'Oc1ccc(Cl)c(O)c1', 'Oc1ccc(Br)c(O)c1', 'Oc1cccc(O)c1', 'Oc1cccc(O)c1']; [0.9996525049209595, 0.9925340414047241, 0.9770321249961853, 0.9636791944503784, 0.8639137744903564, 0.7953101396560669] +COc1cc(-c2c[nH]c3cnccc23)ccc1O; ['Brc1c[nH]c2cnccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1c[nH]c2cnccc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'COc1cc(B(O)O)ccc1O']; [0.999967098236084, 0.9998494386672974, 0.9800418019294739, 0.9620833396911621] +COc1cc(-c2ccnc(N)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1ccccc1O']; ['Nc1cc(Br)ccn1', 'COc1cc(Br)ccc1O', 'Nc1cc(Cl)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999953508377075, 0.9999866485595703, 0.9999809861183167, 0.9998846054077148, 0.9995676279067993, 0.999405026435852, 0.9991897940635681, 0.9990339279174805, 0.9990226030349731, 0.9981815814971924, 0.9861411452293396, 0.840345025062561] +COc1cc(COc2ccccc2Cl)ccc1O; [None, 'COc1cc(CO)ccc1O', 'COc1cc(CO)ccc1O', 'COc1cc(CO)ccc1O']; [None, 'Clc1ccccc1I', 'Fc1ccccc1Cl', 'Clc1ccccc1Br']; [0, 0.9424147605895996, 0.9406781196594238, 0.9393815994262695] +COc1cc(-c2c(C)ccc3[nH]ncc23)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999637603759766, 0.9999370574951172, 0.9984315037727356, 0.9983055591583252] +COc1cc(-c2[nH]cnc2-c2ccc(F)cc2)ccc1O; ['COc1cc(I)ccc1O']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.8880701065063477] +COc1cc(-c2c[nH]c(C(N)=O)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1']; [0.9999408721923828, 0.9918643236160278] +COc1cc(-c2cnc(O)c(Cl)c2)ccc1O; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1cc(Br)ccc1O', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'COc1cc(I)ccc1O', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl', 'Oc1ncccc1Cl']; [0.9999954700469971, 0.999990701675415, 0.9999899864196777, 0.9999819397926331, 0.9999266266822815, 0.9975766539573669, 0.988314151763916, 0.98185133934021, 0.8363211154937744] +COc1cc(-c2ccc(F)c(Cl)c2)ccc1O; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1ccccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccc(C(=O)O)cc1O', 'COc1c(O)cccc1C(=O)O']; ['COc1cc(Br)ccc1O', 'Fc1ccc(Br)cc1Cl', 'COc1cc(I)ccc1O', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'O=C(O)c1cccc(F)c1Cl', 'O=C(O)c1ccc(Cl)c(F)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccccc1Cl', 'Fc1ccccc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(I)cc1Cl']; [0.9999961853027344, 0.9999932050704956, 0.9999926090240479, 0.9999489188194275, 0.9999434947967529, 0.9996410608291626, 0.9991200566291809, 0.9986671209335327, 0.9977991580963135, 0.9973315000534058, 0.9951151609420776, 0.9906240701675415, 0.9854241609573364, 0.9849836826324463, 0.9815715551376343, 0.9743469953536987, 0.9563944339752197, 0.9417343139648438, 0.9206587672233582, 0.9057307839393616, 0.8815601468086243] +COc1cc(-c2cc(CO)ccc2C)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O']; ['Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O']; [0.9999944567680359, 0.9999665021896362, 0.9999665021896362, 0.9999353885650635, 0.9997348189353943, 0.9996849298477173, 0.9996216297149658, 0.9993994235992432, 0.9993124008178711, 0.9949132204055786, 0.9934992790222168, 0.9909576177597046, 0.989619255065918, 0.9415042400360107, 0.9372434616088867] +COc1cc(-c2cc(O)ccc2Cl)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C']; ['Oc1ccc(Cl)c(Br)c1', 'Oc1ccc(Cl)c(I)c1', 'COc1cc(Br)ccc1O', 'OB(O)c1cc(O)ccc1Cl', 'COc1cc(I)ccc1O', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1ccc(Cl)c(I)c1', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1ccc(Cl)c(Br)c1', 'COc1cc(Cl)ccc1O']; [0.9998477101325989, 0.9998384714126587, 0.9995881915092468, 0.9995337128639221, 0.9994538426399231, 0.9992093443870544, 0.9990354776382446, 0.9975459575653076, 0.9954422116279602, 0.9767048358917236, 0.9663096070289612, 0.965290904045105, 0.9651175737380981] +COc1cc(OC)cc(-c2ccc(O)c(OC)c2)c1; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)cc(OC)c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O']; ['COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)ccc1O', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cccc(OC)c1', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cccc(OC)c1']; [0.9999907612800598, 0.9999831914901733, 0.9999632835388184, 0.9999595880508423, 0.9999452829360962, 0.9999434947967529, 0.9999342560768127, 0.9998759031295776, 0.9998029470443726, 0.9997773170471191, 0.9997144341468811, 0.9995894432067871, 0.9993654489517212, 0.999162495136261, 0.998736560344696, 0.9958919286727905, 0.9941006302833557, 0.992102324962616, 0.9911365509033203, 0.9882745742797852, 0.9814893007278442, 0.9798066020011902, 0.9685773253440857, 0.9540242552757263, 0.7848031520843506] +COc1cc(-c2ccc(OC)c(OC)c2)ccc1O; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(Cl)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccccc1OC']; [0.9999536275863647, 0.9999536275863647, 0.9998412132263184, 0.9998412132263184, 0.9995260238647461, 0.9994406700134277, 0.9994406700134277, 0.99907386302948, 0.99907386302948, 0.9987667798995972, 0.9987667798995972, 0.9981836080551147, 0.9981836080551147, 0.9909225106239319, 0.9909225106239319, 0.9885165691375732, 0.9885165691375732, 0.9810479879379272, 0.9810479879379272, 0.9562480449676514, 0.9562480449676514, 0.9109170436859131, 0.9067661762237549, 0.9067661762237549, 0.8275452256202698, 0.811646580696106] +COc1cc(-c2cnc3[nH]ccc3c2)ccc1O; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'Ic1cnc2[nH]ccc2c1', 'COc1cc(I)ccc1O', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'Clc1cnc2[nH]ccc2c1']; [0.9999997615814209, 0.9999996423721313, 0.9999968409538269, 0.9999961853027344, 0.9997277855873108, 0.9996581077575684, 0.9990657567977905, 0.9983661770820618, 0.9983426332473755, 0.997931718826294] +COc1cc(-c2ccc3nc(C)[nH]c3c2)ccc1O; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1']; [0.9999806880950928, 0.9999569654464722, 0.9999378323554993, 0.9990968108177185, 0.9933626651763916, 0.9266496896743774] +COc1cc(-c2ccc(NC(N)=O)cc2)ccc1O; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Cl)cc1']; [0.9999866485595703, 0.9999752640724182, 0.9999450445175171, 0.9985643029212952, 0.9972233176231384] +COc1cc(CCc2ccc(O)c(OC)c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['COc1cc(I)ccc1O']; [0.877287745475769] +CNC(=O)c1cccc2cc(-c3ccc(O)c(OC)c3)ccc12; [None]; [None]; [0] +COc1cc(-c2ccc(S(C)(=O)=O)cc2)ccc1O; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'CS(=O)(=O)c1ccc(-c2ccc(O)c(F)c2)cc1', None]; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'COc1cc(Cl)ccc1O', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'C[O-]', None]; [0.9999802708625793, 0.9999279975891113, 0.9998738169670105, 0.9998167753219604, 0.999724805355072, 0.9997040033340454, 0.9996591806411743, 0.9995940923690796, 0.9991160035133362, 0.9973912239074707, 0.9953947067260742, 0.9943047761917114, 0.9942502975463867, 0.9914538860321045, 0.9878826141357422, 0.9725304841995239, 0.925251841545105, 0.9003342986106873, 0] +CCOc1cccc(-c2ccc(O)c(OC)c2)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1ccccc1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc(Br)c1']; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1ccccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(Br)ccc1O']; [0.9999845027923584, 0.9999839663505554, 0.9999431371688843, 0.9999011158943176, 0.9998725652694702, 0.9997872710227966, 0.9996011257171631, 0.9994456171989441, 0.9983026385307312, 0.9965502619743347, 0.9962319135665894, 0.9888850450515747, 0.9790562391281128, 0.9700887203216553, 0.9674934148788452, 0.9667596817016602, 0.858666181564331, 0.8579295873641968, 0.8118462562561035, 0.7939439415931702] +COc1cc(-c2cncc(O)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Cl)ccc1O']; ['Oc1cncc(I)c1', 'Oc1cncc(Br)c1', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'Oc1cncc(I)c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1']; [0.9999823570251465, 0.9999779462814331, 0.9999581575393677, 0.9999473094940186, 0.9996725916862488, 0.9963324069976807, 0.9867697954177856, 0.984050989151001, 0.9718537330627441, 0.867438793182373, 0.8161991834640503] +COc1cc(-c2ccc3c(c2)CC(=O)N3)ccc1O; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'COc1cc(Cl)ccc1O', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1']; [0.9997578859329224, 0.9993901252746582, 0.9993773698806763, 0.9989792108535767, 0.99879390001297, 0.9971717596054077, 0.9958330392837524, 0.9943004846572876, 0.9907321929931641, 0.985609769821167, 0.9221408367156982, 0.9045853614807129, 0.9034096002578735] +CNc1nccc(-c2ccc(O)c(OC)c2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.9996553659439087, 0.994477391242981] +COc1cc(-c2[nH]nc(C)c2C)ccc1O; [None]; [None]; [0] +COc1cc(N(C)c2ccc3c(C)n[nH]c3c2)ccc1O; [None]; [None]; [0] +COc1cc(N(C)c2cccc(Cl)c2)ccc1O; ['CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O']; [0.9719640016555786, 0.9502731561660767, 0.9281142950057983] +CCc1cc(O)ccc1-c1ccc(O)c(OC)c1; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Br']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; [0.999955415725708, 0.9998109340667725, 0.9997564554214478, 0.9995985627174377, 0.999234676361084, 0.9986482858657837, 0.813602864742279] +COc1cc(-c2cc(C(F)F)n[nH]2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccncc2Cl)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['Clc1cnccc1Br', 'Clc1cnccc1I', 'COc1cc(Br)ccc1O', 'Clc1ccncc1Cl', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl', 'Clc1ccncc1Cl', 'OB(O)c1ccncc1Cl']; [0.9999942779541016, 0.9999812245368958, 0.9999667406082153, 0.99994957447052, 0.9997602701187134, 0.9992518424987793, 0.9989398717880249, 0.9987363815307617] +CCc1cc(O)c(F)cc1-c1ccc(O)c(OC)c1; [None]; [None]; [0] +COc1cc([C@H](C)CC(N)=O)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2C)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'C=CCOc1ccc(Br)c(C)c1', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(I)ccc1O']; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1I', 'COc1cc(B(O)O)ccc1O', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O', 'Cc1cccc(O)c1']; [0.9998992681503296, 0.9997972249984741, 0.999778687953949, 0.9997639060020447, 0.9996439218521118, 0.9990819692611694, 0.9990140795707703, 0.9972648620605469, 0.9971010684967041, 0.9959840774536133, 0.9783813953399658, 0.8961085081100464, 0.867453932762146, 0.8631906509399414, 0.8462250232696533, 0.7888634204864502] +CNc1nc(-c2ccc(O)c(OC)c2)ncc1F; ['CNc1nc(Cl)ncc1F', 'CNc1nc(Cl)ncc1F']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.99998939037323, 0.9998483657836914] +COc1cc(-c2ccc3c(c2)CCN3)ccc1O; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1ccc2c(c1)CCN2', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1ccc2c(c1)CCN2', 'COc1cc(Br)ccc1O']; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'COc1cc(B(O)O)ccc1O', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999937415122986, 0.9999864101409912, 0.996580958366394, 0.992851197719574, 0.9875232577323914, 0.9719157814979553] +CCc1sccc1-c1ccc(O)c(OC)c1; [None]; [None]; [0] +COc1cc(Nc2ccncc2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'Brc1ccncc1', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(F)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'CCOc1ccncc1', 'COc1cc(Cl)ccc1O']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'COc1cc(N)ccc1O', 'Ic1ccncc1', 'Fc1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccncc1', 'Oc1ccncc1', 'Nc1ccncc1', 'COc1cc(N)ccc1O', 'Nc1ccncc1']; [0.9995816946029663, 0.9988042116165161, 0.9956404566764832, 0.9956278204917908, 0.9928638935089111, 0.97416752576828, 0.9732174873352051, 0.9728386402130127, 0.9713090062141418, 0.962928295135498, 0.9618594646453857, 0.945129930973053, 0.9102010130882263, 0.8982527256011963] +COc1cc(-c2cc(O)n3nccc3n2)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O']; ['Oc1ccnc2ccnn12', 'Oc1cc(O)n2nccc2n1', 'Oc1ccnc2ccnn12', 'Oc1ccnc2ccnn12']; [0.999940037727356, 0.9996885061264038, 0.9994388818740845, 0.9967423677444458] +COc1cc(-c2c(N)cnn2C)ccc1O; [None]; [None]; [0] +COc1cc(-c2cc(Cl)c(O)c(Cl)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2[nH]nc3ccc(F)cc23)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9967421293258667, 0.9960304498672485] +CNC(=O)c1ccc(-c2ccc(O)c(OC)c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CN', None]; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(-c2ccc(C(=O)O)cc2)ccc1O', None]; [0.999980092048645, 0.9999629855155945, 0.9997956156730652, 0.9997851848602295, 0.9997713565826416, 0.9997210502624512, 0.9996200799942017, 0.9995537996292114, 0.9988965392112732, 0.998254120349884, 0.9952477812767029, 0.9948809146881104, 0.9903521537780762, 0] +COc1cc(-c2ccc3[nH]c(=O)[nH]c3c2)ccc1O; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['COc1cc(Br)ccc1O', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'COc1cc(I)ccc1O', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'COc1cc(Cl)ccc1O', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999500513076782, 0.9999025464057922, 0.999839186668396, 0.9994720816612244, 0.9993025064468384, 0.9988412857055664, 0.998653769493103, 0.9986488819122314, 0.9985408782958984, 0.998358964920044, 0.9870377779006958, 0.9637271165847778, 0.9569301605224609, 0.9301016926765442, 0.7748621702194214] +COc1cc(-c2cc(C(=O)[O-])c(C)o2)ccc1O; [None]; [None]; [0] +COc1cc(N(C)c2cccc3[nH]ncc23)ccc1O; ['CNc1cccc2[nH]ncc12']; ['COc1cc(Br)ccc1O']; [0.9013075828552246] +COc1cc(-c2ccc(Br)cc2F)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O']; ['Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1I', 'COc1cc(I)ccc1O', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1Br', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Fc1cccc(Br)c1', 'Fc1cccc(Br)c1']; [0.9999851584434509, 0.9999785423278809, 0.9999772906303406, 0.9999647736549377, 0.9998736381530762, 0.9995629787445068, 0.9991569519042969, 0.998575747013092, 0.9985265731811523, 0.9981963634490967, 0.9967764616012573, 0.9957379102706909, 0.9954577684402466, 0.9856719374656677, 0.9845844507217407, 0.9658613204956055, 0.9300891160964966, 0.8835890889167786] +COc1cc(-c2ccc(C(N)=O)c(C)c2)ccc1O; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; [0.9999317526817322, 0.9998804330825806, 0.9998642206192017, 0.9998349547386169, 0.999709963798523, 0.9988007545471191, 0.9985290765762329] +COc1cc(-c2ccc(C(=O)NC3CC3)cc2)ccc1O; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(-c2ccc(C(=O)O)cc2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccccc1O']; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'COc1cc(Cl)ccc1O', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'NC1CC1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999986886978149, 0.9999953508377075, 0.9999899864196777, 0.9999809265136719, 0.9999796152114868, 0.9999785423278809, 0.9999770522117615, 0.9999752044677734, 0.9999074339866638, 0.9998701810836792, 0.9996846318244934, 0.9763767719268799, 0.8947064876556396] +COc1cc(-c2ccc3nc(C)oc3c2)ccc1O; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccccc2o1']; [0.999995768070221, 0.9999817609786987, 0.9999773502349854, 0.9999464750289917, 0.9997981786727905, 0.9994065165519714, 0.9978710412979126, 0.9971460103988647, 0.8012769818305969] +COc1cc(-c2cc(O)cc(Br)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'CC(C)(C)[Si](C)(C)Oc1cc(Br)cc(B(O)O)c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'C=CCOc1ccc(Br)cc1OC', 'COc1c(O)cccc1C(=O)O']; ['Oc1cc(Br)cc(I)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'O=C(O)c1ccc(Br)cc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'O=Cc1ccc(Br)cc1O', 'COc1cc(Br)ccc1O', 'Oc1cc(Br)cc(Br)c1', 'O=C(O)c1ccc(O)cc1Br', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'COc1cc(Cl)ccc1O', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1']; [0.999943733215332, 0.9998911619186401, 0.9997365474700928, 0.9997018575668335, 0.9995585680007935, 0.9992563724517822, 0.9992092847824097, 0.9991780519485474, 0.9942831993103027, 0.9936742782592773, 0.9933873414993286, 0.9900510311126709, 0.9884083271026611, 0.9843127131462097, 0.9842462539672852, 0.9657288789749146, 0.9409385919570923, 0.9319429397583008, 0.9100395441055298, 0.8876581192016602, 0.873916506767273] +COc1cc(-c2cc(C)c(O)c(C)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2cc(F)c(O)c(F)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc3c(=O)[nH][nH]c3c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2cccc(SC)c2)ccc1O; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(I)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1O']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([Mg]Br)c1']; [0.9999805092811584, 0.9999630451202393, 0.9999362230300903, 0.9998581409454346, 0.9997019171714783, 0.9958215355873108, 0.989204466342926, 0.9855225086212158, 0.9800208806991577, 0.9796295166015625, 0.9608227610588074, 0.9578142166137695, 0.9533687829971313, 0.9488519430160522, 0.9418166875839233, 0.8922717571258545, 0.7853682041168213] +COc1cc(CCc2c[nH]c3ccccc23)ccc1O; ['COc1cc(CCO)ccc1O']; ['c1ccc2[nH]ccc2c1']; [0.7549554109573364] +COc1cc(-c2ocnc2-c2ccc(F)cc2)ccc1O; [None]; [None]; [0] +COc1cc(NCc2c(F)cccc2Cl)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', None, 'COc1cc(N)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc([N+](=O)[O-])ccc1O']; ['Fc1cccc(Cl)c1CBr', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CCl', 'OCc1c(F)cccc1Cl', None, 'O=Cc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl']; [0.9995555877685547, 0.999463677406311, 0.9993736743927002, 0.9990971088409424, 0.9951481223106384, 0, 0.9912101626396179, 0.9175692200660706, 0.8545282483100891, 0.762920081615448] +COc1cc(OCc2cccc3ccccc23)ccc1O; [None]; [None]; [0] +COc1cc(-c2c(-c3ccccc3)noc2C)ccc1O; ['COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccccc1O']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; [0.9999337196350098, 0.9998853206634521, 0.9998226165771484, 0.9592937231063843] +COc1cc(CCc2ccc(F)cc2F)ccc1O; ['C=Cc1ccc(F)cc1F', 'C=Cc1ccc(O)c(OC)c1']; ['COc1cc(I)ccc1O', 'Fc1ccc(I)c(F)c1']; [0.988694429397583, 0.9408260583877563] +COc1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)ccc1O; [None]; [None]; [0] +COc1cc(Oc2ccc(F)cc2F)ccc1O; [None]; [None]; [0] +COc1cc(C=Cc2ccc(O)c(OC)c2)ccc1O; ['C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1']; ['COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O']; [0.9918197393417358, 0.9826062321662903, 0.9728564023971558, 0.8095415830612183] +COc1cc(OCc2ccc(F)cc2F)ccc1O; [None]; [None]; [0] +COc1cc(C=Cc2ccc(O)cc2)ccc1O; ['C=Cc1ccc(O)cc1', 'C=Cc1ccc(O)cc1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)cc1', 'C=Cc1ccc(O)cc1', None, None]; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'Oc1ccc(I)cc1', 'Oc1ccc(Br)cc1', 'Oc1ccc(Cl)cc1', 'Oc1ccccc1', 'COc1ccccc1O', 'COc1cc(Cl)ccc1O', None, None]; [0.9959191679954529, 0.9956905245780945, 0.9885919094085693, 0.9826738238334656, 0.9343832731246948, 0.9186402559280396, 0.9098037481307983, 0.9046765565872192, 0, 0] +COc1cc(C=Cc2ccc(O)cc2O)ccc1O; [None, 'C=Cc1ccc(O)c(OC)c1', 'COc1cc(C=O)ccc1O']; [None, 'Oc1ccc(Br)c(O)c1', 'O=Cc1ccc(O)cc1O']; [0, 0.9703677892684937, 0.9356957674026489] +CNC(=O)c1ccccc1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNC(=O)c1ccccc1B(O)O', 'Brc1ccc2ncccc2c1', 'CNC(=O)c1ccccc1B(O)O', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNC(=O)c1ccccc1', 'CNC(=O)c1ccccc1']; ['CNC(=O)c1ccccc1Br', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CNC(=O)c1ccccc1I', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'CNC(=O)c1ccccc1B(O)O', 'Clc1ccc2ncccc2c1', 'CNC(=O)c1ccccc1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; [0.9999997019767761, 0.9999995231628418, 0.999999463558197, 0.9999994039535522, 0.9999987483024597, 0.9999973773956299, 0.9999947547912598, 0.9999755620956421, 0.9999563694000244, 0.999369740486145, 0.8128400444984436] +COc1cc(C=C2C(=O)Nc3ccc(Cl)cc32)ccc1O; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2ncccc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Brc1ccc2cccnc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1ccc2ncccc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1cccc2ncccc12', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1', 'Brc1ccc2ncccc2c1', 'CC(C)S(=O)(=O)c1ccccc1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'OB(O)c1ccc2ncccc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'F[B-](F)(F)c1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC(C)S(=O)(=O)c1ccccc1Br', 'OB(O)c1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; [0.9999994039535522, 0.9999983310699463, 0.9999979138374329, 0.9999946355819702, 0.999991238117218, 0.9999901056289673, 0.999976396560669, 0.9999688863754272, 0.999954104423523, 0.9999262094497681, 0.9996664524078369, 0.9991457462310791, 0.9964869022369385, 0.9657013416290283, 0.9067878127098083, 0.884119987487793] +CCOc1ccccc1-c1ccc2ncccc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2ncccc2c1; ['Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'COC(C)(C)CBr']; ['CCC(C)(C)OC', 'C#CC(C)(C)OC', 'Cc1ccc2ncccc2c1']; [0.9587920904159546, 0.8804653882980347, 0.7632513046264648] +CP(C)(=O)c1ccccc1-c1ccc2ncccc2c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3ncccc3c2)c1; [None]; [None]; [0] +CCn1cc(-c2ccc3ncccc3c2)cn1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2ncccc2c1', 'CCn1cc(Br)cn1', 'CCn1cccn1', 'CCn1cc(Cl)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1ccc2ncccc2c1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1ccc2ncccc2c1', 'CCn1cc(Br)cn1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CCn1cc(B(O)O)cn1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'CCn1cccn1']; [0.9999997019767761, 0.9999995827674866, 0.9999990463256836, 0.9999969601631165, 0.9999927282333374, 0.9999853372573853, 0.9999310970306396, 0.9996958374977112, 0.9996743202209473, 0.9996245503425598, 0.999572217464447, 0.9995412230491638, 0.990799605846405] +c1cnc2ccc(-c3ccnc4ccccc34)cc2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C']; ['O=C([O-])c1ccccc1']; [0.9708993434906006] +Cn1cnc2ccc(-c3ccc4ncccc4c3)cc2c1=O; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1ccc2ncccc2c1']; [0.9999900460243225, 0.9999634623527527] +c1ccc(Cn2cc(-c3ccc4ncccc4c3)cn2)cc1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'Brc1cnn(Cc2ccccc2)c1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1ccc2ncccc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999997615814209, 0.9999994039535522, 0.9999992847442627, 0.9999991059303284, 0.999996542930603, 0.9999954700469971, 0.9999797344207764, 0.99994957447052, 0.9998533725738525, 0.9997920989990234, 0.9956799149513245] +FC(F)(F)c1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2ncccc2c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc2ncccc2c1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4ncccc4c3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc3ncccc3c2)cn1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2ncccc2c1; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1ccc2ncccc2c1', 'Oc1ccc2ncccc2c1']; [0.9874210357666016, 0.9866658449172974] +CC(C)(C)c1nc(-c2ccc3ncccc3c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ncccc3c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc2ncccc2c1; [None]; [None]; [0] +COc1cnc(-c2ccc3ncccc3c2)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccc3ncccc3c2)c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(Br)c1', 'Brc1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Br[Zn]c1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'Clc1ccc(Cl)c(I)c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)cc1', 'Brc1ccc2ncccc2c1', 'COc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1ccc(Cl)c(I)c1', 'Br[Mg]c1ccc2ncccc2c1']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc(Cl)c(I)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'F[B-](F)(F)c1ccc2ncccc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)c([Zn]Br)c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc(Cl)cc1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)cc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'c1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'Clc1ccc(Cl)c(Cl)c1', 'c1ccc2ncccc2c1', 'COc1cc(Cl)ccc1Cl']; [0.9999997615814209, 0.9999985694885254, 0.9999964833259583, 0.9999945163726807, 0.9999908804893494, 0.999990701675415, 0.9999846816062927, 0.9999713897705078, 0.9999591112136841, 0.9999518394470215, 0.9999418258666992, 0.9999182820320129, 0.9999054074287415, 0.9998738765716553, 0.9998424053192139, 0.999833345413208, 0.9997285008430481, 0.9996756315231323, 0.9996606111526489, 0.9996546506881714, 0.9992523193359375, 0.9990664124488831, 0.9985145330429077, 0.9984981417655945, 0.9978399276733398, 0.9977009296417236, 0.9972019195556641, 0.9912703037261963, 0.9821136593818665, 0.9759234189987183, 0.9527642726898193, 0.9463493824005127, 0.9435813426971436, 0.943496584892273, 0.9432237148284912, 0.9111320376396179, 0.8332576751708984, 0.8228176832199097] +c1cnc2ccc(-c3cnc4cccnn34)cc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1ccc2ncccc2c1']; ['OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'c1cnn2ccnc2c1']; [0.9999998211860657, 0.999997615814209, 0.9996311068534851] +Cc1ccc(-c2ccc3ncccc3c2)c(Br)c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(F)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(C(=O)O)c(Br)c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1ccc2ncccc2c1', 'Brc1cccc2ncccc12', 'Cc1cccc(Br)c1', 'Cc1cccc(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Brc1ccc2cccnc2c1', 'Cc1cc(Br)cc(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Clc1ccc2ncccc2c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(F)c(Br)c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Cc1ccc(Br)c(Br)c1', 'O=C(O)c1ccc2ncccc2c1']; [0.9999957084655762, 0.9999806880950928, 0.9999637603759766, 0.9999535083770752, 0.9995076656341553, 0.9994713068008423, 0.9993508458137512, 0.9991439580917358, 0.9982585906982422, 0.9977942705154419, 0.9977430105209351, 0.9975173473358154, 0.997357189655304, 0.9951817989349365, 0.9911578893661499, 0.9909240007400513, 0.9862124919891357, 0.9767882227897644, 0.9709742069244385, 0.9683895111083984, 0.9443323612213135, 0.9439197778701782, 0.9436905384063721, 0.9347200393676758, 0.9307371377944946, 0.9283221960067749, 0.8940007090568542, 0.7562788724899292, 0.7556807994842529] +Cc1nc(N)sc1-c1ccc2ncccc2c1; ['Cc1nc(N)sc1Br', 'Brc1ccc2ncccc2c1']; ['OB(O)c1ccc2ncccc2c1', 'Cc1csc(N)n1']; [0.9999950528144836, 0.9924176931381226] +c1cnc2ccc(-c3cnc4ccccn34)cc2c1; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1']; ['OB(O)c1ccc2ncccc2c1', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.9999997615814209, 0.9999995231628418, 0.9999992847442627, 0.9999978542327881, 0.9999967813491821, 0.9999964833259583, 0.9999864101409912, 0.9998779296875, 0.9998581409454346, 0.9997879266738892, 0.9966087341308594, 0.9887195825576782] +CNc1nc(C)c(-c2ccc3ncccc3c2)s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2ncccc2c1; ['Cc1cn2ccccc2n1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Cc1nc2ccccn2c1I', 'Brc1ccc2ncccc2c1', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Cc1cn2ccccc2n1']; ['OB(O)c1ccc2ncccc2c1', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'OB(O)c1ccc2ncccc2c1', 'Cc1cn2ccccc2n1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Cc1nc2ccccn2c1C(=O)O', 'Cc1nc2ccccn2c1Br', 'c1ccc2ncccc2c1']; [1.0, 0.9999995231628418, 0.9999993443489075, 0.9999989867210388, 0.9999973773956299, 0.9999967813491821, 0.9999955892562866, 0.9999569654464722, 0.9996352791786194, 0.996871829032898, 0.9234493970870972] +Cc1nc(C)c(-c2ccc3ncccc3c2)s1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(Br)s1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Cc1nc(C)c(Br)s1', 'Cc1csc(C)n1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1']; [0.9999992847442627, 0.9999988079071045, 0.9999921917915344, 0.9999915361404419, 0.9999431371688843, 0.9990559816360474, 0.9955442547798157, 0.992706298828125, 0.9001184105873108] +c1cncc(CNc2ccc3ncccc3c2)c1; ['Ic1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'BrCc1cccnc1', 'Brc1ccc2ncccc2c1', 'NCc1cccnc1', 'ClCc1cccnc1', 'Fc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'NCc1cccnc1', 'Nc1ccc2ncccc2c1']; ['NCc1cccnc1', 'NCc1cccnc1', 'Nc1ccc2ncccc2c1', 'NCc1cccnc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Nc1ccc2ncccc2c1', 'NCc1cccnc1', 'OCc1cccnc1', 'NCc1cccnc1', 'Oc1ccc2ncccc2c1', 'O=Cc1cccnc1']; [0.9995766878128052, 0.9994062185287476, 0.9991116523742676, 0.9986447691917419, 0.9983945488929749, 0.9975881576538086, 0.9940476417541504, 0.9922475814819336, 0.9863083362579346, 0.9673981666564941, 0.8719491362571716] +Clc1cccc(Cl)c1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1cccc(Cl)c1Br', 'Brc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1I', 'Clc1ccc2ncccc2c1', 'Clc1cccc(Cl)c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1cccc(Cl)c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'F[B-](F)(F)c1ccc2ncccc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'Oc1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1ccc2ncccc2c1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Ic1ccc2ncccc2c1', 'Oc1ccc2ncccc2c1', 'Clc1cccc(Cl)c1', 'Fc1c(Cl)cccc1Cl', 'F[B-](F)(F)c1ccc2ncccc2c1']; [0.9999997615814209, 0.9999997019767761, 0.9999953508377075, 0.9999947547912598, 0.999992847442627, 0.9999871253967285, 0.9999608397483826, 0.999913215637207, 0.9998959302902222, 0.999762237071991, 0.9995988607406616, 0.9995385408401489, 0.9991849064826965, 0.9989770650863647, 0.9977906346321106, 0.9977530241012573, 0.997410774230957, 0.9973430633544922, 0.9936188459396362, 0.9884107112884521, 0.9843733310699463, 0.9216262102127075, 0.917961597442627] +c1cc(Cn2cncn2)cc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +Brc1cccc(-c2ccc3ncccc3c2)c1; ['Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Clc1cccc(Br)c1', 'Brc1ccc2ncccc2c1', 'Brc1cccc(I)c1', 'Brc1cccc([Zn]I)c1', 'Clc1ccc2ncccc2c1', 'Brc1cccc2ncccc12', 'Fc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Br[Mg]c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1cccc(Br)c1', 'Brc1ccc2cccnc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Brc1cccc(I)c1', 'Brc1ccccc1Br', 'Brc1cccc(Br)c1', 'Brc1ccc(Br)cc1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Br[Mg]c1cccc(Br)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'Clc1cccc(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Ic1ccc2ncccc2c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1cccc(Br)c1', 'Clc1ccc2ncccc2c1', 'OB(O)c1cccc(Br)c1', 'Brc1cccc(I)c1', 'OB(O)c1cccc(Br)c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Brc1cccc(I)c1', 'Fc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Fc1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1']; [0.9999933242797852, 0.9999877214431763, 0.9999758005142212, 0.9999670386314392, 0.9999516010284424, 0.9999399185180664, 0.99983811378479, 0.9998041391372681, 0.9997804164886475, 0.9997715950012207, 0.9995955228805542, 0.9990787506103516, 0.9986481666564941, 0.9985649585723877, 0.9985512495040894, 0.996292233467102, 0.9952899813652039, 0.9951525926589966, 0.9948500394821167, 0.9918233752250671, 0.9917994737625122, 0.9860559701919556, 0.9855111837387085, 0.9831058979034424, 0.9827936887741089, 0.9813721776008606, 0.9686810374259949, 0.9631677269935608, 0.9624032974243164, 0.9540558457374573, 0.9223216772079468, 0.9069343209266663, 0.8952534198760986, 0.890209972858429, 0.8547326326370239, 0.7588178515434265, 0.751690149307251] +Cc1ccc(Cl)c(-c2ccc3ncccc3c2)c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(I)c1', 'Br[Zn]c1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Cl)c(F)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)cc1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Cl)cc1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1ccc2ncccc2c1', 'Cc1ccc(Cl)cc1', 'COc1ccc2ncccc2c1', 'Cc1ccc(Cl)cc1', 'Cc1ccc(Cl)c(Br)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Cc1ccc(Cl)c([Mg]Br)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Cl)c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Ic1ccc2ncccc2c1', 'Cc1ccc(Cl)c(I)c1', 'Clc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Ic1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Cc1ccc(Cl)c([Zn]Br)c1', 'Clc1ccc2ncccc2c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Ic1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Cc1ccc(Cl)c(F)c1', 'Ic1ccc2ncccc2c1', 'Cc1ccc(Cl)c(Cl)c1', 'c1ccc2ncccc2c1', 'Cc1ccc(Cl)cc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Cc1ccc(Cl)c([Mg]Br)c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'COc1cc(C)ccc1Cl', 'c1ccc2ncccc2c1']; [0.9999997615814209, 0.9999973773956299, 0.9999963045120239, 0.9999871253967285, 0.9999861717224121, 0.9999842643737793, 0.9999734163284302, 0.9999557733535767, 0.9999451637268066, 0.9999393820762634, 0.9999266862869263, 0.9999265670776367, 0.9999130964279175, 0.9998204708099365, 0.9996058940887451, 0.9994956851005554, 0.9994702935218811, 0.9993975758552551, 0.9989067912101746, 0.9987295866012573, 0.998699426651001, 0.9986793994903564, 0.9986000061035156, 0.9985888004302979, 0.9985692501068115, 0.998253583908081, 0.9980702996253967, 0.9953305721282959, 0.9913263916969299, 0.9869638681411743, 0.9829878807067871, 0.9785990715026855, 0.9762755036354065, 0.961165189743042, 0.9453175067901611, 0.9253481030464172, 0.8989380598068237, 0.8772745132446289, 0.8667997717857361, 0.86662757396698, 0.8318079710006714, 0.7806267142295837, 0.7689266800880432, 0.7623426914215088] +c1cncc(Nc2ccc3ncccc3c2)c1; ['Nc1cccnc1', 'Brc1ccc2ncccc2c1', 'Nc1cccnc1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Clc1cccnc1', 'Brc1cccnc1', 'Ic1cccnc1', 'Fc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1']; ['OB(O)c1ccc2ncccc2c1', 'Nc1cccnc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1cccnc1', 'OB(O)c1cccnc1']; [0.9999504089355469, 0.9998641014099121, 0.9994040727615356, 0.9991750717163086, 0.9990479946136475, 0.9980189800262451, 0.9976291060447693, 0.9975448846817017, 0.9964914321899414, 0.9925394058227539] +O=C(Nc1ccc2ncccc2c1)c1cccs1; ['Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'COC(=O)c1cccs1', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'CCOC(=O)c1cccs1', 'Clc1ccc2ncccc2c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccc2ncccc2c1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'Nc1ccc2ncccc2c1', 'NC(=O)c1cccs1']; [0.999951958656311, 0.9998490214347839, 0.9986341595649719, 0.9980897903442383, 0.9962104558944702, 0.9953345060348511, 0.994798481464386] +Cc1c(-c2ccc3ncccc3c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc3ncccc3c2)n1; [None]; [None]; [0] +c1cnc2ccc(-c3cnn4ncccc34)cc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc4ncccc4c3)ccc2c1; [None]; [None]; [0] +c1cnc2ccc(NCCc3c[nH]cn3)cc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'NCCc1c[nH]cn1', 'Ic1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'NCCc1c[nH]cn1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'NCCc1c[nH]cn1', 'N#CCc1c[nH]cn1']; ['NCCc1c[nH]cn1', 'OB(O)c1ccc2ncccc2c1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'Oc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1']; [0.9999816417694092, 0.9999716281890869, 0.9992141723632812, 0.9988150596618652, 0.9981279373168945, 0.9968270659446716, 0.9965614676475525, 0.9923325777053833, 0.9699418544769287, 0.9234139919281006] +c1cnc2ccc(-n3cnc4ccccc43)cc2c1; ['OB(O)c1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9988247156143188, 0.9982019662857056, 0.9944217205047607, 0.9597177505493164, 0.9197254180908203] +NC(=O)c1c(F)cccc1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'Ic1ccc2ncccc2c1']; ['NC(=O)c1c(F)cccc1Br', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'NC(=O)c1ccccc1F']; [1.0, 0.9999995231628418, 0.9999989867210388, 0.997952401638031] +Cn1cc(-c2ccc(-c3ccc4ncccc4c3)cc2)cn1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'OB(O)c1ccc2ncccc2c1']; [1.0, 0.9999995231628418, 0.9999444484710693] +c1cnc2ccc(-c3cncc4ccccc34)cc2c1; ['Brc1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1ccc2ncccc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Br[Zn]c1cncc2ccccc12', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Brc1ccc2ncccc2c1', 'Clc1cncc2ccccc12', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Brc1cncc2ccccc12', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1cncc2ccccc12', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1cncc2ccccc12', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cncc2ccccc12', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Brc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Clc1cncc2ccccc12', 'c1ccc2cnccc2c1']; [0.9999998807907104, 0.9999997615814209, 0.9999992251396179, 0.9999989867210388, 0.9999974966049194, 0.9999960660934448, 0.9999927282333374, 0.9999910593032837, 0.9999830722808838, 0.9999734163284302, 0.999970555305481, 0.9999501705169678, 0.999909520149231, 0.9998733401298523, 0.9998681545257568, 0.9998226165771484, 0.9988524317741394, 0.9983597993850708, 0.9970970153808594, 0.9958547353744507, 0.9908568859100342, 0.9497818946838379, 0.8433343172073364] +FC(F)(F)c1n[nH]cc1-c1ccc2ncccc2c1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +c1ccc(CCNc2ccc3ncccc3c2)cc1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4ncccc4c3)ccc12; [None]; [None]; [0] +Clc1ccc(CNc2ccc3ncccc3c2)cc1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'NCc1ccc(Cl)cc1', 'Ic1ccc2ncccc2c1', 'Clc1ccc(CBr)cc1', 'Brc1ccc2ncccc2c1', 'NCc1ccc(Cl)cc1', 'ClCc1ccc(Cl)cc1', 'Brc1cccc2ncccc12', 'Brc1ccc2cccnc2c1', 'Nc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'O=[N+]([O-])c1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'COC(OC)c1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'OB(O)c1ccc2ncccc2c1', 'NCc1ccc(Cl)cc1', 'Nc1ccc2ncccc2c1', 'NCc1ccc(Cl)cc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Nc1ccc2ncccc2c1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'Nc1ccc2ncccc2c1', 'Oc1ccc2ncccc2c1']; [0.9998438358306885, 0.9992771148681641, 0.9990960359573364, 0.998145580291748, 0.9974642992019653, 0.9949711561203003, 0.9922949075698853, 0.9911974668502808, 0.9884925484657288, 0.9762267470359802, 0.971886157989502, 0.8706896901130676, 0.8216922879219055, 0.8213083744049072, 0.809270977973938, 0.806573748588562] +CN1c2ccc(-c3ccc4ncccc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4ncccc4c3)ccc21; [None]; [None]; [0] +c1cnc2ccc(-c3ccc(-c4cn[nH]c4)cc3)cc2c1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3ncccc3c2)n1; [None]; [None]; [0] +Oc1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2ncccc2c1; ['NCc1ccccc1F', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'Ic1ccc2ncccc2c1', 'NCc1ccccc1F', 'Brc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'COC(OC)c1ccccc1F', 'Fc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'N#Cc1ccccc1F']; ['OB(O)c1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'NCc1ccccc1F', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'NCc1ccccc1F', 'OCc1ccccc1F', 'NCc1ccccc1F', 'Nc1ccc2ncccc2c1', 'NCc1ccccc1F', 'O=Cc1ccccc1F', 'Nc1ccc2ncccc2c1']; [0.999873161315918, 0.9998043775558472, 0.9990046620368958, 0.9986692667007446, 0.9975055456161499, 0.9927679300308228, 0.9869458675384521, 0.978228747844696, 0.9766241312026978, 0.9644944667816162, 0.9495208263397217, 0.7742069363594055] +OCc1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +c1cnc2ccc(Nc3ccncc3)cc2c1; ['CC1(C)OB(c2ccncc2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Nc1ccncc1', 'Nc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Nc1ccncc1', 'Brc1ccncc1', 'Clc1ccncc1', 'Clc1ccc2ncccc2c1', 'Ic1ccncc1', 'Brc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Nc1ccncc1', 'Nc1ccc2ncccc2c1', 'CC(=O)Nc1ccc2ncccc2c1', 'Fc1ccncc1', 'CC(=O)Nc1ccncc1', 'Brc1ccncc1', 'Nc1ccc2ncccc2c1']; ['Nc1ccc2ncccc2c1', 'Nc1ccncc1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1ccncc1', 'Nc1ccc2ncccc2c1', 'CC(=O)Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccncc1', 'Oc1ccc2ncccc2c1', 'Nc1ccncc1', 'Ic1ccncc1', 'Nc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CC(=O)Nc1ccc2ncccc2c1', 'Oc1ccncc1']; [0.999990701675415, 0.9999873638153076, 0.9999687075614929, 0.9998794794082642, 0.9998760223388672, 0.9994797110557556, 0.9992948770523071, 0.9989852905273438, 0.9983168840408325, 0.9983071088790894, 0.9979825019836426, 0.9947385787963867, 0.9943467378616333, 0.989337682723999, 0.9878087639808655, 0.9874947667121887, 0.9772955775260925, 0.9717414379119873, 0.9620800018310547, 0.961674690246582, 0.933280348777771] +CC(C)n1cc(-c2ccc3ncccc3c2)nn1; ['C#Cc1ccc2ncccc2c1', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1', 'Brc1ccc2ncccc2c1', 'CC(C)n1ccnn1']; ['CC(C)N=[N+]=[N-]', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CC(C)n1ccnn1', 'Clc1ccc2ncccc2c1']; [0.9999958872795105, 0.999934196472168, 0.9998453855514526, 0.999682605266571, 0.9990424513816833] +c1cnc2ccc(-c3csc4ncncc34)cc2c1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Brc1csc2ncncc12', 'c1ncc2ccsc2n1']; [0.9999998211860657, 0.9999996423721313, 0.999950647354126, 0.9972772598266602, 0.9362169504165649] +COc1cc(-c2ccc3ncccc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(-c2ccc3ncccc3c2)cs1; ['NC(N)=S', 'CC(=O)c1ccc2ncccc2c1', None]; ['O=C(CBr)c1ccc2ncccc2c1', 'NC(N)=S', None]; [0.999966025352478, 0.9997406005859375, 0] +c1cnc2ccc(CCc3c[nH]nn3)cc2c1; ['Cc1c[nH]nn1', 'BrCc1ccc2ncccc2c1']; ['ClCc1ccc2ncccc2c1', 'Cc1c[nH]nn1']; [0.9855203628540039, 0.9848291873931885] +c1cnc2ccc(-c3cc4ccccc4[nH]3)cc2c1; ['Brc1ccc2ncccc2c1', 'C#Cc1ccc2ncccc2c1', 'Ic1cc2ccccc2[nH]1', 'Nc1ccccc1C=C(Br)Br', 'N#CCc1ccccc1[N+](=O)[O-]', 'CC(=O)c1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1cc2ccccc2[nH]1', 'Brc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Nc1ccccc1', 'Brc1ccc2ncccc2c1', 'NNC(=O)c1ccc2ncccc2c1', 'CC(=O)c1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Nc1ccccc1I', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Nc1ccccc1I', 'Clc1cc2ccccc2[nH]1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1', 'O=C(CBr)c1ccc2ncccc2c1', 'Clc1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1', 'NNc1ccccc1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.999998152256012, 0.999997615814209, 0.999996542930603, 0.9999957084655762, 0.9999940395355225, 0.9999781250953674, 0.9999745488166809, 0.9999579191207886, 0.9999249577522278, 0.9995119571685791, 0.9971522092819214, 0.9967031478881836, 0.9946844577789307, 0.9936953783035278, 0.9560209512710571, 0.9446666240692139] +CC(C)c1oncc1-c1ccc2ncccc2c1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Brc1ccc2ncccc2c1', 'NNc1ccc2ncccc2c1']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Nc1ncncc1Br', 'Nc1ccncn1']; [0.9999998211860657, 0.9999997615814209, 0.9999979734420776, 0.9999973177909851, 0.9997290372848511, 0.9994434714317322, 0.8729770183563232] +CSc1nc(-c2ccc3ncccc3c2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3ncccc3c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2ncccc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Ic1ccc2ncccc2c1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ccc2ncccc2c1']; [0.9999997615814209, 0.9999996423721313, 0.9999973177909851] +CCNc1nc2ccc(-c3ccc4ncccc4c3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3ncccc3c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2ncccc2c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1ccc2ncccc2c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Br[Mg]c1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'CC(=O)Nc1cccc(B(O)O)c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1']; [0.9999969601631165, 0.9999961853027344, 0.9999871253967285, 0.9999669790267944, 0.9999325275421143, 0.9997711777687073, 0.9997551441192627, 0.9983202219009399, 0.9979276657104492, 0.9977218508720398, 0.9971959590911865, 0.9961099624633789, 0.995705783367157, 0.9932537078857422, 0.990777313709259, 0.9643864631652832, 0.9463819265365601] +Fc1ccc(-c2ccc3ncccc3c2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1ccc2ncccc2c1; [None]; [None]; [0] +c1ccc(Oc2ccc3ncccc3c2)nc1; [None]; [None]; [0] +O=C(Nc1ccc2ncccc2c1)c1c(Cl)cccc1Cl; ['Nc1ccc2ncccc2c1', None, 'Nc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=C(Cl)c1c(Cl)cccc1Cl', 'Brc1ccc2ncccc2c1', 'NC(=O)c1c(Cl)cccc1Cl', 'COC(=O)c1c(Cl)cccc1Cl', 'Nc1ccc2ncccc2c1', 'CCOC(=O)c1c(Cl)cccc1Cl', 'Clc1ccc2ncccc2c1', 'CC(=O)Nc1ccc2ncccc2c1']; ['O=C(Cl)c1c(Cl)cccc1Cl', None, 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'O=[N+]([O-])c1ccc2ncccc2c1', 'NC(=O)c1c(Cl)cccc1Cl', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'O=Cc1c(Cl)cccc1Cl', 'Nc1ccc2ncccc2c1', 'NC(=O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl']; [0.9999637007713318, 0, 0.999708890914917, 0.9995148181915283, 0.9993725419044495, 0.9986163377761841, 0.9978865385055542, 0.9964709877967834, 0.9921623468399048, 0.9855149984359741, 0.9814223051071167, 0.8600633144378662] +CS(=O)(=O)C1CCN(c2ccc3ncccc3c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'Brc1ccc2ncccc2c1', 'CS(=O)(=O)C1CCNCC1']; ['OB(O)c1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CS(=O)(=O)C1CCNCC1', 'Clc1ccc2ncccc2c1']; [0.999864935874939, 0.9995405673980713, 0.99945467710495, 0.9980846643447876, 0.9975900053977966] +Cn1cc(-c2ccc3ncccc3c2)c2ccccc21; ['Brc1ccc2ncccc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Brc1ccc2ncccc2c1', 'Cn1ccc2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Cn1ccc2ccccc21', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; [0.9999994039535522, 0.9999932050704956, 0.9999517798423767, 0.9999232292175293, 0.9997308254241943, 0.9993834495544434] +CCCn1cc(-c2ccc3ncccc3c2)cn1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2ncccc2c1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'Ic1ccc2ncccc2c1', 'CCCn1cc(Br)cn1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CCCn1cc(B(O)O)cn1']; [1.0, 1.0, 0.9999997615814209, 0.9999997615814209, 0.9999996423721313, 0.9999987483024597, 0.9999813437461853, 0.9999807476997375, 0.9999354481697083] +CC(C)(O)CC(=O)NCCc1ccc2ncccc2c1; [None]; [None]; [0] +CC(C)(COc1ccc2ncccc2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3ncccc3c2)cc1Cl; [None]; [None]; [0] +c1cnc2ccc(-c3cnn4ccccc34)cc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3ncccc3c2)cc1C(F)(F)F; [None]; [None]; [0] +O=c1cc(-c2ccc3ncccc3c2)cc[nH]1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(I)cc[nH]1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(Cl)cc[nH]1']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'O=c1cc(Cl)cc[nH]1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1']; [0.9999942779541016, 0.9999879002571106, 0.9999830722808838, 0.9999492764472961, 0.9999364614486694, 0.9998312592506409, 0.9993122816085815] +CC(C)(N)c1ccc(-c2ccc3ncccc3c2)cc1; ['CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1']; [0.9999977350234985, 0.9999966621398926, 0.9995574951171875, 0.9924968481063843] +C[S@](=O)c1ccc(-c2ccc3ncccc3c2)cc1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1', 'Brc1ccc2ncccc2c1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(Br)cc1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CS(=O)c1ccc(B(O)O)cc1']; [0.9999991655349731, 0.9999853372573853, 0.9998664259910583, 0.9993495345115662, 0.9993392825126648] +O=C1CCc2cccc(-c3ccc4ncccc4c3)c21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2ncccc2c1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'Brc1ccc2ncccc2c1', 'CCNS(=O)(=O)c1ccccc1']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1ccc2ncccc2c1', 'CCNS(=O)(=O)c1ccccc1Br', 'Ic1ccc2ncccc2c1']; [0.9999983906745911, 0.9999157190322876, 0.9948152303695679, 0.9792044162750244] +COc1cc(CCc2ccc3ncccc3c2)cc(OC)c1; [None]; [None]; [0] +C[C@@H](Oc1ccc2ncccc2c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCN(CC)c1ccc2ncccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4ncccc4c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4ncccc4c3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2ncccc2c1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccc3ncccc3c2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +c1cnc2ccc(Nc3cnc4ccccc4c3)cc2c1; ['Nc1cnc2ccccc2c1', 'Nc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Ic1ccc2ncccc2c1', 'Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Clc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1cnc2ccccc2c1']; ['OB(O)c1ccc2ncccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1cnc2ccccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Nc1ccc2ncccc2c1', 'Nc1ccc2ncccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Oc1cnc2ccccc2c1', 'Oc1ccc2ncccc2c1']; [0.999720573425293, 0.9996671676635742, 0.9992111921310425, 0.998668909072876, 0.9980040788650513, 0.9975152611732483, 0.9970774054527283, 0.9954394102096558, 0.9934046268463135, 0.9911401271820068, 0.9854394197463989, 0.9711763262748718, 0.9498947858810425] +c1cnc2ccc(-c3cnc4[nH]ccc4c3)cc2c1; ['Brc1cnc2[nH]ccc2c1', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Ic1ccc2ncccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; [1.0, 0.9999997615814209, 0.9999996423721313, 0.999998927116394, 0.9999985694885254, 0.9999960660934448, 0.9999948740005493, 0.9999874830245972, 0.9999796748161316, 0.9999785423278809, 0.9999750852584839, 0.9999574422836304, 0.9999014139175415, 0.9986857175827026] +CC(C)(C)c1ccc(-c2ccc3ncccc3c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2ncccc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2ncccc2c1; ['CNC(=O)c1ccccc1F', 'CNC(=O)c1ccccc1F']; ['OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; [0.9923756122589111, 0.9783949851989746] +c1cnc2ccc(-c3c[nH]c4cnccc34)cc2c1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1']; [0.9999970197677612, 0.9999877214431763, 0.9998636245727539, 0.9997637271881104, 0.9751521944999695, 0.9748765826225281, 0.8882063627243042, 0.8511141538619995] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3ncccc3c2)cc1; ['Brc1ccc2ncccc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ncccc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccccc1', 'Brc1ccc2ncccc2c1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Clc1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'Ic1ccc2ncccc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999996423721313, 0.999998927116394, 0.999998927116394, 0.9999983906745911, 0.9999901056289673, 0.9999851584434509, 0.999964714050293, 0.9999243021011353, 0.9996181130409241, 0.9934593439102173, 0.9918308258056641] +CNS(=O)(=O)c1ccc(-c2ccc3ncccc3c2)cc1; ['Brc1ccc2ncccc2c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2ncccc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1ccc2ncccc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999947547912598, 0.9999932050704956, 0.9999676942825317, 0.9999365210533142, 0.9999359846115112, 0.9999123811721802, 0.9997992515563965, 0.9997960329055786, 0.9996342658996582, 0.9995630979537964, 0.9994415044784546, 0.9951479434967041, 0.9950177669525146, 0.9121226072311401] +C[C@H](Nc1ccc2ncccc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cc(-c2ccc3ncccc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ncccc3c2)cc1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'Brc1ccc2cccnc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ncccc2c1', 'Brc1cccc2ncccc12', 'Brc1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2ncccc2c1', 'CS(=O)(=O)c1ccccc1', 'CS(=O)(=O)c1ccc(C(=O)O)cc1', 'Brc1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccccc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'Ic1ccc2ncccc2c1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'CS(=O)(=O)c1ccccc1', 'O=C(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1']; [1.0, 1.0, 0.9999997019767761, 0.9999995827674866, 0.9999994039535522, 0.9999993443489075, 0.9999984502792358, 0.9999977350234985, 0.9999971389770508, 0.9999960660934448, 0.9999954700469971, 0.9999945163726807, 0.9999938011169434, 0.9999922513961792, 0.9999898672103882, 0.9999883770942688, 0.9999667406082153, 0.999938428401947, 0.9981448650360107, 0.9916691780090332, 0.9890520572662354, 0.9831119775772095, 0.9649425745010376, 0.9297012090682983] +CC1(c2ccc3ncccc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +c1cnc2ccc(-c3ccc(N4CCOCC4)cc3)cc2c1; [None]; [None]; [0] +OCc1ccn(-c2ccc3ncccc3c2)n1; ['OB(O)c1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9999982118606567, 0.9999889731407166, 0.999983012676239, 0.999803900718689] +C[C@@H](Nc1ccc2ncccc2c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'Brc1ccc2ncccc2c1', 'C[C@@H](N)C(C)(C)O']; ['OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'C[C@@H](N)C(C)(C)O', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F']; [0.9969241619110107, 0.9915241003036499, 0.989173173904419, 0.8218196034431458] +C[C@H](Nc1ccc2ncccc2c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'Brc1ccc2ncccc2c1', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'C[C@H](N)C(C)(C)O', 'Nc1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F']; [0.9969241619110107, 0.9915241003036499, 0.989173173904419, 0.9203026294708252, 0.8218196034431458] +CN(c1ccc2ncccc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCCc1cn(-c2ccc3ncccc3c2)cn1; ['Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9999935626983643, 0.9999313354492188] +c1cnc2ccc(-c3ccc(-n4cncn4)cc3)cc2c1; ['OB(O)c1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['c1ccc(-n2cncn2)cc1', 'c1ccc(-n2cncn2)cc1', 'c1ccc(-n2cncn2)cc1']; [0.9996576309204102, 0.9604241251945496, 0.9057159423828125] +Fc1cccc(Cl)c1-c1ccc2ncccc2c1; [None]; [None]; [0] +c1cnc2ccc(-n3ncc4ccccc43)cc2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2ncccc2c1; ['Brc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9994205236434937, 0.9985463619232178, 0.9982556104660034, 0.9854733943939209] +CSc1nc(C)c(-c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4ncccc4c3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(-c2ccc3ncccc3c2)c(OC)c1; ['Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'Brc1ccc2ncccc2c1', 'COc1ccc([Mg]Br)c(OC)c1', 'Brc1ccc2ncccc2c1', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(F)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1cccc(OC)c1', 'COc1ccc(I)c(OC)c1', 'Brc1ccc2ncccc2c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc([Zn]I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(O)c(OC)c1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Br[Mg]c1ccc2ncccc2c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1cccc(OC)c1', 'COc1cccc(OC)c1', 'Br[Mg]c1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1', 'COc1cccc(OC)c1', 'Br[Mg]c1ccc2ncccc2c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1cccc(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'COc1ccc(B(O)O)c(OC)c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'COc1ccc([Mg]Br)c(OC)c1', 'Clc1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Fc1ccc2ncccc2c1', 'Oc1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'Ic1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'COc1ccc(F)c(OC)c1', 'COc1ccc2ncccc2c1', 'Ic1ccc2ncccc2c1', 'O=S(=O)(Oc1ccc2ncccc2c1)C(F)(F)F', 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1', 'F[B-](F)(F)c1ccc2ncccc2c1', 'COc1ccc(Cl)c(OC)c1', 'Clc1ccc2ncccc2c1', 'c1ccc2ncccc2c1', 'Clc1ccc2ncccc2c1', 'c1ccc2ncccc2c1']; [0.999998152256012, 0.9999970197677612, 0.9999918937683105, 0.999991774559021, 0.9999717473983765, 0.9999649524688721, 0.9999581575393677, 0.9999580383300781, 0.9999575614929199, 0.9999425411224365, 0.9999355673789978, 0.9999340176582336, 0.9999291896820068, 0.9999219179153442, 0.9998022317886353, 0.999773383140564, 0.9996297359466553, 0.9996248483657837, 0.9993676543235779, 0.9993497133255005, 0.9992414712905884, 0.9990269541740417, 0.9989851117134094, 0.9989445209503174, 0.9989045858383179, 0.998807430267334, 0.9985610246658325, 0.997919499874115, 0.9974572062492371, 0.9968492388725281, 0.9954813718795776, 0.993823766708374, 0.9924517273902893, 0.9902451038360596, 0.9860680103302002, 0.9843717217445374, 0.9839622974395752, 0.9819847345352173, 0.980766773223877, 0.972266674041748, 0.9653409719467163, 0.9144524335861206, 0.8845634460449219, 0.8427739143371582, 0.8346735239028931, 0.75809246301651] +c1cnc2ccc(-c3nncn3C3CC3)cc2c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3ncccc3c2)cc1; [None]; [None]; [0] +O=C(CCc1ccc2ncccc2c1)NCc1ccccn1; ['CC(=O)NCc1ccccn1']; ['OCc1ccc2ncccc2c1']; [0.9382708072662354] +CC(C)n1cnnc1-c1ccc2ncccc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3ncccc3c2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5ncccc5c4)n3n2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ncccc3c2)CC1; [None]; [None]; [0] +Nc1nnc(-c2ccc3ncccc3c2)s1; ['N#Cc1ccc2ncccc2c1', 'NNC(N)=S']; ['NNC(N)=S', 'O=C(O)c1ccc2ncccc2c1']; [0.9989463090896606, 0.9965287446975708] +CNC(=O)c1ccc(-c2ccc3ncccc3c2)s1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Cl)s1', 'Brc1ccc2ncccc2c1', 'Brc1ccc2ncccc2c1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1cccs1']; [0.9999998211860657, 0.9999986290931702, 0.9999900460243225, 0.9996542930603027, 0.9994921088218689] +O=S(=O)(Cc1ccc2ncccc2c1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4ncccc4c3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc3ncccc3c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3ncccc3c2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3ncccc3c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'Brc1ccc2ncccc2c1']; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1', 'CC(C)(O)c1cccc(Br)n1']; [0.9999990463256836, 0.9999868869781494, 0.99996018409729, 0.9986342191696167, 0.987601101398468] +Cn1cc(C(N)=O)cc1-c1ccc2ncccc2c1; [None]; [None]; [0] +Nc1cncc(-c2ccc3ncccc3c2)n1; ['CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ncccc3c2)OC1(C)C', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'OB(O)c1ccc2ncccc2c1', 'OB(O)c1ccc2ncccc2c1']; [0.9999991655349731, 0.9999989867210388, 0.9999977350234985, 0.9999961853027344] +[NH3+]Cc1ccc(Oc2ccc3ncccc3c2)c(F)c1; [None]; [None]; [0] +c1cnc2ccc(-c3nc4ccccc4s3)cc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4ncccc4c3)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3ncccc3c2)CC1; [None]; [None]; [0] +c1cnc2ccc(-c3cccc4ccsc34)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4ncccc4c3)c2)cc1; [None]; [None]; [0] +c1cnc2ccc(-c3cccc4nnsc34)cc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3ncccc3c2)nc2ccccc12; [None]; [None]; [0] +c1cnc2ccc(-c3ncc4ccccc4n3)cc2c1; [None]; [None]; [0] +c1cnc2ccc(-c3c[nH]c4cccnc34)cc2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +c1cnc2ccc(-c3ncc4cc[nH]c4n3)cc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2ncccc2c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3ncccc3c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3ncccc3c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2ncccc2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3ncccc3c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3ncccc3c2)cnn1; [None]; [None]; [0] +c1cnc2ccc(N3CCC(c4nc5ccccc5[nH]4)CC3)cc2c1; [None]; [None]; [0] +COc1cc(C=Cc2ccc3ncsc3c2)cc(OC)c1; ['CCOP(=O)(Cc1cc(OC)cc(OC)c1)OCC', 'COc1cc(C)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1']; ['O=Cc1ccc2ncsc2c1', 'O=Cc1ccc2ncsc2c1', 'Cc1ccc2ncsc2c1']; [0.9999343156814575, 0.9963068962097168, 0.9923020005226135] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3ncccc3c2)C1; [None]; [None]; [0] +C(=Cc1c[nH]c2ccccc12)c1ccc2ncsc2c1; [None]; [None]; [0] +Oc1cc(O)cc(C=Cc2ccc3ncsc3c2)c1; ['Cc1cc(O)cc(O)c1', 'Cc1ccc2ncsc2c1']; ['O=Cc1ccc2ncsc2c1', 'O=Cc1cc(O)cc(O)c1']; [0.9767249822616577, 0.9494320154190063] +O=C(Nc1cccc(-c2ccc3ncccc3c2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(C=Cc2ccc3ncsc3c2)ccc1O; ['C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'Brc1ccc2ncsc2c1', 'COc1cc(C=O)ccc1O']; ['OB(O)c1ccc2ncsc2c1', 'Ic1ccc2ncsc2c1', 'C=Cc1ccc(O)c(OC)c1', 'Cc1ccc2ncsc2c1']; [0.9998348355293274, 0.9996875524520874, 0.9994887113571167, 0.7969701886177063] +COc1cc(O)cc(C=Cc2ccc3ncsc3c2)c1; ['COc1cc(O)cc(C=O)c1', 'COc1cc(O)cc(C=O)c1', 'COc1cc(C)cc(O)c1']; ['O=Cc1ccc2ncsc2c1', 'Cc1ccc2ncsc2c1', 'O=Cc1ccc2ncsc2c1']; [0.993782103061676, 0.9283541440963745, 0.8405129909515381] +CNC(=O)c1ccccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CNC(=O)c1ccccc1B(O)O', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CNC(=O)c1ccccc1Br']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'Clc1ccc2ocnc2c1', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1', 'c1ccc2ocnc2c1']; [0.9999971389770508, 0.9999955296516418, 0.9999600052833557, 0.9984584450721741, 0.9972395896911621, 0.9910316467285156, 0.7948235869407654] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2ocnc2c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Clc1ccc2ocnc2c1']; [0.9999971389770508, 0.9999577403068542, 0.9989718198776245, 0.9982790350914001] +O=C1Nc2ccccc2C1=Cc1ccc2ncsc2c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2ocnc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3ocnc3c2)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(CCl)c1', 'Fc1cc(F)cc(C[Zn]Br)c1']; [0.999779224395752, 0.9981245994567871, 0.9893584251403809] +CCOc1ccccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CCOc1ccccc1Br', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Cl', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'CCOc1ccccc1Br', 'CCOc1ccccc1[Mg]Br']; [0.99996417760849, 0.9999518990516663, 0.9999181628227234, 0.9998971223831177, 0.9989787340164185, 0.9950065016746521, 0.9897996783256531, 0.9748250246047974] +c1ccc2c(-c3ccc4ocnc4c3)ccnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccnc2ccccc12', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Br[Mg]c1ccnc2ccccc12', 'Clc1ccc2ocnc2c1', 'Br[Mg]c1ccnc2ccccc12']; ['Ic1ccnc2ccccc12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1ccnc2ccccc12', 'Clc1ccc2ocnc2c1', 'OB(O)c1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Brc1ccc2ocnc2c1', 'OB(O)c1ccnc2ccccc12', 'Clc1ccc2ocnc2c1']; [0.9999927878379822, 0.9999828338623047, 0.999966561794281, 0.9998511075973511, 0.9993805885314941, 0.9984571933746338, 0.989037275314331, 0.9888315200805664, 0.9487811326980591, 0.8230056166648865] +CCn1cc(-c2ccc3ocnc3c2)cn1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'Clc1ccc2ocnc2c1']; [0.9999972581863403, 0.9999970197677612, 0.99998939037323, 0.9998558759689331, 0.9977735877037048] +COC(C)(C)CCc1ccc2ocnc2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2ocnc2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'FC(F)(F)Oc1ccccc1Br', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'Clc1ccc2ocnc2c1', 'FC(F)(F)Oc1ccccc1Cl', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1', 'c1ccc2ocnc2c1', 'COc1ccccc1OC(F)(F)F']; [0.9999751448631287, 0.9999713897705078, 0.9999555945396423, 0.9999487400054932, 0.9998823404312134, 0.9998085498809814, 0.9995498657226562, 0.9994874596595764, 0.9906789064407349, 0.9900993704795837, 0.9810045957565308, 0.9683331251144409, 0.8883230090141296, 0.7813031673431396] +FC(F)(F)c1cccc(-c2ccc3ocnc3c2)c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'FC(F)(F)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'Clc1ccc2ocnc2c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc([Mg]Br)c1', 'FC(F)(F)c1cccc(Br)c1', 'c1ccc2ocnc2c1']; [0.9999943971633911, 0.9999873042106628, 0.9999777674674988, 0.9999620318412781, 0.9999508857727051, 0.999886155128479, 0.9998705387115479, 0.9993143677711487, 0.9984374046325684, 0.9968127608299255, 0.9888474941253662, 0.8034478425979614] +NC(=O)c1ccccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1B(O)O', 'Clc1ccc2ocnc2c1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999917149543762, 0.999983549118042, 0.9999724626541138, 0.9998838901519775, 0.9998419284820557, 0.9998055696487427, 0.9992972016334534, 0.9922131299972534, 0.9909550547599792] +c1ccc(Cn2cc(-c3ccc4ocnc4c3)cn2)cc1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1ccc2ocnc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Brc1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999982714653015, 0.9999978542327881, 0.9999808669090271, 0.9999202489852905, 0.9998050928115845, 0.9983464479446411, 0.989303469657898, 0.8966509103775024] +CC(C)(C)c1nc(-c2ccc3ocnc3c2)cs1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4ocnc4c3)cc2c1=O; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999885559082031, 0.9832820892333984] +CC(C)C(=O)COc1ccc2ocnc2c1; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Oc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1']; [0.996353030204773, 0.9582226276397705] +O=C(Nc1cccc(-c2ccc3ocnc3c2)c1)c1ccccc1; ['Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999871850013733, 0.9997986555099487, 0.99379962682724] +c1ccc(-c2ncc(-c3ccc4ocnc4c3)[nH]2)cc1; [None]; [None]; [0] +COc1cnc(-c2ccc3ocnc3c2)nc1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; [0.9999511241912842, 0.9998989105224609] +Clc1ccc(Cl)c(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc2ocnc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Br)c1']; [0.9999978542327881, 0.9999938011169434, 0.9999774098396301, 0.9996109008789062, 0.9995861053466797, 0.9993135333061218, 0.997473955154419, 0.9940623044967651, 0.9196246862411499] +Cc1nc2ccccn2c1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Cc1cn2ccccc2n1', 'Brc1ccc2ocnc2c1']; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1', 'Clc1ccc2ocnc2c1', 'Cc1nc2ccccn2c1C(=O)O']; [0.9999954700469971, 0.9999887347221375, 0.9999860525131226, 0.9999665021896362, 0.999660849571228] +Cc1ccc(-c2ccc3ocnc3c2)c(Br)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Brc1ccc2ocnc2c1']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Clc1ccc2ocnc2c1', 'Cc1ccc(Br)c(Br)c1']; [0.999993085861206, 0.9999511241912842, 0.9817761182785034, 0.9737343788146973, 0.8427287340164185] +OCCn1cc(-c2ccc3ocnc3c2)cn1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'OCCn1cc(I)cn1']; ['OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'c1ccc2ocnc2c1']; [0.9999989867210388, 0.9999979734420776, 0.9999915361404419, 0.9999688267707825, 0.999439001083374, 0.8490214347839355] +Cc1nc(C)c(-c2ccc3ocnc3c2)s1; ['Brc1ccc2ocnc2c1']; ['Cc1csc(C)n1']; [0.9994950294494629] +c1ccn2c(-c3ccc4ocnc4c3)cnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'c1ccc2ocnc2c1', 'Clc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccc2ocnc2c1']; [0.9999979734420776, 0.9999967813491821, 0.9999663829803467, 0.9997850656509399, 0.9882298707962036, 0.9800384044647217, 0.8122552037239075] +c1cnn2c(-c3ccc4ocnc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999994039535522, 0.9999985694885254, 0.9999649524688721] +Cc1nc(N)sc1-c1ccc2ocnc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'COc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1']; [0.9999743700027466, 0.9999200105667114, 0.999891996383667, 0.9990478754043579, 0.9960387945175171, 0.9883586764335632, 0.8318888545036316, 0.8218302130699158, 0.7974558472633362] +Brc1cccc(-c2ccc3ocnc3c2)c1; ['Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Brc1cccc(Br)c1']; [0.9999829530715942, 0.999789297580719, 0.9993104934692383, 0.9978899359703064, 0.9959362149238586, 0.8277521729469299] +O=c1c2c(F)cccc2cnn1-c1ccc2ocnc2c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2ocnc2c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Clc1ccc2ocnc2c1', 'Cc1ccc(Cl)c(Br)c1', 'Clc1ccc2ocnc2c1']; [0.9999914169311523, 0.9999738931655884, 0.9999607801437378, 0.9997876882553101, 0.998866081237793, 0.9962434768676758, 0.9837234020233154, 0.9504045844078064] +c1cncc(CNc2ccc3ocnc3c2)c1; ['BrCc1cccnc1', 'ClCc1cccnc1', 'Brc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'NCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9995278120040894, 0.9990473985671997, 0.9988077878952026, 0.9975811243057251, 0.9973770380020142, 0.977548360824585] +c1cc(Cn2cncn2)cc(-c2ccc3ocnc3c2)c1; [None]; [None]; [0] +Nc1nccc(-c2ccc3ocnc3c2)n1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['Nc1nccc(Cl)n1']; [0.9999517202377319] +c1cnn2ncc(-c3ccc4ocnc4c3)c2c1; ['Brc1cnn2ncccc12']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; [0.9999891519546509] +Cc1c(-c2ccc3ocnc3c2)sc(=O)n1C; [None]; [None]; [0] +O=C(Nc1ccc2ocnc2c1)c1cccs1; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'COC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccc2ocnc2c1']; [0.9999894499778748, 0.9999771118164062, 0.9990517497062683] +c1cncc(Nc2ccc3ocnc3c2)c1; ['Brc1ccc2ocnc2c1', 'Brc1cccnc1', 'Clc1cccnc1', 'Clc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Ic1cccnc1']; ['Nc1cccnc1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1cccnc1', 'Nc1cccnc1', 'Nc1ccc2ocnc2c1']; [0.999116063117981, 0.9875695109367371, 0.9857854247093201, 0.980466365814209, 0.9687923789024353, 0.9668996334075928] +c1nc(CCNc2ccc3ocnc3c2)c[nH]1; ['Brc1ccc2ocnc2c1']; ['NCCc1c[nH]cn1']; [0.9800751209259033] +CNc1nc(C)c(-c2ccc3ocnc3c2)s1; [None]; [None]; [0] +c1ccc(CCNc2ccc3ocnc3c2)cc1; ['ClCCc1ccccc1', 'Nc1ccc2ocnc2c1', 'ICCc1ccccc1', 'BrCCc1ccccc1', 'CS(=O)(=O)OCCc1ccccc1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1']; ['Nc1ccc2ocnc2c1', 'O=CCc1ccccc1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1']; [0.9695417881011963, 0.9583583474159241, 0.9121927618980408, 0.902862548828125, 0.8678413033485413, 0.7914842367172241] +c1ccc2c(-c3ccc4ocnc4c3)cncc2c1; ['Brc1ccc2ocnc2c1', 'Brc1cncc2ccccc12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Ic1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Clc1ccc2ocnc2c1', 'Brc1cncc2ccccc12', 'F[B-](F)(F)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9999951124191284, 0.9999951124191284, 0.9999884963035583, 0.9999492168426514, 0.9999037981033325, 0.9985983967781067, 0.998367428779602, 0.9622502326965332] +FC(F)(F)c1n[nH]cc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Cl', 'FC(F)(F)c1cc[nH]n1', 'Clc1ccc2ocnc2c1']; [0.9999927282333374, 0.9999852180480957, 0.9999734163284302, 0.9999079704284668, 0.999700665473938, 0.9850014448165894] +NC(=O)c1c(F)cccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br']; [0.9999997615814209, 0.9999974370002747, 0.9998565912246704] +c1ccc2cc(-c3ccc4ocnc4c3)ccc2c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9967266321182251, 0.964656412601471] +Cn1cc(-c2ccc(-c3ccc4ocnc4c3)cc2)cn1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999983906745911, 0.999994158744812, 0.9999445676803589, 0.9902452230453491] +O=C([O-])Cc1cccc(-c2ccc3ocnc3c2)c1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4ocnc4c3)ccc12; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Cl)ccc12', 'Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Cl)ccc12']; [0.9999960660934448, 0.9998736381530762, 0.9874927997589111, 0.9347063302993774, 0.9347063302993774] +Clc1ccc(CNc2ccc3ocnc3c2)cc1; ['Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'O=[N+]([O-])c1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1']; [0.9984411001205444, 0.9983107447624207, 0.9911375045776367, 0.9874363541603088, 0.985522449016571, 0.9715087413787842] +Cn1ncc2cc(-c3ccc4ocnc4c3)ccc21; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2ccccc21']; [0.9999992847442627, 0.9999985694885254, 0.9999983310699463, 0.9999889135360718, 0.9999861717224121, 0.9999393820762634, 0.9993181228637695, 0.9950196743011475, 0.7598147988319397] +CN1c2ccc(-c3ccc4ocnc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3ocnc3c2)nn1; ['Brc1ccc2ocnc2c1']; ['CC(C)n1ccnn1']; [0.9927499890327454] +Oc1cccc(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999808073043823, 0.9999803304672241, 0.9999655485153198, 0.9995513558387756, 0.9884118437767029, 0.9073117971420288] +CCCn1cnc(-c2ccc3ocnc3c2)n1; [None]; [None]; [0] +c1nc2cc(-c3ccc(-c4cn[nH]c4)cc3)ccc2o1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2ocnc2c1; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'Nc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'OCc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F']; [0.9992972016334534, 0.9984738826751709, 0.9936904907226562, 0.9773668646812439, 0.9244848489761353, 0.816213071346283] +c1cc(Nc2ccc3ocnc3c2)ccn1; ['Nc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Nc1ccncc1', 'Clc1ccc2ocnc2c1', 'Clc1ccncc1', 'Brc1ccncc1', 'Nc1ccc2ocnc2c1', 'Ic1ccncc1', 'Nc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Fc1ccncc1', 'Brc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Oc1ccc2ocnc2c1', 'Nc1ccncc1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Oc1ccncc1', 'Nc1ccc2ocnc2c1', 'c1cc[n+](-c2ccncc2)cc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccc2ocnc2c1', 'CC(=O)Nc1ccncc1', 'O=C(O)c1cnccc1Cl']; [0.9998629689216614, 0.9994494318962097, 0.9979800581932068, 0.9958490133285522, 0.9953545331954956, 0.995188295841217, 0.9931374788284302, 0.992000937461853, 0.9889482259750366, 0.9823634624481201, 0.9786362051963806, 0.9689797163009644, 0.8359123468399048, 0.8204387426376343] +OCc1cccc(-c2ccc3ocnc3c2)c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'Clc1ccc2ocnc2c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1']; [0.9999159574508667, 0.9999082088470459, 0.9998630881309509, 0.9991626739501953, 0.998306155204773, 0.9982585906982422, 0.986859917640686, 0.9836341142654419] +c1ncc2c(-c3ccc4ocnc4c3)csc2n1; ['Brc1csc2ncncc12']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; [0.9999698400497437] +CSc1nc(-c2ccc3ocnc3c2)c[nH]1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc4ocnc4c3)cc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['Ic1cc2ccccc2[nH]1', 'OB(O)c1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1']; [0.9999977350234985, 0.9998506307601929, 0.9996109008789062, 0.7959646582603455] +COc1cc(-c2ccc3ocnc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc(-c2ccc3ocnc3c2)cs1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(=O)c1ccc2ocnc2c1', None]; ['Nc1nc(Cl)cs1', 'NC(N)=S', None]; [0.9999907612800598, 0.9999521374702454, 0] +c1nc2cc(CCc3c[nH]nn3)ccc2o1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9999043345451355, 0.9993997812271118, 0.9940739870071411] +Nc1ncncc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Br']; [0.9999920129776001, 0.9999860525131226, 0.9974716901779175] +CC(C)c1oncc1-c1ccc2ocnc2c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; [0.9999986886978149] +Fc1ccc(-c2ccc3ocnc3c2)c(C(F)(F)F)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; [0.9999980330467224, 0.9999933242797852, 0.999972939491272, 0.9999711513519287, 0.999770998954773, 0.9989867210388184, 0.9983793497085571, 0.9982393980026245] +O=C(Nc1ccc2ocnc2c1)c1c(Cl)cccc1Cl; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'COC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'Brc1ccc2ocnc2c1', 'O=C(Cl)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'NC(=O)c1c(Cl)cccc1Cl', 'O=[N+]([O-])c1ccc2ocnc2c1']; [0.9999386072158813, 0.9999368190765381, 0.9993624687194824, 0.9986238479614258, 0.9968857765197754, 0.9942913055419922] +CC(=O)Nc1cccc(-c2ccc3ocnc3c2)c1; ['Brc1ccc2ocnc2c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1ccc2ocnc2c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1ccc2ocnc2c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1ccc2ocnc2c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999894499778748, 0.9999852776527405, 0.9991257190704346, 0.9817718267440796, 0.9638309478759766] +c1ccc(Oc2ccc3ocnc3c2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1', 'Fc1ccc2ocnc2c1', 'Ic1ccccn1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; ['Oc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1', '[O-]c1ccccn1', 'Oc1ccc2ocnc2c1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9992127418518066, 0.9954783916473389, 0.9930204153060913, 0.9811418056488037, 0.9689471125602722, 0.9563710689544678, 0.9549095630645752, 0.8782386779785156] +CCNc1nc2ccc(-c3ccc4ocnc4c3)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3ocnc3c2)CC1; ['Brc1ccc2ocnc2c1', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Fc1ccc2ocnc2c1']; [0.9823440313339233, 0.9715596437454224] +Cn1cc(-c2ccc3ocnc3c2)c2ccccc21; ['Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999987483024597, 0.9999492168426514, 0.9999170303344727] +COc1ccc(-c2ccc3ocnc3c2)cc1Cl; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'COc1ccc(B(O)O)cc1Cl', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(I)cc1Cl', 'Clc1ccc2ocnc2c1', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Clc1ccc2ocnc2c1', 'COc1ccccc1Cl', 'COc1ccc([Mg]Br)cc1Cl']; [0.9999881982803345, 0.9999833106994629, 0.9999703168869019, 0.9997770190238953, 0.9996500015258789, 0.9994471669197083, 0.9994040727615356, 0.9811482429504395, 0.9708592891693115, 0.9533944725990295, 0.8800777196884155] +CC(C)(COc1ccc2ocnc2c1)S(C)(=O)=O; [None]; [None]; [0] +NC(=O)CCCc1ccc2ocnc2c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2ocnc2c1; [None]; [None]; [0] +CCCn1cc(-c2ccc3ocnc3c2)cn1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CCCn1cc(B(O)O)cn1', 'Brc1ccc2ocnc2c1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1', 'Clc1ccc2ocnc2c1', 'CCCn1cc(Br)cn1']; [0.9999997615814209, 0.9999995827674866, 0.9999992251396179, 0.9999745488166809, 0.9997791051864624, 0.999613881111145] +c1ccn2ncc(-c3ccc4ocnc4c3)c2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1cnn2ccccc12', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['Ic1cnn2ccccc12', 'Clc1cnn2ccccc12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'Clc1ccc2ocnc2c1', 'OB(O)c1cnn2ccccc12', 'Brc1cnn2ccccc12', 'c1ccn2nccc2c1', 'c1ccc2ocnc2c1', 'c1ccc2ocnc2c1']; [0.9999995231628418, 0.999994158744812, 0.9999929666519165, 0.9999929666519165, 0.9999690055847168, 0.9997813701629639, 0.9962671995162964, 0.99365234375, 0.9837812185287476, 0.8817136883735657, 0.827206015586853] +O=c1cc(-c2ccc3ocnc3c2)cc[nH]1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1']; [0.9999768733978271, 0.9999444484710693] +C[S@](=O)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ocnc2c1']; [0.9999992251396179, 0.9999877214431763, 0.9998974800109863, 0.9940812587738037] +O=C1CCc2cccc(-c3ccc4ocnc4c3)c21; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999956488609314, 0.9999079704284668, 0.9888589382171631] +C[C@@H](Oc1ccc2ocnc2c1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1ccc2ocnc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Fc1ccc2ocnc2c1']; [0.9978649616241455, 0.9976727962493896, 0.9821612238883972, 0.8909630179405212] +CCN(CC)c1ccc2ocnc2c1; [None, None, 'CCOS(=O)(=O)OCC', 'Brc1ccc2ocnc2c1']; [None, None, 'Nc1ccc2ocnc2c1', 'CCNCC']; [0, 0, 0.9495497345924377, 0.9489701986312866] +CCNS(=O)(=O)c1ccccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1', 'CCNS(=O)(=O)c1ccccc1Br']; [0.9999749660491943, 0.9985882043838501, 0.9475947022438049] +[NH3+]Cc1ccc(-c2ccc3ocnc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc3ocnc3c2)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; [0.9999861717224121, 0.9999001026153564] +O=c1[nH]cc(Br)c2sc(-c3ccc4ocnc4c3)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4ocnc4c3)cc12; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Nc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['O=c1[nH]ccc2oc(Br)cc12', 'O=c1[nH]ccc2occc12', 'O=c1[nH]ccc2occc12']; [0.9999986886978149, 0.9962972402572632, 0.9943592548370361] +COc1ccncc1Nc1ccc2ocnc2c1; ['COc1ccncc1Cl', 'COc1ccncc1F', 'COc1ccncc1B(O)O', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N', 'Brc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'COc1ccncc1N']; [0.9999580383300781, 0.9997187852859497, 0.9996510148048401, 0.9995442628860474, 0.9992084503173828, 0.9989811182022095, 0.9982888698577881, 0.9979649186134338] +c1ccc2ncc(Nc3ccc4ocnc4c3)cc2c1; ['Clc1cnc2ccccc2c1', 'Brc1ccc2ocnc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1cnc2ccccc2c1', 'Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'Nc1cnc2ccccc2c1']; [0.9996719360351562, 0.9995557069778442, 0.9993430376052856, 0.998949408531189, 0.9985939264297485] +COc1cc(CCc2ccc3ocnc3c2)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3ocnc3c2)c1; ['CC(C)Oc1cncc(Br)c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'Clc1ccc2ocnc2c1']; [0.9999984502792358, 0.9999978542327881, 0.9999747276306152, 0.9982136487960815, 0.9964902400970459] +c1ccc(-c2ccncc2Nc2ccc3ocnc3c2)cc1; ['Brc1cnccc1-c1ccccc1', 'Nc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Nc1cnccc1-c1ccccc1']; ['Nc1ccc2ocnc2c1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'c1ccc2ocnc2c1']; [0.9999535083770752, 0.9999284148216248, 0.9997607469558716, 0.9976130723953247, 0.9907008409500122, 0.8907266855239868] +c1cc2cc(-c3ccc4ocnc4c3)cnc2[nH]1; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; [0.9999997615814209, 0.9999992847442627, 0.9999986886978149, 0.9999375343322754, 0.9993704557418823] +c1cc2c(-c3ccc4ocnc4c3)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999808073043823, 0.9999744892120361, 0.9729830026626587] +CC(C)(C)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'Clc1ccc2ocnc2c1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Clc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; [0.9999992847442627, 0.9999942779541016, 0.9999932646751404, 0.999982476234436, 0.999914288520813, 0.999860405921936, 0.9997216463088989, 0.9982756972312927, 0.9923678636550903, 0.984581470489502, 0.8975817561149597, 0.8702607154846191] +COc1cccc(F)c1-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2ocnc2c1', 'COc1cccc(F)c1B(O)O', 'Brc1ccc2ocnc2c1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'Clc1ccc2ocnc2c1', 'COc1cccc(F)c1Br', 'Clc1ccc2ocnc2c1', 'COc1cccc(F)c1']; [0.9999988079071045, 0.9999964833259583, 0.9999960064888, 0.9999822974205017, 0.9999773502349854, 0.9999642372131348, 0.9999589920043945, 0.9987335205078125, 0.9984025955200195, 0.9942551851272583] +CNC(=O)c1c(F)cccc1-c1ccc2ocnc2c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['CNC(=O)c1ccccc1F']; [0.9989151954650879] +CNS(=O)(=O)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccc2ocnc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Clc1ccc2ocnc2c1']; [0.9999741315841675, 0.9998705387115479, 0.999792218208313, 0.9993557929992676, 0.9992733001708984, 0.9942084550857544] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2ocnc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1ccc2ocnc2c1']; [0.9999862909317017, 0.99991375207901, 0.9998190402984619, 0.9996111989021301, 0.9954822659492493] +c1nc2cc(-c3ccc(N4CCOCC4)cc3)ccc2o1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc2ocnc2c1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Brc1ccc2ocnc2c1']; [0.9999997615814209, 0.9999975562095642, 0.9999972581863403, 0.9999891519546509, 0.9999889135360718, 0.9999763369560242, 0.9998698234558105, 0.9996025562286377] +C[C@H](Nc1ccc2ocnc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC1(c2ccc3ocnc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc2ocnc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Clc1ccc2ocnc2c1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'Clc1ccc2ocnc2c1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999980926513672, 0.9999936819076538, 0.999990701675415, 0.999957799911499, 0.9999145269393921, 0.9998499751091003, 0.9995529055595398, 0.998509407043457, 0.9753737449645996] +Cc1cc(-c2ccc3ocnc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCc1ccn(-c2ccc3ocnc3c2)n1; ['Brc1ccc2ocnc2c1']; ['OCc1cc[nH]n1']; [0.9867433309555054] +C[C@H](Nc1ccc2ocnc2c1)C(C)(C)O; ['CC(=O)C(C)(C)O', 'Brc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'C[C@H](N)C(C)(C)O']; [0.980096161365509, 0.9495777487754822] +C[C@@H](Nc1ccc2ocnc2c1)C(C)(C)O; ['CC(=O)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'Brc1ccc2ocnc2c1']; ['Nc1ccc2ocnc2c1', 'Nc1ccc2ocnc2c1', 'C[C@@H](N)C(C)(C)O']; [0.980096161365509, 0.9597638845443726, 0.9495777487754822] +Oc1ccc2nc(-c3ccc4ocnc4c3)[nH]c2c1; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N']; ['O=Cc1ccc2ocnc2c1', 'O=C(O)c1ccc2ocnc2c1', 'O=Cc1ccc2ocnc2c1']; [0.992576539516449, 0.9619827270507812, 0.9273984432220459] +Fc1cccc(Cl)c1-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl', 'Clc1ccc2ocnc2c1', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1']; [0.9999995231628418, 0.9999990463256836, 0.9999983310699463, 0.9999891519546509, 0.9999889731407166, 0.9999526739120483, 0.9999393820762634, 0.9996143579483032, 0.9975924491882324, 0.8091755509376526] +c1ccc2c(c1)cnn2-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1']; ['c1ccc2[nH]ncc2c1']; [0.9275742769241333] +OCCc1cn(-c2ccc3ocnc3c2)cn1; [None]; [None]; [0] +c1ncn(-c2ccc(-c3ccc4ocnc4c3)cc2)n1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['c1ccc(-n2cncn2)cc1']; [0.9992490410804749] +CSc1nc(C)c(-c2ccc3ocnc3c2)[nH]1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9915971159934998, 0.8848056793212891] +c1nc2cc(-c3nncn3C3CC3)ccc2o1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2ocnc2c1; [None]; [None]; [0] +COc1ccc(-c2ccc3ocnc3c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3ocnc3c2)cc1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1ccc2ocnc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Clc1ccc2ocnc2c1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccccc1', 'c1ccc2ocnc2c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'c1ccc2ocnc2c1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999843835830688, 0.9999507665634155, 0.9998283386230469, 0.9996694326400757, 0.999485433101654, 0.9987084865570068, 0.9970566630363464, 0.9960514307022095, 0.9944866895675659, 0.983771562576294, 0.9562363624572754, 0.8084665536880493, 0.7999793291091919] +c1ccc(Cn2cc(-c3ccc4ocnc4c3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc3ocnc3c2)nc(N)n1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['CCc1cc(Cl)nc(N)n1']; [0.9999703764915466] +Nc1nnc(-c2ccc3ocnc3c2)s1; ['NNC(N)=S', 'N#Cc1ccc2ocnc2c1']; ['O=C(O)c1ccc2ocnc2c1', 'NNC(N)=S']; [0.9998567700386047, 0.9995144605636597] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ocnc3c2)CC1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5ocnc5c4)n3n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3ocnc3c2)n1; [None]; [None]; [0] +O=C(CCc1ccc2ocnc2c1)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ocnc3c2)s1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['CNC(=O)c1ccc(Br)s1']; [0.9999986290931702] +CCCCc1cc(-c2ccc3ocnc3c2)nc(N)n1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2ocnc2c1)NCc1ccccn1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4ocnc4c3)nc2c1; ['Brc1nc2ccccc2s1', 'Nc1ccccc1I', 'Nc1ccccc1S', 'Nc1ccccc1S', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'N#Cc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Nc1ccccc1SSc1ccccc1N', 'c1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'O=Cc1ccc2ocnc2c1', 'O=C(O)c1ccc2ocnc2c1', 'O=Cc1ccc2ocnc2c1', 'Clc1nc2ccccc2s1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'O=Cc1ccc2ocnc2c1', 'c1ccc2scnc2c1']; [0.9999902248382568, 0.9999887943267822, 0.9999868869781494, 0.9999861717224121, 0.9999827742576599, 0.9999212026596069, 0.9997615814208984, 0.9990873336791992, 0.9615830779075623] +CC(C)(O)c1cccc(-c2ccc3ocnc3c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC(C)(O)c1cccc(Br)n1']; [0.9999909400939941, 0.9999579787254333, 0.9974521398544312] +CC1(C)Oc2ccc(-c3ccc4ocnc4c3)nc2NC1=O; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O']; [0.9999890327453613, 0.8408170938491821] +Cn1cc(C(N)=O)cc1-c1ccc2ocnc2c1; [None]; [None]; [0] +Nc1cncc(-c2ccc3ocnc3c2)n1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Br)n1']; [0.9999904632568359, 0.9999828934669495, 0.9843254089355469] +C[C@@H2]NC(=O)N1CCC(c2ccc3ocnc3c2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3ocnc3c2)c(F)c1; [None]; [None]; [0] +c1cc(-c2ccc3ocnc3c2)c2sccc2c1; ['Brc1ccc2ocnc2c1', 'Brc1cccc2ccsc12', 'Brc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999985098838806, 0.999984860420227, 0.99982750415802, 0.9762063026428223] +Nc1nc(-c2ccc3ocnc3c2)nc2ccccc12; ['N#Cc1ccccc1Br', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['O=Cc1ccc2ocnc2c1', 'Nc1nc(Cl)nc2ccccc12']; [0.9997496604919434, 0.9997425079345703] +c1ccc2nc(-c3ccc4ocnc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'BrCc1ccccc1Br', 'Nc1ccccc1CO', 'NCc1ccccc1N']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'O=Cc1ccc2ocnc2c1', 'O=Cc1ccc2ocnc2c1', 'O=Cc1ccc2ocnc2c1']; [0.9999725818634033, 0.9998369216918945, 0.9980611801147461, 0.9977611899375916, 0.9950885772705078] +c1cc(-c2ccc3ocnc3c2)c2snnc2c1; ['Brc1cccc2nnsc12', 'Brc1ccc2ocnc2c1']; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1cccc2nnsc12']; [0.9999986886978149, 0.9992806315422058] +c1cnc2c(-c3ccc4ocnc4c3)c[nH]c2c1; ['Brc1ccc2ocnc2c1', 'Brc1c[nH]c2cccnc12']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; [0.9999724626541138, 0.9997931122779846] +c1cc2cnc(-c3ccc4ocnc4c3)nc2[nH]1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C']; ['Clc1ncc2cc[nH]c2n1']; [0.9999862313270569] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4ocnc4c3)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; [0.9999723434448242, 0.9999709129333496, 0.9999605417251587, 0.999903678894043, 0.999830961227417, 0.9998167157173157, 0.9997137784957886, 0.9985112547874451, 0.9982668161392212, 0.993297278881073, 0.9901669025421143] +COc1ccc(Oc2ccc3ocnc3c2)c(F)c1F; ['COc1ccc(Br)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'Brc1ccc2ocnc2c1', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc([N+](=O)[O-])c(F)c1F']; ['Oc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1', 'COc1ccc(O)c(F)c1F', 'Oc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'Oc1ccc2ocnc2c1']; [0.9995464086532593, 0.9992059469223022, 0.9943547248840332, 0.9880802631378174, 0.9642512798309326, 0.934107780456543, 0.9070373773574829] +OCCn1cnc(-c2ccc3ocnc3c2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1ccc2ocnc2c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; [0.9999940395355225, 0.9999850988388062, 0.9997942447662354, 0.9993566274642944, 0.9912965893745422, 0.971448540687561] +CC(=O)Nc1ncc(-c2ccc3ocnc3c2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3ocnc3c2)c1; ['CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)cc1']; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'Clc1ccc2ocnc2c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c([Mg]Br)c1', 'Clc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1', 'COc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; [0.9999929666519165, 0.9999756217002869, 0.9999738931655884, 0.9998844861984253, 0.9998680353164673, 0.9996470808982849, 0.9972352981567383, 0.9945287704467773, 0.9895169734954834, 0.989414632320404, 0.9828029870986938, 0.9647244215011597, 0.9067591428756714, 0.833807647228241, 0.7915589213371277] +COc1ncccc1-c1ccc2ocnc2c1; ['Brc1ccc2ocnc2c1', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ocnc3c2)OC1(C)C', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1', 'COc1ncccc1B(O)O', 'Brc1ccc2ocnc2c1', 'Brc1ccc2ocnc2c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'Clc1ccc2ocnc2c1', 'COc1ncccc1Br', 'COc1ccccn1']; [0.9999937415122986, 0.9999873638153076, 0.9999831318855286, 0.9999252557754517, 0.9998538494110107, 0.9988501667976379, 0.9973882436752319, 0.9314538240432739] +C[C@@]1(O)CC[C@H](c2ccc3ocnc3c2)CC1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccc5ocnc5c4)CC3)nc2c1; ['Brc1ccc2ocnc2c1', 'Fc1ccc2ocnc2c1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9985634088516235, 0.9711138010025024] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3ocnc3c2)C1; ['Brc1ccc2ocnc2c1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'Fc1ccc2ocnc2c1', 'Clc1ccc2ocnc2c1']; [0.9999140501022339, 0.9977564215660095, 0.996356189250946] +Oc1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1cccc(O)c1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'c1cnc2ccoc2c1']; [0.9999655485153198, 0.9991247653961182, 0.9920093417167664] +Clc1ccc2c(c1-c1coc3cccnc13)OCO2; ['Brc1coc2cccnc12', 'OB(O)c1c(Cl)ccc2c1OCO2']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'c1cnc2ccoc2c1']; [0.9993481040000916, 0.954811692237854] +c1cc(-c2coc3cccnc23)c2cccnc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1cccc2ncccc12', 'Ic1cccc2ncccc12']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9998483657836914, 0.997892439365387, 0.9737103581428528, 0.8103095889091492] +Oc1cc(-c2coc3cccnc23)ccc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999018907546997, 0.9993310570716858] +O=C(Nc1cccc(-c2ccc3ocnc3c2)c1)C1CCNCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999070167541504, 0.9990971088409424] +CN(C)c1cc(-c2ccc3ocnc3c2)cnn1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9976620674133301, 0.9524060487747192, 0.9406419992446899, 0.9242120981216431] +Fc1ccc(Oc2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['Oc1ccc(F)cc1']; [0.9864039421081543] +c1ccc2c(-c3coc4cccnc34)n[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999731183052063, 0.9975564479827881] +COc1cc(C(N)=O)ccc1-c1coc2cccnc12; ['Brc1coc2cccnc12']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9998630881309509] +NC(=O)c1ccc(-c2coc3cccnc23)c(F)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9985159039497375, 0.9803591966629028] +Oc1ccc(-c2coc3cccnc23)c(Cl)c1; ['Brc1coc2cccnc12']; ['OB(O)c1ccc(O)cc1Cl']; [0.9977755546569824] +Nc1nccc(-c2coc3cccnc23)n1; ['Brc1coc2cccnc12']; ['Nc1ncccn1']; [0.7917448878288269] +Oc1ccc(-c2coc3cccnc23)c(F)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Oc1ccc(Br)c(F)c1']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'OB(O)c1ccc(O)cc1F', 'c1cnc2ccoc2c1']; [0.9981435537338257, 0.9953747391700745, 0.9069186449050903] +COc1ccc(F)cc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1[Mg]Br', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9996134042739868, 0.9994482398033142, 0.9905860424041748, 0.9882490634918213, 0.9747496843338013, 0.9663975238800049] +COc1cc(F)ccc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1cc(F)ccc1B(O)O', 'Brc1coc2cccnc12', 'COc1cc(F)ccc1Br']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'c1cnc2ccoc2c1', 'COc1cc(F)ccc1Br', 'c1cnc2ccoc2c1']; [0.9997549057006836, 0.9997186660766602, 0.9966168999671936, 0.9611219167709351, 0.8960152864456177] +O=C([O-])c1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2coc3cccnc23)o1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1']; [0.9995443820953369, 0.9603487253189087, 0.9210153818130493] +COc1cc(-c2coc3cccnc23)ccc1O; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.9999405145645142, 0.9968466758728027] +Cc1nc2c(F)cc(-c3coc4cccnc34)cc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'c1cnc2ccoc2c1']; [0.9997819662094116, 0.9991453886032104, 0.9987954497337341] +Oc1ccc(-c2ccc(-c3coc4cccnc34)cc2)c(O)c1; [None]; [None]; [0] +c1ccc2cc(-c3coc4cccnc34)ccc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Brc1coc2cccnc12', 'Brc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'c1cnc2ccoc2c1', 'Brc1coc2cccnc12', 'c1ccc2ccccc2c1', 'c1cnc2ccoc2c1']; [0.9999938011169434, 0.9999935626983643, 0.9996359348297119, 0.9987809658050537, 0.9843701720237732, 0.9823101758956909] +Oc1ccc(-c2coc3cccnc23)cc1F; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(O)c(F)c1']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'OB(O)c1ccc(O)c(F)c1', 'c1cnc2ccoc2c1']; [0.999983549118042, 0.9994223117828369, 0.9515206813812256] +Clc1[nH]ncc1-c1coc2cccnc12; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; [0.9997413158416748, 0.9957518577575684, 0.868962287902832] +Cn1cc(-c2coc3cccnc23)c2ccccc21; [None]; [None]; [0] +c1cnc2c(-c3cnn4ncccc34)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'O=C(O)c1cnn2ncccc12']; [0.9989561438560486, 0.8077554106712341] +Nc1cc(-c2coc3cccnc23)ccn1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9998832941055298, 0.9981235861778259, 0.9269723296165466] +c1cnc2c(-c3c[nH]c4cnccc34)coc2c1; ['Brc1coc2cccnc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.8832800388336182] +Fc1ccc(-c2coc3cccnc23)cc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1', 'Fc1ccccc1Cl']; [0.9999995231628418, 0.9999978542327881, 0.999496579170227, 0.9990798234939575, 0.9937770366668701, 0.7832098007202148] +Oc1ccc(-c2coc3cccnc23)c(O)c1; [None]; [None]; [0] +COc1cc(CCc2coc3cccnc23)ccc1O; [None]; [None]; [0] +Clc1ccccc1OCc1coc2cccnc12; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.9964030981063843] +Cc1ccc(CO)cc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; [0.9991128444671631, 0.9168753623962402] +Oc1ncc(-c2coc3cccnc23)cc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Oc1ncc(Br)cc1Cl']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(Br)cc1Cl', 'Oc1ncccc1Cl', 'c1cnc2ccoc2c1']; [0.9999841451644897, 0.9625093936920166, 0.9580968022346497, 0.7909344434738159] +Cc1ccc2[nH]ncc2c1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; [0.9997333288192749, 0.9880576133728027, 0.8755217790603638] +Oc1ccc(Cl)c(-c2coc3cccnc23)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1cc(Br)cc(OC)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'c1cnc2ccoc2c1']; [0.9999860525131226, 0.9999661445617676, 0.9912919998168945, 0.989712655544281, 0.9272501468658447] +COc1ccc(-c2coc3cccnc23)cc1OC; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1ccc(B(O)O)cc1OC', 'Brc1coc2cccnc12', 'COc1ccc(Br)cc1OC', 'Brc1coc2cccnc12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'c1cnc2ccoc2c1', 'COc1ccc(Br)cc1OC', 'c1cnc2ccoc2c1', 'COc1ccccc1OC']; [0.9999526739120483, 0.9993319511413574, 0.987249493598938, 0.9342646598815918, 0.851119875907898, 0.7994744777679443] +NC(=O)c1cc(-c2coc3cccnc23)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'c1cnc2ccoc2c1']; [0.9999836683273315, 0.9998785853385925, 0.9508327841758728, 0.8913551568984985] +Cc1nc2ccc(-c3coc4cccnc34)cc2[nH]1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.999992311000824, 0.927804708480835] +COc1cc(CCc2coc3cccnc23)cc(OC)c1; ['Brc1coc2cccnc12']; ['COc1cc(CCBr)cc(OC)c1']; [0.9955209493637085] +c1cnc2c(-c3cnc4[nH]ccc4c3)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1coc2cccnc12', 'c1cnc2ccoc2c1']; [0.9999985694885254, 0.9999819993972778, 0.9992377758026123, 0.9753427505493164] +c1ccc2sc(-c3coc4cccnc34)nc2c1; ['Brc1coc2cccnc12']; ['c1ccc2scnc2c1']; [0.9892003536224365] +CS(=O)(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9999891519546509, 0.9994502067565918, 0.9862552881240845, 0.9376869201660156] +NC(=O)Nc1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +Oc1cncc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9999250769615173, 0.9945811629295349, 0.9004545211791992] +CNC(=O)c1cccc2cc(-c3coc4cccnc34)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1coc2cccnc12; [None]; [None]; [0] +CNc1nccc(-c2coc3cccnc23)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1coc2cccnc12; [None]; [None]; [0] +O=C1Cc2cc(-c3coc4cccnc34)ccc2N1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999001622200012, 0.9994567632675171, 0.8627517223358154] +Cc1n[nH]c(-c2coc3cccnc23)c1C; ['Brc1coc2cccnc12']; ['Cc1c[nH]nc1C']; [0.9826256036758423] +Cc1cc(O)ccc1-c1coc2cccnc12; ['Brc1coc2cccnc12']; ['Cc1cc(O)ccc1B(O)O']; [0.9976006746292114] +Cc1n[nH]c2cc(N(C)c3coc4cccnc34)ccc12; [None]; [None]; [0] +CCc1sccc1-c1coc2cccnc12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1coc2cccnc12; ['Brc1coc2cccnc12']; ['CNc1cccc(Cl)c1']; [0.9734723567962646] +FC(F)c1cc(-c2coc3cccnc23)[nH]n1; ['Brc1coc2cccnc12']; ['FC(F)c1cc[nH]n1']; [0.7845707535743713] +Clc1cnccc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'Clc1cccnc1']; [0.9978963136672974, 0.9811717867851257, 0.8049713373184204] +C[C@H](CC(N)=O)c1coc2cccnc12; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)CCN4)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'Brc1coc2cccnc12']; [0.9999894499778748, 0.9995569586753845, 0.9983233213424683, 0.9635886549949646] +Oc1c(Cl)cc(-c2coc3cccnc23)cc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cccc1Cl']; [0.999911367893219, 0.9992795586585999, 0.76020348072052] +Oc1cc(-c2coc3cccnc23)nc2ccnn12; ['Brc1coc2cccnc12']; ['Oc1ccnc2ccnn12']; [0.9529901146888733] +O=c1[nH]c2ccc(-c3coc4cccnc34)cc2[nH]1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999589920043945, 0.9999392628669739, 0.8804625272750854] +Cc1oc(-c2coc3cccnc23)cc1C(=O)[O-]; [None]; [None]; [0] +c1cnc2c(Nc3ccncc3)coc2c1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br']; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9990817308425903, 0.9765074849128723, 0.9055346846580505, 0.7961381673812866] +CNC(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['CNC(=O)c1ccc(B(O)O)cc1']; [0.9984830617904663] +Fc1ccc2n[nH]c(-c3coc4cccnc34)c2c1; ['Brc1coc2cccnc12']; ['Fc1ccc2n[nH]cc2c1']; [0.9965276122093201] +Oc1cc(Br)cc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1cc(O)cc(Br)c1']; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'c1cnc2ccoc2c1']; [0.9986203908920288, 0.9981238842010498, 0.9942396283149719] +CN(c1cccc2[nH]ncc12)c1coc2cccnc12; ['Brc1coc2cccnc12']; ['CNc1cccc2[nH]ncc12']; [0.994706928730011] +CNc1nc(-c2coc3cccnc23)ncc1F; [None]; [None]; [0] +Cc1nc2ccc(-c3coc4cccnc34)cc2o1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1']; [0.9999984502792358, 0.9999980926513672] +Cn1ncc(N)c1-c1coc2cccnc12; [None]; [None]; [0] +Cc1cc(-c2coc3cccnc23)ccc1C(N)=O; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999985694885254, 0.9871050119400024] +O=C(NC1CC1)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999969601631165, 0.9998871684074402, 0.9532966017723083] +Cc1cc(-c2coc3cccnc23)cc(C)c1O; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9997625350952148, 0.9925633668899536] +Oc1c(F)cc(-c2coc3cccnc23)cc1F; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9998095631599426, 0.9807437062263489] +CSc1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CSc1cccc(B(O)O)c1', 'Brc1coc2cccnc12']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'c1cnc2ccoc2c1', 'CSc1cccc(Br)c1']; [0.999982476234436, 0.9992761611938477, 0.9609384536743164, 0.9427502751350403] +O=c1[nH][nH]c2cc(-c3coc4cccnc34)ccc12; ['O=c1[nH][nH]c2cc(Br)ccc12']; ['c1cnc2ccoc2c1']; [0.978858232498169] +Fc1ccc(Oc2coc3cccnc23)c(F)c1; ['Brc1coc2cccnc12']; ['Oc1ccc(F)cc1F']; [0.9987521171569824] +Cc1onc(-c2ccccc2)c1-c1coc2cccnc12; ['Brc1coc2cccnc12']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.999931812286377] +Fc1ccc(-c2ncoc2-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['Fc1ccc(-c2cocn2)cc1']; [0.9805126190185547] +c1ccc2c(COc3coc4cccnc34)cccc2c1; [None]; [None]; [0] +Fc1ccc(COc2coc3cccnc23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1coc2cccnc12; ['Brc1coc2cccnc12']; ['NCc1c(F)cccc1Cl']; [0.9999619126319885] +Fc1ccc(CCc2coc3cccnc23)c(F)c1; ['Brc1coc2cccnc12']; ['Fc1ccc(CCBr)c(F)c1']; [0.9960184097290039] +c1ccc2nc(-c3coc4cccnc34)ncc2c1; [None]; [None]; [0] +CCOc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CCOc1ccc(Br)cc1', 'Brc1coc2cccnc12', 'CCOc1ccc(I)cc1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc([Mg]Br)cc1', 'c1cnc2ccoc2c1', 'CCOc1ccccc1', 'c1cnc2ccoc2c1']; [0.9999793767929077, 0.9982702732086182, 0.981447696685791, 0.9665813446044922, 0.9280166625976562, 0.8569722771644592, 0.7654646635055542] +CC(=O)N(C)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CC(=O)N(C)c1ccc(Br)cc1', 'Brc1coc2cccnc12']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'CC(=O)N(C)c1ccccc1']; [0.9999890327453613, 0.9706253409385681, 0.9096047878265381, 0.7930635213851929] +Clc1ccc(-c2[nH]ncc2-c2coc3cccnc23)cc1; [None]; [None]; [0] +COc1ncccc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; [0.9934399127960205, 0.9171217679977417] +c1ccc2c(CCc3coc4cccnc34)c[nH]c2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1coc2cccnc12; ['Brc1coc2cccnc12']; ['Cc1csc(C(C)(C)O)n1']; [0.9938722848892212] +CS(=O)(=O)c1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Brc1coc2cccnc12', 'CS(=O)(=O)c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'c1cnc2ccoc2c1', 'CS(=O)(=O)c1cccc(Br)c1', 'c1cnc2ccoc2c1']; [0.9999974966049194, 0.9999688267707825, 0.9976425170898438, 0.9974557161331177, 0.9890196323394775] +COc1cc(-c2coc3cccnc23)cc(OC)c1OC; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.999903678894043, 0.998987078666687, 0.9707064628601074, 0.9381266236305237, 0.9000924229621887] +c1cnc2c(-c3cnc4cccnn34)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'c1cnc2ccoc2c1']; ['c1cnn2ccnc2c1', 'Clc1cnc2cccnn12', 'O=C(O)c1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9979636073112488, 0.9979163408279419, 0.97966468334198, 0.9183992147445679] +COc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1ccc(B(O)O)cc1', 'Brc1coc2cccnc12', 'COc1ccc(Br)cc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'COc1ccccc1', 'c1cnc2ccoc2c1']; [0.999976634979248, 0.9986663460731506, 0.9890439510345459, 0.9675487279891968, 0.9560723900794983, 0.9328171610832214] +c1cnc2c(-c3ccc(N4CCOCC4)cc3)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'c1cnc2ccoc2c1']; [0.9999986886978149, 0.9999251365661621, 0.9999126195907593, 0.9985654354095459] +Cc1cc(Nc2coc3cccnc23)sn1; ['Brc1coc2cccnc12']; ['Cc1cc(N)sn1']; [0.982016921043396] +N#Cc1ccc(O)c(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12']; ['N#Cc1ccc(O)c(B(O)O)c1']; [0.9741270542144775] +c1cnc(Nc2coc3cccnc23)nc1; ['Brc1coc2cccnc12']; ['Nc1ncccn1']; [0.9675248861312866] +c1ccc2[nH]c(-c3coc4cccnc34)nc2c1; [None]; [None]; [0] +c1ccc2c(-c3coc4cccnc34)nccc2c1; ['Brc1coc2cccnc12']; ['OB(O)c1nccc2ccccc12']; [0.9928775429725647] +O=C(Nc1cccc(-c2coc3cccnc23)c1)C1CC1; [None]; [None]; [0] +Cc1ccc2ncn(-c3coc4cccnc34)c2c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3coc4cccnc34)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; [0.9999910593032837, 0.9997527599334717] +OCCOc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1']; [0.9999527931213379, 0.9983333349227905] +c1cc(-c2coc3cccnc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2coc3cccnc23)cc1)N1CCOCC1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999991655349731, 0.9998984336853027, 0.9995831251144409, 0.9756639003753662] +c1cnc2c(Nc3ccncn3)coc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3coc4cccnc34)cc2)CC1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3coc4cccnc34)cc2C1; ['Brc1coc2cccnc12']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9817849397659302] +FC(F)(F)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1', 'FC(F)(F)c1ccccc1']; [0.9999927878379822, 0.9999224543571472, 0.9973565340042114, 0.9960919618606567, 0.9758923649787903] +Cc1nc(C)c(-c2coc3cccnc23)s1; ['Brc1coc2cccnc12']; ['Cc1csc(C)n1']; [0.9499006271362305] +CN(C)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1coc2cccnc12', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'CN(C)c1ccccc1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9999927878379822, 0.9997491836547852, 0.9957944750785828, 0.9918588995933533, 0.9864683151245117, 0.9772545695304871, 0.9582638740539551] +O=C(c1ccc(-c2coc3cccnc23)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'c1cnc2ccoc2c1']; [0.9999710321426392, 0.999106764793396, 0.8367469310760498] +C[C@@H](O)COc1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; [0.9989781975746155, 0.9228422045707703] +CC(C)c1cc(-c2coc3cccnc23)nc(N)n1; ['Brc1coc2cccnc12']; ['CC(C)c1ccnc(N)n1']; [0.9893021583557129] +Brc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'OB(O)c1ccc(Br)cc1', 'c1cnc2ccoc2c1']; [0.9999327063560486, 0.9884573221206665, 0.8653783202171326] +CS(=O)(=O)N1CCC(c2coc3cccnc23)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2coc3cccnc23)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1']; [0.9999980330467224, 0.9997698664665222, 0.9957796335220337, 0.964026927947998, 0.9207077026367188] +O=C(c1ccccc1)N1CC[C@H](c2coc3cccnc23)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3coc4cccnc34)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1coc2cccnc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2coc3cccnc23)c(C)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9995924234390259, 0.9973530769348145] +c1ccc2c(-c3coc4cccnc34)c[nH]c2c1; ['Brc1coc2cccnc12']; ['OB(O)c1c[nH]c2ccccc12']; [0.8357437252998352] +c1cnc2c(-c3ccn4nccc4n3)coc2c1; ['Brc1coc2cccnc12']; ['c1cnc2ccnn2c1']; [0.9972643852233887] +CN(C)c1ccc(-c2coc3cccnc23)cc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CN(C)c1ccc(Br)cc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'c1cnc2ccoc2c1']; [0.9999974966049194, 0.9966734647750854, 0.9845246076583862, 0.866824746131897] +COc1ccc(Cl)cc1-c1coc2cccnc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1ccc(Cl)cc1Br']; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br', 'c1cnc2ccoc2c1']; [0.9992110133171082, 0.9982249140739441, 0.9365372061729431, 0.8308290243148804] +c1ccc(-n2cccn2)c(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'c1cnc2ccoc2c1', 'Brc1coc2cccnc12', 'c1cnc2ccoc2c1', 'c1ccc(-n2cccn2)cc1']; [0.9995172023773193, 0.9972280263900757, 0.9634979963302612, 0.9440436363220215, 0.902147114276886, 0.7906319499015808] +COc1cc(OC)c(-c2coc3cccnc23)cc1Cl; ['Brc1coc2cccnc12']; ['COc1cc(OC)c(Br)cc1Cl']; [0.9182881116867065] +CC(=O)Nc1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; [0.9999662637710571, 0.9995822906494141] +c1cnc2c(-c3ccc4c(c3)CCO4)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'c1cnc2ccoc2c1', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'c1cnc2ccoc2c1']; [0.9999922513961792, 0.999920129776001, 0.9980454444885254, 0.9936807155609131, 0.9820928573608398, 0.9534600973129272] +c1ccc(-c2cc(-c3coc4cccnc34)n[nH]2)cc1; ['Brc1coc2cccnc12']; ['c1ccc(-c2ccn[nH]2)cc1']; [0.937453031539917] +c1ccc2ncc(-c3coc4cccnc34)cc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1cnc2ccccc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'Brc1coc2cccnc12']; [0.9999902248382568, 0.9992109537124634, 0.9897664785385132] +CC(C)c1ccc2nc(-c3coc4cccnc34)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1coc2cccnc12']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1', 'CC(C)(C)c1ccccc1']; [0.9999983906745911, 0.999817967414856, 0.9983840584754944, 0.994680643081665, 0.9933966398239136, 0.9907517433166504] +COc1cc(C(=O)N2CCOCC2)ccc1-c1coc2cccnc12; [None]; [None]; [0] +c1cnc2c(-c3scc4c3OCCO4)coc2c1; ['Brc1coc2cccnc12']; ['c1scc2c1OCCO2']; [0.9999606609344482] +c1cc2c(c(-c3coc4cccnc34)c1)OCO2; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1cccc2c1OCO2', 'Brc1cccc2c1OCO2']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'OB(O)c1cccc2c1OCO2', 'c1cnc2ccoc2c1', 'Brc1coc2cccnc12']; [0.9999254941940308, 0.9974184036254883, 0.9922923445701599, 0.9880051016807556] +CN(C)C(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; [0.9999957084655762, 0.999552845954895, 0.9637985229492188] +COc1cccc(C(=O)Nc2coc3cccnc23)c1; ['Brc1coc2cccnc12']; ['COc1cccc(C(N)=O)c1']; [0.9177408218383789] +CC(C)(C)c1ccc(-c2coc3cccnc23)cn1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1coc2cccnc12']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1', 'CC(C)(C)c1ccc(Br)cn1']; [0.9999938011169434, 0.9996103048324585, 0.9976362586021423, 0.9962018728256226, 0.9930609464645386] +Nc1nc(-c2coc3cccnc23)cs1; [None]; [None]; [0] +CC1(COc2coc3cccnc23)COC1; ['Brc1coc2cccnc12']; ['CC1(CO)COC1']; [0.9466875791549683] +Clc1cccc(-n2ccc(-c3coc4cccnc34)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CSc1ccc(B(O)O)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'c1cnc2ccoc2c1']; [0.9999744296073914, 0.9971224665641785, 0.9354639053344727, 0.8604748845100403] +c1ccc2sc(-c3coc4cccnc34)cc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9995758533477783, 0.9976005554199219] +CCN1CCN(Cc2ccc(-c3coc4cccnc34)cc2)CC1; ['Brc1coc2cccnc12']; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; [0.9984172582626343] +Fc1ccc(-c2coc3cccnc23)c(Cl)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(F)cc1Cl', 'Brc1coc2cccnc12', 'Fc1ccc(Br)c(Cl)c1', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'c1cnc2ccoc2c1', 'Fc1ccc(Br)c(Cl)c1', 'c1cnc2ccoc2c1', 'Fc1cccc(Cl)c1']; [0.9998474717140198, 0.9996688365936279, 0.9852662086486816, 0.983329176902771, 0.9829615354537964, 0.7799922227859497] +Brc1cnc(-c2coc3cccnc23)nc1; [None]; [None]; [0] +Cc1cc(-c2coc3cccnc23)nc(N)n1; [None]; [None]; [0] +CCc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; [0.9999737739562988, 0.9927046298980713, 0.8441659808158875] +O=C1CCc2cc(-c3coc4cccnc34)ccc2N1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999288320541382, 0.9904099106788635, 0.8593671321868896] +CC(=O)N[C@@H]1CC[C@@H](c2coc3cccnc23)CC1; [None]; [None]; [0] +COc1ccc(CNc2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['COc1ccc(CN)cc1']; [0.9035081267356873] +Clc1ccc(-c2coc3cccnc23)c(Cl)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1ccc(Cl)cc1Cl', 'c1cnc2ccoc2c1', 'c1cnc2ccoc2c1', 'Clc1cccc(Cl)c1']; [0.9997550845146179, 0.9992762804031372, 0.9918020963668823, 0.984209418296814, 0.9025726914405823] +c1cnc2c(-c3ncc4cccn4n3)coc2c1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +c1cnc2c(-c3cc4ccccn4n3)coc2c1; [None]; [None]; [0] +Cn1cc(-c2coc3cccnc23)c(C(F)(F)F)n1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9967334270477295, 0.9919869899749756] +O=C(C1CC1)N1CC(Nc2coc3cccnc23)C1; [None]; [None]; [0] +COc1cc(-c2coc3cccnc23)ccc1N1CCOCC1; ['Brc1coc2cccnc12', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1coc2cccnc12', 'COc1cc(Br)ccc1N1CCOCC1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'c1cnc2ccoc2c1', 'COc1cc(Br)ccc1N1CCOCC1', 'c1cnc2ccoc2c1']; [0.9999560713768005, 0.9991556406021118, 0.9853109121322632, 0.9721603393554688] +Clc1cnc(-c2coc3cccnc23)nc1; [None]; [None]; [0] +COc1ccc2cccc(-c3coc4cccnc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2coc3cccnc23)cc1OC; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; [0.996732234954834, 0.9812436103820801] +Oc1ccc2cccc(-c3coc4cccnc34)c2c1; ['Brc1coc2cccnc12']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; [0.9986203908920288] +COc1cc(-c2coc3cccnc23)ccc1Cl; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'COc1cc(B(O)O)ccc1Cl', 'Brc1coc2cccnc12', 'COc1cc(Br)ccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'c1cnc2ccoc2c1', 'COc1cc(Br)ccc1Cl', 'c1cnc2ccoc2c1']; [0.999993085861206, 0.9997711181640625, 0.9802433252334595, 0.9799233675003052, 0.7741125822067261] +Cc1csc2c(-c3coc4cccnc34)ncnc12; ['Brc1coc2cccnc12']; ['Cc1csc2cncnc12']; [0.7977961301803589] +Cc1nc(Nc2coc3cccnc23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2coc3cccnc23)nn1C; ['Brc1coc2cccnc12']; ['Cc1cc(N)nn1C']; [0.9947855472564697] +CC1(C)Cc2cc(-c3coc4cccnc34)ccc2O1; [None]; [None]; [0] +OCCn1cc(-c2coc3cccnc23)cn1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1']; [0.9999905228614807, 0.9996151924133301] +O=C(Nc1coc2cccnc12)c1ccco1; ['Brc1coc2cccnc12']; ['NC(=O)c1ccco1']; [0.8926270008087158] +COc1cc(-c2coc3cccnc23)c(OC)cc1Br; ['Brc1coc2cccnc12']; ['COc1cc(B(O)O)c(OC)cc1Br']; [0.8252313733100891] +Nc1cc(-c2coc3cccnc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2coc3cccnc23)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['NC(=O)c1ccc(CBr)cc1']; [0.9667965173721313] +O=C(Nc1cn[nH]c1)c1cccc(-c2coc3cccnc23)c1; [None]; [None]; [0] +COc1ccc2oc(-c3coc4cccnc34)cc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1']; [0.9999409914016724, 0.9958959817886353] +O=S(=O)(CCO)c1ccc(Cc2coc3cccnc23)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2coc3cccnc23)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['CC(C)(C)c1ccc(C(N)=O)cc1']; [0.9537296295166016] +COc1cc(CS(C)(=O)=O)ccc1-c1coc2cccnc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2coc3cccnc23)CC1; [None]; [None]; [0] +c1cnc2c(-c3ccc4cn[nH]c4c3)coc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Brc1coc2cccnc12']; [0.999998927116394, 0.9999946355819702, 0.9999451637268066, 0.9898278713226318] +c1ccc2oc(-c3coc4cccnc34)cc2c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1cc2ccccc2o1', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['OB(O)c1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'Brc1coc2cccnc12', 'F[B-](F)(F)c1cc2ccccc2o1', 'c1ccc2occc2c1']; [0.9998209476470947, 0.9994668960571289, 0.9972096681594849, 0.9892263412475586, 0.8758224248886108] +CCn1cc(-c2coc3cccnc23)cn1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cccn1', 'c1cnc2ccoc2c1']; [0.999984622001648, 0.999746561050415, 0.9940335154533386, 0.9922176599502563] +COc1ccc2c(c1)c(-c1coc3cccnc13)cn2C; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1coc2cccnc12; ['Brc1coc2cccnc12']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; [0.999549150466919] +CNC(=O)c1ccc(OC)c(-c2coc3cccnc23)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2coc3cccnc23)cc1; [None]; [None]; [0] +COc1ccc2nc(-c3coc4cccnc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Brc1coc2cccnc12', 'FC(F)(F)Oc1ccc(Br)cc1', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'c1cnc2ccoc2c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'c1cnc2ccoc2c1', 'FC(F)(F)Oc1ccccc1']; [0.9999991655349731, 0.9999819993972778, 0.9995205402374268, 0.9989808797836304, 0.9969722032546997, 0.996179461479187] +Cn1cc(Br)cc1-c1coc2cccnc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2coc3cccnc23)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2coc3cccnc23)c1)N1CCCC1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3coc4cccnc34)c2)c1; [None]; [None]; [0] +c1cnc2c(-c3ncc4sccc4n3)coc2c1; [None]; [None]; [0] +CCc1cccc(-c2coc3cccnc23)n1; [None]; [None]; [0] +c1cnc2c(-c3ncn4c3CCCC4)coc2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3coc4cccnc34)ccc21; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1coc2cccnc12', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'c1cnc2ccoc2c1', 'Cn1ncc2cc(Br)ccc21', 'c1cnc2ccoc2c1']; [0.9999991655349731, 0.999998927116394, 0.9999438524246216, 0.9945447444915771, 0.7607903480529785] +Cc1cc(-c2coc3cccnc23)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(-c2coc3cccnc23)cn1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'CN(C)c1ccc(B(O)O)cn1', 'Brc1coc2cccnc12']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc([Mg]Br)cn1', 'c1cnc2ccoc2c1', 'CN(C)c1ccc(Br)cn1']; [0.9999873042106628, 0.9997504949569702, 0.9994773268699646, 0.9856504201889038, 0.9822015762329102, 0.9646850824356079] +Cc1n[nH]c2cc(-c3coc4cccnc34)ccc12; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [0.9999995827674866, 0.9999990463256836, 0.9955419301986694] +CC(C)(O)c1ccc2cc(-c3coc4cccnc34)[nH]c2c1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2coc3cccnc23)c1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1']; [0.9998430609703064, 0.8446247577667236] +O=C(Nc1coc2cccnc12)c1cccc(OC(F)(F)F)c1; ['Brc1coc2cccnc12']; ['NC(=O)c1cccc(OC(F)(F)F)c1']; [0.999537467956543] +Cn1nc(Cl)c2cc(-c3coc4cccnc34)ccc21; [None]; [None]; [0] +OCCc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1']; [0.9999810457229614, 0.9976816177368164] +CC(=O)N1CCC(n2cc(-c3coc4cccnc34)cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2coc3cccnc23)c(OC)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3coc4cccnc34)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1coc2cccnc12; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['c1cnc2ccoc2c1']; [0.9523991942405701] +CN(C)C(=O)c1ccc(-c2coc3cccnc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1coc2cccnc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['CCNC(=O)c1ccc(B(O)O)cc1']; [0.9988082647323608] +Cc1cc(N2CCOCC2)ccc1-c1coc2cccnc12; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1coc2cccnc12; [None]; [None]; [0] +Cc1cc(Nc2coc3cccnc23)ncc1F; ['Brc1coc2cccnc12']; ['Cc1cc(N)ncc1F']; [0.9942793846130371] +c1ccc(Nc2coc3cccnc23)nc1; [None]; [None]; [0] +Fc1ccc(Nc2coc3cccnc23)nc1; ['Brc1coc2cccnc12']; ['Nc1ccc(F)cn1']; [0.9816322326660156] +CCNC(=O)Cc1ccc(-c2coc3cccnc23)cc1; ['Brc1coc2cccnc12']; ['CCNC(=O)Cc1ccc(Br)cc1']; [0.9479566216468811] +CN(C)C(=O)c1ccc(-c2coc3cccnc23)nc1; ['Brc1coc2cccnc12', 'Brc1coc2cccnc12']; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; [0.9970594644546509, 0.9005399346351624] +CS(=O)(=O)c1ccc(Cl)c(-c2coc3cccnc23)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['c1cnc2ccoc2c1']; [0.9055328369140625] +CNC(=O)c1ccccc1-c1cn(C)c2ccccc12; ['CNC(=O)c1ccccc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9997880458831787] +Cn1nc(-c2coc3cccnc23)cc1C(C)(C)O; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cn(C)c2ccccc12; ['CC(C)S(=O)(=O)c1ccccc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999714493751526] +CCOc1ccccc1-c1cn(C)c2ccccc12; ['CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Cl']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999843835830688, 0.9988591074943542, 0.9970552921295166, 0.9920352101325989] +CNC(=O)c1ccc(C)c(-c2coc3cccnc23)c1; [None]; [None]; [0] +COC(C)(C)CCc1cn(C)c2ccccc12; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1coc2cccnc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cn(C)c3ccccc23)[nH]1; [None]; [None]; [0] +Cn1cc(Cc2cc(F)cc(F)c2)c2ccccc21; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['Fc1cc(F)cc(CCl)c1', 'O=Cc1cc(F)cc(F)c1', 'Fc1cc(F)cc(CBr)c1', 'OCc1cc(F)cc(F)c1']; [0.9993147253990173, 0.9958691596984863, 0.994507908821106, 0.9602624177932739] +Cn1cc(-c2ccccc2OC(F)(F)F)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl']; [0.999906599521637, 0.9995701313018799, 0.9984095096588135, 0.9930685758590698, 0.9892120361328125, 0.9291967749595642] +Cn1cc(-c2ccccc2C(N)=O)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['NC(=O)c1ccccc1Br']; [0.9991544485092163] +Cn1cc(-c2cccc(C(F)(F)F)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Cl)c1', 'FC(F)(F)c1cccc(I)c1', 'Nc1cccc(C(F)(F)F)c1']; [0.9999980926513672, 0.9999909996986389, 0.9999872446060181, 0.9999819993972778, 0.9997397661209106, 0.9996752738952637, 0.9967231750488281] +CCn1cc(-c2cn(C)c3ccccc23)cn1; ['CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999041557312012, 0.99986732006073, 0.9795876741409302] +Cn1cc(-c2cnn(Cc3ccccc3)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Brc1cnn(Cc2ccccc2)c1', 'Cn1ccc2ccccc21']; ['Ic1cnn(Cc2ccccc2)c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999638795852661, 0.9999442100524902, 0.9974684715270996] +Cn1cc(-c2ccnc3ccccc23)c2ccccc21; ['Brc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'Br[Mg]c1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Cn1ccc2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Ic1ccnc2ccccc12', 'Ic1ccnc2ccccc12']; [0.9998908042907715, 0.9912375211715698, 0.9728055000305176, 0.9673666954040527, 0.882588267326355, 0.8439500331878662] +Cn1cc(-c2ccccc2P(C)(C)=O)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccccc2C(=O)[O-])c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2csc(C(C)(C)C)n2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cc(Cl)ccc2Cl)c2ccccc21; ['Cn1ccc2ccccc21', 'Clc1ccc(Cl)c(Br)c1', 'Cn1ccc2ccccc21']; ['OB(O)c1cc(Cl)ccc1Cl', 'Cn1ccc2ccccc21', 'NNc1cc(Cl)ccc1Cl']; [0.9984967708587646, 0.9979274868965149, 0.7844575643539429] +Cn1cc(-c2cnn(CCO)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1']; [0.9999829530715942, 0.9999551773071289] +Cn1cc(-c2cccc(NC(=O)c3ccccc3)c2)c2ccccc21; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Cn1ccc2ccccc21', 'O=C(Nc1ccccc1)c1ccccc1']; [0.9999964237213135, 0.9458743929862976] +CC(C)C(=O)COc1cn(C)c2ccccc12; [None]; [None]; [0] +Cn1cc(-c2cnc(-c3ccccc3)[nH]2)c2ccccc21; [None]; [None]; [0] +Cn1cnc2ccc(-c3cn(C)c4ccccc34)cc2c1=O; [None]; [None]; [0] +Cc1ccc(-c2cn(C)c3ccccc23)c(Br)c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cn(C)c2ccccc12; ['Cc1nc(N)sc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999850392341614] +Cn1cc(-c2cnc3ccccn23)c2ccccc21; ['Brc1cnc2ccccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Clc1cnc2ccccn12', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1cnc2ccccn12', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'c1ccn2ccnc2c1']; [0.9999996423721313, 0.999997615814209, 0.9999397397041321, 0.9989261627197266] +Cc1nc2ccccn2c1-c1cn(C)c2ccccc12; ['Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999972581863403, 0.9999964237213135, 0.9688306450843811] +CNc1nc(C)c(-c2cn(C)c3ccccc23)s1; [None]; [None]; [0] +Cc1nc(C)c(-c2cn(C)c3ccccc23)s1; [None]; [None]; [0] +Cn1cc(-c2cnc3cccnn23)c2ccccc21; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'c1cnn2ccnc2c1']; [0.9999997615814209, 0.9999977350234985, 0.9999973177909851] +Cn1cc(-c2c(Cl)cccc2Cl)c2ccccc21; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Cn1ccc2ccccc21', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1Cl', 'Cn1ccc2ccccc21']; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'OB(O)c1c(Cl)cccc1Cl', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'NNc1c(Cl)cccc1Cl']; [0.9999538064002991, 0.9990528225898743, 0.9976803064346313, 0.9955579042434692, 0.9954872131347656, 0.9320659041404724] +Cc1ccc(Cl)c(-c2cn(C)c3ccccc23)c1; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Cl)c1']; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9976145029067993, 0.9960981607437134, 0.8435888290405273] +Cn1cc(-c2ccnc(N)n2)c2ccccc21; [None, 'Cn1ccc2ccccc21']; [None, 'Nc1nccc(Cl)n1']; [0, 0.9813307523727417] +Cn1cc(NCc2cccnc2)c2ccccc21; ['Cn1ccc2ccccc21', 'Cn1cc([N+](=O)[O-])c2ccccc21']; ['NCc1cccnc1', 'NCc1cccnc1']; [0.998201847076416, 0.8180190324783325] +Cn1cc(-c2cccc(Br)c2)c2ccccc21; ['Brc1cccc(I)c1', 'Cn1ccc2ccccc21', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Clc1cccc(Br)c1', 'Cn1ccc2ccccc21', 'Brc1cccc(Br)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cccc(Br)c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Nc1cccc(Br)c1', 'Cn1ccc2ccccc21']; [0.9999332427978516, 0.9998165369033813, 0.9995831251144409, 0.9967082738876343, 0.987920880317688, 0.9847198724746704, 0.9376517534255981] +Cn1cc(-n2ncc3cccc(F)c3c2=O)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cnn3ncccc23)c2ccccc21; ['Brc1cnn2ncccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9983231425285339] +Cn1cc(-c2ccc3ccccc3c2)c2ccccc21; ['Brc1ccc2ccccc2c1', 'Cn1ccc2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Brc1ccc2ccccc2c1', 'Cn1ccc2ccccc21', 'Clc1ccc2ccccc2c1', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Cn1ccc2ccccc21', 'Ic1ccc2ccccc2c1', 'Cn1ccc2ccccc21', 'Nc1ccc2ccccc2c1']; [0.9999961256980896, 0.9999475479125977, 0.9999380111694336, 0.999815821647644, 0.9984923601150513, 0.9966233968734741, 0.9940962791442871] +Cn1cc(Nc2cccnc2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-n2cnc3ccccc32)c2ccccc21; [None]; [None]; [0] +Cn1cc(NC(=O)c2cccs2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc(Cn3cncn3)c2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2c[nH]nc2C(F)(F)F)c2ccccc21; [None]; [None]; [0] +Cn1cc(NCCc2c[nH]cn2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc(CC(=O)[O-])c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['O=C([O-])Cc1ccccc1']; [0.9235484600067139] +Cn1cc(-c2cncc3ccccc23)c2ccccc21; ['Brc1cncc2ccccc12', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cncc2ccccc12']; [0.9999921321868896, 0.9983042478561401] +Cc1c(-c2cn(C)c3ccccc23)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(NCCc2ccccc2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc(F)c2C(N)=O)c2ccccc21; [None]; [None]; [0] +Cn1cc(NCc2ccc(Cl)cc2)c2ccccc21; ['Cn1ccc2ccccc21']; ['NCc1ccc(Cl)cc1']; [0.9432231783866882] +Cn1cc(-c2ccc3c(N)[nH]nc3c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9999967217445374] +Cn1cc(-c2ccc(-c3cn(C)c4ccccc34)cc2)cn1; [None]; [None]; [0] +CN1c2ccc(-c3cn(C)c4ccccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1cc(-c2ccc3c(cnn3C)c2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cn[nH]c3)cc2)c2ccccc21; [None]; [None]; [0] +Cn1cc(NCc2ccccc2F)c2ccccc21; ['Cn1ccc2ccccc21']; ['NCc1ccccc1F']; [0.9014332294464111] +Cn1cc(-c2cccc(O)c2)c2ccccc21; [None]; [None]; [0] +Cn1cc(Nc2ccncc2)c2ccccc21; ['Cn1ccc2ccccc21']; ['Nc1ccncc1']; [0.9864583611488342] +Cn1cc(-c2cccc(CO)c2)c2ccccc21; [None]; [None]; [0] +CCCn1cnc(-c2cn(C)c3ccccc23)n1; [None]; [None]; [0] +COc1cc(-c2cn(C)c3ccccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Cn1cc(-c2csc3ncncc23)c2ccccc21; ['Brc1csc2ncncc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9997929930686951] +CC(C)n1cc(-c2cn(C)c3ccccc23)nn1; [None]; [None]; [0] +Cn1cc(-c2csc(N)n2)c2ccccc21; ['Cn1cc(C(=O)CCl)c2ccccc21', 'CC(=O)c1cn(C)c2ccccc12']; ['NC(N)=S', 'NC(N)=S']; [0.9999861717224121, 0.9999798536300659] +CSc1nc(-c2cn(C)c3ccccc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +Cn1cc(-c2cc3ccccc3[nH]2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cncnc2N)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1ncncc1Br', 'Nc1ncncc1I']; [0.9999923706054688, 0.9999851584434509] +Cn1cc(CCc2c[nH]nn2)c2ccccc21; [None]; [None]; [0] +Cn1cc(CCCC(N)=O)c2ccccc21; [None, None]; [None, None]; [0, 0] +CCNc1nc2ccc(-c3cn(C)c4ccccc34)cc2s1; [None]; [None]; [0] +Cn1cc(-c2cccc(CCC#N)c2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc(F)cc2C(F)(F)F)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1cccc(C(F)(F)F)c1']; [0.9999906420707703, 0.9999263286590576, 0.9998060464859009, 0.9979104399681091, 0.9974639415740967, 0.8436795473098755] +Cn1cc(-c2cn(C)c3ccccc23)c2ccccc21; ['Cn1ccc2ccccc21']; ['Cn1ccc2ccccc21']; [0.8377841114997864] +CCC(=O)Nc1ccc(-c2cn(C)c3ccccc23)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cn(C)c3ccccc23)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999949336051941, 0.9999598264694214, 0.9999455213546753, 0.999836802482605] +Cn1cc(N2CCC(S(C)(=O)=O)CC2)c2ccccc21; [None]; [None]; [0] +Cn1cc(Oc2ccccn2)c2ccccc21; [None]; [None]; [0] +Cn1cc(NC(=O)c2c(Cl)cccc2Cl)c2ccccc21; [None]; [None]; [0] +Cn1cc(CCNC(=O)CC(C)(C)O)c2ccccc21; ['CC(C)(O)CC(=O)O', 'CCOC(=O)CC(C)(C)O', 'COC(=O)CC(C)(C)O', 'CC(C)(O)CC(=O)[O-]', 'CC(C)(O)CC#N']; ['Cn1cc(CCN)c2ccccc21', 'Cn1cc(CCN)c2ccccc21', 'Cn1cc(CCN)c2ccccc21', 'Cn1cc(CCN)c2ccccc21', 'Cn1cc(CCN)c2ccccc21']; [0.9960580468177795, 0.9938538074493408, 0.9933376312255859, 0.9884482622146606, 0.9811321496963501] +COc1ccc(-c2cn(C)c3ccccc23)cc1Cl; ['COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(NN)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccccc1Cl']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999896287918091, 0.9999456405639648, 0.9999368786811829, 0.9996191263198853, 0.9994366765022278, 0.9961775541305542, 0.9785366058349609, 0.9514708518981934, 0.8281599283218384] +CCCn1cc(-c2cn(C)c3ccccc23)cn1; ['CCCn1cc(Br)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(B(O)O)cn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.999974250793457, 0.9999501705169678, 0.9938240051269531] +Cn1cc(-c2cnn3ccccc23)c2ccccc21; ['Brc1cnn2ccccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9998787641525269] +Cn1cc(OCC(C)(C)S(C)(=O)=O)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cc[nH]c(=O)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['O=c1cc(Br)cc[nH]1']; [0.9999687075614929] +CCNS(=O)(=O)c1ccccc1-c1cn(C)c2ccccc12; ['CCNS(=O)(=O)c1ccccc1Br']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9997478723526001] +Cn1cc(-c2ccc([S@](C)=O)cc2)c2ccccc21; ['CS(=O)c1ccc(Br)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.99986332654953] +Cn1cc(-c2ccc(C(C)(C)N)cc2)c2ccccc21; ['CC(C)(N)c1ccc(Br)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999148845672607] +COc1cc(CCc2cn(C)c3ccccc23)cc(OC)c1; ['COc1cc(CCO)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1', 'COc1cc(CCl)cc(OC)c1']; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cc1cn(C)c2ccccc12', 'Cc1cn(C)c2ccccc12']; [0.998423159122467, 0.9980926513671875, 0.877631664276123, 0.8621187210083008] +Cn1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc3c2C(=O)CC3)c2ccccc21; [None]; [None]; [0] +CCN(CC)c1cn(C)c2ccccc12; [None]; [None]; [0] +C[C@@H](Oc1cn(C)c2ccccc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +COc1ccncc1Nc1cn(C)c2ccccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(C(C)(C)C)cc2)c2ccccc21; ['CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(N)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999911785125732, 0.9992892742156982, 0.9961656332015991, 0.993691086769104, 0.9597870707511902, 0.8555955290794373] +Cn1cc(Nc2cnc3ccccc3c2)c2ccccc21; ['Cn1ccc2ccccc21']; ['Nc1cnc2ccccc2c1']; [0.998167872428894] +Cn1cc(-c2cc3c(=O)[nH]ccc3o2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['O=c1[nH]ccc2oc(Br)cc12']; [0.9998847246170044] +CC(C)Oc1cncc(-c2cn(C)c3ccccc23)c1; ['CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999961256980896, 0.9981814622879028, 0.997770369052887] +Cn1cc(-c2c[nH]c3cnccc23)c2ccccc21; ['Brc1c[nH]c2cnccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999488592147827] +Cn1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]ccc3c2)c2ccccc21; ['Brc1cnc2[nH]ccc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Clc1cnc2[nH]ccc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1cnc2[nH]ccc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999977350234985, 0.9999582767486572, 0.9999569058418274] +COc1cccc(F)c1-c1cn(C)c2ccccc12; [None]; [None]; [0] +Cn1cc(Nc2cnccc2-c2ccccc2)c2ccccc21; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn(C)c3ccccc23)cc1; ['CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9997231960296631, 0.994975209236145] +Cn1cc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc(S(C)(=O)=O)cc2)c2ccccc21; ['CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(N)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.999963641166687, 0.999929666519165, 0.9982411861419678, 0.9973850250244141, 0.9957813024520874, 0.9790576696395874, 0.9564000368118286, 0.7677653431892395] +Cn1cc(-c2ccc(N3CCOCC3)cc2)c2ccccc21; ['Brc1ccc(N2CCOCC2)cc1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1']; [0.9999785423278809, 0.9998973608016968, 0.9724115133285522] +Cc1cc(-c2cn(C)c3ccccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CN(c1cn(C)c2ccccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cn1cc(C2(C)CCN(S(C)(=O)=O)CC2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-n2ccc(CO)n2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-n2ncc3c(O)cccc32)c2ccccc21; [None]; [None]; [0] +Cn1cc(-n2ncc3ccccc32)c2ccccc21; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1cc(-n2cnc(CCO)c2)c2ccccc21; [None]; [None]; [0] +C[C@@H](Nc1cn(C)c2ccccc12)C(C)(C)O; [None]; [None]; [0] +Cn1cc(-c2c(F)cccc2Cl)c2ccccc21; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)C(C)(C)O; [None]; [None]; [0] +COc1ccc(-c2cn(C)c3ccccc23)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1cccc(OC)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999673366546631, 0.9997538328170776, 0.9995378255844116, 0.9991205930709839, 0.9986228942871094, 0.9463894367218018] +Cn1cc(-c2ccc(-n3cncn3)cc2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2nc3ccc(O)cc3[nH]2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)c3ccccc3)cc2)c2ccccc21; [None]; [None]; [0] +CSc1nc(C)c(-c2cn(C)c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cn(C)c3ccccc23)CC1; [None]; [None]; [0] +Cn1cc(CCC(=O)NCc2ccccn2)c2ccccc21; ['Cn1cc(CCC(=O)O)c2ccccc21', None, 'COC(=O)CCc1cn(C)c2ccccc12']; ['NCc1ccccn1', None, 'NCc1ccccn1']; [0.9999831914901733, 0, 0.9967483282089233] +CC(C)n1cnnc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +Cn1cc(-c2nncn2C2CC2)c2ccccc21; [None]; [None]; [0] +Cn1cc(Cc2nnc3ccc(-c4ccccc4)nn23)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccn(CC[NH3+])n2)c2ccccc21; [None]; [None]; [0] +CCc1cc(-c2cn(C)c3ccccc23)nc(N)n1; ['CCc1cc(Cl)nc(N)n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999697804450989] +Cn1cc(CS(=O)(=O)NCc2ccccn2)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc(C(C)(C)O)n2)c2ccccc21; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9998515844345093, 0.9935348033905029] +Cn1cc(-c2cn(Cc3ccccc3)nn2)c2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn(C)c3ccccc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cn(C)c3ccccc23)CC1; [None]; [None]; [0] +Cn1cc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)c2ccccc21; ['CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9929919242858887] +Cn1cc(-c2cncc(N)n2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1cncc(Br)n1']; [0.9999592304229736] +CCCCc1cc(-c2cn(C)c3ccccc23)nc(N)n1; [None]; [None]; [0] +Cn1cc(-c2cccc3ccsc23)c2ccccc21; ['Brc1cccc2ccsc12', 'Cn1ccc2ccccc21', 'Brc1cccc2ccsc12', 'Clc1cccc2ccsc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cccc2ccsc12', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999135732650757, 0.9995238780975342, 0.9899706840515137, 0.9750034809112549] +Cn1cc(Oc2ccc(C[NH3+])cc2F)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2cccc3nnsc23)c2ccccc21; ['Brc1cccc2nnsc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999667406082153] +Cn1cc(-c2ncc3ccccc3n2)c2ccccc21; ['Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999929666519165, 0.9999598860740662] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cn(C)c4ccccc34)c2)cc1; [None]; [None]; [0] +Cn1cc(-c2ncc3cc[nH]c3n2)c2ccccc21; ['Clc1ncc2cc[nH]c2n1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.999957799911499] +CC(=O)Nc1ncc(-c2cn(C)c3ccccc23)[nH]1; [None]; [None]; [0] +Cn1cc(-c2nc(N)c3ccccc3n2)c2ccccc21; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cn(C)c2ccccc12; ['COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1I']; ['Cn1ccc2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9997680187225342, 0.999682605266571, 0.9992449283599854, 0.998755693435669, 0.9976586103439331, 0.99749755859375] +Cn1cc(-c2cn(CCO)cn2)c2ccccc21; [None]; [None]; [0] +COc1ccc(OC)c(-c2cn(C)c3ccccc23)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(N)c1']; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9994500875473022, 0.9990977048873901, 0.9982746839523315, 0.9981930255889893, 0.9872907400131226] +Cn1cc(-c2c[nH]c3cccnc23)c2ccccc21; [None]; [None]; [0] +COc1ncccc1-c1cn(C)c2ccccc12; ['COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B(O)O']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9996933937072754, 0.9993886351585388, 0.991918683052063, 0.9896841049194336, 0.9865674376487732] +COc1ccc(Oc2cn(C)c3ccccc23)c(F)c1F; [None]; [None]; [0] +Cn1cc([C@H]2CC[C@@](C)(O)CC2)c2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc2cccnn12; ['CNC(=O)c1ccccc1B(O)O']; ['Clc1cnc2cccnn12']; [0.9995954036712646] +CCOc1ccccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'Brc1cnc2cccnn12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1Cl']; ['CCOc1ccccc1B(O)O', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999995231628418, 0.9999940395355225, 0.9999843239784241, 0.9999606609344482, 0.9999469518661499, 0.9999316334724426] +CN(C)S(=O)(=O)c1cccc(-c2cn(C)c3ccccc23)c1; [None]; [None]; [0] +Cn1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)c2ccccc21; [None]; [None]; [0] +Cn1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)c2ccccc21; [None]; [None]; [0] +CN(C)c1cc(-c2cn(C)c3ccccc23)cnn1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cnc3cccnn23)c1; ['Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1']; [0.999727725982666, 0.9996396899223328] +Cn1cc(-c2cccc(NC(=O)C3CCNCC3)c2)c2ccccc21; [None]; [None]; [0] +c1ccc2c(-c3cnc4cccnn34)ccnc2c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'Clc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Ic1ccnc2ccccc12']; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1ccnc2ccccc12', 'Clc1cnc2cccnn12', 'OB(O)c1ccnc2ccccc12', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999428391456604, 0.9998437166213989, 0.9997438788414001, 0.9988247752189636, 0.9979499578475952, 0.9946211576461792, 0.9852045774459839, 0.9760816097259521, 0.9754400253295898] +FC(F)(F)c1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'FC(F)(F)c1cccc(Br)c1']; ['OB(O)c1cccc(C(F)(F)F)c1', 'c1cnn2ccnc2c1']; [0.9999995231628418, 0.9999936819076538] +Cc1nnc(-c2ccccc2-c2cnc3cccnn23)[nH]1; [None]; [None]; [0] +CCn1cc(-c2cnc3cccnn23)cn1; ['Brc1cnc2cccnn12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cnc2cccnn12', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Clc1cnc2cccnn12', 'CCn1cc(B(O)O)cn1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 0.9999995231628418, 0.9999815225601196, 0.9999356269836426, 0.9994868636131287] +FC(F)(F)Oc1ccccc1-c1cnc2cccnn12; ['FC(F)(F)Oc1ccccc1Br', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['c1cnn2ccnc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F']; [1.0, 1.0, 1.0, 0.9999994039535522] +CP(C)(=O)c1ccccc1-c1cnc2cccnn12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cnc2cccnn12; [None]; [None]; [0] +COC(C)(C)CCc1cnc2cccnn12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999985694885254, 0.9999706149101257, 0.9999061226844788, 0.9983811378479004] +NC(=O)c1ccccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; [0.9999982118606567, 0.9999592304229736, 0.999912440776825] +c1ccc(Cn2cc(-c3cnc4cccnn34)cn2)cc1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1cnn(Cc2ccccc2)c1']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999993443489075, 0.9999969005584717, 0.9999749660491943, 0.9999747276306152] +Cn1cnc2ccc(-c3cnc4cccnn34)cc2c1=O; ['Brc1cnc2cccnn12', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'c1cnn2ccnc2c1']; [0.999834418296814, 0.9994785785675049] +O=C(Nc1cccc(-c2cnc3cccnn23)c1)c1ccccc1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Clc1cnc2cccnn12']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1cnc2cccnn12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999995231628418, 0.999997615814209, 0.9999940395355225] +Clc1ccc(Cl)c(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999998807907104, 0.9999990463256836, 0.9999876618385315, 0.9999858140945435, 0.99980628490448] +Cc1ccc(-c2cnc3cccnn23)c(Br)c1; ['Brc1cnc2cccnn12', 'Cc1ccc(Br)c(Br)c1']; ['Cc1ccc(B(O)O)c(Br)c1', 'c1cnn2ccnc2c1']; [0.9996811151504517, 0.9971297979354858] +OCCn1cc(-c2cnc3cccnn23)cn1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1']; [1.0, 0.9999985694885254, 0.9999791383743286, 0.9998599290847778] +CC(C)C(=O)COc1cnc2cccnn12; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cnc2cccnn12; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc3cccnn23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc3cccnn23)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc3cccnn23)cs1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Clc1cccc(Cl)c1Br', 'Clc1cnc2cccnn12', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'c1cnn2ccnc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'c1cnn2ccnc2c1']; [0.9999674558639526, 0.9998379945755005, 0.9994235038757324, 0.9991133213043213] +O=c1c2c(F)cccc2cnn1-c1cnc2cccnn12; [None]; [None]; [0] +Brc1cccc(-c2cnc3cccnn23)c1; ['Brc1cccc(Br)c1']; ['c1cnn2ccnc2c1']; [0.9998900890350342] +c1ccc(-c2ncc(-c3cnc4cccnn34)[nH]2)cc1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12']; [0.9999994039535522, 0.9999927282333374, 0.9999216794967651, 0.9999051690101624, 0.9998407959938049] +c1ccn2c(-c3cnc4cccnn34)cnc2c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnc2cccnn12; [None]; [None]; [0] +c1ccc2cc(-c3cnc4cccnn34)ccc2c1; ['Brc1ccc2ccccc2c1']; ['c1cnn2ccnc2c1']; [0.9999102354049683] +c1cc(Cn2cncn2)cc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +c1cncc(Nc2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'Ic1cccnc1']; ['Nc1cccnc1', 'Nc1cccnc1', 'OB(O)c1cccnc1', 'Nc1cnc2cccnn12']; [0.9999569654464722, 0.9999566078186035, 0.9999542236328125, 0.9998370409011841] +c1cnn2ncc(-c3cnc4cccnn34)c2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.999996542930603, 0.9999921321868896] +O=C(Nc1cnc2cccnn12)c1cccs1; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999988079071045, 0.9999774694442749] +c1cnn2c(NCCc3c[nH]cn3)cnc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.999972403049469, 0.9999540448188782] +FC(F)(F)c1n[nH]cc1-c1cnc2cccnn12; ['FC(F)(F)c1n[nH]cc1Br']; ['c1cnn2ccnc2c1']; [0.9999992251396179] +c1ccc2c(c1)ncn2-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9999687075614929, 0.9999182224273682] +c1cnn2c(-c3cnc4cccnn34)cnc2c1; [None]; [None]; [0] +Nc1nccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnc2cccnn12; [None]; [None]; [0] +c1ccc2c(-c3cnc4cccnn34)cncc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cnc2cccnn12', 'Brc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Clc1cnc2cccnn12', 'Clc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Clc1cncc2ccccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cncc2ccccc12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'OB(O)c1cncc2ccccc12', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12', 'O=C(O)c1cnc2cccnn12']; [0.9999998807907104, 0.9999997615814209, 0.9999991655349731, 0.9999860525131226, 0.9999844431877136, 0.9999675154685974, 0.9999489784240723, 0.9997053146362305, 0.9981335401535034, 0.8742734789848328] +c1ccc(CCNc2cnc3cccnn23)cc1; ['Clc1cnc2cccnn12', 'Nc1cnc2cccnn12']; ['NCCc1ccccc1', 'O=CCc1ccccc1']; [0.9998688697814941, 0.999722957611084] +c1cncc(CNc2cnc3cccnn23)c1; [None]; [None]; [0] +Cc1c(-c2cnc3cccnn23)sc(=O)n1C; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc4cccnn34)cc2)cn1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9969675540924072] +c1cnn2c(-c3ccc(-c4cn[nH]c4)cc3)cnc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999997615814209, 0.9999960064888] +Cn1ncc2cc(-c3cnc4cccnn34)ccc21; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Cn1ncc2cc(Br)ccc21']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999998211860657, 0.9999996423721313, 0.9999802112579346] +Clc1ccc(CNc2cnc3cccnn23)cc1; ['Clc1ccc(CBr)cc1', 'Clc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'NCc1ccc(Cl)cc1']; [0.9989718198776245, 0.9989122152328491] +Oc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999989867210388, 0.9999933242797852, 0.9999921321868896, 0.9999443292617798, 0.998945951461792, 0.9970657825469971] +c1cnn2c(Nc3ccncc3)cnc2c1; ['Nc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1ccncc1', 'Ic1ccncc1', 'Brc1ccncc1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'Nc1cnc2cccnn12']; [0.9999939203262329, 0.99997878074646, 0.9999635815620422, 0.9999237060546875, 0.999914288520813, 0.9995840787887573] +Nc1[nH]nc2cc(-c3cnc4cccnn34)ccc12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +CN1c2ccc(-c3cnc4cccnn34)cc2CS1(=O)=O; [None]; [None]; [0] +Fc1ccccc1CNc1cnc2cccnn12; ['Clc1cnc2cccnn12', 'Fc1ccccc1CBr', 'Nc1cnc2cccnn12']; ['NCc1ccccc1F', 'Nc1cnc2cccnn12', 'O=Cc1ccccc1F']; [0.9999773502349854, 0.9999111890792847, 0.9994848966598511] +OCc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999996423721313, 0.9999978542327881, 0.9999899864196777, 0.9999650716781616, 0.9974043965339661] +CCCn1cnc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +c1cnn2c(-c3csc4ncncc34)cnc2c1; ['Brc1csc2ncncc12']; ['c1cnn2ccnc2c1']; [0.999910831451416] +COc1cc(-c2cnc3cccnn23)ccc1C(=O)[O-]; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'N#CCCc1cccc(Br)c1', 'Brc1cnc2cccnn12']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'c1cnn2ccnc2c1', 'N#CCCc1cccc(Br)c1']; [0.9999997019767761, 0.9999976754188538, 0.9999140501022339, 0.9997549653053284, 0.9996626377105713] +Nc1nc(-c2cnc3cccnn23)cs1; [None]; [None]; [0] +CC(C)n1cc(-c2cnc3cccnn23)nn1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cnc4cccnn34)cc2c1; [None]; [None]; [0] +c1cnn2c(CCc3c[nH]nn3)cnc2c1; [None]; [None]; [0] +CSc1nc(-c2cnc3cccnn23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc2cccnn12; [None]; [None]; [0] +Nc1ncncc1-c1cnc2cccnn12; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl']; ['c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999277591705322, 0.9994932413101196, 0.9844090938568115] +c1ccc(Oc2cnc3cccnn23)nc1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9989430904388428, 0.9984228610992432] +CCC(=O)Nc1ccc(-c2cnc3cccnn23)cc1; [None]; [None]; [0] +O=C(Nc1cnc2cccnn12)c1c(Cl)cccc1Cl; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Nc1cnc2cccnn12', 'Nc1cnc2cccnn12']; [0.999997615814209, 0.9999886155128479, 0.9998220205307007, 0.9991871118545532] +Fc1ccc(-c2cnc3cccnn23)c(C(F)(F)F)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999972581863403, 0.9999479055404663, 0.9998641014099121, 0.9995090365409851, 0.9984618425369263, 0.995960533618927, 0.9944828748703003, 0.9900048971176147] +CCNc1nc2ccc(-c3cnc4cccnn34)cc2s1; [None]; [None]; [0] +COc1ccc(-c2cnc3cccnn23)cc1Cl; ['Brc1cnc2cccnn12', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['COc1ccc(B(O)O)cc1Cl', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999982118606567, 0.9999873638153076, 0.9999661445617676] +CS(=O)(=O)C1CCN(c2cnc3cccnn23)CC1; ['Brc1cnc2cccnn12', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Clc1cnc2cccnn12']; [0.9999202489852905, 0.9992671012878418] +CC(=O)Nc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [0.9999996423721313, 0.9999991655349731, 0.9999967813491821, 0.999984860420227] +c1ccn2ncc(-c3cnc4cccnn34)c2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Clc1cnn2ccccc12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999991655349731, 0.9999977350234985, 0.9999882578849792, 0.9996495246887207, 0.9965066909790039] +CC(C)(COc1cnc2cccnn12)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cnc3cccnn23)cn1; ['Brc1cnc2cccnn12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cnc2cccnn12', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Clc1cnc2cccnn12', 'CCCn1cc(B(O)O)cn1', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12']; [1.0, 0.9999994039535522, 0.9999934434890747, 0.9999489784240723, 0.9999200105667114] +NC(=O)CCCc1cnc2cccnn12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc3cccnn23)cc1; [None]; [None]; [0] +C[C@@H](Oc1cnc2cccnn12)c1c(Cl)cncc1Cl; ['Brc1cnc2cccnn12', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1cnc2cccnn12']; [0.9994858503341675, 0.9983443021774292] +O=c1cc(-c2cnc3cccnn23)cc[nH]1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12']; ['CCNS(=O)(=O)c1ccccc1Br']; [0.9998929500579834] +CC(C)(O)CC(=O)NCCc1cnc2cccnn12; [None]; [None]; [0] +O=C1CCc2cccc(-c3cnc4cccnn34)c21; ['Clc1cnc2cccnn12', 'O=C1CCc2cccc(Br)c21', 'Brc1cnc2cccnn12']; ['O=C1CCc2cccc(Br)c21', 'c1cnn2ccnc2c1', 'O=C1CCc2cccc(Br)c21']; [0.9998282194137573, 0.9988327622413635, 0.9986456632614136] +CCN(CC)c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CCNCC']; ['CCNCC', 'Clc1cnc2cccnn12']; [0.9999362230300903, 0.9998915195465088] +COc1ccncc1Nc1cnc2cccnn12; ['COc1ccncc1N', 'Brc1cnc2cccnn12']; ['Clc1cnc2cccnn12', 'COc1ccncc1N']; [0.9999852180480957, 0.9999454617500305] +c1ccc(-c2ccncc2Nc2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.999999463558197, 0.9999927282333374] +CC(C)(C)c1ccc(-c2cnc3cccnn23)cc1; ['CC(C)(C)c1ccc(Br)cc1']; ['c1cnn2ccnc2c1']; [0.9999927282333374] +CC(C)Oc1cncc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1']; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 1.0, 0.9999992251396179, 0.9999918937683105, 0.9998197555541992] +C[S@](=O)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cccnn12', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cccnn12', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 0.999998927116394, 0.9999983310699463, 0.9999628067016602, 0.9996305108070374] +c1ccc2ncc(Nc3cnc4cccnn34)cc2c1; ['Clc1cnc2cccnn12', 'Ic1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2cccnn12']; [0.999984085559845, 0.9998411536216736] +COc1cc(CCc2cnc3cccnn23)cc(OC)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cccnn12', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'COc1cccc(F)c1B(O)O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999994039535522, 0.9999970197677612, 0.9999948143959045, 0.999992847442627] +[NH3+]Cc1ccc(-c2cnc3cccnn23)cc1C(F)(F)F; [None]; [None]; [0] +c1cnn2c(-c3cnc4[nH]ccc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999998807907104, 0.9999988079071045, 0.9999946355819702] +CNC(=O)c1c(F)cccc1-c1cnc2cccnn12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cccnn12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cccnn12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999998807907104, 0.9999992251396179, 0.9999659657478333, 0.9995357990264893] +O=c1[nH]ccc2oc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +c1cnn2c(-c3c[nH]c4cnccc34)cnc2c1; ['Brc1cnc2cccnn12', 'Brc1c[nH]c2cnccc12', 'Clc1cnc2cccnn12']; ['OB(O)c1c[nH]c2cnccc12', 'c1cnn2ccnc2c1', 'OB(O)c1c[nH]c2cnccc12']; [0.9988516569137573, 0.9987823963165283, 0.9970763325691223] +c1cnn2c(-c3ccc(N4CCOCC4)cc3)cnc2c1; ['Clc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 1.0, 1.0, 0.9999971389770508] +CNS(=O)(=O)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cccnn12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2cccnn12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cccnn12']; [1.0, 0.9999996423721313, 0.9999973773956299, 0.9999912977218628] +OCc1ccn(-c2cnc3cccnn23)n1; ['Brc1cnc2cccnn12']; ['OCc1cc[nH]n1']; [0.999238908290863] +CS(=O)(=O)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1cnc2cccnn12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Clc1cnc2cccnn12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999990463256836, 0.9999978542327881, 0.9999884963035583] +C[C@H](Nc1cnc2cccnn12)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'Brc1cnc2cccnn12']; ['Clc1cnc2cccnn12', 'C[C@H](N)C(C)(C)O']; [0.9859353303909302, 0.9840801954269409] +CC1(c2cnc3cccnn23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](Nc1cnc2cccnn12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Clc1cnc2cccnn12']; [0.9859352707862854] +CN(c1cnc2cccnn12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2cnc3cccnn23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cnc2cccnn12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9883841872215271, 0.9802427887916565] +Fc1cccc(Cl)c1-c1cnc2cccnn12; ['Fc1cccc(Cl)c1Br', 'Brc1cnc2cccnn12', 'Fc1cccc(Cl)c1I', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Brc1cnc2cccnn12', 'OB(O)c1c(F)cccc1Cl', 'Clc1cnc2cccnn12']; ['c1cnn2ccnc2c1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12', 'OB(O)c1c(F)cccc1Cl', 'c1cnn2ccnc2c1', 'OB(O)c1c(F)cccc1Cl']; [1.0, 1.0, 1.0, 1.0, 0.9999996423721313, 0.9999983310699463, 0.9999903440475464] +O=C(c1ccccc1)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'O=C(c1ccccc1)c1ccc(Br)cc1']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'c1cnn2ccnc2c1']; [0.9999996423721313, 0.9999933242797852, 0.9994672536849976] +c1cnn2c(-c3ccc(-n4cncn4)cc3)cnc2c1; [None]; [None]; [0] +OCCc1cn(-c2cnc3cccnn23)cn1; [None]; [None]; [0] +Oc1ccc2nc(-c3cnc4cccnn34)[nH]c2c1; ['Nc1ccc(O)cc1N']; ['O=Cc1cnc2cccnn12']; [0.9999362230300903] +COc1ccc(-c2cnc3cccnn23)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['c1cnn2ccnc2c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [0.9999997615814209, 0.9999992847442627, 0.9999924898147583, 0.999991238117218, 0.9999539852142334] +Oc1cccc2c1cnn2-c1cnc2cccnn12; ['Clc1cnc2cccnn12']; ['Oc1cccc2[nH]ncc12']; [0.9058243036270142] +c1cnn2c(-c3nncn3C3CC3)cnc2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc3cccnn23)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2cccnn12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3cccnn23)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cnc4cccnn34)nn2)cc1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cnc5cccnn45)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cnc2cccnn12)NCc1ccccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3cccnn23)s1; [None]; [None]; [0] +O=S(=O)(Cc1cnc2cccnn12)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2cnc3cccnn23)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3cccnn23)n1; ['Brc1cnc2cccnn12']; ['CC(C)(O)c1cccc(Br)n1']; [0.9966917037963867] +CCCCc1cc(-c2cnc3cccnn23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cnc3cccnn23)s1; [None]; [None]; [0] +c1cc(-c2cnc3cccnn23)c2sccc2c1; ['Brc1cnc2cccnn12', 'Brc1cccc2ccsc12']; ['OB(O)c1cccc2ccsc12', 'c1cnn2ccnc2c1']; [0.999996542930603, 0.9998234510421753] +Cn1cc(C(N)=O)cc1-c1cnc2cccnn12; [None]; [None]; [0] +c1cc(-c2cnc3cccnn23)c2snnc2c1; ['Brc1cccc2nnsc12']; ['c1cnn2ccnc2c1']; [0.9999994039535522] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4cccnn34)c2)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cnc3cccnn23)c(F)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cnc4cccnn34)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc3cccnn23)CC1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc3cccnn23)[nH]1; [None]; [None]; [0] +Nc1cncc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +c1cnc2c(-c3cnc4cccnn34)c[nH]c2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'c1cnc2cc[nH]c2c1']; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999421834945679, 0.9998951554298401, 0.9997962713241577, 0.9932888746261597] +COc1ccc(Oc2cnc3cccnn23)c(F)c1F; ['Brc1cnc2cccnn12', 'COc1ccc(O)c(F)c1F']; ['COc1ccc(O)c(F)c1F', 'Clc1cnc2cccnn12']; [0.9999678134918213, 0.9999611973762512] +COc1ccc(OC)c(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1ccc(OC)c(B(O)O)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999972581863403, 0.9999834299087524, 0.9999631643295288] +Nc1nc(-c2cnc3cccnn23)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3cnc4cccnn34)ncc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999991655349731, 0.9999974966049194, 0.9999973773956299, 0.9999934434890747, 0.9999927282333374, 0.9999479055404663] +COc1ncccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COc1ncccc1B(O)O', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1I']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999984502792358, 0.9999945759773254, 0.9999697208404541, 0.9977736473083496, 0.9974057674407959, 0.997288703918457] +c1ccc2[nH]c(C3CCN(c4cnc5cccnn45)CC3)nc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999532699584961, 0.9994039535522461] +CN(C)c1cc(-c2cnc3cccnn23)cnn1; [None]; [None]; [0] +c1cnn2c(-c3ncc4cc[nH]c4n3)cnc2c1; [None]; [None]; [0] +OCCn1cnc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +c1cc(-c2cnc3cccnn23)c2cccnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cccc2ncccc12', 'Clc1cnc2cccnn12', 'Ic1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Clc1cccc2ncccc12']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cccc2ncccc12', 'c1cnn2ccnc2c1', 'OB(O)c1cccc2ncccc12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12', 'c1cnn2ccnc2c1', 'O=C(O)c1cnc2cccnn12']; [0.9999987483024597, 0.9999949932098389, 0.9999898672103882, 0.9998841881752014, 0.9998632669448853, 0.9997646808624268, 0.9995524287223816, 0.9994603395462036, 0.9994471073150635, 0.9980987310409546] +O=C(Nc1cccc(-c2cnc3cccnn23)c1)C1CCNCC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1cnc2cccnn12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1cnc2cccnn12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1ccccc1']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 0.9999992847442627, 0.9999966621398926, 0.9999955892562866, 0.9999895095825195, 0.9999790191650391, 0.9999749064445496, 0.999967098236084, 0.9670373201370239] +C1=C(c2c[nH]c3ccccc23)CCN(c2cnc3cccnn23)C1; ['Brc1cnc2cccnn12', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'Clc1cnc2cccnn12']; [0.9999769926071167, 0.9999596476554871] +Clc1ccc2c(c1-c1cnc3cccnn13)OCO2; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2']; [0.9999918937683105, 0.9999343752861023] +Fc1ccc(Oc2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.999992847442627, 0.999974250793457] +NC(=O)c1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'NC(=O)c1ccc(Br)cc1']; ['NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'c1cnn2ccnc2c1']; [0.9999995231628418, 0.9999945163726807, 0.999020516872406] +NC(=O)c1ccc(-c2cnc3cccnn23)c(F)c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Clc1cnc2cccnn12', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999979138374329, 0.999980092048645, 0.9999206066131592] +Oc1cc(-c2cnc3cccnn23)ccc1Cl; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999995827674866, 0.9999951720237732, 0.9999524354934692] +COc1cc(C(N)=O)ccc1-c1cnc2cccnn12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Clc1cnc2cccnn12']; [0.9999963045120239] +COc1ccc(F)cc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999997615814209, 0.9999973773956299, 0.9999804496765137, 0.9999572038650513] +C[C@@]1(O)CC[C@H](c2cnc3cccnn23)CC1; [None]; [None]; [0] +Oc1ccc(-c2cnc3cccnn23)c(Cl)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Oc1cccc(Cl)c1']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'c1cnn2ccnc2c1']; [0.9999992847442627, 0.999995768070221, 0.9999613761901855, 0.8057898283004761] +COc1cc(F)ccc1-c1cnc2cccnn12; ['COc1cc(F)ccc1Br', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1']; ['c1cnn2ccnc2c1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [0.9999997019767761, 0.9999996423721313, 0.9999994039535522, 0.9999982118606567, 0.9999964237213135] +O=C([O-])c1ccc(-c2cnc3cccnn23)cc1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnc2cccnn12; [None]; [None]; [0] +Oc1ccc(-c2cnc3cccnn23)c(F)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Clc1cnc2cccnn12', 'Oc1cccc(F)c1']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'OB(O)c1ccc(O)cc1F', 'Clc1cnc2cccnn12', 'OB(O)c1ccc(O)cc1F', 'c1cnn2ccnc2c1']; [0.9999870657920837, 0.9999568462371826, 0.9998911619186401, 0.9994903802871704, 0.9327934980392456] +COc1cc(-c2cnc3cccnn23)ccc1O; ['Brc1cnc2cccnn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cnc2cccnn12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1ccccc1O']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Clc1cnc2cccnn12', 'COc1cc(B(O)O)ccc1O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999995827674866, 0.999998927116394, 0.9999833106994629, 0.9999407529830933, 0.9983083009719849, 0.7920020818710327] +c1ccc2c(-c3cnc4cccnn34)n[nH]c2c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc3cccnn23)o1; ['COC(=O)c1ccc(B(O)O)o1']; ['Clc1cnc2cccnn12']; [0.9976474046707153] +Nc1cc(-c2cnc3cccnn23)ccn1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Nc1cc(Br)ccn1']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'c1cnn2ccnc2c1']; [1.0, 0.9999998807907104, 0.9999984502792358, 0.9999910593032837, 0.999709963798523] +COC(=O)c1ccc(Cl)c(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cnc2cccnn12', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'c1cnn2ccnc2c1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [0.9999997615814209, 0.9999984502792358, 0.9999946355819702, 0.999944806098938, 0.9998777508735657, 0.9998559951782227, 0.9998456835746765] +Oc1ccc(-c2cnc3cccnn23)cc1F; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Oc1ccccc1F']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999997615814209, 0.9999995231628418, 0.9999974966049194, 0.8321729898452759] +Fc1ccc(-c2cnc3cccnn23)cc1Cl; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Fc1ccc(Br)cc1Cl', 'Clc1cnc2cccnn12']; ['OB(O)c1ccc(F)c(Cl)c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'c1cnn2ccnc2c1', 'OB(O)c1ccc(F)c(Cl)c1']; [1.0, 1.0, 0.9999995231628418, 0.999998927116394] +Cc1nc2c(F)cc(-c3cnc4cccnn34)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2cnc3cccnn23)c(O)c1; ['Oc1cccc(O)c1']; ['c1cnn2ccnc2c1']; [0.9629114866256714] +Oc1ccc(-c2ccc(-c3cnc4cccnn34)cc2)c(O)c1; [None]; [None]; [0] +Clc1ccccc1OCc1cnc2cccnn12; [None]; [None]; [0] +Oc1ncc(-c2cnc3cccnn23)cc1Cl; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(I)cc1Cl', 'Oc1ncccc1Cl']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999995231628418, 0.9985580444335938, 0.9136732816696167] +Cc1ccc2[nH]ncc2c1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cccnn12', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Clc1cnc2cccnn12']; [0.9999998807907104, 0.9999996423721313, 0.9999475479125977, 0.9998502731323242] +Oc1ccc(Cl)c(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl']; [0.9999895095825195, 0.9996863603591919, 0.9970426559448242] +COc1cc(OC)cc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['COc1cc(OC)cc(B(O)O)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999997615814209, 0.9999988079071045, 0.9996534585952759] +COc1ccc(-c2cnc3cccnn23)cc1OC; ['COc1ccc(Br)cc1OC']; ['c1cnn2ccnc2c1']; [0.9999324083328247] +NC(=O)c1cc(-c2cnc3cccnn23)c[nH]1; ['NC(=O)c1cc(Br)c[nH]1']; ['c1cnn2ccnc2c1']; [0.9803322553634644] +Cc1ccc(CO)cc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cccnn12', 'Cc1ccc(CO)cc1B(O)O', 'Brc1cnc2cccnn12']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'Cc1ccc(CO)cc1B(O)O', 'Clc1cnc2cccnn12', 'Cc1ccc(CO)cc1Br']; [0.9999969005584717, 0.9999961853027344, 0.9993690252304077, 0.9981286525726318, 0.9957132339477539] +CCOc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999998807907104, 0.9999986886978149, 0.9999834299087524, 0.9999349117279053] +COc1cc(CCc2cnc3cccnn23)ccc1O; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4cccnn34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; ['Clc1cnc2cccnn12']; [1.0] +Fc1ccc(-c2nc[nH]c2-c2cnc3cccnn23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3cccnn23)cc1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Clc1cnc2cccnn12']; [1.0, 0.9999998211860657] +Oc1cncc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'OB(O)c1cncc(O)c1', 'Clc1cnc2cccnn12', 'Oc1cncc(Cl)c1', 'Brc1cnc2cccnn12', 'Oc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'c1cnn2ccnc2c1', 'Oc1cncc(Br)c1', 'c1cnn2ccnc2c1', 'Oc1cncc(Br)c1', 'c1cnn2ccnc2c1']; [0.9999998211860657, 0.9999986886978149, 0.9999768733978271, 0.9999459981918335, 0.9996150732040405, 0.9993922710418701, 0.9986337423324585, 0.9951986074447632, 0.982991099357605] +O=C1Cc2cc(-c3cnc4cccnn34)ccc2N1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'O=C1Cc2cc(Br)ccc2N1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Clc1cnc2cccnn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'c1cnn2ccnc2c1']; [1.0, 0.9999996423721313, 0.999999463558197, 0.9999976754188538, 0.9997430443763733] +CNc1nccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnc4cccnn34)ccc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12']; [0.999998927116394, 0.9999967813491821] +CCc1cc(O)ccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12']; [0.9999678134918213, 0.9999321699142456] +C[C@H](CC(N)=O)c1cnc2cccnn12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2cccnn12', 'Cc1cc(O)ccc1B(O)O']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2cccnn12', 'Cc1cc(O)ccc1B(O)O', 'Clc1cnc2cccnn12']; [0.9999536275863647, 0.999854326248169, 0.998830258846283, 0.9977375268936157] +Clc1cnccc1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cnccc1Br']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'c1cnn2ccnc2c1']; [0.9999995231628418, 0.9999978542327881, 0.9999431371688843, 0.9999209642410278] +CN(c1cccc(Cl)c1)c1cnc2cccnn12; ['CNc1cccc(Cl)c1']; ['Clc1cnc2cccnn12']; [0.9999304413795471] +CCc1sccc1-c1cnc2cccnn12; [None]; [None]; [0] +FC(F)c1cc(-c2cnc3cccnn23)[nH]n1; [None]; [None]; [0] +c1cnn2c(-c3ccc4c(c3)CCN4)cnc2c1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Ic1ccc2c(c1)CCN2']; ['Clc1cnc2cccnn12', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9999995231628418, 0.9999955892562866, 0.9984222650527954] +Cc1n[nH]c2cc(N(C)c3cnc4cccnn34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc3cccnn23)c1C; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnc3cccnn23)cc1Cl; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Oc1c(Cl)cccc1Cl']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'c1cnn2ccnc2c1']; [0.9999997615814209, 0.9999987483024597, 0.999996542930603, 0.9998639822006226, 0.9615434408187866] +O=c1[nH]c2ccc(-c3cnc4cccnn34)cc2[nH]1; ['Brc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Clc1cnc2cccnn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'c1cnn2ccnc2c1']; [1.0, 0.9999998807907104, 0.9999995231628418, 0.9999983310699463, 0.9998226165771484, 0.9998108148574829] +Fc1cc(Br)ccc1-c1cnc2cccnn12; ['Clc1cnc2cccnn12', 'Fc1cc(Br)ccc1Br', 'Brc1cnc2cccnn12']; ['OB(O)c1ccc(Br)cc1F', 'c1cnn2ccnc2c1', 'OB(O)c1ccc(Br)cc1F']; [0.999950647354126, 0.9999464154243469, 0.9999094605445862] +CNC(=O)c1ccc(-c2cnc3cccnn23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2cccnn12', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Clc1cnc2cccnn12', 'CNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2cccnn12']; [1.0, 0.9999990463256836, 0.9999925494194031] +Cc1oc(-c2cnc3cccnn23)cc1C(=O)[O-]; [None]; [None]; [0] +CNc1nc(-c2cnc3cccnn23)ncc1F; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnc3cccnn23)c1; ['Clc1cnc2cccnn12', 'Brc1cnc2cccnn12']; ['OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1']; [0.9999674558639526, 0.999945878982544] +Oc1cc(-c2cnc3cccnn23)nc2ccnn12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cnc3cccnn23)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Clc1cnc2cccnn12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [1.0, 0.9999997615814209, 0.9999985694885254] +Cc1cc(-c2cnc3cccnn23)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Brc1cnc2cccnn12', 'Cc1cc(Br)ccc1C(N)=O']; ['Clc1cnc2cccnn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'c1cnn2ccnc2c1']; [1.0, 1.0, 0.9954426288604736] +Cn1ncc(N)c1-c1cnc2cccnn12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cnc4cccnn34)c2c1; [None]; [None]; [0] +Cc1cc(-c2cnc3cccnn23)cc(C)c1O; ['Brc1cnc2cccnn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Brc1cnc2cccnn12', 'Cc1cc(B(O)O)cc(C)c1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Clc1cnc2cccnn12', 'Cc1cc(B(O)O)cc(C)c1O', 'Clc1cnc2cccnn12']; [0.9999954104423523, 0.999972939491272, 0.9998000860214233, 0.9959427118301392] +CSc1cccc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1']; ['CSc1cccc(B(O)O)c1', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999424815177917, 0.9998191595077515, 0.9988210201263428] +Cc1nc2ccc(-c3cnc4cccnn34)cc2o1; ['Brc1cnc2cccnn12', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Clc1cnc2cccnn12', 'Clc1cnc2cccnn12']; [1.0, 1.0, 1.0] +Oc1c(F)cc(-c2cnc3cccnn23)cc1F; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1']; [1.0, 0.9999974370002747, 0.9999966621398926, 0.9998556971549988] +c1ccc2c(COc3cnc4cccnn34)cccc2c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9966083765029907, 0.9949295520782471] +CN(c1cccc2[nH]ncc12)c1cnc2cccnn12; [None]; [None]; [0] +Fc1ccc(Oc2cnc3cccnn23)c(F)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999997615814209, 0.9999988079071045] +O=c1[nH][nH]c2cc(-c3cnc4cccnn34)ccc12; ['O=c1[nH][nH]c2cc(Br)ccc12']; ['c1cnn2ccnc2c1']; [0.9990760087966919] +Fc1ccc(COc2cnc3cccnn23)c(F)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999916553497314, 0.9998965263366699] +Fc1cccc(Cl)c1CNc1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Fc1cccc(Cl)c1CBr', 'Nc1cnc2cccnn12']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Nc1cnc2cccnn12', 'O=Cc1c(F)cccc1Cl']; [1.0, 1.0, 1.0, 0.9999997615814209] +Fc1ccc(CCc2cnc3cccnn23)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1I', 'Brc1c[nH]c2ccccc12', 'CNC(=O)c1ccccc1Br', 'CN=C=O']; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'CNC(=O)c1ccccc1B(O)O', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc(-c2c[nH]c3ccccc23)cc1']; [0.9992609024047852, 0.9970234036445618, 0.9864497184753418, 0.979155421257019, 0.9764664173126221, 0.9118242263793945, 0.8197108507156372] +Cc1onc(-c2ccccc2)c1-c1cnc2cccnn12; ['Brc1cnc2cccnn12', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [0.9999924898147583, 0.9999734163284302, 0.9998136758804321, 0.9873908758163452] +Clc1ccc(-c2[nH]ncc2-c2cnc3cccnn23)cc1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnc3cccnn23)cc1; [None]; [None]; [0] +c1ccc2c(CCc3cnc4cccnn34)c[nH]c2c1; [None]; [None]; [0] +COC(C)(C)CCc1c[nH]c2ccccc12; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Brc1c[nH]c2ccccc12', 'CCOc1ccccc1B(O)O', 'Brc1c[nH]c2ccccc12', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Cl', 'CCOc1ccccc1N', 'CCOc1ccccc1Br', 'Brc1c[nH]c2ccccc12']; ['CCOc1ccccc1Br', 'Ic1c[nH]c2ccccc12', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Ic1c[nH]c2ccccc12', 'CCOc1ccccc1B(O)O', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'CCOc1ccccc1Br']; [0.9999431371688843, 0.999936044216156, 0.9999184608459473, 0.9998906850814819, 0.9996358156204224, 0.9990741014480591, 0.9966956377029419, 0.9917886853218079, 0.9684798717498779, 0.9551942944526672, 0.9075294733047485] +Cc1nnc(-c2ccccc2-c2c[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c[nH]c2ccccc12; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'Brc1c[nH]c2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1', 'CC(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'CC(C)S(=O)(=O)c1ccccc1Br']; [0.9999822378158569, 0.9998669624328613, 0.9980875849723816, 0.9977043867111206, 0.9976383447647095, 0.9963943362236023, 0.9822953939437866, 0.9543967247009277, 0.8576358556747437] +CP(C)(=O)c1ccccc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'NNc1ccccc1', 'C#Cc1cccc(C(F)(F)F)c1', 'C#Cc1cccc(C(F)(F)F)c1', 'C#Cc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'NNc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1']; ['FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'O=CCc1cccc(C(F)(F)F)c1', '[N-]=[N+]=Nc1ccccc1', 'O=Nc1ccccc1', 'O=[N+]([O-])c1ccccc1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9996672868728638, 0.9990915060043335, 0.9988866448402405, 0.9988147020339966, 0.9982028007507324, 0.9961642026901245, 0.9842809438705444, 0.9355707168579102, 0.8358561992645264] +FC(F)(F)Oc1ccccc1-c1c[nH]c2ccccc12; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl', 'NNc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'Clc1c[nH]c2ccccc12', 'Nc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Cl']; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'FC(F)(F)Oc1ccccc1I', 'c1ccc2[nH]ccc2c1', 'Clc1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1ccccc1OC(F)(F)F', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999089241027832, 0.9997830390930176, 0.9997415542602539, 0.9996242523193359, 0.9991704225540161, 0.9988611936569214, 0.9982844591140747, 0.9965263605117798, 0.9947904348373413, 0.9935345649719238, 0.99346524477005, 0.991828203201294, 0.9895364046096802, 0.9856016635894775, 0.9837093353271484, 0.9781017899513245] +CCn1cc(-c2c[nH]c3ccccc23)cn1; ['Brc1c[nH]c2ccccc12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'Brc1c[nH]c2ccccc12', 'CCn1cc(I)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1c[nH]c2ccccc12', 'CCn1cc(Br)cn1', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CCn1cc(B(O)O)cn1', 'OB(O)c1c[nH]c2ccccc12']; [0.999782919883728, 0.9997330904006958, 0.9991800785064697, 0.9989923238754272, 0.9889565110206604, 0.9819592237472534, 0.9538182020187378, 0.830115795135498] +c1ccc2c(-c3c[nH]c4ccccc34)ccnc2c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1c[nH]c2ccccc12; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'Clc1c[nH]c2ccccc12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'NC(=O)c1ccccc1Br', 'Clc1c[nH]c2ccccc12', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'NC(=O)c1ccccc1B(O)O']; [0.9998862147331238, 0.9997084140777588, 0.9986706972122192, 0.998505711555481, 0.9960242509841919, 0.9720287322998047, 0.966727614402771, 0.9389020204544067, 0.937476396560669, 0.9269028902053833, 0.8428153395652771] +Cn1cnc2ccc(-c3c[nH]c4ccccc34)cc2c1=O; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cn1cnc2ccc(Br)cc2c1=O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'OB(O)c1c[nH]c2ccccc12']; [0.9982643723487854, 0.9545526504516602] +c1ccc(Cn2cc(-c3c[nH]c4ccccc34)cn2)cc1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999344348907471, 0.9998735189437866, 0.9984877109527588, 0.9979877471923828, 0.9977625608444214, 0.993556559085846] +CC(C)(C)c1nc(-c2c[nH]c3ccccc23)cs1; [None]; [None]; [0] +CC(C)C(=O)COc1c[nH]c2ccccc12; ['CC(C)C(=O)CBr', 'CC(C)C(=O)CCl']; ['Oc1c[nH]c2ccccc12', 'Oc1c[nH]c2ccccc12']; [0.9622249603271484, 0.9130539298057556] +O=C(Nc1cccc(-c2c[nH]c3ccccc23)c1)c1ccccc1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999599456787109, 0.9998862743377686, 0.9985214471817017, 0.9938026666641235] +c1ccc(-c2ncc(-c3c[nH]c4ccccc34)[nH]2)cc1; ['Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.993536114692688, 0.9134386777877808, 0.9100204706192017] +Clc1ccc(Cl)c(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Clc1ccc(Cl)c(Br)c1', 'Brc1c[nH]c2ccccc12', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1c[nH]c2ccccc12', 'Clc1ccc(Cl)c(Br)c1', 'Nc1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12']; [0.9999545812606812, 0.9998345375061035, 0.9997994899749756, 0.9997551441192627, 0.9989277720451355, 0.9988607168197632, 0.998759925365448, 0.9987447261810303, 0.9897975921630859, 0.9873849153518677, 0.9864110946655273, 0.9676601886749268, 0.8554731607437134] +Cc1nc(C)c(-c2c[nH]c3ccccc23)s1; ['Cc1nc(C)c(Br)s1', 'Brc1c[nH]c2ccccc12', 'Cc1csc(C)n1']; ['OB(O)c1c[nH]c2ccccc12', 'Cc1csc(C)n1', 'Ic1c[nH]c2ccccc12']; [0.9998191595077515, 0.9800053834915161, 0.9654784798622131] +Cc1ccc(-c2c[nH]c3ccccc23)c(Br)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(NN)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Brc1c[nH]c2ccccc12', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1cccc(Br)c1']; ['Cc1ccc(I)c(Br)c1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'Cc1ccc(B(O)O)c(Br)c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9996873140335083, 0.9991726875305176, 0.9967646598815918, 0.9874719381332397, 0.9807408452033997, 0.9098999500274658, 0.8456728458404541, 0.808114767074585, 0.7510624527931213] +CNc1nc(C)c(-c2c[nH]c3ccccc23)s1; ['CNc1nc(C)c(Br)s1', 'Brc1c[nH]c2ccccc12']; ['OB(O)c1c[nH]c2ccccc12', 'CNc1nc(C)cs1']; [0.9972813725471497, 0.9829106330871582] +OCCn1cc(-c2c[nH]c3ccccc23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; ['Ic1c[nH]c2ccccc12', 'OCCn1cc(I)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(I)cn1']; [0.9998657703399658, 0.9995968341827393, 0.9994574785232544, 0.9985661506652832, 0.9881408214569092, 0.8729748129844666, 0.838920533657074, 0.7567029595375061] +c1cc(Cn2cncn2)cc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1cn2ccccc2n1', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1cn2ccccc2n1', 'Brc1c[nH]c2ccccc12', 'Cc1nc2ccccn2c1Br', 'Cc1nc2ccccn2c1I']; ['Cc1nc2ccccn2c1Br', 'OB(O)c1c[nH]c2ccccc12', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1I', 'Ic1c[nH]c2ccccc12', 'Cc1nc2ccccn2c1C(=O)O', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999724626541138, 0.9999694228172302, 0.9999485015869141, 0.9999346733093262, 0.9999268054962158, 0.9991246461868286, 0.9988213777542114, 0.998782217502594] +c1ccc2c(-c3cnc4ccccn34)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cnc2ccccn12', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12']; [0.9999788999557495, 0.9999579191207886, 0.9997135400772095, 0.999610424041748, 0.9993306398391724, 0.9988818168640137, 0.9987398386001587, 0.9894901514053345, 0.9788690805435181, 0.970844030380249] +Cc1nc(N)sc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Brc1c[nH]c2ccccc12', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(N)c1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Cc1ccc(Cl)c(B(O)O)c1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9998214840888977, 0.9996726512908936, 0.9995715618133545, 0.9993960857391357, 0.9983857870101929, 0.9983792304992676, 0.997856080532074, 0.9964442253112793, 0.9852545261383057, 0.9544926881790161] +Brc1cccc(-c2c[nH]c3ccccc23)c1; ['NNc1ccccc1', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'C#Cc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'C#Cc1cccc(Br)c1', 'C#Cc1cccc(Br)c1', 'NNc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1']; ['O=CCc1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', '[N-]=[N+]=Nc1ccccc1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'O=Nc1ccccc1', 'O=[N+]([O-])c1ccccc1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999645948410034, 0.9997303485870361, 0.9994757771492004, 0.9972872138023376, 0.9966619610786438, 0.9958838820457458, 0.9955381155014038, 0.995165228843689, 0.993375301361084, 0.9763351082801819, 0.9384364485740662, 0.921475887298584, 0.8575223684310913] +c1cncc(CNc2c[nH]c3ccccc23)c1; ['Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'NCc1cccnc1', 'BrCc1cccnc1', 'Nc1c[nH]c2ccccc12', 'ClCc1cccnc1', 'COc1c[nH]c2ccccc12']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'Oc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'O=Cc1cccnc1', 'Nc1c[nH]c2ccccc12', 'NCc1cccnc1']; [0.9969035387039185, 0.9938962459564209, 0.992348313331604, 0.9920570850372314, 0.9681606292724609, 0.9411687850952148, 0.9159299731254578, 0.8493668437004089] +Cc1c(-c2c[nH]c3ccccc23)sc(=O)n1C; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1c[nH]c2ccccc12; [None]; [None]; [0] +c1ccc2c(-c3cnc4cccnn34)c[nH]c2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cnc2cccnn12', 'Brc1c[nH]c2ccccc12', 'Clc1cnc2cccnn12', 'c1ccc2[nH]ccc2c1']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1c[nH]c2ccccc12', 'c1cnn2ccnc2c1', 'OB(O)c1c[nH]c2ccccc12', 'c1cnn2ccnc2c1']; [0.9999837875366211, 0.9999644756317139, 0.9994277954101562, 0.9991859793663025, 0.997378945350647, 0.9966879487037659] +Clc1cccc(Cl)c1-c1c[nH]c2ccccc12; ['Clc1cccc(Cl)c1Br', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cccc(Cl)c1I', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1c[nH]c2ccccc12', 'NNc1ccccc1', 'C#Cc1c(Cl)cccc1Cl', 'Brc1c[nH]c2ccccc12', 'C#Cc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1', 'C#Cc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'NNc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Cl']; ['OB(O)c1c[nH]c2ccccc12', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'O=CCc1c(Cl)cccc1Cl', '[N-]=[N+]=Nc1ccccc1', 'Clc1cccc(Cl)c1', 'O=[N+]([O-])c1ccccc1', 'c1ccc2[nH]ccc2c1', 'Ic1c[nH]c2ccccc12', 'O=Nc1ccccc1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.999901533126831, 0.9998868703842163, 0.9998035430908203, 0.999765157699585, 0.9997163414955139, 0.9994530081748962, 0.9972758293151855, 0.9969004988670349, 0.9966202974319458, 0.9948870539665222, 0.9936710000038147, 0.9919205904006958, 0.991604208946228, 0.989111602306366, 0.9784784913063049, 0.9639153480529785, 0.9589054584503174, 0.9164584279060364, 0.9162798523902893] +Nc1nccc(-c2c[nH]c3ccccc23)n1; ['Nc1nccc(Br)n1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1nccc(Cl)n1', None, None, 'Nc1nccc(Cl)n1']; ['OB(O)c1c[nH]c2ccccc12', 'Nc1nccc(Cl)n1', 'OB(O)c1c[nH]c2ccccc12', None, None, 'c1ccc2[nH]ccc2c1']; [0.9997847080230713, 0.9988484978675842, 0.9975702166557312, 0, 0, 0.8226451873779297] +O=C(Nc1c[nH]c2ccccc12)c1cccs1; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'COC(=O)c1cccs1', 'NC(=O)c1cccs1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.9926574230194092, 0.9923208951950073, 0.9362683892250061, 0.9308874011039734, 0.9294347763061523, 0.8824076652526855, 0.8520845770835876] +c1ccc2c(NCCc3c[nH]cn3)c[nH]c2c1; ['NCCc1c[nH]cn1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['OB(O)c1c[nH]c2ccccc12', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9521769881248474, 0.9469096064567566, 0.9110674858093262, 0.8834399580955505] +NC(=O)c1c(F)cccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br']; ['NC(=O)c1c(F)cccc1Br', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1']; [0.999907374382019, 0.9887833595275879, 0.9598920941352844, 0.7692812085151672] +c1ccc2c(c1)ncn2-c1c[nH]c2ccccc12; [None]; [None]; [0] +c1ccc2cc(-c3c[nH]c4ccccc34)ccc2c1; ['Brc1c[nH]c2ccccc12', 'Brc1ccc2ccccc2c1', 'C#Cc1ccc2ccccc2c1', 'C#Cc1ccc2ccccc2c1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'C#Cc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Clc1c[nH]c2ccccc12', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'NNc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', '[N-]=[N+]=Nc1ccccc1', 'O=Nc1ccccc1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'O=[N+]([O-])c1ccccc1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.999902606010437, 0.9998557567596436, 0.9996166229248047, 0.9995445013046265, 0.9992004036903381, 0.9991021752357483, 0.9989794492721558, 0.9958242774009705, 0.985994815826416, 0.982345700263977, 0.9788827896118164, 0.9761886596679688, 0.9631152153015137, 0.9243184328079224, 0.8986833095550537, 0.7670509815216064] +c1cncc(Nc2c[nH]c3ccccc23)c1; ['Nc1c[nH]c2ccccc12', 'Clc1cccnc1', 'Ic1c[nH]c2ccccc12', 'Fc1cccnc1', 'Nc1cccnc1', 'Nc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Ic1cccnc1', 'Brc1c[nH]c2ccccc12', 'Brc1cccnc1']; ['OB(O)c1cccnc1', 'Nc1c[nH]c2ccccc12', 'Nc1cccnc1', 'Nc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'O=S(=O)(Oc1cccnc1)C(F)(F)F', 'Nc1cccnc1', 'Nc1c[nH]c2ccccc12', 'Nc1cccnc1', 'Nc1c[nH]c2ccccc12']; [0.9962036609649658, 0.9943718910217285, 0.9928504228591919, 0.9906930923461914, 0.988465428352356, 0.9881114959716797, 0.9784952998161316, 0.9741437435150146, 0.9721403121948242, 0.9394716024398804] +c1ccc2c(-c3cnn4ncccc34)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9997131824493408, 0.9990546703338623, 0.9970824718475342] +c1ccc(CCNc2c[nH]c3ccccc23)cc1; ['Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'CS(=O)(=O)OCCc1ccccc1', 'ClCCc1ccccc1', 'Nc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'BrCCc1ccccc1', 'ICCc1ccccc1', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'OCCc1ccccc1', 'NCCc1ccccc1', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'NCCc1ccccc1']; [0.9935195446014404, 0.9777536392211914, 0.9115482568740845, 0.9024697542190552, 0.8338804244995117, 0.8223068714141846, 0.782080888748169, 0.7767229080200195] +FC(F)(F)c1n[nH]cc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'FC(F)(F)c1n[nH]cc1Cl']; ['FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12']; [0.9998857975006104, 0.9998520016670227, 0.9991903305053711, 0.998951256275177, 0.9985821843147278, 0.995793342590332, 0.9955552816390991] +c1ccc2c(-c3c[nH]c4ccccc34)cncc2c1; ['Brc1c[nH]c2ccccc12', 'Brc1cncc2ccccc12', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12', 'NNc1cncc2ccccc12', 'Clc1c[nH]c2ccccc12', 'Clc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9998626708984375, 0.99971604347229, 0.997509241104126, 0.9852064847946167, 0.9754394888877869, 0.9695295691490173, 0.9424805641174316, 0.9242676496505737, 0.9178595542907715, 0.9005062580108643, 0.8252043724060059, 0.783534049987793] +Nc1[nH]nc2cc(-c3c[nH]c4ccccc34)ccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1[nH]nc2cc(Br)ccc12']; ['Nc1[nH]nc2cc(Br)ccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999424815177917, 0.9931504726409912] +Clc1ccc(CNc2c[nH]c3ccccc23)cc1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1ccc(CBr)cc1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'NCc1ccc(Cl)cc1']; ['NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'Nc1c[nH]c2ccccc12', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OB(O)c1c[nH]c2ccccc12']; [0.9950460195541382, 0.9816111326217651, 0.9755432605743408, 0.9632774591445923, 0.9591434001922607, 0.8843693733215332, 0.8547592163085938] +O=C([O-])Cc1cccc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3c[nH]c4ccccc34)cc2)cn1; [None]; [None]; [0] +CN1c2ccc(-c3c[nH]c4ccccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3c[nH]c4ccccc34)ccc21; ['Brc1c[nH]c2ccccc12', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1c[nH]c2ccccc12', 'Cn1ncc2cc(I)ccc21', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(N)ccc21']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Ic1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'OB(O)c1c[nH]c2ccccc12', 'Cn1ncc2cc(Cl)ccc21', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999978542327881, 0.9999874830245972, 0.9999679327011108, 0.9999593496322632, 0.9999556541442871, 0.999910831451416, 0.99983149766922, 0.9993582963943481, 0.99728924036026, 0.9908938407897949, 0.9883183240890503, 0.9367939233779907, 0.9310073852539062] +CCCn1cnc(-c2c[nH]c3ccccc23)n1; [None]; [None]; [0] +OCc1cccc(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'C#Cc1cccc(CO)c1', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'C#Cc1cccc(CO)c1']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'O=Nc1ccccc1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'O=[N+]([O-])c1ccccc1']; [0.999824047088623, 0.9996767044067383, 0.9900845289230347, 0.9835343360900879, 0.9746525287628174, 0.9721332788467407, 0.9685851335525513, 0.9346710443496704, 0.8410294055938721] +Oc1cccc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; ['Oc1cccc(Br)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Clc1c[nH]c2ccccc12', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Cl)c1']; [0.9987753629684448, 0.998207688331604, 0.9978040456771851, 0.9976426362991333, 0.9949999451637268, 0.9934016466140747, 0.9755416512489319, 0.9623528122901917, 0.9565725326538086, 0.8761287927627563, 0.811324417591095] +c1ccc2c(-c3ccc(-c4cn[nH]c4)cc3)c[nH]c2c1; [None]; [None]; [0] +CC(C)n1cc(-c2c[nH]c3ccccc23)nn1; ['C#Cc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['CC(C)N=[N+]=[N-]', 'CC(C)n1ccnn1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999995231628418, 0.9999809265136719, 0.9999674558639526, 0.9999650716781616] +Fc1ccccc1CNc1c[nH]c2ccccc12; ['Nc1c[nH]c2ccccc12', 'NCc1ccccc1F', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Fc1ccccc1CCl', 'Fc1ccccc1CBr']; ['OCc1ccccc1F', 'OB(O)c1c[nH]c2ccccc12', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.9706859588623047, 0.9465651512145996, 0.9413297176361084, 0.9318090677261353, 0.914333701133728, 0.9039283990859985, 0.9010512828826904] +c1ccc2c(Nc3ccncc3)c[nH]c2c1; ['Nc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Nc1ccncc1', 'Clc1ccncc1', 'Brc1c[nH]c2ccccc12', 'Ic1ccncc1', 'Ic1c[nH]c2ccccc12', 'Fc1ccncc1', 'Brc1ccncc1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1ccncc1', 'Nc1c[nH]c2ccccc12', 'Nc1ccncc1', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.9995794892311096, 0.9985874891281128, 0.9984519481658936, 0.9943245649337769, 0.9913197159767151, 0.9879516363143921, 0.9855189323425293, 0.9820073843002319, 0.9223837852478027] +N#CCCc1cccc(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'N#CCCc1cccc(Br)c1']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'OB(O)c1c[nH]c2ccccc12']; [0.9998056888580322, 0.9991681575775146, 0.9984406232833862, 0.997370719909668, 0.8914393782615662] +CSc1nc(-c2c[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +c1ccc2c(-c3csc4ncncc34)c[nH]c2c1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12']; [0.999911904335022, 0.9986103177070618, 0.9968709945678711] +Nc1nc(-c2c[nH]c3ccccc23)cs1; ['NC(N)=S', 'CC(=O)c1c[nH]c2ccccc12', None, 'Nc1nc(Cl)cs1']; ['O=C(CCl)c1c[nH]c2ccccc12', 'NC(N)=S', None, 'OB(O)c1c[nH]c2ccccc12']; [0.9999977350234985, 0.9999426603317261, 0, 0.9991354942321777] +CCNc1nc2ccc(-c3c[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +c1ccc2c(CCc3c[nH]nn3)c[nH]c2c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3c[nH]c4ccccc34)cc2c1; ['Brc1c[nH]c2ccccc12', 'CC(=O)c1c[nH]c2ccccc12', 'Nc1ccccc1C=C(Br)Br', 'C#Cc1c[nH]c2ccccc12', 'CC(=O)c1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Nc1ccccc1I', 'OB(O)c1c[nH]c2ccccc12', 'Nc1ccccc1I', 'NNc1ccccc1', 'c1ccc2[nH]ccc2c1']; [0.9999252557754517, 0.9993581771850586, 0.9952793121337891, 0.9920414090156555, 0.9874768257141113, 0.9186217784881592] +c1ccc(Oc2c[nH]c3ccccc23)nc1; ['Clc1ccccn1', 'Fc1ccccn1', 'Brc1ccccn1', 'Ic1ccccn1']; ['Oc1c[nH]c2ccccc12', 'Oc1c[nH]c2ccccc12', 'Oc1c[nH]c2ccccc12', 'Oc1c[nH]c2ccccc12']; [0.99365234375, 0.9782735109329224, 0.9768739938735962, 0.9155368804931641] +CCC(=O)Nc1ccc(-c2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; [0.999775767326355] +COc1cc(-c2c[nH]c3ccccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +NC(=O)CCCc1c[nH]c2ccccc12; ['O=C(O)CCCc1c[nH]c2ccccc12', None, 'O=C(O)CCCc1c[nH]c2ccccc12', None, None]; ['O=C(n1ccnc1)n1ccnc1', None, '[NH4+]', None, None]; [0.9942202568054199, 0, 0.9688087701797485, 0, 0] +CC(C)c1oncc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccccc12)c1c(Cl)cccc1Cl; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'NC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'Nc1c[nH]c2ccccc12']; [0.9961292743682861, 0.9877043962478638, 0.9567534923553467, 0.8067449331283569] +CC(=O)Nc1cccc(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1c[nH]c2ccccc12', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9998012781143188, 0.9997556209564209, 0.9997386336326599, 0.9921910166740417, 0.9734563231468201, 0.9727526903152466, 0.9405807256698608, 0.8199036121368408] +Fc1ccc(-c2c[nH]c3ccccc23)c(C(F)(F)F)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Clc1c[nH]c2ccccc12', 'Fc1ccc(I)c(C(F)(F)F)c1', 'NNc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Nc1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.999987781047821, 0.9999496936798096, 0.9999370574951172, 0.999863862991333, 0.9998128414154053, 0.9998078942298889, 0.9996399283409119, 0.9993447065353394, 0.9989795684814453, 0.9970285892486572, 0.9969365000724792, 0.9965178966522217, 0.9928247928619385, 0.9898635149002075] +Nc1ncncc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl']; ['Nc1ncncc1Br', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999720454216003, 0.9959573745727539, 0.9954497218132019, 0.9552989602088928] +CC(C)(O)CC(=O)NCCc1c[nH]c2ccccc12; ['CCOC(=O)CC(C)(C)O', 'COC(=O)CC(C)(C)O', 'CC(C)(O)CC(=O)[O-]', 'CC(C)(O)CC#N', 'CC(C)(O)CC(=O)O']; ['NCCc1c[nH]c2ccccc12', 'NCCc1c[nH]c2ccccc12', 'NCCc1c[nH]c2ccccc12', 'NCCc1c[nH]c2ccccc12', 'NCCc1c[nH]c2ccccc12']; [0.9932543039321899, 0.9877703189849854, 0.9874266386032104, 0.9733176231384277, 0.9615949392318726] +CS(=O)(=O)C1CCN(c2c[nH]c3ccccc23)CC1; ['Brc1c[nH]c2ccccc12', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; [0.9530962109565735, 0.8740477561950684, 0.8544523119926453] +Cn1cc(-c2c[nH]c3ccccc23)c2ccccc21; ['Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; ['Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9879522323608398, 0.9750969409942627] +COc1ccc(-c2c[nH]c3ccccc23)cc1Cl; ['Brc1c[nH]c2ccccc12', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['COc1ccc(B(O)O)cc1Cl', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9913358688354492, 0.7603991031646729, 0.753190279006958] +CCCn1cc(-c2c[nH]c3ccccc23)cn1; ['Brc1c[nH]c2ccccc12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'Brc1c[nH]c2ccccc12', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'Brc1c[nH]c2ccccc12']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Ic1c[nH]c2ccccc12', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CCCn1cc(B(O)O)cn1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'CCCn1cccn1']; [0.999980092048645, 0.9999688863754272, 0.9998682737350464, 0.9997584819793701, 0.9953835010528564, 0.9895431995391846, 0.9890438318252563, 0.9800095558166504, 0.8961201906204224, 0.8383480906486511] +CC(C)(COc1c[nH]c2ccccc12)S(C)(=O)=O; [None]; [None]; [0] +c1ccc2c(-c3cnn4ccccc34)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Ic1cnn2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1cnn2ccccc12']; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'OB(O)c1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'OB(O)c1c[nH]c2ccccc12']; [0.9999789595603943, 0.999933660030365, 0.9998325705528259, 0.9997950792312622, 0.9996525049209595, 0.9992020726203918, 0.9971010088920593, 0.9944722652435303, 0.9841905832290649, 0.9774439334869385, 0.9559270143508911, 0.9456837177276611, 0.8754938840866089] +C[C@@H](Oc1c[nH]c2ccccc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Brc1c[nH]c2ccccc12', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Ic1c[nH]c2ccccc12', 'Oc1c[nH]c2ccccc12', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1c[nH]c2ccccc12']; [0.9742176532745361, 0.927422285079956, 0.8112576007843018, 0.7509594559669495] +O=c1cc(-c2c[nH]c3ccccc23)cc[nH]1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'O=c1cc(Br)cc[nH]1']; [0.9995852112770081, 0.9956599473953247] +C[S@](=O)c1ccc(-c2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12', 'CS(=O)c1ccc(Br)cc1']; ['CS(=O)c1ccc(B(O)O)cc1', 'OB(O)c1c[nH]c2ccccc12']; [0.9802101850509644, 0.9227622747421265] +CCN(CC)c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCNCC']; ['CCNCC', 'Clc1c[nH]c2ccccc12']; [0.9896373748779297, 0.907455563545227] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCNS(=O)(=O)c1ccccc1Br', 'CCN']; ['CCNS(=O)(=O)c1ccccc1Br', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc(-c2c[nH]c3ccccc23)cc1']; [0.9994427561759949, 0.859138011932373, 0.8574633598327637] +[NH3+]Cc1ccc(-c2c[nH]c3ccccc23)cc1C(F)(F)F; [None]; [None]; [0] +O=C1CCc2cccc(-c3c[nH]c4ccccc34)c21; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3ccccc23)cc(OC)c1; ['BrCCc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['COc1cc(Br)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1']; [0.9145693778991699, 0.9017125964164734] +COc1ccncc1Nc1c[nH]c2ccccc12; ['COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1Cl', 'COc1ccncc1N', 'Brc1c[nH]c2ccccc12', 'COc1ccncc1Br']; ['Ic1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'COc1ccncc1N', 'Nc1c[nH]c2ccccc12']; [0.9935864210128784, 0.9921220541000366, 0.9898397922515869, 0.9882024526596069, 0.9857680797576904, 0.9796781539916992] +CC(C)(N)c1ccc(-c2c[nH]c3ccccc23)cc1; ['CC(C)(N)c1ccc(Br)cc1', 'CC(C)(N)c1cccc(Br)c1', 'CC(C)(N)c1ccc(Br)cc1']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9992526769638062, 0.9673604369163513, 0.8786296844482422] +c1ccc(-c2ccncc2Nc2c[nH]c3ccccc23)cc1; ['Brc1cnccc1-c1ccccc1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9810768365859985, 0.9718238711357117, 0.9390374422073364, 0.832432746887207] +O=c1[nH]ccc2oc(-c3c[nH]c4ccccc34)cc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'O=c1[nH]ccc2oc(Br)cc12']; ['O=c1[nH]ccc2oc(Br)cc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999345541000366, 0.9974040985107422] +O=c1[nH]cc(Br)c2sc(-c3c[nH]c4ccccc34)cc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c3ccccc23)cc1; ['C#Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'C#Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(CC=O)cc1', 'C#Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1c[nH]c2ccccc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(NN)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(N)cc1']; ['O=[N+]([O-])c1ccccc1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', '[N-]=[N+]=Nc1ccccc1', 'NNc1ccccc1', 'O=Nc1ccccc1', 'OB(O)c1c[nH]c2ccccc12', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Ic1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999170303344727, 0.9998384714126587, 0.9998122453689575, 0.9998060464859009, 0.9983898997306824, 0.9980264902114868, 0.9976306557655334, 0.9973050355911255, 0.9903559684753418, 0.9815343618392944, 0.9793132543563843, 0.9569003582000732, 0.8348082304000854] +c1ccc2ncc(Nc3c[nH]c4ccccc34)cc2c1; ['Clc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Fc1cnc2ccccc2c1', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Nc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1c[nH]c2ccccc12', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.9930918216705322, 0.9921754598617554, 0.9881531596183777, 0.9869503378868103, 0.9848358631134033, 0.9810833930969238, 0.9745016694068909, 0.9619097113609314, 0.8061271905899048] +CC(C)Oc1cncc(-c2c[nH]c3ccccc23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'Brc1c[nH]c2ccccc12', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'Brc1c[nH]c2ccccc12', 'CC(C)Oc1cncc(Br)c1', 'Brc1c[nH]c2ccccc12']; ['Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC(C)Oc1cncc(B(O)O)c1', 'OB(O)c1c[nH]c2ccccc12', 'CC(C)Oc1cncc(Br)c1']; [0.9999866485595703, 0.9999804496765137, 0.9999496340751648, 0.9998828172683716, 0.9988200664520264, 0.9970670938491821, 0.9950323104858398, 0.9448768496513367, 0.9319329857826233] +CNC(=O)c1c(F)cccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C']; ['CNC(=O)c1ccccc1F']; [0.9763921499252319] +c1ccc2c(-c3cnc4[nH]ccc4c3)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1c[nH]c2ccccc12', 'Ic1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Brc1cnc2[nH]ccc2c1', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; [0.9999814033508301, 0.9999561905860901, 0.9998037815093994, 0.9993544220924377, 0.9985798001289368, 0.9985358715057373, 0.9982614517211914, 0.9910296201705933, 0.9908875226974487, 0.9890813231468201, 0.9785944223403931, 0.9716546535491943, 0.9000756144523621] +CNS(=O)(=O)c1ccc(-c2c[nH]c3ccccc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1c[nH]c2ccccc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Ic1c[nH]c2ccccc12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'Clc1c[nH]c2ccccc12']; [0.999353289604187, 0.9987984895706177, 0.9939029216766357, 0.9924729466438293, 0.9810914993286133, 0.9574154615402222, 0.8900688290596008, 0.878727912902832] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1c[nH]c2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1c[nH]c2ccccc12']; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; [0.9999381899833679, 0.9999107122421265, 0.9984467029571533, 0.9981324672698975, 0.9976201057434082, 0.9918315410614014, 0.9102665185928345, 0.8680229187011719, 0.7869857549667358] +COc1cccc(F)c1-c1c[nH]c2ccccc12; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cnccc34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc(N4CCOCC4)cc3)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'Brc1c[nH]c2ccccc12', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Fc1ccc(-c2c[nH]c3ccccc23)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'c1ccc2[nH]ccc2c1', 'Ic1c[nH]c2ccccc12']; [0.9999799728393555, 0.999915361404419, 0.9997314214706421, 0.9990376234054565, 0.998292088508606, 0.9972759485244751, 0.9947018623352051, 0.9916592836380005, 0.9890092015266418, 0.9862228631973267, 0.9800568222999573, 0.9765067100524902, 0.9646095037460327, 0.9622620344161987, 0.9474358558654785, 0.9108274579048157, 0.8301633596420288] +Cc1cc(-c2c[nH]c3ccccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'C#Cc1ccc(S(C)(=O)=O)cc1', 'CS(=O)(=O)c1ccc(CC=O)cc1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'O=Nc1ccccc1', 'NNc1ccccc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; [0.9999721050262451, 0.9998997449874878, 0.9989445209503174, 0.9974253177642822, 0.9967614412307739, 0.9954229593276978, 0.99322509765625, 0.9906907081604004, 0.9895268678665161, 0.9646678566932678, 0.945665717124939, 0.8852137327194214, 0.8734954595565796] +CN(c1c[nH]c2ccccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2c[nH]c3ccccc23)n1; [None]; [None]; [0] +CC1(c2c[nH]c3ccccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccccc12)C(C)(C)O; ['Brc1c[nH]c2ccccc12', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['C[C@H](N)C(C)(C)O', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; [0.9791755676269531, 0.9694092869758606, 0.8287349939346313] +C[C@@H](Nc1c[nH]c2ccccc12)C(C)(C)O; ['Brc1c[nH]c2ccccc12', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['C[C@@H](N)C(C)(C)O', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; [0.9791755676269531, 0.9694092869758606, 0.9270908832550049, 0.8287349939346313] +OCCc1cn(-c2c[nH]c3ccccc23)cn1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1c[nH]c2ccccc12; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ccccc23)c(OC)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'COc1ccc(B(O)O)c(OC)c1', 'Brc1c[nH]c2ccccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'Brc1c[nH]c2ccccc12', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(NN)c(OC)c1']; ['COc1ccc(Br)c(OC)c1', 'Ic1c[nH]c2ccccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'Ic1c[nH]c2ccccc12', 'COc1ccc(B(O)O)c(OC)c1', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'COc1cccc(OC)c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999423027038574, 0.9999405145645142, 0.9999271631240845, 0.9999160766601562, 0.9998974204063416, 0.9997034668922424, 0.9996912479400635, 0.9995394945144653, 0.9991288185119629, 0.9988886117935181, 0.9944931864738464, 0.991181492805481, 0.9909018278121948, 0.9547972679138184, 0.9411206245422363, 0.9327667355537415, 0.8754040002822876] +c1ccc2c(-c3ccc(-n4cncn4)cc3)c[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3c[nH]c4ccccc34)[nH]c2c1; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'CCOC(=O)c1c[nH]c2ccccc12', 'Nc1ccc(O)cc1[N+](=O)[O-]', 'Ic1c[nH]c2ccccc12']; ['O=C(O)c1c[nH]c2ccccc12', 'O=Cc1c[nH]c2ccccc12', 'OCc1c[nH]c2ccccc12', 'O=C(Cl)c1c[nH]c2ccccc12', 'Nc1ccc(O)cc1N', 'O=Cc1c[nH]c2ccccc12', 'Oc1ccc2nc[nH]c2c1']; [0.9999345541000366, 0.9997599124908447, 0.9995436072349548, 0.9994378685951233, 0.9989181160926819, 0.9966805577278137, 0.8651725053787231] +Oc1cccc2c1cnn2-c1c[nH]c2ccccc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Clc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'Clc1c[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'OB(O)c1c[nH]c2ccccc12', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999639987945557, 0.999839723110199, 0.9985941648483276, 0.9978228807449341, 0.9964102506637573, 0.9959444403648376, 0.9931559562683105, 0.9927197694778442, 0.9917548894882202, 0.9680087566375732, 0.950191855430603, 0.9302833080291748, 0.8772011995315552, 0.8647217750549316] +CSc1nc(C)c(-c2c[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +O=C(CCc1c[nH]c2ccccc12)NCc1ccccn1; ['NCc1ccccn1', 'N#CCCc1c[nH]c2ccccc12', 'NCc1ccccn1', 'NCc1ccccn1', 'NC(=O)CCc1c[nH]c2ccccc12', 'CCOC(=O)CCc1c[nH]c2ccccc12', 'COC(=O)CCc1c[nH]c2ccccc12', 'BrCc1ccccn1', 'NC(=O)CCc1c[nH]c2ccccc12']; ['O=C(O)CCc1c[nH]c2ccccc12', 'NCc1ccccn1', 'O=C([O-])CCc1c[nH]c2ccccc12', 'OCCCc1c[nH]c2ccccc12', 'NCc1ccccn1', 'NCc1ccccn1', 'NCc1ccccn1', 'NC(=O)CCc1c[nH]c2ccccc12', 'OCc1ccccn1']; [0.9997804164886475, 0.9995763301849365, 0.9986673593521118, 0.9983996152877808, 0.9979673624038696, 0.9960891008377075, 0.9945415258407593, 0.9938769340515137, 0.9861103892326355] +c1ccc(-c2ccc3nnc(Cc4c[nH]c5ccccc45)n3n2)cc1; ['NNc1ccc(-c2ccccc2)nn1']; ['O=C(O)Cc1c[nH]c2ccccc12']; [0.9995964765548706] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c3ccccc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2c[nH]c3ccccc23)s1; ['NNC(N)=S']; ['O=C(O)c1c[nH]c2ccccc12']; [0.9988818168640137] +c1ccc2c(-c3nncn3C3CC3)c[nH]c2c1; [None]; [None]; [0] +CCc1cc(-c2c[nH]c3ccccc23)nc(N)n1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CCc1ccnc(N)n1', 'CCc1cc(Cl)nc(N)n1', 'Brc1c[nH]c2ccccc12', 'CCc1ccnc(N)n1']; ['CCc1cc(Cl)nc(N)n1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'CCc1ccnc(N)n1', 'Ic1c[nH]c2ccccc12']; [0.999975323677063, 0.9998589754104614, 0.9996683597564697, 0.9981000423431396, 0.9893227815628052] +[NH3+]CCn1ccc(-c2c[nH]c3ccccc23)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3c[nH]c4ccccc34)nn2)cc1; ['BrCc1ccccc1', 'C#Cc1c[nH]c2ccccc12', 'C#Cc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12']; ['C#Cc1c[nH]c2ccccc12', '[N-]=[N+]=NCc1ccccc1', 'ClCc1ccccc1', 'c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1', 'c1ccc(Cn2ccnn2)cc1']; [0.9999989867210388, 0.9999989867210388, 0.9999989867210388, 0.9992547035217285, 0.9930645227432251, 0.9909934997558594] +O=S(=O)(Cc1c[nH]c2ccccc12)NCc1ccccn1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ccccc23)s1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CNC(=O)c1ccc(Br)s1']; ['CNC(=O)c1ccc(Br)s1', 'OB(O)c1c[nH]c2ccccc12']; [0.9999939203262329, 0.9990018010139465] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c3ccccc23)CC1; [None, 'CCN', 'CCN=C=O', 'CCNC(=O)Oc1ccc([N+](=O)[O-])cc1', 'CCNC(=O)Oc1ccccc1', 'CCNC(=O)OCC', 'CCNC=O', 'CCNC(=O)OC']; [None, 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1', 'c1ccc2c(C3CCNCC3)c[nH]c2c1']; [0, 0.9996776580810547, 0.9988846778869629, 0.9964219331741333, 0.9942906498908997, 0.8350018858909607, 0.8239591121673584, 0.7898213863372803] +c1cc(-c2c[nH]c3ccccc23)c2sccc2c1; ['Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'Brc1cccc2ccsc12']; ['OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9752030372619629, 0.9540915489196777, 0.7937980890274048] +Nc1cncc(-c2c[nH]c3ccccc23)n1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Brc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9996237754821777, 0.999459981918335, 0.9975322484970093, 0.993995189666748, 0.9846506714820862, 0.9324156045913696] +c1cc(-c2c[nH]c3ccccc23)c2snnc2c1; ['Brc1cccc2nnsc12']; ['OB(O)c1c[nH]c2ccccc12']; [0.9807560443878174] +CC(C)(O)c1cccc(-c2c[nH]c3ccccc23)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['OB(O)c1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'OB(O)c1c[nH]c2ccccc12']; [0.9979692697525024, 0.9973723888397217, 0.9849576950073242, 0.9666107892990112] +CC1(C)Oc2ccc(-c3c[nH]c4ccccc34)nc2NC1=O; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O', 'Brc1c[nH]c2ccccc12']; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'CC1(C)Oc2cccnc2NC1=O']; [0.9975719451904297, 0.9903355836868286, 0.9760826826095581, 0.7726673483848572] +Nc1nc(-c2c[nH]c3ccccc23)nc2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1nc(Cl)nc2ccccc12']; ['Nc1nc(Cl)nc2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9944371581077576, 0.9736660718917847] +[NH3+]Cc1ccc(Oc2c[nH]c3ccccc23)c(F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cccnc34)c[nH]c2c1; ['Ic1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12']; ['OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9990360736846924, 0.9807138442993164] +c1ccc2nc(-c3c[nH]c4ccccc34)ncc2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1ncc2ccccc2n1']; ['Clc1ncc2ccccc2n1', 'OB(O)c1c[nH]c2ccccc12']; [0.9995107650756836, 0.9841795563697815] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c4ccccc34)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1c[nH]c2ccccc12', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1N']; ['COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1c[nH]c2ccccc12', 'COc1ccc(C#N)cc1B(O)O', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999887943267822, 0.9999864101409912, 0.9999850988388062, 0.9999728202819824, 0.999951958656311, 0.9999297857284546, 0.9999181032180786, 0.9998959302902222, 0.9996330738067627, 0.9994535446166992, 0.998778760433197, 0.9983486533164978, 0.9979968070983887, 0.997702956199646, 0.9941436648368835] +c1ccc2c(-c3ncc4cc[nH]c4n3)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1ncc2cc[nH]c2n1']; ['Clc1ncc2cc[nH]c2n1', 'OB(O)c1c[nH]c2ccccc12']; [0.9965078830718994, 0.9797770380973816] +CC(=O)Nc1ncc(-c2c[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'Brc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(I)c1', 'Brc1c[nH]c2ccccc12', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'COc1ccc(OC)cc1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999560117721558, 0.9999364018440247, 0.9997796416282654, 0.9997544288635254, 0.9997104406356812, 0.9995105266571045, 0.999276876449585, 0.9992124438285828, 0.9988036155700684, 0.9961796998977661, 0.9688851833343506, 0.9621273875236511, 0.9379202127456665, 0.9289518594741821] +COc1ncccc1-c1c[nH]c2ccccc12; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'COc1ncccc1B(O)O', 'Brc1c[nH]c2ccccc12', 'COc1ncccc1Cl', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'Brc1c[nH]c2ccccc12']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'Ic1c[nH]c2ccccc12', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'Ic1c[nH]c2ccccc12', 'COc1ncccc1B(O)O', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'COc1ncccc1Br']; [0.9998361468315125, 0.9997334480285645, 0.9995996952056885, 0.9991039037704468, 0.9942488670349121, 0.994205117225647, 0.9804426431655884, 0.9717618823051453, 0.9706624746322632, 0.9464939832687378, 0.9438035488128662, 0.8073383569717407] +COc1ccc(Oc2c[nH]c3ccccc23)c(F)c1F; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Brc1c[nH]c2ccccc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'Brc1c[nH]c2ccccc12', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Clc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'c1ccc2[nH]ccc2c1']; [0.9999933242797852, 0.9999924302101135, 0.9999884366989136, 0.9999184608459473, 0.9994698166847229, 0.9991923570632935, 0.9987069368362427, 0.995704710483551, 0.9745551347732544, 0.7559800148010254] +OCCn1cnc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2c[nH]c3ccccc23)C1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4c[nH]c5ccccc45)CC3)nc2c1; ['Brc1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9934867024421692, 0.9450527429580688] +CNC(=O)c1ccccc1-c1ccc2n[nH]c(C)c2c1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1I']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9893982410430908, 0.8321874737739563] +CN(C)c1cc(-c2c[nH]c3ccccc23)cnn1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2n[nH]c(C)c2c1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9995966553688049, 0.9977549314498901] +Cc1[nH]nc2ccc(-c3ccccc3S(=O)(=O)C(C)C)cc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9846503734588623, 0.7756104469299316] +O=C(Nc1cccc(-c2c[nH]c3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3n[nH]c(C)c3c2)[nH]1; [None]; [None]; [0] +Cc1[nH]nc2ccc(Cc3cc(F)cc(F)c3)cc12; [None]; [None]; [0] +CCn1cc(-c2ccc3n[nH]c(C)c3c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999579191207886, 0.9984694123268127] +COC(C)(C)CCc1ccc2n[nH]c(C)c2c1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccccc3P(C)(C)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccnc4ccccc34)cc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1ccnc2ccccc12']; [0.998652994632721, 0.9591493606567383] +Cc1[nH]nc2ccc(-c3ccccc3OC(F)(F)F)cc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Br']; [0.9998362064361572, 0.998868465423584, 0.9917879104614258, 0.9386612176895142, 0.9052455425262451] +Cc1[nH]nc2ccc(-c3cccc(C(F)(F)F)c3)cc12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'CCCC[Sn](CCCC)(CCCC)c1cccc(C(F)(F)F)c1', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'Cc1[nH]nc2ccc(Br)cc12', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999434947967529, 0.9996676445007324, 0.997351348400116, 0.9956822395324707, 0.8981386423110962, 0.8839316964149475] +Cc1[nH]nc2ccc(-c3cnn(Cc4ccccc4)c3)cc12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999711513519287, 0.9991825819015503] +Cc1[nH]nc2ccc(-c3ccccc3C(=O)[O-])cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccccc3C(N)=O)cc12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I']; [0.9993146657943726, 0.9950088262557983, 0.9663335084915161] +Cc1[nH]nc2ccc(-c3ccc4ncn(C)c(=O)c4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3csc(C(C)(C)C)n3)cc12; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1', 'CC(C)(C)c1nccs1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999918341636658, 0.9493938684463501] +Cc1[nH]nc2ccc(-c3cc(Cl)ccc3Cl)cc12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1']; [0.9988157749176025, 0.9958523511886597, 0.9677262306213379] +Cc1[nH]nc2ccc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cnn(CCO)c3)cc12; [None]; [None]; [0] +COc1cnc(-c2ccc3n[nH]c(C)c3c2)nc1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc(NC(=O)c4ccccc4)c3)cc12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1[nH]nc2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Cc1[nH]nc2ccccc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9998314380645752, 0.9995466470718384, 0.995480477809906, 0.9869717359542847] +Cc1nc2ccccn2c1-c1ccc2n[nH]c(C)c2c1; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1', 'Cc1nc2ccccn2c1C(=O)O']; [0.9999308586120605, 0.9880449771881104, 0.9860185384750366] +Cc1[nH]nc2ccc(-c3cnc4ccccn34)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccn2ccnc2c1']; [0.992645800113678] +Cc1nc(C)c(-c2ccc3n[nH]c(C)c3c2)s1; ['Cc1[nH]nc2ccc(Br)cc12']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1']; [0.988070011138916] +Cc1ccc(-c2ccc3n[nH]c(C)c3c2)c(Br)c1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cnc4cccnn34)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1cnn2ccnc2c1']; [0.9978498220443726] +Cc1nc(N)sc1-c1ccc2n[nH]c(C)c2c1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-n3ncc4cccc(F)c4c3=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(OCC(=O)C(C)C)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3c(Cl)cccc3Cl)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I']; [0.9793407320976257, 0.9625341892242432] +Cc1ccc(Cl)c(-c2ccc3n[nH]c(C)c3c2)c1; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1']; [0.9912354946136475, 0.9576420783996582, 0.8369146585464478] +Cc1[nH]nc2ccc(NCc3cccnc3)cc12; ['BrCc1cccnc1', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(N)cc12', 'ClCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1']; [0.9918200373649597, 0.9794471263885498, 0.9724898338317871, 0.8680465221405029] +Cc1[nH]nc2ccc(-c3cccc(Br)c3)cc12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1cccc(I)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cccc(Br)c1', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9997434616088867, 0.9953081607818604, 0.7606890201568604] +Cc1[nH]nc2ccc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3n[nH]c(C)c3c2)s1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccnc(N)n3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['Nc1nccc(Br)n1']; [0.9975719451904297] +Cc1[nH]nc2ccc(Nc3cccnc3)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Brc1cccnc1', 'Cc1[nH]nc2ccc(N)cc12']; ['Nc1cccnc1', 'Clc1cccnc1', 'Cc1[nH]nc2ccc(N)cc12', 'Ic1cccnc1']; [0.9971042275428772, 0.9954648017883301, 0.9922057390213013, 0.9711905717849731] +Cc1[nH]nc2ccc(NC(=O)c3cccs3)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1']; [0.999589204788208, 0.9993733167648315] +Cc1[nH]nc2ccc(NCCc3c[nH]cn3)cc12; ['Cc1[nH]nc2ccc(N)cc12']; ['OCCc1c[nH]cn1']; [0.9937094449996948] +Cc1[nH]nc2ccc(-c3cnn4ncccc34)cc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.99996417760849] +Cc1[nH]nc2ccc(-n3cnc4ccccc43)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccc2[nH]cnc2c1']; [0.8658146858215332] +Cc1[nH]nc2ccc(-c3cccc(CC(=O)[O-])c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc4ccccc4c3)cc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1ccc2ccccc2c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Cc1[nH]nc2ccc(Br)cc12']; [0.999953031539917, 0.999503493309021, 0.9991728663444519, 0.9905504584312439, 0.954169511795044] +Cc1[nH]nc2ccc(NCCc3ccccc3)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'BrCCc1ccccc1', 'Cc1[nH]nc2ccc(Br)cc12']; ['ClCCc1ccccc1', 'O=CCc1ccccc1', 'OCCc1ccccc1', 'Cc1[nH]nc2ccc(N)cc12', 'NCCc1ccccc1']; [0.9792641401290894, 0.9789141416549683, 0.9727432727813721, 0.9488844871520996, 0.8651719093322754] +Cc1[nH]nc2ccc(-c3cccc(F)c3C(N)=O)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['NC(=O)c1c(F)cccc1Br']; [0.9834561347961426] +Cc1[nH]nc2ccc(-c3cncc4ccccc34)cc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1cncc2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.99996417760849, 0.9990375638008118, 0.9823678731918335, 0.9617884755134583] +Cc1[nH]nc2ccc(-c3sc(=O)n(C)c3C)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3c[nH]nc3C(F)(F)F)cc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9990896582603455] +Cc1[nH]nc2ccc(-c3ccc(-c4cnn(C)c4)cc3)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [0.9999963045120239, 0.9352503418922424] +Cc1[nH]nc2ccc(NCc3ccc(Cl)cc3)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['OCc1ccc(Cl)cc1', 'Clc1ccc(CBr)cc1', 'O=Cc1ccc(Cl)cc1', 'ClCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9992196559906006, 0.997677206993103, 0.9831385016441345, 0.9806238412857056, 0.7978006601333618] +Cc1[nH]nc2ccc(-c3ccc4c(N)[nH]nc4c3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9496809244155884] +Cc1[nH]nc2ccc(-c3cccc(O)c3)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9969088435173035, 0.9957370758056641] +Cc1[nH]nc2ccc(-c3ccc4c(cnn4C)c3)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2ccccc21']; [0.9999977946281433, 0.9999949932098389, 0.9999657869338989, 0.9973340630531311, 0.8230950236320496, 0.8092677593231201] +Cc1[nH]nc2ccc(Nc3ccncc3)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Brc1ccncc1', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12']; ['OB(O)c1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Cc1[nH]nc2ccc(N)cc12', 'Nc1ccncc1', 'Ic1ccncc1', 'Clc1ccncc1', 'Fc1ccncc1']; [0.9999583959579468, 0.9959164261817932, 0.9949836730957031, 0.9940636157989502, 0.987358808517456, 0.9871046543121338, 0.9750725626945496] +Cc1[nH]nc2ccc(-c3cccc(CO)c3)cc12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C']; ['Cc1[nH]nc2ccc(Br)cc12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'Cc1[nH]nc2ccccc12']; [0.999693751335144, 0.993924081325531, 0.9676591157913208, 0.8479501008987427] +Cc1[nH]nc2ccc(-c3ccc4c(c3)CS(=O)(=O)N4C)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cn(C(C)C)nn3)cc12; ['CC(C)n1ccnn1']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9829448461532593] +Cc1[nH]nc2ccc(-c3ccc(-c4cn[nH]c4)cc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(NCc3ccccc3F)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F']; [0.9992711544036865, 0.998314380645752, 0.998015284538269, 0.9778367877006531, 0.7783597707748413] +COc1cc(-c2ccc3n[nH]c(C)c3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2ccc3n[nH]c(C)c3c2)n1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cc4ccccc4[nH]3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccc2[nH]ccc2c1']; [0.8151548504829407] +Cc1[nH]nc2ccc(-c3csc4ncncc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3csc(N)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cnoc3C(C)C)cc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3n[nH]c(C)c3c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9992945194244385] +CSc1nc(-c2ccc3n[nH]c(C)c3c2)c[nH]1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc(F)cc3C(F)(F)F)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; [0.9988187551498413, 0.9723623991012573, 0.9670442938804626] +Cc1[nH]nc2ccc(CCc3c[nH]nn3)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4n[nH]c(C)c4c3)cc2s1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc(CCC#N)c3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['N#CCCc1cccc(B(O)O)c1']; [0.9989666938781738] +Cc1[nH]nc2ccc(-c3cncnc3N)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(Oc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(N3CCC(S(C)(=O)=O)CC3)cc12; ['CS(=O)(=O)C1CCNCC1']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.8658964037895203] +Cc1[nH]nc2ccc(NC(=O)c3c(Cl)cccc3Cl)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', None, 'COC(=O)c1c(Cl)cccc1Cl', 'Cc1[nH]nc2ccc(N)cc12', 'CCOC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', None, 'Cc1[nH]nc2ccc(N)cc12', 'O=Cc1c(Cl)cccc1Cl', 'Cc1[nH]nc2ccc(N)cc12']; [0.9993338584899902, 0.9966937303543091, 0, 0.957901120185852, 0.9280537366867065, 0.876082181930542] +CC(=O)Nc1cccc(-c2ccc3n[nH]c(C)c3c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; [0.9992194771766663, 0.9931787252426147, 0.7774637341499329] +Cc1[nH]nc2ccc(CCCC(N)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cn(C)c4ccccc34)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999476671218872, 0.9953152537345886] +COc1ccc(-c2ccc3n[nH]c(C)c3c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccccc1Cl']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9998645782470703, 0.9984244108200073, 0.9881306290626526, 0.8910659551620483, 0.8898487091064453, 0.8030002117156982] +CCCn1cc(-c2ccc3n[nH]c(C)c3c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.999994695186615, 0.9991541504859924] +Cc1[nH]nc2ccc(-c3cnn4ccccc34)cc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1cnn2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cnn2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999561309814453, 0.9990566372871399, 0.9147198796272278] +Cc1[nH]nc2ccc(-c3cc[nH]c(=O)c3)cc12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9998776912689209] +Cc1[nH]nc2ccc(CCNC(=O)CC(C)(C)O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc4c3C(=O)CC4)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['O=C1CCc2cccc(Br)c21']; [0.8387470245361328] +Cc1[nH]nc2ccc(-c3ccc([S@](C)=O)cc3)cc12; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9990191459655762, 0.9921718835830688] +Cc1[nH]nc2ccc(OCC(C)(C)S(C)(=O)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc(C(C)(C)N)cc3)cc12; [None]; [None]; [0] +COc1cc(CCc2ccc3n[nH]c(C)c3c2)cc(OC)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2n[nH]c(C)c2c1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +CCN(CC)c1ccc2n[nH]c(C)c2c1; [None, None, None]; [None, None, None]; [0, 0, 0] +Cc1[nH]nc2ccc(O[C@H](C)c3c(Cl)cncc3Cl)cc12; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.999510645866394] +COc1ccncc1Nc1ccc2n[nH]c(C)c2c1; ['COc1ccncc1Br', 'COc1ccncc1I', 'COc1ccncc1Cl', 'COc1ccncc1N']; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9996225833892822, 0.9993665218353271, 0.999131977558136, 0.997182309627533] +Cc1[nH]nc2ccc(-c3cc4c(=O)[nH]ccc4o3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(Nc3cnccc3-c3ccccc3)cc12; ['Brc1cnccc1-c1ccccc1', 'Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(N)cc12', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9995843172073364, 0.9995536208152771, 0.997901976108551] +Cc1[nH]nc2ccc(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cncc(OC(C)C)c3)cc12; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999986886978149, 0.9999821186065674, 0.9991762638092041] +Cc1[nH]nc2ccc(Nc3cnc4ccccc4c3)cc12; ['Cc1[nH]nc2ccc(N)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1cnc2ccccc2c1', 'Cc1[nH]nc2ccc(N)cc12']; ['Ic1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Cc1[nH]nc2ccc(N)cc12', 'Clc1cnc2ccccc2c1']; [0.9978269338607788, 0.997392475605011, 0.9956650733947754, 0.9930736422538757] +Cc1[nH]nc2ccc(-c3ccc(C(C)(C)C)cc3)cc12; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999699592590332, 0.9987689256668091, 0.9753895998001099, 0.8453339338302612] +COc1cccc(F)c1-c1ccc2n[nH]c(C)c2c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9998655319213867, 0.9979304075241089, 0.9960435032844543, 0.9571606516838074, 0.8266439437866211] +Cc1[nH]nc2ccc(-c3c[nH]c4cnccc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cnc4[nH]ccc4c3)cc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1cnc2[nH]ccc2c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cnc2[nH]ccc2c1', 'Cc1[nH]nc2ccc(Br)cc12']; [1.0, 0.9999473094940186, 0.9997068047523499] +Cc1[nH]nc2ccc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)cc12; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9998210072517395, 0.9969683885574341] +CNS(=O)(=O)c1ccc(-c2ccc3n[nH]c(C)c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9992645382881165, 0.9912997484207153] +Cc1[nH]nc2ccc(-c3ccc(S(C)(=O)=O)cc3)cc12; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9998778104782104, 0.9991765022277832] +Cc1[nH]nc2ccc(-c3ccc(N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Brc1ccc(N2CCOCC2)cc1']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999969005584717, 0.9999726414680481, 0.998055100440979, 0.9751162528991699] +CNC(=O)c1c(F)cccc1-c1ccc2n[nH]c(C)c2c1; [None]; [None]; [0] +Cc1[nH]nc2ccc(C3(C)CCN(S(C)(=O)=O)CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-n3ccc(CO)n3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['OCc1cc[nH]n1']; [0.9928837418556213] +Cc1[nH]nc2ccc(N[C@H](C)C(C)(C)O)cc12; ['C[C@@H](N)C(C)(C)O']; ['Cc1[nH]nc2ccc(N)cc12']; [0.9582586288452148] +Cc1cc(-c2ccc3n[nH]c(C)c3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1[nH]nc2ccc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(N[C@@H](C)C(C)(C)O)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-n3cnc(CCO)c3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['OCCc1c[nH]cn1']; [0.8164913654327393] +Cc1[nH]nc2ccc(-c3c(F)cccc3Cl)cc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br']; [0.9996248483657837, 0.9930555820465088, 0.9610000848770142, 0.8088052272796631] +Cc1[nH]nc2ccc(N[C@@H](C)C(=O)NCC(F)(F)F)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-n3ncc4c(O)cccc43)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['Oc1cccc2[nH]ncc12']; [0.9428656101226807] +Cc1[nH]nc2ccc(-n3ncc4ccccc43)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +COc1ccc(-c2ccc3n[nH]c(C)c3c2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9984349012374878, 0.9965648651123047, 0.9622974395751953] +Cc1[nH]nc2ccc(-c3ccc(C(=O)c4ccccc4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Cc1[nH]nc2ccccc12', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999691247940063, 0.9994450807571411, 0.9947894811630249, 0.9564058780670166, 0.9016283750534058] +Cc1[nH]nc2ccc(-c3nc4ccc(O)cc4[nH]3)cc12; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3n[nH]c(C)c3c2)[nH]1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3nncn3C(C)C)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3n[nH]c(C)c3c2)CC1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +CCc1cc(-c2ccc3n[nH]c(C)c3c2)nc(N)n1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccc(Cn2ccnn2)cc1']; [0.9763690233230591] +Cc1[nH]nc2ccc(CCC(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(CS(=O)(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3nnc(N)s3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(Cc3nnc4ccc(-c5ccccc5)nn34)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc(C(C)(C)O)n3)cc12; ['CC(C)(O)c1cccc(Br)n1']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9270396828651428] +CNC(=O)c1ccc(-c2ccc3n[nH]c(C)c3c2)s1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3n[nH]c(C)c3c2)nc(N)n1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cncc(N)n3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['Nc1cncc(Br)n1']; [0.8316419124603271] +Cc1[nH]nc2ccc(-c3nc4ccccc4s3)cc12; ['Cc1[nH]nc2ccc(Br)cc12', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; ['c1ccc2scnc2c1', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9925265908241272, 0.9375870227813721, 0.8985419273376465] +Cc1[nH]nc2ccc(-c3cc(C(N)=O)cn3C)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc4ccsc34)cc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'OB(O)c1cccc2ccsc12']; [0.9999834299087524, 0.983857274055481] +Cc1[nH]nc2ccc(Oc3ccc(C[NH3+])cc3F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4n[nH]c(C)c4c3)c2)cc1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3cccc4nnsc34)cc12; ['Brc1cccc2nnsc12']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.778676450252533] +C[C@@H2]NC(=O)N1CCC(c2ccc3n[nH]c(C)c3c2)CC1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3nc(N)c4ccccc4n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3ncc4ccccc4n3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccc2ncncc2c1']; [0.979357123374939] +Cc1[nH]nc2ccc(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3n[nH]c(C)c3c2)[nH]1; [None]; [None]; [0] +Cc1[nH]nc2ccc(-c3c[nH]c4cccnc34)cc12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Cc1[nH]nc2ccc(Br)cc12']; ['Cc1[nH]nc2ccc(Br)cc12', 'Ic1c[nH]c2cccnc12']; [0.9963289499282837, 0.9924321174621582] +COc1ccc(Oc2ccc3n[nH]c(C)c3c2)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9661399126052856] +COc1ccc(C#N)cc1-c1ccc2n[nH]c(C)c2c1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; [0.9995929598808289, 0.9995368123054504, 0.9994083642959595, 0.9906491637229919, 0.9243439435958862, 0.8604767322540283] +COc1ccc(OC)c(-c2ccc3n[nH]c(C)c3c2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(I)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccccc12']; [0.9988337159156799, 0.9955675601959229, 0.9942080974578857, 0.93894362449646, 0.7829121351242065, 0.7534332275390625] +Cc1[nH]nc2ccc(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +COc1ncccc1-c1ccc2n[nH]c(C)c2c1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1Cl', 'COc1ncccc1Br']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.999927282333374, 0.996849536895752, 0.9967533946037292, 0.9888001084327698, 0.9769291877746582, 0.9536923170089722] +Cc1[nH]nc2ccc(-c3cccc(S(=O)(=O)N(C)C)c3)cc12; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12', 'Cc1[nH]nc2ccc(Br)cc12']; [0.9999735355377197, 0.9998412728309631, 0.9290911555290222] +Cc1[nH]nc2ccc([C@H]3CC[C@@](C)(O)CC3)cc12; [None]; [None]; [0] +CCOc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(N=C=S)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9966661930084229, 0.9957118630409241, 0.991267204284668, 0.989152193069458, 0.975124180316925] +Cc1[nH]nc2ccc(N3CC=C(c4c[nH]c5ccccc45)CC3)cc12; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Cc1[nH]nc2ccc(Br)cc12']; [0.9999263286590576] +CC(=O)N(C)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['CC(=O)N(C)c1ccc(N)cc1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CCSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.996397078037262, 0.9962893128395081, 0.9955387115478516, 0.9712709784507751, 0.9120578765869141] +Cc1[nH]nc2ccc(N3CCC(c4nc5ccccc5[nH]4)CC3)cc12; ['Cc1[nH]nc2ccc(Br)cc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9986555576324463] +c1ccc2nc(Nc3nc4ccccc4[nH]3)ncc2c1; ['Clc1ncc2ccccc2n1', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Brc1ncc2ccccc2n1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncc2ccccc2n1']; [0.9998782873153687, 0.9998094439506531, 0.9997157454490662, 0.9995539784431458, 0.9993916153907776, 0.9991762638092041, 0.9942208528518677] +Cc1[nH]nc2ccc(-c3cccc(NC(=O)C4CCNCC4)c3)cc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2nc3ccccc3[nH]2)c1; ['CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(N)c1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9988109469413757, 0.9928848743438721, 0.9921243190765381, 0.9900579452514648, 0.888645350933075] +COc1ncccc1Nc1nc2ccccc2[nH]1; ['COc1ncccc1N', 'COc1ncccc1B(O)O', 'Brc1nc2ccccc2[nH]1', 'COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1N', 'COc1ncccc1Br']; ['Ic1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'COc1ncccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9984161853790283, 0.9977629780769348, 0.9968119859695435, 0.9959537386894226, 0.9910022020339966, 0.9842100143432617, 0.9247597455978394] +COc1cc(Nc2nc3ccccc3[nH]2)cc(OC)c1OC; ['COc1cc(N=C=S)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC']; ['Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9989843964576721, 0.9971535205841064, 0.9965230226516724, 0.9951083660125732, 0.9945914149284363, 0.9920240640640259, 0.9907156229019165] +c1ccc2[nH]c(Nc3cnc4cccnn34)nc2c1; ['Clc1nc2ccccc2[nH]1', 'Clc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1nc2ccccc2[nH]1']; [0.9992276430130005, 0.9976101517677307] +Cc1[nH]nc2ccc(-c3cnnc(N(C)C)c3)cc12; [None]; [None]; [0] +Oc1cccc(Nc2nc3ccccc3[nH]2)c1; ['Nc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['OB(O)c1cccc(O)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Nc1cccc(O)c1']; [0.9985581636428833, 0.9979382157325745, 0.9845583438873291, 0.970470666885376, 0.9687505960464478, 0.8316277265548706] +COc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['COc1ccc(N=C=S)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1']; ['Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9984641075134277, 0.996422290802002, 0.9953780174255371, 0.9873303771018982, 0.9613498449325562] +c1ccc2[nH]c(Nc3nc4ccccc4[nH]3)nc2c1; ['Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9212251901626587, 0.8954399228096008, 0.7682427167892456] +c1ccc2[nH]c(Nc3ccc(N4CCOCC4)cc3)nc2c1; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Ic1ccc(N2CCOCC2)cc1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(Nc2nc3ccccc3[nH]2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1nc2ccccc2[nH]1', 'C1COCCN1']; [0.999941885471344, 0.9994769096374512, 0.9993151426315308, 0.9989944696426392, 0.9985448122024536, 0.9977036714553833, 0.9929806590080261, 0.9928643703460693, 0.9760057330131531] +O=C(Nc1cccc(Nc2nc3ccccc3[nH]2)c1)C1CC1; ['Clc1nc2ccccc2[nH]1']; ['Nc1cccc(NC(=O)C2CC2)c1']; [0.9997096061706543] +O=C([O-])c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Clc1nc2ccccc2[nH]1']; ['Nc1ccc(C(=O)[O-])cc1']; [0.9077527523040771] +Cc1nc(C(C)(C)O)sc1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2nc3ccccc3[nH]2)c1; ['N#Cc1ccc(O)c(I)c1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'N#Cc1ccc(O)c(Cl)c1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'Nc1nc2ccccc2[nH]1', 'N#Cc1ccc(O)c(N)c1']; [0.981144905090332, 0.9722639322280884, 0.9665032625198364, 0.9535483121871948, 0.8094171285629272] +Cc1ccc2ncn(Nc3nc4ccccc4[nH]3)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Clc1nc2ccccc2[nH]1', 'NC(=O)c1ccc(I)cc1', 'CSc1nc2ccccc2[nH]1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1']; ['NC(=O)c1ccc(N)cc1', 'Nc1nc2ccccc2[nH]1', 'NC(=O)c1ccc(N)cc1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9967060089111328, 0.9933518171310425, 0.9897788763046265, 0.9730432033538818, 0.9331510066986084] +c1ccc2c(Nc3nc4ccccc4[nH]3)nccc2c1; ['Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nccc2ccccc12', 'Nc1nccc2ccccc12']; [0.9963060617446899, 0.992823600769043, 0.9796587824821472, 0.9702582359313965, 0.9540581107139587, 0.946679949760437] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3nc4ccccc4[nH]3)cc2)CC1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +c1cnc(NNc2nc3ccccc3[nH]2)nc1; [None]; [None]; [0] +O=C(c1ccc(Nc2nc3ccccc3[nH]2)nc1)N1CCOCC1; ['Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cn1']; [0.9999351501464844, 0.9996601343154907] +OCCOc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Brc1ccc(Nc2nc3ccccc3[nH]2)cc1']; ['Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1', 'OCCOc1ccc(Br)cc1', 'Nc1ccc(OCCO)cc1', 'OCCO']; [0.9984566569328308, 0.9936316013336182, 0.9910772442817688, 0.9842674136161804, 0.9235339760780334] +CC(=O)NCc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1']; ['CC(=O)NCc1ccc(N)cc1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9976563453674316, 0.9947344660758972, 0.8942091464996338] +O=C(c1ccc(Nc2nc3ccccc3[nH]2)cc1)N1CCOCC1; ['Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1']; [0.9999604225158691, 0.9998270273208618, 0.9998223781585693, 0.9997745156288147, 0.9960633516311646, 0.9842486381530762] +CNS(=O)(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9905977845191956, 0.9783041477203369, 0.9636468887329102, 0.8708751201629639] +FC(F)(F)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Nc1nc2ccccc2[nH]1', 'FC(F)(F)c1ccc(N=C=S)cc1', 'Clc1nc2ccccc2[nH]1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccccc1N', 'Nc1ccc(C(F)(F)F)cc1']; [0.9993444681167603, 0.9992169737815857, 0.9951897859573364] +c1cc(Nc2nc3ccccc3[nH]2)cc(C2CCNCC2)c1; ['CC(C)(C)OC(=O)N1CCC(c2cccc(N)c2)CC1', 'Brc1cccc(C2CCNCC2)c1', 'Clc1nc2ccccc2[nH]1']; ['Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1cccc(C2CCNCC2)c1']; [0.999971866607666, 0.9996604919433594, 0.9979799389839172] +CN(C)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CN(C)c1ccc(N=C=S)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(N)cc1']; ['Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9990452527999878, 0.9985038042068481, 0.9971817135810852, 0.9958842992782593] +N#Cc1cccc(Cn2cc(Nc3nc4ccccc4[nH]3)cn2)c1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1nc2ccccc2[nH]1; ['NCc1ccccc1O', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['O=S(=O)(O)c1nc2ccccc2[nH]1', 'NCc1ccccc1O', 'NCc1ccccc1O', 'O=Cc1ccccc1O']; [0.9975776076316833, 0.990946352481842, 0.9639073610305786, 0.943938672542572] +CN(C)S(=O)(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1']; ['Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9990148544311523, 0.9961188435554504, 0.9670159816741943] +C[C@H](O)COc1ccc(Nc2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3nc4ccccc4[nH]3)cc2C1; ['Brc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9992570281028748, 0.9988985657691956, 0.9976246356964111, 0.979007363319397, 0.866941511631012] +Cc1nc(C)c(Nc2nc3ccccc3[nH]2)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CCNS(=O)(=O)c1ccc(N=C=S)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9962490200996399, 0.963558554649353, 0.9235750436782837, 0.8318240642547607] +CC(C)c1cc(Nc2nc3ccccc3[nH]2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Nc1nc2ccccc2[nH]1']; [0.9894957542419434] +CS(=O)(=O)N1CCC(Nc2nc3ccccc3[nH]2)CC1; ['CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(=O)CC1', 'Brc1nc2ccccc2[nH]1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CCS(=O)(=O)c1nc2ccccc2[nH]1', 'CCSc1nc2ccccc2[nH]1']; ['Ic1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1']; [0.9996432065963745, 0.9989990592002869, 0.9978821277618408, 0.9973922967910767, 0.9956764578819275, 0.995392918586731, 0.9786167144775391, 0.9762840270996094] +O=C(c1ccccc1)N1CC[C@H](Nc2nc3ccccc3[nH]2)C1; [None]; [None]; [0] +Brc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['S=C=Nc1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1']; [0.998461902141571, 0.9965640306472778, 0.9948466420173645] +CC(=O)N1CCCN(c2cccc(Nc3nc4ccccc4[nH]3)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(Nc2nc3ccccc3[nH]2)cc1Cl; ['Brc1nc2ccccc2[nH]1', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['CN(C)c1ccc(N)cc1Cl', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9998717308044434, 0.9984540939331055, 0.996443510055542, 0.99169921875] +Nc1ncc(CNc2nc3ccccc3[nH]2)cn1; [None]; [None]; [0] +CCCOc1ccc(Nc2nc3ccccc3[nH]2)nc1; ['CCCOc1ccc(Br)nc1']; ['Nc1nc2ccccc2[nH]1']; [0.9941879510879517] +CNS(=O)(=O)c1ccc(Nc2nc3ccccc3[nH]2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1nc2ccccc2[nH]1']; [0.9907857179641724] +c1ccc2[nH]c(Nc3ccn4nccc4n3)nc2c1; ['Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'CCSc1nc2ccccc2[nH]1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccn2nccc2n1']; [0.999945342540741, 0.999944806098938, 0.9999061822891235, 0.9995346069335938, 0.9984204769134521, 0.9746096134185791] +COc1ccc(Cl)cc1Nc1nc2ccccc2[nH]1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1N=C=S', 'COc1ccc(Cl)cc1N']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1']; [0.9998501539230347, 0.9996373653411865, 0.99885493516922] +CCN(CC)C(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1']; ['CCN(CC)C(=O)c1ccc(N)cc1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9991810321807861, 0.9987995624542236, 0.9982730746269226, 0.9976164698600769, 0.9975200891494751, 0.9867491722106934, 0.9612501859664917] +COc1cc(OC)c(Nc2nc3ccccc3[nH]2)cc1Cl; ['COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(N=C=S)cc1Cl', 'Brc1nc2ccccc2[nH]1', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Cl)cc1N']; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'COc1cc(OC)c(Cl)cc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9994217157363892, 0.9966676235198975, 0.9963700771331787, 0.9963693618774414, 0.9918433427810669, 0.9553161859512329] +Cc1c(Nc2nc3ccccc3[nH]2)cccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2[nH]c(Nc3c[nH]c4ccccc34)nc2c1; ['Brc1c[nH]c2ccccc12', 'Brc1nc2ccccc2[nH]1', 'Ic1c[nH]c2ccccc12', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1c[nH]c2ccccc12', 'Nc1nc2ccccc2[nH]1', 'Nc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12']; [0.9494937658309937, 0.9455548524856567, 0.9187718629837036, 0.9059452414512634, 0.8971469402313232, 0.887799859046936, 0.8019829988479614] +c1ccc(-c2cc(Nc3nc4ccccc4[nH]3)n[nH]2)cc1; ['Clc1nc2ccccc2[nH]1']; ['Nc1cc(-c2ccccc2)[nH]n1']; [0.8601083755493164] +c1ccc2[nH]c(Nc3ccc4c(c3)CCO4)nc2c1; ['Brc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Brc1ccc2c(c1)CCO2', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Ic1ccc2c(c1)CCO2', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc2c(c1)CCO2', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2']; [0.9997568726539612, 0.9990701079368591, 0.99847012758255, 0.9973366260528564, 0.9954213500022888, 0.9944375157356262, 0.9870535135269165] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1nc2ccccc2[nH]1; ['COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Clc1nc2ccccc2[nH]1']; [0.9997680187225342] +COc1cc(Nc2nc3ccccc3[nH]2)ccc1O; ['COc1cc(B(O)O)ccc1O', 'Brc1nc2ccccc2[nH]1', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1O']; ['Nc1nc2ccccc2[nH]1', 'COc1cc(N)ccc1O', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9995326995849609, 0.9979718923568726, 0.9978194236755371, 0.9953353404998779, 0.9948973655700684, 0.9917722344398499] +CC(=O)Nc1cccc(Nc2nc3ccccc3[nH]2)c1; ['Brc1nc2ccccc2[nH]1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1']; ['CC(=O)Nc1cccc(N)c1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9981780052185059, 0.9968794584274292, 0.9806921482086182, 0.9805121421813965, 0.9755423069000244, 0.8433271050453186] +c1ccc(-n2cccn2)c(Nc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +c1cc(Nc2nc3ccccc3[nH]2)c2c(c1)OCO2; ['Ic1cccc2c1OCO2', 'Nc1nc2ccccc2[nH]1', 'Brc1cccc2c1OCO2', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'OB(O)c1cccc2c1OCO2', 'Nc1nc2ccccc2[nH]1', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2', 'Nc1cccc2c1OCO2']; [0.984266996383667, 0.9798250794410706, 0.9768854379653931, 0.9445738792419434, 0.9442561864852905, 0.9294428825378418] +CC(C)c1ccc2nc(Nc3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Fc1ccc2nc(CNc3nc4ccccc4[nH]3)[nH]c2c1F; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2nc3ccccc3[nH]2)cn1; ['Brc1nc2ccccc2[nH]1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1']; ['CC(C)(C)c1ccc(N)cn1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9991118311882019, 0.9969730377197266, 0.9949449300765991, 0.9937618970870972, 0.99270099401474] +CC(C)(C)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1nc2ccccc2[nH]1', 'CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1nc2ccccc2[nH]1', 'CC(C)(C)c1ccc(N)cc1', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9997028708457947, 0.9996271133422852, 0.9992444515228271, 0.9985013008117676, 0.99809730052948, 0.9957396984100342, 0.9955767393112183, 0.9928295016288757] +CN(C)C(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Brc1nc2ccccc2[nH]1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CN(C)C(=O)c1ccc(N)cc1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9995858669281006, 0.9989562630653381, 0.9987514615058899, 0.998389482498169, 0.9969742298126221, 0.9859360456466675, 0.9665635824203491, 0.9440377950668335] +c1ccc2ncc(Nc3nc4ccccc4[nH]3)cc2c1; ['Brc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'Fc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'CCSc1nc2ccccc2[nH]1', 'Ic1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1cnc2ccccc2c1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.999118447303772, 0.9958250522613525, 0.9956941604614258, 0.9894281029701233, 0.9852675199508667, 0.984703779220581, 0.9745224118232727, 0.9621363878250122, 0.9374182224273682, 0.9158040881156921, 0.8493130207061768] +c1ccc2[nH]c(CNc3nc4ccccc4[nH]3)nc2c1; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'ClCc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'BrCc1nc2ccccc2[nH]1']; ['NCc1nc2ccccc2[nH]1', 'O=S(=O)(O)c1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1', 'O=Cc1nc2ccccc2[nH]1', 'O=S(=O)(Cc1ccccc1)c1nc2ccccc2[nH]1', 'OCc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9972692131996155, 0.9935053586959839, 0.9924464821815491, 0.9916906356811523, 0.9903836250305176, 0.9900585412979126, 0.9809004068374634, 0.9643436074256897, 0.9086138010025024, 0.9019728302955627] +Cc1ccc(Nc2nc3ccccc3[nH]2)c(=O)[nH]1; ['Cc1ccc(N)c(=O)[nH]1']; ['Clc1nc2ccccc2[nH]1']; [0.8395693302154541] +Nc1nc(Nc2nc3ccccc3[nH]2)cs1; ['NC(N)=S', 'Clc1nc2ccccc2[nH]1']; ['O=C(CCl)Nc1nc2ccccc2[nH]1', 'Nc1csc(N)n1']; [0.9617741107940674, 0.9474216103553772] +Fc1ccc2[nH]c(CNc3nc4ccccc4[nH]3)nc2c1F; [None]; [None]; [0] +COc1cccc(C(=O)NNc2nc3ccccc3[nH]2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Cl)c1']; ['NNc1nc2ccccc2[nH]1', 'NNc1nc2ccccc2[nH]1']; [0.9998749494552612, 0.99969482421875] +c1ccc(CCCNc2nc3ccccc3[nH]2)cc1; ['Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'NCCCc1ccccc1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'NCCCc1ccccc1', 'ClCCCc1ccccc1', 'BrCCCc1ccccc1']; ['S=C=NCCCc1ccccc1', 'NCCCc1ccccc1', 'NCCCc1ccccc1', 'O=S(=O)(O)c1nc2ccccc2[nH]1', 'NCCCc1ccccc1', 'O=CCCc1ccccc1', 'NCCCc1ccccc1', 'O=S(=O)(Cc1ccccc1)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9993966817855835, 0.9981759786605835, 0.9976688623428345, 0.9951013326644897, 0.9922460913658142, 0.9916398525238037, 0.9866319894790649, 0.9666807055473328, 0.9615123271942139, 0.9455377459526062] +c1ccc2sc(Nc3nc4ccccc4[nH]3)cc2c1; ['Clc1nc2ccccc2[nH]1']; ['Nc1cc2ccccc2s1']; [0.9916285276412964] +CSc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CSc1ccc(B(O)O)cc1', 'CSc1ccc(N=C=S)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(N)cc1']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9971956014633179, 0.9951414465904236, 0.989793062210083, 0.9075443744659424] +CC[C@@H](CO)Nc1nc2ccccc2[nH]1; ['CC[C@H](N)CO']; ['Clc1nc2ccccc2[nH]1']; [0.9673055410385132] +c1ccc2[nH]c(Nc3scc4c3OCCO4)nc2c1; [None]; [None]; [0] +Cc1cc(Nc2nc3ccccc3[nH]2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Brc1nc2ccccc2[nH]1', 'Cc1cc(N)nc(N)n1']; ['Nc1nc2ccccc2[nH]1', 'Cc1cc(N)nc(N)n1', 'Clc1nc2ccccc2[nH]1']; [0.9893233776092529, 0.9421977996826172, 0.7509521245956421] +Fc1ccc(Nc2nc3ccccc3[nH]2)c(Cl)c1; ['Fc1ccc(N=C=S)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Nc1nc2ccccc2[nH]1', 'Fc1ccc(I)c(Cl)c1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'OB(O)c1ccc(F)cc1Cl', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(F)cc1Cl', 'Nc1ccc(F)cc1Cl']; [0.999841570854187, 0.9998031854629517, 0.9997597932815552, 0.9986833930015564, 0.9922162294387817, 0.990527868270874] +CC(=O)N[C@@H]1CC[C@@H](Nc2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1nc2ccccc2[nH]1; ['Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'N[C@H](CO)Cc1ccccc1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'O=S(=O)(Cc1ccccc1)c1nc2ccccc2[nH]1']; [0.9884439706802368, 0.9691036939620972, 0.8793984055519104, 0.8589105606079102] +CCc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CCc1ccc(N=C=S)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(N)cc1']; ['Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9994845390319824, 0.997671902179718, 0.9903147220611572] +CCN1CCN(Cc2ccc(Nc3nc4ccccc4[nH]3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9782177805900574, 0.932215690612793] +COc1ccc(Nc2nc3ccccc3[nH]2)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(N=C=S)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(I)cc1OC']; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9995357990264893, 0.9993970394134521, 0.9990976452827454, 0.9974889755249023, 0.996834397315979, 0.9961791038513184] +Clc1cccc(-n2ccc(Nc3nc4ccccc4[nH]3)n2)c1; [None]; [None]; [0] +c1ccc2[nH]c(NCCCn3cncn3)nc2c1; ['NCCCn1cncn1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['O=S(=O)(O)c1nc2ccccc2[nH]1', 'NCCCn1cncn1', 'NCCCn1cncn1']; [0.9984046220779419, 0.9938514232635498, 0.9912062883377075] +Clc1ccc(Nc2nc3ccccc3[nH]2)c(Cl)c1; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Clc1ccc(Br)c(Cl)c1', 'Brc1nc2ccccc2[nH]1', 'Clc1ccc(I)c(Cl)c1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['OB(O)c1ccc(Cl)cc1Cl', 'S=C=Nc1ccc(Cl)cc1Cl', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(Cl)cc1Cl', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl']; [0.9993565082550049, 0.9989337921142578, 0.9982739686965942, 0.9979342222213745, 0.9952911138534546, 0.9856403470039368, 0.9703231453895569] +O=C1CCc2cc(Nc3nc4ccccc4[nH]3)ccc2N1; ['Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Cl)ccc2N1']; [0.9989613890647888, 0.9935551881790161, 0.9935472011566162, 0.9900413751602173, 0.9897911548614502, 0.9860838651657104, 0.9076074361801147] +C[C@H]1CCCN1C(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3cc4ccccn4n3)nc2c1; ['Clc1cc2ccccn2n1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1', 'Nc1cc2ccccn2n1']; [0.9538811445236206, 0.9311730861663818, 0.9231346249580383, 0.863425612449646] +COc1cc(Nc2nc3ccccc3[nH]2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1nc2ccccc2[nH]1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'COc1cc(N)ccc1N1CCOCC1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9999409317970276, 0.9998207092285156, 0.9997998476028442, 0.9994159936904907, 0.9992784261703491, 0.9992028474807739] +Cn1cc(Nc2nc3ccccc3[nH]2)c(C(F)(F)F)n1; ['Cn1cc(I)c(C(F)(F)F)n1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Brc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Nc1nc2ccccc2[nH]1', 'Cn1cc(N)c(C(F)(F)F)n1']; [0.9998048543930054, 0.9996515512466431, 0.9992645382881165, 0.9990594387054443, 0.9985246658325195] +c1ccc2[nH]c(Nc3ncc4cccn4n3)nc2c1; ['Clc1ncc2cccn2n1']; ['Nc1nc2ccccc2[nH]1']; [0.9981226921081543] +COc1cc(F)c(Nc2nc3ccccc3[nH]2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.988921046257019, 0.9765746593475342] +COc1cc(Nc2nc3ccccc3[nH]2)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9997375011444092, 0.9996249675750732, 0.9985358715057373, 0.9984594583511353, 0.9981231689453125] +COc1ccc2cccc(Nc3nc4ccccc4[nH]3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(N)c2c1']; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.9987003803253174, 0.9946134090423584, 0.9867860078811646, 0.9816579818725586] +Oc1ccc2cccc(Nc3nc4ccccc4[nH]3)c2c1; ['Brc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(Br)c2c1', 'Nc1cccc2ccc(O)cc12', 'Oc1ccc2cccc(I)c2c1', 'Nc1cccc2ccc(O)cc12']; [0.9967879056930542, 0.9759747385978699, 0.9718413352966309, 0.9697753190994263, 0.9114927053451538] +Clc1cnc(Nc2nc3ccccc3[nH]2)nc1; ['Clc1cnc(Br)nc1', 'Clc1cnc(I)nc1', 'CS(=O)(=O)c1ncc(Cl)cn1', 'CS(=O)c1ncc(Cl)cn1', 'Clc1cnc(Cl)nc1', 'Ic1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Brc1nc2ccccc2[nH]1', 'CSc1ncc(Cl)cn1', 'CSc1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1', 'Nc1nc2ccccc2[nH]1', 'Nc1ncc(Cl)cn1']; [0.999843418598175, 0.9998067617416382, 0.9992222785949707, 0.9990770220756531, 0.9982907772064209, 0.9981258511543274, 0.9979736804962158, 0.9979696273803711, 0.9976770877838135, 0.9964126944541931, 0.9487943649291992] +CNC(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['Nc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9980782270431519, 0.9895490407943726, 0.9844920635223389, 0.9819064140319824, 0.9028337597846985] +CCNC(=O)c1ccc(Nc2nc3ccccc3[nH]2)nc1; ['CCNC(=O)c1ccc(Cl)nc1']; ['Nc1nc2ccccc2[nH]1']; [0.9131513833999634] +OCCn1cc(Nc2nc3ccccc3[nH]2)cn1; ['CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9996060132980347, 0.999065637588501, 0.9989266395568848, 0.9917513132095337] +COc1ccc(OC)c(CNc2nc3ccccc3[nH]2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'CCS(=O)(=O)c1nc2ccccc2[nH]1', 'COc1ccc(OC)c(CN)c1', 'Brc1nc2ccccc2[nH]1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(C=O)c1']; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'O=S(=O)(O)c1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'COc1ccc(OC)c(CN)c1', 'CSc1nc2ccccc2[nH]1', 'COc1ccc(OC)c(CN)c1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'O=S(=O)(Cc1ccccc1)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9996528625488281, 0.999306321144104, 0.9991729259490967, 0.9988043308258057, 0.9985015988349915, 0.9957497119903564, 0.9956894516944885, 0.9889563322067261, 0.9876974821090698, 0.9830220937728882, 0.9812507629394531] +CC1(C)Cc2cc(Nc3nc4ccccc4[nH]3)ccc2O1; [None]; [None]; [0] +COc1cc(Nc2nc3ccccc3[nH]2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9987500309944153, 0.9959386587142944, 0.9346821308135986] +CO[C@@H]1CC[C@@H](Nc2nc3ccccc3[nH]2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'Brc1nc2ccccc2[nH]1', 'CO[C@H]1CC[C@H](N)CC1']; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CO[C@H]1CC[C@H](N)CC1', 'CSc1nc2ccccc2[nH]1']; [0.9989737272262573, 0.9987569451332092, 0.9948599338531494, 0.9839696884155273] +CCNC(=O)N1CCC(Nc2nc3ccccc3[nH]2)CC1; ['CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)N1CCC(N)CC1']; ['Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9973127841949463, 0.9903231859207153] +COc1cc(Nc2nc3ccccc3[nH]2)cc(OC)c1; ['COc1cc(N=C=S)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Nc1ccccc1N', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9998326301574707, 0.9886507987976074, 0.975698709487915, 0.9743536710739136, 0.9690693616867065, 0.9636615514755249, 0.932289183139801] +COc1cc(CS(C)(=O)=O)ccc1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1csc2c(Nc3nc4ccccc4[nH]3)ncnc12; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ccc4cn[nH]c4c3)nc2c1; ['Nc1nc2ccccc2[nH]1', 'Nc1ccccc1N', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['OB(O)c1ccc2cn[nH]c2c1', 'S=C=Nc1ccc2cn[nH]c2c1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1']; [0.9999552965164185, 0.9993166923522949, 0.998069167137146, 0.9978711605072021, 0.9968064427375793, 0.9908546209335327] +COc1ccc2c(c1)c(Nc1nc3ccccc3[nH]1)cn2C; [None]; [None]; [0] +CCn1cc(Nc2nc3ccccc3[nH]2)cn1; ['CCn1cc(N)cn1', 'Brc1nc2ccccc2[nH]1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(N)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1']; ['CS(=O)(=O)c1nc2ccccc2[nH]1', 'CCn1cc(N)cn1', 'Ic1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9994326829910278, 0.9993525743484497, 0.997819185256958, 0.9965533018112183, 0.9964578151702881, 0.9831299781799316, 0.9654227495193481] +CNC(=O)c1ccc(OC)c(Nc2nc3ccccc3[nH]2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'Brc1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9879903793334961, 0.984165608882904, 0.9765501022338867, 0.9678195714950562, 0.9615932703018188, 0.8839876651763916] +O=C(Nc1cn[nH]c1)c1cccc(Nc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +Nc1cc(Nc2nc3ccccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncc4sccc4n3)nc2c1; ['Clc1ncc2sccc2n1']; ['Nc1nc2ccccc2[nH]1']; [0.9999861717224121] +COc1ccc2oc(Nc3nc4ccccc4[nH]3)cc2c1; [None]; [None]; [0] +c1cncc(-c2ccnc(Nc3nc4ccccc4[nH]3)c2)c1; ['Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9987768530845642, 0.9833478927612305, 0.9802403450012207] +FC(F)(F)Oc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Clc1nc2ccccc2[nH]1', 'FC(F)(F)Oc1ccc(N=C=S)cc1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccccc1N']; [0.9979217052459717, 0.9973917007446289] +COc1ccc2nc(Nc3nc4ccccc4[nH]3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Nc1nc2ccccc2[nH]1']; [0.9266306161880493] +C[NH+](C)Cc1ccc(Nc2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2nc3ccccc3[nH]2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NNc1nc2ccccc2[nH]1']; [0.9993337392807007] +c1ccc2oc(Nc3nc4ccccc4[nH]3)cc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1nc2ccccc2[nH]1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9998612403869629, 0.9989689588546753] +Cn1cc(Nc2nc3ccccc3[nH]2)c2ccccc21; [None]; [None]; [0] +CCc1cccc(Nc2nc3ccccc3[nH]2)n1; ['CCc1cccc(Br)n1', 'Brc1nc2ccccc2[nH]1', 'CCc1cccc(N)n1', 'CCc1cccc(N)n1']; ['Nc1nc2ccccc2[nH]1', 'CCc1cccc(N)n1', 'Clc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; [0.994928240776062, 0.981300950050354, 0.9755910634994507, 0.9552668333053589] +Cn1cc(Br)cc1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncn4c3CCCC4)nc2c1; [None]; [None]; [0] +Cn1ncc2cc(Nc3nc4ccccc4[nH]3)ccc21; ['Cn1ncc2cc(I)ccc21', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Cn1ncc2cc(Br)ccc21']; ['Nc1nc2ccccc2[nH]1', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Nc1nc2ccccc2[nH]1']; [0.9999030828475952, 0.9994527697563171, 0.9994008541107178, 0.9992493391036987] +O=C(Nc1cccc(Nc2nc3ccccc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3nc4ccccc4[nH]3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'CSc1nc2ccccc2[nH]1', 'Cc1n[nH]c2cc(N)ccc12']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Cc1n[nH]c2cc(N)ccc12', 'Clc1nc2ccccc2[nH]1']; [0.999968945980072, 0.9997165203094482, 0.9994717836380005, 0.9978232383728027] +CN(C)c1ccc(Nc2nc3ccccc3[nH]2)cn1; ['CN(C)c1ccc(N)cn1', 'Brc1nc2ccccc2[nH]1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1']; ['Clc1nc2ccccc2[nH]1', 'CN(C)c1ccc(N)cn1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9990171194076538, 0.998813271522522, 0.998471736907959, 0.9959115982055664, 0.9952136278152466, 0.99278724193573, 0.9844824075698853, 0.980670690536499] +Cn1nc(Cl)c2cc(Nc3nc4ccccc4[nH]3)ccc21; [None]; [None]; [0] +O=C(NNc1nc2ccccc2[nH]1)c1cccc(OC(F)(F)F)c1; ['NNc1nc2ccccc2[nH]1', 'NNc1nc2ccccc2[nH]1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999401569366455, 0.9999023675918579] +CC(C)(O)c1ccc2cc(Nc3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2nc3ccccc3[nH]2)c1; ['Brc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1']; [0.9999410510063171, 0.9997950792312622, 0.9996647834777832, 0.9985412955284119, 0.9979159235954285] +Cc1cc(Nc2nc3ccccc3[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3nc4ccccc4[nH]3)cn2)CC1; [None]; [None]; [0] +OCCc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1ccc(CCO)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1', 'Nc1ccc(CCO)cc1']; [0.9992666840553284, 0.9957290887832642, 0.9875255823135376, 0.9786425828933716, 0.9686543941497803, 0.8821845650672913] +COc1cc(N2CCNCC2)ccc1Nc1nc2ccccc2[nH]1; ['COc1cc(N2CCN(C(=O)OC(C)(C)C)CC2)ccc1N']; ['Clc1nc2ccccc2[nH]1']; [0.9982271194458008] +Cc1cc(N2CCOCC2)ccc1Nc1nc2ccccc2[nH]1; ['Cc1cc(N2CCOCC2)ccc1N', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Clc1nc2ccccc2[nH]1', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; [0.9988139867782593, 0.9976642727851868, 0.9968929290771484, 0.9953281283378601] +COc1cc(S(C)(=O)=O)ccc1Nc1nc2ccccc2[nH]1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9932252168655396, 0.9891533851623535, 0.966985821723938] +CNC(=O)c1ccc(Nc2nc3ccccc3[nH]2)c(OC)c1; ['CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['Clc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9565179347991943, 0.9118249416351318, 0.8742868900299072, 0.8163996934890747] +CN(C)C(=O)c1ccc(Nc2nc3ccccc3[nH]2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3nc4ccccc4[nH]3)cc2)n1C; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1']; ['Ic1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; [0.9447124600410461, 0.9397320747375488, 0.8672230243682861, 0.8238552212715149, 0.7781953811645508] +CN(C)C(=O)c1ccc(Nc2nc3ccccc3[nH]2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1']; [0.9979649186134338, 0.9741343259811401] +COc1cc(-c2cnn(C)c2)ccc1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2nc3ccccc3[nH]2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1nc2ccccc2[nH]1']; [0.9278792142868042] +CNC(=O)c1ccc(C)c(Nc2nc3ccccc3[nH]2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['Ic1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1']; [0.9862227439880371, 0.9676191806793213] +CS(=O)(=O)c1ccc(Cl)c(Nc2nc3ccccc3[nH]2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1nc2ccccc2[nH]1']; [0.9845069050788879] +Cn1nc(Nc2nc3ccccc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +Cc1[nH]c(C=C2C(=O)Nc3ccc(Cl)cc32)c(C)c1C(N)=O; [None]; [None]; [0] +COc1cc(C=Cc2[nH]c(C)c(C(N)=O)c2C)ccc1O; [None]; [None]; [0] +Oc1cccc(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.999942421913147, 0.9999053478240967, 0.9998779296875, 0.9942694306373596, 0.915805459022522] +Cc1[nH]c(C=Cc2ccc(O)cc2)c(C)c1C(N)=O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +c1cc(-c2cnc3occc3c2)c2cccnc2c1; ['Brc1cccc2ncccc12', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cccc2ncccc12']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Brc1cnc2occc2c1']; [0.9999992847442627, 0.9999985694885254, 0.9999946355819702, 0.9999902248382568, 0.9999693632125854, 0.9994648694992065] +C[C@H](CS(C)(=O)=O)Nc1nc2ccccc2[nH]1; [None]; [None]; [0] +Clc1ccc2c(c1-c1cnc3occc3c1)OCO2; ['Brc1cnc2occc2c1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9956340789794922] +c1ccc2c(-c3cnc4occc4c3)n[nH]c2c1; ['Brc1n[nH]c2ccccc12', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12']; [0.9999895691871643, 0.9999773502349854, 0.9999169111251831] +Oc1cc(-c2cnc3occc3c2)ccc1Cl; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999927878379822, 0.9999825954437256, 0.9999651908874512, 0.9998135566711426] +Fc1ccc(Oc2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1']; ['Oc1ccc(F)cc1']; [0.9990711212158203] +Cc1[nH]c(C=Cc2ccc(O)cc2O)c(C)c1C(N)=O; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl']; [0.999997615814209, 0.9999966621398926, 0.9997227191925049] +NC(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1']; [0.9999977350234985, 0.9999860525131226, 0.9999855756759644, 0.99997478723526, 0.9997800588607788] +CNS(=O)(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999876022338867, 0.9999223947525024, 0.9998650550842285, 0.8426633477210999] +NC(=O)c1ccc(-c2cnc3occc3c2)c(F)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['NC(=O)c1ccc(Br)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999971389770508, 0.9999956488609314, 0.999832272529602, 0.9996451139450073, 0.9972310662269592, 0.9543987512588501] +COc1cc(C(N)=O)ccc1-c1cnc2occc2c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999901056289673, 0.9999438524246216] +Oc1ccc(-c2cnc3occc3c2)c(Cl)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Oc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Oc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Cl)c(Cl)c1']; [0.9999775886535645, 0.999920129776001, 0.9998745322227478, 0.9991627931594849, 0.9971861839294434] +Oc1ccc(-c2cnc3occc3c2)c(F)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1ccc(Br)c(F)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Cl)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'Oc1cccc(F)c1']; [0.9999923706054688, 0.9999399185180664, 0.9999372363090515, 0.9996081590652466, 0.9994008541107178, 0.9876325130462646, 0.9098072052001953] +Clc1[nH]ncc1-c1cnc2occc2c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc2occc2c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br']; [0.9999806880950928, 0.9999436140060425, 0.9998964071273804, 0.9995229244232178, 0.9992942810058594, 0.9562754034996033] +COc1ccc(F)cc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1']; [0.9999927282333374, 0.999987006187439, 0.9999359846115112, 0.9997159838676453, 0.8626196384429932] +Nc1nccc(-c2cnc3occc3c2)n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'Nc1ncccn1']; [0.9999940991401672, 0.9999922513961792, 0.9999827146530151, 0.9998100996017456, 0.9958717226982117, 0.8040255308151245] +Oc1ccc(-c2ccc(-c3cnc4occc4c3)cc2)c(O)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.999946117401123, 0.979594349861145] +COc1cc(-c2cnc3occc3c2)ccc1O; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(Br)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; [0.9999960660934448, 0.9999929666519165, 0.9999837279319763, 0.9979284405708313, 0.9937132596969604] +O=C([O-])c1ccc(-c2cnc3occc3c2)cc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1']; [0.9986914396286011] +COC(=O)c1ccc(-c2cnc3occc3c2)o1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1']; [0.9999837875366211, 0.9992517828941345, 0.986092746257782, 0.935659646987915] +Cc1nc2c(F)cc(-c3cnc4occc4c3)cc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2cnc3occc3c2)c1; ['Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cccc(I)c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Brc1cnc2occc2c1']; [0.9998940825462341, 0.9989247918128967, 0.9987689256668091, 0.9899721145629883, 0.8936919569969177] +Cn1cc(-c2cnc3occc3c2)c2ccccc21; ['Brc1cnc2occc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999923706054688] +COC(=O)c1ccc(Cl)c(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; [0.9999935626983643, 0.9999927282333374, 0.9999924302101135, 0.9993252754211426, 0.9975322484970093, 0.9912875890731812] +c1ccc2cc(-c3cnc4occc4c3)ccc2c1; ['Brc1cnc2occc2c1', 'Brc1ccc2ccccc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'c1ccc2ccccc2c1']; [0.9999914765357971, 0.9999892711639404, 0.9999489188194275, 0.999925434589386, 0.9999067783355713, 0.9904979467391968] +c1cc2c(-c3cnc4occc4c3)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999344348907471, 0.9990566968917847, 0.7795741558074951] +COc1cc(CCc2cnc3occc3c2)ccc1O; [None]; [None]; [0] +Oc1ccc(-c2cnc3occc3c2)cc1F; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1ccc(Br)cc1F', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Oc1ccc(I)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F']; [0.999994158744812, 0.9999927878379822, 0.9999798536300659, 0.9998303651809692, 0.9977757334709167] +c1cnn2ncc(-c3cnc4occc4c3)c2c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3occc3c2)c(O)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Oc1ccc(Br)c(O)c1', 'Oc1cccc(O)c1']; [0.999986469745636, 0.8284171223640442] +Nc1cc(-c2cnc3occc3c2)ccn1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Nc1cc(Br)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999860525131226, 0.9999374151229858, 0.9999065399169922, 0.9997624158859253, 0.9905970096588135, 0.960169792175293] +Cc1ccc2[nH]ncc2c1-c1cnc2occc2c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999991655349731, 0.9999991655349731, 0.9997643232345581] +Oc1ccc(Cl)c(-c2cnc3occc3c2)c1; ['Brc1cnc2occc2c1']; ['OB(O)c1cc(O)ccc1Cl']; [0.9970026016235352] +NC(=O)c1cc(-c2cnc3occc3c2)c[nH]1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['NC(=O)c1cc(Br)c[nH]1']; [0.9999034404754639] +Oc1ncc(-c2cnc3occc3c2)cc1Cl; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl']; [0.9999173879623413, 0.999885618686676, 0.9997767806053162] +Cc1ccc(CO)cc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Br']; [0.9999906420707703, 0.9999878406524658, 0.9999649524688721, 0.9998970031738281, 0.9986902475357056, 0.9942461252212524] +Fc1ccc(-c2nc[nH]c2-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.9904347062110901] +Fc1ccc(-c2cnc3occc3c2)cc1Cl; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccccc1Cl']; [0.9999987483024597, 0.9999982118606567, 0.9999978542327881, 0.9999955892562866, 0.9999731779098511, 0.9999657869338989, 0.9993010759353638, 0.9235532283782959] +COc1cc(OC)cc(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1']; [0.9999904632568359, 0.9999892711639404, 0.999971866607666, 0.9999443292617798, 0.9998249411582947, 0.997799277305603, 0.9951169490814209] +Clc1ccccc1OCc1cnc2occc2c1; [None]; [None]; [0] +CCOc1cccc(-c2cnc3occc3c2)c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1']; [0.9999755024909973, 0.9999704360961914, 0.9996809959411621, 0.9988447427749634] +NC(=O)Nc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'NC(=O)Nc1ccc(Br)cc1']; [0.9999911785125732, 0.999962568283081] +COc1ccc(-c2cnc3occc3c2)cc1OC; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; [0.9999983906745911, 0.9999955892562866, 0.9999942779541016, 0.9997963905334473, 0.9991104602813721] +c1cc2cc(-c3cnc4occc4c3)cnc2[nH]1; ['Brc1cnc2occc2c1', 'Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2occc2c1']; [0.9999855756759644, 0.9999855756759644, 0.9999498724937439, 0.9996219277381897, 0.9876986742019653] +Cc1nc2ccc(-c3cnc4occc4c3)cc2[nH]1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999963045120239, 0.9999948740005493, 0.9999076128005981, 0.9868147373199463] +CNC(=O)c1cccc2cc(-c3cnc4occc4c3)ccc12; [None]; [None]; [0] +c1ccc2sc(-c3cnc4occc4c3)nc2c1; ['Brc1nc2ccccc2s1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'c1ccc2scnc2c1']; [0.999994158744812, 0.9987578392028809] +Oc1cncc(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1cncc(Br)c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'OB(O)c1cncc(O)c1']; [0.9998104572296143, 0.9997260570526123, 0.9906167984008789] +CS(=O)(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.999999463558197, 0.9999973773956299, 0.9999967813491821, 0.9999920129776001] +COc1cc(CCc2cnc3occc3c2)cc(OC)c1; [None]; [None]; [0] +CNc1nccc(-c2cnc3occc3c2)n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9999781847000122] +O=C1Cc2cc(-c3cnc4occc4c3)ccc2N1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999611377716064, 0.9999352693557739, 0.9998661279678345, 0.999807596206665, 0.9995707273483276, 0.9987809658050537, 0.9776268601417542] +CCc1cc(O)ccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9999929666519165, 0.9999772310256958] +Cc1n[nH]c(-c2cnc3occc3c2)c1C; ['Brc1cnc2occc2c1']; ['Cc1c[nH]nc1C']; [0.9968270063400269] +Cc1n[nH]c2cc(N(C)c3cnc4occc4c3)ccc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; [0.9999982714653015, 0.9999905824661255] +Cc1cc(O)ccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br', 'Cc1cccc(O)c1']; [0.9999935626983643, 0.9999891519546509, 0.9999544620513916, 0.9999241828918457, 0.9995065927505493, 0.9950668811798096, 0.9140264987945557] +CN(c1cccc(Cl)c1)c1cnc2occc2c1; ['Brc1cnc2occc2c1']; ['CNc1cccc(Cl)c1']; [0.996209979057312] +C[C@H](CC(N)=O)c1cnc2occc2c1; [None]; [None]; [0] +Clc1cnccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Clc1cnccc1Br', 'Clc1cnccc1I', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br']; [0.9999527931213379, 0.9999452829360962, 0.9998170137405396, 0.9992222189903259, 0.9778823852539062] +CNc1nc(-c2cnc3occc3c2)ncc1F; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CNc1nc(Cl)ncc1F']; [0.9999703168869019] +CCc1sccc1-c1cnc2occc2c1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnc3occc3c2)cc1Cl; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl']; [0.9999629259109497, 0.9998334050178528, 0.9998044967651367, 0.9968647360801697, 0.9635530710220337] +c1cc2cc(-c3ccc4c(c3)CCN4)cnc2o1; ['Brc1cnc2occc2c1', 'Brc1ccc2c(c1)CCN2', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1ccc2c(c1)CCN2', 'Clc1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Brc1cnc2occc2c1']; [0.9999994039535522, 0.9999991655349731, 0.9999955296516418, 0.9999686479568481, 0.9999616146087646, 0.9992896318435669] +FC(F)c1cc(-c2cnc3occc3c2)[nH]n1; [None]; [None]; [0] +Oc1cc(-c2cnc3occc3c2)nc2ccnn12; [None]; [None]; [0] +c1cc(Nc2cnc3occc3c2)ccn1; ['Nc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Fc1ccncc1', 'Clc1ccncc1', 'Brc1ccncc1', 'Ic1ccncc1', 'Nc1cnc2occc2c1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Oc1ccncc1']; [0.9972081184387207, 0.9945697784423828, 0.9794671535491943, 0.978139340877533, 0.9747709631919861, 0.9696590900421143, 0.7876709699630737] +O=c1[nH]c2ccc(-c3cnc4occc4c3)cc2[nH]1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['O=c1[nH]c2ccc(Br)cc2[nH]1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999929666519165, 0.9999920129776001, 0.9999897480010986, 0.9999856948852539, 0.9999327659606934, 0.9998879432678223, 0.9950000643730164] +Fc1cc(Br)ccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F']; [0.9999896287918091, 0.99998939037323, 0.9998695254325867, 0.9950357675552368] +CNC(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(Br)cc1']; [0.9999973177909851, 0.9999861121177673, 0.9999807476997375, 0.999962329864502, 0.9997313022613525, 0.969504714012146] +Fc1ccc2n[nH]c(-c3cnc4occc4c3)c2c1; [None]; [None]; [0] +Cc1oc(-c2cnc3occc3c2)cc1C(=O)[O-]; [None]; [None]; [0] +CN(c1cnc2occc2c1)c1cccc2[nH]ncc12; ['Brc1cnc2occc2c1']; ['CNc1cccc2[nH]ncc12']; [0.9141206741333008] +O=C(NC1CC1)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999998807907104, 0.9999991655349731, 0.9999989867210388, 0.999998927116394, 0.9996667504310608] +Cc1cc(-c2cnc3occc3c2)ccc1C(N)=O; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999966621398926, 0.9999935030937195, 0.9999829530715942, 0.9883054494857788] +Oc1cc(Br)cc(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; [0.9999768733978271, 0.9988716244697571, 0.9897520542144775, 0.9720818996429443] +Cn1ncc(N)c1-c1cnc2occc2c1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4occc4c3)cc2o1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Cl)cc2o1']; [0.9999992251396179, 0.999998927116394, 0.9999945759773254, 0.9999887943267822] +Cc1cc(-c2cnc3occc3c2)cc(C)c1O; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9999600648880005, 0.9999426007270813, 0.9998708963394165, 0.9904001951217651] +CSc1cccc(-c2cnc3occc3c2)c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1']; [0.99998939037323, 0.9999653697013855, 0.9755239486694336] +Oc1c(F)cc(-c2cnc3occc3c2)cc1F; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Oc1c(F)cc(Cl)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cccc1F']; [0.9999183416366577, 0.9998440146446228, 0.9997738599777222, 0.9982917904853821, 0.9933405518531799, 0.8194164037704468] +c1ccc2c(COc3cnc4occc4c3)cccc2c1; ['Brc1cnc2occc2c1']; ['OCc1cccc2ccccc12']; [0.9449639320373535] +O=c1[nH][nH]c2cc(-c3cnc4occc4c3)ccc12; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999984502792358, 0.9885368347167969] +Fc1ccc(Oc2cnc3occc3c2)c(F)c1; ['Brc1cnc2occc2c1', 'O=[N+]([O-])c1cnc2occc2c1']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999815225601196, 0.949150800704956] +Fc1cccc(Cl)c1CNc1cnc2occc2c1; ['Brc1cnc2occc2c1', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'Nc1cnc2occc2c1', 'Fc1cccc(Cl)c1CCl']; ['NCc1c(F)cccc1Cl', 'O=[N+]([O-])c1cnc2occc2c1', 'Nc1cnc2occc2c1', 'O=Cc1c(F)cccc1Cl', 'Nc1cnc2occc2c1']; [0.9999901652336121, 0.9996905326843262, 0.9991976022720337, 0.9990377426147461, 0.9977501630783081] +Cc1onc(-c2ccccc2)c1-c1cnc2occc2c1; ['Brc1cnc2occc2c1']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.9995228052139282] +Clc1ccc(-c2[nH]ncc2-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1']; ['Clc1ccc(-c2ccn[nH]2)cc1']; [0.9162741899490356] +c1ccc2c(CCc3cnc4occc4c3)c[nH]c2c1; [None]; [None]; [0] +Fc1ccc(COc2cnc3occc3c2)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2cnc3occc3c2)c(F)c1; ['Brc1cnc2occc2c1']; ['Fc1ccc(CCBr)c(F)c1']; [0.9947530031204224] +c1ccc2nc(-c3cnc4occc4c3)ncc2c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1ncc2ccccc2n1']; [0.9999937415122986, 0.999964714050293] +CC(=O)N(C)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC(=O)N(C)c1ccc(Br)cc1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1']; [0.999998927116394, 0.9999945163726807, 0.9907028675079346, 0.9309954047203064] +Cc1nc(C(C)(C)O)sc1-c1cnc2occc2c1; ['Brc1cnc2occc2c1']; ['Cc1csc(C(C)(C)O)n1']; [0.9980218410491943] +COc1ncccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1ncccc1Br', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ccccn1']; [0.999993085861206, 0.9999924302101135, 0.9999848008155823, 0.9998965263366699, 0.999852180480957, 0.9990096092224121, 0.9575421810150146] +Fc1ccc(-c2ncoc2-c2cnc3occc3c2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc([Mg]Br)cc1', 'CCOc1ccccc1']; [0.9999986886978149, 0.9999922513961792, 0.9999814033508301, 0.9999760985374451, 0.999928891658783, 0.9999280571937561, 0.9991575479507446, 0.8315479755401611] +CS(=O)(=O)c1cccc(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CS(=O)(=O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccccc1']; [0.9999962449073792, 0.9999946355819702, 0.9999710917472839, 0.999510645866394, 0.994584858417511, 0.7533794641494751] +Cc1ccc2ncn(-c3cnc4occc4c3)c2c1; ['Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; [0.9970477223396301, 0.994321346282959] +c1cnn2c(-c3cnc4occc4c3)cnc2c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [1.0, 0.999997615814209, 0.9998671412467957] +COc1cc(-c2cnc3occc3c2)cc(OC)c1OC; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['COc1cc(Br)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; [0.9999856948852539, 0.9999710321426392, 0.9999654293060303, 0.9994008541107178] +O=C(Nc1cccc(-c2cnc3occc3c2)c1)C1CC1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.999987006187439, 0.9906688928604126] +COc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccccc1']; [0.9999988079071045, 0.9999910593032837, 0.9999822974205017, 0.9999546408653259, 0.9999518394470215, 0.9490665197372437] +c1cnc(Nc2cnc3occc3c2)nc1; ['Brc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1ncccn1']; [0.999474287033081, 0.9994581937789917, 0.999190092086792, 0.9970449805259705, 0.99504554271698, 0.9838026762008667, 0.9477850198745728] +c1cc2cc(-c3ccc(N4CCOCC4)cc3)cnc2o1; ['Brc1cnc2occc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1cnc2occc2c1']; [0.9999997019767761, 0.9999984502792358, 0.9999978542327881, 0.9999940395355225, 0.9999932050704956, 0.9999688863754272, 0.9998518228530884, 0.9966040849685669] +c1ccc2[nH]c(-c3cnc4occc4c3)nc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1nc2ccccc2[nH]1']; ['Clc1nc2ccccc2[nH]1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; [0.9999417066574097, 0.9999269247055054] +c1ccc2c(-c3cnc4occc4c3)nccc2c1; ['Brc1nccc2ccccc12', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1nccc2ccccc12', 'OB(O)c1nccc2ccccc12']; [0.9999840259552002, 0.9997746348381042, 0.9996799230575562] +N#Cc1ccc(O)c(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9999871850013733, 0.999984622001648, 0.9999191761016846, 0.9971129894256592, 0.9879074096679688] +N#Cc1cccc(Cn2cc(-c3cnc4occc4c3)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC(=O)NCc1ccc(Br)cc1', 'Brc1cnc2occc2c1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(=O)NCc1ccc(B(O)O)cc1']; [0.9999992847442627, 0.9999957084655762, 0.9999918937683105] +O=C(Nc1ccccc1)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999995231628418, 0.9999970197677612, 0.9999935626983643, 0.9999340772628784, 0.9960954785346985] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4occc4c3)cc2)CC1; [None]; [None]; [0] +c1cc(Nc2cnc3occc3c2)ncn1; ['Clc1ccncn1', 'Brc1ccncn1', 'Fc1ccncn1', 'Brc1cnc2occc2c1', 'Nc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1ccncn1', 'O=c1ccnc[nH]1']; [0.9988183975219727, 0.9963228702545166, 0.9829398393630981, 0.9796997308731079, 0.934766411781311] +Cc1cc(Nc2cnc3occc3c2)sn1; [None]; [None]; [0] +c1cc(-c2cnc3occc3c2)cc(C2CCNCC2)c1; ['Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; [0.9999977350234985] +OCCOc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999924898147583, 0.9999680519104004, 0.9999237656593323] +O=C(c1ccc(-c2cnc3occc3c2)cc1)N1CCOCC1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999994039535522, 0.9999943971633911, 0.9999932646751404, 0.9999907612800598, 0.9975612163543701] +O=C(c1ccc(-c2cnc3occc3c2)nc1)N1CCOCC1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999833106994629, 0.9999550580978394] +Cc1nc(C)c(-c2cnc3occc3c2)s1; ['Brc1cnc2occc2c1']; ['Cc1csc(C)n1']; [0.956432580947876] +O=S1(=O)Cc2ccc(-c3cnc4occc4c3)cc2C1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999995231628418, 0.9963620901107788] +FC(F)(F)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'CC1(C)COB(c2ccc(C(F)(F)F)cc2)OC1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9999961853027344, 0.9999855756759644, 0.999984085559845, 0.9999713897705078, 0.9999504685401917, 0.9998779296875, 0.9994295835494995, 0.9939320087432861] +CN(C)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccccc1']; [0.9999985694885254, 0.9999955892562866, 0.9999935626983643, 0.9999709129333496, 0.9999681711196899, 0.9999665021896362, 0.9986879825592041, 0.9897170066833496, 0.9136396646499634] +CN(C)S(=O)(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [0.9999986290931702, 0.9999864101409912, 0.9999808073043823, 0.9999796152114868, 0.9825762510299683] +C[C@@H](O)COc1ccc(-c2cnc3occc3c2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc3occc3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc3occc3c2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc3occc3c2)cc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; [0.9999697804450989, 0.999905526638031, 0.9713230133056641] +CC(C)c1cc(-c2cnc3occc3c2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1ccnc(N)n1']; [0.9999973773956299, 0.9999394416809082, 0.9968540072441101] +CCCOc1ccc(-c2cnc3occc3c2)nc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1']; [0.9999938011169434, 0.9964156150817871] +Brc1ccc(-c2cnc3occc3c2)cc1; ['Brc1ccc(I)cc1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1ccc(Br)cc1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Clc1ccc(Br)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'OB(O)c1ccc(Br)cc1']; [0.9999750852584839, 0.999901533126831, 0.9997066259384155, 0.9996219873428345, 0.9957982897758484] +c1cc2nc(-c3cnc4occc4c3)ccn2n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1ccn2nccc2n1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Clc1ccn2nccc2n1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1ccn2nccc2n1', 'c1cnc2ccnn2c1']; [0.9999982118606567, 0.9999980330467224, 0.9999249577522278, 0.9997103214263916] +O=C(c1ccccc1)N1CC[C@H](c2cnc3occc3c2)C1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [0.9999987483024597, 0.9999985694885254, 0.9999973177909851, 0.9999876618385315, 0.9937475919723511] +CC(=O)N1CCCN(c2cccc(-c3cnc4occc4c3)c2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3occc3c2)c(C)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; [0.999984860420227, 0.9999736547470093, 0.9992824196815491, 0.9933397173881531] +CN(C)c1ccc(-c2cnc3occc3c2)cc1Cl; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl']; [0.9999985694885254, 0.9999982714653015, 0.9979482889175415, 0.9664734601974487] +Cc1c(C(=O)[O-])cccc1-c1cnc2occc2c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; [0.9999912977218628, 0.9999756813049316, 0.9999620914459229, 0.9998815655708313, 0.9990017414093018] +c1ccc(-n2cccn2)c(-c2cnc3occc3c2)c1; ['Brc1ccccc1-n1cccn1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1ccccc1-n1cccn1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Brc1cnc2occc2c1', 'c1ccc(-n2cccn2)cc1']; [0.9999985694885254, 0.9999972581863403, 0.9999319911003113, 0.9999232292175293, 0.9997906684875488, 0.9988918304443359] +c1ccc2c(-c3cnc4occc4c3)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Clc1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999362230300903, 0.9997075200080872, 0.9994814395904541, 0.9992152452468872, 0.8986015319824219] +c1cc2cc(-c3ccc4c(c3)CCO4)cnc2o1; ['Brc1ccc2c(c1)CCO2', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1ccc2c(c1)CCO2']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Brc1cnc2occc2c1']; [0.9999992847442627, 0.9999943971633911, 0.999992847442627, 0.9999169111251831, 0.9988347887992859] +CC(=O)Nc1cccc(-c2cnc3occc3c2)c1; ['Brc1cnc2occc2c1', 'CC(=O)Nc1cccc(Br)c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; [0.9999961853027344, 0.9999957084655762, 0.9982591271400452, 0.9935857057571411] +c1cc2c(c(-c3cnc4occc4c3)c1)OCO2; ['Brc1cccc2c1OCO2', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cccc2c1OCO2', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Brc1cnc2occc2c1', 'c1ccc2c(c1)OCO2']; [0.9999969601631165, 0.9999945163726807, 0.9999681115150452, 0.9997103810310364, 0.9967093467712402, 0.879274845123291] +COc1cc(OC)c(-c2cnc3occc3c2)cc1Cl; [None]; [None]; [0] +c1cc2cc(-c3scc4c3OCCO4)cnc2o1; ['Brc1cnc2occc2c1']; ['c1scc2c1OCCO2']; [0.9999818801879883] +CC(C)(C)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'Brc1cnc2occc2c1', 'CC(C)(C)c1ccc(Cl)cc1', 'Brc1cnc2occc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(C)(C)c1ccc(Br)cc1']; [0.9999996423721313, 0.9999979734420776, 0.9999967813491821, 0.9999878406524658, 0.9999791979789734, 0.9970607757568359] +CC(C)c1ccc2nc(-c3cnc4occc4c3)[nH]c2c1; [None]; [None]; [0] +c1ccc2ncc(-c3cnc4occc4c3)cc2c1; ['Brc1cnc2occc2c1', 'Brc1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.999983012676239, 0.999983012676239, 0.9998503923416138, 0.999000072479248] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2occc2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cnc4occc4c3)n[nH]2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3occc3c2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'COC(=O)c1cccc(OC)c1', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'COc1cccc(C(N)=O)c1']; [0.9999655485153198, 0.9997391700744629, 0.9912877082824707, 0.9900184869766235] +CN(C)C(=O)c1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; [0.9999987483024597, 0.9999943971633911, 0.9999940395355225, 0.9999712705612183, 0.9998085498809814, 0.9871799945831299] +Nc1nc(-c2cnc3occc3c2)cs1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Nc1nc(Br)cs1', 'Nc1nc(Cl)cs1']; [0.9999964833259583, 0.999957799911499] +CC(C)(C)c1ccc(-c2cnc3occc3c2)cn1; ['Brc1cnc2occc2c1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; [0.9999955892562866, 0.9999840259552002, 0.9999552965164185, 0.9955655932426453] +Clc1cccc(-n2ccc(-c3cnc4occc4c3)n2)c1; ['Brc1cnc2occc2c1']; ['Clc1cccc(-n2cccn2)c1']; [0.8813565969467163] +CC1(COc2cnc3occc3c2)COC1; ['Brc1cnc2occc2c1']; ['CC1(CO)COC1']; [0.969100832939148] +c1ccc2sc(-c3cnc4occc4c3)cc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cc2ccccc2s1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cc2ccccc2s1']; ['Ic1cc2ccccc2s1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1', 'Brc1cnc2occc2c1']; [0.9999812841415405, 0.9999805688858032, 0.9999217391014099, 0.9998624324798584, 0.9996278285980225, 0.9994884729385376, 0.9958698749542236] +CSc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; [0.9999979138374329, 0.9999805688858032, 0.9999786615371704, 0.9998582601547241, 0.9996998310089111, 0.9505095481872559] +Brc1cnc(-c2cnc3occc3c2)nc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc(Br)nc1']; ['Clc1ncc(Br)cn1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; [0.9998385906219482, 0.9995396137237549] +Cc1cc(-c2cnc3occc3c2)nc(N)n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Cc1ccnc(N)n1']; [0.999998152256012, 0.9999951124191284, 0.9989559650421143] +Fc1ccc(-c2cnc3occc3c2)c(Cl)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Fc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Cl)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1']; [0.9999950528144836, 0.9999929666519165, 0.9999852776527405, 0.9998923540115356, 0.9995894432067871, 0.999177873134613, 0.9919784069061279] +COc1ccc(CNc2cnc3occc3c2)cc1; ['COc1ccc(CCl)cc1', 'COc1ccc(CBr)cc1', 'Brc1cnc2occc2c1', 'COc1ccc(C=O)cc1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'COc1ccc(CN)cc1', 'Nc1cnc2occc2c1']; [0.9989967346191406, 0.9988908767700195, 0.9830605983734131, 0.9192219376564026] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3occc3c2)CC1; [None]; [None]; [0] +CCc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(Br)cc1']; [0.9999990463256836, 0.9999957084655762, 0.9999930262565613, 0.9999661445617676, 0.9999269247055054, 0.9969431757926941, 0.9901665449142456] +CCN1CCN(Cc2ccc(-c3cnc4occc4c3)cc2)CC1; [None]; [None]; [0] +O=C1CCc2cc(-c3cnc4occc4c3)ccc2N1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999824166297913, 0.9999716281890869, 0.9998582601547241, 0.999722421169281, 0.9995207786560059, 0.9941146373748779] +Clc1ccc(-c2cnc3occc3c2)c(Cl)c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc([Mg]Br)c(Cl)c1']; [0.999987006187439, 0.9999587535858154, 0.9999104738235474, 0.9996350407600403, 0.9957109689712524, 0.9944111704826355] +O=C(C1CC1)N1CC(Nc2cnc3occc3c2)C1; [None]; [None]; [0] +c1cc2cnc(-c3cnc4occc4c3)nn2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Clc1ncc2cccn2n1']; [0.9999018311500549] +c1ccn2nc(-c3cnc4occc4c3)cc2c1; ['Brc1cc2ccccn2n1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Clc1cc2ccccn2n1', 'c1ccn2nccc2c1']; [0.9999895095825195, 0.9999779462814331, 0.9770262241363525] +COc1cc(-c2cnc3occc3c2)ccc1N1CCOCC1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999997615814209, 0.999969482421875, 0.9995768666267395] +Cn1cc(-c2cnc3occc3c2)c(C(F)(F)F)n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(C(=O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1']; [0.9999966621398926, 0.9999956488609314, 0.9999927878379822, 0.9994882345199585, 0.9970718622207642, 0.9673987627029419] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3occc3c2)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc4occc4c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc4occc4c3)c2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['COc1ccc2cccc(Br)c2c1', 'COc1ccc2ccccc2c1']; [0.9999989867210388, 0.803588330745697] +Cc1csc2c(-c3cnc4occc4c3)ncnc12; [None]; [None]; [0] +Oc1ccc2cccc(-c3cnc4occc4c3)c2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Oc1ccc2cccc(Br)c2c1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(I)c2c1']; [0.9999990463256836, 0.999995231628418, 0.9999949336051941] +Clc1cnc(-c2cnc3occc3c2)nc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1']; [0.9999762177467346, 0.9998855590820312] +Cc1nc(Nc2cnc3occc3c2)sc1C; ['Cc1nc(Br)sc1C', 'Brc1cnc2occc2c1', 'Cc1nc(Cl)sc1C']; ['Nc1cnc2occc2c1', 'Cc1nc(N)sc1C', 'Nc1cnc2occc2c1']; [0.9997944235801697, 0.9994839429855347, 0.9993289709091187] +COc1cc(F)c(-c2cnc3occc3c2)cc1OC; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1ccc(F)cc1OC']; [0.9999812841415405, 0.9999760389328003, 0.9998101592063904, 0.9961835145950317, 0.9398401975631714] +Cc1cc(Nc2cnc3occc3c2)nn1C; ['Cc1cc(Br)nn1C', 'Cc1cc(Cl)nn1C', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Cc1cc(N)nn1C']; [0.9999419450759888, 0.9996418952941895, 0.9959831237792969] +COc1cc(-c2cnc3occc3c2)ccc1Cl; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccccc1Cl']; [0.9999997615814209, 0.9999994039535522, 0.999998927116394, 0.9999985694885254, 0.999964714050293, 0.9998363852500916, 0.8264298439025879] +CCNC(=O)c1ccc(-c2cnc3occc3c2)nc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; [0.9999850392341614, 0.999436616897583] +OCCn1cc(-c2cnc3occc3c2)cn1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999266862869263, 0.9998369216918945, 0.997512936592102] +O=C(Nc1cnc2occc2c1)c1ccco1; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1']; [0.9994620680809021, 0.9963082671165466] +Nc1cc(-c2cnc3occc3c2)c2cc[nH]c2n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.9999986886978149, 0.999994158744812, 0.9880253076553345] +COc1cc(-c2cnc3occc3c2)c(OC)cc1Br; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; [0.9999743700027466, 0.9990291595458984, 0.9963158369064331, 0.9247130155563354] +NC(=O)c1ccc(Cc2cnc3occc3c2)cc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['NC(=O)c1ccc(CBr)cc1']; [0.9965294599533081] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2occc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3occc3c1)cn2C; ['Brc1cnc2occc2c1']; ['COc1ccc2c(ccn2C)c1']; [0.998517632484436] +COc1ccc2oc(-c3cnc4occc4c3)cc2c1; ['Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'COc1ccc2occc2c1']; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1', 'Nc1cnc2occc2c1']; [0.9999039173126221, 0.9997197389602661, 0.995333194732666] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnc3occc3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc3occc3c2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; [0.9999449253082275, 0.9997067451477051, 0.9979950189590454, 0.9897695779800415] +O=S(=O)(CCO)c1ccc(Cc2cnc3occc3c2)cc1; [None]; [None]; [0] +c1cc2cc(-c3ccc4cn[nH]c4c3)cnc2o1; ['Brc1cnc2occc2c1', 'Brc1ccc2cn[nH]c2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Ic1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1cnc2occc2c1']; [0.9999988079071045, 0.9999975562095642, 0.9999959468841553, 0.9999752044677734, 0.9999614953994751, 0.9912256598472595] +CO[C@@H]1CC[C@@H](c2cnc3occc3c2)CC1; [None]; [None]; [0] +CCn1cc(-c2cnc3occc3c2)cn1; ['Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; [0.9999488592147827, 0.9955041408538818] +CCNC(=O)N1CCC(c2cnc3occc3c2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; [0.9999839067459106, 0.9561220407485962] +c1cc2cc(-c3ncc4sccc4n3)cnc2o1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['Clc1ncc2sccc2n1']; [0.9999789595603943] +c1ccc2oc(-c3cnc4occc4c3)cc2c1; ['Brc1cc2ccccc2o1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Nc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'OB(O)c1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'c1ccc2occc2c1', 'c1ccc2occc2c1']; [0.9999915957450867, 0.999933123588562, 0.99986732006073, 0.995606005191803, 0.971713662147522] +CC(C)c1nn(C)cc1-c1cnc2occc2c1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1ccn(C)n1']; [0.9999959468841553, 0.9999924302101135, 0.999990701675415, 0.8575931787490845] +COc1ccc(F)c(C(=O)Nc2cnc3occc3c2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'COc1ccc(F)c(C(N)=O)c1']; [0.9992743730545044, 0.9946814775466919] +Cn1cc(Br)cc1-c1cnc2occc2c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cnc4occc4c3)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccccc1']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.9999967813491821, 0.9993599653244019, 0.9861544370651245] +COc1ccc2nc(-c3cnc4occc4c3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3occc3c2)c1)N1CCCC1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc3occc3c2)cc1; [None]; [None]; [0] +c1cc2cc(-c3ncn4c3CCCC4)cnc2o1; ['Brc1cnc2occc2c1']; ['c1ncn2c1CCCC2']; [0.9268973469734192] +CCc1cccc(-c2cnc3occc3c2)n1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCc1cccc(Br)n1', 'CCc1cccc(Br)n1']; [0.9999978542327881, 0.9901425838470459] +Cc1cc(-c2cnc3occc3c2)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc4occc4c3)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc4occc4c3)cn2)CC1; ['Brc1cnc2occc2c1']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; [0.9999960660934448] +O=C(Nc1cnc2occc2c1)c1cccc(OC(F)(F)F)c1; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'Nc1cnc2occc2c1']; [0.9999940395355225, 0.9998689889907837, 0.9989417791366577, 0.9909441471099854] +Cn1ncc2cc(-c3cnc4occc4c3)ccc21; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999988079071045, 0.9999985694885254, 0.9999969005584717, 0.9999960660934448, 0.9999880790710449, 0.9970288276672363] +CN(C)c1ccc(-c2cnc3occc3c2)cn1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(Br)cn1']; [0.9999843835830688, 0.9999747276306152, 0.9999719858169556, 0.9999300241470337, 0.9993520379066467, 0.9700540900230408] +Cc1n[nH]c2cc(-c3cnc4occc4c3)ccc12; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1', 'Brc1cnc2occc2c1']; ['Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 0.9999998211860657, 0.9999980330467224, 0.9999908804893494, 0.9990312457084656] +O=C1CCCN1c1cccc(-c2cnc3occc3c2)c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999785423278809, 0.9999639987945557, 0.9868713021278381] +OCCc1ccc(-c2cnc3occc3c2)cc1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.9999961853027344, 0.9999723434448242, 0.9999383687973022, 0.9999330639839172, 0.9609514474868774] +Cn1nc(Cl)c2cc(-c3cnc4occc4c3)ccc21; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc4occc4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2occc2c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['COc1cc(S(C)(=O)=O)ccc1Br']; [0.9999886751174927] +CNC(=O)c1ccc(-c2cnc3occc3c2)c(OC)c1; ['Brc1cnc2occc2c1', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; [0.999984622001648, 0.9999457597732544] +CN(C)C(=O)c1ccc(-c2cnc3occc3c2)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3occc3c2)cc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; [0.9999963045120239, 0.9999854564666748] +COc1cc(N2CCNCC2)ccc1-c1cnc2occc2c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc3occc3c2)cc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CCNC(=O)Cc1ccc(Br)cc1']; [0.9999969005584717] +CN(C)C(=O)c1ccc(-c2cnc3occc3c2)nc1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3occc3c2)OC1(C)C', 'Brc1cnc2occc2c1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; [0.9999935626983643, 0.9999521970748901, 0.9927132725715637] +Cc1cc(Nc2cnc3occc3c2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(Cl)ncc1F', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Cc1cc(N)ncc1F']; [0.9998452067375183, 0.9976414442062378, 0.9750992059707642] +Fc1ccc(Nc2cnc3occc3c2)nc1; ['Fc1ccc(Br)nc1', 'Fc1ccc(Cl)nc1', 'Brc1cnc2occc2c1', 'Fc1ccc(F)nc1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1ccc(F)cn1', 'Nc1cnc2occc2c1']; [0.9983930587768555, 0.9963029026985168, 0.8647093176841736, 0.757409930229187] +c1ccc(Nc2cnc3occc3c2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Brc1cnc2occc2c1']; ['Nc1cnc2occc2c1', 'Nc1cnc2occc2c1', 'Nc1ccccn1']; [0.997594952583313, 0.9947932958602905, 0.9754647016525269] +Cc1cc(N2CCOCC2)ccc1-c1cnc2occc2c1; [None]; [None]; [0] +Cn1nc(-c2cnc3occc3c2)cc1C(C)(C)O; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2occc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3occc3c2)c1; ['CC1(C)OB(c2cnc3occc3c2)OC1(C)C']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; [0.9999967813491821] +COc1ccc2c(-c3cccc(O)c3)ccnc2c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999850988388062, 0.9999513626098633, 0.9999050498008728, 0.9996883869171143, 0.9995152950286865, 0.9868699312210083, 0.9714933633804321] +CNC(=O)c1ccc(C)c(-c2cnc3occc3c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2occc2c1; [None]; [None]; [0] +COc1ccc2c(Oc3ccc(F)cc3)ccnc2c1; ['COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1']; ['OB(O)c1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Fc1ccc(I)cc1', 'Fc1ccc(Br)cc1', 'Fc1ccc(Cl)cc1', 'Fc1ccc(F)cc1']; [0.9998780488967896, 0.9997284412384033, 0.9994626641273499, 0.9994311332702637, 0.9992372989654541, 0.9972447156906128, 0.9861160516738892] +COc1ccc2c(-c3cccc4ncccc34)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(Cl)c(O)c3)ccnc2c1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999798536300659, 0.9998855590820312, 0.9997513294219971, 0.9996402263641357, 0.9995590448379517, 0.996935248374939] +CNS(=O)(=O)c1ccc(-c2ccnc3cc(OC)ccc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.9999749660491943, 0.9998786449432373, 0.9998689293861389, 0.9994041919708252, 0.9987237453460693, 0.9084056615829468] +COc1ccc2c(-c3c(Cl)ccc4c3OCO4)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3n[nH]c4ccccc34)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(C(N)=O)cc3F)ccnc2c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'COc1ccc2c(Cl)ccnc2c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999513626098633, 0.9998745918273926, 0.9997462034225464, 0.997964084148407, 0.9957726001739502, 0.9925554990768433, 0.971531867980957, 0.7676633596420288] +COc1ccc2c(-c3c(Cl)cccc3Cl)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(C(N)=O)cc3OC)ccnc2c1; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1cccc(C(N)=O)c1']; [0.9999887943267822, 0.999922513961792, 0.9823280572891235] +COc1ccc2c(-c3ccc(C(N)=O)cc3)ccnc2c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccccc1', 'COc1ccc2cccnc2c1']; [0.9999988079071045, 0.9999723434448242, 0.9999363422393799, 0.9999325275421143, 0.9998754858970642, 0.9996623992919922, 0.9995858669281006, 0.9994962215423584, 0.9929470419883728, 0.9562243223190308] +COc1ccc2c(-c3ccc(O)cc3Cl)ccnc2c1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1']; [0.9999669790267944, 0.9998301267623901, 0.9998027086257935, 0.9959320425987244, 0.9739235639572144, 0.9456874132156372] +COc1ccc2c(-c3ccnc(N)n3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1']; ['Nc1nccc(Cl)n1']; [0.9997822046279907] +COc1ccc2c(-c3ccc(O)cc3F)ccnc2c1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(I)c(F)c1', 'COc1ccc2c(Cl)ccnc2c1', 'Oc1ccc(Br)c(F)c1', 'Oc1ccc(Cl)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1cccc(F)c1']; [0.999860405921936, 0.9998184442520142, 0.9995065927505493, 0.9985998868942261, 0.9969437718391418, 0.9932150840759277, 0.9929220676422119, 0.9870379567146301, 0.9857480525970459, 0.9136922955513] +COc1ccc2c(-c3cc(F)c4nc(C)[nH]c4c3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cn[nH]c3Cl)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(C(=O)[O-])cc3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1']; ['O=C([O-])c1ccc(Cl)cc1', 'O=C([O-])c1ccccc1']; [0.9961218237876892, 0.9785507917404175] +COc1ccc2c(-c3cc(F)ccc3OC)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(F)cc3OC)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(-c4ccc(O)cc4O)cc3)ccnc2c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccnc3cc(OC)ccc23)o1; ['COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(N)ccnc2c1']; [0.999937891960144, 0.9998797178268433, 0.9968968033790588, 0.9856186509132385, 0.9765869379043579, 0.9714202880859375, 0.9169542193412781] +COc1ccc2c(-c3ccc(O)c(OC)c3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cccc(Br)c3)ccnc2c1; ['Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'Brc1cccc(Br)c1', 'Br[Mg]c1cccc(Br)c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'F[B-](F)(F)c1cccc(Br)c1']; [0.9999839067459106, 0.9998718500137329, 0.9998530149459839, 0.9996806383132935, 0.9987680315971375, 0.9980751276016235, 0.9841277599334717, 0.9745931625366211, 0.9008606672286987] +COc1ccc2c(CCc3ccc(O)c(OC)c3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cn(C)c4ccccc34)ccnc2c1; ['COc1ccc2c(Cl)ccnc2c1']; ['Cn1ccc2ccccc21']; [0.9935612678527832] +COc1ccc2c(-c3ccc4ccccc4c3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)c(F)c3)ccnc2c1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1ccc(O)c(F)c1']; [0.9999977350234985, 0.9999667406082153, 0.9999569654464722, 0.9999492168426514, 0.9999016523361206, 0.9981683492660522] +COc1ccc2c(-c3ccc(O)cc3O)ccnc2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccnc3cc(OC)ccc23)c1; [None]; [None]; [0] +COc1ccc2c(COc3ccccc3Cl)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cnn4ncccc34)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccnc(N)c3)ccnc2c1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Nc1cc(Br)ccn1', 'COc1ccc2c(Cl)ccnc2c1', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.9999979138374329, 0.9999922513961792, 0.9999860525131226, 0.9999716281890869, 0.9999324083328247, 0.9999042749404907, 0.999558687210083] +COc1ccc2c(-c3ccc(F)c(Cl)c3)ccnc2c1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2cccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([B-](F)(F)F)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccccc1Cl', 'OB(O)c1ccc(F)c(Cl)c1']; [1.0, 0.9999994039535522, 0.9999982714653015, 0.9999982118606567, 0.9999978542327881, 0.9999649524688721, 0.9998777508735657, 0.9997832179069519, 0.9994872808456421, 0.994968056678772, 0.9949137568473816, 0.9701818227767944] +COc1ccc2c(-c3c[nH]c4cnccc34)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3[nH]cnc3-c3ccc(F)cc3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.9820300936698914] +COc1ccc2c(-c3cc(O)ccc3Cl)ccnc2c1; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Oc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(I)c1', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1']; [0.9999262094497681, 0.9997801780700684, 0.999015212059021, 0.9988043904304504, 0.9779535531997681, 0.9667879343032837] +COc1ccc2c(-c3c[nH]c(C(N)=O)c3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1']; ['NC(=O)c1cc(Br)c[nH]1']; [0.9997532963752747] +COc1ccc2c(-c3cc(CO)ccc3C)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1B(O)O']; [0.9999765157699585, 0.9999209642410278, 0.9993686676025391, 0.9992608428001404, 0.9988754987716675, 0.9834688901901245] +COc1ccc2c(-c3c(C)ccc4[nH]ncc34)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1Br']; [0.9999956488609314, 0.9999530911445618, 0.9999401569366455, 0.9999197721481323, 0.9998335838317871, 0.9951081275939941, 0.981501579284668, 0.981480062007904] +COc1ccc2c(-c3cnc(O)c(Cl)c3)ccnc2c1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncccc1Cl']; [0.9999986886978149, 0.999963641166687, 0.9999496936798096, 0.9999054670333862, 0.9948776364326477, 0.9850384593009949] +COc1cc(OC)cc(-c2ccnc3cc(OC)ccc23)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1cccc(OC)c1', 'COc1cccc(OC)c1']; [0.9999780654907227, 0.9999725818634033, 0.9999424815177917, 0.9999158382415771, 0.9998827576637268, 0.9998265504837036, 0.9997172355651855, 0.9997062683105469, 0.9979080557823181, 0.9824815988540649, 0.9711222648620605, 0.8351435661315918, 0.7970349788665771] +COc1ccc2c(-c3ccc(OC)c(OC)c3)ccnc2c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(C(=O)CCCl)cc1OC', 'COc1ccc([B-](F)(F)F)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1cccc(N)c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccccc1OC', 'COc1ccccc1OC']; [0.9999963045120239, 0.9999614357948303, 0.9999556541442871, 0.999940037727356, 0.9999336004257202, 0.999783456325531, 0.9985038638114929, 0.9977458715438843, 0.996501088142395, 0.9933948516845703, 0.9592999815940857, 0.9506211280822754] +COc1ccc2c(-c3cnc4[nH]ccc4c3)ccnc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'Brc1cnc2[nH]ccc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.999997615814209, 0.9999971389770508, 0.999990701675415, 0.9999881982803345, 0.9999817609786987, 0.9997861385345459, 0.9987074136734009] +COc1ccc2c(-c3ccc(NC(N)=O)cc3)ccnc2c1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'NC(=O)Nc1ccc(Br)cc1']; [0.999988317489624, 0.9998446702957153, 0.9960358142852783] +CNC(=O)c1cccc2cc(-c3ccnc4cc(OC)ccc34)ccc12; [None]; [None]; [0] +COc1ccc2c(-c3ccc4nc(C)[nH]c4c3)ccnc2c1; [None]; [None]; [0] +CCOc1cccc(-c2ccnc3cc(OC)ccc23)c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(S(C)(=O)=O)cc3)ccnc2c1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.999998927116394, 0.9999879598617554, 0.9999459981918335, 0.9999457597732544, 0.9999439716339111, 0.9999004602432251, 0.9998980760574341, 0.9900916814804077] +COc1cc(CCc2ccnc3cc(OC)ccc23)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(-c3cncc(O)c3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['Oc1cncc(I)c1', 'COc1ccc2c(Br)ccnc2c1', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9998873472213745, 0.9998772144317627, 0.9997888803482056, 0.9989942312240601, 0.997638463973999, 0.9866143465042114, 0.9685250520706177] +COc1ccc2c(-c3nc4ccccc4s3)ccnc2c1; ['COc1ccc2c(C(=O)O)ccnc2c1', 'COc1ccc2c(C#N)ccnc2c1', 'COc1ccc2c(C)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(C(=O)O)ccnc2c1']; ['Nc1ccccc1S', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999940395355225, 0.9999711513519287, 0.9998852014541626, 0.9990184307098389, 0.9960401058197021] +CNc1nccc(-c2ccnc3cc(OC)ccc23)n1; ['CNc1nccc(Cl)n1', 'CNc1ncccn1']; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.9993858337402344, 0.8597042560577393] +COc1ccc2c(-c3ccc4c(c3)CC(=O)N4)ccnc2c1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'COc1ccc2c(Cl)ccnc2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999901652336121, 0.9999102354049683, 0.9998539090156555, 0.9996800422668457, 0.999619722366333, 0.9994741678237915, 0.9990954399108887, 0.9944643378257751, 0.8472116589546204] +COc1ccc2c(N(C)c3ccc4c(C)n[nH]c4c3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(N(C)c3cccc(Cl)c3)ccnc2c1; ['CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; [0.9965913891792297, 0.962843656539917] +COc1ccc2c(-c3[nH]nc(C)c3C)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1']; ['Cc1c[nH]nc1C']; [0.9994543790817261] +CCc1cc(O)ccc1-c1ccnc2cc(OC)ccc12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cccc(O)c1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.9998184442520142, 0.9997676610946655, 0.9968304634094238, 0.9894436001777649, 0.9782891273498535, 0.9028886556625366] +COc1ccc2c(-c3ccc(O)cc3C)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9999464750289917, 0.9994422197341919, 0.9983683824539185, 0.9936424493789673, 0.99344801902771, 0.9872217774391174, 0.9846396446228027, 0.9499877691268921, 0.8339809775352478] +CCc1cc(O)c(F)cc1-c1ccnc2cc(OC)ccc12; [None]; [None]; [0] +COc1ccc2c(-c3ccncc3Cl)ccnc2c1; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'COc1ccc2c(Cl)ccnc2c1', 'Clc1ccncc1Cl', 'OB(O)c1ccncc1Cl']; [0.9999504685401917, 0.9998217821121216, 0.9998149275779724, 0.9997302293777466, 0.9990309476852417, 0.9982352256774902, 0.9937121868133545] +COc1ccc2c([C@H](C)CC(N)=O)ccnc2c1; [None]; [None]; [0] +CNc1nc(-c2ccnc3cc(OC)ccc23)ncc1F; ['CNc1nc(Cl)ncc1F']; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1']; [0.999998927116394] +COc1ccc2c(-c3cc(O)n4nccc4n3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1']; ['Oc1ccnc2ccnn12']; [0.9979157447814941] +COc1ccc2c(-c3ccc4c(c3)CCN4)ccnc2c1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'Brc1ccc2c(c1)CCN2', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'Brc1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1ccc2c(c1)CCN2', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'Ic1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Clc1ccc2c(c1)CCN2', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.9999982714653015, 0.9999516606330872, 0.9998079538345337, 0.9997864961624146, 0.9997611045837402, 0.9984837770462036, 0.9978761672973633, 0.9972996711730957, 0.9577415585517883, 0.9285487532615662] +COc1ccc2c(-c3cc(Cl)c(O)c(Cl)c3)ccnc2c1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cccc1Cl']; [0.9999722242355347, 0.9998594522476196, 0.9997100830078125, 0.9994887113571167, 0.989901065826416, 0.9841679334640503] +COc1ccc2c(-c3ccc4[nH]c(=O)[nH]c4c3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'COc1ccc2c(Br)ccnc2c1']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccccc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999929666519165, 0.9999922513961792, 0.999980092048645, 0.9999635219573975, 0.9999518990516663, 0.9999346137046814, 0.9997043609619141, 0.9979422092437744, 0.9673819541931152] +COc1ccc2c(Nc3ccncc3)ccnc2c1; ['COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(N)ccnc2c1', 'Brc1ccncc1', 'COc1ccc2c(N)ccnc2c1', 'COc1ccc2c(N)ccnc2c1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'COc1ccc2c(N)ccnc2c1', 'Ic1ccncc1', 'c1cc[n+](-c2ccncc2)cc1']; [0.999995231628418, 0.9999701976776123, 0.9998644590377808, 0.9998505711555481, 0.999760627746582, 0.9978196620941162] +COc1ccc2c(-c3cc(C(F)F)n[nH]3)ccnc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccnc2cc(OC)ccc12; [None]; [None]; [0] +COc1ccc2c(-c3cc(C(=O)[O-])c(C)o3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3[nH]nc4ccc(F)cc34)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(N)ccnc2c1']; ['Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9998189806938171, 0.9958384037017822] +COc1ccc2c(-c3c(N)cnn3C)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(N(C)c3cccc4[nH]ncc34)ccnc2c1; ['CNc1cccc2[nH]ncc12', 'CNc1cccc2[nH]ncc12']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; [0.9997667074203491, 0.998884379863739] +CNC(=O)c1ccc(-c2ccnc3cc(OC)ccc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [0.9999889135360718, 0.9999197721481323, 0.9998667240142822, 0.9996112585067749, 0.9993163347244263, 0.9955676794052124, 0.8699910640716553] +COc1ccc2c(-c3ccc(Br)cc3F)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['Fc1cc(Br)ccc1I', 'COc1ccc2c(Br)ccnc2c1', 'Fc1cc(Br)ccc1Br', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl', 'Fc1cccc(Br)c1']; [0.9999732971191406, 0.9999363422393799, 0.9999342560768127, 0.9998424053192139, 0.9994553327560425, 0.9993036389350891, 0.9990580081939697, 0.9962089657783508, 0.9934245347976685, 0.9870955944061279, 0.9730532169342041, 0.8929073810577393] +COc1ccc2c(-c3cc(O)cc(Br)c3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['Oc1cc(Br)cc(I)c1', 'OB(O)c1cc(O)cc(Br)c1', 'COc1ccc2c(Br)ccnc2c1', 'Oc1cc(Br)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'COc1ccc2c(Cl)ccnc2c1']; [0.9999521374702454, 0.99905925989151, 0.997294545173645, 0.9967442750930786, 0.9962173700332642, 0.902564525604248] +COc1ccc2c(-c3ccc(C(N)=O)c(C)c3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [0.9999996423721313, 0.999993085861206, 0.9999886751174927] +COc1ccc2c(-c3ccc(C(=O)NC4CC4)cc3)ccnc2c1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'COc1ccc2c(Cl)ccnc2c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999988079071045, 0.9999904036521912, 0.9999663829803467, 0.9999512434005737, 0.9999399781227112, 0.9999068379402161, 0.9998801946640015, 0.9846407175064087] +COc1ccc2c(-c3ccc4nc(C)oc4c3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999997019767761, 0.9999992847442627, 0.9999938011169434, 0.9999910593032837, 0.9999771118164062, 0.9965664148330688] +COc1ccc2c(-c3cc(C)c(O)c(C)c3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; [0.9997093677520752, 0.9996910691261292, 0.999038577079773, 0.9978095293045044, 0.997550368309021, 0.9939649105072021, 0.989284873008728, 0.8020075559616089] +COc1ccc2c(-c3cc(F)c(O)c(F)c3)ccnc2c1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['COc1ccc2c(Br)ccnc2c1', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'COc1ccc2c(Cl)ccnc2c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F']; [0.9999455213546753, 0.9998916983604431, 0.999659538269043, 0.9996089935302734, 0.9979212284088135, 0.9907573461532593, 0.875541090965271, 0.7605410814285278] +COc1ccc2c(OCc3cccc4ccccc34)ccnc2c1; [None, 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'BrCc1cccc2ccccc12', 'BrCc1cccc2ccccc12', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; [None, 'ClCc1cccc2ccccc12', 'ClCc1cccc2ccccc12', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0, 0.9999643564224243, 0.9999418258666992, 0.9999207854270935, 0.9999069571495056, 0.9996500015258789, 0.9993892908096313, 0.9986519813537598] +COc1ccc2c(-c3ccc4c(=O)[nH][nH]c4c3)ccnc2c1; ['COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2ccccc12', 'O=c1[nH][nH]c2ccccc12']; [0.9999057054519653, 0.9136154651641846, 0.7801975607872009] +COc1ccc2c(Oc3ccc(F)cc3F)ccnc2c1; ['COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Fc1ccc(Br)c(F)c1', 'Fc1ccc(Cl)c(F)c1', 'Fc1ccc(F)c(F)c1', 'OB(O)c1ccc(F)cc1F']; [0.9999980926513672, 0.9999971389770508, 0.999995231628418, 0.9999841451644897, 0.9999129772186279, 0.9998993277549744] +COc1ccc2c(-c3cccc(SC)c3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(B3OC(C)(C)C(C)(C)O3)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc(Br)c1']; [0.9999995231628418, 0.9999861717224121, 0.999982476234436, 0.9999535083770752, 0.9999083280563354, 0.9985243082046509, 0.9982467293739319, 0.997933030128479, 0.9978170394897461, 0.9972940683364868, 0.9828428030014038] +COc1ccc2c(CCc3c[nH]c4ccccc34)ccnc2c1; ['BrCCc1c[nH]c2ccccc12']; ['COc1ccc2c(Cl)ccnc2c1']; [0.7706321477890015] +COc1ccc2c(-c3ocnc3-c3ccc(F)cc3)ccnc2c1; ['COc1ccc2c(Br)ccnc2c1']; ['Fc1ccc(-c2cocn2)cc1']; [0.9993913173675537] +COc1ccc2c(NCc3c(F)cccc3Cl)ccnc2c1; ['COc1ccc2c(N)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(N)ccnc2c1', 'COc1ccc2c(N)ccnc2c1', 'COc1ccc2c(Cl)ccnc2c1']; ['O=Cc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'Fc1cccc(Cl)c1CCl', 'NCc1c(F)cccc1Cl']; [0.9999635219573975, 0.9999593496322632, 0.9999222755432129, 0.999454140663147, 0.9991552829742432] +COc1ccc2c(-c3c(-c4ccccc4)noc3C)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(OCc3ccc(F)cc3F)ccnc2c1; [None, 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'COc1ccc2c(Cl)ccnc2c1', 'COc1ccc2c(=O)cc[nH]c2c1', 'COc1ccc2c(O)ccnc2c1', 'COc1ccc2c(Br)ccnc2c1', 'COc1ccc2c(N)ccnc2c1']; [None, 'Fc1ccc(CCl)c(F)c1', 'Fc1ccc(CBr)c(F)c1', 'Fc1ccc(CCl)c(F)c1', 'Fc1ccc(CBr)c(F)c1', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0, 0.9999977350234985, 0.9999839067459106, 0.9999833703041077, 0.9999544620513916, 0.9999210238456726, 0.9999200105667114, 0.999874472618103, 0.9997639656066895, 0.9994471073150635] +COc1ccc2c(-c3cn[nH]c3-c3ccc(Cl)cc3)ccnc2c1; [None]; [None]; [0] +COc1ccc2c(CCc3ccc(F)cc3F)ccnc2c1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cccc3ncccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cccc(O)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2c(Cl)cccc2Cl)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(Cl)c(O)c2)c1C; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c(C)[nH]c(C)c2C)cc1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2n[nH]c3ccccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2c(Cl)ccc3c2OCO3)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(Oc2ccc(F)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(C(N)=O)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(O)cc2F)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(C(N)=O)cc2F)c1C; [None]; [None]; [0] +COc1ccc(F)cc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccnc(N)n2)c1C; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(O)cc2Cl)c1C; [None]; [None]; [0] +COc1cc(F)ccc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3c(C)[nH]c(C)c3C)cc2[nH]1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cn[nH]c2Cl)c1C; [None]; [None]; [0] +COc1cc(-c2c(C)[nH]c(C)c2C)ccc1O; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cccc(Br)c2)c1C; [None]; [None]; [0] +COC(=O)c1ccc(-c2c(C)[nH]c(C)c2C)o1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(C(=O)[O-])cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(-c3ccc(O)cc3O)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc3ccccc3c2)c1C; [None]; [None]; [0] +COc1cc(CCc2c(C)[nH]c(C)c2C)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2c(C)[nH]c(C)c2C)c1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cnn3ncccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(O)cc2O)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cn(C)c3ccccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(COc2ccccc2Cl)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(O)c(F)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2c[nH]c3cnccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccnc(N)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(F)c(Cl)c2)c1C; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2[nH]cnc2-c2ccc(F)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(O)ccc2Cl)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2c[nH]c(C(N)=O)c2)c1C; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cnc(O)c(Cl)c2)c1C; [None]; [None]; [0] +COc1cc(OC)cc(-c2c(C)[nH]c(C)c2C)c1; [None]; [None]; [0] +COc1ccc(-c2c(C)[nH]c(C)c2C)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3c(C)[nH]c(C)c3C)ccc12; [None]; [None]; [0] +COc1cc(CCc2c(C)[nH]c(C)c2C)cc(OC)c1; [None]; [None]; [0] +Cc1nc2ccc(-c3c(C)[nH]c(C)c3C)cc2[nH]1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(NC(N)=O)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2nc3ccccc3s2)c1C; ['Cc1[nH]c(C)c(C=O)c1C']; ['Nc1ccccc1S']; [0.9997624158859253] +CCOc1cccc(-c2c(C)[nH]c(C)c2C)c1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(S(C)(=O)=O)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cnc3[nH]ccc3c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc3c(c2)CC(=O)N3)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c([C@H](C)CC(N)=O)c1C; [None]; [None]; [0] +CNc1nccc(-c2c(C)[nH]c(C)c2C)n1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cncc(O)c2)c1C; [None]; [None]; [0] +CCc1cc(O)ccc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(N(C)c2ccc3c(C)n[nH]c3c2)c1C; [None]; [None]; [0] +Cc1n[nH]c(-c2c(C)[nH]c(C)c2C)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(N(C)c2cccc(Cl)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(C(F)F)n[nH]2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(Cl)c(O)c(Cl)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccncc2Cl)c1C; [None]; [None]; [0] +CCc1sccc1-c1c(C)[nH]c(C)c1C; [None]; [None]; [0] +CNc1nc(-c2c(C)[nH]c(C)c2C)ncc1F; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(O)n3nccc3n2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc3c(c2)CCN3)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(C(=O)[O-])c(C)o2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc3[nH]c(=O)[nH]c3c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2c(N)cnn2C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(Nc2ccncc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(Br)cc2F)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(N(C)c2cccc3[nH]ncc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2[nH]nc3ccc(F)cc23)c1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(C)[nH]c(C)c2C)cc1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(O)cc(Br)c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc(C(=O)NC3CC3)cc2)c1C; [None]; [None]; [0] +Cc1nc2ccc(-c3c(C)[nH]c(C)c3C)cc2o1; [None]; [None]; [0] +Cc1cc(-c2c(C)[nH]c(C)c2C)ccc1C(N)=O; [None]; [None]; [0] +Cc1[nH]c(C)c(CCc2c[nH]c3ccccc23)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cc(F)c(O)c(F)c2)c1C; [None]; [None]; [0] +Cc1cc(-c2c(C)[nH]c(C)c2C)cc(C)c1O; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ccc3c(=O)[nH][nH]c3c2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(OCc2cccc3ccccc23)c1C; [None]; [None]; [0] +CSc1cccc(-c2c(C)[nH]c(C)c2C)c1; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2ocnc2-c2ccc(F)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(Oc2ccc(F)cc2F)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(NCc2c(F)cccc2Cl)c1C; ['Cc1[nH]c(C)c(C=O)c1C']; ['NCc1c(F)cccc1Cl']; [0.999825656414032] +Cc1[nH]c(C)c(-c2c(-c3ccccc3)noc2C)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(-c2cn[nH]c2-c2ccc(Cl)cc2)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(CCc2ccc(F)cc2F)c1C; [None]; [None]; [0] +Cc1[nH]c(C)c(OCc2ccc(F)cc2F)c1C; [None]; [None]; [0] +CCOc1ccccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1coc2cc(O)ccc2c1=O; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9986093044281006] +CNC(=O)c1ccccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +COC(C)(C)CCc1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2coc3cc(O)ccc3c2=O)[nH]1; [None]; [None]; [0] +O=c1c(Cc2cc(F)cc(F)c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2ccnc3ccccc23)coc2cc(O)ccc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CCn1cc(-c2coc3cc(O)ccc3c2=O)cn1; [None]; [None]; [0] +O=c1c(-c2ccccc2OC(F)(F)F)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cccc(C(F)(F)F)c2)coc2cc(O)ccc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1coc2cc(O)ccc2c1=O; ['NC(=O)c1ccccc1B(O)O']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9826966524124146] +O=C([O-])c1ccccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +Cn1cnc2ccc(-c3coc4cc(O)ccc4c3=O)cc2c1=O; [None]; [None]; [0] +O=c1c(-c2cnc(-c3ccccc3)[nH]2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cnn(Cc3ccccc3)c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cnn(CCO)c2)coc2cc(O)ccc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2coc3cc(O)ccc3c2=O)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2coc3cc(O)ccc3c2=O)c1)c1ccccc1; [None]; [None]; [0] +O=c1c(-n2ncc3cccc(F)c3c2=O)coc2cc(O)ccc12; [None]; [None]; [0] +COc1cnc(-c2coc3cc(O)ccc3c2=O)nc1; [None]; [None]; [0] +O=c1c(-c2cc(Cl)ccc2Cl)coc2cc(O)ccc12; [None]; [None]; [0] +Cc1ccc(-c2coc3cc(O)ccc3c2=O)c(Br)c1; [None]; [None]; [0] +CC(C)C(=O)COc1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1c(-c2cnc3ccccn23)coc2cc(O)ccc12; [None]; [None]; [0] +Cc1nc(C)c(-c2coc3cc(O)ccc3c2=O)s1; [None]; [None]; [0] +O=c1c(-c2c(Cl)cccc2Cl)coc2cc(O)ccc12; ['O=c1ccoc2cc(O)ccc12', 'Clc1cccc(Cl)c1I']; ['OB(O)c1c(Cl)cccc1Cl', 'O=c1ccoc2cc(O)ccc12']; [0.9953403472900391, 0.9137645959854126] +Cc1nc(N)sc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1c(-c2cnc3cccnn23)coc2cc(O)ccc12; [None]; [None]; [0] +CNc1nc(C)c(-c2coc3cc(O)ccc3c2=O)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +O=c1c(-c2cccc(Cn3cncn3)c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cccc(Br)c2)coc2cc(O)ccc12; [None]; [None]; [0] +Nc1nccc(-c2coc3cc(O)ccc3c2=O)n1; [None]; [None]; [0] +Cc1c(-c2coc3cc(O)ccc3c2=O)sc(=O)n1C; [None]; [None]; [0] +O=c1c(NCc2cccnc2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(Nc2cccnc2)coc2cc(O)ccc12; ['Nc1cccnc1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9181783199310303] +O=c1c(-n2cnc3ccccc32)coc2cc(O)ccc12; ['O=c1c(Cl)coc2cc(O)ccc12']; ['c1ccc2[nH]cnc2c1']; [0.9982806444168091] +O=c1c(NCCc2c[nH]cn2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cnn3ncccc23)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2ccc3ccccc3c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=C(Nc1coc2cc(O)ccc2c1=O)c1cccs1; [None]; [None]; [0] +O=c1c(-c2c[nH]nc2C(F)(F)F)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(NCCc2ccccc2)coc2cc(O)ccc12; ['NCCc1ccccc1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.824134349822998] +O=c1c(-c2cncc3ccccc23)coc2cc(O)ccc12; ['O=c1c(Cl)coc2cc(O)ccc12']; ['OB(O)c1cncc2ccccc12']; [0.9961543083190918] +O=C([O-])Cc1cccc(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3coc4cc(O)ccc4c3=O)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3coc4cc(O)ccc4c3=O)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3coc4cc(O)ccc4c3=O)cc2CS1(=O)=O; [None]; [None]; [0] +O=c1c(NCc2ccc(Cl)cc2)coc2cc(O)ccc12; [None]; [None]; [0] +Cn1ncc2cc(-c3coc4cc(O)ccc4c3=O)ccc21; [None]; [None]; [0] +O=c1c(-c2ccc(-c3cn[nH]c3)cc2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(NCc2ccccc2F)coc2cc(O)ccc12; ['NCc1ccccc1F']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.992809534072876] +CCCn1cnc(-c2coc3cc(O)ccc3c2=O)n1; [None]; [None]; [0] +CC(C)n1cc(-c2coc3cc(O)ccc3c2=O)nn1; [None]; [None]; [0] +O=c1c(-c2cccc(O)c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cccc(CO)c2)coc2cc(O)ccc12; ['O=c1c(Cl)coc2cc(O)ccc12']; ['OCc1cccc(B(O)O)c1']; [0.998801052570343] +O=c1c(Nc2ccncc2)coc2cc(O)ccc12; [None]; [None]; [0] +COc1cc(-c2coc3cc(O)ccc3c2=O)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1oncc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CSc1nc(-c2coc3cc(O)ccc3c2=O)c[nH]1; [None]; [None]; [0] +O=c1c(-c2csc3ncncc23)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(CCc2c[nH]nn2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cc3ccccc3[nH]2)coc2cc(O)ccc12; [None]; [None]; [0] +N#CCCc1cccc(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +Nc1nc(-c2coc3cc(O)ccc3c2=O)cs1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2coc3cc(O)ccc3c2=O)cc1; ['CCC(N)=O', 'CCC(=O)O', 'CCC(N)=O']; ['O=c1c(-c2ccc(Br)cc2)coc2cc(O)ccc12', 'O=c1c(-c2ccc([N+](=O)[O-])cc2)coc2cc(O)ccc12', 'O=c1c(-c2ccc(Cl)cc2)coc2cc(O)ccc12']; [0.9804342985153198, 0.8418135643005371, 0.7881210446357727] +Nc1ncncc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CCNc1nc2ccc(-c3coc4cc(O)ccc4c3=O)cc2s1; [None]; [None]; [0] +O=c1c(-c2ccc(F)cc2C(F)(F)F)coc2cc(O)ccc12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1c(Oc2ccccn2)coc2cc(O)ccc12; [None]; [None]; [0] +NC(=O)CCCc1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2coc3cc(O)ccc3c2=O)CC1; [None]; [None]; [0] +O=C(Nc1coc2cc(O)ccc2c1=O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2coc3cc(O)ccc3c2=O)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2coc3cc(O)ccc3c2=O)cc1Cl; [None]; [None]; [0] +CCCn1cc(-c2coc3cc(O)ccc3c2=O)cn1; [None]; [None]; [0] +O=c1c(-c2cnn3ccccc23)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1cc(-c2coc3cc(O)ccc3c2=O)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.998733401298523] +CC(C)(COc1coc2cc(O)ccc2c1=O)S(C)(=O)=O; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2coc3cc(O)ccc3c2=O)cc1C(F)(F)F; [None]; [None]; [0] +O=C1CCc2cccc(-c3coc4cc(O)ccc4c3=O)c21; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; [None]; [None]; [0] +C[C@@H](Oc1coc2cc(O)ccc2c1=O)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; [None]; [None]; [0] +CCN(CC)c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +COc1cc(CCc2coc3cc(O)ccc3c2=O)cc(OC)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +COc1ccncc1Nc1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3coc4cc(O)ccc4c3=O)cc12; [None]; [None]; [0] +O=c1c(Nc2cnccc2-c2ccccc2)coc2cc(O)ccc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; [None]; [None]; [0] +O=c1c(-c2cc3c(=O)[nH]cc(Br)c3s2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(Nc2cnc3ccccc3c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2c[nH]c3cnccc23)coc2cc(O)ccc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9777212142944336] +CNS(=O)(=O)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; [None]; [None]; [0] +O=c1c(-c2cnc3[nH]ccc3c2)coc2cc(O)ccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1c(-c2ccc(N3CCOCC3)cc2)coc2cc(O)ccc12; ['C1COCCN1', 'C1COCCN1', 'O=C(ON1CCOCC1)c1ccccc1']; ['O=c1c(-c2ccc(Br)cc2)coc2cc(O)ccc12', 'O=c1c(-c2ccc(Cl)cc2)coc2cc(O)ccc12', 'O=c1c(-c2ccccc2)coc2cc(O)ccc12']; [0.9979739189147949, 0.9641768932342529, 0.9464553594589233] +CC1(c2coc3cc(O)ccc3c2=O)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1coc2cc(O)ccc2c1=O)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; ['CS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9965057373046875] +C[C@H](Nc1coc2cc(O)ccc2c1=O)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1coc2cc(O)ccc2c1=O)C(C)(C)O; [None]; [None]; [0] +Cc1cc(-c2coc3cc(O)ccc3c2=O)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +O=c1c(-n2ccc(CO)n2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2c(F)cccc2Cl)coc2cc(O)ccc12; [None]; [None]; [0] +C[C@H](Nc1coc2cc(O)ccc2c1=O)C(=O)NCC(F)(F)F; [None]; [None]; [0] +O=c1c(-n2cnc(CCO)c2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-n2ncc3c(O)cccc32)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2ccc(-n3cncn3)cc2)coc2cc(O)ccc12; ['O=c1c(-c2ccc(Br)cc2)coc2cc(O)ccc12']; ['c1nc[nH]n1']; [0.9999843835830688] +O=c1c(-n2ncc3ccccc32)coc2cc(O)ccc12; [None]; [None]; [0] +CSc1nc(C)c(-c2coc3cc(O)ccc3c2=O)[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2coc3cc(O)ccc3c2=O)cc1; [None]; [None]; [0] +O=c1c(-c2nc3ccc(O)cc3[nH]2)coc2cc(O)ccc12; [None]; [None]; [0] +COc1ccc(-c2coc3cc(O)ccc3c2=O)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2coc3cc(O)ccc3c2=O)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2coc3cc(O)ccc3c2=O)n1; [None]; [None]; [0] +O=c1c(-c2cn(Cc3ccccc3)nn2)coc2cc(O)ccc12; [None]; [None]; [0] +CCc1cc(-c2coc3cc(O)ccc3c2=O)nc(N)n1; [None]; [None]; [0] +O=c1c(-c2nncn2C2CC2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(Cc2nnc3ccc(-c4ccccc4)nn23)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(CS(=O)(=O)NCc2ccccn2)coc2cc(O)ccc12; [None]; [None]; [0] +O=C(CCc1coc2cc(O)ccc2c1=O)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2coc3cc(O)ccc3c2=O)s1; [None]; [None]; [0] +CCCCc1cc(-c2coc3cc(O)ccc3c2=O)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2coc3cc(O)ccc3c2=O)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2coc3cc(O)ccc3c2=O)c(F)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2coc3cc(O)ccc3c2=O)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2coc3cc(O)ccc3c2=O)CC1; [None]; [None]; [0] +O=c1c(-c2nc3ccccc3s2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2cccc3ccsc23)coc2cc(O)ccc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3coc4cc(O)ccc4c3=O)nc2NC1=O; [None]; [None]; [0] +Nc1cncc(-c2coc3cc(O)ccc3c2=O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3coc4cc(O)ccc4c3=O)c2)cc1; [None]; [None]; [0] +O=c1c(-c2cccc3nnsc23)coc2cc(O)ccc12; [None]; [None]; [0] +Nc1nc(-c2coc3cc(O)ccc3c2=O)nc2ccccc12; [None]; [None]; [0] +O=c1c(-c2ncc3ccccc3n2)coc2cc(O)ccc12; [None]; [None]; [0] +O=c1c(-c2c[nH]c3cccnc23)coc2cc(O)ccc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2coc3cc(O)ccc3c2=O)[nH]1; [None]; [None]; [0] +O=c1c(-c2cn(CCO)cn2)coc2cc(O)ccc12; [None]; [None]; [0] +COc1ccc(Oc2coc3cc(O)ccc3c2=O)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.8502520322799683] +O=c1c(-c2ncc3cc[nH]c3n2)coc2cc(O)ccc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +COc1ccc(OC)c(-c2coc3cc(O)ccc3c2=O)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2coc3cc(O)ccc3c2=O)c1; ['CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.9994641542434692] +O=c1c(N2CC=C(c3c[nH]c4ccccc34)CC2)coc2cc(O)ccc12; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['O=c1c(Cl)coc2cc(O)ccc12']; [0.97294020652771] +COc1ncccc1-c1coc2cc(O)ccc2c1=O; [None]; [None]; [0] +O=c1c(N2CCC(c3nc4ccccc4[nH]3)CC2)coc2cc(O)ccc12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2coc3cc(O)ccc3c2=O)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2coc3cc(O)ccc3c2=O)cnn1; [None]; [None]; [0] +COc1cc(C=Cc2cc(O)cc(O)c2)ccc1O; ['C=Cc1ccc(O)c(OC)c1', 'C=Cc1ccc(O)c(OC)c1', 'C[Si](C)(C)C=[N+]=[N-]', None, 'COc1cc(C=O)ccc1O']; ['OB(O)c1cc(O)cc(O)c1', 'Oc1cc(O)cc(Br)c1', 'Oc1cc(O)cc(C=Cc2ccc(O)c(O)c2)c1', None, 'O=C(O)Cc1cc(O)cc(O)c1']; [0.9980391263961792, 0.9857216477394104, 0.9708722829818726, 0, 0.8025180101394653] +O=C(Nc1cccc(-c2coc3cc(O)ccc3c2=O)c1)C1CCNCC1; [None]; [None]; [0] +O=C1Nc2ccc(Cl)cc2C1=Cc1cc(O)cc(O)c1; [None]; [None]; [0] +Oc1ccc(C=Cc2cc(O)cc(O)c2)cc1; [None]; [None]; [0] +Oc1cc(O)cc(C=Cc2ccc(O)cc2O)c1; [None]; [None]; [0] +CCOc1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(Cc3cc(F)cc(F)c3)nc2c1; [None]; [None]; [0] +COC(C)(C)CCc1nc2cc(O)ccc2s1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2nc3cc(O)ccc3s2)[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(-c3ccnc4ccccc34)nc2c1; ['Brc1ccnc2ccccc12', 'Ic1ccnc2ccccc12']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9715076088905334, 0.963654637336731] +Oc1ccc2sc(-c3ccccc3OC(F)(F)F)nc2c1; ['FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'O=Cc1ccccc1OC(F)(F)F']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9948742389678955, 0.9806267023086548, 0.8724148273468018] +CCn1cc(-c2nc3cc(O)ccc3s2)cn1; [None]; [None]; [0] +Oc1ccc2sc(-c3cccc(C(F)(F)F)c3)nc2c1; ['FC(F)(F)c1cccc(I)c1', 'O=C(O)Cc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'C=Cc1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1']; ['Oc1ccc2scnc2c1', 'O=[N+]([O-])c1cc(O)ccc1Cl', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9994503259658813, 0.9989143013954163, 0.9957399964332581, 0.919960618019104, 0.7814748287200928] +NC(=O)c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cn1cnc2ccc(-c3nc4cc(O)ccc4s3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Oc1ccc2scnc2c1']; [0.9950286149978638] +O=C([O-])c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(-c3cnn(Cc4ccccc4)c3)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3cnc(-c4ccccc4)[nH]3)nc2c1; [None]; [None]; [0] +OCCn1cc(-c2nc3cc(O)ccc3s2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc3cc(O)ccc3s2)cs1; [None]; [None]; [0] +Oc1ccc2sc(-c3cc(Cl)ccc3Cl)nc2c1; ['Clc1ccc(Cl)c(Br)c1']; ['Oc1ccc2scnc2c1']; [0.9910909533500671] +Cc1ccc(-c2nc3cc(O)ccc3s2)c(Br)c1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cc(O)ccc3s2)c1)c1ccccc1; [None]; [None]; [0] +COc1cnc(-c2nc3cc(O)ccc3s2)nc1; [None]; [None]; [0] +CC(C)C(=O)COc1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc3cc(O)ccc3s2)s1; [None]; [None]; [0] +Oc1ccc2sc(-c3cnc4ccccn34)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3c(Cl)cccc3Cl)nc2c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2nc3cc(O)ccc3s2)c1; ['Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9914282560348511, 0.9524440169334412] +Oc1ccc2sc(-c3cccc(Br)c3)nc2c1; ['O=C(O)Cc1cccc(Br)c1', 'Brc1cccc(I)c1', 'O=Cc1cccc(Br)c1', 'C=Cc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['O=[N+]([O-])c1cc(O)ccc1Cl', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9998798370361328, 0.9775537252426147, 0.9424256682395935, 0.9087950587272644, 0.7889622449874878] +Oc1ccc2sc(NCc3cccnc3)nc2c1; ['NCc1cccnc1', 'Nc1nc2cc(O)ccc2s1', 'Nc1nc2cc(O)ccc2s1', 'BrCc1cccnc1']; ['Oc1ccc2sc(Cl)nc2c1', 'OCc1cccnc1', 'O=Cc1cccnc1', 'Nc1nc2cc(O)ccc2s1']; [0.9977889060974121, 0.9969465136528015, 0.98615562915802, 0.9048913717269897] +CNc1nc(C)c(-c2nc3cc(O)ccc3s2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(-c3cccc(Cn4cncn4)c3)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3cnc4cccnn34)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(Nc3cccnc3)nc2c1; ['Nc1cc(O)ccc1Br', 'Nc1cccnc1', 'Clc1cccnc1']; ['S=C=Nc1cccnc1', 'Oc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(O)ccc2s1']; [0.9999006986618042, 0.9994782209396362, 0.9784258604049683] +O=C(Nc1nc2cc(O)ccc2s1)c1cccs1; ['Nc1nc2cc(O)ccc2s1', 'Nc1nc2cc(O)ccc2s1']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1']; [0.9999698400497437, 0.9998600482940674] +Oc1ccc2sc(-c3ccc4ccccc4c3)nc2c1; ['Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9945597648620605, 0.9498777389526367] +Oc1ccc2sc(NCCc3c[nH]cn3)nc2c1; ['NCCc1c[nH]cn1']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9950779676437378] +Oc1ccc2sc(-c3cnn4ncccc34)nc2c1; [None]; [None]; [0] +Cc1c(-c2nc3cc(O)ccc3s2)sc(=O)n1C; [None]; [None]; [0] +Oc1ccc2sc(-c3cncc4ccccc34)nc2c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1cncc2ccccc12', 'Brc1cncc2ccccc12']; ['Oc1ccc2sc(Cl)nc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9999926090240479, 0.999085545539856, 0.9700644016265869] +Oc1ccc2sc(-c3c[nH]nc3C(F)(F)F)nc2c1; [None]; [None]; [0] +Nc1nccc(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +Oc1ccc2sc(-n3cnc4ccccc43)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(NCCc3ccccc3)nc2c1; ['NCCc1ccccc1']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9369878172874451] +O=C([O-])Cc1cccc(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cn1ncc2cc(-c3nc4cc(O)ccc4s3)ccc21; [None]; [None]; [0] +Oc1ccc2sc(NCc3ccc(Cl)cc3)nc2c1; ['Nc1nc2cc(O)ccc2s1', 'NCc1ccc(Cl)cc1', 'Nc1nc2cc(O)ccc2s1']; ['OCc1ccc(Cl)cc1', 'Oc1ccc2sc(Cl)nc2c1', 'O=Cc1ccc(Cl)cc1']; [0.9978477954864502, 0.9907883405685425, 0.7746999263763428] +Nc1[nH]nc2cc(-c3nc4cc(O)ccc4s3)ccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3nc4cc(O)ccc4s3)cc2)cn1; [None]; [None]; [0] +Oc1ccc2sc(-c3ccc(-c4cn[nH]c4)cc3)nc2c1; [None]; [None]; [0] +CN1c2ccc(-c3nc4cc(O)ccc4s3)cc2CS1(=O)=O; [None]; [None]; [0] +OCc1cccc(-c2nc3cc(O)ccc3s2)c1; ['OCc1cccc(I)c1']; ['Oc1ccc2scnc2c1']; [0.9912760257720947] +Oc1ccc2sc(NCc3ccccc3F)nc2c1; ['NCc1ccccc1F', 'Nc1nc2cc(O)ccc2s1', 'Fc1ccccc1CBr', 'Nc1nc2cc(O)ccc2s1']; ['Oc1ccc2sc(Cl)nc2c1', 'OCc1ccccc1F', 'Nc1nc2cc(O)ccc2s1', 'O=Cc1ccccc1F']; [0.9999780058860779, 0.9998117685317993, 0.9997050166130066, 0.9891836643218994] +Oc1ccc2sc(Nc3ccncc3)nc2c1; ['Nc1ccncc1', 'Nc1cc(O)ccc1Br', 'Clc1ccncc1', 'Nc1cc(O)ccc1O']; ['Oc1ccc2sc(Cl)nc2c1', 'S=C=Nc1ccncc1', 'Nc1nc2cc(O)ccc2s1', 'S=C=Nc1ccncc1']; [0.9999437928199768, 0.9984071254730225, 0.99506676197052, 0.9735224843025208] +Oc1cccc(-c2nc3cc(O)ccc3s2)c1; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1']; [0.98044353723526, 0.8010485768318176] +CCCn1cnc(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +Oc1ccc2sc(-c3csc4ncncc34)nc2c1; ['Brc1csc2ncncc12']; ['Oc1ccc2scnc2c1']; [0.9793977737426758] +CC(C)n1cc(-c2nc3cc(O)ccc3s2)nn1; [None]; [None]; [0] +COc1cc(-c2nc3cc(O)ccc3s2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1oncc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(-c3cc4ccccc4[nH]3)nc2c1; [None]; [None]; [0] +CSc1nc(-c2nc3cc(O)ccc3s2)c[nH]1; [None]; [None]; [0] +Oc1ccc2sc(CCc3c[nH]nn3)nc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +Oc1ccc2sc(-c3ccc(F)cc3C(F)(F)F)nc2c1; ['Fc1ccc(Br)c(C(F)(F)F)c1']; ['Oc1ccc2scnc2c1']; [0.9724194407463074] +Nc1nc(-c2nc3cc(O)ccc3s2)cs1; [None]; [None]; [0] +Oc1ccc2sc(Oc3ccccn3)nc2c1; ['Oc1ccc2sc(Cl)nc2c1']; ['Oc1ccccn1']; [0.8983817100524902] +CCC(=O)Nc1ccc(-c2nc3cc(O)ccc3s2)cc1; [None]; [None]; [0] +Nc1ncncc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +O=C(Nc1nc2cc(O)ccc2s1)c1c(Cl)cccc1Cl; ['Nc1nc2cc(O)ccc2s1', 'Nc1nc2cc(O)ccc2s1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9999345541000366, 0.9997565746307373] +NC(=O)CCCc1nc2cc(O)ccc2s1; [None]; [None]; [0] +Cn1cc(-c2nc3cc(O)ccc3s2)c2ccccc21; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc3cc(O)ccc3s2)c1; ['CC(=O)Nc1cccc(Br)c1']; ['Oc1ccc2scnc2c1']; [0.9676238298416138] +CCNc1nc2ccc(-c3nc4cc(O)ccc4s3)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2nc3cc(O)ccc3s2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2sc(Cl)nc2c1']; [0.9908044338226318, 0.9883511662483215] +CC(C)(O)CC(=O)NCCc1nc2cc(O)ccc2s1; [None]; [None]; [0] +CCCn1cc(-c2nc3cc(O)ccc3s2)cn1; ['CCCn1cc(I)cn1']; ['Oc1ccc2scnc2c1']; [0.9901084899902344] +COc1ccc(-c2nc3cc(O)ccc3s2)cc1Cl; ['COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9988401532173157, 0.9956384301185608] +Oc1ccc2sc(-c3cnn4ccccc34)nc2c1; ['Ic1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9985650777816772, 0.9613375663757324] +CC(C)(COc1nc2cc(O)ccc2s1)S(C)(=O)=O; [None]; [None]; [0] +O=c1cc(-c2nc3cc(O)ccc3s2)cc[nH]1; ['O=c1cc(Br)cc[nH]1']; ['Oc1ccc2scnc2c1']; [0.8876843452453613] +[NH3+]Cc1ccc(-c2nc3cc(O)ccc3s2)cc1C(F)(F)F; [None]; [None]; [0] +COc1cc(CCc2nc3cc(O)ccc3s2)cc(OC)c1; [None]; [None]; [0] +O=C1CCc2cccc(-c3nc4cc(O)ccc4s3)c21; ['O=C1CCc2cccc(Br)c21']; ['Oc1ccc2scnc2c1']; [0.9889851212501526] +C[S@](=O)c1ccc(-c2nc3cc(O)ccc3s2)cc1; [None]; [None]; [0] +COc1ccncc1Nc1nc2cc(O)ccc2s1; ['COc1ccncc1N', 'COc1ccncc1Br']; ['Oc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(O)ccc2s1']; [0.9999902248382568, 0.9999152421951294] +CCNS(=O)(=O)c1ccccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CCN(CC)c1nc2cc(O)ccc2s1; ['CCNCC']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9746673107147217] +C[C@@H](Oc1nc2cc(O)ccc2s1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2nc3cc(O)ccc3s2)cc1; [None]; [None]; [0] +Oc1ccc2sc(Nc3cnccc3-c3ccccc3)nc2c1; ['Nc1cnccc1-c1ccccc1', 'Brc1cnccc1-c1ccccc1']; ['Oc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(O)ccc2s1']; [0.9999674558639526, 0.9991841316223145] +CC(C)Oc1cncc(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +Oc1ccc2sc(Nc3cnc4ccccc4c3)nc2c1; ['Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Oc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(O)ccc2s1']; [0.9999704360961914, 0.9939889907836914] +O=c1[nH]cc(Br)c2sc(-c3nc4cc(O)ccc4s3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1nc2cc(O)ccc2s1; ['COc1cccc(F)c1I']; ['Oc1ccc2scnc2c1']; [0.9998837113380432] +CC(C)(C)c1ccc(-c2nc3cc(O)ccc3s2)cc1; ['CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9846200346946716, 0.9772548675537109] +O=c1[nH]ccc2oc(-c3nc4cc(O)ccc4s3)cc12; [None]; [None]; [0] +Oc1ccc2sc(-c3c[nH]c4cnccc34)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3cnc4[nH]ccc4c3)nc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc3cc(O)ccc3s2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3cc(O)ccc3s2)cc1; [None]; [None]; [0] +Oc1ccc2sc(-c3ccc(N4CCOCC4)cc3)nc2c1; ['Brc1ccc(N2CCOCC2)cc1']; ['Oc1ccc2scnc2c1']; [0.9987355470657349] +CS(=O)(=O)c1ccc(-c2nc3cc(O)ccc3s2)cc1; ['CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9817780256271362, 0.9631215929985046] +CN(c1nc2cc(O)ccc2s1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1nc2cc(O)ccc2s1)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9928029775619507] +C[C@@H](Nc1nc2cc(O)ccc2s1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9928029775619507] +OCc1ccn(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +Oc1ccc2sc(-c3c(F)cccc3Cl)nc2c1; [None]; [None]; [0] +CC1(c2nc3cc(O)ccc3s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cc(-c2nc3cc(O)ccc3s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1nc2cc(O)ccc2s1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCCc1cn(-c2nc3cc(O)ccc3s2)cn1; [None]; [None]; [0] +Oc1ccc2sc(-c3ccc(-n4cncn4)cc3)nc2c1; [None]; [None]; [0] +COc1ccc(-c2nc3cc(O)ccc3s2)c(OC)c1; ['COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(C=O)c(OC)c1']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9988080263137817, 0.9907678365707397, 0.7574633359909058] +Oc1ccc2sc(-n3ncc4c(O)cccc43)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-n3ncc4ccccc43)nc2c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2nc3cc(O)ccc3s2)cc1; ['O=C(c1ccccc1)c1ccc(Br)cc1']; ['Oc1ccc2scnc2c1']; [0.9949802160263062] +Oc1ccc2sc(-c3nc4ccc(O)cc4[nH]3)nc2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc3cc(O)ccc3s2)CC1; [None]; [None]; [0] +CSc1nc(C)c(-c2nc3cc(O)ccc3s2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +Oc1ccc2sc(-c3nncn3C3CC3)nc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +Oc1ccc2sc(Cc3nnc4ccc(-c5ccccc5)nn34)nc2c1; [None]; [None]; [0] +O=C(CCc1nc2cc(O)ccc2s1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1nc2cc(O)ccc2s1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2nc3cc(O)ccc3s2)nc(N)n1; [None]; [None]; [0] +Oc1ccc2sc(-c3cn(Cc4ccccc4)nn3)nc2c1; [None]; [None]; [0] +Nc1nnc(-c2nc3cc(O)ccc3s2)s1; [None]; [None]; [0] +CCCCc1cc(-c2nc3cc(O)ccc3s2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cc(O)ccc3s2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2nc3cc(O)ccc3s2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc3cc(O)ccc3s2)CC1; [None]; [None]; [0] +Oc1ccc2sc(-c3nc4ccccc4s3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3nc4cc(O)ccc4s3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc4cc(O)ccc4s3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2nc3cc(O)ccc3s2)n1; [None]; [None]; [0] +Oc1ccc2sc(-c3cccc4ccsc34)nc2c1; ['Brc1cccc2ccsc12', 'O=Cc1cccc2ccsc12']; ['Oc1ccc2scnc2c1', 'Oc1ccc2scnc2c1']; [0.9945579767227173, 0.9642626047134399] +Oc1ccc2sc(-c3cccc4nnsc34)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3c[nH]c4cccnc34)nc2c1; ['Brc1c[nH]c2cccnc12']; ['Oc1ccc2scnc2c1']; [0.9604688882827759] +COc1ccc(C#N)cc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nc3cc(O)ccc3s2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2nc3cc(O)ccc3s2)nc2ccccc12; [None]; [None]; [0] +Oc1ccc2sc(-c3ncc4ccccc4n3)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(-c3ncc4cc[nH]c4n3)nc2c1; [None]; [None]; [0] +OCCn1cnc(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +COc1ccc(Oc2nc3cc(O)ccc3s2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc3cc(O)ccc3s2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +COc1ncccc1-c1nc2cc(O)ccc2s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc3cc(O)ccc3s2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2nc3cc(O)ccc3s2)cnn1; [None]; [None]; [0] +Oc1ccc2sc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc2c1; [None]; [None]; [0] +Oc1ccc2sc(N3CC=C(c4c[nH]c5ccccc45)CC3)nc2c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Oc1ccc2sc(Cl)nc2c1']; [0.9982510805130005] +COc1ccc2sc(CCC(C)(C)OC)nc2c1; ['COC(C)(C)CBr']; ['COc1ccc2sc(C)nc2c1']; [0.9667795300483704] +CNC(=O)c1ccccc1-c1nc2cc(OC)ccc2s1; [None]; [None]; [0] +CCOc1ccccc1-c1nc2cc(OC)ccc2s1; ['CCOc1ccccc1C=O', 'CCOc1ccccc1C=O', 'CCOc1ccccc1CN', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1C=O']; ['COc1ccc(I)c(N)c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; [0.9999987483024597, 0.9999949932098389, 0.9999883770942688, 0.9997669458389282, 0.9885326623916626, 0.8623429536819458] +CCn1cc(-c2nc3cc(OC)ccc3s2)cn1; ['CCn1cc(C(=O)O)cn1']; ['COc1ccc2scnc2c1']; [0.9958970546722412] +COc1ccc2sc(Cc3cc(F)cc(F)c3)nc2c1; ['COc1ccc2sc(C)nc2c1']; ['Fc1cc(F)cc(Br)c1']; [0.9994674921035767] +COc1ccc2sc(-c3ccnc4ccccc34)nc2c1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'Brc1ccnc2ccccc12', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'O=Cc1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'NCc1ccnc2ccccc12', 'Cc1ccnc2ccccc12', 'COc1ccc2scnc2c1', 'Ic1ccnc2ccccc12']; [0.9999890327453613, 0.9999319314956665, 0.9998906850814819, 0.999267578125, 0.9980494976043701, 0.9957304000854492, 0.9947282075881958, 0.9942309856414795] +O=C(Nc1cccc(-c2nc3cc(O)ccc3s2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc2sc(-c3ccccc3C(=O)[O-])nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccccc3S(=O)(=O)C(C)C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(C(F)(F)F)c3)nc2c1; ['COc1ccc(I)c(N)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'C=Cc1cccc(C(F)(F)F)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['O=Cc1cccc(C(F)(F)F)c1', 'COc1ccc2sc(Br)nc2c1', 'O=Cc1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'NCc1cccc(C(F)(F)F)c1', 'NCc1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'O=C(O)Cc1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'O=C(O)c1cccc(C(F)(F)F)c1', 'COc1ccc2scnc2c1', 'FC(F)(F)c1ccccc1', 'O=S([O-])c1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1', 'NCc1cccc(C(F)(F)F)c1']; [1.0, 0.9999995231628418, 0.9999919533729553, 0.9999902844429016, 0.9999873042106628, 0.9999621510505676, 0.9999422430992126, 0.9998956918716431, 0.9998875260353088, 0.9998296499252319, 0.9995594024658203, 0.999557614326477, 0.993269681930542, 0.9848607778549194, 0.9681671261787415, 0.9260902404785156, 0.9031400084495544, 0.7546380162239075] +COc1ccc2sc(-c3cnn(Cc4ccccc4)c3)nc2c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'Brc1cnn(Cc2ccccc2)c1']; ['COc1ccc2sc(Br)nc2c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Ic1cnn(Cc2ccccc2)c1', 'COc1ccc2scnc2c1']; [0.9999995827674866, 0.9999056458473206, 0.999851405620575, 0.9997700452804565, 0.9996896982192993] +COc1ccc2sc(-c3ccccc3-c3nnc(C)[nH]3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccccc3C(N)=O)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['NC(=O)c1ccccc1B(O)O']; [0.9997690320014954] +COc1ccc2sc(-c3ccccc3P(C)(C)=O)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccccc3OC(F)(F)F)nc2c1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'O=Cc1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'O=Cc1ccccc1OC(F)(F)F', 'NCc1ccccc1OC(F)(F)F', 'NCc1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1Br', 'O=C(O)Cc1ccccc1OC(F)(F)F', 'NCc1ccccc1OC(F)(F)F']; [0.9999991655349731, 0.9999983310699463, 0.9999898076057434, 0.9999672174453735, 0.9999446272850037, 0.99894118309021, 0.9984017610549927, 0.9983533620834351, 0.9947344064712524, 0.9901432394981384, 0.8715583086013794] +COc1ccc2sc(-c3cccc(NC(=O)c4ccccc4)c3)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999681711196899] +COc1ccc2sc(-c3csc(C(C)(C)C)n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc4ncn(C)c(=O)c4c3)nc2c1; ['COc1ccc2scnc2c1', 'COc1ccc2sc(Br)nc2c1']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9996564388275146, 0.998329222202301] +COc1ccc2sc(-c3cnn(CCO)c3)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['OCCn1cc(B(O)O)cn1']; [0.9997224807739258] +COc1ccc2sc(-c3cnc(-c4ccccc4)[nH]3)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['c1ccc(-c2ncc[nH]2)cc1']; [0.9865086674690247] +COc1ccc2sc(-c3cc(Cl)ccc3Cl)nc2c1; ['COc1ccc(I)c(N)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['O=Cc1cc(Cl)ccc1Cl', 'COc1ccc2sc(Br)nc2c1', 'OB(O)c1cc(Cl)ccc1Cl', 'NCc1cc(Cl)ccc1Cl', 'O=C(O)Cc1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1']; [0.9999973773956299, 0.9999951124191284, 0.9999337792396545, 0.9999096393585205, 0.9994962215423584, 0.9985019564628601, 0.9979093074798584] +COc1ccc2sc(-c3ccc(C)cc3Br)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; ['Cc1ccc(C=O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1', 'Cc1ccc(CC(=O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; [0.9999717473983765, 0.9999381899833679, 0.9996968507766724, 0.9992344975471497, 0.9989186525344849, 0.988322377204895] +COc1ccc2sc(OCC(=O)C(C)C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3c(C)nc4ccccn34)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1']; [0.9995646476745605, 0.9968463778495789] +CNc1nc(C)c(-c2nc3cc(OC)ccc3s2)s1; [None]; [None]; [0] +COc1ccc2sc(-c3cnc4ccccn34)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(Cn4cncn4)c3)nc2c1; ['COc1ccc2scnc2c1']; ['O=Cc1cccc(Cn2cncn2)c1']; [0.9723920822143555] +COc1ccc2sc(-c3sc(N)nc3C)nc2c1; [None]; [None]; [0] +COc1cnc(-c2nc3cc(OC)ccc3s2)nc1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(Br)c3)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'Brc1cccc(I)c1', 'COc1ccc2scnc2c1', 'C=Cc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'COc1ccc2scnc2c1']; ['O=Cc1cccc(Br)c1', 'O=Cc1cccc(Br)c1', 'NCc1cccc(Br)c1', 'O=C(O)Cc1cccc(Br)c1', 'COc1ccc2sc(Br)nc2c1', 'OB(O)c1cccc(Br)c1', 'NCc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'COc1ccc2scnc2c1', 'O=Cc1cccc(Br)c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'O=C(O)Cc1cccc(Br)c1']; [0.9999991655349731, 0.9999955892562866, 0.9999697208404541, 0.9999579191207886, 0.9999440908432007, 0.9998465776443481, 0.9998086094856262, 0.9988580942153931, 0.9974040985107422, 0.995269775390625, 0.9546355605125427, 0.9347906112670898, 0.9034967422485352, 0.8236021399497986] +COc1ccc2sc(-n3ncc4cccc(F)c4c3=O)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3c(Cl)cccc3Cl)nc2c1; ['COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'C=Cc1c(Cl)cccc1Cl', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['O=Cc1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'NCc1c(Cl)cccc1Cl', 'O=C(O)Cc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'OB(O)c1c(Cl)cccc1Cl', 'NCc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'COc1ccc2scnc2c1', 'Clc1cccc(Cl)c1', 'OCc1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1', 'O=C(O)Cc1c(Cl)cccc1Cl', 'NCc1c(Cl)cccc1Cl']; [0.9999997615814209, 0.9999992847442627, 0.9999862909317017, 0.9999545812606812, 0.9998800754547119, 0.9997972249984741, 0.9997948408126831, 0.9979712963104248, 0.9976843595504761, 0.9931155443191528, 0.9898196458816528, 0.9797545671463013, 0.9770434498786926, 0.9296778440475464, 0.9233894348144531, 0.7882716655731201, 0.7707093954086304] +COc1ccc2sc(NCc3cccnc3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1', 'BrCc1cccnc1', 'COc1ccc2sc(N)nc2c1']; ['NCc1cccnc1', 'S=C=NCc1cccnc1', 'NCc1cccnc1', 'OCc1cccnc1', 'COc1ccc2sc(N)nc2c1', 'O=Cc1cccnc1']; [0.9999887347221375, 0.999947190284729, 0.9999433159828186, 0.999465823173523, 0.995335578918457, 0.9945143461227417] +COc1ccc2sc(-c3sc(C)nc3C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cnc4cccnn34)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Nc3cccnc3)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc(O)c(N)c1', 'Brc1cccnc1']; ['S=C=Nc1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1', 'Clc1cccnc1', 'S=C=Nc1cccnc1', 'COc1ccc2sc(N)nc2c1']; [0.9999805688858032, 0.9999245405197144, 0.9995983242988586, 0.9975814819335938, 0.9963977336883545, 0.9933589696884155] +COc1ccc2sc(-c3cnn4ncccc34)nc2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999972581863403, 0.9938995838165283] +COc1ccc2sc(-c3cc(C)ccc3Cl)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['Cc1ccc(Cl)c(CN)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(CN)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1']; [0.9999971389770508, 0.9999881982803345, 0.9999876618385315, 0.9998475313186646, 0.999807596206665, 0.9990102052688599, 0.9969070553779602, 0.9950400590896606] +COc1ccc2sc(NC(=O)c3cccs3)nc2c1; ['COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999840259552002, 0.9999819993972778] +COc1ccc2sc(NCCc3c[nH]cn3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1']; [0.9999798536300659, 0.999924898147583, 0.9955699443817139] +COc1ccc2sc(-c3ccc4ccccc4c3)nc2c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'Brc1ccc2ccccc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'C=Cc1ccc2ccccc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'OB(O)c1ccc2ccccc2c1', 'O=Cc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'O=Cc1ccc2ccccc2c1', 'NCc1ccc2ccccc2c1', 'NCc1ccc2ccccc2c1', 'O=C(O)Cc1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'COc1ccc2scnc2c1', 'c1ccc2ccccc2c1', 'NCc1ccc2ccccc2c1', 'OCc1ccc2ccccc2c1', 'COc1ccc2scnc2c1', 'O=C(O)Cc1ccc2ccccc2c1', 'O=Cc1ccc2ccccc2c1', 'O=C(O)c1ccc2ccccc2c1', 'NNS(=O)(=O)c1ccc2ccccc2c1']; [0.9999993443489075, 0.9999979138374329, 0.9999974370002747, 0.9999966621398926, 0.999989926815033, 0.9999862909317017, 0.999985933303833, 0.9999836683273315, 0.9999183416366577, 0.9999173879623413, 0.9988112449645996, 0.9967573881149292, 0.9949053525924683, 0.9679835438728333, 0.9616416096687317, 0.9324774742126465, 0.9320617914199829, 0.8583041429519653, 0.8546618223190308, 0.7796953916549683] +COc1ccc2sc(-c3c[nH]nc3C(F)(F)F)nc2c1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'FC(F)(F)c1n[nH]cc1Br']; [0.9999986886978149, 0.9994832277297974] +COc1ccc2sc(-c3cccc(F)c3C(N)=O)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccnc(N)n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(NCCc3ccccc3)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['S=C=NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'ClCCc1ccccc1', 'OCCc1ccccc1']; [0.999911904335022, 0.9997173547744751, 0.9987128376960754, 0.9516823291778564, 0.9201819896697998] +COc1ccc2sc(-c3ccc4c(N)[nH]nc4c3)nc2c1; ['COc1ccc2scnc2c1']; ['Nc1[nH]nc2cc(Br)ccc12']; [0.9993312358856201] +COc1ccc2sc(-c3sc(=O)n(C)c3C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-n3cnc4ccccc43)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cncc4ccccc34)nc2c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'COc1ccc(I)c(N)c1', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'Brc1cncc2ccccc12', 'Brc1cncc2ccccc12']; ['COc1ccc2sc(Cl)nc2c1', 'O=Cc1cncc2ccccc12', 'COc1ccc2sc(Br)nc2c1', 'Ic1cncc2ccccc12', 'NCc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'NCc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Ic1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999986290931702, 0.9999972581863403, 0.9999958276748657, 0.9999836087226868, 0.9999786019325256, 0.9996341466903687, 0.9994715452194214, 0.9994368553161621, 0.9990826845169067, 0.9838675260543823, 0.9808881282806396, 0.9797227382659912] +COc1ccc2sc(NCc3ccc(Cl)cc3)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['S=C=NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1']; [0.9999489784240723, 0.9995768070220947, 0.9991710186004639, 0.9972935914993286, 0.9545508623123169] +COc1ccc2sc(-c3cccc(CC(=O)[O-])c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(-c4cnn(C)c4)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc4c(c3)CS(=O)(=O)N4C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(CO)c3)nc2c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(I)c1']; [0.9999964833259583, 0.9987645149230957, 0.9872719645500183, 0.986884355545044] +COc1ccc2sc(-c3ccc4c(cnn4C)c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(-c4cn[nH]c4)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Nc3ccncc3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(Br)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'Brc1ccncc1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc(O)c(N)c1']; ['Nc1ccncc1', 'S=C=Nc1ccncc1', 'S=C=Nc1ccncc1', 'Nc1ccncc1', 'COc1ccc2sc(N)nc2c1', 'Clc1ccncc1', 'S=C=Nc1ccncc1']; [0.9999819397926331, 0.9999775290489197, 0.999971866607666, 0.9999696016311646, 0.9995672702789307, 0.9994350671768188, 0.8784551620483398] +COc1ccc2sc(NCc3ccccc3F)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'OCc1ccccc1F', 'O=Cc1ccccc1F']; [0.9999983310699463, 0.999992847442627, 0.9999501705169678, 0.9998177289962769, 0.9997633695602417, 0.9956527948379517] +COc1ccc2sc(-c3cccc(O)c3)nc2c1; ['COc1ccc(I)c(N)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'C=Cc1cccc(O)c1']; ['O=Cc1cccc(O)c1', 'COc1ccc2sc(Br)nc2c1', 'O=C(O)Cc1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'COc1ccc2scnc2c1']; [0.9999997615814209, 0.9999921321868896, 0.9999520778656006, 0.9987084865570068, 0.996970534324646, 0.9757375121116638, 0.8591347932815552] +COc1ccc2sc(-c3c[nH]c(SC)n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cc4ccccc4[nH]3)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['c1ccc2[nH]ccc2c1']; [0.9997938871383667] +CCCn1cnc(-c2nc3cc(OC)ccc3s2)n1; [None]; [None]; [0] +COc1ccc2sc(-c3csc4ncncc34)nc2c1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9993748068809509, 0.9882768392562866] +COc1ccc2sc(-c3cncnc3N)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cn(C(C)C)nn3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(C(=O)[O-])c(OC)c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(CCC#N)c3)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; [0.9999150037765503, 0.9925423860549927] +COc1ccc2sc(-c3csc(N)n3)nc2c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2nc3cc(OC)ccc3s2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Cl', 'CCC(=O)O', 'CCC(=O)Br', None, 'CCC(=O)OC(=O)CC', 'CCC(=O)N1CCSC1=S', 'CCOC(=O)CC', 'CCC(N)=O', 'CCC(=O)OC']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', None, 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1']; [0.9999988079071045, 0.9999850392341614, 0.9999352693557739, 0.9999349117279053, 0, 0.999642550945282, 0.9994152784347534, 0.9990958571434021, 0.9980615377426147, 0.9975564479827881] +COc1ccc2sc(CCc3c[nH]nn3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Oc3ccccn3)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9996261596679688, 0.9994848966598511] +COc1ccc2sc(-c3cnoc3C(C)C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(NC(=O)c3c(Cl)cccc3Cl)nc2c1; ['COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9999719858169556, 0.9998862743377686] +COc1ccc2sc(-c3ccc(F)cc3C(F)(F)F)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['O=Cc1ccc(F)cc1C(F)(F)F', 'NCc1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'NCc1ccc(F)cc1C(F)(F)F', 'O=C(O)Cc1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'O=Cc1ccc(F)cc1C(F)(F)F']; [0.9999986886978149, 0.9999861717224121, 0.9999810457229614, 0.999944806098938, 0.9996808767318726, 0.9978682994842529, 0.9976145029067993, 0.8112117648124695] +COc1ccc2sc(-c3cccc(NC(C)=O)c3)nc2c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(CN)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999990463256836, 0.9999969005584717, 0.9999131560325623, 0.9952361583709717] +COc1ccc2sc(CCCC(N)=O)nc2c1; [None]; [None]; [0] +COc1ccc2sc(OCC(C)(C)S(C)(=O)=O)nc2c1; [None]; [None]; [0] +COc1ccc2sc(N3CCC(S(C)(=O)=O)CC3)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2scnc2c1']; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; [0.9999184608459473, 0.9998518228530884, 0.9974690675735474] +CCNc1nc2ccc(-c3nc4cc(OC)ccc4s3)cc2s1; [None]; [None]; [0] +COc1ccc2sc(-c3cn(C)c4ccccc34)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999974966049194] +COc1ccc2sc(-c3cnn4ccccc34)nc2c1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'Brc1cnn2ccccc12', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'Ic1cnn2ccccc12', 'COc1ccc2scnc2c1', 'O=C(O)c1cnn2ccccc12', 'O=Cc1cnn2ccccc12']; [0.9999980926513672, 0.9999869465827942, 0.9999618530273438, 0.9999327659606934, 0.9979032874107361, 0.9887014627456665, 0.9765287637710571, 0.9021974205970764] +COc1ccc2sc(CCNC(=O)CC(C)(C)O)nc2c1; [None]; [None]; [0] +CCCn1cc(-c2nc3cc(OC)ccc3s2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(I)cn1']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999994039535522, 0.9999415874481201, 0.9999231100082397, 0.9997733235359192, 0.9994462132453918] +COc1ccc2sc(-c3cc[nH]c(=O)c3)nc2c1; ['COc1ccc2scnc2c1']; ['O=c1cc(Br)cc[nH]1']; [0.9803537130355835] +COc1ccc2sc(O[C@H](C)c3c(Cl)cncc3Cl)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; [0.9974055290222168, 0.9962784051895142] +COc1ccc2sc(-c3ccc(OC)c(Cl)c3)nc2c1; ['COc1ccc(C=O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(C=O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(CN)cc1Cl', 'COc1ccc(CC(=O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(C(=O)O)cc1Cl', 'COc1ccc(C=O)cc1Cl', 'COc1ccc(CN)cc1Cl', 'COc1ccc2scnc2c1', 'COc1ccc(CC(=O)O)cc1Cl']; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccccc1Cl', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccccc1Cl', 'COc1ccc2scnc2c1']; [1.0, 0.9999996423721313, 0.9999995827674866, 0.9999879002571106, 0.9999780654907227, 0.9999701976776123, 0.9999406337738037, 0.999799370765686, 0.9996111392974854, 0.9963003396987915, 0.9955943822860718, 0.9720840454101562, 0.9489743709564209, 0.9336754083633423, 0.9319157600402832] +COc1cc(CCc2nc3cc(OC)ccc3s2)cc(OC)c1; ['COc1cc(CBr)cc(OC)c1', 'COc1cc(CCl)cc(OC)c1']; ['COc1ccc2sc(C)nc2c1', 'COc1ccc2sc(C)nc2c1']; [0.9975098967552185, 0.9929365515708923] +CCN(CC)c1nc2cc(OC)ccc2s1; [None, 'CCNCC', 'CCNCC']; [None, 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1']; [0, 0.9996035695075989, 0.9992883205413818] +CCNS(=O)(=O)c1ccccc1-c1nc2cc(OC)ccc2s1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc4c3C(=O)CC4)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Nc3cnccc3OC)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1', 'COc1ccc2sc(N)nc2c1']; ['COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1Br', 'COc1ccncc1I']; [0.9999946355819702, 0.9999885559082031, 0.9999865293502808, 0.9999836683273315, 0.9999582767486572] +COc1ccc2sc(-c3cc4c(=O)[nH]ccc4o3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(C(C)(C)N)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Nc3cnccc3-c3ccccc3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'COc1ccc2sc(N)nc2c1']; [0.9999994039535522, 0.9999920129776001, 0.9998334050178528] +COc1ccc2sc(-c3c[nH]c4cnccc34)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12', 'COc1ccc2scnc2c1']; ['OB(O)c1c[nH]c2cnccc12', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'Ic1c[nH]c2cnccc12']; [0.9999116063117981, 0.9998315572738647, 0.9982393383979797, 0.9955765008926392] +COc1ccc2sc(-c3cncc(OC(C)C)c3)nc2c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(Br)c1']; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [1.0, 0.9999998807907104, 0.9999947547912598, 0.9999778270721436, 0.9999361038208008] +COc1ccc2sc(-c3cnc4[nH]ccc4c3)nc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1ccc2sc(Br)nc2c1', 'Brc1cnc2[nH]ccc2c1']; ['COc1ccc2sc(Br)nc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1ccc2scnc2c1']; [1.0, 0.999980628490448, 0.9940320253372192] +COc1ccc2sc(Nc3cnc4ccccc4c3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'COc1ccc2sc(N)nc2c1']; [0.9999933242797852, 0.9999598264694214, 0.9967103004455566] +COc1ccc2sc(-c3ccc([S@](C)=O)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(C(C)(C)C)cc3)nc2c1; ['CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(CC(=O)O)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(CN)cc1', 'C=Cc1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; [0.9999994039535522, 0.9999989867210388, 0.9999986886978149, 0.9999924302101135, 0.9999860525131226, 0.9999775886535645, 0.9999544620513916, 0.9995776414871216, 0.9983530640602112, 0.9966897964477539, 0.8821908831596375, 0.8540678024291992, 0.7723713517189026] +CNC(=O)c1c(F)cccc1-c1nc2cc(OC)ccc2s1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)nc2c1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1']; [0.999997615814209, 0.9999754428863525] +CNS(=O)(=O)c1ccc(-c2nc3cc(OC)ccc3s2)cc1; ['CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1ccc2sc(Br)nc2c1']; [0.999800443649292] +COc1ccc2sc(-c3c(F)cccc3OC)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cc4c(=O)[nH]cc(Br)c4s3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(N4CCOCC4)cc3)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'Brc1ccc(N2CCOCC2)cc1', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'BrCCOCCBr', 'COc1ccc2sc(Br)nc2c1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'COc1ccc2scnc2c1', 'ClCCOCCCl', 'COc1ccc2sc(-c3ccc(N)cc3)nc2c1', 'c1ccc(N2CCOCC2)cc1']; [0.999998927116394, 0.9998761415481567, 0.9997802376747131, 0.999713659286499, 0.988886833190918] +COc1ccc2sc(N[C@@H](C)C(=O)NCC(F)(F)F)nc2c1; [None]; [None]; [0] +COc1ccc2sc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-n3ccc(CO)n3)nc2c1; ['COc1ccc2sc(Br)nc2c1']; ['OCc1cc[nH]n1']; [0.9993168115615845] +COc1ccc2sc(C3(C)CCN(S(C)(=O)=O)CC3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-n3ncc4ccccc43)nc2c1; ['COc1ccc2sc(Cl)nc2c1']; ['c1ccc2[nH]ncc2c1']; [0.9999091625213623] +COc1ccc2sc(-c3ccc(S(C)(=O)=O)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(N[C@H](C)C(C)(C)O)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; [0.9996521472930908, 0.9977678656578064] +COc1ccc2sc(-c3c(F)cccc3Cl)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1']; ['OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br', 'O=C(O)c1c(F)cccc1Cl']; [0.9999961853027344, 0.9999960064888, 0.9999862909317017, 0.9999474287033081] +COc1ccc2sc(N[C@@H](C)C(C)(C)O)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; [0.9996521472930908, 0.9977678656578064] +COc1ccc2sc(-c3cc(C)nn3-c3cccc(Cl)c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-n3cnc(CCO)c3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-n3ncc4c(O)cccc43)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(-n4cncn4)cc3)nc2c1; ['COc1ccc(I)c(N)c1', 'COc1ccc2scnc2c1']; ['O=Cc1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1']; [0.9999986886978149, 0.9936659336090088] +COc1ccc2sc(-c3nc4ccc(O)cc4[nH]3)nc2c1; [None]; [None]; [0] +COc1ccc(-c2nc3cc(OC)ccc3s2)c(OC)c1; [None]; [None]; [0] +COc1ccc2sc(-c3[nH]c(SC)nc3C)nc2c1; [None]; [None]; [0] +COc1ccc2sc([C@@H]3CC[C@@H](NC(C)=O)CC3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Cc3nnc4ccc(-c5ccccc5)nn34)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccc(C(=O)c4ccccc4)cc3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3nncn3C(C)C)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3nncn3C3CC3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(CS(=O)(=O)NCc3ccccn3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(CCC(=O)NCc3ccccn3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ccn(CC[NH3+])n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cn(Cc4ccccc4)nn3)nc2c1; [None]; [None]; [0] +CCc1cc(-c2nc3cc(OC)ccc3s2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2nc3cc(OC)ccc3s2)nc(N)n1; [None]; [None]; [0] +COc1ccc2sc(-c3nnc(N)s3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cc(C(N)=O)cn3C)nc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cc(OC)ccc3s2)s1; [None]; [None]; [0] +COc1ccc2sc(Oc3ccc(C[NH3+])cc3F)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3nc4ccccc4s3)nc2c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc3cc(OC)ccc3s2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc4cc(OC)ccc4s3)c2)cc1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc(C(C)(C)O)n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc4nnsc34)nc2c1; ['Brc1cccc2nnsc12']; ['COc1ccc2scnc2c1']; [0.9982394576072693] +COc1ccc2sc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cccc4ccsc34)nc2c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'COc1ccc(I)c(N)c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc(I)c(N)c1', 'COc1ccc(I)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1', 'Brc1cccc2ccsc12', 'COc1ccc(Cl)c([N+](=O)[O-])c1', 'COc1ccc2scnc2c1']; ['COc1ccc2sc(Br)nc2c1', 'O=Cc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'NCc1cccc2ccsc12', 'O=Cc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'COc1ccc2scnc2c1', 'NCc1cccc2ccsc12', 'O=Cc1cccc2ccsc12']; [0.9999991655349731, 0.9999351501464844, 0.9998775124549866, 0.9997394680976868, 0.9996225237846375, 0.9992904663085938, 0.995163083076477, 0.9737625122070312, 0.8987070918083191] +COc1ccc2sc(-c3c[nH]c4cccnc34)nc2c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12', 'Brc1c[nH]c2cccnc12']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999994039535522, 0.9994851350784302, 0.9894851446151733] +COc1ccc2sc(-c3cn(CCO)cn3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cncc(N)n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3nc(N)c4ccccc4n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cnc(NC(C)=O)[nH]3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ncc4ccccc4n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3ncc4cc[nH]c4n3)nc2c1; [None]; [None]; [0] +COc1ccc2sc(-c3cc(C#N)ccc3OC)nc2c1; [None]; [None]; [0] +COc1ccc2sc(Oc3ccc(OC)c(F)c3F)nc2c1; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; [0.9999369382858276, 0.999634861946106] +COc1ccc2sc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc2c1; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.999993622303009, 0.999975323677063] +COc1ccc2sc(-c3cccnc3OC)nc2c1; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2scnc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ccccn1', 'COc1ncccc1C=O']; [0.9999988079071045, 0.9999769926071167, 0.9962959289550781, 0.9922066330909729, 0.9667832851409912, 0.9241282939910889] +COc1ccc2sc(-c3cccc(S(=O)(=O)N(C)C)c3)nc2c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['COc1ccc2sc(Br)nc2c1', 'COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1']; [0.9999991655349731, 0.9999963045120239, 0.9999237656593323] +COc1ccc2sc([C@H]3CC[C@@](C)(O)CC3)nc2c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc3cc(OC)ccc3s2)c1; [None]; [None]; [0] +CCOc1ccccc1Nc1nc2cc(F)ccc2s1; ['CCOc1ccccc1N=C=S', 'CCOc1ccccc1N=C=S', 'CCOc1ccccc1N', 'CCOc1ccccc1N', 'CCOc1ccccc1Br', 'CCOc1ccccc1N=C=S', 'CCOc1ccccc1N=C=S']; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1cc(F)ccc1S', 'Nc1cc(F)ccc1O']; [0.9999988675117493, 0.9999957084655762, 0.999970018863678, 0.9999572038650513, 0.9999464154243469, 0.9997973442077637, 0.9996414184570312] +CNC(=O)c1ccccc1Nc1nc2cc(F)ccc2s1; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1N', 'CNC(=O)c1ccccc1N']; ['Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; [0.9999139308929443, 0.9997836947441101, 0.9997106790542603] +COc1ccc2sc(-c3cnnc(N(C)C)c3)nc2c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1nc2cc(F)ccc2s1; ['CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1N', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9998524188995361, 0.9998147487640381, 0.9997323751449585] +CP(C)(=O)c1ccccc1Nc1nc2cc(F)ccc2s1; ['CP(C)(=O)c1ccccc1N']; ['Fc1ccc2sc(Cl)nc2c1']; [0.9999740123748779] +COc1ccc2sc(N3CC=C(c4c[nH]c5ccccc45)CC3)nc2c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['COc1ccc2sc(Cl)nc2c1', 'COc1ccc2sc(Br)nc2c1', 'COc1ccc2scnc2c1']; [0.9999775290489197, 0.9999337196350098, 0.9977657794952393] +Fc1ccc2sc(Nc3ccnc4ccccc34)nc2c1; ['Fc1ccc2sc(Br)nc2c1', 'Brc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Fc1ccc2sc(Cl)nc2c1', 'Ic1ccnc2ccccc12']; ['Nc1ccnc2ccccc12', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1ccnc2ccccc12', 'Nc1nc2cc(F)ccc2s1']; [0.9999995231628418, 0.9999977350234985, 0.9999974966049194, 0.9999914169311523, 0.9999846816062927] +Fc1ccc2sc(Nc3cccc(C(F)(F)F)c3)nc2c1; ['FC(F)(F)c1cccc(N=C=S)c1', 'FC(F)(F)c1cccc(N=C=S)c1', 'Fc1ccc2sc(Cl)nc2c1', 'FC(F)(F)c1cccc(I)c1', 'Fc1ccc2sc(Br)nc2c1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1S', 'Nc1cccc(C(F)(F)F)c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1cccc(C(F)(F)F)c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999991655349731, 0.9999989867210388, 0.9999502897262573, 0.9999284744262695, 0.9999023079872131, 0.998559296131134] +COc1ccc2sc(-c3cccc(NC(=O)C4CCNCC4)c3)nc2c1; [None]; [None]; [0] +CCn1cc(Nc2nc3cc(F)ccc3s2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(N)cn1']; ['Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1']; [0.9999879598617554, 0.999703049659729, 0.9996638298034668] +Fc1ccc2sc(Nc3ccccc3OC(F)(F)F)nc2c1; ['FC(F)(F)Oc1ccccc1N=C=S', 'FC(F)(F)Oc1ccccc1N=C=S', 'Fc1ccc2sc(Br)nc2c1', 'FC(F)(F)Oc1ccccc1N=C=S', 'FC(F)(F)Oc1ccccc1N=C=S', 'Fc1ccc2sc(Cl)nc2c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Cl']; ['Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1Br', 'Nc1ccccc1OC(F)(F)F', 'Nc1cc(F)ccc1S', 'Nc1cc(F)ccc1O', 'Nc1ccccc1OC(F)(F)F', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [1.0, 1.0, 0.9999985694885254, 0.999997615814209, 0.9999974370002747, 0.9999969005584717, 0.9999933242797852, 0.9999648332595825, 0.9999624490737915] +COc1ccc(F)cc1[C@@H](C)Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1nc2cc(F)ccc2s1; ['Fc1ccc2sc(Cl)nc2c1', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1F']; ['NC(=O)c1ccccc1N', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999405145645142, 0.9998487830162048, 0.9997409582138062, 0.9881652593612671] +Fc1ccc2sc(Nc3cnn(Cc4ccccc4)c3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1cnn(Cc2ccccc2)c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999953508377075, 0.9999759793281555, 0.9999690055847168] +Fc1ccc2sc(Nc3cnc(-c4ccccc4)[nH]3)nc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2Nc2nc3cc(F)ccc3s2)[nH]1; [None]; [None]; [0] +Cn1cnc2ccc(Nc3nc4cc(F)ccc4s3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1nc2cc(F)ccc2s1']; [0.9999963045120239] +OCCn1cc(Nc2nc3cc(F)ccc3s2)cn1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1cnn(CCO)c1', 'Nc1cnn(CCO)c1']; [0.9999998807907104, 0.9999900460243225] +COc1cnc(Nc2nc3cc(F)ccc3s2)nc1; ['COc1cnc(N)nc1', 'COc1cnc(N)nc1', 'COc1cnc(Cl)nc1']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.999998927116394, 0.9999797940254211, 0.9998964071273804] +Cc1nc2ccccn2c1Nc1nc2cc(F)ccc2s1; ['Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9999994039535522, 0.9999985694885254] +Fc1ccc2sc(Nc3cc(Cl)ccc3Cl)nc2c1; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Br)nc2c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Fc1ccc2sc(Cl)nc2c1']; ['S=C=Nc1cc(Cl)ccc1Cl', 'S=C=Nc1cc(Cl)ccc1Cl', 'S=C=Nc1cc(Cl)ccc1Cl', 'S=C=Nc1cc(Cl)ccc1Cl', 'Nc1cc(Cl)ccc1Cl', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1cc(Cl)ccc1Cl']; [1.0, 0.9999997019767761, 0.9999976754188538, 0.9999964237213135, 0.9999784827232361, 0.9999586343765259, 0.9999560117721558, 0.9998952150344849] +CC(C)(C)c1nc(Nc2nc3cc(F)ccc3s2)cs1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cnc4ccccn34)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Clc1cnc2ccccn12']; ['Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1nc2cc(F)ccc2s1']; [0.9999990463256836, 0.9999983310699463, 0.9999863505363464] +O=C(Nc1cccc(Nc2nc3cc(F)ccc3s2)c1)c1ccccc1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1cccc(NC(=O)c2ccccc2)c1', 'Nc1cccc(NC(=O)c2ccccc2)c1']; [0.9999918341636658, 0.9998667240142822] +Cc1ccc(Nc2nc3cc(F)ccc3s2)c(Br)c1; ['Cc1ccc(N=C=S)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(N=C=S)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(N=C=S)c(Br)c1', 'Cc1ccc(N=C=S)c(Br)c1', 'Cc1ccc(N)c(Br)c1', 'Cc1ccc(Br)c(Br)c1']; ['Nc1cc(F)ccc1I', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1cc(F)ccc1Br', 'Nc1nc2cc(F)ccc2s1', 'Nc1cc(F)ccc1S', 'Nc1cc(F)ccc1O', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999986886978149, 0.999995231628418, 0.99998939037323, 0.9999173879623413, 0.9998964071273804, 0.9998659491539001, 0.9996998906135559, 0.9995702505111694] +Cc1nc(C)c(Nc2nc3cc(F)ccc3s2)s1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cnc4cccnn34)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [1.0, 1.0, 1.0, 0.9999995827674866] +Fc1ccc2sc(Nc3c(Cl)cccc3Cl)nc2c1; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Cl)nc2c1', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl']; ['S=C=Nc1c(Cl)cccc1Cl', 'S=C=Nc1c(Cl)cccc1Cl', 'S=C=Nc1c(Cl)cccc1Cl', 'S=C=Nc1c(Cl)cccc1Cl', 'Nc1c(Cl)cccc1Cl', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999996423721313, 0.9999985098838806, 0.9999964237213135, 0.999988317489624, 0.9999856948852539, 0.9999845027923584, 0.9998502731323242, 0.9996683597564697] +O=C([O-])c1ccccc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cccc(Br)c3)nc2c1; ['Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Cl)nc2c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Fc1ccc2sc(Br)nc2c1']; ['S=C=Nc1cccc(Br)c1', 'S=C=Nc1cccc(Br)c1', 'S=C=Nc1cccc(Br)c1', 'Nc1cccc(Br)c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1cccc(Br)c1']; [0.9999992847442627, 0.9999966621398926, 0.9999903440475464, 0.99990314245224, 0.9997528791427612, 0.9895776510238647, 0.9879335165023804] +Cc1ccc(Cl)c(Nc2nc3cc(F)ccc3s2)c1; ['Cc1ccc(Cl)c(N)c1']; ['Fc1ccc2sc(Cl)nc2c1']; [0.9979730844497681] +N[C@H](Nc1nc2cc(F)ccc2s1)c1ccco1; [None]; [None]; [0] +Nc1nccc(Nc2nc3cc(F)ccc3s2)n1; ['Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1ccnc(N)n1', 'Nc1nccc(Cl)n1', 'Nc1ccnc(N)n1']; [0.9999991655349731, 0.9999972581863403, 0.9999968409538269] +Fc1ccc2sc(Nc3cnn4ncccc34)nc2c1; ['Brc1cnn2ncccc12']; ['Nc1nc2cc(F)ccc2s1']; [0.9999935626983643] +Fc1ccc2sc(Nc3cccc(Cn4cncn4)c3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1cccc(Cn2cncn2)c1', 'Nc1cccc(Cn2cncn2)c1']; [0.9999996423721313, 0.9999994039535522] +Fc1ccc2sc(Nc3ccc4ccccc4c3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1']; ['Nc1ccc2ccccc2c1', 'Nc1ccc2ccccc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9998992681503296, 0.9998091459274292, 0.9994021654129028, 0.9993832111358643, 0.9786638021469116] +CC(C)(C)c1cnc(CNc2nc3cc(F)ccc3s2)o1; ['CC(C)(C)c1cnc(CBr)o1']; ['Nc1nc2cc(F)ccc2s1']; [0.9999101161956787] +Fc1ccc2sc(Nc3c[nH]nc3C(F)(F)F)nc2c1; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; ['Nc1c[nH]nc1C(F)(F)F', 'Nc1c[nH]nc1C(F)(F)F']; [0.9999957084655762, 0.9999957084655762] +NC(=O)c1c(F)cccc1Nc1nc2cc(F)ccc2s1; ['NC(=O)c1c(F)cccc1F']; ['Nc1nc2cc(F)ccc2s1']; [0.998497724533081] +Cc1nc(N)sc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cncc4ccccc34)nc2c1; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1', 'Brc1cncc2ccccc12', 'Clc1cncc2ccccc12', 'Fc1cncc2ccccc12']; ['Nc1cncc2ccccc12', 'Nc1cncc2ccccc12', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999935626983643, 0.9999932050704956, 0.9999886751174927, 0.9999439716339111, 0.9997081160545349] +CNc1nc(C)c(Nc2nc3cc(F)ccc3s2)s1; [None]; [None]; [0] +Cn1cc(-c2ccc(Nc3nc4cc(F)ccc4s3)cc2)cn1; ['Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1', 'Cn1cc(-c2ccc(N)cc2)cn1']; ['Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [1.0, 1.0, 0.9999997615814209] +Cc1c(Nc2nc3cc(F)ccc3s2)sc(=O)n1C; [None]; [None]; [0] +CCCn1cnc(Nc2nc3cc(F)ccc3s2)n1; ['CCCn1cnc(N)n1', 'CCCn1cnc(N)n1']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9999806880950928, 0.999441385269165] +Fc1ccc2sc(Nc3ccc(-c4cn[nH]c4)cc3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1nc2cc(F)ccc2s1']; [0.9999980926513672, 0.9999964237213135, 0.9999855160713196] +Cn1ncc2cc(Nc3nc4cc(F)ccc4s3)ccc21; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(N)ccc21']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999992251396179, 0.9999987483024597, 0.9999963045120239, 0.9999897480010986, 0.999910831451416] +Oc1cccc(Nc2nc3cc(F)ccc3s2)c1; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; ['Nc1cccc(O)c1', 'Nc1cccc(O)c1']; [0.9998975992202759, 0.9998576641082764] +CC(C)n1cc(Nc2nc3cc(F)ccc3s2)nn1; ['CC(C)n1cc(N)nn1', 'CC(C)n1cc(N)nn1']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9999980926513672, 0.9999975562095642] +OCc1cccc(Nc2nc3cc(F)ccc3s2)c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; ['Nc1cccc(CO)c1', 'Nc1cccc(CO)c1', 'OCc1cccc(Br)c1']; [0.9998867511749268, 0.9994268417358398, 0.995087742805481] +Nc1[nH]nc2cc(Nc3nc4cc(F)ccc4s3)ccc12; ['Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Cl)ccc12']; ['Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9997634887695312, 0.9673467874526978] +O=C([O-])Cc1cccc(Nc2nc3cc(F)ccc3s2)c1; [None]; [None]; [0] +COc1cc(Nc2nc3cc(F)ccc3s2)ccc1C(=O)[O-]; [None]; [None]; [0] +Fc1ccc2sc(Nc3csc4ncncc34)nc2c1; ['Brc1csc2ncncc12']; ['Nc1nc2cc(F)ccc2s1']; [1.0] +Fc1ccc2sc(Nc3cc4ccccc4[nH]3)nc2c1; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1', 'Clc1cc2ccccc2[nH]1']; ['Nc1cc2ccccc2[nH]1', 'Nc1cc2ccccc2[nH]1', 'Nc1nc2cc(F)ccc2s1']; [0.9997694492340088, 0.9986250400543213, 0.998548686504364] +N#CCCc1cccc(Nc2nc3cc(F)ccc3s2)c1; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(F)c1']; ['Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9995445013046265, 0.9786779880523682] +CC[C@H](CO)Nc1nc2cc(F)ccc2s1; ['CC[C@@H](N)CO', 'CC[C@@H](N)CO']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; [0.9996415376663208, 0.9993704557418823] +CSc1nc(Nc2nc3cc(F)ccc3s2)c[nH]1; [None]; [None]; [0] +CN1c2ccc(Nc3nc4cc(F)ccc4s3)cc2CS1(=O)=O; [None]; [None]; [0] +Fc1ccc(Nc2nc3cc(F)ccc3s2)c(C(F)(F)F)c1; ['Fc1ccc(N=C=S)c(C(F)(F)F)c1', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc(N=C=S)c(C(F)(F)F)c1', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(F)c(C(F)(F)F)c1', 'Nc1ccc(F)cc1C(F)(F)F']; ['Nc1cc(F)ccc1I', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1cc(F)ccc1O', 'Nc1ccc(F)cc1C(F)(F)F', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999938011169434, 0.9999828338623047, 0.9999401569366455, 0.9999014139175415, 0.9997037649154663, 0.9994298219680786, 0.9992474913597107, 0.9958440065383911, 0.9916126728057861] +CCC(=O)Nc1ccc(Nc2nc3cc(F)ccc3s2)cc1; [None]; [None]; [0] +Nc1ncncc1Nc1nc2cc(F)ccc2s1; ['Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1']; ['Nc1cncnc1N', 'Nc1ncncc1I']; [0.999984860420227, 0.9997829794883728] +Fc1ccc2sc(NCc3c(F)cccc3F)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Fc1cccc(F)c1CBr', 'Fc1cccc(F)c1CCl', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; ['NCc1c(F)cccc1F', 'NCc1c(F)cccc1F', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'O=Cc1c(F)cccc1F', 'OCc1c(F)cccc1F']; [0.9999992251396179, 0.999998927116394, 0.9999831914901733, 0.9999754428863525, 0.9999659657478333, 0.9998860359191895] +CC(=O)Nc1cccc(Nc2nc3cc(F)ccc3s2)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1']; ['Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9997960329055786, 0.9997895956039429, 0.9997636079788208] +COc1ccc(Nc2nc3cc(F)ccc3s2)cc1Cl; ['COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999702572822571, 0.9999662041664124, 0.9997008442878723, 0.9996850490570068] +Fc1ccc2sc(Nc3cnn4ccccc34)nc2c1; ['Brc1cnn2ccccc12', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1nc2cc(F)ccc2s1', 'Nc1cnn2ccccc12', 'Nc1cnn2ccccc12']; [0.9999997615814209, 0.9999959468841553, 0.9999929666519165] +Cn1cc(Nc2nc3cc(F)ccc3s2)c2ccccc21; [None]; [None]; [0] +CC(C)c1oncc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +CCCn1cc(Nc2nc3cc(F)ccc3s2)cn1; ['CCCn1cc(N)cn1', 'CCCn1cc(N)cn1', 'CCCn1cc(Br)cn1']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999991655349731, 0.9999939799308777, 0.9999713897705078] +CS(=O)(=O)c1cccc(CNc2nc3cc(F)ccc3s2)c1; ['CS(=O)(=O)c1cccc(CN)c1', 'CS(=O)(=O)c1cccc(CN)c1', 'CS(=O)(=O)c1cccc(CBr)c1', 'CS(=O)(=O)c1cccc(CO)c1', 'CS(=O)(=O)c1cccc(C=O)c1']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999987483024597, 0.9999969005584717, 0.9999911785125732, 0.9999881982803345, 0.9999538660049438] +O=c1cc(Nc2nc3cc(F)ccc3s2)cc[nH]1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; ['Nc1cc[nH]c(=O)c1', 'Nc1cc[nH]c(=O)c1', 'O=c1cc(Cl)cc[nH]1']; [0.9999986886978149, 0.9999985098838806, 0.9992433786392212] +O=C1CCc2cccc(Nc3nc4cc(F)ccc4s3)c21; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; ['Nc1cccc2c1C(=O)CC2', 'Nc1cccc2c1C(=O)CC2', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(F)c21']; [0.9999715685844421, 0.9999092817306519, 0.9997454881668091, 0.9994860887527466, 0.992385745048523] +CN(c1ncccc1CNc1nc2cc(F)ccc2s1)S(C)(=O)=O; ['CN(c1ncccc1CN)S(C)(=O)=O', 'CN(c1ncccc1CN)S(C)(=O)=O']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9999997615814209, 0.9999996423721313] +CCNS(=O)(=O)c1ccccc1Nc1nc2cc(F)ccc2s1; ['CCNS(=O)(=O)c1ccccc1N']; ['Fc1ccc2sc(Cl)nc2c1']; [0.9986026287078857] +CCNc1nc2ccc(Nc3nc4cc(F)ccc4s3)cc2s1; [None]; [None]; [0] +CC(C)(N)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['CC(C)(N)c1ccc(F)cc1']; ['Nc1nc2cc(F)ccc2s1']; [0.8696388006210327] +CC(C)Oc1cncc(Nc2nc3cc(F)ccc3s2)c1; ['CC(C)Oc1cncc(Br)c1']; ['Nc1nc2cc(F)ccc2s1']; [0.9999760389328003] +O=c1[nH]ccc2oc(Nc3nc4cc(F)ccc4s3)cc12; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N=C=S)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999995231628418, 0.9999971389770508, 0.9999868869781494, 0.9999843835830688, 0.9999626874923706, 0.9999229907989502, 0.9998319745063782] +C[S@](=O)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; [None]; [None]; [0] +COc1cccc(F)c1Nc1nc2cc(F)ccc2s1; ['COc1cccc(F)c1N', 'COc1cccc(F)c1N', 'COc1cccc(F)c1Br']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999895095825195, 0.9999892711639404, 0.9999745488166809] +OC[C@@H](Nc1nc2cc(F)ccc2s1)c1ccccc1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['N[C@H](CO)c1ccccc1', 'N[C@H](CO)c1ccccc1']; [0.9995166659355164, 0.9994234442710876] +[NH3+]Cc1ccc(Nc2nc3cc(F)ccc3s2)cc1C(F)(F)F; [None]; [None]; [0] +Fc1ccc2sc(Nc3c[nH]c4cnccc34)nc2c1; ['Brc1c[nH]c2cnccc12']; ['Nc1nc2cc(F)ccc2s1']; [0.9997916221618652] +Fc1ccc2sc(Nc3cnc4[nH]ccc4c3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1cnc2[nH]ccc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999963045120239, 0.9999802112579346] +OC[C@H](Cc1ccccc1)Nc1nc2cc(F)ccc2s1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9999920725822449, 0.9999787211418152] +CNS(=O)(=O)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N=C=S)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Nc1cc(F)ccc1S', 'Nc1cc(F)ccc1I', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999521970748901, 0.9998686909675598, 0.9998054504394531, 0.9993996620178223, 0.9962596297264099] +CC1(Nc2nc3cc(F)ccc3s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['CS(=O)(=O)c1ccc(N=C=S)cc1', 'CS(=O)(=O)c1ccc(N=C=S)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999990463256836, 0.9999947547912598, 0.9999887943267822, 0.9999727010726929, 0.9999186992645264, 0.9998914003372192] +O=c1[nH]cc(Br)c2sc(Nc3nc4cc(F)ccc4s3)cc12; [None]; [None]; [0] +Cc1cc(Nc2nc3cc(F)ccc3s2)n(-c2cccc(Cl)c2)n1; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1', 'Cc1cc(N)n(-c2cccc(Cl)c2)n1']; ['Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9990622997283936, 0.9958590269088745] +Fc1ccc2sc(Nc3c(F)cccc3Cl)nc2c1; ['Fc1cccc(Cl)c1N=C=S', 'Fc1cccc(Cl)c1N=C=S', 'Fc1cccc(Cl)c1N=C=S', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1cccc(Cl)c1Br']; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1O', 'Nc1c(F)cccc1Cl', 'Nc1c(F)cccc1Cl', 'Nc1nc2cc(F)ccc2s1']; [1.0, 0.9999998807907104, 0.9999996423721313, 0.9999774694442749, 0.9999514818191528, 0.9998317360877991] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.9999915957450867, 0.9999610185623169] +Fc1ccc2sc(Nc3ccc(-n4cncn4)cc3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; ['Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; [0.9999994039535522, 0.9999990463256836] +Fc1ccc2sc(Nc3ccc(N4CCOCC4)cc3)nc2c1; ['Nc1cc(F)ccc1I', 'Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1cc(F)ccc1S', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1cc(F)ccc1O', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1']; ['S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1nc2cc(F)ccc2s1', 'S=C=Nc1ccc(N2CCOCC2)cc1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.999997615814209, 0.9999963045120239, 0.9999954104423523, 0.9999899864196777, 0.9999586343765259, 0.999944269657135, 0.9999028444290161, 0.9995965957641602] +COc1ccc(Nc2nc3cc(F)ccc3s2)c(OC)c1; ['COc1ccc(N=C=S)c(OC)c1', 'COc1ccc(N=C=S)c(OC)c1', 'COc1ccc(N=C=S)c(OC)c1', 'COc1ccc(N=C=S)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(N)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Nc1cc(F)ccc1O', 'Nc1cc(F)ccc1S', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [1.0, 0.9999997019767761, 0.9999954104423523, 0.999993085861206, 0.9999899864196777, 0.9999449849128723, 0.9998528361320496, 0.999762237071991] +O=C(c1ccccc1)c1ccc(Nc2nc3cc(F)ccc3s2)cc1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; ['Nc1ccc(C(=O)c2ccccc2)cc1', 'Nc1ccc(C(=O)c2ccccc2)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.9998856782913208, 0.9997111558914185, 0.9996494054794312, 0.9995673894882202] +CNC(=O)c1c(F)cccc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +CSc1nc(C)c(Nc2nc3cc(F)ccc3s2)[nH]1; [None]; [None]; [0] +CCc1cc(Nc2nc3cc(F)ccc3s2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1']; ['Nc1nc2cc(F)ccc2s1']; [0.9999982118606567] +Fc1ccc2sc(Nc3cn(Cc4ccccc4)nn3)nc2c1; [None]; [None]; [0] +Nc1nnc(Nc2nc3cc(F)ccc3s2)s1; [None]; [None]; [0] +CCCCc1cc(Nc2nc3cc(F)ccc3s2)nc(N)n1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2nc3cc(F)ccc3s2)CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2nc3cc(F)ccc3s2)n1; [None]; [None]; [0] +Fc1ccc2sc(Nc3nc4ccccc4s3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Clc1nc2ccccc2s1']; ['Nc1nc2ccccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9933277368545532, 0.9933277368545532] +CC(C)(O)c1cccc(Nc2nc3cc(F)ccc3s2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1']; ['Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.999997615814209, 0.9999874830245972] +C[C@@H2]NC(=O)N1CCC(Nc2nc3cc(F)ccc3s2)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3nc4cc(F)ccc4s3)nc2NC1=O; ['CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(N)nc2NC1=O']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; [0.9876178503036499, 0.8723042011260986] +Fc1ccc2sc(Nc3nncn3C3CC3)nc2c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1nc2cc(F)ccc2s1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cccc4ccsc34)nc2c1; ['Brc1cccc2ccsc12']; ['Nc1nc2cc(F)ccc2s1']; [0.9999980330467224] +Nc1cncc(Nc2nc3cc(F)ccc3s2)n1; ['Nc1cncc(Cl)n1']; ['Nc1nc2cc(F)ccc2s1']; [0.9999976754188538] +Fc1ccc2sc(Nc3ncc4ccccc4n3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Clc1ncc2ccccc2n1']; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Nc1nc2cc(F)ccc2s1']; [0.9999997615814209, 0.9999995231628418, 0.9999984502792358] +O=C(NCCCNc1nc2cc(F)ccc2s1)c1cccs1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2nc3cc(F)ccc3s2)[nH]1; [None]; [None]; [0] +O=C(NCCCNc1nc2cc(F)ccc2s1)C1CCC1; [None]; [None]; [0] +Fc1ccc2sc(Nc3cccc4nnsc34)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Brc1cccc2nnsc12', 'Nc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [0.9999996423721313, 0.9999984502792358, 0.999981164932251] +CNC(=O)c1ccc(Nc2nc3cc(F)ccc3s2)s1; [None]; [None]; [0] +Fc1ccc2sc(Nc3c[nH]c4cccnc34)nc2c1; ['Brc1c[nH]c2cccnc12', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; ['Nc1nc2cc(F)ccc2s1', 'Nc1c[nH]c2cccnc12', 'Nc1c[nH]c2cccnc12']; [0.9999960064888, 0.9999890327453613, 0.9999339580535889] +OCCn1cnc(Nc2nc3cc(F)ccc3s2)c1; [None]; [None]; [0] +Fc1ccc2sc(Nc3ncc4cc[nH]c4n3)nc2c1; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Clc1ncc2cc[nH]c2n1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ncc2cc[nH]c2n1', 'Nc1nc2cc(F)ccc2s1']; [0.9999998807907104, 0.9999996423721313, 0.9999994039535522] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3nc4cc(F)ccc4s3)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1nc2cc(F)ccc2s1; ['COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1F']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [1.0, 1.0, 0.9999998211860657, 0.9999995231628418, 0.9999774098396301] +COc1ccc(OC)c(Nc2nc3cc(F)ccc3s2)c1; ['COc1ccc(OC)c(N=C=S)c1', 'COc1ccc(OC)c(N=C=S)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N=C=S)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(F)c1']; ['Nc1cc(F)ccc1Br', 'Nc1cc(F)ccc1I', 'Fc1ccc2sc(Cl)nc2c1', 'Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1cc(F)ccc1S', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1']; [1.0, 0.9999995231628418, 0.9999980926513672, 0.9999954700469971, 0.9999909400939941, 0.9999902248382568, 0.9999765157699585, 0.999725341796875, 0.9984374046325684] +CS(=O)(=O)Nc1ccccc1CNc1nc2cc(F)ccc2s1; ['CS(=O)(=O)Nc1ccccc1C=O']; ['Nc1nc2cc(F)ccc2s1']; [0.9996198415756226] +C[C@@]1(O)CC[C@H](Nc2nc3cc(F)ccc3s2)CC1; ['C[C@]1(O)CC[C@@H](N)CC1', 'C[C@]1(O)CC[C@@H](N)CC1']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1']; [0.9999316930770874, 0.9997453689575195] +COc1ncccc1Nc1nc2cc(F)ccc2s1; ['COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1I', 'COc1ncccc1N', 'COc1ncccc1N']; ['Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Nc1nc2cc(F)ccc2s1', 'Fc1ccc2sc(Br)nc2c1', 'Fc1ccc2sc(Cl)nc2c1']; [0.9999966621398926, 0.9999935626983643, 0.9999920129776001, 0.9999908208847046, 0.9999575614929199] +CN(C)S(=O)(=O)c1cccc(Nc2nc3cc(F)ccc3s2)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Fc1ccc2sc(Cl)nc2c1', 'Fc1ccc2sc(Br)nc2c1', 'Nc1nc2cc(F)ccc2s1']; [0.999962329864502, 0.9999396204948425, 0.9997905492782593] +CN(C)c1nccc(-c2c(Cl)ccc3c2OCO3)n1; ['CN(C)c1nccc(Cl)n1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9658554196357727] +CN(C)c1cc(Nc2nc3cc(F)ccc3s2)cnn1; [None]; [None]; [0] +CN(C)c1nccc(-c2cccc(O)c2)n1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', None, 'CN(C)c1nccc(Br)n1', 'CNC', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', None, 'OB(O)c1cccc(O)c1', 'Oc1cccc(-c2ccnc(Cl)n2)c1', 'OB(O)c1cccc(O)c1']; [0.9997689723968506, 0.9995683431625366, 0, 0.9921503067016602, 0.9918513298034668, 0.9810508489608765] +CNS(=O)(=O)c1ccc(-c2ccnc(N(C)C)n2)cc1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9998891353607178, 0.9998791217803955, 0.9945720434188843, 0.9942233562469482, 0.95079505443573] +CN(C)c1nccc(Oc2ccc(F)cc2)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9995228052139282, 0.9922851324081421] +CN(C)c1nccc(-c2ccc(Cl)c(O)c2)n1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9997529983520508, 0.9996752142906189, 0.9917818307876587, 0.9827667474746704, 0.9744424819946289] +CN(C)c1nccc(-c2c(Cl)cccc2Cl)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999274015426636, 0.9996576309204102, 0.9972445964813232] +CN(C)c1nccc(-c2ccc(C(N)=O)cc2)n1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999950528144836, 0.9999814629554749, 0.9997900724411011, 0.9997785091400146, 0.9995101690292358, 0.9900719523429871] +CN(C)c1nccc(-c2cccc3ncccc23)n1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'Brc1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; [0.9999597072601318, 0.99992835521698, 0.9994648694992065, 0.9989724159240723, 0.9989411234855652, 0.9782607555389404, 0.9731699228286743] +CN(C)c1nccc(-c2ccc(C(N)=O)cc2F)n1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9999873042106628, 0.9999810457229614, 0.9999467134475708, 0.9999173879623413, 0.9998756647109985, 0.9955892562866211] +CN(C)c1nccc(-c2ccc(O)cc2Cl)n1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl']; [0.9997165203094482, 0.9990836977958679, 0.9978461265563965, 0.9776281714439392] +COc1cc(C(N)=O)ccc1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999690055847168, 0.9999645948410034, 0.9974530339241028] +CN(C)c1nccc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Br']; [0.9999814629554749, 0.9999687671661377, 0.9999362230300903, 0.999807596206665, 0.9988018274307251] +CN(C)c1nccc(-c2ccc(O)cc2F)n1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc(O)cc1F', 'OB(O)c1ccc(O)cc1F']; [0.9997243881225586, 0.998993992805481, 0.9983566403388977, 0.9973366856575012] +COc1cc(F)ccc1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1Br']; [0.9999161958694458, 0.9998243451118469, 0.9997235536575317, 0.9996219277381897, 0.9984945058822632, 0.96631920337677] +CN(C)c1nccc(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +COc1cc(-c2ccnc(N(C)C)n2)ccc1O; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.999987006187439, 0.9999741315841675, 0.9997342824935913, 0.9918141961097717, 0.9852393269538879, 0.980006217956543] +CN(C)c1nccc(-c2ccnc(N)n2)n1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccnc(N(C)C)n2)o1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1']; [0.9942172765731812, 0.9647386074066162, 0.9319189786911011] +Cc1nc2c(F)cc(-c3ccnc(N(C)C)n3)cc2[nH]1; [None]; [None]; [0] +CN(C)c1nccc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc(-c3ccc(O)cc3O)cc2)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2cccc(Br)c2)n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CN(C)/C=C/C(=O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'CN(C)c1nccc(Cl)n1', None, 'CNC', None, 'CN(C)c1nccc(Br)n1', None, None, 'Brc1cccc(Br)c1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)C(=N)N', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1cccc(Br)c1', None, 'Clc1nccc(-c2cccc(Br)c2)n1', None, 'OB(O)c1cccc(Br)c1', None, None, 'CN(C)c1nccc(Br)n1']; [0.9999747276306152, 0.9999704360961914, 0.9997262358665466, 0.9985924959182739, 0.9968956112861633, 0, 0.9939548969268799, 0, 0.9799975156784058, 0, 0, 0.9071388244628906] +CN(C)c1nccc(-c2ccc(O)c(F)c2)n1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1']; [0.9999759793281555, 0.9999673366546631, 0.9986944794654846, 0.9952762126922607] +CN(C)c1nccc(-c2ccc3ccccc3c2)n1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'CNC', 'COS(=O)(=O)OC', None, None, None, None]; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'Clc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1', None, None, None, None]; [0.9999815821647644, 0.99997878074646, 0.9999047517776489, 0.999796986579895, 0.9996054172515869, 0.9966061115264893, 0.9888694286346436, 0.9876672625541687, 0, 0, 0, 0] +CN(C)c1nccc(-c2cn(C)c3ccccc23)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CNC']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1cc(-c2ccnc(Cl)n2)c2ccccc21']; [0.9996802806854248, 0.9917398691177368, 0.9916478395462036] +COC(=O)c1ccc(Cl)c(-c2ccnc(N(C)C)n2)c1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; [0.9999793767929077, 0.9999587535858154, 0.9998271465301514, 0.9992385506629944, 0.9945755004882812, 0.993649423122406, 0.9898971319198608] +CN(C)c1nccc(-c2cnn3ncccc23)n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; [0.9999608993530273, 0.9998655319213867, 0.9963186979293823] +CN(C)c1nccc(-c2ccc(O)cc2O)n1; ['CN(C)c1nccc(Br)n1']; ['Oc1ccc(Br)c(O)c1']; [0.9132916927337646] +CN(C)c1nccc(-c2ccnc(N)c2)n1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.999893307685852, 0.982269287109375, 0.8920472860336304] +COc1cc(CCc2ccnc(N(C)C)n2)ccc1O; [None]; [None]; [0] +CN(C)c1nccc(-c2c[nH]c3cnccc23)n1; ['CN(C)c1nccc(Br)n1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9974658489227295] +CN(C)c1nccc(COc2ccccc2Cl)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2cc(O)ccc2Cl)n1; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C']; ['CN(C)c1nccc(Cl)n1']; [0.9985847473144531] +CN(C)c1nccc(-c2ccc(F)c(Cl)c2)n1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc([Mg]Br)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl']; [0.9999996423721313, 0.9999991655349731, 0.9999687075614929, 0.9999449253082275, 0.9999105930328369, 0.9997284412384033, 0.9996521472930908, 0.998952329158783] +CN(C)c1nccc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; [0.999733567237854, 0.999373197555542, 0.9948259592056274] +CN(C)c1nccc(-c2cnc(O)c(Cl)c2)n1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['CN(C)c1nccc(Cl)n1']; [0.9999932050704956] +Cc1ccc2[nH]ncc2c1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; [0.9999847412109375, 0.9999756813049316, 0.9991112947463989, 0.9979628920555115, 0.9775996804237366] +CN(C)c1nccc(-c2c[nH]c(C(N)=O)c2)n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccnc(N(C)C)n2)c1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; [0.9999794960021973, 0.9999412298202515, 0.9999033808708191, 0.9997876882553101, 0.9968398809432983] +COc1ccc(-c2ccnc(N(C)C)n2)cc1OC; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC']; [0.9999882578849792, 0.9999871253967285, 0.9999790191650391, 0.9985207319259644, 0.9985092878341675, 0.9958245754241943] +CCOc1cccc(-c2ccnc(N(C)C)n2)c1; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc([Mg]Br)c1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; [0.99993896484375, 0.9999040365219116, 0.9959069490432739, 0.9956995248794556, 0.9935503005981445, 0.9311779141426086] +CN(C)c1nccc(-c2cnc3[nH]ccc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'Brc1cnc2[nH]ccc2c1', 'CN(C)c1nccc(Cl)n1', 'Brc1cnc2[nH]ccc2c1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1cnc2[nH]ccc2c1', 'CN(C)c1nccc(Cl)n1', 'OB(O)c1cnc2[nH]ccc2c1', 'CN(C)c1nccc(Br)n1']; [0.9999995231628418, 0.9999978542327881, 0.9999674558639526, 0.9999169111251831, 0.9999088644981384, 0.9983251094818115] +CN(C)c1nccc(-c2ccc(NC(N)=O)cc2)n1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; [0.9999949932098389, 0.9999948143959045] +COc1cc(CCc2ccnc(N(C)C)n2)cc(OC)c1; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc(S(C)(=O)=O)cc2)n1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999997615814209, 0.9999971985816956, 0.9999932646751404, 0.9999749660491943, 0.9998880624771118, 0.9998205900192261] +CN(C)c1nccc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2cncc(O)c2)n1; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1']; [0.9995462894439697, 0.9781064987182617, 0.9283350706100464, 0.9131656885147095] +Cc1nc2ccc(-c3ccnc(N(C)C)n3)cc2[nH]1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; [0.9999933242797852, 0.9999839067459106] +CNC(=O)c1cccc2cc(-c3ccnc(N(C)C)n3)ccc12; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc3c(c2)CC(=O)N3)n1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9998410940170288, 0.9998016357421875, 0.9983679056167603, 0.9970321655273438, 0.9944232702255249] +CCc1cc(O)ccc1-c1ccnc(N(C)C)n1; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; [0.9998230934143066, 0.9994839429855347] +Cc1n[nH]c(-c2ccnc(N(C)C)n2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O']; [0.9984546899795532, 0.995589017868042, 0.9948713779449463, 0.979175329208374] +CN(C)c1nccc(N(C)c2cccc(Cl)c2)n1; ['CN(C)c1nccc(Cl)n1']; ['CNc1cccc(Cl)c1']; [0.9789251089096069] +CCc1cc(O)c(F)cc1-c1ccnc(N(C)C)n1; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; [0.9999775886535645, 0.9998106956481934] +Cc1n[nH]c2cc(N(C)c3ccnc(N(C)C)n3)ccc12; [None]; [None]; [0] +CN(C)c1nccc(-c2ccncc2Cl)n1; ['CN(C)c1nccc(Br)n1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CN(C)c1nccc(Cl)n1']; ['OB(O)c1ccncc1Cl', 'CN(C)c1nccc(Br)n1', 'OB(O)c1ccncc1Cl', 'CN(C)c1nccc(Cl)n1', 'Clc1cnccc1Br']; [0.9997075796127319, 0.9978233575820923, 0.9932966828346252, 0.9927918910980225, 0.9918144345283508] +C[C@H](CC(N)=O)c1ccnc(N(C)C)n1; [None]; [None]; [0] +CNc1nccc(-c2ccnc(N(C)C)n2)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2cc(Cl)c(O)c(Cl)c2)n1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Cl)n1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9997967481613159, 0.9938260316848755, 0.9774297475814819] +CCc1sccc1-c1ccnc(N(C)C)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc3c(c2)CCN3)n1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999947547912598, 0.999224841594696] +CN(C)c1nccc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +CN(C)c1nccc(Nc2ccncc2)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Nc1ccncc1', 'Nc1ccncc1']; [0.998986005783081, 0.989224910736084] +CNc1nc(-c2ccnc(N(C)C)n2)ncc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(N(C)C)n2)cc1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; [0.9999933242797852, 0.9999834299087524, 0.9999659061431885, 0.9997228384017944, 0.9996775388717651, 0.9993063807487488] +CN(C)c1nccc(-c2ccc(Br)cc2F)n1; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'OB(O)c1ccc(Br)cc1F', 'CN(C)c1nccc(Br)n1', 'Fc1cc(Br)ccc1Br', 'OB(O)c1ccc(Br)cc1F']; [0.9999549388885498, 0.9999229907989502, 0.9997686147689819, 0.9986996650695801, 0.997776210308075] +CN(C)c1nccc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc3[nH]c(=O)[nH]c3c2)n1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1']; [0.9999715089797974, 0.9999692440032959, 0.9999039769172668, 0.999618411064148] +CN(C)c1nccc(-c2[nH]nc3ccc(F)cc23)n1; [None]; [None]; [0] +Cc1oc(-c2ccnc(N(C)C)n2)cc1C(=O)[O-]; [None]; [None]; [0] +Cc1cc(-c2ccnc(N(C)C)n2)ccc1C(N)=O; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999992847442627, 0.9999985694885254, 0.999967634677887, 0.9985833168029785] +CN(C)c1nccc(N(C)c2cccc3[nH]ncc23)n1; ['CN(C)c1nccc(Cl)n1']; ['CNc1cccc2[nH]ncc12']; [0.9731419086456299] +CN(C)c1nccc(-c2cc(O)cc(Br)c2)n1; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['CN(C)c1nccc(Cl)n1', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'CN(C)c1nccc(Br)n1']; [0.998426079750061, 0.9968934059143066, 0.9961121678352356, 0.9936583638191223] +CN(C)c1nccc(-c2c(N)cnn2C)n1; [None]; [None]; [0] +CN(C)c1nccc(-c2ccc(C(=O)NC3CC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999996423721313, 0.9999994039535522, 0.9999963045120239, 0.999990701675415, 0.9999328851699829] +Cc1cc(-c2ccnc(N(C)C)n2)cc(C)c1O; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; [0.9998816251754761, 0.9998358488082886, 0.9959163665771484, 0.9775597453117371, 0.9754576086997986, 0.8927618265151978] +Cc1nc2ccc(-c3ccnc(N(C)C)n3)cc2o1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1']; [0.9999994039535522, 0.9999905824661255, 0.9999833106994629, 0.9999793767929077] +CSc1cccc(-c2ccnc(N(C)C)n2)c1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1']; [0.9999834299087524, 0.9999462366104126, 0.9938865900039673, 0.975639820098877, 0.9620046615600586] +CN(C)c1nccc(-c2cc(F)c(O)c(F)c2)n1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F']; [0.999958336353302, 0.9999446868896484, 0.9968667030334473, 0.9956792593002319, 0.9402804374694824] +CN(C)c1nccc(OCc2cccc3ccccc23)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9968472719192505, 0.920120358467102] +CN(C)c1nccc(Oc2ccc(F)cc2F)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999953508377075, 0.9998496770858765] +CN(C)c1nccc(-c2ocnc2-c2ccc(F)cc2)n1; ['CN(C)c1nccc(Br)n1']; ['Fc1ccc(-c2cocn2)cc1']; [0.9849636554718018] +CN(C)c1nccc(OCc2ccc(F)cc2F)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999446868896484, 0.9996035099029541] +CN(C)c1nccc(-c2ccc3c(=O)[nH][nH]c3c2)n1; ['CN(C)c1nccc(Cl)n1', 'CN(C)c1nccc(Br)n1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999890327453613, 0.9975471496582031] +CN(C)c1nccc(NCc2c(F)cccc2Cl)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.999970555305481, 0.9997991323471069] +Cc1onc(-c2ccccc2)c1-c1ccnc(N(C)C)n1; ['CN(C)c1nccc(Br)n1', 'CN(C)c1nccc(Cl)n1']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; [0.999962329864502, 0.9993763566017151] +CNc1nccc(-c2cccc(O)c2)n1; ['CN', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['Oc1cccc(-c2ccnc(Cl)n2)c1', 'CNc1nccc(Cl)n1', 'OB(O)c1cccc(O)c1']; [0.998577356338501, 0.9985545873641968, 0.9969093203544617] +CNc1nccc(-c2cccc3ncccc23)n1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'OB(O)c1cccc2ncccc12']; [0.9997022151947021, 0.9961333274841309] +CNc1nccc(-c2c(Cl)ccc3c2OCO3)n1; ['CNc1nccc(Cl)n1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9835196137428284] +CNc1nccc(-c2ccc(Cl)c(O)c2)n1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9993619918823242, 0.9966063499450684] +CN(C)c1nccc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +CN(C)c1nccc(CCc2ccc(F)cc2F)n1; [None]; [None]; [0] +CNc1nccc(Oc2ccc(F)cc2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9907478094100952, 0.9466890096664429] +CNc1nccc(-c2ccc(S(=O)(=O)NC)cc2)n1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; [0.9999797344207764, 0.999019980430603] +CNc1nccc(-c2c(Cl)cccc2Cl)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl']; [0.9990357160568237, 0.9960777163505554] +CN(C)c1nccc(CCc2c[nH]c3ccccc23)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(N)=O)cc2)n1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999969005584717, 0.9999949932098389, 0.9999604225158691, 0.9998348951339722] +CNc1nccc(-c2ccc(O)cc2Cl)n1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9996852874755859] +CNc1nccc(-c2ccc(C(N)=O)cc2OC)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999415874481201, 0.9999394416809082, 0.9957553148269653] +CNc1nccc(-c2ccc(C(N)=O)cc2F)n1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.999997079372406, 0.9999921321868896, 0.9999818801879883, 0.9999439120292664, 0.9998178482055664] +CNc1nccc(-c2ccc(O)cc2F)n1; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'OB(O)c1ccc(O)cc1F']; [0.999637246131897, 0.9993979930877686] +CNc1nccc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(F)cc2OC)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O']; [0.9999271631240845, 0.9997584819793701, 0.9996589422225952] +CNc1nccc(-c2cc(F)ccc2OC)n1; [None]; [None]; [0] +CNc1nccc(-c2ccnc(N)n2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +CNc1nccc(-c2cccc(Br)c2)n1; ['CN(C)/C=C/C(=O)c1cccc(Br)c1', 'CN(C)C=CC(=O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CN', 'Brc1cccc(Br)c1', None, 'CI']; ['CNC(=N)N', 'CNC(=N)N', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Clc1nccc(-c2cccc(Br)c2)n1', 'CNc1nccc(Cl)n1', None, 'Nc1nccc(-c2cccc(Br)c2)n1']; [0.9999915361404419, 0.9999915361404419, 0.9997637271881104, 0.9995262622833252, 0.9985405206680298, 0.9982800483703613, 0.9933702945709229, 0.9865332841873169, 0, 0.8569704294204712] +CNc1nccc(-c2ccc(C(=O)OC)o2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(-c3ccc(O)cc3O)cc2)n1; [None]; [None]; [0] +CNc1nccc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +CNc1nccc(-c2cn(C)c3ccccc23)n1; ['CNc1nccc(Cl)n1', 'CN']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(-c2ccnc(Cl)n2)c2ccccc21']; [0.9998787641525269, 0.9988139271736145] +CNc1nccc(-c2ccc3ccccc3c2)n1; ['CNc1nccc(Br)n1', 'CN(C)/C=C/C(=O)c1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CNc1nccc(Cl)n1', 'CN', 'COS(=O)(=O)C(F)(F)F', 'CI']; ['OB(O)c1ccc2ccccc2c1', 'CNC(=N)N', 'CNc1nccc(Cl)n1', 'OB(O)c1ccc2ccccc2c1', 'Clc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1', 'Nc1nccc(-c2ccc3ccccc3c2)n1']; [0.9999724626541138, 0.9999566078186035, 0.9998316764831543, 0.9990960955619812, 0.9937190413475037, 0.9930703639984131, 0.8693506121635437] +CNc1nccc(CCc2ccc(O)c(OC)c2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(O)c(F)c2)n1; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9998487830162048] +CNc1nccc(-c2cc(F)c3nc(C)[nH]c3c2)n1; [None]; [None]; [0] +CNc1nccc(-c2cnn3ncccc23)n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9999350905418396] +CNc1nccc(COc2ccccc2Cl)n1; ['CNc1nccc(CO)n1', 'CNc1nccc(CO)n1', 'CNc1nccc(CO)n1', 'CNc1nccc(CO)n1']; ['Clc1ccccc1Br', 'Clc1ccccc1I', 'Oc1ccccc1Cl', 'Fc1ccccc1Cl']; [0.9393224120140076, 0.9259769916534424, 0.9151335954666138, 0.8919840455055237] +CNc1nccc(-c2cc(C(=O)OC)ccc2Cl)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; [0.9999680519104004, 0.9999566078186035, 0.9999133348464966, 0.9988797307014465, 0.991375207901001] +CNc1nccc(-c2c[nH]c3cnccc23)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9989373683929443, 0.9956833124160767] +CNc1nccc(-c2ccnc(N)c2)n1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.9999596476554871, 0.999945342540741, 0.9997192621231079, 0.9991387128829956] +CNc1nccc(-c2ccc(F)c(Cl)c2)n1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'OB(O)c1ccc(F)c(Cl)c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl']; [0.9999990463256836, 0.9999929666519165, 0.9999855160713196, 0.9995297789573669, 0.9990181922912598] +CNc1nccc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +CNc1nccc(-c2c(C)ccc3[nH]ncc23)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999979734420776, 0.9999955892562866, 0.9998171329498291, 0.9990705847740173] +CNc1nccc(-c2cnc(O)c(Cl)c2)n1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9999909400939941] +CNc1nccc(-c2cc(O)ccc2Cl)n1; [None]; [None]; [0] +CNc1nccc(-c2cc(CO)ccc2C)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B(O)O']; [0.9995562434196472, 0.9928969144821167, 0.9833630323410034] +CNc1nccc(-c2ccc(O)cc2O)n1; [None]; [None]; [0] +CNc1nccc(-c2c[nH]c(C(N)=O)c2)n1; [None]; [None]; [0] +CNc1nccc(-c2cc(OC)cc(OC)c2)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1']; [0.9999895095825195, 0.999956488609314, 0.9998604655265808, 0.9997925758361816] +CCOc1cccc(-c2ccnc(NC)n2)c1; ['CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; [0.99986732006073, 0.9998596906661987, 0.9997334480285645, 0.9993739128112793] +CNc1nccc(-c2ccc(OC)c(OC)c2)n1; ['CNC(=N)N', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['COc1ccc(C(=O)C=CN(C)C)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC']; [0.9999985694885254, 0.9999470710754395, 0.9998495578765869, 0.9997451305389404] +CNc1nccc(CCc2cc(OC)cc(OC)c2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(NC(N)=O)cc2)n1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['CNc1nccc(Cl)n1']; [0.9999721646308899] +CNc1nccc(-c2cnc3[nH]ccc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'Brc1cnc2[nH]ccc2c1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'CNc1nccc(Cl)n1']; [0.9999995231628418, 0.9999971389770508, 0.9999752044677734, 0.9999102354049683, 0.9997998476028442] +CNc1nccc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(S(C)(=O)=O)cc2)n1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999992251396179, 0.9999979138374329, 0.9998964667320251] +CNc1nccc(-c2cncc(O)c2)n1; ['CNc1nccc(Br)n1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['OB(O)c1cncc(O)c1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'OB(O)c1cncc(O)c1']; [0.999725878238678, 0.9995409846305847, 0.9980920553207397, 0.9937669038772583] +CNc1nccc(-c2ccc3nc(C)[nH]c3c2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc3c(c2)CC(=O)N3)n1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CNc1nccc(Br)n1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1', 'CNc1ncccn1']; ['CNc1nccc(Br)n1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'CNc1nccc(Cl)n1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9998844861984253, 0.9995030760765076, 0.9992632865905762, 0.9967999458312988, 0.9536242485046387, 0.7791321873664856] +CCc1cc(O)ccc1-c1ccnc(NC)n1; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['CNc1nccc(Cl)n1']; [0.9987801909446716] +CNc1nccc(N(C)c2ccc3c(C)n[nH]c3c2)n1; [None]; [None]; [0] +CNc1nccc(-c2[nH]nc(C)c2C)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccnc(NC)n1; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CNc1nccc(Cl)n1']; [0.9997341632843018] +CNc1nccc(N(C)c2cccc(Cl)c2)n1; ['CNc1cccc(Cl)c1']; ['CNc1nccc(Cl)n1']; [0.8342633247375488] +CNC(=O)c1cccc2cc(-c3ccnc(NC)n3)ccc12; [None]; [None]; [0] +CNc1nccc(-c2ccc(O)cc2C)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O']; [0.9888673424720764, 0.9796075820922852] +CNc1nccc([C@H](C)CC(N)=O)n1; [None]; [None]; [0] +CNc1nccc(-c2ccncc2Cl)n1; ['CNc1nccc(Br)n1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CNc1nccc(Cl)n1']; ['OB(O)c1ccncc1Cl', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'OB(O)c1ccncc1Cl']; [0.9997131824493408, 0.9994876384735107, 0.9982080459594727, 0.9924839735031128] +CNc1nccc(-c2ccnc(NC)n2)n1; [None]; [None]; [0] +CCc1sccc1-c1ccnc(NC)n1; [None]; [None]; [0] +CNc1nccc(-c2cc(Cl)c(O)c(Cl)c2)n1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1']; [0.9993822574615479, 0.9713942408561707] +CNc1nccc(-c2ccc3c(c2)CCN3)n1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999856948852539, 0.9999278783798218, 0.999814510345459, 0.9986499547958374] +CNc1nccc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc3[nH]c(=O)[nH]c3c2)n1; ['CNc1nccc(Cl)n1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'CNc1nccc(Cl)n1']; [0.9993034601211548, 0.9985469579696655] +CNc1nccc(Nc2ccncc2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(N)n1', 'Brc1ccncc1', 'CNc1nccc(Br)n1', 'CNc1nccc(N)n1']; ['Nc1ccncc1', 'Ic1ccncc1', 'CNc1nccc(N)n1', 'Nc1ccncc1', 'Clc1ccncc1']; [0.9998054504394531, 0.9993817210197449, 0.9984645843505859, 0.9980547428131104, 0.9962358474731445] +CNc1nccc(-c2ncc(F)c(NC)n2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc(NC)n2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; [0.999993085861206, 0.9998760223388672] +CNc1nccc(-c2ccc(Br)cc2F)n1; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1']; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F']; [0.9999760389328003, 0.999958872795105, 0.9998962879180908, 0.9994093179702759] +CNc1nccc(-c2cc(C(=O)[O-])c(C)o2)n1; [None]; [None]; [0] +CNc1nccc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +CNc1nccc(-c2[nH]nc3ccc(F)cc23)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(=O)NC3CC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [0.9999997615814209, 0.9999996423721313, 0.9999990463256836, 0.9999898672103882] +CNc1nccc(-c2cc(O)cc(Br)c2)n1; ['CNc1nccc(Cl)n1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['OB(O)c1cc(O)cc(Br)c1', 'CNc1nccc(Cl)n1']; [0.999458372592926, 0.99769127368927] +CNc1nccc(-c2ccc(C(N)=O)c(C)c2)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [0.9999963045120239, 0.9999834299087524] +CNc1nccc(N(C)c2cccc3[nH]ncc23)n1; ['CNc1cccc2[nH]ncc12']; ['CNc1nccc(Cl)n1']; [0.9805264472961426] +CNc1nccc(-c2c(N)cnn2C)n1; [None]; [None]; [0] +CNc1nccc(-c2ccc3nc(C)oc3c2)n1; ['CNc1nccc(Cl)n1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1']; [0.9999837875366211] +CNc1nccc(-c2cc(C)c(O)c(C)c2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O']; [0.99709153175354, 0.9830120801925659] +CNc1nccc(-c2cc(F)c(O)c(F)c2)n1; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'CNc1nccc(Cl)n1']; ['CNc1nccc(Cl)n1', 'OB(O)c1cc(F)c(O)c(F)c1']; [0.9995739459991455, 0.995762288570404] +CNc1nccc(-c2ccc3c(=O)[nH][nH]c3c2)n1; ['CNc1ncccn1']; ['O=c1[nH][nH]c2cc(Br)ccc12']; [0.8953568935394287] +CNc1nccc(Oc2ccc(F)cc2F)n1; ['CNc1nccc(Cl)n1']; ['Oc1ccc(F)cc1F']; [0.9999555349349976] +CNc1nccc(-c2cccc(SC)c2)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1']; [0.999995231628418, 0.9999755620956421, 0.9994548559188843, 0.9943740367889404, 0.9921362400054932] +CNc1nccc(-c2c(-c3ccccc3)noc2C)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; [0.999990701675415, 0.9998520016670227] +CNc1nccc(OCc2cccc3ccccc23)n1; ['CNc1nccc(Cl)n1']; ['OCc1cccc2ccccc12']; [0.9502324461936951] +CNc1nccc(CCc2ccc(F)cc2F)n1; [None]; [None]; [0] +CNc1nccc(OCc2ccc(F)cc2F)n1; ['CNc1nccc(Cl)n1']; ['OCc1ccc(F)cc1F']; [0.9991447329521179] +CNc1nccc(NCc2c(F)cccc2Cl)n1; ['CNc1nccc(Br)n1', 'CNc1nccc(N)n1', 'CNc1nccc(Cl)n1']; ['NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9999992847442627, 0.999988317489624, 0.9999778270721436] +CNc1nccc(CCc2c[nH]c3ccccc23)n1; [None]; [None]; [0] +CNc1nccc(-c2ocnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +COc1ccc(-c2cccc3ncccc23)cc1; ['Brc1cccc2ncccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(Br)cc1', 'Brc1cccc2ncccc12', 'COc1ccc(OS(=O)(=O)c2ccc(C)cc2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Brc1cccc2ncccc12', 'Br[Mg]c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'COc1ccc(Cl)cc1', 'Brc1cccc2ncccc12', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccccc1', 'Br[Mg]c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'COc1ccc(-c2cccc(N)c2)cc1', 'COc1ccccc1', 'COc1ccc(B(O)O)cc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'Ic1cccc2ncccc12', 'Ic1cccc2ncccc12', 'Clc1cccc2ncccc12', 'Ic1cccc2ncccc12', 'COc1ccc(Cl)cc1', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'COc1ccc(I)cc1', 'OB(O)c1cccc2ncccc12', 'Ic1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(OS(=O)(=O)c2ccc(C)cc2)cc1', 'COc1ccc([Mg]Br)cc1', 'OB(O)c1cccc2ncccc12', 'COc1ccc(Br)cc1', 'Clc1cccc2ncccc12', 'OCc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'COc1ccc(Br)cc1', 'COc1ccccc1', 'OCC(O)CO', 'Clc1cccc2ncccc12', 'c1ccc2ncccc2c1']; [0.9999997615814209, 0.999998927116394, 0.9999958872795105, 0.9999938607215881, 0.9999885559082031, 0.999984860420227, 0.9999719858169556, 0.9999716281890869, 0.9999376535415649, 0.9999254941940308, 0.9999233484268188, 0.9999231100082397, 0.9999152421951294, 0.9999042749404907, 0.9998763799667358, 0.9998622536659241, 0.9997931718826294, 0.9997830390930176, 0.9996939897537231, 0.9996703267097473, 0.9989181756973267, 0.9980250597000122, 0.9974459409713745, 0.9967638254165649, 0.9903769493103027, 0.989659309387207, 0.9772824645042419, 0.9772003889083862, 0.9471433758735657, 0.9138628244400024, 0.8810718655586243, 0.8287276029586792] +COc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(OC)cc2)cc1; ['CN', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', None, 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CN', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['COc1ccc(-c2ccc(S(=O)(=O)Cl)cc2)cc1', 'COc1ccc(I)cc1', None, 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(-c2ccccc2)cc1', 'COc1ccc(I)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc([Mg]Br)cc1']; [0.9998207688331604, 0.9997893571853638, 0, 0.9996992349624634, 0.9996992349624634, 0.9991960525512695, 0.9967242479324341, 0.9967242479324341, 0.9959326982498169, 0.9954386353492737, 0.9954386353492737, 0.9912323951721191, 0.9751189351081848, 0.9746790528297424, 0.9467239379882812, 0.8032339811325073] +COc1ccc(-c2c(Cl)ccc3c2OCO3)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(Cl)c(O)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ccccc23)cc1; ['CC(C)(C)OC(=O)n1nc(I)c2ccccc21', 'Brc1n[nH]c2ccccc12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'Brc1n[nH]c2ccccc12', None, 'COc1ccc(B(O)O)cc1']; ['COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12', 'Ic1n[nH]c2ccccc12', 'COc1ccc(B(O)O)cc1', None, 'Clc1n[nH]c2ccccc12']; [0.9999991655349731, 0.9999902248382568, 0.9999853372573853, 0.9998229742050171, 0.9996271133422852, 0.999284565448761, 0, 0.9978761672973633] +CNc1nccc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +COc1ccc(Oc2ccc(F)cc2)cc1; ['COc1ccc(O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(O)cc1', 'C[O-]', 'CO', 'CO', 'CI', 'COc1ccc(OS(=O)(=O)C(F)(F)F)c([Si](C)(C)C)c1', 'COc1ccc(O)cc1', 'COc1ccc(B(O)O)cc1', 'COS(=O)(=O)OC', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(F)cc1', 'COc1ccc(O)cc1', 'COc1ccc(I)cc1', 'CC(C)(C)[Si](C)(C)Oc1ccc(F)cc1', None]; ['Fc1ccc(Br)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Fc1ccc(Cl)cc1', 'Fc1ccc(Oc2ccc(Br)cc2)cc1', 'Fc1ccc(Oc2ccc(I)cc2)cc1', 'Fc1ccc(Oc2ccc(Br)cc2)cc1', 'Oc1ccc(Oc2ccc(F)cc2)cc1', 'Oc1ccc(F)cc1', 'OB(O)c1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(Oc2ccc(F)cc2)cc1', 'Fc1ccc(F)cc1', 'CS(=O)(=O)Oc1ccc(F)cc1', 'Fc1ccc(I)cc1', 'Oc1ccc(F)cc1', 'COc1ccc(F)cc1', None]; [0.9859410524368286, 0.9859410524368286, 0.980307936668396, 0.980307936668396, 0.9696918725967407, 0.968478262424469, 0.9604246616363525, 0.9560761451721191, 0.9560197591781616, 0.9552098512649536, 0.9552098512649536, 0.9528828859329224, 0.9260864853858948, 0.9260864853858948, 0.9146770238876343, 0.9146770238876343, 0.8937641382217407, 0] +COc1ccc(-c2ccc(C(N)=O)cc2OC)cc1; ['COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1']; [0.9999927282333374, 0.9999523162841797, 0.9999432563781738, 0.9997438788414001] +COc1ccc(-c2c(Cl)cccc2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2ccnc(N)n2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(C(=O)C=CN(C)C)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', None, None]; ['Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'N=C(N)N', 'Nc1nccc(Cl)n1', 'Nc1ncccn1', None, None]; [0.9999929666519165, 0.9999569058418274, 0.9998910427093506, 0.9996775388717651, 0.9942054748535156, 0, 0] +COc1ccc(-c2ccc(C(N)=O)cc2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)cc2F)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(F)c3nc(C)[nH]c3c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2F)cc1; [None]; [None]; [0] +COc1ccc(-c2cn[nH]c2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(F)ccc2OC)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1Cl', 'CCO[Si](OCC)(OCC)c1ccc(OC)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc(C(=O)[O-])cc1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(B(O)O)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1F', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1OC', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1', 'CCO[Si](OCC)(OCC)c1ccc(OC)cc1', 'COc1ccc(F)cc1', 'COc1ccc(C(=O)[O-])cc1', 'COc1ccc(F)cc1N', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1SC', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1', 'CCO[Si](OCC)(OCC)c1ccc(OC)cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccc(F)cc1F', 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1']; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(I)cc1', 'COc1ccc([Zn]I)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Cl', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(OC)cc1', 'COc1ccc(I)cc1', 'COc1ccccc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(I)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1C(=O)O', 'COc1ccc([Si](C)(C)[O-])cc1', 'COc1ccc(F)cc1F', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(N)cc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(NN)cc1', 'COc1ccc(OS(=O)(=O)c2ccc(C)cc2)cc1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1OC', 'COc1ccc(F)cc1S(=O)(=O)Cl', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1N', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccccc1', 'COc1ccc(F)cc1O', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(O)cc1', 'COc1ccc(F)cc1C(=O)O', 'COc1ccc(S(=O)(=O)Cl)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1F', 'COc1ccc(OC)cc1', 'COc1ccc(F)cc1C(=O)O', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(F)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccccc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COc1ccc([N+]#N)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccc(I)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc([Si](C)(C)C)cc1', 'COc1ccc([Zn]I)cc1', 'COc1ccc(F)cc1OC', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1Cl', 'COc1ccccc1', 'COc1ccc(F)cc1', 'COc1ccc(NN)cc1']; [0.999999463558197, 0.9999908208847046, 0.9999878406524658, 0.9999818205833435, 0.9999812245368958, 0.9999659061431885, 0.9999449849128723, 0.9999145269393921, 0.9999029636383057, 0.999894380569458, 0.9998681545257568, 0.9998669624328613, 0.9998090863227844, 0.999799370765686, 0.9997259974479675, 0.9996383190155029, 0.9996284246444702, 0.9994407892227173, 0.9994194507598877, 0.9993758201599121, 0.9993656277656555, 0.999360978603363, 0.999356210231781, 0.9993256330490112, 0.9992657899856567, 0.999214231967926, 0.9992116093635559, 0.9991898536682129, 0.9991028308868408, 0.9990668296813965, 0.9990437030792236, 0.9990248680114746, 0.9989616274833679, 0.9985448718070984, 0.9985349178314209, 0.9980894327163696, 0.9980441927909851, 0.9980295300483704, 0.9976654648780823, 0.9976193904876709, 0.9975572824478149, 0.9972336292266846, 0.9971760511398315, 0.9970642328262329, 0.996942400932312, 0.9968827962875366, 0.9960962533950806, 0.9953644275665283, 0.9948378801345825, 0.9933761358261108, 0.993270993232727, 0.9921174049377441, 0.9905749559402466, 0.9904260635375977, 0.9886108636856079, 0.9883532524108887, 0.9871872663497925, 0.9870853424072266, 0.9859488010406494, 0.9851586818695068, 0.9842679500579834, 0.983344316482544, 0.9738609790802002, 0.9729140996932983, 0.9718410968780518, 0.9692153930664062, 0.9622411727905273, 0.958019495010376, 0.9516960978507996, 0.9459309577941895, 0.9440053105354309, 0.9388442635536194, 0.9101966023445129, 0.9060657024383545, 0.893713116645813, 0.8748427629470825, 0.8430982828140259, 0.8335415720939636, 0.8228136301040649, 0.7865943312644958] +COC(=O)c1ccc(-c2ccc(OC)cc2)o1; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COc1ccc(-c2ccc(C(=O)O)o2)cc1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(Br)o1', 'COS(=O)(=O)OC', 'CO', 'COC(=O)c1ccc(Br)o1', 'CI', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'CC(=O)Cl', None, 'COC(=O)c1ccco1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(I)cc1', 'C[Si](C)(C)C=[N+]=[N-]', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(-c2ccc(C(=O)O)o2)cc1', 'COc1ccc(-c2ccc(C(=O)O)o2)cc1', 'COc1ccccc1', 'COc1ccc(-c2ccc(C(=O)O)o2)cc1', 'COc1ccc(C(=O)O)cc1', 'COc1ccccc1', 'COc1ccc(-c2ccc(C(=O)O)o2)cc1', None, 'COc1ccc([N+]#N)cc1']; [0.9999958276748657, 0.9998667240142822, 0.9997899532318115, 0.9991788864135742, 0.9988459348678589, 0.9986860156059265, 0.9985878467559814, 0.9973864555358887, 0.994432806968689, 0.9911594390869141, 0.989804744720459, 0.9888980388641357, 0.9879945516586304, 0.9840851426124573, 0.9833366870880127, 0.9815233945846558, 0.9801508784294128, 0.9566828012466431, 0, 0.9415119290351868] +COc1ccc(-c2ccc(C(=O)[O-])cc2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['O=C([O-])c1ccc(Cl)cc1', 'O=C([O-])c1ccccc1', 'O=C([O-])c1ccc(Cl)cc1']; [0.9997190237045288, 0.9977790117263794, 0.9317299127578735] +COc1ccc(CCc2ccc(O)c(OC)c2)cc1; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O']; ['COc1ccc(CC[Mg]Br)cc1', 'COc1ccc(CCBr)cc1']; [0.9552675485610962, 0.8535668849945068] +COc1ccc(-c2ccc(F)cc2OC)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(-c3ccc(O)cc3O)cc2)cc1; [None]; [None]; [0] +COc1ccc(-c2cn(C)c3ccccc23)cc1; ['COc1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(N)cc1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999393224716187, 0.9974549412727356, 0.9861667156219482, 0.9708417057991028, 0.9683911800384521, 0.8041003942489624] +COc1ccc(-c2ccc(O)c(OC)c2)cc1; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(B(O)O)ccc1O[Si](C)(C)C(C)(C)C', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(I)ccc1O']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COc1ccc(N)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccccc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(I)cc1']; [0.9999920129776001, 0.9999791383743286, 0.9999531507492065, 0.9999518394470215, 0.9999465942382812, 0.9999369978904724, 0.9998447299003601, 0.9998282194137573, 0.9998060464859009, 0.9995267391204834, 0.9994142055511475, 0.9992697834968567, 0.9992062449455261, 0.9985179305076599, 0.9983247518539429, 0.9983059167861938, 0.9976810812950134, 0.9973242282867432, 0.9969820976257324, 0.9967659711837769, 0.9960278272628784, 0.9918211102485657, 0.9912235736846924, 0.9859119653701782, 0.9846336841583252, 0.9794198274612427, 0.9760900735855103, 0.9630745649337769, 0.9453144073486328, 0.9151020646095276, 0.8901321887969971] +COc1ccc(-c2ccc(O)c(F)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(I)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COc1ccc(Br)cc1', None, 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc([Mg]Br)cc1', 'CI']; ['Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Oc1ccc(Cl)cc1F', 'COc1ccc(Cl)cc1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Nc1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Cl)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', None, 'Oc1ccc(Br)cc1F', 'Oc1ccc(Br)cc1F', 'Oc1ccc(Cl)cc1F', 'Oc1ccc(-c2ccc(O)c(F)c2)cc1']; [0.9999850988388062, 0.9999518394470215, 0.9998903274536133, 0.9998807311058044, 0.9998726844787598, 0.9998494386672974, 0.9998064041137695, 0.9992632865905762, 0.9989820718765259, 0.9989610910415649, 0.9980381727218628, 0.9957752227783203, 0.9945734143257141, 0.9936542510986328, 0.992340624332428, 0.9917551279067993, 0.9906559586524963, 0.9899265766143799, 0.9892374873161316, 0.9837648868560791, 0.9765520691871643, 0.9721510410308838, 0.9660991430282593, 0, 0.9146276712417603, 0.8955085873603821, 0.8455817103385925, 0.7668761014938354] +COc1ccc(-c2cccc(Br)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(OC)cc2)c1; [None]; [None]; [0] +COc1ccc(-c2cnn3ncccc23)cc1; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccccc1']; [0.9999960660934448, 0.9999368190765381, 0.9999046325683594, 0.9998935461044312, 0.9742369651794434] +COc1ccc(-c2c[nH]c3cnccc23)cc1; [None]; [None]; [0] +COc1ccc(-c2ccnc(N)c2)cc1; [None]; [None]; [0] +COc1ccc(COc2ccccc2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(F)c(Cl)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +COc1ccc(-c2c(C)ccc3[nH]ncc23)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(O)ccc2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(C(N)=O)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1']; ['NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1']; [0.9999001622200012, 0.9976245760917664, 0.9948666095733643] +COc1ccc(-c2cnc(O)c(Cl)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Br)cc1']; ['Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Br)cc1Cl']; [0.9999979734420776, 0.9999969005584717, 0.9999926090240479, 0.999985933303833, 0.9999833106994629, 0.999717116355896, 0.9934179782867432, 0.9885435700416565, 0.935340166091919] +COc1ccc(-c2cc(CO)ccc2C)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3nc(C)[nH]c3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc([Mg]Br)cc1']; ['Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999971389770508, 0.9999916553497314, 0.9999902248382568, 0.9999693036079407, 0.999947726726532, 0.9998776316642761, 0.9995114803314209, 0.9957749247550964] +COc1ccc(-c2cc(OC)cc(OC)c2)cc1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(OC)cc3)ccc12; [None]; [None]; [0] +COc1ccc(-c2ccc(OC)c(OC)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]ccc3c2)cc1; ['Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'Brc1cnc2[nH]ccc2c1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'COc1ccc(B(O)O)cc1', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; [0.9999996423721313, 0.9999984502792358, 0.9999976754188538, 0.999996542930603, 0.999985933303833, 0.9999849796295166, 0.9999595880508423, 0.9999502897262573, 0.9999433159828186, 0.9998956918716431, 0.9998194575309753, 0.9994336366653442, 0.9994016289710999, 0.9992537498474121, 0.9991167783737183, 0.9645313024520874] +CCOc1cccc(-c2ccc(OC)cc2)c1; [None]; [None]; [0] +COc1ccc(CCc2cc(OC)cc(OC)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)cc2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(S(C)(=O)=O)cc2)cc1; [None]; [None]; [0] +CNc1nccc(-c2ccc(OC)cc2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNC(=N)N', 'CNc1nccc(Cl)n1', 'CN', None, 'COS(=O)(=O)C(F)(F)F', 'CN', 'CI']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(C(=O)C=CN(C)C)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(-c2ccnc(Cl)n2)cc1', None, 'COc1ccc(-c2ccnc(N)n2)cc1', 'COc1ccc(-c2ccnc(SC)n2)cc1', 'COc1ccc(-c2ccnc(N)n2)cc1']; [0.9999403953552246, 0.9999391436576843, 0.9998400211334229, 0.9993001222610474, 0.9939039349555969, 0, 0.9830544590950012, 0.9212546348571777, 0.8455371856689453] +COc1ccc(-c2cncc(O)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)CC(=O)N3)cc1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(OC)cc1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(OC)cc1; [None]; [None]; [0] +COc1ccc([C@H](C)CC(N)=O)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(C(F)F)n[nH]2)cc1; [None]; [None]; [0] +COc1ccc(N(C)c2ccc3c(C)n[nH]c3c2)cc1; [None]; [None]; [0] +COc1ccc(-c2[nH]nc(C)c2C)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(O)cc2C)cc1; [None]; [None]; [0] +COc1ccc(N(C)c2cccc(Cl)c2)cc1; [None]; [None]; [0] +CNc1nc(-c2ccc(OC)cc2)ncc1F; ['CNc1nc(Cl)ncc1F', 'CNc1nc(Cl)ncc1F']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; [0.9999934434890747, 0.9999597668647766] +COc1ccc(-c2ccncc2Cl)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(O)n3nccc3n2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)CCN3)cc1; ['Brc1ccc2c(c1)CCN2', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'Brc1ccc2c(c1)CCN2', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'Brc1ccc2c(c1)CCN2']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'Ic1ccc2c(c1)CCN2', 'COc1ccc(B(O)O)cc1', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'COc1ccc(Br)cc1']; [0.9999774694442749, 0.999975323677063, 0.9995967149734497, 0.9994295835494995, 0.9993078708648682, 0.9992080330848694, 0.9963558912277222, 0.8472009897232056] +CCc1sccc1-c1ccc(OC)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(Cl)c(O)c(Cl)c2)cc1; [None]; [None]; [0] +COc1ccc(Nc2ccncc2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccncc2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(OS(=O)(=O)c2ccc(C)cc2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(F)cc1', 'COc1ccc(N)cc1', 'Brc1ccncc1', 'COc1ccc(OS(C)(=O)=O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(O)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(I)cc1', 'COc1ccc(N)cc1']; ['Nc1ccncc1', 'COc1ccc(N)cc1', 'Nc1ccncc1', 'OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'COc1ccc(N)cc1', 'Nc1ccncc1', 'Fc1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Ic1ccncc1', 'Nc1ccncc1', 'Oc1ccncc1']; [0.9998964071273804, 0.9996877908706665, 0.9988373517990112, 0.9963918924331665, 0.9926800727844238, 0.9906151294708252, 0.9842642545700073, 0.9829869270324707, 0.9785290956497192, 0.9748197197914124, 0.9577215313911438, 0.9446184635162354, 0.9353829026222229, 0.9198563098907471, 0.9065384268760681, 0.8912796974182129, 0.8616834878921509, 0.8031811714172363] +COc1ccc(-c2cc(C(=O)[O-])c(C)o2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc3[nH]c(=O)[nH]c3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1']; ['O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'COc1ccc(Cl)cc1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1']; [0.9999719858169556, 0.9999586939811707, 0.999953031539917, 0.9999498128890991, 0.9999072551727295, 0.9999017715454102, 0.9998955726623535, 0.9998580813407898, 0.9998475313186646, 0.9998390674591064, 0.9998023509979248, 0.9997592568397522, 0.9996885061264038, 0.9992547631263733, 0.9977697134017944, 0.990992546081543, 0.9867510795593262, 0.8958446979522705] +COc1ccc(N(C)c2cccc3[nH]ncc23)cc1; ['CNc1ccc(OC)cc1', 'Brc1cccc2[nH]ncc12', 'CNc1ccc(OC)cc1', 'CNc1cccc2[nH]ncc12', 'CNc1cccc2[nH]ncc12']; ['Ic1cccc2[nH]ncc12', 'CNc1ccc(OC)cc1', 'Fc1cccc2[nH]ncc12', 'COc1ccc(F)cc1', 'COc1ccc(I)cc1']; [0.9979289174079895, 0.9962294101715088, 0.9900904893875122, 0.8880093693733215, 0.8691361546516418] +CNC(=O)c1ccc(-c2ccc(OC)cc2)cc1; ['CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC=O', 'CN', None, 'CNC=O', 'CCOC(=O)c1ccc(-c2ccc(OC)cc2)cc1', 'CNC(=O)c1ccccc1', 'CNC(=O)c1ccc(Br)cc1', 'CN', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'COc1ccccc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(-c2ccc(Br)cc2)cc1', 'COc1ccc(-c2ccc(C(=O)O)cc2)cc1', None, 'COc1ccc(-c2ccc(C(=O)O)cc2)cc1', 'CN', 'COc1ccc(B(O)O)cc1', 'COc1ccc([Mg]Br)cc1', 'COC(=O)c1ccc(-c2ccc(OC)cc2)cc1', 'COc1ccccc1', 'COc1ccccc1']; [0.9999752640724182, 0.9999752640724182, 0.9999661445617676, 0.9999626874923706, 0.9999626874923706, 0.9999215006828308, 0.9999215006828308, 0.9998986721038818, 0.9998986721038818, 0.9996445178985596, 0.9995644688606262, 0.9995644688606262, 0.9994631409645081, 0.9994631409645081, 0.9994134902954102, 0.9975971579551697, 0.9916160702705383, 0.9916160702705383, 0.9902402758598328, 0.988113522529602, 0, 0.9663994312286377, 0.9630242586135864, 0.9518896341323853, 0.9240060448646545, 0.870646595954895, 0.8559483289718628, 0.7519769668579102] +COc1ccc(-c2[nH]nc3ccc(F)cc23)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(I)cc1']; ['Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9997892379760742, 0.9996541142463684, 0.9963642358779907, 0.9913163781166077] +COc1ccc(-c2ccc(Br)cc2F)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)c(C)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', None, 'COc1ccc(Br)cc1']; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', None, 'Cc1cc(Br)ccc1C(N)=O']; [0.9999967217445374, 0.9999953508377075, 0.9999914169311523, 0.9999902844429016, 0.9999854564666748, 0.9999490976333618, 0.9999330043792725, 0, 0.9093465805053711] +COc1ccc(-c2c(N)cnn2C)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(O)cc(Br)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)[Si](C)(C)Oc1cc(Br)cc(B(O)O)c1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccc(I)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccc(Br)cc1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(I)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(I)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'CI', 'COS(=O)(=O)OC', 'COc1ccc([Mg]Br)cc1']; ['Oc1cc(Br)cc(I)c1', 'COc1ccc(Br)cc1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'COc1ccc(I)cc1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'O=C(O)c1ccc(Br)cc1O', 'Oc1cc(Cl)cc(Br)c1', 'COc1ccc(Br)cc1', 'OB(O)c1cc(O)cc(Br)c1', 'COc1ccc(Cl)cc1', 'Oc1cc(F)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'O=C(O)c1ccc(O)cc1Br', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'O=Cc1ccc(Br)cc1O', 'Oc1ccc(-c2cc(O)cc(Br)c2)cc1', 'Oc1ccc(-c2cc(O)cc(Br)c2)cc1', 'Oc1cc(Br)cc(Br)c1']; [0.9999959468841553, 0.9997698664665222, 0.9997692704200745, 0.9997676610946655, 0.9996859431266785, 0.9996496438980103, 0.9996103048324585, 0.998915433883667, 0.9987139701843262, 0.9974789619445801, 0.9968226552009583, 0.99317467212677, 0.9873995780944824, 0.9866197109222412, 0.9849835634231567, 0.9805461764335632, 0.9767080545425415, 0.9623212218284607, 0.9607652425765991, 0.9535544514656067, 0.9517183303833008, 0.9407844543457031, 0.9312960505485535, 0.9286617040634155, 0.9044584631919861, 0.7655506134033203, 0.7562589645385742] +COc1ccc(-c2ccc(C(=O)NC3CC3)cc2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', None, 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', None, 'COc1ccc(-c2ccc(C(=O)O)cc2)cc1', 'COc1ccc(Cl)cc1', 'CCOC(=O)c1ccc(-c2ccc(OC)cc2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Zn]I)cc1', 'COC(=O)c1ccc(-c2ccc(OC)cc2)cc1', 'COc1ccc([Mg]Br)cc1', 'CC(C)(C)OC(=O)NC1CC1', 'COc1ccc(Br)cc1', 'COc1ccccc1', 'COc1ccccc1']; ['O=C(NC1CC1)c1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', None, 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', None, 'NC1CC1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'NC1CC1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'NC1CC1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'COc1ccc(-c2ccc(C(=O)O)cc2)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999951124191284, 0.9999951124191284, 0.999992311000824, 0.999992311000824, 0.9999707937240601, 0.9999707937240601, 0, 0.9999179840087891, 0.9999179840087891, 0.9999128580093384, 0.9999011754989624, 0, 0.99983811378479, 0.9997193813323975, 0.9994218349456787, 0.9993162155151367, 0.9992296695709229, 0.9992296695709229, 0.9984017610549927, 0.9983681440353394, 0.9707006216049194, 0.9664944410324097, 0.9345051050186157, 0.9343961477279663, 0.9331350326538086] +COc1ccc(-c2ccc3nc(C)oc3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(I)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccccc1']; ['Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'COc1ccc2nc(C)oc2c1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999940395355225, 0.9999909400939941, 0.9999902248382568, 0.9999786615371704, 0.9999767541885376, 0.9999716877937317, 0.9999675154685974, 0.9999656677246094, 0.9999634027481079, 0.9999603629112244, 0.9998847246170044, 0.9998265504837036, 0.9995461702346802, 0.9993287920951843, 0.995551347732544, 0.9862079620361328, 0.9777684211730957, 0.962990403175354, 0.8899226188659668] +COc1ccc(-c2cc(C)c(O)c(C)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccc(N)cc1', 'COc1cccc(Cl)c1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(Br)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'COc1ccc([Mg]Br)cc1', 'CCO[Si](OCC)(OCC)c1ccc(OC)cc1', 'COc1ccc(NN)cc1', 'COc1ccc([N+]#N)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([B-](F)(F)F)cc1', 'COc1ccccc1', 'COc1ccc(Cl)cc1']; ['Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(N)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(F)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cccc(C)c1O']; [0.9999698996543884, 0.9999581575393677, 0.9999215602874756, 0.9996505975723267, 0.9995765686035156, 0.9995009899139404, 0.9992669224739075, 0.9991582632064819, 0.9985503554344177, 0.9970601797103882, 0.9956474304199219, 0.9924664497375488, 0.9778338670730591, 0.9770441651344299, 0.9750839471817017, 0.9745229482650757, 0.9741920232772827, 0.9729483127593994, 0.9472157955169678, 0.9368555545806885, 0.9360564351081848, 0.9294301271438599, 0.9170249104499817, 0.9051215648651123, 0.9009690284729004, 0.8956172466278076, 0.8827622532844543, 0.8800387382507324, 0.8649401068687439, 0.857162356376648, 0.8360306024551392, 0.8070167303085327, 0.7823995351791382, 0.7595680952072144] +COc1ccc(-c2ocnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +COc1ccc(-c2cc(F)c(O)c(F)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Cl)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([N+]#N)cc1']; ['Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'COc1ccc(Br)cc1', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'COc1ccc(I)cc1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cc(F)cc1F', 'Oc1c(F)cccc1F']; [0.9999788403511047, 0.9999502897262573, 0.9996599555015564, 0.9995898008346558, 0.9995256066322327, 0.9994494915008545, 0.998273491859436, 0.9981515407562256, 0.9958074688911438, 0.9953913688659668, 0.9949928522109985, 0.9939379096031189, 0.9915133714675903, 0.9897779226303101, 0.9878474473953247, 0.9821557998657227, 0.9750507473945618, 0.9148058891296387, 0.9122934341430664, 0.8970279693603516, 0.8943423628807068, 0.8666678667068481, 0.7947330474853516, 0.7748836874961853] +COc1ccc(-c2ccc3c(=O)[nH][nH]c3c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'COc1ccc(Br)cc1', 'COc1ccccc1']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999957084655762, 0.9999771118164062, 0.9996472597122192, 0.9935134649276733, 0.965839147567749, 0.9023259282112122] +COc1ccc(-c2cccc(SC)c2)cc1; [None]; [None]; [0] +COc1ccc(CCc2c[nH]c3ccccc23)cc1; ['Brc1c[nH]c2ccccc12', 'COc1ccc(CC[Zn]Br)cc1', 'COc1ccc(CCO)cc1', 'Brc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'COc1ccc(CCCl)cc1', 'Brc1c[nH]c2ccccc12']; ['COc1ccc(CC[Zn]Br)cc1', 'Ic1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'COc1ccc(CCBr)cc1', 'COc1ccc(CC[Mg]Cl)cc1', 'c1ccc2[nH]ccc2c1', 'COc1ccc(CC[Mg]Br)cc1']; [0.9972745180130005, 0.9969662427902222, 0.9340035915374756, 0.870392918586731, 0.8689167499542236, 0.8673300743103027, 0.7714186906814575] +COc1ccc(OCc2cccc3ccccc23)cc1; ['COc1ccc(OS(=O)(=O)C(F)(F)F)c([Si](C)(C)C)c1', 'COc1ccc(O)cc1', 'BrCc1cccc2ccccc12', None, 'COc1ccc(OC)cc1', 'COc1ccc(O)cc1', None, 'COc1ccc(Cl)cc1', 'COc1ccc(F)cc1']; ['OCc1cccc2ccccc12', 'ClCc1cccc2ccccc12', 'COc1ccc(O)cc1', None, 'ClCc1cccc2ccccc12', 'OCc1cccc2ccccc12', None, 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9997873306274414, 0.9981689453125, 0.9969335794448853, 0, 0.9934887886047363, 0.98697429895401, 0, 0.8897736072540283, 0.8895093202590942] +COc1ccc(NCc2c(F)cccc2Cl)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(N)cc1', 'COc1ccc([N+](=O)[O-])cc1', 'COc1ccc(F)cc1', 'COc1ccc(N)cc1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'Fc1cccc(Cl)c1CCl', 'NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'OCc1c(F)cccc1Cl']; [0.9999079704284668, 0.9999074935913086, 0.9998759031295776, 0.9998639822006226, 0.999830961227417, 0.9992235898971558, 0.9991477727890015, 0.9979289770126343, 0.9978348016738892, 0.9954462647438049, 0.9933898448944092] +COc1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1; ['COc1ccc(B(O)O)cc1', 'COc1ccc(-c2cn[nH]c2)cc1', 'COc1ccc([B-](F)(F)F)cc1']; ['Clc1ccc(-c2ccn[nH]2)cc1', 'OB(O)c1ccc(Cl)cc1', 'Clc1ccc(-c2ccn[nH]2)cc1']; [0.949547290802002, 0.8795239329338074, 0.7568012475967407] +COc1ccc(Oc2ccc(F)cc2F)cc1; [None]; [None]; [0] +COc1ccc(-c2c(-c3ccccc3)noc2C)cc1; [None]; [None]; [0] +COc1ccc(OCc2ccc(F)cc2F)cc1; [None]; [None]; [0] +COc1ccc(CCc2ccc(F)cc2F)cc1; [None]; [None]; [0] +COc1cc(-c2cccc3ncccc23)ccc1Cl; ['Brc1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Brc1cccc2ncccc12', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cccc2ncccc12', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1ccccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Ic1cccc2ncccc12', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'OB(O)c1cccc2ncccc12', 'Clc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'COc1cc(B(O)O)ccc1Cl', 'Ic1cccc2ncccc12', 'Ic1cccc2ncccc12', 'COc1cc(Cl)ccc1Cl', 'Clc1cccc2ncccc12', 'COc1cc(Br)ccc1Cl', 'OCc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12']; [1.0, 0.9999997615814209, 0.9999997615814209, 0.9999997615814209, 0.9999964237213135, 0.9999955892562866, 0.9999953508377075, 0.9999945163726807, 0.9999908208847046, 0.9999729990959167, 0.9999345541000366, 0.999850869178772, 0.999843418598175, 0.9994940161705017, 0.9924145340919495, 0.980276346206665, 0.8827515840530396] +COc1cc(-c2cccc(O)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'C=CCOc1cccc(B(O)O)c1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccc(C(=O)O)cc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1c(Cl)cccc1C=O', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1ccccc1Cl', 'COc1c(Cl)cccc1C(=O)O']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'COc1cc(Cl)ccc1Cl', 'OB(O)c1cccc(O)c1', 'Nc1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'Oc1cccc([B-](F)(F)F)c1', 'Oc1cccc([B-](F)(F)F)c1', 'COc1cc(Br)ccc1Cl', 'Oc1cccc(Cl)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(F)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'O=C(O)c1ccc(O)cc1', 'O=C(O)c1ccccc1O', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1']; [0.9999977350234985, 0.9999972581863403, 0.9999935626983643, 0.999990701675415, 0.9999614357948303, 0.9999442100524902, 0.9999352693557739, 0.9999035596847534, 0.9998615980148315, 0.999809980392456, 0.9997398853302002, 0.9996604919433594, 0.9993393421173096, 0.9993338584899902, 0.9990001320838928, 0.9988783001899719, 0.9980990886688232, 0.9980504512786865, 0.9946616888046265, 0.9917989373207092, 0.9719918966293335, 0.9566826820373535, 0.9561036825180054, 0.9539685249328613, 0.94838547706604, 0.938003420829773, 0.9214019775390625, 0.9089967012405396, 0.8756332993507385, 0.8083249926567078, 0.7930447459220886, 0.7891309261322021] +CNS(=O)(=O)c1ccc(-c2ccc(Cl)c(OC)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; [0.9999978542327881, 0.9999967813491821, 0.9999915361404419, 0.9999707341194153, 0.9999290108680725, 0.99992835521698, 0.9997910261154175, 0.9994305372238159, 0.9956022500991821, 0.9952012300491333, 0.9873070120811462] +COc1cc(-c2n[nH]c3ccccc23)ccc1Cl; ['CC(C)(C)OC(=O)n1nc(I)c2ccccc21', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Brc1n[nH]c2ccccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Brc1n[nH]c2ccccc12', 'COc1cc(B(O)O)ccc1Cl', 'Brc1n[nH]c2ccccc12']; ['COc1cc(B(O)O)ccc1Cl', 'Ic1n[nH]c2ccccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Clc1n[nH]c2ccccc12', 'Ic1n[nH]c2ccccc12', 'COc1cc(B(O)O)ccc1Cl', 'Clc1n[nH]c2ccccc12', 'COc1cc(Br)ccc1Cl']; [0.9999991655349731, 0.9999967813491821, 0.9999960660934448, 0.9999579787254333, 0.9998688697814941, 0.9993407130241394, 0.9974420666694641, 0.9283004403114319] +COc1cc(-c2ccc(C(N)=O)cc2)ccc1Cl; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999992847442627, 0.9999963641166687, 0.9999954104423523, 0.9999682903289795, 0.9999591112136841, 0.9998525381088257, 0.9992901086807251, 0.9990682601928711, 0.9982872009277344, 0.9903908371925354, 0.9569581747055054, 0.9205971956253052, 0.9200634956359863] +COc1cc(-c2c(Cl)ccc3c2OCO3)ccc1Cl; [None]; [None]; [0] +COc1cc(Oc2ccc(F)cc2)ccc1Cl; ['COc1cc(O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'CC(C)(C)[Si](C)(C)Oc1ccc(F)cc1', 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(F)ccc1Cl', None, 'COc1cc(Cl)ccc1Cl', 'COc1cc(O)ccc1Cl']; ['Fc1ccc(Br)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Fc1ccc(I)cc1', 'Oc1ccc(F)cc1', 'OB(O)c1ccc(F)cc1', 'COc1cc(F)ccc1Cl', 'Fc1ccc(Cl)cc1', 'Fc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', None, 'Oc1ccc(F)cc1', 'O=[N+]([O-])c1ccc(F)cc1']; [0.9999861717224121, 0.9999815821647644, 0.9999773502349854, 0.9999403953552246, 0.9997872114181519, 0.9997764825820923, 0.9977751970291138, 0.9970179796218872, 0.9949444532394409, 0.9939702749252319, 0.9861407279968262, 0, 0.9828473329544067, 0.9041107892990112] +COc1cc(-c2ccc(Cl)c(O)c2)ccc1Cl; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CC(C)(C)[Si](C)(C)Oc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1ccc(C(=O)O)cc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'COc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'Nc1ccc(Cl)c(O)c1', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Cl)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'O=C(O)c1ccc(O)c(Cl)c1']; [0.9999856948852539, 0.9999817609786987, 0.9999654293060303, 0.9999507665634155, 0.9998419880867004, 0.9995368719100952, 0.999197244644165, 0.9988530874252319, 0.998696506023407, 0.9983418583869934, 0.998306155204773, 0.998210608959198, 0.9964709281921387, 0.9789489507675171, 0.9440369009971619, 0.9337661266326904, 0.8975497484207153, 0.8574094772338867, 0.8151313066482544, 0.7788713574409485] +COc1cc(-c2ccc(C(N)=O)cc2OC)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['COc1cc(C(N)=O)ccc1Br', 'COc1cc(I)ccc1Cl', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br']; [0.9999916553497314, 0.9999756813049316, 0.9999727010726929, 0.9997891187667847] +COc1cc(-c2ccc(C(N)=O)cc2F)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(N)ccc1Cl']; ['NC(=O)c1ccc(Br)c(F)c1', 'COc1cc(I)ccc1Cl', 'NC(=O)c1ccc(Br)c(F)c1', 'COc1cc(Br)ccc1Cl', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'COc1cc(Cl)ccc1Cl', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999983906745911, 0.9999982714653015, 0.9999979734420776, 0.9999970197677612, 0.999995231628418, 0.9999791383743286, 0.9999750852584839, 0.999850332736969, 0.9997444152832031, 0.9995572566986084, 0.9995483756065369, 0.9987939596176147, 0.9937163591384888, 0.9874184131622314, 0.8983243107795715] +COc1cc(-c2ccnc(N)n2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1ncccn1', 'Nc1nccc(Cl)n1']; [0.9999997615814209, 0.9999967217445374, 0.9999909400939941, 0.9999510645866394, 0.9997785091400146, 0.9995237588882446] +COc1cc(-c2c(Cl)cccc2Cl)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2Cl)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl']; ['Oc1ccc(Br)c(Cl)c1', 'COc1cc(I)ccc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'COc1cc(Br)ccc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'OB(O)c1ccc(O)cc1Cl', 'Nc1ccc(O)cc1Cl', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(Cl)c(Cl)c1', 'COc1cc(Cl)ccc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1cccc(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1']; [0.9999937415122986, 0.9999762773513794, 0.9999502897262573, 0.9999470710754395, 0.99991774559021, 0.99983149766922, 0.9997918009757996, 0.9997543096542358, 0.9995035529136658, 0.9991381168365479, 0.9988418817520142, 0.9987987279891968, 0.993679940700531, 0.9805375337600708, 0.9748639464378357, 0.941211998462677, 0.928342878818512, 0.9187459945678711, 0.9141170382499695, 0.914103627204895] +COc1cc(-c2cc(F)c3nc(C)[nH]c3c2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2cn[nH]c2Cl)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2F)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccc(F)cc2OC)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1I', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(F)cc(C(=O)O)c1', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl', 'COc1c(Cl)cccc1C(=O)O']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1Br', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1I', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1S(=O)(=O)Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(S(=O)(=O)Cl)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(F)ccc1N', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cccc(F)c1', 'COc1cc(F)ccc1O', 'COc1cc(NN)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cccc(F)c1', 'COc1cccc(F)c1', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(I)ccc1Cl', 'COc1ccc(Cl)c(OC)c1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1ccc(C(=O)O)cc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(F)ccc1I']; [0.9999936819076538, 0.9999926090240479, 0.9999881386756897, 0.9999797344207764, 0.9999281167984009, 0.9998836517333984, 0.9998776316642761, 0.9998704791069031, 0.9998393058776855, 0.9998223781585693, 0.999731719493866, 0.9994562268257141, 0.9992759823799133, 0.9989455938339233, 0.9988608956336975, 0.9983175992965698, 0.9981969594955444, 0.9976881146430969, 0.9967567920684814, 0.996554970741272, 0.9965300559997559, 0.9957304000854492, 0.9954123497009277, 0.9865258932113647, 0.9840964078903198, 0.9824120998382568, 0.9816220998764038, 0.9811400175094604, 0.9706123471260071, 0.969844400882721, 0.9689966440200806, 0.9538088440895081, 0.9502517580986023, 0.9409496784210205, 0.9396712779998779, 0.8922531604766846, 0.8125685453414917, 0.80409836769104] +COc1cc(-c2cc(F)ccc2OC)ccc1Cl; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(Cl)c(OC)c2)o1; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; [0.9999991655349731, 0.9999868273735046, 0.9999538660049438, 0.9999397993087769, 0.9997973442077637, 0.999775230884552, 0.999167799949646, 0.9952994585037231, 0.790023148059845] +COc1cc(-c2ccc(-c3ccc(O)cc3O)cc2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccccc2)c(O)c1', 'Oc1ccc(-c2ccccc2)c(O)c1', 'Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9999721050262451, 0.9986476302146912, 0.9871178865432739, 0.8383256196975708, 0.802361011505127, 0.794411301612854, 0.7761698365211487] +COc1cc(-c2ccc(C(=O)[O-])cc2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl']; ['O=C([O-])c1ccc(Cl)cc1', 'O=C([O-])c1ccccc1']; [0.9997695684432983, 0.9916476607322693] +COc1cc(CCc2ccc(Cl)c(OC)c2)ccc1O; ['COc1cc(CCBr)ccc1O']; ['COc1cc(I)ccc1Cl']; [0.8942044973373413] +COc1cc(-c2ccc(Cl)c(OC)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'C=CCOc1ccc(Br)cc1OC', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1O', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1O', 'COc1cc(I)ccc1Cl', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc([B-](F)(F)F)ccc1O', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1O', 'COc1cc([Mg]Br)ccc1Cl', 'COc1ccccc1Cl', 'COc1cc(Cl)ccc1O', 'COc1cc(Cl)ccc1Cl', 'COc1ccccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1Cl', 'COc1ccccc1O', 'COc1ccccc1O']; [0.9999868869781494, 0.9999868869781494, 0.9999398589134216, 0.9999398589134216, 0.9991180896759033, 0.9991180896759033, 0.9987220764160156, 0.9987220764160156, 0.9982694387435913, 0.9982694387435913, 0.9981371164321899, 0.9981371164321899, 0.9924116134643555, 0.9785786867141724, 0.9372966289520264, 0.9280785322189331, 0.9270525574684143, 0.9259885549545288, 0.9119225740432739, 0.9119225740432739, 0.9117277264595032, 0.9080349206924438, 0.8433549404144287, 0.8326200246810913, 0.7574734687805176] +COc1cc(-c2cccc(Br)c2)ccc1Cl; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'COc1cc(I)ccc1Cl', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cccc(I)c1', 'COc1cc(Br)ccc1Cl', 'Brc1cccc(I)c1', 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Br[Mg]c1cccc(Br)c1', 'COc1ccccc1Cl']; ['COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'OB(O)c1cccc(Br)c1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Clc1cccc(Br)c1', 'COc1cc(Br)ccc1Cl', 'OB(O)c1cccc(Br)c1', 'COc1ccc(C(=O)O)cc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1c(Cl)cccc1C(=O)O', 'COc1cc([Mg]Br)ccc1Cl', 'Fc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'COc1cc(F)ccc1Cl', 'OB(O)c1cccc(Br)c1']; [0.9999983906745911, 0.999995231628418, 0.9999605417251587, 0.999935507774353, 0.9998384714126587, 0.9998221397399902, 0.9991722106933594, 0.9991507530212402, 0.9969918727874756, 0.9904804229736328, 0.9883943200111389, 0.9863266944885254, 0.9813260436058044, 0.9249338507652283, 0.9246282577514648, 0.9243238568305969, 0.9116195440292358, 0.9030337333679199, 0.8943080306053162, 0.8906692266464233, 0.8153176307678223] +COc1cc(-c2cn(C)c3ccccc23)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(NN)ccc1Cl']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; [0.9999974966049194, 0.9999924898147583, 0.999820351600647, 0.9996083378791809, 0.999350905418396, 0.9929070472717285, 0.8270976543426514] +COc1cc(-c2ccc3ccccc3c2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccc(O)c(F)c2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2O)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2c[nH]c3cnccc23)ccc1Cl; ['Brc1c[nH]c2cnccc12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Brc1c[nH]c2cnccc12', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'Ic1c[nH]c2cnccc12', 'COc1cc(B(O)O)ccc1Cl', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1']; [0.9999945163726807, 0.999963104724884, 0.9989372491836548, 0.9969319105148315, 0.9870151877403259, 0.9696585536003113, 0.916472852230072] +COc1cc(-c2cnn3ncccc23)ccc1Cl; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1ccccc1Cl']; [1.0, 0.9999991655349731, 0.9999983906745911, 0.999991774559021, 0.8783137798309326] +COc1cc(-c2ccnc(N)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Nc1cc(Br)ccn1', 'COc1cc(Br)ccc1Cl', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1']; [1.0, 0.9999996423721313, 0.9999924302101135, 0.9999910593032837, 0.9999842047691345, 0.9999785423278809, 0.9999650716781616, 0.998895525932312, 0.9762436151504517] +COC(=O)c1ccc(Cl)c(-c2ccc(Cl)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(COc2ccccc2Cl)ccc1Cl; ['COc1cc(CBr)ccc1Cl', 'CC(=O)Oc1ccccc1Cl', 'COc1cc(CO)ccc1Cl', 'COc1cc(CO)ccc1Cl', 'COc1cc(CO)ccc1Cl', 'COc1cc(CO)ccc1Cl']; ['Oc1ccccc1Cl', 'COc1cc(CBr)ccc1Cl', 'Clc1ccccc1I', 'Clc1ccccc1Br', 'Fc1ccccc1Cl', 'Oc1ccccc1Cl']; [0.9961340427398682, 0.9892858266830444, 0.9778544902801514, 0.9755405783653259, 0.9742182493209839, 0.9712477922439575] +COc1cc(-c2c(C)ccc3[nH]ncc23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; [1.0, 0.9999998807907104, 0.9999997019767761, 0.9999996423721313, 0.9999980926513672, 0.9999942779541016, 0.9999492168426514, 0.9998784065246582, 0.9998310804367065, 0.9997291564941406, 0.9982167482376099] +COc1cc(-c2cnc(O)c(Cl)c2)ccc1Cl; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl', 'COc1cc(I)ccc1Cl', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl']; [0.9999998807907104, 0.9999994039535522, 0.9999992251396179, 0.9999986886978149, 0.9999945163726807, 0.9999092817306519, 0.997968316078186, 0.9963967800140381] +COc1cc(-c2c[nH]c(C(N)=O)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1']; [0.9999855756759644, 0.9989694952964783] +COc1cc(-c2[nH]cnc2-c2ccc(F)cc2)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Fc1ccc(-c2cnc[nH]2)cc1', 'Fc1ccc(-c2c[nH]cn2)cc1', 'Fc1ccc(-c2c[nH]cn2)cc1', 'Fc1ccc(-c2c[nH]cn2)cc1']; [0.9999145269393921, 0.9998974800109863, 0.9988250136375427, 0.9977257251739502] +COc1cc(-c2cc(CO)ccc2C)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1ccccc1Cl']; ['Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1']; [0.9999896287918091, 0.9999884366989136, 0.9999817609786987, 0.9999678134918213, 0.9999538660049438, 0.9999414682388306, 0.9997589588165283, 0.9996839761734009, 0.9991356730461121, 0.9989310503005981, 0.9964824914932251, 0.9893962144851685, 0.983279824256897, 0.9816009998321533, 0.9729743599891663, 0.9611395597457886, 0.9005296230316162, 0.8376791477203369] +COc1cc(-c2ccc(F)c(Cl)c2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2cc(O)ccc2Cl)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1ccccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1ccc(C(=O)O)cc1Cl', 'COc1c(Cl)cccc1C=O', 'COc1cc([Mg]Br)ccc1Cl']; ['Oc1ccc(Cl)c(Br)c1', 'Oc1ccc(Cl)c(I)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Oc1ccc(Cl)c(Cl)c1', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(O)ccc1Cl', 'Nc1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(Br)c1', 'COc1cc(Cl)ccc1Cl', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(I)c1', 'OB(O)c1cc(O)ccc1Cl', 'Oc1ccc(Cl)c(F)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1']; [0.9999929666519165, 0.9999765753746033, 0.9999363422393799, 0.9999347925186157, 0.999893069267273, 0.9996936917304993, 0.999660074710846, 0.9992257356643677, 0.9990676641464233, 0.9986965656280518, 0.9952623844146729, 0.9929391145706177, 0.9920674562454224, 0.9911745190620422, 0.9831894636154175, 0.9513275623321533, 0.9434746503829956, 0.8906400203704834, 0.8317407369613647, 0.8277913331985474, 0.771896481513977, 0.7535607814788818] +COc1cc(OC)cc(-c2ccc(Cl)c(OC)c2)c1; ['COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)cc(OC)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(N)ccc1Cl', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(O)cc(OC)c1', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cccc(OC)c1', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cccc(OC)c1', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cccc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cccc(OC)c1', 'COc1ccccc1Cl', 'COc1cc(I)cc(OC)c1']; [0.9999997615814209, 0.9999994039535522, 0.999998927116394, 0.9999980330467224, 0.9999974370002747, 0.9999972581863403, 0.9999964237213135, 0.9999951124191284, 0.9999927282333374, 0.9999878406524658, 0.9999842047691345, 0.9999625086784363, 0.9999526739120483, 0.9999432563781738, 0.9998981952667236, 0.9997638463973999, 0.9992188811302185, 0.9991185665130615, 0.9990154504776001, 0.998714804649353, 0.9986953139305115, 0.9985110759735107, 0.9983174800872803, 0.9979110956192017, 0.9973466396331787, 0.9970046281814575, 0.9934083223342896, 0.9888340830802917, 0.9785799980163574, 0.9769392609596252, 0.9643442630767822, 0.8982195258140564, 0.8934446573257446, 0.8394433259963989, 0.8334296941757202, 0.7534995675086975] +COc1cc(-c2ccc3nc(C)[nH]c3c2)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1']; [0.9999994039535522, 0.9999967813491821, 0.9993565082550049, 0.9856926202774048, 0.9213427305221558] +COc1cc(-c2cnc3[nH]ccc3c2)ccc1Cl; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Brc1cnc2[nH]ccc2c1', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'COc1cc(I)ccc1Cl', 'OB(O)c1cnc2[nH]ccc2c1', 'COc1cc(Cl)ccc1Cl', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 1.0, 0.9999998211860657, 0.9999997615814209, 0.9999992251396179, 0.9999986886978149, 0.9999946355819702, 0.9999924898147583, 0.9999898672103882, 0.9999842643737793, 0.9999728798866272, 0.9999237656593323, 0.9998078346252441, 0.9987878203392029, 0.9951145648956299] +COc1cc(-c2ccc(OC)c(OC)c2)ccc1Cl; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(Cl)c(OC)c3)ccc12; [None]; [None]; [0] +CCOc1cccc(-c2ccc(Cl)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(Cl)c(OC)c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(C)cc(OC)c1', 'COc1cc(C)ccc1Cl', 'COc1cc(CCBr)cc(OC)c1']; ['COc1cc(I)ccc1Cl', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(CBr)ccc1Cl', 'COc1cc(CBr)cc(OC)c1', 'COc1ccccc1Cl']; [0.999292254447937, 0.9971439838409424, 0.9868149757385254, 0.9516235589981079, 0.9411160945892334, 0.8525427579879761] +COc1cc(-c2cncc(O)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Oc1cncc(I)c1', 'COc1cc(Br)ccc1Cl', 'Oc1cncc(Br)c1', 'COc1cc(I)ccc1Cl', 'Oc1cncc(I)c1', 'Oc1cncc(I)c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1']; [0.9999990463256836, 0.9999988079071045, 0.9999980926513672, 0.999996542930603, 0.9999929666519165, 0.9999916553497314, 0.9999154806137085, 0.9999061822891235, 0.9997235536575317, 0.9965486526489258, 0.9921977519989014, 0.988850474357605, 0.8918389081954956] +COc1cc(-c2ccc(NC(N)=O)cc2)ccc1Cl; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Cl)cc1', 'COc1cc(Cl)ccc1Cl', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Cl)cc1', 'NC(=O)Nc1ccccc1', 'NC(=O)Nc1ccc(Br)cc1']; [0.9999990463256836, 0.9999985694885254, 0.9999958276748657, 0.9999299049377441, 0.9999075531959534, 0.9998244047164917, 0.9994064569473267, 0.9961904287338257, 0.9150123596191406, 0.7907370328903198] +COc1cc(-c2ccc(S(C)(=O)=O)cc2)ccc1Cl; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(C(=O)O)ccc1Cl', 'COc1cc(O)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'COc1cc(Cl)ccc1Cl', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccccc1', 'CS(=O)(=O)c1ccc(O)cc1', 'CS(=O)(=O)c1ccccc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999994039535522, 0.9999992847442627, 0.9999971389770508, 0.9999920129776001, 0.999991774559021, 0.9999916553497314, 0.9999902248382568, 0.9999895095825195, 0.9999762773513794, 0.9999245405197144, 0.9998806715011597, 0.9992148876190186, 0.999039351940155, 0.9990175366401672, 0.9977633357048035, 0.9971505403518677, 0.948635458946228, 0.9129151701927185, 0.8390504717826843, 0.8342219591140747, 0.811487078666687] +COc1cc(-c2ccc3c(c2)CC(=O)N3)ccc1Cl; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1c(Cl)cccc1Br', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'O=C1Cc2cc(Br)ccc2N1', 'COc1cc(I)ccc1Cl', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2c(Br)cccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'COc1cc(Cl)ccc1Cl', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2ccc(Br)cc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999929666519165, 0.9999651908874512, 0.9999563694000244, 0.9999312162399292, 0.9996942281723022, 0.9996889233589172, 0.9996694326400757, 0.9995409846305847, 0.9993184804916382, 0.999289870262146, 0.998679518699646, 0.9982645511627197, 0.9978190660476685, 0.9968587160110474, 0.9965552091598511, 0.9871902465820312, 0.9575725793838501, 0.9414084553718567, 0.8534906506538391] +CNc1nccc(-c2ccc(Cl)c(OC)c2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Cl)n1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; [0.9999828338623047, 0.9997373819351196] +COc1cc(-c2[nH]nc(C)c2C)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Cc1c[nH]nc1C', 'Cc1c[nH]nc1C']; [0.9999912977218628, 0.9993391036987305] +CCc1cc(O)c(F)cc1-c1ccc(Cl)c(OC)c1; ['CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1Br']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1ccccc1Cl']; [0.9999997615814209, 0.9999990463256836, 0.999998927116394, 0.9999964237213135, 0.9988598823547363, 0.992107629776001] +COc1cc(-c2ccc(O)cc2C)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'C=CCOc1ccc(Br)c(C)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1Br', 'Cc1cccc(O)c1', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cccc(O)c1']; [0.9999885559082031, 0.9999792575836182, 0.9999462962150574, 0.9999346733093262, 0.999869167804718, 0.9998670816421509, 0.999852180480957, 0.999833345413208, 0.9995603561401367, 0.9995085000991821, 0.9977359771728516, 0.9970762729644775, 0.995934009552002, 0.9854428768157959, 0.9798415303230286, 0.9607924222946167, 0.9459502100944519, 0.9155576229095459] +CCc1cc(O)ccc1-c1ccc(Cl)c(OC)c1; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Br', 'CCc1cccc(O)c1', 'CCc1cccc(O)c1', 'CCc1cc(O)ccc1Br']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1ccccc1Cl']; [0.9999935626983643, 0.9999874830245972, 0.999974250793457, 0.9999657273292542, 0.9998711347579956, 0.9992095232009888, 0.9904087781906128, 0.968302309513092, 0.9261962175369263, 0.8046874403953552, 0.7980623245239258] +COc1cc(N(C)c2ccc3c(C)n[nH]c3c2)ccc1Cl; [None]; [None]; [0] +COc1cc(N(C)c2cccc(Cl)c2)ccc1Cl; ['CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; [0.9988125562667847, 0.9976319074630737, 0.9828553795814514, 0.8432220220565796] +COc1cc(-c2cc(C(F)F)n[nH]2)ccc1Cl; [None]; [None]; [0] +CCc1sccc1-c1ccc(Cl)c(OC)c1; ['CCc1cccs1']; ['COc1cc(I)ccc1Cl']; [0.8953542709350586] +CNc1nc(-c2ccc(Cl)c(OC)c2)ncc1F; ['CNc1nc(Cl)ncc1F', 'CNc1nc(Cl)ncc1F']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; [0.9999996423721313, 0.9999618530273438] +COc1cc(-c2ccc3c(c2)CCN3)ccc1Cl; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Brc1ccc2c(c1)CCN2', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Brc1ccc2c(c1)CCN2', 'COc1cc(Br)ccc1Cl', 'Brc1ccc2c(c1)CCN2', 'COc1cc(I)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'OB(O)c1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'COc1cc(B(O)O)ccc1Cl', 'OB(O)c1ccc2c(c1)CCN2', 'COc1cc(Br)ccc1Cl', 'c1ccc2c(c1)CCN2']; [0.9999998807907104, 0.9999996423721313, 0.9999351501464844, 0.9997915029525757, 0.9996254444122314, 0.9994158744812012, 0.9876203536987305, 0.9439929127693176] +COc1cc([C@H](C)CC(N)=O)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2ccncc2Cl)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)COB(c2ccncc2Cl)OC1', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccccc1Cl']; ['Clc1cnccc1Br', 'Clc1cnccc1I', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Clc1cnccc1I', 'Clc1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'COc1cc(I)ccc1Cl', 'Clc1ccncc1Cl', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl', 'Clc1ccncc1Cl', 'Clc1cccnc1', 'Clc1cccnc1', 'Clc1cccnc1', 'OB(O)c1ccncc1Cl']; [0.9999994039535522, 0.9999991655349731, 0.9999972581863403, 0.999997079372406, 0.9999957084655762, 0.9999935626983643, 0.9999790787696838, 0.9999774694442749, 0.9999672174453735, 0.9999419450759888, 0.9998876452445984, 0.9997655153274536, 0.9973573684692383, 0.9676368236541748, 0.9619336128234863, 0.9447184801101685, 0.9446554780006409, 0.8838526606559753, 0.8582388162612915] +COc1cc(-c2cc(O)n3nccc3n2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2cc(C(=O)[O-])c(C)o2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2c(N)cnn2C)ccc1Cl; ['COc1cc(I)ccc1Cl']; ['Cn1cc(N)cn1']; [0.995665431022644] +COc1cc(-c2ccc3[nH]c(=O)[nH]c3c2)ccc1Cl; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'COc1cc(I)ccc1Cl', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'COc1cc(Cl)ccc1Cl', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1']; [0.9999983310699463, 0.9999955296516418, 0.9999855160713196, 0.9999840259552002, 0.9999781847000122, 0.9999433159828186, 0.9999086856842041, 0.999833345413208, 0.9995814561843872, 0.9993549585342407, 0.9993456602096558, 0.9990947246551514, 0.9874830842018127, 0.9797877073287964, 0.9500455856323242] +COc1cc(-c2cc(Cl)c(O)c(Cl)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Oc1c(Cl)cc(Br)cc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Nc1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cccc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Cl)cc1Cl', 'Oc1c(Cl)cccc1Cl', 'Oc1c(Cl)cccc1Cl', 'Oc1c(Cl)cccc1Cl', 'Oc1c(Cl)cc(I)cc1Cl']; [0.999995231628418, 0.9999909996986389, 0.9999668598175049, 0.9999569058418274, 0.9997862577438354, 0.9996895790100098, 0.9996540546417236, 0.9996293783187866, 0.9994903802871704, 0.9992349743843079, 0.9991894960403442, 0.9946138858795166, 0.991735577583313, 0.9872841835021973, 0.9790416955947876, 0.9723609685897827, 0.9496663808822632, 0.948229193687439, 0.9275693297386169, 0.8802450895309448] +COc1cc(Nc2ccncc2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'Brc1ccncc1', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'CC(=O)Nc1ccncc1', 'Brc1ccncc1', 'COc1cc(N)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['OB(O)c1ccncc1', 'COc1cc(N)ccc1Cl', 'Nc1ccncc1', 'Nc1ccncc1', 'Ic1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Fc1ccncc1', 'Oc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Clc1ccncc1', 'COc1cc(Br)ccc1Cl', 'COc1cc(NC(C)=O)ccc1Cl', 'O=[N+]([O-])c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9999750256538391, 0.9999690055847168, 0.9999422430992126, 0.9998258352279663, 0.9992470145225525, 0.9990174770355225, 0.9989442825317383, 0.9984732866287231, 0.9979095458984375, 0.9977754950523376, 0.9963017702102661, 0.995348334312439, 0.9922815561294556, 0.9662522077560425, 0.9154247045516968, 0.8393090963363647] +COc1cc(-c2ccc(Br)cc2F)ccc1Cl; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(N)ccc1Cl', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1ccccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(I)ccc1Cl', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Br', 'OB(O)c1ccc(Br)cc1F', 'COc1cc(Br)ccc1Cl', 'Nc1ccc(Br)cc1F', 'COc1cc(Cl)ccc1Cl', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Cl', 'Fc1cccc(Br)c1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cccc(Br)c1', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Cl', 'Fc1cccc(Br)c1', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl']; [0.9999996423721313, 0.9999995231628418, 0.9999994039535522, 0.9999979734420776, 0.9999929666519165, 0.9999740123748779, 0.9999729990959167, 0.9999563694000244, 0.9999174475669861, 0.9998756647109985, 0.9998496770858765, 0.9998247623443604, 0.9997842311859131, 0.9994043111801147, 0.9989492893218994, 0.9984835386276245, 0.9978933334350586, 0.9969969987869263, 0.9963473677635193, 0.9825241565704346, 0.9818011522293091, 0.9574417471885681, 0.9482741951942444, 0.8912136554718018, 0.8543570041656494, 0.8032003045082092, 0.7877311110496521] +CNC(=O)c1ccc(-c2ccc(Cl)c(OC)c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl']; [0.9999998211860657, 0.9999995231628418, 0.9999976754188538, 0.999997615814209, 0.999983549118042, 0.9999834299087524, 0.9999805688858032, 0.999967098236084, 0.9999628663063049, 0.9996905326843262, 0.9996740818023682, 0.9989789128303528, 0.9987172484397888, 0.9940230846405029, 0.9648008346557617] +COc1cc(-c2ccc(C(N)=O)c(C)c2)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; [0.9999997615814209, 0.9999994039535522, 0.9999825954437256, 0.9991108179092407] +COc1cc(N(C)c2cccc3[nH]ncc23)ccc1Cl; ['CNc1cccc2[nH]ncc12', 'CNc1cccc2[nH]ncc12']; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; [0.9993144273757935, 0.9967532753944397] +COc1cc(-c2ccc(C(=O)NC3CC3)cc2)ccc1Cl; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'COc1cc(Cl)ccc1Cl', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [1.0, 0.9999997615814209, 0.9999995827674866, 0.999998927116394, 0.999998927116394, 0.9999988079071045, 0.999997615814209, 0.9999948740005493, 0.9999908208847046, 0.9999902248382568, 0.9999898076057434, 0.9991114735603333, 0.9983876943588257] +COc1cc(-c2[nH]nc3ccc(F)cc23)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1', 'Fc1ccc2n[nH]cc2c1']; [0.9999881982803345, 0.9999829530715942, 0.9999735355377197, 0.9861929416656494] +COc1cc(-c2cc(O)cc(Br)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccc(C(=O)O)cc1Cl', 'COc1c(Cl)cccc1C=O', 'COc1c(Cl)cccc1C(=O)O', 'COc1ccc(C=O)cc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Oc1cc(Br)cc(I)c1', 'OB(O)c1cc(O)cc(Br)c1', 'COc1cc(I)ccc1Cl', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1', 'O=C(O)c1ccc(Br)cc1O', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'COc1cc(Br)ccc1Cl', 'O=Cc1ccc(Br)cc1O', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'O=C(O)c1ccc(O)cc1Br', 'OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(F)cc(Br)c1', 'Oc1cccc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cccc(Br)c1', 'O=Cc1ccc(O)cc1Br']; [0.9999989867210388, 0.9999983906745911, 0.9999971985816956, 0.9999896883964539, 0.9999810457229614, 0.9999510049819946, 0.9998923540115356, 0.9998915791511536, 0.9997519850730896, 0.9995979070663452, 0.9992830753326416, 0.9992796182632446, 0.9986796379089355, 0.9974318742752075, 0.995476245880127, 0.9888266324996948, 0.9886381030082703, 0.9761448502540588, 0.9662228226661682, 0.9526402950286865, 0.9386431574821472, 0.9336064457893372, 0.8817874789237976, 0.841359555721283, 0.7984998226165771, 0.7979248762130737] +COc1cc(-c2cc(C)c(O)c(C)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Cc1cc(Br)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(N)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; [0.9999815821647644, 0.9999560713768005, 0.9999449253082275, 0.9999082088470459, 0.9998981952667236, 0.9990236759185791, 0.9988846778869629, 0.998001754283905, 0.9979723691940308, 0.9973335266113281, 0.9965161681175232, 0.9943253397941589, 0.9908949136734009, 0.9815510511398315, 0.9768545627593994, 0.9761636257171631, 0.9406000375747681, 0.926449179649353, 0.8830890655517578, 0.8308975100517273, 0.8061591982841492] +COc1cc(-c2ccc3nc(C)oc3c2)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; [0.9999995231628418, 0.9999990463256836, 0.9999977350234985, 0.9999955892562866, 0.999984622001648, 0.9999563694000244, 0.9975652694702148, 0.9973794221878052, 0.9813910722732544, 0.9241169691085815] +COc1cc(-c2cc(F)c(O)c(F)c2)ccc1Cl; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1ccccc1Cl']; ['COc1cc(Br)ccc1Cl', 'Oc1c(F)cc(Br)cc1F', 'COc1cc(I)ccc1Cl', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(I)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cc(Br)cc1F']; [0.9999989867210388, 0.9999986886978149, 0.9999978542327881, 0.9999921321868896, 0.9999918937683105, 0.9999541640281677, 0.9999362230300903, 0.9999221563339233, 0.9999040365219116, 0.9998421669006348, 0.9994827508926392, 0.9988198280334473, 0.9981407523155212, 0.9967829585075378, 0.992567777633667, 0.9764589667320251, 0.9643236398696899, 0.8614705801010132] +COc1cc(-c2ocnc2-c2ccc(F)cc2)ccc1Cl; ['COc1cc(Br)ccc1Cl']; ['Fc1ccc(-c2cocn2)cc1']; [0.9997596740722656] +COc1cc(-c2ccc3c(=O)[nH][nH]c3c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2ccccc12']; [0.999998927116394, 0.999976396560669, 0.9999508857727051, 0.9928648471832275, 0.9602499604225159] +COc1cc(-c2cccc(SC)c2)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc([Zn]Br)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(N)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc([B-](F)(F)F)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1']; [0.9999980330467224, 0.9999953508377075, 0.9999927282333374, 0.9998685121536255, 0.9998204112052917, 0.9996208548545837, 0.9987291097640991, 0.9982506036758423, 0.9979468584060669, 0.9935933351516724, 0.9928023815155029, 0.9870104193687439, 0.9793410897254944, 0.9715405702590942, 0.9648120403289795, 0.9123653173446655, 0.8478854894638062, 0.786774754524231] +COc1cc(-c2c(-c3ccccc3)noc2C)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1ccccc1Cl']; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; [0.9999970197677612, 0.9999949932098389, 0.9999942779541016, 0.9891278743743896] +COc1cc(CCc2c[nH]c3ccccc23)ccc1Cl; [None]; [None]; [0] +COc1cc(Oc2ccc(F)cc2F)ccc1Cl; ['COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', None, 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Fc1ccc(Br)c(F)c1', 'OB(O)c1ccc(F)cc1F', 'Fc1ccc(I)c(F)c1', None, 'Oc1ccc(F)cc1F', 'Fc1ccc(F)c(F)c1', 'Fc1ccc(Cl)c(F)c1', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999774098396301, 0.9999709129333496, 0.9999606609344482, 0.9999147653579712, 0.9998441338539124, 0.9995812773704529, 0, 0.998621940612793, 0.9982702732086182, 0.9964777231216431, 0.9927447438240051, 0.9864778518676758] +COc1cc(OCc2cccc3ccccc23)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Clc1ccc(-c2ccn[nH]2)cc1', 'Clc1ccc(-c2ccn[nH]2)cc1', 'Clc1ccc(-c2ccn[nH]2)cc1']; [0.9985777735710144, 0.9938490390777588, 0.9754375219345093] +COc1cc(NCc2c(F)cccc2Cl)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(N)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc([N+](=O)[O-])ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CBr', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CCl', 'O=Cc1c(F)cccc1Cl', 'OCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.999994158744812, 0.9999929070472717, 0.999991774559021, 0.9999810457229614, 0.9999489784240723, 0.9998916387557983, 0.9995092153549194, 0.9974712133407593, 0.9942941665649414, 0.9905202388763428] +COc1cc(CCc2ccc(F)cc2F)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(CBr)ccc1Cl', 'C=Cc1ccc(F)cc1F', 'COc1cc(C)ccc1Cl', 'COc1ccccc1Cl']; ['Fc1ccc(CCBr)c(F)c1', 'Fc1ccc(CCBr)c(F)c1', 'Fc1ccc(CCBr)c(F)c1', 'Fc1ccc(CCCl)c(F)c1', 'Fc1ccc(CCBr)c(F)c1', 'Cc1ccc(F)cc1F', 'COc1ccccc1Cl', 'Fc1ccc(CBr)c(F)c1', 'Fc1ccc(CCBr)c(F)c1']; [0.999912679195404, 0.9997367858886719, 0.9995183944702148, 0.9980474710464478, 0.9977625608444214, 0.9955905675888062, 0.9833422899246216, 0.9701192378997803, 0.9277797937393188] +COc1cc(OCc2ccc(F)cc2F)ccc1Cl; ['COc1cc(O)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(O)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1ccccc1Cl']; ['Fc1ccc(CBr)c(F)c1', 'Fc1ccc(CCl)c(F)c1', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999996423721313, 0.999998927116394, 0.9999945163726807, 0.999988317489624, 0.9999813437461853, 0.9995346069335938, 0.9981260895729065, 0.9601341485977173] +c1cc(-c2ccc3occc3c2)c2cccnc2c1; ['Ic1cccc2ncccc12', 'Brc1ccc2occc2c1', 'Brc1cccc2ncccc12', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cccc2ncccc12', 'Clc1cccc2ncccc12', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Br[Mg]c1cccc2ncccc12']; ['OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1cccc2ncccc12', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1cccc2ncccc12', 'Clc1ccc2occc2c1', 'OB(O)c1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'OB(O)c1cccc2ncccc12', 'Clc1ccc2occc2c1']; [0.9999994039535522, 0.9999992847442627, 0.9999990463256836, 0.9999986290931702, 0.9999982118606567, 0.9999969005584717, 0.9999940395355225, 0.9999914169311523, 0.9999762773513794, 0.9999204277992249, 0.9996647238731384, 0.9984462261199951, 0.9812791347503662, 0.8788986206054688] +Oc1cccc(-c2ccc3occc3c2)c1; ['OB(O)c1ccc2occc2c1', 'CC(C)(C)[Si](C)(C)Oc1cccc(Br)c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['Oc1cccc(I)c1', 'OB(O)c1ccc2occc2c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Br)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC(C)(C)[Si](C)(C)Oc1cccc(B(O)O)c1', 'Oc1cccc(Cl)c1', 'Ic1ccc2occc2c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9999595880508423, 0.99992835521698, 0.9999219179153442, 0.9999024868011475, 0.9997243285179138, 0.9996962547302246, 0.9996905326843262, 0.9996598958969116, 0.9996256828308105, 0.9988753795623779, 0.998848557472229, 0.9962221384048462, 0.8108054399490356] +CNS(=O)(=O)c1ccc(-c2ccc3occc3c2)cc1; ['Brc1ccc2occc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.9999627470970154, 0.9999324083328247, 0.9999186992645264, 0.9998977184295654, 0.9998888969421387, 0.9998815059661865, 0.999862551689148, 0.999846339225769, 0.999826192855835, 0.9995843768119812, 0.7682696580886841] +Oc1cc(-c2ccc3occc3c2)ccc1Cl; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1']; ['Oc1cc(I)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl', 'Ic1ccc2occc2c1', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Cl)ccc1Cl']; [0.9999725222587585, 0.9999697804450989, 0.9999601244926453, 0.9999454021453857, 0.9999333024024963, 0.9999183416366577, 0.999858021736145, 0.9995434284210205, 0.9968509078025818, 0.9927999973297119] +Clc1ccc2c(c1-c1ccc3occc3c1)OCO2; ['Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1c(Cl)ccc2c1OCO2', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'Oc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1']; [0.9997448921203613, 0.9991639852523804, 0.9917043447494507, 0.9641184210777283, 0.7892884612083435] +NC(=O)c1ccc(-c2ccc3occc3c2)c(F)c1; ['NC(=O)c1ccc(Br)c(F)c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(Cl)c(F)c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'NC(=O)c1ccc(Br)c(F)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9999904632568359, 0.9999872446060181, 0.9999502301216125, 0.9998741745948792, 0.9998230338096619, 0.9997771978378296, 0.9984503984451294, 0.997753381729126, 0.9814621210098267] +COc1cc(C(N)=O)ccc1-c1ccc2occc2c1; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'COc1cc(C(N)=O)ccc1Br']; ['Ic1ccc2occc2c1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2occc2c1']; [0.9998865127563477, 0.9998853206634521, 0.9998831748962402, 0.9998354911804199] +Fc1ccc(Oc2ccc3occc3c2)cc1; ['OB(O)c1ccc2occc2c1', 'Fc1ccc(I)cc1', 'OB(O)c1ccc(F)cc1', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Fc1ccc(Br)cc1', 'Clc1ccc2occc2c1', 'Fc1ccc(Cl)cc1']; ['Oc1ccc(F)cc1', 'Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'Oc1ccc(F)cc1', 'Oc1ccc(F)cc1', 'Oc1ccc2occc2c1', 'Oc1ccc(F)cc1', 'Oc1ccc2occc2c1']; [0.9998703598976135, 0.9984370470046997, 0.998350977897644, 0.9982158541679382, 0.9980953931808472, 0.9962484836578369, 0.9783085584640503, 0.9494526386260986] +c1ccc2c(-c3ccc4occc4c3)n[nH]c2c1; ['CC(C)(C)OC(=O)n1nc(I)c2ccccc21', 'Brc1n[nH]c2ccccc12', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1n[nH]c2ccccc12', 'Brc1n[nH]c2ccccc12', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Clc1n[nH]c2ccccc12', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1n[nH]c2ccccc12', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1n[nH]c2ccccc12', 'OB(O)c1ccc2occc2c1', 'c1ccc2[nH]ncc2c1', 'Brc1n[nH]c2ccccc12']; [0.9999994039535522, 0.9999895095825195, 0.9999834299087524, 0.9999793171882629, 0.9999194145202637, 0.9999090433120728, 0.9998198747634888, 0.9980615377426147, 0.9267325401306152] +NC(=O)c1ccc(-c2ccc3occc3c2)cc1; ['Brc1ccc2occc2c1', 'NC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1ccc2occc2c1', 'NC(=O)c1ccc(Br)cc1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'NC(=O)c1ccc(Cl)cc1', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'NC(=O)c1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'Clc1ccc2occc2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2occc2c1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'OB(O)c1ccc2occc2c1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(O)cc1', 'Oc1ccc2occc2c1']; [0.999995231628418, 0.9999895691871643, 0.9999894499778748, 0.9999887943267822, 0.9999813437461853, 0.9999725818634033, 0.9999638795852661, 0.9999619722366333, 0.9999451637268066, 0.9999372959136963, 0.9999210834503174, 0.9999160170555115, 0.9996471405029297, 0.9989930391311646, 0.9986320734024048, 0.9976270198822021, 0.9778715968132019, 0.9675552845001221, 0.9375908374786377, 0.8436627388000488] +Clc1cccc(Cl)c1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1cccc(Cl)c1I', 'Clc1ccc2occc2c1', 'Clc1cccc(Cl)c1Cl', 'Brc1ccc2occc2c1', 'Clc1cccc(Cl)c1', 'Clc1ccc2occc2c1', 'Clc1cccc(Cl)c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1ccc2occc2c1']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'Ic1ccc2occc2c1', 'Clc1cccc(Cl)c1Br', 'OB(O)c1ccc2occc2c1', 'Clc1cccc(Cl)c1Cl', 'OB(O)c1ccc2occc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'Ic1ccc2occc2c1', 'Clc1cccc(Cl)c1', 'COc1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br']; [0.9999978542327881, 0.999996542930603, 0.9999864101409912, 0.9999825954437256, 0.9999792575836182, 0.9999729990959167, 0.9998904466629028, 0.9998904466629028, 0.9995992183685303, 0.9991828203201294, 0.9977573156356812, 0.9970608949661255, 0.9970518350601196, 0.9956009387969971, 0.992607831954956, 0.9913203716278076, 0.9868377447128296, 0.9793953895568848, 0.9565315246582031, 0.8127881288528442] +Nc1nccc(-c2ccc3occc3c2)n1; ['Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Nc1nccc(Cl)n1', 'Nc1ncccn1']; ['OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Nc1nccc(Cl)n1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1']; [0.9999967813491821, 0.9999923706054688, 0.999969482421875, 0.9999641180038452, 0.9997259378433228] +Oc1ccc(-c2ccc3occc3c2)c(Cl)c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1']; ['Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1ccc2occc2c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Clc1ccc2occc2c1', 'Oc1ccc(Cl)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1']; [0.999991238117218, 0.9999675750732422, 0.9998984336853027, 0.9998706579208374, 0.9998628497123718, 0.9997574090957642, 0.9996325969696045, 0.9992679357528687, 0.9992002844810486, 0.9973706007003784, 0.9932262897491455, 0.9757682085037231, 0.9203122854232788, 0.8225447535514832] +Cc1nc2c(F)cc(-c3ccc4occc4c3)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2occc2c1; ['Brc1ccc2occc2c1', 'COc1cc(F)ccc1I', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'COc1cc(F)ccc1Cl', 'Brc1ccc2occc2c1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br', 'Brc1ccc2occc2c1', 'COc1cc(F)ccc1Br', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1cccc(F)c1', 'COc1cc(F)ccc1[Mg]Br']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2occc2c1', 'COc1cc(F)ccc1Br', 'Ic1ccc2occc2c1', 'COc1cc(F)ccc1I', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'OB(O)c1ccc2occc2c1', 'COc1cc(F)ccc1I', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'COc1cc(F)ccc1[Mg]Br', 'Clc1ccc2occc2c1', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1Br', 'OB(O)c1ccc2occc2c1', 'COc1ccc2occc2c1']; [0.9999876618385315, 0.9999860525131226, 0.9999765157699585, 0.9999668002128601, 0.9999654293060303, 0.9999504685401917, 0.9999271035194397, 0.9999009370803833, 0.9998934268951416, 0.9998713731765747, 0.9997867345809937, 0.9996967911720276, 0.9996458292007446, 0.9994274377822876, 0.9991548657417297, 0.9983518719673157, 0.9967713356018066, 0.9961107969284058, 0.9841558933258057, 0.9507789015769958, 0.856859028339386] +COc1ccc(F)cc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1ccc(F)cc1Br', 'Brc1ccc2occc2c1', 'COc1ccc(F)cc1Br', 'Brc1ccc2occc2c1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1[Mg]Br', 'Brc1ccc2occc2c1', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1[Mg]Br', 'COc1ccc(F)cc1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl']; ['COc1ccc(F)cc1Br', 'OB(O)c1ccc2occc2c1', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccc2occc2c1', 'COc1ccc(F)cc1B(O)O', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1[Mg]Br', 'Clc1ccc2occc2c1', 'Fc1ccc2occc2c1', 'COc1ccc(F)cc1', 'Clc1ccc2occc2c1', 'COc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'c1ccc2occc2c1', 'c1ccc2occc2c1']; [0.9999995231628418, 0.999998927116394, 0.9999957084655762, 0.9999871253967285, 0.9999856352806091, 0.9999833106994629, 0.999982476234436, 0.9999812245368958, 0.9998394250869751, 0.9997318983078003, 0.9996664524078369, 0.9994558095932007, 0.9954030513763428, 0.9924986362457275, 0.9655314683914185, 0.9452590942382812, 0.9358859062194824, 0.8675329685211182, 0.7952907085418701] +Oc1ccc(-c2ccc3occc3c2)c(F)c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Brc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1']; ['Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Ic1ccc2occc2c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Cl)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'Oc1cccc(F)c1']; [0.9999866485595703, 0.9999672174453735, 0.9999370574951172, 0.9999161958694458, 0.9998834133148193, 0.9998695850372314, 0.9997212886810303, 0.9989610910415649, 0.9983793497085571, 0.9951014518737793, 0.8758628368377686, 0.7611995935440063] +O=C([O-])c1ccc(-c2ccc3occc3c2)cc1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'O=C([O-])c1ccc(Cl)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1', 'OB(O)c1ccc2occc2c1', 'O=C([O-])c1ccccc1']; [0.9988632202148438, 0.9924136400222778, 0.9611011743545532] +Clc1[nH]ncc1-c1ccc2occc2c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3occc3c2)o1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(Cl)o1', 'Brc1ccc2occc2c1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(B(O)O)o1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1', 'COC(=O)c1ccco1']; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)o1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COC(=O)c1ccc(B(O)O)o1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1', 'O=S(=O)(Cl)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Nc1ccc2occc2c1']; [0.9999935626983643, 0.9999751448631287, 0.9999598264694214, 0.9999492764472961, 0.9994014501571655, 0.999230682849884, 0.9948408603668213, 0.9835166931152344, 0.9802078008651733, 0.9741959571838379, 0.9511878490447998, 0.7711242437362671, 0.7662851810455322] +COc1cc(-c2ccc3occc3c2)ccc1O; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1ccc2occc2c1', 'COc1cc(Cl)ccc1O', 'Brc1ccc2occc2c1']; ['COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COc1cc(Cl)ccc1O', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'COc1cc(I)ccc1O', 'OB(O)c1ccc2occc2c1', 'COc1cc(B(O)O)ccc1O']; [0.9999779462814331, 0.9999476075172424, 0.9998964071273804, 0.9998505115509033, 0.9997239112854004, 0.9995328187942505, 0.9995080232620239, 0.999056875705719, 0.9956866502761841, 0.995569109916687, 0.9941189289093018, 0.9933751225471497, 0.986060380935669, 0.985795795917511] +Oc1ccc(-c2ccc(-c3ccc4occc4c3)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3occc3c2)ccc1O; [None]; [None]; [0] +Cn1cc(-c2ccc3occc3c2)c2ccccc21; ['Brc1ccc2occc2c1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Brc1ccc2occc2c1', 'Cn1cc(C(=O)O)c2ccccc21']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Cn1ccc2ccccc21', 'Ic1ccc2occc2c1']; [0.9999774098396301, 0.9998809099197388, 0.9997905492782593, 0.998675525188446, 0.9936081171035767] +Oc1ccc(-c2ccc3occc3c2)cc1F; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1']; ['Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Oc1ccc(I)cc1F', 'Oc1ccc(Cl)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Br)cc1F', 'Oc1ccccc1F']; [0.9999894499778748, 0.9999758005142212, 0.9999713897705078, 0.9999691247940063, 0.999962568283081, 0.9999589323997498, 0.9997971057891846, 0.9997725486755371, 0.9994989633560181, 0.9994105100631714, 0.9989726543426514, 0.9988884925842285, 0.9709682464599609, 0.899659276008606] +Brc1cccc(-c2ccc3occc3c2)c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc4occc4c3)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2ccc3occc3c2)c(O)c1; [None]; [None]; [0] +Clc1ccccc1OCc1ccc2occc2c1; ['BrCc1ccc2occc2c1', 'OCc1ccc2occc2c1', 'Clc1ccccc1I', 'Fc1ccccc1Cl', 'Clc1ccccc1Br', 'F[B-](F)(F)c1ccccc1Cl', 'Clc1ccccc1Cl']; ['Oc1ccccc1Cl', 'Oc1ccccc1Cl', 'OCc1ccc2occc2c1', 'OCc1ccc2occc2c1', 'OCc1ccc2occc2c1', 'OCc1ccc2occc2c1', 'OCc1ccc2occc2c1']; [0.9999129772186279, 0.9993957281112671, 0.9979365468025208, 0.9943769574165344, 0.9918782114982605, 0.9633053541183472, 0.9196590185165405] +COC(=O)c1ccc(Cl)c(-c2ccc3occc3c2)c1; [None]; [None]; [0] +c1cc2c(-c3ccc4occc4c3)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1c[nH]c2cnccc12', 'Ic1c[nH]c2cnccc12', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1c[nH]c2cnccc12', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'c1cc2cc[nH]c2cn1', 'OB(O)c1c[nH]c2cnccc12']; [0.9999874830245972, 0.9999760389328003, 0.9997228384017944, 0.9994529485702515, 0.8702304363250732, 0.8087964057922363] +Nc1cc(-c2ccc3occc3c2)ccn1; ['Nc1cc(I)ccn1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Nc1cc(Cl)ccn1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(Br)ccn1']; [0.9999946355819702, 0.9999927878379822, 0.9999902248382568, 0.9999814033508301, 0.9999764561653137, 0.9999695420265198, 0.9999226331710815, 0.9999223947525024, 0.9998934864997864, 0.9997695684432983, 0.9995513558387756, 0.9992272853851318, 0.9841388463973999] +c1cnn2ncc(-c3ccc4occc4c3)c2c1; ['Brc1cnn2ncccc12', 'Brc1ccc2occc2c1', 'Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'O=C(O)c1cnn2ncccc12']; [0.999994695186615, 0.9999876022338867, 0.9999831914901733, 0.9999725818634033, 0.9966180324554443] +Fc1ccc(-c2nc[nH]c2-c2ccc3occc3c2)cc1; ['Fc1ccc(-c2c[nH]cn2)cc1']; ['Ic1ccc2occc2c1']; [0.9303191900253296] +Fc1ccc(-c2ccc3occc3c2)cc1Cl; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1I', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1Br', 'Brc1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1B(O)O']; ['Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1Br', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Ic1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1I', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Cc1ccc2[nH]ncc2c1Br', 'Clc1ccc2occc2c1']; [0.9999992847442627, 0.9999985098838806, 0.9999983310699463, 0.9999982118606567, 0.9999980926513672, 0.9999833106994629, 0.9999068379402161, 0.9998897910118103, 0.9998694658279419, 0.9998615384101868, 0.9996677041053772, 0.9992209672927856, 0.9963241815567017] +Oc1ncc(-c2ccc3occc3c2)cc1Cl; ['OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['Oc1ncc(I)cc1Cl', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Ic1ccc2occc2c1', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl', 'Oc1ncc(Br)cc1Cl']; [0.9999921321868896, 0.9999760389328003, 0.9999682903289795, 0.9999637007713318, 0.9999133348464966, 0.9998539686203003, 0.9983597993850708, 0.95467609167099] +NC(=O)c1cc(-c2ccc3occc3c2)c[nH]1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'NC(=O)c1cc(Br)c[nH]1', 'Brc1ccc2occc2c1']; ['NC(=O)c1cc(Br)c[nH]1', 'OB(O)c1ccc2occc2c1', 'NC(=O)c1cc(Br)c[nH]1']; [0.9998879432678223, 0.9995008707046509, 0.9683939218521118] +Oc1ccc(Cl)c(-c2ccc3occc3c2)c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1']; ['Oc1ccc(Cl)c(Br)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(O)ccc1Cl', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Ic1ccc2occc2c1', 'Oc1ccc(Cl)c(Cl)c1', 'OB(O)c1cc(O)ccc1Cl', 'OB(O)c1cc(O)ccc1Cl']; [0.999983549118042, 0.9999580383300781, 0.9999067187309265, 0.9997462630271912, 0.999492347240448, 0.9994187951087952, 0.9992983341217041, 0.9972001910209656, 0.9952417612075806, 0.9556956887245178] +Cc1ccc(CO)cc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1ccc(CO)cc1Br', 'Brc1ccc2occc2c1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1Cl', 'Brc1ccc2occc2c1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O', 'Brc1ccc2occc2c1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1ccc(CO)cc1I', 'Brc1ccc2occc2c1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1']; ['Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Br', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Cc1ccc(CO)cc1Cl', 'OB(O)c1ccc2occc2c1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Cc1ccc(CO)cc1I', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Cc1ccc(CO)cc1B(O)O', 'Clc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1', 'Ic1ccc2occc2c1', 'Cc1ccc(CO)cc1Br', 'c1ccc2occc2c1']; [0.9999908804893494, 0.9999803304672241, 0.9999797344207764, 0.9999563694000244, 0.9999516010284424, 0.9999510049819946, 0.9999388456344604, 0.9997415542602539, 0.9996931552886963, 0.9995432496070862, 0.9993042945861816, 0.9993020296096802, 0.9985358715057373, 0.990254282951355, 0.985573410987854, 0.9809166193008423, 0.9750732183456421, 0.972770094871521, 0.9713936448097229, 0.9552279710769653] +COc1cc(OC)cc(-c2ccc3occc3c2)c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Br)cc(OC)c1', 'Brc1ccc2occc2c1', 'COc1cc(I)cc(OC)c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1cc(Br)cc(OC)c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1cc(OC)cc([Mg]Br)c1', 'COc1cc(I)cc(OC)c1', 'COc1cccc(OC)c1', 'Brc1ccc2occc2c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1']; ['COc1cc(Br)cc(OC)c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'OB(O)c1ccc2occc2c1', 'COc1cc(I)cc(OC)c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'COc1cc(Cl)cc(OC)c1', 'Ic1ccc2occc2c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COc1cc(OC)cc(OC)c1', 'COc1ccc2occc2c1', 'Fc1ccc2occc2c1']; [0.9999932050704956, 0.9999921321868896, 0.9999904632568359, 0.999988317489624, 0.9999868869781494, 0.9999802708625793, 0.9999783039093018, 0.99996018409729, 0.9999490976333618, 0.9999458193778992, 0.9999406337738037, 0.9999377131462097, 0.9999235272407532, 0.9996917247772217, 0.9996185302734375, 0.9996010065078735, 0.9971221685409546, 0.9954873323440552, 0.9917885661125183, 0.9813101291656494, 0.9598931074142456, 0.9584860801696777, 0.9579010009765625, 0.9530495405197144, 0.9503079652786255] +COc1ccc(-c2ccc3occc3c2)cc1OC; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'COc1ccc(Br)cc1OC', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'Brc1ccc2occc2c1', 'COc1ccc([Mg]Br)cc1OC', 'Brc1ccc2occc2c1', 'COc1ccccc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC']; ['COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'COc1ccc(Cl)cc1OC', 'OB(O)c1ccc2occc2c1', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'COc1ccc([Mg]Br)cc1OC', 'Clc1ccc2occc2c1', 'COc1ccc(Br)cc1OC', 'OB(O)c1ccc2occc2c1', 'Fc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'COc1ccc2occc2c1']; [0.9999922513961792, 0.9999871253967285, 0.9999574422836304, 0.9999547004699707, 0.9998950958251953, 0.9998817443847656, 0.9998700022697449, 0.9998222589492798, 0.9994990825653076, 0.9988808631896973, 0.9986222386360168, 0.9986107349395752, 0.9972395896911621, 0.997126042842865, 0.9857264161109924, 0.979279100894928, 0.9775416254997253, 0.940861701965332, 0.9055531620979309, 0.8613977432250977, 0.8427340388298035, 0.8321164846420288] +Cc1nc2ccc(-c3ccc4occc4c3)cc2[nH]1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Brc1ccc2occc2c1']; ['Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Ic1ccc2occc2c1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Cc1nc2ccc(Br)cc2[nH]1']; [0.9999927282333374, 0.9999923706054688, 0.9999822974205017, 0.999916672706604, 0.9999054670333862, 0.999904990196228, 0.9995807409286499, 0.9132153987884521] +NC(=O)Nc1ccc(-c2ccc3occc3c2)cc1; ['Brc1ccc2occc2c1', 'NC(=O)Nc1ccc(Br)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Nc1ccc(-c2ccc3occc3c2)cc1', None, 'NC(N)=O']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'NC(=O)Nc1ccc(Br)cc1', '[N-]=C=O', None, 'Nc1ccc(-c2ccc3occc3c2)cc1']; [0.9999908208847046, 0.9999762773513794, 0.9999575614929199, 0.9908567070960999, 0, 0.9844086766242981] +c1cc2cc(-c3ccc4occc4c3)cnc2[nH]1; ['Brc1cnc2[nH]ccc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1cnc2[nH]ccc2c1', 'Brc1ccc2occc2c1']; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1ccc2occc2c1', 'Brc1cnc2[nH]ccc2c1']; [0.9999996423721313, 0.9999990463256836, 0.9999964237213135, 0.9999939203262329, 0.9999938011169434, 0.9999932050704956, 0.9999924898147583, 0.9999881386756897, 0.9999855160713196, 0.999982476234436, 0.9999792575836182, 0.9999597072601318, 0.9998437166213989, 0.9990382790565491] +CNC(=O)c1cccc2cc(-c3ccc4occc4c3)ccc12; [None]; [None]; [0] +CCOc1cccc(-c2ccc3occc3c2)c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3occc3c2)n1; ['CNc1nccc(Cl)n1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C']; ['OB(O)c1ccc2occc2c1', 'CNc1nccc(Cl)n1']; [0.9998600482940674, 0.99969482421875] +COc1cc(CCc2ccc3occc3c2)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3occc3c2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4occc4c3)nc2c1; [None]; [None]; [0] +Oc1cncc(-c2ccc3occc3c2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4occc4c3)ccc2N1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'O=C1Cc2ccc(Br)cc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2c(Br)cccc2N1', 'Ic1ccc2occc2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(Br)ccc2N1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Brc1ccc2ccoc2c1', 'O=C1Cc2cc(Cl)ccc2N1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1cccc2occc12', 'O=C1Cc2ccccc2N1', 'Brc1ccc2occc2c1']; ['O=C1Cc2cc(Br)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Ic1ccc2occc2c1', 'O=C1Cc2cc(I)ccc2N1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'OB(O)c1ccc2occc2c1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'OB(O)c1ccc2occc2c1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9998582601547241, 0.9998579621315002, 0.9998561143875122, 0.999754786491394, 0.9997342228889465, 0.9996873736381531, 0.9996627569198608, 0.9995886087417603, 0.9995630979537964, 0.9995452165603638, 0.9994229078292847, 0.9985539317131042, 0.998393177986145, 0.9970351457595825, 0.996661365032196, 0.9948635101318359, 0.9938087463378906, 0.9812934398651123, 0.9219397306442261, 0.7886010408401489] +CCc1cc(O)ccc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CCc1cc(O)ccc1Br', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2occc2c1', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['CCc1cc(O)ccc1Br', 'OB(O)c1ccc2occc2c1', 'CCc1cc(O)ccc1Cl', 'Ic1ccc2occc2c1', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl']; [0.9999948143959045, 0.9999849796295166, 0.9999270439147949, 0.999868631362915, 0.9998641014099121, 0.9998630285263062, 0.9997848272323608, 0.9952056407928467, 0.9730712175369263, 0.9462761282920837] +Cc1n[nH]c(-c2ccc3occc3c2)c1C; ['Brc1ccc2occc2c1']; ['Cc1c[nH]nc1C']; [0.9296818971633911] +CCc1cc(O)c(F)cc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br', 'Brc1ccc2occc2c1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2occc2c1']; ['CCc1cc(O)c(F)cc1Br', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1ccc2occc2c1', 'CCc1cc(O)c(F)cc1Br']; [0.9999935626983643, 0.9999715685844421, 0.9999701976776123, 0.999953031539917, 0.9998438358306885, 0.9744277000427246] +CN(c1cccc(Cl)c1)c1ccc2occc2c1; ['Brc1ccc2occc2c1', 'CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['CNc1cccc(Cl)c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1']; [0.9957772493362427, 0.9909363985061646, 0.961563229560852] +FC(F)c1cc(-c2ccc3occc3c2)[nH]n1; ['FC(F)c1cc[nH]n1', 'Brc1ccc2occc2c1', 'FC(F)c1cc[nH]n1']; ['OB(O)c1ccc2occc2c1', 'FC(F)c1cc[nH]n1', 'Ic1ccc2occc2c1']; [0.9999517202377319, 0.9604540467262268, 0.9557169079780579] +Cc1n[nH]c2cc(N(C)c3ccc4occc4c3)ccc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2occc2c1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Brc1ccc2occc2c1', 'Cc1cc(O)cc(Br)c1', 'Cc1cc(O)ccc1B(O)O', 'Brc1ccc2ccoc2c1', 'Brc1cccc2occc12', 'Brc1ccc2occc2c1']; ['Cc1cc(O)ccc1Br', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Cl', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Cc1cc(O)ccc1B(O)O', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1Br']; [0.99989914894104, 0.9998852014541626, 0.9998829364776611, 0.9996917247772217, 0.9995900988578796, 0.9994677305221558, 0.9994211792945862, 0.9989557266235352, 0.9983816146850586, 0.9971688389778137, 0.9967968463897705, 0.996249258518219, 0.9946812391281128, 0.9929881691932678, 0.9594818353652954, 0.8739185333251953] +CCc1sccc1-c1ccc2occc2c1; [None]; [None]; [0] +Clc1cnccc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Clc1ccncc1Cl', 'Clc1cnccc1Br', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1ccc2occc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccncc1Cl', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1cnccc1I', 'CC1(C)COB(c2ccncc2Cl)OC1', 'Clc1cccnc1', 'Clc1ccc2occc2c1']; ['Clc1cnccc1Br', 'Clc1cnccc1I', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccncc1Cl', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Clc1cnccc1I', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'OB(O)c1ccncc1Cl', 'Clc1ccc2occc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccncc1Cl', 'Ic1ccc2occc2c1', 'OB(O)c1ccncc1Cl', 'CC1(C)COB(c2ccncc2Cl)OC1', 'Clc1cnccc1Br', 'Ic1ccc2occc2c1', 'Fc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccncc1Cl']; [0.999998927116394, 0.9999987483024597, 0.9999980926513672, 0.9999915361404419, 0.9999825954437256, 0.9999805092811584, 0.9999667406082153, 0.9999585747718811, 0.9998898506164551, 0.9998799562454224, 0.9998019337654114, 0.9996876120567322, 0.999677300453186, 0.9996659159660339, 0.999618411064148, 0.9995601177215576, 0.9973466396331787, 0.9954661130905151, 0.9779036641120911, 0.9716558456420898, 0.8929065465927124] +CNc1nc(-c2ccc3occc3c2)ncc1F; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CNc1nc(Cl)ncc1F']; ['CNc1nc(Cl)ncc1F', 'OB(O)c1ccc2occc2c1']; [0.9999912977218628, 0.9999887347221375] +c1cc2cc(-c3ccc4c(c3)CCN4)ccc2o1; ['Brc1ccc2c(c1)CCN2', 'Brc1ccc2occc2c1', 'Brc1ccc2c(c1)CCN2', 'Ic1ccc2c(c1)CCN2', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Brc1ccc2occc2c1']; [0.9999939203262329, 0.9999898672103882, 0.9998956918716431, 0.9998617172241211, 0.9996339082717896, 0.9980015754699707, 0.9686100482940674] +Oc1c(Cl)cc(-c2ccc3occc3c2)cc1Cl; ['Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Oc1c(Cl)cc(Cl)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Cl)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(I)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Br)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl']; [0.9998605847358704, 0.9998501539230347, 0.9997766017913818, 0.9997315406799316, 0.9996124505996704, 0.9988089799880981, 0.9984456300735474, 0.997793436050415, 0.9892750978469849, 0.988381028175354, 0.9757886528968811, 0.9756931662559509, 0.9721107482910156, 0.8646581172943115, 0.788528323173523, 0.7654871344566345] +Oc1cc(-c2ccc3occc3c2)nc2ccnn12; ['Ic1ccc2occc2c1']; ['Oc1ccnc2ccnn12']; [0.9965070486068726] +c1cc(Nc2ccc3occc3c2)ccn1; ['Nc1ccncc1', 'Nc1ccc2occc2c1', 'Brc1ccncc1', 'Brc1ccc2occc2c1', 'Ic1ccncc1', 'Clc1ccncc1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Nc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Fc1ccc2occc2c1', 'Fc1ccncc1', 'Nc1ccc2occc2c1', 'Nc1ccncc1', 'Nc1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'OB(O)c1ccncc1', 'Nc1ccc2occc2c1', 'Nc1ccncc1', 'Nc1ccc2occc2c1', 'Nc1ccc2occc2c1', 'Nc1ccncc1', 'Nc1ccncc1', 'Oc1ccncc1', 'CC(=O)Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccc2occc2c1', 'Nc1ccncc1', 'Oc1ccc2occc2c1', 'c1cc[n+](-c2ccncc2)cc1']; [0.9999762773513794, 0.9999628067016602, 0.9997451305389404, 0.9995772838592529, 0.999270498752594, 0.9989867210388184, 0.9985376596450806, 0.9977216720581055, 0.9973455667495728, 0.9965541362762451, 0.9963523149490356, 0.9959166049957275, 0.9930535554885864, 0.9921377897262573, 0.9877845048904419] +Cn1ncc(N)c1-c1ccc2occc2c1; ['Brc1ccc2occc2c1', 'Cn1cc(N)cn1']; ['Cn1cc(N)cn1', 'Ic1ccc2occc2c1']; [0.9843431711196899, 0.7700523734092712] +O=c1[nH]c2ccc(-c3ccc4occc4c3)cc2[nH]1; ['Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'Ic1ccc2occc2c1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'OB(O)c1ccc2occc2c1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccccc2[nH]1']; [0.9999891519546509, 0.9999831914901733, 0.9999819993972778, 0.9999576807022095, 0.9999047517776489, 0.9998925924301147, 0.9998852014541626, 0.9998645782470703, 0.9998458027839661, 0.9994568228721619, 0.9992945790290833, 0.9991520643234253, 0.9968485832214355, 0.9734058976173401, 0.9068692922592163] +CNC(=O)c1ccc(-c2ccc3occc3c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1ccc2occc2c1', 'CNC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CNC(=O)c1ccc(Br)cc1', 'Brc1ccc2occc2c1']; ['Ic1ccc2occc2c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'OB(O)c1ccc2occc2c1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'Ic1ccc2occc2c1', 'CNC(=O)c1ccc(Br)cc1']; [0.9999911785125732, 0.9999876022338867, 0.9999836683273315, 0.9999707341194153, 0.9999672174453735, 0.9999653697013855, 0.9999493360519409, 0.9999048709869385, 0.9998935461044312, 0.9998748898506165, 0.9998406171798706, 0.9996966123580933, 0.997901201248169, 0.9970216751098633, 0.8806775808334351] +Fc1cc(Br)ccc1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Fc1cc(Br)ccc1I', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Ic1ccc2occc2c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Fc1cc(Br)ccc1Cl', 'Fc1cc(Br)ccc1Br', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)cc(Br)c1', 'Brc1cccc2occc12', 'Brc1ccc2ccoc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Fc1cccc(Br)c1']; ['Fc1cc(Br)ccc1I', 'OB(O)c1ccc2occc2c1', 'Fc1cc(Br)ccc1Br', 'Ic1ccc2occc2c1', 'OB(O)c1ccc(Br)cc1F', 'Clc1ccc2occc2c1', 'Fc1cc(Br)ccc1Cl', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'OB(O)c1ccc(Br)cc1F', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc(Br)cc1F', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'OB(O)c1ccc2occc2c1']; [0.9999921321868896, 0.9999901056289673, 0.9999836683273315, 0.9999812245368958, 0.9999217987060547, 0.9999120235443115, 0.9998923540115356, 0.9998055696487427, 0.9998044967651367, 0.9994451999664307, 0.999098539352417, 0.9984017014503479, 0.9960987567901611, 0.9884436130523682, 0.9522572755813599, 0.9464743137359619, 0.9387739896774292, 0.9300805926322937, 0.8703526258468628] +CN(c1ccc2occc2c1)c1cccc2[nH]ncc12; ['CNc1cccc2[nH]ncc12', 'Brc1ccc2occc2c1']; ['Ic1ccc2occc2c1', 'CNc1cccc2[nH]ncc12']; [0.9866114854812622, 0.9761738777160645] +Fc1ccc2n[nH]c(-c3ccc4occc4c3)c2c1; ['Fc1ccc2n[nH]cc2c1', 'Brc1ccc2occc2c1', 'Fc1ccc2n[nH]cc2c1']; ['OB(O)c1ccc2occc2c1', 'Fc1ccc2n[nH]cc2c1', 'Ic1ccc2occc2c1']; [0.9999966621398926, 0.9994244575500488, 0.9958245754241943] +Cc1oc(-c2ccc3occc3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1cc(Br)cc(-c2ccc3occc3c2)c1; ['OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(I)c1', 'OB(O)c1cc(O)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'Ic1ccc2occc2c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'OB(O)c1cc(O)cc(Br)c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; [0.9999895691871643, 0.9999786615371704, 0.9999526739120483, 0.9998535513877869, 0.9997749328613281, 0.9997734427452087, 0.999596118927002, 0.9985669851303101, 0.9980475902557373, 0.9940179586410522] +Cc1cc(-c2ccc3occc3c2)ccc1C(N)=O; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Brc1ccc2occc2c1']; ['Cc1cc(Br)ccc1C(N)=O', 'Ic1ccc2occc2c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Clc1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999805688858032, 0.9999790191650391, 0.9999788999557495, 0.9999622106552124, 0.9999449253082275, 0.999925971031189, 0.9998996257781982, 0.9145944714546204] +O=C(NC1CC1)c1ccc(-c2ccc3occc3c2)cc1; ['O=C(NC1CC1)c1ccc(I)cc1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Ic1ccc2occc2c1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Clc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Ic1ccc2occc2c1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'OB(O)c1ccc2occc2c1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'Clc1ccc2occc2c1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999995231628418, 0.9999994039535522, 0.9999985694885254, 0.9999983310699463, 0.9999979734420776, 0.999997615814209, 0.9999955296516418, 0.999995231628418, 0.999995231628418, 0.9999876022338867, 0.9999129772186279, 0.9960278868675232] +Cc1nc2ccc(-c3ccc4occc4c3)cc2o1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Brc1ccc2occc2c1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1']; ['Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Ic1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Cc1nc2ccc(B(O)O)cc2o1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1']; [0.9999920129776001, 0.9999899864196777, 0.9999850988388062, 0.9999833106994629, 0.9999489784240723, 0.9999430179595947, 0.9998776912689209, 0.9998730421066284] +Cc1cc(-c2ccc3occc3c2)cc(C)c1O; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Brc1ccc2occc2c1']; ['Cc1cc(Br)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Ic1ccc2occc2c1', 'Cc1cc(I)cc(C)c1O', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Cc1cc(B(O)O)cc(C)c1O']; [0.9997552633285522, 0.9997020959854126, 0.9995708465576172, 0.9994267821311951, 0.9993857145309448, 0.9990723133087158, 0.9978336095809937, 0.9942115545272827, 0.9786825180053711, 0.9559425115585327] +Oc1c(F)cc(-c2ccc3occc3c2)cc1F; ['OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'OB(O)c1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1']; ['Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Oc1c(F)cc(I)cc1F', 'Ic1ccc2occc2c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(I)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cccc1F']; [0.999975860118866, 0.9999535083770752, 0.9999042749404907, 0.9998810291290283, 0.9997916221618652, 0.9997578859329224, 0.9995062351226807, 0.9992907643318176, 0.9986833333969116, 0.9986295104026794, 0.995186984539032, 0.9950359463691711, 0.9827262163162231, 0.7794781923294067, 0.7549217939376831] +c1ccc2c(COc3ccc4occc4c3)cccc2c1; ['BrCc1cccc2ccccc12', 'ClCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Fc1ccc2occc2c1']; ['Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9999511241912842, 0.9999319314956665, 0.9994101524353027, 0.9974599480628967, 0.9895530939102173, 0.9819307327270508, 0.9502538442611694] +Cc1onc(-c2ccccc2)c1-c1ccc2occc2c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Cc1onc(-c2ccccc2)c1I', 'Brc1ccc2occc2c1', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1I']; ['Cc1onc(-c2ccccc2)c1I', 'OB(O)c1ccc2occc2c1', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'c1ccc2occc2c1']; [0.9999892711639404, 0.9999815225601196, 0.9998589754104614, 0.9997984766960144, 0.9966198205947876, 0.8322809338569641] +Fc1ccc(Oc2ccc3occc3c2)c(F)c1; ['OB(O)c1ccc2occc2c1', 'OB(O)c1ccc(F)cc1F', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Fc1ccc(Br)c(F)c1', 'Clc1ccc2occc2c1', 'Fc1ccc(Cl)c(F)c1', 'Fc1ccc(F)c(F)c1', 'Fc1ccc(I)c(F)c1', 'Fc1ccc2occc2c1', 'O=[N+]([O-])c1ccc(F)cc1F']; ['Oc1ccc(F)cc1F', 'Oc1ccc2occc2c1', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Oc1ccc2occc2c1', 'Oc1ccc(F)cc1F', 'Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'Oc1ccc(F)cc1F', 'Oc1ccc2occc2c1']; [0.9999986886978149, 0.9998741149902344, 0.9998641610145569, 0.999847948551178, 0.9998073577880859, 0.9997172355651855, 0.9995999336242676, 0.9994425773620605, 0.9992576837539673, 0.9976927042007446, 0.7637985944747925] +CSc1cccc(-c2ccc3occc3c2)c1; ['CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'Brc1ccc2occc2c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC1(C)OB(c2ccc3occc3c2)OC1(C)C', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'Brc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'CSc1cccc([Mg]Br)c1', 'Brc1ccc2occc2c1', 'COc1ccc2occc2c1']; ['CSc1cccc(Br)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'CSc1cccc(Cl)c1', 'OB(O)c1ccc2occc2c1', 'OB(O)c1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Ic1ccc2occc2c1', 'CSc1cccc([Mg]Br)c1', 'CSc1cccc(B(O)O)c1', 'Clc1ccc2occc2c1', 'CSc1cccc(Br)c1', 'CSc1cccc([Mg]Br)c1']; [0.9999957084655762, 0.9999955296516418, 0.999976634979248, 0.9999748468399048, 0.999968945980072, 0.999658465385437, 0.9996030926704407, 0.9971995949745178, 0.9971418380737305, 0.9971100091934204, 0.9970160722732544, 0.9948190450668335, 0.9919804334640503, 0.8553943037986755, 0.800978422164917] +O=c1[nH][nH]c2cc(-c3ccc4occc4c3)ccc12; [None]; [None]; [0] +c1ccc2c(CCc3ccc4occc4c3)c[nH]c2c1; ['BrCCc1c[nH]c2ccccc12']; ['Brc1ccc2occc2c1']; [0.8847339153289795] +Fc1cccc(Cl)c1CNc1ccc2occc2c1; ['NCc1c(F)cccc1Cl', 'Ic1ccc2occc2c1', 'Brc1ccc2occc2c1', 'Fc1cccc(Cl)c1CBr', 'Fc1cccc(Cl)c1CCl', 'NCc1c(F)cccc1Cl', 'Fc1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Nc1ccc2occc2c1', 'Nc1ccc2occc2c1', 'NCc1c(F)cccc1Cl']; ['OB(O)c1ccc2occc2c1', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'Nc1ccc2occc2c1', 'Nc1ccc2occc2c1', 'O=Cc1ccc2occc2c1', 'NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'OCc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'O=[N+]([O-])c1ccc2occc2c1']; [0.9999975562095642, 0.999813437461853, 0.9989331960678101, 0.9983142614364624, 0.9908590316772461, 0.9900999665260315, 0.975296676158905, 0.971821665763855, 0.9264742136001587, 0.8694757223129272, 0.7867758870124817] +Fc1ccc(-c2ncoc2-c2ccc3occc3c2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc(O)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Br)c1', 'Cn1cnc2ccc(Br)cc21', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1']; [0.9998941421508789, 0.9997872114181519, 0.9996263384819031, 0.9987469911575317, 0.9938250184059143, 0.9921507835388184, 0.9822481870651245] +Fc1ccc(COc2ccc3occc3c2)c(F)c1; ['Fc1ccc(CBr)c(F)c1', 'Fc1ccc(CCl)c(F)c1', 'OCc1ccc(F)cc1F', 'Brc1ccc2occc2c1', 'Ic1ccc2occc2c1', 'Clc1ccc2occc2c1', 'Fc1ccc2occc2c1']; ['Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'Oc1ccc2occc2c1', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9999750852584839, 0.9999566078186035, 0.9998378753662109, 0.999183177947998, 0.9935216903686523, 0.9614270925521851, 0.9531974196434021] +Cn1cnc2ccc(-c3cccc4ncccc34)cc21; ['Brc1cccc2ncccc12', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Clc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Clc1cccc2ncccc12', 'Cn1cnc2ccc(Br)cc21', 'Br[Mg]c1cccc2ncccc12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Cn1cnc2ccc(Br)cc21']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1cccc2ncccc12', 'Cn1cnc2ccc(Br)cc21', 'Ic1cccc2ncccc12', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'OB(O)c1cccc2ncccc12', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccccc21', 'Ic1cccc2ncccc12']; [0.9999960660934448, 0.9999916553497314, 0.9999452829360962, 0.999802827835083, 0.9997337460517883, 0.9996678829193115, 0.9978671073913574, 0.9585186243057251, 0.924968957901001, 0.9200908541679382, 0.8883365392684937] +Clc1ccc(-c2[nH]ncc2-c2ccc3occc3c2)cc1; ['Brc1ccc2occc2c1', 'Clc1ccc(-c2ccn[nH]2)cc1']; ['Clc1ccc(-c2ccn[nH]2)cc1', 'Clc1ccc2occc2c1']; [0.9462680220603943, 0.9088541269302368] +Fc1ccc(CCc2ccc3occc3c2)c(F)c1; ['Fc1ccc(CCBr)c(F)c1', 'Brc1ccc2occc2c1', 'Fc1ccc(CCBr)c(F)c1', 'Cc1ccc2occc2c1', 'Brc1ccc2occc2c1', 'BrCc1ccc2occc2c1', 'Cc1ccc2occc2c1']; ['Oc1ccc2occc2c1', 'Fc1ccc(CCBr)c(F)c1', 'Ic1ccc2occc2c1', 'Fc1ccc(CCl)c(F)c1', 'C=Cc1ccc(F)cc1F', 'Cc1ccc(F)cc1F', 'Fc1ccc(CBr)c(F)c1']; [0.9993799924850464, 0.9992234706878662, 0.9973636865615845, 0.9935657978057861, 0.986039400100708, 0.969429612159729, 0.8430980443954468] +Cn1cnc2ccc(-c3ccc(Cl)c(O)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1cc(I)ccc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl', 'OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(Cl)ccc1Cl']; [0.9999651908874512, 0.9999092817306519, 0.9998740553855896, 0.9998005628585815, 0.9989832639694214, 0.9966976642608643, 0.9904338121414185] +Cn1cnc2ccc(-c3c(Cl)ccc4c3OCO4)cc21; ['Cn1cnc2ccc(Br)cc21']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9975895881652832] +CNS(=O)(=O)c1ccc(-c2ccc3ncn(C)c3c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9997197985649109, 0.9973462820053101, 0.993790864944458, 0.9928508400917053, 0.9819762706756592] +Cn1cnc2ccc(Oc3ccc(F)cc3)cc21; ['Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9960622787475586, 0.9863226413726807] +Cn1cnc2ccc(-c3n[nH]c4ccccc34)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Brc1n[nH]c2ccccc12', 'CC(C)(C)OC(=O)n1nc(I)c2ccccc21', 'Clc1n[nH]c2ccccc12', 'Cn1cnc2ccc(B(O)O)cc21', 'Brc1n[nH]c2ccccc12', 'Clc1n[nH]c2ccccc12', 'Cn1cnc2ccc(B(O)O)cc21', 'Clc1n[nH]c2ccccc12']; ['Ic1n[nH]c2ccccc12', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1n[nH]c2ccccc12', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'c1ccc2[nH]ncc2c1', 'Cn1cnc2ccc(Br)cc21']; [0.999998927116394, 0.999993085861206, 0.9999799132347107, 0.9999532103538513, 0.9999358654022217, 0.9987543821334839, 0.9938036203384399, 0.9623592495918274, 0.9065753817558289] +Cn1cnc2ccc(-c3ccc(C(N)=O)cc3)cc21; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Cn1cnc2ccc(Br)cc21', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(I)cc1']; [0.9999886751174927, 0.9999197721481323, 0.9998503923416138, 0.9998472332954407, 0.9995512962341309, 0.9990798234939575, 0.9973907470703125, 0.9857414960861206, 0.8740929365158081] +Cn1cnc2ccc(-c3ccc(O)cc3Cl)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(Br)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'Oc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(O)cc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Oc1ccc(Cl)c(Cl)c1']; [0.9999653697013855, 0.999557375907898, 0.9986597299575806, 0.9962886571884155, 0.9957959055900574, 0.9953498840332031, 0.9334271550178528] +COc1cc(C(N)=O)ccc1-c1ccc2ncn(C)c2c1; ['COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(C(N)=O)ccc1Br', 'COc1cc(C(N)=O)ccc1Br']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999838471412659, 0.999957799911499, 0.9999382495880127, 0.9381914138793945] +Cn1cnc2ccc(-c3c(Cl)cccc3Cl)cc21; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Fc1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.999998152256012, 0.999992847442627, 0.9999762177467346, 0.999889612197876, 0.9996315240859985, 0.9989624619483948, 0.9944660067558289, 0.9912158846855164, 0.9896972179412842, 0.9871495962142944, 0.9825479984283447, 0.8959963321685791] +Cn1cnc2ccc(-c3ccc(C(N)=O)cc3F)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['NC(=O)c1ccc(Br)c(F)c1', 'Cn1cnc2ccc(Br)cc21', 'NC(=O)c1ccc(Br)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Cl)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.9999966621398926, 0.9999603033065796, 0.999923825263977, 0.9998554587364197, 0.9993108510971069, 0.9978795051574707, 0.9294270277023315] +COc1ccc(F)cc1-c1ccc2ncn(C)c2c1; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccccc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999992251396179, 0.9999871253967285, 0.9999663233757019, 0.9997978210449219, 0.9996316432952881, 0.9988957643508911, 0.9417104721069336, 0.8715707063674927] +Cn1cnc2ccc(-c3ccc(O)cc3F)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1ccc(Br)c(F)c1', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Br)c(F)c1', 'Cn1cnc2ccc(Br)cc21', 'Oc1ccc(Cl)c(F)c1', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Cl)c(F)c1', 'Oc1ccc(I)c(F)c1']; [0.9999839067459106, 0.9999343752861023, 0.9995028376579285, 0.9993999004364014, 0.9988024234771729, 0.9957678318023682, 0.9957554340362549, 0.9636634588241577, 0.9031773805618286] +Cc1nc2c(F)cc(-c3ccc4ncn(C)c4c3)cc2[nH]1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccnc(N)n3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1', 'Nc1ncccn1']; [0.9999939203262329, 0.9999873638153076, 0.9998990893363953, 0.999861478805542, 0.9994964599609375, 0.9931226372718811, 0.9718121290206909] +COC(=O)c1ccc(-c2ccc3ncn(C)c3c2)o1; ['COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.999993085861206, 0.9999086856842041, 0.9964843988418579, 0.9782266616821289] +Cn1cnc2ccc(-c3cn[nH]c3Cl)cc21; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2ncn(C)c2c1; ['COc1cc(F)ccc1Br', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999977350234985, 0.9999827146530151, 0.9999760389328003, 0.9999748468399048, 0.9998992681503296, 0.9998874664306641, 0.9997999668121338, 0.9995580911636353, 0.9942764043807983, 0.9816861152648926] +Cn1cnc2ccc(-c3ccc(C(=O)[O-])cc3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21']; ['O=C([O-])c1ccc(Cl)cc1']; [0.943152666091919] +COc1cc(-c2ccc3ncn(C)c3c2)ccc1O; ['COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Cl)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9997557401657104, 0.9995026588439941, 0.9994475841522217, 0.9965256452560425, 0.9918228387832642, 0.9812009334564209, 0.9640138149261475, 0.8460976481437683] +Cn1cnc2ccc(-c3cccc(Br)c3)cc21; ['Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Cn1cnc2ccc(Br)cc21', 'Brc1cccc(I)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'OB(O)c1cccc(Br)c1', 'Cn1cnc2ccc(Br)cc21']; [0.9999918341636658, 0.999971866607666, 0.999849796295166, 0.9994927644729614, 0.9994125366210938, 0.9987022876739502, 0.9880998134613037, 0.9788520336151123, 0.831485390663147] +Cn1cnc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)cc21; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc(O)c(F)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'Cn1cnc2ccc(Br)cc21', 'Oc1ccc(I)cc1F', 'Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(Cl)cc1F']; [0.9999667406082153, 0.9999451637268066, 0.9998699426651001, 0.9996263980865479, 0.9994417428970337, 0.9969816207885742, 0.9908183813095093] +Cn1cnc2ccc(-c3ccc4ccccc4c3)cc21; ['Brc1ccc2ccccc2c1', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Clc1ccc2ccccc2c1', 'Cn1cnc2ccc(B(O)O)cc21', 'Clc1ccc2ccccc2c1', 'Cn1cnc2ccc(Br)cc21', 'Brc1ccc2ccccc2c1', 'Br[Mg]c1ccc2ccccc2c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1ccc2ccccc2c1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1ccc2ccccc2c1', 'Cn1cnc2ccc(B(O)O)cc21', 'OB(O)c1ccc2ccccc2c1', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999061822891235, 0.9999051094055176, 0.9998785257339478, 0.9998674392700195, 0.999800443649292, 0.9990047216415405, 0.997402548789978, 0.9969151020050049, 0.9913585186004639, 0.8726940155029297] +Cn1cnc2ccc(-c3ccc(O)cc3O)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1ccc(Br)c(O)c1', 'Oc1ccc(Br)c(O)c1']; [0.9998306632041931, 0.9953924417495728] +Cn1cnc2ccc(-c3cn(C)c4ccccc34)cc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999877214431763, 0.999126672744751] +COC(=O)c1ccc(Cl)c(-c2ccc3ncn(C)c3c2)c1; ['COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999995231628418, 0.9999977350234985, 0.9999950528144836, 0.9999942779541016, 0.9999749660491943, 0.9999098777770996, 0.9996474981307983, 0.9992252588272095, 0.9990556240081787, 0.9917243719100952] +Cn1cnc2ccc(-c3cnn4ncccc34)cc21; ['Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999995827674866, 0.9999995231628418, 0.9999790191650391, 0.9289500117301941] +Cn1cnc2ccc(-c3c[nH]c4cnccc34)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Brc1c[nH]c2cnccc12', 'Cn1cnc2ccc(B(O)O)cc21', 'Brc1c[nH]c2cnccc12']; ['Ic1c[nH]c2cnccc12', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1c[nH]c2cnccc12', 'Cn1cnc2ccc(B(O)O)cc21']; [0.999995231628418, 0.9999945163726807, 0.9996421337127686, 0.9987627267837524] +COc1cc(CCc2ccc3ncn(C)c3c2)ccc1O; [None]; [None]; [0] +Cn1cnc2ccc(COc3ccccc3Cl)cc21; ['Cn1cnc2ccc(CO)cc21', 'Cn1cnc2ccc(CO)cc21', 'Clc1ccccc1I', 'Clc1ccccc1Br']; ['Oc1ccccc1Cl', 'Fc1ccccc1Cl', 'Cn1cnc2ccc(CO)cc21', 'Cn1cnc2ccc(CO)cc21']; [0.9934279918670654, 0.9064613580703735, 0.7784538269042969, 0.7711286544799805] +Cn1cnc2ccc(-c3ccnc(N)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1', 'Cn1cnc2ccc(Br)cc21', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(Cl)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.9999810457229614, 0.9999552965164185, 0.9998655319213867, 0.999832034111023, 0.999724268913269, 0.995388388633728, 0.9911859631538391, 0.9883981943130493] +Cn1cnc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)cc21; ['Cn1cnc2ccc(Br)cc21']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.7626808881759644] +Cc1ccc2[nH]ncc2c1-c1ccc2ncn(C)c2c1; ['Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1Br', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999996423721313, 0.9999969005584717, 0.9999856948852539, 0.9999793767929077, 0.9997066259384155, 0.9896809458732605, 0.883263111114502] +Cn1cnc2ccc(-c3ccc(F)c(Cl)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Fc1ccc(Br)cc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(I)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'Fc1ccc([Mg]Br)cc1Cl']; [0.9999994039535522, 0.9999988079071045, 0.9999985694885254, 0.9999855756759644, 0.9999716877937317, 0.9999694228172302, 0.9999598264694214, 0.9992557764053345, 0.9984833002090454, 0.9942412376403809, 0.9853940010070801] +Cn1cnc2ccc(-c3cnc(O)c(Cl)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1ncc(I)cc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Oc1ncc(I)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(Cl)cc1Cl', 'Oc1ncccc1Cl']; [0.9999569058418274, 0.9999292492866516, 0.9997567534446716, 0.9997431039810181, 0.9962471723556519, 0.9862661361694336, 0.8628018498420715] +Cn1cnc2ccc(-c3cc(O)ccc3Cl)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1ccc(Cl)c(I)c1', 'Oc1ccc(Cl)c(Br)c1', 'Cn1cnc2ccc(Br)cc21', 'Oc1ccc(Cl)c(Cl)c1', 'OB(O)c1cc(O)ccc1Cl']; [0.9999737739562988, 0.9999405741691589, 0.9995748996734619, 0.999496340751648, 0.9994332790374756, 0.9983755350112915, 0.9922218918800354, 0.9815511107444763] +Cc1ccc(CO)cc1-c1ccc2ncn(C)c2c1; ['Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1B(O)O', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccccc21']; [0.9999942183494568, 0.9999115467071533, 0.9998987913131714, 0.9996196031570435, 0.9985849261283875, 0.9980030655860901, 0.9897058606147766, 0.9549407958984375, 0.8421196937561035, 0.8086673617362976] +Cn1cnc2ccc(-c3c[nH]c(C(N)=O)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['NC(=O)c1cc(Br)c[nH]1', 'NC(=O)c1cc(Br)c[nH]1']; [0.999985933303833, 0.9908698201179504] +COc1cc(OC)cc(-c2ccc3ncn(C)c3c2)c1; ['COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999896883964539, 0.9999741315841675, 0.9999578595161438, 0.9999392628669739, 0.9999352097511292, 0.9997080564498901, 0.9996128678321838, 0.9980398416519165, 0.9979397058486938, 0.981616735458374, 0.944343090057373, 0.8639616966247559] +COc1ccc(-c2ccc3ncn(C)c3c2)cc1OC; ['COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(Br)cc1OC']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999310970306396, 0.9999037981033325, 0.9998883008956909, 0.9984375238418579, 0.9970115423202515, 0.9932070970535278, 0.992035984992981, 0.9787946939468384, 0.9056681394577026, 0.8818187713623047, 0.7894169092178345] +Cc1nc2ccc(-c3ccc4ncn(C)c4c3)cc2[nH]1; ['Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1', 'Cc1nc2ccc(Cl)cc2[nH]1', 'Cc1nc2ccc(Br)cc2[nH]1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999902248382568, 0.9999706745147705, 0.9997986555099487, 0.9992368221282959, 0.9905630350112915, 0.7586400508880615] +Cn1cnc2ccc(-c3cnc4[nH]ccc4c3)cc21; ['Brc1cnc2[nH]ccc2c1', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Clc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2[nH]ccc2c1', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Brc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Ic1cnc2[nH]ccc2c1', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.999998152256012, 0.9999967217445374, 0.999996542930603, 0.999983549118042, 0.9998502731323242, 0.9996627569198608, 0.9979068040847778, 0.9965039491653442, 0.9473903179168701] +Cn1cnc2ccc(-c3ccc(NC(N)=O)cc3)cc21; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21']; ['Cn1cnc2ccc(Br)cc21', 'NC(=O)Nc1ccc(Br)cc1', 'NC(=O)Nc1ccc(Br)cc1']; [0.9999397993087769, 0.999130129814148, 0.9988359212875366] +Cn1cnc2ccc(-c3ccc(S(C)(=O)=O)cc3)cc21; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999947547912598, 0.9999648332595825, 0.999946117401123, 0.9998369216918945, 0.9996484518051147, 0.9992117285728455, 0.9989264011383057, 0.9959959387779236, 0.9483374357223511, 0.8669386506080627] +CCOc1cccc(-c2ccc3ncn(C)c3c2)c1; ['CCOc1cccc(Br)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc(I)c1', 'CCOc1cccc([Mg]Br)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccccc21', 'Cn1cnc2ccc(Br)cc21']; [0.999941349029541, 0.9997938871383667, 0.9996196627616882, 0.9992814064025879, 0.9987384676933289, 0.9986807107925415, 0.9516980648040771, 0.9353355169296265, 0.8395754098892212, 0.7659886479377747] +CNC(=O)c1cccc2cc(-c3ccc4ncn(C)c4c3)ccc12; [None]; [None]; [0] +COc1cc(CCc2ccc3ncn(C)c3c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1', 'COc1cc(CCl)cc(OC)c1']; ['Cn1cnc2ccc(Br)cc21', 'Cc1ccc2ncn(C)c2c1']; [0.9855053424835205, 0.8676552772521973] +Cn1cnc2ccc(-c3cncc(O)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1cncc(I)c1', 'Oc1cncc(Br)c1', 'Cn1cnc2ccc(Br)cc21', 'Oc1cncc(I)c1', 'Oc1cncc(Cl)c1', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1']; [0.9998794794082642, 0.999860405921936, 0.9998180866241455, 0.9980945587158203, 0.9870972633361816, 0.9862260818481445, 0.9191312789916992] +Cn1cnc2ccc(-c3ccc4c(c3)CC(=O)N4)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['O=C1Cc2cc(I)ccc2N1', 'Cn1cnc2ccc(Br)cc21', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(Cl)ccc2N1']; [0.9998010993003845, 0.9997536540031433, 0.999642550945282, 0.9975789785385132, 0.9968428611755371, 0.9961463212966919, 0.995482325553894, 0.974585235118866] +Cn1cnc2ccc(-c3nc4ccccc4s3)cc21; ['Brc1nc2ccccc2s1', 'Cn1cnc2ccc(C=O)cc21', 'Brc1nc2ccccc2s1', 'Cn1cnc2ccc(C=O)cc21', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(C(=O)O)cc21', 'Cn1cnc2ccc(C=O)cc21']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Nc1ccccc1I', 'Cn1cnc2ccc(B(O)O)cc21', 'Nc1ccccc1S', 'Cn1cnc2ccc(Br)cc21', 'c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1']; [0.9999954700469971, 0.9999322891235352, 0.9999265670776367, 0.9994782209396362, 0.9979120492935181, 0.997510552406311, 0.9892614483833313, 0.9689847230911255] +CNc1nccc(-c2ccc3ncn(C)c3c2)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Br)n1', 'CNc1nccc(Cl)n1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9999305009841919, 0.9998754858970642, 0.9991787672042847, 0.996930718421936] +CCc1cc(O)c(F)cc1-c1ccc2ncn(C)c2c1; ['CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccccc21']; [0.9999988079071045, 0.9999951124191284, 0.9996725916862488, 0.8989335298538208] +Cc1n[nH]c2cc(N(C)c3ccc4ncn(C)c4c3)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2ncn(C)c2c1; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Cl', 'CCc1cc(O)ccc1Br']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999725222587585, 0.9998449087142944, 0.9989522695541382, 0.9943376779556274, 0.9941418170928955, 0.8202255964279175] +Cc1cc(O)ccc1-c1ccc2ncn(C)c2c1; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1I', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1B(O)O']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9995135068893433, 0.9989938735961914, 0.9977678060531616, 0.9949064254760742, 0.9881138801574707, 0.9872803688049316, 0.9614277482032776, 0.9489837884902954] +Cc1n[nH]c(-c2ccc3ncn(C)c3c2)c1C; ['Cc1c[nH]nc1C', 'Cc1c[nH]nc1C']; ['Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9996868371963501, 0.8643430471420288] +CN(c1cccc(Cl)c1)c1ccc2ncn(C)c2c1; ['CNc1cccc(Cl)c1', 'CNc1cccc(Cl)c1']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9794892072677612, 0.9757500886917114] +Cn1cnc2ccc(-c3cc(C(F)F)n[nH]3)cc21; ['Cn1cnc2ccc(Br)cc21']; ['FC(F)c1cc[nH]n1']; [0.9196667671203613] +C[C@H](CC(N)=O)c1ccc2ncn(C)c2c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccncc3Cl)cc21; ['Clc1cnccc1Br', 'Clc1cnccc1I', 'Clc1ccncc1Cl', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'Clc1ccncc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Clc1cnccc1I']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'OB(O)c1ccncc1Cl', 'Cn1cnc2ccc(Br)cc21']; [0.9999985694885254, 0.9999985098838806, 0.9999853372573853, 0.9999336004257202, 0.9999297857284546, 0.9999182820320129, 0.9996452331542969, 0.999119758605957, 0.9978532791137695] +CNc1nc(-c2ccc3ncn(C)c3c2)ncc1F; ['CNc1nc(Cl)ncc1F', 'CNc1nc(Cl)ncc1F']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9999974966049194, 0.999970555305481] +Cn1cnc2ccc(-c3cc(Cl)c(O)c(Cl)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'Cn1cnc2ccc(Br)cc21', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cc(Cl)cc1Cl', 'Oc1c(Cl)cc(Br)cc1Cl', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(Cl)cc1Cl']; [0.999591588973999, 0.9991191029548645, 0.9991053342819214, 0.9931280612945557, 0.9905695915222168, 0.9897205829620361, 0.9026602506637573, 0.8480842113494873] +CCc1sccc1-c1ccc2ncn(C)c2c1; [None]; [None]; [0] +Cc1oc(-c2ccc3ncn(C)c3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Cn1cnc2ccc(Nc3ccncc3)cc21; ['Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(F)cc21', 'Cn1cnc2ccc(N)cc21', 'Brc1ccncc1', 'Cn1cnc2ccc(N)cc21', 'Clc1ccncc1', 'Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(N)cc21']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Fc1ccncc1', 'Cn1cnc2ccc(N)cc21', 'Oc1ccncc1', 'Cn1cnc2ccc(N)cc21', 'Ic1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1']; [0.9999812841415405, 0.9998800754547119, 0.998936653137207, 0.9986028671264648, 0.9971991777420044, 0.9965410232543945, 0.9965214133262634, 0.995238184928894, 0.9942967295646667, 0.9938592314720154, 0.9832835793495178] +Cn1cnc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'Cn1cnc2ccc(Br)cc21', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1']; [0.9998730421066284, 0.999805212020874, 0.999577522277832, 0.9988315105438232, 0.9984503984451294, 0.9983067512512207, 0.9958409070968628, 0.9668910503387451] +Cn1cnc2ccc(-c3cc(O)n4nccc4n3)cc21; ['Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1ccnc2ccnn12', 'Oc1ccnc2ccnn12']; [0.9999217987060547, 0.9957094192504883] +Cn1cnc2ccc(-c3ccc4c(c3)CCN4)cc21; ['Brc1ccc2c(c1)CCN2', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Clc1ccc2c(c1)CCN2', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Brc1ccc2c(c1)CCN2', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Clc1ccc2c(c1)CCN2', 'Cn1cnc2ccc(Br)cc21', 'Brc1ccc2c(c1)CCN2']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Ic1ccc2c(c1)CCN2', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccccc21', 'Ic1ccc2c(c1)CCN2', 'Cn1cnc2ccc(B(O)O)cc21', 'c1ccc2c(c1)CCN2', 'OB(O)c1ccc2c(c1)CCN2', 'Cn1cnc2ccc(B(O)O)cc21', 'Ic1ccc2c(c1)CCN2', 'Cn1cnc2ccc(Br)cc21']; [0.999992847442627, 0.9999927282333374, 0.9999916553497314, 0.9998997449874878, 0.9998527765274048, 0.999832034111023, 0.9997787475585938, 0.9997198581695557, 0.999528169631958, 0.9985248446464539, 0.9456008076667786, 0.8457970023155212] +Cn1ncc(N)c1-c1ccc2ncn(C)c2c1; ['Cn1cc(N)cn1']; ['Cn1cnc2ccc(Br)cc21']; [0.9357522130012512] +CN(c1ccc2ncn(C)c2c1)c1cccc2[nH]ncc12; ['CNc1cccc2[nH]ncc12', 'CNc1cccc2[nH]ncc12']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(F)cc21']; [0.9950233697891235, 0.9239131212234497] +Cn1cnc2ccc(-c3[nH]nc4ccc(F)cc34)cc21; ['Cn1cnc2ccc(Br)cc21']; ['Fc1ccc2n[nH]cc2c1']; [0.9653439521789551] +Cn1cnc2ccc(-c3ccc(Br)cc3F)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'Cn1cnc2ccc(Br)cc21', 'Fc1cc(Br)ccc1Cl', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br']; [0.999998927116394, 0.9999986886978149, 0.9999854564666748, 0.9999443292617798, 0.9995921850204468, 0.9986040592193604, 0.9963833689689636, 0.8831164240837097] +CNC(=O)c1ccc(-c2ccc3ncn(C)c3c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21']; [0.9999357461929321, 0.9998418092727661, 0.9995743632316589, 0.9984511137008667, 0.9983476996421814, 0.9977837800979614, 0.9971323609352112, 0.9942702054977417] +Cn1cnc2ccc(-c3cc(O)cc(Br)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Cn1cnc2ccc(Br)cc21']; ['Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1', 'Cn1cnc2ccc(Br)cc21', 'OB(O)c1cc(O)cc(Br)c1']; [0.9999610185623169, 0.9992587566375732, 0.9992449283599854, 0.9958807826042175, 0.9783916473388672, 0.9742480516433716, 0.962931215763092] +Cn1cnc2ccc(-c3ccc(C(=O)NC4CC4)cc3)cc21; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Cn1cnc2ccc(Br)cc21', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1', 'Cn1cnc2ccccc21', 'O=C(NC1CC1)c1ccc(I)cc1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [0.9999969005584717, 0.9999749660491943, 0.9999569654464722, 0.9999446868896484, 0.9998530745506287, 0.9995705485343933, 0.9962443113327026, 0.9855997562408447, 0.9239187240600586] +Cc1cc(-c2ccc3ncn(C)c3c2)ccc1C(N)=O; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9999744296073914, 0.9999674558639526, 0.9999289512634277, 0.9994359016418457, 0.9974937438964844] +Cc1cc(-c2ccc3ncn(C)c3c2)cc(C)c1O; ['Cc1cc(I)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; [0.9997832775115967, 0.9986699819564819, 0.9960334897041321, 0.9954471588134766, 0.9786651134490967, 0.9685725569725037] +Cc1nc2ccc(-c3ccc4ncn(C)c4c3)cc2o1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Cl)cc2o1', 'Cc1nc2ccc(Br)cc2o1']; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999970197677612, 0.9999957084655762, 0.9999830722808838, 0.9999691247940063, 0.9998196959495544, 0.9547876119613647] +Cn1cnc2ccc(-c3cc(F)c(O)c(F)c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(Br)cc21']; ['Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'Cn1cnc2ccc(Br)cc21', 'Oc1c(F)cc(Cl)cc1F', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Cl)cc1F', 'OB(O)c1cc(F)c(O)c(F)c1', 'Oc1c(F)cc(Br)cc1F', 'Oc1c(F)cccc1F', 'Oc1c(F)cc(I)cc1F']; [0.9999841451644897, 0.9999809861183167, 0.9998829364776611, 0.99983811378479, 0.9998089075088501, 0.9993702173233032, 0.9973131418228149, 0.9772913455963135, 0.9262861013412476, 0.8711757659912109, 0.8507311344146729] +CSc1cccc(-c2ccc3ncn(C)c3c2)c1; ['CSc1cccc(Br)c1', 'CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc([Mg]Br)c1']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.999997615814209, 0.9999625086784363, 0.9999362230300903, 0.9991309642791748, 0.9894903898239136, 0.9865293502807617, 0.9642667770385742] +Cn1cnc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)cc21; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'O=c1[nH][nH]c2cc(Br)ccc12']; [0.9999867677688599, 0.999669075012207] +Cn1cnc2ccc(Oc3ccc(F)cc3F)cc21; ['Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(F)cc21']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999899864196777, 0.9999132752418518, 0.9981072545051575] +Cn1cnc2ccc(-c3ocnc3-c3ccc(F)cc3)cc21; ['Cn1cnc2ccc(Br)cc21']; ['Fc1ccc(-c2cocn2)cc1']; [0.9898397922515869] +Cn1cnc2ccc(NCc3c(F)cccc3Cl)cc21; ['Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(N)cc21', 'Cn1cnc2ccc(F)cc21']; ['Fc1cccc(Cl)c1CBr', 'NCc1c(F)cccc1Cl', 'Fc1cccc(Cl)c1CCl', 'O=Cc1c(F)cccc1Cl', 'OCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9999596476554871, 0.9994980096817017, 0.9987568855285645, 0.9967671036720276, 0.9961353540420532, 0.9287005662918091] +Cc1onc(-c2ccccc2)c1-c1ccc2ncn(C)c2c1; ['Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Cn1cnc2ccc(B3OC(C)(C)C(C)(C)O3)cc21', 'Cn1cnc2ccc(B(O)O)cc21', 'Cn1cnc2ccc(Br)cc21']; [0.9999799132347107, 0.9987936019897461, 0.9967032670974731] +Cn1cnc2ccc(OCc3cccc4ccccc34)cc21; [None]; [None]; [0] +Cn1cnc2ccc(OCc3ccc(F)cc3F)cc21; ['Cn1cnc2ccc(Br)cc21', 'Cn1cnc2ccc(F)cc21']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9890804886817932, 0.9164130091667175] +Cn1cnc2ccc(CCc3c[nH]c4ccccc34)cc21; [None]; [None]; [0] +CCOc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(B(O)O)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [1.0, 0.9999951720237732, 0.9999918341636658, 0.999990701675415, 0.9999874234199524, 0.9999638795852661, 0.9999332427978516] +Cn1cnc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc21; ['Clc1ccc(-c2ccn[nH]2)cc1']; ['Cn1cnc2ccc(Br)cc21']; [0.8400907516479492] +CC(=O)N(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(O)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999973177909851, 0.9999731779098511, 0.9980138540267944, 0.9978684186935425, 0.9927901029586792, 0.9802608489990234, 0.9796512126922607, 0.8748267889022827] +Cn1cnc2ccc(CCc3ccc(F)cc3F)cc21; ['Cn1cnc2ccc(Br)cc21', 'Cc1ccc2ncn(C)c2c1', 'Cc1ccc2ncn(C)c2c1']; ['Fc1ccc(CCBr)c(F)c1', 'Fc1ccc(CCl)c(F)c1', 'Fc1ccc(CBr)c(F)c1']; [0.9995368123054504, 0.9953354597091675, 0.9498833417892456] +NC(=O)c1cc(F)cc(-c2ncc3ccccc3n2)c1; ['Clc1ncc2ccccc2n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9998973608016968] +COc1cc(-c2cc(F)cc(C(N)=O)c2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999152421951294, 0.9987895488739014, 0.9973798990249634, 0.9952571988105774] +Cc1ccc2ncn(-c3cc(F)cc(C(N)=O)c3)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(F)c1']; [0.9883559942245483, 0.9332878589630127, 0.9127541780471802, 0.8201276063919067] +NC(=O)c1cc(F)cc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'Clc1cnc2cccnn12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999966025352478] +CS(=O)(=O)c1cccc(-c2cc(F)cc(C(N)=O)c2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccccc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [1.0, 0.9999997615814209, 0.999997615814209, 0.9999966621398926, 0.9999958276748657, 0.9999905824661255, 0.9997813701629639, 0.9994158744812012, 0.9988011121749878] +Cc1nc(C(C)(C)O)sc1-c1cc(F)cc(C(N)=O)c1; ['Cc1csc(C(C)(C)O)n1']; ['NC(=O)c1cc(F)cc(Br)c1']; [0.999862551689148] +COc1ncccc1-c1cc(F)cc(C(N)=O)c1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1Br', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999960660934448, 0.9999327659606934, 0.999872624874115, 0.9997529983520508, 0.9996849894523621, 0.9996789693832397, 0.999472975730896, 0.9817531108856201, 0.9625574946403503] +N#Cc1ccc(O)c(-c2cc(F)cc(C(N)=O)c2)c1; ['N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.999984622001648, 0.9996839761734009, 0.9996339082717896, 0.9987024068832397, 0.9832886457443237, 0.9819285869598389, 0.8804278373718262] +COc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(I)cc1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(-c2cc(F)cc(C(=O)O)c2)cc1', None, 'COc1ccc(-c2cc(F)cc(C(=O)O)c2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(Br)cc1', 'COc1ccccc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=C(Cl)C(=O)Cl', None, '[NH4+]', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999997615814209, 0.9999576807022095, 0.9999418258666992, 0.9999115467071533, 0.9998980760574341, 0.9998903274536133, 0.9997475743293762, 0, 0.99953293800354, 0.9994536638259888, 0.9993940591812134, 0.9899709820747375, 0.9680979251861572] +NC(=O)c1cc(F)cc(-c2cccc(O)c2)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Cl)c1', 'Oc1cccc(Br)c1']; [0.9999709129333496, 0.9997330904006958, 0.9996951222419739, 0.9990352392196655, 0.9988750219345093, 0.997879147529602, 0.9660400152206421] +NC(=O)c1cc(F)cc(-c2cccc(NC(=O)C3CC3)c2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999632239341736, 0.9989696741104126] +NC(=O)c1cc(F)cc(-c2ccc(N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1ccc(N2CCOCC2)cc1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1ccc(N2CCOCC2)cc1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Clc1ccc(N2CCOCC2)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'NC(=O)c1cc(F)cc(Br)c1', 'c1ccc(N2CCOCC2)cc1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999984502792358, 0.9999976754188538, 0.9999958276748657, 0.9999957084655762, 0.9999934434890747, 0.9999929666519165, 0.9999822378158569, 0.9999234676361084, 0.9995714426040649, 0.9895879030227661, 0.884357213973999] +NC(=O)c1cc(F)cc(-c2nccc3ccccc23)c1; ['Ic1nccc2ccccc12', 'Brc1nccc2ccccc12', 'Clc1nccc2ccccc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999761581420898, 0.9999333024024963, 0.9998793601989746] +NC(=O)c1cc(F)cc(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(Br)cc1']; [0.9999997019767761, 0.9999826550483704, 0.9999760389328003, 0.999955415725708, 0.9999411106109619, 0.9994549751281738, 0.999398410320282, 0.9982474446296692] +NC(=O)c1cc(F)cc(Nc2ncccn2)c1; ['Ic1ncccn1', 'Clc1ncccn1', 'CSc1ncccn1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'CS(=O)(=O)c1ncccn1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1ncccn1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9998741149902344, 0.9996644258499146, 0.9990003108978271, 0.9979006052017212, 0.9967628717422485, 0.9956613779067993, 0.9936656951904297] +NC(=O)c1cc(F)cc(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc(C(=O)Nc3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [1.0, 0.9999818205833435, 0.9999678134918213, 0.9996559619903564, 0.9995185136795044, 0.9980518817901611] +NC(=O)c1cc(F)cc(-c2cccc(C3CCNCC3)c2)c1; ['Brc1cccc(C2CCNCC2)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999008178710938] +N#Cc1cccc(Cn2cc(-c3cc(F)cc(C(N)=O)c3)cn2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(F)cc(C(N)=O)c3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc(C(=O)N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccccc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999970197677612, 0.9999957084655762, 0.9999948740005493, 0.9999844431877136, 0.9999802708625793, 0.9999384880065918, 0.9996864795684814, 0.9996525049209595, 0.9992719888687134, 0.9991053342819214, 0.9467301964759827, 0.9220126867294312] +NC(=O)c1cc(F)cc(-c2ccc(C(=O)N3CCOCC3)cn2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999998807907104, 0.9999978542327881] +CNS(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.999998152256012, 0.9999934434890747, 0.9999579191207886, 0.9999531507492065, 0.9999434947967529, 0.9998905658721924, 0.9569147825241089] +NC(=O)c1cc(F)cc(-c2ccc(OCCO)cc2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc(C(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'FC(F)(F)c1ccc(Cl)cc1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'O=C(Cl)C(=O)Cl', None, 'O=C(O)c1cc(F)cc(-c2ccc(C(F)(F)F)cc2)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'O=C(O)c1cc(F)cc(-c2ccc(C(F)(F)F)cc2)c1', None, '[NH4+]']; [1.0, 0.9999990463256836, 0.9999932050704956, 0.9999908804893494, 0.9999804496765137, 0.9999788999557495, 0.999976634979248, 0.9999655485153198, 0, 0.9998908042907715] +NC(=O)c1cc(F)cc(-c2ccc3c(c2)CS(=O)(=O)C3)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999974966049194, 0.9935946464538574] +Cc1nc(C)c(-c2cc(F)cc(C(N)=O)c2)s1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999979734420776, 0.9999858736991882, 0.9999748468399048, 0.9999737739562988, 0.9999688863754272, 0.9999563694000244, 0.9998858571052551, 0.998376727104187, 0.9836611747741699, 0.9405348300933838, 0.9211829900741577, 0.8668032884597778, 0.8209704160690308] +CS(=O)(=O)N1CCC(c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(Cc2ccccc2O)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999052286148071, 0.9998105764389038, 0.9997368454933167, 0.9997143745422363, 0.9771190881729126] +CC(C)c1cc(-c2cc(F)cc(C(N)=O)c2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1ccnc(N)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.99934983253479, 0.9987618923187256, 0.9986536502838135] +NC(=O)c1cc(F)cc(Cc2cnc(N)nc2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc(Br)cc2)c1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1ccc(I)cc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Brc1ccc(Br)cc1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(Br)cc1']; [0.9999974966049194, 0.9999918937683105, 0.999946117401123, 0.9989052414894104, 0.9977558255195618] +CC(=O)N1CCCN(c2cccc(-c3cc(F)cc(C(N)=O)c3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cc2cc(F)cc(C(N)=O)c2)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CCl)cc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1']; [0.8805605173110962, 0.792071521282196] +NC(=O)c1cc(F)cc(-c2ccn3nccc3n2)c1; ['Ic1ccn2nccc2n1', 'Clc1ccn2nccc2n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999906420707703] +CCN(CC)C(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999971985816956, 0.9999963045120239, 0.9999945163726807, 0.9999879598617554, 0.9999728202819824, 0.9997696876525879, 0.9996236562728882, 0.9989911317825317, 0.9467520713806152, 0.8887780904769897] +NC(=O)c1cc(F)cc([C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(F)cc(C(N)=O)c2)nc1; ['CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999960660934448, 0.999930739402771] +CN(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccccc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(N)cc(F)c1']; [1.0, 0.9999990463256836, 0.9999904632568359, 0.9991690516471863, 0.9951711893081665, 0.9861257672309875, 0.9746406078338623, 0.8897796869277954, 0.8389041423797607] +CNS(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999989867210388, 0.9999914169311523, 0.9999793171882629, 0.9996689558029175, 0.9995628595352173, 0.9906471967697144] +Cc1c(C(=O)[O-])cccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(F)cc(C(N)=O)c1; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1O', 'COc1ccc(Cl)cc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999088048934937, 0.9996826648712158, 0.9993594884872437, 0.9992724657058716, 0.9970732927322388, 0.9950292110443115, 0.9913694262504578] +NC(=O)c1cc(F)cc(-c2ccccc2-n2cccn2)c1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Brc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Brc1ccccc1-n1cccn1', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1ccccc1-n1cccn1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cccc(F)c1', 'Clc1ccccc1-n1cccn1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1', 'NC(=O)c1cc(F)cc(Br)c1', 'c1ccc(-n2cccn2)cc1', 'NC(=O)c1cccc(F)c1', 'c1ccc(-n2cccn2)cc1', 'OB(O)c1ccccc1-n1cccn1', 'NC(=O)c1cccc(F)c1']; [0.9999994039535522, 0.9999896883964539, 0.9999785423278809, 0.999847412109375, 0.9997603893280029, 0.999507486820221, 0.9982389211654663, 0.9963643550872803, 0.9783756732940674, 0.9766550064086914, 0.9759033918380737, 0.9501550197601318, 0.8284533023834229] +COc1cc(OC)c(-c2cc(F)cc(C(N)=O)c2)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9964447021484375, 0.8701376914978027] +COc1cc(-c2cc(F)cc(C(N)=O)c2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Cl)ccc1O']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999963045120239, 0.999908447265625, 0.9995026588439941, 0.999401867389679, 0.9981293678283691, 0.9895490407943726] +NC(=O)c1cc(F)cc(-c2ccc3c(c2)CCO3)c1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(Cl)c1', 'Clc1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Brc1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(Cl)c1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Oc1ccc2c(c1)CCO2', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1', 'c1ccc2c(c1)CCO2', 'c1ccc2c(c1)CCO2']; [0.9999991655349731, 0.999998927116394, 0.9999974966049194, 0.9999859929084778, 0.9999810457229614, 0.9999765157699585, 0.9999394416809082, 0.9999302625656128, 0.9997783303260803, 0.9996697902679443, 0.9994384050369263, 0.9987022876739502, 0.9967808723449707, 0.995342493057251, 0.9902504682540894, 0.9376790523529053, 0.7960843443870544, 0.7832448482513428] +CC(=O)Nc1cccc(-c2cc(F)cc(C(N)=O)c2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999954104423523, 0.9999570846557617, 0.9998966455459595, 0.9998242855072021, 0.9994807839393616, 0.9993206262588501, 0.99382084608078, 0.9832322597503662] +NC(=O)c1cc(F)cc(-c2cccc3c2OCO3)c1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cccc2c1OCO2', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'NC(=O)c1cccc(F)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1', 'Nc1cccc2c1OCO2']; [0.9999953508377075, 0.9999879598617554, 0.9999574422836304, 0.9999244213104248, 0.999909520149231, 0.9998496770858765, 0.9987424612045288, 0.983988344669342, 0.9827834367752075, 0.8916446566581726, 0.7748810648918152] +CC(C)c1ccc2nc(-c3cc(F)cc(C(N)=O)c3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Clc1c[nH]c2ccccc12', 'NC(=O)c1cc(F)cc(Br)c1', 'Ic1c[nH]c2ccccc12', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1c[nH]c2ccccc12']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'OB(O)c1c[nH]c2ccccc12', 'c1ccc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1c[nH]c2ccccc12', 'NC(=O)c1cc(F)cc(Br)c1', 'c1ccc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.999408483505249, 0.9982719421386719, 0.9980117082595825, 0.9976077675819397, 0.9935898780822754, 0.9829695224761963, 0.9815753698348999, 0.9621200561523438, 0.9316779971122742, 0.9076945781707764, 0.7993417978286743, 0.7543247938156128] +NC(=O)c1cc(F)cc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999961256980896, 0.9999889135360718, 0.9999865293502808, 0.9999724626541138] +NC(=O)c1cc(F)cc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cnc3ccccc3c2)c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Ic1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999988079071045, 0.9999908804893494, 0.9998934268951416, 0.9998469948768616, 0.9998246431350708, 0.9995501637458801, 0.9988887310028076, 0.994175910949707, 0.9825369119644165] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(I)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.999998927116394, 0.9999982118606567, 0.9999901056289673, 0.99997878074646, 0.9998534917831421, 0.999817967414856, 0.9968791604042053, 0.9479775428771973] +CC(C)(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 0.9999358654022217, 0.999926745891571, 0.9999006986618042, 0.9989333748817444, 0.9884861707687378] +NC(=O)c1cc(F)cc(-c2csc(N)n2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1']; ['Nc1nc(Cl)cs1']; [0.9999510049819946] +Cc1ccc(-c2cc(F)cc(C(N)=O)c2)c(=O)[nH]1; ['Cc1ccc(I)c(=O)[nH]1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9998769760131836] +NC(=O)c1cc(F)cc(CCCc2ccccc2)c1; ['Br[Zn]CCCc1ccccc1', 'C=CCc1ccccc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.947421669960022, 0.9448135495185852] +COc1cccc(C(=O)Nc2cc(F)cc(C(N)=O)c2)c1; [None, 'COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; [None, 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; [0, 0.9999227523803711, 0.9998167753219604] +NC(=O)c1cc(F)cc(Cc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(Cc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(Cc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Cl)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.999998927116394, 0.9999876022338867, 0.9999613761901855, 0.9999043941497803, 0.9998993873596191, 0.9998620748519897, 0.9998130798339844, 0.9639254808425903] +NC(=O)c1cc(F)cc(-c2cc3ccccc3s2)c1; ['Ic1cc2ccccc2s1', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'Brc1cc2ccccc2s1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1cc2ccccc2s1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'c1ccc2sccc2c1', 'c1ccc2sccc2c1', 'OB(O)c1cc2ccccc2s1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999829530715942, 0.9999712705612183, 0.9999364614486694, 0.9999184608459473, 0.9998613595962524, 0.9995802640914917, 0.9967411756515503] +Cc1cc(-c2cc(F)cc(C(N)=O)c2)nc(N)n1; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'Cc1cc(Cl)nc(N)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999188184738159, 0.999907374382019, 0.9992931485176086] +CCN1CCN(Cc2ccc(-c3cc(F)cc(C(N)=O)c3)cc2)CC1; ['CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999970197677612, 0.9999915361404419, 0.9999642372131348] +NC(=O)c1cc(F)cc(-c2ccc(F)cc2Cl)c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Fc1ccc(Cl)c(Cl)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999976754188538, 0.9999889135360718, 0.9999393820762634, 0.9999189376831055, 0.9985260963439941, 0.992409348487854] +CC(=O)N[C@@H]1CC[C@@H](c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ncc(Br)cn2)c1; ['Brc1cnc(I)nc1', 'Clc1ncc(Br)cn1', 'Brc1cnc(Br)nc1', 'CSc1ncc(Br)cn1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9998851418495178, 0.9997315406799316, 0.9979866147041321, 0.96467125415802] +CCc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999995231628418, 0.9999439716339111, 0.9999255537986755, 0.9999213218688965, 0.9998614192008972, 0.9992880821228027, 0.998980700969696, 0.9971922636032104] +COc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999991655349731, 0.9999663233757019, 0.999954342842102, 0.9999539852142334, 0.9998847246170044, 0.9992457628250122, 0.998611330986023] +NC(=O)c1cc(F)cc(-c2ccc(Cl)cc2Cl)c1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999927282333374, 0.9999260902404785, 0.9998906850814819, 0.9992939829826355] +NC(=O)c1cc(F)cc(-c2ccc3c(c2)CCC(=O)N3)c1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'O=C1CCc2cc(Br)ccc2N1', 'NC(=O)c1cc(F)cc(Cl)c1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999940395355225, 0.9999699592590332, 0.9999495148658752, 0.9999082088470459, 0.9985979795455933, 0.9954710006713867, 0.989998459815979, 0.8554611802101135] +COc1cc(-c2cc(F)cc(C(N)=O)c2)ccc1N1CCOCC1; ['COc1cc(Br)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1ccccc1N1CCOCC1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999982118606567, 0.999994158744812, 0.9999853372573853, 0.9995391964912415, 0.8780277967453003] +NC(=O)c1cc(F)cc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cc3ccccn3n2)c1; ['Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999173879623413, 0.9998837113380432] +NC(=O)c1cc(F)cc([C@H](CO)Cc2ccccc2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(F)cc(C(N)=O)c2)c(C(F)(F)F)n1; ['Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1ccc(C(F)(F)F)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999997615814209, 0.9999983310699463, 0.9999687671661377, 0.9999222159385681, 0.9971603155136108] +COc1ccc2cccc(-c3cc(F)cc(C(N)=O)c3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999381303787231] +NC(=O)c1cc(F)cc(-c2cccc3ccc(O)cc23)c1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Br)c2c1', 'Oc1ccc2cccc(Cl)c2c1', 'Oc1ccc2cccc(Br)c2c1']; [0.9999446272850037, 0.9998674392700195, 0.9996691942214966, 0.9887392520904541, 0.913177490234375] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +CC[C@@H](CO)c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(F)cc(C(N)=O)c2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999959468841553, 0.9996935129165649, 0.9987349510192871, 0.9887608289718628] +COc1cc(-c2cc(F)cc(C(N)=O)c2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Cl)ccc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999938011169434, 0.9999876022338867, 0.9999743700027466, 0.9995698928833008, 0.986513614654541] +NC(=O)c1cc(F)cc(CCCn2cncn2)c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(F)cc(C(N)=O)c3)ccc2O1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ncc(Cl)cn2)c1; ['Clc1cnc(Br)nc1', 'Clc1cnc(Cl)nc1', 'CSc1ncc(Cl)cn1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9987661838531494, 0.9980621933937073, 0.9521335959434509] +Cc1csc2c(-c3cc(F)cc(C(N)=O)c3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9990280866622925] +CNC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999967217445374, 0.9999889135360718, 0.9999759197235107, 0.9999649524688721] +CCNC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999997019767761, 0.9999880790710449, 0.9999854564666748] +NC(=O)c1cc(F)cc(-c2cc(N)nc3[nH]ccc23)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.9999616146087646, 0.9997265934944153, 0.8137220144271851] +NC(=O)c1cc(F)cc(-c2cnn(CCO)c2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['OCCn1cc(I)cn1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1']; [0.9999887943267822, 0.9999779462814331, 0.9999541640281677, 0.9999456405639648, 0.9999408721923828, 0.9994853734970093, 0.9974597692489624] +COc1cc(-c2cc(F)cc(C(N)=O)c2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9996441602706909, 0.9945759773254395, 0.9589965343475342, 0.9306824207305908, 0.7940375804901123] +COc1cc(OC)cc(-c2cc(F)cc(C(N)=O)c2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999444484710693, 0.9993020296096802, 0.9988380074501038, 0.9987033605575562] +COc1ccc2oc(-c3cc(F)cc(C(N)=O)c3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['NC(=O)c1cc(F)cc(Br)c1']; [0.9967883229255676] +COc1ccc(OC)c(Cc2cc(F)cc(C(N)=O)c2)c1; ['COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)c(CBr)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9993908405303955, 0.8353615999221802, 0.8116432428359985] +NC(=O)c1cc(F)cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc3cn[nH]c3c2)c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Ic1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999997615814209, 0.9999980926513672, 0.9999967813491821, 0.9999963641166687, 0.9999922513961792, 0.9999841451644897, 0.9999301433563232, 0.9998957514762878, 0.9998610019683838, 0.999680757522583, 0.9938637614250183, 0.9633301496505737] +CCn1cc(-c2cc(F)cc(C(N)=O)c2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(Br)cn1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999988079071045, 0.9999860525131226, 0.9998865127563477, 0.9997545480728149, 0.9995878338813782, 0.9992808103561401, 0.9740630388259888] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(F)cc(C(N)=O)c1)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(F)cc(C(N)=O)c2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.999869704246521, 0.8817625045776367] +CO[C@@H]1CC[C@@H](c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cc3ccccc3o2)c1; ['Brc1cc2ccccc2o1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9999108910560608, 0.9994072318077087, 0.9988980293273926, 0.9983941316604614] +NC(=O)c1cc(F)cc(-c2ncc3sccc3n2)c1; ['Clc1ncc2sccc2n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999231100082397] +CC(C)c1nn(C)cc1-c1cc(F)cc(C(N)=O)c1; ['CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br', 'CC(C)c1ccn(C)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999920129776001, 0.999991774559021, 0.9999719858169556, 0.9999581575393677, 0.9983235597610474] +NC(=O)c1cc(F)cc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(F)cc(C(N)=O)c3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9986770153045654] +NC(=O)c1cc(F)cc(-c2ccc(OC(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'NC(=O)c1cc(F)cc(Br)c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'NC(=O)c1cc(F)cc(Cl)c1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'NC(=O)c1cc(F)cc(Br)c1']; [1.0, 0.9999996423721313, 0.9999991655349731, 0.9999990463256836, 0.9999988079071045, 0.9999951720237732, 0.9999940991401672, 0.9999491572380066] +C[NH+](C)Cc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(F)cc(C(N)=O)c2)c1; [None, 'COc1ccc(F)c(C(=O)O)c1', 'COc1ccc(F)c(Br)c1', 'COC(=O)c1cc(OC)ccc1F']; [None, 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; [0, 0.9999186992645264, 0.9989138841629028, 0.9961103796958923] +NC(=O)c1cc(F)cc(-c2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +CCc1cccc(-c2cc(F)cc(C(N)=O)c2)n1; ['CCc1cccc(Br)n1', 'CCc1cccc(Br)n1', 'CCc1ccccn1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999573826789856, 0.9935252666473389, 0.9862393140792847] +Cn1cc(-c2cc(F)cc(C(N)=O)c2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21', 'Cn1ccc2ccccc21']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999769926071167, 0.9998242855072021, 0.9974493384361267, 0.9836536645889282] +Cn1ncc2cc(-c3cc(F)cc(C(N)=O)c3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999997615814209, 0.9999996423721313, 0.9999995231628418, 0.9999983906745911, 0.9999954700469971, 0.9999607801437378] +Cn1cc(Br)cc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(-c2cc(F)cc(C(N)=O)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(F)cc(C(N)=O)c3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2ccccc12', 'Cc1n[nH]c2ccccc12']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [1.0, 0.9999997019767761, 0.9999992847442627, 0.9999991655349731, 0.9999964833259583, 0.9999850988388062, 0.9999839067459106, 0.9991652965545654, 0.9945086240768433, 0.9208540916442871, 0.9064012169837952] +CC(C)(O)c1ccc2cc(-c3cc(F)cc(C(N)=O)c3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(NC(=O)c2cccc(OC(F)(F)F)c2)c1; [None, 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; [None, 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0, 0.9999963641166687, 0.9999912977218628] +CC(=O)N1CCC(n2cc(-c3cc(F)cc(C(N)=O)c3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999973773956299, 0.9999945163726807] +Cn1nc(Cl)c2cc(-c3cc(F)cc(C(N)=O)c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(F)cc(C(N)=O)c2)cn1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(N3CCCC3=O)c2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'O=C1CCCN1c1cccc(Cl)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.999997615814209, 0.9999727010726929, 0.9999717473983765, 0.9994303584098816, 0.9993349313735962] +Cc1ncc(-c2ccc(-c3cc(F)cc(C(N)=O)c3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)c(Cl)c1; ['CN(C)C(=O)c1cccc(Cl)c1']; ['NC(=O)c1cc(F)cc(Br)c1']; [0.8579260110855103] +NC(=O)c1cc(F)cc(-c2ccc(CCO)cc2)c1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccccc1', 'OCCc1ccccc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1']; [0.999998927116394, 0.9999805688858032, 0.9999270439147949, 0.9998987913131714, 0.9997406005859375, 0.9996185302734375, 0.9992084503173828, 0.9986127018928528, 0.9927725791931152, 0.8653583526611328, 0.8389225006103516, 0.7823448181152344, 0.7520386576652527] +COc1cc(S(C)(=O)=O)ccc1-c1cc(F)cc(C(N)=O)c1; ['COc1cc(S(C)(=O)=O)ccc1Br', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999697208404541, 0.9887096881866455] +CNC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999641180038452, 0.9999128580093384] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999868869781494, 0.9999814033508301, 0.9999784231185913] +COc1cc(N2CCNCC2)ccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999974370002747, 0.9999963045120239] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(F)cc(C(N)=O)c2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9998716115951538, 0.9943091869354248, 0.8162301182746887] +CCNC(=O)Cc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999858736991882, 0.999698281288147] +CNC(=O)c1ccccc1-c1cc(F)cc(C(N)=O)c1; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999833106994629, 0.9999390244483948] +CCOc1ccccc1-c1cc(F)cc(C(N)=O)c1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1O', 'CCOc1ccccc1Cl', 'CCOc1ccccc1Br']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999975562095642, 0.9999064207077026, 0.9998673796653748, 0.9991474151611328, 0.9989573359489441, 0.9935485124588013, 0.9883770942687988] +Cn1nc(-c2cc(F)cc(C(N)=O)c2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(F)cc(C(N)=O)c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COC(C)(C)CCc1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(F)cc(C(N)=O)c2)[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(C(F)(F)F)c2)c1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'O=C(Cl)C(=O)Cl', 'FC(F)(F)c1cccc(I)c1', None, 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=C(O)c1cc(F)cc(-c2cccc(C(F)(F)F)c2)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'O=C(O)c1cc(F)cc(-c2cccc(C(F)(F)F)c2)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', None, 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=S(=O)(Oc1cccc(C(F)(F)F)c1)C(F)(F)F', '[NH4+]', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999994039535522, 0.9999796748161316, 0.9999538660049438, 0, 0.9999094009399414, 0.9999080896377563, 0.9998518824577332, 0.9998390674591064, 0.9997944235801697, 0.999759316444397] +CC(C)S(=O)(=O)c1ccccc1-c1cc(F)cc(C(N)=O)c1; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1', 'CC(C)S(=O)(=O)c1ccccc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999256730079651, 0.9999122619628906, 0.9998021125793457, 0.9639016389846802, 0.918914258480072, 0.8427048921585083] +NC(=O)c1cc(F)cc(-c2ccnc3ccccc23)c1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1ccnc2ccccc12', 'Brc1ccnc2ccccc12']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999096393585205, 0.9998009204864502, 0.9997913837432861, 0.9991203546524048, 0.9989273548126221, 0.9889479875564575, 0.9854110479354858, 0.9473409652709961, 0.9060472249984741] +NC(=O)c1cc(F)cc(-c2ccccc2OC(F)(F)F)c1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'NC(=O)c1cc(F)cc(Br)c1', None, 'O=C(O)c1cc(F)cc(-c2ccccc2OC(F)(F)F)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'FC(F)(F)Oc1ccccc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccccc1OC(F)(F)F', None, '[NH4+]', 'OB(O)c1ccccc1OC(F)(F)F', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999887347221375, 0.9999068975448608, 0.9998512268066406, 0.9997694492340088, 0, 0.9989235401153564, 0.9986299276351929, 0.9894837737083435] +Cn1cnc2ccc(-c3cc(F)cc(C(N)=O)c3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999933242797852] +NC(=O)c1cc(F)cc(Cc2cc(F)cc(F)c2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cnn(Cc3ccccc3)c2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Ic1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Brc1cnn(Cc2ccccc2)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999964237213135, 0.9999881982803345, 0.9999867677688599, 0.9999071955680847, 0.999873161315918, 0.9996718168258667] +NC(=O)c1cc(F)cc(-c2ccccc2C(N)=O)c1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl']; [0.999987006187439, 0.9999403357505798, 0.9998995065689087, 0.9993422627449036, 0.9990530014038086, 0.9975160360336304, 0.9966567754745483, 0.9941658973693848] +NC(=O)c1cc(F)cc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(NC(=O)c3ccccc3)c2)c1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.999998927116394, 0.9999465942382812] +COc1cnc(-c2cc(F)cc(C(N)=O)c2)nc1; ['COc1cnc(Br)nc1', 'COc1cnc(Cl)nc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9982300996780396, 0.9973554611206055] +NC(=O)c1cc(F)cc(-c2cc(Cl)ccc2Cl)c1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(I)c1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1ccc(Cl)c(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1']; [0.999890923500061, 0.9998270273208618, 0.9994012713432312, 0.9991742372512817, 0.9967670440673828, 0.9959762096405029, 0.9892765283584595, 0.9511882066726685, 0.8138303756713867, 0.7517920136451721] +Cc1nc2ccccn2c1-c1cc(F)cc(C(N)=O)c1; ['Cc1nc2ccccn2c1I']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9998914003372192] +NC(=O)c1cc(F)cc(-c2cnc3ccccn23)c1; ['Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Brc1cnc2ccccn12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999954700469971, 0.9999887943267822] +Cc1ccc(-c2cc(F)cc(C(N)=O)c2)c(Br)c1; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(Cl)c(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.996506929397583, 0.9273099899291992, 0.914960503578186, 0.8812276124954224] +NC(=O)c1cc(F)cc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(F)cc(C(N)=O)c1; ['Cc1nc(N)sc1I', 'Cc1nc(N)sc1Br', 'Cc1csc(N)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999977350234985, 0.9999964833259583, 0.9969428777694702] +CC(C)(C)c1nc(-c2cc(F)cc(C(N)=O)c2)cs1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(F)cc(C(N)=O)c2)s1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-n2ncc3cccc(F)c3c2=O)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2c(Cl)cccc2Cl)c1; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1I', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9997463226318359, 0.9993407726287842, 0.9988222122192383, 0.9977630972862244, 0.9923967123031616, 0.9828194379806519, 0.980146050453186, 0.9159095883369446, 0.8696002960205078] +NC(=O)c1cc(F)cc(-c2cccc(Cn3cncn3)c2)c1; ['NC(=O)c1cc(F)cc(Cl)c1']; ['c1ccc(Cn2cncn2)cc1']; [0.9939852952957153] +NC(=O)c1cc(F)cc(-c2cccc(Br)c2)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(I)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1', 'Clc1cccc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Brc1cccc(I)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cccc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cccc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999814629554749, 0.9999053478240967, 0.9993929266929626, 0.9971002340316772, 0.9965977668762207, 0.9965327978134155, 0.9962906837463379, 0.8690186142921448] +Cc1ccc(Cl)c(-c2cc(F)cc(C(N)=O)c2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(O)c1', 'Cc1ccc(Cl)c(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999552965164185, 0.9996029734611511, 0.9994292259216309, 0.9993162155151367, 0.9987901449203491, 0.9953196048736572, 0.9936069846153259, 0.8492954969406128, 0.786913275718689] +NC(=O)c1cc(F)cc(NCc2cccnc2)c1; ['BrCc1cccnc1', 'ClCc1cccnc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc([N+](=O)[O-])c1', 'NC(=O)c1cc(F)cc(F)c1']; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NCc1cccnc1', 'OCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1']; [0.9995254278182983, 0.9994981288909912, 0.9993002414703369, 0.9945952296257019, 0.992449164390564, 0.9882227778434753, 0.9831479787826538, 0.9729496836662292, 0.9317155480384827] +NC(=O)c1cc(F)cc(-c2ccnc(N)n2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; ['Nc1nccc(Br)n1', 'Nc1nccc(I)n1', 'Nc1nccc(Cl)n1']; [0.9999986290931702, 0.9999954700469971, 0.9999904632568359] +Cc1c(-c2cc(F)cc(C(N)=O)c2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1cc(F)cc(NC(=O)c2cccs2)c1; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999740123748779, 0.9996510744094849] +NC(=O)c1cc(F)cc(-c2ccc3ccccc3c2)c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1ccc2ccccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc2ccccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'O=S(=O)(Oc1ccc2ccccc2c1)C(F)(F)F', 'OB(O)c1ccc2ccccc2c1']; [0.9999989867210388, 0.9999042749404907, 0.9998857975006104, 0.9998472929000854, 0.999660849571228, 0.9996311664581299, 0.9994521141052246] +NC(=O)c1cc(F)cc(Nc2cccnc2)c1; ['NC(=O)c1cc(N)cc(F)c1', 'Brc1cccnc1', 'Ic1cccnc1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1cccnc1', 'Fc1cccnc1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['OB(O)c1cccnc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1cccnc1', 'Nc1cccnc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1cccnc1']; [0.9971321225166321, 0.9967818260192871, 0.9950900077819824, 0.9941339492797852, 0.9715670347213745, 0.9511078596115112, 0.9197491407394409, 0.9135016202926636] +NC(=O)c1cc(F)cc(-n2cnc3ccccc32)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9980601072311401, 0.9616836309432983, 0.9290598630905151, 0.8970857858657837] +NC(=O)c1cc(F)cc(-c2cnn3ncccc23)c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999990463256836, 0.9999971389770508, 0.9999957084655762, 0.9992411136627197, 0.9975290894508362] +NC(=O)c1cc(F)cc(NCCc2c[nH]cn2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9974098205566406, 0.9734799861907959, 0.9568763971328735, 0.8761602640151978, 0.8739681243896484] +NC(=O)c1cc(F)cc(-c2cccc(F)c2C(N)=O)c1; ['NC(=O)c1c(F)cccc1Br']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999849796295166] +NC(=O)c1cc(F)cc(-c2c[nH]nc2C(F)(F)F)c1; ['FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999279379844666, 0.9999212026596069, 0.9999120235443115, 0.9995869398117065] +NC(=O)c1cc(F)cc(NCCc2ccccc2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'N#CCc1ccccc1', 'ClCCc1ccccc1', 'BrCCc1ccccc1', 'NC(=O)c1cc(N)cc(F)c1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'ICCc1ccccc1', 'CS(=O)(=O)OCCc1ccccc1', 'NC(=O)c1cc(F)cc([N+](=O)[O-])c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NCCc1ccccc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'O=CCc1ccccc1', 'NCCc1ccccc1', 'O=CCc1ccccc1']; [0.9971230030059814, 0.9860026836395264, 0.9849386215209961, 0.9730671644210815, 0.9722983837127686, 0.9715936183929443, 0.9422024488449097, 0.9373324513435364, 0.9281747341156006, 0.925975501537323, 0.8923656940460205, 0.8673160672187805, 0.7861113548278809] +Cn1cc(-c2ccc(-c3cc(F)cc(C(N)=O)c3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [1.0, 0.9999998807907104, 0.9999769926071167] +NC(=O)c1cc(F)cc(-c2cncc3ccccc23)c1; ['Ic1cncc2ccccc12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Clc1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Ic1cncc2ccccc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999991655349731, 0.9999988079071045, 0.9999957084655762, 0.9999840259552002, 0.9999802708625793, 0.9998555183410645, 0.9992878437042236, 0.9989753365516663, 0.9734612703323364, 0.8624134063720703] +CN1c2ccc(-c3cc(F)cc(C(N)=O)c3)cc2CS1(=O)=O; [None]; [None]; [0] +NC(=O)c1cc(F)cc(NCc2ccc(Cl)cc2)c1; ['Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc([N+](=O)[O-])c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'OCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.999934196472168, 0.9997591972351074, 0.9993680119514465, 0.9955105781555176, 0.9940067529678345, 0.9925336241722107, 0.9539960622787476, 0.876573383808136] +NC(=O)c1cc(F)cc(-c2ccc(-c3cn[nH]c3)cc2)c1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Brc1ccc(-c2cn[nH]c2)cc1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1ccc(-c2cn[nH]c2)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999991655349731, 0.9999969601631165, 0.999910831451416, 0.9997228384017944, 0.9996869564056396, 0.9987123012542725] +NC(=O)c1cc(F)cc(Nc2ccncc2)c1; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Brc1ccncc1', 'Ic1ccncc1', 'Clc1ccncc1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Fc1ccncc1', 'NC(=O)c1cc(F)cc(F)c1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1ccncc1', 'Nc1ccncc1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1ccncc1']; [0.9999535083770752, 0.9993761777877808, 0.9989783763885498, 0.9984468817710876, 0.9969345331192017, 0.9917634725570679, 0.9863967895507812, 0.8163944482803345, 0.8145760893821716] +NC(=O)c1cc(F)cc(-c2ccc3c(N)[nH]nc3c2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cc(F)cc(C(N)=O)c2)n1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(CC(=O)[O-])c2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(CO)c2)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1']; [0.9999828338623047, 0.9999583959579468, 0.999474287033081, 0.998828113079071, 0.9985513687133789, 0.9930758476257324, 0.9918109774589539, 0.9712492227554321, 0.8680950403213501, 0.76168292760849] +CC(C)n1cc(-c2cc(F)cc(C(N)=O)c2)nn1; ['CC(C)n1ccnn1']; ['NC(=O)c1cc(F)cc(Br)c1']; [0.9997701644897461] +NC(=O)c1cc(F)cc(NCc2ccccc2F)c1; ['Fc1ccccc1CBr', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Fc1ccccc1CCl', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc([N+](=O)[O-])c1', 'NC(=O)c1cc(F)cc(F)c1']; ['NC(=O)c1cc(N)cc(F)c1', 'NCc1ccccc1F', 'NC(=O)c1cc(N)cc(F)c1', 'NCc1ccccc1F', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F']; [0.9996439218521118, 0.9988777041435242, 0.9988231062889099, 0.9951050281524658, 0.991195797920227, 0.9844051599502563, 0.9693576693534851, 0.8344876766204834, 0.764555811882019] +NC(=O)c1cc(F)cc(-c2csc3ncncc23)c1; ['Brc1csc2ncncc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.999972939491272] +NC(=O)c1cc(F)cc(-c2cc3ccccc3[nH]2)c1; ['Ic1cc2ccccc2[nH]1', 'CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Clc1cc2ccccc2[nH]1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Clc1cc2ccccc2[nH]1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cc2ccccc2[nH]1', 'c1ccc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'c1ccc2[nH]ccc2c1']; [0.999996542930603, 0.9999802112579346, 0.9994688034057617, 0.9990993142127991, 0.9975818395614624, 0.9867563247680664, 0.9220881462097168] +NC(=O)c1cc(F)cc(-c2cncnc2N)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1Cl', 'Nc1ncncc1Br']; [0.9999995231628418, 0.9999986886978149, 0.9998884201049805, 0.9997846484184265] +COc1cc(-c2cc(F)cc(C(N)=O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cc(F)cc(C(N)=O)c2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(F)cc(C(N)=O)c2)c1; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9998537302017212, 0.9998013377189636, 0.9995656609535217, 0.9708008766174316, 0.9570090770721436] +CCNc1nc2ccc(-c3cc(F)cc(C(N)=O)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccccc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999991655349731, 0.9999232292175293, 0.7503615617752075] +NC(=O)c1cc(F)cc(-c2ccc(F)cc2C(F)(F)F)c1; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.999991774559021, 0.9999505281448364, 0.999940037727356, 0.9999287724494934, 0.9998385906219482, 0.9998306035995483] +NC(=O)c1cc(F)cc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(NC(=O)c2c(Cl)cccc2Cl)c1; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', None]; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', None]; [0.9999539852142334, 0.9997380971908569, 0] +NC(=O)c1cc(F)cc(Oc2ccccn2)c1; ['NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(F)c1']; ['Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1', 'Oc1ccccn1']; [0.9940884113311768, 0.989852249622345, 0.9867428541183472, 0.9264059066772461] +CC(C)c1oncc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COc1ccc(-c2cc(F)cc(C(N)=O)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccccc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccccc1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(N)cc(F)c1']; [1.0, 0.999990701675415, 0.9999887347221375, 0.9999713897705078, 0.9999669194221497, 0.9999182224273682, 0.9982876777648926, 0.9973453283309937, 0.9762152433395386, 0.8702411651611328, 0.7691923379898071] +CS(=O)(=O)C1CCN(c2cc(F)cc(C(N)=O)c2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(F)c1']; [0.9999454021453857, 0.9996305704116821, 0.9996114373207092, 0.994255781173706] +NC(=O)c1cc(F)cc(-c2cnn3ccccc23)c1; ['Ic1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'NC(=O)c1cc(F)cc(Cl)c1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1cnn2ccccc12', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Ic1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnn2ccccc12', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'c1ccn2nccc2c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999997615814209, 0.999998927116394, 0.9999983310699463, 0.9999977946281433, 0.9999866485595703, 0.9999791979789734, 0.9999595880508423, 0.9998711943626404, 0.99944007396698, 0.998240053653717, 0.9965713620185852, 0.8432841300964355] +CCCn1cc(-c2cc(F)cc(C(N)=O)c2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(B(O)O)cn1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999995231628418, 0.9999972581863403, 0.999893844127655, 0.9998205900192261, 0.9994332790374756] +CC(C)(COc1cc(F)cc(C(N)=O)c1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC(C)(N)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9973384141921997] +CC(C)(O)CC(=O)NCCc1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +NC(=O)CCCc1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +COc1cc(CCc2cc(F)cc(C(N)=O)c2)cc(OC)c1; ['COc1cc(CBr)cc(OC)c1']; ['Cc1cc(F)cc(C(N)=O)c1']; [0.860897421836853] +NC(=O)c1cc(F)cc(-c2cc[nH]c(=O)c2)c1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1cc(Br)cc[nH]1', 'O=c1cccc[nH]1']; [0.9999974370002747, 0.9999774694442749, 0.9991471767425537, 0.9970559477806091, 0.9197777509689331, 0.9144642353057861] +NC(=O)c1cc(F)cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c1; [None]; [None]; [0] +CCN(CC)c1cc(F)cc(C(N)=O)c1; ['CCN(CC)c1cc(F)cc(Br)c1', 'CCNCC', None]; ['C[Si](C)(C)N=C=O', 'NC(=O)c1cc(F)cc(Cl)c1', None]; [0.9964770078659058, 0.9290728569030762, 0] +C[S@](=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(Br)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Cl)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999991655349731, 0.9999780654907227, 0.9996381998062134, 0.9995667338371277, 0.996756374835968, 0.971946656703949] +NC(=O)c1cc(F)cc(-c2cccc3c2C(=O)CC3)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(O)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999569058418274, 0.9982516169548035, 0.9979579448699951, 0.9653661251068115, 0.9429447650909424] +CCNS(=O)(=O)c1ccccc1-c1cc(F)cc(C(N)=O)c1; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9995341300964355, 0.9295365810394287] +C[C@@H](Oc1cc(F)cc(C(N)=O)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +COc1ccncc1Nc1cc(F)cc(C(N)=O)c1; ['COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1B(O)O', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1I']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(N)cc(F)c1']; [0.9999074935913086, 0.9997069239616394, 0.9996914267539978, 0.9995677471160889, 0.9995433688163757, 0.9994581937789917, 0.9994370937347412] +CC(C)Oc1cncc(-c2cc(F)cc(C(N)=O)c2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999996423721313, 0.9999985694885254, 0.9999731779098511, 0.9999562501907349, 0.9999265670776367] +NC(=O)c1cc(F)cc(Nc2cnccc2-c2ccccc2)c1; ['NC(=O)c1cc(F)cc(Br)c1', 'Brc1cnccc1-c1ccccc1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['Nc1cnccc1-c1ccccc1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1cnccc1-c1ccccc1']; [0.9997432231903076, 0.9995629787445068, 0.9961681365966797] +NC(=O)c1cc(F)cc(Nc2cnc3ccccc3c2)c1; ['NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Brc1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Ic1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1cnc2ccccc2c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cc(N)cc(F)c1', 'Nc1cnc2ccccc2c1']; [0.9999722838401794, 0.9997314214706421, 0.9994462728500366, 0.9988338947296143, 0.9975287914276123, 0.9959179162979126, 0.994851291179657] +NC(=O)c1cc(F)cc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(F)cc(C(N)=O)c1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999918937683105, 0.9999533891677856, 0.999468207359314, 0.9993462562561035, 0.9991324543952942, 0.9988579750061035, 0.9984780550003052, 0.9984380602836609, 0.9980453252792358, 0.9962635040283203, 0.9880355596542358, 0.9557211995124817, 0.8765584826469421, 0.8703371286392212] +NC(=O)c1cc(F)cc(-c2cnc3[nH]ccc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Ic1cnc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(Br)c1', 'Clc1cnc2[nH]ccc2c1', 'Brc1cnc2[nH]ccc2c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999990463256836, 0.9999905824661255, 0.9999469518661499, 0.9999407529830933, 0.9999369382858276, 0.9999010562896729, 0.9998416900634766, 0.9995207786560059] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; [0.9999995827674866, 0.9999796152114868, 0.9999681711196899, 0.9999668002128601] +CNC(=O)c1c(F)cccc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccccc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [1.0, 1.0, 0.999998927116394, 0.9999983310699463, 0.9999978542327881, 0.999997615814209, 0.999143660068512, 0.9390487670898438, 0.7501867413520813] +NC(=O)c1cc(F)cc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +Cc1cc(-c2cc(F)cc(C(N)=O)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-n2ccc(CO)n2)c1; [None]; [None]; [0] +C[C@H](Nc1cc(F)cc(C(N)=O)c1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9116804599761963, 0.8317465782165527] +C[C@H](Nc1cc(F)cc(C(N)=O)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@@H](Nc1cc(F)cc(C(N)=O)c1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9116804599761963, 0.8317465782165527] +CN(c1cc(F)cc(C(N)=O)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2c(F)cccc2Cl)c1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999978542327881, 0.9999456405639648, 0.9997245669364929, 0.9995980858802795, 0.9994561672210693, 0.992081344127655] +NC(=O)c1cc(F)cc(-n2ncc3ccccc32)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(F)c1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9994757175445557, 0.999198317527771, 0.9803009033203125] +CC1(c2cc(F)cc(C(N)=O)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-n2cnc(CCO)c2)c1; ['NC(=O)c1cc(F)cc(F)c1']; ['OCCc1cnc[nH]1']; [0.9534722566604614] +NC(=O)c1cc(F)cc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-n2ncc3c(O)cccc32)c1; ['NC(=O)c1cc(F)cc(Br)c1']; ['Oc1cccc2[nH]ncc12']; [0.9987805485725403] +COc1ccc(-c2cc(F)cc(C(N)=O)c2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', None, 'COc1ccc(-c2cc(F)cc(C(=O)O)c2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Cl)c(OC)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', None, '[NH4+]', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999725818634033, 0.9998435974121094, 0.9997754096984863, 0, 0.9993360042572021, 0.99711674451828, 0.991827130317688, 0.9863190650939941] +NC(=O)c1cc(F)cc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2ccc(C(=O)c3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Cl)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccccc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.999998927116394, 0.999957799911499, 0.9999405145645142, 0.9998885989189148, 0.9998551607131958, 0.9997721314430237, 0.9976997375488281, 0.99622642993927, 0.9915796518325806, 0.9849764108657837, 0.8893553614616394, 0.879174530506134, 0.7716230154037476] +NC(=O)c1cc(F)cc(CCC(=O)NCc2ccccn2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(F)cc(C(N)=O)c2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +CCc1cc(-c2cc(F)cc(C(N)=O)c2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(Cl)nc(N)n1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999821186065674, 0.9999285340309143] +NC(=O)c1cc(F)cc(-c2cn(Cc3ccccc3)nn2)c1; ['NC(=O)c1cc(F)cc(Br)c1']; ['c1ccc(Cn2ccnn2)cc1']; [0.9995322227478027] +NC(=O)c1cc(F)cc(CS(=O)(=O)NCc2ccccn2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(F)cc(C(N)=O)c2)s1; ['CNC(=O)c1ccc(Br)s1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999974370002747] +NC(=O)c1cc(F)cc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2nnc(N)s2)c1; [None]; [None]; [0] +CCCCc1cc(-c2cc(F)cc(C(N)=O)c2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(F)cc(C(N)=O)c2)n1; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1ccccn1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1ccccn1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Br)c1']; [0.9999973177909851, 0.999625027179718, 0.9995535612106323, 0.9992643594741821, 0.9958673715591431, 0.9942764043807983, 0.9490211606025696] +NC(=O)c1cc(F)cc(-c2nc3ccccc3s2)c1; ['Brc1nc2ccccc2s1']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9991350173950195] +CC1(C)Oc2ccc(-c3cc(F)cc(C(N)=O)c3)nc2NC1=O; ['CC1(C)Oc2ccc(Br)nc2NC1=O']; ['NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999263286590576] +NC(=O)c1cc(F)cc(-c2cncc(N)n2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; [0.9999927282333374, 0.9999778270721436] +Cn1cc(C(N)=O)cc1-c1cc(F)cc(C(N)=O)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(F)cc(C(N)=O)c3)c2)cc1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc3ccsc23)c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'Brc1cccc2ccsc12', 'NC(=O)c1cccc(F)c1', 'Clc1cccc2ccsc12']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'OB(O)c1cccc2ccsc12', 'NC(=O)c1cc(F)cc(B(O)O)c1']; [0.9999980926513672, 0.9999510645866394, 0.9998489618301392, 0.9995745420455933, 0.9937634468078613, 0.9893981218338013, 0.9387195110321045, 0.8889278173446655] +NC(=O)c1cc(F)cc(-c2nc(N)c3ccccc3n2)c1; ['NC(=O)c1cc(F)cc(B(O)O)c1']; ['Nc1nc(Cl)nc2ccccc12']; [0.9994364976882935] +NC(=O)c1cc(F)cc(-c2cccc3nnsc23)c1; ['Brc1cccc2nnsc12', 'Clc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'Brc1cccc2nnsc12', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'Clc1cccc2nnsc12']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1', 'c1ccc2snnc2c1', 'NC(=O)c1cccc(F)c1']; [0.9999822974205017, 0.9998056888580322, 0.9962794780731201, 0.9917652606964111, 0.9437148571014404, 0.8368242979049683] +C[C@@H2]NC(=O)N1CCC(c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(Oc2ccc(C[NH3+])cc2F)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(F)cc(C(N)=O)c2)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(F)cc(C(N)=O)c1; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cccc(F)c1']; [0.9999983310699463, 0.9999849200248718, 0.9999700784683228, 0.9999421834945679, 0.9999352693557739, 0.9998704791069031, 0.9998571872711182, 0.99308180809021, 0.9797621965408325] +NC(=O)c1cc(F)cc(-c2ncc3cc[nH]c3n2)c1; ['Clc1ncc2cc[nH]c2n1', 'NC(=O)c1cc(F)cc(Br)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'c1ncc2cc[nH]c2n1']; [0.9997721910476685, 0.9171114563941956] +NC(=O)c1cc(F)cc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(F)cc(C(N)=O)c2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(O)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(B(O)O)c1']; ['NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(B(O)O)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(N)cc(F)c1', 'NC(=O)c1cccc(F)c1']; [0.9999853372573853, 0.9999701976776123, 0.999966025352478, 0.9999499320983887, 0.9999216794967651, 0.9997791051864624, 0.9996693134307861, 0.9994722604751587, 0.9988378286361694, 0.9984534978866577, 0.9948942065238953, 0.9858565926551819, 0.9836403727531433, 0.9818611741065979, 0.9248028993606567] +COc1ccc(Oc2cc(F)cc(C(N)=O)c2)c(F)c1F; [None]; [None]; [0] +NC(=O)c1cc(F)cc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(Cl)c1', 'NC(=O)c1cc(F)cc(F)c1']; [0.9999189972877502, 0.9997607469558716, 0.9984006285667419] +NC(=O)c1cc(F)cc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; ['NC(=O)c1cc(F)cc(Br)c1', 'NC(=O)c1cc(F)cc(F)c1', 'NC(=O)c1cc(F)cc(Cl)c1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9985877275466919, 0.9911971092224121, 0.9864213466644287] +CN(C)S(=O)(=O)c1cccc(-c2cc(F)cc(C(N)=O)c2)c1; [None]; [None]; [0] +NC(=O)c1cc(F)cc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(F)cc(C(N)=O)c2)cnn1; [None]; [None]; [0] +CCOc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.999997615814209, 0.9999970197677612, 0.9999827742576599, 0.9999704957008362, 0.9996968507766724, 0.9745179414749146] +CC(=O)N(C)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999990463256836, 0.999998927116394, 0.997556746006012] +C[C@@]1(O)CC[C@H](c2cc(F)cc(C(N)=O)c2)CC1; [None]; [None]; [0] +COc1ncccc1-c1cc(C(N)=O)ccn1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999786615371704, 0.9999673366546631, 0.999732494354248, 0.9997053742408752, 0.9987391829490662, 0.998253345489502, 0.9628884792327881] +Cc1ccc2ncn(-c3cc(C(N)=O)ccn3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9994409084320068, 0.9989986419677734, 0.9987437725067139] +CS(=O)(=O)c1cccc(-c2cc(C(N)=O)ccn2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; [1.0, 0.9999997615814209, 0.9999939203262329, 0.9999938607215881, 0.9999915361404419, 0.9999487400054932] +COc1cc(-c2cc(C(N)=O)ccn2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccncc1']; [0.9999666810035706, 0.9999579191207886, 0.9999359846115112, 0.9999226331710815, 0.9998772144317627, 0.99983811378479, 0.9884905815124512, 0.9557360410690308] +NC(=O)c1ccnc(-c2cccc(O)c2)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', None]; ['NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'NC(=O)c1ccnc(Br)c1', None]; [0.9999803304672241, 0.9999760389328003, 0.9999701380729675, 0.9998846054077148, 0.9998561143875122, 0] +N#Cc1ccc(O)c(-c2cc(C(N)=O)ccn2)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9998937845230103, 0.9997333288192749] +NC(=O)c1ccnc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +COc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(-c2cc(C(=O)O)ccn2)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(-c2cc(C(=O)O)ccn2)cc1', None, None]; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'O=C(n1ccnc1)n1ccnc1', 'NC(=O)c1ccnc(Br)c1', 'O=C(Cl)C(=O)Cl', None, None]; [0.9999982118606567, 0.9999978542327881, 0.9999769926071167, 0.9999692440032959, 0.9998200535774231, 0.9928424954414368, 0.9774101972579956, 0.9754973649978638, 0, 0] +Cc1nc(C(C)(C)O)sc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Br[Mg]c1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'NC(=O)c1ccnc(Br)c1']; ['NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'c1ccc(N2CCOCC2)cc1']; [1.0, 0.9999998807907104, 0.9999997615814209, 0.9999978542327881, 0.9999950528144836, 0.9999827146530151, 0.9999531507492065, 0.9998157620429993, 0.9996176958084106, 0.9633718729019165] +NC(=O)c1ccnc(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2nccc3ccccc23)c1; ['Brc1nccc2ccccc12']; ['NC(=O)c1ccnc(Br)c1']; [0.9929280877113342] +NC(=O)c1ccnc(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(NC(=O)C3CC3)c2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(Nc2ncccn2)c1; ['NC(=O)c1ccnc(Cl)c1', 'Clc1ncccn1']; ['Nc1ncccn1', 'NC(=O)c1ccnc(N)c1']; [0.9826450347900391, 0.9806778430938721] +N#Cc1cccc(Cn2cc(-c3cc(C(N)=O)ccn3)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1']; [0.9999995231628418, 0.9999991655349731, 0.9999929666519165, 0.9999840259552002, 0.9998858571052551, 0.9966837167739868, 0.9889696836471558] +NC(=O)c1ccnc(-c2ccc(C(=O)Nc3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.9999997615814209, 0.9999991655349731, 0.9999947547912598] +NC(=O)c1ccnc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999995231628418, 0.9999979734420776, 0.9999933242797852, 0.9999933242797852, 0.9999270439147949, 0.9693134427070618] +NC(=O)c1ccnc(-c2ccc(OCCO)cc2)c1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999992847442627, 0.999998927116394, 0.9999960660934448, 0.9999773502349854, 0.9999406933784485] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(C(N)=O)ccn3)cc2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [1.0, 0.9999995231628418, 0.9999942779541016, 0.9999934434890747] +C[C@H](O)COc1ccc(-c2cc(C(N)=O)ccn2)cc1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(C(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999995231628418, 0.9999994039535522, 0.9999963045120239, 0.9999961853027344, 0.999982476234436] +NC(=O)c1ccnc(-c2ccc(C(=O)N3CCOCC3)cc2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(C(=O)N3CCOCC3)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc3c(c2)CS(=O)(=O)C3)c1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(C(N)=O)ccn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccncc1']; [1.0, 1.0, 0.9999953508377075, 0.9999938011169434, 0.9999568462371826, 0.9968129992485046, 0.9924496412277222] +CN(C)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccncc1']; [0.9999996423721313, 0.999999463558197, 0.9999918937683105, 0.9999779462814331, 0.9997806549072266, 0.997604489326477, 0.9922751188278198, 0.9794968366622925] +CS(=O)(=O)N1CCC(c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1']; [0.9999725222587585] +Cc1nc(C)c(-c2cc(C(N)=O)ccn2)s1; [None]; [None]; [0] +NC(=O)c1ccnc(Cc2cnc(N)nc2)c1; [None]; [None]; [0] +NC(=O)c1ccnc([C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(C(N)=O)ccn2)nc(N)n1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(Br)cc2)c1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1']; [0.9999987483024597, 0.9999920129776001, 0.999936580657959, 0.9996791481971741, 0.9994817972183228] +CCCOc1ccc(-c2cc(C(N)=O)ccn2)nc1; ['CCCOc1ccc(Br)nc1']; ['NC(=O)c1ccnc(Br)c1']; [0.999756395816803] +NC(=O)c1ccnc(Cc2ccccc2O)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(C(N)=O)ccn2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999988079071045, 0.9999986886978149, 0.9739750623703003] +COc1ccc(Cc2cc(C(N)=O)ccn2)cc1; ['COc1ccc(CBr)cc1']; ['NC(=O)c1ccnc(Cl)c1']; [0.9810233116149902] +CNS(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999897480010986, 0.9999565482139587, 0.9999376535415649, 0.9995980858802795] +CCN(CC)C(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [1.0, 1.0, 0.999994695186615, 0.9999890923500061, 0.9999361038208008, 0.999082088470459] +CC(=O)N1CCCN(c2cccc(-c3cc(C(N)=O)ccn3)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(C(N)=O)ccn1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999668598175049, 0.9999502897262573, 0.9998490810394287, 0.9996017813682556] +NC(=O)c1ccnc(-c2ccccc2-n2cccn2)c1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'Brc1ccccc1-n1cccn1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccccc1-n1cccn1']; [0.999983549118042, 0.9999685883522034, 0.9999087452888489, 0.999701976776123, 0.9992856383323669, 0.9992514252662659] +Cc1c(C(=O)[O-])cccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1c[nH]c2ccccc12', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccncc1', 'Brc1c[nH]c2ccccc12']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'NC(=O)c1ccncc1']; [0.9999814629554749, 0.9999731779098511, 0.9999538064002991, 0.9998932480812073, 0.9997133016586304, 0.9996144771575928, 0.9993703365325928, 0.9965276718139648, 0.9575257301330566, 0.7705170512199402] +NC(=O)c1ccnc(-c2ccc3c(c2)CCO3)c1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'Brc1ccc2c(c1)CCO2', 'NC(=O)c1ccncc1', 'Brc1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2', 'Br[Mg]c1ccc2c(c1)CCO2']; ['NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc2c(c1)CCO2', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999985694885254, 0.9999974966049194, 0.9999889731407166, 0.9999850988388062, 0.9999768733978271, 0.9999504089355469, 0.9986651539802551, 0.998557448387146, 0.9962177276611328, 0.9931936264038086] +CC(=O)Nc1cccc(-c2cc(C(N)=O)ccn2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; [0.9999969005584717, 0.9999932050704956, 0.9999824166297913, 0.9999796152114868, 0.9999431371688843] +COc1cc(-c2cc(C(N)=O)ccn2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999932050704956, 0.9999909400939941, 0.9998433589935303, 0.9996894001960754, 0.9994533061981201] +COc1cc(OC)c(-c2cc(C(N)=O)ccn2)cc1Cl; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccn3nccc3n2)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(C(N)=O)ccn3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc3c2OCO3)c1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'Brc1cccc2c1OCO2', 'NC(=O)c1ccncc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cccc2c1OCO2']; [0.9999982118606567, 0.9999964237213135, 0.9999867081642151, 0.9999716281890869, 0.9998886585235596, 0.9991729855537415, 0.9943535327911377] +CC(C)(C)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(-c2cc(C(=O)O)ccn2)cc1', None]; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'O=C(n1ccnc1)n1ccnc1', None]; [0.9999997615814209, 0.9999996423721313, 0.9999966621398926, 0.9999959468841553, 0.9999321103096008, 0.9995973706245422, 0] +NC(=O)c1ccnc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cnc3ccccc3c2)c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999992251396179, 0.9999982118606567, 0.9999549388885498, 0.9999443888664246, 0.9998376369476318] +CN(C)C(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [1.0, 1.0, 0.9999959468841553, 0.9999938607215881, 0.9999756217002869, 0.9974902868270874, 0.9964162707328796] +CC(C)(C)c1ccc(-c2cc(C(N)=O)ccn2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999988079071045, 0.9999969005584717, 0.999927282333374, 0.9999186992645264, 0.999891996383667, 0.9850136041641235] +NC(=O)c1ccnc(Cc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(Cc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(Cc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +Cc1ccc(-c2cc(C(N)=O)ccn2)c(=O)[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(C(N)=O)ccn2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(N)=O)c1', 'COC(=O)c1cccc(OC)c1']; ['NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(N)c1']; [0.999854326248169, 0.9994877576828003, 0.9993906021118164, 0.9985755085945129, 0.9758639335632324] +NC(=O)c1ccnc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +NC(=O)c1ccnc(CCCc2ccccc2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc([Mg]Br)cc1', 'CSc1ccc(-c2cc(C(=O)O)ccn2)cc1', None, 'CSc1ccc(Br)cc1', 'CSc1ccc(-c2cc(C(=O)O)ccn2)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'O=C(Cl)C(=O)Cl', None, 'NC(=O)c1ccnc(Br)c1', 'N']; [0.999998152256012, 0.9999973773956299, 0.9999791383743286, 0.9999653697013855, 0.9997380375862122, 0.9968825578689575, 0.9967848658561707, 0, 0.9556707739830017, 0.9267513751983643] +CC(=O)N[C@@H]1CC[C@@H](c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cc3ccccc3s2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'O=C(O)c1ccnc(-c2cc3ccccc3s2)c1', None]; ['OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'O=C(n1ccnc1)n1ccnc1', None]; [0.9998981952667236, 0.9998714923858643, 0.9982743263244629, 0] +NC(=O)c1ccnc(-c2csc(N)n2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(C(N)=O)ccn3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999972581863403, 0.9969566464424133] +NC(=O)c1ccnc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +Cc1cc(-c2cc(C(N)=O)ccn2)nc(N)n1; ['Cc1cc(Br)nc(N)n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9899193048477173] +NC(=O)c1ccnc(-c2ccc(F)cc2Cl)c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [0.9999983310699463, 0.999992311000824, 0.999971866607666, 0.9999079704284668, 0.9997348785400391] +NC(=O)c1ccnc(-c2ccc3c(c2)CCC(=O)N3)c1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'NC(=O)c1ccnc(Br)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999887347221375, 0.9998841285705566, 0.9911630153656006] +COc1ccc(-c2cc(C(N)=O)ccn2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(-c2cc(C(=O)O)ccn2)cc1OC', None]; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'O=C(n1ccnc1)n1ccnc1', None]; [0.9999966025352478, 0.9999899864196777, 0.9999686479568481, 0.9998311996459961, 0.9998081922531128, 0.9966522455215454, 0] +CCc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc([Mg]Br)cc1', 'CCc1ccc(-c2cc(C(=O)O)ccn2)cc1', 'CCc1ccc(Br)cc1', None, 'CCc1ccc(-c2cc(C(=O)O)ccn2)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1', 'O=C(Cl)C(=O)Cl', 'NC(=O)c1ccnc(Br)c1', None, 'N']; [0.9999992847442627, 0.9999991655349731, 0.999961256980896, 0.9999241828918457, 0.999442458152771, 0.9952178001403809, 0.9940621852874756, 0.9916860461235046, 0.984014630317688, 0, 0.8568381071090698] +CC[C@@H](CO)c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(Cl)cc2Cl)c1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999923706054688, 0.9999653697013855, 0.9999555349349976, 0.9994643926620483] +COc1cc(-c2cc(C(N)=O)ccn2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999988079071045, 0.9999600648880005, 0.9978306293487549] +NC(=O)c1ccnc([C@H](CO)Cc2ccccc2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cc3ccccn3n2)c1; ['Brc1cc2ccccn2n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9873331785202026] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(C(N)=O)ccn2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; [0.9999984502792358, 0.9999961853027344, 0.9999947547912598, 0.9999946355819702, 0.9999915361404419, 0.9999616146087646] +CC1(C)Cc2cc(-c3cc(C(N)=O)ccn3)ccc2O1; [None]; [None]; [0] +NC(=O)c1ccnc(CCCn2cncn2)c1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(C(N)=O)ccn3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['NC(=O)c1ccnc(Br)c1']; [0.9957577586174011] +COc1cc(-c2cc(C(N)=O)ccn2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999997615814209, 0.9999989867210388, 0.9999891519546509, 0.9999650716781616, 0.9999067783355713] +NC(=O)c1ccnc(-c2cccc3ccc(O)cc23)c1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999836683273315, 0.9999833703041077] +COc1cc(F)c(-c2cc(C(N)=O)ccn2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1ccc(F)cc1OC']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999966621398926, 0.9999943971633911, 0.9999889731407166, 0.9999883770942688, 0.99994295835495, 0.9999253749847412, 0.9943356513977051, 0.9925607442855835, 0.990719199180603] +NC(=O)c1ccnc(-c2cnn(CCO)c2)c1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OCCn1cc(B(O)O)cn1']; [0.999982476234436, 0.9999809265136719, 0.999807596206665] +NC(=O)c1ccnc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999995827674866, 0.9999991655349731, 0.9999964237213135, 0.9999937415122986] +NC(=O)c1ccnc(-c2cc(N)nc3[nH]ccc23)c1; ['NC(=O)c1ccnc(Br)c1']; ['Nc1cc(Br)c2cc[nH]c2n1']; [0.9968781471252441] +CCNC(=O)c1ccc(-c2cc(C(N)=O)ccn2)nc1; ['CCNC(=O)c1ccc(Br)nc1']; ['NC(=O)c1ccnc(Br)c1']; [0.999496579170227] +COc1cc(-c2cc(C(N)=O)ccn2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccncc1']; [0.9999417066574097, 0.9993197917938232, 0.9987607002258301, 0.9959426522254944, 0.9625307321548462, 0.9625060558319092, 0.9362218379974365] +CCNC(=O)N1CCC(c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(C(N)=O)ccn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(C(N)=O)ccn2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.999929666519165, 0.9999264478683472, 0.9998975992202759, 0.9998949766159058, 0.9998816251754761, 0.914429783821106] +Cc1csc2c(-c3cc(C(N)=O)ccn3)ncnc12; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc3cn[nH]c3c2)c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1']; [0.9999994039535522, 0.9999988079071045, 0.9999961853027344, 0.9999919533729553] +COc1ccc2oc(-c3cc(C(N)=O)ccn3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['NC(=O)c1ccnc(Br)c1']; [0.9999520778656006] +CCn1cc(-c2cc(C(N)=O)ccn2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999978542327881, 0.9999972581863403, 0.9998873472213745, 0.9998857975006104] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(C(N)=O)ccn1)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(C(N)=O)ccn2)c1; ['CNC(=O)c1ccc(OC)c(Br)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999591112136841, 0.9975777864456177] +NC(=O)c1ccnc(-c2cc3ccccc3o2)c1; ['NC(=O)c1ccnc(Br)c1']; ['OB(O)c1cc2ccccc2o1']; [0.9999817609786987] +CO[C@@H]1CC[C@@H](c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(C(N)=O)ccn1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999972581863403, 0.9999927282333374] +COc1ccc2nc(-c3cc(C(N)=O)ccn3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(C(N)=O)ccn2)c1; ['COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; [0.9993688464164734, 0.9991576075553894, 0.9759629964828491] +C[NH+](C)Cc1ccc(-c2cc(C(N)=O)ccn2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(OC(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'O=C(O)c1ccnc(-c2ccc(OC(F)(F)F)cc2)c1', 'FC(F)(F)Oc1ccc([Mg]Br)cc1', 'NC(=O)c1ccncc1', None]; ['NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'O=C(n1ccnc1)n1ccnc1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', None]; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999978542327881, 0.9999877214431763, 0.9999573230743408, 0.9997329711914062, 0] +Cn1cc(-c2cc(C(N)=O)ccn2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.999981164932251, 0.9999480247497559] +CCc1cccc(-c2cc(C(N)=O)ccn2)n1; ['CCc1cccc(Br)n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9507999420166016] +CN(C)c1ccc(-c2cc(C(N)=O)ccn2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999989867210388, 0.9999986886978149, 0.999981164932251, 0.9999762773513794, 0.9999442100524902, 0.9915794134140015] +Cc1n[nH]c2cc(-c3cc(C(N)=O)ccn3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [1.0, 1.0, 0.9999995827674866, 0.999996542930603, 0.9998167753219604] +Cn1ncc2cc(-c3cc(C(N)=O)ccn3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1']; [1.0, 0.9999997615814209, 0.9999995827674866, 0.9999982118606567, 0.9999966025352478] +CC(=O)N1CCC(n2cc(-c3cc(C(N)=O)ccn3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['NC(=O)c1ccnc(Cl)c1']; [0.9999881386756897] +CC(C)(O)c1ccc2cc(-c3cc(C(N)=O)ccn3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(N3CCCC3=O)c2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999917149543762, 0.9999401569366455, 0.9999310374259949, 0.9822669625282288] +NC(=O)c1ccnc(NC(=O)c2cccc(OC(F)(F)F)c2)c1; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1ccnc(N)c1', 'COC(=O)c1cccc(OC(F)(F)F)c1', 'CC(=O)c1cccc(OC(F)(F)F)c1']; ['NC(=O)c1ccnc(Br)c1', 'O=C(Cl)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; [0.9999971985816956, 0.9999961853027344, 0.9999780654907227, 0.9999569654464722, 0.9987183809280396, 0.9968304634094238] +Cc1cc(-c2cc(C(N)=O)ccn2)cc(C)c1OCCO; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(C(N)=O)ccn3)ccc21; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccc(CCO)cc2)c1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1']; [0.9999974966049194, 0.9999970197677612, 0.9999780058860779, 0.9999069571495056, 0.9993436932563782] +Cc1ncc(-c2ccc(-c3cc(C(N)=O)ccn3)cc2)n1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(C(N)=O)ccn2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.999893844127655, 0.9998929500579834] +CN(C)C(=O)c1ccc(-c2cc(C(N)=O)ccn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(C(N)=O)ccn1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['NC(=O)c1ccnc(Cl)c1']; [0.9998909831047058] +CCNC(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999986290931702, 0.9999964833259583] +COc1cc(N2CCNCC2)ccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(C(N)=O)ccn2)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['NC(=O)c1ccnc(Br)c1']; [0.9990041255950928] +CCNC(=O)Cc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['NC(=O)c1ccnc(Br)c1']; [0.9988247156143188] +CNC(=O)c1ccccc1-c1cc(C(N)=O)ccn1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999687671661377, 0.9999662637710571] +CNC(=O)c1ccc(C)c(-c2cc(C(N)=O)ccn2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(C(N)=O)ccn2)c1; [None]; [None]; [0] +Cn1nc(-c2cc(C(N)=O)ccn2)cc1C(C)(C)O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(C(N)=O)ccn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(C(N)=O)ccn1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999924302101135, 0.9999901652336121, 0.9999898076057434, 0.9999221563339233, 0.9996407628059387, 0.9965107440948486, 0.9770870804786682] +Cc1nnc(-c2ccccc2-c2cc(C(N)=O)ccn2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(C(N)=O)ccn1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999872446060181, 0.9999434947967529] +NC(=O)c1ccnc(Cc2cc(F)cc(F)c2)c1; ['Fc1cc(F)cc(CBr)c1']; ['NC(=O)c1ccnc(Cl)c1']; [0.9994595646858215] +NC(=O)c1ccnc(-c2cccc(C(F)(F)F)c2)c1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999963641166687, 0.9999959468841553, 0.9999849200248718, 0.999983549118042, 0.9999338388442993] +NC(=O)c1ccnc(-c2ccnc3ccccc23)c1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1ccnc2ccccc12', 'Brc1ccnc2ccccc12', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccncc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9999691247940063, 0.9999617338180542, 0.99993896484375, 0.9998752474784851, 0.999714732170105, 0.9985072612762451, 0.9983198642730713, 0.9951299428939819, 0.891575038433075] +NC(=O)c1ccnc(-c2ccccc2OC(F)(F)F)c1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Br', 'NC(=O)c1ccncc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1ccccc1OC(F)(F)F']; [0.999998927116394, 0.9999961853027344, 0.9999951124191284, 0.999976396560669, 0.9999706745147705, 0.9999596476554871, 0.9989391565322876, 0.9876276850700378] +Cn1cnc2ccc(-c3cc(C(N)=O)ccn3)cc2c1=O; [None]; [None]; [0] +COC(C)(C)CCc1cc(C(N)=O)ccn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cnn(Cc3ccccc3)c2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999975562095642, 0.9999939799308777, 0.9999756217002869, 0.999903678894043] +NC(=O)c1ccnc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccccc2C(N)=O)c1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; [0.999994158744812, 0.9999927282333374, 0.9997713565826416, 0.9996424913406372, 0.9888232350349426] +NC(=O)c1ccnc(-c2cc(Cl)ccc2Cl)c1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999394416809082, 0.9998375177383423, 0.999587893486023, 0.9993346929550171] +NC(=O)c1ccnc(-c2cccc(NC(=O)c3ccccc3)c2)c1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999982118606567, 0.9999971389770508, 0.9999927282333374, 0.9999743700027466] +NC(=O)c1ccnc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +Cc1ccc(-c2cc(C(N)=O)ccn2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9996358156204224, 0.971351146697998, 0.9457971453666687] +CC(C)C(=O)COc1cc(C(N)=O)ccn1; [None]; [None]; [0] +COc1cnc(-c2cc(C(N)=O)ccn2)nc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(C(N)=O)ccn2)cs1; [None]; [None]; [0] +NC(=O)c1ccnc(-n2ncc3cccc(F)c3c2=O)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12']; ['NC(=O)c1ccnc(Br)c1']; [0.9768465757369995] +Cc1nc(N)sc1-c1cc(C(N)=O)ccn1; ['Cc1csc(N)n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9903461933135986] +NC(=O)c1ccnc(-c2cccc(Br)c2)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; [0.9999827146530151, 0.9999304413795471, 0.9999110698699951, 0.9995985627174377, 0.9993927478790283] +NC(=O)c1ccnc(-c2c(Cl)cccc2Cl)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1', 'NC(=O)c1ccncc1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9993707537651062, 0.9979896545410156, 0.9862720966339111, 0.9037013649940491, 0.8564050197601318] +NC(=O)c1ccnc(NCc2cccnc2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'O=Cc1cccnc1', 'OCc1cccnc1']; [0.9995771050453186, 0.9994105696678162, 0.9946702718734741, 0.9284689426422119, 0.911716639995575] +CNc1nc(C)c(-c2cc(C(N)=O)ccn2)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(C(N)=O)ccn2)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9996585845947266, 0.9993951320648193, 0.9988745450973511, 0.9985219240188599] +NC(=O)c1ccnc(Nc2cccnc2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'Ic1cccnc1', 'Brc1cccnc1', 'NC(=O)c1ccnc(F)c1']; ['Nc1cccnc1', 'Nc1cccnc1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1', 'Nc1cccnc1']; [0.9989447593688965, 0.9977570176124573, 0.9850486516952515, 0.9520695209503174, 0.945412278175354] +NC(=O)c1ccnc(-c2ccc3ccccc3c2)c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', None]; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', None]; [0.9999973773956299, 0.999992847442627, 0.99998939037323, 0.9999594688415527, 0.9999531507492065, 0] +NC(=O)c1ccnc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccnc(N)n2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1']; ['Nc1nccc(Br)n1', 'Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [0.9998387694358826, 0.9995945692062378, 0.9833513498306274] +NC(=O)c1ccnc(NCCc2c[nH]cn2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9996743202209473, 0.9994838237762451, 0.9988789558410645] +NC(=O)c1ccnc(-c2cnn3ncccc23)c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999958276748657, 0.9999847412109375, 0.9998329877853394] +NC(=O)c1ccnc(-n2cnc3ccccc32)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9998859763145447, 0.9997076392173767] +NC(=O)c1ccnc(NC(=O)c2cccs2)c1; ['NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1cccs1', 'COC(=O)c1cccs1', 'NC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999789595603943, 0.9999337792396545, 0.9997469186782837, 0.9991676211357117, 0.9986699819564819] +NC(=O)c1ccnc(NCCc2ccccc2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1', 'ICCc1ccccc1', 'BrCCc1ccccc1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1cc[n+]([O-])cc1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1', 'O=CCc1ccccc1', 'NCCc1ccccc1']; [0.9996934533119202, 0.999608039855957, 0.9937660694122314, 0.9612628221511841, 0.9545023441314697, 0.92725670337677, 0.7530746459960938] +NC(=O)c1ccnc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(C(N)=O)ccn3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['NC(=O)c1ccnc(Cl)c1']; [1.0] +Cc1c(-c2cc(C(N)=O)ccn2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(F)c2C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cncc3ccccc23)c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'Brc1cncc2ccccc12']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'NC(=O)c1ccnc(Br)c1']; [1.0, 0.9999995231628418, 0.9999955892562866, 0.9999883770942688, 0.9998382329940796, 0.9996381998062134] +NC(=O)c1ccnc(NCc2ccc(Cl)cc2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1']; [0.9994795918464661, 0.9949790835380554, 0.9937182664871216, 0.9897385835647583, 0.9708775281906128] +NC(=O)c1ccnc(-c2ccc(-c3cn[nH]c3)cc2)c1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'NC(=O)c1ccnc(Br)c1']; [0.9999997615814209, 0.9999997615814209, 0.9999933242797852, 0.9999861121177673, 0.9965900778770447] +NC(=O)c1ccnc(-c2cccc(CC(=O)[O-])c2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc(CO)c2)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C(Cl)C(=O)Cl', 'NC(=O)c1ccnc(I)c1', None]; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'O=C(O)c1ccnc(-c2cccc(CO)c2)c1', 'OCc1cccc(B(O)O)c1', None]; [0.9999862313270569, 0.9999772906303406, 0.9998270273208618, 0.9997549057006836, 0.9978082180023193, 0.9963439702987671, 0] +NC(=O)c1ccnc(Nc2ccncc2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1', 'Ic1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'NC(=O)c1ccnc(N)c1']; [0.9996778964996338, 0.999653697013855, 0.9968849420547485, 0.9966575503349304] +NC(=O)c1ccnc(NCc2ccccc2F)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1', 'NC(=O)c1cc[n+]([O-])cc1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'OCc1ccccc1F', 'O=Cc1ccccc1F']; [0.9999254941940308, 0.9996395111083984, 0.9855178594589233, 0.9805798530578613, 0.9345006346702576, 0.7959195375442505] +NC(=O)c1ccnc(-c2ccc3c(N)[nH]nc3c2)c1; [None]; [None]; [0] +CN1c2ccc(-c3cc(C(N)=O)ccn3)cc2CS1(=O)=O; [None]; [None]; [0] +COc1cc(-c2cc(C(N)=O)ccn2)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(-c2cc(C(N)=O)ccn2)n1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2csc3ncncc23)c1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(C(N)=O)ccn2)nn1; [None]; [None]; [0] +NC(=O)c1ccnc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +CSc1nc(-c2cc(C(N)=O)ccn2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(C(N)=O)ccn2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999781847000122, 0.9999349117279053, 0.9997297525405884, 0.9897146224975586, 0.7913192510604858] +NC(=O)c1ccnc(-c2cncnc2N)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; ['Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9999369382858276, 0.9994571208953857] +CCC(=O)Nc1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999997615814209, 0.9999996423721313] +NC(=O)c1ccnc(NC(=O)c2c(Cl)cccc2Cl)c1; ['NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1c(Cl)cccc1Cl', 'COC(=O)c1c(Cl)cccc1Cl', 'CC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; [0.9995131492614746, 0.9992387890815735, 0.9988687038421631, 0.9934631586074829, 0.9866280555725098] +NC(=O)c1ccnc(-c2ccc(F)cc2C(F)(F)F)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'NC(=O)c1ccnc(I)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'NC(=O)c1ccnc(Br)c1']; [0.9999668598175049, 0.9999603629112244, 0.9999357461929321, 0.9998922348022461, 0.9962320327758789] +CCNc1nc2ccc(-c3cc(C(N)=O)ccn3)cc2s1; [None]; [None]; [0] +NC(=O)c1ccnc(Oc2ccccn2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; ['Oc1ccccn1', 'Oc1ccccn1']; [0.9563087224960327, 0.9536775350570679] +CC(C)(COc1cc(C(N)=O)ccn1)S(C)(=O)=O; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(C(N)=O)ccn2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CC(C)(C)OC(=O)N1CCC(S(C)(=O)=O)CC1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.999994695186615, 0.9999433755874634, 0.9998923540115356, 0.9995587468147278] +NC(=O)c1ccnc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +CCCn1cc(-c2cc(C(N)=O)ccn2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999974966049194, 0.999996542930603, 0.9999613761901855, 0.9999229907989502] +NC(=O)c1ccnc(-c2cnn3ccccc23)c1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12']; [0.9999984502792358, 0.999998152256012, 0.9999865889549255, 0.9999810457229614, 0.9998511075973511] +COc1ccc(-c2cc(C(N)=O)ccn2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1']; [0.999998927116394, 0.999995231628418, 0.999985933303833, 0.9999800324440002, 0.9996403455734253, 0.9944021701812744, 0.9923520088195801] +CC(C)(O)CC(=O)NCCc1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)CCCc1cc(C(N)=O)ccn1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(C(N)=O)ccn2)cc1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cc[nH]c(=O)c2)c1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999781847000122, 0.999934196472168] +C[S@](=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999988079071045, 0.9999772310256958, 0.9998612999916077] +CCN(CC)c1cc(C(N)=O)ccn1; ['CCNCC', 'CCNCC', None, 'CCNCC']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', None, 'NC(=O)c1ccnc(F)c1']; [0.994965672492981, 0.9872362017631531, 0, 0.8350918292999268] +C[C@@H](Oc1cc(C(N)=O)ccn1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; [0.9989206790924072, 0.9920613765716553, 0.9729824066162109] +NC(=O)c1ccnc(-c2cccc3c2C(=O)CC3)c1; [None]; [None]; [0] +COc1ccncc1Nc1cc(C(N)=O)ccn1; ['COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1Br', 'COc1ccncc1B(O)O']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(N)c1', 'NC(=O)c1ccnc(N)c1']; [0.999937891960144, 0.9998925924301147, 0.9995604753494263, 0.9992165565490723] +NC(=O)c1ccnc(Nc2cnccc2-c2ccccc2)c1; ['NC(=O)c1ccnc(Br)c1', 'Brc1cnccc1-c1ccccc1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; ['Nc1cnccc1-c1ccccc1', 'NC(=O)c1ccnc(N)c1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.9998221397399902, 0.9997861385345459, 0.9977799654006958, 0.9891296625137329] +CCNS(=O)(=O)c1ccccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +COc1cc(CCc2cc(C(N)=O)ccn2)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(C(N)=O)ccn2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999996423721313, 0.999999463558197, 0.9999905824661255, 0.9999893307685852] +NC(=O)c1ccnc(Nc2cnc3ccccc3c2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9999929666519165, 0.9999489188194275, 0.9993434548377991] +NC(=O)c1ccnc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cnc3[nH]ccc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 1.0, 0.9999966621398926, 0.9999853372573853, 0.9999753832817078] +NC(=O)c1ccnc(-c2c[nH]c3cnccc23)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9997057914733887, 0.9994536638259888, 0.9909743666648865] +COc1cccc(F)c1-c1cc(C(N)=O)ccn1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1']; [0.9999994039535522, 0.999998927116394, 0.999984622001648, 0.999959409236908, 0.9999457597732544, 0.9993025064468384] +CNC(=O)c1c(F)cccc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; [1.0, 1.0, 0.9999893307685852, 0.9999879598617554, 0.9094475507736206] +NC(=O)c1ccnc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +C[C@H](Nc1cc(C(N)=O)ccn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(C(N)=O)ccn2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; [1.0, 1.0, 0.9999967813491821, 0.9999966025352478, 0.9999766945838928, 0.999953031539917] +CC1(c2cc(C(N)=O)ccn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +NC(=O)c1ccnc(-n2ccc(CO)n2)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9993081092834473, 0.9983726739883423] +C[C@H](Nc1cc(C(N)=O)ccn1)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; [0.9841866493225098, 0.9558181762695312, 0.9121420383453369] +C[C@@H](Nc1cc(C(N)=O)ccn1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; [0.9841866493225098, 0.9558181762695312, 0.9121420383453369] +CN(c1cc(C(N)=O)ccn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +NC(=O)c1ccnc(-n2cnc(CCO)c2)c1; ['NC(=O)c1ccnc(Cl)c1']; ['OCCc1cnc[nH]1']; [0.9925935864448547] +NC(=O)c1ccnc(-n2ncc3ccccc32)c1; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(F)c1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.999854564666748, 0.9997102618217468, 0.9996960759162903, 0.9962136745452881] +NC(=O)c1ccnc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +Cc1cc(-c2cc(C(N)=O)ccn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2c(F)cccc2Cl)c1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1', 'Fc1cccc(Cl)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'NC(=O)c1ccnc(Br)c1']; [0.9999943971633911, 0.9999881982803345, 0.9999279379844666, 0.9996315240859985, 0.9991496801376343, 0.989147424697876] +NC(=O)c1ccnc(-c2ccc(C(=O)c3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999973773956299, 0.9999911785125732, 0.9999741315841675, 0.9998947381973267, 0.9996566772460938] +COc1ccc(-c2cc(C(N)=O)ccn2)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(-c2cc(C(=O)O)ccn2)c(OC)c1', None, 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1', 'COc1ccc(-c2cc(C(=O)O)ccn2)c(OC)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(I)c1', 'O=C(Cl)C(=O)Cl', None, 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Br)c1', 'N']; [0.9999209046363831, 0.9999194145202637, 0.9999086856842041, 0.9998615980148315, 0.999181866645813, 0.984076738357544, 0, 0.9614388942718506, 0.8082784414291382, 0.7656198740005493] +NC(=O)c1ccnc(-n2ncc3c(O)cccc32)c1; ['NC(=O)c1ccnc(Cl)c1']; ['Oc1cccc2[nH]ncc12']; [0.9999804496765137] +NC(=O)c1ccnc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(C(N)=O)ccn2)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +NC(=O)c1ccnc(CCC(=O)NCc2ccccn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +CCc1cc(-c2cc(C(N)=O)ccn2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9991047382354736] +NC(=O)c1ccnc(CS(=O)(=O)NCc2ccccn2)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(C(N)=O)ccn2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc(C(N)=O)ccn2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(C(N)=O)ccn2)n1; ['CC(C)(O)c1cccc(Br)n1']; ['NC(=O)c1ccnc(Br)c1']; [0.9669904708862305] +NC(=O)c1ccnc(-c2nnc(N)s2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cncc(N)n2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc3ccsc23)c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999989867210388, 0.9999988079071045, 0.9998781681060791, 0.9998729228973389, 0.9969651699066162] +NC(=O)c1ccnc(Oc2ccc(C[NH3+])cc2F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(C(N)=O)ccn1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(C(N)=O)ccn3)nc2NC1=O; [None]; [None]; [0] +NC(=O)c1ccnc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(C(N)=O)ccn3)c2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(C(N)=O)ccn1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999989867210388, 0.9999970197677612, 0.9999922513961792, 0.9999878406524658, 0.9999862313270569] +NC(=O)c1ccnc(-c2c[nH]c3cccnc23)c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Brc1c[nH]c2cccnc12']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9997212886810303, 0.9994758367538452, 0.9946298599243164] +COc1ccc(Oc2cc(C(N)=O)ccn2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(F)c1']; [0.9999415278434753, 0.9998417496681213, 0.9934731125831604, 0.9821563959121704] +NC(=O)c1ccnc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccnc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(C(N)=O)ccn2)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999950528144836, 0.9999843835830688, 0.9999753832817078, 0.9999257326126099, 0.9998847246170044] +NC(=O)c1ccnc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(C(N)=O)ccn2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(I)c1', 'NC(=O)c1ccncc1', 'NC(=O)c1ccnc(Br)c1']; [0.9999998807907104, 0.999999463558197, 0.9999884366989136, 0.999962329864502, 0.9998682737350464, 0.9979480504989624, 0.9960612654685974] +CC(=O)Nc1ncc(-c2cc(C(N)=O)ccn2)[nH]1; [None]; [None]; [0] +NC(=O)c1ccnc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1', 'CC(C)(C)OC(=O)N1CCC(c2nc3ccccc3[nH]2)CC1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'NC(=O)c1ccnc(Cl)c1']; [0.9999985694885254, 0.9999762773513794, 0.9997841119766235, 0.9996013641357422] +NC(=O)c1ccnc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['NC(=O)c1ccnc(Br)c1', 'NC(=O)c1ccnc(Cl)c1', 'NC(=O)c1ccnc(F)c1']; [0.9999915957450867, 0.9999868869781494, 0.9997406601905823] +NC(=O)c1ccnc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +CCOc1ccc(-c2nc(N)ncc2Cl)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998155832290649, 0.9993246793746948, 0.9993098378181458, 0.9956843852996826] +CC(=O)N(C)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999436736106873] +CN(C)c1cc(-c2cc(C(N)=O)ccn2)cnn1; [None]; [None]; [0] +COc1ncccc1-c1nc(N)ncc1Cl; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9995094537734985, 0.9965335130691528, 0.9954230785369873, 0.9926105737686157, 0.9618286490440369] +Cc1ccc2ncn(-c3nc(N)ncc3Cl)c2c1; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9870964884757996, 0.9539036154747009] +COc1cc(-c2nc(N)ncc2Cl)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9962508082389832, 0.9952105283737183, 0.9932618737220764, 0.984286904335022] +CS(=O)(=O)c1cccc(-c2nc(N)ncc2Cl)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999901056289673, 0.9999164938926697, 0.9989222288131714] +C[C@@]1(O)CC[C@H](c2cc(C(N)=O)ccn2)CC1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nc(N)ncc2Cl)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9731007814407349] +Nc1ncc(Cl)c(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2Cl)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', None]; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', None]; [0.999868631362915, 0.999585747718811, 0.999374270439148, 0.9964944124221802, 0] +Nc1ncc(Cl)c(-c2cccc(O)c2)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9996728897094727, 0.9966114163398743, 0.9901783466339111] +Nc1ncc(Cl)c(-c2ccc(N3CCOCC3)cc2)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(N2CCOCC2)cc1']; [0.999997615814209, 0.9999877214431763, 0.9999854564666748, 0.9999775886535645] +Nc1ncc(Cl)c(-c2nc3ccccc3[nH]2)n1; ['Nc1ccccc1N', 'Cc1nc(N)ncc1Cl']; ['Nc1ncc(Cl)c(C(=O)O)n1', 'Nc1ccccc1N']; [0.9997144937515259, 0.9969873428344727] +Nc1ncc(Cl)c(Nc2ncccn2)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncccn1']; [0.9666639566421509] +Nc1ncc(Cl)c(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cnc3cccnn23)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999536275863647, 0.9989016652107239, 0.9972982406616211, 0.9872332811355591] +Nc1ncc(Cl)c(-c2cccc(NC(=O)C3CC3)c2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nccc3ccccc23)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(C(=O)Nc3ccccc3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999927282333374, 0.9999778270721436, 0.9998268485069275] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc(N)ncc3Cl)cc2)CC1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nc(N)ncc3Cl)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc(N)ncc2Cl)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; [0.9999938011169434, 0.99997478723526, 0.9999278783798218, 0.9998571872711182, 0.9997800588607788, 0.9940299987792969, 0.98691725730896] +Nc1ncc(Cl)c(-c2ccc(OCCO)cc2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(C(=O)N3CCOCC3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999994039535522, 0.9999971389770508, 0.9999971389770508, 0.9999931454658508, 0.9997050762176514] +Nc1ncc(Cl)c(-c2cccc(C3CCNCC3)c2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(C(F)(F)F)cc2)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1', None]; ['OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(C(F)(F)F)cc1', None]; [0.9999902248382568, 0.9999645352363586, 0.9999356865882874, 0.9998700618743896, 0] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998289346694946, 0.9983618259429932] +CN(C)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998877644538879, 0.999626874923706, 0.9991378784179688, 0.9957890510559082] +Nc1ncc(Cl)c(-c2ccc(C(=O)N3CCOCC3)cn2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc3c(c2)CS(=O)(=O)C3)n1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc(N)ncc2Cl)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999874830245972, 0.9993438720703125] +C[C@@H](O)COc1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9979987144470215] +CS(=O)(=O)N1CCC(c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1ncc(Cc2nc(N)ncc2Cl)cn1; [None]; [None]; [0] +CC(C)c1cc(-c2nc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +Nc1ncc(Cl)c([C@H]2CCN(C(=O)c3ccccc3)C2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(Br)cc2)n1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', None]; ['Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', None]; [0.9998754262924194, 0.9994743466377258, 0.9955772161483765, 0.9918347597122192, 0] +CC(=O)N1CCCN(c2cccc(-c3nc(N)ncc3Cl)c2)CC1; [None]; [None]; [0] +Nc1ncc(Cl)c(Cc2ccccc2O)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(N)ncc2Cl)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999821186065674] +CCCOc1ccc(-c2nc(N)ncc2Cl)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999558925628662, 0.9999279975891113, 0.9995519518852234, 0.9896860122680664] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998996257781982, 0.9991616606712341, 0.9923093318939209] +COc1ccc(Cl)cc1-c1nc(N)ncc1Cl; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9994193911552429, 0.9992384910583496, 0.9989829659461975, 0.9949209690093994] +Cc1c(C(=O)[O-])cccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccccc2-n2cccn2)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; ['OB(O)c1ccccc1-n1cccn1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999943971633911, 0.9999850988388062, 0.9997743368148804, 0.9995682239532471] +COc1ccc(Cc2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2c[nH]c3ccccc23)n1; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', None]; ['OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Nc1ncc(Cl)c(Cl)n1', None]; [0.9998612403869629, 0.9998012781143188, 0.9994577169418335, 0] +Nc1ncc(Cl)c(-c2ccc3c(c2)CCO3)n1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Brc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(I)n1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999971985816956, 0.9999943971633911, 0.9999911189079285, 0.9999852776527405, 0.9999719262123108, 0.9999637007713318] +COc1cc(OC)c(-c2nc(N)ncc2Cl)cc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccn3nccc3n2)n1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nc(N)ncc3Cl)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc(N)ncc2Cl)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999723434448242, 0.9997954368591309, 0.9996763467788696, 0.9987912178039551] +COc1cc(-c2nc(N)ncc2Cl)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998137950897217, 0.9981237649917603] +Nc1ncc(Cl)c(-c2scc3c2OCCO3)n1; ['Nc1ncc(Cl)cn1']; ['c1scc2c1OCCO2']; [0.8784089088439941] +Nc1ncc(Cl)c(-c2cccc3c2OCO3)n1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Nc1ncc(Cl)c(I)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cccc2c1OCO2']; [0.9974117279052734, 0.9271283149719238, 0.8976941704750061] +CC(C)(C)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998916387557983, 0.9998356699943542, 0.9995531439781189, 0.9979035258293152] +Nc1ncc(Cl)c(-c2cc(-c3ccccc3)[nH]n2)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.999988317489624, 0.9998531937599182, 0.9991605281829834, 0.9764130711555481] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc(N)ncc2Cl)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999440908432007, 0.9998905658721924, 0.9998648166656494, 0.9988094568252563] +Nc1ncc(Cl)c(-c2cnc3ccccc3c2)n1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999388456344604, 0.9999359250068665, 0.999070405960083, 0.9990040063858032] +Cc1ccc(-c2nc(N)ncc2Cl)c(=O)[nH]1; [None]; [None]; [0] +Nc1ncc(Cl)c(Cc2nc3ccc(F)c(F)c3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(Cc2nc3c(F)c(F)ccc3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(CCCc2ccccc2)n1; ['BrCCc1ccccc1']; ['Cc1nc(N)ncc1Cl']; [0.7580721974372864] +COc1cccc(C(=O)Nc2nc(N)ncc2Cl)c1; ['COc1cccc(C(N)=O)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9453950524330139] +CSc1ccc(-c2nc(N)ncc2Cl)cc1; ['CSc1ccc(B(O)O)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9993038177490234, 0.9992436766624451, 0.9946796894073486, 0.9900038242340088] +Nc1ncc(Cl)c(-c2cc3ccccc3s2)n1; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; ['OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9989206194877625, 0.8657313585281372] +Nc1ncc(Cl)c(-c2csc(N)n2)n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1ncc(Cl)c(Cc2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nc(N)ncc3Cl)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999117255210876] +Nc1ncc(Cl)c(-c2ccn(-c3cccc(Cl)c3)n2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(F)cc2Cl)n1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [0.9999991059303284, 0.9999823570251465, 0.9999008178710938, 0.9991631507873535, 0.9986831545829773] +COc1ccc(-c2nc(N)ncc2Cl)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999847412109375, 0.9998152256011963, 0.9997671842575073, 0.9988260269165039] +Nc1ncc(Cl)c(-c2ccc3c(c2)CCC(=O)N3)n1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.999884843826294] +CCc1ccc(-c2nc(N)ncc2Cl)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9993922710418701, 0.9972866773605347, 0.9957748055458069, 0.9705213904380798] +Nc1ncc(Cl)c([C@H](CO)Cc2ccccc2)n1; [None]; [None]; [0] +CC[C@@H](CO)c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(Cl)cc2Cl)n1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9998128414154053, 0.9996856451034546, 0.9992837905883789, 0.9973586797714233] +Cc1cc(-c2nc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ncc(Br)cn2)n1; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2Cl)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999796748161316] +Cn1cc(-c2nc(N)ncc2Cl)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999786615371704, 0.9998409748077393, 0.9996044039726257] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3nc(N)ncc3Cl)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc(N)ncc3Cl)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.8131150007247925] +Nc1ncc(Cl)c(CCCn2cncn2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cccc3ccc(O)cc23)n1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9996126890182495] +Nc1ncc(Cl)c(-c2ncc3cccn3n2)n1; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2Cl)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999704360961914, 0.9999620914459229, 0.9999570846557617, 0.9996388554573059] +Nc1ncc(Cl)c(-c2cc3ccccn3n2)n1; [None]; [None]; [0] +COc1cc(F)c(-c2nc(N)ncc2Cl)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; [0.9999803304672241, 0.9999085068702698, 0.9984695315361023, 0.9979787468910217] +CNC(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999849796295166, 0.999872088432312] +COc1cc(-c2nc(N)ncc2Cl)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; [0.9978830814361572, 0.9719972610473633, 0.9559264183044434] +Nc1ncc(Cl)c(-c2cnn(CCO)c2)n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OCCn1cc(B(O)O)cn1']; [0.9979608058929443, 0.9792822599411011] +Nc1cc(-c2nc(N)ncc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1csc2c(-c3nc(N)ncc3Cl)ncnc12; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ncc(Cl)cn2)n1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc(N)ncc2Cl)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9995625615119934, 0.9991961121559143, 0.9989356398582458, 0.9986135959625244] +CCNC(=O)c1ccc(-c2nc(N)ncc2Cl)nc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc(N)ncc1Cl)cn2C; ['COc1ccc2c(ccn2C)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9972123503684998] +COc1ccc(OC)c(Cc2nc(N)ncc2Cl)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cccc(C(=O)Nc3cn[nH]c3)c2)n1; [None]; [None]; [0] +COc1ccc2oc(-c3nc(N)ncc3Cl)cc2c1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc3cn[nH]c3c2)n1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['Nc1ncc(Cl)c(I)n1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999833106994629, 0.9999644160270691, 0.9997867941856384, 0.999597430229187] +CCn1cc(-c2nc(N)ncc2Cl)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999545216560364, 0.9975777864456177, 0.9668904542922974] +Nc1ncc(Cl)c(-c2cc3ccccc3o2)n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc(N)ncc1Cl; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999682903289795, 0.9999157190322876] +CNC(=O)c1ccc(OC)c(-c2nc(N)ncc2Cl)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cc(-c3cccnc3)ccn2)n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nc(N)ncc2Cl)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9996448755264282] +Nc1ncc(Cl)c(-c2ccc(OC(F)(F)F)cc2)n1; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [0.9999997615814209, 0.9999995231628418, 0.9999992847442627, 0.9999979734420776] +Nc1ncc(Cl)c(-c2cccc(NC(=O)N3CCCC3)c2)n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ncc3sccc3n2)n1; [None]; [None]; [0] +COc1ccc2nc(-c3nc(N)ncc3Cl)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1']; ['Nc1ncc(Cl)c(C(=O)O)n1', 'Cc1nc(N)ncc1Cl']; [0.9999858140945435, 0.9998691082000732] +Cn1cc(-c2nc(N)ncc2Cl)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998500347137451, 0.9950975179672241] +CN(C)c1ccc(-c2nc(N)ncc2Cl)cn1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999302625656128, 0.9998668432235718, 0.9992052912712097] +Cn1ncc2cc(-c3nc(N)ncc3Cl)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)cn1']; [0.9999996423721313, 0.9999986290931702, 0.9999892115592957, 0.9999862909317017, 0.999955415725708, 0.9755388498306274, 0.9665384888648987] +Cc1cc(-c2nc(N)ncc2Cl)cc(C)c1OCCO; [None]; [None]; [0] +CCc1cccc(-c2nc(N)ncc2Cl)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc(N)ncc3Cl)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999982118606567, 0.9999756813049316] +Nc1ncc(Cl)c(-c2ncn3c2CCCC3)n1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nc(N)ncc3Cl)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nc(N)ncc3Cl)ccc21; [None]; [None]; [0] +Nc1ncc(Cl)c(NC(=O)c2cccc(OC(F)(F)F)c2)n1; ['NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9998319745063782] +Nc1ncc(Cl)c(-c2ccc(CCO)cc2)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['OCCc1ccc(B(O)O)cc1', 'Nc1ncc(Cl)c(Cl)n1', 'OCCc1ccc(B(O)O)cc1']; [0.999484658241272, 0.9993973970413208, 0.995215892791748] +Nc1ncc(Cl)c(-c2cccc(N3CCCC3=O)c2)n1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.999997615814209, 0.9999549388885498] +CC(=O)N1CCC(n2cc(-c3nc(N)ncc3Cl)cn2)CC1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc(N)ncc1Cl; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9985781908035278] +COc1cc(N2CCNCC2)ccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2Cl)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999626874923706] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2Cl)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc(N)ncc3Cl)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9985142946243286] +CS(=O)(=O)c1ccc(Cl)c(-c2nc(N)ncc2Cl)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9867663383483887] +CCNC(=O)Cc1ccc(-c2nc(N)ncc2Cl)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9840326309204102] +Cn1nc(-c2nc(N)ncc2Cl)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccccc1-c1nc(N)ncc1Cl; ['CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.99906325340271, 0.9981414079666138, 0.9969317317008972, 0.9928220510482788] +CNC(=O)c1ccccc1-c1nc(N)ncc1Cl; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9864977598190308, 0.9523240923881531] +CNC(=O)c1ccc(C)c(-c2nc(N)ncc2Cl)c1; [None]; [None]; [0] +COC(C)(C)CCc1nc(N)ncc1Cl; ['COC(C)(C)CBr']; ['Cc1nc(N)ncc1Cl']; [0.8670580983161926] +Cc1ccc(C(=O)NCCO)cc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(N)ncc2Cl)nc1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1nc(N)ncc1Cl; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2nc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1nc(N)ncc1Cl; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1']; [0.9974890947341919, 0.9953320622444153, 0.990647554397583] +Nc1ncc(Cl)c(-c2cccc(C(F)(F)F)c2)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1', None]; ['OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cccc(C(F)(F)F)c1', None]; [0.9999701976776123, 0.9999158382415771, 0.9998379945755005, 0.9995044469833374, 0] +Nc1ncc(Cl)c(-c2ccccc2OC(F)(F)F)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1', 'FC(F)(F)Oc1ccccc1Br']; ['OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999673366546631, 0.9999574422836304, 0.9990622997283936, 0.995936393737793] +CP(C)(=O)c1ccccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccccc2C(=O)[O-])n1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1nc(N)ncc1Cl; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9974344968795776, 0.9372936487197876, 0.8241266012191772, 0.7560948133468628] +Nc1ncc(Cl)c(-c2ccnc3ccccc23)n1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Brc1ccnc2ccccc12', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccnc2ccccc12', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9998875856399536, 0.997491717338562, 0.9931871294975281, 0.966887354850769, 0.9401721954345703, 0.9337400794029236] +Nc1ncc(Cl)c(-c2cnn(Cc3ccccc3)c2)n1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999942779541016, 0.9999161958694458, 0.9998668432235718, 0.9972943663597107] +Nc1ncc(Cl)c(Cc2cc(F)cc(F)c2)n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3nc(N)ncc3Cl)cc2c1=O; [None]; [None]; [0] +CC(C)C(=O)COc1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cc(Cl)ccc2Cl)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1cc(Cl)ccc1Cl', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9982777237892151, 0.9982665777206421, 0.9930387139320374, 0.9472625255584717] +Nc1ncc(Cl)c(-c2cccc(NC(=O)c3ccccc3)c2)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Nc1ncc(Cl)c(Cl)n1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999394416809082, 0.9999285340309143, 0.9998898506164551] +Cc1ccc(-c2nc(N)ncc2Cl)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9928978681564331, 0.9298589825630188, 0.8968350887298584] +Cc1nc2ccccn2c1-c1nc(N)ncc1Cl; [None]; [None]; [0] +CNc1nc(C)c(-c2nc(N)ncc2Cl)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc(N)ncc2Cl)cs1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-n2ncc3cccc(F)c3c2=O)n1; [None]; [None]; [0] +COc1cnc(-c2nc(N)ncc2Cl)nc1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cnc3ccccn23)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2c(Cl)cccc2Cl)n1; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9967069625854492, 0.9947787523269653, 0.9775223731994629] +Cc1nc(N)sc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cccc(Br)c2)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', None]; ['OB(O)c1cccc(Br)c1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', None]; [0.9999245405197144, 0.9997583031654358, 0.999433696269989, 0.9990060329437256, 0] +Cc1ccc(Cl)c(-c2nc(N)ncc2Cl)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9987829923629761, 0.9966520667076111, 0.9687798023223877, 0.9639122486114502] +Nc1ncc(Cl)c(-c2cnn3ncccc23)n1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9997381567955017] +Nc1ncc(Cl)c(-c2ccc3ccccc3c2)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1', 'Brc1ccc2ccccc2c1', None]; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc2ccccc2c1', 'Nc1ncc(Cl)c(Cl)n1', None]; [0.9999688863754272, 0.9998875856399536, 0.9998521208763123, 0.9996891021728516, 0.9950243234634399, 0] +Nc1ncc(Cl)c(Nc2cccnc2)n1; ['Nc1cccnc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.8407965898513794] +Nc1ncc(Cl)c(NCc2cccnc2)n1; ['NCc1cccnc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999419450759888] +Nc1ncc(Cl)c(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-n2cnc3ccccc32)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['c1ccc2[nH]cnc2c1']; [0.9936534762382507] +Nc1ncc(Cl)c(NCCc2c[nH]cn2)n1; ['NCCc1c[nH]cn1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9963518381118774] +Nc1ncc(Cl)c(NC(=O)c2cccs2)n1; ['NC(=O)c1cccs1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9363989233970642] +Nc1ncc(Cl)c(NCCc2ccccc2)n1; ['NCCc1ccccc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9980231523513794] +Nc1ncc(Cl)c(-c2c[nH]nc2C(F)(F)F)n1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9976499676704407, 0.9797561168670654] +NC(=O)c1c(F)cccc1-c1nc(N)ncc1Cl; ['NC(=O)c1c(F)cccc1Br']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9994034767150879] +Nc1ncc(Cl)c(-c2cncc3ccccc23)n1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Brc1cncc2ccccc12']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999679327011108, 0.9989087581634521, 0.9976592063903809, 0.9899740219116211, 0.9686706066131592, 0.8756672739982605] +Cn1cc(-c2ccc(-c3nc(N)ncc3Cl)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.999995768070221] +Nc1nccc(-c2nc(N)ncc2Cl)n1; [None]; [None]; [0] +Cc1c(-c2nc(N)ncc2Cl)sc(=O)n1C; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cccc(CO)c2)n1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1']; [0.9979820251464844, 0.9933139085769653, 0.9472105503082275] +Nc1ncc(Cl)c(-c2cccc(CC(=O)[O-])c2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(NCc2ccc(Cl)cc2)n1; ['NCc1ccc(Cl)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999942779541016] +Nc1ncc(Cl)c(-c2ccc(-c3cn[nH]c3)cc2)n1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999838471412659, 0.9999061822891235] +Nc1ncc(Cl)c(Nc2ccncc2)n1; ['Nc1ccncc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9976522922515869] +Nc1ncc(Cl)c(NCc2ccccc2F)n1; ['NCc1ccccc1F']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9999983906745911] +Nc1ncc(Cl)c(-c2ccc3c(N)[nH]nc3c2)n1; [None]; [None]; [0] +CN1c2ccc(-c3nc(N)ncc3Cl)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2nc(N)ncc2Cl)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2csc3ncncc23)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(CCc2c[nH]nn2)n1; [None]; [None]; [0] +CC(C)n1cc(-c2nc(N)ncc2Cl)nn1; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2Cl)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)c1oncc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cncnc2N)n1; [None]; [None]; [0] +CSc1nc(-c2nc(N)ncc2Cl)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2nc(N)ncc2Cl)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.999809741973877, 0.9997345209121704, 0.9975228309631348] +CCC(=O)Nc1ccc(-c2nc(N)ncc2Cl)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9998870491981506] +Nc1ncc(Cl)c(Oc2ccccn2)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['Oc1ccccn1']; [0.9631574749946594] +Nc1ncc(Cl)c(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(F)cc2C(F)(F)F)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999840259552002, 0.9997036457061768, 0.9994716644287109] +CS(=O)(=O)C1CCN(c2nc(N)ncc2Cl)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9991494417190552] +Nc1ncc(Cl)c(NC(=O)c2c(Cl)cccc2Cl)n1; ['NC(=O)c1c(Cl)cccc1Cl']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9993632435798645] +CCNc1nc2ccc(-c3nc(N)ncc3Cl)cc2s1; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2Cl)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.99997878074646, 0.9999593496322632, 0.9998964071273804, 0.9983221292495728, 0.993269681930542] +CC(C)(COc1nc(N)ncc1Cl)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2nc(N)ncc2Cl)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999725818634033, 0.9993230700492859] +Nc1ncc(Cl)c(-c2cnn3ccccc23)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1cnn2ccccc12', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cnn2ccccc12']; [0.9999740719795227, 0.9998369216918945, 0.9946834444999695] +CC(C)(O)CC(=O)NCCc1nc(N)ncc1Cl; [None]; [None]; [0] +NC(=O)CCCc1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cc[nH]c(=O)c2)n1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9997559785842896] +Nc1ncc(Cl)c(-c2cccc3c2C(=O)CC3)n1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccc(C[NH3+])c(C(F)(F)F)c2)n1; [None]; [None]; [0] +CCN(CC)c1nc(N)ncc1Cl; ['CCNCC']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9959935545921326] +CCNS(=O)(=O)c1ccccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +C[C@@H](Oc1nc(N)ncc1Cl)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9867515563964844] +COc1cc(CCc2nc(N)ncc2Cl)cc(OC)c1; ['COc1cc(CCl)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(CO)cc(OC)c1']; ['Cc1nc(N)ncc1Cl', 'Cc1nc(N)ncc1Cl', 'Nc1ncc(Cl)c(Cl)n1', 'Cc1nc(N)ncc1Cl']; [0.9737632870674133, 0.9299118518829346, 0.9161303043365479, 0.8601312637329102] +COc1ccncc1Nc1nc(N)ncc1Cl; ['COc1ccncc1N']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9990062117576599] +Nc1ncc(Cl)c(Nc2cnccc2-c2ccccc2)n1; ['Nc1cnccc1-c1ccccc1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9971588253974915] +COc1cccc(F)c1-c1nc(N)ncc1Cl; ['COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999525547027588, 0.9999215602874756, 0.999858021736145, 0.9995212554931641, 0.9990302920341492] +Nc1ncc(Cl)c(Nc2cnc3ccccc3c2)n1; ['Nc1cnc2ccccc2c1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9613059759140015] +CC(C)Oc1cncc(-c2nc(N)ncc2Cl)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999150037765503, 0.9998834729194641, 0.9997327923774719] +C[S@](=O)c1ccc(-c2nc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cc3c(=O)[nH]cc(Br)c3s2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cc3c(=O)[nH]ccc3o2)n1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999762773513794, 0.9992799758911133] +Nc1ncc(Cl)c(-c2cnc3[nH]ccc3c2)n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999788999557495, 0.9998984336853027, 0.9991689920425415] +Nc1ncc(Cl)c(-c2c[nH]c3cnccc23)n1; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1']; [0.99993896484375, 0.9998911619186401, 0.9975436925888062] +CS(=O)(=O)c1ccc(-c2nc(N)ncc2Cl)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999901056289673, 0.9997633695602417, 0.9992907047271729, 0.996006429195404] +CNC(=O)c1c(F)cccc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +C[C@H](Nc1nc(N)ncc1Cl)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ncc(Cl)c(-n2ccc(CO)n2)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['OCc1cc[nH]n1']; [0.8585770130157471] +CC1(c2nc(N)ncc2Cl)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1nc(N)ncc1Cl)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1nc(N)ncc1Cl)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9720386266708374, 0.9589078426361084] +C[C@@H](Nc1nc(N)ncc1Cl)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9589078426361084] +Nc1ncc(Cl)c(-n2ncc3ccccc32)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['c1ccc2[nH]ncc2c1']; [0.994080662727356] +Nc1ncc(Cl)c(-n2cnc(CCO)c2)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['OCCc1c[nH]cn1']; [0.9645551443099976] +Nc1ncc(Cl)c(-c2c(F)cccc2Cl)n1; ['Nc1ncc(Cl)c(I)n1', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1ncc(Cl)cn1', 'Fc1cccc(Cl)c1Br', 'Nc1ncc(Cl)c(Cl)n1']; ['OB(O)c1c(F)cccc1Cl', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1c(F)cccc1Cl', 'Nc1ncc(Cl)c(Cl)n1', 'OB(O)c1c(F)cccc1Cl']; [0.9999446272850037, 0.9999176859855652, 0.9999043941497803, 0.9995824098587036, 0.99896240234375] +Nc1ncc(Cl)c(-n2ncc3c(O)cccc32)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['Oc1cccc2[nH]ncc12']; [0.9990491271018982] +Nc1ncc(Cl)c(-c2ccc(-n3cncn3)cc2)n1; [None]; [None]; [0] +Cc1cc(-c2nc(N)ncc2Cl)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2Cl)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999611377716064, 0.9990646243095398, 0.9952749013900757, 0.9915400743484497, 0.9819881916046143, 0.8899732828140259] +Nc1ncc(Cl)c(-c2ccc(C(=O)c3ccccc3)cc2)n1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999683499336243, 0.9998795986175537, 0.9996523857116699, 0.9990777969360352, 0.977552056312561] +CSc1nc(C)c(-c2nc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nncn2C2CC2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nc3ccc(O)cc3[nH]2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ccn(CC[NH3+])n2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(Cc2nnc3ccc(-c4ccccc4)nn23)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(CCC(=O)NCc2ccccn2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(CS(=O)(=O)NCc2ccccn2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nnc(N)s2)n1; [None]; [None]; [0] +CCc1cc(-c2nc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCCCc1cc(-c2nc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2Cl)s1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nc3ccccc3s2)n1; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9965646266937256] +Nc1ncc(Cl)c(-c2cccc3ccsc23)n1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9990721940994263] +Cn1cc(C(N)=O)cc1-c1nc(N)ncc1Cl; [None]; [None]; [0] +Nc1ncc(Cl)c(Oc2ccc(C[NH3+])cc2F)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2cccc3nnsc23)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc(N)ncc2Cl)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc(N)ncc3Cl)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3nc(N)ncc3Cl)nc2NC1=O; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2c[nH]c3cccnc23)n1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ncc(Cl)c(Cl)n1']; [0.999586284160614] +COc1ccc(C#N)cc1-c1nc(N)ncc1Cl; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9998131990432739, 0.9997285604476929, 0.999519944190979, 0.9988415241241455] +Nc1cncc(-c2nc(N)ncc2Cl)n1; [None]; [None]; [0] +COc1ccc(Oc2nc(N)ncc2Cl)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9911103844642639] +CC(=O)Nc1ncc(-c2nc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc(N)ncc2Cl)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(Cl)n1']; [0.999854564666748, 0.9998489618301392, 0.9987885355949402, 0.994720995426178] +Nc1ncc(Cl)c(-c2cn(CCO)cn2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2nc(N)c3ccccc3n2)n1; [None]; [None]; [0] +Nc1ncc(Cl)c(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc(N)ncc2Cl)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1ncc(Cl)c(Cl)n1', 'Nc1ncc(Cl)c(I)n1', 'Nc1ncc(Cl)cn1', 'Nc1ncc(Cl)c(Cl)n1']; [0.9999704360961914, 0.9997769594192505, 0.9989979267120361, 0.9958794116973877] +Nc1ncc(Cl)c(N2CCC(c3nc4ccccc4[nH]3)CC2)n1; ['Nc1ncc(Cl)c(Cl)n1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9993051290512085] +Nc1ncc(Cl)c(N2CC=C(c3c[nH]c4ccccc34)CC2)n1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Nc1ncc(Cl)c(Cl)n1']; [0.9997251033782959] +Nc1ncc(Cl)c(-c2cccc(NC(=O)C3CCNCC3)c2)n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccncc2O)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9990856647491455, 0.9984189867973328] +CCOc1ccc(-c2ccncc2O)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999632835388184, 0.9998810291290283, 0.9997464418411255, 0.9987926483154297, 0.9954173564910889, 0.9946081638336182] +Oc1cnccc1-c1ncc2ccccc2n1; [None]; [None]; [0] +COc1ncccc1-c1ccncc1O; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9983425140380859, 0.9983136057853699, 0.9975689649581909, 0.9144241809844971] +COc1cc(-c2ccncc2O)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cccc(OC)c1OC']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1I']; [0.9998581409454346, 0.9997204542160034, 0.9988653659820557, 0.9985975027084351, 0.9984130859375, 0.8102158308029175] +CS(=O)(=O)c1cccc(-c2ccncc2O)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999887943267822, 0.9998905658721924, 0.9992836713790894, 0.9937233924865723, 0.9650954008102417] +CN(C)c1cc(-c2nc(N)ncc2Cl)cnn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc(N)ncc2Cl)CC1; [None]; [None]; [0] +Oc1cnccc1-c1cnc2cccnn12; [None]; [None]; [0] +COc1ccc(-c2ccncc2O)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', None]; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', None]; [0.9999645948410034, 0.9998328685760498, 0.9998024106025696, 0.9990882873535156, 0.9951742887496948, 0.9908618330955505, 0] +Cc1nc(C(C)(C)O)sc1-c1ccncc1O; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccncc2O)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccncc3O)c2c1; [None]; [None]; [0] +Oc1cnccc1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'O=C(ON1CCOCC1)c1ccccc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1-c1ccccc1']; [0.9999970197677612, 0.9999881982803345, 0.9999575614929199, 0.9999364018440247, 0.9996382594108582, 0.9995110630989075, 0.9987812042236328, 0.9486570954322815] +Oc1cccc(-c2ccncc2O)c1; [None]; [None]; [0] +Oc1cnccc1-c1nc2ccccc2[nH]1; ['Nc1ccccc1N', 'Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'Oc1cnccc1I']; ['O=C(O)c1ccncc1O', 'O=Cc1ccncc1O', 'O=Cc1ccncc1O', 'c1ccc2[nH]cnc2c1']; [0.9980032444000244, 0.9920158386230469, 0.9213706254959106, 0.8262346982955933] +O=C([O-])c1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +Oc1cnccc1Nc1ncccn1; ['Clc1ncccn1', 'Nc1ncccn1', 'Brc1ncccn1', 'CSc1ncccn1']; ['Nc1ccncc1O', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'Nc1ccncc1O']; [0.9941554069519043, 0.9879923462867737, 0.9878080487251282, 0.8953973054885864] +Oc1cnccc1-c1nccc2ccccc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccncc2O)c1)C1CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl']; [0.9999547004699707, 0.9996899366378784, 0.9991720914840698, 0.9965540170669556, 0.9925058484077454, 0.9590251445770264, 0.9556711912155151, 0.9524399638175964] +CC(=O)NCc1ccc(-c2ccncc2O)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999386072158813, 0.9990364909172058, 0.9987565279006958, 0.9948253631591797, 0.9834672212600708] +OCCOc1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9999649524688721, 0.9992467761039734, 0.9914207458496094] +O=C(Nc1ccccc1)c1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999863505363464, 0.9997725486755371, 0.9996497631072998, 0.9984478950500488, 0.983135461807251, 0.9747123718261719] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccncc3O)cc2)CC1; [None]; [None]; [0] +O=C(c1ccc(-c2ccncc2O)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999997019767761, 0.9999961853027344, 0.999990701675415, 0.9999816417694092, 0.9998403191566467, 0.9996196627616882, 0.970474898815155] +N#Cc1cccc(Cn2cc(-c3ccncc3O)cn2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccncc2O)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999545812606812, 0.9991589188575745, 0.9988046288490295, 0.9981334209442139, 0.9755825400352478, 0.9504194259643555] +Oc1cnccc1-c1ccc(C(F)(F)F)cc1; ['OB(O)c1ccc(C(F)(F)F)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9998729228973389, 0.999823808670044, 0.9985926151275635, 0.9978015422821045, 0.9950532913208008] +O=C(c1ccc(-c2ccncc2O)nc1)N1CCOCC1; [None]; [None]; [0] +Oc1cnccc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccncc2O)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999644756317139, 0.9998171329498291, 0.9993921518325806, 0.9991457462310791, 0.9973191022872925, 0.9958391189575195] +O=S1(=O)Cc2ccc(-c3ccncc3O)cc2C1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccncc2O)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999839663505554, 0.999935507774353, 0.9997738599777222, 0.999404788017273, 0.9983634948730469, 0.9918591976165771] +C[C@H](O)COc1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccncc2O)s1; ['Cc1csc(C)n1']; ['Oc1cnccc1Br']; [0.9959263801574707] +C[C@@H](O)COc1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccncc2O)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCN']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1-c1ccccc1']; [0.9985277056694031, 0.9718348383903503, 0.9706403613090515, 0.9022787809371948] +Oc1ccccc1Cc1ccncc1O; [None]; [None]; [0] +CC(C)c1cc(-c2ccncc2O)nc(N)n1; [None]; [None]; [0] +Nc1ncc(Cc2ccncc2O)cn1; [None]; [None]; [0] +CCCOc1ccc(-c2ccncc2O)nc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccncc2O)CC1; [None]; [None]; [0] +Oc1cnccc1-c1ccc(Br)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999870657920837, 0.999595582485199, 0.9993765354156494, 0.9987746477127075, 0.9428361654281616, 0.8257051706314087] +O=C(c1ccccc1)N1CC[C@H](c2ccncc2O)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccncc3O)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccncc2O)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999889135360718, 0.9999217391014099, 0.9997638463973999, 0.8570802211761475] +COc1ccc(Cc2ccncc2O)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccncc2O)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999961853027344, 0.9999678134918213, 0.999940037727356, 0.999653697013855, 0.9924924373626709, 0.9736921191215515, 0.9453969597816467] +Cc1c(C(=O)[O-])cccc1-c1ccncc1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccncc2O)c(C)c1; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9993571043014526, 0.9989235401153564, 0.997721791267395, 0.9961815476417542, 0.995583176612854] +Oc1cnccc1-c1ccccc1-n1cccn1; ['OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Oc1cnccc1Br', 'Brc1ccccc1-n1cccn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'c1ccc(-n2cccn2)cc1', 'Oc1cccnc1']; [0.9997580051422119, 0.9987872838973999, 0.9388265609741211, 0.7666041254997253] +Oc1cnccc1-c1ccn2nccc2n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccncc1O; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9996253252029419, 0.9995829463005066, 0.9976692199707031, 0.9970427751541138, 0.9968761205673218, 0.9923661351203918] +Oc1cnccc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Oc1cnccc1I', 'OB(O)c1c[nH]c2ccccc12']; ['Oc1cnccc1Br', 'c1ccc2[nH]ccc2c1', 'Oc1cnccc1Br']; [0.9930229187011719, 0.8723127841949463, 0.8609492778778076] +Oc1cnccc1-c1ccc2c(c1)CCO2; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2']; ['Oc1cnccc1Br', 'Oc1cnccc1Br']; [0.9999716281890869, 0.999275803565979] +CC(C)c1ccc2nc(-c3ccncc3O)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1ccncc1O']; [0.9997262954711914] +COc1cc(OC)c(-c2ccncc2O)cc1Cl; ['COc1ccc(Cl)c(OC)c1']; ['Oc1cnccc1I']; [0.7967839241027832] +CC(=O)Nc1cccc(-c2ccncc2O)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cccnc1']; [0.9999611377716064, 0.9998346567153931, 0.9994779825210571, 0.998661994934082, 0.9919151067733765, 0.9716634154319763, 0.931662917137146] +COc1cc(-c2ccncc2O)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.999950647354126, 0.9998270273208618, 0.9996258020401001, 0.9975727200508118, 0.9948493838310242, 0.9884580373764038, 0.7513108253479004] +Oc1cnccc1-c1cccc2c1OCO2; ['OB(O)c1cccc2c1OCO2']; ['Oc1cnccc1Br']; [0.9898157119750977] +CC(C)(C)c1ccc(-c2ccncc2O)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999856948852539, 0.9999327063560486, 0.9997435212135315, 0.999709963798523, 0.9969066381454468, 0.9962031841278076] +Oc1cnccc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +Oc1cnccc1-c1scc2c1OCCO2; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1Cc1nc2ccc(F)c(F)c2[nH]1; [None]; [None]; [0] +Oc1cnccc1-c1cnc2ccccc2c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9998360872268677, 0.9997922778129578, 0.9993423223495483, 0.9965153932571411, 0.9909005165100098, 0.9690301418304443] +CN(C)C(=O)c1ccc(-c2ccncc2O)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999924898147583, 0.9998723268508911, 0.9997887015342712, 0.999783992767334, 0.9983085989952087, 0.9959496259689331] +Oc1cnccc1Cc1nc2c(F)c(F)ccc2[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccncc2O)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999836087226868, 0.9998770952224731, 0.9998352527618408, 0.9995253086090088, 0.9989323616027832, 0.9961386919021606, 0.9603768587112427] +Nc1nc(-c2ccncc2O)cs1; ['CC(=O)c1ccncc1O', None]; ['NC(N)=S', None]; [0.9971427321434021, 0] +COc1cccc(C(=O)Nc2ccncc2O)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1']; ['Nc1ccncc1O', 'Nc1ccncc1O']; [0.9996275901794434, 0.9979912042617798] +Oc1cnccc1Cc1nc2ccccc2[nH]1; [None]; [None]; [0] +Oc1cnccc1CCCc1ccccc1; ['Br[Mg]CCCc1ccccc1', 'Br[Mg]CCCc1ccccc1']; ['Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9551131725311279, 0.809686005115509] +CSc1ccc(-c2ccncc2O)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.999983549118042, 0.9997972846031189, 0.9997273087501526, 0.9984997510910034, 0.9857160449028015, 0.979449987411499] +Cc1ccc(-c2ccncc2O)c(=O)[nH]1; [None]; [None]; [0] +Oc1cnccc1-c1cc2ccccc2s1; ['CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1']; ['Oc1cnccc1I']; [0.9999033212661743] +Oc1cnccc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccncc3O)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9986836314201355, 0.9481698870658875, 0.9353008270263672] +Oc1cnccc1-c1ccc(F)cc1Cl; ['OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9998008012771606, 0.9978254437446594, 0.9890743494033813] +Cc1cc(-c2ccncc2O)nc(N)n1; ['Cc1cc(Br)nc(N)n1']; ['Oc1cnccc1Br']; [0.9242491722106934] +CC(=O)N[C@@H]1CC[C@@H](c2ccncc2O)CC1; [None]; [None]; [0] +Oc1cnccc1-c1ncc(Br)cn1; [None]; [None]; [0] +O=C1CCc2cc(-c3ccncc3O)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1I']; [0.9996455907821655, 0.9981626868247986, 0.966920018196106, 0.8920468091964722, 0.888769268989563] +CCc1ccc(-c2ccncc2O)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999710321426392, 0.9998080134391785, 0.9995214939117432, 0.9972983002662659, 0.9783109426498413, 0.9638053178787231] +COc1ccc(-c2ccncc2O)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccccc1OC']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I']; [0.999770998954773, 0.9996439814567566, 0.9980816841125488, 0.9969933032989502, 0.9936437010765076, 0.8108067512512207] +CC[C@@H](CO)c1ccncc1O; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1-c1ccc(Cl)cc1Cl; ['OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9995976686477661, 0.9979417324066162, 0.988495945930481] +Cn1cc(-c2ccncc2O)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9999352097511292, 0.999662458896637, 0.9995784163475037] +Oc1cnccc1-c1ncc2cccn2n1; [None]; [None]; [0] +Oc1cnccc1-c1cc2ccccn2n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +COc1cc(-c2ccncc2O)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999690055847168, 0.9990338087081909, 0.9981021881103516] +Oc1cnccc1CCCn1cncn1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccncc3O)ccc2O1; [None]; [None]; [0] +COc1cc(-c2ccncc2O)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999778866767883, 0.9999546408653259, 0.9997845888137817, 0.9976617693901062, 0.9969402551651001] +Oc1cnccc1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(-c3ccncc3O)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccncc2O)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999558329582214, 0.9996759295463562, 0.9991811513900757, 0.9990361928939819, 0.9912303686141968, 0.9880162477493286] +COc1cc(F)c(-c2ccncc2O)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br']; [0.9997347593307495, 0.999485194683075, 0.999421238899231, 0.9953806400299072] +OCCn1cc(-c2ccncc2O)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9996458888053894, 0.9985361099243164, 0.9962257742881775, 0.8801012635231018, 0.7579054832458496] +Oc1ccc2cccc(-c3ccncc3O)c2c1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Oc1cnccc1Br']; [0.9995427131652832] +COc1ccc2cccc(-c3ccncc3O)c2c1; [None]; [None]; [0] +COc1cc(-c2ccncc2O)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Oc1cnccc1I', 'Oc1cnccc1Cl']; [0.9991915822029114, 0.9922555685043335] +Nc1cc(-c2ccncc2O)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccncc2O)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccncc2O)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999353885650635, 0.9998339414596558, 0.9997795820236206, 0.999099612236023, 0.998023509979248, 0.9962455034255981] +COc1ccc(OC)c(Cc2ccncc2O)c1; ['COc1ccc(OC)c(CCl)c1', 'COc1ccc(OC)cc1']; ['Oc1cnccc1Br', 'OCc1ccncc1O']; [0.8838517665863037, 0.7647578716278076] +COc1cc(CS(C)(=O)=O)ccc1-c1ccncc1O; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccncc2O)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccncc2O)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccncc2O)CC1; [None]; [None]; [0] +Oc1cnccc1-c1ccc2cn[nH]c2c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl']; [0.999809741973877, 0.9995542764663696, 0.9991424083709717, 0.9967833161354065, 0.9755449295043945, 0.9716694951057434] +CCn1cc(-c2ccncc2O)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9991046786308289, 0.9982951283454895, 0.987110435962677, 0.8759859800338745] +COc1ccc2oc(-c3ccncc3O)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccncc2O)c1; [None]; [None]; [0] +Oc1cnccc1-c1cc2ccccc2o1; ['OB(O)c1cc2ccccc2o1']; ['Oc1cnccc1Br']; [0.9990417957305908] +C[NH+](C)Cc1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccncc1O; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Oc1cnccc1Br']; [0.9990437626838684] +COc1ccc2c(c1)c(-c1ccncc1O)cn2C; [None]; [None]; [0] +Oc1cnccc1-c1ncc2sccc2n1; [None]; [None]; [0] +Oc1cnccc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccncc2O)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['Nc1ccncc1O']; [0.999955415725708] +O=C(Nc1cccc(-c2ccncc2O)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3ccncc3O)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1']; ['O=C(O)c1ccncc1O', 'O=Cc1ccncc1O']; [0.9968038201332092, 0.9824845790863037] +Cn1cc(Br)cc1-c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1-c1ccc(OC(F)(F)F)cc1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccc(I)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cccnc1', 'Oc1cnccc1Br', 'Oc1cccnc1']; [0.9999995231628418, 0.9999970197677612, 0.999991774559021, 0.9999875426292419, 0.9999479055404663, 0.9999226331710815, 0.9870668649673462, 0.971063494682312, 0.9686481952667236, 0.8961291909217834, 0.8580055832862854] +CCc1cccc(-c2ccncc2O)n1; [None]; [None]; [0] +Cn1cc(-c2ccncc2O)c2ccccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccncc2O)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc([Zn]Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(Br)cn1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999488592147827, 0.9997233748435974, 0.9995672106742859, 0.9993996620178223, 0.9992870092391968, 0.9977748394012451, 0.9972926378250122, 0.883602499961853] +Cn1ncc2cc(-c3ccncc3O)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl']; [0.9999778866767883, 0.9999566078186035, 0.9998332262039185, 0.9993929862976074, 0.997687578201294, 0.9958326816558838] +Cc1cc(-c2ccncc2O)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccncc3O)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccncc3O)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9999762773513794, 0.9999585151672363, 0.9999265670776367, 0.9996103048324585, 0.9983575940132141, 0.994135856628418, 0.9936636686325073, 0.9159740805625916] +O=C(Nc1ccncc1O)c1cccc(OC(F)(F)F)c1; ['Nc1ccncc1O', 'Nc1ccncc1O', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1ccncc1O']; [0.9999133348464966, 0.9974061250686646, 0.9546616077423096] +Oc1cnccc1-c1ncn2c1CCCC2; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2ccncc2O)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Oc1cnccc1Cl']; [0.9990625977516174] +CC(=O)N1CCC(n2cc(-c3ccncc3O)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999528527259827, 0.9999426603317261, 0.9993280172348022] +CC(C)(O)c1ccc2cc(-c3ccncc3O)[nH]c2c1; [None]; [None]; [0] +OCCc1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999498128890991, 0.9997102618217468, 0.9982906579971313, 0.995343029499054, 0.9891316890716553, 0.9367653131484985] +CNC(=O)c1ccc(-c2ccncc2O)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9968676567077637, 0.9960492849349976] +CN(C)C(=O)c1ccc(-c2ccncc2O)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccncc1O; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccncc1O; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccncc3O)cc2)n1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccncc2O)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9963128566741943, 0.9551711082458496, 0.9512747526168823] +COc1cc(S(C)(=O)=O)ccc1-c1ccncc1O; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccncc1O; [None]; [None]; [0] +Cn1nc(-c2ccncc2O)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccncc2O)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['Oc1cnccc1Br']; [0.8147739768028259] +C[C@H](CS(C)(=O)=O)c1ccncc1O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccncc2O)c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccncc1O; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.999731183052063, 0.999687910079956, 0.9995535612106323, 0.9987426996231079] +CNC(=O)c1ccccc1-c1ccncc1O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccncc1O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccncc2O)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccncc1O; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9977943301200867, 0.9929265379905701, 0.990925133228302] +Cc1nnc(-c2ccccc2-c2ccncc2O)[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1ccncc1O; [None]; [None]; [0] +Oc1cnccc1-c1cccc(C(F)(F)F)c1; ['OB(O)c1cccc(C(F)(F)F)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999092817306519, 0.9998999834060669, 0.9981749057769775, 0.997939944267273, 0.9854174852371216] +Oc1cnccc1-c1ccnc2ccccc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Brc1ccnc2ccccc12']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9994016885757446, 0.9967736005783081, 0.9720421433448792, 0.9668679237365723, 0.9184080362319946] +Oc1cnccc1-c1ccccc1OC(F)(F)F; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cccnc1', 'Oc1cnccc1Cl']; [0.9999700784683228, 0.999940037727356, 0.9999147653579712, 0.9998274445533752, 0.999708890914917, 0.9996548295021057, 0.9727346897125244, 0.960134744644165, 0.9573161602020264] +Oc1cnccc1-c1cnn(Cc2ccccc2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'OB(O)c1cnn(Cc2ccccc2)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.999730110168457, 0.9996397495269775, 0.9978040456771851, 0.9806771874427795] +NC(=O)c1ccccc1-c1ccncc1O; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9988635778427124, 0.9983490705490112, 0.9634536504745483, 0.8924632668495178] +Cn1cnc2ccc(-c3ccncc3O)cc2c1=O; [None]; [None]; [0] +Oc1cnccc1-c1cnc(-c2ccccc2)[nH]1; ['Oc1cnccc1I', 'Oc1cnccc1Br']; ['c1ccc(-c2ncc[nH]2)cc1', 'c1ccc(-c2ncc[nH]2)cc1']; [0.9153670072555542, 0.7574938535690308] +O=C(Nc1cccc(-c2ccncc2O)c1)c1ccccc1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Br']; [0.9999032020568848, 0.9996017813682556, 0.9995390176773071, 0.9936320781707764] +CC(C)(C)c1nc(-c2ccncc2O)cs1; [None]; [None]; [0] +Oc1cnccc1-c1cc(Cl)ccc1Cl; ['OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br']; [0.999305248260498, 0.9917185306549072] +Cc1ccc(-c2ccncc2O)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Oc1cnccc1I']; [0.9988018870353699] +O=C([O-])c1ccccc1-c1ccncc1O; [None]; [None]; [0] +COc1cnc(-c2ccncc2O)nc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccncc1O; ['Cc1cn2ccccc2n1']; ['Oc1cnccc1I']; [0.9954327940940857] +Oc1cnccc1-c1cnc2ccccn12; ['Oc1cnccc1Br', 'Oc1cnccc1I']; ['c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9836403131484985, 0.9387454986572266] +Cc1nc(N)sc1-c1ccncc1O; [None]; [None]; [0] +CC(C)C(=O)COc1ccncc1O; [None]; [None]; [0] +Oc1cnccc1-c1cccc(Br)c1; ['OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.999422550201416, 0.998283863067627, 0.9975150227546692, 0.9830458164215088, 0.9580463171005249] +Oc1cnccc1-c1c(Cl)cccc1Cl; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9996473789215088, 0.9969886541366577, 0.9892618656158447] +O=c1c2c(F)cccc2cnn1-c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1NCc1cccnc1; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'BrCc1cccnc1', 'ClCc1cccnc1', 'Nc1ccncc1O', 'NCc1cccnc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'Nc1ccncc1O', 'O=Cc1cccnc1', 'Oc1ccncc1O']; [0.9946523904800415, 0.9938420057296753, 0.9876183271408081, 0.979676365852356, 0.9213073253631592, 0.8882838487625122, 0.7792826890945435] +Cc1ccc(Cl)c(-c2ccncc2O)c1; ['Cc1ccc(Cl)c(B(O)O)c1']; ['Oc1cnccc1I']; [0.9981080889701843] +Oc1cnccc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccncc2O)s1; [None]; [None]; [0] +Oc1cnccc1Nc1cccnc1; ['Clc1cccnc1', 'Brc1cccnc1', 'Nc1cccnc1', 'Ic1cccnc1', 'Nc1cccnc1', 'Nc1cccnc1']; ['Nc1ccncc1O', 'Nc1ccncc1O', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9843302369117737, 0.9832257032394409, 0.973358690738678, 0.9617810845375061, 0.9382408857345581, 0.924368143081665] +Oc1cnccc1-n1cnc2ccccc21; ['Oc1cnccc1Br']; ['c1ccc2[nH]cnc2c1']; [0.8203107118606567] +O=C(Nc1ccncc1O)c1cccs1; ['Nc1ccncc1O', 'Nc1ccncc1O', 'NC(=O)c1cccs1', 'CCOC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'Nc1ccncc1O', 'Nc1ccncc1O']; [0.9997975826263428, 0.9989678859710693, 0.9881373643875122, 0.9677079916000366] +Nc1nccc(-c2ccncc2O)n1; [None]; [None]; [0] +Oc1cnccc1-c1cnn2ncccc12; [None]; [None]; [0] +Oc1cnccc1NCCc1c[nH]cn1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9860330820083618, 0.8779348731040955, 0.8520293235778809] +Oc1cnccc1-c1ccc2ccccc2c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'OB(O)c1ccc2ccccc2c1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl']; [0.9998642206192017, 0.9994913339614868, 0.9972325563430786, 0.9956158995628357, 0.984420657157898] +Oc1cnccc1-c1c[nH]nc1C(F)(F)F; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Oc1cnccc1Br']; [0.9998185634613037] +Oc1cnccc1NCCc1ccccc1; ['NCCc1ccccc1', 'ClCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'BrCCc1ccccc1']; ['Oc1cnccc1Cl', 'Nc1ccncc1O', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Nc1ccncc1O']; [0.9810479879379272, 0.9166486263275146, 0.8774664402008057, 0.8592178821563721, 0.8098669052124023] +NC(=O)c1c(F)cccc1-c1ccncc1O; ['NC(=O)c1c(F)cccc1Br']; ['Oc1cnccc1Br']; [0.9580414891242981] +Cc1c(-c2ccncc2O)sc(=O)n1C; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccncc3O)ccc12; [None]; [None]; [0] +Oc1cnccc1-c1cncc2ccccc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.999972403049469, 0.9996501207351685, 0.997949481010437, 0.9919310808181763, 0.9745622873306274] +O=C([O-])Cc1cccc(-c2ccncc2O)c1; [None]; [None]; [0] +Oc1cnccc1NCc1ccc(Cl)cc1; ['Clc1ccc(CBr)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'ClCc1ccc(Cl)cc1', 'Nc1ccncc1O', 'NCc1ccc(Cl)cc1']; ['Nc1ccncc1O', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'O=Cc1ccc(Cl)cc1', 'Oc1ccncc1O']; [0.9939632415771484, 0.9891036748886108, 0.9866684675216675, 0.9777899980545044, 0.959810733795166, 0.8344820737838745, 0.781815767288208] +Cn1cc(-c2ccc(-c3ccncc3O)cc2)cn1; [None]; [None]; [0] +Oc1cnccc1Nc1ccncc1; ['Nc1ccncc1', 'Nc1ccncc1', 'Clc1ccncc1', 'Brc1ccncc1']; ['Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Nc1ccncc1O', 'Nc1ccncc1O']; [0.9877163171768188, 0.9702981114387512, 0.9590324759483337, 0.9348722696304321] +CC(C)n1cc(-c2ccncc2O)nn1; ['CC(C)n1ccnn1']; ['Oc1cnccc1I']; [0.9984046816825867] +OCc1cccc(-c2ccncc2O)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9999763369560242, 0.9997667074203491, 0.9974433183670044, 0.9931911826133728, 0.9793960452079773, 0.9163669347763062] +Oc1cnccc1NCc1ccccc1F; ['NCc1ccccc1F', 'NCc1ccccc1F', 'Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'NCc1ccccc1F', 'NCc1ccccc1F', 'Nc1ccncc1O', 'NCc1ccccc1F']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'Nc1ccncc1O', 'Oc1cnccc1I', 'Oc1ccncc1O', 'O=Cc1ccccc1F', 'O=Cc1ccncc1O']; [0.9992948770523071, 0.9991785883903503, 0.9990826845169067, 0.9987696409225464, 0.9976698160171509, 0.9769962430000305, 0.9653161764144897, 0.903749942779541] +CN1c2ccc(-c3ccncc3O)cc2CS1(=O)=O; [None]; [None]; [0] +Oc1cnccc1-c1ccc(-c2cn[nH]c2)cc1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999929666519165, 0.999984622001648, 0.9998451471328735, 0.9997930526733398, 0.9994397163391113, 0.9952468276023865, 0.9090127944946289] +CSc1nc(-c2ccncc2O)c[nH]1; ['CSc1ncc[nH]1']; ['Oc1cnccc1I']; [0.8722763657569885] +Oc1cnccc1-c1csc2ncncc12; [None]; [None]; [0] +COc1cc(-c2ccncc2O)ccc1C(=O)[O-]; [None]; [None]; [0] +Oc1cnccc1-c1cc2ccccc2[nH]1; ['CC(=O)c1ccncc1O', 'OB(O)c1cc2ccccc2[nH]1', 'Clc1cc2ccccc2[nH]1']; ['NNc1ccccc1', 'Oc1cnccc1Br', 'Oc1cccnc1']; [0.9928830862045288, 0.9131077527999878, 0.8320339918136597] +CCCn1cnc(-c2ccncc2O)n1; [None]; [None]; [0] +Nc1ncncc1-c1ccncc1O; [None]; [None]; [0] +N#CCCc1cccc(-c2ccncc2O)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9994871020317078, 0.9955137968063354, 0.9933616518974304] +CCC(=O)Nc1ccc(-c2ccncc2O)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.999944806098938, 0.99924635887146, 0.9981197118759155] +CC(C)c1oncc1-c1ccncc1O; [None]; [None]; [0] +Oc1cnccc1Oc1ccccn1; ['Clc1ccccn1', 'Brc1ccccn1']; ['Oc1ccncc1O', 'Oc1ccncc1O']; [0.9493129253387451, 0.8704066276550293] +O=C(Nc1ccncc1O)c1c(Cl)cccc1Cl; ['Nc1ccncc1O', 'Nc1ccncc1O', 'NC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'Oc1cnccc1Cl']; [0.9999297261238098, 0.9995764493942261, 0.9819420576095581] +CS(=O)(=O)C1CCN(c2ccncc2O)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl']; [0.9965916872024536, 0.9944013357162476, 0.9938310384750366] +Oc1cnccc1-c1ccc(F)cc1C(F)(F)F; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9998584389686584, 0.9989790320396423, 0.9983632564544678] +Oc1cnccc1CCc1c[nH]nn1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccncc1O; [None]; [None]; [0] +Oc1cnccc1-c1cnn2ccccc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C']; ['Oc1cnccc1Br']; [0.9999474287033081] +COc1ccc(-c2ccncc2O)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br']; [0.9999916553497314, 0.9999593496322632, 0.9999039173126221, 0.999793291091919, 0.9994233846664429, 0.9958469271659851, 0.9101473689079285, 0.8734208345413208] +CCCn1cc(-c2ccncc2O)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9998904466629028, 0.999880313873291, 0.9974222779273987, 0.9691980481147766] +NC(=O)CCCc1ccncc1O; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccncc3O)cc2s1; [None]; [None]; [0] +O=c1cc(-c2ccncc2O)cc[nH]1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Oc1cnccc1Br']; [0.9977895021438599] +O=C1CCc2cccc(-c3ccncc3O)c21; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccncc2O)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(COc1ccncc1O)S(C)(=O)=O; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccncc2O)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1Br']; [0.9924499988555908] +C[C@@H](Oc1ccncc1O)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Oc1cnccc1Cl']; [0.8480965495109558] +CC(C)(N)c1ccc(-c2ccncc2O)cc1; [None]; [None]; [0] +CCN(CC)c1ccncc1O; ['CCNCC', 'CCNCC']; ['Oc1cnccc1I', 'Oc1cnccc1Cl']; [0.8913344144821167, 0.8365141153335571] +COc1cc(CCc2ccncc2O)cc(OC)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccncc1O; [None]; [None]; [0] +COc1ccncc1Nc1ccncc1O; ['COc1ccncc1N', 'COc1ccncc1Cl', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N']; ['Oc1cnccc1Cl', 'Nc1ccncc1O', 'Nc1ccncc1O', 'Oc1cnccc1I', 'Nc1ccncc1O', 'Oc1cnccc1Br']; [0.9972702264785767, 0.9907150268554688, 0.9866767525672913, 0.9710184335708618, 0.9661426544189453, 0.8536593914031982] +Oc1cnccc1Nc1cnccc1-c1ccccc1; ['Brc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['Nc1ccncc1O', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br']; [0.9976315498352051, 0.9960979223251343, 0.9905545115470886, 0.9850232601165771] +O=c1[nH]ccc2oc(-c3ccncc3O)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccncc2O)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999951124191284, 0.9999476075172424, 0.9999048709869385, 0.9997283220291138, 0.9976366758346558, 0.9938033819198608] +Oc1cnccc1Nc1cnc2ccccc2c1; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Nc1ccncc1O', 'Nc1ccncc1O']; [0.9928207993507385, 0.9924867153167725, 0.9609401226043701, 0.912183403968811] +COc1cccc(F)c1-c1ccncc1O; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1', 'COc1cccc(F)c1', 'COc1cccc(F)c1Br']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cccnc1']; [0.9999862313270569, 0.9999163150787354, 0.9999010562896729, 0.9998073577880859, 0.99965500831604, 0.9985260963439941, 0.9944388270378113, 0.9899960160255432, 0.969149112701416, 0.9162267446517944] +O=c1[nH]cc(Br)c2sc(-c3ccncc3O)cc12; [None]; [None]; [0] +Oc1cnccc1-c1cnc2[nH]ccc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999611377716064, 0.9999330043792725, 0.9998661279678345, 0.9991471767425537, 0.9971117973327637, 0.8573883175849915] +Oc1cnccc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccncc2O)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.9999811053276062, 0.9998940229415894, 0.999793291091919, 0.9992930293083191, 0.9956166744232178, 0.9917280673980713] +CS(=O)(=O)c1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.999944806098938, 0.9993699789047241, 0.9935680627822876, 0.9888132810592651] +CNC(=O)c1c(F)cccc1-c1ccncc1O; [None]; [None]; [0] +CC1(c2ccncc2O)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1ccncc1O)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1ccncc1O)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +OCc1ccn(-c2ccncc2O)n1; ['OCc1cc[nH]n1']; ['Oc1cnccc1Br']; [0.8808897733688354] +C[C@H](Nc1ccncc1O)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1ccncc1O']; [0.9820916056632996, 0.9727799296379089, 0.9547252655029297, 0.8757400512695312] +C[C@@H](Nc1ccncc1O)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O', 'COc1ccncc1O']; ['Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1ccncc1O', 'C[C@@H](N)C(C)(C)O']; [0.9820916056632996, 0.9727799296379089, 0.9547252655029297, 0.8757400512695312, 0.8262991905212402] +Cc1cc(-c2ccncc2O)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCCc1cn(-c2ccncc2O)cn1; [None]; [None]; [0] +Oc1cnccc1-n1ncc2ccccc21; ['Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9242767095565796, 0.8036006689071655, 0.776042103767395] +Oc1cnccc1-c1c(F)cccc1Cl; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1', 'Fc1cccc(Cl)c1']; ['Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cccnc1', 'Oc1cnccc1Cl', 'Oc1cnccc1Br']; [0.999992847442627, 0.9999504089355469, 0.99969482421875, 0.9977898001670837, 0.9949172139167786, 0.977081298828125, 0.9457188844680786, 0.7930262088775635] +Oc1cnccc1-n1ncc2c(O)cccc21; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; ['Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9749197363853455, 0.9613478183746338] +COc1ccc(-c2ccncc2O)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br']; [0.9993718862533569, 0.9990822672843933, 0.9990671873092651, 0.9988604784011841, 0.9965568780899048] +Oc1cnccc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccncc3O)[nH]c2c1; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1ccncc1O', 'O=Cc1ccncc1O', 'O=Cc1ccncc1O']; [0.9999486207962036, 0.9996886253356934, 0.9987537860870361] +O=C(c1ccccc1)c1ccc(-c2ccncc2O)cc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1I', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Br', 'Oc1cccnc1']; [0.9999812841415405, 0.9999231696128845, 0.9996476173400879, 0.9996217489242554, 0.9982263445854187, 0.997881293296814, 0.996070146560669, 0.9901385307312012, 0.8468072414398193, 0.8301527500152588] +CSc1nc(C)c(-c2ccncc2O)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccncc1O; [None]; [None]; [0] +O=C(CCc1ccncc1O)NCc1ccccn1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccncc2O)n1; [None]; [None]; [0] +Oc1cnccc1-c1nncn1C1CC1; [None]; [None]; [0] +Oc1cnccc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +Nc1nnc(-c2ccncc2O)s1; ['NNC(N)=S']; ['O=C(O)c1ccncc1O']; [0.9998040199279785] +O=S(=O)(Cc1ccncc1O)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2ccncc2O)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccncc2O)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccncc2O)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccncc2O)n1; [None]; [None]; [0] +Oc1cnccc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +Oc1cnccc1-c1nc2ccccc2s1; ['Nc1ccccc1S', 'Nc1ccccc1S', 'Oc1cnccc1I', 'Oc1cnccc1Br']; ['O=C(O)c1ccncc1O', 'O=Cc1ccncc1O', 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999556541442871, 0.9998911619186401, 0.9988973140716553, 0.9986653327941895] +Nc1cncc(-c2ccncc2O)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccncc1O; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccncc2O)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccncc2O)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccncc3O)nc2NC1=O; [None]; [None]; [0] +Oc1cnccc1-c1cccc2ccsc12; [None]; [None]; [0] +Oc1cnccc1-c1cccc2nnsc12; [None]; [None]; [0] +Nc1nc(-c2ccncc2O)nc2ccccc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccncc3O)c2)cc1; [None]; [None]; [0] +Oc1cnccc1-c1ncc2cc[nH]c2n1; ['Oc1cnccc1I']; ['c1ncc2cc[nH]c2n1']; [0.9478034973144531] +Oc1cnccc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccncc2O)[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2ccncc2O)c1; [None]; [None]; [0] +COc1ccc(Oc2ccncc2O)c(F)c1F; ['COc1ccc(F)c(F)c1F']; ['Oc1ccncc1O']; [0.9770632982254028] +COc1ccc(C#N)cc1-c1ccncc1O; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9998538494110107, 0.9997793436050415, 0.9996245503425598, 0.9995096921920776, 0.999200701713562, 0.9989474415779114] +COc1ccc(OC)c(-c2ccncc2O)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)cc1']; ['Oc1cnccc1I', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1Cl', 'Oc1cnccc1I']; [0.9993626475334167, 0.9979308843612671, 0.9968439340591431, 0.996383547782898, 0.9830834865570068, 0.9670952558517456, 0.9269258975982666, 0.8194109797477722] +CN(C)S(=O)(=O)c1cccc(-c2ccncc2O)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br', 'Oc1cnccc1Cl']; [0.9999909400939941, 0.9999904632568359, 0.9996335506439209, 0.9994374513626099, 0.9964091777801514, 0.9393426179885864] +Oc1cnccc1N1CCC(c2nc3ccccc3[nH]2)CC1; ['Oc1cnccc1Cl', 'Oc1cnccc1I', 'Oc1cnccc1Br']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.99858558177948, 0.9984333515167236, 0.9983037710189819] +Oc1cnccc1N1CC=C(c2c[nH]c3ccccc23)CC1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Oc1cnccc1Cl', 'Oc1cnccc1Br', 'Oc1cnccc1I']; [0.9981663227081299, 0.9966135621070862, 0.9961370229721069] +O=C(Nc1cccc(-c2ccncc2O)c1)C1CCNCC1; [None]; [None]; [0] +CCOc1ccc(-c2nc(N)ncc2C)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999990463256836, 0.9999884963035583, 0.9998478889465332, 0.9995094537734985, 0.9988294243812561, 0.996171236038208, 0.993649959564209, 0.9755116701126099] +CC(=O)N(C)c1ccc(-c2nc(N)ncc2C)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999992847442627, 0.9999634027481079, 0.9973139762878418] +Cc1cnc(N)nc1-c1sc(C(C)(C)O)nc1C; ['Cc1cnc(N)nc1Br']; ['Cc1csc(C(C)(C)O)n1']; [0.9992824196815491] +C[C@@]1(O)CC[C@H](c2ccncc2O)CC1; [None]; [None]; [0] +COc1ncccc1-c1nc(N)ncc1C; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ncccc1B(O)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999952912330627, 0.9999687671661377, 0.9999339580535889, 0.9995184540748596, 0.9973829984664917, 0.9916383028030396, 0.9835468530654907] +Cc1cnc(N)nc1-c1cccc(S(C)(=O)=O)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [1.0, 0.9999989867210388, 0.999992847442627, 0.999972939491272, 0.9995921850204468] +COc1cc(-c2nc(N)ncc2C)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999490976333618, 0.9972702860832214, 0.9946556687355042, 0.9866565465927124, 0.9837979078292847] +Cc1ccc2ncn(-c3nc(N)ncc3C)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9954330325126648, 0.9942049384117126, 0.9345966577529907, 0.9227750301361084] +CN(C)c1cc(-c2ccncc2O)cnn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnc2cccnn12; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(O)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cccc(O)c1', 'Cc1cnc(N)nc1Cl']; [0.999991238117218, 0.9963952898979187, 0.9914627075195312] +COc1ccc(-c2nc(N)ncc2C)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1']; [0.999998927116394, 0.9999592304229736, 0.9998576641082764, 0.9993519186973572, 0.9914700984954834, 0.990966796875, 0.9901427626609802] +Cc1cnc(N)nc1-c1cc(C#N)ccc1O; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; [0.9999942779541016, 0.9894119501113892] +Cc1cnc(N)nc1-c1ccc(N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(N2CCOCC2)cc1']; [1.0, 0.9999980926513672, 0.9999954700469971, 0.9999308586120605, 0.9993841648101807, 0.9992934465408325, 0.9989371299743652] +Cc1cnc(N)nc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1cnc(N)nc1Nc1ncccn1; ['Cc1cnc(N)nc1Cl']; ['Nc1ncccn1']; [0.9823744297027588] +Cc1cnc(N)nc1-c1nc2ccccc2[nH]1; ['Cc1cnc(N)nc1C']; ['Nc1ccccc1N']; [0.9905301332473755] +Cc1cnc(N)nc1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(C(N)=O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999996423721313, 0.999980092048645, 0.9999691247940063, 0.9994468688964844] +Cc1cnc(N)nc1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(C(=O)Nc2ccccc2)cc1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.9999948740005493, 0.9996293783187866] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc(N)ncc3C)cc2)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1nccc2ccccc12; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(OCCO)cc1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Cl', 'OCCOc1ccc(B(O)O)cc1']; [0.9998916387557983, 0.9977234601974487] +Cc1cnc(N)nc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(C(=O)N2CCOCC2)cc1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999991655349731, 0.9999973773956299, 0.9999812841415405, 0.999721884727478] +CC(=O)NCc1ccc(-c2nc(N)ncc2C)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999997615814209, 0.9999868273735046, 0.9999597072601318, 0.9998342990875244, 0.996889591217041] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2C)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999994039535522, 0.9999040365219116, 0.9992436170578003] +Cc1cnc(N)nc1-c1ccc(N(C)C)cc1; ['CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1']; [0.9999529123306274, 0.9999018311500549, 0.9989145994186401, 0.9971274733543396, 0.9970054030418396, 0.98444664478302] +Cc1cnc(N)nc1-c1ccc(C(F)(F)F)cc1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Cc1cnc(N)nc1Cl', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999935030937195, 0.9998781681060791, 0.9993443489074707, 0.9989942312240601, 0.9985992908477783, 0.9921724796295166] +Cc1cnc(N)nc1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc2c(c1)CS(=O)(=O)C2; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9952090978622437, 0.8954635858535767] +Cc1nc(C)c(-c2nc(N)ncc2C)s1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(S(=O)(=O)N(C)C)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999998807907104, 0.9999948740005493, 0.9999913573265076, 0.9999201893806458, 0.9996562600135803] +Cc1cnc(N)nc1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc(N)ncc2C)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Cl']; [0.9991836547851562] +Cc1cnc(N)nc1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(Br)cc1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Brc1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(Br)cc1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Cc1cnc(N)nc1Br']; [0.9999974370002747, 0.9997859001159668, 0.9996421337127686, 0.9934829473495483, 0.9818090796470642, 0.9651703238487244] +Cc1cnc(N)nc1Cc1cnc(N)nc1; [None]; [None]; [0] +Cc1cnc(N)nc1Cc1ccccc1O; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(N(C)C)c(Cl)c1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [1.0, 0.9999871253967285, 0.9907518625259399] +CC(=O)N1CCCN(c2cccc(-c3nc(N)ncc3C)c2)CC1; [None]; [None]; [0] +COc1ccc(Cc2nc(N)ncc2C)cc1; ['COc1ccc(C[Zn]Cl)cc1']; ['Cc1cnc(N)nc1Br']; [0.9979478120803833] +CCCOc1ccc(-c2nc(N)ncc2C)nc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc(N)ncc1C; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9994649887084961, 0.998927116394043] +CCN(CC)C(=O)c1ccc(-c2nc(N)ncc2C)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999996423721313, 0.9999822378158569, 0.9999481439590454, 0.9996668100357056, 0.9969134330749512, 0.996604859828949] +CNS(=O)(=O)c1ccc(-c2nc(N)ncc2C)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999994039535522, 0.9999901056289673, 0.999967098236084, 0.9991239309310913, 0.9882765412330627] +Cc1cnc(N)nc1-c1ccccc1-n1cccn1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Brc1ccccc1-n1cccn1', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccccc1-n1cccn1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccccc1-n1cccn1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccccc1-n1cccn1']; [0.9999995231628418, 0.9999991655349731, 0.9998500347137451, 0.9995566606521606, 0.9980365037918091, 0.993756115436554] +Cc1cnc(N)nc1-c1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1c[nH]c2ccccc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Cc1cnc(N)nc1Cl', 'c1ccc2[nH]ccc2c1']; [0.9999932050704956, 0.9999902248382568, 0.9999164938926697, 0.9996150732040405, 0.9945356845855713] +CC(=O)Nc1cccc(-c2nc(N)ncc2C)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999994039535522, 0.9999837875366211, 0.9998974800109863, 0.9995197057723999] +Cc1cnc(N)nc1-c1ccc2c(c1)CCO2; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc2c(c1)CCO2', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [1.0, 0.9999994039535522, 0.9999867081642151, 0.9999295473098755, 0.9998952150344849, 0.9998470544815063, 0.9997833967208862] +Cc1cnc(N)nc1-c1ccn2nccc2n1; [None]; [None]; [0] +COc1cc(OC)c(-c2nc(N)ncc2C)cc1Cl; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2C)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999986290931702, 0.9994022250175476, 0.9897595643997192] +Cc1cnc(N)nc1-c1cccc2c1OCO2; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cccc2c1OCO2', 'Brc1cccc2c1OCO2', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cccc2c1OCO2', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cccc2c1OCO2']; [0.9999979734420776, 0.999985933303833, 0.9993418455123901, 0.9989874958992004, 0.9942384362220764, 0.9625066518783569] +Cc1cnc(N)nc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1scc2c1OCCO2; ['Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['c1scc2c1OCCO2', 'c1scc2c1OCCO2']; [0.9860198497772217, 0.9847160577774048] +Cc1cnc(N)nc1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(C(C)(C)C)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [1.0, 0.9999876618385315, 0.9999262094497681, 0.9993419647216797, 0.9984930753707886, 0.9979115724563599, 0.9796510934829712] +Cc1cnc(N)nc1-c1ccc(C(=O)N(C)C)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999961853027344, 0.9998607635498047, 0.9961402416229248] +Cc1cnc(N)nc1-c1ccc(C(C)(C)C)nc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999995231628418, 0.9999693632125854, 0.9999472498893738, 0.9982609748840332, 0.99526447057724, 0.9815127849578857, 0.9628468155860901] +Cc1cnc(N)nc1Cc1nc2ccc(F)c(F)c2[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnc2ccccc2c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Brc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cnc2ccccc2c1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cnc2ccccc2c1', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999986290931702, 0.9999933838844299, 0.9998694062232971, 0.998843789100647, 0.9954342842102051, 0.9535766243934631] +Cc1cnc(N)nc1CCCc1ccccc1; ['Br[Mg]CCCc1ccccc1', 'BrCCCc1ccccc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9910857677459717, 0.9666041135787964] +Cc1cnc(N)nc1Cc1nc2c(F)c(F)ccc2[nH]1; [None]; [None]; [0] +Cc1ccc(-c2nc(N)ncc2C)c(=O)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc(N)ncc2C)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1Cc1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nc(N)ncc2C)c1; ['COc1cccc(C(N)=O)c1', 'COc1cccc(C(N)=O)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9987318515777588, 0.998179018497467] +CSc1ccc(-c2nc(N)ncc2C)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1']; [0.9999986886978149, 0.9999193549156189, 0.9997313618659973, 0.9994709491729736, 0.9952354431152344, 0.9871892929077148, 0.9801822900772095] +Cc1cnc(N)nc1-c1cc2ccccc2s1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9999867081642151, 0.9955349564552307, 0.9455279111862183] +Cc1cnc(N)nc1-c1csc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(F)cc1Cl; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(F)cc1Cl', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1']; [0.9999984502792358, 0.9999599456787109, 0.9999556541442871, 0.9959006309509277, 0.9957047700881958, 0.9836016297340393, 0.9718875885009766] +Cc1cnc(N)nc1-c1ccc2c(c1)CCC(=O)N2; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Cc1cnc(N)nc1Br']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999977350234985, 0.9997467994689941, 0.9950271844863892] +CCN1CCN(Cc2ccc(-c3nc(N)ncc3C)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999950528144836, 0.9996971487998962, 0.9990034103393555] +Cc1cc(-c2nc(N)ncc2C)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1nc(N)ncc1C; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2C)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1']; [0.9999983310699463, 0.9999806880950928, 0.9998221397399902, 0.9986342191696167, 0.9979767799377441, 0.9968143701553345, 0.9901384115219116, 0.9532285332679749] +Cc1cnc(N)nc1[C@H](CO)Cc1ccccc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(Cl)cc1Cl; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(Cl)cc1Cl', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1']; [0.9999960064888, 0.9999793767929077, 0.9997366666793823, 0.9958285093307495, 0.9465814232826233, 0.8669211864471436] +CCc1ccc(-c2nc(N)ncc2C)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; [0.9999995231628418, 0.9998683333396912, 0.9998655915260315, 0.9998212456703186, 0.9948221445083618, 0.980311393737793, 0.9771580696105957, 0.9074716567993164] +COc1cc(-c2nc(N)ncc2C)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999991655349731, 0.9999692440032959, 0.9996759295463562] +Cc1cnc(N)nc1-c1cn(C)nc1C(F)(F)F; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1']; [0.9999935626983643, 0.9993454217910767, 0.997809648513794] +Cc1cnc(N)nc1-c1ncc(Br)cn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1ccc2cccc(-c3nc(N)ncc3C)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Cc1cnc(N)nc1Cl']; [0.9982153177261353] +Cc1cnc(N)nc1-c1ncc2cccn2n1; [None]; [None]; [0] +Cc1cnc(N)nc1CCCn1cncn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc2ccc(O)cc12; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999971389770508, 0.9953523278236389] +COc1cc(-c2nc(N)ncc2C)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1']; [0.9999988079071045, 0.9999797940254211, 0.9997962713241577, 0.9976851940155029, 0.9931104183197021, 0.9895914793014526] +Cc1cnc(N)nc1-c1cc2ccccn2n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2C)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999895095825195, 0.9999615550041199] +COc1cc(F)c(-c2nc(N)ncc2C)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999975562095642, 0.9999841451644897, 0.999715268611908, 0.9969379901885986, 0.9936836957931519, 0.9838066697120667, 0.9794648885726929] +Cc1cnc(N)nc1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ncnc2c(C)csc12; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnn(CCO)c1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'OCCn1cc(B(O)O)cn1']; [0.9999849796295166, 0.996110200881958, 0.9944446086883545] +Cc1cnc(N)nc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2C)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999129772186279, 0.9993658661842346, 0.9969900250434875, 0.9949370622634888, 0.9923187494277954] +COc1cc(OC)cc(-c2nc(N)ncc2C)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.9999964833259583, 0.9999869465827942, 0.999733567237854, 0.999688982963562, 0.9886474609375, 0.982406497001648, 0.9821790456771851] +CCNC(=O)c1ccc(-c2nc(N)ncc2C)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2nc(N)ncc2C)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc(N)ncc2C)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3nc(N)ncc3C)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Cc1cnc(N)nc1Br']; [0.9999905824661255] +COc1ccc2c(c1)c(-c1nc(N)ncc1C)cn2C; ['COc1ccc2c(ccn2C)c1']; ['Cc1cnc(N)nc1Cl']; [0.9987244606018066] +CCNC(=O)N1CCC(c2nc(N)ncc2C)CC1; [None]; [None]; [0] +CCn1cc(-c2nc(N)ncc2C)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999544620513916, 0.9968982934951782, 0.9963422417640686] +Cc1cnc(N)nc1-c1ccc2cn[nH]c2c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [0.999997615814209, 0.9999942779541016, 0.9987272024154663, 0.9981802701950073, 0.9755600690841675] +Cc1cnc(N)nc1-c1cc2ccccc2o1; ['Cc1cnc(N)nc1Cl', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1']; ['OB(O)c1cc2ccccc2o1', 'Cc1cnc(N)nc1Cl']; [0.9992293119430542, 0.9968959093093872] +CNC(=O)c1ccc(OC)c(-c2nc(N)ncc2C)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cn(C)nc1C(C)C; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999802112579346, 0.9971674084663391] +Cc1cnc(N)nc1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +COc1ccc2nc(-c3nc(N)ncc3C)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['Cc1cnc(N)nc1C']; [0.9970430135726929] +COc1ccc(F)c(C(=O)Nc2nc(N)ncc2C)c1; ['COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9993804693222046, 0.9951707124710083] +Cc1cnc(N)nc1-c1ccc(OC(F)(F)F)cc1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 0.9999996423721313, 0.9999982714653015, 0.9999957084655762, 0.9999897480010986, 0.9999793767929077, 0.9999163746833801] +Cc1cnc(N)nc1-c1cc(Br)cn1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ncc2sccc2n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cn(C)c2ccccc12; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1ccc2ccccc21']; [0.9999915957450867, 0.9992067217826843, 0.9872692823410034] +CCc1cccc(-c2nc(N)ncc2C)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(N(C)C)nc1; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.999987006187439, 0.9999147653579712, 0.9990077614784241, 0.9897481203079224] +Cc1cnc(N)nc1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc2c(cnn2C)c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999997615814209, 0.9999995231628418, 0.9999184608459473, 0.9998977780342102, 0.9989347457885742, 0.8782767057418823] +Cc1cnc(N)nc1-c1cc(C)c(OCCO)c(C)c1; [None]; [None]; [0] +Cc1cnc(N)nc1NC(=O)c1cccc(OC(F)(F)F)c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1']; [0.9999505281448364, 0.9992810487747192] +Cc1cnc(N)nc1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc2c(C)n[nH]c2c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 0.9999995231628418, 0.9999743700027466, 0.999935507774353, 0.9995138645172119] +Cc1cnc(N)nc1-c1ccc(CCO)cc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OCCc1ccc(B(O)O)cc1', 'Cc1cnc(N)nc1Cl', 'OCCc1ccc(B(O)O)cc1']; [0.9999988079071045, 0.999919056892395, 0.9994342923164368, 0.9947211742401123] +Cc1cnc(N)nc1-c1cccc(N2CCCC2=O)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999987483024597, 0.9999386072158813, 0.9967254400253296, 0.9277091026306152] +CC(=O)N1CCC(n2cc(-c3nc(N)ncc3C)cn2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2C)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999951124191284, 0.9998815655708313] +Cc1cnc(N)nc1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc(N)ncc1C; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Cc1cnc(N)nc1Cl']; [0.9991638660430908] +COc1cc(N2CCNCC2)ccc1-c1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc(N)ncc1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc(N)ncc2C)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999703168869019, 0.9996287226676941] +COc1cc(-c2cnn(C)c2)ccc1-c1nc(N)ncc1C; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nc(N)ncc2C)cc1; ['CCNC(=O)Cc1ccc(Br)cc1', 'CCNC(=O)Cc1ccc(Br)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9988940954208374, 0.9965068101882935] +Cc1cnc(N)nc1-c1cc(S(C)(=O)=O)ccc1Cl; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9989383220672607, 0.9665953516960144] +CNC(=O)c1ccccc1-c1nc(N)ncc1C; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9998835325241089, 0.993396520614624] +CNC(=O)c1ccc(C)c(-c2nc(N)ncc2C)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CCOc1ccccc1-c1nc(N)ncc1C; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999929666519165, 0.9999924898147583, 0.9993293285369873, 0.9991438388824463, 0.9946445226669312, 0.9925916194915771, 0.988136351108551] +Cc1nnc(-c2ccccc2-c2nc(N)ncc2C)[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1[C@H](C)CS(C)(=O)=O; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccccc1P(C)(C)=O; [None]; [None]; [0] +COC(C)(C)CCc1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(C(F)(F)F)c1; ['Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl', 'CI']; ['OB(O)c1cccc(C(F)(F)F)c1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(Br)c1', 'Nc1nccc(-c2cccc(C(F)(F)F)c2)n1']; [0.9999975562095642, 0.9998214244842529, 0.9991879463195801, 0.9986921548843384, 0.9986053705215454, 0.9929018020629883, 0.8601957559585571] +Cc1cnc(N)nc1-c1ccccc1S(=O)(=O)C(C)C; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1']; [0.9999278783798218, 0.9969303607940674, 0.9962054491043091, 0.9883298873901367, 0.9848839044570923] +Cc1cnc(N)nc1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccccc1OC(F)(F)F; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccccc1OC(F)(F)F', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Br', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999967217445374, 0.9999938011169434, 0.9997950196266174, 0.9989246129989624, 0.9983834028244019, 0.9981088638305664, 0.9933282136917114] +Cc1cnc(N)nc1-c1ccnc2ccccc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Brc1ccnc2ccccc12', 'Br[Mg]c1ccnc2ccccc12', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9999944567680359, 0.9999279975891113, 0.9997491836547852, 0.9981626272201538, 0.9977126717567444, 0.996429443359375, 0.9712640047073364, 0.9433565139770508, 0.9137275218963623] +Cc1cnc(N)nc1-c1ccccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccccc1C(N)=O; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'NC(=O)c1ccccc1B(O)O', 'Cc1cnc(N)nc1Cl', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O']; [0.9999915957450867, 0.999855637550354, 0.9994515180587769, 0.9910472631454468, 0.9812918305397034, 0.9731525182723999] +Cc1cnc(N)nc1-c1cnn(Cc2ccccc2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Brc1cnn(Cc2ccccc2)c1']; ['Cc1cnc(N)nc1Cl', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Cc1cnc(N)nc1Cl']; [0.9995795488357544, 0.9972851872444153, 0.9176626801490784] +Cc1cnc(N)nc1-c1csc(C(C)(C)C)n1; ['CC(C)(C)c1nc(B2OC(C)(C)C(C)(C)O2)cs1']; ['Cc1cnc(N)nc1Cl']; [0.9998835325241089] +Cc1cnc(N)nc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(NC(=O)c2ccccc2)c1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999998211860657, 0.9999599456787109, 0.9997673034667969] +Cc1cnc(N)nc1-c1ccc2ncn(C)c(=O)c2c1; ['Cc1cnc(N)nc1Br']; ['Cn1cnc2ccc(Br)cc2c1=O']; [0.9991837739944458] +Cc1cnc(N)nc1-c1cc(Cl)ccc1Cl; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cc(Cl)ccc1Cl', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999957084655762, 0.9999911785125732, 0.9997793436050415, 0.9929486513137817, 0.9198648929595947] +Cc1cnc(N)nc1OCC(=O)C(C)C; ['CC(C)C(=O)CCl']; ['Cc1cnc(N)nc1O']; [0.8753283023834229] +Cc1ccc(-c2nc(N)ncc2C)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9990531802177429, 0.9593187570571899, 0.9465043544769287] +Cc1cnc(N)nc1-c1sc(N)nc1C; ['Cc1cnc(N)nc1Br']; ['Cc1csc(N)n1']; [0.9986271858215332] +Cc1cnc(N)nc1-c1cnc2ccccn12; [None]; [None]; [0] +CNc1nc(C)c(-c2nc(N)ncc2C)s1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1c(Cl)cccc1Cl; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; ['OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl']; [0.9815495014190674, 0.9770858287811279, 0.9433916807174683] +Cc1cnc(N)nc1-c1c(C)nc2ccccn12; [None]; [None]; [0] +Cc1cnc(N)nc1-n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +COc1cnc(-c2nc(N)ncc2C)nc1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2nc(N)ncc2C)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1']; [0.9999865293502808, 0.997302770614624, 0.9718048572540283, 0.955736517906189, 0.942913293838501, 0.8059435486793518] +Cc1cnc(N)nc1-c1cccc(Br)c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1cnc(N)nc1']; ['OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cccc(Br)c1']; [0.9999634027481079, 0.9988301992416382, 0.9987679719924927, 0.998367428779602] +Cc1cnc(N)nc1NCc1cccnc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1O']; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9999141097068787, 0.999118983745575, 0.9940695762634277] +Cc1cnc(N)nc1Nc1cccnc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Nc1cccnc1', 'Nc1cccnc1']; [0.9936807751655579, 0.8569854497909546] +Cc1cnc(N)nc1-c1sc(=O)n(C)c1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnn2ncccc12; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Cc1cnc(N)nc1Cl']; [0.99920654296875] +Cc1cnc(N)nc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-n1cnc2ccccc21; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.999147891998291, 0.9895426630973816] +Cc1cnc(N)nc1NCCc1c[nH]cn1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1O', 'Cc1cnc(N)nc1Cl']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9997437000274658, 0.9995545148849487, 0.9958993792533875] +Cc1cnc(N)nc1-c1ccc2ccccc2c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Cc1cnc(N)nc1', 'CI']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc2ccccc2c1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Ic1ccc2ccccc2c1', 'Nc1nccc(-c2ccc3ccccc3c2)n1']; [0.9999996423721313, 0.9999974966049194, 0.9999499320983887, 0.9998126029968262, 0.9980900883674622, 0.996633768081665, 0.9891666173934937, 0.8962682485580444, 0.877457857131958] +Cc1cnc(N)nc1NCCc1ccccc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1O']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9998696446418762, 0.999295711517334, 0.9889998435974121] +Cc1cnc(N)nc1NC(=O)c1cccs1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1c[nH]nc1C(F)(F)F; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Cc1cnc(N)nc1Cl']; [0.9986106157302856] +Cc1cnc(N)nc1-c1ccnc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(F)c1C(N)=O; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cncc2ccccc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)COB(c2cncc3ccccc23)OC1', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Cc1cnc(N)nc1Cl', 'Brc1cncc2ccccc12']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cncc2ccccc12', 'Cc1cnc(N)nc1Br', 'Ic1cncc2ccccc12', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'OB(O)c1cncc2ccccc12', 'Cc1cnc(N)nc1Cl']; [0.9999927282333374, 0.9999707937240601, 0.9998999834060669, 0.9998946189880371, 0.99969083070755, 0.9984147548675537, 0.9924730658531189, 0.9659128785133362] +Cc1cnc(N)nc1NCc1ccc(Cl)cc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9998905062675476, 0.9965494871139526] +Cc1cnc(N)nc1-c1cccc(CO)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Cl', 'OCc1cccc(B(O)O)c1']; [0.9986280202865601, 0.9939354062080383] +Cc1cnc(N)nc1-c1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc(-c2cnn(C)c2)cc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; [1.0, 0.9999943971633911, 0.9925918579101562] +Cc1cnc(N)nc1-c1ccc(-c2cn[nH]c2)cc1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['Cc1cnc(N)nc1Br', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Cc1cnc(N)nc1Br']; [1.0, 0.9999974966049194, 0.9999861121177673, 0.9998496174812317, 0.9976003170013428] +Cc1cnc(N)nc1Nc1ccncc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Nc1ccncc1', 'Nc1ccncc1']; [0.9998142719268799, 0.9905251264572144] +Cc1cnc(N)nc1-c1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +Cc1cnc(N)nc1NCc1ccccc1F; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1O']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; [0.9999758005142212, 0.9995977878570557, 0.9995793104171753] +Cc1cnc(N)nc1-c1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +CCCn1cnc(-c2nc(N)ncc2C)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1csc2ncncc12; [None]; [None]; [0] +COc1cc(-c2nc(N)ncc2C)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cn(C(C)C)nn1; [None]; [None]; [0] +CSc1nc(-c2nc(N)ncc2C)c[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(CCC#N)c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Br']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; [0.999961256980896, 0.9978018999099731, 0.9922752380371094, 0.8368355631828308] +Cc1cnc(N)nc1-c1cnoc1C(C)C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cncnc1N; [None]; [None]; [0] +Cc1cnc(N)nc1CCc1c[nH]nn1; [None]; [None]; [0] +Cc1cnc(N)nc1Oc1ccccn1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1O', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['Oc1ccccn1', 'Clc1ccccn1', '[O-]c1ccccn1', 'Oc1ccccn1']; [0.9835177659988403, 0.9786702394485474, 0.9724694490432739, 0.8833669424057007] +CCC(=O)Nc1ccc(-c2nc(N)ncc2C)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999997615814209, 0.9999531507492065] +Cc1cnc(N)nc1-c1ccc(F)cc1C(F)(F)F; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(Br)c(C(F)(F)F)c1']; [0.9999903440475464, 0.9961583614349365, 0.9958935976028442, 0.9897310137748718, 0.9789846539497375] +Cc1cnc(N)nc1NC(=O)c1c(Cl)cccc1Cl; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['NC(=O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl']; [0.9998798370361328, 0.999164342880249] +Cc1cnc(N)nc1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1N1CCC(S(C)(=O)=O)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999706745147705, 0.9998981952667236] +Cc1cnc(N)nc1OCC(C)(C)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2C)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; [0.9999997615814209, 0.9999887347221375, 0.9999861717224121, 0.9999784231185913, 0.9977868795394897, 0.9927378296852112, 0.9894292950630188, 0.9566170573234558, 0.9327788352966309] +CCNc1nc2ccc(-c3nc(N)ncc3C)cc2s1; [None]; [None]; [0] +CCCn1cc(-c2nc(N)ncc2C)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Cc1cnc(N)nc1Cl']; [0.9993418455123901] +Cc1cnc(N)nc1-c1cnn2ccccc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Cl', 'OB(O)c1cnn2ccccc12']; [0.9996487498283386, 0.9976590871810913] +Cc1cnc(N)nc1CCNC(=O)CC(C)(C)O; [None]; [None]; [0] +Cc1cnc(N)nc1CCCC(N)=O; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cc[nH]c(=O)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc2c1C(=O)CC2; ['Cc1cnc(N)nc1Br']; ['O=C1CCc2cccc(Br)c21']; [0.9975544214248657] +Cc1cnc(N)nc1-c1ccc(C(C)(C)N)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1O[C@H](C)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1O']; [0.9851745367050171, 0.9566464424133301] +CCN(CC)c1nc(N)ncc1C; ['CCNCC', 'CCNCC']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9984023571014404, 0.9968503713607788] +COc1cc(CCc2nc(N)ncc2C)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1', 'COc1cc(CCBr)cc(OC)c1', 'COc1cc(CCl)cc(OC)c1']; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1C']; [0.9796853065490723, 0.967576801776886, 0.9184771180152893] +COc1ccncc1Nc1nc(N)ncc1C; ['COc1ccncc1N', 'COc1ccncc1N']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999297857284546, 0.9968349933624268] +Cc1cnc(N)nc1-c1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1nc(N)ncc1C; [None]; [None]; [0] +COc1cccc(F)c1-c1nc(N)ncc1C; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Br']; [0.9999992847442627, 0.9999973177909851, 0.9999157190322876, 0.9997988939285278, 0.9995707869529724, 0.9993575811386108, 0.9993417263031006] +Cc1cnc(N)nc1Nc1cnccc1-c1ccccc1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.999780535697937, 0.9540344476699829] +Cc1cnc(N)nc1Nc1cnc2ccccc2c1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9997811317443848, 0.7950827479362488] +Cc1cnc(N)nc1-c1cncc(OC(C)C)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9999997615814209, 0.9999990463256836, 0.9999513626098633, 0.9997007846832275, 0.9995061159133911] +Cc1cnc(N)nc1-c1ccc([S@](C)=O)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnc2[nH]ccc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1cnc2[nH]ccc2c1', 'Cc1cnc(N)nc1Cl', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999993443489075, 0.9999269247055054, 0.9977221488952637] +Cc1cnc(N)nc1-c1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1nc(N)ncc1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1c[nH]c2cnccc12; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1cc2cc[nH]c2cn1']; [0.9999931454658508, 0.9993059635162354, 0.9459517002105713] +Cc1cnc(N)nc1-c1ccc(S(=O)(=O)NC(C)(C)C)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999997615814209, 0.9999805688858032, 0.9997532963752747] +Cc1cnc(N)nc1-c1ccc(S(C)(=O)=O)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [1.0, 0.9999892711639404, 0.9999793767929077, 0.9999079704284668, 0.9991658926010132, 0.9986981153488159, 0.9914479851722717] +Cc1cnc(N)nc1N[C@@H](C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1cnc(N)nc1-n1ccc(CO)n1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9990795850753784, 0.9953725337982178] +Cc1cnc(N)nc1C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1N[C@H](C)C(C)(C)O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; [0.9822967052459717, 0.9415808916091919] +Cc1cnc(N)nc1N[C@@H](C)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O', 'CC(N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1O']; [0.9822967052459717, 0.9415808916091919, 0.9415808916091919, 0.8642306923866272] +Cc1cnc(N)nc1N(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cnc(N)nc1-n1ncc2ccccc21; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9985506534576416, 0.9844045639038086] +Cc1cnc(N)nc1-c1c(F)cccc1Cl; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br', 'Cc1cnc(N)nc1Cl', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Br']; [0.9999997019767761, 0.9999974370002747, 0.9999430179595947, 0.9999054670333862, 0.9991254806518555, 0.9991204738616943, 0.9987235069274902] +Cc1cnc(N)nc1-n1ncc2c(O)cccc21; ['Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9998108148574829, 0.9995607137680054] +Cc1cnc(N)nc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-n1cnc(CCO)c1; [None]; [None]; [0] +Cc1cc(-c2nc(N)ncc2C)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1ccc(-c2nc(N)ncc2C)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.999997079372406, 0.9999924302101135, 0.9998124837875366, 0.99872225522995, 0.9969778060913086, 0.9908180832862854, 0.9461666345596313] +Cc1cnc(N)nc1-c1ccc(C(=O)c2ccccc2)cc1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Br', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['Cc1cnc(N)nc1Br', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Cc1cnc(N)nc1Cl', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.999998927116394, 0.9999747276306152, 0.999927282333374, 0.9994655847549438, 0.9943540692329407, 0.9902509450912476] +Cc1cnc(N)nc1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +CSc1nc(C)c(-c2nc(N)ncc2C)[nH]1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1nncn1C(C)C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1nncn1C1CC1; [None]; [None]; [0] +Cc1cnc(N)nc1CCC(=O)NCc1ccccn1; [None]; [None]; [0] +Cc1cnc(N)nc1CS(=O)(=O)NCc1ccccn1; [None]; [None]; [0] +Cc1cnc(N)nc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +CCc1cc(-c2nc(N)ncc2C)nc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1nnc(N)s1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(N)ncc2C)s1; [None]; [None]; [0] +CCCCc1cc(-c2nc(N)ncc2C)nc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1nc2ccccc2s1; ['Cc1cnc(N)nc1Br', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['c1ccc2scnc2c1', 'Cc1cnc(N)nc1Cl']; [0.999221682548523, 0.9872279167175293] +Cc1cnc(N)nc1-c1cc(C(N)=O)cn1C; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc2ccsc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C']; ['Cc1cnc(N)nc1Cl']; [0.9962188005447388] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc(N)ncc3C)c2)cc1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(C(C)(C)O)n1; [None]; [None]; [0] +Cc1cnc(N)nc1Oc1ccc(C[NH3+])cc1F; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc(N)ncc2C)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc2nnsc12; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cncc(N)n1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1nc(N)ncc1C; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1']; [0.9999990463256836, 0.9999987483024597, 0.9998718500137329, 0.9997564554214478, 0.9997155666351318, 0.9993430376052856, 0.9834225177764893] +Cc1cnc(N)nc1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nc(N)ncc2C)[nH]1; [None]; [None]; [0] +COc1ccc(Oc2nc(N)ncc2C)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(F)c(F)c1F']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1O', 'Cc1cnc(N)nc1O']; [0.9997693300247192, 0.9977589845657349, 0.9887787103652954, 0.9458983540534973] +COc1ccc(OC)c(-c2nc(N)ncc2C)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl']; [0.9999985694885254, 0.9997351169586182, 0.9996953010559082, 0.9975900650024414] +Cc1cnc(N)nc1-c1cn(CCO)cn1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Cc1cnc(N)nc1N1CCC(c2nc3ccccc3[nH]2)CC1; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9997622966766357, 0.9966228008270264] +Cc1cnc(N)nc1N1CC=C(c2c[nH]c3ccccc23)CC1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Cc1cnc(N)nc1Cl']; [0.999962329864502] +Cc1cnc(N)nc1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cccc(S(=O)(=O)N(C)C)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Br', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Cl', 'Cc1cnc(N)nc1Br']; [1.0, 0.9999992251396179, 0.9999960660934448, 0.9999704360961914, 0.9999575018882751, 0.9995962977409363, 0.999176025390625] +Cc1cnc(N)nc1[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +Cc1cnc(N)nc1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +c1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c2cccnc2c1; [None]; [None]; [0] +Oc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)ccc1Cl; [None]; [None]; [0] +Oc1cccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +Clc1ccc2c(c1N1CCc3n[nH]c(-c4ccncc4)c3C1)OCO2; [None]; [None]; [0] +CCc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +c1ccc2c(N3CCc4n[nH]c(-c5ccncc5)c4C3)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Oc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Clc1cccc(Cl)c1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +NC(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c(F)c1; [None]; [None]; [0] +Nc1nccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)n1; [None]; [None]; [0] +Oc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c(F)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(N3CCc4n[nH]c(-c5ccncc5)c4C3)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Oc1ccc(-c2ccc(N3CCc4n[nH]c(-c5ccncc5)c4C3)cc2)c(O)c1; [None]; [None]; [0] +COc1ccc(F)cc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +COc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)ccc1O; [None]; [None]; [0] +Clc1[nH]ncc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +O=C([O-])c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)o1; [None]; [None]; [0] +Clc1cccc(OCN2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +Brc1cccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +c1ccc2cc(N3CCc4n[nH]c(-c5ccncc5)c4C3)ccc2c1; [None]; [None]; [0] +Oc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1F; [None]; [None]; [0] +Cn1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c2ccccc21; [None]; [None]; [0] +Oc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c(O)c1; [None]; [None]; [0] +c1cnn2ncc(N3CCc4n[nH]c(-c5ccncc5)c4C3)c2c1; [None]; [None]; [0] +c1cc(-c2[nH]nc3c2CN(c2c[nH]c4cnccc24)CC3)ccn1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +Clc1ccccc1OCN1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Fc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1Cl; [None]; [None]; [0] +Nc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)ccn1; [None]; [None]; [0] +OC[C@H](c1ccccc1)N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Clc1ccc(CCN2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Oc1ncc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1Cl; [None]; [None]; [0] +Oc1ccc(Cl)c(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +NC(=O)c1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c[nH]1; [None]; [None]; [0] +COc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1OC; [None]; [None]; [0] +COc1cc(OC)cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(N3CCc4n[nH]c(-c5ccncc5)c4C3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(N3CCc4n[nH]c(-c5ccncc5)c4C3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Oc1cncc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +c1ccc2sc(N3CCc4n[nH]c(-c5ccncc5)c4C3)nc2c1; [None]; [None]; [0] +c1cc(-c2[nH]nc3c2CN(c2cnc4[nH]ccc4c2)CC3)ccn1; [None]; [None]; [0] +O=C1Cc2cc(N3CCc4n[nH]c(-c5ccncc5)c4C3)ccc2N1; [None]; [None]; [0] +CCc1cc(O)ccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +CNc1nccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)n1; [None]; [None]; [0] +Cc1n[nH]c(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +FC(F)c1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)[nH]n1; [None]; [None]; [0] +Cc1cc(O)ccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Clc1cnccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +CCc1sccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Oc1c(Cl)cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1Cl; [None]; [None]; [0] +CNc1nc(N2CCc3n[nH]c(-c4ccncc4)c3C2)ncc1F; [None]; [None]; [0] +c1cc(-c2[nH]nc3c2CN(c2ccc4c(c2)CCN4)CC3)ccn1; [None]; [None]; [0] +Oc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)nc2ccnn12; [None]; [None]; [0] +Cc1oc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(N3CCc4n[nH]c(-c5ccncc5)c4C3)cc2[nH]1; [None]; [None]; [0] +Fc1ccc2n[nH]c(N3CCc4n[nH]c(-c5ccncc5)c4C3)c2c1; [None]; [None]; [0] +Fc1cc(Br)ccc1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +CNC(=O)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Oc1cc(Br)cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +Cc1nc2ccc(N3CCc4n[nH]c(-c5ccncc5)c4C3)cc2o1; [None]; [None]; [0] +Oc1c(F)cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1F; [None]; [None]; [0] +Cc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(N2CCc3n[nH]c(-c4ccncc4)c3C2)cc(C)c1O; [None]; [None]; [0] +O=c1[nH][nH]c2cc(N3CCc4n[nH]c(-c5ccncc5)c4C3)ccc12; [None]; [None]; [0] +CSc1cccc(N2CCc3n[nH]c(-c4ccncc4)c3C2)c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)ncc2Cl)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccccc1', 'CCOc1ccccc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999992847442627, 0.9999932050704956, 0.9999885559082031, 0.9999881982803345, 0.999947190284729, 0.9997873306274414, 0.9997137784957886, 0.9988716840744019, 0.985256552696228, 0.9790135622024536, 0.9635211229324341, 0.9504299163818359] +CC(=O)N(C)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.999998152256012, 0.9999949932098389, 0.9999427795410156, 0.955593466758728, 0.8690454959869385] +Nc1cc(-c2ncc3ccccc3n2)c(Cl)cn1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1N1CCc2n[nH]c(-c3ccncc3)c2C1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(N)ncc1Cl; ['Cc1csc(C(C)(C)O)n1', 'Cc1csc(C(C)(C)O)n1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9886959791183472, 0.9511496424674988] +COc1ncccc1-c1cc(N)ncc1Cl; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1B(O)O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999831914901733, 0.9998789429664612, 0.9993367195129395, 0.9953556060791016, 0.9755143523216248] +Cc1ccc2ncn(-c3cc(N)ncc3Cl)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; [0.9436163902282715, 0.7667827606201172] +CS(=O)(=O)c1cccc(-c2cc(N)ncc2Cl)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [1.0, 0.9999996423721313, 0.9999943971633911, 0.9999874234199524, 0.9999836087226868, 0.9988340139389038] +Clc1ccc(-c2[nH]ncc2N2CCc3n[nH]c(-c4ccncc4)c3C2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(N)ncc2Cl)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cccc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999979734420776, 0.9999949932098389, 0.9999935626983643, 0.9999899864196777, 0.9999264478683472, 0.9997807741165161, 0.9938482642173767, 0.9930210113525391, 0.9669173955917358, 0.9587083458900452] +Nc1cc(-c2cnc3cccnn23)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['c1cnn2ccnc2c1']; [0.9999980330467224] +N#Cc1ccc(O)c(-c2cc(N)ncc2Cl)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999159574508667, 0.9997671842575073, 0.9910483360290527] +Nc1cc(-c2cccc(O)c2)c(Cl)cn1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1']; [0.9999917149543762, 0.9999527931213379, 0.9998739361763, 0.9926002621650696] +Nc1cc(-c2cccc(NC(=O)C3CC3)c2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['O=C(Nc1cccc(Br)c1)C1CC1']; [0.999333381652832] +COc1ccc(-c2cc(N)ncc2Cl)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OCC(C)(C)CO2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccccc1', 'COc1ccccc1', 'COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999996423721313, 0.9999964237213135, 0.9999963045120239, 0.9999676942825317, 0.9999662637710571, 0.9998191595077515, 0.9987964630126953, 0.9893033504486084, 0.9807621836662292, 0.8417829275131226, 0.7776579856872559] +Nc1cc(-c2ccc(N3CCOCC3)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1ccc(N2CCOCC2)cc1']; [1.0, 1.0, 0.9999990463256836, 0.9999986886978149, 0.9999967813491821, 0.9999701976776123, 0.9999492168426514] +Nc1cc(-c2nc3ccccc3[nH]2)c(Cl)cn1; ['Nc1cc(C(=O)O)c(Cl)cn1']; ['Nc1ccccc1N']; [0.9996742010116577] +Nc1cc(Nc2ncccn2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9987446069717407, 0.9912582039833069] +NC(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999967813491821, 0.9999839067459106, 0.9999324083328247, 0.9998253583908081, 0.9994227886199951, 0.9947131872177124, 0.8383246064186096] +Nc1cc(-c2ccc(C(=O)[O-])cc2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2nccc3ccccc23)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999985694885254, 0.9999957084655762, 0.9999562501907349, 0.9998464584350586, 0.9998328685760498, 0.9966340065002441] +N#Cc1cccc(Cn2cc(-c3cc(N)ncc3Cl)cn2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)ncc3Cl)cc2)CC1; [None]; [None]; [0] +Nc1cc(-c2cccc(C3CCNCC3)c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc(OCCO)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccccc1', 'OCCOc1ccc(I)cc1']; [0.9999996423721313, 0.9999988079071045, 0.9999672770500183, 0.9999526739120483, 0.9999113082885742, 0.9985491037368774, 0.9909825921058655, 0.9791848063468933, 0.9120590090751648] +CC(=O)NCc1ccc(-c2cc(N)ncc2Cl)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999996423721313, 0.9999959468841553, 0.999993622303009, 0.9998844265937805, 0.9997769594192505, 0.9983645677566528, 0.9964708089828491] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Nc1cc(Cl)c(Cl)cn1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccccc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999997615814209, 0.9999990463256836, 0.9999979734420776, 0.9999971389770508, 0.9999524354934692, 0.8869229555130005, 0.8702515363693237] +CNS(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.999999463558197, 0.999997079372406, 0.9999659657478333, 0.9998856782913208, 0.9997285604476929, 0.9937812089920044, 0.9804412126541138] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)c(Cl)cn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(F)(F)F)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccccc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [1.0, 0.9999984502792358, 0.9999933242797852, 0.9999868869781494, 0.9997661709785461, 0.9958678483963013, 0.9905917644500732, 0.9890276193618774, 0.984939694404602] +CN(C)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccccc1', 'CN(C)c1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999992847442627, 0.9999515414237976, 0.9999217391014099, 0.9998130798339844, 0.9970220923423767, 0.9616031646728516, 0.9334856271743774] +Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9989191889762878] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccccc1', 'CN(C)S(=O)(=O)c1ccccc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999938011169434, 0.9999922513961792, 0.9999841451644897, 0.9997259378433228, 0.9821619391441345, 0.9688254594802856, 0.95274817943573, 0.8912814259529114] +C[C@@H](O)COc1ccc(-c2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)ncc2Cl)s1; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1', 'Cc1csc(C)n1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999980330467224, 0.9982473254203796, 0.9874155521392822] +CCNS(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9998974800109863, 0.9997549057006836, 0.9984332919120789] +Nc1cc(Cc2cnc(N)nc2)c(Cl)cn1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(Cc2ccccc2O)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc(Br)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Brc1ccc(I)cc1', 'Brc1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccc(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999994039535522, 0.9999939203262329, 0.9999679327011108, 0.9999277591705322, 0.999923825263977, 0.99725341796875, 0.9874646663665771, 0.8926782608032227] +CCCOc1ccc(-c2cc(N)ncc2Cl)nc1; ['CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9998358488082886, 0.9989602565765381, 0.8456525206565857] +CN(C)c1ccc(-c2cc(N)ncc2Cl)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccccc1Cl']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999997019767761, 0.9999989867210388, 0.9999752044677734, 0.9995001554489136, 0.9883371591567993, 0.9620823860168457, 0.8455487489700317] +CC(=O)N1CCCN(c2cccc(-c3cc(N)ncc3Cl)c2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999948740005493, 0.999976634979248, 0.9999489188194275, 0.9987955689430237, 0.9967145919799805] +CCN(CC)C(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999991655349731, 0.9999924302101135, 0.999990701675415, 0.9999598264694214, 0.9995440244674683, 0.9985219836235046, 0.9912281036376953, 0.8542333841323853] +Cc1c(C(=O)[O-])cccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-c2ccn3nccc3n2)c(Cl)cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(N)ncc1Cl; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999838471412659, 0.9999774694442749, 0.9999608993530273, 0.9989362359046936, 0.9988850951194763, 0.9951579570770264] +Nc1cc(-c2ccccc2-n2cccn2)c(Cl)cn1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccccc1-n1cccn1']; [0.9999926090240479, 0.999972939491272, 0.9999277591705322, 0.9999253153800964, 0.9994611740112305, 0.9843789339065552] +Nc1cc(-c2c[nH]c3ccccc23)c(Cl)cn1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Brc1c[nH]c2ccccc12']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1c[nH]c2ccccc12', 'OB(O)c1c[nH]c2ccccc12', 'Nc1cc(Br)c(Cl)cn1']; [0.9998469352722168, 0.9997478723526001, 0.9989372491836548, 0.9988662004470825, 0.9902118444442749] +COc1ccc(Cc2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCO3)c(Cl)cn1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Brc1ccc2c(c1)CCO2', 'Nc1cc(Br)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccc(Cl)cn1', 'c1ccc2c(c1)CCO2']; [0.9999997615814209, 0.999997079372406, 0.9999915361404419, 0.9998756647109985, 0.994261622428894, 0.9492355585098267] +CC(=O)Nc1cccc(-c2cc(N)ncc2Cl)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999977946281433, 0.9999790787696838, 0.9999574422836304, 0.9998409152030945, 0.9988248348236084, 0.992978572845459] +COc1cc(OC)c(-c2cc(N)ncc2Cl)cc1Cl; [None]; [None]; [0] +COc1cc(-c2cc(N)ncc2Cl)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(Br)ccc1O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999925494194031, 0.9999527931213379, 0.9999494552612305, 0.9999030232429504, 0.9993753433227539, 0.9965043663978577, 0.952472448348999] +Nc1cc(-c2cccc3c2OCO3)c(Cl)cn1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9999976754188538, 0.9996501207351685, 0.9993759393692017, 0.9397578239440918] +CC(C)c1ccc2nc(-c3cc(N)ncc3Cl)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2scc3c2OCCO3)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['c1scc2c1OCCO2']; [0.9990706443786621] +Nc1cc(-c2cc(-c3ccccc3)[nH]n2)c(Cl)cn1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccc3c2)c(Cl)cn1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cnc2ccccc2c1']; [0.9999992847442627, 0.9999947547912598, 0.9999614953994751, 0.9999483227729797, 0.9999076128005981, 0.9952158331871033, 0.9950509667396545] +CN(C)C(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [1.0, 0.9999990463256836, 0.9999943971633911, 0.9999622106552124, 0.9999510049819946, 0.9993435144424438] +CC(C)(C)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [1.0, 0.9999986886978149, 0.9999886751174927, 0.9999818801879883, 0.9999315142631531, 0.9990795850753784, 0.9318180084228516, 0.8355580568313599] +CC(C)(C)c1ccc(-c2cc(N)ncc2Cl)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999998211860657, 0.9999986886978149, 0.999990701675415, 0.9999730587005615, 0.9999660849571228, 0.9994343519210815, 0.9972277283668518, 0.9961913228034973] +Nc1cc(Cc2nc3ccc(F)c(F)c3[nH]2)c(Cl)cn1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)ncc2Cl)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(-c2csc(N)n2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(Cc2nc3c(F)c(F)ccc3[nH]2)c(Cl)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +Nc1cc(Cc2nc3ccccc3[nH]2)c(Cl)cn1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(N)ncc2Cl)c1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3s2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['OB(O)c1cc2ccccc2s1']; [0.9999803304672241] +Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)c(Cl)cn1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)ncc2Cl)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccccc1', 'CSc1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999997615814209, 0.999974250793457, 0.9999692440032959, 0.9999355673789978, 0.9995278716087341, 0.9027956128120422, 0.8415571451187134, 0.8226029872894287] +Cc1cc(-c2cc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(N)ncc3Cl)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999933242797852, 0.9999576807022095, 0.9994975328445435, 0.9986730813980103, 0.9985815286636353] +Nc1cc(-c2ccc(F)cc2Cl)c(Cl)cn1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999992251396179, 0.999985933303833, 0.9999818205833435, 0.9998631477355957] +Nc1cc(-c2ncc(Br)cn2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCC(=O)N3)c(Cl)cn1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999979734420776, 0.9999806880950928, 0.9998880624771118] +COc1ccc(-c2cc(N)ncc2Cl)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccccc1OC']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999980926513672, 0.999985933303833, 0.999896764755249, 0.9998942613601685, 0.9993653297424316, 0.9929284453392029, 0.9644936919212341] +CC[C@@H](CO)c1cc(N)ncc1Cl; [None]; [None]; [0] +CCc1ccc(-c2cc(N)ncc2Cl)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999998211860657, 0.9999750852584839, 0.9999344348907471, 0.999383807182312, 0.9959715604782104, 0.9527833461761475] +Nc1cc(-c2ccc(Cl)cc2Cl)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; ['OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999020099639893, 0.9998024702072144] +COc1cc(-c2cc(N)ncc2Cl)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [1.0, 0.9999998807907104, 0.9999908804893494] +Nc1cc(-c2cc3ccccn3n2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(CCCn2cncn2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc([C@H](CO)Cc2ccccc2)c(Cl)cn1; [None]; [None]; [0] +Cn1cc(-c2cc(N)ncc2Cl)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999992251396179, 0.9999991655349731, 0.9999983310699463, 0.9999960064888] +CC1(C)Cc2cc(-c3cc(N)ncc3Cl)ccc2O1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccc(O)cc23)c(Cl)cn1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999183416366577, 0.9969084858894348] +Nc1cc(-c2ncc3cccn3n2)c(Cl)cn1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(N)ncc3Cl)c2c1; [None]; [None]; [0] +COc1cc(-c2cc(N)ncc2Cl)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999997019767761, 0.9999986886978149, 0.9999956488609314, 0.9999319314956665, 0.9996931552886963, 0.9921199083328247] +COc1cc(F)c(-c2cc(N)ncc2Cl)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999997615814209, 0.9999897480010986, 0.9999871850013733, 0.9999748468399048, 0.995779275894165] +Nc1cc(-c2ncc(Cl)cn2)c(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(-c3cc(N)ncc3Cl)ncnc12; [None]; [None]; [0] +Nc1cc(-c2cnn(CCO)c2)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1']; ['OCCn1cc(B(O)O)cn1', 'Nc1cc(I)c(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'OCCn1cc(Br)cn1']; [0.9999982118606567, 0.9999932646751404, 0.999980092048645, 0.9999768733978271, 0.9990454912185669, 0.9947797060012817] +Nc1cc(-c2cc(N)nc3[nH]ccc23)c(Cl)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999992251396179, 0.9999973773956299, 0.9999901056289673, 0.9999538064002991, 0.9997760057449341, 0.9964416027069092, 0.7985695600509644] +COc1cc(-c2cc(N)ncc2Cl)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9998373985290527, 0.9975670576095581] +Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c(Cl)cn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(N)ncc2Cl)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)ncc2Cl)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cccc(OC)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999957084655762, 0.9999905824661255, 0.9999876618385315, 0.9999769926071167, 0.999648928642273, 0.9992682933807373, 0.7796151638031006] +CCNC(=O)N1CCC(c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)ncc2Cl)nc1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(N)ncc3Cl)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999739527702332, 0.9989172220230103] +CCn1cc(-c2cc(N)ncc2Cl)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cccn1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999953508377075, 0.9999924898147583, 0.999989926815033, 0.9999613761901855, 0.9997689723968506, 0.9908782243728638] +Nc1cc(-c2ccc3cn[nH]c3c2)c(Cl)cn1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999912977218628, 0.9999910593032837, 0.9999329447746277, 0.9999323487281799, 0.9998582005500793, 0.9975683093070984, 0.9934490919113159] +COc1ccc2c(c1)c(-c1cc(N)ncc1Cl)cn2C; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3o2)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1']; [0.9997953772544861, 0.999156653881073] +Nc1cc(-c2ncc3sccc3n2)c(Cl)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(N)ncc2Cl)c1; ['CNC(=O)c1ccc(OC)c(Br)c1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9893021583557129] +Nc1cc(-c2cc(-c3cccnc3)ccn2)c(Cl)cn1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)ncc1Cl; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999995231628418, 0.9999954700469971] +COc1ccc2nc(-c3cc(N)ncc3Cl)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['Nc1cc(C(=O)O)c(Cl)cn1']; [0.9993149638175964] +COc1ccc(F)c(C(=O)Nc2cc(N)ncc2Cl)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Cn1cc(-c2cc(N)ncc2Cl)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1cc(Br)c(Cl)cn1']; [0.9999938011169434] +Nc1cc(-c2ccc(OC(F)(F)F)cc2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 1.0, 1.0, 1.0, 0.9999995827674866, 0.9999971389770508, 0.9999864101409912, 0.9999736547470093, 0.9999663829803467, 0.9999006986618042] +CCc1cccc(-c2cc(N)ncc2Cl)n1; ['CCc1cccc(Br)n1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9850419759750366] +Nc1cc(-c2ncn3c2CCCC3)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)c(Cl)cn1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(N)ncc3Cl)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999996423721313, 0.9999996423721313, 0.9999984502792358, 0.9999983310699463, 0.9999966621398926, 0.9999663829803467, 0.9999294281005859, 0.9996597170829773, 0.9951800107955933, 0.8217986822128296] +Cc1n[nH]c2cc(-c3cc(N)ncc3Cl)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999997019767761, 0.999998927116394, 0.99998939037323, 0.9995536804199219] +CC(C)(O)c1ccc2cc(-c3cc(N)ncc3Cl)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)ncc2Cl)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.999998927116394, 0.9999954700469971, 0.9999936819076538, 0.9999745488166809, 0.9999359846115112, 0.999930739402771, 0.9995883703231812, 0.9983639717102051, 0.9907506704330444] +Cc1cc(-c2cc(N)ncc2Cl)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(N)ncc3Cl)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)ncc3Cl)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.999997079372406, 0.9999957084655762] +Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)c(Cl)cn1; ['NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1cc(I)c(Cl)cn1']; [0.9968597888946533] +Nc1cc(-c2cccc(N3CCCC3=O)c2)c(Cl)cn1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999922513961792, 0.9999873638153076, 0.9999643564224243] +Nc1cc(-c2ccc(CCO)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OCCc1ccc(B(O)O)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1']; [0.9999961853027344, 0.9999691843986511, 0.9998055696487427, 0.9991313219070435, 0.9985171556472778, 0.9776732921600342] +Cc1ncc(-c2ccc(-c3cc(N)ncc3Cl)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)ncc2Cl)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999880790710449, 0.9998839497566223, 0.9975103139877319] +CN(C)C(=O)c1ccc(-c2cc(N)ncc2Cl)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)ncc1Cl; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1ccc(Cl)cn1']; [0.8757326006889343] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999847412109375, 0.999686598777771, 0.9992334246635437] +CCNC(=O)Cc1ccc(-c2cc(N)ncc2Cl)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9981156587600708] +CN(C)C(=O)c1ccc(-c2cc(N)ncc2Cl)nc1; ['CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9952266216278076] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(N)ncc2Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)ncc1Cl; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1cc(Br)c(Cl)cn1']; [0.9998058080673218] +Cn1nc(-c2cc(N)ncc2Cl)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccccc1-c1cc(N)ncc1Cl; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999927282333374, 0.9999602437019348, 0.9999558925628662, 0.9992822408676147, 0.9943809509277344] +C[C@H](CS(C)(=O)=O)c1cc(N)ncc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(N)ncc2Cl)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)ncc1Cl; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9997398257255554, 0.9990178346633911] +COC(C)(C)CCc1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-c2ccccc2OC(F)(F)F)c(Cl)cn1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999994039535522, 0.999989926815033, 0.9999731779098511, 0.9962763786315918] +Nc1cc(-c2cccc(C(F)(F)F)c2)c(Cl)cn1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999991655349731, 0.9999446868896484, 0.9999160170555115, 0.9998862743377686, 0.9959955215454102] +Nc1cc(-c2ccnc3ccccc23)c(Cl)cn1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccnc2ccccc12']; [0.9999219179153442, 0.9995956420898438, 0.9994885325431824, 0.9987866878509521, 0.9825606942176819] +Cc1nnc(-c2ccccc2-c2cc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +Nc1cc(-c2ccccc2C(=O)[O-])c(Cl)cn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(N)ncc1Cl; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9997145533561707, 0.9932222366333008] +CP(C)(=O)c1ccccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(N)ncc3Cl)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1cc(Br)c(Cl)cn1']; [0.9888683557510376] +Nc1cc(-c2cnn(Cc3ccccc3)c2)c(Cl)cn1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1cc(Cl)c(Cl)cn1', 'c1ccc(Cn2cccn2)cc1']; [0.9999996423721313, 0.9999984502792358, 0.9999959468841553, 0.9999362230300903, 0.9711573123931885] +Nc1cc(Cc2cc(F)cc(F)c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)c3ccccc3)c2)c(Cl)cn1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999940991401672, 0.9999877214431763, 0.9999755024909973] +CC(C)(C)c1nc(-c2cc(N)ncc2Cl)cs1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)ncc2Cl)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999440908432007, 0.9965833425521851] +Nc1cc(-c2cnc(-c3ccccc3)[nH]2)c(Cl)cn1; [None]; [None]; [0] +CC(C)C(=O)COc1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-c2cc(Cl)ccc2Cl)c(Cl)cn1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999732375144958, 0.999704897403717, 0.9988531470298767, 0.9988429546356201, 0.9767438173294067] +COc1cnc(-c2cc(N)ncc2Cl)nc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccn23)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999719858169556, 0.9999626874923706, 0.9970797300338745] +Nc1cc(-c2cccc(Br)c2)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['OB(O)c1cccc(Br)c1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cccc(Br)c1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1cccc(Br)c1']; [0.9999874830245972, 0.9999852776527405, 0.9999462366104126, 0.9996283054351807, 0.9994431734085083] +CNc1nc(C)c(-c2cc(N)ncc2Cl)s1; [None]; [None]; [0] +Nc1cc(-n2ncc3cccc(F)c3c2=O)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(NCc2cccnc2)c(Cl)cn1; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9998403191566467, 0.9992154240608215, 0.9990862607955933, 0.9717957973480225] +Cc1nc(N)sc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(N)ncc2Cl)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.999933123588562, 0.9996119737625122, 0.9988247752189636, 0.9961111545562744, 0.9786328673362732] +Nc1cc(-c2c(Cl)cccc2Cl)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1', 'Clc1cccc(Cl)c1', 'Nc1cc(Cl)c(Cl)cn1']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999198913574219, 0.999881386756897, 0.9969401359558105, 0.9948744773864746, 0.9912747144699097, 0.989795446395874] +Nc1cc(-c2cccc(Cn3cncn3)c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccnc(N)n2)c(Cl)cn1; [None]; [None]; [0] +Cc1c(-c2cc(N)ncc2Cl)sc(=O)n1C; [None]; [None]; [0] +Nc1cc(Nc2cccnc2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; ['Nc1cccnc1', 'Nc1cccnc1']; [0.9987024068832397, 0.9866902828216553] +Nc1cc(-c2ccc3ccccc3c2)c(Cl)cn1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1ccc2ccccc2c1']; [0.999998152256012, 0.9999793767929077, 0.9999295473098755, 0.9996238946914673, 0.9983239769935608] +Nc1cc(NC(=O)c2cccs2)c(Cl)cn1; ['NC(=O)c1cccs1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9753119945526123] +Nc1cc(NCCc2c[nH]cn2)c(Cl)cn1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9993740916252136, 0.9967367649078369, 0.9850120544433594, 0.9781420230865479] +Nc1cc(-c2cnn3ncccc23)c(Cl)cn1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1']; [0.9999961853027344] +Nc1cc(-n2cnc3ccccc32)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9940603971481323, 0.9543988704681396, 0.9263603687286377] +Nc1cc(-c2c[nH]nc2C(F)(F)F)c(Cl)cn1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1']; [0.9999980926513672] +Nc1cc(NCCc2ccccc2)c(Cl)cn1; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1cc(F)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9969597458839417, 0.9928112626075745, 0.9888685345649719, 0.8964089155197144] +NC(=O)c1c(F)cccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(N)ncc3Cl)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['Nc1cc(Br)c(Cl)cn1']; [1.0] +Nc1cc(-c2cncc3ccccc23)c(Cl)cn1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Ic1cncc2ccccc12', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Brc1cncc2ccccc12', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cncc2ccccc12']; [0.9999816417694092, 0.999962568283081, 0.999521017074585, 0.9993841648101807, 0.9985311031341553, 0.9973675012588501, 0.944434404373169, 0.8522864580154419] +Nc1cc(NCc2ccc(Cl)cc2)c(Cl)cn1; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9996843338012695, 0.9980687499046326, 0.9966986179351807, 0.9659943580627441] +Nc1cc(-c2ccc3c(N)[nH]nc3c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc(CC(=O)[O-])c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc(CO)c2)c(Cl)cn1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'Nc1cc(Cl)c(Cl)cn1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1']; [0.9999880790710449, 0.9999476671218872, 0.9998056888580322, 0.9994174242019653, 0.9991908073425293, 0.9987789392471313, 0.9962869882583618, 0.9898033142089844, 0.9426224231719971] +Nc1cc(Nc2ccncc2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9997260570526123, 0.9976276159286499, 0.8384701609611511] +Nc1cc(-c2ccc(-c3cn[nH]c3)cc2)c(Cl)cn1; [None]; [None]; [0] +CN1c2ccc(-c3cc(N)ncc3Cl)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1cc(NCc2ccccc2F)c(Cl)cn1; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999234676361084, 0.9993808269500732, 0.9992172718048096, 0.9881483912467957] +CC(C)n1cc(-c2cc(N)ncc2Cl)nn1; ['CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9794512391090393, 0.9706377983093262] +Nc1cc(-c2csc3ncncc23)c(Cl)cn1; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)ncc2Cl)n1; [None]; [None]; [0] +COc1cc(-c2cc(N)ncc2Cl)ccc1C(=O)[O-]; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(N)ncc2Cl)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999403953552246, 0.9999062418937683, 0.9958301782608032] +Nc1cc(-c2cc3ccccc3[nH]2)c(Cl)cn1; ['CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2cc3ccccc3[nH]2)OC1(C)C', 'Clc1cc2ccccc2[nH]1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cc2ccccc2[nH]1', 'OB(O)c1cc2ccccc2[nH]1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'c1ccc2[nH]ccc2c1', 'c1ccc2[nH]ccc2c1']; [0.9999957084655762, 0.9999880790710449, 0.9999861717224121, 0.9999789595603943, 0.9996298551559448, 0.9785789251327515, 0.9747452735900879] +Nc1cc(CCc2c[nH]nn2)c(Cl)cn1; [None]; [None]; [0] +CSc1nc(-c2cc(N)ncc2Cl)c[nH]1; [None]; [None]; [0] +Nc1cc(-c2cncnc2N)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; ['Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9992125034332275, 0.9923260807991028] +Nc1cc(-c2ccc(F)cc2C(F)(F)F)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999971389770508, 0.9999945163726807, 0.9995383024215698] +CC(C)c1oncc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)ncc2Cl)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999958276748657, 0.9999912977218628, 0.9998443722724915] +CS(=O)(=O)C1CCN(c2cc(N)ncc2Cl)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9997316002845764, 0.9995181560516357, 0.9930214881896973, 0.9294368624687195] +Nc1cc(Oc2ccccn2)c(Cl)cn1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(N)ncc3Cl)cc2s1; [None]; [None]; [0] +Nc1cc(NC(=O)c2c(Cl)cccc2Cl)c(Cl)cn1; ['NC(=O)c1c(Cl)cccc1Cl']; ['Nc1cc(I)c(Cl)cn1']; [0.9481637477874756] +CC(C)(COc1cc(N)ncc1Cl)S(C)(=O)=O; [None]; [None]; [0] +Nc1cc(-c2cnn3ccccc23)c(Cl)cn1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1']; [0.999997615814209] +CCCn1cc(-c2cc(N)ncc2Cl)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cccn1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.999998927116394, 0.9999983310699463, 0.9999874830245972, 0.999944269657135, 0.9497351050376892] +NC(=O)CCCc1cc(N)ncc1Cl; [None]; [None]; [0] +COc1ccc(-c2cc(N)ncc2Cl)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccccc1Cl', 'COc1ccccc1Cl']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999995827674866, 0.999998152256012, 0.9999924898147583, 0.9999710917472839, 0.9999676942825317, 0.999668300151825, 0.9957643747329712, 0.9957517981529236, 0.9207611083984375, 0.8742790222167969] +Nc1cc(-c2cc[nH]c(=O)c2)c(Cl)cn1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1cc(Br)c(Cl)cn1']; [0.9999839067459106] +Nc1cc(-c2cccc3c2C(=O)CC3)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['O=C1CCc2cccc(Br)c21']; [0.9982466697692871] +CC(C)(O)CC(=O)NCCc1cc(N)ncc1Cl; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(N)ncc1Cl; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9030479192733765, 0.8799073696136475] +C[C@@H](Oc1cc(N)ncc1Cl)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1cc(F)c(Cl)cn1']; [0.9511348009109497] +CC(C)(N)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC(C)(N)c1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9883029460906982] +CCN(CC)c1cc(N)ncc1Cl; ['CCNCC', 'CCNCC']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; [0.9968721270561218, 0.992455244064331] +Nc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]ccc3o2)c(Cl)cn1; [None]; [None]; [0] +COc1ccncc1Nc1cc(N)ncc1Cl; ['COc1ccncc1N', 'COc1ccncc1N']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9977036714553833, 0.9631560444831848] +Nc1cc(Nc2cnccc2-c2ccccc2)c(Cl)cn1; ['Nc1cc(Cl)c(Cl)cn1']; ['Nc1cnccc1-c1ccccc1']; [0.9051464796066284] +COc1cc(CCc2cc(N)ncc2Cl)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(N)ncc2Cl)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999960660934448, 0.9999924898147583, 0.9999860525131226, 0.9999841451644897, 0.9997543096542358, 0.9982961416244507, 0.9901434183120728] +C[S@](=O)c1ccc(-c2cc(N)ncc2Cl)cc1; [None]; [None]; [0] +Nc1cc(Nc2cnc3ccccc3c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cnccc23)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9993308782577515, 0.9988800287246704] +COc1cccc(F)c1-c1cc(N)ncc1Cl; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1', 'COc1cccc(F)c1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1', 'COc1cccc(F)c1Cl']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [1.0, 0.9999997615814209, 0.9999996423721313, 0.9999996423721313, 0.9999993443489075, 0.9999984502792358, 0.9999964833259583, 0.9999964237213135, 0.9999857544898987, 0.9999340772628784, 0.999912679195404, 0.9978034496307373, 0.9914360642433167, 0.9879541397094727, 0.9089053869247437] +Nc1cc(-c2cnc3[nH]ccc3c2)c(Cl)cn1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1cc(Br)c(Cl)cn1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1cc(I)c(Cl)cn1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1cc(Cl)c(Cl)cn1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1cc(Br)c(Cl)cn1']; [0.9999995231628418, 0.9999986886978149, 0.9999959468841553, 0.9999939799308777, 0.9998785257339478, 0.9993064403533936, 0.9974632859230042] +Nc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)c(Cl)cn1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [1.0, 0.9999987483024597, 0.9999879598617554, 0.9999695420265198, 0.9998932480812073, 0.9984901547431946, 0.9969877004623413, 0.9951587915420532] +CS(=O)(=O)c1ccc(-c2cc(N)ncc2Cl)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccccc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [1.0, 0.9999973773956299, 0.9999961853027344, 0.9999947547912598, 0.9999558925628662, 0.9997389316558838, 0.9997238516807556, 0.9986383318901062, 0.9761881828308105] +Cc1cc(-c2cc(N)ncc2Cl)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(-n2ccc(CO)n2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9997071027755737, 0.9986938238143921, 0.9985368847846985] +CC1(c2cc(N)ncc2Cl)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](Nc1cc(N)ncc1Cl)C(C)(C)O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; [0.9675641059875488, 0.9112990498542786] +C[C@H](Nc1cc(N)ncc1Cl)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@@H](Nc1cc(N)ncc1Cl)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Nc1cc(F)c(Cl)cn1']; [0.9112990498542786] +CN(c1cc(N)ncc1Cl)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Nc1cc(-n2ncc3ccccc32)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9982426166534424, 0.9911224842071533, 0.9797439575195312, 0.8110164403915405] +Nc1cc(-n2ncc3c(O)cccc32)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.9991860389709473, 0.9945851564407349, 0.9753814935684204] +Nc1cc(-c2c(F)cccc2Cl)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2nc3ccc(O)cc3[nH]2)c(Cl)cn1; ['Nc1cc(C(=O)O)c(Cl)cn1']; ['Nc1ccc(O)cc1N']; [0.9970670938491821] +COc1ccc(-c2cc(N)ncc2Cl)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9999909996986389, 0.9999273419380188, 0.9998550415039062, 0.9985454082489014, 0.9900248646736145] +Nc1cc(-n2cnc(CCO)c2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc(-n3cncn3)cc2)c(Cl)cn1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)c3ccccc3)cc2)c(Cl)cn1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; ['Nc1cc(Br)c(Cl)cn1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Nc1cc(Cl)c(Cl)cn1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.9999978542327881, 0.9999914169311523, 0.9997395277023315, 0.998778223991394, 0.9954612255096436, 0.8330620527267456] +Nc1cc(-c2cn(Cc3ccccc3)nn2)c(Cl)cn1; ['Nc1cc(I)c(Cl)cn1']; ['c1ccc(Cn2ccnn2)cc1']; [0.9511120319366455] +Nc1cc(CS(=O)(=O)NCc2ccccn2)c(Cl)cn1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +Nc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ccn(CC[NH3+])n2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(CCC(=O)NCc2ccccn2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2nncn2C2CC2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2nnc(N)s2)c(Cl)cn1; ['NNC(N)=S', 'N#Cc1cc(N)ncc1Cl']; ['Nc1cc(C(=O)O)c(Cl)cn1', 'NNC(N)=S']; [0.9987894296646118, 0.9918866157531738] +CNC(=O)c1ccc(-c2cc(N)ncc2Cl)s1; ['CNC(=O)c1cccs1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9673452973365784] +CCc1cc(-c2cc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(N)ncc2Cl)n1; ['CC(C)(O)c1cccc(Br)n1']; ['Nc1cc(Br)c(Cl)cn1']; [0.9048054218292236] +CC1(C)Oc2ccc(-c3cc(N)ncc3Cl)nc2NC1=O; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(N)ncc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)ncc3Cl)c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cncc(N)n2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1']; ['Nc1cncc(Cl)n1']; [0.9860795140266418] +C[C@@H2]NC(=O)N1CCC(c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)ncc2Cl)nc(N)n1; [None]; [None]; [0] +Nc1cc(-c2nc3ccccc3s2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(C(=O)O)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['c1ccc2scnc2c1', 'Nc1ccccc1S', 'c1ccc2scnc2c1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9998177886009216, 0.9997735023498535, 0.9996136426925659, 0.9984683990478516, 0.9968321323394775] +Nc1cc(Oc2ccc(C[NH3+])cc2F)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc3nnsc23)c(Cl)cn1; ['Brc1cccc2nnsc12']; ['Nc1cc(Br)c(Cl)cn1']; [0.9936073422431946] +Nc1cc(-c2c[nH]c3cccnc23)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2nc(N)c3ccccc3n2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2ncc3cc[nH]c3n2)c(Cl)cn1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccsc23)c(Cl)cn1; [None]; [None]; [0] +COc1ccc(Oc2cc(N)ncc2Cl)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1']; [0.999864935874939, 0.9990091323852539, 0.9935710430145264] +COc1ccc(C#N)cc1-c1cc(N)ncc1Cl; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1', 'Nc1cc(I)c(Cl)cn1']; [0.9999980926513672, 0.9999971985816956, 0.9999933242797852, 0.999992847442627, 0.9999925494194031, 0.9998223781585693, 0.9997940063476562, 0.9988352060317993, 0.9430481791496277, 0.8770327568054199] +Nc1cc(-c2cn(CCO)cn2)c(Cl)cn1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)ncc2Cl)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c(I)c1']; ['Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1ccc(Cl)cn1']; [0.9999762773513794, 0.9999264478683472, 0.9998798370361328, 0.9998012185096741, 0.9980874061584473, 0.9963705539703369, 0.9872924089431763, 0.9574719667434692, 0.8982672691345215, 0.8591080904006958] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)ncc2Cl)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Br)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1']; [1.0, 0.9999971389770508, 0.9999925494194031, 0.9999914169311523, 0.9996237754821777] +Nc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)c(Cl)cn1; [None]; [None]; [0] +COc1ccc2c(-c3cccc(O)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.993140697479248, 0.9330994486808777] +CC(=O)Nc1ncc(-c2cc(N)ncc2Cl)[nH]1; [None]; [None]; [0] +Nc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)c(Cl)cn1; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'CC(C)(C)OC(=O)N1CCC(c2nc3ccccc3[nH]2)CC1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'Nc1cc(Cl)c(Cl)cn1']; [0.9982661008834839, 0.9903348684310913, 0.9782212972640991] +Nc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)c(Cl)cn1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'CC(C)(C)OC(=O)N1CC=C(c2c[nH]c3ccccc23)CC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Nc1cc(Br)c(Cl)cn1', 'Nc1cc(I)c(Cl)cn1', 'Nc1cc(Cl)c(Cl)cn1', 'Nc1cc(F)c(Cl)cn1', 'COc1cc(N)ncc1Cl', 'Nc1cc(Cl)c(Cl)cn1']; [0.9996286630630493, 0.9993371963500977, 0.9982901811599731, 0.9978629350662231, 0.981200635433197, 0.8587313890457153] +CN(C)c1cc(-c2cc(N)ncc2Cl)cnn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(N)ncc2Cl)CC1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(Cl)c(O)c3)ncnc2c1; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9973020553588867, 0.9969885945320129] +COc1ccc2c(Oc3ccc(F)cc3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(O)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1']; ['Oc1ccc(F)cc1', 'Fc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9988681674003601, 0.9907004833221436, 0.9723871946334839] +CNS(=O)(=O)c1ccc(-c2ncnc3cc(OC)ccc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9994925856590271, 0.9871959090232849] +COc1ccc2c(-c3c(Cl)ccc4c3OCO4)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.994314432144165] +COc1ccc2c(-c3c(Cl)cccc3Cl)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9925640821456909] +COc1ccc2c(-c3ccc(O)cc3Cl)ncnc2c1; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1ccc(O)cc1Cl']; [0.9909461140632629, 0.9752805233001709] +COc1ccc2c(-c3ccc(C(N)=O)cc3)ncnc2c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9998018741607666, 0.9618262052536011] +COc1ccc2c(-c3cccc4ncccc34)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)cc3F)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C']; ['OB(O)c1ccc(O)cc1F', 'COc1ccc2c(Cl)ncnc2c1']; [0.9907288551330566, 0.957362174987793] +COc1ccc2c(-c3ccc(C(N)=O)cc3F)ncnc2c1; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(Br)c(F)c1']; [0.99959397315979, 0.9992245435714722, 0.9985100626945496] +COc1ccc2c(-c3ccc(C(N)=O)cc3OC)ncnc2c1; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9998677968978882] +COc1ccc2c(-c3n[nH]c4ccccc34)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cc(F)ccc3OC)ncnc2c1; ['COc1ccc(F)cc1B(O)O']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9999426603317261] +COc1ccc2c(-c3ccc(F)cc3OC)ncnc2c1; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9999284744262695, 0.9998718500137329] +COc1ccc2c(-c3ccnc(N)n3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(C(=O)[O-])cc3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)c(OC)c3)ncnc2c1; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9958540797233582, 0.9956175088882446] +COC(=O)c1ccc(-c2ncnc3cc(OC)ccc23)o1; ['COC(=O)c1ccc(B(O)O)o1']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9588623046875] +COc1ccc2c(-c3ccc4ccccc4c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C']; ['OB(O)c1ccc2ccccc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9999608993530273, 0.999802827835083] +COc1ccc2c(-c3ccc(-c4ccc(O)cc4O)cc3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cccc(Br)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C']; ['OB(O)c1cccc(Br)c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9995373487472534, 0.9989235997200012] +COc1ccc2c(-c3cc(F)c4nc(C)[nH]c4c3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)c(F)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C']; ['OB(O)c1ccc(O)c(F)c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9993884563446045, 0.9991304874420166] +COC(=O)c1ccc(Cl)c(-c2ncnc3cc(OC)ccc23)c1; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(I)c1']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2cncnc2c1']; [0.99995356798172, 0.9989591836929321, 0.8894904851913452] +COc1ccc2c(-c3cn(C)c4ccccc34)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['Cn1ccc2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9992910623550415, 0.9981541633605957] +COc1ccc2c(-c3cn[nH]c3Cl)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)cc3O)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['Oc1cccc(O)c1']; [0.8099663257598877] +COc1ccc2c(-c3cnn4ncccc34)ncnc2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9999238848686218] +COc1ccc2c(CCc3ccc(O)c(OC)c3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(F)c(Cl)c3)ncnc2c1; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccccc1Cl']; [0.999971866607666, 0.999963641166687, 0.9205480813980103] +COc1ccc2c(-c3ccnc(N)c3)ncnc2c1; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'Nc1cc(B(O)O)ccn1']; [0.9997943043708801, 0.9991538524627686] +COc1ccc2c(-c3cc(O)ccc3Cl)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['OB(O)c1cc(O)ccc1Cl']; [0.9659932851791382] +COc1ccc2c(-c3[nH]cnc3-c3ccc(F)cc3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cnc(O)c(Cl)c3)ncnc2c1; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9996521472930908] +COc1ccc2c(-c3c(C)ccc4[nH]ncc34)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999655485153198, 0.9981573820114136] +COc1ccc2c(-c3cc(CO)ccc3C)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B(O)O']; [0.9998469352722168, 0.9923193454742432] +COc1ccc2c(-c3c[nH]c(C(N)=O)c3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3c[nH]c4cnccc34)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(OC)c(OC)c3)ncnc2c1; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9998100996017456, 0.9991835355758667] +COc1ccc2c(COc3ccccc3Cl)ncnc2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ncnc3cc(OC)ccc23)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9995038509368896, 0.997610330581665] +CCOc1cccc(-c2ncnc3cc(OC)ccc23)c1; ['CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9997818470001221, 0.9994056224822998] +COc1ccc2c(-c3ccc(S(C)(=O)=O)cc3)ncnc2c1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999251961708069, 0.9987866878509521] +COc1ccc2c(-c3ccc4nc(C)[nH]c4c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; [0.9994454979896545] +COc1ccc2c(-c3cncc(O)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C']; ['OB(O)c1cncc(O)c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9814133048057556, 0.9154881238937378] +COc1ccc2c(-c3nc4ccccc4s3)ncnc2c1; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['COc1ccc2c(Cl)ncnc2c1']; [0.999398410320282] +COc1ccc2c(-c3ccc(NC(N)=O)cc3)ncnc2c1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9996484518051147] +COc1ccc2c(-c3cnc4[nH]ccc4c3)ncnc2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999836087226868, 0.9998920559883118] +COc1ccc2c(-c3ccc4c(c3)CC(=O)N4)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C']; ['O=C1Cc2cc(B(O)O)ccc2N1', 'COc1ccc2c(Cl)ncnc2c1']; [0.998914361000061, 0.9944456815719604] +COc1cc(CCc2ncnc3cc(OC)ccc23)cc(OC)c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ncnc2cc(OC)ccc12; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9836221933364868] +COc1ccc2c(N(C)c3ccc4c(C)n[nH]c4c3)ncnc2c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ncnc4cc(OC)ccc34)ccc12; [None]; [None]; [0] +COc1ccc2c(N(C)c3cccc(Cl)c3)ncnc2c1; ['CNc1cccc(Cl)c1']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9987262487411499] +CCc1cc(O)c(F)cc1-c1ncnc2cc(OC)ccc12; [None]; [None]; [0] +COc1ccc2c(-c3ccc(O)cc3C)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['Cc1cc(O)ccc1B(O)O']; [0.9924637079238892] +COc1ccc2c(-c3[nH]nc(C)c3C)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cc(C(F)F)n[nH]3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccncc3Cl)ncnc2c1; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1ccncc1Cl', 'COc1ccc2cncnc2c1', 'COc1ccc2cncnc2c1', 'COc1ccc2cncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1ccncc1Cl', 'COc1ccc2c(Cl)ncnc2c1', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'OB(O)c1ccncc1Cl']; [0.9997270107269287, 0.9939544796943665, 0.9782696962356567, 0.9612460136413574, 0.9490947723388672, 0.8477660417556763] +CCc1sccc1-c1ncnc2cc(OC)ccc12; [None]; [None]; [0] +COc1ccc2c([C@H](C)CC(N)=O)ncnc2c1; [None]; [None]; [0] +CNc1nccc(-c2ncnc3cc(OC)ccc23)n1; [None]; [None]; [0] +COc1ccc2c(-c3cc(Cl)c(O)c(Cl)c3)ncnc2c1; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cccc1Cl']; [0.9941781759262085, 0.9791358709335327, 0.8146907091140747] +COc1ccc2c(-c3ccc4c(c3)CCN4)ncnc2c1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999006986618042, 0.9991916418075562] +COc1ccc2c(Nc3ccncc3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'Brc1ccncc1', 'COc1ccc2c(=O)[nH]cnc2c1', 'COc1ccc2c(N)ncnc2c1']; ['Nc1ccncc1', 'COc1ccc2c(N)ncnc2c1', 'Nc1ccncc1', 'Clc1ccncc1']; [0.9999822974205017, 0.9992164373397827, 0.9990200996398926, 0.9977341890335083] +COc1ccc2c(-c3ccc4[nH]c(=O)[nH]c4c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C']; ['O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9993695616722107, 0.9989144206047058] +COc1ccc2c(-c3ccc(Br)cc3F)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['OB(O)c1ccc(Br)cc1F', 'COc1ccc2c(Cl)ncnc2c1', 'Fc1cccc(Br)c1']; [0.9997305274009705, 0.9995274543762207, 0.8902368545532227] +CNc1nc(-c2ncnc3cc(OC)ccc23)ncc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnc3cc(OC)ccc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9995695352554321, 0.9967231154441833] +COc1ccc2c(N(C)c3cccc4[nH]ncc34)ncnc2c1; ['CNc1cccc2[nH]ncc12']; ['COc1ccc2c(Cl)ncnc2c1']; [0.9999382495880127] +COc1ccc2c(-c3cc(C(=O)[O-])c(C)o3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cc(O)cc(Br)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C']; ['OB(O)c1cc(O)cc(Br)c1', 'COc1ccc2c(Cl)ncnc2c1']; [0.9880355596542358, 0.9092240333557129] +COc1ccc2c(-c3[nH]nc4ccc(F)cc34)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3c(N)cnn3C)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cc(O)n4nccc4n3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3ccc(C(=O)NC4CC4)cc3)ncnc2c1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'COc1ccc2c(Cl)ncnc2c1']; ['COc1ccc2c(Cl)ncnc2c1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [0.999956488609314, 0.9999094009399414] +COc1ccc2c(-c3ccc4nc(C)oc4c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1']; [0.9999839067459106, 0.9999129772186279] +COc1ccc2c(-c3cccc(SC)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(Cl)ncnc2c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CSc1cccc(B(O)O)c1']; [0.9999134540557861, 0.9986506700515747] +COc1ccc2c(OCc3cccc4ccccc34)ncnc2c1; ['COc1ccc2c(O)ncnc2c1', 'BrCc1cccc2ccccc12', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1', 'BrCc1cccc2ccccc12', 'COc1ccc2c(=O)[nH]cnc2c1']; ['ClCc1cccc2ccccc12', 'COc1ccc2c(O)ncnc2c1', 'OCc1cccc2ccccc12', 'OCc1cccc2ccccc12', 'COc1ccc2c(=O)[nH]cnc2c1', 'ClCc1cccc2ccccc12']; [0.9973583221435547, 0.9953181743621826, 0.9946642518043518, 0.9880985021591187, 0.98746657371521, 0.9804370403289795] +COc1ccc2c(-c3ccc(C(N)=O)c(C)c3)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; [0.999962568283081] +COc1ccc2c(Oc3ccc(F)cc3F)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(O)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1']; ['Oc1ccc(F)cc1F', 'OB(O)c1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999817609786987, 0.9999063014984131, 0.9998807907104492] +COc1ccc2c(-c3c(-c4ccccc4)noc3C)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.9996650815010071] +COc1ccc2c(-c3cc(C)c(O)c(C)c3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cc(F)c(O)c(F)c3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(OCc3ccc(F)cc3F)ncnc2c1; ['COc1ccc2c(O)ncnc2c1', 'COc1ccc2c(O)ncnc2c1', 'COc1ccc2c(O)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1', 'COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1']; ['Fc1ccc(CCl)c(F)c1', 'Fc1ccc(CBr)c(F)c1', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F', 'Fc1ccc(CCl)c(F)c1', 'Fc1ccc(CBr)c(F)c1']; [0.9997787475585938, 0.9996424913406372, 0.999176025390625, 0.9968457221984863, 0.9956415891647339, 0.9944552183151245, 0.989611029624939] +COc1ccc2c(NCc3c(F)cccc3Cl)ncnc2c1; ['COc1ccc2c(Cl)ncnc2c1', 'COc1ccc2c(=O)[nH]cnc2c1']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl']; [0.9999921321868896, 0.9996097683906555] +COc1ccc2c(-c3ccc4c(=O)[nH][nH]c4c3)ncnc2c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)N(C)c1ccccc1']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1', 'CC(=O)N(C)c1ccccc1', 'OB(O)c1cncc(Br)c1']; [0.9999997615814209, 0.9999978542327881, 0.9999958276748657, 0.9999821186065674, 0.9997904300689697, 0.9974443912506104, 0.994223415851593, 0.9830535650253296, 0.9828653335571289] +CCOc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCOc1ccc(I)cc1', 'CCOc1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(I)c1', 'CCOc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CCOc1ccc([Mg]Br)cc1', 'Brc1cncc(Br)c1', 'CCOc1ccc(Cl)cc1', 'CCOc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Cl)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'CCOc1ccc(I)cc1', 'CCOc1ccc([Mg]Br)cc1', 'Clc1cncc(Br)c1', 'CCOc1ccc([B-](F)(F)F)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCOc1ccc(Br)cc1', 'CCOc1ccccc1']; [0.9999994039535522, 0.9999971985816956, 0.9999966621398926, 0.9999754428863525, 0.9999655485153198, 0.9999460577964783, 0.9999113082885742, 0.9997200965881348, 0.9997167587280273, 0.9996941089630127, 0.9995112419128418, 0.9991494417190552, 0.9988623261451721, 0.9972785711288452, 0.9972720742225647, 0.9963958263397217, 0.9958473443984985, 0.9951053857803345, 0.991279125213623, 0.8939050436019897] +COc1ccc2c(-c3ocnc3-c3ccc(F)cc3)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(CCc3c[nH]c4ccccc34)ncnc2c1; [None]; [None]; [0] +COc1ccc2c(-c3cn[nH]c3-c3ccc(Cl)cc3)ncnc2c1; [None]; [None]; [0] +COc1ncccc1-c1cncc(Br)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'COc1ncccc1I', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1ncccc1Cl', 'Brc1cncc(I)c1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1I', 'COc1ncccc1Br', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1cncc(Br)c1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'OB(O)c1cncc(Br)c1', 'COc1ncccc1Br', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'COc1ncccc1I', 'COc1ncccc1Br']; [0.9999819397926331, 0.9999748468399048, 0.9999420642852783, 0.9999315738677979, 0.9993321895599365, 0.9992203712463379, 0.9963170886039734, 0.9942656755447388, 0.9927670955657959, 0.9924724102020264, 0.9867691397666931, 0.9773069620132446, 0.9301588535308838] +Brc1cncc(-c2ncc3ccccc3n2)c1; ['Brc1ncc2ccccc2n1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Nc1ccccc1CO', 'Brc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'NCc1ccccc1N', 'BrCc1ccccc1Br', 'NCc1ccccc1N', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1ncc2ccccc2n1', 'O=Cc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'O=Cc1cncc(Br)c1', 'O=Cc1cncc(Br)c1', 'OCc1cncc(Br)c1', 'c1ccc2ncncc2c1', 'Clc1ncc2ccccc2n1']; [0.9999241232872009, 0.9998729825019836, 0.9995183944702148, 0.9994988441467285, 0.9992480874061584, 0.9988049864768982, 0.98884117603302, 0.9796547889709473, 0.9524974822998047, 0.930632472038269] +Cc1nc(C(C)(C)O)sc1-c1cncc(Br)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Cc1csc(C(C)(C)O)n1']; ['Cc1csc(C(C)(C)O)n1', 'Cc1csc(C(C)(C)O)n1', 'Clc1cncc(Br)c1']; [0.9972676038742065, 0.99420565366745, 0.9933346509933472] +Brc1cncc(-c2cnc3cccnn23)c1; ['Brc1cnc2cccnn12', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cnc2cccnn12', 'Clc1cnc2cccnn12', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cnc2cccnn12', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1', 'c1cnn2ccnc2c1']; [1.0, 0.9999998211860657, 0.9999955892562866, 0.9999951124191284, 0.9992092847824097, 0.9989538192749023, 0.9985814094543457] +COc1cc(-c2cncc(Br)c2)cc(OC)c1OC; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1cc(B(O)O)cc(OC)c1OC', 'Brc1cncc(Br)c1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['COc1cc(I)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Clc1cncc(Br)c1', 'COc1cc(B(O)O)cc(OC)c1OC', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc([Mg]Br)cc(OC)c1OC']; [0.9999765157699585, 0.9999738931655884, 0.9997817873954773, 0.9997683167457581, 0.99976646900177, 0.9997042417526245, 0.9992755651473999, 0.9983882904052734, 0.9931827783584595, 0.9927617907524109, 0.9906333684921265, 0.9884235858917236, 0.9295300245285034, 0.8758881092071533, 0.8211162090301514] +Cc1ccc2ncn(-c3cncc(Br)c3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Brc1cncc(Br)c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Brc1cncc(Br)c1', 'Cc1ccc2[nH]cnc2c1', 'Brc1cncc(I)c1']; ['Fc1cncc(Br)c1', 'Cc1ccc2nc[nH]c2c1', 'Fc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Cc1ccc2[nH]cnc2c1', 'OB(O)c1cncc(Br)c1', 'Cc1ccc2nc[nH]c2c1']; [0.9997885227203369, 0.9991393089294434, 0.9990650415420532, 0.9986331462860107, 0.998054027557373, 0.9964857697486877, 0.995261549949646] +CS(=O)(=O)c1cccc(-c2cncc(Br)c2)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'Brc1cncc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', None]; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Cl)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Clc1cncc(Br)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1ccccc1', None]; [0.9999988675117493, 0.9999935626983643, 0.9999922513961792, 0.9999855756759644, 0.9999676942825317, 0.9999460577964783, 0.9998536705970764, 0.9996321201324463, 0.9995734691619873, 0.9994975924491882, 0.9453594088554382, 0.8990791440010071, 0] +COc1ccc2c(CCc3ccc(F)cc3F)ncnc2c1; [None]; [None]; [0] +COc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1ccc(I)cc1', 'Brc1cncc(I)c1', 'Br[Zn]c1cncc(Br)c1', 'COc1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'COc1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'Brc1cncc(Br)c1', 'COc1ccc([Mg]Br)cc1', 'Brc1cncc(Br)c1', 'COc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'COc1ccc(Cl)cc1', 'Brc1cncc(Br)c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(Cl)cc1', 'OB(O)c1cncc(Br)c1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'COc1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'COc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(OC)cc1', 'OB(O)c1cncc(Br)c1', 'COc1ccc([Mg]Br)cc1', 'COc1ccc([Si](OC)(OC)OC)cc1', 'OB(O)c1cncc(Br)c1', 'COc1ccc(Br)cc1']; [0.9999983310699463, 0.9999793767929077, 0.9999772906303406, 0.9999748468399048, 0.9999227523803711, 0.9997923374176025, 0.999742865562439, 0.9990886449813843, 0.9987955689430237, 0.9985601902008057, 0.9981966018676758, 0.9977169036865234, 0.995837390422821, 0.9929331541061401, 0.9928934574127197, 0.9901077151298523, 0.9871910810470581, 0.9870092272758484, 0.9720726013183594, 0.966454029083252, 0.8353307843208313] +Brc1cncc(-c2nc3ccccc3[nH]2)c1; ['Nc1ccccc1N', 'Nc1ccccc1[N+](=O)[O-]', 'CCOC(=O)c1cncc(Br)c1', 'Nc1ccccc1N']; ['O=Cc1cncc(Br)c1', 'O=Cc1cncc(Br)c1', 'Nc1ccccc1N', 'O=C(O)c1cncc(Br)c1']; [0.9999422430992126, 0.9998664855957031, 0.9997515678405762, 0.9990278482437134] +Oc1cccc(-c2cncc(Br)c2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1']; ['Oc1cccc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1']; [0.9999245405197144, 0.9997329711914062, 0.9992875456809998, 0.9984660148620605, 0.9976158142089844, 0.9973304867744446, 0.9971465468406677, 0.9835879802703857, 0.9725032448768616, 0.9516987800598145] +N#Cc1ccc(O)c(-c2cncc(Br)c2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'N#Cc1ccc(O)c(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Br[Zn]c1cncc(Br)c1', 'N#Cc1ccc(O)c(Cl)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['N#Cc1ccc(O)c(I)c1', 'OB(O)c1cncc(Br)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'OB(O)c1cncc(Br)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(I)c1', 'OB(O)c1cncc(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9999750852584839, 0.9998328685760498, 0.9997309446334839, 0.9977879524230957, 0.9968339204788208, 0.9962150454521179, 0.9955087900161743, 0.9660801887512207, 0.9613692760467529, 0.915142297744751, 0.8639001846313477] +O=C(Nc1cccc(-c2cncc(Br)c2)c1)C1CC1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'O=C(Nc1cccc(Br)c1)C1CC1', 'Clc1cccc(-c2cncc(Br)c2)c1']; ['O=C(Nc1cccc(Br)c1)C1CC1', 'OB(O)c1cncc(Br)c1', 'NC(=O)C1CC1']; [0.9999381899833679, 0.9975084066390991, 0.9688683748245239] +Cc1cc(Nc2cncc(Br)c2)sn1; ['Cc1cc(N)sn1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['Clc1cncc(Br)c1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1']; [0.9998947381973267, 0.9993093013763428, 0.9966859817504883] +Brc1cncc(-c2ccc(N3CCOCC3)cc2)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1cncc(Br)c1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1cncc(Br)c1', 'Brc1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'Brc1cncc(-c2ccccc2)c1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1ccc(N2CCOCC2)cc1', 'Brc1cncc(I)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1cncc(Br)c1', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1cncc(Br)c1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1cncc(Br)c1', 'Fc1ccc(-c2cncc(Br)c2)cc1', 'O=C(ON1CCOCC1)c1ccccc1']; [0.9999997615814209, 0.9999967813491821, 0.9999946355819702, 0.9999942779541016, 0.9999558925628662, 0.9999410510063171, 0.9998970031738281, 0.999891996383667, 0.9997199773788452, 0.9997167587280273, 0.9996758699417114, 0.9993066191673279, 0.9991236925125122, 0.9984375834465027, 0.9955071210861206, 0.9942052364349365, 0.9897109866142273, 0.9866378307342529] +Brc1cncc(Nc2ncccn2)c1; ['Fc1ncccn1', 'Clc1ncccn1', 'Ic1ncccn1', 'Brc1cncc(I)c1', 'Brc1ncccn1', 'CSc1ncccn1', 'CS(=O)(=O)c1ncccn1', 'CS(=O)c1ncccn1', 'Fc1cncc(Br)c1', 'CS(=O)(=O)c1ncccn1', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1ncccn1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1ncccn1', 'O=CNc1cncc(Br)c1', 'Nc1ncccn1']; [0.999975323677063, 0.9999632835388184, 0.9998987913131714, 0.9996155500411987, 0.99959397315979, 0.9993277788162231, 0.9992420673370361, 0.998248815536499, 0.9977866411209106, 0.995890736579895, 0.9937931299209595] +N#Cc1cccc(Cn2cc(-c3cncc(Br)c3)cn2)c1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cncc(Br)c2)cc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C']; ['O=C([O-])c1ccc(Cl)cc1']; [0.9834450483322144] +O=C(Nc1ccccc1)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Clc1cncc(Br)c1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [1.0, 0.9999985694885254, 0.9999977350234985, 0.9999953508377075, 0.9999757409095764, 0.9997549057006836, 0.9997146129608154, 0.9997121691703796, 0.9986863136291504] +NC(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Br[Zn]c1cncc(Br)c1', 'NC(=O)c1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'NC(=O)c1ccc(Cl)cc1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(I)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'NC(=O)c1ccc(Cl)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'NC(=O)c1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(Cl)cc1']; [0.9999997019767761, 0.9999963045120239, 0.9999939799308777, 0.9999909400939941, 0.9999899864196777, 0.9999231100082397, 0.9998723864555359, 0.9997580051422119, 0.999711275100708, 0.9996856451034546, 0.9988956451416016, 0.998511791229248, 0.9962694644927979, 0.9925066232681274, 0.9251235127449036, 0.833045482635498] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cncc(Br)c3)cc2)CC1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)NCc1ccc(Br)cc1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9999990463256836, 0.9999855756759644, 0.999904990196228, 0.9998937249183655, 0.9986826181411743, 0.998405933380127, 0.9918455481529236] +Brc1cncc(-c2nccc3ccccc23)c1; ['Brc1nccc2ccccc12', 'Ic1nccc2ccccc12', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1nccc2ccccc12', 'Brc1cncc(Br)c1', 'Clc1nccc2ccccc12', 'OB(O)c1cncc(Br)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1nccc2ccccc12', 'OB(O)c1cncc(Br)c1', 'OB(O)c1nccc2ccccc12', 'OB(O)c1cncc(Br)c1', 'c1ccc2cnccc2c1']; [0.999782919883728, 0.9997778534889221, 0.9997668862342834, 0.9982481598854065, 0.9933586120605469, 0.9912135601043701, 0.8119591474533081] +O=C(c1ccc(-c2cncc(Br)c2)cc1)N1CCOCC1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(Cl)cc1)N1CCOCC1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999997615814209, 0.999996542930603, 0.9999936819076538, 0.9999902248382568, 0.9999877214431763, 0.9999647736549377, 0.9998549222946167, 0.9995442628860474, 0.9993366003036499, 0.9991873502731323, 0.985100269317627, 0.9583092927932739] +Brc1cncc(-c2cccc(C3CCNCC3)c2)c1; ['Brc1cccc(C2CCNCC2)c1', 'CC(C)(C)OC(=O)N1CCC(c2cccc(Br)c2)CC1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cccc(C2CCNCC2)c1', 'Clc1cccc(C2CCNCC2)c1', 'Brc1cccc(C2CCNCC2)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1cccc(C2CCNCC2)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1']; [0.9999899864196777, 0.9999895691871643, 0.9999377727508545, 0.9878888130187988, 0.9545447826385498, 0.8840329647064209] +OCCOc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Fc1ccc(-c2cncc(Br)c2)cc1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'OCCO', 'OCCOc1ccc(Br)cc1']; [0.9999998211860657, 0.999996542930603, 0.9999929070472717, 0.9999780058860779, 0.9999324679374695, 0.9997350573539734, 0.9996944665908813, 0.9996393918991089, 0.9995275139808655, 0.9981588125228882, 0.9975831508636475, 0.9953694343566895, 0.948522686958313] +Brc1cncc(Nc2ccncn2)c1; ['Nc1ccncn1', 'Ic1ccncn1', 'Clc1ccncn1', 'Brc1cncc(I)c1', 'Fc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Fc1ccncn1', 'Brc1ccncn1', 'Brc1cncc(Br)c1']; ['OB(O)c1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1ccncn1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1ccncn1']; [0.9999414682388306, 0.9999215006828308, 0.9998923540115356, 0.9996984004974365, 0.9996135234832764, 0.9991323947906494, 0.999050498008728, 0.9985376596450806, 0.9975560903549194] +O=C(c1ccc(-c2cncc(Br)c2)nc1)N1CCOCC1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'O=C(c1ccc(Cl)nc1)N1CCOCC1', 'Brc1cncc(Br)c1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1', 'OB(O)c1cncc(Br)c1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999704360961914, 0.9999006390571594, 0.998479962348938] +CNS(=O)(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1']; ['CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'Clc1cncc(Br)c1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.999959409236908, 0.9999110698699951, 0.9998258948326111, 0.999029278755188, 0.997597336769104, 0.9897449016571045, 0.9009350538253784] +C[C@@H](O)COc1ccc(-c2cncc(Br)c2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cncc(Br)c2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Br[Zn]c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'FC(F)(F)c1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'O=S(=O)(Oc1ccc(C(F)(F)F)cc1)C(F)(F)F', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'FC(F)(F)c1ccc(Cl)cc1', 'Brc1cncc(Br)c1', None]; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'FC(F)(F)c1ccc([Mg]Br)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)c1ccc(Br)cc1', None]; [0.9999998807907104, 0.9999988675117493, 0.9999972581863403, 0.9999955892562866, 0.9999878406524658, 0.999982476234436, 0.9999493360519409, 0.9999241828918457, 0.9998663663864136, 0.9998134970664978, 0.999792218208313, 0.9997185468673706, 0.9996234774589539, 0.9994711875915527, 0.9992771148681641, 0.9988164901733398, 0.9977940320968628, 0.9960307478904724, 0] +CN(C)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cncc(I)c1', 'CN(C)c1ccc(I)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc([Mg]Br)cc1', 'CN(C)c1ccc(Cl)cc1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CN(C)c1ccccc1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CN(C)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'Clc1cncc(Br)c1', 'CN(C)c1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'CN(C)c1ccc([Mg]Br)cc1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CN(C)c1ccccc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccccc1', 'Clc1cncc(Br)c1']; [0.9999996423721313, 0.9999974966049194, 0.9999933242797852, 0.9999912977218628, 0.9999849796295166, 0.9999343156814575, 0.9999256730079651, 0.9999210238456726, 0.9998774528503418, 0.9997636079788208, 0.9996190071105957, 0.9995138049125671, 0.9993858337402344, 0.9982637166976929, 0.9977871179580688, 0.9970804452896118, 0.9947996139526367, 0.9904003143310547, 0.9731533527374268, 0.9074618816375732, 0.8892014026641846] +Cc1nc(C)c(-c2cncc(Br)c2)s1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Cc1nc(C)c(Br)s1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Cc1csc(C)n1']; ['Cc1nc(C)c(Br)s1', 'OB(O)c1cncc(Br)c1', 'Cc1csc(C)n1', 'Cc1csc(C)n1', 'Clc1cncc(Br)c1']; [0.9999651908874512, 0.9987715482711792, 0.9976565837860107, 0.9750055074691772, 0.9298713207244873] +CCNS(=O)(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'CCNS(=O)(=O)c1ccc(Cl)cc1']; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1', 'Clc1cncc(Br)c1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.999984622001648, 0.9999257922172546, 0.9998396635055542, 0.9985073208808899, 0.9977931380271912, 0.9896948933601379] +CN(C)S(=O)(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccccc1']; [0.9999971389770508, 0.9999961853027344, 0.999991774559021, 0.9999786615371704, 0.9999661445617676, 0.9999387860298157, 0.9999173879623413, 0.9996497631072998, 0.9980248212814331, 0.9974432587623596, 0.9964630603790283, 0.9608713984489441, 0.8931121826171875] +O=S1(=O)Cc2ccc(-c3cncc(Br)c3)cc2C1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Brc1cncc(Br)c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'OB(O)c1cncc(Br)c1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999899864196777, 0.9995251893997192, 0.973994255065918] +CS(=O)(=O)N1CCC(c2cncc(Br)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cncc(Br)c2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1', 'CC(C)c1cc(Cl)nc(N)n1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'CC(C)c1cc(Cl)nc(N)n1']; [0.9999979138374329, 0.9999336004257202, 0.9993568658828735] +CC(=O)N1CCCN(c2cccc(-c3cncc(Br)c3)c2)CC1; ['CC(=O)N1CCCNCC1']; ['Clc1cccc(-c2cncc(Br)c2)c1']; [0.9997777938842773] +Brc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1ccc(I)cc1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Br[Zn]c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'O=S(=O)(Oc1ccc(Br)cc1)C(F)(F)F', 'Brc1ccc(I)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Br[Mg]c1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'Brc1ccc(Br)cc1', 'Clc1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Clc1cncc(Br)c1', 'OB(O)c1ccc(Br)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1ccc(Br)cc1', 'Brc1ccc(I)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CO[Si](OC)(OC)c1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9999989867210388, 0.9999926090240479, 0.9999849796295166, 0.9999794960021973, 0.9999741315841675, 0.9999153017997742, 0.9996293187141418, 0.9994920492172241, 0.9994587898254395, 0.9988112449645996, 0.9982771277427673, 0.997776448726654, 0.996924877166748, 0.9926608800888062, 0.9917992949485779, 0.9902781248092651, 0.9855437278747559, 0.9757586717605591, 0.9726982116699219, 0.931431770324707] +CCN(CC)C(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cncc(I)c1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Brc1cncc(Br)c1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'Clc1cncc(Br)c1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Clc1cncc(Br)c1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [1.0, 0.9999995827674866, 0.9999995231628418, 0.9999984502792358, 0.9999979734420776, 0.9999938011169434, 0.9999802112579346, 0.9998366832733154, 0.9998267292976379, 0.9998006224632263, 0.9883769154548645] +Brc1cncc(-c2ccn3nccc3n2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Ic1ccn2nccc2n1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1ccn2nccc2n1', 'Clc1ccn2nccc2n1', 'Brc1ccn2nccc2n1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1ccn2nccc2n1', 'Brc1cncc(Br)c1']; ['Ic1ccn2nccc2n1', 'OB(O)c1cncc(Br)c1', 'Clc1ccn2nccc2n1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'c1cnc2ccnn2c1', 'Clc1ccn2nccc2n1', 'Brc1cncc(Br)c1', 'c1cnc2ccnn2c1']; [1.0, 0.9999997615814209, 0.9999990463256836, 0.9999943971633911, 0.999991774559021, 0.9999160766601562, 0.9999047517776489, 0.9995920062065125, 0.9968829154968262, 0.9899319410324097] +CNS(=O)(=O)c1ccc(-c2cncc(Br)c2)c(C)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'Brc1cncc(I)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Brc1cncc(Br)c1']; ['CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'OB(O)c1cncc(Br)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Clc1cncc(Br)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9999421238899231, 0.999363899230957, 0.9977458119392395, 0.9961985349655151, 0.9946672916412354, 0.9868509769439697] +O=C(c1ccccc1)N1CC[C@H](c2cncc(Br)c2)C1; [None]; [None]; [0] +CN(C)c1ccc(-c2cncc(Br)c2)cc1Cl; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'Clc1cncc(Br)c1', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccccc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1']; [0.9999990463256836, 0.9999973773956299, 0.9999961853027344, 0.9999643564224243, 0.9986258745193481, 0.9882286190986633, 0.973725438117981, 0.9585902690887451, 0.8849468231201172] +CCCOc1ccc(-c2cncc(Br)c2)nc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CCCOc1ccc(Br)nc1', 'Brc1cncc(Br)c1']; ['CCCOc1ccc(Br)nc1', 'CCCOc1ccc(Br)nc1', 'OB(O)c1cncc(Br)c1', 'CCCOc1ccc(Br)nc1']; [0.9999716281890869, 0.9999535083770752, 0.9994493126869202, 0.9975968599319458] +COc1ccc(Cl)cc1-c1cncc(Br)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'COc1ccc(Cl)cc1B(O)O', 'Brc1cncc(Br)c1', 'COc1ccc(Cl)cc1Cl', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br', 'Clc1cncc(Br)c1', 'COc1ccc(Cl)cc1I', 'OB(O)c1cncc(Br)c1', 'COc1ccc(Cl)cc1[Mg]Br', 'COc1ccc(Cl)cc1Br']; [0.9999760389328003, 0.9997661113739014, 0.9996676445007324, 0.9995663166046143, 0.9995509386062622, 0.9992230534553528, 0.9992057085037231, 0.9969744682312012, 0.9948859214782715, 0.9945383071899414, 0.9943767786026001, 0.9898220300674438, 0.9846786260604858, 0.9845137596130371, 0.9110937714576721, 0.7873576283454895] +Brc1cncc(-c2ccccc2-n2cccn2)c1; ['Brc1ccccc1-n1cccn1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Fc1ccccc1-c1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Clc1ccccc1-n1cccn1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cccnc1', 'Clc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1cncc(Br)c1', 'c1cn[nH]c1', 'OB(O)c1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Brc1cncc(I)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'c1ccc(-n2cccn2)cc1', 'c1ccc(-n2cccn2)cc1', 'OB(O)c1ccccc1-n1cccn1', 'c1ccc(-n2cccn2)cc1']; [0.9999828338623047, 0.9999730587005615, 0.9999328851699829, 0.999931812286377, 0.9999282360076904, 0.9998987913131714, 0.9998652935028076, 0.9993569850921631, 0.9992467761039734, 0.9991541504859924, 0.9989789724349976, 0.9951742887496948, 0.9892044067382812, 0.9864445924758911, 0.9838005900382996, 0.9834986925125122, 0.7931685447692871, 0.7720949053764343, 0.7573335766792297] +Cc1c(C(=O)[O-])cccc1-c1cncc(Br)c1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cncc(Br)c3)[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cncc(Br)c2)cc1Cl; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'COc1cc(OC)c(Br)cc1Cl', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1ccc(Cl)c(OC)c1']; ['COc1cc(OC)c(Br)cc1Cl', 'COc1cc(OC)c(Br)cc1Cl', 'OB(O)c1cncc(Br)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1cc(OC)c(Br)cc1Cl', 'OB(O)c1cncc(Br)c1']; [0.9998236894607544, 0.9996699094772339, 0.9963921308517456, 0.9676387310028076, 0.9608784914016724, 0.9153257012367249] +Brc1cncc(-c2c[nH]c3ccccc23)c1; ['Brc1c[nH]c2ccccc12', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12', 'NNc1cncc(Br)c1', 'Clc1c[nH]c2ccccc12', 'Br[Zn]c1cncc(Br)c1', 'Brc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Ic1c[nH]c2ccccc12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1c[nH]c2ccccc12', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'c1ccc2[nH]ccc2c1', 'OB(O)c1cncc(Br)c1', 'Ic1c[nH]c2ccccc12', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1']; [0.9989824295043945, 0.9988716840744019, 0.9956912994384766, 0.9955718517303467, 0.9942337274551392, 0.9847946763038635, 0.9780882000923157, 0.9732667803764343, 0.9595291614532471, 0.9573276042938232, 0.9560076594352722, 0.8534221649169922, 0.8471046686172485] +Brc1cncc(-c2ccc3c(c2)CCO3)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Ic1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Brc1cncc(Br)c1', 'Brc1ccc2c(c1)CCO2', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'Brc1cccnc1', 'Brc1cncc(Br)c1', 'Brc1cccnc1']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1cncc(Br)c1', 'OB(O)c1ccc2c(c1)CCO2', 'Ic1ccc2c(c1)CCO2', 'Clc1ccc2c(c1)CCO2', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Ic1ccc2c(c1)CCO2', 'c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999996423721313, 0.9999986886978149, 0.999997615814209, 0.9999966025352478, 0.999996542930603, 0.9999884366989136, 0.9999771118164062, 0.999969482421875, 0.9999465942382812, 0.999884843826294, 0.999435305595398, 0.9982126951217651, 0.996571958065033, 0.9628913402557373, 0.7811756134033203, 0.7666598558425903] +CC(=O)Nc1cccc(-c2cncc(Br)c2)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9999810457229614, 0.9999510645866394, 0.9998782277107239, 0.9997472763061523, 0.999480128288269, 0.9838298559188843, 0.9830036759376526, 0.9788366556167603, 0.9629921913146973, 0.9589293003082275] +Brc1cncc(-c2cccc3c2OCO3)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cccc2c1OCO2', 'Clc1cncc(Br)c1', 'Brc1cccc2c1OCO2']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Ic1cccc2c1OCO2', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cccc2c1OCO2', 'Brc1cncc(Br)c1']; [0.9999831914901733, 0.9999508857727051, 0.9999107122421265, 0.9997168779373169, 0.9992042183876038, 0.9983954429626465, 0.9930176734924316, 0.9911869168281555, 0.9886115789413452, 0.9544070959091187, 0.9062421321868896] +COc1cc(-c2cncc(Br)c2)ccc1O; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'COc1cc(I)ccc1O', 'Br[Zn]c1cncc(Br)c1', 'COc1cc(Br)ccc1O', 'Brc1cncc(Br)c1', 'COc1cc(B(O)O)ccc1O', 'Brc1cncc(Br)c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O', 'OB(O)c1cncc(Br)c1', 'COc1cc(I)ccc1O', 'OB(O)c1cncc(Br)c1', 'COc1cc(B(O)O)ccc1O', 'Clc1cncc(Br)c1', 'COc1cc(Br)ccc1O']; [0.9999898672103882, 0.9999866485595703, 0.9999682903289795, 0.9999342560768127, 0.9997121095657349, 0.9993845820426941, 0.9968122243881226, 0.9942591190338135, 0.9888505935668945, 0.9717661142349243, 0.9298228621482849] +CC(C)(C)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccc(I)cc1', 'Brc1cncc(I)c1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'Brc1cncc(Br)c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CC(C)(C)c1ccc(Br)cc1']; [0.9999997615814209, 0.9999979138374329, 0.9999966621398926, 0.9999895095825195, 0.9999643564224243, 0.9999548196792603, 0.9998813271522522, 0.9997860193252563, 0.9996830224990845, 0.9995555877685547, 0.9993358850479126, 0.9991254806518555, 0.9976270198822021, 0.9969946146011353, 0.9956263899803162, 0.9942200779914856, 0.9664788842201233] +Brc1cncc(-c2cc(-c3ccccc3)[nH]n2)c1; ['Brc1cncc(I)c1']; ['c1ccc(-c2ccn[nH]2)cc1']; [0.8773768544197083] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cncc(Br)c1; [None]; [None]; [0] +Brc1cncc(-c2cnc3ccccc3c2)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cnc2ccccc2c1', 'Brc1cncc(I)c1', 'Ic1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Brc1cncc(I)c1', 'NNc1cncc(Br)c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Ic1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'F[B-](F)(F)c1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Brc1cncc(I)c1', 'OB(O)c1cncc(Br)c1', 'c1ccc2ncccc2c1', 'c1ccc2ncccc2c1']; [0.9999881982803345, 0.9999846816062927, 0.9999697208404541, 0.999943196773529, 0.9997422099113464, 0.9993652105331421, 0.9968937039375305, 0.9965015053749084, 0.9933239221572876, 0.9892826080322266, 0.9892195463180542, 0.9880472421646118, 0.9791486263275146, 0.9529767036437988, 0.8999503254890442] +Brc1cncc(-c2scc3c2OCCO3)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'CC1(C)OB(c2scc3c2OCCO3)OC1(C)C', 'c1scc2c1OCCO2']; [0.9999939203262329, 0.9999898672103882, 0.9999587535858154] +CC(C)(C)c1ccc(-c2cncc(Br)c2)cn1; ['Brc1cncc(I)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'Brc1cncc(Br)c1', 'CC(C)(C)c1ccccn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CC(C)(C)c1ccc(Br)cn1', 'NNc1cncc(Br)c1']; [0.9999991655349731, 0.9999904632568359, 0.999987006187439, 0.9999686479568481, 0.9999633431434631, 0.9997197389602661, 0.9988991022109985, 0.9976955652236938, 0.9942442774772644, 0.8880497217178345, 0.8232581615447998] +Nc1nc(-c2cncc(Br)c2)cs1; ['NC(N)=S', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Nc1nc(Cl)cs1', 'Nc1nc(Br)cs1', 'CC(=O)c1cncc(Br)c1', None]; ['O=C(CBr)c1cncc(Br)c1', 'Nc1nc(Cl)cs1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'NC(N)=S', None]; [0.9999942779541016, 0.9999887943267822, 0.9999305605888367, 0.999907910823822, 0.9998658895492554, 0] +COc1cccc(C(=O)Nc2cncc(Br)c2)c1; ['COc1cccc(C(=O)Cl)c1', 'Brc1cncc(I)c1', 'COc1cccc(C(=O)O)c1', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'COc1cccc(C(N)=O)c1', 'Nc1cncc(Br)c1', 'COc1cccc(C(N)=O)c1']; [0.9999991655349731, 0.9999719262123108, 0.9999480247497559, 0.9975928068161011] +Brc1cncc(-c2cc3ccccc3s2)c1; ['Brc1cc2ccccc2s1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Ic1cc2ccccc2s1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cc2ccccc2s1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cc3ccccc3s2)OC1(C)C', 'OB(O)c1cc2ccccc2s1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2s1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1', 'OB(O)c1cncc(Br)c1']; [0.9999878406524658, 0.9998761415481567, 0.9997379779815674, 0.9995140433311462, 0.997046947479248, 0.9960974454879761, 0.9938026666641235, 0.9909421801567078, 0.9821575880050659] +CN(C)C(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cncc(I)c1', 'CN(C)C(=O)c1ccc(I)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'Clc1cncc(Br)c1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccccc1']; [1.0, 0.9999995231628418, 0.9999986290931702, 0.9999982118606567, 0.9999974370002747, 0.9999906420707703, 0.9999855756759644, 0.9997830986976624, 0.9997589588165283, 0.9996488094329834, 0.9975048303604126, 0.951736330986023, 0.8473791480064392] +CC1(COc2cncc(Br)c2)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'Brc1cncc(I)c1', 'CC1(CI)COC1', 'CC1(CCl)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CBr)COC1', 'CC1(CO)COC1', 'Brc1cncc(Br)c1', 'CC1(CO)COC1']; ['Oc1cncc(Br)c1', 'Fc1cncc(Br)c1', 'CC1(CO)COC1', 'Oc1cncc(Br)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Br)c1', 'Oc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CC1(CO)COC1', 'COc1cncc(Br)c1']; [0.999794602394104, 0.9997568726539612, 0.9996905326843262, 0.999634325504303, 0.9996143579483032, 0.9992496967315674, 0.9992340803146362, 0.9991022348403931, 0.99756920337677, 0.8359656929969788] +CSc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CSc1ccc(I)cc1', 'CSc1ccc(B(O)O)cc1', 'Brc1cncc(I)c1', 'Br[Zn]c1cncc(Br)c1', 'CSc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'CSc1ccc(Cl)cc1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'C[S-]', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CSc1ccc(I)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CSc1ccc(Br)cc1', 'CSc1ccc(I)cc1', 'OB(O)c1cncc(Br)c1', 'CSc1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CSc1ccc(I)cc1', 'CSc1ccc([Mg]Br)cc1', 'Fc1ccc(-c2cncc(Br)c2)cc1', 'CSc1ccccc1', 'CSc1ccc(Br)cc1']; [0.9999996423721313, 0.9999946355819702, 0.9999932050704956, 0.9999849796295166, 0.999962329864502, 0.9998874068260193, 0.9998583793640137, 0.9995774626731873, 0.9994930028915405, 0.9991739988327026, 0.9981919527053833, 0.9976012706756592, 0.9970042705535889, 0.9951575398445129, 0.9881450533866882, 0.9207686185836792, 0.8869036436080933, 0.8775734305381775] +Cc1cc(-c2cncc(Br)c2)nc(N)n1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Cc1cc(Cl)nc(N)n1', 'Cc1ccnc(N)n1']; ['Cc1cc(Br)nc(N)n1', 'Cc1cc(Cl)nc(N)n1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.999980092048645, 0.9999799728393555, 0.9995703101158142, 0.9136481285095215] +Clc1cccc(-n2ccc(-c3cncc(Br)c3)n2)c1; [None]; [None]; [0] +Fc1ccc(-c2cncc(Br)c2)c(Cl)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Fc1ccc(Cl)c(Cl)c1', 'Brc1cncc(I)c1', 'Brc1cccnc1']; ['Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Fc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc([Mg]Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'OB(O)c1cncc(Br)c1', 'Fc1cccc(Cl)c1', 'Fc1ccc(I)c(Cl)c1']; [0.9999760389328003, 0.9999643564224243, 0.9998563528060913, 0.9995003938674927, 0.9994804859161377, 0.9984300136566162, 0.9976288676261902, 0.9916163682937622, 0.9912526607513428, 0.9777317047119141, 0.9516556262969971, 0.9331701993942261, 0.913070797920227, 0.7980881929397583] +CCN1CCN(Cc2ccc(-c3cncc(Br)c3)cc2)CC1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Brc1cncc(Br)c1']; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'OB(O)c1cncc(Br)c1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9998819828033447, 0.9998679161071777, 0.9994950294494629, 0.999052882194519, 0.9455450773239136] +Brc1cnc(-c2cncc(Br)c2)nc1; ['Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cnc(I)nc1', 'Brc1cnc(Br)nc1', 'Clc1ncc(Br)cn1', 'CSc1ncc(Br)cn1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncnc1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1ncc(Br)cn1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncnc1', 'Clc1ncc(Br)cn1', 'OB(O)c1cncc(Br)c1']; [0.999955415725708, 0.9996391534805298, 0.9995055198669434, 0.9992077350616455, 0.9977142214775085, 0.996943473815918, 0.9935026168823242, 0.9633192420005798, 0.9338192939758301, 0.9193180203437805] +O=C1CCc2cc(-c3cncc(Br)c3)ccc2N1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Br[Zn]c1cncc(Br)c1', 'O=C1CCc2cc(Br)ccc2N1', 'Brc1cncc(Br)c1', 'O=C1CCc2cc(Cl)ccc2N1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'Clc1cncc(Br)c1', 'O=C1CCc2cc(Br)ccc2N1', 'OB(O)c1cncc(Br)c1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'OB(O)c1cncc(Br)c1', 'O=C1CCc2cc(I)ccc2N1', 'OB(O)c1cncc(Br)c1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999948740005493, 0.999958872795105, 0.999936044216156, 0.999914288520813, 0.999872088432312, 0.9989836812019348, 0.997806966304779, 0.9972802996635437, 0.9964746236801147, 0.9936439394950867, 0.981010913848877, 0.8568176031112671, 0.8306331038475037] +COc1ccc(CNc2cncc(Br)c2)cc1; ['COc1ccc(CBr)cc1', 'COc1ccc(CO)cc1', 'COc1ccc(CCl)cc1', 'Brc1cncc(I)c1', 'COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'Brc1cncc(Br)c1', 'COc1ccc(CN)cc1']; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'COc1ccc(CN)cc1', 'Fc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'COc1ccc(CN)cc1', 'COc1cncc(Br)c1']; [0.9999091029167175, 0.999908447265625, 0.9999069571495056, 0.9999063611030579, 0.9994637966156006, 0.9988528490066528, 0.9962760806083679, 0.9951379299163818, 0.9816548824310303] +COc1ccc(-c2cncc(Br)c2)cc1OC; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1ccc(I)cc1OC', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['COc1ccc(I)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Cl)cc1OC', 'OB(O)c1cncc(Br)c1', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'COc1ccc([Mg]Br)cc1OC', 'COc1ccc(Br)cc1OC']; [0.9999912977218628, 0.9999895095825195, 0.9999679327011108, 0.9998835325241089, 0.9998137950897217, 0.9997268915176392, 0.9994659423828125, 0.9976505041122437, 0.9958652257919312, 0.9944301247596741, 0.9930771589279175, 0.988987147808075, 0.987809956073761, 0.9560715556144714, 0.9196089506149292, 0.8138217329978943] +CC(=O)N[C@@H]1CC[C@@H](c2cncc(Br)c2)CC1; [None]; [None]; [0] +Clc1ccc(-c2cncc(Br)c2)c(Cl)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1ccc(I)c(Cl)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Clc1ccc(Br)c(Cl)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Clc1ccc(Cl)c(Cl)c1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(Br)c(Cl)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1cccc(Cl)c1', 'Clc1ccc([Mg]Br)c(Cl)c1', 'OB(O)c1cncc(Br)c1']; [0.9998823404312134, 0.9997694492340088, 0.9996286630630493, 0.99912428855896, 0.9991081953048706, 0.99881911277771, 0.9955354928970337, 0.9834067225456238, 0.9805407524108887, 0.9794377684593201, 0.9651921987533569, 0.9495738744735718, 0.850195050239563] +CCc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CCc1ccc(Br)cc1', 'Brc1cncc(I)c1', 'Br[Zn]c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CCc1ccc([Mg]Br)cc1', 'Brc1cncc(Br)c1', 'CCc1ccc(Cl)cc1', 'Brc1cncc(Br)c1', 'CCc1ccc(Br)cc1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'CCc1ccc(Br)cc1', 'CCc1ccc(Cl)cc1', 'CCc1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCc1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'CCc1ccc([Mg]Br)cc1', 'OB(O)c1cncc(Br)c1', 'CCc1ccc(Br)cc1', 'Clc1cncc(Br)c1']; [0.9999980926513672, 0.9999959468841553, 0.999991238117218, 0.9999902248382568, 0.9998915195465088, 0.9997286796569824, 0.9996743202209473, 0.9993489384651184, 0.9976634383201599, 0.9974063038825989, 0.9944652318954468, 0.9931566715240479, 0.9918776750564575, 0.9912949800491333, 0.9765979647636414, 0.9724017381668091, 0.9679971933364868, 0.9295183420181274, 0.9079232215881348] +Brc1cncc(-c2ncc3cccn3n2)c1; ['Clc1ncc2cccn2n1']; ['OB(O)c1cncc(Br)c1']; [0.9989966750144958] +COc1cc(-c2cncc(Br)c2)ccc1N1CCOCC1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1cncc(Br)c1', 'COc1cc(Br)ccc1N1CCOCC1', 'Brc1cncc(Br)c1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'Clc1cncc(Br)c1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'OB(O)c1cncc(Br)c1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999729990959167, 0.999911367893219, 0.9994344711303711, 0.9991301894187927, 0.9983103275299072, 0.9347959756851196] +Brc1cncc(-c2cc3ccccn3n2)c1; ['Brc1cc2ccccn2n1', 'Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'c1ccn2nccc2c1']; [0.9999789595603943, 0.9995623826980591, 0.997372567653656, 0.8548077344894409] +Cn1cc(-c2cncc(Br)c2)c(C(F)(F)F)n1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Cn1cc(I)c(C(F)(F)F)n1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'OB(O)c1cncc(Br)c1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(Cl)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; [0.999993085861206, 0.9999881982803345, 0.9999587535858154, 0.9998945593833923, 0.9998706579208374, 0.9998641610145569, 0.9998551607131958, 0.9991669654846191, 0.9990578889846802, 0.9986404180526733, 0.9976630210876465, 0.9959366917610168, 0.9954151511192322, 0.9401512145996094, 0.9308040142059326, 0.9200196862220764] +C[C@H]1CCCN1C(=O)c1ccc(-c2cncc(Br)c2)cc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cncc(Br)c2)C1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cncc(Br)c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cncc(Br)c3)c2c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'COc1ccc2cccc(Br)c2c1']; ['COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(Br)c2c1', 'OB(O)c1cncc(Br)c1']; [0.9998431205749512, 0.9971463680267334, 0.9929521083831787] +COc1cc(-c2cncc(Br)c2)ccc1Cl; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1cc(I)ccc1Cl', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'COc1cc(Cl)ccc1Cl', 'Brc1cccnc1']; ['COc1cc(I)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'OB(O)c1cncc(Br)c1', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Cl)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'COc1cc([Mg]Br)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'OB(O)c1cncc(Br)c1', 'COc1cc(I)ccc1Cl']; [0.9999998807907104, 0.9999997615814209, 0.9999979138374329, 0.9999932646751404, 0.9999879598617554, 0.9999830722808838, 0.9999346733093262, 0.9998366832733154, 0.9997414350509644, 0.9994219541549683, 0.9990931749343872, 0.996068000793457, 0.9865870475769043, 0.9809786081314087, 0.8614977598190308, 0.7919420599937439] +Oc1ccc2cccc(-c3cncc(Br)c3)c2c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Br[Zn]c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; ['Oc1ccc2cccc(I)c2c1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(Br)c2c1', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(I)c2c1', 'Oc1ccc2cccc(Br)c2c1']; [0.9999589323997498, 0.9999438524246216, 0.9998762607574463, 0.9998546838760376, 0.9993941187858582, 0.9931026697158813, 0.9708634614944458] +Cc1nc(Nc2cncc(Br)c2)sc1C; ['Cc1nc(Cl)sc1C', 'Cc1nc(Br)sc1C', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Cc1nc(N)sc1C']; [0.9999769926071167, 0.9995947480201721, 0.9977133274078369] +Cc1csc2c(-c3cncc(Br)c3)ncnc12; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Cc1csc2c(Cl)ncnc12']; ['Cc1csc2c(Cl)ncnc12', 'OB(O)c1cncc(Br)c1']; [0.9991098642349243, 0.998621940612793] +Cc1cc(Nc2cncc(Br)c2)nn1C; ['Cc1cc(N)nn1C', 'Brc1cncc(I)c1', 'Cc1cc(N)nn1C', 'Brc1cncc(Br)c1', 'Cc1cc(Br)nn1C']; ['OB(O)c1cncc(Br)c1', 'Cc1cc(N)nn1C', 'Clc1cncc(Br)c1', 'Cc1cc(N)nn1C', 'Nc1cncc(Br)c1']; [0.9998999834060669, 0.9998544454574585, 0.9997534155845642, 0.9985241889953613, 0.9942737817764282] +COc1cc(F)c(-c2cncc(Br)c2)cc1OC; ['Brc1cncc(I)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1cc(F)c(B(O)O)cc1OC', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'COc1cc(F)c(Br)cc1OC', 'Brc1cncc(Br)c1']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'Clc1cncc(Br)c1', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'OB(O)c1cncc(Br)c1', 'COc1cc(F)c(Br)cc1OC']; [0.9999822378158569, 0.9999418258666992, 0.9999412298202515, 0.9996885061264038, 0.9994157552719116, 0.9989974498748779, 0.9932760000228882, 0.976851761341095, 0.9339296817779541] +Clc1cnc(-c2cncc(Br)c2)nc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cnc(I)nc1', 'Clc1cnc(Cl)nc1', 'Clc1cnc(Br)nc1', 'CSc1ncc(Cl)cn1', 'Brc1cncc(I)c1']; ['Clc1cnc(Cl)nc1', 'Clc1cnc(Br)nc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncnc1']; [0.9999397397041321, 0.9998477697372437, 0.9997857809066772, 0.9987344741821289, 0.9985899329185486, 0.9966440200805664, 0.9907535910606384] +OCCn1cc(-c2cncc(Br)c2)cn1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OB(O)c1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'OCCn1cc(I)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(Br)cn1']; [0.9999862909317017, 0.9999531507492065, 0.9999260306358337, 0.9996943473815918, 0.999582052230835, 0.999496340751648, 0.9994293451309204, 0.9992467164993286, 0.9978530406951904, 0.9963452816009521, 0.9950954914093018, 0.9796496629714966] +CNC(=O)c1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'Brc1cncc(Br)c1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'Brc1cncc(-c2ccccc2)c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cncc(Br)c1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(Cl)cc1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CNC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CNC(=O)Cl']; [0.9999997615814209, 0.9999967217445374, 0.9999966621398926, 0.9999947547912598, 0.9999760389328003, 0.9999548196792603, 0.9998414516448975, 0.9997234344482422, 0.9996433258056641, 0.9996088743209839, 0.9980931282043457, 0.9833822250366211, 0.890662431716919] +O=C(Nc1cncc(Br)c1)c1ccco1; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1', 'NC(=O)c1ccco1', 'NC(=O)c1ccco1']; [0.9999822378158569, 0.9998482465744019, 0.9962174296379089, 0.9858602285385132] +CCNC(=O)c1ccc(-c2cncc(Br)c2)nc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9999833106994629, 0.9999147653579712, 0.9997400045394897, 0.998375415802002] +Nc1cc(-c2cncc(Br)c2)c2cc[nH]c2n1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'Brc1cncc(Br)c1']; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Cl)c2cc[nH]c2n1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Nc1cc(Br)c2cc[nH]c2n1']; [0.9999877214431763, 0.9998607039451599, 0.9997596740722656, 0.995599627494812, 0.8804182410240173] +COc1cc(-c2cncc(Br)c2)c(OC)cc1Br; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'COc1cc(I)c(OC)cc1Br', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'COc1cc(B(O)O)c(OC)cc1Br', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'COc1cc(Br)c(OC)cc1Br', 'Brc1cncc(I)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'OB(O)c1cncc(Br)c1', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'Clc1cncc(Br)c1', 'COc1cc(Br)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'OB(O)c1cncc(Br)c1', 'COc1ccc(OC)c(Br)c1', 'Clc1cncc(Br)c1']; [0.9999850988388062, 0.9999450445175171, 0.9999381899833679, 0.998737096786499, 0.9982362985610962, 0.9968947172164917, 0.9959924221038818, 0.9939247965812683, 0.9907736778259277, 0.9393936991691589, 0.7627241611480713] +NC(=O)c1ccc(Cc2cncc(Br)c2)cc1; ['BrCc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(CBr)cc1']; [0.9991365671157837, 0.9988745450973511] +COc1cc(CS(C)(=O)=O)ccc1-c1cncc(Br)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cncc(Br)c2)CC1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cncc(Br)c2)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(OS(=O)(=O)C(F)(F)F)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(OC)cc([Mg]Br)c1', 'Brc1cncc(Br)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(Br)cc(OC)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'COc1cc(OC)cc([Mg]Br)c1']; [0.9999860525131226, 0.9999806880950928, 0.9999760985374451, 0.999832272529602, 0.9997565746307373, 0.9997295141220093, 0.9996592402458191, 0.9995203018188477, 0.9989721775054932, 0.998894453048706, 0.9983289241790771, 0.9958157539367676, 0.9951443672180176, 0.9917209148406982, 0.9888169765472412, 0.8551748991012573, 0.7945595383644104] +COc1ccc2oc(-c3cncc(Br)c3)cc2c1; ['Brc1cncc(I)c1', 'COc1ccc2oc(B(O)O)cc2c1', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['COc1ccc2oc(B(O)O)cc2c1', 'Clc1cncc(Br)c1', 'COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2occc2c1']; [0.9999141693115234, 0.9991896152496338, 0.9982694387435913, 0.975660502910614] +O=C(Nc1cn[nH]c1)c1cccc(-c2cncc(Br)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cncc(Br)c2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; [0.9999984502792358, 0.9999809265136719, 0.9996556639671326, 0.9802622199058533] +COc1ccc2c(c1)c(-c1cncc(Br)c1)cn2C; ['Brc1cncc(I)c1', 'COc1ccc2c(ccn2C)c1', 'Brc1cncc(Br)c1', 'COc1ccc2c(ccn2C)c1', 'Brc1cncc(I)c1']; ['COc1ccc2c(ccn2C)c1', 'OB(O)c1cncc(Br)c1', 'COc1ccc2c(ccn2C)c1', 'NNc1cncc(Br)c1', 'COc1ccc2c(c1)c(C(=O)O)cn2C']; [0.9994608163833618, 0.9975869655609131, 0.9945008754730225, 0.994096040725708, 0.9715843200683594] +CCn1cc(-c2cncc(Br)c2)cn1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Br)cn1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CCn1cc(I)cn1', 'Brc1cncc(Br)c1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'OB(O)c1cncc(Br)c1', 'CCn1cc(B(O)O)cn1']; [0.999753475189209, 0.9996744394302368, 0.9995150566101074, 0.9994386434555054, 0.99830162525177, 0.9975602626800537, 0.9972310066223145, 0.9953786134719849, 0.9952065944671631] +Brc1cncc(-c2ccc3cn[nH]c3c2)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Brc1cncc(I)c1', 'Ic1ccc2cn[nH]c2c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1cncc(Br)c1', 'Br[Zn]c1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1ccc2cn[nH]c2c1', 'Brc1cncc(Br)c1', 'Brc1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Ic1ccc2cn[nH]c2c1', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Clc1cncc(Br)c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1cncc(Br)c1', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1', 'OB(O)c1ccc2cn[nH]c2c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'Ic1ccc2cn[nH]c2c1', 'Clc1ccc2cn[nH]c2c1', 'Brc1cncc(I)c1', 'Ic1ccc2cn[nH]c2c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(Br)c1']; [0.9999994039535522, 0.9999992847442627, 0.9999961853027344, 0.9999951720237732, 0.9999932050704956, 0.9999854564666748, 0.999971866607666, 0.999958872795105, 0.9999575018882751, 0.9999158382415771, 0.9998687505722046, 0.9997817277908325, 0.9992570281028748, 0.9991626739501953, 0.998914361000061, 0.9968811869621277, 0.982653021812439] +O=S(=O)(CCO)c1ccc(Cc2cncc(Br)c2)cc1; [None]; [None]; [0] +Brc1cncc(-c2cc3ccccc3o2)c1; ['Brc1cncc(I)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Brc1cc2ccccc2o1', 'Brc1cncc(Br)c1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'OB(O)c1cncc(Br)c1', 'c1ccc2occc2c1']; [0.9999631643295288, 0.9993686676025391, 0.9990361928939819, 0.9989910125732422, 0.962896466255188] +CNC(=O)c1ccc(OC)c(-c2cncc(Br)c2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['CNC(=O)c1ccc(OC)c(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9996622800827026, 0.9930354356765747] +Brc1cncc(-c2ncc3sccc3n2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1ncc2sccc2n1']; ['Clc1ncc2sccc2n1', 'OB(O)c1cncc(Br)c1']; [0.9999929666519165, 0.9997674822807312] +CO[C@@H]1CC[C@@H](c2cncc(Br)c2)CC1; [None]; [None]; [0] +COc1ccc2nc(-c3cncc(Br)c3)[nH]c2c1; ['COc1ccc(N)c(N)c1', 'COc1ccc(N)c(N)c1']; ['O=Cc1cncc(Br)c1', 'O=C(O)c1cncc(Br)c1']; [0.9990841746330261, 0.9863051176071167] +CC(C)c1nn(C)cc1-c1cncc(Br)c1; ['Brc1cncc(I)c1', 'CC(C)c1nn(C)cc1I', 'CC(C)c1nn(C)cc1Br', 'Brc1cncc(Br)c1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1I', 'Brc1cncc(I)c1', 'CC(C)c1nn(C)cc1Br', 'Brc1cncc(Br)c1', 'CC(C)c1nn(C)cc1Br', 'Brc1cncc(Br)c1']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CC(C)c1nn(C)cc1Br', 'OB(O)c1cncc(Br)c1', 'CC(C)c1nn(C)cc1I', 'Clc1cncc(Br)c1', 'CC(C)c1nn(C)cc1Br']; [0.9999696612358093, 0.9999659061431885, 0.9999014139175415, 0.9998855590820312, 0.9998105764389038, 0.9987320899963379, 0.9959229230880737, 0.9953277111053467, 0.9839655160903931, 0.9209771156311035, 0.8411527872085571] +COc1ccc(F)c(C(=O)Nc2cncc(Br)c2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'COc1ccc(F)c(C(N)=O)c1', 'COc1ccc(F)c(C(N)=O)c1']; [0.9996078014373779, 0.9994177222251892, 0.9319945573806763] +Cn1cc(Br)cc1-c1cncc(Br)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cncc(Br)c2)cc1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cncc(Br)c2)cc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', None, 'FC(F)(F)Oc1ccc(I)cc1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Brc1cncc(Br)c1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Brc1cncc(Br)c1']; ['FC(F)(F)Oc1ccc(I)cc1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', None, 'OB(O)c1cncc(Br)c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)Oc1ccc([Mg]Br)cc1', 'OB(O)c1cncc(Br)c1', 'FC(F)(F)Oc1ccc(Br)cc1']; [1.0, 1.0, 0.9999998211860657, 0.9999997615814209, 0.9999992251396179, 0, 0.9999977946281433, 0.9999974966049194, 0.9999947547912598, 0.9999578595161438, 0.9999189972877502, 0.9999027252197266, 0.999889612197876, 0.999616265296936, 0.999335765838623, 0.9992246627807617] +O=C(Nc1cccc(-c2cncc(Br)c2)c1)N1CCCC1; [None]; [None]; [0] +Brc1cncc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +Cn1cc(-c2cncc(Br)c2)c2ccccc21; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Cn1ccc2ccccc21', 'Brc1cncc(I)c1', 'Cn1ccc2ccccc21', 'Brc1cncc(Br)c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'OB(O)c1cncc(Br)c1', 'Cn1ccc2ccccc21', 'NNc1cncc(Br)c1', 'Cn1ccc2ccccc21']; [0.9998124241828918, 0.9994655251502991, 0.9989098310470581, 0.9962794780731201, 0.9921358227729797, 0.9414149522781372, 0.909520149230957] +Brc1cncc(-c2ncn3c2CCCC3)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['c1ncn2c1CCCC2', 'c1ncn2c1CCCC2']; [0.9997946619987488, 0.9996598958969116] +CCc1cccc(-c2cncc(Br)c2)n1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCc1cccc(Br)n1', 'Brc1cncc(Br)c1']; ['CCc1cccc(Br)n1', 'OB(O)c1cncc(Br)c1', 'CCc1cccc(Br)n1']; [0.999976634979248, 0.9990049600601196, 0.9891282916069031] +CN(C)c1ccc(-c2cncc(Br)c2)cn1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CN(C)c1ccc(I)cn1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(Cl)cn1', 'Brc1cncc(Br)c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1', 'OB(O)c1cncc(Br)c1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CN(C)c1ccc(I)cn1']; [0.999998927116394, 0.9999867677688599, 0.9999825954437256, 0.9999823570251465, 0.9999287128448486, 0.9996991157531738, 0.9990203380584717, 0.9988361597061157, 0.9973506331443787, 0.9936568737030029, 0.9876013994216919, 0.986402153968811] +CC(=O)N1CCC(n2cc(-c3cncc(Br)c3)cn2)CC1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'Clc1cncc(Br)c1']; [0.9999942779541016, 0.9998908042907715, 0.9998776912689209] +CC(C)(O)c1ccc2cc(-c3cncc(Br)c3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1cncc(Br)c1)c1cccc(OC(F)(F)F)c1; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999998807907104, 0.9999910593032837] +O=C1CCCN1c1cccc(-c2cncc(Br)c2)c1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1', 'Brc1cncc(Br)c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999873638153076, 0.9999635219573975, 0.999835193157196, 0.9994086027145386, 0.996740460395813, 0.8907561302185059] +Cc1cc(-c2cncc(Br)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cncc(Br)c3)ccc12; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Brc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'Cc1n[nH]c2cc(Br)ccc12', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1']; ['Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Clc1cncc(Br)c1', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'OB(O)c1cncc(Br)c1', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [0.9999996423721313, 0.9999992847442627, 0.9999984502792358, 0.9999982118606567, 0.9999887943267822, 0.9999688267707825, 0.9999562501907349, 0.9998079538345337, 0.9997472763061523, 0.998725414276123, 0.9983261823654175, 0.9966346025466919, 0.9788875579833984] +Cn1ncc2cc(-c3cncc(Br)c3)ccc21; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'Cn1ncc2cc(I)ccc21', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Clc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Cn1ncc2cc(Br)ccc21', 'Brc1cncc(I)c1', 'Cn1ncc2cc(Cl)ccc21', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'OB(O)c1cncc(Br)c1', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(I)ccc21', 'OB(O)c1cncc(Br)c1', 'Cn1ncc2cc(Br)ccc21', 'OB(O)c1cncc(Br)c1', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999994039535522, 0.9999992847442627, 0.9999989867210388, 0.9999955296516418, 0.9999932646751404, 0.999991774559021, 0.9999867677688599, 0.9999814033508301, 0.9999690055847168, 0.9999493360519409, 0.9998313784599304, 0.9996756315231323, 0.9995735287666321, 0.9989445805549622, 0.9910560250282288, 0.9858331680297852] +OCCc1ccc(-c2cncc(Br)c2)cc1; ['Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'OB(O)c1cncc(Br)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Brc1cncc(I)c1', 'Brc1cncc(I)c1', 'Brc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(I)cc1', 'Clc1cncc(Br)c1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Cl)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Cl)cc1']; [0.9999943375587463, 0.999984860420227, 0.999972939491272, 0.9999411106109619, 0.9998459815979004, 0.9996135234832764, 0.9982168674468994, 0.9978325366973877, 0.9967238903045654, 0.9932666420936584, 0.9875617027282715, 0.9837791919708252, 0.9815775156021118, 0.9576553702354431, 0.824160635471344] +Cn1nc(Cl)c2cc(-c3cncc(Br)c3)ccc21; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cncc(Br)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cncc(Br)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['COc1cc(S(C)(=O)=O)ccc1Br', 'OB(O)c1cncc(Br)c1']; [0.9999355673789978, 0.9948442578315735] +COc1cc(-c2cnn(C)c2)ccc1-c1cncc(Br)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cncc(Br)c3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cncc(Br)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cncc(Br)c2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(Br)c2)c(OC)c1; ['Brc1cncc(I)c1', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(Br)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1']; [0.9999834895133972, 0.9998557567596436, 0.9997079968452454, 0.999692440032959, 0.9924846291542053] +CCNC(=O)c1ccc(-c2cncc(Br)c2)cc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'Brc1cncc(I)c1', 'CCNC(=O)c1ccc(I)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'Brc1cncc(Br)c1', 'CCNC(=O)c1ccc(Br)cc1']; ['CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1', 'Clc1cncc(Br)c1', 'CCNC(=O)c1ccc(B(O)O)cc1', 'OB(O)c1cncc(Br)c1']; [0.9999594688415527, 0.9999566078186035, 0.9997687935829163, 0.9997621178627014, 0.999261200428009, 0.9963225722312927] +Cc1cc(Nc2cncc(Br)c2)ncc1F; ['Cc1cc(Cl)ncc1F', 'Brc1cncc(I)c1', 'Cc1cc(Br)ncc1F', 'Cc1cc(N)ncc1F', 'Brc1cncc(Br)c1', 'Cc1cc(N)ncc1F']; ['Nc1cncc(Br)c1', 'Cc1cc(N)ncc1F', 'Nc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Cc1cc(N)ncc1F', 'Fc1cncc(Br)c1']; [0.9998656511306763, 0.9978024959564209, 0.9938005208969116, 0.9775253534317017, 0.8851744532585144, 0.8768196105957031] +Fc1ccc(Nc2cncc(Br)c2)nc1; ['Fc1ccc(I)nc1', 'Fc1ccc(Cl)nc1', 'Fc1ccc(Br)nc1', 'Nc1ccc(F)cn1', 'Clc1cncc(Br)c1', 'Brc1cncc(I)c1', 'Fc1ccc(F)nc1', 'Brc1cncc(Br)c1', 'Fc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1cncc(Br)c1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1']; [0.9999299645423889, 0.999927282333374, 0.999415397644043, 0.9989560842514038, 0.9985580444335938, 0.9984114170074463, 0.9969241619110107, 0.9929388165473938, 0.9882189035415649] +Brc1cncc(Nc2ccccn2)c1; ['Clc1ccccn1', 'Nc1cncc(Br)c1', 'Fc1ccccn1', 'Brc1ccccn1', 'Brc1cncc(I)c1', 'Fc1cncc(Br)c1', 'Clc1cncc(Br)c1', 'Brc1cncc(Br)c1']; ['Nc1cncc(Br)c1', 'O=S(=O)(Oc1ccccn1)C(F)(F)F', 'Nc1cncc(Br)c1', 'Nc1cncc(Br)c1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1', 'Nc1ccccn1']; [0.9999447464942932, 0.9997609257698059, 0.9988298416137695, 0.9981290698051453, 0.9979923963546753, 0.9960273504257202, 0.9937984347343445, 0.9885265827178955] +CCNC(=O)Cc1ccc(-c2cncc(Br)c2)cc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CCNC(=O)Cc1ccc(Br)cc1', 'Brc1cncc(Br)c1']; ['CCNC(=O)Cc1ccc(Br)cc1', 'OB(O)c1cncc(Br)c1', 'CCNC(=O)Cc1ccc(Br)cc1']; [0.9999889135360718, 0.9987711906433105, 0.9594684839248657] +CS(=O)(=O)c1ccc(Cl)c(-c2cncc(Br)c2)c1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'CS(=O)(=O)c1ccc(Cl)c(Cl)c1', 'Brc1cncc(I)c1']; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CS(=O)(=O)c1ccc(Cl)cc1']; [0.9999871253967285, 0.9963126182556152, 0.9931877851486206, 0.8644759654998779] +CN(C)C(=O)c1ccc(-c2cncc(Br)c2)nc1; ['CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cncc(Br)c2)OC1(C)C', 'CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1', 'Brc1cncc(Br)c1']; ['CN(C)C(=O)c1ccc(Br)nc1', 'CN(C)C(=O)c1ccc(Cl)nc1', 'OB(O)c1cncc(Br)c1', 'OB(O)c1cncc(Br)c1', 'CN(C)C(=O)c1ccc(Br)nc1']; [0.999995231628418, 0.9999949932098389, 0.999419093132019, 0.9993166327476501, 0.9907799959182739] +Cc1ccc(C(=O)NCCO)cc1-c1cncc(Br)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cncc(Br)c2)c1; [None]; [None]; [0] +Oc1cccc(Cc2c[nH]c3ncccc23)c1; [None]; [None]; [0] +Oc1cc(Cc2c[nH]c3ncccc23)ccc1Cl; ['OCc1ccc(Cl)c(O)c1', 'O=Cc1ccc(Cl)c(O)c1']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.879482626914978, 0.7529110312461853] +Cn1nc(-c2cncc(Br)c2)cc1C(C)(C)O; [None]; [None]; [0] +Clc1ccc2c(c1Cc1c[nH]c3ncccc13)OCO2; [None]; [None]; [0] +c1cc(Cc2c[nH]c3ncccc23)c2cccnc2c1; ['BrCc1cccc2ncccc12', 'Brc1c[nH]c2ncccc12', 'BrCc1cccc2ncccc12', 'ClCc1cccc2ncccc12', 'OCc1cccc2ncccc12', 'NCc1cccc2ncccc12']; ['CC1(C)OB(c2c[nH]c3ncccc23)OC1(C)C', 'ClCc1cccc2ncccc12', 'Brc1c[nH]c2ncccc12', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9999423027038574, 0.9996386170387268, 0.9965934753417969, 0.9559016227722168, 0.8158203363418579, 0.8042043447494507] +Clc1cccc(Cl)c1Cc1c[nH]c2ncccc12; ['Brc1c[nH]c2ncccc12', 'OCc1c(Cl)cccc1Cl']; ['Clc1cccc(Cl)c1CBr', 'c1cnc2[nH]ccc2c1']; [0.9998226761817932, 0.9989144802093506] +c1ccc2c(Cc3c[nH]c4ncccc34)n[nH]c2c1; ['OCc1n[nH]c2ccccc12', 'O=Cc1n[nH]c2ccccc12']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9901740550994873, 0.932573676109314] +Oc1ccc(Cc2c[nH]c3ncccc23)c(Cl)c1; [None, 'OCc1ccc(O)cc1Cl']; [None, 'c1cnc2[nH]ccc2c1']; [0, 0.8068369626998901] +CNS(=O)(=O)c1ccc(Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +Oc1ccc(Cc2c[nH]c3ncccc23)c(F)c1; ['OCc1ccc(O)cc1F']; ['c1cnc2[nH]ccc2c1']; [0.8876998424530029] +NC(=O)c1ccc(Cc2c[nH]c3ncccc23)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1Cc1c[nH]c2ncccc12; ['COc1ccc(F)cc1CO', 'COc1ccc(F)cc1CBr', 'COc1ccc(F)cc1C=O']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9991786479949951, 0.9698650240898132, 0.9623526930809021] +COc1cc(F)ccc1Cc1c[nH]c2ncccc12; ['COc1cc(F)ccc1CO', 'COc1cc(F)ccc1CBr', 'COc1cc(F)ccc1C=O']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9991007447242737, 0.9696549773216248, 0.8494250178337097] +COc1cc(C(N)=O)ccc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +COc1cc(Cc2c[nH]c3ncccc23)ccc1O; ['COc1cc(CO)ccc1O', None]; ['c1cnc2[nH]ccc2c1', None]; [0.9118093252182007, 0] +Clc1[nH]ncc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +COC(=O)c1ccc(Cc2c[nH]c3ncccc23)o1; ['COC(=O)c1ccc(CO)o1', 'COC(=O)c1ccc(CCl)o1']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9910545945167542, 0.9656378030776978] +Brc1cccc(Cc2c[nH]c3ncccc23)c1; ['OCc1cccc(Br)c1', 'BrCc1cccc(Br)c1', 'Br[Zn]Cc1cccc(Br)c1']; ['c1cnc2[nH]ccc2c1', 'Brc1c[nH]c2ncccc12', 'Brc1c[nH]c2ncccc12']; [0.9976247549057007, 0.9815188050270081, 0.9510666728019714] +Cc1nc2c(F)cc(Cc3c[nH]c4ncccc34)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2ccc(Cc3c[nH]c4ncccc34)cc2)c(O)c1; [None]; [None]; [0] +O=C([O-])c1ccc(Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +Nc1nccc(Cc2c[nH]c3ncccc23)n1; [None]; [None]; [0] +c1ccc2cc(Cc3c[nH]c4ncccc34)ccc2c1; ['Brc1c[nH]c2ncccc12', 'Br[Zn]Cc1ccc2ccccc2c1', 'Brc1c[nH]c2ncccc12', 'NCc1ccc2ccccc2c1', 'BrCc1ccc2ccccc2c1', 'OCc1ccc2ccccc2c1', 'ClCc1ccc2ccccc2c1', 'BrCc1ccc2ccccc2c1', 'Cc1c[nH]c2ncccc12', 'O=Cc1ccc2ccccc2c1']; ['CC1(C)OB(Cc2ccc3ccccc3c2)OC1(C)C', 'Brc1c[nH]c2ncccc12', 'ClCc1ccc2ccccc2c1', 'c1cnc2[nH]ccc2c1', 'Brc1c[nH]c2ncccc12', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'Ic1ccc2ccccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9995487928390503, 0.9974976778030396, 0.9967365860939026, 0.9943903684616089, 0.9934945106506348, 0.9872413873672485, 0.9867042303085327, 0.9590757489204407, 0.8960565328598022, 0.7817174196243286] +Oc1ccc(Cc2c[nH]c3ncccc23)c(O)c1; [None]; [None]; [0] +Cn1cc(Cc2c[nH]c3ncccc23)c2ccccc21; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(Cc2c[nH]c3ncccc23)c1; [None]; [None]; [0] +Oc1ccc(Cc2c[nH]c3ncccc23)cc1F; [None]; [None]; [0] +Nc1cc(Cc2c[nH]c3ncccc23)ccn1; ['Brc1c[nH]c2ncccc12', 'Nc1cc(CO)ccn1']; ['Nc1cc(CCl)ccn1', 'c1cnc2[nH]ccc2c1']; [0.9718779921531677, 0.8396337032318115] +c1cnc2[nH]cc(Cc3cnn4ncccc34)c2c1; [None]; [None]; [0] +Fc1ccc(Cc2c[nH]c3ncccc23)cc1Cl; ['Brc1c[nH]c2ncccc12', 'Brc1c[nH]c2ncccc12', 'OCc1ccc(F)c(Cl)c1', 'O=Cc1ccc(F)c(Cl)c1', 'NNc1ccccn1', 'Fc1ccc(CBr)cc1Cl', 'Cc1c[nH]c2ncccc12']; ['Fc1ccc(CCl)cc1Cl', 'Fc1ccc(C[Zn]Br)cc1Cl', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'O=CCCc1ccc(F)c(Cl)c1', 'c1cnc2[nH]ccc2c1', 'Fc1ccc(I)cc1Cl']; [0.9999428391456604, 0.9983932971954346, 0.9955840110778809, 0.9923757314682007, 0.9868401288986206, 0.9822040796279907, 0.9382246732711792] +c1cnc2[nH]cc(Cc3c[nH]c4cnccc34)c2c1; ['O=Cc1c[nH]c2ncccc12', 'OCc1c[nH]c2ncccc12']; ['c1cc2cc[nH]c2cn1', 'c1cc2cc[nH]c2cn1']; [0.9384636282920837, 0.9113452434539795] +Clc1ccccc1OCCc1c[nH]c2ncccc12; ['ClCCc1c[nH]c2ncccc12', 'Clc1ccccc1OCCBr']; ['Oc1ccccc1Cl', 'c1cnc2[nH]ccc2c1']; [0.9855654239654541, 0.9409968256950378] +COc1cc(Cc2c[nH]c3ncccc23)cc(OC)c1; ['Brc1c[nH]c2ncccc12', 'Brc1c[nH]c2ncccc12']; ['COc1cc(C[Zn]Br)cc(OC)c1', 'COc1cc(CBr)cc(OC)c1']; [0.969373345375061, 0.7529847621917725] +Cc1ccc2[nH]ncc2c1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +Oc1ccc(Cl)c(Cc2c[nH]c3ncccc23)c1; ['OCc1cc(O)ccc1Cl']; ['c1cnc2[nH]ccc2c1']; [0.8958730101585388] +Fc1ccc(-c2nc[nH]c2Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +COc1ccc(Cc2c[nH]c3ncccc23)cc1OC; ['Brc1c[nH]c2ncccc12', 'Brc1c[nH]c2ncccc12', 'COc1ccc(CCl)cc1OC', 'COc1ccc(CO)cc1OC', 'Brc1c[nH]c2ncccc12', None, 'COc1ccc(CCC=O)cc1OC', 'COc1ccc(CN)cc1OC', 'COc1ccc(C=O)cc1OC', 'COc1ccc(CBr)cc1OC']; ['COc1ccc(CCl)cc1OC', 'COc1ccc(C[Zn]Cl)cc1OC', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'COc1ccc(CBr)cc1OC', None, 'NNc1ccccn1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9996839761734009, 0.9970540404319763, 0.9949029684066772, 0.9937089681625366, 0.9921001195907593, 0, 0.9149895906448364, 0.8987170457839966, 0.868362545967102, 0.8666491508483887] +Cc1ccc(CO)cc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +CCOc1cccc(Cc2c[nH]c3ncccc23)c1; ['CCOc1cccc(CO)c1', 'Brc1c[nH]c2ncccc12', 'CCOc1cccc(C=O)c1', 'CCOc1cccc(CN)c1', 'CCOc1cccc(CBr)c1', 'CCOc1cccc(I)c1']; ['c1cnc2[nH]ccc2c1', 'CCOc1cccc(CBr)c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'Cc1c[nH]c2ncccc12']; [0.997389554977417, 0.9955470561981201, 0.9919520616531372, 0.9808105230331421, 0.9756006002426147, 0.8949140310287476] +Oc1ncc(Cc2c[nH]c3ncccc23)cc1Cl; [None]; [None]; [0] +Cc1nc2ccc(Cc3c[nH]c4ncccc34)cc2[nH]1; [None]; [None]; [0] +NC(=O)c1cc(Cc2c[nH]c3ncccc23)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(Cc3c[nH]c4ncccc34)ccc12; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +c1ccc2sc(Cc3c[nH]c4ncccc34)nc2c1; ['OCc1nc2ccccc2s1']; ['c1cnc2[nH]ccc2c1']; [0.9851704239845276] +CS(=O)(=O)c1ccc(Cc2c[nH]c3ncccc23)cc1; ['CC1(C)OB(c2c[nH]c3ncccc23)OC1(C)C', 'Brc1c[nH]c2ncccc12', 'CS(=O)(=O)c1ccc(CCl)cc1', 'Brc1c[nH]c2ncccc12', 'CS(=O)(=O)c1ccc(CO)cc1', 'CS(=O)(=O)c1ccc(CBr)cc1']; ['CS(=O)(=O)c1ccc(CBr)cc1', 'CS(=O)(=O)c1ccc(CCl)cc1', 'c1cnc2[nH]ccc2c1', 'CS(=O)(=O)c1ccc(CBr)cc1', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9995496273040771, 0.996962308883667, 0.9879351854324341, 0.9603148698806763, 0.9144784212112427, 0.8414295315742493] +c1cnc2[nH]cc(Cc3cnc4[nH]ccc4c3)c2c1; [None]; [None]; [0] +Oc1cncc(Cc2c[nH]c3ncccc23)c1; ['OCc1cncc(O)c1']; ['c1cnc2[nH]ccc2c1']; [0.8579179644584656] +O=C1Cc2cc(Cc3c[nH]c4ncccc34)ccc2N1; ['O=C1Cc2cc(CO)ccc2N1']; ['c1cnc2[nH]ccc2c1']; [0.942182183265686] +CCc1cc(O)ccc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +Cc1n[nH]c(Cc2c[nH]c3ncccc23)c1C; [None]; [None]; [0] +Clc1cnccc1Cc1c[nH]c2ncccc12; ['Brc1c[nH]c2ncccc12', 'Brc1c[nH]c2ncccc12', 'OCc1ccncc1Cl', 'Clc1cnccc1CBr', 'Cc1c[nH]c2ncccc12']; ['ClCc1ccncc1Cl', 'Clc1cnccc1CBr', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'Clc1cnccc1I']; [0.9979352355003357, 0.9967905879020691, 0.9857192039489746, 0.8545519113540649, 0.7766933441162109] +CNc1nccc(Cc2c[nH]c3ncccc23)n1; [None]; [None]; [0] +Cc1cc(O)ccc1Cc1c[nH]c2ncccc12; [None, 'Cc1cc(O)ccc1CO']; [None, 'c1cnc2[nH]ccc2c1']; [0, 0.9713742733001709] +FC(F)c1cc(Cc2c[nH]c3ncccc23)[nH]n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +c1cnc2[nH]cc(Cc3ccc4c(c3)CCN4)c2c1; [None]; [None]; [0] +O=c1[nH]c2ccc(Cc3c[nH]c4ncccc34)cc2[nH]1; ['O=Cc1ccc2[nH]c(=O)[nH]c2c1']; ['c1cnc2[nH]ccc2c1']; [0.8456701636314392] +Fc1cc(Br)ccc1Cc1c[nH]c2ncccc12; ['NNc1ccccn1', 'OCc1ccc(Br)cc1F', 'Fc1cc(Br)ccc1CBr', 'Brc1c[nH]c2ncccc12']; ['O=CCCc1ccc(Br)cc1F', 'c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1', 'Fc1cc(Br)ccc1C[Zn]Br']; [0.9972087144851685, 0.9916855096817017, 0.8855605721473694, 0.8039662837982178] +CCc1sccc1Cc1c[nH]c2ncccc12; [None]; [None]; [0] +CNc1nc(Cc2c[nH]c3ncccc23)ncc1F; [None]; [None]; [0] +Oc1cc(Cc2c[nH]c3ncccc23)nc2ccnn12; [None]; [None]; [0] +Oc1c(Cl)cc(Cc2c[nH]c3ncccc23)cc1Cl; [None]; [None]; [0] +Cc1oc(Cc2c[nH]c3ncccc23)cc1C(=O)[O-]; [None]; [None]; [0] +CNC(=O)c1ccc(Cc2c[nH]c3ncccc23)cc1; ['CNC(=O)c1ccc(CCl)cc1']; ['c1cnc2[nH]ccc2c1']; [0.9072052240371704] +O=C(NC1CC1)c1ccc(Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +Oc1c(F)cc(Cc2c[nH]c3ncccc23)cc1F; [None]; [None]; [0] +Cc1cc(Cc2c[nH]c3ncccc23)cc(C)c1O; ['Cc1cc(CO)cc(C)c1O', None]; ['c1cnc2[nH]ccc2c1', None]; [0.8936097621917725, 0] +Cc1nc2ccc(Cc3c[nH]c4ncccc34)cc2o1; ['Cc1nc2ccc(CO)cc2o1', 'Cc1nc2ccc(C=O)cc2o1']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9951782822608948, 0.9387123584747314] +Fc1ccc2n[nH]c(Cc3c[nH]c4ncccc34)c2c1; [None]; [None]; [0] +Oc1cc(Br)cc(Cc2c[nH]c3ncccc23)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1Cc1c[nH]c2ncccc12; ['Cc1onc(-c2ccccc2)c1C=O', 'Cc1onc(-c2ccccc2)c1CBr']; ['c1cnc2[nH]ccc2c1', 'c1cnc2[nH]ccc2c1']; [0.9991004467010498, 0.998901903629303] +Cc1cc(Cc2c[nH]c3ncccc23)ccc1C(N)=O; [None]; [None]; [0] +CSc1cccc(Cc2c[nH]c3ncccc23)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(Cc3c[nH]c4ncccc34)ccc12; [None]; [None]; [0] +Fc1ccc(-c2ncoc2Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cccc(O)c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2c(Cl)ccc3c2OCO3)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(Cl)c(O)c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cccc3ncccc23)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2n[nH]c3ccccc23)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2Cc2c[nH]c3ncccc23)cc1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +O=C([O-])c1cncc(Oc2ccc(F)cc2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(O)cc2Cl)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc(C(=O)[O-])c2)c(F)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(O)cc2F)c1; [None]; [None]; [0] +Nc1nccc(-c2cncc(C(=O)[O-])c2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cncc(C(=O)[O-])c3)cc2[nH]1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +COc1cc(-c2cncc(C(=O)[O-])c2)ccc1O; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(-c3ccc(O)cc3O)cc2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cncc(C(=O)[O-])c2)o1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +COc1cc(CCc2cncc(C(=O)[O-])c2)ccc1O; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(O)c(F)c2)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cncc(C(=O)[O-])c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +Cn1cc(-c2cncc(C(=O)[O-])c2)c2ccccc21; [None]; [None]; [0] +Nc1cc(-c2cncc(C(=O)[O-])c2)ccn1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(O)ccc2Cl)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +O=C([O-])c1cncc(COc2ccccc2Cl)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(O)cc2O)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cnc(O)c(Cl)c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cncc(C(=O)[O-])c2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +CCOc1cccc(-c2cncc(C(=O)[O-])c2)c1; ['CCOc1cccc(B(O)O)c1']; ['O=C([O-])c1cccnc1']; [0.8214159607887268] +COc1ccc(-c2cncc(C(=O)[O-])c2)cc1OC; [None]; [None]; [0] +Cc1nc2ccc(-c3cncc(C(=O)[O-])c3)cc2[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2cncc(C(=O)[O-])c2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cncc(C(=O)[O-])c3)ccc12; [None]; [None]; [0] +O=C([O-])c1cncc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +O=C1Cc2cc(-c3cncc(C(=O)[O-])c3)ccc2N1; [None]; [None]; [0] +COc1cc(CCc2cncc(C(=O)[O-])c2)cc(OC)c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cncc(O)c2)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +CNc1nccc(-c2cncc(C(=O)[O-])c2)n1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccncc2Cl)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cncc(C(=O)[O-])c3)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +Cc1n[nH]c(-c2cncc(C(=O)[O-])c2)c1C; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(C(F)F)n[nH]2)c1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +CCc1sccc1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc3[nH]c(=O)[nH]c3c2)c1; [None]; [None]; [0] +CNc1nc(-c2cncc(C(=O)[O-])c2)ncc1F; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(Cl)c(O)c(Cl)c2)c1; [None]; [None]; [0] +Cc1oc(-c2cncc(C(=O)[O-])c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(Br)cc2F)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2[nH]nc3ccc(F)cc23)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(O)cc(Br)c2)c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +O=C([O-])c1cncc(Nc2ccncc2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(C(=O)[O-])c2)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cncc(C(=O)[O-])c3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cncc(C(=O)[O-])c2)ccc1C(N)=O; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc(C(=O)NC3CC3)cc2)c1; [None]; [None]; [0] +CN(c1cncc(C(=O)[O-])c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cc(F)c(O)c(F)c2)c1; [None]; [None]; [0] +Cc1cc(-c2cncc(C(=O)[O-])c2)cc(C)c1O; [None]; [None]; [0] +O=C([O-])c1cncc(Oc2ccc(F)cc2F)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ccc3c(=O)[nH][nH]c3c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(OCc2cccc3ccccc23)c1; [None]; [None]; [0] +O=C([O-])c1cncc(CCc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +CSc1cccc(-c2cncc(C(=O)[O-])c2)c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2ocnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cncc(C(=O)[O-])c1; [None]; [None]; [0] +O=C([O-])c1cncc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCOc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +O=C([O-])c1cncc(OCc2ccc(F)cc2F)c1; [None]; [None]; [0] +O=C([O-])c1cncc(NCc2c(F)cccc2Cl)c1; [None]; [None]; [0] +O=C([O-])c1cncc(CCc2ccc(F)cc2F)c1; [None]; [None]; [0] +Nc1cc(CCc2ncc3ccccc3n2)[nH]n1; [None]; [None]; [0] +Cc1ccc2ncn(CCc3cc(N)n[nH]3)c2c1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)cc(OC)c1OC; [None]; [None]; [0] +COc1ncccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2cnc3cccnn23)[nH]n1; [None]; [None]; [0] +N#Cc1ccc(O)c(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +COc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cccc(O)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(N3CCOCC3)cc2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc(NC(=O)C3CC3)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2nc3ccccc3[nH]2)[nH]n1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(CCc3cc(N)n[nH]3)cc2)CC1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)[O-])cc2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2nccc3ccccc23)[nH]n1; [None]; [None]; [0] +Nc1cc(CCNc2ncccn2)[nH]n1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(CCc3cc(N)n[nH]3)cn2)c1; [None]; [None]; [0] +Nc1cc(CCc2ccc(OCCO)cc2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)Nc3ccccc3)cc2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)N3CCOCC3)cc2)[nH]n1; [None]; [None]; [0] +CC(=O)NCc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cccc(C3CCNCC3)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)N3CCOCC3)cn2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(F)(F)F)cc2)[nH]n1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CS(=O)(=O)C3)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2O)[nH]n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Cc1nc(C)c(CCc2cc(N)n[nH]2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(CCc2cc(N)n[nH]2)CC1; [None]; [None]; [0] +Nc1cc(CC[C@H]2CCN(C(=O)c3ccccc3)C2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Br)cc2)[nH]n1; [None]; [None]; [0] +CC(C)c1cc(CCc2cc(N)n[nH]2)nc(N)n1; [None]; [None]; [0] +Nc1cc(CCCc2cnc(N)nc2)[nH]n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +CCCOc1ccc(CCc2cc(N)n[nH]2)nc1; [None]; [None]; [0] +COc1ccc(CCCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Cc1c(CCc2cc(N)n[nH]2)cccc1C(=O)[O-]; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(CCc3cc(N)n[nH]3)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)n[nH]2)cc1Cl; [None]; [None]; [0] +Nc1cc(CCc2ccn3nccc3n2)[nH]n1; [None]; [None]; [0] +COc1ccc(Cl)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cc(N)n[nH]2)c(C)c1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]c3ccccc23)[nH]n1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccccc2-n2cccn2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +COc1cc(OC)c(CCc2cc(N)n[nH]2)cc1Cl; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCO3)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(-c3ccccc3)[nH]n2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc3c2OCO3)[nH]n1; [None]; [None]; [0] +CC(C)c1ccc2nc(CCc3cc(N)n[nH]3)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)ccc1O; [None]; [None]; [0] +Nc1cc(CCc2scc3c2OCCO3)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCc2nc3c(F)c(F)ccc3[nH]2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCc2nc3ccc(F)c(F)c3[nH]2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cnc3ccccc3c2)[nH]n1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cc(N)n[nH]2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Cc1ccc(CCc2cc(N)n[nH]2)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(CCCc2nc3ccccc3[nH]2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2csc(N)n2)[nH]n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](CCc2cc(N)n[nH]2)CC1; [None]; [None]; [0] +Nc1cc(CCc2ccn(-c3cccc(Cl)c3)n2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCCCc2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cccc(C(=O)NCCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +CSc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccc3s2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(F)cc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CC[C@H](CO)Cc2ccccc2)[nH]n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(CCc3cc(N)n[nH]3)cc2)CC1; [None]; [None]; [0] +CC[C@@H](CO)CCc1cc(N)n[nH]1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)n[nH]2)nc(N)n1; [None]; [None]; [0] +COc1ccc(CCc2cc(N)n[nH]2)cc1OC; [None]; [None]; [0] +Nc1cc(CCc2ccc(Cl)cc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCC(=O)N3)[nH]n1; [None]; [None]; [0] +CCc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ncc(Br)cn2)[nH]n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ncc3cccn3n2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCCCn2cncn2)[nH]n1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccn3n2)[nH]n1; [None]; [None]; [0] +COc1ccc2cccc(CCc3cc(N)n[nH]3)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(CCc3cc(N)n[nH]3)ccc2O1; [None]; [None]; [0] +Cn1cc(CCc2cc(N)n[nH]2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)ccc1Cl; [None]; [None]; [0] +Nc1cc(CCc2cccc3ccc(O)cc23)[nH]n1; [None]; [None]; [0] +COc1cc(F)c(CCc2cc(N)n[nH]2)cc1OC; [None]; [None]; [0] +Nc1cc(CCc2ncc(Cl)cn2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cnn(CCO)c2)[nH]n1; [None]; [None]; [0] +Cc1csc2c(CCc3cc(N)n[nH]3)ncnc12; [None]; [None]; [0] +Nc1cc(CCc2cc(N)nc3[nH]ccc23)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cc(N)n[nH]2)nc1; [None]; [None]; [0] +COc1cc(CCc2cc(N)n[nH]2)cc(OC)c1; [None]; [None]; [0] +COc1ccc(OC)c(CCCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](CCc2cc(N)n[nH]2)CC1; [None]; [None]; [0] +Nc1cc(CCc2cccc(C(=O)Nc3cn[nH]c3)c2)[nH]n1; [None]; [None]; [0] +CCNC(=O)N1CCC(CCc2cc(N)n[nH]2)CC1; [None]; [None]; [0] +COc1ccc2oc(CCc3cc(N)n[nH]3)cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(CCc1cc(N)n[nH]1)cn2C; [None]; [None]; [0] +CCn1cc(CCc2cc(N)n[nH]2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2cc(-c3cccnc3)ccn2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3cn[nH]c3c2)[nH]n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccc(OC(F)(F)F)cc2)[nH]n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NCCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccc3o2)[nH]n1; [None]; [None]; [0] +Cn1cc(Br)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ncc3sccc3n2)[nH]n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cccc(NC(=O)N3CCCC3)c2)[nH]n1; [None]; [None]; [0] +COc1ccc2nc(CCc3cc(N)n[nH]3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(CCc2cc(N)n[nH]2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(CCc3cc(N)n[nH]3)[nH]c2c1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)n[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(CCc3cc(N)n[nH]3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)n[nH]2)cn1; [None]; [None]; [0] +Cn1ncc2cc(CCc3cc(N)n[nH]3)ccc21; [None]; [None]; [0] +Nc1cc(CCc2ncn3c2CCCC3)[nH]n1; [None]; [None]; [0] +CCc1cccc(CCc2cc(N)n[nH]2)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(CCc3cc(N)n[nH]3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(CCc3cc(N)n[nH]3)cn2)CC1; [None]; [None]; [0] +Nc1cc(CCNC(=O)c2cccc(OC(F)(F)F)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc(N3CCCC3=O)c2)[nH]n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)n[nH]2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(CCc3cc(N)n[nH]3)cc2)n1C; [None]; [None]; [0] +Nc1cc(CCc2ccc(CCO)cc2)[nH]n1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cc(N)n[nH]2)c(OC)c1; [None]; [None]; [0] +Cn1nc(CCc2cc(N)n[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cccc3ncccc23)[nH]n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)n[nH]2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +C[C@@H](CCc1cc(N)n[nH]1)CS(C)(=O)=O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2c(Cl)cccc2Cl)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2c(Cl)ccc3c2OCO3)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Cl)c(O)c2)[nH]n1; [None]; [None]; [0] +COc1ccc(F)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2n[nH]c3ccccc23)[nH]n1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2cc(N)n[nH]2)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2F)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccnc(N)n2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc(Br)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3ccccc3c2)[nH]n1; [None]; [None]; [0] +Cc1nc2c(F)cc(CCc3cc(N)n[nH]3)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(CCc2cc(N)n[nH]2)o1; [None]; [None]; [0] +Nc1cc(CCc2cn[nH]c2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(-c3ccc(O)cc3O)cc2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2O)[nH]n1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2cnn3ncccc23)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)c(F)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]c3cnccc23)[nH]n1; [None]; [None]; [0] +Nc1cc(CCCOc2ccccc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(N)n[nH]2)ccn1; [None]; [None]; [0] +Nc1cc(CCc2ccc(F)c(Cl)c2)[nH]n1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc(O)ccc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2[nH]cnc2-c2ccc(F)cc2)[nH]n1; [None]; [None]; [0] +NC(=O)c1cc(CCc2cc(N)n[nH]2)c[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CCOc1cccc(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +Nc1cc(CCc2cnc(O)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CCc3cc(N)n[nH]3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(CCc3cc(N)n[nH]3)cc2[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CCc2cc(N)n[nH]2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cnc3[nH]ccc3c2)[nH]n1; [None]; [None]; [0] +CNc1nccc(CCc2cc(N)n[nH]2)n1; [None]; [None]; [0] +Nc1cc(CCc2nc3ccccc3s2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cncc(O)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CC(=O)N3)[nH]n1; [None]; [None]; [0] +Cc1n[nH]c(CCc2cc(N)n[nH]2)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CCc1cc(O)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Cc1cc(O)ccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +CCc1sccc1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccncc2Cl)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(C(F)F)n[nH]2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(Cl)c(O)c(Cl)c2)[nH]n1; [None]; [None]; [0] +CNc1nc(CCc2cc(N)n[nH]2)ncc1F; [None]; [None]; [0] +Nc1cc(CCc2cc(O)n3nccc3n2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Br)cc2F)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCN3)[nH]n1; [None]; [None]; [0] +Cc1oc(CCc2cc(N)n[nH]2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc(CCc2ccc3[nH]c(=O)[nH]c3c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2[nH]nc3ccc(F)cc23)[nH]n1; [None]; [None]; [0] +Cc1nc2ccc(CCc3cc(N)n[nH]3)cc2o1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)NC3CC3)cc2)[nH]n1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)n[nH]2)ccc1C(N)=O; [None]; [None]; [0] +Nc1cc(CCc2cc(F)c(O)c(F)c2)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(O)cc(Br)c2)[nH]n1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)n[nH]2)cc(C)c1O; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(=O)[nH][nH]c3c2)[nH]n1; [None]; [None]; [0] +CSc1cccc(CCc2cc(N)n[nH]2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cn[nH]c2-c2ccc(Cl)cc2)[nH]n1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CCc1cc(N)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ocnc2-c2ccc(F)cc2)[nH]n1; [None]; [None]; [0] +CCOc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ncc3ccccc3n2)n[nH]1; [None]; [None]; [0] +COc1ncccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1OC; [None]; [None]; [0] +Nc1cc(CCc2cnc3cccnn23)n[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Cc1ccc2ncn(CCc3cc(N)[nH]n3)c2c1; [None]; [None]; [0] +Nc1cc(CCc2cccc(O)c2)n[nH]1; [None]; [None]; [0] +N#Cc1ccc(O)c(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Nc1cc(CCc2ccc(N3CCOCC3)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2nc3ccccc3[nH]2)n[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(CCc3cc(N)[nH]n3)cc2)CC1; [None]; [None]; [0] +COc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cccc(NC(=O)C3CC3)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)[O-])cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2nccc3ccccc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)Nc3ccccc3)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCNc2ncccn2)n[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccc(OCCO)cc2)n[nH]1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(CCc3cc(N)[nH]n3)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cccc(C3CCNCC3)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)N3CCOCC3)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)N3CCOCC3)cn2)n[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(F)(F)F)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CS(=O)(=O)C3)n[nH]1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Cc1nc(C)c(CCc2cc(N)[nH]n2)s1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2O)n[nH]1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(CCc2cc(N)[nH]n2)CC1; [None]; [None]; [0] +Nc1cc(CC[C@H]2CCN(C(=O)c3ccccc3)C2)n[nH]1; [None]; [None]; [0] +CC(C)c1cc(CCc2cc(N)[nH]n2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(CCCc2cc(N)[nH]n2)cn1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(CCc3cc(N)[nH]n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(CCc2cc(N)[nH]n2)nc1; [None]; [None]; [0] +Cc1c(CCc2cc(N)[nH]n2)cccc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc(CCc2ccc(Br)cc2)n[nH]1; [None]; [None]; [0] +COc1ccc(CCCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccn3nccc3n2)n[nH]1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)[nH]n2)cc1Cl; [None]; [None]; [0] +Nc1cc(CCc2ccccc2-n2cccn2)n[nH]1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cc(N)[nH]n2)c(C)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +CC(C)c1ccc2nc(CCc3cc(N)[nH]n3)[nH]c2c1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]c3ccccc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCO3)n[nH]1; [None]; [None]; [0] +COc1cc(OC)c(CCc2cc(N)[nH]n2)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(-c3ccccc3)[nH]n2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cccc3c2OCO3)n[nH]1; [None]; [None]; [0] +Nc1cc(CCCc2nc3ccc(F)c(F)c3[nH]2)n[nH]1; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)ccc1O; [None]; [None]; [0] +Nc1cc(CCc2scc3c2OCCO3)n[nH]1; [None]; [None]; [0] +Nc1cc(CCCc2nc3c(F)c(F)ccc3[nH]2)n[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cnc3ccccc3c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2csc(N)n2)n[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cc(N)[nH]n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](CCc2cc(N)[nH]n2)CC1; [None]; [None]; [0] +Nc1cc(CCCc2nc3ccccc3[nH]2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccn(-c3cccc(Cl)c3)n2)n[nH]1; [None]; [None]; [0] +Cc1ccc(CCc2cc(N)[nH]n2)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(CCCCCc2ccccc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccc3s2)n[nH]1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(CCc3cc(N)[nH]n3)cc2)CC1; [None]; [None]; [0] +COc1cccc(C(=O)NCCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +CSc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CC[C@@H](CO)CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CC[C@H](CO)Cc2ccccc2)n[nH]1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)[nH]n2)nc(N)n1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCC(=O)N3)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ncc(Br)cn2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(F)cc2Cl)n[nH]1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +COc1ccc(CCc2cc(N)[nH]n2)cc1OC; [None]; [None]; [0] +CCc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Cl)cc2Cl)n[nH]1; [None]; [None]; [0] +Nc1cc(CCCCCn2cncn2)n[nH]1; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc(CCc2ncc3cccn3n2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccn3n2)n[nH]1; [None]; [None]; [0] +Cn1cc(CCc2cc(N)[nH]n2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc2cccc(CCc3cc(N)[nH]n3)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(CCc3cc(N)[nH]n3)ccc2O1; [None]; [None]; [0] +Nc1cc(CCc2cccc3ccc(O)cc23)n[nH]1; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)ccc1Cl; [None]; [None]; [0] +Cc1csc2c(CCc3cc(N)[nH]n3)ncnc12; [None]; [None]; [0] +COc1cc(F)c(CCc2cc(N)[nH]n2)cc1OC; [None]; [None]; [0] +Nc1cc(CCc2cnn(CCO)c2)n[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2ncc(Cl)cn2)n[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cc(N)[nH]n2)nc1; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)c(OC)cc1Br; [None]; [None]; [0] +Nc1cc(CCc2cc(N)[nH]n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(OC)c(CCCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](CCc2cc(N)[nH]n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(CCc2cc(N)[nH]n2)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc(C(=O)Nc3cn[nH]c3)c2)n[nH]1; [None]; [None]; [0] +COc1ccc2c(c1)c(CCc1cc(N)[nH]n1)cn2C; [None]; [None]; [0] +COc1cc(CCc2cc(N)[nH]n2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2oc(CCc3cc(N)[nH]n3)cc2c1; [None]; [None]; [0] +Nc1cc(CCc2ccc3cn[nH]c3c2)n[nH]1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CCn1cc(CCc2cc(N)[nH]n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Nc1cc(CCc2cc3ccccc3o2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ncc3sccc3n2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc(-c3cccnc3)ccn2)n[nH]1; [None]; [None]; [0] +Cn1cc(Br)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cccc(NC(=O)N3CCCC3)c2)n[nH]1; [None]; [None]; [0] +COc1ccc2nc(CCc3cc(N)[nH]n3)[nH]c2c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(CCc3cc(N)[nH]n3)[nH]c2c1; [None]; [None]; [0] +Nc1cc(CCc2ccc(OC(F)(F)F)cc2)n[nH]1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NCCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Nc1cc(CCc2ncn3c2CCCC3)n[nH]1; [None]; [None]; [0] +CCc1cccc(CCc2cc(N)[nH]n2)n1; [None]; [None]; [0] +Cn1cc(CCc2cc(N)[nH]n2)c2ccccc21; [None]; [None]; [0] +Cc1cc(CCc2cc(N)[nH]n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(CCc3cc(N)[nH]n3)ccc21; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(CCc3cc(N)[nH]n3)cn2)CC1; [None]; [None]; [0] +Nc1cc(CCc2cccc(N3CCCC3=O)c2)n[nH]1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cc(N)[nH]n2)cn1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(CCc3cc(N)[nH]n3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(CCc3cc(N)[nH]n3)ccc12; [None]; [None]; [0] +Nc1cc(CCc2ccc(CCO)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCNC(=O)c2cccc(OC(F)(F)F)c2)n[nH]1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)[nH]n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Cc1ncc(-c2ccc(CCc3cc(N)[nH]n3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cc(N)[nH]n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(CCc2cc(N)[nH]n2)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +C[C@@H](CCc1cc(N)[nH]n1)CS(C)(=O)=O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cc(N)[nH]n2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2c(Cl)ccc3c2OCO3)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2n[nH]c3ccccc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Cl)c(O)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2c(Cl)cccc2Cl)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cccc3ncccc23)n[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2cc(N)[nH]n2)c(F)c1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2Cl)n[nH]1; [None]; [None]; [0] +Nc1nccc(CCc2cc(N)[nH]n2)n1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +COc1ccc(F)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2F)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cn[nH]c2Cl)n[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Cc1nc2c(F)cc(CCc3cc(N)[nH]n3)cc2[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cccc(Br)c2)n[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(CCc2cc(N)[nH]n2)o1; [None]; [None]; [0] +Nc1cc(CCc2ccc(-c3ccc(O)cc3O)cc2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)c(F)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(O)cc2O)n[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Nc1cc(CCc2ccc3ccccc3c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2c[nH]c3cnccc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCCOc2ccccc2Cl)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cnn3ncccc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc(N)[nH]n2)ccn1; [None]; [None]; [0] +Nc1cc(CCc2ccc(F)c(Cl)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2[nH]cnc2-c2ccc(F)cc2)n[nH]1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Cc1ccc(CO)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +NC(=O)c1cc(CCc2cc(N)[nH]n2)c[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc(O)ccc2Cl)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cnc(O)c(Cl)c2)n[nH]1; [None]; [None]; [0] +Cc1nc2ccc(CCc3cc(N)[nH]n3)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CCc3cc(N)[nH]n3)ccc12; [None]; [None]; [0] +CCOc1cccc(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2nc3ccccc3s2)n[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CCc2cc(N)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(CCc2cnc3[nH]ccc3c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CC(=O)N3)n[nH]1; [None]; [None]; [0] +CNc1nccc(CCc2cc(N)[nH]n2)n1; [None]; [None]; [0] +Nc1cc(CCc2cncc(O)c2)n[nH]1; [None]; [None]; [0] +CCc1cc(O)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Cc1n[nH]c(CCc2cc(N)[nH]n2)c1C; [None]; [None]; [0] +CCc1sccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(C(F)F)n[nH]2)n[nH]1; [None]; [None]; [0] +Cc1cc(O)ccc1CCc1cc(N)[nH]n1; [None]; [None]; [0] +Nc1cc(CCc2cc(Cl)c(O)c(Cl)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccncc2Cl)n[nH]1; [None]; [None]; [0] +CNc1nc(CCc2cc(N)[nH]n2)ncc1F; [None]; [None]; [0] +Cc1oc(CCc2cc(N)[nH]n2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(c2)CCN3)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc(Br)cc2F)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ccc3[nH]c(=O)[nH]c3c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2[nH]nc3ccc(F)cc23)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2cc(O)n3nccc3n2)n[nH]1; [None]; [None]; [0] +Cc1nc2ccc(CCc3cc(N)[nH]n3)cc2o1; [None]; [None]; [0] +Nc1cc(CCc2ccc(C(=O)NC3CC3)cc2)n[nH]1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)[nH]n2)ccc1C(N)=O; [None]; [None]; [0] +Nc1cc(CCc2cc(O)cc(Br)c2)n[nH]1; [None]; [None]; [0] +Cc1cc(CCc2cc(N)[nH]n2)cc(C)c1O; [None]; [None]; [0] +Nc1cc(CCc2ccc3c(=O)[nH][nH]c3c2)n[nH]1; [None]; [None]; [0] +CSc1cccc(CCc2cc(N)[nH]n2)c1; [None]; [None]; [0] +Nc1cc(CCc2cc(F)c(O)c(F)c2)n[nH]1; [None]; [None]; [0] +Nc1cc(CCc2ocnc2-c2ccc(F)cc2)n[nH]1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CCc1cc(N)[nH]n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc2ncccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(O)c1; [None]; [None]; [0] +Nc1cc(CCc2cn[nH]c2-c2ccc(Cl)cc2)n[nH]1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +CCc1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(Cl)c(O)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1n[nH]c2ccccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(O)cc1F; [None]; [None]; [0] +COc1ccc(F)cc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccnc(N)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(F)c2nc(C)[nH]c2c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cn[nH]c1Cl; [None]; [None]; [0] +COc1cc(-c2cc3nccc(O)c3cc2OC)ccc1O; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)o1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1COc1cccc(Cl)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(Br)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(O)c(F)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnn2ncccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccnc(N)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1COc1ccccc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(O)ccc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(CO)ccc1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c(C)ccc2[nH]ncc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1[C@H](CO)c1ccccc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1CCc1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +COc1ccc(-c2cc3nccc(O)c3cc2OC)cc1OC; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +CCOc1cccc(-c2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2nc(C)[nH]c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1nc2ccccc2s1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc4nccc(O)c4cc3OC)ccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cncc(O)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CC(=O)N2; [None]; [None]; [0] +CNc1nccc(-c2cc3nccc(O)c3cc2OC)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1[nH]nc(C)c1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(O)cc1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccncc1Cl; [None]; [None]; [0] +CCc1sccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(-c2cc3nccc(O)c3cc2OC)ncc1F; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C(=O)[O-])c(C)o1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2[nH]c(=O)[nH]c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(Br)cc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(O)cc(Br)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(N)=O)c(C)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2nc(C)oc2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C)c(O)c(C)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(F)c(O)c(F)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)NC2CC2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(=O)[nH][nH]c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(SC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c(-c2ccccc2)noc1C; [None]; [None]; [0] +CCOc1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N(C)C(C)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccnc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(OC)c(OC)c(OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnc2cccnn12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-n1cnc2ccc(C)cc21; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C#N)ccc1O; [None]; [None]; [0] +COc1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(CC(=O)N2CCN(C(C)=O)CC2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1nccc2ccccc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1ncccn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1cc(C)ns1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(OCCO)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(CNC(C)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1ccncn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N(C)C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1sc(C)nc1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(N2CCCN(C(C)=O)CC2)c1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3nccc(O)c3cc2OC)nc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)c(C)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cc3nccc(O)c3cc2OC)cc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(NC(C)=O)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc2c1OCO2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1scc2c1OCCO2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnc2ccccc2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1csc(N)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1OCC1(C)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4nccc(O)c4cc3OC)cc2)CC1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(SC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C)nc(N)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(F)cc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncc(Br)cn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +COc1ccc(CNc2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N2CCOCC2)c(OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1NC1CN(C(=O)C2CC2)C1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncc2cccn2n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4nccc(O)c4cc3OC)c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2cc3nccc(O)c3cc2OC)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc3nccc(O)c3cc2OC)ccc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnn(CCO)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncc(Cl)cn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncnc2c(C)csc12; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1nc(C)c(C)s1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1cc(C)n(C)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)nc1; [None]; [None]; [0] +COc1cc(-c2cc3nccc(O)c3cc2OC)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Cc1ccc(C(N)=O)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1[C@@H]1CC[C@@H](OC)CC1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1NC(=O)c1ccco1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3nccc(O)c3cc2OC)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3nccc(O)c3cc1OC)cn2C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +COc1ccc2oc(-c3cc4nccc(O)c4cc3OC)cc2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1NC(=O)c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +CCn1cc(-c2cc3nccc(O)c3cc2OC)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc2ccccc2o1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncc2sccc2n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(Br)cn1C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cn(C)nc1C(C)C; [None]; [None]; [0] +COc1ccc2nc(-c3cc4nccc(O)c4cc3OC)[nH]c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C)c(OCCO)c(C)c1; [None]; [None]; [0] +CCc1cccc(-c2cc3nccc(O)c3cc2OC)n1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N(C)C)nc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc2c(C)n[nH]c2c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cnn(C2CCN(C(C)=O)CC2)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(CCO)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(N2CCOCC2)cc1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2nccc(O)c2cc1OC; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1cc(C)c(F)cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccc(O)c3cc2OC)c(OC)c1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1ccc(F)cn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1Nc1ccccn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3nccc(O)c3cc2OC)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +CCOc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +COc1cc2c(O)ccnc2cc1-c1cc(C(=O)NCCO)ccc1C; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3nccc(O)c3cc2OC)c1; [None]; [None]; [0] +Nc1ncc(CCc2ncc3ccccc3n2)cn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1CCc1cnc(N)nc1; [None]; [None]; [0] +COc1ncccc1CCc1cnc(N)nc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +COc1ccc(CCc2cnc(N)nc2)cc1; ['COc1ccc(CC[Zn]Br)cc1']; ['Nc1ncc(Br)cn1']; [0.9943246841430664] +Nc1ncc(CCc2cnc3cccnn23)cn1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)cc(OC)c1OC; [None]; [None]; [0] +N#Cc1ccc(O)c(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(O)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2nc3ccccc3[nH]2)cn1; [None]; [None]; [0] +Cc1ccc2ncn(CCc3cnc(N)nc3)c2c1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(N3CCOCC3)cc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(NC(=O)C3CC3)c2)cn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(CCc3cnc(N)nc3)cc2)CC1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(=O)[O-])cc2)cn1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2nccc3ccccc23)cn1; [None]; [None]; [0] +Nc1ncc(CCNc2ncccn2)cn1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(CCc3cnc(N)nc3)cn2)c1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(=O)Nc3ccccc3)cc2)cn1; [None]; [None]; [0] +CC(=O)NCc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(C3CCNCC3)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(OCCO)cc2)cn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(=O)N3CCOCC3)cc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(=O)N3CCOCC3)cn2)cn1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(c2)CS(=O)(=O)C3)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(F)(F)F)cc2)cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CN(C)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCCc2ccccc2O)cn1; [None]; [None]; [0] +Cc1nc(C)c(CCc2cnc(N)nc2)s1; [None]; [None]; [0] +Nc1ncc(CCCc2cnc(N)nc2)cn1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(CCc2cnc(N)nc2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(Br)cc2)cn1; ['Br[Zn]CCc1ccc(Br)cc1']; ['Nc1ncc(Br)cn1']; [0.9547262787818909] +CC(=O)N1CCCN(c2cccc(CCc3cnc(N)nc3)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(CCc2cnc(N)nc2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(CC[C@H]2CCN(C(=O)c3ccccc3)C2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccn3nccc3n2)cn1; [None]; [None]; [0] +CCCOc1ccc(CCc2cnc(N)nc2)nc1; [None]; [None]; [0] +Cc1c(CCc2cnc(N)nc2)cccc1C(=O)[O-]; [None]; [None]; [0] +CN(C)c1ccc(CCc2cnc(N)nc2)cc1Cl; [None]; [None]; [0] +COc1ccc(CCCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CCc2cnc(N)nc2)c(C)c1; [None]; [None]; [0] +Nc1ncc(CCc2ccccc2-n2cccn2)cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2c[nH]c3ccccc23)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(c2)CCO3)cn1; ['BrCCc1ccc2c(c1)CCO2']; ['Nc1ncccn1']; [0.8053158521652222] +CC(C)c1ccc2nc(CCc3cnc(N)nc3)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +COc1cc(OC)c(CCc2cnc(N)nc2)cc1Cl; [None]; [None]; [0] +Nc1ncc(CCc2cc(-c3ccccc3)[nH]n2)cn1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)ccc1O; [None]; [None]; [0] +Nc1ncc(CCc2scc3c2OCCO3)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cccc3c2OCO3)cn1; [None]; [None]; [0] +Nc1ncc(CCCc2nc3c(F)c(F)ccc3[nH]2)cn1; [None]; [None]; [0] +Nc1ncc(CCCc2nc3ccc(F)c(F)c3[nH]2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cnc3ccccc3c2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](CCc2cnc(N)nc2)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(CCc2cnc(N)nc2)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCCc2nc3ccccc3[nH]2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2csc(N)n2)cn1; [None]; [None]; [0] +COc1cccc(C(=O)NCCc2cnc(N)nc2)c1; [None]; [None]; [0] +Cc1ccc(CCc2cnc(N)nc2)c(=O)[nH]1; [None]; [None]; [0] +Nc1ncc(CCCCCc2ccccc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccn(-c3cccc(Cl)c3)n2)cn1; [None]; [None]; [0] +CSc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(CCc3cnc(N)nc3)cc2)CC1; [None]; [None]; [0] +Nc1ncc(CCc2cc3ccccc3s2)cn1; [None]; [None]; [0] +Cc1cc(CCc2cnc(N)nc2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(F)cc2Cl)cn1; ['Fc1ccc(CCBr)c(Cl)c1']; ['Nc1ncccn1']; [0.8572117686271667] +Nc1ncc(CCc2ncc(Br)cn2)cn1; [None]; [None]; [0] +COc1ccc(CCc2cnc(N)nc2)cc1OC; ['COc1ccc(CC[Zn]Br)cc1OC', 'COc1ccc(CC[Mg]Br)cc1OC']; ['Nc1ncc(Br)cn1', 'Nc1ncc(Br)cn1']; [0.9964881539344788, 0.7947795987129211] +CCc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(c2)CCC(=O)N3)cn1; [None]; [None]; [0] +Nc1ncc(CC[C@H](CO)Cc2ccccc2)cn1; [None]; [None]; [0] +CC[C@@H](CO)CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(Cl)cc2Cl)cn1; ['Clc1ccc(CC[Mg]Br)c(Cl)c1']; ['Nc1ncc(Br)cn1']; [0.9142739772796631] +C[C@H]1CCCN1C(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2cc3ccccn3n2)cn1; [None]; [None]; [0] +Nc1ncc(CCCCCn2cncn2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ncc3cccn3n2)cn1; [None]; [None]; [0] +CC1(C)Cc2cc(CCc3cnc(N)nc3)ccc2O1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)ccc1N1CCOCC1; [None]; [None]; [0] +Cn1cc(CCc2cnc(N)nc2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc2cccc(CCc3cnc(N)nc3)c2c1; [None]; [None]; [0] +Nc1ncc(CCc2ncc(Cl)cn2)cn1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)ccc1Cl; [None]; [None]; [0] +Nc1ncc(CCc2cnn(CCO)c2)cn1; [None]; [None]; [0] +Cc1csc2c(CCc3cnc(N)nc3)ncnc12; [None]; [None]; [0] +Nc1ncc(CCc2cccc3ccc(O)cc23)cn1; [None]; [None]; [0] +COc1cc(F)c(CCc2cnc(N)nc2)cc1OC; [None]; [None]; [0] +Nc1cc(CCc2cnc(N)nc2)c2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cnc(N)nc2)nc1; [None]; [None]; [0] +COc1ccc(OC)c(CCCc2cnc(N)nc2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)c(OC)cc1Br; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](CCc2cnc(N)nc2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(CCc2cnc(N)nc2)CC1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)nc2)cc(OC)c1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3cn[nH]c3c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(C(=O)Nc3cn[nH]c3)c2)cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(CCc1cnc(N)nc1)cn2C; [None]; [None]; [0] +COc1ccc2oc(CCc3cnc(N)nc3)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2cc(-c3cccnc3)ccn2)cn1; [None]; [None]; [0] +CCn1cc(CCc2cnc(N)nc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cc3ccccc3o2)cn1; [None]; [None]; [0] +Cn1cc(Br)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +Nc1ncc(CCc2ncc3sccc3n2)cn1; [None]; [None]; [0] +CC(C)c1nn(C)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NCCc2cnc(N)nc2)c1; [None]; [None]; [0] +COc1ccc2nc(CCc3cnc(N)nc3)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(NC(=O)N3CCCC3)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(OC(F)(F)F)cc2)cn1; [None]; [None]; [0] +Cn1cc(CCc2cnc(N)nc2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(CCc3cnc(N)nc3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(CCc2cnc(N)nc2)n1; [None]; [None]; [0] +Nc1ncc(CCc2ncn3c2CCCC3)cn1; [None]; [None]; [0] +Cn1ncc2cc(CCc3cnc(N)nc3)ccc21; ['CCc1cnc(N)nc1']; ['Cn1ncc2cc(I)ccc21']; [0.9102376699447632] +Cc1cc(CCc2cnc(N)nc2)cc(C)c1OCCO; [None]; [None]; [0] +CN(C)c1ccc(CCc2cnc(N)nc2)cn1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(CCc3cnc(N)nc3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(CCc3cnc(N)nc3)ccc12; [None]; [None]; [0] +Nc1ncc(CCNC(=O)c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(N3CCCC3=O)c2)cn1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(CCc3cnc(N)nc3)cn2)CC1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(CCO)cc2)cn1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(CCc3cnc(N)nc3)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cnc(N)nc2)c(Cl)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(CCc2cnc(N)nc2)c(OC)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(CCc2cnc(N)nc2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Cn1nc(CCc2cnc(N)nc2)cc1C(C)(C)O; [None]; [None]; [0] +Nc1ncc(CCc2cccc3ncccc23)cn1; ['BrCc1cccc2ncccc12']; ['Cc1cnc(N)nc1']; [0.7723408937454224] +C[C@@H](CCc1cnc(N)nc1)CS(C)(=O)=O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2c(Cl)ccc3c2OCO3)cn1; [None]; [None]; [0] +Nc1ncc(CCc2c(Cl)cccc2Cl)cn1; ['Cc1cnc(N)nc1']; ['ClCc1c(Cl)cccc1Cl']; [0.7931040525436401] +CNC(=O)c1ccc(C)c(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(Cl)c(O)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccnc(N)n2)cn1; ['Cc1ccnc(N)n1']; ['Nc1ncc(CO)cn1']; [0.7825642824172974] +NC(=O)c1ccc(CCc2cnc(N)nc2)c(F)c1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(O)cc2Cl)cn1; [None]; [None]; [0] +COc1cc(F)ccc1CCc1cnc(N)nc1; ['COc1cc(F)ccc1CCBr']; ['Nc1ncccn1']; [0.907440185546875] +COc1cc(C(N)=O)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2cccc(Br)c2)cn1; ['Br[Zn]CCc1cccc(Br)c1']; ['Nc1ncc(Br)cn1']; [0.9533595442771912] +COc1ccc(F)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +Cc1nc2c(F)cc(CCc3cnc(N)nc3)cc2[nH]1; [None]; [None]; [0] +Nc1ncc(CCc2cn[nH]c2Cl)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(O)cc2F)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(-c3ccc(O)cc3O)cc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3ccccc3c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(O)c(F)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(O)cc2O)cn1; [None]; [None]; [0] +COC(=O)c1ccc(CCc2cnc(N)nc2)o1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +Nc1ncc(CCc2cnn3ncccc23)cn1; [None]; [None]; [0] +Nc1ncc(CCc2c[nH]c3cnccc23)cn1; [None]; [None]; [0] +Nc1cc(CCc2cnc(N)nc2)ccn1; [None]; [None]; [0] +Nc1ncc(CCCOc2ccccc2Cl)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(F)c(Cl)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2cc(O)ccc2Cl)cn1; [None]; [None]; [0] +Cc1ccc(CO)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CCc3cnc(N)nc3)ccc12; [None]; [None]; [0] +Nc1ncc(CCc2cnc(O)c(Cl)c2)cn1; [None]; [None]; [0] +NC(=O)c1cc(CCc2cnc(N)nc2)c[nH]1; [None]; [None]; [0] +Cc1nc2ccc(CCc3cnc(N)nc3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CCc2cnc(N)nc2)cc1; [None]; [None]; [0] +Nc1ncc(CCc2nc3ccccc3s2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cncc(O)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cnc3[nH]ccc3c2)cn1; [None]; [None]; [0] +CNc1nccc(CCc2cnc(N)nc2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(c2)CC(=O)N3)cn1; [None]; [None]; [0] +Cc1n[nH]c(CCc2cnc(N)nc2)c1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CCc1cnc(N)nc1; [None]; [None]; [0] +Cc1cc(O)ccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2ccncc2Cl)cn1; [None]; [None]; [0] +CCc1sccc1CCc1cnc(N)nc1; [None]; [None]; [0] +Nc1ncc(CCc2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cc(Cl)c(O)c(Cl)c2)cn1; [None]; [None]; [0] +CNc1nc(CCc2cnc(N)nc2)ncc1F; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(c2)CCN3)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(Br)cc2F)cn1; [None]; [None]; [0] +Cc1oc(CCc2cnc(N)nc2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncc(CCc2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2[nH]nc3ccc(F)cc23)cn1; [None]; [None]; [0] +Nc1ncc(CCc2cc(O)cc(Br)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(C(=O)NC3CC3)cc2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3[nH]c(=O)[nH]c3c2)cn1; [None]; [None]; [0] +Cc1cc(CCc2cnc(N)nc2)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(CCc2cnc(N)nc2)cc(C)c1O; [None]; [None]; [0] +Cc1nc2ccc(CCc3cnc(N)nc3)cc2o1; [None]; [None]; [0] +Nc1ncc(CCc2cc(F)c(O)c(F)c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ccc3c(=O)[nH][nH]c3c2)cn1; [None]; [None]; [0] +Nc1ncc(CCc2ocnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +CSc1cccc(CCc2cnc(N)nc2)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CCc1cnc(N)nc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Nc1ncc(CCc2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +CCOc1ccccc1-c1nc2cccc(O)c2[nH]1; ['CCOc1ccccc1C=O', 'CCOc1ccccc1C=O', 'CCOc1ccccc1C=O', 'CCOc1ccccc1CO', 'CCOc1ccccc1C(=O)O', 'CCOc1ccccc1C(=O)Cl']; ['Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9994453191757202, 0.9981746673583984, 0.9981708526611328, 0.9958244562149048, 0.9950230121612549, 0.9673851132392883] +COC(C)(C)CCc1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(Cc3cc(F)cc(F)c3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'COC(=O)Cc1cc(F)cc(F)c1']; ['O=CCc1cc(F)cc(F)c1', 'O=C(Cl)Cc1cc(F)cc(F)c1', 'O=C(O)Cc1cc(F)cc(F)c1', 'Nc1cccc(O)c1N']; [0.9985374808311462, 0.9902139902114868, 0.9900147914886475, 0.850954532623291] +CC(C)S(=O)(=O)c1ccccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-c3cccc(C(F)(F)F)c3)[nH]c12; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=Cc1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1', 'O=C(O)c1cccc(C(F)(F)F)c1', 'OCc1cccc(C(F)(F)F)c1', 'O=C(Cl)c1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1']; [0.9964015483856201, 0.9880884885787964, 0.987311601638794, 0.9805865287780762, 0.9610805511474609, 0.9322692155838013] +Cc1nnc(-c2ccccc2-c2nc3cccc(O)c3[nH]2)[nH]1; [None]; [None]; [0] +CCn1cc(-c2nc3cccc(O)c3[nH]2)cn1; ['CCn1cc(C=O)cn1']; ['Nc1cccc(O)c1N']; [0.9261554479598999] +Oc1cccc2nc(-c3ccccc3OC(F)(F)F)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; ['O=Cc1ccccc1OC(F)(F)F', 'O=Cc1ccccc1OC(F)(F)F', 'O=C(O)c1ccccc1OC(F)(F)F', 'OCc1ccccc1OC(F)(F)F', 'O=Cc1ccccc1OC(F)(F)F', 'O=C(Cl)c1ccccc1OC(F)(F)F']; [0.999779224395752, 0.999019980430603, 0.9983041286468506, 0.9956719279289246, 0.9936596155166626, 0.9902535676956177] +Oc1cccc2nc(-c3ccnc4ccccc34)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Ic1ccnc2ccccc12']; ['O=C(O)c1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'OCc1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'Oc1cccc2nc[nH]c12']; [0.9965283870697021, 0.9960415363311768, 0.9911143779754639, 0.9905146360397339, 0.9876881837844849, 0.9704806804656982] +NC(=O)c1ccccc1-c1nc2cccc(O)c2[nH]1; ['NC(=O)c1ccccc1C(=O)O']; ['Nc1cccc(O)c1N']; [0.994941234588623] +Oc1cccc2nc(-c3cnn(Cc4ccccc4)c3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cnn(Cc2ccccc2)c1']; [0.9950323104858398] +CP(C)(=O)c1ccccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cccc(O)c3[nH]2)c1)c1ccccc1; ['Nc1cccc(O)c1N']; ['O=C(O)c1cccc(NC(=O)c2ccccc2)c1']; [0.9987939596176147] +Oc1cccc2nc(-c3cnc(-c4ccccc4)[nH]3)[nH]c12; [None]; [None]; [0] +Cn1cnc2ccc(-c3nc4cccc(O)c4[nH]3)cc2c1=O; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc3cccc(O)c3[nH]2)cs1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +OCCn1cc(-c2nc3cccc(O)c3[nH]2)cn1; [None]; [None]; [0] +Oc1cccc2nc(-c3cc(Cl)ccc3Cl)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1cc(Cl)ccc1Cl', 'OCc1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl', 'O=C(Cl)c1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl']; [0.9930998086929321, 0.9906641244888306, 0.988183856010437, 0.9761301279067993, 0.9070039987564087, 0.8949737548828125] +Cc1ccc(-c2nc3cccc(O)c3[nH]2)c(Br)c1; ['Cc1ccc(C(=O)O)c(Br)c1', 'Cc1ccc(CO)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9983080625534058, 0.9961494207382202, 0.9948536157608032, 0.9583269953727722] +Oc1cccc2nc(-c3cnc4ccccn34)[nH]c12; ['Nc1cccc(O)c1N']; ['O=C(O)c1cnc2ccccn12']; [0.9971208572387695] +Cc1nc(C)c(-c2nc3cccc(O)c3[nH]2)s1; ['Cc1nc(C)c(C=O)s1']; ['Nc1cccc(O)c1N']; [0.8822575807571411] +O=c1c2c(F)cccc2cnn1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CC(C)C(=O)COc1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1nc2cccc(O)c2[nH]1; ['Cc1nc2ccccn2c1C=O', 'Cc1nc2ccccn2c1C(=O)O']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9805669784545898, 0.9712332487106323] +CNc1nc(C)c(-c2nc3cccc(O)c3[nH]2)s1; [None]; [None]; [0] +COc1cnc(-c2nc3cccc(O)c3[nH]2)nc1; [None]; [None]; [0] +Oc1cccc2nc(-c3cccc(Br)c3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; ['O=Cc1cccc(Br)c1', 'O=Cc1cccc(Br)c1', 'O=C(O)c1cccc(Br)c1']; [0.9981552362442017, 0.9965569972991943, 0.9923988580703735] +Cc1ccc(Cl)c(-c2nc3cccc(O)c3[nH]2)c1; ['Cc1ccc(Cl)c(C(=O)O)c1', 'Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(CO)c1', 'Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(C=O)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9877406358718872, 0.964242160320282, 0.9273558259010315, 0.8884536027908325, 0.8387362360954285] +Oc1cccc2nc(-c3cccc(Cn4cncn4)c3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cccc(Cn2cncn2)c1']; [0.8897265195846558] +Oc1cccc2nc(-c3c(Cl)cccc3Cl)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['OCc1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.898059606552124, 0.887677788734436] +Cc1nc(N)sc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Nc1nccc(-c2nc3cccc(O)c3[nH]2)n1; ['Nc1cccc(O)c1N']; ['Nc1nccc(C(=O)O)n1']; [0.9300764203071594] +Oc1cccc2nc(-c3cnc4cccnn34)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(NCc3cccnc3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3cnn4ncccc34)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc4ccccc4c3)[nH]c12; [None]; [None]; [0] +Cc1c(-c2nc3cccc(O)c3[nH]2)sc(=O)n1C; [None]; [None]; [0] +O=C(Nc1nc2cccc(O)c2[nH]1)c1cccs1; [None]; [None]; [0] +Oc1cccc2nc(NCCc3c[nH]cn3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(Nc3cccnc3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3c[nH]nc3C(F)(F)F)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F']; [0.9987869262695312, 0.9978177547454834, 0.9812734127044678] +NC(=O)c1c(F)cccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-n3cnc4ccccc43)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3cncc4ccccc34)[nH]c12; ['Ic1cncc2ccccc12', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'CCOC(=O)c1cncc2ccccc12']; ['Oc1cccc2nc[nH]c12', 'O=Cc1cncc2ccccc12', 'O=C(O)c1cncc2ccccc12', 'O=Cc1cncc2ccccc12', 'Nc1cccc(O)c1N']; [0.9932109117507935, 0.9856971502304077, 0.984576940536499, 0.9769856929779053, 0.9676852226257324] +Oc1cccc2nc(NCCc3ccccc3)[nH]c12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc(-c4cn[nH]c4)cc3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=C(O)c1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1']; [0.9912432432174683, 0.9712729454040527, 0.8816527128219604] +Cn1cc(-c2ccc(-c3nc4cccc(O)c4[nH]3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3nc4cccc(O)c4[nH]3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3nc4cccc(O)c4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3nc4cccc(O)c4[nH]3)ccc21; [None]; [None]; [0] +Oc1cccc(-c2nc3cccc(O)c3[nH]2)c1; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; ['O=Cc1cccc(O)c1', 'O=C(O)c1cccc(O)c1', 'O=Cc1cccc(O)c1', 'O=Cc1cccc(O)c1']; [0.996025800704956, 0.8443827629089355, 0.8297153115272522, 0.8126024007797241] +OCc1cccc(-c2nc3cccc(O)c3[nH]2)c1; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=Cc1cccc(CO)c1', 'OCc1cccc(CO)c1']; [0.8875958919525146, 0.7711853981018066] +Oc1cccc2nc(NCc3ccc(Cl)cc3)[nH]c12; [None]; [None]; [0] +CC(C)c1oncc1-c1nc2cccc(O)c2[nH]1; ['CC(C)c1oncc1C(=O)O']; ['Nc1cccc(O)c1N']; [0.9892535209655762] +Oc1cccc2nc(NCc3ccccc3F)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(Nc3ccncc3)[nH]c12; [None]; [None]; [0] +CCCn1cnc(-c2nc3cccc(O)c3[nH]2)n1; [None]; [None]; [0] +Oc1cccc2nc(CCc3c[nH]nn3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3csc4ncncc34)[nH]c12; [None]; [None]; [0] +CC(C)n1cc(-c2nc3cccc(O)c3[nH]2)nn1; [None]; [None]; [0] +COc1cc(-c2nc3cccc(O)c3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2nc3cccc(O)c3[nH]2)c[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-c3cc4ccccc4[nH]3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=Cc1cc2ccccc2[nH]1', 'O=C(O)c1cc2ccccc2[nH]1']; [0.9868482351303101, 0.9688230752944946] +Nc1ncncc1-c1nc2cccc(O)c2[nH]1; ['Nc1cccc(O)c1N', 'CCOC(=O)c1cncnc1N', 'Nc1cccc(O)c1N']; ['Nc1ncncc1C(=O)O', 'Nc1cccc(O)c1N', 'Nc1ncncc1C=O']; [0.9997797012329102, 0.9991132616996765, 0.9906646609306335] +Oc1cccc2nc(-c3ccc(F)cc3C(F)(F)F)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1ccc(F)cc1C(F)(F)F', 'O=C(Cl)c1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F']; [0.9984707832336426, 0.9967190623283386, 0.9957492351531982, 0.9847275018692017, 0.9841725826263428] +CCNc1nc2ccc(-c3nc4cccc(O)c4[nH]3)cc2s1; [None]; [None]; [0] +NC(=O)CCCc1nc2cccc(O)c2[nH]1; ['NC(=O)CCCC(=O)O']; ['Nc1cccc(O)c1N']; [0.9958547353744507] +N#CCCc1cccc(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +Nc1nc(-c2nc3cccc(O)c3[nH]2)cs1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc3cccc(O)c3[nH]2)c1; ['CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)Nc1cccc(C=O)c1', 'CC(=O)Nc1cccc(C=O)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9997272491455078, 0.966231644153595, 0.8426014184951782] +O=C(Nc1nc2cccc(O)c2[nH]1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +COc1ccc(-c2nc3cccc(O)c3[nH]2)cc1Cl; ['COc1ccc(C(=O)O)cc1Cl', 'COc1ccc(C=O)cc1Cl', 'COc1ccc(CO)cc1Cl', 'COc1ccc(C=O)cc1Cl', 'COc1ccc(C=O)cc1Cl']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9976322650909424, 0.9915674924850464, 0.9589951038360596, 0.9517319202423096, 0.9382645487785339] +Cn1cc(-c2nc3cccc(O)c3[nH]2)c2ccccc21; ['Cn1cc(C(=O)O)c2ccccc21', 'Cn1cc(C=O)c2ccccc21']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.991499662399292, 0.97206711769104] +CC(C)(O)CC(=O)NCCc1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(Oc3ccccn3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3cnn4ccccc34)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'CCOC(=O)c1cnn2ccccc12', 'Ic1cnn2ccccc12']; ['O=C(O)c1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'Nc1cccc(O)c1N', 'Oc1cccc2nc[nH]c12']; [0.9996154308319092, 0.9982969760894775, 0.9951093196868896, 0.9885191321372986, 0.9875868558883667, 0.9775594472885132] +CCCn1cc(-c2nc3cccc(O)c3[nH]2)cn1; ['CCCn1cc(C=O)cn1']; ['Nc1cccc(O)c1N']; [0.9961499571800232] +CC(C)(COc1nc2cccc(O)c2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +COc1cc(CCc2nc3cccc(O)c3[nH]2)cc(OC)c1; ['COc1cc(CCC=O)cc(OC)c1', 'COC(=O)CCc1cc(OC)cc(OC)c1', 'CCOC(=O)CCc1cc(OC)cc(OC)c1', 'COc1cc(CCC(=O)O)cc(OC)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9950864315032959, 0.9916539192199707, 0.9904954433441162, 0.9832028150558472] +O=c1cc(-c2nc3cccc(O)c3[nH]2)cc[nH]1; ['Nc1cccc(O)c1N']; ['O=C(O)c1cc[nH]c(=O)c1']; [0.8975687026977539] +[NH3+]Cc1ccc(-c2nc3cccc(O)c3[nH]2)cc1C(F)(F)F; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +O=C1CCc2cccc(-c3nc4cccc(O)c4[nH]3)c21; [None]; [None]; [0] +CCN(CC)c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2nc3cccc(O)c3[nH]2)c1; ['CC(C)Oc1cncc(C=O)c1']; ['Nc1cccc(O)c1N']; [0.9964969158172607] +COc1ccncc1Nc1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3nc4cccc(O)c4[nH]3)cc12; [None]; [None]; [0] +Oc1cccc2nc(Nc3cnccc3-c3ccccc3)[nH]c12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(CO)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9744836688041687, 0.9705178737640381, 0.9676101803779602, 0.9664084911346436, 0.9567149877548218, 0.8054260015487671] +C[C@@H](Oc1nc2cccc(O)c2[nH]1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3nc4cccc(O)c4[nH]3)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-c3cnc4[nH]ccc4c3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cnc2[nH]ccc2c1']; [0.91810142993927] +COc1cccc(F)c1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-c3c[nH]c4cnccc34)[nH]c12; ['Nc1cccc(O)c1N', 'CCOC(=O)c1c[nH]c2cnccc12', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]c2cnccc12', 'Nc1cccc(O)c1N', 'O=Cc1c[nH]c2cnccc12', 'O=Cc1c[nH]c2cnccc12']; [0.9998512268066406, 0.9990912675857544, 0.997300386428833, 0.9881193041801453] +Oc1cccc2nc(Nc3cnc4ccccc4c3)[nH]c12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9432619214057922] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9828029870986938] +CS(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CS(=O)(=O)c1ccc(C(=O)O)cc1', 'CS(=O)(=O)c1ccc(C(=O)Cl)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9795343279838562, 0.8951926231384277, 0.8492258191108704, 0.7987903952598572] +CN(c1nc2cccc(O)c2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2nc3cccc(O)c3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc(N4CCOCC4)cc3)[nH]c12; [None]; [None]; [0] +Cc1cc(-c2nc3cccc(O)c3[nH]2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +OCc1ccn(-c2nc3cccc(O)c3[nH]2)n1; [None]; [None]; [0] +C[C@H](Nc1nc2cccc(O)c2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Oc1cccc2nc(-c3c(F)cccc3Cl)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=C(O)c1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl']; [0.9974915385246277, 0.9782215356826782, 0.9567609429359436] +OCCc1cn(-c2nc3cccc(O)c3[nH]2)cn1; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc(-n4cncn4)cc3)[nH]c12; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1ccc(-n2cncn2)cc1']; ['O=Cc1ccc(-n2cncn2)cc1', 'O=C(O)c1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1', 'OCc1ccc(-n2cncn2)cc1', 'Oc1cccc2nc[nH]c12']; [0.9995560646057129, 0.9988713264465332, 0.9985812902450562, 0.9978379011154175, 0.9966373443603516, 0.9880468845367432] +C[C@H](Nc1nc2cccc(O)c2[nH]1)C(C)(C)O; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +COc1ccc(-c2nc3cccc(O)c3[nH]2)c(OC)c1; ['COc1ccc(C(=O)O)c(OC)c1', 'COc1ccc(C=O)c(OC)c1', 'COc1ccc(CO)c(OC)c1', 'COc1ccc(C=O)c(OC)c1', 'COc1ccc(C(=O)Cl)c(OC)c1']; ['Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9994264841079712, 0.9992286562919617, 0.9988070726394653, 0.9981549382209778, 0.9799127578735352] +C[C@@H](Nc1nc2cccc(O)c2[nH]1)C(C)(C)O; [None]; [None]; [0] +Oc1cccc2nc(-n3ncc4ccccc43)[nH]c12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; ['O=C(Cl)c1ccc(C(=O)c2ccccc2)cc1', 'O=C(O)c1ccc(C(=O)c2ccccc2)cc1', 'O=Cc1ccc(C(=O)c2ccccc2)cc1', 'O=Cc1ccc(C(=O)c2ccccc2)cc1']; [0.9808515310287476, 0.9527952671051025, 0.8187562227249146, 0.7712016105651855] +Oc1ccc2nc(-c3nc4cccc(O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2nc3cccc(O)c3[nH]2)[nH]1; [None]; [None]; [0] +Oc1cccc2nc(Cc3nnc4ccc(-c5ccccc5)nn34)[nH]c12; [None]; [None]; [0] +O=C(CCc1nc2cccc(O)c2[nH]1)NCc1ccccn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2nc3cccc(O)c3[nH]2)n1; [None]; [None]; [0] +Oc1cccc2nc(-c3nncn3C3CC3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3cn(Cc4ccccc4)nn3)[nH]c12; [None]; [None]; [0] +CCc1cc(-c2nc3cccc(O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +O=S(=O)(Cc1nc2cccc(O)c2[nH]1)NCc1ccccn1; [None]; [None]; [0] +Nc1nnc(-c2nc3cccc(O)c3[nH]2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)s1; [None]; [None]; [0] +CCCCc1cc(-c2nc3cccc(O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc3cccc(O)c3[nH]2)n1; [None]; [None]; [0] +Oc1cccc2nc(-c3cccc4ccsc34)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cccc2ccsc12']; [0.8685227632522583] +[NH3+]Cc1ccc(Oc2nc3cccc(O)c3[nH]2)c(F)c1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Nc1cncc(-c2nc3cccc(O)c3[nH]2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc4cccc(O)c4[nH]3)c2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3nc4cccc(O)c4[nH]3)nc2NC1=O; [None]; [None]; [0] +Oc1cccc2nc(-c3cccc4nnsc34)[nH]c12; ['Nc1cccc2nnsc12']; ['Oc1cccc2nc[nH]c12']; [0.9227672815322876] +Oc1cccc2nc(-c3nc4ccccc4s3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3c[nH]c4cccnc34)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=Cc1c[nH]c2cccnc12', 'O=C(O)c1c[nH]c2cccnc12']; [0.9832543134689331, 0.9718626737594604] +CC(=O)Nc1ncc(-c2nc3cccc(O)c3[nH]2)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1nc2cccc(O)c2[nH]1; ['COc1ccc(C#N)cc1C=O', 'COc1ccc(C#N)cc1C(=O)O', 'COc1ccc(C#N)cc1C=O', 'COc1ccc(C#N)cc1C=O']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9999339580535889, 0.9997377395629883, 0.9996515512466431, 0.9996258020401001] +Nc1nc(-c2nc3cccc(O)c3[nH]2)nc2ccccc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc3cccc(O)c3[nH]2)c1; ['COc1ccc(OC)c(C(=O)O)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(CO)c1', 'COc1ccc(OC)c(C=O)c1', 'COc1ccc(OC)c(C=O)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9996641874313354, 0.9981228113174438, 0.9945701956748962, 0.9884531497955322, 0.9839085340499878] +Oc1cccc2nc(-c3ncc4ccccc4n3)[nH]c12; [None]; [None]; [0] +OCCn1cnc(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +Oc1cccc2nc(-c3ncc4cc[nH]c4n3)[nH]c12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc3cccc(O)c3[nH]2)c1; ['CN(C)S(=O)(=O)c1cccc(C(=O)O)c1']; ['Nc1cccc(O)c1N']; [0.9186381697654724] +COc1ncccc1-c1nc2cccc(O)c2[nH]1; ['COc1ncccc1C=O', 'COc1ncccc1C(=O)O', 'COc1ncccc1C=O']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9587118625640869, 0.9563408493995667, 0.953647255897522] +COc1ccc(Oc2nc3cccc(O)c3[nH]2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2nc3cccc(O)c3[nH]2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CC(=O)N(C)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.996819257736206] +CCOc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CCOc1ccc(CO)cc1', 'CCOc1ccc(C=O)cc1', 'CCOc1ccc(C(=O)O)cc1', 'CCOc1ccc(C=O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9630918502807617, 0.9178140163421631, 0.8493502140045166, 0.8214340806007385] +COc1cc(-c2nc3cccc(O)c3[nH]2)cc(OC)c1OC; ['COc1cc(C=O)cc(OC)c1OC', 'COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9911404848098755, 0.9904581308364868, 0.842542290687561] +CS(=O)(=O)c1cccc(-c2nc3cccc(O)c3[nH]2)c1; ['CS(=O)(=O)c1cccc(C(=O)O)c1', 'CS(=O)(=O)c1cccc(C=O)c1', 'CS(=O)(=O)c1cccc(C=O)c1']; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; [0.9895336627960205, 0.9846471548080444, 0.9796023964881897] +O=C(Nc1cccc(-c2nc3cccc(O)c3[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +Oc1cccc2nc(N3CCC(c4nc5ccccc5[nH]4)CC3)[nH]c12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +COc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['COc1ccc(CO)cc1', 'CCOC(=N)c1ccc(OC)cc1', 'COc1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9522809982299805, 0.9492517113685608, 0.8897135257720947] +O=C(Nc1cccc(-c2nc3cccc(O)c3[nH]2)c1)C1CC1; [None]; [None]; [0] +Oc1cccc2nc(N3CC=C(c4c[nH]c5ccccc45)CC3)[nH]c12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3nc4cccc(O)c4[nH]3)c2c1; [None]; [None]; [0] +Cc1cc(Nc2nc3cccc(O)c3[nH]2)sn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['NC(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9846330881118774] +Oc1cccc2nc(-c3nccc4ccccc34)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Cc1nccc2ccccc12']; ['O=Cc1nccc2ccccc12', 'O=C(O)c1nccc2ccccc12', 'Nc1cccc(O)c1N']; [0.9952027797698975, 0.9646122455596924, 0.9184033274650574] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4cccc(O)c4[nH]3)cc2)CC1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['Nc1cccc(O)c1N']; ['O=C(O)c1ccc(C(=O)Nc2ccccc2)cc1']; [0.9944769740104675] +OCCOc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['OCCOc1ccc(CO)cc1', 'O=Cc1ccc(OCCO)cc1']; [0.9963260889053345, 0.9944354295730591] +Oc1cccc2nc(-c3nc4ccccc4[nH]3)[nH]c12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nc4cccc(O)c4[nH]3)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CC(=O)NCc1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9679155945777893] +Oc1cccc2nc(Nc3ncccn3)[nH]c12; [None]; [None]; [0] +O=C(c1ccc(-c2nc3cccc(O)c3[nH]2)cc1)N1CCOCC1; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=C(O)c1ccc(C(=O)N2CCOCC2)cc1', 'O=Cc1ccc(C(=O)N2CCOCC2)cc1']; [0.9971927404403687, 0.9623366594314575] +O=C([O-])c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Oc1cccc2nc(-c3cccc(C4CCNCC4)c3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc(C(F)(F)F)cc3)[nH]c12; ['Nc1cccc(O)c1N', 'CCOC(=N)c1ccc(C(F)(F)F)cc1', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=C(O)c1ccc(C(F)(F)F)cc1', 'Nc1cccc(O)c1N', 'OCc1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1', 'O=C(Cl)c1ccc(C(F)(F)F)cc1']; [0.9853343963623047, 0.9702293276786804, 0.9230150580406189, 0.8809716701507568, 0.8004287481307983] +O=C(c1ccc(-c2nc3cccc(O)c3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3nc4cccc(O)c4[nH]3)cc2C1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CN(C)c1ccc(CO)cc1', 'CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C(=O)Cl)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; [0.994225800037384, 0.9747146368026733, 0.9580299854278564, 0.9394595623016357, 0.9035272598266602, 0.8290488719940186] +Oc1cccc2nc(Nc3ccncn3)[nH]c12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)Cl)cc1']; ['Oc1cccc2nc[nH]c12', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9409369230270386, 0.7805721759796143, 0.7739692330360413] +CS(=O)(=O)N1CCC(c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CCNS(=O)(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9395740032196045] +Oc1cccc2nc(-c3ccc(Br)cc3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1ccc(Br)cc1', 'OCc1ccc(Br)cc1', 'O=C(Cl)c1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1']; [0.9554932713508606, 0.9458314180374146, 0.9299641847610474, 0.877686619758606, 0.8060479164123535] +CCCOc1ccc(-c2nc3cccc(O)c3[nH]2)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CCN(CC)C(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9950618147850037] +CC(=O)N1CCCN(c2cccc(-c3nc4cccc(O)c4[nH]3)c2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2nc3cccc(O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1Cl; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Oc1cccc2nc(-c3ccn4nccc4n3)[nH]c12; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc2cccc(O)c2[nH]1; ['COc1ccc(Cl)cc1C=O', 'COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1C=O']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9972207546234131, 0.996198296546936, 0.9909735918045044] +O=C(c1ccccc1)N1CC[C@H](c2nc3cccc(O)c3[nH]2)C1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)c(C)c1; [None]; [None]; [0] +Oc1cccc2nc(-c3ccccc3-n3cccn3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1ccccc1-n1cccn1', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'OCc1ccccc1-n1cccn1', 'O=Cc1ccccc1-n1cccn1', 'Oc1cccc2nc[nH]c12', 'O=Cc1ccccc1-n1cccn1']; [0.9983886480331421, 0.9973577260971069, 0.986791729927063, 0.9842597246170044, 0.9537464380264282, 0.9136039018630981] +COc1cc(OC)c(-c2nc3cccc(O)c3[nH]2)cc1Cl; ['COc1cc(OC)c(C=O)cc1Cl', 'COc1cc(OC)c(C=O)cc1Cl']; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9997597932815552, 0.9978858232498169] +COc1cc(-c2nc3cccc(O)c3[nH]2)ccc1O; ['COc1cc(C(=O)O)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(C=O)ccc1O']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9955638647079468, 0.9685229063034058, 0.7883626222610474] +Oc1cccc2nc(-c3c[nH]c4ccccc34)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'CCOC(=O)c1c[nH]c2ccccc12', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]c2ccccc12', 'OCc1c[nH]c2ccccc12', 'Nc1cccc(O)c1N', 'O=Cc1c[nH]c2ccccc12', 'O=Cc1c[nH]c2ccccc12']; [0.9984275102615356, 0.9967337250709534, 0.9966671466827393, 0.9915057420730591, 0.9607316255569458] +Oc1cccc2nc(-c3ccc4c(c3)CCO4)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=C(O)c1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2']; [0.9945125579833984, 0.9886372089385986, 0.9774048328399658] +Oc1cccc2nc(-c3cc(-c4ccccc4)[nH]n3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=C(O)c1cc(-c2ccccc2)[nH]n1']; [0.9910776615142822] +Oc1cccc2nc(-c3cccc4c3OCO4)[nH]c12; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N']; ['O=Cc1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'O=C(O)c1cccc2c1OCO2', 'OCc1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'O=C(Cl)c1cccc2c1OCO2']; [0.9992729425430298, 0.9971301555633545, 0.9951934218406677, 0.9945135116577148, 0.9920167922973633, 0.982192873954773] +Oc1cccc2nc(-c3cnc4ccccc4c3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cnc2ccccc2c1']; [0.9891301393508911] +Oc1cccc2nc(-c3scc4c3OCCO4)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1scc2c1OCCO2']; [0.9994713068008423] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CSc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CSc1ccc(C(=O)O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(CO)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C(=O)Cl)cc1']; ['Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9836050271987915, 0.9508732557296753, 0.9236612319946289, 0.8838832378387451, 0.8523535132408142] +CC(C)c1ccc2nc(-c3nc4cccc(O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CN(C)C(=O)c1ccc(C(=O)O)cc1', 'CN(C)C(=O)c1ccc(C=O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9726431369781494, 0.8291468620300293] +CC(C)(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cn1; ['CC(C)(C)c1ccc(C(=O)O)cn1', 'CC(C)(C)c1ccc(C=O)cn1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9794870615005493, 0.9564566612243652] +Oc1cccc2nc(-c3ccc(F)cc3Cl)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=Cc1ccc(F)cc1Cl', 'O=C(O)c1ccc(F)cc1Cl', 'O=Cc1ccc(F)cc1Cl']; [0.9899041652679443, 0.9759227633476257, 0.9631600379943848] +Oc1cccc2nc(-c3cc4ccccc4s3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cc2ccccc2s1']; [0.9709906578063965] +COc1cccc(C(=O)Nc2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +CC1(COc2nc3cccc(O)c3[nH]2)COC1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nc4cccc(O)c4[nH]3)cc2)CC1; ['CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'CCN1CCN(Cc2ccc(C(=O)O)cc2)CC1']; ['Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9903106689453125, 0.9786193370819092, 0.9348986744880676] +COc1ccc(-c2nc3cccc(O)c3[nH]2)cc1OC; ['COc1ccc(C=O)cc1OC', 'COc1ccc(C(=O)Cl)cc1OC', 'COc1ccc(C(=O)O)cc1OC', 'COc1ccc(CO)cc1OC']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.8923373222351074, 0.8321095705032349, 0.797312319278717, 0.7697457075119019] +Oc1cccc2nc(-c3ccn(-c4cccc(Cl)c4)n3)[nH]c12; [None]; [None]; [0] +O=C1CCc2cc(-c3nc4cccc(O)c4[nH]3)ccc2N1; ['Nc1cccc(O)c1N', 'O=C1CCc2cc(I)ccc2N1']; ['O=C1CCc2cc(C(=O)O)ccc2N1', 'Oc1cccc2nc[nH]c12']; [0.9355146288871765, 0.9241780042648315] +Oc1cccc2nc(-c3ccc(Cl)cc3Cl)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=Cc1ccc(Cl)cc1Cl', 'O=C(O)c1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl']; [0.97868812084198, 0.9650970697402954, 0.948595404624939] +CCc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CCc1ccc(C=O)cc1', 'CCc1ccc(C(=O)O)cc1', 'CCc1ccc(C=O)cc1', 'CCc1ccc(CO)cc1', 'CCc1ccc(C=O)cc1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9658735990524292, 0.9616483449935913, 0.9465345740318298, 0.9241478443145752, 0.7783138155937195] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Oc1cccc2nc(-c3ncc(Br)cn3)[nH]c12; [None]; [None]; [0] +Cc1cc(-c2nc3cccc(O)c3[nH]2)nc(N)n1; [None]; [None]; [0] +COc1ccc(CNc2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc4cccc(O)c4[nH]3)c2c1; ['COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1']; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.999089241027832, 0.9989150762557983, 0.9952335357666016] +Oc1cccc2nc(-c3ncc4cccn4n3)[nH]c12; [None]; [None]; [0] +Cn1cc(-c2nc3cccc(O)c3[nH]2)c(C(F)(F)F)n1; ['Cn1cc(C=O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(C(=O)O)c(C(F)(F)F)n1']; ['Nc1cccc(O)c1N', 'Oc1cccc2nc[nH]c12', 'Nc1cccc(O)c1N']; [0.9931495189666748, 0.9804500341415405, 0.9479615688323975] +CC1(C)Cc2cc(-c3nc4cccc(O)c4[nH]3)ccc2O1; ['CC1(C)Cc2cc(C=O)ccc2O1', 'CC1(C)Cc2cc(C=O)ccc2O1']; ['Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9991923570632935, 0.9955474138259888] +COc1cc(F)c(-c2nc3cccc(O)c3[nH]2)cc1OC; ['COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C(=O)O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9989667534828186, 0.9983831644058228, 0.9971742630004883, 0.98836350440979] +COc1cc(-c2nc3cccc(O)c3[nH]2)ccc1Cl; ['COc1cc(C=O)ccc1Cl', 'COc1cc(C(=O)O)ccc1Cl']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.8810649514198303, 0.7849441766738892] +Oc1cccc2nc(-c3cc4ccccn4n3)[nH]c12; [None]; [None]; [0] +Oc1ccc2cccc(-c3nc4cccc(O)c4[nH]3)c2c1; ['Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; ['O=Cc1cccc2ccc(O)cc12', 'O=C(O)c1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12']; [0.9996321201324463, 0.9993130564689636, 0.9938215017318726, 0.9844361543655396] +O=C(C1CC1)N1CC(Nc2nc3cccc(O)c3[nH]2)C1; [None]; [None]; [0] +COc1cc(-c2nc3cccc(O)c3[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Cc1nc(Nc2nc3cccc(O)c3[nH]2)sc1C; [None]; [None]; [0] +COc1cc(-c2nc3cccc(O)c3[nH]2)c(OC)cc1Br; ['COc1cc(C=O)c(OC)cc1Br', 'COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(CO)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9995474815368652, 0.9986757040023804, 0.9967800378799438, 0.9908014535903931] +Cc1cc(Nc2nc3cccc(O)c3[nH]2)nn1C; [None]; [None]; [0] +Cc1csc2c(-c3nc4cccc(O)c4[nH]3)ncnc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3cccc(O)c3[nH]2)cc1; ['NC(=O)c1ccc(CC(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9919780492782593] +CCNC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)nc1; [None]; [None]; [0] +Oc1cccc2nc(-c3ncc(Cl)cn3)[nH]c12; [None]; [None]; [0] +Nc1cc(-c2nc3cccc(O)c3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nc3cccc(O)c3[nH]2)cc1; ['Nc1cccc(O)c1N']; ['O=C(O)Cc1ccc(S(=O)(=O)CCO)cc1']; [0.9733564257621765] +CCNC(=O)N1CCC(c2nc3cccc(O)c3[nH]2)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc3cccc(O)c3[nH]2)CC1; ['CO[C@H]1CC[C@H](C(=O)O)CC1']; ['Nc1cccc(O)c1N']; [0.9905638694763184] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc3cccc(O)c3[nH]2)c1; ['COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]', 'Nc1c(O)cccc1[N+](=O)[O-]']; [0.9907461404800415, 0.9809005260467529, 0.9464744329452515, 0.9077633023262024] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +COc1ccc2oc(-c3nc4cccc(O)c4[nH]3)cc2c1; ['COc1ccc2oc(C=O)cc2c1']; ['Nc1cccc(O)c1N']; [0.8554494380950928] +Oc1cccc2nc(-c3ccc4cn[nH]c4c3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1ccc2cn[nH]c2c1']; [0.9517822265625] +Oc1cccc2nc(-c3cc4ccccc4o3)[nH]c12; ['Nc1cccc(O)c1N']; ['O=Cc1cc2ccccc2o1']; [0.7709224224090576] +O=C(Nc1nc2cccc(O)c2[nH]1)c1ccco1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc3cccc(O)c3[nH]1)cn2C; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Oc1cccc2nc(-c3cc(-c4cccnc4)ccn3)[nH]c12; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +COc1ccc2nc(-c3nc4cccc(O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +Oc1cccc2nc(-c3ncc4sccc4n3)[nH]c12; [None]; [None]; [0] +Oc1cccc2nc(-c3ccc(OC(F)(F)F)cc3)[nH]c12; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1c(O)cccc1[N+](=O)[O-]', 'Nc1cccc(O)c1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; ['O=Cc1ccc(OC(F)(F)F)cc1', 'O=C(O)c1ccc(OC(F)(F)F)cc1', 'O=C(Cl)c1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'OCc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1']; [0.9985030889511108, 0.997421383857727, 0.993644654750824, 0.9847971796989441, 0.981858491897583, 0.9772209525108337] +CC(C)c1nn(C)cc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cccc(O)c3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +CCc1cccc(-c2nc3cccc(O)c3[nH]2)n1; ['CCc1cccc(C#N)n1', 'CCc1cccc(C=O)n1', 'CCc1cccc(C(=O)O)n1', 'CCc1cccc(C)n1']; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; [0.9620627164840698, 0.940755307674408, 0.8579403162002563, 0.804672360420227] +COc1ccc(F)c(C(=O)Nc2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +Cc1cc(-c2nc3cccc(O)c3[nH]2)cc(C)c1OCCO; ['Cc1cc(C=O)cc(C)c1OCCO']; ['Nc1cccc(O)c1N']; [0.9924988746643066] +Oc1cccc2nc(-c3ncn4c3CCCC4)[nH]c12; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cccc(O)c3[nH]2)cn1; ['CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(C(=O)O)cn1']; ['Oc1cccc2nc[nH]c12', 'Nc1cccc(O)c1N']; [0.9810655117034912, 0.9684097170829773] +CC(C)(O)c1ccc2cc(-c3nc4cccc(O)c4[nH]3)[nH]c2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc4cccc(O)c4[nH]3)ccc12; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +OCCc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['Nc1cccc(O)c1N', 'Nc1cccc(O)c1N']; ['O=C(O)c1ccc(CCO)cc1', 'OCCc1ccc(CO)cc1']; [0.9980757832527161, 0.9852083325386047] +Cn1nc(Cl)c2cc(-c3nc4cccc(O)c4[nH]3)ccc21; [None]; [None]; [0] +O=C(Nc1nc2cccc(O)c2[nH]1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)c(Cl)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nc4cccc(O)c4[nH]3)cn2)CC1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc4cccc(O)c4[nH]3)cc2)n1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)cc1; ['CCNC(=O)c1ccc(C(=O)O)cc1']; ['Nc1cccc(O)c1N']; [0.9970163702964783] +CNC(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)c(OC)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3cccc(O)c3[nH]2)c1; ['CS(=O)(=O)c1ccc(Cl)c(C(=O)O)c1']; ['Nc1cccc(O)c1N']; [0.9955686330795288] +Cc1cc(Nc2nc3cccc(O)c3[nH]2)ncc1F; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3cccc(O)c3[nH]2)nc1; [None]; [None]; [0] +Oc1cccc2nc(Nc3ccccn3)[nH]c12; ['N#CNc1ccccn1']; ['Nc1cccc(O)c1N']; [0.8414130806922913] +CCNC(=O)Cc1ccc(-c2nc3cccc(O)c3[nH]2)cc1; [None]; [None]; [0] +Oc1cccc2nc(Nc3ccc(F)cn3)[nH]c12; [None]; [None]; [0] +Cn1nc(-c2nc3cccc(O)c3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(O)c(C)c1; ['CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1Br', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1', 'CNC(=O)c1ccccc1I', 'CNC(=O)c1ccccc1Br']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1ccccc1O']; [0.9999715089797974, 0.9999698996543884, 0.9999536275863647, 0.9999433755874634, 0.9999371767044067, 0.9995355010032654, 0.998141348361969, 0.9952353835105896, 0.8638966083526611, 0.7599897384643555] +COC(C)(C)CCc1ccc(O)c(C)c1; ['COC(C)(C)CCO']; ['Cc1ccccc1O']; [0.8137326836585999] +Cc1ccc(C(=O)NCCO)cc1-c1nc2cccc(O)c2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc3cccc(O)c3[nH]2)c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(O)c(C)c1; ['CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Cl', 'CCOc1ccccc1[Mg]Br', 'CCOc1ccccc1[Mg]Br']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O']; [0.9999445676803589, 0.9997548460960388, 0.9997255802154541, 0.9993473291397095, 0.9977845549583435, 0.9965920448303223, 0.9949942827224731, 0.9852492809295654, 0.9835892915725708, 0.9820572137832642, 0.9243587255477905, 0.8522424697875977] +CCn1cc(-c2ccc(O)c(C)c2)cn1; ['CCn1cc(I)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(I)cn1', 'CCn1cc(Br)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(Cl)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(B(O)O)cn1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O']; [0.9999450445175171, 0.9999440908432007, 0.9999237060546875, 0.9998831152915955, 0.9997475743293762, 0.9997196197509766, 0.999352216720581, 0.9977353811264038, 0.9973012208938599, 0.9941649436950684] +Cc1cc(-c2ccccc2S(=O)(=O)C(C)C)ccc1O; ['CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1ccccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O']; [0.9999951124191284, 0.9998947381973267, 0.9998595714569092, 0.9994738101959229, 0.9988152384757996, 0.9976478219032288, 0.9848943948745728, 0.8453173637390137, 0.7739636301994324] +Cc1cc(-c2ccccc2P(C)(C)=O)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccnc3ccccc23)ccc1O; ['Brc1ccnc2ccccc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1ccnc2ccccc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Brc1ccnc2ccccc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1ccnc2ccccc12', 'Cc1cc(B(O)O)ccc1O', 'Clc1ccnc2ccccc12', 'Ic1ccnc2ccccc12', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'OB(O)c1ccnc2ccccc12', 'Clc1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12', 'Cc1cc(Br)ccc1O']; [0.9999791979789734, 0.9998940229415894, 0.999508261680603, 0.9995079040527344, 0.9991644620895386, 0.9990078210830688, 0.9989984631538391, 0.9843008518218994, 0.9688175320625305, 0.8846530914306641, 0.8110551238059998] +Cc1nnc(-c2ccccc2-c2ccc(O)c(C)c2)[nH]1; [None]; [None]; [0] +Cc1cc(Cc2cc(F)cc(F)c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1ccccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O']; ['Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(CCl)c1', 'OCc1cc(F)cc(F)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1', 'Fc1cc(F)cc(CBr)c1', 'Fc1cc(F)cc(CCl)c1', 'O=Cc1cc(F)cc(F)c1']; [0.9993221759796143, 0.9984017610549927, 0.9948554039001465, 0.9883147478103638, 0.9622700214385986, 0.9619412422180176, 0.9328843355178833, 0.8140442371368408] +Cc1cc(-c2ccccc2C(N)=O)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1ccccc1O']; ['NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'Cc1cc(I)ccc1O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1B(O)O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Cl', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br']; [0.9999902248382568, 0.9999730587005615, 0.9999561309814453, 0.999939501285553, 0.9998648166656494, 0.9997718334197998, 0.9997128248214722, 0.9996151924133301, 0.9995545148849487, 0.9993449449539185, 0.9992802143096924, 0.9962616562843323, 0.9941103458404541, 0.9936012029647827, 0.9292099475860596] +Cc1cc(-c2ccccc2OC(F)(F)F)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1c(O)cccc1C=O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1c(O)cccc1C(=O)O']; ['FC(F)(F)Oc1ccccc1Br', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'FC(F)(F)Oc1ccccc1I', 'Cc1cc(Cl)ccc1O', 'OB(O)c1ccccc1OC(F)(F)F', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Cl', 'FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Cl', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1[Mg]Br', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1cccc(Cl)c1', 'FC(F)(F)Oc1ccccc1', 'FC(F)(F)Oc1ccccc1I']; [0.9999760985374451, 0.9998977184295654, 0.9998934864997864, 0.9998775124549866, 0.99985671043396, 0.9998315572738647, 0.9996272325515747, 0.9995879530906677, 0.9995731115341187, 0.9991563558578491, 0.9989337921142578, 0.9970012307167053, 0.9939088821411133, 0.9910984039306641, 0.9874412417411804, 0.9682761430740356, 0.9622772336006165, 0.9529449343681335, 0.9333891868591309, 0.9319822788238525, 0.9209733009338379, 0.8822625875473022, 0.8554732799530029, 0.8037122488021851, 0.7683959007263184] +Cc1cc(-c2cccc(C(F)(F)F)c2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc3ncn(C)c(=O)c3c2)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9972479939460754, 0.996756374835968] +Cc1cc(-c2ccccc2C(=O)[O-])ccc1O; [None]; [None]; [0] +Cc1cc(-c2cnn(Cc3ccccc3)c2)ccc1O; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cnn(Cc2ccccc2)c1', 'Cc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Cc1cc(I)ccc1O', 'Brc1cnn(Cc2ccccc2)c1', 'Cc1cc(Br)ccc1O']; ['Cc1cc(Br)ccc1O', 'Ic1cnn(Cc2ccccc2)c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cnn(Cc2ccccc2)c1', 'Cc1cc(I)ccc1O', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Cc1cc(B(O)O)ccc1O', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999114274978638, 0.9998334646224976, 0.9998029470443726, 0.9997931122779846, 0.9996597170829773, 0.999406099319458, 0.9992641806602478, 0.9970743656158447] +Cc1cc(-c2cnc(-c3ccccc3)[nH]2)ccc1O; [None]; [None]; [0] +COc1cnc(-c2ccc(O)c(C)c2)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(Cl)nc1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9998465776443481, 0.998967170715332] +Cc1cc(-c2cccc(NC(=O)c3ccccc3)c2)ccc1O; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999651908874512, 0.9999401569366455, 0.9996902942657471, 0.9996112585067749, 0.9987117052078247] +Cc1cc(OCC(=O)C(C)C)ccc1O; ['CC(C)C(=O)CCl', 'CC(C)C(=O)CBr']; ['Cc1cc(O)ccc1O', 'Cc1cc(O)ccc1O']; [0.9871724843978882, 0.9633437395095825] +Cc1cc(-c2csc(C(C)(C)C)n2)ccc1O; [None]; [None]; [0] +Cc1ccc(-c2ccc(O)c(C)c2)c(Br)c1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccc(-c2ccc(O)c(C)c2)cc1', 'Cc1cc(I)ccc1O', 'Cc1c(O)cccc1C(=O)O', 'Cc1cc(Br)ccc1O', None, 'Cc1cc(I)ccc1O', 'Cc1ccc(C(=O)O)cc1O']; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'O=C1CCC(=O)N1Br', 'Cc1ccc(Br)c(Br)c1', 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', None, 'Cc1ccc(I)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; [0.9997693300247192, 0.9997556805610657, 0.999730110168457, 0.9982202053070068, 0.9916554689407349, 0.9253025054931641, 0.9025734663009644, 0.8909975290298462, 0.8882919549942017, 0, 0.8467085361480713, 0.8258876204490662] +Cc1cc(-c2cc(Cl)ccc2Cl)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccc(C(=O)O)cc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccccc1O']; ['Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(Cl)c1', 'Cc1cc(Cl)ccc1O', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(Cl)c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c([Mg]Br)c1', 'O=C(O)c1cc(Cl)ccc1Cl', 'Clc1ccc(Cl)c(I)c1']; [0.9999972581863403, 0.9999964833259583, 0.9999479651451111, 0.9998549222946167, 0.9996699690818787, 0.9996553659439087, 0.9996480345726013, 0.9995850324630737, 0.9995696544647217, 0.9992583394050598, 0.9986616373062134, 0.9984285235404968, 0.9971449375152588, 0.992393970489502, 0.991166889667511, 0.9856916069984436, 0.9789770841598511, 0.9728362560272217, 0.9721190929412842, 0.9419286251068115, 0.9101951122283936, 0.9101150035858154, 0.8679449558258057] +Cc1cc(-c2cnn(CCO)c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O']; ['OCCn1cc(I)cn1', 'Cc1cc(Br)ccc1O', 'OCCn1cc(Br)cn1', 'Cc1cc(I)ccc1O', 'OCCn1cc(I)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1', 'OCCn1cc(Cl)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999890923500061, 0.99997878074646, 0.9999738931655884, 0.9999641180038452, 0.9999639391899109, 0.999922513961792, 0.9998127818107605, 0.9997812509536743, 0.9989421367645264, 0.9945248961448669, 0.9797473549842834] +Cc1cc(-c2cnc3ccccn23)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cnc2ccccn12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Brc1cnc2ccccn12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Cl)ccc1O']; ['Ic1cnc2ccccn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Cc1cc(B(O)O)ccc1O', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.999997615814209, 0.9999951124191284, 0.9999924898147583, 0.9999896883964539, 0.9999827742576599, 0.9999563694000244, 0.9999555349349976, 0.9996297359466553, 0.9992887377738953, 0.9891579151153564, 0.9827263355255127, 0.8780488967895508] +Cc1cc(-c2c(C)nc3ccccn23)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccccc1O']; ['Cc1nc2ccccn2c1Br', 'Cc1nc2ccccn2c1I', 'Cc1nc2ccccn2c1Br', 'Cc1cn2ccccc2n1', 'Cc1cn2ccccc2n1']; [0.9999862909317017, 0.999948263168335, 0.9998855590820312, 0.9989994764328003, 0.9717888832092285] +Cc1cc(-c2sc(N)nc2C)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['Cc1nc(N)sc1Br', 'Cc1nc(N)sc1Br']; [0.9999958276748657, 0.9999529123306274] +Cc1nc(C)c(-c2ccc(O)c(C)c2)s1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; ['Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(Br)s1', 'Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; [0.9999252557754517, 0.9996217489242554, 0.9978841543197632, 0.8965415358543396] +Cc1cc(-c2cnc3cccnn23)ccc1O; ['Brc1cnc2cccnn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cnc2cccnn12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Clc1cnc2cccnn12', 'Cc1cc(B(O)O)ccc1O', 'Clc1cnc2cccnn12', 'c1cnn2ccnc2c1']; [0.9999997615814209, 0.9999988079071045, 0.9999970197677612, 0.9999881982803345, 0.9352864623069763] +Cc1cc(-c2c(Cl)cccc2Cl)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O']; ['Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999858736991882, 0.9999605417251587, 0.9995487928390503, 0.9989252686500549, 0.9983394742012024, 0.9979262351989746, 0.9920171499252319, 0.9913195371627808, 0.9850322604179382, 0.8996504545211792, 0.8955824971199036, 0.860729992389679] +Cc1cc(NCc2cccnc2)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'BrCc1cccnc1', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(Cl)ccc1O', 'CN(C)Cc1cccnc1', 'Cc1cc(I)ccc1O', 'Cc1cc(O)ccc1O']; ['OCc1cccnc1', 'ClCc1cccnc1', 'Cc1cc(N)ccc1O', 'NCc1cccnc1', 'O=Cc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'Cc1cc(N)ccc1O', 'NCc1cccnc1', 'NCc1cccnc1']; [0.9983357191085815, 0.9981583952903748, 0.995393693447113, 0.987117350101471, 0.9594675302505493, 0.934013843536377, 0.8683768510818481, 0.8616088032722473, 0.8347659111022949, 0.8027203679084778] +Cc1ccc(Cl)c(-c2ccc(O)c(C)c2)c1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccc(C(=O)O)cc1O', 'Cc1cc(I)ccc1O']; ['Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c(Br)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(Cl)c1', 'Cc1ccc(Cl)c([Mg]Br)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1']; [0.9999731183052063, 0.9999430179595947, 0.9993232488632202, 0.9989783763885498, 0.9982231855392456, 0.99755859375, 0.9959268569946289, 0.9956169128417969, 0.9910587668418884, 0.9858657121658325, 0.9636738300323486, 0.9515540599822998, 0.9261376261711121, 0.8941577672958374, 0.8568726778030396, 0.8549808859825134] +Cc1cc(-c2ccnc(N)n2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['Nc1nccc(Cl)n1', 'Nc1nccc(Cl)n1']; [0.9999608993530273, 0.9981551170349121] +CNc1nc(C)c(-c2ccc(O)c(C)c2)s1; [None]; [None]; [0] +Cc1cc(-c2cccc(Cn3cncn3)c2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cccc(Br)c2)ccc1O; ['Brc1cccc(I)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Brc1cccc(Br)c1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Cc1cc(I)ccc1O', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Brc1cccc(Br)c1', 'Br[Mg]c1cccc(Br)c1', 'Cc1ccccc1O', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', None, 'Br[Mg]c1cccc(Br)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Cc1cc(Br)ccc1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Clc1cccc(Br)c1', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'OB(O)c1cccc(Br)c1', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Clc1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'OB(O)c1cccc(Br)c1', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', None, 'Cc1cc(Br)ccc1O', 'Cc1c(O)cccc1C(=O)O', 'Cc1ccc(C(=O)O)cc1O', 'F[B-](F)(F)c1cccc(Br)c1']; [0.9999785423278809, 0.9999256134033203, 0.9998922348022461, 0.9998549222946167, 0.9996362924575806, 0.9994359016418457, 0.999375581741333, 0.9993734955787659, 0.997779369354248, 0.9936434030532837, 0.9896866679191589, 0.9827644228935242, 0.9797239899635315, 0.9644529819488525, 0.949316143989563, 0.9422082901000977, 0.8832446932792664, 0.8761530518531799, 0, 0.842860758304596, 0.8110393285751343, 0.7744463086128235, 0.7700916528701782] +Cc1cc(-n2ncc3cccc(F)c3c2=O)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cnn3ncccc23)ccc1O; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9999815225601196, 0.9996984004974365] +Cc1cc(NC(=O)c2cccs2)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'COC(=O)c1cccs1', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; ['O=C(O)c1cccs1', 'O=C(Cl)c1cccs1', 'NC(=O)c1cccs1', 'Cc1cc(N)ccc1O', 'NC(=O)c1cccs1', 'NC(=O)c1cccs1']; [0.999958336353302, 0.9999451637268066, 0.9986427426338196, 0.9983713030815125, 0.9768013954162598, 0.9512699246406555] +Cc1cc(Nc2cccnc2)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Brc1cccnc1', 'Cc1cc(Cl)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O']; ['Nc1cccnc1', 'Nc1cccnc1', 'OB(O)c1cccnc1', 'Clc1cccnc1', 'Cc1cc(N)ccc1O', 'Nc1cccnc1', 'Ic1cccnc1', 'Nc1cccnc1']; [0.9995307326316833, 0.999367356300354, 0.9969744682312012, 0.9902730584144592, 0.9899411797523499, 0.9832029938697815, 0.9584407806396484, 0.8747498393058777] +Cc1cc(NCCc2c[nH]cn2)ccc1O; ['Cc1cc(F)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(O)ccc1O', 'Cc1cc(Cl)ccc1O']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.991902232170105, 0.9806767106056213, 0.9681118726730347, 0.9017127752304077] +Cc1cc(-n2cnc3ccccc32)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(I)ccc1O']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9911775588989258, 0.9886376857757568, 0.953581690788269, 0.8923652768135071] +Cc1cc(NCCc2ccccc2)ccc1O; ['Cc1cc(N)ccc1O', 'BrCCc1ccccc1', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'CS(=O)(=O)OCCc1ccccc1', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(F)ccc1O']; ['ClCCc1ccccc1', 'Cc1cc(N)ccc1O', 'ICCc1ccccc1', 'O=CCc1ccccc1', 'Cc1cc(N)ccc1O', 'NCCc1ccccc1', 'Cc1ccc(S(=O)(=O)OCCc2ccccc2)cc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; [0.9963750839233398, 0.9815471768379211, 0.9754372835159302, 0.9599219560623169, 0.9475781917572021, 0.9362617135047913, 0.9296271800994873, 0.8793600797653198, 0.8530521392822266, 0.8212611675262451] +Cc1cc(-c2cccc(F)c2C(N)=O)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl', 'NC(=O)c1c(F)cccc1Br', 'NC(=O)c1c(F)cccc1Cl']; [0.9999983310699463, 0.9999908208847046, 0.9999189376831055, 0.9995651245117188] +Cc1cc(-c2c[nH]nc2C(F)(F)F)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O']; ['FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1I', 'FC(F)(F)c1n[nH]cc1Br', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'FC(F)(F)c1cc[nH]n1', 'FC(F)(F)c1cc[nH]n1', 'FC(F)(F)c1n[nH]cc1I']; [0.9999900460243225, 0.9999879598617554, 0.9999345541000366, 0.9996161460876465, 0.9980877637863159, 0.9972742795944214, 0.9834134578704834, 0.9546087980270386, 0.8650941848754883] +Cc1cc(-c2sc(=O)n(C)c2C)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc3ccccc3c2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cncc3ccccc23)ccc1O; ['Brc1cncc2ccccc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Brc1cncc2ccccc12', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Br[Zn]c1cncc2ccccc12', 'Cc1cc(B(O)O)ccc1O', 'Brc1cncc2ccccc12', 'Cc1cc(Cl)ccc1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cncc2ccccc12', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Ic1cncc2ccccc12', 'Cc1cc(B(O)O)ccc1O', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Cc1cc(I)ccc1O', 'Clc1cncc2ccccc12', 'Cc1cc(Br)ccc1O', 'OB(O)c1cncc2ccccc12']; [0.9999927282333374, 0.9999899864196777, 0.9999654293060303, 0.9999653100967407, 0.9999243021011353, 0.9998790621757507, 0.9996765851974487, 0.9994158148765564, 0.9954941272735596, 0.9916503429412842, 0.9573264718055725, 0.9548517465591431] +Cc1cc(NCc2ccc(Cl)cc2)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O']; ['Clc1ccc(CBr)cc1', 'ClCc1ccc(Cl)cc1', 'OCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; [0.9996880292892456, 0.9992910623550415, 0.9990725517272949, 0.9506396651268005, 0.9299852252006531, 0.9119614362716675] +Cc1cc(-c2cccc(CC(=O)[O-])c2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc3c(N)[nH]nc3c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['Nc1[nH]nc2cc(Br)ccc12', 'Nc1[nH]nc2cc(Br)ccc12']; [0.9999767541885376, 0.9987922310829163] +Cc1cc(-c2ccc(-c3cnn(C)c3)cc2)ccc1O; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(-c2ccc(Cl)cc2)ccc1O']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(B(O)O)cn1']; [0.9999911785125732, 0.9999703168869019, 0.9999577403068542, 0.9963710308074951, 0.9657292366027832] +Cc1cc(-c2ccc3c(c2)CS(=O)(=O)N3C)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc3c(cnn3C)c2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc(-c3cn[nH]c3)cc2)ccc1O; [None]; [None]; [0] +Cc1cc(NCc2ccccc2F)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O']; ['Fc1ccccc1CBr', 'Fc1ccccc1CCl', 'OCc1ccccc1F', 'O=Cc1ccccc1F', 'NCc1ccccc1F']; [0.9996718168258667, 0.9993630647659302, 0.9971297979354858, 0.9880046844482422, 0.9030030965805054] +Cc1cc(Nc2ccncc2)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Brc1ccncc1', 'Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(F)ccc1O']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'c1cc[n+](-c2ccncc2)cc1', 'Clc1ccncc1', 'Cc1cc(N)ccc1O', 'Ic1ccncc1', 'Oc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1']; [0.9999023675918579, 0.9986127018928528, 0.9936686754226685, 0.9849975109100342, 0.9847310781478882, 0.9785386323928833, 0.9761919975280762, 0.8929069638252258, 0.8884686231613159, 0.8818666338920593, 0.8812952041625977] +Cc1cc(-c2cn(C(C)C)nn2)ccc1O; ['CC(C)n1ccnn1', 'CC(C)n1ccnn1']; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O']; [0.9998338222503662, 0.9996052384376526] +CCCn1cnc(-c2ccc(O)c(C)c2)n1; [None]; [None]; [0] +Cc1cc(-c2cccc(CO)c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', None, None, 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', None]; ['OCc1cccc(Br)c1', 'Cc1cc(Br)ccc1O', 'OCc1cccc(I)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', None, None, 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(Cl)c1', None]; [0.9999476671218872, 0.9999353885650635, 0.9988681077957153, 0.9978611469268799, 0.9954288005828857, 0.9947757720947266, 0.9847816228866577, 0, 0, 0.9549422264099121, 0.9538182020187378, 0.932133674621582, 0] +Cc1cc(-c2cccc(O)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2ccc(O)c(C)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cc(-c2csc(N)n2)ccc1O; ['CC(=O)c1ccc(O)c(C)c1', None]; ['NC(N)=S', None]; [0.9999966621398926, 0] +Cc1cc(-c2csc3ncncc23)ccc1O; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9999804496765137, 0.9998961687088013] +CSc1nc(-c2ccc(O)c(C)c2)c[nH]1; [None]; [None]; [0] +Cc1cc(-c2cc3ccccc3[nH]2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', None, 'CC(=O)c1ccc(O)c(C)c1', 'Cc1ccccc1O']; ['Clc1cc2ccccc2[nH]1', None, 'NNc1ccccc1', 'O=C1Cc2ccccc2N1']; [0.999180793762207, 0, 0.9130962491035461, 0.7544732093811035] +Cc1cc(-c2cncnc2N)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['Nc1ncncc1I', 'Nc1ncncc1Br', 'Nc1ncncc1I', 'Nc1ncncc1Br']; [0.9999977350234985, 0.9999857544898987, 0.9999538660049438, 0.9997637271881104] +Cc1cc(CCc2c[nH]nn2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cccc(CCC#N)c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O']; ['N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(B(O)O)c1']; [0.9996737241744995, 0.9988949298858643, 0.998886227607727, 0.9987788200378418] +CCC(=O)Nc1ccc(-c2ccc(O)c(C)c2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O']; [0.9999597072601318, 0.9998980760574341, 0.9995378255844116] +CCNc1nc2ccc(-c3ccc(O)c(C)c3)cc2s1; [None]; [None]; [0] +Cc1cc(-c2ccc(F)cc2C(F)(F)F)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccc(C(=O)O)cc1O']; ['Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc([Mg]Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1']; [0.9999982118606567, 0.9999630451202393, 0.9999428987503052, 0.9998148083686829, 0.9998058080673218, 0.9996770024299622, 0.9991266131401062, 0.9990120530128479, 0.9986460208892822, 0.9982969760894775, 0.9960023164749146, 0.995789110660553, 0.9923962354660034, 0.957561731338501, 0.9546304941177368, 0.9510204792022705, 0.9508923292160034, 0.919752299785614, 0.9117432832717896, 0.7955750226974487] +Cc1cc(Oc2ccccn2)ccc1O; ['Cc1cc(O)ccc1O', 'Cc1cc(O)ccc1O', 'Brc1ccccn1', 'Cc1cc(B(O)O)ccc1O']; ['Clc1ccccn1', 'Fc1ccccn1', 'Cc1cc(O)ccc1O', 'Oc1ccccn1']; [0.9981194734573364, 0.95149827003479, 0.7825262546539307, 0.761406421661377] +Cc1cc(-c2cnoc2C(C)C)ccc1O; [None]; [None]; [0] +Cc1cc(NC(=O)c2c(Cl)cccc2Cl)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', None, 'COC(=O)c1c(Cl)cccc1Cl', 'Cc1cc(Br)ccc1O', 'Cc1cc([N+](=O)[O-])ccc1O']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', None, 'Cc1cc(N)ccc1O', 'NC(=O)c1c(Cl)cccc1Cl', 'O=C(Cl)c1c(Cl)cccc1Cl']; [0.9993379712104797, 0.9987590909004211, 0, 0.9653507471084595, 0.9469760656356812, 0.7813129425048828] +CC(=O)Nc1cccc(-c2ccc(O)c(C)c2)c1; ['CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999802112579346, 0.9999786615371704, 0.9999474287033081, 0.9999237060546875, 0.9997521638870239, 0.9996548891067505, 0.9993094205856323, 0.9992163181304932, 0.998982310295105, 0.9976193904876709, 0.9856238961219788, 0.9387710690498352, 0.9199628829956055] +Cc1cc(CCCC(N)=O)ccc1O; [None]; [None]; [0] +Cc1cc(CCNC(=O)CC(C)(C)O)ccc1O; [None]; [None]; [0] +Cc1cc(N2CCC(S(C)(=O)=O)CC2)ccc1O; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Cc1cc(I)ccc1O', 'Cc1ccc(Br)cc1O', 'Cc1cc(Br)ccc1O', 'Cc1c(O)cccc1Br', 'Cc1cc(F)ccc1O']; [0.9823874235153198, 0.9696110486984253, 0.9052165746688843, 0.879298746585846, 0.8285702466964722] +COc1ccc(-c2ccc(O)c(C)c2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Cl)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccc([Mg]Br)cc1Cl', 'COc1ccccc1Cl', 'COc1ccccc1Cl']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999841451644897, 0.9999775886535645, 0.9999672174453735, 0.9999593496322632, 0.9998852014541626, 0.9996193647384644, 0.9995992183685303, 0.9993892908096313, 0.9988638758659363, 0.9977167844772339, 0.9959900379180908, 0.9908742308616638, 0.9891304969787598, 0.9878764152526855, 0.9800626039505005, 0.9427658915519714, 0.8514112234115601, 0.7565193176269531] +Cc1cc(-c2cn(C)c3ccccc23)ccc1O; [None]; [None]; [0] +CCCn1cc(-c2ccc(O)c(C)c2)cn1; ['CCCn1cc(Br)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(I)cn1', 'CCCn1cc(Br)cn1', 'CCCn1cc(Cl)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cccn1', 'CCCn1cc(B(O)O)cn1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O']; [0.9999908208847046, 0.9999901056289673, 0.9999879598617554, 0.9999641180038452, 0.9999165534973145, 0.9999023079872131, 0.9998124241828918, 0.9998050928115845, 0.9992181062698364, 0.99869304895401, 0.9980610609054565] +Cc1cc(-c2cnn3ccccc23)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Brc1cnn2ccccc12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Brc1cnn2ccccc12', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1ccccc1O']; ['Ic1cnn2ccccc12', 'Ic1cnn2ccccc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'OB(O)c1cnn2ccccc12', 'c1ccn2nccc2c1', 'Clc1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'OB(O)c1cnn2ccccc12', 'Ic1cnn2ccccc12']; [0.999998927116394, 0.9999874830245972, 0.9999815225601196, 0.9999763369560242, 0.9999659657478333, 0.9999326467514038, 0.9998631477355957, 0.9996779561042786, 0.9994429349899292, 0.9992594718933105, 0.9975656867027283, 0.9257092475891113] +Cc1cc(-c2cc[nH]c(=O)c2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['O=c1cc(Br)cc[nH]1', 'Cc1cc(Br)ccc1O', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(Cl)cc[nH]1']; [0.9997431039810181, 0.9992510080337524, 0.9907822608947754, 0.9295185804367065] +Cc1cc(-c2ccc(C(C)(C)N)cc2)ccc1O; ['CC(C)(N)c1ccc(Cl)cc1', 'CC(C)(N)c1ccc(Br)cc1', None]; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', None]; [0.9989818930625916, 0.9985872507095337, 0] +Cc1cc(OCC(C)(C)S(C)(=O)=O)ccc1O; [None]; [None]; [0] +COc1cc(CCc2ccc(O)c(C)c2)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Cc1cc(I)ccc1O']; [0.9195798635482788] +Cc1cc(-c2cccc3c2C(=O)CC3)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Cl)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999939203262329, 0.9999609589576721, 0.9997707605361938, 0.9993888735771179, 0.997319221496582, 0.8369342684745789] +Cc1cc(-c2ccc([S@](C)=O)cc2)ccc1O; ['CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(Br)cc1']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9972261786460876, 0.9863650798797607, 0.8965867757797241] +CCNS(=O)(=O)c1ccccc1-c1ccc(O)c(C)c1; ['CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1', 'CCNS(=O)(=O)c1ccccc1Br', 'CCNS(=O)(=O)c1ccccc1', 'CCNS(=O)(=O)c1ccccc1Br']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999574422836304, 0.9978580474853516, 0.9960248470306396, 0.9953345060348511, 0.8601083755493164, 0.8104678988456726] +Cc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)ccc1O; [None]; [None]; [0] +Cc1cc(O[C@H](C)c2c(Cl)cncc2Cl)ccc1O; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Cc1cc(I)ccc1O', 'Cc1cc(O)ccc1O', 'Cc1cc(F)ccc1O']; [0.9827390313148499, 0.7887982130050659, 0.7874025106430054] +CCN(CC)c1ccc(O)c(C)c1; [None, None, None, None, None, None, None, None, None, 'CCN(CC)c1ccc(N)c(C)c1', 'CCNCC', 'CCNCC', 'CCNCC']; [None, None, None, None, None, None, None, None, None, 'O=S(=O)(O)O', 'Cc1cc(Br)ccc1O', 'Cc1ccc(Br)cc1O', 'Cc1cc(I)ccc1O']; [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.873112678527832, 0.8544659614562988, 0.8432741165161133, 0.8417471051216125] +COc1ccncc1Nc1ccc(O)c(C)c1; ['COc1ccncc1Cl', 'COc1ccncc1Br', 'COc1ccncc1N', 'COc1ccncc1B(O)O', 'COc1ccncc1N', 'COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1N', 'COc1ccncc1F', 'COc1ccncc1N']; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O']; [0.9997808337211609, 0.999775767326355, 0.9997690916061401, 0.9995523691177368, 0.9991862773895264, 0.9991719722747803, 0.9980649948120117, 0.9952342510223389, 0.9951736330986023, 0.9942196607589722] +Cc1cc(-c2cncc(OC(C)C)c2)ccc1O; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9999874830245972, 0.9999865293502808, 0.9999810457229614, 0.9998141527175903, 0.9998133182525635, 0.9993023872375488] +Cc1cc(Nc2cnccc2-c2ccccc2)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Brc1cnccc1-c1ccccc1', 'Cc1cc(Br)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(F)ccc1O']; ['Nc1cnccc1-c1ccccc1', 'Cc1cc(N)ccc1O', 'Nc1cnccc1-c1ccccc1', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [0.999854564666748, 0.9998071789741516, 0.9997751712799072, 0.9993594884872437, 0.998196005821228, 0.9974075555801392, 0.96848064661026] +Cc1cc(-c2cc3c(=O)[nH]ccc3o2)ccc1O; [None]; [None]; [0] +Cc1cc(Nc2cnc3ccccc3c2)ccc1O; ['Cc1cc(N)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Br)ccc1O', 'Brc1cnc2ccccc2c1', 'Cc1cc(Cl)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(F)ccc1O']; ['OB(O)c1cnc2ccccc2c1', 'Clc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Cc1cc(N)ccc1O', 'Nc1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; [0.9992082118988037, 0.998432993888855, 0.9980542659759521, 0.9966366291046143, 0.9937021136283875, 0.9933203458786011, 0.9933195114135742, 0.9779039621353149, 0.9767964482307434, 0.9441386461257935] +Cc1cc(-c2c[nH]c3cnccc23)ccc1O; ['Brc1c[nH]c2cnccc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1c[nH]c2cnccc12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1c[nH]c2cnccc12', 'Cc1cc(B(O)O)ccc1O', 'Ic1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999909400939941, 0.9999057054519653, 0.9972431659698486, 0.9953403472900391, 0.9033889770507812] +Cc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]ccc3c2)ccc1O; ['Brc1cnc2[nH]ccc2c1', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Brc1cnc2[nH]ccc2c1', 'Cc1cc(Br)ccc1O', 'Brc1cnc2[nH]ccc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Ic1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1', 'Cc1cc(B(O)O)ccc1O', 'OB(O)c1cnc2[nH]ccc2c1', 'Cc1cc(Br)ccc1O']; [0.9999952912330627, 0.9999702572822571, 0.9999409914016724, 0.9999250173568726, 0.9998823404312134, 0.9998607635498047, 0.9997884035110474, 0.9996410608291626, 0.9989714622497559, 0.9891188144683838] +Cc1cc(-c2ccc(C(C)(C)C)cc2)ccc1O; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc([Mg]Br)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccccc1', 'CC(C)(C)c1ccccc1', 'CC(C)(C)Cl', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(OS(=O)(=O)C(F)(F)F)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Cl)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccc(Cl)cc1O', 'Cc1cc(-c2ccccc2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccc(C(=O)O)cc1O', 'Cc1c(O)cccc1C=O']; [0.9999731183052063, 0.9999483823776245, 0.9998763799667358, 0.9998570084571838, 0.9998060464859009, 0.9997080564498901, 0.9991480708122253, 0.9984747171401978, 0.998352587223053, 0.9981750249862671, 0.996637225151062, 0.9960256814956665, 0.9959604144096375, 0.9953818321228027, 0.9930190443992615, 0.9922442436218262, 0.9860934615135193, 0.9854416251182556, 0.9853734374046326, 0.9826135039329529, 0.9777510762214661, 0.9736003279685974, 0.9717041254043579, 0.9500430822372437, 0.936484694480896, 0.8837253451347351, 0.8775278329849243, 0.8744407296180725, 0.8656750321388245, 0.8147841691970825, 0.8103971481323242, 0.7566657662391663] +COc1cccc(F)c1-c1ccc(O)c(C)c1; ['COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1I', 'COc1cccc(F)c1Cl', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1', 'COc1cccc(F)c1I', 'COc1cccc(F)c1N', 'COc1cccc(F)c1Cl']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1ccc(C(=O)O)cc1O', 'Cc1ccccc1O', 'Cc1ccccc1O']; [0.9999983310699463, 0.9999945163726807, 0.9999934434890747, 0.999981164932251, 0.9999784231185913, 0.9999479055404663, 0.9999365210533142, 0.9998788237571716, 0.9998502731323242, 0.9998337626457214, 0.9994360208511353, 0.9993979930877686, 0.998807966709137, 0.9987916946411133, 0.9963710308074951, 0.9877123832702637, 0.9860868453979492, 0.961607038974762, 0.940558910369873, 0.935221791267395, 0.9208709001541138, 0.9161851406097412, 0.9160354733467102, 0.908257246017456, 0.7961153984069824] +CNS(=O)(=O)c1ccc(-c2ccc(O)c(C)c2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Cl)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9996196031570435, 0.9990490674972534, 0.9983444213867188, 0.9981412887573242, 0.9954317808151245, 0.9927370548248291, 0.9867112636566162, 0.9866971969604492, 0.9109769463539124, 0.9083693027496338] +CNC(=O)c1c(F)cccc1-c1ccc(O)c(C)c1; ['CNC(=O)c1ccccc1F']; ['Cc1cc(B(O)O)ccc1O']; [0.9475970268249512] +Cc1cc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)ccc1O; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O']; [0.9999517202377319, 0.9999209642410278, 0.9997000098228455, 0.9994375705718994, 0.9993031024932861, 0.9936338663101196, 0.9927366971969604, 0.9745773077011108, 0.8841671943664551] +Cc1cc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)ccc1O; [None]; [None]; [0] +Cc1cc(N[C@@H](C)C(=O)NCC(F)(F)F)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc(O)c(C)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1cc(C2(C)CCN(S(C)(=O)=O)CC2)ccc1O; [None]; [None]; [0] +Cc1cc(-n2ccc(CO)n2)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O']; ['OCc1cc[nH]n1', 'OCc1cc[nH]n1', 'OCc1cc[nH]n1']; [0.9998409748077393, 0.9800980091094971, 0.959474503993988] +Cc1cc(-c2ccc(S(C)(=O)=O)cc2)ccc1O; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O']; [0.9999535083770752, 0.9999489784240723, 0.9999423027038574, 0.9998855590820312, 0.9998729228973389, 0.9998443126678467, 0.9997497200965881, 0.9997318983078003, 0.999035120010376, 0.9968992471694946, 0.996509313583374, 0.9942492246627808, 0.9925763607025146, 0.991623044013977, 0.9299968481063843] +Cc1cc(N[C@@H](C)C(C)(C)O)ccc1O; ['C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9237880706787109, 0.8432942628860474] +Cc1cc(-c2ccc(N3CCOCC3)cc2)ccc1O; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1cc(I)ccc1O', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Brc1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1', 'Cc1cc(Br)ccc1O', 'C1COCCN1', 'Brc1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'Cc1ccccc1O']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cc1cc(Cl)ccc1O', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1ccc(N2CCOCC2)cc1', 'Clc1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Ic1ccc(N2CCOCC2)cc1', 'Cc1cc(-c2ccc(Cl)cc2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(-c2ccc(F)cc2)ccc1O', 'Clc1ccc(N2CCOCC2)cc1']; [0.9999925494194031, 0.9999920129776001, 0.9999796748161316, 0.9999790787696838, 0.999970555305481, 0.9999659657478333, 0.9999538064002991, 0.9999402761459351, 0.9998959302902222, 0.9998908042907715, 0.9998870491981506, 0.9995774030685425, 0.9995245933532715, 0.9985357522964478, 0.9959366321563721, 0.9552555084228516, 0.8645238876342773, 0.8580271005630493, 0.8086190223693848] +Cc1cc(N[C@H](C)C(C)(C)O)ccc1O; ['C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9237880706787109, 0.8432942628860474] +Cc1cc(-c2c(F)cccc2Cl)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccc(C(=O)O)cc1O', 'Cc1ccccc1O']; ['Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1Br', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Fc1cccc(Cl)c1Cl', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br']; [0.9999988079071045, 0.9999867677688599, 0.999977171421051, 0.9999603629112244, 0.9999039173126221, 0.9998926520347595, 0.9998821020126343, 0.9994809627532959, 0.9981961250305176, 0.9968519806861877, 0.9955871105194092, 0.9897363185882568, 0.9887988567352295, 0.8846243619918823, 0.7517427206039429] +Cc1cc(-n2cnc(CCO)c2)ccc1O; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O']; ['OCCc1c[nH]cn1', 'OCCc1c[nH]cn1', 'OCCc1cnc[nH]1']; [0.993538498878479, 0.9809563159942627, 0.9669772386550903] +Cc1cc(-c2ccc(-n3cncn3)cc2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2nc3ccc(O)cc3[nH]2)ccc1O; ['Cc1cc(C(=O)O)ccc1O', 'Cc1cc(C=O)ccc1O', 'Cc1cc(C=O)ccc1O']; ['Nc1ccc(O)cc1N', 'Nc1ccc(O)cc1N', 'Nc1cc(O)ccc1[N+](=O)[O-]']; [0.9930789470672607, 0.8680593967437744, 0.7576382756233215] +Cc1cc(-n2ncc3ccccc32)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(F)ccc1O']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9993922710418701, 0.9726419448852539, 0.9558091759681702, 0.7620396018028259] +COc1ccc(-c2ccc(O)c(C)c2)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1cccc(OC)c1', 'COc1ccc(Cl)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc([Mg]Br)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1cccc(OC)c1', 'COc1ccc(Br)c(OC)c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999735951423645, 0.9999426603317261, 0.9999218583106995, 0.9998611807823181, 0.9998539686203003, 0.9998434782028198, 0.9996011257171631, 0.9992974996566772, 0.9988146424293518, 0.9987868070602417, 0.998268187046051, 0.9966540336608887, 0.9958768486976624, 0.9951014518737793, 0.98860764503479, 0.9673911333084106, 0.9440404176712036, 0.93487548828125, 0.9328447580337524, 0.9253199100494385, 0.8229804039001465, 0.8148660659790039] +Cc1cc(-n2ncc3c(O)cccc32)ccc1O; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc(O)c(C)c2)[nH]1; [None]; [None]; [0] +Cc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)ccc1O; ['Cc1cc(CC(=O)O)ccc1O']; ['NNc1ccc(-c2ccccc2)nn1']; [0.9983183145523071] +Cc1cc(-c2ccc(C(=O)c3ccccc3)cc2)ccc1O; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(O)c(C)c2)CC1; [None]; [None]; [0] +CCc1cc(-c2ccc(O)c(C)c2)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(Cl)nc(N)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9999709129333496, 0.9998647570610046] +Cc1cc(-c2ccn(CC[NH3+])n2)ccc1O; [None]; [None]; [0] +Cc1cc(CCC(=O)NCc2ccccn2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2nnc(N)s2)ccc1O; ['Cc1cc(C#N)ccc1O', 'Cc1cc(C(=O)O)ccc1O']; ['NNC(N)=S', 'NNC(N)=S']; [0.9999583959579468, 0.9997972249984741] +Cc1cc(-c2nncn2C2CC2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2nncn2C(C)C)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cn(Cc3ccccc3)nn2)ccc1O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(O)c(C)c2)s1; ['CNC(=O)c1ccc(Br)s1', 'CNC(=O)c1ccc(Br)s1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.999994158744812, 0.9999728202819824] +Cc1cc(CS(=O)(=O)NCc2ccccn2)ccc1O; [None]; [None]; [0] +Cc1cc(-c2cccc(C(C)(C)O)n2)ccc1O; ['CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999111294746399, 0.9996734857559204, 0.9991089105606079, 0.9906374216079712, 0.9524632692337036] +Cc1cc(-c2cc(C(N)=O)cn2C)ccc1O; [None]; [None]; [0] +CCCCc1cc(-c2ccc(O)c(C)c2)nc(N)n1; [None]; [None]; [0] +Cc1cc(-c2nc3ccccc3s2)ccc1O; ['Cc1cc(C(=O)O)ccc1O', 'Brc1nc2ccccc2s1', 'Cc1cc(C=O)ccc1O', 'Cc1cc(C=O)ccc1O', 'Cc1cc(CC(=O)O)ccc1O', 'Cc1cc(C=O)ccc1O', 'Brc1nc2ccccc2s1', 'Cc1cc(I)ccc1O', None, 'Cc1cc(Br)ccc1O', 'Cc1cc(C=O)ccc1O']; ['Nc1ccccc1S', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Nc1ccccc1I', 'Nc1ccccc1S', 'O=[N+]([O-])c1ccccc1Cl', 'Nc1ccccc1SSc1ccccc1N', 'Cc1cc(B(O)O)ccc1O', 'c1ccc2scnc2c1', None, 'c1ccc2scnc2c1', 'c1ccc2scnc2c1']; [0.9999746084213257, 0.999973475933075, 0.999968409538269, 0.9999311566352844, 0.9997962117195129, 0.9997919797897339, 0.9977912902832031, 0.9964109063148499, 0, 0.9680199027061462, 0.8720861673355103] +Cc1cc(-c2cncc(N)n2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O']; ['Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Br)n1', 'Nc1cncc(Cl)n1']; [0.9999464154243469, 0.9999102354049683, 0.9998754262924194, 0.9997732639312744] +Cc1cc(Oc2ccc(C[NH3+])cc2F)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)ccc1O; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9995253682136536, 0.9922429323196411] +Cc1cc(-c2cccc3ccsc23)ccc1O; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ccsc12', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Brc1cccc2ccsc12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Cl)ccc1O']; ['Cc1cc(Br)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'Cc1cc(B(O)O)ccc1O', 'Clc1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.9999437928199768, 0.9999246597290039, 0.9996868371963501, 0.9983633756637573, 0.9950398206710815, 0.9933063983917236, 0.9726235866546631, 0.9503892660140991] +C[C@@H2]NC(=O)N1CCC(c2ccc(O)c(C)c2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(O)c(C)c3)c2)cc1; ['CNC(=O)c1ccc(N)cc1', None]; ['Cc1cc(-c2cccc(C(=O)O)c2)ccc1O', None]; [0.9994856119155884, 0] +Cc1cc(-c2nc(N)c3ccccc3n2)ccc1O; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O']; ['Nc1nc(Cl)nc2ccccc12', 'Nc1nc(Cl)nc2ccccc12']; [0.9997084140777588, 0.9995107054710388] +Cc1cc(-c2cccc3nnsc23)ccc1O; [None]; [None]; [0] +Cc1cc(-c2ncc3cc[nH]c3n2)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O']; ['Clc1ncc2cc[nH]c2n1', 'Clc1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [0.9999675750732422, 0.9997611045837402, 0.9060733318328857] +Cc1cc(-c2c[nH]c3cccnc23)ccc1O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'Cc1cc(B(O)O)ccc1O', 'Cc1ccccc1O']; ['Ic1c[nH]c2cccnc12', 'Ic1c[nH]c2cccnc12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Clc1c[nH]c2cccnc12', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(I)ccc1O', 'Clc1c[nH]c2cccnc12', 'Ic1c[nH]c2cccnc12']; [0.9999858140945435, 0.9999512434005737, 0.9999287128448486, 0.9998352527618408, 0.9991932511329651, 0.9978229403495789, 0.9945797920227051, 0.9775259494781494, 0.875694751739502] +Cc1cc(-c2ncc3ccccc3n2)ccc1O; ['Brc1ncc2ccccc2n1', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Brc1ncc2ccccc2n1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Clc1ncc2ccccc2n1', 'Clc1ncc2ccccc2n1', 'Cc1cc(B(O)O)ccc1O']; [0.9998413324356079, 0.9996813535690308, 0.9992860555648804, 0.9988787770271301] +CC(=O)Nc1ncc(-c2ccc(O)c(C)c2)[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc(O)c(C)c1; ['COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Cl', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O']; [0.9999638795852661, 0.9999526739120483, 0.9999242424964905, 0.999828577041626, 0.9997941255569458, 0.9997610449790955, 0.9994156956672668, 0.9993420839309692, 0.9988526701927185, 0.9986864328384399, 0.9985270500183105, 0.996252179145813, 0.9948388338088989, 0.9885402917861938, 0.9769998788833618, 0.8971186876296997, 0.7744185328483582] +COc1ccc(Oc2ccc(O)c(C)c2)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(B(O)O)c(F)c1F', 'COc1ccc(Br)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(F)c(F)c1F', 'COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Cc1cc(B(O)O)ccc1O', 'Cc1cc(O)ccc1O', 'Cc1cc(O)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O']; [0.9966870546340942, 0.9944338798522949, 0.980362057685852, 0.9058773517608643, 0.8845080137252808, 0.7875313758850098, 0.7521491646766663] +COc1ncccc1-c1ccc(O)c(C)c1; ['COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'CCCC[Sn](CCCC)(CCCC)c1cccnc1OC', 'COc1ncccc1B(O)O', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1I', 'COc1ncccc1Cl', 'COc1ncccc1Br', 'COc1ncccc1Br', 'COc1ccccn1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O']; [0.9999685287475586, 0.9999128580093384, 0.9998794794082642, 0.9995230436325073, 0.9993863701820374, 0.9991902112960815, 0.9990164637565613, 0.9989256858825684, 0.9988471865653992, 0.9966781139373779, 0.9943912029266357, 0.9207446575164795, 0.8963825702667236] +Cc1cc(-c2cn(CCO)cn2)ccc1O; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc(O)c(C)c2)c1; ['COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(I)c1', 'COc1ccc(OC)cc1', 'COc1ccc(OC)c([Mg]Br)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Br)c1', 'COc1ccc(OC)c(Cl)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(N)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1ccccc1O']; [0.9999796152114868, 0.9999691247940063, 0.999893307685852, 0.9997130632400513, 0.9995696544647217, 0.999177873134613, 0.9990434646606445, 0.9976752400398254, 0.9976231455802917, 0.9960752725601196, 0.994676947593689, 0.9936369061470032, 0.9929680824279785, 0.9885308146476746, 0.9874995946884155, 0.9841270446777344, 0.9717657566070557, 0.9630894660949707, 0.9538182616233826, 0.9517110586166382, 0.9185079336166382, 0.8610554337501526, 0.8565472364425659, 0.8241275548934937, 0.753197431564331] +Cc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)ccc1O; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(F)ccc1O']; [0.9984206557273865, 0.9977446794509888, 0.9930035471916199, 0.9684183597564697] +Cc1cc(-c2cccc(S(=O)(=O)N(C)C)c2)ccc1O; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CNC']; ['Cc1cc(I)ccc1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(I)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(B(O)O)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(Cl)ccc1O', 'Cc1cc(-c2ccccc2)ccc1O']; [0.9999538660049438, 0.9999395608901978, 0.9999352097511292, 0.9997416734695435, 0.9997135400772095, 0.9994218349456787, 0.9987547397613525, 0.9971765279769897, 0.7672629952430725] +Cc1cc([C@H]2CC[C@@](C)(O)CC2)ccc1O; [None]; [None]; [0] +Cc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)ccc1O; ['Cc1cc(I)ccc1O', 'Cc1cc(Br)ccc1O', 'Cc1cc(F)ccc1O', 'Cc1cc(Cl)ccc1O']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9958467483520508, 0.9919018149375916, 0.9181571006774902, 0.8399703502655029] +Cc1cc(-c2cnnc(N(C)C)c2)ccc1O; [None]; [None]; [0] +N#Cc1ccc(NCCNc2cccnc2)nc1; ['N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(Cl)nc1', 'N#Cc1ccc(Br)nc1', 'N#Cc1ccc(F)nc1']; ['NCCNc1cccnc1', 'NCCNc1cccnc1', 'NCCNc1cccnc1', 'NCCNc1cccnc1']; [0.9999057650566101, 0.9992970824241638, 0.9991154670715332, 0.9857500791549683] +Cc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)ccc1O; [None]; [None]; [0] +N#Cc1ccc(NCCNCc2cccnc2)nc1; [None]; [None]; [0] +CC(C)C(=O)COCCNc1ccc(C#N)cn1; [None]; [None]; [0] +N#Cc1ccc(NCCNCc2ccc(Cl)cc2)nc1; ['N#Cc1ccc(Br)nc1', 'N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(I)nc1', 'N#Cc1ccc(F)nc1', 'N#Cc1ccc(Cl)nc1']; ['NCCNCc1ccc(Cl)cc1', 'NCCNCc1ccc(Cl)cc1', 'NCCNCc1ccc(Cl)cc1', 'NCCNCc1ccc(Cl)cc1', 'NCCNCc1ccc(Cl)cc1']; [0.9998234510421753, 0.9995691776275635, 0.9979046583175659, 0.9961968660354614, 0.9927864670753479] +N#Cc1ccc(NCCNc2ccncc2)nc1; ['N#Cc1ccc(Br)nc1', 'N#Cc1ccc(Cl)nc1', 'N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(F)nc1']; ['NCCNc1ccncc1', 'NCCNc1ccncc1', 'NCCNc1ccncc1', 'NCCNc1ccncc1']; [0.9995708465576172, 0.9995328187942505, 0.998494029045105, 0.9947089552879333] +N#Cc1ccc(NCCNCCc2c[nH]cn2)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCNC(=O)c2cccs2)nc1; ['N#Cc1ccc(Cl)nc1', 'N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(Br)nc1', 'N#Cc1ccc(F)nc1']; ['NCCNC(=O)c1cccs1', 'NCCNC(=O)c1cccs1', 'NCCNC(=O)c1cccs1', 'NCCNC(=O)c1cccs1']; [0.99998939037323, 0.9999873638153076, 0.9999750852584839, 0.9997565746307373] +N#Cc1ccc(NCCNCc2ccccc2F)nc1; ['N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(Br)nc1', 'N#Cc1ccc(Cl)nc1', 'N#Cc1ccc(I)nc1', 'N#Cc1ccc(F)nc1']; ['NCCNCc1ccccc1F', 'NCCNCc1ccccc1F', 'NCCNCc1ccccc1F', 'NCCNCc1ccccc1F', 'NCCNCc1ccccc1F']; [0.9999890327453613, 0.9999823570251465, 0.9999603033065796, 0.9998725652694702, 0.9923369884490967] +N#Cc1ccc(NCCOc2ccccn2)nc1; ['N#Cc1ccc(Cl)nc1', 'N#Cc1ccc(Br)nc1', 'N#Cc1ccc(F)nc1', 'N#Cc1ccc[n+]([O-])c1']; ['NCCOc1ccccn1', 'NCCOc1ccccn1', 'NCCOc1ccccn1', 'NCCOc1ccccn1']; [0.9998876452445984, 0.9996418952941895, 0.9995385408401489, 0.9980322122573853] +N#Cc1ccc(NCCc2csc(N)n2)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCNCCc2ccccc2)nc1; [None]; [None]; [0] +CCN(CC)CCNc1ccc(C#N)cn1; ['CCN(CC)CCN', 'CCN(CC)CCN', 'CCN(CC)CCCl', 'CCN(CC)CCN', 'CCN(CC)CCN', 'CCN(CC)CCBr', 'CCN(CC)CCN', 'CCN(CC)CCN']; ['N#Cc1ccc[n+]([O-])c1', 'N#Cc1ccc(Br)nc1', 'N#Cc1ccc(N)nc1', 'N#Cc1ccc(Cl)nc1', 'N#Cc1ccc(I)nc1', 'N#Cc1ccc(N)nc1', 'N#Cc1ccc(F)nc1', 'N#Cc1cccnc1']; [0.9999703168869019, 0.999925971031189, 0.9997096061706543, 0.9996185302734375, 0.9990333318710327, 0.9976050853729248, 0.9973139762878418, 0.7694422006607056] +N#Cc1ccc(NCCNC(=O)c2c(Cl)cccc2Cl)nc1; [None]; [None]; [0] +CC(C)(COCCNc1ccc(C#N)cn1)S(C)(=O)=O; [None]; [None]; [0] +CS(=O)(=O)C1CCN(CCNc2ccc(C#N)cn2)CC1; [None]; [None]; [0] +COc1ccncc1NCCNc1ccc(C#N)cn1; [None]; [None]; [0] +N#Cc1ccc(NCCNc2cnc3ccccc3c2)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCNc2cnccc2-c2ccccc2)nc1; [None]; [None]; [0] +C[C@@H](OCCNc1ccc(C#N)cn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CN(CCNc1ccc(C#N)cn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](NCCNc1ccc(C#N)cn1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](NCCNc1ccc(C#N)cn1)C(C)(C)O; [None]; [None]; [0] +COc1ccc(OCCNc2ccc(C#N)cn2)c(F)c1F; [None]; [None]; [0] +N#Cc1ccc(NCCOc2ccc(C[NH3+])cc2F)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCc2nc(N)c3ccccc3n2)nc1; [None]; [None]; [0] +C[C@H](NCCNc1ccc(C#N)cn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +N#Cc1ccc(NCCc2cccc(NC(=O)C3CCNCC3)c2)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCN2CCC(c3nc4ccccc4[nH]3)CC2)nc1; [None]; [None]; [0] +N#Cc1ccc(NCCN2CC=C(c3c[nH]c4ccccc34)CC2)nc1; [None]; [None]; [0] +CCOc1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CCOc1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9818247556686401] +CC(=O)N(C)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2c[nH]c(=O)cc2O)c1; ['CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['O=c1cc(O)cc[nH]1', 'O=c1cc(O)c(Cl)c[nH]1']; [0.9987910985946655, 0.9950048923492432] +O=c1cc(O)c(-c2ncc3ccccc3n2)c[nH]1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2cnc3cccnn23)c[nH]1; [None]; [None]; [0] +COc1ncccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cc1ccc2ncn(-c3c[nH]c(=O)cc3O)c2c1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)cc2O)cc(OC)c1OC; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2c[nH]c(=O)cc2O)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9962807893753052] +O=c1cc(O)c(-c2cccc(O)c2)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c(=O)cc2O)c1)C1CC1; ['O=C(Nc1cccc(Br)c1)C1CC1']; ['O=c1cc(O)cc[nH]1']; [0.9578350782394409] +O=c1cc(O)c(-c2nc3ccccc3[nH]2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(N3CCOCC3)cc2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2nccc3ccccc23)c[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3c[nH]c(=O)cc3O)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2c[nH]c(=O)cc2O)sn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1', 'O=c1cc(O)c(Cl)c[nH]1']; [0.998909592628479, 0.9876548051834106] +O=C([O-])c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2cccc(C3CCNCC3)c2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(Nc2ncccn2)c[nH]1; [None]; [None]; [0] +O=C(c1ccc(-c2c[nH]c(=O)cc2O)cc1)N1CCOCC1; ['O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9927138686180115] +CC(=O)NCc1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CC(=O)NCc1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.90604567527771] +N#Cc1cccc(Cn2cc(-c3c[nH]c(=O)cc3O)cn2)c1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(OCCO)cc2)c[nH]1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(Nc2ccncn2)c[nH]1; ['Nc1ccncn1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9743200540542603] +C[C@H](O)COc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2c[nH]c(=O)cc2O)nc1)N1CCOCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3c(c2)CS(=O)(=O)C3)c[nH]1; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(C(F)(F)F)cc2)c[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2c[nH]c(=O)cc2O)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(Br)cc2)c[nH]1; [None]; [None]; [0] +CCCOc1ccc(-c2c[nH]c(=O)cc2O)nc1; [None]; [None]; [0] +Cc1nc(C)c(-c2c[nH]c(=O)cc2O)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2c[nH]c(=O)cc2O)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2c[nH]c(=O)cc2O)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3c[nH]c(=O)cc3O)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c(=O)cc2O)c(C)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9039013981819153] +O=c1cc(O)c(-c2ccccc2-n2cccn2)c[nH]1; ['Brc1ccccc1-n1cccn1']; ['O=c1cc(O)cc[nH]1']; [0.9218308329582214] +O=c1cc(O)c(-c2ccn3nccc3n2)c[nH]1; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)cc2O)cc1Cl; [None]; [None]; [0] +O=c1cc(O)c(-c2c[nH]c3ccccc23)c[nH]1; ['O=c1cc(O)cc[nH]1']; ['c1ccc2[nH]ccc2c1']; [0.8454161286354065] +COc1ccc(Cl)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c[nH]c(=O)cc2O)c1; ['CC(=O)Nc1cccc(B(O)O)c1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9927366971969604] +COc1cc(OC)c(-c2c[nH]c(=O)cc2O)cc1Cl; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3c(c2)CCO3)c[nH]1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3c[nH]c(=O)cc3O)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)cc2O)ccc1O; ['COc1cc(B(O)O)ccc1O']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9920485019683838] +COc1cc(C(=O)N2CCOCC2)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2cc(-c3ccccc3)[nH]n2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cccc3c2OCO3)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1cccc2c1OCO2']; [0.9627967476844788] +O=c1cc(O)c(-c2cnc3ccccc3c2)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1cnc2ccccc2c1']; [0.9830441474914551] +CC(C)(C)c1ccc(-c2c[nH]c(=O)cc2O)cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c(=O)cc2O)cs1; [None]; [None]; [0] +O=c1cc(O)c(-c2scc3c2OCCO3)c[nH]1; [None]; [None]; [0] +CSc1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CSc1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9439518451690674] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c(=O)cc2O)CC1; [None]; [None]; [0] +O=c1cc(O)c(-c2cc3ccccc3s2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccn(-c3cccc(Cl)c3)n2)c[nH]1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)cc2O)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3c[nH]c(=O)cc3O)cc2)CC1; [None]; [None]; [0] +CC1(COc2c[nH]c(=O)cc2O)COC1; [None]; [None]; [0] +O=C1CCc2cc(-c3c[nH]c(=O)cc3O)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9931568503379822] +O=c1cc(O)c(-c2ccc(F)cc2Cl)c[nH]1; [None]; [None]; [0] +COc1ccc(CNc2c[nH]c(=O)cc2O)cc1; ['COc1ccc(CN)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.799728512763977] +COc1ccc(-c2c[nH]c(=O)cc2O)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CCc1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9089277982711792] +C[C@H]1CCCN1C(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2ncc(Br)cn2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ncc3cccn3n2)c[nH]1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2c[nH]c(=O)cc2O)C1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)cc2O)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.997580885887146] +Cn1cc(-c2c[nH]c(=O)cc2O)c(C(F)(F)F)n1; ['Cn1ccc(C(F)(F)F)n1']; ['O=c1cc(O)cc[nH]1']; [0.8883357644081116] +O=c1cc(O)c(-c2cc3ccccn3n2)c[nH]1; [None]; [None]; [0] +COc1ccc2cccc(-c3c[nH]c(=O)cc3O)c2c1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)cc2O)ccc1Cl; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(Cl)cc2Cl)c[nH]1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3c[nH]c(=O)cc3O)ccc2O1; [None]; [None]; [0] +COc1cc(F)c(-c2c[nH]c(=O)cc2O)cc1OC; [None]; [None]; [0] +Cc1nc(Nc2c[nH]c(=O)cc2O)sc1C; ['Cc1nc(N)sc1C']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.8708189725875854] +O=c1cc(O)c(-c2cnn(CCO)c2)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OCCn1cc(B(O)O)cn1']; [0.9941349029541016] +O=c1cc(O)c(-c2cccc3ccc(O)cc23)c[nH]1; [None]; [None]; [0] +Cc1cc(Nc2c[nH]c(=O)cc2O)nn1C; ['Cc1cc(N)nn1C']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9674320816993713] +CNC(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1', 'O=c1cc(O)c(Cl)c[nH]1']; [0.9959778189659119, 0.9309022426605225] +Nc1cc(-c2c[nH]c(=O)cc2O)c2cc[nH]c2n1; [None]; [None]; [0] +O=c1cc(O)c(-c2ncc(Cl)cn2)c[nH]1; [None]; [None]; [0] +Cc1csc2c(-c3c[nH]c(=O)cc3O)ncnc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c[nH]c(=O)cc2O)nc1; [None]; [None]; [0] +O=C(Nc1c[nH]c(=O)cc1O)c1ccco1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)cc2O)c(OC)cc1Br; [None]; [None]; [0] +NC(=O)c1ccc(Cc2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2c[nH]c(=O)cc2O)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2c[nH]c(=O)cc2O)CC1; [None]; [None]; [0] +O=c1cc(O)c(Cc2ccc(S(=O)(=O)CCO)cc2)c[nH]1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +COc1ccc2oc(-c3c[nH]c(=O)cc3O)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9678884744644165] +O=c1cc(O)c(-c2ccc3cn[nH]c3c2)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1ccc2cn[nH]c2c1']; [0.9974614381790161] +COc1cc(OC)cc(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +CCn1cc(-c2c[nH]c(=O)cc2O)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9576734900474548] +CC(C)(C)c1ccc(C(=O)Nc2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2cc3ccccc3o2)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1cc2ccccc2o1']; [0.9623837471008301] +COc1ccc2c(c1)c(-c1c[nH]c(=O)cc1O)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +O=c1cc(O)c(-c2cc(-c3cccnc3)ccn2)c[nH]1; [None]; [None]; [0] +COc1ccc2nc(-c3c[nH]c(=O)cc3O)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['O=C(O)c1c[nH]c(=O)cc1O']; [0.8645782470703125] +Cn1cc(Br)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2ncc3sccc3n2)c[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c(=O)cc2O)c1)N1CCCC1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(OC(F)(F)F)cc2)c[nH]1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +CCc1cccc(-c2c[nH]c(=O)cc2O)n1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3c[nH]c(=O)cc3O)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2c[nH]c(=O)cc2O)c2ccccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)cc2O)cn1; ['CN(C)c1ccc(B(O)O)cn1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9980108737945557] +Cn1ncc2cc(-c3c[nH]c(=O)cc3O)ccc21; ['Cn1ncc2cc(B(O)O)ccc21']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9998451471328735] +Cc1cc(-c2c[nH]c(=O)cc2O)cc(C)c1OCCO; [None]; [None]; [0] +O=c1cc(O)c(-c2ncn3c2CCCC3)c[nH]1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3c[nH]c(=O)cc3O)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9990890622138977] +O=C1CCCN1c1cccc(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +O=C(Nc1c[nH]c(=O)cc1O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3c[nH]c(=O)cc3O)ccc21; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(CCO)cc2)c[nH]1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3c[nH]c(=O)cc3O)cn2)CC1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)cc2O)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3c[nH]c(=O)cc3O)cc2)n1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c(=O)cc2O)c(OC)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cn1nc(-c2c[nH]c(=O)cc2O)cc1C(C)(C)O; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(Nc2ccc(F)cn2)c[nH]1; ['Nc1ccc(F)cn1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9990894794464111] +CCNC(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)cc2O)nc1; [None]; [None]; [0] +O=c1cc(O)c(Nc2ccccn2)c[nH]1; ['Nc1ccccn1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9953307509422302] +CCNC(=O)Cc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +Cc1cc(Nc2c[nH]c(=O)cc2O)ncc1F; [None]; [None]; [0] +O=c1cc(O)c(-c2cccc3ncccc23)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(Cl)c(O)c2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +O=c1cc(O)c(-c2n[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2c(Cl)cccc2Cl)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2c(Cl)ccc3c2OCO3)c[nH]1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c(=O)cc2O)c(F)c1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(O)cc2Cl)c[nH]1; [None]; [None]; [0] +Nc1nccc(-c2c[nH]c(=O)cc2O)n1; [None]; [None]; [0] +O=c1cc(O)c(Oc2ccc(F)cc2)c[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +COc1ccc(F)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(-c2c[nH]c(=O)cc2O)o1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(O)cc2F)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cn[nH]c2Cl)c[nH]1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3c[nH]c(=O)cc3O)cc2[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(-c3ccc(O)cc3O)cc2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cccc(Br)c2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3ccccc3c2)c[nH]1; [None]; [None]; [0] +COc1cc(CCc2c[nH]c(=O)cc2O)ccc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(O)c(F)c2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(O)cc2O)c[nH]1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c(=O)cc2O)ccn1; [None]; [None]; [0] +O=c1cc(O)c(-c2c[nH]c3cnccc23)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(COc2ccccc2Cl)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cnn3ncccc23)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(F)c(Cl)c2)c[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2[nH]cnc2-c2ccc(F)cc2)c[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2c[nH]c(=O)cc2O)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cnc(O)c(Cl)c2)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2c[nH]c(=O)cc2O)c1; ['CCOc1cccc(B(O)O)c1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.997549295425415] +O=c1cc(O)c(-c2cc(O)ccc2Cl)c[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3c[nH]c(=O)cc3O)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3c[nH]c(=O)cc3O)cc2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CS(=O)(=O)c1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9279035329818726] +O=c1cc(O)c(-c2cnc3[nH]ccc3c2)c[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2c[nH]c(=O)cc2O)cc1; [None]; [None]; [0] +O=c1cc(O)c(-c2cncc(O)c2)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1cncc(O)c1']; [0.9838829040527344] +O=c1cc(O)c(-c2nc3ccccc3s2)c[nH]1; [None]; [None]; [0] +COc1cc(CCc2c[nH]c(=O)cc2O)cc(OC)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3c[nH]c(=O)cc3O)ccc2N1; ['O=C1Cc2cc(B(O)O)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1']; ['O=c1cc(O)cc[nH]1', 'O=c1cc(O)c(Cl)c[nH]1', 'O=c1cc(O)c(Cl)c[nH]1']; [0.9952176213264465, 0.9861282110214233, 0.972142219543457] +CNc1nccc(-c2c[nH]c(=O)cc2O)n1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c[nH]c(=O)cc1O; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9083482027053833] +CCc1cc(O)c(F)cc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3c[nH]c(=O)cc3O)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2c[nH]c(=O)cc2O)c1C; [None]; [None]; [0] +CCc1cc(O)ccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2ccncc2Cl)c[nH]1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2cc(C(F)F)n[nH]2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cc(Cl)c(O)c(Cl)c2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3c(c2)CCN3)c[nH]1; ['O=c1cc(O)c(Cl)c[nH]1']; ['OB(O)c1ccc2c(c1)CCN2']; [0.9740369319915771] +CNc1nc(-c2c[nH]c(=O)cc2O)ncc1F; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(Nc2ccncc2)c[nH]1; ['Nc1ccncc1']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9834950566291809] +O=c1cc(O)c(-c2cc(O)n3nccc3n2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3[nH]c(=O)[nH]c3c2)c[nH]1; [None]; [None]; [0] +Cc1oc(-c2c[nH]c(=O)cc2O)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc(Br)cc2F)c[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)cc2O)ccc1C(N)=O; [None]; [None]; [0] +O=c1cc(O)c(-c2[nH]nc3ccc(F)cc23)c[nH]1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2c[nH]c(=O)cc2O)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; ['O=c1cc(O)c(Cl)c[nH]1', 'O=c1cc(O)c(Cl)c[nH]1']; [0.9991703033447266, 0.995918333530426] +CN(c1c[nH]c(=O)cc1O)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=c1cc(O)c(-c2cc(O)cc(Br)c2)c[nH]1; [None]; [None]; [0] +Cc1nc2ccc(-c3c[nH]c(=O)cc3O)cc2o1; [None]; [None]; [0] +O=c1cc(O)c(-c2ccc3c(=O)[nH][nH]c3c2)c[nH]1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)cc2O)cc(C)c1O; ['Cc1cc(B(O)O)cc(C)c1O']; ['O=c1cc(O)c(Cl)c[nH]1']; [0.9846271872520447] +O=c1cc(O)c(-c2cc(F)c(O)c(F)c2)c[nH]1; [None]; [None]; [0] +CSc1cccc(-c2c[nH]c(=O)cc2O)c1; [None]; [None]; [0] +O=c1cc(O)c(OCc2cccc3ccccc23)c[nH]1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1c[nH]c(=O)cc1O; [None]; [None]; [0] +O=c1cc(O)c(-c2ocnc2-c2ccc(F)cc2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(-c2cn[nH]c2-c2ccc(Cl)cc2)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(CCc2c[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=C1C(=O)Nc2ccc(F)cc21; ['O=C1Cc2ccccc2N1', 'O=C1Cc2cc(F)ccc2N1']; ['O=C1Nc2ccc(F)cc2C1=O', 'O=C1Nc2ccccc2C1=O']; [0.9669203162193298, 0.9640947580337524] +O=c1cc(O)c(OCc2ccc(F)cc2F)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(Oc2ccc(F)cc2F)c[nH]1; [None]; [None]; [0] +O=C1Nc2ccc(F)cc2C1=Cc1cnn(CCO)c1; [None]; [None]; [0] +O=c1cc(O)c(NCc2c(F)cccc2Cl)c[nH]1; [None]; [None]; [0] +O=c1cc(O)c(CCc2ccc(F)cc2F)c[nH]1; [None]; [None]; [0] +COc1ccc(C=C2C(=O)Nc3ccc(F)cc32)cc1OC; [None]; [None]; [0] +O=C1Nc2ccc(F)cc2C1=Cc1cc2c([nH]1)CCCC2; [None]; [None]; [0] +CCOc1ccccc1-c1cnn2ccc(N)nc12; ['CCOc1ccccc1Br']; ['Nc1ccn2nccc2n1']; [0.9998956918716431] +Cc1[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c(C)c1C; [None]; [None]; [0] +C[NH+](C)Cc1ccc(C=C2C(=O)Nc3ccc(F)cc32)cc1; [None]; [None]; [0] +Cc1cc(C)c(C=C2C(=O)Nc3ccc(F)cc32)[nH]1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CCn1cc(-c2cnn3ccc(N)nc23)cn1; ['CCn1cc(Br)cn1']; ['Nc1ccn2nccc2n1']; [0.8729621767997742] +Cc1nnc(-c2ccccc2-c2cnn3ccc(N)nc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccnc4ccccc34)c2n1; ['Ic1ccnc2ccccc12']; ['Nc1ccn2nccc2n1']; [0.9919370412826538] +CP(C)(=O)c1ccccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(C(F)(F)F)c3)c2n1; ['FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999513030052185, 0.9997906684875488] +Nc1ccn2ncc(-c3ccccc3OC(F)(F)F)c2n1; ['FC(F)(F)Oc1ccccc1Br']; ['Nc1ccn2nccc2n1']; [0.9999717473983765] +COc1ccc(F)cc1[C@@H](C)c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnn(Cc4ccccc4)c3)c2n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnn4ccc(N)nc34)cc2c1=O; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnn2ccc(N)nc12; ['NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1I']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9991742372512817, 0.9991660118103027] +Nc1ccn2ncc(-c3cnc(-c4ccccc4)[nH]3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnn(CCO)c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccccc3C(=O)[O-])c2n1; [None]; [None]; [0] +Nc1ccn2ncc([C@@H](N)c3ccco3)c2n1; [None]; [None]; [0] +Cc1ccc(-c2cnn3ccc(N)nc23)c(Br)c1; ['Cc1ccc(I)c(Br)c1', 'Cc1ccc(Br)c(Br)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9948825240135193, 0.8631605505943298] +COc1cnc(-c2cnn3ccc(N)nc23)nc1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(Cl)ccc3Cl)c2n1; ['Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999812841415405, 0.9999575614929199] +Cc1nc2ccccn2c1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnc4ccccn34)c2n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnn3ccc(N)nc23)cs1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnn3ccc(N)nc23)s1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnc4cccnn34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3c(Cl)cccc3Cl)c2n1; ['Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9996494054794312, 0.9985233545303345] +Cc1nc(C)c(-c2cnn3ccc(N)nc23)s1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(NC(=O)c4ccccc4)c3)c2n1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(Br)c3)c2n1; ['Nc1ccn2nccc2n1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999812841415405, 0.9999572038650513, 0.9962576031684875] +Cc1ccc(Cl)c(-c2cnn3ccc(N)nc23)c1; ['Cc1ccc(Cl)c(I)c1']; ['Nc1ccn2nccc2n1']; [0.9996738433837891] +Nc1ccn2ncc(-c3ccnc(N)n3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnn4ncccc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc4ccccc4c3)c2n1; ['Nc1ccn2nccc2n1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999159574508667, 0.9985440373420715, 0.9930214881896973] +Cc1c(-c2cnn3ccc(N)nc23)sc(=O)n1C; [None]; [None]; [0] +Nc1ccn2ncc(-c3c[nH]nc3C(F)(F)F)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(Cn4cncn4)c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cncc4ccccc34)c2n1; ['Ic1cncc2ccccc12', 'Brc1cncc2ccccc12', 'Nc1ccn2nccc2n1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'OB(O)c1cncc2ccccc12']; [0.9997025728225708, 0.9995743036270142, 0.9986637830734253] +NC(=O)c1c(F)cccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cnn3ccc(N)nc23)o1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnn4ccc(N)nc34)cc2)cn1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(CC(=O)[O-])c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc4c(N)[nH]nc4c3)c2n1; [None]; [None]; [0] +CN1c2ccc(-c3cnn4ccc(N)nc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(CO)c3)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['OCc1cccc(I)c1', 'OCc1cccc(Br)c1']; [0.9637256264686584, 0.9258394241333008] +Cn1ncc2cc(-c3cnn4ccc(N)nc34)ccc21; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(-c4cn[nH]c4)cc3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc(O)c3)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1']; [0.9867792725563049, 0.9058797359466553] +CCCn1cnc(-c2cnn3ccc(N)nc23)n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3csc4ncncc34)c2n1; [None]; [None]; [0] +CC(C)n1cc(-c2cnn3ccc(N)nc23)nn1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc4ccccc4[nH]3)c2n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnn3ccc(N)nc23)c1; [None]; [None]; [0] +COc1cc(-c2cnn3ccc(N)nc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cnn3ccc(N)nc23)c[nH]1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cncnc3N)c2n1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnn4ccc(N)nc34)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnn3ccc(N)nc23)c1; ['CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.999454140663147, 0.9945597648620605] +Nc1ccn2ncc(Cc3c(F)cccc3F)c2n1; ['Fc1cccc(F)c1CCl']; ['Nc1ccn2nccc2n1']; [0.9990551471710205] +Nc1ccn2ncc(-c3ccc(F)cc3C(F)(F)F)c2n1; [None]; [None]; [0] +CC[C@H](CO)c1cnn2ccc(N)nc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +COc1ccc(-c2cnn3ccc(N)nc23)cc1Cl; ['COc1ccc(Br)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999819993972778, 0.9999734163284302, 0.9999247789382935] +Cn1cc(-c2cnn3ccc(N)nc23)c2ccccc21; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnn4ccccc34)c2n1; ['Ic1cnn2ccccc12']; ['Nc1ccn2nccc2n1']; [0.9995547533035278] +CS(=O)(=O)c1cccc(Cc2cnn3ccc(N)nc23)c1; ['CS(=O)(=O)c1cccc(CCl)c1']; ['Nc1ccn2nccc2n1']; [0.9987464547157288] +Nc1ccn2ncc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c2n1; [None]; [None]; [0] +CCCn1cc(-c2cnn3ccc(N)nc23)cn1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc[nH]c(=O)c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc4c3C(=O)CC4)c2n1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CN(c1ncccc1Cc1cnn2ccc(N)nc12)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnn3ccc(N)nc23)cc1; ['CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9995943903923035, 0.9986593127250671] +CC(C)Oc1cncc(-c2cnn3ccc(N)nc23)c1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc4c(=O)[nH]ccc4o3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc4c(=O)[nH]cc(Br)c4s3)c2n1; [None]; [None]; [0] +COc1cccc(F)c1-c1cnn2ccc(N)nc12; ['COc1cccc(F)c1Br', 'COc1cccc(F)c1I']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999973773956299, 0.9999949932098389] +Nc1ccn2ncc(-c3c[nH]c4cnccc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cnc4[nH]ccc4c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc([C@H](CO)c3ccccc3)c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +CC1(c2cnn3ccc(N)nc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1ccn2ncc(-c3c(F)cccc3Cl)c2n1; ['Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Br']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [1.0, 0.9999973773956299] +Nc1ccn2ncc([C@H](CO)Cc3ccccc3)c2n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(N4CCOCC4)cc3)c2n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cnn3ccc(N)nc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(C(=O)c4ccccc4)cc3)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9997351169586182, 0.9995003938674927] +COc1ccc(-c2cnn3ccc(N)nc23)c(OC)c1; ['COc1ccc(Br)c(OC)c1', 'COc1ccc(I)c(OC)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999107718467712, 0.9998080134391785] +Nc1ccn2ncc(-c3ccc(-n4cncn4)cc3)c2n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnn3ccc(N)nc23)[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnn3ccc(N)nc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3nnc(N)s3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3nncn3C3CC3)c2n1; [None]; [None]; [0] +CCc1cc(-c2cnn3ccc(N)nc23)nc(N)n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccn(CC[NH3+])n3)c2n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CCCCc1cc(-c2cnn3ccc(N)nc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn3ccc(N)nc23)s1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cn(Cc4ccccc4)nn3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3nc4ccccc4s3)c2n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnn3ccc(N)nc23)n1; [None]; [None]; [0] +Nc1cncc(-c2cnn3ccc(N)nc23)n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc4ccsc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc4nnsc34)c2n1; ['Brc1cccc2nnsc12']; ['Nc1ccn2nccc2n1']; [0.9998123049736023] +CC1(C)Oc2ccc(-c3cnn4ccc(N)nc34)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnn3ccc(N)nc23)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnn4ccc(N)nc34)c2)cc1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ncc4ccccc4n3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(CCCNC(=O)C3CCC3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3c[nH]c4cccnc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(CCCNC(=O)c3cccs3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ncc4cc[nH]c4n3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cn(CCO)cn3)c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnn2ccc(N)nc12; ['COc1ccc(C#N)cc1Br']; ['Nc1ccn2nccc2n1']; [0.9999984502792358] +CC(=O)Nc1ncc(-c2cnn3ccc(N)nc23)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnn3ccc(N)nc23)c1; ['COc1ccc(OC)c(Br)c1']; ['Nc1ccn2nccc2n1']; [0.9999825954437256] +COc1ncccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnn3ccc(N)nc23)c1; ['CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1ccn2nccc2n1']; [0.9999951720237732] +CS(=O)(=O)Nc1ccccc1Cc1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3c(Cl)ccc4c3OCO4)c2n1; ['Nc1ccn2nccc2n1']; ['OB(O)c1c(Cl)ccc2c1OCO2']; [0.9991316795349121] +CN(C)c1cc(-c2cnn3ccc(N)nc23)cnn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnn3ccc(N)nc23)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; ['NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9994277954101562, 0.9986255168914795] +Nc1ccn2ncc(-c3n[nH]c4ccccc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cccc4ncccc34)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(Cl)c(O)c3)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['Oc1cc(I)ccc1Cl', 'Oc1cc(Br)ccc1Cl']; [0.9561014175415039, 0.9487236738204956] +Nc1ccn2ncc(Oc3ccc(F)cc3)c2n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn3ccc(N)nc23)c(F)c1; ['NC(=O)c1ccc(Br)c(F)c1']; ['Nc1ccn2nccc2n1']; [0.9990295767784119] +COc1cc(C(N)=O)ccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnn2ccc(N)nc12; ['COc1ccc(F)cc1Br']; ['Nc1ccn2nccc2n1']; [0.9999568462371826] +COc1cc(F)ccc1-c1cnn2ccc(N)nc12; ['COc1cc(F)ccc1Br']; ['Nc1ccn2nccc2n1']; [0.9999661445617676] +Nc1ccn2ncc(-c3ccc(O)cc3Cl)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(O)cc3F)c2n1; [None]; [None]; [0] +COc1cc(-c2cnn3ccc(N)nc23)ccc1O; ['COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9914650917053223, 0.9911368489265442] +Nc1ccn2ncc(-c3ccc(-c4ccc(O)cc4O)cc3)c2n1; ['Nc1ccn2nccc2n1']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9843747615814209] +Nc1ccn2ncc(-c3cn[nH]c3Cl)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(C(=O)[O-])cc3)c2n1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnn3ccc(N)nc23)o1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn4ccc(N)nc34)cc2[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnn3ccc(N)nc23)c1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(O)c(F)c3)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F']; [0.9827594757080078, 0.9701874256134033] +Nc1ccn2ncc(-c3ccc(O)cc3O)c2n1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1cc(-c2cnn3ccc(N)nc23)ccn1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(F)c(Cl)c3)c2n1; ['Fc1ccc(Br)cc1Cl', 'Fc1ccc(I)cc1Cl']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999670386314392, 0.9996387958526611] +COc1cc(CCc2cnn3ccc(N)nc23)ccc1O; [None]; [None]; [0] +Nc1ccn2ncc(COc3ccccc3Cl)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(O)ccc3Cl)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3[nH]cnc3-c3ccc(F)cc3)c2n1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnn3ccc(N)nc23)c[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnn2ccc(N)nc12; ['Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1B(O)O']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9867184162139893, 0.8806718587875366] +Nc1ccn2ncc(-c3cnc(O)c(Cl)c3)c2n1; [None]; [None]; [0] +COc1ccc(-c2cnn3ccc(N)nc23)cc1OC; ['COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.999885082244873, 0.9994510412216187] +COc1cc(OC)cc(-c2cnn3ccc(N)nc23)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999827146530151, 0.9998341798782349, 0.9992259740829468] +CCOc1cccc(-c2cnn3ccc(N)nc23)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnn4ccc(N)nc34)ccc12; [None]; [None]; [0] +COc1cc(CCc2cnn3ccc(N)nc23)cc(OC)c1; ['COc1cc(CCBr)cc(OC)c1']; ['Nc1ccn2nccc2n1']; [0.9925132393836975] +Cc1nc2ccc(-c3cnn4ccc(N)nc34)cc2[nH]1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn3ccc(N)nc23)cc1; ['NC(=O)Nc1ccc(Br)cc1']; ['Nc1ccn2nccc2n1']; [0.9898770451545715] +Nc1ccn2ncc(-c3cncc(O)c3)c2n1; ['Nc1ccn2nccc2n1']; ['Oc1cncc(Br)c1']; [0.8904753923416138] +Nc1ccn2ncc(-c3ccc4c(c3)CC(=O)N4)c2n1; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; ['O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9995830655097961, 0.9436415433883667, 0.9227795600891113] +CCc1cc(O)ccc1-c1cnn2ccc(N)nc12; ['CCc1cc(O)ccc1Br']; ['Nc1ccn2nccc2n1']; [0.9815199971199036] +C[C@H](CC(N)=O)c1cnn2ccc(N)nc12; [None]; [None]; [0] +CNc1nccc(-c2cnn3ccc(N)nc23)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnn2ccc(N)nc12; ['Cc1cc(O)ccc1Br']; ['Nc1ccn2nccc2n1']; [0.991021990776062] +Cc1n[nH]c2cc(N(C)c3cnn4ccc(N)nc34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnn3ccc(N)nc23)c1C; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccncc3Cl)c2n1; [None]; [None]; [0] +CCc1sccc1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(C(F)F)n[nH]3)c2n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(Cl)c(O)c(Cl)c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc4c(c3)CCN4)c2n1; [None]; [None]; [0] +CNc1nc(-c2cnn3ccc(N)nc23)ncc1F; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc4[nH]c(=O)[nH]c4c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(O)n4nccc4n3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(Nc3ccncc3)c2n1; [None]; [None]; [0] +Cc1oc(-c2cnn3ccc(N)nc23)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(Br)cc3F)c2n1; ['Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.9999603033065796, 0.9995619058609009] +CNC(=O)c1ccc(-c2cnn3ccc(N)nc23)cc1; ['CNC(=O)c1ccc(I)cc1']; ['Nc1ccn2nccc2n1']; [0.9887725710868835] +Cn1ncc(N)c1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc(C(=O)NC4CC4)cc3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(O)cc(Br)c3)c2n1; ['Nc1ccn2nccc2n1']; ['Oc1cc(Br)cc(I)c1']; [0.9493316411972046] +Cc1cc(-c2cnn3ccc(N)nc23)ccc1C(N)=O; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; ['Nc1ccn2nccc2n1', 'Nc1ccn2nccc2n1']; [0.999600887298584, 0.9450005888938904] +CN(c1cccc2[nH]ncc12)c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(-c3[nH]nc4ccc(F)cc34)c2n1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn4ccc(N)nc34)cc2o1; [None]; [None]; [0] +CSc1cccc(-c2cnn3ccc(N)nc23)c1; ['CSc1cccc(Br)c1']; ['Nc1ccn2nccc2n1']; [0.9996534585952759] +Nc1ccn2ncc(OCc3cccc4ccccc34)c2n1; ['Nc1ccn2nccc2n1']; ['OCc1cccc2ccccc12']; [0.9576281309127808] +Cc1cc(-c2cnn3ccc(N)nc23)cc(C)c1O; [None]; [None]; [0] +Nc1ccn2ncc(-c3cc(F)c(O)c(F)c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(-c3ccc4c(=O)[nH][nH]c4c3)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(Oc3ccc(F)cc3F)c2n1; [None]; [None]; [0] +Nc1ccn2ncc(CCc3c[nH]c4ccccc34)c2n1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnn2ccc(N)nc12; [None]; [None]; [0] +Nc1ccn2ncc(CCc3ccc(F)cc3F)c2n1; ['Fc1ccc(CCBr)c(F)c1']; ['Nc1ccn2nccc2n1']; [0.9990426301956177] +Nc1ccn2ncc(-c3ocnc3-c3ccc(F)cc3)c2n1; [None]; [None]; [0] +CCOc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(C#N)cc1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Cc1cnccc1Cl']; [0.9999915361404419, 0.9998710751533508, 0.8391932249069214] +Nc1ccn2ncc(NCc3c(F)cccc3Cl)c2n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999982118606567] +Nc1ccn2ncc(-c3cn[nH]c3-c3ccc(Cl)cc3)c2n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1; ['CS(=O)(=O)c1cccc(B(O)O)c1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.999984085559845] +Nc1ccn2ncc(OCc3ccc(F)cc3F)c2n1; [None]; [None]; [0] +COc1cc(-c2cc3c(Cl)ccnc3[nH]2)cc(OC)c1OC; ['COc1cc(B(O)O)cc(OC)c1OC']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9930327534675598] +COc1ncccc1-c1cc2c(Cl)ccnc2[nH]1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; [0.9997847080230713, 0.9988130927085876, 0.8635381460189819] +COc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['COc1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9998549818992615] +Clc1ccnc2[nH]c(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3c(Cl)ccnc3[nH]2)c1; ['Clc1ccnc2[nH]c(I)cc12']; ['N#Cc1ccc(O)c(B(O)O)c1']; [0.9995388984680176] +Cc1nc(C(C)(C)O)sc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +Oc1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc4c(Cl)ccnc4[nH]3)c2c1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ccc(N4CCOCC4)cc3)cc12; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3nc4ccccc4[nH]3)cc12; ['Nc1ccccc1N']; ['O=C(O)c1cc2c(Cl)ccnc2[nH]1']; [0.7951476573944092] +O=C(Nc1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1)C1CC1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(Nc2cc3c(Cl)ccnc3[nH]2)sn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['Clc1ccnc2[nH]c(I)cc12']; ['NC(=O)c1ccc(B(O)O)cc1']; [0.9998661875724792] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4c(Cl)ccnc4[nH]3)cc2)CC1; [None]; [None]; [0] +Clc1ccnc2[nH]c(Nc3ncccn3)cc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CC(=O)NCc1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999303817749023] +OCCOc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12']; ['Clc1ccnc2[nH]c(I)cc12', 'OCCOc1ccc(B(O)O)cc1']; [0.9999984502792358, 0.9999305009841919] +Clc1ccnc2[nH]c(-c3nccc4ccccc34)cc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4c(Cl)ccnc4[nH]3)cn2)c1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3cccc(C4CCNCC4)c3)cc12; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +Clc1ccnc2[nH]c(Nc3ccncn3)cc12; [None]; [None]; [0] +O=C(c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1)N1CCOCC1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['Clc1ccnc2[nH]c(I)cc12']; ['OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999890327453613] +C[C@H](O)COc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2cc3c(Cl)ccnc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [0.9999985694885254, 0.9999139308929443] +C[C@@H](O)COc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cc4c(Cl)ccnc4[nH]3)cc2C1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc3c(Cl)ccnc3[nH]2)CC1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ccc(Br)cc3)cc12; ['Clc1ccnc2[nH]c(I)cc12']; ['OB(O)c1ccc(Br)cc1']; [0.9999029636383057] +Cc1nc(C)c(-c2cc3c(Cl)ccnc3[nH]2)s1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3c(Cl)ccnc3[nH]2)nc1; [None]; [None]; [0] +CC(C)c1cc(-c2cc3c(Cl)ccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4c(Cl)ccnc4[nH]3)c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cc3c(Cl)ccnc3[nH]2)C1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2c(Cl)ccnc2[nH]1; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; [0.9997335076332092, 0.9993078708648682, 0.9026917219161987] +Clc1ccnc2[nH]c(-c3ccccc3-n3cccn3)cc12; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12', 'Brc1ccccc1-n1cccn1']; ['Clc1ccnc2[nH]c(I)cc12', 'OB(O)c1ccccc1-n1cccn1', 'Clc1ccnc2[nH]ccc12']; [0.9999994039535522, 0.9999439716339111, 0.9966603517532349] +CNS(=O)(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)c(C)c1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3c[nH]c4ccccc34)cc12; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ccn4nccc4n3)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1; ['CC(=O)Nc1cccc(B(O)O)c1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9995622634887695] +COc1cc(OC)c(-c2cc3c(Cl)ccnc3[nH]2)cc1Cl; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ccc4c(c3)CCO4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12', 'Brc1ccc2c(c1)CCO2', 'Clc1ccnc2[nH]ccc12']; ['Clc1ccnc2[nH]c(I)cc12', 'OB(O)c1ccc2c(c1)CCO2', 'Clc1ccnc2[nH]ccc12', 'Ic1ccc2c(c1)CCO2']; [0.9999933242797852, 0.9999449253082275, 0.9643329977989197, 0.8445062041282654] +CC(C)c1ccc2nc(-c3cc4c(Cl)ccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2cc3c(Cl)ccnc3[nH]2)ccc1O; ['COc1cc(B(O)O)ccc1O']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9993518590927124] +CC(C)(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999831318855286] +Clc1ccnc2[nH]c(-c3cccc4c3OCO4)cc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12']; ['Clc1ccnc2[nH]c(I)cc12', 'OB(O)c1cccc2c1OCO2']; [0.9999722242355347, 0.9986875057220459] +Clc1ccnc2[nH]c(-c3cnc4ccccc4c3)cc12; ['Clc1ccnc2[nH]c(I)cc12']; ['OB(O)c1cnc2ccccc2c1']; [0.9999037981033325] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3cc(-c4ccccc4)[nH]n3)cc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cn1; ['CC(C)(C)c1ccc(B(O)O)cn1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999909400939941] +CN(C)C(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [1.0, 0.9999779462814331] +Nc1nc(-c2cc3c(Cl)ccnc3[nH]2)cs1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3scc4c3OCCO4)cc12; [None]; [None]; [0] +CSc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [0.9999972581863403, 0.9994292855262756] +Clc1ccnc2[nH]c(-c3cc4ccccc4s3)cc12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4c(Cl)ccnc4[nH]3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999797344207764] +Clc1cccc(-n2ccc(-c3cc4c(Cl)ccnc4[nH]3)n2)c1; [None]; [None]; [0] +CC1(COc2cc3c(Cl)ccnc3[nH]2)COC1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3c(Cl)ccnc3[nH]2)CC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +Fc1ccc(-c2cc3c(Cl)ccnc3[nH]2)c(Cl)c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'CC(=O)c1ccc(F)cc1Cl']; ['Clc1ccnc2[nH]c(I)cc12', 'OB(O)c1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(I)c(Cl)c1', 'NNc1cc(Cl)ccn1']; [0.9999961853027344, 0.9996063113212585, 0.9980173707008362, 0.992007851600647, 0.8428640365600586] +CCc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CCc1ccc(B(O)O)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9990973472595215] +Cc1cc(-c2cc3c(Cl)ccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; [0.9995409250259399, 0.927099347114563, 0.8007479906082153] +O=C1CCc2cc(-c3cc4c(Cl)ccnc4[nH]3)ccc2N1; ['Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1']; [0.9567590951919556, 0.9367917776107788] +COc1ccc(CNc2cc3c(Cl)ccnc3[nH]2)cc1; ['COc1ccc(CN)cc1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9803782105445862] +Clc1ccc(-c2cc3c(Cl)ccnc3[nH]2)c(Cl)c1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'CC(=O)c1ccc(Cl)cc1Cl']; ['Clc1ccnc2[nH]c(I)cc12', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12', 'NNc1cc(Cl)ccn1']; [0.9999855756759644, 0.9987099170684814, 0.9442956447601318, 0.8779652118682861, 0.866546630859375] +Clc1ccnc2[nH]c(-c3ncc(Br)cn3)cc12; [None]; [None]; [0] +COc1cc(-c2cc3c(Cl)ccnc3[nH]2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999967813491821] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cc3c(Cl)ccnc3[nH]2)C1; [None]; [None]; [0] +Cn1cc(-c2cc3c(Cl)ccnc3[nH]2)c(C(F)(F)F)n1; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12', 'Clc1ccnc2[nH]ccc12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; [0.9999994039535522, 0.9999722242355347, 0.82952880859375, 0.786676824092865] +Oc1ccc2cccc(-c3cc4c(Cl)ccnc4[nH]3)c2c1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4c(Cl)ccnc4[nH]3)c2c1; ['COc1ccc2cccc(Br)c2c1']; ['Clc1ccnc2[nH]ccc12']; [0.9274352192878723] +Clc1ccnc2[nH]c(-c3cc4ccccn4n3)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2cc3c(Cl)ccnc3[nH]2)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; [0.9999438524246216, 0.7685457468032837] +CC1(C)Cc2cc(-c3cc4c(Cl)ccnc4[nH]3)ccc2O1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ncc4cccn4n3)cc12; [None]; [None]; [0] +COc1cc(-c2cc3c(Cl)ccnc3[nH]2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(I)ccc1Cl']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; [0.9999996423721313, 0.9997022747993469, 0.9199665784835815] +CNC(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cc3c(Cl)ccnc3[nH]2)cn1; [None]; [None]; [0] +Clc1cnc(-c2cc3c(Cl)ccnc3[nH]2)nc1; [None]; [None]; [0] +Nc1cc(-c2cc3c(Cl)ccnc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1csc2c(-c3cc4c(Cl)ccnc4[nH]3)ncnc12; [None]; [None]; [0] +COc1cc(-c2cc3c(Cl)ccnc3[nH]2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9891622066497803] +Cc1nc(Nc2cc3c(Cl)ccnc3[nH]2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cc3c(Cl)ccnc3[nH]2)nn1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +O=C(Nc1cc2c(Cl)ccnc2[nH]1)c1ccco1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3c(Cl)ccnc3[nH]2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3c(Cl)ccnc3[nH]2)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [0.9999787211418152, 0.9995070695877075] +CO[C@@H]1CC[C@@H](c2cc3c(Cl)ccnc3[nH]2)CC1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3ccc4cn[nH]c4c3)cc12; ['Clc1ccnc2[nH]c(I)cc12']; ['OB(O)c1ccc2cn[nH]c2c1']; [0.9999729990959167] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +CCn1cc(-c2cc3c(Cl)ccnc3[nH]2)cn1; ['CCn1cc(B(O)O)cn1']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9960708022117615] +COc1ccc2c(c1)c(-c1cc3c(Cl)ccnc3[nH]1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc4c(Cl)ccnc4[nH]3)cc2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3cc(-c4cccnc4)ccn3)cc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc2c(Cl)ccnc2[nH]1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; [0.9999943971633911, 0.8034334182739258] +Clc1ccnc2[nH]c(-c3ncc4sccc4n3)cc12; [None]; [None]; [0] +Clc1ccnc2[nH]c(-c3cc4ccccc4o3)cc12; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['Clc1ccnc2[nH]c(I)cc12', 'Cc1cnccc1Cl']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'N#Cc1ccc(OC(F)(F)F)cc1']; [0.9999895095825195, 0.9971915483474731] +COc1ccc(F)c(C(=O)Nc2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc4c(Cl)ccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4c(Cl)ccnc4[nH]3)ccc21; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]ccc12']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; [1.0, 0.9999985694885254, 0.7978758811950684] +Clc1ccnc2[nH]c(-c3ncn4c3CCCC4)cc12; [None]; [None]; [0] +CCc1cccc(-c2cc3c(Cl)ccnc3[nH]2)n1; [None]; [None]; [0] +Cc1cc(-c2cc3c(Cl)ccnc3[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1cc(-c2cc3c(Cl)ccnc3[nH]2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4c(Cl)ccnc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [1.0, 0.9999819993972778] +Cn1nc(Cl)c2cc(-c3cc4c(Cl)ccnc4[nH]3)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4c(Cl)ccnc4[nH]3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Clc1ccnc2[nH]c(I)cc12', 'Clc1ccnc2[nH]c(I)cc12']; [1.0, 0.9999942779541016] +OCCc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999966025352478] +O=C1CCCN1c1cccc(-c2cc3c(Cl)ccnc3[nH]2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Clc1ccnc2[nH]c(I)cc12']; [0.9999849796295166] +Cc1ncc(-c2ccc(-c3cc4c(Cl)ccnc4[nH]3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)c(Cl)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc4c(Cl)ccnc4[nH]3)cn2)CC1; [None]; [None]; [0] +O=C(Nc1cc2c(Cl)ccnc2[nH]1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(Nc2cc3c(Cl)ccnc3[nH]2)ncc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)c(OC)c1; [None]; [None]; [0] +Fc1ccc(Nc2cc3c(Cl)ccnc3[nH]2)nc1; [None]; [None]; [0] +Clc1ccnc2[nH]c(Nc3ccccn3)cc12; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['CNC(=O)c1ccccc1N']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999181628227234] +CCNC(=O)Cc1ccc(-c2cc3c(Cl)ccnc3[nH]2)cc1; [None]; [None]; [0] +CCOc1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['CCOc1ccccc1N', 'CCOc1ccccc1N']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999769926071167, 0.9999507069587708] +CN(C)C(=O)c1ccc(-c2cc3c(Cl)ccnc3[nH]2)nc1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['CC(C)S(=O)(=O)c1ccccc1N']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999831914901733] +Cn1nc(-c2cc3c(Cl)ccnc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CP(C)(=O)c1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['CP(C)(=O)c1ccccc1N', 'CP(C)(=O)c1ccccc1N']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999969005584717, 0.9999616742134094] +c1ccc2c(Nc3ncnc4sc5c(c34)CCC5)ccnc2c1; ['Nc1ccnc2ccccc12', 'Clc1ncnc2sc3c(c12)CCC3', 'Clc1ccnc2ccccc12']; ['Oc1ncnc2sc3c(c12)CCC3', 'Nc1ccnc2ccccc12', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999932050704956, 0.9999927282333374, 0.9998996257781982] +FC(F)(F)c1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cccc(C(F)(F)F)c1']; ['Nc1cccc(C(F)(F)F)c1', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999985694885254, 0.9999963641166687] +CCn1cc(Nc2ncnc3sc4c(c23)CCC4)cn1; ['CCn1cc(N)cn1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999916553497314] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['Clc1ncnc2sc3c(c12)CCC3']; ['NC(=O)c1ccccc1N']; [0.999936580657959] +c1ccc(Cn2cc(Nc3ncnc4sc5c(c34)CCC5)cn2)cc1; ['Clc1ncnc2sc3c(c12)CCC3', 'Brc1cnn(Cc2ccccc2)c1']; ['Nc1cnn(Cc2ccccc2)c1', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999954700469971, 0.9999883770942688] +O=C([O-])c1ccccc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +Cc1nnc(-c2ccccc2Nc2ncnc3sc4c(c23)CCC4)[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3c(Cl)ccnc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +Cn1cnc2ccc(Nc3ncnc4sc5c(c34)CCC5)cc2c1=O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc2c(Cl)ccnc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1)c1ccccc1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cccc(NC(=O)c2ccccc2)c1']; [0.9999998211860657] +c1ccc(-c2ncc(Nc3ncnc4sc5c(c34)CCC5)[nH]2)cc1; [None]; [None]; [0] +COc1cnc(Nc2ncnc3sc4c(c23)CCC4)nc1; ['COc1cnc(Cl)nc1', 'COc1cnc(N)nc1', 'COc1cnc(N)nc1']; ['Nc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999967217445374, 0.9999816417694092, 0.9998514652252197] +Cc1ccc(Nc2ncnc3sc4c(c23)CCC4)c(Br)c1; ['Cc1ccc(N)c(Br)c1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999967217445374] +FC(F)(F)Oc1ccccc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +c1ccn2c(Nc3ncnc4sc5c(c34)CCC5)cnc2c1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cnc2ccccn12']; [0.9999970197677612] +Cc1nc2ccccn2c1Nc1ncnc2sc3c(c12)CCC3; ['Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N', 'Cc1nc2ccccn2c1N']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999995231628418, 0.9999856352806091, 0.9995707273483276] +OCCn1cc(Nc2ncnc3sc4c(c23)CCC4)cn1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; ['Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9999997019767761, 0.9999808073043823] +Cc1nc(C)c(Nc2ncnc3sc4c(c23)CCC4)s1; [None]; [None]; [0] +Clc1cccc(Cl)c1Nc1ncnc2sc3c(c12)CCC3; ['Nc1c(Cl)cccc1Cl', 'Clc1ncnc2sc3c(c12)CCC3']; ['Oc1ncnc2sc3c(c12)CCC3', 'Nc1c(Cl)cccc1Cl']; [0.9999942779541016, 0.999982476234436] +c1cc(Cn2cncn2)cc(Nc2ncnc3sc4c(c23)CCC4)c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cccc(Cn2cncn2)c1']; ['Nc1cccc(Cn2cncn2)c1', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.999998927116394] +Brc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cccc(Br)c1']; [0.9999982118606567] +Cc1ccc(Cl)c(Nc2ncnc3sc4c(c23)CCC4)c1; ['Cc1ccc(Cl)c(N)c1', 'Cc1ccc(Cl)c(N)c1']; ['Oc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3']; [0.9999580383300781, 0.9997043609619141] +N[C@H](Nc1ncnc2sc3c(c12)CCC3)c1ccco1; [None]; [None]; [0] +CC(C)(C)c1nc(Nc2ncnc3sc4c(c23)CCC4)cs1; [None]; [None]; [0] +Nc1nccc(Nc2ncnc3sc4c(c23)CCC4)n1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1nccc(Cl)n1']; ['Nc1ccnc(N)n1', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999790191650391, 0.9999664425849915] +c1ccc2cc(Nc3ncnc4sc5c(c34)CCC5)ccc2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ccc2ccccc2c1']; ['Nc1ccc2ccccc2c1', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999892711639404, 0.9999656677246094] +c1cnn2ncc(Nc3ncnc4sc5c(c34)CCC5)c2c1; ['Brc1cnn2ncccc12']; ['Nc1ncnc2sc3c(c12)CCC3']; [1.0] +Clc1ccc(Cl)c(Nc2ncnc3sc4c(c23)CCC4)c1; [None]; [None]; [0] +O=C([O-])Cc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1Nc1ncnc2sc3c(c12)CCC3; ['Clc1ncnc2sc3c(c12)CCC3']; ['NC(=O)c1c(N)cccc1F']; [0.9999984502792358] +Cc1nc(N)sc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1Nc1ncnc2sc3c(c12)CCC3; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1c[nH]nc1C(F)(F)F']; [0.999998927116394] +c1cnn2c(Nc3ncnc4sc5c(c34)CCC5)cnc2c1; [None]; [None]; [0] +c1ccc2c(Nc3ncnc4sc5c(c34)CCC5)cncc2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cncc2ccccc12', 'Nc1cncc2ccccc12']; ['Nc1cncc2ccccc12', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999992847442627, 0.9999990463256836, 0.9999212622642517] +CNc1nc(C)c(Nc2ncnc3sc4c(c23)CCC4)s1; [None]; [None]; [0] +Cn1cc(-c2ccc(Nc3ncnc4sc5c(c34)CCC5)cc2)cn1; ['Clc1ncnc2sc3c(c12)CCC3', 'Cn1cc(-c2ccc(N)cc2)cn1']; ['Cn1cc(-c2ccc(N)cc2)cn1', 'Oc1ncnc2sc3c(c12)CCC3']; [1.0, 1.0] +Cn1ncc2cc(Nc3ncnc4sc5c(c34)CCC5)ccc21; ['Cn1ncc2cc(Br)ccc21', 'Clc1ncnc2sc3c(c12)CCC3', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(N)ccc21']; ['Nc1ncnc2sc3c(c12)CCC3', 'Cn1ncc2cc(N)ccc21', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999996423721313, 0.9999995231628418, 0.999996542930603] +Oc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cccc(O)c1']; ['Nc1cccc(O)c1', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999940395355225, 0.9998743534088135] +Cc1c(Nc2ncnc3sc4c(c23)CCC4)sc(=O)n1C; [None]; [None]; [0] +c1nc(Nc2ccc(-c3cn[nH]c3)cc2)c2c3c(sc2n1)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Brc1ccc(-c2cn[nH]c2)cc1', 'Nc1ccc(-c2cn[nH]c2)cc1']; ['Nc1ccc(-c2cn[nH]c2)cc1', 'Nc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999996423721313, 0.9999996423721313, 0.9999915361404419] +CN1c2ccc(Nc3ncnc4sc5c(c34)CCC5)cc2CS1(=O)=O; [None]; [None]; [0] +CC(C)n1cc(Nc2ncnc3sc4c(c23)CCC4)nn1; ['CC(C)n1cc(N)nn1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999992251396179] +OCc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cccc(CO)c1']; [0.9999921917915344] +CC(C)(C)c1cnc(CNc2ncnc3sc4c(c23)CCC4)o1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncnc4sc5c(c34)CCC5)cc2c1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cc2ccccc2[nH]1']; [0.9999257326126099] +c1ncc2c(Nc3ncnc4sc5c(c34)CCC5)csc2n1; [None]; [None]; [0] +Nc1[nH]nc2cc(Nc3ncnc4sc5c(c34)CCC5)ccc12; [None]; [None]; [0] +COc1cc(Nc2ncnc3sc4c(c23)CCC4)ccc1C(=O)[O-]; [None]; [None]; [0] +CCCn1cnc(Nc2ncnc3sc4c(c23)CCC4)n1; [None]; [None]; [0] +N#CCCc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['N#CCCc1cccc(Br)c1']; ['Nc1ncnc2sc3c(c12)CCC3']; [0.9999769330024719] +CSc1nc(Nc2ncnc3sc4c(c23)CCC4)c[nH]1; [None]; [None]; [0] +Nc1ncncc1Nc1ncnc2sc3c(c12)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cncnc1N']; ['Nc1cncnc1N', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999988079071045, 0.9999771118164062] +CC[C@H](CO)Nc1ncnc2sc3c(c12)CCC3; ['CC[C@@H](N)CO']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999294281005859] +CCC(=O)Nc1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CCC(=O)Nc1ccc(N)cc1', 'CCC(=O)Nc1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999878406524658, 0.999950647354126] +CCNc1nc2ccc(Nc3ncnc4sc5c(c34)CCC5)cc2s1; [None]; [None]; [0] +COc1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1Cl; ['COc1ccc(N)cc1Cl', 'COc1ccc(N)cc1Cl']; ['Oc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3']; [0.9999955892562866, 0.9999750256538391] +c1ccn2ncc(Nc3ncnc4sc5c(c34)CCC5)c2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Brc1cnn2ccccc12', 'Nc1cnn2ccccc12']; ['Nc1cnn2ccccc12', 'Nc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999990463256836, 0.9999985694885254] +CC(C)c1oncc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(N)c1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999986886978149, 0.9999949932098389, 0.9999853372573853, 0.9998812675476074] +CCCn1cc(Nc2ncnc3sc4c(c23)CCC4)cn1; ['CCCn1cc(N)cn1', 'CCCn1cc(Br)cn1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999995827674866, 0.9999980926513672] +O=C1CCc2cccc(Nc3ncnc4sc5c(c34)CCC5)c21; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1cccc2c1C(=O)CC2']; [0.9999772906303406] +CS(=O)(=O)c1cccc(CNc2ncnc3sc4c(c23)CCC4)c1; ['CS(=O)(=O)c1cccc(CN)c1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999997615814209] +[NH3+]Cc1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1C(F)(F)F; [None]; [None]; [0] +O=c1cc(Nc2ncnc3sc4c(c23)CCC4)cc[nH]1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cc[nH]c(=O)c1', 'Nc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3', 'Nc1cc[nH]c(=O)c1']; ['Nc1cc[nH]c(=O)c1', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(Cl)cc[nH]1', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999994039535522, 0.9999921321868896, 0.9999881982803345, 0.9999457597732544] +CCNS(=O)(=O)c1ccccc1Nc1ncnc2sc3c(c12)CCC3; ['CCNS(=O)(=O)c1ccccc1N', 'CCNS(=O)(=O)c1ccccc1Br']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9996988773345947, 0.9989703297615051] +CN(c1ncccc1CNc1ncnc2sc3c(c12)CCC3)S(C)(=O)=O; ['CN(c1ncccc1CN)S(C)(=O)=O', 'CN(c1ncccc1CN)S(C)(=O)=O']; ['Clc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999760389328003] +Cn1cc(Nc2ncnc3sc4c(c23)CCC4)c2ccccc21; [None]; [None]; [0] +C[S@](=O)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CS(=O)c1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.999983549118042] +CC(C)(C)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999990463256836, 0.9999971389770508] +Fc1ccc(Nc2ncnc3sc4c(c23)CCC4)c(C(F)(F)F)c1; [None]; [None]; [0] +COc1cccc(F)c1Nc1ncnc2sc3c(c12)CCC3; ['COc1cccc(F)c1N']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999970197677612] +CC(C)Oc1cncc(Nc2ncnc3sc4c(c23)CCC4)c1; [None]; [None]; [0] +Fc1cccc(F)c1CNc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +O=c1[nH]ccc2oc(Nc3ncnc4sc5c(c34)CCC5)cc12; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1ncnc2sc3c(c12)CCC3; ['Clc1ncnc2sc3c(c12)CCC3']; ['N[C@H](CO)Cc1ccccc1']; [0.9999969005584717] +c1cc2c(Nc3ncnc4sc5c(c34)CCC5)c[nH]c2cn1; ['Brc1c[nH]c2cnccc12']; ['Nc1ncnc2sc3c(c12)CCC3']; [0.9999993443489075] +c1nc(Nc2cnc3[nH]ccc3c2)c2c3c(sc2n1)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Brc1cnc2[nH]ccc2c1', 'Nc1cnc2[nH]ccc2c1']; ['Nc1cnc2[nH]ccc2c1', 'Nc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999978542327881, 0.9999949932098389, 0.9999098777770996] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(N)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999992251396179, 0.9999767541885376] +CC1(Nc2ncnc3sc4c(c23)CCC4)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.999997615814209, 0.9999809265136719, 0.9998639225959778] +CS(=O)(=O)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; ['CS(=O)(=O)c1ccc(N)cc1', 'CS(=O)(=O)c1ccc(N)cc1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999992251396179, 0.999997615814209] +c1nc(Nc2ccc(N3CCOCC3)cc2)c2c3c(sc2n1)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999998211860657, 0.9999955892562866] +Fc1cccc(Cl)c1Nc1ncnc2sc3c(c12)CCC3; ['Nc1c(F)cccc1Cl', 'Clc1ncnc2sc3c(c12)CCC3']; ['Oc1ncnc2sc3c(c12)CCC3', 'Nc1c(F)cccc1Cl']; [0.9999994039535522, 0.999996542930603] +Cc1cc(Nc2ncnc3sc4c(c23)CCC4)n(-c2cccc(Cl)c2)n1; ['Cc1cc(N)n(-c2cccc(Cl)c2)n1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9988669157028198] +O=c1[nH]cc(Br)c2sc(Nc3ncnc4sc5c(c34)CCC5)cc12; [None]; [None]; [0] +c1nc(Nc2ccc(-n3cncn3)cc2)c2c3c(sc2n1)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ccc(-n2cncn2)cc1', 'Nc1ccc(-n2cncn2)cc1']; ['Nc1ccc(-n2cncn2)cc1', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [1.0, 0.9999996423721313, 0.999983549118042] +COc1ccc(Nc2ncnc3sc4c(c23)CCC4)c(OC)c1; ['COc1ccc(N)c(OC)c1', 'COc1ccc(N)c(OC)c1']; ['Oc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3']; [0.9999604821205139, 0.9999493360519409] +CC(C)(N)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; [None]; [None]; [0] +OC[C@@H](Nc1ncnc2sc3c(c12)CCC3)c1ccccc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncnc3sc4c(c23)CCC4)CC1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +CCc1cc(Nc2ncnc3sc4c(c23)CCC4)nc(N)n1; ['CCc1cc(Cl)nc(N)n1', 'CCc1cc(N)nc(N)n1']; ['Nc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3']; [0.999985933303833, 0.9999828934669495] +c1nc(Nc2nncn2C2CC2)c2c3c(sc2n1)CCC3; [None]; [None]; [0] +Nc1nnc(Nc2ncnc3sc4c(c23)CCC4)s1; ['Clc1ncnc2sc3c(c12)CCC3']; ['Nc1nnc(N)s1']; [0.9998030662536621] +CC(C)(O)c1cccc(Nc2ncnc3sc4c(c23)CCC4)n1; ['CC(C)(O)c1cccc(Br)n1']; ['Nc1ncnc2sc3c(c12)CCC3']; [0.9999979734420776] +CSc1nc(C)c(Nc2ncnc3sc4c(c23)CCC4)[nH]1; [None]; [None]; [0] +c1ccc(Cn2cc(Nc3ncnc4sc5c(c34)CCC5)nn2)cc1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(Nc2ncnc3sc4c(c23)CCC4)cc1; [None]; [None]; [0] +c1ccc2sc(Nc3ncnc4sc5c(c34)CCC5)nc2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1nc2ccccc2s1']; ['Nc1nc2ccccc2s1', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999989867210388, 0.9999974966049194] +CCCCc1cc(Nc2ncnc3sc4c(c23)CCC4)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1ncnc2sc3c(c12)CCC3; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ncnc3sc4c(c23)CCC4)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ncnc4sc5c(c34)CCC5)nc2NC1=O; ['CC1(C)Oc2ccc(N)nc2NC1=O', 'CC1(C)Oc2ccc(Br)nc2NC1=O']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999101758003235, 0.999891459941864] +Nc1cncc(Nc2ncnc3sc4c(c23)CCC4)n1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cncc(Cl)n1', 'Nc1cncc(Br)n1']; ['Nc1cncc(N)n1', 'Nc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3']; [1.0, 0.9999973773956299, 0.9999821782112122] +c1cc(Nc2ncnc3sc4c(c23)CCC4)c2snnc2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1cccc2nnsc12']; ['Nc1cccc2nnsc12', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999995231628418, 0.9999984502792358] +[NH3+]CCn1ccc(Nc2ncnc3sc4c(c23)CCC4)n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncnc3sc4c(c23)CCC4)s1; [None]; [None]; [0] +c1ccc2nc(Nc3ncnc4sc5c(c34)CCC5)ncc2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncc2ccccc2n1']; ['Nc1ncc2ccccc2n1', 'Oc1ncnc2sc3c(c12)CCC3']; [0.9999997615814209, 0.9999969005584717] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ncnc4sc5c(c34)CCC5)c2)cc1; [None]; [None]; [0] +c1cc(Nc2ncnc3sc4c(c23)CCC4)c2sccc2c1; [None]; [None]; [0] +O=C(NCCCNc1ncnc2sc3c(c12)CCC3)c1cccs1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ncnc2sc3c(c12)CCC3; ['COc1ccc(C#N)cc1N', 'COc1ccc(C#N)cc1N']; ['Clc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999996423721313, 0.9999558925628662] +c1nc(Nc2ncc3cc[nH]c3n2)c2c3c(sc2n1)CCC3; ['Clc1ncnc2sc3c(c12)CCC3', 'Clc1ncc2cc[nH]c2n1']; ['Nc1ncc2cc[nH]c2n1', 'Nc1ncnc2sc3c(c12)CCC3']; [1.0, 0.9999996423721313] +c1cnc2c(Nc3ncnc4sc5c(c34)CCC5)c[nH]c2c1; ['Clc1ncnc2sc3c(c12)CCC3', 'Brc1c[nH]c2cccnc12']; ['Nc1c[nH]c2cccnc12', 'Nc1ncnc2sc3c(c12)CCC3']; [0.9999957084655762, 0.9999948740005493] +COc1ccc(OC)c(Nc2ncnc3sc4c(c23)CCC4)c1; ['COc1ccc(OC)c(N)c1', 'COc1ccc(OC)c(N)c1']; ['Oc1ncnc2sc3c(c12)CCC3', 'Clc1ncnc2sc3c(c12)CCC3']; [0.9999946355819702, 0.9999891519546509] +O=C(NCCCNc1ncnc2sc3c(c12)CCC3)C1CCC1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1CNc1ncnc2sc3c(c12)CCC3; ['CS(=O)(=O)Nc1ccccc1CN', 'CS(=O)(=O)Nc1ccccc1CN']; ['Clc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999957084655762, 0.9998787641525269] +C[C@@]1(O)CC[C@H](Nc2ncnc3sc4c(c23)CCC4)CC1; ['C[C@]1(O)CC[C@@H](N)CC1']; ['Clc1ncnc2sc3c(c12)CCC3']; [0.9999934434890747] +COc1ncccc1Nc1ncnc2sc3c(c12)CCC3; ['COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1I', 'COc1ncccc1N', 'COc1ncccc1N']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3', 'Oc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.9999979734420776, 0.9999972581863403, 0.9999966621398926, 0.9999964237213135, 0.9996127486228943] +CN(C)S(=O)(=O)c1cccc(Nc2ncnc3sc4c(c23)CCC4)c1; ['CN(C)S(=O)(=O)c1cccc(N)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(N)c1']; ['Clc1ncnc2sc3c(c12)CCC3', 'Nc1ncnc2sc3c(c12)CCC3', 'O=c1[nH]cnc2sc3c(c12)CCC3']; [0.999990701675415, 0.9999895095825195, 0.9995546936988831] +CCOc1ccc(-c2ncc(C(N)=O)s2)cc1; ['CCOc1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999884963035583] +CC(=O)N(C)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999997615814209] +COc1ncccc1-c1ncc(C(N)=O)s1; ['COc1ncccc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.9997725486755371] +OCCn1cnc(Nc2ncnc3sc4c(c23)CCC4)c1; [None]; [None]; [0] +CN(C)c1cc(Nc2ncnc3sc4c(c23)CCC4)cnn1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2ncnc3sc4c(c23)CCC4)[nH]1; [None]; [None]; [0] +COc1cc(-c2ncc(C(N)=O)s2)cc(OC)c1OC; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +COc1ccc(-c2ncc(C(N)=O)s2)cc1; ['COc1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999780654907227] +NC(=O)c1cnc(-c2ccc(N3CCOCC3)cc2)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1ccc(N2CCOCC2)cc1']; [0.9999996423721313] +N#Cc1ccc(O)c(-c2ncc(C(N)=O)s2)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9994145631790161] +NC(=O)c1cnc(-c2cnc3cccnn23)s1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ncc(C(N)=O)s3)c2c1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ncc3ccccc3n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(O)c2)s1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C(=O)[O-])cc2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2nccc3ccccc23)s1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['NC(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999954700469971] +NC(=O)c1cnc(-c2cccc(NC(=O)C3CC3)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C(=O)Nc3ccccc3)cc2)s1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.9999996423721313] +NC(=O)c1cnc(Nc2ncccn2)s1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ncc(C(N)=O)s3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C(=O)N3CCOCC3)cc2)s1; ['NC(=O)c1cnc(Br)s1']; ['O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [1.0] +NC(=O)c1cnc(-c2cccc(C3CCNCC3)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(OCCO)cc2)s1; ['NC(=O)c1cnc(Br)s1']; ['OCCOc1ccc(B(O)O)cc1']; [0.9999761581420898] +NC(=O)c1cnc(-c2nc3ccccc3[nH]2)s1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ncc(C(N)=O)s2)cc1; ['CC(=O)NCc1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999929666519165] +CNS(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999884366989136] +N#Cc1cccc(Cn2cc(-c3ncc(C(N)=O)s3)cn2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(Br)s1']; [0.9999997615814209, 0.9999939799308777] +NC(=O)c1cnc(-c2ccc(C(F)(F)F)cc2)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999902248382568] +NC(=O)c1cnc(-c2ccc3c(c2)CS(=O)(=O)C3)s1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C(=O)N3CCOCC3)cn2)s1; [None]; [None]; [0] +Cc1nc(C)c(-c2ncc(C(N)=O)s2)s1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999823570251465] +NC(=O)c1cnc(Cc2ccccc2O)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(Br)cc2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2cnc(N)nc2)s1; [None]; [None]; [0] +NC(=O)c1cnc([C@H]2CCN(C(=O)c3ccccc3)C2)s1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999990463256836] +CCCOc1ccc(-c2ncc(C(N)=O)s2)nc1; [None]; [None]; [0] +CC(C)c1cc(-c2ncc(C(N)=O)s2)nc(N)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2ncc(C(N)=O)s2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ncc(C(N)=O)s1; ['COc1ccc(Cl)cc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.999961256980896] +Cc1c(C(=O)[O-])cccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)c(C)c1; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9999111890792847] +CC(=O)N1CCCN(c2cccc(-c3ncc(C(N)=O)s3)c2)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccn3nccc3n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2c[nH]c3ccccc23)s1; [None]; [None]; [0] +COc1cc(OC)c(-c2ncc(C(N)=O)s2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccccc2-n2cccn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc3c(c2)CCO3)s1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'OB(O)c1ccc2c(c1)CCO2']; [1.0, 0.9999992847442627] +NC(=O)c1cnc(-c2cccc3c2OCO3)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1cccc2c1OCO2']; [0.9993824362754822] +COc1cc(-c2ncc(C(N)=O)s2)ccc1O; ['COc1cc(B(O)O)ccc1O']; ['NC(=O)c1cnc(Br)s1']; [0.9999412298202515] +CC(=O)Nc1cccc(-c2ncc(C(N)=O)s2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(Br)s1']; [0.9999967813491821, 0.9999469518661499] +CC(C)(C)c1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc(-c3ccccc3)[nH]n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cnc3ccccc3c2)s1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ncc(C(N)=O)s2)cn1; ['CC(C)(C)c1ccc(B(O)O)cn1']; ['NC(=O)c1cnc(Br)s1']; [0.9999366998672485] +CN(C)C(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CN(C)C(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999992847442627] +CC(C)c1ccc2nc(-c3ncc(C(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2nc3ccc(F)c(F)c3[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2nc3c(F)c(F)ccc3[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2scc3c2OCCO3)s1; [None]; [None]; [0] +Cc1ccc(-c2ncc(C(N)=O)s2)c(=O)[nH]1; [None]; [None]; [0] +NC(=O)c1cnc(-c2csc(N)n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2nc3ccccc3[nH]2)s1; [None]; [None]; [0] +CSc1ccc(-c2ncc(C(N)=O)s2)cc1; ['CSc1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999755620956421] +NC(=O)c1cnc(CCCc2ccccc2)s1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ncc(C(N)=O)s2)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(=O)O)c1', 'COc1cccc(C(=O)Oc2ccccc2)c1']; ['NC(=O)c1cnc(N)s1', 'NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(N)s1', 'NC(=O)c1cnc(N)s1']; [0.9999969005584717, 0.9999784231185913, 0.9999494552612305, 0.9999130964279175] +CC(=O)N[C@@H]1CC[C@@H](c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc3ccccc3s2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(F)cc2Cl)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc3c(c2)CCC(=O)N3)s1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'NC(=O)c1cncs1']; ['NC(=O)c1cnc(Br)s1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999985694885254, 0.9995886087417603] +NC(=O)c1cnc(-c2ccn(-c3cccc(Cl)c3)n2)s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ncc(C(N)=O)s3)cc2)CC1; [None]; [None]; [0] +CCc1ccc(-c2ncc(C(N)=O)s2)cc1; ['CCc1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9998056292533875] +COc1ccc(-c2ncc(C(N)=O)s2)cc1OC; ['COc1ccc(B(O)O)cc1OC']; ['NC(=O)c1cnc(Br)s1']; [0.9999538660049438] +NC(=O)c1cnc(-c2ccc(Cl)cc2Cl)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1ccc(Cl)cc1Cl']; [0.999914288520813] +CC[C@@H](CO)c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ncc(Br)cn2)s1; [None]; [None]; [0] +NC(=O)c1cnc([C@H](CO)Cc2ccccc2)s1; [None]; [None]; [0] +Cc1cc(-c2ncc(C(N)=O)s2)nc(N)n1; [None]; [None]; [0] +COc1cc(-c2ncc(C(N)=O)s2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['NC(=O)c1cnc(Br)s1']; [0.9999971389770508] +C[C@H]1CCCN1C(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc3ccccn3n2)s1; [None]; [None]; [0] +Cn1cc(-c2ncc(C(N)=O)s2)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1cc(F)c(-c2ncc(C(N)=O)s2)cc1OC; ['COc1cc(F)c(B(O)O)cc1OC']; ['NC(=O)c1cnc(Br)s1']; [0.9999899864196777] +NC(=O)c1cnc(CCCn2cncn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ncc3cccn3n2)s1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ncc(C(N)=O)s3)ccc2O1; [None]; [None]; [0] +COc1cc(-c2ncc(C(N)=O)s2)ccc1Cl; ['COc1cc(B(O)O)ccc1Cl']; ['NC(=O)c1cnc(Br)s1']; [0.9999790787696838] +COc1ccc2cccc(-c3ncc(C(N)=O)s3)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CNC(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999983310699463] +NC(=O)c1cnc(-c2cnn(CCO)c2)s1; ['NC(=O)c1cnc(Br)s1']; ['OCCn1cc(B(O)O)cn1']; [0.9998962879180908] +NC(=O)c1cnc(-c2cccc3ccc(O)cc23)s1; [None]; [None]; [0] +COc1cc(-c2ncc(C(N)=O)s2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['NC(=O)c1cnc(Br)s1']; [0.9985963702201843] +NC(=O)c1cnc(-c2cc(N)nc3[nH]ccc23)s1; [None]; [None]; [0] +Cc1csc2c(-c3ncc(C(N)=O)s3)ncnc12; [None]; [None]; [0] +NC(=O)c1cnc(-c2ncc(Cl)cn2)s1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc(C(N)=O)s2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc3cn[nH]c3c2)s1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'OB(O)c1ccc2cn[nH]c2c1']; [1.0, 0.999983012676239] +CO[C@@H]1CC[C@@H](c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Cc2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +CCn1cc(-c2ncc(C(N)=O)s2)cn1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3ncc(C(N)=O)s3)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ncc(C(N)=O)s1)cn2C; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(NC(=O)N3CCCC3)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc(-c3cccnc3)ccn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc3ccccc3o2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(OC(F)(F)F)cc2)s1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ncc(C(N)=O)s2)c1; ['COc1ccc(F)c(C(=O)O)c1']; ['NC(=O)c1cnc(N)s1']; [0.9999710917472839] +NC(=O)c1cnc(-c2ncc3sccc3n2)s1; [None]; [None]; [0] +Cn1ncc2cc(-c3ncc(C(N)=O)s3)ccc21; ['Cn1ncc2cc(B(O)O)ccc21']; ['NC(=O)c1cnc(Br)s1']; [1.0] +COc1ccc2nc(-c3ncc(C(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2ncc(C(N)=O)s2)cn1; ['CN(C)c1ccc(B(O)O)cn1']; ['NC(=O)c1cnc(Br)s1']; [0.9999905824661255] +CCc1cccc(-c2ncc(C(N)=O)s2)n1; [None]; [None]; [0] +Cn1cc(-c2ncc(C(N)=O)s2)c2ccccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ncc(C(N)=O)s3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12']; ['NC(=O)c1cnc(Br)s1']; [0.999998152256012] +NC(=O)c1cnc(-c2ncn3c2CCCC3)s1; [None]; [None]; [0] +NC(=O)c1cnc(NC(=O)c2cccc(OC(F)(F)F)c2)s1; ['NC(=O)c1cnc(N)s1', 'NC(=O)c1cnc(N)s1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1']; [0.9999998211860657, 0.999993085861206] +CC(C)(O)c1ccc2cc(-c3ncc(C(N)=O)s3)[nH]c2c1; [None]; [None]; [0] +Cc1cc(-c2ncc(C(N)=O)s2)cc(C)c1OCCO; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ncc(C(N)=O)s3)cn2)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(N3CCCC3=O)c2)s1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['NC(=O)c1cnc(Br)s1']; [0.9999996423721313] +NC(=O)c1cnc(-c2ccc(CCO)cc2)s1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'OCCc1ccc(B(O)O)cc1']; [0.9999986290931702, 0.9999573230743408] +Cn1nc(Cl)c2cc(-c3ncc(C(N)=O)s3)ccc21; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ncc(C(N)=O)s2)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ncc(C(N)=O)s3)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999898672103882] +CNC(=O)c1ccc(-c2ncc(C(N)=O)s2)c(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncc(C(N)=O)s1; ['CNC(=O)c1ccccc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.999967098236084] +Cn1nc(-c2ncc(C(N)=O)s2)cc1C(C)(C)O; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1ncc(C(N)=O)s1; [None]; [None]; [0] +CCOc1ccccc1-c1ncc(C(N)=O)s1; ['CCOc1ccccc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.9997066259384155] +CCNC(=O)Cc1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ncc(C(N)=O)s2)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ncc(C(N)=O)s1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.9987587928771973] +CN(C)C(=O)c1ccc(-c2ncc(C(N)=O)s2)nc1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccnc3ccccc23)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1ccnc2ccccc12']; [0.9998139142990112] +NC(=O)c1cnc(-c2cccc(C(F)(F)F)c2)s1; [None, 'NC(=O)c1cnc(Br)s1']; [None, 'OB(O)c1cccc(C(F)(F)F)c1']; [0, 0.9999603033065796] +NC(=O)c1cnc(-c2ccccc2OC(F)(F)F)s1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +COC(C)(C)CCc1ncc(C(N)=O)s1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccccc2C(N)=O)s1; ['NC(=O)c1ccccc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.999295175075531] +Cc1nnc(-c2ccccc2-c2ncc(C(N)=O)s2)[nH]1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2cc(F)cc(F)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cnn(Cc3ccccc3)c2)s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ncc(C(N)=O)s2)cs1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(NC(=O)c3ccccc3)c2)s1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999995827674866, 0.9999845027923584] +Cn1cnc2ccc(-c3ncc(C(N)=O)s3)cc2c1=O; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc(Cl)ccc2Cl)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1cc(Cl)ccc1Cl']; [0.9993780851364136] +NC(=O)c1cnc(-c2ccccc2C(=O)[O-])s1; [None]; [None]; [0] +Cc1ccc(-c2ncc(C(N)=O)s2)c(Br)c1; [None]; [None]; [0] +CC(C)C(=O)COc1ncc(C(N)=O)s1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2c(Cl)cccc2Cl)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9992438554763794] +NC(=O)c1cnc(-c2cnc3ccccn23)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(Br)c2)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1cccc(Br)c1']; [0.9992554187774658] +NC(=O)c1cnc(-c2cnc(-c3ccccc3)[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-n2ncc3cccc(F)c3c2=O)s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ncc(C(N)=O)s2)c1; ['Cc1ccc(Cl)c(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9996539950370789] +NC(=O)c1cnc(NCc2cccnc2)s1; ['NC(=O)c1cnc(Cl)s1', 'NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(N)s1']; ['NCc1cccnc1', 'NCc1cccnc1', 'O=Cc1cccnc1']; [0.9999892115592957, 0.9993299245834351, 0.9919697046279907] +COc1cnc(-c2ncc(C(N)=O)s2)nc1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncc(C(N)=O)s2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc3ccccc3c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cnn3ncccc23)s1; [None]; [None]; [0] +NC(=O)c1cnc(Nc2cccnc2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-n2cnc3ccccc32)s1; [None]; [None]; [0] +NC(=O)c1cnc(NCCc2c[nH]cn2)s1; ['NC(=O)c1cnc(Cl)s1', 'NC(=O)c1cnc(Br)s1']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.999746561050415, 0.8770043253898621] +NC(=O)c1cnc(NC(=O)c2cccs2)s1; [None]; [None]; [0] +Cc1c(-c2ncc(C(N)=O)s2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1cnc(-c2cncc3ccccc23)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1cncc2ccccc12']; [0.9999512434005737] +NC(=O)c1cnc(-c2ccnc(N)n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(NCCc2ccccc2)s1; ['NC(=O)c1cnc(Cl)s1', 'NC(=O)c1cnc(Br)s1', 'BrCCc1ccccc1']; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NC(=O)c1cnc(N)s1']; [0.9996994137763977, 0.9704853296279907, 0.8462512493133545] +NC(=O)c1cnc(-c2cccc(Cn3cncn3)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2c[nH]nc2C(F)(F)F)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(-c3cn[nH]c3)cc2)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999873638153076] +Cn1cc(-c2ccc(-c3ncc(C(N)=O)s3)cc2)cn1; [None]; [None]; [0] +NC(=O)c1cnc(NCc2ccc(Cl)cc2)s1; ['NC(=O)c1cnc(Cl)s1', 'NC(=O)c1cnc(Br)s1', 'ClCc1ccc(Cl)cc1', 'NC(=O)c1cnc(N)s1']; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NC(=O)c1cnc(N)s1', 'O=Cc1ccc(Cl)cc1']; [0.9999376535415649, 0.9993749856948853, 0.9990717172622681, 0.9918986558914185] +NC(=O)c1cnc(-c2cccc(CC(=O)[O-])c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc3c(N)[nH]nc3c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Nc2ccncc2)s1; ['NC(=O)c1cnc(Cl)s1', None]; ['Nc1ccncc1', None]; [0.9996825456619263, 0] +NC(=O)c1cnc(-c2cccc(F)c2C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc(CO)c2)s1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'OCc1cccc(B(O)O)c1']; [0.999994158744812, 0.9994717836380005] +NC(=O)c1cnc(NCc2ccccc2F)s1; ['NC(=O)c1cnc(Cl)s1', 'NC(=O)c1cnc(Br)s1', 'Fc1ccccc1CCl', 'NC(=O)c1cnc(N)s1']; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NC(=O)c1cnc(N)s1', 'O=Cc1ccccc1F']; [0.9999979734420776, 0.9999785423278809, 0.9998204708099365, 0.9991405010223389] +CC(C)n1cc(-c2ncc(C(N)=O)s2)nn1; [None]; [None]; [0] +CN1c2ccc(-c3ncc(C(N)=O)s3)cc2CS1(=O)=O; [None]; [None]; [0] +CSc1nc(-c2ncc(C(N)=O)s2)c[nH]1; [None]; [None]; [0] +CCCn1cnc(-c2ncc(C(N)=O)s2)n1; [None]; [None]; [0] +NC(=O)c1cnc(-c2csc3ncncc23)s1; [None]; [None]; [0] +COc1cc(-c2ncc(C(N)=O)s2)ccc1C(=O)[O-]; [None]; [None]; [0] +N#CCCc1cccc(-c2ncc(C(N)=O)s2)c1; ['N#CCCc1cccc(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9997791051864624] +NC(=O)c1cnc(-c2ccc(F)cc2C(F)(F)F)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999499320983887] +NC(=O)c1cnc(-c2cncnc2N)s1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(CCc2c[nH]nn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Oc2ccccn2)s1; ['NC(=O)c1cnc(Cl)s1']; ['Oc1ccccn1']; [0.9974921345710754] +CCC(=O)Nc1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +NC(=O)c1cnc(NC(=O)c2c(Cl)cccc2Cl)s1; ['NC(=O)c1cnc(N)s1', 'NC(=O)c1cnc(N)s1']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl']; [0.9999182820320129, 0.9998421669006348] +CS(=O)(=O)C1CCN(c2ncc(C(N)=O)s2)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(Cl)s1']; [0.9999702572822571, 0.9999212026596069] +NC(=O)c1cnc(-c2cc3ccccc3[nH]2)s1; [None]; [None]; [0] +COc1ccc(-c2ncc(C(N)=O)s2)cc1Cl; ['COc1ccc(B(O)O)cc1Cl']; ['NC(=O)c1cnc(Br)s1']; [0.9999940991401672] +CCNc1nc2ccc(-c3ncc(C(N)=O)s3)cc2s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cnn3ccccc23)s1; [None]; [None]; [0] +NC(=O)CCCc1ncc(C(N)=O)s1; [None]; [None]; [0] +CCCn1cc(-c2ncc(C(N)=O)s2)cn1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc3c2C(=O)CC3)s1; ['NC(=O)c1cncs1']; ['O=C1CCc2cccc(Br)c21']; [0.9994672536849976] +CC(C)(N)c1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +CC(C)(COc1ncc(C(N)=O)s1)S(C)(=O)=O; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ncc(C(N)=O)s1; [None]; [None]; [0] +C[C@@H](Oc1ncc(C(N)=O)s1)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl']; ['NC(=O)c1cnc(Br)s1']; [0.9985013008117676] +CCNS(=O)(=O)c1ccccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc[nH]c(=O)c2)s1; [None]; [None]; [0] +CCN(CC)c1ncc(C(N)=O)s1; [None]; [None]; [0] +COc1ccncc1Nc1ncc(C(N)=O)s1; ['COc1ccncc1F']; ['NC(=O)c1cnc(N)s1']; [0.99912428855896] +C[S@](=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ncc(C(N)=O)s1; ['COc1cccc(F)c1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.9999405145645142] +CC(C)Oc1cncc(-c2ncc(C(N)=O)s2)c1; ['CC(C)Oc1cncc(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9999969601631165] +NC(=O)c1cnc(Nc2cnccc2-c2ccccc2)s1; ['NC(=O)c1cnc(Cl)s1']; ['Nc1cnccc1-c1ccccc1']; [0.9999696016311646] +COc1cc(CCc2ncc(C(N)=O)s2)cc(OC)c1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cnc3[nH]ccc3c2)s1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'NC(=O)c1cnc(Br)s1']; ['NC(=O)c1cnc(Br)s1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 0.9999958872795105] +NC(=O)c1cnc(Nc2cnc3ccccc3c2)s1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['NC(=O)c1cnc(Br)s1']; [0.9999959468841553] +NC(=O)c1cnc(-c2c[nH]c3cnccc23)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc3c(=O)[nH]cc(Br)c3s2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cc3c(=O)[nH]ccc3o2)s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ncc(C(N)=O)s2)cc1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CC1(c2ncc(C(N)=O)s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +NC(=O)c1cnc(-n2ccc(CO)n2)s1; ['NC(=O)c1cnc(Br)s1']; ['OCc1cc[nH]n1']; [0.9999161958694458] +C[C@H](Nc1ncc(C(N)=O)s1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +NC(=O)c1cnc(-n2ncc3ccccc32)s1; ['NC(=O)c1cnc(Cl)s1']; ['c1ccc2[nH]ncc2c1']; [0.9995108842849731] +CN(c1ncc(C(N)=O)s1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@@H](Nc1ncc(C(N)=O)s1)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['NC(=O)c1cnc(Br)s1']; [0.9804941415786743] +C[C@H](Nc1ncc(C(N)=O)s1)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['NC(=O)c1cnc(Br)s1']; [0.9804941415786743] +NC(=O)c1cnc(-c2c(F)cccc2Cl)s1; [None]; [None]; [0] +Cc1cc(-c2ncc(C(N)=O)s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1ccc(-c2ncc(C(N)=O)s2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9998331665992737] +NC(=O)c1cnc(-c2ccc(-n3cncn3)cc2)s1; [None]; [None]; [0] +CSc1nc(C)c(-c2ncc(C(N)=O)s2)[nH]1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccc(C(=O)c3ccccc3)cc2)s1; ['NC(=O)c1cnc(Br)s1']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999924898147583] +NC(=O)c1cnc(-n2ncc3c(O)cccc32)s1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +NC(=O)c1cnc(-n2cnc(CCO)c2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2nc3ccc(O)cc3[nH]2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2nncn2C2CC2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2ccn(CC[NH3+])n2)s1; [None]; [None]; [0] +NC(=O)c1cnc(Cc2nnc3ccc(-c4ccccc4)nn23)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cn(Cc3ccccc3)nn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(CCC(=O)NCc2ccccn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(CS(=O)(=O)NCc2ccccn2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2nnc(N)s2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncc(C(N)=O)s1; [None]; [None]; [0] +CCc1cc(-c2ncc(C(N)=O)s2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncc(C(N)=O)s2)nc(N)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ncc(C(N)=O)s2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc(C(N)=O)s2)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc3ccsc23)s1; ['NC(=O)c1cnc(Br)s1']; ['OB(O)c1cccc2ccsc12']; [0.999808669090271] +NC(=O)c1cnc(Oc2ccc(C[NH3+])cc2F)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cccc3nnsc23)s1; [None]; [None]; [0] +NC(=O)c1cnc(-c2cncc(N)n2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncc(C(N)=O)s3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncc(C(N)=O)s3)c2)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncc(C(N)=O)s2)[nH]1; [None]; [None]; [0] +NC(=O)c1cnc(-c2c[nH]c3cccnc23)s1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncc(C(N)=O)s1; ['COc1ccc(C#N)cc1B(O)O']; ['NC(=O)c1cnc(Br)s1']; [0.9999911189079285] +NC(=O)c1cnc(-c2nc3ccccc3s2)s1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncc(C(N)=O)s2)c1; ['COc1ccc(OC)c(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1']; [0.9999567866325378] +CN(C)S(=O)(=O)c1cccc(-c2ncc(C(N)=O)s2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(Br)s1']; [0.9999995231628418, 0.9999135732650757] +NC(=O)c1cnc(-c2nc(N)c3ccccc3n2)s1; [None]; [None]; [0] +COc1ccc(Oc2ncc(C(N)=O)s2)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['NC(=O)c1cnc(Cl)s1']; [0.9982332587242126] +NC(=O)c1cnc(N2CCC(c3nc4ccccc4[nH]3)CC2)s1; ['NC(=O)c1cnc(Br)s1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9996387958526611] +NC(=O)c1cnc(N2CC=C(c3c[nH]c4ccccc34)CC2)s1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['NC(=O)c1cnc(Br)s1', 'NC(=O)c1cnc(Cl)s1']; [0.9998836517333984, 0.999813437461853] +NC(=O)c1cnc(-c2cn(CCO)cn2)s1; [None]; [None]; [0] +Oc1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Oc1cccc(Br)c1', 'OB(O)c1cccc(O)c1']; [0.9994619488716125, 0.9660177826881409, 0.9106270670890808] +NC(=O)c1cnc(-c2cccc(NC(=O)C3CCNCC3)c2)s1; [None]; [None]; [0] +c1cc(-c2cnc3n[nH]cc3c2)c2cccnc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cccc2ncccc12', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2n[nH]cc2c1', 'OB(O)c1cccc2ncccc12']; [0.9999694228172302, 0.9957735538482666, 0.8856074213981628] +CN(C)c1cc(-c2ncc(C(N)=O)s2)cnn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ncc(C(N)=O)s2)CC1; [None]; [None]; [0] +Clc1ccc2c(c1-c1cnc3n[nH]cc3c1)OCO2; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'Clc1ccc2c(c1)OCO2']; [0.9866154193878174, 0.8229279518127441] +Oc1cc(-c2cnc3n[nH]cc3c2)ccc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1']; [0.9999918937683105, 0.9976997971534729] +NC(=O)c1cnc(-c2ncc3cc[nH]c3n2)s1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1']; [0.999994158744812, 0.9956061840057373, 0.8030380010604858] +Clc1cccc(Cl)c1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Clc1cccc(Cl)c1Br', 'OB(O)c1c(Cl)cccc1Cl']; [0.9982250928878784, 0.9965416193008423] +c1ccc2c(-c3cnc4n[nH]cc4c3)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(Oc2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['Oc1ccc(F)cc1']; [0.9957253932952881] +NC(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1']; [0.9999994039535522, 0.9967715740203857] +Oc1ccc(-c2cnc3n[nH]cc3c2)c(F)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Oc1ccc(Br)c(F)c1', 'OB(O)c1ccc(O)cc1F']; [0.9998816251754761, 0.9871921539306641, 0.9860515594482422] +Oc1ccc(-c2cnc3n[nH]cc3c2)c(Cl)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'Oc1ccc(Br)c(Cl)c1']; [0.9995161890983582, 0.981036901473999, 0.9395915269851685] +COc1cc(C(N)=O)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; [0.9999751448631287] +NC(=O)c1ccc(-c2cnc3n[nH]cc3c2)c(F)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(N)=O)cc2F)OC1(C)C', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.999995231628418, 0.994472324848175] +COc1ccc(F)cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O']; [0.9999886751174927, 0.9963816404342651, 0.9946641325950623] +Nc1nccc(-c2cnc3n[nH]cc3c2)n1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br']; [0.9999821186065674, 0.9804413318634033, 0.9570136070251465] +Oc1ccc(-c2ccc(-c3cnc4n[nH]cc4c3)cc2)c(O)c1; ['Brc1cnc2n[nH]cc2c1']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; [0.9659472703933716] +COc1cc(-c2cnc3n[nH]cc3c2)ccc1O; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(B(O)O)ccc1O']; [0.9999932050704956, 0.9826560020446777, 0.9644747376441956] +Cc1nc2c(F)cc(-c3cnc4n[nH]cc4c3)cc2[nH]1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +c1ccc2cc(-c3cnc4n[nH]cc4c3)ccc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccc2ccccc2c1']; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)COB(c2ccc3ccccc3c2)OC1', 'OB(O)c1ccc2ccccc2c1', 'Brc1cnc2n[nH]cc2c1']; [0.9999971389770508, 0.9999709129333496, 0.996315598487854, 0.9927676916122437] +Brc1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; [0.9999641180038452, 0.986731767654419, 0.9454445838928223, 0.9377684593200684] +COC(=O)c1ccc(-c2cnc3n[nH]cc3c2)o1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COC(=O)c1ccc(B(O)O)o1', 'COC(=O)c1ccc(Br)o1', 'COC(=O)c1ccco1']; [0.9921524524688721, 0.9804268479347229, 0.9157291054725647] +Clc1[nH]ncc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +Oc1ccc(-c2cnc3n[nH]cc3c2)cc1F; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'OB(O)c1ccc(O)c(F)c1']; [0.9999947547912598, 0.9891639947891235] +Cn1cc(-c2cnc3n[nH]cc3c2)c2ccccc21; ['Brc1cnc2n[nH]cc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999234080314636] +Oc1ccc(-c2cnc3n[nH]cc3c2)c(O)c1; ['Brc1cnc2n[nH]cc2c1']; ['Oc1ccc(Br)c(O)c1']; [0.8746844530105591] +c1cnn2ncc(-c3cnc4n[nH]cc4c3)c2c1; ['Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; [0.9999678134918213] +COc1cc(CCc2cnc3n[nH]cc3c2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1']; [0.99998939037323, 0.999075710773468, 0.9705753922462463, 0.9609944820404053] +Nc1cc(-c2cnc3n[nH]cc3c2)ccn1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Nc1cc(I)ccn1', 'Nc1cc(Br)ccn1', 'Nc1cc(B(O)O)ccn1']; [0.9999983906745911, 0.9958251714706421, 0.9882204532623291, 0.960968017578125] +Clc1ccccc1OCc1cnc2n[nH]cc2c1; [None]; [None]; [0] +Fc1ccc(-c2cnc3n[nH]cc3c2)cc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Fc1ccc(I)cc1Cl', 'Fc1ccc(Br)cc1Cl', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccccc1Cl']; [0.9999996423721313, 0.999967098236084, 0.9994720220565796, 0.998760461807251, 0.9583715796470642] +Oc1ccc(Cl)c(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl']; [0.9990701675415039, 0.8287029266357422] +Cc1ccc2[nH]ncc2c1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O']; [0.9999969601631165, 0.9995708465576172] +c1cc2c(-c3cnc4n[nH]cc4c3)c[nH]c2cn1; [None]; [None]; [0] +Oc1ncc(-c2cnc3n[nH]cc3c2)cc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncc(Br)cc1Cl']; [0.9999105334281921, 0.8525748252868652] +Cc1ccc(CO)cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O']; [0.9999887943267822, 0.9952003359794617, 0.9455536007881165] +Fc1ccc(-c2nc[nH]c2-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['Fc1ccc(-c2c[nH]cn2)cc1']; [0.8019862174987793] +COc1cc(OC)cc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; [0.9999826550483704, 0.9907904267311096, 0.9800314903259277] +COc1ccc(-c2cnc3n[nH]cc3c2)cc1OC; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B(O)O)cc1OC']; [0.9999958872795105, 0.9881765842437744, 0.9824693202972412] +NC(=O)c1cc(-c2cnc3n[nH]cc3c2)c[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1']; [0.999986469745636, 0.9885650873184204, 0.9399911165237427] +c1cc2cc(-c3cnc4n[nH]cc4c3)cnc2[nH]1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'Brc1cnc2n[nH]cc2c1']; [0.9999992847442627, 0.9932564496994019, 0.9910069108009338] +Cc1nc2ccc(-c3cnc4n[nH]cc4c3)cc2[nH]1; ['Brc1cnc2n[nH]cc2c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; [0.9999990463256836] +COc1cc(CCc2cnc3n[nH]cc3c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; [0.9999971985816956] +CS(=O)(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; [0.9999997615814209, 0.9996351003646851, 0.9915398359298706] +c1ccc2sc(-c3cnc4n[nH]cc4c3)nc2c1; ['Nc1ccccc1S', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['O=Cc1cnc2n[nH]cc2c1', 'c1ccc2scnc2c1', 'CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1', 'Brc1nc2ccccc2s1']; [0.9999989867210388, 0.9996535778045654, 0.999142050743103, 0.9983999729156494] +Oc1cncc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Oc1cncc(Br)c1', 'OB(O)c1cncc(O)c1']; [0.999619722366333, 0.9723851680755615, 0.9040063619613647] +CNC(=O)c1cccc2cc(-c3cnc4n[nH]cc4c3)ccc12; [None]; [None]; [0] +O=C1Cc2cc(-c3cnc4n[nH]cc4c3)ccc2N1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; [0.9999696016311646, 0.9954530000686646, 0.9687866568565369] +CCc1cc(O)c(F)cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; [0.9999933242797852] +CCc1cc(O)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br']; [0.999958872795105, 0.9448615312576294] +CNc1nccc(-c2cnc3n[nH]cc3c2)n1; ['Brc1cnc2n[nH]cc2c1']; ['CNc1nccc(Cl)n1']; [0.9720845222473145] +Cc1n[nH]c(-c2cnc3n[nH]cc3c2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O']; [0.9997638463973999, 0.9625901579856873, 0.8926541805267334] +C[C@H](CC(N)=O)c1cnc2n[nH]cc2c1; [None]; [None]; [0] +Clc1cnccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br']; [0.9999502301216125, 0.9937397241592407, 0.93680739402771] +CN(c1cccc(Cl)c1)c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['CNc1cccc(Cl)c1']; [0.9909069538116455] +CCc1sccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnc3n[nH]cc3c2)cc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Oc1c(Cl)cc(Br)cc1Cl']; [0.9999276399612427, 0.8624753952026367] +CNc1nc(-c2cnc3n[nH]cc3c2)ncc1F; ['Brc1cnc2n[nH]cc2c1']; ['CNc1nc(Cl)ncc1F']; [0.9991090297698975] +Cc1n[nH]c2cc(N(C)c3cnc4n[nH]cc4c3)ccc12; [None]; [None]; [0] +c1cc2c(cc1-c1cnc3n[nH]cc3c1)CCN2; ['Brc1cnc2n[nH]cc2c1']; ['OB(O)c1ccc2c(c1)CCN2']; [0.9981235265731812] +c1cc(Nc2cnc3n[nH]cc3c2)ccn1; ['Brc1cnc2n[nH]cc2c1']; ['Nc1ccncc1']; [0.9963060617446899] +Fc1cc(Br)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Fc1cc(Br)ccc1I', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br']; [0.9997981786727905, 0.9785470962524414, 0.9742365479469299, 0.9482372999191284] +FC(F)c1cc(-c2cnc3n[nH]cc3c2)[nH]n1; [None]; [None]; [0] +Cc1oc(-c2cnc3n[nH]cc3c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cnc4n[nH]cc4c3)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; [0.9999992847442627, 0.9989757537841797] +O=C(NC1CC1)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'O=C(NC1CC1)c1ccc(B(O)O)cc1']; [1.0, 0.9999822378158569] +Oc1cc(Br)cc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1']; [0.995428204536438, 0.9713934063911438] +Fc1ccc2n[nH]c(-c3cnc4n[nH]cc4c3)c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +CN(c1cnc2n[nH]cc2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1cc(-c2cnc3n[nH]cc3c2)ccc1C(N)=O; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; [0.9999969005584717, 0.9761009216308594] +Oc1cc(-c2cnc3n[nH]cc3c2)nc2ccnn12; [None]; [None]; [0] +Cc1cc(-c2cnc3n[nH]cc3c2)cc(C)c1O; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O']; [0.9997437596321106, 0.7940852642059326] +Cc1nc2ccc(-c3cnc4n[nH]cc4c3)cc2o1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccccc2o1']; [0.9999992251396179, 0.9998466968536377, 0.9997658729553223, 0.781731367111206] +Oc1c(F)cc(-c2cnc3n[nH]cc3c2)cc1F; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Oc1c(F)cc(Br)cc1F']; [0.9999438524246216, 0.9775452613830566] +CSc1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1']; [0.9999949932098389] +c1ccc2c(CCc3cnc4n[nH]cc4c3)c[nH]c2c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cnc4n[nH]cc4c3)ccc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['Cc1onc(-c2ccccc2)c1B(O)O']; [0.996155321598053] +Fc1ccc(Oc2cnc3n[nH]cc3c2)c(F)c1; ['Brc1cnc2n[nH]cc2c1']; ['Oc1ccc(F)cc1F']; [0.9999250173568726] +Fc1ccc(CCc2cnc3n[nH]cc3c2)c(F)c1; ['Cc1cnc2n[nH]cc2c1']; ['Fc1ccc(CBr)c(F)c1']; [0.8458904027938843] +Fc1cccc(Cl)c1CNc1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['NCc1c(F)cccc1Cl']; [0.9999796748161316] +c1ccc2c(COc3cnc4n[nH]cc4c3)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +Fc1ccc(COc2cnc3n[nH]cc3c2)c(F)c1; [None]; [None]; [0] +c1ccc2nc(-c3cnc4n[nH]cc4c3)ncc2c1; [None]; [None]; [0] +CCOc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Br)cc1']; [0.9999989867210388, 0.9989900588989258, 0.9981536865234375, 0.9791198968887329] +COc1ncccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; [0.9999790787696838, 0.9912561178207397, 0.9880353808403015] +CS(=O)(=O)c1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; [0.9999995231628418, 0.9933536648750305] +Clc1ccc(-c2[nH]ncc2-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccccc1']; [0.9999994039535522, 0.9858492016792297, 0.9450224041938782] +c1cnn2c(-c3cnc4n[nH]cc4c3)cnc2c1; ['Brc1cnc2n[nH]cc2c1']; ['c1cnn2ccnc2c1']; [0.998654842376709] +Cc1nc(C(C)(C)O)sc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +COc1cc(-c2cnc3n[nH]cc3c2)cc(OC)c1OC; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; [0.9998363852500916, 0.920549213886261] +COc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(I)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(Br)cc1']; [0.9999974966049194, 0.9970870614051819, 0.9949101209640503, 0.9485122561454773] +Cc1ccc2ncn(-c3cnc4n[nH]cc4c3)c2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; [0.9827944040298462, 0.9324207305908203] +c1ccc2[nH]c(-c3cnc4n[nH]cc4c3)nc2c1; ['Nc1ccccc1N']; ['O=Cc1cnc2n[nH]cc2c1']; [0.9999931454658508] +Cc1cc(Nc2cnc3n[nH]cc3c2)sn1; ['Brc1cnc2n[nH]cc2c1']; ['Cc1cc(N)sn1']; [0.9999440908432007] +N#Cc1ccc(O)c(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; [0.9673593640327454, 0.9433773159980774] +c1cc(N2CCOCC2)ccc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccc(N2CCOCC2)cc1']; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Ic1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1cnc2n[nH]cc2c1']; [0.9999998807907104, 0.9999088048934937, 0.99965500831604, 0.9994616508483887, 0.9984220266342163] +c1ccc2c(-c3cnc4n[nH]cc4c3)nccc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['OB(O)c1nccc2ccccc12', 'Brc1nccc2ccccc12']; [0.9090343713760376, 0.7973358631134033] +N#Cc1cccc(Cn2cc(-c3cnc4n[nH]cc4c3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.9996124505996704] +O=C(Nc1cccc(-c2cnc3n[nH]cc3c2)c1)C1CC1; [None]; [None]; [0] +c1cnc(Nc2cnc3n[nH]cc3c2)nc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4n[nH]cc4c3)cc2)CC1; [None]; [None]; [0] +c1cc(-c2cnc3n[nH]cc3c2)cc(C2CCNCC2)c1; ['Brc1cccc(C2CCNCC2)c1']; ['Brc1cnc2n[nH]cc2c1']; [0.994225263595581] +OCCOc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(Br)cc1']; [0.9999985098838806, 0.9986184239387512, 0.9878197908401489] +CC(=O)NCc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(Br)cc1']; [0.9999984502792358, 0.9976646900177002, 0.9588488340377808] +O=C(c1ccc(-c2cnc3n[nH]cc3c2)cc1)N1CCOCC1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999297857284546, 0.9991425275802612] +c1cc(Nc2cnc3n[nH]cc3c2)ncn1; ['Brc1cnc2n[nH]cc2c1']; ['Nc1ccncn1']; [0.9862539768218994] +O=C(c1ccc(-c2cnc3n[nH]cc3c2)nc1)N1CCOCC1; ['Brc1cnc2n[nH]cc2c1']; ['O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9998124241828918] +C[C@H](O)COc1ccc(-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1']; [0.9999995231628418, 0.9996165037155151, 0.999100923538208, 0.991235613822937] +Cc1nc(C)c(-c2cnc3n[nH]cc3c2)s1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1nc(C)c(B2OC(C)(C)C(C)(C)O2)s1', 'Cc1csc(C)n1']; [0.9999784827232361, 0.9654473066329956] +CN(C)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1']; [0.9999994039535522, 0.9987512826919556, 0.9976767301559448, 0.9523667097091675] +C[C@@H](O)COc1ccc(-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1']; [0.9999997615814209, 0.999701201915741, 0.999161958694458, 0.9649443626403809] +O=S1(=O)Cc2ccc(-c3cnc4n[nH]cc4c3)cc2C1; ['Brc1cnc2n[nH]cc2c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9966230392456055] +CCNS(=O)(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; [0.9953634738922119, 0.9564651250839233] +CC(C)c1cc(-c2cnc3n[nH]cc3c2)nc(N)n1; ['Brc1cnc2n[nH]cc2c1']; ['CC(C)c1cc(Cl)nc(N)n1']; [0.9993196129798889] +Brc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccc(I)cc1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(Br)cc2)OC1', 'Brc1cnc2n[nH]cc2c1', 'OB(O)c1ccc(Br)cc1', 'Brc1cnc2n[nH]cc2c1']; [0.9999927282333374, 0.9999746084213257, 0.994169294834137, 0.9819223880767822, 0.9296728372573853] +CS(=O)(=O)N1CCC(c2cnc3n[nH]cc3c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3n[nH]cc3c2)cc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; [0.9999997019767761, 0.9933302402496338] +O=C(c1ccccc1)N1CC[C@H](c2cnc3n[nH]cc3c2)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc4n[nH]cc4c3)c2)CC1; [None]; [None]; [0] +c1cc2nc(-c3cnc4n[nH]cc4c3)ccn2n1; ['Brc1cnc2n[nH]cc2c1']; ['Clc1ccn2nccc2n1']; [0.9998782873153687] +CNS(=O)(=O)c1ccc(-c2cnc3n[nH]cc3c2)c(C)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(Br)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9999538660049438, 0.9335632920265198, 0.9006631970405579] +Cc1c(C(=O)[O-])cccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc3n[nH]cc3c2)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; [1.0, 0.9991064071655273, 0.9896794557571411] +COc1ccc(Cl)cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1B(O)O']; [0.9999651908874512, 0.9885348081588745, 0.9880730509757996] +c1ccc(-n2cccn2)c(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccccc1-n1cccn1']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'Brc1cnc2n[nH]cc2c1']; [0.9999943971633911, 0.999633252620697, 0.9986051321029663] +c1ccc2c(-c3cnc4n[nH]cc4c3)c[nH]c2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1c[nH]c2ccccc12']; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Brc1cnc2n[nH]cc2c1']; [0.9994871616363525, 0.775748610496521] +CC(C)c1ccc2nc(-c3cnc4n[nH]cc4c3)[nH]c2c1; ['CC(C)c1ccc(N)c([N+](=O)[O-])c1']; ['O=Cc1cnc2n[nH]cc2c1']; [0.9999856948852539] +COc1cc(OC)c(-c2cnc3n[nH]cc3c2)cc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(OC)c(Br)cc1Cl', 'COc1ccc(Cl)c(OC)c1']; [0.8800491094589233, 0.7581961750984192] +c1cc2c(cc1-c1cnc3n[nH]cc3c1)CCO2; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1ccc2c(c1)CCO2', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Ic1ccc2c(c1)CCO2', 'Brc1cnc2n[nH]cc2c1', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999960660934448, 0.9998083114624023, 0.9987958073616028, 0.9986279010772705] +c1nc2n[nH]cc2cc1-c1scc2c1OCCO2; [None]; [None]; [0] +c1cc2c(c(-c3cnc4n[nH]cc4c3)c1)OCO2; ['Brc1cnc2n[nH]cc2c1', 'Brc1cccc2c1OCO2', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Brc1cnc2n[nH]cc2c1', 'OB(O)c1cccc2c1OCO2']; [0.9999919533729553, 0.9849090576171875, 0.9775911569595337] +CC(C)(C)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1']; [0.9999995231628418, 0.9995124340057373, 0.9991925954818726, 0.989118218421936] +CC(=O)Nc1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; [0.9999962449073792, 0.9925965070724487, 0.9769848585128784] +c1ccc2ncc(-c3cnc4n[nH]cc4c3)cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2ccccc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2n[nH]cc2c1', 'OB(O)c1cnc2ccccc2c1']; [0.9999696612358093, 0.9444013833999634, 0.8614923357963562] +CN(C)C(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9992105960845947] +CC(C)(C)c1ccc(-c2cnc3n[nH]cc3c2)cn1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; [0.9999926090240479, 0.9888937473297119, 0.9884721040725708] +c1ccc(-c2cc(-c3cnc4n[nH]cc4c3)n[nH]2)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc3n[nH]cc3c2)c1; [None]; [None]; [0] +Nc1nc(-c2cnc3n[nH]cc3c2)cs1; [None]; [None]; [0] +CC1(COc2cnc3n[nH]cc3c2)COC1; ['Brc1cnc2n[nH]cc2c1']; ['CC1(CO)COC1']; [0.992908775806427] +CSc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; [0.9999940395355225, 0.9912483096122742, 0.972031831741333, 0.7633861899375916] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +c1ccc2sc(-c3cnc4n[nH]cc4c3)cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['OB(O)c1cc2ccccc2s1']; [0.9979803562164307] +Clc1cccc(-n2ccc(-c3cnc4n[nH]cc4c3)n2)c1; [None]; [None]; [0] +Cc1cc(-c2cnc3n[nH]cc3c2)nc(N)n1; [None]; [None]; [0] +Brc1cnc(-c2cnc3n[nH]cc3c2)nc1; [None]; [None]; [0] +Fc1ccc(-c2cnc3n[nH]cc3c2)c(Cl)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Fc1ccc(I)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'OB(O)c1ccc(F)cc1Cl']; [0.9999886155128479, 0.9988543391227722, 0.9957016110420227, 0.9915485382080078] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3n[nH]cc3c2)CC1; [None]; [None]; [0] +COc1ccc(CNc2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['COc1ccc(CN)cc1']; [0.9946359395980835] +CCc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1']; [0.999997615814209, 0.9949983358383179, 0.990639328956604, 0.8751322031021118] +CCN1CCN(Cc2ccc(-c3cnc4n[nH]cc4c3)cc2)CC1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; [0.9984850883483887, 0.9861485958099365] +O=C1CCc2cc(-c3cnc4n[nH]cc4c3)ccc2N1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999940395355225, 0.9976990222930908, 0.9933201670646667] +Clc1ccc(-c2cnc3n[nH]cc3c2)c(Cl)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1ccc(I)c(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1ccc(Br)c(Cl)c1']; [0.999982476234436, 0.996357798576355, 0.9849026799201965, 0.9791423082351685] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +c1ccn2nc(-c3cnc4n[nH]cc4c3)cc2c1; [None]; [None]; [0] +Cn1cc(-c2cnc3n[nH]cc3c2)c(C(F)(F)F)n1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.999998152256012, 0.9985442757606506] +COc1ccc2cccc(-c3cnc4n[nH]cc4c3)c2c1; ['Brc1cnc2n[nH]cc2c1']; ['COc1ccc2cccc(Br)c2c1']; [0.9972083568572998] +COc1cc(-c2cnc3n[nH]cc3c2)ccc1N1CCOCC1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9986404180526733, 0.9983112215995789] +CC1(C)Cc2cc(-c3cnc4n[nH]cc4c3)ccc2O1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cnc3n[nH]cc3c2)C1; [None]; [None]; [0] +COc1cc(F)c(-c2cnc3n[nH]cc3c2)cc1OC; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; [0.9999564290046692, 0.9818244576454163] +Oc1ccc2cccc(-c3cnc4n[nH]cc4c3)c2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Oc1ccc2cccc(Br)c2c1']; [0.9998596906661987, 0.9850821495056152] +COc1cc(-c2cnc3n[nH]cc3c2)ccc1Cl; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; [0.9999997615814209, 0.9999209642410278, 0.9990605115890503, 0.9980965852737427] +Clc1cnc(-c2cnc3n[nH]cc3c2)nc1; [None]; [None]; [0] +OCCn1cc(-c2cnc3n[nH]cc3c2)cn1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'OCCn1cc(B(O)O)cn1']; [0.9999330043792725, 0.8143699169158936] +Cc1cc(Nc2cnc3n[nH]cc3c2)nn1C; ['Brc1cnc2n[nH]cc2c1']; ['Cc1cc(N)nn1C']; [0.9991697072982788] +Nc1cc(-c2cnc3n[nH]cc3c2)c2cc[nH]c2n1; ['Brc1cnc2n[nH]cc2c1']; ['Nc1cc(Br)c2cc[nH]c2n1']; [0.9853774905204773] +c1cc2cnc(-c3cnc4n[nH]cc4c3)nn2c1; [None]; [None]; [0] +COc1cc(-c2cnc3n[nH]cc3c2)c(OC)cc1Br; ['Brc1cnc2n[nH]cc2c1']; ['COc1cc(I)c(OC)cc1Br']; [0.9771491885185242] +Cc1csc2c(-c3cnc4n[nH]cc4c3)ncnc12; [None]; [None]; [0] +O=C(Nc1cnc2n[nH]cc2c1)c1ccco1; ['Brc1cnc2n[nH]cc2c1']; ['NC(=O)c1ccco1']; [0.9847947955131531] +Cc1nc(Nc2cnc3n[nH]cc3c2)sc1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3n[nH]cc3c2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc3n[nH]cc3c1)cn2C; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnc3n[nH]cc3c2)c1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +c1cc2cn[nH]c2cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1']; [0.9999986886978149, 0.9990689158439636] +COc1ccc2oc(-c3cnc4n[nH]cc4c3)cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['COc1ccc2oc(B(O)O)cc2c1']; [0.9964640140533447] +CO[C@@H]1CC[C@@H](c2cnc3n[nH]cc3c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc3n[nH]cc3c2)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +CCn1cc(-c2cnc3n[nH]cc3c2)cn1; ['Brc1cnc2n[nH]cc2c1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; [0.9999565482139587] +c1cc2nc(-c3cnc4n[nH]cc4c3)ncc2s1; [None]; [None]; [0] +c1ccc2oc(-c3cnc4n[nH]cc4c3)cc2c1; ['Brc1cnc2n[nH]cc2c1']; ['OB(O)c1cc2ccccc2o1']; [0.9906534552574158] +CC(C)c1nn(C)cc1-c1cnc2n[nH]cc2c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br']; [0.9999865293502808, 0.9675785899162292] +CNC(=O)c1ccc(OC)c(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1']; ['CNC(=O)c1ccc(OC)c(Br)c1']; [0.9396623969078064] +COc1ccc2nc(-c3cnc4n[nH]cc4c3)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['O=Cc1cnc2n[nH]cc2c1']; [0.9999984502792358] +COc1ccc(F)c(C(=O)Nc2cnc3n[nH]cc3c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc3n[nH]cc3c2)cc1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cnc4n[nH]cc4c3)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; [1.0, 0.9999914169311523, 0.9999700784683228, 0.9997959136962891] +CCc1cccc(-c2cnc3n[nH]cc3c2)n1; ['Brc1cnc2n[nH]cc2c1']; ['CCc1cccc(Br)n1']; [0.9734163284301758] +c1nc2n[nH]cc2cc1-c1ncn2c1CCCC2; ['Brc1cnc2n[nH]cc2c1']; ['c1ncn2c1CCCC2']; [0.8653281927108765] +Cn1cc(Br)cc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3n[nH]cc3c2)c1)N1CCCC1; [None]; [None]; [0] +Cc1cc(-c2cnc3n[nH]cc3c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc4n[nH]cc4c3)ccc21; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21']; [0.9999991655349731, 0.9984241724014282, 0.9978866577148438, 0.9852226972579956] +Cc1n[nH]c2cc(-c3cnc4n[nH]cc4c3)ccc12; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 0.9999837875366211, 0.9997875094413757] +CN(C)c1ccc(-c2cnc3n[nH]cc3c2)cn1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; [0.9999963045120239, 0.977461576461792, 0.9736797213554382, 0.9588577151298523] +CC(=O)N1CCC(n2cc(-c3cnc4n[nH]cc4c3)cn2)CC1; ['Brc1cnc2n[nH]cc2c1']; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; [0.9999953508377075] +CC(C)(O)c1ccc2cc(-c3cnc4n[nH]cc4c3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc4n[nH]cc4c3)ccc21; [None]; [None]; [0] +O=C(Nc1cnc2n[nH]cc2c1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cnc3n[nH]cc3c2)c1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999713897705078, 0.9436827301979065] +OCCc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1', 'OCCc1ccc(Br)cc1']; [0.9999945163726807, 0.995324969291687, 0.9703037738800049, 0.9397678375244141] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc4n[nH]cc4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3n[nH]cc3c2)c(OC)c1; ['Brc1cnc2n[nH]cc2c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; [0.9999450445175171] +CN(C)C(=O)c1ccc(-c2cnc3n[nH]cc3c2)c(Cl)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['CCNC(=O)c1ccc(B(O)O)cc1']; [0.9996085166931152] +COc1cc(N2CCNCC2)ccc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +c1ccc(Nc2cnc3n[nH]cc3c2)nc1; ['Brc1cnc2n[nH]cc2c1']; ['Nc1ccccn1']; [0.9681515693664551] +Cc1cc(Nc2cnc3n[nH]cc3c2)ncc1F; ['Brc1cnc2n[nH]cc2c1']; ['Cc1cc(N)ncc1F']; [0.9725968837738037] +CCNC(=O)Cc1ccc(-c2cnc3n[nH]cc3c2)cc1; ['Brc1cnc2n[nH]cc2c1']; ['CCNC(=O)Cc1ccc(Br)cc1']; [0.9918268918991089] +Fc1ccc(Nc2cnc3n[nH]cc3c2)nc1; ['Brc1cnc2n[nH]cc2c1']; ['Nc1ccc(F)cn1']; [0.9631727933883667] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3n[nH]cc3c2)c1; [None]; [None]; [0] +Cn1nc(-c2cnc3n[nH]cc3c2)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3n[nH]cc3c2)nc1; ['Brc1cnc2n[nH]cc2c1', 'Brc1cnc2n[nH]cc2c1']; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; [0.9972630739212036, 0.985870361328125] +CNC(=O)c1ccc(C)c(-c2cnc3n[nH]cc3c2)c1; [None]; [None]; [0] +CCOc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2n[nH]cc2c1; [None]; [None]; [0] +c1ccc2nc(-c3n[nH]c4ccsc34)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1ncccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3n[nH]c4ccsc34)c2c1; [None]; [None]; [0] +c1cnn2c(-c3n[nH]c4ccsc34)cnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccsc23)cc(OC)c1OC; [None]; [None]; [0] +Oc1cccc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +c1cc2[nH]nc(-c3ccc(N4CCOCC4)cc3)c2s1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ccsc23)sn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3n[nH]c4ccsc34)cc2)CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3n[nH]c4ccsc34)nc2c1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ccsc23)c1)C1CC1; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ccsc34)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3n[nH]c4ccsc34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +c1cc(Nc2n[nH]c3ccsc23)ncn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +c1cc(-c2n[nH]c3ccsc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ccsc23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ccsc23)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3n[nH]c4ccsc34)cc2C1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2n[nH]c3ccsc23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2n[nH]c3ccsc23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2n[nH]c3ccsc23)nc(N)n1; [None]; [None]; [0] +Cc1nc(C)c(-c2n[nH]c3ccsc23)s1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3n[nH]c4ccsc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +Brc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ccsc23)cc1Cl; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ccsc23)c(C)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +c1cc2nc(-c3n[nH]c4ccsc34)ccn2n1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ccsc34)c[nH]c2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3n[nH]c4ccsc34)n[nH]2)cc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3n[nH]c4ccsc34)[nH]c2c1; [None]; [None]; [0] +c1cc2[nH]nc(-c3ccc4c(c3)CCO4)c2s1; [None]; [None]; [0] +COc1cc(OC)c(-c2n[nH]c3ccsc23)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccsc23)ccc1O; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +c1cc2[nH]nc(-c3scc4c3OCCO4)c2s1; [None]; [None]; [0] +c1ccc2ncc(-c3n[nH]c4ccsc34)cc2c1; [None]; [None]; [0] +c1cc2c(c(-c3n[nH]c4ccsc34)c1)OCO2; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2n[nH]c3ccsc23)c1; [None]; [None]; [0] +CC1(COc2n[nH]c3ccsc23)COC1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ccsc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2n[nH]c3ccsc23)CC1; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3ccsc23)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3n[nH]c4ccsc34)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3n[nH]c4ccsc34)cc2)CC1; [None]; [None]; [0] +c1ccc2sc(-c3n[nH]c4ccsc34)cc2c1; [None]; [None]; [0] +Fc1ccc(-c2n[nH]c3ccsc23)c(Cl)c1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ccsc23)nc(N)n1; [None]; [None]; [0] +Brc1cnc(-c2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +O=C1CCc2cc(-c3n[nH]c4ccsc34)ccc2N1; [None]; [None]; [0] +COc1ccc(CNc2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ccsc23)cc1OC; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CCc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +Clc1ccc(-c2n[nH]c3ccsc23)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2n[nH]c3ccsc23)C1; [None]; [None]; [0] +c1ccn2nc(-c3n[nH]c4ccsc34)cc2c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccsc23)ccc1N1CCOCC1; [None]; [None]; [0] +c1cc2cnc(-c3n[nH]c4ccsc34)nn2c1; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ccsc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3n[nH]c4ccsc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3n[nH]c4ccsc34)c2c1; [None]; [None]; [0] +Cc1nc(Nc2n[nH]c3ccsc23)sc1C; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccsc23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3ccsc23)cn1; [None]; [None]; [0] +COc1cc(F)c(-c2n[nH]c3ccsc23)cc1OC; [None]; [None]; [0] +Oc1ccc2cccc(-c3n[nH]c4ccsc34)c2c1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ccsc23)nn1C; [None]; [None]; [0] +Cc1csc2c(-c3n[nH]c4ccsc34)ncnc12; [None]; [None]; [0] +Clc1cnc(-c2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +O=C(Nc1n[nH]c2ccsc12)c1ccco1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccsc23)c(OC)cc1Br; [None]; [None]; [0] +Nc1cc(-c2n[nH]c3ccsc23)c2cc[nH]c2n1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2n[nH]c3ccsc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2n[nH]c3ccsc23)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1n[nH]c3ccsc13)cn2C; [None]; [None]; [0] +COc1cc(OC)cc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +COc1ccc2oc(-c3n[nH]c4ccsc34)cc2c1; [None]; [None]; [0] +c1cc2[nH]nc(-c3ccc4cn[nH]c4c3)c2s1; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3ccsc23)cn1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +c1ccc2oc(-c3n[nH]c4ccsc34)cc2c1; [None]; [None]; [0] +COc1ccc2nc(-c3n[nH]c4ccsc34)[nH]c2c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3n[nH]c4ccsc34)c2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2n[nH]c3ccsc23)c1; [None]; [None]; [0] +c1cc2nc(-c3n[nH]c4ccsc34)ncc2s1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ccsc23)c1)N1CCCC1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3n[nH]c4ccsc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +c1cc2[nH]nc(-c3ncn4c3CCCC4)c2s1; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ccsc23)c2ccccc21; [None]; [None]; [0] +CCc1cccc(-c2n[nH]c3ccsc23)n1; [None]; [None]; [0] +Cn1ncc2cc(-c3n[nH]c4ccsc34)ccc21; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ccsc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3n[nH]c4ccsc34)ccc21; [None]; [None]; [0] +O=C(Nc1n[nH]c2ccsc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3n[nH]c4ccsc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3n[nH]c4ccsc34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ccsc23)cn1; [None]; [None]; [0] +OCCc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3n[nH]c4ccsc34)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ccsc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +Fc1ccc(Nc2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ccsc23)ncc1F; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ccsc23)c(OC)c1; [None]; [None]; [0] +c1ccc(Nc2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ccsc23)nc1; [None]; [None]; [0] +Cn1nc(-c2n[nH]c3ccsc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2n[nH]c3ccsc23)cc1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc2[nH]ccc2c1N; ['CNC(=O)c1ccccc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9998030662536621] +CCOc1ccccc1-c1cnc2[nH]ccc2c1N; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999980926513672, 0.9999362230300903] +Cc1nnc(-c2ccccc2-c2cnc3[nH]ccc3c2N)[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2[nH]ccc2c1N; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9993959665298462] +CP(C)(=O)c1ccccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1n[nH]c2ccsc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2n[nH]c3ccsc23)c1; [None]; [None]; [0] +Nc1c(-c2ccccc2OC(F)(F)F)cnc2[nH]ccc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999948143959045, 0.9999105930328369] +Nc1c(-c2ccccc2C(=O)[O-])cnc2[nH]ccc12; [None]; [None]; [0] +CCn1cc(-c2cnc3[nH]ccc3c2N)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999996423721313, 0.9999798536300659] +Nc1c(-c2cccc(C(F)(F)F)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999995827674866, 0.9999921321868896] +Nc1c(-c2ccnc3ccccc23)cnc2[nH]ccc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccnc2ccccc12']; [0.9999549388885498, 0.9994813203811646] +COc1ccc(F)cc1[C@@H](C)c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnc2[nH]ccc2c1N; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9998989105224609, 0.9888308048248291] +Cn1cnc2ccc(-c3cnc4[nH]ccc4c3N)cc2c1=O; [None]; [None]; [0] +Nc1c(-c2cnn(Cc3ccccc3)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999997615814209, 0.9999905824661255] +Nc1c(-c2cccc(NC(=O)c3ccccc3)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [1.0, 0.9999728798866272] +Nc1c(-c2cc(Cl)ccc2Cl)cnc2[nH]ccc12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.999980092048645, 0.9994527101516724] +Cc1ccc(-c2cnc3[nH]ccc3c2N)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9831323623657227] +COc1cnc(-c2cnc3[nH]ccc3c2N)nc1; [None]; [None]; [0] +Nc1c(-c2cnc(-c3ccccc3)[nH]2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2cnn(CCO)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OCCn1cc(B(O)O)cn1', 'OCCn1cc(Br)cn1']; [0.9999983906745911, 0.9999650716781616, 0.9860274195671082] +Cc1nc2ccccn2c1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc3[nH]ccc3c2N)cs1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc3[nH]ccc3c2N)s1; ['Cc1csc(C)n1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9484140276908875] +Nc1c([C@@H](N)c2ccco2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2cnc3ccccn23)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2c(Cl)cccc2Cl)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9994197487831116] +Nc1c(-c2cnc3cccnn23)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2cccc(Br)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cccc(Br)c1']; [0.9999850392341614, 0.9996496438980103] +Cc1ccc(Cl)c(-c2cnc3[nH]ccc3c2N)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999948263168335, 0.9990823268890381] +Nc1c(-c2cccc(Cn3cncn3)c2)cnc2[nH]ccc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc3[nH]ccc3c2N)s1; [None]; [None]; [0] +Nc1c(-c2ccc3ccccc3c2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc2ccccc2c1']; [0.9999997019767761, 0.9999987483024597] +Nc1nccc(-c2cnc3[nH]ccc3c2N)n1; [None]; [None]; [0] +Nc1c(-c2c[nH]nc2C(F)(F)F)cnc2[nH]ccc12; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.999998927116394] +Cc1c(-c2cnc3[nH]ccc3c2N)sc(=O)n1C; [None]; [None]; [0] +Nc1c(-c2cnn3ncccc23)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2cncc3ccccc23)cnc2[nH]ccc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cncc2ccccc12']; [0.9999740123748779, 0.9974839687347412] +NC(=O)c1c(F)cccc1-c1cnc2[nH]ccc2c1N; ['NC(=O)c1c(F)cccc1Br']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9866987466812134] +Cn1cc(-c2ccc(-c3cnc4[nH]ccc4c3N)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; ['Nc1c(Br)cnc2[nH]ccc12']; [1.0] +CC(C)(C)c1cnc(Cc2cnc3[nH]ccc3c2N)o1; [None]; [None]; [0] +Nc1c(-c2cccc(CC(=O)[O-])c2)cnc2[nH]ccc12; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc4[nH]ccc4c3N)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [1.0, 0.9999995231628418, 0.9464682340621948] +Nc1c(-c2cccc(O)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cccc(O)c1']; [0.9999954700469971, 0.999636173248291] +Nc1c(-c2ccc(-c3cn[nH]c3)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [1.0, 0.9999902248382568] +Nc1[nH]nc2cc(-c3cnc4[nH]ccc4c3N)ccc12; [None]; [None]; [0] +Nc1c(-c2cccc(CO)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OCc1cccc(B(O)O)c1']; [0.9999905824661255, 0.9991246461868286] +CC(C)n1cc(-c2cnc3[nH]ccc3c2N)nn1; [None]; [None]; [0] +Nc1c(-c2csc3ncncc23)cnc2[nH]ccc12; [None]; [None]; [0] +CCCn1cnc(-c2cnc3[nH]ccc3c2N)n1; [None]; [None]; [0] +CN1c2ccc(-c3cnc4[nH]ccc4c3N)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1c(-c2cc3ccccc3[nH]2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ccc3c2N)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cnc3[nH]ccc3c2N)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc3[nH]ccc3c2N)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999914169311523, 0.9817286729812622] +CC(C)c1oncc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1ncncc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999986290931702] +Nc1c(-c2ccc(F)cc2C(F)(F)F)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999836683273315] +CC(=O)Nc1cccc(-c2cnc3[nH]ccc3c2N)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999999463558197, 0.9999790191650391, 0.9611705541610718] +Cn1cc(-c2cnc3[nH]ccc3c2N)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999828934669495] +Nc1c(Cc2c(F)cccc2F)cnc2[nH]ccc12; ['Fc1cccc(F)c1C[Zn]Br']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9997332096099854] +COc1ccc(-c2cnc3[nH]ccc3c2N)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [1.0, 0.9999942183494568] +CC[C@H](CO)c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CCCn1cc(-c2cnc3[nH]ccc3c2N)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999996423721313, 0.9999781847000122] +Nc1c(-c2cc[nH]c(=O)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.999995231628418] +CCNc1nc2ccc(-c3cnc4[nH]ccc4c3N)cc2s1; [None]; [None]; [0] +Nc1c(-c2cnn3ccccc23)cnc2[nH]ccc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cnn2ccccc12']; [0.9999306201934814, 0.9997289776802063] +Nc1c(-c2cccc3c2C(=O)CC3)cnc2[nH]ccc12; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999964237213135, 0.9997826814651489] +CC(C)(N)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1c(-c2ccc(C[NH3+])c(C(F)(F)F)c2)cnc2[nH]ccc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cnc3[nH]ccc3c2N)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999991238117218, 0.9999346733093262] +CS(=O)(=O)c1cccc(Cc2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999996423721313, 0.9998927116394043] +Nc1c(-c2cc3c(=O)[nH]ccc3o2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2[nH]ccc2c1N; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999997079372406, 0.9999861121177673] +CN(c1ncccc1Cc1cnc2[nH]ccc2c1N)S(C)(=O)=O; [None]; [None]; [0] +Nc1c(-c2cc3c(=O)[nH]cc(Br)c3s2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2c[nH]c3cnccc23)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9999147653579712] +Nc1c(-c2cnc3[nH]ccc3c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cnc2[nH]ccc2c1']; [0.9999996423721313, 0.9999984502792358] +Nc1c([C@H](CO)c2ccccc2)cnc2[nH]ccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999984502792358, 0.9996191263198853] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999986886978149, 0.9992736577987671] +CNC(=O)c1c(F)cccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999997615814209, 0.9999628067016602] +Nc1c(-c2c(F)cccc2Cl)cnc2[nH]ccc12; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1c(F)cccc1Cl']; [0.999997615814209, 0.9999833106994629] +CC1(c2cnc3[nH]ccc3c2N)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1c([C@H](CO)Cc2ccccc2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ccc(-n3cncn3)cc2)cnc2[nH]ccc12; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]ccc3c2N)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1c(-c2ccc(N3CCOCC3)cc2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]ccc3c2N)c(OC)c1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999955296516418, 0.9999037981033325] +Nc1c(-c2ccc(C(=O)c3ccccc3)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.999993622303009, 0.999523401260376, 0.8702369332313538] +CCc1cc(-c2cnc3[nH]ccc3c2N)nc(N)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc3[nH]ccc3c2N)[nH]1; [None]; [None]; [0] +Nc1c(-c2cn(Cc3ccccc3)nn2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['c1ccc(Cn2ccnn2)cc1']; [0.9717248678207397] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1nnc(-c2cnc3[nH]ccc3c2N)s1; [None]; [None]; [0] +Nc1c(-c2ccn(CC[NH3+])n2)cnc2[nH]ccc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3[nH]ccc3c2N)n1; [None]; [None]; [0] +Nc1c(-c2nncn2C2CC2)cnc2[nH]ccc12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CCCCc1cc(-c2cnc3[nH]ccc3c2N)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)s1; [None]; [None]; [0] +Nc1c(-c2nc3ccccc3s2)cnc2[nH]ccc12; ['CCCC[Sn](CCCC)(CCCC)c1nc2ccccc2s1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9976565837860107] +Nc1c(-c2cccc3ccsc23)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cccc2ccsc12']; [0.9999959468841553, 0.999817967414856] +Nc1cncc(-c2cnc3[nH]ccc3c2N)n1; [None]; [None]; [0] +Nc1c(-c2cccc3nnsc23)cnc2[nH]ccc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cnc4[nH]ccc4c3N)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4[nH]ccc4c3N)c2)cc1; [None]; [None]; [0] +Nc1c(-c2c[nH]c3cccnc23)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ncc3ccccc3n2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ncc3cc[nH]c3n2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(CCCNC(=O)c2cccs2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc2[nH]ccc2c1N; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999966621398926, 0.9999645948410034] +CC(=O)Nc1ncc(-c2cnc3[nH]ccc3c2N)[nH]1; [None]; [None]; [0] +Nc1c(CCCNC(=O)C2CCC2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc3[nH]ccc3c2N)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9993792772293091, 0.9987185597419739] +Nc1c(-c2cn(CCO)cn2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ncccc1-c1cnc2[nH]ccc2c1N; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999676942825317, 0.9991034269332886] +C[C@@]1(O)CC[C@H](c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnc3[nH]ccc3c2N)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999998807907104, 0.9999598264694214, 0.9988709688186646] +CS(=O)(=O)Nc1ccccc1Cc1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CCOc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999983310699463, 0.9999127388000488] +CC(=O)N(C)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999971389770508, 0.8707169890403748] +CS(=O)(=O)c1cccc(-c2cnc3[nH]ccc3c2N)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999997615814209, 0.9999909400939941] +COc1cc(-c2cnc3[nH]ccc3c2N)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999997079372406, 0.9999494552612305] +N#Cc1ccc(O)c(-c2cnc3[nH]ccc3c2N)c1; ['N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9992512464523315] +Cc1nc(C(C)(C)O)sc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1c(-c2cccc(NC(=O)C3CC3)c2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999973773956299, 0.9996172785758972] +CN(C)c1cc(-c2cnc3[nH]ccc3c2N)cnn1; [None]; [None]; [0] +Nc1c(-c2nc3ccccc3[nH]2)cnc2[nH]ccc12; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]ccc3c2N)sn1; ['Cc1cc(N)sn1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9975252151489258] +Nc1c(-c2ccc(C(=O)[O-])cc2)cnc2[nH]ccc12; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc4[nH]ccc4c3N)c2c1; [None]; [None]; [0] +Nc1c(-c2nccc3ccccc23)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1nccc2ccccc12']; [0.9978777766227722] +NC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999982118606567, 0.9996576309204102] +N#Cc1cccc(Cn2cc(-c3cnc4[nH]ccc4c3N)cn2)c1; [None]; [None]; [0] +Nc1c(-c2ccc(C(=O)Nc3ccccc3)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999997615814209, 0.9998579025268555] +Nc1c(Nc2ncccn2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['Nc1ncccn1']; [0.9971904158592224] +Nc1c(-c2cccc(C3CCNCC3)c2)cnc2[nH]ccc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999990463256836, 0.9997742176055908] +Nc1c(-c2ccc(OCCO)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OCCOc1ccc(B(O)O)cc1']; [0.9999997019767761, 0.9998626708984375] +Nc1c(-c2ccc(C(=O)N3CCOCC3)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999868273735046, 0.9690687656402588] +Nc1c(Nc2ccncn2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['Nc1ccncn1']; [0.998802661895752] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc4[nH]ccc4c3N)cc2)CC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +Nc1c(-c2ccc3c(c2)CS(=O)(=O)C3)cnc2[nH]ccc12; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +Nc1c(-c2ccc(C(=O)N3CCOCC3)cn2)cnc2[nH]ccc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999995827674866, 0.9999154806137085] +Nc1c(-c2ccc(C(F)(F)F)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'CC1(C)COB(c2ccc(C(F)(F)F)cc2)OC1', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999988079071045, 0.999993085861206, 0.9999300241470337] +CCNS(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.998802125453949] +CN(C)S(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999995231628418, 0.9997891783714294] +CC(C)c1cc(-c2cnc3[nH]ccc3c2N)nc(N)n1; ['CC(C)c1ccnc(N)n1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9914919137954712] +Nc1c(-c2ccc(Br)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(Br)cc1']; [0.9999899864196777, 0.9809539318084717] +CS(=O)(=O)N1CCC(c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc3[nH]ccc3c2N)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999992847442627, 0.9472924470901489] +Nc1c([C@H]2CCN(C(=O)c3ccccc3)C2)cnc2[nH]ccc12; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999991655349731, 0.9995275735855103, 0.9385409355163574] +CC(=O)N1CCCN(c2cccc(-c3cnc4[nH]ccc4c3N)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc3[nH]ccc3c2N)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]ccc3c2N)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999998927116394, 0.9999179840087891] +COc1ccc(Cl)cc1-c1cnc2[nH]ccc2c1N; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999983549118042, 0.9999532103538513] +Nc1c(-c2ccn3nccc3n2)cnc2[nH]ccc12; ['Clc1ccn2nccc2n1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9972782135009766] +Nc1c(-c2ccccc2-n2cccn2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12', 'Brc1ccccc1-n1cccn1']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccccc1-n1cccn1', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999722838401794, 0.999901533126831, 0.9960319995880127] +Nc1c(-c2ccc3c(c2)CCO3)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc2c(c1)CCO2']; [0.9999998211860657, 0.9999958872795105] +Nc1c(-c2c[nH]c3ccccc23)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ccc3c2N)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999969005584717, 0.9997826218605042] +Nc1c(-c2cccc3c2OCO3)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cccc2c1OCO2']; [0.9999657869338989, 0.9984723329544067] +COc1cc(OC)c(-c2cnc3[nH]ccc3c2N)cc1Cl; [None]; [None]; [0] +Nc1c(-c2cnc3ccccc3c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1cnc2ccccc2c1']; [0.9999983310699463, 0.9999864101409912] +CC(C)c1ccc2nc(-c3cnc4[nH]ccc4c3N)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]ccc3c2N)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999974370002747, 0.9990130662918091] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999998807907104, 0.9997626543045044, 0.9123265147209167] +Nc1nc(-c2cnc3[nH]ccc3c2N)cs1; [None]; [None]; [0] +Nc1c(-c2cc(-c3ccccc3)[nH]n2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1c(-c2scc3c2OCCO3)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ccn(-c3cccc(Cl)c3)n2)cnc2[nH]ccc12; [None]; [None]; [0] +CC1(COc2cnc3[nH]ccc3c2N)COC1; ['CC1(CO)COC1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9839023351669312] +Nc1c(-c2cc3ccccc3s2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1cc2ccccc2s1']; [0.9999920129776001] +CSc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999978542327881, 0.9989452362060547] +Nc1c(-c2ccc(F)cc2Cl)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(F)cc1Cl']; [0.9999997019767761, 0.9999793767929077] +COc1cccc(C(=O)Nc2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +Nc1c(-c2ccc3c(c2)CCC(=O)N3)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999966025352478] +Cc1cc(-c2cnc3[nH]ccc3c2N)nc(N)n1; ['Cc1cc(Br)nc(N)n1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9998467564582825] +CCN1CCN(Cc2ccc(-c3cnc4[nH]ccc4c3N)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999313950538635, 0.926184892654419] +CCc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999985694885254, 0.99900883436203] +COc1ccc(-c2cnc3[nH]ccc3c2N)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999994039535522, 0.9999852180480957] +Nc1c(-c2ncc(Br)cn2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(CNc2cnc3[nH]ccc3c2N)cc1; ['COc1ccc(CN)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9991928339004517] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +Nc1c(-c2ccc(Cl)cc2Cl)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999980926513672, 0.9999513626098633] +CC1(C)Cc2cc(-c3cnc4[nH]ccc4c3N)ccc2O1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ccc3c2N)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999996423721313, 0.9979498982429504] +Nc1c(-c2ncc3cccn3n2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(NC2CN(C(=O)C3CC3)C2)cnc2[nH]ccc12; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]ccc3c2N)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999904036521912, 0.9997090101242065] +Nc1c(-c2cc3ccccn3n2)cnc2[nH]ccc12; ['Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9980288147926331, 0.8113986253738403] +COc1cc(-c2cnc3[nH]ccc3c2N)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999998807907104, 0.9999948740005493] +Nc1c(-c2ncc(Cl)cn2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(F)c(-c2cnc3[nH]ccc3c2N)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.999998927116394, 0.9999702572822571] +Cc1csc2c(-c3cnc4[nH]ccc4c3N)ncnc12; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc4[nH]ccc4c3N)c2c1; [None]; [None]; [0] +Cc1cc(Nc2cnc3[nH]ccc3c2N)nn1C; ['Cc1cc(N)nn1C']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9996340274810791] +CNC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [1.0, 0.9998610019683838] +Nc1c(-c2cccc3ccc(O)cc23)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ccc3c2N)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9858120083808899] +Nc1cc(-c2cnc3[nH]ccc3c2N)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(Nc2cnc3[nH]ccc3c2N)sc1C; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)nc1; [None]; [None]; [0] +Nc1c(-c2cccc(C(=O)Nc3cn[nH]c3)c2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +Nc1c(Cc2ccc(S(=O)(=O)CCO)cc2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc3[nH]ccc3c2N)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999985694885254, 0.999989926815033] +CCNC(=O)N1CCC(c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc3[nH]ccc3c2N)CC1; [None]; [None]; [0] +Nc1c(NC(=O)c2ccco2)cnc2[nH]ccc12; [None]; [None]; [0] +COc1ccc2oc(-c3cnc4[nH]ccc4c3N)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999890327453613] +Nc1c(-c2ccc3cn[nH]c3c2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc2cn[nH]c2c1']; [0.9999997615814209, 0.9999949932098389] +COc1ccc2c(c1)c(-c1cnc3[nH]ccc3c1N)cn2C; [None]; [None]; [0] +Nc1c(-c2cc3ccccc3o2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['OB(O)c1cc2ccccc2o1']; [0.9999760389328003] +CC(C)(C)c1ccc(C(=O)Nc2cnc3[nH]ccc3c2N)cc1; ['CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9646211862564087] +C[NH+](C)Cc1ccc(-c2cnc3[nH]ccc3c2N)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc2[nH]ccc2c1N; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999954700469971] +COc1ccc2nc(-c3cnc4[nH]ccc4c3N)[nH]c2c1; [None]; [None]; [0] +Nc1c(-c2cc(-c3cccnc3)ccn2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ncc3sccc3n2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ccc(OC(F)(F)F)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 0.9999955296516418] +COc1ccc(F)c(C(=O)Nc2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +CCc1cccc(-c2cnc3[nH]ccc3c2N)n1; [None]; [None]; [0] +Nc1c(-c2cccc(NC(=O)N3CCCC3)c2)cnc2[nH]ccc12; [None]; [None]; [0] +Nc1c(-c2ncn3c2CCCC3)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['c1ncn2c1CCCC2']; [0.9848873615264893] +CN(C)c1ccc(-c2cnc3[nH]ccc3c2N)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9999974966049194, 0.9998235702514648, 0.8315632343292236] +Cc1n[nH]c2cc(-c3cnc4[nH]ccc4c3N)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [1.0, 0.9999961853027344, 0.9905456304550171] +CC(=O)N1CCC(n2cc(-c3cnc4[nH]ccc4c3N)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999994039535522] +Cc1cc(-c2cnc3[nH]ccc3c2N)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc4[nH]ccc4c3N)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc4[nH]ccc4c3N)[nH]c2c1; [None]; [None]; [0] +Nc1c(-c2ccc(CCO)cc2)cnc2[nH]ccc12; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1c(Br)cnc2[nH]ccc12']; ['Nc1c(Br)cnc2[nH]ccc12', 'OCCc1ccc(B(O)O)cc1']; [0.9999985098838806, 0.9997518062591553] +Nc1c(-c2cccc(N3CCCC3=O)c2)cnc2[nH]ccc12; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999910593032837] +Nc1c(NC(=O)c2cccc(OC(F)(F)F)c2)cnc2[nH]ccc12; ['NC(=O)c1cccc(OC(F)(F)F)c1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9973917007446289] +CNC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9999969005584717] +COc1cc(S(C)(=O)=O)ccc1-c1cnc2[nH]ccc2c1N; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9953893423080444] +Cc1ncc(-c2ccc(-c3cnc4[nH]ccc4c3N)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ccc3c2N)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.999687671661377] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +Nc1c(Nc2ccccn2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['Nc1ccccn1']; [0.998040497303009] +Cc1cc(Nc2cnc3[nH]ccc3c2N)ncc1F; ['Cc1cc(N)ncc1F']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9996376633644104] +Nc1c(Nc2ccc(F)cn2)cnc2[nH]ccc12; ['Nc1c(Br)cnc2[nH]ccc12']; ['Nc1ccc(F)cn1']; [0.9956207275390625] +CCNC(=O)Cc1ccc(-c2cnc3[nH]ccc3c2N)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1c(Br)cnc2[nH]ccc12']; [0.9811747670173645] +CN(C)C(=O)c1ccc(-c2cnc3[nH]ccc3c2N)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Nc1c(Br)cnc2[nH]ccc12', 'Nc1c(Br)cnc2[nH]ccc12']; [0.9997215270996094, 0.9934411644935608] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +Cn1nc(-c2cnc3[nH]ccc3c2N)cc1C(C)(C)O; [None]; [None]; [0] +CCOc1ccc(-c2c(N)nn3cccnc23)cc1; ['CCOc1ccc(I)cc1']; ['Nc1cc2ncccn2n1']; [0.9929837584495544] +CC(=O)N(C)c1ccc(-c2c(N)nn3cccnc23)cc1; ['CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1cc2ncccn2n1']; [0.9567153453826904] +CS(=O)(=O)c1cccc(-c2c(N)nn3cccnc23)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ncc2ccccc2n1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc3[nH]ccc3c2N)c1; [None]; [None]; [0] +COc1cc(-c2c(N)nn3cccnc23)cc(OC)c1OC; ['COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9893873929977417, 0.9846267700195312] +Cc1ccc(C(=O)NCCO)cc1-c1cnc2[nH]ccc2c1N; [None]; [None]; [0] +COc1ncccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Cc1ccc2ncn(-c3c(N)nn4cccnc34)c2c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cnc2cccnn12; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc(O)c1; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; ['Oc1cccc(I)c1', 'Oc1cccc(Br)c1']; [0.9969581365585327, 0.7890575528144836] +COc1ccc(-c2c(N)nn3cccnc23)cc1; ['COc1ccc(I)cc1', 'COc1ccc(Br)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.995648980140686, 0.7611139416694641] +N#Cc1ccc(O)c(-c2c(N)nn3cccnc23)c1; ['N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9781800508499146, 0.9512602090835571] +Nc1nn2cccnc2c1-c1nc2ccccc2[nH]1; ['Nc1ccccc1N']; ['Nc1nn2cccnc2c1C(=O)O']; [0.9997602701187134] +Cc1cc(Nc2c(N)nn3cccnc23)sn1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; ['NC(=O)c1ccc(Br)cc1']; ['Nc1cc2ncccn2n1']; [0.9417483806610107] +Nc1nn2cccnc2c1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3c(N)nn4cccnc34)cc2)CC1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1nccc2ccccc12; [None]; [None]; [0] +Nc1nn2cccnc2c1Nc1ncccn1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3c(N)nn4cccnc34)cn2)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(OCCO)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1Nc1ccncn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(C(F)(F)F)cc1; ['FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9995824098587036, 0.9793911576271057] +CNS(=O)(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +CN(C)c1ccc(-c2c(N)nn3cccnc23)cc1; ['CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Cl)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9997266530990601, 0.9943345189094543, 0.9853348731994629] +Cc1nc(C)c(-c2c(N)nn3cccnc23)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; ['CN(C)S(=O)(=O)c1ccc(I)cc1']; ['Nc1cc2ncccn2n1']; [0.9976599216461182] +Nc1nn2cccnc2c1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(Br)cc1; ['Brc1ccc(I)cc1']; ['Nc1cc2ncccn2n1']; [0.9991282224655151] +CS(=O)(=O)N1CCC(c2c(N)nn3cccnc23)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2c(N)nn3cccnc23)cc1Cl; ['CN(C)c1ccc(Br)cc1Cl']; ['Nc1cc2ncccn2n1']; [0.9171321988105774] +CC(C)c1cc(-c2c(N)nn3cccnc23)nc(N)n1; [None]; [None]; [0] +Nc1nn2cccnc2c1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +CCCOc1ccc(-c2c(N)nn3cccnc23)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3c(N)nn4cccnc34)c2)CC1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1c(N)nn2cccnc12; ['COc1ccc(Cl)cc1B(O)O']; ['Nc1cc2ncccn2n1']; [0.9994862079620361] +Nc1nn2cccnc2c1-c1ccccc1-n1cccn1; ['Brc1ccccc1-n1cccn1']; ['Nc1cc2ncccn2n1']; [0.9997230768203735] +CNS(=O)(=O)c1ccc(-c2c(N)nn3cccnc23)c(C)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1c[nH]c2ccccc12; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccn2nccc2n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c(N)nn3cccnc23)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc2c(c1)CCO2; ['Nc1cc2ncccn2n1', 'Ic1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2']; ['OB(O)c1ccc2c(c1)CCO2', 'Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9989986419677734, 0.9887534379959106, 0.9641165733337402] +CC(C)c1ccc2nc(-c3c(N)nn4cccnc34)[nH]c2c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc2c1OCO2; [None]; [None]; [0] +COc1cc(-c2c(N)nn3cccnc23)ccc1O; ['COc1cc(I)ccc1O']; ['Nc1cc2ncccn2n1']; [0.9069381356239319] +Nc1nn2cccnc2c1-c1scc2c1OCCO2; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cc(OC)c(-c2c(N)nn3cccnc23)cc1Cl; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c(N)nn3cccnc23)cc1; ['CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9995462894439697, 0.9874072670936584] +Nc1nn2cccnc2c1-c1cnc2ccccc2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2c(N)nn3cccnc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c(N)nn3cccnc23)cn1; ['CC(C)(C)c1ccc(Br)cn1']; ['Nc1cc2ncccn2n1']; [0.9723737239837646] +CN(C)C(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nc(-c2c(N)nn3cccnc23)cs1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CSc1ccc(-c2c(N)nn3cccnc23)cc1; ['CSc1ccc(I)cc1']; ['Nc1cc2ncccn2n1']; [0.9795405864715576] +CC1(COc2c(N)nn3cccnc23)COC1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cc2ccccc2s1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c(N)nn3cccnc23)CC1; [None]; [None]; [0] +Cc1cc(-c2c(N)nn3cccnc23)nc(N)n1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(F)cc1Cl; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3c(N)nn4cccnc34)cc2)CC1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ncc(Br)cn1; [None]; [None]; [0] +CCc1ccc(-c2c(N)nn3cccnc23)cc1; ['CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9986586570739746, 0.9526817798614502] +Nc1nn2cccnc2c1-c1ccc2c(c1)CCC(=O)N2; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; ['O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.985201895236969, 0.8238023519515991] +COc1ccc(-c2c(N)nn3cccnc23)cc1OC; ['COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9779404401779175, 0.8190481662750244] +Nc1nn2cccnc2c1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +COc1ccc(CNc2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ncc2cccn2n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1ccc2cccc(-c3c(N)nn4cccnc34)c2c1; [None]; [None]; [0] +Cn1cc(-c2c(N)nn3cccnc23)c(C(F)(F)F)n1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2c(N)nn3cccnc23)cc1OC; [None]; [None]; [0] +Nc1nn2cccnc2c1NC1CN(C(=O)C2CC2)C1; [None]; [None]; [0] +COc1cc(-c2c(N)nn3cccnc23)ccc1N1CCOCC1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3c(N)nn4cccnc34)ccc2O1; [None]; [None]; [0] +COc1cc(-c2c(N)nn3cccnc23)ccc1Cl; ['COc1cc(I)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.996701717376709, 0.9454770088195801] +Nc1nn2cccnc2c1-c1ncc(Cl)cn1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cnn(CCO)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Cc1nc(Nc2c(N)nn3cccnc23)sc1C; [None]; [None]; [0] +COc1cc(-c2c(N)nn3cccnc23)c(OC)cc1Br; [None]; [None]; [0] +Nc1cc(-c2c(N)nn3cccnc23)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1csc2c(-c3c(N)nn4cccnc34)ncnc12; [None]; [None]; [0] +Cc1cc(Nc2c(N)nn3cccnc23)nn1C; [None]; [None]; [0] +Nc1nn2cccnc2c1NC(=O)c1ccco1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c(N)nn3cccnc23)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2c(N)nn3cccnc23)c1; ['COc1cc(I)cc(OC)c1']; ['Nc1cc2ncccn2n1']; [0.8876252174377441] +COc1cc(CS(C)(=O)=O)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Nc1nn2cccnc2c1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2c(N)nn3cccnc23)CC1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2c(N)nn3cccnc23)CC1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +CCn1cc(-c2c(N)nn3cccnc23)cn1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1c(N)nn3cccnc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3c(N)nn4cccnc34)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1c(N)nn2cccnc12; ['CC(C)c1nn(C)cc1Br']; ['Nc1cc2ncccn2n1']; [0.9992018938064575] +Nc1nn2cccnc2c1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ncc2sccc2n1; [None]; [None]; [0] +COc1ccc2nc(-c3c(N)nn4cccnc34)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['Nc1nn2cccnc2c1C(=O)O']; [0.9999316930770874] +CNC(=O)c1ccc(OC)c(-c2c(N)nn3cccnc23)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2c(N)nn3cccnc23)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cc2ccccc2o1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(OC(F)(F)F)cc1; ['FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccc(Br)cc1']; ['Nc1cc2ncccn2n1', 'Nc1cc2ncccn2n1']; [0.9999676942825317, 0.9990167617797852] +Nc1nn2cccnc2c1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +Cn1cc(-c2c(N)nn3cccnc23)c2ccccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2c(N)nn3cccnc23)cn1; ['CN(C)c1ccc(Br)cn1']; ['Nc1cc2ncccn2n1']; [0.9751647710800171] +Cc1cc(-c2c(N)nn3cccnc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3c(N)nn4cccnc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3c(N)nn4cccnc34)ccc12; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3c(N)nn4cccnc34)ccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3c(N)nn4cccnc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2c(N)nn3cccnc23)n1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ncn2c1CCCC2; [None]; [None]; [0] +Nc1nn2cccnc2c1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3c(N)nn4cccnc34)cn2)CC1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +Nc1nn2cccnc2c1-c1ccc(CCO)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c(N)nn3cccnc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3c(N)nn4cccnc34)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(N)nn3cccnc23)c(OC)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +Nc1nn2cccnc2c1Nc1ccc(F)cn1; [None]; [None]; [0] +Cc1cc(Nc2c(N)nn3cccnc23)ncc1F; [None]; [None]; [0] +Cn1nc(-c2c(N)nn3cccnc23)cc1C(C)(C)O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c(N)nn3cccnc23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2c(N)nn3cccnc23)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1cc2ncccn2n1']; [0.998355507850647] +Nc1nn2cccnc2c1Nc1ccccn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2c(N)nn3cccnc23)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1nccc2sc(Br)cc12']; [0.9988237619400024] +CCOc1ccc(-c2cc3c(N)nccc3s2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999995231628418, 0.9999876022338867] +COc1ncccc1-c1cc2c(N)nccc2s1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999963045120239, 0.9999747276306152] +CNC(=O)c1ccc(C)c(-c2c(N)nn3cccnc23)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc3c(N)nccc3s2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999994039535522, 0.9999562501907349] +COc1cc(-c2cc3c(N)nccc3s2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999994039535522, 0.9999891519546509] +Nc1nccc2sc(-c3cnc4cccnn34)cc12; ['Nc1nccc2sc(Br)cc12']; ['c1cnn2ccnc2c1']; [0.9999179244041443] +Cc1ccc(C(=O)NCCO)cc1-c1c(N)nn2cccnc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(O)c3)cc12; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cccc(O)c1']; [0.9999872446060181, 0.9999470710754395] +Cc1nc(C(C)(C)O)sc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999996423721313, 0.9999963641166687] +Cc1ccc2ncn(-c3cc4c(N)nccc4s3)c2c1; [None]; [None]; [0] +COc1ccc(-c2cc3c(N)nccc3s2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999995827674866, 0.9999791979789734] +Nc1nccc2sc(-c3cccc(NC(=O)C4CC4)c3)cc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(=O)[O-])cc3)cc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999996423721313, 0.9999605417251587] +Nc1nccc2sc(-c3nc4ccccc4[nH]3)cc12; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4c(N)nccc4s3)cc2)CC1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(=O)Nc4ccccc4)cc3)cc12; ['Nc1nccc2sc(Br)cc12']; ['O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [0.9999815225601196] +Cc1cc(Nc2cc3c(N)nccc3s2)sn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12']; [0.9999464154243469] +Nc1nccc2sc(Nc3ncccn3)cc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4c(N)nccc4s3)cn2)c1; [None]; [None]; [0] +Nc1nccc2sc(-c3nccc4ccccc34)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(=O)N4CCOCC4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1']; [1.0, 0.999999463558197] +Nc1nccc2sc(-c3ccc(OCCO)cc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(C4CCNCC4)c3)cc12; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1nccc2sc(Br)cc12']; [0.9999997615814209] +C[C@@H](O)COc1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(=O)N4CCOCC4)cn3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(F)(F)F)cc3)cc12; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(C(F)(F)F)cc1']; [1.0, 0.9999969005584717] +Nc1nccc2sc(-c3ccc4c(c3)CS(=O)(=O)C4)cc12; [None]; [None]; [0] +Nc1nccc2sc(Nc3ccncn3)cc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999997615814209, 0.999981164932251] +CN(C)S(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999997615814209, 0.999951958656311] +Cc1nc(C)c(-c2cc3c(N)nccc3s2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3c(N)nccc3s2)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4c(N)nccc4s3)c2)CC1; [None]; [None]; [0] +Nc1nccc2sc([C@H]3CCN(C(=O)c4ccccc4)C3)cc12; [None]; [None]; [0] +CC(C)c1cc(-c2cc3c(N)nccc3s2)nc(N)n1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(Br)cc3)cc12; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(Br)cc1']; [0.9999966621398926, 0.9996953010559082] +CN(C)c1ccc(-c2cc3c(N)nccc3s2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; ['Nc1nccc2sc(Br)cc12']; [0.9999656677246094] +CCN(CC)C(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999996423721313, 0.9999217391014099, 0.9879897236824036] +Cc1c(C(=O)[O-])cccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2c(N)nccc2s1; ['COc1ccc(Cl)cc1B(O)O']; ['Nc1nccc2sc(Br)cc12']; [0.9999945163726807] +Nc1nccc2sc(-c3c[nH]c4ccccc34)cc12; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1c[nH]c2ccccc12']; [0.9999900460243225, 0.9992296695709229] +Nc1nccc2sc(-c3ccccc3-n3cccn3)cc12; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccccc1-n1cccn1']; [0.9999992847442627, 0.9999940395355225] +Nc1nccc2sc(-c3ccn4nccc4n3)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3c(N)nccc3s2)c1; ['CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1nccc2sc(Br)cc12']; [0.9998583793640137] +CNS(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)c(C)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc3c(N)nccc3s2)cc1Cl; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc4c(c3)CCO4)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc4c3OCO4)cc12; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [0.9999997615814209] +CC(C)c1ccc2nc(-c3cc4c(N)nccc4s3)[nH]c2c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cc(-c4ccccc4)[nH]n3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cnc4ccccc4c3)cc12; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cnc2ccccc2c1']; [0.9999951124191284, 0.9997065663337708] +CC(C)(C)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999938011169434] +CN(C)C(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999771118164062] +CC(C)(C)c1ccc(-c2cc3c(N)nccc3s2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999996423721313, 0.9999759197235107] +COc1cc(-c2cc3c(N)nccc3s2)ccc1O; [None]; [None]; [0] +CSc1ccc(-c2cc3c(N)nccc3s2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999991655349731, 0.9999364614486694] +CC(=O)N[C@@H]1CC[C@@H](c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +Nc1nc(-c2cc3c(N)nccc3s2)cs1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccn(-c4cccc(Cl)c4)n3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3scc4c3OCCO4)cc12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +CC1(COc2cc3c(N)nccc3s2)COC1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc4c(c3)CCC(=O)N4)cc12; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [0.999954879283905] +Nc1nccc2sc(-c3ccc(F)cc3Cl)cc12; ['Nc1nccc2sc(Br)cc12']; ['OB(O)c1ccc(F)cc1Cl']; [0.9999984502792358] +Nc1nccc2sc(-c3cc4ccccc4s3)cc12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4c(N)nccc4s3)cc2)CC1; [None]; [None]; [0] +COc1ccc(-c2cc3c(N)nccc3s2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999970197677612, 0.9999432563781738] +CCc1ccc(-c2cc3c(N)nccc3s2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.999998152256012, 0.9998366832733154] +Cc1cc(-c2cc3c(N)nccc3s2)nc(N)n1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +COc1cc(-c2cc3c(N)nccc3s2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1']; ['Nc1nccc2sc(Br)cc12']; [0.9999994039535522] +Nc1nccc2sc(-c3ccc(Cl)cc3Cl)cc12; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(Cl)cc1Cl']; [1.0, 0.9999983310699463] +Nc1nccc2sc(-c3ncc(Br)cn3)cc12; [None]; [None]; [0] +Cn1cc(-c2cc3c(N)nccc3s2)c(C(F)(F)F)n1; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999986290931702] +CC1(C)Cc2cc(-c3cc4c(N)nccc4s3)ccc2O1; [None]; [None]; [0] +Nc1nccc2sc(-c3ncc4cccn4n3)cc12; [None]; [None]; [0] +Nc1nccc2sc(NC3CN(C(=O)C4CC4)C3)cc12; [None]; [None]; [0] +COc1ccc(CNc2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +Nc1nccc2sc(-c3cc4ccccn4n3)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2cc3c(N)nccc3s2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999998807907104, 0.9999973177909851] +Nc1nccc2sc(-c3cnn(CCO)c3)cc12; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4c(N)nccc4s3)c2c1; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc4ccc(O)cc34)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999805688858032] +COc1cc(-c2cc3c(N)nccc3s2)ccc1Cl; [None]; [None]; [0] +Cc1csc2c(-c3cc4c(N)nccc4s3)ncnc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ncc(Cl)cn3)cc12; [None]; [None]; [0] +Cc1nc(Nc2cc3c(N)nccc3s2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cc3c(N)nccc3s2)nn1C; [None]; [None]; [0] +COc1cc(-c2cc3c(N)nccc3s2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1nccc2sc(Br)cc12']; [0.9996261596679688] +Nc1cc(-c2cc3c(N)nccc3s2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(N)nccc3s2)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Cc3ccc(S(=O)(=O)CCO)cc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(NC(=O)c3ccco3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc4cn[nH]c4c3)cc12; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [0.9999985098838806] +CCn1cc(-c2cc3c(N)nccc3s2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9998722076416016] +COc1cc(OC)cc(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3c(N)nccc3s1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc4c(N)nccc4s3)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc2c(N)nccc2s1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1nccc2sc(Br)cc12']; [0.9999986886978149] +Nc1nccc2sc(-c3cc4ccccc4o3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(OC(F)(F)F)cc3)cc12; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 1.0] +Cn1cc(Br)cc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cc(-c4cccnc4)ccn3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(NC(=O)N4CCCC4)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ncc4sccc4n3)cc12; [None]; [None]; [0] +COc1ccc2nc(-c3cc4c(N)nccc4s3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4c(N)nccc4s3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [1.0, 0.9999997615814209] +Cn1cc(-c2cc3c(N)nccc3s2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1nccc2sc(Br)cc12']; [0.9999971389770508] +COc1ccc(F)c(C(=O)Nc2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +CCc1cccc(-c2cc3c(N)nccc3s2)n1; [None]; [None]; [0] +Cc1cc(-c2cc3c(N)nccc3s2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4c(N)nccc4s3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999994039535522, 0.9999980330467224] +Nc1nccc2sc(-c3ncn4c3CCCC4)cc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3c(N)nccc3s2)cn1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4c(N)nccc4s3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc4c(N)nccc4s3)ccc21; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(N4CCCC4=O)c3)cc12; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [0.999995768070221] +CC(=O)N1CCC(n2cc(-c3cc4c(N)nccc4s3)cn2)CC1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc4c(N)nccc4s3)cc2)n1C; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(CCO)cc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(NC(=O)c3cccc(OC(F)(F)F)c3)cc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3c(N)nccc3s2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12']; [0.9999678134918213] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(N)nccc3s2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc3c(N)nccc3s2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +Nc1nccc2sc(Nc3ccc(F)cn3)cc12; [None]; [None]; [0] +Cc1cc(Nc2cc3c(N)nccc3s2)ncc1F; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3c(N)nccc3s2)nc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Nc3ccccn3)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2c(N)nccc2s1; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999983906745911, 0.9999711513519287] +CC(C)S(=O)(=O)c1ccccc1-c1cc2c(N)nccc2s1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Nc1nccc2sc(Br)cc12']; [0.9999639391899109] +CNC(=O)c1ccccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(C(F)(F)F)c3)cc12; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999994039535522, 0.9999958276748657] +COC(C)(C)CCc1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccnc4ccccc34)cc12; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccnc2ccccc12']; [0.9999959468841553, 0.9999220371246338] +Nc1nccc2sc(-c3ccccc3OC(F)(F)F)cc12; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999997615814209, 0.9999963045120239] +Nc1nccc2sc(-c3ccccc3C(=O)[O-])cc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4c(N)nccc4s3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1nccc2sc(Br)cc12']; [0.9992092847824097] +Nc1nccc2sc(Cc3cc(F)cc(F)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cnn(Cc4ccccc4)c3)cc12; ['Nc1nccc2sc(Br)cc12']; ['OB(O)c1cnn(Cc2ccccc2)c1']; [0.9999908804893494] +Cc1nnc(-c2ccccc2-c2cc3c(N)nccc3s2)[nH]1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc2c(N)nccc2s1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999945163726807, 0.9998673796653748] +CP(C)(=O)c1ccccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(NC(=O)c4ccccc4)c3)cc12; ['Nc1nccc2sc(Br)cc12']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999792575836182] +Nc1nccc2sc(-c3cc(Cl)ccc3Cl)cc12; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999985694885254, 0.9999904632568359] +Cc1ccc(-c2cc3c(N)nccc3s2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1nccc2sc(Br)cc12']; [0.9971012473106384] +Nc1nccc2sc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc3c(N)nccc3s2)cs1; [None]; [None]; [0] +COc1cnc(-c2cc3c(N)nccc3s2)nc1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-n3ncc4cccc(F)c4c3=O)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3c(Cl)cccc3Cl)cc12; ['Nc1nccc2sc(Br)cc12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9996120929718018] +Nc1nccc2sc(-c3cnc4ccccn34)cc12; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3c(N)nccc3s2)s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(Br)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc4ccccc4c3)cc12; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc2ccccc2c1']; [0.9999923706054688, 0.999840497970581] +Cc1ccc(Cl)c(-c2cc3c(N)nccc3s2)c1; [None]; [None]; [0] +Nc1nccc2sc(NCc3cccnc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cnn4ncccc34)cc12; [None]; [None]; [0] +Nc1nccc(-c2cc3c(N)nccc3s2)n1; [None]; [None]; [0] +Cc1c(-c2cc3c(N)nccc3s2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc2sc(-n3cnc4ccccc43)cc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Nc3cccnc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(NC(=O)c3cccs3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3c[nH]nc3C(F)(F)F)cc12; [None]; [None]; [0] +Nc1nccc2sc(NCCc3c[nH]cn3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cncc4ccccc34)cc12; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cncc2ccccc12']; [1.0, 0.9999578595161438] +Nc1nccc2sc(-c3cccc(CC(=O)[O-])c3)cc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4c(N)nccc4s3)cc2)cn1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(-c4cn[nH]c4)cc3)cc12; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [1.0, 0.9999960660934448] +Nc1[nH]nc2cc(-c3cc4c(N)nccc4s3)ccc12; [None]; [None]; [0] +Nc1nccc2sc(NCCc3ccccc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(CO)c3)cc12; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OCc1cccc(B(O)O)c1']; [0.9999969005584717, 0.999910295009613] +CN1c2ccc(-c3cc4c(N)nccc4s3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cc3c(N)nccc3s2)n1; [None]; [None]; [0] +Nc1nccc2sc(NCc3ccc(Cl)cc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(Nc3ccncc3)cc12; [None]; [None]; [0] +COc1cc(-c2cc3c(N)nccc3s2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cc3c(N)nccc3s2)nn1; [None]; [None]; [0] +Nc1nccc2sc(NCc3ccccc3F)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3csc4ncncc34)cc12; [None]; [None]; [0] +Nc1nccc2sc(CCc3c[nH]nn3)cc12; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +CSc1nc(-c2cc3c(N)nccc3s2)c[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3c(N)nccc3s2)c1; ['N#CCCc1cccc(B(O)O)c1']; ['Nc1nccc2sc(Br)cc12']; [0.9999926090240479] +CCC(=O)Nc1ccc(-c2cc3c(N)nccc3s2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1nccc2sc(Br)cc12']; [0.9999986886978149] +Nc1ncncc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(F)cc3C(F)(F)F)cc12; ['Nc1nccc2sc(Br)cc12', 'Fc1ccc(Br)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1nccc2sc(Br)cc12']; [0.9999986290931702, 0.9998199343681335] +CCNc1nc2ccc(-c3cc4c(N)nccc4s3)cc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cc4ccccc4[nH]3)cc12; [None]; [None]; [0] +COc1ccc(-c2cc3c(N)nccc3s2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.999999463558197, 0.9999951124191284] +Nc1nccc2sc(Oc3ccccn3)cc12; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2c(N)nccc2s1; [None]; [None]; [0] +NC(=O)CCCc1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cnn4ccccc34)cc12; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'OB(O)c1cnn2ccccc12']; [0.9999980926513672, 0.9999279975891113] +CCCn1cc(-c2cc3c(N)nccc3s2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1']; ['Nc1nccc2sc(Br)cc12']; [1.0] +CC(C)(COc1cc2c(N)nccc2s1)S(C)(=O)=O; [None]; [None]; [0] +Nc1nccc2sc(NC(=O)c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc4c3C(=O)CC4)cc12; ['Nc1nccc2sc(Br)cc12']; ['O=C1CCc2cccc(Br)c21']; [0.9983343482017517] +Nc1nccc2sc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cc[nH]c(=O)c3)cc12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +C[C@@H](Oc1cc2c(N)nccc2s1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; [None]; [None]; [0] +COc1cc(CCc2cc3c(N)nccc3s2)cc(OC)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc3c(N)nccc3s2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1']; ['Nc1nccc2sc(Br)cc12']; [0.9999998807907104] +CCN(CC)c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(-c3cc4c(=O)[nH]ccc4o3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3c[nH]c4cnccc34)cc12; ['Nc1nccc2sc(Br)cc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9998952150344849] +COc1ccncc1Nc1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Nc3cnccc3-c3ccccc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cnc4[nH]ccc4c3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Nc3cnc4ccccc4c3)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1nccc2sc(Br)cc12']; [1.0] +CS(=O)(=O)c1ccc(-c2cc3c(N)nccc3s2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999998807907104, 0.999982476234436] +CN(c1cc2c(N)nccc2s1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC1(c2cc3c(N)nccc3s2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Nc1nccc2sc(-n3ccc(CO)n3)cc12; [None]; [None]; [0] +Cc1cc(-c2cc3c(N)nccc3s2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc2c(N)nccc2s1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1cc2c(N)nccc2s1)C(C)(C)O; [None]; [None]; [0] +Nc1nccc2sc(-n3cnc(CCO)c3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3c(F)cccc3Cl)cc12; [None]; [None]; [0] +Nc1nccc2sc(-n3ncc4ccccc43)cc12; [None]; [None]; [0] +C[C@@H](Nc1cc2c(N)nccc2s1)C(C)(C)O; [None]; [None]; [0] +Nc1nccc2sc(-n3ncc4c(O)cccc43)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccc(C(=O)c4ccccc4)cc3)cc12; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1nccc2sc(Br)cc12']; ['Nc1nccc2sc(Br)cc12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1']; [0.9999995231628418, 0.9999853372573853] +Nc1nccc2sc(-c3nc4ccc(O)cc4[nH]3)cc12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3c(N)nccc3s2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc3c(N)nccc3s2)c(OC)c1; [None]; [None]; [0] +Nc1nccc2sc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nccc2sc(Cc3nnc4ccc(-c5ccccc5)nn34)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +Nc1nccc2sc(CCC(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Nc1nccc2sc(CS(=O)(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cn(Cc4ccccc4)nn3)cc12; [None]; [None]; [0] +CCCCc1cc(-c2cc3c(N)nccc3s2)nc(N)n1; [None]; [None]; [0] +CCc1cc(-c2cc3c(N)nccc3s2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2c(N)nccc2s1; [None]; [None]; [0] +Nc1nnc(-c2cc3c(N)nccc3s2)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3c(N)nccc3s2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(N)nccc3s2)s1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4c(N)nccc4s3)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +Nc1nccc2sc(Oc3ccc(C[NH3+])cc3F)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc4ccsc34)cc12; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [1.0] +Nc1nccc2sc(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +Nc1nccc2sc(-c3c[nH]c4cccnc34)cc12; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1nccc2sc(Br)cc12']; [0.9999966621398926] +Nc1nccc2sc(-c3cccc4nnsc34)cc12; [None]; [None]; [0] +Nc1cncc(-c2cc3c(N)nccc3s2)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4c(N)nccc4s3)nc2NC1=O; [None]; [None]; [0] +Nc1nc(-c2cc3c(N)nccc3s2)nc2ccccc12; [None]; [None]; [0] +Nc1nccc2sc(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2c(N)nccc2s1; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999998211860657, 0.9999997019767761] +CC(=O)Nc1ncc(-c2cc3c(N)nccc3s2)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3c(N)nccc3s2)c1; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.999997615814209, 0.9999954104423523] +Nc1nccc2sc(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3c(N)nccc3s2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1nccc2sc(Br)cc12', 'Nc1nccc2sc(Br)cc12']; [0.9999990463256836, 0.9999116063117981] +COc1ccc(Oc2cc3c(N)nccc3s2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc3c(N)nccc3s2)CC1; [None]; [None]; [0] +Nc1nccc2sc(-c3cccc(NC(=O)C4CCNCC4)c3)cc12; [None]; [None]; [0] +CCOc1ccc(-c2cccn3nc(N)nc23)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999985694885254, 0.999994158744812, 0.9998172521591187, 0.9997774362564087, 0.999139666557312, 0.9640305042266846] +Nc1nc2c(-c3ncc4ccccc4n3)cccn2n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cccn3nc(N)nc23)c1; ['CS(=O)(=O)c1cccc(B(O)O)c1']; ['Nc1nc2c(Br)cccn2n1']; [0.999997615814209] +COc1ncccc1-c1cccn2nc(N)nc12; ['COc1ncccc1B(O)O']; ['Nc1nc2c(Br)cccn2n1']; [0.9997004270553589] +COc1cc(-c2cccn3nc(N)nc23)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999499320983887, 0.9998675584793091] +CC(=O)N(C)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999978542327881, 0.9999847412109375, 0.9999796152114868, 0.9968775510787964] +Nc1nccc2sc(N3CCC(c4nc5ccccc5[nH]4)CC3)cc12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccn2nc(N)nc12; ['Cc1csc(C(C)(C)O)n1', 'Cc1csc(C(C)(C)O)n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9861658811569214, 0.9646250009536743] +Nc1nc2c(-c3cnc4cccnn34)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['c1cnn2ccnc2c1']; [0.9999969601631165] +Nc1nccc2sc(N3CC=C(c4c[nH]c5ccccc45)CC3)cc12; [None]; [None]; [0] +COc1ccc(-c2cccn3nc(N)nc23)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999985694885254, 0.9998860359191895] +Cc1ccc2ncn(-c3cccn4nc(N)nc34)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9272060394287109, 0.8492285013198853, 0.8326903581619263] +CN(C)c1cc(-c2cc3c(N)nccc3s2)cnn1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccn3nc(N)nc23)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(I)c1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9993909597396851, 0.9990984201431274, 0.9961987733840942, 0.9498202800750732] +Nc1nc2c(-c3cccc(O)c3)cccn2n1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1']; [0.9999876022338867, 0.9999276995658875, 0.9998902678489685, 0.9998703002929688, 0.9976224303245544, 0.9661824703216553] +Nc1nc2c(-c3ccc(C(=O)[O-])cc3)cccn2n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999935626983643, 0.9999879002571106, 0.9998670220375061, 0.9997538328170776, 0.9997461438179016, 0.9982924461364746, 0.9406707882881165] +Nc1nc2c(-c3ccc(N4CCOCC4)cc3)cccn2n1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Nc1nc2c(Cl)cccn2n1', 'Brc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1nc2c(I)cccn2n1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999995231628418, 0.9999992847442627, 0.9999957084655762, 0.9999890327453613, 0.9999823570251465, 0.9998998045921326, 0.9998579025268555, 0.9882271885871887, 0.9867240190505981] +Nc1nc2c(Nc3ncccn3)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Nc1ncccn1', 'Nc1ncccn1']; [0.9972365498542786, 0.9941949844360352] +Nc1nc2c(-c3nc4ccccc4[nH]3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3nccc4ccccc34)cccn2n1; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['c1ccc2cnccc2c1', 'c1ccc2cnccc2c1']; [0.9429892897605896, 0.9002519845962524] +Nc1nc2c(-c3cccc(NC(=O)C4CC4)c3)cccn2n1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccn4nc(N)nc34)cc2)CC1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(C(=O)Nc4ccccc4)cc3)cccn2n1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Nc1nc2c(Cl)cccn2n1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999947547912598, 0.9999923706054688, 0.9998338222503662, 0.9997122287750244, 0.9996325969696045, 0.9962753057479858, 0.9954999685287476] +Nc1nc2c(-c3cccc(C4CCNCC4)c3)cccn2n1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccn4nc(N)nc34)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cccn3nc(N)nc23)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999977350234985, 0.9998137950897217, 0.9991858005523682, 0.9989801645278931, 0.8774234056472778] +Nc1nc2c(-c3ccc(OCCO)cc3)cccn2n1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1']; [0.9999974966049194, 0.9999837279319763, 0.9995574951171875, 0.9992344379425049, 0.9982922673225403] +Nc1nc2c(-c3ccc(C(=O)N4CCOCC4)cc3)cccn2n1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [0.9999995231628418, 0.9999994039535522, 0.9999951720237732, 0.9999915361404419, 0.9999757409095764, 0.9999487400054932, 0.999913215637207, 0.9993826150894165, 0.9954947233200073, 0.9188588857650757] +Nc1nc2c(-c3ccc(C(F)(F)F)cc3)cccn2n1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc(C(F)(F)F)cc1']; [0.9999983906745911, 0.9999850392341614] +CN(C)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999994039535522, 0.9998883008956909, 0.9920839071273804] +CNS(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9999901056289673, 0.9999783039093018, 0.9982702732086182, 0.9979100227355957, 0.9969363212585449] +Cc1nc(C)c(-c2cccn3nc(N)nc23)s1; ['Cc1csc(C)n1']; ['Nc1nc2c(Br)cccn2n1']; [0.9714336395263672] +C[C@@H](O)COc1ccc(-c2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +Nc1nc2c(Cc3ccccc3O)cccn2n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9999893307685852, 0.9999796748161316, 0.9999467134475708, 0.9997256994247437, 0.9992551207542419, 0.999009370803833] +Nc1nc2c(-c3ccc4c(c3)CS(=O)(=O)C4)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(C(=O)N4CCOCC4)cn3)cccn2n1; [None]; [None]; [0] +CC(C)c1cc(-c2cccn3nc(N)nc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(B(O)O)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9993249177932739, 0.9992991089820862, 0.9991649389266968, 0.8665224313735962] +Nc1nc2c(-c3ccc(Br)cc3)cccn2n1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Brc1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc(Br)cc1', 'Nc1nc2ccccn2n1']; [0.9999758005142212, 0.9965066909790039, 0.9553670883178711] +Nc1nc2c([C@H]3CCN(C(=O)c4ccccc4)C3)cccn2n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccn3nc(N)nc23)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9999967813491821, 0.9999823570251465, 0.9998618364334106] +CS(=O)(=O)N1CCC(c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +Nc1ncc(Cc2cccn3nc(N)nc23)cn1; [None]; [None]; [0] +CCCOc1ccc(-c2cccn3nc(N)nc23)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccn4nc(N)nc34)c2)CC1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccn2nc(N)nc12; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999330043792725, 0.9995978474617004] +CNS(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)c(C)c1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9996867179870605, 0.9994168281555176, 0.999055027961731, 0.9985332489013672, 0.9972084760665894] +Cc1c(C(=O)[O-])cccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999983310699463, 0.9999871253967285, 0.9999842643737793, 0.9996146559715271, 0.9995181560516357, 0.9993284344673157, 0.965844452381134, 0.9358549118041992] +Nc1nc2c(-c3ccn4nccc4n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3c[nH]c4ccccc34)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Ic1c[nH]c2ccccc12', 'Nc1nc2c(I)cccn2n1']; ['OB(O)c1c[nH]c2ccccc12', 'Nc1nc2ccccn2n1', 'c1ccc2[nH]ccc2c1']; [0.999630331993103, 0.9938780069351196, 0.9628517627716064] +Nc1nc2c(-c3ccc4c(c3)CCO4)cccn2n1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Ic1ccc2c(c1)CCO2', 'Nc1nc2c(I)cccn2n1', 'Brc1ccc2c(c1)CCO2']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1nc2ccccn2n1', 'c1ccc2c(c1)CCO2', 'Nc1nc2ccccn2n1']; [1.0, 0.9999997615814209, 0.9999982714653015, 0.999997079372406, 0.9999741315841675, 0.997429370880127, 0.986091673374176, 0.9840442538261414] +COc1ccc(Cc2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cccn4nc(N)nc34)[nH]c2c1; [None]; [None]; [0] +Nc1nc2c(-c3ccccc3-n3cccn3)cccn2n1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccn3nc(N)nc23)cc1Cl; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccn3nc(N)nc23)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc([B-](F)(F)F)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999974966049194, 0.9999394416809082, 0.999931812286377, 0.9998592138290405, 0.9995748996734619, 0.9456295371055603] +Nc1nc2c(-c3scc4c3OCCO4)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['c1scc2c1OCCO2']; [0.9997919797897339] +COc1cc(-c2cccn3nc(N)nc23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999884366989136, 0.9999802112579346, 0.9999495148658752, 0.9998652935028076, 0.9996427893638611, 0.9994008541107178, 0.9710930585861206] +CC(C)(C)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccccc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999994039535522, 0.9999790191650391, 0.9975035190582275, 0.8156827092170715] +Nc1nc2c(-c3cnc4ccccc4c3)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['OB(O)c1cnc2ccccc2c1']; [0.999980092048645] +Nc1nc2c(-c3cccc4c3OCO4)cccn2n1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2']; [0.9999704360961914, 0.9986182451248169, 0.9963518977165222, 0.9950883388519287] +CC(C)(C)c1ccc(-c2cccn3nc(N)nc23)cn1; ['CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999777674674988, 0.9998779296875] +Nc1nc2c(-c3cc(-c4ccccc4)[nH]n3)cccn2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999856352806091, 0.9999392032623291, 0.9992344379425049, 0.99859219789505, 0.9980775117874146, 0.9950739741325378, 0.9523493051528931] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Cc1ccc(-c2cccn3nc(N)nc23)c(=O)[nH]1; [None]; [None]; [0] +Nc1nc2c(-c3csc(N)n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(Cc3nc4c(F)c(F)ccc4[nH]3)cccn2n1; [None]; [None]; [0] +CSc1ccc(-c2cccn3nc(N)nc23)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999899864196777, 0.9982237815856934] +COc1cccc(C(=O)Nc2cccn3nc(N)nc23)c1; [None]; [None]; [0] +Nc1nc2c(-c3cc4ccccc4s3)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['OB(O)c1cc2ccccc2s1', 'c1ccc2sccc2c1']; [0.9998540282249451, 0.9726824760437012] +Nc1nc2c(Cc3nc4ccc(F)c(F)c4[nH]3)cccn2n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +Cc1cc(-c2cccn3nc(N)nc23)nc(N)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccn4nc(N)nc34)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9995531439781189, 0.9993852376937866] +Nc1nc2c(-c3ccc(F)cc3Cl)cccn2n1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl']; [0.9999972581863403, 0.9999957084655762, 0.9999825954437256] +Nc1nc2c(Cc3nc4ccccc4[nH]3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(CCCc3ccccc3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3ncc(Br)cn3)cccn2n1; ['Brc1cncnc1']; ['Nc1nc2c(I)cccn2n1']; [0.8072511553764343] +COc1ccc(-c2cccn3nc(N)nc23)cc1OC; ['COc1ccc(B(O)O)cc1OC']; ['Nc1nc2c(Br)cccn2n1']; [0.9999678134918213] +CCc1ccc(-c2cccn3nc(N)nc23)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999982118606567, 0.9994523525238037, 0.8409395217895508] +Nc1nc2c(-c3ccc(Cl)cc3Cl)cccn2n1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc(Cl)cc1Cl']; [0.999983549118042, 0.9999810457229614] +Nc1nc2c(-c3ccc4c(c3)CCC(=O)N4)cccn2n1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(Br)ccc2N1']; [0.9999798536300659, 0.9998953342437744, 0.9997608065605164, 0.9986408948898315, 0.9985163807868958, 0.9717555046081543, 0.9051790237426758, 0.824202835559845] +Nc1nc2c(-c3ccn(-c4cccc(Cl)c4)n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3ncc4cccn4n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cc4ccccn4n3)cccn2n1; [None]; [None]; [0] +CC[C@@H](CO)c1cccn2nc(N)nc12; [None]; [None]; [0] +COc1cc(-c2cccn3nc(N)nc23)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1', 'COc1ccccc1N1CCOCC1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999995231628418, 0.999997615814209, 0.9999922513961792, 0.9980119466781616, 0.9734079837799072] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +Nc1nc2c([C@H](CO)Cc3ccccc3)cccn2n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccn4nc(N)nc34)ccc2O1; [None]; [None]; [0] +COc1cc(-c2cccn3nc(N)nc23)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999990463256836, 0.999994158744812] +Cn1cc(-c2cccn3nc(N)nc23)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999710321426392, 0.9998332262039185, 0.9994187355041504] +COc1cc(F)c(-c2cccn3nc(N)nc23)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1ccc(F)cc1OC']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999861717224121, 0.9996578693389893, 0.9622594118118286] +Nc1nc2c(-c3ncc(Cl)cn3)cccn2n1; [None]; [None]; [0] +Cc1csc2c(-c3cccn4nc(N)nc34)ncnc12; [None]; [None]; [0] +Nc1nc2c(CCCn3cncn3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cccc4ccc(O)cc34)cccn2n1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1nc2c(Br)cccn2n1']; [0.9998247027397156] +CNC(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9999966025352478, 0.9999868869781494, 0.9998294115066528, 0.9998003840446472, 0.99920254945755] +Nc1nc2c(-c3cnn(CCO)c3)cccn2n1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'OCCn1cc(B(O)O)cn1']; [0.9999997615814209, 0.9999996423721313, 0.9999929666519165, 0.9999646544456482] +COc1cc(-c2cccn3nc(N)nc23)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9988415241241455, 0.9592357277870178, 0.901405930519104] +COc1ccc2cccc(-c3cccn4nc(N)nc34)c2c1; [None]; [None]; [0] +Nc1cc(-c2cccn3nc(N)nc23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccn3nc(N)nc23)c1; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999960660934448, 0.9999701976776123, 0.9999644756317139] +Nc1nc2c(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cccn2n1; [None]; [None]; [0] +COc1ccc2oc(-c3cccn4nc(N)nc34)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1']; ['Nc1nc2c(Br)cccn2n1']; [0.9999310970306396] +COc1cc(CS(C)(=O)=O)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cccn3nc(N)nc23)c1; [None]; [None]; [0] +Nc1nc2c(-c3ccc4cn[nH]c4c3)cccn2n1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'CC1(C)COB(c2ccc3cn[nH]c3c2)OC1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1nc2c(Br)cccn2n1']; [0.9999922513961792, 0.999929666519165, 0.999928891658783, 0.9999051690101624] +CCNC(=O)c1ccc(-c2cccn3nc(N)nc23)nc1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +CCn1cc(-c2cccn3nc(N)nc23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cccn1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999963641166687, 0.9999938011169434, 0.9999040365219116, 0.9690613746643066] +CO[C@@H]1CC[C@@H](c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cccn3nc(N)nc13)cn2C; [None]; [None]; [0] +Nc1nc2c(-c3ncc4sccc4n3)cccn2n1; ['Nc1nc2c(I)cccn2n1']; ['c1ncc2sccc2n1']; [0.9387062788009644] +CC(C)c1nn(C)cc1-c1cccn2nc(N)nc12; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.99996018409729, 0.9999308586120605] +CNC(=O)c1ccc(OC)c(-c2cccn3nc(N)nc23)c1; [None]; [None]; [0] +Nc1nc2c(-c3cc(-c4cccnc4)ccn3)cccn2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(OC(F)(F)F)cc3)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(I)cc1', 'FC(F)(F)Oc1ccccc1']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(I)cccn2n1']; [1.0, 1.0, 0.9999696016311646, 0.9987434148788452] +COc1ccc2nc(-c3cccn4nc(N)nc34)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccn3nc(N)nc23)c1; ['COc1ccc(F)c(C(N)=O)c1']; ['Nc1nc2c(Br)cccn2n1']; [0.9502453804016113] +Nc1nc2c(-c3cccc(NC(=O)N4CCCC4)c3)cccn2n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Cn1cc(-c2cccn3nc(N)nc23)c2ccccc21; [None]; [None]; [0] +Nc1nc2c(-c3cc4ccccc4o3)cccn2n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccn3nc(N)nc23)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999994039535522, 0.9999710917472839, 0.9999589920043945, 0.9437392354011536] +Cn1ncc2cc(-c3cccn4nc(N)nc34)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [1.0, 1.0, 0.9999998807907104, 0.9999997615814209, 0.9999992251396179, 0.999998152256012, 0.9999921321868896, 0.9999845027923584, 0.9999728798866272, 0.9993100166320801, 0.9983528852462769, 0.9949765801429749] +CC(C)(O)c1ccc2cc(-c3cccn4nc(N)nc34)[nH]c2c1; [None]; [None]; [0] +Nc1nc2c(-c3ncn4c3CCCC4)cccn2n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccn4nc(N)nc34)ccc21; [None]; [None]; [0] +Cc1cc(-c2cccn3nc(N)nc23)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccn4nc(N)nc34)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(I)ccc12']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999994039535522, 0.9999947547912598, 0.9999899864196777, 0.9984109401702881] +CC(=O)N1CCC(n2cc(-c3cccn4nc(N)nc34)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [1.0, 0.9999995827674866] +CCc1cccc(-c2cccn3nc(N)nc23)n1; [None]; [None]; [0] +Nc1nc2c(NC(=O)c3cccc(OC(F)(F)F)c3)cccn2n1; ['NC(=O)c1cccc(OC(F)(F)F)c1', 'Nc1nc2c([N+](=O)[O-])cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'O=C(Cl)c1cccc(OC(F)(F)F)c1']; [0.9995214939117432, 0.9990167617797852] +Nc1nc2c(-c3ccc(CCO)cc3)cccn2n1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'OCCc1ccc(B(O)O)cc1', 'Nc1nc2c(Cl)cccn2n1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(I)cc1']; [0.9999961853027344, 0.9999663829803467, 0.9996942281723022, 0.9994996786117554, 0.9990017414093018, 0.9936423301696777, 0.8883381485939026] +COc1cc(S(C)(=O)=O)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccn4nc(N)nc34)cc2)n1C; [None]; [None]; [0] +Nc1nc2c(-c3cccc(N4CCCC4=O)c3)cccn2n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccn3nc(N)nc23)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9998722076416016, 0.9995677471160889] +CN(C)C(=O)c1ccc(-c2cccn3nc(N)nc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccn3nc(N)nc23)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.999567449092865, 0.9995669722557068] +CCNC(=O)Cc1ccc(-c2cccn3nc(N)nc23)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1']; [0.9206985235214233] +COc1cc(N2CCNCC2)ccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cccn2nc(N)nc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccn2nc(N)nc12; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9983113408088684, 0.9971421957015991] +CN(C)C(=O)c1ccc(-c2cccn3nc(N)nc23)nc1; [None]; [None]; [0] +CCOc1ccccc1-c1cccn2nc(N)nc12; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999822378158569, 0.9999527931213379, 0.9999246001243591, 0.8789016008377075] +Cn1nc(-c2cccn3nc(N)nc23)cc1C(C)(C)O; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccn3nc(N)nc23)c1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccn2nc(N)nc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9998247027397156, 0.9994580745697021, 0.9992753267288208, 0.9987474083900452, 0.9683616161346436, 0.9333239793777466] +Nc1nc2c(-c3cccc(C(F)(F)F)c3)cccn2n1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999995827674866, 0.9999938011169434] +Nc1nc2c(-c3ccnc4ccccc34)cccn2n1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccnc2ccccc12', 'OB(O)c1ccnc2ccccc12']; [0.9999632835388184, 0.9997087717056274, 0.9995365738868713] +Nc1nc2c(-c3ccccc3OC(F)(F)F)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1']; ['OB(O)c1ccccc1OC(F)(F)F', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999674558639526, 0.9999622106552124, 0.9929217100143433, 0.9859084486961365] +Nc1nc2c(-c3ccccc3C(=O)[O-])cccn2n1; [None]; [None]; [0] +COC(C)(C)CCc1cccn2nc(N)nc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccn3nc(N)nc23)[nH]1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccn2nc(N)nc12; ['NC(=O)c1ccccc1B(O)O']; ['Nc1nc2c(Br)cccn2n1']; [0.9940021634101868] +Nc1nc2c(-c3cnn(Cc4ccccc4)c3)cccn2n1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Nc1nc2c(Cl)cccn2n1', 'OB(O)c1cnn(Cc2ccccc2)c1', 'c1ccc(Cn2cccn2)cc1']; [0.9999995231628418, 0.9999993443489075, 0.9999984502792358, 0.9999958276748657, 0.9999903440475464, 0.978923499584198] +Cn1cnc2ccc(-c3cccn4nc(N)nc34)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1nc2c(Br)cccn2n1']; [0.9839435815811157] +Nc1nc2c(-c3cc(Cl)ccc3Cl)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)cc1']; ['OB(O)c1cc(Cl)ccc1Cl', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999105930328369, 0.9998970031738281, 0.9593178033828735, 0.9172106981277466] +Nc1nc2c(Cc3cc(F)cc(F)c3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cccc(NC(=O)c4ccccc4)c3)cccn2n1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999971389770508, 0.9999854564666748, 0.9999802112579346, 0.9999736547470093, 0.999645471572876] +Cc1ccc(-c2cccn3nc(N)nc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Nc1nc2c(Br)cccn2n1']; [0.9532431364059448] +Cc1nc2ccccn2c1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(-c3cnc4ccccn34)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['c1ccn2ccnc2c1']; [0.9998729228973389] +Cc1nc(N)sc1-c1cccn2nc(N)nc12; ['Cc1csc(N)n1']; ['Nc1nc2c(Br)cccn2n1']; [0.9329513311386108] +Nc1nc2c(-c3c(Cl)cccc3Cl)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['OB(O)c1c(Cl)cccc1Cl']; [0.9975460171699524] +Nc1nc2c(-n3ncc4cccc(F)c4c3=O)cccn2n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccn3nc(N)nc23)cs1; [None]; [None]; [0] +Nc1nc2c(-c3cccc(Br)c3)cccn2n1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1cccc(Br)c1']; [0.9999250173568726, 0.9995860457420349] +Nc1nc2c(-c3cnc(-c4ccccc4)[nH]3)cccn2n1; [None]; [None]; [0] +COc1cnc(-c2cccn3nc(N)nc23)nc1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccn3nc(N)nc23)c1; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9998831748962402, 0.9993004202842712, 0.8974921703338623] +Nc1nc2c(-c3cccc(Cn4cncn4)c3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cnn4ncccc34)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3ccc4ccccc4c3)cccn2n1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1ccc2ccccc2c1']; [0.9999978542327881, 0.9999873638153076] +Nc1nccc(-c2cccn3nc(N)nc23)n1; [None]; [None]; [0] +Cc1c(-c2cccn3nc(N)nc23)sc(=O)n1C; [None]; [None]; [0] +CC(C)C(=O)COc1cccn2nc(N)nc12; [None]; [None]; [0] +CNc1nc(C)c(-c2cccn3nc(N)nc23)s1; [None]; [None]; [0] +Nc1nc2c(NCc3cccnc3)cccn2n1; ['NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1', 'NCc1cccnc1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(F)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9998200535774231, 0.9991413950920105, 0.9988659620285034, 0.9968714714050293] +Nc1nc2c(NC(=O)c3cccs3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(Nc3cccnc3)cccn2n1; ['Nc1cccnc1', 'Nc1cccnc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9974139332771301, 0.9776760339736938] +Nc1nc2c(NCCc3c[nH]cn3)cccn2n1; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(F)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9623866081237793, 0.9493764638900757, 0.8683513402938843, 0.8029376268386841] +Nc1nc2c(-n3cnc4ccccc43)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['c1ccc2[nH]cnc2c1', 'c1ccc2[nH]cnc2c1']; [0.9971668720245361, 0.9867085218429565] +NC(=O)c1c(F)cccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(-c3cncc4ccccc34)cccn2n1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.999981164932251, 0.9999406933784485, 0.9998389482498169] +Nc1nc2c(NCCc3ccccc3)cccn2n1; ['NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1', 'NCCc1ccccc1']; ['Nc1nc2c(F)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.991206169128418, 0.9872408509254456, 0.9870634078979492, 0.9862775802612305] +Nc1nc2c(NCc3ccc(Cl)cc3)cccn2n1; ['NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(F)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9898862838745117, 0.9881755113601685, 0.9874336123466492, 0.8440890312194824] +Nc1nc2c(-c3ccc(-c4cn[nH]c4)cc3)cccn2n1; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['OB(O)c1ccc(-c2cn[nH]c2)cc1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999462366104126, 0.9999421834945679] +Nc1nc2c(-c3ccc4c(N)[nH]nc4c3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3c[nH]nc3C(F)(F)F)cccn2n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccn4nc(N)nc34)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [1.0, 1.0, 0.9999997615814209, 0.9976189732551575, 0.868812084197998] +Nc1nc2c(Nc3ccncc3)cccn2n1; ['Nc1ccncc1']; ['Nc1nc2c(Br)cccn2n1']; [0.9915099143981934] +CN1c2ccc(-c3cccn4nc(N)nc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1nc2c(-c3cccc(CC(=O)[O-])c3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cccc(CO)c3)cccn2n1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(Br)c1', 'OCc1cccc(B(O)O)c1', 'Nc1nc2ccccn2n1', 'OCc1cccc(I)c1', 'OCc1cccc([B-](F)(F)F)c1']; [0.999991774559021, 0.9999872446060181, 0.9999099969863892, 0.9999047517776489, 0.9996811151504517, 0.9994779229164124, 0.9992698431015015, 0.9982858896255493, 0.9978880882263184, 0.8903133869171143] +Nc1nc2c(NCc3ccccc3F)cccn2n1; ['NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F', 'NCc1ccccc1F']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(F)cccn2n1']; [0.9998922944068909, 0.9996945261955261, 0.9987043142318726, 0.989314615726471] +CC(C)n1cc(-c2cccn3nc(N)nc23)nn1; [None]; [None]; [0] +Nc1nc2c(-c3csc4ncncc34)cccn2n1; [None]; [None]; [0] +CSc1nc(-c2cccn3nc(N)nc23)c[nH]1; [None]; [None]; [0] +CCCn1cnc(-c2cccn3nc(N)nc23)n1; [None]; [None]; [0] +Nc1nc2c(-c3cc4ccccc4[nH]3)cccn2n1; [None]; [None]; [0] +COc1cc(-c2cccn3nc(N)nc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc2c(-c3cncnc3N)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(F)cc3C(F)(F)F)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1cccc(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1nc2ccccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999685287475586, 0.9999443292617798, 0.9775270223617554, 0.9660211801528931] +CCNc1nc2ccc(-c3cccn4nc(N)nc34)cc2s1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(CCc3c[nH]nn3)cccn2n1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccn3nc(N)nc23)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9999966621398926, 0.9999874234199524, 0.9998358488082886, 0.9996935129165649] +N#CCCc1cccc(-c2cccn3nc(N)nc23)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999591708183289, 0.9999580383300781, 0.999841034412384, 0.9990109205245972, 0.8794856071472168] +NC(=O)CCCc1cccn2nc(N)nc12; [None]; [None]; [0] +COc1ccc(-c2cccn3nc(N)nc23)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999997615814209, 0.9999796152114868] +Nc1nc2c(NC(=O)c3c(Cl)cccc3Cl)cccn2n1; ['Nc1nc2c([N+](=O)[O-])cccn2n1', 'NC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'Nc1nc2c(Br)cccn2n1']; [0.8872706890106201, 0.8782366514205933] +Nc1nc2c(-c3cnn4ccccc34)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C']; ['OB(O)c1cnn2ccccc12', 'Nc1nc2c(Br)cccn2n1']; [0.9999698400497437, 0.9998860359191895] +CS(=O)(=O)C1CCN(c2cccn3nc(N)nc23)CC1; ['CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.8859459757804871, 0.8787412643432617, 0.7950505614280701] +CC(C)(COc1cccn2nc(N)nc12)S(C)(=O)=O; [None]; [None]; [0] +CCCn1cc(-c2cccn3nc(N)nc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cccn1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [1.0, 1.0, 0.999977707862854, 0.9850975275039673] +Nc1nc2c(-c3cc[nH]c(=O)c3)cccn2n1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'O=c1cc(I)cc[nH]1', 'Nc1nc2c(Cl)cccn2n1', 'O=c1cc(Br)cc[nH]1', 'O=c1cc(I)cc[nH]1', 'O=c1cc(Br)cc[nH]1']; [0.9999923706054688, 0.9999498128890991, 0.999501645565033, 0.999302089214325, 0.9974432587623596, 0.8685897588729858, 0.7962369918823242] +CC(C)(O)CC(=O)NCCc1cccn2nc(N)nc12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccn3nc(N)nc23)cc1; [None]; [None]; [0] +Nc1nc2c(Oc3ccccn3)cccn2n1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Nc1nc2c(Br)cccn2n1']; [0.9996191263198853] +COc1cc(CCc2cccn3nc(N)nc23)cc(OC)c1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cccn2n1; [None]; [None]; [0] +C[C@@H](Oc1cccn2nc(N)nc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(F)cccn2n1']; [0.9997546672821045, 0.9941525459289551] +Nc1nc2c(-c3cccc4c3C(=O)CC4)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['O=C1CCc2cccc(Br)c21']; [0.9371817111968994] +CCNS(=O)(=O)c1ccccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(-c3cc4c(=O)[nH]ccc4o3)cccn2n1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccn2nc(N)nc12; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999979734420776, 0.9999761581420898] +COc1ccncc1Nc1cccn2nc(N)nc12; ['COc1ccncc1N']; ['Nc1nc2c(Br)cccn2n1']; [0.9904901385307312] +CC(C)Oc1cncc(-c2cccn3nc(N)nc23)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cccnc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9999997615814209, 0.9999996423721313, 0.999997079372406, 0.999992311000824, 0.9640201926231384] +Nc1nc2c(Nc3cnc4ccccc4c3)cccn2n1; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1']; [0.9996664524078369, 0.998060941696167, 0.9960370063781738] +Nc1nc2c(Nc3cnccc3-c3ccccc3)cccn2n1; ['Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; [0.9972302317619324, 0.9967993497848511] +Nc1nc2c(-c3c[nH]c4cnccc34)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['OB(O)c1c[nH]c2cnccc12']; [0.9987001419067383] +Nc1nc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)cccn2n1; [None]; [None]; [0] +CCN(CC)c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(-c3cnc4[nH]ccc4c3)cccn2n1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1nc2c(Br)cccn2n1']; [1.0, 1.0, 0.9999997019767761, 0.9999995231628418, 0.9999964237213135, 0.9994179606437683] +CS(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999989867210388, 0.9999898672103882, 0.9998176097869873, 0.9994416236877441, 0.9987092614173889, 0.9524621963500977] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccn3nc(N)nc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.999988317489624, 0.9999467730522156, 0.9998947978019714, 0.9997390508651733, 0.9990623593330383, 0.9990254640579224, 0.9830666780471802, 0.8306280374526978] +CNC(=O)c1c(F)cccc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CN(c1cccn2nc(N)nc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1cccn2nc(N)nc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Nc1nc2c(I)cccn2n1']; [0.81659996509552] +Nc1nc2c(-c3c(F)cccc3Cl)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['OB(O)c1c(F)cccc1Cl']; [0.9999980926513672] +CC1(c2cccn3nc(N)nc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](Nc1cccn2nc(N)nc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Nc1nc2c(I)cccn2n1']; [0.81659996509552] +Cc1cc(-c2cccn3nc(N)nc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1nc2c(-n3ccc(CO)n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-n3ncc4ccccc43)cccn2n1; ['Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(F)cccn2n1']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9992175102233887, 0.9987962245941162, 0.9496861696243286] +Nc1nc2c(-n3ncc4c(O)cccc43)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['Oc1cccc2[nH]ncc12', 'Oc1cccc2[nH]ncc12']; [0.979231595993042, 0.977076530456543] +Nc1nc2c(-c3ccc(-n4cncn4)cc3)cccn2n1; [None]; [None]; [0] +COc1ccc(-c2cccn3nc(N)nc23)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9998917579650879, 0.9994493722915649] +C[C@H](Nc1cccn2nc(N)nc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1nc2c(-n3cnc(CCO)c3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3nc4ccc(O)cc4[nH]3)cccn2n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccn3nc(N)nc23)[nH]1; [None]; [None]; [0] +Nc1nc2c(-c3ccc(C(=O)c4ccccc4)cc3)cccn2n1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999958872795105, 0.9999630451202393, 0.9999361634254456, 0.9998821020126343, 0.999859094619751, 0.9997060298919678, 0.9992373585700989, 0.9971969127655029, 0.9891209006309509, 0.9686093330383301, 0.8686082363128662] +Nc1nc2c(-c3nncn3C3CC3)cccn2n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +Nc1nc2c(-c3ccn(CC[NH3+])n3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3nnc(N)s3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(CS(=O)(=O)NCc3ccccn3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(CCC(=O)NCc3ccccn3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(Cc3nnc4ccc(-c5ccccc5)nn34)cccn2n1; [None]; [None]; [0] +CCc1cc(-c2cccn3nc(N)nc23)nc(N)n1; [None]; [None]; [0] +Nc1nc2c(-c3cn(Cc4ccccc4)nn3)cccn2n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccn3nc(N)nc23)s1; [None]; [None]; [0] +CCCCc1cc(-c2cccn3nc(N)nc23)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccn2nc(N)nc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccn3nc(N)nc23)n1; [None]; [None]; [0] +Nc1nc2c(-c3nc4ccccc4s3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cccc4ccsc34)cccn2n1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1nc2c(Br)cccn2n1']; ['Nc1nc2c(Br)cccn2n1', 'OB(O)c1cccc2ccsc12']; [0.9999992251396179, 0.9998738765716553] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccn4nc(N)nc34)c2)cc1; [None]; [None]; [0] +Nc1nc2c(Oc3ccc(C[NH3+])cc3F)cccn2n1; [None]; [None]; [0] +Nc1cncc(-c2cccn3nc(N)nc23)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccn4nc(N)nc34)nc2NC1=O; [None]; [None]; [0] +Nc1nc2c(-c3cccc4nnsc34)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3nc(N)c4ccccc4n3)cccn2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccn2nc(N)nc12; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1I']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999821186065674, 0.9999799728393555, 0.9951117038726807, 0.9891326427459717] +C[C@@H2]NC(=O)N1CCC(c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +Nc1nc2c(-c3ncc4cc[nH]c4n3)cccn2n1; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1']; ['c1ncc2cc[nH]c2n1', 'c1ncc2cc[nH]c2n1']; [0.9221029877662659, 0.853202223777771] +COc1ccc(Oc2cccn3nc(N)nc23)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'COc1ccc(O)c(F)c1F']; ['Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1']; [0.9999097585678101, 0.9999080896377563] +COc1ccc(OC)c(-c2cccn3nc(N)nc23)c1; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(I)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1']; [0.9999334216117859, 0.9957327246665955, 0.9509140849113464] +CC(=O)Nc1ncc(-c2cccn3nc(N)nc23)[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccn3nc(N)nc23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2cc(Br)ccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(Br)cccn2n1', 'Nc1nc2ccccn2n1', 'Nc1nc2ccccn2n1']; [0.9999993443489075, 0.9999974966049194, 0.9999925494194031, 0.9999918937683105, 0.99998939037323, 0.9999769330024719, 0.9999729990959167, 0.9999694228172302, 0.9970651865005493, 0.9652689695358276, 0.9471653699874878] +Nc1nc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cccn2n1; ['Nc1nc2c(Br)cccn2n1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9961673021316528] +Nc1nc2c(-c3c[nH]c4cccnc34)cccn2n1; [None]; [None]; [0] +Nc1nc2c(-c3cn(CCO)cn3)cccn2n1; [None]; [None]; [0] +Nc1nc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)cccn2n1; ['C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1', 'C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Nc1nc2c(Br)cccn2n1', 'Nc1nc2c(Cl)cccn2n1', 'Nc1nc2c(I)cccn2n1', 'Nc1nc2c(F)cccn2n1']; [0.999972939491272, 0.9999530911445618, 0.999901294708252, 0.9987092018127441] +CCOc1ccc(Nc2cn(C)cn2)cc1; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(N)cc1', 'CCOc1ccc(I)cc1', 'CCOc1ccc(Cl)cc1']; ['Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9991178512573242, 0.9989372491836548, 0.9987773895263672, 0.9982337355613708, 0.9948824644088745, 0.9890530109405518] +C[C@@]1(O)CC[C@H](c2cccn3nc(N)nc23)CC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2cn(C)cn2)cc1; ['CC(=O)N(C)c1ccc(Br)cc1', 'CC(=O)N(C)c1ccc(N)cc1', 'CC(=O)N(C)c1ccc(N)cc1']; ['Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; [0.9978693723678589, 0.9973996877670288, 0.9961857199668884] +Cn1cnc(Nc2ncc3ccccc3n2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Clc1ncc2ccccc2n1']; ['Nc1ncc2ccccc2n1', 'Nc1ncc2ccccc2n1', 'Cn1cnc(N)c1']; [0.9999753832817078, 0.9999428987503052, 0.9997246861457825] +CN(C)c1cc(-c2cccn3nc(N)nc23)cnn1; [None]; [None]; [0] +Nc1nc2c(-c3cccc(NC(=O)C4CCNCC4)c3)cccn2n1; [None]; [None]; [0] +Cn1cnc(Nc2cccc(S(C)(=O)=O)c2)c1; ['CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Br)c1', 'CS(=O)(=O)c1cccc(N)c1', 'CS(=O)(=O)c1cccc(Cl)c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9999556541442871, 0.9997693300247192, 0.9987680912017822, 0.9931710362434387] +Cn1cnc(Nc2cnc3cccnn23)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Clc1cnc2cccnn12', 'Brc1cnc2cccnn12']; ['Nc1cnc2cccnn12', 'Nc1cnc2cccnn12', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9999980330467224, 0.9999978542327881, 0.999967098236084, 0.9998661279678345] +COc1cc(Nc2cn(C)cn2)cc(OC)c1OC; ['COc1cc(N)cc(OC)c1OC', 'COc1cc(N)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9995660781860352, 0.9989549517631531, 0.9959045648574829, 0.9912229776382446] +Cc1ccc2ncn(Nc3cn(C)cn3)c2c1; [None]; [None]; [0] +COc1ncccc1Nc1cn(C)cn1; ['COc1ncccc1N', 'COc1ncccc1Br', 'COc1ncccc1N', 'COc1ncccc1Cl', 'COc1ncccc1N', 'COc1ncccc1I', 'COc1ncccc1B(O)O']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9997339248657227, 0.9990641474723816, 0.9985110759735107, 0.9972528219223022, 0.9967571496963501, 0.9955592155456543, 0.9870643615722656] +Cn1cnc(Nc2cccc(O)c2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; ['Nc1cccc(O)c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Cl)c1', 'Nc1cccc(O)c1']; [0.9995511770248413, 0.9988609552383423, 0.9977990388870239, 0.9833716154098511] +Cn1cnc(Nc2cc(C#N)ccc2O)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(N)c1', 'N#Cc1ccc(O)c(I)c1', 'N#Cc1ccc(O)c(Br)c1', 'N#Cc1ccc(O)c(Cl)c1', 'N#Cc1ccc(O)c(F)c1']; [0.9998712539672852, 0.9998648762702942, 0.9979652762413025, 0.9910333752632141, 0.9806146621704102, 0.9793866872787476] +COc1ccc(Nc2cn(C)cn2)cc1; ['COc1ccc(N)cc1', 'COc1ccc(N)cc1', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(Cl)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(F)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9991491436958313, 0.9984436631202698, 0.9965691566467285, 0.9962897300720215, 0.9944823980331421, 0.9928582310676575, 0.9883104562759399] +Cn1cnc(Nc2ccc(N3CCOCC3)cc2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Brc1ccc(N2CCOCC2)cc1', 'Cn1cnc(N)c1', 'Clc1ccc(N2CCOCC2)cc1']; ['Nc1ccc(N2CCOCC2)cc1', 'Ic1ccc(N2CCOCC2)cc1', 'Nc1ccc(N2CCOCC2)cc1', 'Cn1cnc(N)c1', 'Nc1ccc(N2CCOCC2)cc1', 'Cn1cnc(N)c1']; [0.9997716546058655, 0.9997188448905945, 0.9992424249649048, 0.9992175102233887, 0.9983341693878174, 0.9977340698242188] +Cn1cnc(Nc2cccc(NC(=O)C3CC3)c2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; ['Nc1cccc(NC(=O)C2CC2)c1', 'Nc1cccc(NC(=O)C2CC2)c1', 'O=C(Nc1cccc(Br)c1)C1CC1']; [0.9999809861183167, 0.999916672706604, 0.999634861946106] +Cn1cnc(Nc2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +Cn1cnc(Nc2nccc3ccccc23)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Clc1nccc2ccccc12', 'Cn1cnc(I)c1', 'Brc1nccc2ccccc12']; ['Nc1nccc2ccccc12', 'Nc1nccc2ccccc12', 'Cn1cnc(N)c1', 'Nc1nccc2ccccc12', 'Cn1cnc(N)c1']; [0.9979121088981628, 0.9910504221916199, 0.9885091781616211, 0.9838568568229675, 0.9659493565559387] +Cn1cnc(Nc2ccc(C(N)=O)cc2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(N)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(I)cc1']; [0.9992835521697998, 0.997360110282898, 0.994660496711731, 0.9940210580825806] +Cn1cnc(Nc2nc3ccccc3[nH]2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Brc1nc2ccccc2[nH]1', 'CSc1nc2ccccc2[nH]1', 'Clc1nc2ccccc2[nH]1', 'CS(=O)(=O)c1nc2ccccc2[nH]1']; ['Nc1nc2ccccc2[nH]1', 'Nc1nc2ccccc2[nH]1', 'Ic1nc2ccccc2[nH]1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9953946471214294, 0.9937814474105835, 0.9929293394088745, 0.9553261399269104, 0.9351731538772583, 0.9199150800704956, 0.9166129231452942] +Cc1nc(C(C)(C)O)sc1Nc1cn(C)cn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3cn(C)cn3)cc2)CC1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(C(=O)Nc3ccccc3)cc2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1', 'Nc1ccc(C(=O)Nc2ccccc2)cc1', 'O=C(Nc1ccccc1)c1ccc(Cl)cc1']; [0.9989205598831177, 0.9967033863067627, 0.9918525218963623, 0.8754029870033264] +CC(=O)NCc1ccc(Nc2cn(C)cn2)cc1; ['CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(N)cc1', 'CC(=O)NCc1ccc(Br)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.9991099834442139, 0.997982382774353, 0.9930608868598938] +Cn1cnc(Nc2ccc(OCCO)cc2)c1; ['Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; ['OCCOc1ccc(Br)cc1', 'OCCOc1ccc(I)cc1', 'Nc1ccc(OCCO)cc1', 'Nc1ccc(OCCO)cc1']; [0.9997559189796448, 0.9996545910835266, 0.9990329742431641, 0.9989141225814819] +Cn1cnc(NNc2ncccn2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(C(=O)N3CCOCC3)cc2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; ['Nc1ccc(C(=O)N2CCOCC2)cc1', 'O=C(c1ccc(I)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'Nc1ccc(C(=O)N2CCOCC2)cc1']; [0.9999816417694092, 0.9999618530273438, 0.9998446702957153, 0.9997633695602417] +Cn1cnc(Nc2ccc(C(=O)N3CCOCC3)cn2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(C(=O)N2CCOCC2)cn1', 'Nc1ccc(C(=O)N2CCOCC2)cn1', 'O=C(c1ccc(Cl)nc1)N1CCOCC1']; [0.9999826550483704, 0.9999310970306396, 0.9998509883880615] +Cn1cnc(Nc2cnn(Cc3cccc(C#N)c3)c2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(N)cc1', 'CNS(=O)(=O)c1ccc(Br)cc1', 'CNS(=O)(=O)c1ccc(N)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9981664419174194, 0.9945279359817505, 0.8938475847244263, 0.8846530914306641] +C[C@@H](O)COc1ccc(Nc2cn(C)cn2)cc1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(C(F)(F)F)cc2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(I)cc1', 'Nc1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(Cl)cc1', 'Fc1ccc(C(F)(F)F)cc1']; [0.9990716576576233, 0.9982573390007019, 0.9965922832489014, 0.9935184717178345, 0.9920003414154053, 0.9491803646087646, 0.8010642528533936] +C[C@H](O)COc1ccc(Nc2cn(C)cn2)cc1; [None]; [None]; [0] +Cn1cnc(Nc2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cn(C)cn2)cc1; ['CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(N)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Cl)cc1', 'CN(C)c1ccc(F)cc1', 'CN(C)c1ccc(N)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1']; [0.9989769458770752, 0.9984548091888428, 0.9977946281433105, 0.997614324092865, 0.996776819229126, 0.9941688776016235, 0.9918179512023926, 0.989557147026062] +Cn1cnc(NCc2ccccc2O)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; ['NCc1ccccc1O', 'NCc1ccccc1O']; [0.9979591369628906, 0.9569742679595947] +CN(C)S(=O)(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(N)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'CN(C)S(=O)(=O)c1ccc(F)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9999303817749023, 0.9991035461425781, 0.996476411819458, 0.9959743022918701, 0.9841969013214111] +Cn1cnc(Nc2ccc3c(c2)CS(=O)(=O)C3)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; ['Nc1ccc2c(c1)CS(=O)(=O)C2', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Nc1ccc2c(c1)CS(=O)(=O)C2', 'Nc1ccc2c(c1)CS(=O)(=O)C2']; [0.9999723434448242, 0.9997419118881226, 0.9997152090072632, 0.9972647428512573] +Cn1cnc(NC2CCN(S(C)(=O)=O)CC2)c1; ['CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(N)CC1', 'CS(=O)(=O)N1CCC(=O)CC1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.999968409538269, 0.9999620914459229, 0.997081995010376] +Cc1nc(C)c(Nc2cn(C)cn2)s1; [None]; [None]; [0] +Cn1cnc(NCc2cnc(N)nc2)c1; ['Cn1cnc(N)c1']; ['Nc1ncc(C=O)cn1']; [0.9832009077072144] +CCNS(=O)(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(N)cc1', 'CCNS(=O)(=O)c1ccc(Br)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.9954941272735596, 0.9718453884124756, 0.9101234674453735] +CC(C)c1cc(Nc2cn(C)cn2)nc(N)n1; ['CC(C)c1cc(Cl)nc(N)n1']; ['Cn1cnc(N)c1']; [0.9996625185012817] +CCCOc1ccc(Nc2cn(C)cn2)nc1; ['CCCOc1ccc(Br)nc1']; ['Cn1cnc(N)c1']; [0.9975861310958862] +Cn1cnc(N[C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(Br)cc2)c1; ['Brc1ccc(I)cc1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Clc1ccc(Br)cc1', 'Brc1ccc(Br)cc1', 'Cn1cnc(N)c1']; ['Cn1cnc(N)c1', 'Nc1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccc(Br)cc1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Fc1ccc(Br)cc1']; [0.9990949630737305, 0.9983096718788147, 0.9919720888137817, 0.9723182916641235, 0.9460420608520508, 0.932867169380188, 0.8889268040657043] +CN(C)c1ccc(Nc2cn(C)cn2)cc1Cl; ['CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(N)cc1Cl', 'CN(C)c1ccc(F)cc1Cl', 'CN(C)c1ccc(N)cc1Cl']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9997214674949646, 0.9975662231445312, 0.9892252683639526, 0.9782251119613647, 0.9754471778869629] +Cc1c(Nc2cn(C)cn2)cccc1C(=O)[O-]; [None]; [None]; [0] +COc1ccc(CNc2cn(C)cn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(CCl)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9999737739562988, 0.9991322755813599, 0.9987391233444214, 0.9985596537590027, 0.9977034330368042, 0.9959937334060669] +Cn1cnc(Nc2ccn3nccc3n2)c1; ['Cn1cnc(Br)c1', 'Clc1ccn2nccc2n1', 'Cn1cnc(Cl)c1', 'Brc1ccn2nccc2n1', 'Cn1cnc(N)c1']; ['Nc1ccn2nccc2n1', 'Cn1cnc(N)c1', 'Nc1ccn2nccc2n1', 'Cn1cnc(N)c1', 'O=c1ccn2nccc2[nH]1']; [0.9998112320899963, 0.9997692108154297, 0.9996798038482666, 0.9992750287055969, 0.9493279457092285] +CNS(=O)(=O)c1ccc(Nc2cn(C)cn2)c(C)c1; ['CNS(=O)(=O)c1ccc(Br)c(C)c1']; ['Cn1cnc(N)c1']; [0.9991120100021362] +CCN(CC)C(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(I)cc1', 'CCN(CC)C(=O)c1ccc(N)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'CCN(CC)C(=O)c1ccc(F)cc1']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9991632699966431, 0.9987096786499023, 0.996833086013794, 0.9968116283416748, 0.9967225790023804, 0.9088213443756104] +CC(=O)N1CCCN(c2cccc(Nc3cn(C)cn3)c2)CC1; [None]; [None]; [0] +Cn1cnc(Nc2ccccc2-n2cccn2)c1; ['Brc1ccccc1-n1cccn1', 'Cn1cnc(Br)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Clc1ccccc1-n1cccn1', 'Cn1cnc(N)c1']; ['Cn1cnc(N)c1', 'Nc1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccccc1-n1cccn1', 'Cn1cnc(N)c1', 'Fc1ccccc1-n1cccn1']; [0.9999451041221619, 0.9999438524246216, 0.9997519254684448, 0.9997371435165405, 0.9997318387031555, 0.9987403750419617, 0.9919161796569824] +COc1ccc(Cl)cc1Nc1cn(C)cn1; ['COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1N', 'COc1ccc(Cl)cc1Br', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1F', 'COc1ccc(Cl)cc1Cl']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9996243119239807, 0.9944395422935486, 0.9736394882202148, 0.9622399806976318, 0.9462008476257324, 0.9027265310287476, 0.846024751663208] +COc1cc(OC)c(Nc2cn(C)cn2)cc1Cl; ['COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Cl)cc1N', 'COc1cc(OC)c(Br)cc1Cl']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9977669715881348, 0.9579492807388306, 0.8511731624603271] +Cn1cnc(Nc2ccc3c(c2)CCO3)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Brc1ccc2c(c1)CCO2', 'Cn1cnc(N)c1']; ['Nc1ccc2c(c1)CCO2', 'Nc1ccc2c(c1)CCO2', 'Cn1cnc(N)c1', 'Ic1ccc2c(c1)CCO2']; [0.9999067783355713, 0.999848484992981, 0.9988635182380676, 0.9986296892166138] +Cn1cnc(Nc2c[nH]c3ccccc23)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Brc1c[nH]c2ccccc12']; ['Nc1c[nH]c2ccccc12', 'Nc1c[nH]c2ccccc12', 'Ic1c[nH]c2ccccc12', 'Cn1cnc(N)c1']; [0.9889004230499268, 0.9884636402130127, 0.9858493804931641, 0.9619234800338745] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1cn(C)cn1; ['COc1cc(C(=O)N2CCOCC2)ccc1N', 'COc1cc(C(=O)N2CCOCC2)ccc1N']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; [0.9999048709869385, 0.9996132850646973] +COc1cc(Nc2cn(C)cn2)ccc1O; ['COc1cc(N)ccc1O', 'COc1cc(N)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9986715316772461, 0.9893283247947693, 0.9468868970870972, 0.9385755062103271] +Cn1cnc(Nc2cccc3c2OCO3)c1; ['Cn1cnc(Br)c1', 'Brc1cccc2c1OCO2', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; ['Nc1cccc2c1OCO2', 'Cn1cnc(N)c1', 'Ic1cccc2c1OCO2', 'Fc1cccc2c1OCO2', 'OB(O)c1cccc2c1OCO2', 'Nc1cccc2c1OCO2']; [0.9992862939834595, 0.9882657527923584, 0.9842712879180908, 0.9737648367881775, 0.9505249261856079, 0.9481134414672852] +CC(=O)Nc1cccc(Nc2cn(C)cn2)c1; ['CC(=O)Nc1cccc(N)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(Br)c1', 'CC(=O)Nc1cccc(Cl)c1', 'CC(=O)Nc1cccc(N)c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; [0.9996063709259033, 0.9984232187271118, 0.9961912631988525, 0.9867202639579773, 0.9736890196800232] +Cn1cnc(Nc2ccc(C(C)(C)C)cc2)c1; ['CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(N)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Cl)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9994113445281982, 0.9982702732086182, 0.9973529577255249, 0.9971598386764526, 0.9896810054779053] +Cn1cnc(Nc2cnc3ccccc3c2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Brc1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1', 'Cn1cnc(N)c1']; [0.9991641044616699, 0.9958956241607666, 0.9924837946891785, 0.966898500919342] +Cn1cnc(Nc2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +Cn1cnc(NCc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(I)cc1', 'CN(C)C(=O)c1ccc(N)cc1', 'CN(C)C(=O)c1ccc(Br)cc1', 'CN(C)C(=O)c1ccc(Cl)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9997178316116333, 0.9986168742179871, 0.9964250922203064, 0.9943162798881531, 0.9784979820251465] +Cn1cnc(NCc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(C(C)(C)C)nc2)c1; ['CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(N)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1']; [0.9998823404312134, 0.9993988275527954, 0.9990466833114624, 0.9983869194984436] +CC(C)c1ccc2nc(Nc3cn(C)cn3)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Nc2cn(C)cn2)c(=O)[nH]1; ['Cc1ccc(N)c(=O)[nH]1']; ['Cn1cnc(Br)c1']; [0.955720841884613] +Cn1cnc(NCc2nc3ccccc3[nH]2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; ['NCc1nc2ccccc2[nH]1', 'NCc1nc2ccccc2[nH]1']; [0.9998730421066284, 0.9958502054214478] +Cn1cnc(Nc2csc(N)n2)c1; [None]; [None]; [0] +Cn1cnc(Nc2scc3c2OCCO3)c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2cn(C)cn2)c1; [None]; [None]; [0] +Cn1cnc(NCCCc2ccccc2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'ClCCCc1ccccc1', 'BrCCCc1ccccc1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['NCCCc1ccccc1', 'NCCCc1ccccc1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'NCCCc1ccccc1', 'O=CCCc1ccccc1', 'OCCCc1ccccc1']; [0.9999672174453735, 0.9994025826454163, 0.9955029487609863, 0.995254635810852, 0.9900741577148438, 0.9881402850151062, 0.8846697211265564] +CSc1ccc(Nc2cn(C)cn2)cc1; ['CSc1ccc(N)cc1', 'CSc1ccc(N)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1', 'CSc1ccc(Cl)cc1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9991307258605957, 0.9985275864601135, 0.9981343746185303, 0.9971892833709717, 0.9937780499458313, 0.9593966007232666] +CC(=O)N[C@@H]1CC[C@@H](Nc2cn(C)cn2)CC1; [None]; [None]; [0] +Cn1cnc(Nc2cc3ccccc3s2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; ['Nc1cc2ccccc2s1', 'Nc1cc2ccccc2s1']; [0.9998665452003479, 0.9998497366905212] +Cn1cnc(Nc2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +CC[C@@H](CO)Nc1cn(C)cn1; ['CC[C@H](N)CO', 'CC[C@H](N)CO', 'CC[C@H](N)CO']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(C#N)c1']; [0.9948680400848389, 0.9935859441757202, 0.9852879047393799] +Cc1cc(Nc2cn(C)cn2)nc(N)n1; ['Cc1cc(Cl)nc(N)n1', 'Cc1cc(Br)nc(N)n1']; ['Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9989660382270813, 0.9984229803085327] +Cn1cnc(N[C@H](CO)Cc2ccccc2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(I)c1']; ['N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1', 'N[C@H](CO)Cc1ccccc1']; [0.9950027465820312, 0.9919687509536743, 0.9883544445037842] +Cn1cnc(Nc2ccc(F)cc2Cl)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(F)cc1Cl', 'Fc1ccc(Br)c(Cl)c1', 'Nc1ccc(F)cc1Cl', 'Fc1ccc(I)c(Cl)c1']; [0.9998325109481812, 0.9997674822807312, 0.9987053275108337, 0.9974671602249146] +CCN1CCN(Cc2ccc(Nc3cn(C)cn3)cc2)CC1; ['CCN1CCN(Cc2ccc(N)cc2)CC1', 'CCN1CCN(Cc2ccc(N)cc2)CC1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; [0.9799337983131409, 0.9465205669403076] +COc1ccc(Nc2cn(C)cn2)cc1OC; ['COc1ccc(N)cc1OC', 'COc1ccc(N)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(F)cc1OC', 'COc1ccc(Cl)cc1OC']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9998663067817688, 0.998294472694397, 0.9980672597885132, 0.9941710233688354, 0.992844820022583, 0.9843599796295166, 0.9642351865768433] +Cn1cnc(Nc2ncc(Br)cn2)c1; ['Clc1ncc(Br)cn1', 'Cn1cnc(Cl)c1', 'Brc1cnc(Br)nc1', 'CS(=O)(=O)c1ncc(Br)cn1', 'CS(=O)c1ncc(Br)cn1', 'Cn1cnc(Br)c1']; ['Cn1cnc(N)c1', 'Nc1ncc(Br)cn1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Nc1ncc(Br)cn1']; [0.9999606609344482, 0.9998055100440979, 0.9982783794403076, 0.9947242736816406, 0.9900496006011963, 0.9876039028167725] +CCc1ccc(Nc2cn(C)cn2)cc1; ['CCc1ccc(N)cc1', 'CCc1ccc(N)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Cl)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9997506141662598, 0.9996734857559204, 0.9989392161369324, 0.9987860321998596, 0.9977673292160034, 0.9959067106246948] +Cn1cnc(Nc2ccc3c(c2)CCC(=O)N3)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['Nc1ccc2c(c1)CCC(=O)N2', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(Br)ccc2N1', 'O=C1CCc2cc(I)ccc2N1', 'Nc1ccc2c(c1)CCC(=O)N2', 'O=C1CCc2cc(F)ccc2N1', 'O=C1CCc2cc(Cl)ccc2N1']; [0.9999473094940186, 0.9998193383216858, 0.9988518953323364, 0.9964267015457153, 0.9945301413536072, 0.9837853908538818, 0.9643232822418213] +Cn1cnc(Nc2ccc(Cl)cc2Cl)c1; ['Cn1cnc(Br)c1', 'Clc1ccc(Br)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'Cn1cnc(I)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(Cl)cc1Cl', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Nc1ccc(Cl)cc1Cl', 'Nc1ccc(Cl)cc1Cl', 'Fc1ccc(Cl)cc1Cl']; [0.9987632036209106, 0.9964892864227295, 0.9913794994354248, 0.9867908358573914, 0.9781688451766968, 0.8108808994293213] +Cn1cnc(NCCCn2cncn2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; ['NCCCn1cncn1', 'NCCCn1cncn1']; [0.9999944567680359, 0.9995582103729248] +COc1cc(Nc2cn(C)cn2)ccc1N1CCOCC1; ['COc1cc(N)ccc1N1CCOCC1', 'COc1cc(N)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9999982118606567, 0.9999778270721436, 0.9999003410339355] +Cn1cnc(Nc2cc3ccccn3n2)c1; ['Cn1cnc(Cl)c1', 'Clc1cc2ccccn2n1', 'Brc1cc2ccccn2n1', 'Cn1cnc(Br)c1']; ['Nc1cc2ccccn2n1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Nc1cc2ccccn2n1']; [0.9990729093551636, 0.9958659410476685, 0.9857045412063599, 0.9838494062423706] +Cn1cnc(Nc2ncc3cccn3n2)c1; ['Clc1ncc2cccn2n1']; ['Cn1cnc(N)c1']; [0.9999516010284424] +C[C@H]1CCCN1C(=O)c1ccc(Nc2cn(C)cn2)cc1; [None]; [None]; [0] +Cn1cnc(Nc2ccc3c(c2)CC(C)(C)O3)c1; [None]; [None]; [0] +COc1ccc2cccc(Nc3cn(C)cn3)c2c1; ['COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(N)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9998800754547119, 0.9996838569641113, 0.9989166259765625] +Cn1cnc(Nc2cn(C)nc2C(F)(F)F)c1; ['Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(N)c(C(F)(F)F)n1', 'Cn1cc(I)c(C(F)(F)F)n1', 'Cn1cc(Br)c(C(F)(F)F)n1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9999706745147705, 0.9999111890792847, 0.9998832941055298, 0.9996311664581299] +COc1cc(Nc2cn(C)cn2)ccc1Cl; ['COc1cc(N)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'COc1cc(I)ccc1Cl', 'COc1cc(F)ccc1Cl', 'COc1cc(N)ccc1Cl']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; [0.9999493360519409, 0.9994632005691528, 0.9992472529411316, 0.9980739951133728, 0.9922962188720703] +Cn1cnc(Nc2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +Cc1csc2c(Nc3cn(C)cn3)ncnc12; ['Cc1csc2c(Cl)ncnc12']; ['Cn1cnc(N)c1']; [0.9993211030960083] +COc1cc(F)c(Nc2cn(C)cn2)cc1OC; ['COc1cc(N)c(F)cc1OC', 'COc1cc(N)c(F)cc1OC', 'COc1cc(F)c(Br)cc1OC', 'COc1cc(F)c(F)cc1OC']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9998751282691956, 0.9998719692230225, 0.9950377941131592, 0.941802978515625] +Cn1cnc(Nc2ncc(Cl)cn2)c1; ['Cn1cnc(Br)c1', 'Clc1cnc(Cl)nc1', 'Cn1cnc(Cl)c1', 'CS(=O)(=O)c1ncc(Cl)cn1']; ['Nc1ncc(Cl)cn1', 'Cn1cnc(N)c1', 'Nc1ncc(Cl)cn1', 'Cn1cnc(N)c1']; [0.9972602128982544, 0.9956417083740234, 0.9898105263710022, 0.974617600440979] +CNC(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(N)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.996748685836792, 0.9956637620925903, 0.9954419136047363, 0.9841928482055664, 0.8511171936988831] +COc1cc(Nc2cn(C)cn2)c(OC)cc1Br; ['COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br']; ['Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9949272871017456, 0.888628363609314] +Cn1cnc(Nc2cc(N)nc3[nH]ccc23)c1; ['Cn1cnc(N)c1']; ['Nc1cc(Br)c2cc[nH]c2n1']; [0.9658894538879395] +COc1cc(CS(C)(=O)=O)ccc1Nc1cn(C)cn1; [None]; [None]; [0] +COc1ccc(OC)c(CNc2cn(C)cn2)c1; ['COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(CBr)c1', 'COc1ccc(OC)c(CN)c1', 'COc1ccc(OC)c(C=O)c1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.9999555349349976, 0.9991010427474976, 0.9990257024765015, 0.9959670305252075, 0.9751219749450684] +CCNC(=O)c1ccc(Nc2cn(C)cn2)nc1; ['CCNC(=O)c1ccc(Br)nc1', 'CCNC(=O)c1ccc(Cl)nc1']; ['Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9952558279037476, 0.9872822761535645] +CO[C@@H]1CC[C@@H](Nc2cn(C)cn2)CC1; ['CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1', 'CO[C@H]1CC[C@H](N)CC1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(I)c1']; [0.9999365210533142, 0.9997462034225464, 0.993778645992279] +COc1cc(Nc2cn(C)cn2)cc(OC)c1; ['COc1cc(N)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(N)cc(OC)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(F)cc(OC)c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9997446537017822, 0.999558687210083, 0.9993886351585388, 0.9985593557357788, 0.9964709281921387, 0.9943360686302185, 0.9933587312698364, 0.9908585548400879] +CCNC(=O)N1CCC(Nc2cn(C)cn2)CC1; ['CCNC(=O)N1CCC(N)CC1', 'CCNC(=O)N1CCC(N)CC1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; [0.9994227886199951, 0.998603880405426] +Cn1cnc(Nc2cnn(CCO)c2)c1; ['Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; ['Nc1cnn(CCO)c1', 'OCCn1cc(I)cn1', 'Nc1cnn(CCO)c1', 'OCCn1cc(Br)cn1']; [0.9999400973320007, 0.9996374845504761, 0.9990845918655396, 0.9660129547119141] +Cn1cnc(Nc2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc3cn[nH]c3c2)c1; ['Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Brc1ccc2cn[nH]c2c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Clc1ccc2cn[nH]c2c1']; ['OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Nc1ccc2cn[nH]c2c1', 'Cn1cnc(N)c1', 'Ic1ccc2cn[nH]c2c1', 'Fc1ccc2cn[nH]c2c1', 'Cn1cnc(N)c1']; [0.9999497532844543, 0.9994934797286987, 0.9989861249923706, 0.9962525367736816, 0.9960989952087402, 0.9870364665985107, 0.9227840900421143] +CNC(=O)c1ccc(OC)c(Nc2cn(C)cn2)c1; ['CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(N)c1', 'CNC(=O)c1ccc(OC)c(Br)c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9984811544418335, 0.9967716932296753, 0.8777603507041931] +CCn1cc(Nc2cn(C)cn2)cn1; ['CCn1cc(N)cn1', 'CCn1cc(N)cn1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1']; [0.9943726062774658, 0.9906465411186218] +Cn1cnc(Nc2cc(-c3cccnc3)ccn2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; ['Nc1cc(-c2cccnc2)ccn1', 'Nc1cc(-c2cccnc2)ccn1']; [0.9999564290046692, 0.9999127388000488] +COc1ccc2c(c1)c(Nc1cn(C)cn1)cn2C; [None]; [None]; [0] +Cn1cnc(Nc2ncc3sccc3n2)c1; ['Clc1ncc2sccc2n1']; ['Cn1cnc(N)c1']; [0.9999606609344482] +CC(C)c1nn(C)cc1Nc1cn(C)cn1; ['CC(C)c1nn(C)cc1Br']; ['Cn1cnc(N)c1']; [0.99332195520401] +Cn1cnc(Nc2ccc(C[NH+](C)C)cc2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(OC(F)(F)F)cc2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['Nc1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccc(OC(F)(F)F)cc1', 'FC(F)(F)Oc1ccc(Cl)cc1', 'Fc1ccc(OC(F)(F)F)cc1']; [0.9999914169311523, 0.9999846816062927, 0.9999775886535645, 0.9999696016311646, 0.9999039173126221, 0.9998579025268555, 0.9996733665466309, 0.9942221641540527] +Cn1cnc(Nc2cc3ccccc3o2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2cn(C)cn2)c1; [None]; [None]; [0] +Cn1cnc(Nc2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +COc1ccc2nc(Nc3cn(C)cn3)[nH]c2c1; ['COc1ccc2nc(Cl)[nH]c2c1']; ['Cn1cnc(N)c1']; [0.8864902257919312] +COc1ccc2oc(Nc3cn(C)cn3)cc2c1; [None]; [None]; [0] +Cn1cnc(Nc2cn(C)c3ccccc23)c1; [None]; [None]; [0] +CCc1cccc(Nc2cn(C)cn2)n1; ['CCc1cccc(N)n1', 'CCc1cccc(N)n1', 'CCc1cccc(Br)n1', 'CCc1cccc(N)n1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1']; [0.9997201561927795, 0.9994641542434692, 0.9993401765823364, 0.9993232488632202] +Cn1cnc(Nc2ccc3c(cnn3C)c2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(I)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(N)ccc21', 'Cn1ncc2cc(Cl)ccc21', 'Cn1ncc2cc(F)ccc21']; [0.9999974370002747, 0.999994158744812, 0.9999722242355347, 0.9999690055847168, 0.999843955039978, 0.9997758865356445] +Cn1cnc(Nc2cc(Br)cn2C)c1; [None]; [None]; [0] +Cn1cnc(Nc2ncn3c2CCCC3)c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cn(C)cn2)cn1; ['CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(I)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Br)cn1', 'CN(C)c1ccc(N)cn1', 'CN(C)c1ccc(Cl)cn1']; ['Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(I)c1', 'Cn1cnc(N)c1']; [0.9995846748352051, 0.9994498491287231, 0.9976418018341064, 0.9960705041885376, 0.9925991296768188, 0.979324460029602] +Cc1cc(Nc2cn(C)cn2)cc(C)c1OCCO; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3cn(C)cn3)ccc12; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(I)ccc12', 'Cc1n[nH]c2cc(N)ccc12', 'Cc1n[nH]c2cc(F)ccc12']; ['Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.9999979734420776, 0.9999840259552002, 0.9999683499336243, 0.9999561309814453, 0.9998533725738525, 0.9997178316116333] +Cn1cnc(Nc2cccc(N3CCCC3=O)c2)c1; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1', 'Cn1cnc(N)c1']; ['Nc1cccc(N2CCCC2=O)c1', 'Nc1cccc(N2CCCC2=O)c1', 'O=C1CCCN1c1cccc(Br)c1', 'O=C1CCCN1c1cccc(Cl)c1']; [0.9994308948516846, 0.9906165599822998, 0.9801497459411621, 0.9307312965393066] +Cn1cnc(NNC(=O)c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +Cn1cnc(Nc2cc3ccc(C(C)(C)O)cc3[nH]2)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc3c(c2)c(Cl)nn3C)c1; [None]; [None]; [0] +Cn1cnc(Nc2ccc(CCO)cc2)c1; ['Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1']; ['OCCc1ccc(I)cc1', 'Nc1ccc(CCO)cc1', 'OCCc1ccc(Br)cc1', 'Nc1ccc(CCO)cc1']; [0.9993188381195068, 0.9992766976356506, 0.9991101622581482, 0.999029278755188] +CC(=O)N1CCC(n2cc(Nc3cn(C)cn3)cn2)CC1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1cn(C)cn1; ['Cc1cc(N2CCOCC2)ccc1N', 'Cc1cc(N2CCOCC2)ccc1N']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; [0.9999960660934448, 0.9999828338623047] +COc1cc(-c2cnn(C)c2)ccc1Nc1cn(C)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cn(C)cn2)c(Cl)c1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cn(C)cn2)c(OC)c1; ['CNC(=O)c1ccc(Br)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1', 'CNC(=O)c1ccc(N)c(OC)c1']; ['Cn1cnc(N)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; [0.9867063760757446, 0.9839485883712769, 0.9791253209114075] +Cc1ncc(-c2ccc(Nc3cn(C)cn3)cc2)n1C; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1cn(C)cn1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1cn(C)cn1; ['COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1N', 'COc1cc(S(C)(=O)=O)ccc1Br']; ['Cn1cnc(Cl)c1', 'Cn1cnc(Br)c1', 'Cn1cnc(N)c1']; [0.9998335838317871, 0.9998146295547485, 0.9982061386108398] +CCNC(=O)c1ccc(Nc2cn(C)cn2)cc1; ['CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(Br)cc1', 'CCNC(=O)c1ccc(N)cc1', 'CCNC(=O)c1ccc(I)cc1']; ['Cn1cnc(Br)c1', 'Cn1cnc(N)c1', 'Cn1cnc(Cl)c1', 'Cn1cnc(N)c1']; [0.9927694797515869, 0.9914886951446533, 0.9898666143417358, 0.9651001691818237] +CCNC(=O)Cc1ccc(Nc2cn(C)cn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Cn1cnc(N)c1']; [0.9966357350349426] +CNC(=O)c1ccc(C)c(Nc2cn(C)cn2)c1; ['CNC(=O)c1ccc(C)c(N)c1', 'CNC(=O)c1ccc(C)c(N)c1']; ['Cn1cnc(Br)c1', 'Cn1cnc(Cl)c1']; [0.9998635053634644, 0.9984703660011292] +Cn1cnc(Nc2cc(S(C)(=O)=O)ccc2Cl)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Cn1cnc(N)c1']; [0.9991269111633301] +CN(C)C(=O)c1ccc(Nc2cn(C)cn2)nc1; ['CN(C)C(=O)c1ccc(Cl)nc1', 'CN(C)C(=O)c1ccc(Br)nc1']; ['Cn1cnc(N)c1', 'Cn1cnc(N)c1']; [0.9993371963500977, 0.9953969717025757] +Cn1cnc(Nc2cc(C(C)(C)O)n(C)n2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1cn(C)cn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)ccn1; ['CNC(=O)c1ccccc1B(O)O', 'CNC(=O)c1ccccc1B(O)O']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999161958694458, 0.9997985363006592] +Cc1nnc(-c2ccccc2-c2cc(N)ccn2)[nH]1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1cn(C)cn1; [None]; [None]; [0] +CCn1cc(-c2cc(N)ccn2)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999719262123108, 0.9999697208404541, 0.9995732307434082] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)ccn1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1B(O)O', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1Br']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999237656593323, 0.9996427297592163, 0.9912277460098267, 0.8504748344421387] +CCOc1ccccc1-c1cc(N)ccn1; ['CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1Br', 'CCOc1ccccc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999206066131592, 0.999919056892395, 0.9997842311859131, 0.9995972514152527, 0.9984301328659058, 0.9799887537956238, 0.9644087553024292] +Nc1ccnc(-c2cccc(C(F)(F)F)c2)c1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999905824661255, 0.999967098236084, 0.9999319911003113, 0.9998793601989746, 0.9608033895492554, 0.8124862313270569] +Nc1ccnc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +Nc1ccnc(-c2ccccc2OC(F)(F)F)c1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'Nc1ccnc(Cl)c1', 'FC(F)(F)Oc1ccccc1I', 'Nc1ccnc(O)c1', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br', 'FC(F)(F)Oc1ccccc1Cl']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccnc(Br)c1', 'OB(O)c1ccccc1OC(F)(F)F', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999921321868896, 0.9999788999557495, 0.9999452233314514, 0.9997997283935547, 0.999733567237854, 0.999462366104126, 0.9987668395042419, 0.9985645413398743, 0.9968489408493042, 0.8811350464820862] +CP(C)(=O)c1ccccc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cnn(Cc3ccccc3)c2)c1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999884366989136, 0.9999738931655884] +Cn1cnc2ccc(-c3cc(N)ccn3)cc2c1=O; ['Cn1cnc2ccc(Br)cc2c1=O']; ['Nc1ccnc(Cl)c1']; [0.9769922494888306] +COc1ccc(F)cc1[C@@H](C)c1cc(N)ccn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(N)ccn1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br', 'NC(=O)c1ccccc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9990688562393188, 0.9986430406570435, 0.9972624182701111, 0.9888345003128052, 0.9885406494140625, 0.9853076934814453, 0.7523100972175598] +Nc1ccnc(-c2cnn(CCO)c2)c1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OCCn1cc(B(O)O)cn1']; [0.999675452709198, 0.9996035099029541, 0.9958959817886353] +Nc1ccnc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +Nc1ccnc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)ccn2)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(B(O)O)c(Br)c1', 'Cc1ccc(I)c(Br)c1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1']; [0.997647762298584, 0.8659353256225586, 0.7699505090713501] +Nc1ccnc(-c2cccc(NC(=O)c3ccccc3)c2)c1; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999982714653015, 0.9999933242797852, 0.9999539256095886, 0.9998232126235962] +Nc1ccnc(-c2cc(Cl)ccc2Cl)c1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1ccc(Cl)c(Br)c1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'OB(O)c1cc(Cl)ccc1Cl', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9997880458831787, 0.9991468191146851, 0.9966596961021423, 0.9955493211746216, 0.9667801856994629, 0.9578083753585815, 0.7743468284606934] +Nc1ccnc([C@@H](N)c2ccco2)c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(N)ccn2)cs1; [None]; [None]; [0] +COc1cnc(-c2cc(N)ccn2)nc1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)ccn2)s1; [None]; [None]; [0] +Nc1ccnc(-c2c(Cl)cccc2Cl)c1; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Clc1cccc(Cl)c1Br', 'Nc1ccnc(O)c1', 'Clc1cccc(Cl)c1Br']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccnc(Cl)c1', 'OB(O)c1c(Cl)cccc1Cl', 'Nc1ccnc(Br)c1']; [0.9987167119979858, 0.9930676221847534, 0.9911078214645386, 0.9860783815383911, 0.9803836345672607] +Cc1ccc(Cl)c(-c2cc(N)ccn2)c1; ['Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(B(O)O)c1', 'Cc1ccc(Cl)c(I)c1', 'Cc1ccc(Cl)c(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9982833862304688, 0.9981263875961304, 0.9964439868927002, 0.9964355230331421, 0.954230785369873, 0.8656148910522461, 0.8607618808746338] +CNc1nc(C)c(-c2cc(N)ccn2)s1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(Br)c2)c1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(O)c1', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'F[B-](F)(F)c1cccc(Br)c1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1', 'Brc1cccc(I)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'OB(O)c1cccc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccncc1']; [0.999951958656311, 0.9998655319213867, 0.999140739440918, 0.998039722442627, 0.997563362121582, 0.9973254799842834, 0.9955383539199829, 0.9369489550590515, 0.8827621936798096, 0.8741968870162964, 0.860511302947998, 0.7632462382316589] +Nc1ccnc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cnn3ncccc23)c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12', 'Brc1cnn2ncccc12']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9997623562812805, 0.9997199773788452, 0.9938136339187622, 0.9856447577476501] +Nc1ccnc(-c2ccnc(N)n2)c1; [None]; [None]; [0] +Cc1c(-c2cc(N)ccn2)sc(=O)n1C; [None]; [None]; [0] +Nc1ccnc(-c2ccc3ccccc3c2)c1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', None, 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', None, 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999904632568359, 0.9999319911003113, 0.999807596206665, 0.9990935325622559, 0, 0.8902355432510376, 0.8830909729003906] +Nc1ccnc(-c2c[nH]nc2C(F)(F)F)c1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C', 'FC(F)(F)c1n[nH]cc1Br', 'FC(F)(F)c1n[nH]cc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999550580978394, 0.9997426271438599, 0.9992812871932983, 0.9964059591293335] +NC(=O)c1c(F)cccc1-c1cc(N)ccn1; ['NC(=O)c1c(F)cccc1Br']; ['Nc1ccnc(Cl)c1']; [0.9997876882553101] +Nc1ccnc(-c2cncc3ccccc23)c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Brc1cncc2ccccc12', 'Brc1cncc2ccccc12']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'OB(O)c1cncc2ccccc12', 'OB(O)c1cncc2ccccc12', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999969005584717, 0.999994158744812, 0.9999063014984131, 0.9997687339782715, 0.9966956377029419, 0.9952816963195801] +Cn1cc(-c2ccc(-c3cc(N)ccn3)cc2)cn1; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(-c2ccc(Cl)cc2)c1', 'Nc1ccnc(Br)c1']; [1.0, 0.9999957084655762, 0.9920662641525269] +Nc1ccnc(-c2cccc(CC(=O)[O-])c2)c1; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(N)ccn3)ccc21; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999997615814209, 0.9999984502792358, 0.9999808669090271, 0.9998568892478943, 0.9767844676971436] +CC(C)(C)c1cnc(Cc2cc(N)ccn2)o1; [None]; [None]; [0] +Nc1ccnc(-c2ccc3c(N)[nH]nc3c2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(CO)c2)c1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', None]; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(B(O)O)c1', None]; [0.9998934268951416, 0.9993917942047119, 0.9786982536315918, 0.9652907848358154, 0] +Nc1ccnc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(O)c2)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1']; [0.9992212057113647, 0.9989275932312012, 0.9975236654281616, 0.9960073232650757, 0.8135968446731567] +CN1c2ccc(-c3cc(N)ccn3)cc2CS1(=O)=O; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)ccn2)n1; [None]; [None]; [0] +Nc1ccnc(-c2csc3ncncc23)c1; ['Brc1csc2ncncc12', 'Brc1csc2ncncc12']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9978864192962646, 0.9478553533554077] +COc1cc(-c2cc(N)ccn2)ccc1C(=O)[O-]; [None]; [None]; [0] +CSc1nc(-c2cc(N)ccn2)c[nH]1; [None]; [None]; [0] +Nc1ccnc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(N)ccn2)c1; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9997481107711792, 0.9994192719459534] +CC(C)n1cc(-c2cc(N)ccn2)nn1; [None]; [None]; [0] +Nc1ccnc(-c2cncnc2N)c1; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; ['Nc1ncncc1Br', 'Nc1ncncc1Br']; [0.9933742880821228, 0.9879779815673828] +CC(C)c1oncc1-c1cc(N)ccn1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)ccn2)cc1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999970197677612, 0.9999922513961792] +CC(=O)Nc1cccc(-c2cc(N)ccn2)c1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999822378158569, 0.9999674558639526, 0.9996871948242188, 0.9996775984764099] +Nc1ccnc(-c2ccc(F)cc2C(F)(F)F)c1; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(I)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Br)c(C(F)(F)F)c1', 'Fc1ccc(Cl)c(C(F)(F)F)c1']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9998300671577454, 0.9998064041137695, 0.9994016885757446, 0.9990891218185425, 0.9965740442276001, 0.9820508360862732, 0.9218723773956299, 0.9078888297080994] +CCNc1nc2ccc(-c3cc(N)ccn3)cc2s1; [None]; [None]; [0] +COc1ccc(-c2cc(N)ccn2)cc1Cl; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(Br)cc1Cl']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999975562095642, 0.9999908208847046, 0.9999003410339355, 0.9992032051086426, 0.9991075992584229, 0.9989686012268066, 0.9854910373687744, 0.9299458861351013, 0.8871976137161255] +Nc1ccnc(Cc2c(F)cccc2F)c1; [None]; [None]; [0] +CCCn1cc(-c2cc(N)ccn2)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999871850013733, 0.9999866485595703, 0.9998495578765869] +Cn1cc(-c2cc(N)ccn2)c2ccccc21; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9998387098312378, 0.9995948076248169] +Nc1ccnc(-c2cnn3ccccc23)c1; ['Nc1ccnc(Br)c1', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Ic1cnn2ccccc12', 'Nc1ccnc(Cl)c1', 'Brc1cnn2ccccc12', 'Brc1cnn2ccccc12']; ['OB(O)c1cnn2ccccc12', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'OB(O)c1cnn2ccccc12', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999318718910217, 0.9999251961708069, 0.9998688697814941, 0.9997915625572205, 0.9995931386947632, 0.9325988292694092, 0.8450090885162354] +CC[C@H](CO)c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cc[nH]c(=O)c2)c1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9998049736022949, 0.9987534284591675] +Nc1ccnc(-c2cccc3c2C(=O)CC3)c1; ['Nc1ccnc(Cl)c1']; ['O=C1CCc2cccc(Br)c21']; [0.9517637491226196] +C[S@](=O)c1ccc(-c2cc(N)ccn2)cc1; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999899864196777, 0.9998184442520142, 0.9992840886116028] +Nc1ccnc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2cc(N)ccn2)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(N)ccn2)cc1; [None]; [None]; [0] +Nc1ccnc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(N)ccn2)c1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999979734420776, 0.9999961853027344, 0.9999834299087524, 0.9999006986618042, 0.9450695514678955] +CCNS(=O)(=O)c1ccccc1-c1cc(N)ccn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)ccn2)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(I)cc1', None, 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', None, 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999995231628418, 0.9999985694885254, 0.9999948740005493, 0.9999828338623047, 0.9995653033256531, 0.9987772107124329, 0, 0.9760436415672302, 0.7899736166000366] +CN(c1ncccc1Cc1cc(N)ccn1)S(C)(=O)=O; [None]; [None]; [0] +Nc1ccnc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cnc3[nH]ccc3c2)c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Brc1cnc2[nH]ccc2c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Nc1ccnc(Br)c1']; [0.9999995231628418, 0.9999974966049194, 0.9999723434448242, 0.9995982646942139, 0.9953157305717468] +COc1cccc(F)c1-c1cc(N)ccn1; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1']; [0.999998152256012, 0.9999953508377075, 0.9999772310256958, 0.9999188184738159, 0.9998255968093872, 0.9977244138717651, 0.9545912742614746] +Nc1ccnc(-c2c[nH]c3cnccc23)c1; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Brc1c[nH]c2cnccc12', 'Brc1c[nH]c2cnccc12']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9922530651092529, 0.9854451417922974, 0.9752049446105957, 0.9064394235610962] +Nc1ccnc([C@H](CO)c2ccccc2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.999995231628418, 0.9999891519546509, 0.9998435974121094, 0.9996411800384521] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999995231628418, 0.9999984502792358, 0.9999682903289795, 0.9998906850814819] +Nc1ccnc(-c2ccc(N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Ic1ccc(N2CCOCC2)cc1', 'C1COCCN1', 'C1COCCN1', 'Brc1ccc(N2CCOCC2)cc1', 'Brc1ccc(N2CCOCC2)cc1']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1', 'Nc1ccnc(-c2ccc(Cl)cc2)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [1.0, 0.9999998807907104, 0.9999997615814209, 0.9999980330467224, 0.9972181916236877, 0.9963823556900024, 0.9957709908485413, 0.9757093191146851, 0.9548294544219971] +CS(=O)(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999997615814209, 0.9999992251396179, 0.999982476234436, 0.9999626874923706, 0.8421856164932251] +Nc1ccnc(-c2ccc(-n3cncn3)cc2)c1; ['Nc1ccnc(-c2ccc(F)cc2)c1']; ['c1nc[nH]n1']; [0.9994449615478516] +CC1(c2cc(N)ccn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc([C@H](CO)Cc2ccccc2)c1; [None]; [None]; [0] +Nc1ccnc(-c2c(F)cccc2Cl)c1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Fc1cccc(Cl)c1Br', 'Nc1ccnc(O)c1', 'Fc1cccc(Cl)c1Br', 'Fc1cccc(Cl)c1I', 'Fc1cccc(Cl)c1Cl']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1c(F)cccc1Cl', 'OB(O)c1c(F)cccc1Cl', 'Nc1ccnc(Cl)c1', 'OB(O)c1c(F)cccc1Cl', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999886751174927, 0.9999780654907227, 0.9998751878738403, 0.9983712434768677, 0.9961146116256714, 0.9955865144729614, 0.9942033290863037, 0.9880366325378418, 0.7588629126548767] +Cc1cc(-c2cc(N)ccn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1ccnc(-c2ccc(C(=O)c3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1']; [0.999984860420227, 0.9998912811279297, 0.9997658133506775, 0.9974403381347656, 0.9964325428009033, 0.9813896417617798, 0.905558705329895] +COc1ccc(-c2cc(N)ccn2)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(I)c(OC)c1', 'COc1ccc(Br)c(OC)c1', None]; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', None]; [0.9998157620429993, 0.9996961951255798, 0.9996656179428101, 0.998570442199707, 0.9985269904136658, 0.9961261749267578, 0.9924504160881042, 0.9563338160514832, 0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)ccn2)CC1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(N)ccn2)[nH]1; [None]; [None]; [0] +Nc1ccnc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +Nc1ccnc(-c2nnc(N)s2)c1; [None]; [None]; [0] +CCc1cc(-c2cc(N)ccn2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2nc3ccccc3s2)c1; ['Nc1ccnc(Br)c1']; ['c1ccc2scnc2c1']; [0.9980663061141968] +CC(C)(O)c1cccc(-c2cc(N)ccn2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)ccn2)s1; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)ccn2)nc(N)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(N)ccn3)nc2NC1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(N)ccn2)CC1; [None]; [None]; [0] +Nc1ccnc(-c2cccc3ccsc23)c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Brc1cccc2ccsc12', 'Nc1ccnc(O)c1', 'Brc1cccc2ccsc12']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc2ccsc12', 'Nc1ccnc(Br)c1']; [0.9999979734420776, 0.9999932050704956, 0.9997824430465698, 0.999602198600769, 0.9905881881713867, 0.9796395301818848, 0.8406004905700684] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)ccn3)c2)cc1; [None]; [None]; [0] +Nc1ccnc(-c2cccc3nnsc23)c1; ['Brc1cccc2nnsc12']; ['Nc1ccnc(Cl)c1']; [0.998964786529541] +Nc1ccnc(-c2cncc(N)n2)c1; [None]; [None]; [0] +Nc1ccnc(CCCNC(=O)c2cccs2)c1; [None]; [None]; [0] +Nc1ccnc(CCCNC(=O)C2CCC2)c1; [None]; [None]; [0] +Nc1ccnc(-c2c[nH]c3cccnc23)c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9974806308746338, 0.9904340505599976] +COc1ccc(C#N)cc1-c1cc(N)ccn1; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1I', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1I']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccncc1']; [0.9999970197677612, 0.9999916553497314, 0.999987006187439, 0.9999778270721436, 0.999919593334198, 0.9999058842658997, 0.9986268877983093, 0.9402621984481812, 0.8132548332214355] +CC(=O)Nc1ncc(-c2cc(N)ccn2)[nH]1; [None]; [None]; [0] +Nc1ccnc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Nc1ccnc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(N)ccn1; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1B(O)O', 'COc1ncccc1Br', 'COc1ncccc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9998288154602051, 0.9994686841964722, 0.9986370801925659, 0.9983583092689514, 0.9183399677276611, 0.9005531072616577] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)ccn2)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1']; [1.0, 0.9999997615814209, 0.9999735951423645, 0.9998669624328613, 0.9933540225028992] +C[C@@]1(O)CC[C@H](c2cc(N)ccn2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)ccn2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(N)ccn2)cc1; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999980926513672, 0.9999946355819702, 0.9360423684120178] +CCOc1ccc(-c2cc(N)ccn2)cc1; ['CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(Br)cc1', 'CCO']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1']; [0.9999885559082031, 0.9999791383743286, 0.9999285936355591, 0.9997283220291138, 0.999345064163208, 0.8900231122970581, 0.7709797620773315] +CN(C)c1cc(-c2cc(N)ccn2)cnn1; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(N)ccn3)c2c1; ['Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2nc[nH]c2c1', 'Cc1ccc2[nH]cnc2c1']; ['Nc1ccnc(F)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9917381405830383, 0.991111695766449, 0.9894288778305054, 0.984757661819458, 0.9654269814491272] +CS(=O)(=O)c1cccc(-c2cc(N)ccn2)c1; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'CS(=O)(=O)c1cccc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [1.0, 0.9999991655349731, 0.9999516606330872, 0.9999349117279053, 0.9990618228912354] +COc1cc(-c2cc(N)ccn2)cc(OC)c1OC; ['COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC', 'COc1cc(Br)cc(OC)c1OC']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.999923586845398, 0.9997056722640991, 0.9995702505111694, 0.9986984729766846, 0.9612370729446411, 0.8859196901321411] +Nc1ccnc(-c2nc3ccccc3[nH]2)c1; ['Nc1ccccc1N']; ['Nc1ccnc(C(=O)O)c1']; [0.99976646900177] +COc1ccc(-c2cc(N)ccn2)cc1; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', None, 'COc1ccc(Br)cc1', 'CO']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', None, 'Nc1ccnc(Cl)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1']; [0.9999938011169434, 0.9999819993972778, 0.9999654293060303, 0.9998365044593811, 0.9991368055343628, 0.975907564163208, 0, 0.892167329788208, 0.8829314708709717] +Cc1cc(Nc2cc(N)ccn2)sn1; ['Cc1cc(N)sn1', 'Cc1cc(N)sn1', 'Cc1cc(N)sn1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(F)c1']; [0.9969872236251831, 0.9889988899230957, 0.9732146859169006] +Cc1nc(C(C)(C)O)sc1-c1cc(N)ccn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999786615371704, 0.9999737739562988, 0.9998679757118225, 0.9995912313461304, 0.8260664939880371] +Nc1ccnc(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(N)ccn2)c1; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9982423782348633, 0.9967812299728394] +Nc1ccnc(Nc2ncccn2)c1; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(F)c1']; ['Nc1ncccn1', 'Nc1ncccn1', 'Nc1ncccn1']; [0.9851946830749512, 0.9428372383117676, 0.9328988194465637] +N#Cc1cccc(Cn2cc(-c3cc(N)ccn3)cn2)c1; [None]; [None]; [0] +Nc1ccnc(-c2nccc3ccccc23)c1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(NC(=O)C3CC3)c2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)ccn3)cc2)CC1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(N)ccn2)cc1; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999861717224121, 0.9999833106994629, 0.9999037981033325, 0.9998843669891357] +Nc1ccnc(-c2ccc(OCCO)cc2)c1; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OCCOc1ccc(B(O)O)cc1', 'OCCOc1ccc(B(O)O)cc1', 'OCCO']; [0.9999953508377075, 0.9999788403511047, 0.9999614357948303, 0.9990886449813843, 0.7802493572235107] +Nc1ccnc(-c2cccc(C3CCNCC3)c2)c1; ['Brc1cccc(C2CCNCC2)c1']; ['Nc1ccnc(Br)c1']; [0.8635458946228027] +Nc1ccnc(-c2ccc(C(=O)Nc3ccccc3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'O=C(Nc1ccccc1)c1ccc(Br)cc1']; [0.9999997019767761, 0.9999986290931702, 0.9999948740005493, 0.9999293684959412, 0.9283508658409119] +Nc1ccnc(-c2ccc(C(=O)N3CCOCC3)cc2)c1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 0.9999998807907104, 0.9999992847442627, 0.9999954700469971, 0.8033435344696045] +Nc1ccnc(Nc2ccncn2)c1; ['Clc1ccncn1', 'Nc1ccnc(Br)c1']; ['Nc1ccnc(N)c1', 'Nc1ccncn1']; [0.9545809030532837, 0.8448553085327148] +Nc1ccnc(-c2ccc(C(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'FC(F)(F)c1ccc(I)cc1', 'FC(F)(F)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999973773956299, 0.9999890923500061, 0.9999881386756897, 0.9999653697013855, 0.9998135566711426, 0.9961427450180054, 0.8695831894874573] +C[C@H](O)COc1ccc(-c2cc(N)ccn2)cc1; ['C[C@H](O)CO', 'C[C@H](O)CO']; ['Nc1ccnc(-c2ccc(Cl)cc2)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1']; [0.7922908067703247, 0.7563607692718506] +Nc1ccnc(-c2ccc(C(=O)N3CCOCC3)cn2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999995231628418, 0.9999992847442627, 0.9999618530273438, 0.9999576807022095] +CN(C)c1ccc(-c2cc(N)ccn2)cc1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999987483024597, 0.9999946355819702, 0.999988317489624, 0.9998884797096252, 0.999008297920227, 0.9772676825523376, 0.9592645764350891, 0.9336836338043213] +C[C@@H](O)COc1ccc(-c2cc(N)ccn2)cc1; ['C[C@@H](O)CO', 'C[C@@H](O)CO']; ['Nc1ccnc(-c2ccc(Cl)cc2)c1', 'Nc1ccnc(-c2ccc(F)cc2)c1']; [0.7922908067703247, 0.7563607692718506] +Nc1ccnc(-c2ccc3c(c2)CS(=O)(=O)C3)c1; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9856364727020264, 0.8748328685760498] +CCNS(=O)(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Cl)c1']; [0.9993395805358887] +Nc1ccnc(-c2ccc(Br)cc2)c1; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Brc1ccc(I)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'OB(O)c1ccc(Br)cc1', 'Nc1ccnc(Cl)c1']; [0.9999760985374451, 0.999975323677063, 0.9991243481636047, 0.9991136193275452, 0.9965202808380127, 0.9931670427322388] +CS(=O)(=O)N1CCC(c2cc(N)ccn2)CC1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)ccn2)nc(N)n1; [None]; [None]; [0] +Nc1ccnc([C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(N)ccn3)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)ccn2)cc1Cl; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999933242797852, 0.999993085861206, 0.9754370450973511, 0.9048247337341309] +Cc1c(C(=O)[O-])cccc1-c1cc(N)ccn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)ccn2)c(C)c1; ['CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1']; [0.999986469745636, 0.9999649524688721, 0.999946653842926, 0.9998875856399536] +CCN(CC)C(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999998807907104, 0.9999975562095642, 0.9999804496765137, 0.9998148679733276] +CCCOc1ccc(-c2cc(N)ccn2)nc1; [None]; [None]; [0] +Nc1ccnc(-c2ccccc2-n2cccn2)c1; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Brc1ccccc1-n1cccn1', 'Brc1ccccc1-n1cccn1']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccccc1-n1cccn1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9998798966407776, 0.9996875524520874, 0.9988425970077515, 0.9974004030227661, 0.9730278253555298, 0.9654333591461182] +COc1ccc(Cl)cc1-c1cc(N)ccn1; ['COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1I', 'COc1ccc(Cl)cc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9998562335968018, 0.9998553395271301, 0.9997912049293518, 0.9997861385345459, 0.9996191263198853, 0.9980378746986389, 0.992949366569519, 0.9484269618988037] +Nc1ccnc(-c2ccc3c(c2)CCO3)c1; ['CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Brc1ccc2c(c1)CCO2']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc2c(c1)CCO2', 'Nc1ccnc(Br)c1']; [0.999993085861206, 0.9999576807022095, 0.999893307685852, 0.9997156262397766, 0.9823929071426392] +Nc1ccnc(-c2c[nH]c3ccccc23)c1; ['CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Nc1ccnc(Cl)c1', 'Brc1c[nH]c2ccccc12', 'Brc1c[nH]c2ccccc12']; ['Nc1ccnc(Br)c1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1ccnc(Cl)c1', 'OB(O)c1c[nH]c2ccccc12', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9961737990379333, 0.9943560361862183, 0.9930562973022461, 0.9903386831283569, 0.8408697843551636, 0.8043152689933777] +CC(C)c1ccc2nc(-c3cc(N)ccn3)[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(N)ccn2)cc1Cl; [None]; [None]; [0] +Nc1ccnc(-c2ccn3nccc3n2)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)ccn2)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999346733093262, 0.9998359680175781, 0.991288423538208, 0.9562432169914246] +Nc1ccnc(-c2cnc3ccccc3c2)c1; ['CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Brc1cnc2ccccc2c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cnc2ccccc2c1', 'OB(O)c1cnc2ccccc2c1', 'Nc1ccnc(Br)c1']; [0.9999974966049194, 0.9999886751174927, 0.9997777938842773, 0.9988877773284912, 0.9914060831069946] +Nc1ccnc(-c2cccc3c2OCO3)c1; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Nc1ccnc(Br)c1', 'Ic1cccc2c1OCO2', 'Nc1ccnc(Cl)c1', 'Brc1cccc2c1OCO2', 'Ic1cccc2c1OCO2', 'Nc1ccnc(O)c1', 'Brc1cccc2c1OCO2']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc2c1OCO2', 'Nc1ccnc(Br)c1', 'OB(O)c1cccc2c1OCO2', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1cccc2c1OCO2', 'Nc1ccnc(Br)c1']; [0.9999627470970154, 0.9998904466629028, 0.9995875358581543, 0.9992941617965698, 0.9992857575416565, 0.9972031116485596, 0.9962972402572632, 0.9875808954238892, 0.9503610134124756] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)ccn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)ccn2)cn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'CC(C)(C)c1ccc(Br)cn1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999985694885254, 0.999995768070221, 0.999868631362915, 0.9996745586395264, 0.9302501678466797] +CN(C)C(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999996423721313, 0.9999985694885254, 0.9999791383743286, 0.9999126195907593, 0.8874306678771973] +Nc1ccnc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(N)ccn2)c1; ['COc1cccc(C(=O)O)c1', 'COc1cccc(C(N)=O)c1', 'COc1cccc(C(=O)Cl)c1']; ['Nc1ccnc(N)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(N)c1']; [0.9758577346801758, 0.9718438386917114, 0.8467150330543518] +CC1(COc2cc(N)ccn2)COC1; ['CC1(CO)COC1', 'CC1(CO)COC1', 'CC1(CCl)COC1', 'CC1(CI)COC1', 'CC1(CO)COC1', 'CC1(CO)COC1', 'Cc1ccc(S(=O)(=O)OCC2(C)COC2)cc1', 'CC1(CBr)COC1']; ['Nc1ccnc(F)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(O)c1']; [0.9991106390953064, 0.9983883500099182, 0.9978859424591064, 0.9918041229248047, 0.9897054433822632, 0.9870076179504395, 0.9842978715896606, 0.9791948199272156] +Nc1ccnc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)ccn2)cc1; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(I)cc1', 'CSc1ccc(Br)cc1', None]; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', None]; [0.9999912977218628, 0.9999855756759644, 0.9998831152915955, 0.9996871948242188, 0.998222827911377, 0.9911796450614929, 0.8478797078132629, 0] +Nc1ccnc(-c2csc(N)n2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cc3ccccc3s2)c1; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', None]; ['OB(O)c1cc2ccccc2s1', 'OB(O)c1cc2ccccc2s1', None]; [0.9999977350234985, 0.9999693036079407, 0] +CCN1CCN(Cc2ccc(-c3cc(N)ccn3)cc2)CC1; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999921321868896, 0.9999863505363464, 0.9196203947067261] +Nc1ccnc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +Nc1ccnc(-c2ccc(F)cc2Cl)c1; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Br)c(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(F)cc1Cl', 'OB(O)c1ccc(F)cc1Cl', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999700784683228, 0.9999014139175415, 0.9997817277908325, 0.998820424079895, 0.8884191513061523, 0.7911646366119385] +COc1ccc(-c2cc(N)ccn2)cc1OC; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.999988317489624, 0.9999159574508667, 0.9996455907821655, 0.9963819980621338, 0.976600706577301, 0.9101067781448364, 0.798154354095459] +Nc1ccnc(-c2ccc3c(c2)CCC(=O)N3)c1; ['CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C', 'CC1(C)OB(c2ccc3c(c2)CCC(=O)N3)OC1(C)C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999414086341858, 0.9995638728141785] +COc1ccc(CNc2cc(N)ccn2)cc1; ['COc1ccc(CN)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CO)cc1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(F)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(N)c1']; [0.9828665852546692, 0.9815926551818848, 0.9712679386138916, 0.9615951776504517, 0.9467536211013794, 0.870522141456604] +CCc1ccc(-c2cc(N)ccn2)cc1; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(Br)cc1', None, 'CCc1ccc(Br)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', None, 'Nc1ccnc(Br)c1']; [0.9999986290931702, 0.9999948740005493, 0.99992835521698, 0.9997292757034302, 0.9984849691390991, 0.9946768879890442, 0.9908422231674194, 0.9765162467956543, 0, 0.8000203371047974] +Cc1cc(-c2cc(N)ccn2)nc(N)n1; [None]; [None]; [0] +Nc1ccnc(-c2ccc(Cl)cc2Cl)c1; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ccnc(Br)c1', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1', 'Clc1ccc(I)c(Cl)c1', 'Clc1ccc(I)c(Cl)c1']; ['Nc1ccnc(Br)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(Cl)cc1Cl', 'OB(O)c1ccc(Cl)cc1Cl', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.99991774559021, 0.9998606443405151, 0.9998216032981873, 0.9992092847824097, 0.9991728663444519, 0.9813547730445862, 0.8731033205986023] +Nc1ccnc(NC2CN(C(=O)C3CC3)C2)c1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)ccn2)cc1; [None]; [None]; [0] +Nc1ccnc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)ccn2)ccc1N1CCOCC1; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'COc1cc(Br)ccc1N1CCOCC1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999946355819702, 0.9999710321426392, 0.9268901348114014] +Nc1ccnc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(N)ccn3)ccc2O1; [None]; [None]; [0] +Cn1cc(-c2cc(N)ccn2)c(C(F)(F)F)n1; ['Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999922513961792, 0.999976634979248, 0.9999691843986511, 0.9998642206192017] +Nc1ccnc(-c2cccc3ccc(O)cc23)c1; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999513626098633, 0.9999037981033325] +COc1ccc2cccc(-c3cc(N)ccn3)c2c1; ['COc1ccc2cccc(Br)c2c1', 'COc1ccc2cccc(Br)c2c1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9830684661865234, 0.9309629201889038] +Nc1ccnc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)ccn2)ccc1Cl; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999990463256836, 0.999991774559021, 0.9999148845672607, 0.9996728301048279] +Cc1nc(Nc2cc(N)ccn2)sc1C; ['Cc1nc(N)sc1C', 'Cc1nc(N)sc1C', 'Cc1nc(N)sc1C', 'Cc1nc(Br)sc1C', 'Cc1nc(Cl)sc1C']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(F)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(N)c1']; [0.9997199773788452, 0.9951592683792114, 0.992591142654419, 0.9912399649620056, 0.9687042832374573] +Cc1cc(Nc2cc(N)ccn2)nn1C; ['Cc1cc(N)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(Br)nn1C', 'Cc1cc(N)nn1C', 'Cc1cc(Cl)nn1C']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(F)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(N)c1']; [0.9997032880783081, 0.9994186162948608, 0.995947003364563, 0.9945107698440552, 0.9749338626861572] +Cc1csc2c(-c3cc(N)ccn3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999968409538269, 0.9999905228614807, 0.999977707862854, 0.9998106956481934] +COc1cc(F)c(-c2cc(N)ccn2)cc1OC; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1']; [0.9999830722808838, 0.9999419450759888, 0.9999191761016846, 0.9998900890350342, 0.9988100528717041, 0.9071179628372192] +COc1cc(-c2cc(N)ccn2)c(OC)cc1Br; ['COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(I)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1cc(Br)c(OC)cc1Br']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(O)c1', 'Nc1ccnc(Cl)c1']; [0.9998806715011597, 0.9974979162216187, 0.9950668811798096, 0.9943720698356628, 0.9352867603302002] +Nc1ccnc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc(N)ccn2)cc1; [None]; [None]; [0] +Nc1ccnc(-c2cc(N)nc3[nH]ccc23)c1; ['Nc1cc(Br)c2cc[nH]c2n1', 'Nc1cc(Br)c2cc[nH]c2n1']; ['Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9581576585769653, 0.9572271108627319] +Nc1ccnc(NC(=O)c2ccco2)c1; ['Nc1ccnc(N)c1', 'Nc1ccnc(N)c1']; ['O=C(O)c1ccco1', 'O=C(Cl)c1ccco1']; [0.9296931028366089, 0.8563354015350342] +CCNC(=O)c1ccc(-c2cc(N)ccn2)nc1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)ccn2)c1; ['COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(Br)cc(OC)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9999139904975891, 0.9998226761817932, 0.9997422099113464, 0.9996823072433472, 0.9459482431411743] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +Nc1ccnc(Cc2ccc(S(=O)(=O)CCO)cc2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc(N)ccn2)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1']; ['Nc1ccnc(N)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(N)c1']; [0.9963481426239014, 0.9960083365440369, 0.993182897567749, 0.9905107021331787] +CO[C@@H]1CC[C@@H](c2cc(N)ccn2)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3cc(N)ccn3)cc2c1; ['COc1ccc2oc(B(O)O)cc2c1', 'COc1ccc2oc(B(O)O)cc2c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9996311068534851, 0.9992064237594604] +Nc1ccnc(-c2ccc3cn[nH]c3c2)c1; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Brc1ccc2cn[nH]c2c1', 'Brc1ccc2cn[nH]c2c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.999985933303833, 0.9999802112579346, 0.9999085664749146, 0.9998458623886108, 0.9823269248008728, 0.9652838706970215] +CCNC(=O)N1CCC(c2cc(N)ccn2)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(N)ccn1)cn2C; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(N)ccn2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)ccn1; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1', 'CC(C)c1nn(C)cc1Br']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1']; [0.9998742341995239, 0.9998020529747009, 0.8895834684371948] +C[NH+](C)Cc1ccc(-c2cc(N)ccn2)cc1; [None]; [None]; [0] +Nc1ccnc(-c2cc3ccccc3o2)c1; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'CCCC[Sn](CCCC)(CCCC)c1cc2ccccc2o1']; ['OB(O)c1cc2ccccc2o1', 'OB(O)c1cc2ccccc2o1', 'Nc1ccnc(Cl)c1']; [0.9999243021011353, 0.999280571937561, 0.9987350702285767] +COc1ccc2nc(-c3cc(N)ccn3)[nH]c2c1; ['COc1ccc(N)c(N)c1']; ['Nc1ccnc(C(=O)O)c1']; [0.9999311566352844] +COc1ccc(F)c(C(=O)Nc2cc(N)ccn2)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F', 'COc1ccc(F)c(C(N)=O)c1']; ['Nc1ccnc(N)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(Cl)c1']; [0.9898076057434082, 0.9755473136901855, 0.9664379358291626] +Cn1cc(Br)cc1-c1cc(N)ccn1; [None]; [None]; [0] +Nc1ccnc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +Nc1ccnc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +Nc1ccnc(-c2ccc(OC(F)(F)F)cc2)c1; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'Nc1ccnc(-c2ccc(F)cc2)c1', 'FC(F)(F)Oc1ccc(I)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', '[O-]C(F)(F)F', 'Nc1ccncc1']; [1.0, 0.9999995231628418, 0.999999463558197, 0.999997615814209, 0.999760627746582, 0.9992012977600098, 0.9551447629928589, 0.7849721908569336] +CN(C)c1ccc(-c2cc(N)ccn2)cn1; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(Br)cn1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999923706054688, 0.999985933303833, 0.9998664855957031, 0.9998291730880737, 0.8683773279190063] +Nc1ccnc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(-c2cc(N)ccn2)cc(C)c1OCCO; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)ccn3)cn2)CC1; ['CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1', 'CC(=O)N1CCC(n2cc(B3OC(C)(C)C(C)(C)O3)cn2)CC1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999836683273315, 0.9999134540557861] +Cc1n[nH]c2cc(-c3cc(N)ccn3)ccc12; ['Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(Br)ccc12', 'Cc1n[nH]c2cc(Br)ccc12']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1']; [0.9999996423721313, 0.999999463558197, 0.9999969005584717, 0.9999892711639404, 0.9991533756256104, 0.9972571134567261] +CCc1cccc(-c2cc(N)ccn2)n1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(N)ccn3)ccc21; [None]; [None]; [0] +Nc1ccnc(NC(=O)c2cccc(OC(F)(F)F)c2)c1; ['Nc1ccnc(N)c1', 'Nc1ccnc(N)c1', 'NC(=O)c1cccc(OC(F)(F)F)c1', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(N)c1']; [0.9999163746833801, 0.9994721412658691, 0.9973771572113037, 0.9940392971038818] +Nc1ccnc(-c2cccc(N3CCCC3=O)c2)c1; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Nc1ccnc(Br)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'O=C1CCCN1c1cccc(Br)c1']; [0.9999760389328003, 0.9996628165245056, 0.8926429748535156] +CC(C)(O)c1ccc2cc(-c3cc(N)ccn3)[nH]c2c1; [None]; [None]; [0] +Nc1ccnc(-c2ccc(CCO)cc2)c1; ['CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(CCO)cc2)OC1(C)C', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'OCCc1ccc(B(O)O)cc1', 'OCCc1ccc(B(O)O)cc1']; [0.999976634979248, 0.9999054670333862, 0.9993146657943726, 0.9938649535179138] +Cc1ncc(-c2ccc(-c3cc(N)ccn3)cc2)n1C; ['Cc1ncc(C(=O)O)n1C']; ['Nc1ccnc(-c2ccc(Cl)cc2)c1']; [0.9595121145248413] +CNC(=O)c1ccc(-c2cc(N)ccn2)c(OC)c1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9997286796569824, 0.998148500919342] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)ccn1; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Nc1ccnc(Cl)c1']; [0.9603625535964966] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)ccn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)ccn2)cc1; ['CCNC(=O)c1ccc(B(O)O)cc1', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1']; [0.9999773502349854, 0.999864935874939] +CN(C)C(=O)c1ccc(-c2cc(N)ccn2)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)ccn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)ccn2)cc1; ['CCNC(=O)Cc1ccc(Br)cc1']; ['Nc1ccnc(Br)c1']; [0.8581812381744385] +Cc1cc(Nc2cc(N)ccn2)ncc1F; ['Cc1cc(Br)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F', 'Cc1cc(Cl)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1ccnc(N)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(F)c1']; [0.9945657253265381, 0.9873011112213135, 0.9857921600341797, 0.9416111707687378, 0.936269998550415] +CN(C)C(=O)c1ccc(-c2cc(N)ccn2)nc1; [None]; [None]; [0] +Nc1ccnc(Nc2ccccn2)c1; [None, None, 'Clc1ccccn1', 'Nc1ccccn1']; [None, None, 'Nc1ccnc(N)c1', 'Nc1ccnc(Br)c1']; [0, 0, 0.8689876794815063, 0.8189460039138794] +Nc1ccnc(Nc2ccc(F)cn2)c1; ['Fc1ccc(Br)nc1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Fc1ccc(Cl)nc1', 'Fc1ccc(F)nc1']; ['Nc1ccnc(N)c1', 'Nc1ccnc(F)c1', 'Nc1ccnc(Cl)c1', 'Nc1ccnc(Br)c1', 'Nc1ccnc(N)c1', 'Nc1ccnc(N)c1']; [0.9982490539550781, 0.99676513671875, 0.9965687394142151, 0.9955015182495117, 0.9617990851402283, 0.9228396415710449] +COc1cc(N2CCNCC2)ccc1-c1cc(N)ccn1; [None]; [None]; [0] +Cn1nc(-c2cc(N)ccn2)cc1C(C)(C)O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(N)ccn2)c1; ['CS(=O)(=O)c1ccc(Cl)c(Br)c1']; ['Nc1ccnc(Cl)c1']; [0.944618821144104] +CCOc1ccccc1-c1ncnn2cccc12; ['CCOc1ccccc1B(O)O']; ['Clc1ncnn2cccc12']; [0.9993108510971069] +CNC(=O)c1ccccc1-c1ncnn2cccc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ncnn2cccc12; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['Clc1ncnn2cccc12']; [0.9999115467071533] +Cc1nnc(-c2ccccc2-c2ncnn3cccc23)[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ncnn3cccc23)c1; ['Clc1ncnn2cccc12']; ['Fc1cc(F)cc(C[Zn]Br)c1']; [0.9994039535522461] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(N)ccn2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncnn3cccc23)c1; ['Clc1ncnn2cccc12']; ['OB(O)c1cccc(C(F)(F)F)c1']; [0.9998623728752136] +c1ccc2c(-c3ncnn4cccc34)ccnc2c1; ['Clc1ncnn2cccc12']; ['OB(O)c1ccnc2ccccc12']; [0.9973874688148499] +CCn1cc(-c2ncnn3cccc23)cn1; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9996310472488403, 0.991539478302002] +CP(C)(=O)c1ccccc1-c1ncnn2cccc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ncnn2cccc12; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'NC(=O)c1ccccc1B(O)O']; [0.999685525894165, 0.9648592472076416] +FC(F)(F)Oc1ccccc1-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['OB(O)c1ccccc1OC(F)(F)F']; [0.9999682903289795] +COC(C)(C)CCc1ncnn2cccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ncnn2cccc12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnn4cccc34)cn2)cc1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'OB(O)c1cnn(Cc2ccccc2)c1']; [0.9996582269668579, 0.997087836265564] +Cn1cnc2ccc(-c3ncnn4cccc34)cc2c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-c2ncnn3cccc23)c1)c1ccccc1; ['Clc1ncnn2cccc12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C']; ['O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1ncnn2cccc12']; [0.9993816614151001, 0.998828113079071] +OCCn1cc(-c2ncnn3cccc23)cn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'OCCn1cc(B(O)O)cn1']; [0.9992077350616455, 0.9953619241714478] +O=c1c2c(F)cccc2cnn1-c1ncnn2cccc12; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ncnn4cccc34)[nH]2)cc1; [None]; [None]; [0] +CC(C)C(=O)COc1ncnn2cccc12; ['CC(C)C(=O)CBr']; ['O=c1[nH]cnn2cccc12']; [0.9066488742828369] +Clc1ccc(Cl)c(-c2ncnn3cccc23)c1; ['Clc1ncnn2cccc12']; ['OB(O)c1cc(Cl)ccc1Cl']; [0.9955135583877563] +Cc1ccc(-c2ncnn3cccc23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1']; ['Clc1ncnn2cccc12']; [0.9923439025878906] +c1ccn2c(-c3ncnn4cccc34)cnc2c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ncnn3cccc23)cs1; [None]; [None]; [0] +COc1cnc(-c2ncnn3cccc23)nc1; [None]; [None]; [0] +CNc1nc(C)c(-c2ncnn3cccc23)s1; [None]; [None]; [0] +c1cnn2c(-c3ncnn4cccc34)cnc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['OB(O)c1c(Cl)cccc1Cl']; [0.7666438221931458] +Brc1cccc(-c2ncnn3cccc23)c1; ['Clc1ncnn2cccc12']; ['OB(O)c1cccc(Br)c1']; [0.9976109266281128] +Cc1nc(C)c(-c2ncnn3cccc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncnn2cccc12; [None]; [None]; [0] +c1cncc(CNc2ncnn3cccc23)c1; ['Clc1ncnn2cccc12', 'Nc1ncnn2cccc12']; ['NCc1cccnc1', 'O=Cc1cccnc1']; [0.9999994039535522, 0.9999198913574219] +Cc1ccc(Cl)c(-c2ncnn3cccc23)c1; ['Cc1ccc(Cl)c(B(O)O)c1']; ['Clc1ncnn2cccc12']; [0.9637919664382935] +Cc1nc2ccccn2c1-c1ncnn2cccc12; [None]; [None]; [0] +c1cncc(Nc2ncnn3cccc23)c1; ['Clc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Ic1cccnc1', 'Brc1cccnc1']; ['Nc1cccnc1', 'O=S(=O)(Oc1cccnc1)C(F)(F)F', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12']; [0.9999576210975647, 0.9981354475021362, 0.9976116418838501, 0.9847338199615479] +c1ccc2cc(-c3ncnn4cccc34)ccc2c1; ['Clc1ncnn2cccc12']; ['OB(O)c1ccc2ccccc2c1']; [0.9999287128448486] +c1ccc2c(c1)ncn2-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['c1ccc2[nH]cnc2c1']; [0.9996299147605896] +c1cc(Cn2cncn2)cc(-c2ncnn3cccc23)c1; [None]; [None]; [0] +O=C(Nc1ncnn2cccc12)c1cccs1; ['Nc1ncnn2cccc12', 'Nc1ncnn2cccc12']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1']; [0.9999971389770508, 0.9998562335968018] +c1cnn2ncc(-c3ncnn4cccc34)c2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Clc1ncnn2cccc12']; [0.9988254308700562] +c1cc2c(NCCc3c[nH]cn3)ncnn2c1; ['Clc1ncnn2cccc12']; ['NCCc1c[nH]cn1']; [0.9997613430023193] +c1ccc(CCNc2ncnn3cccc23)cc1; ['Clc1ncnn2cccc12']; ['NCCc1ccccc1']; [0.9999305009841919] +FC(F)(F)c1n[nH]cc1-c1ncnn2cccc12; [None]; [None]; [0] +Cc1c(-c2ncnn3cccc23)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ncnn2cccc12; [None]; [None]; [0] +c1ccc2c(-c3ncnn4cccc34)cncc2c1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'OB(O)c1cncc2ccccc12']; [0.9998664855957031, 0.9991005659103394] +Nc1nccc(-c2ncnn3cccc23)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ncnn4cccc34)cc2)cn1; ['Clc1ncnn2cccc12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [0.9999719262123108] +Clc1ccc(CNc2ncnn3cccc23)cc1; ['Clc1ccc(CBr)cc1', 'Clc1ncnn2cccc12']; ['Nc1ncnn2cccc12', 'NCc1ccc(Cl)cc1']; [0.999983549118042, 0.9999510645866394] +Nc1[nH]nc2cc(-c3ncnn4cccc34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ncnn4cccc34)cc2CS1(=O)=O; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ncnn3cccc23)c1; [None]; [None]; [0] +c1cc2c(-c3ccc(-c4cn[nH]c4)cc3)ncnn2c1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.999984860420227, 0.9999220371246338] +Oc1cccc(-c2ncnn3cccc23)c1; ['Clc1ncnn2cccc12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C']; ['OB(O)c1cccc(O)c1', 'Clc1ncnn2cccc12']; [0.9988893270492554, 0.9887335300445557] +Cn1ncc2cc(-c3ncnn4cccc34)ccc21; [None]; [None]; [0] +c1cc2c(Nc3ccncc3)ncnn2c1; ['Clc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Brc1ccncc1', 'Ic1ccncc1', 'Fc1ccncc1', 'Clc1ccncc1']; ['Nc1ccncc1', 'OB(O)c1ccncc1', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12']; [0.9999822378158569, 0.999908447265625, 0.9986427426338196, 0.9985252618789673, 0.993061900138855, 0.9907732009887695] +Fc1ccccc1CNc1ncnn2cccc12; ['Clc1ncnn2cccc12', 'Fc1ccccc1CBr']; ['NCc1ccccc1F', 'Nc1ncnn2cccc12']; [0.9999997615814209, 0.9999986290931702] +OCc1cccc(-c2ncnn3cccc23)c1; ['Clc1ncnn2cccc12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C']; ['OCc1cccc(B(O)O)c1', 'Clc1ncnn2cccc12']; [0.9978676438331604, 0.9972990155220032] +CCCn1cnc(-c2ncnn3cccc23)n1; [None]; [None]; [0] +c1cc2c(-c3csc4ncncc34)ncnn2c1; [None]; [None]; [0] +COc1cc(-c2ncnn3cccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ncnn3cccc23)nn1; [None]; [None]; [0] +CSc1nc(-c2ncnn3cccc23)c[nH]1; [None]; [None]; [0] +c1cc2c(CCc3c[nH]nn3)ncnn2c1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncnn2cccc12; [None]; [None]; [0] +c1ccc2[nH]c(-c3ncnn4cccc34)cc2c1; [None]; [None]; [0] +Nc1nc(-c2ncnn3cccc23)cs1; [None]; [None]; [0] +N#CCCc1cccc(-c2ncnn3cccc23)c1; [None]; [None]; [0] +c1ccc(Oc2ncnn3cccc23)nc1; ['Clc1ncnn2cccc12']; ['Oc1ccccn1']; [0.9997353553771973] +Fc1ccc(-c2ncnn3cccc23)c(C(F)(F)F)c1; ['Clc1ncnn2cccc12']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9997075796127319] +CCC(=O)Nc1ccc(-c2ncnn3cccc23)cc1; [None]; [None]; [0] +Nc1ncncc1-c1ncnn2cccc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ncnn3cccc23)c1; ['CC(=O)Nc1cccc(B(O)O)c1', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9974342584609985, 0.9966132044792175] +CS(=O)(=O)C1CCN(c2ncnn3cccc23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['Clc1ncnn2cccc12']; [0.9988805651664734] +O=C(Nc1ncnn2cccc12)c1c(Cl)cccc1Cl; ['Nc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'COC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'Nc1ncnn2cccc12']; [0.9999938607215881, 0.9999863505363464, 0.9999738335609436, 0.9998211860656738] +COc1ccc(-c2ncnn3cccc23)cc1Cl; ['COc1ccc(B(O)O)cc1Cl']; ['Clc1ncnn2cccc12']; [0.9994046092033386] +CCNc1nc2ccc(-c3ncnn4cccc34)cc2s1; [None]; [None]; [0] +CC(C)(COc1ncnn2cccc12)S(C)(=O)=O; [None]; [None]; [0] +Cn1cc(-c2ncnn3cccc23)c2ccccc21; [None]; [None]; [0] +NC(=O)CCCc1ncnn2cccc12; [None]; [None]; [0] +CCCn1cc(-c2ncnn3cccc23)cn1; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9999459981918335, 0.9966450333595276] +CC(C)(O)CC(=O)NCCc1ncnn2cccc12; [None]; [None]; [0] +c1ccn2ncc(-c3ncnn4cccc34)c2c1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1ncnn2cccc12']; ['Clc1ncnn2cccc12', 'OB(O)c1cnn2ccccc12']; [0.998852014541626, 0.9982739686965942] +O=c1cc(-c2ncnn3cccc23)cc[nH]1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ncnn3cccc23)cc1; ['CS(=O)c1ccc(B(O)O)cc1']; ['Clc1ncnn2cccc12']; [0.9964077472686768] +C[C@@H](Oc1ncnn2cccc12)c1c(Cl)cncc1Cl; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['Clc1ncnn2cccc12', 'O=c1[nH]cnn2cccc12']; [0.9979305267333984, 0.9422792196273804] +CCNS(=O)(=O)c1ccccc1-c1ncnn2cccc12; [None]; [None]; [0] +COc1cc(CCc2ncnn3cccc23)cc(OC)c1; [None]; [None]; [0] +CCN(CC)c1ncnn2cccc12; [None, 'CCNCC', None]; [None, 'Clc1ncnn2cccc12', None]; [0, 0.9657725095748901, 0] +O=C1CCc2cccc(-c3ncnn4cccc34)c21; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ncnn3cccc23)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ncnn3cccc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ncnn3cccc23)cc1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9997230768203735, 0.9995405673980713] +c1ccc2ncc(Nc3ncnn4cccc34)cc2c1; ['Clc1ncnn2cccc12', 'Brc1cnc2ccccc2c1', 'Ic1cnc2ccccc2c1']; ['Nc1cnc2ccccc2c1', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12']; [0.9999262094497681, 0.9868918061256409, 0.978860080242157] +c1ccc(-c2ccncc2Nc2ncnn3cccc23)cc1; ['Clc1ncnn2cccc12', 'Brc1cnccc1-c1ccccc1']; ['Nc1cnccc1-c1ccccc1', 'Nc1ncnn2cccc12']; [0.9999997019767761, 0.9999916553497314] +COc1cccc(F)c1-c1ncnn2cccc12; ['COc1cccc(F)c1B(O)O']; ['Clc1ncnn2cccc12']; [0.99908447265625] +CC(C)Oc1cncc(-c2ncnn3cccc23)c1; ['CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9999915361404419, 0.9999872446060181, 0.999962568283081] +COc1ccncc1Nc1ncnn2cccc12; ['COc1ccncc1N', 'COc1ccncc1I', 'COc1ccncc1Br', 'COc1ccncc1B(O)O']; ['Clc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12', 'Nc1ncnn2cccc12']; [0.9999997019767761, 0.9999891519546509, 0.9999876022338867, 0.9999850392341614] +c1cc2c(-c3cnc4[nH]ccc4c3)ncnn2c1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1ncnn2cccc12', 'Brc1cnc2[nH]ccc2c1']; ['Clc1ncnn2cccc12', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1ncnn2cccc12']; [0.9999096393585205, 0.9998925924301147, 0.9932899475097656] +c1cc2c(-c3c[nH]c4cnccc34)ncnn2c1; ['Clc1ncnn2cccc12']; ['OB(O)c1c[nH]c2cnccc12']; [0.9912258386611938] +O=c1[nH]cc(Br)c2sc(-c3ncnn4cccc34)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncnn3cccc23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9983085989952087, 0.9965087175369263] +O=c1[nH]ccc2oc(-c3ncnn4cccc34)cc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ncnn3cccc23)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9997819066047668, 0.9991329908370972, 0.9297593235969543] +CN(c1ncnn2cccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ncnn3cccc23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(Br)cc1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9997447729110718, 0.9989012479782104, 0.9014546871185303] +CNC(=O)c1c(F)cccc1-c1ncnn2cccc12; [None]; [None]; [0] +CC1(c2ncnn3cccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +c1cc2c(-c3ccc(N4CCOCC4)cc3)ncnn2c1; ['Clc1ncnn2cccc12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9999725818634033, 0.9999544024467468, 0.9982045888900757] +C[C@H](Nc1ncnn2cccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['c1ccc2[nH]ncc2c1']; [0.9985663294792175] +Fc1cccc(Cl)c1-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['OB(O)c1c(F)cccc1Cl']; [0.9983980655670166] +OCc1ccn(-c2ncnn3cccc23)n1; [None]; [None]; [0] +C[C@@H](Nc1ncnn2cccc12)C(C)(C)O; ['C[C@@H](N)C(C)(C)O']; ['Clc1ncnn2cccc12']; [0.9987395405769348] +Cc1cc(-c2ncnn3cccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ncnn2cccc12)C(C)(C)O; ['C[C@H](N)C(C)(C)O']; ['Clc1ncnn2cccc12']; [0.9987395405769348] +Oc1cccc2c1cnn2-c1ncnn2cccc12; ['Clc1ncnn2cccc12']; ['Oc1cccc2[nH]ncc12']; [0.9963138103485107] +COc1ccc(-c2ncnn3cccc23)c(OC)c1; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9997471570968628, 0.9995124340057373] +OCCc1cn(-c2ncnn3cccc23)cn1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ncnn3cccc23)cc1; ['Clc1ncnn2cccc12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1ncnn2cccc12']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'Clc1ncnn2cccc12', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.999672532081604, 0.9995112419128418, 0.9451522827148438] +CSc1nc(C)c(-c2ncnn3cccc23)[nH]1; [None]; [None]; [0] +c1cc2c(-c3ccc(-n4cncn4)cc3)ncnn2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncnn3cccc23)CC1; [None]; [None]; [0] +Oc1ccc2nc(-c3ncnn4cccc34)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncnn2cccc12; [None]; [None]; [0] +c1cc2c(-c3nncn3C3CC3)ncnn2c1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ncnn5cccc45)n3n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ncnn3cccc23)n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ncnn4cccc34)nn2)cc1; [None]; [None]; [0] +O=C(CCc1ncnn2cccc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ncnn2cccc12)NCc1ccccn1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ncnn2cccc12; [None]; [None]; [0] +Nc1nnc(-c2ncnn3cccc23)s1; [None]; [None]; [0] +CCc1cc(-c2ncnn3cccc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncnn3cccc23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncnn3cccc23)s1; [None]; [None]; [0] +c1ccc2sc(-c3ncnn4cccc34)nc2c1; [None]; [None]; [0] +c1cc(-c2ncnn3cccc23)c2sccc2c1; ['Clc1ncnn2cccc12']; ['OB(O)c1cccc2ccsc12']; [0.9915386438369751] +CC(C)(O)c1cccc(-c2ncnn3cccc23)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ncnn3cccc23)c(F)c1; [None]; [None]; [0] +c1cc(-c2ncnn3cccc23)c2snnc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ncnn4cccc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncnn4cccc34)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncnn3cccc23)CC1; [None]; [None]; [0] +c1cnc2c(-c3ncnn4cccc34)c[nH]c2c1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['Clc1ncnn2cccc12']; [0.9646375179290771] +CC(=O)Nc1ncc(-c2ncnn3cccc23)[nH]1; [None]; [None]; [0] +Nc1cncc(-c2ncnn3cccc23)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncnn2cccc12; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1Br', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.999910295009613, 0.9998345375061035, 0.9996280670166016] +COc1ccc(Oc2ncnn3cccc23)c(F)c1F; ['COc1ccc(O)c(F)c1F']; ['Clc1ncnn2cccc12']; [0.9994033575057983] +c1ccc2nc(-c3ncnn4cccc34)ncc2c1; [None]; [None]; [0] +Nc1nc(-c2ncnn3cccc23)nc2ccccc12; [None]; [None]; [0] +OCCn1cnc(-c2ncnn3cccc23)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncnn3cccc23)c1; ['COc1ccc(OC)c(B(O)O)c1']; ['Clc1ncnn2cccc12']; [0.9999295473098755] +c1ccc2[nH]c(C3CCN(c4ncnn5cccc45)CC3)nc2c1; ['Clc1ncnn2cccc12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9996305704116821] +COc1ncccc1-c1ncnn2cccc12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.999719500541687, 0.9997106790542603] +C[C@@]1(O)CC[C@H](c2ncnn3cccc23)CC1; [None]; [None]; [0] +c1cc2c(-c3ncc4cc[nH]c4n3)ncnn2c1; [None]; [None]; [0] +CCOc1ccc(-c2nc3cnccc3[nH]2)cc1; ['CCOc1ccc(C=O)cc1', 'CCOc1ccc(C(=O)O)cc1', 'CCOc1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9997836351394653, 0.9995617866516113, 0.9937493801116943] +CN(C)S(=O)(=O)c1cccc(-c2ncnn3cccc23)c1; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(Br)c1']; ['Clc1ncnn2cccc12', 'Clc1ncnn2cccc12', 'Clc1ncnn2cccc12']; [0.9999293684959412, 0.9998406171798706, 0.9976511001586914] +C1=C(c2c[nH]c3ccccc23)CCN(c2ncnn3cccc23)C1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['Clc1ncnn2cccc12']; [0.9999966621398926] +COc1ncccc1-c1nc2cnccc2[nH]1; ['COc1ncccc1C=O', 'COc1ncccc1C(=O)O', 'COc1ncccc1C=O', 'CCOC(=O)c1cccnc1OC']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N']; [0.9999057054519653, 0.9998190402984619, 0.999672532081604, 0.9961158633232117] +COc1cc(-c2nc3cnccc3[nH]2)cc(OC)c1OC; ['COc1cc(C(=O)O)cc(OC)c1OC', 'COc1cc(C=O)cc(OC)c1OC']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999171495437622, 0.9996967315673828] +CS(=O)(=O)c1cccc(-c2nc3cnccc3[nH]2)c1; ['CS(=O)(=O)c1cccc(C(=O)O)c1', 'CS(=O)(=O)c1cccc(C=O)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999969005584717, 0.9999953508377075] +CC(=O)N(C)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CC(=O)N(C)c1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.99991774559021] +O=C(Nc1cccc(-c2ncnn3cccc23)c1)C1CCNCC1; [None]; [None]; [0] +CN(C)c1cc(-c2ncnn3cccc23)cnn1; [None]; [None]; [0] +COc1ccc(-c2nc3cnccc3[nH]2)cc1; ['COc1ccc(C(=O)O)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C=O)cc1', 'COc1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999762773513794, 0.9997293949127197, 0.9979324340820312, 0.9893444776535034] +c1cnn2c(-c3nc4cnccc4[nH]3)cnc2c1; ['Nc1ccncc1N']; ['O=Cc1cnc2cccnn12']; [0.9999920129776001] +c1ccc2nc(-c3nc4cnccc4[nH]3)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cnccc3[nH]2)c1)C1CC1; [None]; [None]; [0] +Oc1cccc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Oc1cccc(I)c1']; ['O=Cc1cccc(O)c1', 'O=Cc1cccc(O)c1', 'O=Cc1cccc(O)c1', 'O=C(O)c1cccc(O)c1', 'c1cc2[nH]cnc2cn1']; [0.9999009966850281, 0.9996340274810791, 0.9961971044540405, 0.9892884492874146, 0.9864094257354736] +N#Cc1ccc(O)c(-c2nc3cnccc3[nH]2)c1; ['N#Cc1ccc(O)c(C=O)c1', 'N#Cc1ccc(O)c(C=O)c1', 'N#Cc1ccc(O)c(C(=O)O)c1', 'N#Cc1ccc(O)c(C=O)c1']; ['Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999784231185913, 0.9999712705612183, 0.9999300241470337, 0.9998441934585571] +c1cc2[nH]c(-c3ccc(N4CCOCC4)cc3)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(N2CCOCC2)cc1', 'O=Cc1ccc(N2CCOCC2)cc1', 'O=Cc1ccc(N2CCOCC2)cc1', 'O=Cc1ccc(N2CCOCC2)cc1']; [0.9999967813491821, 0.999996542930603, 0.9999105334281921, 0.9995927810668945] +Cc1ccc2ncn(-c3nc4cnccc4[nH]3)c2c1; [None]; [None]; [0] +Cc1cc(Nc2nc3cnccc3[nH]2)sn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['NC(=O)c1ccc(C(=O)O)cc1', 'NC(=O)c1ccc(C=O)cc1', 'NC(=O)c1ccc(Br)cc1', 'NC(=O)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'c1cc2[nH]cnc2cn1', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999570250511169, 0.9997900724411011, 0.998742401599884, 0.9914066791534424] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4cnccc4[nH]3)cc2)CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3nc4cnccc4[nH]3)nc2c1; [None]; [None]; [0] +c1ccc2c(-c3nc4cnccc4[nH]3)nccc2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'N#Cc1nccc2ccccc12', 'Cc1nccc2ccccc12']; ['O=C(O)c1nccc2ccccc12', 'O=Cc1nccc2ccccc12', 'Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999723434448242, 0.9997307062149048, 0.9996086359024048, 0.9985195994377136] +c1cnc(Nc2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1ccc(C(=O)Nc2ccccc2)cc1', 'O=Cc1ccc(C(=O)Nc2ccccc2)cc1']; [0.9999083280563354, 0.9996882677078247] +OCCOc1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1ccc(OCCO)cc1', 'O=Cc1ccc(OCCO)cc1']; [0.9958152770996094, 0.9905067682266235] +c1cc(-c2nc3cnccc3[nH]2)cc(C2CCNCC2)c1; ['Nc1ccncc1N']; ['O=C(O)c1cccc(C2CCNCC2)c1']; [0.9999994039535522] +N#Cc1cccc(Cn2cc(-c3nc4cnccc4[nH]3)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc3cnccc3[nH]2)cc1; ['CC(=O)NCc1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.9999954700469971] +c1cc(Nc2nc3cnccc3[nH]2)ncn1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1ccc(C(F)(F)F)cc1', 'O=Cc1ccc(C(F)(F)F)cc1']; [0.9999858140945435, 0.9999288320541382] +CNS(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CNS(=O)(=O)c1ccc(C(=O)O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1', 'CNS(=O)(=O)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999819993972778, 0.9996403455734253, 0.978890061378479] +CN(C)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CN(C)c1ccc(C(=O)O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1', 'CN(C)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.999983549118042, 0.9999077320098877, 0.9996150732040405, 0.995186984539032] +Cc1nc(C)c(-c2nc3cnccc3[nH]2)s1; ['Cc1nc(C)c(C=O)s1']; ['Nc1ccncc1N']; [0.9984263181686401] +O=C(c1ccc(-c2nc3cnccc3[nH]2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3cnccc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CN(C)S(=O)(=O)c1ccc(C(=O)Cl)cc1', 'CN(C)S(=O)(=O)c1ccc(C(=O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'c1cc2[nH]cnc2cn1']; [0.9999933242797852, 0.9999443292617798, 0.9997894763946533] +O=S1(=O)Cc2ccc(-c3nc4cnccc4[nH]3)cc2C1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CCNS(=O)(=O)c1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.9999493360519409] +Brc1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1', 'O=Cc1ccc(Br)cc1']; [0.9999646544456482, 0.9998766183853149, 0.9996544122695923, 0.9963026642799377] +CS(=O)(=O)N1CCC(c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nc3cnccc3[nH]2)C1; [None]; [None]; [0] +CCCOc1ccc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CCN(CC)C(=O)c1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.99997878074646] +c1cc2[nH]c(-c3ccn4nccc4n3)nc2cn1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cnccc3[nH]2)cc1Cl; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC(C)c1cc(-c2nc3cnccc3[nH]2)nc(N)n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc2cnccc2[nH]1; ['COc1ccc(Cl)cc1C(=O)O', 'COc1ccc(Cl)cc1C=O']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999964237213135, 0.9999696016311646] +COc1cc(OC)c(-c2nc3cnccc3[nH]2)cc1Cl; ['COc1cc(OC)c(C=O)cc1Cl']; ['Nc1ccncc1N']; [0.9999727010726929] +CNS(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)c(C)c1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3nc4cnccc4[nH]3)c2)CC1; [None]; [None]; [0] +c1ccc(-c2cc(-c3nc4cnccc4[nH]3)n[nH]2)cc1; ['Nc1ccncc1N']; ['O=C(O)c1cc(-c2ccccc2)[nH]n1']; [0.9999605417251587] +c1cc2[nH]c(-c3ccc4c(c3)CCO4)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2', 'O=Cc1ccc2c(c1)CCO2']; [0.9999939799308777, 0.9999822974205017, 0.9999804496765137, 0.9999107122421265] +CC(=O)Nc1cccc(-c2nc3cnccc3[nH]2)c1; ['CC(=O)Nc1cccc(C(=O)O)c1', 'CC(=O)Nc1cccc(C=O)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999921917915344, 0.9998716115951538] +COc1cc(-c2nc3cnccc3[nH]2)ccc1O; ['COc1cc(C(=O)O)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(C=O)ccc1O', 'COc1cc(C=O)ccc1O']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9998594522476196, 0.9983034133911133, 0.997158944606781, 0.9530003070831299] +c1ccc2c(-c3nc4cnccc4[nH]3)c[nH]c2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'NCc1c[nH]c2ccccc12', 'Nc1ccncc1N', 'N#Cc1c[nH]c2ccccc12', 'CCOC(=O)c1c[nH]c2ccccc12', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]c2ccccc12', 'ON=Cc1c[nH]c2ccccc12', 'Nc1ccncc1N', 'OCc1c[nH]c2ccccc12', 'Nc1ccncc1N', 'Nc1ccncc1N', 'O=Cc1c[nH]c2ccccc12', 'O=C(O)C(=O)c1c[nH]c2ccccc12', 'O=Cc1c[nH]c2ccccc12']; [0.999965488910675, 0.9999650120735168, 0.9999033212661743, 0.999891996383667, 0.9998905658721924, 0.999880850315094, 0.9997715353965759, 0.9997094869613647, 0.9349703788757324] +c1cc2c(c(-c3nc4cnccc4[nH]3)c1)OCO2; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(Cl)c1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2', 'O=C(O)c1cccc2c1OCO2', 'O=Cc1cccc2c1OCO2']; [0.9999700784683228, 0.99994957447052, 0.9998604655265808, 0.9980577230453491] +CC(C)(C)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CC(C)(C)c1ccc(C(=O)O)cc1', 'CC(C)(C)c1ccc(C=O)cc1', 'CC(C)(C)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999439120292664, 0.9999303817749023, 0.9982982873916626] +c1cc2[nH]c(-c3scc4c3OCCO4)nc2cn1; ['Nc1ccncc1N']; ['O=Cc1scc2c1OCCO2']; [0.9999951124191284] +c1ccc2ncc(-c3nc4cnccc4[nH]3)cc2c1; ['Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1N', 'CCOC(=O)c1cnc2ccccc2c1']; ['O=Cc1cnc2ccccc2c1', 'O=Cc1cnc2ccccc2c1', 'O=C(O)c1cnc2ccccc2c1', 'Nc1ccncc1N']; [0.9999552965164185, 0.9999449849128723, 0.9998042583465576, 0.9997986555099487] +CC(C)(C)c1ccc(-c2nc3cnccc3[nH]2)cn1; ['CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(C=O)cn1', 'CC(C)(C)c1ccc(C(=O)O)cn1']; ['Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999111294746399, 0.9997333288192749, 0.9988211393356323] +c1ccc(-n2cccn2)c(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nc4cnccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CC1(COc2nc3cnccc3[nH]2)COC1; ['CC1(CO)COC1']; ['Oc1nc2cnccc2[nH]1']; [0.9399791955947876] +CSc1ccc(-c2nc3cnccc3[nH]2)cc1; ['CSc1ccc(C(=O)O)cc1', 'CSc1ccc(C=O)cc1', 'CSc1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.999987006187439, 0.999971866607666, 0.9985330104827881] +Nc1nc(-c2nc3cnccc3[nH]2)cs1; ['Nc1ccncc1N']; ['Nc1nc(C=O)cs1']; [0.9919370412826538] +c1ccc2sc(-c3nc4cnccc4[nH]3)cc2c1; ['Nc1ccncc1N']; ['O=Cc1cc2ccccc2s1']; [0.9996492862701416] +CN(C)C(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CN(C)C(=O)c1ccc(C(=O)O)cc1', 'CN(C)C(=O)c1ccc(C=O)cc1', 'CN(C)C(=O)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999551773071289, 0.9998503923416138, 0.9960979223251343] +Clc1cccc(-n2ccc(-c3nc4cnccc4[nH]3)n2)c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2nc3cnccc3[nH]2)cc1OC; ['COc1ccc(C(=O)O)cc1OC', 'COc1ccc(C=O)cc1OC']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.999914824962616, 0.9999018311500549] +CCc1ccc(-c2nc3cnccc3[nH]2)cc1; ['CCc1ccc(C=O)cc1', 'CCc1ccc(C(=O)O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9988452196121216, 0.9971234798431396] +CCN1CCN(Cc2ccc(-c3nc4cnccc4[nH]3)cc2)CC1; ['CCN1CCN(Cc2ccc(C=O)cc2)CC1', 'CCN1CCN(Cc2ccc(C(=O)O)cc2)CC1', 'CCN1CCN(Cc2ccc(C=O)cc2)CC1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999880790710449, 0.9999462366104126, 0.9998911619186401] +Fc1ccc(-c2nc3cnccc3[nH]2)c(Cl)c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1ccc(F)cc1Cl', 'O=C(O)c1ccc(F)cc1Cl', 'O=C(Cl)c1ccc(F)cc1Cl', 'O=Cc1ccc(F)cc1Cl', 'O=Cc1ccc(F)cc1Cl']; [0.9999945163726807, 0.9999924302101135, 0.9999889135360718, 0.9999853372573853, 0.9999693632125854] +Clc1ccc(-c2nc3cnccc3[nH]2)c(Cl)c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl', 'O=Cc1ccc(Cl)cc1Cl']; [0.99998939037323, 0.9999885559082031, 0.9999005794525146] +Cc1cc(-c2nc3cnccc3[nH]2)nc(N)n1; [None]; [None]; [0] +COc1ccc(CNc2nc3cnccc3[nH]2)cc1; ['COc1ccc(CN=C=S)cc1']; ['Nc1ccncc1N']; [0.9820195436477661] +O=C1CCc2cc(-c3nc4cnccc4[nH]3)ccc2N1; ['Nc1ccncc1N', 'O=C1CCc2cc(I)ccc2N1']; ['O=C1CCc2cc(C(=O)O)ccc2N1', 'c1cc2[nH]cnc2cn1']; [0.9999150633811951, 0.9910057783126831] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +c1ccn2nc(-c3nc4cnccc4[nH]3)cc2c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N']; ['O=C(O)c1cc2ccccn2n1', 'O=Cc1cc2ccccn2n1', 'O=Cc1cc2ccccn2n1']; [0.9998328685760498, 0.999605655670166, 0.999282717704773] +Cn1cc(-c2nc3cnccc3[nH]2)c(C(F)(F)F)n1; ['Cn1cc(C(=O)O)c(C(F)(F)F)n1', 'Cn1cc(C=O)c(C(F)(F)F)n1', 'Cn1cc(C=O)c(C(F)(F)F)n1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [1.0, 1.0, 0.999994158744812] +CC1(C)Cc2cc(-c3nc4cnccc4[nH]3)ccc2O1; ['CC1(C)Cc2cc(C=O)ccc2O1', 'CC1(C)Cc2cc(C=O)ccc2O1']; ['Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999933838844299, 0.9999847412109375] +COc1cc(-c2nc3cnccc3[nH]2)ccc1Cl; ['COc1cc(C(=O)O)ccc1Cl', 'COc1cc(C=O)ccc1Cl']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999828338623047, 0.9999673366546631] +COc1cc(F)c(-c2nc3cnccc3[nH]2)cc1OC; ['COc1cc(F)c(C(=O)O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC', 'COc1cc(F)c(C=O)cc1OC']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999933242797852, 0.9999566078186035, 0.9998679161071777, 0.9994088411331177] +c1cc2cnc(-c3nc4cnccc4[nH]3)nn2c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2nc3cnccc3[nH]2)C1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc4cnccc4[nH]3)c2c1; ['COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1', 'COc1ccc2cccc(C=O)c2c1']; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999328851699829, 0.9998124837875366, 0.99809330701828] +COc1cc(-c2nc3cnccc3[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +Oc1ccc2cccc(-c3nc4cnccc4[nH]3)c2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1cccc2ccc(O)cc12', 'O=C(O)c1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12', 'O=Cc1cccc2ccc(O)cc12']; [0.9999194145202637, 0.9998739361763, 0.9998452663421631, 0.9939072728157043] +Cc1nc(Nc2nc3cnccc3[nH]2)sc1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CNC(=O)c1ccc(C(=O)O)cc1', 'CNC(=O)c1ccc(C=O)cc1', 'CNC(=O)c1ccc(I)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'c1cc2[nH]cnc2cn1']; [0.9997434616088867, 0.9972457885742188, 0.9896565675735474] +OCCn1cc(-c2nc3cnccc3[nH]2)cn1; ['Nc1ccncc1N']; ['O=C(O)c1cnn(CCO)c1']; [0.9999996423721313] +Nc1cc(-c2nc3cnccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2nc3cnccc3[nH]2)c(OC)cc1Br; ['COc1cc(C=O)c(OC)cc1Br', 'COc1cc(C(=O)O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br', 'COc1cc(C=O)c(OC)cc1Br', 'COc1cc(CO)c(OC)cc1Br']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999401569366455, 0.9998929500579834, 0.9998365640640259, 0.9997826814651489, 0.9992252588272095] +CCNC(=O)c1ccc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3cnccc3[nH]2)cc1; ['NC(=O)c1ccc(CC(=O)O)cc1']; ['Nc1ccncc1N']; [0.9982132911682129] +Cc1cc(Nc2nc3cnccc3[nH]2)nn1C; [None]; [None]; [0] +Clc1cnc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3nc4cnccc4[nH]3)ncnc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc3cnccc3[nH]2)c1; ['COc1cc(OC)cc(C(=O)O)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1', 'COc1cc(C=O)cc(OC)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999992251396179, 0.9999822378158569, 0.9998104572296143, 0.9991779327392578] +O=S(=O)(CCO)c1ccc(Cc2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N']; ['O=C(O)Cc1ccc(S(=O)(=O)CCO)cc1']; [0.9918373823165894] +O=C(Nc1nc2cnccc2[nH]1)c1ccco1; [None]; [None]; [0] +COc1ccc2oc(-c3nc4cnccc4[nH]3)cc2c1; ['COc1ccc2oc(C=O)cc2c1']; ['Nc1ccncc1N']; [0.9978132247924805] +c1cc2[nH]c(-c3ccc4cn[nH]c4c3)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1ccc2cn[nH]c2c1', 'O=C(O)c1ccc2cn[nH]c2c1', 'O=Cc1ccc2cn[nH]c2c1']; [0.9994601011276245, 0.9975780248641968, 0.9945579767227173] +CO[C@@H]1CC[C@@H](c2nc3cnccc3[nH]2)CC1; ['CO[C@H]1CC[C@H](C(=O)O)CC1']; ['Nc1ccncc1N']; [0.9999274015426636] +CCNC(=O)N1CCC(c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc3cnccc3[nH]1)cn2C; ['COc1ccc2c(c1)c(C=O)cn2C', 'COc1ccc2c(c1)c(C(=O)O)cn2C']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.999974250793457, 0.9997975826263428] +CC(C)(C)c1ccc(C(=O)Nc2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +c1ccc2oc(-c3nc4cnccc4[nH]3)cc2c1; ['Nc1ccncc1N']; ['O=Cc1cc2ccccc2o1']; [0.9995090365409851] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +CCn1cc(-c2nc3cnccc3[nH]2)cn1; ['CCn1cc(C(=O)O)cn1', 'CCn1cc(C=O)cn1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999884366989136, 0.9998674392700195] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3nc4cnccc4[nH]3)c2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc2cnccc2[nH]1; ['Cn1cc(Br)cc1C(=O)O', 'Cn1cc(Br)cc1C#N']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.999957799911499, 0.9995274543762207] +FC(F)(F)Oc1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1', 'O=Cc1ccc(OC(F)(F)F)cc1']; [0.9999988675117493, 0.9999986886978149, 0.9999129772186279, 0.9994938969612122] +O=C(Nc1cccc(-c2nc3cnccc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc2cnccc2[nH]1; ['CC(C)c1nn(C)cc1C(=O)O', 'CC(C)c1nn(C)cc1C=O', 'CC(C)c1nn(C)cc1C=O']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999997615814209, 0.9999964237213135, 0.999672532081604] +CCc1cccc(-c2nc3cnccc3[nH]2)n1; ['CCc1cccc(C(=O)O)n1', 'CCc1cccc(C=O)n1', 'CCc1cccc(C#N)n1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N']; [0.9996013641357422, 0.9995182752609253, 0.9985301494598389] +c1cc2[nH]c(-c3ncc4sccc4n3)nc2cn1; [None]; [None]; [0] +Cn1cc(-c2nc3cnccc3[nH]2)c2ccccc21; ['Cn1cc(C=O)c2ccccc21', 'Cn1cc(C(=O)O)c2ccccc21']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999988079071045, 0.999995768070221] +Cn1ncc2cc(-c3nc4cnccc4[nH]3)ccc21; ['Cn1ncc2cc(C=O)ccc21', 'Cn1ncc2cc(C(=O)O)ccc21', 'Cn1ncc2cc(C=O)ccc21']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999838471412659, 0.9999377727508545, 0.997909665107727] +Cc1cc(-c2nc3cnccc3[nH]2)cc(C)c1OCCO; ['Cc1cc(C=O)cc(C)c1OCCO']; ['Nc1ccncc1N']; [0.9840065836906433] +c1cc2[nH]c(-c3ncn4c3CCCC4)nc2cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc4cnccc4[nH]3)ccc12; ['Cc1n[nH]c2cc(C(=O)O)ccc12']; ['Nc1ccncc1N']; [0.9999794960021973] +COc1ccc2nc(-c3nc4cnccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3cnccc3[nH]2)cn1; ['CN(C)c1ccc(C(=O)O)cn1', 'CN(C)c1ccc(C=O)cn1', 'CN(C)c1ccc(I)cn1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'c1cc2[nH]cnc2cn1']; [0.9994508028030396, 0.9930320978164673, 0.9837732315063477] +CC(C)(O)c1ccc2cc(-c3nc4cnccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +OCCc1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N']; ['O=C(O)c1ccc(CCO)cc1']; [0.9995509386062622] +O=C(Nc1nc2cnccc2[nH]1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N']; ['O=C(O)c1cccc(N2CCCC2=O)c1']; [0.9999157190322876] +Cc1ncc(-c2ccc(-c3nc4cnccc4[nH]3)cc2)n1C; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3cnccc3[nH]2)c(Cl)c1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nc4cnccc4[nH]3)ccc21; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc2cnccc2[nH]1; ['Cc1cc(N2CCOCC2)ccc1C=O']; ['Nc1ccncc1N']; [0.9999836087226868] +CNC(=O)c1ccc(-c2nc3cnccc3[nH]2)c(OC)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nc4cnccc4[nH]3)cn2)CC1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(Nc2nc3cnccc3[nH]2)ncc1F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3cnccc3[nH]2)c1; ['CS(=O)(=O)c1ccc(Cl)c(C(=O)O)c1']; ['Nc1ccncc1N']; [0.9999097585678101] +Cn1nc(-c2nc3cnccc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +c1ccc(Nc2nc3cnccc3[nH]2)nc1; ['N#CNc1ccccn1']; ['Nc1ccncc1N']; [0.9987170696258545] +Fc1ccc(Nc2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +CCOc1ccccc1-c1nc2cnccc2[nH]1; ['CCOc1ccccc1C=O', 'CCOc1ccccc1C(=O)O']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999507665634155, 0.9997414350509644] +CN(C)C(=O)c1ccc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +c1ccc2c(-c3nc4cnccc4[nH]3)ccnc2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]']; ['OCc1ccnc2ccccc12', 'O=C(O)c1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12', 'O=Cc1ccnc2ccccc12']; [0.999998927116394, 0.9999987483024597, 0.999975323677063, 0.9999154806137085] +Cc1ccc(C(=O)NCCO)cc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1cccc(C(F)(F)F)c1', 'O=Cc1cccc(C(F)(F)F)c1']; [0.9999991655349731, 0.9999937415122986] +CP(C)(=O)c1ccccc1-c1nc2cnccc2[nH]1; ['CP(C)(=O)c1ccccc1C(=O)O']; ['Nc1ccncc1N']; [0.9993692636489868] +FC(F)(F)Oc1ccccc1-c1nc2cnccc2[nH]1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=Cc1ccccc1OC(F)(F)F', 'O=C(O)c1ccccc1OC(F)(F)F']; [0.9999727606773376, 0.999950647354126] +COC(C)(C)CCc1nc2cnccc2[nH]1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]', 'N#CCc1cc(F)cc(F)c1', 'Nc1ccncc1N', 'Cc1nc2cnccc2[nH]1']; ['O=CCc1cc(F)cc(F)c1', 'O=CCc1cc(F)cc(F)c1', 'O=C(O)Cc1cc(F)cc(F)c1', 'O=CCc1cc(F)cc(F)c1', 'Nc1ccncc1N', 'O=C(Cl)Cc1cc(F)cc(F)c1', 'Fc1cc(F)cc(Br)c1']; [0.999995231628418, 0.9999841451644897, 0.9999831318855286, 0.9999793767929077, 0.9999550580978394, 0.9998138546943665, 0.9402499198913574] +CC(C)S(=O)(=O)c1ccccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc3cnccc3[nH]2)cs1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1nc2cnccc2[nH]1; ['NC(=O)c1ccccc1C(=O)O']; ['Nc1ccncc1N']; [0.9983474016189575] +Cn1cnc2ccc(-c3nc4cnccc4[nH]3)cc2c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cnccc3[nH]2)c1)c1ccccc1; ['Nc1ccncc1N']; ['O=C(O)c1cccc(NC(=O)c2ccccc2)c1']; [0.9999990463256836] +Clc1ccc(Cl)c(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1cc(Cl)ccc1Cl', 'O=Cc1cc(Cl)ccc1Cl']; [0.9999812841415405, 0.9996204972267151] +Cc1nnc(-c2ccccc2-c2nc3cnccc3[nH]2)[nH]1; [None]; [None]; [0] +Cc1ccc(-c2nc3cnccc3[nH]2)c(Br)c1; ['Cc1ccc(C=O)c(Br)c1', 'Cc1ccc(C(=O)O)c(Br)c1', 'Cc1ccc(C=O)c(Br)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999977946281433, 0.9999940395355225, 0.9999772310256958] +c1ccc(Cn2cc(-c3nc4cnccc4[nH]3)cn2)cc1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3nc4cnccc4[nH]3)[nH]2)cc1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC(C)C(=O)COc1nc2cnccc2[nH]1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1nc2cnccc2[nH]1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'NCc1c(Cl)cccc1Cl', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1c(Cl)cccc1Cl', 'OCc1c(Cl)cccc1Cl', 'Nc1ccncc1N', 'O=C(Cl)c1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'OCc1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl', 'O=Cc1c(Cl)cccc1Cl']; [0.9999891519546509, 0.9999821782112122, 0.9999750256538391, 0.9999468326568604, 0.9998246431350708, 0.9996472597122192, 0.9976040720939636, 0.9969047904014587] +CNc1nc(C)c(-c2nc3cnccc3[nH]2)s1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +Brc1cccc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N']; ['O=Cc1cccc(Br)c1', 'O=Cc1cccc(Br)c1', 'O=C(O)c1cccc(Br)c1']; [0.9999417662620544, 0.9997749328613281, 0.9997624754905701] +c1ccn2c(-c3nc4cnccc4[nH]3)cnc2c1; ['N#Cc1cnc2ccccn12', 'Nc1ccncc1N', 'Nc1ccncc1N']; ['Nc1ccncc1N', 'O=C(O)c1cnc2ccccn12', 'O=Cc1cnc2ccccn12']; [0.9998692274093628, 0.9998471736907959, 0.9995097517967224] +Cc1ccc(Cl)c(-c2nc3cnccc3[nH]2)c1; ['Cc1ccc(Cl)c(C(=O)O)c1', 'Cc1ccc(Cl)c(C=O)c1', 'Cc1ccc(Cl)c(C=O)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999746084213257, 0.9999157786369324, 0.995876669883728] +Cc1nc2ccccn2c1-c1nc2cnccc2[nH]1; ['Cc1nc2ccccn2c1C(=O)O', 'Cc1nc2ccccn2c1C=O']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999691247940063, 0.9998852014541626] +c1cc(Cn2cncn2)cc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1cccc(Cn2cncn2)c1', 'O=Cc1cccc(Cn2cncn2)c1', 'O=Cc1cccc(Cn2cncn2)c1']; [0.9999960660934448, 0.999971866607666, 0.9999315738677979] +c1ccc2cc(-c3nc4cnccc4[nH]3)ccc2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]']; ['O=Cc1ccc2ccccc2c1', 'O=C(O)c1ccc2ccccc2c1', 'O=Cc1ccc2ccccc2c1']; [0.9998807907104492, 0.999798059463501, 0.9995588064193726] +c1cncc(CNc2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N']; ['S=C=NCc1cccnc1']; [0.99846351146698] +COc1cnc(-c2nc3cnccc3[nH]2)nc1; [None]; [None]; [0] +Nc1nccc(-c2nc3cnccc3[nH]2)n1; ['Nc1ccncc1N', 'N#Cc1ccnc(N)n1', 'Cc1ccnc(N)n1']; ['Nc1nccc(C(=O)O)n1', 'Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999945163726807, 0.9999873638153076, 0.999981164932251] +c1cnn2ncc(-c3nc4cnccc4[nH]3)c2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1cnn2ncccc12', 'O=C(O)c1cnn2ncccc12', 'O=Cc1cnn2ncccc12']; [0.9999890923500061, 0.999954104423523, 0.9998155832290649] +c1cncc(Nc2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N']; ['S=C=Nc1cccnc1']; [0.9990657567977905] +O=C(Nc1nc2cnccc2[nH]1)c1cccs1; [None]; [None]; [0] +Cc1nc(N)sc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1nc2cnccc2[nH]1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]', 'FC(F)(F)c1n[nH]cc1I']; ['O=C(O)c1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F', 'O=Cc1c[nH]nc1C(F)(F)F', 'c1cc2[nH]cnc2cn1']; [0.9999988079071045, 0.9999940991401672, 0.9999306201934814, 0.9996812343597412, 0.9989352226257324] +c1ccc2c(c1)ncn2-c1nc2cnccc2[nH]1; [None]; [None]; [0] +c1cc2[nH]c(NCCc3c[nH]cn3)nc2cn1; [None]; [None]; [0] +c1ccc2c(-c3nc4cnccc4[nH]3)cncc2c1; ['CCOC(=O)c1cncc2ccccc12', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['Nc1ccncc1N', 'O=C(O)c1cncc2ccccc12', 'O=Cc1cncc2ccccc12', 'O=Cc1cncc2ccccc12', 'O=Cc1cncc2ccccc12']; [0.999989926815033, 0.9999871850013733, 0.9999191761016846, 0.9999184608459473, 0.9993578195571899] +NC(=O)c1c(F)cccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +Cc1c(-c2nc3cnccc3[nH]2)sc(=O)n1C; [None]; [None]; [0] +c1ccc(CCNc2nc3cnccc3[nH]2)cc1; ['CSc1nc2ccncc2[nH]1', 'Nc1ccncc1N']; ['NCCc1ccccc1', 'S=C=NCCc1ccccc1']; [0.9484026432037354, 0.780025064945221] +Clc1ccc(CNc2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N']; ['S=C=NCc1ccc(Cl)cc1']; [0.9916387796401978] +O=C([O-])Cc1cccc(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +OCc1cccc(-c2nc3cnccc3[nH]2)c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N']; ['O=Cc1cccc(CO)c1', 'OCc1cccc(CO)c1', 'O=C(O)c1cccc(CO)c1']; [0.9999357461929321, 0.9993793368339539, 0.9993324875831604] +c1cc2[nH]c(-c3ccc(-c4cn[nH]c4)cc3)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1', 'O=Cc1ccc(-c2cn[nH]c2)cc1']; [0.9999423027038574, 0.9998117685317993, 0.9991112351417542, 0.875067949295044] +Cn1cc(-c2ccc(-c3nc4cnccc4[nH]3)cc2)cn1; ['Cn1cc(-c2ccc(C(=O)O)cc2)cn1', 'Cn1cc(-c2ccc(Br)cc2)cn1']; ['Nc1ccncc1N', 'c1cc2[nH]cnc2cn1']; [0.9999992847442627, 0.9995021820068359] +Nc1[nH]nc2cc(-c3nc4cnccc4[nH]3)ccc12; [None]; [None]; [0] +c1cc(Nc2nc3cnccc3[nH]2)ccn1; ['Nc1ccncc1N']; ['S=C=Nc1ccncc1']; [0.9961513876914978] +Fc1ccccc1CNc1nc2cnccc2[nH]1; ['Fc1ccccc1CN=C=S']; ['Nc1ccncc1N']; [0.995311975479126] +CN1c2ccc(-c3nc4cnccc4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +CC(C)n1cc(-c2nc3cnccc3[nH]2)nn1; [None]; [None]; [0] +CSc1nc(-c2nc3cnccc3[nH]2)c[nH]1; [None]; [None]; [0] +c1cc2[nH]c(-c3csc4ncncc34)nc2cn1; [None]; [None]; [0] +CCCn1cnc(-c2nc3cnccc3[nH]2)n1; [None]; [None]; [0] +CC(C)c1oncc1-c1nc2cnccc2[nH]1; ['CC(C)c1oncc1C(=O)O']; ['Nc1ccncc1N']; [0.9999232292175293] +COc1cc(-c2nc3cnccc3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +Fc1ccc(-c2nc3cnccc3[nH]2)c(C(F)(F)F)c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F', 'O=Cc1ccc(F)cc1C(F)(F)F']; [0.9999767541885376, 0.9997797012329102, 0.9990999698638916] +c1cc2[nH]c(CCc3c[nH]nn3)nc2cn1; [None]; [None]; [0] +c1ccc2[nH]c(-c3nc4cnccc4[nH]3)cc2c1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=Cc1cc2ccccc2[nH]1', 'O=C(O)c1cc2ccccc2[nH]1']; [0.9942970275878906, 0.9665492177009583] +CCC(=O)Nc1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +c1ccc(Oc2nc3cnccc3[nH]2)nc1; ['Clc1ccccn1', 'Brc1ccccn1', 'Fc1ccccn1']; ['Oc1nc2cnccc2[nH]1', 'Oc1nc2cnccc2[nH]1', 'Oc1nc2cnccc2[nH]1']; [0.9996289014816284, 0.9917689561843872, 0.979572594165802] +O=C(Nc1nc2cnccc2[nH]1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Nc1ncncc1-c1nc2cnccc2[nH]1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ncncc1I']; ['Nc1ncncc1C(=O)O', 'Nc1ncncc1C=O', 'Nc1ncncc1C=O', 'c1cc2[nH]cnc2cn1']; [0.9999709725379944, 0.9998688101768494, 0.999735951423645, 0.991951584815979] +N#CCCc1cccc(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +NC(=O)CCCc1nc2cnccc2[nH]1; [None]; [None]; [0] +COc1ccc(-c2nc3cnccc3[nH]2)cc1Cl; ['COc1ccc(C(=O)O)cc1Cl', 'COc1ccc(C=O)cc1Cl']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999674558639526, 0.9998835921287537] +CS(=O)(=O)C1CCN(c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +CCNc1nc2ccc(-c3nc4cnccc4[nH]3)cc2s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1nc2cnccc2[nH]1; [None]; [None]; [0] +O=c1cc(-c2nc3cnccc3[nH]2)cc[nH]1; ['Nc1ccncc1N', None]; ['O=C(O)c1cc[nH]c(=O)c1', None]; [0.9999765157699585, 0] +CCCn1cc(-c2nc3cnccc3[nH]2)cn1; ['CCCn1cc(C(=O)O)cn1', 'CCCn1cc(C=O)cn1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999997019767761, 0.9999958872795105] +c1ccn2ncc(-c3nc4cnccc4[nH]3)c2c1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'CCOC(=O)c1cnn2ccccc12', 'Nc1ccncc1[N+](=O)[O-]', 'Ic1cnn2ccccc12']; ['O=C(O)c1cnn2ccccc12', 'O=Cc1cnn2ccccc12', 'Nc1ccncc1N', 'O=Cc1cnn2ccccc12', 'c1cc2[nH]cnc2cn1']; [1.0, 0.9999997615814209, 0.9999994039535522, 0.9999901056289673, 0.9997106790542603] +COc1cc(CCc2nc3cnccc3[nH]2)cc(OC)c1; ['COc1cc(CCC(=O)O)cc(OC)c1', 'COc1cc(CCC=O)cc(OC)c1', 'COc1cc(CCC=O)cc(OC)c1', 'CCOC(=O)CCc1cc(OC)cc(OC)c1']; ['Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1N']; [0.9998554587364197, 0.9991481900215149, 0.9988347291946411, 0.9940247535705566] +C[S@](=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CS(=O)c1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.9999836087226868] +CCN(CC)c1nc2cnccc2[nH]1; ['CCN(C#N)CC', 'CCNCC']; ['Nc1ccncc1N', 'O=c1[nH]c2ccncc2[nH]1']; [0.9852612018585205, 0.9648410677909851] +CC(C)(COc1nc2cnccc2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3nc4cnccc4[nH]3)c21; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2nc3cnccc3[nH]2)cc1C(F)(F)F; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2nc3cnccc3[nH]2)c1; ['CC(C)Oc1cncc(C(=O)O)c1', 'CC(C)Oc1cncc(C=O)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999905824661255, 0.999959409236908] +COc1cccc(F)c1-c1nc2cnccc2[nH]1; ['COc1cccc(F)c1C(=O)Cl', 'COc1cccc(F)c1C(=O)O', 'COc1cccc(F)c1C=O', 'COc1cccc(F)c1C=O']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999812245368958, 0.9999533295631409, 0.9999449253082275, 0.9988692998886108] +COc1ccncc1Nc1nc2cnccc2[nH]1; [None]; [None]; [0] +C[C@@H](Oc1nc2cnccc2[nH]1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3nc4cnccc4[nH]3)cc12; ['Nc1ccncc1N']; ['O=Cc1cc2c(=O)[nH]ccc2o1']; [0.9990120530128479] +c1ccc(-c2ccncc2Nc2nc3cnccc3[nH]2)cc1; [None]; [None]; [0] +c1cc2[nH]c(-c3cnc4[nH]ccc4c3)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1cnc2[nH]ccc2c1', 'O=Cc1cnc2[nH]ccc2c1']; [0.9999977350234985, 0.9999934434890747] +c1cc2[nH]c(-c3c[nH]c4cnccc34)nc2cn1; ['Nc1ccncc1N', 'CCOC(=O)c1c[nH]c2cnccc12', 'N#Cc1c[nH]c2cnccc12', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(O)c1c[nH]c2cnccc12', 'Nc1ccncc1N', 'Nc1ccncc1N', 'O=Cc1c[nH]c2cnccc12', 'OCc1c[nH]c2cnccc12', 'O=Cc1c[nH]c2cnccc12', 'OCc1c[nH]c2cnccc12']; [0.9999935030937195, 0.999916672706604, 0.9998759031295776, 0.9995911717414856, 0.9994626045227051, 0.9637803435325623, 0.8992448449134827] +c1ccc2ncc(Nc3nc4cnccc4[nH]3)cc2c1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CC(C)(C)NS(=O)(=O)c1ccc(C(=O)O)cc1']; ['Nc1ccncc1N']; [0.9999780654907227] +CNC(=O)c1c(F)cccc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC1(c2nc3cnccc3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3nc4cnccc4[nH]3)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['CS(=O)(=O)c1ccc(C(=O)Cl)cc1', 'CS(=O)(=O)c1ccc(C(=O)O)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1', 'CS(=O)(=O)c1ccc(C=O)cc1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999651908874512, 0.9999085664749146, 0.9996944069862366, 0.991055965423584] +Cc1cc(-c2nc3cnccc3[nH]2)n(-c2cccc(Cl)c2)n1; ['Cc1cc(C(=O)O)n(-c2cccc(Cl)c2)n1']; ['Nc1ccncc1N']; [0.9997164011001587] +Fc1cccc(Cl)c1-c1nc2cnccc2[nH]1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1c(F)cccc1Cl', 'O=C(Cl)c1c(F)cccc1Cl', 'O=Cc1c(F)cccc1Cl']; [0.9999992847442627, 0.9999910593032837, 0.999982476234436] +CN(c1nc2cnccc2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1nc2cnccc2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1nc2cnccc2[nH]1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1nc2cnccc2[nH]1)C(C)(C)O; [None]; [None]; [0] +OCc1ccn(-c2nc3cnccc3[nH]2)n1; [None]; [None]; [0] +COc1ccc(-c2nc3cnccc3[nH]2)c(OC)c1; ['COc1ccc(C(=O)O)c(OC)c1', 'COc1ccc(C=O)c(OC)c1', 'COc1ccc(C=O)c(OC)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999819993972778, 0.9999502301216125, 0.9998515248298645] +c1cc2[nH]c(-c3ccc(-n4cncn4)cc3)nc2cn1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1ccc(-n2cncn2)cc1', 'O=C(O)c1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1', 'O=Cc1ccc(-n2cncn2)cc1']; [0.9999997615814209, 0.9999991655349731, 0.9999986886978149, 0.9999827146530151] +OCCc1cn(-c2nc3cnccc3[nH]2)cn1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1nc2cnccc2[nH]1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2nc3cnccc3[nH]2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'O=C(c1ccccc1)c1ccc(I)cc1', 'Nc1ccncc1[N+](=O)[O-]']; ['O=C(Cl)c1ccc(C(=O)c2ccccc2)cc1', 'O=Cc1ccc(C(=O)c2ccccc2)cc1', 'O=C(O)c1ccc(C(=O)c2ccccc2)cc1', 'c1cc2[nH]cnc2cn1', 'O=Cc1ccc(C(=O)c2ccccc2)cc1']; [0.9999869465827942, 0.9990487098693848, 0.9987850785255432, 0.9973978400230408, 0.9840606451034546] +CSc1nc(C)c(-c2nc3cnccc3[nH]2)[nH]1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1nc2cnccc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3nc4cnccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4nc5cnccc5[nH]4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1nc2cnccc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +c1cc2[nH]c(-c3nncn3C3CC3)nc2cn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3nc4cnccc4[nH]3)nn2)cc1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=Cc1cn(Cc2ccccc2)nn1', 'O=C(O)c1cn(Cc2ccccc2)nn1']; [0.9998773336410522, 0.9997715353965759] +[NH3+]CCn1ccc(-c2nc3cnccc3[nH]2)n1; [None]; [None]; [0] +O=S(=O)(Cc1nc2cnccc2[nH]1)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2nc3cnccc3[nH]2)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3cnccc3[nH]2)s1; [None]; [None]; [0] +CCCCc1cc(-c2nc3cnccc3[nH]2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2nc3cnccc3[nH]2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1nc2cnccc2[nH]1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc3cnccc3[nH]2)n1; [None]; [None]; [0] +Nc1cncc(-c2nc3cnccc3[nH]2)n1; ['Nc1ccncc1N']; ['Nc1cncc(C(=O)O)n1']; [0.9999191761016846] +c1cc(-c2nc3cnccc3[nH]2)c2snnc2c1; ['Nc1cccc2nnsc12']; ['c1cc2[nH]cnc2cn1']; [0.9981707334518433] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc4cnccc4[nH]3)c2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3nc4cnccc4[nH]3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3nc4cnccc4[nH]3)nc2NC1=O; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2nc3cnccc3[nH]2)c(F)c1; [None]; [None]; [0] +c1cc(-c2nc3cnccc3[nH]2)c2sccc2c1; ['Nc1ccncc1N', 'Nc1cnccc1[N+](=O)[O-]', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; ['O=Cc1cccc2ccsc12', 'O=Cc1cccc2ccsc12', 'O=C(O)c1cccc2ccsc12', 'OCc1cccc2ccsc12', 'O=C(Cl)c1cccc2ccsc12', 'O=Cc1cccc2ccsc12']; [0.9999740719795227, 0.9998879432678223, 0.999718427658081, 0.999652624130249, 0.9996256828308105, 0.9995672702789307] +c1cnc2c(-c3nc4cnccc4[nH]3)c[nH]c2c1; ['Nc1ccncc1N', 'Nc1ccncc1N']; ['O=C(O)c1c[nH]c2cccnc12', 'O=Cc1c[nH]c2cccnc12']; [0.9998505711555481, 0.9993342161178589] +COc1ccc(C#N)cc1-c1nc2cnccc2[nH]1; ['COc1ccc(C#N)cc1C(=O)O', 'COc1ccc(C#N)cc1C=O', 'COc1ccc(C#N)cc1C=O']; ['Nc1ccncc1N', 'Nc1ccncc1N', 'Nc1ccncc1[N+](=O)[O-]']; [0.9999997019767761, 0.9999989867210388, 0.9999986886978149] +COc1ccc(OC)c(-c2nc3cnccc3[nH]2)c1; ['COc1ccc(OC)c(C(=O)O)c1', 'COc1ccc(OC)c(C=O)c1']; ['Nc1ccncc1N', 'Nc1ccncc1N']; [0.9999972581863403, 0.9998846054077148] +CC(=O)Nc1ncc(-c2nc3cnccc3[nH]2)[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc3cnccc3[nH]2)c1; ['CN(C)S(=O)(=O)c1cccc(C(=O)O)c1']; ['Nc1ccncc1N']; [0.9999659061431885] +COc1ccc(Oc2nc3cnccc3[nH]2)c(F)c1F; ['COc1ccc(F)c(F)c1F']; ['Oc1nc2cnccc2[nH]1']; [0.9983487725257874] +OCCn1cnc(-c2nc3cnccc3[nH]2)c1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4nc5cnccc5[nH]4)CC3)nc2c1; [None]; [None]; [0] +Nc1nc(-c2nc3cnccc3[nH]2)nc2ccccc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3cnccc3[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +c1cc2[nH]c(-c3ncc4cc[nH]c4n3)nc2cn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc3cnccc3[nH]2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2nc3cnccc3[nH]2)cnn1; [None]; [None]; [0] +COc1ncccc1-c1cccc2ncnn12; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'Brc1cccc2ncnn12', 'COc1ncccc1B(O)O']; ['Clc1cccc2ncnn12', 'COc1ncccc1B(O)O', 'Clc1cccc2ncnn12']; [0.9999324083328247, 0.9999000430107117, 0.9971492290496826] +C1=C(c2c[nH]c3ccccc23)CCN(c2nc3cnccc3[nH]2)C1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)N(C)c1ccc(Br)cc1']; ['CC(=O)N(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999997615814209, 0.9999855756759644, 0.9994375705718994] +CCOc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cccc2ncnn12', 'CCOc1ccc(B(O)O)cc1', 'Brc1cccc2ncnn12', 'CCOc1ccc(Br)cc1', 'CCOc1ccc(I)cc1']; ['CCOc1ccc(B(O)O)cc1', 'CCOc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cccc2ncnn12', 'CCOc1ccc(I)cc1', 'Clc1cccc2ncnn12', 'CCOc1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [1.0, 1.0, 0.9999974966049194, 0.9999967813491821, 0.9999903440475464, 0.9999717473983765, 0.9999449849128723, 0.9993924498558044] +CS(=O)(=O)c1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1']; ['CC1(C)OB(c2cccc(S(C)(=O)=O)c2)OC1(C)C', 'CS(=O)(=O)c1cccc(B(O)O)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999995827674866, 0.9999966025352478, 0.9999711513519287, 0.9998047947883606] +COc1cc(-c2cccc3ncnn23)cc(OC)c1OC; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1cc(I)cc(OC)c1OC', 'COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'Brc1cccc2ncnn12', 'COc1cc(Br)cc(OC)c1OC']; ['COc1cc(B(O)O)cc(OC)c1OC', 'COc1cc(B2OC(C)(C)C(C)(C)O2)cc(OC)c1OC', 'COc1cc(I)cc(OC)c1OC', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'COc1cc(Br)cc(OC)c1OC', 'Clc1cccc2ncnn12']; [0.999994158744812, 0.9999878406524658, 0.9999815225601196, 0.9995002150535583, 0.9992367029190063, 0.9991220831871033, 0.9987967014312744, 0.9986736178398132, 0.9922195076942444] +c1ccc2nc(-c3cccc4ncnn34)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccc2ncnn12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(B(O)O)c1', 'N#Cc1ccc(O)c(Br)c1']; [0.9983643293380737, 0.9967439770698547, 0.9939343929290771] +Oc1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Oc1cccc(I)c1']; ['OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'OB(O)c1cccc(O)c1', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'c1ccn2ncnc2c1']; [0.999997615814209, 0.9999829530715942, 0.9999699592590332, 0.9997684955596924, 0.9991742372512817, 0.9820877313613892] +c1cc(-c2ccc(N3CCOCC3)cc2)n2ncnc2c1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1ccc(N2CCOCC2)cc1']; ['OB(O)c1ccc(N2CCOCC2)cc1', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CCCC[Sn](CCCC)(CCCC)c1ccc(N2CCOCC2)cc1', 'Brc1cccc2ncnn12']; [1.0, 1.0, 1.0, 0.9999988079071045, 0.9999977946281433, 0.9999940395355225] +COc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'Brc1cccc2ncnn12', 'COc1ccc(Br)cc1', 'COc1ccc(I)cc1', 'COc1ccc(I)cc1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'COc1ccc(B(O)O)cc1', 'COc1ccc(I)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'COc1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [0.9999997615814209, 0.999999463558197, 0.9999947547912598, 0.9999905824661255, 0.9999240636825562, 0.9998915791511536, 0.9996392130851746, 0.9992614388465881, 0.998853325843811] +Cc1ccc2ncn(-c3cccc4ncnn34)c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3ncnn23)c1)C1CC1; [None]; [None]; [0] +c1cc(-c2cnc3cccnn23)n2ncnc2c1; [None]; [None]; [0] +Cc1cc(Nc2cccc3ncnn23)sn1; ['Cc1cc(N)sn1']; ['Clc1cccc2ncnn12']; [0.9999385476112366] +c1ccc2[nH]c(-c3cccc4ncnn34)nc2c1; ['Nc1ccccc1N', 'Nc1ccccc1N']; ['O=C(O)c1cccc2ncnn12', 'O=Cc1cccc2ncnn12']; [1.0, 0.9999969601631165] +O=C([O-])c1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Clc1cccc2ncnn12']; ['NC(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'NC(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999992847442627, 0.9999873638153076] +c1cnc(Nc2cccc3ncnn23)nc1; ['Clc1ncccn1', 'Clc1cccc2ncnn12']; ['Nc1cccc2ncnn12', 'Nc1ncccn1']; [0.9999769926071167, 0.9982413649559021] +c1ccc2c(-c3cccc4ncnn34)nccc2c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(C(=O)Nc3ccccc3)cc2)OC1(C)C', 'Clc1cccc2ncnn12']; ['O=C(Nc1ccccc1)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'O=C(Nc1ccccc1)c1ccc(B(O)O)cc1']; [1.0, 0.999997615814209, 0.9999933838844299] +CC(=O)NCc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Brc1cccc2ncnn12', 'CC(=O)NCc1ccc(Br)cc1']; ['CC(=O)NCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(=O)NCc1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC(=O)NCc1ccc(Br)cc1', 'c1ccn2ncnc2c1']; [1.0, 0.9999994039535522, 0.9999954700469971, 0.9998974800109863, 0.999787449836731, 0.99908846616745] +OCCOc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2ccc(OCCO)cc2)OC1(C)C', 'OCCOc1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'OCCOc1ccc(B(O)O)cc1']; [0.9999998211860657, 0.9999993443489075, 0.9999958276748657, 0.9999620318412781] +c1cc(-c2cccc3ncnn23)cc(C2CCNCC2)c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc4ncnn34)cn2)c1; [None]; [None]; [0] +c1cc(Nc2ccncn2)n2ncnc2c1; ['Clc1ccncn1', 'Clc1cccc2ncnn12']; ['Nc1cccc2ncnn12', 'Nc1ccncn1']; [0.9999978542327881, 0.9960886240005493] +O=C(c1ccc(-c2cccc3ncnn23)cc1)N1CCOCC1; ['CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['Clc1cccc2ncnn12', 'CC1(C)OB(c2ccc(C(=O)N3CCOCC3)cc2)OC1(C)C', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1', 'O=C(c1ccc(B(O)O)cc1)N1CCOCC1', 'O=C(c1ccc(Br)cc1)N1CCOCC1']; [1.0, 1.0, 1.0, 0.9999997615814209, 0.9999996423721313, 0.999985933303833] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc4ncnn34)cc2)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999994039535522, 0.9999985098838806, 0.9999814033508301, 0.9999284744262695] +O=C(c1ccc(-c2cccc3ncnn23)nc1)N1CCOCC1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'FC(F)(F)c1ccc(I)cc1']; ['OB(O)c1ccc(C(F)(F)F)cc1', 'CC1(C)OB(c2ccc(C(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)c1ccc(I)cc1', 'Clc1cccc2ncnn12', 'FC(F)(F)c1ccc(Br)cc1', 'OB(O)c1ccc(C(F)(F)F)cc1', 'FC(F)(F)c1ccc(Br)cc1', 'FC(F)(F)c1ccc(I)cc1', 'c1ccn2ncnc2c1']; [1.0, 1.0, 1.0, 0.9999995231628418, 0.9999995231628418, 0.9999988079071045, 0.9999978542327881, 0.9999931454658508, 0.9999856948852539] +C[C@H](O)COc1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'Brc1cccc2ncnn12', 'CN(C)S(=O)(=O)c1ccc(I)cc1']; ['CN(C)S(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)S(=O)(=O)c1ccc(B(O)O)cc1', 'CN(C)S(=O)(=O)c1ccc(I)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CN(C)S(=O)(=O)c1ccc(Br)cc1', 'c1ccn2ncnc2c1']; [0.9999978542327881, 0.9999923706054688, 0.999975323677063, 0.9999712705612183, 0.9999046325683594, 0.9997982978820801, 0.9995219111442566, 0.9993903636932373, 0.9973008632659912] +CN(C)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cccc2ncnn12', 'CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(Br)cc1', 'CN(C)c1ccc(I)cc1', 'CN(C)c1ccc(I)cc1']; ['CN(C)c1ccc(B(O)O)cc1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)c1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'CN(C)c1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [1.0, 1.0, 0.9999988079071045, 0.9999974966049194, 0.9999939799308777, 0.9999875426292419, 0.9999788999557495, 0.9999537467956543, 0.9999061822891235] +C[C@@H](O)COc1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cccc4ncnn34)cc2C1; ['CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'Clc1cccc2ncnn12', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'Brc1cccc2ncnn12']; ['O=S1(=O)Cc2ccc(Br)cc2C1', 'O=S1(=O)Cc2ccc(Br)cc2C1', 'c1ccn2ncnc2c1', 'O=S1(=O)Cc2ccc(Br)cc2C1']; [0.9999994039535522, 0.9999165534973145, 0.9995502829551697, 0.9993115663528442] +CCNS(=O)(=O)c1ccc(-c2cccc3ncnn23)cc1; ['CCNS(=O)(=O)c1ccc(B(O)O)cc1']; ['Clc1cccc2ncnn12']; [0.9997601509094238] +CCCOc1ccc(-c2cccc3ncnn23)nc1; ['CCCOc1ccc(Br)nc1']; ['Clc1cccc2ncnn12']; [0.9996539354324341] +CS(=O)(=O)N1CCC(c2cccc3ncnn23)CC1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3ncnn23)s1; [None]; [None]; [0] +Brc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Brc1cccc2ncnn12', 'Brc1ccc(I)cc1', 'Brc1ccc(I)cc1', 'Clc1cccc2ncnn12', 'Brc1ccc(Br)cc1', 'Brc1ccc(Br)cc1']; ['CC1(C)OB(c2ccc(Br)cc2)OC1(C)C', 'Clc1cccc2ncnn12', 'OB(O)c1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'OB(O)c1ccc(Br)cc1', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999995231628418, 0.9999984502792358, 0.9999878406524658, 0.9999436140060425, 0.9999400973320007, 0.999906063079834, 0.9997475147247314, 0.9965155124664307] +Cc1c(C(=O)[O-])cccc1-c1cccc2ncnn12; [None]; [None]; [0] +CC(C)c1cc(-c2cccc3ncnn23)nc(N)n1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cccc3ncnn23)C1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccc4ncnn34)c2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3ncnn23)cc1Cl; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'Brc1cccc2ncnn12', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl']; ['CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'CN(C)c1ccc(Br)cc1Cl', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999994039535522, 0.9999991059303284, 0.9999895095825195, 0.9999762177467346, 0.999901533126831] +CCN(CC)C(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Brc1cccc2ncnn12', 'CCN(CC)C(=O)c1ccc(Br)cc1']; ['CCN(CC)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCN(CC)C(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'CCN(CC)C(=O)c1ccc(Br)cc1', 'Clc1cccc2ncnn12']; [1.0, 0.9999992847442627, 0.9999985694885254, 0.9999967813491821, 0.9999338984489441, 0.9998539686203003, 0.999669075012207] +c1cc(-c2ccn3nccc3n2)n2ncnc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3ncnn23)c(C)c1; ['Brc1cccc2ncnn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1', 'Brc1cccc2ncnn12']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(C)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CNS(=O)(=O)c1ccc(B(O)O)c(C)c1']; [0.9999476671218872, 0.9996321797370911, 0.9993941783905029, 0.9990701079368591] +CC(C)c1ccc2nc(-c3cccc4ncnn34)[nH]c2c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1ccccc1-n1cccn1', 'CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2ccccc2-n2cccn2)OC1(C)C', 'OB(O)c1ccccc1-n1cccn1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'OB(O)c1ccccc1-n1cccn1']; [0.9999993443489075, 0.9999984502792358, 0.9999921321868896, 0.9999879002571106, 0.9999837875366211] +COc1ccc(Cl)cc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'COc1ccc(Cl)cc1Br']; ['COc1ccc(Cl)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(Cl)cc1B(O)O', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.999980092048645, 0.9998512268066406, 0.9995410442352295, 0.9958257675170898, 0.9734642505645752] +c1ccc2c(-c3cccc4ncnn34)c[nH]c2c1; ['Brc1c[nH]c2ccccc12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2c[nH]c3ccccc23)OC1(C)C', 'Clc1cccc2ncnn12']; ['c1ccn2ncnc2c1', 'OB(O)c1c[nH]c2ccccc12', 'Clc1cccc2ncnn12', 'OB(O)c1c[nH]c2ccccc12']; [0.9998555779457092, 0.9996840357780457, 0.9994282126426697, 0.9969772100448608] +c1cc(-c2ccc3c(c2)CCO3)n2ncnc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1ccc2c(c1)CCO2', 'Clc1cccc2ncnn12', 'Brc1ccc2c(c1)CCO2', 'Brc1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C']; ['OB(O)c1ccc2c(c1)CCO2', 'CC1(C)OB(c2ccc3c(c2)CCO3)OC1(C)C', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'OB(O)c1ccc2c(c1)CCO2', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 0.999998927116394, 0.9999985098838806, 0.9999961256980896, 0.9999921321868896, 0.9999815225601196, 0.9999637603759766] +COc1cc(OC)c(-c2cccc3ncnn23)cc1Cl; ['COc1cc(OC)c(Br)cc1Cl']; ['Clc1cccc2ncnn12']; [0.9833278656005859] +CC(=O)Nc1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Brc1cccc2ncnn12', 'CC(=O)Nc1cccc(Br)c1']; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC(=O)Nc1cccc(Br)c1', 'Clc1cccc2ncnn12']; [0.9999997615814209, 0.9999994039535522, 0.9999879002571106, 0.9999749660491943, 0.9999310374259949, 0.9998519420623779] +c1cc(-c2scc3c2OCCO3)n2ncnc2c1; [None]; [None]; [0] +c1cc2c(c(-c3cccc4ncnn34)c1)OCO2; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2cccc3c2OCO3)OC1(C)C', 'OB(O)c1cccc2c1OCO2', 'Clc1cccc2ncnn12', 'OB(O)c1cccc2c1OCO2']; [0.9999825954437256, 0.9999582767486572, 0.99942946434021, 0.996211051940918] +c1ccc2ncc(-c3cccc4ncnn34)cc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'Brc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1']; ['OB(O)c1cnc2ccccc2c1', 'CC1(C)OB(c2cnc3ccccc3c2)OC1(C)C', 'OB(O)c1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [0.9999994039535522, 0.9999994039535522, 0.9999832510948181, 0.9999704360961914, 0.9999586343765259, 0.9998664855957031, 0.9997556209564209] +CC(C)(C)c1ccc(-c2cccc3ncnn23)cn1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(Br)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1']; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'CC(C)(C)c1ccc(B(O)O)cn1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999997615814209, 0.9999988079071045, 0.9999903440475464, 0.9999622702598572, 0.9999496936798096] +CN(C)C(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'CN(C)C(=O)c1ccc(Br)cc1']; ['CN(C)C(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CN(C)C(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 0.9999995827674866, 0.9999970197677612, 0.9999756813049316, 0.999274730682373] +c1ccc(-c2cc(-c3cccc4ncnn34)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(-c2cccc3ncnn23)ccc1O; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(Br)ccc1O', 'Brc1cccc2ncnn12', 'COc1cc(I)ccc1O']; ['COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'COc1cc(Br)ccc1O', 'c1ccn2ncnc2c1']; [0.9999849796295166, 0.9999594688415527, 0.9997271299362183, 0.9995956420898438, 0.9994874000549316, 0.9989224076271057, 0.9970443248748779, 0.9968442320823669, 0.9950557947158813] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc2ncnn12; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cccc3ncnn23)c1; ['COc1cccc(C(=O)Cl)c1', 'COc1cccc(C(=O)O)c1', 'CCOC(=O)c1cccc(OC)c1', 'COC(=O)c1cccc(OC)c1']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12']; [0.9999853372573853, 0.9999169111251831, 0.9987314939498901, 0.9979133605957031] +CC(C)(C)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)(C)c1ccc(Br)cc1', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC(C)(C)c1ccc(I)cc1']; ['CC(C)(C)c1ccc(B(O)O)cc1', 'CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(I)cc1', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'CC(C)(C)c1ccc(Br)cc1', 'CC(C)(C)c1ccc([B-](F)(F)F)cc1', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12']; [1.0, 1.0, 1.0, 0.9999995827674866, 0.9999988079071045, 0.9999986886978149, 0.9999982118606567, 0.9999968409538269, 0.9999939203262329, 0.9999914169311523, 0.9999871850013733, 0.9999741315841675] +CC1(COc2cccc3ncnn23)COC1; ['CC1(CO)COC1', 'Brc1cccc2ncnn12', 'CC1(CO)COC1']; ['Clc1cccc2ncnn12', 'CC1(CO)COC1', 'Fc1cccc2ncnn12']; [0.9998819231987, 0.9995619058609009, 0.9820537567138672] +Clc1cccc(-n2ccc(-c3cccc4ncnn34)n2)c1; ['Clc1cccc(-n2cccn2)c1']; ['Clc1cccc2ncnn12']; [0.9993500709533691] +CSc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'CSc1ccc(Br)cc1']; ['CSc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CSc1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999997615814209, 0.9999997019767761, 0.9999849796295166, 0.9999496936798096, 0.9996771812438965] +c1ccc2sc(-c3cccc4ncnn34)cc2c1; ['Clc1cccc2ncnn12']; ['OB(O)c1cc2ccccc2s1']; [0.9999933242797852] +CCN1CCN(Cc2ccc(-c3cccc4ncnn34)cc2)CC1; ['Brc1cccc2ncnn12', 'CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Brc1cccc2ncnn12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1']; ['CCN1CCN(Cc2ccc(B(O)O)cc2)CC1', 'Clc1cccc2ncnn12', 'CCN1CCN(Cc2ccc(Br)cc2)CC1', 'Clc1cccc2ncnn12']; [1.0, 0.9999938011169434, 0.9999920129776001, 0.9999293088912964] +Fc1ccc(-c2cccc3ncnn23)c(Cl)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2ccc(F)cc2Cl)OC1(C)C', 'OB(O)c1ccc(F)cc1Cl', 'Clc1cccc2ncnn12', 'OB(O)c1ccc(F)cc1Cl']; [0.9999998211860657, 0.9999942779541016, 0.999975323677063, 0.9994815587997437] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3ncnn23)CC1; [None]; [None]; [0] +Nc1nc(-c2cccc3ncnn23)cs1; [None]; [None]; [0] +Cc1cc(-c2cccc3ncnn23)nc(N)n1; [None]; [None]; [0] +COc1ccc(CNc2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'COc1ccc(CBr)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(CCl)cc1', 'COc1ccc(CN)cc1', 'COc1ccc(C=O)cc1']; ['COc1ccc(CN)cc1', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Fc1cccc2ncnn12', 'Nc1cccc2ncnn12']; [0.99994957447052, 0.9998595714569092, 0.9997315406799316, 0.9996380805969238, 0.9985736608505249, 0.9916452169418335] +COc1ccc(-c2cccc3ncnn23)cc1OC; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccc(I)cc1OC']; ['COc1ccc(B(O)O)cc1OC', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1ccc(Br)cc1OC', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [0.9999986886978149, 0.9999955892562866, 0.999908447265625, 0.9999034404754639, 0.9998646974563599, 0.9998067021369934, 0.9996340274810791, 0.9995244145393372] +CCc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cccc2ncnn12', 'CCc1ccc(B(O)O)cc1', 'CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(I)cc1']; ['CCc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CCc1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'CCc1ccc(Br)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12']; [1.0, 0.9999996423721313, 0.9999922513961792, 0.9999687671661377, 0.9998483657836914, 0.999779462814331, 0.9994573593139648, 0.9994336366653442] +O=C1CCc2cc(-c3cccc4ncnn34)ccc2N1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +c1cc(-c2ncc3cccn3n2)n2ncnc2c1; [None]; [None]; [0] +Clc1ccc(-c2cccc3ncnn23)c(Cl)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2ccc(Cl)cc2Cl)OC1(C)C', 'OB(O)c1ccc(Cl)cc1Cl', 'Clc1cccc2ncnn12', 'OB(O)c1ccc(Cl)cc1Cl']; [0.9999991655349731, 0.9999948740005493, 0.999913215637207, 0.9996386170387268] +COc1cc(-c2cccc3ncnn23)ccc1N1CCOCC1; ['Brc1cccc2ncnn12', 'COc1cc(B(O)O)ccc1N1CCOCC1', 'Brc1cccc2ncnn12']; ['COc1cc(B(O)O)ccc1N1CCOCC1', 'Clc1cccc2ncnn12', 'COc1cc(Br)ccc1N1CCOCC1']; [0.9999997019767761, 0.9999979138374329, 0.9999759197235107] +Brc1cnc(-c2cccc3ncnn23)nc1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cccc3ncnn23)C1; [None]; [None]; [0] +COc1ccc2cccc(-c3cccc4ncnn34)c2c1; [None]; [None]; [0] +Cn1cc(-c2cccc3ncnn23)c(C(F)(F)F)n1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c(C(F)(F)F)n1', 'Cn1cc(B(O)O)c(C(F)(F)F)n1']; [0.9999942183494568, 0.9999843835830688, 0.9999792575836182, 0.9999290704727173] +CC1(C)Cc2cc(-c3cccc4ncnn34)ccc2O1; [None]; [None]; [0] +OCCn1cc(-c2cccc3ncnn23)cn1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'Clc1cccc2ncnn12']; ['OCCn1cc(B(O)O)cn1', 'Clc1cccc2ncnn12', 'OCCn1cc(B(O)O)cn1']; [0.9999821186065674, 0.9999407529830933, 0.9996910095214844] +COc1cc(-c2cccc3ncnn23)ccc1Cl; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(B(O)O)ccc1Cl', 'COc1cc(Br)ccc1Cl']; ['COc1cc(B(O)O)ccc1Cl', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1Cl', 'COc1cc(Br)ccc1Cl', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999992251396179, 0.9999984502792358, 0.99998539686203, 0.9999581575393677, 0.9999106526374817, 0.9998334050178528] +c1ccn2nc(-c3cccc4ncnn34)cc2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cccc4ncnn34)c2c1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C']; ['CC1(C)OB(c2cccc3ccc(O)cc23)OC1(C)C', 'Clc1cccc2ncnn12']; [0.9999912977218628, 0.9998443126678467] +COc1cc(F)c(-c2cccc3ncnn23)cc1OC; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'COc1cc(F)c(Br)cc1OC']; ['COc1cc(F)c(B2OC(C)(C)C(C)(C)O2)cc1OC', 'COc1cc(F)c(B(O)O)cc1OC', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999991655349731, 0.9999976754188538, 0.9999764561653137, 0.9999538660049438, 0.999718427658081] +Cc1nc(Nc2cccc3ncnn23)sc1C; ['Cc1nc(Cl)sc1C', 'Cc1nc(N)sc1C']; ['Nc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999991655349731, 0.9999955892562866] +Cc1cc(Nc2cccc3ncnn23)nn1C; ['Cc1cc(Cl)nn1C', 'Cc1cc(Br)nn1C', 'Brc1cccc2ncnn12', 'Cc1cc(N)nn1C']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Cc1cc(N)nn1C', 'Clc1cccc2ncnn12']; [0.9999979734420776, 0.9999945163726807, 0.9999936819076538, 0.999975323677063] +CNC(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNC(=O)c1ccc(B(O)O)cc1']; ['CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 0.9999997615814209, 0.9999890327453613, 0.9999818801879883] +CCNC(=O)c1ccc(-c2cccc3ncnn23)nc1; ['Brc1cccc2ncnn12']; ['CCNC(=O)c1ccc(Br)nc1']; [0.9996157884597778] +Cc1csc2c(-c3cccc4ncnn34)ncnc12; [None]; [None]; [0] +Nc1cc(-c2cccc3ncnn23)c2cc[nH]c2n1; ['Clc1cccc2ncnn12']; ['Nc1cc(Br)c2cc[nH]c2n1']; [0.987238347530365] +O=C(Nc1cccc2ncnn12)c1ccco1; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['O=C(Cl)c1ccco1', 'O=C(O)c1ccco1', 'NC(=O)c1ccco1']; [0.999895453453064, 0.9997122287750244, 0.9996230006217957] +Clc1cnc(-c2cccc3ncnn23)nc1; [None]; [None]; [0] +COc1cc(-c2cccc3ncnn23)c(OC)cc1Br; ['Brc1cccc2ncnn12', 'COc1cc(B(O)O)c(OC)cc1Br', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['COc1cc(I)c(OC)cc1Br', 'Clc1cccc2ncnn12', 'COc1cc(B(O)O)c(OC)cc1Br', 'COc1ccc(OC)c(Br)c1']; [0.9991500377655029, 0.9956588745117188, 0.9915977716445923, 0.7962603569030762] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc2ncnn12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc3ncnn23)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cccc3ncnn23)cc1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cccc3ncnn23)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccc3ncnn23)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccc3ncnn23)CC1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cccc3ncnn23)cc1; [None]; [None]; [0] +c1cc(-c2ccc3cn[nH]c3c2)n2ncnc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C']; ['CC1(C)OB(c2ccc3cn[nH]c3c2)OC1(C)C', 'OB(O)c1ccc2cn[nH]c2c1', 'OB(O)c1ccc2cn[nH]c2c1', 'Clc1cccc2ncnn12']; [1.0, 1.0, 0.9999995231628418, 0.9999948143959045] +CC(C)(C)c1ccc(C(=O)Nc2cccc3ncnn23)cc1; ['CC(C)(C)c1ccc(C(=O)Cl)cc1', 'CC(C)(C)c1ccc(C(=O)O)cc1', 'CCOC(=O)c1ccc(C(C)(C)C)cc1', 'COC(=O)c1ccc(C(C)(C)C)cc1', 'CC(C)(C)c1ccc(C(N)=O)cc1']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.999993085861206, 0.9999085664749146, 0.9996264576911926, 0.9996103048324585, 0.9995840787887573] +CCn1cc(-c2cccc3ncnn23)cn1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999977350234985, 0.999976396560669, 0.9999653697013855, 0.9996145963668823] +COc1ccc2c(c1)c(-c1cccc3ncnn13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cccc4ncnn34)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc3ncnn23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cccc4ncnn34)c2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc2ncnn12; ['CC(C)c1nn(C)cc1B1OC(C)(C)C(C)(C)O1']; ['Clc1cccc2ncnn12']; [0.9999865293502808] +COc1ccc(F)c(C(=O)Nc2cccc3ncnn23)c1; ['COc1ccc(F)c(C(=O)O)c1', 'COC(=O)c1cc(OC)ccc1F']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12']; [0.9998223781585693, 0.9987703561782837] +c1ccc2oc(-c3cccc4ncnn34)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc2ncnn12; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'FC(F)(F)Oc1ccc(I)cc1', 'Clc1cccc2ncnn12']; ['OB(O)c1ccc(OC(F)(F)F)cc1', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(Br)cc1', 'FC(F)(F)Oc1ccc(I)cc1', 'c1ccn2ncnc2c1', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999997615814209, 0.9999996423721313] +Cn1cc(-c2cccc3ncnn23)c2ccccc21; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21', 'Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999974370002747, 0.9999449253082275] +COc1ccc2nc(-c3cccc4ncnn34)[nH]c2c1; [None]; [None]; [0] +c1cc(-c2ncn3c2CCCC3)n2ncnc2c1; [None]; [None]; [0] +c1cc(-c2ncc3sccc3n2)n2ncnc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3ncnn23)c1)N1CCCC1; [None]; [None]; [0] +CCc1cccc(-c2cccc3ncnn23)n1; ['Brc1cccc2ncnn12', 'CCc1cccc(Br)n1']; ['CCc1cccc(Br)n1', 'Clc1cccc2ncnn12']; [0.9995312690734863, 0.9907338619232178] +Cn1ncc2cc(-c3cccc4ncnn34)ccc21; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21', 'Cn1ncc2cc(Br)ccc21', 'Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(Br)ccc21']; [1.0, 1.0, 0.9999998211860657, 0.9999974966049194, 0.9999910593032837, 0.9999845027923584, 0.9999551773071289] +CN(C)c1ccc(-c2cccc3ncnn23)cn1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Brc1cccc2ncnn12', 'CN(C)c1ccc(Br)cn1']; ['CN(C)c1ccc(B(O)O)cn1', 'CN(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cn1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CN(C)c1ccc(Br)cn1', 'Clc1cccc2ncnn12']; [1.0, 0.9999998211860657, 0.9999984502792358, 0.9999934434890747, 0.999987006187439, 0.9999637007713318] +Cc1n[nH]c2cc(-c3cccc4ncnn34)ccc12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Brc1cccc2ncnn12']; ['Cc1n[nH]c2cc(B(O)O)ccc12', 'Cc1n[nH]c2cc(B3OC(C)(C)C(C)(C)O3)ccc12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Cc1n[nH]c2cc(Br)ccc12']; [1.0, 1.0, 0.9999971985816956, 0.9999949932098389, 0.9999737739562988] +O=C(Nc1cccc2ncnn12)c1cccc(OC(F)(F)F)c1; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'COC(=O)c1cccc(OC(F)(F)F)c1']; ['O=C(Cl)c1cccc(OC(F)(F)F)c1', 'O=C(O)c1cccc(OC(F)(F)F)c1', 'Nc1cccc2ncnn12']; [0.9999997615814209, 0.9999983310699463, 0.9999514818191528] +Cc1cc(-c2cccc3ncnn23)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc4ncnn34)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc4ncnn34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'Brc1cccc2ncnn12', 'O=C1CCCN1c1cccc(Br)c1']; ['CC1(C)OB(c2cccc(N3CCCC3=O)c2)OC1(C)C', 'O=C1CCCN1c1cccc(Br)c1', 'Clc1cccc2ncnn12', 'O=C1CCCN1c1cccc(Br)c1', 'c1ccn2ncnc2c1']; [0.9999998211860657, 0.9999988079071045, 0.9999854564666748, 0.9999690055847168, 0.9999485611915588] +Cn1nc(Cl)c2cc(-c3cccc4ncnn34)ccc21; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc2ncnn12; [None]; [None]; [0] +OCCc1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3ncnn23)c(OC)c1; ['Brc1cccc2ncnn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1']; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'Clc1cccc2ncnn12']; [0.9999261498451233, 0.998832643032074] +COc1cc(S(C)(=O)=O)ccc1-c1cccc2ncnn12; ['COc1cc(S(C)(=O)=O)ccc1Br']; ['Clc1cccc2ncnn12']; [0.9998862743377686] +Cc1ncc(-c2ccc(-c3cccc4ncnn34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc2ncnn12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CCNC(=O)c1ccc(B(O)O)cc1']; ['CCNC(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12']; [0.9999997615814209, 0.9999781847000122] +CN(C)C(=O)c1ccc(-c2cccc3ncnn23)c(Cl)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc2ncnn12; [None]; [None]; [0] +Fc1ccc(Nc2cccc3ncnn23)nc1; ['Fc1ccc(Br)nc1', 'Fc1ccc(Cl)nc1', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Fc1ccc(F)nc1', 'Fc1cccc2ncnn12']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1ccc(F)cn1', 'Nc1ccc(F)cn1', 'Nc1cccc2ncnn12', 'Nc1ccc(F)cn1']; [0.9999995231628418, 0.9999989867210388, 0.9999963045120239, 0.9999844431877136, 0.9999184608459473, 0.9974782466888428] +Cc1cc(Nc2cccc3ncnn23)ncc1F; ['Cc1cc(Cl)ncc1F', 'Cc1cc(Br)ncc1F', 'Brc1cccc2ncnn12', 'Cc1cc(N)ncc1F', 'Cc1cc(N)ncc1F']; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Cc1cc(N)ncc1F', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; [1.0, 0.9999997615814209, 0.9999953508377075, 0.9999694228172302, 0.9953248500823975] +c1ccc(Nc2cccc3ncnn23)nc1; ['Brc1ccccn1', 'Brc1cccc2ncnn12', 'Clc1ccccn1', 'Clc1cccc2ncnn12']; ['Nc1cccc2ncnn12', 'Nc1ccccn1', 'Nc1cccc2ncnn12', 'Nc1ccccn1']; [0.999998152256012, 0.9999964237213135, 0.9999918937683105, 0.9999680519104004] +CCNC(=O)Cc1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc3ncnn23)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2ncnn12; ['CNC(=O)c1ccccc1B(O)O']; ['Clc1cccc2ncnn12']; [0.9915165901184082] +CN(C)C(=O)c1ccc(-c2cccc3ncnn23)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc3ncnn23)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCOc1ccccc1Br', 'CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1']; ['CCOc1ccccc1B(O)O', 'CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999946355819702, 0.9999463558197021, 0.999824047088623, 0.9997290372848511, 0.998902440071106] +Fc1cc(F)cc(Cc2cccc3ncnn23)c1; ['Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Fc1cc(F)cc(C[Zn]Br)c1', 'Fc1cc(F)cc(C[Zn]Cl)c1']; [0.9882549047470093, 0.896581768989563] +Cn1nc(-c2cccc3ncnn23)cc1C(C)(C)O; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'CC(C)S(=O)(=O)c1ccccc1Br', 'CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CC(C)S(=O)(=O)c1ccccc1B(O)O', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.999946117401123, 0.9999363422393799, 0.9996267557144165] +Cc1ccc(C(=O)NCCO)cc1-c1cccc2ncnn12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2ncnn12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cccc2ncnn12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3ncnn23)[nH]1; [None]; [None]; [0] +c1ccc2c(-c3cccc4ncnn34)ccnc2c1; ['Brc1cccc2ncnn12', 'Brc1ccnc2ccccc12', 'CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'Clc1cccc2ncnn12']; ['OB(O)c1ccnc2ccccc12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'OB(O)c1ccnc2ccccc12']; [0.9999959468841553, 0.9998906850814819, 0.9998123645782471, 0.9997053742408752] +FC(F)(F)c1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'FC(F)(F)c1cccc(I)c1']; ['OB(O)c1cccc(C(F)(F)F)c1', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'OB(O)c1cccc(C(F)(F)F)c1', 'Clc1cccc2ncnn12', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'c1ccn2ncnc2c1']; [0.9999997615814209, 0.9999992847442627, 0.9999967217445374, 0.9999943971633911, 0.9999836683273315, 0.9999635219573975, 0.9999632835388184, 0.9998304843902588] +FC(F)(F)Oc1ccccc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C']; ['FC(F)(F)Oc1ccccc1I', 'OB(O)c1ccccc1OC(F)(F)F', 'CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'OB(O)c1ccccc1OC(F)(F)F', 'Clc1cccc2ncnn12']; [1.0, 0.9999995231628418, 0.9999982118606567, 0.9999618530273438, 0.9999175667762756] +CP(C)(=O)c1ccccc1-c1cccc2ncnn12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4ncnn34)cc2c1=O; ['Clc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['Cn1cnc2ccc(Br)cc2c1=O', 'Cn1cnc2ccc(Br)cc2c1=O']; [0.9999878406524658, 0.9999871253967285] +c1ccc(Cn2cc(-c3cccc4ncnn34)cn2)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C']; ['OB(O)c1cnn(Cc2ccccc2)c1', 'CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'OB(O)c1cnn(Cc2ccccc2)c1', 'Clc1cccc2ncnn12']; [0.9999996423721313, 0.9999994039535522, 0.9999831914901733, 0.999965488910675] +O=C(Nc1cccc(-c2cccc3ncnn23)c1)c1ccccc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2cccc(NC(=O)c3ccccc3)c2)OC1(C)C', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1', 'Clc1cccc2ncnn12', 'O=C(Nc1cccc(B(O)O)c1)c1ccccc1']; [0.9999997615814209, 0.9999996423721313, 0.9999485611915588, 0.9999397397041321] +NC(=O)c1ccccc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'Clc1cccc2ncnn12', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1Br']; [0.9999864101409912, 0.9999542236328125, 0.999539852142334, 0.9977846145629883, 0.9969861507415771] +CC(C)C(=O)COc1cccc2ncnn12; [None]; [None]; [0] +Cc1ccc(-c2cccc3ncnn23)c(Br)c1; ['Cc1ccc(B(O)O)c(Br)c1', 'Brc1cccc2ncnn12']; ['Clc1cccc2ncnn12', 'Cc1ccc(B(O)O)c(Br)c1']; [0.9966917634010315, 0.9854997992515564] +Clc1ccc(Cl)c(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1ccc(Cl)c(I)c1', 'Clc1ccc(Cl)c(Br)c1', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'Clc1ccc(Cl)c(I)c1', 'Clc1cccc2ncnn12', 'OB(O)c1cc(Cl)ccc1Cl', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999966621398926, 0.9999876022338867, 0.9999393224716187, 0.9999059438705444, 0.999380350112915, 0.9983586072921753, 0.9973099231719971] +CC(C)(C)c1nc(-c2cccc3ncnn23)cs1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cccc4ncnn34)[nH]2)cc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cccc2ncnn12; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['OB(O)c1c(Cl)cccc1Cl', 'OB(O)c1c(Cl)cccc1Cl']; [0.9999682903289795, 0.9950582385063171] +COc1cnc(-c2cccc3ncnn23)nc1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Cc1ccc(Cl)c(B(O)O)c1']; ['Cc1ccc(Cl)c(B(O)O)c1', 'Clc1cccc2ncnn12']; [0.9999386072158813, 0.9947910308837891] +c1cncc(CNc2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'BrCc1cccnc1', 'Nc1cccc2ncnn12', 'Fc1cccc2ncnn12']; ['NCc1cccnc1', 'NCc1cccnc1', 'Nc1cccc2ncnn12', 'O=Cc1cccnc1', 'NCc1cccnc1']; [0.9999743103981018, 0.9999545812606812, 0.9997806549072266, 0.9994884729385376, 0.9994065165519714] +c1ccn2c(-c3cccc4ncnn34)cnc2c1; [None]; [None]; [0] +Brc1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc(I)c1', 'Brc1cccc(I)c1']; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'OB(O)c1cccc(Br)c1', 'Clc1cccc2ncnn12', 'OB(O)c1cccc(Br)c1', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12']; [0.9999920129776001, 0.9999802112579346, 0.9999164342880249, 0.9998534321784973, 0.9998008012771606, 0.9996117353439331] +c1cc(Cn2cncn2)cc(-c2cccc3ncnn23)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2ncnn12; [None]; [None]; [0] +c1cncc(Nc2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccnc1', 'Ic1cccnc1', 'Clc1cccc2ncnn12']; ['Nc1cccnc1', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccnc1']; [0.9999921321868896, 0.9999803304672241, 0.9998027086257935, 0.9997256398200989] +Cc1nc(N)sc1-c1cccc2ncnn12; [None]; [None]; [0] +c1cnn2ncc(-c3cccc4ncnn34)c2c1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['Clc1cccc2ncnn12']; [0.9997649192810059] +CNc1nc(C)c(-c2cccc3ncnn23)s1; [None]; [None]; [0] +c1cc(NCCc2c[nH]cn2)n2ncnc2c1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['NCCc1c[nH]cn1', 'NCCc1c[nH]cn1']; [0.9999737739562988, 0.9999518394470215] +c1ccc2cc(-c3cccc4ncnn34)ccc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1ccc2ccccc2c1', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'Brc1cccc2ncnn12', 'OB(O)c1ccc2ccccc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [0.9999997615814209, 0.9999991655349731, 0.9999802708625793, 0.9999786019325256, 0.9999608993530273, 0.9998321533203125, 0.9998081922531128] +O=C(Nc1cccc2ncnn12)c1cccs1; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CCOC(=O)c1cccs1']; ['O=C(Cl)c1cccs1', 'O=C(O)c1cccs1', 'NC(=O)c1cccs1', 'Nc1cccc2ncnn12']; [0.999991774559021, 0.9999176263809204, 0.9997665882110596, 0.9977871179580688] +NC(=O)c1c(F)cccc1-c1cccc2ncnn12; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cccc2ncnn12; [None]; [None]; [0] +c1ccc(CCNc2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'ClCCc1ccccc1', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'BrCCc1ccccc1', 'Fc1cccc2ncnn12', 'ICCc1ccccc1']; ['NCCc1ccccc1', 'Nc1cccc2ncnn12', 'O=CCc1ccccc1', 'NCCc1ccccc1', 'Nc1cccc2ncnn12', 'NCCc1ccccc1', 'Nc1cccc2ncnn12']; [0.9999418258666992, 0.9999195337295532, 0.9998602867126465, 0.9997305870056152, 0.9996669292449951, 0.9994747042655945, 0.9992733597755432] +c1ccc2c(-c3cccc4ncnn34)cncc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'Brc1cncc2ccccc12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'OB(O)c1cncc2ccccc12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cncc2ccccc12', 'OB(O)c1cncc2ccccc12']; [0.9999984502792358, 0.9999947547912598, 0.9999935030937195, 0.9998644590377808, 0.999845564365387, 0.9998356103897095] +Cc1c(-c2cccc3ncnn23)sc(=O)n1C; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cccc2ncnn12; [None]; [None]; [0] +Nc1nccc(-c2cccc3ncnn23)n1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cccc4ncnn34)ccc12; ['Nc1[nH]nc2cc(Br)ccc12']; ['c1ccn2ncnc2c1']; [0.9979546070098877] +Clc1ccc(CNc2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Clc1ccc(CBr)cc1', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12', 'Nc1cccc2ncnn12']; ['NCc1ccc(Cl)cc1', 'Nc1cccc2ncnn12', 'NCc1ccc(Cl)cc1', 'NCc1ccc(Cl)cc1', 'O=Cc1ccc(Cl)cc1']; [0.999948263168335, 0.9999120235443115, 0.998462975025177, 0.9975287914276123, 0.9923888444900513] +CCCn1cnc(-c2cccc3ncnn23)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4ncnn34)cc2)cn1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1', 'Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [1.0, 0.9999996423721313] +O=C([O-])Cc1cccc(-c2cccc3ncnn23)c1; [None]; [None]; [0] +c1cc(-c2ccc(-c3cn[nH]c3)cc2)n2ncnc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1ccc(-c2cn[nH]c2)cc1']; ['OB(O)c1ccc(-c2cn[nH]c2)cc1', 'CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'Clc1cccc2ncnn12', 'OB(O)c1ccc(-c2cn[nH]c2)cc1', 'Clc1cccc2ncnn12']; [1.0, 1.0, 0.9999997615814209, 0.9999966621398926, 0.9999719262123108] +c1cc(Nc2ccncc2)n2ncnc2c1; ['Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1ccncc1', 'Clc1ccncc1', 'Ic1ccncc1']; ['OB(O)c1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12']; [0.999998152256012, 0.9999887347221375, 0.9999831914901733, 0.999963641166687, 0.9999252557754517, 0.999814510345459] +CN1c2ccc(-c3cccc4ncnn34)cc2CS1(=O)=O; [None]; [None]; [0] +Fc1ccccc1CNc1cccc2ncnn12; ['Fc1ccccc1CBr', 'Clc1cccc2ncnn12', 'Fc1ccccc1CCl', 'Nc1cccc2ncnn12']; ['Nc1cccc2ncnn12', 'NCc1ccccc1F', 'Nc1cccc2ncnn12', 'O=Cc1ccccc1F']; [0.999984860420227, 0.999954342842102, 0.9999276995658875, 0.9999266862869263] +OCc1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'OCc1cccc(B(O)O)c1', 'Clc1cccc2ncnn12', 'OCc1cccc(B(O)O)c1', 'OCc1cccc(I)c1', 'OCc1cccc(Br)c1']; [0.9999984502792358, 0.9999949336051941, 0.9999827146530151, 0.9999819397926331, 0.9999003410339355, 0.9996529221534729] +c1cc(-c2csc3ncncc23)n2ncnc2c1; [None]; [None]; [0] +CSc1nc(-c2cccc3ncnn23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2ncnn12; [None]; [None]; [0] +c1cc(CCc2c[nH]nn2)n2ncnc2c1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3ncnn23)nn1; [None]; [None]; [0] +COc1cc(-c2cccc3ncnn23)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2[nH]c(-c3cccc4ncnn34)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'N#CCCc1cccc(Br)c1']; ['N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(B(O)O)c1', 'N#CCCc1cccc(Br)c1', 'N#CCCc1cccc(Br)c1', 'c1ccn2ncnc2c1']; [0.9999995231628418, 0.9999921321868896, 0.9999809861183167, 0.9999051094055176, 0.9998490810394287] +c1ccc(Oc2cccc3ncnn23)nc1; [None]; [None]; [0] +O=C(Nc1cccc2ncnn12)c1c(Cl)cccc1Cl; ['Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'COC(=O)c1c(Cl)cccc1Cl', 'CCOC(=O)c1c(Cl)cccc1Cl']; ['O=C(Cl)c1c(Cl)cccc1Cl', 'O=C(O)c1c(Cl)cccc1Cl', 'NC(=O)c1c(Cl)cccc1Cl', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12']; [0.9999783039093018, 0.9998930096626282, 0.9993544816970825, 0.9987216591835022, 0.9897472858428955] +CCC(=O)Nc1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cccc2ncnn12']; [1.0, 0.9999984502792358] +Fc1ccc(-c2cccc3ncnn23)c(C(F)(F)F)c1; ['Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['OB(O)c1ccc(F)cc1C(F)(F)F', 'OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9999950528144836, 0.9999368190765381] +Nc1ncncc1-c1cccc2ncnn12; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3ncnn23)CC1; ['Brc1cccc2ncnn12', 'CS(=O)(=O)C1CCNCC1', 'CS(=O)(=O)C1CCNCC1']; ['CS(=O)(=O)C1CCNCC1', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; [0.999956488609314, 0.9986823797225952, 0.9947367310523987] +NC(=O)CCCc1cccc2ncnn12; [None]; [None]; [0] +CC(C)(COc1cccc2ncnn12)S(C)(=O)=O; [None]; [None]; [0] +c1ccn2ncc(-c3cccc4ncnn34)c2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'Clc1cccc2ncnn12']; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'OB(O)c1cnn2ccccc12', 'Clc1cccc2ncnn12', 'OB(O)c1cnn2ccccc12']; [0.9999798536300659, 0.9999575614929199, 0.9999473690986633, 0.9998912811279297] +CCCn1cc(-c2cccc3ncnn23)cn1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.999998927116394, 0.999996542930603, 0.9999828338623047, 0.9998766183853149] +COc1ccc(-c2cccc3ncnn23)cc1Cl; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(I)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'COc1ccc(I)cc1Cl']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl', 'COc1ccc(Br)cc1Cl', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999992847442627, 0.999998927116394, 0.999987781047821, 0.9999750852584839, 0.9998319149017334, 0.9998253583908081, 0.9996120929718018, 0.9959572553634644] +CCNc1nc2ccc(-c3cccc4ncnn34)cc2s1; [None]; [None]; [0] +O=c1cc(-c2cccc3ncnn23)cc[nH]1; ['Brc1cccc2ncnn12', 'CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C', 'Clc1cccc2ncnn12']; [0.9999980926513672, 0.9996217489242554] +COc1cc(CCc2cccc3ncnn23)cc(OC)c1; ['COc1cc(CBr)cc(OC)c1']; ['Cc1cccc2ncnn12']; [0.9150620102882385] +C[C@@H](Oc1cccc2ncnn12)c1c(Cl)cncc1Cl; ['Brc1cccc2ncnn12', 'C[C@@H](O)c1c(Cl)cncc1Cl', 'C[C@@H](O)c1c(Cl)cncc1Cl']; ['C[C@@H](O)c1c(Cl)cncc1Cl', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; [0.9999933838844299, 0.9999631643295288, 0.9999158978462219] +CC(C)(O)CC(=O)NCCc1cccc2ncnn12; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc3ncnn23)cc1; [None]; [None]; [0] +CCN(CC)c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'CCNCC']; ['CCNCC', 'Clc1cccc2ncnn12']; [0.9959902763366699, 0.9918091297149658] +O=C1CCc2cccc(-c3cccc4ncnn34)c21; ['CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12']; ['O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21', 'O=C1CCc2cccc(Br)c21']; [0.9999810457229614, 0.9991859793663025, 0.997638463973999] +COc1ccncc1Nc1cccc2ncnn12; ['COc1ccncc1N']; ['Clc1cccc2ncnn12']; [0.9999972581863403] +C[S@](=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999990463256836, 0.9999966621398926, 0.999974250793457, 0.9997687339782715] +[NH3+]Cc1ccc(-c2cccc3ncnn23)cc1C(F)(F)F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2ncnn12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cnccc1-c1ccccc1', 'Nc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; ['Nc1cnccc1-c1ccccc1', 'Nc1cccc2ncnn12', 'OB(O)c1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1', 'Nc1cnccc1-c1ccccc1']; [1.0, 0.9999995231628418, 0.9999974370002747, 0.9999971389770508, 0.9999709725379944] +c1ccc2ncc(Nc3cccc4ncnn34)cc2c1; ['Nc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cnc2ccccc2c1', 'Fc1cnc2ccccc2c1', 'Brc1cnc2ccccc2c1', 'Clc1cccc2ncnn12', 'Ic1cnc2ccccc2c1', 'Fc1cccc2ncnn12']; ['OB(O)c1cnc2ccccc2c1', 'Nc1cnc2ccccc2c1', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cccc2ncnn12', 'Nc1cnc2ccccc2c1', 'Nc1cccc2ncnn12', 'Nc1cnc2ccccc2c1']; [0.9999992251396179, 0.9999968409538269, 0.9999905228614807, 0.9999779462814331, 0.9999691247940063, 0.9999592304229736, 0.9999406337738037, 0.9998314380645752] +CC(C)Oc1cncc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(Br)c1', 'Brc1cccc2ncnn12', 'CC(C)Oc1cncc(B(O)O)c1']; ['CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC(C)Oc1cncc(Br)c1', 'Clc1cccc2ncnn12']; [1.0, 1.0, 0.9999998211860657, 0.9999992847442627, 0.9999991655349731, 0.9999980330467224] +COc1cccc(F)c1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'Brc1cccc2ncnn12', 'COc1cccc(F)c1Br', 'COc1cccc(F)c1B(O)O', 'COc1cccc(F)c1I']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O', 'Clc1cccc2ncnn12', 'COc1cccc(F)c1Br', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999995827674866, 0.9999992847442627, 0.999992847442627, 0.9999910593032837, 0.999983012676239, 0.9999816417694092, 0.9999135732650757] +c1cc(-c2cnc3[nH]ccc3c2)n2ncnc2c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2[nH]ccc2c1']; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 1.0, 0.9999986290931702, 0.9999980926513672, 0.9999884366989136] +c1cc(-c2c[nH]c3cnccc23)n2ncnc2c1; ['Brc1c[nH]c2cnccc12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Clc1cccc2ncnn12', 'OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12']; [0.9999457001686096, 0.9997109174728394, 0.9980266094207764] +O=c1[nH]ccc2oc(-c3cccc4ncnn34)cc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 1.0, 0.9999973177909851, 0.9999890327453613] +CS(=O)(=O)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [1.0, 0.9999997019767761, 0.999996542930603, 0.999958872795105] +O=c1[nH]cc(Br)c2sc(-c3cccc4ncnn34)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2ncnn12; [None]; [None]; [0] +CC1(c2cccc3ncnn23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc2ncnn12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1cccc2ncnn12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1cccc2ncnn12)C(C)(C)O; ['Brc1cccc2ncnn12', 'C[C@H](N)C(C)(C)O', 'C[C@H](N)C(C)(C)O']; ['C[C@H](N)C(C)(C)O', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; [0.9989101886749268, 0.9940788745880127, 0.972522497177124] +OCc1ccn(-c2cccc3ncnn23)n1; [None]; [None]; [0] +C[C@@H](Nc1cccc2ncnn12)C(C)(C)O; ['Brc1cccc2ncnn12', 'C[C@@H](N)C(C)(C)O', 'C[C@@H](N)C(C)(C)O']; ['C[C@@H](N)C(C)(C)O', 'Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; [0.9989101886749268, 0.9940788745880127, 0.972522497177124] +c1ccc2c(c1)cnn2-c1cccc2ncnn12; ['Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; ['c1ccc2[nH]ncc2c1', 'c1ccc2[nH]ncc2c1']; [0.9268808960914612, 0.9177526235580444] +Cc1cc(-c2cccc3ncnn23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['OB(O)c1c(F)cccc1Cl', 'CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'Fc1cccc(Cl)c1Br', 'Clc1cccc2ncnn12', 'Fc1cccc(Cl)c1I', 'OB(O)c1c(F)cccc1Cl']; [1.0, 1.0, 0.9999994039535522, 0.9999983906745911, 0.9999953508377075, 0.9999895095825195] +OCCc1cn(-c2cccc3ncnn23)cn1; [None]; [None]; [0] +Oc1ccc2nc(-c3cccc4ncnn34)[nH]c2c1; ['Nc1ccc(O)cc1N']; ['O=Cc1cccc2ncnn12']; [0.9999905824661255] +Oc1cccc2c1cnn2-c1cccc2ncnn12; ['Clc1cccc2ncnn12']; ['Oc1cccc2[nH]ncc12']; [0.8554344177246094] +c1cc(-c2ccc(-n3cncn3)cc2)n2ncnc2c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cccc3ncnn23)cc1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'Clc1cccc2ncnn12', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999995231628418, 0.9999992251396179, 0.9999780654907227, 0.9999076128005981, 0.9992941617965698, 0.9975894093513489] +COc1ccc(-c2cccc3ncnn23)c(OC)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(I)c(OC)c1']; ['COc1ccc(B(O)O)c(OC)c1', 'COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(Br)c(OC)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'c1ccn2ncnc2c1']; [0.9999819397926331, 0.9999187588691711, 0.9997585415840149, 0.9996626973152161, 0.9994404315948486, 0.9974859952926636, 0.9950132369995117] +c1cc(-c2nncn2C2CC2)n2ncnc2c1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cccc4ncnn34)nn2)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3ncnn23)[nH]1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cccc5ncnn45)n3n2)cc1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2ncnn12; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc3ncnn23)n1; [None]; [None]; [0] +O=C(CCc1cccc2ncnn12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cccc2ncnn12)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2cccc3ncnn23)nc(N)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3ncnn23)s1; [None]; [None]; [0] +Nc1nnc(-c2cccc3ncnn23)s1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3ncnn23)n1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC(C)(O)c1cccc(Br)n1']; ['CC(C)(O)c1cccc(Cl)n1', 'CC(C)(O)c1cccc(Br)n1', 'Clc1cccc2ncnn12']; [0.9996330738067627, 0.9993972778320312, 0.9855866432189941] +CCCCc1cc(-c2cccc3ncnn23)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2ncnn12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4ncnn34)nc2NC1=O; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'Brc1cccc2ncnn12']; ['c1ccn2ncnc2c1', 'CC1(C)Oc2cccnc2NC1=O']; [0.9992960691452026, 0.991053581237793] +Nc1cncc(-c2cccc3ncnn23)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cccc3ncnn23)c(F)c1; [None]; [None]; [0] +c1cc(-c2cccc3ncnn23)c2sccc2c1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'Brc1cccc2ncnn12', 'Clc1cccc2ncnn12']; ['Clc1cccc2ncnn12', 'OB(O)c1cccc2ccsc12', 'OB(O)c1cccc2ccsc12']; [0.999998152256012, 0.9999350905418396, 0.9998005032539368] +c1cc(-c2cccc3ncnn23)c2snnc2c1; [None]; [None]; [0] +c1ccc2sc(-c3cccc4ncnn34)nc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4ncnn34)c2)cc1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3ncnn23)CC1; [None]; [None]; [0] +c1cnc2c(-c3cccc4ncnn34)c[nH]c2c1; ['Brc1c[nH]c2cccnc12', 'CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['c1ccn2ncnc2c1', 'Clc1cccc2ncnn12']; [0.9999485015869141, 0.998871922492981] +COc1ccc(Oc2cccc3ncnn23)c(F)c1F; ['COc1ccc(O)c(F)c1F', 'Brc1cccc2ncnn12', 'COc1ccc(O)c(F)c1F']; ['Clc1cccc2ncnn12', 'COc1ccc(O)c(F)c1F', 'Fc1cccc2ncnn12']; [0.9999113082885742, 0.999863862991333, 0.9976204633712769] +COc1ccc(C#N)cc1-c1cccc2ncnn12; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CC1(C)OB(c2cccc3ncnn23)OC1(C)C', 'COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'Brc1cccc2ncnn12', 'COc1ccc(C#N)cc1Br']; ['COc1ccc(C#N)cc1B(O)O', 'COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1Br', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'COc1ccc(C#N)cc1Br', 'Clc1cccc2ncnn12']; [0.9999950528144836, 0.9999920129776001, 0.9999854564666748, 0.9998925924301147, 0.9998456835746765, 0.9996811747550964, 0.9996703863143921] +CC(=O)Nc1ncc(-c2cccc3ncnn23)[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(Br)c1']; ['COc1ccc(OC)c(B(O)O)c1', 'COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12']; [0.9999922513961792, 0.9999796748161316, 0.9997251033782959, 0.9992362260818481, 0.998607873916626] +CN(C)c1cc(-c2cccc3ncnn23)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4cccc5ncnn45)CC3)nc2c1; ['Clc1cccc2ncnn12', 'Fc1cccc2ncnn12']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1', 'c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9987919330596924, 0.9972649812698364] +OCCn1cnc(-c2cccc3ncnn23)c1; [None]; [None]; [0] +c1cc(-c2ncc3cc[nH]c3n2)n2ncnc2c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3ncnn23)CC1; [None]; [None]; [0] +Nc1nc(-c2cccc3ncnn23)nc2ccccc12; [None]; [None]; [0] +N#Cc1c(Nc2cccc3ncccc23)sc2c1CCCC2; ['Ic1cccc2ncccc12', 'Fc1cccc2ncccc12', 'Brc1cccc2ncccc12']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9975000619888306, 0.9956626892089844, 0.9860653281211853] +CN(C)S(=O)(=O)c1cccc(-c2cccc3ncnn23)c1; ['Brc1cccc2ncnn12', 'Brc1cccc2ncnn12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'Brc1cccc2ncnn12', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; ['CN(C)S(=O)(=O)c1cccc(B(O)O)c1', 'CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'Clc1cccc2ncnn12', 'CN(C)S(=O)(=O)c1cccc(Br)c1', 'c1ccn2ncnc2c1']; [0.9999642968177795, 0.9998972415924072, 0.999549388885498, 0.9991557598114014, 0.9989796876907349, 0.9985841512680054, 0.9898122549057007] +C1=C(c2c[nH]c3ccccc23)CCN(c2cccc3ncnn23)C1; [None]; [None]; [0] +N#Cc1c(Nc2cccc(O)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1cccc(I)c1', 'OB(O)c1cccc(O)c1', 'Oc1cccc(Br)c1', 'Nc1cccc(O)c1', 'Oc1cccc(F)c1']; [0.9972771406173706, 0.9920560121536255, 0.9877208471298218, 0.9686182737350464, 0.9679030179977417] +CCc1ccc(Nc2sc3c(c2C#N)CCCC3)cc1; ['CCc1ccc(Br)cc1', 'CCc1ccc(I)cc1', 'CCc1ccc(N)cc1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9924647808074951, 0.9884738326072693, 0.9854713678359985] +N#Cc1c(Nc2ccc(Cl)c(O)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['OB(O)c1ccc(Cl)c(O)c1', 'Oc1cc(Br)ccc1Cl', 'Oc1cc(I)ccc1Cl']; [0.9994771480560303, 0.995553731918335, 0.9920921325683594] +N#Cc1c(Nc2c(Cl)cccc2Cl)sc2c1CCCC2; ['Fc1c(Cl)cccc1Cl']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9884615540504456] +CNS(=O)(=O)c1ccc(Nc2sc3c(c2C#N)CCCC3)cc1; ['CNS(=O)(=O)c1ccc(Br)cc1']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9538924694061279] +N#Cc1c(Nc2ccc(C(N)=O)cc2F)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2ccc(O)cc2Cl)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2']; ['Oc1ccc(Br)c(Cl)c1']; [0.8020292520523071] +N#Cc1c(Nc2ccc(C(N)=O)cc2)sc2c1CCCC2; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3ncnn23)c1)C1CCNCC1; [None]; [None]; [0] +N#Cc1c(Nc2ccnc(N)n2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Nc1nccc(Cl)n1', 'Nc1nccc(Br)n1']; [0.9997578859329224, 0.9997397661209106] +COc1ccc(F)cc1Nc1sc2c(c1C#N)CCCC2; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1N', 'COc1ccc(F)cc1F']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9994751811027527, 0.9760101437568665, 0.8599697351455688] +N#Cc1c(Nc2ccc(O)cc2F)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['OB(O)c1ccc(O)cc1F', 'Oc1ccc(I)c(F)c1', 'Oc1ccc(Br)c(F)c1']; [0.8998146057128906, 0.8891561031341553, 0.8198920488357544] +COc1cc(C(N)=O)ccc1Nc1sc2c(c1C#N)CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2n[nH]c3ccccc23)sc2c1CCCC2; [None]; [None]; [0] +COc1cc(F)ccc1Nc1sc2c(c1C#N)CCCC2; ['COc1cc(F)ccc1Br']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9925520420074463] +N#Cc1c(Nc2ccc(-c3ccc(O)cc3O)cc2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1', 'Oc1ccc(-c2ccc(O)cc2O)cc1']; [0.9985095262527466, 0.9461197853088379] +N#Cc1c(Nc2c(Cl)ccc3c2OCO3)sc2c1CCCC2; [None]; [None]; [0] +COc1cc(Nc2sc3c(c2C#N)CCCC3)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O', 'COc1cc(F)ccc1O']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9967328310012817, 0.9941949844360352, 0.9883140325546265, 0.9378514289855957] +N#Cc1c(Nc2ccc(C(=O)[O-])cc2)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2cn[nH]c2Cl)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2ccc3ccccc3c2)sc2c1CCCC2; ['Ic1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'N#Cc1c(N)sc2c1CCCC2']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'Nc1ccc2ccccc2c1']; [0.9970686435699463, 0.9878798723220825, 0.8292074203491211] +N#Cc1c(Nc2cccc(Br)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'Brc1cccc(I)c1', 'N#Cc1c(N)sc2c1CCCC2', 'Fc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'N#Cc1c(N)sc2c1CCCC2', 'Nc1cccc(Br)c1', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9996720552444458, 0.997340738773346, 0.993972659111023, 0.9935115575790405, 0.9469352960586548] +Cc1nc2c(F)cc(Nc3sc4c(c3C#N)CCCC4)cc2[nH]1; [None]; [None]; [0] +N#Cc1c(Nc2ccc(O)c(F)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1ccc(Br)cc1F', 'OB(O)c1ccc(O)c(F)c1', 'Oc1ccc(I)cc1F', 'Nc1ccc(O)c(F)c1']; [0.9960878491401672, 0.9943137168884277, 0.9926639795303345, 0.9822268486022949] +COC(=O)c1ccc(Nc2sc3c(c2C#N)CCCC3)o1; [None]; [None]; [0] +N#Cc1c(Nc2ccc(O)cc2O)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1ccc(Br)c(O)c1', 'Oc1ccc(F)c(O)c1']; [0.8005528450012207, 0.7662085294723511] +COC(=O)c1ccc(Cl)c(Nc2sc3c(c2C#N)CCCC3)c1; ['COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(F)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9967688322067261, 0.9955912232398987, 0.9934865236282349] +N#Cc1c(Nc2ccc(F)c(Cl)c2)sc2c1CCCC2; ['Fc1ccc(Br)cc1Cl']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9897342920303345] +N#Cc1c(NCOc2cccc(Cl)c2)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(NCCc2ccc(Cl)cc2)sc2c1CCCC2; ['ClCCc1ccc(Cl)cc1', 'Clc1ccc(CCBr)cc1', 'N#Cc1c(N)sc2c1CCCC2']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'O=CCc1ccc(Cl)cc1']; [0.958249568939209, 0.9515342712402344, 0.9419520497322083] +N#Cc1c(Nc2cnn3ncccc23)sc2c1CCCC2; [None]; [None]; [0] +Cn1cc(Nc2sc3c(c2C#N)CCCC3)c2ccccc21; [None]; [None]; [0] +N#Cc1c(N[C@H](CO)c2ccccc2)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2cc(O)ccc2Cl)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2']; ['Oc1ccc(Cl)c(Br)c1']; [0.9843334555625916] +N#Cc1c(Nc2c[nH]c3cnccc23)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(NCOc2ccccc2Cl)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2cnc(O)c(Cl)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2']; ['Oc1ncc(I)cc1Cl']; [0.9800091981887817] +N#Cc1c(Nc2[nH]cnc2-c2ccc(F)cc2)sc2c1CCCC2; [None]; [None]; [0] +COc1ccc(Nc2sc3c(c2C#N)CCCC3)cc1OC; ['COc1ccc(N)cc1OC']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9861086010932922] +N#Cc1c(Nc2ccnc(N)c2)sc2c1CCCC2; [None]; [None]; [0] +COc1cc(Nc2sc3c(c2C#N)CCCC3)cc(OC)c1; ['COc1cc(Br)cc(OC)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(N)cc(OC)c1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9970285892486572, 0.990302562713623, 0.9736576080322266] +CNC(=O)c1cccc2cc(Nc3sc4c(c3C#N)CCCC4)ccc12; ['CNC(=O)c1cccc2cc(O)ccc12']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9963408708572388] +Cc1ccc(CO)cc1Nc1sc2c(c1C#N)CCCC2; [None]; [None]; [0] +CCOc1cccc(Nc2sc3c(c2C#N)CCCC3)c1; ['CCOc1cccc(I)c1', 'CCOc1cccc(Br)c1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9801478385925293, 0.9794207811355591] +Cc1ccc2[nH]ncc2c1Nc1sc2c(c1C#N)CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2nc3ccccc3s2)sc2c1CCCC2; ['Brc1nc2ccccc2s1', 'Clc1nc2ccccc2s1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9823497533798218, 0.8748730421066284] +Cc1nc2ccc(Nc3sc4c(c3C#N)CCCC4)cc2[nH]1; ['Cc1nc2ccc(Br)cc2[nH]1']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9987483620643616] +N#Cc1c(Nc2cnc3[nH]ccc3c2)sc2c1CCCC2; ['Brc1cnc2[nH]ccc2c1', 'Clc1cnc2[nH]ccc2c1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9470571279525757, 0.9251849055290222] +N#Cc1c(Nc2cncc(O)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1cncc(Br)c1', 'Oc1cncc(I)c1', 'Oc1cncc(Cl)c1']; [0.9964143633842468, 0.9962055683135986, 0.9446141123771667] +N#Cc1c(Nc2c[nH]c(C(N)=O)c2)sc2c1CCCC2; [None]; [None]; [0] +CNc1nccc(Nc2sc3c(c2C#N)CCCC3)n1; ['CNc1nccc(Cl)n1', 'CNc1nccc(Br)n1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9995070695877075, 0.9985265135765076] +CCc1cc(O)ccc1Nc1sc2c(c1C#N)CCCC2; ['CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1Cl']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9971805810928345, 0.9503028392791748] +CCc1cc(O)c(F)cc1Nc1sc2c(c1C#N)CCCC2; ['CCc1cc(O)c(F)cc1Br']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9993170499801636] +N#Cc1c(Nc2ccc(NC(N)=O)cc2)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2ccc3c(c2)CC(=O)N3)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(F)ccc2N1']; [0.9995891451835632, 0.9823799133300781, 0.9759517908096313, 0.9560706615447998] +N#Cc1c(Nc2ccncc2Cl)sc2c1CCCC2; ['Clc1cnccc1Br', 'N#Cc1c(N)sc2c1CCCC2', 'Clc1cnccc1I', 'Fc1ccncc1Cl', 'Clc1ccncc1Cl']; ['N#Cc1c(N)sc2c1CCCC2', 'Nc1ccncc1Cl', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9981764554977417, 0.9980186820030212, 0.9964554309844971, 0.983834981918335, 0.9141268730163574] +Cc1cc(O)ccc1Nc1sc2c(c1C#N)CCCC2; ['Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1I']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9839926958084106, 0.9836689233779907, 0.8360394239425659] +CS(=O)(=O)c1ccc(Nc2sc3c(c2C#N)CCCC3)cc1; [None]; [None]; [0] +N#Cc1c(Nc2cc(Cl)c(O)c(Cl)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Oc1c(Cl)cc(F)cc1Cl', 'Nc1cc(Cl)c(O)c(Cl)c1']; [0.9827846884727478, 0.9147683382034302, 0.880114734172821] +CNc1nc(Nc2sc3c(c2C#N)CCCC3)ncc1F; ['CNc1nc(Cl)ncc1F']; ['N#Cc1c(N)sc2c1CCCC2']; [0.9945790767669678] +CCc1sccc1Nc1sc2c(c1C#N)CCCC2; [None]; [None]; [0] +Cc1oc(Nc2sc3c(c2C#N)CCCC3)cc1C(=O)[O-]; [None]; [None]; [0] +N#Cc1c(Nc2ccc(Br)cc2F)sc2c1CCCC2; ['Fc1cc(Br)ccc1I', 'Fc1cc(Br)ccc1Br', 'Fc1ccc(Br)cc1F']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9988812208175659, 0.9719225764274597, 0.969957709312439] +N#Cc1c(Nc2cc(O)n3nccc3n2)sc2c1CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2ccc3c(c2)CCN3)sc2c1CCCC2; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'N#Cc1c(N)sc2c1CCCC2', 'Ic1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2']; ['N#Cc1c(N)sc2c1CCCC2', 'OB(O)c1ccc2c(c1)CCN2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9999688863754272, 0.9992339611053467, 0.9813821315765381, 0.9425098299980164] +N#Cc1c(Nc2ccc3[nH]c(=O)[nH]c3c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=c1[nH]c2ccc(I)cc2[nH]1', 'O=c1[nH]c2ccc(Cl)cc2[nH]1']; [0.9982188940048218, 0.991779088973999, 0.8286203145980835] +Cc1n[nH]c(Nc2sc3c(c2C#N)CCCC3)c1C; [None]; [None]; [0] +N#Cc1c(Nc2cc(C(F)F)n[nH]2)sc2c1CCCC2; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2sc3c(c2C#N)CCCC3)cc1; ['CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(I)cc1', 'CNC(=O)c1ccc(Br)cc1', 'CNC(=O)c1ccc(F)cc1', 'CNC(=O)c1ccc(Cl)cc1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.99959397315979, 0.999060332775116, 0.9986529350280762, 0.9954380989074707, 0.9816155433654785] +N#Cc1c(Nc2ccc(C(=O)NC3CC3)cc2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2']; ['O=C(NC1CC1)c1ccc(Br)cc1']; [0.9994893670082092] +Cc1nc2ccc(Nc3sc4c(c3C#N)CCCC4)cc2o1; ['Cc1nc2ccc(Br)cc2o1', 'Cc1nc2ccc(N)cc2o1', 'Cc1nc2ccc(F)cc2o1', 'Cc1nc2ccc(O)cc2o1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9984432458877563, 0.9977620840072632, 0.9962252974510193, 0.9460089206695557] +N#Cc1c(Nc2[nH]nc3ccc(F)cc23)sc2c1CCCC2; [None]; [None]; [0] +Cc1cc(Nc2sc3c(c2C#N)CCCC3)cc(C)c1O; ['Cc1cc(F)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9884490966796875, 0.985385537147522, 0.9105837345123291, 0.8390694856643677] +N#Cc1c(Nc2ccc3c(=O)[nH][nH]c3c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['O=c1[nH][nH]c2cc(Br)ccc12', 'Nc1ccc2c(=O)[nH][nH]c2c1', 'O=c1[nH][nH]c2cc(F)ccc12']; [0.9998127818107605, 0.9994727373123169, 0.9975295066833496] +N#Cc1c(Nc2cc(F)c(O)c(F)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['Oc1c(F)cc(I)cc1F', 'Oc1c(F)cc(Br)cc1F']; [0.9277611970901489, 0.8930002450942993] +N#Cc1c(Nc2cc(O)cc(Br)c2)sc2c1CCCC2; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; ['OB(O)c1cc(O)cc(Br)c1', 'Oc1cc(F)cc(Br)c1', 'Oc1cc(Br)cc(I)c1', 'Nc1cc(O)cc(Br)c1', 'Oc1cc(Br)cc(Br)c1', 'Oc1cc(Cl)cc(Br)c1']; [0.9988684058189392, 0.9977408051490784, 0.9971093535423279, 0.9798686504364014, 0.8105663061141968, 0.7829726934432983] +CSc1cccc(Nc2sc3c(c2C#N)CCCC3)c1; ['CSc1cccc(Br)c1', 'CSc1cccc(N)c1', 'CSc1cccc(F)c1', 'CSc1cccc(Cl)c1']; ['N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2', 'N#Cc1c(N)sc2c1CCCC2']; [0.9974266290664673, 0.9946165084838867, 0.9855124950408936, 0.9763670563697815] +Cc1cc(Nc2sc3c(c2C#N)CCCC3)ccc1C(N)=O; [None]; [None]; [0] +CCOc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1Nc1sc2c(c1C#N)CCCC2; [None]; [None]; [0] +N#Cc1c(Nc2cn[nH]c2-c2ccc(Cl)cc2)sc2c1CCCC2; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc3ccccc3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +N#Cc1c(Nc2ocnc2-c2ccc(F)cc2)sc2c1CCCC2; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1ncccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cnc3cccnn23)c2cc(Cl)ccc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3c[nH]c(=O)c4ccc(Cl)cc34)c2c1; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc(O)c2)c2cc(Cl)ccc12; ['O=c1[nH]ccc2cc(Cl)ccc12']; ['OB(O)c1cccc(O)c1']; [0.9419968724250793] +CS(=O)(=O)c1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; ['COc1ccccc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.7768193483352661] +O=c1[nH]cc(-c2ccc(N3CCOCC3)cc2)c2cc(Cl)ccc12; ['Ic1ccc(N2CCOCC2)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9714460968971252] +O=c1[nH]cc(-c2nc3ccccc3[nH]2)c2cc(Cl)ccc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; ['NC(=O)c1ccc(B(O)O)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9900211691856384] +Cc1cc(Nc2c[nH]c(=O)c3ccc(Cl)cc23)sn1; [None]; [None]; [0] +O=c1[nH]cc(-c2nccc3ccccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1)C1CC1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(Nc2ncccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc(C3CCNCC3)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1)N1CCOCC1; ['O=C(c1ccc(Br)cc1)N1CCOCC1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.8765339851379395] +O=C(Nc1ccccc1)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cn2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(OCCO)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(Nc2ccncn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc3c(c2)CS(=O)(=O)C3)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(C(F)(F)F)cc2)c2cc(Cl)ccc12; ['FC(F)(F)c1ccc(I)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9272952079772949] +Cc1nc(C)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)s1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2c[nH]c(=O)c3ccc(Cl)cc23)C1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(Br)cc2)c2cc(Cl)ccc12; ['Brc1ccc(I)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.8293485045433044] +CCCOc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; ['CCN(CC)C(=O)c1ccc(Br)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.827140212059021] +CNS(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(C)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccn3nccc3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccccc2-n2cccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc3c(c2)CCO3)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2c[nH]c3ccccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1Cl; [None]; [None]; [0] +COc1cc(OC)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1Cl; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)ccc1O; ['COc1cc(B(O)O)ccc1O', 'COc1cc(I)ccc1O', 'COc1cc(Br)ccc1O']; ['O=c1[nH]ccc2cc(Cl)ccc12', 'O=c1[nH]ccc2cc(Cl)ccc12', 'O=c1[nH]ccc2cc(Cl)ccc12']; [0.9882766008377075, 0.7971875667572021, 0.7793213129043579] +CC(C)c1ccc2nc(-c3c[nH]c(=O)c4ccc(Cl)cc34)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2scc3c2OCCO3)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cc(-c3ccccc3)[nH]n2)c2cc(Cl)ccc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc3c2OCO3)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cnc3ccccc3c2)c2cc(Cl)ccc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cs1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccn(-c3cccc(Cl)c3)n2)c2cc(Cl)ccc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2cc3ccccc3s2)c2cc(Cl)ccc12; [None]; [None]; [0] +CC1(COc2c[nH]c(=O)c3ccc(Cl)cc23)COC1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(F)cc2Cl)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1OC; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc(Br)cn2)c2cc(Cl)ccc12; [None]; [None]; [0] +CSc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=C1CCc2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc2N1; [None]; [None]; [0] +CCc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2)CC1; [None]; [None]; [0] +COc1ccc(CNc2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(Cl)cc2Cl)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc3cccn3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)ccc1N1CCOCC1; [None]; [None]; [0] +O=c1[nH]cc(-c2cc3ccccn3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2c[nH]c(=O)c3ccc(Cl)cc23)C1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)ccc1Cl; [None]; [None]; [0] +COc1cc(F)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1OC; [None]; [None]; [0] +COc1ccc2cccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)c2c1; [None]; [None]; [0] +Cc1csc2c(-c3c[nH]c(=O)c4ccc(Cl)cc34)ncnc12; [None]; [None]; [0] +CC1(C)Cc2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc2O1; [None]; [None]; [0] +Cn1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(C(F)(F)F)n1; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc3ccc(O)cc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc(Cl)cn2)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1nc(Nc2c[nH]c(=O)c3ccc(Cl)cc23)sc1C; [None]; [None]; [0] +O=c1[nH]cc(-c2cnn(CCO)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1cc(Nc2c[nH]c(=O)c3ccc(Cl)cc23)nn1C; [None]; [None]; [0] +Nc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(OC)cc1Br; [None]; [None]; [0] +O=C(Nc1c[nH]c(=O)c2ccc(Cl)cc12)c1ccco1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(Cc2ccc(S(=O)(=O)CCO)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +COc1ccc2oc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc3cn[nH]c3c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1c[nH]c(=O)c3ccc(Cl)cc13)cn2C; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(-c2cc3ccccc3o2)c2cc(Cl)ccc12; [None]; [None]; [0] +CCn1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc3sccc3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cc(-c3cccnc3)ccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1ccc2nc(-c3c[nH]c(=O)c4ccc(Cl)cc34)[nH]c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(OC(F)(F)F)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +CCc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1)N1CCCC1; [None]; [None]; [0] +Cn1ncc2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc21; [None]; [None]; [0] +Cn1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c2ccccc21; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)[nH]c2c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ncn3c2CCCC3)c2cc(Cl)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cn2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc12; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(CCO)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(Nc1c[nH]c(=O)c2ccc(Cl)cc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc1; [None]; [None]; [0] +O=c1[nH]cc(Nc2ccc(F)cn2)c2cc(Cl)ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(Nc2ccccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1cc(Nc2c[nH]c(=O)c3ccc(Cl)cc23)ncc1F; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2c[nH]c(=O)c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COC(C)(C)CCc1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccnc3ccccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccccc2OC(F)(F)F)c2cc(Cl)ccc12; ['FC(F)(F)Oc1ccccc1I', 'FC(F)(F)Oc1ccccc1Br']; ['O=c1[nH]ccc2cc(Cl)ccc12', 'O=c1[nH]ccc2cc(Cl)ccc12']; [0.9981405138969421, 0.9858770370483398] +O=c1[nH]cc(-c2cccc(C(F)(F)F)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cnn(Cc3ccccc3)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(Cc2cc(F)cc(F)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2c1=O; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cs1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1)c1ccccc1; [None]; [None]; [0] +CC(C)C(=O)COc1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cc(Cl)ccc2Cl)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cnc(-c3ccccc3)[nH]2)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cnc3ccccn23)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1cnc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc1; [None]; [None]; [0] +O=c1[nH]cc(-c2c(Cl)cccc2Cl)c2cc(Cl)ccc12; ['NNc1c(Cl)cccc1Cl']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9109972715377808] +CNc1nc(C)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)s1; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc(Br)c2)c2cc(Cl)ccc12; ['O=c1[nH]ccc2cc(Cl)ccc12', 'NNc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'O=c1[nH]ccc2cc(Cl)ccc12', 'O=c1[nH]ccc2cc(Cl)ccc12']; [0.9784964919090271, 0.8952242136001587, 0.7972880601882935] +Cc1nc(N)sc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-n2ncc3cccc(F)c3c2=O)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(NCc2cccnc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc(Cn3cncn3)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(NCCc2c[nH]cn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(Nc2cccnc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-n2cnc3ccccc32)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc3ccccc3c2)c2cc(Cl)ccc12; ['O=c1[nH]ccc2cc(Cl)ccc12', 'NNc1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'O=c1[nH]ccc2cc(Cl)ccc12']; [0.9974994659423828, 0.9309192895889282] +Nc1nccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +O=c1[nH]cc(-c2cnn3ncccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +Cc1c(-c2c[nH]c(=O)c3ccc(Cl)cc23)sc(=O)n1C; [None]; [None]; [0] +O=C(Nc1c[nH]c(=O)c2ccc(Cl)cc12)c1cccs1; [None]; [None]; [0] +O=c1[nH]cc(NCCc2ccccc2)c2cc(Cl)ccc12; ['NCCc1ccccc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.8541062474250793] +O=c1[nH]cc(-c2cncc3ccccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2c[nH]nc2C(F)(F)F)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3c[nH]c(=O)c4ccc(Cl)cc34)ccc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(NCc2ccc(Cl)cc2)c2cc(Cl)ccc12; ['NCc1ccc(Cl)cc1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.7926198840141296] +O=c1[nH]cc(-c2ccc(-c3cn[nH]c3)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(NCc2ccccc2F)c2cc(Cl)ccc12; ['NCc1ccccc1F']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9554821252822876] +CN1c2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2CS1(=O)=O; [None]; [None]; [0] +O=c1[nH]cc(Nc2ccncc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc(CO)c2)c2cc(Cl)ccc12; ['O=c1[nH]ccc2cc(Cl)ccc12']; ['OCc1cccc(B(O)O)c1']; [0.8436969518661499] +CCCn1cnc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +COc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nn1; [None]; [None]; [0] +O=c1[nH]cc(-c2cc3ccccc3[nH]2)c2cc(Cl)ccc12; [None]; [None]; [0] +CSc1nc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c[nH]1; [None]; [None]; [0] +O=c1[nH]cc(CCc2c[nH]nn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2csc3ncncc23)c2cc(Cl)ccc12; [None]; [None]; [0] +N#CCCc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(F)cc2C(F)(F)F)c2cc(Cl)ccc12; [None]; [None]; [0] +Nc1ncncc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1[nH]cc(Oc2ccccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +NC(=O)CCCc1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc2s1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; ['CS(=O)(=O)C1CCNCC1']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.8159893751144409] +O=C(Nc1c[nH]c(=O)c2ccc(Cl)cc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +O=c1[nH]cc(-c2cnn3ccccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1Cl; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CCCn1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +CC(C)(COc1c[nH]c(=O)c2ccc(Cl)cc12)S(C)(=O)=O; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1C(F)(F)F; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=C1CCc2cccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)c21; [None]; [None]; [0] +COc1cc(CCc2c[nH]c(=O)c3ccc(Cl)cc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +O=c1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc[nH]1; [None]; [None]; [0] +C[C@@H](Oc1c[nH]c(=O)c2ccc(Cl)cc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCN(CC)c1c[nH]c(=O)c2ccc(Cl)cc12; ['CCNCC']; ['O=c1[nH]ccc2cc(Cl)ccc12']; [0.9346972703933716] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +COc1ccncc1Nc1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3c[nH]c(=O)c4ccc(Cl)cc34)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cc3c(=O)[nH]cc(Br)c3s2)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1cccc(F)c1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(Nc2cnccc2-c2ccccc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(Nc2cnc3ccccc3c2)c2cc(Cl)ccc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2cnc3[nH]ccc3c2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2c[nH]c3cnccc23)c2cc(Cl)ccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CC1(c2c[nH]c(=O)c3ccc(Cl)cc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +O=c1[nH]cc(-n2ccc(CO)n2)c2cc(Cl)ccc12; [None]; [None]; [0] +CN(c1c[nH]c(=O)c2ccc(Cl)cc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c(=O)c2ccc(Cl)cc12)C(C)(C)O; [None]; [None]; [0] +C[C@H](Nc1c[nH]c(=O)c2ccc(Cl)cc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +O=c1[nH]cc(-n2cnc(CCO)c2)c2cc(Cl)ccc12; [None]; [None]; [0] +C[C@@H](Nc1c[nH]c(=O)c2ccc(Cl)cc12)C(C)(C)O; [None]; [None]; [0] +O=c1[nH]cc(-c2c(F)cccc2Cl)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2nc3ccc(O)cc3[nH]2)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c(OC)c1; [None]; [None]; [0] +O=c1[nH]cc(-c2ccc(-n3cncn3)cc2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-n2ncc3c(O)cccc32)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-n2ncc3ccccc32)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2nncn2C2CC2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cn(Cc3ccccc3)nn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(Cc2nnc3ccc(-c4ccccc4)nn23)c2cc(Cl)ccc12; [None]; [None]; [0] +Nc1nnc(-c2c[nH]c(=O)c3ccc(Cl)cc23)s1; [None]; [None]; [0] +O=c1[nH]cc(CS(=O)(=O)NCc2ccccn2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=C(CCc1c[nH]c(=O)c2ccc(Cl)cc12)NCc1ccccn1; [None]; [None]; [0] +CCc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)s1; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2c[nH]c(=O)c3ccc(Cl)cc23)c(F)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)nc2NC1=O; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2nc3ccccc3s2)c2cc(Cl)ccc12; [None]; [None]; [0] +Nc1cncc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc3nnsc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cccc3ccsc23)c2cc(Cl)ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c(=O)c4ccc(Cl)cc34)c2)cc1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c(=O)c3ccc(Cl)cc23)nc2ccccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2c[nH]c3cccnc23)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(-c2ncc3cc[nH]c3n2)c2cc(Cl)ccc12; [None]; [None]; [0] +COc1ccc(Oc2c[nH]c(=O)c3ccc(Cl)cc23)c(F)c1F; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c(=O)c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c[nH]c(=O)c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]cc(-c2cn(CCO)cn2)c2cc(Cl)ccc12; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c[nH]c(=O)c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1; [None]; [None]; [0] +c1cc(-c2cnc3ccccn23)c2cccnc2c1; ['CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Brc1cnc2ccccn12', 'Ic1cccc2ncccc12', 'Clc1cnc2ccccn12', 'Clc1cccc2ncccc12', 'Brc1cccc2ncccc12', 'Clc1cccc2ncccc12']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cccc3ncccc23)OC1(C)C', 'OB(O)c1cccc2ncccc12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1cccc2ncccc12', 'c1ccn2ccnc2c1', 'OB(O)c1cccc2ncccc12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12']; [0.999988317489624, 0.999984860420227, 0.9999578595161438, 0.9999176263809204, 0.9998950958251953, 0.9997730851173401, 0.9997454881668091, 0.9996991157531738, 0.9995105266571045, 0.997542142868042, 0.9932823777198792, 0.9625934362411499] +Oc1cccc(-c2cnc3ccccn23)c1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Oc1cccc(Br)c1', 'Oc1cccc(I)c1', 'Oc1cccc(Cl)c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12', 'Oc1ccccc1']; ['Ic1cnc2ccccn12', 'OB(O)c1cccc(O)c1', 'CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1cccc(O)c1', 'OB(O)c1cccc(O)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'Oc1cccc(Br)c1', 'Oc1cccc(Cl)c1', 'c1ccn2ccnc2c1']; [0.9999957084655762, 0.99998939037323, 0.9999812841415405, 0.9999237656593323, 0.9999050498008728, 0.9998876452445984, 0.9998810291290283, 0.9998021721839905, 0.999575674533844, 0.9981414675712585, 0.9963558912277222, 0.9706929922103882, 0.814589262008667] +Clc1ccc2c(c1-c1cnc3ccccn13)OCO2; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1c(Cl)ccc2c1OCO2', 'Clc1cnc2ccccn12', 'Clc1ccc2c(c1)OCO2']; ['OB(O)c1c(Cl)ccc2c1OCO2', 'OB(O)c1c(Cl)ccc2c1OCO2', 'c1ccn2ccnc2c1', 'OB(O)c1c(Cl)ccc2c1OCO2', 'c1ccn2ccnc2c1']; [0.9998686909675598, 0.9998394846916199, 0.999760627746582, 0.9954937696456909, 0.991608738899231] +CN(C)c1cc(-c2c[nH]c(=O)c3ccc(Cl)cc23)cnn1; [None]; [None]; [0] +O=c1[nH]cc(N2CCC(c3nc4ccccc4[nH]3)CC2)c2cc(Cl)ccc12; [None]; [None]; [0] +O=c1[nH]cc(N2CC=C(c3c[nH]c4ccccc34)CC2)c2cc(Cl)ccc12; [None]; [None]; [0] +Oc1cc(-c2cnc3ccccn23)ccc1Cl; ['CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1ccc(Cl)c(O)c1', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'Oc1cc(Br)ccc1Cl', 'Clc1cnc2ccccn12', 'Oc1cc(I)ccc1Cl', 'Oc1ccccc1Cl']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(Cl)c(O)c2)OC1(C)C', 'OB(O)c1ccc(Cl)c(O)c1', 'OB(O)c1ccc(Cl)c(O)c1', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(Cl)c(O)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.999988317489624, 0.9999841451644897, 0.9999828338623047, 0.9999388456344604, 0.9999303817749023, 0.9999110698699951, 0.9997609853744507, 0.999687671661377, 0.9960062503814697, 0.8797736167907715] +Clc1cccc(Cl)c1-c1cnc2ccccn12; ['Clc1cccc(Cl)c1I', 'Clc1cccc(Cl)c1Br', 'Ic1cnc2ccccn12', 'OB(O)c1c(Cl)cccc1Cl', 'Brc1cnc2ccccn12', 'Clc1cccc(Cl)c1Br', 'Clc1cccc(Cl)c1Cl', 'Clc1cccc(Cl)c1', 'Clc1cnc2ccccn12', 'Clc1cccc(Cl)c1Cl']; ['c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'c1ccn2ccnc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1c(Cl)cccc1Cl', 'O=C(O)c1cnc2ccccn12']; [0.9999879002571106, 0.9999871253967285, 0.9998952150344849, 0.999884843826294, 0.9997233152389526, 0.9995468854904175, 0.9994775056838989, 0.9978070259094238, 0.9957575798034668, 0.9795254468917847] +Fc1ccc(Oc2cnc3ccccn23)cc1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['Oc1ccc(F)cc1', 'Oc1ccc(F)cc1']; [0.9999383687973022, 0.999616265296936] +CNS(=O)(=O)c1ccc(-c2cnc3ccccn23)cc1; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2ccccn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Clc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [1.0, 0.999998927116394, 0.9999969005584717, 0.9999954700469971, 0.9998986124992371, 0.9998217225074768] +NC(=O)c1ccc(-c2cnc3ccccn23)c(F)c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1', 'NC(=O)c1ccc(B(O)O)c(F)c1']; [0.9999853372573853, 0.999824047088623, 0.9996492862701416] +NC(=O)c1ccc(-c2cnc3ccccn23)cc1; ['CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'CC1(C)OB(c2ccc(C(N)=O)cc2)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1', 'NC(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999984502792358, 0.9999979734420776, 0.9999709129333496, 0.9999662637710571] +O=C(Nc1cccc(-c2c[nH]c(=O)c3ccc(Cl)cc23)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnc2ccccn12; ['COc1cc(C(N)=O)ccc1B1OC(C)(C)C(C)(C)O1']; ['Clc1cnc2ccccn12']; [0.9998958110809326] +COc1ccc(F)cc1-c1cnc2ccccn12; ['COc1ccc(F)cc1B(O)O', 'Brc1cnc2ccccn12', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1Br', 'COc1ccc(F)cc1Cl', 'COc1ccc(F)cc1']; ['Ic1cnc2ccccn12', 'COc1ccc(F)cc1B(O)O', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999828338623047, 0.9999812245368958, 0.9999067783355713, 0.9997828602790833, 0.9996535778045654, 0.9993435740470886, 0.9972553253173828, 0.9929599761962891, 0.8162388801574707] +Nc1nccc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +Oc1ccc(-c2cnc3ccccn23)c(Cl)c1; ['Brc1cnc2ccccn12', 'Oc1ccc(Br)c(Cl)c1', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'OB(O)c1ccc(O)cc1Cl', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'Ic1cnc2ccccn12', 'Oc1ccc(I)c(Cl)c1', 'Clc1cnc2ccccn12', 'Oc1ccc(Cl)c(Cl)c1', 'Oc1cccc(Cl)c1']; ['CC1(C)OB(c2ccc(O)cc2Cl)OC1(C)C', 'c1ccn2ccnc2c1', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(O)cc1Cl', 'Clc1cnc2ccccn12', 'OB(O)c1ccc(O)cc1Cl', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(O)cc1Cl', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999853372573853, 0.999972403049469, 0.9999491572380066, 0.999919593334198, 0.9998961687088013, 0.9998701810836792, 0.9998621940612793, 0.9993607401847839, 0.997904360294342, 0.9796466827392578, 0.8963401317596436] +COc1cc(F)ccc1-c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1I', 'COc1cc(F)ccc1Br', 'Brc1cnc2ccccn12', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'COc1cc(F)ccc1B(O)O', 'COc1cc(F)ccc1Br', 'COc1cc(F)ccc1[Mg]Br', 'COc1cc(F)ccc1Cl', 'COc1cc(F)ccc1C(=O)O', 'COc1cc(F)ccc1Cl', 'COc1cccc(F)c1']; ['COc1cc(F)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'COc1cc(F)ccc1B(O)O', 'c1ccn2ccnc2c1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999978542327881, 0.999992311000824, 0.9999917149543762, 0.9999915361404419, 0.9999895095825195, 0.9999853372573853, 0.9999839067459106, 0.9999728798866272, 0.999964714050293, 0.9999350309371948, 0.9999284744262695, 0.999832272529602, 0.9996236562728882, 0.9974349737167358, 0.8018869161605835] +COc1cc(-c2cnc3ccccn23)ccc1O; ['COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Brc1cnc2ccccn12', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'COc1cc(B(O)O)ccc1O', 'COc1cc(B(O)O)ccc1O', 'Brc1cnc2ccccn12', 'COc1cc(Br)ccc1O', 'COc1cc(I)ccc1O', 'COc1ccccc1O', 'COc1cc(Cl)ccc1O']; ['Ic1cnc2ccccn12', 'COc1cc(B2OC(C)(C)C(C)(C)O2)ccc1O', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'COc1cc(B(O)O)ccc1O', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999985694885254, 0.9999974370002747, 0.9999961256980896, 0.9999863505363464, 0.9999665021896362, 0.9999516606330872, 0.9999479055404663, 0.9997683167457581, 0.9994603395462036, 0.9885456562042236, 0.9718472361564636] +c1ccc2c(-c3cnc4ccccn34)n[nH]c2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +Oc1ccc(-c2cnc3ccccn23)c(F)c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Brc1cnc2ccccn12', 'OB(O)c1ccc(O)cc1F', 'Oc1ccc(Br)c(F)c1', 'Clc1cnc2ccccn12', 'Oc1ccc(I)c(F)c1', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Oc1ccc(Cl)c(F)c1', 'Oc1cccc(F)c1', 'Clc1cnc2ccccn12']; ['OB(O)c1ccc(O)cc1F', 'CC1(C)OB(c2ccc(O)cc2F)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1ccc(O)cc1F', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(O)cc1F', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'Oc1cccc(F)c1']; [0.999967098236084, 0.9998380541801453, 0.9998206496238708, 0.9997513294219971, 0.9996960759162903, 0.9993931651115417, 0.9992194175720215, 0.9981999397277832, 0.9977569580078125, 0.9886287450790405, 0.9338982105255127, 0.8252965807914734] +O=C([O-])c1ccc(-c2cnc3ccccn23)cc1; ['O=C([O-])c1ccc(Cl)cc1']; ['c1ccn2ccnc2c1']; [0.9598092436790466] +Oc1ccc(-c2ccc(-c3cnc4ccccn34)cc2)c(O)c1; ['Oc1ccc(-c2ccc(Br)cc2)c(O)c1']; ['c1ccn2ccnc2c1']; [0.9966933131217957] +COC(=O)c1ccc(-c2cnc3ccccn23)o1; ['COC(=O)c1ccc(B(O)O)o1']; ['Clc1cnc2ccccn12']; [0.9989713430404663] +c1ccc2cc(-c3cnc4ccccn34)ccc2c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'OB(O)c1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Brc1ccc2ccccc2c1', 'Ic1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'Clc1ccc2ccccc2c1', 'c1ccc2ccccc2c1']; ['OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'OB(O)c1ccc2ccccc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999990463256836, 0.9999973773956299, 0.9999908804893494, 0.9999837875366211, 0.9999349117279053, 0.9998693466186523, 0.99980628490448, 0.9990911483764648, 0.9959704875946045, 0.9580215811729431] +Brc1cccc(-c2cnc3ccccn23)c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1cccc(Br)c1', 'Clc1cnc2ccccn12', 'Brc1cccc(I)c1', 'Brc1cccc(Br)c1', 'Brc1cnc2ccccn12', 'Clc1cccc(Br)c1', 'Brc1ccccc1', 'Clc1cccc(Br)c1', 'Brc1cccc(Br)c1']; ['OB(O)c1cccc(Br)c1', 'CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'c1ccn2ccnc2c1', 'OB(O)c1cccc(Br)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1cccc(Br)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12']; [0.9999980330467224, 0.9999957084655762, 0.9999935626983643, 0.9999839067459106, 0.9999490976333618, 0.999948263168335, 0.9998979568481445, 0.9998208284378052, 0.9987952709197998, 0.9980008602142334, 0.9959661960601807] +Clc1[nH]ncc1-c1cnc2ccccn12; [None]; [None]; [0] +Oc1ccc(-c2cnc3ccccn23)cc1F; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1ccc(O)c(F)c1', 'Clc1cnc2ccccn12', 'Oc1ccc(Br)cc1F', 'Oc1ccc(I)cc1F', 'Oc1ccc(Cl)cc1F', 'Oc1ccccc1F']; ['CC1(C)OB(c2ccc(O)c(F)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'OB(O)c1ccc(O)c(F)c1', 'OB(O)c1ccc(O)c(F)c1', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(O)c(F)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999980926513672, 0.9999977350234985, 0.9999930262565613, 0.9999904632568359, 0.9999868869781494, 0.999975860118866, 0.9999750256538391, 0.9999028444290161, 0.9996505975723267, 0.9981093406677246, 0.9915573596954346] +c1ccn2c(-c3c[nH]c4cnccc34)cnc2c1; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Brc1c[nH]c2cnccc12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1cc2cc[nH]c2cn1']; ['OB(O)c1c[nH]c2cnccc12', 'OB(O)c1c[nH]c2cnccc12', 'c1ccn2ccnc2c1', 'c1cc2cc[nH]c2cn1', 'OB(O)c1c[nH]c2cnccc12', 'c1ccn2ccnc2c1']; [0.999462366104126, 0.9946704506874084, 0.9906670451164246, 0.9830195307731628, 0.9757502675056458, 0.9159311056137085] +Clc1ccccc1OCc1cnc2ccccn12; ['Clc1ccccc1I', 'OCc1cnc2ccccn12', 'Fc1ccccc1Cl']; ['OCc1cnc2ccccn12', 'Oc1ccccc1Cl', 'OCc1cnc2ccccn12']; [0.9995931386947632, 0.9990324974060059, 0.9949600696563721] +COC(=O)c1ccc(Cl)c(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'Brc1cnc2ccccn12', 'COC(=O)c1ccc(Cl)c(I)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(N)c1', 'Brc1cnc2ccccn12', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1', 'COC(=O)c1ccc(Cl)c(Cl)c1']; ['COC(=O)c1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Ic1cnc2ccccn12', 'COC(=O)c1ccc(Cl)c(B(O)O)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'COC(=O)c1ccc(Cl)c(Br)c1', 'O=C(O)c1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.9999974966049194, 0.9999924898147583, 0.9999790191650391, 0.9999639987945557, 0.9999442100524902, 0.9999129772186279, 0.9998844861984253, 0.9998379945755005, 0.9997808933258057, 0.9996242523193359, 0.999476432800293, 0.9978272914886475, 0.9977078437805176, 0.9525405168533325, 0.7714942693710327] +Fc1ccc(-c2cnc3ccccn23)cc1Cl; ['Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Fc1ccc(Br)cc1Cl', 'Brc1cnc2ccccn12', 'OB(O)c1ccc(F)c(Cl)c1', 'Fc1ccc(I)cc1Cl', 'Clc1cnc2ccccn12', 'Fc1ccc(Br)cc1Cl', 'Fc1ccccc1Cl', 'Fc1ccc(Cl)cc1Cl', 'Fc1ccc(Cl)cc1Cl']; ['OB(O)c1ccc(F)c(Cl)c1', 'CC1(C)OB(c2ccc(F)c(Cl)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(F)c(Cl)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(F)c(Cl)c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [1.0, 1.0, 1.0, 0.9999997019767761, 0.9999992847442627, 0.9999990463256836, 0.9999988079071045, 0.9999940991401672, 0.9999895095825195, 0.9999549984931946, 0.9995782971382141, 0.9899992942810059] +c1cnn2ncc(-c3cnc4ccccn34)c2c1; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Brc1cnn2ncccc12']; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999996423721313, 0.9999991655349731, 0.9999971389770508, 0.9999593496322632] +Nc1cc(-c2cnc3ccccn23)ccn1; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Nc1cc(Br)ccn1', 'Nc1cc(I)ccn1', 'Nc1cc(Cl)ccn1']; ['CC1(C)OB(c2ccnc(N)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'Nc1cc(B(O)O)ccn1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999992847442627, 0.9999983906745911, 0.99998539686203, 0.999976634979248, 0.9999301433563232, 0.9998391270637512, 0.9998093247413635, 0.9988300800323486, 0.9974605441093445] +Oc1ccc(-c2cnc3ccccn23)c(O)c1; ['Oc1ccc(Br)c(O)c1', 'Brc1cnc2ccccn12', 'Oc1cccc(O)c1', 'Clc1cnc2ccccn12']; ['c1ccn2ccnc2c1', 'Oc1ccc(Br)c(O)c1', 'c1ccn2ccnc2c1', 'Oc1cccc(O)c1']; [0.9974521398544312, 0.9711505770683289, 0.9322386980056763, 0.8850584030151367] +Oc1ccc(Cl)c(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'OB(O)c1cc(O)ccc1Cl', 'CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'Ic1cnc2ccccn12', 'Oc1ccc(Cl)c(I)c1', 'Clc1cnc2ccccn12']; ['CC1(C)OB(c2cc(O)ccc2Cl)OC1(C)C', 'OB(O)c1cc(O)ccc1Cl', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1cc(O)ccc1Cl', 'c1ccn2ccnc2c1', 'OB(O)c1cc(O)ccc1Cl']; [0.9996074438095093, 0.9993339776992798, 0.9992902278900146, 0.9990921020507812, 0.9989945888519287, 0.998778223991394, 0.995429515838623] +COc1cc(OC)cc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'COc1cc(OC)cc(B(O)O)c1', 'Brc1cnc2ccccn12', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(OC)cc(B(O)O)c1', 'COc1cc(I)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Br)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1', 'COc1cc(Cl)cc(OC)c1']; ['COc1cc(OC)cc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2ccccn12', 'Ic1cnc2ccccn12', 'COc1cc(OC)cc(B(O)O)c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.9999988079071045, 0.9999985694885254, 0.999997615814209, 0.9999727606773376, 0.9999626874923706, 0.9999189376831055, 0.9998457431793213, 0.9998407363891602, 0.9979416131973267, 0.9892675280570984, 0.9102083444595337] +NC(=O)c1cc(-c2cnc3ccccn23)c[nH]1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc2ccccn12; ['Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Brc1cnc2ccccn12', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Brc1cnc2ccccn12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1I', 'Cc1ccc2[nH]ncc2c1B(O)O', 'Cc1ccc2[nH]ncc2c1Br']; ['Ic1cnc2ccccn12', 'Cc1ccc2[nH]ncc2c1B1OC(C)(C)C(C)(C)O1', 'Clc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Cc1ccc2[nH]ncc2c1B(O)O', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999993443489075, 0.9999991655349731, 0.9999919533729553, 0.9999229907989502, 0.9998846650123596, 0.9995969533920288, 0.9990483522415161, 0.9988394975662231, 0.9964081048965454] +COc1ccc(-c2cnc3ccccn23)cc1OC; ['COc1ccc(B(O)O)cc1OC', 'Brc1cnc2ccccn12', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(B(O)O)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(Br)cc1OC', 'COc1ccc(I)cc1OC', 'COc1ccccc1OC', 'COc1ccc(Cl)cc1OC', 'COc1ccc(Cl)cc1OC']; ['Ic1cnc2ccccn12', 'COc1ccc(B(O)O)cc1OC', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.999998927116394, 0.9999961256980896, 0.9999868869781494, 0.999961256980896, 0.9998162984848022, 0.9997173547744751, 0.9988751411437988, 0.9971417188644409, 0.9885690808296204, 0.9852662682533264] +Oc1ncc(-c2cnc3ccccn23)cc1Cl; ['CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Oc1ncccc1Cl', 'Oc1ncc(Br)cc1Cl', 'Oc1ncc(I)cc1Cl']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cnc(O)c(Cl)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999986886978149, 0.9999950528144836, 0.9999909400939941, 0.9995490312576294, 0.996745228767395, 0.9895954132080078] +Cc1ccc(CO)cc1-c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O', 'Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Cc1ccc(CO)cc1I', 'Cc1ccc(CO)cc1Cl', 'Cc1ccc(CO)cc1B(O)O']; ['Cc1ccc(CO)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Ic1cnc2ccccn12', 'Cc1ccc(CO)cc1Br', 'Cc1ccc(CO)cc1B(O)O', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12']; [0.9999982118606567, 0.9999884366989136, 0.999941885471344, 0.9997784495353699, 0.9994063377380371, 0.9992411136627197, 0.9992192387580872, 0.9987941980361938, 0.9978718757629395, 0.9955884218215942] +COc1cc(CCc2cnc3ccccn23)ccc1O; [None]; [None]; [0] +CCOc1cccc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CCOc1cccc(B(O)O)c1', 'Brc1cnc2ccccn12', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(B(O)O)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(Br)c1', 'CCOc1cccc(I)c1', 'CCOc1ccccc1']; ['CCOc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2ccccn12', 'Ic1cnc2ccccn12', 'CCOc1cccc(B(O)O)c1', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999992847442627, 0.9999983310699463, 0.999994695186615, 0.9999940395355225, 0.9999525547027588, 0.999942421913147, 0.9999226331710815, 0.9997796416282654, 0.9995597004890442, 0.9862001538276672] +Cc1nc2ccc(-c3cnc4ccccn34)cc2[nH]1; ['Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Brc1cnc2ccccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1']; ['Ic1cnc2ccccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2[nH]1', 'Clc1cnc2ccccn12']; [1.0, 0.9999997615814209, 0.9999974370002747] +c1ccn2c(-c3cnc4[nH]ccc4c3)cnc2c1; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2ccccn12', 'Brc1cnc2ccccn12']; ['OB(O)c1cnc2[nH]ccc2c1', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1cnc2[nH]ccc2c1', 'OB(O)c1cnc2[nH]ccc2c1']; [1.0, 1.0, 0.9999997615814209, 0.9999983310699463, 0.999998152256012, 0.9999978542327881] +COc1cc(CCc2cnc3ccccn23)cc(OC)c1; ['COc1cc(CBr)cc(OC)c1']; ['Cc1cnc2ccccn12']; [0.8786056041717529] +Fc1ccc(-c2nc[nH]c2-c2cnc3ccccn23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc3ccccn23)cc1; ['CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(NC(N)=O)cc2)OC1(C)C', 'Clc1cnc2ccccn12']; [1.0, 0.9999995231628418, 0.9999980330467224] +CS(=O)(=O)c1ccc(-c2cnc3ccccn23)cc1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Brc1cnc2ccccn12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Brc1cnc2ccccn12', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'CS(=O)(=O)c1ccc(I)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'CS(=O)(=O)c1ccc(Br)cc1', 'Brc1cnc2ccccn12', 'CS(=O)(=O)c1ccc(Cl)cc1', 'CS(=O)(=O)c1ccccc1', 'CS(=O)(=O)c1ccc(Cl)cc1']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'CS(=O)(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CS(=O)(=O)c1ccc(Br)cc1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [1.0, 0.9999997615814209, 0.9999975562095642, 0.9999957084655762, 0.9998725652694702, 0.9998315572738647, 0.9997920989990234, 0.9995763301849365, 0.9995467066764832, 0.9995269775390625, 0.999284565448761, 0.9954184889793396, 0.9788883924484253, 0.977545976638794, 0.9758398532867432] +Oc1cncc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1cncc(O)c1', 'CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Oc1cncc(I)c1', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Oc1cncc(Br)c1', 'Oc1cncc(Cl)c1', 'Oc1cccnc1']; ['CC1(C)OB(c2cncc(O)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1cncc(O)c1', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'OB(O)c1cncc(O)c1', 'OB(O)c1cncc(O)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999769926071167, 0.9999517202377319, 0.9996260404586792, 0.9996248483657837, 0.9995331764221191, 0.998695969581604, 0.9978058338165283, 0.9966809749603271, 0.9935770034790039, 0.990612268447876, 0.7698408365249634] +c1ccc2sc(-c3cnc4ccccn34)nc2c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cnc4ccccn34)ccc2N1; ['CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Brc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(I)ccc2N1', 'O=C1Cc2cc(Br)ccc2N1']; ['Ic1cnc2ccccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'CC1(C)OB(c2ccc3c(c2)CC(=O)N3)OC1(C)C', 'Clc1cnc2ccccn12', 'O=C1Cc2cc(B(O)O)ccc2N1', 'O=C1Cc2cc(B(O)O)ccc2N1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999979734420776, 0.9999978542327881, 0.9999879002571106, 0.999980092048645, 0.9999753832817078, 0.9999675750732422, 0.9998337030410767, 0.9990264177322388, 0.9984721541404724] +CNC(=O)c1cccc2cc(-c3cnc4ccccn34)ccc12; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)ccc1Br', 'CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12']; [0.999833345413208, 0.9993712902069092, 0.9985179901123047, 0.9954990148544312] +CCc1cc(O)c(F)cc1-c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'CCc1cc(O)c(F)cc1Br', 'CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1']; ['CCc1cc(O)c(F)cc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12']; [0.9999814629554749, 0.999957263469696, 0.9998335838317871, 0.9996324181556702] +CNc1nccc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc4ccccn34)ccc12; [None]; [None]; [0] +CCc1sccc1-c1cnc2ccccn12; ['CCc1cccs1']; ['c1ccn2ccnc2c1']; [0.988479495048523] +Cc1cc(O)ccc1-c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Cc1cc(O)ccc1Br', 'Cc1cc(O)ccc1B(O)O', 'Cc1cc(O)ccc1B(O)O', 'Brc1cnc2ccccn12', 'Cc1cc(O)ccc1Cl', 'Cc1cc(O)ccc1I']; ['Cc1cc(O)ccc1B1OC(C)(C)C(C)(C)O1', 'Ic1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'Cc1cc(O)ccc1B(O)O', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.9999424815177917, 0.9998784065246582, 0.9998606443405151, 0.999473512172699, 0.9992415308952332, 0.9985547065734863, 0.9984652996063232, 0.9982903003692627, 0.9883822798728943, 0.9825342893600464] +Clc1cnccc1-c1cnc2ccccn12; ['CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnccc1I', 'Clc1cnccc1Br', 'Brc1cnc2ccccn12', 'OB(O)c1ccncc1Cl', 'Clc1cnccc1Br', 'Clc1ccncc1Cl', 'Clc1cnc2ccccn12', 'Clc1ccncc1Cl']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccncc2Cl)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1ccncc1Cl', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1ccncc1Cl', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'OB(O)c1ccncc1Cl', 'O=C(O)c1cnc2ccccn12']; [0.9999947547912598, 0.9999945759773254, 0.9999076128005981, 0.9998222589492798, 0.9998186826705933, 0.999815821647644, 0.9995235204696655, 0.9980453252792358, 0.9951440691947937, 0.993198037147522, 0.9858148097991943, 0.9524048566818237] +CN(c1cccc(Cl)c1)c1cnc2ccccn12; ['Brc1cnc2ccccn12', 'CNc1cccc(Cl)c1']; ['CNc1cccc(Cl)c1', 'Clc1cnc2ccccn12']; [0.9988601207733154, 0.9977811574935913] +C[C@H](CC(N)=O)c1cnc2ccccn12; [None]; [None]; [0] +c1ccn2c(-c3ccc4c(c3)CCN4)cnc2c1; ['Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Ic1ccc2c(c1)CCN2']; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'OB(O)c1ccc2c(c1)CCN2', 'c1ccn2ccnc2c1']; [1.0, 0.9999876618385315, 0.997872531414032] +Oc1c(Cl)cc(-c2cnc3ccccn23)cc1Cl; ['CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'Brc1cnc2ccccn12', 'Oc1c(Cl)cc(Br)cc1Cl', 'Clc1cnc2ccccn12', 'Oc1c(Cl)cc(I)cc1Cl', 'Oc1c(Cl)cccc1Cl']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cc(Cl)c(O)c(Cl)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'c1ccn2ccnc2c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'c1ccn2ccnc2c1', 'OB(O)c1cc(Cl)c(O)c(Cl)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1']; [0.999980092048645, 0.9999743700027466, 0.9998922944068909, 0.9998140335083008, 0.9995304346084595, 0.9991638660430908, 0.997654378414154, 0.9949973821640015, 0.9895260334014893, 0.9730905890464783] +Cc1n[nH]c(-c2cnc3ccccn23)c1C; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cnc4ccccn34)cc2[nH]1; ['CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'Clc1cnc2ccccn12', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'O=C(O)c1cnc2ccccn12', 'O=c1[nH]c2ccc(I)cc2[nH]1']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc3[nH]c(=O)[nH]c3c2)OC1(C)C', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'Clc1cnc2ccccn12', 'O=c1[nH]c2ccc(B(O)O)cc2[nH]1', 'c1ccn2ccnc2c1', 'O=c1[nH]c2ccc(Br)cc2[nH]1', 'c1ccn2ccnc2c1']; [0.999998152256012, 0.9999973773956299, 0.9999940395355225, 0.9999877214431763, 0.9999816417694092, 0.9999617338180542, 0.9995087385177612, 0.998293399810791, 0.9963423013687134] +FC(F)c1cc(-c2cnc3ccccn23)[nH]n1; [None]; [None]; [0] +c1ccn2c(Nc3ccncc3)cnc2c1; ['Clc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Ic1ccncc1', 'Clc1ccncc1', 'Brc1ccncc1']; ['Nc1ccncc1', 'Nc1ccncc1', 'Nc1ccncc1', 'OB(O)c1ccncc1', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12', 'Nc1cnc2ccccn12']; [0.9990138411521912, 0.9984279274940491, 0.9980402588844299, 0.9960240125656128, 0.9626929759979248, 0.9258984327316284, 0.9041818380355835] +Fc1cc(Br)ccc1-c1cnc2ccccn12; ['CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Ic1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Fc1cc(Br)ccc1I', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1ccc(Br)cc1F', 'Fc1cc(Br)ccc1Br', 'Fc1cc(Br)ccc1Cl', 'Brc1cnc2ccccn12', 'Fc1cc(Br)ccc1Br', 'Fc1cccc(Br)c1']; ['Ic1cnc2ccccn12', 'OB(O)c1ccc(Br)cc1F', 'CC1(C)OB(c2ccc(Br)cc2F)OC1(C)C', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'OB(O)c1ccc(Br)cc1F', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'OB(O)c1ccc(Br)cc1F', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999870657920837, 0.9999810457229614, 0.9999301433563232, 0.999929666519165, 0.9999195337295532, 0.9998254776000977, 0.9997953176498413, 0.9996128082275391, 0.9991748929023743, 0.9972991943359375, 0.9960484504699707, 0.9134685397148132] +Oc1cc(-c2cnc3ccccn23)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2cnc3ccccn23)cc1C(=O)[O-]; [None]; [None]; [0] +CNc1nc(-c2cnc3ccccn23)ncc1F; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnc3ccccn23)c1; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'OB(O)c1cc(O)cc(Br)c1', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'Oc1cc(Br)cc(Br)c1', 'Brc1cnc2ccccn12']; ['OB(O)c1cc(O)cc(Br)c1', 'Ic1cnc2ccccn12', 'c1ccn2ccnc2c1', 'CC1(C)OB(c2cc(O)cc(Br)c2)OC1(C)C', 'Clc1cnc2ccccn12', 'OB(O)c1cc(O)cc(Br)c1', 'c1ccn2ccnc2c1', 'OB(O)c1cc(O)cc(Br)c1']; [0.9999959468841553, 0.9999938607215881, 0.999961256980896, 0.9999242424964905, 0.9999145269393921, 0.9999144673347473, 0.9990826845169067, 0.9989600777626038] +CNC(=O)c1ccc(-c2cnc3ccccn23)cc1; ['CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2ccccn12', 'CNC(=O)c1ccc(B(O)O)cc1', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Brc1cnc2ccccn12', 'CNC(=O)c1ccc(B(O)O)cc1']; ['Ic1cnc2ccccn12', 'CNC(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CNC(=O)c1ccc(B(O)O)cc1', 'Clc1cnc2ccccn12']; [1.0, 0.9999996423721313, 0.9999989867210388, 0.999996542930603, 0.9999711513519287, 0.9999451637268066] +CN(c1cccc2[nH]ncc12)c1cnc2ccccn12; [None]; [None]; [0] +Cc1cc(-c2cnc3ccccn23)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O']; ['Ic1cnc2ccccn12', 'Clc1cnc2ccccn12']; [1.0, 0.9999995231628418] +O=C(NC1CC1)c1ccc(-c2cnc3ccccn23)cc1; ['CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Brc1cnc2ccccn12', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'O=C(NC1CC1)c1ccc(Br)cc1', 'Brc1cnc2ccccn12']; ['Ic1cnc2ccccn12', 'CC1(C)OB(c2ccc(C(=O)NC3CC3)cc2)OC1(C)C', 'Clc1cnc2ccccn12', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'O=C(NC1CC1)c1ccc(B(O)O)cc1', 'c1ccn2ccnc2c1', 'O=C(NC1CC1)c1ccc(Br)cc1']; [1.0, 1.0, 0.9999996423721313, 0.9999992847442627, 0.9999915957450867, 0.9999890327453613, 0.9999768733978271, 0.9957352876663208] +Cn1ncc(N)c1-c1cnc2ccccn12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc4ccccn34)cc2o1; ['Cc1nc2ccc(B(O)O)cc2o1', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'Brc1cnc2ccccn12', 'Brc1cnc2ccccn12', 'Cc1nc2ccc(Br)cc2o1']; ['Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Clc1cnc2ccccn12', 'Cc1nc2ccc(B3OC(C)(C)C(C)(C)O3)cc2o1', 'Cc1nc2ccc(B(O)O)cc2o1', 'c1ccn2ccnc2c1']; [0.9999998211860657, 0.9999995231628418, 0.9999993443489075, 0.9999986886978149, 0.9999953508377075, 0.9998707175254822] +Cc1cc(-c2cnc3ccccn23)cc(C)c1O; ['Brc1cnc2ccccn12', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cc(I)cc(C)c1O', 'Brc1cnc2ccccn12', 'Cc1cc(B(O)O)cc(C)c1O', 'Cc1cc(Cl)cc(C)c1O', 'Cc1cc(Br)cc(C)c1O', 'Cc1cccc(C)c1O', 'Cc1cc(Cl)cc(C)c1O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)cc(C)c1O', 'Ic1cnc2ccccn12', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'Cc1cc(B(O)O)cc(C)c1O', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12']; [0.9999740123748779, 0.9999582767486572, 0.9997696876525879, 0.9996997117996216, 0.9995551109313965, 0.9990746974945068, 0.9975388050079346, 0.9968725442886353, 0.9953957796096802, 0.9913454651832581, 0.9875880479812622, 0.961795449256897, 0.9272536039352417] +CSc1cccc(-c2cnc3ccccn23)c1; ['Brc1cnc2ccccn12', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(B(O)O)c1', 'Brc1cnc2ccccn12', 'CSc1cccc(B(O)O)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Br)c1', 'CSc1cccc(Cl)c1', 'CSc1cccc(Cl)c1']; ['CSc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'Ic1cnc2ccccn12', 'Clc1cnc2ccccn12', 'CSc1cccc(B(O)O)c1', 'c1ccn2ccnc2c1', 'c1ccn2ccnc2c1', 'O=C(O)c1cnc2ccccn12', 'O=C(O)c1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999982118606567, 0.9999849796295166, 0.9999141693115234, 0.9999140501022339, 0.9998664855957031, 0.9997005462646484, 0.9987407922744751, 0.9910606145858765, 0.9908401966094971] +Fc1ccc2n[nH]c(-c3cnc4ccccn34)c2c1; [None]; [None]; [0] +Fc1ccc(Oc2cnc3ccccn23)c(F)c1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['Oc1ccc(F)cc1F', 'Oc1ccc(F)cc1F']; [0.9999990463256836, 0.9999849200248718] +Oc1c(F)cc(-c2cnc3ccccn23)cc1F; ['Brc1cnc2ccccn12', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Brc1cnc2ccccn12', 'Oc1c(F)cc(Br)cc1F', 'Clc1cnc2ccccn12', 'Oc1c(F)cc(I)cc1F']; ['CC1(C)OB(c2cc(F)c(O)c(F)c2)OC1(C)C', 'Ic1cnc2ccccn12', 'OB(O)c1cc(F)c(O)c(F)c1', 'Clc1cnc2ccccn12', 'OB(O)c1cc(F)c(O)c(F)c1', 'c1ccn2ccnc2c1', 'OB(O)c1cc(F)c(O)c(F)c1', 'c1ccn2ccnc2c1']; [0.9999953508377075, 0.999991238117218, 0.9999589323997498, 0.999948263168335, 0.9995102882385254, 0.999506950378418, 0.99940025806427, 0.9992631077766418] +Fc1ccc(-c2ncoc2-c2cnc3ccccn23)cc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnc2ccccn12; ['Cc1onc(-c2ccccc2)c1B(O)O', 'Brc1cnc2ccccn12', 'Cc1onc(-c2ccccc2)c1I', 'Cc1onc(-c2ccccc2)c1B(O)O', 'Cc1onc(-c2ccccc2)c1B(O)O']; ['Ic1cnc2ccccn12', 'Cc1onc(-c2ccccc2)c1B(O)O', 'c1ccn2ccnc2c1', 'Clc1cnc2ccccn12', 'c1ccn2ccnc2c1']; [0.9999806880950928, 0.9999061226844788, 0.9998767971992493, 0.999737560749054, 0.9996364712715149] +c1ccc2c(COc3cnc4ccccn34)cccc2c1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['OCc1cccc2ccccc12', 'OCc1cccc2ccccc12']; [0.9906443357467651, 0.9878518581390381] +Fc1cccc(Cl)c1CNc1cnc2ccccn12; ['Brc1cnc2ccccn12', 'Ic1cnc2ccccn12', 'NCc1c(F)cccc1Cl', 'Clc1cnc2ccccn12', 'Fc1cccc(Cl)c1CBr', 'Nc1cnc2ccccn12', 'Fc1cccc(Cl)c1CCl']; ['NCc1c(F)cccc1Cl', 'NCc1c(F)cccc1Cl', 'c1ccn2ccnc2c1', 'NCc1c(F)cccc1Cl', 'Nc1cnc2ccccn12', 'O=Cc1c(F)cccc1Cl', 'Nc1cnc2ccccn12']; [1.0, 1.0, 0.9999995231628418, 0.9999992847442627, 0.9999960064888, 0.9999960064888, 0.99997878074646] +O=c1[nH][nH]c2cc(-c3cnc4ccccn34)ccc12; ['O=c1[nH][nH]c2cc(Br)ccc12']; ['c1ccn2ccnc2c1']; [0.9957515001296997] +Fc1ccc(COc2cnc3ccccn23)c(F)c1; ['Brc1cnc2ccccn12', 'Clc1cnc2ccccn12']; ['OCc1ccc(F)cc1F', 'OCc1ccc(F)cc1F']; [0.9998509883880615, 0.9994869828224182] +c1ccc2c(CCc3cnc4ccccn34)c[nH]c2c1; [None]; [None]; [0] +Fc1ccc(CCc2cnc3ccccn23)c(F)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnc3ccccn23)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc2ccccc2n1; [None]; [None]; [0] +CCOc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +COc1ncccc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnc2cccnn12; [None]; [None]; [0] +COc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3c(C)csc3N)c2c1; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)cc(OC)c1OC; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(C#N)ccc1O; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(O)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3c(C)csc3N)cc2)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1nccc2ccccc12; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1csc(N)c1Nc1ncccn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(OCCO)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(N(C)C)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2c(C)csc2N)s1; [None]; [None]; [0] +Cc1csc(N)c1Cc1ccccc1O; [None]; [None]; [0] +Cc1csc(N)c1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1Cc1cnc(N)nc1; [None]; [None]; [0] +Cc1csc(N)c1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(Br)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3c(C)csc3N)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2c(C)csc2N)nc1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +COc1ccc(Cc2c(C)csc2N)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccn2nccc2n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1-n1cccn1; [None]; [None]; [0] +Cc1csc(N)c1-c1c[nH]c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c(C)csc2N)c(C)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2c(C)csc2N)cc1Cl; [None]; [None]; [0] +Cc1csc(N)c1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c(C)csc2N)c1; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)ccc1O; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc2c1OCO2; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1csc(N)c1Cc1nc2c(F)c(F)ccc2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +Cc1csc(N)c1Cc1nc2ccc(F)c(F)c2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnc2ccccc2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1scc2c1OCCO2; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c(C)csc2N)CC1; [None]; [None]; [0] +Cc1csc(N)c1Cc1nc2ccccc2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1csc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1ccc(-c2c(C)csc2N)c(=O)[nH]1; [None]; [None]; [0] +Cc1csc(N)c1CCCc1ccccc1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2c(C)csc2N)c1; [None]; [None]; [0] +CSc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2ccccc2s1; [None]; [None]; [0] +Cc1csc(N)c1[C@H](CO)Cc1ccccc1; [None]; [None]; [0] +CC[C@@H](CO)c1c(C)csc1N; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3c(C)csc3N)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2c(C)csc2N)nc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(F)cc1Cl; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +COc1ccc(-c2c(C)csc2N)cc1OC; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc(Br)cn1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +CCc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc2cccn2n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +Cc1csc(N)c1CCCn1cncn1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +COc1ccc2cccc(-c3c(C)csc3N)c2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2c(C)csc2N)cc1OC; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)ccc1Cl; [None]; [None]; [0] +Cc1csc(N)c1-c1cnn(CCO)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc(Cl)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncnc2c(C)csc12; [None]; [None]; [0] +COc1ccc(OC)c(Cc2c(C)csc2N)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c(C)csc2N)nc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2c(C)csc2N)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1c(C)csc1N; [None]; [None]; [0] +CCNC(=O)N1CCC(c2c(C)csc2N)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2c(C)csc2N)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1c(C)csc1N)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3c(C)csc3N)cc2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +CCn1cc(-c2c(C)csc2N)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2c(C)csc2N)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +COc1ccc2nc(-c3c(C)csc3N)[nH]c2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(Br)cn1C; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2ccccc2o1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc2sccc2n1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(C)nc1C(C)C; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2c(C)csc2N)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(C)c2ccccc12; [None]; [None]; [0] +CCc1cccc(-c2c(C)csc2N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-c2c(C)csc2N)cc(C)c1OCCO; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(C)n[nH]c2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(N(C)C)nc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3c(C)csc3N)cn2)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(CCO)cc1; [None]; [None]; [0] +Cc1csc(N)c1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1c(C)csc1N; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1c(C)csc1N; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1c(C)csc1N; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1c(C)csc1N; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(C)csc2N)c(OC)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1[C@H](C)CS(C)(=O)=O; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2c(C)csc2N)[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2c(C)csc2N)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1c(C)csc1N; [None]; [None]; [0] +CCOc1ccccc1-c1c(C)csc1N; [None]; [None]; [0] +COC(C)(C)CCc1c(C)csc1N; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1S(=O)(=O)C(C)C; [None]; [None]; [0] +Cc1csc(N)c1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1OC(F)(F)F; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1P(C)(C)=O; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccnc2ccccc12; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1C(=O)[O-]; [None]; [None]; [0] +Cc1csc(N)c1-c1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccccc1C(N)=O; [None]; [None]; [0] +Cc1csc(N)c1-n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Cc1ccc(-c2c(C)csc2N)c(Br)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(NC(=O)c2ccccc2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(Cl)ccc1Cl; [None]; [None]; [0] +COc1cnc(-c2c(C)csc2N)nc1; [None]; [None]; [0] +Cc1csc(N)c1OCC(=O)C(C)C; [None]; [None]; [0] +Cc1csc(N)c1-c1c(C)nc2ccccn12; [None]; [None]; [0] +Cc1csc(N)c1-c1cnc2ccccn12; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(Br)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +CNc1nc(C)c(-c2c(C)csc2N)s1; [None]; [None]; [0] +Cc1csc(N)c1-c1sc(N)nc1C; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c(C)csc2N)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2ccccc2c1; [None]; [None]; [0] +Cc1csc(N)c1NCc1cccnc1; [None]; [None]; [0] +Cc1csc(N)c1-c1sc(=O)n(C)c1C; [None]; [None]; [0] +Cc1csc(N)c1-c1ccnc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnn2ncccc12; [None]; [None]; [0] +Cc1csc(N)c1Nc1cccnc1; [None]; [None]; [0] +Cc1csc(N)c1-n1cnc2ccccc21; [None]; [None]; [0] +Cc1csc(N)c1NCCc1c[nH]cn1; [None]; [None]; [0] +Cc1csc(N)c1NC(=O)c1cccs1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +Cc1csc(N)c1-c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +Cc1csc(N)c1-c1cncc2ccccc12; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(F)c1C(N)=O; [None]; [None]; [0] +Cc1csc(N)c1NCCc1ccccc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(-c2cnn(C)c2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +CCCn1cnc(-c2c(C)csc2N)n1; [None]; [None]; [0] +Cc1csc(N)c1NCc1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc(-c2c(C)csc2N)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1csc(N)c1Nc1ccncc1; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(C(C)C)nn1; [None]; [None]; [0] +Cc1csc(N)c1NCc1ccccc1F; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(CO)c1; [None]; [None]; [0] +CSc1nc(-c2c(C)csc2N)c[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnoc1C(C)C; [None]; [None]; [0] +Cc1csc(N)c1-c1csc2ncncc12; [None]; [None]; [0] +Cc1csc(N)c1CCc1c[nH]nn1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1cncnc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(CCC#N)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3c(C)csc3N)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c(C)csc2N)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +Cc1csc(N)c1CCCC(N)=O; [None]; [None]; [0] +Cc1csc(N)c1Oc1ccccn1; [None]; [None]; [0] +Cc1csc(N)c1N1CCC(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1csc(N)c1CCNC(=O)CC(C)(C)O; [None]; [None]; [0] +Cc1csc(N)c1OCC(C)(C)S(C)(=O)=O; [None]; [None]; [0] +Cc1csc(N)c1NC(=O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +COc1ccc(-c2c(C)csc2N)cc1Cl; [None]; [None]; [0] +Cc1csc(N)c1-c1cnn2ccccc12; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +COc1cc(CCc2c(C)csc2N)cc(OC)c1; [None]; [None]; [0] +CCCn1cc(-c2c(C)csc2N)cn1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc([S@](C)=O)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(C)(C)N)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc2c1C(=O)CC2; [None]; [None]; [0] +Cc1csc(N)c1-c1cc[nH]c(=O)c1; [None]; [None]; [0] +Cc1csc(N)c1O[C@H](C)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCN(CC)c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +Cc1csc(N)c1Nc1cnccc1-c1ccccc1; [None]; [None]; [0] +COc1ccncc1Nc1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +Cc1csc(N)c1-c1cncc(OC(C)C)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1Nc1cnc2ccccc2c1; [None]; [None]; [0] +Cc1csc(N)c1C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c(C)csc1N; [None]; [None]; [0] +Cc1csc(N)c1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +Cc1csc(N)c1-c1c[nH]c2cnccc12; [None]; [None]; [0] +Cc1csc(N)c1N(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cc1cc(-c2c(C)csc2N)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(S(=O)(=O)NC(C)(C)C)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +Cc1csc(N)c1-n1ccc(CO)n1; [None]; [None]; [0] +Cc1csc(N)c1N[C@@H](C)C(C)(C)O; [None]; [None]; [0] +Cc1csc(N)c1N[C@@H](C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1csc(N)c1N[C@H](C)C(C)(C)O; [None]; [None]; [0] +Cc1csc(N)c1-n1cnc(CCO)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1c(F)cccc1Cl; [None]; [None]; [0] +Cc1csc(N)c1-n1ncc2ccccc21; [None]; [None]; [0] +Cc1csc(N)c1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-n1ncc2c(O)cccc21; [None]; [None]; [0] +Cc1csc(N)c1-c1nncn1C(C)C; [None]; [None]; [0] +Cc1csc(N)c1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +CSc1nc(C)c(-c2c(C)csc2N)[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc(C(=O)c2ccccc2)cc1; [None]; [None]; [0] +COc1ccc(-c2c(C)csc2N)c(OC)c1; [None]; [None]; [0] +Cc1csc(N)c1-c1nncn1C1CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1nnc(N)s1; ['Cc1csc(N)c1C#N']; ['NNC(N)=S']; [0.8362489938735962] +Cc1csc(N)c1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +Cc1csc(N)c1CCC(=O)NCc1ccccn1; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +Cc1csc(N)c1CS(=O)(=O)NCc1ccccn1; [None]; [None]; [0] +CCCCc1cc(-c2c(C)csc2N)nc(N)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c(C)csc2N)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cc(C(N)=O)cn1C; [None]; [None]; [0] +CCc1cc(-c2c(C)csc2N)nc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc(C(C)(C)O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c(C)csc2N)s1; [None]; [None]; [0] +Cc1csc(N)c1-c1cncc(N)n1; [None]; [None]; [0] +Cc1csc(N)c1-c1nc2ccccc2s1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c(C)csc3N)c2)cc1; [None]; [None]; [0] +Cc1csc(N)c1Oc1ccc(C[NH3+])cc1F; [None]; [None]; [0] +Cc1csc(N)c1-c1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc2ccsc12; [None]; [None]; [0] +Cc1csc(N)c1-c1cccc2nnsc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c(C)csc2N)[nH]1; [None]; [None]; [0] +Cc1csc(N)c1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Cc1csc(N)c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1csc(N)c1-c1cn(CCO)cn1; [None]; [None]; [0] +Cc1csc(N)c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c(C)csc1N; [None]; [None]; [0] +COc1ccc(OC)c(-c2c(C)csc2N)c1; [None]; [None]; [0] +COc1ccc(Oc2c(C)csc2N)c(F)c1F; [None]; [None]; [0] +CCCNc1cc(Nc2cc(C)ns2)ccn1; [None]; [None]; [0] +Cc1csc(N)c1[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +Cc1csc(N)c1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +Cc1csc(N)c1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +CCCNc1cc(Nc2ccncn2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1ccncn1']; [0.9994735717773438] +Cc1csc(N)c1-c1cccc(S(=O)(=O)N(C)C)c1; [None]; [None]; [0] +CCCNc1cc(NCc2ccc(OC)cc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['COc1ccc(CN)cc1']; [0.998638391494751] +CCCNc1cc(Nc2nc(C)c(C)s2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cc1nc(N)sc1C']; [0.9999986886978149] +Cc1csc(N)c1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +CCCNc1cc(OCC2(C)COC2)ccn1; [None]; [None]; [0] +CCCNc1cc(Nc2cc(C)n(C)n2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cc1cc(N)nn1C']; [0.9999142289161682] +CCCNc1cc(NC(=O)c2ccco2)ccn1; ['CCCNc1cc(Br)ccn1']; ['NC(=O)c1ccco1']; [0.9918015003204346] +CCCNc1cc(Nc2ccc(F)cn2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1ccc(F)cn1']; [0.9980148673057556] +Cc1csc(N)c1N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +CCCNc1cc(Nc2cc(C)c(F)cn2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cc1cc(N)ncc1F']; [0.9990313053131104] +CCCNc1cc(NC(=O)c2ccc(C(C)(C)C)cc2)ccn1; ['CC(C)(C)c1ccc(C(N)=O)cc1']; ['CCCNc1cc(Br)ccn1']; [0.9963982701301575] +CCCNc1cc(NC2CN(C(=O)C3CC3)C2)ccn1; [None]; [None]; [0] +CCCNc1cc(Nc2ccccn2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1ccccn1']; [0.9967033863067627] +CCCNc1cc(-c2ccccc2C(=O)NC)ccn1; ['CCCNc1cc(Br)ccn1']; ['CNC(=O)c1ccccc1B(O)O']; [0.9998862743377686] +CCCNc1cc(-c2ccccc2OCC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CCOc1ccccc1B1OC(C)(C)C(C)(C)O1', 'CCOc1ccccc1B(O)O']; [0.9999932050704956, 0.9996813535690308] +CCCNc1cc(-c2ccccc2S(=O)(=O)C(C)C)ccn1; ['CC(C)S(=O)(=O)c1ccccc1B(O)O']; ['CCCNc1cc(Br)ccn1']; [0.9998942613601685] +CCCNc1cc(-c2cccc(C(F)(F)F)c2)ccn1; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cccc(C(F)(F)F)c1']; [0.9999988079071045, 0.9999365210533142] +CCCNc1cc(-c2ccnc3ccccc23)ccn1; ['CC1(C)OB(c2ccnc3ccccc23)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1ccnc2ccccc12']; [0.9999889135360718, 0.9940921664237976] +CCCNc1cc(-c2cnn(CC)c2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCn1cc(B(O)O)cn1', 'CCn1cc(I)cn1']; [1.0, 0.9999923706054688, 0.9996627569198608] +CCCNc1cc(Cc2cc(F)cc(F)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccccc2-c2nnc(C)[nH]2)ccn1; [None]; [None]; [0] +CCCNc1cc(CCC(C)(C)OC)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccccc2OC(F)(F)F)ccn1; ['CC1(C)OB(c2ccccc2OC(F)(F)F)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1ccccc1OC(F)(F)F']; [0.9999971985816956, 0.9996559619903564] +CCCNc1cc(-c2ccccc2P(C)(C)=O)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccccc2C(N)=O)ccn1; ['CC1(C)OB(c2ccccc2C(N)=O)OC1(C)C', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'NC(=O)c1ccccc1B(O)O', 'NC(=O)c1ccccc1I', 'NC(=O)c1ccccc1Br']; [0.9999969005584717, 0.9997825622558594, 0.9997081160545349, 0.9267838001251221] +CCCNc1cc(-c2cnn(Cc3ccccc3)c2)ccn1; ['CC1(C)OB(c2cnn(Cc3ccccc3)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cnn(Cc2ccccc2)c1']; [1.0, 0.9999945759773254] +CCCNc1cc(-c2cnn(CCO)c2)ccn1; ['CC1(C)OB(c2cnn(CCO)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OCCn1cc(B(O)O)cn1']; [0.9999997019767761, 0.9999805092811584] +CCCNc1cc(-c2ccccc2C(=O)[O-])ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc3ncn(C)c(=O)c3c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2csc(C(C)(C)C)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-n2ncc3cccc(F)c3c2=O)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cc(Cl)ccc2Cl)ccn1; ['CC1(C)OB(c2cc(Cl)ccc2Cl)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cc(Cl)ccc1Cl']; [0.9999970197677612, 0.9999252557754517] +CCCNc1cc(-c2ccc(C)cc2Br)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cc1ccc(B(O)O)c(Br)c1']; [0.9658156633377075] +CCCNc1cc(-c2ncc(OC)cn2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(NC(=O)c3ccccc3)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(OCC(=O)C(C)C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnc(-c3ccccc3)[nH]2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2sc(C)nc2C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2sc(N)nc2C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnc3cccnn23)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2sc(NC)nc2C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnc3ccccn23)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2c(Cl)cccc2Cl)ccn1; ['CCCNc1cc(Br)ccn1']; ['OB(O)c1c(Cl)cccc1Cl']; [0.997943639755249] +CCCNc1cc(-c2cccc(Br)c2)ccn1; ['CC1(C)OB(c2cccc(Br)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cccc(Br)c1']; [0.9999558925628662, 0.9982627034187317] +CCCNc1cc(-c2c(C)nc3ccccn23)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cc(C)ccc2Cl)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['Cc1ccc(Cl)c(B2OC(C)(C)C(C)(C)O2)c1', 'Cc1ccc(Cl)c(B(O)O)c1']; [0.9999744892120361, 0.9998722076416016] +CCCNc1cc(NCc2cccnc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['NCc1cccnc1']; [0.9933182001113892] +CCCNc1cc(-c2ccc3ccccc3c2)ccn1; ['CC1(C)OB(c2ccc3ccccc3c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1ccc2ccccc2c1']; [0.9999964237213135, 0.9999585151672363] +CCCNc1cc(Nc2cccnc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1cccnc1']; [0.9999409914016724] +CCCNc1cc(-c2cnn3ncccc23)ccn1; ['CC1(C)OB(c2cnn3ncccc23)OC1(C)C']; ['CCCNc1cc(Br)ccn1']; [0.9999995231628418] +CCCNc1cc(-n2cnc3ccccc32)ccn1; ['CCCNc1cc(Br)ccn1']; ['c1ccc2[nH]cnc2c1']; [0.9966485500335693] +CCCNc1cc(-c2ccnc(N)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(NCCc2c[nH]cn2)ccn1; ['CCCNc1cc(Br)ccn1']; ['NCCc1c[nH]cn1']; [0.9980686902999878] +CCCNc1cc(NC(=O)c2cccs2)ccn1; ['CCCN', 'CCCNc1cc(Br)ccn1']; ['O=C(Nc1ccnc(Cl)c1)c1cccs1', 'NC(=O)c1cccs1']; [0.9997835159301758, 0.9982656240463257] +CCCNc1cc(-c2c[nH]nc2C(F)(F)F)ccn1; ['CC1(C)OB(c2c[nH]nc2C(F)(F)F)OC1(C)C']; ['CCCNc1cc(Br)ccn1']; [0.9999974966049194] +CCCNc1cc(-c2cccc(F)c2C(N)=O)ccn1; ['CCCNc1cc(Br)ccn1']; ['NC(=O)c1c(F)cccc1Br']; [0.9986757636070251] +CCCNc1cc(-c2sc(=O)n(C)c2C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(Cn3cncn3)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cncc3ccccc23)ccn1; ['CC1(C)OB(c2cncc3ccccc23)OC1(C)C', 'CCCNc1cc(Br)ccn1', 'Brc1cncc2ccccc12']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cncc2ccccc12', 'CCCNc1cc(Br)ccn1']; [1.0, 0.9998905658721924, 0.9990243911743164] +CCCNc1cc(-c2cccc(CC(=O)[O-])c2)ccn1; [None]; [None]; [0] +CCCNc1cc(NCCc2ccccc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['NCCc1ccccc1']; [0.9925450682640076] +CCCNc1cc(-c2ccc3c(cnn3C)c2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['Cn1ncc2cc(B3OC(C)(C)C(C)(C)O3)ccc21', 'Cn1ncc2cc(B(O)O)ccc21']; [1.0, 0.9999986886978149] +CCCNc1cc(NCc2ccc(Cl)cc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['NCc1ccc(Cl)cc1']; [0.9995472431182861] +CCCNc1cc(-c2ccc(-c3cn[nH]c3)cc2)ccn1; ['CC1(C)OB(c2ccc(-c3cn[nH]c3)cc2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1ccc(-c2cn[nH]c2)cc1']; [0.9999998807907104, 0.999991774559021] +CCCNc1cc(-c2ccc(-c3cnn(C)c3)cc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cn1cc(-c2ccc(B3OC(C)(C)C(C)(C)O3)cc2)cn1']; [1.0] +CCCNc1cc(-c2cccc(O)c2)ccn1; ['CC1(C)OB(c2cccc(O)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cccc(O)c1']; [0.9999433159828186, 0.999524712562561] +CCCNc1cc(-c2cccc(CO)c2)ccn1; ['CC1(C)OB(c2cccc(CO)c2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OCc1cccc(B(O)O)c1']; [0.9999947547912598, 0.99778151512146] +CCCNc1cc(Nc2ccncc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1ccncc1']; [0.9999545812606812] +CCCNc1cc(-c2ccc3c(N)[nH]nc3c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ncn(CCC)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc3c(c2)CS(=O)(=O)N3C)ccn1; [None]; [None]; [0] +CCCNc1cc(NCc2ccccc2F)ccn1; ['CCCNc1cc(Br)ccn1']; ['NCc1ccccc1F']; [0.9961634874343872] +CCCNc1cc(-c2cn(C(C)C)nn2)ccn1; ['CC(C)n1ccnn1']; ['CCCNc1cc(Br)ccn1']; [0.99997878074646] +CCCNc1cc(-c2c[nH]c(SC)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(CCC#N)c2)ccn1; ['CCCNc1cc(Br)ccn1']; ['N#CCCc1cccc(B(O)O)c1']; [0.9999295473098755] +CCCNc1cc(-c2ccc(C(=O)[O-])c(OC)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2csc3ncncc23)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cncnc2N)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1ncncc1Br']; [0.9970231056213379] +CCCNc1cc(CCc2c[nH]nn2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2csc(N)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cc3ccccc3[nH]2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnoc2C(C)C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(F)cc2C(F)(F)F)ccn1; ['CCCNc1cc(Br)ccn1']; ['OB(O)c1ccc(F)cc1C(F)(F)F']; [0.9996665716171265] +CCCNc1cc(Oc2ccccn2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(NC(=O)CC)cc2)ccn1; ['CCC(=O)Nc1ccc(B2OC(C)(C)C(C)(C)O2)cc1']; ['CCCNc1cc(Br)ccn1']; [1.0] +CCCNc1cc(N2CCC(S(C)(=O)=O)CC2)ccn1; ['CCCNc1cc(Br)ccn1']; ['CS(=O)(=O)C1CCNCC1']; [0.9993984699249268] +CCCNc1cc(NC(=O)c2c(Cl)cccc2Cl)ccn1; ['CCCNc1cc(Br)ccn1']; ['NC(=O)c1c(Cl)cccc1Cl']; [0.9951635599136353] +CCCNc1cc(-c2cccc(NC(C)=O)c2)ccn1; ['CC(=O)Nc1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(=O)Nc1cccc(B(O)O)c1']; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; [0.9999974966049194, 0.9996700286865234] +CCCNc1cc(CCNC(=O)CC(C)(C)O)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cn(C)c3ccccc23)ccn1; ['CCCNc1cc(Br)ccn1']; ['Cn1cc(B2OC(C)(C)C(C)(C)O2)c2ccccc21']; [0.9999985694885254] +CCCNc1cc(-c2ccc3nc(NCC)sc3c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(OC)c(Cl)c2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)cc1Cl', 'COc1ccc(B(O)O)cc1Cl']; [0.9999998807907104, 0.9999781847000122] +CCCNc1cc(-c2cnn3ccccc23)ccn1; ['CC1(C)OB(c2cnn3ccccc23)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cnn2ccccc12']; [0.9999997615814209, 0.9999735355377197] +CCCNc1cc(CCCC(N)=O)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnn(CCC)c2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CCCn1cc(B2OC(C)(C)C(C)(C)O2)cn1', 'CCCn1cc(B(O)O)cn1', 'CCCn1cc(I)cn1']; [0.9999996423721313, 0.9999933242797852, 0.9999228715896606] +CCCNc1cc(-c2cc[nH]c(=O)c2)ccn1; ['CC1(C)OB(c2cc[nH]c(=O)c2)OC1(C)C']; ['CCCNc1cc(Br)ccn1']; [0.9999892711639404] +CCCNc1cc(OCC(C)(C)S(C)(=O)=O)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc3c2C(=O)CC3)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc([S@](C)=O)cc2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CS(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CS(=O)c1ccc(B(O)O)cc1']; [0.9999984502792358, 0.9999947547912598] +CCCNc1cc(N(CC)CC)ccn1; ['CCCNc1cc(Br)ccn1']; ['CCNCC']; [0.9441201686859131] +CCCNc1cc(-c2ccc(C(C)(C)N)cc2)ccn1; [None]; [None]; [0] +CCCNc1cc(O[C@H](C)c2c(Cl)cncc2Cl)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccccc2S(=O)(=O)NCC)ccn1; [None]; [None]; [0] +CCCNc1cc(CCc2cc(OC)cc(OC)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(Nc2cnccc2OC)ccn1; ['CCCNc1cc(Br)ccn1']; ['COc1ccncc1N']; [0.99976646900177] +CCCNc1cc(-c2cncc(OC(C)C)c2)ccn1; ['CC(C)Oc1cncc(B2OC(C)(C)C(C)(C)O2)c1', 'CC(C)Oc1cncc(B(O)O)c1', 'CC(C)Oc1cncc(Br)c1']; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; [0.9999998807907104, 0.9999969601631165, 0.9996578097343445] +CCCNc1cc(Nc2cnccc2-c2ccccc2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1cnccc1-c1ccccc1']; [0.9999550580978394] +CCCNc1cc(-c2c(F)cccc2OC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1cccc(F)c1B1OC(C)(C)C(C)(C)O1', 'COc1cccc(F)c1B(O)O']; [0.9999997615814209, 0.9999240636825562] +CCCNc1cc(Nc2cnc3ccccc3c2)ccn1; ['CCCNc1cc(Br)ccn1']; ['Nc1cnc2ccccc2c1']; [0.9999773502349854] +CCCNc1cc(-c2ccc(C(C)(C)C)cc2)ccn1; ['CC(C)(C)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)c1ccc(B(O)O)cc1']; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; [0.9999998211860657, 0.9999978542327881] +CCCNc1cc(-c2cc3c(=O)[nH]ccc3o2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnc3[nH]ccc3c2)ccn1; ['CC1(C)OB(c2cnc3[nH]ccc3c2)OC1(C)C', 'CCCNc1cc(Br)ccn1', 'Brc1cnc2[nH]ccc2c1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cnc2[nH]ccc2c1', 'CCCNc1cc(Br)ccn1']; [1.0, 0.999995231628418, 0.9992566704750061] +CCCNc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2c[nH]c3cnccc23)ccn1; ['CCCNc1cc(Br)ccn1']; ['OB(O)c1c[nH]c2cnccc12']; [0.8787732124328613] +CCCNc1cc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)ccn1; ['CC(C)(C)NS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CC(C)(C)NS(=O)(=O)c1ccc(B(O)O)cc1']; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; [1.0, 0.9999983310699463] +CCCNc1cc(-c2ccc(S(=O)(=O)NC)cc2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CNS(=O)(=O)c1ccc(B2OC(C)(C)C(C)(C)O2)cc1', 'CNS(=O)(=O)c1ccc(B(O)O)cc1']; [0.9999993443489075, 0.9999954700469971] +CCCNc1cc(-c2ccc(S(C)(=O)=O)cc2)ccn1; ['CC1(C)OB(c2ccc(S(C)(=O)=O)cc2)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'CS(=O)(=O)c1ccc(B(O)O)cc1']; [1.0, 0.9999975562095642] +CCCNc1cc(-c2cccc(F)c2C(=O)NC)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(N3CCOCC3)cc2)ccn1; ['CC1(C)OB(c2ccc(N3CCOCC3)cc2)OC1(C)C', 'CCCNc1cc(Br)ccn1', 'Brc1ccc(N2CCOCC2)cc1', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1ccc(N2CCOCC2)cc1', 'CCCNc1cc(Br)ccn1', 'Ic1ccc(N2CCOCC2)cc1']; [1.0, 0.9999996423721313, 0.9999287724494934, 0.9998700618743896] +CCCNc1cc(C2(C)CCN(S(C)(=O)=O)CC2)ccn1; [None]; [None]; [0] +CCCNc1cc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)ccn1; [None]; [None]; [0] +CCCNc1cc(N[C@@H](C)C(C)(C)O)ccn1; ['CCCNc1cc(Br)ccn1']; ['C[C@H](N)C(C)(C)O']; [0.9980195164680481] +CCCNc1cc(-c2c(F)cccc2Cl)ccn1; ['CC1(C)OB(c2c(F)cccc2Cl)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1c(F)cccc1Cl']; [0.9999996423721313, 0.9999551773071289] +CCCNc1cc(-c2cc(C)nn2-c2cccc(Cl)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(N[C@H](C)C(C)(C)O)ccn1; ['CCCNc1cc(Br)ccn1']; ['C[C@@H](N)C(C)(C)O']; [0.9980195164680481] +CCCNc1cc(-n2ncc3ccccc32)ccn1; ['CCCNc1cc(Br)ccn1']; ['c1ccc2[nH]ncc2c1']; [0.9559755325317383] +CCCNc1cc(N[C@@H](C)C(=O)NCC(F)(F)F)ccn1; [None]; [None]; [0] +CCCNc1cc(-n2ccc(CO)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-n2cnc(CCO)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2nc3ccc(O)cc3[nH]2)ccn1; [None]; [None]; [0] +CCCNc1cc(-n2ncc3c(O)cccc32)ccn1; ['CCCNc1cc(Br)ccn1']; ['Oc1cccc2[nH]ncc12']; [0.9853980541229248] +CCCNc1cc(-c2ccc(OC)cc2OC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1ccc(B2OC(C)(C)C(C)(C)O2)c(OC)c1', 'COc1ccc(B(O)O)c(OC)c1']; [0.9999959468841553, 0.9996885657310486] +CCCNc1cc(-c2ccc(-n3cncn3)cc2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(C(=O)c3ccccc3)cc2)ccn1; ['CC1(C)OB(c2ccc(C(=O)c3ccccc3)cc2)OC1(C)C', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'O=C(c1ccccc1)c1ccc(B(O)O)cc1', 'O=C(c1ccccc1)c1ccc(I)cc1', 'O=C(c1ccccc1)c1ccc(Br)cc1']; [0.9999995231628418, 0.9999904632568359, 0.9977054595947266, 0.9587630033493042] +CCCNc1cc(-c2[nH]c(SC)nc2C)ccn1; [None]; [None]; [0] +CCCNc1cc([C@@H]2CC[C@@H](NC(C)=O)CC2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2nncn2C(C)C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2nncn2C2CC2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ccn(CC[NH3+])n2)ccn1; [None]; [None]; [0] +CCCNc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)ccn1; [None]; [None]; [0] +CCCNc1cc(CCC(=O)NCc2ccccn2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2nnc(N)s2)ccn1; ['CCCN']; ['Nc1nnc(-c2ccnc(Cl)c2)s1']; [0.9994243383407593] +CCCNc1cc(-c2cn(Cc3ccccc3)nn2)ccn1; [None]; [None]; [0] +CCCNc1cc(CS(=O)(=O)NCc2ccccn2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(C(C)(C)O)n2)ccn1; ['CC(C)(O)c1cccc(Br)n1']; ['CCCNc1cc(Br)ccn1']; [0.9915369749069214] +CCCNc1cc(-c2cc(CC)nc(N)n2)ccn1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc(NCCC)c2)nc(N)n1; [None]; [None]; [0] +CCCNc1cc(-c2ccc(C(=O)NC)s2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cc(C(N)=O)cn2C)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cncc(N)n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc3ccsc23)ccn1; ['CC1(C)OB(c2cccc3ccsc23)OC1(C)C', 'CCCNc1cc(Br)ccn1']; ['CCCNc1cc(Br)ccn1', 'OB(O)c1cccc2ccsc12']; [0.9999997615814209, 0.9998750686645508] +CCCNc1cc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)ccn1; ['CC1(C)Oc2ccc(Br)nc2NC1=O', 'CC1(C)Oc2cccnc2NC1=O']; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; [0.9760620594024658, 0.9387868642807007] +CCCNc1cc(C2CCN(C(=O)N[C@@H2]C)CC2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2nc3ccccc3s2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc3nnsc23)ccn1; ['Brc1cccc2nnsc12']; ['CCCNc1cc(Br)ccn1']; [0.9967972040176392] +CCCNc1cc(-c2c[nH]c3cccnc23)ccn1; ['CC1(C)OB(c2c[nH]c3cccnc23)OC1(C)C']; ['CCCNc1cc(Br)ccn1']; [0.9999994039535522] +CCCNc1cc(-c2nc(N)c3ccccc3n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ncc3ccccc3n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2ncc3cc[nH]c3n2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(C(=O)Nc3ccc(C(=O)NC)cc3)c2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cnc(NC(C)=O)[nH]2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccnc2OC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1ncccc1B1OC(C)(C)C(C)(C)O1', 'COc1ncccc1B(O)O', 'COc1ncccc1Br']; [0.999995231628418, 0.9980272650718689, 0.8867430686950684] +CCCNc1cc(-c2cc(C#N)ccc2OC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1ccc(C#N)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(C#N)cc1B(O)O']; [1.0, 0.9999973177909851] +CCCNc1cc(-c2cc(OC)ccc2OC)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['COc1ccc(OC)c(B2OC(C)(C)C(C)(C)O2)c1', 'COc1ccc(OC)c(B(O)O)c1']; [0.9999977350234985, 0.9999727010726929] +CCCNc1cc(-c2cn(CCO)cn2)ccn1; [None]; [None]; [0] +CCCNc1cc(Oc2ccc(C[NH3+])cc2F)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(S(=O)(=O)N(C)C)c2)ccn1; ['CCCNc1cc(Br)ccn1', 'CCCNc1cc(Br)ccn1']; ['CN(C)S(=O)(=O)c1cccc(B2OC(C)(C)C(C)(C)O2)c1', 'CN(C)S(=O)(=O)c1cccc(B(O)O)c1']; [0.9999986886978149, 0.9997409582138062] +CCCNc1cc(Oc2ccc(OC)c(F)c2F)ccn1; [None]; [None]; [0] +CCCNc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)ccn1; ['CCCNc1cc(Br)ccn1']; ['c1ccc2[nH]c(C3CCNCC3)nc2c1']; [0.9999069571495056] +CCCNc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)ccn1; ['C1=C(c2c[nH]c3ccccc23)CCNC1']; ['CCCNc1cc(Br)ccn1']; [0.9999706745147705] +CCCNc1cc([C@H]2CC[C@@](C)(O)CC2)ccn1; [None]; [None]; [0] +CCCNc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)ccn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(O)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc2ncccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +CCc1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +CCCNc1cc(-c2cnnc(N(C)C)c2)ccn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(Cl)c(O)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1n[nH]c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(O)cc1F; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccnc(N)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(F)c2nc(C)[nH]c2c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +COc1cc(-c2cc3c(O)ccnc3cc2OC)ccc1O; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cn[nH]c1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)o1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1COc1cccc(Cl)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(Br)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(O)c(F)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnn2ncccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccnc(N)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1COc1ccccc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1[C@H](CO)c1ccccc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1CCc1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c(C)ccc2[nH]ncc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(O)ccc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(CO)ccc1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1ccc(-c2cc3c(O)ccnc3cc2OC)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cc4c(O)ccnc4cc3OC)ccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2nc(C)[nH]c2c1; [None]; [None]; [0] +CCOc1cccc(-c2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1nc2ccccc2s1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cncc(O)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CC(=O)N2; [None]; [None]; [0] +CNc1nccc(-c2cc3c(O)ccnc3cc2OC)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1[nH]nc(C)c1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(O)cc1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccncc1Cl; [None]; [None]; [0] +CCc1sccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(-c2cc3c(O)ccnc3cc2OC)ncc1F; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C(=O)[O-])c(C)o1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2[nH]c(=O)[nH]c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(Br)cc1F; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(O)cc(Br)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)NC2CC2)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(N)=O)c(C)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2nc(C)oc2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C)c(O)c(C)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(F)c(O)c(F)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(=O)[nH][nH]c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(SC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c(-c2ccccc2)noc1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N(C)C(C)=O)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccnc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(OC)c(OC)c(OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-n1cnc2ccc(C)cc21; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnc2cccnn12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C#N)ccc1O; [None]; [None]; [0] +COc1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(CC(=O)N2CCN(C(C)=O)CC2)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1cc(C)ns1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1nccc2ccccc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1ncccn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(OCCO)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(CNC(C)=O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1ccncn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N(C)C)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1sc(C)nc1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(N2CCCN(C(C)=O)CC2)c1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3c(O)ccnc3cc2OC)nc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(C(=O)[O-])c1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)c(C)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cc3c(O)ccnc3cc2OC)cc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(NC(C)=O)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc2c1OCO2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1scc2c1OCCO2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnc2ccccc2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1csc(N)n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1OCC1(C)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(SC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4c(O)ccnc4cc3OC)cc2)CC1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C)nc(N)n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(F)cc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncc(Br)cn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +COc1ccc(CNc2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1NC1CN(C(=O)C2CC2)C1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncc2cccn2n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N2CCOCC2)c(OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4c(O)ccnc4cc3OC)c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-c2cc3c(O)ccnc3cc2OC)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc3c(O)ccnc3cc2OC)ccc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnn(CCO)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncc(Cl)cn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncnc2c(C)csc12; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1nc(C)c(C)s1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1cc(C)n(C)n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)nc1; [None]; [None]; [0] +COc1cc(-c2cc3c(O)ccnc3cc2OC)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Cc1ccc(C(N)=O)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1NC(=O)c1ccco1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1[C@@H]1CC[C@@H](OC)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3c(O)ccnc3cc2OC)CC1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3c(O)ccnc3cc1OC)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc4c(O)ccnc4cc3OC)cc2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1NC(=O)c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +CCn1cc(-c2cc3c(O)ccnc3cc2OC)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc2ccccc2o1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(Br)cn1C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncc2sccc2n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cn(C)nc1C(C)C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cc4c(O)ccnc4cc3OC)[nH]c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +CCc1cccc(-c2cc3c(O)ccnc3cc2OC)n1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ncn2c1CCCC2; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C)c(OCCO)c(C)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N(C)C)nc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc2c(C)n[nH]c2c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cnn(C2CCN(C(C)=O)CC2)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(CCO)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(-c2cnc(C)n2C)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(N2CCOCC2)cc1C; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2c(O)ccnc2cc1OC; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)c(OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3c(O)ccnc3cc2OC)cc1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1ccc(F)cn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1cc(C)c(F)cn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1Nc1ccccn1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3c(O)ccnc3cc2OC)c1; [None]; [None]; [0] +COc1cc2nccc(O)c2cc1-c1cc(C(=O)NCCO)ccc1C; [None]; [None]; [0] +Oc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1cc(-c2cncc3cncn23)c2cccnc2c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1cncc3cncn13)OCO2; [None]; [None]; [0] +Oc1cc(-c2cncc3cncn23)ccc1Cl; [None]; [None]; [0] +c1ccc2c(-c3cncc4cncn34)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cncc2cncn12; [None]; [None]; [0] +Fc1ccc(Oc2cncc3cncn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc3cncn23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cncc3cncn23)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cncc2cncn12; [None]; [None]; [0] +Oc1ccc(-c2cncc3cncn23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2cncc3cncn23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cncc2cncn12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cncc4cncn34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cncc2cncn12; [None]; [None]; [0] +COc1cc(F)ccc1-c1cncc2cncn12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3cncc4cncn34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2cncc3cncn23)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cncc3cncn23)o1; [None]; [None]; [0] +COc1cc(CCc2cncc3cncn23)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1ccc2cc(-c3cncc4cncn34)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2cncc3cncn23)cc1F; [None]; [None]; [0] +Cn1cc(-c2cncc3cncn23)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2cncc3cncn23)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3cncc4cncn34)c2c1; [None]; [None]; [0] +c1cc2c(-c3cncc4cncn34)c[nH]c2cn1; [None]; [None]; [0] +Nc1cc(-c2cncc3cncn23)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1cncc2cncn12; [None]; [None]; [0] +Fc1ccc(-c2cncc3cncn23)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cncc3cncn23)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cncc2cncn12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cncc3cncn23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cncc2cncn12; [None]; [None]; [0] +Oc1ncc(-c2cncc3cncn23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2cncc3cncn23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cncc3cncn23)c1; [None]; [None]; [0] +COc1ccc(-c2cncc3cncn23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cncc4cncn34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cncc4cncn34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +COc1cc(CCc2cncc3cncn23)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +c1cc2cc(-c3cncc4cncn34)cnc2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cncc4cncn34)nc2c1; [None]; [None]; [0] +Oc1cncc(-c2cncc3cncn23)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cncc4cncn34)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cncc2cncn12; [None]; [None]; [0] +CNc1nccc(-c2cncc3cncn23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cncc2cncn12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cncc2cncn12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cncc4cncn34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cncc3cncn23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cncc2cncn12; [None]; [None]; [0] +FC(F)c1cc(-c2cncc3cncn23)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cncc2cncn12; [None]; [None]; [0] +Clc1cnccc1-c1cncc2cncn12; [None]; [None]; [0] +CCc1sccc1-c1cncc2cncn12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cncc3cncn23)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2cncc3cncn23)ncc1F; [None]; [None]; [0] +c1cc2c(cc1-c1cncc3cncn13)CCN2; [None]; [None]; [0] +Oc1cc(-c2cncc3cncn23)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2cncc3cncn23)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cncc4cncn34)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cncc2cncn12; [None]; [None]; [0] +c1cc(Nc2cncc3cncn23)ccn1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cncc2cncn12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cncc4cncn34)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1cncc2cncn12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cncc3cncn23)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +Cc1cc(-c2cncc3cncn23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3cncc4cncn34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cncc3cncn23)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2cncc3cncn23)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cncc4cncn34)ccc12; [None]; [None]; [0] +CSc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1ccc2c(CCc3cncc4cncn34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3cncc4cncn34)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cncc3cncn23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2cncc3cncn23)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cncc2cncn12; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cncc3cncn23)cc1; [None]; [None]; [0] +Fc1ccc(COc2cncc3cncn23)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2cncc3cncn23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1cncc2cncn12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +CCOc1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +COC(C)(C)CCc1cncc2cncn12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cncc3cncn23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cncc3cncn23)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +c1ccc2c(-c3cncc4cncn34)ccnc2c1; [None]; [None]; [0] +CCn1cc(-c2cncc3cncn23)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cncc4cncn34)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cncc4cncn34)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cncc4cncn34)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cncc3cncn23)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cncc3cncn23)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cncc3cncn23)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cncc2cncn12; [None]; [None]; [0] +COc1cnc(-c2cncc3cncn23)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cncc3cncn23)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cncc2cncn12; [None]; [None]; [0] +Cc1ccc(-c2cncc3cncn23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cncc2cncn12; [None]; [None]; [0] +c1ccn2c(-c3cncc4cncn34)cnc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cncc3cncn23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cncc3cncn23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cncc2cncn12; [None]; [None]; [0] +c1cnn2c(-c3cncc4cncn34)cnc2c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cncc3cncn23)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1cncc(CNc2cncc3cncn23)c1; [None]; [None]; [0] +Cc1c(-c2cncc3cncn23)sc(=O)n1C; [None]; [None]; [0] +c1cncc(Nc2cncc3cncn23)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cncc2cncn12; [None]; [None]; [0] +c1nc(CCNc2cncc3cncn23)c[nH]1; [None]; [None]; [0] +O=C(Nc1cncc2cncn12)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cncc2cncn12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cncc2cncn12; [None]; [None]; [0] +c1ccc2c(-c3cncc4cncn34)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2cncc3cncn23)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cncc4cncn34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cncc4cncn34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cncc4cncn34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cncc4cncn34)ccc21; [None]; [None]; [0] +c1cc(-c2cncc3cncn23)ccc1-c1cn[nH]c1; [None]; [None]; [0] +Clc1ccc(CNc2cncc3cncn23)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cncc3cncn23)n1; [None]; [None]; [0] +OCc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +COc1cc(-c2cncc3cncn23)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cncc3cncn23)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cncc2cncn12; [None]; [None]; [0] +CSc1nc(-c2cncc3cncn23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cncc2cncn12; [None]; [None]; [0] +c1[nH]nnc1CCc1cncc2cncn12; [None]; [None]; [0] +c1ncc2c(-c3cncc4cncn34)csc2n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cncc4cncn34)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +Nc1nc(-c2cncc3cncn23)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cncc2cncn12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cncc4cncn34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +Fc1ccc(-c2cncc3cncn23)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cncc2cncn12; [None]; [None]; [0] +c1ccc(Oc2cncc3cncn23)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cncc2cncn12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +O=C(Nc1cncc2cncn12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cncc3cncn23)CC1; [None]; [None]; [0] +CC(C)(COc1cncc2cncn12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cncc3cncn23)cc1Cl; [None]; [None]; [0] +c1ccn2ncc(-c3cncc4cncn34)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cncc3cncn23)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cncc3cncn23)cn1; [None]; [None]; [0] +O=c1cc(-c2cncc3cncn23)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cncc4cncn34)c21; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cncc2cncn12; [None]; [None]; [0] +C[C@@H](Oc1cncc2cncn12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +CCN(CC)c1cncc2cncn12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cncc4cncn34)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cncc4cncn34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cncc2cncn12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cncc3cncn23)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cncc3cncn23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cncc2cncn12; [None]; [None]; [0] +c1ccc2ncc(Nc3cncc4cncn34)cc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cncc2cncn12; [None]; [None]; [0] +CC1(c2cncc3cncn23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cncc2cncn12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1-c1cncc2cncn12; [None]; [None]; [0] +Cc1cc(-c2cncc3cncn23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cncc2cncn12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cncc3cncn23)n1; [None]; [None]; [0] +OCCc1cn(-c2cncc3cncn23)cn1; [None]; [None]; [0] +C[C@H](Nc1cncc2cncn12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cncc2cncn12)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cncc2cncn12; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cncc2cncn12; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cncc2cncn12; [None]; [None]; [0] +c1ncn(-c2ccc(-c3cncc4cncn34)cc2)n1; [None]; [None]; [0] +Oc1ccc2nc(-c3cncc4cncn34)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cncc3cncn23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cncc3cncn23)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cncc3cncn23)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cncc3cncn23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cncc2cncn12; [None]; [None]; [0] +c1ncc2cncn2c1-c1nncn1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cncc3cncn23)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cncc5cncn45)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cncc2cncn12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cncc2cncn12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cncc4cncn34)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2cncc3cncn23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cncc3cncn23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cncc3cncn23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cncc2cncn12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cncc3cncn23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc3cncn23)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cncc3cncn23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cncc3cncn23)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cncc4cncn34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cncc4cncn34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cncc3cncn23)n1; [None]; [None]; [0] +c1cc(-c2cncc3cncn23)c2sccc2c1; [None]; [None]; [0] +c1cc(-c2cncc3cncn23)c2snnc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cncc3cncn23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cncc3cncn23)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3cncc4cncn34)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3cncc4cncn34)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2cncc3cncn23)c1; [None]; [None]; [0] +c1cc2cnc(-c3cncc4cncn34)nc2[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cncc2cncn12; [None]; [None]; [0] +COc1ccc(Oc2cncc3cncn23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cncc3cncn23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cncc3cncn23)c1; [None]; [None]; [0] +COc1ncccc1-c1cncc2cncn12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cncc3cncn23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cncc3cncn23)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4cncc5cncn45)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cncc3cncn23)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cncc3cncn23)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +CCOc1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +COC(C)(C)CCc1cnc2[nH]cccc1-2; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cnc3[nH]cccc2-3)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ccnc4ccccc34)c-2c1; [None]; [None]; [0] +CCn1cc(-c2cnc3[nH]cccc2-3)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cnc4[nH]cccc3-4)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnc4[nH]cccc3-4)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cnc4[nH]cccc3-4)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cnc3[nH]cccc2-3)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc3[nH]cccc2-3)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3[nH]cccc2-3)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +COc1cnc(-c2cnc3[nH]cccc2-3)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cnc2[nH]cccc1-2; [None]; [None]; [0] +Cc1ccc(-c2cnc3[nH]cccc2-3)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cnc4ccccn34)c-2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc3[nH]cccc2-3)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc3[nH]cccc2-3)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cnc4cccnn34)c-2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +Brc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +c1cncc(CNc2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +Cc1c(-c2cnc3[nH]cccc2-3)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cnn4ncccc34)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ccc4ccccc4c3)c-2c1; [None]; [None]; [0] +c1cncc(Nc2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +c1c[nH]c2ncc(-n3cnc4ccccc43)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(NCCc3c[nH]cn3)c-2c1; [None]; [None]; [0] +O=C(Nc1cnc2[nH]cccc1-2)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cncc4ccccc34)c-2c1; [None]; [None]; [0] +c1ccc(CCNc2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc4[nH]cccc3-4)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cnc4[nH]cccc3-4)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cnc4[nH]cccc3-4)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc4[nH]cccc3-4)ccc21; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ccc(-c4cn[nH]c4)cc3)c-2c1; [None]; [None]; [0] +Clc1ccc(CNc2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +Oc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +OCc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]cccc2-3)ccc1C(=O)[O-]; [None]; [None]; [0] +c1c[nH]c2ncc(Nc3ccncc3)c-2c1; [None]; [None]; [0] +CC(C)n1cc(-c2cnc3[nH]cccc2-3)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cnc2[nH]cccc1-2; [None]; [None]; [0] +CSc1nc(-c2cnc3[nH]cccc2-3)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(CCc3c[nH]nn3)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3csc4ncncc34)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cc4ccccc4[nH]3)c-2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +Nc1nc(-c2cnc3[nH]cccc2-3)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnc4[nH]cccc3-4)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +Fc1ccc(-c2cnc3[nH]cccc2-3)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1ccc(Oc2cnc3[nH]cccc2-3)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cnc2[nH]cccc1-2; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +O=C(Nc1cnc2[nH]cccc1-2)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]cccc2-3)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cnc3[nH]cccc2-3)CC1; [None]; [None]; [0] +CC(C)(COc1cnc2[nH]cccc1-2)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]cccc2-3)cc1Cl; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cnn4ccccc34)c-2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cnc3[nH]cccc2-3)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cnc3[nH]cccc2-3)cn1; [None]; [None]; [0] +O=c1cc(-c2cnc3[nH]cccc2-3)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cnc4[nH]cccc3-4)c21; [None]; [None]; [0] +COc1cc(CCc2cnc3[nH]cccc2-3)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +C[C@@H](Oc1cnc2[nH]cccc1-2)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CCN(CC)c1cnc2[nH]cccc1-2; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cnc4[nH]cccc3-4)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cnc4[nH]cccc3-4)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(Nc3cnc4ccccc4c3)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3c[nH]c4cnccc34)c-2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cnc4[nH]ccc4c3)c-2c1; [None]; [None]; [0] +CC1(c2cnc3[nH]cccc2-3)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cnc2[nH]cccc1-2)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ccc(N4CCOCC4)cc3)c-2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +Cc1cc(-c2cnc3[nH]cccc2-3)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cnc2[nH]cccc1-2)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +OCCc1cn(-c2cnc3[nH]cccc2-3)cn1; [None]; [None]; [0] +C[C@H](Nc1cnc2[nH]cccc1-2)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cnc2[nH]cccc1-2)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-n3ncc4ccccc43)c-2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ccc(-n4cncn4)cc3)c-2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cnc4[nH]cccc3-4)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc3[nH]cccc2-3)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cnc3[nH]cccc2-3)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cnc3[nH]cccc2-3)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc3[nH]cccc2-3)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +c1c[nH]c2ncc(-c3nncn3C3CC3)c-2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cnc5[nH]cccc4-5)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cnc2[nH]cccc1-2)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cnc2[nH]cccc1-2)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cnc4[nH]cccc3-4)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2cnc3[nH]cccc2-3)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cnc3[nH]cccc2-3)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cnc3[nH]cccc2-3)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc3[nH]cccc2-3)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cnc3[nH]cccc2-3)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc3[nH]cccc2-3)CC1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3nc4ccccc4s3)c-2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cnc4[nH]cccc3-4)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc4[nH]cccc3-4)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cnc3[nH]cccc2-3)n1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cccc4ccsc34)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3cccc4nnsc34)c-2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc3[nH]cccc2-3)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cnc3[nH]cccc2-3)nc2ccccc12; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ncc4ccccc4n3)c-2c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3c[nH]c4cccnc34)c-2c1; [None]; [None]; [0] +OCCn1cnc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +c1c[nH]c2ncc(-c3ncc4cc[nH]c4n3)c-2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +COc1ccc(Oc2cnc3[nH]cccc2-3)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnc3[nH]cccc2-3)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +COc1ncccc1-c1cnc2[nH]cccc1-2; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnc3[nH]cccc2-3)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cnc3[nH]cccc2-3)cnn1; [None]; [None]; [0] +c1c[nH]c2ncc(N3CCC(c4nc5ccccc5[nH]4)CC3)c-2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cnc3[nH]cccc2-3)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnc3[nH]cccc2-3)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +CCOc1ccccc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +COC(C)(C)CCc1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3-c3nnc(C)[nH]3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3S(=O)(=O)C(C)C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(Cc3cc(F)cc(F)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3P(C)(C)=O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccnc4ccccc34)ccnc2[nH]1; [None]; [None]; [0] +CCn1cc(-c2ccnc3[nH]c(C)cc23)cn1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(C(F)(F)F)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3OC(F)(F)F)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3C(=O)[O-])ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccccc3C(N)=O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnn(Cc4ccccc4)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4ncn(C)c(=O)c4c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnc(-c4ccccc4)[nH]3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnn(CCO)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3csc(C(C)(C)C)n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(NC(=O)c4ccccc4)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3ncc4cccc(F)c4c3=O)ccnc2[nH]1; [None]; [None]; [0] +COc1cnc(-c2ccnc3[nH]c(C)cc23)nc1; [None]; [None]; [0] +Cc1cc2c(-c3cc(Cl)ccc3Cl)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(OCC(=O)C(C)C)ccnc2[nH]1; [None]; [None]; [0] +Cc1ccc(-c2ccnc3[nH]c(C)cc23)c(Br)c1; [None]; [None]; [0] +Cc1cc2c(-c3c(C)nc4ccccn34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnc4ccccn34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3sc(C)nc3C)ccnc2[nH]1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccnc3[nH]c(C)cc23)s1; [None]; [None]; [0] +Cc1cc2c(-c3sc(N)nc3C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnc4cccnn34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3c(Cl)cccc3Cl)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(Cn4cncn4)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(Br)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccnc3[nH]c(C)cc23)c1; [None]; [None]; [0] +Cc1cc2c(NCc3cccnc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3sc(=O)n(C)c3C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccnc(N)n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnn4ncccc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4ccccc4c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(Nc3cccnc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3cnc4ccccc43)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(NCCc3c[nH]cn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(NC(=O)c3cccs3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(CC(=O)[O-])c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3c[nH]nc3C(F)(F)F)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(F)c3C(N)=O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cncc4ccccc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(NCCc3ccccc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(-c4cnn(C)c4)cc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4c(N)[nH]nc4c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4c(c3)CS(=O)(=O)N4C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4c(cnn4C)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(-c4cn[nH]c4)cc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(NCc3ccc(Cl)cc3)ccnc2[nH]1; [None]; [None]; [0] +CCCn1cnc(-c2ccnc3[nH]c(C)cc23)n1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(O)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(CO)c3)ccnc2[nH]1; [None]; [None]; [0] +COc1cc(-c2ccnc3[nH]c(C)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1cc2c(Nc3ccncc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cn(C(C)C)nn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(NCc3ccccc3F)ccnc2[nH]1; [None]; [None]; [0] +CSc1nc(-c2ccnc3[nH]c(C)cc23)c[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnoc3C(C)C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(CCc3c[nH]nn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3csc4ncncc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cc4ccccc4[nH]3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(CCC#N)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3csc(N)n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cncnc3N)ccnc2[nH]1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccnc4[nH]c(C)cc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccnc3[nH]c(C)cc23)cc1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(F)cc3C(F)(F)F)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(CCCC(N)=O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(Oc3ccccn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(CCNC(=O)CC(C)(C)O)ccnc2[nH]1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccnc3[nH]c(C)cc23)c1; [None]; [None]; [0] +Cc1cc2c(NC(=O)c3c(Cl)cccc3Cl)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cn(C)c4ccccc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N3CCC(S(C)(=O)=O)CC3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(OCC(C)(C)S(C)(=O)=O)ccnc2[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]c(C)cc23)cc1Cl; [None]; [None]; [0] +Cc1cc2c(-c3cnn4ccccc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)ccnc2[nH]1; [None]; [None]; [0] +CCCn1cc(-c2ccnc3[nH]c(C)cc23)cn1; [None]; [None]; [0] +Cc1cc2c(-c3cc[nH]c(=O)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc4c3C(=O)CC4)ccnc2[nH]1; [None]; [None]; [0] +COc1cc(CCc2ccnc3[nH]c(C)cc23)cc(OC)c1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(C(C)(C)N)cc3)ccnc2[nH]1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(O[C@H](C)c3c(Cl)cncc3Cl)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc([S@](C)=O)cc3)ccnc2[nH]1; [None]; [None]; [0] +CCN(CC)c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(-c3cc4c(=O)[nH]ccc4o3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)ccnc2[nH]1; [None]; [None]; [0] +COc1ccncc1Nc1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(Nc3cnccc3-c3ccccc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cncc(OC(C)C)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(C(C)(C)C)cc3)ccnc2[nH]1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(Nc3cnc4ccccc4c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3c[nH]c4cnccc34)ccnc2[nH]1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(-c3cnc4[nH]ccc4c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(C3(C)CCN(S(C)(=O)=O)CC3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)ccnc2[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc3[nH]c(C)cc23)cc1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(N4CCOCC4)cc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(S(C)(=O)=O)cc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc(-c2ccnc3[nH]c(C)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1cc2c(N[C@@H](C)C(=O)NCC(F)(F)F)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3ccc(CO)n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3cnc(CCO)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N[C@@H](C)C(C)(C)O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N[C@H](C)C(C)(C)O)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3c(F)cccc3Cl)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3ncc4ccccc43)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-n3ncc4c(O)cccc43)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(-n4cncn4)cc3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3nc4ccc(O)cc4[nH]3)ccnc2[nH]1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccnc3[nH]c(C)cc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccnc3[nH]c(C)cc23)c(OC)c1; [None]; [None]; [0] +Cc1cc2c(-c3ccc(C(=O)c4ccccc4)cc3)ccnc2[nH]1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccnc3[nH]c(C)cc23)CC1; [None]; [None]; [0] +Cc1cc2c(-c3nncn3C(C)C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3nncn3C3CC3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccn(CC[NH3+])n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(Cc3nnc4ccc(-c5ccccc5)nn34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(CCC(=O)NCc3ccccn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(CS(=O)(=O)NCc3ccccn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cn(Cc4ccccc4)nn3)ccnc2[nH]1; [None]; [None]; [0] +CCc1cc(-c2ccnc3[nH]c(C)cc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc3[nH]c(C)cc23)nc(N)n1; [None]; [None]; [0] +Cc1cc2c(-c3nnc(N)s3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cc(C(N)=O)cn3C)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(C(C)(C)O)n3)ccnc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc3[nH]c(C)cc23)s1; [None]; [None]; [0] +Cc1cc2c(Oc3ccc(C[NH3+])cc3F)ccnc2[nH]1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccnc3[nH]c(C)cc23)CC1; [None]; [None]; [0] +Cc1cc2c(-c3nc4ccccc4s3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ccc4c(n3)NC(=O)C(C)(C)O4)ccnc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccnc4[nH]c(C)cc34)c2)cc1; [None]; [None]; [0] +Cc1cc2c(-c3cncc(N)n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc4ccsc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc4nnsc34)ccnc2[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccnc3[nH]c(C)cc23)[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3nc(N)c4ccccc4n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ncc4ccccc4n3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3c[nH]c4cccnc34)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cn(CCO)cn3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3ncc4cc[nH]c4n3)ccnc2[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +COc1ccc(Oc2ccnc3[nH]c(C)cc23)c(F)c1F; [None]; [None]; [0] +Cc1cc2c([C@H]3CC[C@@](C)(O)CC3)ccnc2[nH]1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccnc3[nH]c(C)cc23)c1; [None]; [None]; [0] +COc1ncccc1-c1ccnc2[nH]c(C)cc12; [None]; [None]; [0] +Cc1cc2c(-c3cccc(S(=O)(=O)N(C)C)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cnnc(N(C)C)c3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)ccnc2[nH]1; [None]; [None]; [0] +Cc1cc2c(-c3cccc(NC(=O)C4CCNCC4)c3)ccnc2[nH]1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CCOc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ncc2ccccc2n1)c1ccoc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1NC(=O)c1ccoc1; [None]; [None]; [0] +COc1ncccc1NC(=O)c1ccoc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(NC(=O)c3ccoc3)c2c1; [None]; [None]; [0] +O=C(Nc1cnc2cccnn12)c1ccoc1; [None]; [None]; [0] +N#Cc1ccc(O)c(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +O=C(Nc1cccc(O)c1)c1ccoc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(N2CCOCC2)cc1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)C2CC2)c1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1nc2ccccc2[nH]1)c1ccoc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(NC(=O)c3ccoc3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1nccc2ccccc12)c1ccoc1; [None]; [None]; [0] +NC(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(NNc1ncccn1)c1ccoc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(NC(=O)c3ccoc3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(OCCO)cc1)c1ccoc1; [None]; [None]; [0] +CC(=O)NCc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(C2CCNCC2)c1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cc1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cn1)c1ccoc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CS(=O)(=O)C2)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccc(C(F)(F)F)cc1)c1ccoc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(NCc1ccccc1O)c1ccoc1; [None]; [None]; [0] +Cc1nc(C)c(NC(=O)c2ccoc2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(NC(=O)c2ccoc2)CC1; [None]; [None]; [0] +Nc1ncc(CNC(=O)c2ccoc2)cn1; [None]; [None]; [0] +O=C(N[C@H]1CCN(C(=O)c2ccccc2)C1)c1ccoc1; [None]; [None]; [0] +CC(C)c1cc(NC(=O)c2ccoc2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(NC(=O)c3ccoc3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(NC(=O)c2ccoc2)nc1; [None]; [None]; [0] +Cc1c(NC(=O)c2ccoc2)cccc1C(=O)[O-]; [None]; [None]; [0] +O=C(Nc1ccc(Br)cc1)c1ccoc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccoc2)cc1Cl; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ccn2nccc2n1)c1ccoc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccoc2)c(C)c1; [None]; [None]; [0] +O=C(Nc1ccccc1-n1cccn1)c1ccoc1; [None]; [None]; [0] +COc1ccc(Cl)cc1NC(=O)c1ccoc1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccccc12)c1ccoc1; [None]; [None]; [0] +COc1cc(OC)c(NC(=O)c2ccoc2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(NC(=O)c3ccoc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CCO2)c1ccoc1; [None]; [None]; [0] +O=C(Nc1cc(-c2ccccc2)[nH]n1)c1ccoc1; [None]; [None]; [0] +CC(=O)Nc1cccc(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)ccc1O; [None]; [None]; [0] +O=C(Nc1cccc2c1OCO2)c1ccoc1; [None]; [None]; [0] +O=C(Nc1scc2c1OCCO2)c1ccoc1; [None]; [None]; [0] +O=C(NCc1nc2ccc(F)c(F)c2[nH]1)c1ccoc1; [None]; [None]; [0] +O=C(NCc1nc2c(F)c(F)ccc2[nH]1)c1ccoc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1cnc2ccccc2c1)c1ccoc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccoc2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](NC(=O)c2ccoc2)CC1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2[nH]1)c1ccoc1; [None]; [None]; [0] +Nc1nc(NC(=O)c2ccoc2)cs1; [None]; [None]; [0] +Cc1ccc(NC(=O)c2ccoc2)c(=O)[nH]1; [None]; [None]; [0] +O=C(NCCCc1ccccc1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccn(-c2cccc(Cl)c2)n1)c1ccoc1; [None]; [None]; [0] +COc1cccc(C(=O)NNC(=O)c2ccoc2)c1; [None]; [None]; [0] +CSc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2s1)c1ccoc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(NC(=O)c3ccoc3)cc2)CC1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccoc2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)NC(=O)c1ccoc1; [None]; [None]; [0] +O=C(N[C@H](CO)Cc1ccccc1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccc(F)cc1Cl)c1ccoc1; [None]; [None]; [0] +O=C1CCc2cc(NC(=O)c3ccoc3)ccc2N1; [None]; [None]; [0] +O=C(Nc1ncc(Br)cn1)c1ccoc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccoc2)cc1OC; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(Cl)cc1Cl)c1ccoc1; [None]; [None]; [0] +O=C(NCCCn1cncn1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ncc2cccn2n1)c1ccoc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(Nc1cc2ccccn2n1)c1ccoc1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccoc2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(NC(=O)c3ccoc3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(NC(=O)c3ccoc3)c2c1; [None]; [None]; [0] +O=C(Nc1cccc2ccc(O)cc12)c1ccoc1; [None]; [None]; [0] +COc1cc(F)c(NC(=O)c2ccoc2)cc1OC; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)ccc1Cl; [None]; [None]; [0] +O=C(Nc1cnn(CCO)c1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ncc(Cl)cn1)c1ccoc1; [None]; [None]; [0] +Cc1csc2c(NC(=O)c3ccoc3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +Nc1cc(NC(=O)c2ccoc2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccoc2)nc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNC(=O)c2ccoc2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](NC(=O)c2ccoc2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(NC(=O)c2ccoc2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(C(=O)Nc2cn[nH]c2)c1)c1ccoc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccoc2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(NC(=O)c1ccoc1)cn2C; [None]; [None]; [0] +COc1ccc2oc(NC(=O)c3ccoc3)cc2c1; [None]; [None]; [0] +O=C(Nc1ccc2cn[nH]c2c1)c1ccoc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CCn1cc(NC(=O)c2ccoc2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +O=C(Nc1cc(-c2cccnc2)ccn1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2o1)c1ccoc1; [None]; [None]; [0] +Cn1cc(Br)cc1NC(=O)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ncc2sccc2n1)c1ccoc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1NC(=O)c1ccoc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)N2CCCC2)c1)c1ccoc1; [None]; [None]; [0] +COc1ccc2nc(NC(=O)c3ccoc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc(OC(F)(F)F)cc1)c1ccoc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNC(=O)c2ccoc2)c1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccoc2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(NC(=O)c3ccoc3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(NC(=O)c2ccoc2)n1; [None]; [None]; [0] +O=C(Nc1ncn2c1CCCC2)c1ccoc1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccoc2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(NC(=O)c3ccoc3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(NC(=O)c3ccoc3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccoc2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(NC(=O)c3ccoc3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(NC(=O)c3ccoc3)cn2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(N2CCCC2=O)c1)c1ccoc1; [None]; [None]; [0] +O=C(Nc1ccc(CCO)cc1)c1ccoc1; [None]; [None]; [0] +O=C(NNC(=O)c1cccc(OC(F)(F)F)c1)c1ccoc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccoc2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(NC(=O)c3ccoc3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1NC(=O)c1ccoc1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccoc2)c(OC)c1; [None]; [None]; [0] +Cn1nc(NC(=O)c2ccoc2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccoc2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(NC(=O)c2ccoc2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)NC(=O)c1ccoc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(NC(=O)c2ccoc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1NC(=O)c1ccoc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COc1ncccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3nc(C(N)=O)cs3)c2c1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(O)c2)n1; [None]; [None]; [0] +COc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(N3CCOCC3)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(NC(=O)C3CC3)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc(C(N)=O)cs3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(=O)[O-])cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2nccc3ccccc23)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(Nc2ncccn2)n1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nc(C(N)=O)cs3)cn2)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(=O)Nc3ccccc3)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(OCCO)cc2)n1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(C3CCNCC3)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(=O)N3CCOCC3)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(=O)N3CCOCC3)cn2)n1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3c(c2)CS(=O)(=O)C3)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(F)(F)F)cc2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(Cc2ccccc2O)n1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc(C(N)=O)cs2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)c1csc(Cc2cnc(N)nc2)n1; [None]; [None]; [0] +NC(=O)c1csc([C@H]2CCN(C(=O)c3ccccc3)C2)n1; [None]; [None]; [0] +CC(C)c1cc(-c2nc(C(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3nc(C(N)=O)cs3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2nc(C(N)=O)cs2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(Br)cc2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(C(N)=O)cs2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccn3nccc3n2)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)c(C)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccccc2-n2cccn2)n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2c[nH]c3ccccc23)n1; [None]; [None]; [0] +COc1cc(OC)c(-c2nc(C(N)=O)cs2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nc(C(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3c(c2)CCO3)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc(-c3ccccc3)[nH]n2)n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)ccc1O; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc3c2OCO3)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2scc3c2OCCO3)n1; [None]; [None]; [0] +NC(=O)c1csc(Cc2nc3ccc(F)c(F)c3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1csc(Cc2nc3c(F)c(F)ccc3[nH]2)n1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnc3ccccc3c2)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc(C(N)=O)cs2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)c1csc(Cc2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2csc(N)n2)n1; [None]; [None]; [0] +Cc1ccc(-c2nc(C(N)=O)cs2)c(=O)[nH]1; [None]; [None]; [0] +NC(=O)c1csc(CCCc2ccccc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccn(-c3cccc(Cl)c3)n2)n1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +CSc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3ccccc3s2)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nc(C(N)=O)cs3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2nc(C(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc([C@H](CO)Cc2ccccc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(F)cc2Cl)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3c(c2)CCC(=O)N3)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc(Br)cn2)n1; [None]; [None]; [0] +COc1ccc(-c2nc(C(N)=O)cs2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(Cl)cc2Cl)n1; [None]; [None]; [0] +NC(=O)c1csc(CCCn2cncn2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc3cccn3n2)n1; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)ccc1N1CCOCC1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3ccccn3n2)n1; [None]; [None]; [0] +Cn1cc(-c2nc(C(N)=O)cs2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3nc(C(N)=O)cs3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc(C(N)=O)cs3)c2c1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc3ccc(O)cc23)n1; [None]; [None]; [0] +COc1cc(F)c(-c2nc(C(N)=O)cs2)cc1OC; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)ccc1Cl; [None]; [None]; [0] +NC(=O)c1csc(-c2cnn(CCO)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc(Cl)cn2)n1; [None]; [None]; [0] +Cc1csc2c(-c3nc(C(N)=O)cs3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc(C(N)=O)cs2)nc1; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc(C(N)=O)cs1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3nc(C(N)=O)cs3)cc2c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3cn[nH]c3c2)n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CCn1cc(-c2nc(C(N)=O)cs2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc(-c3cccnc3)ccn2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3ccccc3o2)n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc3sccc3n2)n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(NC(=O)N3CCCC3)c2)n1; [None]; [None]; [0] +COc1ccc2nc(-c3nc(C(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(OC(F)(F)F)cc2)n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +Cn1cc(-c2nc(C(N)=O)cs2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nc(C(N)=O)cs3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2nc(C(N)=O)cs2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncn3c2CCCC3)n1; [None]; [None]; [0] +Cc1cc(-c2nc(C(N)=O)cs2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3nc(C(N)=O)cs3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nc(C(N)=O)cs3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2nc(C(N)=O)cs2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc(C(N)=O)cs3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nc(C(N)=O)cs3)cn2)CC1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(N3CCCC3=O)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(CCO)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(NC(=O)c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(C(N)=O)cs2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc(C(N)=O)cs3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(C(N)=O)cs2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2nc(C(N)=O)cs2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc(C(N)=O)cs2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1nc(C(N)=O)cs1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CCOc1ccccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COC(C)(C)CCc1nc(C(N)=O)cs1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2nc(C(N)=O)cs2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(Cc2cc(F)cc(F)c2)n1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccnc3ccccc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccccc2OC(F)(F)F)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccccc2C(=O)[O-])n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccccc2C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnn(Cc3ccccc3)c2)n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3nc(C(N)=O)cs3)cc2c1=O; [None]; [None]; [0] +NC(=O)c1csc(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2nc(C(N)=O)cs2)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(NC(=O)c3ccccc3)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-n2ncc3cccc(F)c3c2=O)n1; [None]; [None]; [0] +COc1cnc(-c2nc(C(N)=O)cs2)nc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc(Cl)ccc2Cl)n1; [None]; [None]; [0] +CC(C)C(=O)COc1nc(C(N)=O)cs1; [None]; [None]; [0] +Cc1ccc(-c2nc(C(N)=O)cs2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +CNc1nc(C)c(-c2nc(C(N)=O)cs2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(Br)c2)n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)c1csc(NCc2cccnc2)n1; [None]; [None]; [0] +Cc1c(-c2nc(C(N)=O)cs2)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1csc(-c2ccnc(N)n2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnn3ncccc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +NC(=O)c1csc(Nc2cccnc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-n2cnc3ccccc32)n1; [None]; [None]; [0] +NC(=O)c1csc(NCCc2c[nH]cn2)n1; [None]; [None]; [0] +NC(=O)c1csc(NC(=O)c2cccs2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(CC(=O)[O-])c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2c[nH]nc2C(F)(F)F)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(F)c2C(N)=O)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cncc3ccccc23)n1; [None]; [None]; [0] +NC(=O)c1csc(NCCc2ccccc2)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3nc(C(N)=O)cs3)cc2)cn1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc3c(N)[nH]nc3c2)n1; [None]; [None]; [0] +CN1c2ccc(-c3nc(C(N)=O)cs3)cc2CS1(=O)=O; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(-c3cn[nH]c3)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(NCc2ccc(Cl)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2nc(C(N)=O)cs2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(CO)c2)n1; [None]; [None]; [0] +COc1cc(-c2nc(C(N)=O)cs2)ccc1C(=O)[O-]; [None]; [None]; [0] +NC(=O)c1csc(Nc2ccncc2)n1; [None]; [None]; [0] +CC(C)n1cc(-c2nc(C(N)=O)cs2)nn1; [None]; [None]; [0] +NC(=O)c1csc(NCc2ccccc2F)n1; [None]; [None]; [0] +CSc1nc(-c2nc(C(N)=O)cs2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(CCc2c[nH]nn2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2csc3ncncc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +N#CCCc1cccc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2cncnc2N)n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3nc(C(N)=O)cs3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(F)cc2C(F)(F)F)n1; [None]; [None]; [0] +NC(=O)CCCc1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(Oc2ccccn2)n1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(NC(=O)c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +CC(C)(COc1nc(C(N)=O)cs1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2nc(C(N)=O)cs2)cc1Cl; [None]; [None]; [0] +NC(=O)c1csc(-c2cnn3ccccc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)n1; [None]; [None]; [0] +CCCn1cc(-c2nc(C(N)=O)cs2)cn1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc[nH]c(=O)c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc3c2C(=O)CC3)n1; [None]; [None]; [0] +COc1cc(CCc2nc(C(N)=O)cs2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +C[C@@H](Oc1nc(C(N)=O)cs1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CCN(CC)c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3c(=O)[nH]ccc3o2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cc3c(=O)[nH]cc(Br)c3s2)n1; [None]; [None]; [0] +COc1ccncc1Nc1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(Nc2cnccc2-c2ccccc2)n1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(Nc2cnc3ccccc3c2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2cnc3[nH]ccc3c2)n1; [None]; [None]; [0] +CC1(c2nc(C(N)=O)cs2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1nc(C(N)=O)cs1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2nc(C(N)=O)cs2)cc1; [None]; [None]; [0] +Cc1cc(-c2nc(C(N)=O)cs2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1nc(C(N)=O)cs1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +NC(=O)c1csc(-n2ccc(CO)n2)n1; [None]; [None]; [0] +NC(=O)c1csc(-n2cnc(CCO)c2)n1; [None]; [None]; [0] +C[C@H](Nc1nc(C(N)=O)cs1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1nc(C(N)=O)cs1)C(C)(C)O; [None]; [None]; [0] +NC(=O)c1csc(-c2c(F)cccc2Cl)n1; [None]; [None]; [0] +NC(=O)c1csc(-n2ncc3ccccc32)n1; [None]; [None]; [0] +NC(=O)c1csc(-n2ncc3c(O)cccc32)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(-n3cncn3)cc2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2nc3ccc(O)cc3[nH]2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2nc(C(N)=O)cs2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2nc(C(N)=O)cs2)c(OC)c1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccc(C(=O)c3ccccc3)cc2)n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +NC(=O)c1csc(-c2nncn2C2CC2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ccn(CC[NH3+])n2)n1; [None]; [None]; [0] +NC(=O)c1csc(Cc2nnc3ccc(-c4ccccc4)nn23)n1; [None]; [None]; [0] +NC(=O)c1csc(CCC(=O)NCc2ccccn2)n1; [None]; [None]; [0] +NC(=O)c1csc(CS(=O)(=O)NCc2ccccn2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCc1cc(-c2nc(C(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2nc(C(N)=O)cs2)nc(N)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2nnc(N)s2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2nc(C(N)=O)cs2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc(C(N)=O)cs2)s1; [None]; [None]; [0] +NC(=O)c1csc(Oc2ccc(C[NH3+])cc2F)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +NC(=O)c1csc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3nc(C(N)=O)cs3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3nc(C(N)=O)cs3)c2)cc1; [None]; [None]; [0] +NC(=O)c1csc(-c2cncc(N)n2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc3ccsc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc3nnsc23)n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nc(C(N)=O)cs2)[nH]1; [None]; [None]; [0] +NC(=O)c1csc(-c2nc(N)c3ccccc3n2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2c[nH]c3cccnc23)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cn(CCO)cn2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1nc(C(N)=O)cs1; [None]; [None]; [0] +COc1ccc(Oc2nc(C(N)=O)cs2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2nc(C(N)=O)cs2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2nc(C(N)=O)cs2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2nc(C(N)=O)cs2)cnn1; [None]; [None]; [0] +NC(=O)c1csc(N2CCC(c3nc4ccccc4[nH]3)CC2)n1; [None]; [None]; [0] +NC(=O)c1csc(N2CC=C(c3c[nH]c4ccccc34)CC2)n1; [None]; [None]; [0] +NC(=O)c1csc(-c2cccc(NC(=O)C3CCNCC3)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +COC(C)(C)CCc1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc(-n3ccc(N)n3)c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Cc3cc(F)cc(F)c3)c2)n1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccnc4ccccc34)c2)n1; [None]; [None]; [0] +CCn1cc(-c2cccc(-n3ccc(N)n3)c2)cn1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(C(F)(F)F)c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccccc3OC(F)(F)F)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccccc3C(=O)[O-])c2)n1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnn(Cc4ccccc4)c3)c2)n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc(-n4ccc(N)n4)c3)cc2c1=O; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnc(-c4ccccc4)[nH]3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnn(CCO)c3)c2)n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(-n3ccc(N)n3)c2)cs1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(NC(=O)c4ccccc4)c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3ncc4cccc(F)c4c3=O)c2)n1; [None]; [None]; [0] +COc1cnc(-c2cccc(-n3ccc(N)n3)c2)nc1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cc(Cl)ccc3Cl)c2)n1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Cc1ccc(-c2cccc(-n3ccc(N)n3)c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnc4ccccn34)c2)n1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc(-n3ccc(N)n3)c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc(-n3ccc(N)n3)c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnc4cccnn34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3c(Cl)cccc3Cl)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(Cn4cncn4)c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(Br)c3)c2)n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NCc3cccnc3)c2)n1; [None]; [None]; [0] +Cc1c(-c2cccc(-n3ccc(N)n3)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccnc(N)n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnn4ncccc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc4ccccc4c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Nc3cccnc3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3cnc4ccccc43)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NCCc3c[nH]cn3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NC(=O)c3cccs3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(CC(=O)[O-])c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3c[nH]nc3C(F)(F)F)c2)n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cncc4ccccc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NCCc3ccccc3)c2)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc(-n4ccc(N)n4)c3)cc2)cn1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc4c(N)[nH]nc4c3)c2)n1; [None]; [None]; [0] +CN1c2ccc(-c3cccc(-n4ccc(N)n4)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc(-n4ccc(N)n4)c3)ccc21; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(-c4cn[nH]c4)cc3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NCc3ccc(Cl)cc3)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(-n3ccc(N)n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(O)c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(CO)c3)c2)n1; [None]; [None]; [0] +COc1cc(-c2cccc(-n3ccc(N)n3)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1ccn(-c2cccc(Nc3ccncc3)c2)n1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc(-n3ccc(N)n3)c2)nn1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NCc3ccccc3F)c2)n1; [None]; [None]; [0] +CSc1nc(-c2cccc(-n3ccc(N)n3)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(CCc3c[nH]nn3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3csc4ncncc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cc4ccccc4[nH]3)c2)n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3csc(N)n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cncnc3N)c2)n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc(-n4ccc(N)n4)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(F)cc3C(F)(F)F)c2)n1; [None]; [None]; [0] +NC(=O)CCCc1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Oc3ccccn3)c2)n1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(NC(=O)c3c(Cl)cccc3Cl)c2)n1; [None]; [None]; [0] +Cn1cc(-c2cccc(-n3ccc(N)n3)c2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc(-n3ccc(N)n3)c2)CC1; [None]; [None]; [0] +CC(C)(COc1cccc(-n2ccc(N)n2)c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1Cl; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnn4ccccc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c2)n1; [None]; [None]; [0] +CCCn1cc(-c2cccc(-n3ccc(N)n3)c2)cn1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cc[nH]c(=O)c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc4c3C(=O)CC4)c2)n1; [None]; [None]; [0] +COc1cc(CCc2cccc(-n3ccc(N)n3)c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +C[C@@H](Oc1cccc(-n2ccc(N)n2)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +CCN(CC)c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cc4c(=O)[nH]ccc4o3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cc4c(=O)[nH]cc(Br)c4s3)c2)n1; [None]; [None]; [0] +COc1ccncc1Nc1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Nc3cnccc3-c3ccccc3)c2)n1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Nc3cnc4ccccc4c3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3c[nH]c4cnccc34)c2)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cnc4[nH]ccc4c3)c2)n1; [None]; [None]; [0] +CC1(c2cccc(-n3ccc(N)n3)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc(-n2ccc(N)n2)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(N4CCOCC4)cc3)c2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc(-n3ccc(N)n3)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc(-n3ccc(N)n3)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(-n2ccc(N)n2)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3ccc(CO)n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3cnc(CCO)c3)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(-n2ccc(N)n2)c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc(-n2ccc(N)n2)c1)C(C)(C)O; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3c(F)cccc3Cl)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3ncc4ccccc43)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-n3ncc4c(O)cccc43)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(-n4cncn4)cc3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3nc4ccc(O)cc4[nH]3)c2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(-n3ccc(N)n3)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc(-n3ccc(N)n3)c2)c(OC)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccc(C(=O)c4ccccc4)cc3)c2)n1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(-n3ccc(N)n3)c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3nncn3C3CC3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ccn(CC[NH3+])n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Cc3nnc4ccc(-c5ccccc5)nn34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(CCC(=O)NCc3ccccn3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(CS(=O)(=O)NCc3ccccn3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cn(Cc4ccccc4)nn3)c2)n1; [None]; [None]; [0] +CCc1cc(-c2cccc(-n3ccc(N)n3)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(-n3ccc(N)n3)c2)nc(N)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3nnc(N)s3)c2)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc(-n3ccc(N)n3)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(-n3ccc(N)n3)c2)s1; [None]; [None]; [0] +Nc1ccn(-c2cccc(Oc3ccc(C[NH3+])cc3F)c2)n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(-n3ccc(N)n3)c2)CC1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3nc4ccccc4s3)c2)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc(-n4ccc(N)n4)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(-n4ccc(N)n4)c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc(-n3ccc(N)n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc4ccsc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc4nnsc34)c2)n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(-n3ccc(N)n3)c2)[nH]1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3nc(N)c4ccccc4n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ncc4ccccc4n3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3c[nH]c4cccnc34)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cn(CCO)cn3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3ncc4cc[nH]c4n3)c2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +COc1ccc(Oc2cccc(-n3ccc(N)n3)c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc(-n3ccc(N)n3)c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc(-n2ccc(N)n2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc(-n3ccc(N)n3)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(-n3ccc(N)n3)c2)cnn1; [None]; [None]; [0] +Nc1ccn(-c2cccc(N3CCC(c4nc5ccccc5[nH]4)CC3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(N3CC=C(c4c[nH]c5ccccc45)CC3)c2)n1; [None]; [None]; [0] +Nc1ccn(-c2cccc(-c3cccc(NC(=O)C4CCNCC4)c3)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc(C(=O)Nc3ccccc3)c(O)c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccnc3ccccc23)cc1O; [None]; [None]; [0] +CCn1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc(C(F)(F)F)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccccc2OC(F)(F)F)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccccc2C(=O)[O-])cc1O; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnn(Cc3ccccc3)c2)cc1O; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2c1=O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc(-c3ccccc3)[nH]2)cc1O; [None]; [None]; [0] +N[C@H](c1ccc(C(=O)Nc2ccccc2)c(O)c1)c1ccco1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnn(CCO)c2)cc1O; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1)c1ccccc1; [None]; [None]; [0] +COc1cnc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)nc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(Cl)ccc2Cl)cc1O; [None]; [None]; [0] +Cc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3ccccn23)cc1O; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3cccnn23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c(Cl)cccc2Cl)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc(Cn3cncn3)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc(Br)c2)cc1O; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +Cc1c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnn3ncccc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3ccccc3c2)cc1O; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2ccc(C(=O)Nc3ccccc3)c(O)c2)o1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c[nH]nc2C(F)(F)F)cc1O; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cncc3ccccc23)cc1O; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)ccc21; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(-c3cn[nH]c3)cc2)cc1O; [None]; [None]; [0] +CCCn1cnc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc(O)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc(CO)c2)cc1O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)nn1; [None]; [None]; [0] +CSc1nc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2csc3ncncc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3ccccc3[nH]2)cc1O; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +Nc1ncncc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2s1; [None]; [None]; [0] +CC[C@H](CO)c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(F)cc2C(F)(F)F)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Cc2c(F)cccc2F)cc1O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1Cl; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnn3ccccc23)cc1O; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc[nH]c(=O)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3c2C(=O)CC3)cc1O; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +CN(c1ncccc1Cc1ccc(C(=O)Nc2ccccc2)c(O)c1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3c(=O)[nH]ccc3o2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3c(=O)[nH]cc(Br)c3s2)cc1O; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc([C@H](CO)c2ccccc2)cc1O; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c[nH]c3cnccc23)cc1O; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc([C@H](CO)Cc2ccccc2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc3[nH]ccc3c2)cc1O; [None]; [None]; [0] +CC1(c2ccc(C(=O)Nc3ccccc3)c(O)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(N3CCOCC3)cc2)cc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c(F)cccc2Cl)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(-n3cncn3)cc2)cc1O; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(C(=O)Nc3ccccc3)c(O)c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nncn2C2CC2)cc1O; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn(Cc3ccccc3)nn2)cc1O; [None]; [None]; [0] +CCc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc(C(=O)Nc3ccccc3)c(O)c2)CC1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nc3ccccc3s2)cc1O; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3ccsc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3nnsc23)cc1O; [None]; [None]; [0] +O=C(NCCCc1ccc(C(=O)Nc2ccccc2)c(O)c1)c1cccs1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(CCCNC(=O)C2CCC2)cc1O; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)[nH]1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ncc3ccccc3n2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c[nH]c3cccnc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn(CCO)cn2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ncc3cc[nH]c3n2)cc1O; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc(C(=O)Nc3ccccc3)c(O)c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cnn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3ncccc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2c(Cl)ccc3c2OCO3)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(Cl)c(O)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2n[nH]c3ccccc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Oc2ccc(F)cc2)cc1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c(F)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(O)cc2Cl)cc1O; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(O)cc2F)cc1O; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2[nH]1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn[nH]c2Cl)cc1O; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(-c3ccc(O)cc3O)cc2)cc1O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)Nc3ccccc3)c(O)c2)ccc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(O)c(F)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(O)cc2O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)ccn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(COc2ccccc2Cl)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(F)c(Cl)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1O; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(O)ccc2Cl)cc1O; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnc(O)c(Cl)c2)cc1O; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)Nc3ccccc3)c(O)c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cncc(O)c2)cc1O; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc(C(=O)Nc4ccccc4)c(O)c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(C(F)F)n[nH]2)cc1O; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccncc2Cl)cc1O; [None]; [None]; [0] +CCc1sccc1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(Cl)c(O)c(Cl)c2)cc1O; [None]; [None]; [0] +CNc1nc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)ncc1F; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3c(c2)CCN3)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(O)n3nccc3n2)cc1O; [None]; [None]; [0] +Cc1oc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3[nH]c(=O)[nH]c3c2)cc1O; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2ccncc2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc(Br)cc2F)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2[nH]nc3ccc(F)cc23)cc1O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +CN(c1ccc(C(=O)Nc2ccccc2)c(O)c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(O)cc(Br)c2)cc1O; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)Nc4ccccc4)c(O)c3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)cc(C)c1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(F)c(O)c(F)c2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3c(=O)[nH][nH]c3c2)cc1O; [None]; [None]; [0] +CSc1cccc(-c2ccc(C(=O)Nc3ccccc3)c(O)c2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(CCc2c[nH]c3ccccc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(OCc2cccc3ccccc23)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ocnc2-c2ccc(F)cc2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Oc2ccc(F)cc2F)cc1O; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc(C(=O)Nc2ccccc2)c(O)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(OCc2ccc(F)cc2F)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(CCc2ccc(F)cc2F)cc1O; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(NCc2c(F)cccc2Cl)cc1O; [None]; [None]; [0] +COc1cc(-c2ccc(N(C)C(C)=O)cc2)ccc1C(N)=O; [None]; [None]; [0] +CCOc1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ncc3ccccc3n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2sc(C(C)(C)O)nc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccnc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(S(C)(=O)=O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(OC)c(OC)c(OC)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-n2cnc3ccc(C)cc32)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnc3cccnn23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C#N)ccc2O)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccc(N3CCOCC3)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)C3CC3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2nc3ccccc3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(CC(=O)N3CCN(C(C)=O)CC3)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)[O-])cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2nccc3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Nc2ncccn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnn(Cc3cccc(C#N)c3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(OCCO)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(CNC(C)=O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(C3CCNCC3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(OC[C@H](C)O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(OC[C@@H](C)O)cc2)ccc1C(N)=O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(F)(F)F)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N(C)C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(S(=O)(=O)N(C)C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Cc2ccccc2O)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2sc(C)nc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(C2CCN(S(C)(=O)=O)CC2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Cc2cnc(N)nc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C(C)C)nc(N)n2)ccc1C(N)=O; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2cccc(N3CCCN(C(C)=O)CC3)c2)ccc1C(N)=O; [None]; [None]; [0] +CCCOc1ccc(-c2ccc(C(N)=O)c(OC)c2)nc1; [None]; [None]; [0] +COc1cc(-c2cccc(C(=O)[O-])c2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(Br)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N(C)C)c(Cl)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc(Cc2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccn3nccc3n2)ccc1C(N)=O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)c(C)c1; [None]; [None]; [0] +COc1cc(-c2ccccc2-n2cccn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(Cl)ccc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c[nH]c3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc(C(N)=O)c(OC)c2)cc1Cl; [None]; [None]; [0] +COc1cc(-c2nc3ccc(C(C)C)cc3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CCO3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(-c3ccccc3)[nH]n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(NC(C)=O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N3CCOCC3)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)c(OC)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2cccc3c2OCO3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2scc3c2OCCO3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Cc2nc3ccc(F)c(F)c3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Cc2nc3c(F)c(F)ccc3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(C)(C)C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnc3ccccc3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N(C)C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(C)(C)C)nc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc([C@@H]2CC[C@@H](NC(C)=O)CC2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Cc2nc3ccccc3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2csc(N)n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C)[nH]c2=O)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(CCCc2ccccc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccn(-c3cccc(Cl)c3)n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2ccc(SC)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3s2)ccc1C(N)=O; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc(C(N)=O)c(OC)c3)cc2)CC1; [None]; [None]; [0] +COc1cc(-c2cc(C)nc(N)n2)ccc1C(N)=O; [None]; [None]; [0] +CC[C@@H](CO)c1ccc(C(N)=O)c(OC)c1; [None]; [None]; [0] +COc1cc([C@H](CO)Cc2ccccc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(F)cc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CCC(=O)N3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ncc(Br)cn2)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N3CCC[C@@H]3C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(Cl)cc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(CCCn2cncn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ncc3cccn3n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N3CCOCC3)c(OC)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc3ccccn3n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cn(C)nc2C(F)(F)F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CC(C)(C)O3)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc(C(N)=O)c(OC)c3)c2c1; [None]; [None]; [0] +COc1cc(-c2cccc3ccc(O)cc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(F)c(-c2ccc(C(N)=O)c(OC)c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)c(OC)c2)ccc1Cl; [None]; [None]; [0] +COc1cc(-c2cnn(CCO)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ncc(Cl)cn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ncnc3c(C)csc23)ccc1C(N)=O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)ccc1C(N)=O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)c(OC)c2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2ccc(CS(C)(=O)=O)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc([C@@H]2CC[C@@H](OC)CC2)ccc1C(N)=O; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc(C(N)=O)c(OC)c2)CC1; [None]; [None]; [0] +COc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc(C(N)=O)c(OC)c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc(C(N)=O)c(OC)c3)cc2c1; [None]; [None]; [0] +COc1cc(-c2ccc3cn[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C[NH+](C)C)cc2)ccc1C(N)=O; [None]; [None]; [0] +CCn1cc(-c2ccc(C(N)=O)c(OC)c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2cc(-c3cccnc3)ccn2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc3ccccc3o2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(Br)cn2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ncc3sccc3n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cn(C)nc2C(C)C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)N3CCCC3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc2nc(-c3ccc(C(N)=O)c(OC)c3)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2ccc(OC(F)(F)F)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2cn(C)c3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc3ccc(C(C)(C)O)cc3[nH]2)ccc1C(N)=O; [None]; [None]; [0] +CCc1cccc(-c2ccc(C(N)=O)c(OC)c2)n1; [None]; [None]; [0] +COc1cc(-c2ncn3c2CCCC3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C)c(OCCO)c(C)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(cnn3C)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)c(Cl)nn3C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N(C)C)nc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(C)n[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnn(C3CCN(C(C)=O)CC3)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(N3CCCC3=O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(CCO)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N(C)C)cc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(-c3cnc(C)n3C)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(-c3cnn(C)c3)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N3CCOCC3)cc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(S(C)(=O)=O)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(N3CCNCC3)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)c(OC)c1; [None]; [None]; [0] +COc1cc(-c2cc(C(C)(C)O)n(C)n2)ccc1C(N)=O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)N(C)C)cn2)ccc1C(N)=O; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc(C(N)=O)c(OC)c2)cc1; [None]; [None]; [0] +COc1cc(-c2cc(S(C)(=O)=O)ccc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc([C@H](C)CS(C)(=O)=O)ccc1C(N)=O; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2cc(C(=O)NCCO)ccc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc3ncccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c(Cl)ccc3c2OCO3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(Cl)c(O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c(Cl)cccc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Oc2ccc(F)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccnc(N)n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(F)ccc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(F)c3nc(C)[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cn[nH]c2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(F)cc2OC)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(-c3ccc(O)cc3O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(C(N)=O)c(OC)c2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(N)=O)c(OC)c2)ccc1O; [None]; [None]; [0] +COc1cc(-c2cccc(Br)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3ccccc3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(O)c(F)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2O)ccc1C(N)=O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(-c2cnn3ncccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c[nH]c3cnccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccnc(N)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(COc2ccccc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(F)c(Cl)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2[nH]cnc2-c2ccc(F)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c(C)ccc3[nH]ncc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(O)ccc2Cl)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(CO)ccc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnc(O)c(Cl)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c[nH]c(C(N)=O)c2)ccc1C(N)=O; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(C(N)=O)c(OC)c3)ccc12; [None]; [None]; [0] +COc1cc(-c2ccc3nc(C)[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +CCOc1cccc(-c2ccc(C(N)=O)c(OC)c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(N)=O)c(OC)c2)cc(OC)c1; [None]; [None]; [0] +COc1cc(-c2ccc(NC(N)=O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cnc3[nH]ccc3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(S(C)(=O)=O)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2nc3ccccc3s2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cncc(O)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CC(=O)N3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc([C@H](C)CC(N)=O)ccc1C(N)=O; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(N)=O)c(OC)c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(C(N)=O)c(OC)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(C(N)=O)c(OC)c1; [None]; [None]; [0] +COc1cc(N(C)c2ccc3c(C)n[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2[nH]nc(C)c2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(O)cc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C(F)F)n[nH]2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(N(C)c2cccc(Cl)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccncc2Cl)ccc1C(N)=O; [None]; [None]; [0] +CCc1sccc1-c1ccc(C(N)=O)c(OC)c1; [None]; [None]; [0] +COc1cc(-c2cc(Cl)c(O)c(Cl)c2)ccc1C(N)=O; [None]; [None]; [0] +CNc1nc(-c2ccc(C(N)=O)c(OC)c2)ncc1F; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CCN3)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(O)n3nccc3n2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C(=O)[O-])c(C)o2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3[nH]c(=O)[nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c(N)cnn2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Nc2ccncc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(Br)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2[nH]nc3ccc(F)cc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(N(C)c2cccc3[nH]ncc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(O)cc(Br)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)NC3CC3)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)c(C)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3nc(C)oc3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(C)c(O)c(C)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cc(F)c(O)c(F)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ccc3c(=O)[nH][nH]c3c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cccc(SC)c2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(OCc2cccc3ccccc23)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2ocnc2-c2ccc(F)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(Oc2ccc(F)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2c(-c3ccccc3)noc2C)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(OCc2ccc(F)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(CCc2ccc(F)cc2F)ccc1C(N)=O; [None]; [None]; [0] +COc1cc(NCc2c(F)cccc2Cl)ccc1C(N)=O; [None]; [None]; [0] +CC(=O)N(C)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CCOc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ncc2ccccc2n1)c1ccc(Br)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ncccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(NC(=O)c3ccc(Br)cc3)c2c1; [None]; [None]; [0] +O=C(Nc1cnc2cccnn12)c1ccc(Br)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +O=C(Nc1cccc(O)c1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(N2CCOCC2)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)C2CC2)c1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1nc2ccccc2[nH]1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(NC(=O)c3ccc(Br)cc3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1nccc2ccccc12)c1ccc(Br)cc1; [None]; [None]; [0] +NC(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(NNc1ncccn1)c1ccc(Br)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(NC(=O)c3ccc(Br)cc3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)Nc2ccccc2)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(OCCO)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(C2CCNCC2)c1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cn1)c1ccc(Br)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CS(=O)(=O)C2)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(F)(F)F)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(NCc1ccccc1O)c1ccc(Br)cc1; [None]; [None]; [0] +Cc1nc(C)c(NC(=O)c2ccc(Br)cc2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(NC(=O)c2ccc(Br)cc2)CC1; [None]; [None]; [0] +Nc1ncc(CNC(=O)c2ccc(Br)cc2)cn1; [None]; [None]; [0] +O=C(N[C@H]1CCN(C(=O)c2ccccc2)C1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(C)c1cc(NC(=O)c2ccc(Br)cc2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(NC(=O)c3ccc(Br)cc3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(NC(=O)c2ccc(Br)cc2)nc1; [None]; [None]; [0] +Cc1c(NC(=O)c2ccc(Br)cc2)cccc1C(=O)[O-]; [None]; [None]; [0] +O=C(Nc1ccc(Br)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(Br)cc2)cc1Cl; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccn2nccc2n1)c1ccc(Br)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(Br)cc2)c(C)c1; [None]; [None]; [0] +O=C(Nc1ccccc1-n1cccn1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccccc12)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(OC)c(NC(=O)c2ccc(Br)cc2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(NC(=O)c3ccc(Br)cc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CCO2)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1cc(-c2ccccc2)[nH]n1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)ccc1O; [None]; [None]; [0] +O=C(Nc1cccc2c1OCO2)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1scc2c1OCCO2)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(NCc1nc2ccc(F)c(F)c2[nH]1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(NCc1nc2c(F)c(F)ccc2[nH]1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cnc2ccccc2c1)c1ccc(Br)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccc(Br)cc2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](NC(=O)c2ccc(Br)cc2)CC1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2[nH]1)c1ccc(Br)cc1; [None]; [None]; [0] +Nc1nc(NC(=O)c2ccc(Br)cc2)cs1; [None]; [None]; [0] +Cc1ccc(NC(=O)c2ccc(Br)cc2)c(=O)[nH]1; [None]; [None]; [0] +O=C(NCCCc1ccccc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccn(-c2cccc(Cl)c2)n1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cccc(C(=O)NNC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +CSc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2s1)c1ccc(Br)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(NC(=O)c3ccc(Br)cc3)cc2)CC1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccc(Br)cc2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(N[C@H](CO)Cc1ccccc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(F)cc1Cl)c1ccc(Br)cc1; [None]; [None]; [0] +O=C1CCc2cc(NC(=O)c3ccc(Br)cc3)ccc2N1; [None]; [None]; [0] +O=C(Nc1ncc(Br)cn1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(Br)cc2)cc1OC; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(Cl)cc1Cl)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(NCCCn1cncn1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ncc2cccn2n1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(Nc1cc2ccccn2n1)c1ccc(Br)cc1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccc(Br)cc2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(NC(=O)c3ccc(Br)cc3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(NC(=O)c3ccc(Br)cc3)c2c1; [None]; [None]; [0] +O=C(Nc1cccc2ccc(O)cc12)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(F)c(NC(=O)c2ccc(Br)cc2)cc1OC; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)ccc1Cl; [None]; [None]; [0] +O=C(Nc1cnn(CCO)c1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ncc(Cl)cn1)c1ccc(Br)cc1; [None]; [None]; [0] +Cc1csc2c(NC(=O)c3ccc(Br)cc3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +Nc1cc(NC(=O)c2ccc(Br)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(Br)cc2)nc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](NC(=O)c2ccc(Br)cc2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(NC(=O)c2ccc(Br)cc2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(C(=O)Nc2cn[nH]c2)c1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(Br)cc2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(NC(=O)c1ccc(Br)cc1)cn2C; [None]; [None]; [0] +COc1ccc2oc(NC(=O)c3ccc(Br)cc3)cc2c1; [None]; [None]; [0] +O=C(Nc1ccc2cn[nH]c2c1)c1ccc(Br)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CCn1cc(NC(=O)c2ccc(Br)cc2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +O=C(Nc1cc(-c2cccnc2)ccn1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2o1)c1ccc(Br)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ncc2sccc2n1)c1ccc(Br)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)N2CCCC2)c1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ccc2nc(NC(=O)c3ccc(Br)cc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc(OC(F)(F)F)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccc(Br)cc2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(NC(=O)c3ccc(Br)cc3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(NC(=O)c2ccc(Br)cc2)n1; [None]; [None]; [0] +O=C(Nc1ncn2c1CCCC2)c1ccc(Br)cc1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccc(Br)cc2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(NC(=O)c3ccc(Br)cc3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(NC(=O)c3ccc(Br)cc3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(Br)cc2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(NC(=O)c3ccc(Br)cc3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(NC(=O)c3ccc(Br)cc3)cn2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(N2CCCC2=O)c1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(Nc1ccc(CCO)cc1)c1ccc(Br)cc1; [None]; [None]; [0] +O=C(NNC(=O)c1cccc(OC(F)(F)F)c1)c1ccc(Br)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(Br)cc2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(NC(=O)c3ccc(Br)cc3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(Br)cc2)c(OC)c1; [None]; [None]; [0] +Cn1nc(NC(=O)c2ccc(Br)cc2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(Br)cc2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(NC(=O)c2ccc(Br)cc2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(NC(=O)c2ccc(Br)cc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1NC(=O)c1ccc(Br)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CCOc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ncc2ccccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +COc1ncccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(NC(=O)c3ccc(F)cc3)c2c1; [None]; [None]; [0] +O=C(Nc1cnc2cccnn12)c1ccc(F)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +O=C(Nc1cccc(O)c1)c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(N2CCOCC2)cc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)C2CC2)c1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1nc2ccccc2[nH]1)c1ccc(F)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(NC(=O)c3ccc(F)cc3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1nccc2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(NNc1ncccn1)c1ccc(F)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(NC(=O)c3ccc(F)cc3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)Nc2ccccc2)cc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(OCCO)cc1)c1ccc(F)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(C2CCNCC2)c1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(=O)N2CCOCC2)cn1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CS(=O)(=O)C2)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(C(F)(F)F)cc1)c1ccc(F)cc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(NCc1ccccc1O)c1ccc(F)cc1; [None]; [None]; [0] +Cc1nc(C)c(NC(=O)c2ccc(F)cc2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(NC(=O)c2ccc(F)cc2)CC1; [None]; [None]; [0] +Nc1ncc(CNC(=O)c2ccc(F)cc2)cn1; [None]; [None]; [0] +O=C(N[C@H]1CCN(C(=O)c2ccccc2)C1)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)c1cc(NC(=O)c2ccc(F)cc2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(NC(=O)c3ccc(F)cc3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(NC(=O)c2ccc(F)cc2)nc1; [None]; [None]; [0] +Cc1c(NC(=O)c2ccc(F)cc2)cccc1C(=O)[O-]; [None]; [None]; [0] +O=C(Nc1ccc(Br)cc1)c1ccc(F)cc1; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(F)cc2)cc1Cl; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccn2nccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(F)cc2)c(C)c1; [None]; [None]; [0] +O=C(Nc1ccccc1-n1cccn1)c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(OC)c(NC(=O)c2ccc(F)cc2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(NC(=O)c3ccc(F)cc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)CCO2)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1cc(-c2ccccc2)[nH]n1)c1ccc(F)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)ccc1O; [None]; [None]; [0] +O=C(Nc1cccc2c1OCO2)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1scc2c1OCCO2)c1ccc(F)cc1; [None]; [None]; [0] +O=C(NCc1nc2ccc(F)c(F)c2[nH]1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(NCc1nc2c(F)c(F)ccc2[nH]1)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cnc2ccccc2c1)c1ccc(F)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(NC(=O)c2ccc(F)cc2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](NC(=O)c2ccc(F)cc2)CC1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2[nH]1)c1ccc(F)cc1; [None]; [None]; [0] +Nc1nc(NC(=O)c2ccc(F)cc2)cs1; [None]; [None]; [0] +Cc1ccc(NC(=O)c2ccc(F)cc2)c(=O)[nH]1; [None]; [None]; [0] +O=C(NCCCc1ccccc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccn(-c2cccc(Cl)c2)n1)c1ccc(F)cc1; [None]; [None]; [0] +COc1cccc(C(=O)NNC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +CSc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2s1)c1ccc(F)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(NC(=O)c3ccc(F)cc3)cc2)CC1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccc(F)cc2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +O=C(N[C@H](CO)Cc1ccccc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(F)cc1Cl)c1ccc(F)cc1; [None]; [None]; [0] +O=C1CCc2cc(NC(=O)c3ccc(F)cc3)ccc2N1; [None]; [None]; [0] +O=C(Nc1ncc(Br)cn1)c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(F)cc2)cc1OC; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(Cl)cc1Cl)c1ccc(F)cc1; [None]; [None]; [0] +O=C(NCCCn1cncn1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ncc2cccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(Nc1cc2ccccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccc(F)cc2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(NC(=O)c3ccc(F)cc3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(NC(=O)c3ccc(F)cc3)c2c1; [None]; [None]; [0] +O=C(Nc1cccc2ccc(O)cc12)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(F)c(NC(=O)c2ccc(F)cc2)cc1OC; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)ccc1Cl; [None]; [None]; [0] +O=C(Nc1cnn(CCO)c1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ncc(Cl)cn1)c1ccc(F)cc1; [None]; [None]; [0] +Cc1csc2c(NC(=O)c3ccc(F)cc3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +Nc1cc(NC(=O)c2ccc(F)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(F)cc2)nc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](NC(=O)c2ccc(F)cc2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(NC(=O)c2ccc(F)cc2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(C(=O)Nc2cn[nH]c2)c1)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(F)cc2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(NC(=O)c1ccc(F)cc1)cn2C; [None]; [None]; [0] +COc1ccc2oc(NC(=O)c3ccc(F)cc3)cc2c1; [None]; [None]; [0] +O=C(Nc1ccc2cn[nH]c2c1)c1ccc(F)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CCn1cc(NC(=O)c2ccc(F)cc2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +O=C(Nc1cc(-c2cccnc2)ccn1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1cc2ccccc2o1)c1ccc(F)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ncc2sccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1cccc(NC(=O)N2CCCC2)c1)c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc2nc(NC(=O)c3ccc(F)cc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1ccc(OC(F)(F)F)cc1)c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +Cn1cc(NC(=O)c2ccc(F)cc2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(NC(=O)c3ccc(F)cc3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(NC(=O)c2ccc(F)cc2)n1; [None]; [None]; [0] +O=C(Nc1ncn2c1CCCC2)c1ccc(F)cc1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccc(F)cc2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(NC(=O)c3ccc(F)cc3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(NC(=O)c3ccc(F)cc3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(NC(=O)c2ccc(F)cc2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(NC(=O)c3ccc(F)cc3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(NC(=O)c3ccc(F)cc3)cn2)CC1; [None]; [None]; [0] +O=C(Nc1cccc(N2CCCC2=O)c1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(Nc1ccc(CCO)cc1)c1ccc(F)cc1; [None]; [None]; [0] +O=C(NNC(=O)c1cccc(OC(F)(F)F)c1)c1ccc(F)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(F)cc2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(NC(=O)c3ccc(F)cc3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(F)cc2)c(OC)c1; [None]; [None]; [0] +Cn1nc(NC(=O)c2ccc(F)cc2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(NC(=O)c2ccc(F)cc2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(NC(=O)c2ccc(F)cc2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(NC(=O)c2ccc(F)cc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1NC(=O)c1ccc(F)cc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ncc4ccccc4n3)cn2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +COc1ncccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnn(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cnc4cccnn34)cn2)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +Oc1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccc(N4CCOCC4)cc3)cn2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnn(-c3ccccc3)c2)c1)C1CC1; [None]; [None]; [0] +c1ccc(-n2cc(-c3nc4ccccc4[nH]3)cn2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnn(-c4ccccc4)c3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cnn(-c3ccccc3)c2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3nccc4ccccc34)cn2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(Nc3ncccn3)cn2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnn(-c4ccccc4)c3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cccc(C4CCNCC4)c3)cn2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2cnn(-c3ccccc3)c2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cnn(-c3ccccc3)c2)nc1)N1CCOCC1; [None]; [None]; [0] +c1ccc(-n2cc(Nc3ccncn3)cn2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cnn(-c4ccccc4)c3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnn(-c3ccccc3)c2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnn(-c3ccccc3)c2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cnn(-c3ccccc3)c2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2cnn(-c3ccccc3)c2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnn(-c4ccccc4)c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Brc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccn4nccc4n3)cn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccccc3-n3cccn3)cn2)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3c[nH]c4ccccc34)cn2)cc1; [None]; [None]; [0] +COc1cc(OC)c(-c2cnn(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnn(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccc4c(c3)CCO4)cn2)cc1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cnn(-c4ccccc4)c3)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2)ccc1O; [None]; [None]; [0] +c1ccc(-n2cc(-c3cccc4c3OCO4)cn2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3scc4c3OCCO4)cn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cnc4ccccc4c3)cn2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnn(-c3ccccc3)c2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnn(-c3ccccc3)c2)CC1; [None]; [None]; [0] +Nc1nc(-c2cnn(-c3ccccc3)c2)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cnn(-c4ccccc4)c3)n2)c1; [None]; [None]; [0] +CC1(COc2cnn(-c3ccccc3)c2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +CSc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cc4ccccc4s3)cn2)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnn(-c4ccccc4)c3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2cnn(-c3ccccc3)c2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3cnn(-c4ccccc4)c3)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +COc1ccc(-c2cnn(-c3ccccc3)c2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Clc1ccc(-c2cnn(-c3ccccc3)c2)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cnn(-c3ccccc3)c2)C1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ncc4cccn4n3)cn2)cc1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cc4ccccn4n3)cn2)cc1; [None]; [None]; [0] +Cn1cc(-c2cnn(-c3ccccc3)c2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnn(-c4ccccc4)c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnn(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cnn(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cnn(-c3ccccc3)c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2cnn(-c3ccccc3)c2)cn1; [None]; [None]; [0] +Clc1cnc(-c2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3cnn(-c4ccccc4)c3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cnn(-c3ccccc3)c2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cnn(-c3ccccc3)c2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cnn(-c3ccccc3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +O=C(Nc1cnn(-c2ccccc2)c1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnn(-c3ccccc3)c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnn(-c3ccccc3)c2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnn(-c3ccccc3)c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cnn(-c4ccccc4)c3)cc2c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccc4cn[nH]c4c3)cn2)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CCn1cc(-c2cnn(-c3ccccc3)c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cc(-c4cccnc4)ccn3)cn2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cc4ccccc4o3)cn2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ncc4sccc4n3)cn2)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cnn(-c3ccccc3)c2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cnn(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +Cn1cc(-c2cnn(-c3ccccc3)c2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnn(-c4ccccc4)c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cnn(-c3ccccc3)c2)n1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ncn4c3CCCC4)cn2)cc1; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cnn(-c4ccccc4)c3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnn(-c4ccccc4)c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cnn(-c3ccccc3)c2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnn(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnn(-c4ccccc4)c3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +O=C(Nc1cnn(-c2ccccc2)c1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnn(-c3ccccc3)c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnn(-c4ccccc4)c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cnn(-c3ccccc3)c2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Fc1ccc(Nc2cnn(-c3ccccc3)c2)nc1; [None]; [None]; [0] +Cc1cc(Nc2cnn(-c3ccccc3)c2)ncc1F; [None]; [None]; [0] +c1ccc(-n2cc(Nc3ccccn3)cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cccc4ncccc34)cn2)cc1; [None]; [None]; [0] +Clc1ccc2c(c1-c1cnn(-c3ccccc3)c1)OCO2; [None]; [None]; [0] +Oc1cc(-c2cnn(-c3ccccc3)c2)ccc1Cl; [None]; [None]; [0] +c1ccc(-n2cc(-c3n[nH]c4ccccc34)cn2)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Fc1ccc(Oc2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cnn(-c3ccccc3)c2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Oc1ccc(-c2cnn(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2cnn(-c3ccccc3)c2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn(-c4ccccc4)c3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3cnn(-c4ccccc4)c3)cc2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnn(-c3ccccc3)c2)o1; [None]; [None]; [0] +COc1cc(CCc2cnn(-c3ccccc3)c2)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccc4ccccc4c3)cn2)cc1; [None]; [None]; [0] +Oc1ccc(-c2cnn(-c3ccccc3)c2)cc1F; [None]; [None]; [0] +Oc1ccc(-c2cnn(-c3ccccc3)c2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cnn4ncccc34)cn2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3c[nH]c4cnccc34)cn2)cc1; [None]; [None]; [0] +Nc1cc(-c2cnn(-c3ccccc3)c2)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Fc1ccc(-c2cnn(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Oc1ncc(-c2cnn(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2cnn(-c3ccccc3)c2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnn(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn(-c4ccccc4)c3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +COc1cc(CCc2cnn(-c3ccccc3)c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3cnc4[nH]ccc4c3)cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(-c3nc4ccccc4s3)cn2)cc1; [None]; [None]; [0] +Oc1cncc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3cnn(-c4ccccc4)c3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CNc1nccc(-c2cnn(-c3ccccc3)c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnn(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnn(-c3ccccc3)c2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +FC(F)c1cc(-c2cnn(-c3ccccc3)c2)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Clc1cnccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CCc1sccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2cnn(-c3ccccc3)c2)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2cnn(-c3ccccc3)c2)ncc1F; [None]; [None]; [0] +c1ccc(-n2cc(-c3ccc4c(c3)CCN4)cn2)cc1; [None]; [None]; [0] +Oc1cc(-c2cnn(-c3ccccc3)c2)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2cnn(-c3ccccc3)c2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3cnn(-c4ccccc4)c3)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +c1ccc(-n2cc(Nc3ccncc3)cn2)cc1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3cnn(-c4ccccc4)c3)c2c1; [None]; [None]; [0] +CN(c1cnn(-c2ccccc2)c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn(-c4ccccc4)c3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2cnn(-c3ccccc3)c2)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3cnn(-c4ccccc4)c3)ccc12; [None]; [None]; [0] +CSc1cccc(-c2cnn(-c3ccccc3)c2)c1; [None]; [None]; [0] +c1ccc(-n2cc(CCc3c[nH]c4ccccc34)cn2)cc1; [None]; [None]; [0] +c1ccc(-n2cc(OCc3cccc4ccccc34)cn2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Fc1ccc(Oc2cnn(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnn(-c2ccccc2)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnn(-c3ccccc3)c2)cc1; [None]; [None]; [0] +Fc1ccc(COc2cnn(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2cnn(-c3ccccc3)c2)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1cnn(-c2ccccc2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc4ccccc4n3)nc21; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COc1ncccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(S(C)(=O)=O)c3)nc21; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3ncc4ncn(C(C)C)c4n3)c2c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnc4cccnn34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(C#N)ccc3O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(O)c3)nc21; [None]; [None]; [0] +COc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(N4CCOCC4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(NC(=O)C4CC4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nc4ccccc4[nH]3)nc21; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ncc4ncn(C(C)C)c4n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2ncc3ncn(C(C)C)c3n2)sn1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)[O-])cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nccc4ccccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(N)=O)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3ncccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnn(Cc4cccc(C#N)c4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)Nc4ccccc4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(OCCO)cc3)nc21; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(C4CCNCC4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N4CCOCC4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N4CCOCC4)cn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3ccncn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(OC[C@H](C)O)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(OC[C@@H](C)O)cc3)nc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)CS(=O)(=O)C4)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(F)(F)F)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(N(C)C)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(S(=O)(=O)N(C)C)cc3)nc21; [None]; [None]; [0] +Cc1nc(C)c(-c2ncc3ncn(C(C)C)c3n2)s1; [None]; [None]; [0] +CC(C)n1cnc2cnc(C3CCN(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc([C@H]3CCN(C(=O)c4ccccc4)C3)nc21; [None]; [None]; [0] +CC(C)c1cc(-c2ncc3ncn(C(C)C)c3n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ncc4ncn(C(C)C)c4n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2ncc3ncn(C(C)C)c3n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(Br)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(N(C)C)c(Cl)c3)nc21; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccn4nccc4n3)nc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)c(C)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3-n3cccn3)nc21; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c[nH]c4ccccc34)nc21; [None]; [None]; [0] +COc1cc(OC)c(-c2ncc3ncn(C(C)C)c3n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ncc4ncn(C(C)C)c4n3)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)CCO4)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(-c4ccccc4)[nH]n3)nc21; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)ccc1O; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc4c3OCO4)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3scc4c3OCCO4)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(C)(C)C)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnc4ccccc4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N(C)C)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(C)(C)C)nc3)nc21; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ncc3ncn(C(C)C)c3n2)CC1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3csc(N)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccn(-c4cccc(Cl)c4)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(OCC3(C)COC3)nc21; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +CSc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4ccccc4s3)nc21; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ncc4ncn(C(C)C)c4n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2ncc3ncn(C(C)C)c3n2)nc(N)n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(F)cc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)CCC(=O)N4)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc(Br)cn3)nc21; [None]; [None]; [0] +COc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N4CCC[C@@H]4C)cc3)nc21; [None]; [None]; [0] +COc1ccc(CNc2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(Cl)cc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC3CN(C(=O)C4CC4)C3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc4cccn4n3)nc21; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)ccc1N1CCOCC1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4ccccn4n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cn(C)nc3C(F)(F)F)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)CC(C)(C)O4)nc21; [None]; [None]; [0] +COc1ccc2cccc(-c3ncc4ncn(C(C)C)c4n3)c2c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc4ccc(O)cc34)nc21; [None]; [None]; [0] +COc1cc(F)c(-c2ncc3ncn(C(C)C)c3n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)ccc1Cl; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnn(CCO)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc(Cl)cn3)nc21; [None]; [None]; [0] +Cc1csc2c(-c3ncc4ncn(C(C)C)c4n3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2ncc3ncn(C(C)C)c3n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2ncc3ncn(C(C)C)c3n2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(N)nc4[nH]ccc34)nc21; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)nc1; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(Cc3ccc(C(N)=O)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Cc3ccc(S(=O)(=O)CCO)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC(=O)c3ccco3)nc21; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ncc3ncn(C(C)C)c3n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ncc3ncn(C(C)C)c3n2)CC1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)nc21; [None]; [None]; [0] +COc1cc(OC)cc(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ncc3ncn(C(C)C)c3n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ncc4ncn(C(C)C)c4n3)cc2c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4cn[nH]c4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C[NH+](C)C)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC(=O)c3ccc(C(C)(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cc(-c2ncc3ncn(C(C)C)c3n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(-c4cccnc4)ccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4ccccc4o3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(Br)cn3C)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc4sccc4n3)nc21; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(NC(=O)N4CCCC4)c3)nc21; [None]; [None]; [0] +COc1ccc2nc(-c3ncc4ncn(C(C)C)c4n3)[nH]c2c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(OC(F)(F)F)cc3)nc21; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cn(C)c4ccccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4ccc(C(C)(C)O)cc4[nH]3)nc21; [None]; [None]; [0] +CCc1cccc(-c2ncc3ncn(C(C)C)c3n2)n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncn4c3CCCC4)nc21; [None]; [None]; [0] +Cc1cc(-c2ncc3ncn(C(C)C)c3n2)cc(C)c1OCCO; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(cnn4C)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)c(Cl)nn4C)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(N(C)C)nc3)nc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ncc4ncn(C(C)C)c4n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ncc4ncn(C(C)C)c4n3)cn2)CC1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(N4CCCC4=O)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(CCO)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC(=O)c3cccc(OC(F)(F)F)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N(C)C)cc3Cl)nc21; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ncc4ncn(C(C)C)c4n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(C(C)(C)O)n(C)n3)nc21; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)N(C)C)cn3)nc21; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3ccc(F)cn3)nc21; [None]; [None]; [0] +Cc1cc(Nc2ncc3ncn(C(C)C)c3n2)ncc1F; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3ccccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(S(C)(=O)=O)ccc3Cl)nc21; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CCOc1ccccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COC(C)(C)CCc1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ncc3ncn(C(C)C)c3n2)[nH]1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3S(=O)(=O)C(C)C)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Cc3cc(F)cc(F)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3P(C)(C)=O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccnc4ccccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(C(F)(F)F)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3OC(F)(F)F)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3C(=O)[O-])nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccccc3C(N)=O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnn(Cc4ccccc4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4ncn(C)c(=O)c4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnc(-c4ccccc4)[nH]3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3csc(C(C)(C)C)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(NC(=O)c4ccccc4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3ncc4cccc(F)c4c3=O)nc21; [None]; [None]; [0] +COc1cnc(-c2ncc3ncn(C(C)C)c3n2)nc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(Cl)ccc3Cl)nc21; [None]; [None]; [0] +CC(C)C(=O)COc1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +Cc1ccc(-c2ncc3ncn(C(C)C)c3n2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnc4ccccn34)nc21; [None]; [None]; [0] +CNc1nc(C)c(-c2ncc3ncn(C(C)C)c3n2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c(Cl)cccc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(Cn4cncn4)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(Br)c3)nc21; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(NCc3cccnc3)nc21; [None]; [None]; [0] +Cc1c(-c2ncc3ncn(C(C)C)c3n2)sc(=O)n1C; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccnc(N)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnn4ncccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4ccccc4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3cccnc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3cnc4ccccc43)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NCCc3c[nH]cn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC(=O)c3cccs3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(CC(=O)[O-])c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c[nH]nc3C(F)(F)F)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(F)c3C(N)=O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cncc4ccccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NCCc3ccccc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(-c4cnn(C)c4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(N)[nH]nc4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(c3)CS(=O)(=O)N4C)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(-c4cn[nH]c4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NCc3ccc(Cl)cc3)nc21; [None]; [None]; [0] +CCCn1cnc(-c2ncc3ncn(C(C)C)c3n2)n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(CO)c3)nc21; [None]; [None]; [0] +COc1cc(-c2ncc3ncn(C(C)C)c3n2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3ccncc3)nc21; [None]; [None]; [0] +CC(C)n1cc(-c2ncc3ncn(C(C)C)c3n2)nn1; [None]; [None]; [0] +CC(C)n1cnc2cnc(NCc3ccccc3F)nc21; [None]; [None]; [0] +CSc1nc(-c2ncc3ncn(C(C)C)c3n2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(CCc3c[nH]nn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3csc4ncncc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4ccccc4[nH]3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(CCC#N)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cncnc3N)nc21; [None]; [None]; [0] +CCNc1nc2ccc(-c3ncc4ncn(C(C)C)c4n3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(F)cc3C(F)(F)F)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(CCCC(N)=O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Oc3ccccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(CCNC(=O)CC(C)(C)O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(NC(=O)c3c(Cl)cccc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N3CCC(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(OCC(C)(C)S(C)(=O)=O)nc21; [None]; [None]; [0] +COc1ccc(-c2ncc3ncn(C(C)C)c3n2)cc1Cl; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnn4ccccc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)nc21; [None]; [None]; [0] +CCCn1cc(-c2ncc3ncn(C(C)C)c3n2)cn1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc[nH]c(=O)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc4c3C(=O)CC4)nc21; [None]; [None]; [0] +COc1cc(CCc2ncc3ncn(C(C)C)c3n2)cc(OC)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(C)(C)N)cc3)nc21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(O[C@H](C)c3c(Cl)cncc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc([S@](C)=O)cc3)nc21; [None]; [None]; [0] +CCN(CC)c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4c(=O)[nH]ccc4o3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc4c(=O)[nH]cc(Br)c4s3)nc21; [None]; [None]; [0] +COc1ccncc1Nc1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3cnccc3-c3ccccc3)nc21; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(Nc3cnc4ccccc4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c[nH]c4cnccc34)nc21; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnc4[nH]ccc4c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(C3(C)CCN(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(S(C)(=O)=O)cc3)nc21; [None]; [None]; [0] +Cc1cc(-c2ncc3ncn(C(C)C)c3n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(N[C@@H](C)C(=O)NCC(F)(F)F)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3ccc(CO)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3cnc(CCO)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N[C@@H](C)C(C)(C)O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N[C@H](C)C(C)(C)O)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c(F)cccc3Cl)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3ncc4ccccc43)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-n3ncc4c(O)cccc43)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(-n4cncn4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nc4ccc(O)cc4[nH]3)nc21; [None]; [None]; [0] +CSc1nc(C)c(-c2ncc3ncn(C(C)C)c3n2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ncc3ncn(C(C)C)c3n2)c(OC)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc(C(=O)c4ccccc4)cc3)nc21; [None]; [None]; [0] +CC(C)n1cnnc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nncn3C3CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccn(CC[NH3+])n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(Cc3nnc4ccc(-c5ccccc5)nn34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(CCC(=O)NCc3ccccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(CS(=O)(=O)NCc3ccccn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cn(Cc4ccccc4)nn3)nc21; [None]; [None]; [0] +CCc1cc(-c2ncc3ncn(C(C)C)c3n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncc3ncn(C(C)C)c3n2)nc(N)n1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nnc(N)s3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cc(C(N)=O)cn3C)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(C(C)(C)O)n3)nc21; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ncc3ncn(C(C)C)c3n2)s1; [None]; [None]; [0] +CC(C)n1cnc2cnc(Oc3ccc(C[NH3+])cc3F)nc21; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ncc3ncn(C(C)C)c3n2)CC1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nc4ccccc4s3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)nc21; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ncc4ncn(C(C)C)c4n3)c2)cc1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cncc(N)n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc4ccsc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc4nnsc34)nc21; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ncc3ncn(C(C)C)c3n2)[nH]1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3nc(N)c4ccccc4n3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3c[nH]c4cccnc34)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cn(CCO)cn3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3ncc4cc[nH]c4n3)nc21; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ncc2ncn(C(C)C)c2n1; [None]; [None]; [0] +COc1ccc(Oc2ncc3ncn(C(C)C)c3n2)c(F)c1F; [None]; [None]; [0] +CC(C)n1cnc2cnc([C@H]3CC[C@@](C)(O)CC3)nc21; [None]; [None]; [0] +COc1ccc(OC)c(-c2ncc3ncn(C(C)C)c3n2)c1; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(S(=O)(=O)N(C)C)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cnnc(N(C)C)c3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(N3CC=C(c4c[nH]c5ccccc45)CC3)nc21; [None]; [None]; [0] +CC(C)n1cnc2cnc(-c3cccc(NC(=O)C4CCNCC4)c3)nc21; [None]; [None]; [0] +Fc1ccc(OCc2ccc3nccn3c2)cc1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)Cc3ccc4nccn4c3)ccc12; [None]; [None]; [0] +CN(Cc1ccc2nccn2c1)c1cccc(Cl)c1; [None]; [None]; [0] +Cn1ncc(N)c1Cc1ccc2nccn2c1; [None]; [None]; [0] +c1cc(NCc2ccc3nccn3c2)ccn1; [None]; [None]; [0] +CN(Cc1ccc2nccn2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +c1ccc2c(COCc3ccc4nccn4c3)cccc2c1; [None]; [None]; [0] +Fc1ccc(OCc2ccc3nccn3c2)c(F)c1; [None]; [None]; [0] +Fc1ccc(COCc2ccc3nccn3c2)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNCc1ccc2nccn2c1; [None]; [None]; [0] +COc1ccc(C=Cc2cnc3ccccc3c2)cc1OC; [None]; [None]; [0] +C(=Cc1cc2c([nH]1)CCCC2)c1cnc2ccccc2c1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1cnc2ccccc2c1; [None]; [None]; [0] +OCCn1cc(C=Cc2cnc3ccccc3c2)cn1; [None]; [None]; [0] +Cc1[nH]c(C=Cc2cnc3ccccc3c2)c(C)c1C; [None]; [None]; [0] +C[NH+](C)Cc1ccc(C=Cc2cnc3ccccc3c2)cc1; [None]; [None]; [0] +Cc1cc(C)c(C=Cc2cnc3ccccc3c2)[nH]1; [None]; [None]; [0] +CNC(=O)c1ccccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +CCOc1ccccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2[C@@H](C)c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccccc1P(C)(C)=O; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccnc2ccccc12; [None]; [None]; [0] +CCn1cc([C@@H](C)c2ccc3ncccc3c2)cn1; [None]; [None]; [0] +C[C@H](c1cccc(C(F)(F)F)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccccc1OC(F)(F)F; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccccc1C(=O)[O-]; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccccc1C(N)=O; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnn(CCO)c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1csc(C(C)(C)C)n1; [None]; [None]; [0] +C[C@H](c1cccc(NC(=O)c2ccccc2)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +COc1cnc([C@@H](C)c2ccc3ncccc3c2)nc1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cc(Cl)ccc1Cl; [None]; [None]; [0] +Cc1ccc([C@@H](C)c2ccc3ncccc3c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnc2ccccn12; [None]; [None]; [0] +Cc1nc(C)c([C@@H](C)c2ccc3ncccc3c2)s1; [None]; [None]; [0] +CNc1nc(C)c([C@@H](C)c2ccc3ncccc3c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnc2cccnn12; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +C[C@H](c1cccc(Cn2cncn2)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1cccc(Br)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +Cc1ccc(Cl)c([C@@H](C)c2ccc3ncccc3c2)c1; [None]; [None]; [0] +Cc1c([C@@H](C)c2ccc3ncccc3c2)sc(=O)n1C; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccnc(N)n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnn2ncccc12; [None]; [None]; [0] +C[C@H](c1ccc2ccccc2c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1cnc2ccccc21; [None]; [None]; [0] +C[C@H](c1cccc(CC(=O)[O-])c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cccc(F)c1C(N)=O; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cncc2ccccc12; [None]; [None]; [0] +C[C@H](c1ccc(-c2cnn(C)c2)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +C[C@H](c1ccc2c(c1)CS(=O)(=O)N2C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccc2c(cnn2C)c1; [None]; [None]; [0] +C[C@H](c1ccc(-c2cn[nH]c2)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +CCCn1cnc([C@@H](C)c2ccc3ncccc3c2)n1; [None]; [None]; [0] +C[C@H](c1cccc(O)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1cccc(CO)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +COc1cc([C@@H](C)c2ccc3ncccc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc([C@@H](C)c2ccc3ncccc3c2)nn1; [None]; [None]; [0] +CSc1nc([C@@H](C)c2ccc3ncccc3c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1csc2ncncc12; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cc2ccccc2[nH]1; [None]; [None]; [0] +C[C@H](c1cccc(CCC#N)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cncnc1N; [None]; [None]; [0] +CCNc1nc2ccc([C@@H](C)c3ccc4ncccc4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc([C@@H](C)c2ccc3ncccc3c2)cc1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +CC(=O)Nc1cccc([C@@H](C)c2ccc3ncccc3c2)c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cn(C)c2ccccc12; [None]; [None]; [0] +COc1ccc([C@@H](C)c2ccc3ncccc3c2)cc1Cl; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnn2ccccc12; [None]; [None]; [0] +C[C@H](c1ccc(C[NH3+])c(C(F)(F)F)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +CCCn1cc([C@@H](C)c2ccc3ncccc3c2)cn1; [None]; [None]; [0] +C[C@H](c1cc[nH]c(=O)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cccc2c1C(=O)CC2; [None]; [None]; [0] +C[C@H](c1ccc(C(C)(C)N)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1ccc([S@](C)=O)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +CC(C)Oc1cncc([C@@H](C)c2ccc3ncccc3c2)c1; [None]; [None]; [0] +C[C@H](c1ccc(C(C)(C)C)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +COc1cccc(F)c1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1c[nH]c2cnccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cnc2[nH]ccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H](c1ccc(S(=O)(=O)NC(C)(C)C)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc([C@@H](C)c2ccc3ncccc3c2)cc1; [None]; [None]; [0] +C[C@H](c1ccc(N2CCOCC2)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1ccc(S(C)(=O)=O)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +Cc1cc([C@@H](C)c2ccc3ncccc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1ccc(CO)n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1cnc(CCO)c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1c(F)cccc1Cl; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1ncc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)n1ncc2c(O)cccc21; [None]; [None]; [0] +C[C@H](c1ccc(-n2cncn2)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +CSc1nc(C)c([C@@H](C)c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +COc1ccc([C@@H](C)c2ccc3ncccc3c2)c(OC)c1; [None]; [None]; [0] +C[C@H](c1ccc(C(=O)c2ccccc2)cc1)c1ccc2ncccc2c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H]([C@@H](C)c2ccc3ncccc3c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1nncn1C1CC1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccn(CC[NH3+])n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CCc1cc([C@@H](C)c2ccc3ncccc3c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc([C@@H](C)c2ccc3ncccc3c2)nc(N)n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1nnc(N)s1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cc(C(N)=O)cn1C; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cccc(C(C)(C)O)n1; [None]; [None]; [0] +CNC(=O)c1ccc([C@@H](C)c2ccc3ncccc3c2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC([C@@H](C)c2ccc3ncccc3c2)CC1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1nc2ccccc2s1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc([C@@H](C)c3ccc4ncccc4c3)c2)cc1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cncc(N)n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cccc2ccsc12; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cccc2nnsc12; [None]; [None]; [0] +CC(=O)Nc1ncc([C@@H](C)c2ccc3ncccc3c2)[nH]1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ncc2ccccc2n1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1c[nH]c2cccnc12; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1cn(CCO)cn1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2ncccc2c1)[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +COc1ccc(OC)c([C@@H](C)c2ccc3ncccc3c2)c1; [None]; [None]; [0] +COc1ncccc1[C@@H](C)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1cccc(S(=O)(=O)N(C)C)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +C[C@H](c1cnnc(N(C)C)c1)c1ccc2ncccc2c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cccc(NC(=O)O)c3)c2c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(O)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(NC(=O)C3CC3)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc(NC(=O)O)c3)cc2)CC1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2nccc3ccccc23)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(Nc2ncccn2)c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc(NC(=O)O)c3)cn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(=O)Nc3ccccc3)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(OCCO)cc2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(=O)N3CCOCC3)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(=O)N3CCOCC3)cn2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc3c(c2)CS(=O)(=O)C3)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(F)(F)F)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2ccccc2O)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc(NC(=O)O)c2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +Nc1ncc(Cc2cccc(NC(=O)O)c2)cn1; [None]; [None]; [0] +O=C(O)Nc1cccc([C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc(NC(=O)O)c2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccc(NC(=O)O)c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cccc(NC(=O)O)c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(Br)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc(NC(=O)O)c2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccn3nccc3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)c(C)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccccc2-n2cccn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccc(NC(=O)O)c2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cccc(NC(=O)O)c3)[nH]c2c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc3c(c2)CCO3)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)ccc1O; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc3c2OCO3)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnc3ccccc3c2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(NC(=O)O)c2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +Nc1nc(-c2cccc(NC(=O)O)c2)cs1; [None]; [None]; [0] +Cc1ccc(-c2cccc(NC(=O)O)c2)c(=O)[nH]1; [None]; [None]; [0] +O=C(O)Nc1cccc(CCCc2ccccc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +CSc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3ccccc3s2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccc(NC(=O)O)c3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc(NC(=O)O)c2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc([C@H](CO)Cc2ccccc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(F)cc2Cl)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc3c(c2)CCC(=O)N3)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)O)c2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(Cl)cc2Cl)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(CCCn2cncn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +Cn1cc(-c2cccc(NC(=O)O)c2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc(NC(=O)O)c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cccc(NC(=O)O)c3)c2c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cc(F)c(-c2cccc(NC(=O)O)c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)ccc1Cl; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +Cc1csc2c(-c3cccc(NC(=O)O)c3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)O)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc(NC(=O)O)c2)nc1; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cccc(NC(=O)O)c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cccc(NC(=O)O)c3)cc2c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc3cn[nH]c3c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CCn1cc(-c2cccc(NC(=O)O)c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3ccccc3o2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +COc1ccc2nc(-c3cccc(NC(=O)O)c3)[nH]c2c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +Cn1cc(-c2cccc(NC(=O)O)c2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc(NC(=O)O)c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(-c2cccc(NC(=O)O)c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc(NC(=O)O)c3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccc(NC(=O)O)c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc(NC(=O)O)c2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccc(NC(=O)O)c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc(NC(=O)O)c3)cn2)CC1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(N3CCCC3=O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(CCO)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NC(=O)c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc(NC(=O)O)c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccc(NC(=O)O)c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(NC(=O)O)c2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cccc(NC(=O)O)c2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc(NC(=O)O)c2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COC(C)(C)CCc1cccc(NC(=O)O)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc(NC(=O)O)c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2cc(F)cc(F)c2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccccc2OC(F)(F)F)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc(NC(=O)O)c3)cc2c1=O; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(NC(=O)O)c2)cs1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(NC(=O)c3ccccc3)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2ncc3cccc(F)c3c2=O)c1; [None]; [None]; [0] +COc1cnc(-c2cccc(NC(=O)O)c2)nc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc(NC(=O)O)c1; [None]; [None]; [0] +Cc1ccc(-c2cccc(NC(=O)O)c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc(NC(=O)O)c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NCc2cccnc2)c1; [None]; [None]; [0] +Cc1c(-c2cccc(NC(=O)O)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Nc2cccnc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2cnc3ccccc32)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NCCc2c[nH]cn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NC(=O)c2cccs2)c1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NCCc2ccccc2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc(NC(=O)O)c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cccc(NC(=O)O)c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cccc(NC(=O)O)c3)cc2CS1(=O)=O; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(CO)c2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(NC(=O)O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +O=C(O)Nc1cccc(Nc2ccncc2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc(NC(=O)O)c2)nn1; [None]; [None]; [0] +O=C(O)Nc1cccc(NCc2ccccc2F)c1; [None]; [None]; [0] +CSc1nc(-c2cccc(NC(=O)O)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2csc3ncncc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +Nc1ncncc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc(NC(=O)O)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(F)cc2C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Oc2ccccn2)c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(NC(=O)c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +CC(C)(COc1cccc(NC(=O)O)c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)O)c2)cc1Cl; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cccc(NC(=O)O)c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cccc(NC(=O)O)c2)cn1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc[nH]c(=O)c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc3c2C(=O)CC3)c1; [None]; [None]; [0] +COc1cc(CCc2cccc(NC(=O)O)c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +C[C@@H](Oc1cccc(NC(=O)O)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CCN(CC)c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +COc1ccncc1Nc1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Nc2cnccc2-c2ccccc2)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC1(c2cccc(NC(=O)O)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc(NC(=O)O)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc(NC(=O)O)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc(NC(=O)O)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(NC(=O)O)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2ccc(CO)n2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2cnc(CCO)c2)c1; [None]; [None]; [0] +C[C@H](Nc1cccc(NC(=O)O)c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc(NC(=O)O)c1)C(C)(C)O; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c(F)cccc2Cl)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2ncc3ccccc32)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-n2ncc3c(O)cccc32)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(NC(=O)O)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)O)c2)c(OC)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ccc(C(=O)c3ccccc3)cc2)c1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +O=C(O)Nc1cccc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(CCC(=O)NCc2ccccn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(CS(=O)(=O)NCc2ccccn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCc1cc(-c2cccc(NC(=O)O)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(NC(=O)O)c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cccc(NC(=O)O)c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(NC(=O)O)c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cccc(NC(=O)O)c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc(NC(=O)O)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(NC(=O)O)c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc(NC(=O)O)c2)n1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(NC(=O)O)c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cccc(NC(=O)O)c2)nc2ccccc12; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(NC(=O)O)c1; [None]; [None]; [0] +COc1ccc(Oc2cccc(NC(=O)O)c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc(NC(=O)O)c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc(NC(=O)O)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(NC(=O)O)c2)cnn1; [None]; [None]; [0] +O=C(O)Nc1cccc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; [None]; [None]; [0] +O=C(O)Nc1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cccc(O)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cccc4ncccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c(Cl)ccc4c3OCO4)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(Cl)c(O)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3n[nH]c4ccccc34)cc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3ncc(OC)cc3c2)cc1; [None]; [None]; [0] +COc1cnc2ccc(-c3c(Cl)cccc3Cl)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(Oc3ccc(F)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(N)=O)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(N)=O)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)cc3Cl)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(N)=O)cc3OC)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccnc(N)n3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(F)ccc3OC)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(F)c4nc(C)[nH]c4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cn[nH]c3Cl)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(F)cc3OC)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)c(OC)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(=O)[O-])cc3)cc2c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3ncc(OC)cc3c2)o1; [None]; [None]; [0] +COc1cnc2ccc(CCc3ccc(O)c(OC)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cccc(Br)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4ccccc4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)c(F)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cn(C)c4ccccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)cc3O)cc2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3ncc(OC)cc3c2)c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cnn4ncccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c[nH]c4cnccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccnc(N)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(COc3ccccc3Cl)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(F)c(Cl)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c(C)ccc4[nH]ncc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(O)ccc3Cl)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(CO)ccc3C)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cnc(O)c(Cl)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c[nH]c(C(N)=O)c3)cc2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3ncc(OC)cc3c2)c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(OC)c(OC)c3)cc2c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4ncc(OC)cc4c3)ccc12; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4nc(C)[nH]c4c3)cc2c1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3ncc(OC)cc3c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3ncc(OC)cc3c2)cc(OC)c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(NC(N)=O)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cnc4[nH]ccc4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(S(C)(=O)=O)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3nc4ccccc4s3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cncc(O)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4c(c3)CC(=O)N4)cc2c1; [None]; [None]; [0] +COc1cnc2ccc([C@H](C)CC(N)=O)cc2c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3ncc(OC)cc3c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2ncc(OC)cc2c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2ncc(OC)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(N(C)c3ccc4c(C)n[nH]c4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3[nH]nc(C)c3C)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(O)cc3C)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(C(F)F)n[nH]3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(N(C)c3cccc(Cl)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccncc3Cl)cc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc2ncc(OC)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(Cl)c(O)c(Cl)c3)cc2c1; [None]; [None]; [0] +CNc1nc(-c2ccc3ncc(OC)cc3c2)ncc1F; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4c(c3)CCN4)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(O)n4nccc4n3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(C(=O)[O-])c(C)o3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c(N)cnn3C)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(Nc3ccncc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(Br)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3[nH]nc4ccc(F)cc34)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ncc(OC)cc3c2)cc1; [None]; [None]; [0] +COc1cnc2ccc(N(C)c3cccc4[nH]ncc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(O)cc(Br)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(=O)NC4CC4)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc(C(N)=O)c(C)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4nc(C)oc4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(C)c(O)c(C)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cc(F)c(O)c(F)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cccc(SC)c3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(CCc3c[nH]c4ccccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(OCc3cccc4ccccc34)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3ocnc3-c3ccc(F)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(Oc3ccc(F)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3c(-c4ccccc4)noc3C)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(OCc3ccc(F)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(CCc3ccc(F)cc3F)cc2c1; [None]; [None]; [0] +COc1cnc2ccc(NCc3c(F)cccc3Cl)cc2c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(O)ccn2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1cc(O)ccn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +CCn1cc(-c2cc(O)ccn2)cn1; [None]; [None]; [0] +Oc1ccnc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +Oc1ccnc(-c2ccccc2OC(F)(F)F)c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(O)ccn3)cc2c1=O; [None]; [None]; [0] +Oc1ccnc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +N[C@H](c1cc(O)ccn1)c1ccco1; [None]; [None]; [0] +OCCn1cc(-c2cc(O)ccn2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(O)ccn2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(O)ccn2)c1)c1ccccc1; [None]; [None]; [0] +COc1cnc(-c2cc(O)ccn2)nc1; [None]; [None]; [0] +Oc1ccnc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +Cc1ccc(-c2cc(O)ccn2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(O)ccn2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(O)ccn2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +Oc1ccnc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +Oc1ccnc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +Oc1ccnc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Cc1c(-c2cc(O)ccn2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1ccnc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +Oc1ccnc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cc(O)ccn2)o1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(O)ccn3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc(O)ccn3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc(O)ccn3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(O)ccn3)ccc21; [None]; [None]; [0] +Oc1ccnc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +OCc1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cc(O)ccn2)nn1; [None]; [None]; [0] +CSc1nc(-c2cc(O)ccn2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2csc3ncncc23)c1; [None]; [None]; [0] +Oc1ccnc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Nc1ncncc1-c1cc(O)ccn1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(O)ccn3)cc2s1; [None]; [None]; [0] +CC[C@H](CO)c1cc(O)ccn1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(F)cc2C(F)(F)F)c1; [None]; [None]; [0] +Oc1ccnc(Cc2c(F)cccc2F)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(O)ccn2)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2cc(O)ccn2)cc1Cl; [None]; [None]; [0] +Oc1ccnc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc(O)ccn2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cc(O)ccn2)cn1; [None]; [None]; [0] +O=c1cc(-c2cc(O)ccn2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc(O)ccn3)c21; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2cc(O)ccn2)c1; [None]; [None]; [0] +CN(c1ncccc1Cc1cc(O)ccn1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(O)ccn1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc(O)ccn3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc(O)ccn3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +OC[C@H](c1ccccc1)c1cc(O)ccn1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(O)ccn1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC1(c2cc(O)ccn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Cc1cc(-c2cc(O)ccn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Oc1ccnc(-c2c(F)cccc2Cl)c1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(O)ccn2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(O)ccn2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(O)ccn2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1ccnc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCc1cc(-c2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc(O)ccn2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(O)ccn1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(O)ccn2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(O)ccn2)CC1; [None]; [None]; [0] +Oc1ccnc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(O)ccn3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(O)ccn3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1ccnc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +Oc1ccnc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +O=C(NCCCc1cc(O)ccn1)c1cccs1; [None]; [None]; [0] +O=C(NCCCc1cc(O)ccn1)C1CCC1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(O)ccn2)[nH]1; [None]; [None]; [0] +Oc1ccnc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Oc1ccnc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(O)ccn1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cc(O)ccn1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(O)ccn2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(O)ccn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(O)ccn2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(O)ccn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(O)ccn3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(O)ccn2)c1)C1CC1; [None]; [None]; [0] +Oc1ccnc(-c2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(O)ccn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2nccc3ccccc23)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ncccn2)c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc(O)ccn3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cc(O)ccn2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cc(O)ccn2)nc1)N1CCOCC1; [None]; [None]; [0] +Oc1ccnc(Nc2ccncn2)c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cc(O)ccn3)cc2C1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(C(F)(F)F)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(O)ccn2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cc(O)ccn2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(O)ccn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(O)ccn2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(Br)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(O)ccn2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2ccn3nccc3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(O)ccn2)c(C)c1; [None]; [None]; [0] +Oc1ccnc(-c2ccccc2-n2cccn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(O)ccn2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +Oc1ccnc(-c2ccc3c(c2)CCO3)c1; [None]; [None]; [0] +Oc1ccnc(-c2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)ccc1O; [None]; [None]; [0] +Oc1ccnc(-c2cccc3c2OCO3)c1; [None]; [None]; [0] +Oc1ccnc(-c2scc3c2OCCO3)c1; [None]; [None]; [0] +Oc1ccnc(-c2cnc3ccccc3c2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(O)ccn2)cn1; [None]; [None]; [0] +Nc1nc(-c2cc(O)ccn2)cs1; [None]; [None]; [0] +Oc1ccnc(-c2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +CC1(COc2cc(O)ccn2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(O)ccn2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2cc3ccccc3s2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(O)ccn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(F)cc2Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3cc(O)ccn3)ccc2N1; [None]; [None]; [0] +Oc1ccnc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2cc(O)ccn2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(Cl)cc2Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cc(O)ccn2)C1; [None]; [None]; [0] +Oc1ccnc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)ccc1N1CCOCC1; [None]; [None]; [0] +Oc1ccnc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +Cn1cc(-c2cc(O)ccn2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(O)ccn3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(O)ccn3)c2c1; [None]; [None]; [0] +Oc1ccnc(-c2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(O)ccn2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)ccc1Cl; [None]; [None]; [0] +Oc1ccnc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +Cc1csc2c(-c3cc(O)ccn3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cc(O)ccn2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Nc1cc(-c2cc(O)ccn2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(O)ccn2)nc1; [None]; [None]; [0] +COc1cc(-c2cc(O)ccn2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc(O)ccn2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cc(O)ccn2)cc1; [None]; [None]; [0] +O=C(Nc1cc(O)ccn1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(O)ccn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(O)ccn2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(O)ccn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc(O)ccn3)cc2c1; [None]; [None]; [0] +Oc1ccnc(-c2ccc3cn[nH]c3c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(-c2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(-c2cc3ccccc3o2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(O)ccn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(O)ccn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +Oc1ccnc(-c2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(O)ccn2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1ccnc(-c2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(-c2cc(O)ccn2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(O)ccn3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(O)ccn2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(O)ccn3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(O)ccn3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cc(O)ccn2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +O=C(Nc1cc(O)ccn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(O)ccn2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc(O)ccn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(O)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(O)ccn2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc(O)ccn2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(O)ccn2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(F)cn2)c1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)ncc1F; [None]; [None]; [0] +Oc1ccnc(Nc2ccccn2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(O)ccn2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(O)ccn1; [None]; [None]; [0] +Nc1ncc(-c2cccc(O)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ncccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)ccc3c2OCO3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)c(O)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2n[nH]c3ccccc23)nc1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)cccc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Oc2ccc(F)cc2)nc1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2F)nc1-c1ccccc1; [None]; [None]; [0] +Nc1nccc(-c2cnc(N)c(-c3ccccc3)n2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc(N)c(-c4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +Nc1ncc(-c2cn[nH]c2Cl)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(-c3ccc(O)cc3O)cc2)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)n2)ccc1O; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)[O-])cc2)nc1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)o1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)c(-c3ccccc3)n2)ccc1O; [None]; [None]; [0] +Nc1ncc(-c2cccc(Br)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3ccccc3c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)c(F)c2)nc1-c1ccccc1; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c(-c3ccccc3)n2)c2ccccc21; [None]; [None]; [0] +Nc1ncc(-c2ccc(O)cc2O)nc1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +Nc1ncc(-c2cnn3ncccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cnccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c(-c3ccccc3)n2)ccn1; [None]; [None]; [0] +Nc1ncc(COc2ccccc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)c(Cl)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2[nH]cnc2-c2ccc(F)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cc(O)ccc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cnc(O)c(Cl)c2)nc1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnc(N)c(-c3ccccc3)n2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnc(N)c(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc(N)c(-c4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(CCc2cnc(N)c(-c3ccccc3)n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cnc3[nH]ccc3c2)nc1-c1ccccc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3s2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cncc(O)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CC(=O)N3)nc1-c1ccccc1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +CNc1nccc(-c2cnc(N)c(-c3ccccc3)n2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnc(N)c(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cnc(N)c(-c3ccccc3)n2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cc(C(F)F)n[nH]2)nc1-c1ccccc1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2ccncc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +CCc1sccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cc(Cl)c(O)c(Cl)c2)nc1-c1ccccc1; [None]; [None]; [0] +CNc1nc(-c2cnc(N)c(-c3ccccc3)n2)ncc1F; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCN3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc(O)n3nccc3n2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1oc(-c2cnc(N)c(-c3ccccc3)n2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncc(-c2ccc3[nH]c(=O)[nH]c3c2)nc1-c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(Nc2ccncc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2F)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2[nH]nc3ccc(F)cc23)nc1-c1ccccc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(c1cnc(N)c(-c2ccccc2)n1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1ncc(-c2cc(O)cc(Br)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)NC3CC3)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)n2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3cnc(N)c(-c4ccccc4)n3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)n2)cc(C)c1O; [None]; [None]; [0] +Nc1ncc(-c2cc(F)c(O)c(F)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(=O)[nH][nH]c3c2)nc1-c1ccccc1; [None]; [None]; [0] +CSc1cccc(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +Nc1ncc(CCc2c[nH]c3ccccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(OCc2cccc3ccccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ocnc2-c2ccc(F)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Oc2ccc(F)cc2F)nc1-c1ccccc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(OCc2ccc(F)cc2F)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(CCc2ccc(F)cc2F)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NCc2c(F)cccc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ncc3ccccc3n2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc(N)c(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +Nc1ncc(-c2cnc3cccnn23)nc1-c1ccccc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(N3CCOCC3)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)C3CC3)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3[nH]2)nc1-c1ccccc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc(N)c(-c4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)n2)sn1; [None]; [None]; [0] +Nc1ncc(-c2nccc3ccccc23)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Nc2ncccn2)nc1-c1ccccc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnc(N)c(-c4ccccc4)n3)cn2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)Nc3ccccc3)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(OCCO)cc2)nc1-c1ccccc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C3CCNCC3)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cn2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(Nc2ccncn2)nc1-c1ccccc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CS(=O)(=O)C3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(F)(F)F)cc2)nc1-c1ccccc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc(N)c(-c3ccccc3)n2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc(N)c(-c3ccccc3)n2)CC1; [None]; [None]; [0] +Nc1ncc([C@H]2CCN(C(=O)c3ccccc3)C2)nc1-c1ccccc1; [None]; [None]; [0] +CC(C)c1cc(-c2cnc(N)c(-c3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc(N)c(-c4ccccc4)n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc(N)c(-c3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2)nc1-c1ccccc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccn3nccc3n2)nc1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)c(C)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2-n2cccn2)nc1-c1ccccc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3ccccc23)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(OC)c(-c2cnc(N)c(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc(N)c(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCO3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3ccccc3)[nH]n2)nc1-c1ccccc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cccc3c2OCO3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2scc3c2OCCO3)nc1-c1ccccc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cnc3ccccc3c2)nc1-c1ccccc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)c(-c3ccccc3)n2)CC1; [None]; [None]; [0] +Nc1nc(-c2cnc(N)c(-c3ccccc3)n2)cs1; [None]; [None]; [0] +Nc1ncc(-c2ccn(-c3cccc(Cl)c3)n2)nc1-c1ccccc1; [None]; [None]; [0] +CC1(COc2cnc(N)c(-c3ccccc3)n2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3s2)nc1-c1ccccc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnc(N)c(-c4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCC(=O)N3)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ncc(Br)cn2)nc1-c1ccccc1; [None]; [None]; [0] +CCc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)cc2Cl)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NC2CN(C(=O)C3CC3)C2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ncc3cccn3n2)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)n2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccn3n2)nc1-c1ccccc1; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c(-c3ccccc3)n2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc(N)c(-c4ccccc4)n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc(N)c(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ccc(O)cc23)nc1-c1ccccc1; [None]; [None]; [0] +COc1cc(F)c(-c2cnc(N)c(-c3ccccc3)n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)n2)ccc1Cl; [None]; [None]; [0] +Nc1ncc(-c2cnn(CCO)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ncc(Cl)cn2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1csc2c(-c3cnc(N)c(-c4ccccc4)n3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cnc(N)c(-c3ccccc3)n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)n2)nn1C; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c(-c3ccccc3)n2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)nc1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c(-c3ccccc3)n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(Cc2ccc(S(=O)(=O)CCO)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2ccco2)nc1-c1ccccc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc(N)c(-c3ccccc3)n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc(N)c(-c3ccccc3)n2)CC1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)nc1-c1ccccc1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc(N)c(-c3ccccc3)n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cnc(N)c(-c4ccccc4)n3)cc2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc3cn[nH]c3c2)nc1-c1ccccc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CCn1cc(-c2cnc(N)c(-c3ccccc3)n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3cccnc3)ccn2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3o2)nc1-c1ccccc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2ncc3sccc3n2)nc1-c1ccccc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)N3CCCC3)c2)nc1-c1ccccc1; [None]; [None]; [0] +COc1ccc2nc(-c3cnc(N)c(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(OC(F)(F)F)cc2)nc1-c1ccccc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc(N)c(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cnc(N)c(-c3ccccc3)n2)n1; [None]; [None]; [0] +Nc1ncc(-c2ncn3c2CCCC3)nc1-c1ccccc1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c(-c3ccccc3)n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc(N)c(-c4ccccc4)n3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc(N)c(-c4ccccc4)n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnc(N)c(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc(N)c(-c4ccccc4)n3)cn2)CC1; [None]; [None]; [0] +Nc1ncc(-c2cccc(N3CCCC3=O)c2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(CCO)cc2)nc1-c1ccccc1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2cccc(OC(F)(F)F)c2)nc1-c1ccccc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc(N)c(-c4ccccc4)n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cnc(N)c(-c3ccccc3)n2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c(-c3ccccc3)n2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc(N)c(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1ncc(Nc2ccc(F)cn2)nc1-c1ccccc1; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c(-c3ccccc3)n2)ncc1F; [None]; [None]; [0] +Nc1ncc(Nc2ccccn2)nc1-c1ccccc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc(N)c(-c3ccccc3)n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc(N)c(-c2ccccc2)n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3ncc4ccccc4n3)[nH]c2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +COc1ncccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +COc1cc(-c2nc3ncc(Br)cc3[nH]2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3nc4ncc(Br)cc4[nH]3)c2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3cnc4cccnn34)[nH]c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +Oc1cccc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3ccc(N4CCOCC4)cc3)[nH]c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3ncc(Br)cc3[nH]2)c1)C1CC1; [None]; [None]; [0] +Brc1cnc2nc(-c3nc4ccccc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nc4ncc(Br)cc4[nH]3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2nc3ncc(Br)cc3[nH]2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3nccc4ccccc34)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(Nc3ncccn3)[nH]c2c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nc4ncc(Br)cc4[nH]3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3cccc(C4CCNCC4)c3)[nH]c2c1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2nc3ncc(Br)cc3[nH]2)nc1)N1CCOCC1; [None]; [None]; [0] +Brc1cnc2nc(Nc3ccncn3)[nH]c2c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3nc4ncc(Br)cc4[nH]3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2nc3ncc(Br)cc3[nH]2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nc3ncc(Br)cc3[nH]2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nc3ncc(Br)cc3[nH]2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2nc3ncc(Br)cc3[nH]2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3nc4ncc(Br)cc4[nH]3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +Brc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3ccn4nccc4n3)[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)c(C)c1; [None]; [None]; [0] +Brc1cnc2nc(-c3ccccc3-n3cccn3)[nH]c2c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +Brc1cnc2nc(-c3c[nH]c4ccccc34)[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2nc3ncc(Br)cc3[nH]2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nc4ncc(Br)cc4[nH]3)[nH]c2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3ccc4c(c3)CCO4)[nH]c2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3cc(-c4ccccc4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +COc1cc(-c2nc3ncc(Br)cc3[nH]2)ccc1O; [None]; [None]; [0] +Brc1cnc2nc(-c3cccc4c3OCO4)[nH]c2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3scc4c3OCCO4)[nH]c2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3cnc4ccccc4c3)[nH]c2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nc3ncc(Br)cc3[nH]2)CC1; [None]; [None]; [0] +Nc1nc(-c2nc3ncc(Br)cc3[nH]2)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3nc4ncc(Br)cc4[nH]3)n2)c1; [None]; [None]; [0] +CC1(COc2nc3ncc(Br)cc3[nH]2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +CSc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Brc1cnc2nc(-c3cc4ccccc4s3)[nH]c2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nc4ncc(Br)cc4[nH]3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2nc3ncc(Br)cc3[nH]2)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2nc3ncc(Br)cc3[nH]2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3nc4ncc(Br)cc4[nH]3)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +COc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +COc1ccc(CNc2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Clc1ccc(-c2nc3ncc(Br)cc3[nH]2)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2nc3ncc(Br)cc3[nH]2)C1; [None]; [None]; [0] +Brc1cnc2nc(-c3ncc4cccn4n3)[nH]c2c1; [None]; [None]; [0] +COc1cc(-c2nc3ncc(Br)cc3[nH]2)ccc1N1CCOCC1; [None]; [None]; [0] +Brc1cnc2nc(-c3cc4ccccn4n3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(-c2nc3ncc(Br)cc3[nH]2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3nc4ncc(Br)cc4[nH]3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nc4ncc(Br)cc4[nH]3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3nc4ncc(Br)cc4[nH]3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2nc3ncc(Br)cc3[nH]2)cc1OC; [None]; [None]; [0] +COc1cc(-c2nc3ncc(Br)cc3[nH]2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2nc3ncc(Br)cc3[nH]2)cn1; [None]; [None]; [0] +Clc1cnc(-c2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3nc4ncc(Br)cc4[nH]3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2nc3ncc(Br)cc3[nH]2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2nc3ncc(Br)cc3[nH]2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Nc1cc(-c2nc3ncc(Br)cc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +COc1cc(-c2nc3ncc(Br)cc3[nH]2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +O=C(Nc1nc2ncc(Br)cc2[nH]1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nc3ncc(Br)cc3[nH]2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2nc3ncc(Br)cc3[nH]2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nc3ncc(Br)cc3[nH]1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3nc4ncc(Br)cc4[nH]3)cc2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3ccc4cn[nH]c4c3)[nH]c2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CCn1cc(-c2nc3ncc(Br)cc3[nH]2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +Brc1cnc2nc(-c3cc(-c4cccnc4)ccn3)[nH]c2c1; [None]; [None]; [0] +Brc1cnc2nc(-c3cc4ccccc4o3)[nH]c2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +Brc1cnc2nc(-c3ncc4sccc4n3)[nH]c2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nc3ncc(Br)cc3[nH]2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3nc4ncc(Br)cc4[nH]3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +Cn1cc(-c2nc3ncc(Br)cc3[nH]2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nc4ncc(Br)cc4[nH]3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2nc3ncc(Br)cc3[nH]2)n1; [None]; [None]; [0] +Brc1cnc2nc(-c3ncn4c3CCCC4)[nH]c2c1; [None]; [None]; [0] +Cc1cc(-c2nc3ncc(Br)cc3[nH]2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3nc4ncc(Br)cc4[nH]3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nc4ncc(Br)cc4[nH]3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nc4ncc(Br)cc4[nH]3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nc4ncc(Br)cc4[nH]3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +OCCc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +O=C(Nc1nc2ncc(Br)cc2[nH]1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nc4ncc(Br)cc4[nH]3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2nc3ncc(Br)cc3[nH]2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nc3ncc(Br)cc3[nH]2)cc1; [None]; [None]; [0] +Fc1ccc(Nc2nc3ncc(Br)cc3[nH]2)nc1; [None]; [None]; [0] +Cc1cc(Nc2nc3ncc(Br)cc3[nH]2)ncc1F; [None]; [None]; [0] +Brc1cnc2nc(Nc3ccccn3)[nH]c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nc3ncc(Br)cc3[nH]2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nc2ncc(Br)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1ccccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCOc1ccccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COC(C)(C)CC[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1nnc(-c2ccccc2[C@H](C)[C@H]2C(=O)Nc3ccccc32)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Cc1cc(F)cc(F)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccccc1P(C)(C)=O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccnc2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCn1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cn1; [None]; [None]; [0] +C[C@@H](c1cccc(C(F)(F)F)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccccc1OC(F)(F)F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccccc1C(=O)[O-])[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccccc1C(N)=O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnn(Cc2ccccc2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2ncn(C)c(=O)c2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnc(-c2ccccc2)[nH]1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnn(CCO)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1csc(C(C)(C)C)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(NC(=O)c2ccccc2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +COc1cnc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc1; [None]; [None]; [0] +C[C@@H](c1cc(Cl)ccc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(C)C(=O)CO[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnc2ccccn12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1nc(C)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)s1; [None]; [None]; [0] +CNc1nc(C)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)s1; [None]; [None]; [0] +Cc1nc(N)sc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnc2cccnn12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c(Cl)cccc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(Cn2cncn2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(Br)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1ccc(Cl)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +C[C@@H](NCc1cccnc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1c([C@H](C)[C@H]2C(=O)Nc3ccccc32)sc(=O)n1C; [None]; [None]; [0] +C[C@@H](c1ccnc(N)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnn2ncccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2ccccc2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Nc1cccnc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1cnc2ccccc21; [None]; [None]; [0] +C[C@@H](NCCc1c[nH]cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](NC(=O)c1cccs1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(CC(=O)[O-])c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c[nH]nc1C(F)(F)F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(F)c1C(N)=O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cncc2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](NCCc1ccccc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(-c2cnn(C)c2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(N)[nH]nc2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)CS(=O)(=O)N2C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(cnn2C)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(-c2cn[nH]c2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](NCc1ccc(Cl)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCCn1cnc([C@H](C)[C@H]2C(=O)Nc3ccccc32)n1; [None]; [None]; [0] +C[C@@H](c1cccc(O)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(CO)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)ccc1C(=O)[O-]; [None]; [None]; [0] +C[C@@H](Nc1ccncc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(C)n1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nn1; [None]; [None]; [0] +C[C@@H](NCc1ccccc1F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CSc1nc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](CCc1c[nH]nn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1csc2ncncc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc2ccccc2[nH]1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(CCC#N)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1csc(N)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cncnc1N)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCNc1nc2ccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccc(F)cc1C(F)(F)F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](CCCC(N)=O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Oc1ccccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](CCNC(=O)CC(C)(C)O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)Nc1cccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +C[C@@H](NC(=O)c1c(Cl)cccc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cn(C)c2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)N1CCC(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@@H](OCC(C)(C)S(C)(=O)=O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1Cl; [None]; [None]; [0] +C[C@@H](c1cnn2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C[NH3+])c(C(F)(F)F)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCCn1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cn1; [None]; [None]; [0] +C[C@@H](c1cc[nH]c(=O)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc2c1C(=O)CC2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(CC[C@H](C)[C@H]2C(=O)Nc3ccccc32)cc(OC)c1; [None]; [None]; [0] +C[C@@H](c1ccc(C(C)(C)N)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](O[C@H](C)c1c(Cl)cncc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc([S@](C)=O)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCN(CC)[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc2c(=O)[nH]ccc2o1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc2c(=O)[nH]cc(Br)c2s1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccncc1N[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Nc1cnccc1-c1ccccc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(C)Oc1cncc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +C[C@@H](c1ccc(C(C)(C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cccc(F)c1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Nc1cnc2ccccc2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c[nH]c2cnccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnc2[nH]ccc2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)N(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@@H](c1ccc(S(=O)(=O)NC(C)(C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccc(N2CCOCC2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(S(C)(=O)=O)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](N[C@H](C)[C@H]1C(=O)Nc2ccccc21)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1ccc(CO)n1; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1cnc(CCO)c1; [None]; [None]; [0] +C[C@@H](N[C@@H](C)C(C)(C)O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](N[C@H](C)C(C)(C)O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c(F)cccc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1ncc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)n1ncc2c(O)cccc21; [None]; [None]; [0] +C[C@@H](c1ccc(-n2cncn2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1nc2ccc(O)cc2[nH]1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CSc1nc(C)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)[nH]1; [None]; [None]; [0] +COc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c(OC)c1; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)c2ccccc2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H]([C@H](C)[C@H]2C(=O)Nc3ccccc32)CC1; [None]; [None]; [0] +CC(C)n1cnnc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1nncn1C1CC1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccn(CC[NH3+])n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Cc1nnc2ccc(-c3ccccc3)nn12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](CCC(=O)NCc1ccccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](CS(=O)(=O)NCc1ccccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cn(Cc2ccccc2)nn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc(N)n1; [None]; [None]; [0] +CCCCc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc(N)n1; [None]; [None]; [0] +C[C@@H](c1nnc(N)s1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc(C(N)=O)cn1C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(C(C)(C)O)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)s1; [None]; [None]; [0] +C[C@@H](Oc1ccc(C[NH3+])cc1F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC([C@H](C)[C@H]2C(=O)Nc3ccccc32)CC1; [None]; [None]; [0] +C[C@@H](c1nc2ccccc2s1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(n1)NC(=O)C(C)(C)O2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)c2)cc1; [None]; [None]; [0] +C[C@@H](c1cncc(N)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc2ccsc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc2nnsc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)Nc1ncc([C@H](C)[C@H]2C(=O)Nc3ccccc32)[nH]1; [None]; [None]; [0] +C[C@@H](c1nc(N)c2ccccc2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ncc2ccccc2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c[nH]c2cccnc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cn(CCO)cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ncc2cc[nH]c2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc(C#N)cc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc(O[C@H](C)[C@H]2C(=O)Nc3ccccc32)c(F)c1F; [None]; [None]; [0] +C[C@@H]([C@H]1CC[C@@](C)(O)CC1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc(OC)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +COc1ncccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(S(=O)(=O)N(C)C)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnnc(N(C)C)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +C[C@H]([C@H]1C(=O)Nc2ccccc21)N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +C[C@@H](c1cccc(NC(=O)C2CCNCC2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)N(C)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +CCOc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(S(C)(=O)=O)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn([C@H](C)[C@H]3C(=O)Nc4ccccc43)c2c1; [None]; [None]; [0] +C[C@@H](c1cc(C#N)ccc1O)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1cccc(NC(=O)C2CC2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1nc2ccccc2[nH]1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cc2)CC1; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)[O-])cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1nccc2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(N)=O)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](Nc1ncccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnn(Cc2cccc(C#N)c2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)Nc2ccccc2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(OCCO)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(=O)NCc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1cccc(C2CCNCC2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N2CCOCC2)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N2CCOCC2)cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@H](O)COc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccc(OC[C@@H](C)O)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)CS(=O)(=O)C2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(F)(F)F)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(N(C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(S(=O)(=O)N(C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](C1CCN(S(C)(=O)=O)CC1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H]([C@H]1CCN(C(=O)c2ccccc2)C1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(C)c1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)c2)CC1; [None]; [None]; [0] +CCCOc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(Br)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(N(C)C)c(Cl)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccn2nccc2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c(C)c1; [None]; [None]; [0] +C[C@@H](c1ccccc1-n1cccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc(Cl)cc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1c[nH]c2ccccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(OC)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc([C@H](C)[C@H]3C(=O)Nc4ccccc43)[nH]c2c1; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)CCO2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc(-c2ccccc2)[nH]n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)ccc1O; [None]; [None]; [0] +C[C@@H](c1cccc2c1OCO2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1scc2c1OCCO2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cnc2ccccc2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N(C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(C)(C)C)nc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccn(-c2cccc(Cl)c2)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cccc(C(=O)N[C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +CSc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1cc2ccccc2s1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCN1CCN(Cc2ccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cc2)CC1; [None]; [None]; [0] +Cc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc(N)n1; [None]; [None]; [0] +C[C@@H](c1ccc(F)cc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)CCC(=O)N2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ncc(Br)cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1OC; [None]; [None]; [0] +CCc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N2CCC[C@@H]2C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(Cl)cc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ncc2cccn2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)ccc1N1CCOCC1; [None]; [None]; [0] +C[C@@H](c1cc2ccccn2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cn(C)nc1C(F)(F)F)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)CC(C)(C)O2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc2cccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)c2c1; [None]; [None]; [0] +C[C@@H](c1cccc2ccc(O)cc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(F)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1OC; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)ccc1Cl; [None]; [None]; [0] +C[C@@H](c1ncc(Cl)cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1csc2c([C@H](C)[C@H]3C(=O)Nc4ccccc43)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1cc(N)nc2[nH]ccc12)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCNC(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)nc1; [None]; [None]; [0] +COc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CO[C@@H]1CC[C@@H]([C@H](C)[C@H]2C(=O)Nc3ccccc32)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC([C@H](C)[C@H]2C(=O)Nc3ccccc32)CC1; [None]; [None]; [0] +C[C@@H](c1cccc(C(=O)Nc2cn[nH]c2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(OC)cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +COc1ccc2c(c1)c([C@H](C)[C@H]1C(=O)Nc3ccccc31)cn2C; [None]; [None]; [0] +COc1ccc2oc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cc2c1; [None]; [None]; [0] +C[C@@H](c1ccc2cn[nH]c2c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C[NH+](C)C)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +C[C@@H](c1cc(-c2cccnc2)ccn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc2ccccc2o1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cc(Br)cn1C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ncc2sccc2n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CC(C)c1nn(C)cc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1cccc(NC(=O)N2CCCC2)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc2nc([C@H](C)[C@H]3C(=O)Nc4ccccc43)[nH]c2c1; [None]; [None]; [0] +C[C@@H](c1ccc(OC(F)(F)F)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1ccc(F)c(C(=O)N[C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +C[C@@H](c1cc2ccc(C(C)(C)O)cc2[nH]1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCc1cccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)n1; [None]; [None]; [0] +C[C@@H](c1ncn2c1CCCC2)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1cc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc(C)c1OCCO; [None]; [None]; [0] +C[C@@H](c1ccc2c(c1)c(Cl)nn2C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(N(C)C)nc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1n[nH]c2cc([C@H](C)[C@H]3C(=O)Nc4ccccc43)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cn2)CC1; [None]; [None]; [0] +C[C@@H](c1cccc(N2CCCC2=O)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(CCO)cc1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](NC(=O)c1cccc(OC(F)(F)F)c1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N(C)C)cc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1ncc(-c2ccc([C@H](C)[C@H]3C(=O)Nc4ccccc43)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)c(OC)c1; [None]; [None]; [0] +C[C@@H](c1cc(C(C)(C)O)n(C)n1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCNC(=O)c1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1ccc(C(=O)N(C)C)cn1)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CCNC(=O)Cc1ccc([C@H](C)[C@H]2C(=O)Nc3ccccc32)cc1; [None]; [None]; [0] +C[C@@H](c1cc(S(C)(=O)=O)ccc1Cl)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(C)c([C@H](C)[C@H]2C(=O)Nc3ccccc32)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1[C@H](C)[C@H]1C(=O)Nc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3c(=O)[nH]ccc3c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(Cc3cc(F)cc(F)c3)ccc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccnc4ccccc34)ccc12; [None]; [None]; [0] +CCn1cc(-c2ccc3c(=O)[nH]ccc3c2)cn1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc(C(F)(F)F)c3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccccc3OC(F)(F)F)ccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnn(Cc4ccccc4)c3)ccc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4c(=O)[nH]ccc4c3)cc2c1=O; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnc(-c4ccccc4)[nH]3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnn(CCO)c3)ccc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3c(=O)[nH]ccc3c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3ncc4cccc(F)c4c3=O)ccc12; [None]; [None]; [0] +COc1cnc(-c2ccc3c(=O)[nH]ccc3c2)nc1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cc(Cl)ccc3Cl)ccc12; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +Cc1ccc(-c2ccc3c(=O)[nH]ccc3c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnc4ccccn34)ccc12; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3c(=O)[nH]ccc3c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3c(=O)[nH]ccc3c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnc4cccnn34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3c(Cl)cccc3Cl)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc(Cn4cncn4)c3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc(Br)c3)ccc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(NCc3cccnc3)ccc12; [None]; [None]; [0] +Cc1c(-c2ccc3c(=O)[nH]ccc3c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc3c(=O)[nH]ccc3c2)n1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnn4ncccc34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccc4ccccc4c3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(Nc3cccnc3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3cnc4ccccc43)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(NCCc3c[nH]cn3)ccc12; [None]; [None]; [0] +O=C(Nc1ccc2c(=O)[nH]ccc2c1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3c[nH]nc3C(F)(F)F)ccc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cncc4ccccc34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(NCCc3ccccc3)ccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4c(=O)[nH]ccc4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4c(=O)[nH]ccc4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4c(=O)[nH]ccc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4c(=O)[nH]ccc4c3)ccc21; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccc(-c4cn[nH]c4)cc3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(NCc3ccc(Cl)cc3)ccc12; [None]; [None]; [0] +CCCn1cnc(-c2ccc3c(=O)[nH]ccc3c2)n1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc(O)c3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc(CO)c3)ccc12; [None]; [None]; [0] +COc1cc(-c2ccc3c(=O)[nH]ccc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]ccc2cc(Nc3ccncc3)ccc12; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3c(=O)[nH]ccc3c2)nn1; [None]; [None]; [0] +O=c1[nH]ccc2cc(NCc3ccccc3F)ccc12; [None]; [None]; [0] +CSc1nc(-c2ccc3c(=O)[nH]ccc3c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(CCc3c[nH]nn3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3csc4ncncc34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cc4ccccc4[nH]3)ccc12; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(=O)[nH]ccc3c2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4c(=O)[nH]ccc4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccc(F)cc3C(F)(F)F)ccc12; [None]; [None]; [0] +NC(=O)CCCc1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(Oc3ccccn3)ccc12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +O=C(Nc1ccc2c(=O)[nH]ccc2c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2ccc3c(=O)[nH]ccc3c2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3c(=O)[nH]ccc3c2)CC1; [None]; [None]; [0] +CC(C)(COc1ccc2c(=O)[nH]ccc2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1Cl; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnn4ccccc34)ccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc3c(=O)[nH]ccc3c2)cn1; [None]; [None]; [0] +O=c1cc(-c2ccc3c(=O)[nH]ccc3c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4c(=O)[nH]ccc4c3)c21; [None]; [None]; [0] +COc1cc(CCc2ccc3c(=O)[nH]ccc3c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +C[C@@H](Oc1ccc2c(=O)[nH]ccc2c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cc4c(=O)[nH]ccc4o3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cc4c(=O)[nH]cc(Br)c4s3)ccc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(Nc3cnccc3-c3ccccc3)ccc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(Nc3cnc4ccccc4c3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3c[nH]c4cnccc34)ccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cnc4[nH]ccc4c3)ccc12; [None]; [None]; [0] +CC1(c2ccc3c(=O)[nH]ccc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc2c(=O)[nH]ccc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccc(N4CCOCC4)cc3)ccc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(=O)[nH]ccc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc2c(=O)[nH]ccc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3ccc(CO)n3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3cnc(CCO)c3)ccc12; [None]; [None]; [0] +C[C@H](Nc1ccc2c(=O)[nH]ccc2c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccc2c(=O)[nH]ccc2c1)C(C)(C)O; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3c(F)cccc3Cl)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3ncc4ccccc43)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-n3ncc4c(O)cccc43)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ccc(-n4cncn4)cc3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3nc4ccc(O)cc4[nH]3)ccc12; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3c(=O)[nH]ccc3c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(=O)[nH]ccc3c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3c(=O)[nH]ccc3c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3nncn3C3CC3)ccc12; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3c(=O)[nH]ccc3c2)n1; [None]; [None]; [0] +O=c1[nH]ccc2cc(Cc3nnc4ccc(-c5ccccc5)nn34)ccc12; [None]; [None]; [0] +O=C(CCc1ccc2c(=O)[nH]ccc2c1)NCc1ccccn1; [None]; [None]; [0] +O=c1[nH]ccc2cc(CS(=O)(=O)NCc3ccccn3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cn(Cc4ccccc4)nn3)ccc12; [None]; [None]; [0] +CCc1cc(-c2ccc3c(=O)[nH]ccc3c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3c(=O)[nH]ccc3c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc3c(=O)[nH]ccc3c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3c(=O)[nH]ccc3c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(=O)[nH]ccc3c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3c(=O)[nH]ccc3c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3c(=O)[nH]ccc3c2)CC1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3nc4ccccc4s3)ccc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4c(=O)[nH]ccc4c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4c(=O)[nH]ccc4c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc3c(=O)[nH]ccc3c2)n1; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc4ccsc34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cccc4nnsc34)ccc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3c(=O)[nH]ccc3c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(=O)[nH]ccc3c2)nc2ccccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ncc4ccccc4n3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3c[nH]c4cccnc34)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3cn(CCO)cn3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(-c3ncc4cc[nH]c4n3)ccc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3c(=O)[nH]ccc3c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3c(=O)[nH]ccc3c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2c(=O)[nH]ccc2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3c(=O)[nH]ccc3c2)cnn1; [None]; [None]; [0] +O=c1[nH]ccc2cc(N3CCC(c4nc5ccccc5[nH]4)CC3)ccc12; [None]; [None]; [0] +O=c1[nH]ccc2cc(N3CC=C(c4c[nH]c5ccccc45)CC3)ccc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3c(=O)[nH]ccc3c2)c1)C1CCNCC1; [None]; [None]; [0] +Cn1cc(-c2cccc(O)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2cccc3ncccc23)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2c(Cl)ccc3c2OCO3)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(Cl)c(O)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ccccc23)c2c(N)ncnc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn(C)c3ncnc(N)c23)cc1; [None]; [None]; [0] +Cn1cc(-c2c(Cl)cccc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(Oc2ccc(F)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(C(N)=O)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(C(N)=O)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(O)cc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2ccc(O)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccnc(N)n2)c2c(N)ncnc21; [None]; [None]; [0] +COc1ccc(F)cc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cn(C)c4ncnc(N)c34)cc2[nH]1; [None]; [None]; [0] +Cn1cc(-c2cn[nH]c2Cl)c2c(N)ncnc21; [None]; [None]; [0] +COc1cc(F)ccc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc(O)cc3O)cc2)c2c(N)ncnc21; [None]; [None]; [0] +COc1cc(-c2cn(C)c3ncnc(N)c23)ccc1O; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)[O-])cc2)c2c(N)ncnc21; [None]; [None]; [0] +COC(=O)c1ccc(-c2cn(C)c3ncnc(N)c23)o1; [None]; [None]; [0] +COc1cc(CCc2cn(C)c3ncnc(N)c23)ccc1O; [None]; [None]; [0] +Cn1cc(-c2cccc(Br)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc3ccccc3c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(O)c(F)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2cn(C)c3ncnc(N)c23)c2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc(O)cc2O)c2c(N)ncnc21; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cn(C)c3ncnc(N)c23)c1; [None]; [None]; [0] +Cn1cc(-c2cnn3ncccc23)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3cnccc23)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccnc(N)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(COc2ccccc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(F)c(Cl)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2[nH]cnc2-c2ccc(F)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cc(O)ccc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cnc(O)c(Cl)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2c[nH]c(C(N)=O)c2)c2c(N)ncnc21; [None]; [None]; [0] +COc1cc(OC)cc(-c2cn(C)c3ncnc(N)c23)c1; [None]; [None]; [0] +COc1ccc(-c2cn(C)c3ncnc(N)c23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cn(C)c4ncnc(N)c34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cn(C)c4ncnc(N)c34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cn(C)c3ncnc(N)c23)c1; [None]; [None]; [0] +COc1cc(CCc2cn(C)c3ncnc(N)c23)cc(OC)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(NC(N)=O)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2cnc3[nH]ccc3c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(S(C)(=O)=O)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2nc3ccccc3s2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2cncc(O)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)CC(=O)N3)c2c(N)ncnc21; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +CNc1nccc(-c2cn(C)c3ncnc(N)c23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cn(C)c4ncnc(N)c34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2cn(C)c3ncnc(N)c23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cc(C(F)F)n[nH]2)c2c(N)ncnc21; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2ccncc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +CCc1sccc1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cc(Cl)c(O)c(Cl)c2)c2c(N)ncnc21; [None]; [None]; [0] +CNc1nc(-c2cn(C)c3ncnc(N)c23)ncc1F; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)CCN3)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2cc(O)n3nccc3n2)c2c(N)ncnc21; [None]; [None]; [0] +Cc1oc(-c2cn(C)c3ncnc(N)c23)cc1C(=O)[O-]; [None]; [None]; [0] +Cn1cc(-c2ccc3[nH]c(=O)[nH]c3c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1ncc(N)c1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(Nc2ccncc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(Br)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2[nH]nc3ccc(F)cc23)c2c(N)ncnc21; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cn(C)c3ncnc(N)c23)cc1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cc(O)cc(Br)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)NC3CC3)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cc1cc(-c2cn(C)c3ncnc(N)c23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3cn(C)c4ncnc(N)c34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cn(C)c3ncnc(N)c23)cc(C)c1O; [None]; [None]; [0] +Cn1cc(-c2cc(F)c(O)c(F)c2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ccc3c(=O)[nH][nH]c3c2)c2c(N)ncnc21; [None]; [None]; [0] +CSc1cccc(-c2cn(C)c3ncnc(N)c23)c1; [None]; [None]; [0] +Cn1cc(CCc2c[nH]c3ccccc23)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(OCc2cccc3ccccc23)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(-c2ocnc2-c2ccc(F)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(Oc2ccc(F)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cn(C)c2ncnc(N)c12; [None]; [None]; [0] +Cn1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(OCc2ccc(F)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(CCc2ccc(F)cc2F)c2c(N)ncnc21; [None]; [None]; [0] +Cn1cc(NCc2c(F)cccc2Cl)c2c(N)ncnc21; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +COC(C)(C)CCc1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2-c2nnc(C)[nH]2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2S(=O)(=O)C(C)C)c1; [None]; [None]; [0] +CC(=O)c1cccc(Cc2cc(F)cc(F)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2P(C)(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +CCn1cc(-c2cccc(C(C)=O)c2)cn1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2OC(F)(F)F)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2C(=O)[O-])c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccccc2C(N)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3ncn(C)c(=O)c3c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2csc(C(C)(C)C)n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(NC(=O)c3ccccc3)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2ncc3cccc(F)c3c2=O)c1; [None]; [None]; [0] +COc1cnc(-c2cccc(C(C)=O)c2)nc1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(OCC(=O)C(C)C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(C)cc2Br)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c(C)nc3ccccn23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2sc(C)nc2C)c1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc(C(C)=O)c2)s1; [None]; [None]; [0] +CC(=O)c1cccc(-c2sc(N)nc2C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc(C)ccc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(NCc2cccnc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2sc(=O)n(C)c2C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccnc(N)n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(Nc2cccnc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2cnc3ccccc32)c1; [None]; [None]; [0] +CC(=O)c1cccc(NCCc2c[nH]cn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(NC(=O)c2cccs2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(CC(=O)[O-])c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(F)c2C(N)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(NCCc2ccccc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(-c3cnn(C)c3)cc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3c(N)[nH]nc3c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3c(c2)CS(=O)(=O)N3C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3c(cnn3C)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(NCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(C(C)=O)c2)n1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(O)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(CO)c2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(C(C)=O)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(=O)c1cccc(Nc2ccncc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cn(C(C)C)nn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(NCc2ccccc2F)c1; [None]; [None]; [0] +CSc1nc(-c2cccc(C(C)=O)c2)c[nH]1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnoc2C(C)C)c1; [None]; [None]; [0] +CC(=O)c1cccc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2csc3ncncc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(CCC#N)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2csc(N)n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cncnc2N)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc(C(C)=O)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc(C(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(F)cc2C(F)(F)F)c1; [None]; [None]; [0] +CC(=O)c1cccc(CCCC(N)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(Oc2ccccn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(CCNC(=O)CC(C)(C)O)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc(C(C)=O)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(NC(=O)c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cn(C)c3ccccc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(N2CCC(S(C)(=O)=O)CC2)c1; [None]; [None]; [0] +CC(=O)c1cccc(OCC(C)(C)S(C)(=O)=O)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(C(C)=O)c2)cc1Cl; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c1; [None]; [None]; [0] +CCCn1cc(-c2cccc(C(C)=O)c2)cn1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc[nH]c(=O)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc3c2C(=O)CC3)c1; [None]; [None]; [0] +COc1cc(CCc2cccc(C(C)=O)c2)cc(OC)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(C(C)(C)N)cc2)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(O[C@H](C)c2c(Cl)cncc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc([S@](C)=O)cc2)c1; [None]; [None]; [0] +CCN(CC)c1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc3c(=O)[nH]ccc3o2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc3c(=O)[nH]cc(Br)c3s2)c1; [None]; [None]; [0] +COc1ccncc1Nc1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(Nc2cnccc2-c2ccccc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cncc(OC(C)C)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(C(C)(C)C)cc2)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(C2(C)CCN(S(C)(=O)=O)CC2)c1; [None]; [None]; [0] +CC(=O)c1cccc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(C(C)=O)c2)cc1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(S(C)(=O)=O)cc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc(C)nn2-c2cccc(Cl)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(N[C@@H](C)C(=O)NCC(F)(F)F)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2ccc(CO)n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2cnc(CCO)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(N[C@@H](C)C(C)(C)O)c1; [None]; [None]; [0] +CC(=O)c1cccc(N[C@H](C)C(C)(C)O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c(F)cccc2Cl)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2ncc3ccccc32)c1; [None]; [None]; [0] +CC(=O)c1cccc(-n2ncc3c(O)cccc32)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(C(C)=O)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc(C(C)=O)c2)c(OC)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc(C(=O)c3ccccc3)cc2)c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(C(C)=O)c2)CC1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nncn2C(C)C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +CC(=O)c1cccc(CCC(=O)NCc2ccccn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(CS(=O)(=O)NCc2ccccn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCc1cc(-c2cccc(C(C)=O)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(C(C)=O)c2)nc(N)n1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nnc(N)s2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cc(C(N)=O)cn2C)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(C(C)(C)O)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(C(C)=O)c2)s1; [None]; [None]; [0] +CC(=O)c1cccc(Oc2ccc(C[NH3+])cc2F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(C(C)=O)c2)CC1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)c1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(C(C)=O)c3)c2)cc1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cncc(N)n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(C(C)=O)c2)[nH]1; [None]; [None]; [0] +CC(=O)c1cccc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +COc1ccc(Oc2cccc(C(C)=O)c2)c(F)c1F; [None]; [None]; [0] +CC(=O)c1cccc([C@H]2CC[C@@](C)(O)CC2)c1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(C(C)=O)c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc(C(C)=O)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(S(=O)(=O)N(C)C)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cnnc(N(C)C)c2)c1; [None]; [None]; [0] +CC(=O)c1cccc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; [None]; [None]; [0] +CC(=O)c1cccc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; [None]; [None]; [0] +CC(=O)c1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +CCOc1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +COC(C)(C)CCc1cc(Br)ccc1O; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(Br)ccc2O)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccnc2ccccc12; [None]; [None]; [0] +CCn1cc(-c2cc(Br)ccc2O)cn1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccccc1OC(F)(F)F; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(Br)ccc3O)cc2c1=O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +OCCn1cc(-c2cc(Br)ccc2O)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(Br)ccc2O)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(Br)ccc2O)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cc(Br)ccc1O; [None]; [None]; [0] +COc1cnc(-c2cc(Br)ccc2O)nc1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cc(Cl)ccc1Cl; [None]; [None]; [0] +CC(C)C(=O)COc1cc(Br)ccc1O; [None]; [None]; [0] +Cc1ccc(-c2cc(Br)ccc2O)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnc2ccccn12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(Br)ccc2O)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(Br)ccc2O)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnc2cccnn12; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cccc(Br)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Br)cc1NCc1cccnc1; [None]; [None]; [0] +Cc1c(-c2cc(Br)ccc2O)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnn2ncccc12; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +Oc1ccc(Br)cc1Nc1cccnc1; [None]; [None]; [0] +Oc1ccc(Br)cc1-n1cnc2ccccc21; [None]; [None]; [0] +Oc1ccc(Br)cc1NCCc1c[nH]cn1; [None]; [None]; [0] +O=C(Nc1cc(Br)ccc1O)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cncc2ccccc12; [None]; [None]; [0] +Oc1ccc(Br)cc1NCCc1ccccc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(Br)ccc3O)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc(Br)ccc3O)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc(Br)ccc3O)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(Br)ccc3O)ccc21; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +Oc1ccc(Br)cc1NCc1ccc(Cl)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +Oc1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +OCc1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +COc1cc(-c2cc(Br)ccc2O)ccc1C(=O)[O-]; [None]; [None]; [0] +Oc1ccc(Br)cc1Nc1ccncc1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(Br)ccc2O)nn1; [None]; [None]; [0] +Oc1ccc(Br)cc1NCc1ccccc1F; [None]; [None]; [0] +CSc1nc(-c2cc(Br)ccc2O)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1CCc1c[nH]nn1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1csc2ncncc12; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +Nc1nc(-c2cc(Br)ccc2O)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cc(Br)ccc1O; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(Br)ccc3O)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +NC(=O)CCCc1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1Oc1ccccn1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(Br)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +O=C(Nc1cc(Br)ccc1O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cc(Br)ccc2O)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(Br)ccc2O)CC1; [None]; [None]; [0] +CC(C)(COc1cc(Br)ccc1O)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc(Br)ccc2O)cc1Cl; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnn2ccccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc(Br)ccc2O)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cc(Br)ccc2O)cn1; [None]; [None]; [0] +O=c1cc(-c2cc(Br)ccc2O)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc(Br)ccc3O)c21; [None]; [None]; [0] +COc1cc(CCc2cc(Br)ccc2O)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +C[C@@H](Oc1cc(Br)ccc1O)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +CCN(CC)c1cc(Br)ccc1O; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc(Br)ccc3O)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc(Br)ccc3O)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1Nc1cnccc1-c1ccccc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1Nc1cnc2ccccc2c1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +CC1(c2cc(Br)ccc2O)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc(Br)ccc1O)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +Cc1cc(-c2cc(Br)ccc2O)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc(Br)ccc1O)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +OCCc1cn(-c2cc(Br)ccc2O)cn1; [None]; [None]; [0] +C[C@H](Nc1cc(Br)ccc1O)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc(Br)ccc1O)C(C)(C)O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1c(F)cccc1Cl; [None]; [None]; [0] +Oc1ccc(Br)cc1-n1ncc2ccccc21; [None]; [None]; [0] +Oc1ccc(Br)cc1-n1ncc2c(O)cccc21; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(Br)ccc3O)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(Br)ccc2O)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(Br)ccc2O)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc(Br)ccc2O)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(Br)ccc2O)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(Br)ccc1O; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1nncn1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Br)cc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +O=C(CCc1cc(Br)ccc1O)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cc(Br)ccc1O)NCc1ccccn1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CCc1cc(-c2cc(Br)ccc2O)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc(Br)ccc2O)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc(Br)ccc2O)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(Br)ccc1O; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(Br)ccc2O)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc(Br)ccc2O)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(Br)ccc2O)CC1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1nc2ccccc2s1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(Br)ccc3O)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(Br)ccc3O)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc(Br)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cccc2ccsc12; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1cccc2nnsc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(Br)ccc2O)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc(Br)ccc2O)nc2ccccc12; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +OCCn1cnc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Br)cc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(Br)ccc1O; [None]; [None]; [0] +COc1ccc(Oc2cc(Br)ccc2O)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(Br)ccc2O)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(Br)ccc1O; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(Br)ccc2O)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(Br)ccc2O)cnn1; [None]; [None]; [0] +Oc1ccc(Br)cc1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +Oc1ccc(Br)cc1N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(Br)ccc2O)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(C=Cc2cccc(-c3cnccn3)c2)ccc1O; [None]; [None]; [0] +O=C1Nc2ccc(Cl)cc2C1=Cc1cccc(-c2cnccn2)c1; [None]; [None]; [0] +Oc1ccc(C=Cc2cccc(-c3cnccn3)c2)cc1; [None]; [None]; [0] +Oc1ccc(C=Cc2cccc(-c3cnccn3)c2)c(O)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +COC(C)(C)CCc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc(C(F)(F)F)c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +CCn1cc(-c2cccc(C(F)(F)F)c2)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc(C(F)(F)F)c3)cc2c1=O; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +OCCn1cc(-c2cccc(C(F)(F)F)c2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(C(F)(F)F)c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(C(F)(F)F)c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1ccc(-c2cccc(C(F)(F)F)c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc(C(F)(F)F)c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc(C(F)(F)F)c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCc2cccnc2)c1; [None]; [None]; [0] +Cc1c(-c2cccc(C(F)(F)F)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(Nc2cccnc2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-n2cnc3ccccc32)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCCc2c[nH]cn2)c1; [None]; [None]; [0] +O=C(Nc1cccc(C(F)(F)F)c1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCCc2ccccc2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc(C(F)(F)F)c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cccc(C(F)(F)F)c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cccc(C(F)(F)F)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc(C(F)(F)F)c3)ccc21; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +Oc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +OCc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(C(F)(F)F)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +FC(F)(F)c1cccc(Nc2ccncc2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc(C(F)(F)F)c2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CSc1nc(-c2cccc(C(F)(F)F)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2csc3ncncc23)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +Nc1nc(-c2cccc(C(F)(F)F)c2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc(C(F)(F)F)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +Fc1ccc(-c2cccc(C(F)(F)F)c2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(Oc2ccccn2)c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(C(F)(F)F)c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +CC(C)(COc1cccc(C(F)(F)F)c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc(C(F)(F)F)c2)cc1Cl; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cccc(C(F)(F)F)c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cccc(C(F)(F)F)c2)cn1; [None]; [None]; [0] +O=c1cc(-c2cccc(C(F)(F)F)c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cccc(C(F)(F)F)c3)c21; [None]; [None]; [0] +COc1cc(CCc2cccc(C(F)(F)F)c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +C[C@@H](Oc1cccc(C(F)(F)F)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CCN(CC)c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(Nc2cnccc2-c2ccccc2)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC1(c2cccc(C(F)(F)F)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc(C(F)(F)F)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc(C(F)(F)F)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(C(F)(F)F)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +OCCc1cn(-c2cccc(C(F)(F)F)c2)cn1; [None]; [None]; [0] +C[C@H](Nc1cccc(C(F)(F)F)c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc(C(F)(F)F)c1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-n2ncc3ccccc32)c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cccc(C(F)(F)F)c3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(C(F)(F)F)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc(C(F)(F)F)c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)c1cccc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +O=C(CCc1cccc(C(F)(F)F)c1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cccc(C(F)(F)F)c1)NCc1ccccn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCc1cc(-c2cccc(C(F)(F)F)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(C(F)(F)F)c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cccc(C(F)(F)F)c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(C(F)(F)F)c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cccc(C(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc(C(F)(F)F)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(C(F)(F)F)c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(C(F)(F)F)c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cccc(C(F)(F)F)c2)nc2ccccc12; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +COc1ccc(Oc2cccc(C(F)(F)F)c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(C(F)(F)F)c2)cnn1; [None]; [None]; [0] +FC(F)(F)c1cccc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(C(F)(F)F)c2)c1)C1CCNCC1; [None]; [None]; [0] +C(=Cc1c[nH]c2ccccc12)c1c[nH]c2ccccc12; [None]; [None]; [0] +Oc1cc(O)cc(C=Cc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(O)cc(C=Cc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3ccccc23)cc(OC)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3ccccc23)ccc1O; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1c[nH]c2ccccc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +CCOc1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +COC(C)(C)CCc1cc(Cl)ccc1O; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(Cl)ccc2O)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccnc2ccccc12; [None]; [None]; [0] +CCn1cc(-c2cc(Cl)ccc2O)cn1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccccc1OC(F)(F)F; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(Cl)ccc3O)cc2c1=O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +OCCn1cc(-c2cc(Cl)ccc2O)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(Cl)ccc2O)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(Cl)ccc2O)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cc(Cl)ccc1O; [None]; [None]; [0] +COc1cnc(-c2cc(Cl)ccc2O)nc1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cc(Cl)ccc1Cl; [None]; [None]; [0] +CC(C)C(=O)COc1cc(Cl)ccc1O; [None]; [None]; [0] +Cc1ccc(-c2cc(Cl)ccc2O)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnc2ccccn12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(Cl)ccc2O)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(Cl)ccc2O)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnc2cccnn12; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cccc(Br)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1NCc1cccnc1; [None]; [None]; [0] +Cc1c(-c2cc(Cl)ccc2O)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnn2ncccc12; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1Nc1cccnc1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-n1cnc2ccccc21; [None]; [None]; [0] +Oc1ccc(Cl)cc1NCCc1c[nH]cn1; [None]; [None]; [0] +O=C(Nc1cc(Cl)ccc1O)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cncc2ccccc12; [None]; [None]; [0] +Oc1ccc(Cl)cc1NCCc1ccccc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(Cl)ccc3O)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc(Cl)ccc3O)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc(Cl)ccc3O)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(Cl)ccc3O)ccc21; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +Oc1ccc(Cl)cc1NCc1ccc(Cl)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +Oc1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +OCc1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +COc1cc(-c2cc(Cl)ccc2O)ccc1C(=O)[O-]; [None]; [None]; [0] +Oc1ccc(Cl)cc1Nc1ccncc1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(Cl)ccc2O)nn1; [None]; [None]; [0] +Oc1ccc(Cl)cc1NCc1ccccc1F; [None]; [None]; [0] +CSc1nc(-c2cc(Cl)ccc2O)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1CCc1c[nH]nn1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1csc2ncncc12; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +Nc1nc(-c2cc(Cl)ccc2O)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(Cl)ccc3O)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +NC(=O)CCCc1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1Oc1ccccn1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(Cl)ccc1O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +O=C(Nc1cc(Cl)ccc1O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cc(Cl)ccc2O)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(Cl)ccc2O)CC1; [None]; [None]; [0] +CC(C)(COc1cc(Cl)ccc1O)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc(Cl)ccc2O)cc1Cl; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnn2ccccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc(Cl)ccc2O)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cc(Cl)ccc2O)cn1; [None]; [None]; [0] +O=c1cc(-c2cc(Cl)ccc2O)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc(Cl)ccc3O)c21; [None]; [None]; [0] +COc1cc(CCc2cc(Cl)ccc2O)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +C[C@@H](Oc1cc(Cl)ccc1O)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +CCN(CC)c1cc(Cl)ccc1O; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc(Cl)ccc3O)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc(Cl)ccc3O)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1Nc1cnccc1-c1ccccc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1Nc1cnc2ccccc2c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +CC1(c2cc(Cl)ccc2O)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc(Cl)ccc1O)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +Cc1cc(-c2cc(Cl)ccc2O)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc(Cl)ccc1O)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +OCCc1cn(-c2cc(Cl)ccc2O)cn1; [None]; [None]; [0] +C[C@H](Nc1cc(Cl)ccc1O)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc(Cl)ccc1O)C(C)(C)O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1c(F)cccc1Cl; [None]; [None]; [0] +Oc1ccc(Cl)cc1-n1ncc2ccccc21; [None]; [None]; [0] +Oc1ccc(Cl)cc1-n1ncc2c(O)cccc21; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(Cl)ccc3O)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(Cl)ccc2O)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(Cl)ccc2O)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc(Cl)ccc2O)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(Cl)ccc2O)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1nncn1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Cl)cc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +O=C(CCc1cc(Cl)ccc1O)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cc(Cl)ccc1O)NCc1ccccn1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CCc1cc(-c2cc(Cl)ccc2O)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc(Cl)ccc2O)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc(Cl)ccc2O)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(Cl)ccc2O)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc(Cl)ccc2O)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(Cl)ccc2O)CC1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1nc2ccccc2s1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(Cl)ccc3O)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(Cl)ccc3O)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc(Cl)ccc2O)n1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cccc2ccsc12; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1cccc2nnsc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(Cl)ccc2O)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc(Cl)ccc2O)nc2ccccc12; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +OCCn1cnc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +Oc1ccc(Cl)cc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +COc1ccc(Oc2cc(Cl)ccc2O)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(Cl)ccc2O)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +COc1ncccc1-c1cc(Cl)ccc1O; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(Cl)ccc2O)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(Cl)ccc2O)cnn1; [None]; [None]; [0] +Oc1ccc(Cl)cc1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +Oc1ccc(Cl)cc1N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(Cl)ccc2O)c1)C1CCNCC1; [None]; [None]; [0] +Oc1cccc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cccc4ncccc34)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3c(Cl)ccc4c3OCO4)nc12; [None]; [None]; [0] +Oc1cc(-c2ccc3cccc(O)c3n2)ccc1Cl; [None]; [None]; [0] +Oc1cccc2ccc(-c3n[nH]c4ccccc34)nc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +Oc1cccc2ccc(-c3c(Cl)cccc3Cl)nc12; [None]; [None]; [0] +Oc1cccc2ccc(Oc3ccc(F)cc3)nc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3cccc(O)c3n2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2ccc3cccc(O)c3n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1ccc(-c2ccc3cccc(O)c3n2)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2ccc3cccc(O)c3n2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4cccc(O)c4n3)cc2[nH]1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cn[nH]c3Cl)nc12; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3ccc4cccc(O)c4n3)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2ccc3cccc(O)c3n2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3cccc(O)c3n2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3cccc(O)c3n2)ccc1O; [None]; [None]; [0] +Oc1cccc2ccc(-c3cccc(Br)c3)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3ccc4ccccc4c3)nc12; [None]; [None]; [0] +Oc1ccc(-c2ccc3cccc(O)c3n2)cc1F; [None]; [None]; [0] +Cn1cc(-c2ccc3cccc(O)c3n2)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2ccc3cccc(O)c3n2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cnn4ncccc34)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3c[nH]c4cnccc34)nc12; [None]; [None]; [0] +Nc1cc(-c2ccc3cccc(O)c3n2)ccn1; [None]; [None]; [0] +Oc1cccc2ccc(COc3ccccc3Cl)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3ccc(F)c(Cl)c3)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)nc12; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1ncc(-c2ccc3cccc(O)c3n2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3cccc(O)c3n2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc3cccc(O)c3n2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4cccc(O)c4n3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4cccc(O)c4n3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3cccc(O)c3n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cnc4[nH]ccc4c3)nc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +Oc1cccc2ccc(-c3nc4ccccc4s3)nc12; [None]; [None]; [0] +Oc1cncc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4cccc(O)c4n3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2cccc(O)c2n1; [None]; [None]; [0] +CNc1nccc(-c2ccc3cccc(O)c3n2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4cccc(O)c4n3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3cccc(O)c3n2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cc(C(F)F)n[nH]3)nc12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1cccc2ccc(-c3ccncc3Cl)nc12; [None]; [None]; [0] +CCc1sccc1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2ccc3cccc(O)c3n2)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2ccc3cccc(O)c3n2)ncc1F; [None]; [None]; [0] +Oc1cccc2ccc(-c3ccc4c(c3)CCN4)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3cc(O)n4nccc4n3)nc12; [None]; [None]; [0] +Cc1oc(-c2ccc3cccc(O)c3n2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3ccc4cccc(O)c4n3)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1cccc2ccc(Nc3ccncc3)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3ccc(Br)cc3F)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3[nH]nc4ccc(F)cc34)nc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +CN(c1ccc2cccc(O)c2n1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc3cccc(O)c3n2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3cccc(O)c3n2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4cccc(O)c4n3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc3cccc(O)c3n2)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2ccc3cccc(O)c3n2)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3ccc4cccc(O)c4n3)ccc12; [None]; [None]; [0] +CSc1cccc(-c2ccc3cccc(O)c3n2)c1; [None]; [None]; [0] +Oc1cccc2ccc(CCc3c[nH]c4ccccc34)nc12; [None]; [None]; [0] +Oc1cccc2ccc(OCc3cccc4ccccc34)nc12; [None]; [None]; [0] +Oc1cccc2ccc(-c3ocnc3-c3ccc(F)cc3)nc12; [None]; [None]; [0] +Oc1cccc2ccc(Oc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2cccc(O)c2n1; [None]; [None]; [0] +Oc1cccc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)nc12; [None]; [None]; [0] +Oc1cccc2ccc(OCc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Oc1cccc2ccc(CCc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Oc1cccc2ccc(NCc3c(F)cccc3Cl)nc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CCOc1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COC(C)(C)CCc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc(OC(F)(F)F)c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccnc3ccccc23)c1; [None]; [None]; [0] +CCn1cc(-c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccccc2OC(F)(F)F)c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnn(Cc3ccccc3)c2)c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc(OC(F)(F)F)c3)cc2c1=O; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +OCCn1cc(-c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(OC(F)(F)F)c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(OC(F)(F)F)c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COc1cnc(-c2cccc(OC(F)(F)F)c2)nc1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cc(Cl)ccc2Cl)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1ccc(-c2cccc(OC(F)(F)F)c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnc3ccccn23)c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc(OC(F)(F)F)c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc(OC(F)(F)F)c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cccc(Cn3cncn3)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cccc(Br)c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(NCc2cccnc2)c1; [None]; [None]; [0] +Cc1c(-c2cccc(OC(F)(F)F)c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnn3ncccc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Nc2cccnc2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-n2cnc3ccccc32)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(NCCc2c[nH]cn2)c1; [None]; [None]; [0] +O=C(Nc1cccc(OC(F)(F)F)c1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2c[nH]nc2C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cncc3ccccc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(NCCc2ccccc2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc(OC(F)(F)F)c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cccc(OC(F)(F)F)c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cccc(OC(F)(F)F)c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc(OC(F)(F)F)c3)ccc21; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccc(-c3cn[nH]c3)cc2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(NCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +Oc1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +OCc1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +COc1cc(-c2cccc(OC(F)(F)F)c2)ccc1C(=O)[O-]; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Nc2ccncc2)c1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc(OC(F)(F)F)c2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CSc1nc(-c2cccc(OC(F)(F)F)c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(CCc2c[nH]nn2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2csc3ncncc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cc3ccccc3[nH]2)c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +Nc1nc(-c2cccc(OC(F)(F)F)c2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc(OC(F)(F)F)c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +Fc1ccc(-c2cccc(OC(F)(F)F)c2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Oc2ccccn2)c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(OC(F)(F)F)c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cccc(OC(F)(F)F)c2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc(OC(F)(F)F)c2)CC1; [None]; [None]; [0] +CC(C)(COc1cccc(OC(F)(F)F)c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc(OC(F)(F)F)c2)cc1Cl; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cccc(OC(F)(F)F)c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +O=c1cc(-c2cccc(OC(F)(F)F)c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cccc(OC(F)(F)F)c3)c21; [None]; [None]; [0] +COc1cc(CCc2cccc(OC(F)(F)F)c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +C[C@@H](Oc1cccc(OC(F)(F)F)c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +CCN(CC)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cccc(OC(F)(F)F)c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cccc(OC(F)(F)F)c3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Nc2cnccc2-c2ccccc2)c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CC1(c2cccc(OC(F)(F)F)c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc(OC(F)(F)F)c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc(OC(F)(F)F)c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc(OC(F)(F)F)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +OCCc1cn(-c2cccc(OC(F)(F)F)c2)cn1; [None]; [None]; [0] +C[C@H](Nc1cccc(OC(F)(F)F)c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc(OC(F)(F)F)c1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-n2ncc3ccccc32)c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ccc(-n3cncn3)cc2)c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cccc(OC(F)(F)F)c3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc(OC(F)(F)F)c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc(OC(F)(F)F)c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cccc(OC(F)(F)F)c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc(OC(F)(F)F)c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2nncn2C2CC2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(Cc2nnc3ccc(-c4ccccc4)nn23)c1; [None]; [None]; [0] +O=C(CCc1cccc(OC(F)(F)F)c1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cccc(OC(F)(F)F)c1)NCc1ccccn1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cn(Cc3ccccc3)nn2)c1; [None]; [None]; [0] +CCc1cc(-c2cccc(OC(F)(F)F)c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc(OC(F)(F)F)c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cccc(OC(F)(F)F)c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc(OC(F)(F)F)c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cccc(OC(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc(OC(F)(F)F)c2)CC1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2nc3ccccc3s2)c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc(OC(F)(F)F)c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc(OC(F)(F)F)c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc(OC(F)(F)F)c2)n1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cccc3ccsc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2cccc3nnsc23)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(OC(F)(F)F)c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cccc(OC(F)(F)F)c2)nc2ccccc12; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +COc1ccc(Oc2cccc(OC(F)(F)F)c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc(OC(F)(F)F)c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(OC(F)(F)F)c2)cnn1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(N2CCC(c3nc4ccccc4[nH]3)CC2)c1; [None]; [None]; [0] +FC(F)(F)Oc1cccc(N2CC=C(c3c[nH]c4ccccc34)CC2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(OC(F)(F)F)c2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(C=Cc2cccc(OC(C)C)c2)ccc1O; [None]; [None]; [0] +CC(C)Oc1cccc(C=C2C(=O)Nc3ccc(Cl)cc32)c1; [None]; [None]; [0] +CC(C)Oc1cccc(C=Cc2ccc(O)cc2)c1; [None]; [None]; [0] +CC(C)Oc1cccc(C=Cc2ccc(O)cc2O)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2ccccc2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3ccccc3c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3ccccc3c2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccnc4ccccc34)ccc2c1; [None]; [None]; [0] +CCn1cc(-c2ccc3ccccc3c2)cn1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4ccccc4c3)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4ccccc4c3)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4ccccc4c3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc3ccccc3c2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3ccccc3c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ccccc3c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc2ccccc2c1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2ccccc2c1; [None]; [None]; [0] +Cc1ccc(-c2ccc3ccccc3c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2ccccc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3ccccc3c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3ccccc3c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc2ccccc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +Brc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +c1cncc(CNc2ccc3ccccc3c2)c1; [None]; [None]; [0] +Cc1c(-c2ccc3ccccc3c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +c1ccc2cc(-c3cnn4ncccc34)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc4ccccc4c3)ccc2c1; [None]; [None]; [0] +c1cncc(Nc2ccc3ccccc3c2)c1; [None]; [None]; [0] +c1ccc2cc(-n3cnc4ccccc43)ccc2c1; [None]; [None]; [0] +c1ccc2cc(NCCc3c[nH]cn3)ccc2c1; [None]; [None]; [0] +O=C(Nc1ccc2ccccc2c1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3cncc4ccccc34)ccc2c1; [None]; [None]; [0] +c1ccc(CCNc2ccc3ccccc3c2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4ccccc4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4ccccc4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4ccccc4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4ccccc4c3)ccc21; [None]; [None]; [0] +c1ccc2cc(-c3ccc(-c4cn[nH]c4)cc3)ccc2c1; [None]; [None]; [0] +Clc1ccc(CNc2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +Oc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +OCc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +COc1cc(-c2ccc3ccccc3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1ccc2cc(Nc3ccncc3)ccc2c1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3ccccc3c2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2ccccc2c1; [None]; [None]; [0] +CSc1nc(-c2ccc3ccccc3c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(CCc3c[nH]nn3)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3csc4ncncc34)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3cc4ccccc4[nH]3)ccc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc3ccccc3c2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2ccccc2c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4ccccc4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ccc3ccccc3c2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc(Oc2ccc3ccccc3c2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2ccccc2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +O=C(Nc1ccc2ccccc2c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3ccccc3c2)CC1; [None]; [None]; [0] +CC(C)(COc1ccc2ccccc2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3ccccc3c2)cc1Cl; [None]; [None]; [0] +c1ccc2cc(-c3cnn4ccccc34)ccc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3ccccc3c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc3ccccc3c2)cn1; [None]; [None]; [0] +O=c1cc(-c2ccc3ccccc3c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4ccccc4c3)c21; [None]; [None]; [0] +COc1cc(CCc2ccc3ccccc3c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +C[C@@H](Oc1ccc2ccccc2c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc2ccccc2c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4ccccc4c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4ccccc4c3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(Nc3cnc4ccccc4c3)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3c[nH]c4cnccc34)ccc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3cnc4[nH]ccc4c3)ccc2c1; [None]; [None]; [0] +CC1(c2ccc3ccccc3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc2ccccc2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +c1ccc2cc(-c3ccc(N4CCOCC4)cc3)ccc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3ccccc3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc2ccccc2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +OCCc1cn(-c2ccc3ccccc3c2)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc2ccccc2c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccc2ccccc2c1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-n3ncc4ccccc43)ccc2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc(-n4cncn4)cc3)ccc2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4ccccc4c3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3ccccc3c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3ccccc3c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ccccc3c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2ccccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3nncn3C3CC3)ccc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5ccccc5c4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1ccc2ccccc2c1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2ccccc2c1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4ccccc4c3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc3ccccc3c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3ccccc3c2)nc(N)n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ccccc3c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3ccccc3c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3ccccc3c2)CC1; [None]; [None]; [0] +c1ccc2cc(-c3nc4ccccc4s3)ccc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4ccccc4c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4ccccc4c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +c1ccc2cc(-c3cccc4ccsc34)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3cccc4nnsc34)ccc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3ccccc3c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3ccccc3c2)nc2ccccc12; [None]; [None]; [0] +c1ccc2cc(-c3ncc4ccccc4n3)ccc2c1; [None]; [None]; [0] +c1ccc2cc(-c3c[nH]c4cccnc34)ccc2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +c1ccc2cc(-c3ncc4cc[nH]c4n3)ccc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2ccccc2c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3ccccc3c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3ccccc3c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2ccccc2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3ccccc3c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3ccccc3c2)cnn1; [None]; [None]; [0] +c1ccc2cc(N3CCC(c4nc5ccccc5[nH]4)CC3)ccc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3ccccc3c2)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ccccc3c2)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +COC(C)(C)CCc1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3c(C)[nH]nc3cn2)[nH]1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccccc3S(=O)(=O)C(C)C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(Cc3cc(F)cc(F)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccccc3P(C)(C)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccnc4ccccc34)cc12; [None]; [None]; [0] +CCn1cc(-c2cc3c(C)[nH]nc3cn2)cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccccc3OC(F)(F)F)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccccc3C(=O)[O-])cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccccc3C(N)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnn(Cc4ccccc4)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4ncn(C)c(=O)c4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnn(CCO)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3csc(C(C)(C)C)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(NC(=O)c4ccccc4)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3ncc4cccc(F)c4c3=O)cc12; [None]; [None]; [0] +COc1cnc(-c2cc3c(C)[nH]nc3cn2)nc1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc(Cl)ccc3Cl)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(OCC(=O)C(C)C)cc12; [None]; [None]; [0] +Cc1ccc(-c2cc3c(C)[nH]nc3cn2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnc4ccccn34)cc12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3c(C)[nH]nc3cn2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3c(C)[nH]nc3cn2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(Br)c3)cc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3c(C)[nH]nc3cn2)c1; [None]; [None]; [0] +Cc1[nH]nc2cnc(NCc3cccnc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3sc(=O)n(C)c3C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccnc(N)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnn4ncccc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4ccccc4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(Nc3cccnc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3cnc4ccccc43)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(NCCc3c[nH]cn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(NC(=O)c3cccs3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(CC(=O)[O-])c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3c[nH]nc3C(F)(F)F)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(F)c3C(N)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cncc4ccccc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(NCCc3ccccc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(-c4cnn(C)c4)cc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4c(N)[nH]nc4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4c(c3)CS(=O)(=O)N4C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4c(cnn4C)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(-c4cn[nH]c4)cc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(NCc3ccc(Cl)cc3)cc12; [None]; [None]; [0] +CCCn1cnc(-c2cc3c(C)[nH]nc3cn2)n1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(O)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(CO)c3)cc12; [None]; [None]; [0] +COc1cc(-c2cc3c(C)[nH]nc3cn2)ccc1C(=O)[O-]; [None]; [None]; [0] +Cc1[nH]nc2cnc(Nc3ccncc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cn(C(C)C)nn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(NCc3ccccc3F)cc12; [None]; [None]; [0] +CSc1nc(-c2cc3c(C)[nH]nc3cn2)c[nH]1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnoc3C(C)C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(CCc3c[nH]nn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3csc4ncncc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc4ccccc4[nH]3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(CCC#N)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3csc(N)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cncnc3N)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4c(C)[nH]nc4cn3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3c(C)[nH]nc3cn2)cc1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(F)cc3C(F)(F)F)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(CCCC(N)=O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(Oc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(CCNC(=O)CC(C)(C)O)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3c(C)[nH]nc3cn2)c1; [None]; [None]; [0] +Cc1[nH]nc2cnc(NC(=O)c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cn(C)c4ccccc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N3CCC(S(C)(=O)=O)CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(OCC(C)(C)S(C)(=O)=O)cc12; [None]; [None]; [0] +COc1ccc(-c2cc3c(C)[nH]nc3cn2)cc1Cl; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnn4ccccc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +CCCn1cc(-c2cc3c(C)[nH]nc3cn2)cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc[nH]c(=O)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc4c3C(=O)CC4)cc12; [None]; [None]; [0] +COc1cc(CCc2cc3c(C)[nH]nc3cn2)cc(OC)c1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(C(C)(C)N)cc3)cc12; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(O[C@H](C)c3c(Cl)cncc3Cl)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc([S@](C)=O)cc3)cc12; [None]; [None]; [0] +CCN(CC)c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc4c(=O)[nH]ccc4o3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(Nc3cnccc3-c3ccccc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cncc(OC(C)C)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(C(C)(C)C)cc3)cc12; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(Nc3cnc4ccccc4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3c[nH]c4cnccc34)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnc4[nH]ccc4c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(C3(C)CCN(S(C)(=O)=O)CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)cc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(C)[nH]nc3cn2)cc1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(N4CCOCC4)cc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(S(C)(=O)=O)cc3)cc12; [None]; [None]; [0] +Cc1cc(-c2cc3c(C)[nH]nc3cn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Cc1[nH]nc2cnc(N[C@@H](C)C(=O)NCC(F)(F)F)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3ccc(CO)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3cnc(CCO)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N[C@@H](C)C(C)(C)O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N[C@H](C)C(C)(C)O)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3c(F)cccc3Cl)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3ncc4ccccc43)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-n3ncc4c(O)cccc43)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nc4ccc(O)cc4[nH]3)cc12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3c(C)[nH]nc3cn2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc3c(C)[nH]nc3cn2)c(OC)c1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc(C(=O)c4ccccc4)cc3)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3c(C)[nH]nc3cn2)CC1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nncn3C(C)C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(Cc3nnc4ccc(-c5ccccc5)nn34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(CCC(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(CS(=O)(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cn(Cc4ccccc4)nn3)cc12; [None]; [None]; [0] +CCc1cc(-c2cc3c(C)[nH]nc3cn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc3c(C)[nH]nc3cn2)nc(N)n1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nnc(N)s3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cc(C(N)=O)cn3C)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(C(C)(C)O)n3)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(C)[nH]nc3cn2)s1; [None]; [None]; [0] +Cc1[nH]nc2cnc(Oc3ccc(C[NH3+])cc3F)cc12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3c(C)[nH]nc3cn2)CC1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4c(C)[nH]nc4cn3)c2)cc1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cncc(N)n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc4ccsc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc4nnsc34)cc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3c(C)[nH]nc3cn2)[nH]1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3nc(N)c4ccccc4n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3c[nH]c4cccnc34)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +COc1ccc(Oc2cc3c(C)[nH]nc3cn2)c(F)c1F; [None]; [None]; [0] +Cc1[nH]nc2cnc([C@H]3CC[C@@](C)(O)CC3)cc12; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3c(C)[nH]nc3cn2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2c(C)[nH]nc2cn1; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(S(=O)(=O)N(C)C)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cnnc(N(C)C)c3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N3CCC(c4nc5ccccc5[nH]4)CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(N3CC=C(c4c[nH]c5ccccc45)CC3)cc12; [None]; [None]; [0] +Cc1[nH]nc2cnc(-c3cccc(NC(=O)C4CCNCC4)c3)cc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3c(=O)n(C)cnc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(Cc3cc(F)cc(F)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccccc3P(C)(C)=O)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccnc4ccccc34)cccc2c1=O; [None]; [None]; [0] +CCn1cc(-c2cccc3c(=O)n(C)cnc23)cn1; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(C(F)(F)F)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccccc3OC(F)(F)F)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccccc3C(=O)[O-])cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccccc3C(N)=O)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cnn(Cc4ccccc4)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4c(=O)n(C)cnc34)cc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cnc(-c4ccccc4)[nH]3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cnn(CCO)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3csc(C(C)(C)C)n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(NC(=O)c4ccccc4)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-n3ncc4cccc(F)c4c3=O)cccc2c1=O; [None]; [None]; [0] +COc1cnc(-c2cccc3c(=O)n(C)cnc23)nc1; [None]; [None]; [0] +Cn1cnc2c(-c3cc(Cl)ccc3Cl)cccc2c1=O; [None]; [None]; [0] +CC(C)C(=O)COc1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cc1ccc(-c2cccc3c(=O)n(C)cnc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3cnc4ccccn34)cccc2c1=O; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3c(=O)n(C)cnc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc3c(=O)n(C)cnc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3cnc4cccnn34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3c(Cl)cccc3Cl)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(Cn4cncn4)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(Br)c3)cccc2c1=O; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3c(=O)n(C)cnc23)c1; [None]; [None]; [0] +Cn1cnc2c(NCc3cccnc3)cccc2c1=O; [None]; [None]; [0] +Cc1c(-c2cccc3c(=O)n(C)cnc23)sc(=O)n1C; [None]; [None]; [0] +Cn1cnc2c(-c3ccnc(N)n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cnn4ncccc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc4ccccc4c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(Nc3cccnc3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-n3cnc4ccccc43)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(NCCc3c[nH]cn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(NC(=O)c3cccs3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(CC(=O)[O-])c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3c[nH]nc3C(F)(F)F)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(F)c3C(N)=O)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cncc4ccccc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(NCCc3ccccc3)cccc2c1=O; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4c(=O)n(C)cnc34)cc2)cn1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc4c(N)[nH]nc4c3)cccc2c1=O; [None]; [None]; [0] +CN1c2ccc(-c3cccc4c(=O)n(C)cnc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc4c(cnn4C)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(-c4cn[nH]c4)cc3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(NCc3ccc(Cl)cc3)cccc2c1=O; [None]; [None]; [0] +CCCn1cnc(-c2cccc3c(=O)n(C)cnc23)n1; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(O)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(CO)c3)cccc2c1=O; [None]; [None]; [0] +COc1cc(-c2cccc3c(=O)n(C)cnc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Cn1cnc2c(Nc3ccncc3)cccc2c1=O; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3c(=O)n(C)cnc23)nn1; [None]; [None]; [0] +Cn1cnc2c(NCc3ccccc3F)cccc2c1=O; [None]; [None]; [0] +CSc1nc(-c2cccc3c(=O)n(C)cnc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(CCc3c[nH]nn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3csc4ncncc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cc4ccccc4[nH]3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(CCC#N)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3csc(N)n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cncnc3N)cccc2c1=O; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4c(=O)n(C)cnc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc3c(=O)n(C)cnc23)cc1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(F)cc3C(F)(F)F)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(CCCC(N)=O)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(Oc3ccccn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(CCNC(=O)CC(C)(C)O)cccc2c1=O; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3c(=O)n(C)cnc23)c1; [None]; [None]; [0] +Cn1cnc2c(NC(=O)c3c(Cl)cccc3Cl)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cn(C)c4ccccc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(N3CCC(S(C)(=O)=O)CC3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(OCC(C)(C)S(C)(=O)=O)cccc2c1=O; [None]; [None]; [0] +COc1ccc(-c2cccc3c(=O)n(C)cnc23)cc1Cl; [None]; [None]; [0] +Cn1cnc2c(-c3cnn4ccccc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cccc2c1=O; [None]; [None]; [0] +CCCn1cc(-c2cccc3c(=O)n(C)cnc23)cn1; [None]; [None]; [0] +Cn1cnc2c(-c3cc[nH]c(=O)c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc4c3C(=O)CC4)cccc2c1=O; [None]; [None]; [0] +COc1cc(CCc2cccc3c(=O)n(C)cnc23)cc(OC)c1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(C(C)(C)N)cc3)cccc2c1=O; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +C[C@@H](Oc1cccc2c(=O)n(C)cnc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +Cn1cnc2c(-c3ccc([S@](C)=O)cc3)cccc2c1=O; [None]; [None]; [0] +CCN(CC)c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3cc4c(=O)[nH]ccc4o3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)cccc2c1=O; [None]; [None]; [0] +COc1ccncc1Nc1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(Nc3cnccc3-c3ccccc3)cccc2c1=O; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc3c(=O)n(C)cnc23)c1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(C(C)(C)C)cc3)cccc2c1=O; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(Nc3cnc4ccccc4c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3c[nH]c4cnccc34)cccc2c1=O; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3cnc4[nH]ccc4c3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(C3(C)CCN(S(C)(=O)=O)CC3)cccc2c1=O; [None]; [None]; [0] +CN(c1cccc2c(=O)n(C)cnc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)cccc2c1=O; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3c(=O)n(C)cnc23)cc1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(N4CCOCC4)cc3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(S(C)(=O)=O)cc3)cccc2c1=O; [None]; [None]; [0] +Cc1cc(-c2cccc3c(=O)n(C)cnc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2c(=O)n(C)cnc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1cnc2c(-n3ccc(CO)n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-n3cnc(CCO)c3)cccc2c1=O; [None]; [None]; [0] +C[C@H](Nc1cccc2c(=O)n(C)cnc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc2c(=O)n(C)cnc12)C(C)(C)O; [None]; [None]; [0] +Cn1cnc2c(-c3c(F)cccc3Cl)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-n3ncc4ccccc43)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-n3ncc4c(O)cccc43)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(-n4cncn4)cc3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3nc4ccc(O)cc4[nH]3)cccc2c1=O; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3c(=O)n(C)cnc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3c(=O)n(C)cnc23)c(OC)c1; [None]; [None]; [0] +Cn1cnc2c(-c3ccc(C(=O)c4ccccc4)cc3)cccc2c1=O; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3c(=O)n(C)cnc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3nncn3C3CC3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccn(CC[NH3+])n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(Cc3nnc4ccc(-c5ccccc5)nn34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(CCC(=O)NCc3ccccn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(CS(=O)(=O)NCc3ccccn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cn(Cc4ccccc4)nn3)cccc2c1=O; [None]; [None]; [0] +CCc1cc(-c2cccc3c(=O)n(C)cnc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3c(=O)n(C)cnc23)nc(N)n1; [None]; [None]; [0] +Cn1cnc2c(-c3nnc(N)s3)cccc2c1=O; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(C(C)(C)O)n3)cccc2c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3c(=O)n(C)cnc23)s1; [None]; [None]; [0] +Cn1cnc2c(Oc3ccc(C[NH3+])cc3F)cccc2c1=O; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3c(=O)n(C)cnc23)CC1; [None]; [None]; [0] +Cn1cnc2c(-c3nc4ccccc4s3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ccc4c(n3)NC(=O)C(C)(C)O4)cccc2c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4c(=O)n(C)cnc34)c2)cc1; [None]; [None]; [0] +Cn1cnc2c(-c3cncc(N)n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc4ccsc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc4nnsc34)cccc2c1=O; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc3c(=O)n(C)cnc23)[nH]1; [None]; [None]; [0] +Cn1cnc2c(-c3nc(N)c4ccccc4n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ncc4ccccc4n3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3c[nH]c4cccnc34)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cn(CCO)cn3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3ncc4cc[nH]c4n3)cccc2c1=O; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +COc1ccc(Oc2cccc3c(=O)n(C)cnc23)c(F)c1F; [None]; [None]; [0] +Cn1cnc2c([C@H]3CC[C@@](C)(O)CC3)cccc2c1=O; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3c(=O)n(C)cnc23)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc2c(=O)n(C)cnc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc3c(=O)n(C)cnc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3c(=O)n(C)cnc23)cnn1; [None]; [None]; [0] +Cn1cnc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)cccc2c1=O; [None]; [None]; [0] +Cn1cnc2c(-c3cccc(NC(=O)C4CCNCC4)c3)cccc2c1=O; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +COC(C)(C)CCc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2c[nH]c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ccnc4ccccc34)c2c1; [None]; [None]; [0] +CCn1cc(-c2c[nH]c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnn(Cc4ccccc4)c3)c2c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3c[nH]c4ccc(Cl)cc34)cc2c1=O; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnc(-c4ccccc4)[nH]3)c2c1; [None]; [None]; [0] +OCCn1cc(-c2c[nH]c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c3ccc(Cl)cc23)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +COc1cnc(-c2c[nH]c3ccc(Cl)cc23)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CC(C)C(=O)COc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Cc1ccc(-c2c[nH]c3ccc(Cl)cc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnc4ccccn34)c2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2c[nH]c3ccc(Cl)cc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2c[nH]c3ccc(Cl)cc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnc4cccnn34)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3c(Cl)cccc3Cl)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cccc(Cn4cncn4)c3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cccc(Br)c3)c2c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(NCc3cccnc3)c2c1; [None]; [None]; [0] +Cc1c(-c2c[nH]c3ccc(Cl)cc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnn4ncccc34)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ccc4ccccc4c3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(Nc3cccnc3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-n3cnc4ccccc43)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(NCCc3c[nH]cn3)c2c1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccc(Cl)cc12)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cncc4ccccc34)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(NCCc3ccccc3)c2c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3c[nH]c4ccc(Cl)cc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3c[nH]c4ccc(Cl)cc34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3c[nH]c4ccc(Cl)cc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3c[nH]c4ccc(Cl)cc34)ccc21; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ccc(-c4cn[nH]c4)cc3)c2c1; [None]; [None]; [0] +Clc1ccc(CNc2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +OCc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +COc1cc(-c2c[nH]c3ccc(Cl)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Clc1ccc2[nH]cc(Nc3ccncc3)c2c1; [None]; [None]; [0] +CC(C)n1cc(-c2c[nH]c3ccc(Cl)cc23)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CSc1nc(-c2c[nH]c3ccc(Cl)cc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(CCc3c[nH]nn3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3csc4ncncc34)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cc4ccccc4[nH]3)c2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3ccc(Cl)cc23)cs1; [None]; [None]; [0] +Nc1ncncc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3c[nH]c4ccc(Cl)cc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +Fc1ccc(-c2c[nH]c3ccc(Cl)cc23)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(Oc3ccccn3)c2c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccc(Cl)cc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3ccc(Cl)cc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2c[nH]c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +CC(C)(COc1c[nH]c2ccc(Cl)cc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1Cl; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnn4ccccc34)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2c[nH]c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +O=c1cc(-c2c[nH]c3ccc(Cl)cc23)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3c[nH]c4ccc(Cl)cc34)c21; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3ccc(Cl)cc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +C[C@@H](Oc1c[nH]c2ccc(Cl)cc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CCN(CC)c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3c[nH]c4ccc(Cl)cc34)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3c[nH]c4ccc(Cl)cc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(Nc3cnccc3-c3ccccc3)c2c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(Nc3cnc4ccccc4c3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3c[nH]c4cnccc34)c2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cnc4[nH]ccc4c3)c2c1; [None]; [None]; [0] +CC1(c2c[nH]c3ccc(Cl)cc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1c[nH]c2ccc(Cl)cc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ccc(N4CCOCC4)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c3ccc(Cl)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccc(Cl)cc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +OCCc1cn(-c2c[nH]c3ccc(Cl)cc23)cn1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccc(Cl)cc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1c[nH]c2ccc(Cl)cc12)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-n3ncc4ccccc43)c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ccc(-n4cncn4)cc3)c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3c[nH]c4ccc(Cl)cc34)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2c[nH]c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ccc(Cl)cc23)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c[nH]c3ccc(Cl)cc23)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3nncn3C3CC3)c2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +Clc1ccc2[nH]cc(Cc3nnc4ccc(-c5ccccc5)nn34)c2c1; [None]; [None]; [0] +O=C(CCc1c[nH]c2ccc(Cl)cc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1c[nH]c2ccc(Cl)cc12)NCc1ccccn1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cn(Cc4ccccc4)nn3)c2c1; [None]; [None]; [0] +CCc1cc(-c2c[nH]c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c3ccc(Cl)cc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2c[nH]c3ccc(Cl)cc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ccc(Cl)cc23)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2c[nH]c3ccc(Cl)cc23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3nc4ccccc4s3)c2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3c[nH]c4ccc(Cl)cc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c4ccc(Cl)cc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2c[nH]c3ccc(Cl)cc23)n1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cccc4ccsc34)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3cccc4nnsc34)c2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c3ccc(Cl)cc23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3ccc(Cl)cc23)nc2ccccc12; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ncc4ccccc4n3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3c[nH]c4cccnc34)c2c1; [None]; [None]; [0] +OCCn1cnc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(-c3ncc4cc[nH]c4n3)c2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +COc1ccc(Oc2c[nH]c3ccc(Cl)cc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c[nH]c3ccc(Cl)cc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +COc1ncccc1-c1c[nH]c2ccc(Cl)cc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c[nH]c3ccc(Cl)cc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2c[nH]c3ccc(Cl)cc23)cnn1; [None]; [None]; [0] +Clc1ccc2[nH]cc(N3CCC(c4nc5ccccc5[nH]4)CC3)c2c1; [None]; [None]; [0] +Clc1ccc2[nH]cc(N3CC=C(c4c[nH]c5ccccc45)CC3)c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3ccc(Cl)cc23)c1)C1CCNCC1; [None]; [None]; [0] +COc1cc(C=Cc2cccc(OC)c2OC)ccc1O; [None]; [None]; [0] +COc1cccc(C=C2C(=O)Nc3ccc(Cl)cc32)c1OC; [None]; [None]; [0] +COc1cccc(C=Cc2ccc(O)cc2)c1OC; [None]; [None]; [0] +COc1cccc(C=Cc2ccc(O)cc2O)c1OC; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CCOc1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +COC(C)(C)CCc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2c[nH]c3ccc(Br)cc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ccnc4ccccc34)c2c1; [None]; [None]; [0] +CCn1cc(-c2c[nH]c3ccc(Br)cc23)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnn(Cc4ccccc4)c3)c2c1; [None]; [None]; [0] +Cn1cnc2ccc(-c3c[nH]c4ccc(Br)cc34)cc2c1=O; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnc(-c4ccccc4)[nH]3)c2c1; [None]; [None]; [0] +OCCn1cc(-c2c[nH]c3ccc(Br)cc23)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c3ccc(Br)cc23)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3ccc(Br)cc23)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +COc1cnc(-c2c[nH]c3ccc(Br)cc23)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +CC(C)C(=O)COc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Cc1ccc(-c2c[nH]c3ccc(Br)cc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnc4ccccn34)c2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2c[nH]c3ccc(Br)cc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2c[nH]c3ccc(Br)cc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnc4cccnn34)c2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cccc(Cn4cncn4)c3)c2c1; [None]; [None]; [0] +Brc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(NCc3cccnc3)c2c1; [None]; [None]; [0] +Cc1c(-c2c[nH]c3ccc(Br)cc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnn4ncccc34)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ccc4ccccc4c3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(Nc3cccnc3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-n3cnc4ccccc43)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(NCCc3c[nH]cn3)c2c1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccc(Br)cc12)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cncc4ccccc34)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(NCCc3ccccc3)c2c1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3c[nH]c4ccc(Br)cc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3c[nH]c4ccc(Br)cc34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3c[nH]c4ccc(Br)cc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3c[nH]c4ccc(Br)cc34)ccc21; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ccc(-c4cn[nH]c4)cc3)c2c1; [None]; [None]; [0] +Clc1ccc(CNc2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +OCc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +COc1cc(-c2c[nH]c3ccc(Br)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Brc1ccc2[nH]cc(Nc3ccncc3)c2c1; [None]; [None]; [0] +CC(C)n1cc(-c2c[nH]c3ccc(Br)cc23)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CSc1nc(-c2c[nH]c3ccc(Br)cc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(CCc3c[nH]nn3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3csc4ncncc34)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cc4ccccc4[nH]3)c2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3ccc(Br)cc23)cs1; [None]; [None]; [0] +Nc1ncncc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3c[nH]c4ccc(Br)cc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +Fc1ccc(-c2c[nH]c3ccc(Br)cc23)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(Oc3ccccn3)c2c1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +O=C(Nc1c[nH]c2ccc(Br)cc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2c[nH]c3ccc(Br)cc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2c[nH]c3ccc(Br)cc23)CC1; [None]; [None]; [0] +CC(C)(COc1c[nH]c2ccc(Br)cc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ccc(Br)cc23)cc1Cl; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnn4ccccc34)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2c[nH]c3ccc(Br)cc23)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2c[nH]c3ccc(Br)cc23)cn1; [None]; [None]; [0] +O=c1cc(-c2c[nH]c3ccc(Br)cc23)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3c[nH]c4ccc(Br)cc34)c21; [None]; [None]; [0] +COc1cc(CCc2c[nH]c3ccc(Br)cc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +C[C@@H](Oc1c[nH]c2ccc(Br)cc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +CCN(CC)c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3c[nH]c4ccc(Br)cc34)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3c[nH]c4ccc(Br)cc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(Nc3cnccc3-c3ccccc3)c2c1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(Nc3cnc4ccccc4c3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3c[nH]c4cnccc34)c2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cnc4[nH]ccc4c3)c2c1; [None]; [None]; [0] +CC1(c2c[nH]c3ccc(Br)cc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1c[nH]c2ccc(Br)cc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ccc(N4CCOCC4)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +Cc1cc(-c2c[nH]c3ccc(Br)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccc(Br)cc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +OCCc1cn(-c2c[nH]c3ccc(Br)cc23)cn1; [None]; [None]; [0] +C[C@H](Nc1c[nH]c2ccc(Br)cc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1c[nH]c2ccc(Br)cc12)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-n3ncc4ccccc43)c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ccc(-n4cncn4)cc3)c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3c[nH]c4ccc(Br)cc34)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2c[nH]c3ccc(Br)cc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3ccc(Br)cc23)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2c[nH]c3ccc(Br)cc23)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2c[nH]c3ccc(Br)cc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3nncn3C3CC3)c2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +Brc1ccc2[nH]cc(Cc3nnc4ccc(-c5ccccc5)nn34)c2c1; [None]; [None]; [0] +O=C(CCc1c[nH]c2ccc(Br)cc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1c[nH]c2ccc(Br)cc12)NCc1ccccn1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cn(Cc4ccccc4)nn3)c2c1; [None]; [None]; [0] +CCc1cc(-c2c[nH]c3ccc(Br)cc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2c[nH]c3ccc(Br)cc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2c[nH]c3ccc(Br)cc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2c[nH]c3ccc(Br)cc23)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2c[nH]c3ccc(Br)cc23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2c[nH]c3ccc(Br)cc23)CC1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3nc4ccccc4s3)c2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3c[nH]c4ccc(Br)cc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3c[nH]c4ccc(Br)cc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2c[nH]c3ccc(Br)cc23)n1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cccc4ccsc34)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3cccc4nnsc34)c2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c3ccc(Br)cc23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3ccc(Br)cc23)nc2ccccc12; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ncc4ccccc4n3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3c[nH]c4cccnc34)c2c1; [None]; [None]; [0] +OCCn1cnc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(-c3ncc4cc[nH]c4n3)c2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +COc1ccc(Oc2c[nH]c3ccc(Br)cc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2c[nH]c3ccc(Br)cc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +COc1ncccc1-c1c[nH]c2ccc(Br)cc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2c[nH]c3ccc(Br)cc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2c[nH]c3ccc(Br)cc23)cnn1; [None]; [None]; [0] +Brc1ccc2[nH]cc(N3CCC(c4nc5ccccc5[nH]4)CC3)c2c1; [None]; [None]; [0] +Brc1ccc2[nH]cc(N3CC=C(c4c[nH]c5ccccc45)CC3)c2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3ccc(Br)cc23)c1)C1CCNCC1; [None]; [None]; [0] +CC(C)C(=O)COCc1cccc2cnccc12; [None]; [None]; [0] +c1cncc(CNCc2cccc3cnccc23)c1; [None]; [None]; [0] +c1cncc(NCc2cccc3cnccc23)c1; [None]; [None]; [0] +c1cc(CNCCc2c[nH]cn2)c2ccncc2c1; [None]; [None]; [0] +O=C(NCc1cccc2cnccc12)c1cccs1; [None]; [None]; [0] +c1ccc(CCNCc2cccc3cnccc23)cc1; [None]; [None]; [0] +Clc1ccc(CNCc2cccc3cnccc23)cc1; [None]; [None]; [0] +c1cc(CNc2ccncc2)c2ccncc2c1; [None]; [None]; [0] +Fc1ccccc1CNCc1cccc2cnccc12; [None]; [None]; [0] +Nc1nc(Cc2cccc3cnccc23)cs1; [None]; [None]; [0] +c1ccc(OCc2cccc3cnccc23)nc1; [None]; [None]; [0] +O=C(NCc1cccc2cnccc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CS(=O)(=O)C1CCN(Cc2cccc3cnccc23)CC1; [None]; [None]; [0] +CC(C)(COCc1cccc2cnccc12)S(C)(=O)=O; [None]; [None]; [0] +C[C@@H](OCc1cccc2cnccc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCN(CC)Cc1cccc2cnccc12; [None]; [None]; [0] +COc1ccncc1NCc1cccc2cnccc12; [None]; [None]; [0] +c1ccc(-c2ccncc2NCc2cccc3cnccc23)cc1; [None]; [None]; [0] +c1ccc2ncc(NCc3cccc4cnccc34)cc2c1; [None]; [None]; [0] +CN(Cc1cccc2cnccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +C[C@H](NCc1cccc2cnccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](NCc1cccc2cnccc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](NCc1cccc2cnccc12)C(C)(C)O; [None]; [None]; [0] +[NH3+]Cc1ccc(OCc2cccc3cnccc23)c(F)c1; [None]; [None]; [0] +Nc1nc(Cc2cccc3cnccc23)nc2ccccc12; [None]; [None]; [0] +COc1ccc(OCc2cccc3cnccc23)c(F)c1F; [None]; [None]; [0] +c1cc(CN2CCC(c3nc4ccccc4[nH]3)CC2)c2ccncc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(Cc2cccc3cnccc23)C1; [None]; [None]; [0] +O=C(Nc1cccc(Cc2cccc3cnccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C1Nc2ccc(Cl)cc2C1=Cc1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(O)cc(C=C2C(=O)Nc3ccc(Cl)cc32)c1; [None]; [None]; [0] +COc1cc(C=C2C(=O)Nc3ccc(Cl)cc32)cc(OC)c1; [None]; [None]; [0] +O=C1Nc2ccccc2C1=C1C(=O)Nc2ccc(Cl)cc21; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +COC(C)(C)CCc1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3c(C#N)ccnc3[nH]2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Cc3cc(F)cc(F)c3)cc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccnc4ccccc34)cc12; [None]; [None]; [0] +CCn1cc(-c2cc3c(C#N)ccnc3[nH]2)cn1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(C(F)(F)F)c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccccc3OC(F)(F)F)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccccc3C(=O)[O-])cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccccc3C(N)=O)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnn(Cc4ccccc4)c3)cc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4c(C#N)ccnc4[nH]3)cc2c1=O; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnc(-c4ccccc4)[nH]3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnn(CCO)c3)cc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc3c(C#N)ccnc3[nH]2)cs1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(NC(=O)c4ccccc4)c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3ncc4cccc(F)c4c3=O)cc12; [None]; [None]; [0] +COc1cnc(-c2cc3c(C#N)ccnc3[nH]2)nc1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cc(Cl)ccc3Cl)cc12; [None]; [None]; [0] +CC(C)C(=O)COc1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +Cc1ccc(-c2cc3c(C#N)ccnc3[nH]2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnc4ccccn34)cc12; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3c(C#N)ccnc3[nH]2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3c(C#N)ccnc3[nH]2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnc4cccnn34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(Cn4cncn4)c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(Br)c3)cc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NCc3cccnc3)cc12; [None]; [None]; [0] +Cc1c(-c2cc3c(C#N)ccnc3[nH]2)sc(=O)n1C; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccnc(N)n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnn4ncccc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc4ccccc4c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Nc3cccnc3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3cnc4ccccc43)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NCCc3c[nH]cn3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NC(=O)c3cccs3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(CC(=O)[O-])c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3c[nH]nc3C(F)(F)F)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(F)c3C(N)=O)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cncc4ccccc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NCCc3ccccc3)cc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4c(C#N)ccnc4[nH]3)cc2)cn1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc4c(N)[nH]nc4c3)cc12; [None]; [None]; [0] +CN1c2ccc(-c3cc4c(C#N)ccnc4[nH]3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4c(C#N)ccnc4[nH]3)ccc21; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(-c4cn[nH]c4)cc3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NCc3ccc(Cl)cc3)cc12; [None]; [None]; [0] +CCCn1cnc(-c2cc3c(C#N)ccnc3[nH]2)n1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(O)c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(CO)c3)cc12; [None]; [None]; [0] +COc1cc(-c2cc3c(C#N)ccnc3[nH]2)ccc1C(=O)[O-]; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Nc3ccncc3)cc12; [None]; [None]; [0] +CC(C)n1cc(-c2cc3c(C#N)ccnc3[nH]2)nn1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NCc3ccccc3F)cc12; [None]; [None]; [0] +CSc1nc(-c2cc3c(C#N)ccnc3[nH]2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(CCc3c[nH]nn3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3csc4ncncc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cc4ccccc4[nH]3)cc12; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3csc(N)n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cncnc3N)cc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4c(C#N)ccnc4[nH]3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(F)cc3C(F)(F)F)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(CCCC(N)=O)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Oc3ccccn3)cc12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(NC(=O)c3c(Cl)cccc3Cl)cc12; [None]; [None]; [0] +Cn1cc(-c2cc3c(C#N)ccnc3[nH]2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3c(C#N)ccnc3[nH]2)CC1; [None]; [None]; [0] +CC(C)(COc1cc2c(C#N)ccnc2[nH]1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1Cl; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnn4ccccc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cc12; [None]; [None]; [0] +CCCn1cc(-c2cc3c(C#N)ccnc3[nH]2)cn1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cc[nH]c(=O)c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc4c3C(=O)CC4)cc12; [None]; [None]; [0] +COc1cc(CCc2cc3c(C#N)ccnc3[nH]2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +C[C@@H](Oc1cc2c(C#N)ccnc2[nH]1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +CCN(CC)c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cc4c(=O)[nH]ccc4o3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cc4c(=O)[nH]cc(Br)c4s3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Nc3cnccc3-c3ccccc3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Nc3cnc4ccccc4c3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3c[nH]c4cnccc34)cc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cnc4[nH]ccc4c3)cc12; [None]; [None]; [0] +CC1(c2cc3c(C#N)ccnc3[nH]2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc2c(C#N)ccnc2[nH]1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(N4CCOCC4)cc3)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)cc1; [None]; [None]; [0] +Cc1cc(-c2cc3c(C#N)ccnc3[nH]2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc2c(C#N)ccnc2[nH]1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3ccc(CO)n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3cnc(CCO)c3)cc12; [None]; [None]; [0] +C[C@H](Nc1cc2c(C#N)ccnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc2c(C#N)ccnc2[nH]1)C(C)(C)O; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3c(F)cccc3Cl)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3ncc4ccccc43)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-n3ncc4c(O)cccc43)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(-n4cncn4)cc3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3nc4ccc(O)cc4[nH]3)cc12; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3c(C#N)ccnc3[nH]2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc3c(C#N)ccnc3[nH]2)c(OC)c1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccc(C(=O)c4ccccc4)cc3)cc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3c(C#N)ccnc3[nH]2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3nncn3C3CC3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ccn(CC[NH3+])n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Cc3nnc4ccc(-c5ccccc5)nn34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(CCC(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(CS(=O)(=O)NCc3ccccn3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cn(Cc4ccccc4)nn3)cc12; [None]; [None]; [0] +CCc1cc(-c2cc3c(C#N)ccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc3c(C#N)ccnc3[nH]2)nc(N)n1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3nnc(N)s3)cc12; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3c(C#N)ccnc3[nH]2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3c(C#N)ccnc3[nH]2)s1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(Oc3ccc(C[NH3+])cc3F)cc12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3c(C#N)ccnc3[nH]2)CC1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3nc4ccccc4s3)cc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4c(C#N)ccnc4[nH]3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4c(C#N)ccnc4[nH]3)c2)cc1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cncc(N)n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc4ccsc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc4nnsc34)cc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3c(C#N)ccnc3[nH]2)[nH]1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3nc(N)c4ccccc4n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ncc4ccccc4n3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3c[nH]c4cccnc34)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cn(CCO)cn3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3ncc4cc[nH]c4n3)cc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +COc1ccc(Oc2cc3c(C#N)ccnc3[nH]2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc3c(C#N)ccnc3[nH]2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2c(C#N)ccnc2[nH]1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3c(C#N)ccnc3[nH]2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc3c(C#N)ccnc3[nH]2)cnn1; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(N3CCC(c4nc5ccccc5[nH]4)CC3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(N3CC=C(c4c[nH]c5ccccc45)CC3)cc12; [None]; [None]; [0] +N#Cc1ccnc2[nH]c(-c3cccc(NC(=O)C4CCNCC4)c3)cc12; [None]; [None]; [0] +C(=Cc1c[nH]c2cnccc12)c1c[nH]c2ccccc12; [None]; [None]; [0] +Oc1cc(O)cc(C=Cc2c[nH]c3cnccc23)c1; [None]; [None]; [0] +COc1cc(O)cc(C=Cc2c[nH]c3cnccc23)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3cnccc23)cc(OC)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3cnccc23)ccc1O; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1c[nH]c2cnccc12; [None]; [None]; [0] +C(=Cc1c[nH]c2cccnc12)c1c[nH]c2ccccc12; [None]; [None]; [0] +Oc1cc(O)cc(C=Cc2c[nH]c3cccnc23)c1; [None]; [None]; [0] +COc1cc(O)cc(C=Cc2c[nH]c3cccnc23)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3cccnc23)cc(OC)c1; [None]; [None]; [0] +COc1cc(C=Cc2c[nH]c3cccnc23)ccc1O; [None]; [None]; [0] +O=C1Nc2ccccc2C1=Cc1c[nH]c2cccnc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ncc4ccccc4n3)cs2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +COc1ncccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(-c2csc(-c3ccccc3)n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3csc(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cnc4cccnn34)cs2)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +Oc1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccc(N4CCOCC4)cc3)cs2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2csc(-c3ccccc3)n2)c1)C1CC1; [None]; [None]; [0] +c1ccc(-c2nc(-c3nc4ccccc4[nH]3)cs2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3csc(-c4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2csc(-c3ccccc3)n2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3nccc4ccccc34)cs2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(Nc3ncccn3)cs2)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3csc(-c4ccccc4)n3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cccc(C4CCNCC4)c3)cs2)cc1; [None]; [None]; [0] +O=C(c1ccc(-c2csc(-c3ccccc3)n2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2csc(-c3ccccc3)n2)nc1)N1CCOCC1; [None]; [None]; [0] +c1ccc(-c2nc(Nc3ccncn3)cs2)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3csc(-c4ccccc4)n3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2csc(-c3ccccc3)n2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2csc(-c3ccccc3)n2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2csc(-c3ccccc3)n2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2csc(-c3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3csc(-c4ccccc4)n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Brc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2csc(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccn4nccc4n3)cs2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2csc(-c3ccccc3)n2)c(C)c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccccc3-n3cccn3)cs2)cc1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +c1ccc(-c2nc(-c3c[nH]c4ccccc34)cs2)cc1; [None]; [None]; [0] +COc1cc(OC)c(-c2csc(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3csc(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccc4c(c3)CCO4)cs2)cc1; [None]; [None]; [0] +c1ccc(-c2cc(-c3csc(-c4ccccc4)n3)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(-c2csc(-c3ccccc3)n2)ccc1O; [None]; [None]; [0] +c1ccc(-c2nc(-c3cccc4c3OCO4)cs2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3scc4c3OCCO4)cs2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cnc4ccccc4c3)cs2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2csc(-c3ccccc3)n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2csc(-c3ccccc3)n2)CC1; [None]; [None]; [0] +Nc1nc(-c2csc(-c3ccccc3)n2)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3csc(-c4ccccc4)n3)n2)c1; [None]; [None]; [0] +CC1(COc2csc(-c3ccccc3)n2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cc4ccccc4s3)cs2)cc1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3csc(-c4ccccc4)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2csc(-c3ccccc3)n2)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2csc(-c3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3csc(-c4ccccc4)n3)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +COc1ccc(-c2csc(-c3ccccc3)n2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +COc1ccc(CNc2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Clc1ccc(-c2csc(-c3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2csc(-c3ccccc3)n2)C1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ncc4cccn4n3)cs2)cc1; [None]; [None]; [0] +COc1cc(-c2csc(-c3ccccc3)n2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cc4ccccn4n3)cs2)cc1; [None]; [None]; [0] +Cn1cc(-c2csc(-c3ccccc3)n2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3csc(-c4ccccc4)n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3csc(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3csc(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2csc(-c3ccccc3)n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2csc(-c3ccccc3)n2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2csc(-c3ccccc3)n2)cn1; [None]; [None]; [0] +Clc1cnc(-c2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3csc(-c4ccccc4)n3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2csc(-c3ccccc3)n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2csc(-c3ccccc3)n2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Nc1cc(-c2csc(-c3ccccc3)n2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +COc1cc(-c2csc(-c3ccccc3)n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +O=C(Nc1csc(-c2ccccc2)n1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2csc(-c3ccccc3)n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2csc(-c3ccccc3)n2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1csc(-c3ccccc3)n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3csc(-c4ccccc4)n3)cc2c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccc4cn[nH]c4c3)cs2)cc1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CCn1cc(-c2csc(-c3ccccc3)n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cc(-c4cccnc4)ccn3)cs2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cc4ccccc4o3)cs2)cc1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ncc4sccc4n3)cs2)cc1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2csc(-c3ccccc3)n2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3csc(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +Cn1cc(-c2csc(-c3ccccc3)n2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3csc(-c4ccccc4)n3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2csc(-c3ccccc3)n2)n1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ncn4c3CCCC4)cs2)cc1; [None]; [None]; [0] +Cc1cc(-c2csc(-c3ccccc3)n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3csc(-c4ccccc4)n3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3csc(-c4ccccc4)n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2csc(-c3ccccc3)n2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3csc(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3csc(-c4ccccc4)n3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +OCCc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +O=C(Nc1csc(-c2ccccc2)n1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2csc(-c3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3csc(-c4ccccc4)n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2csc(-c3ccccc3)n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2csc(-c3ccccc3)n2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Fc1ccc(Nc2csc(-c3ccccc3)n2)nc1; [None]; [None]; [0] +Cc1cc(Nc2csc(-c3ccccc3)n2)ncc1F; [None]; [None]; [0] +c1ccc(-c2nc(Nc3ccccn3)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cccc4ncccc34)cs2)cc1; [None]; [None]; [0] +Clc1ccc2c(c1-c1csc(-c3ccccc3)n1)OCO2; [None]; [None]; [0] +Oc1cc(-c2csc(-c3ccccc3)n2)ccc1Cl; [None]; [None]; [0] +c1ccc(-c2nc(-c3n[nH]c4ccccc34)cs2)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Fc1ccc(Oc2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2csc(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2csc(-c3ccccc3)n2)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(-c2csc(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2csc(-c3ccccc3)n2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3csc(-c4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +COc1cc(F)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3csc(-c4ccccc4)n3)cc2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2csc(-c3ccccc3)n2)o1; [None]; [None]; [0] +COc1cc(CCc2csc(-c3ccccc3)n2)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccc4ccccc4c3)cs2)cc1; [None]; [None]; [0] +Oc1ccc(-c2csc(-c3ccccc3)n2)cc1F; [None]; [None]; [0] +Oc1ccc(-c2csc(-c3ccccc3)n2)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cnn4ncccc34)cs2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3c[nH]c4cnccc34)cs2)cc1; [None]; [None]; [0] +Nc1cc(-c2csc(-c3ccccc3)n2)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1csc(-c2ccccc2)n1; [None]; [None]; [0] +Fc1ccc(-c2csc(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Oc1ncc(-c2csc(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2csc(-c3ccccc3)n2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3csc(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3csc(-c4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +COc1cc(CCc2csc(-c3ccccc3)n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3cnc4[nH]ccc4c3)cs2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(-c3nc4ccccc4s3)cs2)cc1; [None]; [None]; [0] +Oc1cncc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3csc(-c4ccccc4)n3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1csc(-c2ccccc2)n1; [None]; [None]; [0] +CNc1nccc(-c2csc(-c3ccccc3)n2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3csc(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2csc(-c3ccccc3)n2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +FC(F)c1cc(-c2csc(-c3ccccc3)n2)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Clc1cnccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +CCc1sccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Oc1c(Cl)cc(-c2csc(-c3ccccc3)n2)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2csc(-c3ccccc3)n2)ncc1F; [None]; [None]; [0] +c1ccc(-c2nc(-c3ccc4c(c3)CCN4)cs2)cc1; [None]; [None]; [0] +Oc1cc(-c2csc(-c3ccccc3)n2)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2csc(-c3ccccc3)n2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3csc(-c4ccccc4)n3)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +c1ccc(-c2nc(Nc3ccncc3)cs2)cc1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3csc(-c4ccccc4)n3)c2c1; [None]; [None]; [0] +CN(c1csc(-c2ccccc2)n1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Cc1cc(-c2csc(-c3ccccc3)n2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3csc(-c4ccccc4)n3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2csc(-c3ccccc3)n2)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2csc(-c3ccccc3)n2)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3csc(-c4ccccc4)n3)ccc12; [None]; [None]; [0] +CSc1cccc(-c2csc(-c3ccccc3)n2)c1; [None]; [None]; [0] +c1ccc(-c2nc(CCc3c[nH]c4ccccc34)cs2)cc1; [None]; [None]; [0] +c1ccc(-c2nc(OCc3cccc4ccccc34)cs2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Fc1ccc(Oc2csc(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1csc(-c2ccccc2)n1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2csc(-c3ccccc3)n2)cc1; [None]; [None]; [0] +Fc1ccc(COc2csc(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2csc(-c3ccccc3)n2)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1csc(-c2ccccc2)n1; [None]; [None]; [0] +CCc1c(-c2ccccc2C(=O)NC)ccc(O)c1C; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(O)c(C)c1CC; [None]; [None]; [0] +CCc1c(CCC(C)(C)OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2-c2nnc(C)[nH]2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2S(=O)(=O)C(C)C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Cc2cc(F)cc(F)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2P(C)(C)=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccnc3ccccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnn(CC)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(C(F)(F)F)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2OC(F)(F)F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2C(=O)[O-])ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccccc2C(N)=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnn(Cc3ccccc3)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3ncn(C)c(=O)c3c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnc(-c3ccccc3)[nH]2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnn(CCO)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2csc(C(C)(C)C)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(NC(=O)c3ccccc3)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2ncc3cccc(F)c3c2=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ncc(OC)cn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(Cl)ccc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(OCC(=O)C(C)C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C)cc2Br)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c(C)nc3ccccn23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnc3ccccn23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2sc(C)nc2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2sc(NC)nc2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2sc(N)nc2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnc3cccnn23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c(Cl)cccc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(Cn3cncn3)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(Br)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(C)ccc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NCc2cccnc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2sc(=O)n(C)c2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccnc(N)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnn3ncccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3ccccc3c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Nc2cccnc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2cnc3ccccc32)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NCCc2c[nH]cn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NC(=O)c2cccs2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(CC(=O)[O-])c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c[nH]nc2C(F)(F)F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(F)c2C(N)=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cncc3ccccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NCCc2ccccc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(-c3cnn(C)c3)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3c(N)[nH]nc3c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3c(c2)CS(=O)(=O)N3C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3c(cnn3C)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(-c3cn[nH]c3)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NCc2ccc(Cl)cc2)ccc(O)c1C; [None]; [None]; [0] +CCCn1cnc(-c2ccc(O)c(C)c2CC)n1; [None]; [None]; [0] +CCc1c(-c2cccc(O)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(CO)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C(=O)[O-])c(OC)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Nc2ccncc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cn(C(C)C)nn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NCc2ccccc2F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c[nH]c(SC)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnoc2C(C)C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CCc2c[nH]nn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2csc3ncncc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc3ccccc3[nH]2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(CCC#N)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2csc(N)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cncnc2N)ccc(O)c1C; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc(O)c(C)c3CC)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc(O)c(C)c2CC)cc1; [None]; [None]; [0] +CCc1c(-c2ccc(F)cc2C(F)(F)F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CCCC(N)=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Oc2ccccn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CCNC(=O)CC(C)(C)O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(NC(C)=O)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(NC(=O)c2c(Cl)cccc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cn(C)c3ccccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N2CCC(S(C)(=O)=O)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(OCC(C)(C)S(C)(=O)=O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(OC)c(Cl)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnn3ccccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C[NH3+])c(C(F)(F)F)c2)ccc(O)c1C; [None]; [None]; [0] +CCCn1cc(-c2ccc(O)c(C)c2CC)cn1; [None]; [None]; [0] +CCc1c(-c2cc[nH]c(=O)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc3c2C(=O)CC3)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CCc2cc(OC)cc(OC)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C(C)(C)N)cc2)ccc(O)c1C; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc(O)c(C)c1CC; [None]; [None]; [0] +CCc1c(O[C@H](C)c2c(Cl)cncc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc([S@](C)=O)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N(CC)CC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc3c(=O)[nH]ccc3o2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc3c(=O)[nH]cc(Br)c3s2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Nc2cnccc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Nc2cnccc2-c2ccccc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cncc(OC(C)C)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C(C)(C)C)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c(F)cccc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Nc2cnc3ccccc3c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c[nH]c3cnccc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(F)c2C(=O)NC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnc3[nH]ccc3c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(C2(C)CCN(S(C)(=O)=O)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(S(=O)(=O)NC)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(N3CCOCC3)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(S(C)(=O)=O)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(C)nn2-c2cccc(Cl)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N[C@@H](C)C(=O)NCC(F)(F)F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2ccc(CO)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2cnc(CCO)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N[C@@H](C)C(C)(C)O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N[C@H](C)C(C)(C)O)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c(F)cccc2Cl)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2ncc3ccccc32)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-n2ncc3c(O)cccc32)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(-n3cncn3)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2nc3ccc(O)cc3[nH]2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2[nH]c(SC)nc2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(OC)cc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C(=O)c3ccccc3)cc2)ccc(O)c1C; [None]; [None]; [0] +CCc1c([C@@H]2CC[C@@H](NC(C)=O)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2nncn2C(C)C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2nncn2C2CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccn(CC[NH3+])n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Cc2nnc3ccc(-c4ccccc4)nn23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CCC(=O)NCc2ccccn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(CS(=O)(=O)NCc2ccccn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cn(Cc3ccccc3)nn2)ccc(O)c1C; [None]; [None]; [0] +CCc1cc(-c2ccc(O)c(C)c2CC)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc(O)c(C)c2CC)nc(N)n1; [None]; [None]; [0] +CCc1c(-c2nnc(N)s2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(C(N)=O)cn2C)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(C(C)(C)O)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc(C(=O)NC)s2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Oc2ccc(C[NH3+])cc2F)ccc(O)c1C; [None]; [None]; [0] +CCc1c(C2CCN(C(=O)N[C@@H2]C)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2nc3ccccc3s2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ccc3c(n2)NC(=O)C(C)(C)O3)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(C(=O)Nc3ccc(C(=O)NC)cc3)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cncc(N)n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc3ccsc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc3nnsc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnc(NC(C)=O)[nH]2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2nc(N)c3ccccc3n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ncc3ccccc3n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2c[nH]c3cccnc23)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cn(CCO)cn2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2ncc3cc[nH]c3n2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(C#N)ccc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(Oc2ccc(OC)c(F)c2F)ccc(O)c1C; [None]; [None]; [0] +CCc1c([C@H]2CC[C@@](C)(O)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cc(OC)ccc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccnc2OC)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(S(=O)(=O)N(C)C)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cnnc(N(C)C)c2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N2CCC(c3nc4ccccc4[nH]3)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(N2CC=C(c3c[nH]c4ccccc34)CC2)ccc(O)c1C; [None]; [None]; [0] +CCc1c(-c2cccc(NC(=O)C3CCNCC3)c2)ccc(O)c1C; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2sccc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3sccc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cccc3sccc23)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc2c(-c3cccc4sccc34)ccnc2c1; [None]; [None]; [0] +CCn1cc(-c2cccc3sccc23)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cccc4sccc34)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4sccc34)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cccc4sccc34)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cccc3sccc23)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc3sccc23)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3sccc23)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cccc2sccc12; [None]; [None]; [0] +COc1cnc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc2sccc12; [None]; [None]; [0] +Cc1ccc(-c2cccc3sccc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2cnc3ccccn23)c2ccsc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3sccc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc3sccc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2cnc3cccnn23)c2ccsc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cccc3sccc23)c1; [None]; [None]; [0] +Brc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +c1cncc(CNc2cccc3sccc23)c1; [None]; [None]; [0] +Cc1c(-c2cccc3sccc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cccc3sccc23)n1; [None]; [None]; [0] +c1cc(-c2cnn3ncccc23)c2ccsc2c1; [None]; [None]; [0] +c1ccc2cc(-c3cccc4sccc34)ccc2c1; [None]; [None]; [0] +c1cncc(Nc2cccc3sccc23)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cccc2sccc12; [None]; [None]; [0] +c1cc(NCCc2c[nH]cn2)c2ccsc2c1; [None]; [None]; [0] +O=C(Nc1cccc2sccc12)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cccc2sccc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc2c(-c3cccc4sccc34)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2cccc3sccc23)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4sccc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cccc4sccc34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cccc4sccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc4sccc34)ccc21; [None]; [None]; [0] +c1cc(-c2ccc(-c3cn[nH]c3)cc2)c2ccsc2c1; [None]; [None]; [0] +Clc1ccc(CNc2cccc3sccc23)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cccc3sccc23)n1; [None]; [None]; [0] +Oc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +OCc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cc(Nc2ccncc2)c2ccsc2c1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3sccc23)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cccc2sccc12; [None]; [None]; [0] +CSc1nc(-c2cccc3sccc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(CCc2c[nH]nn2)c2ccsc2c1; [None]; [None]; [0] +c1cc(-c2csc3ncncc23)c2ccsc2c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cccc4sccc34)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +Nc1nc(-c2cccc3sccc23)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cccc2sccc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4sccc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +Fc1ccc(-c2cccc3sccc23)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cccc2sccc12; [None]; [None]; [0] +c1ccc(Oc2cccc3sccc23)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc2sccc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +O=C(Nc1cccc2sccc12)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cccc3sccc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3sccc23)CC1; [None]; [None]; [0] +CC(C)(COc1cccc2sccc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc3sccc23)cc1Cl; [None]; [None]; [0] +c1cc(-c2cnn3ccccc23)c2ccsc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cccc3sccc23)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cccc3sccc23)cn1; [None]; [None]; [0] +O=c1cc(-c2cccc3sccc23)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cccc4sccc34)c21; [None]; [None]; [0] +COc1cc(CCc2cccc3sccc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2sccc12; [None]; [None]; [0] +C[C@@H](Oc1cccc2sccc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CCN(CC)c1cccc2sccc12; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cccc4sccc34)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cccc4sccc34)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cccc2sccc12; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cccc3sccc23)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc3sccc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc2ncc(Nc3cccc4sccc34)cc2c1; [None]; [None]; [0] +c1cc(-c2c[nH]c3cnccc23)c2ccsc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2cnc3[nH]ccc3c2)c2ccsc2c1; [None]; [None]; [0] +CC1(c2cccc3sccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc2sccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1cc(-c2ccc(N3CCOCC3)cc2)c2ccsc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc3sccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2sccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cccc3sccc23)n1; [None]; [None]; [0] +OCCc1cn(-c2cccc3sccc23)cn1; [None]; [None]; [0] +C[C@H](Nc1cccc2sccc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc2sccc12)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cccc2sccc12; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2ccc(-n3cncn3)cc2)c2ccsc2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cccc4sccc34)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3sccc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3sccc23)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3sccc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2nncn2C2CC2)c2ccsc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc3sccc23)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cccc5sccc45)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cccc2sccc12)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cccc2sccc12)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cccc4sccc34)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2cccc3sccc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3sccc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cccc3sccc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2sccc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3sccc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3sccc23)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cccc3sccc23)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3sccc23)CC1; [None]; [None]; [0] +c1ccc2sc(-c3cccc4sccc34)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4sccc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4sccc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc3sccc23)n1; [None]; [None]; [0] +c1cc(-c2cccc3sccc23)c2sccc2c1; [None]; [None]; [0] +c1cc(-c2cccc3sccc23)c2snnc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc3sccc23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cccc3sccc23)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3cccc4sccc34)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3cccc4sccc34)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2cccc3sccc23)c1; [None]; [None]; [0] +c1cc(-c2ncc3cc[nH]c3n2)c2ccsc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2sccc12; [None]; [None]; [0] +COc1ccc(Oc2cccc3sccc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3sccc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc2sccc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3sccc23)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4cccc5sccc45)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cccc3sccc23)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3sccc23)c1)C1CCNCC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccc2sccc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cccc4sccc34)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3sccc23)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cccc4sccc34)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc4sccc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cccc3sccc23)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1ccc2c(-c3cccc4sccc34)nccc2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1cnc(Nc2cccc3sccc23)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc4sccc34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1cc(-c2cccc3sccc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cccc3sccc23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cccc3sccc23)nc1)N1CCOCC1; [None]; [None]; [0] +c1cc(Nc2ccncn2)c2ccsc2c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cccc4sccc34)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc3sccc23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cccc3sccc23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc3sccc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccc4sccc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cccc2sccc12; [None]; [None]; [0] +Brc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3sccc23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1cc(-c2ccn3nccc3n2)c2ccsc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3sccc23)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccc2sccc12; [None]; [None]; [0] +c1ccc2c(-c3cccc4sccc34)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccc3sccc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cccc4sccc34)[nH]c2c1; [None]; [None]; [0] +c1cc(-c2ccc3c(c2)CCO3)c2ccsc2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cccc4sccc34)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc2sccc12; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)ccc1O; [None]; [None]; [0] +c1cc2c(c(-c3cccc4sccc34)c1)OCO2; [None]; [None]; [0] +c1cc(-c2scc3c2OCCO3)c2ccsc2c1; [None]; [None]; [0] +c1ccc2ncc(-c3cccc4sccc34)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3sccc23)cn1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cccc4sccc34)n2)c1; [None]; [None]; [0] +CC1(COc2cccc3sccc23)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cccc3sccc23)c1; [None]; [None]; [0] +CSc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cccc4sccc34)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccc4sccc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc3sccc23)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2cccc3sccc23)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3cccc4sccc34)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +COc1ccc(-c2cccc3sccc23)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +COc1ccc(CNc2cccc3sccc23)cc1; [None]; [None]; [0] +Clc1ccc(-c2cccc3sccc23)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cccc3sccc23)C1; [None]; [None]; [0] +c1cc(-c2ncc3cccn3n2)c2ccsc2c1; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)ccc1N1CCOCC1; [None]; [None]; [0] +c1cc(-c2cc3ccccn3n2)c2ccsc2c1; [None]; [None]; [0] +Cn1cc(-c2cccc3sccc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc4sccc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cccc4sccc34)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cccc4sccc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cccc3sccc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)ccc1Cl; [None]; [None]; [0] +Clc1cnc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +Cc1csc2c(-c3cccc4sccc34)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cccc3sccc23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cccc3sccc23)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc3sccc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +COc1cc(-c2cccc3sccc23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cccc3sccc23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cccc3sccc23)cc1; [None]; [None]; [0] +O=C(Nc1cccc2sccc12)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc3sccc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccc3sccc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccc3sccc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cccc3sccc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cccc4sccc34)cc2c1; [None]; [None]; [0] +c1cc(-c2ccc3cn[nH]c3c2)c2ccsc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cccc3sccc23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cccc4sccc34)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3cccc4sccc34)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc2sccc12; [None]; [None]; [0] +c1cc(-c2ncc3sccc3n2)c2ccsc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc2sccc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc3sccc23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cccc4sccc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccc3sccc23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc4sccc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cccc3sccc23)n1; [None]; [None]; [0] +c1cc(-c2ncn3c2CCCC3)c2ccsc2c1; [None]; [None]; [0] +Cc1cc(-c2cccc3sccc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccc4sccc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3sccc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccc4sccc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc4sccc34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cccc3sccc23)c1; [None]; [None]; [0] +OCCc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +O=C(Nc1cccc2sccc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3sccc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccc4sccc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc2sccc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc2sccc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc2sccc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3sccc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cccc3sccc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3sccc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cccc3sccc23)cc1; [None]; [None]; [0] +Fc1ccc(Nc2cccc3sccc23)nc1; [None]; [None]; [0] +Cc1cc(Nc2cccc3sccc23)ncc1F; [None]; [None]; [0] +c1ccc(Nc2cccc3sccc23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc3sccc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccc2sccc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3sc(C(N)=O)cc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(Cc3cc(F)cc(F)c3)cccc2s1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccnc4ccccc34)cccc2s1; [None]; [None]; [0] +CCn1cc(-c2cccc3sc(C(N)=O)cc23)cn1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(C(F)(F)F)c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccccc3OC(F)(F)F)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccccc3C(=O)[O-])cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccccc3C(N)=O)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnn(Cc4ccccc4)c3)cccc2s1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4sc(C(N)=O)cc34)cc2c1=O; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnc(-c4ccccc4)[nH]3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnn(CCO)c3)cccc2s1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc3sc(C(N)=O)cc23)cs1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(NC(=O)c4ccccc4)c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-n3ncc4cccc(F)c4c3=O)cccc2s1; [None]; [None]; [0] +COc1cnc(-c2cccc3sc(C(N)=O)cc23)nc1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cc(Cl)ccc3Cl)cccc2s1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +Cc1ccc(-c2cccc3sc(C(N)=O)cc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnc4ccccn34)cccc2s1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3sc(C(N)=O)cc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc3sc(C(N)=O)cc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnc4cccnn34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3c(Cl)cccc3Cl)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(Cn4cncn4)c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(Br)c3)cccc2s1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +NC(=O)c1cc2c(NCc3cccnc3)cccc2s1; [None]; [None]; [0] +Cc1c(-c2cccc3sc(C(N)=O)cc23)sc(=O)n1C; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccnc(N)n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnn4ncccc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc4ccccc4c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(Nc3cccnc3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-n3cnc4ccccc43)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(NCCc3c[nH]cn3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(NC(=O)c3cccs3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(CC(=O)[O-])c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3c[nH]nc3C(F)(F)F)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(F)c3C(N)=O)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cncc4ccccc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(NCCc3ccccc3)cccc2s1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4sc(C(N)=O)cc34)cc2)cn1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc4c(N)[nH]nc4c3)cccc2s1; [None]; [None]; [0] +CN1c2ccc(-c3cccc4sc(C(N)=O)cc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc4sc(C(N)=O)cc34)ccc21; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(-c4cn[nH]c4)cc3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(NCc3ccc(Cl)cc3)cccc2s1; [None]; [None]; [0] +CCCn1cnc(-c2cccc3sc(C(N)=O)cc23)n1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(O)c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(CO)c3)cccc2s1; [None]; [None]; [0] +COc1cc(-c2cccc3sc(C(N)=O)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +NC(=O)c1cc2c(Nc3ccncc3)cccc2s1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3sc(C(N)=O)cc23)nn1; [None]; [None]; [0] +NC(=O)c1cc2c(NCc3ccccc3F)cccc2s1; [None]; [None]; [0] +CSc1nc(-c2cccc3sc(C(N)=O)cc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(CCc3c[nH]nn3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3csc4ncncc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cc4ccccc4[nH]3)cccc2s1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3csc(N)n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cncnc3N)cccc2s1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4sc(C(N)=O)cc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(F)cc3C(F)(F)F)cccc2s1; [None]; [None]; [0] +NC(=O)CCCc1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(Oc3ccccn3)cccc2s1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +NC(=O)c1cc2c(NC(=O)c3c(Cl)cccc3Cl)cccc2s1; [None]; [None]; [0] +Cn1cc(-c2cccc3sc(C(N)=O)cc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3sc(C(N)=O)cc23)CC1; [None]; [None]; [0] +CC(C)(COc1cccc2sc(C(N)=O)cc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc3sc(C(N)=O)cc23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnn4ccccc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cccc2s1; [None]; [None]; [0] +CCCn1cc(-c2cccc3sc(C(N)=O)cc23)cn1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cc[nH]c(=O)c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc4c3C(=O)CC4)cccc2s1; [None]; [None]; [0] +COc1cc(CCc2cccc3sc(C(N)=O)cc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +C[C@@H](Oc1cccc2sc(C(N)=O)cc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +CCN(CC)c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cc4c(=O)[nH]ccc4o3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)cccc2s1; [None]; [None]; [0] +COc1ccncc1Nc1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(Nc3cnccc3-c3ccccc3)cccc2s1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(Nc3cnc4ccccc4c3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3c[nH]c4cnccc34)cccc2s1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cnc4[nH]ccc4c3)cccc2s1; [None]; [None]; [0] +CC1(c2cccc3sc(C(N)=O)cc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc2sc(C(N)=O)cc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(N4CCOCC4)cc3)cccc2s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc3sc(C(N)=O)cc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc3sc(C(N)=O)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2sc(C(N)=O)cc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +NC(=O)c1cc2c(-n3ccc(CO)n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-n3cnc(CCO)c3)cccc2s1; [None]; [None]; [0] +C[C@H](Nc1cccc2sc(C(N)=O)cc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc2sc(C(N)=O)cc12)C(C)(C)O; [None]; [None]; [0] +NC(=O)c1cc2c(-c3c(F)cccc3Cl)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-n3ncc4ccccc43)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-n3ncc4c(O)cccc43)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(-n4cncn4)cc3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3nc4ccc(O)cc4[nH]3)cccc2s1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3sc(C(N)=O)cc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3sc(C(N)=O)cc23)c(OC)c1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccc(C(=O)c4ccccc4)cc3)cccc2s1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3sc(C(N)=O)cc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +NC(=O)c1cc2c(-c3nncn3C3CC3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ccn(CC[NH3+])n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(Cc3nnc4ccc(-c5ccccc5)nn34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(CCC(=O)NCc3ccccn3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(CS(=O)(=O)NCc3ccccn3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cn(Cc4ccccc4)nn3)cccc2s1; [None]; [None]; [0] +CCc1cc(-c2cccc3sc(C(N)=O)cc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3sc(C(N)=O)cc23)nc(N)n1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3nnc(N)s3)cccc2s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3sc(C(N)=O)cc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3sc(C(N)=O)cc23)s1; [None]; [None]; [0] +NC(=O)c1cc2c(Oc3ccc(C[NH3+])cc3F)cccc2s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3sc(C(N)=O)cc23)CC1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3nc4ccccc4s3)cccc2s1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4sc(C(N)=O)cc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4sc(C(N)=O)cc34)c2)cc1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cncc(N)n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc4ccsc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc4nnsc34)cccc2s1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc3sc(C(N)=O)cc23)[nH]1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3nc(N)c4ccccc4n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ncc4ccccc4n3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3c[nH]c4cccnc34)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cn(CCO)cn3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3ncc4cc[nH]c4n3)cccc2s1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +COc1ccc(Oc2cccc3sc(C(N)=O)cc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3sc(C(N)=O)cc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +COc1ncccc1-c1cccc2sc(C(N)=O)cc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc3sc(C(N)=O)cc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3sc(C(N)=O)cc23)cnn1; [None]; [None]; [0] +NC(=O)c1cc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)cccc2s1; [None]; [None]; [0] +NC(=O)c1cc2c(-c3cccc(NC(=O)C4CCNCC4)c3)cccc2s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cccc(O)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cccc4ncccc34)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3c(Cl)ccc4c3OCO4)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(Cl)c(O)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3n[nH]c4ccccc34)c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3c(Cl)cccc3Cl)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(Oc3ccc(F)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(C(N)=O)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(C(N)=O)cc3F)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(O)cc3Cl)c2c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(O)cc3F)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccnc(N)n3)c2c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccnc4ccc(S(C)(=O)=O)cc34)cc2[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cn[nH]c3Cl)c2c1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(-c4ccc(O)cc4O)cc3)c2c1; [None]; [None]; [0] +COc1cc(-c2ccnc3ccc(S(C)(=O)=O)cc23)ccc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(C(=O)[O-])cc3)c2c1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)o1; [None]; [None]; [0] +COc1cc(CCc2ccnc3ccc(S(C)(=O)=O)cc23)ccc1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cccc(Br)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc4ccccc4c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(O)c(F)c3)c2c1; [None]; [None]; [0] +Cn1cc(-c2ccnc3ccc(S(C)(=O)=O)cc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(O)cc3O)c2c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccnc3ccc(S(C)(=O)=O)cc23)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cnn4ncccc34)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3c[nH]c4cnccc34)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccnc(N)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(COc3ccccc3Cl)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(F)c(Cl)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3[nH]cnc3-c3ccc(F)cc3)c2c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(O)ccc3Cl)c2c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cnc(O)c(Cl)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3c[nH]c(C(N)=O)c3)c2c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccnc3ccc(S(C)(=O)=O)cc23)c1; [None]; [None]; [0] +COc1ccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccnc4ccc(S(C)(=O)=O)cc34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc4ccc(S(C)(=O)=O)cc34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)c1; [None]; [None]; [0] +COc1cc(CCc2ccnc3ccc(S(C)(=O)=O)cc23)cc(OC)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(NC(N)=O)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cnc4[nH]ccc4c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3nc4ccccc4s3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cncc(O)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc4c(c3)CC(=O)N4)c2c1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CNc1nccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccnc4ccc(S(C)(=O)=O)cc34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccnc3ccc(S(C)(=O)=O)cc23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(C(F)F)n[nH]3)c2c1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccncc3Cl)c2c1; [None]; [None]; [0] +CCc1sccc1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(Cl)c(O)c(Cl)c3)c2c1; [None]; [None]; [0] +CNc1nc(-c2ccnc3ccc(S(C)(=O)=O)cc23)ncc1F; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc4c(c3)CCN4)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(O)n4nccc4n3)c2c1; [None]; [None]; [0] +Cc1oc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc1C(=O)[O-]; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc4[nH]c(=O)[nH]c4c3)c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(Nc3ccncc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(Br)cc3F)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3[nH]nc4ccc(F)cc34)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc1; [None]; [None]; [0] +CN(c1ccnc2ccc(S(C)(=O)=O)cc12)c1cccc2[nH]ncc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(O)cc(Br)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc(C(=O)NC4CC4)cc3)c2c1; [None]; [None]; [0] +Cc1cc(-c2ccnc3ccc(S(C)(=O)=O)cc23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccnc4ccc(S(C)(=O)=O)cc34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccnc3ccc(S(C)(=O)=O)cc23)cc(C)c1O; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cc(F)c(O)c(F)c3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ccc4c(=O)[nH][nH]c4c3)c2c1; [None]; [None]; [0] +CSc1cccc(-c2ccnc3ccc(S(C)(=O)=O)cc23)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(CCc3c[nH]c4ccccc34)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(OCc3cccc4ccccc34)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3ocnc3-c3ccc(F)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(Oc3ccc(F)cc3F)c2c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccnc2ccc(S(C)(=O)=O)cc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(-c3cn[nH]c3-c3ccc(Cl)cc3)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(OCc3ccc(F)cc3F)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(CCc3ccc(F)cc3F)c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc2nccc(NCc3c(F)cccc3Cl)c2c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +COC(C)(C)CCc1ccc(CO)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc(CO)cc2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(Cc2cc(F)cc(F)c2)cc1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccnc3ccccc23)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc(CO)cc2)cn1; [None]; [None]; [0] +OCc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccccc2OC(F)(F)F)cc1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cnn(Cc3ccccc3)c2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc(CO)cc3)cc2c1=O; [None]; [None]; [0] +OCc1ccc(-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc(CO)cc2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc(CO)cc2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc(CO)cc2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc(CO)cc1; [None]; [None]; [0] +COc1cnc(-c2ccc(CO)cc2)nc1; [None]; [None]; [0] +OCc1ccc(-c2cc(Cl)ccc2Cl)cc1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc(CO)cc1; [None]; [None]; [0] +Cc1ccc(-c2ccc(CO)cc2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cnc3ccccn23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc(CO)cc2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc(CO)cc2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cnc3cccnn23)cc1; [None]; [None]; [0] +OCc1ccc(-c2c(Cl)cccc2Cl)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc(Cn3cncn3)c2)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc(Br)c2)cc1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +OCc1ccc(NCc2cccnc2)cc1; [None]; [None]; [0] +Cc1c(-c2ccc(CO)cc2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc(CO)cc2)n1; [None]; [None]; [0] +OCc1ccc(-c2cnn3ncccc23)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccc3ccccc3c2)cc1; [None]; [None]; [0] +OCc1ccc(Nc2cccnc2)cc1; [None]; [None]; [0] +OCc1ccc(-n2cnc3ccccc32)cc1; [None]; [None]; [0] +OCc1ccc(NCCc2c[nH]cn2)cc1; [None]; [None]; [0] +O=C(Nc1ccc(CO)cc1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +OCc1ccc(-c2c[nH]nc2C(F)(F)F)cc1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cncc3ccccc23)cc1; [None]; [None]; [0] +OCc1ccc(NCCc2ccccc2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc(CO)cc3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc(CO)cc3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc(CO)cc3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(CO)cc3)ccc21; [None]; [None]; [0] +OCc1ccc(-c2ccc(-c3cn[nH]c3)cc2)cc1; [None]; [None]; [0] +OCc1ccc(NCc2ccc(Cl)cc2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(CO)cc2)n1; [None]; [None]; [0] +OCc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc(CO)c2)cc1; [None]; [None]; [0] +COc1cc(-c2ccc(CO)cc2)ccc1C(=O)[O-]; [None]; [None]; [0] +OCc1ccc(Nc2ccncc2)cc1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc(CO)cc2)nn1; [None]; [None]; [0] +OCc1ccc(NCc2ccccc2F)cc1; [None]; [None]; [0] +CSc1nc(-c2ccc(CO)cc2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(CCc2c[nH]nn2)cc1; [None]; [None]; [0] +OCc1ccc(-c2csc3ncncc23)cc1; [None]; [None]; [0] +OCc1ccc(-c2cc3ccccc3[nH]2)cc1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc(CO)cc2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1ccc(CO)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc(CO)cc3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccc(F)cc2C(F)(F)F)cc1; [None]; [None]; [0] +NC(=O)CCCc1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(Oc2ccccn2)cc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc(CO)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +O=C(Nc1ccc(CO)cc1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2ccc(CO)cc2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc(CO)cc2)CC1; [None]; [None]; [0] +CC(C)(COc1ccc(CO)cc1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc(CO)cc2)cc1Cl; [None]; [None]; [0] +OCc1ccc(-c2cnn3ccccc23)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc(CO)cc2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc(CO)cc2)cn1; [None]; [None]; [0] +O=c1cc(-c2ccc(CO)cc2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc(CO)cc3)c21; [None]; [None]; [0] +COc1cc(CCc2ccc(CO)cc2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc(CO)cc1; [None]; [None]; [0] +C[C@@H](Oc1ccc(CO)cc1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc(CO)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc(CO)cc3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc(CO)cc3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(Nc2cnccc2-c2ccccc2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(Nc2cnc3ccccc3c2)cc1; [None]; [None]; [0] +OCc1ccc(-c2c[nH]c3cnccc23)cc1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cnc3[nH]ccc3c2)cc1; [None]; [None]; [0] +CC1(c2ccc(CO)cc2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc(CO)cc1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccc(N3CCOCC3)cc2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(CO)cc2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc(CO)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccc(-n2ccc(CO)n2)cc1; [None]; [None]; [0] +OCCc1cn(-c2ccc(CO)cc2)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc(CO)cc1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccc(CO)cc1)C(C)(C)O; [None]; [None]; [0] +OCc1ccc(-c2c(F)cccc2Cl)cc1; [None]; [None]; [0] +OCc1ccc(-n2ncc3ccccc32)cc1; [None]; [None]; [0] +OCc1ccc(-n2ncc3c(O)cccc32)cc1; [None]; [None]; [0] +OCc1ccc(-c2ccc(-n3cncn3)cc2)cc1; [None]; [None]; [0] +OCc1ccc(-c2nc3ccc(O)cc3[nH]2)cc1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc(CO)cc2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc(CO)cc2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(CO)cc2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2nncn2C2CC2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc(CO)cc2)n1; [None]; [None]; [0] +OCc1ccc(Cc2nnc3ccc(-c4ccccc4)nn23)cc1; [None]; [None]; [0] +O=C(CCc1ccc(CO)cc1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccc(CO)cc1)NCc1ccccn1; [None]; [None]; [0] +OCc1ccc(-c2cn(Cc3ccccc3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc(CO)cc2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc(CO)cc2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc(CO)cc2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc(CO)cc1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc(CO)cc2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(CO)cc2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc(CO)cc2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc(CO)cc2)CC1; [None]; [None]; [0] +OCc1ccc(-c2nc3ccccc3s2)cc1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc(CO)cc3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc(CO)cc3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc(CO)cc2)n1; [None]; [None]; [0] +OCc1ccc(-c2cccc3ccsc23)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc3nnsc23)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(CO)cc2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc(CO)cc2)nc2ccccc12; [None]; [None]; [0] +OCc1ccc(-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +OCc1ccc(-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +OCCn1cnc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +OCc1ccc(-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc(CO)cc1; [None]; [None]; [0] +COc1ccc(Oc2ccc(CO)cc2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc(CO)cc2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc(CO)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc(CO)cc2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc(CO)cc2)cnn1; [None]; [None]; [0] +OCc1ccc(N2CCC(c3nc4ccccc4[nH]3)CC2)cc1; [None]; [None]; [0] +OCc1ccc(N2CC=C(c3c[nH]c4ccccc34)CC2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc(CO)cc2)c1)C1CCNCC1; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +CCOc1ccccc1Nc1ccncc1F; [None]; [None]; [0] +Cc1nnc(-c2ccccc2Nc2ccncc2F)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)Nc1ccncc1F; [None]; [None]; [0] +CP(C)(=O)c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1ccnc2ccccc12; [None]; [None]; [0] +CCn1cc(Nc2ccncc2F)cn1; [None]; [None]; [0] +Fc1cnccc1Nc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Fc1cnccc1Nc1ccccc1OC(F)(F)F; [None]; [None]; [0] +O=C([O-])c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +Cn1cnc2ccc(Nc3ccncc3F)cc2c1=O; [None]; [None]; [0] +Fc1cnccc1Nc1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +N[C@H](Nc1ccncc1F)c1ccco1; [None]; [None]; [0] +OCCn1cc(Nc2ccncc2F)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(Nc2ccncc2F)cs1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ccncc2F)c1)c1ccccc1; [None]; [None]; [0] +COc1cnc(Nc2ccncc2F)nc1; [None]; [None]; [0] +Fc1cnccc1Nc1cc(Cl)ccc1Cl; [None]; [None]; [0] +Cc1ccc(Nc2ccncc2F)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1cnc2ccccn12; [None]; [None]; [0] +Cc1nc(C)c(Nc2ccncc2F)s1; [None]; [None]; [0] +CNc1nc(C)c(Nc2ccncc2F)s1; [None]; [None]; [0] +Cc1nc(N)sc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1cnc2cccnn12; [None]; [None]; [0] +Fc1cnccc1Nc1c(Cl)cccc1Cl; [None]; [None]; [0] +Fc1cnccc1Nc1cccc(Cn2cncn2)c1; [None]; [None]; [0] +Fc1cnccc1Nc1cccc(Br)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(Nc2ccncc2F)c1; [None]; [None]; [0] +Cc1c(Nc2ccncc2F)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(Nc2ccncc2F)n1; [None]; [None]; [0] +Fc1cnccc1Nc1cnn2ncccc12; [None]; [None]; [0] +Fc1cnccc1Nc1ccc2ccccc2c1; [None]; [None]; [0] +CC(C)(C)c1cnc(CNc2ccncc2F)o1; [None]; [None]; [0] +O=C([O-])Cc1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +Fc1cnccc1Nc1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +NC(=O)c1c(F)cccc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1cncc2ccccc12; [None]; [None]; [0] +Cn1cc(-c2ccc(Nc3ccncc3F)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(Nc3ccncc3F)ccc12; [None]; [None]; [0] +CN1c2ccc(Nc3ccncc3F)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(Nc3ccncc3F)ccc21; [None]; [None]; [0] +Fc1cnccc1Nc1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +CCCn1cnc(Nc2ccncc2F)n1; [None]; [None]; [0] +Oc1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +OCc1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +COc1cc(Nc2ccncc2F)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(Nc2ccncc2F)nn1; [None]; [None]; [0] +CSc1nc(Nc2ccncc2F)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1csc2ncncc12; [None]; [None]; [0] +Fc1cnccc1Nc1cc2ccccc2[nH]1; [None]; [None]; [0] +N#CCCc1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +Nc1ncncc1Nc1ccncc1F; [None]; [None]; [0] +CCNc1nc2ccc(Nc3ccncc3F)cc2s1; [None]; [None]; [0] +CC[C@H](CO)Nc1ccncc1F; [None]; [None]; [0] +CCC(=O)Nc1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +Fc1ccc(Nc2ccncc2F)c(C(F)(F)F)c1; [None]; [None]; [0] +Fc1cnccc1NCc1c(F)cccc1F; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +Cn1cc(Nc2ccncc2F)c2ccccc21; [None]; [None]; [0] +COc1ccc(Nc2ccncc2F)cc1Cl; [None]; [None]; [0] +Fc1cnccc1Nc1cnn2ccccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(Nc2ccncc2F)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(Nc2ccncc2F)cn1; [None]; [None]; [0] +O=c1cc(Nc2ccncc2F)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(Nc3ccncc3F)c21; [None]; [None]; [0] +CS(=O)(=O)c1cccc(CNc2ccncc2F)c1; [None]; [None]; [0] +CN(c1ncccc1CNc1ccncc1F)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1Nc1ccncc1F; [None]; [None]; [0] +C[S@](=O)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(Nc3ccncc3F)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(Nc3ccncc3F)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(Nc2ccncc2F)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +OC[C@@H](Nc1ccncc1F)c1ccccc1; [None]; [None]; [0] +COc1cccc(F)c1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1c[nH]c2cnccc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1Nc1ccncc1F; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1cnc2[nH]ccc2c1; [None]; [None]; [0] +CC1(Nc2ccncc2F)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +Fc1cnccc1Nc1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +Cc1cc(Nc2ccncc2F)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Fc1cnccc1Nc1c(F)cccc1Cl; [None]; [None]; [0] +Fc1cnccc1Nc1ccc(-n2cncn2)cc1; [None]; [None]; [0] +CSc1nc(C)c(Nc2ccncc2F)[nH]1; [None]; [None]; [0] +COc1ccc(Nc2ccncc2F)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(Nc2ccncc2F)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ccncc2F)CC1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ccncc1F; [None]; [None]; [0] +Fc1cnccc1Nc1nncn1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2ccncc2F)n1; [None]; [None]; [0] +Fc1cnccc1Nc1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CCc1cc(Nc2ccncc2F)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(Nc2ccncc2F)nc(N)n1; [None]; [None]; [0] +Nc1nnc(Nc2ccncc2F)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1ccncc1F; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ccncc2F)n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ccncc2F)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ccncc2F)CC1; [None]; [None]; [0] +Fc1cnccc1Nc1nc2ccccc2s1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ccncc3F)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ccncc3F)c2)cc1; [None]; [None]; [0] +Nc1cncc(Nc2ccncc2F)n1; [None]; [None]; [0] +Fc1cnccc1Nc1cccc2ccsc12; [None]; [None]; [0] +Fc1cnccc1Nc1cccc2nnsc12; [None]; [None]; [0] +O=C(NCCCNc1ccncc1F)c1cccs1; [None]; [None]; [0] +O=C(NCCCNc1ccncc1F)C1CCC1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2ccncc2F)[nH]1; [None]; [None]; [0] +Fc1cnccc1Nc1ncc2ccccc2n1; [None]; [None]; [0] +Fc1cnccc1Nc1c[nH]c2cccnc12; [None]; [None]; [0] +OCCn1cnc(Nc2ccncc2F)c1; [None]; [None]; [0] +Fc1cnccc1Nc1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ccncc1F; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1CNc1ccncc1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](Nc2ccncc2F)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Nc2ccncc2F)c1; [None]; [None]; [0] +COc1ncccc1Nc1ccncc1F; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(Nc2ccncc2F)c1; [None]; [None]; [0] +CN(C)c1cc(Nc2ccncc2F)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc4ccccc4n3)c2o1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COc1ncccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cccc4nc(N)oc34)c2c1; [None]; [None]; [0] +Nc1nc2cccc(-c3cnc4cccnn34)c2o1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(O)c3)c2o1; [None]; [None]; [0] +COc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(N4CCOCC4)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(NC(=O)C4CC4)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3nc4ccccc4[nH]3)c2o1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc4nc(N)oc34)cc2)CC1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(=O)[O-])cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3nccc4ccccc34)c2o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(Nc3ncccn3)c2o1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc4nc(N)oc34)cn2)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(=O)Nc4ccccc4)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(OCCO)cc3)c2o1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(C4CCNCC4)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(=O)N4CCOCC4)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(=O)N4CCOCC4)cn3)c2o1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4c(c3)CS(=O)(=O)C4)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(F)(F)F)cc3)c2o1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(Cc3ccccc3O)c2o1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3nc(N)oc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +Nc1ncc(Cc2cccc3nc(N)oc23)cn1; [None]; [None]; [0] +Nc1nc2cccc([C@H]3CCN(C(=O)c4ccccc4)C3)c2o1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc3nc(N)oc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccc4nc(N)oc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cccc3nc(N)oc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(Br)cc3)c2o1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3nc(N)oc23)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccn4nccc4n3)c2o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)c(C)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccccc3-n3cccn3)c2o1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3c[nH]c4ccccc34)c2o1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccc3nc(N)oc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cccc4nc(N)oc34)[nH]c2c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4c(c3)CCO4)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc(-c4ccccc4)[nH]n3)c2o1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)ccc1O; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc4c3OCO4)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3scc4c3OCCO4)c2o1; [None]; [None]; [0] +Nc1nc2cccc(Cc3nc4ccc(F)c(F)c4[nH]3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(Cc3nc4c(F)c(F)ccc4[nH]3)c2o1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3cnc4ccccc4c3)c2o1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3nc(N)oc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +Nc1nc2cccc(Cc3nc4ccccc4[nH]3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3csc(N)n3)c2o1; [None]; [None]; [0] +Cc1ccc(-c2cccc3nc(N)oc23)c(=O)[nH]1; [None]; [None]; [0] +Nc1nc2cccc(CCCc3ccccc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccn(-c4cccc(Cl)c4)n3)c2o1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cccc3nc(N)oc23)c1; [None]; [None]; [0] +CSc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4ccccc4s3)c2o1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccc4nc(N)oc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc3nc(N)oc23)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc([C@H](CO)Cc3ccccc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(F)cc3Cl)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4c(c3)CCC(=O)N4)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc(Br)cn3)c2o1; [None]; [None]; [0] +COc1ccc(-c2cccc3nc(N)oc23)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(Cl)cc3Cl)c2o1; [None]; [None]; [0] +Nc1nc2cccc(CCCn3cncn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc4cccn4n3)c2o1; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4ccccn4n3)c2o1; [None]; [None]; [0] +Cn1cc(-c2cccc3nc(N)oc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc4nc(N)oc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cccc4nc(N)oc34)c2c1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc4ccc(O)cc34)c2o1; [None]; [None]; [0] +COc1cc(F)c(-c2cccc3nc(N)oc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)ccc1Cl; [None]; [None]; [0] +Nc1nc2cccc(-c3cnn(CCO)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc(Cl)cn3)c2o1; [None]; [None]; [0] +Cc1csc2c(-c3cccc4nc(N)oc34)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc3nc(N)oc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3nc(N)oc23)nc1; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cccc3nc(N)oc23)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)c2o1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cccc3nc(N)oc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cccc4nc(N)oc34)cc2c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4cn[nH]c4c3)c2o1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CCn1cc(-c2cccc3nc(N)oc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc(-c4cccnc4)ccn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4ccccc4o3)c2o1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc4sccc4n3)c2o1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(NC(=O)N4CCCC4)c3)c2o1; [None]; [None]; [0] +COc1ccc2nc(-c3cccc4nc(N)oc34)[nH]c2c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(OC(F)(F)F)cc3)c2o1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Cn1cc(-c2cccc3nc(N)oc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc4nc(N)oc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cccc3nc(N)oc23)n1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncn4c3CCCC4)c2o1; [None]; [None]; [0] +Cc1cc(-c2cccc3nc(N)oc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc4nc(N)oc34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccc4nc(N)oc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3nc(N)oc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccc4nc(N)oc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc4nc(N)oc34)cn2)CC1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(N4CCCC4=O)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(CCO)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(NC(=O)c3cccc(OC(F)(F)F)c3)c2o1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3nc(N)oc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccc4nc(N)oc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3nc(N)oc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cccc3nc(N)oc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3nc(N)oc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cccc2nc(N)oc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2nc(N)oc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3nc(N)oc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(Cc3cc(F)cc(F)c3)c2o1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3ccnc4ccccc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(C(F)(F)F)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccccc3OC(F)(F)F)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccccc3C(=O)[O-])c2o1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cnn(Cc4ccccc4)c3)c2o1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4nc(N)oc34)cc2c1=O; [None]; [None]; [0] +Nc1nc2cccc(-c3cnc(-c4ccccc4)[nH]3)c2o1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc3nc(N)oc23)cs1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(NC(=O)c4ccccc4)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-n3ncc4cccc(F)c4c3=O)c2o1; [None]; [None]; [0] +COc1cnc(-c2cccc3nc(N)oc23)nc1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc(Cl)ccc3Cl)c2o1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc2nc(N)oc12; [None]; [None]; [0] +Cc1ccc(-c2cccc3nc(N)oc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cnc4ccccn34)c2o1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc3nc(N)oc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3c(Cl)cccc3Cl)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(Cn4cncn4)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(Br)c3)c2o1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Nc1nc2cccc(NCc3cccnc3)c2o1; [None]; [None]; [0] +Cc1c(-c2cccc3nc(N)oc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cccc3nc(N)oc23)n1; [None]; [None]; [0] +Nc1nc2cccc(-c3cnn4ncccc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4ccccc4c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(Nc3cccnc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-n3cnc4ccccc43)c2o1; [None]; [None]; [0] +Nc1nc2cccc(NCCc3c[nH]cn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(NC(=O)c3cccs3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(CC(=O)[O-])c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3c[nH]nc3C(F)(F)F)c2o1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cncc4ccccc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(NCCc3ccccc3)c2o1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4nc(N)oc34)cc2)cn1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc4c(N)[nH]nc4c3)c2o1; [None]; [None]; [0] +CN1c2ccc(-c3cccc4nc(N)oc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(-c4cn[nH]c4)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(NCc3ccc(Cl)cc3)c2o1; [None]; [None]; [0] +CCCn1cnc(-c2cccc3nc(N)oc23)n1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(CO)c3)c2o1; [None]; [None]; [0] +COc1cc(-c2cccc3nc(N)oc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc2cccc(Nc3ccncc3)c2o1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3nc(N)oc23)nn1; [None]; [None]; [0] +Nc1nc2cccc(NCc3ccccc3F)c2o1; [None]; [None]; [0] +CSc1nc(-c2cccc3nc(N)oc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(CCc3c[nH]nn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3csc4ncncc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4ccccc4[nH]3)c2o1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3cncnc3N)c2o1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4nc(N)oc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(F)cc3C(F)(F)F)c2o1; [None]; [None]; [0] +NC(=O)CCCc1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(Oc3ccccn3)c2o1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(NC(=O)c3c(Cl)cccc3Cl)c2o1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +CC(C)(COc1cccc2nc(N)oc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc3nc(N)oc23)cc1Cl; [None]; [None]; [0] +Nc1nc2cccc(-c3cnn4ccccc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)c2o1; [None]; [None]; [0] +CCCn1cc(-c2cccc3nc(N)oc23)cn1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc[nH]c(=O)c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc4c3C(=O)CC4)c2o1; [None]; [None]; [0] +COc1cc(CCc2cccc3nc(N)oc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +C[C@@H](Oc1cccc2nc(N)oc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CCN(CC)c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4c(=O)[nH]ccc4o3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cc4c(=O)[nH]cc(Br)c4s3)c2o1; [None]; [None]; [0] +COc1ccncc1Nc1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(Nc3cnccc3-c3ccccc3)c2o1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(Nc3cnc4ccccc4c3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3c[nH]c4cnccc34)c2o1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3cnc4[nH]ccc4c3)c2o1; [None]; [None]; [0] +CC1(c2cccc3nc(N)oc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc2nc(N)oc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc3nc(N)oc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc3nc(N)oc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2nc(N)oc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1nc2cccc(-n3ccc(CO)n3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-n3cnc(CCO)c3)c2o1; [None]; [None]; [0] +C[C@H](Nc1cccc2nc(N)oc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc2nc(N)oc12)C(C)(C)O; [None]; [None]; [0] +Nc1nc2cccc(-c3c(F)cccc3Cl)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-n3ncc4ccccc43)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-n3ncc4c(O)cccc43)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(-n4cncn4)cc3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3nc4ccc(O)cc4[nH]3)c2o1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3nc(N)oc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3nc(N)oc23)c(OC)c1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccc(C(=O)c4ccccc4)cc3)c2o1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +Nc1nc2cccc(-c3nncn3C3CC3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ccn(CC[NH3+])n3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(Cc3nnc4ccc(-c5ccccc5)nn34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(CCC(=O)NCc3ccccn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(CS(=O)(=O)NCc3ccccn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cn(Cc4ccccc4)nn3)c2o1; [None]; [None]; [0] +CCc1cc(-c2cccc3nc(N)oc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3nc(N)oc23)nc(N)n1; [None]; [None]; [0] +Nc1nc2cccc(-c3nnc(N)s3)c2o1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3nc(N)oc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3nc(N)oc23)s1; [None]; [None]; [0] +Nc1nc2cccc(Oc3ccc(C[NH3+])cc3F)c2o1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +Nc1nc2cccc(-c3nc4ccccc4s3)c2o1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4nc(N)oc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4nc(N)oc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cccc3nc(N)oc23)n1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc4ccsc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc4nnsc34)c2o1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc3nc(N)oc23)[nH]1; [None]; [None]; [0] +Nc1nc2cccc(-c3nc(N)c4ccccc4n3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3c[nH]c4cccnc34)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cn(CCO)cn3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3ncc4cc[nH]c4n3)c2o1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2nc(N)oc12; [None]; [None]; [0] +COc1ccc(Oc2cccc3nc(N)oc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3nc(N)oc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc3nc(N)oc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3nc(N)oc23)cnn1; [None]; [None]; [0] +Nc1nc2cccc(N3CCC(c4nc5ccccc5[nH]4)CC3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(N3CC=C(c4c[nH]c5ccccc45)CC3)c2o1; [None]; [None]; [0] +Nc1nc2cccc(-c3cccc(NC(=O)C4CCNCC4)c3)c2o1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N(C)C(C)=O)cc3)nc21; [None]; [None]; [0] +CCOc1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc4ccccc4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3sc(C(C)(C)O)nc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccnc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(S(C)(=O)=O)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(OC)c(OC)c(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3cnc4ccc(C)cc43)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc4cccnn34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C#N)ccc3O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(O)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N4CCOCC4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(NC(=O)C4CC4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc4ccccc4[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(CC(=O)N4CCN(C(C)=O)CC4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cc(C)ns3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)[O-])cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nccc4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(N)=O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3ncccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn(Cc4cccc(C#N)c4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)Nc4ccccc4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OCCO)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(CNC(C)=O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C4CCNCC4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N4CCOCC4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N4CCOCC4)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3ccncn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC[C@H](C)O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC[C@@H](C)O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(=O)(=O)NC)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)CS(=O)(=O)C4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(F)(F)F)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(=O)(=O)N(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3sc(C)nc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(C3CCN(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc([C@H]3CCN(C(=O)c4ccccc4)C3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(C)C)nc(N)n3)nc21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(N4CCCN(C(C)=O)CC4)c3)nc21; [None]; [None]; [0] +CCCOc1ccc(-c2ncc3ncn(CC)c3n2)nc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C(=O)[O-])c3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(Br)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N(C)C)c(Cl)c3)nc21; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccn4nccc4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(=O)(=O)NC)cc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3-n3cccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(Cl)ccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c[nH]c4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(Cl)c(OC)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc4ccc(C(C)C)cc4[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)CCO4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(-c4ccccc4)[nH]n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(NC(C)=O)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N4CCOCC4)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(O)c(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4c3OCO4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3scc4c3OCCO4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(C)(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc4ccccc4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(C)(C)C)nc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc([C@@H]3CC[C@@H](NC(C)=O)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3csc(N)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccn(-c4cccc(Cl)c4)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(OCC3(C)COC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3cccc(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(SC)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4ccccc4s3)nc21; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ncc4ncn(CC)c4n3)cc2)CC1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C)nc(N)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(F)cc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)CCC(=O)N4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc(Br)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC)c(OC)c3)nc21; [None]; [None]; [0] +CCc1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N4CCC[C@@H]4C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCc3ccc(OC)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(Cl)cc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC3CN(C(=O)C4CC4)C3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc4cccn4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N4CCOCC4)c(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4ccccn4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(C)nc3C(F)(F)F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)CC(C)(C)O4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4ccc(OC)cc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4ccc(O)cc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(OC)c(OC)cc3F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(Cl)c(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn(CCO)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc(Cl)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncnc4c(C)csc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3nc(C)c(C)s3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cc(C)n(C)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)NC)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(N)nc4[nH]ccc34)nc21; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc3ncn(CC)c3n2)nc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(OC)c(Br)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(CS(C)(=O)=O)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Cc3ccc(C(N)=O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Cc3ccc(S(=O)(=O)CCO)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3ccco3)nc21; [None]; [None]; [0] +CCn1cnc2cnc([C@@H]3CC[C@@H](OC)CC3)nc21; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ncc3ncn(CC)c3n2)CC1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(OC)cc(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(C)c4ccc(OC)cc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4cc(OC)ccc4o3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4cn[nH]c4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C[NH+](C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3ccc(C(C)(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cc(-c2ncc3ncn(CC)c3n2)cn1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(=O)NC)ccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(-c4cccnc4)ccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4ccccc4o3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(Br)cn3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc4sccc4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(C)nc3C(C)C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(NC(=O)N4CCCC4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc4ccc(OC)cc4[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC(F)(F)F)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3cc(OC)ccc3F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(C)c4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4ccc(C(C)(C)O)cc4[nH]3)nc21; [None]; [None]; [0] +CCc1cccc(-c2ncc3ncn(CC)c3n2)n1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncn4c3CCCC4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C)c(OCCO)c(C)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(cnn4C)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)c(Cl)nn4C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N(C)C)nc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(C)n[nH]c4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn(C4CCN(C(C)=O)CC4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(N4CCCC4=O)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(CCO)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3cccc(OC(F)(F)F)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N(C)C)cc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(-c4cnc(C)n4C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(-c4cnn(C)c4)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N4CCOCC4)cc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(C)(=O)=O)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(N4CCNCC4)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)NC)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(C)(C)O)n(C)n3)nc21; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)N(C)C)cn3)nc21; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(Nc3ccc(F)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cc(C)c(F)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3ccccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(S(C)(=O)=O)ccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(=O)NC)ccc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(=O)NCCO)ccc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3C(=O)NC)nc21; [None]; [None]; [0] +CCOc1ccccc1-c1ncc2ncn(CC)c2n1; [None]; [None]; [0] +CCn1cnc2cnc(CCC(C)(C)OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3-c3nnc(C)[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3S(=O)(=O)C(C)C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Cc3cc(F)cc(F)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3P(C)(C)=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccnc4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C(F)(F)F)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3OC(F)(F)F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3C(=O)[O-])nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccccc3C(N)=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn(Cc4ccccc4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4ncn(C)c(=O)c4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc(-c4ccccc4)[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3csc(C(C)(C)C)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(NC(=O)c4ccccc4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3ncc4cccc(F)c4c3=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc(OC)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(Cl)ccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(OCC(=O)C(C)C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C)cc3Br)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c(C)nc4ccccn34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc4ccccn34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3sc(NC)nc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3sc(N)nc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c(Cl)cccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(Cn4cncn4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(Br)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C)ccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCc3cccnc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3sc(=O)n(C)c3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccnc(N)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn4ncccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4ccccc4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cccnc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3cnc4ccccc43)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCCc3c[nH]cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3cccs3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(CC(=O)[O-])c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c[nH]nc3C(F)(F)F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(F)c3C(N)=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cncc4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCCc3ccccc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(-c4cnn(C)c4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(N)[nH]nc4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(c3)CS(=O)(=O)N4C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(-c4cn[nH]c4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCc3ccc(Cl)cc3)nc21; [None]; [None]; [0] +CCCn1cnc(-c2ncc3ncn(CC)c3n2)n1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(CO)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)[O-])c(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3ccncc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(C(C)C)nn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NCc3ccccc3F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c[nH]c(SC)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnoc3C(C)C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CCc3c[nH]nn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3csc4ncncc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4ccccc4[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(CCC#N)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cncnc3N)nc21; [None]; [None]; [0] +CCNc1nc2ccc(-c3ncc4ncn(CC)c4n3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncc3ncn(CC)c3n2)cc1; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(F)cc3C(F)(F)F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CCCC(N)=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Oc3ccccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CCNC(=O)CC(C)(C)O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(NC(=O)c3c(Cl)cccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N3CCC(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(OCC(C)(C)S(C)(=O)=O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC)c(Cl)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnn4ccccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C[NH3+])c(C(F)(F)F)c3)nc21; [None]; [None]; [0] +CCCn1cc(-c2ncc3ncn(CC)c3n2)cn1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc[nH]c(=O)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4c3C(=O)CC4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CCc3cc(OC)cc(OC)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(C)(C)N)cc3)nc21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncc2ncn(CC)c2n1; [None]; [None]; [0] +CCn1cnc2cnc(O[C@H](C)c3c(Cl)cncc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc([S@](C)=O)cc3)nc21; [None]; [None]; [0] +CCN(CC)c1ncc2ncn(CC)c2n1; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4c(=O)[nH]ccc4o3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc4c(=O)[nH]cc(Br)c4s3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cnccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cnccc3-c3ccccc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cncc(OC(C)C)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c(F)cccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Nc3cnc4ccccc4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c[nH]c4cnccc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(F)c3C(=O)NC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc4[nH]ccc4c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(C3(C)CCN(S(C)(=O)=O)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N(C)[C@H]3C[C@@H](NS(C)(=O)=O)C3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(=O)(=O)NC(C)(C)C)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(S(C)(=O)=O)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C)nn3-c3cccc(Cl)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N[C@@H](C)C(=O)NCC(F)(F)F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3ccc(CO)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3cnc(CCO)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N[C@@H](C)C(C)(C)O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N[C@H](C)C(C)(C)O)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c(F)cccc3Cl)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3ncc4ccccc43)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-n3ncc4c(O)cccc43)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(-n4cncn4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc4ccc(O)cc4[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3[nH]c(SC)nc3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(OC)cc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)c4ccccc4)cc3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nncn3C(C)C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nncn3C3CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccn(CC[NH3+])n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Cc3nnc4ccc(-c5ccccc5)nn34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CCC(=O)NCc3ccccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(CS(=O)(=O)NCc3ccccn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(Cc4ccccc4)nn3)nc21; [None]; [None]; [0] +CCc1cc(-c2ncc3ncn(CC)c3n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncc3ncn(CC)c3n2)nc(N)n1; [None]; [None]; [0] +CCn1cnc2cnc(-c3nnc(N)s3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C(N)=O)cn3C)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C(C)(C)O)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc(C(=O)NC)s3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Oc3ccc(C[NH3+])cc3F)nc21; [None]; [None]; [0] +CCn1cnc2cnc(C3CCN(C(=O)N[C@@H2]C)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc4ccccc4s3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ccc4c(n3)NC(=O)C(C)(C)O4)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(C(=O)Nc4ccc(C(=O)NC)cc4)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cncc(N)n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4ccsc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc4nnsc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnc(NC(C)=O)[nH]3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3nc(N)c4ccccc4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3c[nH]c4cccnc34)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cn(CCO)cn3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3ncc4cc[nH]c4n3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(C#N)ccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(Oc3ccc(OC)c(F)c3F)nc21; [None]; [None]; [0] +CCn1cnc2cnc([C@H]3CC[C@@](C)(O)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cc(OC)ccc3OC)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(S(=O)(=O)N(C)C)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cnnc(N(C)C)c3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(N3CC=C(c4c[nH]c5ccccc45)CC3)nc21; [None]; [None]; [0] +CCn1cnc2cnc(-c3cccc(NC(=O)C4CCNCC4)c3)nc21; [None]; [None]; [0] +CC(=O)N(C)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +CCOc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3ccccc3n2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2sc(C(C)(C)O)nc2C)o1; [None]; [None]; [0] +COc1ncccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(S(C)(=O)=O)c2)o1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(NC(=O)c3ccc(C)o3)c2c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnc3cccnn23)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(C#N)ccc2O)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(O)c2)o1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(N3CCOCC3)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(NC(=O)C3CC3)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2nc3ccccc3[nH]2)o1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(NC(=O)c3ccc(C)o3)cc2)CC1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)[O-])cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2nccc3ccccc23)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(N)=O)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NNc2ncccn2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnn(Cc3cccc(C#N)c3)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)Nc3ccccc3)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OCCO)cc2)o1; [None]; [None]; [0] +CC(=O)NCc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(C3CCNCC3)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N3CCOCC3)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N3CCOCC3)cn2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OC[C@H](C)O)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OC[C@@H](C)O)cc2)o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CS(=O)(=O)C3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(F)(F)F)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(N(C)C)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(S(=O)(=O)N(C)C)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccccc2O)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2sc(C)nc2C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NC2CCN(S(C)(=O)=O)CC2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2cnc(N)nc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)N[C@H]2CCN(C(=O)c3ccccc3)C2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(C(C)C)nc(N)n2)o1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(NC(=O)c3ccc(C)o3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(NC(=O)c2ccc(C)o2)nc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(C(=O)[O-])c2C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(Br)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(N(C)C)c(Cl)c2)o1; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccn3nccc3n2)o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)c2ccc(C)o2)c(C)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccccc2-n2cccn2)o1; [None]; [None]; [0] +COc1ccc(Cl)cc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2c[nH]c3ccccc23)o1; [None]; [None]; [0] +COc1cc(OC)c(NC(=O)c2ccc(C)o2)cc1Cl; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2nc3ccc(C(C)C)cc3[nH]2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CCO3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(-c3ccccc3)[nH]n2)o1; [None]; [None]; [0] +CC(=O)Nc1cccc(NC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)ccc1O; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc3c2OCO3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2scc3c2OCCO3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2nc3ccc(F)c(F)c3[nH]2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2nc3c(F)c(F)ccc3[nH]2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(C)(C)C)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnc3ccccc3c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N(C)C)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(C)(C)C)nc2)o1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](NC(=O)c2ccc(C)o2)CC1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2nc3ccccc3[nH]2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2csc(N)n2)o1; [None]; [None]; [0] +Cc1ccc(NC(=O)c2ccc(C)o2)c(=O)[nH]1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCCc2ccccc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccn(-c3cccc(Cl)c3)n2)o1; [None]; [None]; [0] +COc1cccc(C(=O)NNC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +CSc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccccc3s2)o1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(NC(=O)c3ccc(C)o3)cc2)CC1; [None]; [None]; [0] +Cc1cc(NC(=O)c2ccc(C)o2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)NC(=O)c1ccc(C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)N[C@H](CO)Cc2ccccc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(F)cc2Cl)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CCC(=O)N3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Br)cn2)o1; [None]; [None]; [0] +COc1ccc(NC(=O)c2ccc(C)o2)cc1OC; [None]; [None]; [0] +CCc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N3CCC[C@@H]3C)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(Cl)cc2Cl)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCCn2cncn2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3cccn3n2)o1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccccn3n2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cn(C)nc2C(F)(F)F)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CC(C)(C)O3)o1; [None]; [None]; [0] +COc1ccc2cccc(NC(=O)c3ccc(C)o3)c2c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc3ccc(O)cc23)o1; [None]; [None]; [0] +COc1cc(F)c(NC(=O)c2ccc(C)o2)cc1OC; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)ccc1Cl; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnn(CCO)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Cl)cn2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncnc3c(C)csc23)o1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(N)nc3[nH]ccc23)o1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(C)o2)nc1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](NC(=O)c2ccc(C)o2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(NC(=O)c2ccc(C)o2)CC1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(C(=O)Nc3cn[nH]c3)c2)o1; [None]; [None]; [0] +COc1cc(NC(=O)c2ccc(C)o2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(NC(=O)c1ccc(C)o1)cn2C; [None]; [None]; [0] +COc1ccc2oc(NC(=O)c3ccc(C)o3)cc2c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3cn[nH]c3c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C[NH+](C)C)cc2)o1; [None]; [None]; [0] +CCn1cc(NC(=O)c2ccc(C)o2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(NC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(-c3cccnc3)ccn2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccccc3o2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(Br)cn2C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3sccc3n2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cn(C)nc2C(C)C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(NC(=O)N3CCCC3)c2)o1; [None]; [None]; [0] +COc1ccc2nc(NC(=O)c3ccc(C)o3)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OC(F)(F)F)cc2)o1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cn(C)c3ccccc23)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccc(C(C)(C)O)cc3[nH]2)o1; [None]; [None]; [0] +CCc1cccc(NC(=O)c2ccc(C)o2)n1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncn3c2CCCC3)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(C)c(OCCO)c(C)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(cnn3C)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)c(Cl)nn3C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(N(C)C)nc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(C)n[nH]c3c2)o1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(NC(=O)c3ccc(C)o3)cn2)CC1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cccc(N3CCCC3=O)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(CCO)cc2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)NNC(=O)c2cccc(OC(F)(F)F)c2)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N(C)C)cc2Cl)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(-c3cnc(C)n3C)cc2)o1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(N3CCOCC3)cc2C)o1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1NC(=O)c1ccc(C)o1; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2ccc(C)o2)c(OC)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(C(C)(C)O)n(C)n2)o1; [None]; [None]; [0] +CCNC(=O)c1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(C(=O)N(C)C)cn2)o1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(NC(=O)c2ccc(C)o2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(S(C)(=O)=O)ccc2Cl)o1; [None]; [None]; [0] +Cc1ccc(C(=O)N[C@H](C)CS(C)(=O)=O)o1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(NC(=O)c2ccc(C)o2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc(C(=O)NCCO)ccc2C)o1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc3ccccc3n2)o1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +COc1ncccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)o2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc(C(N)=O)o3)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3cccnn23)o1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(O)c2)o1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(N3CCOCC3)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(NC(=O)C3CC3)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ccccc3[nH]2)o1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc(C(N)=O)o3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)[O-])cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nccc3ccccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2ncccn2)o1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccc(C(N)=O)o3)cn2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)Nc3ccccc3)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(OCCO)cc2)o1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C3CCNCC3)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)N3CCOCC3)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)N3CCOCC3)cn2)o1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CS(=O)(=O)C3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(F)(F)F)cc2)o1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccccc2O)o1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc(C(N)=O)o2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc(C(N)=O)o2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)nc2)o1; [None]; [None]; [0] +NC(=O)c1ccc([C@H]2CCN(C(=O)c3ccccc3)C2)o1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc(C(N)=O)o2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc(C(N)=O)o3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc(C(N)=O)o2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(Br)cc2)o1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(C(N)=O)o2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccn3nccc3n2)o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(N)=O)o2)c(C)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccccc2-n2cccn2)o1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c3ccccc23)o1; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc(C(N)=O)o2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc(C(N)=O)o3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CCO3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(-c3ccccc3)[nH]n2)o1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)o2)ccc1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3c2OCO3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2scc3c2OCCO3)o1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3ccc(F)c(F)c3[nH]2)o1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3c(F)c(F)ccc3[nH]2)o1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3ccccc3c2)o1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc(C(N)=O)o2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc(C(N)=O)o2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nc3ccccc3[nH]2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2csc(N)n2)o1; [None]; [None]; [0] +Cc1ccc(-c2ccc(C(N)=O)o2)c(=O)[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(CCCc2ccccc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccn(-c3cccc(Cl)c3)n2)o1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +CSc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccccc3s2)o1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc(C(N)=O)o3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(N)=O)o2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc([C@H](CO)Cc2ccccc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(F)cc2Cl)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CCC(=O)N3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc(Br)cn2)o1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(N)=O)o2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(Cl)cc2Cl)o1; [None]; [None]; [0] +NC(=O)c1ccc(CCCn2cncn2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc3cccn3n2)o1; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)o2)ccc1N1CCOCC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccccn3n2)o1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(N)=O)o2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc(C(N)=O)o3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc(C(N)=O)o3)c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3ccc(O)cc23)o1; [None]; [None]; [0] +COc1cc(F)c(-c2ccc(C(N)=O)o2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)o2)ccc1Cl; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(CCO)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc(Cl)cn2)o1; [None]; [None]; [0] +Cc1csc2c(-c3ccc(C(N)=O)o3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)o1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(C(N)=O)o2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(N)=O)o2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc(C(N)=O)o2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc(C(N)=O)o2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)o1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc(C(N)=O)o1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc(C(N)=O)o3)cc2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3cn[nH]c3c2)o1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc(C(N)=O)o2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(-c3cccnc3)ccn2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3ccccc3o2)o1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncc3sccc3n2)o1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(NC(=O)N3CCCC3)c2)o1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc(C(N)=O)o3)[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(OC(F)(F)F)cc2)o1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(N)=O)o2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc(C(N)=O)o3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc(C(N)=O)o2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ncn3c2CCCC3)o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(N)=O)o2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc(C(N)=O)o3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc(C(N)=O)o3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc(C(N)=O)o2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc(C(N)=O)o3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc(C(N)=O)o3)cn2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(N3CCCC3=O)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(CCO)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(NC(=O)c2cccc(OC(F)(F)F)c2)o1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(C(N)=O)o2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc(C(N)=O)o3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(N)=O)o2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2ccc(C(N)=O)o2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc(C(N)=O)o2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1ccc(C(N)=O)o1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3ncccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c(Cl)ccc3c2OCO3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(Cl)c(O)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ccccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c(Cl)cccc2Cl)o1; [None]; [None]; [0] +NC(=O)c1ccc(Oc2ccc(F)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(N)=O)o2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(O)cc2Cl)o1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(O)cc2F)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccnc(N)n2)o1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(C(N)=O)o3)cc2[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cn[nH]c2Cl)o1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(-c3ccc(O)cc3O)cc2)o1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(C(N)=O)o2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(N)=O)o2)ccc1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(Br)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3ccccc3c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(O)c(F)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(O)cc2O)o1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn3ncccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c[nH]c3cnccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccnc(N)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(COc2ccccc2Cl)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(F)c(Cl)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2[nH]cnc2-c2ccc(F)cc2)o1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)ccc2Cl)o1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(O)c(Cl)c2)o1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc(C(N)=O)o2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(C(N)=O)o3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(N)=O)o3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(N)=O)o2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc3[nH]ccc3c2)o1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(C(N)=O)o2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ccccc3s2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc(O)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CC(=O)N3)o1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc(C(N)=O)o1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(N)=O)o2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc(C(N)=O)o3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc(C(N)=O)o2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(F)F)n[nH]2)o1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccncc2Cl)o1; [None]; [None]; [0] +CCc1sccc1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(Cl)c(O)c(Cl)c2)o1; [None]; [None]; [0] +CNc1nc(-c2ccc(C(N)=O)o2)ncc1F; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CCN3)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)n3nccc3n2)o1; [None]; [None]; [0] +Cc1oc(-c2ccc(C(N)=O)o2)cc1C(=O)[O-]; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3[nH]c(=O)[nH]c3c2)o1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2ccncc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(Br)cc2F)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2[nH]nc3ccc(F)cc23)o1; [None]; [None]; [0] +CN(c1ccc(C(N)=O)o1)c1cccc2[nH]ncc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)cc(Br)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)NC3CC3)cc2)o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(N)=O)o2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(N)=O)o3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(N)=O)o2)cc(C)c1O; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(F)c(O)c(F)c2)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(=O)[nH][nH]c3c2)o1; [None]; [None]; [0] +CSc1cccc(-c2ccc(C(N)=O)o2)c1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2c[nH]c3ccccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(OCc2cccc3ccccc23)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ocnc2-c2ccc(F)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(Oc2ccc(F)cc2F)o1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc(C(N)=O)o1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)o1; [None]; [None]; [0] +NC(=O)c1ccc(OCc2ccc(F)cc2F)o1; [None]; [None]; [0] +NC(=O)c1ccc(CCc2ccc(F)cc2F)o1; [None]; [None]; [0] +NC(=O)c1ccc(NCc2c(F)cccc2Cl)o1; [None]; [None]; [0] +CCN(c1ccc(N(C)C(C)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCOc1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(c1ncc2ccccc2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1sc(C(C)(C)O)nc1C; [None]; [None]; [0] +CCN(c1cccnc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(S(C)(=O)=O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(OC)c(OC)c(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)n1cnc2ccc(C)cc21; [None]; [None]; [0] +CCN(c1ncncc1F)c1cnc2cccnn12; [None]; [None]; [0] +CCN(c1cc(C#N)ccc1O)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OC)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N2CCOCC2)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(NC(=O)C2CC2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1nc2ccccc2[nH]1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(CC(=O)N2CCN(C(C)=O)CC2)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1cc(C)ns1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)[O-])cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1nccc2ccccc12; [None]; [None]; [0] +CCN(c1ccc(C(N)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1ncccn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnn(Cc2cccc(C#N)c2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)Nc2ccccc2)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OCCO)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(CNC(C)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(C2CCNCC2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)N2CCOCC2)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)N2CCOCC2)cn1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1ccncn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OC[C@H](C)O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OC[C@@H](C)O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(S(=O)(=O)NC)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CS(=O)(=O)C2)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(F)(F)F)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N(C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(S(=O)(=O)N(C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1sc(C)nc1C; [None]; [None]; [0] +CCN(c1ncncc1F)C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CCN(c1ncncc1F)[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +CCN(c1cc(C(C)C)nc(N)n1)c1ncncc1F; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(c1cccc(N2CCCN(C(C)=O)CC2)c1)c1ncncc1F; [None]; [None]; [0] +CCCOc1ccc(N(CC)c2ncncc2F)nc1; [None]; [None]; [0] +CCN(c1cccc(C(=O)[O-])c1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(Br)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N(C)C)c(Cl)c1)c1ncncc1F; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(c1ccn2nccc2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(S(=O)(=O)NC)cc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccccc1-n1cccn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(Cl)ccc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1c[nH]c2ccccc12; [None]; [None]; [0] +CCN(c1cc(Cl)c(OC)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1nc2ccc(C(C)C)cc2[nH]1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CCO2)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(-c2ccccc2)[nH]n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(NC(C)=O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)N2CCOCC2)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(O)c(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc2c1OCO2)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1scc2c1OCCO2; [None]; [None]; [0] +CCN(c1ccc(C(C)(C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnc2ccccc2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)N(C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(C)(C)C)nc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +CCN(c1csc(N)n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccn(-c2cccc(Cl)c2)n1)c1ncncc1F; [None]; [None]; [0] +CCN(OCC1(C)COC1)c1ncncc1F; [None]; [None]; [0] +CCN(NC(=O)c1cccc(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(SC)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc2ccccc2s1)c1ncncc1F; [None]; [None]; [0] +CCN1CCN(Cc2ccc(N(CC)c3ncncc3F)cc2)CC1; [None]; [None]; [0] +CCN(c1cc(C)nc(N)n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(F)cc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CCC(=O)N2)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncc(Br)cn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OC)c(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCc1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(c1ccc(C(=O)N2CCC[C@@H]2C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(NCc1ccc(OC)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(Cl)cc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(NC1CN(C(=O)C2CC2)C1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncc2cccn2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N2CCOCC2)c(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc2ccccn2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cn(C)nc1C(F)(F)F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CC(C)(C)O2)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cccc2ccc(OC)cc12; [None]; [None]; [0] +CCN(c1ncncc1F)c1cccc2ccc(O)cc12; [None]; [None]; [0] +CCN(c1cc(OC)c(OC)cc1F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(Cl)c(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnn(CCO)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncc(Cl)cn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1ncnc2c(C)csc12; [None]; [None]; [0] +CCN(Nc1nc(C)c(C)s1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1cc(C)n(C)n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)NC)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(N(CC)c2ncncc2F)nc1; [None]; [None]; [0] +CCN(c1cc(OC)c(Br)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(CS(C)(=O)=O)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(Cc1ccc(C(N)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(Cc1ccc(S(=O)(=O)CCO)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(NC(=O)c1ccco1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)[C@@H]1CC[C@@H](OC)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(N(CC)c2ncncc2F)CC1; [None]; [None]; [0] +CCN(c1cccc(C(=O)Nc2cn[nH]c2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(OC)cc(OC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cn(C)c2ccc(OC)cc12; [None]; [None]; [0] +CCN(c1cc2cc(OC)ccc2o1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2cn[nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C[NH+](C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(NC(=O)c1ccc(C(C)(C)C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnn(CC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(=O)NC)ccc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(-c2cccnc2)ccn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc2ccccc2o1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cc(Br)cn1C; [None]; [None]; [0] +CCN(c1ncc2sccc2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cn(C)nc1C(C)C)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(NC(=O)N2CCCC2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1nc2ccc(OC)cc2[nH]1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(OC(F)(F)F)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(NC(=O)c1cc(OC)ccc1F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cn(C)c2ccccc12; [None]; [None]; [0] +CCN(c1cc2ccc(C(C)(C)O)cc2[nH]1)c1ncncc1F; [None]; [None]; [0] +CCc1cccc(N(CC)c2ncncc2F)n1; [None]; [None]; [0] +CCN(c1ncncc1F)c1ncn2c1CCCC2; [None]; [None]; [0] +CCN(c1cc(C)c(OCCO)c(C)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(cnn2C)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)c(Cl)nn2C)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N(C)C)nc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(C)n[nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnn(C2CCN(C(C)=O)CC2)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(N2CCCC2=O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(CCO)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(NC(=O)c1cccc(OC(F)(F)F)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)N(C)C)cc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(-c2cnc(C)n2C)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(-c2cnn(C)c2)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N2CCOCC2)cc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(S(C)(=O)=O)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(N2CCNCC2)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)NC)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(C)(C)O)n(C)n1)c1ncncc1F; [None]; [None]; [0] +CCNC(=O)c1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(c1ccc(C(=O)N(C)C)cn1)c1ncncc1F; [None]; [None]; [0] +CCNC(=O)Cc1ccc(N(CC)c2ncncc2F)cc1; [None]; [None]; [0] +CCN(Nc1ccc(F)cn1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1cc(C)c(F)cn1)c1ncncc1F; [None]; [None]; [0] +CCN(Nc1ccccn1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(S(C)(=O)=O)ccc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(=O)NC)ccc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(=O)NCCO)ccc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cccc2ncccc12; [None]; [None]; [0] +CCN(c1ncncc1F)c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +CCN(c1ccc(Cl)c(O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1n[nH]c2ccccc12; [None]; [None]; [0] +CCN(c1ncncc1F)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CCN(c1ccc(C(N)=O)cc1F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(O)cc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(N)=O)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(O)cc1F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccnc(N)n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(F)ccc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(F)c2nc(C)[nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cn[nH]c1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(F)cc1OC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(-c2ccc(O)cc2O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)OC)o1)c1ncncc1F; [None]; [None]; [0] +CCN(COc1cccc(Cl)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(Br)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2ccccc2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(O)c(F)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(O)cc1O)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(=O)OC)ccc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1cnn2ncccc12; [None]; [None]; [0] +CCN(c1ncncc1F)c1c[nH]c2cnccc12; [None]; [None]; [0] +CCN(c1ccnc(N)c1)c1ncncc1F; [None]; [None]; [0] +CCN(COc1ccccc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(F)c(Cl)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)[C@H](CO)c1ccccc1; [None]; [None]; [0] +CCN(CCc1ccc(Cl)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +CCN(c1ncncc1F)c1c(C)ccc2[nH]ncc12; [None]; [None]; [0] +CCN(c1cc(O)ccc1Cl)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(CO)ccc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnc(O)c(Cl)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1c[nH]c(C(N)=O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(C(=O)NC)cccc2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2nc(C)[nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCOc1cccc(N(CC)c2ncncc2F)c1; [None]; [None]; [0] +CCN(c1ccc(NC(N)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cnc2[nH]ccc2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(S(C)(=O)=O)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1nc2ccccc2s1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cncc(O)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CC(=O)N2)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccnc(NC)n1)c1ncncc1F; [None]; [None]; [0] +CCc1cc(O)ccc1N(CC)c1ncncc1F; [None]; [None]; [0] +CCc1cc(O)c(F)cc1N(CC)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1[nH]nc(C)c1C; [None]; [None]; [0] +CCN(c1ccc(O)cc1C)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(F)F)n[nH]1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccncc1Cl)c1ncncc1F; [None]; [None]; [0] +CCc1sccc1N(CC)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(Cl)c(O)c(Cl)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncc(F)c(NC)n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(c1)CCN2)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(O)n2nccc2n1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C(=O)[O-])c(C)o1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2[nH]c(=O)[nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(Br)cc1F)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CCN(c1cc(O)cc(Br)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(=O)NC2CC2)cc1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc(C(N)=O)c(C)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2nc(C)oc2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(C)c(O)c(C)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cc(F)c(O)c(F)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ccc2c(=O)[nH][nH]c2c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1cccc(SC)c1)c1ncncc1F; [None]; [None]; [0] +CCN(c1ncncc1F)c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +CCN(c1ncncc1F)c1c(-c2ccccc2)noc1C; [None]; [None]; [0] +CCN(c1cn[nH]c1-c1ccc(Cl)cc1)c1ncncc1F; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CCOc1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +COC(C)(C)CCc1cc2nccnc2cn1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc3nccnc3cn2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2cc3nccnc3cn2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4cn3)ccnc2c1; [None]; [None]; [0] +CCn1cc(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4nccnc4cn3)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc4nccnc4cn3)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3cc4nccnc4cn3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc3nccnc3cn2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3cn2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1cc2nccnc2cn1; [None]; [None]; [0] +COc1cnc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1cc2nccnc2cn1; [None]; [None]; [0] +Cc1ccc(-c2cc3nccnc3cn2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccn2c(-c3cc4nccnc4cn3)cnc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc3nccnc3cn2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc3nccnc3cn2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnn2c(-c3cc4nccnc4cn3)cnc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +Brc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +c1cncc(CNc2cc3nccnc3cn2)c1; [None]; [None]; [0] +Cc1c(-c2cc3nccnc3cn2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +c1cnn2ncc(-c3cc4nccnc4cn3)c2c1; [None]; [None]; [0] +c1ccc2cc(-c3cc4nccnc4cn3)ccc2c1; [None]; [None]; [0] +c1cncc(Nc2cc3nccnc3cn2)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(NCCc3c[nH]cn3)ncc2n1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2cn1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4cn3)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc4nccnc4cn3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cc4nccnc4cn3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cc4nccnc4cn3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cc4nccnc4cn3)ccc21; [None]; [None]; [0] +c1cnc2cc(-c3ccc(-c4cn[nH]c4)cc3)ncc2n1; [None]; [None]; [0] +Clc1ccc(CNc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +Oc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +OCc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cc(Nc2cc3nccnc3cn2)ccn1; [None]; [None]; [0] +CC(C)n1cc(-c2cc3nccnc3cn2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1cc2nccnc2cn1; [None]; [None]; [0] +CSc1nc(-c2cc3nccnc3cn2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(CCc3c[nH]nn3)ncc2n1; [None]; [None]; [0] +c1cnc2cc(-c3csc4ncncc34)ncc2n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +Nc1nc(-c2cc3nccnc3cn2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc4nccnc4cn3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Fc1ccc(-c2cc3nccnc3cn2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc(Oc2cc3nccnc3cn2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc2nccnc2cn1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2cn1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2cc3nccnc3cn2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +CC(C)(COc1cc2nccnc2cn1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3cn2)cc1Cl; [None]; [None]; [0] +c1ccn2ncc(-c3cc4nccnc4cn3)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cc3nccnc3cn2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +O=c1cc(-c2cc3nccnc3cn2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cc4nccnc4cn3)c21; [None]; [None]; [0] +COc1cc(CCc2cc3nccnc3cn2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +C[C@@H](Oc1cc2nccnc2cn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CCN(CC)c1cc2nccnc2cn1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cc4nccnc4cn3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cc4nccnc4cn3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc2ncc(Nc3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +c1cc2c(-c3cc4nccnc4cn3)c[nH]c2cn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(-c3cnc4[nH]ccc4c3)ncc2n1; [None]; [None]; [0] +CC1(c2cc3nccnc3cn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc2nccnc2cn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1cnc2cc(-c3ccc(N4CCOCC4)cc3)ncc2n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Cc1cc(-c2cc3nccnc3cn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc2nccnc2cn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +OCCc1cn(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +C[C@H](Nc1cc2nccnc2cn1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc2nccnc2cn1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1cc2nccnc2cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(-c3ccc(-n4cncn4)cc3)ncc2n1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc4nccnc4cn3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc3nccnc3cn2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3cn2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(-c3nncn3C3CC3)ncc2n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4cc5nccnc5cn4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1cc2nccnc2cn1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1cc2nccnc2cn1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3cc4nccnc4cn3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2cc3nccnc3cn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc3nccnc3cn2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cc3nccnc3cn2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3cn2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2cc3nccnc3cn2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +c1ccc2sc(-c3cc4nccnc4cn3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc4nccnc4cn3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc4nccnc4cn3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +c1cc(-c2cc3nccnc3cn2)c2sccc2c1; [None]; [None]; [0] +c1cc(-c2cc3nccnc3cn2)c2snnc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc3nccnc3cn2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cc3nccnc3cn2)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3cc4nccnc4cn3)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3cc4nccnc4cn3)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +c1cnc2cc(-c3ncc4cc[nH]c4n3)ncc2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +COc1ccc(Oc2cc3nccnc3cn2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1ncccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc3nccnc3cn2)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4cc5nccnc5cn4)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2cc3nccnc3cn2)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3cn2)c1)C1CCNCC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc4nccnc4cn3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3cn2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3cc4nccnc4cn3)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc4nccnc4cn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cc3nccnc3cn2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4cn3)nccc2c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1cnc(Nc2cc3nccnc3cn2)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc4nccnc4cn3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1cc(-c2cc3nccnc3cn2)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2cc3nccnc3cn2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cc3nccnc3cn2)nc1)N1CCOCC1; [None]; [None]; [0] +c1cc(Nc2cc3nccnc3cn2)ncn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cc4nccnc4cn3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cc3nccnc3cn2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2cc3nccnc3cn2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc4nccnc4cn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +Brc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3nccnc3cn2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1cnc2cc(-c3ccn4nccc4n3)ncc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc3nccnc3cn2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1ccc2c(-c3cc4nccnc4cn3)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc3nccnc3cn2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc4nccnc4cn3)[nH]c2c1; [None]; [None]; [0] +c1cnc2cc(-c3ccc4c(c3)CCO4)ncc2n1; [None]; [None]; [0] +c1ccc(-c2cc(-c3cc4nccnc4cn3)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)ccc1O; [None]; [None]; [0] +c1cc2c(c(-c3cc4nccnc4cn3)c1)OCO2; [None]; [None]; [0] +c1cnc2cc(-c3scc4c3OCCO4)ncc2n1; [None]; [None]; [0] +c1ccc2ncc(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3cc4nccnc4cn3)n2)c1; [None]; [None]; [0] +CC1(COc2cc3nccnc3cn2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc3nccnc3cn2)c1; [None]; [None]; [0] +CSc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +c1ccc2sc(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc4nccnc4cn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cc3nccnc3cn2)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2cc3nccnc3cn2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3cc4nccnc4cn3)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +COc1ccc(-c2cc3nccnc3cn2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Clc1ccc(-c2cc3nccnc3cn2)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cc3nccnc3cn2)C1; [None]; [None]; [0] +c1cc2cnc(-c3cc4nccnc4cn3)nn2c1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +Cn1cc(-c2cc3nccnc3cn2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc4nccnc4cn3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc4nccnc4cn3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cc4nccnc4cn3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cc3nccnc3cn2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)ccc1Cl; [None]; [None]; [0] +Clc1cnc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +Cc1csc2c(-c3cc4nccnc4cn3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cc3nccnc3cn2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cc3nccnc3cn2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Nc1cc(-c2cc3nccnc3cn2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +COc1cc(-c2cc3nccnc3cn2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2cn1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc3nccnc3cn2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc3nccnc3cn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +c1cnc2cc(-c3ccc4cn[nH]c4c3)ncc2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3cc4nccnc4cn3)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3cc4nccnc4cn3)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +c1cnc2cc(-c3ncc4sccc4n3)ncc2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc3nccnc3cn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cc4nccnc4cn3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc3nccnc3cn2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc4nccnc4cn3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cc3nccnc3cn2)n1; [None]; [None]; [0] +c1cnc2cc(-c3ncn4c3CCCC4)ncc2n1; [None]; [None]; [0] +Cc1cc(-c2cc3nccnc3cn2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc4nccnc4cn3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc3nccnc3cn2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc4nccnc4cn3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc4nccnc4cn3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +O=C(Nc1cc2nccnc2cn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3nccnc3cn2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc4nccnc4cn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc3nccnc3cn2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc3nccnc3cn2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc3nccnc3cn2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc3nccnc3cn2)cc1; [None]; [None]; [0] +Fc1ccc(Nc2cc3nccnc3cn2)nc1; [None]; [None]; [0] +Cc1cc(Nc2cc3nccnc3cn2)ncc1F; [None]; [None]; [0] +c1ccc(Nc2cc3nccnc3cn2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc3nccnc3cn2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc2nccnc2cn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +CCOc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cc1ccnc(COc2sc(C(C)(C)O)nc2C)c1; [None]; [None]; [0] +COc1ncccc1OCc1cc(C)ccn1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(S(C)(=O)=O)c2)c1; [None]; [None]; [0] +COc1cc(OCc2cc(C)ccn2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccnc(COn2cnc3ccc(C)cc32)c1; [None]; [None]; [0] +Cc1ccnc(COc2cnc3cccnn23)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C#N)ccc2O)c1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(O)c2)c1; [None]; [None]; [0] +COc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(NC(=O)C3CC3)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(OCc3cc(C)ccn3)cc2)CC1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)[O-])cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2nccc3ccccc23)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(N)=O)cc2)c1; [None]; [None]; [0] +Cc1ccnc(CONc2ncccn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cnn(Cc3cccc(C#N)c3)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)Nc3ccccc3)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(OCCO)cc2)c1; [None]; [None]; [0] +CC(=O)NCc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N3CCOCC3)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N3CCOCC3)cn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(OC[C@H](C)O)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(OC[C@@H](C)O)cc2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(c2)CS(=O)(=O)C3)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(F)(F)F)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(N(C)C)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(S(=O)(=O)N(C)C)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COCc2ccccc2O)c1; [None]; [None]; [0] +Cc1ccnc(COc2sc(C)nc2C)c1; [None]; [None]; [0] +Cc1ccnc(COC2CCN(S(C)(=O)=O)CC2)c1; [None]; [None]; [0] +Cc1ccnc(COCc2cnc(N)nc2)c1; [None]; [None]; [0] +Cc1ccnc(CO[C@H]2CCN(C(=O)c3ccccc3)C2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C(C)C)nc(N)n2)c1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(OCc3cc(C)ccn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(OCc2cc(C)ccn2)nc1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(C(=O)[O-])c2C)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(Br)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(N(C)C)c(Cl)c2)c1; [None]; [None]; [0] +COc1ccc(COCc2cc(C)ccn2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ccn3nccc3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(OCc2cc(C)ccn2)c(C)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccccc2-n2cccn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1OCc1cc(C)ccn1; [None]; [None]; [0] +Cc1ccnc(COc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(OC)c(OCc2cc(C)ccn2)cc1Cl; [None]; [None]; [0] +Cc1ccnc(COc2nc3ccc(C(C)C)cc3[nH]2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(c2)CCO3)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(OCc2cc(C)ccn2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1OCc1cc(C)ccn1; [None]; [None]; [0] +COc1cc(OCc2cc(C)ccn2)ccc1O; [None]; [None]; [0] +Cc1ccnc(COc2cccc3c2OCO3)c1; [None]; [None]; [0] +Cc1ccnc(COc2scc3c2OCCO3)c1; [None]; [None]; [0] +Cc1ccnc(COCc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +Cc1ccnc(COCc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(C)(C)C)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cnc3ccccc3c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N(C)C)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(C)(C)C)nc2)c1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](OCc2cc(C)ccn2)CC1; [None]; [None]; [0] +Cc1ccnc(COCc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +Cc1ccnc(COc2csc(N)n2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C)[nH]c2=O)c1; [None]; [None]; [0] +Cc1ccnc(COCCCc2ccccc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)NOCc2cc(C)ccn2)c1; [None]; [None]; [0] +CSc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2cc3ccccc3s2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(OCc3cc(C)ccn3)cc2)CC1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C)nc(N)n2)c1; [None]; [None]; [0] +CC[C@@H](CO)OCc1cc(C)ccn1; [None]; [None]; [0] +Cc1ccnc(CO[C@H](CO)Cc2ccccc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(F)cc2Cl)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(c2)CCC(=O)N3)c1; [None]; [None]; [0] +Cc1ccnc(COc2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1ccc(OCc2cc(C)ccn2)cc1OC; [None]; [None]; [0] +CCc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N3CCC[C@@H]3C)cc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(Cl)cc2Cl)c1; [None]; [None]; [0] +Cc1ccnc(COCCCn2cncn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cc(OCc2cc(C)ccn2)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1ccnc(COc2cc3ccccn3n2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cn(C)nc2C(F)(F)F)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(c2)CC(C)(C)O3)c1; [None]; [None]; [0] +COc1ccc2cccc(OCc3cc(C)ccn3)c2c1; [None]; [None]; [0] +Cc1ccnc(COc2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cc(F)c(OCc2cc(C)ccn2)cc1OC; [None]; [None]; [0] +COc1cc(OCc2cc(C)ccn2)ccc1Cl; [None]; [None]; [0] +Cc1ccnc(COc2cnn(CCO)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ncc(Cl)cn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ncnc3c(C)csc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(OCc2cc(C)ccn2)nc1; [None]; [None]; [0] +COc1cc(OCc2cc(C)ccn2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(COCc2cc(C)ccn2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1OCc1cc(C)ccn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](OCc2cc(C)ccn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(OCc2cc(C)ccn2)CC1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(C(=O)Nc3cn[nH]c3)c2)c1; [None]; [None]; [0] +COc1cc(OC)cc(OCc2cc(C)ccn2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(OCc1cc(C)ccn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(OCc3cc(C)ccn3)cc2c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3cn[nH]c3c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C[NH+](C)C)cc2)c1; [None]; [None]; [0] +CCn1cc(OCc2cc(C)ccn2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(OCc2cc(C)ccn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc3ccccc3o2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(Br)cn2C)c1; [None]; [None]; [0] +Cc1ccnc(COc2ncc3sccc3n2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cn(C)nc2C(C)C)c1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(NC(=O)N3CCCC3)c2)c1; [None]; [None]; [0] +COc1ccc2nc(OCc3cc(C)ccn3)[nH]c2c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NOCc2cc(C)ccn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cn(C)c3ccccc23)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc3ccc(C(C)(C)O)cc3[nH]2)c1; [None]; [None]; [0] +CCc1cccc(OCc2cc(C)ccn2)n1; [None]; [None]; [0] +Cc1ccnc(COc2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C)c(OCCO)c(C)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(cnn3C)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(c2)c(Cl)nn3C)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(N(C)C)nc2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc3c(C)n[nH]c3c2)c1; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(OCc3cc(C)ccn3)cn2)CC1; [None]; [None]; [0] +Cc1ccnc(COc2cccc(N3CCCC3=O)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(CCO)cc2)c1; [None]; [None]; [0] +Cc1ccnc(CONC(=O)c2cccc(OC(F)(F)F)c2)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N(C)C)cc2Cl)c1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(-c3cnc(C)n3C)cc2)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1OCc1cc(C)ccn1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(N3CCOCC3)cc2C)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1OCc1cc(C)ccn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1OCc1cc(C)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(OCc2cc(C)ccn2)c(OC)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C(C)(C)O)n(C)n2)c1; [None]; [None]; [0] +CCNC(=O)c1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2ccc(C(=O)N(C)C)cn2)c1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(OCc2cc(C)ccn2)cc1; [None]; [None]; [0] +Cc1ccnc(COc2cc(S(C)(=O)=O)ccc2Cl)c1; [None]; [None]; [0] +Cc1ccnc(CO[C@H](C)CS(C)(=O)=O)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(OCc2cc(C)ccn2)c1; [None]; [None]; [0] +Cc1ccnc(COc2cc(C(=O)NCCO)ccc2C)c1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CCOc1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +COC(C)(C)CCc1cnc(N)c2occc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cnc(N)c3occc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(Cc2cc(F)cc(F)c2)c2ccoc12; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2ccnc3ccccc23)c2ccoc12; [None]; [None]; [0] +CCn1cc(-c2cnc(N)c3occc23)cn1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(F)(F)F)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccccc2OC(F)(F)F)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccccc2C(=O)[O-])c2ccoc12; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cnn(Cc3ccccc3)c2)c2ccoc12; [None]; [None]; [0] +Cn1cnc2ccc(-c3cnc(N)c4occc34)cc2c1=O; [None]; [None]; [0] +Nc1ncc(-c2cnc(-c3ccccc3)[nH]2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cnn(CCO)c2)c2ccoc12; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cnc(N)c3occc23)cs1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)c3ccccc3)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-n2ncc3cccc(F)c3c2=O)c2ccoc12; [None]; [None]; [0] +COc1cnc(-c2cnc(N)c3occc23)nc1; [None]; [None]; [0] +Nc1ncc(-c2cc(Cl)ccc2Cl)c2ccoc12; [None]; [None]; [0] +CC(C)C(=O)COc1cnc(N)c2occc12; [None]; [None]; [0] +Cc1ccc(-c2cnc(N)c3occc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cnc3ccccn23)c2ccoc12; [None]; [None]; [0] +Cc1nc(C)c(-c2cnc(N)c3occc23)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cnc(N)c3occc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cnc3cccnn23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2c(Cl)cccc2Cl)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(Cn3cncn3)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(Br)c2)c2ccoc12; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +Nc1ncc(NCc2cccnc2)c2ccoc12; [None]; [None]; [0] +Cc1c(-c2cnc(N)c3occc23)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cnc(N)c3occc23)n1; [None]; [None]; [0] +Nc1ncc(-c2cnn3ncccc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc3ccccc3c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(Nc2cccnc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-n2cnc3ccccc32)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NCCc2c[nH]cn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NC(=O)c2cccs2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(CC(=O)[O-])c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2c[nH]nc2C(F)(F)F)c2ccoc12; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cncc3ccccc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NCCc2ccccc2)c2ccoc12; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cnc(N)c4occc34)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cnc(N)c4occc34)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cnc(N)c4occc34)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cnc(N)c4occc34)ccc21; [None]; [None]; [0] +Nc1ncc(-c2ccc(-c3cn[nH]c3)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NCc2ccc(Cl)cc2)c2ccoc12; [None]; [None]; [0] +CCCn1cnc(-c2cnc(N)c3occc23)n1; [None]; [None]; [0] +Nc1ncc(-c2cccc(O)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(CO)c2)c2ccoc12; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1ncc(Nc2ccncc2)c2ccoc12; [None]; [None]; [0] +CC(C)n1cc(-c2cnc(N)c3occc23)nn1; [None]; [None]; [0] +Nc1ncc(NCc2ccccc2F)c2ccoc12; [None]; [None]; [0] +CSc1nc(-c2cnc(N)c3occc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(CCc2c[nH]nn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2csc3ncncc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3[nH]2)c2ccoc12; [None]; [None]; [0] +N#CCCc1cccc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +Nc1nc(-c2cnc(N)c3occc23)cs1; [None]; [None]; [0] +Nc1ncncc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CCNc1nc2ccc(-c3cnc(N)c4occc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2C(F)(F)F)c2ccoc12; [None]; [None]; [0] +NC(=O)CCCc1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(Oc2ccccn2)c2ccoc12; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cnc(N)c2occc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +Nc1ncc(NC(=O)c2c(Cl)cccc2Cl)c2ccoc12; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c3occc23)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +CC(C)(COc1cnc(N)c2occc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c3occc23)cc1Cl; [None]; [None]; [0] +Nc1ncc(-c2cnn3ccccc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c2ccoc12; [None]; [None]; [0] +CCCn1cc(-c2cnc(N)c3occc23)cn1; [None]; [None]; [0] +Nc1ncc(-c2cc[nH]c(=O)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc3c2C(=O)CC3)c2ccoc12; [None]; [None]; [0] +COc1cc(CCc2cnc(N)c3occc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +C[C@@H](Oc1cnc(N)c2occc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CCN(CC)c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cc3c(=O)[nH]ccc3o2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cc3c(=O)[nH]cc(Br)c3s2)c2ccoc12; [None]; [None]; [0] +COc1ccncc1Nc1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(Nc2cnccc2-c2ccccc2)c2ccoc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(Nc2cnc3ccccc3c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cnccc23)c2ccoc12; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cnc3[nH]ccc3c2)c2ccoc12; [None]; [None]; [0] +CC1(c2cnc(N)c3occc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cnc(N)c2occc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(N3CCOCC3)cc2)c2ccoc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c3occc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cnc(N)c2occc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1ncc(-n2ccc(CO)n2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-n2cnc(CCO)c2)c2ccoc12; [None]; [None]; [0] +C[C@H](Nc1cnc(N)c2occc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cnc(N)c2occc12)C(C)(C)O; [None]; [None]; [0] +Nc1ncc(-c2c(F)cccc2Cl)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-n2ncc3ccccc32)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-n2ncc3c(O)cccc32)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(-n3cncn3)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2nc3ccc(O)cc3[nH]2)c2ccoc12; [None]; [None]; [0] +CSc1nc(C)c(-c2cnc(N)c3occc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c3occc23)c(OC)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)c3ccccc3)cc2)c2ccoc12; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2nncn2C2CC2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccn(CC[NH3+])n2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(Cc2nnc3ccc(-c4ccccc4)nn23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(CCC(=O)NCc2ccccn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(CS(=O)(=O)NCc2ccccn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cn(Cc3ccccc3)nn2)c2ccoc12; [None]; [None]; [0] +CCc1cc(-c2cnc(N)c3occc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cnc(N)c3occc23)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cnc(N)c3occc23)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cnc(N)c3occc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c3occc23)s1; [None]; [None]; [0] +Nc1ncc(Oc2ccc(C[NH3+])cc2F)c2ccoc12; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3s2)c2ccoc12; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cnc(N)c4occc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cnc(N)c4occc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cnc(N)c3occc23)n1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ccsc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc3nnsc23)c2ccoc12; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cnc(N)c3occc23)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cnc(N)c3occc23)nc2ccccc12; [None]; [None]; [0] +Nc1ncc(-c2ncc3ccccc3n2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3cccnc23)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cn(CCO)cn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ncc3cc[nH]c3n2)c2ccoc12; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +COc1ccc(Oc2cnc(N)c3occc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +COc1ncccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cnc(N)c3occc23)cnn1; [None]; [None]; [0] +Nc1ncc(N2CCC(c3nc4ccccc4[nH]3)CC2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(N2CC=C(c3c[nH]c4ccccc34)CC2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)C3CCNCC3)c2)c2ccoc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cnc(N)c4occc34)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)C3CC3)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2nc3ccccc3[nH]2)c2ccoc12; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cnc(N)c4occc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c3occc23)sn1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)[O-])cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2nccc3ccccc23)c2ccoc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(Nc2ncccn2)c2ccoc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cnc(N)c4occc34)cn2)c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)Nc3ccccc3)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(OCCO)cc2)c2ccoc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C3CCNCC3)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(=O)N3CCOCC3)cn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(Nc2ccncn2)c2ccoc12; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CS(=O)(=O)C3)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(C(F)(F)F)cc2)c2ccoc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +Nc1ncc([C@H]2CCN(C(=O)c3ccccc3)C2)c2ccoc12; [None]; [None]; [0] +CC(C)c1cc(-c2cnc(N)c3occc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cnc(N)c4occc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cnc(N)c3occc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(Br)cc2)c2ccoc12; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c3occc23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccn3nccc3n2)c2ccoc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(N)c3occc23)c(C)c1; [None]; [None]; [0] +Nc1ncc(-c2ccccc2-n2cccn2)c2ccoc12; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2c[nH]c3ccccc23)c2ccoc12; [None]; [None]; [0] +COc1cc(OC)c(-c2cnc(N)c3occc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cnc(N)c4occc34)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCO3)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3ccccc3)[nH]n2)c2ccoc12; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)ccc1O; [None]; [None]; [0] +Nc1ncc(-c2cccc3c2OCO3)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2scc3c2OCCO3)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cnc3ccccc3c2)c2ccoc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cnc(N)c3occc23)cn1; [None]; [None]; [0] +Nc1ncc(-c2ccn(-c3cccc(Cl)c3)n2)c2ccoc12; [None]; [None]; [0] +CC1(COc2cnc(N)c3occc23)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cnc(N)c3occc23)c1; [None]; [None]; [0] +CSc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3s2)c2ccoc12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cnc(N)c4occc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c3occc23)nc(N)n1; [None]; [None]; [0] +Nc1ncc(-c2ccc(F)cc2Cl)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc3c(c2)CCC(=O)N3)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ncc(Br)cn2)c2ccoc12; [None]; [None]; [0] +COc1ccc(-c2cnc(N)c3occc23)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +COc1ccc(CNc2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(-c2ccc(Cl)cc2Cl)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NC2CN(C(=O)C3CC3)C2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ncc3cccn3n2)c2ccoc12; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccn3n2)c2ccoc12; [None]; [None]; [0] +Cn1cc(-c2cnc(N)c3occc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cnc(N)c4occc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cnc(N)c4occc34)c2c1; [None]; [None]; [0] +Nc1ncc(-c2cccc3ccc(O)cc23)c2ccoc12; [None]; [None]; [0] +COc1cc(F)c(-c2cnc(N)c3occc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)ccc1Cl; [None]; [None]; [0] +Nc1ncc(-c2ncc(Cl)cn2)c2ccoc12; [None]; [None]; [0] +Cc1csc2c(-c3cnc(N)c4occc34)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cnc(N)c3occc23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c3occc23)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cnc(N)c3occc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c3occc23)nc1; [None]; [None]; [0] +COc1cc(-c2cnc(N)c3occc23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(Cc2ccc(S(=O)(=O)CCO)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NC(=O)c2ccco2)c2ccoc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cnc(N)c3occc23)CC1; [None]; [None]; [0] +Nc1ncc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c2ccoc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cnc(N)c3occc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cnc(N)c4occc34)cc2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc3cn[nH]c3c2)c2ccoc12; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +Nc1ncc(-c2cc(-c3cccnc3)ccn2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2cc3ccccc3o2)c2ccoc12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2ncc3sccc3n2)c2ccoc12; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Nc1ncc(-c2cccc(NC(=O)N3CCCC3)c2)c2ccoc12; [None]; [None]; [0] +COc1ccc2nc(-c3cnc(N)c4occc34)[nH]c2c1; [None]; [None]; [0] +Nc1ncc(-c2ccc(OC(F)(F)F)cc2)c2ccoc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cnc(N)c3occc23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cnc(N)c4occc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cnc(N)c3occc23)n1; [None]; [None]; [0] +Nc1ncc(-c2ncn3c2CCCC3)c2ccoc12; [None]; [None]; [0] +Cc1cc(-c2cnc(N)c3occc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cnc(N)c4occc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cnc(N)c3occc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cnc(N)c4occc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cnc(N)c4occc34)cn2)CC1; [None]; [None]; [0] +Nc1ncc(-c2cccc(N3CCCC3=O)c2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(-c2ccc(CCO)cc2)c2ccoc12; [None]; [None]; [0] +Nc1ncc(NC(=O)c2cccc(OC(F)(F)F)c2)c2ccoc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c3occc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cnc(N)c4occc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnc(N)c3occc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cnc(N)c3occc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cnc(N)c3occc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cnc(N)c3occc23)cc1; [None]; [None]; [0] +Nc1ncc(Nc2ccc(F)cn2)c2ccoc12; [None]; [None]; [0] +Cc1cc(Nc2cnc(N)c3occc23)ncc1F; [None]; [None]; [0] +Nc1ncc(Nc2ccccn2)c2ccoc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cnc(N)c3occc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cnc(N)c2occc12; [None]; [None]; [0] +CNC(=O)c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CCOc1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COC(C)(C)CCNc1ncc(C2CC2)cn1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2Nc2ncc(C3CC3)cn2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +Fc1cc(F)cc(CNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc2c(Nc3ncc(C4CC4)cn3)ccnc2c1; [None]; [None]; [0] +CCn1cc(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +O=C([O-])c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +NC(=O)c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc(Cn2cc(Nc3ncc(C4CC4)cn3)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(Nc3ncc(C4CC4)cn3)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(Nc3ncc(C4CC4)cn3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(Nc2ncc(C3CC3)cn2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncc(C3CC3)cn2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COc1cnc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CC(C)C(=O)CONc1ncc(C2CC2)cn1; [None]; [None]; [0] +Cc1ccc(Nc2ncc(C3CC3)cn2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccn2c(Nc3ncc(C4CC4)cn3)cnc2c1; [None]; [None]; [0] +Cc1nc(C)c(Nc2ncc(C3CC3)cn2)s1; [None]; [None]; [0] +CNc1nc(C)c(Nc2ncc(C3CC3)cn2)s1; [None]; [None]; [0] +Cc1nc(N)sc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1cnn2c(Nc3ncc(C4CC4)cn3)cnc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +Brc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +c1cncc(CNNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +Cc1c(Nc2ncc(C3CC3)cn2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +c1cnn2ncc(Nc3ncc(C4CC4)cn3)c2c1; [None]; [None]; [0] +c1ccc2cc(Nc3ncc(C4CC4)cn3)ccc2c1; [None]; [None]; [0] +c1cncc(NNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1nc(CCNNc2ncc(C3CC3)cn2)c[nH]1; [None]; [None]; [0] +O=C(NNc1ncc(C2CC2)cn1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc2c(Nc3ncc(C4CC4)cn3)cncc2c1; [None]; [None]; [0] +c1ccc(CCNNc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(Nc3ncc(C4CC4)cn3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(Nc3ncc(C4CC4)cn3)ccc12; [None]; [None]; [0] +CN1c2ccc(Nc3ncc(C4CC4)cn3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(Nc3ncc(C4CC4)cn3)ccc21; [None]; [None]; [0] +c1cc(-c2cn[nH]c2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +Clc1ccc(CNNc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CCCn1cnc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +Oc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +OCc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cc(NNc2ncc(C3CC3)cn2)ccn1; [None]; [None]; [0] +CC(C)n1cc(Nc2ncc(C3CC3)cn2)nn1; [None]; [None]; [0] +Fc1ccccc1CNNc1ncc(C2CC2)cn1; [None]; [None]; [0] +CSc1nc(Nc2ncc(C3CC3)cn2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1nc(NCCc2c[nH]nn2)ncc1C1CC1; [None]; [None]; [0] +c1ncc2c(Nc3ncc(C4CC4)cn3)csc2n1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +Nc1nc(Nc2ncc(C3CC3)cn2)cs1; [None]; [None]; [0] +Nc1ncncc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CCNc1nc2ccc(Nc3ncc(C4CC4)cn3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Fc1ccc(Nc2ncc(C3CC3)cn2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCNc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc(ONc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCNc1ncc(C2CC2)cn1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +O=C(NNc1ncc(C2CC2)cn1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(Nc2ncc(C3CC3)cn2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +CC(C)(CONc1ncc(C2CC2)cn1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(Nc2ncc(C3CC3)cn2)cc1Cl; [None]; [None]; [0] +c1ccn2ncc(Nc3ncc(C4CC4)cn3)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(Nc2ncc(C3CC3)cn2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +O=c1cc(Nc2ncc(C3CC3)cn2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(Nc3ncc(C4CC4)cn3)c21; [None]; [None]; [0] +COc1cc(CCNc2ncc(C3CC3)cn2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +C[C@@H](ONc1ncc(C2CC2)cn1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CCN(CC)Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +O=c1[nH]ccc2oc(Nc3ncc(C4CC4)cn3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(Nc3ncc(C4CC4)cn3)cc12; [None]; [None]; [0] +COc1ccncc1NNc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc(-c2ccncc2NNc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +COc1cccc(F)c1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc2ncc(NNc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +c1cc2c(Nc3ncc(C4CC4)cn3)c[nH]c2cn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1cc2cc(Nc3ncc(C4CC4)cn3)cnc2[nH]1; [None]; [None]; [0] +CC1(Nc2ncc(C3CC3)cn2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(Nc1ncc(C2CC2)cn1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Cc1cc(Nc2ncc(C3CC3)cn2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](NNc1ncc(C2CC2)cn1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +OCCc1cn(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +C[C@H](NNc1ncc(C2CC2)cn1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](NNc1ncc(C2CC2)cn1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc2c(c1)cnn2Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +Oc1cccc2c1cnn2Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ncn(-c2ccc(Nc3ncc(C4CC4)cn3)cc2)n1; [None]; [None]; [0] +Oc1ccc2nc(Nc3ncc(C4CC4)cn3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(Nc2ncc(C3CC3)cn2)[nH]1; [None]; [None]; [0] +COc1ccc(Nc2ncc(C3CC3)cn2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1nc(Nc2nncn2C2CC2)ncc1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(CNc4ncc(C5CC5)cn4)n3n2)cc1; [None]; [None]; [0] +O=C(CCNc1ncc(C2CC2)cn1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(CNc1ncc(C2CC2)cn1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(Nc3ncc(C4CC4)cn3)nn2)cc1; [None]; [None]; [0] +CCc1cc(Nc2ncc(C3CC3)cn2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(Nc2ncc(C3CC3)cn2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(Nc2ncc(C3CC3)cn2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CC(C)(O)c1cccc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncc(C3CC3)cn2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(ONc2ncc(C3CC3)cn2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +c1ccc2sc(Nc3ncc(C4CC4)cn3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(Nc3ncc(C4CC4)cn3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(Nc3ncc(C4CC4)cn3)c2)cc1; [None]; [None]; [0] +Nc1cncc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +c1cc(Nc2ncc(C3CC3)cn2)c2sccc2c1; [None]; [None]; [0] +c1cc(Nc2ncc(C3CC3)cn2)c2snnc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2ncc(C3CC3)cn2)[nH]1; [None]; [None]; [0] +Nc1nc(Nc2ncc(C3CC3)cn2)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(Nc3ncc(C4CC4)cn3)ncc2c1; [None]; [None]; [0] +c1cnc2c(Nc3ncc(C4CC4)cn3)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +c1cc2cnc(Nc3ncc(C4CC4)cn3)nc2[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COc1ccc(ONc2ncc(C3CC3)cn2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1ncccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CN(C)c1cc(Nc2ncc(C3CC3)cn2)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(Nc4ncc(C5CC5)cn4)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(Nc2ncc(C3CC3)cn2)C1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncc(C3CC3)cn2)c1)C1CCNCC1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CCOc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(Nc3ncc(C4CC4)cn3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncc(C3CC3)cn2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3ncc(C4CC4)cn3)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ncc(C4CC4)cn3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1ccc2c(Nc3ncc(C4CC4)cn3)nccc2c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1cnc(NNc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3ncc(C4CC4)cn3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +OCCOc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1cc(Nc2ncc(C3CC3)cn2)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncc(C3CC3)cn2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncc(C3CC3)cn2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3ncc(C4CC4)cn3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1ncc(C2CC2)cn1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +Nc1ncc(CNc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](Nc2ncc(C3CC3)cn2)C1; [None]; [None]; [0] +CC(C)c1cc(Nc2ncc(C3CC3)cn2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3ncc(C4CC4)cn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +Cc1c(Nc2ncc(C3CC3)cn2)cccc1C(=O)[O-]; [None]; [None]; [0] +Brc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncc(C3CC3)cn2)cc1Cl; [None]; [None]; [0] +COc1ccc(CNc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1cc2nc(Nc3ncc(C4CC4)cn3)ccn2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncc(C3CC3)cn2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1ccc2c(Nc3ncc(C4CC4)cn3)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(Nc2ncc(C3CC3)cn2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3ncc(C4CC4)cn3)[nH]c2c1; [None]; [None]; [0] +c1cc2c(cc1Nc1ncc(C3CC3)cn1)CCO2; [None]; [None]; [0] +c1ccc(-c2cc(Nc3ncc(C4CC4)cn3)n[nH]2)cc1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)ccc1O; [None]; [None]; [0] +c1cc(Nc2ncc(C3CC3)cn2)c2c(c1)OCO2; [None]; [None]; [0] +c1nc(Nc2scc3c2OCCO3)ncc1C1CC1; [None]; [None]; [0] +Fc1ccc2nc(CNc3ncc(C4CC4)cn3)[nH]c2c1F; [None]; [None]; [0] +Fc1ccc2[nH]c(CNc3ncc(C4CC4)cn3)nc2c1F; [None]; [None]; [0] +c1ccc2ncc(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +c1ccc2[nH]c(CNc3ncc(C4CC4)cn3)nc2c1; [None]; [None]; [0] +Cc1ccc(Nc2ncc(C3CC3)cn2)c(=O)[nH]1; [None]; [None]; [0] +c1ccc(CCCNc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Clc1cccc(-n2ccc(Nc3ncc(C4CC4)cn3)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CSc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +c1ccc2sc(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Nc3ncc(C4CC4)cn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2ncc(C3CC3)cn2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +Fc1ccc(Nc2ncc(C3CC3)cn2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(Nc3ncc(C4CC4)cn3)ccc2N1; [None]; [None]; [0] +Brc1cnc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +COc1ccc(Nc2ncc(C3CC3)cn2)cc1OC; [None]; [None]; [0] +CCc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Clc1ccc(Nc2ncc(C3CC3)cn2)c(Cl)c1; [None]; [None]; [0] +c1ncn(CCCNc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +c1cc2cnc(Nc3ncc(C4CC4)cn3)nn2c1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +Cn1cc(Nc2ncc(C3CC3)cn2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(Nc3ncc(C4CC4)cn3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Nc3ncc(C4CC4)cn3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(Nc3ncc(C4CC4)cn3)c2c1; [None]; [None]; [0] +COc1cc(F)c(Nc2ncc(C3CC3)cn2)cc1OC; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)ccc1Cl; [None]; [None]; [0] +Clc1cnc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +Cc1csc2c(Nc3ncc(C4CC4)cn3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +Nc1cc(Nc2ncc(C3CC3)cn2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2ncc(C3CC3)cn2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +COc1cc(Nc2ncc(C3CC3)cn2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1ncc(C3CC3)cn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +c1cc2cn[nH]c2cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(Nc3ncc(C4CC4)cn3)c2)c1; [None]; [None]; [0] +c1ccc2oc(Nc3ncc(C4CC4)cn3)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +c1cc2nc(Nc3ncc(C4CC4)cn3)ncc2s1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncc(C3CC3)cn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(Nc3ncc(C4CC4)cn3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3ncc(C4CC4)cn3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Nc2ncc(C3CC3)cn2)n1; [None]; [None]; [0] +c1nc(Nc2ncn3c2CCCC3)ncc1C1CC1; [None]; [None]; [0] +Cc1cc(Nc2ncc(C3CC3)cn2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3ncc(C4CC4)cn3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncc(C3CC3)cn2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3ncc(C4CC4)cn3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3ncc(C4CC4)cn3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +OCCc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NNc1ncc(C2CC2)cn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncc(C3CC3)cn2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3ncc(C4CC4)cn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncc(C3CC3)cn2)c(OC)c1; [None]; [None]; [0] +Cn1nc(Nc2ncc(C3CC3)cn2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncc(C3CC3)cn2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2ncc(C3CC3)cn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2ncc(C3CC3)cn2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1ncc(C2CC2)cn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2ncccc2n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3ncccc3n2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3ncccc3n2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3ccnc4ccccc34)nc2c1; [None]; [None]; [0] +CCn1cc(-c2ccc3ncccc3n2)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4ncccc4n3)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4ncccc4n3)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4ncccc4n3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc3ncccc3n2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3ncccc3n2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ncccc3n2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc2ncccc2n1; [None]; [None]; [0] +COc1cnc(-c2ccc3ncccc3n2)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2ncccc2n1; [None]; [None]; [0] +Cc1ccc(-c2ccc3ncccc3n2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3cnc4ccccn34)nc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3ncccc3n2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3ncccc3n2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3cnc4cccnn34)nc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +Brc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +c1cncc(CNc2ccc3ncccc3n2)c1; [None]; [None]; [0] +Cc1c(-c2ccc3ncccc3n2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +c1cnc2ccc(-c3cnn4ncccc34)nc2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc4ncccc4n3)ccc2c1; [None]; [None]; [0] +c1cncc(Nc2ccc3ncccc3n2)c1; [None]; [None]; [0] +c1cnc2ccc(-n3cnc4ccccc43)nc2c1; [None]; [None]; [0] +c1cnc2ccc(NCCc3c[nH]cn3)nc2c1; [None]; [None]; [0] +O=C(Nc1ccc2ncccc2n1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccc2ncccc2n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc2c(-c3ccc4ncccc4n3)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2ccc3ncccc3n2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4ncccc4n3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4ncccc4n3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4ncccc4n3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4ncccc4n3)ccc21; [None]; [None]; [0] +c1cnc2ccc(-c3ccc(-c4cn[nH]c4)cc3)nc2c1; [None]; [None]; [0] +Clc1ccc(CNc2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +Oc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +OCc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +COc1cc(-c2ccc3ncccc3n2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cnc2ccc(Nc3ccncc3)nc2c1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3ncccc3n2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2ncccc2n1; [None]; [None]; [0] +CSc1nc(-c2ccc3ncccc3n2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(CCc3c[nH]nn3)nc2c1; [None]; [None]; [0] +c1cnc2ccc(-c3csc4ncncc34)nc2c1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc4ncccc4n3)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc3ncccc3n2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2ncccc2n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4ncccc4n3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ccc3ncccc3n2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc(Oc2ccc3ncccc3n2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2ncccc2n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +O=C(Nc1ccc2ncccc2n1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2ccc3ncccc3n2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3ncccc3n2)CC1; [None]; [None]; [0] +CC(C)(COc1ccc2ncccc2n1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3ncccc3n2)cc1Cl; [None]; [None]; [0] +c1cnc2ccc(-c3cnn4ccccc34)nc2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3ncccc3n2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc3ncccc3n2)cn1; [None]; [None]; [0] +O=c1cc(-c2ccc3ncccc3n2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4ncccc4n3)c21; [None]; [None]; [0] +COc1cc(CCc2ccc3ncccc3n2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +C[C@@H](Oc1ccc2ncccc2n1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc2ncccc2n1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4ncccc4n3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4ncccc4n3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc2ncc(Nc3ccc4ncccc4n3)cc2c1; [None]; [None]; [0] +c1cnc2ccc(-c3c[nH]c4cnccc34)nc2c1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3cnc4[nH]ccc4c3)nc2c1; [None]; [None]; [0] +CC1(c2ccc3ncccc3n2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc2ncccc2n1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +c1cnc2ccc(-c3ccc(N4CCOCC4)cc3)nc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3ncccc3n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc2ncccc2n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +OCCc1cn(-c2ccc3ncccc3n2)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc2ncccc2n1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccc2ncccc2n1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ccc2ncccc2n1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3ccc(-n4cncn4)cc3)nc2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4ncccc4n3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3ncccc3n2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3ncccc3n2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3ncccc3n2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ncccc3n2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2ncccc2n1; [None]; [None]; [0] +c1cnc2ccc(-c3nncn3C3CC3)nc2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5ncccc5n4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1ccc2ncccc2n1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2ncccc2n1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4ncccc4n3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc3ncccc3n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3ncccc3n2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc3ncccc3n2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2ncccc2n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ncccc3n2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3ncccc3n2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3ncccc3n2)CC1; [None]; [None]; [0] +c1cnc2ccc(-c3nc4ccccc4s3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4ncccc4n3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4ncccc4n3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc3ncccc3n2)n1; [None]; [None]; [0] +c1cc(-c2ccc3ncccc3n2)c2sccc2c1; [None]; [None]; [0] +c1cnc2ccc(-c3cccc4nnsc34)nc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3ncccc3n2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3ncccc3n2)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3ccc4ncccc4n3)ncc2c1; [None]; [None]; [0] +c1cnc2ccc(-c3c[nH]c4cccnc34)nc2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +c1cnc2ccc(-c3ncc4cc[nH]c4n3)nc2c1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2ncccc2n1; [None]; [None]; [0] +COc1ccc(Oc2ccc3ncccc3n2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3ncccc3n2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2ncccc2n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3ncccc3n2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3ncccc3n2)cnn1; [None]; [None]; [0] +c1cnc2ccc(N3CCC(c4nc5ccccc5[nH]4)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3ncccc3n2)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3ncccc3n2)c1)C1CCNCC1; [None]; [None]; [0] +Oc1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cccc3ncccc23)c1; [None]; [None]; [0] +Oc1ccnc(Nc2c(Cl)ccc3c2OCO3)c1; [None]; [None]; [0] +CCc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(Cl)c(O)c2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2n[nH]c3ccccc23)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2c(Cl)cccc2Cl)c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2cc(O)ccn2)c(F)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(O)cc2Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(O)cc2F)c1; [None]; [None]; [0] +Nc1nccc(Nc2cc(O)ccn2)n1; [None]; [None]; [0] +COc1ccc(F)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +Cc1nc2c(F)cc(Nc3cc(O)ccn3)cc2[nH]1; [None]; [None]; [0] +Oc1ccnc(Nc2cn[nH]c2Cl)c1; [None]; [None]; [0] +COc1cc(F)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(-c3ccc(O)cc3O)cc2)c1; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(Nc2cc(O)ccn2)o1; [None]; [None]; [0] +Oc1ccnc(NCOc2cccc(Cl)c2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cccc(Br)c2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc3ccccc3c2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(O)c(F)c2)c1; [None]; [None]; [0] +Cn1cc(Nc2cc(O)ccn2)c2ccccc21; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(O)cc2O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cnn3ncccc23)c1; [None]; [None]; [0] +Oc1ccnc(Nc2c[nH]c3cnccc23)c1; [None]; [None]; [0] +Nc1cc(Nc2cc(O)ccn2)ccn1; [None]; [None]; [0] +Oc1ccnc(NCOc2ccccc2Cl)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +OC[C@@H](Nc1cc(O)ccn1)c1ccccc1; [None]; [None]; [0] +Oc1ccnc(NCCc2ccc(Cl)cc2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(O)ccc2Cl)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cnc(O)c(Cl)c2)c1; [None]; [None]; [0] +NC(=O)c1cc(Nc2cc(O)ccn2)c[nH]1; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)cc(OC)c1; [None]; [None]; [0] +COc1ccc(Nc2cc(O)ccn2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(Nc3cc(O)ccn3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(Nc3cc(O)ccn3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2cnc3[nH]ccc3c2)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2nc3ccccc3s2)c1; [None]; [None]; [0] +Oc1cncc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +O=C1Cc2cc(Nc3cc(O)ccn3)ccc2N1; [None]; [None]; [0] +CNc1nccc(Nc2cc(O)ccn2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +Cc1n[nH]c(Nc2cc(O)ccn2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(C(F)F)n[nH]2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccncc2Cl)c1; [None]; [None]; [0] +CCc1sccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(Cl)c(O)c(Cl)c2)c1; [None]; [None]; [0] +CNc1nc(Nc2cc(O)ccn2)ncc1F; [None]; [None]; [0] +Oc1ccnc(Nc2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +Cc1oc(Nc2cc(O)ccn2)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(Nc3cc(O)ccn3)cc2[nH]1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(Br)cc2F)c1; [None]; [None]; [0] +Oc1ccnc(Nc2[nH]nc3ccc(F)cc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1cc(Br)cc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(Nc3cc(O)ccn3)cc2o1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)cc(C)c1O; [None]; [None]; [0] +Oc1ccnc(Nc2cc(F)c(O)c(F)c2)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(Nc3cc(O)ccn3)ccc12; [None]; [None]; [0] +CSc1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ocnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CCOc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1cc(O)ccn1; [None]; [None]; [0] +COc1ncccc1Nc1cc(O)ccn1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(Nc3cc(O)ccn3)c2c1; [None]; [None]; [0] +Oc1ccnc(Nc2cnc3cccnn23)c1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +COc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(N3CCOCC3)cc2)c1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(O)ccn2)c1)C1CC1; [None]; [None]; [0] +Oc1ccnc(Nc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3cc(O)ccn3)cc2)CC1; [None]; [None]; [0] +Oc1ccnc(Nc2nccc3ccccc23)c1; [None]; [None]; [0] +Oc1ccnc(NNc2ncccn2)c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3cc(O)ccn3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +OCCOc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(O)ccn2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(O)ccn2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3cc(O)ccn3)cc2C1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(C(F)(F)F)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(NCc2ccccc2O)c1; [None]; [None]; [0] +Cc1nc(C)c(Nc2cc(O)ccn2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2cc(O)ccn2)CC1; [None]; [None]; [0] +Nc1ncc(CNc2cc(O)ccn2)cn1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](Nc2cc(O)ccn2)C1; [None]; [None]; [0] +CC(C)c1cc(Nc2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3cc(O)ccn3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Nc2cc(O)ccn2)nc1; [None]; [None]; [0] +Cc1c(Nc2cc(O)ccn2)cccc1C(=O)[O-]; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(Br)cc2)c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(O)ccn2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ccn3nccc3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cc(O)ccn2)c(C)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccccc2-n2cccn2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cc(OC)c(Nc2cc(O)ccn2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc3c(c2)CCO3)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(-c3ccccc3)[nH]n2)c1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2cccc3c2OCO3)c1; [None]; [None]; [0] +Oc1ccnc(Nc2scc3c2OCCO3)c1; [None]; [None]; [0] +Oc1ccnc(NCc2nc3ccc(F)c(F)c3[nH]2)c1; [None]; [None]; [0] +Oc1ccnc(NCc2nc3c(F)c(F)ccc3[nH]2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2cnc3ccccc3c2)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2cc(O)ccn2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2cc(O)ccn2)CC1; [None]; [None]; [0] +Oc1ccnc(NCc2nc3ccccc3[nH]2)c1; [None]; [None]; [0] +Nc1nc(Nc2cc(O)ccn2)cs1; [None]; [None]; [0] +Cc1ccc(Nc2cc(O)ccn2)c(=O)[nH]1; [None]; [None]; [0] +Oc1ccnc(NCCCc2ccccc2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccn(-c3cccc(Cl)c3)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2cc(O)ccn2)c1; [None]; [None]; [0] +CSc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2cc3ccccc3s2)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Nc3cc(O)ccn3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)Nc1cc(O)ccn1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(F)cc2Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(Nc3cc(O)ccn3)ccc2N1; [None]; [None]; [0] +Oc1ccnc(Nc2ncc(Br)cn2)c1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(Cl)cc2Cl)c1; [None]; [None]; [0] +Oc1ccnc(NCCCn2cncn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)ccc1N1CCOCC1; [None]; [None]; [0] +Oc1ccnc(Nc2cc3ccccn3n2)c1; [None]; [None]; [0] +Cn1cc(Nc2cc(O)ccn2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(Nc3cc(O)ccn3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Nc3cc(O)ccn3)c2c1; [None]; [None]; [0] +Oc1ccnc(Nc2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cc(F)c(Nc2cc(O)ccn2)cc1OC; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(Nc2cc(O)ccn2)cn1; [None]; [None]; [0] +Oc1ccnc(Nc2ncc(Cl)cn2)c1; [None]; [None]; [0] +Cc1csc2c(Nc3cc(O)ccn3)ncnc12; [None]; [None]; [0] +Nc1cc(Nc2cc(O)ccn2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(O)ccn2)nc1; [None]; [None]; [0] +COc1cc(Nc2cc(O)ccn2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNc2cc(O)ccn2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2cc(O)ccn2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2cc(O)ccn2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1cc(O)ccn1)cn2C; [None]; [None]; [0] +COc1ccc2oc(Nc3cc(O)ccn3)cc2c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc3cn[nH]c3c2)c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CCn1cc(Nc2cc(O)ccn2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cc(-c3cccnc3)ccn2)c1; [None]; [None]; [0] +Oc1ccnc(Nc2cc3ccccc3o2)c1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +Oc1ccnc(Nc2ncc3sccc3n2)c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(O)ccn2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(Nc3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +Oc1ccnc(Nc2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2cc(O)ccn2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3cc(O)ccn3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Nc2cc(O)ccn2)n1; [None]; [None]; [0] +Oc1ccnc(Nc2ncn3c2CCCC3)c1; [None]; [None]; [0] +Cc1cc(Nc2cc(O)ccn2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(Nc3cc(O)ccn3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3cc(O)ccn3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(O)ccn2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3cc(O)ccn3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3cc(O)ccn3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +OCCc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +O=C(NNc1cc(O)ccn1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(O)ccn2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3cc(O)ccn3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1cc(O)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cc(O)ccn2)c(OC)c1; [None]; [None]; [0] +Cn1nc(Nc2cc(O)ccn2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(O)ccn2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2cc(O)ccn2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1cc(O)ccn1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2cc(O)ccn2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1cc(O)ccn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncc4ccccc4n3)nc12; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +COc1ncccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +COc1cc(-c2ccc3ccnc(N)c3n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc4ccnc(N)c4n3)c2c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnc4cccnn34)nc12; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(O)c3)nc12; [None]; [None]; [0] +COc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(N4CCOCC4)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(NC(=O)C4CC4)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3nc4ccccc4[nH]3)nc12; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4ccnc(N)c4n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2ccc3ccnc(N)c3n2)sn1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(=O)[O-])cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3nccc4ccccc34)nc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(Nc3ncccn3)nc12; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccc4ccnc(N)c4n3)cn2)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(=O)Nc4ccccc4)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(OCCO)cc3)nc12; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(C4CCNCC4)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(=O)N4CCOCC4)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(=O)N4CCOCC4)cn3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(Nc3ccncn3)nc12; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(c3)CS(=O)(=O)C4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(F)(F)F)cc3)nc12; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3ccnc(N)c3n2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc3ccnc(N)c3n2)CC1; [None]; [None]; [0] +Nc1nccc2ccc([C@H]3CCN(C(=O)c4ccccc4)C3)nc12; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3ccnc(N)c3n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc4ccnc(N)c4n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc3ccnc(N)c3n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(Br)cc3)nc12; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3ccnc(N)c3n2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccn4nccc4n3)nc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3ccnc(N)c3n2)c(C)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccccc3-n3cccn3)nc12; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3c[nH]c4ccccc34)nc12; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc3ccnc(N)c3n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc4ccnc(N)c4n3)[nH]c2c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(c3)CCO4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(-c4ccccc4)[nH]n3)nc12; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +COc1cc(-c2ccc3ccnc(N)c3n2)ccc1O; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc4c3OCO4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3scc4c3OCCO4)nc12; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnc4ccccc4c3)nc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3ccnc(N)c3n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3ccnc(N)c3n2)CC1; [None]; [None]; [0] +Nc1nc(-c2ccc3ccnc(N)c3n2)cs1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccn(-c4cccc(Cl)c4)n3)nc12; [None]; [None]; [0] +CC1(COc2ccc3ccnc(N)c3n2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +CSc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc4ccccc4s3)nc12; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc4ccnc(N)c4n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2ccc3ccnc(N)c3n2)nc(N)n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(F)cc3Cl)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(c3)CCC(=O)N4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncc(Br)cn3)nc12; [None]; [None]; [0] +COc1ccc(-c2ccc3ccnc(N)c3n2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +COc1ccc(CNc2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(Cl)cc3Cl)nc12; [None]; [None]; [0] +Nc1nccc2ccc(NC3CN(C(=O)C4CC4)C3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncc4cccn4n3)nc12; [None]; [None]; [0] +COc1cc(-c2ccc3ccnc(N)c3n2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc4ccccn4n3)nc12; [None]; [None]; [0] +Cn1cc(-c2ccc3ccnc(N)c3n2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc4ccnc(N)c4n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc4ccnc(N)c4n3)c2c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc4ccc(O)cc34)nc12; [None]; [None]; [0] +COc1cc(F)c(-c2ccc3ccnc(N)c3n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc3ccnc(N)c3n2)ccc1Cl; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnn(CCO)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncc(Cl)cn3)nc12; [None]; [None]; [0] +Cc1csc2c(-c3ccc4ccnc(N)c4n3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2ccc3ccnc(N)c3n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2ccc3ccnc(N)c3n2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3ccnc(N)c3n2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc3ccnc(N)c3n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(Cc3ccc(S(=O)(=O)CCO)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(NC(=O)c3ccco3)nc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3ccnc(N)c3n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc3ccnc(N)c3n2)CC1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)nc12; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3ccnc(N)c3n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4ccnc(N)c4n3)cc2c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4cn[nH]c4c3)nc12; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc3ccnc(N)c3n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(-c4cccnc4)ccn3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc4ccccc4o3)nc12; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncc4sccc4n3)nc12; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(NC(=O)N4CCCC4)c3)nc12; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4ccnc(N)c4n3)[nH]c2c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(OC(F)(F)F)cc3)nc12; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc3ccnc(N)c3n2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4ccnc(N)c4n3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc3ccnc(N)c3n2)n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ncn4c3CCCC4)nc12; [None]; [None]; [0] +Cc1cc(-c2ccc3ccnc(N)c3n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4ccnc(N)c4n3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4ccnc(N)c4n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3ccnc(N)c3n2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4ccnc(N)c4n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc4ccnc(N)c4n3)cn2)CC1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(N4CCCC4=O)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(CCO)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(NC(=O)c3cccc(OC(F)(F)F)c3)nc12; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3ccnc(N)c3n2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc4ccnc(N)c4n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2ccc3ccnc(N)c3n2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3ccnc(N)c3n2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(Nc3ccc(F)cn3)nc12; [None]; [None]; [0] +Cc1cc(Nc2ccc3ccnc(N)c3n2)ncc1F; [None]; [None]; [0] +Nc1nccc2ccc(Nc3ccccn3)nc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc4ncccc34)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3c(Cl)ccc4c3OCO4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(Cl)c(O)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3n[nH]c4ccccc34)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3c(Cl)cccc3Cl)nc12; [None]; [None]; [0] +Nc1nccc2ccc(Oc3ccc(F)cc3)nc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)c(F)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(O)cc3Cl)nc12; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(O)cc3F)nc12; [None]; [None]; [0] +Nc1nccc(-c2ccc3ccnc(N)c3n2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4ccnc(N)c4n3)cc2[nH]1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cn[nH]c3Cl)nc12; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)nc12; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3ccnc(N)c3n2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3ccnc(N)c3n2)ccc1O; [None]; [None]; [0] +Nc1nccc2ccc(-c3cccc(Br)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4ccccc4c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(O)c(F)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(O)cc3O)nc12; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnn4ncccc34)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3c[nH]c4cnccc34)nc12; [None]; [None]; [0] +Nc1cc(-c2ccc3ccnc(N)c3n2)ccn1; [None]; [None]; [0] +Nc1nccc2ccc(COc3ccccc3Cl)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(F)c(Cl)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)nc12; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(O)ccc3Cl)nc12; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnc(O)c(Cl)c3)nc12; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3ccnc(N)c3n2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4ccnc(N)c4n3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4ccnc(N)c4n3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3ccnc(N)c3n2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cnc4[nH]ccc4c3)nc12; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3ccnc(N)c3n2)cc1; [None]; [None]; [0] +Nc1nccc2ccc(-c3nc4ccccc4s3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cncc(O)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(c3)CC(=O)N4)nc12; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +CNc1nccc(-c2ccc3ccnc(N)c3n2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4ccnc(N)c4n3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3ccnc(N)c3n2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(C(F)F)n[nH]3)nc12; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccncc3Cl)nc12; [None]; [None]; [0] +CCc1sccc1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(Cl)c(O)c(Cl)c3)nc12; [None]; [None]; [0] +CNc1nc(-c2ccc3ccnc(N)c3n2)ncc1F; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(c3)CCN4)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(O)n4nccc4n3)nc12; [None]; [None]; [0] +Cc1oc(-c2ccc3ccnc(N)c3n2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)nc12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(Nc3ccncc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(Br)cc3F)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3[nH]nc4ccc(F)cc34)nc12; [None]; [None]; [0] +CN(c1ccc2ccnc(N)c2n1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(O)cc(Br)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc(C(=O)NC4CC4)cc3)nc12; [None]; [None]; [0] +Cc1cc(-c2ccc3ccnc(N)c3n2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4ccnc(N)c4n3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc3ccnc(N)c3n2)cc(C)c1O; [None]; [None]; [0] +Nc1nccc2ccc(-c3cc(F)c(O)c(F)c3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)nc12; [None]; [None]; [0] +CSc1cccc(-c2ccc3ccnc(N)c3n2)c1; [None]; [None]; [0] +Nc1nccc2ccc(CCc3c[nH]c4ccccc34)nc12; [None]; [None]; [0] +Nc1nccc2ccc(OCc3cccc4ccccc34)nc12; [None]; [None]; [0] +Nc1nccc2ccc(-c3ocnc3-c3ccc(F)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(Oc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2ccnc(N)c2n1; [None]; [None]; [0] +Nc1nccc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)nc12; [None]; [None]; [0] +Nc1nccc2ccc(OCc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Nc1nccc2ccc(CCc3ccc(F)cc3F)nc12; [None]; [None]; [0] +Nc1nccc2ccc(NCc3c(F)cccc3Cl)nc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ncc3ccccc3n2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1ncccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cc(N)nc4[nH]ccc34)c2c1; [None]; [None]; [0] +Nc1cc(-c2cnc3cccnn23)c2cc[nH]c2n1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Nc1cc(-c2cccc(O)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(N3CCOCC3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CC3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cc(N)nc4[nH]ccc34)cc2)CC1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)[O-])cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2nccc3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cc(N)nc4[nH]ccc34)cn2)c1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)Nc3ccccc3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(OCCO)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cccc(C3CCNCC3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)N3CCOCC3)cn2)c2cc[nH]c2n1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CS(=O)(=O)C3)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(F)(F)F)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(Cc2ccccc2O)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(C)c(-c2cc(N)nc3[nH]ccc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +Nc1cc(Cc2cnc(N)nc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc([C@H]2CCN(C(=O)c3ccccc3)C2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)c1cc(-c2cc(N)nc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cc(N)nc4[nH]ccc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cc(N)nc3[nH]ccc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2ccc(Br)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ccn3nccc3n2)c2cc[nH]c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)c(C)c1; [None]; [None]; [0] +Nc1cc(-c2ccccc2-n2cccn2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(OC)c(-c2cc(N)nc3[nH]ccc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cc(N)nc4[nH]ccc34)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCO3)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cc(-c3ccccc3)[nH]n2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)ccc1O; [None]; [None]; [0] +Nc1cc(-c2cccc3c2OCO3)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2scc3c2OCCO3)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(Cc2nc3ccc(F)c(F)c3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(Cc2nc3c(F)c(F)ccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +Nc1cc(Cc2nc3ccccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2csc(N)n2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1ccc(-c2cc(N)nc3[nH]ccc23)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc(CCCc2ccccc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccn(-c3cccc(Cl)c3)n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +CSc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3s2)c2cc[nH]c2n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cc(N)nc4[nH]ccc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cc(N)nc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc([C@H](CO)Cc2ccccc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCC(=O)N3)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ncc(Br)cn2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(-c2cc(N)nc3[nH]ccc23)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(Cl)cc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(CCCn2cncn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ncc3cccn3n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccn3n2)c2cc[nH]c2n1; [None]; [None]; [0] +Cn1cc(-c2cc(N)nc3[nH]ccc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cc(N)nc4[nH]ccc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cc(N)nc4[nH]ccc34)c2c1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccc(O)cc23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(F)c(-c2cc(N)nc3[nH]ccc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)ccc1Cl; [None]; [None]; [0] +Nc1cc(-c2cnn(CCO)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ncc(Cl)cn2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1csc2c(-c3cc(N)nc4[nH]ccc34)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2cc(N)nc3[nH]ccc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)nc1; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +Nc1cc(-c2cccc(C(=O)Nc3cn[nH]c3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cc(N)nc3[nH]ccc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cc(N)nc4[nH]ccc34)cc2c1; [None]; [None]; [0] +Nc1cc(-c2ccc3cn[nH]c3c2)c2cc[nH]c2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CCn1cc(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Nc1cc(-c2cc(-c3cccnc3)ccn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3o2)c2cc[nH]c2n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2ncc3sccc3n2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)N3CCCC3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc2nc(-c3cc(N)nc4[nH]ccc34)[nH]c2c1; [None]; [None]; [0] +Nc1cc(-c2ccc(OC(F)(F)F)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Cn1cc(-c2cc(N)nc3[nH]ccc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cc(N)nc4[nH]ccc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +Nc1cc(-c2ncn3c2CCCC3)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1cc(-c2cc(N)nc3[nH]ccc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cc(N)nc4[nH]ccc34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cc(N)nc4[nH]ccc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cc(N)nc4[nH]ccc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cc(N)nc4[nH]ccc34)cn2)CC1; [None]; [None]; [0] +Nc1cc(-c2cccc(N3CCCC3=O)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(CCO)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccc(OC(F)(F)F)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cc(N)nc4[nH]ccc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cc(N)nc3[nH]ccc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCOc1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COC(C)(C)CCc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cc(N)nc3[nH]ccc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(Cc2cc(F)cc(F)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2ccnc3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(C(F)(F)F)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccccc2OC(F)(F)F)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccccc2C(=O)[O-])c2cc[nH]c2n1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cnn(Cc3ccccc3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cc(N)nc4[nH]ccc34)cc2c1=O; [None]; [None]; [0] +Nc1cc(-c2cnc(-c3ccccc3)[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(N)nc3[nH]ccc23)cs1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)c3ccccc3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-n2ncc3cccc(F)c3c2=O)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cc(Cl)ccc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)C(=O)COc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Cc1ccc(-c2cc(N)nc3[nH]ccc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cnc3ccccn23)c2cc[nH]c2n1; [None]; [None]; [0] +CNc1nc(C)c(-c2cc(N)nc3[nH]ccc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2c(Cl)cccc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(Cn3cncn3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(Br)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Nc1cc(NCc2cccnc2)c2cc[nH]c2n1; [None]; [None]; [0] +Cc1c(-c2cc(N)nc3[nH]ccc23)sc(=O)n1C; [None]; [None]; [0] +Nc1cc(-c2ccnc(N)n2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cnn3ncccc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc3ccccc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(Nc2cccnc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-n2cnc3ccccc32)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(NCCc2c[nH]cn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(NC(=O)c2cccs2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(CC(=O)[O-])c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2c[nH]nc2C(F)(F)F)c2cc[nH]c2n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cncc3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(NCCc2ccccc2)c2cc[nH]c2n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cc(N)nc4[nH]ccc34)cc2)cn1; [None]; [None]; [0] +Nc1cc(-c2ccc3c(N)[nH]nc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CN1c2ccc(-c3cc(N)nc4[nH]ccc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1cc(-c2ccc(-c3cn[nH]c3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(NCc2ccc(Cl)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +Nc1cc(-c2cccc(CO)c2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2cc(N)nc3[nH]ccc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc(Nc2ccncc2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)n1cc(-c2cc(N)nc3[nH]ccc23)nn1; [None]; [None]; [0] +Nc1cc(NCc2ccccc2F)c2cc[nH]c2n1; [None]; [None]; [0] +CSc1nc(-c2cc(N)nc3[nH]ccc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(CCc2c[nH]nn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2csc3ncncc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cc3ccccc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +Nc1cc(-c2cncnc2N)c2cc[nH]c2n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cc(N)nc4[nH]ccc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc(F)cc2C(F)(F)F)c2cc[nH]c2n1; [None]; [None]; [0] +NC(=O)CCCc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(Oc2ccccn2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(NC(=O)c2c(Cl)cccc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +CC(C)(COc1cc(N)nc2[nH]ccc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cc(N)nc3[nH]ccc23)cc1Cl; [None]; [None]; [0] +Nc1cc(-c2cnn3ccccc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCCn1cc(-c2cc(N)nc3[nH]ccc23)cn1; [None]; [None]; [0] +Nc1cc(-c2cc[nH]c(=O)c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc3c2C(=O)CC3)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(CCc2cc(N)nc3[nH]ccc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +C[C@@H](Oc1cc(N)nc2[nH]ccc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CCN(CC)c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]ccc3o2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cc3c(=O)[nH]cc(Br)c3s2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccncc1Nc1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(Nc2cnccc2-c2ccccc2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(Nc2cnc3ccccc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cnccc23)c2cc[nH]c2n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2cnc3[nH]ccc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CC1(c2cc(N)nc3[nH]ccc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cc(N)nc2[nH]ccc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cc(N)nc3[nH]ccc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cc(N)nc2[nH]ccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1cc(-n2ccc(CO)n2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-n2cnc(CCO)c2)c2cc[nH]c2n1; [None]; [None]; [0] +C[C@H](Nc1cc(N)nc2[nH]ccc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cc(N)nc2[nH]ccc12)C(C)(C)O; [None]; [None]; [0] +Nc1cc(-c2c(F)cccc2Cl)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-n2ncc3ccccc32)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-n2ncc3c(O)cccc32)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccc(-n3cncn3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2nc3ccc(O)cc3[nH]2)c2cc[nH]c2n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cc(N)nc3[nH]ccc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cc(N)nc3[nH]ccc23)c(OC)c1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)c3ccccc3)cc2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +Nc1cc(-c2nncn2C2CC2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ccn(CC[NH3+])n2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(Cc2nnc3ccc(-c4ccccc4)nn23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(CCC(=O)NCc2ccccn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(CS(=O)(=O)NCc2ccccn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cn(Cc3ccccc3)nn2)c2cc[nH]c2n1; [None]; [None]; [0] +CCc1cc(-c2cc(N)nc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cc(N)nc3[nH]ccc23)nc(N)n1; [None]; [None]; [0] +Nc1cc(-c2nnc(N)s2)c2cc[nH]c2n1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cc(N)nc3[nH]ccc23)s1; [None]; [None]; [0] +Nc1cc(Oc2ccc(C[NH3+])cc2F)c2cc[nH]c2n1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cc(N)nc4[nH]ccc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cc(N)nc4[nH]ccc34)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cc(N)nc3[nH]ccc23)n1; [None]; [None]; [0] +Nc1cc(-c2cccc3ccsc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc3nnsc23)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(N)nc3[nH]ccc23)[nH]1; [None]; [None]; [0] +Nc1cc(-c2nc(N)c3ccccc3n2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2c[nH]c3cccnc23)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cn(CCO)cn2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2ncc3cc[nH]c3n2)c2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +COc1ccc(Oc2cc(N)nc3[nH]ccc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cc(N)nc3[nH]ccc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cc(N)nc3[nH]ccc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(N)nc3[nH]ccc23)cnn1; [None]; [None]; [0] +Nc1cc(N2CCC(c3nc4ccccc4[nH]3)CC2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(N2CC=C(c3c[nH]c4ccccc34)CC2)c2cc[nH]c2n1; [None]; [None]; [0] +Nc1cc(-c2cccc(NC(=O)C3CCNCC3)c2)c2cc[nH]c2n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CCOc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3ncc4ccccc4n3)ncnc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +COc1ncccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(Nc3ncnc4cc(Cl)ccc34)c2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3cnc4cccnn34)ncnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +Oc1cccc(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +COc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3ccc(N4CCOCC4)cc3)ncnc2c1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncnc3cc(Cl)ccc23)c1)C1CC1; [None]; [None]; [0] +Clc1ccc2c(Nc3nc4ccccc4[nH]3)ncnc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3ncnc4cc(Cl)ccc34)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3nccc4ccccc34)ncnc2c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(NNc3ncccn3)ncnc2c1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3ncnc4cc(Cl)ccc34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +OCCOc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3cccc(C4CCNCC4)c3)ncnc2c1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(Nc2ncnc3cc(Cl)ccc23)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3ncnc4cc(Cl)ccc34)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +Cc1nc(C)c(Nc2ncnc3cc(Cl)ccc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2ncnc3cc(Cl)ccc23)CC1; [None]; [None]; [0] +Nc1ncc(CNc2ncnc3cc(Cl)ccc23)cn1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](Nc2ncnc3cc(Cl)ccc23)C1; [None]; [None]; [0] +CC(C)c1cc(Nc2ncnc3cc(Cl)ccc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3ncnc4cc(Cl)ccc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Nc2ncnc3cc(Cl)ccc23)nc1; [None]; [None]; [0] +Cc1c(Nc2ncnc3cc(Cl)ccc23)cccc1C(=O)[O-]; [None]; [None]; [0] +Clc1ccc2c(Nc3ccc(Br)cc3)ncnc2c1; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1Cl; [None]; [None]; [0] +COc1ccc(CNc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3ccn4nccc4n3)ncnc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)c(C)c1; [None]; [None]; [0] +Clc1ccc2c(Nc3ccccc3-n3cccn3)ncnc2c1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +Clc1ccc2c(Nc3c[nH]c4ccccc34)ncnc2c1; [None]; [None]; [0] +COc1cc(OC)c(Nc2ncnc3cc(Cl)ccc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3ncnc4cc(Cl)ccc34)[nH]c2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3ccc4c(c3)CCO4)ncnc2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3cc(-c4ccccc4)[nH]n3)ncnc2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)ccc1O; [None]; [None]; [0] +Clc1ccc2c(Nc3cccc4c3OCO4)ncnc2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3scc4c3OCCO4)ncnc2c1; [None]; [None]; [0] +Fc1ccc2nc(CNc3ncnc4cc(Cl)ccc34)[nH]c2c1F; [None]; [None]; [0] +Fc1ccc2[nH]c(CNc3ncnc4cc(Cl)ccc34)nc2c1F; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3cnc4ccccc4c3)ncnc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2ncnc3cc(Cl)ccc23)CC1; [None]; [None]; [0] +Clc1ccc2c(NCc3nc4ccccc4[nH]3)ncnc2c1; [None]; [None]; [0] +Nc1nc(Nc2ncnc3cc(Cl)ccc23)cs1; [None]; [None]; [0] +Cc1ccc(Nc2ncnc3cc(Cl)ccc23)c(=O)[nH]1; [None]; [None]; [0] +Clc1ccc2c(NCCCc3ccccc3)ncnc2c1; [None]; [None]; [0] +Clc1cccc(-n2ccc(Nc3ncnc4cc(Cl)ccc34)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +CSc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc2c(Nc3cc4ccccc4s3)ncnc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Nc3ncnc4cc(Cl)ccc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2ncnc3cc(Cl)ccc23)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +Fc1ccc(Nc2ncnc3cc(Cl)ccc23)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(Nc3ncnc4cc(Cl)ccc34)ccc2N1; [None]; [None]; [0] +Clc1ccc2c(Nc3ncc(Br)cn3)ncnc2c1; [None]; [None]; [0] +COc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1OC; [None]; [None]; [0] +CCc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Clc1ccc(Nc2ncnc3cc(Cl)ccc23)c(Cl)c1; [None]; [None]; [0] +Clc1ccc2c(NCCCn3cncn3)ncnc2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3ncc4cccn4n3)ncnc2c1; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)ccc1N1CCOCC1; [None]; [None]; [0] +Clc1ccc2c(Nc3cc4ccccn4n3)ncnc2c1; [None]; [None]; [0] +Cn1cc(Nc2ncnc3cc(Cl)ccc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(Nc3ncnc4cc(Cl)ccc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Nc3ncnc4cc(Cl)ccc34)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(Nc3ncnc4cc(Cl)ccc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(Nc2ncnc3cc(Cl)ccc23)cc1OC; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(Nc2ncnc3cc(Cl)ccc23)cn1; [None]; [None]; [0] +Clc1cnc(Nc2ncnc3cc(Cl)ccc23)nc1; [None]; [None]; [0] +Cc1csc2c(Nc3ncnc4cc(Cl)ccc34)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +Nc1cc(Nc2ncnc3cc(Cl)ccc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)nc1; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2ncnc3cc(Cl)ccc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2ncnc3cc(Cl)ccc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +COc1cc(Nc2ncnc3cc(Cl)ccc23)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1ncnc3cc(Cl)ccc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(Nc3ncnc4cc(Cl)ccc34)cc2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3ccc4cn[nH]c4c3)ncnc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CCn1cc(Nc2ncnc3cc(Cl)ccc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +Clc1ccc2c(Nc3cc(-c4cccnc4)ccn3)ncnc2c1; [None]; [None]; [0] +Clc1ccc2c(Nc3cc4ccccc4o3)ncnc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +Clc1ccc2c(Nc3ncc4sccc4n3)ncnc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +O=C(Nc1cccc(Nc2ncnc3cc(Cl)ccc23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(Nc3ncnc4cc(Cl)ccc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +Cn1cc(Nc2ncnc3cc(Cl)ccc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3ncnc4cc(Cl)ccc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Nc2ncnc3cc(Cl)ccc23)n1; [None]; [None]; [0] +Clc1ccc2c(Nc3ncn4c3CCCC4)ncnc2c1; [None]; [None]; [0] +Cc1cc(Nc2ncnc3cc(Cl)ccc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(Nc3ncnc4cc(Cl)ccc34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3ncnc4cc(Cl)ccc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Nc2ncnc3cc(Cl)ccc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3ncnc4cc(Cl)ccc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3ncnc4cc(Cl)ccc34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +OCCc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +O=C(NNc1ncnc2cc(Cl)ccc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3ncnc4cc(Cl)ccc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(Nc2ncnc3cc(Cl)ccc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2ncnc3cc(Cl)ccc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2ncnc3cc(Cl)ccc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2ncnc3cc(Cl)ccc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1ncnc2cc(Cl)ccc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ncc4ccccc4n3)cccc2cn1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COc1ncccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cccc4cnc(N)cc34)c2c1; [None]; [None]; [0] +Nc1cc2c(-c3cnc4cccnn34)cccc2cn1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(O)c3)cccc2cn1; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(N4CCOCC4)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(NC(=O)C4CC4)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3nc4ccccc4[nH]3)cccc2cn1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cccc4cnc(N)cc34)cc2)CC1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(=O)[O-])cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3nccc4ccccc34)cccc2cn1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(Nc3ncccn3)cccc2cn1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cccc4cnc(N)cc34)cn2)c1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(=O)Nc4ccccc4)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(OCCO)cc3)cccc2cn1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(C4CCNCC4)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(=O)N4CCOCC4)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(=O)N4CCOCC4)cn3)cccc2cn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4c(c3)CS(=O)(=O)C4)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(F)(F)F)cc3)cccc2cn1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(Cc3ccccc3O)cccc2cn1; [None]; [None]; [0] +Cc1nc(C)c(-c2cccc3cnc(N)cc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +Nc1cc2c(Cc3cnc(N)nc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c([C@H]3CCN(C(=O)c4ccccc4)C3)cccc2cn1; [None]; [None]; [0] +CC(C)c1cc(-c2cccc3cnc(N)cc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cccc4cnc(N)cc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cccc3cnc(N)cc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3ccc(Br)cc3)cccc2cn1; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3cnc(N)cc23)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ccn4nccc4n3)cccc2cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)c(C)c1; [None]; [None]; [0] +Nc1cc2c(-c3ccccc3-n3cccn3)cccc2cn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3c[nH]c4ccccc34)cccc2cn1; [None]; [None]; [0] +COc1cc(OC)c(-c2cccc3cnc(N)cc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cccc4cnc(N)cc34)[nH]c2c1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4c(c3)CCO4)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cc(-c4ccccc4)[nH]n3)cccc2cn1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)ccc1O; [None]; [None]; [0] +Nc1cc2c(-c3cccc4c3OCO4)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3scc4c3OCCO4)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(Cc3nc4ccc(F)c(F)c4[nH]3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(Cc3nc4c(F)c(F)ccc4[nH]3)cccc2cn1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3cnc4ccccc4c3)cccc2cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cccc3cnc(N)cc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +Nc1cc2c(Cc3nc4ccccc4[nH]3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3csc(N)n3)cccc2cn1; [None]; [None]; [0] +Cc1ccc(-c2cccc3cnc(N)cc23)c(=O)[nH]1; [None]; [None]; [0] +Nc1cc2c(CCCc3ccccc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccn(-c4cccc(Cl)c4)n3)cccc2cn1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +CSc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3cc4ccccc4s3)cccc2cn1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cccc4cnc(N)cc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cccc3cnc(N)cc23)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c([C@H](CO)Cc3ccccc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(F)cc3Cl)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4c(c3)CCC(=O)N4)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ncc(Br)cn3)cccc2cn1; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)cc23)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(Cl)cc3Cl)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(CCCn3cncn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ncc4cccn4n3)cccc2cn1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1cc2c(-c3cc4ccccn4n3)cccc2cn1; [None]; [None]; [0] +Cn1cc(-c2cccc3cnc(N)cc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cccc4cnc(N)cc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cccc4cnc(N)cc34)c2c1; [None]; [None]; [0] +Nc1cc2c(-c3cccc4ccc(O)cc34)cccc2cn1; [None]; [None]; [0] +COc1cc(F)c(-c2cccc3cnc(N)cc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)ccc1Cl; [None]; [None]; [0] +Nc1cc2c(-c3cnn(CCO)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ncc(Cl)cn3)cccc2cn1; [None]; [None]; [0] +Cc1csc2c(-c3cccc4cnc(N)cc34)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3cc(N)nc4[nH]ccc34)cccc2cn1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3cnc(N)cc23)nc1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cccc2cn1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cccc3cnc(N)cc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cccc4cnc(N)cc34)cc2c1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4cn[nH]c4c3)cccc2cn1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CCn1cc(-c2cccc3cnc(N)cc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Nc1cc2c(-c3cc(-c4cccnc4)ccn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cc4ccccc4o3)cccc2cn1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3ncc4sccc4n3)cccc2cn1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cccc(NC(=O)N4CCCC4)c3)cccc2cn1; [None]; [None]; [0] +COc1ccc2nc(-c3cccc4cnc(N)cc34)[nH]c2c1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(OC(F)(F)F)cc3)cccc2cn1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Cn1cc(-c2cccc3cnc(N)cc23)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cccc4cnc(N)cc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cccc3cnc(N)cc23)n1; [None]; [None]; [0] +Nc1cc2c(-c3ncn4c3CCCC4)cccc2cn1; [None]; [None]; [0] +Cc1cc(-c2cccc3cnc(N)cc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3cccc4cnc(N)cc34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cccc4cnc(N)cc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cccc3cnc(N)cc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cccc4cnc(N)cc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cccc4cnc(N)cc34)cn2)CC1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(N4CCCC4=O)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(CCO)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(NC(=O)c3cccc(OC(F)(F)F)c3)cccc2cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)cc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cccc4cnc(N)cc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3cnc(N)cc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cccc3cnc(N)cc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cccc3cnc(N)cc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1cccc2cnc(N)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CCOc1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COC(C)(C)CCc1cccc2cnc(N)cc12; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cccc3cnc(N)cc23)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(Cc3cc(F)cc(F)c3)cccc2cn1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3ccnc4ccccc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(C(F)(F)F)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccccc3OC(F)(F)F)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccccc3C(=O)[O-])cccc2cn1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cnn(Cc4ccccc4)c3)cccc2cn1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cccc4cnc(N)cc34)cc2c1=O; [None]; [None]; [0] +Nc1cc2c(-c3cnc(-c4ccccc4)[nH]3)cccc2cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc3cnc(N)cc23)cs1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(NC(=O)c4ccccc4)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-n3ncc4cccc(F)c4c3=O)cccc2cn1; [None]; [None]; [0] +COc1cnc(-c2cccc3cnc(N)cc23)nc1; [None]; [None]; [0] +Nc1cc2c(-c3cc(Cl)ccc3Cl)cccc2cn1; [None]; [None]; [0] +CC(C)C(=O)COc1cccc2cnc(N)cc12; [None]; [None]; [0] +Cc1ccc(-c2cccc3cnc(N)cc23)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cnc4ccccn34)cccc2cn1; [None]; [None]; [0] +CNc1nc(C)c(-c2cccc3cnc(N)cc23)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3c(Cl)cccc3Cl)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(Cn4cncn4)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(Br)c3)cccc2cn1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Nc1cc2c(NCc3cccnc3)cccc2cn1; [None]; [None]; [0] +Cc1c(-c2cccc3cnc(N)cc23)sc(=O)n1C; [None]; [None]; [0] +Nc1cc2c(-c3ccnc(N)n3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cnn4ncccc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4ccccc4c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(Nc3cccnc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-n3cnc4ccccc43)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(NCCc3c[nH]cn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(NC(=O)c3cccs3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(CC(=O)[O-])c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3c[nH]nc3C(F)(F)F)cccc2cn1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cncc4ccccc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(NCCc3ccccc3)cccc2cn1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cccc4cnc(N)cc34)cc2)cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc4c(N)[nH]nc4c3)cccc2cn1; [None]; [None]; [0] +CN1c2ccc(-c3cccc4cnc(N)cc34)cc2CS1(=O)=O; [None]; [None]; [0] +Nc1cc2c(-c3ccc(-c4cn[nH]c4)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(NCc3ccc(Cl)cc3)cccc2cn1; [None]; [None]; [0] +CCCn1cnc(-c2cccc3cnc(N)cc23)n1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(CO)c3)cccc2cn1; [None]; [None]; [0] +COc1cc(-c2cccc3cnc(N)cc23)ccc1C(=O)[O-]; [None]; [None]; [0] +Nc1cc2c(Nc3ccncc3)cccc2cn1; [None]; [None]; [0] +CC(C)n1cc(-c2cccc3cnc(N)cc23)nn1; [None]; [None]; [0] +Nc1cc2c(NCc3ccccc3F)cccc2cn1; [None]; [None]; [0] +CSc1nc(-c2cccc3cnc(N)cc23)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(CCc3c[nH]nn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3csc4ncncc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cc4ccccc4[nH]3)cccc2cn1; [None]; [None]; [0] +N#CCCc1cccc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +Nc1cc2c(-c3cncnc3N)cccc2cn1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cccc4cnc(N)cc34)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(F)cc3C(F)(F)F)cccc2cn1; [None]; [None]; [0] +NC(=O)CCCc1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(Oc3ccccn3)cccc2cn1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(NC(=O)c3c(Cl)cccc3Cl)cccc2cn1; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +CC(C)(COc1cccc2cnc(N)cc12)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)cc23)cc1Cl; [None]; [None]; [0] +Nc1cc2c(-c3cnn4ccccc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C[NH3+])c(C(F)(F)F)c3)cccc2cn1; [None]; [None]; [0] +CCCn1cc(-c2cccc3cnc(N)cc23)cn1; [None]; [None]; [0] +Nc1cc2c(-c3cc[nH]c(=O)c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc4c3C(=O)CC4)cccc2cn1; [None]; [None]; [0] +COc1cc(CCc2cccc3cnc(N)cc23)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +C[C@@H](Oc1cccc2cnc(N)cc12)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CCN(CC)c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cc4c(=O)[nH]ccc4o3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cc4c(=O)[nH]cc(Br)c4s3)cccc2cn1; [None]; [None]; [0] +COc1ccncc1Nc1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(Nc3cnccc3-c3ccccc3)cccc2cn1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +COc1cccc(F)c1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(Nc3cnc4ccccc4c3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3c[nH]c4cnccc34)cccc2cn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3cnc4[nH]ccc4c3)cccc2cn1; [None]; [None]; [0] +CC1(c2cccc3cnc(N)cc23)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1cccc2cnc(N)cc12)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cccc3cnc(N)cc23)cc1; [None]; [None]; [0] +Cc1cc(-c2cccc3cnc(N)cc23)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1cccc2cnc(N)cc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Nc1cc2c(-n3ccc(CO)n3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-n3cnc(CCO)c3)cccc2cn1; [None]; [None]; [0] +C[C@H](Nc1cccc2cnc(N)cc12)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1cccc2cnc(N)cc12)C(C)(C)O; [None]; [None]; [0] +Nc1cc2c(-c3c(F)cccc3Cl)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-n3ncc4ccccc43)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-n3ncc4c(O)cccc43)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(-n4cncn4)cc3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3nc4ccc(O)cc4[nH]3)cccc2cn1; [None]; [None]; [0] +CSc1nc(C)c(-c2cccc3cnc(N)cc23)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cccc3cnc(N)cc23)c(OC)c1; [None]; [None]; [0] +Nc1cc2c(-c3ccc(C(=O)c4ccccc4)cc3)cccc2cn1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +Nc1cc2c(-c3nncn3C3CC3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ccn(CC[NH3+])n3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(Cc3nnc4ccc(-c5ccccc5)nn34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(CCC(=O)NCc3ccccn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(CS(=O)(=O)NCc3ccccn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cn(Cc4ccccc4)nn3)cccc2cn1; [None]; [None]; [0] +CCc1cc(-c2cccc3cnc(N)cc23)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cccc3cnc(N)cc23)nc(N)n1; [None]; [None]; [0] +Nc1cc2c(-c3nnc(N)s3)cccc2cn1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cccc3cnc(N)cc23)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cccc3cnc(N)cc23)s1; [None]; [None]; [0] +Nc1cc2c(Oc3ccc(C[NH3+])cc3F)cccc2cn1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +Nc1cc2c(-c3nc4ccccc4s3)cccc2cn1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cccc4cnc(N)cc34)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cccc4cnc(N)cc34)c2)cc1; [None]; [None]; [0] +Nc1cc2c(-c3cncc(N)n3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc4ccsc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc4nnsc34)cccc2cn1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc3cnc(N)cc23)[nH]1; [None]; [None]; [0] +Nc1cc2c(-c3nc(N)c4ccccc4n3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3c[nH]c4cccnc34)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cn(CCO)cn3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3ncc4cc[nH]c4n3)cccc2cn1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cccc2cnc(N)cc12; [None]; [None]; [0] +COc1ccc(Oc2cccc3cnc(N)cc23)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cccc3cnc(N)cc23)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cccc3cnc(N)cc23)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc3cnc(N)cc23)cnn1; [None]; [None]; [0] +Nc1cc2c(N3CCC(c4nc5ccccc5[nH]4)CC3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(N3CC=C(c4c[nH]c5ccccc45)CC3)cccc2cn1; [None]; [None]; [0] +Nc1cc2c(-c3cccc(NC(=O)C4CCNCC4)c3)cccc2cn1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +CCOc1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2cncc(O)n2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +COc1ccc(F)cc1[C@@H](C)c1cncc(O)n1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2ccnc3ccccc23)n1; [None]; [None]; [0] +CCn1cc(-c2cncc(O)n2)cn1; [None]; [None]; [0] +Oc1cncc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +Oc1cncc(-c2ccccc2OC(F)(F)F)n1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2cnn(Cc3ccccc3)c2)n1; [None]; [None]; [0] +Cn1cnc2ccc(-c3cncc(O)n3)cc2c1=O; [None]; [None]; [0] +Oc1cncc(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +N[C@H](c1cncc(O)n1)c1ccco1; [None]; [None]; [0] +OCCn1cc(-c2cncc(O)n2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cncc(O)n2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cncc(O)n2)c1)c1ccccc1; [None]; [None]; [0] +COc1cnc(-c2cncc(O)n2)nc1; [None]; [None]; [0] +Oc1cncc(-c2cc(Cl)ccc2Cl)n1; [None]; [None]; [0] +Cc1ccc(-c2cncc(O)n2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +Cc1nc(C)c(-c2cncc(O)n2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2cncc(O)n2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +Oc1cncc(-c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +Oc1cncc(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +Oc1cncc(-c2cccc(Br)c2)n1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +Cc1c(-c2cncc(O)n2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2cncc(O)n2)n1; [None]; [None]; [0] +Oc1cncc(-c2cnn3ncccc23)n1; [None]; [None]; [0] +Oc1cncc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +CC(C)(C)c1cnc(Cc2cncc(O)n2)o1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]nc2C(F)(F)F)n1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2cncc3ccccc23)n1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3cncc(O)n3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3cncc(O)n3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3cncc(O)n3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3cncc(O)n3)ccc21; [None]; [None]; [0] +Oc1cncc(-c2ccc(-c3cn[nH]c3)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cncc(O)n2)n1; [None]; [None]; [0] +Oc1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +OCc1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)ccc1C(=O)[O-]; [None]; [None]; [0] +CC(C)n1cc(-c2cncc(O)n2)nn1; [None]; [None]; [0] +CSc1nc(-c2cncc(O)n2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2csc3ncncc23)n1; [None]; [None]; [0] +Oc1cncc(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +N#CCCc1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +Nc1ncncc1-c1cncc(O)n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3cncc(O)n3)cc2s1; [None]; [None]; [0] +CC[C@H](CO)c1cncc(O)n1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2ccc(F)cc2C(F)(F)F)n1; [None]; [None]; [0] +Oc1cncc(Cc2c(F)cccc2F)n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +Cn1cc(-c2cncc(O)n2)c2ccccc21; [None]; [None]; [0] +COc1ccc(-c2cncc(O)n2)cc1Cl; [None]; [None]; [0] +Oc1cncc(-c2cnn3ccccc23)n1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2cncc(O)n2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2cncc(O)n2)cn1; [None]; [None]; [0] +O=c1cc(-c2cncc(O)n2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3cncc(O)n3)c21; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cc2cncc(O)n2)c1; [None]; [None]; [0] +CN(c1ncccc1Cc1cncc(O)n1)S(C)(=O)=O; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1cncc(O)n1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3cncc(O)n3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3cncc(O)n3)cc12; [None]; [None]; [0] +CC(C)Oc1cncc(-c2cncc(O)n2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +OC[C@H](c1ccccc1)c1cncc(O)n1; [None]; [None]; [0] +COc1cccc(F)c1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1cncc(O)n1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2cnc3[nH]ccc3c2)n1; [None]; [None]; [0] +CC1(c2cncc(O)n2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2ccc(N3CCOCC3)cc2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Cc1cc(-c2cncc(O)n2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Oc1cncc(-c2c(F)cccc2Cl)n1; [None]; [None]; [0] +Oc1cncc(-c2ccc(-n3cncn3)cc2)n1; [None]; [None]; [0] +CSc1nc(C)c(-c2cncc(O)n2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2cncc(O)n2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2cncc(O)n2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2nncn2C2CC2)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cncc(O)n2)n1; [None]; [None]; [0] +Oc1cncc(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCc1cc(-c2cncc(O)n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2cncc(O)n2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2cncc(O)n2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1cncc(O)n1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2cncc(O)n2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(O)n2)s1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2cncc(O)n2)CC1; [None]; [None]; [0] +Oc1cncc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3cncc(O)n3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3cncc(O)n3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2cncc(O)n2)n1; [None]; [None]; [0] +Oc1cncc(-c2cccc3ccsc23)n1; [None]; [None]; [0] +Oc1cncc(-c2cccc3nnsc23)n1; [None]; [None]; [0] +O=C(NCCCc1cncc(O)n1)c1cccs1; [None]; [None]; [0] +O=C(NCCCc1cncc(O)n1)C1CCC1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cncc(O)n2)[nH]1; [None]; [None]; [0] +Oc1cncc(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]c3cccnc23)n1; [None]; [None]; [0] +OCCn1cnc(-c2cncc(O)n2)c1; [None]; [None]; [0] +Oc1cncc(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1cncc(O)n1; [None]; [None]; [0] +CS(=O)(=O)Nc1ccccc1Cc1cncc(O)n1; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2cncc(O)n2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1ncccc1-c1cncc(O)n1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cncc(O)n2)cnn1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1cncc(O)n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3cncc(O)n3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cncc(O)n2)c1)C1CC1; [None]; [None]; [0] +Oc1cncc(-c2nc3ccccc3[nH]2)n1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3cncc(O)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cncc(O)n2)sn1; [None]; [None]; [0] +O=C([O-])c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2nccc3ccccc23)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(Nc2ncccn2)n1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3cncc(O)n3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2cccc(C3CCNCC3)c2)n1; [None]; [None]; [0] +O=C(c1ccc(-c2cncc(O)n2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2cncc(O)n2)nc1)N1CCOCC1; [None]; [None]; [0] +Oc1cncc(Nc2ccncn2)n1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3cncc(O)n3)cc2C1; [None]; [None]; [0] +Oc1cncc(-c2ccc(C(F)(F)F)cc2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2cncc(O)n2)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2cncc(O)n2)C1; [None]; [None]; [0] +CC(C)c1cc(-c2cncc(O)n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3cncc(O)n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2cncc(O)n2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2ccc(Br)cc2)n1; [None]; [None]; [0] +CN(C)c1ccc(-c2cncc(O)n2)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2ccn3nccc3n2)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cncc(O)n2)c(C)c1; [None]; [None]; [0] +Oc1cncc(-c2ccccc2-n2cccn2)n1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2c[nH]c3ccccc23)n1; [None]; [None]; [0] +COc1cc(OC)c(-c2cncc(O)n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3cncc(O)n3)[nH]c2c1; [None]; [None]; [0] +Oc1cncc(-c2ccc3c(c2)CCO3)n1; [None]; [None]; [0] +Oc1cncc(-c2cc(-c3ccccc3)[nH]n2)n1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1cncc(O)n1; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)ccc1O; [None]; [None]; [0] +Oc1cncc(-c2cccc3c2OCO3)n1; [None]; [None]; [0] +Oc1cncc(-c2scc3c2OCCO3)n1; [None]; [None]; [0] +Oc1cncc(-c2cnc3ccccc3c2)n1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2cncc(O)n2)cn1; [None]; [None]; [0] +Nc1nc(-c2cncc(O)n2)cs1; [None]; [None]; [0] +Oc1cncc(-c2ccn(-c3cccc(Cl)c3)n2)n1; [None]; [None]; [0] +CC1(COc2cncc(O)n2)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2cncc(O)n2)c1; [None]; [None]; [0] +CSc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2cc3ccccc3s2)n1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3cncc(O)n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2cncc(O)n2)nc(N)n1; [None]; [None]; [0] +Oc1cncc(-c2ccc(F)cc2Cl)n1; [None]; [None]; [0] +O=C1CCc2cc(-c3cncc(O)n3)ccc2N1; [None]; [None]; [0] +Oc1cncc(-c2ncc(Br)cn2)n1; [None]; [None]; [0] +COc1ccc(-c2cncc(O)n2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +COc1ccc(CNc2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(-c2ccc(Cl)cc2Cl)n1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2cncc(O)n2)C1; [None]; [None]; [0] +Oc1cncc(-c2ncc3cccn3n2)n1; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)ccc1N1CCOCC1; [None]; [None]; [0] +Oc1cncc(-c2cc3ccccn3n2)n1; [None]; [None]; [0] +Cn1cc(-c2cncc(O)n2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3cncc(O)n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3cncc(O)n3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3cncc(O)n3)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2cncc(O)n2)cc1OC; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)ccc1Cl; [None]; [None]; [0] +Oc1cncc(-c2ncc(Cl)cn2)n1; [None]; [None]; [0] +Cc1csc2c(-c3cncc(O)n3)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2cncc(O)n2)sc1C; [None]; [None]; [0] +Cc1cc(Nc2cncc(O)n2)nn1C; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Nc1cc(-c2cncc(O)n2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cncc(O)n2)nc1; [None]; [None]; [0] +COc1cc(-c2cncc(O)n2)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1cncc(O)n1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2cncc(O)n2)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2cncc(O)n2)cc1; [None]; [None]; [0] +O=C(Nc1cncc(O)n1)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2cncc(O)n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2cncc(O)n2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cncc(O)n2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1cncc(O)n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3cncc(O)n3)cc2c1; [None]; [None]; [0] +Oc1cncc(-c2ccc3cn[nH]c3c2)n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2cncc(O)n2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +Oc1cncc(-c2cc(-c3cccnc3)ccn2)n1; [None]; [None]; [0] +Oc1cncc(-c2cc3ccccc3o2)n1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1cncc(O)n1; [None]; [None]; [0] +Oc1cncc(-c2ncc3sccc3n2)n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1cncc(O)n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cncc(O)n2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3cncc(O)n3)[nH]c2c1; [None]; [None]; [0] +Oc1cncc(-c2ccc(OC(F)(F)F)cc2)n1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2cncc(O)n2)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3cncc(O)n3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2cncc(O)n2)n1; [None]; [None]; [0] +Oc1cncc(-c2ncn3c2CCCC3)n1; [None]; [None]; [0] +Cc1cc(-c2cncc(O)n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3cncc(O)n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2cncc(O)n2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3cncc(O)n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3cncc(O)n3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2cncc(O)n2)c1; [None]; [None]; [0] +OCCc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +O=C(Nc1cncc(O)n1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cncc(O)n2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3cncc(O)n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1cncc(O)n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1cncc(O)n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1cncc(O)n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1cncc(O)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cncc(O)n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2cncc(O)n2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2cncc(O)n2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2cncc(O)n2)cc1; [None]; [None]; [0] +Oc1cncc(Nc2ccc(F)cn2)n1; [None]; [None]; [0] +Cc1cc(Nc2cncc(O)n2)ncc1F; [None]; [None]; [0] +Oc1cncc(Nc2ccccn2)n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2cncc(O)n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1cncc(O)n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CCOc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1ccc2nc(Nc3cc(C4CCC4)[nH]n3)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +COc1ncccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(Nc3cc(C4CCC4)[nH]n3)c2c1; [None]; [None]; [0] +c1cnn2c(Nc3cc(C4CCC4)[nH]n3)cnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +Oc1cccc(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(C3CCC3)[nH]n2)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(Nc3cc(C4CCC4)[nH]n3)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Nc3cc(C4CCC4)[nH]n3)cc2)CC1; [None]; [None]; [0] +O=C([O-])c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1ccc2c(Nc3cc(C4CCC4)[nH]n3)nccc2c1; [None]; [None]; [0] +NC(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1cnc(NNc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Nc3cc(C4CCC4)[nH]n3)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +OCCOc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1cc(Nc2cc(C3CCC3)[nH]n2)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(Nc2cc(C3CCC3)[nH]n2)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(Nc3cc(C4CCC4)[nH]n3)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +Oc1ccccc1CNc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +Cc1nc(C)c(Nc2cc(C3CCC3)[nH]n2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Nc2cc(C3CCC3)[nH]n2)CC1; [None]; [None]; [0] +Nc1ncc(CNc2cc(C3CCC3)[nH]n2)cn1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](Nc2cc(C3CCC3)[nH]n2)C1; [None]; [None]; [0] +CC(C)c1cc(Nc2cc(C3CCC3)[nH]n2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Nc3cc(C4CCC4)[nH]n3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Nc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +Cc1c(Nc2cc(C3CCC3)[nH]n2)cccc1C(=O)[O-]; [None]; [None]; [0] +Brc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1Cl; [None]; [None]; [0] +COc1ccc(CNc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1cc2nc(Nc3cc(C4CCC4)[nH]n3)ccn2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +c1ccc2c(Nc3cc(C4CCC4)[nH]n3)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(Nc2cc(C3CCC3)[nH]n2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(Nc3cc(C4CCC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +c1cc2c(cc1Nc1cc(C3CCC3)[nH]n1)CCO2; [None]; [None]; [0] +c1ccc(-c2cc(Nc3cc(C4CCC4)[nH]n3)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)ccc1O; [None]; [None]; [0] +c1cc(Nc2cc(C3CCC3)[nH]n2)c2c(c1)OCO2; [None]; [None]; [0] +c1c(Nc2scc3c2OCCO3)n[nH]c1C1CCC1; [None]; [None]; [0] +Fc1ccc2nc(CNc3cc(C4CCC4)[nH]n3)[nH]c2c1F; [None]; [None]; [0] +Fc1ccc2[nH]c(CNc3cc(C4CCC4)[nH]n3)nc2c1F; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1ccc2ncc(Nc3cc(C4CCC4)[nH]n3)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Nc2cc(C3CCC3)[nH]n2)CC1; [None]; [None]; [0] +c1ccc2[nH]c(CNc3cc(C4CCC4)[nH]n3)nc2c1; [None]; [None]; [0] +Nc1nc(Nc2cc(C3CCC3)[nH]n2)cs1; [None]; [None]; [0] +Cc1ccc(Nc2cc(C3CCC3)[nH]n2)c(=O)[nH]1; [None]; [None]; [0] +c1ccc(CCCNc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +Clc1cccc(-n2ccc(Nc3cc(C4CCC4)[nH]n3)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)NNc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +CSc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +c1ccc2sc(Nc3cc(C4CCC4)[nH]n3)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Nc3cc(C4CCC4)[nH]n3)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2cc(C3CCC3)[nH]n2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +OC[C@H](Cc1ccccc1)Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +Fc1ccc(Nc2cc(C3CCC3)[nH]n2)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(Nc3cc(C4CCC4)[nH]n3)ccc2N1; [None]; [None]; [0] +Brc1cnc(Nc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +COc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1OC; [None]; [None]; [0] +CCc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +Clc1ccc(Nc2cc(C3CCC3)[nH]n2)c(Cl)c1; [None]; [None]; [0] +c1ncn(CCCNc2cc(C3CCC3)[nH]n2)n1; [None]; [None]; [0] +c1cc2cnc(Nc3cc(C4CCC4)[nH]n3)nn2c1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(Nc3cc(C4CCC4)[nH]n3)cc2c1; [None]; [None]; [0] +Cn1cc(Nc2cc(C3CCC3)[nH]n2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(Nc3cc(C4CCC4)[nH]n3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Nc3cc(C4CCC4)[nH]n3)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(Nc3cc(C4CCC4)[nH]n3)c2c1; [None]; [None]; [0] +COc1cc(F)c(Nc2cc(C3CCC3)[nH]n2)cc1OC; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)ccc1Cl; [None]; [None]; [0] +OCCn1cc(Nc2cc(C3CCC3)[nH]n2)cn1; [None]; [None]; [0] +Clc1cnc(Nc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +Cc1csc2c(Nc3cc(C4CCC4)[nH]n3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +Nc1cc(Nc2cc(C3CCC3)[nH]n2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(CNc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Nc2cc(C3CCC3)[nH]n2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(Nc2cc(C3CCC3)[nH]n2)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +COc1cc(Nc2cc(C3CCC3)[nH]n2)cc(OC)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Nc1cc(C3CCC3)[nH]n1)cn2C; [None]; [None]; [0] +COc1ccc2oc(Nc3cc(C4CCC4)[nH]n3)cc2c1; [None]; [None]; [0] +c1cc2cn[nH]c2cc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CCn1cc(Nc2cc(C3CCC3)[nH]n2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(Nc3cc(C4CCC4)[nH]n3)c2)c1; [None]; [None]; [0] +c1ccc2oc(Nc3cc(C4CCC4)[nH]n3)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +c1cc2nc(Nc3cc(C4CCC4)[nH]n3)ncc2s1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2cc(C3CCC3)[nH]n2)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(Nc3cc(C4CCC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NNc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +Cn1cc(Nc2cc(C3CCC3)[nH]n2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Nc3cc(C4CCC4)[nH]n3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Nc2cc(C3CCC3)[nH]n2)n1; [None]; [None]; [0] +c1c(Nc2ncn3c2CCCC3)n[nH]c1C1CCC1; [None]; [None]; [0] +Cc1cc(Nc2cc(C3CCC3)[nH]n2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(Nc3cc(C4CCC4)[nH]n3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Nc3cc(C4CCC4)[nH]n3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Nc2cc(C3CCC3)[nH]n2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(Nc3cc(C4CCC4)[nH]n3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Nc3cc(C4CCC4)[nH]n3)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +OCCc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +O=C(NNc1cc(C2CCC2)[nH]n1)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Nc3cc(C4CCC4)[nH]n3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)c(OC)c1; [None]; [None]; [0] +Cn1nc(Nc2cc(C3CCC3)[nH]n2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Nc2cc(C3CCC3)[nH]n2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Nc2cc(C3CCC3)[nH]n2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Nc2cc(C3CCC3)[nH]n2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Nc1cc(C2CCC2)[nH]n1; [None]; [None]; [0] +CNC(=O)c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +CCOc1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +COC(C)(C)CCc1ccc2nn[nH]c2c1; [None]; [None]; [0] +Cc1nnc(-c2ccccc2-c2ccc3nn[nH]c3c2)[nH]1; [None]; [None]; [0] +CC(C)S(=O)(=O)c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +Fc1cc(F)cc(Cc2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +CP(C)(=O)c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc4nn[nH]c4c3)ccnc2c1; [None]; [None]; [0] +CCn1cc(-c2ccc3nn[nH]c3c2)cn1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +O=C([O-])c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +NC(=O)c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4nn[nH]c4c3)cn2)cc1; [None]; [None]; [0] +Cn1cnc2ccc(-c3ccc4nn[nH]c4c3)cc2c1=O; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4nn[nH]c4c3)[nH]2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc3nn[nH]c3c2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3nn[nH]c3c2)cs1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3nn[nH]c3c2)c1)c1ccccc1; [None]; [None]; [0] +O=c1c2c(F)cccc2cnn1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +COc1cnc(-c2ccc3nn[nH]c3c2)nc1; [None]; [None]; [0] +Clc1ccc(Cl)c(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +CC(C)C(=O)COc1ccc2nn[nH]c2c1; [None]; [None]; [0] +Cc1ccc(-c2ccc3nn[nH]c3c2)c(Br)c1; [None]; [None]; [0] +Cc1nc2ccccn2c1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccn2c(-c3ccc4nn[nH]c4c3)cnc2c1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3nn[nH]c3c2)s1; [None]; [None]; [0] +CNc1nc(C)c(-c2ccc3nn[nH]c3c2)s1; [None]; [None]; [0] +Cc1nc(N)sc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1cnn2c(-c3ccc4nn[nH]c4c3)cnc2c1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1cc(Cn2cncn2)cc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +Brc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +Cc1ccc(Cl)c(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +c1cncc(CNc2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +Cc1c(-c2ccc3nn[nH]c3c2)sc(=O)n1C; [None]; [None]; [0] +Nc1nccc(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +c1cnn2ncc(-c3ccc4nn[nH]c4c3)c2c1; [None]; [None]; [0] +c1ccc2cc(-c3ccc4nn[nH]c4c3)ccc2c1; [None]; [None]; [0] +c1cncc(Nc2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +c1ccc2c(c1)ncn2-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1nc(CCNc2ccc3nn[nH]c3c2)c[nH]1; [None]; [None]; [0] +O=C(Nc1ccc2nn[nH]c2c1)c1cccs1; [None]; [None]; [0] +O=C([O-])Cc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +FC(F)(F)c1n[nH]cc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +NC(=O)c1c(F)cccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc4nn[nH]c4c3)cncc2c1; [None]; [None]; [0] +c1ccc(CCNc2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(-c3ccc4nn[nH]c4c3)cc2)cn1; [None]; [None]; [0] +Nc1[nH]nc2cc(-c3ccc4nn[nH]c4c3)ccc12; [None]; [None]; [0] +CN1c2ccc(-c3ccc4nn[nH]c4c3)cc2CS1(=O)=O; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4nn[nH]c4c3)ccc21; [None]; [None]; [0] +c1cc(-c2ccc3nn[nH]c3c2)ccc1-c1cn[nH]c1; [None]; [None]; [0] +Clc1ccc(CNc2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +Oc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +OCc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +COc1cc(-c2ccc3nn[nH]c3c2)ccc1C(=O)[O-]; [None]; [None]; [0] +c1cc(Nc2ccc3nn[nH]c3c2)ccn1; [None]; [None]; [0] +CC(C)n1cc(-c2ccc3nn[nH]c3c2)nn1; [None]; [None]; [0] +Fc1ccccc1CNc1ccc2nn[nH]c2c1; [None]; [None]; [0] +CSc1nc(-c2ccc3nn[nH]c3c2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1cc2nn[nH]c2cc1CCc1c[nH]nn1; [None]; [None]; [0] +c1ncc2c(-c3ccc4nn[nH]c4c3)csc2n1; [None]; [None]; [0] +c1ccc2[nH]c(-c3ccc4nn[nH]c4c3)cc2c1; [None]; [None]; [0] +N#CCCc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +Nc1nc(-c2ccc3nn[nH]c3c2)cs1; [None]; [None]; [0] +Nc1ncncc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccc4nn[nH]c4c3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +Fc1ccc(-c2ccc3nn[nH]c3c2)c(C(F)(F)F)c1; [None]; [None]; [0] +NC(=O)CCCc1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc(Oc2ccc3nn[nH]c3c2)nc1; [None]; [None]; [0] +CC(C)(O)CC(=O)NCCc1ccc2nn[nH]c2c1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +O=C(Nc1ccc2nn[nH]c2c1)c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cn1cc(-c2ccc3nn[nH]c3c2)c2ccccc21; [None]; [None]; [0] +CS(=O)(=O)C1CCN(c2ccc3nn[nH]c3c2)CC1; [None]; [None]; [0] +CC(C)(COc1ccc2nn[nH]c2c1)S(C)(=O)=O; [None]; [None]; [0] +COc1ccc(-c2ccc3nn[nH]c3c2)cc1Cl; [None]; [None]; [0] +c1ccn2ncc(-c3ccc4nn[nH]c4c3)c2c1; [None]; [None]; [0] +[NH3+]Cc1ccc(-c2ccc3nn[nH]c3c2)cc1C(F)(F)F; [None]; [None]; [0] +CCCn1cc(-c2ccc3nn[nH]c3c2)cn1; [None]; [None]; [0] +O=c1cc(-c2ccc3nn[nH]c3c2)cc[nH]1; [None]; [None]; [0] +O=C1CCc2cccc(-c3ccc4nn[nH]c4c3)c21; [None]; [None]; [0] +COc1cc(CCc2ccc3nn[nH]c3c2)cc(OC)c1; [None]; [None]; [0] +CC(C)(N)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +C[C@@H](Oc1ccc2nn[nH]c2c1)c1c(Cl)cncc1Cl; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CCN(CC)c1ccc2nn[nH]c2c1; [None]; [None]; [0] +O=c1[nH]ccc2oc(-c3ccc4nn[nH]c4c3)cc12; [None]; [None]; [0] +O=c1[nH]cc(Br)c2sc(-c3ccc4nn[nH]c4c3)cc12; [None]; [None]; [0] +COc1ccncc1Nc1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc(-c2ccncc2Nc2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CC(C)Oc1cncc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +COc1cccc(F)c1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc2ncc(Nc3ccc4nn[nH]c4c3)cc2c1; [None]; [None]; [0] +c1cc2c(-c3ccc4nn[nH]c4c3)c[nH]c2cn1; [None]; [None]; [0] +CNC(=O)c1c(F)cccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1cc2cc(-c3ccc4nn[nH]c4c3)cnc2[nH]1; [None]; [None]; [0] +CC1(c2ccc3nn[nH]c3c2)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CN(c1ccc2nn[nH]c2c1)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CC(C)(C)NS(=O)(=O)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +c1cc(N2CCOCC2)ccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3nn[nH]c3c2)n(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H](Nc1ccc2nn[nH]c2c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +OCc1ccn(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +OCCc1cn(-c2ccc3nn[nH]c3c2)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc2nn[nH]c2c1)C(C)(C)O; [None]; [None]; [0] +C[C@@H](Nc1ccc2nn[nH]c2c1)C(C)(C)O; [None]; [None]; [0] +Fc1cccc(Cl)c1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ccc2c(c1)cnn2-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +Oc1cccc2c1cnn2-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1ncn(-c2ccc(-c3ccc4nn[nH]c4c3)cc2)n1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4nn[nH]c4c3)[nH]c2c1; [None]; [None]; [0] +CSc1nc(C)c(-c2ccc3nn[nH]c3c2)[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3nn[nH]c3c2)c(OC)c1; [None]; [None]; [0] +O=C(c1ccccc1)c1ccc(-c2ccc3nn[nH]c3c2)cc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3nn[nH]c3c2)CC1; [None]; [None]; [0] +CC(C)n1cnnc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +c1cc2nn[nH]c2cc1-c1nncn1C1CC1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +c1ccc(-c2ccc3nnc(Cc4ccc5nn[nH]c5c4)n3n2)cc1; [None]; [None]; [0] +O=C(CCc1ccc2nn[nH]c2c1)NCc1ccccn1; [None]; [None]; [0] +O=S(=O)(Cc1ccc2nn[nH]c2c1)NCc1ccccn1; [None]; [None]; [0] +c1ccc(Cn2cc(-c3ccc4nn[nH]c4c3)nn2)cc1; [None]; [None]; [0] +CCc1cc(-c2ccc3nn[nH]c3c2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccc3nn[nH]c3c2)nc(N)n1; [None]; [None]; [0] +Nc1nnc(-c2ccc3nn[nH]c3c2)s1; [None]; [None]; [0] +Cn1cc(C(N)=O)cc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +CC(C)(O)c1cccc(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nn[nH]c3c2)s1; [None]; [None]; [0] +[NH3+]Cc1ccc(Oc2ccc3nn[nH]c3c2)c(F)c1; [None]; [None]; [0] +C[C@@H2]NC(=O)N1CCC(c2ccc3nn[nH]c3c2)CC1; [None]; [None]; [0] +c1ccc2sc(-c3ccc4nn[nH]c4c3)nc2c1; [None]; [None]; [0] +CC1(C)Oc2ccc(-c3ccc4nn[nH]c4c3)nc2NC1=O; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)c2cccc(-c3ccc4nn[nH]c4c3)c2)cc1; [None]; [None]; [0] +Nc1cncc(-c2ccc3nn[nH]c3c2)n1; [None]; [None]; [0] +c1cc(-c2ccc3nn[nH]c3c2)c2sccc2c1; [None]; [None]; [0] +c1cc(-c2ccc3nn[nH]c3c2)c2snnc2c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3nn[nH]c3c2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2ccc3nn[nH]c3c2)nc2ccccc12; [None]; [None]; [0] +c1ccc2nc(-c3ccc4nn[nH]c4c3)ncc2c1; [None]; [None]; [0] +c1cnc2c(-c3ccc4nn[nH]c4c3)c[nH]c2c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +c1cc2cnc(-c3ccc4nn[nH]c4c3)nc2[nH]1; [None]; [None]; [0] +COc1ccc(C#N)cc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +COc1ccc(Oc2ccc3nn[nH]c3c2)c(F)c1F; [None]; [None]; [0] +C[C@@]1(O)CC[C@H](c2ccc3nn[nH]c3c2)CC1; [None]; [None]; [0] +COc1ccc(OC)c(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2nn[nH]c2c1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1cccc(-c2ccc3nn[nH]c3c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3nn[nH]c3c2)cnn1; [None]; [None]; [0] +c1ccc2[nH]c(C3CCN(c4ccc5nn[nH]c5c4)CC3)nc2c1; [None]; [None]; [0] +C1=C(c2c[nH]c3ccccc23)CCN(c2ccc3nn[nH]c3c2)C1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3nn[nH]c3c2)c1)C1CCNCC1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cc(C)ns2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2ccncn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(OCC2(C)COC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCc2ccc(OC)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NC2CN(C(=O)C3CC3)C2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2nc(C)c(C)s2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cc(C)n(C)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NC(=O)c2ccco2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NC(=O)c2ccc(C(C)(C)C)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2ccc(F)cn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cc(C)c(F)cn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2ccccn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2C(=O)NC)n1; [None]; [None]; [0] +CCOc1ccccc1-c1ccnc(N[C@H2]C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCC(C)(C)OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2-c2nnc(C)[nH]2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2S(=O)(=O)C(C)C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Cc2cc(F)cc(F)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2P(C)(C)=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccnc3ccccc23)n1; [None]; [None]; [0] +CCn1cc(-c2ccnc(N[C@H2]C)n2)cn1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(C(F)(F)F)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2OC(F)(F)F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2C(=O)[O-])n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccccc2C(N)=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnn(Cc3ccccc3)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3ncn(C)c(=O)c3c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnc(-c3ccccc3)[nH]2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnn(CCO)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2csc(C(C)(C)C)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(NC(=O)c3ccccc3)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2ncc3cccc(F)c3c2=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ncc(OC)cn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(Cl)ccc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(OCC(=O)C(C)C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C)cc2Br)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c(C)nc3ccccn23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnc3ccccn23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2sc(C)nc2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2sc(NC)nc2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2sc(N)nc2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnc3cccnn23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(Cn3cncn3)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(Br)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(C)ccc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCc2cccnc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2sc(=O)n(C)c2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccnc(N)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnn3ncccc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3ccccc3c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cccnc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2cnc3ccccc32)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCCc2c[nH]cn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NC(=O)c2cccs2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(CC(=O)[O-])c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c[nH]nc2C(F)(F)F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(F)c2C(N)=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cncc3ccccc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCCc2ccccc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(-c3cnn(C)c3)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3c(N)[nH]nc3c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3c(c2)CS(=O)(=O)N3C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3c(cnn3C)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(-c3cn[nH]c3)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCc2ccc(Cl)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccnc(N[C@H2]C)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(O)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(CO)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C(=O)[O-])c(OC)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2ccncc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cn(C(C)C)nn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NCc2ccccc2F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c[nH]c(SC)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnoc2C(C)C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCc2c[nH]nn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2csc3ncncc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc3ccccc3[nH]2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(CCC#N)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2csc(N)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cncnc2N)n1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ccnc(N[C@H2]C)n3)cc2s1; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ccnc(N[C@H2]C)n2)cc1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(F)cc2C(F)(F)F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCCC(N)=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Oc2ccccn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCNC(=O)CC(C)(C)O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(NC(C)=O)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(NC(=O)c2c(Cl)cccc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cn(C)c3ccccc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N2CCC(S(C)(=O)=O)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(OCC(C)(C)S(C)(=O)=O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(OC)c(Cl)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnn3ccccc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C[NH3+])c(C(F)(F)F)c2)n1; [None]; [None]; [0] +CCCn1cc(-c2ccnc(N[C@H2]C)n2)cn1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc[nH]c(=O)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc3c2C(=O)CC3)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCc2cc(OC)cc(OC)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C(C)(C)N)cc2)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ccnc(N[C@H2]C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(O[C@H](C)c2c(Cl)cncc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc([S@](C)=O)cc2)n1; [None]; [None]; [0] +CCN(CC)c1ccnc(N[C@H2]C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc3c(=O)[nH]ccc3o2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc3c(=O)[nH]cc(Br)c3s2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cnccc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cnccc2-c2ccccc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cncc(OC(C)C)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C(C)(C)C)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c(F)cccc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Nc2cnc3ccccc3c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(F)c2C(=O)NC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnc3[nH]ccc3c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(C2(C)CCN(S(C)(=O)=O)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N(C)[C@H]2C[C@@H](NS(C)(=O)=O)C2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(S(=O)(=O)NC(C)(C)C)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(S(=O)(=O)NC)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(N3CCOCC3)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(S(C)(=O)=O)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(C)nn2-c2cccc(Cl)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N[C@@H](C)C(=O)NCC(F)(F)F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2ccc(CO)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2cnc(CCO)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N[C@@H](C)C(C)(C)O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N[C@H](C)C(C)(C)O)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c(F)cccc2Cl)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2ncc3ccccc32)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-n2ncc3c(O)cccc32)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(-n3cncn3)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nc3ccc(O)cc3[nH]2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2[nH]c(SC)nc2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(OC)cc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C(=O)c3ccccc3)cc2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc([C@@H]2CC[C@@H](NC(C)=O)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nncn2C(C)C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nncn2C2CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccn(CC[NH3+])n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Cc2nnc3ccc(-c4ccccc4)nn23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CCC(=O)NCc2ccccn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(CS(=O)(=O)NCc2ccccn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cn(Cc3ccccc3)nn2)n1; [None]; [None]; [0] +CCc1cc(-c2ccnc(N[C@H2]C)n2)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ccnc(N[C@H2]C)n2)nc(N)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nnc(N)s2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(C(N)=O)cn2C)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(C(C)(C)O)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc(C(=O)NC)s2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Oc2ccc(C[NH3+])cc2F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(C2CCN(C(=O)N[C@@H2]C)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nc3ccccc3s2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ccc3c(n2)NC(=O)C(C)(C)O3)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(C(=O)Nc3ccc(C(=O)NC)cc3)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cncc(N)n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc3ccsc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc3nnsc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnc(NC(C)=O)[nH]2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2nc(N)c3ccccc3n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ncc3ccccc3n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2c[nH]c3cccnc23)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cn(CCO)cn2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2ncc3cc[nH]c3n2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(C#N)ccc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(Oc2ccc(OC)c(F)c2F)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc([C@H]2CC[C@@](C)(O)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cc(OC)ccc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccnc2OC)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(S(=O)(=O)N(C)C)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cnnc(N(C)C)c2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N2CCC(c3nc4ccccc4[nH]3)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(N2CC=C(c3c[nH]c4ccccc34)CC2)n1; [None]; [None]; [0] +C[C@H2]Nc1nccc(-c2cccc(NC(=O)C3CCNCC3)c2)n1; [None]; [None]; [0] +O=C(NCc1cccc(O)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cccc2ncccc12)c1ccccc1; [None]; [None]; [0] +O=C(NCc1c(Cl)ccc2c1OCO2)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(Cl)c(O)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1n[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(NCc1c(Cl)cccc1Cl)c1ccccc1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1)c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccccc2)c(F)c1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1Cl)c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1F)c1ccccc1; [None]; [None]; [0] +Nc1nccc(CNC(=O)c2ccccc2)n1; [None]; [None]; [0] +COc1ccc(F)cc1CNC(=O)c1ccccc1; [None]; [None]; [0] +Cc1nc2c(F)cc(CNC(=O)c3ccccc3)cc2[nH]1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1Cl)c1ccccc1; [None]; [None]; [0] +COc1cc(F)ccc1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(-c2ccc(O)cc2O)cc1)c1ccccc1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccccc2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(CNC(=O)c2ccccc2)o1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccccc2)ccc1O; [None]; [None]; [0] +O=C(NCc1cccc(Br)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc2ccccc2c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(O)c(F)c1)c1ccccc1; [None]; [None]; [0] +Cn1cc(CNC(=O)c2ccccc2)c2ccccc21; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1O)c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CNC(=O)c2ccccc2)c1; [None]; [None]; [0] +O=C(NCc1cnn2ncccc12)c1ccccc1; [None]; [None]; [0] +O=C(NCc1c[nH]c2cnccc12)c1ccccc1; [None]; [None]; [0] +Nc1cc(CNC(=O)c2ccccc2)ccn1; [None]; [None]; [0] +O=C(NCCOc1ccccc1Cl)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(F)c(Cl)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1[nH]cnc1-c1ccc(F)cc1)c1ccccc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cc(O)ccc1Cl)c1ccccc1; [None]; [None]; [0] +Cc1ccc(CO)cc1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cnc(O)c(Cl)c1)c1ccccc1; [None]; [None]; [0] +NC(=O)c1cc(CNC(=O)c2ccccc2)c[nH]1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccccc2)cc(OC)c1; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccccc2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CNC(=O)c3ccccc3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccccc3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(CNC(=O)c2ccccc2)c1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccccc2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(NCc1cnc2[nH]ccc2c1)c1ccccc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2s1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cncc(O)c1)c1ccccc1; [None]; [None]; [0] +O=C1Cc2cc(CNC(=O)c3ccccc3)ccc2N1; [None]; [None]; [0] +C[C@@H](CNC(=O)c1ccccc1)CC(N)=O; [None]; [None]; [0] +CNc1nccc(CNC(=O)c2ccccc2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1CNC(=O)c1ccccc1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CNC(=O)c1ccccc1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)CNC(=O)c3ccccc3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(CNC(=O)c2ccccc2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cc(C(F)F)n[nH]1)c1ccccc1; [None]; [None]; [0] +CN(CNC(=O)c1ccccc1)c1cccc(Cl)c1; [None]; [None]; [0] +O=C(NCc1ccncc1Cl)c1ccccc1; [None]; [None]; [0] +CCc1sccc1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cc(Cl)c(O)c(Cl)c1)c1ccccc1; [None]; [None]; [0] +CNc1nc(CNC(=O)c2ccccc2)ncc1F; [None]; [None]; [0] +O=C(NCc1ccc2c(c1)CCN2)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cc(O)n2nccc2n1)c1ccccc1; [None]; [None]; [0] +Cc1oc(CNC(=O)c2ccccc2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NCc1ccc2[nH]c(=O)[nH]c2c1)c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCNc1ccncc1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(Br)cc1F)c1ccccc1; [None]; [None]; [0] +O=C(NCc1[nH]nc2ccc(F)cc12)c1ccccc1; [None]; [None]; [0] +CNC(=O)c1ccc(CNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +CN(CNC(=O)c1ccccc1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NCc1cc(O)cc(Br)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc(C(=O)NC2CC2)cc1)c1ccccc1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccccc2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccccc3)cc2o1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccccc2)cc(C)c1O; [None]; [None]; [0] +O=C(NCc1cc(F)c(O)c(F)c1)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ccc2c(=O)[nH][nH]c2c1)c1ccccc1; [None]; [None]; [0] +CSc1cccc(CNC(=O)c2ccccc2)c1; [None]; [None]; [0] +O=C(NCCCc1c[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +O=C(NCOCc1cccc2ccccc12)c1ccccc1; [None]; [None]; [0] +O=C(NCc1ocnc1-c1ccc(F)cc1)c1ccccc1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1F)c1ccccc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CNC(=O)c1ccccc1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1-c1ccc(Cl)cc1)c1ccccc1; [None]; [None]; [0] +O=C(NCOCc1ccc(F)cc1F)c1ccccc1; [None]; [None]; [0] +O=C(NCCCc1ccc(F)cc1F)c1ccccc1; [None]; [None]; [0] +O=C(NCNCc1c(F)cccc1Cl)c1ccccc1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccccc2)sn1; [None]; [None]; [0] +O=C(NCNc1ccncn1)c1ccccc1; [None]; [None]; [0] +CC1(COCNC(=O)c2ccccc2)COC1; [None]; [None]; [0] +COc1ccc(CNCNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(NCNC1CN(C(=O)C2CC2)C1)c1ccccc1; [None]; [None]; [0] +Cc1nc(NCNC(=O)c2ccccc2)sc1C; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccccc2)nn1C; [None]; [None]; [0] +O=C(NCNC(=O)c1ccco1)c1ccccc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)NCNC(=O)c2ccccc2)cc1; [None]; [None]; [0] +O=C(NCNc1ccc(F)cn1)c1ccccc1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccccc2)ncc1F; [None]; [None]; [0] +O=C(NCNc1ccccn1)c1ccccc1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc4ccccc4n3)cc2s1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1ncccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1cc(-c2ccc3nc(N)sc3c2)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc4nc(N)sc4c3)c2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc4cccnn34)cc2s1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(O)c3)cc2s1; [None]; [None]; [0] +COc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(N4CCOCC4)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(NC(=O)C4CC4)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3nc4ccccc4[nH]3)cc2s1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4nc(N)sc4c3)cc2)CC1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)[O-])cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3nccc4ccccc34)cc2s1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(Nc3ncccn3)cc2s1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccc4nc(N)sc4c3)cn2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)Nc4ccccc4)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(OCCO)cc3)cc2s1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(C4CCNCC4)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)N4CCOCC4)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)N4CCOCC4)cn3)cc2s1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CS(=O)(=O)C4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(F)(F)F)cc3)cc2s1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(Cc3ccccc3O)cc2s1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3nc(N)sc3c2)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc3nc(N)sc3c2)CC1; [None]; [None]; [0] +Nc1ncc(Cc2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +Nc1nc2ccc([C@H]3CCN(C(=O)c4ccccc4)C3)cc2s1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3nc(N)sc3c2)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc4nc(N)sc4c3)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc3nc(N)sc3c2)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Br)cc3)cc2s1; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc(N)sc3c2)cc1Cl; [None]; [None]; [0] +COc1ccc(Cc2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccn4nccc4n3)cc2s1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(C)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccccc3-n3cccn3)cc2s1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3c[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc3nc(N)sc3c2)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc4nc(N)sc4c3)[nH]c2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CCO4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(-c4ccccc4)[nH]n3)cc2s1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1cc(-c2ccc3nc(N)sc3c2)ccc1O; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc4c3OCO4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3scc4c3OCCO4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Cc3nc4ccc(F)c(F)c4[nH]3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Cc3nc4c(F)c(F)ccc4[nH]3)cc2s1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc4ccccc4c3)cc2s1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3nc(N)sc3c2)CC1; [None]; [None]; [0] +Nc1nc2ccc(Cc3nc4ccccc4[nH]3)cc2s1; [None]; [None]; [0] +Nc1nc(-c2ccc3nc(N)sc3c2)cs1; [None]; [None]; [0] +Cc1ccc(-c2ccc3nc(N)sc3c2)c(=O)[nH]1; [None]; [None]; [0] +Nc1nc2ccc(CCCc3ccccc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccn(-c4cccc(Cl)c4)n3)cc2s1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +CSc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc4ccccc4s3)cc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc4nc(N)sc4c3)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)nc(N)n1; [None]; [None]; [0] +CC[C@@H](CO)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc([C@H](CO)Cc3ccccc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(F)cc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CCC(=O)N4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc(Br)cn3)cc2s1; [None]; [None]; [0] +COc1ccc(-c2ccc3nc(N)sc3c2)cc1OC; [None]; [None]; [0] +CCc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Cl)cc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(CCCn3cncn3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc4cccn4n3)cc2s1; [None]; [None]; [0] +COc1cc(-c2ccc3nc(N)sc3c2)ccc1N1CCOCC1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc4ccccn4n3)cc2s1; [None]; [None]; [0] +Cn1cc(-c2ccc3nc(N)sc3c2)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc4nc(N)sc4c3)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc4nc(N)sc4c3)c2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc4ccc(O)cc34)cc2s1; [None]; [None]; [0] +COc1cc(F)c(-c2ccc3nc(N)sc3c2)cc1OC; [None]; [None]; [0] +COc1cc(-c2ccc3nc(N)sc3c2)ccc1Cl; [None]; [None]; [0] +Nc1nc2ccc(-c3cnn(CCO)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc(Cl)cn3)cc2s1; [None]; [None]; [0] +Cc1csc2c(-c3ccc4nc(N)sc4c3)ncnc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1cc(-c2ccc3nc(N)sc3c2)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc3nc(N)sc3c2)c(OC)cc1Br; [None]; [None]; [0] +COc1ccc(OC)c(Cc2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3nc(N)sc3c2)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc3nc(N)sc3c2)CC1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cc2s1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3nc(N)sc3c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4nc(N)sc4c3)cc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4cn[nH]c4c3)cc2s1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(-c4cccnc4)ccn3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc4ccccc4o3)cc2s1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc4sccc4n3)cc2s1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(NC(=O)N4CCCC4)c3)cc2s1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4nc(N)sc4c3)[nH]c2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(OC(F)(F)F)cc3)cc2s1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc3nc(N)sc3c2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4nc(N)sc4c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncn4c3CCCC4)cc2s1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4nc(N)sc4c3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4nc(N)sc4c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc4nc(N)sc4c3)cn2)CC1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(N4CCCC4=O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(CCO)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(NC(=O)c3cccc(OC(F)(F)F)c3)cc2s1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc4nc(N)sc4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2ccc3nc(N)sc3c2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc4ncccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3c(Cl)ccc4c3OCO4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Cl)c(O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3n[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3c(Cl)cccc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Oc3ccc(F)cc3)cc2s1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(F)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3Cl)cc2s1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3F)cc2s1; [None]; [None]; [0] +Nc1nccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4nc(N)sc4c3)cc2[nH]1; [None]; [None]; [0] +Nc1nc2ccc(-c3cn[nH]c3Cl)cc2s1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)cc2s1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3nc(N)sc3c2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(N)sc3c2)ccc1O; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(Br)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4ccccc4c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)c(F)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3O)cc2s1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnn4ncccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3c[nH]c4cnccc34)cc2s1; [None]; [None]; [0] +Nc1cc(-c2ccc3nc(N)sc3c2)ccn1; [None]; [None]; [0] +Nc1nc2ccc(COc3ccccc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(F)c(Cl)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)cc2s1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)ccc3Cl)cc2s1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc(O)c(Cl)c3)cc2s1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3nc(N)sc3c2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(N)sc4c3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(N)sc3c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc4[nH]ccc4c3)cc2s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3nc4ccccc4s3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cncc(O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CC(=O)N4)cc2s1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3nc(N)sc3c2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(C(F)F)n[nH]3)cc2s1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccncc3Cl)cc2s1; [None]; [None]; [0] +CCc1sccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(Cl)c(O)c(Cl)c3)cc2s1; [None]; [None]; [0] +CNc1nc(-c2ccc3nc(N)sc3c2)ncc1F; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CCN4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)n4nccc4n3)cc2s1; [None]; [None]; [0] +Cc1oc(-c2ccc3nc(N)sc3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)cc2s1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(Nc3ccncc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Br)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3[nH]nc4ccc(F)cc34)cc2s1; [None]; [None]; [0] +CN(c1ccc2nc(N)sc2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)cc(Br)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)NC4CC4)cc3)cc2s1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(N)sc4c3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)cc(C)c1O; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(F)c(O)c(F)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)cc2s1; [None]; [None]; [0] +CSc1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(CCc3c[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(OCc3cccc4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ocnc3-c3ccc(F)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Oc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(OCc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(CCc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(NCc3c(F)cccc3Cl)cc2s1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc4ncccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(Cl)ccc4c3OCO4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(Cl)c(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3n[nH]c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(Cl)cccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Oc3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3Cl)c(C)c2)o1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccnc(N)n3)c(C)c2)o1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(-c4nnc(C)o4)cc3C)cc2[nH]1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn[nH]c3Cl)c(C)c2)o1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)c(C)c2)o1; [None]; [None]; [0] +COc1cc(-c2ccc(-c3nnc(C)o3)cc2C)ccc1O; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(=O)[O-])cc3)c(C)c2)o1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(-c3nnc(C)o3)cc2C)ccc1O; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc(Br)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4ccccc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)c(F)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn(C)c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3O)c(C)c2)o1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnn4ncccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c[nH]c4cnccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccnc(N)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(COc3ccccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(F)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]cnc3-c3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(C)ccc4[nH]ncc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)ccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(CO)ccc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnc(O)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c[nH]c(C(N)=O)c3)c(C)c2)o1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(-c4nnc(C)o4)cc3C)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(-c4nnc(C)o4)cc3C)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(-c3nnc(C)o3)cc2C)cc(OC)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(NC(N)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnc4[nH]ccc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(S(C)(=O)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3nc4ccccc4s3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cncc(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(c3)CC(=O)N4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc([C@H](C)CC(N)=O)c(C)c2)o1; [None]; [None]; [0] +CNc1nccc(-c2ccc(-c3nnc(C)o3)cc2C)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3ccc4c(C)n[nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]nc(C)c3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C(F)F)n[nH]3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3cccc(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccncc3Cl)c(C)c2)o1; [None]; [None]; [0] +CCc1sccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(Cl)c(O)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +CNc1nc(-c2ccc(-c3nnc(C)o3)cc2C)ncc1F; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(c3)CCN4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)n4nccc4n3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C(=O)[O-])c(C)o3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(N)cnn3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Nc3ccncc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(Br)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]nc4ccc(F)cc34)c(C)c2)o1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3cccc4[nH]ncc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)cc(Br)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(=O)NC4CC4)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)c(C)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4nc(C)oc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C)c(O)c(C)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(F)c(O)c(F)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(=O)[nH][nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +CSc1cccc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(CCc3c[nH]c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(OCc3cccc4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ocnc3-c3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Oc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(-c4ccccc4)noc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(OCc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(CCc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(NCc3c(F)cccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Oc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cc(-c2n[nH]c3ncncc23)c2cccnc2c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1n[nH]c3ncncc13)OCO2; [None]; [None]; [0] +Oc1cc(-c2n[nH]c3ncncc23)ccc1Cl; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Fc1ccc(Oc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(F)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3n[nH]c4ncncc34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2n[nH]c3ncncc23)o1; [None]; [None]; [0] +COc1cc(CCc2n[nH]c3ncncc23)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1ccc2cc(-c3n[nH]c4ncncc34)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)cc1F; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ncncc23)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +c1cc2c(-c3n[nH]c4ncncc34)c[nH]c2cn1; [None]; [None]; [0] +Nc1cc(-c2n[nH]c3ncncc23)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1n[nH]c2ncncc12; [None]; [None]; [0] +Fc1ccc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ncc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2n[nH]c3ncncc23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ncncc23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1cc(CCc2n[nH]c3ncncc23)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3cnc4[nH]ccc4c3)n[nH]c2n1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3n[nH]c4ncncc34)nc2c1; [None]; [None]; [0] +Oc1cncc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3n[nH]c4ncncc34)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1n[nH]c2ncncc12; [None]; [None]; [0] +CNc1nccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2n[nH]c3ncncc23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +FC(F)c1cc(-c2n[nH]c3ncncc23)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1n[nH]c2ncncc12; [None]; [None]; [0] +Clc1cnccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CCc1sccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2n[nH]c3ncncc23)ncc1F; [None]; [None]; [0] +c1ncc2c(-c3ccc4c(c3)CCN4)n[nH]c2n1; [None]; [None]; [0] +Oc1cc(-c2n[nH]c3ncncc23)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2n[nH]c3ncncc23)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1cc(Nc2n[nH]c3ncncc23)ccn1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3n[nH]c4ncncc34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2n[nH]c3ncncc23)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +CSc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1ccc2c(CCc3n[nH]c4ncncc34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3n[nH]c4ncncc34)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(COc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1n[nH]c2ncncc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2nc(-c3n[nH]c4ncncc34)ncc2c1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc3nc(N)sc3c2)CC1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(C(=O)Nc4cn[nH]c4)c3)cc2s1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3nc(N)sc3c1)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4nc(N)sc4c3)cc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4cn[nH]c4c3)cc2s1; [None]; [None]; [0] +CCn1cc(-c2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(-c4cccnc4)ccn3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc4ccccc4o3)cc2s1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ncc4sccc4n3)cc2s1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(NC(=O)N4CCCC4)c3)cc2s1; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4nc(N)sc4c3)[nH]c2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(OC(F)(F)F)cc3)cc2s1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Cn1cc(-c2ccc3nc(N)sc3c2)c2ccccc21; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4nc(N)sc4c3)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)cc(C)c1OCCO; [None]; [None]; [0] +Nc1nc2ccc(-c3ncn4c3CCCC4)cc2s1; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4nc(N)sc4c3)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4nc(N)sc4c3)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3nc(N)sc3c2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc4nc(N)sc4c3)cn2)CC1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(N4CCCC4=O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(CCO)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(NC(=O)c3cccc(OC(F)(F)F)c3)cc2s1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc4nc(N)sc4c3)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cn1nc(-c2ccc3nc(N)sc3c2)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(OC)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3nc(N)sc3c2)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +C[C@H](CS(C)(=O)=O)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3c(Cl)ccc4c3OCO4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc4ncccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Cl)c(O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3n[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3c(Cl)cccc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Oc3ccc(F)cc3)cc2s1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3nc(N)sc3c2)c(F)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3Cl)cc2s1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3F)cc2s1; [None]; [None]; [0] +Nc1nccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4nc(N)sc4c3)cc2[nH]1; [None]; [None]; [0] +Nc1nc2ccc(-c3cn[nH]c3Cl)cc2s1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)cc2s1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3nc(N)sc3c2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(N)sc3c2)ccc1O; [None]; [None]; [0] +Nc1nc2ccc(-c3cccc(Br)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4ccccc4c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)c(F)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(O)cc3O)cc2s1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnn4ncccc34)cc2s1; [None]; [None]; [0] +Nc1cc(-c2ccc3nc(N)sc3c2)ccn1; [None]; [None]; [0] +Nc1nc2ccc(-c3c[nH]c4cnccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(COc3ccccc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(F)c(Cl)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3[nH]cnc3-c3ccc(F)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)ccc3Cl)cc2s1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc(O)c(Cl)c3)cc2s1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3nc(N)sc3c2)c[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(N)sc4c3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3nc(N)sc3c2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cnc4[nH]ccc4c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3nc4ccccc4s3)cc2s1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3nc(N)sc3c2)cc1; [None]; [None]; [0] +Nc1nc2ccc(-c3cncc(O)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CC(=O)N4)cc2s1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNc1nccc(-c2ccc3nc(N)sc3c2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3nc(N)sc3c2)c1C; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4nc(N)sc4c3)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(C(F)F)n[nH]3)cc2s1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccncc3Cl)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(Cl)c(O)c(Cl)c3)cc2s1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1ncccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +c1cnn2c(-c3n[nH]c4ncncc34)cnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3ccc(N4CCOCC4)cc3)n[nH]c2n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ncncc23)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3n[nH]c4ncncc34)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3n[nH]c4ncncc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)sn1; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3n[nH]c4ncncc34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1cc(-c2n[nH]c3ncncc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ncncc23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ncncc23)nc1)N1CCOCC1; [None]; [None]; [0] +c1cc(Nc2n[nH]c3ncncc23)ncn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3n[nH]c4ncncc34)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2n[nH]c3ncncc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2n[nH]c3ncncc23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2n[nH]c3ncncc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3n[nH]c4ncncc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Brc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3ccn4nccc4n3)n[nH]c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +c1ncc2c(-c3ccc4c(c3)CCO4)n[nH]c2n1; [None]; [None]; [0] +c1ccc(-c2cc(-c3n[nH]c4ncncc34)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1cc2c(c(-c3n[nH]c4ncncc34)c1)OCO2; [None]; [None]; [0] +c1ncc2c(-c3scc4c3OCCO4)n[nH]c2n1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2ncc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3ncncc23)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3n[nH]c4ncncc34)n2)c1; [None]; [None]; [0] +CC1(COc2n[nH]c3ncncc23)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CSc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3n[nH]c4ncncc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3n[nH]c4ncncc34)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +CCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COc1ccc(CNc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Clc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2n[nH]c3ncncc23)C1; [None]; [None]; [0] +c1cc2cnc(-c3n[nH]c4ncncc34)nn2c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ncncc23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3n[nH]c4ncncc34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2n[nH]c3ncncc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +Clc1cnc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1csc2c(-c3n[nH]c4ncncc34)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2n[nH]c3ncncc23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)nn1C; [None]; [None]; [0] +Nc1cc(-c2n[nH]c3ncncc23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=C(Nc1n[nH]c2ncncc12)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1n[nH]c3ncncc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +c1ncc2c(-c3ccc4cn[nH]c4c3)n[nH]c2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3n[nH]c4ncncc34)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +CNc1nc(-c2ccc3nc(N)sc3c2)ncc1F; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(c3)CCN4)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)n4nccc4n3)cc2s1; [None]; [None]; [0] +Cc1oc(-c2ccc3nc(N)sc3c2)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)cc2s1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(Nc3ccncc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(Br)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3[nH]nc4ccc(F)cc34)cc2s1; [None]; [None]; [0] +CN(c1ccc2nc(N)sc2c1)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(O)cc(Br)c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc(C(=O)NC4CC4)cc3)cc2s1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4nc(N)sc4c3)cc2o1; [None]; [None]; [0] +Nc1nc2ccc(-c3cc(F)c(O)c(F)c3)cc2s1; [None]; [None]; [0] +Cc1cc(-c2ccc3nc(N)sc3c2)cc(C)c1O; [None]; [None]; [0] +CSc1cccc(-c2ccc3nc(N)sc3c2)c1; [None]; [None]; [0] +Nc1nc2ccc(-c3ccc4c(=O)[nH][nH]c4c3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(CCc3c[nH]c4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(OCc3cccc4ccccc34)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(-c3ocnc3-c3ccc(F)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(Oc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2nc(N)sc2c1; [None]; [None]; [0] +Nc1nc2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(OCc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(CCc3ccc(F)cc3F)cc2s1; [None]; [None]; [0] +Nc1nc2ccc(NCc3c(F)cccc3Cl)cc2s1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc4ncccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(Cl)ccc4c3OCO4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(Cl)c(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3n[nH]c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(Cl)cccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Oc3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3Cl)c(C)c2)o1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccnc(N)n3)c(C)c2)o1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(-c4nnc(C)o4)cc3C)cc2[nH]1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn[nH]c3Cl)c(C)c2)o1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(-c4ccc(O)cc4O)cc3)c(C)c2)o1; [None]; [None]; [0] +COc1cc(-c2ccc(-c3nnc(C)o3)cc2C)ccc1O; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(=O)[O-])cc3)c(C)c2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(-c3nnc(C)o3)cc2C)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4ccccc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cccc(Br)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)c(F)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn(C)c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3O)c(C)c2)o1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnn4ncccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c[nH]c4cnccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccnc(N)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(COc3ccccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(F)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]cnc3-c3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(C)ccc4[nH]ncc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)ccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(CO)ccc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnc(O)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c[nH]c(C(N)=O)c3)c(C)c2)o1; [None]; [None]; [0] +COc1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(-c4nnc(C)o4)cc3C)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(-c4nnc(C)o4)cc3C)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(-c3nnc(C)o3)cc2C)cc(OC)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(NC(N)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cnc4[nH]ccc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(S(C)(=O)=O)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3nc4ccccc4s3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cncc(O)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(c3)CC(=O)N4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc([C@H](C)CC(N)=O)c(C)c2)o1; [None]; [None]; [0] +CNc1nccc(-c2ccc(-c3nnc(C)o3)cc2C)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3ccc4c(C)n[nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]nc(C)c3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(O)cc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C(F)F)n[nH]3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3cccc(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccncc3Cl)c(C)c2)o1; [None]; [None]; [0] +CCc1sccc1-c1ccc(-c2nnc(C)o2)cc1C; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(Cl)c(O)c(Cl)c3)c(C)c2)o1; [None]; [None]; [0] +CNc1nc(-c2ccc(-c3nnc(C)o3)cc2C)ncc1F; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(c3)CCN4)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)n4nccc4n3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C(=O)[O-])c(C)o3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4[nH]c(=O)[nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(N)cnn3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Nc3ccncc3)c(C)c2)o1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(-c3nnc(C)o3)cc2C)cc1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3[nH]nc4ccc(F)cc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(Br)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(N(C)c3cccc4[nH]ncc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(O)cc(Br)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(=O)NC4CC4)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc(C(N)=O)c(C)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4nc(C)oc4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(C)c(O)c(C)c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ccc4c(=O)[nH][nH]c4c3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cc(F)c(O)c(F)c3)c(C)c2)o1; [None]; [None]; [0] +CSc1cccc(-c2ccc(-c3nnc(C)o3)cc2C)c1; [None]; [None]; [0] +Cc1nnc(-c2ccc(CCc3c[nH]c4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(OCc3cccc4ccccc34)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3ocnc3-c3ccc(F)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(Oc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3c(-c4ccccc4)noc3C)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(-c3cn[nH]c3-c3ccc(Cl)cc3)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(OCc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(CCc3ccc(F)cc3F)c(C)c2)o1; [None]; [None]; [0] +Cc1nnc(-c2ccc(NCc3c(F)cccc3Cl)c(C)c2)o1; [None]; [None]; [0] +Oc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cc(-c2n[nH]c3ncncc23)c2cccnc2c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1n[nH]c3ncncc13)OCO2; [None]; [None]; [0] +Oc1cc(-c2n[nH]c3ncncc23)ccc1Cl; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(F)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3n[nH]c4ncncc34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2n[nH]c3ncncc23)o1; [None]; [None]; [0] +COc1cc(CCc2n[nH]c3ncncc23)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1ccc2cc(-c3n[nH]c4ncncc34)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)cc1F; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ncncc23)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2n[nH]c3ncncc23)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +c1cc2c(-c3n[nH]c4ncncc34)c[nH]c2cn1; [None]; [None]; [0] +Nc1cc(-c2n[nH]c3ncncc23)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1n[nH]c2ncncc12; [None]; [None]; [0] +Fc1ccc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1ncc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2n[nH]c3ncncc23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ncncc23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1cc(CCc2n[nH]c3ncncc23)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3cnc4[nH]ccc4c3)n[nH]c2n1; [None]; [None]; [0] +c1ccc2sc(-c3n[nH]c4ncncc34)nc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Oc1cncc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3n[nH]c4ncncc34)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1n[nH]c2ncncc12; [None]; [None]; [0] +CNc1nccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2n[nH]c3ncncc23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +FC(F)c1cc(-c2n[nH]c3ncncc23)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1n[nH]c2ncncc12; [None]; [None]; [0] +Clc1cnccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CCc1sccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CNc1nc(-c2n[nH]c3ncncc23)ncc1F; [None]; [None]; [0] +c1ncc2c(-c3ccc4c(c3)CCN4)n[nH]c2n1; [None]; [None]; [0] +Oc1cc(-c2n[nH]c3ncncc23)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2n[nH]c3ncncc23)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3n[nH]c4ncncc34)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1cc(Nc2n[nH]c3ncncc23)ccn1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1n[nH]c2ncncc12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3n[nH]c4ncncc34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)cc(C)c1O; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +Oc1c(F)cc(-c2n[nH]c3ncncc23)cc1F; [None]; [None]; [0] +Cn1cc(Br)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1ncc2c(-c3ncc4sccc4n3)n[nH]c2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ncncc23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +c1ncc2c(-c3ncn4c3CCCC4)n[nH]c2n1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3n[nH]c4ncncc34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3n[nH]c4ncncc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3n[nH]c4ncncc34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +OCCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=C(Nc1n[nH]c2ncncc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3n[nH]c4ncncc34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ncncc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2n[nH]c3ncncc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)ncc1F; [None]; [None]; [0] +c1ccc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2ncccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Cl)c(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1n[nH]c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Oc1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccnc(N)n1; [None]; [None]; [0] +COc1ccc(F)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1nc2c(F)cc(-n3c(C)ccc(Br)c3=O)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn[nH]c1Cl; [None]; [None]; [0] +COc1cc(F)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +COC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)o1; [None]; [None]; [0] +COc1cc(CCn2c(C)ccc(Br)c2=O)ccc1O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(Br)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2ccccc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)c(F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)c2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn2ncccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c2cnccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccnc(N)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1COc1ccccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(CO)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +COc1cc(OC)cc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1ccc(-n2c(C)ccc(Br)c2=O)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-n3c(C)ccc(Br)c3=O)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1cc(CCn2c(C)ccc(Br)c2=O)cc(OC)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccccc2s1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cncc(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CC(=O)N2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1[C@H](C)CC(N)=O; [None]; [None]; [0] +CNc1nccc(-n2c(C)ccc(Br)c2=O)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-n2c(C)ccc(Br)c2=O)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1N(C)c1cccc(Cl)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccncc1Cl; [None]; [None]; [0] +CCc1sccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(-n2c(C)ccc(Br)c2=O)ncc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +Cc1oc(-n2c(C)ccc(Br)c2=O)cc1C(=O)[O-]; [None]; [None]; [0] +CSc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1ccc2c(CCc3n[nH]c4ncncc34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3n[nH]c4ncncc34)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Fc1ccc(COc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2n[nH]c3ncncc23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1n[nH]c2ncncc12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2nc(-c3n[nH]c4ncncc34)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ncccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +c1cnn2c(-c3n[nH]c4ncncc34)cnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3ccc(N4CCOCC4)cc3)n[nH]c2n1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ncncc23)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3n[nH]c4ncncc34)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3n[nH]c4ncncc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)sn1; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3n[nH]c4ncncc34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1cc(-c2n[nH]c3ncncc23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ncncc23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2n[nH]c3ncncc23)nc1)N1CCOCC1; [None]; [None]; [0] +c1cc(Nc2n[nH]c3ncncc23)ncn1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3n[nH]c4ncncc34)cc2C1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2n[nH]c3ncncc23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2n[nH]c3ncncc23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2n[nH]c3ncncc23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3n[nH]c4ncncc34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Brc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ncc2c(-c3ccn4nccc4n3)n[nH]c2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2n[nH]c3ncncc23)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1ccc2c(-c3n[nH]c4ncncc34)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2n[nH]c3ncncc23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +c1ncc2c(-c3ccc4c(c3)CCO4)n[nH]c2n1; [None]; [None]; [0] +c1ccc(-c2cc(-c3n[nH]c4ncncc34)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cc2c(c(-c3n[nH]c4ncncc34)c1)OCO2; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1ncc2c(-c3scc4c3OCCO4)n[nH]c2n1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2ncc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3ncncc23)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3n[nH]c4ncncc34)n2)c1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CC1(COc2n[nH]c3ncncc23)COC1; [None]; [None]; [0] +CSc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3n[nH]c4ncncc34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3n[nH]c4ncncc34)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +CCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COc1ccc(CNc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +Clc1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +c1cc2cnc(-c3n[nH]c4ncncc34)nn2c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2n[nH]c3ncncc23)C1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +Cn1cc(-c2n[nH]c3ncncc23)c(C(F)(F)F)n1; [None]; [None]; [0] +COc1ccc2cccc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3n[nH]c4ncncc34)ccc2O1; [None]; [None]; [0] +Oc1ccc2cccc(-c3n[nH]c4ncncc34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2n[nH]c3ncncc23)cc1OC; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +Clc1cnc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1csc2c(-c3n[nH]c4ncncc34)ncnc12; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)nn1C; [None]; [None]; [0] +Cc1nc(Nc2n[nH]c3ncncc23)sc1C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2[nH]c(=O)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(N)cnn1C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Nc1ccncc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Br)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1N(C)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)cc(Br)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)NC2CC2)cc1; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-n3c(C)ccc(Br)c3=O)cc2o1; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)cc(C)c1O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(F)c(O)c(F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(=O)[nH][nH]c2c1; [None]; [None]; [0] +CSc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1CCc1c[nH]c2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1OCc1cccc2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Oc1ccc(F)cc1F; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1OCc1ccc(F)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1CCc1ccc(F)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1NCc1c(F)cccc1Cl; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +CCOc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1ncccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-n3c(C)ccc(Br)c3=O)c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2cccnn12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C#N)ccc1O; [None]; [None]; [0] +COc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-n3c(C)ccc(Br)c3=O)cc2)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nccc2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Nc1ncccn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OCCO)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1nc(C)c(-n2c(C)ccc(Br)c2=O)s1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-n3c(C)ccc(Br)c3=O)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-n2c(C)ccc(Br)c2=O)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Br)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)c(C)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-n2c(C)ccc(Br)c2=O)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2c1OCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1scc2c1OCCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2ccccc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1csc(N)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +COc1cccc(C(=O)Nn2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +CSc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-n3c(C)ccc(Br)c3=O)cc2)CC1; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)nc(N)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(F)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc(Br)cn1; [None]; [None]; [0] +CCc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2cccn2n1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccn2n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1ccc2cccc(-n3c(C)ccc(Br)c3=O)c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-n2c(C)ccc(Br)c2=O)cc1OC; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1Cl; [None]; [None]; [0] +Nc1cc(-c2n[nH]c3ncncc23)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2n[nH]c3ncncc23)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=C(Nc1n[nH]c2ncncc12)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2n[nH]c3ncncc23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1n[nH]c3ncncc13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +c1ncc2c(-c3ccc4cn[nH]c4c3)n[nH]c2n1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3n[nH]c4ncncc34)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3n[nH]c4ncncc34)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +c1ncc2c(-c3ncc4sccc4n3)n[nH]c2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ncncc23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3n[nH]c4ncncc34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2n[nH]c3ncncc23)n1; [None]; [None]; [0] +c1ncc2c(-c3ncn4c3CCCC4)n[nH]c2n1; [None]; [None]; [0] +Cc1cc(-c2n[nH]c3ncncc23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3n[nH]c4ncncc34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2n[nH]c3ncncc23)cn1; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3n[nH]c4ncncc34)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3n[nH]c4ncncc34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3n[nH]c4ncncc34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +OCCc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +O=C(Nc1n[nH]c2ncncc12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)c(Cl)c1; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3n[nH]c4ncncc34)cc2)n1C; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2n[nH]c3ncncc23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2n[nH]c3ncncc23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2n[nH]c3ncncc23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Fc1ccc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +Cc1cc(Nc2n[nH]c3ncncc23)ncc1F; [None]; [None]; [0] +c1ccc(Nc2n[nH]c3ncncc23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2n[nH]c3ncncc23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1n[nH]c2ncncc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2ncccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Cl)c(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1n[nH]c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Oc1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccnc(N)n1; [None]; [None]; [0] +COc1ccc(F)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1nc2c(F)cc(-n3c(C)ccc(Br)c3=O)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn[nH]c1Cl; [None]; [None]; [0] +COc1cc(F)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)[O-])cc1; [None]; [None]; [0] +COc1cc(CCn2c(C)ccc(Br)c2=O)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)o1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(Br)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2ccccc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)c(F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)c2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn2ncccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c2cnccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccnc(N)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1COc1ccccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +COc1cc(OC)cc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1ccc(-n2c(C)ccc(Br)c2=O)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-n3c(C)ccc(Br)c3=O)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1cc(CCn2c(C)ccc(Br)c2=O)cc(OC)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn(CCO)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(-n3c(C)ccc(Br)c3=O)ncnc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)nc1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Cc1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-n1c(C)ccc(Br)c1=O)cn2C; [None]; [None]; [0] +COc1ccc2oc(-n3c(C)ccc(Br)c3=O)cc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +CCn1cc(-n2c(C)ccc(Br)c2=O)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccc2o1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(Br)cn1C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2sccc2n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)nc1C(C)C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +COc1ccc2nc(-n3c(C)ccc(Br)c3=O)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nn2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +CCc1cccc(-n2c(C)ccc(Br)c2=O)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)cc(C)c1OCCO; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)nc1; [None]; [None]; [0] +Cc1n[nH]c2cc(-n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-n3c(C)ccc(Br)c3=O)cn2)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(CCO)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +Cc1ncc(-c2ccc(-n3c(C)ccc(Br)c3=O)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)c(OC)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc(O)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc3ncccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c(Cl)ccc3c2OCO3)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(Cl)c(O)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c(Cl)cccc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Oc2ccc(F)cc2)nc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)c(F)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2Cl)nc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2F)nc1; [None]; [None]; [0] +Nc1nccc(-c2ccc(C(=O)NCC3CC3)cn2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(C(=O)NCC4CC4)cn3)cc2[nH]1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cn[nH]c2Cl)nc1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(-c3ccc(O)cc3O)cc2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)NCC3CC3)cn2)ccc1O; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc(Br)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3ccccc3c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)c(F)c2)nc1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)NCC3CC3)cn2)c2ccccc21; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2O)nc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnn3ncccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c[nH]c3cnccc23)nc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(COc2ccccc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(F)c(Cl)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2[nH]cnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)ccc2Cl)nc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnc(O)c(Cl)c2)nc1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc(C(=O)NCC3CC3)cn2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(C(=O)NCC4CC4)cn3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)NCC4CC4)cn3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)NCC3CC3)cn2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnc3[nH]ccc3c2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cncc(O)c2)nc1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc(C(=O)NCC4CC4)cn3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(=O)NCC3CC3)cn2)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccccc2s1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cncc(O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CC(=O)N2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1[C@H](C)CC(N)=O; [None]; [None]; [0] +CCc1cc(O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +CNc1nccc(-n2c(C)ccc(Br)c2=O)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1n[nH]c(-n2c(C)ccc(Br)c2=O)c1C; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1N(C)c1cccc(Cl)c1; [None]; [None]; [0] +CCc1sccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccncc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(-n2c(C)ccc(Br)c2=O)ncc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +Cc1oc(-n2c(C)ccc(Br)c2=O)cc1C(=O)[O-]; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2[nH]c(=O)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c(N)cnn1C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Nc1ccncc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Br)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1N(C)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(O)cc(Br)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)NC2CC2)cc1; [None]; [None]; [0] +Cc1nc2ccc(-n3c(C)ccc(Br)c3=O)cc2o1; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)cc(C)c1O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(F)c(O)c(F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(=O)[nH][nH]c2c1; [None]; [None]; [0] +CSc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1CCc1c[nH]c2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1OCc1cccc2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Oc1ccc(F)cc1F; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1OCc1ccc(F)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1CCc1ccc(F)cc1F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1NCc1c(F)cccc1Cl; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +CCOc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1ncccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(S(C)(=O)=O)c1; [None]; [None]; [0] +Cc1ccc2ncn(-n3c(C)ccc(Br)c3=O)c2c1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2cccnn12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C#N)ccc1O; [None]; [None]; [0] +COc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(NC(=O)C2CC2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-n3c(C)ccc(Br)c3=O)cc2)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nccc2ccccc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Nc1ncccn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn(Cc2cccc(C#N)c2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OCCO)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCOCC2)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCOCC2)cn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC[C@H](C)O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC[C@@H](C)O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(S(=O)(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1nc(C)c(-n2c(C)ccc(Br)c2=O)s1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1C1CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1[C@H]1CCN(C(=O)c2ccccc2)C1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(C)C)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-n3c(C)ccc(Br)c3=O)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-n2c(C)ccc(Br)c2=O)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Br)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)c(Cl)c1; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2c(C)ccc(Br)c2=O)c(C)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-n2c(C)ccc(Br)c2=O)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1nc2ccc(C(C)C)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1scc2c1OCCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2c1OCO2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnc2ccccc2c1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc(C(=O)NCC4CC4)cn3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc(C(=O)NCC3CC3)cn2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(C(F)F)n[nH]2)nc1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccncc2Cl)nc1; [None]; [None]; [0] +CCc1sccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(Cl)c(O)c(Cl)c2)nc1; [None]; [None]; [0] +CNc1nc(-c2ccc(C(=O)NCC3CC3)cn2)ncc1F; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3c(c2)CCN3)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)n3nccc3n2)nc1; [None]; [None]; [0] +Cc1oc(-c2ccc(C(=O)NCC3CC3)cn2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3[nH]c(=O)[nH]c3c2)nc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Nc2ccncc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(Br)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2[nH]nc3ccc(F)cc23)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +CN(c1ccc(C(=O)NCC2CC2)cn1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)cc(Br)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(C(=O)NC3CC3)cc2)nc1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)NCC4CC4)cn3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)NCC3CC3)cn2)cc(C)c1O; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(F)c(O)c(F)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3c(=O)[nH][nH]c3c2)nc1; [None]; [None]; [0] +CSc1cccc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(CCc2c[nH]c3ccccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(OCc2cccc3ccccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ocnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Oc2ccc(F)cc2F)nc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(OCc2ccc(F)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(CCc2ccc(F)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(NCc2c(F)cccc2Cl)nc1; [None]; [None]; [0] +Oc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1cc(-c2nnc3ccccn23)c2cccnc2c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1nnc3ccccn13)OCO2; [None]; [None]; [0] +Oc1cc(-c2nnc3ccccn23)ccc1Cl; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc(Oc2nnc3ccccn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(F)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3nnc4ccccn34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2nnc3ccccn23)o1; [None]; [None]; [0] +COc1cc(CCc2nnc3ccccn23)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1ccc2cc(-c3nnc4ccccn34)ccc2c1; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)cc1F; [None]; [None]; [0] +Cn1cc(-c2nnc3ccccn23)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +c1ccn2c(-c3c[nH]c4cnccc34)nnc2c1; [None]; [None]; [0] +Nc1cc(-c2nnc3ccccn23)ccn1; [None]; [None]; [0] +Clc1ccccc1OCc1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ncc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2nnc3ccccn23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc(-c2nnc3ccccn23)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1cc(CCc2nnc3ccccn23)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3cnc4[nH]ccc4c3)nnc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3nnc4ccccn34)nc2c1; [None]; [None]; [0] +Oc1cncc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +O=C1Cc2cc(-c3nnc4ccccn34)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1nnc2ccccn12; [None]; [None]; [0] +CNc1nccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3nnc4ccccn34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2nnc3ccccn23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +FC(F)c1cc(-c2nnc3ccccn23)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1nnc2ccccn12; [None]; [None]; [0] +Clc1cnccc1-c1nnc2ccccn12; [None]; [None]; [0] +CCc1sccc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +CNc1nc(-c2nnc3ccccn23)ncc1F; [None]; [None]; [0] +c1ccn2c(-c3ccc4c(c3)CCN4)nnc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(C)(C)C)nc1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1csc(N)n1; [None]; [None]; [0] +COc1cccc(C(=O)Nn2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +CSc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-n3c(C)ccc(Br)c3=O)cc2)CC1; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)nc(N)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(F)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CCC(=O)N2; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc(Br)cn1; [None]; [None]; [0] +CCc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N2CCC[C@@H]2C)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2cccn2n1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1N1CCOCC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccn2n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)nc1C(F)(F)F; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)CC(C)(C)O2; [None]; [None]; [0] +COc1ccc2cccc(-n3c(C)ccc(Br)c3=O)c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-n2c(C)ccc(Br)c2=O)cc1OC; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cnn(CCO)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(-n3c(C)ccc(Br)c3=O)ncnc12; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(N)nc2[nH]ccc12; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)nc1; [None]; [None]; [0] +COc1cc(-n2c(C)ccc(Br)c2=O)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Cc1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(n2c(C)ccc(Br)c2=O)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(C(=O)Nc2cn[nH]c2)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-n1c(C)ccc(Br)c1=O)cn2C; [None]; [None]; [0] +COc1ccc2oc(-n3c(C)ccc(Br)c3=O)cc2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C[NH+](C)C)cc1; [None]; [None]; [0] +CCn1cc(-n2c(C)ccc(Br)c2=O)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccccc2o1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(Br)cn1C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncc2sccc2n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cn(C)nc1C(C)C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(NC(=O)N2CCCC2)c1; [None]; [None]; [0] +COc1ccc2nc(-n3c(C)ccc(Br)c3=O)[nH]c2c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nn2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc2ccc(C(C)(C)O)cc2[nH]1; [None]; [None]; [0] +CCc1cccc(-n2c(C)ccc(Br)c2=O)n1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cc1cc(-n2c(C)ccc(Br)c2=O)cc(C)c1OCCO; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc2c(c1)c(Cl)nn2C; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(N(C)C)nc1; [None]; [None]; [0] +Cc1n[nH]c2cc(-n3c(C)ccc(Br)c3=O)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-n3c(C)ccc(Br)c3=O)cn2)CC1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cccc(N2CCCC2=O)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(CCO)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1NC(=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cc1Cl; [None]; [None]; [0] +Cc1ncc(-c2ccc(-n3c(C)ccc(Br)c3=O)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)c(OC)c1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(C(C)(C)O)n(C)n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1ccc(C(=O)N(C)C)cn1; [None]; [None]; [0] +Cc1ccc(Br)c(=O)n1-c1cc(S(C)(=O)=O)ccc1Cl; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-n2c(C)ccc(Br)c2=O)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-n2c(C)ccc(Br)c2=O)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-n1c(C)ccc(Br)c1=O; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc(O)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc3ncccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c(Cl)ccc3c2OCO3)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(Cl)c(O)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c(Cl)cccc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Oc2ccc(F)cc2)nc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)c(F)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2Cl)nc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2F)nc1; [None]; [None]; [0] +Nc1nccc(-c2ccc(C(=O)NCC3CC3)cn2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(C(=O)NCC4CC4)cn3)cc2[nH]1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cn[nH]c2Cl)nc1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(-c3ccc(O)cc3O)cc2)nc1; [None]; [None]; [0] +COc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)NCC3CC3)cn2)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)o1; [None]; [None]; [0] +Oc1cc(-c2nnc3ccccn23)nc2ccnn12; [None]; [None]; [0] +Cc1oc(-c2nnc3ccccn23)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccn2c(Nc3ccncc3)nnc2c1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1nnc2ccccn12; [None]; [None]; [0] +Oc1cc(Br)cc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3nnc4ccccn34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)cc(C)c1O; [None]; [None]; [0] +Oc1c(F)cc(-c2nnc3ccccn23)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +CSc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1ccc2c(CCc3nnc4ccccn34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3nnc4ccccn34)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1nnc2ccccn12; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(COc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Fc1ccc(CCc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1nnc2ccccn12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2nc(-c3nnc4ccccn34)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1ncccc1-c1nnc2ccccn12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +c1ccn2c(-c3cnc4cccnn34)nnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3ccc(N4CCOCC4)cc3)nnc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nnc3ccccn23)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3nnc4ccccn34)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nnc4ccccn34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)sn1; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nnc4ccccn34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1cc(-c2nnc3ccccn23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2nnc3ccccn23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2nnc3ccccn23)nc1)N1CCOCC1; [None]; [None]; [0] +c1ccn2c(Nc3ccncn3)nnc2c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3nnc4ccccn34)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2nnc3ccccn23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nnc3ccccn23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nnc3ccccn23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2nnc3ccccn23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3nnc4ccccn34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nnc2ccccn12; [None]; [None]; [0] +Brc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3ccn4nccc4n3)nnc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nnc3ccccn23)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)c[nH]c2c1; [None]; [None]; [0] +COc1cc(OC)c(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +c1ccn2c(-c3ccc4c(c3)CCO4)nnc2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3nnc4ccccn34)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +c1cc2c(c(-c3nnc4ccccn34)c1)OCO2; [None]; [None]; [0] +c1ccn2c(-c3scc4c3OCCO4)nnc2c1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2ncc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nnc3ccccn23)CC1; [None]; [None]; [0] +Nc1nc(-c2nnc3ccccn23)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3nnc4ccccn34)n2)c1; [None]; [None]; [0] +CC1(COc2nnc3ccccn23)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nnc3ccccn23)c1; [None]; [None]; [0] +CSc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nnc4ccccn34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +O=C1CCc2cc(-c3nnc4ccccn34)ccc2N1; [None]; [None]; [0] +Brc1cnc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +CCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COc1ccc(CNc2nnc3ccccn23)cc1; [None]; [None]; [0] +Clc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2nnc3ccccn23)C1; [None]; [None]; [0] +c1ccn2c(-c3ncc4cccn4n3)nnc2c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1N1CCOCC1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cccc(Br)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3ccccc3c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)c(F)c2)nc1; [None]; [None]; [0] +Cn1cc(-c2ccc(C(=O)NCC3CC3)cn2)c2ccccc21; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(O)cc2O)nc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnn3ncccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2c[nH]c3cnccc23)nc1; [None]; [None]; [0] +Nc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(COc2ccccc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(F)c(Cl)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2[nH]cnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)ccc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnc(O)c(Cl)c2)nc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc(C(=O)NCC3CC3)cn2)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc(C(=O)NCC4CC4)cn3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)NCC4CC4)cn3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +COc1cc(CCc2ccc(C(=O)NCC3CC3)cn2)cc(OC)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cnc3[nH]ccc3c2)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2nc3ccccc3s2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cncc(O)c2)nc1; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc(C(=O)NCC4CC4)cn3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +CNc1nccc(-c2ccc(C(=O)NCC3CC3)cn2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc(C(=O)NCC4CC4)cn3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc(C(=O)NCC3CC3)cn2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(C(F)F)n[nH]2)nc1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccncc2Cl)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(Cl)c(O)c(Cl)c2)nc1; [None]; [None]; [0] +CCc1sccc1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +CNc1nc(-c2ccc(C(=O)NCC3CC3)cn2)ncc1F; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3c(c2)CCN3)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)n3nccc3n2)nc1; [None]; [None]; [0] +Cc1oc(-c2ccc(C(=O)NCC3CC3)cn2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3[nH]c(=O)[nH]c3c2)nc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(Br)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Nc2ccncc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2[nH]nc3ccc(F)cc23)nc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc(C(=O)NCC3CC3)cn2)cc1; [None]; [None]; [0] +CN(c1ccc(C(=O)NCC2CC2)cn1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(O)cc(Br)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc(C(=O)NC3CC3)cc2)nc1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)NCC3CC3)cn2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc(C(=O)NCC4CC4)cn3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc(C(=O)NCC3CC3)cn2)cc(C)c1O; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cc(F)c(O)c(F)c2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ccc3c(=O)[nH][nH]c3c2)nc1; [None]; [None]; [0] +CSc1cccc(-c2ccc(C(=O)NCC3CC3)cn2)c1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(CCc2c[nH]c3ccccc23)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(Oc2ccc(F)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2ocnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(OCc2cccc3ccccc23)nc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc(C(=O)NCC2CC2)cn1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(OCc2ccc(F)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(CCc2ccc(F)cc2F)nc1; [None]; [None]; [0] +O=C(NCC1CC1)c1ccc(NCc2c(F)cccc2Cl)nc1; [None]; [None]; [0] +Oc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Clc1ccc2c(c1-c1nnc3ccccn13)OCO2; [None]; [None]; [0] +c1cc(-c2nnc3ccccn23)c2cccnc2c1; [None]; [None]; [0] +Oc1cc(-c2nnc3ccccn23)ccc1Cl; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Clc1cccc(Cl)c1-c1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc(Oc2nnc3ccccn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Nc1nccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Clc1[nH]ncc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(-c2ccc(-c3nnc4ccccn34)cc2)c(O)c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2nnc3ccccn23)o1; [None]; [None]; [0] +COc1cc(CCc2nnc3ccccn23)ccc1O; [None]; [None]; [0] +Brc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)cc1F; [None]; [None]; [0] +c1ccc2cc(-c3nnc4ccccn34)ccc2c1; [None]; [None]; [0] +Cn1cc(-c2nnc3ccccn23)c2ccccc21; [None]; [None]; [0] +Oc1ccc(-c2nnc3ccccn23)c(O)c1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1cnn2ncc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +c1ccn2c(-c3c[nH]c4cnccc34)nnc2c1; [None]; [None]; [0] +Nc1cc(-c2nnc3ccccn23)ccn1; [None]; [None]; [0] +c1ccn2nc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +Cn1cc(-c2nnc3ccccn23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3nnc4ccccn34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2nnc3ccccn23)cc1OC; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +Clc1cnc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1csc2c(-c3nnc4ccccn34)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2nnc3ccccn23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)nn1C; [None]; [None]; [0] +Nc1cc(-c2nnc3ccccn23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nnc3ccccn23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nnc3ccccn23)cc1; [None]; [None]; [0] +O=C(Nc1nnc2ccccn12)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nnc3ccccn23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2nnc3ccccn23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nnc3ccccn13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +c1ccn2c(-c3ccc4cn[nH]c4c3)nnc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nnc3ccccn23)cc1; [None]; [None]; [0] +CCn1cc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3nnc4ccccn34)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccn2c(-c3ncc4sccc4n3)nnc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nnc2ccccn12; [None]; [None]; [0] +O=C(Nc1cccc(-c2nnc3ccccn23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nnc3ccccn23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +c1ccn2c(-c3ncn4c3CCCC4)nnc2c1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3nnc4ccccn34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nnc4ccccn34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nnc4ccccn34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +OCCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +O=C(Nc1nnc2ccccn12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nnc4ccccn34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nnc3ccccn23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2nnc3ccccn23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)ncc1F; [None]; [None]; [0] +c1ccc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nnc2ccccn12; [None]; [None]; [0] +O=C(NCc1cccc(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cccc2ncccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1c(Cl)ccc2c1OCO2)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(Cl)c(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1n[nH]c2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1c(Cl)cccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccc[nH]2)c(F)c1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1Cl)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1F)c1ccc[nH]1; [None]; [None]; [0] +Nc1nccc(CNC(=O)c2ccc[nH]2)n1; [None]; [None]; [0] +COc1ccc(F)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +Cc1nc2c(F)cc(CNC(=O)c3ccc[nH]3)cc2[nH]1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1Cl)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(-c2ccc(O)cc2O)cc1)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccc[nH]2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(CNC(=O)c2ccc[nH]2)o1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccc[nH]2)ccc1O; [None]; [None]; [0] +O=C(NCc1cccc(Br)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc2ccccc2c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(O)c(F)c1)c1ccc[nH]1; [None]; [None]; [0] +Cn1cc(CNC(=O)c2ccc[nH]2)c2ccccc21; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1O)c1ccc[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +O=C(NCc1cnn2ncccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1c[nH]c2cnccc12)c1ccc[nH]1; [None]; [None]; [0] +Nc1cc(CNC(=O)c2ccc[nH]2)ccn1; [None]; [None]; [0] +O=C(NCCOc1ccccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(F)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1[nH]cnc1-c1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(O)ccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cnc(O)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +NC(=O)c1cc(CNC(=O)c2ccc[nH]2)c[nH]1; [None]; [None]; [0] +Clc1ccccc1OCc1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1ncc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +NC(=O)c1cc(-c2nnc3ccccn23)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc(-c2nnc3ccccn23)cc1OC; [None]; [None]; [0] +Cc1nc2ccc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +CCOc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1cc(CCc2nnc3ccccn23)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3cnc4[nH]ccc4c3)nnc2c1; [None]; [None]; [0] +c1ccc2sc(-c3nnc4ccccn34)nc2c1; [None]; [None]; [0] +O=C1Cc2cc(-c3nnc4ccccn34)ccc2N1; [None]; [None]; [0] +Oc1cncc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1nnc2ccccn12; [None]; [None]; [0] +CNc1nccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3nnc4ccccn34)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2nnc3ccccn23)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +FC(F)c1cc(-c2nnc3ccccn23)[nH]n1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1nnc2ccccn12; [None]; [None]; [0] +Clc1cnccc1-c1nnc2ccccn12; [None]; [None]; [0] +CCc1sccc1-c1nnc2ccccn12; [None]; [None]; [0] +Oc1c(Cl)cc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +c1ccn2c(-c3ccc4c(c3)CCN4)nnc2c1; [None]; [None]; [0] +Cc1oc(-c2nnc3ccccn23)cc1C(=O)[O-]; [None]; [None]; [0] +Oc1cc(-c2nnc3ccccn23)nc2ccnn12; [None]; [None]; [0] +CNc1nc(-c2nnc3ccccn23)ncc1F; [None]; [None]; [0] +O=c1[nH]c2ccc(-c3nnc4ccccn34)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccn2c(Nc3ccncc3)nnc2c1; [None]; [None]; [0] +Fc1cc(Br)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Fc1ccc2n[nH]c(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)c1nnc2ccccn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Oc1cc(Br)cc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3nnc4ccccn34)cc2o1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)cc(C)c1O; [None]; [None]; [0] +CSc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Oc1c(F)cc(-c2nnc3ccccn23)cc1F; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +c1ccc2c(CCc3nnc4ccccn34)c[nH]c2c1; [None]; [None]; [0] +c1ccc2c(COc3nnc4ccccn34)cccc2c1; [None]; [None]; [0] +Fc1ccc(-c2ncoc2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(Oc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1nnc2ccccn12; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(CCc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Fc1ccc(COc2nnc3ccccn23)c(F)c1; [None]; [None]; [0] +Fc1cccc(Cl)c1CNc1nnc2ccccn12; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CCOc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2nc(-c3nnc4ccccn34)ncc2c1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1ncccc1-c1nnc2ccccn12; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)cc(OC)c1OC; [None]; [None]; [0] +c1ccn2c(-c3cnc4cccnn34)nnc2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3ccc(N4CCOCC4)cc3)nnc2c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2nnc3ccccn23)c1)C1CC1; [None]; [None]; [0] +c1ccc2[nH]c(-c3nnc4ccccn34)nc2c1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3nnc4ccccn34)cc2)CC1; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)sn1; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)nccc2c1; [None]; [None]; [0] +c1cnc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3nnc4ccccn34)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +OCCOc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1cc(-c2nnc3ccccn23)cc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-c2nnc3ccccn23)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-c2nnc3ccccn23)nc1)N1CCOCC1; [None]; [None]; [0] +c1ccn2c(Nc3ccncn3)nnc2c1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +O=S1(=O)Cc2ccc(-c3nnc4ccccn34)cc2C1; [None]; [None]; [0] +FC(F)(F)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Cc1nc(C)c(-c2nnc3ccccn23)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2nnc3ccccn23)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](c2nnc3ccccn23)C1; [None]; [None]; [0] +CC(C)c1cc(-c2nnc3ccccn23)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3nnc4ccccn34)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1nnc2ccccn12; [None]; [None]; [0] +Brc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccc[nH]2)cc(OC)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CNC(=O)c3ccc[nH]3)ccc12; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccc[nH]2)cc1OC; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccc[nH]3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccc[nH]2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1cnc2[nH]ccc2c1)c1ccc[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1cncc(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2s1)c1ccc[nH]1; [None]; [None]; [0] +O=C1Cc2cc(CNC(=O)c3ccc[nH]3)ccc2N1; [None]; [None]; [0] +C[C@@H](CNC(=O)c1ccc[nH]1)CC(N)=O; [None]; [None]; [0] +CNc1nccc(CNC(=O)c2ccc[nH]2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)CNC(=O)c3ccc[nH]3)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +Cc1n[nH]c(CNC(=O)c2ccc[nH]2)c1C; [None]; [None]; [0] +O=C(NCc1cc(C(F)F)n[nH]1)c1ccc[nH]1; [None]; [None]; [0] +CN(CNC(=O)c1ccc[nH]1)c1cccc(Cl)c1; [None]; [None]; [0] +O=C(NCc1ccncc1Cl)c1ccc[nH]1; [None]; [None]; [0] +CCc1sccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(Cl)c(O)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +CNc1nc(CNC(=O)c2ccc[nH]2)ncc1F; [None]; [None]; [0] +O=C(NCc1ccc2c(c1)CCN2)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(O)n2nccc2n1)c1ccc[nH]1; [None]; [None]; [0] +Cc1oc(CNC(=O)c2ccc[nH]2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NCc1ccc2[nH]c(=O)[nH]c2c1)c1ccc[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCNc1ccncc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(Br)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1[nH]nc2ccc(F)cc12)c1ccc[nH]1; [None]; [None]; [0] +CN(CNC(=O)c1ccc[nH]1)c1cccc2[nH]ncc12; [None]; [None]; [0] +CNC(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1cc(O)cc(Br)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccc[nH]2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccc[nH]3)cc2o1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccc[nH]2)cc(C)c1O; [None]; [None]; [0] +O=C(NCc1cc(F)c(O)c(F)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc2c(=O)[nH][nH]c2c1)c1ccc[nH]1; [None]; [None]; [0] +CSc1cccc(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +O=C(NCCCc1c[nH]c2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOCc1cccc2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ocnc1-c1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1-c1ccc(Cl)cc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCCCc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOCc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCNCc1c(F)cccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)sn1; [None]; [None]; [0] +O=C(NCNc1ccncn1)c1ccc[nH]1; [None]; [None]; [0] +CC1(COCNC(=O)c2ccc[nH]2)COC1; [None]; [None]; [0] +COc1ccc(CNCNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCNC1CN(C(=O)C2CC2)C1)c1ccc[nH]1; [None]; [None]; [0] +Cc1nc(NCNC(=O)c2ccc[nH]2)sc1C; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)nn1C; [None]; [None]; [0] +O=C(NCNC(=O)c1ccco1)c1ccc[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)NCNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCNc1ccc(F)cn1)c1ccc[nH]1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)ncc1F; [None]; [None]; [0] +O=C(NCNc1ccccn1)c1ccc[nH]1; [None]; [None]; [0] +Nc1c(-c2cccc(O)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2cccc3ncccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2c(Cl)ccc3c2OCO3)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(Cl)c(O)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2n[nH]c3ccccc23)cnn1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +Nc1c(-c2c(Cl)cccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(Oc2ccc(F)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)c(F)c1; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1nccc(-c2cnn(-c3ccccc3)c2N)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn(-c4ccccc4)c3N)cc2[nH]1; [None]; [None]; [0] +Nc1c(-c2cn[nH]c2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccc(-c3ccc(O)cc3O)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2N)ccc1O; [None]; [None]; [0] +Nc1c(-c2ccc(C(=O)[O-])cc2)cnn1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)o1; [None]; [None]; [0] +COc1cc(CCc2cnn(-c3ccccc3)c2N)ccc1O; [None]; [None]; [0] +Nc1c(-c2cccc(Br)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc3ccccc3c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(O)c(F)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Cn1cc(-c2cnn(-c3ccccc3)c2N)c2ccccc21; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2O)cnn1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnn(-c3ccccc3)c2N)c1; [None]; [None]; [0] +Nc1c(-c2cnn3ncccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2c[nH]c3cnccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1cc(-c2cnn(-c3ccccc3)c2N)ccn1; [None]; [None]; [0] +Nc1c(COc2ccccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(F)c(Cl)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2[nH]cnc2-c2ccc(F)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cc(O)ccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cnc(O)c(Cl)c2)cnn1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnn(-c3ccccc3)c2N)c[nH]1; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccn2c(-c3ccn4nccc4n3)nnc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nnc3ccccn23)c(C)c1; [None]; [None]; [0] +c1ccc(-n2cccn2)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1ccc2c(-c3nnc4ccccn34)c[nH]c2c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(OC)c(-c2nnc3ccccn23)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +c1ccn2c(-c3ccc4c(c3)CCO4)nnc2c1; [None]; [None]; [0] +c1ccc(-c2cc(-c3nnc4ccccn34)n[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccn2c(-c3scc4c3OCCO4)nnc2c1; [None]; [None]; [0] +c1cc2c(c(-c3nnc4ccccn34)c1)OCO2; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2ncc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2nnc3ccccn23)CC1; [None]; [None]; [0] +Nc1nc(-c2nnc3ccccn23)cs1; [None]; [None]; [0] +Clc1cccc(-n2ccc(-c3nnc4ccccn34)n2)c1; [None]; [None]; [0] +CC1(COc2nnc3ccccn23)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2nnc3ccccn23)c1; [None]; [None]; [0] +CSc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +c1ccc2sc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3nnc4ccccn34)cc2)CC1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)nc(N)n1; [None]; [None]; [0] +Fc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +Brc1cnc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +O=C1CCc2cc(-c3nnc4ccccn34)ccc2N1; [None]; [None]; [0] +CCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COc1ccc(CNc2nnc3ccccn23)cc1; [None]; [None]; [0] +Clc1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +O=C(C1CC1)N1CC(Nc2nnc3ccccn23)C1; [None]; [None]; [0] +c1ccn2c(-c3ncc4cccn4n3)nnc2c1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1N1CCOCC1; [None]; [None]; [0] +c1ccn2nc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +Cn1cc(-c2nnc3ccccn23)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3nnc4ccccn34)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +Oc1ccc2cccc(-c3nnc4ccccn34)c2c1; [None]; [None]; [0] +COc1cc(F)c(-c2nnc3ccccn23)cc1OC; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)ccc1Cl; [None]; [None]; [0] +OCCn1cc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +Clc1cnc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1csc2c(-c3nnc4ccccn34)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2nnc3ccccn23)sc1C; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)nn1C; [None]; [None]; [0] +Nc1cc(-c2nnc3ccccn23)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +COc1cc(-c2nnc3ccccn23)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +NC(=O)c1ccc(Cc2nnc3ccccn23)cc1; [None]; [None]; [0] +O=S(=O)(CCO)c1ccc(Cc2nnc3ccccn23)cc1; [None]; [None]; [0] +O=C(Nc1nnc2ccccn12)c1ccco1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2nnc3ccccn23)CC1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2nnc3ccccn23)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1nnc3ccccn13)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +c1ccn2c(-c3ccc4cn[nH]c4c3)nnc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2nnc3ccccn23)cc1; [None]; [None]; [0] +CCn1cc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +c1cncc(-c2ccnc(-c3nnc4ccccn34)c2)c1; [None]; [None]; [0] +c1ccc2oc(-c3nnc4ccccn34)cc2c1; [None]; [None]; [0] +Cn1cc(Br)cc1-c1nnc2ccccn12; [None]; [None]; [0] +c1ccn2c(-c3ncc4sccc4n3)nnc2c1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1nnc2ccccn12; [None]; [None]; [0] +O=C(Nc1cccc(-c2nnc3ccccn23)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2nnc3ccccn23)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3nnc4ccccn34)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2nnc3ccccn23)n1; [None]; [None]; [0] +c1ccn2c(-c3ncn4c3CCCC4)nnc2c1; [None]; [None]; [0] +Cc1cc(-c2nnc3ccccn23)cc(C)c1OCCO; [None]; [None]; [0] +Cn1ncc2cc(-c3nnc4ccccn34)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3nnc4ccccn34)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2nnc3ccccn23)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3nnc4ccccn34)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3nnc4ccccn34)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-c2nnc3ccccn23)c1; [None]; [None]; [0] +OCCc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +O=C(Nc1nnc2ccccn12)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3nnc4ccccn34)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1nnc2ccccn12; [None]; [None]; [0] +CNC(=O)c1ccc(-c2nnc3ccccn23)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2nnc3ccccn23)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2nnc3ccccn23)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2nnc3ccccn23)cc1; [None]; [None]; [0] +Fc1ccc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +Cc1cc(Nc2nnc3ccccn23)ncc1F; [None]; [None]; [0] +c1ccc(Nc2nnc3ccccn23)nc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2nnc3ccccn23)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1nnc2ccccn12; [None]; [None]; [0] +O=C(NCc1cccc(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cccc2ncccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1c(Cl)ccc2c1OCO2)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(Cl)c(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1n[nH]c2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1c(Cl)cccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(CNC(=O)c2ccc[nH]2)c(F)c1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1Cl)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1F)c1ccc[nH]1; [None]; [None]; [0] +Nc1nccc(CNC(=O)c2ccc[nH]2)n1; [None]; [None]; [0] +COc1ccc(F)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +Cc1nc2c(F)cc(CNC(=O)c3ccc[nH]3)cc2[nH]1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1Cl)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(-c2ccc(O)cc2O)cc1)c1ccc[nH]1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccc[nH]2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(CNC(=O)c2ccc[nH]2)o1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccc[nH]2)ccc1O; [None]; [None]; [0] +O=C(NCc1cccc(Br)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc2ccccc2c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(O)c(F)c1)c1ccc[nH]1; [None]; [None]; [0] +Cn1cc(CNC(=O)c2ccc[nH]2)c2ccccc21; [None]; [None]; [0] +O=C(NCc1ccc(O)cc1O)c1ccc[nH]1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +O=C(NCc1cnn2ncccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1c[nH]c2cnccc12)c1ccc[nH]1; [None]; [None]; [0] +Nc1cc(CNC(=O)c2ccc[nH]2)ccn1; [None]; [None]; [0] +O=C(NCCOc1ccccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(F)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1[nH]cnc1-c1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(O)ccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +Cc1ccc(CO)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cnc(O)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +NC(=O)c1cc(CNC(=O)c2ccc[nH]2)c[nH]1; [None]; [None]; [0] +COc1cc(CNC(=O)c2ccc[nH]2)cc(OC)c1; [None]; [None]; [0] +COc1ccc(CNC(=O)c2ccc[nH]2)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(CNC(=O)c3ccc[nH]3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccc[nH]3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +COc1cc(CCCNC(=O)c2ccc[nH]2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1cnc2[nH]ccc2c1)c1ccc[nH]1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCc1nc2ccccc2s1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cncc(O)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C1Cc2cc(CNC(=O)c3ccc[nH]3)ccc2N1; [None]; [None]; [0] +C[C@@H](CNC(=O)c1ccc[nH]1)CC(N)=O; [None]; [None]; [0] +CNc1nccc(CNC(=O)c2ccc[nH]2)n1; [None]; [None]; [0] +CCc1cc(O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)CNC(=O)c3ccc[nH]3)ccc12; [None]; [None]; [0] +Cc1n[nH]c(CNC(=O)c2ccc[nH]2)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(C(F)F)n[nH]1)c1ccc[nH]1; [None]; [None]; [0] +CN(CNC(=O)c1ccc[nH]1)c1cccc(Cl)c1; [None]; [None]; [0] +O=C(NCc1ccncc1Cl)c1ccc[nH]1; [None]; [None]; [0] +CCc1sccc1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(Cl)c(O)c(Cl)c1)c1ccc[nH]1; [None]; [None]; [0] +CNc1nc(CNC(=O)c2ccc[nH]2)ncc1F; [None]; [None]; [0] +O=C(NCc1ccc2c(c1)CCN2)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cc(O)n2nccc2n1)c1ccc[nH]1; [None]; [None]; [0] +Cc1oc(CNC(=O)c2ccc[nH]2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C(NCc1ccc2[nH]c(=O)[nH]c2c1)c1ccc[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCNc1ccncc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc(Br)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1[nH]nc2ccc(F)cc12)c1ccc[nH]1; [None]; [None]; [0] +CNC(=O)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +CN(CNC(=O)c1ccc[nH]1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NCc1cc(O)cc(Br)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(CNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccc[nH]2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(CNC(=O)c3ccc[nH]3)cc2o1; [None]; [None]; [0] +Cc1cc(CNC(=O)c2ccc[nH]2)cc(C)c1O; [None]; [None]; [0] +O=C(NCc1cc(F)c(O)c(F)c1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ccc2c(=O)[nH][nH]c2c1)c1ccc[nH]1; [None]; [None]; [0] +CSc1cccc(CNC(=O)c2ccc[nH]2)c1; [None]; [None]; [0] +O=C(NCCCc1c[nH]c2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOCc1cccc2ccccc12)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1ocnc1-c1ccc(F)cc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1CNC(=O)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCc1cn[nH]c1-c1ccc(Cl)cc1)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCOCc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCCCc1ccc(F)cc1F)c1ccc[nH]1; [None]; [None]; [0] +O=C(NCNCc1c(F)cccc1Cl)c1ccc[nH]1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)sn1; [None]; [None]; [0] +O=C(NCNc1ccncn1)c1ccc[nH]1; [None]; [None]; [0] +CC1(COCNC(=O)c2ccc[nH]2)COC1; [None]; [None]; [0] +COc1ccc(CNCNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCNC1CN(C(=O)C2CC2)C1)c1ccc[nH]1; [None]; [None]; [0] +Cc1nc(NCNC(=O)c2ccc[nH]2)sc1C; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)nn1C; [None]; [None]; [0] +O=C(NCNC(=O)c1ccco1)c1ccc[nH]1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)NCNC(=O)c2ccc[nH]2)cc1; [None]; [None]; [0] +O=C(NCNc1ccc(F)cn1)c1ccc[nH]1; [None]; [None]; [0] +Cc1cc(NCNC(=O)c2ccc[nH]2)ncc1F; [None]; [None]; [0] +O=C(NCNc1ccccn1)c1ccc[nH]1; [None]; [None]; [0] +Nc1c(-c2cccc(O)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2cccc3ncccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2c(Cl)ccc3c2OCO3)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(Cl)c(O)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2n[nH]c3ccccc23)cnn1-c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +Nc1c(-c2c(Cl)cccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(Oc2ccc(F)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)c(F)c1; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1nccc(-c2cnn(-c3ccccc3)c2N)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn(-c4ccccc4)c3N)cc2[nH]1; [None]; [None]; [0] +Nc1c(-c2cn[nH]c2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(F)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccc(-c3ccc(O)cc3O)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +COc1cc(-c2cnn(-c3ccccc3)c2N)ccc1O; [None]; [None]; [0] +Nc1c(-c2ccc(C(=O)[O-])cc2)cnn1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)o1; [None]; [None]; [0] +COc1cc(CCc2cnn(-c3ccccc3)c2N)ccc1O; [None]; [None]; [0] +Nc1c(-c2cccc(Br)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc3ccccc3c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(O)c(F)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Cn1cc(-c2cnn(-c3ccccc3)c2N)c2ccccc21; [None]; [None]; [0] +Nc1c(-c2ccc(O)cc2O)cnn1-c1ccccc1; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2cnn(-c3ccccc3)c2N)c1; [None]; [None]; [0] +Nc1c(-c2cnn3ncccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2c[nH]c3cnccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1cc(-c2cnn(-c3ccccc3)c2N)ccn1; [None]; [None]; [0] +Nc1c(COc2ccccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(F)c(Cl)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2[nH]cnc2-c2ccc(F)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cc(O)ccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cnc(O)c(Cl)c2)cnn1-c1ccccc1; [None]; [None]; [0] +NC(=O)c1cc(-c2cnn(-c3ccccc3)c2N)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2cnn(-c3ccccc3)c2N)c1; [None]; [None]; [0] +COc1ccc(-c2cnn(-c3ccccc3)c2N)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3cnn(-c4ccccc4)c3N)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn(-c4ccccc4)c3N)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2cnn(-c3ccccc3)c2N)c1; [None]; [None]; [0] +COc1cc(CCc2cnn(-c3ccccc3)c2N)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +Nc1c(-c2cnc3[nH]ccc3c2)cnn1-c1ccccc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +Nc1c(-c2nc3ccccc3s2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2cncc(O)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc3c(c2)CC(=O)N3)cnn1-c1ccccc1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +CNc1nccc(-c2cnn(-c3ccccc3)c2N)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3cnn(-c4ccccc4)c3N)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Cc1n[nH]c(-c2cnn(-c3ccccc3)c2N)c1C; [None]; [None]; [0] +Nc1c(-c2cc(C(F)F)n[nH]2)cnn1-c1ccccc1; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccncc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +CCc1sccc1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cc(Cl)c(O)c(Cl)c2)cnn1-c1ccccc1; [None]; [None]; [0] +CNc1nc(-c2cnn(-c3ccccc3)c2N)ncc1F; [None]; [None]; [0] +Nc1c(-c2ccc3c(c2)CCN3)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2cc(O)n3nccc3n2)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1oc(-c2cnn(-c3ccccc3)c2N)cc1C(=O)[O-]; [None]; [None]; [0] +Nc1c(-c2ccc3[nH]c(=O)[nH]c3c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(Nc2ccncc2)cnn1-c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2ccc(Br)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2[nH]nc3ccc(F)cc23)cnn1-c1ccccc1; [None]; [None]; [0] +CNC(=O)c1ccc(-c2cnn(-c3ccccc3)c2N)cc1; [None]; [None]; [0] +CN(c1cnn(-c2ccccc2)c1N)c1cccc2[nH]ncc12; [None]; [None]; [0] +Nc1c(-c2cc(O)cc(Br)c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ccc(C(=O)NC3CC3)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1nc2ccc(-c3cnn(-c4ccccc4)c3N)cc2o1; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2N)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(-c2cnn(-c3ccccc3)c2N)cc(C)c1O; [None]; [None]; [0] +Nc1c(-c2cc(F)c(O)c(F)c2)cnn1-c1ccccc1; [None]; [None]; [0] +CSc1cccc(-c2cnn(-c3ccccc3)c2N)c1; [None]; [None]; [0] +Nc1c(-c2ccc3c(=O)[nH][nH]c3c2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(CCc2c[nH]c3ccccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(OCc2cccc3ccccc23)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(-c2ocnc2-c2ccc(F)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(Oc2ccc(F)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1cnn(-c2ccccc2)c1N; [None]; [None]; [0] +Nc1c(-c2cn[nH]c2-c2ccc(Cl)cc2)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(OCc2ccc(F)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(CCc2ccc(F)cc2F)cnn1-c1ccccc1; [None]; [None]; [0] +Nc1c(NCc2c(F)cccc2Cl)cnn1-c1ccccc1; [None]; [None]; [0] +O=C1Nc2cc(-c3cccc(O)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3cccc4ncccc34)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3c(Cl)ccc4c3OCO4)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(Cl)c(O)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3n[nH]c4ccccc34)ccc2C12CCCC2; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +O=C1Nc2cc(-c3c(Cl)cccc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(Oc3ccc(F)cc3)ccc2C12CCCC2; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(O)cc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(O)cc3F)ccc2C12CCCC2; [None]; [None]; [0] +Nc1nccc(-c2ccc3c(c2)NC(=O)C32CCCC2)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4c(c3)NC(=O)C43CCCC3)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3cn[nH]c3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)ccc2C12CCCC2; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)NC(=O)C32CCCC2)ccc1O; [None]; [None]; [0] +O=C1Nc2cc(-c3cccc(Br)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc4ccccc4c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(O)c(F)c3)ccc2C12CCCC2; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)c2ccccc21; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(O)cc3O)ccc2C12CCCC2; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3c(c2)NC(=O)C32CCCC2)c1; [None]; [None]; [0] +O=C1Nc2cc(-c3cnn4ncccc34)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3c[nH]c4cnccc34)ccc2C12CCCC2; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)ccn1; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(F)c(Cl)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(COc3ccccc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3[nH]cnc3-c3ccc(F)cc3)ccc2C12CCCC2; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(O)ccc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3cnc(O)c(Cl)c3)ccc2C12CCCC2; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1OC; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3c(c2)NC(=O)C32CCCC2)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4c(c3)NC(=O)C43CCCC3)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)NC(=O)C43CCCC3)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3c(c2)NC(=O)C32CCCC2)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)NC(=O)C32CCCC2)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +O=C1Nc2cc(-c3cnc4[nH]ccc4c3)ccc2C12CCCC2; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +O=C1Nc2cc(-c3nc4ccccc4s3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3cncc(O)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4c(c3)NC(=O)C43CCCC3)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +CNc1nccc(-c2ccc3c(c2)NC(=O)C32CCCC2)n1; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4c(c3)NC(=O)C43CCCC3)ccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(C(F)F)n[nH]3)ccc2C12CCCC2; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3c(c2)NC(=O)C32CCCC2)c1C; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3ccncc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(Cl)c(O)c(Cl)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc4c(c3)CCN4)ccc2C12CCCC2; [None]; [None]; [0] +CNc1nc(-c2ccc3c(c2)NC(=O)C32CCCC2)ncc1F; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(O)n4nccc4n3)ccc2C12CCCC2; [None]; [None]; [0] +Cc1oc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1C(=O)[O-]; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc4[nH]c(=O)[nH]c4c3)ccc2C12CCCC2; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(Nc3ccncc3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc(Br)cc3F)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3[nH]nc4ccc(F)cc34)ccc2C12CCCC2; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(O)cc(Br)c3)ccc2C12CCCC2; [None]; [None]; [0] +CN(c1ccc2c(c1)NC(=O)C21CCCC1)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)NC(=O)C43CCCC3)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)NC(=O)C32CCCC2)cc(C)c1O; [None]; [None]; [0] +O=C1Nc2cc(-c3cc(F)c(O)c(F)c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ccc4c(=O)[nH][nH]c4c3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(CCc3c[nH]c4ccccc34)ccc2C12CCCC2; [None]; [None]; [0] +CSc1cccc(-c2ccc3c(c2)NC(=O)C32CCCC2)c1; [None]; [None]; [0] +O=C1Nc2cc(OCc3cccc4ccccc34)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(-c3ocnc3-c3ccc(F)cc3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(Oc3ccc(F)cc3F)ccc2C12CCCC2; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2c(c1)NC(=O)C21CCCC1; [None]; [None]; [0] +O=C1Nc2cc(-c3cn[nH]c3-c3ccc(Cl)cc3)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(OCc3ccc(F)cc3F)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(NCc3c(F)cccc3Cl)ccc2C12CCCC2; [None]; [None]; [0] +O=C1Nc2cc(CCc3ccc(F)cc3F)ccc2C12CCCC2; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc(O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc2ncccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(Cl)c(O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1n[nH]c2ccccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1Oc1ccc(F)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +NC(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(O)cc1Cl; [None]; [None]; [0] +NC(=O)c1ccc(-n2cncc(Cl)c2=O)c(F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(O)cc1F; [None]; [None]; [0] +Nc1nccc(-n2cncc(Cl)c2=O)n1; [None]; [None]; [0] +COc1ccc(F)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +Cc1nc2c(F)cc(-n3cncc(Cl)c3=O)cc2[nH]1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cn[nH]c1Cl; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +COc1cc(F)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +COc1cc(-n2cncc(Cl)c2=O)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-n2cncc(Cl)c2=O)o1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc(Br)c1; [None]; [None]; [0] +COc1cc(CCn2cncc(Cl)c2=O)ccc1O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc2ccccc2c1; [None]; [None]; [0] +Cn1cc(-n2cncc(Cl)c2=O)c2ccccc21; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(O)c(F)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnn2ncccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1c[nH]c2cnccc12; [None]; [None]; [0] +Nc1cc(-n2cncc(Cl)c2=O)ccn1; [None]; [None]; [0] +O=c1c(Cl)cncn1COc1ccccc1Cl; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(F)c(Cl)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(CO)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +NC(=O)c1cc(-n2cncc(Cl)c2=O)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +COc1ccc(-n2cncc(Cl)c2=O)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-n3cncc(Cl)c3=O)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-n3cncc(Cl)c3=O)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +COc1cc(CCn2cncc(Cl)c2=O)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1nc2ccccc2s1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cncc(O)c1; [None]; [None]; [0] +O=C1Cc2cc(-n3cncc(Cl)c3=O)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)n1cncc(Cl)c1=O; [None]; [None]; [0] +CNc1nccc(-n2cncc(Cl)c2=O)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)n3cncc(Cl)c3=O)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-n2cncc(Cl)c2=O)c1C; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +Cc1cc(O)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +CN(c1cccc(Cl)c1)n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccncc1Cl; [None]; [None]; [0] +CCc1sccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(-n2cncc(Cl)c2=O)ncc1F; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +Cc1oc(-n2cncc(Cl)c2=O)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2ccc(-n3cncc(Cl)c3=O)cc2[nH]1; [None]; [None]; [0] +O=c1c(Cl)cncn1Nc1ccncc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(Br)cc1F; [None]; [None]; [0] +Cn1ncc(N)c1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +CNC(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CN(c1cccc2[nH]ncc12)n1cncc(Cl)c1=O; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(O)cc(Br)c1; [None]; [None]; [0] +Cc1cc(-n2cncc(Cl)c2=O)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(-n3cncc(Cl)c3=O)cc2o1; [None]; [None]; [0] +Cc1cc(-n2cncc(Cl)c2=O)cc(C)c1O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(F)c(O)c(F)c1; [None]; [None]; [0] +O=c1[nH][nH]c2cc(-n3cncc(Cl)c3=O)ccc12; [None]; [None]; [0] +CSc1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1OCc1cccc2ccccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1CCc1c[nH]c2ccccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1Oc1ccc(F)cc1F; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1OCc1ccc(F)cc1F; [None]; [None]; [0] +O=c1c(Cl)cncn1CCc1ccc(F)cc1F; [None]; [None]; [0] +O=c1c(Cl)cncn1NCc1c(F)cccc1Cl; [None]; [None]; [0] +COc1ncccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +CCOc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncc2ccccc2n1; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +COc1cc(-n2cncc(Cl)c2=O)cc(OC)c1OC; [None]; [None]; [0] +Cc1ccc2ncn(-n3cncc(Cl)c3=O)c2c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnc2cccnn12; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-n2cncc(Cl)c2=O)c1)C1CC1; [None]; [None]; [0] +N#Cc1ccc(O)c(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +COc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1nc2ccccc2[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-n3cncc(Cl)c3=O)cc2)CC1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1nccc2ccccc12; [None]; [None]; [0] +O=c1c(Cl)cncn1Nc1ncccn1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-n3cncc(Cl)c3=O)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(OCCO)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(-n2cncc(Cl)c2=O)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(-n2cncc(Cl)c2=O)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@H](O)COc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CN(C)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +Cc1nc(C)c(-n2cncc(Cl)c2=O)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(n2cncc(Cl)c2=O)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](n2cncc(Cl)c2=O)C1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CC(C)c1cc(-n2cncc(Cl)c2=O)nc(N)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-n3cncc(Cl)c3=O)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(-n2cncc(Cl)c2=O)nc1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(Br)cc1; [None]; [None]; [0] +CN(C)c1ccc(-n2cncc(Cl)c2=O)cc1Cl; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-n2cncc(Cl)c2=O)c(C)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccn2nccc2n1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(-n2cncc(Cl)c2=O)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(-n3cncc(Cl)c3=O)[nH]c2c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc2c(c1)CCO2; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc2c1OCO2; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1scc2c1OCCO2; [None]; [None]; [0] +CC(C)(C)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnc2ccccc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(-n2cncc(Cl)c2=O)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](n2cncc(Cl)c2=O)CC1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1nc(-n2cncc(Cl)c2=O)cs1; [None]; [None]; [0] +COc1cccc(C(=O)Nn2cncc(Cl)c2=O)c1; [None]; [None]; [0] +CSc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-n3cncc(Cl)c3=O)cc2)CC1; [None]; [None]; [0] +Cc1cc(-n2cncc(Cl)c2=O)nc(N)n1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(F)cc1Cl; [None]; [None]; [0] +O=C1CCc2cc(-n3cncc(Cl)c3=O)ccc2N1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncc(Br)cn1; [None]; [None]; [0] +CCc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(Cl)cc1Cl; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncc2cccn2n1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc2ccccn2n1; [None]; [None]; [0] +COc1cc(-n2cncc(Cl)c2=O)ccc1N1CCOCC1; [None]; [None]; [0] +Cn1cc(-n2cncc(Cl)c2=O)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-n3cncc(Cl)c3=O)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(-n3cncc(Cl)c3=O)c2c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(-n2cncc(Cl)c2=O)cc1OC; [None]; [None]; [0] +COc1cc(-n2cncc(Cl)c2=O)ccc1Cl; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cnn(CCO)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(-n3cncc(Cl)c3=O)ncnc12; [None]; [None]; [0] +Nc1cc(-n2cncc(Cl)c2=O)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2cncc(Cl)c2=O)nc1; [None]; [None]; [0] +COc1cc(-n2cncc(Cl)c2=O)c(OC)cc1Br; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +NC(=O)c1ccc(Cn2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](n2cncc(Cl)c2=O)CC1; [None]; [None]; [0] +O=c1c(Cl)cncn1Cc1ccc(S(=O)(=O)CCO)cc1; [None]; [None]; [0] +CCNC(=O)N1CCC(n2cncc(Cl)c2=O)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-n1cncc(Cl)c1=O)cn2C; [None]; [None]; [0] +COc1ccc2oc(-n3cncc(Cl)c3=O)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc2cn[nH]c2c1; [None]; [None]; [0] +CCn1cc(-n2cncc(Cl)c2=O)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1cc2ccccc2o1; [None]; [None]; [0] +Cn1cc(Br)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncc2sccc2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=C(Nc1cccc(-n2cncc(Cl)c2=O)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(-n3cncc(Cl)c3=O)[nH]c2c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-n3cncc(Cl)c3=O)[nH]c2c1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nn2cncc(Cl)c2=O)c1; [None]; [None]; [0] +CCc1cccc(-n2cncc(Cl)c2=O)n1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ncn2c1CCCC2; [None]; [None]; [0] +Cn1ncc2cc(-n3cncc(Cl)c3=O)ccc21; [None]; [None]; [0] +Cc1cc(-n2cncc(Cl)c2=O)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-n3cncc(Cl)c3=O)ccc21; [None]; [None]; [0] +Cc1n[nH]c2cc(-n3cncc(Cl)c3=O)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-n3cncc(Cl)c3=O)cn2)CC1; [None]; [None]; [0] +CN(C)c1ccc(-n2cncc(Cl)c2=O)cn1; [None]; [None]; [0] +O=C1CCCN1c1cccc(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +O=c1c(Cl)cncn1-c1ccc(CCO)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-n2cncc(Cl)c2=O)c(Cl)c1; [None]; [None]; [0] +O=C(Nn1cncc(Cl)c1=O)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-n3cncc(Cl)c3=O)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +CNC(=O)c1ccc(-n2cncc(Cl)c2=O)c(OC)c1; [None]; [None]; [0] +Cn1nc(-n2cncc(Cl)c2=O)cc1C(C)(C)O; [None]; [None]; [0] +CCNC(=O)c1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-n2cncc(Cl)c2=O)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-n2cncc(Cl)c2=O)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-n2cncc(Cl)c2=O)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-n1cncc(Cl)c1=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cccc(O)c3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cccc4ncccc34)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3c(Cl)ccc4c3OCO4)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(Cl)c(O)c3)ccc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3n[nH]c4ccccc34)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3c(Cl)cccc3Cl)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(Oc3ccc(F)cc3)ccc21; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)c(F)c1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(O)cc3Cl)ccc21; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(O)cc3F)ccc21; [None]; [None]; [0] +Nc1nccc(-c2ccc3c(c2)CCCCC3=O)n1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4c(c3)CCCCC4=O)cc2[nH]1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cn[nH]c3Cl)ccc21; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)ccc21; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)CCCCC3=O)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)CCCCC3=O)ccc1O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cccc(Br)c3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc4ccccc4c3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(O)c(F)c3)ccc21; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)CCCCC3=O)c2ccccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(O)cc3O)ccc21; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3c(c2)CCCCC3=O)c1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cnn4ncccc34)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3c[nH]c4cnccc34)ccc21; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)CCCCC3=O)ccn1; [None]; [None]; [0] +O=C1CCCCc2cc(COc3ccccc3Cl)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(F)c(Cl)c3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3[nH]cnc3-c3ccc(F)cc3)ccc21; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(O)ccc3Cl)ccc21; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cnc(O)c(Cl)c3)ccc21; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3c(c2)CCCCC3=O)c[nH]1; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3c(c2)CCCCC3=O)c1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)CCCCC3=O)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4c(c3)CCCCC4=O)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)CCCCC4=O)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3c(c2)CCCCC3=O)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)CCCCC3=O)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cnc4[nH]ccc4c3)ccc21; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3nc4ccccc4s3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cncc(O)c3)ccc21; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4c(c3)CCCCC4=O)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +CNc1nccc(-c2ccc3c(c2)CCCCC3=O)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4c(c3)CCCCC4=O)ccc12; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3c(c2)CCCCC3=O)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(C(F)F)n[nH]3)ccc21; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccncc3Cl)ccc21; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(Cl)c(O)c(Cl)c3)ccc21; [None]; [None]; [0] +CNc1nc(-c2ccc3c(c2)CCCCC3=O)ncc1F; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(O)n4nccc4n3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc4c(c3)CCN4)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc4[nH]c(=O)[nH]c4c3)ccc21; [None]; [None]; [0] +Cc1oc(-c2ccc3c(c2)CCCCC3=O)cc1C(=O)[O-]; [None]; [None]; [0] +O=C1CCCCc2cc(Nc3ccncc3)ccc21; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc(Br)cc3F)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3[nH]nc4ccc(F)cc34)ccc21; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +CN(c1ccc2c(c1)CCCCC2=O)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(O)cc(Br)c3)ccc21; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc3c(c2)CCCCC3=O)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)CCCCC4=O)cc2o1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)CCCCC3=O)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)CCCCC3=O)cc(C)c1O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cc(F)c(O)c(F)c3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ccc4c(=O)[nH][nH]c4c3)ccc21; [None]; [None]; [0] +CSc1cccc(-c2ccc3c(c2)CCCCC3=O)c1; [None]; [None]; [0] +O=C1CCCCc2cc(-c3ocnc3-c3ccc(F)cc3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(CCc3c[nH]c4ccccc34)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(OCc3cccc4ccccc34)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(Oc3ccc(F)cc3F)ccc21; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2c(c1)CCCCC2=O; [None]; [None]; [0] +O=C1CCCCc2cc(-c3cn[nH]c3-c3ccc(Cl)cc3)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(OCc3ccc(F)cc3F)ccc21; [None]; [None]; [0] +O=C1CCCCc2cc(CCc3ccc(F)cc3F)ccc21; [None]; [None]; [0] +O=C1c2cc(-c3cccc(O)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1CCCCc2cc(NCc3c(F)cccc3Cl)ccc21; [None]; [None]; [0] +O=C1c2cc(-c3cccc4ncccc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3c(Cl)ccc4c3OCO4)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(Cl)c(O)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3n[nH]c4ccccc34)ccc2COc2ccccc21; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3c(Cl)cccc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(O)cc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(Oc3ccc(F)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(O)cc3F)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Nc1nccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2[nH]1; [None]; [None]; [0] +O=C1c2cc(-c3cn[nH]c3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(-c4ccc(O)cc4O)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(F)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ccc1O; [None]; [None]; [0] +O=C([O-])c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +COC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)o1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)C(=O)c2ccccc2OC3)ccc1O; [None]; [None]; [0] +O=C1c2cc(-c3cccc(Br)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(O)c(F)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc4ccccc4c3)ccc2COc2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(O)cc3O)ccc2COc2ccccc21; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(-c3cnn4ncccc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3c[nH]c4cnccc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(COc3ccccc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ccn1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(F)c(Cl)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3[nH]cnc3-c3ccc(F)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cc(O)ccc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1ccc(CO)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cnc(O)c(Cl)c3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(OC)cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1OC; [None]; [None]; [0] +CNC(=O)c1cccc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc12; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +COc1cc(CCc2ccc3c(c2)C(=O)c2ccccc2OC3)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3cnc4[nH]ccc4c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3cncc(O)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3nc4ccccc4s3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1Cc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc2N1; [None]; [None]; [0] +C[C@H](CC(N)=O)c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +CNc1nccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)n1; [None]; [None]; [0] +CCc1cc(O)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc12; [None]; [None]; [0] +CCc1cc(O)c(F)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Cc1n[nH]c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +CN(c1cccc(Cl)c1)c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cc(C(F)F)n[nH]3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccncc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cc(Cl)c(O)c(Cl)c3)ccc2COc2ccccc21; [None]; [None]; [0] +CNc1nc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ncc1F; [None]; [None]; [0] +O=C1c2cc(-c3ccc4c(c3)CCN4)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3cc(O)n4nccc4n3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc4[nH]c(=O)[nH]c4c3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1oc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1C(=O)[O-]; [None]; [None]; [0] +O=C1c2cc(-c3[nH]nc4ccc(F)cc34)ccc2COc2ccccc21; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3ccc(Br)cc3F)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(Nc3ccncc3)ccc2COc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CN(c1ccc2c(c1)C(=O)c1ccccc1OC2)c1cccc2[nH]ncc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +Cc1nc2ccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2o1; [None]; [None]; [0] +O=C1c2cc(-c3cc(O)cc(Br)c3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ccc1C(N)=O; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc(C)c1O; [None]; [None]; [0] +O=C1c2cc(-c3cc(F)c(O)c(F)c3)ccc2COc2ccccc21; [None]; [None]; [0] +CSc1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(-c3ccc4c(=O)[nH][nH]c4c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(Oc3ccc(F)cc3F)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(CCc3c[nH]c4ccccc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(OCc3cccc4ccccc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ocnc3-c3ccc(F)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(CCc3ccc(F)cc3F)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3cn[nH]c3-c3ccc(Cl)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(OCc3ccc(F)cc3F)ccc2COc2ccccc21; [None]; [None]; [0] +CC(=O)N(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CCOc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(NCc3c(F)cccc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ncc4ccccc4n3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1ncccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +CS(=O)(=O)c1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc(OC)c1OC; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(-c3cnc4cccnn34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(N4CCOCC4)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc4c(c3)C(=O)c3ccccc3OC4)c2c1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3cccc(NC(=O)C4CC4)c3)ccc2COc2ccccc21; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2)CC1; [None]; [None]; [0] +O=C1c2cc(-c3nc4ccccc4[nH]3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1cc(Nc2ccc3c(c2)C(=O)c2ccccc2OC3)sn1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(OCCO)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3nccc4ccccc34)ccc2COc2ccccc21; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cn2)c1; [None]; [None]; [0] +O=C1c2cc(Nc3ncccn3)ccc2COc2ccccc21; [None]; [None]; [0] +CC(=O)NCc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3cccc(C4CCNCC4)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(C(=O)N4CCOCC4)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +C[C@H](O)COc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(Nc3ccncn3)ccc2COc2ccccc21; [None]; [None]; [0] +C[C@@H](O)COc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3ccc4c(c3)CS(=O)(=O)C4)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(C(=O)N4CCOCC4)cn3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(C(F)(F)F)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(c2ccc3c(c2)C(=O)c2ccccc2OC3)CC1; [None]; [None]; [0] +Cc1nc(C)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)s1; [None]; [None]; [0] +O=C1c2cc([C@H]3CCN(C(=O)c4ccccc4)C3)ccc2COc2ccccc21; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CC(C)c1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)nc(N)n1; [None]; [None]; [0] +CCCOc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)c2)CC1; [None]; [None]; [0] +Cc1c(C(=O)[O-])cccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3ccn4nccc4n3)ccc2COc2ccccc21; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(Br)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccccc3-n3cccn3)ccc2COc2ccccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1Cl; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(C)c1; [None]; [None]; [0] +COc1ccc(Cl)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3c[nH]c4ccccc34)ccc2COc2ccccc21; [None]; [None]; [0] +CC(C)c1ccc2nc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)[nH]c2c1; [None]; [None]; [0] +O=C1c2cc(-c3ccc4c(c3)CCO4)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(OC)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1Cl; [None]; [None]; [0] +O=C1c2cc(-c3cc(-c4ccccc4)[nH]n3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +CC(=O)Nc1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(-c3cccc4c3OCO4)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3scc4c3OCCO4)ccc2COc2ccccc21; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3cnc4ccccc4c3)ccc2COc2ccccc21; [None]; [None]; [0] +CC(C)(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cn1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cs1; [None]; [None]; [0] +O=C1c2cc(-c3ccn(-c4cccc(Cl)c4)n3)ccc2COc2ccccc21; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](c2ccc3c(c2)C(=O)c2ccccc2OC3)CC1; [None]; [None]; [0] +CC1(COc2ccc3c(c2)C(=O)c2ccccc2OC3)COC1; [None]; [None]; [0] +COc1cccc(C(=O)Nc2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2)CC1; [None]; [None]; [0] +O=C1c2cc(-c3cc4ccccc4s3)ccc2COc2ccccc21; [None]; [None]; [0] +CSc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)nc(N)n1; [None]; [None]; [0] +O=C1CCc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc2N1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(F)cc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ncc(Br)cn3)ccc2COc2ccccc21; [None]; [None]; [0] +CCc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(Cl)cc3Cl)ccc2COc2ccccc21; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +COc1ccc(CNc2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(NC3CN(C(=O)C4CC4)C3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ncc4cccn4n3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ccc1N1CCOCC1; [None]; [None]; [0] +O=C1c2cc(-c3cc4ccccn4n3)ccc2COc2ccccc21; [None]; [None]; [0] +Cn1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc2O1; [None]; [None]; [0] +O=C1c2cc(-c3cnn(CCO)c3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1cc(F)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1OC; [None]; [None]; [0] +COc1ccc2cccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)c2c1; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)ccc1Cl; [None]; [None]; [0] +O=C1c2cc(-c3cccc4ccc(O)cc34)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ncc(Cl)cn3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1csc2c(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ncnc12; [None]; [None]; [0] +Cc1nc(Nc2ccc3c(c2)C(=O)c2ccccc2OC3)sc1C; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Cc1cc(Nc2ccc3c(c2)C(=O)c2ccccc2OC3)nn1C; [None]; [None]; [0] +Nc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c2cc[nH]c2n1; [None]; [None]; [0] +COc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)nc1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(Cc3ccc(S(=O)(=O)CCO)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](c2ccc3c(c2)C(=O)c2ccccc2OC3)CC1; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)C(=O)c1ccccc1OC2)c1ccco1; [None]; [None]; [0] +CCNC(=O)N1CCC(c2ccc3c(c2)C(=O)c2ccccc2OC3)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(-c1ccc3c(c1)C(=O)c1ccccc1OC3)cn2C; [None]; [None]; [0] +COc1ccc2oc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2c1; [None]; [None]; [0] +O=C1c2cc(-c3ccc4cn[nH]c4c3)ccc2COc2ccccc21; [None]; [None]; [0] +C[NH+](C)Cc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(C(=O)Nc2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CCn1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cn1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(-c3cc(-c4cccnc4)ccn3)ccc2COc2ccccc21; [None]; [None]; [0] +Cn1cc(Br)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cc4ccccc4o3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ncc4sccc4n3)ccc2COc2ccccc21; [None]; [None]; [0] +CC(C)c1nn(C)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=C1c2cc(-c3cccc(NC(=O)N4CCCC4)c3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1ccc2nc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)[nH]c2c1; [None]; [None]; [0] +O=C1c2cc(-c3ccc(OC(F)(F)F)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +COc1ccc(F)c(C(=O)Nc2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)n1; [None]; [None]; [0] +Cc1cc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc(C)c1OCCO; [None]; [None]; [0] +O=C1c2cc(-c3ncn4c3CCCC4)ccc2COc2ccccc21; [None]; [None]; [0] +Cn1ncc2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc21; [None]; [None]; [0] +Cn1nc(Cl)c2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc21; [None]; [None]; [0] +CN(C)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cn2)CC1; [None]; [None]; [0] +O=C1c2cc(-c3cccc(N4CCCC4=O)c3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C1c2cc(-c3ccc(CCO)cc3)ccc2COc2ccccc21; [None]; [None]; [0] +O=C(Nc1ccc2c(c1)C(=O)c1ccccc1OC2)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(-c3ccc4c(c3)C(=O)c3ccccc3OC4)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +CNC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c(OC)c1; [None]; [None]; [0] +Cn1nc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)nc1; [None]; [None]; [0] +CCNC(=O)c1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(-c2ccc3c(c2)C(=O)c2ccccc2OC3)cc1; [None]; [None]; [0] +O=C1c2cc(Nc3ccc(F)cn3)ccc2COc2ccccc21; [None]; [None]; [0] +Cc1cc(Nc2ccc3c(c2)C(=O)c2ccccc2OC3)ncc1F; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +O=C1c2cc(Nc3ccccn3)ccc2COc2ccccc21; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(-c2ccc3c(c2)C(=O)c2ccccc2OC3)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1-c1ccc2c(c1)C(=O)c1ccccc1OC2; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc(O)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc2ncccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1c(Cl)ccc2c1OCO2; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(Cl)c(O)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1n[nH]c2ccccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1c(Cl)cccc1Cl; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1COc1ccc(F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +NC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)c(F)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(O)cc1F; [None]; [None]; [0] +Nc1nccc(Cn2c(=O)[nH]c3cccnc32)n1; [None]; [None]; [0] +COc1ccc(F)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cn[nH]c1Cl; [None]; [None]; [0] +Cc1nc2c(F)cc(Cn3c(=O)[nH]c4cccnc43)cc2[nH]1; [None]; [None]; [0] +COc1cc(F)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(-c2ccc(O)cc2O)cc1; [None]; [None]; [0] +O=C([O-])c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)ccc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)o1; [None]; [None]; [0] +COc1cc(CCCn2c(=O)[nH]c3cccnc32)ccc1O; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc(Br)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc2ccccc2c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(O)c(F)c1; [None]; [None]; [0] +Cn1cc(Cn2c(=O)[nH]c3cccnc32)c2ccccc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(O)cc1O; [None]; [None]; [0] +COC(=O)c1ccc(Cl)c(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnn2ncccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1c[nH]c2cnccc12; [None]; [None]; [0] +Nc1cc(Cn2c(=O)[nH]c3cccnc32)ccn1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(F)c(Cl)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CCOc1ccccc1Cl; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +Cc1ccc2[nH]ncc2c1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(O)ccc1Cl; [None]; [None]; [0] +Cc1ccc(CO)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnc(O)c(Cl)c1; [None]; [None]; [0] +NC(=O)c1cc(Cn2c(=O)[nH]c3cccnc32)c[nH]1; [None]; [None]; [0] +COc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1OC; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)cc(OC)c1; [None]; [None]; [0] +CNC(=O)c1cccc2cc(Cn3c(=O)[nH]c4cccnc43)ccc12; [None]; [None]; [0] +Cc1nc2ccc(Cn3c(=O)[nH]c4cccnc43)cc2[nH]1; [None]; [None]; [0] +CCOc1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +COc1cc(CCCn2c(=O)[nH]c3cccnc32)cc(OC)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnc2[nH]ccc2c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1nc2ccccc2s1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cncc(O)c1; [None]; [None]; [0] +C[C@H](CC(N)=O)Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=C1Cc2cc(Cn3c(=O)[nH]c4cccnc43)ccc2N1; [None]; [None]; [0] +CNc1nccc(Cn2c(=O)[nH]c3cccnc32)n1; [None]; [None]; [0] +CCc1cc(O)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CCc1cc(O)c(F)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +Cc1n[nH]c2cc(N(C)Cn3c(=O)[nH]c4cccnc43)ccc12; [None]; [None]; [0] +Cc1n[nH]c(Cn2c(=O)[nH]c3cccnc32)c1C; [None]; [None]; [0] +Cc1cc(O)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(C(F)F)n[nH]1; [None]; [None]; [0] +CCc1sccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CN(Cn1c(=O)[nH]c2cccnc21)c1cccc(Cl)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccncc1Cl; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(Cl)c(O)c(Cl)c1; [None]; [None]; [0] +CNc1nc(Cn2c(=O)[nH]c3cccnc32)ncc1F; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc2c(c1)CCN2; [None]; [None]; [0] +Cc1oc(Cn2c(=O)[nH]c3cccnc32)cc1C(=O)[O-]; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(O)n2nccc2n1; [None]; [None]; [0] +O=c1[nH]c2ccc(Cn3c(=O)[nH]c4cccnc43)cc2[nH]1; [None]; [None]; [0] +Cn1ncc(N)c1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CNc1ccncc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(Br)cc1F; [None]; [None]; [0] +CNC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1[nH]nc2ccc(F)cc12; [None]; [None]; [0] +O=C(NC1CC1)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(O)cc(Br)c1; [None]; [None]; [0] +CN(Cn1c(=O)[nH]c2cccnc21)c1cccc2[nH]ncc12; [None]; [None]; [0] +Cc1cc(Cn2c(=O)[nH]c3cccnc32)ccc1C(N)=O; [None]; [None]; [0] +Cc1nc2ccc(Cn3c(=O)[nH]c4cccnc43)cc2o1; [None]; [None]; [0] +Cc1cc(Cn2c(=O)[nH]c3cccnc32)cc(C)c1O; [None]; [None]; [0] +CSc1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(F)c(O)c(F)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CCCc1c[nH]c2ccccc12; [None]; [None]; [0] +O=c1[nH][nH]c2cc(Cn3c(=O)[nH]c4cccnc43)ccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1COCc1cccc2ccccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ocnc1-c1ccc(F)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1COc1ccc(F)cc1F; [None]; [None]; [0] +Cc1onc(-c2ccccc2)c1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1COCc1ccc(F)cc1F; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CCCc1ccc(F)cc1F; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CNCc1c(F)cccc1Cl; [None]; [None]; [0] +CC(=O)N(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CCOc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncc2ccccc2n1; [None]; [None]; [0] +Cc1nc(C(C)(C)O)sc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +COc1ncccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CS(=O)(=O)c1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +Cc1ccc2ncn(Cn3c(=O)[nH]c4cccnc43)c2c1; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)cc(OC)c1OC; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnc2cccnn12; [None]; [None]; [0] +N#Cc1ccc(O)c(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +COc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=C(Nc1cccc(Cn2c(=O)[nH]c3cccnc32)c1)C1CC1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1nc2ccccc2[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(C(=O)Cc2ccc(Cn3c(=O)[nH]c4cccnc43)cc2)CC1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1nccc2ccccc12; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1CNc1ncccn1; [None]; [None]; [0] +N#Cc1cccc(Cn2cc(Cn3c(=O)[nH]c4cccnc43)cn2)c1; [None]; [None]; [0] +O=C(Nc1ccccc1)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(OCCO)cc1; [None]; [None]; [0] +CC(=O)NCc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc(C2CCNCC2)c1; [None]; [None]; [0] +O=C(c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1)N1CCOCC1; [None]; [None]; [0] +O=C(c1ccc(Cn2c(=O)[nH]c3cccnc32)nc1)N1CCOCC1; [None]; [None]; [0] +C[C@@H](O)COc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +C[C@H](O)COc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc2c(c1)CS(=O)(=O)C2; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(C(F)(F)F)cc1; [None]; [None]; [0] +CN(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CN(C)S(=O)(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +Cc1nc(C)c(Cn2c(=O)[nH]c3cccnc32)s1; [None]; [None]; [0] +CS(=O)(=O)N1CCC(Cn2c(=O)[nH]c3cccnc32)CC1; [None]; [None]; [0] +O=C(c1ccccc1)N1CC[C@H](Cn2c(=O)[nH]c3cccnc32)C1; [None]; [None]; [0] +CC(C)c1cc(Cn2c(=O)[nH]c3cccnc32)nc(N)n1; [None]; [None]; [0] +CCNS(=O)(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cccc(Cn3c(=O)[nH]c4cccnc43)c2)CC1; [None]; [None]; [0] +CCCOc1ccc(Cn2c(=O)[nH]c3cccnc32)nc1; [None]; [None]; [0] +Cc1c(Cn2c(=O)[nH]c3cccnc32)cccc1C(=O)[O-]; [None]; [None]; [0] +CCN(CC)C(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(Br)cc1; [None]; [None]; [0] +CN(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1Cl; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccn2nccc2n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)c(C)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccccc1-n1cccn1; [None]; [None]; [0] +COc1ccc(Cl)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1c[nH]c2ccccc12; [None]; [None]; [0] +COc1cc(OC)c(Cn2c(=O)[nH]c3cccnc32)cc1Cl; [None]; [None]; [0] +CC(C)c1ccc2nc(Cn3c(=O)[nH]c4cccnc43)[nH]c2c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc2c(c1)CCO2; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(-c2ccccc2)[nH]n1; [None]; [None]; [0] +CC(=O)Nc1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc2c1OCO2; [None]; [None]; [0] +COc1cc(C(=O)N2CCOCC2)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1scc2c1OCCO2; [None]; [None]; [0] +CC(C)(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnc2ccccc2c1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CC(C)(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cn1; [None]; [None]; [0] +CC(=O)N[C@@H]1CC[C@@H](Cn2c(=O)[nH]c3cccnc32)CC1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccn(-c2cccc(Cl)c2)n1; [None]; [None]; [0] +Nc1nc(Cn2c(=O)[nH]c3cccnc32)cs1; [None]; [None]; [0] +COc1cccc(C(=O)NCn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +CSc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc2ccccc2s1; [None]; [None]; [0] +CCN1CCN(Cc2ccc(Cn3c(=O)[nH]c4cccnc43)cc2)CC1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(F)cc1Cl; [None]; [None]; [0] +Cc1cc(Cn2c(=O)[nH]c3cccnc32)nc(N)n1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncc(Br)cn1; [None]; [None]; [0] +O=C1CCc2cc(Cn3c(=O)[nH]c4cccnc43)ccc2N1; [None]; [None]; [0] +CCc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +C[C@H]1CCCN1C(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(Cl)cc1Cl; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncc2cccn2n1; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)ccc1N1CCOCC1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc2ccccn2n1; [None]; [None]; [0] +Cn1cc(Cn2c(=O)[nH]c3cccnc32)c(C(F)(F)F)n1; [None]; [None]; [0] +CC1(C)Cc2cc(Cn3c(=O)[nH]c4cccnc43)ccc2O1; [None]; [None]; [0] +COc1ccc2cccc(Cn3c(=O)[nH]c4cccnc43)c2c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cccc2ccc(O)cc12; [None]; [None]; [0] +COc1cc(F)c(Cn2c(=O)[nH]c3cccnc32)cc1OC; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)ccc1Cl; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cnn(CCO)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(Cn3c(=O)[nH]c4cccnc43)ncnc12; [None]; [None]; [0] +Nc1cc(Cn2c(=O)[nH]c3cccnc32)c2cc[nH]c2n1; [None]; [None]; [0] +CCNC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)nc1; [None]; [None]; [0] +CO[C@@H]1CC[C@@H](Cn2c(=O)[nH]c3cccnc32)CC1; [None]; [None]; [0] +COc1cc(CS(C)(=O)=O)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +COc1cc(Cn2c(=O)[nH]c3cccnc32)c(OC)cc1Br; [None]; [None]; [0] +CCNC(=O)N1CCC(Cn2c(=O)[nH]c3cccnc32)CC1; [None]; [None]; [0] +O=C(Nc1cn[nH]c1)c1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +COc1ccc2c(c1)c(Cn1c(=O)[nH]c3cccnc31)cn2C; [None]; [None]; [0] +COc1ccc2oc(Cn3c(=O)[nH]c4cccnc43)cc2c1; [None]; [None]; [0] +C[NH+](C)Cc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CCn1cc(Cn2c(=O)[nH]c3cccnc32)cn1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc2cn[nH]c2c1; [None]; [None]; [0] +CNC(=O)c1ccc(OC)c(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc(-c2cccnc2)ccn1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1cc2ccccc2o1; [None]; [None]; [0] +Cn1cc(Br)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncc2sccc2n1; [None]; [None]; [0] +CC(C)c1nn(C)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +O=C(Nc1cccc(Cn2c(=O)[nH]c3cccnc32)c1)N1CCCC1; [None]; [None]; [0] +COc1ccc2nc(Cn3c(=O)[nH]c4cccnc43)[nH]c2c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1ccc(F)c(C(=O)NCn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +CC(C)(O)c1ccc2cc(Cn3c(=O)[nH]c4cccnc43)[nH]c2c1; [None]; [None]; [0] +CCc1cccc(Cn2c(=O)[nH]c3cccnc32)n1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ncn2c1CCCC2; [None]; [None]; [0] +Cn1ncc2cc(Cn3c(=O)[nH]c4cccnc43)ccc21; [None]; [None]; [0] +Cc1cc(Cn2c(=O)[nH]c3cccnc32)cc(C)c1OCCO; [None]; [None]; [0] +Cn1nc(Cl)c2cc(Cn3c(=O)[nH]c4cccnc43)ccc21; [None]; [None]; [0] +CN(C)c1ccc(Cn2c(=O)[nH]c3cccnc32)cn1; [None]; [None]; [0] +Cc1n[nH]c2cc(Cn3c(=O)[nH]c4cccnc43)ccc12; [None]; [None]; [0] +CC(=O)N1CCC(n2cc(Cn3c(=O)[nH]c4cccnc43)cn2)CC1; [None]; [None]; [0] +O=C1CCCN1c1cccc(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +O=C(NCn1c(=O)[nH]c2cccnc21)c1cccc(OC(F)(F)F)c1; [None]; [None]; [0] +O=c1[nH]c2cccnc2n1Cc1ccc(CCO)cc1; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)c(Cl)c1; [None]; [None]; [0] +Cc1ncc(-c2ccc(Cn3c(=O)[nH]c4cccnc43)cc2)n1C; [None]; [None]; [0] +COc1cc(-c2cnn(C)c2)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +Cc1cc(N2CCOCC2)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CNC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)c(OC)c1; [None]; [None]; [0] +COc1cc(S(C)(=O)=O)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +COc1cc(N2CCNCC2)ccc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CCNC(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +Cn1nc(Cn2c(=O)[nH]c3cccnc32)cc1C(C)(C)O; [None]; [None]; [0] +CN(C)C(=O)c1ccc(Cn2c(=O)[nH]c3cccnc32)nc1; [None]; [None]; [0] +CCNC(=O)Cc1ccc(Cn2c(=O)[nH]c3cccnc32)cc1; [None]; [None]; [0] +CNC(=O)c1ccc(C)c(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCO)cc1Cn1c(=O)[nH]c2cccnc21; [None]; [None]; [0] +CS(=O)(=O)c1ccc(Cl)c(Cn2c(=O)[nH]c3cccnc32)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1C(=O)NC; [None]; [None]; [0] +CCOc1ccccc1-c1ncncc1CC; [None]; [None]; [0] +CCc1cncnc1CCC(C)(C)OC; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1-c1nnc(C)[nH]1; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1S(=O)(=O)C(C)C; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1P(C)(C)=O; [None]; [None]; [0] +CCc1cncnc1Cc1cc(F)cc(F)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccnc2ccccc12; [None]; [None]; [0] +CCc1cncnc1-c1cnn(CC)c1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1OC(F)(F)F; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1C(=O)[O-]; [None]; [None]; [0] +CCc1cncnc1-c1ccccc1C(N)=O; [None]; [None]; [0] +CCc1cncnc1-c1cnn(Cc2ccccc2)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccc2ncn(C)c(=O)c2c1; [None]; [None]; [0] +CCc1cncnc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +CCc1cncnc1-c1cnn(CCO)c1; [None]; [None]; [0] +CCc1cncnc1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +CCc1cncnc1-n1ncc2cccc(F)c2c1=O; [None]; [None]; [0] +CCc1cncnc1-c1cccc(NC(=O)c2ccccc2)c1; [None]; [None]; [0] +CCc1cncnc1-c1ncc(OC)cn1; [None]; [None]; [0] +CCc1cncnc1OCC(=O)C(C)C; [None]; [None]; [0] +CCc1cncnc1-c1cc(Cl)ccc1Cl; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C)cc1Br; [None]; [None]; [0] +CCc1cncnc1-c1c(C)nc2ccccn12; [None]; [None]; [0] +CCc1cncnc1-c1cnc2ccccn12; [None]; [None]; [0] +CCc1cncnc1-c1sc(C)nc1C; [None]; [None]; [0] +CCc1cncnc1-c1sc(NC)nc1C; [None]; [None]; [0] +CCc1cncnc1-c1sc(N)nc1C; [None]; [None]; [0] +CCc1cncnc1-c1cnc2cccnn12; [None]; [None]; [0] +CCc1cncnc1-c1cccc(Cn2cncn2)c1; [None]; [None]; [0] +CCc1cncnc1-c1c(Cl)cccc1Cl; [None]; [None]; [0] +CCc1cncnc1-c1cc(C)ccc1Cl; [None]; [None]; [0] +CCc1cncnc1-c1cccc(Br)c1; [None]; [None]; [0] +CCc1cncnc1NCc1cccnc1; [None]; [None]; [0] +CCc1cncnc1-c1sc(=O)n(C)c1C; [None]; [None]; [0] +CCc1cncnc1-c1ccnc(N)n1; [None]; [None]; [0] +CCc1cncnc1-c1cnn2ncccc12; [None]; [None]; [0] +CCc1cncnc1-c1ccc2ccccc2c1; [None]; [None]; [0] +CCc1cncnc1Nc1cccnc1; [None]; [None]; [0] +CCc1cncnc1-n1cnc2ccccc21; [None]; [None]; [0] +CCc1cncnc1NCCc1c[nH]cn1; [None]; [None]; [0] +CCc1cncnc1NC(=O)c1cccs1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(CC(=O)[O-])c1; [None]; [None]; [0] +CCc1cncnc1-c1c[nH]nc1C(F)(F)F; [None]; [None]; [0] +CCc1cncnc1-c1cccc(F)c1C(N)=O; [None]; [None]; [0] +CCc1cncnc1-c1cncc2ccccc12; [None]; [None]; [0] +CCc1cncnc1NCCc1ccccc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(-c2cnn(C)c2)cc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc2c(N)[nH]nc2c1; [None]; [None]; [0] +CCc1cncnc1-c1ccc2c(c1)CS(=O)(=O)N2C; [None]; [None]; [0] +CCc1cncnc1-c1ccc2c(cnn2C)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(-c2cn[nH]c2)cc1; [None]; [None]; [0] +CCc1cncnc1NCc1ccc(Cl)cc1; [None]; [None]; [0] +CCCn1cnc(-c2ncncc2CC)n1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(O)c1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(CO)c1; [None]; [None]; [0] +CCc1cncnc1Nc1ccncc1; [None]; [None]; [0] +CCc1cncnc1-c1cn(C(C)C)nn1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C(=O)[O-])c(OC)c1; [None]; [None]; [0] +CCc1cncnc1NCc1ccccc1F; [None]; [None]; [0] +CCc1cncnc1-c1c[nH]c(SC)n1; [None]; [None]; [0] +CCc1cncnc1-c1cnoc1C(C)C; [None]; [None]; [0] +CCc1cncnc1CCc1c[nH]nn1; [None]; [None]; [0] +CCc1cncnc1-c1csc2ncncc12; [None]; [None]; [0] +CCc1cncnc1-c1cc2ccccc2[nH]1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(CCC#N)c1; [None]; [None]; [0] +CCc1cncnc1-c1csc(N)n1; [None]; [None]; [0] +CCc1cncnc1-c1cncnc1N; [None]; [None]; [0] +CCC(=O)Nc1ccc(-c2ncncc2CC)cc1; [None]; [None]; [0] +CCNc1nc2ccc(-c3ncncc3CC)cc2s1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(F)cc1C(F)(F)F; [None]; [None]; [0] +CCc1cncnc1CCCC(N)=O; [None]; [None]; [0] +CCc1cncnc1Oc1ccccn1; [None]; [None]; [0] +CCc1cncnc1CCNC(=O)CC(C)(C)O; [None]; [None]; [0] +CCc1cncnc1NC(=O)c1c(Cl)cccc1Cl; [None]; [None]; [0] +CCc1cncnc1-c1cn(C)c2ccccc12; [None]; [None]; [0] +CCc1cncnc1-c1cccc(NC(C)=O)c1; [None]; [None]; [0] +CCc1cncnc1N1CCC(S(C)(=O)=O)CC1; [None]; [None]; [0] +CCc1cncnc1OCC(C)(C)S(C)(=O)=O; [None]; [None]; [0] +CCc1cncnc1-c1ccc(OC)c(Cl)c1; [None]; [None]; [0] +CCc1cncnc1-c1cnn2ccccc12; [None]; [None]; [0] +CCCn1cc(-c2ncncc2CC)cn1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C[NH3+])c(C(F)(F)F)c1; [None]; [None]; [0] +CCc1cncnc1-c1cc[nH]c(=O)c1; [None]; [None]; [0] +CCc1cncnc1-c1cccc2c1C(=O)CC2; [None]; [None]; [0] +CCc1cncnc1CCc1cc(OC)cc(OC)c1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C(C)(C)N)cc1; [None]; [None]; [0] +CCc1cncnc1O[C@H](C)c1c(Cl)cncc1Cl; [None]; [None]; [0] +CCNS(=O)(=O)c1ccccc1-c1ncncc1CC; [None]; [None]; [0] +CCc1cncnc1-c1ccc([S@](C)=O)cc1; [None]; [None]; [0] +CCc1cncnc1N(CC)CC; [None]; [None]; [0] +CCc1cncnc1-c1cc2c(=O)[nH]ccc2o1; [None]; [None]; [0] +CCc1cncnc1-c1cc2c(=O)[nH]cc(Br)c2s1; [None]; [None]; [0] +CCc1cncnc1Nc1cnccc1OC; [None]; [None]; [0] +CCc1cncnc1Nc1cnccc1-c1ccccc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C(C)(C)C)cc1; [None]; [None]; [0] +CCc1cncnc1-c1cncc(OC(C)C)c1; [None]; [None]; [0] +CCc1cncnc1-c1c(F)cccc1OC; [None]; [None]; [0] +CCc1cncnc1Nc1cnc2ccccc2c1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(F)c1C(=O)NC; [None]; [None]; [0] +CCc1cncnc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CCc1cncnc1-c1cnc2[nH]ccc2c1; [None]; [None]; [0] +CCc1cncnc1C1(C)CCN(S(C)(=O)=O)CC1; [None]; [None]; [0] +CCc1cncnc1N(C)[C@H]1C[C@@H](NS(C)(=O)=O)C1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(S(=O)(=O)NC(C)(C)C)cc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(N2CCOCC2)cc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(S(=O)(=O)NC)cc1; [None]; [None]; [0] +CCc1cncnc1-c1ccc(S(C)(=O)=O)cc1; [None]; [None]; [0] +CCc1cncnc1-c1cc(C)nn1-c1cccc(Cl)c1; [None]; [None]; [0] +CCc1cncnc1N[C@@H](C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CCc1cncnc1-n1ccc(CO)n1; [None]; [None]; [0] +CCc1cncnc1-n1cnc(CCO)c1; [None]; [None]; [0] +CCc1cncnc1N[C@@H](C)C(C)(C)O; [None]; [None]; [0] +CCc1cncnc1N[C@H](C)C(C)(C)O; [None]; [None]; [0] +CCc1cncnc1-c1c(F)cccc1Cl; [None]; [None]; [0] +CCc1cncnc1-n1ncc2ccccc21; [None]; [None]; [0] +CCc1cncnc1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +CCc1cncnc1-n1ncc2c(O)cccc21; [None]; [None]; [0] +CCc1cncnc1-c1ccc(-n2cncn2)cc1; [None]; [None]; [0] +CCc1cncnc1-c1[nH]c(SC)nc1C; [None]; [None]; [0] +CCc1cncnc1-c1ccc(OC)cc1OC; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C(=O)c2ccccc2)cc1; [None]; [None]; [0] +CCc1cncnc1-c1nncn1C1CC1; [None]; [None]; [0] +CCc1cncnc1-c1nncn1C(C)C; [None]; [None]; [0] +CCc1cncnc1[C@@H]1CC[C@@H](NC(C)=O)CC1; [None]; [None]; [0] +CCc1cncnc1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +CCc1cncnc1Cc1nnc2ccc(-c3ccccc3)nn12; [None]; [None]; [0] +CCc1cncnc1CS(=O)(=O)NCc1ccccn1; [None]; [None]; [0] +CCc1cncnc1CCC(=O)NCc1ccccn1; [None]; [None]; [0] +CCc1cncnc1-c1cn(Cc2ccccc2)nn1; [None]; [None]; [0] +CCc1cc(-c2ncncc2CC)nc(N)n1; [None]; [None]; [0] +CCCCc1cc(-c2ncncc2CC)nc(N)n1; [None]; [None]; [0] +CCc1cncnc1-c1nnc(N)s1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(C(C)(C)O)n1; [None]; [None]; [0] +CCc1cncnc1-c1cc(C(N)=O)cn1C; [None]; [None]; [0] +CCc1cncnc1Oc1ccc(C[NH3+])cc1F; [None]; [None]; [0] +CCc1cncnc1-c1ccc(C(=O)NC)s1; [None]; [None]; [0] +CCc1cncnc1C1CCN(C(=O)N[C@@H2]C)CC1; [None]; [None]; [0] +CCc1cncnc1-c1nc2ccccc2s1; [None]; [None]; [0] +CCc1cncnc1-c1ccc2c(n1)NC(=O)C(C)(C)O2; [None]; [None]; [0] +CCc1cncnc1-c1cncc(N)n1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(C(=O)Nc2ccc(C(=O)NC)cc2)c1; [None]; [None]; [0] +CCc1cncnc1-c1cccc2ccsc12; [None]; [None]; [0] +CCc1cncnc1-c1cccc2nnsc12; [None]; [None]; [0] +CCc1cncnc1-c1cnc(NC(C)=O)[nH]1; [None]; [None]; [0] +CCc1cncnc1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +CCc1cncnc1-c1ncc2ccccc2n1; [None]; [None]; [0] +CCc1cncnc1-c1cn(CCO)cn1; [None]; [None]; [0] +CCc1cncnc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +CCc1cncnc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +CCc1cncnc1-c1cc(C#N)ccc1OC; [None]; [None]; [0] +CCc1cncnc1Oc1ccc(OC)c(F)c1F; [None]; [None]; [0] +CCc1cncnc1[C@H]1CC[C@@](C)(O)CC1; [None]; [None]; [0] +CCc1cncnc1-c1cc(OC)ccc1OC; [None]; [None]; [0] +CCc1cncnc1-c1cccnc1OC; [None]; [None]; [0] +CCc1cncnc1-c1cccc(S(=O)(=O)N(C)C)c1; [None]; [None]; [0] +CCc1cncnc1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +CCc1cncnc1N1CCC(c2nc3ccccc3[nH]2)CC1; [None]; [None]; [0] +CCc1cncnc1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +CCc1cncnc1N1CC=C(c2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ncc3ccccc3n2)CC1; [None]; [None]; [0] +Cc1ccc2ncn([C@@H]3CC[C@H](CO)CC3)c2c1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2cnc3cccnn23)CC1; [None]; [None]; [0] +N#Cc1ccc(O)c([C@@H]2CC[C@H](CO)CC2)c1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2nccc3ccccc23)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](Nc2ncccn2)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2cccc(C3CCNCC3)c2)CC1; [None]; [None]; [0] +Cc1cc([C@@H]2CC[C@H](CO)CC2)nc(N)n1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ncc(Br)cn2)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ncc3cccn3n2)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2cc3ccccn3n2)CC1; [None]; [None]; [0] +CC1(C)Cc2cc([C@@H]3CC[C@H](CO)CC3)ccc2O1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2cccc3ccc(O)cc23)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ncc(Cl)cn2)CC1; [None]; [None]; [0] +Cc1csc2c([C@@H]3CC[C@H](CO)CC3)ncnc12; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ncc3sccc3n2)CC1; [None]; [None]; [0] +OC[C@H]1CC[C@@H](c2ccc(OC(F)(F)F)cc2)CC1; [None]; [None]; [0] +C[C@H](Nc1ncc2ccccc2n1)c1ccc(F)cn1; [None]; [None]; [0] +Cn1cc([C@@H]2CC[C@H](CO)CC2)c2ccccc21; [None]; [None]; [0] +C[C@H](Nc1cnc2cccnn12)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1nccc2ccccc12)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](NCc1ccc(C(=O)[O-])cc1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](NCc1ccc(C[NH3+])cc1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ncc(Br)cn1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](NCc1ccc(O)cc1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ncc2cccn2n1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1cc2ccccn2n1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc2c(c1)CC(C)(C)O2)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ncc(Cl)cn1)c1ccc(F)cn1; [None]; [None]; [0] +Cc1csc2c(N[C@@H](C)c3ccc(F)cn3)ncnc12; [None]; [None]; [0] +C[C@H](Nc1ncc2sccc2n1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](NCCc1c[nH]c2ccccc12)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ccc(OC(F)(F)F)cc1)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)c1ccc(F)cn1; [None]; [None]; [0] +C[C@H](Nc1ncc2ccccc2n1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1cnc2cccnn12)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1nccc2ccccc12)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](NCc1ccc(C[NH3+])cc1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](NCc1ccc(C(=O)[O-])cc1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1ncc(Br)cn1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](NCc1ccc(O)cc1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1cc2ccccn2n1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1ncc2cccn2n1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1ncc(Cl)cn1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1ccc2c(c1)CC(C)(C)O2)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](Nc1ncc2sccc2n1)c1ccc(F)cc1F; [None]; [None]; [0] +Cc1csc2c(N[C@@H](C)c3ccc(F)cc3F)ncnc12; [None]; [None]; [0] +C[C@H](Nc1ccc(OC(F)(F)F)cc1)c1ccc(F)cc1F; [None]; [None]; [0] +C[C@H](NCCc1c[nH]c2ccccc12)c1ccc(F)cc1F; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +CCn1cc(-c2cccc(O)c2)cn1; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)c1ccc(F)cc1F; [None]; [None]; [0] +CCn1cc(-c2cc(F)cc(Cl)c2)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc(S(=O)(=O)NC)cc2)cn1; [None]; [None]; [0] +CCn1cc(-c2cn[nH]c2Cl)cn1; [None]; [None]; [0] +CCn1cc(-c2cc(F)c3nc(C)[nH]c3c2)cn1; [None]; [None]; [0] +CCn1cc(-c2nn(C)c3ccccc23)cn1; [None]; [None]; [0] +CCn1cc(-c2n[nH]c3c(Cl)cccc23)cn1; [None]; [None]; [0] +CCn1cc(-c2c[nH]c3cnccc23)cn1; [None]; [None]; [0] +CCn1cc(Nc2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +CCn1cc(-c2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +CCn1cc(-c2cccc(OC)c2)cn1; [None]; [None]; [0] +CCn1cc(-c2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc3cc(OC)ccc3c2)cn1; [None]; [None]; [0] +CCc1sccc1-c1cnn(CC)c1; [None]; [None]; [0] +CCn1cc(-c2c(C)ccc(O)c2C)cn1; [None]; [None]; [0] +CCn1cc(-c2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +CCn1cc(-c2c(N)cnn2C)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc(F)c(C)n2)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc(OC)cn2)cn1; [None]; [None]; [0] +CCn1cc(-c2ccc(OC)nc2)cn1; [None]; [None]; [0] +CCn1cc(-c2cccc(COC)c2)cn1; [None]; [None]; [0] +COc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +CCn1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +COc1cccc(-n2cnc3ccc(C)cc32)c1; [None]; [None]; [0] +COc1cccc(-c2nccc3ccccc23)c1; [None]; [None]; [0] +COc1cccc(-c2cnc3cccnn23)c1; [None]; [None]; [0] +COc1cccc(-c2cc(C#N)ccc2O)c1; [None]; [None]; [0] +COc1cccc(Nc2ncccn2)c1; [None]; [None]; [0] +COc1cccc(-c2cccc(C3CCNCC3)c2)c1; [None]; [None]; [0] +COc1cccc(-c2cc(C)nc(N)n2)c1; [None]; [None]; [0] +COc1cccc(-c2ncc(Br)cn2)c1; [None]; [None]; [0] +COc1cccc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cccc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +COc1cccc(-c2ccc3c(c2)CC(C)(C)O3)c1; [None]; [None]; [0] +COc1cccc(-c2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cccc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +COc1cccc(-c2ncnc3c(C)csc23)c1; [None]; [None]; [0] +COc1cccc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +COc1cccc(-c2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +COc1cccc(-c2cn(C)c3ccccc23)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(F)cc(Cl)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)cc2)cc1; [None]; [None]; [0] +Cn1nc(-c2ccc(NC(N)=O)cc2)c2ccccc21; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn[nH]c2Cl)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3c(Cl)cccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc(NC(N)=O)cc3)ccc2c1; [None]; [None]; [0] +COc1cccc(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +CCc1sccc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(O)n3nccc3n2)cc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +Cc1nc(-c2ccc(NC(N)=O)cc2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)cc2)cn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)cc2)nc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc(NC(N)=O)cc3)c2c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nccc3ccccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C3CCNCC3)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(NC(N)=O)cc2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Br)cn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3cccn3n2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccn3n2)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc(NC(N)=O)cc3)ccc2O1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3ccc(O)cc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Cl)cn2)cc1; [None]; [None]; [0] +Cc1csc2c(-c3ccc(NC(N)=O)cc3)ncnc12; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3sccc3n2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(NC(N)=O)cc2)c2ccccc21; [None]; [None]; [0] +Oc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3n[nH]c4ccccc34)[nH]2)cc1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4c(c3)Cc3c[nH]nc3-4)[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +Cn1nc(-c2cnc(-c3ccccc3)[nH]2)c2ccccc21; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc(-c4ccccc4)[nH]3)cc2[nH]1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3c[nH]c4cnccc34)[nH]2)cc1; [None]; [None]; [0] +Clc1cccc2c(-c3cnc(-c4ccccc4)[nH]3)n[nH]c12; [None]; [None]; [0] +c1ccc(-c2ncc(Nc3n[nH]c4ccccc34)[nH]2)cc1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +FC(F)c1cc(-c2cnc(-c3ccccc3)[nH]2)[nH]n1; [None]; [None]; [0] +COc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3cnc(-c4ccccc4)[nH]3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Oc1cc(-c2cnc(-c3ccccc3)[nH]2)nc2ccnn12; [None]; [None]; [0] +Cc1nc(-c2cnc(-c3ccccc3)[nH]2)ccc1F; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +COCc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(-c3ccccc3)[nH]2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnc(-c3ccccc3)[nH]2)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +N[C@H](c1ncc2ccccc2n1)c1ccco1; [None]; [None]; [0] +N[C@@H](c1ccco1)c1nccc2ccccc12; [None]; [None]; [0] +N[C@@H](c1ccco1)c1cnc2cccnn12; [None]; [None]; [0] +N[C@H](Cc1ccc(C[NH3+])cc1)c1ccco1; [None]; [None]; [0] +N[C@H](Cc1ccc(C(=O)[O-])cc1)c1ccco1; [None]; [None]; [0] +N[C@H](Cc1ccc(O)cc1)c1ccco1; [None]; [None]; [0] +N[C@H](c1ncc(Br)cn1)c1ccco1; [None]; [None]; [0] +N[C@H](c1cc2ccccn2n1)c1ccco1; [None]; [None]; [0] +N[C@H](c1ncc2cccn2n1)c1ccco1; [None]; [None]; [0] +CC1(C)Cc2cc([C@@H](N)c3ccco3)ccc2O1; [None]; [None]; [0] +N[C@H](c1ncc(Cl)cn1)c1ccco1; [None]; [None]; [0] +Cc1csc2c([C@@H](N)c3ccco3)ncnc12; [None]; [None]; [0] +N[C@H](c1ncc2sccc2n1)c1ccco1; [None]; [None]; [0] +N[C@H](CCc1c[nH]c2ccccc12)c1ccco1; [None]; [None]; [0] +N[C@H](c1ccc(OC(F)(F)F)cc1)c1ccco1; [None]; [None]; [0] +Cn1cc([C@@H](N)c2ccco2)c2ccccc21; [None]; [None]; [0] +OCCn1cc(-c2cccc(O)c2)cn1; [None]; [None]; [0] +OCCn1cc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cn1; [None]; [None]; [0] +OCCn1cc(-c2cc(F)cc(Cl)c2)cn1; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(CCO)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2cnn(CCO)c2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn(CCO)c3)cc2[nH]1; [None]; [None]; [0] +OCCn1cc(-c2c[nH]c3cnccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2cn[nH]c2Cl)cn1; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3c(Cl)cccc23)cn1; [None]; [None]; [0] +OCCn1cc(Nc2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +COc1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +OCCn1cc(-c2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +COc1ccc2cc(-c3cnn(CCO)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnn(CCO)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnn(CCO)c1; [None]; [None]; [0] +OCCn1cc(-c2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn(CCO)c1; [None]; [None]; [0] +COCc1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +Cc1nc(-c2cnn(CCO)c2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnn(CCO)c2)nc1; [None]; [None]; [0] +COc1ccc(-c2cnn(CCO)c2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(O)c2)cs1; [None]; [None]; [0] +OCCn1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2n[nH]c3ccccc23)cs1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2csc(C(C)(C)C)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(F)cc(Cl)c2)cs1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3csc(C(C)(C)C)n3)cc2[nH]1; [None]; [None]; [0] +Cn1nc(-c2csc(C(C)(C)C)n2)c2ccccc21; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cn[nH]c2Cl)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(Nc2n[nH]c3ccccc23)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2n[nH]c3c(Cl)cccc23)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c3cnccc23)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2[nH]cnc2-c2ccc(F)cc2)cs1; [None]; [None]; [0] +COc1cccc(-c2csc(C(C)(C)C)n2)c1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(C(F)F)n[nH]2)cs1; [None]; [None]; [0] +COc1ccc2cc(-c3csc(C(C)(C)C)n3)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +CCc1sccc1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(O)n3nccc3n2)cs1; [None]; [None]; [0] +Cn1ncc(N)c1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +Cc1nc(-c2csc(C(C)(C)C)n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2csc(C(C)(C)C)n2)c1; [None]; [None]; [0] +COc1ccc(-c2csc(C(C)(C)C)n2)cn1; [None]; [None]; [0] +COc1ccc(-c2csc(C(C)(C)C)n2)nc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)cs1; [None]; [None]; [0] +COc1cnc(-c2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(F)cc(Cl)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2nn(C)c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(F)c3nc(C)[nH]c3c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn[nH]c2Cl)nc1; [None]; [None]; [0] +COc1cnc(-c2n[nH]c3c(Cl)cccc23)nc1; [None]; [None]; [0] +COc1cnc(Nc2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(OC)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2[nH]cnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(C(F)F)n[nH]2)nc1; [None]; [None]; [0] +CCc1sccc1-c1ncc(OC)cn1; [None]; [None]; [0] +COc1cnc(-c2ccc3cc(OC)ccc3c2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(C)ccc(O)c2C)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(F)c(C)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(N)cnn2C)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(O)n3nccc3n2)nc1; [None]; [None]; [0] +COCc1cccc(-c2ncc(OC)cn2)c1; [None]; [None]; [0] +COc1cnc(-c2ccc(OC)nc2)nc1; [None]; [None]; [0] +COc1ccc(-c2ncc(OC)cn2)nc1; [None]; [None]; [0] +C[C@@H](c1ccc(CO)cc1)c1ccccc1Cl; [None]; [None]; [0] +COc1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc1; [None]; [None]; [0] +C[C@@H](Nc1n[nH]c2ccccc12)c1ccccc1Cl; [None]; [None]; [0] +CC(C)NC(=O)Oc1cccc(O)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)NC(=O)Oc1cc(F)cc(Cl)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1ccc2c(c1)Cc1c[nH]nc1-2; [None]; [None]; [0] +CC(C)NC(=O)Oc1nn(C)c2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(OC(=O)NC(C)C)cc1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cn[nH]c1Cl; [None]; [None]; [0] +CC(C)NC(=O)Oc1n[nH]c2c(Cl)cccc12; [None]; [None]; [0] +COc1cccc(OC(=O)NC(C)C)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1ccc2cc(OC(=O)NC(C)C)ccc2c1; [None]; [None]; [0] +CCc1sccc1OC(=O)NC(C)C; [None]; [None]; [0] +Cc1ccc(O)c(C)c1OC(=O)NC(C)C; [None]; [None]; [0] +CC(C)NC(=O)Oc1cc(O)n2nccc2n1; [None]; [None]; [0] +CC(C)NC(=O)Oc1c(N)cnn1C; [None]; [None]; [0] +Cc1nc(OC(=O)NC(C)C)ccc1F; [None]; [None]; [0] +COCc1cccc(OC(=O)NC(C)C)c1; [None]; [None]; [0] +COc1ccc(OC(=O)NC(C)C)cn1; [None]; [None]; [0] +COc1ccc(OC(=O)NC(C)C)nc1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3ccccc3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2nccc3ccccc23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cnc3cccnn23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(C(=O)[O-])cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(C[NH3+])cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(O)cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc(Br)cn2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cc3ccccn3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3cccn3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ccc3c(c2)CC(C)(C)O3)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc(Cl)cn2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncnc3c(C)csc23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3sccc3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ccc(OC(F)(F)F)cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(CCc2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(O)c2)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cn(C)c3ccccc23)CC1; [None]; [None]; [0] +CCCn1cnc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(F)cc(Cl)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(S(=O)(=O)NC)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2nn(C)c3ccccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(F)c3nc(C)[nH]c3c2)n1; [None]; [None]; [0] +COc1cccc(-c2ncc3cccn3n2)c1; [None]; [None]; [0] +COc1cccc(-c2cc3ccccn3n2)c1; [None]; [None]; [0] +COc1cccc(-c2ccc3c(c2)CC(C)(C)O3)c1; [None]; [None]; [0] +COc1cccc(-c2cccc3ccc(O)cc23)c1; [None]; [None]; [0] +COc1cccc(-c2ncnc3c(C)csc23)c1; [None]; [None]; [0] +COc1cccc(-c2ncc(Cl)cn2)c1; [None]; [None]; [0] +COc1cccc(-c2ncc3sccc3n2)c1; [None]; [None]; [0] +COc1cccc(-c2ccc(OC(F)(F)F)cc2)c1; [None]; [None]; [0] +COc1cccc(-c2cn(C)c3ccccc23)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(NC(N)=O)cc2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(F)cc(Cl)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2ccc(NC(N)=O)cc2)c2ccccc21; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn[nH]c2Cl)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2n[nH]c3c(Cl)cccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +COc1cccc(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc(NC(N)=O)cc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(O)n3nccc3n2)cc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +Cc1nc(-c2ccc(NC(N)=O)cc2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)cc2)cn1; [None]; [None]; [0] +COc1ccc(-c2ccc(NC(N)=O)cc2)nc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3ccc(NC(N)=O)cc3)c2c1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2ccc(NC(N)=O)cc2)c1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nccc3ccccc23)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(Nc2ncccn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc(C3CCNCC3)c2)cc1; [None]; [None]; [0] +Cc1cc(-c2ccc(NC(N)=O)cc2)nc(N)n1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Br)cn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3cccn3n2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc3ccccn3n2)cc1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3ccc(NC(N)=O)cc3)ccc2O1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3ccc(O)cc23)cc1; [None]; [None]; [0] +Cc1csc2c(-c3ccc(NC(N)=O)cc3)ncnc12; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc(Cl)cn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ncc3sccc3n2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +Cn1cc(-c2ccc(NC(N)=O)cc2)c2ccccc21; [None]; [None]; [0] +Oc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3n[nH]c4ccccc34)[nH]2)cc1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3ccc4c(c3)Cc3c[nH]nc3-4)[nH]2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +Cn1nc(-c2cnc(-c3ccccc3)[nH]2)c2ccccc21; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnc(-c4ccccc4)[nH]3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +c1ccc(-c2ncc(-c3c[nH]c4cnccc34)[nH]2)cc1; [None]; [None]; [0] +Clc1cccc2c(-c3cnc(-c4ccccc4)[nH]3)n[nH]c12; [None]; [None]; [0] +c1ccc(-c2ncc(Nc3n[nH]c4ccccc34)[nH]2)cc1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +COc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +FC(F)c1cc(-c2cnc(-c3ccccc3)[nH]2)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3cnc(-c4ccccc4)[nH]3)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +CCc1sccc1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +Oc1cc(-c2cnc(-c3ccccc3)[nH]2)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnc(-c2ccccc2)[nH]1; [None]; [None]; [0] +COCc1cccc(-c2cnc(-c3ccccc3)[nH]2)c1; [None]; [None]; [0] +Cc1nc(-c2cnc(-c3ccccc3)[nH]2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnc(-c3ccccc3)[nH]2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnc(-c3ccccc3)[nH]2)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnc(-c3ccccc3)[nH]2)cc1; [None]; [None]; [0] +N[C@H](c1ncc2ccccc2n1)c1ccco1; [None]; [None]; [0] +N[C@@H](c1ccco1)c1cnc2cccnn12; [None]; [None]; [0] +N[C@@H](c1ccco1)c1nccc2ccccc12; [None]; [None]; [0] +N[C@H](Cc1ccc(C(=O)[O-])cc1)c1ccco1; [None]; [None]; [0] +N[C@H](Cc1ccc(C[NH3+])cc1)c1ccco1; [None]; [None]; [0] +N[C@H](Cc1ccc(O)cc1)c1ccco1; [None]; [None]; [0] +N[C@H](c1ncc(Br)cn1)c1ccco1; [None]; [None]; [0] +N[C@H](c1ncc2cccn2n1)c1ccco1; [None]; [None]; [0] +N[C@H](c1cc2ccccn2n1)c1ccco1; [None]; [None]; [0] +CC1(C)Cc2cc([C@@H](N)c3ccco3)ccc2O1; [None]; [None]; [0] +Cc1csc2c([C@@H](N)c3ccco3)ncnc12; [None]; [None]; [0] +N[C@H](c1ncc(Cl)cn1)c1ccco1; [None]; [None]; [0] +N[C@H](CCc1c[nH]c2ccccc12)c1ccco1; [None]; [None]; [0] +N[C@H](c1ncc2sccc2n1)c1ccco1; [None]; [None]; [0] +N[C@H](c1ccc(OC(F)(F)F)cc1)c1ccco1; [None]; [None]; [0] +Cn1cc([C@@H](N)c2ccco2)c2ccccc21; [None]; [None]; [0] +OCCn1cc(-c2cccc(O)c2)cn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn(CCO)c2)cc1; [None]; [None]; [0] +OCCn1cc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cn1; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2cc(F)cc(Cl)c2)cn1; [None]; [None]; [0] +Cn1nc(-c2cnn(CCO)c2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn(CCO)c3)cc2[nH]1; [None]; [None]; [0] +OCCn1cc(-c2cn[nH]c2Cl)cn1; [None]; [None]; [0] +OCCn1cc(-c2c[nH]c3cnccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2n[nH]c3c(Cl)cccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2[nH]cnc2-c2ccc(F)cc2)cn1; [None]; [None]; [0] +OCCn1cc(Nc2n[nH]c3ccccc23)cn1; [None]; [None]; [0] +OCCn1cc(-c2cc(C(F)F)n[nH]2)cn1; [None]; [None]; [0] +COc1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +CCCn1cnc(Nc2n[nH]c3ccccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2n[nH]c3c(Cl)cccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(OC)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3cc(OC)ccc3c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2c(C)ccc(O)c2C)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccsc2CC)n1; [None]; [None]; [0] +CCCn1cnc(-c2c(N)cnn2C)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(F)c(C)n2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(COC)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(OC)nc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(OC)cn2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +CSc1nc(-c2cccc(O)c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2n[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c(SC)n2)cc1; [None]; [None]; [0] +CSc1nc(-c2cc(F)cc(Cl)c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2nn(C)c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cc(F)c3nc(C)[nH]c3c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cn[nH]c2Cl)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2c[nH]c3cnccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(Nc2n[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2n[nH]c3c(Cl)cccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2[nH]cnc2-c2ccc(F)cc2)c[nH]1; [None]; [None]; [0] +COc1cccc(-c2c[nH]c(SC)n2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3c[nH]c(SC)n3)ccc2c1; [None]; [None]; [0] +CSc1nc(-c2cc(C(F)F)n[nH]2)c[nH]1; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c(SC)n1; [None]; [None]; [0] +CSc1nc(-c2c(C)ccc(O)c2C)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cc(O)n3nccc3n2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2c(N)cnn2C)c[nH]1; [None]; [None]; [0] +COCc1cccc(-c2c[nH]c(SC)n2)c1; [None]; [None]; [0] +CSc1nc(-c2ccc(F)c(C)n2)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(SC)n2)cn1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(SC)n2)nc1; [None]; [None]; [0] +CSc1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(O)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2c(c1)Cc1c[nH]nc1-2; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnoc2C(C)C)cc1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(F)cc(Cl)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnoc3C(C)C)cc2[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn[nH]c1Cl; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1n[nH]c2c(Cl)cccc12; [None]; [None]; [0] +CC(C)c1oncc1Nc1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cccc(-c2cnoc2C(C)C)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +COc1ccc2cc(-c3cnoc3C(C)C)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnoc1C(C)C; [None]; [None]; [0] +CCc1sccc1-c1cnoc1C(C)C; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +CC(C)c1oncc1-c1c(N)cnn1C; [None]; [None]; [0] +Cc1nc(-c2cnoc2C(C)C)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cnoc2C(C)C)c1; [None]; [None]; [0] +COc1ccc(-c2cnoc2C(C)C)cn1; [None]; [None]; [0] +COc1ccc(-c2cnoc2C(C)C)nc1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +Nc1nc(-c2ncc3ccccc3n2)cs1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2csc(N)n2)c1; [None]; [None]; [0] +Cc1ccc2ncn(-c3csc(N)n3)c2c1; [None]; [None]; [0] +Nc1nc(-c2nccc3ccccc23)cs1; [None]; [None]; [0] +Nc1nc(-c2cccc(C3CCNCC3)c2)cs1; [None]; [None]; [0] +Cc1cc(-c2csc(N)n2)nc(N)n1; [None]; [None]; [0] +Nc1nc(-c2ncc(Br)cn2)cs1; [None]; [None]; [0] +Nc1nc(-c2ncc3cccn3n2)cs1; [None]; [None]; [0] +Nc1nc(-c2cc3ccccn3n2)cs1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3csc(N)n3)ccc2O1; [None]; [None]; [0] +Nc1nc(-c2cccc3ccc(O)cc23)cs1; [None]; [None]; [0] +Nc1nc(-c2ncc(Cl)cn2)cs1; [None]; [None]; [0] +Cc1csc2c(-c3csc(N)n3)ncnc12; [None]; [None]; [0] +Nc1nc(-c2ncc3sccc3n2)cs1; [None]; [None]; [0] +Nc1nc(-c2ccc(OC(F)(F)F)cc2)cs1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cc(C#N)ccc1O; [None]; [None]; [0] +CS(=O)(=O)CCNCNc1ncccn1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1cc(CNCCS(C)(=O)=O)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cccc2ccc(O)cc12; [None]; [None]; [0] +Oc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +c1ccc2c(-c3cnn4ccccc34)n[nH]c2c1; [None]; [None]; [0] +c1ccn2ncc(-c3ccc4c(c3)Cc3c[nH]nc3-4)c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3ccccc23)cc1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +Cn1nc(-c2cnn3ccccc23)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn4ccccc34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnn2ccccc12; [None]; [None]; [0] +c1ccn2ncc(-c3c[nH]c4cnccc34)c2c1; [None]; [None]; [0] +Clc1cccc2c(-c3cnn4ccccc34)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3cnn4ccccc34)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnn3ccccc23)cc1; [None]; [None]; [0] +COc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +FC(F)c1cc(-c2cnn3ccccc23)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3cnn4ccccc34)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnn2ccccc12; [None]; [None]; [0] +COc1ccc2cc(-c3cnn(CCO)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnn(CCO)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnn(CCO)c1; [None]; [None]; [0] +OCCn1cc(-c2cc(O)n3nccc3n2)cn1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn(CCO)c1; [None]; [None]; [0] +COCc1cccc(-c2cnn(CCO)c2)c1; [None]; [None]; [0] +Cc1nc(-c2cnn(CCO)c2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnn(CCO)c2)nc1; [None]; [None]; [0] +COc1ccc(-c2cnn(CCO)c2)cn1; [None]; [None]; [0] +OCCn1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)cn1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cccc(O)c2)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2n[nH]c3ccccc23)cs1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2csc(C(C)(C)C)n2)cc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(F)cc(Cl)c2)cs1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3csc(C(C)(C)C)n3)cc2[nH]1; [None]; [None]; [0] +Cn1nc(-c2csc(C(C)(C)C)n2)c2ccccc21; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cn[nH]c2Cl)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2c[nH]c3cnccc23)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2n[nH]c3c(Cl)cccc23)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2[nH]cnc2-c2ccc(F)cc2)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(C(F)F)n[nH]2)cs1; [None]; [None]; [0] +CC(C)(C)c1nc(Nc2n[nH]c3ccccc23)cs1; [None]; [None]; [0] +COc1cccc(-c2csc(C(C)(C)C)n2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3csc(C(C)(C)C)n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cc(O)n3nccc3n2)cs1; [None]; [None]; [0] +COCc1cccc(-c2csc(C(C)(C)C)n2)c1; [None]; [None]; [0] +COc1ccc(-c2csc(C(C)(C)C)n2)cn1; [None]; [None]; [0] +Cn1ncc(N)c1-c1csc(C(C)(C)C)n1; [None]; [None]; [0] +Cc1nc(-c2csc(C(C)(C)C)n2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2csc(C(C)(C)C)n2)nc1; [None]; [None]; [0] +CC(C)(C)c1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)cs1; [None]; [None]; [0] +COc1cnc(-c2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(F)cc(Cl)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(F)c3nc(C)[nH]c3c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn[nH]c2Cl)nc1; [None]; [None]; [0] +COc1cnc(-c2n[nH]c3c(Cl)cccc23)nc1; [None]; [None]; [0] +COc1cnc(Nc2n[nH]c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2nn(C)c3ccccc23)nc1; [None]; [None]; [0] +COc1cnc(-c2[nH]cnc2-c2ccc(F)cc2)nc1; [None]; [None]; [0] +COc1cnc(-c2cccc(OC)c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(C(F)F)n[nH]2)nc1; [None]; [None]; [0] +COc1cnc(-c2c(C)ccc(O)c2C)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc3cc(OC)ccc3c2)nc1; [None]; [None]; [0] +COc1cnc(-c2cc(O)n3nccc3n2)nc1; [None]; [None]; [0] +CCc1sccc1-c1ncc(OC)cn1; [None]; [None]; [0] +COc1cnc(-c2c(N)cnn2C)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(F)c(C)n2)nc1; [None]; [None]; [0] +COc1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc1; [None]; [None]; [0] +COCc1cccc(-c2ncc(OC)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2ncc(OC)cn2)nc1; [None]; [None]; [0] +COc1cnc(-c2ccc(OC)nc2)nc1; [None]; [None]; [0] +C[C@@H](c1ccc(CO)cc1)c1ccccc1Cl; [None]; [None]; [0] +C[C@@H](Nc1n[nH]c2ccccc12)c1ccccc1Cl; [None]; [None]; [0] +CC(C)NC(=O)Oc1cccc(O)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)NC(=O)Oc1nn(C)c2ccccc12; [None]; [None]; [0] +CC(C)NC(=O)Oc1cc(F)cc(Cl)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(OC(=O)NC(C)C)cc1; [None]; [None]; [0] +CC(C)NC(=O)Oc1ccc2c(c1)Cc1c[nH]nc1-2; [None]; [None]; [0] +CC(C)NC(=O)Oc1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +CC(C)NC(=O)Oc1n[nH]c2c(Cl)cccc12; [None]; [None]; [0] +CC(C)NC(=O)Oc1cn[nH]c1Cl; [None]; [None]; [0] +COc1cccc(OC(=O)NC(C)C)c1; [None]; [None]; [0] +COc1ccc2cc(OC(=O)NC(C)C)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1OC(=O)NC(C)C; [None]; [None]; [0] +CCc1sccc1OC(=O)NC(C)C; [None]; [None]; [0] +COCc1cccc(OC(=O)NC(C)C)c1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cc(O)n2nccc2n1; [None]; [None]; [0] +Cc1nc(OC(=O)NC(C)C)ccc1F; [None]; [None]; [0] +CC(C)NC(=O)Oc1c(N)cnn1C; [None]; [None]; [0] +COc1ccc(OC(=O)NC(C)C)cn1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cccc(C(F)(F)F)c1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cnc3cccnn23)CC1; [None]; [None]; [0] +COc1ccc(OC(=O)NC(C)C)nc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2nccc3ccccc23)CC1; [None]; [None]; [0] +CC(C)NC(=O)Oc1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3ccccc3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(C[NH3+])cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(C(=O)[O-])cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(Cc2ccc(O)cc2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3cccn3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc(Br)cn2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ccc3c(c2)CC(C)(C)O3)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncnc3c(C)csc23)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc(Cl)cn2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cc3ccccn3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ncc3sccc3n2)CC1; [None]; [None]; [0] +CC(=O)N1CCCN(c2ccc(OC(F)(F)F)cc2)CC1; [None]; [None]; [0] +CCCn1cnc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +CC(=O)N1CCCN(CCc2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(O)c2)n1; [None]; [None]; [0] +CC(=O)N1CCCN(c2cn(C)c3ccccc23)CC1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(S(=O)(=O)NC)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(F)cc(Cl)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +CCCn1cnc(-c2nn(C)c3ccccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnn2ccccc12; [None]; [None]; [0] +Oc1cc(-c2cnn3ccccc23)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn2ccccc12; [None]; [None]; [0] +COCc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +Cc1nc(-c2cnn3ccccc23)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnn3ccccc23)cn1; [None]; [None]; [0] +COc1ccc(-c2cnn3ccccc23)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnn3ccccc23)cc1; [None]; [None]; [0] +Oc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +c1ccc(CNc2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +c1ccc(CNc2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NCc2ccccc2)cc1; [None]; [None]; [0] +Fc1cc(Cl)cc(NCc2ccccc2)c1; [None]; [None]; [0] +Cn1nc(NCc2ccccc2)c2ccccc21; [None]; [None]; [0] +Clc1[nH]ncc1NCc1ccccc1; [None]; [None]; [0] +Clc1cccc2c(NCc3ccccc3)n[nH]c12; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2NCc2ccccc2)cc1; [None]; [None]; [0] +COc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +COc1ccc2cc(NCc3ccccc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1NCc1ccccc1; [None]; [None]; [0] +Oc1cc(NCc2ccccc2)nc2ccnn12; [None]; [None]; [0] +Cc1ccc(O)c(C)c1NCc1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1NCc1ccccc1; [None]; [None]; [0] +Cc1nc(NCc2ccccc2)ccc1F; [None]; [None]; [0] +COCc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +COc1ccc(NCc2ccccc2)cn1; [None]; [None]; [0] +COc1ccc(NCc2ccccc2)nc1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2NCc2ccccc2)cc1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(O)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2ccccc12)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1ccc2c(c1)Cc1c[nH]nc1-2)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)cc1; [None]; [None]; [0] +OC[C@@H](Nc1cc(F)cc(Cl)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cn1nc(N[C@H](CO)c2ccc(F)c(Cl)c2)c2ccccc21; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1Cl)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2c(Cl)cccc12)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1[nH]cnc1-c1ccc(F)cc1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1cccc(N[C@H](CO)c2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +COc1ccc2cc(N[C@H](CO)c3ccc(F)c(Cl)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1cc(O)n2nccc2n1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cn1ncc(N)c1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1nc(N[C@H](CO)c2ccc(F)c(Cl)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(N[C@H](CO)c2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)cn1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(C(F)(F)F)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)nc1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1-c1ccc(Cl)cc1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(O)c1)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1ccc2c(c1)Cc1c[nH]nc1-2)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cc(F)cc(Cl)c1)c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N[C@H](CO)c2ccccc2)cc1; [None]; [None]; [0] +Cn1nc(N[C@H](CO)c2ccccc2)c2ccccc21; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1Cl)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2c(Cl)cccc12)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1[nH]cnc1-c1ccc(F)cc1)c1ccccc1; [None]; [None]; [0] +COc1cccc(N[C@H](CO)c2ccccc2)c1; [None]; [None]; [0] +COc1ccc2cc(N[C@H](CO)c3ccccc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cc(O)n2nccc2n1)c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +COCc1cccc(N[C@H](CO)c2ccccc2)c1; [None]; [None]; [0] +Cc1nc(N[C@H](CO)c2ccccc2)ccc1F; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccccc2)cn1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccccc2)nc1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(C(F)(F)F)c1)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1-c1ccc(Cl)cc1)c1ccccc1; [None]; [None]; [0] +C[C@H](Nc1n[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +C[C@@H](c1ccccc1)c1ccc(CO)cc1; [None]; [None]; [0] +c1cncc(CCNc2ncc3ccccc3n2)c1; [None]; [None]; [0] +c1cncc(CCNc2cnc3cccnn23)c1; [None]; [None]; [0] +c1cncc(CCNc2nccc3ccccc23)c1; [None]; [None]; [0] +O=C([O-])c1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +Oc1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +Brc1cnc(NCCc2cccnc2)nc1; [None]; [None]; [0] +c1cncc(CCNc2ncc3cccn3n2)c1; [None]; [None]; [0] +c1cncc(CCNc2cc3ccccn3n2)c1; [None]; [None]; [0] +CC1(C)Cc2cc(NCCc3cccnc3)ccc2O1; [None]; [None]; [0] +Cc1csc2c(NCCc3cccnc3)ncnc12; [None]; [None]; [0] +Clc1cnc(NCCc2cccnc2)nc1; [None]; [None]; [0] +c1cncc(CCNc2ncc3sccc3n2)c1; [None]; [None]; [0] +c1cncc(CCNCCc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(NCCc2cccnc2)cc1; [None]; [None]; [0] +Cn1cc(NCCc2cccnc2)c2ccccc21; [None]; [None]; [0] +Cc1cc(CNc2ncc3ccccc3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2cnc3cccnn23)on1; [None]; [None]; [0] +Cc1cc(CNc2nccc3ccccc23)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(C(=O)[O-])cc2)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(C[NH3+])cc2)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(O)cc2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc(Br)cn2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc3cccn3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2cc3ccccn3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2ccc3c(c2)CC(C)(C)O3)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc(Cl)cn2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncnc3c(C)csc23)on1; [None]; [None]; [0] +CCCn1cnc(-c2cc(F)c3nc(C)[nH]c3c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +CCCn1cnc(Nc2n[nH]c3ccccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2n[nH]c3c(Cl)cccc23)n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(OC)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +CCCn1cnc(-c2c(C)ccc(O)c2C)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc3cc(OC)ccc3c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccsc2CC)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(F)c(C)n2)n1; [None]; [None]; [0] +CCCn1cnc(-c2c(N)cnn2C)n1; [None]; [None]; [0] +CCCn1cnc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cccc(COC)c2)n1; [None]; [None]; [0] +CCCn1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(OC)cn2)n1; [None]; [None]; [0] +CCCn1cnc(-c2ccc(OC)nc2)n1; [None]; [None]; [0] +CSc1nc(-c2cccc(O)c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2n[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c(SC)n2)cc1; [None]; [None]; [0] +CSc1nc(-c2nn(C)c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cc(F)c3nc(C)[nH]c3c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cc(F)cc(Cl)c2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cn[nH]c2Cl)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2c[nH]c3cnccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2n[nH]c3c(Cl)cccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(Nc2n[nH]c3ccccc23)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2[nH]cnc2-c2ccc(F)cc2)c[nH]1; [None]; [None]; [0] +COc1cccc(-c2c[nH]c(SC)n2)c1; [None]; [None]; [0] +CSc1nc(-c2cc(C(F)F)n[nH]2)c[nH]1; [None]; [None]; [0] +COc1ccc2cc(-c3c[nH]c(SC)n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c(SC)n1; [None]; [None]; [0] +CSc1nc(-c2c(C)ccc(O)c2C)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(SC)n2)cn1; [None]; [None]; [0] +CSc1nc(-c2cc(O)n3nccc3n2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2c(N)cnn2C)c[nH]1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c(SC)n2)nc1; [None]; [None]; [0] +COCc1cccc(-c2c[nH]c(SC)n2)c1; [None]; [None]; [0] +CSc1nc(-c2ccc(F)c(C)n2)c[nH]1; [None]; [None]; [0] +CSc1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)c[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cccc(O)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1ccc2c(c1)Cc1c[nH]nc1-2; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnoc2C(C)C)cc1; [None]; [None]; [0] +CC(C)c1oncc1-c1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(F)cc(Cl)c1; [None]; [None]; [0] +CC(C)c1oncc1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnoc3C(C)C)cc2[nH]1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn[nH]c1Cl; [None]; [None]; [0] +CC(C)c1oncc1-c1n[nH]c2c(Cl)cccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1c[nH]c2cnccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1[nH]cnc1-c1ccc(F)cc1; [None]; [None]; [0] +COc1cccc(-c2cnoc2C(C)C)c1; [None]; [None]; [0] +CC(C)c1oncc1Nc1n[nH]c2ccccc12; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(C(F)F)n[nH]1; [None]; [None]; [0] +COc1ccc2cc(-c3cnoc3C(C)C)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnoc1C(C)C; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnoc1C(C)C; [None]; [None]; [0] +CC(C)c1oncc1-c1c(N)cnn1C; [None]; [None]; [0] +CC(C)c1oncc1-c1cc(O)n2nccc2n1; [None]; [None]; [0] +COCc1cccc(-c2cnoc2C(C)C)c1; [None]; [None]; [0] +Cc1nc(-c2cnoc2C(C)C)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnoc2C(C)C)cn1; [None]; [None]; [0] +COc1ccc(-c2cnoc2C(C)C)nc1; [None]; [None]; [0] +Nc1nc(-c2ncc3ccccc3n2)cs1; [None]; [None]; [0] +CC(C)c1oncc1-c1cn[nH]c1-c1ccc(Cl)cc1; [None]; [None]; [0] +Cc1ccc2ncn(-c3csc(N)n3)c2c1; [None]; [None]; [0] +Nc1nc(-c2nccc3ccccc23)cs1; [None]; [None]; [0] +N#Cc1ccc(O)c(-c2csc(N)n2)c1; [None]; [None]; [0] +Cc1cc(-c2csc(N)n2)nc(N)n1; [None]; [None]; [0] +Nc1nc(-c2cccc(C3CCNCC3)c2)cs1; [None]; [None]; [0] +Nc1nc(-c2ncc(Br)cn2)cs1; [None]; [None]; [0] +Nc1nc(-c2ncc3cccn3n2)cs1; [None]; [None]; [0] +CC1(C)Cc2cc(-c3csc(N)n3)ccc2O1; [None]; [None]; [0] +Nc1nc(-c2cc3ccccn3n2)cs1; [None]; [None]; [0] +Nc1nc(-c2cccc3ccc(O)cc23)cs1; [None]; [None]; [0] +Cc1csc2c(-c3csc(N)n3)ncnc12; [None]; [None]; [0] +Nc1nc(-c2ncc(Cl)cn2)cs1; [None]; [None]; [0] +Nc1nc(-c2ncc3sccc3n2)cs1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cc(C#N)ccc1O; [None]; [None]; [0] +Nc1nc(-c2ccc(OC(F)(F)F)cc2)cs1; [None]; [None]; [0] +CS(=O)(=O)CCNCNc1ncccn1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cccc(C2CCNCC2)c1; [None]; [None]; [0] +Cc1cc(CNCCS(C)(=O)=O)nc(N)n1; [None]; [None]; [0] +CS(=O)(=O)CCNCc1cccc2ccc(O)cc12; [None]; [None]; [0] +c1ccc2c(-c3cnn4ccccc34)n[nH]c2c1; [None]; [None]; [0] +Oc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnn3ccccc23)cc1; [None]; [None]; [0] +c1ccn2ncc(-c3ccc4c(c3)Cc3c[nH]nc3-4)c2c1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnn4ccccc34)cc2[nH]1; [None]; [None]; [0] +Cn1nc(-c2cnn3ccccc23)c2ccccc21; [None]; [None]; [0] +Clc1[nH]ncc1-c1cnn2ccccc12; [None]; [None]; [0] +c1ccn2ncc(-c3c[nH]c4cnccc34)c2c1; [None]; [None]; [0] +Clc1cccc2c(-c3cnn4ccccc34)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3cnn4ccccc34)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2cnn3ccccc23)cc1; [None]; [None]; [0] +COc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +CCc1sccc1-c1cnn2ccccc12; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnn2ccccc12; [None]; [None]; [0] +COc1ccc2cc(-c3cnn4ccccc34)ccc2c1; [None]; [None]; [0] +FC(F)c1cc(-c2cnn3ccccc23)[nH]n1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cnn2ccccc12; [None]; [None]; [0] +Cc1cc(CNc2ncc3sccc3n2)on1; [None]; [None]; [0] +Cc1cc(CNCCc2c[nH]c3ccccc23)on1; [None]; [None]; [0] +Cc1cc(CNc2ccc(OC(F)(F)F)cc2)on1; [None]; [None]; [0] +Cc1cc(CNc2cn(C)c3ccccc23)on1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2ccccc2n1; [None]; [None]; [0] +Fc1ccccc1Oc1cnc2cccnn12; [None]; [None]; [0] +Fc1ccccc1Oc1nccc2ccccc12; [None]; [None]; [0] +O=C([O-])c1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +[NH3+]Cc1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +Oc1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc(Br)cn1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2cccn2n1; [None]; [None]; [0] +Fc1ccccc1Oc1cc2ccccn2n1; [None]; [None]; [0] +CC1(C)Cc2cc(Oc3ccccc3F)ccc2O1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc(Cl)cn1; [None]; [None]; [0] +Cc1csc2c(Oc3ccccc3F)ncnc12; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2sccc2n1; [None]; [None]; [0] +Fc1ccccc1OCCc1c[nH]c2ccccc12; [None]; [None]; [0] +Fc1ccccc1Oc1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cn1cc(Oc2ccccc2F)c2ccccc21; [None]; [None]; [0] +C[C@H](Nc1ncc2ccccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1cnc2cccnn12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1nccc2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(C(=O)[O-])cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(O)cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(C[NH3+])cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc(Br)cn1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc2cccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1cc2ccccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc2c(c1)CC(C)(C)O2)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc(Cl)cn1)c1ccc(F)cc1; [None]; [None]; [0] +Cc1csc2c(N[C@@H](C)c3ccc(F)cc3)ncnc12; [None]; [None]; [0] +C[C@H](Nc1ncc2sccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCCc1c[nH]c2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc(OC(F)(F)F)cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)(Nc1cccc(O)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1n[nH]c2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1ccc2c(c1)Cc1c[nH]nc1-2)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(C)(C)C(=O)NCC(F)(F)F)cc1; [None]; [None]; [0] +CC(C)(Nc1cc(F)cc(Cl)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1nc(NC(C)(C)C(=O)NCC(F)(F)F)c2ccccc21; [None]; [None]; [0] +CC(C)(Nc1cn[nH]c1Cl)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1n[nH]c2c(Cl)cccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1[nH]cnc1-c1ccc(F)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +COc1cccc(NC(C)(C)C(=O)NCC(F)(F)F)c1; [None]; [None]; [0] +COc1ccc2cc(NC(C)(C)C(=O)NCC(F)(F)F)ccc2c1; [None]; [None]; [0] +CCc1sccc1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1ccc(O)c(C)c1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1cc(O)n2nccc2n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1ncc(N)c1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1nc(NC(C)(C)C(=O)NCC(F)(F)F)ccc1F; [None]; [None]; [0] +COCc1cccc(NC(C)(C)C(=O)NCC(F)(F)F)c1; [None]; [None]; [0] +COc1ccc(NC(C)(C)C(=O)NCC(F)(F)F)cn1; [None]; [None]; [0] +COc1ccc(NC(C)(C)C(=O)NCC(F)(F)F)nc1; [None]; [None]; [0] +CC(C)(Nc1cccc(C(F)(F)F)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1cn[nH]c1-c1ccc(Cl)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CN(c1cccc(O)c1)C1CCCCC1; [None]; [None]; [0] +CN(c1n[nH]c2ccccc12)C1CCCCC1; [None]; [None]; [0] +CN(c1ccc2c(c1)Cc1c[nH]nc1-2)C1CCCCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N(C)C2CCCCC2)cc1; [None]; [None]; [0] +CN(c1cc(F)cc(Cl)c1)C1CCCCC1; [None]; [None]; [0] +CN(c1nn(C)c2ccccc12)C1CCCCC1; [None]; [None]; [0] +CN(c1cn[nH]c1Cl)C1CCCCC1; [None]; [None]; [0] +CN(c1n[nH]c2c(Cl)cccc12)C1CCCCC1; [None]; [None]; [0] +CN(c1[nH]cnc1-c1ccc(F)cc1)C1CCCCC1; [None]; [None]; [0] +COc1cccc(N(C)C2CCCCC2)c1; [None]; [None]; [0] +COc1ccc2cc(N(C)C3CCCCC3)ccc2c1; [None]; [None]; [0] +CCc1sccc1N(C)C1CCCCC1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N(C)C1CCCCC1; [None]; [None]; [0] +CN(c1cc(O)n2nccc2n1)C1CCCCC1; [None]; [None]; [0] +CN(c1c(N)cnn1C)C1CCCCC1; [None]; [None]; [0] +Cc1nc(N(C)C2CCCCC2)ccc1F; [None]; [None]; [0] +COCc1cccc(N(C)C2CCCCC2)c1; [None]; [None]; [0] +COc1ccc(N(C)C2CCCCC2)cn1; [None]; [None]; [0] +CN(c1cccc(C(F)(F)F)c1)C1CCCCC1; [None]; [None]; [0] +COc1ccc(N(C)C2CCCCC2)nc1; [None]; [None]; [0] +CN(c1cn[nH]c1-c1ccc(Cl)cc1)C1CCCCC1; [None]; [None]; [0] +Oc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +Oc1ccc2nc(-c3n[nH]c4ccccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4c(c3)Cc3c[nH]nc3-4)[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ccc(O)cc3[nH]2)cc1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(F)cc(Cl)c3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(-c2nc3ccc(O)cc3[nH]2)c2ccccc21; [None]; [None]; [0] +Oc1ccc2nc(-c3cn[nH]c3Cl)[nH]c2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nc4ccc(O)cc4[nH]3)cc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3c[nH]c4cnccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3n[nH]c4c(Cl)cccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(Nc3n[nH]c4ccccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3[nH]cnc3-c3ccc(F)cc3)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(C(F)F)n[nH]3)[nH]c2c1; [None]; [None]; [0] +COc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3nc4ccc(O)cc4[nH]3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(O)n4nccc4n3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1nc(-c2nc3ccc(O)cc3[nH]2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2nc3ccc(O)cc3[nH]2)cn1; [None]; [None]; [0] +COc1ccc(-c2nc3ccc(O)cc3[nH]2)nc1; [None]; [None]; [0] +Oc1cc(-c2cnn3ccccc23)nc2ccnn12; [None]; [None]; [0] +Cc1nc(-c2cnn3ccccc23)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cnn3ccccc23)cn1; [None]; [None]; [0] +COCc1cccc(-c2cnn3ccccc23)c1; [None]; [None]; [0] +COc1ccc(-c2cnn3ccccc23)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2cnn3ccccc23)cc1; [None]; [None]; [0] +Oc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +c1ccc(CNc2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +c1ccc(CNc2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NCc2ccccc2)cc1; [None]; [None]; [0] +Cn1nc(NCc2ccccc2)c2ccccc21; [None]; [None]; [0] +Fc1cc(Cl)cc(NCc2ccccc2)c1; [None]; [None]; [0] +Clc1[nH]ncc1NCc1ccccc1; [None]; [None]; [0] +Clc1cccc2c(NCc3ccccc3)n[nH]c12; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2NCc2ccccc2)cc1; [None]; [None]; [0] +COc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +COc1ccc2cc(NCc3ccccc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1NCc1ccccc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1NCc1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1NCc1ccccc1; [None]; [None]; [0] +Oc1cc(NCc2ccccc2)nc2ccnn12; [None]; [None]; [0] +COc1ccc(NCc2ccccc2)cn1; [None]; [None]; [0] +COCc1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +Cc1nc(NCc2ccccc2)ccc1F; [None]; [None]; [0] +COc1ccc(NCc2ccccc2)nc1; [None]; [None]; [0] +FC(F)(F)c1cccc(NCc2ccccc2)c1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(O)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2ccccc12)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2NCc2ccccc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)cc1; [None]; [None]; [0] +OC[C@@H](Nc1ccc2c(c1)Cc1c[nH]nc1-2)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1cc(F)cc(Cl)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2c(Cl)cccc12)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1[nH]cnc1-c1ccc(F)cc1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1Cl)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cn1nc(N[C@H](CO)c2ccc(F)c(Cl)c2)c2ccccc21; [None]; [None]; [0] +COc1cccc(N[C@H](CO)c2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +CCc1sccc1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1ccc2cc(N[C@H](CO)c3ccc(F)c(Cl)c3)ccc2c1; [None]; [None]; [0] +Cn1ncc(N)c1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N[C@H](CO)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1cc(O)n2nccc2n1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +Cc1nc(N[C@H](CO)c2ccc(F)c(Cl)c2)ccc1F; [None]; [None]; [0] +OC[C@@H](Nc1cccc(C(F)(F)F)c1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)cn1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccc(F)c(Cl)c2)nc1; [None]; [None]; [0] +COCc1cccc(N[C@H](CO)c2ccc(F)c(Cl)c2)c1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(O)c1)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1-c1ccc(Cl)cc1)c1ccc(F)c(Cl)c1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cc(F)cc(Cl)c1)c1ccccc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N[C@H](CO)c2ccccc2)cc1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1Cl)c1ccccc1; [None]; [None]; [0] +Cn1nc(N[C@H](CO)c2ccccc2)c2ccccc21; [None]; [None]; [0] +OC[C@@H](Nc1ccc2c(c1)Cc1c[nH]nc1-2)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1[nH]cnc1-c1ccc(F)cc1)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1n[nH]c2c(Cl)cccc12)c1ccccc1; [None]; [None]; [0] +COc1cccc(N[C@H](CO)c2ccccc2)c1; [None]; [None]; [0] +COc1ccc2cc(N[C@H](CO)c3ccccc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cc(O)n2nccc2n1)c1ccccc1; [None]; [None]; [0] +Cn1ncc(N)c1N[C@H](CO)c1ccccc1; [None]; [None]; [0] +COCc1cccc(N[C@H](CO)c2ccccc2)c1; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccccc2)nc1; [None]; [None]; [0] +Cc1nc(N[C@H](CO)c2ccccc2)ccc1F; [None]; [None]; [0] +COc1ccc(N[C@H](CO)c2ccccc2)cn1; [None]; [None]; [0] +C[C@H](Nc1n[nH]c2ccccc12)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cn[nH]c1-c1ccc(Cl)cc1)c1ccccc1; [None]; [None]; [0] +OC[C@@H](Nc1cccc(C(F)(F)F)c1)c1ccccc1; [None]; [None]; [0] +C[C@@H](c1ccccc1)c1ccc(CO)cc1; [None]; [None]; [0] +c1cncc(CCNc2ncc3ccccc3n2)c1; [None]; [None]; [0] +c1cncc(CCNc2cnc3cccnn23)c1; [None]; [None]; [0] +[NH3+]Cc1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +c1cncc(CCNc2nccc3ccccc23)c1; [None]; [None]; [0] +Oc1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +O=C([O-])c1ccc(CNCCc2cccnc2)cc1; [None]; [None]; [0] +Brc1cnc(NCCc2cccnc2)nc1; [None]; [None]; [0] +c1cncc(CCNc2ncc3cccn3n2)c1; [None]; [None]; [0] +c1cncc(CCNc2cc3ccccn3n2)c1; [None]; [None]; [0] +Cc1csc2c(NCCc3cccnc3)ncnc12; [None]; [None]; [0] +Clc1cnc(NCCc2cccnc2)nc1; [None]; [None]; [0] +CC1(C)Cc2cc(NCCc3cccnc3)ccc2O1; [None]; [None]; [0] +c1cncc(CCNc2ncc3sccc3n2)c1; [None]; [None]; [0] +c1cncc(CCNCCc2c[nH]c3ccccc23)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(NCCc2cccnc2)cc1; [None]; [None]; [0] +Cn1cc(NCCc2cccnc2)c2ccccc21; [None]; [None]; [0] +Cc1cc(CNc2ncc3ccccc3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2nccc3ccccc23)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(C(=O)[O-])cc2)on1; [None]; [None]; [0] +Cc1cc(CNc2cnc3cccnn23)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(O)cc2)on1; [None]; [None]; [0] +Cc1cc(CNCc2ccc(C[NH3+])cc2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc(Br)cn2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc3cccn3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2ccc3c(c2)CC(C)(C)O3)on1; [None]; [None]; [0] +Cc1cc(CNc2cc3ccccn3n2)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc(Cl)cn2)on1; [None]; [None]; [0] +Cc1cc(CNCCc2c[nH]c3ccccc23)on1; [None]; [None]; [0] +Cc1cc(CNc2ncnc3c(C)csc23)on1; [None]; [None]; [0] +Cc1cc(CNc2ncc3sccc3n2)on1; [None]; [None]; [0] +Oc1ccc2nc(-c3cn[nH]c3-c3ccc(Cl)cc3)[nH]c2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc(O)c2)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccn(CC[NH3+])n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(F)cc(Cl)c2)n1; [None]; [None]; [0] +Cn1nc(-c2ccn(CC[NH3+])n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccn(CC[NH3+])n3)cc2[nH]1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2n[nH]c3ccccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2n[nH]c3c(Cl)cccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +COc1cccc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +COc1ccc2cc(-c3ccn(CC[NH3+])n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +Cc1nc(-c2ccn(CC[NH3+])n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +COc1ccc(-c2ccn(CC[NH3+])n2)cn1; [None]; [None]; [0] +COc1ccc(-c2ccn(CC[NH3+])n2)nc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3ccccc3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2cnc3cccnn23)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2nccc3ccccc23)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCc2ccc(C(=O)[O-])cc2)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(CNC[C@@H]2CC[C@@H]([NH3+])CC2)cc1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCc2ccc(O)cc2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3cccn3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc(Br)cn2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2cc3ccccn3n2)CC1; [None]; [None]; [0] +CC1(C)Cc2cc(NC[C@@H]3CC[C@@H]([NH3+])CC3)ccc2O1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc(Cl)cn2)CC1; [None]; [None]; [0] +Cc1csc2c(NC[C@@H]3CC[C@@H]([NH3+])CC3)ncnc12; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCCc2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3sccc3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ccc(OC(F)(F)F)cc2)CC1; [None]; [None]; [0] +Cn1cc(NC[C@@H]2CC[C@@H]([NH3+])CC2)c2ccccc21; [None]; [None]; [0] +N#Cc1ccc(O)c(Cc2ccc3nc[nH]c3c2Cl)c1; [None]; [None]; [0] +Clc1c(CNc2ncccn2)ccc2nc[nH]c12; [None]; [None]; [0] +Cc1cc(Cc2ccc3nc[nH]c3c2Cl)nc(N)n1; [None]; [None]; [0] +Clc1c(Cc2cccc(C3CCNCC3)c2)ccc2nc[nH]c12; [None]; [None]; [0] +Oc1ccc2cccc(Cc3ccc4nc[nH]c4c3Cl)c2c1; [None]; [None]; [0] +c1ccc2c(-c3ccc4c(c3)OCO4)n[nH]c2c1; [None]; [None]; [0] +c1cc2c(cc1-c1ccc3c(c1)OCO3)Cc1c[nH]nc1-2; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +Cn1nc(-c2ccc3c(c2)OCO3)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4c(c3)OCO4)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Clc1cccc2c(-c3ccc4c(c3)OCO4)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3ccc4c(c3)OCO4)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +COc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +FC(F)c1cc(-c2ccc3c(c2)OCO3)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc4c(c3)OCO4)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +OCc1ccc(-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Oc1cc(-c2ccc3c(c2)OCO3)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Cc1nc(-c2ccc3c(c2)OCO3)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)OCO3)cn1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)OCO3)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(O)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2n[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)Cc2cccc(OC)c2)cc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2nn(C)c3ccccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cn[nH]c2Cl)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(OC)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc3cc(OC)ccc3c2)c1; [None]; [None]; [0] +CCc1sccc1NC(=O)Cc1cccc(OC)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2c(C)ccc(O)c2C)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2c(N)cnn2C)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc(F)c(C)n2)c1; [None]; [None]; [0] +COCc1cccc(NC(=O)Cc2cccc(OC)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc(OC)nc2)c1; [None]; [None]; [0] +COc1ccc(NC(=O)Cc2cccc(OC)c2)nc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cccc(O)c2)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2n[nH]c3ccccc23)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(CC(N)=O)c2)cc1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +Cn1nc(-c2cccc(CC(N)=O)c2)c2ccccc21; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cccc(-c2cccc(CC(N)=O)c2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3cccc(CC(N)=O)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +Cc1cc(CNc2cn(C)c3ccccc23)on1; [None]; [None]; [0] +Cc1cc(CNc2ccc(OC(F)(F)F)cc2)on1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2ccccc2n1; [None]; [None]; [0] +Fc1ccccc1Oc1cnc2cccnn12; [None]; [None]; [0] +Fc1ccccc1Oc1nccc2ccccc12; [None]; [None]; [0] +[NH3+]Cc1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +Oc1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +O=C([O-])c1ccc(COc2ccccc2F)cc1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc(Br)cn1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2cccn2n1; [None]; [None]; [0] +CC1(C)Cc2cc(Oc3ccccc3F)ccc2O1; [None]; [None]; [0] +Fc1ccccc1Oc1cc2ccccn2n1; [None]; [None]; [0] +Cc1csc2c(Oc3ccccc3F)ncnc12; [None]; [None]; [0] +Fc1ccccc1Oc1ncc(Cl)cn1; [None]; [None]; [0] +C[C@H](Nc1ncc2ccccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +Fc1ccccc1Oc1ncc2sccc2n1; [None]; [None]; [0] +Fc1ccccc1Oc1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cn1cc(Oc2ccccc2F)c2ccccc21; [None]; [None]; [0] +Fc1ccccc1OCCc1c[nH]c2ccccc12; [None]; [None]; [0] +C[C@H](Nc1cnc2cccnn12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1nccc2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(C[NH3+])cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc(Br)cn1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(C(=O)[O-])cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCc1ccc(O)cc1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc2cccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1cc2ccccn2n1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc2c(c1)CC(C)(C)O2)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ncc2sccc2n1)c1ccc(F)cc1; [None]; [None]; [0] +Cc1csc2c(N[C@@H](C)c3ccc(F)cc3)ncnc12; [None]; [None]; [0] +C[C@H](Nc1ncc(Cl)cn1)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](NCCc1c[nH]c2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +C[C@H](Nc1ccc(OC(F)(F)F)cc1)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)(Nc1ccc2c(c1)Cc1c[nH]nc1-2)C(=O)NCC(F)(F)F; [None]; [None]; [0] +C[C@H](Nc1cn(C)c2ccccc12)c1ccc(F)cc1; [None]; [None]; [0] +CC(C)(Nc1cccc(O)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(C)(C)C(=O)NCC(F)(F)F)cc1; [None]; [None]; [0] +CC(C)(Nc1n[nH]c2ccccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1cc(F)cc(Cl)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1[nH]cnc1-c1ccc(F)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1cn[nH]c1Cl)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cn1nc(NC(C)(C)C(=O)NCC(F)(F)F)c2ccccc21; [None]; [None]; [0] +COc1cccc(NC(C)(C)C(=O)NCC(F)(F)F)c1; [None]; [None]; [0] +CC(C)(Nc1n[nH]c2c(Cl)cccc12)C(=O)NCC(F)(F)F; [None]; [None]; [0] +COc1ccc2cc(NC(C)(C)C(=O)NCC(F)(F)F)ccc2c1; [None]; [None]; [0] +CC(C)(Nc1cc(O)n2nccc2n1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CCc1sccc1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1ccc(O)c(C)c1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +Cc1nc(NC(C)(C)C(=O)NCC(F)(F)F)ccc1F; [None]; [None]; [0] +Cn1ncc(N)c1NC(C)(C)C(=O)NCC(F)(F)F; [None]; [None]; [0] +COCc1cccc(NC(C)(C)C(=O)NCC(F)(F)F)c1; [None]; [None]; [0] +CC(C)(Nc1cccc(C(F)(F)F)c1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +CC(C)(Nc1cn[nH]c1-c1ccc(Cl)cc1)C(=O)NCC(F)(F)F; [None]; [None]; [0] +COc1ccc(NC(C)(C)C(=O)NCC(F)(F)F)nc1; [None]; [None]; [0] +CN(c1cccc(O)c1)C1CCCCC1; [None]; [None]; [0] +COc1ccc(NC(C)(C)C(=O)NCC(F)(F)F)cn1; [None]; [None]; [0] +CN(c1n[nH]c2ccccc12)C1CCCCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(N(C)C2CCCCC2)cc1; [None]; [None]; [0] +CN(c1ccc2c(c1)Cc1c[nH]nc1-2)C1CCCCC1; [None]; [None]; [0] +CN(c1cc(F)cc(Cl)c1)C1CCCCC1; [None]; [None]; [0] +CN(c1cn[nH]c1Cl)C1CCCCC1; [None]; [None]; [0] +CN(c1nn(C)c2ccccc12)C1CCCCC1; [None]; [None]; [0] +CN(c1n[nH]c2c(Cl)cccc12)C1CCCCC1; [None]; [None]; [0] +COc1ccc2cc(N(C)C3CCCCC3)ccc2c1; [None]; [None]; [0] +CN(c1[nH]cnc1-c1ccc(F)cc1)C1CCCCC1; [None]; [None]; [0] +COc1cccc(N(C)C2CCCCC2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1N(C)C1CCCCC1; [None]; [None]; [0] +CCc1sccc1N(C)C1CCCCC1; [None]; [None]; [0] +CN(c1cc(O)n2nccc2n1)C1CCCCC1; [None]; [None]; [0] +CN(c1c(N)cnn1C)C1CCCCC1; [None]; [None]; [0] +COc1ccc(N(C)C2CCCCC2)cn1; [None]; [None]; [0] +COc1ccc(N(C)C2CCCCC2)nc1; [None]; [None]; [0] +Cc1nc(N(C)C2CCCCC2)ccc1F; [None]; [None]; [0] +COCc1cccc(N(C)C2CCCCC2)c1; [None]; [None]; [0] +CN(c1cccc(C(F)(F)F)c1)C1CCCCC1; [None]; [None]; [0] +Oc1ccc2nc(-c3n[nH]c4ccccc34)[nH]c2c1; [None]; [None]; [0] +CN(c1cn[nH]c1-c1ccc(Cl)cc1)C1CCCCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc3ccc(O)cc3[nH]2)cc1; [None]; [None]; [0] +Oc1ccc2nc(-c3ccc4c(c3)Cc3c[nH]nc3-4)[nH]c2c1; [None]; [None]; [0] +Oc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(F)cc(Cl)c3)[nH]c2c1; [None]; [None]; [0] +Cn1nc(-c2nc3ccc(O)cc3[nH]2)c2ccccc21; [None]; [None]; [0] +Oc1ccc2nc(-c3cn[nH]c3Cl)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3n[nH]c4c(Cl)cccc34)[nH]c2c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nc4ccc(O)cc4[nH]3)cc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3c[nH]c4cnccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(Nc3n[nH]c4ccccc34)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3[nH]cnc3-c3ccc(F)cc3)[nH]c2c1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(C(F)F)n[nH]3)[nH]c2c1; [None]; [None]; [0] +COc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3nc4ccc(O)cc4[nH]3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Oc1ccc2nc(-c3cc(O)n4nccc4n3)[nH]c2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1nc2ccc(O)cc2[nH]1; [None]; [None]; [0] +Cc1nc(-c2nc3ccc(O)cc3[nH]2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2nc3ccc(O)cc3[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2nc3ccc(O)cc3[nH]2)cn1; [None]; [None]; [0] +COc1ccc(-c2nc3ccc(O)cc3[nH]2)nc1; [None]; [None]; [0] +Oc1ccc2nc(-c3cn[nH]c3-c3ccc(Cl)cc3)[nH]c2c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2n[nH]c3ccccc23)n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +Cc1nc(-c2cccc(CC(N)=O)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cccc(CC(N)=O)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(CC(N)=O)c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cccc(CC(N)=O)c2)nc1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3ccccc3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnc3cccnn23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2nccc3ccccc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(C(=O)[O-])cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(C[NH3+])cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(O)cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3cccn3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccccn3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CC(C)(C)O3)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Cl)cn2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncnc3c(C)csc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3sccc3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCc2c[nH]c3ccccc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cn(C)c3ccccc23)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(O)c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2n[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3c(c2)Cc2c[nH]nc2-3)[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(NC(C)=O)[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(F)cc(Cl)c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nn(C)c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(F)c3nc(C)[nH]c3c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cn[nH]c2Cl)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c3cnccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2n[nH]c3c(Cl)cccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2n[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2[nH]cnc2-c2ccc(F)cc2)[nH]1; [None]; [None]; [0] +COc1cccc(-c2cnc(NC(C)=O)[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(C(F)F)n[nH]2)[nH]1; [None]; [None]; [0] +COc1ccc2cc(-c3cnc(NC(C)=O)[nH]3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnc(NC(C)=O)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c(C)ccc(O)c2C)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(O)n3nccc3n2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c(N)cnn2C)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(F)c(C)n2)[nH]1; [None]; [None]; [0] +COCc1cccc(-c2cnc(NC(C)=O)[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(NC(C)=O)[nH]2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnc(NC(C)=O)[nH]2)nc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cn[nH]c2-c2ccc(Cl)cc2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2cccc(O)c2)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3ccccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)nc2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc(N)c3ccccc3n2)cc1; [None]; [None]; [0] +Nc1nc(-c2cc(F)cc(Cl)c2)nc2ccccc12; [None]; [None]; [0] +Cn1nc(-c2nc(N)c3ccccc3n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nc(N)c4ccccc4n3)cc2[nH]1; [None]; [None]; [0] +Nc1nc(-c2cn[nH]c2Cl)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3cnccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3c(Cl)cccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(Nc2n[nH]c3ccccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2[nH]cnc2-c2ccc(F)cc2)nc2ccccc12; [None]; [None]; [0] +COc1cccc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +Nc1nc(-c2cc(C(F)F)n[nH]2)nc2ccccc12; [None]; [None]; [0] +COc1ccc2cc(-c3nc(N)c4ccccc4n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Nc1nc(-c2cc(O)n3nccc3n2)nc2ccccc12; [None]; [None]; [0] +Cn1ncc(N)c1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Cc1nc(-c2nc(N)c3ccccc3n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +COc1ccc(-c2nc(N)c3ccccc3n2)cn1; [None]; [None]; [0] +COc1ccc(-c2nc(N)c3ccccc3n2)nc1; [None]; [None]; [0] +Nc1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc2ccccc12; [None]; [None]; [0] +Oc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +c1ccc2nc(-c3n[nH]c4ccccc34)ncc2c1; [None]; [None]; [0] +c1ccc2nc(-c3ccc4c(c3)Cc3c[nH]nc3-4)ncc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cn1nc(-c2ncc3ccccc3n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ncc4ccccc4n3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ncc2ccccc2n1; [None]; [None]; [0] +c1ccc2nc(-c3c[nH]c4cnccc34)ncc2c1; [None]; [None]; [0] +Clc1cccc2c(-c3ncc4ccccc4n3)n[nH]c12; [None]; [None]; [0] +c1ccc2nc(Nc3n[nH]c4ccccc34)ncc2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +FC(F)c1cc(-c2ncc3ccccc3n2)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3ncc4ccccc4n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ncc2ccccc2n1; [None]; [None]; [0] +Oc1cc(-c2ncc3ccccc3n2)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ncc2ccccc2n1; [None]; [None]; [0] +Cc1nc(-c2ncc3ccccc3n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +COc1ccc(-c2ncc3ccccc3n2)cn1; [None]; [None]; [0] +COc1ccc(-c2ncc3ccccc3n2)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cccnc34)n[nH]c2c1; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)Cc3c[nH]nc3-4)c[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cccc(O)c2)n1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccn(CC[NH3+])n2)cc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(F)cc(Cl)c2)n1; [None]; [None]; [0] +Cn1nc(-c2ccn(CC[NH3+])n2)c2ccccc21; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cn[nH]c2Cl)n1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccn(CC[NH3+])n3)cc2[nH]1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2c[nH]c3cnccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2n[nH]c3c(Cl)cccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(Nc2n[nH]c3ccccc23)n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2[nH]cnc2-c2ccc(F)cc2)n1; [None]; [None]; [0] +COc1cccc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(C(F)F)n[nH]2)n1; [None]; [None]; [0] +CCc1sccc1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +COc1ccc2cc(-c3ccn(CC[NH3+])n3)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cc(O)n3nccc3n2)n1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccn(CC[NH3+])n1; [None]; [None]; [0] +COc1ccc(-c2ccn(CC[NH3+])n2)cn1; [None]; [None]; [0] +Cc1nc(-c2ccn(CC[NH3+])n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccn(CC[NH3+])n2)c1; [None]; [None]; [0] +COc1ccc(-c2ccn(CC[NH3+])n2)nc1; [None]; [None]; [0] +[NH3+]CCn1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)n1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3ccccc3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCc2ccc(C(=O)[O-])cc2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2cnc3cccnn23)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2nccc3ccccc23)CC1; [None]; [None]; [0] +[NH3+]Cc1ccc(CNC[C@@H]2CC[C@@H]([NH3+])CC2)cc1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCc2ccc(O)cc2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc(Br)cn2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3cccn3n2)CC1; [None]; [None]; [0] +CC1(C)Cc2cc(NC[C@@H]3CC[C@@H]([NH3+])CC3)ccc2O1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2cc3ccccn3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc(Cl)cn2)CC1; [None]; [None]; [0] +Cc1csc2c(NC[C@@H]3CC[C@@H]([NH3+])CC3)ncnc12; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ncc3sccc3n2)CC1; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNCCc2c[nH]c3ccccc23)CC1; [None]; [None]; [0] +Cn1cc(NC[C@@H]2CC[C@@H]([NH3+])CC2)c2ccccc21; [None]; [None]; [0] +[NH3+][C@@H]1CC[C@@H](CNc2ccc(OC(F)(F)F)cc2)CC1; [None]; [None]; [0] +N#Cc1ccc(O)c(Cc2ccc3nc[nH]c3c2Cl)c1; [None]; [None]; [0] +Clc1c(CNc2ncccn2)ccc2nc[nH]c12; [None]; [None]; [0] +Clc1c(Cc2cccc(C3CCNCC3)c2)ccc2nc[nH]c12; [None]; [None]; [0] +Cc1cc(Cc2ccc3nc[nH]c3c2Cl)nc(N)n1; [None]; [None]; [0] +c1ccc2c(-c3ccc4c(c3)OCO4)n[nH]c2c1; [None]; [None]; [0] +Oc1ccc2cccc(Cc3ccc4nc[nH]c4c3Cl)c2c1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +c1cc2c(cc1-c1ccc3c(c1)OCO3)Cc1c[nH]nc1-2; [None]; [None]; [0] +Cn1nc(-c2ccc3c(c2)OCO3)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc4c(c3)OCO4)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Clc1cccc2c(-c3ccc4c(c3)OCO4)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3ccc4c(c3)OCO4)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +COc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +FC(F)c1cc(-c2ccc3c(c2)OCO3)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc4c(c3)OCO4)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +OCc1ccc(-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Oc1cc(-c2ccc3c(c2)OCO3)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc2c(c1)OCO2; [None]; [None]; [0] +Cc1nc(-c2ccc3c(c2)OCO3)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc3c(c2)OCO3)c1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)OCO3)cn1; [None]; [None]; [0] +COc1ccc(-c2ccc3c(c2)OCO3)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ccc3c(c2)OCO3)cc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(O)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2n[nH]c3ccccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(NC(=O)Cc2cccc(OC)c2)cc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2nn(C)c3ccccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cn[nH]c2Cl)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(OC)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2c(C)ccc(O)c2C)c1; [None]; [None]; [0] +CCc1sccc1NC(=O)Cc1cccc(OC)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc3cc(OC)ccc3c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2c(N)cnn2C)c1; [None]; [None]; [0] +COCc1cccc(NC(=O)Cc2cccc(OC)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc(F)c(C)n2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2ccc(OC)nc2)c1; [None]; [None]; [0] +COc1ccc(NC(=O)Cc2cccc(OC)c2)nc1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +COc1cccc(CC(=O)Nc2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cccc(O)c2)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2n[nH]c3ccccc23)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(CC(N)=O)c2)cc1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +Cn1nc(-c2cccc(CC(N)=O)c2)c2ccccc21; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cccc(-c2cccc(CC(N)=O)c2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3cccc(CC(N)=O)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +Cn1nc(-c2c[nH]c3cccnc23)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3c[nH]c4cccnc34)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +c1cnc2c(-c3c[nH]c4cnccc34)c[nH]c2c1; [None]; [None]; [0] +Clc1cccc2c(-c3c[nH]c4cccnc34)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3c[nH]c4cccnc34)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +COc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +FC(F)c1cc(-c2c[nH]c3cccnc23)[nH]n1; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +COc1ccc2cc(-c3c[nH]c4cccnc34)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Oc1cc(-c2c[nH]c3cccnc23)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1nc(-c2c[nH]c3cccnc23)ccc1F; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3cccnc23)cn1; [None]; [None]; [0] +COCc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3cccnc23)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +OCCn1cnc(-c2cccc(O)c2)c1; [None]; [None]; [0] +OCCn1cnc(-c2n[nH]c3ccccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn(CCO)cn2)cc1; [None]; [None]; [0] +OCCn1cnc(-c2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +Cn1nc(-c2cn(CCO)cn2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cn(CCO)cn3)cc2[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +OCCn1cnc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +OCCn1cnc(Nc2n[nH]c3ccccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +COc1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +OCCn1cnc(-c2cc(C(F)F)n[nH]2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3cn(CCO)cn3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cn(CCO)cn1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cn(CCO)cn1; [None]; [None]; [0] +OCCn1cnc(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cn(CCO)cn1; [None]; [None]; [0] +Cc1nc(-c2cn(CCO)cn2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2cn(CCO)cn2)cn1; [None]; [None]; [0] +COc1ccc(-c2cn(CCO)cn2)nc1; [None]; [None]; [0] +OCCn1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +Oc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +c1ccc2c(-c3ncc4cc[nH]c4n3)n[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +c1cc2cnc(-c3ccc4c(c3)Cc3c[nH]nc3-4)nc2[nH]1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +Cn1nc(-c2ncc3cc[nH]c3n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ncc4cc[nH]c4n3)cc2[nH]1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +c1cc2c(-c3ncc4cc[nH]c4n3)c[nH]c2cn1; [None]; [None]; [0] +Clc1cccc2c(-c3ncc4cc[nH]c4n3)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3ncc4cc[nH]c4n3)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +COc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +FC(F)c1cc(-c2ncc3cc[nH]c3n2)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3ncc4cc[nH]c4n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Oc1cc(-c2ncc3cc[nH]c3n2)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Cc1nc(-c2ncc3cc[nH]c3n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(-c2ncc3cc[nH]c3n2)cn1; [None]; [None]; [0] +COc1ccc(-c2ncc3cc[nH]c3n2)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(CC#N)cc2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(F)cc(Cl)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2ccc(CC#N)cc2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(CC#N)cc3)cc2[nH]1; [None]; [None]; [0] +N#CCc1ccc(-c2cn[nH]c2Cl)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2c[nH]c3cnccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2n[nH]c3c(Cl)cccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(Nc2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +COc1cccc(-c2ccc(CC#N)cc2)c1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(C(F)F)n[nH]2)cc1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc(CC#N)cc3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ccc(CC#N)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc(CC#N)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(O)n3nccc3n2)cc1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(CC#N)cc1; [None]; [None]; [0] +Cc1nc(-c2ccc(CC#N)cc2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc(CC#N)cc2)c1; [None]; [None]; [0] +COc1ccc(-c2ccc(CC#N)cc2)cn1; [None]; [None]; [0] +COc1ccc(-c2ccc(CC#N)cc2)nc1; [None]; [None]; [0] +N#CCc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cccc(O)c2)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2n[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2ccc3c(c2)Cc2c[nH]nc2-3)CC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(C2CCN(C(=O)CO)CC2)cc1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(F)cc(Cl)c2)CC1; [None]; [None]; [0] +Cn1nc(C2CCN(C(=O)CO)CC2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(C3CCN(C(=O)CO)CC3)cc2[nH]1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cn[nH]c2Cl)CC1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cccc(CC(N)=O)c1; [None]; [None]; [0] +Cc1nc(-c2cccc(CC(N)=O)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cccc(CC(N)=O)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(CC(N)=O)c2)cn1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3ccccc3n2)cc1; [None]; [None]; [0] +NC(=O)Cc1cccc(-c2cccc(C(F)(F)F)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(CC(N)=O)c2)nc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cnc3cccnn23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2nccc3ccccc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(C(=O)[O-])cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Br)cn2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(O)cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCc2ccc(C[NH3+])cc2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3cccn3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cc3ccccn3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc3c(c2)CC(C)(C)O3)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc(Cl)cn2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncnc3c(C)csc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ncc3sccc3n2)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)NCCc2c[nH]c3ccccc23)cc1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cccc(O)c2)[nH]1; [None]; [None]; [0] +Cc1ccc(C(=O)Nc2cn(C)c3ccccc23)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2n[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc3c(c2)Cc2c[nH]nc2-3)[nH]1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnc(NC(C)=O)[nH]2)cc1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(F)cc(Cl)c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(F)c3nc(C)[nH]c3c2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2nn(C)c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cn[nH]c2Cl)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c[nH]c3cnccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(Nc2n[nH]c3ccccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2n[nH]c3c(Cl)cccc23)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2[nH]cnc2-c2ccc(F)cc2)[nH]1; [None]; [None]; [0] +COc1cccc(-c2cnc(NC(C)=O)[nH]2)c1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(C(F)F)n[nH]2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c(C)ccc(O)c2C)[nH]1; [None]; [None]; [0] +COc1ccc2cc(-c3cnc(NC(C)=O)[nH]3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnc(NC(C)=O)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2ccc(F)c(C)n2)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2c(N)cnn2C)[nH]1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cc(O)n3nccc3n2)[nH]1; [None]; [None]; [0] +COCc1cccc(-c2cnc(NC(C)=O)[nH]2)c1; [None]; [None]; [0] +COc1ccc(-c2cnc(NC(C)=O)[nH]2)nc1; [None]; [None]; [0] +COc1ccc(-c2cnc(NC(C)=O)[nH]2)cn1; [None]; [None]; [0] +CC(=O)Nc1ncc(-c2cn[nH]c2-c2ccc(Cl)cc2)[nH]1; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3ccccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2ccc3c(c2)Cc2c[nH]nc2-3)nc2ccccc12; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2nc(N)c3ccccc3n2)cc1; [None]; [None]; [0] +Nc1nc(-c2cccc(O)c2)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2cc(F)cc(Cl)c2)nc2ccccc12; [None]; [None]; [0] +Cn1nc(-c2nc(N)c3ccccc3n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3nc(N)c4ccccc4n3)cc2[nH]1; [None]; [None]; [0] +Nc1nc(-c2c[nH]c3cnccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2n[nH]c3c(Cl)cccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(Nc2n[nH]c3ccccc23)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2cn[nH]c2Cl)nc2ccccc12; [None]; [None]; [0] +Nc1nc(-c2[nH]cnc2-c2ccc(F)cc2)nc2ccccc12; [None]; [None]; [0] +COc1cccc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +COc1ccc2cc(-c3nc(N)c4ccccc4n3)ccc2c1; [None]; [None]; [0] +Nc1nc(-c2cc(C(F)F)n[nH]2)nc2ccccc12; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +CCc1sccc1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Nc1nc(-c2cc(O)n3nccc3n2)nc2ccccc12; [None]; [None]; [0] +Cn1ncc(N)c1-c1nc(N)c2ccccc2n1; [None]; [None]; [0] +Cc1nc(-c2nc(N)c3ccccc3n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2nc(N)c3ccccc3n2)c1; [None]; [None]; [0] +COc1ccc(-c2nc(N)c3ccccc3n2)cn1; [None]; [None]; [0] +COc1ccc(-c2nc(N)c3ccccc3n2)nc1; [None]; [None]; [0] +Nc1nc(-c2cn[nH]c2-c2ccc(Cl)cc2)nc2ccccc12; [None]; [None]; [0] +Oc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +c1ccc2nc(-c3n[nH]c4ccccc34)ncc2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +c1ccc2nc(-c3ccc4c(c3)Cc3c[nH]nc3-4)ncc2c1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cn1nc(-c2ncc3ccccc3n2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ncc4ccccc4n3)cc2[nH]1; [None]; [None]; [0] +c1ccc2nc(-c3c[nH]c4cnccc34)ncc2c1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Clc1cccc2c(-c3ncc4ccccc4n3)n[nH]c12; [None]; [None]; [0] +c1ccc2nc(Nc3n[nH]c4ccccc34)ncc2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +COc1ccc2cc(-c3ncc4ccccc4n3)ccc2c1; [None]; [None]; [0] +FC(F)c1cc(-c2ncc3ccccc3n2)[nH]n1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ncc2ccccc2n1; [None]; [None]; [0] +CCc1sccc1-c1ncc2ccccc2n1; [None]; [None]; [0] +Oc1cc(-c2ncc3ccccc3n2)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1ncc2ccccc2n1; [None]; [None]; [0] +COCc1cccc(-c2ncc3ccccc3n2)c1; [None]; [None]; [0] +Cc1nc(-c2ncc3ccccc3n2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2ncc3ccccc3n2)nc1; [None]; [None]; [0] +COc1ccc(-c2ncc3ccccc3n2)cn1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ncc3ccccc3n2)cc1; [None]; [None]; [0] +Oc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +c1ccc2c(-c3c[nH]c4cccnc34)n[nH]c2c1; [None]; [None]; [0] +c1cnc2c(-c3ccc4c(c3)Cc3c[nH]nc3-4)c[nH]c2c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +Cn1nc(-c2c[nH]c3cccnc23)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3c[nH]c4cccnc34)cc2[nH]1; [None]; [None]; [0] +O=C(CO)N1CCC(c2c[nH]c3cnccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2n[nH]c3c(Cl)cccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(Nc2n[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2[nH]cnc2-c2ccc(F)cc2)CC1; [None]; [None]; [0] +COc1cccc(C2CCN(C(=O)CO)CC2)c1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(C(F)F)n[nH]2)CC1; [None]; [None]; [0] +COc1ccc2cc(C3CCN(C(=O)CO)CC3)ccc2c1; [None]; [None]; [0] +CCc1sccc1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2ccc(CO)cc2)CC1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(O)n3nccc3n2)CC1; [None]; [None]; [0] +Cn1ncc(N)c1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +Cc1nc(C2CCN(C(=O)CO)CC2)ccc1F; [None]; [None]; [0] +COCc1cccc(C2CCN(C(=O)CO)CC2)c1; [None]; [None]; [0] +COc1ccc(C2CCN(C(=O)CO)CC2)cn1; [None]; [None]; [0] +COc1ccc(C2CCN(C(=O)CO)CC2)nc1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cn[nH]c2-c2ccc(Cl)cc2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(O)c2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2n[nH]c3ccccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cnn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnnc(N(C)C)c2)cc1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(F)cc(Cl)c2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2nn(C)c3ccccc23)cnn1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnnc(N(C)C)c3)cc2[nH]1; [None]; [None]; [0] +CN(C)c1cc(-c2cn[nH]c2Cl)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2c[nH]c3cnccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2n[nH]c3c(Cl)cccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(Nc2n[nH]c3ccccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2[nH]cnc2-c2ccc(F)cc2)cnn1; [None]; [None]; [0] +COc1cccc(-c2cnnc(N(C)C)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(C(F)F)n[nH]2)cnn1; [None]; [None]; [0] +COc1ccc2cc(-c3cnnc(N(C)C)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(O)n3nccc3n2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2c(N)cnn2C)cnn1; [None]; [None]; [0] +Cc1nc(-c2cnnc(N(C)C)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cnnc(N(C)C)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cnnc(N(C)C)c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnnc(N(C)C)c2)nc1; [None]; [None]; [0] +CN(C)c1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)cnn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(O)c2)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1)C1CCNCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(F)cc(Cl)c2)c1)C1CCNCC1; [None]; [None]; [0] +Cn1nc(-c2cccc(NC(=O)C3CCNCC3)c2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cccc(NC(=O)C4CCNCC4)c3)cc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn[nH]c2Cl)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3cnccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3c(Cl)cccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2n[nH]c3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2[nH]cnc2-c2ccc(F)cc2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(C(F)F)n[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc2cc(-c3cccc(NC(=O)C4CCNCC4)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(O)n3nccc3n2)c1)C1CCNCC1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +Cc1nc(-c2cccc(NC(=O)C3CCNCC3)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)nc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1)C1CCNCC1; [None]; [None]; [0] +CCc1ccc(NC(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)NC(C)(C)C)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)N[C@H](CO)c2ccccc2)cc1; [None]; [None]; [0] +CCc1ccc(C(C)(C)NC(C)=O)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)N[C@H](C)c2cccc(OC)c2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccccc3n2C)cc1; [None]; [None]; [0] +CCc1ccc(-c2nc(C)ccc2OC)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +CCc1ccc(-c2ccc([S@](C)=O)cc2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc(-n3cnc(C)c3)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c(F)cc(OCCO)cc2F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)ccc2F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(C(N)=O)cc2)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(C(N)=O)cc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-n2ccccc2=O)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ccccc3[nH]2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(F)(F)F)ccn2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3ccc(C(N)=O)cc3F)cc2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccc3c(c2)CCO3)c(F)c1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3ccc(C(N)=O)cc3F)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2ccc(C(N)=O)cc2F)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3c2OCCO3)c(F)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(C(N)=O)cc2F)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(C(N)=O)cc3F)c2)cn1; [None]; [None]; [0] +Oc1ccc(-c2cc(C(F)(F)F)ccn2)c(Cl)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1Cl; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc(O)cc2Cl)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc(C(F)(F)F)c2)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc3sccc23)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2cc(O)ccc2F)c(Cl)c1; [None]; [None]; [0] +c1cnc2c(-c3c[nH]c4cnccc34)c[nH]c2c1; [None]; [None]; [0] +Clc1[nH]ncc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Clc1cccc2c(-c3c[nH]c4cccnc34)n[nH]c12; [None]; [None]; [0] +c1ccc2c(Nc3c[nH]c4cccnc34)n[nH]c2c1; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +COc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +COc1ccc2cc(-c3c[nH]c4cccnc34)ccc2c1; [None]; [None]; [0] +FC(F)c1cc(-c2c[nH]c3cccnc23)[nH]n1; [None]; [None]; [0] +CCc1sccc1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Oc1cc(-c2c[nH]c3cccnc23)nc2ccnn12; [None]; [None]; [0] +Cn1ncc(N)c1-c1c[nH]c2cccnc12; [None]; [None]; [0] +Cc1nc(-c2c[nH]c3cccnc23)ccc1F; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3cccnc23)cn1; [None]; [None]; [0] +COCc1cccc(-c2c[nH]c3cccnc23)c1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2c[nH]c3cccnc23)cc1; [None]; [None]; [0] +COc1ccc(-c2c[nH]c3cccnc23)nc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cn(CCO)cn2)cc1; [None]; [None]; [0] +OCCn1cnc(-c2cccc(O)c2)c1; [None]; [None]; [0] +OCCn1cnc(-c2n[nH]c3ccccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1; [None]; [None]; [0] +OCCn1cnc(-c2cc(F)cc(Cl)c2)c1; [None]; [None]; [0] +Cn1nc(-c2cn(CCO)cn2)c2ccccc21; [None]; [None]; [0] +OCCn1cnc(Nc2n[nH]c3ccccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2n[nH]c3c(Cl)cccc23)c1; [None]; [None]; [0] +OCCn1cnc(-c2[nH]cnc2-c2ccc(F)cc2)c1; [None]; [None]; [0] +OCCn1cnc(-c2c[nH]c3cnccc23)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cn(CCO)cn3)cc2[nH]1; [None]; [None]; [0] +OCCn1cnc(-c2cn[nH]c2Cl)c1; [None]; [None]; [0] +CCc1sccc1-c1cn(CCO)cn1; [None]; [None]; [0] +OCCn1cnc(-c2cc(O)n3nccc3n2)c1; [None]; [None]; [0] +OCCn1cnc(-c2cc(C(F)F)n[nH]2)c1; [None]; [None]; [0] +COc1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cn(CCO)cn1; [None]; [None]; [0] +COc1ccc2cc(-c3cn(CCO)cn3)ccc2c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cn(CCO)cn1; [None]; [None]; [0] +Cc1nc(-c2cn(CCO)cn2)ccc1F; [None]; [None]; [0] +COc1ccc(-c2cn(CCO)cn2)cn1; [None]; [None]; [0] +COCc1cccc(-c2cn(CCO)cn2)c1; [None]; [None]; [0] +COc1ccc(-c2cn(CCO)cn2)nc1; [None]; [None]; [0] +OCCn1cnc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1; [None]; [None]; [0] +c1ccc2c(-c3ncc4cc[nH]c4n3)n[nH]c2c1; [None]; [None]; [0] +c1cc2cnc(-c3ccc4c(c3)Cc3c[nH]nc3-4)nc2[nH]1; [None]; [None]; [0] +Oc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +Cn1nc(-c2ncc3cc[nH]c3n2)c2ccccc21; [None]; [None]; [0] +Fc1cc(Cl)cc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ncc4cc[nH]c4n3)cc2[nH]1; [None]; [None]; [0] +c1cc2c(-c3ncc4cc[nH]c4n3)c[nH]c2cn1; [None]; [None]; [0] +c1ccc2c(Nc3ncc4cc[nH]c4n3)n[nH]c2c1; [None]; [None]; [0] +Clc1[nH]ncc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Clc1cccc2c(-c3ncc4cc[nH]c4n3)n[nH]c12; [None]; [None]; [0] +Fc1ccc(-c2nc[nH]c2-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +FC(F)c1cc(-c2ncc3cc[nH]c3n2)[nH]n1; [None]; [None]; [0] +COc1ccc2cc(-c3ncc4cc[nH]c4n3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +Oc1cc(-c2ncc3cc[nH]c3n2)nc2ccnn12; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ncc2cc[nH]c2n1; [None]; [None]; [0] +COc1ccc(-c2ncc3cc[nH]c3n2)cn1; [None]; [None]; [0] +Cc1nc(-c2ncc3cc[nH]c3n2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ncc3cc[nH]c3n2)c1; [None]; [None]; [0] +COc1ccc(-c2ncc3cc[nH]c3n2)nc1; [None]; [None]; [0] +Clc1ccc(-c2[nH]ncc2-c2ncc3cc[nH]c3n2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cccc(O)c2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2ccc(CC#N)cc2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(F)cc(Cl)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2ccc(CC#N)cc2)c2ccccc21; [None]; [None]; [0] +N#CCc1ccc(-c2cn[nH]c2Cl)cc1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3ccc(CC#N)cc3)cc2[nH]1; [None]; [None]; [0] +N#CCc1ccc(-c2n[nH]c3c(Cl)cccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2c[nH]c3cnccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(Nc2n[nH]c3ccccc23)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2[nH]cnc2-c2ccc(F)cc2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(C(F)F)n[nH]2)cc1; [None]; [None]; [0] +COc1ccc2cc(-c3ccc(CC#N)cc3)ccc2c1; [None]; [None]; [0] +N#CCc1ccc(-c2ccc(CO)cc2)cc1; [None]; [None]; [0] +COc1cccc(-c2ccc(CC#N)cc2)c1; [None]; [None]; [0] +CCc1sccc1-c1ccc(CC#N)cc1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1ccc(CC#N)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cc(O)n3nccc3n2)cc1; [None]; [None]; [0] +Cc1nc(-c2ccc(CC#N)cc2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2ccc(CC#N)cc2)c1; [None]; [None]; [0] +Cn1ncc(N)c1-c1ccc(CC#N)cc1; [None]; [None]; [0] +COc1ccc(-c2ccc(CC#N)cc2)cn1; [None]; [None]; [0] +COc1ccc(-c2ccc(CC#N)cc2)nc1; [None]; [None]; [0] +N#CCc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +N#CCc1ccc(-c2cn[nH]c2-c2ccc(Cl)cc2)cc1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(C2CCN(C(=O)CO)CC2)cc1; [None]; [None]; [0] +O=C(CO)N1CCC(c2n[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cccc(O)c2)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2ccc3c(c2)Cc2c[nH]nc2-3)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(F)cc(Cl)c2)CC1; [None]; [None]; [0] +Cn1nc(C2CCN(C(=O)CO)CC2)c2ccccc21; [None]; [None]; [0] +Cc1nc2c(F)cc(C3CCN(C(=O)CO)CC3)cc2[nH]1; [None]; [None]; [0] +O=C(CO)N1CCC(c2c[nH]c3cnccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cn[nH]c2Cl)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2n[nH]c3c(Cl)cccc23)CC1; [None]; [None]; [0] +Oc1ccc(-c2ccc(OC(F)(F)F)cc2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(O)cc2Cl)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(O)cc1Cl; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2Cl)n1; [None]; [None]; [0] +O=c1ccccn1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(C(F)(F)F)ccn1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(F)ccc1OC; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1c(F)cc(OCCO)cc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(O)ccc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(=O)cc(C)n1C; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(C)cc(=O)n1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1nc(C)ccc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1ccccc1=O; [None]; [None]; [0] +Oc1ccc(-c2cc(C(F)(F)F)ccn2)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1F; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc(O)cc2F)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc(C(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc3sccc23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cc(O)ccc2F)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2ccc(OC(F)(F)F)cc2)c(F)c1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(O)cc2F)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(O)cc1F; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2F)n1; [None]; [None]; [0] +O=c1ccccn1-c1ccc(O)cc1F; [None]; [None]; [0] +Cn1nc(-c2cc(C(F)(F)F)ccn2)c2ccccc21; [None]; [None]; [0] +COc1ccc(F)cc1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cn1nc(-c2c(F)cc(OCCO)cc2F)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cccc(C(F)(F)F)c2)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cccc3sccc23)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cc(O)ccc2F)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2ccc(OC(F)(F)F)cc2)c2ccccc21; [None]; [None]; [0] +Cc1cc(=O)n(-c2nn(C)c3ccccc23)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cc1ccc(F)c(-c2nn(C)c3ccccc23)n1; [None]; [None]; [0] +Cc1nccn(-c2nn(C)c3ccccc23)c1=O; [None]; [None]; [0] +Cn1nc(-n2ccccc2=O)c2ccccc21; [None]; [None]; [0] +Oc1ncc(-c2cc(C(F)(F)F)ccn2)cc1Cl; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +OCCOc1cc(F)c(-c2cnc(O)c(Cl)c2)c(F)c1; [None]; [None]; [0] +Oc1ncc(-c2cccc(C(F)(F)F)c2)cc1Cl; [None]; [None]; [0] +Oc1ncc(-c2cccc3sccc23)cc1Cl; [None]; [None]; [0] +Oc1ccc(F)c(-c2cnc(O)c(Cl)c2)c1; [None]; [None]; [0] +Oc1ncc(-c2ccc(OC(F)(F)F)cc2)cc1Cl; [None]; [None]; [0] +Cc1cc(=O)n(-c2cnc(O)c(Cl)c2)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +Cc1ccc(F)c(-c2cnc(O)c(Cl)c2)n1; [None]; [None]; [0] +O=c1ccccn1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2nc3ccccc3[nH]2)c[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2cc(C(F)(F)F)ccn2)c[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2cccc(C(F)(F)F)c2)c[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3c[nH]c(C(N)=O)c3)cc2)CC1; [None]; [None]; [0] +NC(=O)c1cc(Cc2ccc3c(c2)CCO3)c[nH]1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3c[nH]c(C(N)=O)c3)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2c[nH]c(C(N)=O)c2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cccc3c2OCCO3)c[nH]1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c(C(N)=O)c2)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3c[nH]c(C(N)=O)c3)c2)cn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3ccc(NC(N)=O)cc3)cc2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2ccc3c(c2)CCO3)cc1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3ccc(NC(N)=O)cc3)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2ccc(NC(N)=O)cc2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(NC(N)=O)cc2)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(NC(N)=O)cc3)c2)cn1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc(C(F)(F)F)ccn1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c(F)cc(OCCO)cc1F; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc(O)ccc1F; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(=O)cc(C)n1C; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(C)cc(=O)n1-c1ccccc1; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2C)n1; [None]; [None]; [0] +Cc1cc(O)ccc1-n1ccccc1=O; [None]; [None]; [0] +O=C(Nc1ccccc1)Nc1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +OCc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CC(C)(C)NC(=O)Cc1ccc(CO)cc1; [None]; [None]; [0] +O=C(Cc1ccc(CO)cc1)N[C@H](CO)c1ccccc1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(CO)cc1; [None]; [None]; [0] +COc1cccc([C@@H](C)NC(=O)Cc2ccc(CO)cc2)c1; [None]; [None]; [0] +Cn1c(-c2ccc(CO)cc2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(CO)cc3)c2)cn1; [None]; [None]; [0] +FC(F)(F)c1ccnc(-c2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc3c(c2)CCN3)c(F)c1; [None]; [None]; [0] +FC(F)(F)c1cccc(-c2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +c1cc(-c2ccc3c(c2)CCN3)c2ccsc2c1; [None]; [None]; [0] +Oc1ccc(F)c(-c2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +FC(F)(F)Oc1ccc(-c2ccc3c(c2)CCN3)cc1; [None]; [None]; [0] +O=C(CO)N1CCC(Nc2n[nH]c3ccccc23)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(C(F)F)n[nH]2)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2[nH]cnc2-c2ccc(F)cc2)CC1; [None]; [None]; [0] +COc1cccc(C2CCN(C(=O)CO)CC2)c1; [None]; [None]; [0] +COc1ccc2cc(C3CCN(C(=O)CO)CC3)ccc2c1; [None]; [None]; [0] +CCc1sccc1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2ccc(CO)cc2)CC1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +Cn1ncc(N)c1C1CCN(C(=O)CO)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cc(O)n3nccc3n2)CC1; [None]; [None]; [0] +Cc1nc(C2CCN(C(=O)CO)CC2)ccc1F; [None]; [None]; [0] +COCc1cccc(C2CCN(C(=O)CO)CC2)c1; [None]; [None]; [0] +COc1ccc(C2CCN(C(=O)CO)CC2)nc1; [None]; [None]; [0] +COc1ccc(C2CCN(C(=O)CO)CC2)cn1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cccc(C(F)(F)F)c2)CC1; [None]; [None]; [0] +O=C(CO)N1CCC(c2cn[nH]c2-c2ccc(Cl)cc2)CC1; [None]; [None]; [0] +CN(C)c1cc(-c2cccc(O)c2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2n[nH]c3ccccc23)cnn1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cnnc(N(C)C)c2)cc1; [None]; [None]; [0] +CN(C)c1cc(-c2ccc3c(c2)Cc2c[nH]nc2-3)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2nn(C)c3ccccc23)cnn1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cnnc(N(C)C)c3)cc2[nH]1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(F)cc(Cl)c2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2cn[nH]c2Cl)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2c[nH]c3cnccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2n[nH]c3c(Cl)cccc23)cnn1; [None]; [None]; [0] +CN(C)c1cc(Nc2n[nH]c3ccccc23)cnn1; [None]; [None]; [0] +COc1cccc(-c2cnnc(N(C)C)c2)c1; [None]; [None]; [0] +CN(C)c1cc(-c2[nH]cnc2-c2ccc(F)cc2)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(C(F)F)n[nH]2)cnn1; [None]; [None]; [0] +COc1ccc2cc(-c3cnnc(N(C)C)c3)ccc2c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +CCc1sccc1-c1cnnc(N(C)C)c1; [None]; [None]; [0] +CN(C)c1cc(-c2c(N)cnn2C)cnn1; [None]; [None]; [0] +CN(C)c1cc(-c2cc(O)n3nccc3n2)cnn1; [None]; [None]; [0] +Cc1nc(-c2cnnc(N(C)C)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cnnc(N(C)C)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cccc(O)c2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc(-c2cnnc(N(C)C)c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cnnc(N(C)C)c2)nc1; [None]; [None]; [0] +CN(C)c1cc(-c2cn[nH]c2-c2ccc(Cl)cc2)cnn1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2ccc3c(c2)Cc2c[nH]nc2-3)c1)C1CCNCC1; [None]; [None]; [0] +CNS(=O)(=O)c1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)cc1; [None]; [None]; [0] +Cn1nc(-c2cccc(NC(=O)C3CCNCC3)c2)c2ccccc21; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(F)cc(Cl)c2)c1)C1CCNCC1; [None]; [None]; [0] +Cc1nc2c(F)cc(-c3cccc(NC(=O)C4CCNCC4)c3)cc2[nH]1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn[nH]c2Cl)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2c[nH]c3cnccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2n[nH]c3c(Cl)cccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(Nc2n[nH]c3ccccc23)c1)C1CCNCC1; [None]; [None]; [0] +O=C(Nc1cccc(-c2[nH]cnc2-c2ccc(F)cc2)c1)C1CCNCC1; [None]; [None]; [0] +COc1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(C(F)F)n[nH]2)c1)C1CCNCC1; [None]; [None]; [0] +COc1ccc2cc(-c3cccc(NC(=O)C4CCNCC4)c3)ccc2c1; [None]; [None]; [0] +CCc1sccc1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cc(O)n3nccc3n2)c1)C1CCNCC1; [None]; [None]; [0] +Cn1ncc(N)c1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +Cc1ccc(O)c(C)c1-c1cccc(NC(=O)C2CCNCC2)c1; [None]; [None]; [0] +Cc1nc(-c2cccc(NC(=O)C3CCNCC3)c2)ccc1F; [None]; [None]; [0] +COCc1cccc(-c2cccc(NC(=O)C3CCNCC3)c2)c1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)cn1; [None]; [None]; [0] +COc1ccc(-c2cccc(NC(=O)C3CCNCC3)c2)nc1; [None]; [None]; [0] +CCc1ccc(NC(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +O=C(Nc1cccc(-c2cn[nH]c2-c2ccc(Cl)cc2)c1)C1CCNCC1; [None]; [None]; [0] +CCc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)NC(C)(C)C)cc1; [None]; [None]; [0] +CCc1ccc(C(C)(C)NC(C)=O)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)N[C@H](CO)c2ccccc2)cc1; [None]; [None]; [0] +CCc1ccc(CC(=O)N[C@H](C)c2cccc(OC)c2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cc3ccccc3n2C)cc1; [None]; [None]; [0] +CCc1ccc(-c2nc(C)ccc2OC)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CCc1ccc(-c2cccc(-n3cnc(C)c3)c2)cc1; [None]; [None]; [0] +CCc1ccc(-c2ccc([S@](C)=O)cc2)cc1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2c(F)cc(OCCO)cc2F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(F)(F)F)c2)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(O)ccc2F)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2ccc(OC(F)(F)F)cc2)cc1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(C(N)=O)cc2)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(C(N)=O)cc1; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(C(N)=O)cc2)n1; [None]; [None]; [0] +NC(=O)c1ccc(-c2nc3ccccc3[nH]2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-n2ccccc2=O)cc1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cc(C(F)(F)F)ccn2)c(F)c1; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc(C(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3ccc(C(N)=O)cc3F)cc2)CC1; [None]; [None]; [0] +NC(=O)c1ccc(Cc2ccc3c(c2)CCO3)c(F)c1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3ccc(C(N)=O)cc3F)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2ccc(C(N)=O)cc2F)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(C(N)=O)cc1F; [None]; [None]; [0] +NC(=O)c1ccc(-c2cccc3c2OCCO3)c(F)c1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(C(N)=O)cc2F)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(C(N)=O)cc3F)c2)cn1; [None]; [None]; [0] +Oc1ccc(-c2cc(C(F)(F)F)ccn2)c(Cl)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1Cl; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc(O)cc2Cl)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc(C(F)(F)F)c2)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc3sccc23)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2cc(O)ccc2F)c(Cl)c1; [None]; [None]; [0] +Oc1ccc(-c2ccc(OC(F)(F)F)cc2)c(Cl)c1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(O)cc2Cl)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(O)cc1Cl; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2Cl)n1; [None]; [None]; [0] +O=c1ccccn1-c1ccc(O)cc1Cl; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(C(F)(F)F)ccn1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(F)ccc1OC; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1c(F)cc(OCCO)cc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1cc(O)ccc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(=O)cc(C)n1C; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1c(C)cc(=O)n1-c1ccccc1; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-c1nc(C)ccc1F; [None]; [None]; [0] +COc1cc(C(N)=O)ccc1-n1ccccc1=O; [None]; [None]; [0] +Oc1ccc(-c2cc(C(F)(F)F)ccn2)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1F; [None]; [None]; [0] +Oc1ccc(-c2cccc(C(F)(F)F)c2)c(F)c1; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc(O)cc2F)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cc(O)ccc2F)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2cccc3sccc23)c(F)c1; [None]; [None]; [0] +Oc1ccc(-c2ccc(OC(F)(F)F)cc2)c(F)c1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccc(O)cc2F)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc(O)cc1F; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2F)n1; [None]; [None]; [0] +O=c1ccccn1-c1ccc(O)cc1F; [None]; [None]; [0] +Cn1nc(-c2cc(C(F)(F)F)ccn2)c2ccccc21; [None]; [None]; [0] +COc1ccc(F)cc1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cn1nc(-c2c(F)cc(OCCO)cc2F)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cccc(C(F)(F)F)c2)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cccc3sccc23)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2ccc(OC(F)(F)F)cc2)c2ccccc21; [None]; [None]; [0] +Cn1nc(-c2cc(O)ccc2F)c2ccccc21; [None]; [None]; [0] +Cc1cc(=O)n(-c2nn(C)c3ccccc23)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1nn(C)c2ccccc12; [None]; [None]; [0] +Cc1ccc(F)c(-c2nn(C)c3ccccc23)n1; [None]; [None]; [0] +Cc1nccn(-c2nn(C)c3ccccc23)c1=O; [None]; [None]; [0] +Cn1nc(-n2ccccc2=O)c2ccccc21; [None]; [None]; [0] +Oc1ncc(-c2cc(C(F)(F)F)ccn2)cc1Cl; [None]; [None]; [0] +COc1ccc(F)cc1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +OCCOc1cc(F)c(-c2cnc(O)c(Cl)c2)c(F)c1; [None]; [None]; [0] +Oc1ncc(-c2cccc(C(F)(F)F)c2)cc1Cl; [None]; [None]; [0] +Oc1ncc(-c2cccc3sccc23)cc1Cl; [None]; [None]; [0] +Oc1ccc(F)c(-c2cnc(O)c(Cl)c2)c1; [None]; [None]; [0] +Oc1ncc(-c2ccc(OC(F)(F)F)cc2)cc1Cl; [None]; [None]; [0] +Cc1cc(=O)n(-c2cnc(O)c(Cl)c2)n1C; [None]; [None]; [0] +Cc1ccc(F)c(-c2cnc(O)c(Cl)c2)n1; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +O=c1ccccn1-c1cnc(O)c(Cl)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2nc3ccccc3[nH]2)c[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2cc(C(F)(F)F)ccn2)c[nH]1; [None]; [None]; [0] +NC(=O)c1cc(-c2cccc(C(F)(F)F)c2)c[nH]1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3c[nH]c(C(N)=O)c3)cc2)CC1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(Cc2ccc3c(c2)CCO3)c[nH]1; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3c[nH]c(C(N)=O)c3)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2c[nH]c(C(N)=O)c2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1c[nH]c(C(N)=O)c1; [None]; [None]; [0] +NC(=O)c1cc(-c2cccc3c2OCCO3)c[nH]1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2c[nH]c(C(N)=O)c2)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3c[nH]c(C(N)=O)c3)c2)cn1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +CC(=O)N1CCN(c2ccc(-c3ccc(NC(N)=O)cc3)cc2)CC1; [None]; [None]; [0] +NC(=O)Nc1ccc(Cc2ccc3c(c2)CCO3)cc1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +CC(=O)N1CC=C(c2ccc(-c3ccc(NC(N)=O)cc3)cc2)CC1; [None]; [None]; [0] +Cn1c(-c2ccc(NC(N)=O)cc2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(NC(N)=O)cc1; [None]; [None]; [0] +NC(=O)Nc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +C[S@](=O)c1ccc(-c2ccc(NC(N)=O)cc2)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(NC(N)=O)cc3)c2)cn1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc(C(F)(F)F)ccn1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(O)cc1C; [None]; [None]; [0] +Cc1cc(O)ccc1-c1c(F)cc(OCCO)cc1F; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cccc(C(F)(F)F)c1; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cccc2sccc12; [None]; [None]; [0] +Cc1cc(O)ccc1-c1cc(O)ccc1F; [None]; [None]; [0] +Cc1cc(O)ccc1-c1ccc(OC(F)(F)F)cc1; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(=O)cc(C)n1C; [None]; [None]; [0] +Cc1cc(O)ccc1-n1c(C)cc(=O)n1-c1ccccc1; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(O)cc2C)n1; [None]; [None]; [0] +Cc1cc(O)ccc1-n1ccccc1=O; [None]; [None]; [0] +O=C(Nc1ccccc1)Nc1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2nc3ccccc3[nH]2)cc1; [None]; [None]; [0] +OCc1ccc(-c2cc(C(F)(F)F)ccn2)cc1; [None]; [None]; [0] +CC(C)(C)NC(=O)Cc1ccc(CO)cc1; [None]; [None]; [0] +O=C(Cc1ccc(CO)cc1)N[C@H](CO)c1ccccc1; [None]; [None]; [0] +CC(=O)NC(C)(C)c1ccc(CO)cc1; [None]; [None]; [0] +COc1cccc([C@@H](C)NC(=O)Cc2ccc(CO)cc2)c1; [None]; [None]; [0] +Cn1c(-c2ccc(CO)cc2)cc2ccccc21; [None]; [None]; [0] +COc1ccc(C)nc1-c1ccc(CO)cc1; [None]; [None]; [0] +OCc1ccc(-c2cccc3c2OCCO3)cc1; [None]; [None]; [0] +Cc1cn(-c2cccc(-c3ccc(CO)cc3)c2)cn1; [None]; [None]; [0] +FC(F)(F)c1ccnc(-c2ccc3c(c2)CCN3)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +OCCOc1cc(F)c(-c2ccc3c(c2)CCN3)c(F)c1; [None]; [None]; [0] +COc1ccc(F)cc1-c1ccc(C(N)=O)c(C)c1; ['COc1ccc(F)cc1Br', 'COc1ccc(F)cc1B1OC(C)(C)C(C)(C)O1', 'COc1ccc(F)cc1B(O)O', 'COc1ccc(F)cc1B(O)O']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; [1.0, 0.9999986886978149, 0.9999971389770508, 0.9999550580978394] +O=c1ccccn1-c1ccc2c(c1)CCN2; ['Ic1ccc2c(c1)CCN2', 'Brc1ccc2c(c1)CCN2', 'Fc1ccc2c(c1)CCN2']; ['O=c1cccc[nH]1', 'O=c1cccc[nH]1', 'O=c1cccc[nH]1']; [0.9961680173873901, 0.992188572883606, 0.8530454039573669] +Cc1ccc(F)c(-c2ccc3c(c2)CCN3)n1; ['CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cc1ccc(F)c(Br)n1', 'CC1(C)OB(c2ccc3c(c2)CCN3)OC1(C)C', 'Cc1ccc(F)c(Cl)n1']; ['Cc1ccc(F)c(Br)n1', 'OB(O)c1ccc2c(c1)CCN2', 'Cc1ccc(F)c(Cl)n1', 'OB(O)c1ccc2c(c1)CCN2']; [0.9999945163726807, 0.9998990297317505, 0.9997867345809937, 0.9994897842407227] +Cc1cc(-c2cc(C(F)(F)F)ccn2)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; ['FC(F)(F)c1ccnc(Br)c1', 'FC(F)(F)c1ccnc(Cl)c1', 'OB(O)c1cc(C(F)(F)F)ccn1', 'FC(F)(F)c1ccnc(Cl)c1', 'FC(F)(F)c1ccnc([Zn]Br)c1', 'FC(F)(F)c1ccnc(Br)c1']; [0.9999977350234985, 0.9999961853027344, 0.9998747110366821, 0.9998538494110107, 0.9992803335189819, 0.9874438047409058] +Cc1cc(=O)n(-c2ccc3c(c2)CCN3)n1C; ['Cc1cc(=O)[nH]n1C']; ['Fc1ccc2c(c1)CCN2']; [0.9537613391876221] +Cc1cc(-c2cccc(C(F)(F)F)c2)ccc1C(N)=O; ['CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'CC1(C)OB(c2cccc(C(F)(F)F)c2)OC1(C)C', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; ['Cc1cc(Br)ccc1C(N)=O', 'FC(F)(F)c1cccc(Br)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Cl)c1', 'Cc1cc(Cl)ccc1C(N)=O', 'OB(O)c1cccc(C(F)(F)F)c1', 'OB(O)c1cccc(C(F)(F)F)c1', 'FC(F)(F)c1cccc(I)c1', 'FC(F)(F)c1cccc(Br)c1']; [0.9999959468841553, 0.9999949932098389, 0.9999921917915344, 0.9999877214431763, 0.9999706745147705, 0.9999685287475586, 0.9998799562454224, 0.9997665286064148, 0.988170862197876] +Cc1cc(-c2ccc(OC(F)(F)F)cc2)ccc1C(N)=O; ['CC1(C)OB(c2ccc(OC(F)(F)F)cc2)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; ['Cc1cc(Br)ccc1C(N)=O', 'FC(F)(F)Oc1ccc(Br)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1', 'OB(O)c1ccc(OC(F)(F)F)cc1']; [1.0, 1.0, 0.9999997615814209, 0.9999985694885254] +Cc1cc(-c2cccc3sccc23)ccc1C(N)=O; ['Brc1cccc2sccc12', 'CC1(C)OB(c2cccc3sccc23)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'CC1(C)OB(c2cccc3sccc23)OC1(C)C', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O', 'Brc1cccc2sccc12']; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Clc1cccc2sccc12', 'Cc1cc(Cl)ccc1C(N)=O', 'OB(O)c1cccc2sccc12', 'OB(O)c1cccc2sccc12', 'Cc1cc(Br)ccc1C(N)=O']; [1.0, 0.9999997615814209, 0.9999992251396179, 0.9999986290931702, 0.9999773502349854, 0.9995036125183105, 0.996718168258667] +Cc1cc(-c2cc(O)ccc2F)ccc1C(N)=O; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'CC1(C)OB(c2cc(O)ccc2F)OC1(C)C', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'CC1(C)OB(c2cc(O)ccc2F)OC1(C)C', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; ['Oc1ccc(F)c(Br)c1', 'Cc1cc(Br)ccc1C(N)=O', 'Oc1ccc(F)c(Cl)c1', 'Cc1cc(Cl)ccc1C(N)=O', 'OB(O)c1cc(O)ccc1F', 'OB(O)c1cc(O)ccc1F']; [0.9999901652336121, 0.9999872446060181, 0.9999548196792603, 0.9999533295631409, 0.9999293088912964, 0.9989056587219238] +Cc1cc(-n2c(=O)cc(C)n2C)ccc1C(N)=O; ['Cc1cc(=O)[nH]n1C']; ['Cc1cc(F)ccc1C(N)=O']; [0.7765926718711853] +Cc1cc(-c2c(F)cc(OCCO)cc2F)ccc1C(N)=O; [None]; [None]; [0] +Cc1ccc(F)c(-c2ccc(C(N)=O)c(C)c2)n1; ['Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(B2OC(C)(C)C(C)(C)O2)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(Br)ccc1C(N)=O']; ['Cc1ccc(F)c(Br)n1', 'Cc1ccc(F)c(Cl)n1', 'Cc1ccc(F)c(B(O)O)n1', 'Cc1ccc(F)c([Zn]Br)n1', 'Cc1ccc(F)c(Br)n1']; [0.9999979138374329, 0.9999918937683105, 0.9992538690567017, 0.997340977191925, 0.9845964908599854] +Cc1cc(-n2ccccc2=O)ccc1C(N)=O; ['Cc1cc(Br)ccc1C(N)=O', 'Cc1cc(F)ccc1C(N)=O', 'Cc1cc(Cl)ccc1C(N)=O']; ['O=c1cccc[nH]1', 'O=c1cccc[nH]1', 'O=c1cccc[nH]1']; [0.996822714805603, 0.9764837026596069, 0.9563369750976562] +Cc1cc(-n2c(C)cc(=O)n2-c2ccccc2)ccc1C(N)=O; [None]; [None]; [0] +O=C1c2ccccc2CN1Cn1ccccc1=O; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1-c1ccc2c(c1)CCN2; [None]; [None]; [0] +CNC(=O)c1ccc(NC(=O)Nc2ccccc2)cc1; [None]; [None]; [0] +Cc1cc(=O)n(CN2Cc3ccccc3C2=O)n1C; [None]; [None]; [0] +Cc1cc(=O)n(-c2ccccc2)n1CN1Cc2ccccc2C1=O; [None]; [None]; [0] diff --git a/data/fragment_library/README.md b/data/fragment_library/README.md index 3753f131..62c04e2a 100644 --- a/data/fragment_library/README.md +++ b/data/fragment_library/README.md @@ -1,6 +1,6 @@ # KinFragLib: Full fragment library -The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises of about 3,000 fragments, +The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises about 3,000 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases. ## Fragment library @@ -27,7 +27,7 @@ co-crystallized with. - `atom.prop.subpocket`: Subpocket assignment for each of the fragment's atoms. - `atom.prop.environment`: BRICS environment IDs for each of the fragment's atoms. -Please refer to `notebooks/1_1_quick_start.ipynb` on how to load and work with this dataset. +Please refer to `notebooks/kinfraglib/1_1_quick_start.ipynb` on how to load and work with this dataset. ## Original ligands @@ -48,4 +48,4 @@ aC-helix conformation for the KLIFS structure that the ligand was co-crystallize - `smiles`: Ligand's SMILES string. -Please refer to `notebooks/2_1_fragment_analysis_original_ligands.ipynb` where this data is generated. +Please refer to `notebooks/kinfraglib/2_1_fragment_analysis_original_ligands.ipynb` where this data is generated. diff --git a/data/fragment_library_custom_filtered/AP.sdf b/data/fragment_library_custom_filtered/AP.sdf new file mode 100644 index 00000000..e9952756 --- /dev/null +++ b/data/fragment_library_custom_filtered/AP.sdf @@ -0,0 +1,9678 @@ +5l4q_altA_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -0.5700 17.5873 43.6564 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9297 18.7339 44.3654 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4431 18.6008 45.3063 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6844 19.9881 43.9634 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0951 17.7479 42.4362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3911 16.8859 41.8567 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3705 19.0356 41.9781 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0478 20.0938 42.7933 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3167 21.2521 42.1679 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1507 22.1874 42.5109 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9445 20.9279 40.9984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3339 21.6652 40.3120 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0344 19.5557 40.7759 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5861 18.8048 39.7302 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6453 17.8025 39.8391 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0512 19.3630 38.5626 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8868 16.2341 44.1774 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 5 1 0 + 2 3 1 0 + 2 4 1 0 + 4 8 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 13 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 17 1 1 0 +V 16 * +V 17 * +M END +> (1) +AAK1 + +> (1) +NAK + +> (1) +Other + +> (1) +5l4q + +> (1) +LKB + +> (1) +A + +> (1) +A + +> (1) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (1) +16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na + +$$$$ +8gmd_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.3254 18.2480 42.4269 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4054 19.1001 43.2331 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4768 20.4801 43.1060 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2514 20.9508 42.1077 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2512 22.0223 41.9725 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9865 20.2406 41.2494 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0175 18.9032 41.3736 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1413 16.9635 42.9316 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7331 17.0721 44.0471 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0769 16.2501 44.6574 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0645 18.3720 44.2203 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7183 18.7707 44.9818 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6724 18.1753 40.4211 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6984 17.1859 40.6223 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3203 18.5166 39.2150 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7881 15.6812 42.4830 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 1 0 + 1 8 2 0 + 2 3 1 0 + 2 11 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 13 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 14 1 0 + 15 13 1 0 + 8 16 1 0 +V 15 * +V 16 * +M END +> (2) +AAK1 + +> (2) +NAK + +> (2) +Other + +> (2) +8gmd + +> (2) +ZRR + +> (2) + + +> (2) +A + +> (2) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP + +> (2) +14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na + +$$$$ +4ewh_chainB + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.7650 17.2758 44.7782 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9072 18.6225 44.9078 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3249 19.1136 45.6852 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3921 19.1620 43.8177 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3449 20.5747 43.5200 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2272 20.9122 42.3487 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2737 21.9535 42.0659 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7322 20.0023 41.5383 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1379 18.2287 42.9783 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0517 16.9811 43.6057 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7349 18.6672 41.7965 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2253 17.8476 40.8235 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3196 16.8582 41.0031 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6135 18.3847 39.5309 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6617 18.6807 39.5731 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9980 19.2576 39.3132 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4416 17.4047 38.4562 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1628 16.2613 45.8034 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3068 15.6562 42.9899 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 9 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 11 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 1 1 0 + 10 19 1 0 +V 17 * +V 18 * +V 19 * +M END +> (3) +ACK + +> (3) +Ack + +> (3) +TK + +> (3) +4ewh + +> (3) +T77 + +> (3) + + +> (3) +B + +> (3) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE FP + +> (3) +14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na na na + +$$$$ +3q4t_altA_chainB + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.8633 16.3115 44.4180 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0496 17.6847 44.6518 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5940 18.0195 45.5224 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1496 15.9274 43.2657 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0119 14.8742 43.0707 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3650 16.8105 42.4025 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1981 18.1370 42.6038 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5258 18.6120 43.7507 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5373 19.8519 43.7476 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1349 20.3054 42.6584 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2591 21.3479 42.4053 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6266 19.2784 41.9350 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3664 15.3306 45.3041 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3438 19.3457 40.7140 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 8 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 12 2 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 13 1 1 0 + 12 14 1 0 +V 13 * +V 14 * +M END +> (4) +ACTR2 + +> (4) +STKR + +> (4) +TKL + +> (4) +3q4t + +> (4) +TAK + +> (4) +A + +> (4) +B + +> (4) +AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (4) +16 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +3soc_altA_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.1436 19.1229 39.9659 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2953 18.4414 39.9019 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2534 19.6560 39.0216 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3886 18.7256 40.7727 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3821 18.9771 40.4015 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4240 17.7624 41.2818 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4584 19.8324 41.2876 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6086 20.8643 41.6049 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5266 19.5049 42.4732 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2790 18.3128 43.0385 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6831 17.3502 42.7617 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1889 20.4683 43.1154 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2000 21.4534 42.8928 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8251 19.9133 44.0249 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5965 18.5947 44.0390 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2272 17.7750 44.9326 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9006 18.1982 45.5552 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0226 16.4412 45.0511 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 7 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 12 1 0 + 10 11 1 0 + 10 15 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 1 0 +V 18 * +M END +> (5) +ACTR2 + +> (5) +STKR + +> (5) +TKL + +> (5) +3soc + +> (5) +GVD + +> (5) +A + +> (5) +A + +> (5) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (5) +15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5 5 na + +$$$$ +3cqw_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.4657 20.6618 42.8476 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4651 19.0464 44.2402 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1379 18.7837 45.0432 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2284 19.6901 42.1624 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7224 21.8976 42.2708 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2964 22.7722 42.5423 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2122 19.8695 40.0371 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0213 20.4514 41.1675 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6478 21.7380 41.2732 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0262 22.5386 40.6548 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3440 20.3232 43.8533 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0523 18.3555 42.5885 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2487 18.1030 43.6292 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7473 17.2541 42.0445 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 5 1 0 + 1 11 1 0 + 2 3 1 0 + 2 11 2 0 + 2 13 1 0 + 4 8 1 0 + 4 12 1 0 + 5 6 1 0 + 5 9 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 12 13 2 0 + 12 14 1 0 +V 14 * +M END +> (6) +AKT1 + +> (6) +Akt + +> (6) +AGC + +> (6) +3cqw + +> (6) +CQW + +> (6) +A + +> (6) +A + +> (6) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (6) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +3mv5_altB_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.7087 17.9834 42.5351 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0646 17.9424 43.6435 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5676 19.0685 44.1861 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2045 18.9985 45.0556 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2857 20.3063 43.6541 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0204 19.2623 41.9563 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4861 20.4362 42.5576 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8295 21.5784 41.9125 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5387 22.5060 42.1866 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6202 21.2966 40.8456 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0385 22.0047 40.1456 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7864 19.9038 40.8323 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6209 19.2660 39.7501 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6401 18.1859 39.8953 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6372 19.6571 39.7970 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1884 19.4940 38.7759 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0889 16.6899 42.1142 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 7 1 0 + 6 7 2 0 + 6 12 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 1 1 0 +V 17 * +M END +> (7) +AKT1 + +> (7) +Akt + +> (7) +AGC + +> (7) +3mv5 + +> (7) +XFE + +> (7) +B + +> (7) +A + +> (7) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (7) +14 14 14 14 14 14 14 14 14 14 14 16 8 8 8 8 na + +$$$$ +3mvh_altB_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + 3.5480 19.1436 40.0962 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0466 18.6936 39.2377 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6018 18.4627 40.9457 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0399 20.0822 40.3512 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0933 19.4114 39.7535 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6050 18.4712 39.4970 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0432 20.0907 38.9025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3846 20.0360 40.9330 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1428 21.3967 41.0305 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4557 22.1486 40.3211 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4508 21.6184 42.1618 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0998 22.5153 42.4658 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2985 20.4516 42.8289 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3240 20.3174 44.0370 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3907 19.1019 44.6172 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8247 18.9815 45.5988 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0989 18.0359 43.9411 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6740 18.1241 42.7203 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8309 19.4093 42.1149 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0817 16.9072 42.2871 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 2 0 + 8 19 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 19 2 0 + 14 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 2 0 + 18 19 1 0 + 18 20 1 0 +V 20 * +M END +> (8) +AKT1 + +> (8) +Akt + +> (8) +AGC + +> (8) +3mvh + +> (8) +WFE + +> (8) +B + +> (8) +A + +> (8) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (8) +8 8 8 8 8 8 8 16 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +3ocb_chainB + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.0536 18.1262 42.6093 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2652 19.4267 42.0923 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0564 19.8993 40.9919 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6757 19.3318 40.3131 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8271 21.2641 41.0180 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2637 21.9660 40.3229 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9553 21.6242 42.0617 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6420 22.5586 42.2825 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6124 20.4874 42.7174 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2415 17.9712 43.6720 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3236 19.0814 44.1835 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9671 18.9273 45.0370 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1947 20.3561 43.7746 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6544 17.0247 42.0402 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 9 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 13 2 0 + 10 11 2 0 + 11 12 1 0 + 11 13 1 0 + 1 14 1 0 +V 14 * +M END +> (9) +AKT1 + +> (9) +Akt + +> (9) +AGC + +> (9) +3ocb + +> (9) +XM1 + +> (9) + + +> (9) +B + +> (9) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (9) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +3qkm_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.6267 18.0111 43.3234 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7456 19.2180 42.5813 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2314 20.4138 43.1420 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3499 20.3835 44.3518 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4313 19.2124 45.0031 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9036 19.2107 45.9743 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0327 18.0423 44.5332 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3568 19.2686 41.3052 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7542 18.3656 40.8660 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4517 20.4942 40.5990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9153 20.5196 39.6238 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9407 21.6842 41.1686 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0172 22.6195 40.6341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3293 21.6401 42.4421 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0642 22.5444 42.8823 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0619 16.7762 42.9307 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 2 8 1 0 + 3 4 2 0 + 3 14 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (10) +AKT1 + +> (10) +Akt + +> (10) +AGC + +> (10) +3qkm + +> (10) +SM9 + +> (10) + + +> (10) +A + +> (10) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (10) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +2jdr_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -0.5291 18.1773 43.8172 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1298 18.3712 44.7058 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3833 17.6537 44.1026 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0986 17.5616 43.1209 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1784 19.4633 43.1671 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4985 20.6747 43.5589 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0169 21.6413 42.6746 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1021 22.6415 42.7500 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7153 20.9752 41.6839 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3966 21.3971 40.5565 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4556 22.4484 40.3163 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9936 20.4715 39.7505 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5498 20.8092 38.8886 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9065 19.0875 40.0084 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1931 18.6469 41.1172 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0892 17.5918 41.3232 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6162 19.5948 41.9554 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5263 18.1054 39.0552 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 2 0 + 5 17 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 17 2 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 15 17 1 0 + 14 18 1 0 +V 18 * +M END +> (11) +AKT2 + +> (11) +Akt + +> (11) +AGC + +> (11) +2jdr + +> (11) +L20 + +> (11) + + +> (11) +A + +> (11) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (11) +8 8 8 8 14 14 14 14 14 14 14 14 14 16 14 14 14 na + +$$$$ +3e87_altB_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.0403 18.1502 43.8144 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0906 17.1664 44.2571 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5946 19.2242 44.4713 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0656 19.0285 45.4233 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5783 18.3213 42.5959 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7977 21.5986 41.0307 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0447 22.3583 40.3039 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0968 20.2635 40.9381 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6203 19.7865 40.1228 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5985 19.6167 42.1006 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6024 20.4843 44.0384 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0087 20.6072 42.8619 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1340 21.7948 42.2026 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2128 22.6839 42.5334 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1478 17.2154 41.8556 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 11 1 0 + 5 10 2 0 + 6 7 1 0 + 6 8 2 0 + 6 13 1 0 + 8 9 1 0 + 8 10 1 0 + 10 12 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 5 15 1 0 +V 15 * +M END +> (12) +AKT2 + +> (12) +Akt + +> (12) +AGC + +> (12) +3e87 + +> (12) +G95 + +> (12) +B + +> (12) +B + +> (12) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (12) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2xp2_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 2.0105 19.3121 41.9085 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0289 19.2884 42.9114 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6512 18.1321 43.6864 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1343 17.1845 43.4991 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3393 20.5087 43.2274 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6605 21.6797 42.5137 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1875 22.5465 42.7262 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3639 21.6528 41.7894 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6147 20.6204 44.1856 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9511 19.5082 44.9010 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7110 19.6040 45.6624 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3561 18.2232 44.7014 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5454 18.1459 41.1925 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7553 17.0013 45.5192 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 5 1 0 + 3 4 1 0 + 3 12 1 0 + 5 6 1 0 + 5 9 2 0 + 6 7 1 0 + 6 8 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 13 1 1 0 + 12 14 1 0 +V 13 * +V 14 * +M END +> (13) +ALK + +> (13) +ALK + +> (13) +TK + +> (13) +2xp2 + +> (13) +VGH + +> (13) + + +> (13) +A + +> (13) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (13) +3 16 16 16 14 5 5 5 16 16 16 16 na na + +$$$$ +4dce_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -0.8186 18.6751 44.9724 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4674 19.2336 45.5083 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0516 19.3454 44.1049 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8388 18.7134 43.3309 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1874 20.6855 44.0090 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5350 21.4027 43.1573 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3957 22.4717 43.0925 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4710 20.7700 42.3500 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0737 21.3319 41.6518 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6094 19.3885 42.4675 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5159 18.6914 41.6720 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8375 17.3494 45.2242 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 5 1 0 + 4 10 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 1 1 0 +V 11 * +V 12 * +M END +> (14) +ALK + +> (14) +ALK + +> (14) +TK + +> (14) +4dce + +> (14) +0JF + +> (14) + + +> (14) +A + +> (14) +AP AP AP AP AP AP AP AP AP AP FP SE + +> (14) +5 5 14 14 14 14 14 14 14 14 na na + +$$$$ +4foc_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 0.2378 18.0846 44.0954 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7654 17.6242 43.3675 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0683 19.4124 44.0330 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5073 20.1139 44.8664 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5720 20.0584 42.7346 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2223 19.3064 41.7545 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3771 18.2491 41.9112 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6786 19.9036 40.5673 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2049 19.3244 39.8231 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4347 21.2631 40.3741 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7671 21.7463 39.4672 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7620 22.0012 41.3498 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5759 23.0521 41.1837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3295 21.4147 42.5234 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1899 21.9996 43.2680 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2708 17.3480 45.0934 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (15) +ALK + +> (15) +ALK + +> (15) +TK + +> (15) +4foc + +> (15) +0UU + +> (15) + + +> (15) +A + +> (15) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (15) +5 5 1 1 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3oom_altA_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.2779 16.5360 45.2280 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6942 15.8679 45.9674 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4234 17.9060 45.3528 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9710 18.3379 46.1774 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1199 20.2971 43.0754 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0707 21.2873 42.6885 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7979 20.0290 44.2048 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0448 16.8725 43.2298 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4150 14.7094 44.0507 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1772 14.2516 44.9190 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5830 16.0358 44.1284 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2845 19.1580 42.5003 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8399 18.7052 44.3795 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1601 18.0990 43.3101 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5272 13.8251 42.8831 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0547 19.0370 41.3241 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 11 1 0 + 3 4 1 0 + 3 13 1 0 + 5 6 1 0 + 5 7 1 0 + 5 12 2 0 + 7 13 2 0 + 8 11 2 0 + 8 14 1 0 + 9 10 1 0 + 9 11 1 0 + 12 14 1 0 + 13 14 1 0 + 9 15 1 0 + 16 12 1 0 +V 15 * +V 16 * +M END +> (16) +ALK2 + +> (16) +STKR + +> (16) +TKL + +> (16) +3oom + +> (16) +507 + +> (16) +A + +> (16) +A + +> (16) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP GA + +> (16) +14 14 14 14 14 14 14 14 5 5 14 14 14 14 na na + +$$$$ +6gi6_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + -0.1824 20.0130 41.8783 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2433 20.1649 40.8864 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3888 20.5841 42.6102 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2192 20.3491 41.8841 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1266 18.5373 42.2324 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4308 17.5962 41.3420 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4487 16.2470 41.6856 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8494 15.5244 40.9901 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0409 15.8213 42.9074 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0082 14.7741 43.1693 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5855 16.7642 43.8140 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6354 18.0971 43.5017 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2294 19.0508 44.5238 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6456 17.1716 46.0376 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0197 16.8021 46.9810 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7056 18.5593 45.7419 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0968 19.1979 46.4195 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0870 16.2630 45.0803 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3163 20.2464 44.3345 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9170 17.8748 40.0620 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 2 0 + 5 12 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 11 18 1 0 + 12 13 1 0 + 13 16 1 0 + 13 19 2 0 + 14 15 1 0 + 14 16 1 0 + 14 18 2 0 + 16 17 1 0 + 6 20 1 0 +V 20 * +M END +> (17) +ALK2 + +> (17) +STKR + +> (17) +TKL + +> (17) +6gi6 + +> (17) +EZB + +> (17) + + +> (17) +A + +> (17) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (17) +8 8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6gin_altB_chainB + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -1.7320 18.2058 45.4914 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3595 18.2263 46.3702 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6033 19.3868 43.6155 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3108 20.6138 42.9368 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6988 21.5461 43.3198 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4750 20.6092 41.7801 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6875 21.5370 41.2697 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9851 19.4102 41.2839 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7045 18.2052 41.9845 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1285 17.2754 41.6353 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1261 18.2070 43.1381 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4370 16.9349 43.8544 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2053 16.9708 45.0079 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4183 19.4154 44.7974 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0093 15.8880 43.4526 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5978 15.8309 45.7283 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7833 19.4171 40.1044 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 13 1 0 + 1 14 2 0 + 3 4 2 0 + 3 11 1 0 + 3 14 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 15 2 0 + 16 13 1 0 + 8 17 1 0 +V 16 * +V 17 * +M END +> (18) +ALK2 + +> (18) +STKR + +> (18) +TKL + +> (18) +6gin + +> (18) +IR2 + +> (18) +B + +> (18) +B + +> (18) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (18) +9 9 9 9 9 9 9 16 9 9 9 9 9 9 9 na na + +$$$$ +6zgc_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -1.1216 16.2698 45.3532 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3672 15.6449 44.2481 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2420 14.5726 44.2178 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1754 16.4291 43.2579 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0172 17.8481 43.3073 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5846 18.6966 42.2837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3328 18.0601 41.1844 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4048 17.0527 41.1822 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4114 20.0554 42.3617 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2873 20.6023 43.3772 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4130 21.6747 43.4005 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8308 19.8718 44.3565 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6911 18.4378 44.3507 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2743 17.6154 45.3991 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8246 18.0736 46.2076 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6690 15.4272 46.3474 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9132 15.8699 42.1800 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9577 18.7728 40.1302 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 13 1 0 + 6 7 1 0 + 6 9 2 0 + 7 8 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 2 0 + 14 15 1 0 + 16 1 1 0 + 4 17 1 0 + 7 18 1 0 +V 16 * +V 17 * +V 18 * +M END +> (19) +ALK2 + +> (19) +STKR + +> (19) +TKL + +> (19) +6zgc + +> (19) +H8H + +> (19) + + +> (19) +A + +> (19) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP GA + +> (19) +16 16 16 16 16 14 5 5 16 16 16 16 16 16 16 na na na + +$$$$ +2x6d_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -1.8941 17.0396 45.7530 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9324 18.3631 45.6971 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5111 18.9563 46.2744 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9985 16.6333 44.8602 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4595 17.6615 44.2387 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0922 18.7849 44.7652 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8035 20.0216 44.3351 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1078 20.1804 43.3848 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3531 21.1826 43.0660 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7684 19.0989 42.7746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0503 19.5895 41.4723 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4915 17.7981 43.2115 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0599 16.5763 42.6607 * 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5725 16.1833 46.6126 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 2 3 1 0 + 2 6 1 0 + 4 5 1 0 + 5 6 2 0 + 5 12 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (20) +AurA + +> (20) +Aur + +> (20) +Other + +> (20) +2x6d + +> (20) +X6D + +> (20) +B + +> (20) +A + +> (20) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (20) +14 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +2xne_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -1.3788 17.5903 45.0905 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6910 19.8625 41.6091 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6192 19.6812 42.8583 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0250 20.6747 43.6397 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1939 21.7344 43.5172 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8120 20.1154 44.5951 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7509 18.7597 44.4233 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1453 18.4585 43.3340 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4458 17.1692 42.8810 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1207 17.0062 42.0538 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1565 16.1155 43.5356 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0542 16.3743 44.6148 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3312 17.6610 46.2380 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1584 14.6975 43.0458 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 1 0 + 1 12 2 0 + 2 3 1 0 + 3 4 2 0 + 3 8 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 1 13 1 0 + 11 14 1 0 +V 13 * +V 14 * +M END +> (21) +AurA + +> (21) +Aur + +> (21) +Other + +> (21) +2xne + +> (21) +ASH + +> (21) + + +> (21) +A + +> (21) +AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (21) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +3lau_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.0120 18.6785 43.3824 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6713 19.8264 42.7793 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8867 19.2297 44.4204 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3427 17.4107 42.8740 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1243 16.5315 43.2926 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5923 19.6746 41.7439 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0667 20.5492 41.3239 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1576 20.9026 43.4682 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4239 21.8600 43.2877 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7328 20.5450 44.4030 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7792 18.4210 45.2914 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6996 18.8139 45.4272 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2865 17.2676 41.8129 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5234 16.2798 41.4462 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9179 18.3909 41.2315 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5700 17.2490 45.9334 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8892 18.2238 40.1020 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 3 1 0 + 1 4 1 0 + 2 6 1 0 + 2 8 1 0 + 3 10 2 0 + 3 11 1 0 + 4 5 1 0 + 4 13 2 0 + 6 7 1 0 + 6 15 2 0 + 8 9 1 0 + 8 10 1 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 11 16 1 0 + 15 17 1 0 +V 16 * +V 17 * +M END +> (22) +AurA + +> (22) +Aur + +> (22) +Other + +> (22) +3lau + +> (22) +OFI + +> (22) + + +> (22) +A + +> (22) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (22) +14 14 14 14 14 14 14 14 14 14 5 5 14 14 16 na na + +$$$$ +3myg_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.0128 16.6376 42.5807 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6342 16.4110 41.7269 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0957 19.6964 44.1530 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5782 15.6423 43.3221 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2221 17.9373 42.9743 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5688 17.3016 44.8203 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9812 18.3050 44.0467 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2199 19.0763 42.3354 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3735 16.0002 44.4018 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3573 20.1194 43.1062 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2170 21.1647 42.8738 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3741 14.2010 43.0075 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9320 13.5915 43.7183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6868 13.9607 43.0770 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7276 13.9961 41.9970 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3505 17.6046 45.9260 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0313 19.1734 41.0571 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 5 1 0 + 3 7 2 0 + 3 10 1 0 + 4 9 1 0 + 4 12 1 0 + 5 7 1 0 + 5 8 1 0 + 6 7 1 0 + 6 9 2 0 + 8 10 2 0 + 10 11 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 6 1 0 + 17 8 1 0 +V 16 * +V 17 * +M END +> (23) +AurA + +> (23) +Aur + +> (23) +Other + +> (23) +3myg + +> (23) +EML + +> (23) + + +> (23) +A + +> (23) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (23) +14 14 14 14 14 14 14 14 14 14 14 8 8 8 8 na na + +$$$$ +3nrm_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.1341 16.8477 42.7360 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4515 16.5901 41.8659 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0789 19.9264 44.2365 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6943 15.8314 43.5311 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5665 14.7885 43.2811 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3298 18.1626 43.0632 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5983 17.5514 44.9876 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0324 18.5397 44.1586 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1688 19.2600 42.3787 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4004 16.2123 44.6227 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3372 20.3199 43.1574 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1541 21.3577 42.9213 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3564 17.8652 46.1012 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9739 19.3097 41.0911 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 6 1 0 + 3 8 2 0 + 3 11 1 0 + 4 5 1 0 + 4 10 1 0 + 6 8 1 0 + 6 9 1 0 + 7 8 1 0 + 7 10 2 0 + 9 11 2 0 + 11 12 1 0 + 13 7 1 0 + 14 9 1 0 +V 13 * +V 14 * +M END +> (24) +AurA + +> (24) +Aur + +> (24) +Other + +> (24) +3nrm + +> (24) +NRM + +> (24) + + +> (24) +A + +> (24) +AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (24) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +5ew9_altA_chainA + RDKit 3D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 0.2051 20.6578 43.3844 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3506 21.6398 42.9591 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7527 19.1300 44.6367 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8042 20.3843 44.2746 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5132 18.1710 43.9433 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0153 19.5957 43.0735 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8475 19.6364 42.3863 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6968 18.5642 45.5546 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4299 19.1573 45.9165 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6512 17.1984 45.9835 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 1 0 + 1 6 2 0 + 3 4 2 0 + 3 5 1 0 + 3 8 1 0 + 5 6 1 0 + 6 7 1 0 + 8 9 1 0 + 10 8 1 0 +V 10 * +M END +> (25) +AurA + +> (25) +Aur + +> (25) +Other + +> (25) +5ew9 + +> (25) +5VC + +> (25) +A + +> (25) +A + +> (25) +AP AP AP AP AP AP AP AP AP SE + +> (25) +14 14 14 14 14 14 14 5 5 na + +$$$$ +6gra_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 0.0711 14.4653 44.4493 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0405 14.3429 44.9324 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6765 13.8763 44.9805 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3191 15.9105 44.5404 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4549 16.9309 43.9779 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3461 16.7101 43.4092 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0394 18.2197 44.1758 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6209 19.3761 43.7048 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1846 20.4467 44.2006 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5863 21.0219 43.3664 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4178 21.0977 44.8342 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2584 19.8884 44.9639 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0789 18.5255 44.9196 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8364 17.5515 45.4955 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7167 17.7922 46.0730 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4312 16.2352 45.3102 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9958 15.4418 45.7772 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1727 13.9504 43.0812 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 16 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 13 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (26) +AurA + +> (26) +Aur + +> (26) +Other + +> (26) +6gra + +> (26) +F8Z + +> (26) + + +> (26) +A + +> (26) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (26) +4 4 4 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6gr8_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 0.2261 16.5875 44.3120 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8209 17.6077 43.5711 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5697 17.3946 42.8226 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4192 18.8883 43.8293 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8463 20.0422 43.2206 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0034 21.0659 43.7357 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7248 21.3644 42.9750 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5943 21.9293 44.0281 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6859 20.5467 44.8691 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4983 19.1888 44.8071 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0774 18.2223 45.5541 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8080 18.4601 46.3130 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6929 16.9080 45.3047 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1208 16.1145 45.8993 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6050 15.1436 44.1338 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (27) +AurC + +> (27) +Aur + +> (27) +Other + +> (27) +6gr8 + +> (27) +F8Z + +> (27) +A + +> (27) +A + +> (27) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (27) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3krw_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.9368 18.7724 41.4213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0570 20.1197 41.0848 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2879 20.3973 40.0670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8826 21.1114 42.0462 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9799 22.1515 41.7721 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5839 20.7648 43.3558 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4124 21.7259 44.2956 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5151 22.6262 43.9787 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4583 19.4276 43.7036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2241 19.1555 44.7222 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6334 18.4374 42.7441 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5340 17.3988 43.0233 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1258 17.7188 40.3547 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 9 1 0 + 7 8 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (28) +BARK1 + +> (28) +GRK + +> (28) +AGC + +> (28) +3krw + +> (28) +BA1 + +> (28) + + +> (28) +A + +> (28) +AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (28) +16 16 16 16 16 16 3 3 16 16 16 16 na + +$$$$ +4pnk_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.1026 19.6223 44.4431 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5290 19.1031 45.2887 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1059 20.9629 44.3210 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1265 21.6519 45.0220 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6484 21.2244 43.1681 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8247 20.1019 42.4736 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3595 19.0457 43.2212 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3305 19.8910 41.2465 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6996 20.7070 40.6429 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3589 18.5981 40.7918 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7570 18.4221 39.8034 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9122 17.4996 41.5123 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3702 17.7256 42.7711 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0234 16.9189 43.3718 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9738 16.2567 40.9316 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 7 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 7 13 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 + 12 15 1 0 +V 15 * +M END +> (29) +BARK1 + +> (29) +GRK + +> (29) +AGC + +> (29) +4pnk + +> (29) +KZQ + +> (29) +A + +> (29) +A + +> (29) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (29) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5he1_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.6356 17.9511 40.7857 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9405 17.9453 41.9979 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6606 17.0087 42.4570 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6111 19.1441 42.6092 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0676 19.3650 43.8415 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4335 18.6014 44.5119 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1717 20.6913 44.0214 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4503 21.2392 42.8851 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5247 22.2333 42.7231 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9307 20.3304 42.0446 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6005 20.3780 40.8574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8573 21.3285 40.4135 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9473 19.1962 40.2280 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4709 19.2352 39.2843 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0232 16.8413 40.0766 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (30) +BARK1 + +> (30) +GRK + +> (30) +AGC + +> (30) +5he1 + +> (30) +ZS2 + +> (30) +A + +> (30) +A + +> (30) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (30) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3c4c_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.4578 19.5661 41.5254 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2158 20.9530 41.5964 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5852 21.6875 40.8961 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7602 18.9097 42.6660 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5773 17.6354 43.1746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0184 16.7706 42.7015 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1592 20.0326 43.3146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4411 21.2233 42.6889 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1302 22.1376 42.9847 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5691 19.8696 44.4246 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7614 18.6551 44.9317 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3587 18.5490 45.8253 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2156 17.5162 44.3450 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5552 16.0177 45.1394 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2327 18.8424 40.4965 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 8 1 0 + 4 5 2 0 + 4 7 1 0 + 5 6 1 0 + 5 13 1 0 + 7 8 1 0 + 7 10 2 0 + 8 9 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (31) +BRAF + +> (31) +RAF + +> (31) +TKL + +> (31) +3c4c + +> (31) +324 + +> (31) + + +> (31) +A + +> (31) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (31) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3ppj_chainB + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.1691 20.6240 42.7354 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0903 21.6784 42.5155 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8765 20.2157 43.8223 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9633 18.8849 44.0861 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5196 18.5486 44.9486 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3496 17.9551 43.2660 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3532 18.3421 42.1965 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4642 19.6857 41.8903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0224 20.0106 41.0247 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8525 17.1042 41.5746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3677 16.0616 42.3910 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3773 16.6060 43.4414 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6202 16.9241 40.4577 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4796 14.6255 42.3555 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 12 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 11 2 0 + 11 12 1 0 + 10 13 1 0 + 11 14 1 0 +V 13 * +V 14 * +M END +> (32) +BRAF + +> (32) +RAF + +> (32) +TKL + +> (32) +3ppj + +> (32) +FOI + +> (32) + + +> (32) +B + +> (32) +AP AP AP AP AP AP AP AP AP AP AP AP GA FP + +> (32) +16 16 16 16 16 16 16 16 16 16 14 16 na na + +$$$$ +3psb_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.0952 16.9561 41.4753 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5782 18.0996 42.2250 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0653 17.7494 43.4800 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1783 16.0338 43.8204 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9249 15.7677 42.2518 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5383 19.4589 41.8426 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9212 19.7798 40.8852 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0196 20.3873 42.7542 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0552 21.4281 42.4681 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5100 20.0379 43.9643 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4742 18.7377 44.3338 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8649 18.4494 45.2985 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6622 17.0153 40.1921 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2871 14.4206 41.9099 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 2 0 + 2 6 1 0 + 3 4 1 0 + 3 11 1 0 + 4 5 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 13 1 1 0 + 5 14 1 0 +V 13 * +V 14 * +M END +> (33) +BRAF + +> (33) +RAF + +> (33) +TKL + +> (33) +3psb + +> (33) +SM6 + +> (33) + + +> (33) +A + +> (33) +AP AP AP AP AP AP AP AP AP AP AP AP GA FP + +> (33) +16 16 16 16 14 16 16 16 16 16 16 16 na na + +$$$$ +4cqe_chainB + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.1756 19.0452 42.3859 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6896 18.5306 43.6058 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7730 17.4719 43.8022 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0202 20.4060 42.1041 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3449 20.8125 41.1576 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4399 21.2257 43.0654 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3460 22.2850 42.8773 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0254 20.6927 44.2775 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0956 19.3687 44.5779 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4154 18.9522 45.7750 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7044 19.6596 46.4354 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5616 17.6443 46.1384 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1338 16.6920 45.5002 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2720 17.3811 47.4877 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5889 18.3291 47.9224 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5839 16.8809 48.1692 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1436 16.7480 47.3220 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6954 18.1960 41.4864 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 9 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 12 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 1 1 0 +V 18 * +M END +> (34) +BRAF + +> (34) +RAF + +> (34) +TKL + +> (34) +4cqe + +> (34) +CQE + +> (34) + + +> (34) +B + +> (34) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (34) +16 14 14 14 14 14 14 14 14 5 5 1 1 1 1 1 1 na + +$$$$ +4e26_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -0.0605 16.7760 43.5519 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3857 15.9232 42.5578 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1929 16.4058 41.5340 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5394 15.7385 40.7587 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5535 17.7477 41.5091 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1044 18.6040 42.5064 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4583 19.9462 42.4901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0853 20.3391 41.7034 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9928 20.7750 43.5017 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2539 21.8229 43.5095 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1877 20.2463 44.5054 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1754 20.8886 45.2941 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2975 18.1192 43.5301 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1411 18.9484 44.5026 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8518 16.2992 44.5529 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1202 16.9518 45.2037 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5951 18.3748 40.1884 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0036 14.4932 42.5841 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 1 15 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 17 1 0 + 6 7 1 0 + 6 13 2 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 14 2 0 + 13 14 1 0 + 15 16 1 0 + 2 18 1 0 +V 18 * +M END +> (35) +BRAF + +> (35) +RAF + +> (35) +TKL + +> (35) +4e26 + +> (35) +734 + +> (35) + + +> (35) +B + +> (35) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (35) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 3 3 16 na + +$$$$ +4mbj_chainB + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.4411 18.1383 43.6833 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3405 19.1609 44.1798 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4030 20.3859 43.6710 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3888 20.5752 42.5819 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3741 21.5563 42.1307 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2074 19.6335 42.0007 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2481 18.3792 42.5440 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8701 17.6038 42.1218 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2945 16.9794 44.4284 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7305 16.0763 44.3079 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5814 17.3856 45.3487 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9420 16.7283 46.1262 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9878 18.6627 45.2494 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9946 20.0002 40.8834 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 1 9 1 0 + 2 3 2 0 + 2 13 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 6 14 1 0 +V 14 * +M END +> (36) +BRAF + +> (36) +RAF + +> (36) +TKL + +> (36) +4mbj + +> (36) +DFS + +> (36) + + +> (36) +B + +> (36) +AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (36) +16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5fd2_chainA + RDKit 3D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 0.6426 18.4657 42.3444 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8147 19.7892 42.2402 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2310 20.6345 43.0663 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4127 21.6926 42.9485 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5675 20.2261 44.0315 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8093 18.9251 44.1994 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2216 18.0055 43.3481 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6327 16.7955 43.7545 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3661 15.9154 43.3368 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4487 16.9402 44.7972 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9393 16.1396 45.3309 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5576 18.2442 45.0712 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2484 17.6045 41.4053 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 6 7 2 0 + 6 12 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 13 1 1 0 +V 13 * +M END +> (37) +BRAF + +> (37) +RAF + +> (37) +TKL + +> (37) +5fd2 + +> (37) +5XJ + +> (37) + + +> (37) +A + +> (37) +AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (37) +14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4ot5_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.0480 16.5800 43.0771 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1236 16.5137 44.1308 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2925 17.7749 42.4457 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9527 17.8077 41.5917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6880 18.9506 42.9064 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1845 18.8752 43.9693 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6301 20.1423 44.2242 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0334 20.9969 43.3164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1719 22.0670 43.2711 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7687 20.2518 42.4787 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3489 20.6212 41.6461 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4456 17.6533 44.5720 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3484 17.6532 45.6260 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7592 18.5517 45.8357 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7692 16.6236 46.4265 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6233 15.3241 42.5930 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 2 12 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 10 1 0 + 6 7 2 0 + 6 12 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (38) +BTK + +> (38) +Tec + +> (38) +TK + +> (38) +4ot5 + +> (38) +481 + +> (38) + + +> (38) +A + +> (38) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (38) +14 14 14 14 14 14 14 14 14 14 14 14 5 5 na na + +$$$$ +4otq_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -0.3678 19.1037 44.0725 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6777 17.8044 44.5189 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0807 16.6828 43.9916 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3362 15.6957 44.3475 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9057 16.8696 42.9393 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1729 18.1636 42.5170 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8917 18.3028 41.7231 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5811 19.2647 43.0460 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9024 20.0990 44.5289 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8377 20.5802 42.4800 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2767 21.3309 43.0366 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5256 20.5936 41.4357 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9031 20.8016 42.5437 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6513 17.7676 45.5579 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1747 18.6169 45.7152 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9490 16.7224 46.3530 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5559 15.6799 42.3546 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 8 1 0 + 1 9 2 0 + 2 3 2 0 + 2 14 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 14 16 1 0 + 5 17 1 0 +V 16 * +V 17 * +M END +> (39) +BTK + +> (39) +Tec + +> (39) +TK + +> (39) +4otq + +> (39) +2V2 + +> (39) + + +> (39) +A + +> (39) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (39) +16 16 16 16 16 16 16 9 16 8 8 8 8 5 5 na na + +$$$$ +7kxo_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.6215 17.9813 42.8961 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8588 19.3085 42.5261 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5202 19.5411 41.7046 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2273 20.3224 43.2355 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4139 21.3420 42.9323 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2332 17.7330 43.9832 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8023 18.8348 44.5972 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4953 16.9817 45.5214 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6003 20.1180 44.2741 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6245 18.3390 45.5670 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2116 18.8708 46.1936 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6661 16.5611 44.5789 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1322 16.1168 46.4744 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2120 16.8726 42.0977 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 6 7 2 0 + 6 12 1 0 + 7 9 1 0 + 7 10 1 0 + 8 10 1 0 + 8 12 2 0 + 10 11 1 0 + 8 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (40) +BTK + +> (40) +Tec + +> (40) +TK + +> (40) +7kxo + +> (40) +X9S + +> (40) +B + +> (40) +A + +> (40) +AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (40) +16 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +6f7b_altB_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -1.8085 16.6449 43.4809 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7554 15.5653 43.3398 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8040 16.9979 43.2117 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6079 16.8852 44.5250 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8502 17.2731 42.6620 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6975 18.6315 42.6394 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2597 19.5120 43.5522 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8703 19.1305 44.3572 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0517 20.8341 43.4440 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2491 21.3321 42.5022 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0724 22.3967 42.4603 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3675 20.4909 41.5665 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0287 20.8978 40.8158 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1130 19.1113 41.6194 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6488 18.1416 40.8287 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4867 17.1944 41.1395 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3613 18.2584 39.6960 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 15 16 1 0 + 17 15 1 0 +V 17 * +M END +> (41) +BUB1 + +> (41) +BUB + +> (41) +Other + +> (41) +6f7b + +> (41) +CVQ + +> (41) +B + +> (41) +A + +> (41) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (41) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 5 5 na + +$$$$ +1h00_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.1893 20.8387 42.1554 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2725 21.9113 42.2498 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6754 18.8657 42.9727 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0162 18.1470 41.9166 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0976 17.0742 41.8226 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7550 18.9286 40.9946 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8397 20.2689 41.1378 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5547 20.2068 43.0680 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5020 18.2074 43.9739 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8869 18.8619 44.6399 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4759 18.3483 39.8677 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9114 16.8344 44.2523 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 1 8 1 0 + 3 4 1 0 + 3 8 2 0 + 3 9 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 9 10 1 0 + 6 11 1 0 + 12 9 1 0 +V 11 * +V 12 * +M END +> (42) +CDK2 + +> (42) +CDK + +> (42) +CMGC + +> (42) +1h00 + +> (42) +FCP + +> (42) +B + +> (42) +A + +> (42) +AP AP AP AP AP AP AP AP AP AP FP SE + +> (42) +14 14 14 14 14 14 14 14 5 5 na na + +$$$$ +1h08_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -0.9843 19.6333 43.3470 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1862 20.2347 42.4303 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0144 21.2990 42.4934 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1643 18.3067 43.2362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1692 18.0865 41.3587 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4338 19.4823 41.3786 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6252 17.5434 42.2830 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0149 17.6810 44.2297 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3887 18.3377 44.8999 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5591 20.3234 40.0827 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7602 17.2701 40.3080 * 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4503 16.3034 44.4731 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 6 1 0 + 4 7 2 0 + 4 8 1 0 + 5 6 2 0 + 5 7 1 0 + 6 10 1 0 + 8 9 1 0 + 5 11 1 0 + 12 8 1 0 +V 11 * +V 12 * +M END +> (43) +CDK2 + +> (43) +CDK + +> (43) +CMGC + +> (43) +1h08 + +> (43) +BYP + +> (43) +A + +> (43) +A + +> (43) +AP AP AP AP AP AP AP AP AP AP FP SE + +> (43) +14 14 14 14 14 14 14 5 5 14 na na + +$$$$ +1y8y_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.5559 17.1010 44.0488 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5445 17.8914 44.6775 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7590 17.1580 42.9563 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3534 18.3735 42.5129 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4469 18.4715 41.4344 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8654 17.3562 40.7444 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0619 20.4972 42.1468 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1374 21.5703 42.2427 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6689 19.5690 42.9570 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2674 16.0055 42.3323 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5203 15.0280 42.7157 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5561 16.1319 41.2051 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0766 14.8875 40.4381 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6723 19.8067 41.1743 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2832 20.2288 40.3900 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3796 16.0474 44.3663 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 10 2 0 + 4 5 1 0 + 4 9 1 0 + 5 6 1 0 + 5 14 2 0 + 6 12 2 0 + 7 8 1 0 + 7 9 2 0 + 7 14 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (44) +CDK2 + +> (44) +CDK + +> (44) +CMGC + +> (44) +1y8y + +> (44) +CT7 + +> (44) + + +> (44) +A + +> (44) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (44) +5 5 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +1y91_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.5994 16.2186 41.7665 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2598 16.1864 42.8559 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5803 15.2435 43.2738 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0129 17.3865 41.2804 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5622 18.5034 41.8246 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8558 19.7829 41.4360 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1541 20.5910 42.3160 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1431 21.6709 42.3148 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2494 18.5236 42.8599 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5163 19.7886 43.1785 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7041 17.3938 43.4042 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5657 17.4652 44.4571 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6692 18.3480 44.9367 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1230 15.1095 41.2191 * 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2838 16.4141 44.8858 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7731 20.1539 40.3411 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 2 3 1 0 + 2 11 2 0 + 4 5 1 0 + 5 6 2 0 + 5 9 1 0 + 6 7 1 0 + 7 8 1 0 + 7 10 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 12 13 1 0 + 14 1 1 0 + 12 15 1 0 + 6 16 1 0 +V 14 * +V 15 * +V 16 * +M END +> (45) +CDK2 + +> (45) +CDK + +> (45) +CMGC + +> (45) +1y91 + +> (45) +CT9 + +> (45) + + +> (45) +A + +> (45) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE GA + +> (45) +14 14 14 14 14 16 14 14 14 14 14 5 5 na na na + +$$$$ +2exm_chainA + RDKit 3D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -0.1714 17.0938 42.0663 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2707 18.4229 41.7310 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9067 18.9521 40.5875 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1455 19.4478 42.6479 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6171 20.5959 42.1232 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6071 21.5199 42.5310 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1093 20.2154 40.9156 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6323 20.9015 40.2659 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4634 19.1598 43.9172 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9020 17.9339 44.1209 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4113 17.7201 45.0490 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7545 16.9738 43.2676 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0621 15.9293 41.2316 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 3 7 2 0 + 4 5 1 0 + 4 9 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 13 1 1 0 +V 13 * +M END +> (46) +CDK2 + +> (46) +CDK + +> (46) +CMGC + +> (46) +2exm + +> (46) +ZIP + +> (46) + + +> (46) +A + +> (46) +AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (46) +14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +2r3j_altA_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.6846 19.6214 41.3726 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1966 18.3377 41.4229 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6562 18.3004 42.4854 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7319 19.5346 43.1127 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0687 20.3287 42.4117 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2237 21.3779 42.6154 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4878 17.2743 40.5990 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1116 16.1370 40.8858 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0153 16.0414 41.9886 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4817 15.0910 42.2022 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3132 17.1365 42.7966 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1685 17.1586 43.8809 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1078 17.9032 44.5605 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8715 20.2968 40.1254 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1715 16.0876 44.0409 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1715 14.9823 40.0223 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 5 1 0 + 1 14 1 0 + 2 3 1 0 + 2 7 1 0 + 3 4 1 0 + 3 11 1 0 + 4 5 2 0 + 5 6 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 15 1 0 + 8 16 1 0 +V 15 * +V 16 * +M END +> (47) +CDK2 + +> (47) +CDK + +> (47) +CMGC + +> (47) +2r3j + +> (47) +SCJ + +> (47) +A + +> (47) +A + +> (47) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (47) +14 14 14 14 14 14 14 14 14 14 14 5 5 14 na na + +$$$$ +2r3l_altB_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.6180 19.5483 41.3617 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1354 18.2920 41.4650 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7235 18.2767 42.5216 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8141 19.5005 43.1183 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0162 20.2958 42.3810 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1841 21.3478 42.5585 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4075 17.1573 40.7011 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0953 17.2144 39.8705 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2030 15.9682 41.0100 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1076 15.9156 42.1081 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5864 14.9786 42.3516 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3918 17.0479 42.8796 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2820 17.1097 43.9152 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2702 17.8833 44.5643 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8427 20.1429 40.1052 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2615 16.0134 44.0582 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0248 14.7723 40.1577 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 15 1 0 + 2 3 1 0 + 2 7 1 0 + 3 4 2 0 + 3 12 1 0 + 4 5 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 16 1 0 + 9 17 1 0 +V 16 * +V 17 * +M END +> (48) +CDK2 + +> (48) +CDK + +> (48) +CMGC + +> (48) +2r3l + +> (48) +SCW + +> (48) +B + +> (48) +A + +> (48) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (48) +16 16 16 16 16 16 16 16 16 16 16 16 5 5 16 na na + +$$$$ +2uzn_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -1.0327 17.2299 43.3732 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2524 17.2047 42.2516 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9245 18.4921 43.9483 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4026 18.8236 44.8582 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0866 19.2487 43.1345 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2033 20.2764 43.2962 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3100 18.4375 42.0725 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2268 18.7990 40.9656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8151 20.1828 40.9022 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5492 20.7324 41.8052 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4220 20.7051 40.0300 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9001 20.1131 40.8255 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4241 17.9328 39.9546 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8175 16.0638 43.8876 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 2 7 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 8 13 2 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (49) +CDK2 + +> (49) +CDK + +> (49) +CMGC + +> (49) +2uzn + +> (49) +C96 + +> (49) + + +> (49) +A + +> (49) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (49) +14 7 7 7 7 7 7 7 7 7 7 7 na na + +$$$$ +2vv9_altB_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 0.8774 19.3255 41.1910 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6329 20.7155 41.2808 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0631 21.4116 40.5760 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1838 21.1423 42.3145 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3907 22.1953 42.4364 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7161 20.2589 43.1605 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5063 18.9520 43.0349 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1538 18.1801 43.9917 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5276 18.7017 44.7715 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3727 16.8053 44.0532 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1022 15.9016 43.0252 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6929 16.2440 42.0863 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3696 14.5482 43.2311 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1554 13.8455 42.4395 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9041 14.0766 44.4260 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1932 14.9798 45.4423 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6150 14.6397 46.3766 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9299 16.3279 45.2345 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1666 17.0311 46.0193 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3019 18.4661 42.0670 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2040 12.7056 44.6068 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7520 18.8134 40.1197 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 20 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 20 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 10 18 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 15 21 1 0 + 22 1 1 0 +V 21 * +V 22 * +M END +> (50) +CDK2 + +> (50) +CDK + +> (50) +CMGC + +> (50) +2vv9 + +> (50) +IM9 + +> (50) +B + +> (50) +A + +> (50) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (50) +14 14 14 14 14 14 14 5 5 16 16 16 16 16 16 16 16 16 16 14 na na + +$$$$ +2w17_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.8700 19.3229 41.2498 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3033 18.5012 42.1425 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4373 19.0621 43.1094 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0808 18.3022 44.1058 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1653 18.7730 44.9953 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6256 20.3839 43.2339 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0519 21.1788 42.3351 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1946 22.2461 42.4177 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7095 20.6951 41.3139 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2442 21.5735 40.4505 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6263 17.0075 44.0856 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6907 18.7137 40.1542 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 3 4 1 0 + 3 6 2 0 + 4 5 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 4 11 1 0 + 12 1 1 0 +V 11 * +V 12 * +M END +> (51) +CDK2 + +> (51) +CDK + +> (51) +CMGC + +> (51) +2w17 + +> (51) +I19 + +> (51) +A + +> (51) +A + +> (51) +AP AP AP AP AP AP AP AP AP AP SE GA + +> (51) +14 14 14 5 5 14 14 14 14 14 na na + +$$$$ +3bht_altB_chainC + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.0143 17.7788 43.2836 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1272 16.7521 43.5991 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6439 18.7893 44.0309 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2143 18.5041 44.9025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7529 18.0532 42.1465 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5322 20.2385 40.7366 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0903 21.6674 40.9751 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3378 22.5169 40.3559 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3239 21.6992 42.1087 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0466 22.5436 42.5209 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7994 19.4821 41.7366 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3665 17.0511 41.4262 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4155 15.6948 41.8882 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9471 15.0820 41.1602 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4009 15.3157 42.0104 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9357 15.6554 42.8452 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1248 20.4566 42.6083 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5704 20.0965 43.7124 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0677 19.9231 39.3496 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 18 1 0 + 5 11 2 0 + 5 12 1 0 + 6 7 2 0 + 6 11 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 17 1 0 + 11 17 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 2 0 + 19 6 1 0 +V 19 * +M END +> (52) +CDK2 + +> (52) +CDK + +> (52) +CMGC + +> (52) +3bht + +> (52) +MFR + +> (52) +B + +> (52) +C + +> (52) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (52) +16 16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 16 16 na + +$$$$ +3bhu_altA_chainC + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.0985 17.6681 43.0699 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2537 16.6290 43.3199 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7277 18.6572 43.8428 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3485 18.3438 44.6690 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7225 17.9904 41.9868 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6343 20.2326 40.7459 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2328 21.6583 41.0630 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5385 22.5347 40.5109 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4225 21.6542 42.1590 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0629 22.4848 42.6072 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1627 20.3856 42.5686 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5969 19.9742 43.6071 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8357 19.4439 41.6648 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3095 16.9952 41.2512 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4711 16.0543 40.5680 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0942 19.9877 39.3324 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 12 1 0 + 5 13 2 0 + 5 14 1 0 + 6 7 2 0 + 6 13 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 11 13 1 0 + 14 15 1 0 + 16 6 1 0 +V 15 * +V 16 * +M END +> (53) +CDK2 + +> (53) +CDK + +> (53) +CMGC + +> (53) +3bhu + +> (53) +MHR + +> (53) +A + +> (53) +C + +> (53) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP GA + +> (53) +16 16 16 16 16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +4ek6_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.4368 15.8068 42.8642 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7759 17.8002 43.9369 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3050 18.2425 44.6749 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8035 19.9218 43.4956 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3238 20.4505 44.1810 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0686 20.4005 42.5926 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2419 15.9352 44.4999 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8620 16.7661 44.8363 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8386 15.2629 43.8834 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0638 16.4774 43.6735 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8398 18.5771 43.2948 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6201 19.4046 41.7990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0517 18.2044 42.2249 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2384 17.2135 41.8382 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7276 15.2007 45.6711 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5800 19.7544 40.7514 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 2 0 + 2 3 1 0 + 2 10 1 0 + 2 11 1 0 + 4 5 1 0 + 4 6 1 0 + 4 11 1 0 + 6 12 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 13 2 0 + 12 13 1 0 + 13 14 1 0 + 15 7 1 0 + 12 16 1 0 +V 15 * +V 16 * +M END +> (54) +CDK2 + +> (54) +CDK + +> (54) +CMGC + +> (54) +4ek6 + +> (54) +10K + +> (54) +B + +> (54) +A + +> (54) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (54) +1 5 5 14 14 14 8 1 1 1 14 14 14 14 na na + +$$$$ +4eoi_altB_chainC + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 1.8814 20.0295 40.0998 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5189 20.8790 39.9035 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9219 20.0302 41.2323 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3535 21.2192 41.7003 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6214 22.1592 41.2408 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5594 21.1990 42.7591 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9944 22.1243 43.1071 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9141 19.9980 43.3703 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7868 19.9439 44.3994 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1085 18.7679 44.9690 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8124 18.7607 45.7880 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5626 17.5545 44.5370 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8472 16.6328 45.0228 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6522 17.5315 43.4810 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2259 16.6005 43.1373 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3070 18.7386 42.8816 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5980 18.8102 41.8349 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0636 17.9040 41.4764 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9302 18.8148 39.2475 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 17 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 16 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 2 0 + 17 18 1 0 + 19 1 2 0 +V 19 * +M END +> (55) +CDK2 + +> (55) +CDK + +> (55) +CMGC + +> (55) +4eoi + +> (55) +1RO + +> (55) +B + +> (55) +C + +> (55) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (55) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +4fkj_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 0.0387 20.3784 42.6559 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2611 21.3599 42.5712 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7765 19.8760 43.4708 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7245 17.8051 43.9846 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2109 18.2514 44.7490 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5122 15.8182 42.8565 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0032 18.2151 42.2733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1476 17.2403 41.8334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2054 15.9482 44.5377 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8372 15.3430 43.8876 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7903 16.7705 44.9498 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0431 16.5200 43.7180 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8072 18.5498 43.3145 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5633 19.3864 41.9172 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6907 15.0845 45.6759 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6005 19.7514 40.8343 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 14 1 0 + 3 13 2 0 + 4 5 1 0 + 4 12 1 0 + 4 13 1 0 + 6 12 2 0 + 7 8 1 0 + 7 13 1 0 + 7 14 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 9 15 1 0 + 14 16 1 0 +V 15 * +V 16 * +M END +> (56) +CDK2 + +> (56) +CDK + +> (56) +CMGC + +> (56) +4fkj + +> (56) +11K + +> (56) +B + +> (56) +A + +> (56) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (56) +14 14 14 5 5 1 14 14 8 1 1 1 14 14 na na + +$$$$ +5and_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.4049 16.7466 43.5013 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5667 16.5754 42.4336 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3771 15.7162 41.9377 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4551 17.9827 43.9765 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0236 17.8474 42.1709 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5907 18.7080 43.1195 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8419 18.2979 41.1871 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2549 17.6250 40.4502 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2821 20.0514 43.0978 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7159 20.7298 43.8175 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1576 19.6560 41.1879 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8428 20.0448 40.4492 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6027 20.5134 42.1254 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8617 21.5616 42.1017 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1722 15.6495 44.0298 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 2 3 1 0 + 2 5 1 0 + 4 6 1 0 + 5 6 2 0 + 5 7 1 0 + 6 9 1 0 + 7 8 1 0 + 7 11 2 0 + 9 10 1 0 + 9 13 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 1 15 1 0 +V 15 * +M END +> (57) +CDK2 + +> (57) +CDK + +> (57) +CMGC + +> (57) +5and + +> (57) +5JE + +> (57) + + +> (57) +A + +> (57) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (57) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +1ung_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.5481 17.1917 43.1853 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8783 18.3617 43.8001 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5248 18.5040 44.5629 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1546 19.2669 43.1648 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1189 20.6803 43.4313 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6207 18.6881 42.1930 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4891 19.5048 41.4002 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4815 20.8131 41.6253 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1109 21.4525 41.0241 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6806 21.3879 42.6205 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7088 22.4607 42.7413 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3926 17.3239 42.1295 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0744 16.2991 41.2219 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0879 15.9683 43.5581 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 6 1 0 + 5 10 1 0 + 6 7 2 0 + 6 12 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (58) +CDK5 + +> (58) +CDK + +> (58) +CMGC + +> (58) +1ung + +> (58) +ALH + +> (58) + + +> (58) +A + +> (58) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (58) +14 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +1unh_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.0396 18.9628 42.5662 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0467 20.1525 43.2600 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5413 21.2045 42.6006 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6470 22.1604 42.9092 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9485 20.6392 41.4231 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6459 19.2942 41.2811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5843 21.2493 40.4491 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8034 22.2995 40.5738 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9701 20.6771 39.3413 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4830 21.2415 38.5765 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6888 19.2432 39.1599 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0036 18.7560 38.2489 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0490 18.5246 40.1013 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8493 17.4684 39.9958 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6047 20.1945 44.3970 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6046 17.7781 43.0932 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 1 0 + 2 3 1 0 + 2 15 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 5 7 1 0 + 6 13 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 16 1 2 0 +V 16 * +M END +> (59) +CDK5 + +> (59) +CDK + +> (59) +CMGC + +> (59) +1unh + +> (59) +IXM + +> (59) + + +> (59) +A + +> (59) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (59) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +4au8_altB_chainB + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 2.0554 20.7050 39.3376 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4616 21.6810 39.1167 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2620 19.6469 38.4471 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8375 19.8125 37.5484 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7372 18.3836 38.7020 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8921 17.5785 37.9990 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0073 18.1638 39.8757 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8136 19.2118 40.7927 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3396 20.5083 40.4892 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1721 21.3314 41.1680 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1188 18.8069 41.8770 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2542 17.5609 41.9411 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2766 16.6845 40.5273 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0739 16.9341 43.0102 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 13 1 0 + 8 9 2 0 + 8 11 1 0 + 9 10 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 +V 14 * +M END +> (60) +CDK5 + +> (60) +CDK + +> (60) +CMGC + +> (60) +4au8 + +> (60) +Z3R + +> (60) +B + +> (60) +B + +> (60) +AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (60) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4crl_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 1.1670 16.2187 42.0580 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4924 16.9137 43.0081 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0161 16.3926 43.8058 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4610 18.3088 42.9458 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2219 19.0879 43.8852 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7555 18.6122 44.6948 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2150 20.3888 43.7849 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4052 21.0305 42.8200 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3626 22.1092 42.7882 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0960 20.3652 41.8658 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6062 20.9070 41.0832 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1419 18.9693 41.9042 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8338 18.2236 40.9504 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3587 18.7183 40.1466 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8407 16.8748 41.0424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3830 16.2974 40.3083 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2520 14.7144 42.0932 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 15 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 1 1 0 +V 17 * +M END +> (61) +CDK8 + +> (61) +CDK + +> (61) +CMGC + +> (61) +4crl + +> (61) +C1I + +> (61) + + +> (61) +A + +> (61) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (61) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5bnj_chainA + RDKit 3D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 0.4667 21.2145 42.6990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4340 22.2939 42.6846 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1805 20.5520 41.7209 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2255 19.1484 41.7329 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5245 18.4771 42.7806 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1753 19.2419 43.7235 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7175 18.7461 44.5150 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1806 20.5622 43.6569 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9999 21.4925 40.5053 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9602 18.4990 40.7357 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4688 17.0004 42.9044 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 3 9 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 4 10 1 0 + 11 5 1 0 +V 10 * +V 11 * +M END +> (62) +CDK8 + +> (62) +CDK + +> (62) +CMGC + +> (62) +5bnj + +> (62) +4TV + +> (62) + + +> (62) +A + +> (62) +AP AP AP AP AP AP AP AP AP FP FP + +> (62) +16 16 16 16 16 16 16 16 16 na na + +$$$$ +5hbj_altB_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.4079 17.8166 42.5940 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1302 18.5464 43.6518 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5107 18.0204 44.5149 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1864 19.8658 43.6251 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8308 19.9190 41.4866 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9118 18.5182 41.4687 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2704 20.5598 42.5882 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1901 21.9463 42.6109 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5375 22.4851 41.8304 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2156 22.4156 43.4078 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4167 20.8871 40.1728 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4614 17.8306 40.3884 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4260 16.3365 42.7057 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 7 2 0 + 5 6 2 0 + 5 7 1 0 + 5 11 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 6 12 1 0 + 13 1 1 0 +V 12 * +V 13 * +M END +> (63) +CDK8 + +> (63) +CDK + +> (63) +CMGC + +> (63) +5hbj + +> (63) +5Y8 + +> (63) +B + +> (63) +A + +> (63) +AP AP AP AP AP AP AP AP AP AP AP FP FP + +> (63) +16 14 14 14 14 16 14 5 5 5 14 na na + +$$$$ +5i5z_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 2.7366 19.3982 39.8480 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3625 19.3133 41.7338 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3799 20.7337 41.8181 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6645 21.3584 42.8514 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6723 22.4355 42.9291 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0354 18.7175 40.7562 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1114 21.4756 40.8650 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1376 22.5542 40.9124 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7868 20.8067 39.8804 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3512 21.3509 39.1376 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0168 20.6480 43.7285 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0619 19.3207 43.6861 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6386 18.7897 44.4290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6114 18.6015 42.7141 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4441 18.6453 38.7774 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5236 17.1338 42.6860 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 9 1 0 + 2 3 2 0 + 2 6 1 0 + 2 14 1 0 + 3 4 1 0 + 3 7 1 0 + 4 5 1 0 + 4 11 2 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 15 1 1 0 + 16 14 1 0 +V 15 * +V 16 * +M END +> (64) +CDK8 + +> (64) +CDK + +> (64) +CMGC + +> (64) +5i5z + +> (64) +68U + +> (64) + + +> (64) +A + +> (64) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP + +> (64) +14 14 14 14 14 14 14 14 14 14 14 14 14 16 na na + +$$$$ +2hxl_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.2186 18.6233 43.4710 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5851 18.5422 42.2647 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7783 19.9104 41.8064 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1548 20.7160 42.6809 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1502 21.7248 42.6319 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4734 19.9798 43.6471 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1707 17.4518 41.4271 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0578 16.4229 41.7353 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9077 17.7675 40.1729 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3436 16.9816 39.5739 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0284 19.1911 39.7663 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4765 20.2969 40.5785 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5822 21.3303 40.2830 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6787 19.4883 38.5071 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2358 19.7315 37.5155 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7971 17.5166 44.3527 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 2 0 + 2 7 1 0 + 3 4 1 0 + 3 12 1 0 + 4 5 1 0 + 4 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 11 14 1 0 + 12 13 1 0 + 14 15 3 0 + 16 1 1 0 +V 16 * +M END +> (65) +CHK1 + +> (65) +CAMKL + +> (65) +CAMK + +> (65) +2hxl + +> (65) +422 + +> (65) + + +> (65) +A + +> (65) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (65) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +2hxq_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.1150 18.6762 41.4589 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7652 18.1655 40.2684 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8946 17.1053 40.1088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2365 19.1420 39.2967 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7431 18.8014 38.4058 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0368 20.5730 39.5046 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3532 21.2681 38.7410 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4213 21.0800 40.7174 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3098 22.1397 40.8940 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9654 20.1033 41.6760 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2886 20.5212 42.7857 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1870 21.5130 42.9469 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2516 19.6590 43.6782 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1471 18.1756 43.4786 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5522 17.7255 42.4136 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6946 16.6647 42.2689 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8470 20.0451 44.6787 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8342 17.2496 44.4258 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 1 15 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 17 2 0 + 14 15 2 0 + 15 16 1 0 + 14 18 1 0 +V 18 * +M END +> (66) +CHK1 + +> (66) +CAMKL + +> (66) +CAMK + +> (66) +2hxq + +> (66) +373 + +> (66) + + +> (66) +A + +> (66) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (66) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2wmw_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -1.3710 15.9238 44.8501 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7179 17.5087 44.0749 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1261 18.7296 44.5901 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8098 18.7491 45.4259 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6969 19.8665 44.0808 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1466 19.8699 43.0462 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7134 20.8451 42.3597 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5811 21.8315 42.5313 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4263 20.3683 41.4801 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3898 19.0418 41.5130 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9227 18.3731 40.8532 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5861 18.6876 42.4960 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1536 17.4739 43.0012 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6043 16.2693 42.4446 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 12 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 +V 14 * +M END +> (67) +CHK1 + +> (67) +CAMKL + +> (67) +CAMK + +> (67) +2wmw + +> (67) +ZYW + +> (67) + + +> (67) +A + +> (67) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (67) +16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2wmx_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.7856 17.4330 44.0174 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3256 18.6371 44.4348 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0711 18.6355 45.2163 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9560 19.7824 43.9062 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0466 19.8254 42.9291 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4663 20.8320 42.2296 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2232 21.8069 42.3321 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2898 20.3737 41.4339 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3635 19.0471 41.5218 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9961 18.4038 40.9283 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5245 18.6591 42.4647 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1567 17.4270 43.0011 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7282 16.2311 42.5318 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2595 16.2818 44.6258 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (68) +CHK1 + +> (68) +CAMKL + +> (68) +CAMK + +> (68) +2wmx + +> (68) +ZY6 + +> (68) + + +> (68) +A + +> (68) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (68) +16 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +4qyf_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.7346 19.0453 42.1620 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3460 17.8559 42.7040 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4591 17.8648 43.8045 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9273 19.0818 44.3325 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5883 19.0781 45.1865 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5595 20.2386 43.7844 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2550 20.2463 42.6901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6209 21.4238 42.1196 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2898 22.2964 42.5057 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2240 21.4266 41.3095 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5729 19.1283 40.9355 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9444 16.5955 44.3991 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 11 1 1 0 + 3 12 1 0 +V 11 * +V 12 * +M END +> (69) +CHK1 + +> (69) +CAMKL + +> (69) +CAMK + +> (69) +4qyf + +> (69) +3DV + +> (69) + + +> (69) +A + +> (69) +AP AP AP AP AP AP AP AP AP AP GA SE + +> (69) +14 14 14 14 14 14 14 5 5 5 na na + +$$$$ +5opr_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -0.5136 19.9896 44.0527 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5280 20.9683 42.2923 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0336 20.9274 41.4189 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2909 21.8628 42.6971 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4499 18.5231 42.4402 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0047 17.4377 43.1577 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1913 16.4326 42.8147 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7241 17.6583 44.3377 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9589 18.9432 44.7652 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5057 19.1120 45.6811 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1663 19.8188 42.9234 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1124 18.2669 41.1440 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2428 16.5309 45.1550 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 9 2 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 2 11 1 0 + 5 6 1 0 + 5 11 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 12 5 1 0 + 8 13 1 0 +V 12 * +V 13 * +M END +> (70) +CHK1 + +> (70) +CAMKL + +> (70) +CAMK + +> (70) +5opr + +> (70) +A3E + +> (70) + + +> (70) +A + +> (70) +AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (70) +14 5 5 5 16 14 14 16 14 14 14 na na + +$$$$ +6fck_altB_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + 0.2146 20.2122 42.9592 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8966 16.2145 41.4252 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1654 16.4171 42.6058 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0157 17.7112 43.1071 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5250 21.2468 42.1752 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2499 22.1817 42.4404 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0350 21.0947 41.3168 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4096 20.3867 44.0127 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5365 18.8262 42.4657 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2768 18.6235 41.2858 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7066 19.4676 40.7669 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4566 17.3294 40.7845 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0384 17.1862 39.8859 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4999 15.4786 43.4262 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5865 14.4087 43.3062 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0126 16.2917 44.4260 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7638 17.6001 44.2190 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0834 18.3637 44.7977 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1069 14.9286 40.9682 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8780 15.9499 45.5975 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 1 0 + 1 8 2 0 + 1 9 1 0 + 2 3 2 0 + 2 12 1 0 + 3 4 1 0 + 3 14 1 0 + 4 9 2 0 + 4 17 1 0 + 5 6 1 0 + 5 7 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 17 18 1 0 + 2 19 1 0 + 20 16 1 0 +V 19 * +V 20 * +M END +> (71) +CHK1 + +> (71) +CAMKL + +> (71) +CAMK + +> (71) +6fck + +> (71) +D4Z + +> (71) +B + +> (71) +A + +> (71) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (71) +1 16 16 16 5 5 5 1 16 16 16 16 16 16 16 14 16 16 na na + +$$$$ +7mck_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 0.4306 20.9875 41.8343 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0539 21.5372 42.6277 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5483 20.9113 39.7236 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9713 21.4039 38.8606 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0325 17.5133 42.9369 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6613 17.1865 42.2172 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0507 18.8550 43.0535 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6059 19.4372 43.9805 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5502 19.6050 41.8968 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1284 18.8780 40.9251 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5959 19.5276 39.8467 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9469 21.6428 40.7314 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8810 22.7183 40.6577 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6217 16.4950 43.6632 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2413 18.6827 38.8103 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 9 2 0 + 1 12 1 0 + 3 4 1 0 + 3 11 1 0 + 3 12 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 10 11 2 0 + 12 13 1 0 + 14 5 1 0 + 11 15 1 0 +V 14 * +V 15 * +M END +> (72) +CHK1 + +> (72) +CAMKL + +> (72) +CAMK + +> (72) +7mck + +> (72) +YXD + +> (72) + + +> (72) +A + +> (72) +AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (72) +14 14 14 14 5 5 1 1 14 14 14 14 14 na na + +$$$$ +7suf_altA_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -0.6259 18.5666 43.8896 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7848 18.3806 42.0985 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7488 19.7467 41.9273 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0286 20.4712 42.8164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0873 21.5429 42.6966 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4452 20.3865 40.9362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4021 21.4607 40.8322 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7082 19.9023 43.8145 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1970 19.6270 40.0818 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7547 20.1049 39.2900 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2483 18.2658 40.2224 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8567 17.6849 39.5451 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5349 17.6225 41.2160 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0917 17.7836 43.0606 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3735 18.0252 44.9061 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9134 18.6824 45.4508 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4811 16.7486 45.2687 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6047 16.1278 41.3949 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 2 0 + 1 14 1 0 + 1 15 1 0 + 2 3 1 0 + 2 13 1 0 + 2 14 2 0 + 3 4 2 0 + 3 6 1 0 + 4 5 1 0 + 4 8 1 0 + 6 7 1 0 + 6 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 15 16 1 0 + 17 15 1 0 + 13 18 1 0 +V 17 * +V 18 * +M END +> (73) +CHK1 + +> (73) +CAMKL + +> (73) +CAMK + +> (73) +7suf + +> (73) +BVI + +> (73) +A + +> (73) +A + +> (73) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (73) +14 14 14 14 14 14 14 14 14 14 14 14 16 14 5 5 na na + +$$$$ +2wtd_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + 1.8026 18.1911 38.8378 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7583 17.3334 39.2275 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4105 16.5666 38.5511 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1671 17.4713 40.4927 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6353 16.8098 40.7844 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6113 18.4640 41.3833 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0167 18.5808 42.6412 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2934 17.4509 43.3632 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0572 16.4792 42.9551 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9002 17.5373 44.5984 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2124 18.8000 45.1153 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6890 18.8857 46.0807 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9131 19.9273 44.3964 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3136 19.8376 43.1683 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0269 21.0525 42.4311 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2690 21.9508 42.8242 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4149 21.0006 41.5244 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6573 19.3156 40.9903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0079 20.0804 41.6674 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2505 19.1811 39.7257 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0541 19.8415 39.4350 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4842 17.9800 37.4785 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2687 16.3805 45.2865 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 20 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 18 1 0 + 7 8 2 0 + 7 14 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 18 19 1 0 + 18 20 2 0 + 20 21 1 0 + 22 1 1 0 + 10 23 1 0 +V 22 * +V 23 * +M END +> (74) +CHK2 + +> (74) +RAD53 + +> (74) +CAMK + +> (74) +2wtd + +> (74) +ZZK + +> (74) + + +> (74) +A + +> (74) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA SE + +> (74) +16 16 16 16 16 16 16 14 14 16 14 14 14 14 5 5 5 16 16 16 16 na na + +$$$$ +2xbj_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.3831 19.2585 42.3036 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0932 20.4037 42.9740 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1322 21.7380 42.3738 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2196 22.6288 42.8731 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8270 21.8333 41.1145 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0036 22.8030 40.6731 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3145 20.5794 40.4006 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1038 19.3388 40.9564 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4389 18.4434 40.4541 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9515 20.6604 39.2469 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7480 20.2355 44.1799 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0446 21.0475 44.5973 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0709 17.9147 42.8429 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 11 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (75) +CHK2 + +> (75) +RAD53 + +> (75) +CAMK + +> (75) +2xbj + +> (75) +XBJ + +> (75) + + +> (75) +A + +> (75) +AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (75) +16 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +4bdc_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.5903 20.5357 44.0002 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0854 17.1458 45.2977 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9248 19.0272 42.1608 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1471 18.5197 45.1856 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7116 19.0947 45.9046 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4717 19.1759 44.1296 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0340 21.0821 42.9689 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0471 22.1488 42.8209 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7903 20.3400 42.0676 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2875 20.8561 41.2596 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2724 18.4186 43.2040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3059 17.0128 43.3399 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8644 16.4192 42.6313 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3621 16.3988 44.3600 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3323 15.3226 44.4448 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7587 16.4557 46.4452 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 7 1 0 + 2 4 2 0 + 2 14 1 0 + 3 9 1 0 + 3 11 2 0 + 4 5 1 0 + 4 6 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 2 1 0 +V 16 * +M END +> (76) +CHK2 + +> (76) +RAD53 + +> (76) +CAMK + +> (76) +4bdc + +> (76) +ODH + +> (76) + + +> (76) +A + +> (76) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (76) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4bdi_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -0.9832 19.9519 44.2367 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5831 18.1433 45.5184 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3334 18.7423 45.8320 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8017 18.6391 44.4605 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0663 17.8575 43.6719 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1899 16.8010 43.8584 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7553 18.4884 42.6506 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4266 17.9144 42.0290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5975 19.8458 42.4124 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2959 20.5153 43.2331 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4498 21.5687 43.0509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3888 20.5655 41.3478 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0253 19.8524 40.8238 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0083 21.3328 41.8119 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7042 21.0310 40.6387 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4558 16.9610 46.1709 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 12 1 0 + 10 11 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 2 16 1 0 +V 16 * +M END +> (77) +CHK2 + +> (77) +RAD53 + +> (77) +CAMK + +> (77) +4bdi + +> (77) +HAU + +> (77) + + +> (77) +A + +> (77) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (77) +14 5 5 14 14 14 14 14 16 14 14 8 8 8 8 na + +$$$$ +4hgt_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 0.7055 22.6594 40.5642 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0654 23.0500 39.6123 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1406 23.2353 41.3810 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3809 22.7388 40.6021 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0215 19.0561 41.8022 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6601 18.3031 42.9909 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8188 17.2374 43.0651 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0756 19.0681 44.0670 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3604 18.4134 45.3385 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3997 18.6750 45.5374 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2664 18.7681 46.1567 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7643 20.5066 41.8213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1728 21.1781 42.9702 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0057 22.2432 42.9694 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1451 20.4074 44.0432 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0921 21.2724 40.6930 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2458 17.0037 45.2419 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3660 16.2671 46.4242 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6045 18.2639 40.6430 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 16 1 0 + 5 6 2 0 + 5 12 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 15 2 0 + 9 10 1 0 + 9 11 1 0 + 9 17 1 0 + 12 13 2 0 + 12 16 1 0 + 13 14 1 0 + 13 15 1 0 + 17 18 1 0 + 19 5 1 0 +V 18 * +V 19 * +M END +> (78) +CK1d + +> (78) +CK1 + +> (78) +CK1 + +> (78) +4hgt + +> (78) +15G + +> (78) + + +> (78) +A + +> (78) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (78) +3 3 3 3 16 16 16 14 4 4 4 16 16 16 16 3 3 na na + +$$$$ +4kbc_altB_chainB + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -0.2415 20.5265 43.9814 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0130 19.1901 43.9211 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1524 19.3619 41.8349 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9385 20.7363 41.8733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2975 21.3749 41.0798 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2468 21.2696 42.9655 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0944 22.3383 42.9982 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6912 18.5705 42.8903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8758 17.5065 42.9068 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6306 18.3526 45.0195 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8524 18.9845 45.8795 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0654 17.5676 45.3153 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8100 17.7774 44.5457 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4005 18.4913 44.2941 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7522 18.7437 40.6831 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 8 1 0 + 2 10 1 0 + 3 4 1 0 + 3 8 2 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 15 3 1 0 +V 15 * +M END +> (79) +CK1d + +> (79) +CK1 + +> (79) +CK1 + +> (79) +4kbc + +> (79) +1QJ + +> (79) +B + +> (79) +B + +> (79) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (79) +14 14 16 14 14 14 14 14 14 4 4 4 3 3 na + +$$$$ +5okt_altB_chainB + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 2.5832 21.0752 39.0928 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9717 20.1248 38.7265 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4131 21.7487 39.3067 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9396 21.5210 38.3345 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7721 20.8364 40.3781 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6088 19.5516 40.9068 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0542 18.7105 40.3964 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8974 19.3361 42.0561 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3440 20.4063 42.6558 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4686 21.7103 42.1451 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0042 22.5384 42.6521 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1809 21.9230 41.0196 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2915 22.9208 40.6215 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3948 20.0967 43.8048 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3803 18.7952 44.1483 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1483 18.2696 45.2886 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5347 18.9212 45.9565 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4955 18.0381 42.9562 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3689 16.8609 45.4868 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 2 0 + 5 12 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 18 1 0 + 9 10 1 0 + 9 14 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 2 0 + 15 16 1 0 + 15 18 1 0 + 16 17 1 0 + 16 19 1 0 +V 19 * +M END +> (80) +CK1d + +> (80) +CK1 + +> (80) +CK1 + +> (80) +5okt + +> (80) +9XK + +> (80) +B + +> (80) +B + +> (80) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (80) +8 8 8 8 16 14 14 14 14 14 14 14 14 14 14 5 5 14 na + +$$$$ +4hgl_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -0.1566 18.9729 43.6765 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0634 21.1232 42.8797 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2654 22.1792 42.9819 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6126 20.6973 41.6654 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4236 22.8449 40.7648 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8620 23.4185 39.9482 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6310 23.3438 41.7115 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6545 22.7731 40.6206 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8911 19.2744 41.5218 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4781 18.3859 42.5815 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4388 20.3724 43.8308 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9472 21.6324 40.7820 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6067 18.6143 40.3386 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5710 18.0948 44.7156 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 2 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 2 11 2 0 + 4 9 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 12 1 0 + 9 10 1 0 + 13 9 1 0 + 1 14 1 0 +V 13 * +V 14 * +M END +> (81) +CK1g3 + +> (81) +CK1 + +> (81) +CK1 + +> (81) +4hgl + +> (81) +0YO + +> (81) + + +> (81) +A + +> (81) +AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (81) +14 16 16 16 3 3 3 3 14 16 16 3 na na + +$$$$ +3axw_chainA + RDKit 3D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 0.5071 19.8421 41.9533 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0702 20.8847 42.5993 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6768 20.5816 43.7800 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6088 19.2510 44.1297 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2323 18.4178 42.9091 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0918 18.4804 45.2912 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9196 17.4866 45.3448 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5946 18.9465 46.0327 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2212 19.8517 40.7533 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 5 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 1 0 + 9 1 1 0 +V 9 * +M END +> (82) +CK2a1 + +> (82) +CK2 + +> (82) +CMGC + +> (82) +3axw + +> (82) +TID + +> (82) + + +> (82) +A + +> (82) +AP AP AP AP AP AP AP AP GA + +> (82) +14 14 14 14 14 5 5 5 na + +$$$$ +3wil_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.3900 18.0737 43.8742 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2413 19.3973 43.4095 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6934 20.4346 43.8995 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2926 17.2371 43.0203 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8535 18.0352 42.0319 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6357 17.7163 40.9299 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8972 16.6891 40.7223 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5318 19.3875 42.2623 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9846 20.4140 41.4229 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7325 21.4443 41.6262 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7636 20.0788 40.3250 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1230 20.8449 39.6540 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0764 18.7359 40.0998 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8318 18.3720 39.0652 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1074 17.6886 45.0229 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 1 0 + 2 3 2 0 + 2 8 1 0 + 4 5 1 0 + 5 6 1 0 + 5 8 2 0 + 6 7 1 0 + 6 13 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 15 1 2 0 +V 14 * +V 15 * +M END +> (83) +CK2a1 + +> (83) +CK2 + +> (83) +CMGC + +> (83) +3wil + +> (83) +LCD + +> (83) + + +> (83) +A + +> (83) +AP AP AP AP AP AP AP AP AP AP AP AP AP GA SE + +> (83) +7 16 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +5csp_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.2357 18.6523 41.1917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7774 18.4387 42.1460 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6989 20.1701 39.4134 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6147 21.1547 38.9776 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3777 19.1683 38.7077 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5034 17.8965 39.2947 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9148 17.6459 40.5260 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9866 16.6625 40.9667 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1360 16.8640 38.6669 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1205 16.0298 39.1417 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1312 19.9315 40.6582 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4930 21.0466 41.4393 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1096 20.6566 42.3822 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3277 21.4717 40.8615 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2343 21.8199 41.6406 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9549 19.4313 37.3524 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 1 11 1 0 + 3 4 1 0 + 3 5 1 0 + 3 11 2 0 + 5 6 2 0 + 6 7 1 0 + 6 9 1 0 + 7 8 1 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 5 1 0 +V 16 * +M END +> (84) +CK2a1 + +> (84) +CK2 + +> (84) +CMGC + +> (84) +5csp + +> (84) +54G + +> (84) +A + +> (84) +A + +> (84) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (84) +16 16 16 16 16 16 16 16 3 3 16 8 8 8 8 na + +$$$$ +5moh_altA_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 0.6827 19.3299 41.6969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4481 18.7649 40.6866 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5643 17.6921 40.6425 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0685 19.5639 39.7284 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8991 20.9379 39.8035 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3727 21.5715 39.0682 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1347 21.5117 40.8030 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0206 22.5849 40.8411 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5147 20.7209 41.7550 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2386 21.3177 42.7206 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2840 22.2750 42.6659 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0565 18.6405 42.6991 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2965 17.2357 42.7989 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2671 16.8296 43.6389 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3606 17.0591 42.9561 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0208 16.7465 41.8780 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9628 18.9354 38.6789 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 4 17 1 0 +V 17 * +M END +> (85) +CK2a1 + +> (85) +CK2 + +> (85) +CMGC + +> (85) +5moh + +> (85) +YTX + +> (85) +A + +> (85) +A + +> (85) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (85) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 na + +$$$$ +6hoq_altB_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 0.1503 20.0390 42.9199 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3494 21.2438 42.2620 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0156 22.1711 42.6782 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0269 21.2231 41.0615 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1949 22.1479 40.5297 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5986 18.8404 42.3903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2733 18.8267 41.1812 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6211 17.8983 40.7530 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4932 20.0396 40.5294 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0122 16.4973 42.6032 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7637 15.6384 43.2267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0908 16.6543 42.6142 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6824 16.3117 41.5810 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1818 20.1279 39.1984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3238 21.1035 38.7576 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5404 20.0499 44.1371 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6629 19.1881 44.5418 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3629 17.6488 43.1065 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6261 19.0621 38.5344 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 16 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 6 7 2 0 + 6 18 1 0 + 7 8 1 0 + 7 9 1 0 + 9 14 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 10 18 1 0 + 14 15 1 0 + 16 17 1 0 + 14 19 2 0 +V 19 * +M END +> (86) +CK2a1 + +> (86) +CK2 + +> (86) +CMGC + +> (86) +6hoq + +> (86) +FER + +> (86) +B + +> (86) +A + +> (86) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (86) +16 16 16 16 16 16 16 16 16 3 3 3 3 7 16 3 3 3 na + +$$$$ +7a4q_altA_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 1.2476 20.1755 40.5784 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1638 19.0127 41.2852 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6085 18.1153 40.8812 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5142 18.9576 42.5219 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0680 20.1211 43.0220 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0065 21.3068 42.2671 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4559 22.2097 42.6377 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6516 21.3211 41.0850 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7058 22.2408 40.5214 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4561 17.8076 43.3050 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8774 16.8814 42.9430 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1317 17.8585 44.5228 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1862 16.9768 45.1441 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6529 19.0402 44.9505 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0872 19.0684 45.9389 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6655 20.1535 44.2442 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0166 20.2674 39.3578 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 16 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 17 1 1 0 +V 17 * +M END +> (87) +CK2a1 + +> (87) +CK2 + +> (87) +CMGC + +> (87) +7a4q + +> (87) +QY2 + +> (87) +A + +> (87) +A + +> (87) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (87) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +8p05_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 2.2980 19.3573 39.6467 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6280 20.2432 39.1245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4906 19.6136 40.8424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0035 18.5704 41.6381 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2611 17.5470 41.4082 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1890 18.8564 42.7225 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5415 17.7563 43.8539 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1415 19.1270 44.7402 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7175 19.0043 45.6455 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8668 20.3053 44.2660 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1080 20.1781 43.0903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3969 21.2214 42.3172 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1910 22.2469 42.5861 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1672 20.9324 41.1979 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5271 21.7450 40.5842 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6956 18.1927 39.0929 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 14 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 11 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 2 0 +V 16 * +M END +> (88) +CK2a1 + +> (88) +CK2 + +> (88) +CMGC + +> (88) +8p05 + +> (88) +WAK + +> (88) + + +> (88) +A + +> (88) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (88) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +5x8i_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.4754 19.4537 40.2046 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2060 20.7865 40.5484 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5029 21.5802 39.8789 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5552 21.1021 41.7518 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3100 22.1240 42.0008 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2360 20.0576 42.6134 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5615 18.6695 42.2848 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1928 18.4097 41.0837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4675 17.3975 40.8260 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3623 20.0975 43.7853 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4641 18.7976 44.2625 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9105 18.5047 45.2013 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0965 17.9475 43.3438 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2169 19.0503 38.9882 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 2 0 + 7 13 1 0 + 8 9 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 14 1 1 0 +V 14 * +M END +> (89) +CLK1 + +> (89) +CLK + +> (89) +CMGC + +> (89) +5x8i + +> (89) +SQZ + +> (89) + + +> (89) +A + +> (89) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (89) +16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6i5k_altA_chainC + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.8131 18.5577 41.6773 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4079 18.2444 43.8743 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8115 19.1683 44.7710 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3409 18.9395 45.6841 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1883 20.2754 43.1826 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6646 21.2315 42.3186 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6059 22.2779 42.5790 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2181 20.8449 41.1167 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5901 21.5759 40.4141 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2821 19.4926 40.8390 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2698 18.9759 42.8268 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4632 20.4377 44.3746 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8820 18.9912 39.6016 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6320 16.7825 44.0151 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 2 0 + 1 11 1 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 3 12 1 0 + 5 6 1 0 + 5 11 2 0 + 5 12 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 13 1 0 + 14 2 1 0 +V 13 * +V 14 * +M END +> (90) +CLK1 + +> (90) +CLK + +> (90) +CMGC + +> (90) +6i5k + +> (90) +H3H + +> (90) +A + +> (90) +C + +> (90) +AP AP AP AP AP AP AP AP AP AP AP AP GA SE + +> (90) +14 16 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +6r6x_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.1225 16.4339 43.1273 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0793 15.3823 42.8436 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1593 16.7203 43.3036 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4570 16.5887 44.0374 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4358 17.2566 42.0451 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8951 16.7128 40.9222 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9083 15.6564 40.6978 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5665 18.5883 41.9958 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2071 19.4946 42.9399 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2472 19.1751 43.8661 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4347 20.8364 42.6912 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1677 21.5931 43.4140 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0214 21.1754 41.4734 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2126 22.2151 41.2521 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3726 20.1918 40.5204 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8265 20.4841 39.5850 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1412 18.8904 40.7787 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3443 17.6964 40.1034 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8877 17.4216 38.8536 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 8 1 0 + 6 7 1 0 + 6 18 2 0 + 8 9 2 0 + 8 17 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 18 1 0 +V 19 * +M END +> (91) +CLK1 + +> (91) +CLK + +> (91) +CMGC + +> (91) +6r6x + +> (91) +JU8 + +> (91) + + +> (91) +A + +> (91) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (91) +8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 16 na + +$$$$ +6yta_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.6206 16.4291 43.0432 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2831 16.8210 44.2428 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8285 16.0879 44.8186 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2327 18.1108 44.6664 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7060 18.4047 45.5916 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0762 17.2324 42.2683 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0581 18.5865 42.7235 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5524 19.0571 43.8772 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4720 20.3775 43.9617 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1916 20.7667 42.8298 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4136 21.7965 42.5917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5471 19.7030 42.0246 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7600 15.1386 42.5683 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2198 19.7419 40.7024 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 1 0 + 2 4 2 0 + 4 5 1 0 + 4 8 1 0 + 6 7 1 0 + 7 8 1 0 + 7 12 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 13 1 1 0 + 12 14 1 0 +V 13 * +V 14 * +M END +> (92) +CLK1 + +> (92) +CLK + +> (92) +CMGC + +> (92) +6yta + +> (92) +IYZ + +> (92) +B + +> (92) +A + +> (92) +AP AP AP AP AP AP AP AP AP AP AP AP FP GA + +> (92) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +7o9y_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.0609 19.1557 43.1720 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4799 18.5857 43.9880 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0246 20.5449 43.2659 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4228 21.0685 44.1224 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5587 21.2277 42.1852 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6646 22.3024 42.1978 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9961 20.4761 41.0973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3922 21.0098 40.2460 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9601 19.1228 41.0303 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4100 18.5046 42.0960 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4469 17.1664 41.8204 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1097 16.4441 42.4406 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9887 16.9427 40.6206 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1201 15.9844 40.1401 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3373 18.1395 40.1297 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9080 18.1642 38.8938 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 10 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 15 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 16 15 1 0 +V 16 * +M END +> (93) +CLK1 + +> (93) +CLK + +> (93) +CMGC + +> (93) +7o9y + +> (93) +V5T + +> (93) + + +> (93) +A + +> (93) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (93) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6fyk_altB_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.6503 20.8576 39.6775 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0196 21.2848 38.7569 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7148 21.1041 41.8521 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7387 19.7287 42.0080 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1624 19.5614 43.3853 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0566 18.2539 44.0952 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2678 17.4339 43.4546 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1158 18.1382 44.3251 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5194 18.2419 45.0205 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6644 19.4546 39.8374 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2092 18.8639 41.0226 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2223 17.7935 41.1653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1699 21.7120 40.6813 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1531 22.7844 40.5545 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1096 20.7142 43.8529 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5089 20.8827 44.7652 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2094 21.6864 42.9604 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1844 18.5872 38.7521 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 1 0 + 1 13 2 0 + 3 4 1 0 + 3 13 1 0 + 3 17 2 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 15 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 2 0 + 11 12 1 0 + 13 14 1 0 + 15 16 1 0 + 15 17 1 0 + 18 10 1 0 +V 18 * +M END +> (94) +CLK2 + +> (94) +CLK + +> (94) +CMGC + +> (94) +6fyk + +> (94) +EAZ + +> (94) +B + +> (94) +B + +> (94) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (94) +14 14 14 14 14 8 8 8 8 16 14 14 14 14 14 14 14 na + +$$$$ +8bua_chainB + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 2.3169 20.7031 40.5655 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0442 20.8500 39.7808 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1321 19.4418 41.0853 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6992 18.5952 40.7274 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1871 19.3077 42.0867 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4460 20.3926 42.5621 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6507 21.6586 42.0281 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0918 22.5104 42.3865 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5855 21.7945 41.0304 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7573 22.7687 40.5969 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1805 18.6940 43.6905 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4208 19.9794 43.5685 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7457 18.2224 42.8179 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0523 17.2648 42.7220 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8915 17.9201 44.5714 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6959 18.3421 45.0128 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6039 16.6292 44.9015 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 5 13 1 0 + 6 7 1 0 + 6 12 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 2 0 + 11 13 1 0 + 11 15 1 0 + 13 14 1 0 + 15 16 1 0 + 17 15 1 0 +V 17 * +M END +> (95) +CRK7 + +> (95) +CDK + +> (95) +CMGC + +> (95) +8bua + +> (95) +RVH + +> (95) + + +> (95) +B + +> (95) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (95) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 5 5 na + +$$$$ +5uy6_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.3525 21.8024 41.0112 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7554 22.5628 40.3587 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5741 20.3603 40.8727 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4840 20.6598 43.7710 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5463 22.0350 42.1092 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2663 20.8315 42.6825 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8679 19.7788 41.9858 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6812 18.4787 42.4348 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1257 17.6417 41.9168 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1029 18.2856 43.5825 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6677 19.4097 44.2135 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2757 19.2572 45.0930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3311 19.7435 39.7695 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3592 16.9270 44.1295 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 7 1 0 + 4 6 1 0 + 4 11 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 13 3 1 0 + 10 14 1 0 +V 13 * +V 14 * +M END +> (96) +CaMKK2 + +> (96) +CAMKK + +> (96) +Other + +> (96) +5uy6 + +> (96) +8R4 + +> (96) + + +> (96) +A + +> (96) +AP AP AP AP AP AP AP AP AP AP AP AP GA SE + +> (96) +16 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +5uyj_altA_chainA + RDKit 3D + + 21 22 0 0 0 0 0 0 0 0999 V2000 + 1.0533 21.3564 41.4066 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4259 22.0371 40.6555 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3594 20.0132 41.3340 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2779 21.0660 43.3798 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2598 21.8359 42.4540 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0768 22.8989 42.5076 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0254 19.7252 43.3503 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5242 18.9020 44.3590 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1431 19.3396 45.1283 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2791 17.5524 44.3704 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7447 16.6579 45.2944 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4460 17.1764 46.4248 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7547 16.3536 47.0696 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3264 17.7231 46.0867 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7924 17.8484 46.9809 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5783 16.9798 43.4213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8300 15.9315 43.4863 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0953 17.7410 42.4173 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6929 17.2700 41.6509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8648 19.1433 42.3566 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1418 19.5148 40.1576 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 20 1 0 + 4 5 2 0 + 4 7 1 0 + 5 6 1 0 + 7 8 1 0 + 7 20 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 16 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 18 20 1 0 + 21 3 1 0 +V 21 * +M END +> (97) +CaMKK2 + +> (97) +CAMKK + +> (97) +Other + +> (97) +5uyj + +> (97) +8R7 + +> (97) +A + +> (97) +A + +> (97) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (97) +16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 16 16 16 16 16 na + +$$$$ +5yvc_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 0.3874 19.7846 42.3435 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0299 20.1599 43.1832 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3695 19.6841 40.2814 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8447 20.5466 41.2570 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7272 22.0311 41.2820 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2611 22.3429 42.2167 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1149 22.3613 40.4428 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7195 22.4755 41.2049 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1898 18.3466 40.8040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5655 17.0752 40.1540 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0008 17.2818 39.1763 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6786 16.4532 40.0328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2943 16.5521 40.7731 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5981 18.4240 42.0850 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2206 17.3284 43.0056 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6747 16.3709 42.7976 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6152 17.3568 44.0739 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9079 20.1635 38.9447 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 1 0 + 1 14 1 0 + 3 4 2 0 + 3 9 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 14 2 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 2 0 + 18 3 1 0 +V 17 * +V 18 * +M END +> (98) +CaMKK2 + +> (98) +CAMKK + +> (98) +Other + +> (98) +5yvc + +> (98) +SU6 + +> (98) + + +> (98) +A + +> (98) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (98) +7 7 16 14 8 8 8 8 16 8 8 8 8 7 7 7 na na + +$$$$ +5av0_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.1458 20.9469 41.3341 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3779 21.9681 41.0703 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3913 20.6790 42.4778 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0952 19.3745 42.8266 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4857 19.1647 43.7126 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6014 19.9014 40.5303 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1765 20.1112 39.6405 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3112 18.5897 40.8811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5528 18.3378 42.0258 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2651 17.0495 42.3735 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7055 16.0407 41.5683 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4614 15.0246 41.8410 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4502 16.2513 40.4180 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7759 17.5588 40.0693 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0704 21.6860 43.2633 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5832 21.4043 44.0245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4282 17.8189 39.0560 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8557 15.1387 39.6750 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 6 1 0 + 3 4 1 0 + 3 15 1 0 + 4 5 1 0 + 4 9 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 14 1 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 17 2 0 + 15 16 1 0 + 13 18 1 0 +V 18 * +M END +> (99) +DAPK1 + +> (99) +DAPK + +> (99) +CAMK + +> (99) +5av0 + +> (99) +47X + +> (99) + + +> (99) +A + +> (99) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (99) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 3 3 16 na + +$$$$ +7ccu_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 0.5588 18.1628 42.4962 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1138 19.1402 43.3863 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3189 18.8555 44.3341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2307 20.4833 43.0459 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7711 20.8303 41.8383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8469 21.8749 41.5750 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2215 19.8773 40.9488 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1170 18.5170 41.2611 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4574 17.7611 40.5689 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7181 20.4260 39.7724 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6642 21.4916 39.6046 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1817 21.4758 43.8632 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0575 22.3632 43.5185 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4277 16.8558 42.8793 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7451 16.2123 42.2416 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3325 19.5246 38.7322 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 11 1 0 + 12 13 1 0 + 14 15 1 0 + 10 16 2 0 +V 16 * +M END +> (100) +DAPK1 + +> (100) +DAPK + +> (100) +CAMK + +> (100) +7ccu + +> (100) +STL + +> (100) +A + +> (100) +A + +> (100) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (100) +16 16 16 16 16 16 16 16 16 7 16 3 3 3 3 na + +$$$$ +5a3x_chainD + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -0.2687 20.2276 43.6570 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5098 19.3656 44.0039 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8467 21.3833 41.8969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6038 22.3393 42.3369 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5721 21.3090 40.7156 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9022 22.2166 40.2323 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7752 18.9974 41.8899 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4651 18.0695 42.3474 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8622 17.8750 40.0536 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7031 19.7674 38.7965 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4413 20.2024 42.4985 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5541 18.1374 38.9424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4744 18.9646 40.7465 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8652 20.1254 40.1716 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0215 17.1772 38.1321 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 11 1 0 + 3 4 1 0 + 3 5 2 0 + 3 11 1 0 + 5 6 1 0 + 5 14 1 0 + 7 8 1 0 + 7 11 2 0 + 7 13 1 0 + 9 12 2 0 + 9 13 1 0 + 10 12 1 0 + 10 14 1 0 + 13 14 2 0 + 15 12 1 0 +V 15 * +M END +> (101) +DYRK1A + +> (101) +DYRK + +> (101) +CMGC + +> (101) +5a3x + +> (101) +QIV + +> (101) + + +> (101) +D + +> (101) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (101) +3 3 16 16 16 16 16 16 16 16 16 14 16 16 na + +$$$$ +5a4e_altA_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 2.5108 17.9732 38.9050 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6579 19.5431 38.7136 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8477 17.7226 40.0331 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4799 18.8304 40.7041 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8098 18.9036 41.8537 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5027 17.9947 42.3496 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8655 19.9643 40.0834 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5951 21.1656 40.5868 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9200 22.0523 40.0626 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9001 21.2871 41.7782 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6756 22.2588 42.1929 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5013 20.1304 42.4226 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1806 20.1952 43.5951 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3104 19.1714 44.4654 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2279 19.2105 45.4124 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3741 19.3270 44.6455 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1592 18.1968 44.0014 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9820 17.0468 38.0772 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 2 7 1 0 + 3 4 1 0 + 4 5 1 0 + 4 7 2 0 + 5 6 1 0 + 5 12 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 1 1 0 +V 18 * +M END +> (102) +DYRK1A + +> (102) +DYRK + +> (102) +CMGC + +> (102) +5a4e + +> (102) +7QQ + +> (102) +A + +> (102) +B + +> (102) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (102) +14 16 16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +5a4l_altB_chainC + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.9243 18.0564 39.7536 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3997 18.8085 40.7497 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8040 18.3868 41.8745 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7046 17.3273 42.0588 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3096 19.2985 42.8124 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3128 18.8591 43.9880 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4410 20.6601 42.5671 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0686 21.3900 43.2706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0656 21.0553 41.3904 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1850 22.1063 41.1723 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5186 20.1429 40.5284 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2703 20.3511 39.1243 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4595 18.7736 38.7618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0524 18.3798 37.6237 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3096 19.0945 36.9579 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3313 17.0909 37.3026 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 13 2 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 +V 16 * +M END +> (103) +DYRK1A + +> (103) +DYRK + +> (103) +CMGC + +> (103) +5a4l + +> (103) +ZC3 + +> (103) +B + +> (103) +C + +> (103) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (103) +14 14 14 14 14 14 14 14 14 14 14 14 14 5 5 na + +$$$$ +6s17_altA_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 0.7004 16.9376 43.5984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3115 17.0267 42.7003 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2121 16.3893 43.3640 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2588 16.4023 44.3663 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1431 20.5632 43.8238 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5519 19.3843 43.3192 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4172 21.6373 43.0597 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1708 22.6147 43.4475 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9985 21.5596 41.8016 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1848 22.4410 41.2060 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3265 20.2934 41.3511 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1054 19.1966 42.0892 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3556 18.2707 44.0871 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4657 18.3139 45.2919 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4901 17.3254 45.7505 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4791 18.6181 45.0301 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0415 19.0304 45.9953 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9075 20.1081 40.0108 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 13 1 0 + 5 6 2 0 + 5 7 1 0 + 6 12 1 0 + 6 13 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 11 18 1 0 +V 18 * +M END +> (104) +DYRK1A + +> (104) +DYRK + +> (104) +CMGC + +> (104) +6s17 + +> (104) +KQK + +> (104) +A + +> (104) +A + +> (104) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (104) +5 5 5 5 14 14 14 14 14 14 14 14 5 5 5 5 5 na + +$$$$ +6s1b_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 0.5344 19.4842 43.4501 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4854 21.7294 43.1480 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2616 22.7225 43.5088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0425 21.6015 41.8912 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2683 22.4612 41.2777 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2962 20.3069 41.4596 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2076 20.6891 43.9438 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2751 18.4276 44.2243 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1478 18.5928 45.1266 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5634 17.0610 43.8488 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0142 17.0443 42.8565 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3616 16.4844 43.8373 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2548 16.6243 44.5694 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0726 19.2409 42.2370 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8331 20.0679 40.1014 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 2 0 + 1 8 1 0 + 1 14 1 0 + 2 3 1 0 + 2 4 2 0 + 2 7 1 0 + 4 5 1 0 + 4 6 1 0 + 6 14 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 6 15 1 0 +V 15 * +M END +> (105) +DYRK1A + +> (105) +DYRK + +> (105) +CMGC + +> (105) +6s1b + +> (105) +KRQ + +> (105) +A + +> (105) +A + +> (105) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (105) +14 14 14 14 14 14 14 5 5 5 5 5 5 14 na + +$$$$ +7a4w_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.1003 18.9934 44.8002 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4971 19.3136 45.7636 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4949 18.0973 44.9364 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9252 18.7749 44.1220 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2983 20.0272 44.2519 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2977 19.8267 43.0383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7590 18.6249 42.5407 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6367 17.7175 43.1135 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3796 18.5883 41.3033 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7531 17.6446 40.9342 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5381 19.7292 40.5187 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0553 20.9202 41.0517 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1511 21.8280 40.4746 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4569 20.9785 42.2962 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1142 21.9251 42.6874 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1874 19.6930 39.1702 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 11 16 1 0 +V 16 * +M END +> (106) +DYRK1A + +> (106) +DYRK + +> (106) +CMGC + +> (106) +7a4w + +> (106) +QYH + +> (106) + + +> (106) +A + +> (106) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (106) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +7aj4_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 0.9908 16.0913 42.5561 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7425 15.3033 43.2670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0485 16.0297 42.3001 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3910 15.9692 41.6542 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7137 17.3753 43.1467 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9670 18.4839 42.3929 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6583 19.7188 42.9313 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0048 19.7591 44.5141 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9402 20.8890 42.2585 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7078 21.8481 42.6971 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5302 20.8058 41.0034 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7575 21.7112 40.4603 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8339 19.5636 40.4337 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5654 18.4038 41.1557 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8269 17.4400 40.7446 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4380 19.4455 39.0700 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 13 16 1 0 +V 16 * +M END +> (107) +DYRK1A + +> (107) +DYRK + +> (107) +CMGC + +> (107) +7aj4 + +> (107) +RHZ + +> (107) +B + +> (107) +A + +> (107) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (107) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +7aj5_altB_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 0.0023 20.1957 44.1701 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7579 19.8328 40.4741 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5121 21.1408 40.9941 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8096 21.9929 40.4010 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9100 21.3710 42.2236 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7345 22.3656 42.6062 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5529 20.2369 42.9197 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1373 18.8582 44.4821 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5667 18.4972 45.4050 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3171 18.0653 43.5168 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3490 16.9858 43.5259 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7590 18.9352 42.4554 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3889 18.7330 41.2361 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5899 17.7319 40.8841 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3481 19.6438 39.1086 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 1 0 + 1 8 1 0 + 2 3 2 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 12 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 + 15 2 1 0 +V 15 * +M END +> (108) +DYRK1A + +> (108) +DYRK + +> (108) +CMGC + +> (108) +7aj5 + +> (108) +RHW + +> (108) +B + +> (108) +A + +> (108) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (108) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +7aj7_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 0.4732 16.6974 43.4305 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0405 16.2828 44.3410 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5207 16.4044 43.3599 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0694 16.3176 42.5648 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3769 18.1454 43.4648 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1714 18.9277 44.4241 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6019 18.5282 45.3305 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1355 20.2127 44.1593 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5000 20.2821 42.9253 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8268 21.3739 42.1275 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5909 22.3797 42.4424 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4605 21.1400 40.9227 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7058 21.9859 40.2977 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8046 19.8406 40.4673 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4489 18.7633 41.2768 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6629 17.7526 40.9620 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8192 18.9978 42.4873 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4280 19.6225 39.1241 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 17 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 17 2 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 15 17 1 0 + 14 18 1 0 +V 18 * +M END +> (109) +DYRK1A + +> (109) +DYRK + +> (109) +CMGC + +> (109) +7aj7 + +> (109) +RHT + +> (109) + + +> (109) +A + +> (109) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (109) +8 8 8 8 9 9 9 9 9 9 9 9 9 16 9 9 9 na + +$$$$ +6s9b_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 0.8170 21.8156 40.7588 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4358 21.0755 39.7490 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6798 21.5488 38.8094 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7421 19.7215 39.9474 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4102 19.1306 41.1719 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6281 18.0844 41.3281 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7976 19.8685 42.2078 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4899 21.2196 41.9707 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0045 21.7988 42.7365 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3940 19.2364 43.4997 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1860 19.9293 44.4804 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1985 17.8862 43.5259 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3999 17.3921 42.6683 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5262 23.1240 40.5642 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2427 17.1105 44.5858 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3847 18.8986 38.8749 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 12 15 1 0 + 4 16 1 0 +V 15 * +V 16 * +M END +> (110) +EGFR + +> (110) +EGFR + +> (110) +TK + +> (110) +6s9b + +> (110) +L1H + +> (110) + + +> (110) +A + +> (110) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (110) +16 16 16 16 16 16 16 16 16 1 1 5 5 16 na na + +$$$$ +6s9c_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 0.0710 19.3116 43.6271 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5366 19.9645 42.3551 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3053 21.3342 42.1352 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1692 21.9316 42.8995 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1090 19.2484 41.2773 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2698 18.1851 41.3768 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0695 17.9527 43.7088 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4239 17.4589 42.9022 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3882 19.9917 44.5326 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6874 21.9179 40.9346 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5342 22.9769 40.7884 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2360 21.2016 39.9654 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4740 19.8900 40.0777 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3635 17.1583 44.7749 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0968 19.1315 38.9303 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 1 0 + 1 9 2 0 + 2 3 2 0 + 2 5 1 0 + 3 4 1 0 + 3 10 1 0 + 5 6 1 0 + 5 13 2 0 + 7 8 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 7 1 0 + 15 13 1 0 +V 14 * +V 15 * +M END +> (111) +EGFR + +> (111) +EGFR + +> (111) +TK + +> (111) +6s9c + +> (111) +L1K + +> (111) +B + +> (111) +A + +> (111) +AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (111) +1 16 16 16 16 16 5 5 1 16 16 16 14 na na + +$$$$ +7vre_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.9740 20.3017 42.1434 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2334 21.0295 43.0889 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1473 22.1030 43.0074 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2450 19.0740 44.1723 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0793 18.9114 42.2885 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3594 20.3811 44.0840 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8975 18.4127 45.2655 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3232 18.9907 45.9760 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4515 18.3613 43.2850 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7821 21.1650 40.8143 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9926 16.9328 45.4283 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8083 17.9464 41.2951 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 5 1 0 + 1 10 1 0 + 2 3 1 0 + 2 6 1 0 + 4 6 2 0 + 4 7 1 0 + 4 9 1 0 + 5 9 2 0 + 7 8 1 0 + 11 7 1 0 + 5 12 1 0 +V 11 * +V 12 * +M END +> (112) +EGFR + +> (112) +EGFR + +> (112) +TK + +> (112) +7vre + +> (112) +7VH + +> (112) + + +> (112) +A + +> (112) +AP AP AP AP AP AP AP AP AP AP SE FP + +> (112) +14 14 14 14 14 14 5 5 14 14 na na + +$$$$ +8f1z_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.6534 18.8380 42.2091 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1832 18.3378 43.4749 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2044 19.2650 44.4727 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5631 18.8632 45.4088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2654 21.0797 43.1741 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2974 22.1491 43.0270 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6722 20.2454 42.1298 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0189 20.7023 41.2147 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1633 20.6031 44.3523 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0705 16.9926 43.7303 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1971 16.1870 44.0267 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0998 18.0584 40.9917 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 2 10 1 0 + 3 4 1 0 + 3 9 2 0 + 5 6 1 0 + 5 7 2 0 + 5 9 1 0 + 7 8 1 0 + 11 10 1 0 + 1 12 1 0 +V 11 * +V 12 * +M END +> (113) +EGFR + +> (113) +EGFR + +> (113) +TK + +> (113) +8f1z + +> (113) +X9B + +> (113) + + +> (113) +A + +> (113) +AP AP AP AP AP AP AP AP AP AP SE FP + +> (113) +16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +3i5z_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 1.5905 21.1829 40.9598 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5789 22.2159 41.3074 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1924 21.1361 39.9462 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6143 20.8090 40.9656 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7419 20.3368 41.8719 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1035 20.9532 42.9334 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2286 22.0128 43.1006 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6620 20.2373 43.7439 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8289 18.9305 43.5794 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6469 18.2531 44.4847 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1392 18.8306 45.1512 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2464 18.3091 42.5712 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5445 18.9446 41.7007 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8732 16.8697 44.5874 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1228 18.1331 40.5910 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 2 0 + 5 13 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 12 1 0 + 10 11 1 0 + 12 13 2 0 + 10 14 1 0 + 13 15 1 0 +V 14 * +V 15 * +M END +> (114) +Erk2 + +> (114) +MAPK + +> (114) +CMGC + +> (114) +3i5z + +> (114) +Z48 + +> (114) + + +> (114) +A + +> (114) +AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (114) +8 8 8 8 16 14 14 14 14 5 5 14 14 na na + +$$$$ +6gdq_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -1.0732 18.1777 45.0290 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3044 18.6984 45.8630 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4619 18.8539 44.0260 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0973 18.1953 42.9234 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0277 17.1206 42.8412 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7374 18.9248 41.9427 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6956 20.3147 42.0699 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1125 20.9019 43.1764 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1320 21.9782 43.2638 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4384 21.3484 40.9102 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4717 20.1927 44.1378 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4241 16.7689 45.0075 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2560 18.1814 40.7671 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 10 1 0 + 8 9 1 0 + 8 11 2 0 + 12 1 1 0 + 6 13 1 0 +V 12 * +V 13 * +M END +> (115) +Erk2 + +> (115) +MAPK + +> (115) +CMGC + +> (115) +6gdq + +> (115) +EVK + +> (115) +A + +> (115) +A + +> (115) +AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (115) +5 5 14 14 14 16 14 14 14 14 14 na na + +$$$$ +6hkn_altA_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + 1.4491 19.9248 41.8194 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3484 18.7594 44.8688 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8068 19.1795 45.7519 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3812 21.2276 42.0734 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7959 21.7065 43.1610 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7712 22.7766 43.3051 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2427 20.9356 44.0743 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2415 19.6041 43.9164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3438 17.3868 44.6779 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9131 16.5676 45.6005 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0255 15.7719 45.1802 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3777 15.1688 46.0171 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7167 15.1173 44.3652 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8297 16.4233 44.8381 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2670 16.8330 43.5437 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2753 15.7610 43.4133 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8488 17.6270 42.6060 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3090 17.1775 41.7385 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8595 19.0347 42.7514 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1047 19.4642 40.5436 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 19 1 0 + 2 3 1 0 + 2 8 1 0 + 2 9 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 19 2 0 + 9 10 1 0 + 9 15 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 17 19 1 0 + 1 20 1 0 +V 20 * +M END +> (116) +Erk5 + +> (116) +MAPK + +> (116) +CMGC + +> (116) +6hkn + +> (116) +G9E + +> (116) +A + +> (116) +A + +> (116) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (116) +14 16 16 16 16 16 16 16 16 3 3 3 3 3 16 16 16 16 16 na + +$$$$ +4k8a_chainB + RDKit 3D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 0.0788 18.5572 43.6484 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6000 20.7791 44.1311 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8784 19.0404 42.5959 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4599 18.3617 41.9895 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6600 19.4848 44.4028 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2838 19.1377 45.2133 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9048 20.4124 42.3517 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9518 21.1114 40.9378 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1287 21.2591 43.1355 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1204 22.3194 42.9301 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0151 17.1032 43.9481 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 5 1 0 + 2 5 2 0 + 2 9 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 1 1 0 +V 11 * +M END +> (117) +FAK + +> (117) +FAK + +> (117) +TK + +> (117) +4k8a + +> (117) +K8A + +> (117) + + +> (117) +B + +> (117) +AP AP AP AP AP AP AP AP AP AP SE + +> (117) +16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3c4f_altA_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 2.4927 18.2776 40.8087 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2674 17.7032 41.3166 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8356 17.5994 40.2643 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6843 19.0809 41.8294 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8613 18.5606 42.9427 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5570 20.4053 41.9490 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0420 21.1130 41.2930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7939 20.7502 42.9305 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5548 21.7000 43.1770 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3676 19.6545 43.5721 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4182 19.5646 44.6446 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7408 18.3434 45.0881 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3986 18.2468 45.9391 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2434 17.1888 44.4720 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5215 16.2167 44.8516 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6044 17.2838 43.3768 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0318 16.4143 42.8997 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1245 19.2630 39.8520 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 2 0 + 5 10 2 0 + 5 16 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (118) +FGFR1 + +> (118) +FGFR + +> (118) +TK + +> (118) +3c4f + +> (118) +C4F + +> (118) +A + +> (118) +A + +> (118) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (118) +8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3js2_chainB + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.1769 15.1782 44.5785 O 0 0 0 0 0 1 0 0 0 0 0 0 + -0.4466 16.2005 44.9392 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3447 16.2083 45.8091 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0828 17.5267 44.2669 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8649 17.5500 43.2514 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3580 16.6437 42.9323 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1618 18.7723 42.6563 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6969 18.7126 44.6544 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4338 18.7001 45.4438 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3874 19.8552 44.0659 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5072 19.9184 43.0951 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7324 20.8704 42.6375 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0800 18.8343 41.6162 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 4 1 0 + 4 5 2 0 + 4 8 1 0 + 5 6 1 0 + 5 7 1 0 + 7 11 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 7 13 1 0 +M CHG 1 1 -1 +V 13 * +M END +> (119) +FGFR1 + +> (119) +FGFR + +> (119) +TK + +> (119) +3js2 + +> (119) +VM1 + +> (119) + + +> (119) +B + +> (119) +AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (119) +6 6 6 16 16 16 16 16 16 16 16 16 na + +$$$$ +7dhl_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.9846 19.9456 40.0180 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6306 19.0865 40.1993 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0134 19.6012 39.6628 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2285 18.1731 45.3453 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8353 18.8182 45.8308 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1605 20.5808 43.1380 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0527 21.6424 42.9709 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4086 17.9275 43.5601 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4291 18.6929 44.3096 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5786 20.0232 44.1184 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0440 19.8929 42.3337 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1372 18.5352 42.5802 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8069 17.9384 41.9788 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7898 20.6744 41.3047 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2350 21.5901 41.1001 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7703 20.9263 41.7086 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2513 16.8339 45.7579 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6059 20.7936 38.9587 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 14 1 0 + 4 5 1 0 + 4 9 1 0 + 6 7 1 0 + 6 10 2 0 + 6 11 1 0 + 8 9 2 0 + 8 12 1 0 + 9 10 1 0 + 11 12 2 0 + 11 14 1 0 + 12 13 1 0 + 14 15 1 0 + 14 16 1 0 + 4 17 1 0 + 1 18 1 0 +V 17 * +V 18 * +M END +> (120) +FGFR3 + +> (120) +FGFR + +> (120) +TK + +> (120) +7dhl + +> (120) +H6X + +> (120) + + +> (120) +A + +> (120) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (120) +8 8 8 5 5 14 14 14 14 14 16 14 14 8 8 8 na na + +$$$$ +2o5k_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.7183 20.3510 40.2505 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1648 20.7923 39.3716 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6788 20.7052 42.5152 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9667 18.3739 41.5191 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5814 18.9089 40.3047 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2870 21.2243 41.3131 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4219 22.2907 41.2076 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5055 19.2684 42.6524 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7275 17.1032 41.8232 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1323 17.0494 43.0818 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0103 18.3625 43.6000 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4122 18.6058 44.4941 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3603 21.7312 43.3609 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0475 21.4637 44.1877 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0657 18.1131 39.1356 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2749 15.8819 43.7569 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 6 1 0 + 3 6 2 0 + 3 8 1 0 + 3 13 1 0 + 4 5 1 0 + 4 8 2 0 + 4 9 1 0 + 6 7 1 0 + 8 11 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 13 14 1 0 + 5 15 1 0 + 16 10 1 0 +V 15 * +V 16 * +M END +> (121) +GSK3B + +> (121) +GSK + +> (121) +CMGC + +> (121) +2o5k + +> (121) +HBM + +> (121) + + +> (121) +A + +> (121) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (121) +16 16 16 16 16 16 16 16 16 14 16 16 3 3 na na + +$$$$ +3q3b_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.5601 18.9510 40.5505 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0567 18.3468 41.7220 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1403 17.2776 41.8495 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4497 19.1178 42.7214 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0772 18.4143 43.9638 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1093 17.3436 43.8816 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1491 18.5905 44.0540 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4307 18.8050 44.8455 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3450 20.5328 42.5471 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2379 21.3374 43.4942 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2553 22.2723 43.2771 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8510 21.1432 41.3722 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7712 22.2122 41.2408 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4563 20.3562 40.3794 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8433 20.8206 39.4844 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2396 18.1175 39.4860 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 12 1 0 + 10 11 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (122) +GSK3B + +> (122) +GSK + +> (122) +CMGC + +> (122) +3q3b + +> (122) +55E + +> (122) + + +> (122) +A + +> (122) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (122) +16 16 16 16 8 8 8 8 16 3 3 16 16 16 16 na + +$$$$ +4rvt_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 1.3853 19.0447 41.0213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0739 20.3659 41.3435 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4894 21.1711 40.7558 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2791 20.6417 42.3563 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0738 21.6067 42.5725 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2904 19.6279 43.1433 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0292 18.2699 42.8787 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8224 18.0141 41.7980 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0994 16.7136 41.5015 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6766 16.0683 42.0728 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0128 19.9937 44.0618 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5604 17.1829 43.6119 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2418 18.8561 39.9289 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 11 2 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 7 12 1 0 + 13 1 1 0 +V 12 * +V 13 * +M END +> (123) +HGK + +> (123) +STE20 + +> (123) +STE + +> (123) +4rvt + +> (123) +3XM + +> (123) +A + +> (123) +A + +> (123) +AP AP AP AP AP AP AP AP AP AP AP SE GA + +> (123) +16 16 16 16 16 16 16 16 3 3 16 na na + +$$$$ +6nfy_altA_chainB + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 2.4602 19.8564 40.1242 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0258 20.3316 39.3364 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8273 20.6447 41.1257 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9591 21.7166 41.1350 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5128 17.8191 41.1304 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3669 16.7492 41.1088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3440 18.4387 40.1661 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8654 18.6084 42.1340 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0048 18.2292 43.2932 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3637 19.4872 43.9644 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0180 20.0144 42.1177 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2520 20.5763 43.2672 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1800 21.5537 43.5113 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0284 19.6382 44.9784 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8616 17.6891 39.1904 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3738 16.9453 43.5363 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 11 1 0 + 5 6 1 0 + 5 7 2 0 + 5 8 1 0 + 7 15 1 0 + 8 9 1 0 + 8 11 2 0 + 9 10 1 0 + 10 12 1 0 + 10 14 2 0 + 11 12 1 0 + 12 13 1 0 + 9 16 2 0 +V 16 * +M END +> (124) +HPK1 + +> (124) +STE20 + +> (124) +STE + +> (124) +6nfy + +> (124) +B49 + +> (124) +A + +> (124) +B + +> (124) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (124) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +3e7v_altB_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.6331 21.3979 41.8214 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9264 22.4079 41.5760 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3535 17.0479 42.3874 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0430 20.2962 41.1898 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4192 19.2183 41.8302 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3971 15.7037 42.2173 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8653 15.1839 42.9458 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1073 17.5818 43.4322 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7019 16.9299 44.0550 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0957 18.9584 43.6757 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6707 19.3709 44.4916 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3735 17.8742 41.6090 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3324 19.8005 42.8534 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1995 21.0486 42.8071 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1066 14.9645 41.1947 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8389 20.1617 40.0443 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 1 0 + 1 14 2 0 + 3 6 1 0 + 3 8 1 0 + 3 12 2 0 + 4 5 2 0 + 5 12 1 0 + 5 13 1 0 + 6 7 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 13 1 0 + 13 14 1 0 + 15 6 1 0 + 4 16 1 0 +V 15 * +V 16 * +M END +> (125) +Haspin + +> (125) +Haspin + +> (125) +Other + +> (125) +3e7v + +> (125) +DZO + +> (125) +B + +> (125) +A + +> (125) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP GA + +> (125) +14 14 14 16 14 5 5 14 14 14 14 14 14 14 na na + +$$$$ +3lvp_chainC + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.0678 18.5772 42.0690 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9669 18.7239 43.8780 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0152 19.4888 44.5193 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7313 18.7235 45.3871 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4964 18.9922 45.9893 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1389 17.4791 45.2309 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9412 17.3885 44.3098 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5559 16.5465 44.0279 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6070 20.8415 42.6577 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2194 21.3749 41.9457 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5644 21.5015 43.3774 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3936 22.5533 43.2017 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2246 20.8459 44.2814 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8123 19.4388 42.9154 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6614 16.2981 46.0221 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 14 1 0 + 2 3 2 0 + 2 7 1 0 + 2 14 1 0 + 3 4 1 0 + 3 13 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 9 10 1 0 + 9 11 1 0 + 9 14 2 0 + 11 12 1 0 + 11 13 2 0 + 15 6 1 0 +V 15 * +M END +> (126) +IGF1R + +> (126) +InsR + +> (126) +TK + +> (126) +3lvp + +> (126) +PDR + +> (126) + + +> (126) +C + +> (126) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (126) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +5k75_altB_chainC + RDKit 3D + + 22 24 0 0 0 0 0 0 0 0999 V2000 + 0.2035 17.6093 43.0464 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5190 18.7945 42.3540 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1452 19.0539 41.0600 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2115 20.3793 40.8216 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6922 18.8685 44.7422 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1485 18.8735 45.7210 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7639 20.7392 39.4519 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4850 21.5539 39.5165 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9659 21.0141 38.7621 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7472 18.3103 39.8573 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9646 17.8260 39.2733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4685 17.5632 40.1885 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4678 20.0452 44.2034 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1299 19.9656 43.0082 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4442 16.3719 42.5003 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9861 16.3238 41.6494 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5046 21.3786 42.0520 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4463 19.4145 39.0256 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5125 19.4446 39.2501 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3043 19.2374 37.9595 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4261 17.6759 44.2293 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0371 15.1275 43.0783 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 15 1 0 + 1 21 1 0 + 2 3 1 0 + 2 14 1 0 + 3 4 2 0 + 3 10 1 0 + 4 7 1 0 + 4 17 1 0 + 5 6 1 0 + 5 13 1 0 + 5 21 2 0 + 7 8 1 0 + 7 9 1 0 + 7 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 18 1 0 + 13 14 2 0 + 14 17 1 0 + 15 16 1 0 + 18 19 1 0 + 18 20 1 0 + 22 15 1 0 +V 22 * +M END +> (127) +IRAK4 + +> (127) +IRAK + +> (127) +TKL + +> (127) +5k75 + +> (127) +6QX + +> (127) +B + +> (127) +C + +> (127) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (127) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 5 5 14 14 14 14 14 na + +$$$$ +6egd_altB_chainD + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.6431 19.6263 40.3287 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9227 17.9781 43.9372 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6874 17.4851 43.0877 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7314 19.3892 43.9240 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2133 19.8864 42.5894 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0975 21.1883 42.0387 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0714 22.1355 42.5292 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7016 21.0023 40.6550 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3895 18.8127 41.6336 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9538 20.0964 44.8751 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4064 17.1897 45.0094 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1757 18.8358 39.1483 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 5 6 2 0 + 5 9 1 0 + 6 7 1 0 + 6 8 1 0 + 11 2 1 0 + 1 12 1 0 +V 11 * +V 12 * +M END +> (128) +IRAK4 + +> (128) +IRAK + +> (128) +TKL + +> (128) +6egd + +> (128) +J87 + +> (128) +B + +> (128) +D + +> (128) +AP AP AP AP AP AP AP AP AP AP SE FP + +> (128) +14 5 5 1 14 14 14 14 14 1 na na + +$$$$ +6w3k_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.7944 17.1591 43.8723 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2215 18.6690 42.3109 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9757 20.5673 41.3913 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4124 21.2381 40.7754 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0964 19.7292 43.1829 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0669 18.2714 44.6848 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5671 18.1222 45.6304 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9069 19.2770 41.1628 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1415 17.3647 42.6554 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0772 16.5367 41.9973 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3623 20.8833 42.6021 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7302 19.4850 44.3257 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4703 18.5814 39.9842 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2288 15.7864 44.2664 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 1 0 + 1 9 2 0 + 2 5 1 0 + 2 8 2 0 + 2 9 1 0 + 3 4 1 0 + 3 8 1 0 + 3 11 1 0 + 5 11 2 0 + 5 12 1 0 + 6 7 1 0 + 6 12 2 0 + 9 10 1 0 + 8 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (129) +IRE1 + +> (129) +IRE + +> (129) +Other + +> (129) +6w3k + +> (129) +SJS + +> (129) + + +> (129) +A + +> (129) +AP AP AP AP AP AP AP AP AP AP AP AP GA SE + +> (129) +16 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +6aah_altA_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 1.2776 19.7379 40.5503 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7646 19.1468 39.7889 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7505 19.1349 44.0698 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3121 19.1295 44.9923 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1768 21.0662 40.5645 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5752 21.7296 39.8112 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6357 19.2372 41.7061 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3415 17.9347 43.5374 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3749 17.9710 42.2969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1809 20.3962 42.3268 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4820 20.2956 43.4951 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5179 21.4445 41.6365 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3065 22.4003 41.8852 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8183 16.7999 41.7505 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7983 15.9822 42.3429 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3194 16.6191 40.3881 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6571 16.6870 44.2676 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 7 1 0 + 3 4 1 0 + 3 8 2 0 + 3 11 1 0 + 5 6 1 0 + 5 12 1 0 + 7 9 2 0 + 7 10 1 0 + 8 9 1 0 + 9 14 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 14 15 1 0 + 16 14 1 0 + 8 17 1 0 +V 16 * +V 17 * +M END +> (130) +JAK1 + +> (130) +JakA + +> (130) +TK + +> (130) +6aah + +> (130) +9T6 + +> (130) +A + +> (130) +A + +> (130) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (130) +16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na + +$$$$ +3io7_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.2710 18.0726 43.3003 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3296 18.9311 42.3565 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5085 19.7355 40.5286 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0958 19.5384 39.6440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4968 21.2941 42.0122 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2791 22.3035 42.3285 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0661 18.7187 41.2560 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2272 21.0653 40.8878 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5831 21.8871 40.2842 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0415 20.2245 42.7378 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7353 20.1599 43.8907 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9189 18.9003 44.2286 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6517 18.4502 45.3222 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0994 19.1140 45.9379 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7360 17.4597 45.5005 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3209 16.5896 43.3478 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 12 1 0 + 2 7 1 0 + 2 10 1 0 + 3 4 1 0 + 3 7 2 0 + 3 8 1 0 + 5 6 1 0 + 5 8 2 0 + 5 10 1 0 + 8 9 1 0 + 10 11 1 0 + 11 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 1 1 0 +V 16 * +M END +> (131) +JAK2 + +> (131) +JakA + +> (131) +TK + +> (131) +3io7 + +> (131) +1P5 + +> (131) + + +> (131) +A + +> (131) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (131) +16 14 14 14 14 14 14 14 14 14 14 14 5 5 5 na + +$$$$ +3tjc_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -0.8035 20.3391 44.0144 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0846 16.3106 42.6072 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0458 21.1417 42.0242 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4538 21.0200 41.1083 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1703 22.0687 42.3616 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6951 18.3452 41.1619 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0482 19.0000 40.3789 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1097 18.6924 42.2971 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2867 17.6789 43.2239 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2106 20.0651 42.7973 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9091 17.9556 44.4971 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1564 19.3414 44.8727 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6149 19.5755 45.8221 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7591 16.9321 41.1945 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2877 16.8771 45.4058 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3721 16.1155 40.1077 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 2 0 + 1 12 1 0 + 2 9 1 0 + 2 14 1 0 + 3 4 1 0 + 3 5 1 0 + 3 10 1 0 + 6 7 1 0 + 6 8 1 0 + 6 14 2 0 + 8 9 2 0 + 8 10 1 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 11 15 1 0 + 14 16 1 0 +V 15 * +V 16 * +M END +> (132) +JAK2 + +> (132) +JakA + +> (132) +TK + +> (132) +3tjc + +> (132) +0TP + +> (132) + + +> (132) +A + +> (132) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (132) +14 14 5 5 5 14 14 14 14 14 16 14 14 14 na na + +$$$$ +4aqc_altB_chainB + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.0560 19.0557 40.9146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3243 19.0594 42.1340 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1430 18.0964 42.9200 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7195 18.7959 43.9110 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6595 20.1005 43.8745 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0228 20.2822 42.7003 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3537 21.4866 42.1707 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0764 22.4022 42.6719 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0445 21.5207 40.9915 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3196 22.4638 40.5430 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3938 20.2939 40.3665 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9397 20.3203 39.4350 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3343 18.1359 44.9614 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8388 18.7609 45.5737 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4116 16.8545 45.3501 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3926 17.7743 40.2760 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 11 2 0 + 2 3 2 0 + 2 6 1 0 + 3 4 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (133) +JAK2 + +> (133) +JakA + +> (133) +TK + +> (133) +4aqc + +> (133) +88A + +> (133) +B + +> (133) +B + +> (133) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (133) +16 14 14 14 14 14 14 14 14 14 14 14 5 5 na na + +$$$$ +4c61_chainB + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -0.7656 18.6001 44.4366 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2976 18.9924 45.2003 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1911 19.4728 43.5199 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5359 20.7906 43.5871 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0889 21.3937 42.5967 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0349 22.4482 42.3693 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8490 20.4260 41.8730 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6576 20.6566 40.6716 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6352 21.7161 40.4164 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2525 20.0748 39.8437 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6863 20.3504 40.8617 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6508 19.2218 42.4782 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0720 18.2691 42.1927 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6472 17.2060 44.3592 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 12 2 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (134) +JAK2 + +> (134) +JakA + +> (134) +TK + +> (134) +4c61 + +> (134) +LMM + +> (134) + + +> (134) +B + +> (134) +AP AP AP AP AP AP AP AP AP AP AP AP AP SE + +> (134) +5 5 14 14 14 14 9 8 8 8 8 14 14 na + +$$$$ +4gmy_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.3389 18.1526 42.1511 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5948 19.5176 42.0092 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1028 19.8792 41.1274 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2030 20.4082 42.9879 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3996 21.4631 42.8658 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6482 17.1531 41.2209 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3460 16.2164 41.4477 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4127 19.9735 44.0755 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6761 18.6850 44.2593 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3268 17.7609 43.2952 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5772 16.7200 43.4375 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3053 17.3075 40.0566 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3382 18.2614 45.4146 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 8 2 0 + 6 7 1 0 + 8 9 1 0 + 9 10 2 0 + 10 11 1 0 + 12 6 1 0 + 9 13 1 0 +V 12 * +V 13 * +M END +> (135) +JAK2 + +> (135) +JakA + +> (135) +TK + +> (135) +4gmy + +> (135) +0X5 + +> (135) + + +> (135) +A + +> (135) +AP AP AP AP AP AP AP AP AP AP AP FP SE + +> (135) +16 14 14 14 14 5 5 14 14 14 14 na na + +$$$$ +5aep_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.2741 18.2512 42.3624 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3616 18.0583 43.5411 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7263 19.0942 44.3134 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2320 18.9088 45.2495 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4713 20.3546 43.9385 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1849 20.5570 42.7223 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5533 19.5456 41.9453 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5206 21.7366 42.1897 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3336 22.7079 42.6231 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1513 21.4882 40.9821 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5433 22.2335 40.3059 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1913 20.1195 40.7940 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6153 19.5902 39.9535 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6711 17.0871 41.5203 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 7 12 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (136) +JAK2 + +> (136) +JakA + +> (136) +TK + +> (136) +5aep + +> (136) +QUP + +> (136) +A + +> (136) +A + +> (136) +AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (136) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +5wev_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.7489 18.9170 42.0180 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8723 16.8223 41.2847 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8060 20.2949 42.2486 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3268 20.9511 41.5670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1819 20.7888 43.3644 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1997 21.8511 43.5580 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2362 18.1136 41.0070 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7667 18.4228 40.2051 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4459 19.9777 44.2128 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5405 18.6620 44.0808 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0665 18.0615 42.9362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1881 16.8044 42.4229 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2631 18.0419 45.1213 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1805 15.6361 40.4253 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 7 1 0 + 1 11 1 0 + 2 7 1 0 + 2 12 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 9 2 0 + 7 8 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 10 13 1 0 + 14 2 1 0 +V 13 * +V 14 * +M END +> (137) +JAK2 + +> (137) +JakA + +> (137) +TK + +> (137) +5wev + +> (137) +9ZS + +> (137) +B + +> (137) +A + +> (137) +AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (137) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +5ut5_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.2050 17.9401 40.9367 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5704 18.8874 39.9841 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0174 18.5649 39.0554 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3678 20.2379 40.2126 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6527 20.9647 39.4662 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1997 20.6476 41.3988 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3704 21.6953 41.5977 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5573 19.6523 42.3600 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2486 18.5315 44.0955 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3521 18.3578 42.1239 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8007 17.6310 43.2168 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1241 19.7733 43.5889 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8591 18.2732 45.3706 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4718 16.4487 40.6441 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 10 1 0 + 8 12 2 0 + 9 11 2 0 + 9 12 1 0 + 10 11 1 0 + 9 13 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (138) +JAK2-b + +> (138) +JakB + +> (138) +TK + +> (138) +5ut5 + +> (138) +2HB + +> (138) +B + +> (138) +A + +> (138) +AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (138) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +2o2u_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 1.3305 18.6436 42.5408 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3157 19.5915 42.8892 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3042 17.7895 43.0423 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7576 18.1745 43.8577 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9725 19.5119 44.3008 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1163 20.6208 44.6154 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1887 16.1983 42.7764 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1497 15.9139 43.5992 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8242 14.5776 43.7483 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2606 13.9681 44.4546 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8512 14.0793 42.7792 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2645 14.7547 44.2678 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6383 13.7879 44.6051 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8895 15.1220 43.4538 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3370 15.7541 45.4417 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7154 15.3842 46.2571 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3713 15.8272 45.7777 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8417 17.1669 45.0363 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6202 17.7358 45.9392 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6291 17.6692 44.4743 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5891 17.1001 44.1766 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3532 18.3524 41.6353 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 7 1 0 + 4 5 1 0 + 4 21 1 0 + 5 6 3 0 + 7 8 1 0 + 8 9 1 0 + 8 21 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 1 1 0 +V 22 * +M END +> (139) +JNK3 + +> (139) +MAPK + +> (139) +CMGC + +> (139) +2o2u + +> (139) +738 + +> (139) + + +> (139) +A + +> (139) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (139) +5 5 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +2zdt_altA_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -0.6925 19.0342 43.6093 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1710 20.4044 43.5533 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7110 21.2288 43.9950 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1034 20.6093 42.8789 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5296 21.5990 42.8068 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6047 16.5867 43.0908 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5302 17.5530 44.3331 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0360 18.7860 44.2355 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8031 19.4557 42.2976 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2754 18.0910 42.3656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8115 17.2581 41.9352 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0081 17.9064 43.0325 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8645 16.4299 43.7717 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2628 19.6866 41.5354 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6888 19.7382 44.6510 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5088 15.0511 43.8495 * 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8347 17.3836 45.0032 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0119 15.4417 42.4395 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 6 12 1 0 + 6 13 2 0 + 7 8 1 0 + 7 13 1 0 + 8 15 2 0 + 9 10 1 0 + 9 14 1 0 + 10 11 1 0 + 10 12 2 0 + 16 13 1 0 + 7 17 1 0 + 6 18 1 0 +V 16 * +V 17 * +V 18 * +M END +> (140) +JNK3 + +> (140) +MAPK + +> (140) +CMGC + +> (140) +2zdt + +> (140) +46C + +> (140) +A + +> (140) +A + +> (140) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE SE FP + +> (140) +14 14 14 14 14 16 9 14 14 14 14 14 14 14 14 na na na + +$$$$ +3cgf_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 0.0112 18.5631 43.1360 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8870 17.8733 43.9435 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6400 18.8542 44.6509 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6531 18.3774 45.5600 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2541 19.0791 46.1192 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8493 17.0290 45.7106 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6076 16.6829 46.3973 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0559 16.0388 44.9632 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2308 14.9811 45.0939 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1019 16.4811 44.1080 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5053 15.7732 43.5519 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2781 20.0692 44.3422 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2649 19.9088 43.4179 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2603 20.7338 42.9598 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0138 17.9820 42.2181 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 13 2 0 + 2 3 1 0 + 2 10 1 0 + 3 4 1 0 + 3 12 2 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 13 1 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (141) +JNK3 + +> (141) +MAPK + +> (141) +CMGC + +> (141) +3cgf + +> (141) +JNF + +> (141) + + +> (141) +A + +> (141) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP GA + +> (141) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +8enj_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.2739 18.7024 44.4857 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5119 17.7907 43.6469 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6796 16.7283 43.7453 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4427 18.2479 42.7051 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6084 19.6656 42.6304 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3197 20.0952 41.9405 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1759 20.5105 43.4774 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0341 21.5784 43.4002 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6096 17.6404 44.9178 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3206 17.6766 45.7432 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9564 18.2859 44.1109 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5181 16.1497 44.3818 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0507 16.1593 43.3972 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5265 15.7437 44.3013 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7120 15.2651 45.2910 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5255 15.8185 46.2114 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7644 15.0559 44.7946 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0937 20.0485 44.3781 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2565 18.1441 45.4077 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0358 18.0901 46.3918 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3716 13.8611 45.6924 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2556 17.2942 41.8319 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 18 1 0 + 1 19 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 18 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 9 19 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 0 + 15 17 1 0 + 19 20 1 0 + 15 21 1 0 + 22 4 1 0 +V 21 * +V 22 * +M END +> (142) +JNK3 + +> (142) +MAPK + +> (142) +CMGC + +> (142) +8enj + +> (142) +WNK + +> (142) + + +> (142) +A + +> (142) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (142) +14 14 14 16 14 14 14 14 4 4 4 4 4 4 4 4 4 14 5 5 na na + +$$$$ +3bgq_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 0.4393 18.5870 43.8686 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5820 20.8442 42.4743 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1079 21.3769 43.2854 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9680 21.5671 41.2690 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7829 22.6285 41.1945 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6040 20.8595 40.1629 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8859 21.4036 39.2736 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8316 19.3833 42.6035 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4742 18.7193 41.4662 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6680 17.6592 41.5370 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0651 19.1592 44.9291 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8614 17.2949 43.8287 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9177 18.5943 43.9655 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8665 19.4117 40.2437 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4569 18.6364 39.1060 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 1 0 + 1 11 1 0 + 1 12 1 0 + 1 13 1 0 + 2 3 1 0 + 2 4 2 0 + 2 8 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 14 2 0 + 8 9 2 0 + 9 10 1 0 + 9 14 1 0 + 14 15 1 0 +V 15 * +M END +> (143) +PIM1 + +> (143) +PIM + +> (143) +CAMK + +> (143) +3bgq + +> (143) +VX2 + +> (143) + + +> (143) +A + +> (143) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (143) +8 16 16 16 16 16 16 16 16 16 8 8 8 16 na + +$$$$ +4mbl_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.8551 18.8546 40.1982 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6870 20.2215 40.4404 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0428 20.9372 39.7140 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0799 20.6671 41.5811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9857 21.7291 41.7534 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5713 19.7550 42.5426 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7263 18.3641 42.3028 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3713 17.9419 41.1117 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4855 16.8858 40.9168 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1576 20.1685 43.6921 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3381 21.2199 43.8605 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6327 19.2477 44.5871 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1477 19.5822 45.4756 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4599 17.8938 44.3650 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8668 17.1805 45.0664 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2234 17.4483 43.2625 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3803 16.3888 43.1234 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5564 18.3859 38.9661 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 2 0 + 7 16 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (144) +PIM1 + +> (144) +PIM + +> (144) +CAMK + +> (144) +4mbl + +> (144) +26L + +> (144) + + +> (144) +A + +> (144) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP FP + +> (144) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3gfw_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -1.5551 18.0532 46.1316 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8641 18.8224 46.7086 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6594 18.3510 45.1495 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0230 17.3948 44.3645 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2403 16.3471 44.5113 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3716 19.6586 44.9374 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4945 20.0656 43.9940 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8947 21.2690 43.6120 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5874 22.1514 43.9954 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7825 21.0996 42.6233 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3035 21.8996 42.1184 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9317 19.7998 42.3506 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5664 19.3719 41.5886 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1519 19.1346 43.1938 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8990 17.7856 43.3838 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0785 16.8284 46.4187 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5260 16.8995 42.5849 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 6 1 0 + 4 5 1 0 + 4 15 1 0 + 6 7 2 0 + 7 8 1 0 + 7 14 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 16 1 1 0 + 15 17 1 0 +V 16 * +V 17 * +M END +> (145) +TTK + +> (145) +TTK + +> (145) +Other + +> (145) +3gfw + +> (145) +S22 + +> (145) + + +> (145) +A + +> (145) +AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP SE FP + +> (145) +5 5 14 14 14 14 14 14 14 14 14 14 14 14 16 na na + +$$$$ diff --git a/data/fragment_library_custom_filtered/B1.sdf b/data/fragment_library_custom_filtered/B1.sdf new file mode 100644 index 00000000..b49823f1 --- /dev/null +++ b/data/fragment_library_custom_filtered/B1.sdf @@ -0,0 +1,571 @@ +5fbn_altB_chainD + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.9301 21.7088 35.8409 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0584 21.7487 34.8309 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2154 22.2761 35.7172 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8960 22.2474 36.5553 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6139 22.8712 34.5272 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9844 23.5279 34.3968 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.9874 22.5942 34.3398 F 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2081 24.3365 35.4480 F 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0180 24.2833 33.2981 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6642 22.8978 33.4998 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9040 23.3691 32.5581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4310 22.3283 33.6832 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7275 22.3480 32.8640 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4428 21.0780 36.9649 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 3 1 0 + 2 12 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 10 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (1) +BTK + +> (1) +Tec + +> (1) +TK + +> (1) +5fbn + +> (1) +5WF + +> (1) +B + +> (1) +D + +> (1) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (1) +14 14 14 14 16 8 8 8 8 14 14 14 14 na + +$$$$ +8fll_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 4.8296 20.9935 35.8273 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0833 21.3103 33.4837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1263 22.2768 33.4416 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8700 22.7642 32.5125 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1321 23.1702 36.9951 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7528 23.2848 38.0106 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3394 22.7875 36.3522 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4678 24.1376 36.6214 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4660 20.6598 34.6278 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2406 19.9076 34.6034 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7138 20.9814 32.3310 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4912 22.6174 34.6216 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7249 23.3785 34.6226 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8385 21.9815 35.8035 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2272 22.2546 36.9967 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3410 20.2610 37.0270 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 9 2 0 + 1 14 1 0 + 2 3 2 0 + 2 9 1 0 + 2 11 1 0 + 3 4 1 0 + 3 12 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 15 1 0 + 9 10 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 1 16 1 0 +V 16 * +M END +> (2) +BTK + +> (2) +Tec + +> (2) +TK + +> (2) +8fll + +> (2) +Y7W + +> (2) +A + +> (2) +A + +> (2) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (2) +16 16 16 16 3 3 3 3 16 16 16 16 16 16 3 na + +$$$$ +3poz_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 4.6249 20.7128 34.8858 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3169 19.9116 34.6724 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8456 22.7996 35.4426 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3449 22.0104 36.4822 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0546 22.2149 37.5021 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8860 23.9309 35.6852 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7522 24.2411 36.9527 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3191 25.0175 35.0711 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6902 23.6106 35.2070 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2579 22.5447 34.1255 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8898 23.1627 33.3200 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1383 21.5008 33.8486 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4420 21.3042 32.8310 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2239 20.9518 36.2016 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7210 20.1664 37.2071 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 2 0 + 1 14 1 0 + 3 4 1 0 + 3 6 1 0 + 3 10 2 0 + 4 5 1 0 + 4 14 2 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 14 15 1 0 +V 15 * +M END +> (3) +EGFR + +> (3) +EGFR + +> (3) +TK + +> (3) +3poz + +> (3) +03P + +> (3) + + +> (3) +A + +> (3) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (3) +16 16 16 16 16 8 8 8 8 16 16 16 16 16 na + +$$$$ +3w33_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.9855 21.3654 33.7025 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2378 20.9030 32.7597 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4901 20.8364 34.8715 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1327 19.9696 34.8244 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1635 22.4752 33.7140 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7669 22.9034 32.8053 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9499 23.2275 37.3015 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2537 22.9630 38.3036 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1263 24.2916 37.0424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6926 24.9571 37.7741 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3783 22.4934 36.1559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1915 21.3916 36.1054 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8785 23.0057 34.9615 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9111 24.3721 35.3469 S 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7333 20.8406 37.2647 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 12 1 0 + 5 6 1 0 + 5 13 2 0 + 7 8 1 0 + 7 9 2 0 + 7 11 1 0 + 9 10 1 0 + 9 14 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 12 15 1 0 +V 15 * +M END +> (4) +EGFR + +> (4) +EGFR + +> (4) +TK + +> (4) +3w33 + +> (4) +W19 + +> (4) +A + +> (4) +A + +> (4) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (4) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6wa2_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.1458 23.6113 33.2905 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0887 23.9075 32.2535 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9066 22.0706 34.9720 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4297 21.1668 35.2476 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3016 22.8566 35.9459 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6081 23.9970 35.5920 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5350 24.3825 34.2625 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0033 25.2812 33.9869 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8315 22.4588 33.6435 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0072 24.7470 36.5624 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4484 21.6888 32.6483 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9044 20.9059 32.9654 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3332 22.4618 37.4215 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 3 9 2 0 + 5 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 1 0 + 9 11 1 0 + 11 12 1 0 + 13 5 1 0 +V 13 * +M END +> (5) +EGFR + +> (5) +EGFR + +> (5) +TK + +> (5) +6wa2 + +> (5) +TOV + +> (5) +A + +> (5) +A + +> (5) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (5) +16 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +6hkm_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 6.0385 21.2270 36.5134 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9962 20.1694 36.2988 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2361 21.8942 36.4420 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.1376 21.3596 36.1811 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2882 23.2596 36.7060 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0498 24.2432 35.4156 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9278 23.2791 37.1335 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0290 23.8154 37.4001 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8720 21.9168 36.8643 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4651 23.9224 36.6534 O 0 0 0 0 0 0 0 0 0 0 0 0 + 10.3220 24.7225 35.6829 F 0 0 0 0 0 0 0 0 0 0 0 0 + 9.1538 23.1242 34.5882 F 0 0 0 0 0 0 0 0 0 0 0 0 + 8.2774 25.2203 34.8168 F 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1325 23.9442 37.0595 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1782 25.0011 37.2769 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6118 21.1616 36.9424 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 10 1 0 + 5 14 2 0 + 6 10 1 0 + 6 11 1 0 + 6 12 1 0 + 6 13 1 0 + 7 8 1 0 + 7 9 2 0 + 7 14 1 0 + 14 15 1 0 + 16 9 1 0 +V 16 * +M END +> (6) +Erk5 + +> (6) +MAPK + +> (6) +CMGC + +> (6) +6hkm + +> (6) +G92 + +> (6) + + +> (6) +A + +> (6) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (6) +16 16 16 16 16 3 16 16 16 3 3 3 3 16 16 na + +$$$$ +3u6h_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 5.0736 22.8183 33.5306 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9451 22.2937 34.0198 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6377 21.8703 35.3549 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5570 22.3767 33.3747 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6199 22.9495 32.4495 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8666 22.8684 34.0602 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1973 21.3713 33.1559 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2729 21.6519 35.2022 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3405 21.4650 36.2852 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1508 23.5877 32.2322 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1553 23.6628 31.7947 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8134 23.0676 31.5405 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5394 24.5877 32.4250 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0427 22.5607 34.2736 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3162 20.9272 36.1579 * 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2743 23.0296 34.0607 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 1 0 + 1 14 1 0 + 2 4 1 0 + 2 8 2 0 + 3 8 1 0 + 3 9 2 0 + 3 14 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 15 8 1 0 + 16 14 1 0 +V 15 * +V 16 * +M END +> (7) +MET + +> (7) +Met + +> (7) +TK + +> (7) +3u6h + +> (7) +03X + +> (7) +B + +> (7) +A + +> (7) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA B2 + +> (7) +9 14 16 8 8 8 8 16 16 8 8 8 8 9 na na + +$$$$ +7b34_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 6.8561 21.8612 36.8550 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0055 23.2029 36.4934 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.8995 23.5425 35.5048 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.0134 24.5710 35.1954 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.6497 22.5421 34.9146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.3576 22.7808 34.1347 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4851 21.2225 35.3342 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.3341 20.1114 34.7911 C 0 0 0 0 0 0 0 0 0 0 0 0 + 10.0111 20.5081 34.0345 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.6943 19.3509 34.3435 H 0 0 0 0 0 0 0 0 0 0 0 0 + 9.9137 19.6680 35.6008 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3201 24.1775 37.1285 F 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5936 20.8906 36.2825 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8694 21.4058 37.8568 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 12 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 13 2 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 14 1 1 0 +V 14 * +M END +> (8) +MST3 + +> (8) +STE20 + +> (8) +STE + +> (8) +7b34 + +> (8) +SQK + +> (8) + + +> (8) +A + +> (8) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA + +> (8) +14 14 14 14 14 14 14 8 8 8 8 14 14 na + +$$$$ +7mon_chainB + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.0159 21.7301 34.7898 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3253 22.3275 33.7770 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2538 22.4432 33.8460 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9936 22.7786 32.6760 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4475 23.2550 31.8752 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3772 22.6288 32.5776 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9000 22.9880 31.7035 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4019 21.5761 34.6901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0671 22.0279 33.5876 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9986 21.0511 35.5759 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2892 21.2037 36.0456 * 0 0 0 0 0 0 0 0 0 0 0 0 + 7.3960 21.8826 33.5003 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 9 1 0 + 8 9 1 0 + 8 10 2 0 + 11 1 1 0 + 12 9 1 0 +V 11 * +V 12 * +M END +> (9) +RIPK3 + +> (9) +RIPK + +> (9) +TKL + +> (9) +7mon + +> (9) +ZL1 + +> (9) + + +> (9) +B + +> (9) +B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 GA B2 + +> (9) +16 16 16 16 16 16 16 16 9 16 na na + +$$$$ diff --git a/data/fragment_library_custom_filtered/FP.sdf b/data/fragment_library_custom_filtered/FP.sdf new file mode 100644 index 00000000..9a06b8f1 --- /dev/null +++ b/data/fragment_library_custom_filtered/FP.sdf @@ -0,0 +1,9660 @@ +4twp_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 4.7376 18.3442 36.9244 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3219 17.2040 36.9763 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2355 16.1099 36.8936 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8953 15.1598 36.9341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6531 16.3707 36.7514 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8239 17.4469 36.7268 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0134 15.9244 35.8245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.1888 15.9370 37.5958 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8623 16.9442 37.1213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2541 15.9809 36.3265 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8402 15.4258 35.6092 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8971 15.7306 36.4520 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4273 14.9810 35.8324 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1372 16.4458 37.3775 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9205 16.2506 37.4759 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1003 17.6676 38.0525 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7479 17.4154 38.1770 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1608 17.9693 38.8946 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8670 18.9071 39.0865 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 2 0 + 9 16 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 17 1 0 + 16 17 2 0 + 17 18 1 0 + 16 19 1 0 +V 19 * +M END +> (1) +ABL1 + +> (1) +Abl + +> (1) +TK + +> (1) +4twp + +> (1) +AXI + +> (1) + + +> (1) +B + +> (1) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (1) +1 1 5 5 5 5 5 5 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3eqp_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 1.4305 16.1632 41.8726 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5243 15.5645 40.9999 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0475 16.2867 39.9325 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4623 15.6726 38.7487 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3088 15.0323 38.9966 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3170 15.0769 38.2734 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9064 16.7775 37.8184 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6851 17.3678 38.3013 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2976 16.3427 36.8987 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0567 17.4188 37.5844 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1039 14.2449 41.2235 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6107 13.7913 40.5527 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5971 13.5136 42.2997 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2827 12.4930 42.4604 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5048 14.1214 43.1678 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8932 13.5630 44.0067 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9202 15.4436 42.9687 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6137 15.9050 43.6562 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8148 17.4664 41.6811 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 17 1 0 + 2 3 1 0 + 2 11 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 1 1 0 +V 19 * +M END +> (2) +ACK + +> (2) +Ack + +> (2) +TK + +> (2) +3eqp + +> (2) +T95 + +> (2) + + +> (2) +B + +> (2) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (2) +16 16 3 4 4 4 4 4 4 4 16 16 16 16 16 16 16 16 na + +$$$$ +3eqr_chainA + RDKit 3D + + 21 20 0 0 0 0 0 0 0 0999 V2000 + -0.0979 13.9381 41.7399 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1491 13.2712 42.5660 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8916 13.4938 41.1392 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4344 14.8966 42.1349 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0662 14.1391 40.9223 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0547 14.9777 39.7461 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2786 14.6588 38.9126 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2590 13.6074 38.6258 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1775 14.8598 39.4954 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2800 15.2798 38.0168 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1735 14.6721 38.8931 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1631 13.6210 38.6047 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1585 15.2945 37.9984 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0759 14.8825 39.4670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0588 16.4503 40.1618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1209 16.6472 40.6811 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1025 17.0481 39.2515 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1960 16.9151 41.0730 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1602 16.8014 40.5775 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1986 16.3525 42.0065 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9005 18.3297 41.3185 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 11 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 +V 21 * +M END +> (3) +ACK + +> (3) +Ack + +> (3) +TK + +> (3) +3eqr + +> (3) +T74 + +> (3) + + +> (3) +A + +> (3) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (3) +3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 na + +$$$$ +2xb7_chainA + RDKit 3D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + 2.2282 16.5936 41.9219 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6409 15.8415 40.8588 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9652 14.3959 41.0553 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2936 13.8005 40.2162 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8491 13.8255 42.2850 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0843 12.7801 42.4200 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4004 14.6384 43.4378 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3060 14.1879 44.4148 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1092 15.9474 43.2628 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7846 16.5360 44.1081 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7836 16.5759 39.2323 S 0 0 0 0 0 6 0 0 0 0 0 0 + 1.3435 16.1269 38.2277 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3248 16.7577 37.3389 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0372 16.3501 39.0146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0399 15.7255 39.9079 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8143 16.0843 38.3881 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0380 17.3982 39.3042 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4510 14.6443 37.8252 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4687 14.0248 38.7219 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3680 14.4876 37.2571 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5924 14.3711 37.2118 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0076 16.0344 38.5121 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8581 18.0858 39.3088 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9263 17.9745 41.6972 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 11 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 22 2 0 + 11 23 2 0 + 12 13 1 0 + 12 14 1 0 + 12 18 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 24 1 1 0 +V 24 * +M END +> (4) +ALK + +> (4) +ALK + +> (4) +TK + +> (4) +2xb7 + +> (4) +GUI + +> (4) + + +> (4) +A + +> (4) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (4) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5fto_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 2.3610 17.8432 40.4636 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9804 17.1966 41.0852 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9668 18.2649 39.6616 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3195 17.0836 39.9034 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0443 15.8104 40.3646 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6348 15.3876 41.1639 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0112 15.0740 39.8031 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1799 14.1083 40.1794 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7503 15.6123 38.7729 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5526 15.0269 38.3487 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5053 16.8781 38.2789 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0551 17.2909 37.5125 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5155 17.5764 38.8734 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7109 18.5780 38.5197 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8583 18.8696 41.2387 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (5) +ALK + +> (5) +ALK + +> (5) +TK + +> (5) +5fto + +> (5) +YMX + +> (5) +A + +> (5) +A + +> (5) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (5) +8 8 8 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6mx8_altA_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + 1.7171 15.4028 37.5620 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1630 14.4687 37.6546 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7830 15.2058 37.6768 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5319 15.8394 36.5806 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5229 16.4984 41.6044 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3340 15.7766 40.4315 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2684 14.3978 40.4887 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1182 13.8369 39.5780 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3908 13.7244 41.6831 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3367 12.6461 41.7075 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5825 14.4349 42.8455 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6819 13.9185 43.7888 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6467 15.8107 42.7970 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7972 16.3644 43.7120 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1717 16.5625 38.8547 P 0 0 0 0 0 5 0 0 0 0 0 0 + -0.5806 16.7117 38.4347 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0630 15.7398 38.5381 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6794 17.0589 37.4062 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0556 17.4265 39.1067 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9301 17.8637 38.7412 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6001 17.9100 41.6097 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 15 1 0 + 5 6 2 0 + 5 13 1 0 + 6 7 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 16 1 0 + 15 20 2 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 21 5 1 0 +V 21 * +M END +> (6) +ALK + +> (6) +ALK + +> (6) +TK + +> (6) +6mx8 + +> (6) +6GY + +> (6) +A + +> (6) +A + +> (6) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (6) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3my0_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.5482 16.9422 37.3593 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2784 16.3849 36.4744 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2640 16.9288 38.4677 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1816 16.3595 38.4507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6167 19.7813 39.5772 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5504 20.3231 39.5432 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8413 19.8181 40.7297 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1654 20.3904 41.5863 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7183 17.6821 37.3956 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3611 17.7002 36.5279 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0820 17.6382 39.6077 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5623 17.6131 40.4741 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2221 19.0890 38.5214 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6310 19.1039 40.7708 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0797 18.4000 38.5253 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2545 18.3807 39.6383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8560 19.1510 41.9356 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 11 1 0 + 5 6 1 0 + 5 7 1 0 + 5 13 2 0 + 7 8 1 0 + 7 14 2 0 + 9 10 1 0 + 9 15 2 0 + 11 12 1 0 + 11 16 2 0 + 13 15 1 0 + 14 16 1 0 + 15 16 1 0 + 14 17 1 0 +V 17 * +M END +> (7) +ALK1 + +> (7) +STKR + +> (7) +TKL + +> (7) +3my0 + +> (7) +LDN + +> (7) + + +> (7) +A + +> (7) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (7) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6jux_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 1.4555 13.5132 39.4360 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1496 12.5672 38.9892 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6994 13.3567 40.4868 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3318 13.8956 38.9127 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3244 14.5133 39.3240 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5426 14.1026 39.8414 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0899 14.6415 38.2673 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6151 15.8671 39.9043 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0263 16.4331 41.0207 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7265 15.9670 41.6391 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5474 17.6637 41.2101 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4800 17.8644 40.1990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5482 16.7479 39.4056 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3457 18.9232 39.8887 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0626 18.5588 42.3130 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 13 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 2 0 + 12 14 1 0 + 11 15 1 0 +V 14 * +V 15 * +M END +> (8) +ALK2 + +> (8) +STKR + +> (8) +TKL + +> (8) +6jux + +> (8) +C9U + +> (8) +B + +> (8) +A + +> (8) +FP FP FP FP FP FP FP FP FP FP FP FP FP GA AP + +> (8) +8 8 8 8 8 8 8 9 9 9 16 14 9 na na + +$$$$ +2np8_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 1.1800 16.3517 41.9383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0698 15.7249 41.0692 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7717 16.3203 40.5041 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0659 14.3368 40.9191 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0494 13.6849 39.9774 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3231 14.4914 38.9557 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1644 13.4621 40.6564 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5655 12.5357 39.5125 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1599 13.5625 41.6535 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1541 12.4881 41.5445 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2665 14.1799 42.5245 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4344 13.5863 43.0925 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2798 15.5653 42.6606 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4172 16.0395 43.3357 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2438 17.7072 42.0370 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (9) +AurA + +> (9) +Aur + +> (9) +Other + +> (9) +2np8 + +> (9) +CC3 + +> (9) + + +> (9) +A + +> (9) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (9) +16 16 16 16 8 8 8 8 16 16 16 16 16 16 na + +$$$$ +3up2_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.1730 16.1491 42.0001 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9792 15.4583 43.1927 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0881 15.9753 44.1346 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6468 14.1095 43.1818 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4883 13.5828 44.1113 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5192 13.4416 41.9728 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2586 12.3937 41.9578 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7276 14.1250 40.7807 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6435 13.5992 39.8411 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0445 15.4837 40.7858 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2818 16.4350 38.6716 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2759 16.1521 39.5890 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8325 16.8766 39.2759 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0042 15.3163 38.0106 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7456 17.3405 37.7993 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5165 17.5464 42.0104 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 12 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 11 15 1 0 + 16 1 1 0 +V 16 * +M END +> (10) +AurA + +> (10) +Aur + +> (10) +Other + +> (10) +3up2 + +> (10) +0C8 + +> (10) + + +> (10) +A + +> (10) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (10) +16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +3up7_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 1.3428 15.9125 42.1805 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1498 15.1403 43.3865 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0991 15.6457 44.3395 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0257 13.7271 43.3370 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8800 13.1677 44.2492 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0926 13.0452 42.0912 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9963 11.9699 42.0611 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2859 13.7735 40.8835 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3377 13.2443 39.9434 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4131 15.2071 40.9008 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6029 15.8798 39.6997 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6776 16.4111 39.4561 O 0 0 0 0 0 1 0 0 0 0 0 0 + 0.6020 15.9351 38.7856 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4613 17.2264 42.2136 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 2 0 + 14 1 1 0 +M CHG 1 12 -1 +V 14 * +M END +> (11) +AurA + +> (11) +Aur + +> (11) +Other + +> (11) +3up7 + +> (11) +0C9 + +> (11) + + +> (11) +A + +> (11) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (11) +16 16 16 16 16 16 16 16 16 16 6 6 6 na + +$$$$ +4ded_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.7895 15.9081 39.6906 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1602 16.4582 38.9290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3515 15.1801 40.1080 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6300 15.9791 42.5229 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1118 15.1163 43.5526 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8900 15.5261 44.5269 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8875 13.7348 43.3084 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4949 13.1051 44.0931 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1782 13.1822 42.0367 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0061 12.1318 41.8539 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6969 14.0080 40.9985 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9179 13.5764 40.0335 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9287 15.4042 41.2194 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4345 16.1667 40.1907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7701 17.0442 39.6803 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8436 17.2623 42.7448 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 14 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 2 0 + 16 4 1 0 +V 16 * +M END +> (12) +AurA + +> (12) +Aur + +> (12) +Other + +> (12) +4ded + +> (12) +NHU + +> (12) + + +> (12) +A + +> (12) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (12) +5 5 5 16 16 16 16 16 16 16 16 16 16 1 1 na + +$$$$ +4j8m_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 5.2044 15.0357 40.4665 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5629 15.6551 39.6219 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1390 16.2611 38.4495 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5041 16.7721 37.8530 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1257 15.8776 39.7282 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6772 16.3961 38.9865 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3084 15.4195 40.7973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8343 15.0381 42.0251 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9005 15.0754 42.1930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9937 14.6134 43.0252 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3975 14.3112 43.9802 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9403 15.3765 40.5767 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5353 15.6744 39.6208 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0981 14.9511 41.5847 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9688 14.9127 41.4220 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6315 14.5739 42.8060 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5251 16.2222 38.0265 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2278 14.1124 43.8375 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 5 1 0 + 3 4 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 16 2 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 3 17 1 0 + 16 18 1 0 +V 17 * +V 18 * +M END +> (13) +AurA + +> (13) +Aur + +> (13) +Other + +> (13) +4j8m + +> (13) +CJ5 + +> (13) + + +> (13) +A + +> (13) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP GA SE + +> (13) +1 1 5 5 5 5 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +5aad_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 0.8421 16.8325 42.0493 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2640 16.8548 40.7010 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3115 17.7303 40.0705 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6026 15.5826 40.3269 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1258 15.3084 38.9558 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0896 16.2307 38.3760 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4932 14.5571 38.4832 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5643 14.7970 38.9750 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9441 14.0466 40.1106 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2433 13.8863 40.9166 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2233 13.5180 40.1812 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5219 12.9424 41.0448 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1437 13.7328 39.1175 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.1436 13.3291 39.1768 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7441 14.4788 37.9786 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4375 14.6340 37.1653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4405 15.0189 37.9071 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1270 15.5909 37.0463 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3302 14.6936 41.3958 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8241 15.4868 42.4716 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4893 15.1226 43.4316 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3113 18.0790 42.7371 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 20 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 19 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 2 0 + 8 17 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 20 2 0 + 20 21 1 0 + 22 1 1 0 +V 22 * +M END +> (14) +AurA + +> (14) +Aur + +> (14) +Other + +> (14) +5aad + +> (14) +5GX + +> (14) + + +> (14) +A + +> (14) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (14) +16 9 9 9 8 8 8 16 16 16 16 16 16 16 16 16 16 16 9 9 9 na + +$$$$ +7k7l_altB_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + 0.5891 17.0107 42.6975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0147 17.1262 43.6048 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8847 15.7531 42.2283 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5415 14.8839 42.7697 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7525 17.9723 40.8596 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0949 18.8419 40.3183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0227 18.1211 42.0147 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0444 16.7116 40.3964 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6142 15.5952 41.0747 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5757 14.2022 39.5489 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7945 13.2051 39.1963 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8202 16.5470 39.1690 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8048 14.9716 37.6111 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4505 14.0371 37.1760 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6517 15.7842 36.9008 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8904 14.3037 40.6349 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0508 15.2461 38.8027 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2000 17.5422 38.5688 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2594 14.8494 37.8984 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7093 19.4287 42.5149 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 9 1 0 + 5 6 1 0 + 5 7 2 0 + 5 8 1 0 + 8 9 2 0 + 8 12 1 0 + 9 16 1 0 + 10 11 1 0 + 10 16 2 0 + 10 17 1 0 + 12 17 1 0 + 12 18 2 0 + 13 14 1 0 + 13 15 1 0 + 13 17 1 0 + 19 13 1 0 + 7 20 1 0 +V 19 * +V 20 * +M END +> (15) +BARK1 + +> (15) +GRK + +> (15) +AGC + +> (15) +7k7l + +> (15) +W4D + +> (15) +B + +> (15) +A + +> (15) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-B2 AP + +> (15) +9 9 9 9 9 9 16 9 9 9 9 9 8 8 8 9 9 9 na na + +$$$$ +2fb8_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 1.3813 16.3901 40.8837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9452 14.4003 41.7161 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9537 12.8907 41.9498 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8646 12.0328 41.2865 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5566 12.4672 40.5802 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5719 16.6064 42.0025 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5925 15.0653 40.7453 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3382 15.3616 42.4754 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2197 15.1648 43.2940 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9142 10.6269 41.5037 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5967 10.0136 40.9341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0712 10.0411 42.4624 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1744 10.9124 43.1303 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5047 10.4882 43.8551 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1201 12.3047 42.9000 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5694 12.9170 43.4622 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0616 8.6619 42.6902 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0014 17.4000 39.9870 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0814 17.9212 42.6177 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 7 1 0 + 2 3 1 0 + 2 7 2 0 + 2 8 1 0 + 3 4 2 0 + 3 15 1 0 + 4 5 1 0 + 4 10 1 0 + 6 8 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 12 17 1 0 + 1 18 1 0 + 6 19 1 0 +V 17 * +V 18 * +V 19 * +M END +> (16) +BRAF + +> (16) +RAF + +> (16) +TKL + +> (16) +2fb8 + +> (16) +215 + +> (16) + + +> (16) +A + +> (16) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-FP GA AP + +> (16) +14 14 16 16 16 14 14 14 14 16 16 16 16 16 16 16 na na na + +$$$$ +4mnf_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.4509 16.4753 40.9040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5120 15.1197 40.7568 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0519 14.5867 39.9882 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7762 14.5638 41.7447 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2530 15.6081 42.5107 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6495 16.7651 42.0329 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5495 13.1398 42.0221 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2905 13.0359 42.7089 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4446 12.7143 42.4758 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2375 12.3950 40.7275 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0672 11.3752 40.9628 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1291 12.3723 40.1009 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8168 13.0526 40.0249 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5220 13.9447 39.8278 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2245 18.0538 42.6263 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1134 17.4417 40.0256 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 7 1 0 + 5 6 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 6 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (17) +BRAF + +> (17) +RAF + +> (17) +TKL + +> (17) +4mnf + +> (17) +29L + +> (17) +A + +> (17) +A + +> (17) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (17) +16 9 9 9 9 14 8 4 4 4 4 4 3 3 na na + +$$$$ +4xv2_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 1.5748 18.1050 41.0534 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2634 16.4287 41.3118 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1950 15.9951 39.9339 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7149 17.0262 39.3053 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3707 18.2144 39.9196 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3886 14.5392 39.5081 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8540 14.1127 39.7119 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5091 14.7897 39.1635 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9912 13.0962 39.3431 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0991 14.1503 40.7733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0502 14.3939 38.0088 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6921 15.0543 37.4258 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0068 14.6628 37.8441 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2129 13.3618 37.6980 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4559 13.5879 40.2796 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6643 13.6613 41.3469 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6245 12.5640 39.9460 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4185 13.8649 40.0920 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9764 19.0746 41.9804 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8959 19.4293 39.3230 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 1 0 + 3 4 2 0 + 3 6 1 0 + 4 5 1 0 + 6 7 1 0 + 6 11 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 + 5 20 1 0 +V 19 * +V 20 * +M END +> (18) +BRAF + +> (18) +RAF + +> (18) +TKL + +> (18) +4xv2 + +> (18) +P06 + +> (18) + + +> (18) +A + +> (18) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (18) +14 14 14 14 14 8 8 8 8 8 8 8 8 8 8 8 8 8 na na + +$$$$ +4ot5_chainA + RDKit 3D + + 26 27 0 0 0 0 0 0 0 0999 V2000 + 4.5427 15.1597 39.3717 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7114 14.4348 38.7919 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7626 14.3069 37.2937 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5815 13.9979 36.5653 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6579 13.8319 37.0998 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5927 13.9032 35.1475 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6941 13.6334 34.6126 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7885 14.1649 34.4441 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9502 14.4686 35.1864 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8875 14.6240 34.6729 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8987 14.5710 36.5912 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7880 14.8683 37.1271 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7115 13.7997 39.4329 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1033 13.1994 38.8945 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4731 13.9264 40.7924 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9620 15.1680 41.2363 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8333 15.9859 40.5428 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6785 12.8600 41.6766 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0771 11.9156 41.3368 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3414 13.0728 43.0344 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4789 12.2643 43.7372 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8366 14.2913 43.5001 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6158 14.4283 44.5484 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6233 15.3241 42.5930 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8764 14.0270 32.9446 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0480 16.5800 43.0771 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 13 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 15 18 1 0 + 16 17 1 0 + 16 24 1 0 + 18 19 1 0 + 18 20 2 0 + 20 21 1 0 + 20 22 1 0 + 22 23 1 0 + 22 24 2 0 + 8 25 1 0 + 24 26 1 0 +V 25 * +V 26 * +M END +> (19) +BTK + +> (19) +Tec + +> (19) +TK + +> (19) +4ot5 + +> (19) +481 + +> (19) + + +> (19) +A + +> (19) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-B2 AP + +> (19) +1 1 16 16 16 16 16 16 16 16 16 16 5 5 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +6f7b_altB_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 1.3613 18.2584 39.6960 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6070 19.4536 38.1548 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7893 18.3262 37.4034 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5742 17.0774 38.9517 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9276 19.3965 39.2847 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0124 15.9288 39.4100 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0114 14.7509 38.5188 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5297 13.9137 39.0237 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0381 14.4830 38.2696 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4656 14.9870 37.6052 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2884 17.1385 37.7616 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4338 16.2609 37.1491 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6488 18.1416 40.8287 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1688 20.6484 37.7103 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 5 1 0 + 2 3 1 0 + 2 5 2 0 + 3 11 2 0 + 4 6 1 0 + 4 11 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 1 13 1 0 + 2 14 1 0 +V 13 * +V 14 * +M END +> (20) +BUB1 + +> (20) +BUB + +> (20) +Other + +> (20) +6f7b + +> (20) +CVQ + +> (20) +B + +> (20) +A + +> (20) +FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (20) +14 14 16 16 16 3 3 3 3 3 16 16 na na + +$$$$ +7oai_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -0.3645 19.0083 38.2467 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9165 19.5052 39.4063 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2469 19.3191 38.9890 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9331 18.5318 37.8899 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7177 18.0429 37.3315 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6157 18.3762 37.5138 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3567 17.7690 36.6590 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0294 18.7743 37.8150 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2692 19.9718 39.7369 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0603 19.7966 39.3429 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8532 20.2783 39.8958 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6461 20.9137 40.8623 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 8 1 0 + 1 10 1 0 + 2 3 1 0 + 3 4 2 0 + 3 9 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 9 10 2 0 + 10 11 1 0 + 9 12 1 0 +V 12 * +M END +> (21) +CASK + +> (21) +CASK + +> (21) +CAMK + +> (21) +7oai + +> (21) +V5W + +> (21) +B + +> (21) +A + +> (21) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (21) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1h07_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 1.0324 13.4980 39.4471 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2042 14.4580 38.8332 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5827 14.1378 38.1663 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3938 15.8382 39.0826 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4273 16.3090 39.9574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0678 13.9308 40.3254 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7081 13.2026 40.8009 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2640 15.3271 40.5812 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0503 15.6425 41.2509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8130 12.0141 39.1572 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0220 11.8985 38.4662 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5900 11.4914 40.0873 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7144 11.5938 38.7114 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7757 17.0403 38.1961 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6389 17.8122 40.1999 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 14 1 0 + 5 8 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 5 15 1 0 +V 15 * +M END +> (22) +CDK2 + +> (22) +CDK + +> (22) +CMGC + +> (22) +1h07 + +> (22) +MFQ + +> (22) +B + +> (22) +A + +> (22) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (22) +16 16 16 16 16 16 16 16 16 8 8 8 8 16 na + +$$$$ +1oiq_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.2242 17.9228 40.0770 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9453 16.5506 39.7138 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7516 16.2371 38.6127 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5153 17.3622 38.2642 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2407 18.3988 39.0903 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9131 19.7371 38.9838 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5247 20.4013 39.7559 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7146 20.1663 38.0017 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9881 19.6152 39.1164 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6922 14.9636 38.0508 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3142 14.7242 37.2010 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8321 13.9896 38.5786 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7935 12.9996 38.1486 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0282 14.3211 39.6673 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6494 13.5929 40.0879 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1095 15.6148 40.2119 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5162 15.8678 41.0551 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5486 18.6952 41.1757 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 1 0 + 2 16 1 0 + 3 4 2 0 + 3 10 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (23) +CDK2 + +> (23) +CDK + +> (23) +CMGC + +> (23) +1oiq + +> (23) +HDU + +> (23) + + +> (23) +A + +> (23) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (23) +14 14 14 14 14 8 8 8 8 14 14 14 14 14 14 14 14 na + +$$$$ +1oit_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.0613 15.8322 40.4166 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8027 15.0280 41.4563 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4074 15.4187 42.3823 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5404 15.4302 39.2569 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8306 14.0998 39.0133 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2256 13.7592 38.0676 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5780 13.2279 40.0733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7871 12.1761 39.9449 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0626 13.6704 41.2976 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8712 12.9739 42.1005 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8930 17.1680 40.3107 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2868 17.5588 39.0803 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2688 18.5741 38.7127 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6837 16.5428 38.4190 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3673 18.0423 41.4052 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 1 0 + 1 11 1 0 + 2 3 1 0 + 2 9 2 0 + 4 5 1 0 + 4 14 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 15 11 1 0 +V 15 * +M END +> (24) +CDK2 + +> (24) +CDK + +> (24) +CMGC + +> (24) +1oit + +> (24) +HDT + +> (24) + + +> (24) +A + +> (24) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (24) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +1pxj_altA_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 1.4298 12.4286 40.0349 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7671 11.9176 40.9366 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2478 12.4751 39.3160 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5936 11.8821 39.5988 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9823 13.8462 40.3898 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9455 14.5878 41.8721 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5571 14.6166 39.5185 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1803 15.8326 39.9074 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2605 16.5992 38.8081 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2227 15.9923 37.9035 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3856 17.4690 38.6893 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2848 16.9286 38.9821 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3295 16.0677 41.1924 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0450 17.2839 41.9582 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 2 0 + 6 13 1 0 + 7 8 1 0 + 8 9 1 0 + 8 13 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 +V 14 * +M END +> (25) +CDK2 + +> (25) +CDK + +> (25) +CMGC + +> (25) +1pxj + +> (25) +CK2 + +> (25) +A + +> (25) +A + +> (25) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (25) +8 8 8 8 14 14 14 14 8 8 8 8 14 na + +$$$$ +1pxn_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.9649 18.4153 38.8715 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5539 18.0981 38.0109 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6289 18.8090 39.6411 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2632 19.1912 38.5654 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2060 17.2420 39.4181 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3988 16.0721 38.7719 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7805 15.0142 39.1975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9424 13.8441 38.5940 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5641 13.8270 37.7983 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3122 12.5741 38.9627 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3301 12.7256 39.8303 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0833 11.8427 39.2048 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2854 12.2090 38.1275 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3417 17.0954 40.4631 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2126 15.3876 40.5903 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2078 18.0080 41.5017 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 14 2 0 + 6 7 2 0 + 7 8 1 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 14 16 1 0 +V 16 * +M END +> (26) +CDK2 + +> (26) +CDK + +> (26) +CMGC + +> (26) +1pxn + +> (26) +CK6 + +> (26) +A + +> (26) +A + +> (26) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (26) +8 8 8 8 14 14 14 5 5 5 5 5 5 14 14 na + +$$$$ +1pxo_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.8586 14.9717 37.7806 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4438 14.2559 38.3599 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1603 14.7502 36.8425 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0261 16.3589 38.3115 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5570 17.5096 37.8345 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4813 18.5745 38.7094 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0070 19.9313 38.3419 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3251 19.9275 37.2994 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8560 20.1770 38.9799 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2219 20.6747 38.4796 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4454 16.4397 39.8764 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9135 18.0250 40.0171 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3407 18.6535 41.2370 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 6 7 1 0 + 6 12 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 12 13 1 0 +V 13 * +M END +> (27) +CDK2 + +> (27) +CDK + +> (27) +CMGC + +> (27) +1pxo + +> (27) +CK7 + +> (27) +A + +> (27) +A + +> (27) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (27) +5 5 5 14 14 14 8 8 8 8 14 14 na + +$$$$ +1urw_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.0810 18.0502 37.2312 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7648 18.1141 36.3977 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4893 16.8228 37.5097 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6767 15.9515 36.8998 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4898 17.6180 40.4550 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8343 19.1987 37.9745 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3151 20.1239 37.6930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5393 16.7678 38.7500 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0204 19.1822 39.0227 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2148 16.1981 40.2731 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4423 15.6320 40.9166 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4258 17.9661 39.4574 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8930 15.6406 39.1739 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0373 18.4666 41.4791 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 6 1 0 + 3 4 1 0 + 3 8 1 0 + 5 10 2 0 + 5 12 1 0 + 6 7 1 0 + 6 9 2 0 + 8 12 1 0 + 8 13 2 0 + 9 12 1 0 + 10 11 1 0 + 10 13 1 0 + 5 14 1 0 +V 14 * +M END +> (28) +CDK2 + +> (28) +CDK + +> (28) +CMGC + +> (28) +1urw + +> (28) +I1P + +> (28) +A + +> (28) +A + +> (28) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (28) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +1ykr_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.1082 17.4263 38.4002 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9842 16.5247 38.0380 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2174 15.1687 37.7365 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3897 14.5359 37.4521 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5209 14.6256 37.8016 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6740 13.5792 37.5826 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6345 15.4406 38.1522 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6259 15.0132 38.1802 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4462 16.8191 38.4665 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3048 16.9822 37.9569 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5396 17.5770 38.8011 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8980 18.9036 38.7221 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 10 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 11 1 0 + 12 1 1 0 +V 12 * +M END +> (29) +CDK2 + +> (29) +CDK + +> (29) +CMGC + +> (29) +1ykr + +> (29) +628 + +> (29) + + +> (29) +A + +> (29) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (29) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2c5y_altB_chainA + RDKit 3D + + 21 22 0 0 0 0 0 0 0 0999 V2000 + 0.7205 13.0397 39.5154 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2776 12.8882 39.8991 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8067 12.3229 39.7909 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8227 12.8863 39.1328 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8521 12.5597 39.1474 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3365 13.9232 38.4560 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1234 13.9835 38.6666 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2387 15.0264 38.1203 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7880 14.8432 38.4374 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2892 15.0206 37.0315 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7137 16.3816 38.6553 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2240 16.9966 39.8035 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5639 16.5233 40.3705 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7599 16.9877 37.9756 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1976 16.4866 37.1249 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2568 18.2236 38.3643 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0444 18.6961 37.7961 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7344 18.8486 39.4889 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0980 19.8206 39.7880 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7421 18.2174 40.2265 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2321 18.9016 41.3262 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 12 2 0 + 11 14 1 0 + 12 13 1 0 + 12 20 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 19 1 0 + 18 20 2 0 + 20 21 1 0 +V 21 * +M END +> (30) +CDK2 + +> (30) +CDK + +> (30) +CMGC + +> (30) +2c5y + +> (30) +MTW + +> (30) +B + +> (30) +A + +> (30) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (30) +9 9 9 9 9 9 9 8 8 8 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2c68_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.7767 11.1663 40.7771 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0638 12.6917 39.8989 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7939 13.8442 40.6297 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9754 13.8607 41.6942 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2824 14.9954 39.9840 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0533 14.9802 38.5927 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3481 15.8533 38.0997 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3497 13.8227 37.8492 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1947 13.8119 36.7804 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8498 12.6764 38.5023 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0695 11.7850 37.9334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0037 16.2198 40.7815 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 10 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 5 12 1 0 +V 12 * +M END +> (31) +CDK2 + +> (31) +CDK + +> (31) +CMGC + +> (31) +2c68 + +> (31) +CT6 + +> (31) + + +> (31) +A + +> (31) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (31) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2iw6_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 1.7089 14.5811 39.1031 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6878 13.5409 38.8132 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5425 15.0035 40.1329 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5994 16.3531 40.5085 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2651 16.6607 41.3014 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8011 17.3042 39.8649 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9020 15.5069 38.4481 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2451 15.1926 37.6506 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9527 16.8419 38.8338 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1254 17.9192 37.9316 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4036 14.0022 40.8432 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2303 13.0113 40.4234 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1540 13.9961 41.9042 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4524 14.2714 40.7182 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8760 18.6248 40.2707 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 11 1 0 + 4 5 1 0 + 4 6 2 0 + 6 9 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 6 15 1 0 +V 15 * +M END +> (32) +CDK2 + +> (32) +CDK + +> (32) +CMGC + +> (32) +2iw6 + +> (32) +QQ2 + +> (32) + + +> (32) +A + +> (32) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (32) +16 16 16 16 16 16 16 16 16 16 8 8 8 8 na + +$$$$ +2r3g_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -2.4797 13.7462 42.2831 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9973 13.0266 42.7674 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1008 13.6189 40.8718 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9933 14.6107 40.4326 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8723 13.0660 40.3359 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8003 12.8850 40.7740 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6922 11.5390 41.1692 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5534 11.0057 41.5439 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5547 10.9008 41.0680 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6696 9.8651 41.3520 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6454 11.6372 40.5907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6081 11.1503 40.5393 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5571 12.9276 40.1900 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3580 13.5150 40.2930 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2765 14.5466 39.9841 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0879 14.9001 42.9008 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (33) +CDK2 + +> (33) +CDK + +> (33) +CMGC + +> (33) +2r3g + +> (33) +SC9 + +> (33) +B + +> (33) +A + +> (33) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (33) +5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3bhv_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.9834 16.2844 40.7601 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6938 15.7228 39.7063 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0482 16.3438 38.8968 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9451 14.3553 39.7018 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4950 13.9045 38.8890 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4975 13.6015 40.7173 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8087 14.1629 41.7444 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5497 15.4949 41.7622 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3597 13.3811 42.7658 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8394 13.7939 43.5267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5470 12.3886 42.7620 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6925 17.7449 40.7699 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 12 1 1 0 +V 12 * +M END +> (34) +CDK2 + +> (34) +CDK + +> (34) +CMGC + +> (34) +3bhv + +> (34) +VAR + +> (34) +B + +> (34) +A + +> (34) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (34) +14 14 14 14 14 14 14 14 5 5 5 na + +$$$$ +3ej1_chainC + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.1499 19.6252 38.2859 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9983 18.2176 39.6353 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5404 16.9259 39.9574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9346 16.7769 40.8390 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8496 15.8804 39.1800 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5143 14.8773 39.3985 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6849 16.1988 37.9983 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9471 15.3727 37.3539 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6118 20.3081 39.3022 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7228 21.3741 39.4354 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8802 19.4765 40.1837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1340 17.3677 37.6578 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7698 18.3526 38.5099 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1293 19.8182 41.3634 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 9 2 0 + 1 13 1 0 + 2 3 1 0 + 2 11 2 0 + 2 13 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 12 2 0 + 9 10 1 0 + 9 11 1 0 + 12 13 1 0 + 14 11 1 0 +V 14 * +M END +> (35) +CDK2 + +> (35) +CDK + +> (35) +CMGC + +> (35) +3ej1 + +> (35) +5BP + +> (35) + + +> (35) +C + +> (35) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (35) +16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3r8u_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 0.5578 16.3850 40.0990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1157 15.3248 40.9052 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4922 15.5456 41.8931 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1743 13.9858 40.4083 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6685 13.6977 39.0747 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1271 14.7481 38.2848 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2434 14.5362 37.2927 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0693 16.0814 38.7929 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3485 16.8683 38.1824 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7203 12.9227 41.2071 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0991 13.1292 42.1972 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7606 11.5926 40.6883 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1709 10.7943 41.2889 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2625 11.3125 39.3818 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2973 10.3027 39.0005 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7189 12.3546 38.5747 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3449 12.1323 37.5862 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4540 17.7986 40.6094 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 16 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (36) +CDK2 + +> (36) +CDK + +> (36) +CMGC + +> (36) +3r8u + +> (36) +Z31 + +> (36) +B + +> (36) +A + +> (36) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (36) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4acm_altB_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.5163 17.0147 40.0335 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0872 16.4217 40.5852 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0817 16.4221 38.8808 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4795 15.2729 38.3969 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3981 14.8729 38.8829 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0092 14.6419 37.2881 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5391 13.7603 36.8780 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1502 15.1614 36.7166 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5762 14.6472 35.8678 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7583 16.2676 37.1562 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2281 16.8747 38.2261 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7143 17.7625 38.6026 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6832 18.2745 40.4875 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (37) +CDK2 + +> (37) +CDK + +> (37) +CMGC + +> (37) +4acm + +> (37) +7YG + +> (37) +B + +> (37) +A + +> (37) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (37) +5 5 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4bzd_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.4354 15.4720 37.7468 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5776 14.6069 37.1162 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5409 15.4094 38.7918 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0149 14.4993 38.9625 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1560 16.6278 37.4917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8465 16.6712 36.6624 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3432 16.4977 39.6283 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3521 16.4473 40.4532 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0330 19.6506 39.2898 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2721 20.6778 39.5226 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9764 17.7336 38.3211 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0675 17.6541 39.3718 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5665 18.9913 38.2890 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1347 18.8945 40.0134 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3508 19.3242 41.1234 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 1 0 + 5 11 2 0 + 7 8 1 0 + 7 12 2 0 + 9 10 1 0 + 9 13 2 0 + 9 14 1 0 + 11 12 1 0 + 11 13 1 0 + 12 14 1 0 + 15 14 1 0 +V 15 * +M END +> (38) +CDK2 + +> (38) +CDK + +> (38) +CMGC + +> (38) +4bzd + +> (38) +D6I + +> (38) +A + +> (38) +A + +> (38) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (38) +9 9 9 9 9 9 9 9 9 9 9 9 9 9 na + +$$$$ +4fkv_altB_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 0.6483 12.1839 40.1024 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1264 12.1397 40.9660 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3738 11.7434 38.1254 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0288 15.8128 37.9956 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2677 15.5814 38.6179 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5271 11.3487 39.0729 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1401 10.5013 39.0167 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5780 13.0888 39.7961 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9119 13.8963 40.4307 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5158 14.7881 37.0455 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2875 15.2222 36.4096 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6863 14.4448 36.4273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1015 13.5996 37.8168 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8337 13.9710 38.5337 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5916 12.9287 37.1113 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0221 12.8216 38.5707 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5630 17.0287 38.0547 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 1 0 + 1 8 1 0 + 3 6 2 0 + 3 16 1 0 + 4 5 1 0 + 4 10 1 0 + 6 7 1 0 + 8 9 1 0 + 8 16 2 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 4 17 1 0 +V 17 * +M END +> (39) +CDK2 + +> (39) +CDK + +> (39) +CMGC + +> (39) +4fkv + +> (39) +61K + +> (39) +B + +> (39) +A + +> (39) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (39) +14 14 14 5 5 14 14 14 14 4 4 4 8 4 4 14 na + +$$$$ +4lyn_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 1.7516 15.6798 38.7661 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0378 16.0576 38.4078 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8297 15.3793 38.1262 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1039 14.3063 38.9412 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1676 13.2101 38.9659 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7314 13.2297 38.0333 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6859 12.2388 39.0788 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8445 13.3794 39.8033 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1473 14.0355 37.7812 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6977 14.0690 36.8409 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6356 14.7938 37.7712 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3028 13.0503 37.9038 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3281 14.2584 40.2574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0080 14.4513 41.0872 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1221 13.2730 40.3782 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4549 15.0166 40.2455 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1506 17.4194 38.4652 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9503 17.8488 38.8443 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0495 16.8379 39.0297 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5636 19.2360 39.1648 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4826 19.3088 39.2845 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8878 19.9111 38.3729 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3907 19.6439 40.7094 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 1 19 1 0 + 2 3 1 0 + 2 17 1 0 + 4 5 1 0 + 4 9 1 0 + 4 13 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 2 0 + 18 19 1 0 + 18 20 1 0 + 20 21 1 0 + 20 22 1 0 + 20 23 1 0 +V 23 * +M END +> (40) +CDK2 + +> (40) +CDK + +> (40) +CMGC + +> (40) +4lyn + +> (40) +1YG + +> (40) + + +> (40) +A + +> (40) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (40) +14 14 14 8 8 8 8 8 8 8 8 8 8 8 8 8 14 14 14 4 4 4 na + +$$$$ +5anj_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 0.1065 15.7987 42.0317 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6697 15.1797 42.2171 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1573 15.2333 41.3511 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1176 13.8702 41.2027 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1691 15.8328 41.0176 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1385 12.9995 41.4448 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8654 13.2948 41.7120 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5700 12.9716 40.9042 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5344 11.6812 41.3204 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1565 10.8636 41.4638 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8195 11.4724 41.0127 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2901 10.5122 40.8613 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0468 17.1111 42.5075 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 2 0 + 4 6 2 0 + 4 8 1 0 + 6 7 1 0 + 6 9 1 0 + 8 11 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (41) +CDK2 + +> (41) +CDK + +> (41) +CMGC + +> (41) +5anj + +> (41) +ZXC + +> (41) + + +> (41) +A + +> (41) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (41) +5 5 1 14 1 14 14 14 14 14 14 14 na + +$$$$ +6q4g_altA_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 0.6817 14.3435 42.0293 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7905 14.4222 43.1010 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9664 13.1433 41.3893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3364 12.2988 41.9518 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7703 13.0420 40.0216 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8819 12.0800 39.5436 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4338 14.1470 39.2495 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2026 14.0731 37.7458 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3761 15.0743 37.3512 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8431 13.8017 37.6011 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0331 13.1091 36.8885 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1214 15.3104 39.9110 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2422 16.1515 39.3395 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2560 15.4457 41.2905 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5757 12.7646 35.8244 O 0 0 0 0 0 1 0 0 0 0 0 0 + 2.2374 12.9210 37.2152 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0588 16.7382 41.9367 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 14 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 15 1 0 + 11 16 2 0 + 12 13 1 0 + 12 14 2 0 + 14 17 1 0 +M CHG 1 15 -1 +V 17 * +M END +> (42) +CDK2 + +> (42) +CDK + +> (42) +CMGC + +> (42) +6q4g + +> (42) +HJK + +> (42) +A + +> (42) +A + +> (42) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (42) +16 16 16 16 16 16 16 8 8 8 8 16 16 16 8 8 na + +$$$$ +7b7s_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 5.5778 14.7292 36.9909 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6535 14.6176 37.9394 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9531 15.4295 38.9479 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6158 13.3636 38.3759 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2483 15.0094 37.3504 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9079 14.4577 36.2133 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7261 14.8814 35.8527 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2345 14.6138 35.0120 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2913 15.7020 36.7544 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3300 16.1942 36.7483 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2104 15.8346 37.6729 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8548 16.6514 38.6750 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 5 11 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 +V 12 * +M END +> (43) +CDK2 + +> (43) +CDK + +> (43) +CMGC + +> (43) +7b7s + +> (43) +T1T + +> (43) +A + +> (43) +A + +> (43) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (43) +8 8 8 8 14 14 14 14 14 14 16 na + +$$$$ +7mkx_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.4653 16.5425 40.4715 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5420 16.8485 37.9608 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3574 13.7590 40.1352 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3133 12.6881 40.0028 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4768 15.9745 39.1748 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4209 14.5986 39.0503 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3514 14.3148 41.3984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3013 13.6685 42.2622 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4085 15.6853 41.5774 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4093 16.0967 42.5760 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4268 14.0425 37.8166 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7312 16.5541 36.9540 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7539 17.1069 36.1090 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0908 15.7770 37.0320 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3427 17.7965 37.9011 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5257 17.9527 40.6601 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 2 0 + 1 9 1 0 + 2 5 1 0 + 2 12 1 0 + 2 15 2 0 + 3 4 1 0 + 3 6 2 0 + 3 7 1 0 + 5 6 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 12 13 1 0 + 12 14 1 0 + 1 16 1 0 +V 16 * +M END +> (44) +CDK2 + +> (44) +CDK + +> (44) +CMGC + +> (44) +7mkx + +> (44) +ZGY + +> (44) + + +> (44) +A + +> (44) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (44) +16 1 16 16 16 16 16 16 16 16 16 5 5 5 1 na + +$$$$ +4ez5_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 2.3423 18.3031 38.3771 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5998 18.6230 37.8060 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0530 19.5614 38.0895 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6959 16.6831 36.5859 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2222 16.0482 35.8886 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4515 16.2423 37.0694 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9089 15.0128 36.6484 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4471 14.3968 35.9431 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6613 14.5878 37.1499 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2522 13.6424 36.8257 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0586 15.3765 38.0661 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0108 15.0436 38.4518 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4888 16.6080 38.4685 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0631 17.2258 39.1614 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7514 17.0645 37.9882 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2708 17.8452 36.9376 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7589 19.2708 39.3280 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 15 1 0 + 2 3 1 0 + 2 16 1 0 + 4 5 1 0 + 4 6 1 0 + 4 16 2 0 + 6 7 1 0 + 6 15 2 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 17 1 1 0 +V 17 * +M END +> (45) +CDK6 + +> (45) +CDK + +> (45) +CMGC + +> (45) +4ez5 + +> (45) +0RS + +> (45) + + +> (45) +A + +> (45) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (45) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4f7s_altA_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 1.2039 16.9856 41.5570 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7098 17.1434 40.6972 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8904 15.6148 42.0140 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0496 15.5477 43.0902 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5440 14.9063 41.5051 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5724 15.2773 41.6943 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8280 15.7334 40.7379 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2007 15.7006 42.4781 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8597 13.7853 41.6047 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1539 12.8293 42.3586 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6310 13.1480 43.0285 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4609 11.4712 42.2468 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0847 10.7424 42.8278 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4730 11.0609 41.3834 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7084 10.0113 41.2876 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1829 12.0050 40.6425 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9746 11.6842 39.9816 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8772 13.3569 40.7498 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4299 14.0800 40.1685 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7722 18.0768 42.3634 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 2 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 1 20 1 0 +V 20 * +M END +> (46) +CDK8 + +> (46) +CDK + +> (46) +CMGC + +> (46) +4f7s + +> (46) +0SW + +> (46) +A + +> (46) +A + +> (46) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (46) +5 5 4 4 4 8 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5bnj_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 1.2467 9.4097 44.1809 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1171 9.6840 44.7769 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5553 8.7513 43.3688 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5225 8.8940 44.8114 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0610 11.8860 43.8037 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9179 12.1877 44.3877 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2242 12.7212 43.1224 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7465 11.9075 42.5049 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5597 12.2552 41.8850 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3157 14.2100 43.0481 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9369 14.9472 44.0725 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3581 14.4308 44.9224 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1555 16.2687 41.8870 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5811 16.7865 41.0401 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2327 14.8930 41.9552 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7173 14.3410 41.1635 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6351 10.6198 43.6233 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4971 10.6618 42.8087 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0140 16.3301 44.0026 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4938 16.8869 44.7940 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4688 17.0004 42.9044 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5245 18.4771 42.7806 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 17 1 0 + 5 6 1 0 + 5 7 2 0 + 5 17 1 0 + 7 8 1 0 + 7 10 1 0 + 8 9 1 0 + 8 18 2 0 + 10 11 2 0 + 10 15 1 0 + 11 12 1 0 + 11 19 1 0 + 13 14 1 0 + 13 15 2 0 + 13 21 1 0 + 15 16 1 0 + 17 18 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 +V 22 * +M END +> (47) +CDK8 + +> (47) +CDK + +> (47) +CMGC + +> (47) +5bnj + +> (47) +4TV + +> (47) + + +> (47) +A + +> (47) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (47) +8 8 8 8 9 9 16 9 9 16 16 16 16 16 16 16 9 9 16 16 16 na + +$$$$ +5fgk_altB_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.7885 12.6721 43.5357 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0143 14.5949 42.5467 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0846 16.0030 42.3982 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6999 16.4208 41.6151 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6088 16.8442 43.2584 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4472 16.3232 44.2679 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9995 17.0025 44.9003 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4357 11.7522 44.3514 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0407 12.0733 45.0936 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3010 10.7624 44.2021 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0378 12.3786 42.5157 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2812 11.4438 42.2206 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5100 13.5485 41.9242 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5733 14.9787 44.4598 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2052 14.6070 45.2529 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8788 14.0637 43.6233 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5403 18.3232 43.0903 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 1 0 + 1 11 1 0 + 1 16 2 0 + 2 3 1 0 + 2 13 2 0 + 2 16 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 14 2 0 + 8 9 1 0 + 8 10 1 0 + 11 12 1 0 + 11 13 1 0 + 14 15 1 0 + 14 16 1 0 + 5 17 1 0 +V 17 * +M END +> (48) +CDK8 + +> (48) +CDK + +> (48) +CMGC + +> (48) +5fgk + +> (48) +5XG + +> (48) +B + +> (48) +A + +> (48) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (48) +14 14 14 14 16 14 14 5 5 5 14 14 14 14 14 14 na + +$$$$ +5hbj_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 0.9085 11.1823 43.7099 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6154 10.1912 43.3635 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5504 11.3318 44.7284 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9950 11.2674 43.6906 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8429 13.0556 41.1573 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4699 13.1526 40.2832 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2489 14.1503 41.9151 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2747 15.5507 41.7943 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8359 16.0155 40.9972 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4260 16.3365 42.7057 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1465 15.7317 43.7470 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6852 16.3458 44.4533 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3235 12.1986 42.8326 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4822 11.9414 41.7228 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1715 14.3685 43.8740 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7293 13.9172 44.6812 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4798 13.5518 42.9662 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4079 17.8166 42.5940 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 13 1 0 + 5 6 1 0 + 5 7 1 0 + 5 14 2 0 + 7 8 2 0 + 7 17 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 2 0 + 11 12 1 0 + 11 15 1 0 + 13 14 1 0 + 13 17 1 0 + 15 16 1 0 + 15 17 2 0 + 10 18 1 0 +V 18 * +M END +> (49) +CDK8 + +> (49) +CDK + +> (49) +CMGC + +> (49) +5hbj + +> (49) +5Y8 + +> (49) +B + +> (49) +A + +> (49) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (49) +8 8 8 8 9 9 9 9 9 16 9 9 9 9 9 9 9 na + +$$$$ +6qtg_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -1.0172 14.9999 41.3755 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7097 14.5990 40.6502 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6627 14.6795 43.0578 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2813 14.0261 43.6551 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3651 12.6547 41.9795 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1203 11.9627 41.0104 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7013 12.4469 40.2394 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0138 16.9257 42.4510 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9134 16.3705 41.5382 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5400 17.0229 40.9482 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2366 14.1307 42.1386 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7691 16.0540 43.2110 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4683 16.4564 43.9291 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1756 11.6564 42.7568 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8088 11.7872 43.6219 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2339 10.4882 42.2353 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0339 10.6556 41.1558 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1057 9.1541 42.7014 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1058 18.4038 42.5943 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 9 2 0 + 1 11 1 0 + 3 4 1 0 + 3 11 2 0 + 3 12 1 0 + 5 6 1 0 + 5 11 1 0 + 5 14 2 0 + 6 7 1 0 + 6 17 2 0 + 8 9 1 0 + 8 12 2 0 + 9 10 1 0 + 12 13 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 18 16 1 0 + 8 19 1 0 +V 18 * +V 19 * +M END +> (50) +CDK8 + +> (50) +CDK + +> (50) +CMGC + +> (50) +6qtg + +> (50) +JH8 + +> (50) + + +> (50) +A + +> (50) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-FP AP + +> (50) +16 16 16 16 16 9 9 16 16 16 16 16 16 9 9 9 9 na na + +$$$$ +6t41_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -1.4460 12.8513 41.2102 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4625 12.3936 42.0655 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3955 11.3445 42.3133 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4316 13.2970 42.5974 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2079 12.9499 43.2632 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3471 14.6486 42.2883 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6497 15.1023 41.4431 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7232 16.1535 41.2063 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5563 14.1998 40.8999 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3401 14.5447 40.2418 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3481 15.6224 42.9265 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3124 15.1206 43.0056 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9893 15.8792 43.9232 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5321 16.8492 42.1778 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0246 16.8236 41.2964 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5848 11.6928 40.5050 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0228 18.1093 42.6711 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 1 16 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 17 14 1 0 +V 17 * +M END +> (51) +CDK8 + +> (51) +CDK + +> (51) +CMGC + +> (51) +6t41 + +> (51) +MFE + +> (51) + + +> (51) +A + +> (51) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (51) +16 16 16 16 16 16 16 16 16 16 4 4 4 5 5 16 na + +$$$$ +2x8i_altB_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.2590 12.0299 38.9209 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2154 11.7334 38.5160 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1239 13.2594 39.5283 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9779 13.9178 39.5888 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1823 11.1776 38.8270 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2825 10.2128 38.3521 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1645 12.8092 39.9606 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1234 13.1035 40.3612 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9147 13.6653 40.0617 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0235 11.5806 39.3508 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1100 10.7362 39.2640 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9204 11.0768 39.6497 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7679 14.9592 40.7034 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 9 1 0 + 5 6 1 0 + 5 10 2 0 + 7 8 1 0 + 7 9 2 0 + 7 10 1 0 + 10 11 1 0 + 11 12 1 0 + 13 9 1 0 +V 13 * +M END +> (52) +CHK1 + +> (52) +CAMKL + +> (52) +CAMK + +> (52) +2x8i + +> (52) +X8I + +> (52) +B + +> (52) +A + +> (52) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (52) +16 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +2ym5_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.9622 18.7082 40.2809 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2268 19.1662 39.8184 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7055 20.0044 40.3029 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8335 18.5543 38.7717 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8010 18.8988 38.4376 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2044 17.4588 38.1078 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6924 16.9739 37.2753 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9280 17.0105 38.5521 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2286 15.8086 37.8338 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8925 15.1191 38.6082 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9799 15.3199 37.2135 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1170 16.0861 37.0071 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5477 16.5168 37.5495 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3167 17.6250 39.5940 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3372 17.2977 39.9098 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3218 19.3760 41.3366 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 14 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 12 13 1 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (53) +CHK1 + +> (53) +CAMKL + +> (53) +CAMK + +> (53) +2ym5 + +> (53) +YM5 + +> (53) + + +> (53) +A + +> (53) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (53) +16 16 16 16 16 16 16 16 4 4 4 3 3 16 16 na + +$$$$ +4ftu_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.4716 16.1619 39.9031 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5400 15.1542 39.9022 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1327 16.8118 38.8331 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1036 16.1121 38.1282 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3096 15.0750 38.3482 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7996 16.7803 37.1362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5506 16.2331 36.5859 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5972 18.0654 36.8181 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6471 18.7133 37.4959 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4681 19.7507 37.2548 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8795 18.1341 38.4880 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1012 18.6955 38.9835 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7285 16.7150 40.9750 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (54) +CHK1 + +> (54) +CAMKL + +> (54) +CAMK + +> (54) +4ftu + +> (54) +7HK + +> (54) +A + +> (54) +A + +> (54) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (54) +5 5 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5opr_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 1.7642 14.7194 38.9408 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4809 14.4847 39.7278 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8409 13.9771 38.1463 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7552 14.7074 39.3529 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7973 17.2179 39.3668 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0710 16.1270 38.3649 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1093 16.2060 38.0425 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5952 19.1341 40.2660 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9891 16.2799 37.2988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0070 16.1788 37.7607 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1150 15.5075 36.5400 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0729 17.2625 36.8344 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0481 18.5011 39.1953 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1637 17.0439 40.5238 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7648 16.1148 40.9034 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1124 18.2669 41.1440 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4499 18.5231 42.4402 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 6 1 0 + 5 6 1 0 + 5 13 1 0 + 5 14 1 0 + 6 7 1 0 + 6 9 1 0 + 8 13 2 0 + 8 16 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 +V 17 * +M END +> (55) +CHK1 + +> (55) +CAMKL + +> (55) +CAMK + +> (55) +5opr + +> (55) +A3E + +> (55) + + +> (55) +A + +> (55) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (55) +8 8 8 8 9 8 8 9 8 8 8 8 9 9 9 14 na + +$$$$ +7bjm_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 1.5141 15.5410 41.1974 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1541 14.6478 41.5020 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4855 15.6005 40.1346 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3319 14.9670 40.3998 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8227 16.6315 40.0278 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9346 15.1388 38.8223 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0516 14.0621 38.7880 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7419 13.5825 39.7048 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5745 13.6121 37.5697 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1120 12.7793 37.5314 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9760 14.2271 36.4095 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5993 13.8736 35.4611 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8521 15.2880 36.4395 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1662 15.7593 35.5199 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3241 15.7432 37.6445 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2012 16.7762 37.6823 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0776 16.6958 41.7963 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 15 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 1 1 0 +V 17 * +M END +> (56) +CHK1 + +> (56) +CAMKL + +> (56) +CAMK + +> (56) +7bjm + +> (56) +TW2 + +> (56) + + +> (56) +A + +> (56) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (56) +5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5mqv_altB_chainC + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 1.7371 18.1617 41.0459 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7874 18.5133 40.2428 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9944 17.5285 39.3963 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0942 16.5684 39.6481 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3264 16.9711 40.6717 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5653 16.4499 41.0831 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9358 14.9860 38.7747 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0947 13.6609 40.0086 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0040 12.6928 39.5158 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3076 13.7636 40.7555 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0679 13.7315 40.4943 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0874 18.9449 42.1925 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6232 19.7888 40.2660 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 5 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 7 1 0 + 5 6 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 1 1 0 + 2 13 1 0 +V 12 * +V 13 * +M END +> (57) +CK1d + +> (57) +CK1 + +> (57) +CK1 + +> (57) +5mqv + +> (57) +D5Q + +> (57) +B + +> (57) +C + +> (57) +FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (57) +14 14 14 14 14 14 11 11 11 11 11 na na + +$$$$ +5cqw_altA_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -1.5653 9.0445 42.4604 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0714 10.1548 41.8097 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5113 10.1693 40.8864 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4641 11.3290 42.6340 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1650 12.8541 42.3683 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0550 13.4098 42.6638 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0063 12.9658 41.2957 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0164 13.4886 43.0428 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8836 12.9402 42.7649 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1715 13.4108 44.1189 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1787 10.7562 43.7332 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2190 9.4751 43.6064 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4339 7.6957 42.0423 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2009 14.9507 42.7040 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 1 0 + 2 3 1 0 + 2 4 2 0 + 4 5 1 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 10 1 0 + 11 12 2 0 + 13 1 1 0 + 8 14 1 0 +V 13 * +V 14 * +M END +> (58) +CK2a1 + +> (58) +CK2 + +> (58) +CMGC + +> (58) +5cqw + +> (58) +JRJ + +> (58) +A + +> (58) +A + +> (58) +FP FP FP FP FP FP FP FP FP FP FP FP X-FP AP + +> (58) +9 9 9 14 8 8 8 8 8 8 9 9 na na + +$$$$ +5m44_chainA + RDKit 3D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 1.2643 17.1468 41.4401 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4823 17.9817 42.1703 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0700 17.4903 43.3073 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1383 16.2231 43.6954 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4981 15.8758 41.7956 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9365 15.3653 42.9524 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1114 14.3458 43.2627 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8228 17.9497 40.1313 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0996 19.3668 40.4408 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1572 20.2623 39.8398 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4187 19.2169 41.5808 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1231 18.4395 44.3909 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2706 20.2749 42.0188 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 8 1 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 4 6 2 0 + 5 6 1 0 + 6 7 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 3 12 1 0 + 11 13 1 0 +V 12 * +V 13 * +M END +> (59) +CK2a1 + +> (59) +CK2 + +> (59) +CMGC + +> (59) +5m44 + +> (59) +7EY + +> (59) + + +> (59) +A + +> (59) +FP FP FP FP FP FP FP FP FP FP FP AP AP + +> (59) +14 14 14 14 14 14 14 14 14 14 16 na na + +$$$$ +7zwe_altB_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.6884 16.5753 41.2802 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3421 16.0142 40.2025 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6402 16.5084 39.3737 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5226 14.6619 40.4433 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9575 14.3712 41.7029 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4485 15.6017 42.2200 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9637 15.7414 43.1749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1427 13.6833 39.6695 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5861 13.9306 38.7162 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1771 12.3791 40.1549 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6520 11.6041 39.5716 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6043 12.0630 41.3870 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6277 11.0432 41.7419 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0042 13.0476 42.1618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5732 12.7929 43.1187 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3423 17.9812 41.2928 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 8 1 0 + 5 6 1 0 + 5 14 1 0 + 6 7 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (60) +CK2a1 + +> (60) +CK2 + +> (60) +CMGC + +> (60) +7zwe + +> (60) +QXZ + +> (60) +B + +> (60) +A + +> (60) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (60) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +6qy9_altB_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 1.8247 16.1511 41.8454 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5829 16.4806 42.8451 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7793 17.0423 40.7755 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1810 14.8499 41.6079 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2076 14.1440 42.4248 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5072 14.4332 40.3295 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7943 13.4053 40.1644 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4725 15.3076 39.2597 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1198 16.6214 39.4986 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1091 17.3285 38.6824 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7977 14.8176 37.8530 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0697 15.2419 37.1614 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7216 13.7304 37.8386 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1886 15.2099 37.3897 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3084 16.2854 37.5205 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2871 14.9592 36.3336 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2484 14.5286 38.1320 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0374 13.9394 38.7229 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4041 18.4142 40.9714 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 4 1 0 + 3 9 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 11 1 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 17 18 3 0 + 3 19 1 0 +V 19 * +M END +> (61) +CK2a2 + +> (61) +CK2 + +> (61) +CMGC + +> (61) +6qy9 + +> (61) +JL2 + +> (61) +B + +> (61) +A + +> (61) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (61) +16 16 16 16 16 16 16 16 16 16 8 8 8 8 8 8 8 8 na + +$$$$ +6te2_altA_chainA + RDKit 3D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + 1.2652 16.1056 41.7254 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2297 15.7132 43.6257 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4150 14.4378 43.2933 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0945 13.5885 43.8784 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7997 16.6972 40.6509 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1818 16.0657 39.9615 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6910 16.7098 42.7690 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2469 14.3501 41.7820 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9120 18.0688 40.3319 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4207 16.1978 44.9023 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 1 0 + 1 7 2 0 + 1 8 1 0 + 2 3 2 0 + 2 7 1 0 + 3 4 1 0 + 3 8 1 0 + 5 6 1 0 + 9 5 1 0 + 2 10 1 0 +V 9 * +V 10 * +M END +> (62) +CK2a2 + +> (62) +CK2 + +> (62) +CMGC + +> (62) +6te2 + +> (62) +N4N + +> (62) +A + +> (62) +A + +> (62) +FP FP FP FP FP FP FP FP AP SE + +> (62) +14 14 14 14 5 5 14 14 na na + +$$$$ +7xyh_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.3361 14.6150 43.0138 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6771 13.2307 42.8230 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6044 15.0017 44.1884 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3729 16.0423 44.3617 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2731 12.2360 43.7241 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5308 11.1983 43.5721 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1818 14.0088 45.1292 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3653 14.2803 46.0199 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5061 12.6567 44.8512 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1510 11.8993 45.5342 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9834 15.2787 41.8053 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6309 14.2955 40.9895 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1715 14.4234 40.0633 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0465 16.7084 41.4039 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4856 17.4411 42.0647 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3945 13.2108 41.6599 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7490 12.3305 41.3143 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5305 17.0970 40.1592 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 11 1 0 + 2 5 2 0 + 2 16 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 1 0 + 5 9 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 2 0 + 11 14 1 0 + 12 13 1 0 + 12 16 1 0 + 14 15 1 0 + 16 17 1 0 + 14 18 2 0 +V 18 * +M END +> (63) +CK2a2 + +> (63) +CK2 + +> (63) +CMGC + +> (63) +7xyh + +> (63) +8BH + +> (63) + + +> (63) +A + +> (63) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (63) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +6r6e_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.4253 15.6094 37.4645 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0513 16.6041 38.2645 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0975 17.3364 37.6750 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5990 18.1039 38.2459 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4990 17.0813 36.3496 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7995 15.3470 36.1926 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8648 16.0586 35.6152 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1959 15.8234 34.6144 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4227 14.9158 37.9903 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0442 14.2081 37.4416 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1270 15.0959 38.9391 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6151 16.8649 39.5215 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 9 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 7 1 0 + 6 7 2 0 + 7 8 1 0 + 9 10 1 0 + 9 11 1 0 + 2 12 1 0 +V 12 * +M END +> (64) +CLK1 + +> (64) +CLK + +> (64) +CMGC + +> (64) +6r6e + +> (64) +JTQ + +> (64) + + +> (64) +A + +> (64) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (64) +14 16 14 14 14 14 14 14 5 5 5 na + +$$$$ +7ccw_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.4403 12.0002 40.2895 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6904 11.9096 39.6973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0023 10.9918 39.2211 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5393 13.0108 39.7219 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1313 14.2051 40.3223 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7914 15.0599 40.3281 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8674 14.2929 40.9160 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0345 13.1825 40.8822 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0521 13.2429 41.3267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3615 15.4450 41.5425 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6780 15.3674 42.3752 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7743 12.9017 39.1432 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3143 13.6942 39.1870 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5884 10.9382 40.2754 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2617 11.0944 40.6932 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8052 16.8177 41.0131 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 11 1 0 + 12 13 1 0 + 14 15 1 0 + 10 16 2 0 +V 16 * +M END +> (65) +DAPK1 + +> (65) +DAPK + +> (65) +CAMK + +> (65) +7ccw + +> (65) +STL + +> (65) +A + +> (65) +A + +> (65) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (65) +16 16 16 16 16 16 16 16 16 7 16 3 3 3 3 na + +$$$$ +8ie6_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 5.6279 14.1185 38.9718 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6237 13.8797 38.5982 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6745 14.2886 40.0474 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2603 15.0176 38.4773 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0608 14.3981 39.8036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7843 15.1763 39.9970 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7357 14.5612 40.2243 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3011 15.7089 40.9083 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7245 15.6300 41.8181 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8141 13.5455 39.9776 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2090 13.6562 40.3053 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3084 11.4043 39.0591 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6605 10.6428 38.5926 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2071 12.3887 39.3103 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5209 12.2325 38.8918 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8182 11.3310 38.3767 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4553 13.2325 39.1335 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7386 13.0239 38.6982 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6713 17.0778 40.3222 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 18 1 0 + 5 6 1 0 + 5 7 2 0 + 5 17 1 0 + 7 8 1 0 + 7 10 1 0 + 8 9 1 0 + 10 11 1 0 + 10 14 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 8 19 2 0 +V 19 * +M END +> (66) +DAPK1 + +> (66) +DAPK + +> (66) +CAMK + +> (66) +8ie6 + +> (66) +8KZ + +> (66) + + +> (66) +A + +> (66) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (66) +3 3 3 3 16 16 16 7 16 16 16 3 3 16 16 16 16 3 na + +$$$$ +8ie7_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -0.7225 12.3323 40.0147 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5317 11.6029 40.0519 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0155 13.1678 39.3788 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5152 12.6967 41.0208 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4550 11.7132 39.4783 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4760 12.6131 39.4254 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2533 13.9529 39.7457 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2687 14.2784 40.0475 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7477 12.1905 39.0454 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9239 11.1546 38.7957 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7906 13.1115 38.9893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0434 12.7254 38.6257 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9947 13.7190 39.0412 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9972 13.4070 38.7485 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9513 13.8331 40.1243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7571 14.6707 38.5658 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5570 14.4438 39.3068 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3692 15.1544 39.2637 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2946 14.8683 39.6774 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1022 16.2080 39.9974 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6368 17.0143 39.5172 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0685 16.4274 41.0864 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 9 1 0 + 7 8 1 0 + 7 19 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 17 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 20 21 1 0 + 20 22 2 0 +V 22 * +M END +> (67) +DAPK1 + +> (67) +DAPK + +> (67) +CAMK + +> (67) +8ie7 + +> (67) +3RL + +> (67) + + +> (67) +A + +> (67) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (67) +3 3 3 3 3 16 16 16 16 16 16 3 3 3 3 3 16 16 16 7 16 na + +$$$$ +8ie8_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 1.8205 14.9036 40.5967 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8734 14.1176 41.2458 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0680 14.5786 41.7982 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8629 14.3057 39.8857 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5937 14.9231 39.3847 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9746 12.7322 41.1759 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9668 12.9175 39.8183 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7749 12.4547 39.2712 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0145 12.1360 40.4658 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7231 16.2901 40.6583 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1618 16.9271 39.9044 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8336 12.6142 42.6244 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5230 11.9120 43.0932 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3953 13.3255 42.0189 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2809 13.1506 43.3958 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0522 10.7707 40.4527 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7850 10.3898 39.9632 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0852 11.8967 41.7896 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9564 16.8634 41.8592 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 1 10 1 0 + 2 3 1 0 + 2 6 1 0 + 4 5 1 0 + 4 7 2 0 + 6 9 2 0 + 6 18 1 0 + 7 8 1 0 + 7 9 1 0 + 9 16 1 0 + 10 11 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 12 18 1 0 + 16 17 1 0 + 10 19 2 0 +V 19 * +M END +> (68) +DAPK1 + +> (68) +DAPK + +> (68) +CAMK + +> (68) +8ie8 + +> (68) +P5O + +> (68) + + +> (68) +A + +> (68) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (68) +16 16 16 16 16 16 16 16 16 7 16 3 3 3 3 3 3 3 na + +$$$$ +6eir_chainC + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + 2.2991 18.2047 40.3053 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9742 17.1967 41.0055 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1804 17.3287 42.0573 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3853 16.0245 40.3683 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8990 15.2599 40.9321 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0772 18.0133 38.9376 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5785 18.7839 38.3685 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4890 16.8429 38.2939 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3040 16.7197 37.2370 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1369 15.8326 39.0051 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5370 14.7288 38.3523 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0967 14.8250 37.5170 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2064 13.4889 38.7891 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5287 13.2378 39.7869 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7624 12.3488 37.9212 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8463 12.4637 37.9126 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3726 12.5044 36.9152 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4798 10.8864 38.2790 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8528 10.6792 39.2820 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9800 10.2340 37.5633 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4054 10.7054 38.2463 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8886 19.4053 40.9152 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 13 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 1 1 0 +V 22 * +M END +> (69) +DYRK1A + +> (69) +DYRK + +> (69) +CMGC + +> (69) +6eir + +> (69) +B6H + +> (69) + + +> (69) +C + +> (69) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (69) +16 16 16 16 16 16 16 16 16 16 5 5 1 1 1 1 1 1 1 1 1 na + +$$$$ +6eis_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 2.0351 13.6518 42.0061 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6393 14.5780 41.2709 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8480 14.1450 40.9630 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7448 15.7006 41.9696 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9195 14.8015 40.0907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5068 14.4380 38.8843 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4923 13.9962 38.8792 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8351 14.6391 37.6856 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4206 14.2807 36.5155 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5658 15.2048 37.6884 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0423 15.3622 36.7570 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0296 15.5679 38.8912 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0189 16.0010 38.8917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6433 15.3760 40.0954 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0540 15.7349 41.2518 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 +V 15 * +M END +> (70) +DYRK1A + +> (70) +DYRK + +> (70) +CMGC + +> (70) +6eis + +> (70) +B6N + +> (70) +B + +> (70) +A + +> (70) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (70) +8 8 8 8 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6uwy_altB_chainB + RDKit 3D + + 15 14 0 0 0 0 0 0 0 0999 V2000 + 1.0594 15.5289 41.5270 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2373 16.2129 42.3568 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6300 14.6133 41.6822 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5928 16.2144 40.2121 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9848 15.8477 39.3851 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6253 15.8933 40.0743 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4654 15.1532 41.5304 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6120 14.3491 40.8092 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0260 16.0325 41.2131 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0317 14.6973 42.8501 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3376 14.9243 43.3290 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6115 14.5724 44.2353 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9997 15.4388 42.7660 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3133 14.0348 43.6712 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5782 17.7529 40.1453 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 7 1 0 + 4 5 1 0 + 4 6 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 14 2 0 + 11 12 1 0 + 11 13 1 0 + 15 4 1 0 +V 15 * +M END +> (71) +DYRK1A + +> (71) +DYRK + +> (71) +CMGC + +> (71) +6uwy + +> (71) +QKG + +> (71) +B + +> (71) +B + +> (71) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (71) +1 1 1 8 1 1 1 1 1 1 5 5 5 1 na + +$$$$ +7a5n_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 0.6492 16.0609 41.3706 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3543 16.0676 40.9451 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6098 15.6716 42.3879 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5392 15.1789 40.5337 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6013 15.3160 39.1607 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8064 16.2498 38.5859 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4021 14.5260 38.3703 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4233 14.6561 37.2984 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1722 13.5700 38.9772 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8036 12.9355 38.3730 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1560 13.4029 40.3468 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7594 12.6406 40.8171 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3572 14.2254 41.0969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3509 14.0881 42.4422 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1654 17.4061 41.3949 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (72) +DYRK1A + +> (72) +DYRK + +> (72) +CMGC + +> (72) +7a5n + +> (72) +R05 + +> (72) + + +> (72) +A + +> (72) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (72) +4 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +7ak2_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 0.1056 15.6372 41.3886 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8998 14.7830 40.2488 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6589 15.2055 40.2205 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1323 15.2363 39.0916 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1511 15.5925 39.1317 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4227 14.7974 37.9137 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1622 14.7957 37.0058 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7303 14.3592 37.8963 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1877 14.0115 36.9818 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4356 14.3778 39.0790 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4655 14.0529 39.0695 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0383 15.8561 42.4524 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 1 0 + 2 3 2 0 + 2 10 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 1 12 1 0 +V 12 * +M END +> (73) +DYRK1A + +> (73) +DYRK + +> (73) +CMGC + +> (73) +7ak2 + +> (73) +RHH + +> (73) + + +> (73) +A + +> (73) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (73) +3 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4jr3_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 0.5905 13.1396 37.8255 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4469 14.1414 37.4208 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3395 12.5772 37.7417 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3747 12.6304 37.2653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9970 13.2376 39.2991 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2085 12.2114 39.9455 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0835 14.5053 39.7681 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8672 15.2711 39.1461 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4493 14.7809 41.0398 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8463 15.8748 41.6689 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0951 16.4358 41.1328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4315 14.0683 41.7421 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9295 13.2314 41.2752 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7653 14.4413 43.0455 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5095 13.8755 43.5864 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1515 15.5349 43.6609 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4254 15.8125 44.6680 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1839 16.2684 42.9729 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5593 17.3313 43.5253 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 2 0 + 5 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 12 1 0 + 10 11 1 0 + 10 18 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 +V 19 * +M END +> (74) +EGFR + +> (74) +EGFR + +> (74) +TK + +> (74) +4jr3 + +> (74) +KJR + +> (74) + + +> (74) +A + +> (74) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (74) +1 1 1 1 1 1 5 5 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4rj7_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.3368 17.6085 41.3229 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3894 16.6447 41.6201 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7465 17.8849 40.0637 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7989 19.0409 39.6334 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1826 16.8184 39.1296 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5533 16.6063 38.9228 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9831 15.7239 37.9415 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0389 15.5422 37.8052 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0565 15.0729 37.1331 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3971 14.3886 36.3702 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6962 15.2977 37.3010 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9810 14.7902 36.6706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2607 16.1749 38.2797 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4392 16.4140 38.4759 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6948 17.4033 39.9528 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8425 18.5411 42.2608 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 5 1 0 + 5 6 2 0 + 5 13 1 0 + 6 7 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 16 1 1 0 +V 16 * +M END +> (75) +EGFR + +> (75) +EGFR + +> (75) +TK + +> (75) +4rj7 + +> (75) +3R1 + +> (75) +A + +> (75) +A + +> (75) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (75) +5 5 1 1 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4zau_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 1.9028 17.2824 42.5370 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3380 16.0697 42.9329 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1940 15.3818 44.0863 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6372 15.8281 44.8970 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7434 14.1119 44.2608 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6187 13.5767 45.1905 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4563 13.5534 43.2052 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8900 12.5688 43.2992 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6044 14.2783 42.0259 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1614 13.8615 41.1997 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0317 15.5424 41.9155 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0199 16.4105 40.9139 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6746 16.2040 39.6184 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1639 15.2301 39.6098 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4175 16.9853 39.4581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9290 16.2431 38.8243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3294 17.4800 41.2833 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1436 18.3561 40.6796 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0921 18.2418 43.3437 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 17 2 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 17 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 1 0 + 19 1 1 0 +V 19 * +M END +> (76) +EGFR + +> (76) +EGFR + +> (76) +TK + +> (76) +4zau + +> (76) +YY3 + +> (76) + + +> (76) +A + +> (76) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (76) +16 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 9 9 na + +$$$$ +5c8m_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 1.7352 19.4067 38.9767 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7851 19.8011 37.9981 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5520 20.3665 38.5275 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3257 20.4345 37.2392 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4588 18.6170 37.2944 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3027 18.9601 36.6960 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7452 18.0996 36.6531 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9394 17.6914 38.4145 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4353 18.2851 39.1824 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7303 17.0552 39.1147 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0684 16.3310 39.8558 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0964 16.5560 38.3818 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9472 18.1825 39.8031 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9690 17.7913 40.0829 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4929 18.4724 40.7010 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3246 16.6043 37.9582 S 0 0 0 0 0 6 0 0 0 0 0 0 + 4.8339 15.2827 37.7670 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9909 17.2401 36.8758 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4436 16.5559 39.3917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9416 16.0698 40.2282 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7173 17.5727 39.6734 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.3423 15.9963 39.1323 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3042 20.5029 39.7303 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 16 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 17 2 0 + 16 18 2 0 + 16 19 1 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 23 1 1 0 +V 23 * +M END +> (77) +EGFR + +> (77) +EGFR + +> (77) +TK + +> (77) +5c8m + +> (77) +4YW + +> (77) + + +> (77) +A + +> (77) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (77) +5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 na + +$$$$ +2vwv_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 4.7333 13.3035 40.4664 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0999 12.2770 40.4657 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5726 13.9892 40.3498 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0348 13.4405 39.6409 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0669 13.5713 41.7048 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6149 14.8897 41.6650 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7389 15.6943 40.5344 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1891 15.2946 39.6377 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2868 17.0080 40.5539 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3933 17.6264 39.6749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7014 17.5265 41.6929 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5662 16.7346 42.8398 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1107 17.1292 43.7360 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0324 15.4321 42.7933 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8677 14.4012 44.1470 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2946 18.8668 41.6265 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 11 16 1 0 +V 16 * +M END +> (78) +EphB4 + +> (78) +Eph + +> (78) +TK + +> (78) +2vwv + +> (78) +7X3 + +> (78) +A + +> (78) +A + +> (78) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (78) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1tvo_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.1037 15.3394 35.8286 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2154 14.7702 34.9176 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0602 16.3636 36.2141 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9008 16.5894 35.5748 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8844 17.0626 37.4298 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8275 16.8633 38.3468 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8263 15.8686 37.9842 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0213 15.6865 38.6282 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9829 15.1214 36.7402 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2418 14.3788 36.4837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8319 18.0534 37.9390 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3226 18.4243 39.2036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0775 17.7195 39.4954 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1220 19.4027 39.9316 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2134 17.8625 40.6668 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 13 2 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 13 15 1 0 +V 14 * +V 15 * +M END +> (79) +Erk2 + +> (79) +MAPK + +> (79) +CMGC + +> (79) +1tvo + +> (79) +FRZ + +> (79) + + +> (79) +A + +> (79) +FP FP FP FP FP FP FP FP FP FP FP FP FP GA AP + +> (79) +14 14 14 14 14 14 14 14 14 14 14 14 16 na na + +$$$$ +4qp9_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.3527 17.4172 40.0576 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6800 16.7793 40.6118 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6169 18.7358 40.3135 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5419 19.1834 39.3516 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9458 20.1823 39.2769 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0959 14.3947 36.4803 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3182 14.3931 35.7165 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9398 13.5566 37.1595 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0722 14.3001 36.0049 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0358 15.7160 37.2722 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0578 15.8084 37.7444 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1902 16.5519 36.5898 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1248 15.7370 38.3537 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1017 15.5623 37.9027 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9255 14.9666 39.0986 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0916 17.0617 38.9809 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8267 18.1801 38.5651 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0085 19.5587 41.3881 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 16 1 0 + 3 4 1 0 + 4 5 1 0 + 4 17 2 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 16 17 1 0 + 3 18 1 0 +V 18 * +M END +> (80) +Erk2 + +> (80) +MAPK + +> (80) +CMGC + +> (80) +4qp9 + +> (80) +35X + +> (80) + + +> (80) +A + +> (80) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (80) +9 9 16 9 9 8 8 8 8 8 8 8 8 8 8 9 9 na + +$$$$ +5buj_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.0203 17.9730 39.2851 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6447 16.6337 38.9616 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1308 16.0218 39.6881 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9372 16.1393 37.7408 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6332 15.1336 37.4908 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0012 18.1731 37.0273 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6676 18.7209 38.3021 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9250 19.7484 38.5125 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6046 16.8786 36.8219 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8223 16.4498 35.9337 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6274 18.7627 36.1334 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8031 18.5232 40.5746 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 2 3 1 0 + 2 4 2 0 + 4 5 1 0 + 4 9 1 0 + 6 7 1 0 + 6 9 1 0 + 6 11 2 0 + 7 8 1 0 + 9 10 1 0 + 1 12 1 0 +V 12 * +M END +> (81) +Erk2 + +> (81) +MAPK + +> (81) +CMGC + +> (81) +5buj + +> (81) +4VB + +> (81) +A + +> (81) +A + +> (81) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (81) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6i8z_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.6793 17.1345 40.4253 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8023 14.8512 41.1428 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0475 14.1172 41.8961 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1432 16.7353 39.1852 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2449 16.5290 36.9502 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7931 16.7279 36.6837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8693 16.6042 36.0599 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3742 15.1290 37.5724 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0472 14.5065 36.9827 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6009 14.6466 37.6403 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0223 16.1983 41.3942 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4549 16.5156 42.3316 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2691 14.4424 39.9290 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1049 13.3911 39.7440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9436 15.3744 38.9472 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7123 17.5128 38.0007 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7294 18.7235 37.8761 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8332 18.5100 40.6102 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 11 1 0 + 2 3 1 0 + 2 11 2 0 + 2 13 1 0 + 4 15 1 0 + 4 16 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 16 1 0 + 8 9 1 0 + 8 10 1 0 + 8 15 1 0 + 11 12 1 0 + 13 14 1 0 + 13 15 2 0 + 16 17 2 0 + 1 18 1 0 +V 18 * +M END +> (82) +FAK + +> (82) +FAK + +> (82) +TK + +> (82) +6i8z + +> (82) +H82 + +> (82) + + +> (82) +A + +> (82) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (82) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6yoj_altB_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + 0.4666 14.3234 40.4006 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1304 13.3400 40.6946 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0440 14.8832 39.2064 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5942 14.3205 38.5412 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4411 16.1660 38.8664 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5911 15.8085 36.0865 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1043 14.8341 36.1273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6616 15.6871 36.2519 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4233 16.2579 35.1077 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6887 17.0784 41.7748 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7047 16.7254 41.5981 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4172 16.8981 42.8150 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3065 16.8926 39.6724 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6437 17.8750 39.3765 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7268 16.3290 40.8635 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3307 15.0472 41.2156 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6967 14.6069 42.1314 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0991 16.8812 37.3686 S 0 0 0 0 0 6 0 0 0 0 0 0 + -1.5384 16.7956 37.3510 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5319 18.1486 37.3178 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6158 18.5259 41.4923 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 16 1 0 + 3 4 1 0 + 3 5 1 0 + 5 13 2 0 + 5 18 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 15 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 16 17 1 0 + 18 19 2 0 + 18 20 2 0 + 10 21 1 0 +V 21 * +M END +> (83) +FAK + +> (83) +FAK + +> (83) +TK + +> (83) +6yoj + +> (83) +P4N + +> (83) +B + +> (83) +A + +> (83) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (83) +16 16 16 16 16 16 16 16 16 4 4 4 16 16 16 16 16 16 16 16 na + +$$$$ +6yt6_altA_chainB + RDKit 3D + + 25 25 0 0 0 0 0 0 0 0999 V2000 + 2.1704 17.4929 41.0101 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2067 17.2622 40.7633 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9535 17.1522 42.0225 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2781 16.7372 40.0560 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5359 17.3736 39.0656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5975 18.4459 38.9525 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2810 16.6371 38.2248 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8630 17.1248 37.4568 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3372 15.2699 38.3868 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9772 14.7045 37.7256 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1348 15.3395 40.1207 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8034 12.3496 39.9697 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3443 11.7131 40.7261 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6935 11.8602 39.5744 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0937 12.5217 39.1604 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3571 14.6024 39.3179 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8707 14.6284 41.1354 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2512 13.8834 40.6902 S 0 0 0 0 0 6 0 0 0 0 0 0 + 1.0739 14.0033 42.1946 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1866 14.6067 42.3860 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6697 13.9344 43.1048 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7728 13.0037 41.8810 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9780 13.6231 41.8898 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8485 14.6993 39.6856 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0038 18.9340 40.9702 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 16 1 0 + 11 16 2 0 + 11 17 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 12 18 1 0 + 17 18 1 0 + 17 19 1 0 + 18 23 2 0 + 18 24 2 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 1 25 1 0 +V 25 * +M END +> (84) +FAK + +> (84) +FAK + +> (84) +TK + +> (84) +6yt6 + +> (84) +PKE + +> (84) +A + +> (84) +B + +> (84) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (84) +4 4 4 16 14 14 14 14 14 14 14 12 12 12 12 14 5 12 5 5 5 5 12 12 na + +$$$$ +4rwk_altA_chainA + RDKit 3D + + 26 26 0 0 0 0 0 0 0 0999 V2000 + 0.7223 15.7722 38.6361 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3608 16.4129 39.6273 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5606 20.2668 41.7533 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4538 19.6841 41.9785 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7628 21.3236 41.9272 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2359 20.0840 40.2859 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8467 20.7633 39.6913 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1812 20.3019 40.1174 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5274 18.6553 39.8782 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8233 18.1504 39.9303 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6312 18.7830 40.2672 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0869 16.8376 39.5522 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0503 16.0132 39.1092 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2495 14.9939 38.8126 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7686 16.5196 39.0559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5060 17.8292 39.4356 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4959 18.2080 39.3857 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8783 15.0944 37.3817 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0276 14.5310 37.1580 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7257 14.4113 37.4407 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0554 15.8257 36.5931 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6189 14.9989 39.6482 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6934 14.8266 39.7107 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2305 14.5451 38.7364 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1285 14.5528 40.5134 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4728 19.8377 42.6946 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 15 1 0 + 1 18 1 0 + 2 12 1 0 + 2 22 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 2 0 + 9 16 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 16 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 26 3 1 0 +V 26 * +M END +> (85) +FGFR1 + +> (85) +FGFR + +> (85) +TK + +> (85) +4rwk + +> (85) +66T + +> (85) +A + +> (85) +A + +> (85) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (85) +3 3 8 8 8 8 8 8 16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 na + +$$$$ +1oec_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 1.3545 17.1589 41.5624 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7516 15.9055 42.0560 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6584 15.6857 43.1093 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2724 14.9331 41.1753 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5761 13.9735 41.5669 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4048 15.1896 39.7898 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0012 16.4551 39.3082 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0927 16.6800 38.2558 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4829 17.4229 40.1819 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1781 18.3831 39.7927 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9915 14.0729 38.8690 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9067 12.6316 39.4685 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8632 12.3747 39.6507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4591 12.5956 40.4075 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3387 11.9196 38.7653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2424 14.1145 37.5094 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1918 13.8696 37.6657 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6868 13.3897 36.8273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3227 15.1135 37.0807 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4154 14.4094 38.6261 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9204 14.3876 39.5005 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4790 15.3336 38.2236 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7927 18.1868 42.4978 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 16 1 0 + 11 20 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 21 1 0 + 20 22 1 0 + 23 1 1 0 +V 23 * +M END +> (86) +FGFR2 + +> (86) +FGFR + +> (86) +TK + +> (86) +1oec + +> (86) +AA2 + +> (86) + + +> (86) +A + +> (86) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (86) +16 16 16 16 16 16 16 16 16 16 4 4 4 4 4 4 4 4 4 5 5 5 na + +$$$$ +6lvl_chainB + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 2.4235 14.7716 42.1512 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3891 14.0974 42.9942 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7817 14.2877 40.9097 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0265 13.2438 40.7805 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1081 16.1041 42.3340 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8373 16.4563 43.3184 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8236 15.1483 39.8397 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1021 14.7922 38.8589 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1337 16.9936 41.2760 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5041 16.4742 40.0398 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1896 17.0913 37.5415 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1322 17.1476 38.0860 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1869 16.2025 36.9107 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0759 17.9789 36.9192 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0545 17.0157 38.5153 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1590 16.1275 39.1385 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0480 17.9040 39.1470 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2033 16.9408 37.7387 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0961 17.5119 36.9126 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3831 18.8631 38.9388 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7649 16.9709 37.8657 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5990 17.4706 38.5731 S 0 0 0 0 0 6 0 0 0 0 0 0 + 1.8215 18.3629 41.4665 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 1 0 + 5 9 2 0 + 7 8 1 0 + 7 10 2 0 + 9 10 1 0 + 10 22 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 11 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 22 1 0 + 20 22 2 0 + 21 22 2 0 + 9 23 1 0 +V 23 * +M END +> (87) +FGFR2 + +> (87) +FGFR + +> (87) +TK + +> (87) +6lvl + +> (87) +EVL + +> (87) + + +> (87) +B + +> (87) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (87) +12 12 12 12 12 12 12 12 16 12 4 4 4 4 4 4 4 5 5 12 12 12 na + +$$$$ +5jkg_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.9073 14.9288 41.4373 C 0 0 1 0 0 0 0 0 0 0 0 0 + 1.9361 15.0609 42.5189 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4701 14.5096 41.0673 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8246 13.8657 40.9337 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7383 13.7951 39.8494 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5542 12.9099 41.3827 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8514 14.1151 41.2010 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1030 14.7051 39.7643 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3505 13.8949 42.0322 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1277 13.7104 40.4940 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3135 16.1355 40.8626 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4022 14.2915 39.5330 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8395 14.4409 38.5568 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6495 13.5008 41.7296 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2665 13.0311 42.4813 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8310 15.4665 38.4880 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3132 13.6384 43.6363 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8738 17.3758 41.4710 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 1 + 1 3 1 0 + 1 4 1 0 + 1 11 1 0 + 3 8 2 0 + 3 9 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 8 12 1 0 + 8 16 1 0 + 9 14 2 0 + 9 17 1 0 + 10 12 2 0 + 10 14 1 0 + 12 13 1 0 + 14 15 1 0 + 18 11 1 0 +V 18 * +M END +> (88) +FGFR4 + +> (88) +FGFR + +> (88) +TK + +> (88) +5jkg + +> (88) +6LF + +> (88) + + +> (88) +A + +> (88) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (88) +4 4 16 4 4 4 4 16 16 16 3 16 16 16 16 16 16 na + +$$$$ +3gb2_altA_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -2.1170 12.1141 44.5808 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7484 12.2056 43.9785 S 0 0 0 0 0 4 0 0 0 0 0 0 + -0.6951 11.2387 42.4561 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8651 10.1872 42.6874 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2818 11.3541 41.9865 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4696 11.5907 41.7748 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4740 13.9617 43.6709 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5820 14.8001 43.5323 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5777 14.3894 43.6123 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8113 14.4719 43.5695 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6672 13.8214 43.6733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9846 15.8253 43.3336 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9803 16.2374 43.2618 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1227 16.6543 43.1890 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4142 16.1568 43.2928 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2682 16.8098 43.1896 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0870 18.0974 42.9366 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 6 + 2 7 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 8 15 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 14 17 1 0 +V 17 * +M END +> (89) +GSK3B + +> (89) +GSK + +> (89) +CMGC + +> (89) +3gb2 + +> (89) +G3B + +> (89) +A + +> (89) +A + +> (89) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (89) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3say_altA_chainB + RDKit 3D + + 16 15 0 0 0 0 0 0 0 0999 V2000 + 2.7749 16.7818 37.6623 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6422 15.6042 37.5053 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6365 15.9393 37.2101 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2273 14.9661 36.7251 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7612 14.7942 38.7851 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1754 15.4212 39.5747 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4188 13.9416 38.6156 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7749 14.4387 39.0832 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3272 16.6827 37.4559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1151 16.9445 36.4193 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8417 17.3993 38.1183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7324 15.3158 37.7260 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2027 14.5796 37.0742 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3398 15.3412 37.5313 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9062 15.0432 38.7670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3967 18.1537 37.9900 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 1 1 0 +V 16 * +M END +> (90) +GSK3B + +> (90) +GSK + +> (90) +CMGC + +> (90) +3say + +> (90) +OFT + +> (90) +A + +> (90) +B + +> (90) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (90) +5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 na + +$$$$ +3zrk_altA_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.6947 15.0925 38.3160 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0527 14.0935 38.1154 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1166 15.3439 39.4969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9918 14.5880 40.2581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6877 16.6631 39.6659 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8260 17.6539 38.7250 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4416 17.3823 37.4585 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5698 18.2451 36.6032 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0758 17.1869 40.7657 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8286 18.5052 40.5116 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2749 18.8466 39.2533 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2171 19.8130 38.7745 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8507 16.0611 37.3444 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2984 15.7862 36.4818 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1639 19.2430 41.5578 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 5 9 1 0 + 6 7 1 0 + 6 11 1 0 + 7 8 2 0 + 7 13 1 0 + 9 10 1 0 + 10 11 2 0 + 11 12 1 0 + 13 14 1 0 + 10 15 1 0 +V 15 * +M END +> (91) +GSK3B + +> (91) +GSK + +> (91) +CMGC + +> (91) +3zrk + +> (91) +ZRK + +> (91) +A + +> (91) +B + +> (91) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (91) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +5f94_altB_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 2.1457 18.2121 39.5070 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9305 17.5823 40.2667 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7573 17.6529 38.3618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4690 18.3057 37.3537 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6137 19.3705 37.4614 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9861 17.7260 36.2679 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7976 16.4137 36.1494 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1931 15.9188 35.2747 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1241 15.6490 37.0833 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9938 14.5864 36.9409 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6203 16.2845 38.2083 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0958 15.6405 39.2967 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3848 14.2452 39.4472 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9050 13.8702 40.3512 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4629 14.1035 39.5226 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0064 13.7004 38.5822 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8232 19.5127 39.6769 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 1 1 0 +V 17 * +M END +> (92) +GSK3B + +> (92) +GSK + +> (92) +CMGC + +> (92) +5f94 + +> (92) +3UO + +> (92) +B + +> (92) +A + +> (92) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (92) +5 5 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +5f95_chainB + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + 2.2636 18.0150 39.4857 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1107 17.4124 40.2817 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8264 17.4140 38.3365 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5307 18.1141 37.3616 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5660 19.1903 37.4447 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1658 17.5513 36.3311 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1142 16.2213 36.2478 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6316 15.7429 35.4294 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4387 15.4203 37.1456 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4337 14.3469 37.0265 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7630 16.0171 38.2082 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9972 15.1613 39.1523 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6276 15.3515 39.3425 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1227 16.1512 38.8209 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0919 14.5276 40.1919 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1525 14.6828 40.3236 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5468 13.5056 40.8721 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0145 12.8610 41.5323 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9059 13.3120 40.7040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4070 12.5200 41.2407 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6254 14.1289 39.8511 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6856 13.9664 39.7243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9066 19.3179 39.6325 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 2 0 + 12 21 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 17 19 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 23 1 1 0 +V 23 * +M END +> (93) +GSK3B + +> (93) +GSK + +> (93) +CMGC + +> (93) +5f95 + +> (93) +3UP + +> (93) + + +> (93) +B + +> (93) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (93) +5 5 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6y9r_altA_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + 2.8542 16.8825 38.5003 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4545 16.3394 39.3440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7498 18.2672 38.4432 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2672 18.9016 37.3194 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1860 19.9755 37.2387 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9695 16.9291 36.3878 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4548 16.4161 35.5706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4800 16.2023 37.4576 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8619 14.0210 38.3072 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5975 14.5476 39.2242 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8509 18.2326 36.3554 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6359 14.8544 37.4472 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6929 12.8034 38.6766 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9676 12.2626 37.7709 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1113 12.1504 39.3273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5958 13.1238 39.1964 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5566 13.6379 37.6133 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7793 13.1069 36.6879 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9872 14.5393 37.3870 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9715 12.9939 38.2699 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0886 19.0261 39.5320 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 4 5 1 0 + 4 11 2 0 + 6 7 1 0 + 6 8 2 0 + 6 11 1 0 + 8 12 1 0 + 9 10 1 0 + 9 12 1 0 + 9 13 1 0 + 9 17 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 3 21 1 0 +V 21 * +M END +> (94) +GSK3B + +> (94) +GSK + +> (94) +CMGC + +> (94) +6y9r + +> (94) +OH8 + +> (94) +A + +> (94) +A + +> (94) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (94) +16 16 16 16 16 16 16 16 4 4 16 3 4 4 4 4 4 4 4 4 na + +$$$$ +7ncf_chainA + RDKit 3D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + 1.9253 11.3798 43.0930 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1187 11.5250 43.8116 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8593 11.7506 43.5154 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0247 10.3179 42.8679 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4219 13.5864 42.0780 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2699 14.0798 43.3944 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2839 13.3893 44.2247 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1002 15.4586 43.6424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9965 15.8059 44.6597 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3153 11.5832 41.2026 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5089 11.7388 41.8986 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4369 10.5162 41.0161 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0996 12.0938 40.2640 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6068 12.1470 41.8058 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7728 11.9197 40.8058 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6958 12.3180 41.2273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5519 12.4295 39.8681 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8893 10.8519 40.6202 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3601 14.5092 41.0181 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4524 14.1568 40.0014 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1790 15.8905 41.2614 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1279 16.5735 40.4263 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0635 16.3948 42.5804 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8541 17.7827 42.8177 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 14 1 0 + 5 6 2 0 + 5 14 1 0 + 5 19 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 23 2 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 10 14 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 21 23 1 0 + 23 24 1 0 +V 24 * +M END +> (95) +HIPK2 + +> (95) +DYRK + +> (95) +CMGC + +> (95) +7ncf + +> (95) +U82 + +> (95) + + +> (95) +A + +> (95) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (95) +8 8 8 8 16 16 16 16 16 8 8 8 8 8 8 8 8 8 16 16 16 16 16 na + +$$$$ +7l24_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 2.6955 17.8091 39.0484 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7119 16.9404 38.0783 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7855 16.9753 37.9658 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9481 16.8329 38.3788 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2200 15.8568 37.9165 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2614 16.0293 38.1884 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0788 14.8590 38.2379 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1083 15.9389 36.8354 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0752 17.8602 38.8842 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7816 18.8013 39.5192 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9782 15.9700 37.4113 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4810 15.2593 36.7722 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6072 15.9102 37.5621 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0420 15.1476 37.0471 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6078 16.8319 38.5569 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0462 18.8057 39.9123 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 9 1 0 + 2 3 1 0 + 2 9 2 0 + 2 11 1 0 + 4 13 1 0 + 4 15 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 15 1 0 + 9 10 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 16 1 1 0 +V 16 * +M END +> (96) +HPK1 + +> (96) +STE20 + +> (96) +STE + +> (96) +7l24 + +> (96) +XHV + +> (96) +A + +> (96) +A + +> (96) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (96) +16 16 16 16 3 3 3 3 16 16 16 16 16 16 3 na + +$$$$ +3qqu_chainB + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 3.7865 19.8960 40.6681 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3539 20.5589 40.1595 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6397 17.1026 39.4221 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1325 15.1302 42.4410 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4526 15.2912 43.2646 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7763 13.8309 42.2630 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5668 13.0334 42.9604 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6960 13.5954 41.1596 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1616 12.6275 41.0466 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9917 14.6535 40.2096 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6775 14.4564 39.3990 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2137 18.6010 40.6016 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8929 17.5349 41.5414 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2026 17.7651 42.3395 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4163 16.2209 41.4893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3749 16.0003 40.3246 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1114 18.3531 39.5171 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3598 19.1251 38.8038 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7006 20.4396 41.3217 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 1 0 + 3 16 2 0 + 3 17 1 0 + 4 5 1 0 + 4 6 2 0 + 4 15 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 16 1 0 + 12 13 1 0 + 12 17 2 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 18 1 0 + 1 19 1 0 +V 19 * +M END +> (97) +IGF1R + +> (97) +InsR + +> (97) +TK + +> (97) +3qqu + +> (97) +01P + +> (97) + + +> (97) +B + +> (97) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (97) +5 5 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4d2r_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 4.3855 17.0757 40.8510 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9778 16.9736 40.0393 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3890 14.0851 43.0601 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9576 17.9933 42.3281 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6380 18.1840 41.1512 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5909 19.0790 40.5485 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2034 16.1220 41.8288 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3086 16.6469 42.7821 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9649 15.8602 43.8808 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2839 16.2196 44.6381 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5334 14.5965 43.9618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2697 13.9809 44.8091 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7193 14.8384 42.0023 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4023 14.4414 41.2659 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0434 18.9245 42.9913 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 1 7 1 0 + 3 11 1 0 + 3 13 2 0 + 4 5 2 0 + 4 8 1 0 + 5 6 1 0 + 7 8 2 0 + 7 13 1 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 14 1 0 + 15 4 1 0 +V 15 * +M END +> (98) +IGF1R + +> (98) +InsR + +> (98) +TK + +> (98) +4d2r + +> (98) +DYK + +> (98) +A + +> (98) +A + +> (98) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (98) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3ekk_altA_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.0867 15.5789 37.6887 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9419 14.7512 36.9944 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0861 15.9934 37.5564 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3438 16.3520 37.4925 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9391 15.1026 39.0421 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7324 14.1283 39.2103 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0772 15.9633 40.1053 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4311 17.1359 40.0381 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8060 15.3515 41.4248 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0282 13.9992 41.5872 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4661 13.2578 40.5520 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8069 13.3958 42.8034 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9845 12.3383 42.9323 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3552 14.1632 43.8535 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1757 13.7047 44.8148 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1308 15.5115 43.6863 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7748 16.0961 44.5218 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3514 16.1309 42.4730 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1381 17.5119 42.2886 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 2 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 +V 19 * +M END +> (99) +INSR + +> (99) +InsR + +> (99) +TK + +> (99) +3ekk + +> (99) +GS2 + +> (99) +A + +> (99) +A + +> (99) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (99) +5 5 5 5 5 5 1 1 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6n8g_altB_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.4241 18.8931 39.5451 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8485 17.6311 39.3133 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0764 17.2551 39.9682 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2633 16.9078 38.2827 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8608 15.6989 37.8263 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1093 15.0629 38.2704 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5737 15.4387 36.7144 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4946 14.5451 36.1130 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4054 16.4782 36.4725 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0543 16.5646 35.7034 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2024 17.3678 37.4473 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7381 18.5591 37.6204 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3833 19.3343 38.6686 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8522 20.2960 38.8158 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9830 19.7025 40.5908 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 11 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (100) +IRAK4 + +> (100) +IRAK + +> (100) +TKL + +> (100) +6n8g + +> (100) +KFD + +> (100) +B + +> (100) +B + +> (100) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (100) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3e64_altA_chainA + RDKit 3D + + 29 29 0 0 0 0 0 0 0 0999 V2000 + 1.4914 13.3642 36.1557 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2285 16.9943 38.4343 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9118 17.8865 37.9146 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5830 12.0453 38.2711 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4213 15.8066 37.7219 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2676 15.7805 36.6532 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7430 14.5274 37.6299 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1974 15.2416 38.2465 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4932 15.0548 37.0406 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2336 13.7946 38.2705 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7561 13.1302 37.5486 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9645 13.4499 38.4837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8148 14.6539 38.4065 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1606 14.8997 35.7968 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6230 15.6217 36.4114 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4703 14.4384 35.0905 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9545 15.4081 35.2496 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5239 12.8089 35.8228 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9614 12.0357 36.4543 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3149 13.3216 35.2755 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8307 12.3520 35.1164 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7718 13.8165 36.6965 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0591 13.1563 37.4728 S 0 0 0 0 0 6 0 0 0 0 0 0 + 2.0291 14.6601 39.7924 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3493 13.7635 40.3024 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8213 15.8465 40.5034 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9483 15.8579 41.5758 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4451 17.0343 39.8268 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1721 18.2804 40.5498 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 23 2 0 + 2 3 1 0 + 2 5 2 0 + 2 28 1 0 + 4 23 2 0 + 5 6 1 0 + 5 13 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 22 1 0 + 11 12 1 0 + 11 22 1 0 + 11 23 1 0 + 13 23 1 0 + 13 24 2 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 14 22 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 18 22 1 0 + 24 25 1 0 + 24 26 1 0 + 26 27 1 0 + 26 28 2 0 + 28 29 1 0 +V 29 * +M END +> (101) +JAK2 + +> (101) +JakA + +> (101) +TK + +> (101) +3e64 + +> (101) +5B3 + +> (101) +A + +> (101) +A + +> (101) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (101) +12 12 12 12 12 12 4 4 4 4 5 5 12 4 4 4 4 4 4 4 4 4 12 12 12 12 12 16 na + +$$$$ +3lpb_altA_chainB + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 2.9352 13.9389 38.0967 S 0 0 0 0 0 6 0 0 0 0 0 0 + 3.0507 12.8591 39.0542 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0721 14.3433 37.3001 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6685 13.6546 37.1227 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9752 12.9665 36.4499 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3937 13.1760 37.6491 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0150 13.8857 38.3846 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5376 12.2045 38.1220 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3233 13.0805 36.8336 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4275 15.4146 38.9476 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4633 15.4583 40.3383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7973 14.5907 40.8879 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0727 16.6109 41.0396 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1276 16.6457 42.1177 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6067 17.7237 40.3049 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6102 17.6700 38.9067 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3020 18.5416 38.3485 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0027 16.5163 38.2066 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9759 16.4842 37.1274 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2044 18.9973 40.9919 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 3 2 0 + 1 4 1 0 + 1 10 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 2 0 + 10 18 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 15 20 1 0 +V 20 * +M END +> (102) +JAK2 + +> (102) +JakA + +> (102) +TK + +> (102) +3lpb + +> (102) +NVB + +> (102) +A + +> (102) +B + +> (102) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (102) +12 12 12 5 5 5 5 5 5 12 12 12 12 12 16 12 12 12 12 na + +$$$$ +3tjc_chainA + RDKit 3D + + 25 26 0 0 0 0 0 0 0 0999 V2000 + 1.3276 12.2943 35.4262 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0385 11.2610 35.2343 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4336 12.9122 35.5096 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1470 12.7693 34.3773 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5070 14.6645 40.2866 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2555 14.2082 41.2326 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5184 14.1815 34.5089 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6286 14.7926 34.6602 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0426 14.5182 33.6144 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4311 14.2753 35.7182 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7354 15.3076 35.8907 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3160 13.6538 35.5808 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6253 13.7838 36.8316 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1935 15.9804 37.7699 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4641 16.4417 36.8316 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1268 12.3761 36.6921 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9703 11.6875 36.6428 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4978 12.1196 37.5445 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3721 16.1155 40.1077 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9684 13.8669 39.2120 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0736 12.7981 39.3256 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3036 14.5245 37.9317 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7347 16.7745 38.8392 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6502 17.8458 38.7320 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7591 16.9321 41.1945 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 16 1 0 + 4 7 1 0 + 5 6 1 0 + 5 19 2 0 + 5 20 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 16 1 0 + 13 22 1 0 + 14 15 1 0 + 14 22 1 0 + 14 23 2 0 + 16 17 1 0 + 16 18 1 0 + 19 23 1 0 + 20 21 1 0 + 20 22 2 0 + 23 24 1 0 + 25 19 1 0 +V 25 * +M END +> (103) +JAK2 + +> (103) +JakA + +> (103) +TK + +> (103) +3tjc + +> (103) +0TP + +> (103) + + +> (103) +A + +> (103) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (103) +5 5 5 5 16 16 5 5 5 5 5 5 5 16 16 5 5 5 16 16 16 16 16 16 na + +$$$$ +4aqc_altB_chainB + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 2.5050 12.7026 39.1122 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4700 13.8245 38.1435 S 0 0 0 0 0 6 0 0 0 0 0 0 + 3.6443 14.0292 37.2864 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9980 13.5700 37.0674 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1259 12.6561 36.4871 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8915 14.4180 36.3909 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1053 13.4850 37.6869 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0759 15.3476 39.0009 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9438 15.3802 40.3913 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0928 14.4839 40.9752 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6156 16.5891 41.0201 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5306 16.6179 42.0964 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8581 16.5042 38.2482 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9454 16.4702 37.1723 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5294 17.6992 38.8792 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3761 18.5872 38.2839 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3926 17.7743 40.2760 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0560 19.0557 40.9146 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 2 0 + 2 4 1 0 + 2 8 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 8 9 2 0 + 8 13 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 17 2 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 +V 18 * +M END +> (104) +JAK2 + +> (104) +JakA + +> (104) +TK + +> (104) +4aqc + +> (104) +88A + +> (104) +B + +> (104) +B + +> (104) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (104) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5ut6_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -0.6293 15.1907 41.9007 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0720 14.8193 42.8131 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2127 15.3046 39.8363 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2969 14.4422 40.7787 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4170 13.3748 40.6666 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6957 14.9153 38.4400 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4387 13.8777 38.2267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7752 15.0453 38.3635 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3023 16.4380 41.6404 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1992 16.5317 40.3699 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0351 15.7764 37.5424 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9085 15.6306 37.6415 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5153 17.4670 42.4615 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 9 1 0 + 3 4 1 0 + 3 6 1 0 + 3 10 2 0 + 4 5 1 0 + 6 7 1 0 + 6 8 1 0 + 6 11 1 0 + 9 10 1 0 + 11 12 1 0 + 13 9 1 0 +V 13 * +M END +> (105) +JAK2-b + +> (105) +JakB + +> (105) +TK + +> (105) +5ut6 + +> (105) +8MY + +> (105) +A + +> (105) +A + +> (105) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (105) +14 14 14 14 14 4 4 4 9 14 3 3 na + +$$$$ +6m9h_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -0.4914 15.1113 42.7684 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7344 14.8790 43.7947 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0110 14.8647 40.6844 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1026 16.2214 40.9681 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0310 17.0349 40.2703 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3408 14.2187 39.3336 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4997 13.5862 39.0482 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2312 13.6033 39.4627 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6052 15.1992 38.1893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8106 14.6397 37.2766 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4674 15.8179 38.4379 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4061 16.3311 42.2575 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2316 14.2219 41.8214 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5161 16.0259 37.9848 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2594 15.4584 37.7680 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6246 17.4540 42.9207 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 1 0 + 1 13 2 0 + 3 4 2 0 + 3 6 1 0 + 3 13 1 0 + 4 5 1 0 + 4 12 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 14 1 0 + 14 15 1 0 + 16 12 1 0 +V 16 * +M END +> (106) +JAK2-b + +> (106) +JakB + +> (106) +TK + +> (106) +6m9h + +> (106) +J9D + +> (106) +B + +> (106) +A + +> (106) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (106) +14 14 14 14 14 8 4 4 4 4 4 9 14 3 3 na + +$$$$ +4hvg_chainA + RDKit 3D + + 20 19 0 0 0 0 0 0 0 0999 V2000 + 1.6337 17.6466 39.9816 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1042 17.3246 40.7791 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1012 16.6532 39.0181 C 0 0 1 0 0 0 0 0 0 0 0 0 + 2.8195 17.0755 38.3153 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8175 15.5030 39.7549 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1333 15.0489 40.4717 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6877 15.8949 40.2813 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1376 14.7522 39.0324 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8335 16.1431 38.2610 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2963 15.6884 39.2103 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5859 16.5188 39.8544 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0560 14.8589 39.8233 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1566 15.3667 38.6234 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2147 17.2704 37.4489 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0754 18.0820 38.1162 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6656 16.8993 36.9240 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9416 17.6378 36.7245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2297 15.0473 37.3968 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6127 14.3639 37.9517 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8702 18.9753 39.8659 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 6 + 3 5 1 0 + 3 9 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 1 0 + 9 14 1 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 20 1 1 0 +V 20 * +M END +> (107) +JAK3 + +> (107) +JakA + +> (107) +TK + +> (107) +4hvg + +> (107) +19Q + +> (107) + + +> (107) +A + +> (107) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (107) +5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 na + +$$$$ +4hvh_chainA + RDKit 3D + + 20 19 0 0 0 0 0 0 0 0999 V2000 + 1.1493 17.8120 39.4380 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6190 17.4016 40.1934 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5039 16.9542 38.2958 C 0 0 1 0 0 0 0 0 0 0 0 0 + 2.4208 17.3076 37.8242 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7465 15.5079 38.7707 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8226 14.5561 37.5672 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6286 14.8716 36.9048 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8770 14.5791 37.0254 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0160 13.5422 37.9175 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0547 15.4302 39.5673 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8851 15.7412 38.9335 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2165 14.4053 39.9012 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9922 16.0889 40.4335 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6919 15.0939 39.6359 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1276 15.1421 39.1383 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3382 17.0017 37.2956 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5711 16.6460 37.7802 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5669 16.3655 36.4406 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1919 18.0272 36.9565 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4906 19.1151 39.5364 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 6 + 3 5 1 0 + 3 16 1 0 + 5 6 1 0 + 5 10 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 1 1 0 +V 20 * +M END +> (108) +JAK3 + +> (108) +JakA + +> (108) +TK + +> (108) +4hvh + +> (108) +19R + +> (108) + + +> (108) +A + +> (108) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (108) +5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 na + +$$$$ +7uyv_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.4822 16.0980 39.5092 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5224 15.2094 39.8149 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1814 14.1087 37.6939 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4538 13.3343 36.9921 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4785 17.0631 37.8631 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8043 15.9779 38.2878 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1576 14.9844 37.3891 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6322 14.8945 36.4498 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8604 14.2200 38.8967 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6606 13.5313 39.1240 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1817 15.3114 40.9896 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0875 17.1695 40.4437 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 9 1 0 + 2 11 1 0 + 3 4 1 0 + 3 7 1 0 + 3 9 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 9 10 1 0 + 12 1 1 0 +V 12 * +M END +> (109) +JAK3 + +> (109) +JakA + +> (109) +TK + +> (109) +7uyv + +> (109) +OV5 + +> (109) +A + +> (109) +A + +> (109) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (109) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4hys_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.4858 18.2814 42.0127 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0642 17.8682 40.5251 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8220 17.9904 39.7654 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3495 18.8155 41.0519 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6612 16.6097 41.1424 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6579 16.9220 42.0753 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0806 15.9014 42.8345 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3134 16.1269 43.5603 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5022 14.6037 42.6458 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0544 13.8091 43.2242 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4949 14.3023 41.7224 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8095 13.2769 41.5958 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0789 15.2813 40.9726 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8517 15.0370 40.2588 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5669 19.0421 42.7325 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 1 0 + 1 6 1 0 + 2 3 1 0 + 2 4 2 0 + 2 5 1 0 + 5 6 2 0 + 5 13 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (110) +JNK1 + +> (110) +MAPK + +> (110) +CMGC + +> (110) +4hys + +> (110) +1BJ + +> (110) + + +> (110) +A + +> (110) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (110) +9 9 9 9 9 9 9 9 9 9 9 9 9 9 na + +$$$$ +4hyu_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 2.1606 18.1359 42.0087 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9624 18.6263 40.9790 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7007 17.6878 40.4839 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4243 17.7997 39.6900 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4036 16.7791 42.1409 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3842 16.4565 41.1849 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8744 15.1468 41.0472 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3673 14.1430 41.8577 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7160 13.1265 41.7509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3972 14.4622 42.8173 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0140 13.6843 43.4610 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9189 15.7573 42.9572 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1675 15.9752 43.7018 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7962 14.9591 40.0640 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7812 13.9534 40.3041 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2553 18.9337 42.7158 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 2 3 2 0 + 3 4 1 0 + 3 6 1 0 + 5 6 2 0 + 5 12 1 0 + 6 7 1 0 + 7 8 2 0 + 7 14 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (111) +JNK1 + +> (111) +MAPK + +> (111) +CMGC + +> (111) +4hyu + +> (111) +1BK + +> (111) + + +> (111) +A + +> (111) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-B2 AP + +> (111) +9 16 16 16 16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +3kvx_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.2524 16.9382 41.4748 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5588 16.7436 42.2794 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6752 18.4442 40.1727 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1018 19.4302 40.0618 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6743 15.9306 40.5657 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3469 14.9196 40.7584 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9959 17.4548 39.2587 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6329 17.6850 38.4176 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2619 13.9776 38.6779 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6430 13.6009 39.4789 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7262 13.2906 37.5985 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5540 15.3838 37.4159 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7973 18.1816 41.2489 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4928 16.1461 39.4228 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5433 14.1266 36.8982 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7289 15.1984 38.5356 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1165 13.7418 35.6863 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5403 19.1865 42.0708 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 13 1 0 + 3 4 1 0 + 3 7 1 0 + 3 13 2 0 + 5 6 1 0 + 5 14 1 0 + 7 8 1 0 + 7 14 2 0 + 9 10 1 0 + 9 11 2 0 + 9 16 1 0 + 11 15 1 0 + 12 15 2 0 + 12 16 1 0 + 14 16 1 0 + 15 17 1 0 + 18 13 1 0 +V 17 * +V 18 * +M END +> (112) +JNK3 + +> (112) +MAPK + +> (112) +CMGC + +> (112) +3kvx + +> (112) +FMY + +> (112) +B + +> (112) +A + +> (112) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-B2 AP + +> (112) +16 16 16 16 16 16 16 16 14 14 14 14 16 16 14 9 na na + +$$$$ +4kkh_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.5774 17.4321 42.7187 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1040 16.1801 42.5093 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9795 15.5250 42.9804 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6504 16.0276 43.6613 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2458 14.2047 42.5994 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3391 13.5360 43.0742 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4335 12.6352 42.7562 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3696 13.5702 41.7205 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5378 12.5519 41.4025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7297 14.2937 41.2666 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4283 13.8303 40.5857 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9332 15.5612 41.6645 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9023 16.4126 41.3454 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6966 17.5511 41.9793 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0444 18.3438 43.4848 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5279 18.6045 41.9011 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 14 1 0 + 2 3 2 0 + 2 12 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 8 2 0 + 6 7 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 2 0 + 15 1 1 0 + 14 16 1 0 +V 15 * +V 16 * +M END +> (113) +JNK3 + +> (113) +MAPK + +> (113) +CMGC + +> (113) +4kkh + +> (113) +1RQ + +> (113) + + +> (113) +A + +> (113) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (113) +9 16 16 16 16 3 3 16 16 16 16 16 16 14 na na + +$$$$ +2ofu_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 1.9106 16.9761 41.2746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4241 16.2017 40.1415 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5907 16.3631 42.4202 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9330 16.9691 43.2461 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7904 14.9565 42.4223 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2925 14.4687 43.2447 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3060 14.2007 41.3003 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6282 14.7810 40.1479 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2916 14.1639 39.3279 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4839 12.8160 41.4386 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7561 16.9183 39.0991 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4727 16.2454 37.8464 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0358 16.9337 37.1712 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1658 15.3822 38.0340 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4068 15.9146 37.3923 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8763 12.0454 40.3059 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9666 10.9978 40.5929 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8367 12.4052 39.9368 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1257 12.1439 39.5217 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7388 18.3753 41.2320 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 3 1 0 + 2 8 1 0 + 2 11 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 16 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 1 1 0 +V 20 * +M END +> (114) +LCK + +> (114) +Src + +> (114) +TK + +> (114) +2ofu + +> (114) +1N9 + +> (114) + + +> (114) +A + +> (114) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (114) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 3 na + +$$$$ +6hxf_altA_chainB + RDKit 3D + + 24 25 0 0 0 0 0 0 0 0999 V2000 + 0.7277 16.3140 41.9667 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0557 16.0546 41.6678 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7831 16.8517 41.7121 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4518 14.7800 41.3135 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4894 14.5879 41.0837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5283 13.7399 41.2491 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1993 14.0063 41.5653 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5268 13.2073 41.5393 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1998 15.2804 41.9116 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2370 15.4756 42.1408 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9372 12.3635 40.8520 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9956 12.1440 39.8278 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2601 13.0993 38.8453 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7160 14.0322 38.8440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2158 12.8587 37.8717 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4137 13.6048 37.1163 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9171 11.6674 37.8631 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6551 11.4778 37.0976 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6699 10.7206 38.8380 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2213 9.7921 38.8378 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7164 10.9572 39.8173 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5332 10.2124 40.5777 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3871 11.4015 41.3750 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2981 17.6076 42.3344 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 23 2 0 + 12 13 2 0 + 12 21 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 17 19 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 1 24 1 0 +V 24 * +M END +> (115) +LOK + +> (115) +STE20 + +> (115) +STE + +> (115) +6hxf + +> (115) +R70 + +> (115) +A + +> (115) +B + +> (115) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (115) +16 16 16 16 16 16 16 16 16 16 6 16 16 16 16 16 16 16 16 16 16 16 6 na + +$$$$ +3rcj_chainA + RDKit 3D + + 21 22 0 0 0 0 0 0 0 0999 V2000 + 2.0156 18.4851 40.0054 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5692 18.9501 38.8705 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9850 17.9572 38.1656 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7406 16.8483 38.7658 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1253 17.1214 39.9407 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7888 16.4078 40.6782 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0718 15.5072 38.2615 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7609 15.4220 37.2203 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5547 14.7554 38.8577 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5570 15.2948 38.3620 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1001 14.6635 39.4964 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4499 14.3302 40.2918 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4893 14.4663 39.5949 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9062 13.9829 40.4661 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.3369 14.9001 38.5555 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4034 14.7481 38.6319 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7956 15.5332 37.4141 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.4461 15.8648 36.6183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4034 15.7300 37.3185 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9842 16.2131 36.4482 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4076 19.3184 41.0854 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 2 0 + 3 4 1 0 + 4 5 1 0 + 4 7 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 2 0 + 10 19 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 21 1 1 0 +V 21 * +M END +> (116) +PDK1 + +> (116) +PDK1 + +> (116) +AGC + +> (116) +3rcj + +> (116) +3RC + +> (116) + + +> (116) +A + +> (116) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (116) +14 9 9 9 9 9 8 8 8 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5hkm_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.9203 18.5994 39.9605 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1393 18.7135 38.0604 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7798 16.6493 38.9181 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0621 17.2185 39.9473 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6222 16.6076 40.7217 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2080 14.6360 37.6131 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3438 13.5567 37.5429 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5895 15.1097 36.7086 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1473 14.8624 37.7221 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4831 19.2936 39.0108 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2925 17.4185 37.9914 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6790 19.5008 37.0817 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1884 19.0794 36.3182 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5683 20.5039 37.1223 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9633 15.1629 38.8164 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5815 14.6881 39.7202 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0236 14.9355 38.7067 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2285 19.3465 41.0198 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 10 1 0 + 2 10 2 0 + 2 11 1 0 + 2 12 1 0 + 3 4 1 0 + 3 11 2 0 + 3 15 1 0 + 4 5 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 15 1 0 + 12 13 1 0 + 12 14 1 0 + 15 16 1 0 + 15 17 1 0 + 18 1 1 0 +V 18 * +M END +> (117) +PDK1 + +> (117) +PDK1 + +> (117) +AGC + +> (117) +5hkm + +> (117) +61Y + +> (117) + + +> (117) +A + +> (117) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (117) +14 14 14 14 14 8 8 8 8 14 14 5 5 5 8 8 8 na + +$$$$ +4gw8_altB_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 3.1083 15.7606 38.6448 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2601 15.4032 39.9884 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6338 16.1329 40.6916 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9371 14.1186 40.4392 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4524 13.1829 39.5384 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3042 13.5405 38.2031 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9299 12.8137 37.4974 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6305 14.8211 37.7596 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5079 15.0770 36.7175 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9945 13.5349 41.6763 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1419 12.3816 41.5721 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1182 12.6339 41.8488 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5035 11.5770 42.2124 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2132 12.0019 40.1967 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4260 17.0410 38.1903 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 1 1 0 +V 15 * +M END +> (118) +PIM1 + +> (118) +PIM + +> (118) +CAMK + +> (118) +4gw8 + +> (118) +3RA + +> (118) +B + +> (118) +A + +> (118) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP GA + +> (118) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4wt6_chainA + RDKit 3D + + 9 9 0 0 0 0 0 0 0 0999 V2000 + 2.4810 18.1602 38.9920 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3251 16.4598 38.7986 S 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1188 18.6414 37.9017 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4713 17.7848 37.0646 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1330 16.5208 37.3717 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3691 15.4517 36.6443 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8490 15.5386 35.7598 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0706 14.5434 36.9697 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9635 18.8974 40.0450 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 2 5 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 9 1 1 0 +V 9 * +M END +> (119) +PIM1 + +> (119) +PIM + +> (119) +CAMK + +> (119) +4wt6 + +> (119) +3U6 + +> (119) + + +> (119) +A + +> (119) +FP FP FP FP FP FP FP FP AP + +> (119) +14 14 14 14 14 5 5 5 na + +$$$$ +8bjt_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + 1.8191 16.4499 41.0208 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8879 15.7571 39.8868 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1990 14.4648 39.8531 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4965 13.8088 41.0479 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7894 12.7695 41.0302 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4183 14.4855 42.2654 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6221 13.9788 43.1971 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0713 15.8269 42.2439 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9967 16.3852 43.1653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2887 13.7252 38.5184 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9522 12.2316 38.6256 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9210 12.1145 38.9589 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6221 11.7588 39.3438 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0745 11.7607 37.6502 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3862 14.3485 37.4410 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3468 14.3012 37.7658 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5008 13.7973 36.5077 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6713 15.3891 37.2857 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6365 13.7938 38.0828 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1831 13.4007 38.7671 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4424 17.7922 40.9883 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 3 4 2 0 + 3 10 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 15 1 0 + 10 19 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 20 1 0 + 21 1 1 0 +V 21 * +M END +> (120) +PLK1 + +> (120) +PLK + +> (120) +Other + +> (120) +8bjt + +> (120) +8X7 + +> (120) + + +> (120) +A + +> (120) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (120) +14 14 14 14 14 14 14 14 14 4 4 4 4 4 4 4 4 4 3 3 na + +$$$$ +6pk6_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -0.4794 11.2809 42.5507 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2087 11.5889 43.1780 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1621 16.0690 42.1856 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2583 14.7759 41.8716 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0492 15.5815 42.5698 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9341 16.1930 42.6663 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0295 14.2039 42.8272 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8139 13.6803 43.3535 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0910 13.5982 42.3388 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4495 12.1665 42.1536 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5219 11.8428 41.6487 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4732 9.8874 42.1078 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0617 9.8269 41.1600 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5043 9.5643 41.9643 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1881 8.9579 43.0918 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5676 17.4812 42.0500 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 1 0 + 1 12 1 0 + 3 4 1 0 + 3 5 2 0 + 4 9 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 2 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 3 1 0 +V 15 * +V 16 * +M END +> (121) +PRP4 + +> (121) +DYRK + +> (121) +CMGC + +> (121) +6pk6 + +> (121) +OND + +> (121) +A + +> (121) +A + +> (121) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP X-FP AP + +> (121) +5 5 14 14 14 14 14 14 14 1 1 4 4 4 na na + +$$$$ +6hvd_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 3.4706 12.9686 40.3346 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3657 12.5796 39.8720 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3877 14.2965 40.6362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2144 14.9591 40.4264 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2057 14.7909 41.2263 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2772 12.5637 41.2245 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4754 11.8799 41.4611 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4151 12.1137 40.6169 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4947 11.0700 40.3507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6735 16.2581 41.9604 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1678 13.8986 41.5301 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8972 16.1506 41.4928 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2185 14.7651 42.1864 S 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0510 17.4769 42.1815 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 3 5 1 0 + 5 11 2 0 + 5 12 1 0 + 6 7 1 0 + 6 8 2 0 + 6 11 1 0 + 8 9 1 0 + 10 12 2 0 + 10 13 1 0 + 11 13 1 0 + 10 14 1 0 +V 14 * +M END +> (122) +SLK + +> (122) +STE20 + +> (122) +STE + +> (122) +6hvd + +> (122) +GUQ + +> (122) +B + +> (122) +A + +> (122) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (122) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +3fqs_altA_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + 4.0244 15.0224 38.7095 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2213 15.6465 37.9403 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5787 15.5219 39.9422 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1851 13.6805 38.5736 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1332 16.7646 40.0177 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0390 13.4059 41.0111 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8920 12.7591 39.7428 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5894 14.6909 41.0671 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6890 17.2828 41.1568 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5549 13.2327 37.5096 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1370 15.1993 42.2857 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1376 14.5867 43.1751 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6856 16.5136 42.3264 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3343 16.9387 43.2551 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4734 12.1878 39.6154 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7503 13.0032 39.6341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2785 11.5103 40.4467 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3838 11.6441 38.6749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8883 11.5910 39.7138 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9037 11.9772 39.8033 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7869 11.0503 38.7728 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6816 10.9164 40.5446 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2709 18.6174 41.1302 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 3 5 1 0 + 3 8 2 0 + 4 7 1 0 + 4 10 2 0 + 5 9 2 0 + 6 7 1 0 + 6 8 1 0 + 7 15 1 0 + 7 19 1 0 + 8 11 1 0 + 9 13 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 23 9 1 0 +V 23 * +M END +> (123) +SYK + +> (123) +Syk + +> (123) +TK + +> (123) +3fqs + +> (123) +585 + +> (123) +A + +> (123) +A + +> (123) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (123) +14 14 14 14 14 14 13 14 14 14 14 14 14 14 8 8 8 8 8 8 8 8 na + +$$$$ +6vov_chainB + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.8873 16.1517 40.7350 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1581 15.3306 38.9540 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0735 14.0694 39.5209 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5544 13.2423 39.0198 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8163 14.8855 41.2733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2713 14.7319 42.1930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5531 16.3741 39.5758 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4134 13.8329 40.6757 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8501 15.5402 37.7641 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9009 16.4670 37.3659 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3014 14.7653 37.2992 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2512 17.3207 41.3510 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 2 0 + 1 7 1 0 + 2 3 1 0 + 2 7 2 0 + 2 9 1 0 + 3 4 1 0 + 3 8 2 0 + 5 6 1 0 + 5 8 1 0 + 9 10 1 0 + 9 11 1 0 + 12 1 1 0 +V 12 * +M END +> (124) +SYK + +> (124) +Syk + +> (124) +TK + +> (124) +6vov + +> (124) +R6D + +> (124) + + +> (124) +B + +> (124) +FP FP FP FP FP FP FP FP FP FP FP AP + +> (124) +14 14 14 14 14 14 14 14 5 5 5 na + +$$$$ +4l3p_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.0364 16.9221 40.1081 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7576 15.6133 39.7019 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1920 14.9617 40.3513 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2034 15.1386 38.4636 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9876 14.1219 38.1700 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9241 15.9684 37.6059 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2686 15.6033 36.6497 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7464 17.7430 39.2291 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2104 19.2827 39.3953 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9576 19.4284 37.9913 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4471 20.3247 37.6398 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8859 18.2443 37.2960 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3185 18.0906 36.3184 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1907 17.2688 38.0006 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5492 17.4428 41.4103 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 14 1 0 + 8 9 1 0 + 8 14 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 15 1 1 0 +V 15 * +M END +> (125) +TAK1 + +> (125) +MLK + +> (125) +TKL + +> (125) +4l3p + +> (125) +1UH + +> (125) + + +> (125) +A + +> (125) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (125) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4l52_altA_chainA + RDKit 3D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + 0.9384 16.6804 40.1257 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6581 17.4042 39.1990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1239 19.0969 39.4211 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9518 19.0845 37.8423 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8032 17.7773 37.2834 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0945 16.8532 38.0001 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7790 15.5259 37.7212 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1116 15.0745 36.7981 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0315 14.7772 38.6358 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7868 13.7483 38.4173 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6020 15.3555 39.8277 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0084 14.7804 40.5229 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5204 17.2998 41.2905 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 6 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (126) +TAK1 + +> (126) +MLK + +> (126) +TKL + +> (126) +4l52 + +> (126) +1UL + +> (126) +A + +> (126) +A + +> (126) +FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (126) +16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3gxl_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 3.0411 18.4326 39.1166 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2562 17.9232 40.0950 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5756 16.7598 39.8766 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7865 16.2995 40.9575 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5605 15.3174 40.8900 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6629 16.0559 38.6399 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9897 14.8240 38.3040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3445 14.3534 39.0310 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1646 14.2263 37.0359 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6544 13.3057 36.7937 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0131 14.8422 36.0849 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1517 14.3905 35.1138 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6922 16.0705 36.4101 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3386 16.5293 35.6766 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5285 16.6827 37.6653 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2008 17.8428 37.8983 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2426 16.9145 42.1156 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7607 19.6949 39.4045 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 16 1 0 + 2 3 1 0 + 3 4 1 0 + 3 6 2 0 + 4 5 1 0 + 6 7 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 2 0 + 4 17 1 0 + 18 1 1 0 +V 17 * +V 18 * +M END +> (127) +TGFbR1 + +> (127) +STKR + +> (127) +TKL + +> (127) +3gxl + +> (127) +QIG + +> (127) + + +> (127) +A + +> (127) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (127) +14 14 14 5 5 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +3hmm_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 3.0092 19.2551 39.4653 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1984 18.9409 40.4928 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3662 17.8855 40.3846 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3140 17.0818 39.2213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4590 15.9388 39.0028 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2275 15.6294 39.7770 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5110 15.2188 37.7832 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1319 14.3649 37.6287 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4090 15.6247 36.7705 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4559 15.0778 35.8403 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2532 16.7551 36.9750 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9327 17.0547 36.1908 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2215 17.4922 38.1792 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0517 18.5574 38.2999 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5560 17.6359 41.4990 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8631 20.4338 39.6382 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 4 13 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 3 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (128) +TGFbR1 + +> (128) +STKR + +> (128) +TKL + +> (128) +3hmm + +> (128) +855 + +> (128) + + +> (128) +A + +> (128) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (128) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +5qil_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.4725 16.8909 39.6827 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7433 15.8691 40.2901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8232 14.5656 39.7813 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2705 13.7550 40.2327 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6379 14.3519 38.6762 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7351 13.3645 38.2496 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3298 15.4341 38.1247 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9539 15.2526 37.2622 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2631 16.6927 38.6075 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2210 18.0902 40.4487 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3444 17.7456 41.4578 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0627 16.3944 41.3590 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4528 15.8772 41.9759 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6649 18.5383 42.5154 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8786 19.3965 40.2050 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 9 2 0 + 1 10 1 0 + 2 3 2 0 + 2 12 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 10 11 2 0 + 11 12 1 0 + 12 13 1 0 + 11 14 1 0 + 15 10 1 0 +V 14 * +V 15 * +M END +> (129) +TGFbR1 + +> (129) +STKR + +> (129) +TKL + +> (129) +5qil + +> (129) +J2V + +> (129) +A + +> (129) +A + +> (129) +FP FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (129) +14 14 14 14 14 14 14 14 14 16 14 14 14 na na + +$$$$ +6b8y_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.8266 17.2021 39.2676 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7269 17.6084 38.2146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6430 18.5909 38.3291 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7213 19.1669 39.5433 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9989 18.8181 40.6174 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0574 17.8845 40.4975 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0416 16.1958 38.7181 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8503 15.6913 39.2261 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3570 16.0055 37.4331 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0933 15.3075 36.7429 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4158 16.8297 37.1392 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8965 16.8554 36.2512 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2816 17.6029 41.5817 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6357 20.3284 39.7215 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 1 7 1 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 4 5 2 0 + 5 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 6 13 1 0 + 14 4 1 0 +V 13 * +V 14 * +M END +> (130) +TGFbR1 + +> (130) +STKR + +> (130) +TKL + +> (130) +6b8y + +> (130) +D0A + +> (130) +A + +> (130) +A + +> (130) +FP FP FP FP FP FP FP FP FP FP FP FP AP GA + +> (130) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +5ax9_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 2.4731 17.0458 37.7118 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9537 16.5795 36.8645 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0439 18.8759 39.1355 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2084 19.9135 39.3864 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1646 18.1705 39.9902 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5927 16.2825 38.5132 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4284 15.2493 38.2451 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9196 16.7884 39.6370 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7377 18.4027 37.9941 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6380 19.2606 37.2017 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0663 15.9588 40.3823 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1245 14.5792 40.0720 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8259 14.1408 40.7819 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8303 14.0572 40.1351 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5236 14.4858 39.0621 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3467 19.9620 36.5952 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4819 18.8662 41.1611 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 3 9 2 0 + 5 8 2 0 + 6 7 1 0 + 6 8 1 0 + 8 11 1 0 + 9 10 1 0 + 10 16 3 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 5 17 1 0 +V 17 * +M END +> (131) +TNIK + +> (131) +STE20 + +> (131) +STE + +> (131) +5ax9 + +> (131) +4KT + +> (131) + + +> (131) +A + +> (131) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (131) +16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 16 na + +$$$$ +6j5l_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 3.0131 17.5715 40.0570 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2912 17.2950 41.0740 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8019 17.2667 39.3692 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7791 16.9408 39.6979 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9676 17.5242 38.7493 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2801 18.4522 38.2937 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2533 16.9509 38.3554 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8527 17.4323 37.5968 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6933 15.7692 38.9358 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6393 15.3299 38.6556 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1182 15.1708 39.8856 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1932 14.2386 40.3333 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3264 15.7431 40.2769 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0834 15.1833 41.2439 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9717 15.4735 42.2048 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1824 14.0340 40.8583 S 0 0 0 0 0 6 0 0 0 0 0 0 + 3.9570 14.5407 39.6378 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0640 13.8110 42.0700 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3850 12.5737 40.1837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7812 12.8553 39.3210 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7457 12.1249 40.9439 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1442 11.8544 39.8766 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8026 19.0291 39.9697 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 2 0 + 16 18 2 0 + 16 19 1 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 23 1 1 0 +V 23 * +M END +> (132) +TRKA + +> (132) +Trk + +> (132) +TK + +> (132) +6j5l + +> (132) +B9C + +> (132) +B + +> (132) +A + +> (132) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (132) +4 4 4 16 16 16 16 16 16 16 16 16 16 5 5 12 12 12 12 12 12 12 na + +$$$$ +5nad_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 0.1155 14.5693 41.9572 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5604 14.5463 38.3505 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2435 14.6269 37.2797 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9986 14.3957 38.2561 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5116 14.3429 36.9869 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7690 13.8607 35.8437 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3945 13.9195 34.9530 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8789 14.4741 35.7037 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4737 12.8252 36.0127 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7708 14.3192 39.4342 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8403 14.2052 39.3361 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2334 14.3821 40.7124 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8657 14.3279 41.5862 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8719 14.5156 40.8299 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0161 14.5950 39.6804 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2831 14.7119 39.9334 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1693 15.7224 42.5858 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 14 1 0 + 2 3 1 0 + 2 4 2 0 + 2 15 1 0 + 4 5 1 0 + 4 10 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 17 1 1 0 +V 17 * +M END +> (133) +TTK + +> (133) +TTK + +> (133) +Other + +> (133) +5nad + +> (133) +8RH + +> (133) + + +> (133) +A + +> (133) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (133) +3 16 16 16 3 3 3 3 3 16 16 16 16 16 16 16 na + +$$$$ +6n6o_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + 1.0931 15.6864 43.1318 C 0 0 2 0 0 0 0 0 0 0 0 0 + 0.5215 15.4795 44.0366 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3512 14.8393 43.0356 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9384 14.9796 43.9431 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9307 15.1692 42.1733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0387 13.3507 42.8775 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5382 12.9993 43.7798 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9745 12.8075 42.7461 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1389 13.0757 41.6784 C 0 0 2 0 0 0 0 0 0 0 0 0 + -0.1069 13.9574 41.7658 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6902 13.6573 42.6363 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7019 13.8165 40.8635 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2477 15.4346 41.8962 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8060 15.7460 41.0133 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6712 16.0163 41.9689 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7342 11.5986 41.6753 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2060 11.3647 42.5996 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6267 10.9775 41.5996 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0818 11.4024 40.8243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8326 13.4108 40.4796 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0640 14.3412 40.5285 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5625 17.0236 43.0259 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 1 + 1 3 1 0 + 1 13 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 1 0 + 9 16 1 0 + 9 20 1 6 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 21 1 0 + 1 22 1 0 +V 22 * +M END +> (134) +TTK + +> (134) +TTK + +> (134) +Other + +> (134) +6n6o + +> (134) +KE7 + +> (134) + + +> (134) +A + +> (134) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (134) +15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 3 3 na + +$$$$ +4py1_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 2.6592 15.5189 37.4405 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7726 14.4491 37.3454 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0226 16.8626 38.0672 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0204 17.2997 38.1043 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7986 16.3867 39.0219 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9812 16.1185 37.2718 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2282 15.8595 37.2324 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8531 14.9806 37.0743 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4822 16.3189 38.1876 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3980 16.5755 36.4283 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8949 15.4826 37.2412 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7954 16.3341 37.4180 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6710 17.7616 37.5749 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5504 18.3879 37.5461 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4114 16.0495 37.5801 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5493 15.3992 37.5673 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2344 17.4475 37.7422 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0635 17.8877 37.8100 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3677 18.3526 37.7706 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2302 20.1340 38.0678 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 2 0 + 1 15 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 3 18 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 19 2 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 17 19 1 0 + 19 20 1 0 +V 20 * +M END +> (135) +TYK2 + +> (135) +JakA + +> (135) +TK + +> (135) +4py1 + +> (135) +2YK + +> (135) + + +> (135) +A + +> (135) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (135) +16 16 3 3 3 3 3 3 3 3 3 16 16 16 16 16 16 3 16 na + +$$$$ +8s98_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -0.6066 10.4074 43.8029 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4482 10.2650 44.4808 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2856 9.9497 44.2300 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8302 9.9413 42.8432 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6152 12.2426 42.8088 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2017 11.9075 41.0929 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6517 11.2493 40.3644 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6222 13.2364 41.1768 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4114 13.6063 40.5390 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9937 14.0870 42.1137 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3141 15.1142 42.2069 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9765 13.6130 42.9068 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2117 11.4243 41.9359 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3787 11.8134 43.6110 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3478 14.3192 43.8974 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 14 1 0 + 5 12 2 0 + 5 13 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 6 13 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 15 1 0 +V 15 * +M END +> (136) +TYK2-b + +> (136) +JakB + +> (136) +TK + +> (136) +8s98 + +> (136) +ZRU + +> (136) +B + +> (136) +A + +> (136) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (136) +3 3 3 3 14 14 14 14 14 14 14 16 14 3 na + +$$$$ +8tb5_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 1.2610 15.0664 42.0924 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4990 13.7437 42.4086 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1776 13.3594 43.3654 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1417 12.9051 41.5201 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3273 11.8775 41.7959 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5469 13.3597 40.2936 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0480 12.7096 39.5917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2917 14.6721 39.9917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6592 15.5293 40.8569 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4756 16.5549 40.5728 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6276 14.0364 37.4766 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3431 14.1591 36.9961 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4963 13.5445 38.4403 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2724 13.4277 36.8428 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2355 16.3263 38.1562 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6794 16.2174 37.5738 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6235 17.3380 38.0375 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0207 16.1407 39.2085 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2427 15.3526 37.6791 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2552 16.6439 38.7090 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5570 14.3153 37.7273 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7701 15.3122 38.4241 S 0 0 0 0 0 6 0 0 0 0 0 0 + 0.5612 15.9285 43.0278 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 22 1 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 11 19 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 15 19 1 0 + 19 22 1 0 + 20 22 2 0 + 21 22 2 0 + 1 23 1 0 +V 23 * +M END +> (137) +TYK2-b + +> (137) +JakB + +> (137) +TK + +> (137) +8tb5 + +> (137) +ZOQ + +> (137) +B + +> (137) +A + +> (137) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (137) +16 12 12 12 12 12 12 12 12 12 5 5 5 5 5 5 5 5 5 12 12 12 na + +$$$$ +3wf5_altB_chainA + RDKit 3D + + 30 32 0 0 0 0 0 0 0 0999 V2000 + 1.0017 17.8544 41.4606 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2485 16.4638 41.9667 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3902 15.8344 41.7315 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3938 16.4911 43.0467 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5009 15.8890 41.2981 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5071 14.8175 41.4979 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3620 16.3533 41.7789 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6823 16.0676 39.7704 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0413 15.3992 39.1955 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9894 15.6002 39.2957 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3443 14.2537 39.5692 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7824 13.5625 40.0453 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6424 14.0752 39.0412 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4875 12.9501 39.0036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1936 11.9980 39.4200 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7146 13.1393 38.4017 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4030 12.3086 38.3510 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.1013 14.3739 37.8522 C 0 0 0 0 0 0 0 0 0 0 0 0 + 9.0769 14.4666 37.3984 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2683 15.4641 37.8787 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5728 16.4061 37.4468 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0076 15.3204 38.4837 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9613 16.2472 38.6612 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2139 17.4614 39.3975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0729 17.4631 38.3167 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0241 18.1419 39.6593 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9510 18.0421 39.9986 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8876 19.1051 39.7660 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0798 17.5286 39.5917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7280 18.9004 42.3709 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 27 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 24 1 0 + 10 11 1 0 + 10 23 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 13 22 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 18 20 1 0 + 20 21 1 0 + 20 22 2 0 + 22 23 1 0 + 24 25 1 0 + 24 26 1 0 + 24 27 1 0 + 27 28 1 0 + 27 29 1 0 + 30 1 1 0 +V 30 * +M END +> (138) +p70S6K + +> (138) +RSK + +> (138) +AGC + +> (138) +3wf5 + +> (138) +FZ8 + +> (138) +B + +> (138) +A + +> (138) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (138) +5 5 5 5 5 5 5 15 5 14 14 14 14 14 14 14 14 14 14 14 14 14 14 5 5 5 5 5 5 na + +$$$$ +3wf6_altB_chainA + RDKit 3D + + 29 31 0 0 0 0 0 0 0 0999 V2000 + 1.3481 17.6632 41.6917 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0254 17.8714 40.3521 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5405 18.8315 40.3843 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2497 17.9008 39.5870 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0033 16.8501 39.9613 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9726 17.2092 40.3072 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9941 16.8216 38.8717 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9096 15.5850 40.3667 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8773 14.5721 39.9961 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1564 14.7022 39.3433 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9060 15.7700 38.8253 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5229 16.7781 38.8847 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.1310 15.5314 38.2408 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7004 16.3621 37.8509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.6563 14.2312 38.1405 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.6243 14.0798 37.6860 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9523 13.1517 38.6139 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.3420 12.1481 38.5291 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7046 13.4014 39.2137 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8021 12.5027 39.7886 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9240 11.5023 39.8552 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7006 13.2279 40.2559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8395 12.7994 40.7472 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7627 15.1836 41.2276 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3253 14.1969 41.1893 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2524 16.2700 42.1667 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2017 16.0629 42.3695 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8222 16.1984 43.0932 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9101 18.7320 42.4932 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 26 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 24 2 0 + 9 10 1 0 + 9 22 2 0 + 10 11 2 0 + 10 19 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 20 21 1 0 + 20 22 1 0 + 22 23 1 0 + 24 25 1 0 + 24 26 1 0 + 26 27 1 0 + 26 28 1 0 + 29 1 1 0 +V 29 * +M END +> (139) +p70S6K + +> (139) +RSK + +> (139) +AGC + +> (139) +3wf6 + +> (139) +FZ9 + +> (139) +B + +> (139) +A + +> (139) +FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP AP + +> (139) +5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 na + +$$$$ diff --git a/data/fragment_library_custom_filtered/GA.sdf b/data/fragment_library_custom_filtered/GA.sdf new file mode 100644 index 00000000..bd71a4ac --- /dev/null +++ b/data/fragment_library_custom_filtered/GA.sdf @@ -0,0 +1,6203 @@ +8gmd_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.3203 18.5166 39.2150 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3171 19.8076 38.6904 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7491 20.5881 39.1747 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0460 20.0862 37.5441 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8088 19.1006 36.9306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4075 19.3386 36.0638 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7977 17.8025 37.4393 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0333 17.5128 38.5680 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9942 16.5008 38.9432 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9609 21.3234 36.9659 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4532 21.4237 36.1478 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6724 18.1753 40.4211 * 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6321 16.7573 36.8196 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 10 11 1 0 + 1 12 1 0 + 7 13 1 0 +V 12 * +V 13 * +M END +> (1) +AAK1 + +> (1) +NAK + +> (1) +Other + +> (1) +8gmd + +> (1) +ZRR + +> (1) + + +> (1) +A + +> (1) +GA GA GA GA GA GA GA GA GA GA GA AP FP + +> (1) +16 16 16 16 16 16 16 16 16 3 3 na na + +$$$$ +5oxg_altB_chainC + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 1.3705 19.3018 40.9478 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4628 20.1813 40.9319 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6288 20.8163 41.7896 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3528 20.2707 39.8429 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1972 20.9427 39.8854 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1389 19.4933 38.7197 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8088 19.5561 37.8749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0153 18.6024 38.6916 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1361 18.5017 39.7649 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0484 17.5729 39.6457 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6505 17.4422 40.4586 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0953 16.8388 38.4630 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9240 16.1550 38.3530 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8289 16.9854 37.4212 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7242 16.3984 36.5207 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8448 17.8547 37.5406 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5116 19.2860 42.0755 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 16 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 17 1 1 0 +V 17 * +M END +> (2) +ALK2 + +> (2) +STKR + +> (2) +TKL + +> (2) +5oxg + +> (2) +B4B + +> (2) +B + +> (2) +C + +> (2) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (2) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6zgc_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.9577 18.7728 40.1302 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9678 19.7559 40.4127 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5213 20.2272 41.6446 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6307 21.0228 41.3127 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5540 20.4724 41.4934 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6292 21.9354 41.9088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5142 21.3385 39.9413 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5757 20.4341 39.3857 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2083 20.1614 38.0268 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6858 20.6945 37.2180 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2245 19.1975 37.7532 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9447 18.9884 36.7312 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6037 18.5050 38.8046 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4307 17.3564 38.4625 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3328 18.0601 41.1844 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 8 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (3) +ALK2 + +> (3) +STKR + +> (3) +TKL + +> (3) +6zgc + +> (3) +H8H + +> (3) + + +> (3) +A + +> (3) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (3) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3m11_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 2.1084 17.4393 40.9838 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6598 18.3490 41.2213 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8073 16.6114 40.8650 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3303 17.6402 39.6821 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6676 18.4987 39.7919 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7382 16.7478 39.4795 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2799 17.8880 38.5076 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0505 19.0442 38.4685 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9792 19.7681 39.2669 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9128 19.2685 37.4018 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5115 20.1668 37.3713 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0049 18.3376 36.3749 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2352 17.1812 36.4138 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3075 16.4574 35.6154 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3726 16.9558 37.4797 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7744 16.0571 37.5099 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1708 17.1360 42.0746 * 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8309 18.5525 35.3540 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 2 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 1 17 1 0 + 12 18 1 0 +V 17 * +V 18 * +M END +> (4) +AurA + +> (4) +Aur + +> (4) +Other + +> (4) +3m11 + +> (4) +AKI + +> (4) + + +> (4) +A + +> (4) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP B2 + +> (4) +4 4 4 8 4 4 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +3prf_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.9777 20.5720 38.6548 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7468 20.6008 40.0405 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1506 21.3952 40.6507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9798 19.5745 40.6147 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8009 19.5807 41.6798 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4376 18.5345 39.8287 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6661 18.5113 38.4420 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2534 17.7220 37.8312 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4428 19.5350 37.8612 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6797 19.5188 36.5073 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2840 18.7827 36.0349 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9224 21.8215 37.9262 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6918 17.5761 40.4055 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 6 13 1 0 +V 13 * +M END +> (5) +BRAF + +> (5) +RAF + +> (5) +TKL + +> (5) +3prf + +> (5) +FP3 + +> (5) + + +> (5) +A + +> (5) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (5) +16 16 16 16 16 16 16 16 16 3 3 16 na + +$$$$ +3pri_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.8933 19.1651 40.3147 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5030 20.2519 40.9402 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4684 20.3498 42.0152 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1667 21.2251 40.1582 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6353 22.0712 40.6388 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2203 21.0990 38.7656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7276 21.8364 38.1612 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6068 20.0057 38.1844 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9721 19.0824 38.9361 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5467 19.7049 36.8750 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9431 20.2399 36.1155 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8481 18.5395 36.7696 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4789 18.1151 37.9177 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2538 18.1773 40.9845 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6878 16.8608 38.1672 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 10 1 0 + 9 13 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 2 0 + 14 1 1 0 + 13 15 1 0 +V 14 * +V 15 * +M END +> (6) +BRAF + +> (6) +RAF + +> (6) +TKL + +> (6) +3pri + +> (6) +FP4 + +> (6) + + +> (6) +A + +> (6) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP FP + +> (6) +16 16 16 16 16 16 16 16 16 16 16 16 14 na na + +$$$$ +4yht_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 2.9055 17.6830 37.6643 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5264 17.7639 36.7842 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6554 16.3608 39.2240 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4488 16.4604 38.0980 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7139 15.5674 37.5514 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2988 17.4871 39.9391 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7522 18.7205 39.5099 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4858 19.6164 40.0510 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5492 18.7985 38.3828 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2913 20.0724 36.9512 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0192 21.0860 37.2370 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5678 21.1967 39.2234 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9602 20.8646 39.9586 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1488 20.3695 37.7846 S 0 0 0 0 0 6 0 0 0 0 0 0 + 4.9530 21.0358 39.6794 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6339 21.3870 38.9041 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1480 19.9832 39.8846 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1062 21.6175 40.5884 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4715 17.2785 41.0654 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1742 15.1207 39.6691 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 9 1 0 + 3 4 1 0 + 3 6 2 0 + 4 5 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 14 1 0 + 10 14 2 0 + 11 14 2 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 6 19 1 0 + 3 20 1 0 +V 19 * +V 20 * +M END +> (7) +BRAF + +> (7) +RAF + +> (7) +TKL + +> (7) +4yht + +> (7) +4EF + +> (7) + + +> (7) +A + +> (7) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP FP + +> (7) +12 12 16 12 12 16 12 12 12 12 12 5 5 12 5 5 5 5 na na + +$$$$ +3pj1_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.0512 20.4622 40.1616 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1996 20.9808 40.7430 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3785 20.9059 42.5293 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1931 21.5506 39.9485 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0860 21.9538 40.4030 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0293 21.5982 38.5621 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7936 22.0430 37.9421 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8767 21.0702 37.9799 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7446 21.1030 36.9085 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8987 20.5010 38.7893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4151 19.8225 38.0837 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1094 19.8885 41.0315 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 1 1 0 +V 12 * +M END +> (8) +BTK + +> (8) +Tec + +> (8) +TK + +> (8) +3pj1 + +> (8) +LHL + +> (8) + + +> (8) +A + +> (8) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (8) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3pj2_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.9576 20.3462 40.5847 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6025 20.7171 39.3170 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5808 20.6021 38.3316 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5568 20.2201 38.5924 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3195 20.9708 37.0226 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0846 20.8681 36.2672 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0704 21.4728 36.6856 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0913 21.6059 37.6647 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1206 22.0003 37.4025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3536 21.2352 38.9772 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5910 21.3480 39.7336 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8115 21.8329 35.4054 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0051 19.8169 41.4196 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 10 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 12 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 13 1 1 0 +V 13 * +M END +> (9) +BTK + +> (9) +Tec + +> (9) +TK + +> (9) +3pj2 + +> (9) +04K + +> (9) + + +> (9) +A + +> (9) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (9) +3 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5fbn_altB_chainD + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.8601 18.7549 41.1485 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8732 19.6648 41.4952 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0724 19.8626 42.5381 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6225 18.4941 39.8158 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8652 17.7804 39.5265 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3631 19.1551 38.8528 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1749 18.9434 37.8105 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3486 20.0896 39.1882 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6184 20.3104 40.5308 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4098 20.9860 40.8202 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0940 20.7732 38.1344 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2309 21.0097 38.3674 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4428 21.0780 36.9649 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4723 20.8016 36.9224 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9301 21.7088 35.8409 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1397 18.0213 42.1776 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 9 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 11 1 0 + 9 10 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (10) +BTK + +> (10) +Tec + +> (10) +TK + +> (10) +5fbn + +> (10) +5WF + +> (10) +B + +> (10) +D + +> (10) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (10) +16 16 16 16 16 16 16 16 16 16 1 1 5 5 na na + +$$$$ +5fbo_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 2.2253 18.6570 41.6634 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3545 19.3966 41.9682 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1878 19.9334 41.0252 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0414 20.5260 41.3196 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9161 19.7023 39.6783 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8349 18.8948 39.3380 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6550 18.6521 38.3011 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9889 18.4002 40.3124 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1336 17.8070 40.0244 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6182 19.6749 43.2694 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9185 20.2235 38.6955 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9939 20.6718 39.0779 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5875 20.1204 37.3848 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6439 19.8158 37.1925 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3862 20.3823 36.2602 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3783 18.0988 42.6359 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 10 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (11) +BTK + +> (11) +Tec + +> (11) +TK + +> (11) +5fbo + +> (11) +5WH + +> (11) +A + +> (11) +A + +> (11) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA B2 AP + +> (11) +16 16 16 16 16 16 16 16 16 16 1 1 5 5 na na + +$$$$ +6e4f_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.7782 18.3951 39.1892 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9706 17.7183 38.9520 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5492 18.9136 38.1518 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3377 18.6465 37.1270 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5899 19.7757 38.4508 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0956 19.5883 40.7938 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0160 18.7226 40.5307 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5166 20.0552 42.3913 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8624 20.1036 39.7663 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6825 20.7688 39.9927 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3639 20.2972 37.4655 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7499 20.8961 36.3806 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1414 18.1508 41.5285 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 5 1 0 + 5 9 2 0 + 5 11 1 0 + 6 7 2 0 + 6 8 1 0 + 6 9 1 0 + 9 10 1 0 + 11 12 1 0 + 7 13 1 0 +V 12 * +V 13 * +M END +> (12) +BTK + +> (12) +Tec + +> (12) +TK + +> (12) +6e4f + +> (12) +HRA + +> (12) +A + +> (12) +A + +> (12) +GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (12) +16 16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +6x3o_altA_chainB + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 1.9841 18.6994 41.3680 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6201 18.4070 40.0522 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7955 17.7361 39.8618 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3054 18.9683 38.9909 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0149 18.7289 37.9786 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3662 19.8388 39.2169 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7521 20.1264 40.5189 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5798 20.7960 40.7004 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0788 19.5572 41.5833 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4037 19.8061 42.8905 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4821 20.7162 43.1574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6196 20.8107 44.2345 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2467 21.6927 42.7341 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3986 20.3360 42.7061 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1868 20.5059 38.1646 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3760 20.7390 38.3677 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5266 20.8625 37.0321 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5592 20.5774 36.9769 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0189 21.5770 35.9296 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2124 18.0832 42.4601 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 15 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 2 0 + 15 17 1 0 + 17 18 1 0 + 17 19 1 0 + 20 1 1 0 +V 19 * +V 20 * +M END +> (13) +BTK + +> (13) +Tec + +> (13) +TK + +> (13) +6x3o + +> (13) +ULY + +> (13) +A + +> (13) +B + +> (13) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (13) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 1 1 5 5 na na + +$$$$ +7l5o_altB_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.1065 19.3237 41.7963 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8864 19.8778 40.8306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7128 20.5232 41.0891 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5943 19.5937 39.5065 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5358 18.7457 39.1860 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3186 18.5287 38.1506 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3998 19.6004 43.0842 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3775 20.1430 38.5351 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7629 18.1811 40.1797 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9549 17.5105 39.9273 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0339 18.4830 41.5055 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8809 20.8906 37.5080 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2254 17.8984 42.5833 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 8 1 0 + 5 6 1 0 + 5 9 1 0 + 9 10 1 0 + 9 11 2 0 + 12 8 1 0 + 13 11 1 0 +V 12 * +V 13 * +M END +> (14) +BTK + +> (14) +Tec + +> (14) +TK + +> (14) +7l5o + +> (14) +R1L + +> (14) +B + +> (14) +A + +> (14) +GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (14) +16 16 16 16 16 16 16 3 16 16 16 na na + +$$$$ +3bht_altB_chainC + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.0677 19.9231 39.3496 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5548 21.5471 36.2001 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1043 22.4306 36.3913 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9608 21.3734 35.2918 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6142 20.5959 37.1610 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2117 19.3915 36.9168 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2695 18.4474 37.8676 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7455 17.4994 37.6647 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7094 18.6991 39.1222 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7704 17.9595 39.9068 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0662 20.8497 38.3640 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5322 20.2385 40.7366 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 9 2 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 11 2 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 1 12 1 0 +V 12 * +M END +> (15) +CDK2 + +> (15) +CDK + +> (15) +CMGC + +> (15) +3bht + +> (15) +MFR + +> (15) +B + +> (15) +C + +> (15) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (15) +14 5 5 5 14 14 14 14 14 14 14 na + +$$$$ +7m2f_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.0481 19.0124 39.8240 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4358 19.8109 40.4392 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2581 17.5656 39.1250 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5850 16.1699 38.4758 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6381 16.0197 38.7133 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0326 15.2520 38.6769 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4838 16.4314 37.4225 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1039 16.9683 38.1788 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7337 16.1789 37.5415 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4167 17.3962 38.0660 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0868 16.9415 37.3515 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7275 18.5768 39.9745 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8442 18.4085 38.8812 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0610 17.2276 39.2817 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1297 18.8074 38.7903 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9152 19.1570 41.0863 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 12 2 0 + 1 13 1 0 + 3 8 2 0 + 3 12 1 0 + 3 14 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 4 14 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 13 2 0 + 13 15 1 0 + 16 12 1 0 +V 16 * +M END +> (16) +CDK2 + +> (16) +CDK + +> (16) +CMGC + +> (16) +7m2f + +> (16) +YOS + +> (16) +B + +> (16) +A + +> (16) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (16) +16 16 16 3 3 3 3 16 16 16 16 16 16 3 16 na + +$$$$ +7nwk_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 1.9712 18.8259 39.7341 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3269 19.1705 39.7053 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7083 19.8789 40.4257 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1855 18.6236 38.7756 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2311 18.8938 38.7605 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6799 17.7321 37.8752 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4132 16.8606 37.7718 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4764 16.7125 37.9608 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0829 15.8922 37.7083 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2824 17.3982 36.8327 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5290 17.1905 36.9763 F 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3592 17.3513 37.8364 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0021 16.6447 37.1018 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4988 17.9096 38.7782 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1589 17.6197 38.8388 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1543 19.4599 40.8174 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 11 1 0 + 6 12 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 15 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (17) +CDK9 + +> (17) +CDK + +> (17) +CMGC + +> (17) +7nwk + +> (17) +UT5 + +> (17) + + +> (17) +A + +> (17) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (17) +16 16 16 16 16 16 3 3 3 3 16 16 16 16 3 na + +$$$$ +4bbm_chainA + RDKit 3D + + 24 25 0 0 0 0 0 0 0 0999 V2000 + 1.4979 19.6815 40.6690 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9280 18.6092 39.8762 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6385 17.6055 40.1502 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7212 18.8009 38.7401 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0475 17.9445 38.1687 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8720 20.9683 40.2542 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5441 21.8257 40.8232 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6619 21.1594 39.1168 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9434 22.1632 38.8347 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0980 20.0834 38.3334 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9139 20.2924 37.2036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9862 19.4285 36.9598 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1690 18.6038 37.6327 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8235 19.6170 35.8594 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6428 18.9339 35.6902 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6167 20.6750 34.9756 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4446 20.8481 33.8991 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2318 21.5990 33.3401 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5561 21.5535 35.1989 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3792 22.3771 34.5230 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7241 21.3579 36.3058 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6863 22.2126 36.5410 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5927 22.9228 35.9019 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6862 19.5283 41.7396 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 2 0 + 11 21 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 16 19 1 0 + 17 18 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 22 23 1 0 + 24 1 1 0 +V 24 * +M END +> (18) +CDKL2 + +> (18) +CDKL + +> (18) +CMGC + +> (18) +4bbm + +> (18) +TC0 + +> (18) + + +> (18) +A + +> (18) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (18) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 3 3 16 16 16 3 3 na + +$$$$ +2ayp_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 4.0727 21.6966 35.6367 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7516 22.1864 36.1118 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1465 21.5170 37.3051 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1867 21.8567 37.6656 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8155 20.4162 37.9984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1100 19.9756 37.4862 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6211 19.1629 37.9808 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7293 20.5994 36.3305 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6881 20.2448 35.9821 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6949 22.2759 34.5323 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5447 21.8950 34.2993 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1832 23.2823 35.3514 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5161 24.3637 35.9993 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1663 25.0752 35.2513 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2071 24.8617 36.6794 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6650 23.9805 36.5623 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1831 19.7535 39.2122 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 10 1 0 + 2 3 1 0 + 2 12 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 5 17 1 0 +V 17 * +M END +> (19) +CHK1 + +> (19) +CAMKL + +> (19) +CAMK + +> (19) +2ayp + +> (19) +43A + +> (19) + + +> (19) +A + +> (19) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (19) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 na + +$$$$ +2e9o_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 1.2981 19.5469 41.0808 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4184 20.8491 40.4245 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9643 21.7163 40.8807 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1402 20.9981 39.1654 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2147 21.9696 38.6995 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7690 19.8254 38.5261 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6538 18.5171 39.1813 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1090 17.6475 38.7306 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9311 18.3882 40.4313 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8554 17.4170 40.8978 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4933 19.9661 37.2598 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6830 21.2064 36.7925 O 0 0 0 0 0 1 0 0 0 0 0 0 + 3.8974 19.0004 36.6669 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5134 19.4618 42.3882 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 2 0 + 14 1 1 0 +M CHG 1 12 -1 +V 14 * +M END +> (20) +CHK1 + +> (20) +CAMKL + +> (20) +CAMK + +> (20) +2e9o + +> (20) +A58 + +> (20) + + +> (20) +A + +> (20) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (20) +16 16 16 16 16 16 16 16 16 16 6 6 6 na + +$$$$ +4fti_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 3.5365 19.1895 37.2590 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0171 18.7508 38.2562 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9977 17.4555 38.5891 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7932 16.5616 37.7689 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6934 15.5419 38.1407 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8397 16.8634 37.8123 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4443 16.6080 36.7373 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3212 19.6025 39.2751 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7873 19.0317 40.4070 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1102 20.9386 39.3004 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4205 21.6514 38.5507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4073 21.2264 40.4928 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0760 22.1996 40.8236 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2289 20.0576 41.1383 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5709 19.6803 42.3706 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 8 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 8 9 1 0 + 8 10 2 0 + 9 14 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 +V 15 * +M END +> (21) +CHK1 + +> (21) +CAMKL + +> (21) +CAMK + +> (21) +4fti + +> (21) +H7K + +> (21) +A + +> (21) +A + +> (21) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (21) +1 1 3 3 3 3 3 14 14 14 14 14 14 14 na + +$$$$ +4ftm_altA_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + 4.3191 21.9669 34.7396 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0185 21.4121 34.3864 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7556 21.5171 35.8942 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6766 22.2074 36.4612 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2921 23.3213 35.7575 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1829 24.0808 36.2281 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0112 24.9250 35.5604 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3943 24.4487 37.2321 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2944 23.4498 36.2519 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0810 21.7303 37.6264 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2612 22.2745 38.0714 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5390 20.5474 38.2258 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5799 19.8450 37.6162 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9079 18.9065 38.0383 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1963 20.3337 36.4805 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0246 19.7947 36.0450 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1268 20.1213 39.5768 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0508 19.8009 40.0581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4858 19.2559 39.4087 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4936 20.8330 40.5054 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7161 21.3716 39.9637 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2376 21.5403 40.8719 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8516 20.3413 41.6723 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 15 1 0 + 4 5 1 0 + 4 10 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 17 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 20 21 1 0 + 20 22 1 0 + 20 23 1 0 +V 23 * +M END +> (22) +CHK1 + +> (22) +CAMKL + +> (22) +CAMK + +> (22) +4ftm + +> (22) +1HK + +> (22) +A + +> (22) +A + +> (22) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (22) +3 3 16 16 3 3 3 3 3 16 16 16 16 16 16 16 8 8 8 8 8 8 na + +$$$$ +5ih6_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.4885 19.6464 39.9165 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5387 19.2245 38.6013 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8245 18.4974 38.2440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5093 19.7329 37.7282 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5082 19.4475 36.6866 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4945 20.6266 38.2250 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2381 21.0375 37.5581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5001 20.9847 39.6239 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5022 20.4753 40.4379 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5008 20.7173 41.4904 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7756 22.1920 40.5728 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6119 19.0913 40.9680 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 11 1 0 + 9 10 1 0 + 12 1 1 0 +V 12 * +M END +> (23) +CK1d + +> (23) +CK1 + +> (23) +CK1 + +> (23) +5ih6 + +> (23) +AUG + +> (23) +B + +> (23) +A + +> (23) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (23) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6rch_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.2267 20.4770 40.7565 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8353 19.5687 39.9058 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8659 18.5226 40.1726 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4148 19.9983 38.6950 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3928 21.3724 38.3704 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7475 22.2660 39.2426 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7023 23.3151 38.9903 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1793 21.8312 40.3988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6856 22.5379 41.0493 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0893 19.1044 37.8218 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0973 18.0468 38.0407 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7277 19.5693 36.7083 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2478 18.8780 36.0617 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7143 20.9124 36.4020 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2250 21.2624 35.5171 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0661 21.8035 37.1999 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0646 22.8514 36.9385 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6134 20.0245 41.9749 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 16 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 +V 18 * +M END +> (24) +CK1d + +> (24) +CK1 + +> (24) +CK1 + +> (24) +6rch + +> (24) +K0B + +> (24) +B + +> (24) +A + +> (24) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (24) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6hop_altC_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.7468 16.4538 37.3322 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2368 15.9076 36.5262 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7527 16.0396 37.5001 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3371 16.3627 38.2440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6349 17.8218 36.9763 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0244 18.6881 37.9004 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9364 20.0374 37.5584 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4475 20.4603 36.3276 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3576 21.3998 36.1522 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3537 20.9709 38.4143 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2898 22.0114 38.1321 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8578 20.5382 39.6345 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4094 21.2476 40.3142 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9347 19.1960 39.9876 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5220 18.2603 39.1315 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5864 17.2210 39.4179 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3681 18.7974 41.3414 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0342 19.5662 42.0225 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2747 17.5083 41.7070 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 15 1 0 + 7 8 1 0 + 7 10 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 14 17 1 0 + 15 16 1 0 + 17 18 1 0 + 17 19 2 0 +V 19 * +M END +> (25) +CK2a1 + +> (25) +CK2 + +> (25) +CMGC + +> (25) +6hop + +> (25) +GJK + +> (25) +C + +> (25) +A + +> (25) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (25) +3 3 3 3 3 16 16 3 3 16 16 16 16 16 16 16 7 16 na + +$$$$ +6qy7_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 1.7244 19.1670 40.0982 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6003 20.4867 39.6840 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0905 21.1991 40.3156 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1247 20.9001 38.4666 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0633 21.9385 38.1758 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7296 19.9746 37.6217 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8445 18.6583 38.0385 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3359 18.2489 39.2459 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4099 17.2114 39.5368 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4330 17.7219 37.2356 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1876 20.3541 36.4522 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5954 19.6586 35.9311 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0796 18.7236 41.3211 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 11 12 1 0 + 13 1 1 0 +V 13 * +M END +> (26) +CK2a1 + +> (26) +CK2 + +> (26) +CMGC + +> (26) +6qy7 + +> (26) +041 + +> (26) +A + +> (26) +A + +> (26) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (26) +16 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +6r8j_altB_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 0.8825 15.4092 38.2704 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1718 14.8967 38.9188 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8038 14.8298 38.2115 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4547 15.5138 37.2733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1803 16.7634 38.8295 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6909 17.2831 39.9676 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0012 16.7905 40.6345 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0010 17.6551 38.2994 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7062 17.5589 37.1713 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6621 16.6596 36.5749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4950 18.6240 36.7733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0732 18.5842 35.8620 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5142 19.7561 37.5988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1409 20.5942 37.3318 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7403 19.8241 38.7594 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7385 20.7137 39.3717 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9975 18.7548 39.0959 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1961 18.5030 40.1417 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8586 19.3232 41.1806 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 8 1 0 + 6 7 1 0 + 6 18 2 0 + 8 9 2 0 + 8 17 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 18 1 0 +V 19 * +M END +> (27) +CLK1 + +> (27) +CLK + +> (27) +CMGC + +> (27) +6r8j + +> (27) +JUW + +> (27) +B + +> (27) +A + +> (27) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (27) +8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 16 na + +$$$$ +5auy_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 2.9085 19.8108 37.6594 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4795 21.0922 37.3154 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7585 21.5982 37.9404 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9683 21.7287 36.1765 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6220 22.7220 35.9319 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8929 21.1054 35.3524 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3552 21.7496 34.2370 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9959 21.2560 33.7197 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3433 19.8323 35.6757 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0683 19.3357 35.0479 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8523 19.2000 36.8172 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2837 17.9520 37.1337 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9231 17.5769 36.5237 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3560 19.2672 38.8368 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 9 1 0 + 7 8 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (28) +DAPK1 + +> (28) +DAPK + +> (28) +CAMK + +> (28) +5auy + +> (28) +MRI + +> (28) + + +> (28) +A + +> (28) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (28) +16 16 16 16 16 16 3 3 16 16 16 3 3 na + +$$$$ +8ie5_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 2.3722 21.1293 37.2526 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6212 21.5896 37.8774 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8373 19.8680 37.5688 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3387 19.2173 38.6945 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3106 18.1453 38.8228 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2760 21.8722 34.2582 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9366 21.3948 33.7509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8065 21.2185 35.3404 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8524 21.8160 36.1465 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4860 22.8057 35.9169 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7836 19.2737 36.7655 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1805 18.0234 37.1409 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8434 17.6212 36.5749 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2783 19.9473 35.6539 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0301 19.4831 35.0328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8386 20.2260 39.7196 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 11 1 0 + 4 5 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 14 1 0 + 9 10 1 0 + 11 12 1 0 + 11 14 2 0 + 12 13 1 0 + 14 15 1 0 + 4 16 2 0 +V 16 * +M END +> (29) +DAPK1 + +> (29) +DAPK + +> (29) +CAMK + +> (29) +8ie5 + +> (29) +EZE + +> (29) + + +> (29) +A + +> (29) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (29) +16 16 16 7 16 3 3 16 16 16 16 3 3 16 16 na + +$$$$ +4mq2_altA_chainC + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.1324 19.2828 40.9557 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2532 20.3222 38.5917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6924 20.7281 37.6924 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7588 21.1644 39.5599 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8118 22.2332 39.4139 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1920 20.6588 40.7234 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7114 18.1778 37.7400 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6208 18.4273 39.9467 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5596 17.3570 40.0772 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5881 21.8188 41.8331 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1856 18.9531 38.7748 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6727 18.5737 36.5767 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2636 16.9956 38.0784 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5711 15.9915 37.3189 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9810 15.0097 37.5560 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6965 16.1902 36.2545 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5107 16.0129 37.5701 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5235 18.9387 42.1269 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 2 0 + 2 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 10 1 0 + 7 11 1 0 + 7 12 2 0 + 7 13 1 0 + 8 9 1 0 + 8 11 2 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 1 18 1 0 +V 18 * +M END +> (30) +DYRK1A + +> (30) +DYRK + +> (30) +CMGC + +> (30) +4mq2 + +> (30) +2C4 + +> (30) +A + +> (30) +C + +> (30) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (30) +16 16 16 16 16 16 1 16 16 16 16 1 3 3 3 3 3 na + +$$$$ +6s14_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 2.0061 20.1053 39.8921 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4531 21.1224 39.0306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4031 22.1736 39.2733 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0358 17.5161 39.3801 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5599 17.1476 40.2768 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4607 16.6490 38.3975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3536 15.5811 38.5180 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0358 17.1869 37.2370 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3704 16.4967 36.4767 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2404 18.9094 39.1821 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9427 20.6576 37.8889 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8036 19.3287 38.0107 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1997 18.4984 37.0043 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4294 20.2683 41.2320 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 2 0 + 2 3 1 0 + 2 11 2 0 + 4 5 1 0 + 4 6 2 0 + 4 10 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 13 2 0 + 10 12 1 0 + 11 12 1 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (31) +DYRK1A + +> (31) +DYRK + +> (31) +CMGC + +> (31) +6s14 + +> (31) +KQW + +> (31) +A + +> (31) +A + +> (31) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (31) +16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6uip_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.3343 18.2335 40.5150 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2715 16.8821 40.3334 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8579 16.1925 41.0543 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2362 17.6346 38.4559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8351 17.8929 37.2307 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0441 17.0538 36.5837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9085 20.1403 37.6104 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1769 21.1314 37.2755 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3157 20.0133 38.8516 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1259 20.8802 39.4672 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9691 18.7355 39.2876 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7980 16.5065 39.1228 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1698 19.1127 36.8000 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8212 15.1147 38.6681 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8158 18.9497 41.7186 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 12 1 0 + 4 5 1 0 + 4 11 2 0 + 4 12 1 0 + 5 6 1 0 + 5 13 2 0 + 7 8 1 0 + 7 9 2 0 + 7 13 1 0 + 9 10 1 0 + 9 11 1 0 + 14 12 1 0 + 1 15 1 0 +V 14 * +V 15 * +M END +> (32) +DYRK1A + +> (32) +DYRK + +> (32) +CMGC + +> (32) +6uip + +> (32) +Q8J + +> (32) + + +> (32) +B + +> (32) +GA GA GA GA GA GA GA GA GA GA GA GA GA FP AP + +> (32) +16 9 9 9 9 9 9 9 9 9 9 9 9 na na + +$$$$ +7a5l_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.8253 21.4879 36.3614 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3907 22.3941 36.4616 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2760 21.2373 35.4930 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3389 19.4155 37.1555 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0894 20.0287 39.5906 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1847 20.9652 38.5708 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7787 21.9567 38.7063 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8041 20.6230 37.3749 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2698 18.5173 38.1445 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6976 17.5385 37.9849 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6735 18.7891 39.3636 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6624 18.0370 40.1387 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4683 20.4042 40.8874 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 8 1 0 + 4 8 2 0 + 4 9 1 0 + 5 6 2 0 + 5 11 1 0 + 6 7 1 0 + 6 8 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 5 1 0 +V 13 * +M END +> (33) +DYRK1A + +> (33) +DYRK + +> (33) +CMGC + +> (33) +7a5l + +> (33) +QZW + +> (33) +A + +> (33) +A + +> (33) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (33) +5 5 5 14 16 14 14 14 14 14 14 14 na + +$$$$ +1xkk_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 2.3680 18.8542 39.7165 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2182 18.7275 38.3338 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4238 18.1187 37.9278 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0970 19.3892 37.4811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9871 19.2964 36.4108 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1167 20.1700 38.0126 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0255 20.8648 37.1713 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6314 20.8806 35.7923 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1784 19.9208 35.5440 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5160 21.0354 35.1745 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2594 20.2867 39.3641 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5135 21.2447 39.9742 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3989 19.6396 40.2230 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5245 19.7419 41.2908 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4851 18.1874 40.5839 * 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6158 22.0022 35.4986 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 + 8 16 1 0 +V 15 * +V 16 * +M END +> (34) +EGFR + +> (34) +EGFR + +> (34) +TK + +> (34) +1xkk + +> (34) +FMM + +> (34) + + +> (34) +A + +> (34) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP B1 + +> (34) +16 16 16 16 16 16 3 4 4 4 16 16 16 16 na na + +$$$$ +2ito_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.6070 19.5759 40.2313 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5141 20.5202 40.7005 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6216 20.6812 41.7630 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2796 21.2546 39.8108 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3828 22.4138 40.4337 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1580 21.0619 38.4421 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9195 21.7946 37.6035 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2532 20.1107 37.9630 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1504 19.9516 36.8997 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4799 19.3640 38.8599 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7856 18.6244 38.4892 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8966 18.8663 41.1059 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 1 1 0 +V 12 * +M END +> (35) +EGFR + +> (35) +EGFR + +> (35) +TK + +> (35) +2ito + +> (35) +IRE + +> (35) + + +> (35) +A + +> (35) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (35) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5em5_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.8365 17.5552 40.0242 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6756 18.4930 39.4924 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2472 16.7665 39.5565 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3252 17.1833 39.9547 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5933 16.9302 38.9290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5213 16.3292 40.6028 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1370 18.3683 40.4151 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3928 18.5313 41.7764 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0699 17.7722 42.4735 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0542 19.6512 42.2461 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2112 19.7948 43.3049 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5115 20.5858 41.3302 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3183 20.4021 39.9621 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7282 21.1137 39.2607 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6004 19.3070 39.4971 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4053 19.1861 38.4418 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3687 21.9621 41.9257 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4096 17.7134 41.4291 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 2 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 17 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 18 1 1 0 +V 18 * +M END +> (36) +EGFR + +> (36) +EGFR + +> (36) +TK + +> (36) +5em5 + +> (36) +5Q2 + +> (36) + + +> (36) +A + +> (36) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (36) +4 4 4 8 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +8g63_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 3.5930 18.8176 40.7492 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1394 20.9229 40.2985 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5951 22.9391 39.0571 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6240 23.4781 38.1216 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9419 22.8601 41.4446 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2385 23.3541 42.3581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6846 19.4701 40.2143 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7184 17.4226 39.5748 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1752 21.6231 39.0929 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8722 21.1327 38.1796 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9784 23.5586 40.2343 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5262 21.5340 41.4805 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5052 20.9897 42.4131 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3833 24.8687 40.1895 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3505 18.5934 39.4820 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6522 17.5713 40.3545 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9967 16.8435 40.6013 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1370 16.1485 38.8765 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4859 19.3005 41.6979 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 2 0 + 1 16 1 0 + 2 7 1 0 + 2 9 1 0 + 2 12 2 0 + 3 4 1 0 + 3 9 2 0 + 3 11 1 0 + 5 6 1 0 + 5 11 2 0 + 5 12 1 0 + 7 15 1 0 + 8 15 2 0 + 8 16 1 0 + 9 10 1 0 + 11 14 1 0 + 12 13 1 0 + 16 17 1 0 + 8 18 1 0 + 1 19 1 0 +V 18 * +V 19 * +M END +> (37) +EGFR + +> (37) +EGFR + +> (37) +TK + +> (37) +8g63 + +> (37) +YXT + +> (37) + + +> (37) +A + +> (37) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA FP AP + +> (37) +14 16 16 16 16 16 14 14 16 16 16 16 16 16 14 14 14 na na + +$$$$ +4gk4_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 3.5004 20.7415 40.1002 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1595 20.6368 38.7505 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0634 19.9690 38.1306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2823 19.3965 38.6088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2206 20.2128 36.8079 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3636 21.0068 36.6139 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7016 21.3304 35.7189 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9390 21.2704 37.7993 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0666 21.9937 38.1572 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6658 22.4813 37.4025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4147 22.0828 39.4946 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2921 22.6415 39.7854 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6404 21.4566 40.4649 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0673 21.5974 41.9049 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3696 21.0574 42.5451 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0723 22.6518 42.1810 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0684 21.1846 42.0291 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6678 20.0307 41.1234 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 8 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 1 1 0 +V 18 * +M END +> (38) +EphA3 + +> (38) +Eph + +> (38) +TK + +> (38) +4gk4 + +> (38) +L90 + +> (38) +B + +> (38) +A + +> (38) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (38) +16 16 16 16 16 16 16 16 16 16 16 16 16 8 8 8 8 na + +$$$$ +5mja_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 2.8319 20.1705 40.2038 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4166 19.9842 38.8846 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5886 19.3245 38.6712 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0623 20.6429 37.8416 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1103 21.5178 38.1037 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5685 22.0710 37.2972 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5642 21.6775 39.3988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4120 22.3153 39.6009 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9266 21.0149 40.4406 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5190 21.2323 42.0563 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6050 20.4618 36.5693 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0588 20.9766 35.8980 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2407 19.4565 41.2704 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 1 13 1 0 +V 13 * +M END +> (39) +EphB1 + +> (39) +Eph + +> (39) +TK + +> (39) +5mja + +> (39) +7O3 + +> (39) + + +> (39) +A + +> (39) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (39) +16 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +2xvd_altA_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 2.8231 19.4735 40.5090 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3878 19.2938 39.2054 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5356 18.6586 39.0137 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0234 19.9115 38.1490 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5172 19.6613 36.7569 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6499 19.0026 36.8017 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3025 19.1884 36.1673 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1434 20.8910 36.1434 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4528 21.2855 36.6809 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1093 20.7301 38.3864 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6157 21.2113 37.5627 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5442 20.9305 39.6767 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3860 21.5809 39.8633 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9116 20.3054 40.7374 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4246 20.5413 42.1196 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8200 19.9802 42.8322 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3669 21.6046 42.3521 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4614 20.2111 42.1837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1585 18.8180 41.5668 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 +V 19 * +M END +> (40) +EphB4 + +> (40) +Eph + +> (40) +TK + +> (40) +2xvd + +> (40) +AS6 + +> (40) +A + +> (40) +A + +> (40) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (40) +16 16 16 16 4 4 4 3 3 16 16 16 16 16 8 8 8 8 na + +$$$$ +3pp0_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.1989 19.5108 39.6175 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9646 19.2959 38.2603 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2383 18.5533 37.9648 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6047 19.9738 37.3255 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4807 20.9000 37.6299 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0916 21.5645 36.6072 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7734 21.1745 38.9737 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9422 22.3766 39.3875 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1278 20.4766 39.9879 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3404 20.6777 41.0275 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6096 22.7558 36.1358 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4890 18.7520 40.5561 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 6 11 1 0 + 12 1 1 0 +V 11 * +V 12 * +M END +> (41) +ErbB2 + +> (41) +EGFR + +> (41) +TK + +> (41) +3pp0 + +> (41) +03Q + +> (41) +A + +> (41) +A + +> (41) +GA GA GA GA GA GA GA GA GA GA B1 AP + +> (41) +16 14 14 14 14 3 14 14 14 14 na na + +$$$$ +4fv2_altB_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.7587 19.2969 37.8199 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9975 18.6155 38.5065 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5938 17.3959 38.1442 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8425 16.9624 38.6616 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4463 19.1367 39.7733 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5595 18.5904 40.6667 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1250 17.6030 40.6171 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7847 20.4002 40.1953 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4189 21.0314 39.7267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1191 20.6529 41.3509 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2019 21.5607 41.9302 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3194 19.5734 41.6745 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1888 16.6635 37.0363 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5271 19.3713 42.7766 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 5 1 0 + 3 4 1 0 + 5 6 2 0 + 5 8 1 0 + 6 7 1 0 + 6 12 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 3 13 1 0 + 12 14 1 0 +V 13 * +V 14 * +M END +> (42) +Erk2 + +> (42) +MAPK + +> (42) +CMGC + +> (42) +4fv2 + +> (42) +EK5 + +> (42) +B + +> (42) +A + +> (42) +GA GA GA GA GA GA GA GA GA GA GA GA B2 AP + +> (42) +1 1 5 5 14 14 14 14 14 14 14 16 na na + +$$$$ +2fgi_chainB + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 3.0353 19.9491 39.8051 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3033 20.3300 38.6791 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2447 20.1231 38.6241 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9391 20.9716 37.6378 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2911 21.2540 37.6847 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7785 21.7573 36.8627 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0051 20.8789 38.8049 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4079 20.2333 39.8628 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9889 19.9486 40.7275 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7797 21.8968 35.3082 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9889 22.1206 34.5922 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4620 21.1634 34.8785 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3276 22.8098 35.5416 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.9943 22.1673 38.0094 C 0 0 0 0 0 0 0 0 0 0 0 0 + 8.0558 22.2256 38.2503 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5319 23.1416 38.1671 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8740 21.8724 36.9670 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1952 21.3604 36.5216 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3553 21.1822 38.8690 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3979 19.3229 40.8639 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 18 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 19 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 10 18 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 14 19 1 0 + 20 1 1 0 +V 20 * +M END +> (43) +FGFR1 + +> (43) +FGFR + +> (43) +TK + +> (43) +2fgi + +> (43) +PD1 + +> (43) + + +> (43) +B + +> (43) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (43) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 3 na + +$$$$ +4nka_chainB + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + 2.8091 20.2358 38.8941 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9712 21.5226 38.3541 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3450 22.3271 38.7103 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9206 21.7841 37.3706 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0331 22.7819 36.9728 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5906 19.1787 38.4224 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4571 18.1859 38.8258 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1483 17.0665 37.2295 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8924 16.4391 36.7386 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1522 16.7806 36.8917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2175 16.9349 38.3093 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5631 22.0465 35.9690 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2835 22.0148 35.1515 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0943 22.0737 36.9204 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9437 22.9382 35.8731 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7293 20.8759 35.9187 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7312 20.7369 36.9005 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5464 19.4070 37.4270 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3892 18.4420 36.8988 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7845 19.9663 39.9577 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 17 2 0 + 6 7 1 0 + 6 18 2 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 8 19 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 12 16 1 0 + 16 17 1 0 + 17 18 1 0 + 18 19 1 0 + 20 1 1 0 +V 20 * +M END +> (44) +FGFR1 + +> (44) +FGFR + +> (44) +TK + +> (44) +4nka + +> (44) +2K7 + +> (44) + + +> (44) +B + +> (44) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (44) +16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 16 16 3 na + +$$$$ +4rwl_chainB + RDKit 3D + + 25 26 0 0 0 0 0 0 0 0999 V2000 + 3.9971 20.9534 38.6132 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0477 19.2993 40.6385 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6939 22.2436 33.8036 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3900 22.4647 32.9945 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9512 23.0386 33.8712 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1943 21.2956 33.6043 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4068 22.1550 35.0316 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4073 22.2911 35.0545 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6857 21.8706 36.2323 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4732 21.7088 36.1987 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4573 21.8009 37.5518 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6106 22.5840 37.7269 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9487 23.2238 36.9252 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3342 22.5433 38.9433 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2282 23.1350 39.0736 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8636 21.7162 39.9769 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3937 21.6816 40.9172 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6823 20.9149 39.7950 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8208 20.1513 38.4342 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2955 20.1922 37.4914 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3408 19.3262 39.4374 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4537 18.7270 39.2948 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2072 20.0586 40.8406 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7396 19.9990 41.7784 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5690 18.4562 41.6518 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 11 1 0 + 1 18 1 0 + 1 19 2 0 + 2 21 2 0 + 2 23 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 3 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 11 1 0 + 11 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 23 2 0 + 19 20 1 0 + 19 21 1 0 + 21 22 1 0 + 23 24 1 0 + 2 25 1 0 +V 25 * +M END +> (45) +FGFR1 + +> (45) +FGFR + +> (45) +TK + +> (45) +4rwl + +> (45) +3ZC + +> (45) + + +> (45) +B + +> (45) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (45) +16 16 5 5 5 5 5 5 1 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5b7v_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 4.1421 21.3696 37.8785 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7483 21.0353 37.8599 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2359 21.5097 36.6440 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2784 21.4652 36.3256 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3264 22.0562 35.9658 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4695 22.0177 36.6965 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9460 20.1235 40.0351 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1275 20.4018 38.9379 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0791 20.1429 38.9243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9523 21.0601 39.0093 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9979 21.3293 39.0370 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3521 20.4001 40.0757 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9411 20.0978 40.9290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1907 22.6413 34.6124 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1615 22.5312 34.2705 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8594 22.1242 33.9243 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4511 23.6992 34.6461 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3135 19.4322 41.1122 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 10 1 0 + 2 3 1 0 + 2 8 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 5 14 1 0 + 7 8 2 0 + 7 12 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 7 1 0 +V 18 * +M END +> (46) +FGFR1 + +> (46) +FGFR + +> (46) +TK + +> (46) +5b7v + +> (46) +LWJ + +> (46) + + +> (46) +B + +> (46) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (46) +14 14 14 14 14 14 16 14 14 14 14 14 14 8 8 8 8 na + +$$$$ +7ozf_altB_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.2436 19.2165 39.6784 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0492 18.3829 38.5797 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2730 17.6324 38.6075 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8457 18.5090 37.4481 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6893 17.8548 36.6031 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2365 20.1884 39.6192 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3816 20.8517 40.4591 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0423 20.3193 38.5001 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8403 19.4725 37.4020 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4584 19.5707 36.5219 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0096 21.2906 38.5077 O 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8488 21.5312 37.3857 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2297 21.8074 36.5322 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.4015 20.6207 37.1542 H 0 0 0 0 0 0 0 0 0 0 0 0 + 7.8286 22.6435 37.6619 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.2836 23.5583 37.8945 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4518 22.8054 36.7824 H 0 0 0 0 0 0 0 0 0 0 0 0 + 8.4588 22.3707 38.5084 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3585 19.0505 40.8559 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 9 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 11 1 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 +V 19 * +M END +> (47) +FGFR1 + +> (47) +FGFR + +> (47) +TK + +> (47) +7ozf + +> (47) +466 + +> (47) +B + +> (47) +A + +> (47) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (47) +16 16 16 16 16 16 16 16 16 16 3 4 4 4 4 4 4 4 na + +$$$$ +6lvm_chainA + RDKit 3D + + 26 26 0 0 0 0 0 0 0 0999 V2000 + 1.8835 21.4663 37.2486 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8617 21.1931 37.0303 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7240 21.5728 38.7810 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1389 21.3842 39.7601 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9595 22.4256 36.5447 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5589 22.8967 35.7797 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4143 21.2145 38.4913 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6539 22.0642 36.2893 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4897 22.1738 37.8005 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1027 22.6433 34.1923 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6989 22.8416 33.1994 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8162 21.8212 34.1367 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6051 23.5359 34.5651 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4872 22.9313 36.9163 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.5110 23.2124 37.1631 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9748 23.7824 36.4678 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4985 22.1008 36.2104 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5016 20.5675 39.4811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3831 19.5142 39.2267 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5298 21.0602 39.4504 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0695 20.6815 40.8590 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0792 20.2709 40.8563 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1064 21.7351 41.1360 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0473 22.2941 35.0702 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7988 22.5339 38.1118 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2599 19.9507 41.8689 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 2 0 + 1 8 1 0 + 3 4 1 0 + 3 7 1 0 + 3 9 2 0 + 5 6 1 0 + 5 8 2 0 + 5 9 1 0 + 7 18 1 0 + 8 24 1 0 + 9 25 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 10 24 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 14 25 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 21 22 1 0 + 21 23 1 0 + 26 21 1 0 +V 26 * +M END +> (48) +FGFR3 + +> (48) +FGFR + +> (48) +TK + +> (48) +6lvm + +> (48) +EVR + +> (48) + + +> (48) +A + +> (48) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (48) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 8 8 8 8 8 8 3 3 na + +$$$$ +3vrz_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 1.5985 18.3417 40.6352 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3197 17.7574 39.4139 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5441 17.0088 39.3483 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0184 18.1158 38.2723 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7688 17.6623 37.3244 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6469 19.2547 40.7261 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9133 19.6821 41.6815 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3514 19.6141 39.5756 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1514 20.3365 39.6444 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0367 19.0543 38.3419 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7314 19.3610 37.1532 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7331 18.6568 36.4292 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3848 20.4919 36.8966 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4306 21.3971 37.7023 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0095 20.6650 35.7334 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9986 19.9292 35.0416 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7080 21.9116 35.4560 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8237 17.8532 41.8148 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 10 2 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 13 15 1 0 + 15 16 1 0 + 15 17 1 0 + 18 1 1 0 +V 17 * +V 18 * +M END +> (49) +HCK + +> (49) +Src + +> (49) +TK + +> (49) +3vrz + +> (49) +VRZ + +> (49) + + +> (49) +A + +> (49) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA B2 AP + +> (49) +16 16 16 16 16 16 16 16 16 16 5 5 1 1 5 5 na na + +$$$$ +3vs7_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.6560 18.4638 40.8973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6745 19.3576 41.1930 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9286 19.6002 42.2142 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3566 19.9298 40.1234 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4336 20.8672 40.1187 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9386 21.3273 40.9553 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6647 21.0347 38.7517 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4202 21.6832 38.3332 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8121 20.2728 38.0192 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7883 20.2268 37.0105 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0055 19.5901 38.8480 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0167 18.7163 38.5590 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3487 18.1549 39.5717 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5578 17.4505 39.3603 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8865 17.8090 41.9965 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 11 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 12 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (50) +HCK + +> (50) +Src + +> (50) +TK + +> (50) +3vs7 + +> (50) +KS1 + +> (50) + + +> (50) +B + +> (50) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (50) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5di1_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 3.3047 18.9013 39.9095 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2668 19.3900 39.9553 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7818 17.4317 38.7917 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5320 16.8136 37.9421 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4078 19.0537 40.9486 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6476 19.7046 41.7763 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1923 18.3683 40.9313 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9016 17.5240 39.8568 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0092 16.9436 39.8568 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9784 18.1251 38.8076 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1063 18.0220 37.4232 S 0 0 0 0 0 6 0 0 0 0 0 0 + 5.2223 17.3257 37.9407 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3395 17.4659 36.3638 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5638 19.7552 37.0473 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1505 20.1628 37.8706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6595 20.3495 36.9164 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1538 19.7848 36.1312 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2203 18.5062 42.0701 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 10 1 0 + 3 4 1 0 + 3 8 1 0 + 3 10 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 10 11 1 0 + 11 12 2 0 + 11 13 2 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 7 1 0 +V 18 * +M END +> (51) +HGK + +> (51) +STE20 + +> (51) +STE + +> (51) +5di1 + +> (51) +5DF + +> (51) + + +> (51) +A + +> (51) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (51) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4xs2_chainC + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 1.1978 18.9429 41.2087 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1194 20.5566 40.4690 S 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9957 20.0148 39.0624 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2943 18.6359 39.2121 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8063 18.0658 40.3809 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3927 20.7361 37.9125 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1253 21.7770 37.8062 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1472 20.0832 36.8944 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5007 20.6413 36.0400 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4327 18.6955 37.0072 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9496 18.1820 36.2101 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0345 17.9843 38.1759 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2946 16.9413 38.2805 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4730 18.5438 42.4715 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 1 0 + 3 4 2 0 + 3 6 1 0 + 4 5 1 0 + 4 12 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 1 1 0 +V 14 * +M END +> (52) +IRAK4 + +> (52) +IRAK + +> (52) +TKL + +> (52) +4xs2 + +> (52) +42P + +> (52) + + +> (52) +C + +> (52) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (52) +14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +5t1s_chainC + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 1.9394 19.5616 39.7438 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7817 18.5208 39.3680 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0075 17.7622 40.1028 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3294 18.4000 38.1553 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0915 19.3635 37.2637 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5544 19.2887 36.2908 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2699 20.4686 37.5282 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6942 20.5572 38.7907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0576 21.3944 39.0361 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0187 21.4291 36.5795 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4329 22.1352 36.8621 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3294 19.6375 41.1091 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 10 1 0 + 8 9 1 0 + 10 11 1 0 + 12 1 1 0 +V 12 * +M END +> (53) +IRAK4 + +> (53) +IRAK + +> (53) +TKL + +> (53) +5t1s + +> (53) +76Q + +> (53) + + +> (53) +C + +> (53) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (53) +16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +5w84_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 0.8168 20.3033 41.9654 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6381 19.2732 41.4944 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8816 18.4351 42.1306 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1379 19.3401 40.1978 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8194 20.4227 39.3812 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0018 21.4491 39.8362 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7580 22.2837 39.1956 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5036 21.3813 41.1312 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1340 22.1717 41.4988 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0279 18.4167 39.4215 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5654 17.4369 39.3029 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9958 18.3049 39.9102 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1721 19.1107 38.0902 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4396 20.2679 38.1450 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3600 20.9263 37.3832 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8270 18.7242 37.1220 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3141 20.2825 43.2834 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 16 2 0 + 14 15 1 0 + 1 17 1 0 +V 17 * +M END +> (54) +IRAK4 + +> (54) +IRAK + +> (54) +TKL + +> (54) +5w84 + +> (54) +9YY + +> (54) + + +> (54) +A + +> (54) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (54) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3qgy_altA_chainB + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 2.6222 20.7411 36.6806 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9873 20.4807 35.7756 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2274 18.6469 37.6563 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9326 20.1877 38.9353 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2382 17.7476 38.6813 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7624 16.8107 38.5634 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5970 19.8531 37.7913 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9192 19.2974 39.9832 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5745 18.0255 39.8916 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5597 17.3181 40.7076 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0675 22.0759 36.9696 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7392 22.1158 38.0082 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2189 22.2667 36.3127 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8343 22.8322 36.8016 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1292 19.7103 41.1377 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 7 1 0 + 1 11 1 0 + 3 5 2 0 + 3 7 1 0 + 4 7 2 0 + 4 8 1 0 + 5 6 1 0 + 5 9 1 0 + 8 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 8 1 0 +V 15 * +M END +> (55) +ITK + +> (55) +Tec + +> (55) +TK + +> (55) +3qgy + +> (55) +L7O + +> (55) +A + +> (55) +B + +> (55) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (55) +5 5 14 14 14 14 14 14 14 14 5 5 5 5 na + +$$$$ +5tq3_altB_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 4.2325 21.3118 36.9543 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2967 21.2983 36.7706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5052 21.3573 37.4103 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4393 21.3790 37.5831 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0067 21.7932 36.1972 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3355 22.1530 35.4314 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3547 20.8895 38.4155 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9913 21.3976 40.3276 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7031 20.9757 41.0372 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0607 21.6341 40.8436 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4069 22.3067 39.8931 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7183 20.3943 39.2311 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3159 19.4902 39.6880 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6621 20.1628 38.7374 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7386 20.8716 38.1814 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3719 21.7668 35.9674 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8759 22.1853 34.7693 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2198 22.4843 34.1354 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7477 20.4136 39.6904 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 15 2 0 + 1 16 1 0 + 3 4 1 0 + 3 5 1 0 + 3 7 2 0 + 5 6 1 0 + 5 16 2 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 8 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 17 18 1 0 + 19 7 1 0 +V 19 * +M END +> (56) +JAK2 + +> (56) +JakA + +> (56) +TK + +> (56) +5tq3 + +> (56) +7GZ + +> (56) +B + +> (56) +B + +> (56) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (56) +16 16 16 16 16 16 16 8 8 8 8 8 8 8 16 16 3 3 na + +$$$$ +5tq8_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 3.9474 21.1848 36.7427 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9749 21.1019 36.4204 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0156 21.6794 35.8829 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7032 21.7463 36.3040 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2724 20.8655 38.4681 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0937 21.3230 40.0194 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8770 20.9241 40.6641 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2196 21.5719 40.6212 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4573 22.2200 39.5183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7110 20.2744 38.9738 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3551 19.3800 39.4851 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5928 20.0281 38.3823 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6013 20.7843 38.0280 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2967 22.0439 34.5761 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5361 22.3196 34.0592 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8136 22.2144 35.4221 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2996 21.3459 37.6011 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2659 21.4121 37.9069 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7164 20.4056 39.7914 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 13 1 0 + 3 4 1 0 + 3 14 1 0 + 4 16 1 0 + 4 17 2 0 + 5 13 2 0 + 5 17 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 17 18 1 0 + 5 19 1 0 +V 19 * +M END +> (57) +JAK2 + +> (57) +JakA + +> (57) +TK + +> (57) +5tq8 + +> (57) +7GS + +> (57) + + +> (57) +A + +> (57) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (57) +16 16 16 16 16 8 8 8 8 8 8 8 16 3 3 16 16 16 na + +$$$$ +7khk_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 5.2650 22.5978 37.1131 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9039 22.8878 37.9473 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8687 23.4916 36.6313 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8471 22.0241 36.3920 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8791 21.3742 38.9594 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2311 21.2990 36.7613 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7192 20.6141 38.8811 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6942 21.7246 40.1490 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2467 21.2823 41.0391 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7281 22.8085 40.2598 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7063 21.3405 40.0220 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1439 21.7685 37.6146 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3949 20.6138 37.5463 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5844 20.1314 37.1850 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9102 19.9136 39.8684 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 12 1 0 + 5 7 2 0 + 5 8 1 0 + 5 12 1 0 + 6 12 2 0 + 6 13 1 0 + 7 13 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 13 14 1 0 + 7 15 1 0 +V 15 * +M END +> (58) +KIT + +> (58) +PDGFR + +> (58) +TK + +> (58) +7khk + +> (58) +WEJ + +> (58) + + +> (58) +A + +> (58) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (58) +8 8 8 8 16 14 14 8 8 8 8 14 14 14 na + +$$$$ +5kkr_chainB + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 3.2822 18.3026 40.2608 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5111 18.9466 40.3709 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0921 19.1873 41.6095 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4457 18.7976 42.3959 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2242 20.2606 41.7464 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0622 18.6927 41.6581 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1670 19.3620 39.2202 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1209 19.8626 39.2972 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7151 18.0621 39.0152 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7642 17.5557 38.9395 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3803 18.4779 37.8659 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9490 18.2898 36.8938 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6039 19.1376 37.9702 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2815 19.5469 36.8612 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6745 20.5183 36.1239 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6918 17.9105 41.3903 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 7 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 7 8 1 0 + 7 13 2 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 16 1 1 0 +V 15 * +V 16 * +M END +> (59) +KSR2 + +> (59) +RAF + +> (59) +TKL + +> (59) +5kkr + +> (59) +6U7 + +> (59) + + +> (59) +B + +> (59) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (59) +16 16 8 8 8 8 16 16 16 16 16 16 16 3 na na + +$$$$ +8aau_altB_chainL + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 4.5329 21.9765 37.7314 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7283 20.1824 39.0427 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9306 20.8743 38.3416 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3478 20.1661 37.6258 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9200 20.6519 40.0984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9363 21.6321 40.5516 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4141 18.5692 39.5702 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0945 19.5773 40.4315 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8454 21.2311 39.2400 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4227 18.9282 38.6904 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9321 17.2125 39.5034 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0650 19.5240 41.4524 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 1 0 + 2 3 1 0 + 2 5 1 0 + 2 10 2 0 + 3 4 1 0 + 3 9 1 0 + 5 6 1 0 + 5 8 2 0 + 7 8 1 0 + 7 10 1 0 + 7 11 1 0 + 12 8 1 0 +V 11 * +V 12 * +M END +> (60) +LIMK1 + +> (60) +LISK + +> (60) +TKL + +> (60) +8aau + +> (60) +LH0 + +> (60) +B + +> (60) +L + +> (60) +GA GA GA GA GA GA GA GA GA GA FP AP + +> (60) +8 14 8 8 14 14 9 14 8 14 na na + +$$$$ +2j7t_altA_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 4.2400 19.0964 38.1386 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7129 17.7027 38.1456 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8894 17.0383 37.8839 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0824 17.4494 39.1393 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5172 17.5882 37.4189 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1416 20.0574 38.4440 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9280 20.5820 37.4311 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8154 20.2224 36.4190 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8577 21.5667 37.7161 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7854 22.1940 36.4065 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 7.0302 22.0353 39.0152 C 0 0 0 0 0 0 0 0 0 0 0 0 + 7.7621 22.8011 39.2255 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2499 21.5072 40.0422 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3675 21.8682 41.0533 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3172 20.5114 39.7586 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7260 20.0868 40.5565 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6049 19.4162 37.7851 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 6 7 2 0 + 6 15 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 1 1 0 +V 17 * +M END +> (61) +LOK + +> (61) +STE20 + +> (61) +STE + +> (61) +2j7t + +> (61) +274 + +> (61) +A + +> (61) +A + +> (61) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (61) +5 5 5 5 5 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +7xnc_chainA + RDKit 3D + + 11 11 0 0 0 0 0 0 0 0999 V2000 + 2.7625 18.6468 39.8184 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3946 18.1949 37.4747 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1423 17.8016 36.5010 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9713 19.2466 38.8867 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9523 19.6776 39.0221 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4434 18.1328 38.5289 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4729 17.6934 38.3512 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0625 19.2099 39.9695 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6169 18.7444 37.6827 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5717 19.8830 41.5420 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8025 18.6038 40.9351 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 2 0 + 1 8 1 0 + 2 3 1 0 + 2 6 1 0 + 2 9 2 0 + 4 5 1 0 + 4 8 2 0 + 4 9 1 0 + 6 7 1 0 + 8 10 1 0 + 1 11 1 0 +V 11 * +M END +> (62) +MAP2K1 + +> (62) +STE7 + +> (62) +STE + +> (62) +7xnc + +> (62) +GIK + +> (62) + + +> (62) +A + +> (62) +GA GA GA GA GA GA GA GA GA GA AP + +> (62) +16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5es1_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 3.2749 21.7208 40.9337 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7087 21.7449 41.8648 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9935 22.5731 40.3152 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0125 18.3984 39.5491 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3644 17.5377 39.6231 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9374 18.5638 38.5458 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9935 19.4856 40.4907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7938 20.0575 38.7547 S 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9165 20.4648 40.1965 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7435 21.8408 41.2677 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0455 20.9962 41.8870 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9180 22.7699 41.8103 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3266 21.8429 40.3467 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6377 17.6130 37.6585 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0633 19.5222 41.6643 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 9 1 0 + 1 10 1 0 + 4 5 1 0 + 4 6 2 0 + 4 7 1 0 + 6 8 1 0 + 7 9 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 6 1 0 + 15 7 1 0 +V 14 * +V 15 * +M END +> (63) +MARK4 + +> (63) +CAMKL + +> (63) +CAMK + +> (63) +5es1 + +> (63) +5RC + +> (63) + + +> (63) +A + +> (63) +GA GA GA GA GA GA GA GA GA GA GA GA GA FP AP + +> (63) +8 8 8 14 14 14 16 14 14 8 8 8 8 na na + +$$$$ +5tvt_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 4.0731 19.6833 36.2236 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6049 18.8993 36.0683 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3712 22.2409 36.6926 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5999 20.8704 37.8233 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4491 19.7245 37.4306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6067 18.6211 38.4002 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6169 17.2075 37.9932 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9636 18.6924 39.6245 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0721 17.8842 40.3327 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9926 20.8585 39.0744 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3665 21.6873 39.3704 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1807 19.7918 39.9516 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5097 19.7951 41.2725 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 3 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 12 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 +V 13 * +M END +> (64) +MELK + +> (64) +CAMKL + +> (64) +CAMK + +> (64) +5tvt + +> (64) +7LV + +> (64) + + +> (64) +A + +> (64) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (64) +3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6wpp_altB_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 2.4321 14.9380 39.9606 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4413 13.8828 39.6873 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5403 15.1530 40.5493 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3202 15.1687 40.5489 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4126 17.1337 38.7975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8394 19.1621 39.9055 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9383 19.2880 37.8608 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3729 19.8897 37.0763 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9702 17.8974 37.7693 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4246 15.7597 38.7419 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4284 15.3037 37.8407 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8550 17.7904 39.8578 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3745 19.8748 38.9107 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5423 17.3022 36.7057 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2449 19.8745 41.0399 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 10 1 0 + 5 9 2 0 + 5 10 1 0 + 5 12 1 0 + 6 12 2 0 + 6 13 1 0 + 7 8 1 0 + 7 9 1 0 + 7 13 2 0 + 9 14 1 0 + 10 11 1 0 + 6 15 1 0 +V 15 * +M END +> (65) +NIK + +> (65) +STE-Unique + +> (65) +STE + +> (65) +6wpp + +> (65) +PZ4 + +> (65) +B + +> (65) +A + +> (65) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (65) +5 5 5 5 14 14 14 14 14 5 5 14 14 14 na + +$$$$ +4g34_altB_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 1.8606 20.0892 38.9371 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8632 20.7373 38.2274 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1710 20.5190 38.4491 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1639 21.6558 37.2430 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3861 22.1600 36.6887 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4956 21.9040 36.9954 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0716 22.7796 36.0643 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5144 22.7031 36.1638 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9232 23.6801 36.4217 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9370 22.3712 35.2155 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8369 21.6991 37.2570 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3921 22.1649 38.0711 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4058 20.8561 36.8649 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4842 21.2777 37.6989 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1924 20.3538 38.6745 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9782 19.8507 39.2184 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3842 23.3763 35.0217 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4953 19.0886 39.9204 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 15 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 14 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 2 0 + 15 16 1 0 + 7 17 1 0 + 18 1 1 0 +V 17 * +V 18 * +M END +> (66) +PEK + +> (66) +PEK + +> (66) +Other + +> (66) +4g34 + +> (66) +924 + +> (66) +B + +> (66) +A + +> (66) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (66) +16 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 na na + +$$$$ +4k0y_altB_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 1.6799 19.0197 40.6557 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0061 20.3102 40.1941 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7930 21.2389 40.7025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6149 20.1855 39.0375 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6765 18.8349 38.6796 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0879 18.0975 39.6724 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9998 16.7641 39.5817 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4885 16.1249 38.5282 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0843 16.8453 37.4862 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4629 16.3308 36.6154 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1827 18.2035 37.5803 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7474 18.9162 36.5857 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0584 18.3971 35.8404 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9617 18.6625 41.8662 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3763 14.6279 38.3638 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 1 0 + 2 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 7 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 + 14 1 1 0 + 8 15 1 0 +V 14 * +V 15 * +M END +> (67) +PIM1 + +> (67) +PIM + +> (67) +CAMK + +> (67) +4k0y + +> (67) +1OA + +> (67) +B + +> (67) +A + +> (67) +GA GA GA GA GA GA GA GA GA GA GA GA GA AP FP + +> (67) +16 14 14 14 14 14 14 14 14 14 14 3 3 na na + +$$$$ +5n4u_altA_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.8739 18.3829 40.7571 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9215 17.3408 41.0367 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2561 19.3062 41.5915 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1007 18.1364 38.5427 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3246 17.1519 38.5676 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4165 18.9682 37.5117 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9507 20.2223 37.9224 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0356 21.0738 37.3858 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9437 18.6631 36.4405 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3507 20.1279 39.1827 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7493 21.0738 40.0111 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7026 22.1128 39.7201 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4297 18.8143 39.5595 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2126 20.6504 41.2170 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7537 21.3716 41.8770 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5901 18.8479 42.8209 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 13 1 0 + 3 14 1 0 + 4 5 1 0 + 4 6 1 0 + 4 13 1 0 + 6 7 1 0 + 6 9 2 0 + 7 8 1 0 + 7 10 1 0 + 10 11 1 0 + 10 13 2 0 + 11 12 1 0 + 11 14 2 0 + 14 15 1 0 + 3 16 1 0 +V 16 * +M END +> (68) +PIM1 + +> (68) +PIM + +> (68) +CAMK + +> (68) +5n4u + +> (68) +8MZ + +> (68) +A + +> (68) +A + +> (68) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (68) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6no8_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + 3.9510 16.6472 36.6664 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9601 17.7940 38.2501 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3632 15.5504 35.7928 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8864 14.6264 36.1201 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4462 15.4365 35.8389 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0642 15.7702 34.7679 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1043 16.5506 37.7249 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7733 18.6619 37.5164 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9018 19.7176 37.7042 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3507 17.9799 36.5659 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1908 18.0762 39.3948 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8248 17.2907 39.9135 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9030 19.3120 39.8548 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4403 15.4108 38.1902 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 1 0 + 1 7 1 0 + 1 10 1 0 + 2 7 2 0 + 2 8 1 0 + 2 11 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 8 9 1 0 + 8 10 2 0 + 11 12 1 0 + 13 11 1 0 + 7 14 1 0 +V 13 * +V 14 * +M END +> (69) +PIM1 + +> (69) +PIM + +> (69) +CAMK + +> (69) +6no8 + +> (69) +KUY + +> (69) + + +> (69) +A + +> (69) +GA GA GA GA GA GA GA GA GA GA GA GA AP FP + +> (69) +9 16 8 8 8 8 14 14 14 14 5 5 na na + +$$$$ +6ilz_chainG + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.7784 16.3806 37.0217 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9226 15.3501 36.7324 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1664 18.7468 36.6604 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6220 19.5471 36.0963 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3743 19.0418 37.7609 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2420 20.0689 38.0675 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7489 18.0209 38.4722 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9975 16.6930 38.1338 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5825 15.8993 38.7373 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3783 17.4149 36.2772 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0365 18.2166 39.5753 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7422 17.3951 40.0838 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6761 19.3946 40.0705 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 8 2 0 + 1 10 1 0 + 3 4 1 0 + 3 5 1 0 + 3 10 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 11 1 0 + 8 9 1 0 + 11 12 1 0 + 13 11 1 0 +V 13 * +M END +> (70) +PKCi + +> (70) +PKC + +> (70) +AGC + +> (70) +6ilz + +> (70) +AFU + +> (70) + + +> (70) +G + +> (70) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (70) +16 16 16 16 16 16 16 16 16 16 5 5 na + +$$$$ +2ivu_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + 2.4663 19.4233 40.2655 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2120 19.4495 38.9042 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4037 18.8654 38.4895 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0069 20.2348 38.0762 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8276 20.2643 37.0116 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0403 20.9848 38.6419 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2181 22.1372 37.6765 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2835 20.9427 39.9874 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0921 21.5204 40.4102 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5082 20.1754 40.7861 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8356 20.1959 42.0806 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6932 18.6112 41.1255 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 1 1 0 +V 12 * +M END +> (71) +RET + +> (71) +Ret + +> (71) +TK + +> (71) +2ivu + +> (71) +ZD6 + +> (71) + + +> (71) +A + +> (71) +GA GA GA GA GA GA GA GA GA GA GA AP + +> (71) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5j7b_chainB + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 2.0053 18.6754 40.3523 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4264 19.8560 39.0650 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4649 20.7208 38.7228 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7009 20.9086 37.6857 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1918 21.3375 39.7317 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0022 22.0099 39.4921 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1202 19.6207 40.3924 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6954 18.3743 39.0691 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9809 17.7387 38.7443 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5365 19.0972 38.3245 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8622 21.0774 41.0443 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5859 21.6882 42.0279 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8363 20.2172 41.4250 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6093 20.0239 42.4631 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4488 18.2077 41.4299 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 2 0 + 1 8 1 0 + 2 3 1 0 + 2 7 1 0 + 2 10 2 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 11 1 0 + 7 13 1 0 + 8 9 1 0 + 8 10 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 1 15 1 0 +V 15 * +M END +> (72) +RIPK2 + +> (72) +RIPK + +> (72) +TKL + +> (72) +5j7b + +> (72) +6GD + +> (72) + + +> (72) +B + +> (72) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (72) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +6e9w_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 2.8054 17.3460 38.8363 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4430 18.5133 41.0116 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1590 18.6268 39.2916 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9488 19.1741 38.7985 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0079 17.5213 36.7612 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6070 16.7939 37.6697 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4953 19.1931 40.3756 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7930 20.1679 40.7328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1383 17.1922 40.6085 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3961 16.6224 41.1478 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7968 16.6206 39.5111 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5338 15.6265 39.1811 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8720 15.4154 37.6848 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4730 14.8591 38.4274 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6810 14.7558 36.6988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6525 15.3222 35.7680 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2945 13.7516 36.5250 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1132 14.6675 37.1929 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6435 19.1922 42.0734 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 6 1 0 + 1 11 1 0 + 2 7 2 0 + 2 9 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 2 0 + 6 13 1 0 + 7 8 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 2 19 1 0 +V 18 * +V 19 * +M END +> (73) +ROCK1 + +> (73) +DMPK + +> (73) +AGC + +> (73) +6e9w + +> (73) +J0P + +> (73) + + +> (73) +B + +> (73) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA B2 AP + +> (73) +16 16 16 16 1 1 16 16 16 16 16 16 5 5 4 4 4 na na + +$$$$ +4yju_altA_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + 2.0972 18.8144 40.9849 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1412 17.3469 40.9810 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2991 16.9567 41.5526 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0743 17.0102 41.4329 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0830 16.9844 39.9547 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1155 19.4935 40.2901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0407 20.2668 40.9969 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9628 20.3536 42.0706 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0637 20.9259 40.3175 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8034 21.4826 40.8738 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1417 20.8728 38.9147 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9100 21.4214 38.3901 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2426 20.1259 38.2267 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2246 19.4132 38.9024 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0646 19.8857 36.9165 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6319 20.2845 36.1823 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0219 19.0361 36.7053 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4659 18.7524 37.8695 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5942 18.1330 38.0213 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1666 19.5150 41.7353 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 13 15 1 0 + 14 18 1 0 + 15 16 1 0 + 15 17 1 0 + 17 18 2 0 + 18 19 1 0 + 20 1 1 0 +V 20 * +M END +> (74) +SYK + +> (74) +Syk + +> (74) +TK + +> (74) +4yju + +> (74) +4DO + +> (74) +A + +> (74) +A + +> (74) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (74) +5 5 5 5 5 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4nfn_altB_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 3.3731 19.5020 39.0470 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5655 19.2428 37.6937 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0508 18.4208 37.2185 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4210 20.0459 36.9618 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0780 21.1152 37.5601 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7228 21.7608 36.9824 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8862 21.3333 38.9149 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0572 20.5399 39.6672 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9384 20.7195 40.7255 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6465 19.7044 35.6580 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2849 20.2550 35.1989 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8210 22.7425 39.7934 Br 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4635 18.7287 39.7865 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 12 1 0 + 8 9 1 0 + 10 11 1 0 + 13 1 1 0 +V 13 * +M END +> (75) +TTBK1 + +> (75) +TTBK + +> (75) +CK1 + +> (75) +4nfn + +> (75) +2KC + +> (75) +B + +> (75) +A + +> (75) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (75) +16 16 16 16 16 16 16 16 16 3 3 16 na + +$$$$ +3wzk_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + 5.2121 19.3540 38.0993 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1734 20.0044 38.1749 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8457 20.8827 37.2190 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9495 21.3480 37.2390 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7952 21.1600 36.1496 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9353 20.1586 35.7428 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5845 22.5384 35.5264 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6996 23.1223 35.7797 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8475 22.7115 34.4829 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6828 22.3237 36.5666 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.7302 22.3452 36.2653 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5823 22.7561 37.5622 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2708 19.8003 39.3656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4824 20.8511 39.8382 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5161 21.8136 39.3496 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6474 20.6566 40.9466 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0429 21.4748 41.3093 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5875 19.4179 41.5876 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3940 18.3776 41.1211 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3767 17.4217 41.6234 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2247 18.5607 40.0089 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8306 17.7429 39.6477 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6782 19.2708 42.7759 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 10 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 13 14 2 0 + 13 21 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 18 23 1 0 +V 23 * +M END +> (76) +TTK + +> (76) +TTK + +> (76) +Other + +> (76) +3wzk + +> (76) +O23 + +> (76) + + +> (76) +A + +> (76) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (76) +1 1 5 5 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4zeg_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 2.9723 18.6216 39.9851 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5237 19.6183 41.7301 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7606 20.8641 41.2322 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2818 21.7256 41.6738 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6334 21.0218 40.1385 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8562 22.0145 39.7761 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5520 17.3557 39.3469 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1928 17.6318 38.5095 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7389 16.7240 38.9894 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1369 16.8105 40.0876 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2210 19.9066 39.5087 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1614 20.1385 38.3590 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1191 18.5189 41.0794 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8983 17.5308 41.4552 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2966 19.6934 38.4269 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7596 20.9279 37.2548 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8199 21.2960 37.2165 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6724 21.2061 36.1977 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5680 19.4014 42.9075 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 1 0 + 1 11 2 0 + 1 13 1 0 + 2 3 1 0 + 2 13 2 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 11 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 12 15 2 0 + 12 16 1 0 + 13 14 1 0 + 16 17 1 0 + 16 18 1 0 + 19 2 1 0 +V 18 * +V 19 * +M END +> (77) +TTK + +> (77) +TTK + +> (77) +Other + +> (77) +4zeg + +> (77) +052 + +> (77) + + +> (77) +A + +> (77) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA B1 AP + +> (77) +16 16 16 16 16 16 8 8 8 8 16 1 16 16 1 5 5 na na + +$$$$ +6b4w_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + 4.7172 21.5754 36.1714 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4313 20.8502 35.7813 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2115 22.5380 36.3021 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8898 21.6841 35.4701 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1857 21.0928 37.5111 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8406 19.8763 39.2606 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7992 18.9269 40.2710 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4051 18.0358 40.1990 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9762 19.1215 41.3796 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9629 18.3856 42.1699 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0516 21.0142 39.3656 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5281 19.9524 38.1144 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2774 21.7760 38.2527 O 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2323 21.1979 40.4670 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6304 22.0917 40.5386 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1727 20.2514 41.4798 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3433 20.5026 42.5828 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 12 2 0 + 5 13 1 0 + 6 7 2 0 + 6 11 1 0 + 6 12 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 16 2 0 + 11 13 1 0 + 11 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 +V 17 * +M END +> (78) +TTK + +> (78) +TTK + +> (78) +Other + +> (78) +6b4w + +> (78) +CQ7 + +> (78) + + +> (78) +A + +> (78) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (78) +8 8 8 8 14 14 14 14 14 14 14 14 14 14 14 16 na + +$$$$ +6tn9_altB_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + 2.7129 19.7700 40.9131 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3682 19.6144 38.6177 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4323 18.5994 40.6131 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3500 17.7456 41.2694 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8388 20.8583 40.0307 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2917 21.7676 40.2311 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6611 20.7869 38.8944 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7883 21.9899 37.9529 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4660 21.7418 37.1360 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1819 22.8434 38.5050 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8076 22.2399 37.5483 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1647 19.5549 37.5150 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6231 18.7207 37.3901 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2516 18.5175 39.4838 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0135 17.2215 39.2116 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5990 17.3292 38.2985 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3052 16.4013 39.0945 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6799 17.0094 40.0477 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8828 19.8554 42.0518 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 5 1 0 + 2 7 1 0 + 2 12 1 0 + 2 14 2 0 + 3 4 1 0 + 3 14 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 13 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 +V 19 * +M END +> (79) +TTK + +> (79) +TTK + +> (79) +Other + +> (79) +6tn9 + +> (79) +NN5 + +> (79) +B + +> (79) +A + +> (79) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (79) +16 16 16 16 16 16 16 8 8 8 8 3 3 16 8 8 8 8 na + +$$$$ +5uvf_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 1.6420 22.0830 39.4533 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0302 21.9495 40.6706 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3205 22.6873 41.0146 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5493 21.1527 38.9871 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8361 20.0692 39.7907 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2476 19.8967 41.0142 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4852 19.0380 41.6245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3406 20.8475 41.4529 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1471 21.2873 37.7905 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7634 20.5870 37.5638 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7214 19.1562 39.3534 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3487 23.1534 38.6924 F 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7194 20.6925 42.7062 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 1 12 1 0 + 2 3 1 0 + 2 8 1 0 + 4 5 2 0 + 4 9 1 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 2 0 + 9 10 1 0 + 8 13 1 0 +V 13 * +M END +> (80) +VRK1 + +> (80) +VRK + +> (80) +CK1 + +> (80) +5uvf + +> (80) +7DZ + +> (80) + + +> (80) +A + +> (80) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (80) +16 16 16 16 16 16 16 16 3 3 16 16 na + +$$$$ +6npn_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 1.5072 22.2268 39.2815 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3734 23.1578 38.7507 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2533 20.9044 41.2687 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0911 22.1000 40.5746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6280 22.9417 41.0681 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1089 21.1334 38.6556 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6487 20.9210 37.3549 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.7129 21.7025 36.4184 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1042 19.6510 37.3161 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5441 19.2151 36.5183 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8796 19.0439 38.5212 N 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1246 18.0917 38.7522 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2694 19.9341 39.3643 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8456 19.7940 40.6816 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.9711 18.8671 41.2215 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7947 20.8528 42.6019 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 6 1 0 + 3 4 1 0 + 3 14 2 0 + 4 5 1 0 + 6 7 1 0 + 6 13 2 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 3 16 1 0 +V 16 * +M END +> (81) +VRK1 + +> (81) +VRK + +> (81) +CK1 + +> (81) +6npn + +> (81) +KWJ + +> (81) + + +> (81) +A + +> (81) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (81) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1di9_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 4.4454 19.6692 39.3973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3430 20.7441 39.8712 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6431 20.7731 40.9083 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8295 21.7724 38.9435 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6192 21.6219 37.4943 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0371 22.3400 36.8044 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8263 20.4723 36.9923 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6862 20.3412 35.9294 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2214 19.4968 37.9445 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6264 18.6735 37.5778 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.6512 23.1807 39.5649 S 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7697 23.6415 41.0973 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2397 24.5217 41.5361 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8153 22.8141 41.8055 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7283 23.8636 40.8646 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7845 18.8540 40.2967 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 1 1 0 +V 16 * +M END +> (82) +p38a + +> (82) +MAPK + +> (82) +CMGC + +> (82) +1di9 + +> (82) +MSQ + +> (82) + + +> (82) +A + +> (82) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (82) +16 16 16 16 16 16 16 16 16 16 11 11 11 11 11 na + +$$$$ +1ouk_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + 3.9751 20.0433 40.5290 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1701 20.8612 39.3865 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6959 20.5947 38.4534 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9932 22.0439 39.4541 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6317 22.3835 40.7359 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.2525 23.2645 40.8053 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4415 21.5647 41.8870 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9129 21.8189 42.8249 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6250 20.4131 41.7816 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4792 19.7911 42.6525 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1915 22.9143 38.2045 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0587 22.3141 37.4422 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6513 24.0744 38.5827 F 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0731 23.1128 37.5302 F 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1130 18.8298 40.4231 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 1 1 0 +V 15 * +M END +> (83) +p38a + +> (83) +MAPK + +> (83) +CMGC + +> (83) +1ouk + +> (83) +084 + +> (83) + + +> (83) +A + +> (83) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA FP + +> (83) +16 16 16 16 16 16 16 16 16 16 8 8 8 8 na + +$$$$ +1w84_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 5.2446 21.0498 41.2437 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8926 19.5796 41.1315 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1339 19.0923 42.0762 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4901 19.1400 40.3329 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4072 19.3359 40.8213 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.2499 18.2691 40.6623 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1412 19.8814 39.9159 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5649 21.7035 42.3740 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5965 21.2591 43.3578 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1278 22.0062 38.7715 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8366 21.0835 38.2918 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3348 22.0432 40.1574 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7115 23.2716 40.7635 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8795 24.4310 39.9966 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1667 25.3625 40.4616 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6692 24.3585 38.6252 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7938 25.2423 38.0170 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8468 23.0215 42.0947 N 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1172 23.7091 42.7834 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2969 23.1489 38.0243 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1399 23.1129 36.9564 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5185 19.7985 41.9500 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 8 2 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 8 9 1 0 + 8 18 1 0 + 10 11 1 0 + 10 12 2 0 + 10 20 1 0 + 12 13 1 0 + 13 14 2 0 + 13 18 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 20 2 0 + 18 19 1 0 + 20 21 1 0 + 5 22 1 0 +V 22 * +M END +> (84) +p38a + +> (84) +MAPK + +> (84) +CMGC + +> (84) +1w84 + +> (84) +L12 + +> (84) + + +> (84) +A + +> (84) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (84) +16 8 8 8 8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1wbw_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 2.4320 20.2564 40.7105 O 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9738 22.3213 40.9730 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6413 21.6620 41.7612 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8359 21.9439 39.6203 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2811 22.8419 38.5803 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8442 24.0756 38.9423 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1828 24.7730 38.1904 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9514 24.3681 40.2647 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3906 25.3134 40.5474 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5249 23.5132 41.2687 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6362 23.8072 42.3019 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2584 20.6929 39.2674 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1339 20.3673 37.9378 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6973 19.4191 37.6610 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5657 21.2487 36.9345 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4511 20.9614 35.8997 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1315 22.4695 37.2306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4551 23.1304 36.4401 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7523 19.7637 40.3559 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6891 18.7412 39.9837 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4147 19.7952 41.2209 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0663 19.8733 41.9724 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 19 1 0 + 2 3 1 0 + 2 4 2 0 + 2 10 1 0 + 4 5 1 0 + 4 12 1 0 + 5 6 2 0 + 5 17 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 13 2 0 + 12 19 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 20 1 0 + 19 21 1 0 + 22 1 1 0 +V 22 * +M END +> (85) +p38a + +> (85) +MAPK + +> (85) +CMGC + +> (85) +1wbw + +> (85) +LI4 + +> (85) + + +> (85) +A + +> (85) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (85) +3 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 4 4 4 na + +$$$$ +1zzl_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + 3.9301 17.1316 39.0941 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1152 16.2230 38.5404 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9001 22.9729 40.6358 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3890 24.2148 40.8062 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4516 22.6362 39.3638 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5318 23.3499 38.5572 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8971 21.3757 39.1278 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5556 21.1083 38.1387 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7869 22.0857 41.7052 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1141 22.3756 42.6928 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2418 20.8098 41.4825 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1696 20.1006 42.2938 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7871 20.4592 40.1854 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1909 19.1044 39.8957 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7151 18.1585 39.0857 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8591 17.3318 39.8731 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0196 18.5621 40.4144 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0041 19.1359 41.2926 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 15 2 0 + 1 16 1 0 + 3 4 1 0 + 3 5 2 0 + 3 9 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 13 2 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 14 15 1 0 + 14 17 2 0 + 16 17 1 0 + 17 18 1 0 +V 18 * +M END +> (86) +p38a + +> (86) +MAPK + +> (86) +CMGC + +> (86) +1zzl + +> (86) +TZY + +> (86) + + +> (86) +A + +> (86) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (86) +14 14 16 16 16 16 16 16 16 16 16 16 16 14 14 14 14 na + +$$$$ +3fi4_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + 5.6231 20.6540 42.4690 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4906 21.3851 41.3470 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0453 22.6662 41.2864 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.5793 23.0688 42.1345 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9036 23.4218 40.1206 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4191 24.6594 40.0448 F 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2201 22.9029 39.0259 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1162 23.4933 38.1276 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6698 21.6265 39.0835 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1407 21.2245 38.2322 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8049 20.8701 40.2448 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.2555 19.6155 40.2756 O 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1155 19.3553 40.9974 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 2 0 + 2 11 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 12 13 1 0 +V 13 * +M END +> (87) +p38a + +> (87) +MAPK + +> (87) +CMGC + +> (87) +3fi4 + +> (87) +FI4 + +> (87) + + +> (87) +A + +> (87) +GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (87) +16 16 16 16 16 16 16 16 16 16 16 3 na + +$$$$ +3fmj_chainA + RDKit 3D + + 21 22 0 0 0 0 0 0 0 0999 V2000 + 4.7410 20.2561 39.5607 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.7093 19.4981 40.1553 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1751 21.6377 39.9261 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6873 18.2076 39.4228 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8596 23.2721 41.5660 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0675 23.5390 42.5917 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8791 16.9387 39.5009 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1404 17.0269 40.2976 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.5411 16.0986 39.7106 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3709 16.7725 38.5511 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6582 18.2736 38.4812 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3221 19.5444 38.5475 N 0 0 0 0 0 0 0 0 0 0 0 0 + 5.4506 21.9772 41.2520 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3469 21.2380 42.0326 H 0 0 0 0 0 0 0 0 0 0 0 0 + 6.0007 24.2246 40.5542 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3215 25.2266 40.7982 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7287 23.8849 39.2321 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8357 24.6229 38.4509 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3180 22.5900 38.9184 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1100 22.3244 37.8924 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8036 19.8515 41.2891 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 12 2 0 + 2 4 2 0 + 3 13 1 0 + 3 19 2 0 + 4 7 1 0 + 4 11 1 0 + 5 6 1 0 + 5 13 2 0 + 5 15 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 13 14 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 17 19 1 0 + 19 20 1 0 + 2 21 1 0 +V 21 * +M END +> (88) +p38a + +> (88) +MAPK + +> (88) +CMGC + +> (88) +3fmj + +> (88) +FMJ + +> (88) + + +> (88) +A + +> (88) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (88) +14 16 16 14 16 16 8 8 8 8 14 14 16 16 16 16 16 16 16 16 na + +$$$$ +3hl7_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + 3.0618 18.6326 40.7064 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3360 17.5865 39.8712 N 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0729 17.6083 39.1809 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5309 16.5251 40.0560 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7142 16.8763 41.0567 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0003 18.1939 41.4990 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8131 19.8589 40.6331 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0396 20.4793 39.4235 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6846 20.0223 38.5117 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7182 21.6828 39.3693 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8834 22.1597 38.4144 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1852 22.2797 40.5165 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9798 21.6458 41.7244 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3533 22.0918 42.6343 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.3025 20.4496 41.7782 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1520 19.9661 42.7321 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9918 23.8074 40.4512 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6783 15.9400 41.5915 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2807 18.9571 42.5016 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 1 7 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 7 8 2 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 17 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 5 18 1 0 + 6 19 1 0 +V 18 * +V 19 * +M END +> (89) +p38a + +> (89) +MAPK + +> (89) +CMGC + +> (89) +3hl7 + +> (89) +I47 + +> (89) + + +> (89) +A + +> (89) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA FP AP + +> (89) +14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +3hll_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + 4.2163 20.7000 40.7984 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0206 21.2670 41.7624 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7349 22.4143 41.5336 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3616 22.8332 42.3070 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6423 23.0215 40.3098 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.8435 22.4775 39.3282 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7762 22.9565 38.3626 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.1286 21.3223 39.5739 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4982 20.9054 38.8025 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.4315 19.4731 41.0892 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.9547 18.8174 41.7853 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.1954 18.9223 40.1788 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2442 20.0485 41.6879 O 0 0 0 0 0 0 0 0 0 0 0 0 + 5.1447 20.7037 42.9702 F 0 0 0 0 0 0 0 0 0 0 0 0 + 6.3315 24.1582 40.1037 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4006 19.1809 42.3799 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 10 1 0 + 2 3 1 0 + 2 14 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 15 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 16 1 0 +V 16 * +M END +> (90) +p38a + +> (90) +MAPK + +> (90) +CMGC + +> (90) +3hll + +> (90) +I45 + +> (90) +B + +> (90) +A + +> (90) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (90) +16 16 16 16 16 16 16 16 16 4 4 4 3 16 16 na + +$$$$ +3kf7_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + 2.6320 18.1343 40.4938 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6159 18.5713 39.4954 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3480 17.0836 40.4352 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0552 18.2171 41.0306 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6959 17.5781 40.4230 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.0613 17.8628 42.0614 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.6000 19.6143 40.9988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0057 20.2299 42.1679 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.5141 21.4974 42.1773 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.8282 21.9575 43.1026 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.6180 22.1746 40.9900 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.2238 21.5947 39.8052 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3044 22.1444 38.8790 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.7245 20.3058 39.8061 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4317 19.8387 38.8774 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.9307 19.6062 43.3429 F 0 0 0 0 0 0 0 0 0 0 0 0 + 6.1023 23.4131 41.0353 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6161 18.8537 41.3432 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 2 0 + 7 14 1 0 + 8 9 1 0 + 8 16 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 17 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 18 1 1 0 +V 18 * +M END +> (91) +p38a + +> (91) +MAPK + +> (91) +CMGC + +> (91) +3kf7 + +> (91) +L9G + +> (91) + + +> (91) +A + +> (91) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (91) +8 8 8 8 8 8 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5xyx_altB_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + 2.0114 21.0543 40.7285 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2103 22.0446 40.7328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.8427 20.2027 39.8448 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1866 19.6707 39.1559 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.3823 19.4836 40.4611 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.8826 21.0276 39.0105 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.0393 21.6332 39.5633 C 0 0 0 0 0 0 0 0 0 0 0 0 + 5.3995 21.5079 41.2447 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 5.9477 22.3631 38.7886 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.8194 22.8031 39.2500 H 0 0 0 0 0 0 0 0 0 0 0 0 + 5.7286 22.5217 37.4281 C 0 0 0 0 0 0 0 0 0 0 0 0 + 6.4222 23.0852 36.8216 H 0 0 0 0 0 0 0 0 0 0 0 0 + 4.5994 21.9418 36.8590 C 0 0 0 0 0 0 0 0 0 0 0 0 + 4.4186 22.0591 35.8007 H 0 0 0 0 0 0 0 0 0 0 0 0 + 3.6950 21.2100 37.6332 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.6180 20.6737 37.0370 F 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0112 20.6241 41.5289 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 15 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 17 1 1 0 +V 17 * +M END +> (92) +p38a + +> (92) +MAPK + +> (92) +CMGC + +> (92) +5xyx + +> (92) +FTZ + +> (92) +B + +> (92) +A + +> (92) +GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AP + +> (92) +5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ diff --git a/data/fragment_library_custom_filtered/README.md b/data/fragment_library_custom_filtered/README.md new file mode 100644 index 00000000..0c5c6185 --- /dev/null +++ b/data/fragment_library_custom_filtered/README.md @@ -0,0 +1,16 @@ +# Custom filtered fragment library + +The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises 9505 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases (see `data/fragment_library/`). + +To reduce the fragment library size and enable the recombination avoiding combinatorial explosion and increase the chance of synthesizability of the newly created molecules, the fragment library can now be filtered by customizable filtering steps, namely: + +1. Pre-filtering (Remove pool X, deduplicate, remove unfragmented fragments, remove fragments only connecting to pool X and fragments in pool X) \[mandatory\] +2. Filter for unwanted substructures (PAINS and Brenk et al.) \[optional\] +3. Filter for drug-likeness (Ro3 and QED) \[optional\] +4. Filter for synthesizability (Buyable building blocks and SYBA) \[optional\] +5. Filter for pairwise retrosynthesizability (using ASKCOS) \[optional\] + +- `custom_filter_results.csv`: File containing the filtering results, including per fragment, from the pre-filtered library, the SMILES and subpocket as indices, the calculated scores and boolean columns, if a fragment passes a specific filter, generated by the filtering steps. +- `AP.sdf`, `FP.sdf`, `GA.sdf`, `SE.sdf`, and `B1.sdf`: custom filtered fragment library organized by subpocket (as described in `data/fragment_library`) + +Please refer to the notebook `notebooks/custom_kinfraglib/2_1_custom_filters_pipeline.ipynb` to check how the data was generated and/or to generate your own filtered fragment library (de-)activating filters and modifying the filtering parameters. diff --git a/data/fragment_library_custom_filtered/SE.sdf b/data/fragment_library_custom_filtered/SE.sdf new file mode 100644 index 00000000..d1dfe0fa --- /dev/null +++ b/data/fragment_library_custom_filtered/SE.sdf @@ -0,0 +1,9938 @@ +5te0_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.1800 16.8087 45.6132 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1809 17.2373 46.4777 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5014 18.2685 46.4580 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7691 16.3516 47.3631 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5701 16.6840 48.0068 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2473 14.6367 46.6498 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8537 13.6357 46.7467 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3284 15.0310 47.4248 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7366 14.1972 49.6124 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8143 13.0793 47.6435 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8170 13.2490 46.5668 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8329 13.1508 48.0251 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4163 12.0867 47.8539 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4557 14.9288 50.0325 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5026 15.9594 49.6809 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5971 14.4302 49.5827 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4976 13.7102 50.4394 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9784 14.0875 48.2936 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6713 15.5183 45.7541 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1758 15.2062 45.1613 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3017 14.9266 51.4868 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8388 17.7022 44.5693 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 19 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 8 2 0 + 6 7 1 0 + 6 8 1 0 + 6 19 2 0 + 8 18 1 0 + 9 14 1 0 + 9 17 2 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 10 18 1 0 + 14 15 1 0 + 14 16 1 0 + 19 20 1 0 + 14 21 1 0 + 1 22 1 0 +V 21 * +V 22 * +M END +> (1) +AAK1 + +> (1) +NAK + +> (1) +Other + +> (1) +5te0 + +> (1) +XIN + +> (1) + + +> (1) +A + +> (1) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (1) +16 16 16 16 16 16 16 16 1 5 5 5 5 4 1 1 1 5 16 16 na na + +$$$$ +3q4t_altA_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -4.0710 12.1447 49.9350 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7114 12.9738 50.5444 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0783 11.8724 50.2502 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1056 12.5819 48.4586 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3306 13.6467 48.3969 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8715 12.0173 47.9270 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8071 12.3224 47.8641 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3498 13.3240 47.0453 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8779 12.9919 45.7735 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8913 11.9606 45.4533 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3893 13.9738 44.9105 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0253 13.6940 43.9329 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3305 14.6663 47.4521 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6982 14.9382 48.4305 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8368 15.6518 46.5946 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8147 16.6795 46.9258 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3664 15.3306 45.3041 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1717 10.9789 50.1216 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8633 16.3115 44.4180 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 8 9 2 0 + 8 13 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 17 2 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 18 1 1 0 + 17 19 1 0 +V 18 * +V 19 * +M END +> (2) +ACTR2 + +> (2) +STKR + +> (2) +TKL + +> (2) +3q4t + +> (2) +TAK + +> (2) +A + +> (2) +B + +> (2) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (2) +4 4 4 4 4 4 3 16 16 16 16 16 16 16 16 16 16 na na + +$$$$ +3soc_altA_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.0226 16.4412 45.0511 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4036 15.7972 44.0343 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4526 15.6737 46.1766 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1323 16.2254 47.2761 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3541 17.2824 47.2811 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5282 15.4423 48.3619 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0352 15.8924 49.2026 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2612 14.0643 48.3505 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5616 13.4495 49.1861 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6046 13.4855 47.2548 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4111 12.4231 47.2434 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1991 14.2801 46.1754 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5651 13.7086 45.1167 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1746 14.4594 44.0559 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2272 17.7750 44.9326 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4668 13.8621 43.0366 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 3 1 0 + 2 14 1 0 + 3 4 2 0 + 3 12 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 2 0 + 15 1 1 0 + 14 16 1 0 +V 15 * +V 16 * +M END +> (3) +ACTR2 + +> (3) +STKR + +> (3) +TKL + +> (3) +3soc + +> (3) +GVD + +> (3) +A + +> (3) +A + +> (3) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (3) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +4ccu_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -0.8008 16.8942 45.1212 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1663 16.5521 46.4339 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2461 14.5069 45.5274 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3234 17.4374 47.6277 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1050 18.4678 47.3471 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6331 17.1196 48.4091 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3465 17.3707 47.9975 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8492 12.5957 45.8232 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0615 12.9244 46.8405 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9422 11.5112 45.7649 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5578 13.0586 45.1364 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4032 12.3205 46.3563 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5652 12.6388 47.3861 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6041 12.5969 46.0448 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5210 11.2391 46.2875 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4279 13.0061 45.4416 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4137 15.1988 46.6382 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1791 12.5602 44.0999 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8199 12.9889 43.5280 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7869 15.4428 44.1714 S 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4467 18.1714 44.4570 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 20 1 0 + 2 4 1 0 + 2 17 1 0 + 3 16 1 0 + 3 17 2 0 + 3 20 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 8 16 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 12 16 1 0 + 16 18 1 0 + 18 19 1 0 + 21 1 1 0 +V 21 * +M END +> (4) +ALK + +> (4) +ALK + +> (4) +TK + +> (4) +4ccu + +> (4) +AWF + +> (4) + + +> (4) +A + +> (4) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (4) +14 14 14 8 8 8 8 4 4 4 4 4 4 4 4 4 14 3 3 14 na + +$$$$ +4cmo_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -0.5888 16.9661 44.9086 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0181 16.7022 46.2556 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2943 15.4235 46.7318 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1544 14.3571 45.8853 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3701 13.3689 46.2640 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7469 14.4842 44.5581 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6473 13.6222 43.9151 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4686 15.7937 44.0877 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1510 15.9147 43.0626 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1655 17.7834 47.1224 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6072 17.4931 48.4584 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6798 18.4204 49.0266 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8924 16.8264 48.9407 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5847 17.0121 48.4214 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2793 18.3019 44.3119 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 10 1 0 + 3 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 1 1 0 +V 15 * +M END +> (5) +ALK + +> (5) +ALK + +> (5) +TK + +> (5) +4cmo + +> (5) +YPW + +> (5) + + +> (5) +A + +> (5) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (5) +16 14 14 14 14 14 14 14 14 3 3 3 3 3 na + +$$$$ +4cmt_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + -0.8248 17.0339 45.2473 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2069 17.0725 46.6194 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2068 18.0160 47.1451 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5853 15.8971 47.3019 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5982 14.6351 46.6454 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8902 13.7431 47.1797 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2227 14.5644 45.2803 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2254 13.6149 44.7655 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8420 15.7499 44.5911 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5589 15.6863 43.5508 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0561 16.0271 48.9931 S 0 0 0 0 0 6 0 0 0 0 0 0 + -1.2707 14.6888 49.8479 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1909 14.8376 49.8417 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5109 13.7492 49.3504 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6271 14.6562 50.8774 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4920 17.2539 49.5261 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4920 15.8102 49.0127 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4316 18.2704 44.5306 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 16 2 0 + 11 17 2 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 18 1 1 0 +V 18 * +M END +> (6) +ALK + +> (6) +ALK + +> (6) +TK + +> (6) +4cmt + +> (6) +GWH + +> (6) + + +> (6) +A + +> (6) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (6) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4dce_chainA + RDKit 3D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + 0.3398 14.3384 42.5342 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4594 13.4591 41.9012 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3213 14.7137 42.8239 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1971 15.1115 41.9846 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4038 13.9834 43.7113 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6422 14.9927 44.6207 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5921 16.3552 44.2678 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3625 16.6363 43.2506 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9517 14.6335 45.9402 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0133 13.3111 46.2920 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1621 12.8353 46.9841 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0374 11.7805 47.2290 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3001 13.4075 47.9015 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0356 12.9589 46.3440 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2171 15.6250 46.8894 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5204 15.2860 48.1776 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8298 15.6910 48.5612 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0138 15.3947 49.5939 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5628 15.2143 47.9104 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9156 16.7740 48.4731 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1488 16.9685 46.5258 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3411 17.7286 47.2684 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8375 17.3494 45.2242 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8186 18.6751 44.9724 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 9 1 0 + 7 8 1 0 + 7 23 1 0 + 9 10 1 0 + 9 15 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 21 1 0 + 16 17 1 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 21 22 1 0 + 21 23 2 0 + 23 24 1 0 +V 24 * +M END +> (7) +ALK + +> (7) +ALK + +> (7) +TK + +> (7) +4dce + +> (7) +0JF + +> (7) + + +> (7) +A + +> (7) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (7) +3 3 3 3 3 16 16 16 16 3 3 3 3 3 16 3 3 3 3 3 16 16 16 na + +$$$$ +4foc_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -0.1799 16.0206 45.2136 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8548 15.6432 46.3037 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0945 14.3946 46.9003 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7023 13.4934 46.4525 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8437 14.3271 48.0768 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1193 12.9599 48.7446 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9324 12.1708 48.0162 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1633 12.9269 49.0562 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3542 15.4928 48.6349 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9285 15.4411 49.5481 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1317 16.7340 48.0255 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5501 17.6324 48.4547 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3679 16.8033 46.8633 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9961 17.8420 46.0945 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2708 17.3480 45.0934 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2671 12.7271 49.9225 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2378 18.0846 44.0954 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4815 15.0577 44.3188 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 15 1 0 + 2 3 2 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 9 2 0 + 6 7 1 0 + 6 8 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 14 15 2 0 + 6 16 1 0 + 15 17 1 0 + 18 1 1 0 +V 16 * +V 17 * +V 18 * +M END +> (8) +ALK + +> (8) +ALK + +> (8) +TK + +> (8) +4foc + +> (8) +0UU + +> (8) + + +> (8) +A + +> (8) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP FP + +> (8) +9 14 14 14 16 4 4 4 14 14 14 14 14 14 14 na na na + +$$$$ +6edl_altB_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + 0.3478 14.6566 43.6543 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2511 13.8485 44.6386 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1552 12.7740 44.5882 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9505 14.4231 45.6531 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4133 13.8103 46.4126 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0651 15.8254 45.7030 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4894 17.9020 46.1640 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8698 18.7809 46.6632 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7294 17.8938 45.0109 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4689 16.5810 44.7273 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2426 15.9623 43.7004 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6733 16.6447 46.5554 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0656 14.0713 42.6121 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2891 19.0637 44.2319 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 11 2 0 + 2 3 1 0 + 2 4 2 0 + 4 5 1 0 + 4 6 1 0 + 6 10 1 0 + 6 12 2 0 + 7 8 1 0 + 7 9 2 0 + 7 12 1 0 + 9 10 1 0 + 10 11 1 0 + 1 13 1 0 + 9 14 1 0 +V 13 * +V 14 * +M END +> (9) +ALK + +> (9) +ALK + +> (9) +TK + +> (9) +6edl + +> (9) +J4M + +> (9) +B + +> (9) +A + +> (9) +SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (9) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +7jyr_altB_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -0.4455 18.1588 44.8259 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4497 17.2716 46.8347 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1180 16.8516 44.4255 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1337 17.4852 48.0739 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1216 15.9758 46.4298 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3838 15.1318 47.0506 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4628 15.7773 45.2369 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2108 14.7736 44.9279 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1082 18.3569 46.0301 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3606 19.3586 46.3451 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6764 17.6528 49.0569 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5302 16.6010 43.2580 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9099 15.2369 43.0436 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1090 19.3562 44.0118 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 9 1 0 + 2 4 1 0 + 2 5 1 0 + 2 9 2 0 + 3 7 1 0 + 3 12 1 0 + 4 11 3 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 9 10 1 0 + 13 12 1 0 + 14 1 1 0 +V 13 * +V 14 * +M END +> (10) +ALK + +> (10) +ALK + +> (10) +TK + +> (10) +7jyr + +> (10) +VTA + +> (10) +B + +> (10) +A + +> (10) +SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (10) +16 16 16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +3mtf_altA_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -2.7332 13.2384 43.6657 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6444 13.4424 42.7319 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0633 15.1270 46.6958 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1473 15.0330 47.7684 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4454 14.0619 45.8833 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8215 13.1432 46.3087 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5713 16.3194 46.1451 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3127 17.1466 46.7896 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8354 15.3926 43.9593 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7781 15.4948 42.8857 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3269 14.2198 44.5076 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4168 16.4351 44.7664 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9865 17.6238 44.1438 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 11 1 0 + 3 4 1 0 + 3 5 2 0 + 3 7 1 0 + 5 6 1 0 + 5 11 1 0 + 7 8 1 0 + 7 12 2 0 + 9 10 1 0 + 9 11 2 0 + 9 12 1 0 + 12 13 1 0 +V 13 * +M END +> (11) +ALK2 + +> (11) +STKR + +> (11) +TKL + +> (11) +3mtf + +> (11) +A3F + +> (11) +A + +> (11) +A + +> (11) +SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (11) +3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4c02_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -3.5126 13.9833 50.7141 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8779 13.1957 51.3732 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3173 14.6901 50.5117 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6841 14.5039 51.1945 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0713 13.4152 49.5037 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5441 14.2836 48.4792 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1326 15.6172 48.7137 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2077 16.0281 49.7096 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6325 16.4090 47.6833 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3174 17.4203 47.8939 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4152 13.7923 47.2079 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7045 12.7721 47.0034 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9147 14.5874 46.1644 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8228 14.1662 45.1741 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5329 15.9148 46.3840 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9915 16.7373 45.3084 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 11 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 15 2 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 +V 16 * +M END +> (12) +ALK2 + +> (12) +STKR + +> (12) +TKL + +> (12) +4c02 + +> (12) +TAK + +> (12) +A + +> (12) +A + +> (12) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (12) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6gin_altB_chainB + RDKit 3D + + 25 26 0 0 0 0 0 0 0 0999 V2000 + -4.1581 11.8294 47.2211 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0201 12.4964 47.2314 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9159 11.5644 46.1919 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5052 10.5540 47.9958 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6396 9.8923 48.0256 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3371 10.0423 47.5119 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7067 11.4630 49.9387 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9544 11.7556 50.9590 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9270 10.7016 49.9582 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1974 12.6792 49.1807 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2240 12.9497 49.5900 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8995 13.4971 49.3425 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5591 13.6389 47.0782 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1826 14.7903 47.7821 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2636 14.8094 48.8589 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7074 15.9043 47.1098 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4310 16.8014 47.6437 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5978 15.8309 45.7283 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0218 14.7097 45.0218 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9941 14.7109 43.9422 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4769 13.5976 45.6967 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7650 12.7079 45.1564 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0525 12.4971 47.7968 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8702 10.9256 49.3102 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2053 16.9708 45.0079 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 23 1 0 + 4 5 1 0 + 4 6 1 0 + 4 24 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 24 1 0 + 10 11 1 0 + 10 12 1 0 + 10 23 1 0 + 13 14 2 0 + 13 21 1 0 + 13 23 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 18 25 1 0 +V 25 * +M END +> (13) +ALK2 + +> (13) +STKR + +> (13) +TKL + +> (13) +6gin + +> (13) +IR2 + +> (13) +B + +> (13) +B + +> (13) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (13) +5 5 5 5 5 5 5 5 5 5 5 5 16 16 16 16 16 16 16 16 16 16 5 5 na + +$$$$ +2np8_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + -4.0495 13.5280 49.0814 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6655 14.5881 49.1598 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6759 14.7788 50.2630 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0582 15.2797 51.0084 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0808 14.9921 49.6984 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2245 15.1124 48.6247 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.7937 15.6199 50.2330 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.6833 13.6345 50.2675 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.1135 13.2914 51.2085 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5442 12.7839 49.6002 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4868 15.6280 48.3293 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0916 16.4260 48.4618 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5677 15.7121 47.3232 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1862 16.9774 46.8872 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6083 17.8498 47.3637 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0172 14.5923 46.6930 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3100 13.6030 47.0123 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0962 14.7364 45.6590 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6704 13.8640 45.1857 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7261 16.0151 45.2370 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0143 16.1306 44.4330 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2710 17.1434 45.8487 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9606 18.4174 45.4969 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 11 1 0 + 3 4 1 0 + 3 5 1 0 + 3 8 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 10 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 2 0 + 13 16 1 0 + 14 15 1 0 + 14 22 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 18 20 1 0 + 20 21 1 0 + 20 22 2 0 + 22 23 1 0 +V 23 * +M END +> (14) +AurA + +> (14) +Aur + +> (14) +Other + +> (14) +2np8 + +> (14) +CC3 + +> (14) + + +> (14) +A + +> (14) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (14) +1 1 15 15 15 15 15 15 15 15 5 5 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2w1d_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.4150 17.8882 45.1752 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3423 16.5750 45.0852 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1911 16.0442 46.0104 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5018 14.7330 46.3347 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0277 13.9199 45.8052 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4135 14.4655 47.3307 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6544 13.4423 47.5787 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0209 15.4993 48.0132 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7342 15.2829 48.7948 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7211 16.8024 47.7017 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1989 17.6091 48.2378 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8047 17.0836 46.6988 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2934 18.2171 46.1476 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5333 19.1588 46.4227 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6677 18.8373 44.3789 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 13 1 0 + 2 3 1 0 + 3 4 2 0 + 3 12 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (15) +AurA + +> (15) +Aur + +> (15) +Other + +> (15) +2w1d + +> (15) +L0D + +> (15) + + +> (15) +A + +> (15) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (15) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +3nrm_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -2.3564 17.8652 46.1012 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4790 18.8383 46.3422 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7558 15.1914 46.8484 S 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7149 14.8492 48.0360 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9484 16.9161 46.8919 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8242 17.1610 47.9354 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1427 18.1502 48.2294 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1970 15.9431 49.7258 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3583 14.9060 50.0202 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.1480 16.3911 49.4377 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7735 16.4969 50.5636 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2515 15.9913 48.5670 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5983 17.5514 44.9876 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 3 4 1 0 + 3 5 1 0 + 4 12 2 0 + 5 6 2 0 + 6 7 1 0 + 6 12 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 8 12 1 0 + 1 13 1 0 +V 13 * +M END +> (16) +AurA + +> (16) +Aur + +> (16) +Other + +> (16) +3nrm + +> (16) +NRM + +> (16) + + +> (16) +A + +> (16) +SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (16) +5 5 14 14 14 14 14 8 8 8 8 14 na + +$$$$ +3uo4_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -2.5132 17.3787 46.1673 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1659 17.4141 47.3927 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4647 18.3624 47.8144 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4363 16.2399 48.0778 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9429 16.2729 49.0310 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0536 15.0216 47.5344 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4055 14.9809 46.3046 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1092 14.0321 45.8822 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1389 16.1594 45.6187 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6415 16.1271 44.6606 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3435 13.7596 48.2779 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2817 12.6532 47.6782 O 0 0 0 0 0 1 0 0 0 0 0 0 + -3.6496 13.8010 49.5021 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2722 18.6203 45.4924 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 2 0 + 14 1 1 0 +M CHG 1 12 -1 +V 14 * +M END +> (17) +AurA + +> (17) +Aur + +> (17) +Other + +> (17) +3uo4 + +> (17) +0C0 + +> (17) + + +> (17) +A + +> (17) +SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (17) +16 16 16 16 16 16 16 16 16 16 6 6 6 na + +$$$$ +3w10_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -1.0656 17.4584 45.2831 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8843 16.9260 46.2747 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5825 17.5566 46.8050 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6360 12.8128 47.1806 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5579 11.7614 47.4147 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5950 14.9951 47.5519 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2934 15.6170 48.0921 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5204 13.6266 47.8538 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1597 13.2093 48.6177 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9227 14.7503 45.8762 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2394 16.6410 44.6297 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7911 15.5688 46.5740 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8484 13.3865 46.1919 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1556 12.7615 45.6479 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1315 15.3267 44.8768 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1491 18.7711 44.9827 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7832 14.6014 44.0827 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 12 1 0 + 4 5 1 0 + 4 8 2 0 + 4 13 1 0 + 6 7 1 0 + 6 8 1 0 + 6 12 2 0 + 8 9 1 0 + 10 12 1 0 + 10 13 2 0 + 10 15 1 0 + 11 15 2 0 + 13 14 1 0 + 1 16 1 0 + 15 17 1 0 +V 16 * +V 17 * +M END +> (18) +AurA + +> (18) +Aur + +> (18) +Other + +> (18) +3w10 + +> (18) +RO9 + +> (18) + + +> (18) +A + +> (18) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (18) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +4deb_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -3.1913 12.3470 47.5690 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4988 11.5075 48.0389 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6175 12.2805 46.7404 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9939 17.1688 47.3092 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1838 18.1290 47.7657 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3917 15.9923 47.9791 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8803 16.0626 48.9397 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1568 14.7255 47.4057 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5120 14.6529 46.1459 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3217 13.6903 45.6945 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1165 15.8338 45.4769 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6289 15.7661 44.5157 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3551 17.1134 46.0589 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5529 13.5774 48.0560 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2482 13.6332 49.0606 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0312 18.2512 45.4934 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 14 1 0 + 4 5 1 0 + 4 6 2 0 + 4 13 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 14 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 14 15 2 0 + 16 13 1 0 +V 16 * +M END +> (19) +AurA + +> (19) +Aur + +> (19) +Other + +> (19) +4deb + +> (19) +NHJ + +> (19) + + +> (19) +A + +> (19) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (19) +5 5 5 16 16 16 16 16 16 16 16 16 16 1 1 na + +$$$$ +4j8m_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -0.2278 14.1124 43.8375 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3728 13.1193 43.9504 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8929 15.0187 44.7200 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6349 14.5096 45.7277 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2700 15.3199 46.5715 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8549 14.9027 47.3779 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1859 16.6973 46.4224 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6975 17.3742 47.0906 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3997 17.1639 45.3557 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7689 16.3340 44.5144 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3327 18.5846 45.1919 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6315 14.5739 42.8060 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 10 1 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 11 1 0 + 12 1 1 0 +V 11 * +V 12 * +M END +> (20) +AurA + +> (20) +Aur + +> (20) +Other + +> (20) +4j8m + +> (20) +CJ5 + +> (20) + + +> (20) +A + +> (20) +SE SE SE SE SE SE SE SE SE SE AP FP + +> (20) +5 5 14 14 14 14 14 14 14 14 na na + +$$$$ +5one_altB_chainA + RDKit 3D + + 26 27 0 0 0 0 0 0 0 0999 V2000 + -1.9652 16.9637 45.7190 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8806 16.9018 46.7673 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3487 17.8066 47.1258 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1937 15.6845 47.3530 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9075 15.6458 48.1626 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5937 14.5134 46.9034 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2667 12.8823 48.6718 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9112 13.2258 47.4063 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8676 12.4686 46.7394 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8306 11.5062 48.8286 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9429 11.1440 48.0753 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4287 11.8809 47.4529 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4342 9.8513 48.1139 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.3001 9.5883 47.5244 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3622 15.7896 45.2784 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6488 15.8248 44.4683 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6694 14.5780 45.8701 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1866 13.6755 45.5256 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1365 13.6285 49.6405 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2395 10.5483 49.6515 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3912 10.8194 50.2625 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7281 9.2532 49.6942 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2617 8.5235 50.3395 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8189 8.8874 48.9080 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6630 18.2247 45.1251 * 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2482 7.5333 48.9156 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 15 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 8 1 0 + 6 17 1 0 + 7 8 1 0 + 7 10 1 0 + 7 19 2 0 + 8 9 1 0 + 10 11 2 0 + 10 20 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 24 2 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 20 21 1 0 + 20 22 2 0 + 22 23 1 0 + 22 24 1 0 + 1 25 1 0 + 26 24 1 0 +V 25 * +V 26 * +M END +> (21) +AurA + +> (21) +Aur + +> (21) +Other + +> (21) +5one + +> (21) +9YQ + +> (21) +B + +> (21) +A + +> (21) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (21) +16 16 16 16 16 16 1 5 5 16 16 16 16 16 16 16 16 16 1 16 16 16 16 16 na na + +$$$$ +5jsm_altA_chainC + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -3.2674 10.4981 47.4564 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9449 10.0336 46.7399 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7970 10.6808 48.3914 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6979 11.8320 46.8826 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6134 11.8459 46.9905 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1274 12.6772 47.4204 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5962 13.1505 44.9595 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4511 13.3377 43.6041 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6666 12.5322 42.9177 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0236 14.5753 43.1228 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9328 14.7464 42.0603 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7072 15.6134 44.0514 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8480 15.4195 45.3962 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6155 16.2179 46.0853 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2896 14.1969 45.8743 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4009 14.0383 46.9367 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1219 9.6578 47.6831 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0423 11.9119 45.5153 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9405 10.3437 48.0688 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2193 16.9867 43.5796 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 17 1 0 + 4 5 1 0 + 4 6 1 0 + 4 18 1 0 + 7 8 2 0 + 7 15 1 0 + 7 18 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 19 17 1 0 + 12 20 1 0 +V 19 * +V 20 * +M END +> (22) +BRAF + +> (22) +RAF + +> (22) +TKL + +> (22) +5jsm + +> (22) +6NB + +> (22) +A + +> (22) +C + +> (22) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (22) +4 4 4 4 4 4 16 16 16 16 16 16 16 16 16 16 3 3 na na + +$$$$ +5jt2_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.0638 10.6568 48.4560 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9589 9.5807 48.3172 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1048 11.1417 48.2735 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1556 11.2274 47.4995 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0087 11.1117 46.0543 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 10.6396 45.6483 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0487 11.7004 45.2087 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9908 11.7628 45.7533 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1887 11.1034 44.3076 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6359 15.6617 44.1164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9447 14.7221 43.1230 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8372 14.9833 42.0806 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3847 13.4672 43.4760 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6144 12.7389 42.7123 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5348 13.1348 44.8396 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2128 14.0772 45.8281 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3069 13.8138 46.8713 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7736 15.3468 45.4740 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5423 16.0790 46.2334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1164 11.7594 47.9271 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5331 10.9508 49.7861 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1599 17.0290 43.6897 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 20 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 15 1 0 + 10 11 2 0 + 10 18 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 21 1 1 0 + 22 10 1 0 +V 21 * +V 22 * +M END +> (23) +BRAF + +> (23) +RAF + +> (23) +TKL + +> (23) +5jt2 + +> (23) +6NC + +> (23) + + +> (23) +A + +> (23) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (23) +4 1 1 1 5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 1 na na + +$$$$ +3piz_chainA + RDKit 3D + + 27 28 0 0 0 0 0 0 0 0999 V2000 + -0.3944 18.1292 44.8913 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3922 16.8313 44.3601 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0161 16.6540 43.3634 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8829 18.3433 46.1806 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8857 19.3427 46.5900 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8814 15.7627 45.1297 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3647 17.2903 46.9437 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7394 17.4671 47.9411 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9035 14.3531 44.6445 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7716 13.8330 45.0494 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3610 16.0067 46.4142 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7357 15.1855 47.0071 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0683 14.2722 43.1199 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4408 15.0383 42.6643 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1128 14.4654 42.8754 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3790 13.6635 45.1390 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2818 13.4764 46.2085 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.2220 14.3314 44.9622 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6773 12.9148 42.5326 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7052 12.9636 41.4440 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3723 12.1503 42.8799 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6561 12.3343 44.4362 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1352 11.6215 44.6685 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6144 11.9340 44.7671 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6934 12.5842 42.9822 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3549 11.3271 42.1953 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1020 19.3310 44.1324 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 4 1 0 + 2 3 1 0 + 2 6 1 0 + 4 5 1 0 + 4 7 2 0 + 6 9 1 0 + 6 11 2 0 + 7 8 1 0 + 7 11 1 0 + 9 10 1 0 + 9 13 1 0 + 9 16 1 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 13 19 1 0 + 16 17 1 0 + 16 18 1 0 + 16 22 1 0 + 19 20 1 0 + 19 21 1 0 + 19 25 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 25 26 1 0 + 27 1 1 0 +V 26 * +V 27 * +M END +> (24) +BTK + +> (24) +Tec + +> (24) +TK + +> (24) +3piz + +> (24) +03C + +> (24) + + +> (24) +A + +> (24) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (24) +16 16 16 16 16 16 16 16 15 5 16 16 5 5 5 5 5 5 5 5 5 5 5 5 5 na na + +$$$$ +4nwm_altA_chainB + RDKit 3D + + 27 28 0 0 0 0 0 0 0 0999 V2000 + -3.0205 15.8381 48.3483 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6171 16.0896 49.2128 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8784 14.1369 47.0022 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6050 13.1062 46.8311 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6034 16.8533 47.4929 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8864 17.8777 47.6854 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4418 15.1549 46.1246 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8339 14.9076 45.2669 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6861 14.4995 48.1161 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8145 16.5369 46.3816 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2218 13.4478 49.0531 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6256 14.2394 48.7142 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7808 15.0990 49.3662 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2631 14.5799 47.7442 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0660 12.4136 50.3894 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3493 11.5978 50.4838 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1280 12.9539 51.3340 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.9322 13.5166 48.5284 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.8139 12.7642 47.7488 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.6953 14.2345 48.2277 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.4226 11.8481 50.0489 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7991 11.2882 50.9050 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.3243 11.1804 49.1929 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6156 13.3399 49.3245 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4185 12.7344 49.6383 O 0 0 0 0 0 0 0 0 0 0 0 0 + -7.3447 12.8785 49.7283 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3433 17.6029 45.5594 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 9 1 0 + 3 4 1 0 + 3 7 1 0 + 3 9 2 0 + 5 6 1 0 + 5 10 1 0 + 7 8 1 0 + 7 10 2 0 + 9 11 1 0 + 11 24 1 0 + 11 25 2 0 + 12 13 1 0 + 12 14 1 0 + 12 18 1 0 + 12 24 1 0 + 15 16 1 0 + 15 17 1 0 + 15 21 1 0 + 15 24 1 0 + 18 19 1 0 + 18 20 1 0 + 18 26 1 0 + 21 22 1 0 + 21 23 1 0 + 21 26 1 0 + 10 27 1 0 +V 27 * +M END +> (25) +BTK + +> (25) +Tec + +> (25) +TK + +> (25) +4nwm + +> (25) +2P5 + +> (25) +A + +> (25) +B + +> (25) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (25) +16 16 16 16 16 16 16 16 16 16 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 na + +$$$$ +4rfy_altB_chainA + RDKit 3D + + 26 27 0 0 0 0 0 0 0 0999 V2000 + -1.9349 16.7822 46.5376 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7241 17.0841 47.6683 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9798 18.1063 47.9051 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1610 16.0485 48.4628 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7664 16.2375 49.3370 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7973 14.7357 48.1050 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0155 14.5099 46.9415 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7527 13.5015 46.6580 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6059 15.5329 46.2002 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2345 13.5296 48.8709 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3870 12.7456 49.2470 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5590 13.2472 49.0608 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9491 12.0006 49.7990 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2885 11.8812 50.6578 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8336 11.1474 49.1305 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.4036 12.0444 50.2971 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.4803 12.7192 51.1496 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7206 11.0450 50.5952 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.2398 12.5197 49.2241 O 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0308 13.9278 49.1103 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.1029 14.3921 50.0938 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.7815 14.3599 48.4486 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6285 14.1598 48.5274 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6839 14.0207 47.4477 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3368 15.1869 48.7468 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5115 17.8038 45.7180 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 1 0 + 7 9 2 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 12 23 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 19 20 1 0 + 20 21 1 0 + 20 22 1 0 + 20 23 1 0 + 23 24 1 0 + 23 25 1 0 + 26 1 1 0 +V 26 * +M END +> (26) +BTK + +> (26) +Tec + +> (26) +TK + +> (26) +4rfy + +> (26) +3OU + +> (26) +B + +> (26) +A + +> (26) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (26) +14 14 14 14 14 16 14 14 14 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 na + +$$$$ +5kup_altA_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -1.5240 17.5670 45.6566 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1193 18.3754 45.7672 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7280 16.5312 46.5474 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6279 16.7472 47.5884 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1406 17.6918 47.6944 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8434 15.7183 48.4785 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5439 15.8390 49.2916 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1808 14.5745 48.3278 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3347 14.4064 47.3350 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8111 13.4666 47.2411 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1110 15.3607 46.4507 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5795 17.6254 44.6101 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 11 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 2 0 + 12 1 1 0 +V 12 * +M END +> (27) +BTK + +> (27) +Tec + +> (27) +TK + +> (27) +5kup + +> (27) +6XL + +> (27) +A + +> (27) +A + +> (27) +SE SE SE SE SE SE SE SE SE SE SE AP + +> (27) +5 5 14 14 14 14 14 14 14 14 14 na + +$$$$ +1h00_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -1.7852 16.3609 45.5862 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3969 17.0134 46.3542 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9114 16.8344 44.2523 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4332 15.9579 43.2449 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5363 16.3110 42.2295 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8130 14.6386 43.5682 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2032 13.9875 42.8000 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6840 14.1634 44.9003 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1674 15.0345 45.9125 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0684 14.6804 46.9280 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0835 12.8455 45.1079 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2592 11.6770 44.8368 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3773 11.7294 45.4752 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9535 11.7136 43.7912 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9514 10.3203 45.0864 C 0 0 1 0 0 0 0 0 0 0 0 0 + -2.1245 9.6194 45.2002 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7228 10.1469 46.4156 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7392 9.8382 46.1710 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7475 11.1164 46.9133 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7698 9.9813 43.9692 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7565 10.7256 43.3631 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1654 9.1509 47.3862 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5020 18.2074 43.9739 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 11 1 0 + 9 10 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 1 + 15 17 1 0 + 15 20 1 0 + 17 18 1 0 + 17 19 1 0 + 20 21 1 0 + 17 22 1 0 + 3 23 1 0 +V 22 * +V 23 * +M END +> (28) +CDK2 + +> (28) +CDK + +> (28) +CMGC + +> (28) +1h00 + +> (28) +FCP + +> (28) +B + +> (28) +A + +> (28) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (28) +16 16 16 16 16 16 16 16 16 16 3 4 4 4 4 4 4 4 4 3 3 na na + +$$$$ +1ke5_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -2.0686 16.1394 44.0082 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4452 14.9659 43.1465 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1501 14.9432 42.1078 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2021 13.8675 43.7061 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4780 13.0268 43.0868 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5928 13.9021 45.1198 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2558 15.0635 45.9841 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5741 15.0836 47.0160 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4872 16.1836 45.4259 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2304 17.0309 46.0444 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7124 12.6739 45.6829 S 0 0 0 0 0 6 0 0 0 0 0 0 + -5.9476 12.8854 45.0045 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7306 12.7021 47.1149 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1200 11.1772 45.3199 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7876 10.5378 45.7268 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8161 10.6020 44.0174 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0940 11.2341 43.5006 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7299 10.5366 43.4269 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3968 9.6046 44.1496 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3587 17.2085 43.5896 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 2 0 + 11 13 2 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 1 1 0 +V 20 * +M END +> (29) +CDK2 + +> (29) +CDK + +> (29) +CMGC + +> (29) +1ke5 + +> (29) +LS1 + +> (29) + + +> (29) +A + +> (29) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (29) +16 12 12 12 12 12 12 12 12 12 12 12 12 5 5 5 5 5 5 na + +$$$$ +1ke7_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -2.1342 16.3501 44.8818 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7503 15.2415 44.0804 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7511 15.2874 43.0014 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3497 14.0983 44.7681 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9683 12.9130 44.1353 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1974 12.1794 43.8993 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4787 13.2110 43.2195 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1453 12.2014 45.2740 S 0 0 0 0 0 6 0 0 0 0 0 0 + -5.1232 10.7636 45.2331 O 0 0 0 0 0 0 0 0 0 0 0 0 + -6.3743 12.9200 45.0911 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2402 12.8872 46.6850 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5800 12.1248 47.0985 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9478 13.2084 47.4493 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4289 14.0570 46.2345 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7982 15.1169 47.0565 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7976 15.0502 48.1344 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1680 16.2707 46.3705 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7277 17.0638 46.9567 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5426 17.4589 44.3218 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 17 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 14 2 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 2 0 + 8 10 2 0 + 8 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 1 1 0 +V 19 * +M END +> (30) +CDK2 + +> (30) +CDK + +> (30) +CMGC + +> (30) +1ke7 + +> (30) +LS3 + +> (30) + + +> (30) +A + +> (30) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (30) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1pxl_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -2.8372 10.7619 44.6846 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9543 11.5642 44.9981 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3394 11.3141 46.3363 F 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0126 11.2697 44.1328 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5243 13.0990 44.8156 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9512 14.1032 45.7758 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5805 13.8238 46.6079 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5332 15.4703 45.6146 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8510 16.2194 46.3247 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6822 13.4958 43.6910 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3714 12.7529 42.9714 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2676 14.8370 43.5295 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6450 15.1003 42.6872 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6561 15.8552 44.4605 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1906 17.2551 44.2989 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 2 0 + 5 10 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 14 2 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 +V 15 * +M END +> (31) +CDK2 + +> (31) +CDK + +> (31) +CMGC + +> (31) +1pxl + +> (31) +CK4 + +> (31) +A + +> (31) +A + +> (31) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (31) +8 8 8 8 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +1pxp_altA_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -2.4800 16.4562 44.4822 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1830 15.3484 43.6261 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6136 15.5074 42.7223 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6284 14.0492 43.9538 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3952 13.2253 43.2956 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3887 13.8058 45.1518 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6806 14.9351 45.9970 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2505 14.7862 46.9022 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2350 16.2346 45.6638 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4706 17.0649 46.3130 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8570 12.4196 45.5027 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6470 12.1213 46.7346 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8099 13.0427 47.2938 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0990 11.4120 47.3548 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6087 11.6916 46.4544 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5649 11.2316 44.6440 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9879 11.5453 43.7741 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5017 10.7815 44.3157 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9920 10.5019 45.2162 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0474 17.8180 44.2018 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 16 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 1 1 0 +V 20 * +M END +> (32) +CDK2 + +> (32) +CDK + +> (32) +CMGC + +> (32) +1pxp + +> (32) +CK8 + +> (32) +A + +> (32) +A + +> (32) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (32) +16 16 16 16 16 16 16 16 16 16 5 5 5 5 5 5 5 5 5 na + +$$$$ +1y91_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -3.0072 10.9115 46.8048 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9751 11.5370 47.6969 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0168 10.8744 46.3511 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3193 9.9037 47.0787 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7443 12.8401 46.2512 S 0 0 0 0 0 6 0 0 0 0 0 0 + -3.9628 11.4756 45.8467 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1806 10.8036 44.5603 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5547 9.9130 44.5050 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9203 11.4817 43.7475 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2287 10.5172 44.4728 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8401 12.8399 47.7205 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2838 16.4141 44.8858 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8512 15.5451 43.9367 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7044 15.7115 42.8797 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5999 14.4746 44.3844 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0474 13.7982 43.6712 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4683 16.2007 46.2678 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0296 16.8746 46.9887 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2240 15.1090 46.6909 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3719 14.9274 47.7452 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7833 14.2596 45.7544 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0032 12.9659 45.5301 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5657 17.4652 44.4571 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 6 1 0 + 5 6 1 0 + 5 11 2 0 + 5 21 1 0 + 5 22 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 12 13 2 0 + 12 17 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 21 2 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 19 21 1 0 + 23 12 1 0 +V 23 * +M END +> (33) +CDK2 + +> (33) +CDK + +> (33) +CMGC + +> (33) +1y91 + +> (33) +CT9 + +> (33) + + +> (33) +A + +> (33) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (33) +5 5 5 5 12 5 5 5 5 5 12 16 12 12 12 12 12 12 12 12 12 12 na + +$$$$ +2a0c_altB_chainX + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -2.0618 13.8822 43.8496 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3200 14.5710 43.2327 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3137 14.1631 45.1751 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9971 13.2430 46.2178 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5532 12.2877 45.9795 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2681 13.5868 47.5794 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0276 12.8907 48.3694 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8553 14.8474 47.8957 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0592 15.1060 48.9242 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1725 15.7645 46.8537 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6066 16.7253 47.0875 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9138 15.4059 45.5077 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1995 16.3532 44.3912 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1287 16.8605 44.6507 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3557 15.7409 43.5031 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3453 17.2992 44.0436 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 12 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 +V 16 * +M END +> (34) +CDK2 + +> (34) +CDK + +> (34) +CMGC + +> (34) +2a0c + +> (34) +CK9 + +> (34) +B + +> (34) +X + +> (34) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (34) +3 3 16 16 16 16 16 16 16 16 16 16 4 4 4 na + +$$$$ +2b52_chainA + RDKit 3D + + 14 14 0 0 0 0 0 0 0 0999 V2000 + -1.8080 16.1917 44.7044 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1238 14.7998 43.5819 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8944 13.8530 44.9343 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8991 14.5751 46.1561 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3099 15.8583 46.0360 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2884 16.7271 47.2582 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8092 17.6768 47.0204 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7306 16.2269 48.0498 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3097 16.9092 47.5926 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4792 12.4556 44.7780 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3520 12.1217 43.7482 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5407 12.4763 45.0247 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9635 11.7687 45.4490 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2065 17.4347 44.2389 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 1 0 + 3 4 2 0 + 3 10 1 0 + 4 5 1 0 + 5 6 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 1 1 0 +V 14 * +M END +> (35) +CDK2 + +> (35) +CDK + +> (35) +CMGC + +> (35) +2b52 + +> (35) +D42 + +> (35) + + +> (35) +A + +> (35) +SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (35) +14 14 14 14 14 8 8 8 8 8 8 8 8 na + +$$$$ +2fvd_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -3.4233 14.4157 45.3371 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2562 14.5431 46.2539 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4791 13.8408 45.9522 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5698 14.3218 47.2740 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7028 15.9825 46.1867 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8316 16.0613 46.8370 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4720 16.6773 46.5241 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2899 16.3456 44.7371 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4419 15.7387 44.4198 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4644 16.0494 43.7408 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1041 16.1715 42.7194 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2751 16.7538 43.9268 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9954 14.6110 43.9195 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8463 14.4521 43.2570 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2071 13.8989 43.6756 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1883 12.9149 45.5425 S 0 0 0 0 0 6 0 0 0 0 0 0 + -3.1287 11.5132 45.0389 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8490 11.6272 43.9916 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6753 10.5793 45.1694 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2299 11.4973 45.6554 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3776 12.9103 44.7202 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5593 12.7678 46.9237 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9140 17.7657 44.7143 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 13 1 0 + 1 16 1 0 + 2 3 1 0 + 2 4 1 0 + 2 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 17 1 0 + 16 21 2 0 + 16 22 2 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 8 23 1 0 +V 23 * +M END +> (36) +CDK2 + +> (36) +CDK + +> (36) +CMGC + +> (36) +2fvd + +> (36) +LIA + +> (36) + + +> (36) +A + +> (36) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (36) +5 5 5 5 5 5 5 15 5 5 5 5 5 5 5 12 12 12 12 12 12 12 na + +$$$$ +2r3m_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -3.2956 16.4677 43.7687 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5713 15.9588 42.8450 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1375 17.0644 44.1199 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9546 15.4557 44.7977 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9278 14.1133 44.5084 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1903 13.8016 43.5082 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5925 13.1649 45.4024 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2527 13.5946 46.6311 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2400 14.8788 47.0231 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5734 15.7841 46.0940 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5446 16.8285 46.3672 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8928 12.6603 47.5427 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6284 12.9411 48.4762 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8886 11.6827 47.2892 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1690 17.3418 43.5109 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 8 9 1 0 + 8 12 1 0 + 9 10 2 0 + 10 11 1 0 + 12 13 1 0 + 12 14 1 0 + 15 1 1 0 +V 15 * +M END +> (37) +CDK2 + +> (37) +CDK + +> (37) +CMGC + +> (37) +2r3m + +> (37) +SCX + +> (37) +A + +> (37) +A + +> (37) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (37) +4 4 4 16 14 14 14 14 14 14 14 5 5 5 na + +$$$$ +3s2p_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -4.1256 12.8269 44.5774 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8257 12.1789 45.4010 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6116 12.1871 43.2724 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8952 12.8116 42.4253 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0504 11.1961 43.1562 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5257 12.1011 43.3130 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0994 16.0836 44.1292 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4668 16.6378 45.3721 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2891 15.9829 46.2217 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6609 12.9334 44.5688 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.9757 13.5793 43.7491 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0012 13.3547 45.5147 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0932 11.9416 44.4364 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8231 14.7808 45.9796 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5078 14.1967 44.7981 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6470 14.8180 43.8442 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4177 14.3221 42.9125 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6145 16.5124 47.3887 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2240 16.0106 48.0186 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2536 17.4187 47.6502 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1617 16.7916 43.1575 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 10 1 0 + 1 15 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 7 8 2 0 + 7 16 1 0 + 8 9 1 0 + 9 14 2 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 15 16 2 0 + 16 17 1 0 + 18 19 1 0 + 18 20 1 0 + 21 7 1 0 +V 21 * +M END +> (38) +CDK2 + +> (38) +CDK + +> (38) +CMGC + +> (38) +3s2p + +> (38) +PMU + +> (38) + + +> (38) +A + +> (38) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (38) +8 8 8 8 8 8 14 14 14 8 8 8 8 14 14 14 14 5 5 5 na + +$$$$ +4acm_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -2.0324 10.2405 46.5276 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0052 10.1995 46.8899 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7175 10.0675 47.3576 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2820 11.6558 46.0133 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5751 11.8773 45.2137 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1413 12.3646 46.8293 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6522 11.7782 45.4961 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1881 11.0340 45.9194 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4963 13.1369 45.7150 S 0 0 0 0 0 6 0 0 0 0 0 0 + -4.6705 13.2990 47.1258 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6509 13.0407 44.8725 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5194 14.4717 45.1129 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0666 14.4449 43.8057 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2952 13.6034 43.1686 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3198 15.5022 43.3204 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9496 15.4650 42.3064 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0331 16.6159 44.1098 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5088 16.6162 45.4264 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2846 17.4558 46.0676 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2597 15.5661 45.9259 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6390 15.5981 46.9366 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2084 9.1401 45.5729 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2343 17.7475 43.5730 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 9 11 2 0 + 9 12 1 0 + 12 13 2 0 + 12 20 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 18 19 1 0 + 18 20 2 0 + 20 21 1 0 + 22 1 1 0 + 17 23 1 0 +V 22 * +V 23 * +M END +> (39) +CDK2 + +> (39) +CDK + +> (39) +CMGC + +> (39) +4acm + +> (39) +7YG + +> (39) +B + +> (39) +A + +> (39) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (39) +4 4 4 4 4 4 5 5 12 12 12 12 12 12 12 12 16 12 12 12 12 na na + +$$$$ +4bzd_altA_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -2.7249 15.1344 45.5137 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2638 14.7673 46.3746 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4587 16.4795 45.3780 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7785 17.1832 46.1323 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6397 14.7707 43.4297 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3337 14.0879 42.6508 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2943 14.2641 44.5363 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7688 16.9134 44.2484 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0183 10.6274 44.3387 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0070 10.2084 44.1518 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2639 10.0101 43.8511 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7629 10.6055 45.8332 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6930 10.3427 46.3372 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4508 11.6027 46.1435 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9649 12.0060 43.7393 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5231 12.0233 42.8032 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9287 12.2860 43.5495 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3693 16.0758 43.2841 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5517 12.9217 44.6706 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7337 9.6534 46.2400 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4733 18.2572 44.1209 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 8 1 0 + 5 6 1 0 + 5 7 2 0 + 5 18 1 0 + 7 19 1 0 + 8 18 2 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 9 15 1 0 + 12 13 1 0 + 12 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 19 1 0 + 12 20 1 0 + 8 21 1 0 +V 20 * +V 21 * +M END +> (40) +CDK2 + +> (40) +CDK + +> (40) +CMGC + +> (40) +4bzd + +> (40) +D6I + +> (40) +A + +> (40) +A + +> (40) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (40) +16 16 16 16 16 16 16 14 4 4 4 4 4 4 4 4 4 16 3 na na + +$$$$ +4ek4_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -5.2411 13.4786 48.1225 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2873 14.1191 45.5434 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9792 13.3569 45.2165 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2747 15.4403 47.3213 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1898 15.6938 48.3677 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5021 14.8089 44.6094 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5828 14.5518 43.5635 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5004 16.1145 46.3673 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8041 16.8709 46.6982 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1666 14.4274 46.9058 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6016 15.8382 45.0012 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7963 16.5331 44.0471 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 1 0 + 2 3 1 0 + 2 6 2 0 + 2 10 1 0 + 4 5 1 0 + 4 8 1 0 + 4 10 2 0 + 6 7 1 0 + 6 11 1 0 + 8 9 1 0 + 8 11 2 0 + 12 11 1 0 +V 12 * +M END +> (41) +CDK2 + +> (41) +CDK + +> (41) +CMGC + +> (41) +4ek4 + +> (41) +1CK + +> (41) +B + +> (41) +A + +> (41) +SE SE SE SE SE SE SE SE SE SE SE AP + +> (41) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4fko_altA_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -3.5527 14.6552 47.6714 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5006 12.6023 45.4331 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4053 16.6067 44.4265 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3040 15.5869 43.4870 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9658 15.8126 42.4864 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6327 14.2853 43.8223 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5578 13.5030 43.0816 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0577 13.9829 45.1064 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9264 11.5605 44.5342 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8427 11.6710 44.4957 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3394 11.6773 43.5323 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1773 10.5714 44.9176 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9854 12.4869 45.5147 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3740 13.2602 46.1774 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2526 11.5052 45.9058 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4147 12.6111 44.5205 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1500 15.0003 46.0283 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8600 16.3068 45.7032 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9853 17.0910 46.4352 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0311 17.9412 44.1835 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 17 1 0 + 2 8 1 0 + 2 9 1 0 + 2 13 1 0 + 3 4 2 0 + 3 18 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 8 2 0 + 8 17 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 2 0 + 18 19 1 0 + 20 3 1 0 +V 20 * +M END +> (42) +CDK2 + +> (42) +CDK + +> (42) +CMGC + +> (42) +4fko + +> (42) +20K + +> (42) +A + +> (42) +A + +> (42) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (42) +16 5 16 16 16 16 16 16 5 5 5 5 5 5 5 5 16 16 16 na + +$$$$ +6inl_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -2.8796 16.2765 44.3545 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9470 15.6869 43.4403 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8749 16.6147 44.6430 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2345 15.8713 46.7442 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5327 16.8896 46.9459 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3555 13.7648 47.5254 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2974 13.0689 49.8579 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7921 12.3290 50.4787 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3746 12.9095 49.9067 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0614 14.0694 50.2202 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3405 15.3885 45.4555 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9306 14.0847 45.2092 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9741 13.6956 44.2027 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4658 13.2727 46.2356 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1883 12.2501 46.0264 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8555 12.9355 48.4996 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7601 15.0968 47.7842 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6984 15.5022 48.7833 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0405 17.4728 44.0792 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 11 1 0 + 4 5 1 0 + 4 11 2 0 + 4 17 1 0 + 6 14 1 0 + 6 16 1 0 + 6 17 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 16 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 17 18 1 0 + 1 19 1 0 +V 19 * +M END +> (43) +CDK2 + +> (43) +CDK + +> (43) +CMGC + +> (43) +6inl + +> (43) +AJR + +> (43) + + +> (43) +A + +> (43) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (43) +4 4 4 16 16 16 3 3 3 3 16 16 16 16 16 3 16 16 na + +$$$$ +6jgm_chainA + RDKit 3D + + 28 28 0 0 0 0 0 0 0 0999 V2000 + -4.8645 9.2658 45.6395 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2623 8.4827 46.2849 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3028 8.8128 44.8226 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6869 9.8541 45.2326 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2539 10.1952 43.7296 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2771 9.9771 43.2978 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8298 10.8069 43.0351 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7846 9.2619 43.9178 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3371 15.1370 43.6665 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8299 15.2846 42.7245 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1085 15.9894 45.7977 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2058 16.7998 46.5049 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8774 13.9069 43.9635 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8057 13.1001 43.2490 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6447 14.7375 46.0946 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1584 14.5747 47.0305 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9465 10.1686 46.4458 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1290 9.5736 46.8529 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5131 10.6148 47.2630 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0742 10.9430 45.0291 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5438 11.8766 44.8414 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4986 10.3316 45.7241 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1103 12.3557 45.4176 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4378 16.1987 44.5721 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5144 13.7006 45.1794 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3918 11.2356 45.6087 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3416 12.3564 45.3872 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8925 17.4138 44.3405 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 17 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 20 1 0 + 9 10 1 0 + 9 13 2 0 + 9 24 1 0 + 11 12 1 0 + 11 15 1 0 + 11 24 2 0 + 13 14 1 0 + 13 25 1 0 + 15 16 1 0 + 15 25 2 0 + 17 18 1 0 + 17 19 1 0 + 17 26 1 0 + 20 21 1 0 + 20 22 1 0 + 20 26 1 0 + 23 25 1 0 + 23 26 1 0 + 23 27 2 0 + 28 24 1 0 +V 28 * +M END +> (44) +CDK2 + +> (44) +CDK + +> (44) +CMGC + +> (44) +6jgm + +> (44) +AQG + +> (44) + + +> (44) +A + +> (44) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (44) +4 4 4 4 4 4 4 4 16 16 16 16 16 16 16 16 4 4 4 4 4 4 1 16 16 5 1 na + +$$$$ +7zpc_altA_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -3.7282 14.2998 45.6938 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9053 15.7706 45.1030 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4740 15.6226 46.4349 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5744 16.1192 46.7674 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2190 14.8211 47.3447 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3028 14.1753 46.9649 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8020 13.7812 45.0219 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5607 13.1280 45.4271 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7285 14.2552 43.7220 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4432 14.0152 42.9487 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6683 15.0436 43.5416 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0469 15.0836 44.7540 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2327 16.5657 44.0253 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8046 14.5683 48.7481 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 6 1 0 + 1 7 2 0 + 1 12 1 0 + 2 3 2 0 + 2 12 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 2 1 0 + 5 14 1 0 +V 13 * +V 14 * +M END +> (45) +CDK2 + +> (45) +CDK + +> (45) +CMGC + +> (45) +7zpc + +> (45) +JLC + +> (45) +A + +> (45) +A + +> (45) +SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (45) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +8ern_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -5.7082 12.7067 44.3756 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6440 15.9636 46.1189 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5735 15.8811 43.6935 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2859 16.3297 42.7541 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2796 16.5395 44.8891 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2267 14.6647 43.6952 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4441 14.1592 42.7659 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5980 14.1033 44.8997 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3198 14.7463 46.0996 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6319 14.2956 47.0301 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6122 11.5656 43.8851 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2364 10.8029 43.6644 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2714 16.5995 47.4358 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7523 17.5400 47.2511 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6182 15.9271 47.9920 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1745 16.7906 48.0154 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3445 10.9745 44.2889 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6374 11.7660 44.5374 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9460 10.3751 43.4704 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5009 10.3400 45.1612 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2418 11.9650 46.2203 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3939 12.5319 44.9150 S 0 0 0 0 0 6 0 0 0 0 0 0 + -1.7750 17.8415 44.8095 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 22 2 0 + 2 5 2 0 + 2 9 1 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 8 22 1 0 + 9 10 1 0 + 11 12 1 0 + 11 17 1 0 + 11 22 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 21 22 2 0 + 5 23 1 0 +V 23 * +M END +> (46) +CDK2 + +> (46) +CDK + +> (46) +CMGC + +> (46) +8ern + +> (46) +WQK + +> (46) +B + +> (46) +A + +> (46) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (46) +12 16 12 12 16 12 12 12 12 12 5 5 8 8 8 8 5 5 5 5 12 12 na + +$$$$ +8p4z_altA_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -1.9076 15.4243 45.7383 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4703 15.7253 44.5011 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3756 16.7245 44.1023 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1495 14.7622 43.7745 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5721 15.0126 42.8127 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2882 13.4868 44.2734 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8224 12.7414 43.7030 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7457 13.1557 45.5030 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8496 12.1535 45.8919 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0650 14.1255 46.2347 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5973 13.7838 47.5387 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4687 13.1020 47.8657 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2680 12.7097 47.1803 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4449 13.0083 49.2277 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3060 12.5319 49.8406 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5991 13.6602 49.6552 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8815 13.7644 50.6924 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3130 14.1391 48.6431 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0946 16.4542 46.4928 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 18 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 19 1 1 0 +V 19 * +M END +> (47) +CDK7 + +> (47) +CDK + +> (47) +CMGC + +> (47) +8p4z + +> (47) +WZ8 + +> (47) +A + +> (47) +A + +> (47) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (47) +16 16 16 16 16 16 16 16 16 16 9 9 9 9 9 9 9 9 na + +$$$$ +2e9p_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -0.6750 17.2245 44.4016 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5956 17.4364 45.4991 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9138 18.4359 45.7564 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0806 16.3133 46.2399 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6774 14.9744 45.9274 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0532 14.1403 46.5012 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7657 14.7594 44.8392 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4569 13.7541 44.5932 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2479 15.8881 44.0569 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6517 15.8083 42.9599 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7889 14.9486 43.0495 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.3650 15.0109 42.1263 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4569 13.9217 43.2020 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4125 15.2573 43.8885 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1775 16.6071 47.5468 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1766 18.2762 43.6545 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 15 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 16 1 1 0 +V 16 * +M END +> (48) +CHK1 + +> (48) +CAMKL + +> (48) +CAMK + +> (48) +2e9p + +> (48) +77A + +> (48) + + +> (48) +A + +> (48) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (48) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 16 na + +$$$$ +2xey_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.4900 15.6086 44.7863 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0346 16.2004 45.9121 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9554 17.2674 46.0590 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6817 15.4130 46.8486 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1177 15.8676 47.7259 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7714 14.0431 46.6631 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2772 13.4324 47.3964 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2139 13.4539 45.5391 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2833 12.3858 45.3952 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5671 14.2423 44.6013 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9583 13.9560 43.4556 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8677 13.0326 43.0566 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4860 15.0795 42.9159 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0429 15.1500 41.9770 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7703 16.0965 43.7177 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5162 17.4509 43.5560 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 1 15 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 +V 16 * +M END +> (49) +CHK1 + +> (49) +CAMKL + +> (49) +CAMK + +> (49) +2xey + +> (49) +YVQ + +> (49) + + +> (49) +A + +> (49) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (49) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2ywp_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -0.4935 17.1406 44.0514 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2989 17.3315 45.2685 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4659 18.3324 45.6381 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8667 16.2217 45.9749 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6671 14.8584 45.5244 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8764 14.6671 44.3249 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7189 13.6612 43.9649 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2854 15.7719 43.5845 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4402 15.3196 42.4556 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8644 15.3676 42.3988 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2034 14.9703 41.4420 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2807 14.7688 43.2089 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1976 16.4002 42.5020 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2525 13.7932 46.2594 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3884 12.9676 47.0433 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9769 12.2000 47.5460 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8778 13.5792 47.7872 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6516 12.4939 46.3946 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8080 16.5702 47.4037 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0792 18.2194 43.3395 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 19 1 0 + 5 6 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 20 1 1 0 +V 20 * +M END +> (50) +CHK1 + +> (50) +CAMKL + +> (50) +CAMK + +> (50) +2ywp + +> (50) +A42 + +> (50) + + +> (50) +A + +> (50) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (50) +16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 3 16 na + +$$$$ +3u9n_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -0.3295 17.7244 43.5756 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1349 17.9476 44.7301 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3645 18.9617 45.0223 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6347 16.8918 45.4931 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2318 17.0698 46.3752 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3354 15.6104 45.0754 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5706 15.3602 43.9481 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0660 16.4096 43.1831 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5209 16.2096 42.2988 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7513 14.4682 45.7281 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4268 13.3837 44.7932 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3326 13.0621 44.2792 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0030 12.5431 45.3427 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4070 13.8923 43.7663 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6051 13.5651 44.0045 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6613 13.5788 42.7537 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1659 18.8272 42.7284 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 2 0 + 7 14 1 0 + 8 9 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 17 1 1 0 +V 17 * +M END +> (51) +CHK1 + +> (51) +CAMKL + +> (51) +CAMK + +> (51) +3u9n + +> (51) +09H + +> (51) + + +> (51) +A + +> (51) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (51) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4ftc_altA_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.6138 17.2552 44.0050 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4874 16.0047 43.5701 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1593 15.2738 44.5085 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2645 14.2702 44.4643 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6680 16.0348 45.5018 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3374 17.3320 45.1964 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5843 18.2212 45.7576 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3807 15.4679 46.6646 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3704 14.0976 46.9159 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7972 13.4398 46.2795 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0916 13.5727 47.9784 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0955 12.5066 48.1506 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8036 14.4057 48.8157 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3696 13.9927 49.6376 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7904 15.7671 48.6003 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3279 16.4222 49.2698 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0899 16.3002 47.5274 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0947 17.3672 47.3604 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0799 18.2532 43.1879 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 2 0 + 5 8 1 0 + 6 7 1 0 + 8 9 2 0 + 8 17 1 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 1 1 0 +V 19 * +M END +> (52) +CHK1 + +> (52) +CAMKL + +> (52) +CAMK + +> (52) +4ftc + +> (52) +H6K + +> (52) +A + +> (52) +A + +> (52) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (52) +14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4rvk_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -1.2500 16.1911 44.4178 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6704 16.1547 45.7592 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6244 17.0615 46.3439 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1444 14.9899 46.3617 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5331 14.9546 47.7177 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9009 14.0694 48.0360 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4871 15.9253 48.6522 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0456 17.0543 48.5089 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0269 15.5206 49.9888 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3774 14.4896 49.9420 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8563 16.1744 50.2588 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2401 15.6033 50.7386 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2640 13.8353 45.5888 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6447 12.9253 46.0285 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8868 13.8613 44.2350 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9713 12.9617 43.6434 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4013 15.0377 43.6375 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1477 15.0520 42.5878 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7645 17.4796 43.8293 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 17 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 13 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 15 17 2 0 + 17 18 1 0 + 19 1 1 0 +V 19 * +M END +> (53) +CHK1 + +> (53) +CAMKL + +> (53) +CAMK + +> (53) +4rvk + +> (53) +3XK + +> (53) + + +> (53) +A + +> (53) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (53) +16 16 16 16 5 5 1 1 1 1 1 1 16 16 16 16 16 16 na + +$$$$ +2wtc_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -4.5659 14.5187 48.7253 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9499 14.6692 49.7343 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5320 13.4518 48.5048 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2197 15.0171 48.0096 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2449 15.0689 48.6296 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5060 15.0013 47.3899 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0490 16.2397 46.6902 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2711 17.2093 47.1110 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3184 16.1446 45.4650 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0578 14.8352 44.8823 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5307 14.7589 43.9428 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5169 13.6008 45.5796 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3130 12.6312 45.1498 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2255 13.6984 46.8144 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6412 12.5377 47.4990 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4106 11.7098 47.0712 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9239 17.3368 44.7749 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 15 16 1 0 + 9 17 1 0 +V 17 * +M END +> (54) +CHK2 + +> (54) +RAD53 + +> (54) +CAMK + +> (54) +2wtc + +> (54) +VGM + +> (54) + + +> (54) +A + +> (54) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (54) +3 3 3 3 3 16 16 16 16 16 16 16 16 16 3 3 na + +$$$$ +2wtd_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.2687 16.3805 45.2865 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2670 15.1555 44.5977 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9533 15.1256 43.5647 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6672 13.9712 45.2337 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6255 13.0297 44.7062 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1212 14.0182 46.5571 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4329 13.1100 47.0516 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1727 15.2402 47.2430 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5996 15.5695 48.5743 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5842 16.9990 48.6437 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0489 17.3309 49.5334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6016 17.3897 48.6651 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9045 17.4367 47.4579 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7641 16.4286 46.6036 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9002 17.5373 44.5984 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 14 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (55) +CHK2 + +> (55) +RAD53 + +> (55) +CAMK + +> (55) +2wtd + +> (55) +ZZK + +> (55) + + +> (55) +A + +> (55) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (55) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +2wti_altB_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.3515 16.4374 45.4528 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3371 14.9130 44.8706 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9435 13.9857 45.9777 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0707 12.9155 45.9076 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3293 14.8688 47.1906 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9338 14.5700 48.4561 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8360 15.6534 49.4160 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8245 15.6633 49.8220 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5482 15.4665 50.2197 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1352 17.0515 48.8113 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1067 17.7898 49.6127 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1315 17.0329 48.3697 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1861 17.4412 47.7916 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9443 16.4137 46.8329 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9314 17.5837 44.7543 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 14 2 0 + 2 3 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 14 1 0 + 6 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (56) +CHK2 + +> (56) +RAD53 + +> (56) +CAMK + +> (56) +2wti + +> (56) +WTI + +> (56) +B + +> (56) +A + +> (56) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (56) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4g17_chainA + RDKit 3D + + 24 24 0 0 0 0 0 0 0 0999 V2000 + -1.8714 14.3314 46.7608 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5376 14.7280 46.2279 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2665 14.0107 46.1553 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3531 16.0729 45.8188 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5868 16.4294 45.4239 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5162 16.9462 45.9655 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8490 16.6240 46.4841 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6353 17.3617 46.5474 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0419 15.2587 46.9041 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9859 14.9188 47.3037 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0543 12.8318 47.1824 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4827 12.2638 46.7788 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2596 12.9023 47.1992 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5944 11.2517 47.1676 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5738 12.2479 45.6927 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8602 12.7302 48.7044 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5363 13.4240 49.2040 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8300 12.9814 48.9569 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0766 11.7131 49.0312 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0597 11.8148 46.5094 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1710 11.8607 45.4261 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2829 10.8055 46.8552 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0363 12.0738 46.7808 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3767 18.2245 45.5833 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 1 11 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 16 1 0 + 11 20 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 21 1 0 + 20 22 1 0 + 20 23 1 0 + 24 6 1 0 +V 24 * +M END +> (57) +CK1g3 + +> (57) +CK1 + +> (57) +CK1 + +> (57) +4g17 + +> (57) +0VN + +> (57) + + +> (57) +A + +> (57) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (57) +16 16 16 16 16 16 16 16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 na + +$$$$ +4hgl_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -0.2381 16.6865 44.7317 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4164 16.2785 43.9757 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7660 15.8474 45.7313 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7354 16.5026 46.7676 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2821 15.7293 47.7447 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9632 16.1814 48.4506 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9640 14.2511 47.8728 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4169 13.6581 48.6536 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0114 13.6272 46.8985 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7543 12.5819 46.9863 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4125 14.4632 45.7948 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2638 14.0288 45.0734 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5710 18.0948 44.7156 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9942 17.8820 46.7008 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4385 18.6539 45.7275 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6514 19.7125 45.7107 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1566 18.9729 43.6765 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 13 1 0 + 3 4 1 0 + 3 11 1 0 + 4 5 1 0 + 4 14 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 11 2 0 + 11 12 1 0 + 13 15 2 0 + 14 15 1 0 + 15 16 1 0 + 17 13 1 0 +V 17 * +M END +> (58) +CK1g3 + +> (58) +CK1 + +> (58) +CK1 + +> (58) +4hgl + +> (58) +0YO + +> (58) + + +> (58) +A + +> (58) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (58) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3wil_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.9890 14.5114 49.5903 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4970 14.4784 50.5542 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1478 15.2023 49.6464 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6251 13.5157 49.3371 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9187 14.9620 48.5680 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3548 15.0324 47.3140 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9927 16.2793 46.7650 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1523 17.1727 47.3505 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1440 13.8735 46.5428 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5048 12.6424 47.0275 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9219 12.4008 46.8103 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1873 11.4189 47.2021 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1369 12.4361 45.7423 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5038 13.1663 47.3236 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5693 13.9919 45.2637 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3957 13.1000 44.6799 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2155 15.2427 44.7267 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7814 15.3075 43.7399 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4294 16.4008 45.4783 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1074 17.6886 45.0229 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4604 18.5001 45.6419 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3900 18.0737 43.8742 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 9 1 0 + 7 8 1 0 + 7 19 1 0 + 9 10 1 0 + 9 15 2 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 20 21 1 0 + 20 22 2 0 +V 22 * +M END +> (59) +CK2a1 + +> (59) +CK2 + +> (59) +CMGC + +> (59) +3wil + +> (59) +LCD + +> (59) + + +> (59) +A + +> (59) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (59) +3 3 3 3 3 16 16 16 16 3 3 3 3 3 16 16 16 16 16 7 16 na + +$$$$ +4grb_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.9023 13.0806 50.3915 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0545 12.8181 51.0243 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6927 12.3407 50.5178 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2766 14.0642 50.6751 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3856 12.2448 48.6640 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2532 12.0974 49.5349 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1933 12.7034 47.8623 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7710 11.2819 48.3289 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4096 12.7697 47.7628 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4092 15.8618 47.9211 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8066 15.9001 48.9246 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1554 17.0163 47.2178 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3560 17.9724 47.6782 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6495 16.9752 45.9351 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3952 15.7543 45.3448 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0019 15.7145 44.3397 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6406 14.5863 46.0315 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4419 13.6288 45.5730 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4838 13.1052 49.0150 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4128 13.4178 48.0475 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1435 14.6572 47.3126 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4284 18.2094 45.2991 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 19 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 19 1 0 + 9 20 2 0 + 10 11 1 0 + 10 12 2 0 + 10 21 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 17 21 2 0 + 19 20 1 0 + 20 21 1 0 + 14 22 1 0 +V 22 * +M END +> (60) +CK2a1 + +> (60) +CK2 + +> (60) +CMGC + +> (60) +4grb + +> (60) +0XG + +> (60) + + +> (60) +A + +> (60) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (60) +5 5 5 5 5 5 5 5 1 16 16 16 16 16 16 16 16 16 5 1 16 na + +$$$$ +6fyo_altB_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -2.0018 16.3416 46.9331 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1533 17.2229 48.0181 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7971 18.2390 47.9337 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2161 15.5524 49.3518 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0741 14.6395 48.2960 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4292 13.6261 48.4115 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4755 15.0334 47.0946 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3781 14.3240 46.2861 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8690 15.1558 50.7069 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7583 14.6580 51.6768 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0135 15.4426 51.8096 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2815 13.7714 51.2587 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2021 14.4112 52.6413 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5818 16.3790 51.3560 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8628 17.1862 51.4964 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9949 16.0884 52.3219 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3866 16.7187 50.7041 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9277 14.0279 50.5238 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4556 13.1566 50.0700 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7301 14.3842 49.8777 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3384 13.7538 51.4956 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7413 16.8127 49.1691 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3530 16.7359 45.6181 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 2 22 1 0 + 4 5 1 0 + 4 9 1 0 + 4 22 2 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 9 10 1 0 + 9 14 1 0 + 9 18 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 23 1 1 0 +V 23 * +M END +> (61) +CLK1 + +> (61) +CLK + +> (61) +CMGC + +> (61) +6fyo + +> (61) +EAQ + +> (61) +B + +> (61) +A + +> (61) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (61) +16 16 16 14 16 16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 16 na + +$$$$ +8bu6_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -2.4347 13.9455 48.1142 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6845 14.8608 46.1912 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0847 15.7609 45.0673 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0066 16.2734 45.3423 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2577 15.1536 44.1789 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0443 11.7043 48.9181 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5051 10.8325 49.2581 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4563 13.5921 49.4607 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0045 14.1797 50.1822 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0144 12.0369 47.5828 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4672 11.4447 46.8643 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7206 13.1693 47.2039 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7576 12.4711 49.8426 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7604 12.1765 50.8817 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0401 15.0118 47.4530 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9071 13.7793 45.9861 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5306 13.4732 45.1003 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0767 16.7539 44.7604 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 2 0 + 1 12 1 0 + 1 15 1 0 + 2 3 1 0 + 2 15 2 0 + 2 16 1 0 + 3 4 1 0 + 3 5 1 0 + 6 7 1 0 + 6 10 1 0 + 6 13 2 0 + 8 9 1 0 + 8 13 1 0 + 10 11 1 0 + 10 12 2 0 + 12 16 1 0 + 13 14 1 0 + 16 17 1 0 + 3 18 1 0 +V 18 * +M END +> (62) +CRK7 + +> (62) +CDK + +> (62) +CMGC + +> (62) +8bu6 + +> (62) +RQE + +> (62) + + +> (62) +B + +> (62) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (62) +14 14 4 4 4 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +8bug_chainB + RDKit 3D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + -0.9579 14.8980 45.1863 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0147 12.7816 45.5975 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4982 12.6582 44.7363 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4912 13.2734 46.4795 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1245 15.5589 45.4445 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0201 13.6825 45.6631 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0592 14.8610 46.1389 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0229 15.2478 46.4355 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3125 12.0248 46.7175 * 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2460 16.9712 44.9862 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 1 0 + 1 6 2 0 + 2 3 1 0 + 2 6 1 0 + 4 6 1 0 + 4 7 1 0 + 5 7 2 0 + 7 8 1 0 + 2 9 1 0 + 10 5 1 0 +V 9 * +V 10 * +M END +> (63) +CRK7 + +> (63) +CDK + +> (63) +CMGC + +> (63) +8bug + +> (63) +RPW + +> (63) + + +> (63) +B + +> (63) +SE SE SE SE SE SE SE SE X-SE AP + +> (63) +14 5 5 14 14 14 14 14 na na + +$$$$ +8buh_chainB + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -2.8488 15.7846 48.7130 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1099 15.9378 45.2870 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2204 14.9297 45.1300 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8004 14.7304 44.1552 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8417 14.1428 46.2273 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1390 13.3344 46.0888 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3620 14.3933 47.4902 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3144 15.4713 47.6476 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5329 16.7937 44.1174 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5439 17.1598 44.2962 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5214 16.1853 43.2131 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6351 16.1919 46.5214 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2954 16.9508 46.6122 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6527 17.9244 43.9310 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9505 13.5658 48.6534 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 2 0 + 2 3 2 0 + 2 9 1 0 + 2 12 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 8 12 1 0 + 9 10 1 0 + 9 11 1 0 + 12 13 1 0 + 9 14 1 0 + 7 15 1 0 +V 14 * +V 15 * +M END +> (64) +CRK7 + +> (64) +CDK + +> (64) +CMGC + +> (64) +8buh + +> (64) +RR9 + +> (64) + + +> (64) +B + +> (64) +SE SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (64) +14 14 14 14 14 14 16 14 4 4 4 14 14 na na + +$$$$ +8bul_chainB + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -1.8663 16.1282 44.5064 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9408 16.0626 44.3351 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3499 15.4320 43.8456 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5741 15.7420 45.9539 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2466 16.3006 46.6049 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5423 16.0083 46.1829 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7633 14.2486 46.2240 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2495 13.6860 45.4445 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8290 14.0216 46.1933 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2181 13.8222 47.5652 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7227 14.4401 48.6929 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4628 15.2193 48.5859 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2954 14.0768 49.9557 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6807 14.5895 50.8246 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3807 13.0638 50.1054 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0454 12.7794 51.0919 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1082 12.4116 48.9975 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8231 11.6108 49.1160 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3145 12.7793 47.7275 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0605 12.2528 46.8623 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4269 17.4720 44.2034 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 2 0 + 10 19 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 17 19 2 0 + 19 20 1 0 + 1 21 1 0 +V 21 * +M END +> (65) +CRK7 + +> (65) +CDK + +> (65) +CMGC + +> (65) +8bul + +> (65) +RSU + +> (65) + + +> (65) +B + +> (65) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (65) +4 4 4 4 4 4 8 4 4 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +8buq_chainB + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -1.1791 14.0253 47.3403 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5002 13.0648 49.8413 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2350 12.6841 50.8165 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8950 14.8045 43.9211 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9832 14.6433 42.8568 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1672 12.3680 48.7003 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1943 15.9800 44.6278 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1778 14.2562 49.7127 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4481 14.8132 50.5976 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5172 14.7499 48.4655 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0401 15.6904 48.3735 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4933 12.8321 47.4382 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2184 12.2758 46.5542 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4705 13.9098 44.8553 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1551 12.8933 44.6718 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9752 15.8104 45.9226 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5171 14.5298 46.0544 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6904 10.8618 48.8366 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7106 17.2922 44.1274 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 1 0 + 1 12 2 0 + 1 17 1 0 + 2 3 1 0 + 2 6 2 0 + 2 8 1 0 + 4 5 1 0 + 4 7 1 0 + 4 14 2 0 + 6 12 1 0 + 6 18 1 0 + 7 16 2 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 13 1 0 + 14 15 1 0 + 14 17 1 0 + 16 17 1 0 + 19 7 1 0 +V 19 * +M END +> (66) +CRK7 + +> (66) +CDK + +> (66) +CMGC + +> (66) +8buq + +> (66) +RQ9 + +> (66) + + +> (66) +B + +> (66) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (66) +16 16 16 14 14 16 14 16 16 16 16 16 16 14 14 14 9 16 na + +$$$$ +2wel_altC_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + 1.5837 18.1211 45.0232 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2777 17.4237 44.5778 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9198 17.7221 46.1850 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9688 16.4350 46.6100 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4799 15.6193 46.1202 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2580 16.3600 47.7629 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0132 15.1394 48.6640 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9760 14.7068 48.9358 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5708 14.4060 48.1081 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7517 15.5040 49.9610 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2856 14.9494 50.7755 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7801 15.1661 49.8332 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8099 16.9890 50.3949 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1398 17.2354 50.8696 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6166 17.0932 51.1206 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0545 18.0151 49.2650 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7692 19.0095 49.6083 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1102 18.0134 48.9938 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2126 17.6347 48.0444 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1937 18.4478 47.0564 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0103 19.4340 46.9799 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4150 19.3550 44.3973 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 20 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 1 0 + 6 19 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 19 20 1 0 + 20 21 1 0 + 22 1 2 0 +V 22 * +M END +> (67) +CaMK2d + +> (67) +CAMK2 + +> (67) +CAMK + +> (67) +2wel + +> (67) +K88 + +> (67) +C + +> (67) +A + +> (67) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (67) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +5yvc_chainA + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + -1.9398 18.3342 45.7932 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3883 19.0227 46.3804 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8127 19.7633 44.3550 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6152 17.3568 44.0739 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0788 18.5800 44.6863 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2587 16.3033 44.8815 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0390 16.9130 45.9022 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7675 16.1588 46.8279 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3601 16.6292 47.5986 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6924 14.7593 46.7084 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2445 14.1427 47.4022 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9327 14.1521 45.7291 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8905 13.0745 45.6718 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2148 14.9299 44.8074 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6271 14.4499 44.0389 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2206 17.3284 43.0056 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 1 7 1 0 + 3 5 2 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 6 14 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 4 2 0 +V 16 * +M END +> (68) +CaMKK2 + +> (68) +CAMKK + +> (68) +Other + +> (68) +5yvc + +> (68) +SU6 + +> (68) + + +> (68) +A + +> (68) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (68) +7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 na + +$$$$ +6bqp_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -1.6300 16.0765 46.3872 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5942 16.5832 46.4281 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8568 16.7344 46.7839 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3216 15.7346 45.0264 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6874 14.8134 47.2038 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3383 14.4747 47.8108 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0937 15.3697 48.2586 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3268 14.1008 47.0324 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4663 13.7104 48.5773 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8345 14.7457 48.2219 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3368 15.6986 48.3886 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5518 14.3113 49.1808 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5647 13.8348 47.3504 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3799 13.6095 46.5442 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8882 12.6557 46.7356 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5442 13.7250 45.4728 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8613 16.7318 44.2028 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 10 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 17 4 1 0 +V 17 * +M END +> (69) +CaMKK2 + +> (69) +CAMKK + +> (69) +Other + +> (69) +6bqp + +> (69) +6T2 + +> (69) + + +> (69) +A + +> (69) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (69) +4 4 4 3 15 8 8 8 8 15 15 15 15 15 15 15 na + +$$$$ +6bqq_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -0.7662 17.0436 45.6667 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0138 15.4656 47.4520 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2184 15.2439 48.4889 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4320 16.0108 44.7879 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1970 16.2295 43.7567 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6351 13.0412 47.1117 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3555 12.6978 48.0473 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3295 12.2524 46.5980 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9757 12.6591 45.9369 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7070 14.4323 46.5710 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0579 16.7711 47.0085 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3623 17.8570 47.7813 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5699 17.6885 49.1817 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8009 18.6533 49.6334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6669 17.2814 49.6366 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4006 17.0022 49.3460 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4042 14.7133 45.2440 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1463 13.9107 44.5690 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7904 18.4141 45.3238 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4934 10.8393 46.9440 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 11 1 0 + 2 3 1 0 + 2 10 1 0 + 2 11 2 0 + 4 5 1 0 + 4 17 1 0 + 6 7 2 0 + 6 8 1 0 + 6 10 1 0 + 8 9 1 0 + 10 17 2 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 1 0 + 1 19 1 0 + 20 8 1 0 +V 19 * +V 20 * +M END +> (70) +CaMKK2 + +> (70) +CAMKK + +> (70) +Other + +> (70) +6bqq + +> (70) +R78 + +> (70) + + +> (70) +A + +> (70) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (70) +16 16 16 16 16 1 1 5 5 16 16 3 3 3 3 3 16 16 na na + +$$$$ +6y6f_altB_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.6093 16.1706 45.5549 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3763 16.5237 46.6638 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5713 17.5659 46.8691 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8907 15.5515 47.5049 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4873 15.8396 48.3578 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6436 14.2101 47.2572 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2942 13.0808 48.4409 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4751 11.5285 48.0602 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8186 10.7577 48.7501 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3969 11.6522 48.1612 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7128 11.2334 47.0382 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9030 13.8465 46.1422 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7218 12.8025 45.9334 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3965 14.8153 45.2982 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8285 14.5204 44.4283 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9840 17.1968 44.7133 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 12 1 0 + 7 8 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 1 1 0 +V 16 * +M END +> (71) +DRAK2 + +> (71) +DAPK + +> (71) +CAMK + +> (71) +6y6f + +> (71) +OD2 + +> (71) +B + +> (71) +A + +> (71) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (71) +16 16 16 16 16 16 11 11 11 11 11 16 16 16 16 na + +$$$$ +6y6h_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.5523 16.1811 45.5171 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5552 16.6502 46.8827 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7105 15.0064 47.3792 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0555 14.1208 46.5147 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4112 14.8392 45.4289 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8730 14.3501 44.6305 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3581 14.5486 48.5256 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8624 15.2434 49.1808 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3487 13.1934 48.8169 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8374 12.8325 49.7097 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7181 12.3031 47.9719 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7218 11.2483 48.2036 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0791 12.7559 46.8257 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5957 12.0488 46.1679 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9149 17.2041 44.6972 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 1 0 + 3 4 2 0 + 3 7 1 0 + 4 5 1 0 + 4 13 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 1 0 + 11 13 2 0 + 13 14 1 0 + 15 1 1 0 +V 15 * +M END +> (72) +DRAK2 + +> (72) +DAPK + +> (72) +CAMK + +> (72) +6y6h + +> (72) +OBW + +> (72) +A + +> (72) +A + +> (72) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (72) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +2j6m_chainA + RDKit 3D + + 35 36 0 0 0 0 0 0 0 0999 V2000 + -3.8628 12.5963 48.9546 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5858 13.3343 49.7074 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9392 12.6348 48.7869 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4812 11.2048 49.4508 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0450 10.9777 50.3556 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4142 11.1813 49.6722 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7850 10.2042 48.4276 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2088 10.2549 48.0825 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.3892 9.6502 47.1938 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4985 11.2869 47.8847 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0332 9.7084 49.2468 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7433 8.6764 49.4443 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0922 9.7458 48.9912 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.8524 10.3130 50.1354 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9729 10.5008 47.2508 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1323 9.7326 46.4942 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9195 10.5226 47.5303 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3803 11.8565 46.6940 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4348 11.8308 46.4191 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7802 12.0786 45.8116 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1674 12.9016 47.7002 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7449 13.1966 47.8959 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1490 12.3162 47.6553 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5667 13.4838 48.9321 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3650 14.3456 46.9695 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6658 15.6438 47.3245 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1643 15.8453 48.2612 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3292 16.6890 46.4813 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5632 17.7047 46.7642 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7327 14.0955 45.7688 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5032 13.0793 45.4841 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3909 15.1406 44.9270 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1142 14.9393 43.9939 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6956 16.4387 45.2801 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3544 17.4920 44.4502 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 21 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 15 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 21 22 1 0 + 22 23 1 0 + 22 24 1 0 + 22 25 1 0 + 25 26 2 0 + 25 30 1 0 + 26 27 1 0 + 26 28 1 0 + 28 29 1 0 + 28 34 2 0 + 30 31 1 0 + 30 32 2 0 + 32 33 1 0 + 32 34 1 0 + 34 35 1 0 +V 35 * +M END +> (73) +EGFR + +> (73) +EGFR + +> (73) +TK + +> (73) +2j6m + +> (73) +AEE + +> (73) + + +> (73) +A + +> (73) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (73) +5 5 5 5 5 5 5 4 4 4 4 4 4 4 5 5 5 5 5 5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4rj7_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -1.1207 17.0201 45.8831 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4652 14.7828 45.6717 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8235 16.6968 47.0642 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3378 17.4572 47.6331 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5784 14.9298 48.7151 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0724 15.7944 49.1582 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8766 14.5049 49.4327 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3249 14.1810 48.4500 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8319 15.3579 47.4738 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4779 16.0379 45.2357 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1489 14.4488 46.7669 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2341 13.8005 44.9748 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1202 12.8374 45.2569 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1304 14.0987 43.8478 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0721 18.3464 45.4370 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 10 1 0 + 2 10 2 0 + 2 11 1 0 + 2 12 1 0 + 3 4 1 0 + 3 9 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 9 1 0 + 9 11 2 0 + 12 13 1 0 + 14 12 1 0 + 1 15 1 0 +V 14 * +V 15 * +M END +> (74) +EGFR + +> (74) +EGFR + +> (74) +TK + +> (74) +4rj7 + +> (74) +3R1 + +> (74) +A + +> (74) +A + +> (74) +SE SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (74) +14 14 14 14 8 8 8 8 14 14 14 5 5 na na + +$$$$ +4fv6_chainA + RDKit 3D + + 15 14 0 0 0 0 0 0 0 0999 V2000 + -1.5990 16.4039 44.4583 C 0 0 2 0 0 0 0 0 0 0 0 0 + -0.6409 15.8846 44.4828 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3353 15.9431 43.2113 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6233 15.8776 42.3887 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1047 16.6761 42.9684 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9529 14.6724 43.3834 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3887 14.4474 42.5581 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3753 16.0708 45.7386 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7235 15.0399 45.6748 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2327 16.7402 45.8083 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5563 16.2190 46.9747 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6935 15.5551 46.9206 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1604 15.9596 47.8441 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2159 17.2507 47.0635 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4231 17.8553 44.4050 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 1 + 1 3 1 0 + 1 8 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 1 1 0 +V 15 * +M END +> (75) +Erk2 + +> (75) +MAPK + +> (75) +CMGC + +> (75) +4fv6 + +> (75) +E57 + +> (75) + + +> (75) +A + +> (75) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (75) +4 4 4 4 4 3 3 4 4 4 4 4 4 4 na + +$$$$ +4qp3_chainB + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.7833 15.9032 47.4588 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3406 14.6720 47.8958 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4495 13.8047 47.2615 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7571 14.5447 49.1448 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4052 13.5809 49.4820 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4231 16.0374 46.1033 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0304 16.9426 46.1018 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0633 15.1702 45.9417 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4341 16.1241 44.9405 C 0 0 1 0 0 0 0 0 0 0 0 0 + -0.6082 15.4274 45.0838 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2070 15.8048 43.6567 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5484 15.9283 42.7969 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0547 16.4839 43.5656 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6254 15.6576 49.9624 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1712 15.5622 50.9376 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0784 16.8929 49.5242 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9782 17.7621 50.1573 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6590 17.0089 48.2738 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0167 17.9697 47.9344 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6804 14.4573 43.7028 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1580 14.2894 42.8872 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9023 17.4848 44.8538 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 1 18 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 14 2 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 9 10 1 1 + 9 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 20 1 0 + 14 15 1 0 + 14 16 1 0 + 16 17 1 0 + 16 18 2 0 + 18 19 1 0 + 20 21 1 0 + 9 22 1 0 +V 22 * +M END +> (76) +Erk2 + +> (76) +MAPK + +> (76) +CMGC + +> (76) +4qp3 + +> (76) +36Q + +> (76) + + +> (76) +B + +> (76) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (76) +16 16 16 16 16 8 4 4 4 4 4 4 4 16 16 16 16 16 16 3 3 na + +$$$$ +4qte_altB_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -1.6718 16.7511 44.7395 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7694 16.0875 45.9553 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3552 16.9207 47.4348 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0710 14.7424 46.0228 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1191 14.2316 46.9731 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3070 14.0750 44.8548 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4834 12.7206 44.9041 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3088 14.6904 43.6386 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5578 14.1422 42.7420 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9837 16.0352 43.5796 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9709 16.5383 42.6240 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3189 18.1046 44.6886 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 10 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 10 2 0 + 10 11 1 0 + 12 1 1 0 +V 12 * +M END +> (77) +Erk2 + +> (77) +MAPK + +> (77) +CMGC + +> (77) +4qte + +> (77) +390 + +> (77) +B + +> (77) +A + +> (77) +SE SE SE SE SE SE SE SE SE SE SE AP + +> (77) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +6yoj_altB_chainA + RDKit 3D + + 20 21 0 0 0 0 0 0 0 0999 V2000 + -0.7855 17.5836 45.0367 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4428 16.4487 44.2933 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2615 16.5336 43.2320 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3515 16.1095 48.4765 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4500 16.2294 49.0773 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0759 16.8762 48.7515 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9522 14.7201 48.7161 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9557 14.6881 48.2919 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0053 14.5354 49.7891 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1118 13.6480 48.0733 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1153 17.4710 46.3935 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4478 18.3353 46.9492 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3346 15.2027 44.9241 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0121 14.3325 44.3717 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6474 15.1080 46.2634 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0091 16.2339 47.0145 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5210 13.8531 46.8922 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0115 13.1152 46.4540 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9863 12.5339 48.5853 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9930 18.8506 44.4517 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 13 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 4 16 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 17 1 0 + 10 19 2 0 + 11 12 1 0 + 11 16 2 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 + 20 1 1 0 +V 20 * +M END +> (78) +FAK + +> (78) +FAK + +> (78) +TK + +> (78) +6yoj + +> (78) +P4N + +> (78) +B + +> (78) +A + +> (78) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (78) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +4f63_chainB + RDKit 3D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + -0.5692 16.4839 44.9169 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2752 15.9232 44.1015 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4266 14.6164 44.0405 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2613 13.7789 44.8038 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1375 14.2636 45.6591 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7139 13.6078 46.2949 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2991 15.6348 45.7206 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5232 16.4356 46.8917 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7344 17.8601 44.9789 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1.3566 14.2131 43.1064 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 7 1 0 + 2 3 1 0 + 3 4 2 0 + 4 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 9 1 1 0 + 3 10 1 0 +V 9 * +V 10 * +M END +> (79) +FGFR1 + +> (79) +FGFR + +> (79) +TK + +> (79) +4f63 + +> (79) +0S7 + +> (79) + + +> (79) +B + +> (79) +SE SE SE SE SE SE SE SE AP FP + +> (79) +14 14 14 14 14 14 14 14 na na + +$$$$ +4uwc_altB_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -1.9435 15.8168 46.4847 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1160 14.4362 46.3663 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5594 13.8878 45.6207 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0016 13.7619 47.2039 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7298 14.4787 48.1726 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6565 16.5058 47.4621 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5164 17.5712 47.5701 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5406 15.8482 48.2964 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0858 16.4015 49.0468 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2432 12.4133 47.1757 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5811 13.7256 48.9387 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3612 11.5849 46.4140 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6824 10.5461 46.4898 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3471 11.6809 46.8019 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3817 11.8963 45.3696 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.2859 14.3693 50.0023 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.9169 13.6416 50.5127 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.9073 15.1672 49.5958 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5711 14.7899 50.7096 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9586 16.4833 45.5659 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 6 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 8 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 12 1 0 + 11 16 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 1 1 0 +V 20 * +M END +> (80) +FGFR1 + +> (80) +FGFR + +> (80) +TK + +> (80) +4uwc + +> (80) +4Y0 + +> (80) +B + +> (80) +A + +> (80) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (80) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 3 na + +$$$$ +1oec_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + -1.4138 16.9070 46.0330 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0442 16.6977 47.2848 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3214 17.5487 47.8893 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3146 15.3983 47.7524 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7949 15.2596 48.7097 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9619 14.2828 46.9785 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3431 14.4936 45.7439 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0686 13.6420 45.1392 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0697 15.7885 45.2706 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5905 15.9193 44.3117 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2453 12.8475 47.4649 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7357 12.2828 46.6720 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8921 12.8794 48.3416 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8936 12.1629 47.8361 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4166 12.7433 48.6259 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2544 12.1566 46.9532 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0585 10.7538 48.3144 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1696 18.1968 45.6204 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 1 18 1 0 +V 17 * +V 18 * +M END +> (81) +FGFR2 + +> (81) +FGFR + +> (81) +TK + +> (81) +1oec + +> (81) +AA2 + +> (81) + + +> (81) +A + +> (81) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (81) +16 16 16 16 16 16 16 16 16 16 8 4 4 4 4 4 na na + +$$$$ +1q5k_chainB + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -2.3190 16.1945 44.9733 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8600 16.7829 45.5908 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4472 14.7344 45.0836 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2859 14.2807 44.1057 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4461 14.4834 45.4402 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4178 14.2097 46.0582 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2065 14.8670 47.2973 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7820 15.7462 47.5466 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6687 13.0622 45.7299 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8324 12.5648 44.7854 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2467 14.3739 48.2029 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0847 14.8757 49.1454 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2940 12.5611 46.6302 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8671 11.6822 46.3742 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5097 13.2126 47.8740 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4447 12.7278 48.7505 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7984 11.7776 49.6276 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5278 11.3803 50.3335 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3831 10.9614 49.0364 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0030 12.2745 50.1744 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4961 16.7727 44.0672 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 6 7 2 0 + 6 9 1 0 + 7 8 1 0 + 7 11 1 0 + 9 10 1 0 + 9 13 2 0 + 11 12 1 0 + 11 15 2 0 + 13 14 1 0 + 13 15 1 0 + 15 16 1 0 + 16 17 1 0 + 17 18 1 0 + 17 19 1 0 + 17 20 1 0 + 21 1 1 0 +V 21 * +M END +> (82) +GSK3B + +> (82) +GSK + +> (82) +CMGC + +> (82) +1q5k + +> (82) +TMU + +> (82) + + +> (82) +B + +> (82) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (82) +5 5 4 4 4 16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +2o5k_chainA + RDKit 3D + + 12 12 0 0 0 0 0 0 0 0999 V2000 + -0.2749 15.8819 43.7569 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4395 15.9130 44.7082 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9526 16.8514 44.8582 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8999 14.7736 45.4192 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7431 14.8619 46.0882 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2339 13.4741 45.2487 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1022 13.3230 44.3556 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3707 12.3587 44.2418 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3903 14.4547 43.6223 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8119 12.1131 46.1211 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7538 14.1086 42.5923 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1323 17.0494 43.0818 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 7 8 1 0 + 7 9 2 0 + 9 11 1 0 + 1 12 1 0 +V 12 * +M END +> (83) +GSK3B + +> (83) +GSK + +> (83) +CMGC + +> (83) +2o5k + +> (83) +HBM + +> (83) + + +> (83) +A + +> (83) +SE SE SE SE SE SE SE SE SE SE SE AP + +> (83) +16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5k5n_chainB + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -2.5176 14.6761 44.6487 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3023 14.2164 44.0478 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9008 14.8865 45.6472 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9895 16.7223 44.7127 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1080 16.0812 44.7240 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3027 16.9275 45.7363 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1132 15.9950 43.9945 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9854 16.6484 43.9728 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7898 15.7867 42.9746 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1571 12.6869 45.6437 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8626 12.3119 46.3704 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8232 12.9804 43.8396 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1311 12.9336 42.8054 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1789 12.2994 44.3491 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7808 13.5506 45.9571 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4074 13.7338 44.7648 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6443 17.9823 44.0666 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 7 1 0 + 1 16 1 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 7 8 1 0 + 7 9 1 0 + 10 11 1 0 + 10 14 1 0 + 10 15 2 0 + 12 13 1 0 + 12 14 2 0 + 12 16 1 0 + 15 16 1 0 + 4 17 1 0 +V 17 * +M END +> (84) +GSK3B + +> (84) +GSK + +> (84) +CMGC + +> (84) +5k5n + +> (84) +6QH + +> (84) + + +> (84) +B + +> (84) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (84) +8 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 na + +$$$$ +3i81_chainA + RDKit 3D + + 14 15 0 0 0 0 0 0 0 0999 V2000 + -0.1866 14.6122 46.3728 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1387 13.5594 46.6092 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0085 15.5528 47.0310 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6861 15.3416 47.8450 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7946 16.7999 46.4493 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2620 17.7369 46.7138 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1864 16.5695 45.4169 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5387 15.2283 45.3936 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8366 17.3794 44.4687 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7524 16.8809 43.5838 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4703 14.7653 44.4825 N 0 0 0 0 0 0 0 0 0 0 0 0 + 2.0709 15.5767 43.5901 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5080 18.7147 44.4666 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.9763 15.0884 42.7161 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 9 1 0 + 8 11 1 0 + 9 10 2 0 + 10 12 1 0 + 11 12 2 0 + 13 9 1 0 + 12 14 1 0 +V 13 * +V 14 * +M END +> (85) +IGF1R + +> (85) +InsR + +> (85) +TK + +> (85) +3i81 + +> (85) +EBI + +> (85) + + +> (85) +A + +> (85) +SE SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (85) +14 14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +3qqu_chainB + RDKit 3D + + 29 30 0 0 0 0 0 0 0 0999 V2000 + 0.3794 14.1163 45.1339 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.7502 11.9383 45.2758 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6795 11.8331 44.3038 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0710 10.9616 44.5455 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1165 11.7076 43.3131 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1462 14.8733 42.3494 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2229 13.0784 44.2922 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3213 13.4481 43.2715 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2075 12.8191 44.6812 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9447 13.7050 46.4320 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2491 13.9980 47.2184 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8929 14.2235 46.5740 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1935 12.2127 46.5446 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8936 11.9827 47.3477 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2658 11.6626 46.7026 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0223 17.7424 45.3113 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2986 18.4886 46.0415 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2914 18.1941 43.9746 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6682 17.1914 42.9842 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9078 17.4936 41.9754 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7217 15.7873 43.3525 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3833 15.4150 44.7301 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0075 16.3805 45.7337 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2368 16.0894 46.7446 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2164 14.6851 41.2592 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6307 13.9711 40.5475 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0447 15.6384 40.7594 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7276 14.3038 41.6486 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1887 19.5871 43.7584 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 7 1 0 + 1 10 1 0 + 1 22 1 0 + 2 3 1 0 + 2 13 1 0 + 3 4 1 0 + 3 5 1 0 + 3 7 1 0 + 6 21 1 0 + 6 25 1 0 + 7 8 1 0 + 7 9 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 16 17 1 0 + 16 18 2 0 + 16 23 1 0 + 18 19 1 0 + 19 20 1 0 + 19 21 2 0 + 21 22 1 0 + 22 23 2 0 + 23 24 1 0 + 25 26 1 0 + 25 27 1 0 + 25 28 1 0 + 29 18 1 0 +V 29 * +M END +> (86) +IGF1R + +> (86) +InsR + +> (86) +TK + +> (86) +3qqu + +> (86) +01P + +> (86) + + +> (86) +B + +> (86) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (86) +5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 16 16 16 16 16 16 16 16 16 3 3 3 3 na + +$$$$ +4ibm_altA_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + 0.9990 16.9690 44.1983 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3149 16.6516 45.4667 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3373 17.4396 46.4112 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4368 18.5066 46.2772 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8570 16.8013 47.5362 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3879 17.3615 48.2916 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6767 15.4189 47.6665 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0739 14.9063 48.5302 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0112 14.6983 46.6911 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1577 13.6337 46.7977 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5013 15.6626 43.6860 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1727 14.7078 44.5895 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4899 15.3491 45.6145 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0671 18.3076 43.5826 * 0 0 0 0 0 0 0 0 0 0 0 0 + 2.2347 15.3628 42.4356 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 2 3 1 0 + 2 13 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 13 1 0 + 11 12 2 0 + 12 13 1 0 + 14 1 1 0 + 11 15 1 0 +V 14 * +V 15 * +M END +> (87) +INSR + +> (87) +InsR + +> (87) +TK + +> (87) +4ibm + +> (87) +IR1 + +> (87) +A + +> (87) +A + +> (87) +SE SE SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (87) +16 16 16 16 16 16 16 16 16 16 14 16 16 na na + +$$$$ +4y73_altA_chainA + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -1.6748 15.0890 45.6007 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9110 16.9514 44.5928 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1024 15.5577 44.5013 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7534 14.6811 43.3305 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5550 16.0064 47.6823 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7839 14.9524 47.8400 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4808 16.5816 47.6714 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9146 16.3638 48.4887 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5381 14.4494 43.2569 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3534 13.5027 43.3795 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1021 15.2252 42.1769 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8635 16.1695 46.4005 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4204 17.3065 45.8546 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4480 18.2935 46.2920 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4220 17.8134 43.5795 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 3 2 0 + 1 12 1 0 + 2 3 1 0 + 2 13 2 0 + 3 4 1 0 + 4 9 1 0 + 4 10 1 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 12 1 0 + 12 13 1 0 + 13 14 1 0 + 2 15 1 0 +V 15 * +M END +> (88) +IRAK4 + +> (88) +IRAK + +> (88) +TKL + +> (88) +4y73 + +> (88) +XPY + +> (88) +A + +> (88) +A + +> (88) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (88) +16 16 14 8 8 8 8 8 8 8 8 9 16 16 na + +$$$$ +4m0z_altA_chainA + RDKit 3D + + 22 23 0 0 0 0 0 0 0 0999 V2000 + -1.9470 15.9259 46.9259 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7971 16.7913 47.5761 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8991 17.8108 47.2348 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5335 16.3404 48.6892 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1738 17.0276 49.2222 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4439 15.0403 49.0995 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0487 14.6936 49.9244 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7692 14.5801 47.3703 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5617 14.1463 48.4478 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4635 12.8014 48.9035 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1015 12.4636 49.7068 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5776 11.9357 48.3418 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5168 10.9120 48.6805 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7313 12.4077 47.2969 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8188 13.6880 46.8119 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1699 14.0134 46.0123 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1488 11.4576 46.8749 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0126 11.7900 45.8175 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6540 10.9383 45.5909 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6283 12.6421 46.1054 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4255 12.0474 44.9359 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2583 16.4236 45.7687 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 9 1 0 + 8 9 2 0 + 8 15 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 14 17 1 0 + 15 16 1 0 + 17 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 1 1 0 +V 22 * +M END +> (89) +ITK + +> (89) +Tec + +> (89) +TK + +> (89) +4m0z + +> (89) +M0Z + +> (89) +A + +> (89) +A + +> (89) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (89) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +4m14_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -1.8116 15.9014 46.8045 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6553 16.7539 47.4907 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8632 17.7369 47.0947 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2335 16.3570 48.6786 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9097 17.0179 49.2003 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9437 15.1111 49.1971 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3823 14.8020 50.1344 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5243 14.6373 47.3068 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0947 14.2599 48.5202 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8456 13.0163 49.0606 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3109 12.7304 49.9924 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0033 12.1367 48.4134 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7916 11.1712 48.8486 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4316 12.4922 47.2093 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6980 13.7372 46.6555 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2563 14.0062 45.7074 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4314 11.5419 46.6684 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.7798 11.7482 45.2990 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2483 16.3986 45.6091 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 9 1 0 + 8 9 2 0 + 8 15 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 12 14 1 0 + 14 15 2 0 + 14 17 1 0 + 15 16 1 0 + 17 18 1 0 + 19 1 1 0 +V 18 * +V 19 * +M END +> (90) +ITK + +> (90) +Tec + +> (90) +TK + +> (90) +4m14 + +> (90) +QWS + +> (90) + + +> (90) +A + +> (90) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (90) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 3 na na + +$$$$ +5e1e_altB_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -0.4134 12.1428 42.6630 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1386 11.1298 42.3687 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3245 12.8461 42.2770 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3948 12.3858 42.2557 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7846 13.4378 44.6486 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8955 14.5433 46.4943 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4478 14.5101 47.4218 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5082 13.3720 45.8596 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6872 11.9631 47.4012 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7967 10.9067 47.6464 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6570 12.3730 47.1190 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3045 12.4998 48.2692 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4545 12.2302 44.0927 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4655 14.6723 44.1017 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0922 14.7180 43.1779 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8559 15.8557 44.7298 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5627 15.7468 45.9198 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7735 12.1069 46.3110 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9366 16.8765 46.5517 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5096 17.1472 44.1196 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 13 1 0 + 5 8 2 0 + 5 13 1 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 6 17 2 0 + 8 18 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 9 18 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 17 19 1 0 + 20 16 1 0 +V 20 * +M END +> (91) +JAK1 + +> (91) +JakA + +> (91) +TK + +> (91) +5e1e + +> (91) +5JG + +> (91) +B + +> (91) +A + +> (91) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (91) +3 3 3 3 16 16 16 16 3 3 3 3 3 16 16 16 16 3 16 na + +$$$$ +5wo4_altA_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.0150 16.4572 44.5699 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8643 15.2174 43.9555 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4890 15.1598 42.9444 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1952 14.0530 44.6388 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7210 12.6642 42.7253 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7839 11.6184 42.4245 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3153 12.9972 42.6679 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3350 13.2712 42.0600 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6291 14.1476 45.9585 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7823 15.3793 46.5719 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1408 15.4368 47.5891 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4750 16.5357 45.8786 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5923 17.4984 46.3538 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0058 12.7059 46.8385 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1953 12.8040 44.0758 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6627 17.6330 43.8690 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 4 9 2 0 + 4 15 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 15 1 0 + 9 10 1 0 + 9 14 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 1 16 1 0 +V 16 * +M END +> (92) +JAK1 + +> (92) +JakA + +> (92) +TK + +> (92) +5wo4 + +> (92) +B7V + +> (92) +A + +> (92) +A + +> (92) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (92) +16 16 16 16 3 3 3 3 16 16 16 16 16 16 3 na + +$$$$ +6w8l_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.8995 15.1953 46.3232 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9516 15.8372 44.3920 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4661 15.7896 43.4285 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9453 16.5111 46.2380 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3794 17.1542 46.9892 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6154 12.8103 43.7446 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3518 11.7558 43.6634 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2389 13.3469 42.8737 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9726 13.3815 44.9873 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1081 13.2656 44.9047 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3326 12.8247 45.8525 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3605 16.9684 45.0520 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2762 14.7979 45.1848 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0249 12.9292 43.7823 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3359 12.4510 44.5545 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2135 18.3179 44.6955 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 13 1 0 + 2 3 1 0 + 2 12 2 0 + 2 13 1 0 + 4 5 1 0 + 4 12 1 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 14 1 0 + 9 10 1 0 + 9 11 1 0 + 9 13 1 0 + 14 15 1 0 + 16 12 1 0 +V 16 * +M END +> (93) +JAK1 + +> (93) +JakA + +> (93) +TK + +> (93) +6w8l + +> (93) +R4S + +> (93) + + +> (93) +A + +> (93) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (93) +16 16 16 16 16 4 4 4 8 4 4 16 9 3 3 na + +$$$$ +2xa4_altA_chainB + RDKit 3D + + 10 10 0 0 0 0 0 0 0 0999 V2000 + -1.1013 15.0170 45.3600 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5621 14.3714 46.0929 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2667 16.4576 45.4010 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6613 17.2084 44.4729 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2136 15.3223 43.4935 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3359 14.5215 44.3506 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0504 16.6921 43.5605 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2783 17.0540 46.6807 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8161 18.5832 44.4988 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.9937 14.7443 42.5225 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 6 1 0 + 3 4 1 0 + 3 8 1 0 + 4 7 2 0 + 5 6 2 0 + 5 7 1 0 + 4 9 1 0 + 5 10 1 0 +V 9 * +V 10 * +M END +> (94) +JAK2 + +> (94) +JakA + +> (94) +TK + +> (94) +2xa4 + +> (94) +AZ5 + +> (94) +A + +> (94) +B + +> (94) +SE SE SE SE SE SE SE SE AP FP + +> (94) +14 14 14 14 14 14 14 14 na na + +$$$$ +4c61_chainB + RDKit 3D + + 16 17 0 0 0 0 0 0 0 0999 V2000 + 0.2814 15.3160 43.4375 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2501 14.4757 44.3481 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0115 15.0533 45.2964 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6824 14.3505 46.4322 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6442 12.8716 46.6988 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0390 12.3806 45.9367 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6576 12.4712 46.6716 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2083 12.6906 47.6813 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1001 16.6512 43.3825 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6472 17.2060 44.3592 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2695 16.4293 45.3665 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2842 16.8625 46.7012 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3673 15.2255 47.2251 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9135 14.9174 48.1044 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.1456 14.7728 42.5548 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7656 18.6001 44.4366 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 3 4 1 0 + 3 11 2 0 + 4 5 1 0 + 4 13 2 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 9 10 2 0 + 10 11 1 0 + 11 12 1 0 + 12 13 1 0 + 13 14 1 0 + 15 1 1 0 + 10 16 1 0 +V 15 * +V 16 * +M END +> (95) +JAK2 + +> (95) +JakA + +> (95) +TK + +> (95) +4c61 + +> (95) +LMM + +> (95) + + +> (95) +B + +> (95) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (95) +14 14 14 16 8 8 8 8 14 14 14 14 14 14 na na + +$$$$ +5cf5_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.4221 17.7382 45.5265 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6564 18.6145 45.9707 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6946 16.5941 46.2194 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1812 16.6594 47.4296 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2935 14.9985 45.6782 S 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2382 15.4029 47.9974 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8015 14.3750 47.2155 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8153 15.2838 49.3700 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0731 16.2750 49.7430 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0825 14.8250 50.0337 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7116 14.6644 49.3348 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6200 12.9157 47.5341 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2493 12.3945 46.6514 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5765 12.4875 47.8339 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9027 12.8079 48.3477 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8497 17.7995 44.2617 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 3 4 2 0 + 3 5 1 0 + 4 6 1 0 + 5 7 1 0 + 6 7 2 0 + 6 8 1 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 16 1 1 0 +V 16 * +M END +> (96) +JAK2 + +> (96) +JakA + +> (96) +TK + +> (96) +5cf5 + +> (96) +50W + +> (96) + + +> (96) +A + +> (96) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (96) +5 5 14 14 14 14 14 8 8 8 8 8 8 8 8 na + +$$$$ +5cf8_altA_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -2.1762 16.8245 47.5816 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4380 17.7723 48.0283 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4134 17.7616 45.5561 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6802 18.6442 45.9685 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7060 16.6121 46.2920 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2406 15.6009 48.1682 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8723 14.7066 47.2345 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5254 15.3121 46.0460 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6036 15.2163 49.5619 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8653 16.1096 50.1289 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7554 14.7213 50.0348 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4555 14.5366 49.5411 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8272 13.2487 47.3416 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1314 12.9484 48.3443 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8117 12.9016 47.1507 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5049 12.8094 46.6095 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7981 17.8152 44.3252 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 1 0 + 1 6 2 0 + 3 4 1 0 + 3 5 1 0 + 5 8 2 0 + 6 7 1 0 + 6 9 1 0 + 7 8 1 0 + 7 13 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 3 1 0 +V 17 * +M END +> (97) +JAK2 + +> (97) +JakA + +> (97) +TK + +> (97) +5cf8 + +> (97) +50V + +> (97) +A + +> (97) +A + +> (97) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (97) +14 14 5 5 14 14 9 14 8 8 8 8 8 8 8 8 na + +$$$$ +6wtq_altA_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -1.3490 17.1417 45.9077 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1133 13.0927 47.5884 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8770 11.6090 49.6037 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1981 11.7853 50.6303 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9847 10.9829 49.6045 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6733 11.1059 49.0552 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8348 14.4780 47.0077 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1461 14.6800 45.8095 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7810 13.8182 45.2706 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9080 15.9623 45.2747 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3666 16.0441 44.3437 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2780 15.6482 47.6356 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8232 15.5625 48.5640 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0440 16.9248 47.1105 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4141 17.7816 47.6539 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5717 12.9005 48.9546 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6935 13.7318 49.5151 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9828 12.0962 46.8777 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1463 18.4867 45.4045 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 2 0 + 1 14 1 0 + 2 7 1 0 + 2 16 1 0 + 2 18 2 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 3 16 1 0 + 7 8 2 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 10 11 1 0 + 12 13 1 0 + 12 14 2 0 + 14 15 1 0 + 16 17 1 0 + 1 19 1 0 +V 19 * +M END +> (98) +JAK2 + +> (98) +JakA + +> (98) +TK + +> (98) +6wtq + +> (98) +U8J + +> (98) +A + +> (98) +A + +> (98) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (98) +16 1 5 5 5 5 16 16 16 16 16 16 16 16 16 5 5 1 na + +$$$$ +6bs0_altA_chainA + RDKit 3D + + 17 18 0 0 0 0 0 0 0 0999 V2000 + -0.4098 13.2124 45.7847 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4498 12.3522 46.3124 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1853 13.3417 44.5982 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6748 12.5563 44.0414 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6831 15.3153 45.2075 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1088 16.5975 45.3828 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8183 16.8353 46.5804 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1795 17.8339 46.7771 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0721 15.8399 47.5176 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9403 14.3560 46.1802 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0603 14.6838 44.2035 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4574 15.1368 43.3071 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8199 16.1156 48.7157 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9981 15.3768 49.3810 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1667 17.0478 48.8913 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6368 14.6358 47.3129 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8784 17.6569 44.4548 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 10 1 0 + 3 4 1 0 + 3 11 2 0 + 5 6 1 0 + 5 10 2 0 + 5 11 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 13 1 0 + 9 16 2 0 + 10 16 1 0 + 11 12 1 0 + 13 14 1 0 + 13 15 1 0 + 17 6 1 0 +V 17 * +M END +> (99) +JAK2-b + +> (99) +JakB + +> (99) +TK + +> (99) +6bs0 + +> (99) +E4V + +> (99) +A + +> (99) +A + +> (99) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (99) +14 14 14 14 14 16 14 14 14 14 14 14 5 5 5 14 na + +$$$$ +7uyv_altA_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -1.5354 12.2099 50.4855 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6915 11.2940 51.0556 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3318 12.9189 50.7119 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5734 12.6460 50.7548 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5488 11.8884 48.9907 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5110 11.4518 48.7228 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7526 11.1789 48.7657 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4495 13.1318 46.8654 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2335 14.3697 46.0823 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5622 15.6423 46.5850 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9814 15.7528 47.5741 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3385 16.7421 45.7909 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5887 17.7268 46.1572 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5042 15.3746 44.0641 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6984 14.2899 44.7891 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4408 13.3243 44.3795 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7876 16.5959 44.5077 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7393 12.1106 46.2650 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3388 13.1202 48.2162 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1071 13.9755 48.7007 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5993 17.7506 43.7505 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 19 1 0 + 8 9 1 0 + 8 18 2 0 + 8 19 1 0 + 9 10 2 0 + 9 15 1 0 + 10 11 1 0 + 10 12 1 0 + 12 13 1 0 + 12 17 2 0 + 14 15 2 0 + 14 17 1 0 + 15 16 1 0 + 19 20 1 0 + 21 17 1 0 +V 21 * +M END +> (100) +JAK3 + +> (100) +JakA + +> (100) +TK + +> (100) +7uyv + +> (100) +OV5 + +> (100) +A + +> (100) +A + +> (100) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (100) +4 4 4 4 4 4 4 1 16 14 14 14 14 14 14 14 14 1 5 5 na + +$$$$ +2gmx_chainB + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -2.2607 15.1756 45.7709 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0258 14.1384 45.5825 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5835 16.0279 44.6842 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9044 17.4136 44.9486 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8834 17.8999 46.2869 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1228 18.9366 46.4726 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5566 17.0602 47.3837 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2419 15.6671 47.1041 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5459 17.5750 48.7036 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2438 17.8407 49.2293 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3340 18.2315 50.2428 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7409 18.5751 48.6001 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6634 16.9182 49.2458 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6164 15.5989 43.3500 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6434 14.6362 42.9343 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7922 14.4010 41.8804 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7533 13.7288 43.5281 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6433 15.0453 43.0776 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7945 14.4401 48.4878 Br 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2640 18.3710 43.8427 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 3 14 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 9 1 0 + 8 19 1 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 4 20 1 0 +V 20 * +M END +> (101) +JNK1 + +> (101) +MAPK + +> (101) +CMGC + +> (101) +2gmx + +> (101) +877 + +> (101) + + +> (101) +B + +> (101) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (101) +16 16 16 16 16 16 16 16 3 3 3 3 3 3 3 3 3 3 16 na + +$$$$ +2h96_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -2.1272 14.2296 46.7032 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9592 13.1655 46.6262 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4964 15.0404 45.4434 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7057 16.5466 45.6927 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5597 17.0705 46.9836 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7132 18.1289 47.1343 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2197 16.2694 48.0952 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0078 14.8681 47.9528 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7497 14.2822 48.8226 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0642 17.4780 44.5864 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3975 18.4236 45.0140 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8725 17.0386 44.0018 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1096 16.9261 49.3203 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7785 17.2729 49.6988 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7954 17.7788 50.6641 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3485 17.9362 48.9484 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1746 16.3685 49.7731 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6423 14.5091 44.1591 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4572 14.1004 43.5164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6968 13.7063 42.5288 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9713 13.3251 44.1089 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7865 14.9535 43.4143 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9251 17.7307 43.7062 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 8 1 0 + 3 4 1 0 + 3 18 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 2 0 + 7 13 1 0 + 8 9 1 0 + 10 11 1 0 + 10 12 1 0 + 13 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 10 23 1 0 +V 23 * +M END +> (102) +JNK1 + +> (102) +MAPK + +> (102) +CMGC + +> (102) +2h96 + +> (102) +893 + +> (102) + + +> (102) +A + +> (102) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (102) +16 16 16 16 16 16 16 16 16 4 4 4 3 3 3 3 3 3 3 3 3 3 na + +$$$$ +4e73_altA_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -3.1921 17.1480 44.2195 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7260 16.4036 43.6288 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7568 18.0803 44.2253 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0210 16.6414 45.6523 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5435 17.5198 46.6723 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3322 18.5502 46.4273 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3421 17.0669 47.9961 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9799 17.7502 48.7500 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6160 15.7113 48.3381 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1018 14.8143 47.3306 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3168 13.7861 47.5816 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3015 15.2796 45.9952 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6663 14.6001 45.2392 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3980 15.1958 49.7234 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0416 14.0236 49.8800 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5809 16.1009 50.7604 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8346 17.0527 50.5370 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4190 15.7242 52.1681 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7830 17.3930 43.6036 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 4 5 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 14 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 2 0 + 14 16 1 0 + 16 17 1 0 + 16 18 1 0 + 19 1 1 0 +V 18 * +V 19 * +M END +> (103) +JNK1 + +> (103) +MAPK + +> (103) +CMGC + +> (103) +4e73 + +> (103) +0NR + +> (103) +A + +> (103) +A + +> (103) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE X-SE AP + +> (103) +8 8 8 16 16 16 16 16 16 16 16 16 16 1 1 5 5 na na + +$$$$ +3e7o_chainA + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -3.7752 16.8132 49.1787 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1270 17.3225 50.3591 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6401 18.7218 51.8878 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8353 19.6722 52.3624 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5764 15.6029 49.1070 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3984 16.5672 51.5491 O 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7215 17.6156 52.4977 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9840 17.4775 53.5362 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3077 18.6121 50.6656 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1889 19.4363 49.9779 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6766 17.6545 48.1370 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9673 18.6101 48.2872 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2192 17.3325 46.8966 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 1 11 1 0 + 2 6 1 0 + 2 9 2 0 + 3 4 1 0 + 3 7 2 0 + 3 9 1 0 + 6 7 1 0 + 7 8 1 0 + 9 10 1 0 + 11 12 1 0 + 11 13 1 0 +V 13 * +M END +> (104) +JNK2 + +> (104) +MAPK + +> (104) +CMGC + +> (104) +3e7o + +> (104) +35F + +> (104) + + +> (104) +A + +> (104) +SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (104) +1 14 14 14 1 14 14 14 14 14 5 5 na + +$$$$ +3ac1_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -2.9867 16.1700 48.2849 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3437 13.0190 45.7844 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6784 14.5756 47.0658 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0433 13.7764 47.6938 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3269 15.3714 45.2039 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3625 15.1649 44.3986 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6436 16.9384 46.4620 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9874 17.9466 46.6401 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7577 16.6874 45.4219 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0927 15.9019 47.2776 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0078 15.1849 48.5509 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6402 15.5290 49.3693 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5385 14.2405 48.8268 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6156 15.0413 47.6576 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7786 14.3125 46.0185 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1059 12.1113 46.8668 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2284 11.1526 46.4703 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0276 11.9695 47.4313 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6623 12.5211 47.5226 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3600 17.7496 44.6630 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 10 1 0 + 1 11 1 0 + 2 15 1 0 + 2 16 1 0 + 3 4 1 0 + 3 10 2 0 + 3 15 1 0 + 5 6 1 0 + 5 9 1 0 + 5 15 2 0 + 7 8 1 0 + 7 9 2 0 + 7 10 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 20 9 1 0 +V 20 * +M END +> (105) +LCK + +> (105) +Src + +> (105) +TK + +> (105) +3ac1 + +> (105) +KZI + +> (105) + + +> (105) +A + +> (105) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (105) +3 3 16 16 16 16 16 16 16 16 3 3 3 3 16 3 3 3 3 na + +$$$$ +3ack_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + -0.8055 16.3610 45.6400 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5771 14.9875 45.4645 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2994 14.3542 46.5892 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8143 15.3414 47.3633 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5153 16.5210 46.7974 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8005 17.4791 47.2062 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0835 14.2335 44.4069 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2689 14.7075 43.5027 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0567 12.8463 44.5479 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6654 12.2319 45.6486 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6533 11.1541 45.7171 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2883 12.9660 46.6622 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7563 12.4598 47.4935 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5429 15.1248 48.6406 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6296 14.0553 48.8325 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5384 15.5631 48.5699 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9950 15.5971 49.4560 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5289 12.0756 43.5709 O 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8309 11.5199 43.7585 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1120 10.9466 42.8751 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8243 10.8649 44.6297 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5502 12.3240 43.9139 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4320 17.4008 44.7486 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 5 2 0 + 2 3 2 0 + 2 7 1 0 + 3 4 1 0 + 3 12 1 0 + 4 5 1 0 + 4 14 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 9 18 1 0 + 10 11 1 0 + 10 12 2 0 + 12 13 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 19 20 1 0 + 19 21 1 0 + 19 22 1 0 + 23 1 1 0 +V 23 * +M END +> (106) +LCK + +> (106) +Src + +> (106) +TK + +> (106) +3ack + +> (106) +KSR + +> (106) + + +> (106) +A + +> (106) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (106) +16 16 16 9 16 16 16 16 16 16 16 16 16 8 8 8 8 3 3 3 3 3 na + +$$$$ +3ad4_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.0368 17.9279 44.3525 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9102 18.1114 45.4117 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1321 16.8490 46.0213 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9208 16.4873 47.1205 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5003 17.2137 47.6709 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3697 16.5821 44.1875 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0391 16.1727 43.4454 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3274 15.8816 45.2537 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3517 14.5409 45.6355 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2213 13.8010 45.0965 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1439 14.1757 46.7441 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9151 15.1272 47.4659 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5122 14.7946 48.3020 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1634 12.8452 47.1225 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1381 12.2623 47.9515 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3611 11.2084 48.1181 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1054 12.7825 48.9088 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8275 12.3552 47.4543 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2627 19.2001 43.6454 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 1 0 + 3 4 2 0 + 3 8 1 0 + 4 5 1 0 + 4 12 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 9 11 1 0 + 11 12 2 0 + 11 14 1 0 + 12 13 1 0 + 14 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 +V 19 * +M END +> (107) +LCK + +> (107) +Src + +> (107) +TK + +> (107) +3ad4 + +> (107) +KBM + +> (107) + + +> (107) +A + +> (107) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (107) +14 16 16 16 16 16 16 16 16 16 16 16 16 3 3 3 3 3 na + +$$$$ +5xy1_chainA + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -1.2764 16.8811 45.6580 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1012 16.5948 46.7717 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5031 17.4044 47.3627 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4039 15.2539 47.1178 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8845 14.1961 46.3593 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0484 14.4732 45.2264 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6488 13.6608 44.6376 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7513 15.7984 44.8855 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1211 16.0042 44.0330 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1543 13.3583 48.0396 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3903 12.9944 46.9825 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1933 11.9824 46.6611 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1618 14.6922 48.1174 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6601 15.2196 48.8200 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0297 18.2563 45.3836 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 13 1 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 11 2 0 + 10 13 1 0 + 11 12 1 0 + 13 14 1 0 + 1 15 1 0 +V 15 * +M END +> (108) +LYN + +> (108) +Src + +> (108) +TK + +> (108) +5xy1 + +> (108) +8H0 + +> (108) + + +> (108) +A + +> (108) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (108) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3vw6_altB_chainB + RDKit 3D + + 28 28 0 0 0 0 0 0 0 0999 V2000 + -2.7202 16.8530 47.5008 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2309 16.6140 49.8575 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4330 17.7314 49.6353 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3937 18.5155 50.3769 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6883 17.8497 48.4737 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0752 18.7255 48.3201 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.0506 17.6624 51.1488 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.7537 17.4810 50.3358 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.5723 18.6314 51.0061 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.5847 17.6572 52.0990 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4775 16.0156 45.6808 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9184 17.0162 46.2293 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9901 16.5688 51.1565 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.7102 15.2372 51.3460 C 0 0 0 0 0 0 0 0 0 0 0 0 + -6.4245 15.0919 50.5357 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.2384 15.2423 52.2995 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9821 14.4261 51.3384 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9788 16.7901 52.2907 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4714 17.7436 52.1441 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2453 15.9838 52.2859 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5017 16.8000 53.2470 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2739 15.5946 48.8893 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8864 14.7196 49.0495 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5198 15.7194 47.7183 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5528 14.9370 46.9745 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7209 18.2557 45.7490 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1223 19.0325 46.2546 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0118 18.5221 44.6221 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 5 2 0 + 1 12 1 0 + 1 24 1 0 + 2 3 2 0 + 2 13 1 0 + 2 22 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 13 1 0 + 11 12 2 0 + 12 26 1 0 + 13 14 1 0 + 13 18 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 23 1 0 + 22 24 2 0 + 24 25 1 0 + 26 27 1 0 + 28 26 1 0 +V 28 * +M END +> (109) +MAP3K5 + +> (109) +STE11 + +> (109) +STE + +> (109) +3vw6 + +> (109) +IM6 + +> (109) +B + +> (109) +B + +> (109) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (109) +16 16 16 16 16 16 8 8 8 8 1 1 8 8 8 8 8 8 8 8 8 16 16 16 16 5 5 na + +$$$$ +5v19_chainB + RDKit 3D + + 15 15 0 0 0 0 0 0 0 0999 V2000 + -1.8297 15.7630 46.0051 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0885 16.0258 44.8936 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6009 15.2892 44.2722 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0651 17.3700 44.6973 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9718 13.9037 47.4400 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2380 12.9229 47.8340 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7921 14.5909 48.2668 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0691 13.8194 46.8349 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1200 14.4354 46.5738 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2944 13.7356 45.7565 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0174 14.5070 47.1884 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8327 17.9439 45.7241 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0160 19.0004 45.8535 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2896 16.9948 46.4978 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3957 18.0265 43.6355 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 9 1 0 + 1 14 1 0 + 2 3 1 0 + 2 4 2 0 + 4 12 1 0 + 5 6 1 0 + 5 7 1 0 + 5 8 1 0 + 5 9 1 0 + 9 10 1 0 + 9 11 1 0 + 12 13 1 0 + 12 14 2 0 + 4 15 1 0 +V 15 * +M END +> (110) +MAP3K5 + +> (110) +STE11 + +> (110) +STE + +> (110) +5v19 + +> (110) +8V4 + +> (110) + + +> (110) +B + +> (110) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (110) +9 16 16 16 8 8 8 8 8 8 8 16 16 16 na + +$$$$ +5vio_chainD + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -1.7158 18.1668 46.2963 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5060 19.1553 46.6773 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5391 17.4774 50.2067 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4216 16.8671 50.3986 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8297 18.5259 50.1410 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8244 17.3487 51.0196 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5661 14.9770 42.6776 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2106 14.8964 41.6503 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6502 14.8658 42.6966 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1098 14.1935 43.2825 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1938 15.6034 45.3428 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3656 14.5980 44.9880 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7877 17.6778 48.4713 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3348 17.8373 44.9812 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3604 17.2379 47.1169 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5913 15.9500 46.6404 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0764 15.2193 47.2705 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5766 16.5359 44.4941 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2104 16.2509 43.2041 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1521 18.5567 49.0509 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.9320 17.0677 48.9630 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3523 16.3155 48.4361 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7532 18.9618 44.1803 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 14 2 0 + 1 15 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 3 21 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 19 1 0 + 11 12 1 0 + 11 16 1 0 + 11 18 2 0 + 13 15 1 0 + 13 20 2 0 + 13 21 1 0 + 14 18 1 0 + 15 16 2 0 + 16 17 1 0 + 18 19 1 0 + 21 22 1 0 + 23 14 1 0 +V 23 * +M END +> (111) +MAP3K5 + +> (111) +STE11 + +> (111) +STE + +> (111) +5vio + +> (111) +9E4 + +> (111) + + +> (111) +D + +> (111) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (111) +16 16 5 5 5 5 3 3 3 3 16 16 1 16 16 16 16 16 3 1 5 5 na + +$$$$ +3kc3_chainE + RDKit 3D + + 15 16 0 0 0 0 0 0 0 0999 V2000 + -3.3014 14.7249 46.7864 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7972 14.4764 47.7131 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3188 13.8141 45.7537 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8323 12.8783 45.9183 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6700 15.9439 46.6714 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6549 16.6657 47.4746 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7270 14.0125 44.5247 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7491 13.2916 43.7208 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3237 17.2600 44.9313 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0797 18.1819 45.4383 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0578 16.1767 45.4560 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1072 15.2324 44.4427 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9791 16.9105 43.6450 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4485 15.6720 43.3340 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2624 17.6203 42.6162 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 5 1 0 + 3 4 1 0 + 3 7 1 0 + 5 6 1 0 + 5 11 2 0 + 7 8 1 0 + 7 12 2 0 + 9 10 1 0 + 9 11 1 0 + 9 13 2 0 + 11 12 1 0 + 12 14 1 0 + 13 14 1 0 + 15 13 1 0 +V 15 * +M END +> (112) +MAPKAPK2 + +> (112) +MAPKAPK + +> (112) +CAMK + +> (112) +3kc3 + +> (112) +MK2 + +> (112) + + +> (112) +E + +> (112) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (112) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4zy4_chainA + RDKit 3D + + 13 14 0 0 0 0 0 0 0 0999 V2000 + -2.0075 16.3766 45.7450 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9091 14.9952 45.5739 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8112 15.3639 43.5596 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4811 14.2809 46.6331 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4863 13.2012 46.6582 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0137 15.0056 47.5997 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4924 14.6018 48.4796 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8355 16.7129 47.2553 S 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3005 14.5314 44.4590 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8975 16.6831 43.6951 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4760 17.2320 44.7591 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5675 18.6131 44.9090 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1933 14.8542 42.4255 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 1 11 1 0 + 2 4 1 0 + 2 9 1 0 + 3 9 2 0 + 3 10 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 8 1 0 + 10 11 2 0 + 11 12 1 0 + 3 13 1 0 +V 12 * +V 13 * +M END +> (113) +PAK1 + +> (113) +STE20 + +> (113) +STE + +> (113) +4zy4 + +> (113) +4T3 + +> (113) + + +> (113) +A + +> (113) +SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (113) +14 14 14 14 14 14 14 14 14 14 14 na na + +$$$$ +5i0b_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -1.9951 13.4710 43.2156 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5467 12.8428 42.4459 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5155 14.3056 42.7458 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7039 12.8822 43.7978 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9068 14.0039 44.1316 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1931 14.6062 43.5694 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1417 12.8390 44.7537 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8300 12.2157 45.3246 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6331 13.2253 45.4159 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3183 12.2438 43.9648 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5612 14.8866 45.2088 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1961 14.3852 46.2728 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6264 15.3466 46.9646 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3768 15.2013 48.2088 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5168 14.1426 48.4271 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3493 15.6826 48.1050 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8245 15.6702 49.0231 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2828 16.5098 46.4097 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5062 17.4926 46.7977 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6107 16.2375 45.2842 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0902 17.2099 44.4727 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 11 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 2 0 + 11 20 1 0 + 12 13 1 0 + 13 14 1 0 + 13 18 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 2 0 + 20 21 1 0 +V 21 * +M END +> (114) +PAK4 + +> (114) +STE20 + +> (114) +STE + +> (114) +5i0b + +> (114) +67U + +> (114) + + +> (114) +A + +> (114) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (114) +8 8 8 8 8 8 8 8 8 8 14 9 9 8 8 8 8 9 9 16 na + +$$$$ +5hng_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -1.5353 17.1578 45.6797 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9139 16.1887 44.8605 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4944 18.1535 44.0140 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3675 15.4175 47.1244 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7599 14.4466 46.3031 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8567 13.3996 46.5500 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4600 14.8935 48.2438 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.8058 14.6145 49.2391 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.7221 14.1083 47.5347 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9342 15.8277 47.9430 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2442 18.3848 45.1271 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5323 19.2860 45.4805 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2469 16.7658 46.8123 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7044 17.5101 47.4472 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2994 16.8659 43.8549 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0426 14.8227 45.1864 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5802 14.0721 44.5625 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0323 15.0651 48.2630 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0107 19.2248 43.1420 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 11 1 0 + 1 13 1 0 + 2 15 1 0 + 2 16 1 0 + 3 11 1 0 + 3 15 2 0 + 4 5 1 0 + 4 13 2 0 + 4 18 1 0 + 5 6 1 0 + 5 16 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 18 1 0 + 11 12 1 0 + 13 14 1 0 + 16 17 1 0 + 3 19 1 0 +V 19 * +M END +> (115) +PDK1 + +> (115) +PDK1 + +> (115) +AGC + +> (115) +5hng + +> (115) +62O + +> (115) + + +> (115) +A + +> (115) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (115) +16 16 14 16 16 16 3 3 3 3 16 16 16 16 16 16 16 3 na + +$$$$ +2yac_chainA + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -1.2779 16.6508 44.9917 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3996 15.7636 43.9590 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5163 16.1303 42.9499 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3726 14.2824 44.2144 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2272 13.8374 45.4968 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2089 12.7757 45.6941 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0958 14.7806 46.6068 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9803 14.4067 47.6134 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1171 16.1207 46.3877 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9920 17.0665 47.4332 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0212 17.1100 48.4420 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7931 16.1277 49.3602 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0095 18.3435 49.0817 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2840 16.8806 47.9133 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3166 18.0721 44.6974 * 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5023 13.3368 43.1455 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 10 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 1 1 0 + 4 16 1 0 +V 15 * +V 16 * +M END +> (116) +PLK1 + +> (116) +PLK + +> (116) +Other + +> (116) +2yac + +> (116) +937 + +> (116) + + +> (116) +A + +> (116) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP FP + +> (116) +16 16 16 16 16 16 16 16 16 3 3 3 3 3 na na + +$$$$ +4j53_altC_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -1.8854 12.6324 49.2346 O 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8759 12.9940 48.6693 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2573 12.2845 48.7313 N 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0662 12.6594 48.2566 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9026 14.2973 47.9056 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3638 15.4466 48.5547 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7014 15.3835 49.5786 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3921 16.6809 47.8887 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8436 17.8201 48.5212 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4552 18.1830 49.8490 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9404 19.1187 50.1266 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3732 18.3088 49.8895 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7558 17.3980 50.5429 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4815 14.3998 46.5730 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0299 13.3371 45.8763 F 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5174 15.6276 45.9183 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1870 15.6910 44.8921 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9731 16.7792 46.5644 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9878 18.0234 46.0060 * 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4195 11.0063 49.4331 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 5 1 0 + 3 4 1 0 + 5 6 2 0 + 5 14 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 1 0 + 8 18 2 0 + 9 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 16 18 1 0 + 18 19 1 0 + 3 20 1 0 +V 19 * +V 20 * +M END +> (117) +PLK1 + +> (117) +PLK + +> (117) +Other + +> (117) +4j53 + +> (117) +1J4 + +> (117) +C + +> (117) +A + +> (117) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (117) +1 1 5 5 16 16 16 16 3 3 3 3 3 16 16 16 16 16 na na + +$$$$ +3fqh_chainB + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.0321 13.0421 43.4798 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6205 12.3646 44.5617 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6289 11.2848 44.5840 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1934 13.0895 45.6063 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6517 12.5690 46.4343 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1767 14.4883 45.5859 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6468 15.4172 46.4500 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3401 15.1006 47.7273 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3985 14.0191 47.8506 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3464 15.5189 47.7079 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7835 15.5316 48.5594 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4036 16.6653 45.9850 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6736 17.5995 46.4549 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0173 14.4430 43.4473 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4319 14.9676 42.6169 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5904 15.1478 44.5016 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7381 16.4974 44.7841 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5816 12.2825 42.3284 * 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3230 17.5732 43.9760 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 14 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 16 1 0 + 7 8 1 0 + 7 12 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 12 13 1 0 + 12 17 2 0 + 14 15 1 0 + 14 16 2 0 + 16 17 1 0 + 18 1 1 0 + 17 19 1 0 +V 18 * +V 19 * +M END +> (118) +SYK + +> (118) +Syk + +> (118) +TK + +> (118) +3fqh + +> (118) +057 + +> (118) + + +> (118) +B + +> (118) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE FP AP + +> (118) +16 16 16 16 16 16 9 8 8 8 8 16 16 16 16 16 16 na na + +$$$$ +4fz7_altB_chainA + RDKit 3D + + 17 17 0 0 0 0 0 0 0 0999 V2000 + -0.8895 17.1007 45.2174 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1560 18.0695 45.6133 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2130 15.9321 45.9337 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7532 15.9763 46.8679 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8059 14.7130 45.3855 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0542 13.7850 45.8791 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0716 14.7025 44.1883 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1796 15.8337 43.5334 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2321 17.0049 44.0104 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3741 13.3886 43.5835 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1523 13.2570 42.6382 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0939 12.5895 44.2698 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8895 13.2709 43.3067 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1961 14.0609 42.6211 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1030 12.2995 42.8605 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4387 13.3691 44.2431 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1271 18.1712 43.2972 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 9 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 2 0 + 7 8 1 0 + 7 10 1 0 + 8 9 2 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 9 17 1 0 +V 17 * +M END +> (119) +SYK + +> (119) +Syk + +> (119) +TK + +> (119) +4fz7 + +> (119) +0VH + +> (119) +B + +> (119) +A + +> (119) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (119) +14 14 14 14 14 14 14 14 14 8 8 8 8 8 8 8 na + +$$$$ +4i0t_altB_chainA + RDKit 3D + + 19 20 0 0 0 0 0 0 0 0999 V2000 + -0.3929 16.1713 44.3632 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0865 15.8391 45.5078 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0765 14.5665 45.7090 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5546 14.0474 46.5266 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3529 13.9913 44.7030 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0784 15.0089 43.8606 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0207 12.5540 44.5214 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9497 11.9864 44.4682 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.5604 12.2201 45.3810 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8023 12.2811 43.2297 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1099 12.0667 42.4156 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4409 11.4146 43.4013 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.6790 13.4569 42.8237 C 0 0 0 0 0 0 0 0 0 0 0 0 + 2.1816 13.2077 41.8892 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.4225 13.6201 43.6038 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.8862 14.7660 42.6203 C 0 0 0 0 0 0 0 0 0 0 0 0 + 1.5746 15.5952 42.4576 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2244 14.6690 41.7596 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2057 17.5474 43.8151 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 6 2 0 + 2 3 2 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 7 1 0 + 6 16 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 10 11 1 0 + 10 12 1 0 + 10 13 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 16 17 1 0 + 16 18 1 0 + 19 1 1 0 +V 19 * +M END +> (120) +SYK + +> (120) +Syk + +> (120) +TK + +> (120) +4i0t + +> (120) +1B6 + +> (120) +B + +> (120) +A + +> (120) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (120) +14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 na + +$$$$ +4xg7_altA_chainA + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -1.6425 12.9582 46.8643 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4879 11.8844 46.7587 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7111 13.1694 46.9030 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1701 13.3046 47.7835 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0863 13.6082 45.7909 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5182 13.0553 44.8919 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1184 14.0036 44.0495 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4235 13.8269 43.1321 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4758 15.1799 44.4920 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3579 16.4796 44.0382 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1491 16.6890 43.1079 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1138 14.8851 45.6429 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6463 15.8727 46.3968 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1506 15.6474 47.3248 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5332 17.1561 45.9614 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9644 17.9410 46.5650 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8959 17.5085 44.7875 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8644 18.8071 44.5027 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 12 1 0 + 6 7 2 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 12 2 0 + 10 11 1 0 + 10 17 2 0 + 12 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 +V 18 * +M END +> (121) +SYK + +> (121) +Syk + +> (121) +TK + +> (121) +4xg7 + +> (121) +X7G + +> (121) +A + +> (121) +A + +> (121) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (121) +8 8 8 8 9 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +5lmb_altA_chainB + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -2.7424 13.4448 47.3063 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2633 15.7580 46.7454 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8051 16.0954 47.6166 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6792 16.6931 45.8955 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7826 17.7504 46.0897 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9572 16.2428 44.7871 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9122 14.8629 44.5736 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3906 14.5002 43.7002 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3678 13.8312 48.5678 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.7676 12.9454 49.0614 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1772 14.5344 48.3717 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6254 14.3022 49.2121 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7800 12.0419 46.8832 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2755 11.4447 47.6487 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7624 11.6780 46.7406 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3299 11.9598 45.9457 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1575 14.3834 46.4858 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4785 13.9630 45.3895 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3466 17.1671 43.7825 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 9 1 0 + 1 13 1 0 + 1 17 1 0 + 2 3 1 0 + 2 4 2 0 + 2 17 1 0 + 4 5 1 0 + 4 6 1 0 + 6 7 2 0 + 7 8 1 0 + 7 18 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 13 15 1 0 + 13 16 1 0 + 17 18 2 0 + 6 19 1 0 +V 19 * +M END +> (122) +SYK + +> (122) +Syk + +> (122) +TK + +> (122) +5lmb + +> (122) +6ZF + +> (122) +A + +> (122) +B + +> (122) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (122) +5 14 14 14 14 16 14 14 5 5 5 5 5 5 5 5 14 14 na + +$$$$ +5t68_chainB + RDKit 3D + + 18 19 0 0 0 0 0 0 0 0999 V2000 + -2.7435 15.9318 47.3347 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4506 15.8725 48.1488 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4080 17.1250 46.7369 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8628 18.0302 47.1111 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8890 16.1076 45.1683 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1915 16.1664 44.3459 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1088 14.8079 46.8179 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2092 14.9186 45.7735 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5199 17.2260 45.6830 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1334 13.4208 47.1102 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9322 12.7520 48.1447 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5334 13.4912 48.6740 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2682 12.2515 48.8495 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5880 12.0167 47.6785 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3099 12.7176 46.3231 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7651 13.6522 45.5215 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0909 13.4367 44.8011 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2963 18.5164 45.1637 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 7 1 0 + 3 4 1 0 + 3 9 1 0 + 5 6 1 0 + 5 8 1 0 + 5 9 2 0 + 7 8 2 0 + 7 10 1 0 + 8 16 1 0 + 10 11 1 0 + 10 15 2 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 15 16 1 0 + 16 17 1 0 + 9 18 1 0 +V 18 * +M END +> (123) +SYK + +> (123) +Syk + +> (123) +TK + +> (123) +5t68 + +> (123) +77V + +> (123) + + +> (123) +B + +> (123) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (123) +16 16 16 16 16 16 16 16 16 14 8 8 8 8 16 16 16 na + +$$$$ +4l52_altA_chainA + RDKit 3D + + 29 30 0 0 0 0 0 0 0 0999 V2000 + -5.3155 11.2734 49.6947 O 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6073 12.4635 49.7156 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.0550 12.8731 49.6720 C 0 0 0 0 0 0 0 0 0 0 0 0 + -7.1259 13.9605 49.6985 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5773 12.4539 50.5319 H 0 0 0 0 0 0 0 0 0 0 0 0 + -7.5102 12.5016 48.7539 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6609 13.4231 49.7832 N 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9170 14.8681 49.7901 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3664 15.3546 50.5952 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.9818 15.0716 49.9034 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.4150 15.3439 48.4234 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5854 16.4163 48.3279 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.9553 14.8187 47.6358 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9195 15.0534 48.2948 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4040 15.5943 49.0883 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6637 13.5510 48.4736 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5915 13.3574 48.4446 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1543 12.9994 47.6716 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2283 13.1038 49.8223 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0821 12.0322 49.9583 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7415 13.6429 50.6350 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3461 15.5621 47.0169 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9795 16.7825 46.6623 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0622 17.6761 47.2630 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4685 16.7007 45.3735 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5518 15.3584 44.9929 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2381 14.9605 44.0391 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0864 14.6333 46.0046 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9759 17.7911 44.6472 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 2 3 1 0 + 2 7 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 7 8 1 0 + 7 19 1 0 + 8 9 1 0 + 8 10 1 0 + 8 11 1 0 + 11 12 1 0 + 11 13 1 0 + 11 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 22 1 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 19 20 1 0 + 19 21 1 0 + 22 23 1 0 + 22 28 1 0 + 23 24 1 0 + 23 25 2 0 + 25 26 1 0 + 26 27 1 0 + 26 28 2 0 + 25 29 1 0 +V 29 * +M END +> (124) +TAK1 + +> (124) +MLK + +> (124) +TKL + +> (124) +4l52 + +> (124) +1UL + +> (124) +A + +> (124) +A + +> (124) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (124) +1 1 1 1 1 1 5 5 5 5 5 5 5 15 5 5 5 5 5 5 5 9 9 9 16 9 9 9 na + +$$$$ +4iwo_chainA + RDKit 3D + + 23 24 0 0 0 0 0 0 0 0999 V2000 + -2.2520 16.7181 45.8764 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1126 16.4676 47.2239 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3234 17.2532 47.9343 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5911 15.0707 47.4080 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2515 14.2862 46.4844 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6070 13.2774 46.6337 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6282 14.4148 45.4900 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5081 13.5230 44.8928 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0699 15.4849 45.0218 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5177 15.4956 44.0937 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.3699 14.6584 48.5450 N 0 0 0 0 0 0 0 0 0 0 0 0 + -5.4373 13.6630 48.5237 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.0668 12.7248 48.1106 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.2718 14.0210 47.9208 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.8822 13.4608 49.9669 C 0 0 0 0 0 0 0 0 0 0 0 0 + -5.6067 12.4620 50.3054 H 0 0 0 0 0 0 0 0 0 0 0 0 + -6.9622 13.5858 50.0450 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.1892 14.4883 50.7940 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.6761 14.0133 51.6302 H 0 0 0 0 0 0 0 0 0 0 0 0 + -5.9098 15.2125 51.1740 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2068 15.1616 49.9073 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3983 16.0054 50.2662 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7095 18.0354 45.5549 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 11 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 1 0 + 11 21 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 21 22 2 0 + 23 1 1 0 +V 23 * +M END +> (125) +TBK1 + +> (125) +IKK + +> (125) +Other + +> (125) +4iwo + +> (125) +1H4 + +> (125) + + +> (125) +A + +> (125) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (125) +16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 na + +$$$$ +5e8z_altB_chainA + RDKit 3D + + 19 19 0 0 0 0 0 0 0 0999 V2000 + -0.8255 14.1134 44.9793 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4479 13.1955 44.5537 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2628 12.7360 46.5316 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2223 12.9198 47.0152 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4096 12.0874 45.6680 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7575 16.4674 46.0563 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1215 17.3814 46.5017 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1275 15.2507 46.6043 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7664 15.2335 47.4749 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3456 12.0368 47.5170 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1741 12.6886 48.3736 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3949 11.8182 47.0307 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9232 16.5354 44.9394 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4341 15.3271 44.4389 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2631 15.3391 43.6142 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6941 14.0588 46.0574 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9393 10.8138 47.9652 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0759 10.2580 47.1945 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5997 17.8294 44.2795 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 14 2 0 + 1 16 1 0 + 3 4 1 0 + 3 5 1 0 + 3 10 1 0 + 3 16 1 0 + 6 7 1 0 + 6 8 1 0 + 6 13 2 0 + 8 9 1 0 + 8 16 2 0 + 10 11 1 0 + 10 12 1 0 + 10 17 1 0 + 13 14 1 0 + 14 15 1 0 + 17 18 1 0 + 13 19 1 0 +V 19 * +M END +> (126) +TGFbR1 + +> (126) +STKR + +> (126) +TKL + +> (126) +5e8z + +> (126) +5L4 + +> (126) +B + +> (126) +A + +> (126) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (126) +16 16 8 4 4 16 16 16 16 4 4 4 16 16 16 16 3 3 na + +$$$$ +2x9e_chainA + RDKit 3D + + 20 20 0 0 0 0 0 0 0 0999 V2000 + -2.4023 16.6368 46.4532 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2489 16.1596 47.6919 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5720 14.7252 47.9928 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4478 14.3453 48.9961 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0148 13.9116 47.0197 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1720 14.4234 45.6353 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5146 13.7669 44.8492 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8813 15.7277 45.3616 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9965 16.1062 44.3566 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7766 17.0934 48.6543 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3601 12.5469 47.3488 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7842 11.5059 46.7248 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0455 11.6740 46.0569 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2386 12.3723 48.2199 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4790 17.2288 49.8760 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9979 16.2827 50.7667 F 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8329 17.0290 49.6774 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3095 18.5060 50.4083 F 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0953 18.0277 46.2803 * 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2093 10.1337 46.9965 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 8 1 0 + 2 3 1 0 + 2 10 1 0 + 3 4 1 0 + 3 5 2 0 + 5 6 1 0 + 5 11 1 0 + 6 7 1 0 + 6 8 2 0 + 8 9 1 0 + 10 15 1 0 + 11 12 1 0 + 11 14 2 0 + 12 13 1 0 + 15 16 1 0 + 15 17 1 0 + 15 18 1 0 + 19 1 1 0 + 12 20 1 0 +V 19 * +V 20 * +M END +> (127) +TTK + +> (127) +TTK + +> (127) +Other + +> (127) +2x9e + +> (127) +SVE + +> (127) + + +> (127) +A + +> (127) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP X-SE + +> (127) +16 16 16 16 16 16 16 16 16 3 1 5 5 1 3 3 3 3 na na + +$$$$ +4c4g_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.9561 16.8539 46.0052 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1591 15.9533 44.9586 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0594 16.2881 43.9366 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4851 14.6429 45.2185 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6411 13.9610 44.3956 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6168 14.1832 46.5189 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3792 15.0252 47.6256 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4411 14.6507 48.6367 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0591 16.3681 47.3655 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8068 17.4457 48.7673 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1832 12.8144 46.7108 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.1491 12.6578 47.4695 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6558 11.7123 45.9804 N 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4712 10.4986 45.8100 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.5258 10.7507 45.9218 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1913 9.7638 46.5649 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3004 10.0825 44.8171 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2076 11.4838 45.8483 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6771 12.4259 45.9869 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9913 11.0876 44.8562 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8822 10.7689 46.6040 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7371 18.2136 45.7643 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 11 1 0 + 7 8 1 0 + 7 9 2 0 + 9 10 1 0 + 11 12 2 0 + 11 13 1 0 + 13 14 1 0 + 13 18 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 1 1 0 +V 22 * +M END +> (128) +TTK + +> (128) +TTK + +> (128) +Other + +> (128) +4c4g + +> (128) +7RO + +> (128) + + +> (128) +A + +> (128) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (128) +16 16 16 16 16 16 16 16 16 16 1 1 5 5 5 5 5 5 5 5 5 na + +$$$$ +5n9s_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -2.0843 16.6082 46.1683 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3575 14.3446 45.3219 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2762 13.6350 44.5118 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0440 15.6828 45.1187 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7635 16.0161 44.1304 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7842 13.9233 46.6024 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5009 16.1401 47.5185 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5528 17.0805 48.5143 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6920 16.7896 49.9027 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7051 17.7206 50.4695 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8531 16.1760 50.2312 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6242 16.2497 50.0692 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8511 14.8137 47.6848 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1776 14.4609 48.6520 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1624 12.3875 46.9101 S 0 0 0 0 0 6 0 0 0 0 0 0 + -1.7917 11.6293 47.4520 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4176 12.1440 48.3371 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0318 11.6506 46.6710 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0244 10.5948 47.7045 H 0 0 0 0 0 0 0 0 0 0 0 0 + -4.2429 12.4755 47.8323 O 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5539 11.6198 45.7499 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6847 17.9068 46.1027 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 4 2 0 + 1 7 1 0 + 2 3 1 0 + 2 4 1 0 + 2 6 2 0 + 4 5 1 0 + 6 13 1 0 + 6 15 1 0 + 7 8 1 0 + 7 13 2 0 + 8 9 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 13 14 1 0 + 15 16 1 0 + 15 20 2 0 + 15 21 2 0 + 16 17 1 0 + 16 18 1 0 + 16 19 1 0 + 1 22 1 0 +V 22 * +M END +> (129) +TTK + +> (129) +TTK + +> (129) +Other + +> (129) +5n9s + +> (129) +8QW + +> (129) + + +> (129) +A + +> (129) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (129) +16 16 16 16 16 16 16 3 3 3 3 3 16 16 16 16 16 16 16 16 16 na + +$$$$ +6b4w_chainA + RDKit 3D + + 23 23 0 0 0 0 0 0 0 0999 V2000 + -1.2488 16.9756 49.3811 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3472 17.6357 50.2428 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4849 17.3668 48.7091 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9611 15.9795 49.7174 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4792 16.9042 48.7018 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4340 16.0910 47.6042 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8152 14.7609 47.7421 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1282 14.3896 48.7068 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7959 13.9068 46.6472 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2253 12.4450 46.8262 C 0 0 0 0 0 0 0 0 0 0 0 0 + -4.0495 12.1543 47.6917 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6856 11.5686 45.9708 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0226 11.8698 45.2710 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0841 10.1478 46.0753 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8024 10.0307 46.8867 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2040 9.5376 46.2783 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5394 9.8282 45.1380 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.4091 14.3940 45.4027 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3964 13.7336 44.5482 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0382 15.7280 45.2519 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7487 16.0996 44.2800 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0395 16.5855 46.3521 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6982 17.8809 46.2392 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 6 7 2 0 + 6 22 1 0 + 7 8 1 0 + 7 9 1 0 + 9 10 1 0 + 9 18 2 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 20 21 1 0 + 20 22 2 0 + 22 23 1 0 +V 23 * +M END +> (130) +TTK + +> (130) +TTK + +> (130) +Other + +> (130) +6b4w + +> (130) +CQ7 + +> (130) + + +> (130) +A + +> (130) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (130) +3 3 3 3 3 16 16 16 16 1 1 5 5 5 5 5 5 16 16 16 16 16 na + +$$$$ +6dbk_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.1227 16.7571 45.2825 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0417 14.3848 44.8850 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7178 13.5491 44.2824 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9031 10.3593 46.4610 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8723 10.3665 46.9598 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9821 9.8122 45.5216 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.8805 9.6645 47.3618 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7973 10.2076 48.3032 H 0 0 0 0 0 0 0 0 0 0 0 0 + 0.0895 9.6480 46.8648 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2050 8.6428 47.5591 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8259 16.5155 46.4820 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0977 17.3409 47.1232 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1673 15.2251 46.8373 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7117 15.0439 47.7523 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8100 14.1564 46.0164 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6830 15.6770 44.5168 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.0685 15.8432 43.6444 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3480 12.8164 46.3561 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4994 12.6718 46.7635 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4970 11.7388 46.1807 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5595 11.9102 45.8465 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9098 18.1091 44.9565 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 11 2 0 + 1 16 1 0 + 2 3 1 0 + 2 15 1 0 + 2 16 2 0 + 4 5 1 0 + 4 6 1 0 + 4 7 1 0 + 4 20 1 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 11 12 1 0 + 11 13 1 0 + 13 14 1 0 + 13 15 2 0 + 15 18 1 0 + 16 17 1 0 + 18 19 2 0 + 18 20 1 0 + 20 21 1 0 + 1 22 1 0 +V 22 * +M END +> (131) +TYK2 + +> (131) +JakA + +> (131) +TK + +> (131) +6dbk + +> (131) +G5D + +> (131) + + +> (131) +A + +> (131) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (131) +16 16 16 4 4 4 4 4 4 4 16 16 16 16 16 16 16 1 1 5 5 na + +$$$$ +6ova_altA_chainA + RDKit 3D + + 21 21 0 0 0 0 0 0 0 0999 V2000 + -1.0579 12.9504 46.4708 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1657 14.3999 46.1435 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0525 15.2587 46.8530 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6709 14.8710 47.6490 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1100 16.5905 46.5096 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7715 17.2666 47.0307 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5585 10.5686 46.0967 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9078 10.4745 46.9660 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1258 10.0230 45.2581 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5398 10.1560 46.3309 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6966 11.9913 45.7383 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5405 12.3452 44.5821 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5396 13.4271 44.4492 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.5599 12.0016 44.7576 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1459 11.8686 43.6848 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3727 12.6135 47.4191 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.2836 17.0541 45.4589 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4530 16.2231 44.8068 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3655 14.9364 45.1124 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.3183 14.2985 44.5721 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3231 18.3959 45.0823 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 11 1 0 + 1 16 2 0 + 2 3 2 0 + 2 19 1 0 + 3 4 1 0 + 3 5 1 0 + 5 6 1 0 + 5 17 2 0 + 7 8 1 0 + 7 9 1 0 + 7 10 1 0 + 7 11 1 0 + 11 12 1 0 + 12 13 1 0 + 12 14 1 0 + 12 15 1 0 + 17 18 1 0 + 18 19 2 0 + 19 20 1 0 + 17 21 1 0 +V 21 * +M END +> (132) +TYK2 + +> (132) +JakA + +> (132) +TK + +> (132) +6ova + +> (132) +N9G + +> (132) +A + +> (132) +A + +> (132) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (132) +1 16 14 14 14 14 5 5 5 5 5 5 5 5 5 1 14 14 14 14 na + +$$$$ +7uyr_altB_chainA + RDKit 3D + + 25 25 0 0 0 0 0 0 0 0999 V2000 + 2.2061 11.5514 48.6863 C 0 0 0 0 0 0 0 0 0 0 0 0 + 3.0097 10.8297 48.8328 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.8081 11.8538 49.6549 H 0 0 0 0 0 0 0 0 0 0 0 0 + 2.5940 12.4259 48.1639 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.0858 10.9089 47.8492 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.6651 10.0408 48.3568 H 0 0 0 0 0 0 0 0 0 0 0 0 + 1.4510 10.6130 46.8657 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0248 11.9303 47.0250 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8079 13.2292 47.1612 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6956 13.5979 48.1808 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8598 13.0236 46.9631 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3787 14.2079 46.2893 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7591 15.4911 46.6184 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3642 15.6574 47.4974 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.1730 15.1270 44.3821 C 0 0 0 0 0 0 0 0 0 0 0 0 + 0.4601 14.9710 43.5212 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5628 14.0263 45.1693 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2286 13.0338 44.9053 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5979 16.4215 44.7043 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.3782 16.5684 45.8408 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6994 17.5586 46.1284 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4439 10.9586 46.3916 O 0 0 0 0 0 0 0 0 0 0 0 0 + 0.1087 11.9782 47.7446 N 0 0 0 0 0 0 0 0 0 0 0 0 + 0.2970 12.8289 48.2555 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3350 17.6048 44.1185 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 1 0 + 1 4 1 0 + 1 5 1 0 + 5 6 1 0 + 5 7 1 0 + 5 23 1 0 + 8 9 1 0 + 8 22 2 0 + 8 23 1 0 + 9 10 1 0 + 9 11 1 0 + 9 12 1 0 + 12 13 2 0 + 12 17 1 0 + 13 14 1 0 + 13 20 1 0 + 15 16 1 0 + 15 17 2 0 + 15 19 1 0 + 17 18 1 0 + 19 20 2 0 + 20 21 1 0 + 23 24 1 0 + 25 19 1 0 +V 25 * +M END +> (133) +TYK2 + +> (133) +JakA + +> (133) +TK + +> (133) +7uyr + +> (133) +OVI + +> (133) +B + +> (133) +A + +> (133) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (133) +4 4 4 4 4 4 4 1 8 1 1 16 16 16 16 16 16 16 16 16 16 1 5 5 na + +$$$$ +6nze_altB_chainB + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -2.1759 16.9884 47.3289 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5621 17.8846 47.7917 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6825 14.6742 47.3773 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2162 15.7744 47.9975 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6563 15.6974 48.9808 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5750 18.2284 45.3391 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9601 19.0051 45.8573 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6212 17.0307 46.0331 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0989 15.9615 45.4396 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1086 14.8009 46.1025 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.6603 13.9326 45.6426 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7932 13.4634 47.9837 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1099 18.5857 44.0790 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 4 2 0 + 1 8 1 0 + 3 4 1 0 + 3 10 2 0 + 3 12 1 0 + 4 5 1 0 + 6 7 1 0 + 6 8 1 0 + 8 9 2 0 + 9 10 1 0 + 10 11 1 0 + 13 6 1 0 +V 13 * +M END +> (134) +TYK2-b + +> (134) +JakB + +> (134) +TK + +> (134) +6nze + +> (134) +L8Y + +> (134) +B + +> (134) +B + +> (134) +SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (134) +14 14 14 14 14 5 5 14 14 14 14 14 na + +$$$$ +6nzq_altB_chainB + RDKit 3D + + 16 16 0 0 0 0 0 0 0 0999 V2000 + -2.1238 17.2210 47.3441 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.5147 18.1425 47.7495 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9504 16.0074 49.3763 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.3015 17.0111 49.6159 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2793 15.6601 50.1618 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8029 15.3323 49.3020 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0329 14.9471 46.2703 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.5901 14.0507 45.8617 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6585 14.8824 47.5160 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5166 17.1961 46.0880 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5378 18.3535 45.3171 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9644 19.1423 45.7818 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2148 16.0333 48.0631 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9630 16.0812 45.5651 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7111 13.7144 48.1805 F 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0881 18.6388 44.0343 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 10 2 0 + 1 13 1 0 + 3 4 1 0 + 3 5 1 0 + 3 6 1 0 + 3 13 1 0 + 7 8 1 0 + 7 9 1 0 + 7 14 2 0 + 9 13 2 0 + 9 15 1 0 + 10 11 1 0 + 10 14 1 0 + 11 12 1 0 + 16 11 1 0 +V 16 * +M END +> (135) +TYK2-b + +> (135) +JakB + +> (135) +TK + +> (135) +6nzq + +> (135) +LB4 + +> (135) +B + +> (135) +B + +> (135) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (135) +14 14 8 8 8 8 14 14 14 14 5 5 16 14 14 na + +$$$$ +6nzr_altA_chainB + RDKit 3D + + 13 13 0 0 0 0 0 0 0 0999 V2000 + -1.5531 16.8362 46.0476 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9972 14.6028 46.1549 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.4829 13.7513 45.7343 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7109 14.4238 47.3195 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7666 13.4543 47.7922 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3543 15.5186 47.8672 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9212 15.4101 48.7800 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5045 18.0381 45.3748 N 0 0 0 0 0 0 0 0 0 0 0 0 + -1.9573 18.7949 45.8671 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2724 16.7556 47.2459 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.7473 17.6270 47.6718 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9072 15.7791 45.5152 N 0 0 0 0 0 0 0 0 0 0 0 0 + -0.9549 18.4193 44.1494 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 8 1 0 + 1 10 2 0 + 1 12 1 0 + 2 3 1 0 + 2 4 1 0 + 2 12 2 0 + 4 5 1 0 + 4 6 2 0 + 6 7 1 0 + 6 10 1 0 + 8 9 1 0 + 10 11 1 0 + 13 8 1 0 +V 13 * +M END +> (136) +TYK2-b + +> (136) +JakB + +> (136) +TK + +> (136) +6nzr + +> (136) +LAJ + +> (136) +A + +> (136) +B + +> (136) +SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (136) +14 14 14 14 14 14 14 5 5 14 14 14 na + +$$$$ +3fkn_chainA + RDKit 3D + + 18 18 0 0 0 0 0 0 0 0999 V2000 + -2.7504 16.1001 44.4868 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4132 15.4703 43.9120 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.6350 15.9199 45.8638 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2003 15.1428 46.3567 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.7879 16.7450 46.6050 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.0034 17.0810 48.9834 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.8821 16.5562 48.6087 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.1191 18.1513 48.8126 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8959 16.8931 50.0516 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4879 15.1272 48.4208 O 0 0 0 0 0 0 0 0 0 0 0 0 + -1.6509 16.5359 48.1862 S 0 0 0 0 0 6 0 0 0 0 0 0 + -0.5125 17.2423 48.6985 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0061 17.0982 43.8515 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1549 17.3272 42.0905 Cl 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0529 17.7406 45.9608 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3966 18.3789 46.5337 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1605 17.9168 44.5803 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3601 19.0124 43.9642 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 1 0 + 1 3 2 0 + 1 13 1 0 + 3 4 1 0 + 3 5 1 0 + 5 11 1 0 + 5 15 2 0 + 6 7 1 0 + 6 8 1 0 + 6 9 1 0 + 6 11 1 0 + 10 11 2 0 + 11 12 2 0 + 13 14 1 0 + 13 17 2 0 + 15 16 1 0 + 15 17 1 0 + 17 18 1 0 +V 18 * +M END +> (137) +p38a + +> (137) +MAPK + +> (137) +CMGC + +> (137) +3fkn + +> (137) +FKN + +> (137) + + +> (137) +A + +> (137) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (137) +16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 na + +$$$$ +3hll_altB_chainA + RDKit 3D + + 22 22 0 0 0 0 0 0 0 0999 V2000 + -1.1386 16.5399 44.3505 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.0416 16.3901 45.7221 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.3208 16.9579 46.2916 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8901 15.4960 46.3447 C 0 0 0 0 0 0 0 0 0 0 0 0 + -2.8169 14.7741 45.6284 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.4739 14.0832 46.1356 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9049 14.9336 44.2685 C 0 0 0 0 0 0 0 0 0 0 0 0 + -3.6322 14.3683 43.7048 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0658 15.8147 43.6215 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.8168 15.3210 47.8039 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.4761 16.2771 48.4907 O 0 0 0 0 0 0 0 0 0 0 0 0 + -2.1983 14.0798 48.2830 N 0 0 0 0 0 0 0 0 0 0 0 0 + -2.9656 14.0431 48.9387 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5710 12.8315 47.9071 C 0 0 0 0 0 0 0 0 0 0 0 0 + -0.7658 13.0282 47.1992 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.3105 12.1783 47.4439 H 0 0 0 0 0 0 0 0 0 0 0 0 + -1.1642 12.3475 48.7949 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.2206 15.9314 42.1408 C 0 0 0 0 0 0 0 0 0 0 0 0 + -1.5025 16.6558 41.7564 H 0 0 0 0 0 0 0 0 0 0 0 0 + -3.2321 16.2629 41.9062 H 0 0 0 0 0 0 0 0 0 0 0 0 + -2.0400 14.9607 41.6790 H 0 0 0 0 0 0 0 0 0 0 0 0 + -0.2546 17.4332 43.7274 * 0 0 0 0 0 0 0 0 0 0 0 0 + 1 2 2 0 + 1 9 1 0 + 2 3 1 0 + 2 4 1 0 + 4 5 2 0 + 4 10 1 0 + 5 6 1 0 + 5 7 1 0 + 7 8 1 0 + 7 9 2 0 + 9 18 1 0 + 10 11 2 0 + 10 12 1 0 + 12 13 1 0 + 12 14 1 0 + 14 15 1 0 + 14 16 1 0 + 14 17 1 0 + 18 19 1 0 + 18 20 1 0 + 18 21 1 0 + 22 1 1 0 +V 22 * +M END +> (138) +p38a + +> (138) +MAPK + +> (138) +CMGC + +> (138) +3hll + +> (138) +I45 + +> (138) +B + +> (138) +A + +> (138) +SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE AP + +> (138) +16 16 16 16 16 16 16 16 16 1 1 5 5 5 5 5 5 8 8 8 8 na + +$$$$ diff --git a/data/fragment_library_custom_filtered/custom_filter_results.csv b/data/fragment_library_custom_filtered/custom_filter_results.csv new file mode 100644 index 00000000..a894bb75 --- /dev/null +++ b/data/fragment_library_custom_filtered/custom_filter_results.csv @@ -0,0 +1,3506 @@ +smiles,subpocket,bool_pains,bool_brenk,bool_ro3,bool_qed,qed,bool_bb,bool_syba,syba,retro_count,bool_retro +Nc1c[nH]c2ncccc12,AP,1,1,1,1,0.5658999712435825,1,1,30.950959060571517,704.0,1.0 +N/C(=C1\C(=O)Nc2ccccc21)c1ccccc1,AP,1,0,1,1,0.7471848717059775,0,1,17.682658603401492,, +CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1,AP,1,0,0,1,0.6565153673961742,0,1,0.6118232401659034,, +Nc1ncnn2cccc12,AP,1,1,1,1,0.5638030951061849,1,1,28.754426596513945,188.0,1.0 +Cc1cc(N)[nH]n1,AP,1,1,1,0,0.4888544533381425,1,1,15.727014887215788,, +Nc1ncc(C=O)s1,AP,1,0,1,1,0.5613399498283871,1,1,12.789242122893825,, +COCC(=O)n1cc2[nH]nc(NC=O)c2c1,AP,1,0,0,1,0.7239606034824997,0,1,14.653939214959742,, +Cc1n[nH]c2cc(S)ccc12,AP,1,0,1,1,0.5738245456207135,1,1,10.945624679684984,, +COc1cc2ncnc(N)c2cc1OC,AP,1,1,0,1,0.7979523736971122,1,1,41.67674998924987,, +O=C1NCCCc2cc[nH]c21,AP,1,1,1,1,0.5611998049940248,0,0,-6.74631599668948,, +Nc1nccc(O)n1,AP,1,1,0,0,0.4844747443041592,1,1,14.840208929754215,, +Nc1ncc2cn[nH]c2n1,AP,1,1,0,1,0.5296759293780585,0,1,13.019757117591377,, +CNc1ncnc2[nH]ccc12,AP,1,1,1,1,0.6339116859578915,1,1,38.38637143623604,2.0,1.0 +Nc1nccn2cncc12,AP,1,1,1,1,0.5638030951061849,0,1,31.409528923087134,, +Cc1ccc2c(c1)NC(=O)Nc1cnc(N)nc1-2,AP,1,1,0,1,0.6571641065824526,0,0,-2.45690968798903,, +Nc1ncc(Cl)c(N)n1,AP,1,1,0,1,0.5489392620766615,1,1,21.3182634370304,, +O=c1cc(O)c2ccccc2[nH]1,AP,1,1,1,1,0.6102127223131673,0,1,32.55990740693169,, +c1cnc2ccnn2c1,AP,1,1,1,1,0.511375604737478,1,1,39.62289811858867,2870.0,1.0 +Nc1cc(C2CC2)[nH]n1,AP,1,1,1,1,0.5817560283870127,1,1,18.524860679773997,454.0,1.0 +Nc1ncnc2[nH]ccc12,AP,1,1,0,1,0.5521636672820287,1,1,29.03266928659045,, +Clc1c[nH]c2ncncc12,AP,1,1,1,1,0.6249517393225209,1,1,18.136368996744945,226.0,1.0 +Cc1c[nH]c2ncncc12,AP,1,1,1,1,0.5875133881718076,1,1,18.45204921270899,226.0,1.0 +CCc1c[nH]c2ncncc12,AP,1,1,1,1,0.6640159088638276,1,1,26.056605986491547,222.0,1.0 +c1ncc2cc[nH]c2n1,AP,1,1,1,1,0.5607362152362961,1,1,30.638319580918225,490.0,1.0 +C[C@@H]1SCc2ncncc21,AP,1,1,1,1,0.5664426923034389,0,0,-15.744872052582329,, +c1ccc2ncncc2c1,AP,1,1,1,1,0.5412819114011972,1,1,36.82228119064453,578.0,1.0 +C[C@@H]1C[C@@H](O)c2ncncc21,AP,1,1,1,1,0.600137794996851,0,0,-19.770027220110777,, +C[C@@H]1CC(=O)Nc2ncncc21,AP,1,1,1,1,0.6183914419740608,0,0,-26.40904365775072,, +O=[SH](=O)c1cccc2cnccc12,AP,1,0,1,1,0.6922284333447187,1,1,1.88559604581769,, +Cc1n[nH]c2ccccc12,AP,1,1,1,1,0.5820392325335272,1,1,44.4808676464273,1508.0,1.0 +c1cn[nH]c1,AP,1,1,1,0,0.4683433019217652,1,1,7.008377370358167,, +Nc1cnon1,AP,1,1,0,0,0.467341788077307,0,1,4.049549313424441,, +c1cnc2[nH]ccc2c1,AP,1,1,1,1,0.5583728365871126,1,1,43.27487395955146,1340.0,1.0 +O=CNc1n[nH]c2c1CNC2,AP,1,0,0,1,0.5040008100754904,0,0,-17.13714378581204,, +Nc1ncccc1O,AP,1,1,1,1,0.5068633046996494,1,1,22.01649465642152,598.0,1.0 +CCc1ccc2c(c1)C(=O)c1c([nH]c3cc(C#N)ccc13)C2(C)C,AP,1,1,0,1,0.7200651689938562,0,1,15.142372828120454,, +Nc1nccnc1O,AP,1,1,0,0,0.4844747443041592,1,1,10.29223715975717,, +Nc1ncccn1,AP,1,1,1,1,0.495312713243744,1,1,22.21663536592597,1078.0,1.0 +NC(=O)c1cccc([SH](=O)=O)c1,AP,1,0,0,1,0.623867704414389,1,0,-9.54440564260099,, +NC(=O)c1ccccc1,AP,1,1,1,1,0.5859367170668044,1,1,37.153131146312816,574.0,1.0 +Fc1ccccc1,AP,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +Nc1ncc2c[nH]nc2n1,AP,1,1,0,1,0.5296759293780585,0,1,20.36441436973807,, +O=C/N=C1/N=Nc2ccccc21,AP,1,0,1,1,0.574935749031262,0,0,-17.88712688885667,, +O=CNc1n[nH]c2ccccc12,AP,1,0,1,1,0.6484659759237619,1,1,28.70022325829968,, +O=CNc1ccn[nH]1,AP,1,0,1,1,0.5266484082045457,1,1,6.813264167155642,, +Cc1ccn[nH]1,AP,1,1,1,0,0.4904468907838006,1,1,14.82874220317474,, +Nc1ncc2[nH]ccc2n1,AP,1,1,0,1,0.5521636672820287,0,1,30.166280381581757,, +Cc1cc[nH]n1,AP,1,1,1,0,0.4904468907838006,1,1,18.68420451054827,, +c1ccc2c(c1)[nH]c1ncccc12,AP,1,1,1,1,0.5489485570430717,0,1,40.75417186273409,, +COc1cc(-c2cccnc2N)cc(OC)c1OC,AP,1,1,0,1,0.9136257774468136,0,1,41.65979223027284,, +Nc1ccc2nccn2n1,AP,1,1,1,1,0.5638030951061849,1,1,42.20375806539091,512.0,1.0 +COc1cc(-c2cccnc2)cc(OC)c1OC,AP,1,1,0,1,0.83008585938348,0,1,55.26453774831965,, +COc1cc(-c2cnccc2C)cc(OC)c1OC,AP,1,1,0,1,0.8456647836919536,0,1,41.803681848587686,, +COc1cc(C2=CNC=C(c3ccccc3)[C@H]2C)cc(OC)c1OC,AP,1,1,0,1,0.8812079843982508,0,1,2.740555305824942,, +Cc1cccc2nc[nH]c(=O)c12,AP,1,1,1,1,0.6296228179680179,1,1,33.8410268029552,246.0,1.0 +O=c1[nH]cnc2ccccc12,AP,1,1,1,1,0.6003509616659684,1,1,49.06194613610719,1512.0,1.0 +Cc1nc2cccc(C)c2c(=O)[nH]1,AP,1,1,1,1,0.6580586410337298,1,1,27.70760628202652,0.0,0.0 +COc1cccc(-c2cnccc2C)c1,AP,1,1,0,1,0.7411607300806361,0,1,45.61530880832209,, +c1cnn2cccc2c1,AP,1,1,1,1,0.509815139625202,0,1,26.14469593478608,, +Cn1ccc2ccncc2c1=O,AP,1,1,1,1,0.5743423431787907,0,1,32.60806073765457,, +Nc1ncnc2ccccc12,AP,1,1,1,1,0.6058167298330609,1,1,40.815128069192745,654.0,1.0 +COc1cc(-c2cncc3c2C[N@@H+](C)Cc2ccccc2-3)cc(OC)c1OC,AP,1,1,0,1,0.7593399021572478,0,1,9.687438234955982,, +COc1cc(-c2cncc3c2CCOc2ccccc2-3)cc(OC)c1OC,AP,1,1,0,1,0.688597422522575,0,1,5.837593089244502,, +CC(=O)n1cc2[nH]nc(NC=O)c2c1,AP,1,0,0,1,0.6832541084189407,0,1,7.653033499078143,, +Nc1ccnc(N)n1,AP,1,1,0,0,0.4777611922776153,1,1,26.34741885629736,, +Nc1cn[nH]c1,AP,1,1,1,0,0.4632257080621317,1,1,12.244981556177024,, +O=CNc1cn[nH]c1,AP,1,0,1,1,0.5266484082045457,1,1,10.516748563411555,, +Brc1cnc2[nH]cnc2c1,AP,1,1,1,1,0.6995654942478055,1,1,31.23427654189242,202.0,1.0 +Clc1cnc2cnccn12,AP,1,1,1,1,0.5726104908728296,1,1,33.86726009941444,306.0,1.0 +O=CNc1n[nH]c2ccsc12,AP,1,0,1,1,0.6599358884582679,0,1,13.7240623154254,, +Nc1ncc(F)c(N)n1,AP,1,1,0,1,0.5059492074150636,1,1,19.09389561265286,, +Nc1ccc2ncccc2c1,AP,1,0,1,1,0.5725810426076291,1,1,48.346598774821096,, +Nc1n[nH]c2ccccc12,AP,1,1,1,1,0.5658999712435826,1,1,31.70116676640892,724.0,1.0 +Nc1ncnc2occc12,AP,1,1,0,1,0.5799503038107797,0,1,21.107540377517743,, +Cc1cn2ccnc2cn1,AP,1,1,1,1,0.5370900072608146,1,1,35.856587603219474,982.0,1.0 +c1cn2ccnc2cn1,AP,1,1,1,1,0.5113756047374779,1,1,39.33473876475038,2138.0,1.0 +Cc1c[n+]2c(cn1)[NH2+]C=C2c1cn[nH]c1,AP,1,0,0,1,0.6083890434317208,0,1,7.785977070020817,, +Cc1cc(N)n[nH]1,AP,1,1,1,0,0.4888544533381425,1,1,17.627254462274625,, +Clc1cnc2[nH]cnc2c1,AP,1,1,1,1,0.6249517393225209,0,1,27.217155141338598,, +Nc1ncc2cc[nH]c2n1,AP,1,1,0,1,0.5521636672820287,1,1,30.228892595368663,, +Nc1cc[nH]n1,AP,1,1,1,0,0.4632257080621317,1,1,15.506510937849146,, +c1ncc2ccoc2n1,AP,1,1,1,1,0.524337023241302,0,1,20.91566462608599,, +NC(=O)c1n[nH]c2ccccc12,AP,1,1,0,1,0.6444934248268473,1,1,54.52749912628104,, +CCOC=O,AP,1,0,1,0,0.4365645501026903,1,0,-6.824448569140429,, +O=c1[nH]c2ccc(O)cc2[nH]1,AP,1,1,0,1,0.5132501883692772,1,1,28.459521791723528,, +Clc1cnc2nc[nH]c2c1,AP,1,1,1,1,0.6249517393225209,0,1,26.240222411330443,, +Nc1nc(N)n(C=O)n1,AP,1,0,0,0,0.446084919315502,0,0,-2.4275150018049705,, +Nc1nccs1,AP,1,1,1,1,0.5215253330648401,1,1,16.95309833793486,348.0,1.0 +Cc1ccc2c(c1)C(=O)N(C)c1cnc(N)nc1N2C,AP,1,1,0,1,0.7878518185359399,0,1,15.481806328491713,, +Cc1ccc2c(c1)OCO2,AP,1,1,1,1,0.540310891015898,1,1,32.414211538116504,190.0,1.0 +c1ccc2c(c1)OCO2,AP,1,1,1,1,0.5176682759164258,1,1,24.83848061700253,914.0,1.0 +Oc1ccccc1,AP,1,1,1,1,0.514729544768675,1,1,22.78125845241812,1204.0,1.0 +O=C1N=Cc2ccccc21,AP,1,1,1,1,0.5207856484780935,0,0,-13.53033725805279,, +c1ccc2n[nH]cc2c1,AP,1,1,1,1,0.5583728365871126,1,1,41.32193679387078,1036.0,1.0 +c1ccc2[nH]ncc2c1,AP,1,1,1,1,0.5583728365871126,1,1,41.54100241300441,1510.0,1.0 +c1ccncc1,AP,1,1,1,0,0.4531479654842905,1,1,20.589274983144826,, +Clc1cncc2sccc12,AP,1,1,1,1,0.5911159685433134,0,1,24.24081383160717,, +NC(=O)Nc1ccsc1,AP,1,1,1,1,0.6085545083181163,1,1,40.28538525560708,0.0,0.0 +Clc1cnc2[nH]ccc2c1,AP,1,1,1,1,0.6162749315196012,1,1,44.7940476327261,408.0,1.0 +O=Cc1c[nH]c2ncccc12,AP,1,0,1,1,0.6174470277650994,1,1,30.86197986970827,, +c1cc2ccoc2cn1,AP,1,1,1,1,0.5283477685064296,1,1,27.16527626385493,318.0,1.0 +NC(=O)c1cc2ccncc2o1,AP,1,1,0,1,0.6775304324969798,0,1,29.3648696129481,, +Nc1coc2cnccc12,AP,1,1,1,1,0.5922099720914726,0,1,12.773381794345774,, +c1cc2ccsc2cn1,AP,1,1,1,1,0.5397735725540235,1,1,27.13003469376944,704.0,1.0 +COc1n[nH]c2ncc(N)cc12,AP,1,1,0,1,0.6447765138705841,0,1,22.90669859326972,, +Nc1cnc(N)c(Br)c1,AP,1,1,0,1,0.6378950106210678,1,1,24.5996902615513,, +CC(=O)Nc1ccccn1,AP,1,1,1,1,0.6263238604714195,1,1,47.49862526573194,906.0,1.0 +Oc1ccc(Cl)c2cccnc12,AP,1,1,1,1,0.6745322343274752,1,1,43.91364625593198,270.0,1.0 +Cn1c(=O)ccc2cnc(N)nc21,AP,1,1,0,1,0.6084149207744362,1,1,24.16384109351519,, +Nc1ncnc2c(C=O)csc12,AP,1,0,0,1,0.6650205532661347,0,1,12.01547606590873,, +NC(=O)Nc1cc(N)ncn1,AP,1,1,0,1,0.5073873979826581,0,1,38.16345328665303,, +c1cnc2nc[nH]c2c1,AP,1,1,1,1,0.5607362152362961,1,1,29.25616967008937,394.0,1.0 +CNc1ccc2ncn(C)c(=O)c2c1,AP,1,1,1,1,0.7268761570026288,1,1,39.45328419034719,0.0,0.0 +O=Cc1c[nH]c2ncc(Cl)cc12,AP,1,0,1,1,0.6829398534512952,1,1,24.597261824527244,, +O=Cc1c[nH]c2ncc(-c3cncnc3)cc12,AP,1,0,0,1,0.6738970933666125,0,1,26.99742461873134,, +Nc1ncnc2[nH]cc(Cl)c12,AP,1,1,0,1,0.621159231098622,1,1,24.5421434266892,, +c1ncc2[nH]cnc2n1,AP,1,1,1,1,0.5454672838232755,1,1,20.65547250238942,564.0,1.0 +Cn1cnc2ccc(N)cc2c1=O,AP,1,0,0,1,0.5934602557678185,1,1,41.77891641024061,, +c1cncnc1,AP,1,1,1,0,0.4525571430979931,1,1,20.650117467972965,, +c1cn2c(-c3cn[nH]c3)cnc2cn1,AP,1,1,1,1,0.617595476139162,1,1,37.66103760445785,0.0,0.0 +Cc1cn2c(-c3cn[nH]c3)cnc2cn1,AP,1,1,1,1,0.6445208711483315,0,1,27.0183206769027,, +Nc1[nH]ncc1C=O,AP,1,0,0,1,0.4929363112315002,1,1,8.079684695524305,, +CN1C(=O)NCc2cnc(N)nc21,AP,1,1,0,1,0.5732088230424951,0,0,-13.643395818123803,, +Nc1ncnc2nc[nH]c12,AP,1,1,0,1,0.5296759293780585,1,1,26.611361607375347,, +Nc1nccn2ccnc12,AP,1,1,1,1,0.5638030951061849,1,1,25.62870220979388,576.0,1.0 +Cn1ccncc1=O,AP,1,1,1,0,0.4624735047554044,1,1,20.309199042427714,, +Cn1cccc(N)c1=O,AP,1,1,1,1,0.5275047833665327,1,1,24.52971273842459,812.0,1.0 +Cn1ccccc1=O,AP,1,1,1,0,0.4719138439954858,1,1,30.41344293946266,, +O=c1cccn[nH]1,AP,1,1,1,0,0.4845465820485107,1,1,16.393963737650818,, +NC=O,AP,1,0,1,0,0.3523255130205271,1,0,-3.29609306080239,, +NC(=O)c1cccnc1N,AP,1,1,0,1,0.5601323657155416,1,1,40.033456674088,, +Cn1ccnc(N)c1=O,AP,1,1,0,1,0.5014678028929576,1,1,22.21804175037937,, +Cn1ncccc1=O,AP,1,1,1,0,0.4624735047554044,1,1,30.213596679087107,, +Nc1ncnc2[nH]ncc12,AP,1,1,0,1,0.5296759293780585,1,1,24.67067210903871,, +Nc1ccc2nccnc2c1,AP,1,0,1,1,0.5667175363853326,1,1,42.21819807840159,, +Nc1ncnc(N)n1,AP,1,1,0,0,0.449416778456393,1,1,17.079409888018347,, +NC1=NCC=NC1=O,AP,1,1,0,0,0.433256140144005,0,0,-32.28946480884326,, +Cn1nccc(N)c1=O,AP,1,1,0,1,0.5014678028929576,1,1,17.667870161747025,, +Nc1ccn[nH]c1=O,AP,1,1,0,0,0.4670416161550293,1,1,10.890024228172164,, +NC(=O)c1ccc(N)nc1,AP,1,1,0,1,0.5601323657155416,1,1,41.39074641217584,, +NC(=O)c1cccnc1O,AP,1,1,0,1,0.5678515844292622,1,1,25.36242051773053,, +Nc1ncnc2[nH]cc(C=O)c12,AP,1,0,0,1,0.5923815485979881,0,1,18.38801703462645,, +Cn1c2c(cc(N)c1=O)-c1ccccc1C[C@H](O)C2,AP,1,1,0,1,0.7412044679195968,0,1,0.6861190766721115,, +Nc1ncc2[nH]c(=O)c(=O)[nH]c2n1,AP,1,0,0,0,0.4291621838139394,0,1,18.552856954063923,, +CNc1cc(N)ncn1,AP,1,1,0,1,0.5569791707820108,1,1,30.809021154744013,, +NC(=O)c1cn[nH]c1N,AP,1,1,0,0,0.4539721011557528,1,1,19.031449228022336,, +c1cnc2[nH]cnc2c1,AP,1,1,1,1,0.5607362152362961,1,1,31.112087988190105,1028.0,1.0 +O=c1[nH]cn[nH]1,AP,1,1,0,0,0.4284433255754357,1,1,10.37345773658368,, +NC(=O)c1nccnc1N,AP,1,1,0,1,0.5284027360700222,1,1,33.24092163653578,, +COc1cnccc1N,AP,1,1,1,1,0.5982384187369707,1,1,16.361795385980344,428.0,1.0 +C/N=c1\nc(N)c(C(N)=O)c[nH]1,AP,1,1,0,0,0.479035708685154,0,1,14.071308496562994,, +NC(=O)c1cnc(N)[nH]/c1=N\C1CCCC1,AP,1,1,0,1,0.6498398282091296,0,1,21.576466900914408,, +Cc1cc(Br)c(C/N=c2\nc(N)c(C(N)=O)c[nH]2)cc1Br,AP,1,1,0,1,0.7138017109062661,0,1,39.737504616450686,, +Cc1cc(Br)c(CNc2ncc(C(N)=O)c(N)n2)cc1Br,AP,1,1,0,1,0.7121540666135415,0,1,71.45649794835329,, +NC(=O)c1n[nH]cc1N,AP,1,1,0,0,0.4539721011557528,1,1,19.086790805884924,, +Nc1nc(O)c2nc[nH]c2n1,AP,1,1,0,0,0.4769713284240621,1,1,26.0129445098292,, +O=c1ccoc2cc(O)cc(O)c12,AP,1,1,0,1,0.6354873593320908,1,1,27.29972257617716,, +CCn1cnc2c(N)ncnc21,AP,1,1,0,1,0.6613593002754281,1,1,48.292539106390926,, +CCc1cnn2c(N)ccnc12,AP,1,1,1,1,0.67660634210555,1,1,26.36611572089349,0.0,0.0 +O=c1[nH]cnc2c1oc1ccc(Cl)cc12,AP,1,1,1,1,0.6325832963967335,0,1,35.741341989260896,, +Cn1cnc2c(N)ncnc21,AP,1,1,0,1,0.5695517474821745,1,1,31.737596772945963,, +Nc1ncc2nc[nH]c2n1,AP,1,1,0,1,0.5296759293780585,1,1,21.18994719334084,, +COc1nc(N)nc(N)c1N=O,AP,1,1,0,1,0.6036976744590201,0,1,12.650676002666824,, +O=C1Cc2cc(S(=O)(=O)[O-])ccc2N1,AP,1,0,0,1,0.667953140702261,0,1,29.63755010814528,, +N/C=C1\C(=O)Nc2ccc3ncsc3c21,AP,1,0,0,1,0.657699105439811,0,0,-23.23330330448355,, +Nc1ncnc2[nH]cnc12,AP,1,1,0,1,0.5296759293780585,1,1,30.04905878706934,, +NC(N)=O,AP,1,1,0,0,0.3705073514035382,1,1,12.3711326840275,, +NC(=O)Nc1cc[nH]n1,AP,1,1,0,0,0.4905453419261288,0,1,32.75285051914737,, +Nc1ccncn1,AP,1,1,1,1,0.4953127132437441,1,1,24.137073389913574,1066.0,1.0 +Nc1cc(N)ncn1,AP,1,1,0,0,0.4777611922776153,1,1,22.94180621912212,, +Nc1ncc(Br)cn1,AP,1,1,1,1,0.6328582562302699,1,1,26.407954697025676,740.0,1.0 +N/C=C1\C(=O)Nc2ccccc21,AP,1,0,1,1,0.5547257407725986,0,0,-6.7960721137178055,, +O=C1Nc2ccc3ncsc3c2/C1=N/Nc1ccccc1,AP,0,0,0,1,0.7138144058460063,0,1,29.665646167879046,, +Nc1ncc(N=O)c(N)n1,AP,1,1,0,1,0.533753371986507,1,1,8.445057210712758,, +CC(=O)Nc1ncccn1,AP,1,1,1,1,0.6104260962860729,1,1,42.0931796859136,0.0,0.0 +O=C1Nc2ccc(F)c3ccc(-c4ccc[nH]4)c1c23,AP,1,1,0,1,0.6832117463289039,0,1,1.6880748367178176,, +Nc1nc2ccc(C=O)cn2c1C=O,AP,1,0,0,1,0.6992233797299435,0,1,17.500931576866055,, +COc1cc[nH]c1C,AP,1,1,1,1,0.5806914874315203,1,1,21.52948613870356,0.0,0.0 +O=CNc1cc[nH]n1,AP,1,0,1,1,0.5266484082045457,1,1,11.179188932838532,, +Nc1cc(Cl)nc2ccnn12,AP,1,1,1,1,0.5966276546315371,1,1,25.056003197169435,162.0,1.0 +Nc1ccnc2ccnn12,AP,1,1,1,1,0.5638030951061849,1,1,25.54147732141739,1558.0,1.0 +Nc1cn2cc(C=O)ccc2n1,AP,1,0,0,1,0.6269506363663427,1,1,22.201129023699757,, +O=C1c2ccccc2-c2n[nH]cc21,AP,1,1,1,1,0.5568376219021443,0,1,15.661927318992522,, +CCc1n[nH]c2nc[nH]c(=O)c12,AP,1,1,0,1,0.6321938181908657,0,1,34.11315903061319,, +C[C@@]1(O)/C(=C2/C(=O)Nc3ccc([SH](=O)=O)cc32)Nc2ccccc21,AP,1,0,0,0,0.4668941064864818,0,0,-55.359504599105385,, +NC(=O)c1n[nH]c2c1CCc1[nH]ncc1-2,AP,1,1,0,1,0.6075062323408393,0,1,19.26020722810384,, +[O+]#[N+2]([O-])c1cccc(Nc2ncccn2)c1,AP,1,0,0,1,0.616945142891312,0,1,57.166358496958296,, +Nc1ccnc2ncnn12,AP,1,1,0,1,0.5383637047155415,1,1,24.68763136672711,, +Cc1ccc2occ(O)c(=O)c2c1,AP,1,1,1,1,0.6654734086251236,0,1,39.30508150873308,, +c1ncc2nc[nH]c2n1,AP,1,1,1,1,0.5454672838232756,1,1,19.38059096174531,336.0,1.0 +COc1cc2nc[nH]c2cc1OC,AP,1,1,1,1,0.7589847809994558,0,1,40.73744410985244,, +Fc1ccccc1-c1cn2ccnc2cn1,AP,1,1,1,1,0.6214089754511068,0,1,48.06887685493216,, +Cc1cnc2c(N)nccn12,AP,1,1,1,1,0.5954370615348293,0,1,20.646010162702268,, +Nc1ccnc2c(Br)cnn12,AP,1,1,1,1,0.7115952478146391,1,1,22.46523074168695,8.0,1.0 +Nc1cccc2c(Br)cnn12,AP,1,1,1,1,0.7213094135103859,0,1,21.117125790288185,, +Nc1cccn2c(Br)cnc12,AP,1,1,1,1,0.7213094135103859,1,1,23.451116107393887,20.0,1.0 +Nc1ccnc2c(CO)cnn12,AP,1,1,0,1,0.6117586632507916,1,1,18.933124965922477,, +Cc1ccco1,AP,1,1,1,0,0.4628605847396023,1,1,19.55617176649155,, +Cc1ccc(-c2ccccc2)o1,AP,1,1,0,1,0.6204760024300537,1,1,48.21584543526078,, +CCc1ccco1,AP,1,1,1,1,0.5195790437613876,1,1,32.52289738289828,450.0,1.0 +[H]/N=C1\NC(=O)CS1,AP,1,0,1,0,0.4595902452065177,0,0,-15.582216331446991,, +NC(=O)c1cc[nH]n1,AP,1,1,0,1,0.5128254311845627,1,1,27.40768558707893,, +N#Cc1cnn2c(N)cc(Cl)nc12,AP,1,1,0,1,0.6289718547627411,0,1,23.05940675103565,, +N#Cc1cnn2c(N)ccnc12,AP,1,1,0,1,0.5942836481630253,1,1,25.314565722533032,, +c1ccc(Nc2ncccn2)cc1,AP,1,1,1,1,0.752389705777418,1,1,65.22409755389877,2.0,1.0 +Nc1ncc(F)cn1,AP,1,1,1,1,0.5223973940745565,1,1,19.727113347286437,652.0,1.0 +Cn1ncc2c1-c1nc(N)ncc1CC2,AP,1,1,0,1,0.6756882529337385,0,1,11.011643159274218,, +CC1(C)c2[nH]nc(N)c2CN1C=O,AP,1,0,0,1,0.6060188060629421,1,0,-22.743345897202527,, +CNC(=O)c1nn(C)c2c1ccc1cnc(N)nc12,AP,1,1,0,1,0.6585951952833748,0,1,35.31773026679583,, +Cc1nc2c(s1)-c1nc(N)ncc1CC2,AP,1,1,0,1,0.7289213591751048,0,1,9.01225202303721,, +COc1ccnc2[nH]ccc12,AP,1,1,1,1,0.66614760974663,1,1,36.45095187593385,494.0,1.0 +Oc1ccnc2[nH]ccc12,AP,1,1,1,1,0.5695767699152823,1,1,23.784334390447714,78.0,1.0 +Nc1nccc2cc3c(O)ccnc3n12,AP,1,1,0,1,0.5707231306731465,0,1,0.7348499346676491,, +Nc1ncnc2ccnn12,AP,1,1,0,1,0.5383637047155415,1,1,23.87191451780354,, +Cc1ncn2nc(N)ncc12,AP,1,1,0,1,0.5726845816021439,0,1,16.610305529716232,, +c1ccc2[nH]c(-c3n[nH]c4ccccc34)nc2c1,AP,1,1,0,1,0.5313446542836318,1,1,48.49108093279667,, +CC(=O)Nc1c[nH]cn1,AP,1,1,1,1,0.5692234054682064,1,1,24.82474298347923,0.0,0.0 +Nc1c[nH]cn1,AP,1,1,1,0,0.4632257080621317,1,1,13.05738056664325,, +Nc1n[nH]c2c(F)c(F)ccc12,AP,1,1,1,1,0.6262010296884438,0,1,16.04432541215502,, +Nc1n[nH]c2cc(Cl)ccc12,AP,1,1,1,1,0.6288112834438336,0,1,35.249514698434304,, +Nc1ncnc2cn[nH]c12,AP,1,1,0,1,0.5296759293780585,1,1,21.32006460092345,, +Nc1ncnc(-c2cc(Cl)ccc2O)n1,AP,1,1,0,1,0.7635070032978527,0,1,28.042246595519597,, +C=CCNc1nc(N)c(C=O)s1,AP,1,0,0,1,0.5421761045977664,0,1,20.02060358986929,, +c1n[nH]c2c1CCCC2,AP,1,1,1,1,0.5515098250854542,0,1,27.93428517469036,, +CNC(=O)c1n[nH]c2c1CCCC2,AP,1,1,1,1,0.6645892509417041,0,1,45.80680853776977,, +Nc1nc(N)c(C=O)s1,AP,1,0,0,1,0.5468594863905379,1,1,4.749548279583218,, +Nc1csc(N)n1,AP,1,1,0,1,0.5110070188475047,1,1,15.919540019485344,, +CNc1cc(Cl)c([N+](=O)[O-])cc1C(N)=O,AP,1,0,0,1,0.6043611455193832,0,1,41.158758507274,, +CNc1cc(Cl)c([N+2](#[O+])[O-])cc1C(N)=O,AP,1,0,0,1,0.5973219008934295,0,1,31.12525332981567,, +NC(=O)c1cc([N+](=O)[O-])ccc1N,AP,1,0,0,0,0.3870934615773343,1,1,44.56995534189344,, +CNc1cc(OC)c([N+2](#[O+])[O-])cc1C(N)=O,AP,1,0,0,1,0.5941081872645152,0,1,35.75053490737289,, +NC(=O)c1cc([N+2](#[O+])[O-])ccc1N,AP,1,0,0,0,0.3776210148912589,0,1,25.489773587476872,, +NC(=O)c1ccccc1N,AP,1,0,0,1,0.5473422654963029,1,1,32.14342487361283,, +NNC(=O)c1n[nH]c2c1CCCC2,AP,1,0,0,0,0.3201524131175091,0,1,42.77754078066805,, +CNc1ccc([N+2](#[O+])[O-])cc1C(N)=O,AP,1,0,0,1,0.5468854093262764,0,1,30.51279420085596,, +NC(=O)c1sc(N)nc1N,AP,1,1,0,1,0.5069947057515675,0,1,23.35985620833857,, +Cc1cc(C)c(Cc2c(O)[nH]c3ccc(F)cc23)[nH]1,AP,1,1,0,1,0.6465732768749115,0,1,46.31727647778884,, +Cc1cnc2ccnn2c1N,AP,1,1,1,1,0.5954370615348293,1,1,32.22974974047434,0.0,0.0 +Nc1nccnc1C=O,AP,1,0,0,1,0.5279733244447306,1,1,3.2892721006665613,, +N#Cc1cnc(N)nc1,AP,1,1,0,1,0.5195864281171498,1,1,20.3545838651496,, +Nc1nc(O)c2[nH]cnc2n1,AP,1,1,0,0,0.4769713284240622,1,1,19.21083277389289,, +Nc1ncc2[nH]cnc2n1,AP,1,1,0,1,0.5296759293780585,1,1,25.37036465624505,, +[O-]c1cccc2ccc(C3=NCCS3)nc12,AP,1,1,1,1,0.7488245973922308,0,1,7.133566887519313,, +Cc1cc(NC=O)n[nH]1,AP,1,0,1,1,0.5578008655083114,1,1,8.525501537269342,, +CC(=O)Nc1ccn[nH]1,AP,1,1,1,1,0.5692234054682064,1,1,25.0811703939741,584.0,1.0 +Cc1ccc2ncccc2c1,AP,1,1,1,1,0.5519055037199659,1,1,56.860961252929066,52.0,1.0 +CC(=O)Nc1cc[nH]n1,AP,1,1,1,1,0.5692234054682064,1,1,37.9951685550753,8.0,1.0 +N=[S@@](=O)([O-])c1ccc(N/N=C2\C(=O)Nc3ccccc32)cc1,AP,0,0,0,1,0.750561368963537,0,1,45.84616414291877,, +N=[S@@](=O)([O-])c1ccc(N/N=C2\C(=O)Nc3ccc(C=O)cc32)cc1,AP,0,0,0,1,0.5745401116450196,0,1,36.9888104757337,, +Nc1ncc(S)s1,AP,1,0,1,1,0.5170817506567151,1,1,0.3798179470374201,, +Nc1cc2[nH]ccc2cn1,AP,1,1,1,1,0.5658999712435825,0,1,31.192418941068716,, +c1ccc2[nH]cnc2c1,AP,1,1,1,1,0.5583728365871126,1,1,39.49652870819706,220.0,1.0 +O=c1ccc2ccc(O)cc2o1,AP,1,0,1,1,0.5969446160833805,1,1,40.2202979851907,, +NC(=O)C1C(=O)NC(=O)NC1=O,AP,1,0,0,0,0.3761896620040759,0,0,-3.5125328682918013,, +O=CNc1ncc(S)s1,AP,1,0,1,1,0.5003614800563138,1,0,-11.300389364685149,, +Nc1ncc(Br)c(O)n1,AP,1,1,0,1,0.6251610741094917,1,1,15.795511093089155,, +Nc1ncnc2c[nH]nc12,AP,1,1,0,1,0.5296759293780585,1,1,20.50116397631588,, +Fc1cnc(Nc2ccccn2)nc1,AP,1,1,0,1,0.7833521408660288,0,1,51.48470346138999,, +O=C1CC(O)=CC=N1,AP,1,1,1,1,0.492388429359408,0,0,-29.070684979542435,, +Nc1ncnc(N)c1N=O,AP,1,1,0,1,0.533753371986507,0,1,5.4623303743486495,, +O=c1[nH]ccc2nccn12,AP,1,1,1,1,0.5533390482998546,0,1,25.086936621280717,, +O=[S@@]1CCc2c(cnc3ccc4n[nH]cc4c23)C1,AP,1,1,1,1,0.6690241607312236,0,0,-1.795087538728141,, +Nc1ncc2ccc(=O)[nH]c2n1,AP,1,1,0,1,0.5660876995210078,1,1,19.12772455918848,, +C1=C(c2cc3cccnc3[nH]2)CC[NH2+]C1,AP,1,1,1,1,0.7059384270823092,0,1,14.306177142558148,, +Nc1ncc(Br)c(N)n1,AP,1,1,0,1,0.6187185795183504,1,1,22.3016681024189,, +Nc1cc2ncccc2cn1,AP,1,1,1,1,0.6058167298330609,0,1,31.99951907949784,, +Cn1cc(NC=O)cn1,AP,1,0,1,1,0.5648301292644973,0,1,16.079943196595597,, +Nc1ncc2ccc(C=O)cc2n1,AP,1,0,0,1,0.6535582975287043,0,1,24.02445449591781,, +c1ccc(Nc2cc[nH]n2)nc1,AP,1,1,1,1,0.7003133207110862,0,1,52.62643964282725,, +c1cnc2[nH]ccc2n1,AP,1,1,1,1,0.5607362152362961,1,1,25.633471150588832,50.0,1.0 +O=C1Cc2ccccc2N1,AP,1,1,1,1,0.5653488967385903,1,1,1.0253554500825568,6.0,1.0 +c1ccc2scnc2c1,AP,1,1,1,1,0.5397735725540235,1,1,40.1634330620127,860.0,1.0 +Nc1cc2nc(O)ccc2cn1,AP,1,1,0,1,0.6021584656082188,0,1,9.854914508934415,, +O=c1c(O)coc2cc(O)ccc12,AP,1,1,0,1,0.6354873593320908,1,1,29.527753197003847,, +Cc1cc(=O)[nH]c2nc(N)ncc12,AP,1,1,0,1,0.6004416363868018,0,1,24.313134522184097,, +C[NH+]1CCC(Nc2ncccn2)CC1,AP,1,1,1,1,0.6692877532159137,0,1,55.54670027843155,, +c1ccc(Nc2ncccn2)nc1,AP,1,1,0,1,0.7473022593397449,1,1,57.451949335272815,, +O=C(c1ccncc1)c1nc2ncccc2[nH]1,AP,1,1,0,1,0.6706882865650794,0,1,59.53915627954076,, +Nc1ncc2c(n1)[nH]c1cnccc12,AP,1,1,0,1,0.5489327721439603,0,1,20.357546286846254,, +c1ccc(Nc2ncc3cc[nH]c3n2)nc1,AP,1,1,0,1,0.6807693492387813,0,1,65.32233438209079,, +CNc1ncnc2ccnn12,AP,1,1,0,1,0.6273894083440266,0,1,29.01231938629568,, +c1ccc2cnccc2c1,AP,1,1,1,1,0.5311915584041306,1,1,39.36588766207535,1278.0,1.0 +Clc1cccnc1,AP,1,1,1,1,0.4994929876185537,1,1,31.118626769046976,4100.0,1.0 +Oc1cncc2sccc12,AP,1,1,1,1,0.6243115793086027,1,1,18.231467820069472,0.0,0.0 +Nc1ncccc1Cl,AP,1,1,1,1,0.572458049351884,1,1,29.98004094229593,2220.0,1.0 +Cc1n[nH]c2cc(O)c(C=O)cc12,AP,1,0,0,1,0.6450160142408264,0,1,22.688449014075395,, +c1cnc2ccncc2c1,AP,1,1,1,1,0.5412819114011972,1,1,42.93450337307583,1040.0,1.0 +Cc1ncc2sc(C=O)nn12,AP,1,0,1,1,0.5929771907827713,0,1,6.002428054607666,, +Cc1n[nH]c2ncc(C=O)cc12,AP,1,0,1,1,0.6364092334360997,1,1,37.21557212761629,, +Nc1n[nH]c2ccc(C=O)cc12,AP,1,0,0,1,0.6115984485301853,1,1,23.598172314766437,, +c1cc2cnccc2cn1,AP,1,1,1,1,0.5412819114011972,0,1,24.961577893649626,, +Cc1ccc(Nc2ncc(C#N)cn2)cc1[SH](=O)=O,AP,1,0,0,1,0.8206210479891586,0,1,15.397810112397057,, +N#Cc1cnc(Nc2cccc(O)c2)nc1,AP,1,1,0,1,0.7926531573830059,0,1,57.38943539555299,, +[NH3+][C@H]1CC[C@H](Nc2ncc(F)cn2)CC1,AP,1,1,0,1,0.7517255258870635,0,1,51.81224709550427,, +O=CNc1ccc(Cl)cn1,AP,1,0,1,1,0.6563005773177188,0,1,24.43384095337382,, +NC(=S)n1nc(N)nc1N,AP,1,0,0,0,0.3977881633449778,0,1,14.848981281458483,, +Nc1ccn[nH]1,AP,1,1,1,0,0.4632257080621317,1,1,13.19404479047151,, +O=C1NCCCc2c1[nH]c(Cl)c2Cl,AP,1,1,1,1,0.6880852263853149,0,0,-13.552087347411788,, +CN(CCO)c1ncnc2occc12,AP,1,1,0,1,0.7750486048590693,0,1,44.62953424090265,, +ON=C1c2ccccc2-c2ccccc21,AP,1,0,1,0,0.4338792337516748,1,1,16.095606372916187,, +O=[N+]([O-])c1cccc2ncccc12,AP,1,0,1,0,0.4912108140527249,1,1,51.738661446024224,, +c1ccc(-c2n[nH]c3c2Cc2ccccc2-3)cc1,AP,1,1,0,1,0.5329051721218767,0,1,29.96903318567625,, +Cc1ccc2c(c1)Cc1c[nH]nc1-2,AP,1,1,1,1,0.5506082576755823,0,1,2.4228263689918763,, +NC(=O)Nc1cnccn1,AP,1,1,0,1,0.5712093748835607,0,1,33.662649400269395,, +O=c1ccc2cc(Cl)ccc2[nH]1,AP,1,1,1,1,0.6608478832484261,0,1,46.639680533188425,, +N#Cc1ccc2cn[nH]c2c1,AP,1,1,1,1,0.6061234099403053,1,1,45.37790577645946,570.0,1.0 +O=c1ccc2ccccc2[nH]1,AP,1,1,1,1,0.5986881320129136,1,1,36.81069293564177,462.0,1.0 +O=c1[nH]ccc2ccc3ccccc3c12,AP,1,0,1,1,0.5494642545068136,0,1,36.04693666395213,, +Nc1nc2c(s1)C(=O)NCCC2,AP,1,1,0,1,0.6114780498638354,1,0,-19.361706604846685,, +CSC1=NCC(=O)N1,AP,1,1,1,1,0.4945629263702222,0,0,-16.03928484530729,, +Brc1cnc2[nH]ncc2c1,AP,1,1,1,1,0.6995654942478055,1,1,25.703405907241716,164.0,1.0 +c1cnc2[nH]ncc2c1,AP,1,1,1,1,0.5607362152362961,1,1,28.64592051860852,2938.0,1.0 +NC(=O)Nc1cccs1,AP,1,1,1,1,0.6085545083181163,1,1,36.59269323057316,0.0,0.0 +O=c1[nH]nc2cc(CO)c3ccccc3n12,AP,1,1,0,1,0.626341715287401,0,1,42.27200224117352,, +O=Cc1cnc2[nH]ncc2c1,AP,1,0,1,1,0.6058571277711334,1,1,13.681850809606448,, +c1cc2c(cn1)[nH]c1ncncc12,AP,1,1,1,1,0.5559249024997563,0,1,18.36805422765584,, +Nc1cc2cccc(Cl)c2cn1,AP,1,1,1,1,0.6733093458150886,0,1,30.66103422259105,, +Cc1[nH]ncc1C(N)=O,AP,1,1,0,1,0.5459629720823942,1,1,26.49151812870542,, +Nc1c(Br)cnc2ccnn12,AP,1,1,1,1,0.7115952478146391,0,1,33.54649080002469,, +Cn1cc(-c2cnn3c(N)ccnc23)cn1,AP,1,1,0,1,0.6470852515532975,0,1,26.570599983033823,, +NC(=O)c1nncc2ccsc12,AP,1,1,0,1,0.7032000860979215,0,1,28.75432507859128,, +NC(=O)c1cncc2ccsc12,AP,1,1,1,1,0.7170662313566754,0,1,34.53319349613291,, +c1cscn1,AP,1,1,1,0,0.4600956630432944,1,1,10.529788929865203,, +COc1cc2c(cc1OC)-c1n[nH]cc1C2,AP,1,1,1,1,0.7122853907559993,0,1,14.601459844456564,, +c1ccc2c(c1)Cc1c[nH]nc1-2,AP,1,1,1,1,0.5293697062637044,1,1,6.450797136233181,0.0,0.0 +COc1cc2c(cc1OC)C1=NN=C(c3ccccc3)C1=C2,AP,1,1,0,1,0.8700849431476747,0,0,-0.3759534881320459,, +COc1cc2c(cc1OC)-c1[nH]nc(-c3ccccc3)c1C2,AP,1,1,0,1,0.6265264551361466,0,1,37.53859778781083,, +COc1ccc2c(c1)-c1n[nH]cc1C2,AP,1,1,1,1,0.6307168631573826,0,1,7.412765306066133,, +O=C1Nc2ccccc2Nc2ccccc21,AP,1,1,1,1,0.7013882665837136,0,1,1.052708969003263,, +O=C1Nc2ccccc2Nc2cc(Cl)ccc21,AP,1,1,0,1,0.7427674122224182,0,1,9.083106604892436,, +Oc1ccc2c(c1)Cc1c-2n[nH]c1-c1ccccc1,AP,1,1,0,1,0.5423890400040464,0,1,24.698803650982537,, +OCc1ccc2c(c1)-c1n[nH]c(-c3ccccc3)c1C2,AP,1,1,0,1,0.5827732443998141,0,1,27.88445147491904,, +COc1ccc2c3[nH][nH]cc-3cc2c1,AP,1,1,1,1,0.6021966039912172,0,1,21.4367575530734,, +COc1ccc2c(c1)-c1[nH]ncc1C2,AP,1,1,1,1,0.6307168631573826,0,1,14.33015144730047,, +CCc1ccc2c(c1)-c1n[nH]cc1C2,AP,1,1,1,1,0.6182362513943631,0,1,2.635176571658949,, +COc1ccc2c(c1)C(=O)N(c1nc(C=O)cs1)C2,AP,1,0,0,1,0.8043865747057712,0,1,1.0257157854101302,, +c1ccc2c(c1)cnn2-c1nccs1,AP,1,1,1,1,0.6052285251991171,0,1,47.716145351947546,, +NC(=O)c1nccc2nccn12,AP,1,1,0,1,0.63211680429936,0,1,32.32732120636924,, +c1cnccn1,AP,1,1,1,0,0.4525571430979931,1,1,15.880211554733458,, +Nc1cnccn1,AP,1,1,1,1,0.4953127132437441,1,1,22.138942562870167,1644.0,1.0 +c1cnc2[nH]c3cnccc3c2c1,AP,1,1,1,1,0.5595948629322984,1,1,32.49533985303093,0.0,0.0 +N#Cc1cc2c(cn1)[nH]c1ncccc12,AP,1,1,0,1,0.5946577079973375,0,1,34.70769822603166,, +Nc1ccc(=O)[nH]c1,AP,1,1,1,0,0.4918387733795584,1,1,18.010891071800934,, +Nc1ccnc(N)c1,AP,1,1,0,1,0.5014053270919594,1,1,20.73928543605726,, +CN1C(=O)c2ccccc2N(C)c2nc(N)ncc21,AP,1,1,0,1,0.7700737617684715,0,1,19.200903443749368,, +O=CNc1cccnc1,AP,1,0,1,1,0.58496959071241,1,1,19.73381573087477,, +CCNc1nc(N)ncc1C(F)(F)F,AP,1,1,0,1,0.7693314489998826,0,1,28.43016759202585,, +CNc1nc(N)nc2[nH]cc(Cl)c12,AP,1,1,0,1,0.6427047099024532,0,1,20.76566867512708,, +c1ccc2c(-c3ccncn3)n[nH]c2c1,AP,1,1,1,1,0.6473789295391943,0,1,42.2476674232692,, +Nc1ccccn1,AP,1,1,1,1,0.5126510027980979,1,1,26.87342481057936,3140.0,1.0 +N#Cc1c[nH]c2ncccc12,AP,1,1,1,1,0.6061234099403053,0,1,33.995461915121155,, +N#Cc1c[nH]c2nc(N)ccc12,AP,1,1,0,1,0.600255192922872,0,1,28.68159599368949,, +NC(=O)c1cccc2cc[nH]c12,AP,1,1,1,1,0.6479341807935022,1,1,51.15684287990974,64.0,1.0 +C/N=c1/cc[nH]c(N)n1,AP,1,1,0,0,0.4903053995287114,0,1,3.095290076159468,, +Cn1cc(C#N)c2c(N)ncnc21,AP,1,1,0,1,0.6256725355800272,0,1,22.457999404545266,, +Cn1cc(C#N)c2c(N)nc(/N=C3\C=N[N+](C)=C3)nc21,AP,1,0,0,1,0.7445554786896063,0,1,5.098512918543732,, +Cn1cc(C#N)c2c(N)nc(N)nc21,AP,1,1,0,1,0.6049176847460646,0,1,23.52816716939624,, +Cc1[nH]ncc1/N=c1/nc(N)c2c(C#N)cn(C)c2[nH]1,AP,1,1,0,1,0.5978077885620492,0,1,19.6110724102696,, +NC(=O)c1ccccn1,AP,1,1,1,1,0.5772627921564857,1,1,39.38347460695913,1070.0,1.0 +Nc1ncc2ccccc2n1,AP,1,1,1,1,0.6058167298330609,1,1,34.23101428298383,1246.0,1.0 +Nc1ncc2cc(Cl)ccc2n1,AP,1,1,1,1,0.6718606972163413,0,1,36.32732814591708,, +c1ccc2c(c1)cnn2-c1ccncn1,AP,1,1,1,1,0.5958421165357398,0,1,46.70278192446753,, +Nc1cc2ccc(Cl)cc2cn1,AP,1,1,1,1,0.6733093458150887,0,1,28.909265189314382,, +O=Cc1cc2cccc([N+2](#[O+])[O-])c2[nH]1,AP,1,0,0,0,0.4250312197473915,0,1,14.222556567392656,, +NC(=O)c1ccc(-c2cccnc2N)cc1,AP,1,1,0,1,0.7911952636424726,0,1,46.19153316776804,, +Nc1ncccc1-c1ccccc1,AP,1,1,1,1,0.7129493456429365,1,1,32.97743676913516,10.0,1.0 +Nc1ncccc1C=O,AP,1,0,1,1,0.5508463004919965,1,1,20.179272773855683,, +Oc1ccc(F)cc1,AP,1,1,1,1,0.5392148187981868,1,1,24.33664661155088,1790.0,1.0 +O=Cc1c[nH]c2ccccc12,AP,1,0,1,1,0.6112724738328874,1,1,43.12823576511014,, +O=Cc1cc2cccc([N+](=O)[O-])c2[nH]1,AP,1,0,0,0,0.4459135601196896,1,1,26.78839134619989,, +NC(=O)c1ccc2nc[nH]c2c1,AP,1,1,0,1,0.6444934248268473,1,1,51.32623773943941,, +c1ccc2nccnc2c1,AP,1,1,1,1,0.5412819114011972,1,1,35.5440912804079,2046.0,1.0 +Cc1ccc(N)nc1,AP,1,1,1,1,0.5375123323676086,1,1,29.816822798196625,542.0,1.0 +COc1ccc(CO)nc1,AP,1,1,1,1,0.6513699750723928,1,1,32.11909153793291,450.0,1.0 +C[NH2+]Cc1ccccn1,AP,1,1,1,1,0.5782968434319768,0,1,49.9579904459498,, +c1cnc2c(c1)OCC[NH2+]C2,AP,1,1,1,1,0.5445226972738879,0,1,2.715497287526564,, +OCc1ccccn1,AP,1,1,1,1,0.571659552744487,1,1,34.87830536017265,728.0,1.0 +c1ccc([C@H]2COCC[NH2+]2)nc1,AP,1,1,1,1,0.6211087330514302,0,1,6.978937432764678,, +O=CNc1nc2ccccc2[nH]1,AP,1,0,1,1,0.6484659759237619,1,1,29.940419869403552,, +Nc1cnc2c(N)nc(N)nc2n1,AP,1,1,0,0,0.4781488392364725,0,1,27.05614653574536,, +O=CNc1ccccn1,AP,1,0,1,1,0.58496959071241,1,1,22.587925180664197,, +Cc1ccc2nc(N)sc2c1,AP,1,1,1,1,0.6478348406982907,1,1,58.80262509378439,186.0,1.0 +CN1Cc2ncccc2C1=O,AP,1,1,1,1,0.5413492918348808,1,0,-0.734151250877018,, +Nc1nc2ccc(Cl)cc2c2ncnn12,AP,1,1,0,1,0.6223930363713425,0,1,35.555373643433484,, +CCn1cnc2c(N)nc(NC)nc21,AP,1,1,0,1,0.7224098720522533,1,1,37.45122204554523,, +N#Cc1ccc2nc(N)[nH]c2c1,AP,1,1,0,1,0.600255192922872,1,1,20.886019086610503,, +COc1cncnc1,AP,1,1,1,1,0.5271940515548245,1,1,26.64740103217025,1128.0,1.0 +c1ccc2c(c1)cnn2-c1cnccn1,AP,1,1,1,1,0.5958421165357399,0,1,47.60659306758871,, +Nc1nncs1,AP,1,1,1,1,0.5046578314706381,1,1,13.562704486620008,40.0,1.0 +c1cc2cc3ccc4occc4c3cc2o1,AP,1,1,0,0,0.4295342326548033,0,1,10.950659291515814,, +c1cc2c(ccc3ccc4occc4c32)o1,AP,1,1,0,0,0.4295342326548034,0,1,16.855196024869006,, +Nc1nc2ccccc2c2cnccc12,AP,1,0,1,1,0.5600791057238473,0,1,35.36475607439318,, +Nc1nc2ccccc2c2cncnc12,AP,1,0,0,1,0.5562378776450454,0,1,28.964714140456994,, +Nc1nc2ccccc2c2cnc(NC3CC3)nc12,AP,1,0,0,1,0.6834802915130921,0,1,52.80373072989829,, +O=C1COc2ccccc21,AP,1,1,1,1,0.5335807824192865,1,1,6.471326311878569,2.0,1.0 +COc1ccnc(N)n1,AP,1,1,0,1,0.5764414850620967,1,1,34.22222550393414,, +Brc1c(Br)c(Br)c2[nH]cnc2c1Br,AP,1,0,0,0,0.4768219675446296,0,1,14.872492554360226,, +C(=N/N=C1c2ccccc2-c2ccccc21)\c1ccccc1,AP,1,0,0,0,0.3807930047094249,0,1,50.1553002654808,, +O=c1c(O)coc2c(Br)cc(Br)cc12,AP,1,1,0,1,0.8117280597296577,0,1,31.27810728020629,, +O=CNc1nccs1,AP,1,0,1,1,0.5958642065098606,1,1,12.76167041115216,, +Brc1c(Br)c(Br)c2n[nH]nc2c1Br,AP,1,0,0,1,0.5027847231791066,0,1,6.647969386256651,, +Cc1ccc(O)cc1,AP,1,1,1,1,0.5359354364287862,1,1,25.918361055933115,1344.0,1.0 +Nc1ccccc1,AP,1,0,1,0,0.4800754634455598,1,1,23.741301320833813,, +c1ccccc1,AP,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +O=C([O-])CCS,AP,1,0,1,0,0.460124511692713,1,1,7.573041994040148,, +Cc1ccccc1,AP,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +Sc1ncnc2sccc12,AP,1,0,1,0,0.4805320005847253,1,1,15.581559565798957,, +O=c1c(O)coc2c(Cl)cc(Cl)cc12,AP,1,1,1,1,0.7577462748353843,0,1,30.1391374693694,, +COc1ccccc1O,AP,1,1,1,1,0.6127725486570803,1,1,32.61513906686136,1260.0,1.0 +N/C=C1\C(=O)CCc2c1oc1c(Cl)c(Cl)c(O)cc21,AP,1,0,0,1,0.7318457367455939,0,0,-25.98532709409548,, +CCO,AP,1,1,1,0,0.4068079656553945,1,1,9.89095474709779,, +CC(C)=O,AP,1,1,1,0,0.3982369618339747,1,1,13.561592886364918,, +COc1cc(C)ccc1O,AP,1,1,1,1,0.6397107129957217,1,1,38.82700210531711,2.0,1.0 +CC=O,AP,1,0,1,0,0.355007613393232,1,1,1.755472309128927,, +C=Cc1cc(O)cc2ncoc12,AP,1,1,1,1,0.6967209336613024,0,0,-8.685949818575564,, +N#CCC(N)=O,AP,1,1,0,0,0.4599508369202799,0,1,13.900042138556184,, +N#CCC(=O)Nc1nncs1,AP,1,1,0,1,0.6923552308359808,0,1,45.62399889787298,, +c1cc2cc(c1)-c1cnn3ccc(nc13)NCCOCCO2,AP,1,1,0,1,0.6890177786407715,0,0,-90.20186047949096,, +Nc1ccn2ncc(-c3cccc(O)c3)c2n1,AP,1,1,0,1,0.66152377299463,0,1,21.204581600264326,, +c1ccc2ncccc2c1,AP,1,1,1,1,0.5311915584041305,1,1,50.88665479563308,1218.0,1.0 +NC(=O)c1ncnc2[nH]c(=O)[nH]c12,AP,1,1,0,1,0.5061530134943006,0,1,15.197158386048466,, +C=C1CCc2ccccc2C1,AP,1,0,1,0,0.4910204999387574,0,0,-7.1102304594974814,, +Cc1ccc2ncsc2c1,AP,1,1,1,1,0.5607361162562637,1,1,49.90386861216975,18.0,1.0 +O=[SH](=O)c1ccc2ncsc2c1,AP,1,0,1,1,0.7033918713500616,0,0,-4.107385381033634,, +c1ccn(-c2cnccn2)c1,AP,1,1,1,1,0.6045482615564558,0,1,39.82629825629972,, +N#CCc1[nH]nc(N)c1C#N,AP,1,1,0,1,0.5798073987268126,0,1,21.42778324505849,, +c1ccc2ocnc2c1,AP,1,1,1,1,0.5283477685064296,1,1,21.28442097043861,968.0,1.0 +O=C1N=Cc2ccc3cc[nH]c3c21,AP,1,1,1,1,0.6426396539634639,0,0,-10.81802886160715,, +O=C1N=Cc2ccc3cc(Br)[nH]c3c21,AP,1,1,1,1,0.7654536352954006,0,0,-21.829569164359334,, +O=CNc1c[n+]2ccccc2[nH]1,AP,1,0,1,0,0.4846475532998657,0,1,12.412615144017296,, +c1ccc(-c2coc3cccnc23)cc1,AP,1,1,0,1,0.5936046836183696,0,1,40.5600045503122,, +c1cnc2c(-c3cn[nH]c3)coc2c1,AP,1,1,1,1,0.6319479937428737,0,1,31.563836883560963,, +c1cnc2ccoc2c1,AP,1,1,1,1,0.5283477685064296,1,1,34.64601275809648,820.0,1.0 +Nc1c2ccncc2cc2cncnc12,AP,1,0,0,0,0.4392206199982847,0,1,18.42859000443225,, +Cn1ccc2ccc(Cl)c(Cl)c21,AP,1,1,0,1,0.6129164346510715,0,1,26.766836268967356,, +Cn1ccc2ccccc21,AP,1,1,1,1,0.5160980556298523,1,1,46.284316308267535,372.0,1.0 +O=CNc1cn2ccccc2n1,AP,1,0,1,1,0.665021032105557,1,1,29.183561009943897,, +c1cnn2ccnc2c1,AP,1,1,1,1,0.511375604737478,1,1,40.334406154000206,986.0,1.0 +[H]/N=C(\OC)c1nc2ccc3ncncc3c2s1,AP,1,0,0,1,0.5259149806335668,0,1,19.59950606618548,, +Fc1cccc(Nc2ncccn2)c1,AP,1,1,1,1,0.7875352418078897,0,1,73.05463394691347,, +c1ccc2[nH]ccc2c1,AP,1,1,1,1,0.5439155908694729,1,1,40.29012989269332,1198.0,1.0 +Clc1ccc2cc[nH]c2c1Cl,AP,1,1,0,1,0.6476870610154922,0,1,37.97002756316357,, +CNc1nc(NC)c2cc[nH]c2n1,AP,1,1,0,1,0.6409223605685803,0,1,40.04995612838665,, +Cc1[nH]nc2ccccc12,AP,1,1,1,1,0.5820392325335272,1,1,42.180746716249125,388.0,1.0 +c1cc2c(cn1)ncc1nc[nH]c12,AP,1,1,1,1,0.5559249024997563,0,1,23.13107277453493,, +CNc1ncnc2[nH]cnc12,AP,1,1,0,1,0.6152962731383175,1,1,37.14352418386886,, +Nc1nc2ccccc2[nH]1,AP,1,1,1,1,0.5658999712435825,1,1,30.70966403790523,360.0,1.0 +CC1=CN[C@H](NC=O)S1,AP,1,0,1,1,0.5444029714948805,0,0,-31.28302849689976,, +CC(=O)Nc1ccc(Cl)cn1,AP,1,1,1,1,0.697177253310889,0,1,50.72876487794824,, +Nc1ccc(Br)cn1,AP,1,1,1,1,0.6438224852215956,0,1,35.90617593198391,, +COc1cc2nc[nH]c(=O)c2cc1OC,AP,1,1,0,1,0.7937534543826459,0,1,58.52403062501766,, +CC(=O)Nc1ncc(C)s1,AP,1,1,1,1,0.6675729203055831,0,1,45.49048656659096,, +CC(C)c1cc(Nc2ncncc2C(N)=O)ccn1,AP,1,1,0,1,0.8711147126178082,0,1,63.449482692718,, +CC(C)(C#N)c1cccc(Nc2ncncc2C(N)=O)c1,AP,1,1,0,1,0.8926519319015169,0,1,79.52318993504383,, +NC(=O)c1cncnc1Nc1cccc(C(F)(F)F)c1,AP,1,1,0,1,0.904968568051254,0,1,97.98911015632147,, +Cc1[nH]c(C)c(C(N)=O)c1C,AP,1,1,1,1,0.6202003064292458,1,1,29.048112425912706,0.0,0.0 +O=C1Nc2ccccc2/C1=C1/Nc2ccccc2/C1=N\O,AP,1,0,0,0,0.3935462415947194,0,1,2.924269680022339,, +COC(N)=O,AP,1,1,1,0,0.4298618209855597,1,1,12.424093728974654,, +CNc1cc(Nc2cc[nH]n2)ncn1,AP,1,1,0,1,0.6721361873504119,0,1,46.0140563066935,, +c1ccc2c(Nc3cc[nH]n3)ncnc2c1,AP,1,1,0,1,0.6807693492387814,0,1,76.00911563474507,, +O=C1Cc2cc([SH](=O)=O)ccc2N1,AP,1,0,0,1,0.629867607422446,1,0,-29.36148928845496,, +c1ccc(-c2cnn3cccnc23)nc1,AP,1,1,1,1,0.5955662090680088,0,1,38.25849766556644,, +c1ccc(-c2cnc3cccnn23)cc1,AP,1,1,1,1,0.5964591305372113,0,1,44.709655200731625,, +O=c1c2cccc3cccc(c32)c2nc3ccccc3n12,AP,1,1,0,0,0.430721686152204,0,1,21.43428337249228,, +c1cnc2occc2c1,AP,1,1,1,1,0.5283477685064296,1,1,24.292849614592427,1348.0,1.0 +COc1ccc2cccnc2c1,AP,1,1,1,1,0.6362244803453474,1,1,63.72153642279395,676.0,1.0 +NC(=O)c1ccc(Nc2nsnc(N)c2=O)cc1,AP,1,1,0,1,0.7322805757208465,0,1,58.17560110356984,, +Nc1ccc(O)c2c1C(=O)c1ccccc1C2=O,AP,0,0,0,0,0.4623230565269531,0,1,25.262731182768118,, +N/C=C\C=O,AP,1,0,1,0,0.3391518104041194,0,0,-26.748981655411896,, +O=C1c2ccccc2S(=O)(=O)c2ccccc21,AP,1,1,1,1,0.6079192709799832,0,1,25.236378141784453,, +Cc1cc(C)c(C)[nH]1,AP,1,1,1,1,0.5237077195676505,1,1,25.299896245674983,2.0,1.0 +CC[C@H]1Nc2nc(N)ncc2N(C)C1=O,AP,1,1,0,1,0.6880711012244716,0,0,-6.770268428928442,, +Cc1ccc2[nH]c3cc(C)c4c(c3c2c1)C(=O)NC4=O,AP,1,0,0,1,0.6132050605900524,0,1,13.396051799454495,, +O=S(=O)([O-])c1cccc2ccccc12,AP,1,0,1,1,0.6691114616025358,0,1,61.87617411155978,, +O=c1c(O)coc2cc(O)cc(O)c12,AP,1,1,0,1,0.5793678982921999,0,1,26.761739788953893,, +O=c1ccoc2cc(O)ccc12,AP,1,1,1,1,0.6381292477972546,1,1,30.35022616058582,32.0,1.0 +Cc1cc(O)cc(O)c1,AP,1,1,1,1,0.5485235528461613,1,1,13.927474787690832,2.0,1.0 +O=c1[nH]ccc2c3[nH]cnc3c3ccc(F)cc3c12,AP,1,0,0,0,0.473183370366688,0,1,21.436736576116083,, +Clc1ccccc1,AP,1,1,1,0,0.4833833263681997,1,1,28.62182911813474,, +CCN1C(=O)c2ccccc2N(C)c2nc(N)ncc21,AP,1,1,0,1,0.8540786996954136,0,1,23.68066864090051,, +CN1c2ccccc2C(=O)N(CC(F)(F)F)c2cnc(N)nc21,AP,1,1,0,1,0.871709983534234,0,1,25.770205033853298,, +N#Cc1ccnc(N)c1,AP,1,1,0,1,0.5415838765407543,1,1,27.34676309591308,, +Nc1nccnc1OC(F)F,AP,1,1,0,1,0.6916062217031348,0,1,23.377858413503485,, +Sc1ncnc2ccsc12,AP,1,0,1,0,0.4805320005847252,0,1,16.274154427006174,, +Nc1cc(=O)[nH]c2cccc(F)c12,AP,1,1,1,1,0.6373596174912801,0,1,19.16501189434229,, +O=CNc1cc(C=O)ccc1Cl,AP,1,0,1,1,0.7257372882597749,1,1,15.19386683621764,, +COc1ncc2cc(C(N)=O)c(=O)[nH]c2n1,AP,1,1,0,1,0.7032282448541967,0,1,26.38619698118735,, +Clc1cccc2c1[nH]c1c3ccccc3ncc21,AP,1,1,0,0,0.4896219146285638,0,1,32.57676646403178,, +Brc1cccc2c1[nH]c1c3cc(I)ccc3ncc21,AP,1,0,0,0,0.3856660231018692,0,1,50.92856435293646,, +COc1ccc2c(c1)[nH]c1c(Cl)nccc12,AP,1,0,0,1,0.6534721381343886,0,1,38.22625373929409,, +Oc1ccc2scnc2c1,AP,1,1,1,1,0.6243115793086027,1,1,21.748967642470586,132.0,1.0 +COc1ccc2scnc2c1,AP,1,1,1,1,0.6464980790240891,1,1,47.07998808560331,486.0,1.0 +Nc1nc2cc(F)ccc2s1,AP,1,1,1,1,0.6531640436517764,1,1,45.5264796575088,236.0,1.0 +O=CNc1nc2cccnc2s1,AP,1,0,1,1,0.7059025568168851,1,1,23.53090989256881,, +CN1C(=O)[C@H]2CCC[C@H]2Nc2nc(N)ncc21,AP,1,1,0,1,0.6857530601978195,0,0,-25.69133705237512,, +O=c1ccc2cnc3ccccc3c2[nH]1,AP,1,0,1,1,0.5593129802818303,0,1,31.70363083605886,, +Nc1csc(Nc2ccccc2)n1,AP,1,1,1,1,0.7662685188653234,0,1,56.03606777858777,, +O=c1[nH]cnc2ccc3ncsc3c12,AP,1,1,1,1,0.6024329337443298,0,1,23.866303272779803,, +CN(c1ncccn1)C1CC1,AP,1,1,1,1,0.629590507407924,0,1,35.705863062376935,, +CN(C)c1ncccn1,AP,1,1,1,1,0.5455045236550637,1,1,29.57767030306427,494.0,1.0 +CNc1ncccn1,AP,1,1,1,1,0.5708700999474509,1,1,27.03854504190275,300.0,1.0 +CN(c1ccccc1)c1ncccn1,AP,1,1,1,1,0.7181076700707854,0,1,48.09267435742567,, +F[C@H]1CCN(c2ncccn2)C1,AP,1,1,1,1,0.625049462936144,0,1,6.964333180974927,, +COc1ccc2c(c1)[nH]c1c(C)nccc12,AP,1,1,0,1,0.6728642510267778,0,1,35.07709031761842,, +COc1ccccc1,AP,1,1,1,1,0.5316253154127668,1,1,34.591252979338954,1004.0,1.0 +O=c1[nH]cnc2n[nH]cc12,AP,1,1,0,1,0.5192368565638923,1,1,25.671864248063773,, +Cc1ccc(C)o1,AP,1,1,1,0,0.4804036489034677,1,1,19.15794201152692,, +Cn1cccn1,AP,1,1,1,0,0.4432156698587248,1,1,18.643863083632382,, +Cc1nc(N)c2c(C#N)c[nH]c2n1,AP,1,1,0,1,0.6135758655224071,0,1,16.742003455230723,, +Cc1nc(O)c2cc[nH]c2n1,AP,1,1,0,1,0.5863158722467245,0,1,29.60465550298512,, +Cc1nc(N)c2cc[nH]c2n1,AP,1,1,0,1,0.5815390959335606,0,1,34.87398683983793,, +COc1ccccc1Cl,AP,1,1,1,1,0.5850627747795067,1,1,43.98448272681154,1600.0,1.0 +c1ccc2occc2c1,AP,1,1,1,1,0.5174240042877334,1,1,35.92915737954941,1352.0,1.0 +Cn1cnc2ccccc21,AP,1,1,1,1,0.5317046613722227,1,1,43.9220760764835,942.0,1.0 +Cc1cc2ccccc2o1,AP,1,1,1,1,0.5367972534391235,0,1,42.079822594736605,, +CCCCc1nc2cccnc2[nH]1,AP,1,1,1,1,0.777236017845127,0,1,56.872507045783934,, +CCn1c(C)nc2cccnc21,AP,1,1,1,1,0.6376619794416536,0,1,49.47856416678988,, +CCCn1c(C)nc2cccnc21,AP,1,1,1,1,0.6997861715217847,0,1,53.39294662181189,, +Cc1oc2ccccc2c1C,AP,1,1,0,1,0.5563746217654227,0,1,41.27862213488035,, +CCOc1cc(C)ccc1O,AP,1,1,1,1,0.7027648431430075,0,1,46.7005905718541,, +C#Cc1cc(C)ccc1OC,AP,1,0,1,1,0.5503666784901516,0,1,33.45837820710592,, +O=C1Nc2c(Br)cccc2/C1=C1/Nc2ccccc2/C1=N\O,AP,1,0,0,0,0.3847762393953657,0,1,1.912606634232301,, +COc1cc(/C=C\C(O)=C\C(C)=O)ccc1O,AP,1,0,0,0,0.4767748429001888,0,1,42.23118870271495,, +CC(=O)c1cc(O)ccc1O,AP,1,0,1,0,0.4706994269669802,1,1,37.0114497433582,, +COc1cc(/C=C/C(=O)CC(C)=O)ccc1O,AP,1,0,0,1,0.6245016157875595,0,1,67.67031904593044,, +COc1ccc2nc3ccc(OC)cc3cc2c1,AP,1,0,0,1,0.6421045825477028,0,1,45.59163185604294,, +CO[C@@H]1C[C@H](CO)[C@@H]2[NH2+][C@@H]3CC[C@@H](OC)C[C@@H]3C[C@H]2C1,AP,1,1,1,1,0.7951689191323338,0,0,-29.942723241497657,, +COc1ccc2nc3sc(SC)nc3cc2c1,AP,1,1,0,1,0.6612440301206003,0,1,52.97100980719215,, +COC1=Cc2cc3cc(OC)ccc3nc2CC1,AP,1,1,0,1,0.8088358828521482,0,1,8.073388416294833,, +COc1ccc2nc3c(CO)cc(OC)cc3cc2c1,AP,1,0,0,1,0.742741572636863,0,1,48.915520228864494,, +Nc1ncnc2ccc(O)cc12,AP,1,1,0,1,0.6021584656082188,1,1,22.57435911948781,, +COc1cc2ncnc(N)c2cc1O,AP,1,1,0,1,0.7001948102877024,1,1,24.28013783672435,, +Nc1ncnc(N)c1/C=N/N1CCCCC1,AP,1,0,0,1,0.7061315859333452,0,1,27.296101541827376,, +COCCO/N=C/c1c(N)ncnc1N,AP,1,0,0,0,0.3907616102788847,0,1,26.72698638740936,, +Nc1nccc(-c2cnc3sccn23)n1,AP,1,1,0,1,0.6691744228261979,0,1,36.80065921382246,, +Nc1ncnc2cc[nH]c12,AP,1,1,0,1,0.5521636672820287,1,1,19.19727733426521,, +COc1ccc2c(N)ncnc2c1,AP,1,1,0,1,0.7074490127268824,1,1,44.78203087954279,, +Nc1ncnc2c1C=C(C=O)CCN2,AP,1,0,0,1,0.6284775193769454,0,0,-36.18973554441223,, +COc1cc2ncnc(N)c2cc1N,AP,1,0,0,1,0.6493385179694189,1,1,25.320531064454304,, +c1cc(Nc2cc3[nH]ccc3cn2)ncn1,AP,1,1,0,1,0.6807693492387814,0,1,54.46436694029578,, +Nc1cc2nc[nH]c2cn1,AP,1,1,0,1,0.5521636672820287,0,1,22.433077965845204,, +c1cc(Nc2cc3[nH]cnc3cn2)ncn1,AP,1,1,0,1,0.6723553652119783,0,1,44.65322257350211,, +Cc1nc2cnc(Nc3ccncn3)cc2[nH]1,AP,1,1,0,1,0.6961021209218318,0,1,48.48331695627207,, +NC(=O)c1c(N)cc[nH]c1=O,AP,1,1,0,0,0.4845728189093404,0,1,18.56935581628716,, +NC(=O)c1ccc[nH]c1=O,AP,1,1,0,1,0.5471119678163343,1,1,35.379829508274355,, +c1cc(Nc2cc3[nH]ncc3cn2)ncn1,AP,1,1,0,1,0.6723553652119783,0,1,49.1096920610702,, +Nc1ccn2ncc(C=O)c2n1,AP,1,0,0,1,0.6043872097264326,1,1,12.863395460050976,, +Nc1ncc2nc(N)[nH]c2n1,AP,1,1,0,0,0.4697309637708927,0,1,16.204655343194702,, +Nc1nc2cncnc2[nH]1,AP,1,1,0,1,0.5296759293780585,1,1,15.123903767047503,, +Nc1ncc(Cl)c(O)n1,AP,1,1,0,1,0.5550594151831963,1,1,12.732659116951607,, +Nc1ncc2c(n1)N(C1CCCCC1)C(=O)NC2,AP,1,1,0,1,0.7856984290318001,0,0,-1.4041934664332891,, +Oc1ncnc2[nH]ccc12,AP,1,1,0,1,0.5574861322491763,0,1,22.22890494562535,, +NC(=O)c1cccc(F)c1,AP,1,1,1,1,0.6173491474809841,1,1,45.75262162514513,2030.0,1.0 +NC(=O)c1ccncc1,AP,1,1,1,1,0.5772627921564858,1,1,36.49703473834492,1346.0,1.0 +CSC1=NCC(c2ccnc(N)c2)=N1,AP,1,1,0,1,0.7501923959162369,0,0,-0.7769111600116136,, +CSc1ncc(-c2ccnc(N)c2)[nH]1,AP,1,1,0,1,0.7348031831844518,0,1,34.92152263297303,, +Nc1ncc(Cl)cn1,AP,1,1,1,1,0.561506980733552,1,1,23.34508788967802,832.0,1.0 +Nc1ncc(C=O)cn1,AP,1,0,0,1,0.5279733244447306,1,1,17.794347902251907,, +CNc1nncc2cc(Nc3ccncn3)ncc12,AP,1,1,0,1,0.7323845284377496,0,1,41.23696933468166,, +c1cc(Nc2cc3ccncc3cn2)ncn1,AP,1,1,0,1,0.7208399645825964,0,1,53.17216561797806,, +Oc1cccnc1,AP,1,1,1,1,0.5163288713332986,1,1,23.733310810490952,1198.0,1.0 +Nc1nc2cccnc2[nH]1,AP,1,1,0,1,0.5521636672820287,0,1,28.87547372301497,, +COc1ccc2ncc(C#N)c(N)c2c1,AP,1,1,0,1,0.7581835954611301,1,1,50.20048430912376,, +Cn1c(=O)[nH]c(=O)c2c1nc1[nH]ccn12,AP,1,1,0,1,0.5033927489403338,0,1,31.3106263830194,, +O=C[C@H]1CN/C(=N/c2ccccc2)S1,AP,1,0,1,1,0.7468395492659137,0,0,-0.5118690196602464,, +Cn1ncc2c(N)ncnc21,AP,1,1,0,1,0.5695517474821745,1,1,29.792433095095458,, +CNc1ncc2ccc(=O)[nH]c2n1,AP,1,1,0,1,0.6577193346681939,1,1,20.926972744662468,, +O=Cc1cnc2ccccn12,AP,1,0,1,1,0.5653223064823123,0,1,28.885109265780876,, +Nc1ncnc2[nH]c(=O)c3c(c12)CCCC3,AP,1,1,0,1,0.6810899035113528,0,1,28.8685825971907,, +Cc1cc(C(N)=O)c(N)s1,AP,1,1,0,1,0.6291720029803116,1,1,22.76863237996861,, +COc1ccc2ncnc(N)c2c1,AP,1,1,0,1,0.7074490127268824,1,1,45.559764421979935,, +Nc1ccc2c(c1)CC(=O)N2,AP,1,0,1,1,0.5335842441606689,1,1,13.954728473745426,, +CCn1ccc2ncnc(N)c21,AP,1,1,1,1,0.6810125915320953,0,1,25.40849840451585,, +C=C1C=c2c(N)ncnc2=CC1,AP,1,1,1,1,0.5590480809457845,0,0,-46.487045221684745,, +Nc1ccc2n[nH]c(-c3ccncc3)c2c1,AP,1,0,0,1,0.6049001299997127,0,1,37.3903706575528,, +Nc1n[nH]c2nnccc12,AP,1,1,0,1,0.5296759293780585,0,1,18.084859487787902,, +C=CCn1nc(N)c2ccnnc21,AP,1,0,0,1,0.6781586341578342,0,1,15.384248038904907,, +Cc1cnc(N)nc1,AP,1,1,1,1,0.5231996621282303,1,1,22.37665995608593,1238.0,1.0 +N#Cc1scc2c1CCc1cnc(N)nc1-2,AP,1,1,0,1,0.7450179371128558,0,1,14.410083172343937,, +Cc1cncnc1,AP,1,1,1,0,0.4745494696119243,1,1,22.59627110396408,, +Oc1cccc(Nc2ncccn2)c1,AP,1,1,0,1,0.7537107288350713,0,1,64.59564760962718,, +Nc1ncc2c(n1)CN(C=O)CC2,AP,1,0,0,1,0.5923197571926105,1,0,-2.2383313851711217,, +Nc1cc(N)c(Cl)cn1,AP,1,1,0,1,0.5672822027287052,0,1,18.45679741304584,, +c1cc(-c2[nH]nc3c2CNCC3)ccn1,AP,1,1,1,1,0.7248732054132083,1,1,12.58787999198017,0.0,0.0 +c1[nH]nc2c1CNCC2,AP,1,1,1,1,0.5116758320036295,1,0,-8.182370742549331,, +Nc1ccc(Cl)cn1,AP,1,1,1,1,0.572458049351884,1,1,30.231963439039387,1508.0,1.0 +c1ccc2c(-c3ccncc3)n[nH]c2c1,AP,1,1,1,1,0.6480917393206026,0,1,44.54354113689119,, +Nc1ccc2[nH]nc(-c3ccncc3)c2c1,AP,1,0,0,1,0.6049001299997127,0,1,41.73133335990286,, +Nc1cc2[nH]ncc2c(CO)n1,AP,1,1,0,1,0.5545676115178966,0,1,16.899129191496552,, +Nc1ncc2nn[nH]c2n1,AP,1,1,0,1,0.5005625646977179,0,1,12.066745888616683,, +CN1C(=O)c2ccccc2Nc2nc(N)ncc21,AP,1,1,0,1,0.7277656875827292,0,1,5.989096642756053,, +O=Cc1ccc(Nc2ncc(F)cn2)cc1,AP,1,0,0,1,0.8003174413609545,0,1,49.79265863607922,, +O=C(Nc1cccnc1)c1ccc[nH]1,AP,1,1,1,1,0.7507385428386607,0,1,75.69211328941715,, +COc1cc2cncnc2cc1OC,AP,1,1,0,1,0.7217670651996977,1,1,35.40652753629726,, +COc1ccc2cncnc2c1,AP,1,1,1,1,0.6356552607915211,1,1,44.390783036407726,220.0,1.0 +Cn1cc(NC(=O)c2ccc[nH]2)cn1,AP,1,1,0,1,0.7416258858042137,0,1,75.20251675274352,, +c1cc2scnc2[nH]1,AP,1,1,1,1,0.5676897672767987,0,1,25.140511016488965,, +N#Cc1cnc2[nH]ccc2c1,AP,1,1,1,1,0.6061234099403053,0,1,41.6653534202051,, +CN1c2ccccc2-c2[nH]ncc2S1(=O)=O,AP,1,1,0,1,0.7461199239006147,0,1,14.39179314927883,, +Brc1cccnc1,AP,1,1,1,1,0.5608312551209708,1,1,38.18745695204445,1998.0,1.0 +CNc1ccnc(N)n1,AP,1,1,0,1,0.5569791707820108,1,1,30.28729494101149,, +FC(F)F,AP,1,1,1,0,0.401096477329913,1,1,8.32880524914489,, +N#Cc1cnc(N)c(C(N)=O)c1,AP,1,1,0,1,0.5872558901802692,0,1,30.66570567180131,, +C[C@@H]1C(=O)Nc2ccccc21,AP,1,1,1,1,0.5946462096818689,1,0,-2.21282709525601,, +Nc1ncc2cccnc2n1,AP,1,1,0,1,0.5908907457799355,1,1,32.530644859479,, +Cc1c[nH]c2ncccc12,AP,1,1,1,1,0.5820392325335273,1,1,33.35521341302677,12.0,1.0 +O=C([O-])c1cccnc1,AP,1,1,1,1,0.5015757599713943,1,1,43.770548754428575,2.0,1.0 +CCc1cc(N)n[nH]1,AP,1,1,1,1,0.5557982749646423,1,1,19.34190796464228,0.0,0.0 +CCc1cc(N)[nH]n1,AP,1,1,1,1,0.5557982749646423,1,1,19.37702004910079,0.0,0.0 +CCc1cc(NC=O)[nH]n1,AP,1,0,1,1,0.6002898666351709,1,1,18.05046932044329,, +COc1ccc2nccc(O)c2c1,AP,1,1,1,1,0.7198219434590416,1,1,42.96877209703103,0.0,0.0 +O=CNc1[nH]nc2ccccc12,AP,1,0,1,1,0.6484659759237619,1,1,22.339279826730422,, +O=S(=O)(c1cnc2ccc(Cl)nn12)n1ncc2ncccc21,AP,1,1,0,1,0.5490755478976015,0,1,48.87506065383944,, +COc1cc2nccc(O)c2cc1C(N)=O,AP,1,1,0,1,0.7883542210903768,1,1,39.41402117756971,, +Nc1ncc2c(n1)N([C@H]1CCNC1)C(=O)NC2,AP,1,1,0,1,0.6056132874822588,0,0,-40.2470641522237,, +CNc1ncc2c(n1)N([C@H]1CCNC1)C(=O)NC2,AP,1,1,0,1,0.681149174392502,0,0,-36.9339068276043,, +CCCC/N=c1/ncc2c([nH]1)N(C)C(=O)NC2,AP,1,0,0,1,0.7593768349812197,0,0,-7.993886108297669,, +Nc1n[nH]c(=O)c2n[nH]cc12,AP,1,1,0,0,0.4597512677791772,0,1,11.887349505586988,, +COc1cc(C#Cc2n[nH]c3ncnc(N)c23)cc(OC)c1,AP,1,0,0,1,0.6923891210254025,0,1,46.49553555626481,, +CCN1C(=O)NCc2cnc3[nH]ccc3c21,AP,1,1,0,1,0.7603835246373752,0,1,11.74382471742642,, +CCc1cnc2ccn(S(=O)(=O)c3c[nH]cn3)c2n1,AP,1,1,0,1,0.7690326001009784,0,1,47.75865088218226,, +Cc1[nH]nc2c1N=C(c1ccccc1Cl)c1cnccc1N2,AP,1,1,0,1,0.558429318766389,0,1,1.8562467568852652,, +CCc1cnc(N)nc1,AP,1,1,1,1,0.5952125056158412,1,1,30.212722097897725,2.0,1.0 +Nc1nccnc1N,AP,1,1,0,0,0.4777611922776153,1,1,16.42429895790722,, +O=C1NC(=O)c2c1ccc1[nH]c3ccc(O)cc3c21,AP,1,0,0,1,0.5343473959923278,0,0,-7.565890927548185,, +c1cnc2csnc2c1,AP,1,1,1,1,0.5504287970242819,0,1,32.88671024449137,, +CC[C@@]1(c2ccccc2)C2=C(Nc3n[nH]cc31)[C@H](F)C(C)(C)C[C@H]2O,AP,1,1,0,1,0.7759029713901561,0,0,-41.562855604615535,, +NC1=C(c2cccc(Cl)c2)C(=O)NC1=O,AP,1,0,0,1,0.6862396126378715,0,1,4.771020773902572,, +O=CNc1ncc([N+2](#[O+])[O-])s1,AP,1,0,0,0,0.4119650268901516,0,1,5.1089230573118485,, +Oc1cccc2nc[nH]c12,AP,1,1,1,1,0.5695767699152823,1,1,16.105403622468426,20.0,1.0 +COc1ccc(-n2cnc3ccccc32)cc1,AP,1,1,0,1,0.6686284207347573,1,1,87.81546728394714,, +Cc1ccccc1O,AP,1,1,1,1,0.5359354364287862,1,1,27.222902325844824,1524.0,1.0 +O=C1Nc2ccc([SH](=O)=O)cc2/C1=C1/Nc2ccccc2/C1=N\O,AP,1,0,0,0,0.2728351591193497,0,0,-41.80336477248344,, +CNC(=O)c1cocn1,AP,1,1,1,1,0.5773258453372679,0,1,18.135598000160385,, +O=Cc1ccnc2[nH]cnc12,AP,1,0,1,1,0.6058571277711334,1,1,21.087956545601653,, +C[C@H]1Nc2cccnc2NC1=O,AP,1,1,1,1,0.5953531510538521,0,0,-19.06371980916553,, +NC(=O)C1=[S+]C(c2ccnc(NC=O)c2)=NC1=O,AP,0,0,0,0,0.3979004090627495,0,1,9.093287783904174,, +O=CNc1cc(C=O)ccn1,AP,1,0,1,1,0.6366276499290401,1,1,7.954748997852251,, +CCNc1ccc(C#N)cn1,AP,1,1,1,1,0.6871330418562508,1,1,52.71881888240145,0.0,0.0 +Cc1n[nH]c2nc3c(cc12)C(=O)CC(C)(C)C3,AP,1,1,1,1,0.7543298615484257,0,1,31.142929215363026,, +NC(=O)c1cocn1,AP,1,1,0,1,0.5452748318098027,1,1,15.556664564985915,, +CC1(C)CC(=O)C2=C(C1)Nc1n[nH]cc1[C@]2(C)c1ccccc1,AP,1,1,0,1,0.8425878500648177,0,0,-0.140217777950754,, +CC(=O)Nc1n[nH]c2ncccc12,AP,1,1,0,1,0.6781550776639943,1,1,53.388142403736495,, +Nc1ncc(-c2ccc([SH](=O)=O)cc2)nc1C=O,AP,1,0,0,1,0.6174183322308997,0,0,-32.100274192913204,, +NC(=O)c1ncc2ccccn12,AP,1,1,0,1,0.6589687864024762,0,1,33.69271084390922,, +CNc1ncnc2[nH]c3cc(Cl)ccc3c12,AP,1,1,1,1,0.678446714701933,0,1,36.703001948551375,, +C/N=c1\nc(/N=C2\C=C(C3CC3)N=N2)c2sccc2[nH]1,AP,1,0,0,1,0.9037207340150016,0,0,-3.861074631468193,, +Nc1ncc(-c2ccc(F)cc2)cn1,AP,1,1,1,1,0.744498422723569,0,1,46.338796848723845,, +c1ccc2c(c1)ncc1ccncc12,AP,1,0,1,1,0.4969799703454515,0,1,32.61141978032948,, +c1nc2ccc3ncc(N4CCOCC4)nc3c2o1,AP,1,1,0,1,0.6587209788365811,0,1,31.396643076439155,, +c1nc2ccc3ncc(N4CCSCC4)nc3c2o1,AP,1,1,0,1,0.677386610016249,0,1,29.1783063349584,, +O=Cc1ccnn2cc(-c3ccccc3)nc12,AP,1,0,1,1,0.6256066276451888,0,1,40.54734836234502,, +CNc1cnc2c(C=O)ccnn12,AP,1,0,0,1,0.6799105196320843,0,1,19.70700590170557,, +N#Cc1ccc(Nc2nccc(C=O)n2)cc1,AP,1,0,0,1,0.8053306827790055,0,1,65.09702591335773,, +O=c1c([O-])coc2cc([O-])cc([O-])c12,AP,1,1,0,1,0.5320142384071354,0,1,16.836183822678855,, +Nc1ncnc2cccnc12,AP,1,1,0,1,0.5908907457799355,1,1,37.05009499012904,, +O=c1cc(O)cc[nH]1,AP,1,1,1,1,0.497785431775921,1,1,18.494391127465303,108.0,1.0 +Nc1ncc(C=O)c2cccnc12,AP,1,0,0,1,0.6535582975287043,0,1,25.44149529213985,, +c1cocn1,AP,1,1,1,0,0.4472609802175263,1,1,13.048396986956336,, +Nc1ncnc2[nH]cc(Br)c12,AP,1,1,0,1,0.6924860302536607,0,1,27.505370399329404,, +Nc1cc2[nH]ncc2cn1,AP,1,1,0,1,0.5521636672820287,1,1,23.16228862195132,, +O=C1Cc2cc(F)ccc2N1,AP,1,1,1,1,0.5948673794448279,1,1,13.02723060098136,4.0,1.0 +c1ccc(-n2ncc3cnccc32)cc1,AP,1,1,1,1,0.5966485748564437,0,1,45.68148179739141,, +N#Cc1ccc2[nH]ncc2c1,AP,1,1,1,1,0.6061234099403053,0,1,47.89035387403036,, +NC(=O)c1cnc(N)nc1N,AP,1,1,0,0,0.4645502855386489,0,1,31.701385192524004,, +Cc1ccnc2c1C1(CC1)CN2,AP,1,1,1,1,0.6261241750202147,0,0,-16.453143549218694,, +O[C@@H]1CC[C@]2(CNc3nccc(Cl)c32)C1,AP,1,1,1,1,0.7081598729137599,0,0,-30.59861040420056,, +Clc1cc2cncnc2[nH]1,AP,1,1,1,1,0.6249517393225209,0,1,14.586252805549384,, +Nc1ccn2nccc2n1,AP,1,1,1,1,0.5638030951061849,1,1,26.303519944117816,198.0,1.0 +C1=C/Oc2cccc(c2)-c2cnn3ccc(nc23)NCCN/1,AP,1,1,0,1,0.6654632182691804,0,0,-98.49252687519989,, +c1cn2ncsc2n1,AP,1,1,1,1,0.5207561616173652,0,1,21.549105458625576,, +Nc1cc[nH]c(=O)c1,AP,1,1,1,0,0.4918387733795584,1,1,18.865297063897533,, +N/C=C1\C(=O)NC(=O)c2ccc(Br)cc21,AP,1,0,0,1,0.5441491850405628,0,0,-4.928005600448978,, +Clc1ccnc2[nH]ccc12,AP,1,1,1,1,0.6162749315196011,1,1,39.31945149793472,166.0,1.0 +NC1=NC=C(Cl)CN1,AP,1,1,1,0,0.4857907641761929,0,0,-25.874043250347803,, +NC(=O)c1cncnc1N,AP,1,1,0,1,0.528402736070022,1,1,27.590520560526983,, +Nc1nc(N)c2cc[nH]c2n1,AP,1,1,0,1,0.4956137015994505,1,1,31.788780163647324,, +O=C1N=Nc2nnccc21,AP,1,1,0,1,0.524376114717179,0,1,2.3167944721888665,, +C[C@@H]1Cc2nn(C)cc2-c2nc(N)ncc21,AP,1,1,0,1,0.7145406267365547,0,0,-13.258529326011,, +NC(=O)c1cccc([N+2](#[O+])[O-])c1,AP,1,0,0,1,0.5004898745803147,0,1,33.50480469512813,, +NC(=O)c1cccc([N+](=O)[O-])c1,AP,1,0,0,1,0.5176201644204088,1,1,53.08618683945152,, +Clc1ccncn1,AP,1,1,1,0,0.4727982169305593,1,1,24.62902738758398,, +NC(=O)c1cnn2cccnc12,AP,1,1,0,1,0.63211680429936,1,1,48.96083277528319,, +Nc1cc(=O)[nH]cn1,AP,1,1,0,0,0.4670416161550293,1,1,17.57832133005636,, +Nc1nc[nH]c(=O)c1-c1nc2ccccc2s1,AP,1,1,0,1,0.6809597364542918,0,1,44.68767882330906,, +Nc1ncnc2sc3c(c12)CCC3,AP,1,1,1,1,0.6899838703788439,1,1,57.98205763414037,56.0,1.0 +O=[N+]([O-])c1ccc2ncnc(O)c2c1,AP,1,0,0,1,0.5406375360738688,0,1,40.459924432287096,, +NC(=O)c1ccccc1O,AP,1,1,0,1,0.5912712208356959,1,1,36.19392601668105,, +NC(=O)c1cc2ccccc2cc1O,AP,1,1,0,1,0.7124288956417921,1,1,53.74844611586127,, +NC(=O)c1cc2ncccc2cc1O,AP,1,1,0,1,0.7014963349612757,0,1,44.04289692370188,, +NC(=O)c1cc2ccncc2cc1O,AP,1,1,0,1,0.7014963349612757,0,1,38.87155871562645,, +COc1cc2cnccc2cc1C(N)=O,AP,1,1,0,1,0.7987292780401711,0,1,50.60030361093394,, +NC(=O)c1cncs1,AP,1,1,1,1,0.5886866200086456,1,1,21.1386735213312,226.0,1.0 +NC(=O)C[C@H]1CCc2sc3ncnc(O)c3c21,AP,1,1,0,1,0.8391644714339827,0,1,9.332517150159813,, +COc1ccn2ccnc2c1,AP,1,1,1,1,0.6097274542683784,0,1,42.76312366290943,, +N#Cc1ccc2ncnc(N)c2c1,AP,1,1,0,1,0.6414979403801108,0,1,30.9801800579753,, +Nc1nc(N)c2ncccc2n1,AP,1,1,0,1,0.5750961046618707,1,1,31.37062667006557,, +Oc1ncnc2cc(F)cnc12,AP,1,1,0,1,0.6287548447144854,0,1,14.267099816571458,, +Nc1ncc2ncccc2n1,AP,1,1,0,1,0.5908907457799355,1,1,31.783806962554216,, +Oc1ncnc2cccnc12,AP,1,1,0,1,0.5963528690318622,0,1,28.647368868638345,, +C[N+]1=C/C(=N/c2nc(N)c3c(=O)[nH]ccc3n2)C=N1,AP,1,0,0,1,0.6808973728575788,0,1,9.45065845773437,, +Nc1ncc2c(=O)[nH]ccc2n1,AP,1,1,0,1,0.5660876995210078,0,1,27.16961252570981,, +Nc1ncnc2ccsc12,AP,1,1,1,1,0.6165519207990374,0,1,32.458227859492645,, +COc1cc(-c2cnc3ccc(N)nn23)ccc1C(N)=O,AP,1,1,0,1,0.7474195687620055,0,1,47.65686462341028,, +Nc1nccc(-c2cccnc2O)n1,AP,1,1,0,1,0.69177460293013,0,1,23.640716857914786,, +c1cnc2n[nH]cc2c1,AP,1,1,1,1,0.5607362152362961,1,1,32.12419830994238,708.0,1.0 +Nc1ncc2ccc3sccc3c2n1,AP,1,1,1,1,0.6073622772028509,0,1,31.071313904532968,, +O=CNc1ccc[nH]c1=O,AP,1,0,0,1,0.5623170182706885,1,1,16.492412560532458,, +c1cc2[nH]ncc2s1,AP,1,1,1,1,0.5676897672767987,1,1,24.699120927835764,0.0,0.0 +COc1ccc2nc(N)sc2n1,AP,1,1,0,1,0.719524152066011,1,1,28.4965328332725,, +NC(=O)Nc1cn[nH]c1,AP,1,1,0,0,0.4905453419261288,1,1,33.793450814528384,, +O=Cc1[nH]nc2ccccc12,AP,1,0,1,1,0.6174470277650994,1,1,17.454693074650443,, +O=Cc1n[nH]c2ccccc12,AP,1,0,1,1,0.6174470277650994,1,1,21.052851933278173,, +CC1(C)CCc2c(C(N)=O)n[nH]c2C1,AP,1,1,0,1,0.698651904530863,0,1,7.576650601788025,, +OC1CCCCC1,AP,1,1,1,0,0.4863248839438126,1,1,13.246532692241212,, +C[C@@]12Cc3[nH]nc(C=O)c3C[C@@H]1C2(F)F,AP,1,0,1,1,0.7183593166919551,0,0,-31.75745266592305,, +c1cc2c(ncc3nc[nH]c32)[nH]1,AP,1,1,1,1,0.5197092890715265,0,1,27.12055559746732,, +Cc1nc2cnc3[nH]ccc3c2[nH]1,AP,1,1,1,1,0.5423445035683544,0,1,30.062636467260585,, +c1cc2c(ncc3nn[nH]c32)[nH]1,AP,1,1,0,1,0.510096059201838,0,1,23.762166318637377,, +O=C1N=CCc2cncnc21,AP,1,1,1,1,0.5279264995715135,0,0,-22.165783529503067,, +O=c1[nH]ccc2cncnc12,AP,1,1,1,1,0.5832965043309577,0,1,22.212823705986157,, +Nc1c(Cl)cnc2[nH]cnc12,AP,1,1,0,1,0.621159231098622,0,1,22.097083559117923,, +NC(=O)c1c[nH]nc1N,AP,1,1,0,0,0.4539721011557528,1,1,24.576558587163333,, +Nc1ccnc2[nH]ccc12,AP,1,1,1,1,0.5658999712435825,1,1,25.72356891106384,490.0,1.0 +Cc1cnc(N)nc1N,AP,1,1,0,1,0.5079139754358782,1,1,23.24670456407673,, +O=C1N=CC=C/C1=N\c1ncc2[nH]c(=O)[nH]c2n1,AP,1,0,0,1,0.7247837469316049,0,0,-25.99502631618519,, +Cn1cc2cncc(C(N)=O)c2n1,AP,1,1,0,1,0.6675761171400479,0,1,31.376986963153104,, +NC(=O)c1cncc2cn[nH]c12,AP,1,1,0,1,0.6211707582346098,0,1,32.14952796048529,, +Cc1n[nH]c2[nH]c(=O)ccc12,AP,1,1,0,1,0.5744982219597285,0,1,14.695826273197394,, +Cc1[nH]nc2[nH]c(=O)ccc12,AP,1,1,0,1,0.5744982219597285,0,1,16.78628547411511,, +Nc1cc2ncccn2n1,AP,1,1,1,1,0.5638030951061849,1,1,33.19688593221484,86.0,1.0 +Nc1nccc2sccc12,AP,1,1,1,1,0.6223520348087767,1,1,28.77459998424912,300.0,1.0 +Nc1nc2ccccn2n1,AP,1,1,1,1,0.5638030951061849,1,1,43.55439948009147,1072.0,1.0 +Cn1cnc(N)c1,AP,1,1,1,1,0.4949528351550348,1,1,16.371734607781228,450.0,1.0 +NC1=CC(=O)N=CC1,AP,1,1,1,0,0.4703318465078059,0,0,-33.592336381672645,, +Nc1ccncc1,AP,1,1,1,1,0.5126510027980979,1,1,21.92789768762486,1262.0,1.0 +Nc1nc(N)n(-c2ccncn2)n1,AP,1,1,0,1,0.5911258561967591,0,1,25.832908798633586,, +C=C(Cl)/C=C/C(=C)c1ncc(F)cn1,AP,1,0,1,1,0.7172839559053517,0,0,-24.46991840356676,, +[H]/N=C/C(Cl)=C\CC,AP,1,0,1,1,0.5363678760828675,0,0,-14.08515745342807,, +C=C/C=C(\C)C(=C)c1ncccn1,AP,1,0,1,1,0.654827193972042,0,0,-13.661187807350558,, +c1cc2cncnn2c1,AP,1,1,1,1,0.5113756047374779,1,1,26.486607037964,206.0,1.0 +CCn1ccc2c3c(cnc21)ncn3C,AP,1,1,1,1,0.6014736200207218,0,1,28.940421429670103,, +CNc1nc2[nH]ccc2c2c1ncn2C,AP,1,1,1,1,0.6267747598388705,0,1,29.66659274301217,, +Nc1cccc2[nH]ncc12,AP,1,0,1,1,0.5293769910118981,1,1,28.4952038269722,, +c1cc2[nH]cnc2cn1,AP,1,1,1,1,0.5607362152362961,1,1,25.45966128429851,32.0,1.0 +NC(=O)c1cnc2[nH]ccc2c1N,AP,1,1,0,1,0.5801743212186156,0,1,36.35316881367161,, +Nc1ncc2c(n1)NCC2,AP,1,1,0,1,0.5276906304665528,0,0,-7.664334081239318,, +c1cn2nccc2cn1,AP,1,1,1,1,0.511375604737478,0,1,31.1812026768598,, +COc1cccc2cnc(N)nc12,AP,1,1,0,1,0.7074490127268823,0,1,40.53693396984063,, +Nc1ncc2cccc(N)c2n1,AP,1,0,0,1,0.5584287904214754,0,1,24.127302834671102,, +Nc1nc(C2=CN=[N+2](C3CNC3)=C2)c2ccnc-2[nH]1,AP,1,1,0,1,0.7077199875470642,0,0,-10.859371637601532,, +Nc1ccnc2c1C(=O)N=C2,AP,1,1,0,1,0.5709426066044511,0,0,-23.6752984824994,, +C[C@H]1C(=O)N(C)c2cncnc2N1C,AP,1,1,0,1,0.5920242482944773,0,0,-1.6230511449578204,, +c1ccn2ncnc2c1,AP,1,1,1,1,0.511375604737478,1,1,41.868666818475184,1288.0,1.0 +Oc1ncnc2nc[nH]c12,AP,1,1,0,1,0.5365398515296618,1,1,22.500141838594256,, +C[C@@H]1Nc2ncncc2N(C)C1=O,AP,1,1,0,1,0.6184675515186455,0,0,-15.055152528479397,, +CN1C(=O)c2sccc2N(C)c2ncncc21,AP,1,1,0,1,0.7120098151540293,0,1,6.878296275442031,, +Oc1ncnc2[nH]cnc12,AP,1,1,0,1,0.5365398515296617,1,1,19.22595588331712,, +CN1C(=O)C(C)(C)Nc2ncncc21,AP,1,1,0,1,0.6551120216927317,0,0,-2.819615067450437,, +Nc1ncnn1C=O,AP,1,0,0,0,0.4677068648146688,0,0,-6.041841357857344,, +NC(=O)n1ncnc1N,AP,1,1,0,0,0.4561197411215333,0,1,10.901812156860746,, +NC(=O)n1nc(N)nc1N,AP,1,1,0,0,0.4005029048232399,0,1,16.531058840827342,, +O=C1NC(=O)C(c2c[nH]c3ccccc23)=C1c1ccncn1,AP,1,0,0,1,0.7004893563126445,0,1,36.44619535200115,, +O=Cc1c[nH]c2nccnc12,AP,1,0,1,1,0.6058571277711334,1,1,18.886289776651388,, +NC(=O)c1cnn2cccc2c1N,AP,1,1,0,1,0.6414954377893402,0,1,39.0252067587364,, +NC(=O)c1cnc(N)cc1N,AP,1,1,0,1,0.4961750380137257,1,1,27.464200981603096,, +N#Cc1ccc2nccn2c1,AP,1,1,1,1,0.5557042508938959,0,1,48.25960723979581,, +CC(=O)Nc1cc(N)c(C#N)cn1,AP,1,1,0,1,0.651010339249095,0,1,34.08316919662644,, +N#Cc1ccc(C(N)=O)nc1,AP,1,1,0,1,0.6090868195678604,1,1,42.43269617315912,, +NC(=O)Nc1ccsc1C(N)=O,AP,1,1,0,1,0.6185869036973267,0,1,46.69073131842936,, +O=c1c(O)coc2cc(O)c(O)c(O)c12,AP,0,0,0,0,0.4739855057121059,0,1,17.79056976797796,, +O=c1cc[nH]c2ncccc12,AP,1,1,1,1,0.6003509616659684,0,1,38.4739746086882,, +O=c1cc[nH]c2cc(F)ccc12,AP,1,1,1,1,0.6291007084068679,0,1,38.47297791117984,, +Nc1nc2ccc(C=O)cc2n2ccnc12,AP,1,0,0,1,0.6164181468731331,1,1,24.140014108740164,, +c1ccc2c(-c3ccncc3)[nH]nc2c1,AP,1,1,1,1,0.6480917393206026,0,1,46.15423288985528,, +c1ccc(-c2n[nH]c3ccccc23)cc1,AP,1,1,0,1,0.6326173123272912,0,1,41.19481750518172,, +c1cnc2ccc3ccncc3c2c1,AP,1,0,1,1,0.4969799703454515,0,1,41.79816925408619,, +N#Cc1c(N)sc2c1CCNC2,AP,1,1,0,1,0.6202725706736701,1,1,4.327681071563111,, +N#Cc1c(N)sc2c1CCCC2,AP,1,1,1,1,0.6608756643915483,1,1,36.73731553282585,260.0,1.0 +c1cc(-c2cc[nH]n2)c[nH]1,AP,1,1,1,1,0.6064413143460023,0,1,27.73986507835581,, +O=c1[nH]ccc2cc(Cl)ccc12,AP,1,1,1,1,0.6608478832484261,1,1,33.54359296395698,76.0,1.0 +O=c1[nH]ccc2cc(Br)ccc12,AP,1,1,1,1,0.7310607673921075,0,1,39.95803428831915,, +c1ccn2ccnc2c1,AP,1,1,1,1,0.5098151396252019,1,1,45.08346027343898,940.0,1.0 +CN1C(=O)/C(=N/O)c2cc(F)ccc21,AP,1,0,1,1,0.4940653113180888,0,1,23.524309337623645,, +Cc1cccc2c1/C(=N/O)C(=O)N2C,AP,1,0,1,1,0.4925127402484881,0,1,10.079475679197062,, +CN1C(=O)/C(=N\O)c2ccccc21,AP,1,0,1,0,0.470115715716481,0,1,29.68983449060841,, +Cc1csc(N)c1,AP,1,1,1,1,0.5434730936195056,1,1,11.422915882432603,0.0,0.0 +N#Cc1csc(N)c1,AP,1,1,1,1,0.5646005976337982,0,1,15.832680010138816,, +O=CNc1cnn(-c2ccsc2)c1,AP,1,0,1,1,0.7507693811223869,0,1,26.743140014203696,, +Cc1ccc2cnn(-c3ccsc3)c2n1,AP,1,1,1,1,0.6245982872608594,0,1,34.56160450247476,, +Cn1c(=O)[nH]c(=O)c2[nH]c(=S)[nH]c21,AP,1,0,0,1,0.503846792623544,0,1,12.216304803200648,, +CCCNc1ccccn1,AP,1,1,1,1,0.6861030503904432,1,1,48.96844637872538,278.0,1.0 +Nc1ncncn1,AP,1,1,0,0,0.4704631934702971,1,1,8.511600015196265,, +COc1cc2nccc(O)c2cc1OC,AP,1,1,0,1,0.8137420678962776,1,1,38.93670410070267,, +COc1ccc2c(O)ccnc2c1,AP,1,1,1,1,0.7198219434590417,1,1,40.05714861852347,0.0,0.0 +O=CNc1cnc2[nH]ccc2c1,AP,1,0,1,1,0.6484659759237619,0,1,32.70178097460261,, +Nc1ncnc2[nH][nH+]cc12,AP,1,1,0,1,0.5047395663377142,0,1,17.448071559504108,, +Nc1ccnc2occc12,AP,1,1,1,1,0.5922099720914725,0,1,15.532519165530749,, +c1cn2cncc2cn1,AP,1,1,1,1,0.511375604737478,1,1,37.17234701199446,0.0,0.0 +c1ccc2c(c1)ncc1cncn12,AP,1,1,1,1,0.5140104117712739,0,1,40.72265790798527,, +Cc1ccn2nc(N)c(C(N)=O)c2n1,AP,1,1,0,1,0.6469408549406493,0,1,33.934017239047186,, +CCc1ccn2ncc(C(N)=O)c2n1,AP,1,1,0,1,0.7440161323348348,0,1,43.84752433938077,, +NC(=O)c1c(N)ncn2ncnc12,AP,1,1,0,1,0.5694313993884819,0,1,29.434304236803808,, +NC(=O)c1c(N)nn2cccnc12,AP,1,1,0,1,0.6076265513408879,0,1,39.99810416929984,, +c1cc2nccn2cn1,AP,1,1,1,1,0.511375604737478,0,1,36.9544973976977,, +O=Cc1ccc(Cl)cc1,AP,1,0,1,1,0.5466495888095015,1,1,28.69582478563496,, +Cc1ccn2ncc(C(N)=O)c2n1,AP,1,1,0,1,0.6710390832770573,1,1,47.67840609778362,, +COc1nc(N)ncc1C=O,AP,1,0,0,1,0.5990284063792224,1,1,13.64607057820002,, +Nc1ncc2c(=O)[nH]c3nc4ccccc4n3c2n1,AP,1,1,0,0,0.4793399096286216,0,1,36.2411527001229,, +O=C1NN=Cc2c[nH]c3cccc1c23,AP,1,1,1,1,0.6370950068779295,0,0,-39.65602958746194,, +CC(C)C(=O)Nc1ncc(-c2ccn[nH]2)s1,AP,1,1,0,1,0.8571702878068768,0,1,57.87590749040103,, +Cc1cc(C)c(/C=C2\C(=O)Nc3ccc([SH](=O)=O)cc32)[nH]1,AP,1,0,0,1,0.586916121118565,0,0,-19.111897763188978,, +COc1ccccc1C1=C(N)C(=O)NC1=O,AP,1,0,0,1,0.6855832094050223,0,1,11.8044498154382,, +O=c1[nH]ccc2ccc(Cl)cc12,AP,1,1,1,1,0.6608478832484261,0,1,34.43437040053819,, +CCNC(=O)C#Cc1ccc2c(c1)NC(=O)/C2=C(\N)c1ccccc1,AP,1,0,0,1,0.5808197355839485,0,1,32.19794177882042,, +Fc1ccc2c(c1)ncc1nc[nH]c12,AP,1,1,1,1,0.5860290443153723,0,1,31.09124459112344,, +Cc1n[nH]c2cccc(O)c12,AP,1,1,1,1,0.5954400957003955,0,1,20.608782702529755,, +N#Cc1c[nH]c2c(C(N)=O)cccc12,AP,1,1,0,1,0.6977890276387203,1,1,32.86058834278822,, +c1c[nH]c2nccc-2c1,AP,1,1,1,1,0.5577469355652159,1,1,31.101604651720496,0.0,0.0 +Cc1cc2cccnc2[nH]1,AP,1,1,1,1,0.5820392325335273,1,1,37.09850457103153,0.0,0.0 +O=C1c2ccccc2CN1c1ccccn1,AP,1,1,1,1,0.7228082495596216,0,1,10.304894845747071,, +NC(=O)c1ccoc1,AP,1,1,1,1,0.5690629874470592,1,1,31.356144308341094,0.0,0.0 +NC(=O)c1cscn1,AP,1,1,1,1,0.5886866200086456,1,1,25.797585096785465,0.0,0.0 +O=CNc1ccccc1,AP,1,0,1,1,0.5860752448837414,1,1,21.504630601388737,, +O=C(Nc1ccccn1)[C@H]1CCCCO1,AP,1,1,1,1,0.7990042460133705,0,1,62.60003834981995,, +c1ccc(-c2cnc3ccccc3c2)nc1,AP,1,1,0,1,0.6101536066340421,0,1,56.7978370097329,, +Fc1ccccc1-c1ccccn1,AP,1,1,1,1,0.6457234088217383,0,1,41.72344984677719,, +Cc1cnc2ccnn2c1Nc1ccccc1,AP,1,1,1,1,0.7274055269961206,0,1,57.77372399385917,, +CNC(=O)c1cc2ccc(-c3ccccc3O)cc2s1,AP,1,1,0,1,0.7541684510959002,0,1,44.4245592068789,, +Nc1ccn(-c2ccccc2)n1,AP,1,1,1,1,0.6840470334583565,1,1,40.78416068955776,0.0,0.0 +c1cnc(-c2ccc3c(c2)OCO3)nc1,AP,1,1,0,1,0.7044715685278581,0,1,56.23247491198411,, +c1cc2ncc3c(n2n1)NCC3,AP,1,1,1,1,0.6163888513476422,0,1,8.870612932761166,, +CCN1C(=O)C(C)(C)c2cnc(N)nc21,AP,1,1,0,1,0.7338508009031561,0,1,12.64429911730252,, +CC1(C)C(=O)N([C@H]2C=Cc3c(O)cccc32)c2nc(N)ncc21,AP,1,1,0,1,0.8418833787321384,0,0,-31.273671653427133,, +O=CNc1[nH]nc2c1CNC21CC1,AP,1,0,0,1,0.561159311241661,0,0,-26.389250751449943,, +Nc1[nH]nc2c1-c1[nH]ncc1CC2,AP,1,1,0,1,0.5441887377802183,0,1,11.01556472741383,, +O=C(Nc1ccccc1)c1ccccc1O,AP,1,1,1,1,0.8052241874500292,1,1,86.72379437649379,0.0,0.0 +COc1ccccc1C(N)=O,AP,1,1,1,1,0.6790575842877806,1,1,52.52750096104229,0.0,0.0 +NC(=O)c1ccc(Br)cc1,AP,1,1,1,1,0.7335677023431018,1,1,47.43270407772773,0.0,0.0 +NC(=O)c1ccc(F)cc1,AP,1,1,1,1,0.617349147480984,1,1,40.5071137931536,0.0,0.0 +c1ccc(-n2cccn2)cc1,AP,1,1,1,1,0.5970666437894959,1,1,50.51649797573513,0.0,0.0 +CN1Cc2cnc3cccnc3c2N(C2CCCCC2)C1=O,AP,1,1,0,1,0.8106995723040064,0,1,22.124364069735133,, +O=C1NCc2cnc3ccccc3c2N1C1CCCCC1,AP,1,1,0,1,0.8677509527460489,0,1,17.76317645553022,, +CC1(C)C(=O)N([C@H]2CCc3c(O)cccc32)c2nc(N)ncc21,AP,1,1,0,1,0.8409814687252826,0,0,-4.67779394805253,, +CC(C)n1cnc2cncnc21,AP,1,1,1,1,0.6363187506013845,1,1,25.776940279280524,0.0,0.0 +CCCCNc1ncc2cn[nH]c2n1,AP,1,0,0,1,0.7196512867385867,0,1,37.25767959372038,, +CCCCNc1nccc(N)n1,AP,1,0,0,1,0.661038316347867,1,1,47.65425262989739,, +O=C1CCCCNc2ncc3ccn(c3n2)CCCN1,AP,1,1,0,1,0.7633710723002689,0,0,-48.529096352718845,, +NC(=O)c1ncc[nH]1,AP,1,1,0,1,0.5128254311845627,1,1,19.17207317524455,, +CCc1cnc(N)c(C(N)=O)n1,AP,1,1,0,1,0.6312218213097075,0,1,27.91277014294323,, +CCCCNc1ncc2cc[nH]c2n1,AP,1,0,0,1,0.7263267337566623,0,1,54.466815071497685,, +Nc1ccnc(Nc2cc(F)c(O)c(F)c2)n1,AP,1,0,0,1,0.6943937029617465,0,1,42.25636496062416,, +CNc1nc(O)nc2c1ncn2C,AP,1,1,0,1,0.6494291764381768,0,1,11.275335805144865,, +Cc1ccc2nccn2c1,AP,1,1,1,1,0.5323234365454219,1,1,51.85751010057965,0.0,0.0 +NC(=O)c1c[nH]c2ncc(Cl)cc12,AP,1,1,0,1,0.7204322644810516,0,1,36.525890117356326,, +NC(=O)Nc1ccsc1C=O,AP,1,0,0,1,0.6509597398610257,0,1,22.81838094935208,, +Clc1ccc2c(-c3cn[nH]c3)n[nH]c2c1,AP,1,1,1,1,0.6597424468058993,0,1,38.07544423273954,, +CNS(=O)(=O)c1ccc2c(c1)CC(=O)N2,AP,1,1,0,1,0.7500463212537136,1,1,45.88964919406906,, +CS(=O)(=O)c1ccc2c(c1)CC(=O)N2,AP,1,1,0,1,0.7388541960821317,0,1,37.57079001680377,, +Cc1cnc2ccccc2c1,AP,1,1,1,1,0.5519055037199659,1,1,53.44240044072394,0.0,0.0 +Sc1ccc2ncccc2c1,AP,1,0,1,1,0.5857003735891695,1,1,18.65476228104047,, +FC(F)(F)c1ccc2nccnc2c1,AP,1,1,1,1,0.6498418456997441,0,1,51.227884397081205,, +COc1cnc2c(N)ccnc2c1,AP,1,1,0,1,0.7074490127268824,0,1,26.92168797494211,, +O=c1c2ccccc2ccc2ncccc12,AP,1,1,1,1,0.5669906213972664,0,1,46.396112474766966,, +CCc1ccc2ncccc2c1,AP,1,1,1,1,0.6199049022830793,1,1,64.7419975113864,0.0,0.0 +Nc1cc(C(F)(F)F)cc2ncccc12,AP,1,0,1,1,0.6817208544650085,0,1,41.353865022553016,, +FC(F)(F)c1ncc2cccnc2n1,AP,1,1,1,1,0.651217295402963,0,1,38.39342293153224,, +Nc1ncc2ccoc2c1O,AP,1,1,0,1,0.5897084704966266,0,1,14.888611974362789,, +c1ccc(-c2ncccn2)cc1,AP,1,1,1,1,0.6317729528591786,0,1,46.91309695081389,, +O=C(O)Nc1ccccc1,AP,1,1,1,1,0.6193250852042754,1,1,26.440530934704903,0.0,0.0 +COc1cnc2ccccc2c1,AP,1,1,1,1,0.6362244803453474,1,1,57.51262676234636,0.0,0.0 +CCn1ccc2ncccc2c1=O,AP,1,1,1,1,0.6548823080261188,0,1,57.33016407543649,, +Cn1ccc2c(=O)[nH]ccc21,AP,1,1,1,1,0.5909620342517304,0,1,28.2579402102604,, +Nc1nccnc1C(=O)O,AP,1,1,0,1,0.5598838866687289,1,1,18.182841406889327,, +Oc1ccncc1,AP,1,1,1,1,0.5163288713332986,1,1,18.896738992158387,0.0,0.0 +NC(=O)c1ccsc1N,AP,1,1,0,1,0.5965705742077709,1,1,24.440683183625254,, +Nc1c[nH]nc1-c1ccccn1,AP,1,1,0,1,0.654849412351787,1,1,31.53718663723962,, +CN1C(=O)c2sccc2N(C)c2nc(N)ncc21,AP,1,1,0,1,0.7770299556135112,0,1,4.367024117159863,, +COc1cc2c(N)c(C#N)cnc2cc1O,AP,1,1,0,1,0.7496596432208149,1,1,25.718971299230866,, +Cc1nccc(Nc2nccs2)n1,AP,1,1,0,1,0.7900926386095471,0,1,57.85478760295637,, +Nc1ncc(C(F)(F)F)c(N)n1,AP,1,1,0,1,0.6112265232501427,1,1,20.79622840967244,, +Nc1ncnc2cc(O)cc(O)c12,AP,1,1,0,1,0.5482628776098761,0,1,18.52100741721089,, +Cc1cc(C)c(C[C@H]2C(=O)Nc3ccc(F)cc32)[nH]1,AP,1,1,0,1,0.8540039363158204,0,1,22.2064883489584,, +CNc1cc2[nH]c(=O)ccc2cn1,AP,1,1,1,1,0.6784201998896594,0,1,30.03905102671061,, +N#Cc1cnc2ccc(N)cc2c1N,AP,1,0,0,1,0.603192171220504,0,1,35.83112375075842,, +Nc1ncc2c(=O)[nH][nH]c2n1,AP,1,1,0,0,0.4597512677791772,0,1,9.091079218982168,, +Cn1ncc2c1-c1nc(N)ncc1CC2(C)C,AP,1,1,0,1,0.7387279676875568,0,0,-1.4580231072745558,, +Cc1cc2c(C(N)=O)c(N)[nH]c2nc1C,AP,1,1,0,1,0.6421051785522401,0,1,24.555390644983696,, +Nc1nccnc1-c1ccccc1,AP,1,1,1,1,0.7103828943707656,1,1,33.24466839091776,0.0,0.0 +Nc1nccnc1N1CCCCC1,AP,1,1,0,1,0.6979862058352387,0,1,35.15525468963418,, +O=[SH](=O)c1cccc(Nc2ncc3[nH]cnc3n2)c1,AP,1,0,0,1,0.6180281136746377,0,1,13.011690184488875,, +Nc1ncc(O)cn1,AP,1,1,0,0,0.4844747443041592,1,1,12.219630369273307,, +CCn1c(=O)ccc2cnc(N)nc21,AP,1,1,0,1,0.7056449265670108,1,1,25.510879031412948,, +CCNc1ncc2ccc(=O)[nH]c2n1,AP,1,1,0,1,0.732649109047015,0,1,29.494953751865012,, +NCC1=c2c(ccc3ncsc23)=NC1=O,AP,1,1,0,1,0.7041356355180158,0,0,-13.16973692011737,, +CC1(C)c2[nH]nc(NC=O)c2CN1C=O,AP,1,0,0,1,0.6956226292510118,0,0,-27.0315830300132,, +CCN,AP,1,1,1,0,0.4062370953898832,1,1,5.092217189432304,, +Brc1cnc2nc[nH]c2c1,AP,1,1,1,1,0.6995654942478055,1,1,34.153225479096925,0.0,0.0 +O=Cc1ccc2c(c1)/C(=C(\c1ccccc1)c1ncc[nH]1)C(=O)N2,AP,1,0,0,1,0.57577787681894,0,1,26.94163482515218,, +CC(C)c1n[nH]c2cnccc12,AP,1,1,1,1,0.695290995312368,0,1,29.497898661065157,, +C[C@H]1C(=O)Nc2ccc(F)cc21,AP,1,1,1,1,0.624398649458776,0,1,4.135483613436458,, +CCC1=c2cc(O)ccc2=NC1=O,AP,1,1,1,1,0.6583346805779838,0,0,-1.5857561094515915,, +CC[C@H]1C(=O)Nc2ccccc21,AP,1,1,1,1,0.6712681072480746,1,1,0.7563407047174522,0.0,0.0 +CC1=c2cc(NC(N)=O)ccc2=NC1=O,AP,1,1,0,1,0.6448828166659134,0,1,18.50762331786835,, +NC(=O)c1n[nH]c2c1CCc1cnc(N)nc1-2,AP,1,1,0,1,0.6171063635935327,0,1,24.56838736921341,, +COc1ccc2ncc3c(N)nccc3c2c1,AP,1,0,0,1,0.6457248335519116,0,1,39.5502203843938,, +COc1cc2ncc3c(N)nccc3c2cc1OC,AP,1,0,0,1,0.7117877305656993,0,1,36.62959859304667,, +O=c1[nH]cc(C#CC2CC2)c2ncc3ccccc3c12,AP,1,0,1,1,0.4987757641815061,0,1,25.76598466152392,, +O=c1[nH]ccc2ccccc12,AP,1,1,1,1,0.5986881320129136,1,1,37.56946665426815,0.0,0.0 +Cn1ccc2c(N)ncnc21,AP,1,1,1,1,0.5931799319976649,1,1,28.24943048303249,0.0,0.0 +Cc1nc(N)c2ccn(C)c2n1,AP,1,1,1,1,0.6246362253213364,0,1,28.824799943595195,, +O=c1ccoc2c(-c3ccccc3)cccc12,AP,1,1,0,1,0.6307722261623976,0,1,29.828308745281337,, +CC(=O)c1ccccc1,AP,1,1,1,1,0.5170467542625543,1,1,38.84580119823231,0.0,0.0 +Oc1ccc(Br)cc1,AP,1,1,1,1,0.6366834808262342,1,1,29.726792005619178,0.0,0.0 +Cc1ccncc1,AP,1,1,1,0,0.4719983679006756,1,1,26.636077101778625,, +Cc1cccc(-c2cnccn2)c1,AP,1,1,1,1,0.6565711477527443,1,1,55.56661520943784,0.0,0.0 +Clc1ccc(-c2onc3ccccc23)cc1,AP,1,1,0,1,0.6266308985958802,0,1,52.1115431324881,, +FC(F)(F)c1ccccc1,AP,1,1,1,1,0.5274607455911079,1,1,36.437699073802,34.0,1.0 +c1ccc(-c2c[nH]c3ccccc23)cc1,AP,1,1,0,1,0.6040935790801766,0,1,49.39763884944692,, +Cc1ccc2sc3c(=O)[nH]cnc3c2c1,AP,1,1,1,1,0.6270117023586184,0,1,36.54365040627674,, +O=c1[nH]cnc2c1sc1ccc(Cl)cc12,AP,1,1,1,1,0.6524578552204652,0,1,40.03121462833832,, +Cc1ccc(-c2ccc3ccccc3c2)o1,AP,1,1,0,1,0.5770279698576293,0,1,59.114366474192494,, +Brc1ccc2occc2c1,AP,1,1,0,1,0.6314608363758356,1,1,50.169534321729465,, +COc1cc(Br)cc2ccoc12,AP,1,1,0,1,0.7457580467995641,1,1,37.28813812292928,, +Nc1cncc(-c2ccc3occc3c2)n1,AP,1,1,0,1,0.6710826935364155,0,1,45.11954726203739,, +c1ccc(-c2n[nH]c3ncccc23)cc1,AP,1,1,1,1,0.6480917393206026,0,1,52.103206889044245,, +Cc1c[nH]c2ccccc12,AP,1,1,1,1,0.5649684553619617,1,1,37.17466881669269,0.0,0.0 +Oc1ccc(Cl)cc1,AP,1,1,1,1,0.5671077548351335,1,1,25.75352107550546,0.0,0.0 +Oc1cccc2cccnc12,AP,1,1,1,1,0.614103356782718,1,1,40.33376219070917,0.0,0.0 +Cc1cccc(C(F)(F)F)c1,AP,1,1,0,1,0.546827691373411,1,1,47.48608608395407,, +FC(F)(F)Oc1ccccc1,AP,1,1,1,1,0.6161869793338142,1,1,45.07593339309071,0.0,0.0 +O=c1[nH]cnc2c1oc1ccc(Br)cc12,AP,1,1,1,1,0.6786515085391999,0,1,44.2184390624844,, +CC(C)(C)C,AP,1,1,1,0,0.4105781835342534,1,1,11.33898174575638,, +c1ccsc1,AP,1,1,1,0,0.4489266460144336,1,1,9.194709627715325,, +Fc1ccccn1,AP,1,0,1,0,0.443381981599025,1,1,24.857630129563503,, +Cc1cccc(OC(C)C)c1,AP,1,1,1,1,0.6295311826395145,1,1,59.35936352151575,0.0,0.0 +Cc1ccc(O)c([N+2](#[O+])[O-])c1,AP,1,0,0,0,0.4575272063368807,0,1,23.227167717852826,, +CCNc1cccc2c1C(=O)c1c(O)ccc(O)c1C2=O,AP,0,0,0,1,0.6281845152468981,1,1,28.05590837115553,, +O=c1[nH]ccc2ncnc(Nc3ccccc3)c12,AP,1,1,0,1,0.7165212804895742,0,1,63.19114875221239,, +O=CNc1ccc(F)cc1,AP,1,0,1,1,0.6161775917187738,1,1,25.55626378244204,, +Nc1ccc(F)cc1,AP,1,0,1,1,0.5030676848790228,1,1,25.644628327631864,, +Nc1c[nH]c2ncc(-c3ccccc3F)cc12,AP,1,1,1,1,0.6711127605509931,0,1,28.093785901019206,, +c1ccc2ccccc2c1,AP,1,1,1,1,0.5114311994891171,1,1,27.06630754652044,50.0,1.0 +CC(=O)Nc1nc(C=O)cs1,AP,1,0,1,1,0.6710456384575164,1,1,30.33065789847789,, +O=Cc1ccc(F)c(-c2c(F)cccc2F)n1,AP,1,0,1,1,0.7513613935727798,0,1,18.90655488078208,, +Nc1ccc(N)c2c1C(=O)c1c(O)ccc(O)c1C2=O,AP,0,0,0,0,0.3568197239593934,1,1,11.864126610305144,, +Nc1cccc2c1C(=O)c1c(O)ccc(O)c1C2=O,AP,0,0,0,0,0.4167301493569221,1,1,15.842486680641953,, +Fc1cccc(F)c1-c1ccc2n[nH]cc2c1,AP,1,1,0,1,0.6804654782233055,0,1,39.18471350504292,, +c1cnc(-c2c[nH]c3ccccc23)nc1,AP,1,1,1,1,0.6480917393206026,0,1,56.79773078913687,, +Fc1cccc(F)c1-c1ccc2[nH]ncc2c1,AP,1,1,0,1,0.6804654782233055,0,1,40.27435049933316,, +c1ccc2ncc(-c3[nH]nc4ccccc34)cc2c1,AP,1,1,0,1,0.5541805180060314,0,1,54.71071236244025,, +c1ccc(-c2c[nH]c3ccccc23)nc1,AP,1,1,0,1,0.6326173123272912,0,1,59.02073054660832,, +NC(=O)c1csc(-c2c(F)cccc2F)n1,AP,1,1,1,1,0.8742648144218211,0,1,46.71996361642663,, +Cc1[nH]nc2cnccc12,AP,1,1,1,1,0.5875133881718076,1,1,37.48350383693354,0.0,0.0 +c1ccc(-c2n[nH]c3cnccc23)nc1,AP,1,1,1,1,0.6473789295391943,0,1,36.69135522674923,, +Nc1ccc(-c2ccccc2F)nc1C=O,AP,1,0,1,1,0.7833035562405819,0,1,19.725787700213733,, +Cn1cnc2ccccc2c1=O,AP,1,1,1,1,0.5743423431787908,1,1,49.13022444967932,0.0,0.0 +Cn1c(-c2ccccc2)cc2c(Cl)cc(C(N)=O)nc21,AP,1,1,0,1,0.7866408721906318,0,1,41.5113682606708,, +Clc1ccccc1Cl,AP,1,1,1,1,0.5285863388321962,0,1,26.91467870806813,, +Clc1ccc2[nH]ccc2c1,AP,1,1,1,1,0.5961550779996849,1,1,48.23450453605859,0.0,0.0 +Fc1cccc(F)c1-c1ccc2cncn2n1,AP,1,1,1,1,0.6441279543634886,0,1,24.751098595758847,, +Nc1cccc2ncccc12,AP,1,0,1,1,0.5725810426076291,1,1,37.198079725837054,, +Cc1csc(C#N)c1C,AP,1,1,1,1,0.5376192604584475,0,1,15.225175514510868,, +Cc1ccc(C)cc1,AP,1,1,1,0,0.475757685340321,1,1,22.795794117574705,, +Cc1csc2nc(C3CC3)nc(C)c12,AP,1,1,0,1,0.712611158534673,0,1,29.361951562615197,, +Brc1ccsc1Br,AP,1,1,0,1,0.6543271825003024,1,1,23.18259567250858,, +Sc1ccc(Cl)cc1,AP,1,0,1,1,0.5321150771055563,1,0,-0.6747841143979261,, +COc1cccc(C)c1OC,AP,1,1,1,1,0.6450116473288806,1,1,41.93122399588191,0.0,0.0 +Brc1ccc2[nH]ccc2c1,AP,1,1,1,1,0.6661413067399449,1,1,52.96792315738858,0.0,0.0 +Cc1cccc2cnccc12,AP,1,1,1,1,0.5519055037199659,1,1,44.07900516433005,0.0,0.0 +O=C1Cc2cc(Cl)ccc2N1,AP,1,1,1,1,0.6278148486894898,1,1,15.845503907079443,0.0,0.0 +Cn1cc(-c2ccc(CO)cc2)c2c(Cl)ccnc21,AP,1,1,0,1,0.776520910295894,0,1,35.0614029548842,, +N#Cc1ccnc2[nH]ccc12,AP,1,1,1,1,0.6061234099403053,1,1,30.91183113205806,0.0,0.0 +Cn1ccc2c(C#N)ccnc21,AP,1,1,1,1,0.5803122080413115,0,1,29.41763378966014,, +c1ccc(-n2ncc3cnccc32)nc1,AP,1,1,1,1,0.5958421165357399,0,1,44.9026422880489,, +Cc1c[nH]c2cnccc12,AP,1,1,1,1,0.5820392325335273,1,1,24.37623498836742,0.0,0.0 +Cc1c[nH]c2cccnc12,AP,1,1,1,1,0.5820392325335273,1,1,30.524459567803014,0.0,0.0 +c1ccc(-c2cncc(-n3ncc4ccccc43)n2)cc1,AP,1,1,0,1,0.5608170538864986,0,1,58.038138562745885,, +Clc1ccc2c(c1)Nc1ccccc1O2,AP,1,1,0,1,0.6097617059145659,0,1,26.813460003248235,, +Clc1ccc2c(c1)Nc1ccncc1O2,AP,1,1,0,1,0.6262944921130648,0,1,8.327369059146033,, +Nc1cc2c(cc1Cl)Nc1ccncc1O2,AP,1,0,0,1,0.5857809825281768,0,0,-5.467347843889607,, +Nc1sc(-c2c(F)cccc2F)nc1C=O,AP,1,0,1,1,0.820266876287356,0,1,15.735617275498912,, +c1csc(-c2cccc3sccc23)c1,AP,1,1,0,1,0.5560691239924458,0,1,50.6863943763508,, +NC(=O)c1cc2c(-c3ccc(C=O)s3)cccc2s1,AP,1,0,0,1,0.7489035148524565,0,1,39.97557836369332,, +O=C([O-])c1cc2ccccc2s1,AP,1,1,1,1,0.6576000732354649,0,1,61.39856685843648,, +O=Cc1ccc(-c2cccc3sccc23)s1,AP,1,0,0,1,0.6088926684821028,0,1,40.55451233565091,, +c1ccc(-c2nccs2)cc1,AP,1,1,1,1,0.6263545777465895,1,1,50.03778402169769,0.0,0.0 +NC(=O)c1cc(Cl)c2c(Cl)c(C3CC3)[nH]c2n1,AP,1,1,0,1,0.8801952564153973,0,1,16.014690088969395,, +Cc1c[nH]c2nc(C(N)=O)cc(Cl)c12,AP,1,1,0,1,0.7493580922471091,0,1,20.31024628259031,, +c1ccc(Oc2ccncn2)cc1,AP,1,1,1,1,0.6965202718104504,0,1,60.986197654331725,, +CN1C(=O)/C(=C/c2ccccc2)c2ccc(N)cc21,AP,1,0,1,1,0.6245692131975665,0,1,37.97896632596643,, +O=C1Nc2ccccc2/C1=C\c1ccccc1,AP,1,0,0,1,0.7360920258682248,0,1,46.98174189362109,, +Nc1ccc2c(c1)NC(=O)/C2=C/c1ccccc1,AP,1,0,1,1,0.5905565449492348,0,1,38.43909351106368,, +Oc1ccc2c(Cc3ccccc3)coc2c1,AP,1,1,0,1,0.719107867396939,0,1,64.48775880488728,, +O=Cc1csc(-c2c(F)cccc2F)n1,AP,1,0,1,1,0.7353780264504028,1,1,27.376765315177572,, +CCc1cccc(O)c1C,AP,1,1,1,1,0.6274832851534122,1,1,24.40698630563176,0.0,0.0 +COc1cc2c(Cl)nccc2cc1C=O,AP,1,0,1,1,0.578275096634239,0,1,29.793826116830164,, +Cn1cncc1C1=CNCCS1,AP,1,1,1,1,0.7021660488115231,0,0,-23.0641680822562,, +C[C@@H]1C(=O)NN=C2COc3ccccc3N21,AP,1,1,1,1,0.6962045549908874,0,0,-28.695140591595592,, +Nc1ncc(-c2ccccc2)cc1C=O,AP,1,0,1,1,0.7519598842805689,1,1,25.098081176018933,, +C[N+]1=C/C(=C2/CC(=O)NC2=O)c2ccccc21,AP,0,0,1,0,0.4055069398506887,0,0,-20.93252790624348,, +Cc1ccc2c(c1)OCC1=NNC(=O)[C@@H](C)N12,AP,1,1,1,1,0.725093817871833,0,0,-25.318183936715386,, +O=c1[nH]c2cccnc2[nH]1,AP,1,1,0,1,0.5435651991279111,1,1,23.582017611714814,, +Cc1nc[nH]c1/C=C1\C(=O)Nc2ccccc21,AP,1,0,1,1,0.7308941750993609,0,1,25.77322120513901,, +Nc1ncc2c(n1)-c1[nH]ncc1CC2,AP,1,1,0,1,0.6306402629241886,0,1,17.152741854180377,, +Cn1nc(C(N)=O)c2c1-c1nc(N)ncc1CC2,AP,1,1,0,1,0.7119176322257509,0,1,23.276336013214426,, +Nc1ncc2c(n1)-c1ccc(Cl)cc1NC(=S)C2,AP,1,0,0,1,0.7244973869654638,0,1,3.409157566065673,, +C=C[C@@]1(F)CNc2nc(N)ncc2N(C)C1=O,AP,1,0,0,1,0.6880110372402768,0,0,-34.11703500849912,, +CN1C(=O)C(F)(F)CNc2nc(N)ncc21,AP,1,1,0,1,0.6578807348855383,0,0,-22.56003035517584,, +CC[C@H]1Nc2nc(N)ncc2-n2cnc(C#N)c21,AP,1,1,0,1,0.7708828267866887,0,0,-1.7738408332284468,, +CC[C@H]1Nc2ncncc2N(C)C1=O,AP,1,1,0,1,0.7091427301776266,0,0,-8.280412703109626,, +CC[C@H]1Nc2nc(-n3ccnc3)ncc2N(C)C1=O,AP,1,1,0,1,0.8630455524499424,0,1,13.78117381965939,, +CC[C@H]1Nc2nc(N)ncc2N2C=NN[C@H]12,AP,1,1,0,1,0.6127069135591465,0,0,-37.02451355356292,, +c1ccc2sccc2c1,AP,1,1,1,1,0.5193756104894538,1,1,41.037837130138456,0.0,0.0 +NC(=O)c1cc2ccccc2s1,AP,1,1,1,1,0.7108928275991874,1,1,55.521802457140616,0.0,0.0 +C[C@@]1(N2C(=O)c3ccccc3C2=O)CCC(=O)NC1=O,AP,1,0,0,1,0.7535161626338501,0,0,-7.02438082945261,, +Nc1ccn2ncc(-c3ccccc3)c2n1,AP,1,1,1,1,0.6677410256585465,0,1,31.71790192659786,, +N#Cc1cnn2ccccc12,AP,1,1,1,1,0.5557042508938959,0,1,39.71891905718836,, +CCOC,AP,1,1,1,0,0.4315009980580737,1,1,14.173271476186557,, +CS(=O)(=O)c1ccc2ncccc2c1,AP,1,1,1,1,0.713772587980444,1,1,64.60044534679476,0.0,0.0 +CC(C)(C)S(=O)(=O)c1ccc2nccc(N)c2c1,AP,1,1,0,1,0.8579344107311356,1,1,47.28269590115666,, +CC(C)(C)S(=O)(=O)c1ccc2nccn2c1,AP,1,1,1,1,0.762182029760947,0,1,56.8514552526517,, +COc1cc2nccc(N)c2cc1S(=O)(=O)C(C)(C)C,AP,1,1,0,1,0.919276228869707,1,1,43.201175487882864,, +CC(C)(C)S(=O)(=O)c1ccc2ncnc(N)c2c1,AP,1,1,0,1,0.8490439678547436,0,1,47.24130508266378,, +NC(=O)c1cnn2c1N[C@H]1C[C@H](C[C@@H]1O)C2,AP,1,1,0,1,0.5994848692393709,0,0,-15.946070896705889,, +O=CNc1cc(O)ccn1,AP,1,0,0,1,0.5796211958476698,0,0,-0.8184581820537153,, +O=[SH](=O)c1cccc2c(O)nccc12,AP,1,0,0,1,0.6849464125169556,0,0,-18.52417570643481,, +Cc1cncc2cccc([SH](=O)=O)c12,AP,1,0,1,1,0.7209757032472129,1,0,-21.044444309638216,, +Cc1cnnn1-c1nonc1N,AP,1,1,0,1,0.6154048148843421,0,1,22.39199499297602,, +N#Cc1ccccc1,AP,1,1,1,0,0.4884445703746373,1,1,32.15537243473899,, +C1=C(c2c[nH]c3ncccc23)CCNC1,AP,1,1,1,1,0.7365235952442868,0,0,-0.6769793649240259,, +OCc1ccccc1,AP,1,1,1,1,0.5723436119287516,1,1,30.89379261466763,0.0,0.0 +Nc1ccncc1F,AP,1,1,1,1,0.5388077752872951,1,1,20.40000135815709,0.0,0.0 +c1ccc2c(c1)OCc1cnccc1-2,AP,1,1,1,1,0.6259976274760464,0,0,-15.813300774356122,, +Nc1nc2ccccc2o1,AP,1,1,1,1,0.5922099720914726,1,1,38.01523637924283,0.0,0.0 +CCn1cnc2cncnc21,AP,1,1,1,1,0.6016654515624413,1,1,26.10643755546531,0.0,0.0 +Cc1ccc(C(N)=O)o1,AP,1,1,1,1,0.5997819536090209,1,1,34.31775954918557,0.0,0.0 +NC(=O)c1ccco1,AP,1,1,1,1,0.5690629874470592,1,1,32.06712585829939,0.0,0.0 +Nc1ccnc(-c2nc3ccc(Cl)c(F)c3[nH]2)n1,AP,1,1,0,1,0.7063463112617784,0,1,29.47347841609809,, +Nc1ccnc(-c2nc3cc(F)c(Cl)cc3[nH]2)n1,AP,1,1,0,1,0.7063463112617784,0,1,42.49880395048175,, +Nc1ncnc2scnc12,AP,1,1,0,1,0.6021430059200858,1,1,23.73297372192985,, +Nc1ccnn2ccnc12,AP,1,1,1,1,0.5638030951061849,0,1,20.080270959546503,, +NC(=O)c1nnccc1N,AP,1,1,0,1,0.5284027360700222,1,1,16.48699830590769,, +Nc1nccc2nc[nH]c(=O)c12,AP,1,1,0,1,0.5660876995210078,0,1,23.278834057657622,, +NC(=O)c1nncnc1N,AP,1,1,0,1,0.494576253228965,0,1,16.865189287000277,, +Cc1ccn(-c2nc(N)ncc2F)c1,AP,1,1,1,1,0.7403718863896305,0,1,27.11478127108184,, +Cc1ccn(-c2ccnc(N)n2)n1,AP,1,1,0,1,0.6868210244776503,0,1,44.676838317908825,, +CCNc1nc(N)ncc1Cl,AP,1,1,0,1,0.7025672663782564,0,1,34.28496468114354,, +CCNc1nc(N)ncc1F,AP,1,1,0,1,0.658755306689484,0,1,36.00279878349416,, +CCNc1ncncc1F,AP,1,1,1,1,0.6684353268683102,1,1,34.9550889646539,0.0,0.0 +c1cc2ncsc2cn1,AP,1,1,1,1,0.5504287970242819,0,1,28.6609564004574,, +c1ccc2nscc2c1,AP,1,1,1,1,0.5397735725540235,0,1,30.245118750148844,, +Nc1nccc2nccnc12,AP,1,1,0,1,0.5908907457799355,1,1,30.08280070418663,, +c1cc2nccnc2cn1,AP,1,1,1,1,0.5355010476666257,1,1,32.79177032909362,0.0,0.0 +Nc1ncc2occc2n1,AP,1,1,0,1,0.5799503038107798,0,1,25.21544363873897,, +NC(=O)c1cnccn1,AP,1,1,0,1,0.5507568071868295,1,1,32.58283326345998,, +O=C1NCc2c(F)cncc21,AP,1,1,1,1,0.5865252406089385,0,0,-21.541968565889224,, +Nc1ncnc2c1C(=O)NC2,AP,1,1,0,1,0.5121701769339623,0,0,-16.24572139668639,, +Nc1ncnc2cc[nH]c(=O)c12,AP,1,1,0,1,0.5660876995210078,0,1,26.290220068117,, +Nc1ncnc2c1C(=O)N=CC2,AP,1,1,0,1,0.5736020829544548,0,0,-22.687344580842,, +Cc1ccnc(CO)c1,AP,1,1,1,1,0.6010089583015967,1,1,34.70404478828296,0.0,0.0 +Nc1nccc2ccoc12,AP,1,1,1,1,0.5922099720914726,1,1,24.06492983993912,0.0,0.0 +Nc1nccc2c(Cl)coc12,AP,1,1,1,1,0.6552885478326933,0,1,19.400051218253104,, +NC(=O)c1csc2c(=O)[nH]cnc12,AP,1,1,0,1,0.6750404462121652,0,1,25.344618420606537,, +Nc1ncc(I)cn1,AP,1,0,1,1,0.6544832812837692,1,1,25.19544366949828,, +Nc1ncc(I)c(N)n1,AP,1,0,0,1,0.6324407731012647,1,1,25.863881227264507,, +Nc1ncc(C2CC2)c(N)n1,AP,1,1,0,1,0.611320762430444,1,1,11.252268553751962,, +Nc1ncc(C2CC2)cn1,AP,1,1,1,1,0.6229702426207004,1,1,9.089870884640058,0.0,0.0 +O=C[O-],AP,1,0,1,0,0.3065473221945595,1,1,1.1086118535634293,, +Nc1nc2oc3ccccc3c(=O)c2cc1C(=O)[O-],AP,1,0,0,1,0.6255459956076521,0,1,40.20506206631299,, +Nc1nc2cc(C=O)ccc2[nH]1,AP,1,0,0,1,0.6115984485301852,0,1,15.80939991738794,, +NC1Nc2ccccc2N1,AP,1,1,1,1,0.4920864811145489,0,0,-0.8032532989567447,, +c1cnc2cccnc2c1,AP,1,1,1,1,0.5412819114011972,1,1,30.19121932376092,0.0,0.0 +Nc1cc(O)ccn1,AP,1,1,1,1,0.5068633046996494,1,1,13.763142173476115,0.0,0.0 +Nc1ncnc2c1C(=O)CC=N2,AP,1,1,0,1,0.5962272377493266,0,0,-23.38987442793016,, +N#Cc1cnc2cccnn12,AP,1,1,1,1,0.5436577757102758,0,1,31.060956719716227,, +Nc1ccnc2c[nH]nc12,AP,1,1,0,1,0.5521636672820287,1,1,18.85839023165432,, +COc1cnc2ccnn2c1,AP,1,1,1,1,0.5998691175423345,0,1,34.080341971253496,, +Nc1ncc(Br)c2cccnc12,AP,1,1,1,1,0.7436974673890242,0,1,37.62306131606781,, +Nc1nccc2cccnc12,AP,1,1,1,1,0.6058167298330609,1,1,37.02052434280633,0.0,0.0 +Nc1cc(O)n[nH]1,AP,1,1,0,0,0.4175762288292036,1,1,11.26698800139939,, +Nc1ccc2ncnc(N)c2n1,AP,1,1,0,1,0.5750961046618707,0,1,28.808317523813987,, +CSc1sc(-c2cc[nH]n2)c2c1C(=O)NCC2,AP,1,1,1,1,0.8179854204340231,0,0,-0.2927375056585277,, +Cc1ccc2c(c1)/C(=N\C=O)N=N2,AP,1,0,1,1,0.5989251431729292,0,0,-15.396560850845097,, +Nc1cccc2c1C(=O)c1ccccc1C2=O,AP,0,0,0,1,0.5931316338727306,1,1,28.51826501823232,, +Nc1ccc2[nH]nc(-c3cccnc3)c2c1,AP,1,0,0,1,0.6049001299997127,0,1,49.94239726092012,, +NC(=O)/N=c1\s[nH]cc1C(N)=O,AP,1,1,0,1,0.5300480568125762,0,0,-1.3941168494508922,, +Nc1ccc2cc[nH]c2n1,AP,1,1,1,1,0.5658999712435826,1,1,44.52020778964019,6.0,1.0 +CN1C(=O)CCNc2nc(N)ncc21,AP,1,1,0,1,0.5976078544628604,0,0,-11.41389534691602,, +Nc1ncnc2cc(Cl)ccc12,AP,1,1,1,1,0.6718606972163413,1,1,40.1272188121736,0.0,0.0 +N#Cc1cnc(N)cc1N,AP,1,1,0,1,0.5269181380703917,1,1,19.49403412256804,, +Cc1ccc(-c2n[nH]c3ccccc23)cc1S(N)(=O)=O,AP,1,1,0,1,0.7567750574119184,0,1,60.812041260284495,, +N#Cc1ccc(N)nc1,AP,1,1,0,1,0.5415838765407543,1,1,30.350135396515206,, +Nc1cc2c(ccn2C=O)cn1,AP,1,0,0,1,0.6246596491293699,0,1,7.683915519705472,, +Nc1ccc[nH]c1=O,AP,1,1,1,0,0.4918387733795584,1,1,18.89966536180765,, +c1ccc(-c2[nH]nc3ccccc23)cc1,AP,1,1,0,1,0.6326173123272912,0,1,43.17398171460556,, +Cn1c(=O)[nH]c2nc(N)ncc21,AP,1,1,0,1,0.5364775399470826,0,1,14.735482940027186,, +Nc1ncc2ccncc2n1,AP,1,1,0,1,0.5908907457799355,1,1,25.40751299164886,, +NC(=O)Nc1ccn[nH]1,AP,1,1,0,0,0.4905453419261288,0,1,21.67145834079261,, +c1ccc(-c2[nH]nc3ccncc23)cc1,AP,1,1,1,1,0.6480917393206026,0,1,37.76009741112998,, +Nc1cc2ccccc2cn1,AP,1,1,1,1,0.6120847733236583,1,1,30.02573493890959,0.0,0.0 +Nc1nc(N)c2nc[nH]c2n1,AP,1,1,0,0,0.4697309637708927,1,1,38.263490370916216,, +Nc1ncc2c(n1)-n1cccc1CC2,AP,1,1,1,1,0.6659862441089778,0,1,6.674108468520819,, +Nc1nc(O)c2cc[nH]c2n1,AP,1,1,0,1,0.5017634936751659,0,1,24.18259323942948,, +Cc1cc2cnc(N)nc2cn1,AP,1,1,0,1,0.6218419119060887,0,1,16.60233934048488,, +Nc1nc(O)c2c(Cl)c[nH]c2n1,AP,1,1,0,1,0.5677303937116372,0,1,12.528927572612927,, +N#Cc1c[nH]c2nc(N)ncc12,AP,1,1,0,1,0.5819712596762779,0,1,22.260575667583108,, +CNc1nc(N)nc2[nH]cc(C#N)c12,AP,1,1,0,1,0.6025062667104113,0,1,18.255854279057093,, +Sc1ccnc2cc(Cl)ccc12,AP,1,0,0,1,0.6375530156465741,1,1,17.82503901468331,, +Cn1cc(-c2nnc3ccc(S)nn23)cn1,AP,1,0,0,1,0.6307582054359421,0,1,29.13814372781213,, +Nc1n[nH]c2cc[nH]c(=O)c12,AP,1,1,0,0,0.4869580597930594,0,1,21.312923606807168,, +Nc1nccc2[nH]cnc12,AP,1,1,0,1,0.5521636672820287,1,1,21.726361721578986,, +Nc1ncnc2c1C(=O)N=C2,AP,1,1,0,1,0.543878999033033,0,0,-19.562570083902603,, +NC(=O)Nc1sccc1C(N)=O,AP,1,1,0,1,0.6185869036973267,0,1,49.68209828687662,, +Oc1cnccn1,AP,1,1,1,1,0.5008316474747049,1,1,12.476225330459568,0.0,0.0 +CNc1cc(N)nn2c(C(N)=O)cnc12,AP,0,1,0,1,0.6101448975648261,0,1,26.36107454426025,, +CNc1cc(N)nn2c(C=O)cnc12,AP,0,0,0,1,0.6605142821590916,0,1,10.13022636977657,, +CNC(=O)c1cnccc1N,AP,1,1,0,1,0.5943171659196315,1,1,29.100387661073576,, +CNC(=O)c1nnccc1N,AP,1,1,0,1,0.5636652311191135,0,1,19.47845006967108,, +CNc1cc(N)nc2c(C=O)cnn12,AP,1,0,0,1,0.6605142821590915,0,1,10.02616580634805,, +O=C(Nc1cc2cc[nH]c2cn1)C1CC1,AP,1,1,1,1,0.7793109906840083,0,1,63.901565706218925,, +Cn1ccc2cc(NC(N)=O)ncc21,AP,1,1,0,1,0.7053160919719298,0,1,39.05083683518896,, +Nc1cc(C2CCC2)[nH]n1,AP,1,1,1,1,0.6118280272406302,1,1,19.831972108998905,0.0,0.0 +c1ccc2[nH]nnc2c1,AP,1,1,1,1,0.5607362152362961,1,1,36.92621296978984,0.0,0.0 +C[C@@H]1Nc2nc(N)ncc2N(C)C1=O,AP,1,1,0,1,0.5975279988504999,0,0,-12.851859631472523,, +C[C@@H]1C(=O)N(C)c2cnc(N)nc2N1C,AP,1,1,0,1,0.640494613267454,0,0,-4.8274719260656775,, +C[C@H]1C(=O)N(C)c2cnc(N)nc2N1C,AP,1,1,0,1,0.640494613267454,0,0,-4.8274719260656775,, +Nc1ncc2c(n1)NCC(=O)N2,AP,1,1,0,0,0.4780383897214788,0,0,-20.686634028766512,, +Nc1ccc(-c2cc(F)c(O)c(F)c2)cn1,AP,1,1,1,1,0.7779100829015991,0,1,28.110751014611616,, +C#CCN1C(=O)[C@@H](C)Nc2nc(N)ncc21,AP,1,0,0,1,0.6383898510304709,0,0,-6.087377845420491,, +C#CCN1C(=O)[C@@H](C)N(CC)c2nc(N)ncc21,AP,1,0,0,1,0.756029991472245,0,1,3.882207787281496,, +CCCCN1C(=O)[C@@H](C)N(C)c2nc(N)ncc21,AP,1,1,0,1,0.8655685466492592,0,1,10.912920270831972,, +CCCN1C(=O)[C@@H](C)Nc2nc(Nc3cc(F)c(O)c(F)c3)ncc21,AP,1,0,0,1,0.7355763702790068,0,1,19.66670232785689,, +C[C@H]1Nc2nc(N)ncc2N(C)C1=O,AP,1,1,0,1,0.5975279988505,0,0,-12.851859631472523,, +CC(C)(C)c1cc(Nc2ccnc(N)n2)[nH]n1,AP,1,1,0,1,0.7341021304766453,0,1,55.388569232724926,, +O=C1NC(=O)c2c1ccc1[nH]c3ccccc3c21,AP,1,0,0,1,0.5876510920773108,0,1,5.703521920214415,, +Cn1c2ccc(O)cc2c2c3c(ccc21)C(=O)NC3=O,AP,1,0,0,1,0.610559601317007,0,0,-5.290383647989415,, +Cn1cc(Br)c2c3c(ccc21)C(=O)NC3=O,AP,1,0,1,1,0.7477982914214595,0,0,-0.3448601363653965,, +Cn1cc(CCO)c2c3c(ccc21)C(=O)NC3=O,AP,1,0,0,1,0.7596935002782341,0,1,2.972671076887164,, +O=CC1CCNCC1,AP,1,0,1,0,0.4915354247221215,1,0,-22.935827756752712,, +Cc1cc(C)c(/C=C2\C(=O)Nc3ccc(Cl)cc32)[nH]1,AP,1,0,0,1,0.7626543694230666,0,1,35.62739044176795,, +COc1n[nH]c2ncc(-c3c[nH]nn3)cc12,AP,1,1,0,1,0.659018438716395,0,1,15.416343803906193,, +O=C1NCc2ccccc2N1c1c(Cl)cccc1Cl,AP,1,1,0,1,0.8323323309231762,0,1,1.2885539513836166,, +CCNc1ncccn1,AP,1,1,1,1,0.6347304780479304,1,1,37.50614962298098,0.0,0.0 +O=C1CCc2ccccc2N1c1c(Cl)cccc1Cl,AP,1,1,0,1,0.7515993304163293,0,1,23.92496682318901,, +CNC(=O)c1ccccc1,AP,1,1,1,1,0.6122319116423771,1,1,47.82334391425171,0.0,0.0 +CC(C)c1nnc2ccccn12,AP,1,1,1,1,0.6385713929124197,0,1,56.77521898499624,, +Nc1[nH]ncc1C(=O)c1ccccc1,AP,1,1,0,1,0.6941986224695108,0,1,45.07560287975523,, +O=c1cccnn1-c1ccccc1Cl,AP,1,1,1,1,0.7143392898211373,0,1,46.06219415175913,, +O=CN1CCn2cncc2C1,AP,1,0,1,1,0.5236129373274175,1,0,-1.5424661836832263,, +CCNC(=O)c1cn2ncncc2c1C,AP,1,1,1,1,0.7862561410235289,0,1,38.95531575823507,, +Cc1c(C(=O)N[C@@H](C)c2ccccc2)cn2ncncc12,AP,1,1,1,1,0.801692638520589,0,1,82.85525620562963,, +O=Cc1nc(-c2ccc3cccnc3c2)cs1,AP,1,0,0,1,0.646022743558797,0,1,47.431648991359005,, +N#Cc1cccc(NC=O)c1,AP,1,0,1,1,0.6355418915117451,1,1,28.90482945371657,, +CC[C@@H](C)Nc1nccs1,AP,1,1,1,1,0.7262894710418909,0,1,40.08602211335633,, +Nc1nc2ccccc2s1,AP,1,1,1,1,0.6223520348087767,1,1,48.743862824883614,0.0,0.0 +Cc1cccc(-c2nnc(C)o2)c1,AP,1,1,1,1,0.6657044972110279,1,1,53.34028767366128,0.0,0.0 +O=c1cc2cccnn2cn1,AP,1,1,1,1,0.5301698156033264,0,1,30.821464294468107,, +Clc1ccccc1-c1n[nH]c2ncncc12,AP,1,1,1,1,0.6993460925803534,0,1,40.02563541293738,, +c1ncc2cn[nH]c2n1,AP,1,1,1,1,0.5454672838232756,1,1,16.096061713017697,0.0,0.0 +Clc1ccccc1-c1[nH]nc2ccccc12,AP,1,1,0,1,0.6727924866518887,0,1,44.88893018079135,, +Cc1ccccc1-c1n[nH]c2ncncc12,AP,1,1,1,1,0.6702349045302566,0,1,36.52514175393405,, +C[C@@H](CS(C)(=O)=O)Nc1ncc2ccc(=O)n(C)c2n1,AP,1,1,0,1,0.8643136636248655,0,1,53.10973273379619,, +C[C@H](Cn1ncnn1)Nc1ncc2ccc(=O)n(C)c2n1,AP,1,1,0,1,0.7088684304648689,0,1,41.34031828187096,, +c1nn[nH]n1,AP,1,1,1,0,0.434429066558905,0,1,9.60191849235292,, +C[C@@H](CS(C)(=O)=O)Nc1n[nH]c2ncncc12,AP,1,1,0,1,0.8089201947262068,0,1,48.459306109441656,, +C[C@H](CS(C)(=O)=O)Nc1n[nH]c2ncncc12,AP,1,1,0,1,0.8089201947262067,0,1,48.459306109441656,, +c1ncc2c(NC3CCOCC3)n[nH]c2n1,AP,1,1,0,1,0.7858754468251942,0,1,39.93907631390582,, +Nc1ncc2c(n1)NC(=O)NC2,AP,1,1,0,0,0.4914009204750401,0,0,-22.97732467348698,, +Cn1c(=O)ccc2cnn(-c3ccc(F)cc3F)c21,AP,1,1,1,1,0.6718436067139911,0,1,45.84217909291542,, +c1ccc2c(c1)ncn2-c1ncncn1,AP,1,1,0,1,0.5879972723001431,0,1,35.543374237380874,, +Cc1ccc(Br)c(=O)[nH]1,AP,1,1,1,1,0.6559875098992799,1,1,27.68486719816487,0.0,0.0 +NC1=C(C=O)C=[C][N+2](#[O+])[CH]1,AP,1,0,0,0,0.4123574680224621,0,0,-35.546959663961935,, +C[C@H]1CN(C=O)[C@H](C)C[NH2+]1,AP,1,0,1,0,0.4598539461550156,0,0,-20.115086520055595,, +O=C(NCC1CC1)c1cccnc1,AP,1,1,1,1,0.7520064034062304,1,1,81.85531271170248,0.0,0.0 +Fc1cccc(F)c1-n1ncc2cnncc21,AP,1,1,1,1,0.6448622564442238,0,1,28.45220997543016,, +c1ccn2cnnc2c1,AP,1,1,1,1,0.511375604737478,1,1,41.39098284837183,0.0,0.0 +c1ccc(-n2ncc3cncnc32)cc1,AP,1,1,1,1,0.5958421165357399,0,1,38.726112207581,, +CNC(=O)c1ccc[nH]1,AP,1,1,1,1,0.5579656799816205,1,1,36.91858161233226,0.0,0.0 +Cc1c(C(N)=O)cn2ncncc12,AP,1,1,0,1,0.6710390832770572,0,1,25.11588421126255,, +[O+]#[N+2]1[C]C=c2cccnc2=C1c1c(Cl)cccc1Cl,AP,1,0,1,1,0.7440262294045414,0,0,-3.5348319542503304,, +Nc1ccnn1-c1ccccc1,AP,1,1,1,1,0.6840470334583565,1,1,33.489898925124386,0.0,0.0 +O=C1Nc2ccccc2C12CCCC2,AP,1,1,1,1,0.6637408316499351,1,1,12.263153398003272,0.0,0.0 +O=c1[nH]cncc1Cl,AP,1,1,1,1,0.5534895072866205,1,1,20.05135239392169,0.0,0.0 +CC(C)(C)c1nnc2ccccn12,AP,1,1,1,1,0.6128925684898552,0,1,46.21843772231266,, +Cc1c(C=O)cn2ncncc12,AP,1,0,1,1,0.5823299855279711,0,1,11.554627406648144,, +CCn1c(=O)ccc2nncn21,AP,1,1,1,1,0.5915475769339376,0,1,20.229497612729887,, +O=C1CCCCc2ccccc21,AP,1,1,1,1,0.5330021470541094,1,1,30.415166109462994,0.0,0.0 +O=C1c2ccccc2CCc2ccccc21,AP,1,1,0,1,0.6500625527750792,1,1,25.26501608325013,, +Clc1ccccc1-c1cccs1,AP,1,1,0,1,0.6422497810831693,0,1,50.56295654259835,, +Clc1ccccc1-c1nccs1,AP,1,1,0,1,0.679309743765056,0,1,39.01786719191888,, +O=Cn1ccc2ccccc21,AP,1,0,1,1,0.5593843107831337,1,1,22.51550082419497,, +O=C1c2ccccc2COc2ccccc21,AP,1,1,1,1,0.6679444805962834,1,1,4.792131763251,0.0,0.0 +c1coc(-c2nc[nH]n2)c1,AP,1,1,1,1,0.6357138696248271,0,1,35.967668083590844,, +Oc1cccc(-c2nnc[nH]2)c1,AP,1,1,0,1,0.6596467511361087,1,1,13.605905874704392,, +Cn1c(=O)[nH]c2cccnc21,AP,1,1,1,1,0.5837912047653451,1,1,34.099043619687166,0.0,0.0 +CC(C)(C)n1c(=O)[nH]c2cccnc21,AP,1,1,1,1,0.6853095606027975,0,1,34.116476187939895,, +CCc1cncnc1,AP,1,1,1,1,0.5367952647550015,1,1,27.979379641942216,0.0,0.0 +c1ccc2nc3c(cc2c1)CCCCC3,AP,1,1,0,1,0.5888975508332032,0,1,68.82351216190206,, +C[C@H]1CCc2nc3ccccc3cc2C1,AP,1,1,0,1,0.6307462578942189,0,1,41.39803099122104,, +NC(=O)c1cccc2cncnc12,AP,1,1,0,1,0.6906322102932744,0,1,36.96274222555806,, +O=Cc1cccnc1,FP,1,0,1,1,0.498749165497561,1,1,28.73541537756365,, +CC(C)c1nncs1,FP,1,1,1,1,0.5745089233883138,0,1,19.42170443486174,, +[NH3+]C1CC[NH2+]CC1,FP,1,1,1,0,0.3536483022840009,0,1,13.24673951804116,, +CC(C)n1ncnn1,FP,1,1,1,1,0.5228252035613613,0,1,11.669641421911289,, +C[NH+]1CCC([NH3+])CC1,FP,1,1,1,0,0.363505510809136,0,1,18.83503890823346,, +Sc1ccccc1,FP,1,0,1,0,0.4849033405149622,1,1,1.2335730402609912,, +c1ccccc1,FP,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +CNC(=O)c1ccccc1,FP,1,1,1,1,0.6122319116423771,1,1,47.82334391425171,384.0,1.0 +NC1=NCC(=O)N1,FP,1,1,0,0,0.3850209962040656,1,0,-13.045399118405802,, +CCOc1ccccc1,FP,1,1,1,1,0.5832071586937729,1,1,46.036312668873705,678.0,1.0 +CCC(C)(C)OC,FP,1,1,1,1,0.5164549742275013,1,1,19.70722596902052,8.0,1.0 +C1CSCS1,FP,1,1,1,0,0.4578774484038774,0,0,-1.0742667830060997,, +OC1CCC1,FP,1,1,1,0,0.4422992650392228,0,1,7.548141006386745,, +C[C@H]1CCCO1,FP,1,1,1,0,0.4299172783206054,0,1,1.3230583783154766,, +N#CCc1ccc(N)cc1,FP,0,0,1,1,0.5859015580629269,1,1,38.8959703022248,, +Cc1nnc(-c2ccccc2)[nH]1,FP,1,1,1,1,0.6886539877002524,1,1,23.87434480487445,0.0,0.0 +c1nc2c([nH]1)CCNC2,FP,1,1,1,1,0.5116758320036295,1,0,-3.0990941693515714,, +[NH3+][C@@H]1CCNC1,FP,1,1,1,0,0.3741982167740488,0,0,-13.44890036983314,, +[NH3+][C@]1(CNC(=O)c2ccc(F)cc2F)CCNC1,FP,1,1,0,1,0.6928296487919946,0,1,44.60480494195854,, +[NH3+]C[C@H](Cc1ccc(Cl)cc1)C(=O)N1CCNCC1,FP,1,1,0,1,0.8272371822855681,0,1,65.2978800748156,, +[NH3+][C@H](Cc1c[nH]c2ccccc12)C(=O)N1CCNCC1,FP,1,1,0,1,0.7213030566056785,0,1,79.79909354950716,, +Cc1cccc(C)c1S(=O)(=O)NC[C@@H](O)C[N@H+]1CCC[C@@]2(CCNC2)C1,FP,1,1,0,1,0.5396887539463482,0,1,46.047698573866654,, +CC(C)[NH2+]C[C@@H](C(=O)N1CCNCC1)c1ccc(Cl)cc1,FP,1,1,0,1,0.8460968770257169,0,1,64.99134412732948,, +[NH3+]C1(C(=O)N[C@@H](CCO)c2ccc(Cl)cc2)CCNCC1,FP,1,1,0,1,0.6279488484810861,0,1,53.9261919427514,, +c1cn(CC[NH+]2CCCC2)c(C2CCNCC2)n1,FP,1,1,0,1,0.7893393003547198,0,1,41.39168204964606,, +NCC[NH2+]CCOCc1ccc(Cl)cc1,FP,1,0,0,1,0.6646071846129895,0,1,65.37551115616274,, +[NH3+][C@H](COc1cccnc1)Cc1c[nH]c2ccccc12,FP,1,1,0,1,0.7406726119765737,0,1,91.54168432329396,, +Clc1ccc(C2(c3ccccc3)CC[NH2+]CC2)cc1,FP,1,1,1,1,0.8656394299295966,0,1,26.68969115330628,, +[NH3+]C1(C(=O)NCc2ccc(Cl)cc2)CCNCC1,FP,1,1,0,1,0.7390918779466242,0,1,48.49315333120475,, +CC(C)(C)c1ccc(CC2([NH3+])CCNCC2)cc1,FP,1,1,1,1,0.8229415242735454,0,1,38.387432623108,, +OC[C@H]1CCC[NH2+]C1,FP,1,1,1,0,0.450547061690658,0,1,18.46439636975449,, +NC[C@@H](NC(=O)c1cccs1)c1ccccc1,FP,1,1,0,1,0.8684064176613064,0,1,67.25210936074205,, +[NH3+][C@@H](CO)Cc1ccccc1,FP,1,1,1,1,0.6204987915458686,0,1,44.44730244977882,, +[NH3+]CC[C@H](O)c1ccccc1,FP,1,1,1,1,0.6448349763403243,0,1,51.31194040313417,, +CC(C)S(=O)(=O)c1ccccc1,FP,1,1,1,1,0.702790203042823,1,1,56.79854180476137,438.0,1.0 +CCc1c(Cl)ccc(F)c1Cl,FP,1,0,0,1,0.5962160399614724,1,1,28.03091955136407,, +CCc1cc(F)ccc1-n1nccn1,FP,1,1,1,1,0.7261309901010432,0,1,32.572924194381,, +CCc1cc(F)ccc1N1NC=CN1,FP,1,1,1,1,0.748039182839792,0,1,10.224592069990392,, +CCc1cc(F)ccc1C(=O)NC,FP,1,1,1,1,0.7394728230521943,0,1,50.04679191289566,, +CCc1cc(F)ccc1OC,FP,1,1,1,1,0.6351538264099348,1,1,47.60499159815773,0.0,0.0 +C1CCNCC1,FP,1,1,1,0,0.4576362279207808,1,0,-6.105814886556153,, +C=CCN,FP,1,0,1,0,0.4252403033552385,1,0,-6.902959258499424,, +OCC1CCCCC1,FP,1,1,1,1,0.5481513424706516,1,1,23.658602976143,0.0,0.0 +COC(=O)C1CCCCC1,FP,1,1,1,1,0.5211287604023573,0,1,39.55551792220229,, +CC(C)NC(=O)C1CCCCC1,FP,1,1,1,1,0.6734912969271588,0,1,53.72701084817781,, +CC(C)S(=O)(=O)c1ccccc1N,FP,1,0,0,1,0.733254543192253,1,1,42.08858418293031,, +Cc1cc(F)cc(F)c1,FP,1,1,1,1,0.5024152947188044,1,1,29.95617289910897,186.0,1.0 +CC(C)S(=O)(=O)c1ccn(C)n1,FP,1,1,1,1,0.6826585251624514,0,1,32.99559705133318,, +CCc1cc(F)ccc1C(=O)N(C)C,FP,1,1,1,1,0.7072158288879655,0,1,53.49788092219208,, +C[C@H](N)c1ccc(F)cn1,FP,1,1,1,1,0.6369806095515739,1,1,23.419962157239564,0.0,0.0 +C[C@H](N)c1ccc(F)cc1F,FP,1,1,1,1,0.6623393438215724,1,1,29.56740598306639,0.0,0.0 +CP(C)(=O)c1ccccc1,FP,1,1,1,1,0.564701513545773,1,1,35.58754206301331,4.0,1.0 +C[NH2+]C,FP,1,1,1,0,0.3530591111578336,1,1,10.064078188343409,, +[NH3+]CC1(c2ccc(F)cc2F)CC1,FP,1,1,1,1,0.7158211412481106,0,1,30.140460022172583,, +Fc1ccc(C2CC2)c(F)c1,FP,1,1,1,1,0.5830544834615442,0,1,15.092398226714495,, +CN(C)/C=C\C=O,FP,1,0,1,0,0.3653736247261703,0,0,-6.954041295371264,, +c1ccc2ncccc2c1,FP,1,1,1,1,0.5311915584041306,1,1,50.88665479563308,724.0,1.0 +CC=O,FP,1,0,1,0,0.355007613393232,1,1,1.755472309128927,, +C1CCOCC1,FP,1,1,1,0,0.4299400218016567,1,1,10.240293193110956,, +CC1CC1,FP,1,1,1,0,0.3934207493755274,1,1,7.224544811263611,, +c1cn[nH]c1,FP,1,1,1,0,0.4683433019217652,1,1,7.008377370358167,, +CCn1cccn1,FP,1,1,1,1,0.5076276941645591,1,1,29.56754245919666,574.0,1.0 +O=C(C1CC1)N1CCNCC1,FP,1,1,1,1,0.5683751726680213,0,1,19.73805247797557,, +OC1CCOCC1,FP,1,1,1,0,0.4717284353080081,1,1,9.242578997003957,, +c1cc2n(n1)CCOC2,FP,1,1,1,1,0.500650515596557,0,0,-11.703179738657845,, +N#CCNC(=O)c1ccccc1,FP,1,0,1,1,0.6543818446676948,1,1,61.560249561587206,, +c1ccsc1,FP,1,1,1,0,0.4489266460144336,1,1,9.194709627715325,, +FC(F)(F)c1ccccc1,FP,1,1,1,1,0.5274607455911079,1,1,36.437699073802,820.0,1.0 +O=Cc1ccc(F)cc1,FP,1,0,1,1,0.5198989180006277,1,1,26.979529838690038,, +Nc1ccccc1,FP,1,0,1,0,0.4800754634455598,1,1,23.741301320833813,, +NC1CC1,FP,1,1,1,0,0.4192205084405548,1,0,-5.652930360202207,, +Clc1ccc(C[NH+]2CCNCC2)cc1,FP,1,1,1,1,0.7210675679439489,0,1,52.99844535030517,, +Cc1cc(C[NH+]2CCNCC2)no1,FP,1,1,1,1,0.6144712972847869,0,1,39.18542866634541,, +c1ccncc1,FP,1,1,1,0,0.4531479654842905,1,1,20.589274983144826,, +Cc1ccccc1,FP,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +CC[C@@H](NC=O)c1ccccc1,FP,1,0,0,1,0.6745347635353491,1,1,32.48818103565653,, +O=CNc1ccccc1,FP,1,0,1,1,0.5860752448837414,1,1,21.504630601388737,, +O=C(Nc1ccccc1Cl)c1ccccc1,FP,1,1,0,1,0.8409326520489111,0,1,98.73143634422593,, +COc1ccc(Nc2ncnc(N)n2)cc1OC,FP,1,1,0,1,0.8379424876207479,0,1,82.29034808174286,, +C1CCCCCC1,FP,1,1,1,0,0.4085406794096017,0,1,15.195946331284295,, +c1ccc(-c2ccccc2)cc1,FP,1,1,0,1,0.5905018880213778,1,1,32.425588278888924,, +FC(F)(F)Oc1ccccc1,FP,1,1,1,1,0.6161869793338142,1,1,45.07593339309071,894.0,1.0 +O=C([O-])c1ccccc1,FP,1,1,1,1,0.5263180674240564,1,1,38.39787175917415,16.0,1.0 +CC(=O)Nc1cc[nH+]cc1F,FP,1,1,1,1,0.633575481292892,0,1,41.7349819198729,, +COc1ccccc1,FP,1,1,1,1,0.5316253154127668,1,1,34.591252979338954,0.0,0.0 +CC(=O)NC[C@@H]1CCNC1,FP,1,1,1,1,0.5570810694148147,0,0,-4.422642572373652,, +NC(=O)c1ccccc1,FP,1,1,1,1,0.5859367170668044,1,1,37.153131146312816,772.0,1.0 +NC=O,FP,1,0,1,0,0.3523255130205271,1,0,-3.29609306080239,, +C1CCCC1,FP,1,1,1,0,0.4083619292230275,1,1,13.188394633412608,, +NC(=O)Nc1ccccc1,FP,1,1,1,1,0.5979442528752776,1,1,47.72571782063407,4.0,1.0 +CCN,FP,1,1,1,0,0.4062370953898832,1,1,5.092217189432304,, +c1ccc(Cn2cccn2)cc1,FP,1,1,1,1,0.6526244921045413,1,1,69.24573788377222,618.0,1.0 +Cc1cc(Cn2cccn2)no1,FP,1,1,1,1,0.6683148921283735,0,1,56.11652998848849,, +O=Cc1cccc(Cn2cccn2)c1,FP,1,0,1,1,0.6842253899135656,1,1,58.63366771341766,, +Fc1cccc(F)c1,FP,1,1,1,0,0.4832965029562796,1,1,27.929408511710964,, +Fc1c(Cl)cccc1OC1CCCCC1,FP,1,1,0,1,0.7376305508450473,0,1,54.16557376144768,, +C[NH2+]C[C@@H]1Oc2ccc(N)cc2C(=O)N([C@@H](C)CO)C[C@@H]1C,FP,1,0,0,1,0.6649172998184153,0,0,-9.199545202884376,, +O=C1CCCc2ccccc2N1,FP,1,1,1,1,0.6188094761883464,0,1,17.310333374249996,, +CO[C@@H](C=O)c1ccccc1,FP,1,0,1,1,0.6112108651827414,0,1,11.760559891254008,, +C[C@H]1CN([C@@H](C)CO)C(=O)c2cc(N)ccc2O[C@H]1C[NH+](C)C,FP,1,0,0,1,0.6611671412102725,0,0,-4.152260639866606,, +O=CN[C@@H]1C[NH2+]CCC[C@H]1OC=O,FP,1,0,0,1,0.4999528272624085,0,0,-25.290294949758906,, +O=CN[C@@H]1C[NH2+]CCC[C@H]1OC(=O)c1cc(O)cc(O)c1,FP,1,0,0,0,0.4244405879975615,0,1,12.175705452895924,, +OC[C@@H]1C[NH2+]CC[C@H]1c1ccc(F)cc1,FP,1,1,1,1,0.7318789482252496,0,1,32.195746350609404,, +CC1=C(C(N)=O)[C@H](c2ccc(F)cc2)NC(=O)N1,FP,1,1,0,1,0.7283418922200225,0,1,45.71335702252869,, +Cn1cnnc1CNc1ccccc1,FP,1,1,1,1,0.791876034563629,0,1,64.71213091693953,, +NCc1nnc[nH]1,FP,1,1,0,0,0.4859395435113217,1,0,-8.798966514038892,, +C[C@@H]1NC(=O)N[C@@H](c2ccc(F)cc2)[C@@H]1C(N)=O,FP,1,1,0,1,0.7213987402376195,0,0,-5.274788345072995,, +Cn1cnc2ccccc2c1=O,FP,1,1,1,1,0.5743423431787907,1,1,49.13022444967932,150.0,1.0 +O=c1c2ccccc2ncn1Cc1ccccc1,FP,1,1,1,1,0.684656436160499,0,1,95.58606942988966,, +O=CNCCc1ccc(Cl)cc1,FP,1,0,0,1,0.5581212105394628,0,1,30.801341587067984,, +O=CN[C@H]1CCC[NH2+]C1,FP,1,0,1,0,0.4359679928403175,0,0,-1.0066920571088425,, +CCS(=O)(=O)N1CC(CC#N)(n2cccn2)C1,FP,1,1,0,1,0.7662150571592043,0,1,21.88153005792639,, +CN(C)S(=O)(=O)Nc1ccccc1,FP,1,1,1,1,0.7878940906959789,0,1,53.56900791706689,, +O=S(=O)(CC1CC1)Nc1ccccc1,FP,1,1,0,1,0.825594903339889,0,1,52.16758781787648,, +O=S(=O)(Nc1ccccc1)C1CC1,FP,1,1,1,1,0.7994370357511312,0,1,48.35970737445151,, +c1ccc(-c2ncc[nH]2)cc1,FP,1,1,1,1,0.6517443639878626,1,1,45.29854932914838,36.0,1.0 +c1cnn(C2CC[NH2+]CC2)c1,FP,1,1,1,1,0.5929720544521276,0,1,32.769425017297216,, +COC=O,FP,1,0,1,0,0.3912258247330487,1,0,-4.480899195559704,, +c1cncnc1,FP,1,1,1,0,0.4525571430979931,1,1,20.650117467972965,, +CCCO,FP,1,1,1,0,0.4637839830239684,1,1,11.187956068555891,, +CCOC=O,FP,1,0,1,0,0.4365645501026903,1,0,-6.824448569140429,, +c1csc(C2CC[NH+](C3CC3)CC2)n1,FP,1,1,1,1,0.7709139781289055,0,1,33.72939119626431,, +NCc1ccco1,FP,1,1,1,1,0.5609138019516413,1,1,14.179657892869956,0.0,0.0 +OCCn1cccn1,FP,1,1,1,1,0.5786257845878836,1,1,32.75223805363652,510.0,1.0 +CC(C)(C)c1nccs1,FP,1,1,1,1,0.5404830250412251,1,1,33.60764188607813,42.0,1.0 +C1COCCN1,FP,1,1,1,0,0.4340574553786442,1,0,-6.969065840520294,, +CN(c1ccc2[nH]ccc2n1)C1C=CNC=C1,FP,1,1,1,1,0.8227994093315891,0,1,7.464831281678688,, +c1csc([C@@H]2COCCN2)n1,FP,1,1,1,1,0.6767486048181913,0,0,-13.26370899962107,, +CCC,FP,1,1,1,0,0.3854706587740357,1,1,11.292091326780156,, +C[SH](=O)=O,FP,1,0,1,0,0.3874977460505596,1,0,-9.401513416402466,, +Cc1ccccc1NC(=O)c1ccccc1,FP,1,1,0,1,0.8112788228538133,1,1,95.25867579507909,, +O=C(Nc1ccccc1)c1ccccc1,FP,1,1,1,1,0.7874913866928778,1,1,89.66426568312043,378.0,1.0 +Cc1ccccc1NC(=O)c1cc2c(s1)CCCC2,FP,1,1,0,1,0.8715930062198782,0,1,127.7686049489219,, +Cc1ccccc1-n1cnc2ccccc2c1=O,FP,1,1,1,1,0.6507660868500094,0,1,67.7794666938495,, +O=c1c2c(F)cccc2ccn1-c1ccccc1CO,FP,1,1,1,1,0.7767306602458413,0,1,45.00139787667838,, +O=C1c2ccccc2CCN1c1ccccc1CO,FP,1,1,1,1,0.8923294888971464,0,1,18.376606546592683,, +O=C1c2c(F)cccc2CCN1c1ccccc1CO,FP,1,1,1,1,0.9114303440708188,0,1,9.10985647815495,, +Cc1cccc(F)c1NC(=O)c1cc2ccccc2s1,FP,1,1,0,1,0.732120394946926,0,1,104.74834744665304,, +Cc1cc2cn[nH]c2cc1-c1cccc2c(N)cnnc12,FP,1,1,0,1,0.5591568422466839,0,1,18.86554594755488,, +Cc1ccncc1-c1cccc2c(N)cnnc12,FP,1,1,0,1,0.7048938858300419,0,1,14.442362850700162,, +Clc1ccccc1,FP,1,1,1,0,0.4833833263681997,1,1,28.62182911813474,, +C[C@H]1CCCCN1,FP,1,1,1,0,0.4800655928455155,1,0,-24.94050251060132,, +O=c1c2ccccc2ncn1-c1ccccc1F,FP,1,1,1,1,0.6547380213924899,0,1,65.27558655725097,, +O=c1c2c(F)cccc2cnn1-c1ncccc1CO,FP,1,1,0,1,0.7649033337823933,0,1,39.48468281078246,, +Cc1ccccc1NC=O,FP,1,0,1,1,0.612460094735543,1,1,24.892868836669997,, +Cc1ccccc1-n1c(=O)c2cccc(F)c2n(C)c1=O,FP,1,1,1,1,0.6868992112581402,0,1,40.71452923723792,, +CNC(=O)[C@H]1Cc2c([nH]c3ccccc23)CN1C(=O)c1occc1C,FP,0,1,0,1,0.7535132713934308,0,1,76.94204218025295,, +CC1(C)Cc2cc3n(c2C1)CCN(c1ncccc1CO)C3=O,FP,1,1,0,1,0.924426916265584,0,1,19.93472199389593,, +CC1(C)Cc2sc3c(c2C1)CCN(c1ccccc1CO)C3=O,FP,1,1,0,1,0.915915374800774,0,1,3.997872796626348,, +O=C(Nc1ccccc1C[O-])c1ccccc1,FP,1,1,1,1,0.8671549795273803,0,1,67.1534041301223,, +O=C(Nc1ccccc1CCO)c1cc2ccccc2s1,FP,1,1,0,1,0.7713609604108297,0,1,118.55816311538946,, +O=C(Nc1ccccc1C[O-])c1cc2ccccc2s1,FP,1,1,0,1,0.8025106282505765,0,1,98.96648482610227,, +O=CNc1c(F)cccc1F,FP,1,0,1,1,0.6478412423303435,1,1,20.378812107897787,, +C1CCCCC1,FP,1,1,1,0,0.4223161868609467,1,1,13.188394633412608,, +C=CC(=O)N[C@H]1CCNC1,FP,1,0,1,1,0.5146929105217348,0,0,-20.746223211925464,, +OC[C@@H]1CCCCO1,FP,1,1,1,1,0.5417292126902965,0,1,17.08337294229077,, +O=c1c2c(F)cccc2cnn1-c1ccccc1CO,FP,1,1,1,1,0.7747268195690588,0,1,38.20402041841517,, +O=c1[nH]ncc2cccc(F)c12,FP,1,1,1,1,0.6323834437927361,1,1,16.088620228477804,0.0,0.0 +c1ccc2c(c1)CCC2,FP,1,1,1,0,0.4894769505807335,1,1,30.01428437193878,, +O=CNc1cccc([C@@H]2CNCC[N@H+]2CCO)c1,FP,1,0,0,1,0.4951777894746941,0,0,-12.682567992469096,, +C=CC(=O)N1CCCCC1,FP,1,0,1,1,0.4995058179831261,1,1,17.831526814635005,, +O=C(NCc1ccccc1)c1ccccc1,FP,1,1,1,1,0.8303445311416687,0,1,99.05842132261358,, +Cc1ccccc1CNC(=O)N1CCC1,FP,1,1,1,1,0.7837925777087931,0,1,96.2953804238563,, +OC1CC1,FP,1,1,1,0,0.4198105601545082,1,1,5.901346096732606,, +O=c1c2c(F)cccc2cnn1-c1ncccc1C[O-],FP,1,1,0,1,0.6896142167475504,0,1,24.0890796489783,, +O=C(NCc1ccccc1F)c1ncno1,FP,1,1,0,1,0.8433253894009233,0,1,60.20389190734597,, +O=C(N[C@H]1CCCc2ccccc21)c1ncno1,FP,1,1,0,1,0.8739435940187462,0,1,54.53385959012119,, +O=C(N[C@@H]1CCCc2ccccc21)c1ncno1,FP,1,1,0,1,0.8739435940187462,0,1,54.53385959012119,, +O=C(N[C@@H]1CCCCc2ccccc21)c1ncno1,FP,1,1,0,1,0.8378571367403583,0,1,66.60234391249698,, +O=C(N[C@@H]1CCCCc2ccccc21)N1CCC1,FP,1,1,1,1,0.7569071281416186,0,1,96.53557221278405,, +O=C(N[C@@H]1CC[N@@H+](C2COC2)Cc2ccccc21)c1c[nH]nn1,FP,1,1,0,1,0.7105824659541383,0,1,25.293977812440527,, +N[C@@H](C(=O)N[C@@H]1CCCNC1)C1CC1,FP,1,1,0,1,0.576079443474975,0,0,-11.355753136432677,, +CCNC(=O)CN,FP,1,1,1,0,0.4735345607757159,1,1,6.578339388611354,, +N[C@@H]1CCCN([C@@H]2CCCNC2)C1=O,FP,1,1,1,1,0.6059275042315866,0,0,-50.522631521271634,, +NCC(=O)N[C@@H]1CCCNC1,FP,1,1,0,0,0.4721163400380606,0,0,-20.516644490269474,, +NCC(=O)N1CCCCCC1,FP,1,1,1,1,0.5950653599747266,0,1,23.436560597468542,, +CCC(F)(F)F,FP,1,1,1,0,0.4340813746165561,1,1,13.134475164436646,, +NCC(=O)N1CCCCC1,FP,1,1,1,1,0.5579968855846321,0,1,16.034219955264255,, +COc1cncnc1,FP,1,1,1,1,0.5271940515548245,1,1,26.64740103217025,232.0,1.0 +Clc1ccc(Cl)cc1,FP,1,1,1,1,0.5285863388321962,1,1,22.63095413714705,854.0,1.0 +Cc1ccc(Cl)c(Cl)c1,FP,1,1,0,1,0.5470499369527473,0,1,41.63688673920158,, +O=Cc1c(F)cccc1F,FP,1,0,1,1,0.5459580421934952,1,1,24.333340010019825,, +CC1CCCCC1,FP,1,1,1,0,0.4365695320696273,1,1,16.665415543210564,, +C[N@H+]1CCC[C@@H](O)C1,FP,1,1,1,0,0.401943408243075,0,1,5.531760746116798,, +N[C@@H]1CCCC[C@@H]1[NH3+],FP,1,1,1,0,0.4390616699600091,1,0,-9.70393480190246,, +OCC[C@@H]1CCCCN1,FP,1,1,1,1,0.5691282932561771,1,0,-27.951626329860705,, +O=C1NCCc2[nH]ccc21,FP,1,1,1,1,0.5290453681327217,0,0,-12.558182788290296,, +C1CCNC1,FP,1,1,1,0,0.4347944578283113,1,0,-6.026803828991243,, +N[C@H]1CC[C@H]([NH3+])CC1,FP,1,1,1,0,0.4390616699600091,1,0,-4.382634076712126,, +O=C1c2ccccc2[C@H]2CCCN12,FP,1,1,1,1,0.5870799297972104,0,0,-7.763701400712826,, +O=C1c2ccccc2[C@@H]2CCCN12,FP,1,1,1,1,0.5870799297972104,0,0,-7.763701400712826,, +CC(C)C(=O)CO,FP,1,1,1,1,0.5405783571000348,1,1,14.047413811953977,0.0,0.0 +Nc1c(F)cccc1F,FP,1,0,1,1,0.5281563260400823,1,1,22.235899671970248,, +Nc1cc(Cl)ccc1Cl,FP,1,0,1,1,0.5825188519698148,1,1,32.74483105665073,, +Cc1cccc(Br)c1,FP,1,1,1,1,0.5624635581750883,1,1,39.751898338796,448.0,1.0 +O=C1CC[C@H](CO)N1,FP,1,1,1,0,0.4724553175818497,1,0,-7.95323937840643,, +c1cocn1,FP,1,1,1,0,0.4472609802175263,1,1,13.048396986956336,, +Cc1cn2ccccc2n1,FP,1,1,1,1,0.5323234365454219,1,1,49.30576006950656,270.0,1.0 +c1ccn2ccnc2c1,FP,1,1,1,1,0.509815139625202,1,1,45.08346027343898,408.0,1.0 +NCC[NH3+],FP,1,1,1,0,0.3685625328828814,1,0,-2.496546887455285,, +Clc1ccc(Cl)s1,FP,1,1,0,1,0.536790692978298,1,1,19.935641600053252,, +Cc1csc(C)n1,FP,1,1,1,1,0.4992737594689495,1,1,23.681947482183084,218.0,1.0 +CNc1nc(C)cs1,FP,1,1,1,1,0.6195154332982648,1,1,31.34987069960976,56.0,1.0 +Cc1csc(N)n1,FP,1,1,1,1,0.5468471344875042,1,1,21.37588362787605,104.0,1.0 +C[C@@H](O)[C@H](N)[C@H](O)C#Cc1c(F)ccc2c1CC(=O)N2,FP,1,0,0,1,0.5605363002878282,0,0,-25.68567359136651,, +c1cnn2ccnc2c1,FP,1,1,1,1,0.511375604737478,1,1,40.334406154000206,204.0,1.0 +Nc1cc(C(F)(F)F)ccc1F,FP,1,0,1,0,0.4799755219921903,1,1,38.78608767411046,, +NCCO,FP,1,1,1,0,0.4055784163621654,1,0,-4.218012676083529,, +Clc1cccc(Cl)c1,FP,1,1,1,1,0.5285863388321962,1,1,30.04532860234687,798.0,1.0 +CC[C@@H](N)CO,FP,1,1,1,0,0.488296008665038,1,0,-2.894093828165283,, +C[NH+]1CCN(NC(N)=O)CC1,FP,1,1,0,0,0.3927067882190161,0,1,24.26784796826525,, +CC(C)(C)N,FP,1,1,1,0,0.4494698079729435,1,1,7.616816868207788,, +Clc1cc(Cl)cc(Cl)c1,FP,1,1,0,1,0.5730891206161023,0,1,20.870461317644217,, +NC(=O)C[NH+]1CCC(C[NH3+])CC1,FP,1,1,0,0,0.4181205428949034,0,1,43.512678554610495,, +OC1CCNCC1,FP,1,1,1,0,0.440014405976282,1,0,-11.8182543714395,, +Cn1cncn1,FP,1,1,1,0,0.435136594916293,1,1,16.762729620290422,, +c1ccc(Cn2cncn2)cc1,FP,1,1,1,1,0.6613641361270439,1,1,66.53491202466596,24.0,1.0 +Brc1ccccc1,FP,1,1,1,1,0.5420450088370231,1,1,31.57617417851588,892.0,1.0 +NC1CCCCC1,FP,1,1,1,0,0.4860844589993981,1,0,-2.072389286654309,, +OC1CCCCC1,FP,1,1,1,0,0.4863248839438126,1,1,13.246532692241212,, +O=S1(=O)CCCN1,FP,1,1,1,0,0.4608019592530779,1,0,-23.54714561201156,, +CC(C)=CCN,FP,1,0,1,0,0.4704595264719073,1,0,-7.1204556799155725,, +COc1ccc(F)c(F)c1C=O,FP,1,0,1,1,0.6354064453413067,1,1,22.14378106584299,, +CCc1ccccc1Cl,FP,1,1,1,1,0.5628991883514108,1,1,40.23594086663108,0.0,0.0 +Cc1ccc(Cl)cc1,FP,1,1,1,1,0.5015016660067645,1,1,32.3300410774607,854.0,1.0 +Clc1ccccc1Cl,FP,1,1,1,1,0.5285863388321962,0,1,26.91467870806813,, +NCc1cccnc1,FP,1,1,1,1,0.5698981587218371,1,1,18.23653971334161,334.0,1.0 +Fc1ccccc1,FP,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +[H]/N=C1\NC(=O)CS1,FP,1,0,1,0,0.4595902452065177,0,0,-15.582216331446991,, +O=C1CSC(=O)N1,FP,1,0,1,0,0.4842784059412482,1,0,-14.359637922110805,, +Cc1ccccn1,FP,1,1,1,0,0.4719983679006756,1,1,31.845673298482048,, +O=Cc1ccccc1,FP,1,0,1,1,0.4956362681365689,1,1,24.88091922031289,, +O=Cc1c(Cl)cccc1Cl,FP,1,0,1,1,0.5993581530925117,1,1,27.067668761834355,, +Cc1ncc[nH]1,FP,1,1,1,0,0.4904468907838006,1,1,15.06078632335974,, +C[NH+]1CCCCC1,FP,1,1,1,0,0.4255306890148219,0,1,16.72682810634307,, +Cc1csc(=O)n1C,FP,1,1,1,1,0.5064842258135956,1,1,17.92746089767832,0.0,0.0 +Nc1ncccn1,FP,1,1,1,1,0.4953127132437441,1,1,22.21663536592597,230.0,1.0 +c1cc2ccc(N3CCOCC3)nn2n1,FP,1,1,0,1,0.6806303736889654,0,1,36.44150147370143,, +c1cnn2nccc2c1,FP,1,1,1,1,0.511375604737478,1,1,24.019652769482526,230.0,1.0 +C[NH+]1CCNCC1,FP,1,1,1,0,0.364375226834609,0,0,-4.668717630665617,, +CC(N)=O,FP,1,1,1,0,0.4010309227553837,1,1,12.359596435676767,, +N[C@@H](CO)[C@H](O)CO,FP,1,1,0,0,0.3367841700296275,1,0,-3.781213128356749,, +Nc1ccc([N+](=O)[O-])cc1,FP,0,0,0,0,0.3595436090070912,1,1,31.279621343794528,, +CCC(C)C,FP,1,1,1,0,0.4444408351269941,1,1,15.851670748109818,, +NS(=O)(=O)c1ccccc1,FP,1,1,0,1,0.6383637832668871,1,1,38.91719361421677,, +O=[N+]([O-])c1ccccc1,FP,1,0,1,0,0.4200757446342405,1,1,33.60355623305589,, +NCCCO,FP,1,1,1,0,0.4568593783745419,1,0,-7.382139276856634,, +COCCCNc1cc(N)ccc1[N+](=O)[O-],FP,1,0,0,0,0.3320914992414838,0,1,72.74433394855673,, +NCCC[NH3+],FP,1,1,1,0,0.4154787105409139,1,0,-5.446707833249521,, +Nc1ccc([N+2](#[O+])[O-])cc1,FP,0,0,0,0,0.335929960610199,0,1,17.73628174292481,, +Nc1ccc([N+](=O)[O-])c(N2CCOCC2)c1,FP,1,0,0,0,0.459457301610211,0,1,44.30845223093057,, +[NH3+]C1CCNCC1,FP,1,1,1,0,0.4026375405755626,1,0,-5.93921008466843,, +CC(C)C,FP,1,1,1,0,0.3971180036971562,1,1,11.35036548783313,, +c1ccc2ccccc2c1,FP,1,1,1,1,0.5114311994891171,1,1,27.06630754652044,802.0,1.0 +[O+]#[N+2]([O-])c1ccccc1,FP,1,0,1,0,0.3844532461226332,0,1,21.583719403041425,, +CCCNc1cc(N)ccc1[N+](=O)[O-],FP,1,0,0,0,0.4370730224954443,0,1,55.408729769825065,, +COc1cccc(C=O)c1,FP,1,0,1,1,0.575816465118545,1,1,46.53532482615962,, +NCC[NH+]1CCNCC1,FP,1,1,1,0,0.3846205240194139,0,0,-16.10999643691032,, +CCCCCCN,FP,1,0,0,1,0.5337740881212314,1,0,-5.552324483673628,, +NCCCC(=O)[O-],FP,1,1,0,0,0.4700521324101837,1,1,2.543279356338949,, +Nc1cccc(C=O)c1,FP,1,0,1,0,0.4459606483114272,1,1,22.787771046160717,, +Clc1cccs1,FP,1,1,1,0,0.4909012283871818,1,1,23.055683145953942,, +O[C@H]1CNC[C@@H]1O,FP,1,1,1,0,0.3427394630527989,1,0,-15.031907501728064,, +CC[NH2+]CC,FP,1,1,1,0,0.4583183660353573,1,1,15.542012736362874,, +NCCCNC(=O)C1(C[NH3+])CC1,FP,1,0,0,0,0.4397772763360725,0,1,9.025186379428607,, +N[C@H]1CCC[NH2+]C1,FP,1,1,1,0,0.3899187836290073,0,0,-6.466666332064741,, +Nc1cccnc1,FP,1,1,1,1,0.5126510027980979,1,1,25.2922304423249,266.0,1.0 +C/N=c1\[nH]c(C)cs1,FP,0,1,1,1,0.5378331466326227,0,1,7.004465975554597,, +C[C@@H](N)CO,FP,1,1,1,0,0.4337552925789798,1,1,0.5906736151234748,, +c1ccc2[nH]cnc2c1,FP,1,1,1,1,0.5583728365871126,1,1,39.49652870819706,198.0,1.0 +O=C1CSC(NCc2cccs2)=N1,FP,1,1,1,1,0.8067707798786196,0,1,38.61895853205884,, +NCCc1c[nH]cn1,FP,1,1,1,1,0.560081635014732,1,1,6.240752779451141,324.0,1.0 +CC(C)CO,FP,1,1,1,0,0.4834802442445536,1,1,13.669148659717836,, +Cc1ncc(C(C)(C)C)o1,FP,1,1,1,1,0.5507732193434635,1,1,29.307179744706183,6.0,1.0 +COC(=O)[C@H](C)N,FP,1,1,1,0,0.4553148729343501,1,1,11.951223941721752,, +COC1CCNCC1,FP,1,1,1,1,0.5333138416146163,1,0,-7.490821405714771,, +C[NH+]1CCOCC1,FP,1,1,1,0,0.3941105608599775,0,1,11.067832652657284,, +NC(=O)c1cccs1,FP,1,1,1,1,0.5966447552748169,1,1,34.80138537178916,110.0,1.0 +C[C@@H](O)[C@@H](C)O,FP,1,1,1,0,0.4657441488290313,1,1,7.630883120962097,, +CC[C@@H](C)O,FP,1,1,1,0,0.4869274292842043,1,1,10.854789077896305,, +C[C@@H](N)[C@@H](C)O,FP,1,1,1,0,0.4636100152723768,1,0,-2.0942706046307724,, +NC[C@H]1CC[NH2+]C[C@@H]1O,FP,1,1,0,0,0.381173350690232,0,0,-12.450198726744183,, +NC[C@@H]1CC[NH2+]C[C@H]1O,FP,1,1,0,0,0.381173350690232,0,0,-12.450198726744183,, +O=c1ccccn1[C@H](CO)c1ccc(Cl)c(F)c1,FP,1,1,1,1,0.9265699439207116,0,1,66.86344844033263,, +CC[C@H](N)[C@@H](C)O,FP,1,1,1,1,0.5205508545466737,1,0,-2.6497569377531653,, +[NH3+]CCS,FP,1,0,1,0,0.3826710259651884,1,1,2.423957796614061,, +OCCNCCO,FP,1,0,0,0,0.3837448438131587,1,1,3.668310569495704,, +C[C@H]1CCCCn2nccc21,FP,1,1,1,1,0.553895043942906,0,0,-7.544774222897331,, +O=C([O-])Cc1ccccc1,FP,1,1,1,1,0.5713429347387614,1,1,51.153694095645626,6.0,1.0 +O=C([O-])Cc1cccc(O)c1,FP,1,1,0,1,0.6299761644200487,1,1,53.85258487313976,, +Nc1cccc(CC(=O)[O-])c1,FP,1,0,0,1,0.5810774401140849,0,1,51.43406463894428,, +FC(F)(F)c1cc[nH]n1,FP,1,1,1,1,0.5737200227818867,1,1,20.02619120872176,276.0,1.0 +CC1(O)CCCC1,FP,1,1,1,0,0.4863248839438126,0,0,-3.703591606223364,, +NC(=O)c1ccccc1F,FP,1,1,1,1,0.6173491474809841,1,1,42.04107994819991,144.0,1.0 +CS(=O)(=O)c1cccc2cc[nH]c12,FP,1,1,1,1,0.7504987857227984,0,1,47.41867761155402,, +OC1CC[NH2+]CC1,FP,1,1,1,0,0.3918920115676031,0,1,6.520420447775452,, +SC1CC[NH2+]CC1,FP,1,0,1,0,0.40435389360064,0,0,-8.290107315962699,, +COC(=O)[C@@H](C)N,FP,1,1,1,0,0.4553148729343501,1,1,11.951223941721752,, +C[C@H]1CCCN1,FP,1,1,1,0,0.457601204897357,1,0,-22.734329415155965,, +CC(C)NC(=O)O,FP,1,1,1,1,0.5118757715671928,1,1,10.406752584187943,0.0,0.0 +CCCC,FP,1,1,1,0,0.4310243576713091,1,1,12.10620147179134,, +O=Cc1cccc([N+](=O)[O-])c1,FP,1,0,0,0,0.3643936085603771,1,1,39.5882234548009,, +C1CC[NH2+]CC1,FP,1,1,1,0,0.4178436621138537,0,1,13.189542799768244,, +CC(C)[C@H](N)CO,FP,1,1,1,1,0.514920270480999,1,0,-0.8414971866415419,, +c1ccc2cnccc2c1,FP,1,1,1,1,0.5311915584041305,1,1,39.36588766207535,960.0,1.0 +Cc1nc2c(F)cccc2n1C(C)C,FP,1,1,0,1,0.6785734906357187,1,1,41.12380033819664,, +C1C[NH2+]CCN1,FP,1,1,1,0,0.3567026443854987,0,0,-5.598934375848913,, +C[C@@H]1CCCCn2nccc21,FP,1,1,1,1,0.553895043942906,0,0,-7.544774222897331,, +O[C@@H]1CCC[NH2+]C1,FP,1,1,1,0,0.3918920115676031,0,1,3.981175788199321,, +C[C@]12CC=C3C=C4[C@@H](O)[C@H](O)CC[C@]45CC[C@]3(O5)[C@@H]1CCC2,FP,1,1,0,1,0.7232183948966386,0,0,-81.79368197536691,, +NCCc1ccccc1,FP,1,1,1,1,0.6245074471542003,1,1,15.85689995066113,288.0,1.0 +Cn1cc(-c2ccccc2)cn1,FP,1,1,1,1,0.6209820497306788,1,1,46.63100367907829,234.0,1.0 +O=C1NCCC12CCNCC2,FP,1,1,1,1,0.5103309744997776,1,0,-23.51935985004238,, +Ic1ccccc1,FP,1,0,1,1,0.5684170940246587,1,1,39.3912405146762,, +Nc1[nH]nc2ccccc12,FP,1,1,1,1,0.5658999712435826,1,1,29.31910322776045,94.0,1.0 +O=C1NCC2(CCNCC2)O1,FP,1,1,1,1,0.5124633119346518,1,0,-20.34812259070007,, +CN1c2ccccc2CS1(=O)=O,FP,1,1,1,1,0.6006068932346631,1,1,9.057788000127058,0.0,0.0 +COCC[N@H+]1CCCC12CCNCC2,FP,1,1,1,1,0.6366726435911594,0,0,-1.365738070324994,, +Cn1ncc2ccccc21,FP,1,1,1,1,0.5317046613722227,1,1,38.96338932389866,706.0,1.0 +O[C@H]1CCNC1,FP,1,1,1,0,0.410880287239465,1,0,-23.32804714267448,, +Clc1ccc([C@@H]2CCCN2)cc1,FP,1,1,1,1,0.702817028606169,0,0,-4.574867885106758,, +Fc1ccc([C@@H]2CCCCN2)cc1,FP,1,1,1,1,0.698449844003144,0,0,-8.823552410815587,, +CNC=O,FP,1,0,1,0,0.3999167569393753,1,0,-3.7061454697016103,, +NC(=O)c1[nH]ccc1Cl,FP,1,1,1,1,0.6010374760271951,0,1,21.487217250500752,, +c1ccc(-c2cn[nH]c2)cc1,FP,1,1,1,1,0.6517443639878625,1,1,41.112402045566064,376.0,1.0 +NC(=O)N1CCCc2cccnc21,FP,1,1,1,1,0.6399895218596622,0,1,24.473656429595927,, +NCc1ccc(Cl)cc1,FP,1,1,1,1,0.6343479541352415,1,1,12.026996829863648,332.0,1.0 +C[N@@H+]1CCC[C@H](O)C1,FP,1,1,1,0,0.401943408243075,0,1,5.531760746116798,, +CC[C@H](N)CO,FP,1,1,1,0,0.488296008665038,1,0,-2.894093828165283,, +CC(=O)N1CCCNCC1,FP,1,1,1,1,0.5089695066639623,1,1,2.9023084934935,0.0,0.0 +C1CNCC[NH2+]C1,FP,1,1,1,0,0.3835455903915115,0,0,-16.745532094285462,, +O=Cc1ccccc1N(O)O,FP,1,0,0,1,0.4927098785648914,0,1,19.660590376525366,, +CC1(C)Cc2ccnn2C1,FP,1,1,1,1,0.5277297893796851,0,0,-13.493878696190214,, +NC(=O)[C@H](CC[NH3+])c1cccc(Cl)c1,FP,1,1,0,1,0.7532539687660428,0,1,57.587537788228246,, +O=Cc1cc(F)cc(F)c1,FP,1,0,1,1,0.5459580421934952,0,1,20.67802154350771,, +NC1=NC(=O)CN1,FP,1,1,0,0,0.3852997226637443,1,0,-15.039713155715985,, +CC(=O)[O-],FP,1,1,1,0,0.3497740223042638,1,1,14.281478514271996,, +O=C([O-])CO,FP,1,1,0,0,0.3819786157444406,1,1,13.229393249189524,, +NC[C@@H](O)C[NH3+],FP,1,1,0,0,0.3526498655961566,0,0,-1.208858820092549,, +CCCn1cncn1,FP,1,1,1,1,0.5617398374798184,1,1,32.204416996454434,0.0,0.0 +NC(=O)CS,FP,1,0,1,0,0.4157420438099021,1,1,3.087421336839276,, +C[C@H](O)C[NH+](C)C,FP,1,1,1,0,0.4382203757684201,1,1,18.71669421011464,, +N[C@@H]1C[N@H+]2CC[C@@H]1CC2,FP,1,1,1,0,0.4127335005878059,0,0,-19.80294286540372,, +C[C@H]([NH3+])COc1cccnc1,FP,1,1,1,1,0.6687366734241073,0,1,47.30235682211478,, +C[N@H+]1[C@H]2CC[C@@H]1C[C@H](O)C2,FP,1,1,1,0,0.4539741643109071,0,1,0.1528289448677671,, +CCC[NH3+],FP,1,1,1,0,0.4277137868437177,1,1,12.90942185718414,, +[NH3+]C[C@H]1CNCCO1,FP,1,1,1,0,0.4262442327094438,0,0,-20.303573303291973,, +Oc1ccccc1,FP,1,1,1,1,0.514729544768675,1,1,22.78125845241812,572.0,1.0 +N#Cc1ccccc1,FP,1,1,1,0,0.4884445703746373,1,1,32.15537243473899,, +[NH3+]C[C@@H]1CNCCO1,FP,1,1,1,0,0.4262442327094438,0,0,-20.303573303291973,, +OCc1ccccc1,FP,1,1,1,1,0.5723436119287516,1,1,30.89379261466763,706.0,1.0 +CC1CC[NH2+]CC1,FP,1,1,1,0,0.4403651264470919,0,1,10.18601331567839,, +C[C@@H](O)C[NH+](C)C,FP,1,1,1,0,0.4382203757684202,1,1,18.71669421011464,, +[NH3+]C1CCCCC1,FP,1,1,1,0,0.4604637134084303,1,1,16.077953204911122,, +COc1ccccc1C(=O)[O-],FP,1,1,1,1,0.6000521065463246,1,1,53.29778380690098,0.0,0.0 +O[C@@H]1CC[NH2+]C1,FP,1,1,1,0,0.3642078013334505,0,0,-4.59780594877461,, +O[C@@H]1CCCNC1,FP,1,1,1,0,0.440014405976282,1,0,-21.106846656471365,, +COc1ccccc1[N+](=O)[O-],FP,1,0,1,0,0.4786228959968397,1,1,46.8379275798382,, +Cn1ccnc1,FP,1,1,1,0,0.4432156698587248,1,1,18.87108476780715,, +Nc1ccncc1,FP,1,1,1,1,0.5126510027980979,1,1,21.92789768762486,332.0,1.0 +Nc1cnccc1N1CC[NH2+]CC1,FP,1,1,1,1,0.5839846690917329,0,1,25.622215783141684,, +C[C@H]1C[NH2+]CCO1,FP,1,1,1,0,0.4155294896179164,0,1,6.3427940955365365,, +CC1(O)CC1,FP,1,1,1,0,0.4422992650392228,1,0,-2.187670436908016,, +CC(C)n1ccnn1,FP,1,1,1,1,0.5377454907365898,1,1,20.32141036227325,90.0,1.0 +C[C@H]1[NH2+]CCC[C@@H]1N,FP,1,1,1,0,0.4201911520125693,0,0,-8.809911293325072,, +CNC,FP,1,1,1,0,0.3986709398154768,1,1,10.078884984505532,, +NCc1ccccc1F,FP,1,1,1,1,0.6008283997611804,1,1,21.642764499928035,298.0,1.0 +Fc1ccccc1F,FP,1,1,1,0,0.4832965029562796,1,1,25.091083589997456,, +C[C@@H]1CCCN1,FP,1,1,1,0,0.4576012048973571,1,0,-22.734329415155965,, +Cn1cccn1,FP,1,1,1,0,0.4432156698587248,1,1,18.643863083632382,, +FC(F)F,FP,1,1,1,0,0.401096477329913,1,1,8.32880524914489,, +C1CC1,FP,1,1,1,0,0.3814250421649592,1,1,10.958161214651511,, +C1CC[NH+](C2COC2)CC1,FP,1,1,1,1,0.5186428043926601,0,1,13.654210612911449,, +C[C@@]1([NH+]2CCCCC2)COC[C@@H]1[O-],FP,1,1,1,1,0.5437959083174058,0,0,-13.653288480799382,, +N#C[C@H]1CC12CC2,FP,1,1,1,0,0.4426444424443561,0,0,-14.284567326396113,, +C[C@@]1([NH+]2CCCCC2)COC[C@@H]1O,FP,1,1,1,1,0.5623127584876282,0,0,-18.581745749975376,, +C[C@@]1([NH+]2CCNCC2)COC[C@@H]1O,FP,1,1,1,0,0.4296615983373854,0,0,-39.191816627928326,, +C[NH+](C)CCN,FP,1,1,1,0,0.4061284750173293,1,1,1.4903797761239588,, +CC(C)(O)[C@@H]1C[NH2+]C[C@H]1N,FP,1,1,0,0,0.4107363456827489,0,0,-14.217493364616908,, +N[C@H]1CC[NH2+]C1,FP,1,1,1,0,0.3624584884821881,0,0,-7.948782171910956,, +c1ccoc1,FP,1,1,1,0,0.4460314875501461,1,1,5.85239784787098,, +Cn1nccc1CC1CC1,FP,1,1,1,1,0.6001220151889676,0,1,31.92878603995001,, +c1cn(C2CCCCC2)cn1,FP,1,1,1,1,0.600683335803015,0,1,30.838504329363044,, +c1cn(C2CC[NH+](Cc3ccon3)CC2)cn1,FP,1,1,1,1,0.8287282211678132,0,1,78.75460066089049,, +CSc1ncc[nH]1,FP,1,1,1,1,0.5543152632414271,1,1,21.936062480732964,12.0,1.0 +CC(C)c1ccno1,FP,1,1,1,1,0.5518819784601052,1,1,17.425084661565474,0.0,0.0 +c1cc(Cn2ccnc2)ccn1,FP,1,1,1,1,0.6613641361270439,0,1,63.20880712415966,, +CCCS(=O)(=O)N[C@H]1CC[C@@H](n2ccnc2)CC1,FP,1,1,0,1,0.8861624762832921,0,1,57.8892943013576,, +CC(C)[C@@H](N)CO,FP,1,1,1,1,0.514920270480999,1,0,-0.8414971866415419,, +O[C@H]1CC[C@H](n2ccnc2)CC1,FP,1,1,1,1,0.683670299943597,0,1,22.37665048144501,, +NC1CCCC1,FP,1,1,1,0,0.4641318718734252,1,0,-8.026008231072439,, +CC(C)N,FP,1,1,1,0,0.4279299473771721,1,1,7.288586258038261,, +O=C[O-],FP,1,0,1,0,0.3065473221945595,1,1,1.1086118535634293,, +C#Cc1ccccc1,FP,1,0,1,0,0.4369444199523928,1,1,30.0153311445761,, +Nc1ccc2c(ccn2CCC(=O)[O-])c1,FP,0,0,0,1,0.7321197758895752,0,1,72.37851890058964,, +Cc1ccc(N)cc1N,FP,1,0,1,1,0.5071584204162337,1,1,30.215402217280975,, +CCc1cn(CCCCN)nn1,FP,1,0,0,1,0.6541757889460365,0,1,12.58667345663977,, +CCc1c[nH]nn1,FP,1,1,1,1,0.5495892939187254,1,1,10.72358651857348,2.0,1.0 +NC(=O)CCNC(=O)CC[NH3+],FP,1,1,0,0,0.4177572544667967,0,1,47.46005737590881,, +NCCC(=O)NCCC(N)=O,FP,1,1,0,0,0.4468361639556589,1,1,22.44537423479882,, +CN(CC[NH3+])c1ccc(N)cc1N,FP,0,0,0,1,0.5511647008884382,0,1,39.86782610522581,, +CN(CC[NH+](C)C)c1ccc(N)cc1N,FP,0,0,0,1,0.5821803681514723,0,1,49.58483610072304,, +Nc1ccc([C@H]2C[C@@H]2C[NH3+])c(N)c1,FP,1,0,0,1,0.5653386288084848,0,1,9.11662965229841,, +Cc1ccc(N)cc1,FP,0,0,1,1,0.5002819996278854,1,1,27.2263427720141,, +c1ncc2ccsc2n1,FP,1,1,1,1,0.5504287970242819,1,1,27.13266666010047,256.0,1.0 +NC(=O)CC(=O)NCCC[NH3+],FP,1,0,0,0,0.3085826830683124,0,1,37.03013552636315,, +CC(C)n1c2c(c3c1-c1ccccc1C3=O)C(=O)CCC2,FP,1,1,0,1,0.6793421305093621,0,1,23.04467922021377,, +O=c1ccc(-c2ccsc2)c[nH]1,FP,1,1,1,1,0.7105346641831151,0,1,44.87011398247438,, +CCOCCO,FP,1,0,1,1,0.4947212507995219,1,1,17.5932661529415,, +Nc1ccc2cc[nH]c2c1,FP,1,0,1,1,0.5266525259142135,0,1,42.59666410505617,, +CO/N=C1/NC(=O)C(C)=[S+]1,FP,0,0,1,0,0.3125589945500691,0,0,-1.7932829263349563,, +CCCCNC(=O)CCC(N)=O,FP,1,0,0,1,0.5603790010927584,0,1,55.72635783009753,, +O=c1ccc(-c2cnnn2CC[NH+]2CCCCC2)c[nH]1,FP,1,1,0,1,0.8043288252554097,0,1,54.48094224555916,, +Nc1ccc([C@@H]2C[C@H]2C[NH3+])c(N)c1,FP,1,0,0,1,0.5653386288084848,0,1,9.11662965229841,, +Nc1nc(-c2cccc(O)c2)nc2ccccc12,FP,1,1,0,1,0.6819406244415754,0,1,53.72068479854916,, +c1ccc2[nH]ccc2c1,FP,1,1,1,1,0.5439155908694729,1,1,40.29012989269332,206.0,1.0 +O=C1CN=C(N[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)N1,FP,1,1,1,1,0.7104967548021656,0,0,-4.000710527989687,, +Nc1cccc(-n2cnnc2)c1,FP,1,0,1,1,0.628979207396798,0,1,40.00100782961341,, +[NH3+]CCC1CCNCC1,FP,1,1,1,1,0.5238889417922389,0,0,-6.638342210447037,, +NCCCCC[NH3+],FP,1,0,0,0,0.4566865394259683,1,0,-6.9752659179463805,, +CC(C)Nc1ccc2cn[nH]c2c1,FP,1,1,1,1,0.7353218875795653,0,1,71.33393748168375,, +N#CCCc1ccccc1,FP,1,1,1,1,0.6028557867580837,1,1,41.217045621355695,338.0,1.0 +Nc1nccs1,FP,1,1,1,1,0.52152533306484,1,1,16.95309833793486,82.0,1.0 +CCCCN,FP,1,1,1,1,0.5124148721749513,1,0,-4.380289032081423,, +Cc1c[nH]c2ccccc12,FP,1,1,1,1,0.5649684553619617,1,1,37.17466881669269,10.0,1.0 +C[C@@H](c1ccc(F)cc1)n1nnc2cnc3ccccc3c21,FP,1,1,0,1,0.5652030833877897,0,1,55.37581549214664,, +CC(C)O,FP,1,1,1,0,0.4284047940316283,1,1,10.062227718567554,, +C1CCC1,FP,1,1,1,0,0.3948102303487917,1,1,10.958161214651511,, +NCCC[NH+]1CCOCC1,FP,1,1,1,1,0.494236739574662,0,1,11.791046914508112,, +Clc1ccc2cc[nH]c2c1Cl,FP,1,1,0,1,0.6476870610154922,0,1,37.97002756316357,, +Nc1ccncn1,FP,1,1,1,1,0.4953127132437441,1,1,24.137073389913574,306.0,1.0 +NCC1CC1,FP,1,1,1,0,0.4741292324070223,1,0,-8.758607533108018,, +COc1ccc(N)c(F)c1,FP,1,0,1,1,0.6000239481850966,1,1,40.2632862475689,, +CCOc1ccc2ccnn2n1,FP,1,1,1,1,0.6657507253440433,0,1,30.420062618772807,, +CCCN,FP,1,1,1,0,0.4632709184547627,1,0,-1.5901402203952597,, +COC[C@@H](CC(C)C)NC1=NCC(=O)N1,FP,1,1,0,1,0.6817271463972627,0,1,9.599380514640345,, +CC(C)C[C@H]([NH3+])COc1cccnc1,FP,1,1,0,1,0.7650007793715945,0,1,54.57668419468529,, +CC1=NC(Nc2ccccc2)=NC1=O,FP,1,1,1,1,0.7230785596355466,0,1,25.5473366940016,, +CCNc1nc2ccccc2s1,FP,1,1,1,1,0.7644466737562736,1,1,64.09684647586327,0.0,0.0 +COc1ccccc1CCNC(=O)CN,FP,1,1,0,1,0.7317598765629827,0,1,77.52033156918203,, +Cc1nn(C)c(CN)c1[S@@](=N)(=O)[O-],FP,1,1,0,1,0.6887811248493085,0,1,0.7024866672456631,, +[NH3+][C@H]1CCCNC1,FP,1,1,1,0,0.4026375405755626,1,0,-12.559331385978204,, +CC(C)C#N,FP,1,1,1,0,0.4184944170795469,1,1,10.63908640958824,, +CC[C@@H](O)CO,FP,1,1,1,0,0.4905429154176823,1,1,14.524790732807984,, +CO[C@H]1OC[C@H](O)[C@H](O)[C@H]1O,FP,1,1,0,0,0.4204498528608406,0,0,-9.754400591742732,, +CC[NH+](CC)[C@@H](C)CNC=O,FP,1,0,0,0,0.4811602444708388,0,1,13.900816151633103,, +C[NH+](C)CCNC=O,FP,1,0,0,0,0.3201360541435803,1,1,5.295585087094398,, +C[NH+](C)CCN[C@H](O)c1ccccc1,FP,1,0,0,1,0.5494359186084384,0,1,25.08370788655179,, +O=c1ccoc2cc(O)cc(O)c12,FP,1,1,0,1,0.6354873593320908,1,1,27.29972257617716,, +O=c1c(O)coc2cc(O)cc(O)c12,FP,1,1,0,1,0.5793678982921999,0,1,26.761739788953893,, +Oc1ccccc1O,FP,0,0,1,0,0.4907276689015206,1,1,19.76960127131141,, +Cc1cc(O)cc(O)c1,FP,1,1,1,1,0.5485235528461613,1,1,13.927474787690832,16.0,1.0 +COc1cc(C)cc(O)c1,FP,1,1,1,1,0.6397107129957216,1,1,19.590101435269407,16.0,1.0 +COc1cc(C)cc(OC)c1,FP,1,1,1,1,0.6450116473288807,1,1,34.83286600618834,20.0,1.0 +COc1cc(C)ccc1O,FP,1,1,1,1,0.6397107129957217,1,1,38.82700210531711,8.0,1.0 +NCCN,FP,1,1,1,0,0.4034955207762654,1,0,-3.2997672728480825,, +CCCCO,FP,1,1,1,1,0.5128217987135145,1,1,13.825336356798706,0.0,0.0 +C[C@@H](S)C(N)=O,FP,1,0,1,0,0.4451157961440545,1,0,-1.1708779425453668,, +N#CC[C@H](C1CCCC1)n1cccn1,FP,1,1,1,1,0.732757278762978,0,1,32.97390951410494,, +FC1(F)CCNC1,FP,1,1,1,0,0.478034087621807,1,0,-18.12470350619868,, +C1N[C@H]2C[C@@H]1C2,FP,1,1,1,0,0.4458414482953409,0,0,-33.024931613417046,, +CC(C)(C)NC=O,FP,1,0,1,0,0.4795048868885153,1,0,-1.4597828114799012,, +NC(=O)[C@@H](CC[NH3+])c1cccc(Cl)c1,FP,1,1,0,1,0.7532539687660428,0,1,57.587537788228246,, +N[C@H](CC[NH3+])c1cccc(Cl)c1,FP,1,1,1,1,0.7248057917188809,0,1,43.86278817336831,, +CC#N,FP,1,1,1,0,0.3869805798690774,1,1,8.328894131516787,, +CCNC(N)=O,FP,1,1,1,0,0.4529402094709788,1,1,20.242898695246,, +COc1ccc(N)cc1,FP,0,0,1,1,0.5706913849970715,1,1,33.88032909584605,, +CCC(=O)Nc1ccccc1,FP,1,1,1,1,0.6845093070948893,1,1,61.76781640704646,198.0,1.0 +Fc1cccc(C(F)(F)F)c1,FP,1,1,1,1,0.5169494506538485,1,1,46.844359913611314,716.0,1.0 +CCC(=O)Nc1cccc(C=O)c1,FP,1,0,1,1,0.7159378737573822,1,1,53.238449427911966,, +OC(F)(F)F,FP,1,1,1,0,0.4546943751491228,1,1,8.85801368762451,, +CCCC(N)=O,FP,1,1,1,1,0.5158494162613733,1,1,20.210994239342767,2.0,1.0 +O=C1Cc2ccccc2N1,FP,1,1,1,1,0.5653488967385903,1,1,1.0253554500825568,0.0,0.0 +Cc1ccsc1,FP,1,1,1,0,0.4656159934955298,1,1,21.67882825402616,, +Cc1c(F)cccc1F,FP,1,1,1,1,0.5024152947188044,1,1,27.8887184235464,22.0,1.0 +CNCC(N)=O,FP,1,1,1,0,0.4401177269122593,1,1,4.272165795712297,, +Oc1ccccn1,FP,1,1,1,1,0.5163288713332986,1,1,15.660985624983631,164.0,1.0 +Oc1cccc(Br)n1,FP,1,0,1,1,0.6048758563469623,0,1,17.56921380625337,, +Nc1ccc(Cl)cc1Cl,FP,1,0,1,1,0.5825188519698148,1,1,35.695716426193485,, +SCC1CC[NH2+]CC1,FP,1,0,1,0,0.463336362143342,0,1,1.7474292159412697,, +SCC1C[NH2+]C1,FP,1,0,1,0,0.4016332052706827,0,0,-7.283069997162773,, +SC[C@@H]1CC[NH2+]C1,FP,1,0,1,0,0.4320017885386588,0,0,-1.5741899873779908,, +CN(C)c1nc2ccccc2s1,FP,1,1,1,1,0.6660994974929592,0,1,61.92560833198912,, +CNCCS(C)(=O)=O,FP,1,1,1,1,0.556489360113596,1,1,11.548275654534129,0.0,0.0 +CCC[NH+]1CCOCC1,FP,1,1,1,1,0.5222517089312311,0,1,34.24048973560894,, +CCNC(=O)CC(C)(C)O,FP,1,1,1,1,0.599102350881788,1,1,28.608223420676318,0.0,0.0 +CS(=O)(=O)CCN,FP,1,1,0,1,0.5115033732044333,1,1,6.248273417624523,, +C[NH+](C)CCC(=O)Nc1ccccc1,FP,1,1,0,1,0.701451380615908,0,1,92.6974087288532,, +CC(=O)Nc1ccccc1,FP,1,1,1,1,0.6227994751052723,1,1,50.70803070546458,714.0,1.0 +CCO,FP,1,1,1,0,0.4068079656553945,1,1,8.74390939149039,, +C[NH+](C)CCCC(=O)Nc1ccccc1,FP,1,1,0,1,0.726126020866396,0,1,91.3020839939762,, +NC(=O)c1c(Cl)cccc1Cl,FP,1,1,1,1,0.7231955646976862,1,1,39.45954005558245,156.0,1.0 +Cn1ccc2ccccc21,FP,1,1,1,1,0.5160980556298523,1,1,46.284316308267535,236.0,1.0 +CS(=O)(=O)C1CCNCC1,FP,1,1,1,1,0.5812198552351513,1,1,0.0129724870926222,298.0,1.0 +COC1(CC[NH3+])CCNCC1,FP,1,1,1,1,0.5767765671851066,0,0,-6.729502731938926,, +CC(C)(CN)C(N)=O,FP,1,1,0,1,0.5082339538618748,1,1,9.465657188100348,, +C[C@@]1(C(N)=O)CCNC1,FP,1,1,1,1,0.4985633176513786,0,0,-13.749678868324176,, +CC(C)(CN)S(C)(=O)=O,FP,1,1,0,1,0.5926600136278626,1,1,15.773628989507236,, +CC(C)(CO)S(C)(=O)=O,FP,1,1,1,1,0.5959779394052356,1,1,26.737556724727757,0.0,0.0 +CO[C@H]1CCNC[C@H]1F,FP,1,1,1,1,0.5563597739867914,1,0,-34.726046269142515,, +CC1(C)OCc2c(N)ncnc21,FP,1,1,0,1,0.61798294185608,0,0,-8.404273773451221,, +CC1(C)OCc2cncnc21,FP,1,1,1,1,0.557785219290311,0,0,-9.727533463451186,, +COc1ccccc1N,FP,1,0,1,1,0.5706913849970715,1,1,32.553625231704274,, +O=S(=O)(C1CC1)n1cccn1,FP,1,1,1,1,0.6410147560706825,0,1,27.94421969109565,, +Cn1nccc1[SH](=O)=O,FP,1,0,1,1,0.5376399112154087,1,0,-3.2998048136091067,, +CC(=O)N1CC[C@H](N)C1,FP,1,1,1,0,0.4807236332256025,1,0,-7.599841527871185,, +C=CC(=O)Nc1ccccc1,FP,1,0,1,1,0.6348931197981773,1,1,38.88115044107541,, +CCC(N)=O,FP,1,1,1,0,0.4617454409001604,1,1,15.173054629112212,, +CCC(=O)N1CCCCC1,FP,1,1,1,1,0.5403518409999628,0,1,39.815740917749686,, +CC(C)(C)O,FP,1,1,1,0,0.4498276567484776,1,1,10.415368087318823,, +CCC=O,FP,1,0,1,0,0.4032599029179279,1,0,-0.4972685427757803,, +CCS(=O)(=O)n1ccc2ccccc21,FP,1,1,1,1,0.7566567655772467,0,1,47.22808631051088,, +O[C@@H]1CCNC[C@@H]1F,FP,1,1,1,0,0.4577224910594653,1,0,-35.34173269986494,, +C[C@]1(F)CNCC[C@H]1O,FP,1,1,1,0,0.4897983331772851,0,0,-36.33630458277327,, +CCCC[NH3+],FP,1,1,1,0,0.4782981722342985,1,1,16.907813156013223,, +Nc1cc2nc3ccccc3nc2[nH]1,FP,1,1,0,1,0.5583014114053952,0,1,24.10115577720857,, +COc1ccccc1Cl,FP,1,1,1,1,0.5850627747795066,1,1,43.98448272681154,932.0,1.0 +CC[NH+]1CCCCC1,FP,1,1,1,1,0.4920305196701189,0,1,24.88997070554143,, +CC(C)(O)CC(N)=O,FP,1,1,0,1,0.5181064912030003,1,1,15.444277506756166,, +CS(=O)c1ccc(-c2ncc[nH]2)cc1,FP,1,1,1,1,0.8141711431179394,0,1,50.86616562272584,, +c1ccn2nccc2c1,FP,1,1,1,1,0.5098151396252019,1,1,35.55596004961994,740.0,1.0 +NCc1ccccc1,FP,1,1,1,1,0.5719431747561196,1,1,12.393294624918743,0.0,0.0 +N[C@H](CO)c1ccc(F)c(Cl)c1,FP,1,1,1,1,0.740355078256195,1,1,35.61424586389612,0.0,0.0 +O=C(NCCO)c1ccc[nH]1,FP,1,1,0,1,0.5610912410760165,0,1,50.81715820470975,, +Cc1ccno1,FP,1,1,1,0,0.4669999672734714,1,1,15.981858726026054,, +N[C@H](CO)c1ccccc1,FP,1,1,1,1,0.6292391803863145,1,1,25.32899281979869,0.0,0.0 +CCOC(=O)CNCc1ccccc1Cl,FP,1,1,0,1,0.7823399819624958,1,1,71.9442819127359,, +N#Cc1ccsc1NCC[NH+]1CCCCC1,FP,1,1,0,1,0.821677624193002,0,1,64.5691104727024,, +Nc1ccc2c(=O)[nH][nH]c2c1,FP,1,0,0,0,0.4752065944039264,1,1,10.36083891000452,, +c1cnoc1,FP,1,1,1,0,0.4472609802175263,1,1,11.831072068600074,, +[NH3+]Cc1ccccc1C(F)(F)F,FP,1,1,1,1,0.6702869664643435,1,1,46.73986930775035,0.0,0.0 +CCCn1cccn1,FP,1,1,1,1,0.5606218762933048,1,1,36.5183102976014,634.0,1.0 +O=c1cccc[nH]1,FP,1,1,1,1,0.4959428487135856,1,1,17.55755317850797,354.0,1.0 +O=C1c2cccn2CCN1CCO,FP,1,1,1,1,0.6924534034556187,0,1,12.505984466472713,, +O=C1c2cccn2CCCN1CCO,FP,1,1,1,1,0.7368997419369627,0,1,9.95596399987828,, +CN1CCc2[nH]ccc2C1=O,FP,1,1,1,1,0.5785820343114992,0,1,0.4790574643122203,, +COCCN1C(=O)c2cc[nH]c2C[C@H]1C,FP,1,1,1,1,0.8065540839873192,0,1,8.633426352537748,, +COCCN1C(=O)c2cc[nH]c2C[C@@H]1C,FP,1,1,1,1,0.8065540839873193,0,1,8.633426352537748,, +Cn1ccc2c1CCNC2=O,FP,1,1,1,1,0.5671390242178377,0,0,-13.64197335209891,, +O=C1NCCn2cccc21,FP,1,1,1,1,0.543992371721209,0,0,-11.564996307253258,, +O=C1NCc2ccccc21,FP,1,1,1,1,0.5600740658469527,1,0,-16.136970753589242,, +O=C1c2ccccc2CN1CC[NH+]1CCOCC1,FP,1,1,1,1,0.7853732920596037,0,1,46.0878851647679,, +O=c1ccccn1CCO,FP,1,1,1,1,0.6182854984245293,0,1,42.751651543156754,, +COC,FP,1,1,1,0,0.3800398096193344,1,1,10.64353536490388,, +[NH3+]CC1CCNCC1,FP,1,1,1,0,0.4625371792510176,0,0,-6.678318611554541,, +CC1(C)NC(=O)c2ccsc21,FP,1,1,1,1,0.6260444337433672,0,0,-3.849219576556423,, +COC[C@H]1Cn2ccnc2C(=O)N1,FP,1,1,1,1,0.6775921420259314,0,0,-22.41260674019394,, +CCc1ccccc1,FP,1,1,1,1,0.5147578217927746,1,1,35.5981979028632,0.0,0.0 +CNC(C)=O,FP,1,1,1,0,0.4207171469569102,1,1,15.4440285404754,, +N#Cc1cccc(F)c1,FP,1,1,1,1,0.5120610208888526,0,1,38.51964661505274,, +O=Cc1c(F)cccc1Br,FP,1,0,1,1,0.6400902993174443,1,1,26.99925578406824,, +O=Cc1c(Cl)ccc(Cl)c1F,FP,1,0,1,1,0.4944744579213482,0,1,15.45294453711291,, +CN(c1ncccc1CN)S(C)(=O)=O,FP,1,1,0,1,0.7657766018920844,1,1,33.4532361969055,, +CC#CC(C)(C)C,FP,1,0,1,0,0.4047903298811263,1,1,11.824203103630529,, +O=C1CCc2ccccc21,FP,1,1,1,1,0.5258373333961016,1,1,18.51131342517063,250.0,1.0 +Cc1cccc(S(C)(=O)=O)c1,FP,1,1,1,1,0.638064171257991,1,1,51.30148489828815,14.0,1.0 +Cc1cccnc1N(C)S(C)(=O)=O,FP,1,1,1,1,0.7087170700785961,1,1,44.51484315803371,2.0,1.0 +C[NH+](C)C1CCCC1,FP,1,1,1,0,0.4919716672475714,0,1,21.281762411339702,, +CN(c1ncccc1/C=N/c1ccnc(N)n1)S(C)(=O)=O,FP,1,0,0,1,0.827165890937829,0,1,44.51514987507889,, +CC(C)(C)NC(N)=O,FP,1,1,1,0,0.4741277004861607,1,1,20.366336663795444,, +NCCc1cccnc1,FP,1,1,1,1,0.6229092895823215,1,1,20.73405319894836,0.0,0.0 +Cc1cc(CN)on1,FP,1,1,1,1,0.5731652110099106,1,1,12.447614166039251,0.0,0.0 +CCc1cc(OC)cc(OC)c1,FP,1,1,1,1,0.6853726071590648,1,1,40.78552283622175,38.0,1.0 +CC[NH2+]C(C)C,FP,1,1,1,0,0.488243730217779,1,1,23.057182729439624,, +C/C=C/C=O,FP,1,0,1,0,0.3285962557039047,1,0,-15.238878118064278,, +C=CC=O,FP,1,0,1,0,0.3131312644427995,1,0,-10.380595625881734,, +CC(C)(N)c1ccccc1,FP,1,1,1,1,0.624786756141863,1,1,25.586761171054352,152.0,1.0 +CCOC(C)=O,FP,1,1,1,0,0.4378508777786624,1,1,19.92963789910161,, +CCNS(=O)(=O)c1ccccc1,FP,1,1,1,1,0.7627772179588963,1,1,62.752133017435455,148.0,1.0 +C[C@@H](O)c1c(Cl)cncc1Cl,FP,1,1,1,1,0.740599528396541,1,1,17.507538942468525,222.0,1.0 +C=CC(=O)N1CC[NH+](CCC)CC1,FP,1,0,1,1,0.5755688601538859,0,1,36.16396153893567,, +Cc1c(Cl)cccc1Cl,FP,1,1,0,1,0.5470499369527473,1,1,33.87034918591953,, +O=C([O-])c1ccccc1Cl,FP,1,1,1,1,0.5992375300511746,0,1,46.123640838170616,, +Nc1ccc(CCNC=O)cc1,FP,0,0,0,0,0.3878306041510738,1,1,23.366645065298908,, +O=C1NC[C@H](CCF)c2[nH]ccc21,FP,1,1,1,1,0.708834579598925,0,0,-33.01668780311604,, +COc1ccc(CS)cc1F,FP,1,0,1,1,0.6731228298830508,1,1,31.21879441671101,, +C[S@](=O)c1ccccc1,FP,1,1,1,1,0.5763209398375385,1,1,28.38297782744105,310.0,1.0 +O=c1nccc(-c2ccccc2)[nH]1,FP,1,1,1,1,0.7069366661828734,0,1,36.57825968444575,, +CCNCC,FP,1,1,1,1,0.5048540523547576,1,1,6.360621184069055,226.0,1.0 +O=c1[nH]ccc2occc12,FP,1,1,1,1,0.5879226766401654,1,1,20.88931651591627,32.0,1.0 +O=c1[nH]cc(Br)c2sccc12,FP,1,1,1,1,0.739785813255293,1,1,23.526856116482424,0.0,0.0 +O=c1[nH]cc(-c2ccc(O)cc2)c2sccc12,FP,1,1,1,1,0.6900216899335028,0,1,23.97829053939305,, +Nc1cnccc1C[NH+]1CCCC1,FP,1,1,1,1,0.6607901963725896,0,1,47.568912988443145,, +COCCCN,FP,1,0,1,1,0.4931203923013463,1,0,-2.29127517994221,, +CC(C)NC1=NCC(=O)N1C,FP,1,1,1,1,0.5702445709146189,0,1,1.297915318740321,, +COc1ncncc1C(N)=O,FP,1,1,0,1,0.6256827110479638,0,1,32.961345919640074,, +COc1ccncc1N,FP,1,1,1,1,0.5982384187369707,1,1,27.390574791932064,244.0,1.0 +Nc1cnccc1-c1ccccc1,FP,1,1,1,1,0.7129493456429367,1,1,29.842693656877508,232.0,1.0 +Cc1c[nH]c(-c2cnc(N)nc2-c2ccc(Cl)cc2Cl)n1,FP,1,1,0,1,0.7537047978303011,1,1,42.227375808722805,, +COCCN,FP,1,1,1,0,0.4840293825259344,1,0,-2.8976641655254656,, +CC(C)Oc1cccnc1,FP,1,1,1,1,0.6203955955066178,1,1,48.008410788692686,568.0,1.0 +N#CCC[NH+]1CCCCC1,FP,1,1,1,1,0.5714335545122712,0,1,33.90104165448468,, +O=CCCc1ccccc1F,FP,1,0,1,1,0.6048787231320034,0,1,26.009171674543357,, +CS(=O)(=O)N1CCC1,FP,1,1,1,1,0.4926423166731766,0,1,24.82102270848669,, +CN(C)S(=O)(=O)N1CCC1,FP,1,1,1,1,0.5517256094013195,0,1,29.63267284975056,, +Oc1ccccc1F,FP,1,1,1,1,0.5392148187981868,1,1,22.51977208889172,0.0,0.0 +Nc1cccc(Cl)c1,FP,1,0,1,1,0.5297860823199099,1,1,29.967831919856557,, +C[C@H]1CN(c2ccncc2N)CCO1,FP,1,1,0,1,0.7192804608925903,0,1,19.721085509206567,, +Nc1cncc(-c2ccccc2)c1,FP,1,1,1,1,0.7129493456429367,0,1,37.66336411261352,, +[O-]c1ccccc1[O-],FP,1,1,1,0,0.4629883525226846,0,1,19.7445893388348,, +CC[NH+](CC)CCN,FP,1,1,0,0,0.4793873179872188,1,1,3.386869110140931,, +C[NH+]1CCN(C2CCCCC2)CC1,FP,1,1,1,1,0.6079108303245183,0,1,37.28306429108626,, +c1cn2c(n1)SCC2,FP,1,1,1,1,0.5155836406258146,0,0,-1.4861967018294036,, +CNC(=O)[C@H](CC(C)C)[NH2+]C1CCCCC1,FP,1,1,0,1,0.7241729932049111,0,1,59.492512244173085,, +CC(C)(C)c1ccccc1,FP,1,1,1,1,0.5114006703774442,1,1,39.78732658936647,834.0,1.0 +OCCc1ccccc1,FP,1,1,1,1,0.6249752698115418,1,1,38.45239694464869,0.0,0.0 +COc1cccc(F)c1,FP,1,1,1,1,0.5574315586180905,1,1,45.75362424301495,832.0,1.0 +Cc1cccc(F)c1,FP,1,1,1,0,0.4796017536231644,1,1,37.828761391948326,, +C[NH+]1CCC2(CC1)CNCCO2,FP,1,1,1,0,0.4713046975390417,0,0,-14.040205510443506,, +C[C@@H]1CNC[C@H]([NH3+])C1,FP,1,1,1,0,0.4272271982826047,0,0,-20.0874309342679,, +C[C@H]1CC[C@@H]([NH3+])CN1,FP,1,1,1,0,0.433287023023951,0,0,-23.32915013552772,, +NCC[NH2+]C/C=C/c1ccc(Br)cc1,FP,1,0,0,1,0.7577435467939152,0,1,54.031933366018,, +O=C(Nc1ccc2n[nH]cc2c1)[C@@H]1CC[NH2+]C1,FP,1,1,0,1,0.6846919455193123,0,1,68.26789686468425,, +CC[NH+]1CCOCC1,FP,1,1,1,0,0.4599622170571654,0,1,22.88866693310929,, +CC[C@H](CO)Nc1ccc2nccn2n1,FP,1,1,0,1,0.7802282524632889,0,1,70.34170166951112,, +CC1([NH3+])CCNCC1,FP,1,1,1,0,0.4333544655603332,0,0,-14.02969193869571,, +C[NH+]1CCN(C2CCC2)CC1,FP,1,1,1,1,0.5295982971318353,0,1,26.264851557135724,, +C[C@@]1(C(=O)Nc2ccc(F)nc2)CCCN1,FP,1,0,1,1,0.7429778752781514,0,1,9.373016448783195,, +O=C(c1ccc(F)nc1)N1CCCC1,FP,1,0,1,1,0.6339047278375853,0,1,65.56459046804484,, +CNC(=O)c1ccc(F)nc1,FP,1,0,1,1,0.6010015776675327,1,1,40.959670818081335,, +Nc1cnc2ccccc2c1,FP,1,1,1,1,0.6120847733236583,1,1,46.82706021385561,274.0,1.0 +c1cc2cc[nH]c2cn1,FP,1,1,1,1,0.5583728365871126,1,1,35.28136757730196,326.0,1.0 +C1=N[n+]2ccccc2C1,FP,1,0,1,0,0.4384768094253551,0,1,8.17972479068004,, +C1CC(C[NH+]2CCC2)C1,FP,1,1,1,1,0.5340548140370027,0,1,31.379436672977672,, +CC1(O)CCC1,FP,1,1,1,0,0.4644899319371969,0,0,-0.515655941779738,, +Nc1ccc(CC(=O)[O-])cc1,FP,0,0,0,1,0.5810774401140849,0,1,51.37495998257491,, +CNC(=O)c1ccccc1F,FP,1,1,1,1,0.6445959937960092,1,1,49.79092951238683,30.0,1.0 +N[C@@H]1C[C@H](CO)[C@@H](O)[C@H]1O,FP,1,1,0,0,0.3469383850277157,1,0,-20.444328081898792,, +Fc1cccc(C2CC2)c1,FP,1,1,1,1,0.5564497806374944,0,1,30.759810775810585,, +OC[C@H]1CC[C@H](O)[C@@H]1O,FP,1,1,0,0,0.4335265699676528,1,0,-10.869391599007624,, +O=C1CC[C@@H](CO)N1,FP,1,1,1,0,0.4724553175818496,1,0,-7.95323937840643,, +CC[C@H]1[C@@H](CO)NC(=O)[C@H]1F,FP,1,1,1,1,0.5909676113117219,0,0,-40.58731605521925,, +OCCCc1ccccc1,FP,1,1,1,1,0.6689565380917978,1,1,47.40919966148066,0.0,0.0 +N[C@@H]1CC[NH2+]C1,FP,1,1,1,0,0.3624584884821881,0,0,-7.948782171910956,, +c1cnc2[nH]ccc2c1,FP,1,1,1,1,0.5583728365871126,1,1,43.27487395955146,730.0,1.0 +OCC1CCNCC1,FP,1,1,1,1,0.5030526331103852,1,0,-9.424854766148677,, +CC1(N)CC1,FP,1,1,1,0,0.4418179578275168,1,0,-5.593213403181752,, +O[C@@H]1CCNC1,FP,1,1,1,0,0.410880287239465,1,0,-23.32804714267448,, +NC(=O)[C@@H]1C[C@H]2C=C[C@@H]1C2,FP,1,0,1,1,0.5305767124158226,0,1,3.622664173735156,, +Cc1ccn(C)n1,FP,1,1,1,0,0.4652232925414449,1,1,23.78254863539931,, +COc1cc(C)ccc1C(=O)N1CCNCC1,FP,1,1,1,1,0.8313072051206871,0,1,61.94699009873151,, +C1COCC[NH2+]1,FP,1,1,1,0,0.3861823330430945,0,1,11.095527088428112,, +CC1CCN(C(=O)CC#N)CC1,FP,1,1,1,1,0.5863404755808456,0,1,35.8022771087558,, +CC1CCN(S(C)(=O)=O)CC1,FP,1,1,1,1,0.5903375990862029,1,1,33.977124931277935,0.0,0.0 +O=C(O)NC1CCCC1,FP,1,1,1,1,0.5584438757905469,0,1,10.91397563203286,, +CC(C)[N@@H+]1CCC[C@H]1C(=O)N1CCCCC1,FP,1,1,1,1,0.7251883588373154,0,1,39.97791615398715,, +C1C[C@H]2CC[C@@H]1C2,FP,1,1,1,0,0.4333884759273747,0,0,-5.932971009122648,, +N#CCC(=O)N1CCCCC1,FP,1,1,1,1,0.5602631839619662,0,1,37.439019448974776,, +N#CC1CCCCC1,FP,1,1,1,0,0.4669394490912757,0,1,13.275381306700991,, +N#CCC1CCCCC1,FP,1,1,1,1,0.5251396422498789,0,1,13.590860355443375,, +N#CCCC1CCCCC1,FP,1,1,1,1,0.5737530888887298,0,1,25.231065084212467,, +N#C[C@@H]1CCC[C@@H]1N,FP,1,1,1,1,0.4970710837555071,1,0,-9.944402295274788,, +CN[C@H]1C[C@@H](NS(C)(=O)=O)C1,FP,1,1,1,1,0.5997709183349255,1,1,12.906425286397548,0.0,0.0 +N#CC1CCOCC1,FP,1,1,1,0,0.4656756217777724,0,1,8.254210535410216,, +O[C@]12C[C@H]3C[C@H](C[C@H](C3)C1)C2,FP,1,1,1,1,0.562185606810213,0,0,-8.263944001068865,, +CCCS(=O)(=O)N[C@H]1C[C@@H](NC)C1,FP,1,1,0,1,0.6688574858252627,1,1,26.28327116045504,, +O=C([C@@H]1CC1(F)F)N1[C@H]2CC[C@@H]1CNC2,FP,1,1,1,1,0.6959898148455989,0,0,-22.033507687274263,, +C[C@H](C(=O)Nc1cccc2cc[nH]c12)N1CC[NH+](C)CC1,FP,1,1,1,1,0.7616729462870716,0,1,104.75785225367214,, +COc1ccc(Cl)cc1-c1ccn(C)n1,FP,1,1,1,1,0.7814486723071706,0,1,49.06801461266637,, +Cn1ccc(-c2cc(Cl)ccc2OC(F)F)n1,FP,1,1,0,1,0.8442466967677695,0,1,42.70214551429673,, +FC(F)Oc1ccc(Cl)cc1-c1ccn[nH]1,FP,1,1,0,1,0.8993153938934373,0,1,35.034495033828456,, +COc1cc2ccccc2cc1-c1ccn[nH]1,FP,1,1,0,1,0.7252351078266525,0,1,37.82437821432397,, +COc1cc2[nH]ncc2cc1-c1ccn[nH]1,FP,1,1,0,1,0.6848545063542688,0,1,38.36086930642349,, +C[N@H+]1CC[C@@H](CC#N)[C@H](F)C1,FP,1,1,1,1,0.5594152830227539,0,0,-25.146469677488813,, +C[NH+]1CCC(CC#N)CC1,FP,1,1,1,1,0.5362956326172388,0,1,13.140532511374428,, +N#CCC1CC[NH+](Cc2cccc(O)c2)CC1,FP,1,1,1,1,0.8181451550960676,0,1,68.24735705945507,, +CN1CC[C@@H](CC#N)[C@H](F)C1,FP,1,1,1,1,0.5698714273042141,0,0,-23.43375305327716,, +N#CC[C@@H]([C@H]1CCNC1)n1cccn1,FP,1,1,1,1,0.7715979820260218,0,1,0.2149581195238732,, +O=CNc1cccc2cc[nH]c12,FP,1,0,1,1,0.645503921329871,0,1,26.22585954987489,, +O=C(NC1CCCCC1)[C@@H]1CC1(F)F,FP,1,1,1,1,0.7311335528246686,0,1,25.931168041115416,, +O=C(N[C@]12CNC[C@H]1C2)C1CC1,FP,1,1,1,1,0.5999484211041812,0,0,-22.10486835542781,, +C[C@H](N)c1ncc(F)cn1,FP,1,1,1,1,0.6238153133434738,0,1,12.92160952188324,, +CC(C)(C)NS(=O)(=O)c1ccccc1,FP,1,1,1,1,0.8133760456953595,1,1,65.96364844762772,634.0,1.0 +CCN(CC)C(=O)[C@H]1CCCNC1,FP,1,1,1,1,0.7051245949846119,0,1,6.568011639083037,, +C[C@H](N)c1ccc(F)cc1,FP,1,1,1,1,0.6308651364660499,1,1,24.00139515274022,0.0,0.0 +Fc1cccc(F)c1C[NH+]1CCOCC1,FP,1,1,1,1,0.751126253429858,0,1,68.60241735167305,, +CNS(=O)(=O)c1ccccc1,FP,1,1,1,1,0.7076960310206866,1,1,50.72290137514336,642.0,1.0 +COc1cc(F)c(CC(=O)N2CCNCC2)c(F)c1,FP,1,1,1,1,0.8887923905951249,0,1,51.155846323687,, +c1ccc(N2CCOCC2)cc1,FP,1,1,1,1,0.6220990281060828,1,1,50.2579111289165,812.0,1.0 +C[C@H](O)c1ncc(F)cn1,FP,1,1,1,1,0.626371307950427,0,1,18.2712336162961,, +CS(=O)(=O)c1ccccc1,FP,1,1,1,1,0.6095920823457686,1,1,42.27054499320996,816.0,1.0 +O=C(Nc1ccccc1)[C@H]1CCC[NH2+]1,FP,1,1,1,1,0.6958973869894406,0,1,66.49086167909687,, +Cc1ccc(Cl)cc1-c1[nH]ccc1C(N)=O,FP,1,1,1,1,0.8248462744763603,0,1,35.50289664951736,, +NC(=O)c1cc[nH]c1-c1cc(C(F)(F)F)ccc1Cl,FP,1,1,0,1,0.8733974556943789,0,1,43.88554102462432,, +Cc1ccc(Cl)cc1-c1c(C(N)=O)ccn1C,FP,1,1,1,1,0.8729240709842815,0,1,32.44506557792426,, +c1ccc(C[NH+]2CCCCC2)cc1,FP,1,1,1,1,0.6916189257895103,0,1,75.97769484605864,, +Cc1ccn(-c2cccc(Cl)c2)n1,FP,1,1,1,1,0.6796124315111957,1,1,55.89446969103494,0.0,0.0 +O=S1(=O)CC[NH+](Cc2ccccc2)CC1,FP,1,1,1,1,0.7381883160223339,0,1,69.12576904433647,, +C[C@H](N)C(=O)NCC(F)(F)F,FP,1,1,1,1,0.6130281541438113,1,1,24.075315829907368,0.0,0.0 +CC(C)(N)C(=O)NCC(F)(F)F,FP,1,1,1,1,0.6523268787149562,1,1,23.817062693006207,0.0,0.0 +CC[C@@](C)(N)C(=O)NCC(F)(F)F,FP,1,1,1,1,0.7040639913819514,0,1,28.49710917961105,, +Cc1ccc(Cl)cc1-n1cccc1C(N)=O,FP,1,1,1,1,0.8530218540603625,0,1,57.059057255724014,, +O=CN(C1CC1)C1CC1,FP,1,0,1,1,0.5100449337305277,1,0,-3.16666966545595,, +CC1CCN(C(=O)N2CCCC2)CC1,FP,1,1,1,1,0.5804838391208935,0,1,57.519202066788594,, +CC1CCN(C=O)CC1,FP,1,0,1,0,0.4786048288697799,1,0,-2.9080104566864917,, +N#CC[C@@H]([C@H]1C=CCC1)n1cccn1,FP,1,0,1,1,0.6811814994324719,0,1,8.025467746185127,, +CC(C)(C)S(=O)(=O)N1CCc2ccccc21,FP,1,1,1,1,0.7529587734267358,0,1,52.03014733796134,, +CC(C)(C)S(=O)(=O)Nc1ccccc1F,FP,1,1,1,1,0.8489283750246244,0,1,55.91749122764877,, +O=S1(=O)CCCN1c1ccccc1F,FP,1,1,1,1,0.7090856546824396,0,1,38.85845200978107,, +N#CCCn1cccn1,FP,1,1,1,1,0.5802381724329438,0,1,39.02702282400554,, +CC(C)(C)S(=O)(=O)Nc1ccccc1Cl,FP,1,1,1,1,0.8736156454045244,0,1,58.36851792302449,, +C=CCCn1cccn1,FP,1,0,1,1,0.5548076730711992,0,1,22.565980023827663,, +N#CC[C@@H](C1CCCC1)n1cccn1,FP,1,1,1,1,0.732757278762978,0,1,32.97390951410494,, +N#CCC1(n2cccn2)CN(CC(F)(F)F)C1,FP,1,1,1,1,0.8062513518022228,0,1,16.26779494360998,, +C[C@H](N)CO,FP,1,1,1,0,0.4337552925789797,1,1,0.5906736151234748,, +CC[SH](=O)=O,FP,1,0,1,0,0.4492217895179582,1,0,-11.904337868818336,, +C[NH+]1CCN(C2(CC#N)CNC2)CC1,FP,1,1,1,1,0.5393412528027863,0,0,-1.7504596599920617,, +OC1(C2CC2)CNC1,FP,1,1,1,0,0.4903823239382723,0,0,-16.267996774018062,, +O=CNC1CC1,FP,1,0,1,0,0.4657730328446583,1,0,-9.131588782081048,, +OCc1cc[nH]n1,FP,1,1,1,1,0.5150256511811302,1,1,23.67432873178777,136.0,1.0 +OCCc1c[nH]cn1,FP,1,1,1,1,0.5629224053514312,1,1,26.72436546807505,100.0,1.0 +O=C([O-])COc1ccccc1,FP,1,1,1,1,0.6014690131617201,0,1,59.67693434287978,, +O=C([O-])c1coc(-c2ccccc2)n1,FP,1,1,0,1,0.6954549327645857,0,1,57.62360268590617,, +O=C1CCNCC1,FP,1,1,1,0,0.4606350978722566,0,0,-8.815755231683807,, +C[C@@H](N)C(=O)N1CC(C#N)C1,FP,1,1,0,1,0.5420151264354888,0,1,0.7101374757271274,, +C[C@H](N)C1CC1,FP,1,1,1,1,0.4991110980279141,1,0,-2.325280306577863,, +C[C@H](N)C(C)(C)C,FP,1,1,1,0,0.4898423475803594,1,1,6.168173737350266,, +C[C@H](N)C(C)(C)O,FP,1,1,1,1,0.4943034835525043,1,1,2.6677420878623552,224.0,1.0 +C[C@@H](N)C(C)(C)O,FP,1,1,1,1,0.4943034835525043,1,1,2.6677420878623552,238.0,1.0 +C[C@@H](N)C(=O)N1CCCCC1,FP,1,1,1,1,0.5950044199732359,0,1,23.551151672619586,, +CC(C)CS(=O)(=O)N1CCC[C@H](N)C1,FP,1,1,0,1,0.748344135009278,0,1,12.00625425504252,, +CC1(F)CCCC1,FP,1,1,1,0,0.4398975534382585,0,0,-7.6127944661625,, +N#CCC=O,FP,1,0,1,0,0.4095110645562998,1,0,-7.53493327341166,, +CC1(C)CCC[C@]1(C)[NH3+],FP,1,1,1,1,0.5074382492786441,0,1,0.5124615603219502,, +C[C@]1(NC#N)CCc2ccccc21,FP,1,0,1,1,0.5186046916511903,0,0,-3.633619812790183,, +CCC#N,FP,1,1,1,0,0.4038142196355223,1,1,10.21279369204416,, +C[C@@H](O)CCO,FP,1,1,1,0,0.4905429154176823,1,1,13.124519105565676,, +C[C@H]1CN(C(=O)CC#N)[C@]12CCNC2,FP,1,1,1,1,0.6427828413456937,0,0,-29.87695254724146,, +CC(=O)N1CCCCC1,FP,1,1,1,0,0.4754450474329609,1,1,30.29690784484846,, +Fc1cccc(Cl)c1,FP,1,1,1,1,0.5062680369802974,1,1,36.18337245697641,824.0,1.0 +O=S1(=O)CCC(NS(=O)(=O)c2ccccc2)CC1,FP,1,1,0,1,0.8805351878145476,0,1,76.44595277324392,, +c1ccc2[nH]ncc2c1,FP,1,1,1,1,0.5583728365871126,1,1,41.54100241300441,164.0,1.0 +Oc1cccc2[nH]ncc12,FP,1,1,1,1,0.5695767699152822,1,1,28.66297947582465,120.0,1.0 +CS(=O)(=O)C1CCN(c2cccc3[nH]ccc23)CC1,FP,1,1,1,1,0.9157955388131238,0,1,51.4758598301824,, +NC(=O)[C@@H]1CCN(C[C@H](O)N2CCNCC2)C1,FP,1,1,0,1,0.5319829076165244,0,0,-4.381036113539445,, +c1nc[nH]n1,FP,1,1,1,0,0.4582074400555656,1,1,7.6789059491896925,, +CCCn1ccnc1C1CC[NH+](C)CC1,FP,1,1,1,1,0.775364847458353,0,1,50.143090837294416,, +CNC1CCCCC1,FP,1,1,1,1,0.5435844630830176,1,1,16.359629351697215,0.0,0.0 +C#CC[NH+]1CCNCC1,FP,1,0,1,0,0.3916369939439882,0,1,7.198517598008696,, +c1ccc(-n2cncn2)cc1,FP,1,1,1,1,0.6045482615564559,1,1,48.17622363791496,26.0,1.0 +O=c1[nH]cnn1C1CCOCC1,FP,1,1,1,1,0.6394178155528356,0,1,15.757231633818389,, +C1CCOC1,FP,1,1,1,0,0.4109376010493491,1,1,6.581964326142951,, +Oc1ccc2nc[nH]c2c1,FP,1,1,1,1,0.5695767699152822,1,1,29.591847714591445,2.0,1.0 +CSc1nc(C)c[nH]1,FP,1,1,1,1,0.5796258083308865,1,1,19.06166589881234,0.0,0.0 +Cc1c[nH]cn1,FP,1,1,1,0,0.4904468907838006,1,1,15.541925516516686,, +NC(=O)C(F)(F)Br,FP,1,0,1,1,0.5760829723162774,0,1,8.846523712186718,, +CC(C)(C)n1ccc(-c2cccc(O)c2)n1,FP,1,1,0,1,0.7953194026214292,0,1,39.56368286285536,, +Cc1ccncc1,FP,1,1,1,0,0.4719983679006756,1,1,26.636077101778625,, +CC[NH+]1CCNCC1,FP,1,1,1,0,0.4247903929124874,0,1,3.498274746836457,, +COc1cccc(OC)c1,FP,1,1,1,1,0.6189113153967104,1,1,40.67824546338798,854.0,1.0 +C[C@H]1CNCC[NH2+]1,FP,1,1,1,0,0.3834811167403689,0,0,-20.594121993995564,, +CC(C)([NH3+])CN,FP,1,1,1,0,0.4236194890607213,1,1,2.042749523386571,, +OC[C@H]1CCCN1,FP,1,1,1,0,0.4763048254941971,1,0,-24.131607829297945,, +CC(C)(CN)Nc1nccc2nncn12,FP,1,1,0,1,0.7531761742295495,0,1,18.371249690425884,, +CCS,FP,1,0,1,0,0.3965034907917323,1,1,4.291100407314613,, +O=CCS,FP,1,0,1,0,0.3464202068822845,1,0,-7.980444220542477,, +NC(=O)[C@H]([NH3+])C1CCCCC1,FP,1,1,0,1,0.5654419817509676,0,1,24.519002733720896,, +Cc1cc(S(C)(=O)=O)ccc1-c1nccn1C,FP,1,1,1,1,0.8163047921248467,0,1,53.41083022263494,, +O=C(c1ccccc1)c1ccccc1,FP,1,1,1,1,0.6524732866647586,1,1,52.45410095390331,730.0,1.0 +OC[C@@H]1CC[NH2+]C1,FP,1,1,1,0,0.417892814514165,0,1,13.493061271101912,, +O[C@H]1CC[NH2+]C1,FP,1,1,1,0,0.3642078013334506,0,0,-4.59780594877461,, +CC(=O)NC1CCCCC1,FP,1,1,1,1,0.5881054430832254,1,1,37.90778852108155,0.0,0.0 +[NH3+]CCNS(=O)(=O)c1cccs1,FP,1,1,0,1,0.6827636006187433,0,1,65.68118581169732,, +[NH3+]C[C@H](O)c1ccccc1,FP,1,1,1,1,0.5916647064294223,0,1,39.84573672021334,, +CC(C)n1cnnc1,FP,1,1,1,1,0.5377454907365901,1,1,18.380214891687984,0.0,0.0 +C[C@H](CO)n1cnnc1,FP,1,1,1,1,0.5997663542628732,0,1,11.52541635176406,, +Cn1cnnc1,FP,1,1,1,0,0.435136594916293,1,1,14.050596559494284,, +c1nncn1C1CC1,FP,1,1,1,1,0.528719446165006,1,1,13.518241191198804,0.0,0.0 +C[C@@H](Nc1c(N)c(=O)c1=O)c1ccccc1,FP,1,0,0,1,0.7517399077494921,0,1,54.34157104176639,, +Nc1ccnc(N)n1,FP,1,1,0,0,0.4777611922776153,1,1,26.34741885629736,, +O=C1NCCc2ccccc21,FP,1,1,1,1,0.5817817621738194,1,0,-5.152835909720805,, +CN1CC2(CNC(=O)c3c2[nH]c2c3CCc3cnccc3-2)C1,FP,1,1,0,1,0.7647724523302868,0,0,-34.38976437529931,, +O=C1NCCc2[nH]c3c(ccc4cnccc43)c21,FP,1,1,1,1,0.627964628467326,0,1,2.0657400185718178,, +O=C1NCC2(CC[NH2+]CC2)c2[nH]ccc21,FP,1,1,0,1,0.5189730848398333,0,0,-12.968893791033098,, +[NH3+]CCn1cccn1,FP,1,1,1,1,0.530530028671747,1,1,34.51871856804885,0.0,0.0 +O=C1NC[C@@]2(CCC[NH2+]C2)c2[nH]ccc21,FP,1,1,0,1,0.5189730848398332,0,0,-12.463495211999785,, +[NH3+][C@@H]1CCCC[C@@H]1NC=O,FP,1,0,1,1,0.4926536647190383,0,1,2.010060200834449,, +CCc1c[nH]c[nH+]1,FP,1,1,1,1,0.5251835800683718,0,1,27.09515936239929,, +[NH3+][C@@H]1CCCC(F)(F)[C@@H]1NC=O,FP,1,0,1,1,0.5531249720105186,0,0,-26.02658985459136,, +O=CN[C@H](C[NH+]1CCCC1)c1ccccc1,FP,1,0,0,1,0.6792645207072313,0,1,47.64888084527472,, +[NH3+]CCCNC=O,FP,1,0,0,0,0.3253662145827422,1,0,-3.2468246503518823,, +C[NH+](C)C[C@@H](N)c1ccccc1,FP,1,1,1,1,0.6398758719158177,0,1,42.3495901759523,, +Cc1nccnc1N(C)S(C)(=O)=O,FP,1,1,0,1,0.6844397368806782,0,1,37.975993135908894,, +C[NH+](C)C,FP,1,1,1,0,0.3565154044801438,1,1,11.652772006247718,, +C[C@H]1CC[C@H]([NH3+])CC1,FP,1,1,1,0,0.4823765513789045,1,1,20.591770076866663,, +CS(=O)(=O)N1CCO[C@H](c2cscn2)C1,FP,1,1,0,1,0.7633838780568206,0,1,31.62416623952399,, +NC1CCOCC1,FP,1,1,1,0,0.4702306243406387,1,0,-2.9795196209614665,, +CNC(=O)c1sc(N2C[C@H]3C[C@]2(C)C3)nc1C(F)(F)F,FP,1,1,0,1,0.912948285075777,0,1,4.610335318893014,, +Fc1ccc(Cl)cc1Cl,FP,1,0,0,1,0.5176652627994291,1,1,39.637417488072415,, +Cc1nnc2ccc(-c3ccccc3)nn12,FP,1,1,1,1,0.6173742964832469,1,1,77.56077574131213,0.0,0.0 +Cn1cc(-c2ccc3nncn3n2)cn1,FP,1,1,0,1,0.574355226880835,0,1,60.734149228552496,, +CCC(=O)NCc1ccccn1,FP,1,1,1,1,0.7266538760848749,1,1,70.51356395489063,0.0,0.0 +Cn1cc(-c2ccc3nccn3n2)cn1,FP,1,1,1,1,0.5898984406808726,0,1,60.4018754371037,, +CN(C[C@@H]1COCCO1)S(N)(=O)=O,FP,1,1,0,1,0.6167397365042818,0,1,25.54578283074658,, +Fc1ccc(-c2cnc3nncn3n2)cc1,FP,1,1,0,1,0.6140043419812684,0,1,34.86491722048028,, +CCc1nnc2ccc(NC(C)C)nn12,FP,1,1,0,1,0.8247673431617006,0,1,73.0417536542601,, +OCCn1cc(-c2cnc3nn[nH]c3n2)cn1,FP,1,1,0,1,0.6352011619858338,0,1,36.78410986492048,, +CCC(=O)N/N=C1\C(=O)Nc2c(C)ccc(Cl)c21,FP,0,0,0,1,0.8011305362825902,0,1,49.867297039618514,, +Cc1nnc2ncc(-c3ccc(C#N)cc3)nn12,FP,1,1,0,1,0.6370159283339809,0,1,40.13074126430848,, +Cc1nnc2ncc(-c3ccc(F)cc3)nn12,FP,1,1,0,1,0.6360563676327126,0,1,38.07201602612538,, +Cc1cc(-c2ccc3nnc(C)n3n2)sn1,FP,1,1,0,1,0.6411690622222664,0,1,46.82741714087447,, +Cn1nnc2c1C(=O)N(c1ccccc1)CC2,FP,1,1,1,1,0.7318142484163812,0,1,17.997031389347153,, +CCn1nnc2ccn(-c3cc(C)ns3)c(=O)c21,FP,1,1,0,1,0.6984679595529794,0,1,18.57695288767953,, +Cc1cccc([N+2](#[O+])[O-])c1,FP,1,0,1,0,0.3996700400790924,0,1,26.763431990036256,, +NCc1cccc([N+2](#[O+])[O-])c1,FP,1,0,0,0,0.4890055378081637,0,1,3.439268503973163,, +CS(=O)(=O)NCc1ccccn1,FP,1,1,1,1,0.7296237322334581,1,1,59.20490787698265,0.0,0.0 +Cn1nc(-c2cccc(C#N)c2)ccc1=O,FP,1,1,1,1,0.7143090461013516,0,1,52.15514750351331,, +COc1ccc(C2=NN(C)C(=O)SC2)cc1OC,FP,1,0,0,1,0.8413237452646888,0,1,33.01658139515839,, +Cc1cc(-c2cc(F)c3nncn3c2)on1,FP,1,1,0,1,0.6248476178992781,0,1,29.77562709607148,, +CCc1nnc2c(F)cc(-c3cc(C)no3)cn12,FP,1,1,0,1,0.6962830161090295,0,1,38.0892956929197,, +Cn1cc(-c2cc(F)c3nncn3c2)cn1,FP,1,1,1,1,0.6163184477429532,0,1,29.130133332787757,, +Sc1nnc2ccc(-c3cccs3)nn12,FP,1,0,1,1,0.6559560439539387,0,1,41.38109712208881,, +Fc1ccc(-c2ccc3nnc(S)n3n2)cc1,FP,1,0,1,1,0.6694142493364987,0,1,47.89737808442145,, +Sc1nnc2cccnn12,FP,1,0,1,1,0.5559785983890522,0,1,16.489813314095986,, +Sc1nnc2ccccn12,FP,1,0,1,1,0.5695977641289466,1,1,24.9198630865573,, +Cn1cc(-c2ccc3nnn(C)c3c2)cn1,FP,1,1,1,1,0.6130392560915929,0,1,41.987128652789465,, +Cc1nnc2sc(-c3cc4ccccc4[nH]3)nn12,FP,1,1,1,1,0.5685339385714832,0,1,59.98984313233021,, +CCn1nnc2ncc(-c3cnn(C)c3)nc21,FP,1,1,0,1,0.644344818992372,1,1,34.00668843390278,, +Cn1cc(-c2ccc3nncn3c2)cn1,FP,1,1,1,1,0.5898984406808726,0,1,53.615928327001015,, +O=c1ccc(-c2cccc([N+](=O)[O-])c2)n[nH]1,FP,1,0,0,1,0.6068220237377135,0,1,58.25331914294742,, +CNC(=O)c1ccc(-c2ccc(=O)[nH]n2)cc1C(F)(F)F,FP,1,1,0,1,0.8875020860773285,0,1,53.09387144965459,, +Nc1ccc(F)cc1,FP,1,0,1,1,0.5030676848790229,1,1,25.644628327631864,, +O=CNc1cccc(F)c1,FP,1,0,1,1,0.6161775917187738,1,1,24.995501364867472,, +NC(=O)c1ccc(N)cc1,FP,1,0,0,1,0.5473422654963028,1,1,37.47506477215158,, +Nc1ccc2c(c1)C=NC2=O,FP,1,0,1,1,0.5512205768468247,0,0,-12.86138450360138,, +C[C@H]1NC(=O)c2ccc(N)cc21,FP,1,0,1,1,0.5605501553302342,0,0,-27.327653525425976,, +Cc1cc(N)c(=O)n2c1C(=O)NC21CCCCC1,FP,1,1,0,1,0.7203369606026331,0,0,-3.4846277827650503,, +CC1(C)NC(=O)c2cccc(=O)n21,FP,1,1,1,1,0.6201751080954425,0,0,-5.759442700621825,, +O=Cc1nn(C2CC[NH2+]CC2)cc1Cl,FP,1,0,1,1,0.7179074595285864,0,1,11.914784345333675,, +C1CC[C@@]2(CCCNC2)[NH2+]C1,FP,1,1,1,1,0.5005041419774104,0,0,-22.67879386342525,, +C[C@H]1OC[C@H]([NH3+])CO1,FP,1,1,1,0,0.4427295839997588,0,0,-6.049905147364898,, +C[NH+](C)C/C=C/C=O,FP,1,0,1,0,0.3643067273811359,0,0,-7.8525843248296,, +CC(C)([O-])c1ccccn1,FP,1,1,1,1,0.5687199219948977,0,1,25.348797066880376,, +Nc1cc2nc3cc(Br)ccc3nc2[nH]1,FP,1,1,0,1,0.6541988674563654,0,1,34.173795844408275,, +Nc1cc2nc3c(Br)cccc3nc2[nH]1,FP,1,1,0,1,0.6541988674563654,0,1,23.11717607357876,, +C[C@]1(CO)CNc2ncccc21,FP,1,1,1,1,0.6436775608863893,0,0,-13.059233725999803,, +C[C@@]1(CO)CNc2c(C#N)cccc21,FP,1,1,1,1,0.6966310902681976,0,0,-14.057536874251932,, +CCOC,FP,1,1,1,0,0.4315009980580737,1,1,14.173271476186557,, +NC[C@H]1CC[C@H]([NH3+])CC1,FP,1,1,1,1,0.5035714108298023,1,1,0.6378290278631789,0.0,0.0 +NCc1ccc2nc[nH]c2c1Cl,FP,1,1,1,1,0.7034671387943321,0,1,4.816460001645181,, +C[C@H](N)c1ccc2[nH]ccc2n1,FP,1,1,1,1,0.6667908084559773,0,1,29.82620226868699,, +N[C@@H]1CCCC[C@H]1[NH3+],FP,1,1,1,0,0.4390616699600091,1,0,-9.70393480190246,, +C[C@H]1C[N@@H+](C)CCN1,FP,1,1,1,0,0.392359151325036,0,0,-27.01309649642153,, +COc1nc(N)nc(N)n1,FP,1,1,0,1,0.5223144928885418,1,1,20.91198661354904,, +Cc1ccc2nc[nH]c2c1Cl,FP,1,1,1,1,0.6403340003619417,1,1,21.326082533379456,0.0,0.0 +C[C@@H]1CN(C=O)CC[NH2+]1,FP,1,0,1,0,0.4257694141880539,0,0,-13.580830694191803,, +[NH3+][C@@H]1CCCN(C=O)C1,FP,1,0,1,0,0.4463990063605232,0,0,-5.194218987963317,, +C[C@H]1CN(C=O)CC[NH2+]1,FP,1,0,1,0,0.4257694141880539,0,0,-13.580830694191803,, +[NH3+]C1CCN(c2cccc3cccnc23)CC1,FP,1,1,1,1,0.8024616682189618,0,1,51.18782895997885,, +CCCNC(=O)C(C)(C)C(N)=O,FP,1,0,0,1,0.5868379573660769,1,1,32.714207726956204,, +NC(N)=O,FP,1,1,0,0,0.3705073514035382,1,1,12.3711326840275,, +c1c[nH]cn1,FP,1,1,1,0,0.4683433019217652,1,1,6.83242472056568,, +[NH3+][C@H](COc1cccnc1)Cc1ccccc1,FP,1,1,0,1,0.840143175156281,0,1,74.84322388382736,, +[NH3+][C@@H](COc1cccnc1)Cc1ccccc1,FP,1,1,0,1,0.840143175156281,0,1,74.84322388382736,, +C[C@@H](N)C(C)(C)C,FP,1,1,1,0,0.4898423475803594,1,1,6.168173737350266,, +CCNc1ccnc(N)n1,FP,1,1,0,1,0.6239127624495189,1,1,38.813412901548894,, +Nc1nccc(N2CCOCC2)n1,FP,1,1,0,1,0.6532074993492707,1,1,42.62869684533671,, +C[C@@H]1COCCN1c1ccnc(N)n1,FP,1,1,0,1,0.6954872742293317,0,1,19.56012171536115,, +C[C@@H]1CCCCN1c1ccnc(N)n1,FP,1,1,0,1,0.7311142366310059,0,1,31.639451110502456,, +C[C@H]1CCCCN1c1ccnc(N)n1,FP,1,1,0,1,0.7311142366310059,0,1,31.639451110502456,, +C[C@@H]1CCCN(c2ccnc(N)n2)C1,FP,1,1,0,1,0.7282289508992896,0,1,43.89909696219437,, +c1ccc(Cn2ccnn2)cc1,FP,1,1,1,1,0.6613641361270438,1,1,51.33189919117603,52.0,1.0 +Fc1ccc([C@H]2COC[C@H]2Nc2cnccn2)cc1,FP,1,1,0,1,0.9176813743669416,0,1,33.185916630523664,, +c1cncc(CCNc2cnccn2)c1,FP,1,1,0,1,0.8126796300840123,0,1,77.6155449617691,, +CCc1ccnc(N)n1,FP,1,1,1,1,0.5952125056158412,1,1,28.51724507306803,110.0,1.0 +CCCCc1ccnc(N)n1,FP,1,1,1,1,0.7100240320687291,1,1,42.72479628299541,0.0,0.0 +c1cn2nc(NCC3CC3)ccc2n1,FP,1,1,1,1,0.7942360996124299,0,1,76.89046537214583,, +N#Cc1c(-c2ccccc2)cc[nH]c1=O,FP,1,1,1,1,0.7569620340149347,0,1,26.40197138558292,, +C[N@H+]1CCCNCC1,FP,1,1,1,0,0.3924249396547354,0,0,-16.9504487499147,, +c1cc2nncn2nc1NC1CCCCC1,FP,1,1,0,1,0.833936408341099,0,1,72.42690319602062,, +CCNc1nccc(CC#N)n1,FP,1,1,0,1,0.7190613499509125,0,1,40.193444832932045,, +C[N@@H+]1CC[C@H](O)C1,FP,1,1,1,0,0.37292405875763,0,1,2.406679627883729,, +N[C@H]1CC[C@@H]([NH3+])CC1,FP,1,1,1,0,0.4390616699600093,1,0,-4.382634076712126,, +COc1ccc2c(c1CN1CC[NH2+]CC1)OCC2=O,FP,1,1,0,1,0.8096641813540534,0,1,25.90554303941023,, +O=C1COc2c1ccc(O)c2C[NH+]1CCCCCC1,FP,0,1,1,1,0.8332943943126977,0,1,49.876193133396,, +c1cc2nn[nH]c2nc1NCC1CC[NH2+]CC1,FP,1,1,0,1,0.6817186378514117,0,1,56.49730151813711,, +Clc1cccc(NCC2CC[NH2+]CC2)c1,FP,1,1,1,1,0.8061528331821819,0,1,72.72038780448223,, +CN1CC[NH+](C)CC1,FP,1,1,1,0,0.4013324856267133,0,1,18.180060917081622,, +NC(=O)C[C@H]1CNC(=O)c2cccn21,FP,1,1,0,1,0.6729551449002426,0,0,-6.715075696761878,, +[NH3+]CCNC(=O)C[C@H]1CNC(=O)c2cccn21,FP,1,1,0,1,0.5958546365285886,0,1,7.717780587033785,, +[NH3+][C@@H]1CCCNC1,FP,1,1,1,0,0.4026375405755626,1,0,-12.559331385978204,, +O=C1CS/C(=N\c2ccccc2Cl)N1,FP,1,0,1,1,0.797749956771185,0,1,24.17860025282028,, +c1ccc2c(c1)OCO2,FP,1,1,1,1,0.5176682759164258,1,1,24.83848061700253,36.0,1.0 +NCC[NH2+]CCO,FP,1,0,0,0,0.3460491173542896,1,1,1.9729177117465944,, +N#Cc1ccc(Cc2cc(O)n3ncc(C=O)c3n2)cc1,FP,0,0,0,1,0.7362644690879185,0,1,49.161526165268384,, +O=Cc1cnn2ccc(NC[C@H]3CC[NH2+]C[C@@H]3F)nc12,FP,1,0,0,1,0.7642842617337442,0,1,13.579479953431507,, +c1cc(-c2cnc3n2CCS3)ccn1,FP,1,1,1,1,0.7103571548704372,0,1,25.01671427838844,, +CC[NH+](C)C,FP,1,1,1,0,0.4130719394179309,1,1,16.238026260411445,, +[NH3+][C@@H]1CCCC[C@H]1Nc1ccn2nccc2n1,FP,1,1,0,1,0.8002203737241246,0,1,55.01281924934633,, +Nc1cnccc1N1CCC[C@H]([NH3+])C1,FP,1,1,0,1,0.6527077305752653,0,1,31.63593508886592,, +C[C@H]1CN(c2ccncc2N)C[C@@H]([NH3+])[C@@H]1O,FP,1,1,0,1,0.5747966787179464,0,0,-0.0672918105230635,, +NCCOCCO,FP,1,0,0,0,0.4486188461866933,1,0,-5.072649219201695,, +CC(C)(C)Nc1nnco1,FP,1,1,0,1,0.6396471980003355,0,1,15.919047354075,, +c1cnc(O[C@H]2C[NH2+]CCC23CC3)cn1,FP,1,1,1,1,0.7390909199861372,0,1,16.557681846087334,, +Nc1nncs1,FP,1,1,1,1,0.5046578314706381,1,1,13.562704486620008,10.0,1.0 +c1cc(O[C@H]2CC[NH2+]C2)ccn1,FP,1,1,1,1,0.6586069201272342,0,1,44.46674371789328,, +N[C@H]1CCC[C@H]([NH3+])C1,FP,1,1,1,0,0.4390616699600091,0,0,-10.936826289889469,, +C[C@@H]1C[C@H]([NH3+])C[C@H](c2ccncc2N)C1,FP,1,1,0,1,0.7242121300961045,0,0,-2.985778385904468,, +Cc1cc(-c2ccncc2N)cc(N)n1,FP,1,1,0,1,0.7327549625112605,0,1,19.10153516062936,, +C[C@H]1NC(=O)c2cc[nH]c21,FP,1,1,1,1,0.5445172929473329,0,0,-11.811208231150855,, +CC[NH3+],FP,1,1,1,0,0.3714914223317165,1,1,11.394622691813655,, +[NH3+]CCO,FP,1,1,1,0,0.3704637091260453,1,1,10.281549401495868,, +NNC=O,FP,1,0,1,0,0.169230317987058,1,0,-3.767500808993654,, +CC(=O)NN,FP,1,0,1,0,0.2197348816114828,1,1,13.2411006870485,, +CNC(=O)c1ccccc1[C@H]1CC[NH2+]C1,FP,1,1,1,1,0.7063243432649366,0,1,40.266601783792304,, +CNC1=NC(=O)CS1,FP,1,1,1,1,0.4949209530101054,1,0,-2.422755634960481,, +Cc1ccco1,FP,1,1,1,0,0.4628605847396023,1,1,19.55617176649155,, +COc1cc2ccn(CCN3CC[NH+](C)CC3)c2cc1OC,FP,1,1,0,1,0.8721307981537723,0,1,87.08432254845513,, +c1ccc(N2CC[NH2+]CC2)cc1,FP,1,1,1,1,0.6208178337972532,0,1,44.63943618349465,, +CN1CCNCC1=O,FP,1,1,1,0,0.4400315305747397,1,0,-20.113999202459496,, +Cc1cnccn1,FP,1,1,1,0,0.4745494696119243,1,1,24.3079767249518,, +FC1(F)CC[NH2+]CC1,FP,1,1,1,0,0.4647080559548354,0,1,3.5109045292502747,, +CCCCC[NH+](CC)CC,FP,1,0,0,1,0.5324929173831167,0,1,38.281717952730496,, +CCC1CC[NH2+]CC1,FP,1,1,1,1,0.5069905730586121,0,1,21.706344191271647,, +CCC[C@@H]1CCC[NH2+]C1,FP,1,1,1,1,0.5652080670615199,0,1,26.30480868047632,, +CCC1CC[NH+](CC[NH3+])CC1,FP,1,1,1,1,0.524366159778505,0,1,40.87687926520057,, +[NH3+][C@H]1CCCNCC1,FP,1,1,1,0,0.4333544655603332,0,0,-13.276052186915573,, +[NH3+][C@@H]1CCNCC[C@H]1F,FP,1,1,1,0,0.4512758970537531,0,0,-30.199373531772896,, +NCc1cccc(N)c1,FP,1,0,1,1,0.5392960867143269,1,1,10.256731790777057,, +CC1CC[NH+](C)CC1,FP,1,1,1,0,0.4494966250163544,0,1,18.472803983431746,, +CC[C@]1(F)CC[NH2+]C1,FP,1,1,1,1,0.501600743656134,0,0,-9.20875375359941,, +C1CNCCN1,FP,1,1,1,0,0.4022372466625182,1,0,-7.556680520212428,, +[NH3+]CC[C@H]1CN=C([O-])c2ccc(-c3ccccc3)n21,FP,1,1,0,1,0.8497087335194731,0,1,12.45976822997568,, +Nc1cnccc1O[C@H]1CC[NH2+]C1,FP,1,1,0,1,0.6371200739385279,0,1,36.26732291404191,, +[NH3+]C[C@H](Cc1ccc(Cl)cc1Cl)NC(=O)c1cccs1,FP,1,1,0,1,0.8699555293273914,0,1,102.27755249463748,, +NC[C@@H]([NH3+])Cc1ccc(C(F)(F)F)cc1,FP,1,1,1,1,0.7764644578647724,0,1,45.52798530691069,, +Cc1ccc(C[C@H]([NH3+])CNc2nncs2)cc1,FP,1,1,0,1,0.8340410879699498,0,1,61.02958850676365,, +Cc1ccc(C[C@H]([NH3+])CN)cc1,FP,1,1,1,1,0.6558219266348982,0,1,35.12528186141793,, +O=C[C@@H]1CC[NH2+]C1,FP,1,0,1,0,0.4111458697342856,0,0,-8.846560205066048,, +O=C(c1cccc(I)c1)[C@@H]1CC[NH2+]C1,FP,1,0,0,1,0.643070331570037,0,1,65.98189566526347,, +O=C(c1ccccc1)[C@@H]1CC[NH2+]C1,FP,1,1,1,1,0.6522217258968798,0,1,41.40537857991222,, +O=C(c1ccc(Br)s1)[C@@H]1CC[NH2+]C1,FP,1,1,1,1,0.7992502794156238,0,1,46.01919121959666,, +O=C(c1cccc(F)c1)[C@@H]1CC[NH2+]C1,FP,1,1,1,1,0.6868485798492628,0,1,48.51924819359071,, +O=CN[C@@H]1C[NH2+]C[C@H]1NC=O,FP,1,0,0,0,0.3767217134108401,0,0,-16.905664455079116,, +O=CNNC(=O)[C@@H](O)c1cc(F)cc(F)c1,FP,1,0,0,1,0.4937649148640596,0,1,21.128538510350044,, +N#Cc1ccc([C@H](N)[C@H]2C[C@H](O)C[NH2+]2)cc1Cl,FP,1,1,0,1,0.6875130408403703,0,1,14.153642805434067,, +Cn1cncc1C1=CNCCS1,FP,1,1,1,1,0.7021660488115231,0,0,-23.0641680822562,, +O=c1[nH]c2cncnc2[nH]1,FP,1,1,0,1,0.5192368565638923,0,1,14.416122897149616,, +Cn1cnc(Br)c1C1=CNCCS1,FP,1,1,1,1,0.8348728936541645,0,0,-31.01973787228212,, +C[C@H]1CCC[N@H+](C)C1,FP,1,1,1,0,0.4494966250163544,0,1,9.222254469595724,, +CC(C)([NH3+])CNc1nccc2cnccc12,FP,1,1,0,1,0.8076619530481376,0,1,55.45727688092697,, +C[C@H]([NH3+])CNc1ncnc2sc3c(c12)CCCC3,FP,1,1,0,1,0.8839703341723696,0,1,96.3009133532237,, +C[NH+](C)C[C@@H]1CC[N+]2=C(Cc3ccccc32)C1,FP,1,0,1,1,0.7214955786556394,0,1,17.34717801713671,, +NC1C[NH2+]C1,FP,1,1,1,0,0.3384292663056594,0,0,-7.704822344036497,, +CNC1(C)C[NH+](C)C1,FP,1,1,1,0,0.4247191786557008,0,0,-2.594578576820304,, +CC1(C)NC(=O)c2ccccc2N1Cc1ccccc1,FP,1,1,0,1,0.9051493497666114,0,1,30.35702673378302,, +CCC[NH+](C)C,FP,1,1,1,0,0.4657239979400232,1,1,20.711099605693025,, +Cn1ccc(C(N)=O)c1,FP,1,1,1,1,0.5677216491377188,1,1,34.303965564955085,0.0,0.0 +CC(C)(O)c1ccccn1,FP,1,1,1,1,0.6326615631270305,1,1,30.1652924377597,206.0,1.0 +COc1ccc2c(c1)C1(CC1)C(=O)N2,FP,1,1,1,1,0.7294819167667187,0,1,7.247287087439733,, +O=S(=O)(Cc1cccc([N+2](#[O+])[O-])c1F)c1cccc(F)c1,FP,1,0,0,1,0.643389975332707,0,1,69.26482758827329,, +CNC(=O)c1cccs1,FP,1,1,1,1,0.6232490855339597,1,1,44.5347287508199,86.0,1.0 +Cc1cccnc1,FP,1,1,1,0,0.4719983679006756,1,1,33.268042495590585,, +C[NH+]1CCC(N)CC1,FP,1,1,1,0,0.4004209591071466,0,0,-0.1023823097486995,, +C[N@@H+]1[C@H]2C[C@@H]1CN(c1ccccn1)C2,FP,1,1,1,1,0.6476491636270328,0,1,13.771037450721762,, +COC1(C(=O)N[C@@H](C)c2cccnc2)CCCCC1,FP,1,1,0,1,0.9070955629805344,0,1,60.55101241574005,, +C[C@H](NC=O)c1cccnc1,FP,1,0,1,1,0.6499624802518766,0,1,30.15613444661131,, +O=C(Cc1ccccc1)Nc1cccc(F)c1,FP,1,1,0,1,0.8607932417381152,0,1,119.94153232357804,, +C[S@@](=O)c1ccc(-c2ncc[nH]2)cc1,FP,1,1,1,1,0.8141711431179394,0,1,50.86616562272584,, +c1csc(N2CCOCC2)n1,FP,1,1,1,1,0.62791856920256,0,1,41.12294564689484,, +CCCS(N)(=O)=O,FP,1,1,0,1,0.5469392507695362,1,1,21.1885638416771,, +CS(N)(=O)=O,FP,1,1,0,0,0.415070921162109,1,1,13.481720360482456,, +C[C@@H]([NH3+])[C@H]1CC[C@H](C(N)=O)CC1,FP,1,1,0,1,0.5985444034190793,0,1,27.372050574019717,, +C[C@H]1C[NH2+]CCCN1,FP,1,1,1,0,0.4134084724453475,0,0,-18.57765109337097,, +NC(=O)[C@H]1CC[C@@H]([NH3+])CC1,FP,1,1,0,1,0.4989870771117795,0,1,29.87003669734457,, +NC(=O)[C@@H]1C[NH2+]C[C@H]1c1ccc(Cl)cc1,FP,1,1,1,1,0.7372622719528071,0,1,28.31536179259617,, +CNC(=O)Nc1nccs1,FP,1,1,1,1,0.6358243223889621,0,1,45.228397563634346,, +CC(C)([NH3+])CNc1ncnc2cnccc12,FP,1,1,0,1,0.7840324708383861,0,1,55.17499948755416,, +COc1cccc(CC(N)=O)c1,FP,1,1,1,1,0.71715396588548,1,1,68.42783043258464,0.0,0.0 +NC(=O)Cc1ccccc1,FP,1,1,1,1,0.6373688859267749,1,1,47.45197482999665,0.0,0.0 +O=CNCc1ccccc1,FP,1,0,1,1,0.6136620972835578,1,1,18.78526192607925,, +NC(=O)N1CCCC1,FP,1,1,1,0,0.4787891178430094,1,1,21.532076679100943,, +NC(=O)N1CCC[C@@H]1c1ccccc1,FP,1,1,1,1,0.7219249962754848,0,1,41.08636835214208,, +COc1cccc(C(=O)NCCO)c1,FP,1,1,0,1,0.7315263443328179,1,1,98.33062446681411,, +CNCC=O,FP,1,0,1,0,0.4423107359086157,1,0,-14.56509670040296,, +[NH3+]Cc1ccc(O)c(F)c1,FP,1,1,1,1,0.580681792581946,1,1,41.72803100694738,0.0,0.0 +[NH3+]Cc1ccc(C=O)cc1,FP,1,0,1,1,0.5814539021786307,1,1,33.55162207467533,, +O=C1N[C@]2(CC[C@](O)(c3ccc(F)cc3)CC2)Nc2ccsc21,FP,1,1,0,1,0.7514285587729687,0,1,11.2485863871462,, +O=c1[nH]c(C[NH+]2CCCC2)nc2ccsc12,FP,1,1,1,1,0.7803703468120898,0,1,78.91071139126342,, +O=c1[nH]c([C@@H]2C[C@H]3CC[N@@H+]2CC3)nc2ccsc12,FP,1,1,1,1,0.7956143271016173,0,1,10.704917650506587,, +O=CNCCO,FP,1,0,1,0,0.3341669676770061,1,0,-7.697822264183648,, +CCNC(=O)N1CCCCC1,FP,1,1,1,1,0.6075957587509915,1,1,50.66368876651688,0.0,0.0 +Cc1nccnc1-c1cc([C@@H]2CCCN2)on1,FP,1,1,0,1,0.8527388078495721,0,0,-7.352748355361781,, +c1ccc2scnc2c1,FP,1,1,1,1,0.5397735725540235,1,1,40.1634330620127,212.0,1.0 +c1ccc(C[NH+]2CCNCC2)nc1,FP,1,1,1,1,0.6125288659106507,0,1,47.200312883587614,, +Cc1ccc(C(N)=O)cc1,FP,1,1,1,1,0.6150947811524279,1,1,42.17636453506214,0.0,0.0 +C[C@@H](CO)NC=O,FP,1,0,1,0,0.4552726040475829,1,0,-1.7414521940646563,, +CC(C)(CO)NC=O,FP,1,0,1,0,0.4896257384836014,1,1,1.2962638251036758,, +CC1(C)Oc2cccnc2NC1=O,FP,1,1,1,1,0.6488269281795007,1,1,3.129311940501835,114.0,1.0 +N[C@@H]1CCOC[C@@H]1[NH3+],FP,1,1,0,0,0.3988630110096862,0,0,-11.984148118972987,, +NCC1CC[NH2+]CC1,FP,1,1,1,0,0.448246182057249,0,0,-0.8300878380040331,, +N[C@@H]1[C@H]2C[C@H]3C[C@@H]1C[C@](O)(C3)C2,FP,1,1,1,1,0.5624420631373632,0,0,-38.87130743260326,, +O=C(N[C@H]1CCNC1)c1ccccc1,FP,1,1,1,1,0.7231983347145071,0,1,24.80085598415031,, +Cc1n[nH]cc1C[NH+]1CC(O)C1,FP,1,1,1,1,0.5020249910956694,0,1,31.464506063248557,, +CC1CCOCC1,FP,1,1,1,0,0.4472009406681704,1,1,8.398560483220471,, +C[N@H+]1CC[C@@H](O)C1,FP,1,1,1,0,0.37292405875763,0,1,2.406679627883729,, +C[NH+]1CC(O)C1,FP,1,1,1,0,0.3473857266967046,0,0,-2.5764272879038663,, +Cc1cocn1,FP,1,1,1,0,0.4669999672734714,1,1,12.203805311488518,, +CNC(=O)c1ccc(NC(=O)c2ccccc2)cc1,FP,1,1,1,1,0.8825669960380355,1,1,119.54447682479382,0.0,0.0 +C[C@@H](O)[C@H]1CNC(=O)C1,FP,1,1,1,1,0.5013108715022515,0,0,-10.791436285343597,, +C[C@@H](O)[C@H]1CNC(=O)O1,FP,1,1,1,1,0.5028755022895512,0,0,-21.142658592411728,, +Cc1c[nH]cc1C[NH+]1CC(O)C1,FP,1,1,1,1,0.5237913368081537,0,1,14.90197319662411,, +NC[C@H]1CCC[NH2+]C1,FP,1,1,1,0,0.448246182057249,0,1,1.6669316868085844,, +C[C@H]([NH3+])CN,FP,1,1,1,0,0.3944629049207539,1,1,0.7515135119389521,, +N[C@H]1CCCC[C@@H]1[NH3+],FP,1,1,1,0,0.4390616699600091,1,0,-9.70393480190246,, +c1ccc2c(c1)CC[NH2+]CC2,FP,1,1,1,1,0.5464708721597851,0,1,24.54510673422537,, +Cn1nccc1C[NH+](C)C,FP,1,1,1,1,0.562814364891838,0,1,44.82432509695705,, +Cc1nnco1,FP,1,1,1,0,0.4557395479673611,1,1,13.1958415557754,, +Nc1cnccn1,FP,1,1,1,1,0.4953127132437441,1,1,22.138942562870167,206.0,1.0 +C[NH+](C)Cc1cn[nH]c1,FP,1,1,1,1,0.5262475408517308,0,1,25.887586528701988,, +[NH3+][C@H]1COCC[C@H]1Nc1cn[nH]c1,FP,1,1,0,1,0.5626511210760208,0,1,20.45735736799064,, +c1ccc2sccc2c1,FP,1,1,1,1,0.5193756104894537,1,1,41.037837130138456,462.0,1.0 +c1ccc2snnc2c1,FP,1,1,1,1,0.550428797024282,1,1,42.67583493346429,174.0,1.0 +NCCCNC(=O)c1cccs1,FP,1,0,0,1,0.6808132839330598,1,1,49.436934600435286,, +CCCNC(=O)c1cccs1,FP,1,1,1,1,0.7351655888224627,1,1,70.00036751857711,0.0,0.0 +CCCNC(=O)C1CCC1,FP,1,1,1,1,0.6305306884588044,1,1,51.54309064873812,0.0,0.0 +NCCCNC(=O)C1CCC1,FP,1,0,0,1,0.5732378316827521,1,1,26.55046928011166,, +c1nnn[n-]1,FP,1,1,0,0,0.3848452229200756,0,1,13.506474971814798,, +c1cc2n(n1)CCC2,FP,1,1,1,0,0.4809990474574326,0,0,-0.5156190604261033,, +CC(=O)Nc1ncc[nH]1,FP,1,1,1,1,0.5692234054682064,1,1,22.656674843972045,0.0,0.0 +Nc1ncnc2ccccc12,FP,1,1,1,1,0.6058167298330609,1,1,40.815128069192745,58.0,1.0 +c1ccc2ncncc2c1,FP,1,1,1,1,0.5412819114011972,1,1,36.82228119064453,180.0,1.0 +Cn1ccc(=O)n1C,FP,1,1,1,0,0.4533161283291339,1,1,16.01352156252611,, +NC(=O)c1ccc(-c2ncc[nH]2)cc1,FP,1,1,0,1,0.7404116491009215,0,1,60.83170903254258,, +c1cc(N2CCOCC2)ccn1,FP,1,1,1,1,0.616780765523831,0,1,39.76893665023137,, +c1cnc2cc[nH]c2c1,FP,1,1,1,1,0.5583728365871126,1,1,42.00991508813673,294.0,1.0 +FC(F)Cn1ccnc1,FP,1,1,1,1,0.5897455721309182,0,1,31.259222166664973,, +OCCn1ccnc1,FP,1,1,1,1,0.5786257845878837,1,1,30.719646206908603,0.0,0.0 +c1ncc2cc[nH]c2n1,FP,1,1,1,1,0.5607362152362961,1,1,30.638319580918225,104.0,1.0 +CC1(C)CCCO1,FP,1,1,1,0,0.4487367842355482,0,1,3.0533993894081046,, +COc1ccc(C#N)cc1,FP,1,1,1,1,0.5820968638734554,1,1,41.14144236074085,916.0,1.0 +O[C@H]1CC[C@@H](O)CC1,FP,1,1,1,0,0.477030124660752,1,1,9.51115602276504,, +Fc1ccccn1,FP,1,0,1,0,0.443381981599025,1,1,24.857630129563503,, +Nc1ccc(C(=O)[O-])cc1,FP,1,0,0,1,0.5355504482337935,0,1,36.425301727409234,, +Cc1ccccc1NS(C)(=O)=O,FP,1,1,1,1,0.7559303335329448,1,1,55.03135058170571,4.0,1.0 +COC(=O)c1cc(N)ccc1Br,FP,1,0,1,1,0.5908647172671523,1,1,47.93567303635112,, +C[NH+]1CCC(C)([NH3+])CC1,FP,1,1,1,0,0.391524991787315,0,1,4.229976284064526,, +Nc1ccc(Oc2ccccc2Cl)cc1,FP,0,0,0,1,0.7818306682668323,0,1,78.61120235870398,, +Nc1ccc(Oc2ccc(Cl)cc2)cc1,FP,0,0,0,1,0.7818306682668325,0,1,69.37257164550336,, +Nc1ccc(Oc2ccccc2)cc1,FP,0,0,0,1,0.7295816801359168,0,1,70.5002827203417,, +COc1ccc(Oc2ccc(N)cc2)cc1,FP,0,0,0,1,0.8000663583374988,0,1,73.33822305359082,, +CCc1cccc(CC)c1NC=O,FP,1,0,0,1,0.7027776255616199,1,1,29.85743955818602,, +N[C@]12C[C@H]3C[C@H](C[C@H](C3)C1)C2,FP,1,1,1,1,0.5620664127719119,1,0,-9.66599331544372,, +CC[C@@H](NC=O)c1ccccc1Cl,FP,1,0,0,1,0.73894760099821,1,1,38.76511572651152,, +CC(C)(C)CN,FP,1,1,1,0,0.4682020036523226,1,1,2.5618355841385343,, +CCc1n[nH]c(CC)c1NC=O,FP,1,0,0,1,0.6596365387826341,1,1,10.498554388499649,, +COc1ccc(O)c(F)c1F,FP,1,1,1,1,0.6767326732544006,1,1,23.06191830234816,226.0,1.0 +CC1(O)CCCCC1,FP,1,1,1,1,0.5079019235818326,1,1,2.56832608302477,4.0,1.0 +NCC1CCCC1,FP,1,1,1,1,0.5237474723611111,1,0,-2.9351722655272527,, +N#Cc1cc(Cl)c(C=O)c(Cl)c1,FP,1,0,1,1,0.6534341506473446,1,1,12.79512221866796,, +COc1ccc(OC)cc1,FP,1,1,1,1,0.6189113153967104,1,1,30.71901000558297,822.0,1.0 +N#CCC(=O)N1C[C@@H]2C[C@H]1CN2,FP,1,1,1,1,0.5681069504953837,0,0,-29.50362321490105,, +N#C[C@@]1(C2CC2)CCNC1=O,FP,1,1,1,1,0.5888084357348297,0,0,-16.675162057434058,, +N#C[C@@H]1C[C@H]1C(=O)N[C@]12CNC[C@H]1C2,FP,1,1,0,1,0.6252754705563226,0,0,-33.94428455101382,, +N#C[C@H]1C[C@@H]1C(=O)N[C@]12CNC[C@H]1C2,FP,1,1,0,1,0.6252754705563226,0,0,-33.94428455101382,, +C[C@@H]1[C@@H]2CNC[C@]12NC(=O)[C@@H]1CC1(F)F,FP,1,1,1,1,0.6997083464050448,0,0,-44.77063558131026,, +N#CC[C@]1(n2cccn2)C[C@H](C#N)C1,FP,1,1,0,1,0.7012045285102231,0,1,3.494785432126733,, +O=Cc1ccccc1Cl,FP,1,0,1,1,0.5466495888095017,1,1,29.23186588050245,, +Cc1cccc(C)c1,FP,1,1,1,0,0.475757685340321,1,1,29.599638302226232,, +COc1ccccc1-c1ncn(C)n1,FP,1,1,1,1,0.7181654973356195,0,1,41.04379702601678,, +COc1ccccc1C(=O)NCc1ccccn1,FP,1,1,0,1,0.8919724674133183,0,1,120.75570932638674,, +COc1ccccc1-c1ncccn1,FP,1,1,1,1,0.7203902948836506,0,1,55.05013197752479,, +COc1ccccc1-c1ccc(C(=O)N(C)C)nn1,FP,1,1,0,1,0.8417349044465025,0,1,79.76823690057932,, +COc1ccccn1,FP,1,1,1,1,0.5381831574540579,1,1,37.9940604388073,858.0,1.0 +N[C@@H]1C[C@@H]1F,FP,1,1,1,0,0.4324503682407358,0,0,-23.11037571060961,, +CO[C@@H]1CC[C@H]1N,FP,1,1,1,1,0.5089538020470459,0,0,-19.76871652035976,, +CN(C)S(=O)(=O)c1ccccc1,FP,1,1,1,1,0.6872260841888083,1,1,55.80656072468172,554.0,1.0 +CO[C@@]1(c2ccccn2)CCOC1,FP,1,1,1,1,0.6862332374529692,0,1,3.625509616692381,, +Nc1ccc(N)cc1,FP,0,0,1,0,0.4839273658917496,1,1,17.52725583170045,, +Nc1ccc2nc[nH]c2c1,FP,1,0,1,1,0.529376991011898,1,1,41.73037536038879,, +CC(C)[C@@H](C)NC=O,FP,1,0,1,1,0.5408707133897528,1,1,1.7938893919393006,, +CCS(N)(=O)=O,FP,1,1,0,0,0.4834510312386439,1,1,16.353872148786195,, +N#CCc1ccccc1,FP,1,1,1,1,0.5493761204967549,1,1,39.80351054193176,0.0,0.0 +C#CC,FP,1,0,1,0,0.3477280954795358,1,1,7.858355623555608,, +CCC(=O)[O-],FP,1,1,1,0,0.4051790062235931,1,1,17.38867392685245,, +[O-][C@@H](c1ccccn1)C(F)(F)F,FP,1,1,1,1,0.6405669463363217,0,1,29.349439763640905,, +C[C@@H]([O-])c1ccccn1,FP,1,1,1,1,0.5435086905957085,0,1,27.465908644371865,, +C[C@H]([O-])c1ccccn1,FP,1,1,1,1,0.5435086905957085,0,1,27.465908644371865,, +CC[C@@]1(O)CCc2cccnc21,FP,1,1,1,1,0.6821410124327191,0,0,-0.0542428908940757,, +c1cn(CC2CC2)cn1,FP,1,1,1,1,0.5776518339424863,0,1,34.645528985462185,, +Cn1ccnc1C1CC[NH2+]CC1,FP,1,1,1,1,0.6189209313796421,0,1,18.803250598430576,, +On1ccc2ncccc21,FP,1,0,1,1,0.5508359808567833,0,1,23.99659029466949,, +C[C@H]1CN(c2cccnn2)CC[NH2+]1,FP,1,1,1,1,0.6166768733058452,0,1,29.73745460365864,, +C[NH2+]C1CCN(S(N)(=O)=O)CC1,FP,1,1,0,1,0.5252782420666751,0,1,30.745918023463823,, +CCCN1C(=O)c2ccccc2C1=O,FP,1,0,1,1,0.663763828286897,1,1,40.759564635771255,, +C[C@H](O)CN,FP,1,1,1,0,0.4337552925789797,1,0,-1.2235618091132696,, +CC(C)[NH+]1CCCCC1,FP,1,1,1,1,0.5232016114018909,0,1,28.714678414342835,, +O=C(CO)N1CCCCC1,FP,1,1,1,1,0.5605948268287293,1,1,35.74886219582119,0.0,0.0 +C[S@](=O)c1ccc(-c2ncc[nH]2)cc1,FP,1,1,1,1,0.8141711431179394,0,1,50.86616562272584,, +c1cnc(N2CCN(c3cccnn3)CC2)nc1,FP,1,1,0,1,0.7680513987777107,0,1,64.9484973603003,, +CN(C)c1cccnn1,FP,1,1,1,1,0.5455045236550637,1,1,35.40051654445047,0.0,0.0 +C[NH+]1CCN(c2cccnn2)CC1,FP,1,1,1,1,0.5884365228163201,0,1,48.01495108073547,, +c1ccc2[nH]c(C[NH+]3CCNCC3)nc2c1,FP,1,1,1,1,0.6378980511865159,0,1,64.06116884574203,, +c1ccc2[nH]c(C3CCNCC3)nc2c1,FP,1,1,1,1,0.7408317789287563,1,1,35.26926593824174,194.0,1.0 +C1=C(c2c[nH]c3ccccc23)CCNC1,FP,1,1,1,1,0.7237561979226631,1,1,9.110330584620314,208.0,1.0 +O=C(Nc1ccccc1)C1CCNCC1,FP,1,1,1,1,0.7683358300829247,1,1,44.08334191563091,0.0,0.0 +NC(=O)COC=O,FP,1,0,0,0,0.448526175825742,1,0,-5.161348195834174,, +C[C@H](OC=O)C(N)=O,FP,1,0,0,0,0.4834794032979778,1,0,-3.0155167096896616,, +C[NH2+]C[C@@H](N)c1cccc(F)c1,FP,1,1,1,1,0.6577930707344567,0,1,40.65172151464069,, +NCC[NH+]1CCC1,FP,1,1,1,0,0.4236683315805972,0,0,-3.988401236894015,, +N#Cc1ccccc1,SE,1,1,1,0,0.4884445703746373,1,1,32.15537243473899,, +CC(=O)N(C)c1ccccc1,SE,1,1,1,1,0.5944047579099423,1,1,48.87451567820597,310.0,1.0 +C[NH+]1CCN(c2ccncn2)CC1,SE,1,1,1,1,0.5884365228163201,0,1,45.13287976096305,, +Cc1nccc(N2CC[NH+](CCO)CC2)n1,SE,1,1,0,1,0.6535026362456888,0,1,61.54410722092335,, +C[NH+]1CCN(c2ccccc2)CC1,SE,1,1,1,1,0.6353264003484135,0,1,60.3293714190546,, +Cc1ccccn1,SE,1,1,1,0,0.4719983679006756,1,1,31.845673298482048,, +c1ccc(N2CC[NH2+]CC2)cc1,SE,1,1,1,1,0.6208178337972531,0,1,44.63943618349465,, +C[NH+](C)CCOc1ccccc1,SE,1,1,0,1,0.6748268089601501,1,1,76.2557152077007,, +COc1cccc(N2C[C@H](C)[NH2+][C@H](C)C2)c1,SE,1,1,1,1,0.8021611009664549,0,1,41.17623638030511,, +CNC(=O)[C@H](Cc1ccccc1)NC=O,SE,1,0,0,1,0.6707144221305391,0,1,45.08683093674101,, +CCOc1ccccc1,SE,1,1,1,1,0.5832071586937729,1,1,46.036312668873705,604.0,1.0 +c1ccc2ncncc2c1,SE,1,1,1,1,0.5412819114011972,1,1,36.82228119064453,102.0,1.0 +COc1cccc(N2CCCCC2)c1,SE,1,1,1,1,0.712284283973087,0,1,72.65623901687545,, +c1cnn(C2CC[NH2+]CC2)c1,SE,1,1,1,1,0.5929720544521278,0,1,32.769425017297216,, +C1CCNCC1,SE,1,1,1,0,0.4576362279207808,1,0,-4.958769530948752,, +Cc1cc[nH]n1,SE,1,1,1,0,0.4904468907838006,1,1,18.68420451054827,, +Cc1csc(C(C)(C)O)n1,SE,1,1,1,1,0.6724459340107222,1,1,29.03992410140068,40.0,1.0 +Cc1csc([C@](C)(O)CO)n1,SE,1,1,1,1,0.6901390081417058,0,1,33.290692664162805,, +COc1ccccn1,SE,1,1,1,1,0.5381831574540579,1,1,37.9940604388073,612.0,1.0 +CS(=O)(=O)c1ccccc1,SE,1,1,1,1,0.6095920823457684,1,1,42.27054499320996,520.0,1.0 +Cn1ccnn1,SE,1,1,1,0,0.435136594916293,1,1,17.75704898971276,, +COc1cccc(OC)c1OC,SE,1,1,1,1,0.6872625590458662,1,1,39.05837888058208,636.0,1.0 +c1nc2cc(C[NH+]3CCCCC3)ccc2[nH]1,SE,1,1,1,1,0.7749308136001286,0,1,79.42455166895554,, +Cc1ccc2nc[nH]c2c1,SE,1,1,1,1,0.5820392325335273,1,1,47.15723904867951,182.0,1.0 +CC(C)(O)C1CC[NH+](Cc2ccc3[nH]/c(=N\C=O)[nH]c3c2)CC1,SE,1,0,0,1,0.6038748280182614,0,1,43.34787996846073,, +Cn1cccn1,SE,1,1,1,0,0.4432156698587248,1,1,18.643863083632382,, +Cc1ccc(OC(C)C)cc1C1CC[NH2+]CC1,SE,1,1,1,1,0.8523827535794075,0,1,41.024388815629855,, +Cc1ccc(OC(C)C)cc1C1CC[NH+](C)CC1,SE,1,1,1,1,0.8653613771474822,0,1,43.0168388424364,, +C[NH+]1CCN(c2cccc(NC3CCOCC3)c2)CC1,SE,1,1,1,1,0.847563901097266,0,1,94.753866373992,, +C[NH+]1CCN(c2cccc(N[C@H]3CC[C@H](O)CC3)c2)CC1,SE,1,1,1,1,0.7687715756824592,0,1,95.26387475580908,, +C[NH+]1CCN(Cc2ccccc2)CC1,SE,1,1,1,1,0.6921581953728709,0,1,84.8060866683494,, +Cc1ccn(C)n1,SE,1,1,1,0,0.4652232925414449,1,1,23.78254863539931,, +O=S(=O)(c1c[nH]c2ncccc12)C1COC1,SE,1,1,0,1,0.8370103067930217,0,1,42.253202577742464,, +O=C(c1c[nH]c2ncccc12)N1CCOCC1,SE,1,1,1,1,0.7972484182803592,0,1,78.97392715958235,, +c1cnn2ccnc2c1,SE,1,1,1,1,0.511375604737478,1,1,40.334406154000206,124.0,1.0 +COc1ccc2c(c1)CCN2C(C)=O,SE,1,1,1,1,0.6744750372858971,0,1,68.51200106725295,, +Oc1ccc(C(F)(F)F)cc1,SE,1,1,1,1,0.6205760233110343,0,1,31.84479495216433,, +N#Cc1ccc(O)cc1,SE,1,1,1,1,0.5583693139819856,1,1,26.39369367395951,322.0,1.0 +Clc1ccccc1,SE,1,1,1,0,0.4833833263681997,1,1,28.62182911813474,, +c1ccncc1,SE,1,1,1,0,0.4531479654842905,1,1,20.589274983144826,, +O=C1NCc2ccccc21,SE,1,1,1,1,0.560074065846953,1,0,-16.136970753589242,, +Oc1ccccc1,SE,1,1,1,1,0.514729544768675,1,1,22.78125845241812,460.0,1.0 +COc1ccccc1,SE,1,1,1,1,0.5316253154127668,1,1,34.591252979338954,766.0,1.0 +C[NH+]1CCC(c2ccccc2)CC1,SE,1,1,1,1,0.6528488343016878,0,1,41.75343152523888,, +C[NH+]1CCCCC1,SE,1,1,1,0,0.4255306890148219,0,1,16.72682810634307,, +c1ccc(N2CCOCC2)cc1,SE,1,1,1,1,0.6220990281060828,1,1,50.2579111289165,692.0,1.0 +CCOC1(c2cccnc2)CC[NH2+]CC1,SE,1,1,1,1,0.7909522795056521,0,1,10.15403480420387,, +c1ccc(C2CC[NH2+]CC2)cc1,SE,1,1,1,1,0.6372009812149849,0,1,35.97520296670501,, +C[NH+]1CCN(CCO)CC1,SE,1,1,1,0,0.4618018480170506,0,1,38.27026119077852,, +c1ccc(C[NH+]2CCCC2)cc1,SE,1,1,1,1,0.6577889442506689,0,1,71.2551207884704,, +C1C[NH2+]CCN1,SE,1,1,1,0,0.3567026443854987,0,0,-5.598934375848913,, +O=C(Nc1ccccc1)C1CC1,SE,1,1,1,1,0.7061057509157391,1,1,72.28134984890022,92.0,1.0 +c1nc2ccc(C[NH+]3CCOCC3)cc2[nH]1,SE,1,1,1,1,0.7435654068276634,0,1,75.97279955698984,, +c1ccc2[nH]cnc2c1,SE,1,1,1,1,0.5583728365871126,1,1,39.49652870819706,84.0,1.0 +c1nc2cc(C[NH+]3CCOCC3)ccc2[nH]1,SE,1,1,1,1,0.7435654068276634,0,1,71.7549742179651,, +c1ccc(C[NH+]2CCOCC2)cc1,SE,1,1,1,1,0.6779866829352371,0,1,68.49035383711549,, +Nc1ccc(N2CCOCC2)cc1,SE,0,0,1,1,0.6544864289979545,1,1,49.535937542982815,, +CS(N)(=O)=O,SE,1,1,0,0,0.4150709211621091,1,1,13.481720360482456,, +C[NH+]1CCN(c2ccnc(S)n2)CC1,SE,1,0,1,0,0.4664909252973568,0,1,25.07710816624443,, +CC(=O)N1CCN(C(=O)Cc2ccccc2)CC1,SE,1,1,1,1,0.7782885763861499,1,1,104.8907803904954,0.0,0.0 +CCCC=O,SE,1,0,1,0,0.4443450475833798,1,0,-3.892124096713169,, +c1ccccc1,SE,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +CC[N@H+](Cc1cc(N)sn1)C(C)(C)CO,SE,1,1,0,1,0.6617962275471964,0,1,25.920631076551462,, +Cc1cc(N)sn1,SE,1,1,1,1,0.5468471344875042,1,1,12.678398622275632,80.0,1.0 +CS(=O)(=O)N(CC[NH3+])c1ccccn1,SE,1,1,0,1,0.7074228978468,0,1,51.80681982798073,, +O=C([O-])c1ccccc1,SE,1,1,1,1,0.5263180674240564,1,1,38.39787175917415,26.0,1.0 +C[C@@H]1CCC[N@@H+](Cc2cc(N)sn2)C1,SE,1,1,1,1,0.7512743048392746,0,1,34.92914812238677,, +c1ccc2cnccc2c1,SE,1,1,1,1,0.5311915584041306,1,1,39.36588766207535,206.0,1.0 +NC(=O)c1ccccc1,SE,1,1,1,1,0.5859367170668044,1,1,37.153131146312816,558.0,1.0 +Cn1cccc1C(=O)N1CC[NH+](C)CC1,SE,1,1,1,1,0.6298704033475644,0,1,72.58976423170552,, +Nc1ncccn1,SE,1,1,1,1,0.495312713243744,1,1,22.21663536592597,132.0,1.0 +OC1CC[NH+](CCOc2ccccc2)CC1,SE,1,1,0,1,0.7577303441336241,0,1,89.40848051994787,, +N#Cc1cccc(Cn2cccn2)c1,SE,1,1,1,1,0.7119802256009078,1,1,79.44571938368765,0.0,0.0 +CNC,SE,1,1,1,0,0.3986709398154768,1,1,10.078884984505532,, +N=[S@](=O)([O-])c1ccccc1,SE,1,1,0,1,0.6640061654106542,0,1,22.11923822056129,, +O=C[O-],SE,1,0,1,0,0.3065473221945595,1,1,1.1086118535634293,, +O=C(Nc1ccccc1)c1ccccc1,SE,1,1,1,1,0.7874913866928777,1,1,89.66426568312043,384.0,1.0 +Cc1ncc2ccc(N3CC[NH+](C)CC3)cc2n1,SE,1,1,1,1,0.7805254704385796,0,1,50.48945378856424,, +Fc1ccccc1,SE,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +NC(=O)C1CC1,SE,1,1,1,0,0.4736725800015747,1,1,17.331805773723165,, +C1CC[NH2+]CC1,SE,1,1,1,0,0.4178436621138537,0,1,13.189542799768244,, +CCCO,SE,1,1,1,0,0.4637839830239684,1,1,11.187956068555891,, +CCO,SE,1,1,1,0,0.4068079656553945,1,1,9.89095474709779,, +COCC[NH2+]Cc1ccc(N)cc1,SE,0,0,0,1,0.495209929640263,0,1,78.74920708014861,, +C1CC1,SE,1,1,1,0,0.3814250421649592,1,1,10.958161214651511,, +OCCOc1ccccc1,SE,1,1,1,1,0.6762728590662828,1,1,47.970768141062095,396.0,1.0 +CC(=O)NCc1ccccc1,SE,1,1,1,1,0.6747534818335013,1,1,61.21672661153093,364.0,1.0 +CC=O,SE,1,0,1,0,0.355007613393232,1,1,1.755472309128927,, +Nc1ccc(C=O)c(Cl)c1,SE,1,0,1,1,0.495968771583846,1,1,19.56956109012849,, +Nc1ccc(C(=O)N2CCOCC2)cc1F,SE,1,0,1,1,0.720333774131477,0,1,73.0230782378912,, +C[NH+]1CCN(c2ccc3cn[nH]c(=O)c3c2)CC1,SE,1,1,1,1,0.6954739770672684,0,1,35.408833218120385,, +c1ccc(C2CCNCC2)cc1,SE,1,1,1,1,0.6651786504669045,1,1,7.658029029245702,88.0,1.0 +CC[NH+](CC)CCOc1ccccc1,SE,1,1,0,1,0.7127726904648868,0,1,88.82293730886313,, +O=C(c1ccccc1)N1CCOCC1,SE,1,1,1,1,0.6662814508252086,1,1,74.47321490584632,564.0,1.0 +C[NH+]1CCN(C(=O)c2ccccc2)CC1,SE,1,1,1,1,0.6662076445238813,0,1,82.36753365519742,, +Nc1ccc(C=O)cc1,SE,1,0,1,0,0.4459606483114272,1,1,21.974810697677,, +CN1CC[N@@H+](C)[C@H](c2ccc(N)cc2)C1=O,SE,1,0,1,1,0.6147396902494575,0,0,-1.1395298529311684,, +CNC=O,SE,1,0,1,0,0.3999167569393753,1,0,-3.7061454697016103,, +CC[NH+]1CCN(c2ccc(N)nc2)CC1,SE,1,1,1,1,0.6798515845481711,0,1,52.11471160021865,, +O=C(c1cccnc1)N1CCOCC1,SE,1,1,1,1,0.6523612327426717,1,1,76.8422815683819,70.0,1.0 +C[NH+]1CCN(c2ccc(N)nc2)CC1,SE,1,1,1,1,0.6011367002480307,0,1,46.616418508140384,, +C[N@@H+]1CCn2nc(N)cc2C1,SE,1,1,1,0,0.4760412195512596,0,1,4.281052999363676,, +[CH2]CN(C[CH2])C(=O)c1ccc2c(c1)[nH]c1ccccc12,SE,1,1,0,1,0.7726315647943547,0,1,60.63761373715202,, +CC1(C=O)COC1,SE,1,0,1,0,0.4405168552178087,1,0,-13.49881033803987,, +O=CC1CC1,SE,1,0,1,0,0.4126363103565617,1,0,-5.7367386439469765,, +CC(C)([O-])c1ccc2c(c1)[nH]c1ccccc12,SE,1,1,1,1,0.6778192590847577,0,1,37.891278379435214,, +Nc1ccncn1,SE,1,1,1,1,0.4953127132437441,1,1,24.137073389913574,100.0,1.0 +CN1CCN(C)[C@H](c2ccccc2)C1=O,SE,1,1,1,1,0.6843918173725981,0,1,6.430066649127578,, +C[NH+]1CCN(c2cccnc2)CC1,SE,1,1,1,1,0.6206078750546782,0,1,47.97369434402735,, +C[NH+]1CCC(c2ccc(N)nc2)CC1,SE,1,1,1,1,0.6603790167634989,0,1,24.03765545148551,, +C=CC=O,SE,1,0,1,0,0.3131312644427995,1,0,-10.380595625881734,, +CC(C)([O-])[C@H]1CCc2c([nH]c3ccc(F)cc23)C1,SE,0,1,1,1,0.8248054080794157,0,1,29.65123015715,, +C[C@H]1C[NH2+]CCN1c1cccnc1,SE,1,1,1,1,0.6486708735255872,0,1,18.48297819113572,, +Nc1ccccc1C(=O)N1CCOCC1,SE,1,0,1,1,0.6894394416154561,1,1,58.96450103222195,, +Nc1ccc(C(=O)N2CCOCC2)cn1,SE,1,1,0,1,0.7106590221646213,1,1,78.11818154082354,, +Cc1ccnn1C,SE,1,1,1,0,0.4652232925414449,1,1,21.874730262101156,, +C[C@H](O)COc1ccccc1,SE,1,1,1,1,0.7098553048910035,1,1,42.44627525072942,0.0,0.0 +O=COCc1cnccn1,SE,1,0,0,1,0.5576701336768334,0,1,7.970257552212045,, +O=C1OC[C@@H]2CCCCN12,SE,1,1,1,1,0.5031630579117424,0,0,-12.45060785945166,, +O=C1CC[C@@H]2CCCCN12,SE,1,1,1,1,0.4928945697863436,0,1,6.53072896860666,, +NC(=O)[C@@H]1C[C@@H]1F,SE,1,1,1,0,0.491561946862366,0,0,-8.987097503695342,, +Cc1ccnn1C(C)C,SE,1,1,1,1,0.5575735717092822,0,1,29.96420018401188,, +Cc1ccnn1C1CCOCC1,SE,1,1,1,1,0.632464681646616,0,1,18.736335670997207,, +Cc1ccn(C2CCOCC2)n1,SE,1,1,1,1,0.632464681646616,0,1,26.23985440633239,, +Cc1cc(C)n(C(C)C)n1,SE,1,1,1,1,0.5806254665676286,0,1,34.118227734074914,, +N#CCC=O,SE,1,0,1,0,0.4095110645562998,1,0,-7.53493327341166,, +CCOc1nccc2ccccc12,SE,1,1,1,1,0.6960560131512207,0,1,54.48952405473605,, +CN1CCNC1=O,SE,1,1,1,0,0.4427416109704339,0,0,-14.934578574997516,, +CCC(F)(F)F,SE,1,1,1,0,0.4340813746165561,1,1,13.134475164436646,, +CCCN1CCOC1=O,SE,1,1,1,1,0.5527825882144034,0,1,16.7631292818737,, +CCCN1CCCC1=O,SE,1,1,1,1,0.5419857978580079,0,1,24.547427834365784,, +NS(=O)(=O)c1ccccc1,SE,1,1,0,1,0.6383637832668871,1,1,38.91719361421677,, +CC1=C[N+2](#[O+])[C]C=C1,SE,1,0,1,0,0.4224087063121651,0,0,-15.956864092807272,, +O=C1CNc2ccccc21,SE,1,1,1,1,0.5774753061879976,0,0,-13.58574122737682,, +Cc1ccccc1,SE,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +C1CC[NH2+]C1,SE,1,1,1,0,0.3911650392764421,0,1,9.482416557183528,, +C[C@@H](O)COc1ccccc1,SE,1,1,1,1,0.7098553048910035,1,1,42.44627525072942,2.0,1.0 +CNS(=O)(=O)c1ccccc1,SE,1,1,1,1,0.7076960310206865,1,1,50.72290137514336,426.0,1.0 +CNS(C)(=O)=O,SE,1,1,1,0,0.4772109137016805,1,1,16.812978733134397,, +O=S1(=O)Cc2ccccc2C1,SE,1,1,1,1,0.5813099771569605,1,1,13.73343408936034,128.0,1.0 +[H]/N=C(\N)NS(=O)(=O)c1ccccc1,SE,1,0,0,0,0.4565261053990201,0,1,39.98638715300077,, +N/C=N\O,SE,1,0,1,0,0.1689902204069357,0,0,-10.47568699221993,, +FC(F)(F)c1ccccc1,SE,1,1,1,1,0.5274607455911078,1,1,36.437699073802,668.0,1.0 +CN(C)c1ccccc1,SE,1,1,1,1,0.5468274487440188,1,1,37.8720387376442,688.0,1.0 +CCCNS(=O)(=O)c1ccccc1,SE,1,1,0,1,0.7958121274423122,1,1,78.06168303105572,, +O=CCc1ccc2ccccc2c1,SE,1,0,1,1,0.6329376893243002,1,1,35.99407137255123,, +CCC,SE,1,1,1,0,0.3854706587740357,1,1,11.292091326780156,, +CN(C)S(=O)(=O)c1ccccc1,SE,1,1,1,1,0.6872260841888083,1,1,55.80656072468172,532.0,1.0 +N=[S@@](=O)([O-])c1ccccc1,SE,1,1,0,1,0.664006165410654,0,1,22.11923822056129,, +Cc1ccccc1O,SE,1,1,1,1,0.5359354364287862,1,1,27.222902325844824,24.0,1.0 +Cc1csc(C)n1,SE,1,1,1,1,0.4992737594689495,1,1,23.681947482183084,120.0,1.0 +Nc1ccccc1,SE,1,0,1,0,0.4800754634455599,1,1,23.741301320833813,, +Cc1ccc(O)c(O)c1,SE,0,0,1,1,0.5131220403965512,1,1,30.173643778607417,, +C1CCCCC1,SE,1,1,1,0,0.4223161868609467,1,1,13.188394633412608,, +C[C@H](C=O)c1ccccc1,SE,1,0,1,1,0.5651412770367776,1,1,17.10232812285604,, +O=CCc1cccnc1,SE,1,0,1,1,0.5421007900305028,1,1,18.812887014235937,, +Cc1ccncc1,SE,1,1,1,0,0.4719983679006756,1,1,26.636077101778625,, +CS(=O)(=O)N1CCCCC1,SE,1,1,1,1,0.5619536718824868,1,1,32.75850147993943,24.0,1.0 +[NH3+]CCS(=O)(=O)c1ccccc1,SE,1,1,0,1,0.7042983349706654,0,1,56.68221259162917,, +C[C@@H]([O-])COc1ccccc1,SE,1,1,1,1,0.640072759463695,0,1,38.81145968514824,, +Cc1cccnc1,SE,1,1,1,0,0.4719983679006756,1,1,33.268042495590585,, +Cc1cncnc1,SE,1,1,1,0,0.4745494696119243,1,1,22.59627110396408,, +Cc1cnc(N)nc1,SE,1,1,1,1,0.5231996621282303,1,1,22.37665995608593,14.0,1.0 +CC1=CC=C[N+2](#[O+])[C]1,SE,1,0,1,0,0.4224087063121651,0,0,-15.400994834254998,, +O=CCc1ccccc1,SE,1,0,1,1,0.5393954805413781,1,1,14.380297666109476,, +N=[S@@](=O)([O-])c1ccccc1C(F)(F)F,SE,1,1,0,1,0.7944935269300977,0,1,34.297034506521335,, +C1CNCCN1,SE,1,1,1,0,0.4022372466625182,1,0,-7.556680520212428,, +O=C(c1ccccc1)N1CCCC1,SE,1,1,1,1,0.638235238606759,1,1,71.82040859883786,0.0,0.0 +[O+]#[N+2]([O-])c1ccccc1,SE,1,0,1,0,0.3844532461226332,0,1,21.583719403041425,, +CC(C)CC=O,SE,1,0,1,0,0.4618018883133206,1,0,-3.056217492128235,, +COCCNS(=O)(=O)c1ccccc1,SE,1,0,0,1,0.7321619910290749,1,1,90.71806722026808,, +C[C@H](O)CO,SE,1,1,1,0,0.4358349966110497,1,1,11.037839754457242,, +COc1ccc(CC=O)cc1,SE,1,0,1,1,0.6092098229257235,1,1,22.67834650386783,, +NNC=O,SE,1,0,1,0,0.169230317987058,1,0,-3.767500808993654,, +Clc1ncccn1,SE,1,1,1,0,0.4727982169305594,1,1,23.882627559823504,, +Cc1ccc([S@](=N)(=O)[O-])cc1,SE,1,1,0,1,0.6941980000381481,0,1,24.206927034979437,, +c1cncnc1,SE,1,1,1,0,0.4525571430979931,1,1,20.650117467972965,, +Clc1ccccn1,SE,1,0,1,0,0.4672558901814075,1,1,31.369929289939112,, +Cc1ccc(Cl)nc1,SE,1,0,1,0,0.4863578855685593,1,1,33.44599733990354,, +Fc1cccc(F)c1F,SE,1,0,1,0,0.4739885106583568,1,1,28.336617336657227,, +Cc1cnccn1,SE,1,1,1,0,0.4745494696119243,1,1,24.3079767249518,, +Cc1ccc(C(=O)[O-])cc1,SE,1,1,1,1,0.557361788346881,1,1,43.11288685538113,0.0,0.0 +Cc1ccc(C[NH3+])cc1,SE,1,1,1,1,0.5686405724085746,1,1,43.44525920651878,0.0,0.0 +C=CC,SE,1,0,1,0,0.3570688167166915,1,0,-0.2076911440586193,, +C1COCC[NH2+]1,SE,1,1,1,0,0.3861823330430945,0,1,11.095527088428112,, +Cc1ccc(O)cc1,SE,1,1,1,1,0.5359354364287862,1,1,25.918361055933115,0.0,0.0 +CC(C)c1ccnc(N)n1,SE,1,1,1,1,0.6319766908701594,1,1,34.120594730954835,76.0,1.0 +CN(C)c1ccccc1[N+](=O)[O-],SE,1,0,1,1,0.4954806482342933,1,1,46.529520201567614,, +CCNC=O,SE,1,0,1,0,0.4486453600169233,1,0,-6.4175304339074,, +CCNS(=O)(=O)c1ccccc1,SE,1,1,1,1,0.7627772179588964,1,1,62.752133017435455,284.0,1.0 +Cc1ccccc1[SH](=O)=O,SE,1,0,1,1,0.614518970811364,1,0,-13.77103246006428,, +CC(=O)N1CCCN(c2ccccc2)CC1,SE,1,1,1,1,0.7166181143766559,1,1,85.11433893644873,0.0,0.0 +c1ccc(N2CCC[NH2+]CC2)cc1,SE,1,1,1,1,0.660394355440666,0,1,52.65172861651157,, +CCCOc1cccnc1,SE,1,1,1,1,0.6340860372366948,1,1,56.91902501039221,104.0,1.0 +Cc1ccccc1C(=O)[O-],SE,1,1,1,1,0.557361788346881,1,1,43.90606630948581,0.0,0.0 +Cc1ccccc1[S@](=N)(=O)[O-],SE,1,1,0,1,0.6941980000381481,0,1,29.453629324341627,, +Brc1ccccc1,SE,1,1,1,1,0.5420450088370231,1,1,31.57617417851588,698.0,1.0 +O=[N+]([O-])c1ccccc1,SE,1,0,1,0,0.4200757446342406,1,1,33.60355623305589,, +CN(C)c1ccccc1Cl,SE,1,1,1,1,0.602253113879925,1,1,41.372209594528286,368.0,1.0 +CC(=O)NS(=O)(=O)c1ccccc1,SE,1,1,0,1,0.7544746814537977,1,1,57.14358666958852,, +c1c[nH]cn1,SE,1,1,1,0,0.4683433019217652,1,1,6.83242472056568,, +[NH-][S@]([O-])(c1ccccc1)C1CC1,SE,1,1,0,1,0.6910282018784899,0,1,23.85258241253817,, +N=[S@](=O)(c1ccccc1)C1CC1,SE,1,1,1,1,0.7465728785428527,0,1,21.66979000287125,, +COc1ccc(C)cc1,SE,1,1,1,1,0.5532379862472909,1,1,39.82115773981869,74.0,1.0 +CCN(CC)C(=O)c1ccccc1,SE,1,1,1,1,0.6925324098255917,1,1,65.93303495273692,624.0,1.0 +C[NH+]1CCNCC1,SE,1,1,1,0,0.364375226834609,0,0,-4.668717630665617,, +N#CCNS(=O)(=O)c1ccccc1,SE,1,0,0,1,0.7150104063794032,0,1,62.532891815974175,, +OCc1ccn(-c2cccc(F)c2)n1,SE,1,1,1,1,0.7826152364961727,0,1,63.7873118732738,, +c1cnc2ccnn2c1,SE,1,1,1,1,0.511375604737478,1,1,39.62289811858867,162.0,1.0 +Cc1ccccc1-c1ccccc1,SE,1,1,0,1,0.6092016568043108,1,1,42.1521321780498,, +CNS(=O)(=O)c1cccc(C)c1,SE,1,1,1,1,0.7438256049128792,1,1,59.61306988884511,380.0,1.0 +CC[NH+]1CCN(Cc2cccnc2)CC1,SE,1,1,1,1,0.7392306189861673,0,1,94.22081928380533,, +O/N=C1/CNc2ccccc21,SE,1,0,1,0,0.4298247868093032,0,0,-13.371920756352544,, +NS(=O)(=O)c1cccs1,SE,1,1,0,1,0.650883758687492,1,1,35.374964937308164,, +Fc1cccc(-n2cccn2)c1,SE,1,1,1,1,0.6267678189271967,0,1,55.64864021169317,, +N#Cc1cc(F)ccc1N1CCOCC1,SE,1,1,1,1,0.6988001250475478,0,1,50.58589733930496,, +c1cncc(N2CC[NH2+]CC2)c1,SE,1,1,1,1,0.6047210614141914,0,1,38.42590396980255,, +Nc1cccc(Cl)c1,SE,1,0,1,1,0.5297860823199098,1,1,29.967831919856557,, +CC[NH+]1CC2(CN(c3cccnc3)C2)C1,SE,1,1,1,1,0.7203200978289146,0,1,30.26923579947757,, +c1ccc(-n2cccn2)cc1,SE,1,1,1,1,0.5970666437894959,1,1,50.51649797573513,576.0,1.0 +C1C[C@H]2CC[C@@H]1C2,SE,1,1,1,0,0.4333884759273747,0,0,-5.932971009122648,, +NC1CCCCC1,SE,1,1,1,0,0.486084458999398,1,0,-4.481534508067639,, +NC1CCCC1,SE,1,1,1,0,0.4641318718734253,1,0,-10.435153452485768,, +c1ccc(C[NH2+]C2CC2)cc1,SE,1,1,1,1,0.655945314462836,0,1,67.84410740831456,, +Cc1ccc[nH]1,SE,1,1,1,0,0.4845070869563408,1,1,19.748009654281454,, +O=C([O-])CO,SE,1,1,0,0,0.3819786157444406,1,1,13.229393249189524,, +O=CN[C@H]1CC[C@H](O)CC1,SE,1,0,1,1,0.5359287170906739,1,0,-3.786918704358755,, +COc1ccc(Cl)cc1,SE,1,1,1,1,0.5850627747795066,1,1,40.29428076321017,646.0,1.0 +c1cc2cc(C[NH+]3CCCCC3)ccc2[nH]1,SE,1,1,1,1,0.7608793976671899,0,1,95.3250532582042,, +[NH3+]CC1CC[NH+](Cc2ccc3[nH]ccc3c2)CC1,SE,1,1,1,1,0.6920806998564636,0,1,103.47696602269482,, +c1cn[nH]c1,SE,1,1,1,0,0.4683433019217652,1,1,7.008377370358167,, +CC(C)C,SE,1,1,1,0,0.3971180036971562,1,1,11.35036548783313,, +Cc1cccs1,SE,1,1,1,0,0.4656159934955298,1,1,22.44543285783938,, +c1ccc2[nH]ccc2c1,SE,1,1,1,1,0.5439155908694729,1,1,40.29012989269332,446.0,1.0 +c1cc[nH]c1,SE,1,1,1,0,0.4658690337597367,1,1,6.614368437283064,, +CCOC=O,SE,1,0,1,0,0.4365645501026903,1,0,-6.824448569140429,, +COc1ccc(Cl)c(OC)c1,SE,1,1,1,1,0.6820624995692601,1,1,50.21921986996425,132.0,1.0 +CC(C)c1ccc2nc[nH]c2c1,SE,1,1,1,1,0.682239828517677,1,1,58.56967560525325,0.0,0.0 +Cc1ccsn1,SE,1,1,1,0,0.4794302598052163,1,1,12.449168023971383,, +O=CC[NH+]1CCN(c2ccncc2)CC1,SE,1,0,1,1,0.6436770087731722,0,1,31.798941442158466,, +c1cc(N2CCOCC2)ccn1,SE,1,1,1,1,0.6167807655238309,0,1,39.76893665023137,, +c1ccc2c(c1)CCO2,SE,1,1,1,1,0.5052002537494946,1,1,22.46633336113969,656.0,1.0 +C[NH2+][C@H]1CC[C@@H](C)CC1,SE,1,1,1,1,0.536667902249439,0,1,23.87577624516734,, +Cn1ccnc1,SE,1,1,1,0,0.4432156698587248,1,1,18.87108476780715,, +CC(=O)[O-],SE,1,1,1,0,0.3497740223042638,1,1,14.281478514271996,, +O=C([O-])c1ccc2ccccc2c1,SE,1,1,1,1,0.6464447637994889,0,1,59.19589247741016,, +c1ccc(-c2ccn[nH]2)cc1,SE,1,1,1,1,0.6517443639878625,1,1,39.90313535151192,6.0,1.0 +C[NH2+][C@H]1CC[C@H](O)CC1,SE,1,1,1,1,0.4923070471959214,0,1,22.347057125454267,, +OCC[NH+]1CCCCC1,SE,1,1,1,1,0.4946340336233457,0,1,32.53955587749307,, +O[C@H]1CCOC1,SE,1,1,1,0,0.4428375297106922,1,0,-4.436185261080435,, +CC(=O)N(C)C,SE,1,1,1,0,0.4099068828368628,1,1,17.20480377186411,, +COC(C)=O,SE,1,1,1,0,0.382966590732514,1,1,15.382249840951223,, +CC(=O)Nc1ccccc1,SE,1,1,1,1,0.6227994751052723,1,1,50.70803070546458,498.0,1.0 +c1ccc(C[NH+]2CCCCC2)cc1,SE,1,1,1,1,0.6916189257895103,0,1,75.97769484605864,, +C[NH+](C)CC(C)(C)COc1ccc2[nH]ccc2c1,SE,1,1,0,1,0.827500306368412,0,1,77.51480532998445,, +COC=O,SE,1,0,1,0,0.3912258247330487,1,0,-4.480899195559704,, +COc1cccc(C(=O)N2CCCCC2)c1,SE,1,1,1,1,0.763611755868964,0,1,105.27885421214226,, +C[NH+]1CCN(c2ccc(O)cc2)CC1,SE,1,1,1,1,0.6422470058878399,0,1,60.49315069015379,, +COc1ccc(F)c(C(=O)N2CCOCC2)c1,SE,1,1,1,1,0.7806394590582143,0,1,73.0454076439239,, +COc1cccc(C(=O)N2CCOCC2)c1,SE,1,1,1,1,0.7520816225544139,1,1,100.9082688623704,0.0,0.0 +C[C@H]1CNC[C@@H](C)O1,SE,1,1,1,1,0.4926305301342437,1,0,-19.011012642513844,, +COc1cccc(C(=O)N2CCC(N3CC[NH+](C)CC3)CC2)c1,SE,1,1,0,1,0.8607946164385853,0,1,125.08468123429022,, +Cc1ccn(C(C)(C)C#N)n1,SE,1,1,1,1,0.6060414950172194,0,1,24.63800708895693,, +C1CCOC1,SE,1,1,1,0,0.410937601049349,1,1,6.581964326142951,, +Cc1ccnn1[C@H]1CCOC1,SE,1,1,1,1,0.6032976348207376,0,1,7.021936812398724,, +CC(C)(O)[C@H]1CCN(c2cccnc2)C1,SE,1,1,1,1,0.7994538178182723,0,1,32.68590314892625,, +CC(C)(O)Cn1nccc1Cl,SE,1,1,1,1,0.7343964589735454,0,1,24.03897844366411,, +Cc1ccnn1[C@@H]1CC1(F)F,SE,1,1,1,1,0.6086311621496387,0,0,-5.757455449891171,, +CC(C)(O)[C@]12CN[C@H](C1)C2,SE,1,1,1,1,0.5573735422455212,0,0,-23.76175807792574,, +CC(C)(O)[C@@H]1CCNC1,SE,1,1,1,1,0.535753384741428,0,0,-11.000224109236589,, +Cn1cc([C@H]2C[C@@H]2C=O)cn1,SE,1,0,1,1,0.582163058256349,0,0,-6.41053706555294,, +O=C[C@H]1CC12CCOCC2,SE,1,0,1,1,0.5078153735545552,0,0,-15.057196937230607,, +[H]/N=C(/N)N/N=C(\C)c1ccccc1,SE,1,0,0,0,0.355480696251276,0,1,49.930944672892885,, +COc1ccccc1O,SE,1,1,1,1,0.6127725486570803,1,1,32.61513906686136,528.0,1.0 +c1ccc2c(c1)OCO2,SE,1,1,1,1,0.5176682759164258,1,1,24.83848061700253,558.0,1.0 +c1scc2c1OCCO2,SE,1,1,1,1,0.5464325895553765,1,1,11.993643838446006,62.0,1.0 +COc1cc2cncnc2cc1OC,SE,1,1,0,1,0.7217670651996977,1,1,35.40652753629726,, +Clc1ccc(Oc2ccccc2)cc1,SE,1,1,0,1,0.7148166793960394,1,1,78.83673906547473,, +Oc1cccc(Oc2ccccc2)c1,SE,1,1,0,1,0.7799941267858639,1,1,50.844385987653446,, +c1ccc(OCC2CC[NH2+]CC2)cc1,SE,1,1,1,1,0.7604748696365045,0,1,73.64482249259335,, +O=CNCc1ccco1,SE,1,0,1,1,0.5983819246514034,1,1,17.370673540833412,, +CC(C)(C)NC(N)=O,SE,1,1,1,0,0.4741277004861607,1,1,20.366336663795444,, +CC(=O)N1CCC(C=O)CC1,SE,1,0,1,1,0.5152637368966267,1,1,6.625520293013173,, +COc1ccc(CNC=O)cc1,SE,1,0,0,1,0.6741675039141793,1,1,30.86170047932124,, +[NH3+]C1CCCCC1,SE,1,1,1,0,0.4604637134084303,1,1,18.48709842632445,, +Fc1ccccc1F,SE,1,1,1,0,0.4832965029562796,1,1,25.091083589997456,, +O=C(Nc1nccs1)c1ccccc1OC(F)(F)F,SE,1,1,0,1,0.942462131853022,0,1,94.1585281677744,, +COc1ccc(OC)c(-c2ccn(C)c2)c1,SE,1,1,1,1,0.7887386168713956,0,1,45.26015754339164,, +O=CCSc1nc2c(c(=O)[nH]1)SCC2,SE,1,0,0,0,0.4687567325444117,0,1,0.7889550504881977,, +COc1ccc(-c2ccn3c2C[N@H+]2C[C@H](O)[C@H](O)[C@H]2C3)cc1,SE,1,1,0,1,0.7116037326456506,0,0,-6.0406824569020285,, +COc1ccc(-c2ccn3c2C[N@H+]2C[C@@H](O)[C@@H](O)[C@@H]2C3)cc1,SE,1,1,0,1,0.7116037326456506,0,0,-6.0406824569020285,, +Cc1nc2ccc(F)c(F)c2[nH]1,SE,1,1,1,1,0.6410281657048285,1,1,19.10214424286781,0.0,0.0 +Cc1nc2c(F)c(F)ccc2[nH]1,SE,1,1,1,1,0.6410281657048285,1,1,23.851820277704302,0.0,0.0 +ClC1=CC=CCC1,SE,1,1,1,0,0.4539439471720032,0,0,-41.258116604604,, +c1ccc(Oc2ccccn2)cc1,SE,1,1,1,1,0.692680062625555,0,1,72.21271395112872,, +CC(C)(C)c1ccccc1,SE,1,1,1,1,0.5114006703774442,1,1,39.78732658936647,606.0,1.0 +c1ccc2ncccc2c1,SE,1,1,1,1,0.5311915584041306,1,1,50.88665479563308,562.0,1.0 +COc1ccc(C)cc1OC,SE,1,1,1,1,0.6450116473288807,1,1,49.09492104377262,2.0,1.0 +CN(C)C(=O)c1ccccc1,SE,1,1,1,1,0.5904983238770432,1,1,52.4542318016323,562.0,1.0 +OC[C@H]1OCC[C@@H]1O,SE,1,1,1,0,0.4702072052136929,0,0,-9.821069549887056,, +FC(F)(F)c1nncs1,SE,1,1,1,1,0.5662284449430544,0,1,19.35742546476609,, +Brc1nncs1,SE,1,1,1,1,0.5784785921436625,0,1,14.101673869561443,, +O=CO,SE,1,0,1,0,0.3801607209681124,1,0,-3.232191681976697,, +Cc1cccc(C)c1CC(C)C,SE,1,1,0,1,0.6240369738881146,0,1,42.32282778696912,, +NC(=O)CCC=O,SE,1,0,0,0,0.4847121791445339,1,0,-0.8159606076617973,, +CC(C)(C)c1ccccn1,SE,1,1,1,1,0.5319153197964482,1,1,34.11749152704644,504.0,1.0 +C[NH+]1CCN(C(=O)C(C)(C)c2ccccc2)CC1,SE,1,1,1,1,0.7997700010680819,0,1,85.77015601736151,, +CC(C)(C=O)c1ccccc1,SE,1,0,1,1,0.5872531234863956,1,1,18.53697594963332,, +CC(=O)NC1CCCCC1,SE,1,1,1,1,0.5881054430832254,1,1,37.90778852108155,0.0,0.0 +Cc1nc2cc(Cl)c(Cl)cc2[nH]1,SE,1,1,0,1,0.6960548445623856,0,1,39.094204382600985,, +Cc1nc2ccccc2[nH]1,SE,1,1,1,1,0.5820392325335273,1,1,44.88413169761304,52.0,1.0 +C[C@H](C=O)N1Cc2ccccc2C1=O,SE,1,0,1,1,0.6560333833555323,1,1,2.723043151461465,, +O=CN1CCSC1,SE,1,0,1,0,0.455537350403066,0,0,-16.168843290572067,, +Sc1nc2ccccc2[nH]1,SE,1,0,1,1,0.5511691185031635,0,1,18.23903139405793,, +O=CCCn1cnc2ccccc2c1=O,SE,1,0,1,1,0.6971262103594078,0,1,46.82435333992557,, +O=C1CCCN1,SE,1,1,1,0,0.4368355272348544,1,0,-9.662309042620665,, +C[N@H+]1CCc2sccc2C1,SE,1,1,1,1,0.5487049500957271,0,1,32.26880617142082,, +Nc1nccs1,SE,1,1,1,1,0.52152533306484,1,1,16.95309833793486,40.0,1.0 +Cc1cccc(=O)[nH]1,SE,1,1,1,1,0.5218395678614891,1,1,19.48304038596271,16.0,1.0 +c1ccc(-c2ccccn2)cc1,SE,1,1,1,1,0.6166619296375706,0,1,46.8183343970847,, +CCCCCCCC,SE,1,0,0,0,0.4806106052751371,1,1,21.86926465844493,, +Cc1ccc2ccccc2c1,SE,1,1,0,1,0.5297256591150028,1,1,50.77956942790302,, +CCCc1ccccc1,SE,1,1,1,1,0.5624916701881997,1,1,45.74003845359025,116.0,1.0 +CCCCC,SE,1,1,1,0,0.4687855098011332,1,1,14.968951527459414,, +Cc1cccc(F)c1,SE,1,1,1,0,0.4796017536231644,1,1,37.828761391948326,, +CCCc1cccc(C)c1,SE,1,1,1,1,0.5830304886161121,0,1,53.37725727747228,, +Clc1cccc(-n2cccn2)c1,SE,1,1,1,1,0.6563802978814094,1,1,58.54900520809319,8.0,1.0 +Cc1cc2c([nH]1)CCCC2,SE,1,1,1,1,0.5610158665356277,1,1,30.435141407668844,2.0,1.0 +CNC(=O)[C@@H]1CCN1,SE,1,1,1,0,0.4633161075355272,1,0,-1.8616006348772052,, +Cc1ccccc1[O-],SE,1,1,1,0,0.4859605934108408,1,1,26.034398301803133,, +O=C1Cc2ccccc2N1,SE,1,1,1,1,0.5653488967385903,1,1,1.0253554500825568,8.0,1.0 +COCCO,SE,1,1,1,0,0.4857336704954034,1,1,14.899052932694792,, +COc1cccc(N2CCOCC2)c1,SE,1,1,1,1,0.710672885660566,0,1,71.23102138001491,, +CC1(CO)COC1,SE,1,1,1,1,0.5052576084464226,1,1,3.58048773836444,134.0,1.0 +COc1cccc(C(N)=O)c1,SE,1,1,1,1,0.6790575842877807,1,1,59.47193566645434,62.0,1.0 +COc1cccc(N2CC[NH+](C)CC2)c1,SE,1,1,1,1,0.7366842608514701,0,1,78.66649109871906,, +c1cc(C2CC[NH2+]CC2)ccn1,SE,1,1,1,1,0.6424230433144232,0,1,32.961684981175736,, +CC(C)n1nccc1C1CC[NH2+]CC1,SE,1,1,1,1,0.7456829357041629,0,1,29.978054270236253,, +c1cc(C2CC[NH2+]CC2)n(C2CCCC2)n1,SE,1,1,1,1,0.803816346579559,0,1,24.80955476670364,, +CC(C)n1nccc1[C@@H]1[C@H]2C[N@@H+](C3COC3)C[C@H]21,SE,1,1,1,1,0.8219452034209859,0,0,-0.6760211301689538,, +CC(C)n1nccc1C1CC[NH+](C2COC2)CC1,SE,1,1,1,1,0.8528010793819676,0,1,22.337026270572625,, +COC(=O)N1C[C@@H]2C[C@H]1CN2c1ccccn1,SE,1,1,0,1,0.7286567028358149,0,1,2.340671693489012,, +CC(C)c1nccn1[C@]12C[C@]([NH+]3CCOCC3)(C1)C2,SE,1,1,1,1,0.8625938261321259,0,1,11.19724685451474,, +CC(C)[C@H](O)c1nccn1[C@]12C[C@]([NH+]3CCOCC3)(C1)C2,SE,1,1,0,1,0.8286563734714204,0,1,8.922387570863787,, +O[C@H](c1nccn1[C@]12C[C@](F)(C1)C2)C(F)(F)F,SE,1,1,1,1,0.8159175981552527,0,0,-2.7928005468425114,, +CSc1ccccc1,SE,1,1,1,1,0.5179452823981447,1,1,32.93718127829759,668.0,1.0 +c1ccc2sccc2c1,SE,1,1,1,1,0.5193756104894537,1,1,41.037837130138456,256.0,1.0 +c1ccc(C2CC2)cc1,SE,1,1,1,1,0.5312966219394869,0,1,31.188196468152917,, +C[NH+]1CCN(c2ccc3[nH]cnc3c2)CC1,SE,1,1,1,1,0.6995140593899478,0,1,56.59780759243876,, +COc1ncc2ccc(=O)[nH]c2n1,SE,1,1,0,1,0.680969973448816,0,1,20.12489718670419,, +CC[NH+]1CCNCC1,SE,1,1,1,0,0.4247903929124874,0,1,3.498274746836457,, +CC[NH+]1CCN(C)CC1,SE,1,1,1,0,0.4689539540404757,0,1,27.344174436775187,, +OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O,SE,1,1,0,0,0.3426576609893387,0,0,-6.855455912866066,, +CC[NH+]1CCN(C(=O)c2cccnc2)CC1,SE,1,1,1,1,0.7254545403197081,0,1,92.90013960542828,, +CCOC,SE,1,1,1,0,0.4315009980580737,1,1,14.173271476186557,, +c1ccoc1,SE,1,1,1,0,0.4460314875501461,1,1,5.85239784787098,, +CC[NH+]1CCN(Cc2ccccc2)CC1,SE,1,1,1,1,0.7507218265191825,0,1,96.71858135577008,, +CCN1CCN(Cc2ccccc2)CC1,SE,1,1,1,1,0.7408384221100384,1,1,77.24218277042867,262.0,1.0 +Cc1ccnc(N)n1,SE,1,1,1,1,0.5231996621282303,1,1,30.18974131870434,110.0,1.0 +C=CC(=O)Nc1ccc(OC)cc1N(C)CC[NH+](C)C,SE,1,0,0,1,0.7098483620712799,0,1,68.44403101139464,, +O=CNC1CCOCC1,SE,1,0,1,1,0.5290988006690647,1,0,-3.031973389736574,, +CC(C)(O)C1CNC1,SE,1,1,1,1,0.5029895132015002,1,0,-4.037334217995438,, +C[NH+]1CCN(c2ccc(N)cc2)CC1,SE,0,0,1,1,0.5938900055308579,0,1,56.97128135118805,, +Cc1ccccc1N1CC[NH+](C)CC1,SE,1,1,1,1,0.6719940378305639,0,1,57.79521737228294,, +C[NH+]1CCN(c2cc(OCC(F)(F)F)c3c(c2)[nH]c2ccncc23)CC1,SE,1,1,0,1,0.746334612729013,0,1,44.26099319018101,, +COc1ccc(N)cc1,SE,0,0,1,1,0.5706913849970715,1,1,33.88032909584605,, +COc1ccc(-c2cnn(C)c2)c(N2CCCCC2)c1,SE,1,1,0,1,0.8590921754009392,0,1,36.82149139695686,, +Clc1ccccc1N1CCCCC1,SE,1,1,0,1,0.6646879287576739,0,1,57.88204278852415,, +COc1ccc(Cl)c(N2CCCCC2)c1,SE,1,1,0,1,0.7656726615906856,0,1,52.54968047795845,, +COc1cccc(N2CCC([NH3+])CC2)c1,SE,1,1,1,1,0.7826177872957617,0,1,68.74203125023325,, +CS(=O)(=O)CC1CNC1,SE,1,1,1,1,0.5617008494949445,0,0,-5.066699143567051,, +COC(C)(C)C,SE,1,1,1,0,0.4349873803799564,1,1,14.55129809536068,, +CC(C)(C)C,SE,1,1,1,0,0.4105781835342534,1,1,11.33898174575638,, +C[NH+]1CCN(CCCO)CC1,SE,1,1,1,1,0.5083688085649424,0,1,48.56390588255943,, +O=C(NC1CC[NH2+]CC1)c1ccccc1,SE,1,1,1,1,0.7086643161197085,0,1,73.0984032379954,, +CC(C)(C[NH3+])CNC(=O)c1ccccc1,SE,1,1,0,1,0.7493586556573194,0,1,75.48759908067986,, +Cc1nc(N)nc(NC(=O)c2ccccc2)n1,SE,1,1,0,1,0.801175859673256,0,1,72.07587590315802,, +O=C(N[C@@H]1CC[NH2+]C[C@H]1F)c1ccccc1,SE,1,1,1,1,0.733105231512065,0,1,29.8238159945136,, +O=C(N[C@H]1CC[NH2+]C1)c1ccccc1,SE,1,1,1,1,0.6651515889275661,0,1,68.53628490755214,, +O=C(N[C@@H]1CCNCC1(F)F)c1ccccc1,SE,1,1,1,1,0.8203677133142412,0,1,12.549046260213686,, +Nc1cccc(NC(=O)c2ccccc2)c1,SE,1,0,1,1,0.7513719932230986,1,1,91.75114132311998,, +O=C(N[C@@H]1CCNC[C@H]1F)c1ccccc1,SE,1,1,1,1,0.7868785768668769,0,1,5.871028704557537,, +CC1(C)CC(NC(=O)c2ccccc2)CC(C)(C)N1O,SE,1,1,1,1,0.8730389848628733,0,1,43.167488320437705,, +C[C@]1(O)CC[C@H](NC=O)CC1,SE,1,0,1,1,0.570843045630538,1,0,-23.76042209544875,, +O=C(NC1CC[NH2+]CC1)c1cccc(Br)c1,SE,1,1,1,1,0.8326794918722397,0,1,89.12014043535903,, +O=C(NC1CC[NH2+]CC1)c1cccc(C(F)(F)F)c1,SE,1,1,1,1,0.834291486363181,0,1,88.60395487391165,, +CCc1cccc(C(=O)NC2CC[NH2+]CC2)c1,SE,1,1,1,1,0.793110005385366,0,1,89.22619323477299,, +CS(=O)(=O)c1cccc(N2CCOCC2)c1,SE,1,1,0,1,0.7724170059985859,0,1,60.53478334982407,, +CCCOCC,SE,1,0,1,0,0.474106795831282,1,1,20.26518043857321,, +O=CCCCC(=O)[O-],SE,1,0,0,0,0.3523459696302017,1,1,9.227506352803,, +NC(=O)CCl,SE,1,0,1,0,0.4450443872218326,1,1,11.502166398513657,, +OCCC[NH+]1CCCCC1,SE,1,1,1,1,0.5449828947508465,0,1,43.50430904870883,, +COc1ccc2[nH]c(Cc3ccccc3)nc2c1,SE,1,1,0,1,0.7607117020011622,0,1,98.45078491132696,, +NC(=O)c1ccc(N)cc1,SE,1,0,0,1,0.5473422654963028,1,1,37.47506477215158,, +CN1CC[NH+](CCCO)CC1,SE,1,1,1,1,0.5083688085649424,0,1,50.82082280514788,, +OC1CCCCC1,SE,1,1,1,0,0.4863248839438126,1,1,13.246532692241212,, +CCCCO,SE,1,1,1,1,0.5128217987135145,1,1,13.825336356798706,6.0,1.0 +c1ccc(Nc2cncnc2)cc1,SE,1,1,1,1,0.752389705777418,0,1,53.256550521515976,, +C1CCOCC1,SE,1,1,1,0,0.4299400218016567,1,1,10.240293193110956,, +OCCCc1ccccc1,SE,1,1,1,1,0.6689565380917978,1,1,47.40919966148066,4.0,1.0 +Fc1cccc(Cl)c1,SE,1,1,1,1,0.5062680369802974,1,1,36.18337245697641,620.0,1.0 +OC1CCCC1,SE,1,1,1,0,0.4644899319371969,1,1,6.230842174301479,, +CCC#Cc1ccccn1,SE,1,0,1,0,0.4894588666368867,1,1,33.73984363548724,, +CCCNC=O,SE,1,0,1,0,0.3848271005019902,1,0,-5.198247434028854,, +Cn1nccn1,SE,1,1,1,0,0.435136594916293,0,1,12.003980889357791,, +c1cc(N2CCCC2)ccn1,SE,1,1,1,1,0.6020475569644353,0,1,36.61531026830655,, +C[NH+]1CCC(n2cccn2)CC1,SE,1,1,1,1,0.6095178902532876,0,1,38.76132893299427,, +CCOc1cccc(N2CCC(O)CC2)c1,SE,1,1,1,1,0.8475466941502181,0,1,66.13572942991641,, +CCN,SE,1,1,1,0,0.4062370953898832,1,1,5.092217189432304,, +O=C(c1ccccc1)N1CCC(CCO)CC1,SE,1,1,1,1,0.8661618438580109,0,1,92.02148937553606,, +c1nnn[n-]1,SE,1,1,0,0,0.3848452229200756,0,1,13.506474971814798,, +O=C1CCc2ccccc2N1,SE,1,1,1,1,0.5925813942969883,1,1,15.317251311653788,428.0,1.0 +O=CN1CCN(c2ccccc2)CC1,SE,1,0,1,1,0.648570855195969,1,1,34.460366798436674,, +Cc1c[nH]c(C)c1CCC(=O)[O-],SE,1,1,1,1,0.7023634620001634,0,1,31.800318806488317,, +CCCC[NH+](CC)CC,SE,1,1,0,1,0.5588860865767477,1,1,34.52077230505497,, +CC[NH+]1CCN(c2ccccc2)CC1,SE,1,1,1,1,0.711331311563537,0,1,72.47181593085907,, +Brc1cncnc1,SE,1,1,1,1,0.5685144631214077,1,1,25.553159337233435,200.0,1.0 +C[C@H]1CN(c2ccccc2)C[C@@H](C)[NH2+]1,SE,1,1,1,1,0.6972893839482547,0,1,25.327850592095714,, +[NH3+]C1(CO)CC1,SE,1,1,1,0,0.4132910808425134,0,1,7.495490464802453,, +COc1ccccc1OC,SE,1,1,1,1,0.6189113153967103,1,1,33.90936801172575,692.0,1.0 +CCC[NH+](CC)CC,SE,1,1,0,1,0.5393726644259729,1,1,25.79002644888102,, +CC[NH+](C)C,SE,1,1,1,0,0.4130719394179309,1,1,16.238026260411445,, +C[NH2+]C,SE,1,1,1,0,0.3530591111578337,1,1,10.064078188343409,, +C=CC(N)=O,SE,1,0,1,0,0.4219958386868299,1,0,-1.1383284387539367,, +CC[NH2+]CC,SE,1,1,1,0,0.4583183660353573,1,1,15.542012736362874,, +C1CCNC1,SE,1,1,1,0,0.4347944578283113,1,0,-6.026803828991243,, +C[NH+]1CCOCC1,SE,1,1,1,0,0.3941105608599776,0,1,11.067832652657284,, +CCc1ccccc1,SE,1,1,1,1,0.5147578217927745,1,1,36.7452432584706,700.0,1.0 +COc1ccccc1N1CCCCC1,SE,1,1,1,1,0.7122842839730871,0,1,61.937860739236925,, +C1COCCN1,SE,1,1,1,0,0.4340574553786442,1,0,-6.969065840520294,, +Cc1cnn(CCO)c1,SE,1,1,1,1,0.6136497377777997,1,1,39.65033533372642,0.0,0.0 +C[C@H]1CCCN1C(=O)c1ccccc1,SE,1,1,1,1,0.6635246340488133,1,1,58.0187947687109,0.0,0.0 +COc1ccccc1N,SE,1,0,1,1,0.5706913849970715,1,1,32.553625231704274,, +OCCC[NH+]1CCOCC1,SE,1,1,1,1,0.4966585563198398,0,1,41.13053912852551,, +COc1ccc(CN)cc1,SE,1,1,1,1,0.6633238802202668,1,1,16.512637560136522,124.0,1.0 +Clc1cccc(Cl)c1,SE,1,1,1,1,0.5285863388321962,1,1,30.04532860234687,582.0,1.0 +C[NH+]1CCN(S(=O)(=O)c2ccccc2)CC1,SE,1,1,1,1,0.7368429590282473,0,1,85.8236996704925,, +c1ccsc1,SE,1,1,1,0,0.4489266460144336,1,1,9.194709627715325,, +CCCn1cncn1,SE,1,1,1,1,0.5617398374798184,1,1,32.204416996454434,8.0,1.0 +CC1CC[NH2+]CC1,SE,1,1,1,0,0.4403651264470919,0,1,10.18601331567839,, +COCC[NH+]1CCC(C)CC1,SE,1,1,1,1,0.6076980861520717,0,1,53.52193924695383,, +CC1CCOCC1,SE,1,1,1,0,0.4472009406681704,1,1,8.398560483220471,, +CC(=O)N1CCCC1,SE,1,1,1,0,0.4508867746793659,1,1,24.37966186616055,, +C[NH+]1CCN(C2CCCCC2)CC1,SE,1,1,1,1,0.6079108303245183,0,1,37.28306429108626,, +C1CCC([NH+]2CCNCC2)CC1,SE,1,1,1,1,0.555953299619352,0,1,5.012424193262666,, +C1CCCC1,SE,1,1,1,0,0.4083619292230275,1,1,13.188394633412608,, +CC(C)C[C@H]([NH3+])C=O,SE,1,0,1,1,0.5116134321257249,1,1,4.910455926426601,, +CC(C)C[C@H]([NH3+])C(=O)[O-],SE,1,1,0,1,0.5005599304878099,0,1,30.403750804513813,, +CC(C)C[C@H]([NH2+]C1CCCCC1)C(N)=O,SE,1,1,0,1,0.6964625981193222,0,1,51.75440794592413,, +CCCCCC=O,SE,1,0,0,0,0.3883941773179649,1,1,0.0464529480599007,, +NC1CN(C(=O)C2CC2)C1,SE,1,1,1,1,0.5367164836491416,1,1,8.853287404625327,0.0,0.0 +O=C([O-])C1(c2ccccc2)CCCC1,SE,1,1,1,1,0.7020416151029683,0,1,44.85904683811279,, +c1cc([C@@H]2CC[NH2+]C2)ncn1,SE,1,1,1,1,0.5876605814348775,0,1,18.34149380794083,, +CC[NH+](CC)CCNC(=O)c1c(C)[nH]c(C)c1C,SE,1,1,0,1,0.6819124194643233,0,1,77.08984993986154,, +CCN(CC)CCNC(=O)c1c(C)[nH]c(C)c1C,SE,1,1,0,1,0.8122714148514506,1,1,53.208340359277976,, +c1nnco1,SE,1,1,1,0,0.4332304478977853,1,1,10.178676446190448,, +COc1ccc2c(c1)CC[N@H+](C)C2,SE,1,1,1,1,0.6513002714713512,0,1,30.69895435905395,, +CN(C)C(=O)c1ccccc1N,SE,1,0,1,1,0.6285220947986621,1,1,41.40001951029798,, +CN(C)C(=O)c1c(N)cccc1F,SE,1,0,1,1,0.6611223253165022,0,1,38.27355839496239,, +Cc1cc(-n2ccnc2)cc2[nH]cnc12,SE,1,1,1,1,0.6501351083287567,0,1,40.4628612255776,, +C[N@H+](CCO)CCCO,SE,1,1,0,0,0.4022438289688295,0,1,23.28542728079227,, +c1cc2cncnn2c1,SE,1,1,1,1,0.511375604737478,1,1,26.486607037964,38.0,1.0 +COc1cc2c(ccn2C)nc1OC,SE,1,1,1,1,0.7245547212554198,0,1,35.15900505614214,, +COc1ccccc1N1CCOCC1,SE,1,1,1,1,0.710672885660566,1,1,59.84748528160221,320.0,1.0 +COc1cccc(OC2CC[NH+](C)CC2)c1,SE,1,1,1,1,0.8153812089080459,0,1,79.05979583830687,, +Cc1ccnn1C1CC[NH2+]CC1,SE,1,1,1,1,0.6301399441096591,0,1,16.55245087208298,, +Cc1ccn(C2CC[NH2+]CC2)n1,SE,1,1,1,1,0.6301399441096591,0,1,26.581718443590333,, +Cc1cc(C)n(C2CC[NH+](CC=O)CC2)n1,SE,1,0,1,1,0.7265653522647468,0,1,22.83529942919129,, +COc1ccc2c(ccn2C(C)=O)c1,SE,1,1,1,1,0.6888779291370131,0,1,42.67926973789878,, +c1ccn2nccc2c1,SE,1,1,1,1,0.509815139625202,1,1,35.55596004961994,116.0,1.0 +c1cnn(CCN2CC[NH2+]CC2)c1,SE,1,1,1,1,0.6333300645008875,0,1,65.25792283710692,, +CC(C)(C)C(=O)Oc1ccc2[nH]cnc2c1,SE,1,0,1,1,0.5907070101972453,0,1,65.15591052135736,, +COCCCN,SE,1,0,1,1,0.4931203923013463,1,0,-2.29127517994221,, +Cn1ccc(C(F)(F)F)n1,SE,1,1,1,1,0.5467194924872543,1,1,29.484652635419007,478.0,1.0 +c1cc(C2CC[NH2+]CC2)n[nH]1,SE,1,1,1,1,0.5773192735819584,0,1,31.085466344292985,, +CCCN,SE,1,1,1,0,0.4632709184547627,1,0,-1.5901402203952597,, +NC1CC1,SE,1,1,1,0,0.4192205084405548,1,0,-5.652930360202207,, +CN1C(=O)C[C@H]2C[NH2+]CC[C@H]21,SE,1,1,1,0,0.4685685381035015,0,0,-18.58565714511659,, +Cn1ccc(C(N)=O)n1,SE,1,1,0,1,0.5506039101636904,1,1,32.93410750153456,, +Cc1cccc(C)c1,SE,1,1,1,0,0.475757685340321,1,1,29.599638302226232,, +CCCC[NH2+]C,SE,1,0,1,0,0.4668582729351071,1,1,17.760185946042515,, +C[NH+](C)C1CCCCC1,SE,1,1,1,1,0.5232016114018909,0,1,28.10916921525156,, +NC=O,SE,1,0,1,0,0.3523255130205271,1,0,-3.29609306080239,, +C1CCC([NH+]2CCOCC2)CC1,SE,1,1,1,1,0.5947501614233621,0,1,28.958893145177967,, +CC(C)(O)[C@H](F)CNC=O,SE,1,0,0,1,0.5456060681009259,1,0,-10.866149538187932,, +c1ccc2oc(N3CCOCC3)nc2c1,SE,1,1,0,1,0.7078008821175487,1,1,67.78885398226471,, +CC1(C)Cc2ccccc2O1,SE,1,1,1,1,0.5486176842945492,1,1,21.867476120729584,0.0,0.0 +Cn1c(N2CCOCC2)nc2ccccc21,SE,1,1,1,1,0.7232017090502436,0,1,61.557796728149405,, +C[C@]1(CO)Cc2ccccc2O1,SE,1,1,1,1,0.678954342303604,0,1,6.424321525036007,, +C[NH+]1CCC(n2cc(N)cn2)CC1,SE,1,1,1,1,0.6025668052731411,0,1,27.954605218570094,, +C[NH+]1CC2(CC(n3cc(N)cn3)C2)C1,SE,1,1,1,1,0.6203297668838376,0,1,6.4271579140982205,, +CC(C)(O)[C@H](F)CN1Cc2ccccc2C1=O,SE,1,1,1,1,0.8697036079033587,0,1,9.491071591053634,, +c1cnc2nc(N3CCOCC3)oc2c1,SE,1,1,0,1,0.6963349474924336,0,1,59.27884303609992,, +COc1ccc2cn(CC(=O)N3CCOCC3)nc2c1,SE,1,1,0,1,0.8350012348042133,0,1,85.87089937029349,, +Cn1c(CCC(C)(C)O)nc2ccccc21,SE,1,1,1,1,0.8578866544798505,0,1,71.70214852309071,, +Nc1cccc(C(=O)N2CCCC2)c1,SE,1,0,1,1,0.6820842007945596,0,1,66.4625675818601,, +Fc1cccc(F)c1,SE,1,1,1,0,0.4832965029562796,1,1,27.929408511710964,, +C[NH+]1CCN(Cc2ccc3cn[nH]c(=O)c3c2)CC1,SE,1,1,1,1,0.7462848102441413,0,1,60.10969517022466,, +[NH3+]Cc1ccc(C=O)cc1,SE,1,0,1,1,0.5814539021786307,1,1,33.55162207467533,, +c1ccc(N2CCCCC2)cc1,SE,1,1,1,1,0.6117683755470859,0,1,52.14635393882533,, +CCOc1cc(C(O)(CC)CC)cc2[nH]ccc12,SE,1,1,0,1,0.8479562994589026,0,1,46.14992704478972,, +CCC(O)(CC)c1ccc2cc[nH]c2c1,SE,1,1,0,1,0.7893058241716042,0,1,49.31451977284492,, +Nc1nccc(C(F)(F)c2ccc(F)cc2)n1,SE,1,1,1,1,0.8745821171683237,0,1,42.89867724382043,, +NC(N)=O,SE,1,1,0,0,0.3705073514035382,1,1,12.3711326840275,, +COc1ccc2ccccc2c1,SE,1,1,1,1,0.6196937967945624,1,1,66.2343886319233,110.0,1.0 +Oc1ccc2ccccc2c1,SE,1,1,1,1,0.6020160700037418,1,1,36.977495935527806,194.0,1.0 +NC(=O)[C@H]1C[C@@H]1c1ccccc1,SE,1,1,1,1,0.6970915365189387,0,1,25.411860823980877,, +N#Cc1cccc(Cn2cc(N)cn2)c1,SE,1,1,0,1,0.792279427295126,1,1,74.63572536204133,, +C[NH+](C)CC[C@@H](c1ccccc1)n1cccn1,SE,1,1,0,1,0.813385318994992,0,1,68.44202057557607,, +C[NH+](C)CC[C@H](c1ccccc1)n1cc(N)cn1,SE,1,1,0,1,0.8097417357556057,0,1,57.77460319814843,, +C[NH+](C)CCCn1cccn1,SE,1,1,0,1,0.6155279334992901,0,1,53.59795144256254,, +Nc1cc(S(=O)(=O)c2ccccc2)ccn1,SE,1,1,0,1,0.854108506177338,0,1,60.31576339343299,, +Nc1cnn([C@H](c2ccccc2)[C@H]2CCCCS2(=O)=O)c1,SE,1,1,0,1,0.9407678508452016,0,1,28.73337920384384,, +COc1ccc(F)cc1OC,SE,1,1,1,1,0.6500511394346002,1,1,44.498833007917696,386.0,1.0 +COc1ccccc1Cl,SE,1,1,1,1,0.5850627747795066,1,1,43.98448272681154,642.0,1.0 +COc1ccn(C)n1,SE,1,1,1,1,0.5263811927523276,0,1,26.906394177183785,, +OCCn1cccn1,SE,1,1,1,1,0.5786257845878837,1,1,32.75223805363652,386.0,1.0 +Clc1cncnc1,SE,1,1,1,1,0.5054176926987128,1,1,20.442820330779547,184.0,1.0 +Cn1cc(-c2ccc3c(c2)[nH]c2ccncc23)cn1,SE,1,1,0,1,0.5622737386881552,0,1,26.739095724055097,, +Fc1cncnc1N1CCOCC1,SE,1,1,0,1,0.6333358858812423,0,1,32.50775054431667,, +Cc1csc2cncnc12,SE,1,1,1,1,0.5736756686094583,1,1,22.16900398097725,48.0,1.0 +c1ncnc(N2CCOCC2)n1,SE,1,1,0,1,0.5733845621903448,0,1,19.68777626017417,, +O=C(c1ccc2[nH]c3ccccc3c2c1)N1CCOCC1,SE,1,1,1,1,0.7447038584797235,0,1,92.12450662543476,, +Cc1nc(N)sc1C,SE,1,1,1,1,0.572339049268458,1,1,22.23856183964006,44.0,1.0 +Cc1cc(N)nn1C,SE,1,1,1,1,0.5233105535294158,1,1,22.795820637482308,90.0,1.0 +O=CN1CCc2nc[nH]c2C1,SE,1,0,1,1,0.5707536693757275,1,0,-2.1449281543841807,, +C[NH+]1CCC(c2ccccc2F)CC1,SE,1,1,1,1,0.6853321041515539,0,1,33.532275221185266,, +C[NH+]1CCC(c2c(F)cccc2F)CC1,SE,1,1,1,1,0.7165918120131827,0,1,27.116011691148945,, +C[NH+]1CCC(NC(=O)c2ccccc2F)CC1,SE,1,1,1,1,0.7584569802128792,0,1,92.54395605438658,, +CC(C)(C)OC(=O)c1ccc(N)cc1,SE,1,0,1,1,0.5492838057852807,0,1,67.18779138707453,, +CNC(=O)c1ccccc1,SE,1,1,1,1,0.6122319116423771,1,1,47.82334391425171,496.0,1.0 +CCCCC[NH+](C)C,SE,1,0,0,1,0.5045617470176356,1,1,30.5898933232486,, +C[N@@H+]1CC=C(c2c(F)cccc2F)CC1,SE,1,1,1,1,0.7116170226028656,0,1,16.708901177803455,, +Nc1cc(F)c(O)c(F)c1,SE,1,0,1,0,0.4259873628805046,1,1,17.48497689265977,, +c1ccc(-n2nccn2)cc1,SE,1,1,1,1,0.6045482615564558,0,1,41.7926064493052,, +c1ccc(-c2cccs2)cc1,SE,1,1,0,1,0.5993259738497403,1,1,52.42832243376772,, +N#Cc1ccc(N)cc1,SE,1,0,1,1,0.5191194400900636,1,1,27.70167539004049,, +CCN(CC)C(=O)c1ccc(N)cc1,SE,1,0,1,1,0.7415006840514895,1,1,67.62337635714933,, +N=[S@](=O)([O-])c1ccc(N)cc1,SE,1,0,0,1,0.6122501677125757,0,1,18.426291551967264,, +Nc1ccc2cc[nH]c2n1,SE,1,1,1,1,0.5658999712435826,1,1,44.52020778964019,96.0,1.0 +N=[S@@](=O)([O-])c1ccc(N)cc1,SE,1,0,0,1,0.6122501677125757,0,1,18.426291551967264,, +Cn1ncc2ccc(F)cc21,SE,1,1,1,1,0.5586436196761537,0,1,33.91828324881887,, +CC(=O)N[C@@H]1CCc2ccc(O)cc21,SE,1,1,1,1,0.7066032818351706,0,1,31.63333157323981,, +Cc1ccco1,SE,1,1,1,0,0.4628605847396023,1,1,19.55617176649155,, +O=c1[nH]c2ncncc2n1CCO,SE,1,1,0,1,0.6276733622989156,0,1,20.28092864190647,, +CCNC(=O)c1cccnc1,SE,1,1,1,1,0.678104826787159,1,1,63.47328996222958,108.0,1.0 +COc1ccc(OC)c(Br)c1,SE,1,1,1,1,0.7569605044931583,1,1,56.58278013206898,330.0,1.0 +COc1ccc(OC)c(C)c1,SE,1,1,1,1,0.6450116473288807,1,1,49.28923531334989,76.0,1.0 +COc1cccc(CS(C)(=O)=O)c1,SE,1,1,1,1,0.7369355471838962,1,1,76.74239695503111,0.0,0.0 +Cc1ccc(C(N)=O)cc1,SE,1,1,1,1,0.6150947811524279,1,1,42.17636453506214,32.0,1.0 +Cc1ccc(S(=O)(=O)CCO)cc1,SE,1,1,1,1,0.7833942930773142,1,1,62.87262197852605,0.0,0.0 +NC(=O)c1ccco1,SE,1,1,1,1,0.5690629874470592,1,1,32.06712585829939,38.0,1.0 +CCCC(=O)Nc1cccc(C(=O)[O-])c1,SE,1,1,0,1,0.7912950493550776,0,1,100.45683619931155,, +COC1CCCCC1,SE,1,1,1,1,0.5060735203854042,1,1,22.8856265162526,0.0,0.0 +O=CCC[NH+]1CCCCC1,SE,1,0,1,1,0.5341032655001693,0,1,13.352077704620486,, +CCNC(=O)N1CCCCC1,SE,1,1,1,1,0.6075957587509915,1,1,51.81073412212428,0.0,0.0 +CCC=O,SE,1,0,1,0,0.4032599029179279,1,0,-0.4972685427757803,, +Cc1ccc(N)cc1,SE,0,0,1,1,0.5002819996278854,1,1,27.2263427720141,, +CNC(=O)C[NH+]1CCCCC1,SE,1,1,1,1,0.5185769140796527,0,1,52.18632405206456,, +COc1cc(NC(=O)c2ccccc2)cc(OC)c1OC,SE,1,1,0,1,0.9182148675103156,0,1,107.32200820030428,, +Fc1ccc2c(c1)COCO2,SE,1,1,1,1,0.5657492628426967,0,1,37.14246324330456,, +O=CCN1C(=O)CCc2ccccc21,SE,1,0,1,1,0.6546374832874297,1,1,29.22426740217351,, +O=CN1CCCCC1,SE,1,0,1,0,0.4565737849817706,1,1,1.2671200679307617,, +O=C(Nc1cn[nH]c1)c1ccccc1,SE,1,1,1,1,0.7507385428386607,1,1,77.6430655258691,0.0,0.0 +CC(C)NC(=O)NC1CCCCC1,SE,1,1,1,1,0.6770493982502719,0,1,62.39054298909707,, +Cc1ccc(C(=O)NC2COC2)s1,SE,1,1,1,1,0.7729315790400751,0,1,56.42349128082679,, +O=CNC1COC1,SE,1,0,1,0,0.4590991228761995,0,0,-12.40620566569474,, +CCCCCC,SE,1,0,1,0,0.4629542813199688,1,1,16.578700548363255,, +NS(=O)(=O)c1ccc(O)cc1,SE,1,1,0,1,0.6287573865498552,1,1,35.19470122416556,, +c1csc(C2CC[NH2+]CC2)n1,SE,1,1,1,1,0.6546380899034524,0,1,28.012649523708014,, +CCCOc1c(OC)cccc1OC,SE,1,1,0,1,0.7237473811129558,1,1,56.47718896592934,, +COc1cccc(OC)c1,SE,1,1,1,1,0.6189113153967104,1,1,40.67824546338798,668.0,1.0 +COc1cc(N)cc(OC)c1,SE,1,0,1,1,0.650857113073011,1,1,25.614648148668785,, +COc1ccc2c(ccn2C)c1,SE,1,1,1,1,0.6249433837720009,1,1,58.249120084760925,32.0,1.0 +COc1ccc2occc2c1,SE,1,1,1,1,0.619310760729826,1,1,51.03799521481415,108.0,1.0 +c1ccc(COc2ccccc2)cc1,SE,1,1,0,1,0.7109826240797368,1,1,83.69728301704127,, +CC(C)C=O,SE,1,0,1,0,0.4193824796202562,1,1,1.5164272025420755,, +C[NH+]1CCN(C=O)CC1,SE,1,0,1,0,0.4058599070371384,0,1,2.759666172459256,, +c1ccc2[nH]ncc2c1,SE,1,1,1,1,0.5583728365871126,1,1,41.54100241300441,550.0,1.0 +C[NH+](C)Cc1ccccc1,SE,1,1,1,1,0.5974080284282456,1,1,51.954389800780696,0.0,0.0 +CC(C)(C)c1ccc(C(N)=O)cc1,SE,1,1,1,1,0.7008311327254179,1,1,52.792028585495714,52.0,1.0 +C[N@@H+]1CCO[C@H](CO)C1,SE,1,1,1,0,0.4280710894619658,0,0,-3.823883306087762,, +CC(C)O,SE,1,1,1,0,0.4284047940316283,1,1,10.062227718567554,, +CCn1cccn1,SE,1,1,1,1,0.5076276941645591,1,1,29.56754245919666,398.0,1.0 +COc1ccc(S(N)(=O)=O)cc1,SE,1,1,0,1,0.7255281756519203,1,1,51.60543858731664,, +CNC(=O)c1ccc(OC)cc1,SE,1,1,1,1,0.7110451272186061,1,1,65.52546840123227,88.0,1.0 +c1cncc(-c2ccncc2)c1,SE,1,1,1,1,0.6317729528591786,1,1,47.87041623488121,0.0,0.0 +c1cc(-n2cnc(C3CC3)c2)ccn1,SE,1,1,1,1,0.7172784818110044,0,1,14.78376434862002,, +Cc1cc(F)ccc1-n1cnc(C2CC2)c1,SE,1,1,0,1,0.7533823785846062,0,1,24.158805519146878,, +COc1ccn(-c2cnccn2)n1,SE,1,1,0,1,0.6744511395389347,0,1,38.55441178274351,, +c1ccc2occc2c1,SE,1,1,1,1,0.5174240042877334,1,1,35.92915737954941,196.0,1.0 +FC(F)F,SE,1,1,1,0,0.401096477329913,1,1,8.32880524914489,, +Cn1ccc(Br)c1,SE,1,1,1,1,0.5446911831566104,1,1,26.63937916167101,0.0,0.0 +c1ccc2c(c1)CC[NH2+]C2,SE,1,1,1,1,0.5255347882717194,0,1,14.90230170378665,, +c1ccc2c(c1)CC[NH2+]CC2,SE,1,1,1,1,0.5464708721597852,0,1,24.54510673422537,, +Cc1ncc2sccc2n1,SE,1,1,1,1,0.5736756686094583,0,1,31.44524063184681,, +c1ccc(OCC[NH+]2CCCCC2)cc1,SE,1,1,0,1,0.7795633241047333,0,1,92.9929574916792,, +CCCCN(C)C=O,SE,1,0,0,1,0.4978231578612091,1,0,-2.521170562702213,, +N=[S@](=O)([O-])c1ccc(CNC=O)cc1,SE,1,0,0,1,0.7116775905613574,0,1,5.968352309652731,, +C[C@@H]1CNCC[NH2+]1,SE,1,1,1,0,0.3834811167403689,0,0,-20.594121993995564,, +O=CNC1CC[NH+](CCCF)CC1,SE,1,0,0,1,0.5421191821663087,0,1,2.474794664123717,, +Cc1[nH]c(C)c(C)c1C,SE,1,1,1,1,0.5442736785409319,1,1,15.318631387612346,0.0,0.0 +Cc1[nH]c(C)c(C(=O)N2CCC[C@H]2C)c1C,SE,1,1,1,1,0.7754552981895823,0,1,44.2197283370005,, +CNC(C)=O,SE,1,1,1,0,0.4207171469569102,1,1,15.4440285404754,, +C[NH+]1CCC(CO)CC1,SE,1,1,1,0,0.4627145524962772,0,1,26.00161583963001,, +CC[NH+]1CCC(CCNC(N)=O)CC1,SE,1,1,0,1,0.5552755134239538,0,1,65.07841411249497,, +COC(N)=O,SE,1,1,1,0,0.4298618209855597,1,1,12.424093728974654,, +NC(=O)NCC[NH+]1CCOCC1,SE,1,1,0,0,0.4451277010358733,0,1,52.88367012103497,, +O=C1NCc2cc[nH]c21,SE,1,1,1,1,0.5089553684936418,0,0,-11.036763420855744,, +OCC[NH+]1CCNCC1,SE,1,1,1,0,0.3863126073329869,0,1,6.504667581341328,, +CC(=O)N1[C@H]2CC[C@@H]1c1ccccc12,SE,1,1,1,1,0.610484827591732,0,1,0.6341159854672447,, +CCN1CC[NH+](C)CC1,SE,1,1,1,0,0.4689539540404757,0,1,28.60294836720833,, +CC[NH+](CC)CCNC=O,SE,1,0,0,0,0.3517787910396112,1,1,10.783856048570396,, +Cc1ncno1,SE,1,1,1,0,0.4557395479673612,1,1,6.0437123633203695,, +OCCCO,SE,1,1,1,0,0.4590493065582775,1,1,11.9671012826842,, +CCC[NH+]1CCOCC1,SE,1,1,1,1,0.5222517089312312,0,1,34.24048973560894,, +CCCNS(=O)(=O)c1cccc(N)c1,SE,1,0,0,1,0.7330935381883809,1,1,70.70985251589813,, +COc1cccc(C(=O)NC2CCOCC2)c1,SE,1,1,1,1,0.8653583628936904,0,1,102.8792413922833,, +c1ncc2sccc2n1,SE,1,1,1,1,0.550428797024282,1,1,31.360184430982372,66.0,1.0 +CCC1CC[NH+](C)CC1,SE,1,1,1,1,0.5185853827740851,0,1,25.95533961108029,, +c1ccc(Oc2ccccc2)cc1,SE,1,1,0,1,0.6700363845267113,1,1,48.33679552060807,, +CCc1c[nH]c2ccccc12,SE,1,1,1,1,0.634678344220595,1,1,48.98497182806486,0.0,0.0 +CC(C)c1ccn(C)n1,SE,1,1,1,1,0.5549833496330374,1,1,34.80427739992697,296.0,1.0 +Fc1ccccc1N1CC[NH2+]CC1,SE,1,1,1,1,0.6562156174631478,0,1,48.59099564498181,, +Clc1ccc2ncncc2c1,SE,1,1,1,1,0.5972040822894839,0,1,37.903817465730135,, +CC[NH+](CC)CCNC(=O)C1C(C)=NC[C@H]1C,SE,1,1,0,1,0.6608777131331233,0,1,29.595085214261648,, +O=C(Nc1ccccc1)N1CCCC1,SE,1,1,1,1,0.7237462093127335,1,1,88.73624912698077,0.0,0.0 +O=C(NCC[NH+]1CCCCC1)c1cccc(-c2cc[nH]c2)c1,SE,1,1,0,1,0.7692806242216044,0,1,125.38428441842832,, +COc1ccc2nc[nH]c2c1,SE,1,1,1,1,0.6661476097466301,1,1,53.52288030244096,28.0,1.0 +C=C1N=C(C)C(C)=C1C(=O)NCC,SE,1,1,1,1,0.6824051786375539,0,0,-7.942785771953904,, +CC1CC1,SE,1,1,1,0,0.3934207493755274,1,1,7.224544811263611,, +[NH3+]CCO,SE,1,1,1,0,0.3704637091260453,1,1,10.281549401495868,, +CC[NH2+]CCO,SE,1,0,1,0,0.4091770990852335,1,1,19.867344792771483,, +CCOCCO,SE,1,0,1,1,0.4947212507995219,1,1,17.5932661529415,, +CC[NH3+],SE,1,1,1,0,0.3714914223317165,1,1,11.394622691813655,, +C[N@@H+]1CCCN(C(=O)c2ccccc2)CC1,SE,1,1,1,1,0.7089274671104168,0,1,90.89143881834876,, +O=CNC1CC1,SE,1,0,1,0,0.4657730328446583,1,0,-9.131588782081048,, +NCCC[NH3+],SE,1,1,1,0,0.4154787105409139,1,0,-5.446707833249521,, +OC(F)(F)F,SE,1,1,1,0,0.4546943751491228,1,1,8.85801368762451,, +FC(F)(F)Oc1ccccc1,SE,1,1,1,1,0.6161869793338142,1,1,45.07593339309071,612.0,1.0 +COc1ccc(F)c(C(N)=O)c1,SE,1,1,1,1,0.7155987547738406,1,1,50.132954467115184,56.0,1.0 +c1cscn1,SE,1,1,1,0,0.4600956630432944,1,1,10.529788929865203,, +Cc1ccc(C[NH+](C)C)cc1,SE,1,1,1,1,0.6307958171877412,1,1,57.72533716723705,0.0,0.0 +COc1cnc(S)nc1N1CCOCC1,SE,1,0,0,1,0.5923227724755054,0,1,14.992146994976338,, +O=CNCc1ccnc(Cl)c1,SE,1,0,1,1,0.5429745313266165,1,1,21.531152974840168,, +Cc1cc(C)c(C)[nH]1,SE,1,1,1,1,0.5237077195676505,1,1,25.299896245674983,0.0,0.0 +CC(C)(O)CO,SE,1,1,1,0,0.4658086137119594,0,1,14.091100389257464,, +Cc1ccncn1,SE,1,1,1,0,0.4745494696119243,1,1,26.52572884208437,, +CO[C@H]1CC[C@H](c2nccc(C)n2)CC1,SE,1,1,1,1,0.7452023005713941,0,1,37.14422733399334,, +CCn1cc(-c2ccnc(N)n2)cn1,SE,1,1,0,1,0.7629057863484541,0,1,50.9185181963156,, +NC(=O)c1ccc2[nH]cnc2c1,SE,1,1,0,1,0.6444934248268472,1,1,55.7550656126969,, +CN1CC[NH+](CCO)CC1,SE,1,1,1,0,0.4618018480170506,0,1,32.62216013530207,, +OCCO,SE,1,1,1,0,0.407527890666417,1,1,9.478329016103071,, +O=CNc1ccccc1,SE,1,0,1,1,0.5860752448837414,1,1,21.504630601388737,, +Nc1ccc([P@@](=O)(O)CP(=O)(O)O)cc1,SE,1,0,0,0,0.4525158117387491,0,1,27.78656071158604,, +CP(C)(=O)c1ccc(N)cc1,SE,1,0,1,1,0.5112155314498305,1,1,29.704573281319316,, +CC[NH+]1CCCCC1,SE,1,1,1,1,0.492030519670119,0,1,24.88997070554143,, +O=C([O-])c1ccccc1Cl,SE,1,1,1,1,0.5992375300511746,0,1,46.123640838170616,, +Fc1cc2nc[nH]c2cc1Cl,SE,1,1,1,1,0.6461783575017879,0,1,33.14580496602806,, +Cn1ccc2ccccc21,SE,1,1,1,1,0.5160980556298523,1,1,46.284316308267535,128.0,1.0 +CCOc1cc2[nH]cnc2cc1F,SE,1,1,1,1,0.76801182691959,0,1,42.59765665058275,, +CC(C)(O)c1ccc2cc[nH]c2c1,SE,1,1,1,1,0.6855507799283781,1,1,44.74198192544407,0.0,0.0 +CCN(CCO)c1ccccc1,SE,1,1,0,1,0.7305816997936697,1,1,55.2494733183869,, +C[C@H]1CCCN1c1ccccn1,SE,1,1,1,1,0.6281057531007874,0,1,24.104094516620503,, +CCc1ccccn1,SE,1,1,1,1,0.5313362980164081,1,1,34.8220333962902,106.0,1.0 +Cc1cccnc1C,SE,1,1,1,0,0.4913877769176361,1,1,30.15047168908272,, +Cn1ncc2ccc(Cl)cc21,SE,1,1,1,1,0.5870510344326962,0,1,40.27556849676407,, +c1ncn2c1CCCC2,SE,1,1,1,1,0.5055786759562026,1,1,14.270896167829402,26.0,1.0 +Cc1c(C)n(C)c2ccccc12,SE,0,1,1,1,0.5567241954988362,1,1,40.821240590002205,, +c1ccc2c(NC3CCOCC3)n[nH]c2c1,SE,1,1,1,1,0.8100118850713942,0,1,59.73917858897193,, +Cc1cccc(C)c1OS(C)(=O)=O,SE,1,0,1,1,0.6815440280856291,0,1,44.86520074367071,, +Cc1cccc(C)c1OCCO,SE,1,1,1,1,0.7398053146923947,1,1,48.08800008441309,0.0,0.0 +Cn1ncc2ccccc21,SE,1,1,1,1,0.5317046613722227,1,1,38.96338932389866,572.0,1.0 +Cn1nc(Cl)c2ccccc21,SE,1,1,1,1,0.5870510344326962,1,1,40.26891567471954,0.0,0.0 +Cc1c(Cl)c2ccccc2n1C,SE,1,1,0,1,0.585767226191122,1,1,39.06566281786024,, +O=S1(=O)NCc2ccccc21,SE,1,1,1,1,0.613605188497219,1,0,-19.007303271655243,, +NC1=CCC2=CNN(CCCO)C2=C1,SE,1,1,0,1,0.599089478238009,0,0,-47.38388026945176,, +Cc1cccc(C)c1OCC[NH+]1CCCC1,SE,1,1,0,1,0.8087031389598508,0,1,81.62321493801723,, +CN(C)c1ccccn1,SE,1,1,1,1,0.5550894783938017,1,1,41.31638017021044,584.0,1.0 +Cc1n[nH]c2ccccc12,SE,1,1,1,1,0.5820392325335273,1,1,44.4808676464273,524.0,1.0 +Cc1ncc2ccccn12,SE,1,1,1,1,0.5323234365454219,0,1,34.34276714780546,, +c1ccc(-n2oo2)cc1,SE,1,1,1,1,0.539780709457364,0,1,18.38412524733248,, +CC(=O)N1CCC(n2cccn2)CC1,SE,1,1,1,1,0.6687048348680731,1,1,50.91558205705603,80.0,1.0 +O[C@H]1CC[C@H](n2cccn2)CC1,SE,1,1,1,1,0.683670299943597,0,1,29.47130619637555,, +C[NH+]1CCN(C(=O)c2cccc(O)c2)CC1,SE,1,1,1,1,0.662557674215447,0,1,83.45786429356608,, +CCCNC(=O)c1cccc(OC)c1,SE,1,1,0,1,0.7918926477093976,1,1,102.49009164032408,, +C[NH+]1CCN(C(=O)c2ccccc2O)CC1,SE,1,1,1,1,0.6625576742154472,0,1,82.84739648338386,, +O=CN=c1[nH]c2ccccc2[nH]1,SE,1,0,0,1,0.5894047267443187,0,1,8.337139679942972,, +O=C1CCCN1c1ccccc1,SE,1,1,1,1,0.6147906334184667,1,1,43.59896544023973,278.0,1.0 +CC(C)c1ccc2oc3nc(N)ccc3c(=O)c2c1,SE,1,0,0,1,0.6774937600620131,0,1,38.13787980415808,, +CCC[NH+](C)C,SE,1,1,1,0,0.4657239979400232,1,1,20.711099605693025,, +FC1(F)CCCCC1,SE,1,1,1,0,0.4605757609352148,1,1,9.962449935521107,, +O=S1(=O)CCCCC1,SE,1,1,1,0,0.4855080139334303,0,1,14.708842376502693,, +c1cc(C[NH+]2CCNCC2)ccn1,SE,1,1,1,1,0.6125288659106509,0,1,43.098249897431984,, +C[C@H](c1ccncc1)[NH+]1CCNCC1,SE,1,1,1,1,0.6693818647107087,0,1,35.42710097591603,, +OCCc1ccccc1,SE,1,1,1,1,0.6249752698115418,1,1,39.59944230025609,486.0,1.0 +CC(N)=O,SE,1,1,1,0,0.4010309227553837,1,1,12.359596435676767,, +C[NH+]1CCN(c2cccc(N)c2)CC1,SE,1,0,1,1,0.5938900055308578,0,1,48.92956529401464,, +NC(=O)c1cccc(OC(F)(F)F)c1,SE,1,1,1,1,0.7980446893331963,1,1,63.21595136354778,66.0,1.0 +COc1cccc(N2CCC(O)CC2)c1,SE,1,1,1,1,0.8001529589067113,0,1,65.55914475660494,, +Cn1cc(-c2ccccc2OCC#N)cn1,SE,1,1,1,1,0.7829811456810589,0,1,49.61358765585515,, +N#CCOc1ccccc1/C=C/C=O,SE,1,0,0,1,0.5330887872540434,0,1,38.5620723217385,, +CN(C)C(=O)c1cccc(Cl)c1,SE,1,1,1,1,0.6527460605577102,1,1,66.06136428786738,8.0,1.0 +Cn1cncc1-c1cccc(Cl)c1,SE,1,1,1,1,0.6795850748846098,0,1,41.65878061846208,, +C[NH+]1CCC(O)CC1,SE,1,1,1,0,0.4019434082430752,0,1,16.968525062436292,, +CC[NH+]1CCOCC1,SE,1,1,1,0,0.4599622170571654,0,1,22.88866693310929,, +Cc1ncc(-c2ccccc2)n1C,SE,1,1,1,1,0.6454731984216,1,1,39.87851577282587,0.0,0.0 +C[NH+]1CCC(NC(=O)c2cccc(OC(F)(F)F)c2)CC1,SE,1,1,0,1,0.8744636522140838,0,1,112.46185977149086,, +COc1cccc(-c2cnn(C)c2)c1,SE,1,1,1,1,0.7212025242394922,1,1,59.91141836453418,0.0,0.0 +Cc1cccc(N2CCOCC2)c1,SE,1,1,1,1,0.648595479526029,1,1,57.90441368757418,0.0,0.0 +COc1cccc(S(C)(=O)=O)c1,SE,1,1,1,1,0.694247582211256,1,1,62.58838557135205,128.0,1.0 +COc1cccc(N2CCNCC2)c1,SE,1,1,1,1,0.7592290238851659,1,1,39.4933972185968,0.0,0.0 +NCCC(F)(F)F,SE,1,1,1,1,0.536689056194584,1,0,-1.3806215854860766,, +CNC(=O)c1cccc(OC)c1,SE,1,1,1,1,0.7110451272186061,1,1,71.70754571123923,220.0,1.0 +CCOc1cccc(-c2nncn2C)c1,SE,1,1,1,1,0.7642556667388841,0,1,71.3308276659315,, +C[C@@H](Oc1cccc(C(=O)N(C)C)c1)C(F)(F)F,SE,1,1,1,1,0.836876648560982,0,1,75.51821813598184,, +COc1cccc(N2CCCC2=O)c1,SE,1,1,1,1,0.7132485045973652,0,1,65.85811355998588,, +NC(=O)[C@H]1C[C@H]1F,SE,1,1,1,0,0.491561946862366,0,0,-8.987097503695342,, +Cn1nccc1C(C)(C)O,SE,1,1,1,1,0.6215196171155843,1,1,19.802908043584285,0.0,0.0 +CCNC(=O)c1ccccc1,SE,1,1,1,1,0.6768552666060874,1,1,59.615834542956286,288.0,1.0 +CN(C)C(=O)c1cccnc1,SE,1,1,1,1,0.5924413407271266,1,1,56.01375050543986,156.0,1.0 +CCNC(=O)Cc1ccccc1,SE,1,1,1,1,0.7159421298545311,1,1,73.506916209772,110.0,1.0 +Nc1ccc(F)cn1,SE,1,1,1,1,0.5388077752872951,1,1,27.31010842817548,122.0,1.0 +Cc1cc(N)ncc1F,SE,1,1,1,1,0.565159643738185,1,1,17.05349156914122,104.0,1.0 +Nc1ccccn1,SE,1,1,1,1,0.5126510027980979,1,1,26.87342481057936,106.0,1.0 +C[N@@H+]1CCc2ccccc2C1,SE,1,1,1,1,0.537996162970434,0,1,25.33448971251003,, +O=CNCC[NH+]1CCCC1,SE,1,0,0,0,0.3609520637427411,0,1,15.093885483060925,, +C[NH+](C)CCCO,SE,1,1,1,0,0.4479545982951486,1,1,24.75210411644184,, +O=CNCCO,SE,1,0,1,0,0.3341669676770061,1,0,-6.550776908576248,, +C[NH+]1CCN(c2ccccc2F)CC1,SE,1,1,1,1,0.6705440356614966,0,1,60.24150396986145,, +C[NH+]1CCN(c2ccccc2Cl)CC1,SE,1,1,1,1,0.7180259562704274,0,1,62.00429275561088,, +O=S(=O)(c1ccccc1)N1CCCC1,SE,1,1,1,1,0.742565991051981,0,1,76.976502569957,, +OC1CC[NH2+]CC1,SE,1,1,1,0,0.3918920115676031,0,1,6.520420447775452,, +OCC(O)CO,SE,1,1,0,0,0.3814944322102413,1,1,12.429936151766071,, +COc1ccc2c(C(=O)C(=O)N3CC[C@@H](O)C3)c[nH]c2n1,SE,1,0,0,1,0.627580456826338,0,1,55.11942225401469,, +CS(=O)(=O)c1ccc(Cl)cc1,SE,1,1,1,1,0.6763012329230996,1,1,47.93913273672907,134.0,1.0 +CCCS(C)(=O)=O,SE,1,1,1,1,0.5323134788045665,1,1,23.50667196062477,0.0,0.0 +OCCCCCO,SE,1,0,0,1,0.4979883001019883,1,1,15.713327779228932,, +CNC(=O)[C@@H](N)Cc1ccc2c(c1)COC(C)(C)O2,SE,1,1,0,1,0.8521018122211438,0,1,31.376672948412946,, +CNC(=O)c1ccc(C)cc1,SE,1,1,1,1,0.6413143419975227,1,1,53.24910094227389,2.0,1.0 +Cn1cc(C(=O)C=O)c2ccc(Cl)cc21,SE,1,0,1,0,0.4431774078567798,1,1,33.01619451830073,, +Cc1ccc(C(=O)NCCO)cc1,SE,1,1,1,1,0.7178244028287533,1,1,79.26440605005341,0.0,0.0 +O=CNCC[NH+]1CCOCC1,SE,1,0,0,0,0.3560669161168359,0,1,16.271747537101568,, +COC=O,GA,1,0,1,0,0.3912258247330487,1,0,-4.480899195559704,, +Oc1ccccc1,GA,1,1,1,1,0.514729544768675,1,1,22.78125845241812,460.0,1.0 +NC(=O)C1CC1,GA,1,1,1,0,0.4736725800015747,1,1,17.331805773723165,, +Cc1cccc(Cl)c1N,GA,1,0,1,1,0.551296349469733,1,1,27.2854767470508,, +Cc1cccc(C)c1NC=O,GA,1,0,1,1,0.6388544086116743,1,1,25.29239796355067,, +Cc1cccc(C)c1N,GA,1,0,1,1,0.5209726320693895,1,1,25.17522769291475,, +c1ccncc1,GA,1,1,1,0,0.4531479654842905,1,1,20.589274983144826,, +CCn1cnc2c(C#CC(C)(C)O)nccc21,GA,1,0,1,1,0.7551450730759496,0,1,35.34660052223318,, +O=CCO,GA,1,0,1,0,0.401210923420449,1,0,-4.9914268246214455,, +CNC=O,GA,1,0,1,0,0.3999167569393753,1,0,-3.7061454697016103,, +NC=O,GA,1,0,1,0,0.3523255130205271,1,0,-3.29609306080239,, +Cn1cccn1,GA,1,1,1,0,0.4432156698587248,1,1,18.643863083632382,, +Cc1ccccc1N,GA,1,0,1,1,0.5002819996278854,1,1,27.56035257441508,, +c1ccccc1,GA,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +c1ccc2ncccc2c1,GA,1,1,1,1,0.5311915584041306,1,1,50.88665479563308,510.0,1.0 +COc1ccc(OC)c(C[NH+](C)C)c1,GA,1,1,0,1,0.7505922214028922,0,1,78.92086844406289,, +Clc1ccc2c(c1)OCO2,GA,1,1,1,1,0.5726713017954399,1,1,32.10566368048522,108.0,1.0 +C1CC1,GA,1,1,1,0,0.3814250421649592,1,1,10.958161214651511,, +CCc1ccccc1,GA,1,1,1,1,0.5147578217927745,1,1,36.7452432584706,8.0,1.0 +c1cn[nH]c1,GA,1,1,1,0,0.4683433019217652,1,1,7.008377370358167,, +C1CCCC1,GA,1,1,1,0,0.4083619292230275,1,1,13.188394633412608,, +O=C1CCCC2=C1[C@@H](c1cccc(O)c1)c1c[nH]cc1N2,GA,1,1,0,1,0.7507218060553148,0,1,26.30482475876657,, +O/N=C1/CCc2ccccc21,GA,1,0,1,0,0.4402475714872894,0,1,23.77019034176637,, +Nc1ccc(F)c(C=O)c1F,GA,1,0,1,1,0.4936514108080148,1,1,11.762944611705691,, +O/N=C1\CCc2ccccc21,GA,1,0,1,0,0.4402475714872894,0,1,23.77019034176637,, +Nc1ccc(F)cc1F,GA,1,0,1,1,0.5281563260400823,1,1,33.073256598332115,, +Nc1ccc2c(c1)CC/C2=N\O,GA,1,0,1,0,0.3438516376683626,0,1,15.719960168892072,, +Nc1ccc2c(O)cccc2c1,GA,1,0,1,1,0.5782198076018069,0,1,26.331758906037777,, +Oc1ccccc1Cl,GA,1,1,1,1,0.5671077548351335,1,1,26.722978374162437,306.0,1.0 +c1ccc2[nH]ncc2c1,GA,1,1,1,1,0.5583728365871126,1,1,41.54100241300441,124.0,1.0 +Nc1ccc2c(c1)=CCC=2NO,GA,1,0,1,0,0.3866533733220106,0,0,-20.09713289309092,, +c1ccc2c(c1)Cc1c[nH]nc1-2,GA,1,1,1,1,0.5293697062637044,1,1,6.450797136233181,0.0,0.0 +Nc1ccccc1F,GA,1,0,1,1,0.5030676848790228,1,1,25.00554429952487,, +Nc1ccc(F)c(N)c1F,GA,1,0,1,1,0.5360250945088435,1,1,19.22482967923585,, +NC(=O)c1c(F)ccc(N)c1F,GA,1,0,0,1,0.6102385675358379,1,1,38.53913612429005,, +Fc1cccc(F)c1,GA,1,1,1,0,0.4832965029562796,1,1,27.929408511710964,, +Fc1ccccc1,GA,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +CNS(=O)(=O)c1ccccc1,GA,1,1,1,1,0.7076960310206865,1,1,50.72290137514336,362.0,1.0 +Nc1c(F)cccc1F,GA,1,0,1,1,0.5281563260400823,1,1,22.235899671970248,, +N#Cc1ccccc1N,GA,1,0,1,1,0.5191194400900635,1,1,23.82170292207137,, +Cc1ccccc1,GA,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +Clc1cccc(Cl)c1,GA,1,1,1,1,0.528586338832196,1,1,30.04532860234687,332.0,1.0 +Oc1ccc(F)cc1,GA,1,1,1,1,0.5392148187981868,1,1,24.33664661155088,126.0,1.0 +NC(=O)c1ccccc1,GA,1,1,1,1,0.5859367170668044,1,1,37.153131146312816,390.0,1.0 +NC(=O)c1cccc(F)c1,GA,1,1,1,1,0.6173491474809841,1,1,45.75262162514513,342.0,1.0 +Oc1cccc(Cl)c1,GA,1,1,1,1,0.5671077548351335,1,1,27.676345948658856,338.0,1.0 +COc1cccc(C(N)=O)c1,GA,1,1,1,1,0.6790575842877806,1,1,59.47193566645434,166.0,1.0 +Oc1cccc(F)c1,GA,1,1,1,1,0.5392148187981867,1,1,27.01549482279754,332.0,1.0 +Fc1cccc(Cl)c1,GA,1,1,1,1,0.5062680369802974,1,1,36.18337245697641,0.0,0.0 +Clc1ccccc1,GA,1,1,1,0,0.4833833263681997,1,1,28.62182911813474,, +O=CNCc1ccccc1,GA,1,0,1,1,0.6136620972835578,1,1,18.78526192607925,, +Cn1ncc2ccccc21,GA,1,1,1,1,0.5317046613722227,1,1,38.96338932389866,0.0,0.0 +Cc1ncc[nH]1,GA,1,1,1,0,0.4904468907838006,1,1,15.06078632335974,, +CC#N,GA,1,1,1,0,0.3869805798690774,1,1,8.328894131516787,, +CCC,GA,1,1,1,0,0.3854706587740357,1,1,11.292091326780156,, +FC(F)F,GA,1,1,1,0,0.401096477329913,1,1,8.32880524914489,, +Oc1ccccc1O,GA,0,0,1,0,0.4907276689015206,1,1,19.76960127131141,, +NC(=O)c1sccc1O,GA,0,1,0,1,0.6026813724021729,1,1,22.16412441215693,, +N#CS,GA,1,0,1,0,0.3166439362996324,1,1,1.3175180271637523,, +[H]/N=C1\NC(=O)CS1,GA,1,0,1,0,0.4595902452065177,0,0,-15.582216331446991,, +CC=O,GA,1,0,1,0,0.355007613393232,1,1,1.755472309128927,, +O=C[O-],GA,1,0,1,0,0.3065473221945595,1,1,1.1086118535634293,, +Nc1ncccn1,GA,1,1,1,1,0.495312713243744,1,1,22.21663536592597,110.0,1.0 +COc1cccc(N)c1,GA,1,0,1,1,0.5706913849970715,1,1,38.412226375255344,, +Nc1ccccc1,GA,1,0,1,0,0.4800754634455598,1,1,23.741301320833813,, +C1CCC1,GA,1,1,1,0,0.3948102303487917,1,1,10.958161214651511,, +OC1CCC1,GA,1,1,1,0,0.4422992650392228,0,1,7.548141006386745,, +Nc1cccc(F)c1,GA,1,0,1,1,0.5030676848790228,1,1,29.306986563120603,, +Nc1cc(F)cc(F)c1,GA,1,0,1,1,0.5281563260400823,1,1,19.976920183353943,, +FCF,GA,1,1,1,0,0.3834948242297383,1,1,4.912031059920439,, +COc1ccc(F)cc1,GA,1,1,1,1,0.5574315586180905,1,1,38.4038239716795,580.0,1.0 +Cc1ccc2nc(C=O)ccc2c1,GA,1,0,1,1,0.616303354093081,0,1,48.14505553307853,, +Cc1nc2c(F)cccc2[nH]1,GA,1,1,1,1,0.6109928948975553,1,1,41.116600496183054,0.0,0.0 +NCC(=O)[O-],GA,1,1,0,0,0.3799199140293742,1,1,5.5635295698353335,, +CCO,GA,1,1,1,0,0.4068079656553945,1,1,8.74390939149039,, +Clc1ccn[nH]1,GA,1,1,1,1,0.5215110910118236,1,1,12.209967426939109,0.0,0.0 +CN(C)C=O,GA,1,0,1,0,0.3902682398861675,1,1,3.66386973422713,, +c1cc[nH]c1,GA,1,1,1,0,0.4658690337597367,1,1,6.614368437283064,, +COc1cccc(F)c1,GA,1,1,1,1,0.5574315586180905,1,1,45.75362424301495,544.0,1.0 +Oc1ccc(-c2ccccc2)c(O)c1,GA,1,1,1,1,0.7184688940221797,1,1,32.32062730041112,50.0,1.0 +COc1ccccc1O,GA,1,1,1,1,0.6127725486570804,1,1,32.61513906686136,474.0,1.0 +CC(C)O,GA,1,1,1,0,0.4284047940316283,1,1,8.915182362960154,, +C[C@@H](O)CO,GA,1,1,1,0,0.4358349966110497,1,1,11.037839754457242,, +Nc1cnon1,GA,1,1,0,0,0.467341788077307,0,1,4.049549313424441,, +O=C([O-])c1ccccc1,GA,1,1,1,1,0.5263180674240564,1,1,38.39787175917415,30.0,1.0 +OCc1cn[nH]n1,GA,1,1,0,0,0.4888897643774776,1,1,11.15833157858108,, +N#Cc1cnccn1,GA,1,1,1,0,0.477899454085297,1,1,25.007709974549496,, +O=Cc1cccnc1,GA,1,0,1,1,0.498749165497561,1,1,28.73541537756365,, +O=CNc1ccccc1,GA,1,0,1,1,0.5860752448837414,1,1,21.504630601388737,, +c1nnn[n-]1,GA,1,1,0,0,0.3848452229200756,0,1,13.506474971814798,, +N#Cc1ccccc1,GA,1,1,1,0,0.4884445703746373,1,1,32.15537243473899,, +c1cnccn1,GA,1,1,1,0,0.4525571430979931,1,1,15.880211554733458,, +COC(=O)c1ccco1,GA,1,1,1,1,0.528065214128836,1,1,40.41355109082228,240.0,1.0 +c1ccoc1,GA,1,1,1,0,0.4460314875501461,1,1,5.85239784787098,, +CCc1ccc(O)c(OC)c1,GA,1,1,1,1,0.7015523595771087,1,1,47.00538321673581,6.0,1.0 +Oc1ccc(-c2ccccc2)cc1,GA,1,1,0,1,0.6969384886852025,1,1,46.48390959635941,, +N#Cc1ccccn1,GA,1,1,1,0,0.4910355135676336,1,1,31.41926511333642,, +O=Cc1cn[nH]c1,GA,1,0,1,1,0.5081894609967947,1,1,5.151781877453892,, +[H]/N=C(\N)N/N=C(\C)c1ccc(N)cc1,GA,0,0,0,0,0.2365017292487134,0,1,49.146513457116,, +[H]/N=C(\NO)N/N=C(\C)c1ccc(N)cc1,GA,0,0,0,0,0.2104851643674325,0,1,40.909571130292015,, +[H]/N=C(\N)N/N=C(\C)c1ccc2[nH]ccc2c1,GA,1,0,0,0,0.346058529181773,0,1,58.169279719800464,, +[H]/N=C(\N)N/N=C1\CCCc2cc(N)ccc21,GA,1,0,0,0,0.2420099772964573,0,1,41.0394493703401,, +COc1cccc(Cl)c1,GA,1,1,1,1,0.5850627747795066,1,1,47.536824281684325,0.0,0.0 +Brc1ccccc1,GA,1,1,1,1,0.5420450088370231,1,1,31.57617417851588,426.0,1.0 +c1ccc2ccccc2c1,GA,1,1,1,1,0.5114311994891171,1,1,27.06630754652044,308.0,1.0 +O=C([O-])Cc1cc[nH]c1,GA,1,1,1,1,0.5667853687000969,0,1,38.28087458242734,, +[O+]#[N+2]([O-])c1ccccc1,GA,1,0,1,0,0.3844532461226332,0,1,21.583719403041425,, +O=C([O-])CO,GA,1,1,0,0,0.3819786157444406,1,1,13.229393249189524,, +O=C([O-])c1ccsc1,GA,1,1,1,1,0.5368863842760603,0,1,35.7691596264247,, +CC(N)=O,GA,1,1,1,0,0.4010309227553837,1,1,12.359596435676767,, +CCC(=O)[O-],GA,1,1,1,0,0.4051790062235931,1,1,17.38867392685245,, +CC(=O)[O-],GA,1,1,1,0,0.3497740223042638,1,1,14.281478514271996,, +CCCN,GA,1,1,1,0,0.4632709184547627,1,0,-1.5901402203952597,, +COc1cc(C)ccc1O,GA,1,1,1,1,0.6397107129957217,1,1,38.82700210531711,2.0,1.0 +Oc1ccccc1F,GA,1,1,1,1,0.5392148187981868,1,1,22.51977208889172,388.0,1.0 +Cc1ccc(O)c([N+2](#[O+])[O-])c1,GA,1,0,0,0,0.4575272063368807,0,1,23.227167717852826,, +Nc1cccc(C(=O)[O-])c1,GA,1,0,0,1,0.5355504482337935,0,1,39.61703782919124,, +O=C([O-])c1ccccc1O,GA,1,1,0,1,0.5804537671854755,1,1,40.94471171400863,, +CCC=O,GA,1,0,1,0,0.4032599029179279,1,0,-0.4972685427757803,, +C=C(C)c1cc(C)ccc1C,GA,1,1,0,1,0.5697149790779819,0,1,30.302260702480705,, +O=C1CSC(=O)N1,GA,1,0,1,0,0.4842784059412482,1,0,-14.359637922110805,, +c1nnc[nH]1,GA,1,1,1,0,0.4582074400555656,1,1,9.810781458041264,, +CCCO,GA,1,1,1,0,0.4637839830239684,1,1,11.187956068555891,, +O=C([O-])c1ccccc1[O-],GA,1,1,0,1,0.5034135549157018,0,1,34.86577575297251,, +Cn1ccc2ccccc21,GA,1,1,1,1,0.5160980556298523,1,1,46.284316308267535,120.0,1.0 +c1cn2ncsc2n1,GA,1,1,1,1,0.5207561616173652,0,1,21.549105458625576,, +S=c1[nH]nco1,GA,1,0,1,0,0.4908666136548826,0,1,7.971002583896691,, +Nc1nnco1,GA,1,1,0,0,0.467341788077307,1,1,10.011209494970371,, +[CH2]CC,GA,1,1,1,0,0.382784145958381,1,1,6.886569106570181,, +O=C1Cc2cc(Cl)ccc2N1,GA,1,1,1,1,0.6278148486894898,1,1,15.845503907079443,0.0,0.0 +CCCCCCC,GA,1,0,0,0,0.4763098736533006,1,1,20.747837575577652,, +c1ccsc1,GA,1,1,1,0,0.4489266460144336,1,1,9.194709627715325,, +COc1ccc(Cl)cc1C(=O)[O-],GA,1,1,1,1,0.6820953017620013,0,1,60.73832096830052,, +Oc1cccc(O)c1,GA,1,1,1,1,0.5245841402909771,1,1,21.56294689145798,52.0,1.0 +Cc1ccc(O)cc1,GA,1,1,1,1,0.5359354364287862,1,1,25.918361055933115,0.0,0.0 +Cc1ccc(O)c(O)c1,GA,0,0,1,1,0.5131220403965512,1,1,30.173643778607417,, +Cc1ccc(O)cc1O,GA,1,1,1,1,0.5485235528461613,1,1,28.40860250345196,2.0,1.0 +O=c1[nH]cnc2[nH]ncc12,GA,1,1,0,1,0.5192368565638922,1,1,29.276230098257727,, +OC(F)(F)F,GA,1,1,1,0,0.4546943751491228,1,1,8.85801368762451,, +COC(=O)c1ccc(Cl)cc1,GA,1,1,1,1,0.6039269770983688,1,1,53.56791571334327,398.0,1.0 +c1cnn2nccc2c1,GA,1,1,1,1,0.511375604737478,1,1,24.019652769482526,122.0,1.0 +c1cncnc1,GA,1,1,1,0,0.4525571430979931,1,1,20.650117467972965,, +c1cc2cc[nH]c2cn1,GA,1,1,1,1,0.5583728365871126,1,1,35.28136757730196,166.0,1.0 +Nc1ccnc(N)n1,GA,1,1,0,0,0.4777611922776153,1,1,26.34741885629736,, +Nc1ccn[nH]1,GA,1,1,1,0,0.4632257080621317,1,1,13.19404479047151,, +O=C([O-])c1ccn[nH]1,GA,1,1,0,1,0.4931194457735326,0,1,25.738830178235723,, +Nc1ccccn1,GA,1,1,1,1,0.5126510027980979,1,1,26.87342481057936,356.0,1.0 +Nc1cccc(N)n1,GA,1,1,0,1,0.5014053270919594,0,1,19.302512062001394,, +O=C1CSC(=S)N1,GA,0,0,1,0,0.4763146425263959,0,0,-8.578316694001707,, +CC1=NC(N)=NC1=O,GA,1,1,0,0,0.4488584524133916,0,0,-0.3427254224569553,, +C#Cc1ccccc1,GA,1,0,1,0,0.4369444199523928,1,1,30.0153311445761,, +COc1ccccc1Cl,GA,1,1,1,1,0.5850627747795066,1,1,43.98448272681154,2.0,1.0 +Fc1ccccc1Cl,GA,1,1,1,1,0.5062680369802974,1,1,34.157406279393,466.0,1.0 +OCCc1ccccc1,GA,1,1,1,1,0.6249752698115418,1,1,38.45239694464869,0.0,0.0 +COC1CCNCC1,GA,1,1,1,1,0.5333138416146163,1,0,-7.490821405714771,, +CO[C@@H]1CCNC[C@@H]1F,GA,1,1,1,1,0.5563597739867914,1,0,-34.726046269142515,, +Clc1cccc2cn[nH]c12,GA,1,1,1,1,0.6162749315196012,1,1,40.122829681437615,0.0,0.0 +Nc1n[nH]c2ccccc12,GA,1,1,1,1,0.5658999712435825,1,1,31.70116676640892,0.0,0.0 +CCc1ccc(Cl)cc1,GA,1,1,1,1,0.5628991883514108,1,1,41.53696774027129,6.0,1.0 +COc1ccc(-c2ccco2)cc1,GA,1,1,1,1,0.6979356383264002,0,1,65.21584858250466,, +CC(C)C,GA,1,1,1,0,0.3971180036971562,1,1,11.35036548783313,, +Oc1ccc(Cl)c(F)c1,GA,1,1,1,1,0.5949913517547801,0,1,21.994648023357517,, +COc1c(N)cccc1Cl,GA,1,0,1,1,0.6326745852146796,0,1,34.84994925942115,, +Fc1ccc(-c2c[nH]cn2)cc1,GA,1,1,1,1,0.6838143886732528,1,1,43.75714069493954,38.0,1.0 +COc1ccc(Cl)cc1Cl,GA,1,1,0,1,0.640044957461518,1,1,52.20605144786041,, +Cc1cccc(Cl)c1NC=O,GA,1,0,1,1,0.6762451739574287,1,1,30.861499879907782,, +Nc1ccccc1Cl,GA,1,0,1,1,0.5297860823199099,1,1,27.17140044661538,, +Cc1ccc2[nH]ncc2c1,GA,1,1,1,1,0.5820392325335272,1,1,48.96326855754554,288.0,1.0 +COc1ccccc1,GA,1,1,1,1,0.5316253154127668,1,1,34.591252979338954,0.0,0.0 +Cc1ccccc1C,GA,1,1,1,0,0.475757685340321,1,1,26.214528683310625,, +Oc1ccc(Cl)cc1,GA,1,1,1,1,0.5671077548351335,1,1,25.75352107550546,230.0,1.0 +Cc1ccc(CO)cc1,GA,1,1,1,1,0.597917345661115,1,1,34.161067649326874,382.0,1.0 +Oc1ncccc1Cl,GA,1,1,1,1,0.5751643100951854,1,1,19.025023345096024,244.0,1.0 +O=C[C@@H]1CCNC1,GA,1,0,1,0,0.4609369938871012,1,0,-28.67977669423388,, +O=Cc1ccc[nH]1,GA,1,0,1,1,0.5146079614659195,1,1,17.32018965896979,, +NC(=O)c1ccc[nH]1,GA,1,1,1,1,0.5293692197242565,1,1,29.61561098652902,46.0,1.0 +Fc1ccccc1F,GA,1,1,1,0,0.4832965029562796,1,1,25.091083589997456,, +NC(=O)[C@@H]1CCNC1,GA,1,1,1,0,0.4629925842243414,1,0,-12.039912148853762,, +Cn1ccccc1=O,GA,1,1,1,0,0.4719138439954858,1,1,30.41344293946266,, +O=C1NCc2ccccc21,GA,1,1,1,1,0.5600740658469527,1,0,-16.136970753589242,, +O=CN1CCCCC1,GA,1,0,1,0,0.4565737849817705,1,1,2.414165423538161,, +Nc1ccccc1C(=O)N1CCCCC1,GA,1,0,1,1,0.7100043442412216,1,1,61.42380671686754,, +COc1cccc(OC)c1,GA,1,1,1,1,0.6189113153967103,1,1,40.67824546338798,546.0,1.0 +COc1cc(OC)c(Cl)c(N)c1Cl,GA,1,0,1,1,0.7817926310068213,0,1,17.701521654764964,, +CCCOC,GA,1,1,1,0,0.4752681489358652,1,1,18.257981266570457,, +COc1ccccc1OC,GA,1,1,1,1,0.6189113153967104,1,1,33.90936801172575,460.0,1.0 +CNC(=O)c1cccc2ccccc12,GA,1,1,1,1,0.7246156285144338,1,1,68.68180406955626,2.0,1.0 +Cc1nc2ccccc2[nH]1,GA,1,1,1,1,0.5820392325335272,1,1,44.88413169761304,168.0,1.0 +COc1cc(N)cc(OC)c1,GA,1,0,1,1,0.650857113073011,1,1,25.614648148668785,, +O=CNc1ccccc1Cl,GA,1,0,1,1,0.6498862419597599,1,1,28.886908808070054,, +COc1cc(OC)c(Cl)cc1Cl,GA,1,1,0,1,0.7414561071184836,0,1,32.5476875283388,, +Cc1ccc2occ(C)c2c1,GA,1,1,0,1,0.5563746217654227,1,1,43.35390521626733,, +CCOc1ccccc1,GA,1,1,1,1,0.5832071586937729,1,1,46.036312668873705,346.0,1.0 +COc1cc(OC)c(F)cc1F,GA,1,1,1,1,0.6820644441011768,0,1,28.93164656547601,, +CCc1cc(OC)cc(OC)c1,GA,1,1,1,1,0.6853726071590648,1,1,40.78552283622175,24.0,1.0 +O/N=C1/CNc2ccccc21,GA,1,0,1,0,0.4298247868093032,0,0,-13.371920756352544,, +C1COCCN1,GA,1,1,1,0,0.4340574553786442,1,0,-6.969065840520294,, +COc1cncc(F)c1,GA,1,1,1,1,0.5656241062791385,0,1,29.523490114662945,, +c1nnco1,GA,1,1,1,0,0.4332304478977853,1,1,10.178676446190448,, +Cc1nnco1,GA,1,1,1,0,0.4557395479673612,1,1,13.1958415557754,, +Clc1ccccn1,GA,1,0,1,0,0.4672558901814077,1,1,31.369929289939112,, +COc1ccccc1NC=O,GA,1,0,1,1,0.6603167590818223,1,1,33.05103544111313,, +Cc1ccc(O)cc1N,GA,1,0,1,1,0.5103360477769769,1,1,19.30655271860532,, +NC(=O)Nc1ccccc1,GA,1,1,1,1,0.5979442528752776,1,1,47.72571782063407,122.0,1.0 +c1cnc2[nH]ccc2c1,GA,1,1,1,1,0.5583728365871126,1,1,43.27487395955146,370.0,1.0 +Fc1ccccn1,GA,1,0,1,0,0.443381981599025,1,1,24.857630129563503,, +Cc1c[nH]nc1[C@H]1CCCNC1,GA,1,1,1,1,0.6558350131778234,0,0,-4.858967052405792,, +CS(=O)(=O)c1ccccc1,GA,1,1,1,1,0.6095920823457686,1,1,42.27054499320996,414.0,1.0 +CNC(=O)c1cnc2n1[C@H]1C[C@H](C1)c1ccc(C#CC(C)C)cc1-2,GA,1,0,0,1,0.8194816765611187,0,1,2.2258562426360635,, +CC1(C)OC(=O)c2ccccc21,GA,1,1,1,1,0.5458477559909253,0,1,1.220903147276597,, +Sc1ccccc1Cl,GA,1,0,1,1,0.5321150771055564,1,0,-3.4063032459987936,, +Fc1cccc2cccnc12,GA,1,1,1,1,0.5570772518908732,0,1,47.21874290663538,, +c1ccc2scnc2c1,GA,1,1,1,1,0.5397735725540235,1,1,40.1634330620127,146.0,1.0 +C1CCOCC1,GA,1,1,1,0,0.4299400218016567,1,1,10.240293193110956,, +Oc1cccnc1,GA,1,1,1,1,0.5163288713332986,1,1,23.733310810490952,334.0,1.0 +O=C1Cc2ccccc2N1,GA,1,1,1,1,0.5653488967385903,1,1,1.0253554500825568,468.0,1.0 +NC(=O)C1CCCCC1,GA,1,1,1,1,0.5618057864174241,0,1,28.38578532547922,, +CCCC(N)=O,GA,1,1,1,1,0.515849416261373,1,1,19.063948883735367,0.0,0.0 +Fc1cnc2ccnn2c1,GA,1,1,1,1,0.5388712008026977,0,1,29.172871280382164,, +Cc1ncccn1,GA,1,1,1,0,0.4745494696119243,1,1,24.135324581810867,, +Cc1ccccn1,GA,1,1,1,0,0.4719983679006756,1,1,31.845673298482048,, +CC(C)F,GA,1,1,1,0,0.3972114436987781,1,1,8.648469094055764,, +OCC(F)(F)F,GA,1,1,1,0,0.4706748907200954,1,1,10.466519879848034,, +Cc1cc(N)c2ccccc2c1O,GA,1,0,1,0,0.4744622863742189,1,1,26.33334042295883,, +Cc1ccc2c(N)cccc2c1,GA,1,0,1,1,0.5844777191331019,1,1,24.64998249382812,, +Cc1ccc2c(N)cccc2c1O,GA,1,0,1,1,0.6008686368058994,0,1,21.990130288333503,, +COC(=O)Nc1cccc2c(O)c(C)ccc12,GA,1,1,0,1,0.7926266412239164,0,1,51.95086301608946,, +O=c1ccnc[nH]1,GA,1,1,1,0,0.4845465820485107,1,1,20.347395352615635,, +Nc1ccc(Cl)c(NC=O)c1F,GA,1,0,1,1,0.547605645384412,0,1,7.046302789304344,, +Nc1ccc(O)c2ccccc12,GA,1,0,1,0,0.4565781522563248,1,1,27.311383758156488,, +CNc1ncccn1,GA,1,1,1,1,0.5708700999474506,1,1,27.03854504190275,64.0,1.0 +Fc1cncnc1,GA,1,1,1,0,0.4748954058546106,1,1,20.283062383029247,, +CCc1cccc(O)c1,GA,1,1,1,1,0.6032549150365025,1,1,39.46904111889548,190.0,1.0 +CCc1ccc(F)c(O)c1,GA,1,1,1,1,0.6328600247067463,1,1,18.601764363158328,106.0,1.0 +Clc1ccccc1Cl,GA,1,1,1,1,0.5285863388321962,0,1,26.91467870806813,, +Nc1ccc(F)cc1,GA,1,0,1,1,0.5030676848790228,1,1,25.644628327631864,, +O=Cc1cccc2ccccc12,GA,1,0,1,1,0.5799126988766784,1,1,41.35257238408455,, +O=Cc1ccccc1F,GA,1,0,1,1,0.5198989180006277,1,1,27.17093216684275,, +Cc1cc(N)c2ccccc2c1,GA,1,0,1,1,0.5844777191331019,1,1,32.03666591515185,, +Brc1ccco1,GA,1,1,1,1,0.54669005287924,0,1,22.1243190778758,, +Nc1c(F)cc(F)cc1F,GA,1,0,1,1,0.5549140147178467,1,1,18.271390434882463,, +Cc1ccc(N)cc1,GA,0,0,1,1,0.5002819996278854,1,1,27.2263427720141,, +Nc1c(F)cccc1Cl,GA,1,0,1,1,0.5559846199578253,0,1,23.464002556580432,, +c1nncs1,GA,1,1,1,0,0.4601577088442024,1,1,12.251795792600792,, +CNc1ccc2c(C)n[nH]c2c1,GA,1,1,1,1,0.6703769245195385,1,1,48.484296289965165,0.0,0.0 +Cc1c[nH]nc1C,GA,1,1,1,1,0.5130127570533982,1,1,18.25687269294515,18.0,1.0 +Cc1cccc(O)c1,GA,1,1,1,1,0.5359354364287862,1,1,27.990213874302853,330.0,1.0 +Cc1cccc(C)c1OC=O,GA,1,0,1,1,0.6010976220653381,1,1,10.07129295781659,, +Cc1ccc(C=O)cc1N,GA,1,0,1,0,0.4667556230977649,1,1,21.155397154663014,, +Cc1cccc(C)c1,GA,1,1,1,0,0.475757685340321,1,1,29.599638302226232,, +FC(F)c1cc[nH]n1,GA,1,1,1,1,0.5919024131289938,1,1,14.197188915050896,14.0,1.0 +CNc1cccc(Cl)c1,GA,1,1,1,1,0.6334389825044998,1,1,35.16911312077091,78.0,1.0 +COc1c(Cl)cccc1Cl,GA,1,1,0,1,0.640044957461518,1,1,39.27347955875417,, +COc1ccc2ccccc2c1,GA,1,1,1,1,0.6196937967945625,1,1,66.2343886319233,0.0,0.0 +Clc1cccnc1,GA,1,1,1,1,0.4994929876185537,1,1,31.118626769046976,424.0,1.0 +c1c[nH]cn1,GA,1,1,1,0,0.4683433019217652,1,1,6.83242472056568,, +c1ccc(-c2ccoc2)nc1,GA,1,1,1,1,0.6151380131927783,0,1,44.7051316502538,, +CCc1cccs1,GA,1,1,1,1,0.5226646838543858,1,1,36.23822562052958,4.0,1.0 +COc1cc(N)cc(O)c1,GA,1,0,1,1,0.5701005634272066,1,1,12.184275314634712,, +Oc1c(Cl)cccc1Cl,GA,1,1,1,1,0.6227397221533864,1,1,25.785594581643515,334.0,1.0 +C(#Cc1ccccn1)c1ccccc1,GA,1,0,1,1,0.5660408154209353,1,1,63.04085364976456,, +OCc1ccccc1,GA,1,1,1,1,0.5723436119287516,1,1,30.89379261466763,0.0,0.0 +O=CNc1cccc(F)c1,GA,1,0,1,1,0.616177591718774,1,1,24.995501364867472,, +CCOc1ncccn1,GA,1,1,1,1,0.5865089072257983,0,1,32.02454692170429,, +CNc1nnco1,GA,1,1,0,1,0.5425590002937869,1,1,6.407044889256488,, +Cn1c(N)ncc(-c2cccc(F)c2)c1=O,GA,1,1,0,1,0.7826679697614448,0,1,27.087311814578456,, +CCF,GA,1,1,1,0,0.3823971549961085,1,1,4.660502611754677,, +c1cscn1,GA,1,1,1,0,0.4600956630432944,1,1,10.529788929865203,, +Fc1ccc(F)cc1,GA,1,1,1,0,0.4832965029562796,1,1,21.214079673192465,, +C=CC,GA,1,0,1,0,0.3570688167166915,1,0,-0.2076911440586193,, +Cc1ccc(O)c(C)c1,GA,1,1,1,1,0.5577043959706656,1,1,29.6335853462866,0.0,0.0 +CC(C)(O)C#Cc1ccc2[nH]ccc2c1,GA,1,0,1,1,0.6273393651695793,0,1,56.68052083470087,, +CNc1ncncc1F,GA,1,1,1,1,0.6016934883671569,1,1,26.771558176994446,38.0,1.0 +Nc1nc2ccc(C#CC3(O)CCCCC3)cc2[nH]1,GA,1,0,0,1,0.6316013472945008,0,1,29.179395844600613,, +O=Cc1cc(CO)ccc1Cl,GA,1,0,1,1,0.6856697572211141,1,1,26.92662526083736,, +O=Cc1ccc(Cl)cc1,GA,1,0,1,1,0.5466495888095017,1,1,28.69582478563496,, +Cc1nc2ccc(C#CC3(O)CCCCC3)cc2[nH]1,GA,1,0,1,1,0.710113691289456,0,1,47.31470263481001,, +CC(C)(O)C#Cc1ccc2nc[nH]c2c1,GA,1,0,1,1,0.6355949030681595,0,1,53.08720609025582,, +OC1(C#Cc2ccc3cc[nH]c3c2)CCCCC1,GA,1,0,0,1,0.6803230079711764,0,1,51.28604446131228,, +c1ccc2c(c1)CCN2,GA,1,1,1,1,0.5472625753439292,1,1,6.425894224555794,336.0,1.0 +CC(=O)n1ccc2c(F)cccc21,GA,1,1,1,1,0.6053639767429947,0,1,32.29885384560562,, +Oc1ccnc2ccnn12,GA,1,1,1,1,0.569648036011115,1,1,24.592324391415357,22.0,1.0 +Cc1occc1C(=O)[O-],GA,1,1,1,1,0.5284113912424675,1,1,34.35253692708565,0.0,0.0 +Nc1cc[nH]n1,GA,1,1,1,0,0.4632257080621317,1,1,15.506510937849146,, +O=c1[nH]c2ccccc2[nH]1,GA,1,1,1,1,0.5510989531027273,1,1,30.01674248837113,392.0,1.0 +CC(C)=O,GA,1,1,1,0,0.3982369618339747,1,1,13.561592886364918,, +Cn1cc(N)cn1,GA,1,1,1,1,0.4949528351550349,1,1,21.047785335510568,8.0,1.0 +CC1=[S+]C(N)=NC1=O,GA,0,0,1,0,0.3407540289092552,0,1,4.454170415777021,, +Nc1ccncc1,GA,1,1,1,1,0.5126510027980979,1,1,21.92789768762486,194.0,1.0 +Fc1cccc(Br)c1,GA,1,1,1,1,0.5678956661095027,1,1,42.69075707307251,474.0,1.0 +[O-]c1ccccc1,GA,1,1,1,0,0.4640448810084333,1,1,24.20325559947135,, +Cc1cc(N)n[nH]1,GA,1,1,1,0,0.4888544533381425,1,1,17.627254462274625,, +Fc1ccc2n[nH]cc2c1,GA,1,1,1,1,0.5862735110488296,1,1,45.83599253085452,40.0,1.0 +Nc1cccc(Cl)n1,GA,1,0,1,1,0.5355118131221811,1,1,24.55604850058477,, +CNC(=O)c1ccccc1,GA,1,1,1,1,0.6122319116423771,1,1,47.82334391425171,382.0,1.0 +Cc1cscn1,GA,1,1,1,0,0.4794302598052163,1,1,17.65303829989725,, +O=CNc1ccccn1,GA,1,0,1,1,0.58496959071241,1,1,22.587925180664197,, +Nc1cccc2[nH]ncc12,GA,1,0,1,1,0.529376991011898,1,1,28.4952038269722,, +CNc1cccc2[nH]ncc12,GA,1,1,1,1,0.6428816075165892,1,1,38.69150601774865,54.0,1.0 +NCC1=CC1,GA,1,0,1,0,0.4394449229157613,0,0,-17.93252455907989,, +Cc1cccnc1C,GA,1,1,1,0,0.4913877769176361,1,1,30.15047168908272,, +Cc1cccc(C)n1,GA,1,1,1,0,0.4913877769176361,1,1,27.20279855670684,, +CCN(C)C=O,GA,1,0,1,0,0.4371174846424657,1,0,-3.9655015712102446,, +Cc1ncccc1F,GA,1,1,1,1,0.4943752493594844,1,1,30.435733200609288,0.0,0.0 +COCc1ccccc1,GA,1,1,1,1,0.581144288935902,1,1,46.04311462250007,0.0,0.0 +Clc1cnc2c(c1)OCO2,GA,1,1,1,1,0.5715622570028013,1,0,-3.973294269840472,, +COc1ccccn1,GA,1,1,1,1,0.5381831574540579,1,1,37.9940604388073,0.0,0.0 +COc1cccnc1,GA,1,1,1,1,0.5381831574540579,1,1,35.04110764389557,0.0,0.0 +Fc1ccc(Cl)cc1-c1ccccn1,GA,1,1,0,1,0.6971543881894964,0,1,41.28476178505098,, +C1CCNC1,GA,1,1,1,0,0.4347944578283113,1,0,-6.026803828991243,, +S[C@@H]1CCCCc2ccccc21,GA,1,0,0,0,0.456726540178229,0,1,1.17225440540184,, +Oc1cccc(Br)c1,GA,1,1,1,1,0.6366834808262342,1,1,33.374118829033364,424.0,1.0 +CC[C@](C)(O)C#Cc1cc2[nH]ncc2cn1,GA,1,0,0,1,0.7080067842856121,0,1,33.153934730010725,, +O=C(NC1CC1)c1ccccc1,GA,1,1,1,1,0.7005994440950623,1,1,67.13150266657973,426.0,1.0 +c1cocn1,GA,1,1,1,0,0.4472609802175263,1,1,13.048396986956336,, +Cc1ccccc1C(N)=O,GA,1,1,1,1,0.6150947811524279,1,1,42.72518185926287,298.0,1.0 +Cc1nc2ccccc2o1,GA,1,1,1,1,0.5498595132111735,1,1,49.43535374497484,366.0,1.0 +Cc1cccc(C)c1O,GA,1,1,1,1,0.5577043959706656,1,1,27.649815572765803,408.0,1.0 +O=CNc1nncs1,GA,1,0,1,1,0.5762691960533961,1,1,8.212704627010236,, +Oc1c(F)cccc1F,GA,1,1,1,1,0.5659190507619332,1,1,21.457468481202547,412.0,1.0 +O=c1[nH][nH]c2ccccc12,GA,1,1,1,1,0.5510989531027273,1,1,11.444039266439836,84.0,1.0 +C[CH]C,GA,1,1,1,0,0.382784145958381,1,1,4.020319077850019,, +COc1cc(OC)c2c(C)ccnc2c1,GA,1,1,1,1,0.7512582044104997,0,1,36.01490390211866,, +CSc1ccccc1,GA,1,1,1,1,0.5179452823981447,1,1,32.93718127829759,414.0,1.0 +FC(F)(F)c1ccccc1,GA,1,1,1,1,0.5274607455911078,1,1,36.437699073802,16.0,1.0 +CCc1c[nH]c2ccccc12,GA,1,1,1,1,0.634678344220595,1,1,48.98497182806486,6.0,1.0 +OCc1cccc2ccccc12,GA,1,1,1,1,0.6749317433965362,1,1,47.54791523692327,86.0,1.0 +Fc1ccc(-c2cocn2)cc1,GA,1,1,1,1,0.6450048234271843,1,1,31.2978122365249,20.0,1.0 +Nc1ccc(F)cc1Cl,GA,1,0,1,1,0.5559846199578252,1,1,33.17934163723856,, +O=CNCc1ccccc1S,GA,1,0,1,1,0.5141532391163909,1,0,-23.497808478451454,, +Cc1ccccc1-c1ccccc1,GA,1,1,0,1,0.6092016568043108,1,1,42.1521321780498,, +CNC(=O)c1ccc(C)c(NC=O)c1,GA,1,0,1,1,0.6995699530331375,1,1,50.51509552890457,, +Fc1ccccc1-c1cocn1,GA,1,1,1,1,0.6450048234271843,0,1,30.0205095925902,, +Cc1ccc(C=O)cc1,GA,1,0,1,1,0.5163635148900696,1,1,28.847040140848232,, +Fc1ccc(S)c(F)c1,GA,1,0,1,1,0.5330565538283605,1,1,1.2856539933704298,, +Oc1ccc(F)cc1F,GA,1,1,1,1,0.5659190507619332,1,1,30.28266286307712,114.0,1.0 +Cc1cc(-c2ccccc2)no1,GA,1,1,1,1,0.6388887584190305,1,1,45.66433210946636,152.0,1.0 +O=CN1CCCc2ccccc21,GA,1,0,1,1,0.5727023818857807,1,1,13.195954000359407,, +Clc1ccc(-c2ccn[nH]2)cc1,GA,1,1,1,1,0.7149153949295375,1,1,44.561348853375854,24.0,1.0 +OCc1ccc(F)cc1F,GA,1,1,1,1,0.6321313333906111,1,1,37.17880625991813,90.0,1.0 +Cc1ccc(F)cc1,GA,1,1,1,0,0.4796017536231644,1,1,30.913166613506117,, +Nc1cc(C=O)ccc1Cl,GA,1,0,1,1,0.495968771583846,1,1,21.242415672781146,, +CCc1ccc(F)cc1F,GA,1,1,1,1,0.5648072889555772,1,1,45.824085929389256,38.0,1.0 +CNC(=O)c1ccc(C)c(N)c1,GA,1,0,1,1,0.6066948832269002,1,1,52.73387436953062,, +Cc1ccccc1C=O,GA,1,0,1,1,0.5163635148900696,1,1,27.60826218813529,, +O=CNCc1ccccc1-c1ccncn1,GA,1,0,0,1,0.7806777385149963,0,1,20.07776515129381,, +Cc1ccc(C(N)=O)cc1NC=O,GA,1,0,0,1,0.6672290359632669,1,1,44.313335120706,, +Nc1ccc(F)c(NC=O)c1,GA,1,0,1,1,0.4923673454649918,1,1,22.461560809884585,, +Nc1ccccc1N,GA,1,0,1,0,0.4839273658917496,1,1,18.44503701123052,, +Cc1ccc(NC=O)cc1,GA,1,0,1,1,0.6124600947355429,1,1,27.757575866776023,, +Cc1ccc(C=O)cc1NC=O,GA,1,0,1,1,0.6839351184713693,1,1,15.013543204256326,, +Nc1cc(NC=O)c(F)cc1F,GA,1,0,1,1,0.5183171442070957,1,1,11.191725498387129,, +NCc1c(F)cccc1Cl,GA,1,1,1,1,0.6660680150483621,1,1,29.734904500854377,156.0,1.0 +Cc1ccc([SH](=O)=O)cc1NC=O,GA,1,0,0,1,0.5511659184649645,0,0,-28.320361710467527,, +O=CNc1ccc(O)cc1,GA,1,0,1,0,0.4708236249301414,1,1,18.961266458112878,, +c1ccccc1,B1,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +Cc1ccccc1,B1,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +CCC[SH](=O)=O,B1,1,0,1,1,0.5054126756997472,1,0,-17.80627902116529,, +O=[SH](=O)c1ccccc1,B1,1,0,1,1,0.5842392957793138,1,0,-13.83848688945763,, +O=[SH](=O)c1cc(F)ccc1F,B1,1,0,1,1,0.6490570574431516,1,0,-6.371500210535649,, +CC[SH](=O)=O,B1,1,0,1,0,0.4492217895179582,1,0,-11.904337868818336,, +CCN(C)S(N)(=O)=O,B1,1,1,0,1,0.5394532260949478,1,1,22.38108428985079,, +O=[SH](=O)c1c(F)cccc1F,B1,1,0,1,1,0.6490570574431516,1,0,-7.221908486306354,, +CN(C)S(N)(=O)=O,B1,1,1,0,0,0.474506190717939,1,1,16.1776082410248,, +CCCS(N)([O-])[O-],B1,1,1,0,1,0.5749110379849808,0,1,17.48159369132894,, +FC(F)(F)c1ccncc1,B1,1,1,1,1,0.547151622665481,1,1,35.72985688750359,12.0,1.0 +Fc1cccc(F)c1,B1,1,1,1,0,0.4832965029562796,1,1,27.929408511710964,, +COc1ccc(F)cc1,B1,1,1,1,1,0.5574315586180905,1,1,38.4038239716795,8.0,1.0 +OCCOc1cc(F)cc(F)c1,B1,1,1,1,1,0.7486971299843538,1,1,40.00150021903208,0.0,0.0 +Cc1ccc(Cl)cc1,B1,1,1,1,1,0.5015016660067645,1,1,32.3300410774607,0.0,0.0 +Fc1ccccc1,B1,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +O=CCc1ccccc1,B1,1,0,1,1,0.5393954805413781,1,1,14.380297666109476,, +FC(F)(F)c1ccccc1,B1,1,1,1,1,0.5274607455911079,1,1,36.437699073802,18.0,1.0 +c1ccc2sccc2c1,B1,1,1,1,1,0.5193756104894537,1,1,41.037837130138456,14.0,1.0 +Oc1ccc(F)cc1,B1,1,1,1,1,0.5392148187981868,1,1,24.33664661155088,12.0,1.0 +FC(F)F,B1,1,1,1,0,0.401096477329913,1,1,8.32880524914489,, +FC(F)(F)Oc1ccccc1,B1,1,1,1,1,0.6161869793338142,1,1,45.07593339309071,8.0,1.0 +OC(F)(F)F,B1,1,1,1,0,0.4546943751491228,1,1,8.85801368762451,, +CC(C)(C)O,B1,1,1,1,0,0.4498276567484776,1,1,10.415368087318823,, +Cc1cnco1,B1,1,1,1,0,0.4669999672734714,1,1,14.88083784993372,, +CCO,B1,1,1,1,0,0.4068079656553945,1,1,9.89095474709779,, +C[C@H]1CCCCO1,B1,1,1,1,0,0.4487367842355482,0,1,3.0026851917302206,, +O=[SH](=O)c1ccccc1Cl,B1,1,0,1,1,0.6551641497569687,1,0,-12.264126447861296,, +O=[SH](=O)c1ccccc1F,B1,1,0,1,1,0.6162952765893221,1,0,-13.38711506834903,, +O=[SH](=O)CC(F)(F)F,B1,1,0,1,1,0.5372658895067558,0,0,-10.434805412202495,, +Nc1cccc(C(F)(F)F)c1F,B1,1,0,1,0,0.4799755219921903,1,1,27.995164246289207,, +C1COCO1,B1,1,1,1,0,0.4020858486861461,0,1,0.9511156342751516,, +Cc1cccnc1,B1,1,1,1,0,0.4719983679006756,1,1,33.268042495590585,, +Cc1cc(=O)[nH]n1C,B1,1,1,1,1,0.5045233601727693,1,1,12.302619076673524,4.0,1.0 +Cc1cc(=O)n(-c2ccccc2)[nH]1,B1,1,1,1,1,0.6981208487644514,1,1,34.88523556332665,0.0,0.0 +Cc1ccccn1,B1,1,1,1,0,0.4719983679006756,1,1,31.845673298482048,, +Fc1cccnc1,B1,1,1,1,0,0.4739719611862986,1,1,31.200264346238733,, +c1ccncc1,B1,1,1,1,0,0.4531479654842905,1,1,20.589274983144826,, +Cc1ccc(F)cn1,B1,1,1,1,1,0.4943752493594844,1,1,31.03621400044203,18.0,1.0 +c1cscn1,B1,1,1,1,0,0.4600956630432944,1,1,10.529788929865203,, +Cc1cnccn1,B1,1,1,1,0,0.4745494696119243,1,1,24.3079767249518,, +Cc1ncc[nH]c1=O,B1,1,1,1,1,0.5136326256802805,1,1,17.143900164113653,0.0,0.0 +O=CCc1cc(F)cc(C(F)(F)F)c1,B1,1,0,1,1,0.5365078265593349,1,1,28.80513378464574,, +O=c1cccc[nH]1,B1,1,1,1,1,0.4959428487135856,1,1,17.55755317850797,12.0,1.0 +C1CC1,B1,1,1,1,0,0.3814250421649592,1,1,10.958161214651511,, +C/C=C/[SH](=O)=O,B1,1,0,1,0,0.4820308756282917,0,0,-24.51463094761872,, +O=[SH](=O)c1cccc(Br)c1,B1,1,0,1,1,0.7273834067662313,1,0,-7.012592331248083,, +OC(F)(F)F,B2,1,1,1,0,0.4546943751491228,1,1,8.85801368762451,, +Fc1ccc(F)cc1,B2,1,1,1,0,0.4832965029562796,1,1,21.214079673192465,, +NC(=O)Nc1ccccc1,B2,1,1,1,1,0.5979442528752776,1,1,47.72571782063407,0.0,0.0 +c1ccc2[nH]cnc2c1,B2,1,1,1,1,0.5583728365871126,1,1,39.49652870819706,0.0,0.0 +FC(F)(F)c1ccncc1,B2,1,1,1,1,0.5471516226654809,1,1,35.72985688750359,0.0,0.0 +Cc1ccccc1,B2,1,1,1,0,0.4588062796575454,1,1,28.08176256853769,, +FC(F)(F)c1ccccc1,B2,1,1,1,1,0.5274607455911079,1,1,36.437699073802,0.0,0.0 +NC(=O)NC1CCCCC1,B2,1,1,1,1,0.5631958577623991,1,1,35.352113387990386,0.0,0.0 +CN1Cc2ccccc2C1=O,B2,1,1,1,1,0.5408511452335203,1,1,0.3368476645258185,0.0,0.0 +CC(=O)N1CCN(c2ccccc2)CC1,B2,1,1,1,1,0.6892056184410031,1,1,72.06386180458385,0.0,0.0 +Cc1ccc2c(c1)CCO2,B2,1,1,1,1,0.5264716109299262,1,1,30.152092190926883,0.0,0.0 +c1ccccc1,B2,1,1,1,0,0.4426283718993647,1,1,11.619019164323166,, +CC(=O)NC(C)(C)C,B2,1,1,1,1,0.4994565848153687,1,1,24.69228167010142,0.0,0.0 +CC(=O)N(C)C(C)(C)C,B2,1,1,1,0,0.4819509919071706,1,1,17.23570832642455,, +CC(=O)N[C@H](CO)c1ccccc1,B2,1,1,1,1,0.722509805201802,1,1,61.48814629671936,0.0,0.0 +CC(=O)NC(C)C,B2,1,1,1,1,0.5125870718005372,1,1,24.9042068033874,0.0,0.0 +CCC(=O)N[C@H](CO)c1cccc(C)c1,B2,1,1,0,1,0.7867152678406187,0,1,73.36757860226083,, +COc1cccc([C@@H](C)NC(C)=O)c1,B2,1,1,1,1,0.7956997258337403,1,1,86.24303315275912,0.0,0.0 +CC(=O)N1CC=C(c2ccccc2)CC1,B2,1,1,1,1,0.6825080208883724,1,1,55.686573831140336,0.0,0.0 +CCC(=O)N[C@H](CO)c1cc(F)cc(OC)c1,B2,1,1,0,1,0.818717624269098,0,1,68.36554097460042,, +CC(=O)N[C@@]1(CO)CCc2ccccc21,B2,1,1,1,1,0.7550838088316919,0,1,27.55520855708512,, +CC(=O)N1CCCc2ccccc2C1,B2,1,1,1,1,0.6108116805475313,0,1,51.51271733412606,, +CC(=O)N1CCc2ccccc2CC1,B2,1,1,1,1,0.6071927967514615,0,1,43.23218099980774,, +CCC(=O)N[C@H](CO)c1cccc(N2CC[NH+](C)CC2)n1,B2,1,1,0,1,0.6496302610155904,0,1,59.27091739241894,, +CCC(=O)N[C@H](CO)c1ccnc(OC)c1,B2,1,1,0,1,0.769965243697274,0,1,70.22624560958064,, +NC1CC1,B2,1,1,1,0,0.4192205084405548,1,0,-5.652930360202207,, +Cn1ccc2ccccc21,B2,1,1,1,1,0.5160980556298523,1,1,46.284316308267535,0.0,0.0 +Cn1ccnc1,B2,1,1,1,0,0.4432156698587248,1,1,18.87108476780715,, +CCOC=O,B2,1,0,1,0,0.4365645501026903,1,0,-6.824448569140429,, +CC#CC=O,B2,1,0,1,0,0.2927190201689915,1,0,-9.56750914798028,, +O=[SH](=O)c1cc(F)ccc1F,B2,1,0,1,1,0.6490570574431516,1,0,-6.371500210535649,, +O=[SH](=O)c1ccccc1,B2,1,0,1,1,0.5842392957793138,1,0,-13.83848688945763,, +Cc1cc(Cl)ccc1CN,B2,1,1,1,1,0.6607217104253422,0,1,25.29013755667565,, +Cc1ccncn1,B2,1,1,1,0,0.4745494696119243,1,1,26.52572884208437,, +C[NH+]1CCN(Cc2ccccc2)CC1,B2,1,1,1,1,0.6921581953728709,0,1,84.8060866683494,, +Cc1cc(=O)n(-c2ccc(F)cc2)n1C,B2,1,1,1,1,0.6961762309761073,0,1,25.36655046126711,, +C1CC1,B2,1,1,1,0,0.3814250421649592,1,1,10.958161214651511,, +Clc1ccccc1,B2,1,1,1,0,0.4833833263681997,1,1,28.62182911813474,, +Cc1ccnn1C,B2,1,1,1,0,0.4652232925414449,1,1,21.874730262101156,, +Cc1cc(C#N)n(C)n1,B2,1,1,1,1,0.5040077763806712,0,1,21.192631079771772,, +Cc1cc(C)n(C)n1,B2,1,1,1,0,0.4875571449914143,0,1,26.15214152126061,, +CC(C)O,B2,1,1,1,0,0.4284047940316283,1,1,8.915182362960154,, +FCF,B2,1,1,1,0,0.3834948242297383,1,1,4.912031059920439,, +COc1ccc(C)nc1,B2,1,1,1,1,0.5627332625267534,1,1,31.013448219828355,0.0,0.0 +Fc1ccccc1,B2,1,1,1,0,0.4618403302914614,1,1,26.89038789795228,, +c1ccc2c(c1)OCCO2,B2,1,1,1,1,0.5371677140562677,1,1,25.77964556668312,0.0,0.0 +Cn1ccccc1=O,B2,1,1,1,0,0.4719138439954858,1,1,30.41344293946266,, +C[C@@H](C=O)c1ccc(F)cc1,B2,1,0,1,1,0.593097869155282,1,1,13.77183606809792,, +c1ccsc1,B2,1,1,1,0,0.4489266460144336,1,1,9.194709627715325,, +C[S@](=O)c1ccccc1,B2,1,1,1,1,0.5763209398375385,1,1,28.38297782744105,0.0,0.0 +CONC=O,B2,1,0,1,0,0.3476962481631767,1,0,-8.168909256179099,, +CCN,B2,1,1,1,0,0.4062370953898832,1,1,5.092217189432304,, +Cc1nnco1,B2,1,1,1,0,0.4557395479673612,1,1,13.1958415557754,, +Nc1ccon1,B2,1,1,1,0,0.4900555744517108,1,1,15.503600385501151,, +c1cnoc1,B2,1,1,1,0,0.4472609802175263,1,1,11.831072068600074,, +c1ccoc1,B2,1,1,1,0,0.4460314875501461,1,1,5.85239784787098,, +CNC,B2,1,1,1,0,0.3986709398154768,1,1,10.078884984505532,, +c1ccc(N2CCOCC2)nc1,B2,1,1,1,1,0.616780765523831,0,1,48.63005507487054,, +Cc1cn(-c2ccccc2)cn1,B2,1,1,1,1,0.6216143144162246,1,1,32.821614488566404,0.0,0.0 diff --git a/data/fragment_library_filtered/README.md b/data/fragment_library_filtered/README.md index 92212d1b..ef663f0b 100644 --- a/data/fragment_library_filtered/README.md +++ b/data/fragment_library_filtered/README.md @@ -1,8 +1,8 @@ # Filtered fragment library -The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises of 9505 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases (see `data/fragment_library/`). +The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises 9505 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases (see `data/fragment_library/`). -In order to prepare a library with fragments tailored for recombination, we offer heare a filtered fragment library (2447 fragments) based on the following filters: +In order to prepare a library with fragments tailored for recombination, we offer here a filtered fragment library (2447 fragments) based on the following filters: 1. Remove pool X 2. Deduplicate fragment library (per subpocket) @@ -11,4 +11,4 @@ In order to prepare a library with fragments tailored for recombination, we offe 5. Keep "Rule of Three (Ro3)" compliant fragments (fragment-likeness) 6. Filter AP subpocket fragments (typical hinge-like) -Please refer to the notebook `notebooks/3_1_fragment_library_reduced.ipynb` to check how the data was generated and/or use it as a starting point for customized protocols. \ No newline at end of file +Please refer to the notebook `notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb` to check how the data was generated and/or use it as a starting point for customized protocols. \ No newline at end of file diff --git a/data/fragment_library_old/README.md b/data/fragment_library_old/README.md new file mode 100644 index 00000000..62ff466e --- /dev/null +++ b/data/fragment_library_old/README.md @@ -0,0 +1,60 @@ +# KinFragLib: Full fragment library (published version) + +[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4896247.svg)](https://doi.org/10.5281/zenodo.4896247) + + +The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises about 3,000 fragments, +which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases. + +**Note**: This fragment library is only used in the notebook `notebooks/custom_kinfraglib/2_3_custom_filters_paper.ipynb` to compare the published version to an updated fragment library. Therefore, we provide the data only on zenodo. + +## Download data +Please download the previous KinFragLib version from zenodo ([https://zenodo.org/records/4896247](https://zenodo.org/records/4896247), v1.1.0) and copy all SDF files containing the fragments in the folder called `../data/fragment_library` to this folder. + + +## Fragment library + +Fragments are organized by the subpockets they occupy. Each fragment subpocket pool is stored in an SDF file: + + AP.sdf + FP.sdf + GA.sdf + SE.sdf + B1.sdf + B2.sdf + X.sdf + +Each fragment contains the following information: + +- 3D coordinates of the fragment's atoms as reported in the corresponding KLIFS complex structure file. +- `kinase`, `family`, and `group`: +*Kinase* name, *family* and *group* of the kinase that the ligand (from which the fragment originates) was +co-crystallized with. +- `complex_pdb`, `ligand_pdb`, `alt`, and `chain`: +*PDB complex* and *ligand ID*, *alternate model* and *chain* for the KLIFS structure that the ligand +(from which the fragment originates) was co-crystallized with. +- `atom.prop.subpocket`: Subpocket assignment for each of the fragment's atoms. +- `atom.prop.environment`: BRICS environment IDs for each of the fragment's atoms. + +Please refer to `notebooks/kinfraglib/1_1_quick_start.ipynb` on how to load and work with this dataset. + +## Original ligands + +Original ligands that are composed of the fragments in the full fragment library are stored as a CSV file: + + original_ligands.csv + +Each ligand contains the following information: + +- `kinase`, `family`, and `group`: +*Kinase* name, *family* and *group* of the kinase that the ligand was co-crystallized with. +- `complex_pdb`, `ligand_pdb`, `alt`, and `chain`: +*PDB complex* and *ligand ID*, *alternate model* and *chain* for the KLIFS structure that the ligand was co-crystallized with. +- `subpocket`: +Subpockets that the ligand occupies. +- `ac_helix`: +aC-helix conformation for the KLIFS structure that the ligand was co-crystallized with. +- `smiles`: +Ligand's SMILES string. + +Please refer to `notebooks/kinfraglib/2_1_fragment_analysis_original_ligands.ipynb` where this data is generated. \ No newline at end of file diff --git a/data/fragment_library_reduced/README.md b/data/fragment_library_reduced/README.md index d18880f4..31e46bbd 100644 --- a/data/fragment_library_reduced/README.md +++ b/data/fragment_library_reduced/README.md @@ -1,6 +1,6 @@ # Reduced fragment library -The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises of 9505 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases (see `data/fragment_library/`). +The (full) fragment library resulting from the KinFragLib fragmentation procedure comprises 9505 fragments, which are the basis for exploring the subpocket-based chemical space of ligands co-crystallized with kinases (see `data/fragment_library/`). In order to demonstrate how this library can be used for recombining ligands, we offer here a reduced fragment library (727 fragments) based on the following filters: @@ -23,4 +23,4 @@ Step 1 is necessary to focus on fragments tailored for the recombination, wherea - `N_REPRESENTED_FRAGMENTS` = 10 - `INCLUDE_SINGLETONS` = True -Please refer to the notebook `notebooks/3_1_fragment_library_reduced.ipynb` to check how the data was generated and/or use it as a starting point for customized protocols. \ No newline at end of file +Please refer to the notebook `notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb` to check how the data was generated and/or use it as a starting point for customized protocols. \ No newline at end of file diff --git a/environment.yml b/environment.yml index 005e27ec..26f2201d 100644 --- a/environment.yml +++ b/environment.yml @@ -13,10 +13,12 @@ dependencies: - jupyterlab - matplotlib - numpy - - pandas=1.5 # pandas version above this, have problems in rendering images after PandasTools.AddMoleculeColumnToFrame is called + - pandas=1.5 - rdkit=2021.09 - scikit-learn - seaborn + - lich::syba + - redo - opencadd ## CI tests - pytest=7.4 diff --git a/kinfraglib/__init__.py b/kinfraglib/__init__.py index e69de29b..56035cba 100644 --- a/kinfraglib/__init__.py +++ b/kinfraglib/__init__.py @@ -0,0 +1 @@ +from . import utils, filters \ No newline at end of file diff --git a/kinfraglib/filters/__init__.py b/kinfraglib/filters/__init__.py new file mode 100644 index 00000000..8f234c0b --- /dev/null +++ b/kinfraglib/filters/__init__.py @@ -0,0 +1,13 @@ +from . import ( + plots, + check, + prefilters, + analysis, + utils, + unwanted_substructures, + pipeline, + retro, + brics_rules, + drug_likeness, + synthesizability, +) diff --git a/kinfraglib/filters/analysis.py b/kinfraglib/filters/analysis.py new file mode 100644 index 00000000..60fb2485 --- /dev/null +++ b/kinfraglib/filters/analysis.py @@ -0,0 +1,460 @@ +""" +Contains functions to analyze the results from filter steps +""" +import pandas as pd +from . import prefilters +from . import plots +from kinfraglib import utils as kfl_utils +from IPython.display import display +import seaborn as sns +import matplotlib.pyplot as pylt + + +def count_accepted_rejected(fragment_library, bool_column_name, filtername): + """ + Function to count number of accepted and rejected fragments by one boolean column. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + bool_column_name : str + string defining the column name where the boolean values used for counting the accepted and + rejected fragments are stored + filtername : str + string defining from which filter the given boolean column originates, e.g. "QED" + + Returns + ------- + pandas.DataFrame + number of accepted and number of rejected fragments per subpocket + """ + # concatenate fragment library and group fragments by the bool column + fraglib_df = ( + pd.concat(fragment_library) + .reset_index(drop=True) + .groupby(bool_column_name, sort=False) + ) + # count the fragments grouped by subpocket + # accepted fragments + accepted = pd.Series( + fraglib_df.get_group(1).groupby("subpocket", sort=False).size(), + name="accepted_" + filtername, + ) + # rejected fragments + rejected = pd.Series( + fraglib_df.get_group(0).groupby("subpocket", sort=False).size(), + name="rejected_" + filtername, + ) + # remove NaN values and fill it with zeros + accepted_rejected_df = pd.concat([accepted, rejected], axis=1) + accepted_rejected_df[str("rejected_" + filtername)] = accepted_rejected_df[ + str("rejected_" + filtername) + ].fillna(0) + accepted_rejected_df[str("rejected_" + filtername)] = accepted_rejected_df[ + str("rejected_" + filtername) + ].astype(int) + accepted_rejected_df[str("accepted_" + filtername)] = accepted_rejected_df[ + str("accepted_" + filtername) + ].fillna(0) + accepted_rejected_df[str("accepted_" + filtername)] = accepted_rejected_df[ + str("accepted_" + filtername) + ].astype(int) + + # return the dataframe with the number of accepted and rejected fragments per subpockezt + return accepted_rejected_df + + +def count_fragments(fragment_library, name="n_frags"): + """ + Function to count the number of accepted and rejected fragments. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + name : str + string defining the column name what is counted + + Returns + ------- + pandas.Series + number of fragments per subpocket of the given dict + """ + # count and return the number of fragments per subpocket + return pd.Series( + pd.concat(fragment_library) + .reset_index(drop=True) + .groupby("subpocket", sort=False) + .size(), + name=name, + ) + + +def number_of_accepted(fragment_library, columns, min_accepted=1, name="bool"): + """ + Function to count the number of fragments that are accepted by at least "min_accepted" filters + specified in the given columns. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + columns : list + of strings defining the column names where the boolean columns are stored + min_accepted : int + minimum number of accepted filters + bool_column_name : str or list of str + string or list of strings defining the column names where the boolean values are stored + + Returns + ------- + dict + containing a pandas.DataFrame including column where the number of accepted filters, + defined in columns, is stored. + """ + fraglib_df = pd.concat(fragment_library).reset_index(drop=True) + # sum up number of accepted filters + fraglib_df[name] = (fraglib_df.loc[:, columns].sum(axis=1) >= min_accepted).astype( + int + ) + return prefilters._make_df_dict(pd.DataFrame(fraglib_df)) + + +def accepted_num_filters(fragment_library, colnames, filtername, max_num_accepted=1): + """ + Function to count how many fragments are accepted by max_num_accepted or fewer filters. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + colnames : list + list containing strings with the filter boolean column names + filtername : str + summarized filter name/ name of the resulting DataFrame + max_num_accepted : int + maximum of accepted filters. By default, max_num_accepted = 1 + + Returns + ------- + DataFrame + Counting number of fragments that are accepted by max_num_accepted filters and less. + """ + # variable to store the number of accepted by num_accepted + count_df = [] + # count by how many filters the fragments are accepted + cols_df = pd.concat(fragment_library).reset_index(drop=True) + cols_df["sums"] = cols_df.loc[:, colnames].sum(axis=1) + # count the number of fragments in the pre-filtered library + count_df.append( + pd.Series( + pd.concat(fragment_library) + .reset_index(drop=True) + .groupby("subpocket", sort=False) + .size(), + name="pre-filtered", + ) + ) + # count number of accepted from max_num_accepted to zero + for i in range(max_num_accepted, -1, -1): + # get all fragments that are accepted by i filters + i_accepted = cols_df.loc[cols_df["sums"] == i] + # count them and store the numbers as a column in count_df + count_df.append( + pd.Series( + pd.concat(prefilters._make_df_dict(pd.DataFrame(i_accepted))) + .reset_index(drop=True) + .groupby("subpocket", sort=False) + .size(), + name=str("accepted by " + str(i)), + ) + ) + # create the final counted DataFrame + counted_df = pd.concat(count_df, axis=1) + # remove NA values and fill them with zeros + counted_df = counted_df.fillna(0) + # make numbers int not float (nicer to read) + counted_df = counted_df.astype(int) + # add a total number row at the end + counted_df = pd.concat([counted_df, counted_df.sum().rename("Total").to_frame().T]) + # add the chosen title to the DataFrame + counted_df = counted_df.style.set_caption(filtername) + return counted_df + + +def frag_in_subset(fragment_library_original, fragment_library_subset, colname): + """ + Adding a boolean column to the fragment library if the fragments are contained in the fragment + library subset. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + fragment_libray : dict + subset of the fragments organized in subpockets including all information + colname : str + name of the boolean column that will be created + + Returns + ------- + dict + fragments organized in subpocket with boolean column if the single fragments are included + in the subset + """ + # create dataframes from the fragment library dictionaries + fragment_library_concat = pd.concat(fragment_library_original).reset_index(drop=True) + fragment_library_reduced_concat = pd.concat(fragment_library_subset).reset_index(drop=True) + + bool_reduced = [] # variable to store the boolean columns + # iterate through the fragment library + for i, row in fragment_library_concat.iterrows(): + notfound = True + # iterate through the fragment library subset + for j, reduced_row in fragment_library_reduced_concat.iterrows(): + # compare the smiles, if they are equal fragment is in subset + if row['smiles'] == reduced_row['smiles']: + bool_reduced.append(1) + notfound = False + break + if notfound: + bool_reduced.append(0) + # add the boolean column to the dataframe + fragment_library_concat[colname] = bool_reduced + # return the fragment library as dict + fraglib = prefilters._make_df_dict(fragment_library_concat) + return fraglib + + +def get_descriptors(fragment_library, fragment_library_reduced, fragment_library_custom): + """ + Get #HBA #HBD, LogP and #Heavy Atoms for each fragment set and create a bar plot. + + Parameters + ---------- + fragment_library : dict +        pre-filtered fragment library organized in subpockets + fragment_library_reduced : dict +        reduced fragment library organized in subpockets + fragment_library_custom : dict +        custom filtered fragment library organized in subpockets + + """ + descriptors = kfl_utils.get_descriptors_by_fragments(fragment_library) + descriptors_median = descriptors.groupby('subpocket').median(numeric_only=True) + descriptors_reduced = kfl_utils.get_descriptors_by_fragments(fragment_library_reduced) + descriptors_reduced_median = descriptors_reduced.groupby('subpocket').median(numeric_only=True) + descriptors_custom = kfl_utils.get_descriptors_by_fragments(fragment_library_custom) + descriptors_custom_median = descriptors_custom.groupby('subpocket').median(numeric_only=True) + + all_descriptors = pd.concat( + [ + descriptors_median, + descriptors_reduced_median, + descriptors_custom_median, + ], + axis=1, + keys=["pre-filtered", "reduced", "custom"] + ) + # style creates strange floats + all_descriptors = all_descriptors.style.set_properties( + #**{"background-color": "lightgrey"}, + subset=["pre-filtered", "custom"], + ).format(precision=2) + + display(all_descriptors) + + fig, ax = pylt.subplots(nrows=1, ncols=1) + # get y axis limits + ylims = pd.DataFrame() + for i, descriptor_name in enumerate(descriptors.columns[3:]): + + ax = sns.boxplot( + x="subpocket", + y=descriptor_name, + data=descriptors, + medianprops={"linewidth": 3, "linestyle": "-"}, + ) + ylims[i] = ax.get_ylim() + pylt.close(fig) # avoid plotting because we only generated this to get the ylim values + + print("\033[47;1m pre-filtered fragment library \033[0m") + plt = plots.plot_fragment_descriptors(descriptors, ylims) + plt.show() + + print("\033[47;1m reduced fragment library \033[0m") + plt_reduced = plots.plot_fragment_descriptors(descriptors_reduced, ylims) + plt_reduced.show() + + print("\033[47;1m custom filtered fragment library \033[0m") + plt_custom = plots.plot_fragment_descriptors(descriptors_custom, ylims) + plt_custom.show() + + +def get_descriptors_filters(fragment_library_filter_res, bool_keys): + """ + Get #HBA #HBD, LogP and #Heavy Atoms for all fragments passing a filter step. + + Parameters + ---------- + fragment_library_filter_res : dict +        pre-filtered fragment library organized in subpockets containing the filtering results + bool_keys : list + of strings containing the names of the boolean columns defining if a fragment passed a + filter or not + + Returns + ---------- + DataFrame + containing the descriptors for each filtered set + + """ + # first calculate the descriptors from the pre-filtered library and plot them + print("\033[47;1m pre-filtered fragment library \033[0m") + descriptors = kfl_utils.get_descriptors_by_fragments(fragment_library_filter_res) + descriptors_median = descriptors.groupby('subpocket').median(numeric_only=True) + + fig, ax = pylt.subplots(nrows=1, ncols=1) + # get y axis limits + ylims = pd.DataFrame() + for i, descriptor_name in enumerate(descriptors.columns[3:]): + ax = sns.boxplot( + x="subpocket", + y=descriptor_name, + data=descriptors, + medianprops={"linewidth": 3, "linestyle": "-"}, + ) + + ylims[i] = ax.get_ylim() + pylt.close(fig) # avoid plotting because we only generated this to get the ylim values + + plt = plots.plot_fragment_descriptors(descriptors, ylims) + plt.show() + descriptor_dfs = {"pre-filtered": descriptors_median} # add descriptors to a dataframe + # iterate through the filters boolean columns, calculate the descriptor for passing fragments + # and create the plots + for bool_key in bool_keys: + fraglib_concat = pd.concat(fragment_library_filter_res) + fraglib_filter = fraglib_concat[fraglib_concat[bool_key] == 1] + fraglib_filter = prefilters._make_df_dict(fraglib_filter) + descriptors = kfl_utils.get_descriptors_by_fragments(fraglib_filter) + descriptors_median = descriptors.groupby('subpocket').median(numeric_only=True) + descriptor_dfs[bool_key] = descriptors_median # add the descriptors to the descriptor df + + print("\033[47;1m " + bool_key.replace("bool_", "") + " filtered \033[0m") + plt = plots.plot_fragment_descriptors(descriptors, ylims) + plt.show() + # return the descriptors dataframe + return(descriptor_dfs) + + +def filter_res_in_fraglib(fragment_library, filter_results): + """ + Add the filtering results to the fragment library. + + Parameters + ---------- + fragment_library : dict +        pre-filtered fragment library organized in subpockets containing the filtering results + filter_results : DataFrame + containing the fragments SMILES, the subpocket and the filtering results + + Returns + ---------- + dict + pre-filtered fragment library organized in subpockets containing the filtering results + list + of strings with the boolean column names for the filters + + """ + # set subpocket and smiles as index to add the filter results to the correct fragment + filter_results = filter_results.set_index(["subpocket", "smiles"]) + + fragment_library_concat = pd.concat(fragment_library) + fragment_library_concat = fragment_library_concat.set_index(["subpocket", "smiles"]) + # merge the 2 dataframes + fraglib_filters = fragment_library_concat.merge( + filter_results, + left_on=['subpocket', 'smiles'], + right_on=['subpocket', 'smiles'], + how="outer" + ) + + # get the list of boolean values, defining if a fragment is passing a specific filter or not + bool_keys = [x for x in filter_results.keys().to_list() if "bool" in x] + + # set index to subpocket again and crate dict + fraglib_filters = fraglib_filters.reset_index() + fraglib_filters.set_index(["subpocket"]) + + fragment_library_filter_res = prefilters._make_df_dict(fraglib_filters) + + # return fragment library dict with the filtering results and the boolean keys + return fragment_library_filter_res, bool_keys + + +def cluster_fragment_library(fragment_library): + # function copied from https://github.com/volkamerlab/KinFragLib/blob/master/notebooks/2_3_fragment_analysis_most_common_fragments.ipynb and adapted # noqa: E501 + """ + Get most common fragments from the complete library and clusters the fragments. + Add column in which subpocket(s) the fragment occurs. + + Parameters + ---------- + fragment_library : dict of pandas.DataFrame + Fragment details (values), i.e. SMILES, kinase groups, and fragment RDKit molecules, + for each subpocket (key). + + Returns + ------- + pandas.DataFrame + Clustered fragments (ID, SMILES, ROMol, cluster ID, fragment count, subpockets). + """ + + # Get most common fragments + + fragment_library_concat = pd.concat(fragment_library) + most_common_fragments = kfl_utils.get_most_common_fragments( + fragment_library_concat, + top_x=len(fragment_library_concat["ROMol"]), + ) + + # Cluster fingerprints + clusters = kfl_utils.cluster_molecules(most_common_fragments["ROMol"], cutoff=0.6) + + # Link fragments to cluster ID + clustered_fragments = most_common_fragments.merge( + clusters, + on='molecule_id' + ) + + clustered_fragments.sort_values( + ['cluster_id', 'fragment_count'], + ascending=[True, False], + inplace=True + ) + + clustered_fragments.reset_index(inplace=True, drop=True) + + # get information in which subpockets the fragments occur. + subpockets = [] + for smiles in clustered_fragments["smiles"]: + subpocket_lst = [] + for subpocket in fragment_library.keys(): + if not fragment_library[subpocket][fragment_library[subpocket]["smiles"] == smiles].empty: # noqa E501 + subpocket_lst.append(subpocket) + subpockets.append(subpocket_lst) + + clustered_fragments["subpockets"] = subpockets + + clustered_fragments = clustered_fragments.rename(columns={"fragment_count": "subpocket_count"}) + + # sort clustered fragments by cluster and subpocket count + clustered_fragments.sort_values( + by=['cluster_id', "subpocket_count"], + ascending=[True, True], + inplace=True, + ) + + return clustered_fragments diff --git a/kinfraglib/filters/brics_rules.py b/kinfraglib/filters/brics_rules.py new file mode 100644 index 00000000..292e6488 --- /dev/null +++ b/kinfraglib/filters/brics_rules.py @@ -0,0 +1,75 @@ +# copied from +# https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + +# BRICS rules as defined by RDKit +brics_rules = [ + {"1", "3"}, + {"1", "5"}, + {"1", "10"}, + # L2 definition is incorporated into L5 + {"3", "4"}, + {"3", "13"}, + {"3", "14"}, + {"3", "15"}, + {"3", "16"}, + {"4", "5"}, + {"4", "11"}, + {"5", "12"}, + {"5", "13"}, + {"5", "14"}, + {"5", "15"}, + {"5", "16"}, + {"6", "13"}, + {"6", "14"}, + {"6", "15"}, + {"6", "16"}, + {"7", "7"}, + {"8", "9"}, + {"8", "10"}, + {"8", "13"}, + {"8", "14"}, + {"8", "15"}, + {"8", "16"}, + {"9", "13"}, # not in original paper + {"9", "14"}, # not in original paper + {"9", "15"}, + {"9", "16"}, + {"10", "13"}, + {"10", "14"}, + {"10", "15"}, + {"10", "16"}, + {"11", "13"}, + {"11", "14"}, + {"11", "15"}, + {"11", "16"}, + {"13", "14"}, + {"13", "15"}, + {"13", "16"}, + {"14", "14"}, # not in original paper + {"14", "15"}, + {"14", "16"}, + {"15", "16"}, + {"16", "16"}, # not in original paper +] + + +def is_brics_bond(env_1, env_2): + + """ + Checks if two given BRICS environment types are allowed to be connected according to the BRICS + algorithm + Parameters + ---------- + env_1, env_2: str + BRICS environment types + Returns + ------- + True if the given environments are allowed to be connected + False otherwise + """ + + if {env_1, env_2} in brics_rules: + return True + + else: + return False diff --git a/kinfraglib/filters/check.py b/kinfraglib/filters/check.py new file mode 100644 index 00000000..0f6379bc --- /dev/null +++ b/kinfraglib/filters/check.py @@ -0,0 +1,62 @@ +""" +Contains functions to check which fragments are accepted or rejected +""" +from . import synthesizability +import operator + + +def accepted_rejected( + fragment_library, + value_list, + cutoff_value=0, + cutoff_criteria="<", + column_name="bool", +): + """ + Go through value_list, compare it with the given cutoff and add a boolean column if + fragments are accepted or rejected. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + value_list : list + list of values calculated by a filtering step for filtering + cutoff_value : int or float + value defining the cutoff for accepting or rejecting a fragment + cutoff_criteria : string of a basic operator + defining if the rejected fragment values need to be ">", "<", ">=", "<=", "==" or "!=" + compared to the cutoff_value + + Returns + ------- + dict + fragment library containing a boolean column if the fragment was accepted (1) or + rejected (0) by the filter according to the cutoff value. + """ + bools = [] + + # define operator list for comparison + ops = { + "<": operator.lt, + ">": operator.gt, + "==": operator.eq, + "<=": operator.le, + ">=": operator.ge, + "!=": operator.ne, + } + # go through series indexes + for i in range(0, len(value_list)): + # go through values in array + for j in range(0, len(value_list[i])): + val = value_list[i][j] + # compare value with cutoff + if ops[cutoff_criteria](val, cutoff_value): + bools.append(1) + else: + bools.append(0) + # save bool column in in fragment library df + fragment_library_bool = synthesizability._add_bool_column( + fragment_library, bools, column_name + ) + return fragment_library_bool diff --git a/kinfraglib/filters/drug_likeness.py b/kinfraglib/filters/drug_likeness.py new file mode 100644 index 00000000..1320e876 --- /dev/null +++ b/kinfraglib/filters/drug_likeness.py @@ -0,0 +1,102 @@ +""" +Contains function to check for drug/lead likeness +""" +from rdkit import Chem +from kinfraglib import utils as kfl_utils +from . import check +from . import utils + + +def get_ro3_frags(fragment_library, min_fulfilled=6, cutoff_crit=">="): + """ + Check if the fragments fulfill the rule of three criteria + - molecular weight <300 + - logp <=3 + - number of hydrogen bond acceptors <=3 + - number of hydrogen bond donors <=3 + - number of rotatable bonds <=3 + - polar surface area <= 60 + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + min_fulfilled : int + defining the number of Rule of Three Criteria that need to be fulfilled to be + accepted. By default min_fulfilled=6. + cutoff_crit : str + Cutoff criterium, defining if the number of fulfilled parameters is ">" or ">=" + than min_fulfilled. By default cutoff_crit=">=". + + Returns + ------- + dict + fragment library organized in subpockets containing a boolean column if they fulfill the + defined number of Ro3 parameters (bool_ro3). + """ + ro3_results = [] # array to fulfill the Ro3 results for each molecule + num_fullfilled = [] # parameter to save the number of fulfilled Ro3 parameters + for subpocket in fragment_library.keys(): + ro3_subpocket = [] # save ro3_booleans per subpocket + for mol in fragment_library[subpocket]["ROMol"]: + # call function to get for each Ro3 parameter a boolean if it is fulfilled + ro3_subpocket.append(kfl_utils.get_ro3_from_mol(mol)) + ro3_results.append(ro3_subpocket) # append Ro3 booleand to complete list + # go through boolean list and save how many Ro3 parameters are filfilled + for i in range(0, len(ro3_results)): + num_sp = [] + for vals in ro3_results[i]: + num_sp.append(sum(vals)) + num_fullfilled.append(num_sp) + # add a boolean column to save whether the fragment gets accepted + fragment_library_bool = check.accepted_rejected( + fragment_library, + num_fullfilled, + cutoff_value=min_fulfilled, + cutoff_criteria=cutoff_crit, + column_name="bool_ro3", + ) + return fragment_library_bool + + +def get_qed(fragment_library, cutoff_val=0.492, cutoff_crit=">"): + """ + Calculates the Quantitative Estimate of Druglikeness. + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + cutoff_val : int + A value defining the cutoff for accepted/rejected fragments. By default, cutoff_val=0.492. + cutoff_crit : str + Defining whether the QED value should be ">", "<", ">=", "<=", "==" or "!=" compared to + the cutoff-value. By default ,cutoff_crit=">". + + Returns + ------- + dict + Containing a pandas.DataFrame for each subpocket with all fragments and an + additional columns (bool_qed) defining whether the fragment is accepted (1) or rejected (0) + and the calculated QED value for each fragment (qed). + """ + qedscores = [] # save QED values + # iterate through subpockets + for subpocket in fragment_library.keys(): + curqed = [] # save current QED values from fragments in current subpocket + for fragmol in fragment_library[subpocket]["ROMol"]: + qed = Chem.QED.qed(fragmol) # compute QED for each fragment + curqed.append(qed) + qedscores.append(curqed) # save QED values + # check if fragments accepted/rejected and add boolean column to fragment library + fragment_library_bool = check.accepted_rejected( + fragment_library, + qedscores, + cutoff_value=cutoff_val, + cutoff_criteria=cutoff_crit, + column_name="bool_qed", + ) + # add column with QED values to the fragment library + fragment_library_bool = utils.add_values(fragment_library_bool, qedscores, "qed") + + return fragment_library_bool diff --git a/kinfraglib/filters/enamine_substructures.py b/kinfraglib/filters/enamine_substructures.py new file mode 100755 index 00000000..455eb527 --- /dev/null +++ b/kinfraglib/filters/enamine_substructures.py @@ -0,0 +1,139 @@ +#!/usr/bin/env python + +from __future__ import print_function +from rdkit import Chem +from rdkit.Chem import rdSubstructLibrary +import numpy as np +from pathlib import Path +import argparse +from kinfraglib import utils, filters + + +def read_enamine_sdf(path): + """ + Read in Enamine Building Blocks from SDFile into an RDKit substructure library. + + Parameters + ---------- + path : str + path to SDFile with all enamine building blocks + + Returns + ------- + obj + RDKit substructure library containing all molecules from given SDFile + """ + # takes around 5min to load Enamine Building Blocks + library = rdSubstructLibrary.SubstructLibrary( + rdSubstructLibrary.CachedTrustedSmilesMolHolder() + ) + rdkit_errors = 0 + for mol in Chem.SDMolSupplier(path): + try: + library.AddMol(mol) + except: + rdkit_errors += 1 + continue + + print(f"{rdkit_errors} molecules could not be converted to RDKit molecule.") + return library + + +def substructure_search(queries, library, path): + """ + Performs a substructure match for each query molecule against a library of molecules and + writes minimal enamine building block which matches a query to an SDF + + Parameters + ---------- + queries : dict + fragments organized in subpockets including all information + library : RDKit.SubstructLibrary + RDKit substructure library containing all Enamine building blocks + path: str + path to SDFile containing enamine building blocks which match at least one molecule from the query + """ + f = Chem.SDWriter(path) + for key in queries.keys(): + print(f"Substructure matching for {key} subpocket") + for q in queries[key].ROMol: + params = Chem.AdjustQueryParameters() + params.adjustRingCount = True + params.adjustRingChain = True + # get all structure matches + indices = library.GetMatches( + Chem.AdjustQueryProperties(q, params), maxResults=-1 + ) + if len(indices) > 0: + # get index to smallest fragment which matches + min_ind = np.argmin( + [library.GetMol(ind).GetNumAtoms() for ind in indices] + ) + f.write(library.GetMol(indices[int(min_ind)])) + f.close() + + +def write_to_file(path, mols): + """ + Write enamine building blocks which match at least one KinFragLib fragment. + + Parameters + ---------- + path : str + path to SDFile output file containing enamine building blocks + mols : list + list containing RDKit molecules of the enamine building blocks + """ + with Chem.SDWriter(path) as w: + for m in mols: + w.write(m) + + +def main(): + + parser = argparse.ArgumentParser() + # add cmd-line arguments + parser.add_argument( + "-e", + "--enamine", + type=str, + help="file name of enamine building blocks sdf", + required=True, + ) + parser.add_argument( + "-f", + "--fragmentlibrary", + type=str, + help="path to fragment library", + required=True, + ) + parser.add_argument( + "-o", + "--output", + type=str, + help="output file name for matching building blocks sdf", + required=True, + ) + + # parse cmd-line arguments + args = parser.parse_args() + + PATH_ENAMINE = Path(args.enamine) + PATH_FRAG_LIB = Path(args.fragmentlibrary) + PATH_OUTPUT = Path(args.output) + + fragment_library = utils.read_fragment_library(PATH_FRAG_LIB) + fragment_library = filters.prefilters.pre_filters(fragment_library) + print(f"Done reading in fragment library") + # SDF contains all building blocks downloaded from enamine website + enamine_library = read_enamine_sdf(str(PATH_ENAMINE)) + + substructure_search( + fragment_library, + enamine_library, + str(PATH_OUTPUT), + ) + + +if __name__ == "__main__": + main() diff --git a/kinfraglib/filters/pipeline.py b/kinfraglib/filters/pipeline.py new file mode 100644 index 00000000..a8df8dc0 --- /dev/null +++ b/kinfraglib/filters/pipeline.py @@ -0,0 +1,498 @@ +""" +Contains function to start the filters using the pipeline +""" + +from kinfraglib import filters +import pandas as pd +from IPython.display import display +import warnings +import os +import datetime +import pathlib +import json # noqa F401 +import copy # noqa F401 + + +def start_pipeline( + fragment_library, + pains_parameters, + brenk_parameters, + ro3_parameters, + qed_parameters, + bb_parameters, + syba_parameters, + retro_parameters, + global_parameters, +): + """ + Starting the custom filters' pipeline with the defined parameters + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + + pains_parameters : dict + containing the following parameters: 'pains_filter' (boolean) + + brenk_parameters : dict + containing the following parameters: 'brenk_filter'(boolean), + 'substructure_file_path'(Path) + + ro3_parameters : dict + containing the following parameters: 'ro3_filter'(boolean), 'num_fulfilled'(int), + `cutoff_crit`(str) + + qed_parameters : dict + containing the following parameters: 'qed_filter'(boolean), 'cutoff_value'(float), + 'cutoff_crit'(str), 'do_plot'(boolean), 'plot_stats'(boolean) + + bb_parameters : dict + containing the following parameters: 'bb_filter'(boolean), 'bb_file'(Path) + + syba_parameters : dict + containing the following parameters: 'syba_filter'(boolean), 'cutoff_value'(int), + 'cutoff_crit'(str), 'query_type'(str), 'do_plot'(boolean), 'plot_stats(boolean) + + retro_parameters : dict + containing the following parameters: 'retro_filter'(boolean), 'cutoff_value'(int), + 'cutoff_crit'(str), 'retro_path'(Path), 'do_plot'(boolean), 'show_mols'(boolean), + 'plot_stats'(boolean) + + global_parameters: dict + containing the following parameters: 'show_stats'(boolean), 'custom_path'(Path), + 'num_passing'(int) + + Returns + dict + filtered fragment library + data created during filtering + ------- + + """ + # check if number of filters to be passed is not bigger than actual number of filters applied + num_filters = sum( + [ + pains_parameters.get("pains_filter"), + brenk_parameters.get("brenk_filter"), + ro3_parameters.get("ro3_filter"), + qed_parameters.get("qed_filter"), + bb_parameters.get("bb_filter"), + syba_parameters.get("syba_filter"), + ] + ) + num_passing = global_parameters.get("num_passing") + if retro_parameters.get("retro_filter"): + if num_filters < num_passing: + print_str = ( + "Only %s filters are activated before applying pairwise retrosynthesizability. \n" + "Setting `num_passing` to %s." % (num_filters, num_filters) + ) + print(print_str) + num_passing = num_filters + dir = os.path.join( + global_parameters.get("custom_path"), + datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), + ) + + if not os.path.exists(dir): + os.makedirs(dir) + + PATH_DATA_CUSTOM = pathlib.Path(dir) # define Path to custom data + + # to prevent showing personal paths in the notebooks + dir_print_version = ( + str(dir).split("../../")[1] if len(str(dir).split("../../")) == 2 else dir + ) + + print( + "Your custom kinfraglib, the chosen parameters log file and the filtering results will be stored in " + + dir_print_version # noqa E501 + ) + # save chosen parameters in created timestamp dir to save log file and created library + param_list = [ + "global_parameters", + "pains_parameters", + "brenk_parameters", + "ro3_parameters", + "qed_parameters", + "bb_parameters", + "syba_parameters", + "retro_parameters", + ] + + for curdict in param_list: + cur_dict = eval("copy.deepcopy(" + curdict + ")") + for key in eval(curdict + ".keys()"): + if eval('isinstance(cur_dict["' + key + '"], pathlib.Path)'): + new_path = {key: str(cur_dict[key])} # noqa F841 + cur_dict.update(new_path) + cur_dict[key] = str(cur_dict[key]) + with open(PATH_DATA_CUSTOM / "custom_filtering_parameters.log", "a+") as fp: + fp.write(curdict + ": ") + + eval( + 'json.dump(cur_dict, open("' + + str(PATH_DATA_CUSTOM) + + '/custom_filtering_parameters.log", "a+"))' + ) # noqa E501 + with open(PATH_DATA_CUSTOM / "custom_filtering_parameters.log", "a+") as fp: + fp.write("\n") + + save_cols = [] # variable to store filter columns that are created during filtering + + # if pains_filter is activated, apply pains filter with the given parameters + if pains_parameters.get("pains_filter"): + save_cols.append("bool_pains") + print("Apply PAINS filter..") + fragment_library, pains_df = filters.unwanted_substructures.get_pains( + fragment_library + ) + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_pains = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_pains", "pains" + ), + ], + axis=1, + ) + num_fragments_pains = pd.concat( + [ + num_fragments_pains, + num_fragments_pains.sum().rename("Total").to_frame().T, + ] + ) + display(num_fragments_pains) + # if brenk_filter is activated, apply brenk filter with the given parameters + if brenk_parameters.get("brenk_filter"): + save_cols.append("bool_brenk") + print("Apply Brenk filter..") + DATA_BRENK = brenk_parameters.get("substructure_file_path") + fragment_library, brenk_structs = filters.unwanted_substructures.get_brenk( + fragment_library, DATA_BRENK + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_brenk = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_brenk", "brenk" + ), + ], + axis=1, + ) + num_fragments_brenk = pd.concat( + [ + num_fragments_brenk, + num_fragments_brenk.sum().rename("Total").to_frame().T, + ] + ) + display(num_fragments_brenk) + + # if ro3_filter is activated, apply ro3 filter with the given parameters + if ro3_parameters.get("ro3_filter"): + save_cols.append("bool_ro3") + print("Apply Ro3 filter..") + num_fulfilled_ro3 = ro3_parameters.get("num_fulfilled") + cutoff_crit_ro3 = ro3_parameters.get("cutoff_crit") + fragment_library = filters.drug_likeness.get_ro3_frags( + fragment_library, + min_fulfilled=num_fulfilled_ro3, + cutoff_crit=cutoff_crit_ro3, + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_ro3 = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_ro3", "ro3" + ), + ], + axis=1, + ) + num_fragments_ro3 = pd.concat( + [ + num_fragments_ro3, + num_fragments_ro3.sum().rename("Total").to_frame().T, + ] + ) + display(num_fragments_ro3) + + # if qed_filter is activated, apply qed filter with the given parameters + if qed_parameters.get("qed_filter"): + save_cols.append("bool_qed") + save_cols.append("qed") + print("Apply QED filter..") + cutoff_qed = qed_parameters.get("cutoff_value") + cutoff_crit_qed = qed_parameters.get("cutoff_crit") + plot_stats_qed = qed_parameters.get("plot_stats") + + fragment_library = filters.drug_likeness.get_qed( + fragment_library, + cutoff_val=cutoff_qed, + cutoff_crit=cutoff_crit_qed, + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_qed = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_qed", "qed" + ), + ], + axis=1, + ) + num_fragments_qed = pd.concat( + [ + num_fragments_qed, + num_fragments_qed.sum().rename("Total").to_frame().T, + ] + ) + display(num_fragments_qed) + + if qed_parameters.get("do_plot"): + filters.plots.make_hists( + fragment_library, + "qed", + "QED", + plot_stats=plot_stats_qed, + cutoff=cutoff_qed, + ) + + # if bb_filter is activated, apply bb filter with the given parameters + if bb_parameters.get("bb_filter"): + save_cols.append("bool_bb") + print("Apply BB filter..") + fragment_library = filters.synthesizability.check_building_blocks( + fragment_library, + bb_parameters.get("bb_file"), + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_bb = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_bb", "enamine" + ), + ], + axis=1, + ) + num_fragments_bb = pd.concat( + [num_fragments_bb, num_fragments_bb.sum().rename("Total").to_frame().T] + ) + display(num_fragments_bb) + + # if syba_filter is activated, apply syba filter with the given parameters + if syba_parameters.get("syba_filter"): + save_cols.append("bool_syba") + save_cols.append("syba") + print("Apply SYBA filter..") + cutoff_syba = syba_parameters.get("cutoff_value") + cutoff_crit_syba = syba_parameters.get("cutoff_crit") + query_type = syba_parameters.get("query_type") + plot_stats_syba = syba_parameters.get("plot_stats") + fragment_library = filters.synthesizability.calc_syba( + fragment_library, + cutoff=cutoff_syba, + cutoff_criteria=cutoff_crit_syba, + query_type=query_type, + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if global_parameters.get("show_stats"): + num_fragments_syba = pd.concat( + [ + filters.analysis.count_fragments(fragment_library, "pre_filtered"), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_syba", "syba" + ), + ], + axis=1, + ) + num_fragments_syba = pd.concat( + [ + num_fragments_syba, + num_fragments_syba.sum().rename("Total").to_frame().T, + ] + ) + display(num_fragments_syba) + if syba_parameters.get("do_plot"): + filters.plots.make_hists( + fragment_library, + colname="syba", + filtername="SYBA", + plot_stats=plot_stats_syba, + cutoff=cutoff_syba, + ) + # check which filters were applied + nfrags = filters.analysis.count_fragments(fragment_library, "pre_filtered") + # save filter results up to this point + filters.retro.save_filter_results(fragment_library, save_cols, PATH_DATA_CUSTOM) + filter_cols = [] + if pains_parameters.get("pains_filter"): + filter_cols.append("bool_pains") + if brenk_parameters.get("brenk_filter"): + filter_cols.append("bool_brenk") + if ro3_parameters.get("ro3_filter"): + filter_cols.append("bool_ro3") + if qed_parameters.get("qed_filter"): + filter_cols.append("bool_qed") + if bb_parameters.get("bb_filter"): + filter_cols.append("bool_bb") + if syba_parameters.get("syba_filter"): + filter_cols.append("bool_syba") + # get boolean column defining if a fragment passed at least the defined number of filters + fragment_library = filters.analysis.number_of_accepted( + fragment_library, + columns=pd.Series(filter_cols), + min_accepted=num_passing, + ) + + # save only fragments passing the defined min. number of filters + for subpocket in fragment_library.keys(): + fragment_library[subpocket].drop( + fragment_library[subpocket] + .loc[fragment_library[subpocket]["bool"] == 0] + .index, + inplace=True, + ) + fragment_library[subpocket] = fragment_library[subpocket].reset_index(drop=True) + + # create a dataframe counting how many fragments are used for pairwise retro filter + frags_for_retro = pd.DataFrame( + pd.concat( + [ + nfrags, + filters.analysis.count_fragments( + fragment_library, + "number of fragments used for pairwise retrosynthesizability", + ), + ], + axis=1, + ) + ) + frags_for_retro = pd.concat( + [frags_for_retro, frags_for_retro.sum().rename("Total").to_frame().T] + ) + display(frags_for_retro) + + if retro_parameters.get("retro_filter"): + print("Apply pairwise retrosynthesizability filter..") + PATH_DATA_RETRO = retro_parameters.get("retro_path") + valid_fragment_pairs, unique_pairs = filters.retro.get_valid_fragment_pairs( + fragment_library + ) + + warnings.filterwarnings("ignore") + ( + fragment_library, + mol_df, + diff_df, + ) = filters.retro.get_pairwise_retrosynthesizability( + unique_pairs, + PATH_DATA_RETRO, + valid_fragment_pairs, + fragment_library, + cutoff_value=retro_parameters.get("cutoff_value"), + cutoff_crit=retro_parameters.get("cutoff_crit"), + ) + + # if user wants to see statistics, plot number of fragments accepted/rejected + if retro_parameters.get("plot_stats"): + num_fragments_retro = pd.concat( + [ + filters.analysis.count_fragments( + fragment_library, "custom_filtered" + ), + filters.analysis.count_accepted_rejected( + fragment_library, "bool_retro", "pairwise_retosynthesizability" + ), + ], + axis=1, + ) + num_fragments_retro = num_fragments_retro.append( + num_fragments_retro.sum().rename("Total") + ) + display(num_fragments_retro) + + if retro_parameters.get("do_plot"): + filters.plots.make_retro_hists(fragment_library, "retro_count", cutoff=0) + + if retro_parameters.get("show_mols"): + for subpocket in fragment_library.keys(): + plt1 = filters.plots.retro_routes_fragments( + fragment_library, + evaluate="none", + subpocket=subpocket, + molsPerRow=10, + ) + if plt1: + display(plt1) + plt2 = filters.plots.retro_routes_fragments( + fragment_library, + evaluate="max", + subpocket=subpocket, + molsPerRow=10, + ) + if plt2: + display(plt2) + + # load results from filtering steps and add the pairwise retrosynthesizability results + saved_filter_results = pd.read_csv( + PATH_DATA_CUSTOM / "custom_filter_results.csv" + ) + saved_filter_results.set_index(["subpocket", "smiles"]) + fragment_library_concat = pd.concat(fragment_library) + retro_results_df = pd.DataFrame() + retro_results_df["subpocket"] = fragment_library_concat["subpocket"] + retro_results_df["smiles"] = fragment_library_concat["smiles"] + retro_results_df["retro_count"] = fragment_library_concat["retro_count"] + retro_results_df["bool_retro"] = fragment_library_concat["bool_retro"] + retro_results_df.set_index(["subpocket", "smiles"]) + + all_results_df = saved_filter_results.merge( + retro_results_df, + left_on=["subpocket", "smiles"], + right_on=["subpocket", "smiles"], + how="outer", + ) + all_results_df.to_csv( + PATH_DATA_CUSTOM / "custom_filter_results.csv", index=False + ) + + # save the filtered fragment library + print("Save custom filtered fragment library to %s" % str(dir_print_version)) + for subpocket in fragment_library.keys(): + fragment_library[subpocket].drop( + fragment_library[subpocket] + .loc[fragment_library[subpocket]["bool_retro"] == 0] + .index, + inplace=True, + ) + # remove fragments not passing the retro-filter + fragment_library_concat = fragment_library_concat[ + fragment_library_concat["bool_retro"] == 1 + ] + filters.retro.save_fragment_library_to_sdfs( + PATH_DATA_CUSTOM, + fragment_library_concat, + ) + fragment_library[subpocket] = fragment_library[subpocket].reset_index(drop=True) + return { + "fragment_library": fragment_library, + "pains_df": pains_df, + "brenk_df": brenk_structs, + "mol_df": mol_df, + "diff_df": diff_df, + } diff --git a/kinfraglib/filters/plots.py b/kinfraglib/filters/plots.py new file mode 100644 index 00000000..8fa233e1 --- /dev/null +++ b/kinfraglib/filters/plots.py @@ -0,0 +1,980 @@ +""" +Contains plotting functionalities for different filters. +""" + +import statistics +import matplotlib.pyplot as plt +from matplotlib import gridspec +import pandas as pd +from rdkit import Chem +from rdkit.Chem import Draw, MACCSkeys +import seaborn as sns +from sklearn.decomposition import PCA +from sklearn.manifold import TSNE +from IPython.display import display +from kinfraglib import utils as kfl_utils +from collections import Counter + + +def make_hists( + fragment_library, colname, filtername=None, plot_stats=True, cutoff=None +): + """ + Creates a histogram for each subpocket for the given values. + + Parameters + ---------- + fragment_library : dict + fragment library organized in subpockets. + + colname : str + Name of the column where values for creating the histograms are stored. + + filtername : str + name of the filter used as title creating the values plotted. By default, filtername=None, + meaning no title will be displayed. + + plot_stats : boolean + defining if a box with min, max and mean value will be displayed in each plot. By default + plot_stats=True. + + cutoff : int or float + cutoff value for drawing a cutoff line to the plots. By default, cutoff=None, meaning no + cutoff line is plotted. + """ + # get even number if number of plots not even + num_plots = round(len(fragment_library.keys()) + 0.5) + plt.figure(figsize=(20, 22)) + # create grid to place plots next to each other + gs = gridspec.GridSpec(int(num_plots / 2), int(num_plots / 2)) + # save keys + keys = list(fragment_library.keys()) + subpocket_num = 0 + # create one plot for each subpocket + for i in range(0, 2): + for j in range(0, int((num_plots) / 2)): + if (i * 4) + j <= num_plots and subpocket_num < len( + fragment_library.keys() + ): + ax = plt.subplot(gs[i, j]) + ax.hist( + fragment_library[keys[subpocket_num]][colname], + facecolor="#04D8B2", + edgecolor="#808080", + ) + ax.set_title(keys[subpocket_num]) + if ( + plot_stats + ): # add statistics box (max, min, mean value per subpocket) + plt.plot( + [], + [], + " ", + label="mean: " + + str( # noqa: W504 + round( + statistics.mean( + fragment_library[keys[subpocket_num]][colname] + ), + ndigits=2, + ) + ), # noqa: E501 + ) + plt.plot( + [], + [], + " ", + label="min: " + + str( # noqa: W504 + round(min(fragment_library[keys[subpocket_num]][colname])) + ), + ) + plt.plot( + [], + [], + " ", + label="max: " + + str( # noqa: W504 + round(max(fragment_library[keys[subpocket_num]][colname])) + ), + ) + plt.legend() + if cutoff is not None: # if a cutoff is given draw a red line + plt.axvline(x=cutoff, color="r", linestyle="-") + if filtername is not None: + plt.xlabel(filtername) + plt.ylabel("Number of fragments") # set yaxis label + subpocket_num = subpocket_num + 1 # go to next subpocket + plt.suptitle(filtername) # set filtername as title over the plots + plt.show() # show the plots, needed when called in function other not in notebook + + +def make_retro_hists( + fragment_library, colname, filtername=None, plot_stats=True, cutoff=None +): + """ + Creates a histogram for each subpocket for defined values. + Parameters + ---------- + fragment_library : dict + fragment library organized in subpockets + colname : str + Name of the column where values for creating histograms are stored + filtername : str + name of the filter used as title creating the values plotted + cutoff : int or float + cutoff value for drawing a cutoff line to the plots + """ + # only consider subpockets that are not empty after filtering + fragment_library = { + sp: data + for sp, data in fragment_library.items() + if any(fragment_library[sp][colname]) + } + + # get even number if number of plots not even + num_plots = round(len(fragment_library.keys()) + 0.5) + plt.figure(figsize=(25, 29)) + gs = gridspec.GridSpec(int(num_plots / 2), int(num_plots / 2)) + keys = list(fragment_library.keys()) + subpocket_num = 0 + for i in range(0, 2): + for j in range(0, int((num_plots) / 2)): + if (i * 4) + j <= num_plots and subpocket_num < len( + fragment_library.keys() + ): + cur_data = fragment_library[keys[subpocket_num]][colname] + cur_binsize = round(max(cur_data) / 9) + bin_lst = list(range(0, max(cur_data) + cur_binsize, cur_binsize)) + bin_lst.pop(0) + bin_lst = [-(cur_binsize), 0.1] + bin_lst + medians = [] + bin_label = [] + for x in range(0, len(bin_lst) - 1): + if x == 0: + bin_str = "[0]" + elif x == 1: + bin_str = "(%s, %s)" % (0, bin_lst[x + 1]) + elif x == len(bin_lst) - 1: + bin_str = "[%s, %s]" % (bin_lst[x], bin_lst[x + 1]) + else: + bin_str = "[%s, %s)" % (bin_lst[x], bin_lst[x + 1]) + bin_label.append(bin_str) + cur_bins = [bin_lst[x], bin_lst[x + 1]] + medians.append(statistics.median(cur_bins)) + medians = [round(num) for num in medians] + label_pos = [] + for label in medians: + label_pos.append(label) + ax = plt.subplot(gs[i, j]) + N, _, patches = ax.hist(cur_data, bins=bin_lst, rwidth=0.9) + ax.set_xticks(label_pos) + ax.set_xticklabels(bin_label, rotation=90) + ax.set_title(keys[subpocket_num]) + patches[0].set_facecolor("r") + for count, patch in zip(N, patches): + ax.annotate( + str(int(count)), + xy=(patch.get_x() + (cur_binsize / 2) - 1, patch.get_height()), + ha="center", + va="bottom", + ) + if plot_stats: + plt.plot( + [], + [], + " ", + label="mean: " + + str( # noqa: W504 + round( + statistics.mean( + fragment_library[keys[subpocket_num]][colname] + ) + ) + ), # noqa: E501 + ) + plt.plot( + [], + [], + " ", + label="min: " + + str( # noqa: W504 + round(min(fragment_library[keys[subpocket_num]][colname])) + ), + ) + plt.plot( + [], + [], + " ", + label="max: " + + str( # noqa: W504 + round(max(fragment_library[keys[subpocket_num]][colname])) + ), + ) + plt.legend() + if filtername is not None: + plt.xlabel(filtername) + plt.ylabel("Number of fragments") + plt.xlabel("Number of retrosynthetic routes") + subpocket_num = subpocket_num + 1 + plt.suptitle(filtername) + plt.show() + + +def retro_routes_fragments(fragment_library, evaluate, subpocket, molsPerRow=10): + """ + Creates an image of the fragments for the given subpocket + a) without a retrosynthetic route found if evaluate="none" + b) max. 10 fragments with the most retrosynthetic routes found. + ---------- + fragment_library : dict + fragment library organized in subpockets + + evaluate : str + "none" or "max", defining if the fragments without retrosynthetic route ("none") or + the fragments with the most retrosynthetic routes found ("max") will be shown + + subpocket : str + defining the fragments from which subpocket will be shown + + molsPerRow : int + defining how many molecules are displayed in one row. By default, molsPerRow=10 + """ + if evaluate == "none": + num_fragments = len( + pd.Series( + fragment_library[subpocket][ + fragment_library[subpocket]["retro_count"] == 0 + ].ROMol + ) + ) + print( + "%s %s fragments with no retrosynthetic route found" + % (num_fragments, subpocket) + ) + if num_fragments == 0: + return + img = Draw.MolsToGridImage( + pd.Series( + fragment_library[subpocket][ + fragment_library[subpocket]["retro_count"] == 0 + ].ROMol + ), + molsPerRow=molsPerRow, + maxMols=len( + pd.Series( + fragment_library[subpocket][ + fragment_library[subpocket]["retro_count"] == 0 + ].ROMol + ), + ), + returnPNG=False, + ) + return img + elif evaluate == "max": + num_fragments = len( + pd.Series( + fragment_library[subpocket][ + fragment_library[subpocket]["retro_count"] > 0 + ][0:10].ROMol + ) + ) + print( + "%s %s fragments with the most retrosynthetic routes found" + % ( + num_fragments, + subpocket, + ) + ) + if num_fragments == 0: + return + print("legend: number of retrosynthetic routes found") + img = Draw.MolsToGridImage( + pd.Series( + fragment_library[subpocket][ + fragment_library[subpocket]["retro_count"] > 0 + ] + .sort_values("retro_count", ascending=False)[0:10] + .ROMol + ), + molsPerRow=molsPerRow, + legends=list( + fragment_library[subpocket] + .sort_values("retro_count", ascending=False, ignore_index=True)[0:10][ + "retro_count" + ] + .astype(str) + ), + returnPNG=False, + ) + return img + + +def create_tsne_plots(fragment_library): + """ + Creates t-SNE plots comparing + a) pre-filtered and reduced fragment library + b) pre-filtered and custom filtered fragment library + c) pre-filtered, reduced and custom fragment library + + and prints number of fragments in the subsets. + ---------- + fragment_library : dict + fragment library organized in subpockets containing boolean columuns `bool_reduced`and + `bool_custom`defining if the fragments are part of the subsets + + """ + fragment_library_concat = pd.concat(fragment_library).reset_index(drop=True) + fragment_library_concat["maccs"] = fragment_library_concat.ROMol.apply( + MACCSkeys.GenMACCSKeys + ) + + pca = PCA(n_components=50) + crds = pca.fit_transform(list(fragment_library_concat["maccs"])) + + crds_embedded = TSNE( + n_components=2, init="pca", learning_rate="auto" + ).fit_transform(crds) + + tsne_df = pd.DataFrame(crds_embedded, columns=["X", "Y"]) + # add bool column from filtering steps here + tsne_df["reduced"] = fragment_library_concat["bool_reduced"] + tsne_df["custom"] = fragment_library_concat["bool_custom"] + # create column defining if fragment is + # *excluded in both subsets (0) + # *included in custom (1) + # *included in reduced (2) + # *included in both subsets (3) + bool_compare = [] + for i, row in fragment_library_concat.iterrows(): + if row["bool_reduced"] == 0 and row["bool_custom"] == 0: + bool_compare.append(0) + elif row["bool_reduced"] == 0 and row["bool_custom"] == 1: + bool_compare.append(1) + elif row["bool_reduced"] == 1 and row["bool_custom"] == 0: + bool_compare.append(2) + elif row["bool_reduced"] == 1 and row["bool_custom"] == 1: + bool_compare.append(3) + tsne_df["compare"] = bool_compare + num0 = len(tsne_df[tsne_df["compare"] == 0]) + num1 = len(tsne_df[tsne_df["compare"] == 1]) + num2 = len(tsne_df[tsne_df["compare"] == 2]) + num3 = len(tsne_df[tsne_df["compare"] == 3]) + + # create tsne plots + plt.figure(figsize=(18, 10)) + plt.subplot(2, 2, 1) + sns.scatterplot( + data=tsne_df.query("reduced == 0"), + x="X", + y="Y", + color="lightcoral", + alpha=0.5, + label="excluded", + ).set_title("pre_filtered vs. reduced") + sns.scatterplot( + data=tsne_df.query("reduced == 1"), + x="X", + y="Y", + color="green", + alpha=0.5, + label="included", + ) + + plt.subplot(2, 2, 2) + sns.scatterplot( + data=tsne_df.query("custom == 0"), + x="X", + y="Y", + color="lightcoral", + alpha=0.5, + label="excluded", + ).set_title("pre-filtered vs. custom") + sns.scatterplot( + data=tsne_df.query("custom == 1"), + x="X", + y="Y", + color="green", + alpha=0.5, + label="included", + ) + + plt.subplot(2, 2, 3) + sns.scatterplot( + data=tsne_df.query("compare == 0"), + x="X", + y="Y", + color="lightcoral", + alpha=0.5, + label="excluded in both subsets", + ).set_title("pre-filtered vs. reduced vs. custom") + sns.scatterplot( + data=tsne_df.query("compare == 1"), + x="X", + y="Y", + color="orange", + alpha=0.5, + label="included in custom subset", + ) + sns.scatterplot( + data=tsne_df.query("compare == 2"), + x="X", + y="Y", + color="lightblue", + alpha=0.5, + label="included in reduced subset", + ) + sns.scatterplot( + data=tsne_df.query("compare == 3"), + x="X", + y="Y", + color="green", + alpha=0.5, + label="included in both subsets", + ) + plt.legend(loc="upper right", bbox_to_anchor=(1.425, 1), ncol=1) + + plt.show() + num_lists = (len(tsne_df["compare"]), num0, num1, num2, num3) + print( + """%s Pre-filtered fragments. + Number of fragments excluded in both datasets: %s + Number of fragments included in the custom dataset and excluded in the reduced dataset: %s + Number of fragments included in the reduced dataset and excluded in the custom dataset: %s + Number of fragments in both datasets: %s """ + % (num_lists) + ) + tsne_df["smiles"] = fragment_library_concat["smiles"] + return tsne_df + + +def create_tsne_plots_filters(fragment_library, saved_filter_results): + """ + Creates t-SNE plots with accepted (green) and rejected (red) fragments for each filtering step. + + ---------- + fragment_library : dict +     fragment library organized in subpockets containing boolean columuns + saved_filter_results : dataframe + loaded file with saved filter results + + """ + fragment_library_concat = pd.concat(fragment_library).reset_index(drop=True) + fragment_library_concat["maccs"] = fragment_library_concat.ROMol.apply( + MACCSkeys.GenMACCSKeys + ) + + pca = PCA(n_components=50) + crds = pca.fit_transform(list(fragment_library_concat["maccs"])) + + crds_embedded = TSNE( + n_components=2, init="pca", learning_rate="auto" + ).fit_transform(crds) + + tsne_df = pd.DataFrame(crds_embedded, columns=["X", "Y"]) + # add bool column from filter steps + filters = [] + if "bool_pains" in saved_filter_results.columns: + tsne_df["pains"] = saved_filter_results["bool_pains"] + filters.append("pains") + if "bool_brenk" in saved_filter_results.columns: + tsne_df["brenk"] = saved_filter_results["bool_brenk"] + filters.append("brenk") + if "bool_ro3" in saved_filter_results.columns: + tsne_df["ro3"] = saved_filter_results["bool_ro3"] + filters.append("ro3") + if "bool_qed" in saved_filter_results.columns: + tsne_df["qed"] = saved_filter_results["bool_qed"] + filters.append("qed") + if "bool_bb" in saved_filter_results.columns: + tsne_df["bb"] = saved_filter_results["bool_bb"] + filters.append("bb") + if "bool_syba" in saved_filter_results.columns: + tsne_df["syba"] = saved_filter_results["bool_syba"] + filters.append("syba") + if "bool_retro" in saved_filter_results.columns: + tsne_df["retro"] = saved_filter_results["bool_retro"] + filters.append("retro") + + tsne_df["smiles"] = saved_filter_results["smiles"] + + # create the plots for all filters + plt.figure(figsize=(15, 21)) + i = 0 + for filter in filters: + i = i + 1 + plt.subplot(4, 2, i) + sns.scatterplot( + data=tsne_df.query("%s == 1" % filter), + x="X", + y="Y", + color="green", + alpha=0.5, + label="accepted", + ).set_title(filter) + sns.scatterplot( + data=tsne_df.query("%s == 0" % filter), + x="X", + y="Y", + color="lightcoral", + label="rejected", + ) + return tsne_df + + +def connection_frequencies( + fragment_library, fragment_library_reduced, fragment_library_custom +): + """ + Calculates the connection frequencies between the subpockets for all three subsets and + creates a barplot. + + *part of the code copied from https://github.com/sonjaleo/KinFragLib/blob/master/notebooks/2_2_fragment_analysis_statistics.ipynb # noqa: E501 + + ---------- + fragment_library : dict +     pre-filtered fragment library organized in subpockets + fragment_library_reduced : dict +     reduced fragment library organized in subpockets + fragment_library_custom : dict +     custom filtered fragment library organized in subpockets + + Returns + --------- + dataframe + with the connection frequencies for every existing connection between subpockets for all + three subsets + + """ + # fragment library pre-filtered + fragment_library_concat = pd.concat(fragment_library) + connections_by_fragment = kfl_utils.get_connections_by_fragment( + fragment_library_concat + ) + connections_by_ligand = connections_by_fragment.groupby( + ["kinase", "complex_pdb", "ligand_pdb"] + )["connections_name"].sum() + connections_by_ligand_count = connections_by_ligand.apply(lambda x: Counter(x)) + # Get connection count across ligands (count each connection per ligand only once) + connections_across_ligands_count = pd.Series( + Counter(connections_by_ligand_count.apply(list).sum()) + ) + connections_across_ligands_count.name = "count_pre-filtered" + + # Get connection frequency (100% = all ligands) + connections_across_ligands_frequency = connections_across_ligands_count.apply( + lambda x: round((x / connections_by_ligand_count.shape[0] * 100), 1) + ) + connections_across_ligands_frequency.name = "frequency_pre-filtered" + + # Concatenate count and frequency data to DataFrame + connections_across_ligands = pd.concat( + [connections_across_ligands_count, connections_across_ligands_frequency], + axis=1, + ) + + # fragment library reduced + fragment_library_reduced_concat = pd.concat(fragment_library_reduced) + connections_by_fragment_reduced = kfl_utils.get_connections_by_fragment( + fragment_library_reduced_concat + ) + + connections_by_ligand_reduced = connections_by_fragment_reduced.groupby( + ["kinase", "complex_pdb", "ligand_pdb"] + )["connections_name"].sum() + connections_by_ligand_count_reduced = connections_by_ligand_reduced.apply( + lambda x: Counter(x) + ) + + # Get connection count across ligands (count each connection per ligand only once) + connections_across_ligands_count_reduced = pd.Series( + Counter(connections_by_ligand_count_reduced.apply(list).sum()) + ) + connections_across_ligands_count_reduced.name = "count_reduced" + + # Get connection frequency (100% = all ligands) + connections_across_ligands_frequency_reduced = ( + connections_across_ligands_count_reduced.apply( + lambda x: round((x / connections_by_ligand_count_reduced.shape[0] * 100), 1) + ) + ) + connections_across_ligands_frequency_reduced.name = "frequency_reduced" + + # Concatenate count and frequency data to DataFrame + connections_across_ligands_reduced = pd.concat( + [ + connections_across_ligands_count_reduced, + connections_across_ligands_frequency_reduced, + ], + axis=1, + ) + + # fragment library custom filtered + fragment_library_custom_concat = pd.concat(fragment_library_custom) + connections_by_fragment_custom = kfl_utils.get_connections_by_fragment( + fragment_library_custom_concat + ) + + connections_by_ligand_custom = connections_by_fragment_custom.groupby( + ["kinase", "complex_pdb", "ligand_pdb"] + )["connections_name"].sum() + connections_by_ligand_count_custom = connections_by_ligand_custom.apply( + lambda x: Counter(x) + ) + + # Get connection count across ligands (count each connection per ligand only once) + connections_across_ligands_count_custom = pd.Series( + Counter(connections_by_ligand_count_custom.apply(list).sum()) + ) + connections_across_ligands_count_custom.name = "count_custom-filtered" + + # Get connection frequency (100% = all ligands) + connections_across_ligands_frequency_custom = ( + connections_across_ligands_count_custom.apply( + lambda x: round((x / connections_by_ligand_count_custom.shape[0] * 100), 1) + ) + ) + connections_across_ligands_frequency_custom.name = "frequency_custom_filtered" + + # Concatenate count and frequency data to DataFrame + connections_across_ligands_custom = pd.concat( + [ + connections_across_ligands_count_custom, + connections_across_ligands_frequency_custom, + ], + axis=1, + ) + + # combine connection frequencies in one dataframe + frequencies = pd.concat( + [ + connections_across_ligands["frequency_pre-filtered"], + connections_across_ligands_reduced["frequency_reduced"], + connections_across_ligands_custom["frequency_custom_filtered"], + ], + axis=1, + ) + + # create the barplot to show the connection frequencies for each subset and each connection + ax = frequencies.plot.bar() + fig = ax.get_figure() + + fig.set_figheight(5) + fig.set_figwidth(13) + + ax.set_xlabel("Subpocket") + ax.set_ylabel("Connection Frequency") + ax.set_title("Connection Frequencies of the different subsets") + + res = pd.concat( + [ + connections_across_ligands, + connections_across_ligands_reduced, + connections_across_ligands_custom, + ], + axis=1, + ) + + res = res.fillna(0) + res["count_custom-filtered"] = res["count_custom-filtered"].astype(int) + return res + + +def num_frags_development(filter_res): + """ + Count the number of fragments passing each custom filter step + + ---------- + filter_res : dataframe + Contains the calculated values and the boolean for each filtering step if a fragment was + accepted or not. + + Returns + --------- + dataframe + with the number of fragments per subpocket after each filtering step + + """ + # get the column names + frag_keys = filter_res.keys() + frag_keys.to_list() + # keep only the boolean column names (we do not need the computed values here) + bool_keys = [x for x in frag_keys if "bool" in x] + # create a dataframe to store the number of fragments left after each filtering step + update_results = pd.DataFrame() + # add number of fragments for the pre-filtered subset we are starting with + update_results["pre-filtered"] = ( + filter_res.reset_index().groupby("subpocket", sort=False).size() + ) + # go through all boolean columns after one another and count the number of fragments passing + for bool_key in bool_keys: + filter_res = filter_res.loc[filter_res[bool_key] == 1] + update_results[bool_key] = ( + filter_res.reset_index().groupby("subpocket", sort=False).size() + ) + + # create a bar plot showing the numbers of fragments passing + ax = update_results.plot.bar(width=0.9) + fig = ax.get_figure() + + fig.set_figheight(7) + fig.set_figwidth(13) + + ax.set_xlabel("Subpocket") + ax.set_ylabel("Number of fragments") + ax.set_title( + "Development of the number of fragments per subpocket after each filter step" + ) + # return dataframe with number of fragments after each filtering step. + return update_results + + +SUBPOCKET_COLORS = { + "AP": "purple", + "FP": "forestgreen", + "SE": "c", + "GA": "tab:orange", + "B1": "tab:blue", + "B2": "darkslateblue", + "X": "grey", +} + + +def draw_clusters(clustered_fragments, show_subpockets=False): + # function copied from https://github.com/volkamerlab/KinFragLib/blob/master/notebooks/2_3_fragment_analysis_most_common_fragments.ipynb # noqa: E501 + """ + Draw fragments sorted by descending cluster size and fragment count. + + Parameters + ---------- + most_common_fragments : pandas.DataFrame + Most common fragments (ID, SMILES, ROMol, cluster ID, fragment count). + show_subpockets : boolean + If show_subpockets=True the subpockets that contain this fragment are shown. By default, + show_subpockets=False. + + Returns + ------- + PIL.PngImagePlugin.PngImageFile + Image of fragments sorted by descending cluster size. + """ + # clustered_fragments = clustered_fragments.sort_values("subpocket_count", ascending=False) + if show_subpockets: + legend = [ + f"{row.cluster_id} | {row.subpocket_count} | {row.subpockets}" + for index, row in clustered_fragments.iterrows() + ] + else: + legend = [ + f"{row.cluster_id} | {row.subpocket_count}" + for index, row in clustered_fragments.iterrows() + ] + img = Draw.MolsToGridImage( + list(clustered_fragments.ROMol), + legends=legend, + molsPerRow=7, + maxMols=100, + subImgSize=(170, 170), + useSVG=True, + ) + if show_subpockets: + print("Legend: cluster ID | subpocket count | subpockets") + else: + print("Legend: cluster ID | subpocket count") + + return img + + +def plot_fragment_descriptors(descriptors, ylims): + """ + Plot fragment descriptors. + + Parameters + ---------- + descriptors : dataframe + descriptors for each fragment + + Returns + --------- + Plot of the descriptors, colored by subpocket. + """ + # copied from utils without saving img + + plt.figure(figsize=(25, 6)) + + for i, descriptor_name in enumerate(descriptors.columns[3:]): + + plt.subplot(1, 4, i + 1) + ax = sns.boxplot( + x="subpocket", + y=descriptor_name, + hue="subpocket", + legend=False, + data=descriptors, + palette=SUBPOCKET_COLORS, + medianprops={"linewidth": 3, "linestyle": "-"}, + ) + ax.set_ylim((ylims[i][0], ylims[i][1])) + plt.ylabel(descriptor_name, fontsize=16) + plt.xlabel("Subpocket", fontsize=16) + plt.xticks(fontsize=16) + plt.yticks(fontsize=16) + + return plt + + +def plot_fragment_similarity(similarities_by_groups, library_names, group_name): + """ + Plot fragment similarity by category, such as subpocket or kinase group. + + Parameters + ---------- + similiarities_by_groups : dataframe + fragment similarity per subpocket/kinase group + + similiarities_by_groups : list + containing strings with library names used as titles + + group_name : str + the group that is plotted + """ + # copied from kinfraglib/utils.py and modified + + plt.figure(figsize=(20, 5)) + num_plots = len(similarities_by_groups) + i = 0 + for similarities_by_group in similarities_by_groups: + plt.subplot(1, num_plots, i + 1) + try: + sns.boxplot( + x=similarities_by_group.columns[1], + y=similarities_by_group.columns[0], + hue=similarities_by_group.columns[1], + data=similarities_by_group, + legend=False, + palette=SUBPOCKET_COLORS, + ) + except KeyError: + sns.boxplot( + x=similarities_by_group.columns[1], + y=similarities_by_group.columns[0], + data=similarities_by_group, + color="dodgerblue", + ) + plt.ylabel("Tanimoto similarity", fontsize=18) + plt.xlabel(group_name, fontsize=18) + plt.title(library_names[i]) + plt.xticks(fontsize=18) + plt.yticks(fontsize=18) + i = i + 1 + + plt.show() + + +def most_common_in_subset( + fragment_library, + clustered_fragments_subset, + subpocket, + top_x=50, + num_subpockets=6, +): + """ + Find the top_x most common fragments for the specified subpocket in the original, + not deduplicated, fragment library and compare them with the clustered fragment library subset, + getting the number of occurrences in the original fragment library, the cluster id from the + clustered fragment library subset and the number of subpockets where + the fragment is found in the subset. + Draw fragments sorted by descending cluster size and subpocket count. + + Parameters + ---------- + fragment_library : dict + Deduplicated fragment library organized in subpockets. + clustered_fragments_subset : pandas DataFrame + Clustered fragments from a subset of the fragment_library + subpocket : str + Subpocket for which the top_x fragments are calculated. + top_x : int + Number of fragments with the highest occurrence that should be used for comparison. + By default, top_x=50. + num_subpockets : int + Number of subpockets a fragment should at most be found in. Can be an integer value + between 1 and 6. + By default, num_subpockets=6. + + Returns + ------- + PIL.PngImagePlugin.PngImageFile + Image of fragments sorted by descending cluster size and subpocket count. + + """ + + # if no fragments found that are in <=num_subpockets take one subpocket more (e.g. if no + # fragment in 1 subpocket found take fragments in 2 subpockets) + for i in range(num_subpockets, 7, 1): + subset = clustered_fragments_subset[ + clustered_fragments_subset["subpocket_count"] <= i + ] + subset = subset[subset["subpockets"].astype(str).str.contains(subpocket)] + if subset.empty: + i = i + 1 + else: + break + # get the 50 most common fragments from the original fragment library which is + # not deduplicted... + most_common_frags = kfl_utils.get_most_common_fragments( + fragment_library[subpocket], + top_x=top_x, + ) + # sort the most common fragments by the number of occourences of each fragment + most_common_frags.sort_values(by=["fragment_count"], ascending=False, inplace=True) + + # compare the most common fragments from the original fragment library with the subset and keep + # the ones that are in both + most_common_in_subset = [] + cluster_ids = [] + fragment_counts = [] + most_common_subset_df = pd.DataFrame() + subpocket_counts = [] + legend_lst = [] + for _, row_common in most_common_frags.iterrows(): + for _, row_subset in subset.iterrows(): + if Chem.MolFromSmiles(row_common["smiles"]).HasSubstructMatch( + Chem.MolFromSmiles(row_subset["smiles"]) + ) and Chem.MolFromSmiles(row_subset["smiles"]).HasSubstructMatch( + Chem.MolFromSmiles(row_common["smiles"]) + ): + most_common_in_subset.append(row_subset["smiles"]) + fragment_counts.append(row_common["fragment_count"]) + cluster_ids.append(row_subset["cluster_id"]) + subpocket_counts.append(row_subset["subpocket_count"]) + + most_common_subset_df["smiles"] = most_common_in_subset + most_common_subset_df["cluster_id"] = cluster_ids + most_common_subset_df["fragment_count"] = fragment_counts + most_common_subset_df["subpocket_count"] = subpocket_counts + + # if there are fragments found in both subsets + if not most_common_subset_df.empty: + # sort the fragments by clster_id ascending and fragment_count descending + most_common_subset_df.sort_values( + by=["cluster_id", "fragment_count"], ascending=[True, False], inplace=True + ) + # create the legend list with cluster_id, fragment_count and subpocket_count + for _, row in most_common_subset_df.iterrows(): + legend_lst.append( + f'{row["cluster_id"]} | {row["fragment_count"]} | {row["subpocket_count"]}' + ) + # draw molecules + print( + f"Legend: subset cluster ID | fragment count inside %s in complete fragment library | fragment subpocket count in subset" + % subpocket + ) # noqa E501 + img = Draw.MolsToGridImage( + [Chem.MolFromSmiles(smiles) for smiles in most_common_subset_df["smiles"]], + legends=legend_lst, + molsPerRow=10, + ) + return img + else: + print("No fragment was found in both subsets") diff --git a/kinfraglib/filters/prefilters.py b/kinfraglib/filters/prefilters.py new file mode 100644 index 00000000..51fd1195 --- /dev/null +++ b/kinfraglib/filters/prefilters.py @@ -0,0 +1,160 @@ +""" +Contains functions to apply the basic filtering steps +""" +import pandas as pd +from kinfraglib import utils + + +def pre_filters(fragment_library): + """ + Gets a dict containing fragments organized in subpockets. + Functionality + - Removes pool X + - Removes duplicates + - Removes unfragmented ligands + - Removes fragments only connecting to pool X + And returns the fragment_library dict without those fragments + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + + Returns + ------- + dict + prefiltered fragment library organized in subpockets. + """ + # remove fragments in pool x + [fragment_library.pop(x, None) for x in ["X"]] + + # remove duplicates within subpockets + fragment_library = _remove_duplicates(fragment_library) + + # remove fragments without dummy atoms (unfragmented ligands) + fragment_library = _remove_unfragmented(fragment_library) + + # remove fragments only connecting to pool X + fragment_library = _remove_connecting_only_x(fragment_library) + + # create a dictionary of fragments organie´zed in subpockets again + fragment_library = _make_df_dict(fragment_library) + + return fragment_library + + +def _remove_duplicates(fragment_library): + """ + removes fragment duplicates from each subpocket of the fragment library + + Parameters + ---------- + fragment_libray : list + fragment library organized in subpockets + + Returns + ------- + pandas DataFrame + fragment library without fragment duplicates inside the subpockets + """ + # remove duplicates + fragment_library = pd.concat(fragment_library).reset_index(drop=True) + fragment_library.groupby("subpocket", sort=False) + # Get fragment count (by SMILES) per subpocket + fragment_count = fragment_library.groupby( + ["subpocket", "smiles"], sort=False + ).size() + # Get first occurrence of SMILES per subpocket + fragment_library = fragment_library.groupby( + ["subpocket", "smiles"], sort=False + ).first() + # Add fragment count to these representative fragments + fragment_library["fragment_count"] = fragment_count + fragment_library.reset_index(inplace=True) + + return fragment_library + + +def _remove_unfragmented(fragment_library): + """ + removes fragments with no dummy atoms (unfragmented ligands). + + Parameters + ---------- + fragment_libray : pandas DataFrame + fragment library + + Returns + ------- + pandas DataFrame + fragment library containing no unfragmented ligands + """ + # remove fragments without dummy atoms (unfragmented) + # Get fragments' (subpocket) connections + fragment_library["connections"] = utils.get_connections_by_fragment( + fragment_library + ).connections + # Unfragmented ligands? + bool_unfragmented_ligands = fragment_library.connections.apply( + lambda x: len(x) == 0 + ) + # Remove unfragmented ligands + fragment_library = fragment_library[~bool_unfragmented_ligands].copy() + + return fragment_library + + +def _remove_connecting_only_x(fragment_library): + """ + removes fragments that connect only to pool X + + Parameters + ---------- + fragment_libray : pandas DataFrame + fragment library + + Returns + ------- + pandas DataFrame + fragment library without the ligands that only connect to pool X + """ + # remove fragments only connecting to pool x + # Fragment connects only to pool X? + bool_only_pool_x_connections = fragment_library.connections.apply( + lambda x: all( # All connections per fragment are X? + [ + True if "X" in i else False for i in x + ] # Connections per fragment X or not? + ) + ) + # Remove fragments that connect only to pool X + fragment_library = fragment_library[~bool_only_pool_x_connections].copy() + + return fragment_library + + +def _make_df_dict(fragment_library): + """ + Takes the fragment library DataFrame and creates a dict to create the same format of the + fragment library as in the beginning. + + Parameters + ---------- + fragment_libray : pandas DataFrame + containing fragment library + + Returns + ------- + dict + containing a pandas DataFrame with fragments for each subpocket + """ + # reorder DataFrame into dict of pd.DataFrames again + df = pd.DataFrame(fragment_library, columns=list(fragment_library.keys())) + fragment_library_dict = {} + subpockets = fragment_library["subpocket"].unique() # store subpockets + # create a DataFrame per subpocket and store the fragment library in a dict with the subpocket + # names as keys + for subpocket in subpockets: + fragment_library_dict[subpocket] = df[df.subpocket == subpocket] + fragment_library_dict[subpocket].reset_index(inplace=True, drop=True) + return fragment_library_dict diff --git a/kinfraglib/filters/retro.py b/kinfraglib/filters/retro.py new file mode 100644 index 00000000..694b55e9 --- /dev/null +++ b/kinfraglib/filters/retro.py @@ -0,0 +1,1432 @@ +""" +Contains function to check the pairwise retrosynthesizability. +""" + +import multiprocessing as mp +import os +import pandas as pd +import requests +import redo +import numpy as np +from rdkit import Chem +from rdkit.Chem.PropertyMol import PropertyMol +from rdkit.Chem import AllChem +from functools import reduce +from . import brics_rules, check +from pathlib import Path +from ast import literal_eval +from joblib import Parallel, delayed + + +def read_retro_file(path_to_retro_file): + """ + Function reading in the results retrieved from the ASKCOS query and saved in the given file. + + Parameters + ---------- + path_to_retro_file : Path + Path to file where results from the ASKCOS query are stored. + + Returns + ------- + DataFrame + Containing the requested pairs, the retrieved children and the plausibility + """ + # read in .csv file with the results of the one step retrosynthesizability + retro_df = pd.read_csv(path_to_retro_file, sep="; ", header=None, engine="python") + # define column names + retro_df.columns = ["pair", "child 1", "child 2", "plausibility"] + + # make entries to string arrays instead of string + retro_df["child 1"] = retro_df["child 1"].apply(lambda x: literal_eval(str(x))) + retro_df["child 2"] = retro_df["child 2"].apply(lambda x: literal_eval(str(x))) + retro_df["plausibility"] = retro_df["plausibility"].apply( + lambda x: literal_eval(str(x)) + ) + + return retro_df + + +def get_valid_fragment_pairs(fragment_library): + """ + Gets all possible fragment pairs and validates if their bond type, BRICS environment type + and adjacent subpockets are matching. Then it creates the SMILES string from the combined + pairs. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + + Returns + ------- + DataFrame + SMILES from valid paired fragments. + """ + # get all possible valid fragment pairs + res = get_valid_pairs(fragment_library) + # check if they have matching bond types and environments and adjacent subpockets + valids = checkvalid(res, fragment_library) + # get bond types for each connection to create fragment pairs + bonds = get_bonds(valids, res, fragment_library) + # save fragment pairs in dataframe + pair_df = get_pairs(valids, bonds, fragment_library) + + pair_smiles = [] # saving SMILES to get a unique list of all pairs SMILES + # go through all fragment pairs and save the SMILES string + for pairmol in pair_df["pair"]: + smiles = Chem.MolToSmiles(mol=pairmol) + pair_smiles.append(smiles) + # remove all duplicated SMILES + unique_smiles = pd.DataFrame({"pair": pair_smiles})["pair"].unique() + print("Number of unique pairs: %s" % len(unique_smiles)) + return pair_df, unique_smiles + + +@redo.retriable(attempts=10, sleeptime=20) +def askcos_retro(smiles): + """ + One step retrosynthesis using ASKCOS for all valid build pairs of fragments. + Saving the plausibility and the children that can build this pair according to retrosynthetic + analysis. + + Parameters + ---------- + pair_smiles : numpy array + containing SMILES strings of pairs build by fragments + + Returns + ------- + pandas DataFrame + containing the pair, the children building this pair and their plausibility + + """ + # variables to store results from ASKCOS query + pairs = [] + children1 = [] + children2 = [] + plausibilities = [] + pairs.append(smiles) # save SMILES from pairs in pairs variable + cur_children1 = [] + cur_children2 = [] + cur_plausibilities = [] + + HOST = "0.0.0.0" + PORT = "9100" # define ASKCOSV2 host & port + + params = { + "smiles": smiles, + "expand_one_options": { + "template_count": 100, + # which common probability reached until no more templates are used + "max_cum_template_prob": 0.995, + "filter_threshold": 0.75, + }, + "build_tree_options": { + # how long the expansion can run + "expansion_time": 20, + # max number of branches are looked at to find "best" + "max_branching": 25, + # maximum number of reaction steps + "max_depth": 1, + # max heavy atom constraints if "and" or "or" is used in "chemical_property_logic" + "max_chemprop_c": 0, + "max_chemprop_n": 0, + "max_chemprop_o": 0, + "max_chemprop_h": 0, + # maximum price per gram + "max_ppg": 100, + # "chemical_property_logic" + # molecules are buyable or not, can be "none" (only price relevant), + # "and" (price and heavy atoms constraint) or + # "or" (one of both constraints is relevant) + "chemical_property_logic": "none", + # want to use popular chemicals as reasonable stopping points? + "chemical_popularity_logic": "none", + # min frequency as popular reactant + "min_chempop_reactants": 5, + # min frequency as popular product + "min_chempop_products": 5, + # default is false + "return_first": "true", + }, + } + + resp = requests.post( + url=f"http://{HOST}:{PORT}/api/tree-search/mcts/call-sync-without-token", + json=params, + verify=False, + ) + retro = resp.json() + + # go through results and save them + if len(retro["result"]["paths"]): + pass + # find reactions + for path in retro["result"]["paths"]: + reactions = [node for node in path["nodes"] if node["type"] == "reaction"] + assert len(reactions) == 1 # max depth == 1 + + children = reactions[0]["precursor_smiles"].split(".") + + # only add if askcos could retrieve 2 children for reaction + if len(children) == 2: + plausibility = reactions[0]["plausibility"] + + cur_children1.append(children[0]) + cur_children2.append(children[1]) + cur_plausibilities.append(plausibility) + else: + cur_children1.append(None) + cur_children2.append(None) + cur_plausibilities.append(0) + + # if no results retrieved save None/0 + else: + cur_children1.append(None) + cur_children2.append(None) + cur_plausibilities.append(0) + + children1.append(cur_children1) + children2.append(cur_children2) + plausibilities.append(cur_plausibilities) + # save results as dataframe + res = pd.DataFrame( + list(zip(pairs, children1, children2, plausibilities)), + columns=["pair", "child 1", "child 2", "plausibility"], + ) + + return res + + +def worker_retro(working_q, output_q, retro_file): + """ + Worker function for parallel ASKCOS API request. + + Parameters + ---------- + working_q : Queue + containing fragment pair SMILES that still need to be requested + + output_q : Queue + Queue for storing output variables + """ + while True: + if working_q.empty() is True: + break # this is the so-called "poison pill" + else: + smiles = working_q.get() # get smiles from working queue + res = askcos_retro(smiles) + # call askcos for one smiles + # then save result string to output_q + for i, row in res.iterrows(): + cur_item = str( + str(row["pair"]) + + "; " + + str(row["child 1"]) + + "; " + + str(row["child 2"]) + + "; " + + str(row["plausibility"]) + + "\n" + ) + output_q.put(cur_item) + # if queue exceeds size of 100 results, save them to the output file + if output_q.qsize() > 100: + print("saving 101 results to output file..") + with open(str(retro_file), "a+") as f_object: + while True: + if output_q.empty() is True: + break + else: + f_object.write(output_q.get_nowait()) + f_object.close() + return + + +def get_pairwise_retrosynthesizability( + unique_smiles, + PATH_DATA_RETRO, + valid_fragment_pairs, + fragment_library, + cutoff_value=0, + cutoff_crit=">", +): + """ + Function calling the worker function for ASKCOS query parallel, compares ASKCOS results with + fragments. + + Parameters + ---------- + unique_smiles : list + containing SMILES of all unique valid fragment pairs + + PATH_DATA_RETRO : Path + Path to the folder where ASKCOS query results will be stored + + valid_fragment_pairs : DataFrame + containing all valid fragment pairs, including their fragment ids and the fragments + building the pairs + + fragment_library : dict + fragments organized in subpockets including all information + + cutoff_value : int + A value defining the cutoff for accepted/rejected fragments. By default, cutoff_val=0. + cutoff_crit : str + Defining whether the number of retrosynthetic routes should be ">", "<", ">=", "<=", "==" + or "!=" compared to the cutoff-value. By default, cutoff_crit=">". + Returns + ------- + dict + fragment library containing a column "retro_count" + pandas DataFrame + containing the molecules of the fragments, the pair and the children + pandas DataFrame + containing the fragments the pairs and the children molecules where the children and the + fragment structures did not match each other. + + """ + filtered_smiles = ( + [] + ) # variable to store pairs SMILES which are not already requested + retro_file = Path(PATH_DATA_RETRO / "retro.txt") + # if retro.txt file exists, check which fragment pairs are already computed + if retro_file.is_file(): + retro_df = pd.read_csv(retro_file, sep="; ", header=None, engine="python") + retro_df.columns = ["pair", "child 1", "child 2", "plausibility"] + # go through all unique fragment pairs + for smiles in unique_smiles: + # if fragment not requested store in filtered_smiles + if smiles not in retro_df["pair"].values: + filtered_smiles.append(smiles) + # if it is in the file, check if it is a match or only a substructure match + else: + in_retro = False + for smiles_retro in retro_df["pair"]: + if smiles == smiles_retro: + in_retro = True + if not in_retro: + filtered_smiles.append(smiles) + # if retro.txt file not exists make ASKCOS query for all fragments + else: + filtered_smiles = unique_smiles + print("ASKCOS query started for %s fragments." % len(filtered_smiles)) + # create queues for starting parallel ASKCOS API request + working_q = mp.Queue() # stores all SMILES from fragment pairs not computed + output_q = mp.Queue() # stores results from ASKCOS API + # save not requested fragment pairs in queue + for f_smiles in filtered_smiles: + working_q.put(f_smiles) + # start as many processes as there are cores + processes = [ + mp.Process(target=worker_retro, args=(working_q, output_q, retro_file)) + for i in range(mp.cpu_count()) + ] + for proc in processes: + proc.start() + # end processes + for proc in processes: + proc.join() + # save last ASKCOS results + with open(str(retro_file), "a+") as retro_object: + while True: + if output_q.empty(): + break + retro_object.write(output_q.get_nowait()) + retro_object.close() + print("ASKCOS query finished.") + # compare AKSCOS resulting children with fragments building the pairs + fraglib_filtered, mol_df, diff_df = get_retro_results( + PATH_DATA_RETRO, + valid_fragment_pairs, + fragment_library, + ) + vals = ( + [] + ) # variable to store how often a fragment contributes to retrosynthetic route + for subpocket in fraglib_filtered.keys(): + sub_vals = fraglib_filtered[subpocket]["retro_count"] + vals.append(sub_vals) + + # check for each fragment if it was at least part of one retrosynthetic route and add + # boolean column + fraglib_filtered = check.accepted_rejected( + fraglib_filtered, + vals, + cutoff_value=cutoff_value, + cutoff_criteria=cutoff_crit, + column_name="bool_retro", + ) + + # check if all fragment pairs are requested, if not print them and notify the user + print("Checking if all fragment pairs were requested..") + retro_df = pd.read_csv(retro_file, sep="; ", header=None, engine="python") + retro_df.columns = ["pair", "child 1", "child 2", "plausibility"] + not_requested = [] # store fragment pairs if they were not requested + for smiles in unique_smiles: + if smiles not in retro_df["pair"].values: + not_requested.append(smiles) + else: + in_retro = False + for smiles_retro in retro_df["pair"]: + if smiles == smiles_retro: + in_retro = True + if not in_retro: + not_requested.append(smiles) + if len(not_requested) > 0: + print("Following fragment pairs were not requested:") + for pair in not_requested: + print(pair) + else: + print("All fragment pairs were requested.") + print("Done.") + # return the fragment library with retro_count and bool_retro, the counts per fragment, + # a dataframe containing all children, pairs, fragments and a dataframe with the ASKCOS results + # with different children and fragments + return fraglib_filtered, mol_df, diff_df + + +def get_retro_results(PATH_DATA_RETRO, valid_fragment_pairs, fragment_library): + """ + Function comparing the ASKCOS resulting children with the fragments building the pairs. + + Parameters + ---------- + PATH_DATA_RETRO : Path + Path to the folder where ASKCOS query results are stored + + valid_fragment_pairs : DataFrame + containing all valid fragment pairs, including their fragment ids and the fragments + building the pairs + + fragment_library : dict + fragments organized in subpockets including all information + + Returns + ------- + dict + fragment library containing a column "retro_count" + pandas DataFrame + containing the molecules of the fragments, the pair and the children + pandas DataFrame + containing the fragments the pairs and the children molecules where the children and the + fragment structures did not match each other. + + """ + print("Comparing ASKCOS children with fragments..") + # load results from ASKCOS from file + retro_file = Path(PATH_DATA_RETRO / "retro.txt") + retro_df = read_retro_file(retro_file) + + pairs_frags_smiles = [] # variable to store fragment ids, fragments and pairs + frag1 = [] # variable to store the first fragment building the pair + frag2 = [] # variable to store the second fragment building the pair + pair = [] # variable to store the fragment pair + # go through the fragment IDS building the pairs and store the fragments smiles + for fragids in valid_fragment_pairs["fragment ids"]: + frag1.append( + fragment_library[fragids[0].split("_")[0]]["smiles"][ + int(fragids[0].split("_")[1]) + ] + ) + frag2.append( + fragment_library[fragids[1].split("_")[0]]["smiles"][ + int(fragids[1].split("_")[1]) + ] + ) + # go through the fragment pairs and store the SMILES + for pairmol in valid_fragment_pairs["pair"]: + pair.append(Chem.MolToSmiles(pairmol)) + pairs_frags_smiles = pd.DataFrame( + list(zip(valid_fragment_pairs["fragment ids"], frag1, frag2, pair)), + columns=("fragment ids", "fragment 1", "fragment 2", "pair"), + ) + # create equal sized splits of the retro results + df_split = np.array_split(retro_df, mp.cpu_count()) + # start comparison of fragments and ASKCOS children parallel + mol_comps = Parallel(n_jobs=mp.cpu_count())( + delayed(compare_mols)(split, pairs_frags_smiles) for split in df_split + ) + # seperate the two resulting dataframes retrieved by each parallel process and combine the + # similar dataframes from the different processes + mol_comps1 = [] + mol_comps2 = [] + for i in range(len(mol_comps)): + if len(mol_comps1) == 0: + mol_comps1 = mol_comps[i][0] + else: + mol_comps1 = pd.concat( + (mol_comps1, mol_comps[i][0]), axis=0, ignore_index=True + ) + if len(mol_comps2) == 0: + mol_comps2 = mol_comps[i][1] + else: + mol_comps2 = pd.concat( + (mol_comps2, mol_comps[i][1]), axis=0, ignore_index=True + ) + mol_comp = [mol_comps1, mol_comps2] + + # get the molecules for all entries in the dataframes + mol_df = get_mol_df(mol_comp[0]) + + mol_comp[1].rename( + columns={"diff child 1": "child 1", "diff child 2": "child 2"}, + inplace=True, + ) + try: + diff_df = get_mol_df(mol_comp[1]) + except AttributeError: + diff_df = [] + + # call function to count the number of retrosynthetic routes per fragment with the matching + # fragments and children to add the retro_count column + fraglib_filtered = retro_fragments(mol_comp[0], fragment_library) + + return fraglib_filtered, mol_df, diff_df + + +def get_mol_df(res_df): + """ + Creates a DataFrame containing fragment ids, fragments molecules, + retrosynthetic children molecules, paired molecules and the retrosynthetic plausibility. + + Parameters + ---------- + res_df : DataFrame + contains fragment ids, SMILES strings of fragments, pairs and children and the plausibility + of the retrosynthetic route. + + Returns + ------- + DataFrame + containing fragment ids, fragments molecules, retrosynthetic children molecules, + paired molecules and the retrosynthetic plausibility. + + """ + # variables to store the molecules + frag1_mol = [] + frag2_mol = [] + pair_mol = [] + child1_mol = [] + child2_mol = [] + # go through the dataframe and save the SMILES as molecules + for i, row in res_df.iterrows(): + frag1_mol.append(Chem.MolFromSmiles(row["fragment 1"])) + frag2_mol.append(Chem.MolFromSmiles(row["fragment 2"])) + pair_mol.append(Chem.MolFromSmiles(row["pair"])) + # add child molecule if there is one or None if there is none + if row["child 1"] is not None: + if isinstance(row["child 1"], list): + child1_smiles = row["child 1"][0] + else: + child1_smiles = row["child 1"] + if isinstance(row["child 2"], list): + child2_smiles = row["child 2"][0] + else: + child2_smiles = row["child 2"] + child1_mol.append(Chem.MolFromSmiles(child1_smiles)) + child2_mol.append(Chem.MolFromSmiles(child2_smiles)) + else: + child1_mol.append(None) + child2_mol.append(None) + # create molecule dataframe + mol_df = pd.DataFrame( + list( + zip( + res_df["fragment ids"], + frag1_mol, + frag2_mol, + pair_mol, + child1_mol, + child2_mol, + res_df["plausibility"], + ) + ), + columns=( + "fragment ids", + "fragment 1", + "fragment 2", + "pair", + "child 1", + "child 2", + "plausibility", + ), + ) + + return mol_df + + +def compare_mols(para_result, pairs_frags_smiles): + """ + Compares the fragments and the children molecules to determine whether this fragment pair is + retrosynthetically feasible. + + Parameters + ---------- + para_result : DataFrame + SMILES strings of pairs and children and the plausibility for the retrosynthesis + pairs_frags_smiles : DataFrame + fragment ids, SMILES strings of fragments and pairs + + Returns + ------- + DataFrame + fragment ids, SMILES strings of fragments, pairs and children and the plausibility + """ + # set pairs smiles as index + para_result.set_index("pair", inplace=True) + # get SMILES list from all fragments + smiles_list = list(pairs_frags_smiles["fragment 1"]) + smiles_list.extend(list(pairs_frags_smiles["fragment 2"])) + # get smiles list from all children + children_list = [] + for i, row in para_result.iterrows(): + for num_children in range(len(row["child 1"])): + children_list.append(row["child 1"][num_children]) + children_list.append(row["child 2"][num_children]) + # add children smiles to the smiles list + smiles_list.extend(list(children_list)) + smiles_list = set(smiles_list) # unique list of all smiles (fragments and children) + # get molecules for all unique smiles (fragments and children) + mols = get_mols(smiles_list) + mols.set_index( + "smiles", inplace=True + ) # get mol from specific smiles mols.loc["Cc1cc(N)[nH]n1"]["mol"] + # dataframe for result which frags are matching + column_names = [ + "fragment ids", + "fragment 1", + "fragment 2", + "pair", + "child 1", + "child 2", + "plausibility", + ] + column_names_diff = [ + "fragment ids", + "fragment 1", + "fragment 2", + "pair", + "diff child 1", + "diff child 2", + "plausibility", + ] + # create new dataframe to store all results with matching children and fragments + result_df = pd.DataFrame(columns=column_names) + # create new dataframe to store results with not matching children and fragments + different_structure_df = pd.DataFrame(columns=column_names_diff) + # iterate through the dataframe consisting pair, fragments and children + for i, row in pairs_frags_smiles.iterrows(): + # store current molecules and smiles + # load the molecules for each fragment + cur_pair_smiles = row["pair"] + cur_frag1_smiles = row["fragment 1"] + frag1_mol = mols.loc[cur_frag1_smiles]["mol"] + cur_frag2_smiles = row["fragment 2"] + frag2_mol = mols.loc[cur_frag2_smiles]["mol"] + frag_ids = row["fragment ids"] + # check if there is a result retrieved from ASKCOS + # if not it was not requested (not computed pairs will be checked again later and stored) + try: + cur_children1_smiles = para_result.loc[cur_pair_smiles]["child 1"] + cur_children2_smiles = para_result.loc[cur_pair_smiles]["child 2"] + cur_probs = para_result.loc[cur_pair_smiles]["plausibility"] + except KeyError: + cur_children1_smiles = [] + cur_children2_smiles = [] + cur_probs = 0 + # go through children lists and compare them with the fragments + for num_cur_smiles in range(len(cur_children1_smiles)): + child1_smiles = cur_children1_smiles[num_cur_smiles] + child2_smiles = cur_children2_smiles[num_cur_smiles] + if child1_smiles is not None and child2_smiles is not None: + child1_mol = mols.loc[child1_smiles]["mol"] + child2_mol = mols.loc[child2_smiles]["mol"] + if isinstance(child1_mol, pd.core.series.Series): + try: + this_child1 = child1_mol[0] + child1_mol = this_child1 + except IndexError: + print(child1_mol) + child1_mol = None + if isinstance(child2_mol, pd.core.series.Series): + try: + this_child2 = child2_mol[0] + child2_mol = this_child2 + except IndexError: + print(child2_mol) + child2_mol = None + if child1_mol is not None and child2_mol is not None: + if child1_mol.HasSubstructMatch( + frag1_mol + ) and child2_mol.HasSubstructMatch(frag2_mol): + result_df = pd.concat( + [ + result_df, + pd.DataFrame( + [ + { + "fragment ids": frag_ids, + "fragment 1": cur_frag1_smiles, + "fragment 2": cur_frag2_smiles, + "pair": cur_pair_smiles, + "child 1": child1_smiles, + "child 2": child2_smiles, + "plausibility": cur_probs[num_cur_smiles], + } + ] + ), + ], + ignore_index=True, + ) + elif child1_mol.HasSubstructMatch( + frag2_mol + ) and child2_mol.HasSubstructMatch(frag1_mol): + result_df = pd.concat( + [ + result_df, + pd.DataFrame( + [ + { + "fragment ids": frag_ids, + "fragment 1": cur_frag1_smiles, + "fragment 2": cur_frag2_smiles, + "pair": cur_pair_smiles, + "child 1": child2_smiles, + "child 2": child1_smiles, + "plausibility": cur_probs[num_cur_smiles], + } + ] + ), + ], + ignore_index=True, + ) + else: + different_structure_df = pd.concat( + [ + different_structure_df, + pd.DataFrame( + [ + { + "fragment ids": frag_ids, + "fragment 1": cur_frag1_smiles, + "fragment 2": cur_frag2_smiles, + "pair": cur_pair_smiles, + "diff child 1": child2_smiles, + "diff child 2": child1_smiles, + "plausibility": cur_probs[num_cur_smiles], + } + ] + ), + ], + ignore_index=True, + ) + else: + result_df = pd.concat( + [ + result_df, + pd.DataFrame( + [ + { + "fragment ids": frag_ids, + "fragment 1": cur_frag1_smiles, + "fragment 2": cur_frag2_smiles, + "pair": cur_pair_smiles, + "child 1": None, + "child 2": None, + "plausibility": 0, + } + ] + ), + ], + ignore_index=True, + ) + else: + result_df = pd.concat( + [ + result_df, + pd.DataFrame( + [ + { + "fragment ids": frag_ids, + "fragment 1": cur_frag1_smiles, + "fragment 2": cur_frag2_smiles, + "pair": cur_pair_smiles, + "child 1": None, + "child 2": None, + "plausibility": 0, + } + ] + ), + ], + ignore_index=True, + ) + + return [result_df, different_structure_df] + + +def retro_fragments(retro_df, fragment_library): + """ + Counts the number of times that a fragment participates in a retrosynthetic route. + + Parameters + ---------- + retro_df : DataFrame + fragment ids, fragment1, fragment2, pair, children_1 and children_2 molecules and + plausibility + fragment_library : dict + fragments organized in subpockets including all information + + Returns + ------- + dict + fragments organized in subpockets including all information and the number of times + that a fragment participates in a retrosynthesis. + + """ + # get list of fragment ids if plausibility is not 0 + all_frags = [] + frag_ids = [] + for i, row in retro_df.iterrows(): + if row["plausibility"] != 0: + frag_ids.append(retro_df["fragment ids"][i][0]) + frag_ids.append(retro_df["fragment ids"][i][1]) + all_frags = pd.DataFrame(frag_ids, columns=["ids"]) + # count how often fragment is part of retrosynthetic route + counts = all_frags.groupby("ids").size() + + # go through all subpockets and fragments and add number of + # contributions to retrosynthetic routes + for subpocket in fragment_library.keys(): + count_frags = [] + for i in range(0, len(fragment_library[subpocket])): + if hasattr(counts, str(subpocket + "_" + str(i))): + attribute = str(subpocket + "_" + str(i)) + num_counts = getattr(counts, attribute) + count_frags.append(num_counts) + + else: + count_frags.append(0) + # add number of participations in retrosynthetic routes for every fragment to the fragment + # library + fragment_library[subpocket]["retro_count"] = count_frags + + return fragment_library + + +def get_mols(smiles_list): + """ + Function that creates a dataframe with the molecules to the given SMILES. + + Parameters + ---------- + smiles_list : list + containing SMILES strings + + Returns + ------- + pandas.DataFrame + containing the given SMILES and their molecules + + """ + mols = [] # variable to store the molecules + smiles = [] # variable to store the smiles strings + # go through SMILES list, compute the molecules and save them + for smile in smiles_list: + if smile is not None: + mols.append(Chem.MolFromSmiles(smile)) + smiles.append(smile) + else: + mols.append(None) + smiles.append(None) + # create dataframe containing smiles and their molecule + smiles_mol_df = pd.DataFrame(list(zip(mols, smiles)), columns=("mol", "smiles")) + return smiles_mol_df + + +def construct_ligand(fragment_ids, bond_ids, fragment_library): + """ + *copied and adapted from kinase_focused_fragment_library* + Construct a ligand by connecting multiple fragments based on a Combination object + Parameters + ---------- + fragment_ids: list of str + Fragment IDs of recombined ligand, e.g. `["SE_2", "AP_0", "FP_2"]` (`_`). + bond_ids : list of list of str + Bond IDs of recombined ligand, e.g. `[["FP_6", "AP_10"], ["AP_11", "SE_13"]]`: + Atom (`_`) pairs per fragment bond. + fragment_library : dict of pandas.DataFrame + SMILES and RDKit molecules for fragments (values) per subpocket (key). + Returns + ------- + ligand: rdkit.Chem.rdchem.Mol or None + Recombined ligand (or None if the ligand could not be constructed) + """ + + fragments = [] + for fragment_id in fragment_ids: + + # Get subpocket and fragment index in subpocket + subpocket = fragment_id.split("_")[0] + fragment_index = int(fragment_id.split("_")[1]) + fragment = fragment_library[subpocket].ROMol_original[fragment_index] + + # Store unique atom identifiers in original molecule (important for recombined ligand + # construction based on atom IDs) + fragment = Chem.RemoveHs(fragment) + for i, atom in enumerate(fragment.GetAtoms()): + fragment_atom_id = f"{subpocket}_{i}" + atom.SetProp("fragment_atom_id", fragment_atom_id) + atom.SetProp("fragment_id", fragment.GetProp("complex_pdb")) + fragment = PropertyMol(fragment) + + # Append fragment to list of fragments + fragments.append(fragment) + + # Combine fragments using map-reduce model + combo = reduce(Chem.CombineMols, fragments) + + bonds_matching = True + ed_combo = Chem.EditableMol(combo) + replaced_dummies = [] + + # for bond in bond_ids: + + dummy_1 = next( + atom + for atom in combo.GetAtoms() + if atom.GetProp("fragment_atom_id") == bond_ids[0] + ) + dummy_2 = next( + atom + for atom in combo.GetAtoms() + if atom.GetProp("fragment_atom_id") == bond_ids[1] + ) + atom_1 = dummy_1.GetNeighbors()[0] + atom_2 = dummy_2.GetNeighbors()[0] + + # check bond types + bond_type_1 = combo.GetBondBetweenAtoms( + dummy_1.GetIdx(), atom_1.GetIdx() + ).GetBondType() + bond_type_2 = combo.GetBondBetweenAtoms( + dummy_2.GetIdx(), atom_2.GetIdx() + ).GetBondType() + if bond_type_1 != bond_type_2: + bonds_matching = False + # print("Bonds not matching") + + ed_combo.AddBond(atom_1.GetIdx(), atom_2.GetIdx(), order=bond_type_1) + + replaced_dummies.extend([dummy_1.GetIdx(), dummy_2.GetIdx()]) + + # Do not construct this ligand if bond types are not matching + if not bonds_matching: + return + + # Remove replaced dummy atoms + replaced_dummies.sort(reverse=True) + for dummy in replaced_dummies: + ed_combo.RemoveAtom(dummy) + + ligand = ed_combo.GetMol() + + # Replace remaining dummy atoms with hydrogens + du = Chem.MolFromSmiles("*") + h = Chem.MolFromSmiles("[H]", sanitize=False) + ligand = AllChem.ReplaceSubstructs(ligand, du, h, replaceAll=True)[0] + try: + ligand = Chem.RemoveHs(ligand) + except ValueError: + print(Chem.MolToSmiles(ligand)) + return + + # Clear properties + for prop in ligand.GetPropNames(): + ligand.ClearProp(prop) + for atom in ligand.GetAtoms(): + atom.ClearProp("fragment_atom_id") + + # Generate 2D coordinates + AllChem.Compute2DCoords(ligand) + + return ligand + + +def get_bonds(valids, data, fragment_library): + """ + Function for getting the corresponding bond type to the connections of fragment pairs. + + Parameters + ---------- + valids : list + list of lists containing fragment id pairs of matching pairs + data : dict + fragment library prepared for building valid pairs + + fragment_libray : dict + fragments organized in subpockets including all information + + + Returns + ------- + list + list of lists containing fragment ids of pairs and corresponding bond type + + """ + + bonds = ( + [] + ) # store bonds of valid matching pairs as atom IDs where connection is formed + # go through all valid pairs + for valid in valids: + bond = [] + for val in valid: + # load fragments that should get connected + subpocket1 = val[0].split("_")[0] + fragment1_index = int(val[0].split("_")[1]) + fragment1 = fragment_library[subpocket1]["ROMol_original"][fragment1_index] + # remove Hs before finding bonds otherwise bond ids not correct because for combining + # molecules without Hs are used + fragment1 = Chem.RemoveHs(fragment1) + + subpocket2 = val[1].split("_")[0] + fragment2_index = int(val[1].split("_")[1]) + fragment2 = fragment_library[subpocket2]["ROMol_original"][fragment2_index] + # remove Hs before finding bonds + fragment2 = Chem.RemoveHs(fragment2) + + # i = 0 + bond1_id = None + bond2_id = None + + data1 = data[subpocket1][fragment1_index] + # get corresponding connection to load environment, bond type and neighboring subpocket + for i in range(0, len(data1.ports)): + environment1 = data1.ports[i].environment + bond_type1 = data1.ports[i].bond_type + neighbor1 = data1.ports[i].neighboring_subpocket + + data2 = data[subpocket2][ + fragment2_index + ] # for matching fragment also get the connection data + for j in range(0, len(data2.ports)): + environment2 = data2.ports[j].environment + bond_type2 = data2.ports[j].bond_type + neighbor2 = data2.ports[j].neighboring_subpocket + + # check again if BRICS bond, bond types and subpockets are matching for + # a connection + if ( + brics_rules.is_brics_bond(environment1, environment2) + and bond_type1 == bond_type2 + and subpocket2 == neighbor1 + and subpocket1 == neighbor2 + ): + # get atom indices where connection is build + for atom in fragment1.GetAtoms(): + atom_symbol = atom.GetSymbol() + if atom_symbol == "*": + bond1_id = subpocket1 + "_" + str(atom.GetIdx()) + + for atom2 in fragment2.GetAtoms(): + atom_symbol2 = atom2.GetSymbol() + if atom_symbol2 == "*": + bond2_id = subpocket2 + "_" + str(atom2.GetIdx()) + + bond.append( + [bond1_id, bond2_id, bond_type1] + ) # save atom indices and bond type for building the connection + bonds.append(bond) + return bonds + + +def get_pairs(valids, bonds, fragment_library): + """ + Function to get built pairs from fragments, corresponding fragments and fragment ids. + + Parameters + ---------- + valids : list + list of lists containing fragment id pairs of matching pairs + + bonds : list + list of lists containing fragment id pairs and corresponding bond type + + fragment_libray : dict + fragments organized in subpockets including all information + + Returns + ------- + pandas DataFrame + containing fragment ids, fragments building pairs and paired molecules + + """ + pairs = [] + frags1 = [] + frags2 = [] + ids = [] + for i in range(0, len(valids)): + for j in range(0, len(valids[i])): + frag1 = fragment_library[valids[i][j][0].split("_")[0]]["ROMol_dummy"][ + int(valids[i][j][0].split("_")[1]) + ] + frag2 = fragment_library[valids[i][j][1].split("_")[0]]["ROMol_dummy"][ + int(valids[i][j][1].split("_")[1]) + ] + + frags1.append(frag1) + frags2.append(frag2) + + pair = construct_ligand(valids[i][j], bonds[i][j], fragment_library) + pairs.append(pair) + ids.append(valids[i][j]) + + # filter out fragments that cannot be constructred and are therefore None + pair_df = pd.DataFrame( + {"fragment ids": ids, "fragment 1": frags1, "fragment 2": frags2, "pair": pairs} + ) + pair_df = pair_df.loc[pair_df["pair"].notnull()] + + return pair_df + + +def checkvalid(data, fragment_library): + """ + Function for checking if the fragment pairs are valid and can build connections. + + Parameters + ---------- + data : dict + fragment library prepared for building valid pairs + + fragment_libray : dict + fragments organized in subpockets including all information + + Returns + ------- + list + list of lists containing fragment id pairs of matching pairs + + """ + + matches = [] # save matching fragment pairs + # iterate through subpockets + for subpocket in fragment_library.keys(): + # iterate through fragments in subpockets + for fragment in data[subpocket]: + fragment_id1 = ( + fragment.frag_id + ) # store fragment ID of first fragment in pair + # go through atom connections and check neighbors, bond type and environment + for i in range(0, len(fragment.ports)): + neighbor = fragment.ports[i].neighboring_subpocket + bond_type = fragment.ports[i].bond_type + environment = fragment.ports[i].environment + match = [] # store current matching fragment pair + for frag2 in data[neighbor]: + fragment_id2 = frag2.frag_id # store fragment ID of second fragment + for i in range(0, len(frag2.ports)): + # check environment type, subpocket, bond type + environment_match = brics_rules.is_brics_bond( + environment, frag2.ports[i].environment + ) # check if BRICS environments can form connection + # if subpocket is adjacent, bond type is equal and environments are + # matching, add as valid matching pair + if ( + frag2.ports[i].neighboring_subpocket == subpocket + and neighbor == frag2.ports[i].subpocket + and frag2.ports[i].bond_type == bond_type + and environment_match + ): + match.append([fragment_id1, fragment_id2]) + matches.append( + match + ) # add valid matching pair to list of matching pairs + return matches + + +def get_valid_pairs(fragment_library): + """ + *copied and adapted from kinase_focused_fragment_library* + Function preparing the fragment library to build pairs. + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + + Returns + ------- + dict + fragment library prepared for building valid pairs + + """ + data = {} # (Fragments) + frag_set = set() + # only used in initialization for avoiding duplicates in fragment data set + # (smiles & dummy atoms) + + # iterate through subpockets and fragments in subpockets + # save subpocket_fragmentindex and dummy atoms, bonds etc + for subpocket in fragment_library.keys(): + fragments = [] + for i, row in fragment_library[subpocket].iterrows(): + # get fragment and connecting subpockets + fragment = row["ROMol_original"] + fragment = Chem.RemoveHs(fragment) + frag_id = f"{subpocket}_{i}" + + # store unique atom identifiers + for a, atom in enumerate(fragment.GetAtoms()): + frag_atom_id = f"{subpocket}_{a}" + atom.SetProp("frag_atom_id", frag_atom_id) + + # get all dummy atoms of this fragment except the ones corresponding to the X pool + dummy_atoms = [ + a + for a in fragment.GetAtoms() + if a.GetSymbol() == "*" and not a.GetProp("subpocket").startswith("X") + ] + if not dummy_atoms: + continue + + frag_smiles, dummy_set = get_tuple(fragment, dummy_atoms) + # check if this exact fragment has already been found + if (frag_smiles, dummy_set) in frag_set: + continue + # if not, add this fragment to set of fragments + frag_set.add((frag_smiles, dummy_set)) + + # create dummy atom objects + ports = [ + Port( + atom_id=dummy.GetProp("frag_atom_id"), + subpocket=subpocket, + neighboring_subpocket=dummy.GetProp("subpocket"), + bond_type=fragment.GetBondBetweenAtoms( + dummy.GetIdx(), dummy.GetNeighbors()[0].GetIdx() + ).GetBondType(), + environment=dummy.GetNeighbors()[0].GetProp("environment"), + ) + for dummy in dummy_atoms + ] + + # store fragment in constant data set + fragment = Fragment(frag_id=frag_id, subpocket=subpocket, ports=ports) + fragments.append(fragment) + data[subpocket] = fragments + + n_frags = len(frag_set) + + print("Number of fragments: ", n_frags) + + return data + + +def get_tuple(fragment, dummy_atoms): + """ + **copied from https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + For a given fragment, returns: + - smiles string with generic dummy atoms (dummy labels removed) + - dummy atoms as tuples of frag_atom_id and subpocket (of the dummy = neighboring subpocket of + the fragment) + Parameters + ---------- + fragment: RDKit Mol object + dummy_atoms: list(RDKit Atom objects) + list of all dummy atoms of the fragment + Returns + ------- + String + SMILES string of the fragment + frozenset(tuple) + frozenset of tuples for each dummy atom containing the frag_atom_id and the subpocket of + the dummy + """ + + frag_smiles = fragment + # replace dummys with generic dummys (without atom number) + # dummy tuple: (frag_atom_id, neighboring_subpocket), e.g. (AP_4, FP) + dummy_set = [] + for dummy in dummy_atoms: + frag_smiles = Chem.ReplaceSubstructs( + frag_smiles, Chem.MolFromSmiles(dummy.GetSmarts()), Chem.MolFromSmiles("*") + )[0] + dummy_tuple = dummy.GetProp("frag_atom_id"), dummy.GetProp("subpocket") + dummy_set.append(dummy_tuple) + frag_smiles = Chem.MolToSmiles(frag_smiles) + + dummy_set = frozenset(dummy_set) + + return frag_smiles, dummy_set + + +class Compound: + """ + **copied from https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + Represents a combination of fragments including its dummy atoms + Attributes + ---------- + frag_ids: list(str) + Strings representing the fragments that the molecule consists of + subpockets: list(str) + Subpockets that the molecule is targeting + ports: list(Port) + Port objects representing the dummy atoms of the molecule + bonds: list(tuple(str)) + Bonds through which the fragments are connected. + The bonds are stored as tuples of atom IDs. + """ + + def __init__(self, frag_ids, subpockets, ports, bonds): + + self.frag_ids = frag_ids + self.subpockets = subpockets + self.ports = ports + self.bonds = bonds + + +class Fragment: + """ + **copied from https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + Represents a single fragment from the fragment library + Attributes + ---------- + frag_id: str + ID of the fragment: subpocket_ID, e.g. AP_5 + subpocket: str + Subpocket that the fragment is targeting + ports: list(Port) + Port objects representing the dummy atoms of the fragment + """ + + def __init__(self, frag_id, subpocket, ports): + + self.frag_id = frag_id + self.subpocket = subpocket # list of targeted subpockets + self.ports = ports # list of Port objects + + +class Port: + """ + **copied from https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + Represents a single dummy atom + Attributes + ---------- + atom_id: str + frag_atom_id of the dummy atom + subpocket: str + Subpocket of the atom adjacent to the dummy atom (subpocket of the fragment containing + the dummy) + neighboring_subpocket: str + Subpocket of the dummy atom + bond_type: str + Type of the bond connecting the dummy to its adjacent atom + environment: str + Type of the environment of the current fragment (of the adjacent atom) + """ + + def __init__( + self, atom_id, subpocket, neighboring_subpocket, bond_type, environment + ): + + self.atom_id = atom_id + self.subpocket = subpocket + self.neighboring_subpocket = neighboring_subpocket + self.bond_type = bond_type + self.environment = environment + + +class Combination: + """ + **copied from https://github.com/volkamerlab/KinaseFocusedFragmentLibrary/blob/b7e684c26f75efffc2a9ba2383c9027cdd4c29a3/kinase_focused_fragment_library/recombination/classes_meta.py** # noqa: E501 + Comparable representation of a combination of fragments + Attributes + ---------- + frag_ids: frozenset(str) + Strings representing the fragments that the molecule consists of + bonds: frozenset(tuple(str)) + Bonds through which the fragments are connected. + The bonds are stored as tuples of atom IDs. + Methods + ---------- + __eq__() + Two Combination objects are equal if they consist of the same fragments which are + connected through the same bonds. + """ + + def __init__(self, frag_ids, bonds=None): + self.frag_ids = frag_ids + self.bonds = bonds + + def __eq__(self, other): + return self.frag_ids == other.frag_ids and self.bonds == other.bonds + + def __ne__(self, other): + return not self.__eq__(other) + + def __hash__(self): + return hash((self.frag_ids, self.bonds)) + + +def save_fragment_library_to_sdfs(path_output, fragment_library_concat): + # copied from /notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb + """ + Save fragment library to file (for each subpocket sdf file). + + Parameters + ---------- + path_output : str or pathlib.Path + Path to output folder for sdf files. + fragment_library_concat : pandas.DataFrame + Fragment library data for one or multiple subpockets. + """ + + path_output = Path(path_output) + path_output.mkdir(parents=True, exist_ok=True) + + subpockets = ["AP", "SE", "FP", "GA", "B1", "B2", "X"] + # remove all {subpocket}.sdf files before writing to avoid death files + for subpocket in subpockets: + # check if files {subpocket}.sdf exists + if (path_output / f"{subpocket}.sdf").exists(): + os.remove(path_output / f"{subpocket}.sdf") + + for subpocket, fragments in fragment_library_concat.groupby("subpocket"): + with Chem.SDWriter(str(path_output / f"{subpocket}.sdf")) as w: + for mol in fragments.ROMol_original: + w.write(mol) + + +def save_filter_results(fragment_library, columns, PATH_DATA_CUSTOM): + """ + Saving the results of the filtering steps to a .csv file + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + + columns : list + contains string defining the column names that should be stored + + PATH_DATA_CUSTOM : Path + define where the .csv file will be stored + """ + # create dataframe from fragment library + fragment_library_concat = pd.concat(fragment_library) + # create dataframe to store only the results from the filtering steps + filter_results_df = pd.DataFrame() + # save smiles and subpocket to identify for which exact fragment the results are + filter_results_df["smiles"] = fragment_library_concat["smiles"] + filter_results_df["subpocket"] = fragment_library_concat["subpocket"] + # save all the values from the given columns + for column in columns: + filter_results_df[column] = fragment_library_concat[column] + # save the filter results as .csv file + filter_results_df.to_csv( + PATH_DATA_CUSTOM / "custom_filter_results.csv", index=False + ) diff --git a/kinfraglib/filters/synthesizability.py b/kinfraglib/filters/synthesizability.py new file mode 100644 index 00000000..8cd74a77 --- /dev/null +++ b/kinfraglib/filters/synthesizability.py @@ -0,0 +1,176 @@ +""" +Contains functions to filter for synthesizability +""" + +import pandas as pd +from rdkit import Chem +from syba.syba import SybaClassifier +from . import check +from . import prefilters +from . import utils + + +def check_building_blocks(fragment_library, path_to_building_blocks): + """ + Read in Enamine Building Blocks from SDFile created with filters/enamine_substructures.py + and check if the fragment molecules are a substructure of building block molecules. + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + path_to_building_blocks : str + path to SDFile with overlapping building blocks is saved + + Returns + ------- + dict + Containing a pandas.DataFrame for each subpocket with all fragments and an + additional columns (bool_bb) defining whether the fragment is accepted (1), meaning found + as a substructure in a building block, or rejected (0). + """ + # save fragment library as DataFrame + fragment_library_pre_filtered_df = pd.concat(fragment_library).reset_index( + drop=True + ) + bools_enamine = [] + # store Enamine Building Blocks from DatWarrioir SDF file + bb_mols = _read_bb_sdf(path_to_building_blocks) + print("Number of building blocks: %s" % len(bb_mols)) + + # go through fragment library and Enamine Building Blocks and check if the fragments are + # substructures of any Enamine Building Block loaded. + for row in fragment_library_pre_filtered_df.itertuples(): + in_enamine = False + frag_mol = row.ROMol + for bb in bb_mols: + if bb.HasSubstructMatch(frag_mol): + in_enamine = True + break + if in_enamine: + bools_enamine.append(1) + else: + bools_enamine.append(0) + # add the boolean column if the fragment was found as a substrutcure of a Building Block + fragment_library_bool = _add_bool_column(fragment_library, bools_enamine, "bool_bb") + + return fragment_library_bool + + +def _read_bb_sdf(path_to_building_blocks): + """ + Read in Enamine Building Blocks from SDFile. + + Parameters + ---------- + path_to_building_blocks : str + path where SDFile with resulting Enamine building blocks is saved + + Returns + ------- + list + rdkit molecules of building blocks + """ + enamine_bb = [] + # read in Enamine file with Enamine Building Blocks + curpath = str(path_to_building_blocks) + suppl = Chem.SDMolSupplier(curpath) + # go through molecules from the read file and save it in a list + for mol in suppl: + enamine_bb.append(mol) + return enamine_bb + + +def _add_bool_column(fragment_library, bool_list, column_name="bool"): + """ + Adds a boolean column to the existing dict of pandas.DataFrames + + Parameters + ---------- + fragment_libray : dict + fragments organized in subpockets including all information + bool_list : list + containing boolean values + column_name : str + name the boolean column should be named + + Returns + ------- + dict + fragments organized in subpockets including boolean column + """ + # save fragment library as a DataFrame + fragment_library_df = pd.concat(fragment_library).reset_index(drop=True) + # add the boolean column to the DataFrame + fragment_library_df[column_name] = pd.Series( + bool_list, index=fragment_library_df.index + ) + # create dict again with new column and return it + fraglib = prefilters._make_df_dict(pd.DataFrame(fragment_library_df)) + return fraglib + + +def calc_syba( + fragment_library, + cutoff=0, + cutoff_criteria=">", + query_type="mol", +): + """ + Calculate the SYnthetic Bayesian Accessibility (SYBA) for each fragment and add a boolean + column if the fragment is accepted for the defined cutoff or not and a column with the + calculated SYBA values. + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + cutoff : int + defining the cutoff value for rejecting/accepting fragments. By , cutoff=0 + cutoff_criteria : str + defining if the fragment values need to be ">", "<", ">=", "<=", "==" or "!=" compared to + the cutoff_value. By default, cutoff_criteria=">" + query_type : str + "mol" or "smiles". Defining if the SYBA score gets predicted using the ROMol from the + fragment library or the SMILES string. By default, query_type = "mol". + + Returns + dict + Containing a pandas.DataFrame for each subpocket with all fragments and an + additional column (bool_syba) defining whether the fragment is accepted (1) or rejected (0) + and the calculated SYBA score (syba) for each fragment. + ------- + + """ + sybas = [] # variable for storing the calculated SYBA values + syba = SybaClassifier() # loading the classifier to calculate the SYBA score + syba.fitDefaultScore() # fit the classifier to the default score + # save fragment library as DataFrame + fragment_library_df = pd.concat(fragment_library).reset_index(drop=True) + # iterate through subpockets + for subpocket in fragment_library.keys(): + pocketsyba = [] # store syba values for every subpocket in a list + # get all fragments from this subpocket + fragment_library_df_subpocket = fragment_library_df.loc[ + fragment_library_df["subpocket"] == subpocket + ] + # calculate SYBA score for molecules if chosen + if query_type == "mol": + for molecule in fragment_library_df_subpocket["ROMol"]: + pocketsyba.append(syba.predict(mol=molecule)) + sybas.append(pocketsyba) + # calculate SYBA score for SMILES strings if chosen + elif query_type == "smiles": + for smiles in fragment_library_df_subpocket["smiles"]: + pocketsyba.append(syba.predict(smiles)) + sybas.append( + pocketsyba + ) # add syba values from the subpocket to the syba list + # add 'bool_syba' column to the fragment library + fragment_library_bool = check.accepted_rejected( + fragment_library, sybas, cutoff, cutoff_criteria, "bool_syba" + ) + # add syba values to the fragment library + fragment_library_bool = utils.add_values(fragment_library_bool, sybas, "syba") + + return fragment_library_bool diff --git a/kinfraglib/filters/unwanted_substructures.py b/kinfraglib/filters/unwanted_substructures.py new file mode 100644 index 00000000..eeb02387 --- /dev/null +++ b/kinfraglib/filters/unwanted_substructures.py @@ -0,0 +1,140 @@ +""" +Contains functions to filter out unwanted substructures +""" + +import pandas as pd +from rdkit import Chem +from rdkit.Chem.FilterCatalog import FilterCatalogParams, FilterCatalog +from . import synthesizability + + +def get_pains(fragment_library): + """ + Function to check fragments for PAINS structures. + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + + Returns + ------- + fragment_library, matches: tuple(dict,dict) + Containing + A dict containing a pandas.DataFrame for each subpocket with all fragments and an + additional column (bool_pains) defining whether the fragment is accepted (1) or + rejected (0). + A pandas.DataFrame with the fragments and the names of the first PAINS structure found + in the fragment. + """ + # Code adapted from https://github.com/volkamerlab/teachopencadd/blob/master/teachopencadd/talktorials/T003_compound_unwanted_substructures/talktorial.ipynb # noqa: E501 + + # initialize filter + params = FilterCatalogParams() + params.AddCatalog(FilterCatalogParams.FilterCatalogs.PAINS) + catalog = FilterCatalog(params) + # save fragment library as DataFrame + fragment_library_df = pd.concat(fragment_library).reset_index(drop=True) + # search for PAINS + matches = [] + clean = [] + accepted_bool = [] + for index, row in fragment_library_df.iterrows(): + molecule = Chem.MolFromSmiles(row.smiles) + entry = catalog.GetFirstMatch(molecule) # Get the first matching PAINS + if entry is not None: + # store PAINS information + matches.append( + { + "fragment": molecule, + "pains": entry.GetDescription().capitalize(), + } + ) + accepted_bool.append(0) + else: + # collect indices of molecules without PAINS + clean.append(index) + accepted_bool.append(1) + # store fragment and pains structure found in the fragment + matches = pd.DataFrame(matches) + # add a boolean column if the fragment contains a pains structure + fragment_library_bool = synthesizability._add_bool_column( + fragment_library, accepted_bool, "bool_pains" + ) + + return fragment_library_bool, matches + + +def get_brenk(fragment_library, DATA): + """ + Getting the path to the unwanted substructures provided by Brenk et al. and filtering them out. + + Parameters + ---------- + fragment_library : dict + fragments organized in subpockets including all information + DATA : str + path to the csv file provided by Brenk et al. + + Returns + ------- + fragment_library, matches: tuple(dict,dict) + Containing + A dict containing a pandas.DataFrame for each subpocket with all fragments and an + additional column (bool_brenk) defining wether the fragment is accepted (1) or + rejected (0). + A pandas.DataFrame with the fragments, the substructures found and the substructure + names + """ + # Code adapted from https://github.com/volkamerlab/teachopencadd/blob/master/teachopencadd/talktorials/T003_compound_unwanted_substructures/talktorial.ipynb # noqa: E501 + + # read in csv file with unwanted substructure molecules + substructures = pd.read_csv(DATA / "unwanted_substructures.csv", sep=r"\s+") + substructures["rdkit_molecule"] = substructures.smarts.apply(Chem.MolFromSmarts) + print( + "Number of unwanted substructures in Brenk et al. collection:", + len(substructures), + ) + # save fragment library as DataFrame + fragment_library_df = pd.concat(fragment_library).reset_index(drop=True) + + matches = ( + [] + ) # variable to store the matches (fragment and unwanted substructure found) + clean = [] # variable to store the fragment indices without unwanted substructures + rejected = [] # variable to store the fragment indices with unwanted substructures + brenk_bool = ( + [] + ) # variable to store a bool for each fragment if unwanted substr. was found + # iterate through rows of the fragment library Dataframe + for index, row in fragment_library_df.iterrows(): + molecule = row.ROMol # save molecule of fragment + match = False + # iterate through unwanted substructure molecules + for _, substructure in substructures.iterrows(): + # check if the current fragment contains the unwanted substructure + if molecule.HasSubstructMatch(substructure.rdkit_molecule): + # if unwanted substructure is in fragment save fragment, unwanted substructure and + # unwanted substructure name + matches.append( + { + "fragment": molecule, + "substructure": substructure.rdkit_molecule, + "substructure_name": substructure["name"], + } + ) + match = True # set match to true + if not match: # fragment has no unwanted substructure + clean.append(index) + brenk_bool.append(1) + else: # unwanted substructure was found in fragment + brenk_bool.append(0) + rejected.append(index) + # add unwanted substructures found to DataFrame + matches = pd.DataFrame(matches) + # add boolean column if an unwanted substructure was found to fragment library + fragment_library_bool = synthesizability._add_bool_column( + fragment_library, brenk_bool, "bool_brenk" + ) + + return fragment_library_bool, matches diff --git a/kinfraglib/filters/utils.py b/kinfraglib/filters/utils.py new file mode 100644 index 00000000..33778d0d --- /dev/null +++ b/kinfraglib/filters/utils.py @@ -0,0 +1,56 @@ +""" +Helpful utility functions for custom_fragment_library. +""" +from rdkit import Chem +import pandas as pd + + +def save_fragments_wo_dummy(fragment_library, PATH_DATA): + """ + Save fragments without dummy atoms in a .sdf file for use in DataWarrior. + + Parameters + ---------- + fragment_library : dict + fragment library organized in subpockets + PATH_DATA : str + Path where file should be saved. + ------- + + """ + # save fragment library as a DataFrame + fragment_library = pd.concat(fragment_library).reset_index(drop=True) + fragments_mols = fragment_library["ROMol"] # save molecules of the fragments + path = str(str(PATH_DATA) + "/fragments_wo_dummy.sdf") # path to save file + # write molecules to file + writer = Chem.SDWriter(path) + for fragment_mol in fragments_mols: + writer.write(fragment_mol) + writer.close() + + +def add_values(fragment_library, values, colname): + """ + Adding values to the fragment library. + + Parameters + ---------- + fragment_library : dict + fragment library organized in subpockets + values : list + containing the values that should be contained in the fragment library + colname : str + name of the new column with the values + ------- + + """ + # iterate through subpockets + pocket_num = ( + 0 # helper variable to count which subpocket index is the current index + ) + values = [val for val in values if len(val)] # colums that are not empty + for subpocket in fragment_library.keys(): + # add value list with the current subpocket index to the fragment library + fragment_library[subpocket][colname] = values[pocket_num] + pocket_num = pocket_num + 1 # increase helper index for next subpocket + return fragment_library diff --git a/kinfraglib/utils.py b/kinfraglib/utils.py index c5e30407..c4668893 100644 --- a/kinfraglib/utils.py +++ b/kinfraglib/utils.py @@ -56,7 +56,8 @@ def read_fragment_library(path_to_lib): Returns ------- dict of pandas.DataFrame - Fragment details, i.e. SMILES, kinase groups, and fragment RDKit molecules, (values) for each subpocket (key). + Fragment details, i.e. SMILES, kinase groups, and fragment RDKit molecules, (values) for + each subpocket (key). """ # list of folders for each subpocket subpockets = ["AP", "FP", "SE", "GA", "B1", "B2", "X"] @@ -88,7 +89,8 @@ def _read_subpocket_fragments(subpocket, path_to_lib): Returns ------- pandas.DataFrame - Fragment details, i.e. SMILES, kinase groups, and fragment RDKit molecules, for input subpocket. + Fragment details, i.e. SMILES, kinase groups, and fragment RDKit molecules, for input + subpocket. """ mol_supplier = Chem.SDMolSupplier(str(path_to_lib / f"{subpocket}.sdf"), removeHs=False) diff --git a/notebooks/README.md b/notebooks/README.md index be20be7b..97e9a489 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -1,65 +1,8 @@ # Notebooks +- `custom_kinfraglib`: Customizable filtering functionality to reduce the size of the fragment library. +- `kinfraglib`: Creating the fragment library, recombination of a reduced set and analysis of the fragment library and the recombined library.
Note that results in all notebooks may differ from the numbers shown in the publication because of new data added to ChEMBL (current version: ChEMBL 33) and KLIFS (current version from 06.12.2023), and updates on KinFragLib.
-Overview of notebook content. - -## 1. Quick start - -### `1_1_quick_start.ipynb` - -This notebook contains an introduction on how to load and use the KinFragLib fragment library. - -## 2. Full fragment library - -### `2_1_fragment_analysis_original_ligands.ipynb` - -Based on the full fragment library, get all ligands from which these fragments originated from ("original ligands" from KLIFS dataset). - -### `2_2_fragment_analysis_statistics.ipynb` - -This notebook contains the code that was used to calculate most of the statistics as well as to generate the respective plots shown in the manuscript, for instance: - -- Ligand occupancy across subpockets -- Subpocket connectivity across subpockets -- Fragment occurrence per subpocket -- Fragment properties per subpocket -- Fragment similarity per subpocket -- Fragment promiscuity - -### `2_3_fragment_analysis_most_common_fragments.ipynb` - -This notebook contains the code that was used to analyze the most common fragments per subpocket as well as to generate the respective plots shown in the manuscript. - -- Find 50 most common fragments in each subpocket (if multiple fragments with same count are at cutoff, include all fragments). -- Cluster these fragments using Butina clustering. -- Draw 50 most common fragments per subpocket sorted by descending cluster size. - -## 3. Reduced fragment library - -### `3_1_fragment_library_reduced.ipynb` - -The fragment library resulting from the KinFragLib fragmentation procedure comprises about 3000 fragments. Ultimately, we want to demonstrate how this library can be used for recombining ligands. Before this can be done, we need to address two considerations: - -1. Remove all fragments that are not useful for recombination, i.e. duplicates, fragments in pool X, fragments without dummy atoms, and fragments with dummy atoms only connecting to pool X. Also remove all AP fragments that show no hydrogen bond donors and acceptors (not hinge-like). -2. Select a diverse set of fragments (per subpocket) for recombination to (i) save computational cost and (ii) avoid recombination of highly similar fragments. - -## 4. Combinatorial library - -### `4_1_combinatorial_library_data.ipynb` - -The aim of this notebook is to extract information from the combinatorial library (`json` file) about e.g. ligand sizes, Lipinski's rule of five compliance, and matches in ChEMBL and KLIFS. Since the `json` file holds multiple millions of ligands, we do this data processing once here at the beginning and save the results to separate files which will be used for analysis/visualization in the following notebooks. - -### `4_2_combinatorial_library_properties.ipynb` - -In this notebook, we want to analyze properties of the combinatorial library, such as the ligand size and Lipinski's rule of five criteria. - -### `4_3_combinatorial_library_comparison_klifs.ipynb` - -In this notebook, we want to compare the combinatorial library to the original KLIFS ligands, i.e. the ligands from which the fragment library originates from. We consider exact and substructure matches. - -### `4_4_combinatorial_library_comparison_chembl.ipynb` - -In this notebook, we want to compare the combinatorial library to the ChEMBL 33 dataset in order to find exact matches and the most similar ChEMBL molecule per recombined ligand. diff --git a/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb b/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb new file mode 100644 index 00000000..7dafd96c --- /dev/null +++ b/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb @@ -0,0 +1,1609 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1000161f-6d6b-4910-8bf3-531a5e3ea2e8", + "metadata": {}, + "source": [ + "# Filter fragments for unwanted substructures" + ] + }, + { + "cell_type": "markdown", + "id": "72457c2c-d524-4550-b932-0467403bd2f9", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "id": "1a7eff3c-07d9-473d-8a19-9828213ddb5b", + "metadata": {}, + "source": [ + "This notebook aims to filter out fragments containing unwanted substructures, which could cause unwanted side effects. \n", + "* One class of unwanted substructures are Pan Assay INterference compoundS (PAINS) ([ J. Med. Chem. 2010, 53, 7, 2719–2740](https://pubs.acs.org/doi/abs/10.1021/jm901137j)), which are included in the [rdkit Filter Catalog](https://www.rdkit.org/docs/source/rdkit.Chem.rdfiltercatalog.html).\n", + "* We are also filtering for unwanted substructures according to the list of Brenk et al. ([ChemMedChem, 2008, 3(3),435--444](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.200700139)). " + ] + }, + { + "cell_type": "markdown", + "id": "49618da8-11d9-4ed4-80c1-1b354175d0ea", + "metadata": { + "tags": [] + }, + "source": [ + "## Table of contents\n", + "1. Load fragment library\n", + "2. Apply pre-filters\n", + "3. Filter for PAINS substructures\n", + "4. Filter for substructures in list from Brenk et al.\n", + "5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s)\n", + " \n", + " 5.2. Highlight first Brenk structure found in the fragments" + ] + }, + { + "cell_type": "markdown", + "id": "de4579ed-5c63-4f2a-b748-3dcc15ee1294", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c24e7dc4-afc4-4772-be1f-155087b05cbf", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit.Chem import PandasTools\n", + "from IPython.core.display import HTML\n", + "\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5967ce54-bb46-4c7e-852b-3a1ed4e5f3d3", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "174eac8e-3fb8-4ab9-922b-3b8c3261da77", + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "855b2ca7-5d13-4bf1-a878-65a82bef14cb", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4ed1f90b-ae70-41ea-8bb4-37badd690584", + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data\"\n", + "PATH_DATA_BRENK = HERE / \"../../data/filters/Brenk\"" + ] + }, + { + "cell_type": "markdown", + "id": "d22db1ab-a5cc-4ac3-8e19-1757e52f2abf", + "metadata": {}, + "source": [ + "## 1. Load fragment library\n", + "\n", + "Fragment library is stored as a dictionary, with the individual subpockets as keys." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f711a629-fd58-44aa-8d81-2e0a89d8c08d", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_original = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9fb8799f-c2a5-49bd-8663-d22043fd34c2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2', 'X'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_original.keys()\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f06d329f-d81b-4141-a438-d792a82aee07", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9505, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat(fragment_library_original).reset_index(drop=True).shape\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "079d8816-cf45-456d-b446-6e7b71c2c3ae", + "metadata": {}, + "source": [ + "## 2. Apply pre-filters\n", + "Pre-filters include\n", + "- removing fragments in pool X\n", + "- removing duplicates\n", + "- removing fragments without dummy atoms (unfragmented ligands)\n", + "- removing fragments only connecting to pool X" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8bd9d998-40f4-4ab9-9013-c0c39d914a9f", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.prefilters.pre_filters(fragment_library_original)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e6e0d5b3-cce9-4a4e-94bb-419a192b6272", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_name
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))" + ] + }, + { + "cell_type": "markdown", + "id": "abfa8812-3f0b-4467-a444-9fb0e89ce146", + "metadata": {}, + "source": [ + "Count number of fragments in the original fragment library and after pre-filtering the fragment library." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "dd4917de-b9f3-4767-99df-2a63d7c8ba78", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
originalpre_filtered
AP32401201
FP23851100
SE1962743
GA1305355
B112647
B211359
Total91313505
\n", + "
" + ], + "text/plain": [ + " original pre_filtered\n", + "AP 3240 1201\n", + "FP 2385 1100\n", + "SE 1962 743\n", + "GA 1305 355\n", + "B1 126 47\n", + "B2 113 59\n", + "Total 9131 3505" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library_original, \"original\"),\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments = pd.concat([num_fragments, num_fragments.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "2e0e402b-3e89-419b-b3ae-a8f41d5b43f8", + "metadata": {}, + "source": [ + "Note: The number of fragments in pool X in the original fragment library is not displayed." + ] + }, + { + "cell_type": "markdown", + "id": "5977f1f5-0b73-446e-ae6e-85d761b6ad53", + "metadata": {}, + "source": [ + "## 3. Filter for PAINS substructures" + ] + }, + { + "cell_type": "markdown", + "id": "3f74231e-f9d4-4261-bda0-6a235256e253", + "metadata": {}, + "source": [ + "Pan Assay INterference compounds (PAINS) ([ J. Med. Chem. 2010, 53, 7, 2719–2740](https://pubs.acs.org/doi/abs/10.1021/jm901137j)) are substructural features which help to detect compounds that appear as false positive hits in high throughput screenings used as starting points for drug development." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f743c281-4024-49dc-8f3f-340cefb4a2cd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munwanted_substructures\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_pains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfragment_library\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Function to check fragments for PAINS structures.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "\n", + "Returns\n", + "-------\n", + "fragment_library, matches: tuple(dict,dict)\n", + " Containing\n", + " A dict containing a pandas.DataFrame for each subpocket with all fragments and an\n", + " additional column (bool_pains) defining whether the fragment is accepted (1) or\n", + " rejected (0).\n", + " A pandas.DataFrame with the fragments and the names of the first PAINS structure found\n", + " in the fragment.\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/unwanted_substructures.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "filters.unwanted_substructures.get_pains?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "213b1242", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library, pains_df = filters.unwanted_substructures.get_pains(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "3926a6ea-1933-48c8-a432-17d5682e4599", + "metadata": {}, + "source": [ + "Inspect which PAINS structures were found per fragment (first match only)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "eb40d6cb-4ec7-42ae-bdfe-453425455c05", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number fragments with pains substructures: 51\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
fragment\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
painsImine_one_isatin(189)Imine_one_isatin(189)Imine_one_isatin(189)Quinone_a(370)Thio_ketone(43)
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(f\"Total number fragments with pains substructures: {pains_df.shape[0]}\")\n", + "HTML(pains_df.head().T.to_html(notebook=True))" + ] + }, + { + "cell_type": "markdown", + "id": "ba18daf6-8d56-428a-bd50-f01673aaa184", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if a PAINS was found or not per fragment (`bool_pains`). " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c244900f-6187-4890-88da-5b657473f52d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_pains
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]1
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]1
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]1
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]1
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]1
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "4e1a5c04-fae5-4f39-a950-1bb0b2725af2", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the PAINS filter." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fe101370-d8fb-4394-9e9c-6ba82d683c8a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_painsrejected_pains
AP1201118813
FP1100107822
SE7437358
GA3553478
B147470
B259590
Total3505345451
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_pains rejected_pains\n", + "AP 1201 1188 13\n", + "FP 1100 1078 22\n", + "SE 743 735 8\n", + "GA 355 347 8\n", + "B1 47 47 0\n", + "B2 59 59 0\n", + "Total 3505 3454 51" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_pains = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_pains\", \"pains\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_pains = pd.concat([num_fragments_pains, num_fragments_pains.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_pains\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "0b1574eb-18c9-40cb-8304-fc5c089b590f", + "metadata": {}, + "source": [ + "## 4. Filter for substructures in list from Brenk et al." + ] + }, + { + "cell_type": "markdown", + "id": "a4776617-a7b0-4d80-9f4f-ca1bdb7d0689", + "metadata": {}, + "source": [ + "Brenk et al. ([ChemMedChem, 2008, 3(3),435--444](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.200700139)) defined a list of substructures which can be used as selection criteria to enrich the libraries for lead-like compounds. \n", + "\n", + "Brenk et al. suggest to avoid using structures containing \n", + "* potentially mutagenic groups (e.g. nitro groups), \n", + "* groups with unfavorable pharmacokinetic properties (e.g. sulfates, phosphates), \n", + "* reactive groups (e.g. 2-halopyridines, thiols) \n", + "* and compounds typically interfering with HTS assays. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "d428a2ff-ec06-40b7-8af8-7e5ee3b0d349", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munwanted_substructures\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_brenk\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfragment_library\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDATA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Getting the path to the unwanted substructures provided by Brenk et al. and filtering them out.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "DATA : str\n", + " path to the csv file provided by Brenk et al.\n", + "\n", + "Returns\n", + "-------\n", + "fragment_library, matches: tuple(dict,dict)\n", + " Containing\n", + " A dict containing a pandas.DataFrame for each subpocket with all fragments and an\n", + " additional column (bool_brenk) defining wether the fragment is accepted (1) or\n", + " rejected (0).\n", + " A pandas.DataFrame with the fragments, the substructures found and the substructure\n", + " names\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/unwanted_substructures.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "filters.unwanted_substructures.get_brenk?" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6663e5e8-07f0-4f1c-9f8c-3e2fd7ba39f6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of unwanted substructures in Brenk et al. collection: 104\n" + ] + } + ], + "source": [ + "fragment_library, brenk_structs = filters.unwanted_substructures.get_brenk(\n", + " fragment_library, PATH_DATA_BRENK\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "c724448e-7278-47ee-90dc-a7820c348140", + "metadata": {}, + "source": [ + "Inspect which structures from Brenk list were found per fragment (first match only)." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "ad5d9fb4-a10d-4177-ba71-3f6374cca247", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number fragments with brenk substructures: 932\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
fragment\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
substructure\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
substructure_nameMichael-acceptorstilbeneiminequaternary-nitrogenaldehyde
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(f\"Total number fragments with brenk substructures: {brenk_structs.shape[0]}\")\n", + "HTML(brenk_structs.head().T.to_html(notebook=True))" + ] + }, + { + "cell_type": "markdown", + "id": "335e69bf-c619-46a9-a4aa-311e62c48aa9", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if a Brenk substructure was found or not per fragment (`bool_brenk`). " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "8860f503-ffd0-46ed-9a75-149241d6a0ec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_painsbool_brenk
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]11
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]10
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]10
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]11
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "082bac25-d441-42a5-9ea3-4c9d9d6f346f", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the Brenk et al. filter." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "fafbfcd0-6273-4f30-ae28-b467a0f9bdef", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_brenkrejected_brenk
AP1201943258
FP1100898202
SE743610133
GA355236119
B1473413
B259536
Total35052774731
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_brenk rejected_brenk\n", + "AP 1201 943 258\n", + "FP 1100 898 202\n", + "SE 743 610 133\n", + "GA 355 236 119\n", + "B1 47 34 13\n", + "B2 59 53 6\n", + "Total 3505 2774 731" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_brenk = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_brenk\", \"brenk\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_brenk = pd.concat([num_fragments_brenk, num_fragments_brenk.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_brenk\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "aa2513be-a04c-49a2-9a5a-691da9c8264a", + "metadata": { + "tags": [] + }, + "source": [ + "## 5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s).\n", + " \n", + " 5.2. Highlight first Brenk structure found in the fragments" + ] + }, + { + "cell_type": "markdown", + "id": "98427458-8afc-4064-bd9f-daa16b8c34cb", + "metadata": {}, + "source": [ + "### 5.1. Count number of fragments that are accepted by the filter(s)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "bc079ded-e17e-42d8-8a03-df23f74615d0", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.analysis.number_of_accepted(\n", + " fragment_library, columns=[\"bool_pains\", \"bool_brenk\"], min_accepted=2\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "3fb0718d-e1d4-4f70-8835-e3b8e30ff478", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
unwanted substrutcures filters
 pre-filteredaccepted by 2accepted by 1accepted by 0
AP120194224712
FP110089518619
SE7436081296
GA3552351137
B14734130
B2595360
Total3505276769444
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.analysis.accepted_num_filters(\n", + " fragment_library,\n", + " [\"bool_pains\", \"bool_brenk\"],\n", + " filtername=\"unwanted substrutcures filters\",\n", + " max_num_accepted=2,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "0e0efc91-ae30-4f1b-8092-5d0ef1021e00", + "metadata": {}, + "source": [ + "### 5.2. Highlight first Brenk structure found in the fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "783e2a4c-6395-478a-8bf1-520b6da7a2c2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAA1ICAIAAAAIGvo/AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1hT5xcH8G8S9saN4sKJ4qSKExfWiRtHrbMtWgd1VLFWBZyIe4vWUbfYX7WKM6CoqFRRcYGi4mCIiCJTICTn98dFpFYrkIsgOZ+Hpw+G3Ddv7JHcc9/3niMhIjDGGGOMMcYY0zzSop4AY4wxxhhjjLGiwQkhY4wxxhhjjGkoTggZY4wxxhhjTENxQsgYY4wxxhhjGooTQsYYY4wxxhjTUJwQMsYYY4wxxpiG4oSQMcYYY4wxxjQUJ4SMMcYYY4wxpqE4IWSMMcYYY4wxDcUJIWOMMcYYY4xpKE4IGWOMMcYYY0xDcULIGGOMMcYYYxqKE0LGGGOMMcYY01CcEDLGGGOMMcaYhuKEkDHGGGOMMcY0FCeEjDHGGGOMMaahOCFkjDHGGGOMMQ3FCSFjjDHGGGOMaShOCBljjDHGGGNMQ3FCyBhjjDHGGGMaihNCxhhjjDHGGNNQnBAyxhhjjDHGmIbihJAxxhhjjDHGNBQnhIwxxhhjjDGmoTghZIwxxhhjjDENxQkhY4wxxhhjjGkoTggZY4wxxhhjTENxQsgYY4wxxhhjGooTQsYYY4wxxhjTUJwQMsYYY4wxxpiG4oSQMcYYY4wxxjQUJ4SMMcYYY4wxpqE4IWSMMcYYY4wxDcUJIWOMMcYYY4xpKE4IGWOMMcYYY0xDcULIGGOMMcYYYxqKE0LGGGOMMcYY01BaRT2Bki4hAVeuIC4O5cujWTOYmRX1hBhjjDHGGGMsm4SIinoOJVd4OP74AwoFkpNhagqZDIMGoUaNop4WKxGUyuwLDVJe52eMMcYYYwXEp5KFJiMDf/6JZ89w4ABu3cK+fYiNxYEDyMws6pmxL9/duxgyBHv2YNAg3L9f1LNhjDHGGGNfKt4yWmgePACAixfRrRuMjJCYiMBA9OuHhw9hbV3Uk2NfuKVLsWYNypfH06dYvBjr1hX1hBhjjDHG2BeJVwgLTUoKlEq8eQNDQwAwMUFqKlQqpKYW9czYl+/VK5QrBwCWloiLK+rZMMYYY4x9wR4+fP8bjcIJYaEpWxZSKcqVQ3Q0ADx9igoVIJWibNminhn78tnY4PJlAAgMRJMmRT0bxhhjjLEv2MyZ2d/8+muRzqOI8JbRQlO9OoyM0KYNAgJw+zZkMnToAGNjVKlS1DNjX77p0zF3Lvbtg64u5swp6tkwxhhjjH3B3rzJrsmQnl7UUykKmrtCmJyM8eOhUiEzExs3YvXq7MdzvlGXRIK2beHjg8xMdO0KpRI+PrC1hUQi0guw4qjQ4wrAw4fo2xcpKVixAhkZ6N0bt2+LNzpjjDHGmGZJSIC/P/z9kZhY1FMpCpqbEGZk4Px5bN4MpRJXr+LChezHc74RARHu30dUFAA8e4bwcCgU4o3OiqPPEVdJSfDzQ1AQAFy9Cj8/JCSINzpjjDHGmGapWBFjx2LsWJQvX9RTKQoavWW0c2dcuIAuXQAgPh4//wwAN26I9wIyGQCoVACyFwaVSvFGZ8XUZ4orIZZyf88YY4wxxvKvTZv3v9EoGp0QAvDwwLx5kEpRpgyWLgWAyEjxRhc6hhMBbxNCITlkJd3niCshlnJ/z5gYlEplenq6oVAemTGRcFwxxoqzv/6CgwOsrRERUdRTKQqau2VUUL06rKzef/DCBWzYIMYeYk4INdXniCtOCFkhOHfunI2NzezZs4t6IqxE4bhijBVzZmaYPx9EGtrMS3NXCM3MMHkynj5F2bKoXRu2ttmPL1qE0qWhq4u//8bXX6v3GrkTQuF73tpX0n2+uBKSQN4yykRVqlSp8PDwx48fT506tVKlSkU9HVZCcFwxxoo5Q0N8/TV27gSAlBQYGRX1hD4vzV0h1NKCpSUOHsSYMThx4t16jpUVZDKcO4cOHdR+DeFknVcINcnniyshCeQVQiYqGxubfv36paene3l5FfVcWMnBccUYK/6++QYnTiAlBWPGoFEjHDiQfQqvCTQ3IRS0bAkAly7948HNm6GrK8Ie4niZbFezZj7lygE4ZGa2okGDm1JN/wvXEIUeV23b+tjYADhUrdqKli05rpiI3N3dpVKpt7d3lFAhmTExcFwxxoqnAwewfz8ASCRwd0dkJM6exc2bGDgQzZrhyBGNSAs1/TyySRPo6+PuXbx69e7ByZMxfjzq1FF38GSJZNiVKzNiYwFsS0qacuvW44wMdQdlX4JCj6vz52eEhADYFh095dIljismovr16w8cODAjI2PhwoVFPRdWcnBcMcaKoYMHMXQohg7F1KkAULs2rl5FRAS8vVGpEq5eRa9eaNy45K8WanpCqK2Npk1BhMuXxR9cKpUCUBEBkEokAFS8tU8zfI64Uqne+54xscydO1dLS+u333579OhRUc+FlRwcV4yxYuXECQwZAoUCkyejYcN3j+vowNn5XVoorBaW7E2kmp4Q4u3uPqHLt7hkMhkApXDizgmhhin0uFIqwQkhKxy1atUaMmSIQqFYtGhRUc+FlRwcV4yx4uPkSfTti4wMTJ6MJUs+8IT30sJbt96lhdHRSEgAgNhYpKV95okXCk4I0aIF8K/bvUQhffMGb1cIZVIpAGVsrPgvw4qlQoyrXElg7uSQMRHNmTNHS0tr+/btDx8+LOq5sJKD44oxVhzI5ejTB+npmDQJy5f/1zOFtPDBA6xZ8y4tHD8eP/wAADt2IDz880y5cHFCiJYtyc4uRiL5S/RlFunhw3hvy+j580hNFfdVWPFUiHHFW0ZZ4atZs+awYcMUCsX8+fOLei6s5OC4YowVOX9/fy8vz/R0TJz4iWwwh54eJkzAw4dYuxZffQUbG1hb43//K+SJfkacEKJiRUlsbKuTJ/uEhYWJOe7Ll9JXrwAoVaqkjIw3CgWEE/ebN8V8FVZcFVZcvU0ClUplUlLSG2EVmhNCVgjc3Nx0dHR27tx57969op4LKzk4rhhjRSggIKBXr15+fr+4ufmuWpXdFS6PdHUxfjyuXIGWFkaOxP79JWeVhxNCAGjRogWAS+Ju70tIMNbRmdi8OQEOO3acePCgW82aNmXK/KPuJCvRCiWuAGNj44kTJxKRg4PDiRMnunXrZmNjI+5LMAagatWqI0eOVCqVvJjDRMRxxRgrKhcvXuzVq1daWtro0aPnzOmer2zwPRIJZs7E5s3iTa5IcUIIAC1btAAQ5OuLx4/FqR+Umkpnz268dMn76tX4tLSniYmZSuXxBw9m+Pk955ZxGkP8uAKIaOPGjd7e3vHx8U+fPs3MzDx+/PiMGTOeP38uyviM5fbrr7/q6uru3btX9IVupsk4rhhjn9+lS5e6du2anJw8YsSIzZs3S9U4Ia9XD3p6aNwYP/8MMzMR51hkODkBXr1qGRkJYSVn3z6sWYPXr9Ua8PHjxJUrBy5fPuXkyUyl0tnW9smkSQcHDy5tYHAsPLzB8OFHjhwRZ+asOBM9roDExMSBAwdOmTIlMzPT2dn5yZMnBw8eLF269LFjxxo0aMBxxURXpUqV7777TqlUenh4FPVcWMnBccUY+5yIyM/Pr0ePHsnJyQMHDtyyZYs62SCAhg1RvTq6dcOUKahWTaRZFikJldSGGnmkUmHVKkVCgqmnZ7pC8dLV1dzAAGZmmDgxf9uKBUQ4e/by3r2DDxx4lJBgqqe32dHRqUEDyGSQSqOTk0ecO+cfGCiRSCZMmLB48Up9fU7ISyhx4woAcPny5cGDBz969MjU1HTz5s1OTk7C49HR0SNGjPD39+e4YoXh2bNnNWrUSE9Pv379eqNGjYp6OqyE4LhijBWemJiY0NDQO3fuCP+9efOmRCJJSUnp37//3r17hQrtBfDHHzAzQ+vWkMvRuze6dcOxY+JOvMho/InjgwfIyNCWyRqVL0/Anlu3QITkZNy4ke+hkpJo27ZVixe32bLlUUJC80qVrk+c6DR7NkaORNeu6Nu3koeH/Ny5lStX6ujohITY2dpKQ0IK4R2x4kDEuAKIaNWqVW3atHn06FHz5s2vX7+ekw0CqFSpklwu57gqntLT0/39/X18fL7cPb0WFhbOzs5E9OOPPwYEBMTFxRX1jBjHFWOMvRMZGXny5Mlly5Z9//33dnZ2JiYmlSpV6ty586RJkzZt2nThwoXk5OSMjAyVStW8efMCZ4MAxo5F585ITIRQEqt2bdHeQpHT+BXCoCD4+cW8ft1882ZtqfTx69dVTE271qzZs3btri1baltbo3ZtVK786VWdiIgXO3cO37XrxIMHEmCind3SESO0Bw1CqVL/fu716ze++67B9etSPT14esLFpcCLRqy4CgqCXB6TmKhuXAEvXrwYPnz4iRMnJBLJxIkTly5dqq2t/cFnclwVHxEREX5+fn5+fidOnEhOTi5VqpRCofD09Bw3blxRT60g7t6926JFC6VSmZKSAsDMzKxGjRpWVlb16tWrX79+vXr16tatq85HLMsjjivGGAPw5s2bjRs3hoaG3r59OywsLDEx8b0nVKhQof5bwq+UoKCg7t27lylTJiIiwtjYuAAv+uoVSpeGsTGSkuDsjM2bsW4dvszfvh9CGi4s7M7kyZYmJgAqGhtXNDHJ+ZspY2AwqkmTv4YMSVuyhI4fp4cPSal8d2BmJj19SrGxlJVFZ86cHjnSwtgYQFlDw2NDh9Lx45SV9R8v++YNubiQREIAOThQdHShv1H2Wfn53Rk/Xq24UqmI6PTp0xYWFgDKli177NixT74sx1URevz48ebNmwcNGlS2bNmc/91SqbRp06YODg7C95s3by7qaRbEL7/8AsDS0rJFixZmH7p9Xk9Pr1GjRoMGDXJzc9u3b19ISMibN2+KetYlBMcVxxVjLDeVSrVq1arcF8fNzc1bt27t7Oy8cuVKuVz+7Nkz4ZlKpfL+/ftnzpwR/tiuXTsA8+bNK9jrXrhAAH31FRGRvT0BJJeL8HaKCU1fIbwSFNTdwSE+NdW+atXDQ4aY6undiYs7EBp64M6d0BcvhOfoa2t3ql7dsU6dPk2blrO1hbU1YmNx9ixkMqhUyqyseWfOzD93TqlSdahefdfgwRW//Rb16uXl1U+exMiRiI1F2bL47Tf06lWYb5V9NjduXNmwofvOnfFpaQWMKyKllta8mJj5a9YolcoOHTrs2rWrYsWKeXx9jqvPJiUlJSgoSFi0uXr1as7jFhYWbdq0cXBw6Nmzp/A/buXKlZMnT5ZIJGvXrv2y1nPi4+OtrKySk5ODgoLs7OwAxMbGhoWF3b17NywsLCws7N69e5GRke8dJZPJqlWrdu7cubzHLcvBccVxxRj7mOjoaEtLS0NDwyVLllhbW9vY2JQpU0b40Xu3DoaEhKSmphoYGCQnJ0ul0sDAwLZt25qamkZERJT60A6+/7Z9O0aNwtCh2LULFhaIjcWTJ6hSRey3V0Q0OiH09/fv27dvcnKyY716+wcP1pdKIZUGxcQ07d1b5/nziGvXjoSGHggNvfj0qfB3JJNKW1haOtWr179ePWHxJyop6Zv//e/8kycyqXSWvf3sIUNkAwfmqwBtXBxGjcKxYxgwAOHhCA7GnTuQy3H9OvbsAYAhQ7B3b2G8e/YWES5fxsWLSEuDkRHs7dGkScFH+/tv//Xr++7fn5yR4Vinzn4nJ31dXchkBYwrmWzWrFmzZ8/O774pjqtCde7cuVOnTvn5+QUHByuVSuFBc3PzDh06dO7c2cHBoWbNmkR0+/ZtPz+/0aNHm5qaIte5+7p163788ccifQf58PPPPy9btqxXr15//fUXEUk+tBE5IyPjwYMHOR/DERERd+7cyczMrF27dkBAQPny5T//tL9EHFfv4bgqcQjgOxmYus6cOdOxY8fWrVsHBgYS0ZIlS27fvh0aGhoWFpaWlvbek6tWrWptbb13715hG0KXLl1OnTo1Y8aMRYsW5fd1ly4N/usv8969zceMKWViAn19pKSg5PSSK8LVyaK1Z88eYbl52LBhmWlpFBpKgYEvLl7U0tIyMDDo2bPn71u3vg4Opj//jJwxY2337g5WVtpvT8olQPNKlUY2aVJKXx9AJROTs6NGkZ/fP/b+5ZlKRVu20JkzNHQoLV5M16+TlxcNGpT904EDxXzX7AMOH6aFC8ndPftrwQLy8yvIOCoVyeV7+vcX4mRYo0aZ69fT9etqxdWCBQV+WxxXhSQgICCnKKKWlpatra2rq6tcLs/MzCSi2NhYHx8fZ2dnS0tL4TnC+a5gxYoVACQSyfr169WaRGQk7d5Nq1bRtm10966a7+g/PHv2zMDAQCKRXL58+cqVK/Xq1Tt48GBeDszMzGzcuDGAgICAwpteSVIs4upz4bjSQPHx2x49GhEZOUWp5H2/TC0bN24EMHr0aOGPVatWzUlqcu8dPX/+fFJS0nvHBgcHSyQSQ0PDnG2leTdgwAAAe/bsCQ4OLlWqtqPjHBHeTLGhVWiZZrG2bt06FxcXlUrl4uKycuVKiUQCa2sAUSEhNjY2ISEhvr6+vr6+urq6Dg4OfXr1curXb/zLlwnBwX43bx4JDz909+7l6OiwFy9SMjMdrKx29etXvlIldOpUsMlIJBg9Ghcvom1bBAejbl0ACA3F1KkA8OyZaO+afUBcHG7dgkLx7hGFAkFB+OormJrmYxwiHDmyztvb5fhxFZGLnd3KH3+UDBkCHR2oE1dqtDvluCoMRDR48ODY2NjvvvtuwIAB9vb2BgYGSUlJAQEBU6dO9fPzy91o29LS0sHBQbgLVDBp0iQAkydPHj9+PIACrufcuhW373RkvL5txYSX0ekJt07X7BGNjh3VfW8fsmjRorS0tP79+zdr1qx79+6hoaF///13nz59PnmgtrZ248aNQ0JC7t69K9y2wf5DsYgrIC4OkZGwtcXLl0hIQM2a6r2rj+O40kBJSacqVVqoo1NN/KGzshAVBYUClSrBwED88Vkxc//+fQC1atUS/jhz5kypVGpjY2NtbW36qTM3W1vbPn36HDx4cNGiRatWrcrX6967dw9A7dq179279+pVuJ5e2CcP+ZIUdUaab15eXp6enq1bt/b09Lx3714BRvD09AQgkUg8PT0/+ITHjx+vXLnSwcEh545VqVRqa2vrNmfO3bNnae7ctF9//XPQIBNdXQAhP/5I7u70++/qvS26cIE2bqSYGGrVildyPqO//6b588nd3atzZ08Hh9ZVqng6ONybOJE2bqTgYEpJydMgWVm0f7+ngwMACeDp4ED79pFC8d6zOK5KgBs3bgCwtLQU/ujr69uqVSstrXdX1kxMTHr16rV69eqwsLCPDaLWek5GBi1c6Df89+rmCXHTvC59/9vqbsdowQKKiyvwm/qYmJgYfX19qVQaEhJy8eJFAEZGRnGfeqGpU6fa29s/f/5c+E07adIk0SdW8hR9XBERkZ8fVa9OcXF06RKtXl2wMT6N40ozpafff/z4u8ePv1Mq36hU6aKNe+8eLVpEnp7k6Unz55Ofn1CSjZVgjo6OAP73v/8V7PDbt29LpVIdHZ2IiIi8H6VUKvX19QEkJia6ubkB+PXXXws2geLpS1ohVKlUEyZM2LBhg5GRUUpKyoULF2bMmNGkSZM+ffr07du3QYMGnxxBqVROmDBh48aNMpls48aN33///QefVrVq1Z9++umnn3568eLF4cOHDx06JNzZf/XqVY+5c+cNHjyrfv2+1tYnHz70Dg7+486dRpaWaNZMzXenpwcTE1hY4NtvoaWFcuWyH8/5hhWKrCxVVtaEo0c3XLlipKOTkpl54enTGX5+TSws+tSt29fauoGtLerXh7U1clUK/Yf0dOXu3RM2btwYHCyTSjf27Pn9mDHo1u3fPR/yHVcVK3JcFTdyuRzA119/LfwxPT394sWLMpnM1tbWwcHBwcHB3t5eR0fnvwdRaz3nyZNnKcZZKunIxiGzz3Qc2TgEAFQq3L+PXFUoRTFv3rw3b94MHjy4UaNGnTt3BjBlypSyn3qVCxcuBAUFhYWF1a1bF8Ddu3fFnVWJVPRxBTx7hqwsjBwJoXtu4eG40jSJiUdUqjfm5gOrVv0tNnZxQoJPVNS0SpXmlSnjrO7Qz5/jjz9y9viEvXhR5syZsgYGaNlS3ZFZMRYeHg6gdkGbANavX3/IkCG7d+9esGDBb7/9lsejIiMj37x5Y2FhYWJiIkwgZ4myhCjqjDSvMjIyBg0aBEBXV3fXrl2HDx8eNmxY7qXhatWqubi4yOVyxb9WZv49wh9//JGvV09LSxNe0czMzP/4cVq7lhYu9Bs+HEDtMmXoyBH13+Bvv1GrVpS32yiYSJKTM1auHGRjA0BXS2tXv36HhwwZ1qiRqZ7eu7gyM3Oxs5MPH67YuJHOn6cXL4iIkpLI15fWrqUNGzKWLMkZ4Y+BA/NVhPgDcbVgQXZclS5Ny5er/xY5rsTVpUsXAHv27BH++Pr16yNHjiQnJxdgqOXLlwOQSCQbNmz45JNTU0kuJ1dXsq3/RiKh5V1ObO9zcEEnf6/Op1Z3O0bu7vT2lqpXrwowlw948uSJrq6uTCYLDQ09f/48AFNT01d5GH3kyJEANm7cKOyuqVatmjgTKtGKPq5sSSKh5ctp+3ZasIC8vN5fIeS4YgWiiomZFxwsvXbNIDr616dPJ0ZEfPvkyfjgYAQH4/797hkZT9Ua/sAB4eb/8IkTX7q6WpmbW5qYXJkwQaTJs+JIoaB27b63sWmhThOaiIgIHR0dmUz2H3su3hMTE+Pq6jpr1iwisrW1BXDx4sUCT6AY+jISwpSUlK5duwIwMjKS5zrhVigU58+fd3FxyV2BunTp0sOGDTt8+HB6enruEYRPXDMzs3PnzhV4JhkZGVlZWaRUUkhI1p9/ljMzAxASEqLW2yMioq5dCaCtW9UfieVNQkLK0qVda9YEYKSjIx8+PLuozNy5Ci+v86NHu9jZVczVurS0gcGwRo0ODxmSvmQJzZtHc+eSu3vKzJldatYEYKand27UKLp0qWBz+UdceXqWMzQEEDJuHKWmqvkuOa5ElJGRYWhoKJFICnAz+gf997m7QqG4ePGKhwe1bUva2gRkfxnpZLi2Cdze52D6rHnNKkWv7nYsZupSOnCAiHx9ycxMnM5IwgaKYcOGEVH79u0BzJ07Ny8H5uzoUygUurq6Uqk0JY9brzVVcYkrI3J1pe3bKT2dmjWj1aspJib7EI4rVgBKZfLDhwOCgxEcLImOdiN6t5Pz1SufkJDSwcG4ft3k+fOVRAUpyEdEr7y8vB0dm1hYyKTSa2PGtKxcGYCBtvb+XbvEeQ+s+Ll3jwBS/4qQs7MzgMGDBxfgWBMTEwDx8fHqTqI4+QISwpcvX7Zs2RJA+fLlr127lpSUFBwc/N5zlEplcHCwm5ubsJlEkF3U8fffHz16JIxQoUKF69evizi3sWPHQoxtxElJpKtLMllh3AfEPuT585fz5gkfHuWNjK6NHZu0aFGwiwtt3EjC5aIXL+j8eaW3d7Czs1v79nXftrgRPmx61q79e9++jyZNEkaoYGR0fdw4un1bnLkFBo796isAv9rb09Wr6ozEcSUuf39/AI0bNxZxzH+fuz98+NDb29vJycnc3ByApaUCIJmMbG3J1ZXkckr3ld+fuuHqGG9yd7/0/W/Lu5zQ11Zs6OlLJ05MmEAA6eure+7+6NEj4erp3bt3hd2MpUuXTkxMzMuxhw4dAtC1a1ciqlevHoBr166pNZuSrrjEVTrdv5/9K+fSJVq+nPT1STia46pEmj8/+5uFC7NLpGdkUP/+JFxLX7hQrcHT0x/cudNASPkSEg79+wmZmTEPHvQVlgrv3Wufmvog74NnZWX5+vr2799f5+19toY6Oht69kyfNeu7pk2FyHd1dVUWqPA7K+aOHCGAvv5a3XGio6P19fUlEkke84KYmBi5XL5q1apvv/0WgLGxsbozKGaKe0IYHR0t3BxYrVq18PDwly9ftmjRwsTE5D8+CW7cuOHh4dEkVys5oYZHjRo1Hj58KO70hA/y2rVrqznO3r0EUPv2okyKfcrjx9G//NKgfHlhR2j4lCkvg4M/GlepqRQSQnv23Bg/3qNDhya5KvsJ7SJqlCr18KefSMRq7wkJ/iNGZO8a3blTnZE4rsT1yy+/AJg2bZq4wy5ZsgSAVCpt165d5cqVkUvdunXd3cP/+ov+cc6sUtHFi7R4Mc2dS3PnLu9yAiCpRLWl91+q4yfGjxfh3H3EiBF4W9S7bdu2ABYtWpTHY3Pv6Ovfv3/unZDsg4pLXP3T8uUEkFRKW7aQSkXqxpVCQcnJHFfFSk5psSFDKCuLiOjNG2rWjIQl26FDCz5yXJxfSEip4GDcvm2dnh7+H898/frwjRsVr10zbtnSytPTM0uYx8fdu3fPzc0tp82AVCp1qFFjWqtWAPS1tXf370/u7qu7ddOSSgH06NHjTd4uN7AvyLJlBNDEiSIMNXnyZAC9evX6949evXp1/vx5b29vFxcXBweH97qeCi0Np0yZIsIkio1inRCGhoYKH2P169ePiop6/PhxnTp1AFSvXv3+/fufPPzJkyfe3t5du3Y1NTXV09OLydn+Ip6srCwhStRceBw4kABauVKsebGPu3cv9KefKpuaAqhfrlzUzJmPL13KU1y9eUN37tCBA08mT/bu2bNrzZqmurp6WloxP/9M7u7k7S3iHLM2bixvZATgunq7RjmuxPXVV18BOHnypOgje3p6GhgYCJeuypYt6+Tk5O3t/fjx408clpFBKhX5+go5oQSqDT19VcdPjBlDAHXqdMevQB01w8PDtbS0tLW1Hz58eOzYMQBlypT5dzenj8m9o+/XX38FMGdOiWrWJLpiF1dvCTmhREIbNpBKRQWMq5QU2rOH5s4NnzxZSyrV1tLiuComHBxoyhSaMoXq1n2XEI4ZQ+PHU3g4DR1Kq1fTvn3ZN87nnbe3d4MGFa9ft7h/v0dW1utPPl+hiD9wYLpwnm1nZ3f7Q6DtWeIAACAASURBVHtt0tLSfHx8HBwcJG+rtdWpU8fNze3JkycklyvmzZvYooXwuLOtrWLOnHOjRpUzNFxvbU21alFoaP7eACvehF9E6pRBTklJES49vHjxwtjYGMDRo0f9/f3Xrl07duxYe3v70qVL419Kly5tb28/duzYtWvXenp66unpARg7dqyqpFS1Lb4J4eXLl4WyYy1atIiPj89JDm1sbKKjo/M1lHBgaOH8UhAquc2cObPAI6Snk4kJAZSf+resQEJCLo8ZU9bQEEALS8v4uXNDAwPzHVfLlwt3G1Y2MQEQOn48zZ9P/v5izjMw8MdmzQDMbNu2wLtGOa7E9erVK5lMpqenl6r2jZ05cu5zFs6Pa9WqdePGjXx/unwoJ5w1K0wikRoYGBQgJ/zmm2+EzzkisrOzA7Bs2bJ8jZCzo2/nzp0ABnKTk48rvnFFRP/KCfMdVwoFrVwp3HH9TYMGAMY2b04XLnBcFQcfXCEcM4ZevKDhw+mbb7I/QQCysiIXF5LL6b+reKSlpQm76SQSyc6dXvm6M/D48eNVqlQRtnS5urpmZGQIjwcHBzs7Oxu/vZ9fX1/fyclJLpf/I55jYykgwHvSJB1tbQBdatZ85er6aNIkZaVKBJCpKR07lq+/GVacdehAAJ04UcDDU1NT27dv7+TklJmZSUQTJ078d+4HwNzcvE2bNmPGjFm9erWfn9+/b/A+fvy4kBP+8MMPJWNzcjFNCP39/YV//z179kxLS7t8+XKZMmUAtGvX7vXrT19weo+TkxOALVu2FMZUT58+DaBGjRoFHuHUqQRdXWrSRMRJsVxevaJbtyg8nC5c8B8xwlhXF0DP2rXTVqy4fPp0QeIqPJwWLCB3d6f69QFs6d2bFi+mtDQx55yQcHrECAA1SpWiHTsKNgbHlbh8fHwAdOrUSawBIyMj9fX1+/XrR283rsyePbuAY6lU5Ou75OtTwt7Rvf1XqI4fF3oP6Ovry/Ozye/atWtCg6ZHjx7dunVLV1fXwsIiv7lKv379hB19V65cAdCgQYN8vh8NUqzjioiIlizJ3ju6d2+kSqXKX1xduUILF5K7+7WxY6USiY5M9mjSpFsuLhxXxUHuhFAup9Wr6elTGjOGiGjTJnJyIi8v6tyZ9PXfVR7S16cxYzYsWbIkJCTkvUsMUVFRzZs3B2BkZJTfQu6CxMTEH3/8UVgDtLGxmThxorB5R8gw27Ztu3379v+uJBQQECAsJPSytKQJE2jmTKpXL/uShpsb9ycsGYQ0/9GjghybmpraoUMHAJUrV46Kinr69Gm1atUkEomRkVHr1q2dnZ1Xrlwpl8vzuKPw5MmTQmfC7777rgTkhMUxIfzzzz91dXUBDBs2LDMz08/PT0gOHR0d0/Jz2r1kyZKuXbvGxsYKt9f/8MMPhTFbpVJpYWGhzq7RH374wcjIYsUK8fcLaTqlkg4epPnzaeFCmj//z0GDdGUyAMMaNcrcsMHv6NGCx5W9fayb2/IuXQD8YGsr8vKgMHdvbwtjYwDXf/yRClRMj+NKXEJFMk9PT7EG3LZtG4DevXsTkY2NDYCzZ88WfDiVio4c8ep8yr7qCZlUtrFnT9Xx48KcDQwMHjz4RMGGnIoj+vr6xsbGHTt2FB5/+vTp6dOn8zuXnB19ycnJEolEV1f3k7cGaaziHldEROTlRfb2YTKZ1saNG1UqVT7ias0ab0dHp/r19bW1jXV0OlavTu7utGjR0+Bgjqsil1NsLC6OMjPp6lU6fjx7g6hSSc+fZ//0zZt3vUmkUrKyyi7dl3sTcmBgYIUKFYSL47du3VJnVoGBgUIeaGBgAMDCwsLV1TU8/L9uRMwtMjLSvmXL1zVrkq4uDR5Mbm7k4EASCQE0aJD6hbtLnhUrVhTs5oIikZVFvXpRgwZUgPwrPT29e/fuAMqXLx8WFhYbGyvUoWzatGleOt98kFwuNzAwkEq1fvnl3peeEha7hHDdunVSqRSAi4uLUqncvXu3cP/D8OHDP9Zg8GM6deoE4NChQ5cuXRIuOBXSnMeNG1fgXaNKpVL4Narm71D2AXK5sJRH7u7revSQSiQAXOzslNu3796+Xd248vG59P33AGzKlaP9+8Wf/IUL43J2jf6rrO4ncVyJzsrKCsBV9eq+5ibszFyzZs2zZ88kEomhoWHuTjkFoVLRkSPLunQBIAE29uyp2rJlnIPD9H796OkHmn09evRo06ZNAwcOLJOriK5UKpVIJFKpVJ0tFbl39FlaWgL4ZOagsb6AuCIiomXLlgkLNUJOOG7cuOnTp3/wmR+OK4lEIpFIJZItvXvTvHlUoHLt7+IqMdGyTBkAD1asoHv31HtnjIgoPp5WrqRP5tdxcbR3797Ro0e/V6ZI2Dv39ddfF/jEOrewsDAhITxy5EgBcn5VaioNGpS9MNipE7m50ZAh2RW3N22iEycoOJjE+EdRAty8eVNLS0sikYwcOfLly5eijKlSqc6ePevj43P8+HFx181OnaKffyYiOncu31tGMzIyevToIWSDd+7cef78ubAFvXHjxmq+8TNnznTqdBugYcM+/S+oOCteCeHChQuFjxwvLy8iWrt2bU5yWID7H2bNmgXA1dU1PT1dT09PKpUWYLtpXpw5cwaAlZVVAY49d+4cgJo1a4o+K02nVNL8+UI2uLBTJ+EU2atzZ1q1au3q1eLE1YoVelpaUonkdU71bhElJJwZORKAlbl5vneNZmWdO3aM40pEDx48AFC6dGmxPt5UKpWQsd+9e3fHjh0AevToIcq47+eEbm7k7k4LFtDp00SUnJwsl8tdXV2Fvro5LCwshIv90dHR+eps/kG5d/R17twZgK+vrwjvrsT5YuKKiP6VE+b+0Ufjqlw5Jxsbb0fH6KlTl78Nyw09exbsBqDsuLK2poULO9eoAcD3m29owQI6elSkt6i5du6kffsoX4XYc7YVGBkZmZqaNmnSREje7t27l5eyf+9RKBQtWrSYPHmyQqHw9vYGMGDAgPwO8g8rV5JMRgDVr08zZ9L48dS3r3A7Ky1cSIsXU2ysWuOXCAqFYuXKlYaGhgBKlSrlrV55vMePH3t4eAgXuYRrBK1atfpglaCC2bePOnWis2fpyBHKV43hjIwMR0dHAOXKlbt9+3ZcXFz9+vUBNGrUSJRegoGB2TfcDhxI+VxiKEaKUUKYlpY2Y8YMbW3tTZs2EZHwYSaRSJYuXVqwAX19fQHY29sTkdCH8NSpU2LO+K2cXaMFaIs0ZcoUFELBcUZJSUJCmPbrrzPatNGWyTY5OpK7+45Ro0SLq4MHhT6Ep4YNo0K41qDctEnYNXptzBhau5by8hGbmUmHDtG8eVPatAEwbcCAguyrYP+yYcMGiFrEIiQkBIClpSURDR8+HMBKsarBqlR08GDunFAxZ06ws7Nnly4ObdsKC+MCIyMjBwcHT0/Pf3d2VTMnfPPmTUBAwPPnz+ntLftLliwR4a2VOF9SXBHRP3NChUIRHBzs6enp4ODwX3F15EjOTg01c8I3b94EnDnzfP58cnefaGcHYMnXX2df78hz6VQmOiHqSpUq9ebNm02bNgEYNmxYfge5ePEigDp16hDRgAEDAKiZnBAR+fpmn6dXqEBTp9KkSdSoEbVqRY0a0bRptGwZfz4KwsPD27dvL/z77d69e94LEQvepKTs2LGjY8eOwqV2QcOGDYUi/Do6Om5uburvU1Aqad8++vNP6teP/vyT9uzJ6ypvZmZm7969AZQtW/bWrVtxcXFCN7uGDRu+yG8J3Y+7coXMzQmgAQMoM1OsUT+rYpQQpqenC0WlhXW81NRUe3v7zZs3F3jA+Ph4iUSir6+fmZkp3Fvv4eEh3nz/QbjP/pdffsnvgcKllAsXLhTGrDRaVhbNm0fu7umzZukK63gzZpC7e+quXaLFVVDQ5JYtAXh06CBaV/ocKhWtWDG+eXMAv7Rtm33Sc/PmJ47avl1Ig63MzQFccHamAwdEnphGEvqeqRM271m6dCneNmQTNlXeuXNHrMHp5UuaO3exg4Nw7q73tnczAF1d3Y4dOy5cuPDy5cv/vRdL/XVCIsq53+z7778v8CAl2BcWV0REtHjx4uy40tPLa1yFhdGuXeTtTevXq7tOGB9P8+er3NycbW0BfN+0Kbm7k4cH8RJ0kRJWhvft2/fo0SOpVKqvr5+QkJCvETw8PABMmDBBqVQKm43FaRwdHk716lHNmjRrFtna0tSp5O5OY8dS27a0aBHX4M6hUql+//330qVLa0mlCc2akafnp7c/qlR0/jx9+61SJjsLWL79baCvr798+XKlUvn69WsXFxchS6xZs6Z/QastZGaStzdZWdH69eTrS/7+1KkTrV5NpUuTqyv9937PrKyswYMHAzAzMwsODk5ISBBitU6dOv8uHKqm4GAqVYoA6tHji9ySXIwSQiJq0aJF7nU89XfR1K5dG8DVq1eFSm5du3ZVe44fFhAQAKBatWovX7589U8PP+TGjRvBwcF79uwBUL58+RJQnqg4OnRIyI5aWFpmr+MtWEBPn4oWV3K5j5MTgK41a9Lx46JM+Z3bt2nBgoCRIwFUMzN76er6SvhycxO+Hk6fnv31888Pf/pJ+Lrx44/Bzs57+vcHUN7ISOnmRgsW5LuNFPunrKysUqVKAYiIiCAilUo1adKkgIAAdcbs0qULgL17996+fRtAxYoVxexlFB1NixaRu/uAevWEJitW5ubOtrY+kycn5qdNs9DZvEOHi1u3FmQWcrlc6LBXuXJlES/ElhhfXly9NWDAAKGWo5WVlbOzs4+PT17jSqWiI0eWfP01gA7V92ztfSh/OWFUFG3bJh8+/KuKFQFUNjV9MX26sPZIBSprycSydu1aAF26dCGijh07AhC2euVdmzZtAPz111+XL1+GepXb3/f6NR0+TB4eZG2dHS2zZpGNDS1cSOp1kC55nj17dmry5OySss2bU0jIh5/39CnNn0+1ar2rPwtsBAB89dVX7/V4CwwMFO7Wk0gkw4YNy9cNe1lZtG0bVauW/SKDB2df+RkyhIYNy37Q1JRmz6YP3rualZU1ZMgQIRu8cuXK69evhY+k2rVrF0ZncnqbE+rq0v792Ql1RARFRmbnhy9eFMZmMtEUr4RQ9HW8ESNGAFi7dm10dLQQE4WUeimVylKlSgn1Z/OldOnSIhYcZ/+QmUnbttH8+e/W8Q4dEmXg7Lhasyb6l18AmOnpKfP54fdpBw+Su7vSza2Uvr5+rhWevMaVgUEnK6vsmyU+9jud5Y1CoXBzc9PW1v7999/p7W52Q0PDAp+7Z2RkGBoaSiSS58+fr1ixAsDw4cPFnHFGhnApZGD9+hBunRVWmIOC8jvShg13hJYD27bl46hjx441a9ZMCEVLS8t169blt3STJvjy4uqtgQMHAhBu9c83lYqOHNnQ00tokbKtzyE6mYdKyNHRtHv3saFDm1WqlB1XJibrevRQzJmTHdtXrhRkMkwkr1+/1tfXl0qlT548EWr/tGzZMu+HJyUlaWtra2lpvX79esGCBXjbB1U0d+7QokXUvDn99BO5u9P331OHDrRoUQF7F5R4R49SlSoEkJYWubj8o855ZiZ17UpSae5UUPjykUjc3Nw++Ks+MzPT09NTaB9QoUIF4Tfef1Op6PBhatgwe/h69cjHh9LTs3djZmRQRgZdvEg9e2Y/wcjoA6uFgYGBWlpaOdmg0BalVq1a+W1mni/XrtHRo9SuHa1dS0Q0dCjNnJl9x8+2bcW6I6b0/RPJIiXc6RcUFCTWgMKS46VLlypWrGhpafn69evw8HCxBs8tNDQ0KSlJJpOZmZmZ/5PVhzRs2NDW1tba2vrVq1fBwcHPnz8vjFlpOm1tjBiBbt1aWloCCIqKgq6uKANnx1VQUMW6dS1NTF6np4ffvo2sLFEGzyaVAgh98SIpI0MmlZrp65v/88vK3PzfXw3Ll7etWNG6bNlXaWnBMTHPU1IgkYj1rjWWlpaWoaGhQqEYPXr0rl27vv3227Fjx6ampnbv3l0oKJVfgYGBqampjRo1KleunJ+fHwCh8opodHTQooVKW/vM48cA+llbZ4dBkyb5HWns2HrLlkGlwujR8Pb+9PMDA9G+PWbPPn/lypWyZct6enqGh4ePGzdOK/8XNUq8Ly+uAAAqlUqYntAVMN8kEvToMXaM9bIup1QkGX2ol/eaTJw69dHnx8XhwIHA2Sfb/9p69mmtK9HRZQ0NPR0cwidOHNesmZZUCqkUhoZo3Ligb4iJwNTUtE+fPsK2w/79+7dsOVUq3RkaSnk8PCAgQKFQ2NnZmZqayuVyiB66tWtDJkPbtjh/HqdOISQELVpATw9Vq4r5KiVG9+64fRsTJ0KlwurVaNIEt28jMxP37uHwYZw4AZXq/UOsrTv6+7u7u3/wV722trarq+utW7c6dOgQGxs7YsQIR0fHyMjIj72+r6/vN98c7NULN2+iZk3s2oVbt+DkBF1dCHcr6+hARwctW+LIEVy8iC5dkJKCxYsxePCWWbNmvXr1ShindevWPj4+J06csLa2dnR0vHz5cs2aNc+cOVOxYkWx/qr+rUkTdO+OqlUREoJnz7IffPwY4eEo7mf6RZ2R/oPo63jCvc5C/U+hPf3Wgm1++hRho87EiRPze6BQBle45YMVCpVK9HW8d3Hl7y+0p9/au/cHK/sX3N27NHdul5o1AUy0s8ve6DJ3Lu3Y8f7Xnj3k40M+PrRnT3YJNXf3HrVrAxjdpAnNnftFbmYvfoT9kzKZ7Pfff1epVGPHjgVgYGBQgHZqv/zyC4Bp06ZlZGQYGRlJJBLxt6+oVMEbNwKoZm5O8+bR5s2Uz1t6clu2LLuE+8aNH33OmTPUtm32xdrWrROWLVuWr/aeGusLiyui4OBgANWqVVNrlOxyuCcBkkC1seeRD6wTxsXRn3+eGfV726pPsuOqys1lXbqkLVlCBw7QwoW0YAHNnUu7dhWsUysTl1wut7Bo1rfvWZWKxowhILtDQF4Ipafc3d1TU1N1dXVlMplYLRDeiYkhT09auDB748zSpQXrfaJZrl6lpk2pQgW6eZOcnGjTJurfn3R1/7E2KJGQs3MeGzwKlwyErfKmpqYrV65872w/MDCwXbt2AMqXr1irVtrKlXk9f7l4kXr0yKxQoRIAY2PjmTNn5pQPTUlJEcasUqXKo8+1Jjx8OD19St9/n71COH8+eXvTyJHFeoWweCWE9PY++LCwMFFGy8rKMjExARAbGyuURyuM9vRHjx4FYG5uLtwn8+rVK6cPcXR0dHjLyclJOPbBgwdCKZ2g/O/mYnn1+++WJiYAwlxcRCkJ/C6uLl5cltOe/uJF9Ud+58mTo0OHAjDX1xfuk3k1a5ZT166fiCsHB1qwgDw8Hri4CKV0gr7/notri0Wsc3fhNoZTp06dPXsWb9sziM7T0xOA87BhlJys/mhCTiiV0vbt7//o5Uvq2DH73KBMGVq8mM/P8+eLjCtnZ3UHyi6He1LYO7q9z0Fav568vMjdnebPpyVLXs7w6lg9IjuuDFIXd5anLF5LwcHZlSFVKkpM/FLL+ZVESqXKyooAOn2agoIIoHLl8vr/R+gPfuHChWPHjgGws7MrlClmZFBICJ09S7dufcHNAT6zzEy6fZtmziShp3FaGtWp8y4brFCB8r/FPSYmRigki1x9KYKCghwcHIQHy5Urt3LlyvT0jPyOfP36dScnJ4lEAsDIyMjFxSUiIkIooFq5cuWIz1hDSNit7+VFjRp9MVtGi11CKPo6nnB/819//SUUNRa9Pb1CoRD6mSxfvlx4JCYm5pMLs+XKlcsZYcaMGQBsbW25tExhKYR1vOy48vG5+N13ENrTe3jQqVPi9CVVqRQbN9YvVw7A8i5daOFC2r495tq1PMVVVBT973+0bNmMNm0A2FasqPztNyqEwhKa6b1z9zFjxuT33F2lUo0cObJ69eppaWlCT8spU6YUxlQ7deoEwMfHR6wBly0jmYzmziWhKPKNG/T4cfYNqs2akbExuboW6zvmizMNjau3OaFMqprb8fSF77aQu/uNHzc8nrQiZOwGcndvVinaWDfDtU3g64XrKCjoy+76rAHc3Ehoz02UfffXwYOfPioqKkpY1ckpCD9r1qzCnirLH2dniovL/r5HD6pYkQBycKCkpAIP+b///U/Yuqmrq2tjYyOcw5ibmy9YsCBZvYuYQUFB3bt3FwYUOuJUrlxZnKK1eSbcYZ2ZSVOnko9P9mX5c+eKdUmHYpcQir6O9+uvvwKYM2fOe20txLJmzRoANWrUyOmykpaW5vMhf/31l/yt3GUDUlNTq1SpAmDLli0iToy9Ex4u+jpedlwNGZI+e/a7thbz5+evW+rHXL++pnt3ADVKlUpftUq4Ip6/uFIoUr28qpiaAtjSu3f2tT0mBi8vL+HcfceOHQU7d89hZ2cH4FghXDNMS8s0NS0nlUpF6bqbIyyMVq0iOztKSqLffqP9+2ncODpzhsLCOBVUl4bGlUpFBw+GTVi7qttxO8uopF8W/tbrr/1OB8Y1u3xm5PawCWtfz11Fly9zKvhFePSIpFLS16eEhOw9BaNGffqorVu3AujduzcRCYnB2bNnC32uLF+2bqXdu4mIQkJIuNKUkx+q4dixY7a2thKJpEGDBrq6uo6Ojq8+WC20QEJCQpycnNq0adOtW7f7eWnjLCobG6palcLDP/PLqqXYJYTCOp6Ie10iIyNzQkGoBSKXy8UaPCEhQWiYc0i98pW7d+8Wlnfy27qH5UlamrCO16B8edq/X5QhIyMj71+9KjRcFtpayIcPz745ITJSraEzMxMWLChjYADg0ODB9OBBAccJC9vdvz+AcoaGCfPnU0a+d1+wjxHl3D0hIUEmk+no6Kh5NfSDTp0iAwNychK/ltqqVbR1K02bRr/9Rv7+BdguxD5KQ+Pq+XOaO3dVt+Nbex+a1vrCb73+8h/xe8DIbdk3TuelBikrNjp1IoC8venFCzp5Mk+N34XGAGvXrn327JlEIjE0NFS/iTkTWVYWLVxIU6aQqyvlp3fRfxMqyv7www83b94EoK+vL9bIOd68eSP6mJ/0/DlJJGRg8IUVcCheVUYBNG3aVFdX986dO4mJiaIMaGlpWbNmzZw/li1b9vXr16KMDGDevHnx8fHt27fv3bu3OuN888037dq1i4uLE3qzMpHp6ze1sdHV0roTF5f44IEoQ1paWtbU1oZEIvyxrKHh6/R0AMjKwtOnag0dGDjP1zc+La19tWq9e/VCjRoFHKdu3W/69m1XrVpcaqqHry/On1drViyXadOmeXl5KZXKUaNG7dq1a/369SNGjEhLS+vdu/eLFy8+eXhMTMyOHTsGDBigVCpbtWplZGQk+gzlcqSloWbNQqml1qABiHDnDgC0a1cYr6ChNDSupFLIZAAalI8jwp0X5QC0q/Yk+0dCVUH2hRg1CgC2bUOZMvj6a6Fa9ickJCRIpVIHBwfhYn379u11uTJ2cSOT4ZdfsGwZPD1hYiLWqKmpqQCqVq1aoUIFAIaGhmKNnENPT0/0MT/p9GkQoW3bL6zEe7ErBa6rq9ukSZOgoKArV67k3GCqPqVSOX78+KCgoDJlyggVQdUXERGxbt06qVS6dOlS9Udbu3ZtkyZN1q5dO3r06AYNGqg/IMtNt1q1JhUqBEVFXbl3zyExEaamIgxKpMzMHO/rGxQVVcbAoIuQuclkUKfCfnJyxNGj665ckUokS7t2hZr/BLp1WxsU1GT9+rWXL48+dKhB48YoXVqtAdlb06ZNAzB9+vRRo0YB2Lp1q0Qiad26tdCw+99SU1MvXbrk5+fn5+d37do1IgLQp0+fuXPnFsb05HIAKISmA9lmz0ajRujZs7DG11iaGFelS8PYWPh2drtzjTaM7Vn7bXcomQz164v6Yqxw9esHMzMEBSE0FPXq5emQ48ePx8fHlylTRlgvKoxeKax4EhJCQ0PDnG+KekbiOH0aADp2LOp55FOxSwgBtGzZMigo6NKlS2IlhJmZmcOGDfPx8dHV1fX29jZ++9mjpqlTp2ZkZHz33Xe2trbqj2ZjY+Ps7Lx+/fpJkyb5+/urPyD7B0vLlpUrB0VFXYqMdIiKEiEhTE7ODAgYduCAz507ulpa3o6OxsK1ICLUqlXwYf38ph49mpGV9V3Tpra9e+MjZ4F5VaqUjaOj899/r79yZdLRo/52dvj2W7UGZLm8d+6+bdu2956QlZV1+fJlPz8/uVz+999/KxQK4XFjY+P27ds7ODh06dKlTp06ok8sPh43b8LAAK1aiT42KldGeDjq1sX+/bC0FH98pnFxJZGgS5fKF66HvyxVt0z8fqc/LE2SIJFASwsODihXTtQXY4VLXx+zZsHUFLVrIz4eWVmoUOHTR5UpU4aICq95JiuecvLAlJQUAIWxqaFIcEIompxu8jmPpKenF3jZNzU1tV+/fqdOnTIzMzt8+HDbtm1FmWRAQMChQ4eMjIzmzZsnyoAA5s+f7+Pjc/r06T/++COnJi8TR+XKwp1+l6KiEBQES0uYmhY8rhISUrdu7bdhw6mHD8309A4PGdJW6G+rrQ17e5ibF3CSz54FHDly6O5dIx2ded26ibMbr337+b17+9y5c/rRoz+OHBlgZ6dWvsr+adq0aUTk6uo6atQoiUTy7bffAoiIiBBWbORyec4GdZlMZmtrK3QHsbe319HRKbxZyeVQqcTcr/L0KebNg6MjevXCmTNYswYeHpgzR5zB2b9pXFyVTzjzuPqav5t7dAiY43ARenqoWh9t2qB8eXFeiX1GlStj4UJ8+y3+/huJifjmG6hUSExEUhJSUpCSguRkpKaeTkh4mpqampKSkpCQkJKSEhUV9ezZs4oVK1pbWxf1O2CfSYlcIXz6FA8fwswMTZoU9VTyqTgmhC1btgRw6dIllUollUoB2NjYmJmZO9tRfgAAIABJREFU9ezZc8iQIfm68Pnq1asePXoEBQVVqFDh+PHjjRs3FmWGKpXq559/BjBjxgwLCwtRxgRgbm4+b968H3/8ccqUKd26dSsZ/zaKi/T0lkJCGBmpioqSrluHAQNsuncvSFzFxb3atKmHt3dQVFQFI6Pjw4c3btQI6ekwN0erVgW/5U+lUh0//vPJkwBmtGlj4egIff0CDpWbjo55z57zgoJ+9PWdcvJkt8aNDXv3hqWliLcBaLjp06dnZGTMmTNn5MiRW7duvX//vlBFXWBtbS2crHfo0EGsvQmfJPq+vpMn8dtvSEhAr17Zg4u3nZ99mGbFVf8I+cPOABysIuDigpKyUKCxeveGpyeaNUN4OAwNkZb2/hOsrbeHhe1878H27duPGTNG8vbOfFbilciE8OLFSHNzQ3v7UjJZUU8ln4pjQli5cmVLS8uoqKjw8PC6des+fPgwOjr64cOHV69e9fDwaNiwYZ8+ffr06dPkU9n3kydPunTpcu/everVq586dSp3aRk1/f7771evXrW0tBR65ojI2dl569atV65c8fLy4gIzosnKwr59lU1NLU1MopKSwuPj65Yp83Dz5oLE1ZMnTzZs6LJly734+Orm5qdGjao5blzBk0DB48c4ehQvX/5+7drVmBhLE5PJ3brhq6/UGjO3hg2d+/bdev36lehor5MnPVQqAGjcGN27gz96xTB79mxdXd01a9acP38+KyurXLly7dq1c3Bw6Nq1q9BR5jN79gwQNWfz8wOAzp0RHY27d2FsjGbNRBucfYymxJUDRd96dTe+jLFuZrPGCs4GS4BmzXDyJO7fh45OdjZobg4jo+wvU1PUqtWyWTOJkZGRsbGxqampkZGRkZFRnTp1WhXGNndWXI0pX96pbduaJiYZmZnTmzY1EXZafeGOHfs1MXF3t247gKFFPZd8KsoSpx8nbJgcOnTo06dPiSgtLe3w4cPDhg0zMzPLmXnVqlWdnZ0PHz6cmZn57xFCQ0MrV64MwMbGJjpazBrZycnJQjPN3UJXFrFduHBBIpHo6uqGf1kdTIqze/do0SJydx9Qrx6AoQ0bPp08mTw80v744/Aff+Qjru7eDf3pp8qmpgBsypWL/vVXdTtMEFFEhNC7InnmzIrGxgB29+9PN2+qO+x7QkMvfPedBNDV0gqfOJHc3WnBAjpzRuRX0WyvXr3avXv3zZs3VSpVUc1h9+7sRpubNpFY/ZyUSipblgB68IC2biWAevcWZ2SWFyU/rs5Fb+19CKDede9yk4kSYP9+OnKE4uOpbl3auZMKofsJKylatCCALl6kvXsJoEGDinpCIrC0tARw6wts/lzs2k4IJkyY0K9fv927d1epUqV+/fqLFy+uWLHijh07nj9/fvLkybFjx1pYWDx58mTTpk29evWqVKnSkiVLch9++fJle3v7yMjIdu3aBQYGCvmbWBYvXhwTE2NnZyc0zxFdq1athg4dmpGRMX369MIYXxOlpoIIwITmzftZW+++ebPKihX1165dvHZtRbl8R/v2z48cOXno0Cfi6saNy8uX22/eHJmY2K5atcDJkytOnixCVQ1fXygUABYHBsYkJ9tZWg5p0ABxceoO+55791pVqTK0YcOMrKzpwsYvhQKXLgl/LUwU5ubm33zzTYMGDYpwy9OFC/DyQmYmwsPx5o04Y16/jhcvUK0aatR4t1TIPpuSH1dZ9/wirAB0tnoIKytxRmdFp0YNVK2K0qWxeDFq1+YVX/ZxqakAYGSU/c2Xv2X0XkhIVFRUuXLl6n+B5ZGL45ZRAO3atUtLS5PJZMePHw8NDfXw8PDw8KhVq1bfvn379Omzbt26DRs23Llz58CBAz4+PmFhYdJczW78/f379u2bnJzs6Oi4f/9+fVFuxMrl7t27Eolk2bJlwsezQqHQ0tJS/6NaoVDExMRUrVoVgIeHx8GDB+vWrSvCdBmQU5mgXbVqaQqFTCo9fv9+6IsXHgEBHgEBtf74o2/dun3q1l3XpMmGQYPuaGkd8PPLjqvUVPz9N2QypKb6b93ad//+5IwMxzp19o8dqz96tAi34WVm4m2/zbsvX0qAZV26SADcv6+wtxczrp4/B5FH+/YHw8LqlimT/TMipKWVgF/BLLcffsA/r4+pS7iA8PXXIMounsY3EGqgQoyrhxGnHzUD4FDrCapwbH3xcsqu9+pVpPNgxV9KCgAYGpaEhDAkBHL56cBAAB2trCQpKfhcd3eLpZiuEALo1q2bj4/Pixcv5HK5i4uLhYXF/fv3vby8WrVqVb58+eHDh0dERMycOTM0NPTOnTvDhw8XjtqzZ0+3bt2Sk5OHDx/+559/ip4NAnj27BkRPXjwAEBAQECjRo327t2r/rDr1q2rW7fumjVrAOzcuTM1NZWbT4imYkVUqCD0Pu5Wq5aPk9OL6dPlw4e72NlZGBvff/nS68KFVlu2lJ8+ffikSRHr188sVSp0zZo7np7DFQr4+eH48T1r1nTbvTs5I2N4o0Z/Tp6s7+wsTlEWqTRnje5ZcjIBD16+BBAQESFyXAUFAdh582aqQuH/6FH2z1QqFEXPVlao7O0RGYmnT//x4IsX+PvvAg6Ysyp48yZiY2FpiULoaMCKu8KKq/aKm9eVsSlGliZJdZoYoDCrpDLGipecPPBLTwivXcOxY0hLO/PwIYB2Zcti82ZkZhb1tPKn+CaEAj09PQcHh1WrVkVFRZ0/f97V1bV27drx8fE7d+7s1atXqVKlHB0dg4ODdXV1Aaxbt27YsGEKhcLFxWX79u1a6vQH/zhnZ2cArq6uiYmJERERYWFhU6dOTUpKUmfMhISE+fPnp6en16hRIzo6WtipuGzZMnFmzAB88w2srKClBT09aGnp1ajhMH/+Ki+vqCVLzo8e7dqmTe3SpePT0nbeuNFr795S06Y5jhsX/PffukTIyloXFDTszz8VSqWLnd3/2bvzuJry/w/g77t020uloiS7SBghJJEI2UYi+zZj58sww/jNjBhLGMRYxjL2tRhb1rIXgxZKikh7WqW97vL5/XHMnSbGqG5uua/nY/64Pvecz3mf7mfuPe9zPsu++fOFkyaRlpZiohIKydyceznV1paIFvn7vykujhUKFdyuunZNzs1dd+cOEa3v2/ftoW1sqNZNgwUfYdkyCgigN2/o/Hkiopwc6t2bnJ3p9u0KV1VaSn/+SXw+9er19gqeaz6ggqqlXTWOC3jeiIj6NkV/UQAV83kkhIzRlSskFjPGbsTFEdHmP/88FRJCwcHKjqyClD2IsTLCwsKWLl3atm1b+VloaGi0bt2aiLjOnNV6dJlMxi1muHDhQqlUamdnR0SLFy+uSp1z5swhIicnJ8YY97TT3d1dQfFCGbm5LC6O5eT8o/DNGxYczI4cCZs5c2nPnm3LrHylIRS2NjYmIq4zJ1u3jkkkCg4pM5OtXs1+/lm2dCm3mOHCbt2kAQEKblfnz49v146I3K2t2bJlbNUqtns3KylR1ElADREV9baFBgezDh2YQMCOHGFSKZswgRExLa3KTCSUnc2uXGGMMRcXRsSOHFFsyFALVGO7On/epdlzInbE7QRLSlJ04ABQU8lkjM9nPB6TSNi8eYyIbdig7JgqJSuLrVrFPD0zvvvOwdKyrpYWEakJBCfmzFF2ZBVTKxNCubi4OG9vb2dnZ6FQaGpqamZmtnv37k9w3NDQUIFAIBQKIyIigoOD+Xy+SCSKjo6uXG3R0dFqamoCgSA8PDw0NJSrLSYmRrExw38rLGSRkeyPP+K++867Xz/nJk2EfL6pjo6Zru7uwYOZpyfbuLFajvvmDTt7lnl7h06bJuDzhXx+xOzZwdeuKaxd3boVOmMGn8cTCQQx8+axS5fY8+dMeTMWwqexZg0jYgIBO3jw72t3HR12+7a0ErWVlDBtbcbjsdRUhUcKtYki21VOTonXBm1RKY9kqf/3K76UAFRIaSnr14+5uDDG2JIlrFEjtnevkkOqnLw8tmIF8/TM/O67g8OGSX766UdHRyIS8PkHDx5UdnAVIPD09PxEzyKrQZ06dbp06TJ+/Pjp06f36dNn5cqV3HOV6la/fv3k5OQHDx7ExMQsWrQoISEhODj42bNn48aNq0RtkyZNio6Onjp16pQpUzw8POLi4hYsWDBy5EiFhw3/QU2NjI2pVas6vXp1SUkZ36bN9I4d+zRtutLJyY6bTdTcnNq1U/xx1dWpZUvq0qW+UJgcFfUgJSUmM3ORnV2Cnp5i2lWdOh47dsTl5Czo1m3krFnUuzcZGmIFws+evT1padGVK3T2LDVtSj/8QPHxlJwsuXRpoI1Ng0aNGlWotuxsSk0lMzOaOrV6woVaQmHtKiCATp3Kfs1Lzdc108uf6hKP1S0BVIhAQCNHUnIynTlDGhp05Eht/QYQiSgyUpyb67hv3/YHD/Q1NJY4OGgKhf4vXpw9e7ZRo0btquO6sTooOyOtrbKysoyMjIjo1KlTaWlp3EJ2586dq2g93Mwxurq6qampJ06cICJjY+Occn0a4dMLDOT6APz938qVLDa2eg9aXJy1fLmRlhYRnfLwSPvzTwW0q3v3TowYQUTG2to5K1ey9y3aCZ+xcs9zZs1azjWMwMDAj6+kRw/GPaieP7+64oTapartKiSErVrVwzIuevavzNNzfte77OefWWV7QwBArbRpEzt1ijHGbt9mP/yg7GiqIC2NrV69a+hQPo9HRD87OTFPz2W9ehGRQCCIOH5c2fF9lNr9hFCJNDU1tbW1L1y4cPfu3W+++UZXV/fy5cv379+fOnXqx09mI5VKhw0blpaWtnz5cicnJzc3t+zs7PXr13fv3r1ag4f/ZmFBb95QRgYJhSQUEo9HfftSdS8sIxRq6ulpx8ZeiIm5m5j4TePGuo6Ol69cqXy7WrbMKT3dbe/e7KKi9S4u3WfMIIWuyQk1n7098fl07RqFhorNzf0WLPgqPj7+/v37x48f79at20c+z/Hzo6AgGjaMDh2iYcOqOWKoDararnx8qKDA71mLoMSGw1pFHQpvN8zqCWVl/b1kAQB89jZvpm++ITU1atiQtmyh2tszTlub2rXrYGraXEPjzMOHV2NjeURLe/ZUFwhmMOb4++9kbFwLnn8qOyOtxSQSCfcgeNmyZWKx2MbGhohWrlz58TXs2LGDiBo3blxUVLR27VoiatWqlVgsrr6YoWKyslhYGIuIYPn5n+iIMplkx4529eoR0bJevcS3blWpXQUFre3Th4haGRuLt2/HEB2VtXp1obl5N6FQePToUYlEwnVCtre3l/17k8jNZWfPsrlz2ZYtbPx4dvAgO3CAjRnzKaOGmq7y7arr/S0Dzo9v9/DgsD8OfPnHmLbhzNOTrVnzKYMHACWbO5e9fMkYY2/esLFjlRyMghw9epS7fb+oe3fm6cn69mVEjMdjv/6q7ND+AxLCKrl9+zaPx9PU1Hz58iXXSU9LSysuLu5j9s3Nza1fvz4R+fj4pKenc50DL126VN0xQ02XknJ7yhQekaaa2stvv7167lwl29WRI+mennU0NIjo0tixLD6+ugOHmszLy4uIBALBwYMHJRLJTz/9lJGRUW4biYQFBzMvL+bszEQiRsSImJ0dGz+eyWRs1Cg2dKhSYoeaq/LtqkHS+HYPZUs9R9lEDLWKYp6ebPt2pZwCACjH06ds5Ei2fz8bN449eKDsaBTmyJEjQqHwQJMmzMGBeXqygQMZj8d4PLZpk7JD+xAkhFXl4eFBRMOHD2eMDR8+nIhGjhz5MTsuXryYiLp27SqTyWbMmEFEAwYMqOZgoZY4c8ajTRsiGt66Nfvjj0q2q8uXZ3TqREQDmjdnPj7VHTLUfGWv3cuWR0ZGbtq0adCgQb17x3AX60RMKGT29mzpUnbnDhs/ntuM2dkpJ3KoySrTrqYk3pm2b3y7h8zTM3LWVrsGSWzVKvbokbJOAQCUo6CAhYez3Fxlx6FgoadPv737ZW//j5ywmiarVwQeY+yTdE39bCUnJ1tZWeXn51+6dKlVq1Zt27b96quv1q5dy+fzP7zjuXPnFi5cePDgQV1d3bZt2zLGHj582KZNm08TNtRoBQXJq1ZZ/fJLfmnppbFjWw0f3nb8+K++/vpj29W8eQcXL9aNiGi7dSsjejhzZptly8jQ8NPEDjXZmjVrFi9eLBAIfv3117p16wYEBFy6dCkhIYF7t1u3zTk5c5ydydmZevYkXV3lBgu1RoXbFWN09ixFRhJ3BcLjUadO1KePMs8BAECB/Pxo+HAqKaGuXalvXwoJofPnydiYQkNJX590dJQdX3lICBVg9erVS5Ysad269cOHDwsLC/X19T9yR5lMxufz+/fvf+nSpVmzZm3ZsqVa44Ta5M8/V//ww5KrV1sbGz+cObNQJtNv1IhGjPiPL5HSUjp2TJaYyJfJ+h84cOn581mdO29ZuZKcnT9V3FDTeXp6Llu2TF9f/82bN1yJiYmJo6Ojs7Nzv379GjZsqNzwoJaqTLtKS6OXL4nPpyZNqG7dTxouAEB1u3CB3NyouJg6diRXVwoPJ3NzMjUlHo90dOjLL6km/eAiIVSA0tJSGxubZ8+ebdy4cd68eRXa9+rVq87OznXq1ImJiamLX0SQk8lKV62y8fZ+lpW1sV+/eV26EJ9Penrk7v6PJQSlUiot/fuft25RYiLJZFdjY50PHKijoREzd27dhQvJ2PjTnwHUWDt37szKygoKCnJ2dnZ2dkbHBFAItCsAgH84f57c3KikhBwcqHdvevOGQkKIiDp0IGNjmjyZ6tVTdohvISFUDD8/v0GDBuno6Kxfv97AwIArlEgkeXl5726cn58vFouJSCaTbd++PTEx8ZdfflmwYMEnjRhquPR02rXL78mTQUeO6IhE611cDDQ0uHckMlle2STwL/mlpWKplIhkjG0PDk588+aXvn0XdO9O9vbk5PRJgwcAAACAK1dowgQaNoyMjOj4cRo6lIjo9GkaMYJatKBx45Qd31tICBVm4MCBL168iI6OrtBe1tbW+vr6169fF4lE1RQY1EoREeTnR6WlA48ceZGdHZ2ZWaG9rU1M9NXVr0+cKBIIqGVL8vCopjABAAAA4F8VF5O3NyUmUmQk9epFRHTzJrVsSQ0b0vffKzu4tz52qWv4Tz4+Pjdv3ty7d6+8RCgU6r5vWgYdHR01NTXudfPmzadMmfKJQoRaRFub6xrq4+5+My5u78OH8neEfL7u+24f6IhEagIB97q5oeGUDh2IiAQCDM4BAAAAUA4NDRIKSSj8e4xPaSmpqdFf12w1ARJChdHS0urfv3///v2VHQh8FiwtuW8KLTW1/s2b92/enIhIICB7eyqbDZb7Qrl/nzIzSSb7u4TPJy4zBAAAAIBPr0ULKiqi/Hx69ox4PMrNJWNjatFC2WH9DV1GAWqqpCQ6eJBkMpJIiM8ngYCGDSMrqw/tUlxMBw++zQm5BSqGDqVWrT5NvAAAAABQXkEBbd9OBQX07BkRUfPmpK1NM2bUnPUnkBAC1GCFhRQWRunpZGhI7dpRnTr/vQtjFB9PqamkpUUtWpCmZvVHCQAAAAD/Lj+fAgLePiFs2pT69q052SAhIQQAAAAAAFBZfGUHAAAAAAAAAMqBhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVFRtTQjT09MTExOrXk9ycvKrV6+qXg8AAACA6igoKHj69GlpaWm5colEEhsbm5eX9287FhcXx8bGFhUVVfrQmZmZ8fHxld4dajK0K6VQQkLo5+fn6+tbUlJSrvz69eu+vr7Z2dncP0+dOvX06dN/q2TBggW9evWqejBubm7Tp0+vej0AAADwXowxxpiyowAFu3r1qpWVVUxMTLnyxMTEpk2bnjhx4t92vHfvXtOmTe/evVvpQ3t6enbs2LHSu0NNhnalFJ86IWSMubu7jxgx4uLFi2XLCwsLBw8ePGLECPkH6ebm9oFP/TOWk5Mzbdq04uJiZQcCAAA1gr+/f1JSkrKjqDwHB4eBAwcSkUwm8/X1LSwsVHZEAADwt0+dEKamphYXFwuFwmPHjpUtP3/+fFFREY/He/nyJVeSlZW1YMGCTxxeTfDy5cudO3eKxWJlBwIAADXClClT7t27p+woKu/777+fN28eEaWnp48YMSIrK0vZEQEAwN+En/h4XL7n7u5+5syZ/Px8HR0drvzYsWM9e/aMiIiIi4vjSmJiYho0aGBmZkZEaWlp9+7dk0qlHTp0sLS0LFtheHj406dPLS0tO3fuzJUUFBSEhYW9evWqfv36nTp1EolEXHlxcXFQUFB2draFhYWdnR2Px/vPaAsLC0NDQ1+9elWvXr3OnTvLqyopKbl7925GRoaFhUXnzp35/Ld5dXx8fGhoKJ/P79q1q4mJCVdYWloaFBSUmZlZv379bt26cRtHRUUZGRlpaWnduHFDJBK1a9fO1NSUO53bt28T0cOHD7W0tExMTCwsLIgoPz8/MDAwLy+vUaNGHTt25ILPyMjIyMho1aoVF4yjo2OdOnUq9bFAdTlz5oypqWmnTp3++OMPGxsbKysrZUcEAEogFovV1NQ+cmOJRCIU/v3rLJPJUlNT37tlaWmp/IepLJlMRkTy36b3VvuBwg+Uf7yyNbi6unIvkpOTP2Z7TklJibq6+ns3/rcT/7fy99YPFRIVFfX06VMej9emTZumTZu+u0FiYuKDBw8YY+X+zs+fPw8JCREIBF27djU3Ny/7Vnp6emBgoJqamoODg56eXlhYWP369bkLP050dLRIJGrSpAkRSSSSu3fvJicnGxkZZWZmyrcpKSkJDAxMT083NTV1cHD4+P/RoCZAu6op2Kd18OBBIuI+wqNHj3KFubm5mpqa27dvt7Ozc3Nz4wp5PN6KFSsYY15eXmpqanp6eiYmJnw+39PTkzE2duxYc3PzwYMH16lTp1GjRkQ0duxYxtjVq1d1dXUNDAyaN2+uoaHRuHHj2NhYxtiDBw/Mzc01NTUbN24sEAh69+5dUlLCGLOzsxsyZMh7Q7127Zqenl7Zql68eMFV1aBBA6FQaGlpyeV+2dnZMpls9uzZfD7fyMjI0NBQXV19165djLHw8PBGjRqpq6s3adJEKBTa29sXFBQwxmxtbfv162dqatqgQQN9fX01NbVNmzYxxlq3bq2pqUlEderUMTAw+P777xlj586dMzAw0NDQsLS05PF4Xbp0efXqFWNs+/btxsbG48aN4z7KsLCw6vzooAJ+//33bdu2McaaNGkyZcoUbojzqlWrlB0X1CZSqTQuLi4vL+/jd8nMzExOTq6+kKCigoKCevbsyWU1JiYm7u7uSUlJP/zwg7m5uXybnJwcAwODbdu2xcbGjhkzhruZaGhoOGHChOzs7FmzZnF3+rS1tQ0MDLp06cIYKy0t/e6774yMjLgfi0WLFkmlUsbY5MmTZ86c+e2332poaNSpU0cqlc6YMWPixIl79uxp3LgxEdWvX//AgQOMscjISDc3N66GunXrzpw5k/ttcnR0XLly5bhx4wQCQYcOHVxdXZ2cnMqekZub25dffvnek3358qWBgcHVq1fd3NxEIpFIJHJ1dc3IyGCMDRkyZOzYsd26ddPV1SUifX19AwODGTNmMMbatGmzadOmoUOH8ni8vn37MsZyc3O//vprPT09IjIwMJg7d25RURF3iKioqEGDBmloaHBvNWrUaOHChYyx6OhoFxcX7nqxdevW/v7+jLGMjAwDA4MLFy6MGjVKQ0NDTU3N2dk5JSVF4Z+yKnBxcVFTU2vevHnDhg35fP6SJUsYY2fOnCGix48fSySSmTNn8vl8Q0PDZs2acZfOe/bskclkc+bM4fF4DRs2NDU1FYlEhw4dYozduHGDiMaMGaOnp2dlZaWjo2Nqavr8+XMbGxuuDXAKCgp0dHTWrVvHGHv48GGzZs0EAkGzZs3q1q3LtVvG2JMnT5o0aaKhodGyZUs1NbX27du/fv1aSX8kqDC0q5rjUyeEP//8s4aGhlQqdXBwGDp0KFd44MABPp+fkpIycuTIDh06cIVcQnjt2jUimjt3Lvdrd/jw4X379jHGxo4dy11hl5aWMsbWrl1LRI8ePcrNzQ0KCpLJZIyxlJQUIyOjyZMnFxcXW1hYdOrUKTMzkzF2+fJlHo/3+++/sw8mhHl5eYGBgVxVqampdevWnThxYklJiaWlZZs2bbirrufPny9cuDAvL2/Pnj1EtH79esaYVCr19va+ePGiRCJp3ry5jY0Nl7/dvn2bz+d7e3uOVhXdAAAgAElEQVQzxmxtbfl8/rFjxxhjEolkwoQJfD7/0aNHjLF169YRUW5uLhdGamqqjo6Oi4sLd10YFhZmYGDAxbx9+3Yimjx5ck5OTk5OjkQiqY6PDD5Gt27dbt++Lf/n119/PXr0aIaEEKogIyODiHbu3Pnxu0yePLlp06bVFxJUyK1bt9TU1IYNG3b//v3IyMiVK1cS0d27dxcsWKCtrS3f7PXr10S0YcOGzMzMuXPn+vv7R0ZG+vr6amtrz5w5MzIycseOHUT0008/+fv737lzhzE2ffp0kUi0devW8PBw7udvz549jLGRI0eKRKJBgwYdP36c+32ZMGGCpqamg4PD5cuXw8PDv/zyS5FIlJiYGBsbu3DhwuvXr0dGRu7fv18oFP7000+MsQ4dOohEoq+++srX19fPz2/r1q1EFBMTw4WanZ0tEol279793vN98eIFl8p6eXlFREScPHlSQ0Nj5syZjDF7e/sBAwbcvXv3m2++IaIjR474+/s/fvyYMWZhYaGurj5//nxfX18ukevXr5+ent7u3bsfPXq0ZcsWLS2tUaNGMcbi4uIMDQ2trKxOnz4dHh7u5+enq6s7c+bM7OxsMzOztm3bXrlyJSQkpHfv3np6ejk5OWlpaVzCvGzZsvDw8LNnz+rq6o4fP746P/PPVkhIiPyC+Mcff+Tz+XFxcfILd65tb926ldvg+fPnXJvct28fEf3222+MMbFYPGTIEFNT08LCQu7C3cHBgbuUSkpK0tHRmT17tpeXl0Ag4C6ZGGM+Pj48Hi8uLq6goMDc3Lx169YvX77k3poxY0bdunVlMpmNjU3Lli25PP/hw4cikWj58uWf9m8DlYd2VXN86oRwypQpLVu2ZIxt2rRJJBJlZ2czxlxdXXv27MkYW7x4saGhIbcllxDOmDGjTp06hYWF5eoZO3Zs48aN5f8MDw8nIl9f33Kb9e/f387O7ubNm0Tk5+cnL2/VqhWXjnIJ4d69e3v/U0BAQLmqXF1dO3XqxPXnPHHiRLl3+/Xr16pVKy57lAsJCSEi+YNQxlinTp169+7NGLO1tXV0dJSXc0tfeHl5sXcSQi7VDA8Pl2+8ePFiPp9fUFDAJYR4IKB0UqlUKBRevnz53beQEEKllZaWXr58OSkp6eN3iYyMLHtjApTLzs7O1tZWfqvu8uXLH04Iy+0+YsSI1q1bM8YePXpU9ncnJydHKBQuWLCg7IHs7e0ZYyNHjjQzMxOLxfK3JkyYYGxsLH/C9uDBAyI6ffp0uWM5OTn16NGDMdahQweuKk5WVpZIJFq5ciX3z507d4pEoqysrBcvXmz+p9u3b3MJIXdjlOPq6srd5OUSQsbYrl27iCghIUG+jYWFRdnbso8fPyaijRs3ykuWLl3K4/ESEhJmzZqloaERFxcnf8vY2HjmzJlc1hoREcEVPnnyhIh27drFJYTLli2Tbz9y5MgWLVowqJo///yTiC5evCi/cDczMyv7BCY2Npa7cB88eHCTJk2y/8JNHnHz5k3uwr3shZadnV3fvn0TEhL4fP6WLVu4Qjc3N65ZHj58mIiuXLki337WrFl169aNjo7mWov8EN27d7ezs/tUfwlQJLQr5VLCGEKu44qbm9v8+fPPnDkzZMgQf3//DRs2EFGjRo2ys7PfvHmjr6/Pbf/ixYumTZtyvSjLKTs6ghszUFpaKpPJdu7ceeDAgbi4OO5mgI2NDXdTgZviTE5LS0v+un79+l988UXZd7m8dOfOnfv374+Li0tLS5PJZNbW1lxVNjY25YJ58eJFu3btyo1L5DYeNWrUqFGj5IUtWrTgXnA9ZzimpqYGBgZcW3+3ZoFA0KpVK3mJjY2NTCbjfnqJ6GMGQ4ICPX369OTJk1lZWU2bNh00aFBISEhYWJhEIvHx8QkLCzMzMxs3btzp06dLS0tHjBhRbt+rV69yXZGdnJw6derEFcpkstOnT9+9e5cx5uDgMHjwYB6Pl5iYeOTIkW+//fb69ev+/v5qampffvllhw4duF3CwsLOnj2bnZ3drFmzCRMmcH2r4DOjpqbm5OQkEAjkJTKZLDExUUtLy9jYmCvJysoqLi42MzPjvgesrKzYPyf3z8vLy87ONjc3Lzv6orS0NCkpSVtbmxu6DNUhLy/v/v37a9eulX+CUqn0P/dKS0s7fPhwbGxsenp6aGjoe1fciomJkUgkV65c6dOnD1fC5Vfcaz09vXIjbbS1tbk+lkTE9T7Nzc0lIu5LJi4uLisr69mzZ/KvEUNDQ/m+hoaGffr0OXTo0JIlS4jo+PHj/fr1MzQ0DAkJ2bx5c9mjTJ48eeTIkUTEdUOVH+4Dy0eVPYr8dWRkJBE5OTnJS3r37r1s2bKoqKjbt2936tSp3DwCRPTkyRM+nz9//nzun9yfQv57Wi4e7tyhoiIjI1evXh0UFJSamsotG1ZYWMi1tNzc3JSUlK+++urdvZ4/fx4bG1v28yWixMTEBg0a0D+vXtTV1cVisYWFhb29/dGjR2fNmpWfn3/hwgXu4pBrFV26dClXP3chNH/+fPmnT0T169dX0ElDtUO7qjmUkBC6uLgQkbm5eZcuXY4dOyaRSCQSyZdffklEXK4YFxfXrl07bnsNDY13Vyz8gB9//HH9+vXLly93dHSsW7furFmzUlJSuHzyzz//lCdjRFT2MsvFxYWLqlxVa9euXb58ec+ePevWrTtnzpyEhATuZ/XdNSHeGyd33ICAAPl1PL0zyp8jkUjy8/PfO3peXV1dJpOJxWL5bzx3oPcmyVDdbt265ezs3LRp0xYtWvzxxx/c8NELFy4QUWhoaHx8vJWV1bhx43bu3JmXl1cuIdy9e/evv/7q5OQUHR39/fffb9q0ac6cOWKx2NXV9caNG66urhKJZMOGDf/73/82btwYGxu7ePHioKCgqKiorl27Pnr0yMvL6/r16927d9+0adP8+fM7d+7ctGnTQ4cObd269eHDh/ILPvhsZGZmGhsb79y508zMbMiQISdOnJg7d25iYiIRDRo0aNu2bdOnT79w4QJjzNLS8uTJk7a2tl9//fXNmzefP3/epk2bIUOGJCcnHzlyRCwW16lT58CBA4MGDZLJZD/99JO3t3dBQQERde/e3dfXt169eso+18/QmzdvGGPy2cU+RlBQUN++fVu2bNm3b18LC4vExMT3JoT5+flE1KtXL2tra67E3d39vb8sH+Dj4zN27NiOHTv26tWrUaNG0dHR/5avjh49esyYMY8fPzY1Nb158yY3EUCfPn3eXSXsvfc0K4prmWV/4Li7t7m5uUVFRe+dcyI/P19XV9fd3V1eMmLEiLJ3UaGKkpKSHB0d27Ztu3PnTgsLixcvXpS9w66urs7j8d7bArW0tHr37u3r61uukHsW9F6jR4+eOXNmXFxcUFCQWCweNmwYEXE/cO/e/ubayenTp3v06CEvxF3y2gLtqkb5pAmhVCpNSkri5oAhInd392+//TYrK6tbt27c5D9cQvjy5Ut5QmhlZXXlypW0tLSPvJN97NixESNGfPfdd9w/uQ+1ZcuWRBQREWFnZ/fx0R47dszd3X3RokVlq+J+Y4KCgtq2bVt2Yysrq8DAwOLi4rLX5fLj9u7d+8PHunLlilgs5u5ScImfRCLh3mrVqhVj7M6dO/JKAgMDNTU1371LCp/A3r17TUxMIiIiuI+JmwSvd+/e3bt39/Ly6tu37wf2VVNTCw0N1dfXZ4yNHDny22+/9fDwOHbsmL+/v7+/v7OzM/11G2LhwoXcLiYmJn/88YdQKCwpKbGwsNi9e7eFhcXChQtnzJjB9ZIKCwvr0KHD/v37p02bVv1nD0ojlUoXL168b98+W1vbU6dOTZo06c6dO4sWLdq7d292drarq+ucOXPu3LlTdpc1a9YsXLiQ62Lg4eExZcqU1NTU9evXr1q1avPmzaNGjXr69OmgQYO4apV0Wp+z+vXri0Qi+UJKVOZOokAgkH/Dl7VixYpmzZrdv3+f+3qJj4/nUqxyFyLczHjNmzefOnVqpcNbu3atvb39tWvXuMpDQkK4m+XvGjp0qI6OzrFjx8zMzNTV1cv1tamo/7yo4s7u6dOnzZs350q47lvNmjVr1KhR2b+nRCLh/qRNmjTJz8/38PAo11ciPT29KqGC3NWrV7Oysvbs2cNdv5W7J66urt6gQYPg4GB5Cdc9iv66hFNXVy/bJ+vDRowY8b///c/HxycwMLBPnz7cLRWuMYSEhDg6OpY9RMuWLXk83qNHj4YMGVLFc4RPD+2qRvmk6xAmJSWJxWLu656Ihg8fLpVKg4OD5Tf2uHk75StPENGUKVN4PJ6Hh0dYWFhaWtr169f9/Pw+cAhDQ8OIiIj09PS0tLR169ZxG3fo0KF79+7/93//d/bs2YyMjMjIyF9++eU/+7EYGho+fvw4LS0tLS3tl19+OXfuHBG1a9fOwcHhp59+OnnyZHp6+uPHj3/99VcimjVrVlpa2sSJE6OiolJTU/38/G7fvt2iRQsXF5eff/75xIkT6enpUVFR3t7e3GgQIsrMzIyIiEhLSzt9+vTUqVOtra3d3NzorzRy//79UVFRsbGxAwYMaNSo0cyZM2/fvp2SkrJ9+/aDBw9Onz79858At0aqW7duRkbGb7/9xt2k/7cp0d9rzJgxXF9oHo83e/bskpKSkJCQGzducM9nAgICAgICTExMSktLuXE+RDR69Gju0lBdXb1FixZJSUmBgYESicTGxobbPisry8jIqFwmAJ+lHTt2ODk56evrT5w40cDAwMXF5dtvvzU2Nm7ZsuWwYcMePnxYrrNo3759vby8LCwszMzMJkyYkJGRkZyc/Ntvv7m6us6ePdvIyKhbt24TJ048evToe5MTqCKBQNCtW7cdO3ZwK0a8efNmxYoV3FuNGzcuKSnhhr5LpVJu4gRuGx0dHe5/+bi4uOvXr3Pl3P1QLi8iooYNG37xxRfe3t7yJRySk5P/bV2Kf8MNzeDSsydPnnxgkUMtLa0hQ4YcPXr0+PHjQ4YMkS8WVTnc1538XN5lZ2dnamq6atUqrm9nVlbW2rVrmzZtamNj06tXr4cPH3I/64yx1atXc09QBw0axBj7/vvvucU22F8D+EFRuG63/v7+hYWFgYGBkyZNKrfBhAkTLly44O3tnZiYePXqVfkNylmzZmVlZY0fP/7x48fJyckXL15cs2bNh49laGjYr1+/PXv2XLlyxcPDgyscMGCAiYnJnDlz7t27l5CQ8MMPP3Ajcs3MzNzd3detW3fgwIGUlJTIyMhNmzZ94DER1ChoVzXKJ00IuXt78ieEDRo04NYD5PqLEpFIJDIzMyubELZo0eL8+fOvX7/u0KFDvXr1PDw8PvBDQkTe3t7c48R69eoFBgbKu//+8ccf9vb2bm5uJiYmNjY2fn5+/zmQYOPGjRkZGfXq1atXr96tW7fKVtWrV68xY8aYmpp27NgxICAgLy/P0dHx2LFjwcHBrVu3NjMzmz17NncWR48e7du37+jRo01NTa2trU+cOCE/bkhISPv27evVqzdy5MguXboEBARw2UW/fv2mTJmycOFCa2vrvXv3amlpXb58uV69eo6Ojubm5gsXLpw1a5aXl1dF/vCgMIsXL3Zycpo7d279+vVnzJjx3g5d/6bswB7ukXhiYmJ8fHxubu60v3h7e3N3u9/dXSAQyGQyrl2tXbtWvou+vj53GQSft7Kd6HR0dMp2RtDW1uZmDSm7vba2drnX2dnZ8fHxISEhHf9y4sSJ0tLSiuYS8JG2b9+up6fXunVrJyenZs2ayctHjRplaWnZo0ePnj17NmzYMCEhgZvufMaMGXfv3uWmHLOzs5PfPDUxMRk5cuTSpUvbtGnD9XM5dOiQWCxu2bJl165dra2tGzduXK731H+aNWvWmTNnunXrZm9v7+zsXHY8xbvGjBkTGxt769Yt+YVUpTk5ObVu3Xro0KHW1tbvfcKpoaFx9OjR6OhoS0vLrl27NmnS5NWrV0ePHhUIBPPnz3dycho6dKitrW2zZs0OHz7MZadffPHF+vXrd+7caWlp2b179wYNGjg7OyclJVUxVJBzdXWdPHnytGnTtLW1hw0btmjRIu5hLO8vP/3005w5czw9PRs2bOju7v5///d/BgYGRNSlS5eTJ08+fPjQxsamQYMGEyZM4GZk+PDhuP4LPB5v6NChXIment6FCxfU1dXt7e0tLS0DAwOXLl3KvbVnz54RI0ZMmzbN3Ny8bdu2Pj4+hYWF1fnHAIVBu6pZlDCRzccpN2Nnbm4uNyTjP5WUlHCP6d59q7CwMD4+nluBUH6Ucgd6t6r3LltUXFycmZn57r7Z2dn5+fnlCouKiuLj44uLi+Ultra2AwcOLCkpSUhIkM//Vi7UcvW8efOmXPCgLC9fvly6dKlIJPLw8GCMBQYGElHZWUb79+/fvXt39u+zjHIz3544ccLFxaVz587vHoKbLOvq1avykh49evTq1eu3334josTExGo8PagZ5MtOcI9E7t27J3/LwsJi8uTJ8n96enoSkVQqlS87YW1tPXz4cPkGR48eJaKQkBAejzdp0iT/f6rQUodQIUVFRRcuXNixY8eff/7JDTbmpo968+bNkSNHvL29uVlhr1y58vTpU8ZYcHDw2rVrN2/enJiYmJqaeubMGa4eqVR6+fLlvXv3hoaGciWFhYWnTp369ddfjx49Kp948+7duxcvXiwbwP3798+fPy//Z15eno+PD7d9YGDgmjVrtm3b9urVq7i4uEuXLjHG/P39AwMDy52FWCweOXKkoaHhh3+A8vPzfXx85BO4M8a4s2aM3bx5k1swgzFWUFBw4sSJgwcPclv6+fndv3+/XFWvX78+duzY5s2bfX195XNuM8ZkMllQUNCuXbv8/PwKCgq4WUa5t+Li4vbu3btly5bz589zM5MXFxf7+PjI18zg/rxnz579wCnAB2RlZUVHR5edw/ZdaWlp3GJg5WRkZFRoGTcXFxd3d/d3y4uKirKyst4tLy4uTklJee+hoYZDu6ohPvWkMh+v3EiDsnNyfphIJLKysnrvW5qamg0bNvzAUT6+KnV19fd2F+TuXpSjoaFR7rjy+i0sLP4t1HIlenp6mEyyhmjUqJGnp+eDBw+4UTfch/XuVEMfsGfPHnV1dQcHhwcPHnh7e8fHx3/koFBuOtyzZ8/OnDmzUrGD6tLU1KxXr15RURE3YBU+AQ0Njf79+3OvL168KC/X09MrO/u0fL5QW1tbW1tbefngwYO5F3w+v9wQZU1NTfl9brl3p8uTz2bM0dHRkY/RsLe3t7e3l7/FfQW9t20IhcL4+Pjhw4dzE3r/G21t7bIzuxCRfNx+2bkZtLS0uPERHFdX13erqlOnDjdnaTk8Hq9bt27dunUjIrFY/Pr1a3Nzc3n8EydOLLuxurp6uXjK/XmhQgwNDcvN6/iuf5tFiXsG/pEyMzOvXbt2/Pjxd9/S0NB47wxq6urqn/0kkJ8rtKsaouYmhAA1ENdzuEOHDmlpaTdu3Jg8eTIRtWjRwsDAYM2aNW/evBEIBKNHj37vvjdu3DA3N9fU1Dx9+vSRI0dWrVplYmIyd+7cvXv39unT57vvvjM2No6MjLx3797p06f/LYDOnTsPHjx44cKFGRkZX3zxRWpq6rlz51avXv3uUigA7xo9evSmTZvGjh3LXYW/ePEiMzOzQrNtgQpKSEi4d+/e6tWrlRtGXFzczZs33d3dtbS0GGPr16+XSCRdu3ZVblSgcCdPntTU1JTfSQFQCLSrD0NCqBy6urpVHJoPSsGN1fH19dXV1Z0xY8by5cuJSEdH59SpU0uXLl29enWfPn1Gjx5tZWXFTZ7evn37Jk2aiESi3bt3X7582cvLq6CgoHnz5r6+vsOHDyciMzOzu3fvLlu2jBsS3axZMw8PD6lUqqura2trW/bBeIsWLbi1Unx8fNasWXPy5Mk9e/aYm5u7uLhUaGp7UGU///xzXFzcwIED69aty+PxXr9+PXfuXCSE8GHHjh2rV6+eg4ODcsN4/PjxkiVLvvrqq3r16uXn5+fn53///fe9evVSblSgcFeuXBk9ejTWUgLFQrv6MB775zwEAABQE0gkkrCwsMaNG6upqT1//tzKyko+T0xERISenp68m3FqampKSoqtrW1cXFxeXp6Njc2TJ080NDTks5JkZ2e/fPnS2tqa+y189uxZVFSUvr5+q1atsDb9J5OVlRUWFtapUydutuFaJDw8nDEmXw5KiaRSaVRUVFxcnK6ubuvWrY2NjZUdEQDA5wAJIQAAAAAAgIr6pMtOAAAAAAAAQM2BhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAAAAABWFhBAAAAAAAEBFISEEAAAAAABQUUgIAQAAAAAAVBQSQgAAAACodnl5xBgRUUGBskOBzwjaVdUhIQSolIwMeviQioqUHQcAAEDt8OWXdOgQEdG0acoOBT4jaFdVh4QQoOLOnCFPT4qMpDFj6NUrZUcDQLm5b1/g/igo3MOHD+/cubNv3z6xWKzsWKB2Mzcnf3/KziYiCgykQ4fo0iUKCaGEBCosfP8uv/5KgYFERDt3UknJpwsVahG0q6rjMe4hKwB8vGHD6MQJ4vMpKIgCA2nRImUHBKpOT4/u3KE2bWjMGDp8WNnRwOciOzt72bJlW7duNTY2fvXqVYsWLTZs2ODq6qrsuKC2mjCBliyhrVspO5uEQtq//x/vammRkREZG5OxMdWtS3XrkpERPXtGUint20dz5tCGDaStraTQoQZDu6o6obIDAKiFeDzi84mIjI3p9WtlRwMqTSym/Hzq25dWrqQjR5QdDXwuxGLxli1bli9fnpOTo6am1q1bt/Dw8GfPng0cOHDgwIEbNmxo3ry5smOEWqllS6pTh4KCaNo0kkgoM5PS0ykzkzIzqbCQCgspMfHvjYVCGjOGpk6ldeuUFzHUBmhXVYSEEKDiTE0pOpqsrOjcOereXdnRgMqJjaXAQAoJoZAQCg2lSZNIW5tcXWnvXmVHBp+FgICAefPmRUZGEpGzs7O3t7e1tbVYLN62bdvSpUv9/PwuX748Y8aM5cuX6+vrKztYqDVkMrKwICJavJjCw2nqVJo69R8bFBRQVtbf1/HcpfyzZ+TgQEeOUEKCUqKGmg7tSiHQZRSgIjIy6IcfyNGRIiOpuJhatFDiEObi4uKgoKA6deo0b95cT09PWWFA1aWm0oMHNHgwSaW0Zw9lZtL48WRuTr//TlOmEBHFxtKDBxQcTA8eUGgo5eX9vS+PR25upKVF+/fTuHFUXEy+vso6D6j1YmJivvnmGz8/PyJq3rz5ypUr3d3dubdSUlKMjIzy8/OXL1++detWqVRqZGT0448/zp49WyAQKDVqqB0uXaKJE2nJEpo79+/CDh1IV5eMjMjEhIyNycjobae++vWpXTsiookTad8+Sk8nKytKTETXPigP7Uoh8IQQoCKuXqWdOyk+ni5dosmTKS6OsrPJ0PBThhAbGxsQEBAQEHDp0qW8vLwuXbq8fPkyICCgTZs2nzIMUKCcHAoLo8GDSSajmzcpP59iY2nXLrp2je7fp5MnKSvrH9tbWlLHjtSpE3XqRLa2pK9Pa9cSEf3wAx08SKmpVL++Us4DarGcnBwvLy9vb++SkhIdHZ0FCxZ8//336urq8g0mTpwYHR29YsWKTZs2TZw4cd68ebdu3Zo3b97+/fu9vb179OihxOChVti2jdLSqLj475KCAgoLe//GVlYUFUVEtG4dSaV05w5NnEhaWp8iTqhd0K4UAk8IASpiyhTas4fWraMpU8jYmAQCys7+BHeWEhISAgIC/P39r169mpGRwRXy+fx27doVFhY+ffrU1NT02rVrrVu3ru5IoDpERdGUKdS1K8lklJFBAgHZ2lKzZnT4MPF4dPgw1alD1tbUvTvZ21PnzmRq+v56YmNp+HDi8ejBg7ejXAH+k0wmO3To0HfffZeWlsbn88eMGbNu3TrTfzayzMzMnj17cp1Ie/fu7e3t3aZNm3Pnzs2dOzcuLo6IBg4cuHnz5saNGyvlFKDmS0igJk1IKKSEBDIxeVsolVJ0NGVmUlYWpaW9fcF16jMzoz173m7GGNWrR+npFBtLaGJQFtqVwjAA+GhPA9unbeomiXkkO3WSETEnp+o7Vl5enr+//6JFi2xtbcv+P1u/fn13d/cdO3YkJyczxkpKSgYOHEhEJiYmERER1RcPVJ8nT5inJ2OMlZayMWPY+PFMImHDhzM3NxYTw+LjP7aeoiJmacmI2O+/V1+w8Fm5ceNG+/btue8WR7y/av0AACAASURBVEfHsLCwf9tSKpXu37/f2NiYiPh8/rhx49LS0goLC728vHR0dIhIU1Nz0aJFubm5nzJ+qC0WL2ZEbPz4Su4+dCgjYvv2KTQmqP3QrhQFCeH7icViqVSq7CigJnnxoujgyuBgehhalzFZfPz0Z36N8m9tUexBxGLxzZs3f/zxxy5dupQdllOnTp0vv/xy27Ztz54947Z8/Pjx4cOHudfICWu7dxNCxtidO8zCosJVHTnCiJipKXvzRsFBwmcmMTFx3LhxPB6PiBo0aLB//36ZTPafe2VnZy9atEgkEhGRgYGBl5dXSUlJUlKSvCpzc/OPrApUR0kJMzFhROzPPytZw/r1jIhNmaLQsKCWQ7tSICSEjDGWnZ0dHBy8f//+RYsWubu729raampqbt68+e7du8oODWqG58/ZypWvd4wMuS+I9WvHsrMjIpoGB1NBwQPFHufKlSvyPFAoFNra2i5atMjf37+0tJQxlpaW5uPjM3XqVAsLCyISCATZ2dncjkVFRS4uLkRkamoaFZWp2KiguhUWvn0MKJOx6Gjm788OHmRhYSwkpAKVXLrE1q1jMhnr3p0RsSVLqilY+ByUlpZ6e3sTkZaW1tKlSwsLCyu0e3R09IABA7hvqpYtW/r5+THG7t2717VrVyJq3759Wlpa9QQOtdLBg4yItW9f+Rru32dErEULxcUEtR/alQKp3BjC3NzcmJiYZ8+ePX369NmzZ8+ePYuJicnNzS23GXen08zMLDg4uF69ep8gsJKSktDQUO7XFGoWmYw2bpSUZAjFmjJBaYnWG5GJzdMOW8TilLZt03k8hU2v9+LFi2bNmmlra0+dOtXZ2dnR0VFbWzs/P//GjRvcLDLcAB6OmZmZs7PzypUrGzRowJWUlpa6ubnl53d58uT/rl4lTDFTex08SOPH0+jRFVhi/uVLatGCeDx69IiKiqhTJxKJKCqKGjWqxjih9uK+bQwMDMLDw+XfIRV19uzZBQsWPH/+nIgGDx7s6+srFArHjx9/+PDhmTNnbt26VaEhQy02ceK5W7dcliwRffVVJWuQSMjQkPLyKCUFk2bBW2hXCqQq0w788MMPPXv2NDMz09fX79ix4+jRo5ctW3b06NGQkJDc3FwjI6OuXbtOnDhx1apVJ06cePToUW5urqOjY3JyspubW2lp6SeIcOrUqT169Dhw4MAnOBZUzPPnJBYn2PgREV8qSm1+UxCf2do8sE2bOAVmg0Tk7+9PRNyizwMGDDh06FCPHj0MDQ0HDRq0adOmyMhIXV3dgQMHcq+Tk5P3799f9kpOJBL5+p5WV/+/9HRydqYnTxQYGnxSSUlE9HZhpY/UuDF9/TWJxbRwIXXoQKNHU3ExrVhRWE0RwufBwMCg0tkgEQ0ePPjJkyfe3t76+vqampoikYjP5+O2JpTz6NGj/fsH5+TUHz26pNKVCIXUpQsRUVCQwgKDWg3tSrFUYtmJIUOGREVFxcTEEJFIJGrQoEHr1q2tra2bNGnSpEkTa2vr+u+7LXDixIlOnTrduXNnwYIFv/76a7VGuG7dugMHDmhqalpbW1frgaAynjyhkhLiM5mAuzXAiMejmBhBx46KPU5AQAAROTs7c/989OjR7du3BQKBra2ts7Ozs7Nzjx49uKE7/0ZDQ3D2LLm5kZ8f9epFeE5YSyUnExGZm1dsrxUr6PhxunCBLl2i1aspLe3KoUPuEyee7969e3UECZ+NHTt2REZGTp8+vRLTFKupqf3vf//z8PCQyWTVERt8BrhnxRMnTtDSUv/PjT9gwIA4sfhQRETd4cOnKyg0qMXQrhRM2X1Wq11QUBARGRoaXrx4MS4u7iNHut++fTs1NTU0NFRTU5OIfq/OOfsuXbokEAh4PN7x48er7yhQeZs2MU/PyBsmyUcck484PrvUhHl6Ml9fxR5EIpEYGhoSUWxsLFcSFhZ25syZNxWfG6SkhA0cyIiYiQnDFDO10eDBjIidOlXhHdevZwIBc3cPE4vFnp6eRPTFF19gfix4F9fPs0mTJowxbjQgNw6w6rZs2UJEM2fOVEhtUNvl5ORoa2vzeLzo6OgqVnXjxg3uO00hgUFtlZHBzp/P2bpVW0MD7UqBPv8uo7t37yaiadOm9evXz9LSkhsc+GGnT592cnJyd3dv06bNjh07iGjWrFkPHjyojvCio6M9PDykUumyZctGjBhRHYeAqsrLIyKNXGOzZ73MnvUSlGoREWVmKvYgISEh2dnZzZo1ky/k1b59+8GDB+vp6VW0KpGIfH3JxYXS06lfPypEt8HahusyWomufLNnU69e3/j6fvHbb7999913DRs2DAsLO3jwoMIjBAD4GPv27SsoKOjTp0/Lli2rWJWdnZ26uvqjR49ycnIUEhvUPlFRtHMnBQfvO3euoLi4T7NmLas8qgvtivOZJ4R5eXm+vr48Hm/SpEmvXr2SSCQfs5eDg0ODBg0CAwPnz58/bty4mTNnFhcXu7m5paenKza87OzswYMH5+TkDBs27IcfflBs5aAYMhlJJESkmf92xVPNfGMiouJixR6H6y/ap08fhdSmoUFnz9KQIbR0KQ0dSsXFVFJCK1YopG6odpVOCEUimj3bkYh++umnwsLClStXEtGiRYvy8vIUHCIAwEfYtWsXEc2YMaPqVWloaHTs2FEmk929e7fqtUHtU1xMp06RWEyM7QoNJaIZtrZ07lwVb3ujXXE+84Tw8OHD+fn5vXr1at68+aRJkywtLT/m8zYyMvrjjz80NTW3bt36+++/e3t79+jRIzEx0c3NTSwWKyo2iUQyYsSImJiY9u3bHzhw4GMeXYJSiDXzJGpFJi/tUqyupVhdq5vQgYhI0dPzlhtAWHUiEZ0+TV9+SRIJeXmRTEbx8YqqG6pRSYm4UaOLLVs+MTGpzO5Dhgzp27fv69evV6xYMWbMGHt7+7S0tHXr1ik6TACAf5WRkXHq1CkPD4/IyEgTExNupdyqc3BwIKLbt28rpDaoHRij1FS6d48OH87IyTkVFeXh6xuZnm6irT2Qm1w7JqaKR0C7os9+Uhnu1tTXX3+dmJjo7++vpqb2kZ0W2rdvv2PHjvHjx8+ePbtt27Y+Pj62traBgYGLFi3asGGDQmKbN2/e1atXTU1Nz549q62trZA6QVFksoL8/Lt5eQG5uQGFvUMtHveTCkt0Mxtrv27A4zpaf3Byl4oqLCy8c+eOQCDo2bOnAqvlfPEFvX5NT58qvGKoFklJCffvD2jcuDGfH1u5GtatW3f16tUDBw4sX7583bp19vb269ati4mJadKkibm5uYWFhYWFhbm5ubGx8Xt3T0wkxqhhQ0pOJsaoqIiaNyfG6NEjat++CicGAJ+1lJSUoKCgwMDAoKCg0NBQxhgRmZmZpaWl7dixY9asWVU/hIODg5eX161bt6peFdQIJSV0/z69eEEaGtS2LbVqRdzTEbGYUlMpMZESElIiIoKePw9MSAhKTAxNSeFuxpvp6KQVFOwIDp7VrVvVe2yhXdHnnRCGh4eHhoYaGRkNHTp09erVUql01KhR3LwdH2PcuHF//vnntm3b3NzcgoODT5w40bNnz40bN7Zt23bixIlVjG3v3r1bt24ViUQ+Pj4WFZpdHqqPREL375O/f3qHZ0nmPoy97WAskGpIhSU62Q1fNQusm9jBILU1EZGBgQKPfOvWrZKSEjs7u49vnxWydClNn076+tVRNyhYUlISEVVlMYC2bdvu3bvX2dlZV1e3qKhIIBAYGhoeO3as3GY2NmOLiw+amVHDhtSgAZmbU8OGZG5O16/T2bN09SpdvEhCIcXH09KlJJHQL7/QoUNVOjUAqKUYo6go4qahffmS/hrqTrGxFBhIQUEUEEDq6oOjokK4cm1tbTs7OwcHh+Tk5N27d8+ePfvZs2cbN27k86vUMc3e3p7P59+/fz8pKakqX5JQI+Tmsp27ohJ1Whu+IqKXoa8bt7pHjRpRUlLsw9zAl+ZBCRYBsf3Uhd9HZbzt4KQtEtmZmztYWibn5u4ODZ194cKznJyNY8dWsbsj2hV93gnhb7/9RkTjxo0TiUT79u0joq8quHSlt7f348ePb9265ebmdu3atU2bNk2fPn3GjBk2Nja2traVDiwwMHD69OlEtHXr1h49elS6HlCM58/p0iXy96cbNyg3l4h0ZjrSFKalZaun56yr66x7PoX3/CURaQebv2pxm4gM0m2oYUMFhqDw/qLlGBpSv36k2t3ja43ExESqWkJIROPGjSOi8PBwNzc3iURib2/v6uqamJiYlJSUnJyckJCQlJSkodEyIuI9fW0WLSJXV9q06e0dhIQECgwkqbQq4QBA7SaTkZ0dXb9OHTvSkiXUuTPdukWBgf+YXq1//4HNmpn16NGje/futra2ampqXLm9vf20adM2b96cmJh46NAhLS2tysUQGxs7Z84cmUxmZGTUqlWrBQsWLFq0iJsKHmql06dlBUV2v825PnF/R7OUJRcdOocn34qvH5hgl1n4dyPp36x7M0ONHpaW3Rs2tLW0VGOMZDIism/YcNq5c5vv3EmcPx/tquo+24SwqKjo6NGjRPTVV19dvHgxISGhadOmFc2+1NTUynUWDQkJ2bVrF/fMsG7dupUILC4ubtiwYaWlpQsXLqxoggqKlJ1NycnUsiWtWUO7d78tbNWKnJ01hvVv1+6cQKArkxXl5welWN3IrXfFKKGtZp6JVFBCJIv94rh5I+cqLXzzT9yS9NWREAqFFBdHe/fSpEnk4aHw6kHxuCeE8o4DEolEKKzMF/WLFy9cXFxycnJGjRp16NChd2/MFxVJExIoOZmSkigxkZKTKTGREhOpTh3q3Zu2baOGDcnSkgoLKSMDCSGAqhs8mNasoWPHiM+nFSsoO5uIqF496tiR/p+9+wyL4mr7AH5voTcBEREBBRXsBWsUC2JB0agRawzGKIkxYkx5MDGvoimiPipGY4KP3SRGYiKCHRAjICKgKEUBQaX33tnd834YskFjoSzuyv5/Vz6sszNn7+U6mZ3/zJkzY8aQgwMNHuzB51NBQUFYWNi6devCw8MDAwM1NTWXLl3as2fPWbNmnT59evTo0f7+/s094VVbW7tt27YtW7ZUV1d36NChS5cud+7c2bRp08GDBzdv3vzOO+8IBII2+c7Qdurr6fFjkrCZ1olbQ0f/NvcUn8e+uTa2qFqDiDprVwztkjXGPM3B6uHg/qP5FgsK9PXDMjPXhYeHX7wYOH++ppraUlvbnsOGzdq1C/1KNuT93Iu2cvjwYSJ64403GGOzZs0ioq1bt7asqfDwcDU1NSI6fPhwXV0d95TniRMnikSi5jZVXl7ev39/IpoyZUoLNgeZOX2arVzJDh1is2ezn39mixezw4dZRgZjjIlELCIi/8H2xMQJ0dFqUVHE/ZdxcnTJjwsrdq1I+31EVBTdvWtWU/NAJrXk5ubyeDxNTc2amhqZNMgY+/ZbdvkyE4nY6dOMiI0bJ6uGoc1xd9p8//33jLGamhoLC4slS5YkJCQ0q5G8vLxevXpxe6rm9qvdu1lUFMvIYGZm7PBh5uHBGGN1dWzx4mY1AwoNzyGEZhGJ2LJlzM+P7dnDFi9mu3ezI0dYSkrDu2lp7Oef2UcfVfXt27fxDHlXrlyRtpCcnMztlExNTbk7DJsoODi4d+/eXIPOzs65ubmMscDAQOlArd69e/v4+Mj060Lbq6xk33wj2rBp2eBbfgt/3TPt/OIBd3c7Xjgy63TK2j3M25sFBKRdTfn5cN0z+tXly6yoiNXWMvQr2Wm3gXD06NFEdOjQoezsbBUVFaFQmJWV1eLWuNGnmpqaCQkJGRkZxsbGRGRra/vRRx999dVX27dv379/v4+PT0BAwM2bN5OSknJzc2tra59qRCwWv/nmm0RkbW1dXFzcuu8HrTNrFuOe1h0czHbuZIyxlBTm7c2cnZmBASPK3f1GVBRFRwsSEmwzMtxLw3dLtmxiHh7Mw0Ps6ZF4Z1RUFN2927WmJrn1tfzyyy9E5Ojo2PqmOA8fMiJmaMjEYrZqFSNiX38tq7ahzc2cOZOI/vzzT8bYhQsXuCt7fD5/9uzZoaGhTWmhtLR08ODBRDRs2LDy8vLmFhAW1nBuxMeHHT7MLl5kjDGxmB0/3tyWQHEhEEKzcIGQMfbuu2z+/IaFJSVsyRJmYcGIGv6ztOytqak5fvz4DRs2BAQEVFZWNm6koKCAG6ilra3t7+//0g/Nzs5esmQJlwR69eoVEBAgfau0tFQikfj4+FhZWXGH76NGjQoJCZHhV4Y2t307FwiZh8e7g2/P7xfHNm1iv/9eUihCv3r12mcgvHfvHo/H09HRKS8v/+6774jorbfeamWbK1ascHV1raurY4z9+OOPTXlcuIaGhomJiY2NzciRI6dMmTJw4EAiMjAwSE6WQYqAVpk9u+FFfDz76is2Y8Y/Ox4i1qNH9f82FBf/IRIVNawmkbCgIPb118zTk929KxZXJiZOkFUm5OYo2rFjRyvbkfrpJ0bE5s1jjLFevRgRu3FDVm1D2yorK+vdu7eGhoaDg8PNmzcZY8nJyW5ubtK7I4YMGXL06NH6+vrntVBbW8s9zbJnz57cKc+Wyc1lxsZMX59VVLS4DVBcCITQLCIR276dMcYePmTSHyuxmDuDyvT1mZMT27qVRUSkcodJz1NTU/P2228TkUAg2LNnz/NWE4vF3t7eenp63Ln4jRs3Nh7p8OjRIx0dHVdX15ycnLq6Om9vb+40PRE5OTnhEOu1ceeO6Ovvtk+6zDw8Hn7stWPKJbZlCysvR7+Si/YZCNeuXUtEH3zwgUQi6dGjBxFd5M5yt4KYu6DEGGNs2bJlRDR9+vTdu3dv2rTpk08+WbZs2VtvveXg4GBra2tlZdWxY8dn3vZjYGDw66+/trISkIHlyxsGu2zfzs6fZ//5D+vYkTk7M29vlpralAZkmAm5u8Xu3r3bmkYamzuXEbH9+9njx4yIdejAMDz5tVBTUzNx4kTueiAR8Xi8yZMnX758WSKR5OXleXp6mpiYcHuS7t27e3l5Vfwrq4lEorlz53KDZx49etTKesaMYURs795WNgNNcusWy89njLHUVCY98LhwoWFhUJCMP65xIPT19d25c2dq03Z9z3Tnzp379+9zr9swEF66xA4c+GecIrxCMTFMIGDOzk8v9/dnd+6wRsdHLyeRSDZu3Mhdn3Fzc/v37TPR0dHDhw+XHog/fPjwqRX+97//cTtJPT297777rqqqqry83NPTU0dHh4hUVFRcXV2zs7Ob+x3h1Ys5eV/Alzj3S2DffMN+/JHl5XHL0a9evXYYCGtra7nna0VHR3OTN5qZmcnwhr3y8nIdHR0ej5eUlPTiNSsqKjIyMuLj48PCws6fP8+NSz5y5IisKoGWKyhg7u7s00/Zvn2MMVZR0bwdD2OMMbG4/P59u5s3ha6u0x88aMn9hLW1tceOHSOiTp06SSSSFrTwrKpYx46MiKWmsgMHGNE/V0NBkYnF4nnz5hFRly5dQkJC3N3dO3TowP10DRgwwNvbu7q6urKyct++fT179pSeYPryyy9LSkqkjXz00Ufcj1lMTEzrSzp1ihGxnj1b8D8HNJunJ4uOZoyxP/5gv/3WsNDZma1axRiT/Q2cjQNhaxQWFrq5uQkEggkTJnBLmhEIS0rYgQPs66/Z8eOsquolK2/ezA4eZAkJbN489rIfX5C5r79mROz992XW4G+//aaurk5EU6dOLS0t5RYWFxdz3Yk7q/X7778/b/P4+HhnZ2duT2hqaurt7V1fX5+RkeHq6sqdjtfS0nJ3dy8rK5NZxdAGGvrVu7WyGouCftVi7TAQcpOLDhgwgDHGXUHetGmTDNvn7iccP358czfctWsXEbm4uMiwGJAvsbh8/XoX7qRD0zNhSkqKt7e3s7MzN26hW7duOjo6zZ015Hmiou6MGuU1a1YiY2zBAkbUkHlBwa1Zs4bLcrdv3+aWlJaWenl5SacbNTY23rhxY2FhoVgs9vPz4+ak1dfXl94luH79em6kuqxueBCJmKUlI2IyGksIL+Lpyb77jv36K1u79p9A6OLCPD1ZcLCMA6FEItm5cycR6ejoREZGtqyRuro6Ly8vfX197tz5mjVramtrKyoqpkyZQkR9+vTJycl50fb19czLi23axDw82NdfM29v9u+TYhIJO3GiYaii9MzW9euspVPEQYuNHMmImJ+fLNsMCwvjTt8PGDAgLS3Nx8eHG6GnoqLi5ubWlPufw8LCuAkjiMjGxoabAiQuLs7JyYlb2KVLlxcc/YPcoV8pDsULhDk57NQptm0bN4EH++9/mZ8fKyp66Xb5+flhYWGHDh3iTp/v27ePMVZcXLxnz5709HQZFjh06FAi+uWXX5q4/i+//GJnZ/f777/fuXOHO+Ugw2JA7iorKydMmEBEXbt2fcEQ88zMzCNHjrz99tudO3eWDiHm8XgDBgywtLTkOsZLrzk3BXfTLDdeetCgt8aOPZGcLLPJS6GNeHh4cFnu2rVrT71VV1fn4+MzbNgwrs9oa2u7uromJiYyxsLDw6VD0Pft20dEAoHg9OnTMixsxw5GxBwcZNgkPJunJ/v5ZxYVxbZvfyIQ1tayOXPYvHksNZW1NLs9ITIy8o033uB6Czc+edmyZc0dBxUYGNivXz+uT06cODE2NlYikRw/ftzU1JTLmUSkq6u7bdu2f8+v1iA8vGbXJ6Jv1zEPj7otn9XtXMeeOikWFcVGj2ZETFWVpaSwOXMalt+8yb77rgVfHFosL4/x+UxDgz05l4cMJCYmcsds0tukx48f36zTo9wUINzNQdRoCpDr169zc8K7urrK9iAQZAX9SqEoWCAMCys+sJg7ZVi2x0X0rXuR97z8IzPrtq9jd+5I1xKLKysrbxcV+Zw8uXvJkiUjRozgTlJyhEKhpqbm4cOH26JALtR16NCh6qXjW/7m6elJRCtWrJBIJNxZCu5gDtqN52XCioqKgIAAd3d3W1vbxjMmGxsbOzs7e3t7c3uTyspKe3t7IurcuXPrrxNylZw6derWrVtEZGFh0coGoa1xgw4EAsEff/zxgtVCQkKcnJy4jsTn852cnK5fv869deLECT6fz+PxDh06JNvaysqYri4jarwDhjbReMjozz8zPz+Wnc24ASVBQUxXl82cyXg85uzM0tJa+BFZWVmurq5cDuzYseO2bds2bNjADa/S0tLauHFjdXX1SxtJSkqSDqnq2bMnd+48KipKekLd1tb2xIkT0nV69Ojx7Knbd+3KOT6p0suVeXgU/7SgcP9b7MCBhrcKCpibGxMIGqZL9vJiIhH7/HN27hwrLWVLl7LY2Bb+CaBFDh9mRGz69DZpvLCwcODAgVZWVlpaWt7e3i27e6K2ttbLy4t7OjSPx/vPf/7DGJNIJNw9Y7KaMAlkC/1KoShSIHz4kH37bYpfX+7aYMbJMblHHLN/dqjesapm65rcX6Y/Tnw3MXHi3btmUVE87tFwH388XnqQ3aFDh2HDhi1evJibME1bWzu2DX4zPvzwQyJas2ZN0zeJjIwkIisrK8bY/PnziejHH3+UeWEgX40z4cmTJzdt2jRmzBgVFRVp/9TR0ZkxY8b333//zMgnq0xYWVmppqYmEAgKCwu3bdtGRMuXL2/F14I25+vrKxAIeDzeAenR8AvdvXvX1dWVO4gnotGjR2/YsIF7UOp2bmSdrK1fnz527MqVK93aonGQioxk3KSwycksOJjl5rKvv/5nsO6RI8zdnampMSKmo8M8PVmzni7JDe/kJsfmxk1J765JTk6WhjcrK6sXPHervLx848aNXGfT1tbmJujjQiY3E4OJiYm3t7d0AraLFy9KH/M1efLkpKR7/7RVWsq++Sbn+KT8QzPK97yb/cvEwv1vsa+/ltRXZWdvrfpgUsOFwc8/Z6WlrLSU/ec/7NIldvQo8/BgUVHN+buCDHATlbXd3Qd79uwhovfee6+V7UinAJEOlJg9ezYRvfhcG8gL+pVCUaRAeOoU8/BI8e+bd2Ra3pFpSRetivY7J5+zrti9XLx5fVQkT/qI8Oho1bi4Pg8ezA4O3nLgwIFr1649Nbs6Nwto9+7dCwoKZFhgVVUVdymyWRM2iEQibquHDx9ylwLmcQ8EgPalvLzczs6OO43EHQMJBAJbW1t3d/eAgIDnjZuqqamZN29ecHCwTDLhxYsXiWj48OGMscmTJxPRb9LBZ6B4goODuWi3ZcuWZm2Yk5OzceNGAwMD7vieiD777LM2KjI1NVUgEKipqb3kljCQqfBwduHC0wsfP2ZLljQ8HMfMjB092qSm/Pz8pM/UcnJyeubdzkFBQf379+fWsbe3v/OvK8J5eXmdOnXirk4vX76ce9bu80KmVH19vbe3t5GRkVAo9PW1efTItb4+jzHGEhPZli05xyflHJtS/OPCjBN2hfvfKj7wTmxM96goiv1LX7LQmSUlMbGYHTzIOndmRKxfv2fcZAhtr66ubsyYPBUV1up5i5/rwIEDRLRs2TLG2MOHD1NSUsStmMmq8fjnBQsWENGJEydkUCXIFPqVolGkQPj778zDI8Wvb822NTXb1jz+Y2jtto9rPT9J+31k4f/mZP42Njd0VWnphZqaFInkJVOGVldXc7fcTJ48WYbzix45coQbSdzcDWfNmkVER4+eSE7OHDXqN2vrXPyutUu3b9/mLgauXr36zJkzTZmHaseOHdzp9pCQkMaZMD4+vgUFiESi8PDw4ODg6upqTU1NHo+X9/ckzqBo7t69y80j2uIJ+svLy7kxC3379pXVLLXPNHPmTCLa7OHBmjCkEFovKop99BH7669nvxsQwPr1Y0SsY0exk9PCF4yFuXfvnqOjIxfzrK2tz58//4IPlYY3LvUtWbLkqb3H3LlzR4wYcePGDcaYn58fd/PzC0KmVEFB6rCOnAAAIABJREFUwZEjG6OjBVFRFBNjmJf3gyTiOneFkBsymnd4WkJQZ+6Eb1ycdUnJOcYYi4hgo0Y1xN9hw9jfA6ThFeNmax8+3L7tPuL48eNE9PbbbzPGuPNcsjqb7+LiQpjdXSGhXykaPimOIUNIVZWI1Kr01ar0BSL1Oo1SItIq6VKnXt4lZUqnnht0daeqqVnyeIIXt6Surn7q1CkjI6PLly9v2rRJVgVyJxuWL1/e3A1nzNjSpcvjgIAFPXp0ycqan5jYKTZWVkWBAgkLCyMiJyen77//fubMmdzMCi/28ccfu7i4VFRUTJ069ebNm/7+/vb29jk5Ofb29gkJCc0tQCAQjBw5cvz48WFhYVVVVYMGDeIO70DRpKamTp48uaSkZOHChdywlhbQ1tbmznw9dZOqzH28ciUR7d2+vdbTk7Zto+jotvssICJbW9qzh8aOffa7Dg50+zbt3UtDhvx89uyJwYMHr1q1qrCwsPE6xcXFa9as6d+//4ULF/T19b28vOLi4qTh8JmEQiE3X5Gbmxufzz9+/Li1tfXWrVvr6uq4FQ4fPnzjxg09PT1HR8eZM2empqba2NhcuHDB399fegXymQwNDV1cPPr0idPVnSoSFaalrUrgLSg1uK9ZYiqs0SaiYpP7VXo5wnoNM757nz5xGhr9H6Yskrz7NoWHk5kZ/forRUTQqFHN+huCrJw9e5aIJk1qw7+/qqoqEdXW1hIRNyZZ2utk2DIoFPQrRaNIgdDSkkaPNsoYRTweEeln9RHUqxV3iZMIxcbpo2naNOrUqemNmZub//bbb0Kh8Jtvvjl16lTrq0tMTAwLC9PW1pbebtF0I0bYZGWZBwUREY0fT0TEvYZ2hjvjxT0PoIn4fP6hQ4dcXFwqKyudnJy4TDhx4sTc3NyWZcLs7Ozjx4+vXbu2uZXAK5Ofn+/o6JiTkzNx4sTDhw9z91+1THp6OhFJH03RJsTiCQ8eDDIxyausdDt7dty+fUuWL//inXf27t3r5+cXHR1dkJv73G2LiujRI6qsbMPylJJQSKtW0W+/zXB3d+fz+dzTKbnwJhKJ9u/fb21t/f333xMRl/HWrFnDPUTrpfT19Xfv3h0XFzdt2rTi4uJ169YNGDDg/PnzRFRXV8eFzIsXLxoYGHh5ecXGxk6dOrWJNaur2/TsecHK6g81NcsaftqD4T8Xdb1TYnIvrd957WKzTo+G9w39tKNgTk7Ot/HxNkUlJ7LXGdKGDXT/Pi1cSG15vgOeSySi9PRzZ84Q0fTp09vucxofrMv2UFu2MQBk6Ny5c4R+pUia9Avx6owdq9OzJ4WEUGqqZpkpEWnUd6devWiGHRkaNrcxe3t7T0/Pzz77bNmyZb179+7bt29rStu/fz9jbPHixU257POUPn2oc2fKzqb798neno4epeBgWru2NeWAwhGLxX/99RcR2dvbHzly5NixY6tXr+buPH4xLhMS0dGjR52cnM6ePevn5zdz5sygoCB7e/srV6706dPnxS1UVVVdv349MDAwMDDw1q1bjDEi+vzzz11dXWXxzUCWysrKpk6dmpSUNGzYMF9fX+53pcUyMjKIiJvrv63ExlJZ2ZoRI9719fW9fz+vspIeP6aYGDp+nHv/s379ticnk6kpmZqShUXDCyMjKi2lwkISCKi+nvr1oxkzSPCSwR3QLPr6+p6enkuWLFm7dm1AQMC6dev2799PRKmpqUQ0adKkXbt2teyHz9ra+ty5c76+vp999lliYuL06dOHDBmSmppaUlIiFArd3Nw8PDwaT+7ddB06zNHTm5F/64ss0V6NUpMy4+QeEYu5t0rNHqaJ5tRlZRKRnp6T0fw9pNqtBR8BsnHrFl26dL+wMPnhQyMtreG6um33UdxuEFdylMf9+/eTk5ONjIy46TrbCPpVsyhYICQiExOaN4+ISCwmHo9ace6ciD799NPY2NijR4/OmTPn5s2b3HPAX4Axlp6enpycnJSUlJSUNHr06Llz5xJRXV0dNxZ5xYoVLSiDx6MJE+jECbpyhWbNIiK6epXq66nRJJTw2ouMjCwuLra2tu7Wrdu5c+eCg4O5246bogWZUCwW37x5kwuB4eHh9fX13HJtbe3x48c7ODi8+eab3bp1k933AxkQiURvvvnmrVu3bGxszp8/r62t3coGuUDYtlcIU1Opvn5hv37rAgO7dejwv5kzS2pqMsrKMsvK0svK0ktL+9fUUG0tpaZSaiqFhDRspaVFa9ZQaCjV15OhIfF4xOPRm2+2YZ3Kqm/fvpcvX/7uu+/27t2bk5PD4/GMjIyWL1/OPZK0NWbNmjV9+vR9+/Zt2LChoqKipKRk4sSJu3btkk4/0zI8nkqnDiv1/dWFZQKJoC51qE/HR0O1S7o+7v1nPSvX1BxiZualrW3XyuKhxSoqKm78/nvozz+HPXrUQV2diKb17Ck4c4b09Khr17b4RO7wmjtYb3wQ33rt8krOa6qiouLGjRuhoaFhYWHc/fPTpk0TtOVZQvSrZlG8QCglo17y448/xsbG3rp165133jl9+nTj0VklJSUpKSmpqampqanx8fEJCQmJiYkVFRXSFcrLy7lAePr06fz8/AEDBtja2rasDHt78vWl/Hzq0oV69aKkJIqOppEjW/nlQIEEBAQQ0aRJkyQSydWrV6lFY0fpZZkwNTU18G/FxcXcttx0pg4ODg4ODnZ2dq286ARth8/nm5iYaGpqXrhwgXu0UStxgbBr2xylNVBXJyI1oTB25crQtDQe0QBjY8cePYy0tP5ZRySi0lIqL6fSUioro/Jy4vMpMJBsbcnYmMLDKS6OiGjiRGp1BoZnCgkJyc7O3rlzJxF98skn3ARXraeiorJmzZr58+eXlZXl5OSMfd59jc1lYqJSoU5M3DllDOOLHgw/oXtjidm9aeIZEzsavadYN7Moiezs6xERJ4KCrl27FhcXJ5FIuMXc/+bTe/ak+noKDqYlS9riwxsfrDc+iG+9dnkl53XyvH5lZERtPF6U0K+aSYEDoYxoaGj8+eefQ4cO9fPz+/bbb//v//6PW37s2DFumqCnGBsb29jY9OzZs1evXm+88Qa3kJtO5v33329xGYsX09tvc0dWNHEiJSVRWBgCYbsivYHw1q1bBQUFVlZW0ln4muiZmdDJySk4OHjChAljx469efNmWlqadH1ra+tJkyY5ODiMHz/+pVe/QRGUlpZeunSpqqoqNjZWJtdvX8U9hH370p07VFdnpKW19tKlxyUl3GJ1odBMT89UR2efqWlvPp90dUlXlzp1oh49iMuKJ0+SsTERkY0NRUbSoEGUm4tA2KZsbGzaotnOnTt37ty5V69eMmtRU5MMDVl+dqbNFaFIXVirRUT6ajPIaLHMPgKeIpFQRgZVV5OJCXHjP7OyKCyMAgMpNJTu3asZMmRvdDQRCfn8wV26jDYzG2NufiMjIzA1dTI3adAL7hZunX9P/oErOa+xp/rVuHF7r14lIqFQOHjw4NGjR48ZM+bGjRuBgYHcw7HaDvpVs7T/QEhEFhYWJ06cmDp1qoeHx+DBg52cnIjI0tJSTU3Nysqqb9++lpaWlpaWffr06d+/v/TAOjc3NzEx8cCBA5GRkUFBQerq6osWLWpxDRoa/7weN44mTaLZs+nmTbKwaDhkgtdaZWVlRESEUCgcP378vn37qKUTunCZkDF27Nix+fPnp6amnj171t7e/sGDB9zcSEZGRtyI0ClTplhYWMj4a0Ab09fX9/DwcHNzW7t27eTJk1t5Lbeqqqq4uFhdXZ2bULutWFhQv34UG0v19TN69XpYUpJWWppZW1tUUpJcWJhcWGiooUH37j2xiVBIo0cTEUkkxOdTZSVpaBBjhGvX8Le6UZYlcRc0i021S0wrDNPyrKIN35iFe0zbSlYWnThB9fXE45FIRCkpdPEiZWf/s4KaWh+J5Bt7+7EWFsNMTdWFwhqRKDIz00BD4+yiRXrcyWxNzTaqru0m/2iXV3IU144dtGPHE/1KR6ePpeU3Dg5jx44dNmyYurp6TU1NZGSkgYHB2bNn2/pENvpVsyhFICQiBweHb7755osvvli0aFFERETv3r3feOONmpoa7t3a2toHDx4kJCSEhYVxw0fj4uJKS0ulm1tYWKSlpXl5eXl4eLS+mPv3KSSEpk+na9do4kQEwvbg6tWrtbW1o0aN0tPT4y4VTpo0qWVN8fn8w4cPq6urz5s3T0tLi4jGjh0bERExbty43bt3DxgwoE0fMABtbeXKld7e3vHx8fv27VvbuqmlpJcH27xLzJhBPXpQZOQeFxfq2pXs7Ehfv6qqKj09PSMjQyMvj1JSKDOTMjIoLY0yM6mwkNTUaNAguniRLCwoPp4cHUkgoC5d2rZOeH3UdOeli/11C60Mwvtk97pWo5Wva7IVgbBNVFbSsWOUl0fXrxOPRx07Un09ZWeTlhaZmpK5OZmbk6lpZ4FgTV3djYwMz9DQsLS00LS0GpGIiEx0dJYNHkwqKjR0aBsV2HaPB2iXV3IUS3o6/fe/xOeTtTURUXY2depEw4fTmDE0ejQNH95ZVXVNRcWNGzc8PT3DwsJCQ0O5Y28TE5Nly5a1aWnoV82iLIGQiNzd3W/fvu3j4zNz5sxvv/02PT09KSkpOTk5MTExKyvr3+sbGBj06tXL2tq6V69eycnJR48e3bRpU2pq6v79+9W5s2WtsGgR7dxJTZsGHF4D0hBYXV19/fp1gUAwYcKEFrfG5/O9vb2l/+QmL/3iiy8GDhzY+lJBvoRC4bZt26ZPn7558+YlS5a05k7CV3EDoVTv3tS7d+MFmpqa1tbW1txBwFOqqykggOLjqUsXKi2l2bNJU5Pmzm3lJGHQrnBnMbS1ycCAWv2TCi8SFUUiEQUE0LRppKlJwcHUpQutWkXcU2orKigtjS5fprS0VWLxsbw8biM+jzfQxGSsuXm/Tp1IVZWsrGjYsDYqEFdyXmOff05791LHjrRxI9naUkJCwy9Fbi6FhtLnn1NIyKq6umPx8dzqfD5/4MCBY8eO7devX1uXhn7VLEqUSHg83sGDB+Pj47Ozs+fPn9/4LVVV1a5du3KjRqUjSJ+6AWzu3LmLFi06fvx4fHy8r69vy27aYYxu3iQiGjeOtm59YhwpvNa4GWUcHByuXbtWU1MzbNgwWY3iKykpiY6OVlVVHTNmjEwaBLmbNm3a1KlTL1686OHhsXfv3ha38ypuIGwZDQ2aOZOsrenGDSovJxMTGju24egToDEjI1q9muL3UY28K2nHMjJILCaxuGHMp5UVZWaSSETh4ZSWRgUF0hXnjR37oEcPOzs7Ozu70W+80SE3l1JSiMcja2vibiNsG7iS8xqrqyPutObkyRQRQTU1tHMnhYRQYqJ0lXn29g/09Br61ejR3BSjrwD6VbMoUSAkIm1tbT8/v9TU1P/+97/Sq389e/Y0Nzd/6bOhp0+fHhoayk0ZP3LkSF9f32HNPFuWmkoffEBBQfTuu0REmzfToEG0dGlLvwwojJycnISEBB0dnZEjR3755ZfUivGi/xYUFCQWi8eNG6fVeFJHeM3t2LEjKenhrVsO8fHU4iekvtIrhC1gbU3PvH4IbcDJ1HTgkCGdVVSIyH3IELM2fTQlvF64hyf/PcEjlZeTlhbdukUpKUREWlo0aBCNGUMODtNHj57e+ES1vj61zTRFT2l8eG1mZmZpaanSiqdyhYSE1NfX29vbk6ynEoFnEIsbXmRlUadOdOAABQQQvbBfvSroV82iXIGQiLhLfy2b8KN///4RERFvvfVWSEjIunXaK1ZQE58zJxLRjh20aRNVV5OREfXrR0ZGpKtLPj6kgCf3obkCAgIYY+PGjVNRUZHONSqrxmXeICiCPn36TJuWsHcv/9NP6eLFFjai6IEQXqFVmZl06xbV1xPR4Fu3qFMneVcECmPgQIqLo/796fx5MjKiR49o9mwyNKQPP6QxY2jIELnfvtL4Ss7OnTu5p6e0QFFR0aZNm/bu3du1a9eEhAQtLa12ObRPsSxcSKtXU58+FBxMR4+SmhpNnYp+9TpSukDYSkZGRoGBgZs3h3/7be/gYIqLo82bX3JfTEwMrVhBUVFERM7O9MMP/4ycktUjnUC+pJmtoKDg7t27mpqa0geWtJ50MKqsGgQFsXkz/8QJunSJzp2jlj2NCYEQXl9aiSqDPh8sGWxKu8h6aw9emgbvCJ+6ybusdsnCggYNIh6PrKyoqoqGDyc1NVqzhmTxKFSZkF5vYYy1bIosiURy8ODBdevWFRUVqaurL1u2TCAQZGdn79+/38TEhHuKL7SJBQtoyhTKzydXVxIIyNlZ3gX9A/2qeRi0iLc3U1FhRGzaNFZa+ux1KiuZuzsTCBgR696dXbz4akuEV4U7Io+Pj79x44aZmdmUKVNk1fKjR4+ISF9fXyQSyapNUBy7djEiZm3N6upasvmAAQOI6NatW7KuC15DU6cyInb+PDt/nhGxqVPlXdDLXL7MiJiDA2OM2dgwIpaQIO+a2rXERPbrr+zAARYQwCoq5F3NEyQSyccff6yhoTFs2LArV640d/OYmJhRo0Zxx7QTJky4d++eSCTy8vLS1dUlIj09veLi4rYoGxQc+lWzIBC23OXLTF+fEbH+/Vlq6tPvXrjAunVjREwoZG5urLxcHiVC24uLiyMiExMTiUTCLSkrK5NV4/v37yeiuXPnyqpBUCj19axvX0bEvLxasjk3cVF+fr6s64LXEAIhvM4iIiK6/P1YGicnp7i4uKZsVVFR4e7uLhQKuV/ho0ePMsaio6OlUzw4OTk9evSojWsHxYV+1XQIhK2SlNTwQ2ZszG7caFgYHc0WL2ZEjIgNGcKio+VaIrSxzMzM2bNn6+vrP3jwQOaNOzs7E9FPP/0k85ZBQfj7MyKmr8+aGOsyMzP9/Pw2btw4bdo0oVCorq4uPRMBSg2BEF5zlZWVnp6e3MPK+Xy+s7Pzw4cPX7C+n58fN8eyUCh0c3MrLS0tLi52c3MTCARE1LVr11OnTr2q2kFxoV81EQJha5WVsRkz2JYtzNCQXb3KGGNz57KOHZmGBtu4sYUjweA1IhKJuAdCWFhYpP77SnEriMVi7iF1KSkpMmwWFI2jI/vgA1ZU9Ox3c3KYvz/bufPCtGnTjJ58coNQKCwoKHi1xYKiQiCEdqGgoMDd3Z27+0tVVdXNze2ZA/NmzpzJ7QZHjRoVExMjkUiOHj3aqVMnIlJRUXFzcyvHuCxoBP3qpfCY4NbS0aHTp8ndnaZOpb17qa6O1NTo558pLo48PKgVM9zC60EgEFy8eHH8+PGPHz8eN25cCjeRtyzcvn27oKCgW7duTz0SE9qBrCxyd294bWhIKSl05QoR0dtvU3k5hYbS7t30zjvUty+ZmNCMGXTqVPH58+fz8/P19PRGjx7t5ubm4+OTlpZmaGgox28BCqRzZ+rWjTQ1SVOTunWjzp3lXdDLCIWko0Pc03S0tUlHhwQCedcE8mdoaOjp6ZmUlOTq6ioSib7//nsrK6utW7fW1DzxqEpbW1t9fX0vL6/Q0FANDY3Jkye7uLjk5eWNHTv29u3bu3fv1tbWltdXAAWEfvVy8k6k7YeLCwsOZlu2sMWL5V0KvHIVFRXjx48nIjMzM1mNHd2yZQsRubq6yqQ1UCgZGWzt2obX8+ezJUvYokWsrIwtXtxwpUf6n44OGz+ebdyYc/LkSdlegob2JiaGffIJ++QTFhMj71KapqaGbd3KPvmE7dnDxGJ5VwMKJzIyknvsG/fb6u3tLZ1fraamJj8/v7KycuPGjdwzAIyNjY8ePYoh9PBS6FfPhEAoMy4ujDH2wQds9mw5VwJy0fpMmJmZeZUbdswYY2zixIlE9Pvvv8uuRlAUGRnM1rbh6H3OHPbOO+zOHfbZZ2zxYvbNN2zECPbRR+zoUZaQgONkaJqqKjZzJquuZlVVbMYMVlUl74KaYONGFhTEGGOHDrEDB+RdDSiogICAQYMGcYfvffv29ff355b7+fl169aNiPh8/pIlSzB+HpoF/eopPMbYq7kU2e798AOtWkU5OXT4MH3xhbyrAXmorKx0cnK6evWqmZlZcHCwlZVVUzYJDw8PDAwMDAy8deuWoaFhbm4un8+vqakxMDCora3Nzc3tqDBPiwJZycykHTuIe0zuggWkpkZHj5K7O129ShER8i4OXkcxMeTnRxs2EBFt2kSzZtHAgfKu6WXmzKE//yQiKi+njz6io0flXRAoKLFYfOzYsQ0bNnAPXx03bhyfzw8ODiaioUOH/vjjj0OHDpV3jfD6Qb9qDPcQykZ9PaWmEhF17kxZWfKuBuRES0vr7Nmz48ePT09PnzBhwvPuJxSJRNevX9+8ebOdnZ2+vv6kSZO2bt0aHR2tra09atSo0tJSIrp27Vp1dfWQIUOQBtslgYA6dGh4bWhI3GQxX31FqqpyLApeZx06UFFRw+uion+6lyJTVaXqaiKiwkLS15d3NaC4BALBu+++m5KS4uXl1aFDh2vXrt24cUNPT8/Ly+vGjRtKddQOMoR+1RiuEMpGXR0tX07HjhERzZ9PJ0/KuyCQnxdcJzx48KC/v39wcHBZWRm3RCgUjhgxwsHBYdKkSSNGjBAKhbm5uUFBQZ6enrGxsevWrePuJAQAeIn336fhw4kxioqin36SdzVNcPUq/forOTnRyZO0fj316SPvguA1UFhYeO7cOSMjo8GDB3dW/MmT4DWBfoVAKBt1dTR4ME2dSkQUF0eXLsm7IJCr52XCadOmXbhwgYgsLS0dHBy4HNihQ4fq6uqwsDDpwFHu/8rPP//c1dW1R48e8vwmAPC6YIxu3yYiGjyYeDx5V9M0OTmUnEx9+5KBgbxLAQBQXgiEsoErhPCUZ2bCCxcu5ObmOjg4dO3aVSwWR0dHcyHw+vXrtbW13IZaWlpjx451cHCYPXt29+7d5folAAAAAKCdE8q7gHaCxyP+3/dj8nFjJvx9PyGXCSdMmMBlQkdHx9TU1PPnzwcGBgYFBRX9fc+PQCCwtbXlrhna2dlxz04FAAAAAGhruEII0IbKy8sdHR3DwsJMTEzGjx9/48aNhw8fSt/t0aPHpEmTHBwcJkyYoI85FQAAAADglUMgBGhb3NjRtLS01NRUIurYseOECRO4uwcxIhQAAAAA5AuBEKDNlZeXFxcX//bbbw4ODoMGDeJjVDEAAAAAKAYEQgAAAAAAACWFKxUAAAAAAABKCoEQAAAAAABASSEQAgAAAAAAKCkEQgAAAAAAACWFQAgAAAAAAKCkEAgBAAAAAACUFAIhAAAAAACAkkIgBAAAAAAAUFIIhAAAAAAAAEoKgRAAAAAAAEBJIRACAAAAAAAoKQRCAAAAAAAAJYVACAAAAAAAoKQQCAEAAAAAAJQUAiEAAAAAAICSQiAEAAAAAABQUgiEAAAAAAAASgqBEAAAAAAAQEkhEAIAAAAAACgpBEIAAAAAAAAlhUAIAAAAAACgpBAIAQAAAAAAlBQCIQAAAAAAgJJCIAQAAAAAAFBSCIQAAAAAAABKCoEQAAAAAABASSEQAgAAAAAAKCkEQgAAAAAAACWFQAgAAAAAAKCkEAgBAAAAAACUFAIhAAAAAACAkkIgBAAAAAAAUFIIhAAAAAAAAEoKgRAAAAAAAEBJIRACAAAAAAAoKQRCAAAAAAAAJYVACAAAAAAAoKQQCAEAAAAAAJQUAiEAAAAAAICSQiAEAAAAAABQUgiEAAAAAAAASgqBEAAAAAAAQEkhEAIAAAAAACgpBEIAAAAAAAAlhUAIAAAAAACgpBAIAQAAAAAAlBQCIQAAAAAAgJJCIAQAAAAAAFBSCIQAAAAAAABKCoEQAAAAAABASSEQAgAAAAAAKCkEQgAAAAAAACWFQAgAAAAAAKCkEAgBAAAAAACUFAIhAAAAAACAkkIgBAAAAAAAUFIIhAAAAAAAAEoKgRAAAAAAAEBJIRACAAAAAAAoKQRCAAAAAAAAJYVACAAAAAAAoKQQCAEAFEVlZWViYmJdXd1Ty0UiUWpqanl5+fM2rKmpSU1Nra6ubvFHFxQUPH78uMWbA4Cywf4KoN1AIAQAUBRBQUE2NjbJyclPLU9PT7eysjp16tTzNoyIiLCysgoPD2/xR3t4eAwdOrTFmwOAssH+CqDdQCAEAAAAAABQUgiEAAAAAAAASkoo7wIUSERERFFRkaOjYwu29fPzMzU1tbW1lXlV8LpDv4LnuXfvXmJiIo/H69evn5WV1b9XSE9Pj4yMZIwJhU/sqx88eBAdHS0QCEaNGmVqatr4rby8vNDQUBUVFTs7O11d3du3b5uYmHTp0kW6wv3791VVVS0tLYlIJBKFh4dnZmYaGhoWFBRI16mtrQ0NDc3LyzM2Nrazs1NRUZHxNwdFhf0VPA/2VwDtGYO/LVq0qGfPnv9enpSUtG7duqysrBds27Vr15UrV7ZZafAaQ7+CZ5oyZYqKikrPnj3Nzc35fP6XX37JGDtz5gwRxcXFiUSiDz/8kM/nGxgY9OjRgzvEOXTokEQiWb16NY/HMzc3NzY2VlVV/fnnnxljV69eJaLFixfr6ura2Nhoa2sbGxs/ePCgf//+kydPln5oZWWltrb29u3bGWMxMTE9evQQCAQ9evTo2LEjEXXs2JExlpCQYGlpqa6ubm1traKiMmjQoOLiYjn9keBVw/4Kngn7K5ALsVj86NGj8vLypm9SUFCQmZnZdiW1V0o9ZHTx4sUXL1586Wo5OTk+Pj7FxcWvoCRoB9CvoCm+++67vLy8pKSkx48fr1+/3tPTs/GkeVu3bt23b9+ePXsKCwuTk5Pv3bvHLT927NiePXt+/PHHx48fZ2RkODo6fvrpp9LJ+tLS0u7du3fv3r379+9XVlZ6eXktXrw4KCgoNzeXW+HcuXOVlZXOzs5VVVXTp09XVVV98OBBcnJyfn7+ypW9U4ovAAAgAElEQVQriYgxNn/+fBUVldTU1Pv370dGRiYkJOzZs+fV/m3g1cH+CpoC+yuQi6Kiom7dup04caLpm/znP/8ZO3Zs25XUXil1IAwMDCwqKnrpanZ2dikpKX369HkFJUE7gH4FTTFkyJAOHTpwr6dPny6RSKRHUUT0ww8/TJ48+cMPP+T+yec37Kv//PNPS0vLefPmFRcXl5eXL1y4MDc3NzIyknt348aN3GgrU1PTvn37JiUlLVq0iDEmne7v5MmTdnZ2FhYWvr6+mZmZXl5e3bp1a/wRSUlJsbGxH3zwgbq6enFxsbm5+fDhw8+dO9fWfw2QF+yvoCmwvwK50NPTu3Tp0rRp05q+yaeffnrkyJE2q6jdUtJ7CENDQ+Pj4wsKCq5cuVJRUaGrq7tgwQLurcrKyhMnTjx48MDc3NzFxUVLSystLe3MmTMLFy7s2LFjVVXVyZMnExMTVVRU7O3tJ0yYIN8vAgoF/QqaLj4+fsuWLWFhYdnZ2bW1tURUVVXF3XtTVlaWlZW1fPnyf2/14MGD1NRUAwODxgvT09O7du1KRDweT7pQTU2tvr7ezMxs9OjRJ06cWLVqVUVFxfnz53fu3Ml9OhGNHDnyqfZTUlKIaO3atWvXrpUuNDExkdGXBgWC/RU0HfZXIBfcTkYgEEiXSCSS9PR0TU1NIyMjbklhYWFNTU2XLl24HmVjY8MYa9xIeXl5UVGRqalp47tb6+rqMjIytLS0jI2NX8lXUXRKeoXw1q1bx44dk0gkERERv//++4ULF7jlxcXFgwcP/vXXXx8+fOju7j5+/HixWHzv3j03N7f09PSsrKyBAweuXbs2MTExJCRk4sSJK1askO8XAYWCfgVNlJGRMW7cuKysrP3798fExJw9e7bxu2pqajweT3qWvTFNTc2JEycWPWnu3Lkv+KxFixZdv3790aNHZ86cqa+vnzNnDhGpq6vTkwdkHA0NDSLy9fVt3H5CQkIrvy8oIOyvoImwvwJ5KSgoUFFROXDgwLlz54RCoa+vb7du3bp169apU6eZM2dmZGQ4OTkZGRl17dq1e/fu0dHRRLRixQpra2si6tev3/r165cuXWpoaNitWzcjIyN/f38ikkgkX331lYGBgZWVVefOne3s7HJycuT8PRWAkgZCNze3Q4cOEdEXX3wREBBw9OhRbnl5efm+ffuuXLly8uRJb2/vqKiomzdvSrf6/PPPc3JyoqOjT58+ffXq1V27dh04cIDrXgCEfgVNFhQUVFhYeOjQoUmTJtnY2Dw1856amlrXrl2joqKkSx48eMC9sLGxiY2NVVNT029ETU3tBZ81b948FRUVHx+fkydPTpo0qVOnTkTUs2dPIuJ+Pht/hLW1NY/Hu3PnTuP2pUPFoD3B/gqaCPsrUARisXjdunVHjhwpKSk5fPiwv7//oEGDxo0bl5ube//+faFQuHr16qc22bp1a+fOnVNSUjIzM/v37//ee++JxeL//ve/3333naenZ0FBQVhYWEJCwrp16+TyjRSKkgbC5zE3N3dwcOBeDxgwgIgyMjKk7165cmXu3LnS2ZZXrVqlq6sbGBj46uuE1wv6FTzF0NCQiAICAqqqqkJDQ999992nVnBxcTl//ryXl1d6enpQUND777/PLV+1alVhYeE777wTFxeXmZl54cKFrVu3vvizDAwMpk6deujQocuXL0vHBE6bNq1Tp06rV6+OiIhIS0v76quvLl26RERdunRxdnbevn37sWPHsrKy4uPjd+/efePGDRl/f1Bg2F/BU7C/AgXh7e1tb2+vp6e3dOlSfX39KVOmfP7550ZGRtbW1nPmzImJiXlqsOjkyZM9PT3NzMy6dOni4uKSn5+fmZn5008/TZ8+/aOPPjI0NHzjjTeWLl164sQJkUgkry+lIBAIn4sbsiwWi7l/1tXV5ebmSm9oJiKhUNi1a9eHDx/KpTx4TaFfARFNnz592bJl77//vpaW1pw5c9zd3XV1dYmI97cNGzasXr3aw8PD3Nzc2dl5/fr1+vr6RDRy5Mg//vgjJiamf//+Xbt2dXFxyc3NlUgkL/64hQsXcg8QmzVrFrdEV1f3/Pnzampqo0ePtrCwCA0N3bhxI/fWoUOH5s2b9/7775uamg4YMMDHx6eqqqot/xiguLC/AsL+ChQGN0iYo62tzY0l5mhpaVVXVz8VCLW0tJ56XVRU9Pjx4+jo6KF/O3XqVF1dXXZ2dtuXr9CUdFKZFlBVVdXW1i4pKWm8sKio6N93OQM0HfqVcuLxeAcPHty+fXt+fr6VlZVQKJSeC5ceLXl5eXl5eeXl5enr66uoqLz33nvc8jfffPPNN98sKCgQCoXSwVHjxo176ofwr7/+kr5esGDBkSNHdHV1ucM4jq2tbWRkZE1NTVVVFTfrg4eHBxFpaWkdPHhw3759RUVFHTt2xFOeQQr7K+WE/RW0GxKJhDE2derURYsWNV7OncJQZsobCLnzCjU1NU3fpH///hcuXNixYwd383RUVFROTs7AgQPbqkR4DaFfQdMZGBg8Nf/ev3G30Pwb92jmJuJmkjx58uS/31JXV298klVKTU0Nk/W1e9hfQdNhfwXtgIaGRufOnaurq6UD44GjvIGQG1K8d+9edXX1+vp6FxeXl27yf//3f05OTjNmzFi2bFlRUdHmzZstLS2XLl3a9sXCawP9ChTQH3/8oaGh4ejoKO9CQLFgfwUKCPsraFOLFi3avXv322+/PX36dCJKSUkpKCgYMWKEvOuSM+W9h5DP5//5558dOnTw8PAICAggou7du/ft21e6grq6uq2trYGBgZ6e3pAhQzQ1NadOnXrx4sXa2trVq1d7enpOmTIlJCSEG9IwYMAAc3NzuX0ZUBjoV6CALl++vGjRomeeWQdlhv0VKCDsr6BNff3112+++Sb3vIpOnTrZ2Nj4+PjIuyj54z01jBsAAAAAAEC+RCLR7du3u3fvrqKi8uDBAxsbG+k8MbGxsbq6uhYWFtw/s7Ozs7KybG1tHz16VF5e3r9//4SEBHV1dUtLS26FoqKihw8f9u3blzvXkJSUdO/ePT09vd69e+PZ9IRACAAAAAAAoLSUd8goAAAAAACAkkMgBAAAAAAAUFIIhAAAAAAAAEoKgRAAAAAAAEBJIRACAAAAAAAoKQRCAAAAAAAAJYVACAAAAAAAoKQQCAEAAAAAAJQUAiEAAAAAAICSQiAEAAAAAABQUgiEAAAAAAAASgqBEAAAAAAAQEkhEAIAAAAAACgpBEIAAAAAAAAlhUAIAAAAAACgpBAIAQAAAAAAlBQCIQAAAAAAgJJCIAQAAAAAAFBSCIQAAAAAAABKCoEQAAAAAABASSEQAgAAAAAAKCkEQgAAAAAAACWFQAgAAAAAAKCkEAgBAAAAAACUFAIhAAAAAACAkkIgBAAAAAAAUFIIhAAAAAAAAEoKgRAAAAAAAEBJIRACAAAAAAAoKQRCAAAAAAAAJYVACAAAAAAAoKQQCAEAAAAAAJQUAiEAAAAAAICSQiAEAAAAAABQUgiEAAAAAAAASgqBEAAAAAAAQEkhEAIAAAAAACgpBEIAAAAAAAAlhUAIAAAAAACgpBAIAQAAAAAAlBQCIQAAAAAAgJJCIAQAAAAAAFBSCIQAAAAAAABKCoEQAAAAAABASSEQAgAAAAAAKCkEQgAAAAAAACWFQAgA0M4VFlJeHhFRVRU9fizvagAAAECRIBACALRzoaEUGEhE9OgRHTki52IAAABAoQjlXQAAALS5tDS6c4dSU+VdBwAAACgYBEIAgPYvLY3u3qWsLHnXAQAAAAoGQ0YBANq/MWNoyRKaMUPedQAAAICCwRVCAIB2zsKC6uqIiPT1acgQeVcDAAAAigRXCAEA2rmKClq/nhijnBzKzJR3NQAAAKBIEAifIJ2QHTOzA0C7IRKRlhYdOkQiEdXUyLsaAAAAUCQIhE9wd3/6BQBAOzBzJl25QgUFRERxcfKuBgAAABQGAuETamro8WN6/Jhqa+VdCgCATG3aRFu2UFERDR5MgwbRsWNUXy/vmgAAAEDeEAifUFBAZ87QmTNUXCzvUgAAZOHgQRKJSE2NevSgSZOorIw6dqQ7d8jFhXr0oB07qKxM3iUCAACA/PAYY/KuQYEsWEC//fbECwCA19fWrbRuHY0fT1euEI/XsLCujn77jbZvbxg7qqND775Ln35K5uZyrBQAAADkA1cInzBy5NMvAABeUz//TF98QXw+ffjhP2mQiFRV6Z13KDaWQkLIyYkqKuj776l7d5oxgyIi5FcuAAAAyAMC4RPOnaPkZCKitDR5lwIA0Apnz9K77xJjtGsXOTs/e50xY8jfn6KiaNEiEgjo7FkaOZIcHGjFCvr1VyKizZuppORVVg0AAACvGgLhE3R1afNmIqK8PHmXAgDQUjdu0IIFJBKRhwe5ub1k5SFD6JdfKC2NNm4kfX0KDaWqKjp3joqKqLCQxOJXUjEAAADICQLhE3R0yMGh4dT4H3/QiRNUWirvmgAAmiM2Ns7VNaWykj74gDZubOpWnTuThwc9ekRnzpCGBn35ZTO2BQAAgNcXAuHT3nmH/P2pspK++YYWLSJDQxozhnbvpsxMeVcGAPAyjx49cnScmpMz+oMPkvbubfbmuro0ZQoRUa9epK9Pt2/LvEAAAIDWkUjozh06dYpOn6b79wkTZLYaAuE/uEdy8Xj01VeUlkbLlpG9PfF4FBZGH39M5uY0ahRt20ZJSfIuFADgWQoKChwdHTMzM/v27b1rl7lA0KrWvviCMjJkVBkAAIBM1NXR/v107hzFx9Pdu3T6NP36KzJhK+GxEw18fenLL+mXX2jw4CeWFxVRUBD5+5OvL5WXNyy0tCQnJ3J2puxsIiJnZzp7lvr2pe7dX3XZAACcqqoqBweH8PDwAQMG/PXXXx06dGhxU4WF9NVXZGNDa9bIsEAAaLdEosKamgQNjX4Cgb68a4H27tw5iomh+vp/ps9WVaUJE/CEgNbAFUIiosxMWr6c7t2jsLCn3zIwIGdnOnaMcnLozz/pnXfIwIBSU+n778nOjs6cof37KS+PEhPxLHsAkJv6+vo5c+aEh4dbWVldunSpNWmQiFJS6Kef6PhxWVUHAO2ZRFL16NGS+vrsiopwedcC7Z1YTHfukEgUmp7+v+jokMePxRIJ1dXRrVvyruz1JpR3AfInkZCLCxUW0tSptGrVc1fT1KTZs2n2bBKJ6K+/yNeXAgOpe3daupQ2bKCePV9hxQAARESUn58fFRUVGRnp7+8fFRVlYmJy+fLlzp07t6y1uXMpJ4cOHGgYKWpmJstSAaD9YUxcXX1HVdVULK7Q0Biorm4t74qg/crPpzt3cq5dOxkZefD27djcXDWBQEL0hpmZj7NzJw0Nedf3ekMgpB07KCiIjIzo8OEnnt38PEIhTZxIEycSEW3eTN26kZkZhYfThAltXSkAKLuKioqYmJjov927d0867F8oFLq5uVlaWra48Zs3KT2dNDQoPZ2IqGtXmZQMAO0KY+Lq6piKitCKirDy8iCRqKhHD38Li/8VFOzn8dRNTb+Vd4HQvtTWUlycKDLy/LVrB2/dOp+cLJJIiMhUV3di9+4XHjz469GjUQcO+C5c2P/WLRoyRN7lvq6UPRDevk1ffUU8Hh06RC09q06ffUYDBsi0LAAAIiKqqamJiYmJjIyMjIyMiopKTEyUSCTSd7W1tYcMGTJ06NCqqqqffvrphx9+WL16tZaWVgs+SCym7Gzi88nEpOEKIQIhAHDq6uoiIyMfP44cNuxiRUWYRFIhfUtNzUosLldVNTc19UxJmSPHIuH1lpNDjx6RQEBWVmRgQIxRejrdvZt05cqvt28fvn07rbSUiAR8voOlpaut7ezevYV8fmZZ2Vs+PhEZGW8cOHC4oGDukiXk6EitmFHtwgXS16eRIykwkAYNoo4dZfcFFZtSB8Kqqqpvv82qq+uxejU5ObWkhRUrKD6erlyhAwfIxkbW9QGAsjpy5Eh4eHhkZGRcXFw9NwMyERGpqqoOHDhw2LBhw4YNGzp0aO/evQUCARFJJJLo6OjIyMgdO3Zs2LChBZ+Yk0MiEZmYkKoqhowCAIlEojt37gQGBoaGhl67dq2srExLSzUkRCiRVKmpWWprj9bWHqOrO1lVtZtIVJSd7SEWV3Tu7F5X91gg6CAQ6Mm7fHh9MEZ//kmJiSSRNAzVMzOryc/3j4jYHx0dlJrKDYOx7tjx3UGDlo4caTxiRFxRUfj163YWFqaGhn8tW7bS3//w7dvzfHz+k5X1XW4uf/580tZuWS1Xr1JsLJ0+TaGhZGGhRIFQqWcZXbly5U8//eTs7HPsmLO6egsbee89OnSIDh6kZctkWhwAKKuzZ89+/PHHKSkpRCQQCKytrW3/NnToUHV1dYlEkpiYKL1s6Ovra2xsfP369TFjxqirq9+/f9/c3Ly5H3rjBo0aRcOHU0QE2dlRaCj99ReNHdsGXw8AFJ63t/fHH39cU1PD/ZPH4/Xp02fcuHFffOFgbDxKReXZQ6qKin57/Hi5oeFSc/PmPwUVlFZICIWE0N+nPqOzso7dufPz3btF1dVEpKGi4tSrl+vQoRPt7cutrX3v3Tv+yy+BgYEDBgy4ExBAfD7p6JCv7/5ffvno/Pl6sdixZ89fXVw6LF1KpqbNLaS8nL75hkaNort3SSKhxYuVaIoQ5b1CeOHCBW9vbzU1tfXrezU3DUokdPs28fk0eHDDdWmxuC1qBKWweTNxV3R27yYrK4qJoa++ouvXqb6exo2Td3EgD2vWrElNTf3iiy8cHR2HDBnCDQHNysqKjo729PSMjo6+fv3/2bvvsCiONw7g37sDjt6LIKCgYG8IoiJiwZLYYsEusYK9xahRFNSIZ4kt9gqi/lTsqBhQjAo2wC42pBcFRJDebn5/LCHEqKHcSXs/T54857E7O5uMw76z78zcSk1NLTk+JCSkX79+nTt3HjZsmLe397Jlyzw9Pct70cTECyYm29u16wfM1NG50rWrgZFRI0AoyRsjhNQEPj4+W7duzc3NNTU1tbe3t7Gx6dGjh2EZksgVFFoylp+cvFNLa6ySknT3AMjOxqlTGDcOAHbvhrOzVK9GpOnOHS4avJ+Y6HjmzLOkJO5rG2PjSe3aOVhbK1la3szPH3/ixMlp07KzswGoq6t36dIlT01NKBQCwPDhToaGTXV0HI4f9339usOmTWeTkppPmIC2bcty/bw8nD+PQ4cQGooxY9CpE/z9kZkJAIyVaXmRWqCOBoRJSUkTJkxgjIlEojZt2pT39Px8WFpCXh45OeDzAaDUpB5CyicsrPjD69eQl8cff6BPHyQnIyMD4eFQV4eaGmRlv3j68+fYtw+//YaICAQHY8SIb1NrIi2MsYSEBAAuLi6KiooHDx709vYODg5OSUkpfZixsbGlpSWXO2ptbc19uXbtWh8fHy8vrxkzZnTo0KFc142Keh0ZeVkoNBeLxRcv9isoKDAwyJHUTZFa7NWrVzExMep/UVNTk/1yh0X9VY0QHh4eFhY2derUnTt3lutEBYWWurpz371bHx3t3KxZKI8nxYfMvDwEBRUHhAEBFBDWZDk5AFKyszffufMyJUVTQWFY8+YzOnRo3b17ooHB/uDgffPnP336lDu2ffv2Tk5OY8aM+cdseR4PNjZddXRCdHWHHDoUkpDQcffuQ0lJP4wZg++/L35S/5xHj7B/P44cATfEqqAALhpdsQItWqBHD4weDW9vNGwovZuvLupiQMgYmzBhwrt373r37j2nQvsul34rSG8ISSXl5uKnnwAgKAitWmHePKxdi9GjERNT/KsOgJIS1NSKg8PS/9bQgIEBbtzApUswNERUVNXdBpGQ5OTk3NxcbW1tRUVFAE+ePPH19QWgpqbWsmXLLl262NjYWFlZfXZvCRMTk3nz5q1Zs2bu3LlBQUG88gxsxsfHAzA0NHz37l1+fr6enl7xyCshX3bkyJELFy4cO3as9JdKSkr16ukLha//3V8ZGVF/VQNwCQj1y59xB8DAwC0t7WROzuPk5G26unMlXbV/uHMHCxYAQHa2VK9DpExZGRkZz5KSvB49aqWnF+rkJCsQ+H/8ONDLy9fXt7CwEIChoeH48eMnTJjwtZW0zc2NFiy4qafn5OHh9ejRkGPHFsbFub95w+fzkZeHevXQowcMDACkpaV5e/vt3j08NLT41PbtMXFi8aOXmhrk5XHxIqZORWgoOnaEtzdsbb/Ff4kqVIcCwpycnJiYmLi4OA8Pj0uXLmlra3t4eJTrgalE6beC9IaQVJK8PH77DQBmzgQABQU4OmL3bnTuDFNTpKUhPR1ZWcjKQkLCZ07/+WeMH48DB4p/L5KaLi4uDkBJdpajo2Pnzp2trKwaNGhQltOXLFnCLUhz/PjxkSNHlv26sbGxAIyMjD6pACFfUlRUtHjx4ri4OAsLCx6P9+HDh7S0tPT09KysrMzM7DdvPnPKihXUX9UA79+/B6Cpqfn69etWrVq1b98+KCiojOfy+YpGRtvDw79PSFiurj5MTk6KPUnHjli/HgDK09WVwbt3CApCSgo0NNCpEy24LHVdusDf/0VKCgBLAwNZgQCysteys318fAQCgb29vZOT0+DBg2VkyhCzaGnJT5vmqavb4uDBpVevrg0MDEtOPjxkiKpQiDdvEBMT2rz5Hl/fI0eOZGVlNWvWX11dcfhwODv/vV2FunrxB0tLBARg7Fj4+KBHD/z6KxYtktL9Vwu1MCD88OFDREREREREQkJCYmJiyYeoqChuuXYej6egoDB37lx9ff2KXYILArm3ghQQEokbOBD79sHMDCVPVBkZSE8vDg4/+be5OfLz8fPPWL8eVlZVWm8iCSWBGffHtm3bti3bLAiOsrLyqlWrJk+e/PPPPw8cOJB7zVgWJXHgJxUg5Et8fX3j4uLMzc1DQkJKj65mZGSkpWWlp3/aX6Wnw8QEmZnUX1V3XECopaX1/v37vLy8onImQampfaeuPuTjx8uXLm344YfN0qljMcnP73r+HGfOIDsb799DXR2vX6NvX9rdTrqsrPDy5YsLFwA00dKCQICePSdpa2ubmY0bN05HR6d8pQmFvFGjFunotKlXb/SpUz4vX3bYu3d3//43Y2I8Hj58k5oKgM/n9+rVa9q08O++a/2VZURUVHDmDJYuxbp1WLwYT59izx4oKFTqXqutGh8QZmRkrFixIi4uLjY2Njo6+u3bt1/quYRCoZGRkaGh4YcPHx49erRr166pU6dqaWlV4KI8Hlq0uC8Ws6IiC03N1xYWMUKhOVDuZf0IAVAyR2P1ari6IjcXtrY4evQfv+dUVKCi8vlhyjt38OABrK3r0OLItVvlX9BNmDBh165dISEhmzZtWrp0aRnPunDhQnx8vImJyf79+ytZAVJH7N27F8CUKVN4PN7Jkyc9PDy4OYTq6ur6+s3l5MZoaEBNDY0bQ10d5uYA9Vc1ROmAkPtQ3hIMDbd8/32vgIAt58/3HDBggOSrCCgro0eP4s9jxkio0Px8nDuHhATcuIHGjXH7Nqys4OsLc/MKb2NA/huPB11d7g1hU21tTJiA+vUbAfPnz694gb169U1IuKOh8cOxY8+Tk787ciSnoACAsbr6hMmTx8+Y0fC/5gUWFWHwYNjYQCRC69aYMgWHDwN4s26dYoXfJ1VnNTsgjI6OnjNnzvnz50tvnqGhoWFqaqqvr29gYGBqalryuWHDhnw+H0BhYWG3bt2CgoIcHR0vXLhQsazRly+tCwsLGSvIyNhz//5vmZkbgJ8kdmOkGsrKQmoq1NSgqirZgjU0ij/k5GDHDvB4GDUKurplPb1dOzRvjtevYWJCm2HWBpmZai1aWJuYNK9wCXw+f/Pmzba2tiKRaMKECQYGBmU5S0NDQ0NDo6CgIDQ0FBWdPkSqC6n1VyXevn3r6+srJyfn6OgI4MmTJxcvXiz5qZXV98HBfz+ka2gUr9nA9VcPHkBFBV+ZCkSqVkkc+OTJE1QoIBQKDQcMcA4ImDdz5szu3bsrSyGaEggweTL09WFrixMnMHBgpUssKMClS2AMwcGwt4eaGpo1g48PTEzw6hW9JJSulJTigFBPD5IKt1RVzbW07kyebLZ1a2Z+fp9GjeZ37mzfrBl/wgR8bhL+Jy5fxoUL8PHBq1fYsQPNmmH+/I9nznS+dk321KlTJWu51Ro1OyDctm3buXPnLC0t582bZ2xsbGxsrK+vX7K+WUFBQWJiYkxMTExMTFBQUFxcnIKCwrp162RkZI4dO9a2bdtLly5t3rx53rx5Fbg0F1uKxeKSDxK8L1K9FBTgzBm8fg2BAGIxDAzg4IDSy1tJyP79KCiAg0M5okEAQiGEQhw8iMWL4eiIQYMkXi/yTT15MvbZs7F6epUqxMbGZvDgwadPn3ZxcTlw4MDXD46IiAgMDAwNDQ0NDb1//35OTo6hoaG/v/9PP/30leUiSTX17fqr/QUFBQ4ODrq6ugDGjh1raWmZlpbGTSPk8UzatEF6Oj58QFra3y9XuP7q+nVs2ABHRzg4SLxeRAK4RWW0tLRKPlSgkFmzZnl5ed2/f3/VqlVr166VcBUBAAMHYutWSObJPCgI06bhzRtMm4acHHDJ9nJyKCxEURH+2o+RSElOYmJMerqsQGDaqNFXFgUtHzMzvHihylhuYWF2QcHhoUO1uf+tZXvG6tcPx45h4kQcOICHD3HmDE6eLBgxotXVq1ft7Oy2b98+adIkydSzeqjBAWF2djb3oLN9+/YOHTqkpaV5enpyy8bExcV9Nn3UyMho3bp1AAwNDT09PQcMGLBo0aKOHTt26tSpvFcXCAQAioqKSj5I5q5INZOamvrnypUBd+4ERUffnjxZXkYGcXHw8MD06ZKdu8AYDh4EgClTKnI6lzlz5YoEa0SqRlwcAFR+Bt/69esvXg5uAmgAACAASURBVLzo6ek5bdo0q3/O1oqIiCjZ1P7+/fsZGRklP+Lz+Y0bN46Pjw8ICBg0aJC3t7eSFGIJIiXfsL9iBw8eBDDlrw7LzMzMrMxbOPfsCVB/VY2VLCpT8qEChQgEgt27d3fs2HHjxo2jRo0q11zo/5SRAT4fsrKYOBGbNwPArVto2hQVqWlqKhYvxr59YAyamsjMhLExXr9G8+aIioKeHmRlUckhOvJ1hYUvIyLEjDXR1JSV4H/qFi1w+3b8ixcf8/K0FBW1FRUhK4t+/coecA4fDnNzDB6Mx48xceLqVat6XL582cXFZe3atZMnT7537962bdtqzbBpDQ4IPT09U1NTO3fuzG23lZeXN3fuPxY4FggE9evXb9CgATd10NjY2MTEpOSn/fr1mz179pYtW0aOHPngwYPy9nf0hrAWK8rM9Lt5MyAgICAg4OHDhyX/c2/HxnY3MUFRET5+xOvXxXNiJOTKFbx5AxOT4kelMoqLg5cXFBUxezb09JCQgFevJFsv8q1xAWHlZ/CZmprOmTNn3bp1c+fO9fb2Dv3LvXv3kv7a9pejr6/f/i+dO3fm8sT69u3r6+vbvXv3ixcvlntOP/mGqqi/uvLmzRsTE5Oe5eqw/tKyJfVX1VdeXl5WVpacnJyysnKF5xByLC0tp02btm3btsmTJ9++fVtSj84+Ppg5s3hbph49cOIEcnIwdCgyMzFjBpYuhYpKmcvy9sbMmUhKgkAAS0v07Im8PBgYIDISfn4QCmFnB1VVym+WrvfvXyQng5tAKMHpxTwehg17MXcugGba2pCX73ryZMrhwydPnmzevKyTMtq2RXAwfvnFd98+l8BA4bZt20Qikbm5+fTp0/fs2fPq1aszZ86ol6xMWpPV1ICQMfb7778DKNlIUFdXd/bs2YaGhlzsx6WPfn2N2vXr19+9e/fOnTvOzs7e3t7lqkD79u2zsrJQ6lVhBe+EVBOFhXj0CFeu4MoVQWDgXHn5V2lpAGT4/HYGBvampvampjmFhX0PHz41fLgSj4d37yT7ILN3LwBMmlS+XIm3b7FkCRo1wpw56NYNx48jIIAesGowxhAfDwAVnsH34cMHR0fH3377zdzcfOnSpXv37r1z584nEwL19PRKNrW3tLTU/Vf+TKtWrQIDA3v37h0cHGxnZ3f58mVjY1o0qzop1V/xAgMdhcKU9HR80/5qL4CJEyfyK5TcxeNRf1V9lQ4CKxkQAnBzc9u/f39qamqDBg0cHR1nzJhRmRWMo6Iwcya4yao3bmDCBABYvhyensjIgL8/1q6FlxdcXTFxIr6+ScHLly+frl8/dP9+AGjYEP37Q0sL9+/Dzw/Kypg1C0IhxGLo6GD0aCksZkpKKZlAqK2NSjS2z0hL+7vkrl2fiERpaWna5Yw5tbWxa1dvLa1Fa9eunTJlSnBw8O+//962bdv+/fvHx8fHxcXVjoAQrGa6fPkygPr16+fn51emnPDwcDU1NQA7d+6sWAmurq4A3NzcKlONzxCLWUoKe/eOFRVJuGSSlMQOHmQrV7JVq9jhw2z5cmZvzxQUGFD8D59/oHXrJba2Vxwds5cuZW5uH3/55ezIkVqKigB6N2qUs2IFCwmRaI0+6uiIZWRYXFz5TiwsZBoaDGCRkWzXLgaw4cMlWC/yrb17xwCmpVXB07Ozs21sbAB0796dMXbv3j0FBQUdHR1lZWUbG5vZs2d7eno+ffpULBaXpbSEhIQ2bdoAMDZuEBaWWcE6kUoqQ3+1tFWrz/RXCgpS6q9SUlKEQqFAIIiJialwIdRfVVuPHz8G0LJlS8aYvb09AH9//wqX5uTkBED+r6X9ZWVlHRwcrl69WsZeqERBAdu8mSkrM4CpqbHNm1lh4afHXLnCLC2L/1qYmzNvb/bZq+Tk5CxfvlwoFPJ5vHcNG7IffmCurszZmdWvX3zywIHs9Wv25g1LTq7wjZNy+PPPkS1bAvD44YdyPwZ93b17s6ytAazv3TshKAiApqZmhQvz8PCQl5eXlZW9d+8eY+znn38GsHDhQslVtyrV1DeEW7ZsATBr1qxKZiA0atRo7969w4cPnzdvXseOHcuV4x4VFXXu3DlPT09VVdVLly7Nnz9fpRxpCl8VE4OTJ5GXBwA8Hvr2hUST7+u09++xbx/S0xEWBoEAeXnYuRPv3wOAhgZMTbl/JigoFIrFj96+3Xr37pWIiBvR0flFRQI+v56yst+bN4MOHz43Y8aXt64pt0OH9mRliZyc9tSvP7hcJwoEsLPD2bO4dq14GuHVqxCLJTYlm3xjlZlAWFRUNHbs2KCgIENDQw8Pj/Dw8AEDBuTk5AwePNjLy6sCb3L09fUDAwMHDx5cULDGxkbJxwc2NhWpGKm4svVXv37b/srDwyMvL2/AgAGVedVD/VW19e83hBWbQwhg48aNe/bskZeXv3btWmFh4datW8+ePevt7e3t7W1mZjZp0qRJkyaV5XXNrVv3Zs2yun+fB2DUKGzc+PlFInv2RHAwfHywYAFevcK6dRfXrVuxZs2anj17QizGkyd49er6ixfTPDyeR0TweLyxrVvz+/SBjAyuXsWtW8WLMK1ZA0fHit0vqaDSbwgluyPN+/clJRd/qMRq7D/++GPz5s3DwsK4afkJCQkAmjRpIqG6VrWqjkgr4tWrV3w+X0FBISUlRSIFciNYZmZmHz9+/M+DX79+7e7uXjp0VFVVBWBqanr79m0J1CY5ma1ezdzcuH+CnZwyXV3Zs2cSKJkwxry82PLlrEkTNnUqmzSJNW/Ohg5lDg5s4ULm5saWL2eTJrEePTKbN5cvlW4iw+d3NjZ26dr1rpNTPRUVAH379s3NzZVUpbh0dm4DlfLasoUBbNw4xhjr3z/cxmb3o0dhkqoY+cYCA5mpKRsypNwnisVibsUzbW3t58+fx8fHc5ss9e/fv6CgoDJVyskp+OEHBjAlJXbpUmVKIuVXtv4qpkWLmtJfldagAQPYo0cSqRSRmJMnTwIYMmQIY4zLFY+KiqpAOZcuXRIIBDwe7+jRoyVfJiYmikSiki3ghEKhg4PDV95AfvjwYfbs2Xw+v1u3IFNT5utbpkvn57Ndu1jnzr25q/Tp3fv+0qXvliwZ07o1900LXd0bEyYwN7dTI0YENWnCACYjw+bPZxkZFbhTUklFO3cqysoC+PDrrxIu2svLSE0NwOt583Zs3w5g0qRJkiq7ffv2AIKCgiRVYNWqkQHhjBkzADg5OUmqwJycHC7AGzly5JeOiYqK2rx5s42NTcm+herq6uPGjTt//vzjx48tLCwAyMjILFq0qJJZrMzbm61YwdzcMpcsif/pJ21FRRMNjaDZsytVJinx669syhRmb18ccltbs/nz2Zw5bMAA1qIFk5cvScRqr6Njamrq5OR04sSJD/Hx7MYNduoUCwh4HBjIjWgOHjy4sv+vGWOM3bhxA4C+vn7FHtyfPcuytT1sZTWCMTZ+/HgAGzdurHytyLd34gQ7eZIxxs6dY5GR5TuXy11RVFQMCgpKS0vjUj2tra0zMyWQ6llYyJycih+Z9u+vfHmkzMrcX9XX1a0R/VVp48czgFF3Vd3s2bMHwJQpUxhj3Hh3WcbKP/H06VNuPs6vv/4qFovXrFmTXCr9sqioyN/f38HBgVuFAUCzZs1EIlFqamrJMWKx+NChQ9wMZzk5OTc3UXZ2+eqQlZUlEom4+V08Hq9v48ZyAoGCrKxrt265Li6Rc+f2NzcHoC4UZgwYwB48KO89EslIS4v86ScA+ioqzMNDsmVnrl3LA4QyMgXbtnFrjqxbt04iJYvFYm53TUm9mqpyNS8gTE9P53qoRxIdV3z16hWX8Onp6Vn6++jo6E/iQEVFxf79+584caL0gGt+fr6rqyuXlGVtbR0eHl7xqmze/GjatHFt2mgpKoY4ObXS0wMgKxCscXcvovmElffrr2zy5H88YE2dyni8vyfkNG3Kpk9nJ09mf3nywMOHD7W0tGxtDw0dKq70QxEbN24cABcXl4qdLhaL69WrB+DFixeenp4ABgwYUNk6kTJITEyUbIGurqxXL5aczNauLd/DCbfClqysrK+vb3Z2tq2tLYAWLVq8f/9egtUTiRjAeDy2dq0ESyVfVev6q9I8PRnAqLuqbtasWQNg0aJF3B8r8LybmJjIvVocMWKEWCxetWoVgDZt2vz7GSYuLs7V1bVkXSsVFRUnJ6cHDx68fv26d+/i93u2trbPKpEklZKS8lPXrtwrdBk+/9SIEQXLl2/u21dZTg6Amqrq5s2bC/89H5F8Gw8fsl9/9R07FkAPExO2di2TxCBmsfz8ECcnAK309Ji3d58+fSSS2sCJiYkBoKenJ5HSqoOaFxBu2LABgL29vcRL5nY1VFJSCgsLi4mJ+Wwc6OnpmZWV9aUS/P39udX8OndeVCpFohz8/Px6/7UYroDH29W/f66Ly6IuXfg8HoBOnTq9efOm4ndIGGMeHszFhZmbs9mz2bRprFkz5ubG2rdnEyYwLy8WH1/GYu7fj+ZWcxk58jNT28suLS1NUVGRx+NxgwhFRUUV+M00cuRIADt27IiPj+d+p1Z+8J583bFjxxQVFV1dXbPLO2r9Za6uzN+fTZtWHBCWMcXvyJEjfD6fx+N5enoWFhYOGTIEgKGhYXR0tKQqVmLLFsbnMz6fnTlTvNxVRASLimJ5eYwx9vYtS0+X+DXrttrYX5WIj2cAU1Fh1F1VKwsWLAAwefLkio1BZ2dnd+zYEYCNjU1ubq63tzePx+Pz+efOnfvSKbm5uUePHu3atWtJ2rOcnBwAHR0dDw+P8i4/8xmrVsXOn+/Uvn3bevVuT5rU6q+d7kaNGiXxcT1SDklJ3AypTX37AphuZcVWrGAeHhkZGZJ51k1IODxkCACHFi3YtWsNGjQA8OrVKwmUzJifnx8AOzs7iZRWHdSwgLCwsNDU1BSAj4+PNMrnxj6VlZVL4kAVFZXRo0efPXs2JyenLCWkpKSMGuVkYFAAsLFjy/p4lJ/PDh8+UjIvUVlObkzr1nICgZKc3J4BA5ibm+/YsfWUlQFoqKsnnj1bqZus4969Y+7ubMEC1qcP+/57tmQJW7OmYo+x9+8Xr/A5fHgFn7EKCwu5X729e/fmvlmyZEnv3r1Lp82UBZfhM2zYMMaYubk5gDt37lSkQqTM5s2bx/1tNTExOX36dCVLu3WLzZjBli9nb96wlSvZkCFs506mq8tcXdnXR+f9/f25J6eNGzd+Mo2wklX6kiNH2PbtrFMntns3Y4yNHs1++olxi03u2sUCAqR02bqqNvZXpU2bxvbsYTk5LDOTpaUVf5mZWamolVTS48ePra2tuXElV1fXd+/elf1csVg8atQoAA0bNnz37l1ISIiiomLZJzK8fPly0aJFQqFQV1d34MCBSUlJFb2Jf9q5k3vHnuvi8se4cQBMNTR8FyyQTOGkwnx82IoV2UuX2puaAljXqxdzcxOvWjV8yBBNTc0//vijsuU/frzMzg7AMju7rHv3+Hy+nJycpIbLt27dCsDZ2VkipVUHNSwgPH36NIDGjRtLNnmyZPwpNTVVVVXV0NBQQUGBex9YsRk4np7FiyM3aMBu3PjakRkZbPNmZmzMOnQYCEBXV9d1+fL3e/d+dHV1at+ee+L8oWnTlIULk37+eWCTJhu4afgODuzDhwpUjDDGWEIC27WLrVzJVq5kBw78xxP3V92+zVRUGMB+/LEc+4O8efNm9+7dDg4OGhoaADQ1Ne3t7fPz89+/f89lzjRp0uTly5dlr0Z4eDiAevXqMcamTp0KwN3dvQK3Q8rl+vXr3FQ9AN27d3/8+HEFComOZqNGFecADh/O3rxhOTnMzIyNGFGcEqikxGbNYp8dLb1z546SkhKAJUuWMMYWLlxYMo2wkrf2nxwd2fjx7N274oAwIICFhTE3NwoIpaDW9Vel6eszbvBq9Gg2YgTjfhW7uDAJDeKTCtqwYYOJiQnXuQmFwtGjR9/4+qPMX5YuXQpAVVX18ePHcXFxXM5UeZfx4IY1JTmq9eZN6bX6/jdsWLabW9lfsBMJE4vZmzfsxImn06cv6tKF29BLT1m5obp62IwZ2a6ug/r0ASAQCNavX1+pC1275tCiBYDDQ4aE/vEHN5NCQvdQvJpJbVqyoYYFhHZ2dgC2bNkiwTLj4uJMTU1/++03xtjRo0cBmJmZfSUvtIwiIljnzgxgAgFbtIj9ezJ/fDxbtIipqxc/9vXrd2///v3F8xLFYvbiBTt92nvePE1VVe6vyqUxY8SurvkDBjBZWQawRo0YvQWqjIICiYxC37xZHPxPnvy1w16/Zh4e6SNGjPhkE3BjY2PuDU+PHj1SUlJiY2O5datUVVXL9Rr8ypUr3OCFh4eHlHKqyb8VFRV5enrq6OgAkJGRcXJySi7zvlVZWUwkKm48Cgps0SL28mVxmmhcHMvKYleusL59i2NFgYANG8bu3v1HP5KQkNC2bVtHR0exWFx6GqHEb/PfHB1ZRASbOrU4IFy3ju3dy8aNo4BQaqqgv0qSXn9VYuRI5uDACgqKA8K8PJaXx5YsoYCw6pWs+yLz1wK2TZo0EYlEX5mZfOzYMR6PJxAILly4kJGRwY2X2dnZ5XE55V919OhRHR2d+fPnM8a4ZZAk9nqQ8+wZE4mYuztzd2fr139+jI1IW0oK8/d/v2LF1u++a1tq55B2+voN1dUBaCgo+I4dK750SbRmDbcqx8iRIyv4QB4ezkQiLj04xMnpiIcHgKFDh0rqVnr27AngUi1aersmBYRPnjzh8XgqKippJZklkvDLL78AGDFiBGOMS5PYzeVCVVp+Plu8mPH5DGCjRjFuVuGDB+zkSTZhApOTKw4F7eyYjw/7UpJ8VFQUt0SEkM9/3707c3FhM2cyff3iJf9cXSm3psoFBjIVFbZsGeMyB+PjWXAwY4wlJrITJ5iTE2vYsPh/l4pKfe5VnoODw+7duyMjIxlj9+/f57bzatSo0dOnTzMzM7lpYAKBQCQSlasmFy5cMDQ0VFRUDKAH828oNTV19uzZ3GOTpqbmfy5RUFRUdPhwFrcHMo/HRo1iX5nu9+oVmz27eB/yrl1ntm/fnpsryP00LS2tsLCwZBqhh6SXaPsSR0fGGFu9mllaUspoDVPm/qpARUVVqv2VWMwcHZmvL9u0qTggXLyYLV7MbGwoIKxG4uPjRSIRt0gMAHl5eQcHh8DAwE8OCwwMFAqFALZt21ZUVDRw4EAuhixjRvHmzZsBzJ49WywWy8jI8Hg8yc+EF4tZUhJLTv7i8xapgKIi9uoVO3eO7dzJfvuNbdrE9u1jfn7/2F8+L4/dv1+074DfuEMjWz5ppdeHa0vaiopzO3Z8Mn06c3PLWLJkaPPmAHiAa7du4kOHLpw+zS1U27Zt28jyrrv94AFbvbrI1VVeRoYHZCxZssnRUUZGhsumkQju7XdERISkCqxyNSkgnDZtGoCZM2dyfywsLCxXavtnZWdnc2NRt27dCg4OBqChoSGRhdpL3LrFLCzYli2sbVsWFcXOnGHTpjGA8fmsf39269Z/l1BYWPjrr78GdO3KAKary6ZNY8uWsc6di98d9OvHIiNZeDgr2yxHIg1xcSwggDVuzJ4/Z3fusPnzmbn53wsBAkxHhzk4MA+Pq5/NrYqPj+/QoQMAZWXls2fPisVikUjEDY+NGTOmLPNXExIShg0bxnWy1tbWr1+/lsJdkq95/vw5t4gZgHbt2t28efOzh929e7dTp04dO24AmKUl+8JRn0pIYC4u+YaGxfuAm5ub79y5k1vPpvQ0Qgneztdt384YY7m5bMUK9r//Me6dAZc4Sqq/MvdXF6TUX719y8aNY+vWFY8sTJrEBg6klNFqrbCw0N/fv3///iUrLLRv33737t3c81JkZCT3Mnn27NmMsblz5wLQ0tIq+wIey5YtA7BixYrU1FQA6urqUrwZIinPnrH165m7O7dZ2t//rFjB3N3Zjh3syRPm4xO3+HeRvb+pRirXvXRr6NO3ceMTDg55W7awCxfY2rVszRrm7i52cxPZ23NrKI5o2TJzw4aXt283a9aMa0tXr14ta63y85m7O3NzC589G4CRmhpzc2Pu7nkvX1ZgA5XP+vjxI4/Hk5eXr03r09akgNDX11dFRWX8+PGMsbdv39rZ2bVr166Sm+3u3buX69cYY9xM6MWLF0umuqWIxezwYXboEBs3jp05w44cYQsXlj9h4d49ZmZW/Kapb1/m6sp+/JGpqjIHB+buzkQitno1u31b4pUnZRQQwDZtYiNHsjt32MqVxbO/7O2ZSMRCQv57xk5OTo6joyMAHo/n6urKGDtx4gQ3Hb9z585v37790olisdjT01NLS4ubPyYSiWpTD1XjnD9/nttzmcfjOTg4lF7qMzIycvjw4dzjlJGR0bFjH8s7Tp2RkbF161ZuYS0AOjo6kyZN4qYRLl26VMJ38lV9+zJdXfavlwSkxqi6/ort3Vs8V0JPj3Hj9TExzMmJLV9efMzevSw2VjK3SSTu5cuX8+fP537jcJHb1KlTzczMAPTp06egoGDfvn1c+nq5ElW4GVm///47NyW+UaNG0rsFIhlXrlwe/z+/cYeYm9vzmdv2DjzPRYNu3a7tH3SOubmt7eXvOfh0L9NwPk/MhYImGh9Wdg+IWbSNnT//91/ywkIWEcHCwriE0otjxqjLywNoracX8fPP6ffucW+bZWRkypSDUFjI/vxTvGLFjQkT+jZuLMPnm2ho5C9bxtzcmJ+fpG793r17ANq0aSOpAquDmhQQBgcHy8nJ8Xi8M2fOZGRkNGnSpPQLw4pp3bo1gCNHjsTHx8vJycnIyMRwyU+Sdvgwu3yZbd/OJk9mJ05UtJSPH4v3hwZY48bsp5/YkiXM2ZlZWzNrazZ2LFu9mj15Isl6kzILCGAHDrBDh9icOWzzZnb/fkXWUt+8eXNJ3nx2dvbDhw+5hZINDQ1DQkL+fXx4eDiXyA7g+++/j4qKksCdkMrJzs4WiUTclrXc1hQpKSmurq7y8vLcN4sWLarMOGVRUdH58+c7d+4MgM/nCwSCyZMnS2Bl9jITi5mmJgPoqb0Gq6L+ivXsWfwb7PvvGXVXNVdubu6JEyfs7e253z6KioomJibp6elZWVlcRnF509e5zZOOHj169+5dAFZWVlKqOZGMFy/Y6tXHHbxPDj/O3NzuO+9aY3+FCwhnWd8d0fLpu5/XL+oS6GwZDDChTKFDi2fnRx0t3LmHhYSwr88pffLk1fz5zXR0AGgpKl5xdBT7+bkuX86NpY4ZM+aLWz0lJTF//wQXF5G9vflfAxYqQiGArg0avFu4kFV+2dK/HDp0qGSuWa1RkwJCxtjGjRu5rM7IyMhHjx5xD1inTp2qWGlXrlwBoK+vn5eXt2TJEgDDhw+XbIVLcAFhYSHr0KESASHn+PHi8VVjY7Z8OWvShLm4MFdX1rIl+/lnJtEVd0jZcQ9YYjHr2ZNt3lzxci5evMjlzXfs2DEhISExMbFTp04AVFVVSy9Ykp+fLxKJuL8Cenp6np6eErgHIjmRkZFDhw4t/p2kosK9Sxk7dmys5KKomzdvbtiw4fbt29/4nfDz5wxgBgbf8ppEwr5xf5WXl/frr0Xy8gxg9eqx48clcAukOnj48GHfvn0BmJiYcNnC0dHR27ZtK285/foV6ekV+vnl+Pt/tLaOd3au+E705FvYvp25uR138B7Y5MVPnW+Na/OodED4aNpOp/Yhi7oE3phwYHu/ix+Wb2S+vqzsk7wSEz+KRIOaNgUgw+eL7O3ZkSPHvLwUFRVVVVU/zUPOzmZ37xbu2OHv6OjQooWsQMD92tVXUVnUpcu5kSMbqKsDqK+qercSG0SlpaXt3LmzpE/jQgYuOaLWqGEBoVgsHjRoEDdLKj8/f8uWLVzGQsWmdQ4YMADAqlWrcnNzufR36S3X/ugR4+bEPnsmiXd4MTHM3p7NmMHmzWMdOxYnbffrxxwdmZsbTZiuEq9fs9BQxhh78aKyqXSPHz/mlvw2MDC4d+9ebm7u+PHjN2zYUHJAaGiohYUFF2OMGzeu7Ctbkm8pKCjI3NxcW1t7xowZ2traVlZWcaXn2ddYBw8ygA0bVtX1IJXw7fsrO7uHPB4bN64yG2eQ6qigoIBLtqrM83H79gxgISHMy4sBbMwYydWPSMPKlVxA+Nk3hOm/rFnd86ptg+jY+RuZmxvbubPc5WdliQ8eLJlSOLpVq+z16x+sX+87Zw47fpxFRDCxmEVHMx+fl/PmuXbrZqymxsWBAj7f3tT0hINDwfLlXH2SFy7sZmICQF5e/uDBg+WtSEhIiJOTEzc1Y/Nfg2fcSlpHubUiaws+ahQej3fw4MEGDRrcvXvX1dV19uzZgwcPTktLGzFiRH5+frmKioyMvHTpklAonDJlyuHDh5OSkiwsLLgsLGkIDER0NADEx+POnUoXZ2QEf380bw4FBWRlFX+ZkQFFRcjJ4a853+RbevoUL18CQGEhrl6tVFGtWrUKDg7u3r17QkJC165dvb29Dx48+NNPPwHIzs5evHhxhw4d7t+/36hRIz8/v0OHDnELI5HqJi0t7dWrV1ZWVlu3blVTUwsODs7Nza3qSknA3bsAYG1d1fUglfBt+quMjIxZs2ZZWVndv38/LW1GQID40CH8lcxFagkZGZnt27fzeDyRSPTixYuKFfL+PQBoaf39gVRrf72IK5FdILsz2NLrUWvujws630rOUiz+mVBY7vIVFXmOjosWLTo2bJiSnNzRJ09sNm7UTEjoq6GB589x5EjumjXeCxb0mjOn6aZNK/78MyY9vYm2tsjePn7JEv8tWxy2bpUZOxb16kFWVrtePf+DBxctXJibmzthwgRnZ+eCgoL/vH58fLy7u7uZmZmlpeWePXtycnJ69uzJTVUTi8WPHj0C0LRp03LfVzUmU9UVDPLydAAAIABJREFUKDcNDY1jx4517dp17dq13bp1O3DgwIMHD4KDg11cXNatW1f2crZs2VJUVPTjjz/q6elxW3jNmzdParUGgOhohIUhJkZyJbZrh/R0aGnh+nUIhcjKgqEhmjeX3AVI+WRkIDkZHz5IoCgtLS0/P7958+Zt27bN0dHx6dOn7u7uvr6+06dPj4mJkZGRmT17tru7OzdqRaonsVgMQCAQ8Pl8xhgAXq0YrOGGtDp2rOp6kMr5lv3VzJkz3d3dlZRq2Bg0KaMuXbpMmDDhwIEDU6dOvXbtWgU6Oi4O1NREamrxB1KtmZnhxYthzcN4YADa1nvbpt47Po+tudll63e+3CHPZ24HADk5tGpVkUvw+bC3d9DQaKKrO/jo0QeJiZZ79pxwcFCRkzv06NHhx49Tc3IAKMjK9jc3d7K07NmzJ8/CAk2bFger9erBzIwrSQYQ2dmZNmo0a9asPXv2vHjxwtvb+5NNVjlFRUXXrl3bs2fPmTNnCgsLARgYGIwbN27KlCmNGjWKj49fu3bt7t27ExMTBw0aZG5uXpH7qq543GNKjbN69WoXFxddXd0HDx7ExcXZ2toWFBScPXuWW4zoP2VkZBgZGaWnpz98+DA1NbVHjx76+vpRUVHc6u3SsGMHoqNhbo6wMDRrhsmTJVGoWAxPT7x9i+RkFBVBRweqqpgyBQoKkiidlM/Zszh+HG3aICkJ6upYvlwyxf7+++/z588vLCw0NDSMi4sD0KFDh71793IpOqQ68/HxGThw4IABA86fP29qahoZGRkREcEl19VcWVn5DRtmpqdrpqVBUfG/jyfVE/VXRLJSU1ObNm2anJzs5eU1duzYcp1bUAChEDIyyMvDrFnYvh2//46ZM6VUUyIJHz9ixw7k5ZV8wRg8Hra1MY4113r/91cyMtDQwNSp/36jWA6hoe9PnBhx8uTViAg5gSC/qIj72sbYeFK7dg7W1spWVmjfHhoa/1nSrVu3hg4d+vbtWyMjozNnzrRv377kR5mZmW5ubl5eXklJSQCEQuHAgQMnTZrUq1evgoKCM2fOHDhw4OrVq9w4r6mp6fnz51u0aFHxm6p+aupw3S+//NKrV6+kpKTRo0e3b99+5cqVjLHJkyfHx8eX5fSDBw+mp6d369atTZs23ETEadOmSS8a5Hz/PSZNQt++kiuRz8ePP6JXL7Rpg9atYWeHadMoGqxCAwdi8WJMmiTJMmfNmnX16lUdHR19fX1uV4lbt27R01WNwP3m4JZhLP25RgsJuf3+vXbPnkMpGqzpqL8iEqSpqbl+/Xo9PX0vLxXuLV/ZycoiMxORkeDxKGW0hlBVxfjxUFSErCz3RVSaema+3IPEen8fIycHbW1MmFCpaBCAurqWhsblsWPndeo0r2PHesrKs62tH02bFrhgwYR165QXL4a9fVmiQQCdO3cOCQmxtraOjY21s7M7efJkyY8UFRW9vb2TkpKaNWsmEoliYmJOnDhhZGS0ZMkSIyOjUaNG+fv7y8rKOjg4+Pv7h4eH17JoEDUxZZTD5/MPHz7ctm3b69evu7u7u7i4BAUF+fj4jB49OiAgQPBfjW/cuHG5ublt27aNioq6cOGCUCh0cnKSaoWbNkW9egBgYFCRbOov4vNhaQlLS8mVSCqoXr3iwTIVlZI8Bcno2rXrgwcPlJSUPn78aGxsLMmiiTSVThOtNSmjt2/fZow1bmxQ1RUhlUL9FZE4R0fH48eH+PqqLF6MPXvKd66iYnHGAQWENUa9epg9G0FBuHcPgIle9iztUACQEUIshqIibG1hYSGBVS309VFUJMPnb+zThzG2qkcPWT4fQiHs7VH+pM369etfv359+vTpBw4cGD58+MKFC93d3fl8Pp/P37ZtW7169aysrNLT048fP37o0KGgoCDurObNmzs6Ok6ePFmr9jbNmpoyyvnzzz/t7e0ZY/7+/i1btmzXrl1RUdHNmzfNyvz7bf78+Zs2bRo/fvzBgwelWlVCSF1z+vTpoUOHDhky5NSpU0ZGRnFxcbGxsYaGhlVdr0oZPHjw2bNnK5AVRgip9V69QuvWKCjAjRuwsSn36dyqe8+fo18/tGsnhfoRaWAM797h3TtkZoLPh6oq9PUlPA3Uzw8hIShZDEZGBlpacHauTLS5Z8+emTNnFhQUfPfdd0ePHlVXVwcQGhq6Z8+eI0eOZGVlAVBXVx8+fLizszO3rnvtVrMDQgAuLi6rV6+uX7/+w4cPo6KijIyM9PT0ynhuyUzC4OBgS3rJRgiRqCQfn/w1a7LbtjXfsSNswABeenqDY8cUDWrmuzWxGDdvIiSk/ooVCRkZr//4o3Hv3lVdJ0JItePigtWr0bIl7t8vSScsq9at4e6O/v0xdiwOH5ZO/UhNxBhu3kRgIHg8FBWhSRMMGAB5+UqWevPmzWHDhiUlJZmamvbr1+/ixYsREREA+Hx+z549J06cOHjwYKEkk/qqtRofEBYVFfXu3TsgIOC77767ePHilzKyCgsLExISYmNjY2JiYmNj4+LioqOjnz59GhkZaWtre/369W9cbUJI7eftjeHD4eCAEydQvz4SEhAfjxoaEB45gujoqORkk82btRQVk5cs4fXpQ8nqhJBP5OWhTRu8fIl16/Dzz+U4sbAQEyciPx/798PZmQJC8i+M4eNHKClBRmLz3WJjY4cMGfLw4UOxWCwWi+vXrz927FgnJydTU1NJXaKmqKlzCEsIBAJPT8927dr5+vr+9ttvkyZNSkhISExMjIiIiIiIKPkcExPDLSD7iUWLFo0YMeLbV5sQUvtxw23cKJVYDAA1dFGZiAjExKCg4E5cHABTDY0+Bw+ezM9Xbd0aUl6LixBSswiF2LoVffrAzQ3DhuHryyonJiIwEIGBCApCy5bg87FgAdzdv1VdSc3C4+GvDeglxcjI6M8//wwMDLx//3779u3t7e1rwdpvFVPjA0IAhoaGBw8eHDhwoJub289fGI8SCAT169dv0KCBoaGhkZGRsbGxkZGRkZFR48aNubxhQgiRsNJBYI0OCN+84SZvJGZkCGVkwlNTP+Tk9Dxw4NKgQTp1YGYFIaSMGAOPh969MXIkZGWhqvqZYyIjceMG/vwTN24gIuLv73Nzi9fIO3oUCQnfrMqkrlNSUurTp0+fPn2quiJVrDYEhAD69+/v4eFx/fr1o0ePGhgYmJqampqa6uvrl3w2MjKSLW8yOyGEVEbpN4SlP9c4f1W7d6NGw1u0+JCbO/T48ZC4uI6DB/9x9Wrjxo2rtnaEkGpi5EgcPw4ARUUwN8fKldiyBSIR2rVDXByuX8f164iJ+ft4NTXY2qJrV9jZwcICGzcCwPLl+OWXqqk/IXVWLQkIATg6Oo4bN27//v1VXRFCCAFQi1JGzcwQHBz57l0vLy8FGZk/xo27NWlS/6NH78TE2Nra+vr6tm3btqqrSAipRrhuLzMTISEAcOwYPDyKf6SiAmtr2NvDxgbW1v9YeGbhQgBQV8fOnd+2uoTUebUnIESt2OOLEFJ7lA4Ca/QbwgYNYGammp3dQE3tTlyc7YEDvmPH+o0bN/j48asREYP69Hlx+rRCBdaYJ4TULtHRWLAAAMLD0bQpFizAsmWwsICNDTIz0bUrunVDixY1dWSMkFpM4ObmVtV1IISQ2kggQL166NQJ5uYoKCgeFa+huevNmikqK480MAiNinqUmHj86dPuJiYLbWzCU1OPAVrbt6NpUzRvXtW1JIRUJX9/7N2L3r0REABtbXTogHr1sHEj5s7FzJmwtoaeXk0dFiOkdqNRGkIIkY4WLdC7N86fx/LliIjAsmVQUKjqOlUUj4cOHZR/+snnyZMRI0ak5eb28vLyefXqf0OHGtarh7w8jByJvXurupaEkKpUsquOgQE0NCAjg4EDYWFBqxETUt3V+H0ICSGk+nJwgJcX5OVx8SJiYzF1alVXSALEYvGsWbN27NhxzdS0W6tWaNcOgYG4cgU8HpYvB2WdEEIIITVKrZpDSAgh1YtYDHl5AGjcGIGBVV0byeDz+du3bx9lZtZl/nxERiIrC126QEkJPj5YsQKpqdi8mSYJEUIIITUFBYSEECI1Cgr48AEaGggNRatWVV0bSeoydy7U1ODkhCtXkJGBvn0hFOL0afj5ITAQQiFMTKCrW9XVJIQQQsh/oJRRQgiRmjdvIBJBVRUCAdzdIVPrxuDOnsXIkcjLQ6tW+OEHxMVBWxuqquDxwOOhdWv060eLSBBCCCHVGQWEhBBCKiEgAIMH4+NHtG2LH37A8+cIDwefD3394oVVO3So6ioSQggh5ItomgchhJBK6NEDgYFo2hRdu6KgAE+eYMAA9OuHuDikpiIoqKrrRwghhJCvoYCQEEJI5bRqhadPYWiIjx+hqVn8pa4u3r9HRkaV1owQQggh/4ECQkIIIZUmEEBFBSoqSE8v/iY1FRoaUFSs0moRQggh5D/UuhUOCCGEVIkOHfDhAxo0wIULEAigqgptbVhZVXW1CCGEEPI1FBASQgiRhHbtEB0NAHl5YAzy8jAygq1tVVeLEEIIIV9Dq4wSQgiRnOhovHgBsRiNG6NxY9pzghBCCKnmKCAkhBBCCCGEkDqKFpUhhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOooCQkIIIYQQQgipoyggJIQQQgghhJA6igJCQgghhBBCCKmjKCAkhBBCCCGEkDqKAkJCCCGEEEIIqaMoICSEEEIIIYSQOqr2B4RZWVkvX77Mz8//5PvCwsKIiIiMjIwvnZibmxsREZGTk1PhS6ekpERHR1f4dFKdUbsi0kDtikgDtSsiDdSuCKk1an9AePXq1aZNm75+/fqT72NjYxs1anTy5MkvnXj37t1GjRrdvn27wpd2c3OztLSs8OmkOqN2RaSB2hWRBmpXRBqoXRFSa9T+gJAQQgghhBBCyGdRQEgIIYQQQgghdZRMVVdAwp4/f/7y5Usej9eyZctGjRr9+4DY2Njg4GDGmIzMP+49PDw8NDRUIBB06tSpfv36pX+UlJQUGBgoKytra2urqqr64MEDfX19AwODkgNevHghJydnamoKoLCw8Pbt2/Hx8VpaWikpKSXH5OXlBQYGJiUl6enp2draysrKSvjOiTRRuyLSQO2KSAO1KyIN1K5IjRAVFXX58uWRI0eqq6tXdV1qFFaL9OnTR1ZW1szMzNjYmM/nL1myhDF27tw5AE+fPi0sLJw+fTqfz9fU1GzcuDHXZRw4cEAsFs+aNYvH4xkbG+vp6cnJyR0+fJgx9ueffwIYM2aMqqpq06ZNlZWV9fT0wsPDW7Vq1bt375KLZmVlKSsrr1+/njH28OHDxo0bCwSCxo0ba2trA9DW1maMhYWFmZqaysvLN2nSRFZWtm3bth8+fKii/0ik3KhdEWmgdkWkgdoVkQZqV6SaS0xMdHZ2fvjw4ZkzZwCEhYX98ccfzs7OYrG4qqtWM9SqgDA0NLSkI1i2bBmfz4+KiirpsFavXg1g+/bt3AHh4eFch+Xh4QFg165djLGCgoJBgwbp6ellZ2dzHZatrW18fDxjLC4uTllZeebMmSKRSCAQvH37livnxIkTPB4vKioqKyurfv36zZs3j4yM5H40bdo0bW1tsVjcqlWrJk2aJCQkMMYePnwoJye3cuXKb/vfhlQctSsiDdSuiDRQuyLSQO2KVHORkZEWFhbXrl0rCQg9PDwsLCwoICyjWjWH0MLCouQFcb9+/cRi8fPnz0t+un379t69e0+fPp37I59ffO+nT582NTUdPnz4hw8fMjIyRo0a9e7du+DgYO6nrq6uXPZC/fr1W7Ro8erVq9GjRzPGSpbPOn78uK2tbYMGDc6ePRsfH7958+aGDRuWvsSrV6+ePHkydepUeXn5Dx8+GBsbd+jQ4eLFi9L+r0EkhdoVkQZqV0QaqF0RaaB2Raq5hg0bhoaGduvWreSbH3/8MTQ0lMfjVV2lapJaFRA+e/Zs7NixJiYm8vLyHTt2BJCdnc396OPHjwkJCdyXnwgPD4+IiND8y8iRIwHExsZyPy3dkoRCYUFBgZGRkY2Nzf/+9z8AmZmZly5dGjVqFHd1AP++xJs3bwDMmzev5BKBgYExMTGSvnsiLdSuiDRQuyLSQO2KSAO1K/LthYeHr1+/fubMmQsWLDh16hRjDMD169ePHTuWlZW1fft2Z2fnZcuWcS0qJSVl1apVL1++LDn91q1bq1atAnDmzBk/P7/k5GSRSOTs7CwSidLS0rhjsrKydu7cOXXq1JkzZ547d467RN1UewLCuLg4Ozu7hISEPXv2PHz48MKFC6V/KhQKeTxeyahVaYqKij179kz9p2HDhn3lWqNHj7516xaXL1FQUDBkyBAA8vLy+GcHx1FQUABw9uzZ0uWHhYVV8n7Jt0HtikgDtSsiDdSuiDRQuyLfXl5eXufOnS9fvswYi4mJGTVq1IwZMwD88ccfCxYssLKyunjxokAg8PT0tLKySktLS05OXr58eekX1zdv3ly+fLlYLD58+PDPP/9sYWERGhoKYO3atT169CgqKkpNTbWyslq6dGlhYWFsbOzgwYPXrFlTZTdc1WrPKqNXr159//79gQMHuIyC3Nzc0j8VCoWGhoYhISEl33A57gCaNm3q5+cnFAoVFRXLeK3hw4fPmTPnxIkTgYGBvXr10tXVBWBmZgYgNDTUzs6u9CWaNGnC4/EePXo0aNCgSt4j+faoXRFpoHZFpIHaFZEGalfk2xMKhdHR0VzMD2Dx4sUbNmzYtGkTgISEhB07dgwcOBDA+PHjra2tL1261K5du6+U9ubNmxs3blhYWACwtbUdN27cw4cPDx8+HBkZ+ejRI3NzcwDOzs7r1q2bPXu2srKy1G+v+qk9bwi1tLQA+Pv7Z2dnBwYGTpgw4ZMDfvzxx0uXLm3evDk2Nvbq1avOzs7c9zNmzHj//r2jo+PTp0/j4+N9fX3Xrl379Wtpamr27dv3wIEDfn5+XAoEgO+//15XV3fWrFl3796NiYlxcXH5448/ABgYGDg4OKxfv/7QoUMJCQnPnj3bsmXLnTt3JHz/RDqoXRFpoHZFpIHaFZEGalekSigoKOTn579+/frmzZs8Hq+oqIjLB5aVleWiQQDNmzcHEB8f//WiTE1NuWgQQLNmzbhTbt68aWpq+ujRI29vb29vbyUlpfT09NLvGOuWqlvPRsLEYvHEiRO5jAIdHZ3//e9/qqqqp06dOn/+PI/He/bsWX5+/pw5c9TU1ABoaGjs27dPQ0PjwIEDjLGzZ8+WbKqjo6Mzb968oqIibhWsq1evllyia9eu3bt35z5zOe7y8vLp6eklB4SEhFhaWgoEAgB2dnaurq7cssiZmZkTJ07kch74fH7nzp1LF0uqM2pXRBqoXRFpoHZFpIHaFakS7u7umpqaCgoKRkZG3LvisLCwX375RU5OruSYrKwsACKRiEsVPnPmTMkqoyKRCEBRUdGQIUNatWpVcsr9+/e5I3V0dLS1tdv/0/Xr16viXqsej9WuCZSpqanJycmNGjX6ZF/U0pKSkjQ0NP69dWlKSoqMjEzZN7Ls27evqqrqiRMnPvk+Nzc3OztbU1Pzk+/z8vJSU1O1tbVp19Qah9oVkQZqV0QaqF0RaaB2Rb6l48ePjxw5cteuXRMnTpSVlT127NioUaPCwsK8vLx+++23vLw87rDs7GwlJSWRSDRw4MDmzZtz0eDgwYPDwsLOnz+/ePHioqIiBweH169fP378mDvlwYMHFhYWZ86cWbZsmZmZ2enTp6vsJquT2jOHkMMtM/X1Y7hhhn/jtjoto5SUlICAgOPHj//7R/Ly8txg1SeEQqG+vn7ZL0GqD2pXRBqoXRFpoHZFpIHaFfmW7t69q6qqWpJ+nJKSIvFLWFhYnD9/PjU19T8bdl1Q2wLCb+bUqVMKCgrfffddVVeE1CrUrog0ULsi0kDtikgDtSsCwMLCYtOmTcuWLbO0tLx58+a+ffskfomlS5eeO3eua9eu06dPV1JSevDgQXx8vLe3t8QvVCNQQFhBfn5+o0eP/uxIFSEVRu2KSAO1KyIN1K6INFC7IgDGjBkTExPj5eXl6enZp0+f0NDQqVOnKikpNWrUqEePHiWHCQQCe3v7hg0bKikp9ezZk3tH3bNnTyUlpYYNG/bs2ZPH47Vu3ZpbGImjoqJib2+vq6trbm5+9+5dkUi0c+dOoVDYtGnTyZMnV8GtVg+1bQ4hIYQQQgghhJAyqj3bThBCCCGEEEIIKRcKCAkhhBBCCCGkjqKAkBBCCCGEEELqKAoICSGEEEIIIaSOooCQEEIIIYQQQuooCggJIYQQQgghpI6igJAQQgghhBBC6igKCAkhhBBCCCGkjqKAkBBCCCGEEELqKAoICSGEEEIIIaSOooCQEEIIIYQQQuooCggJIYQQQgghpI6igJAQQsj/2bvvuCavLg7gv4Sw9xRRUBEnCmWIWhAVcbWodaAW98L1ultpVRQHiLNu66zgRuu2TupAVJAhTpagggjK3gSS+/7xIFptFUKQdb4fP+8nTfLcnOc1JjnPvfccQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9RQkhIYQQQgghhNRTlBASQgghhBBCSD1FCSEhhBBCCCGE1FOUEBJCCCGEEEJIPUUJISGEEEIIIYTUU5QQEkIIIYQQQkg9Vb8Swk2bPr4RHw93dwBISsLx43j6FCkp1RMbIYQQQgghhHxl9SshDAz8+EZmJs6cwYULyMnBgwf480/8+ScYq64ACSGEkJooMxMlJQCQl4fCwuqOhhBS/yxYgLQ0ANi9GyEh1R1N3VK/EsKnTzFvHubNQ1LS+zvHjMGePSgogECAhATIyODZs+oLkRBCCKl5Vq/GixcA4OeH69erORhCSD2UnQ2xGADy8iAUVnc0dYugugP4qtq0wbp1ADBs2Ps7+Xz8/DPWroWuLnbuLL2zQQN06AArK9jZwc4OCgrVEC0hhBBSc+TmIjubpgcJIdXGwwOKiggLQ4cO1R1K3VK/EsIPXbqE+HhYWwNAx4744w/IyWHNGgQG4s4dpKTg3DmcOwcAVlY/A9dsbW2trKy6detmZGRUvZETQgghX98ff0BTE/fvY/Lk6g6FEFIveXhAVxcbN1Z3HHVO/UoIV658f0NbG+npUFKCiwsArF2LnBw0bIiffgKAmBjcuYPAQNy9y6Ki9ufmpoSGhnLHtmjRonPnzmPHju3evXu1nAUhhBDy9c2YgebN8ccf1R0HIaRekpcHjwcAcnKQkanuaOqW+pUQGhu/v5GcjPR0tG1beo+KClRU3j+zRQu0aIHRowHwcnJiIiIiAgMDb926devWrZiYmJiYmOLiYi0tLXNz8698CoQQQsjXZ2ICJSUAMDCAllZ1R0MIqX969UJUFHR00Lo1mjat7mjqlvpVVOZD7u4Qi5Gc/OVnqqqq2tnZubm5nT179u3bt6GhoQ4ODocPH7506VLVh0kIIYRUPxkZHD8OAJmZtK+eEFINAgKwdCny83HnDlJTqzuauqWeJoS5ubh4EWvWoKCgYgcKBAJLS8u+ffsCSKGWhYQQQuqH5GScO4f4eLx5g9zc6o6G1BWMiYqLXwHi6g6E1A5Tp8LLq7qDqIvqaUK4YgUSE6GnhyZNKnDUvn375syZEx8f36BBA1BCSAghpD5ZsACLF5feLiqq1lBIXRHTTSUXAAAgAElEQVQf/2Namu/btzu//FRSv3ENJ6ytkZODmBiUlCAoqLpjqkPqY0IYE4MNG8DnY+tW8Cvyf8CRI0c2bNgQGRlJCSEhRBJiMbKyqH0SqaV0dGBri/Pn8fgxDA3h4YHMzOqOidRu4uLiZB2dSbq6U8Ri6mdC/tPhw7C0LO154+GBS5ewezc6d8bkybRgQTrqY0I4axaKijBxIjp2rNiBZXkgdyO5PBsQCSGEc/s2Vq3Ctm1YvRqHDiE/v7oDIqRcCgqwYwcYAwBXV2Rmwt8fb99i6VIYG8PDA+np1R0iqa34jRuvffXKLSlpSXLyyoiIBnFxQ9PSfEWijOoOjNQUJSWYPRsuLoiIgIYGdHWhqQl/f2hpQSDAzp0wN8e1a1J4oYAAvHwJAHfu1Mfv53qXEJ4+fSU9PVlLC56eFT62LA+kGUJCSMUEBODGDURG4tw53L6NmBjs3QuRqLrDIuQLhEIMGYIpU5CRgdatwefj+nXs34+AADg5ISMDS5eiSRPMmoWkpOqOlVTExYv46y8AiIzE1q2ldy5fjm3bAGDtWrx69TXCUFbu0KTJnvz88Pz8sJKSNxkZx54/HxMRoRsVZff69Yq8vBCxmLYX1l+pqejTBxs3Ql4eO3di0aLSilZt2mDpUoSGwtoacXHo0QOTJyMnp1KvdegQfv0VAI4fR3a2FIKvXepNQvjmDcLD8+/dmzljQlBQw3XrLuvoVHiMsjxQV1dXRkYmLS2tpKRE+qESQuqY4mLcvIlnzxAdDUdH6OvjwgXk5ODx4+qOjJDPEYkwejT++gs6Ohg9urTxl4ICBALY2eHsWdy6BScn5OVh0yaMHv3X6NGjnz17Vt1Rk3LJy0NeHgAIhcjKKr0zLQ23biExERkZqOofOMXFr8XigoSEWS9fTtPQ6G9icrZdu2eGhhvU1BwBQW5uYFKS+9mz4xs0aDB06NCdO3e++joZKqkxwsPRoQP8/dGoEa5fx6RJHz+hfXvcvo1lyyAri507YWHB/P0DJXihnByEhACAvT0OHap03LVTPUgIxWIcP47du3Hhguf8+S8TEixbtx41qocEI5UlhDIyMtra2mKxOJWq3hJCviglBQIB4uJgYQE+H02aIDsbQiGeP6/uyAj5T4xh8mQcPQp1dVy8CFPTf3mOrS3OnkVwMH78sSQoaPz+/fvbtm07ceLE2NjYrx4vqTBfX8ybh3Xr/nHnwoVwd6/ylxaJsiMjO8XFDTUwWG5ktE1HZyIAeXljPb1ZLVpc+eab1ObNT+vqTo2MbJGamnrs2LHJkycbGRlZW1svWrQoICBARMsr6jofn0P9+4ueP0eXLggJQadO//40WVm4uyMsDB06wNAw0NHRbujQoenlWMVeUoLQUKxahZ49oaODnj3BGEaOxOnT9XF6EPUiIfT3R3Q0iotjU1LW37rFA7Z07Srz+rUEI+nr6+PdSlFaNUoIKS+BAIxBIHhfTobbjyUQVGNQhHwGY5g2DXv2QFkZ587ByupzT7a2xqFDgrt3/UeNGiUWi/fs2dOqVat+/fqFhYV9rXiJJEaPxrp1mDfvH3caGMDMTDqbsj4jMXGuUPiypOQtn6/y6aN8voqGRn8jo20eHn8+e/Zsx44dzs7OysrKoaGhnp6e3bt3pysOdZhQKJw+ffrYsSO0tGbNmMH8/aGv/4VDTE1x+zb69g2Rl5c/duzYN998c/HixU+fVlJScvfu3S1bgh0doaYGa2v88guuXoVYjLZtUVAAHg/u7vDzg1iMFy+q5OxqrLqeEDKGe/eyc3Nvvnjhcvx4YUnJeEvLzg0b4vZtCQb7MAmkhJAQUl56euDzYWqKu3eRmIhbt9C8Ofh86OlVd2QVVlCAuDgAEAqRlIT4+NL7y26QumH58t0+PgVKSjh/HnZ25TrE1NTU19f36dOnEyZMEAgE586d69SpE1Vfq7H4/NJC6zwehELs3Ildu0ofmjGjtEtzFdVvzM6+mpq6l8eTb9JkD48n8/knGxsbu7q6+vn5vXnz5tKlSzNmzBCJRFafv0RBaq23b9/26dNn27Zt8vLys2ZZbtrEk5Ut14ECAebPn/3o0SN7e/uEhIS+ffsOHTo0LS0NQFxc3M6dO4cOHaqnp9e5c+ctW9b7+6OgAMbGcHWFnx/evkVgIFxcICuLdu2wcyfmz0eHDnj0qGpPtmZhdVFWVlZAQMCGDRtGubi01dPj83gA9JSV5WRkLowcyTw82NatEgzLpX86OjqMsREjRgDw9fWVduyEkLro6VPm6cnmzWPOzszVlU2dynR1WbduVfRq0dFMKGSMsbg4KY/86BHT12evX7P4eLZwIRs6tPT+shukDli4cCEAG5s+Fy9KOMKLFy8GDx4sJyc3atQoqYZGqpCX1/vbxcXMzY21bs2ysqT8KiUlWQ8eGIWEIDl5tQSHi0QiHo/H5/PFYrGUIyPVLSQkxMjICEDjxo2DgoIkG6SkpGT16tWKiooAtLW1df5ZMqRVq1ZTp04/flz89i1jjBUXs8BAFhz8jxEKC1nfvgxg+vrs6dNKn1UtUUdmCFNTUy9fvuzt7T106NDmzZurq6t36dJl9uzZ+w8devLmjZyMTIdGjXSVlYUi0dhTp+IzMqCsLMGraGtrc7VkiouLaYaQEFIBrVtj5Ejo6ODlSyQlQUMD2dm4fh0PHlTFq82Zg40bAVTJXqChQ993Jy8sRFwc4uJK20OROuC3337z9PSUkZH56afxvXtLOIiRkdGAAQOEQmFxcbFUoyNVQiTC7t0YNuz9PYWFOH8ekZEYM6Z0hbu0cItFlZU76unNLf9R8fHxvr6+N27c4PP58vLyYrG4kD506pbDhw/b2tq+fPmyW7duYWFhNjY2ko0jIyPz888/P3z4sGXLlrKysqmpqfr6+s7Ozjt27Hj+/HlkZOSWLZtMTPJ9fPD999DUhK0tvLz+MYK8PE6dwvffIzkZ3brh6VMpnF3NV1t3sBQWFv79999hYWFhYWGhoaEvudYh7ygpKZmbm1taWlpaWloJhW3fvpUVi4tFon6HD1+Kje21f/9tDQ3drCyoq1foRWVkZHR0dFJSUlJTUxvo6gJIiYsDY+DxpHluhJA6ycgIbdvi11+hpQUrK5ibIzgY27dj+3apv5S2NuLjpb8F4ulTiEQwMACfD39/AMjIwIULAKgTXQ2ybh0yMrBiBbZvR+fO+OabChy7ZcuWuXPn8vl8X19fZ2fnir40Y6x169YGBgaXLl3iyo02b968ooOQry8pCQoKiIqCsXHpPSoqOHECNjY4dQpr1mD+fOm80I0bV5SUggQChaZN//jiYtEPBQYGjhkzZsSIEV27dlVWVi4sLMzLy+NmgUgdwBhLT08XiUQTJ07ctm2bbDnXif635s2bGxkZXb169bfffps9ezaAuLi4S5cuXb169e+//zY13Xzz5o/cM9u0QZs2Hx8uJ4djx9CvH/z94eCAa9fQunUlI6rpamVCWFJScvjw4YkTJ5Z1p1FRUTE3N7eysjI1NW3btq2NjY2cnFzps0UiHD+OZ89e5+Yec3a2/+OP+8nJg/ftu6ypqTB5cmlDk3Jr0KBBSkpKyvXrDUJDAaTcvYu1azFoEOg7jxDyRU5OaNYM8fGIjUXHjrh3D76+8PKCpqbUX8rdHb/8AgAREXjzBj17Vmq01NTSBmW//AIVFcyejT590LkzGjbE9OkAcPMmSkqQnl4b90XWNQUFiIrCo0coLMTz5wgNhZoagNJ3maoqBAIoK8fKyfHl5eWVlJQEAoGqqiqAffv2zZo1i8fjbd++3cXFRYKXfv36dXR0dEZGhpycHJcQGpdlGKQGMzTEyJEf39miBXx98cMP+PVXmJtD4uniMllZWaNGTUhOTvL336Kg8Mlv8M9SUlICkJ+fz91OS0vLr4e9w+suHo+3a9eukpKS7777TlZWNiMj48iRI2PGjOH+3iVQWFgYGBjI5/O5jzJvb+9fuSaDAICSkgvjx//o4AAHBzRs+O8jKCrizBl8/z2uX8eAAfkXL6Y2a2YkWTC1Qq1MCP/+++/x48draWmNGzeOmwZs2bIln/8fy19lZERDhsx2dfU9ejRg69bz48d33ro14MWLMbt2HVZT45d1ViqfefPm5URHN3r0KFlBAUBKdjby83H0KMaP/3IVJEJIPcfnY8oUuLkhOBgjRqBZM8TFwccHs2dL/aX09WFtjY0bsWgRzp2DuTnmzoWLS4Urm+blYe1arF2L3FzIyiI3F9bWkJXFsmVISEDZ7ozOnXHhAh49grMzTEykfjakYtzcsGwZOnVCRAQ8PP7lCTo6tqmpbz68h8fjqaioiMXizZs3u7q6Sva6H84KxsXFgWYIa7l+/bBwIZYvh4sLQkLQrFmlRps7d25CQkLHjh2//faTjnJf8lFCWHab1BmjR4+eN2+ej4/PwIEDf/jhh5s3b6qqqo789EJF+dy4caOgoMDa2lpPTw9Ap06d9PT0unbt6ujoaGtra/qvXXQ+oaSEc+cwaFBeamr/rl1jbty40ayS/wZqsFq5h/DIkSMAZs2atXbtWhcXl9atW/9nNggA4PP56YWF2Xl53y1cKO7X76/RozUUFJJzJyz6wwSnTlVodfzo0aOn6+npysk1UFYGkMxV4CourvIKzYSQumHSJCgpITYWaWng9khs2YJ3ix0q78ABjBoFS0sAmDoVffvCzg4NGiAiAmPGoG1b7NqFoqJyDSUWw9cXLVrAwwO5uXB0RFgYfvsNAwYAgK0thg9/n8nOno1+/aCqWhWTnaTC1NQwcCCOHkWjRhg/Hs7OGDIEjo5wdISNDaysYGhoaGxsbGBgoKmpqaKiAoAxJhaLdXV1Jc4G8S4h5GYFaclo3eDhgb59oaFRNHPm3Mps27t69eoff/whLy+/Z88emYpciOcoKyuDEsI6beTIkbKysufPn09OTv7xxx8B+Pr6SjzapUuXAPR+N69tb2+fkpLi5+fn6upazmyQo6yMEyegolKSkJDQrVu353W4e3A1F7WpuKKiIi0tLQBPnjyJjo5+/fp1eY4qKCiwtbUFYGlpmRMc/PfYVbIyIoBtdzrHrl0r72sXF7Pw8CJ3dz9nZ5tGjZRlZVXl5GZ27Jj9669s/XqJz4gQUr+MH88A1rkzW7w4rnHjnzp08L90SSoDnzrFBAIGsJMn/3F/QQHbvp0ZGzOAAaxhQ7Z9e0h2dvZnhjp//nz//qu453fsyAICvvzqq1axDRsYV7qNVJeiIrZ2LYuNZYyx775j4eHlPVAoFLZt2xbA5s2bJX51d3d3AO7u7jk5OTweT0FBQSQSSTwaqSHS08VmZrYAxo0bJ9kIWVlZhoaGANasWSPZCCEhIQCsrKwYY3Z2dgBu3rwp2VCkxurXrx+A9evXZ2ZmKioq8vn8Fy9eSDYU92l248YNqQSWlZXVsWNHACYmJomJiVIZs6apfQnhmTNnAFhYWDDGBg8eLCMj4+fnV54DU1NTW7ZsqaSk4+r6vPhawMHBf/IgluGLTw0/zO7d+8LB6ensypVXCxe6d+3aQKW0iaqqvDzX0MJQXd1v0qTKn1qZwsLCkpISKQ5IarHcXHbzJvvzT3blCktLq+5oiDSEhYl5vItNm+YuWLDS0RHA999/X/lR/f2ZggID2OLFHz/k58cyMphIxM6cYR06MA0NsYpKQ1VV1ZkzZ7569eqT6MJ69OjBfcr16/f86FFWzurumZksPb203QWpLsOGsSFDWFLSP+4MDWXGxszYmFlYMCsr1q2byNHR0cnJydnZecSIEa6urtyvrtOnTwPQ1dXNkrTVALddZ9++fREREQDatGlT+TMiNUFERAQ3R7d9+/byHyUWi1+8eOHv7+/o6AigU6dOEv+2efLkCYDWrVszxnr16gXgosRNUUhNdfz4cQDt2rVjjA0fPhzAihUrJBgnISEBgKqqqlB6X0iZmZlc4dMWLVp8+r1ZB9S+hJBrAOjt7Z2dnc1dPyh/sh4bG2trmwmwyZMZO39+SbfrAFOSFd513VN6QfUjYjGLjWWHDgVO3Du83cN2DfpwP5IsGjbc079/waJFoZMnd2rcmLuzW7dujx49quTZvX792tvbu1GjRvPnz3d3d6/kaKTWS0hgXl5sxQrm4SFeupStWMEePqzumIgUuAwYAOB3J6e38+crysryeLyoqKjKDBgUxFRVGcCmT//4ochIxuczFRU2cyZLSGBiMbt6Nb5bt27cB5eiouK0adOePXvGGEtISHB1deVWc2lqanp7excUFFQmKvKVXbrEAKak9HH/yb//Lp0c5v4oKeV9tFbo4bsPFu6N4eHhIVkA3EX0gICAEydOAHBycqrkGZGa49ChQwBkZWUD/mPBQHp6ekhIiJ+f35IlS5ydna2srFTeXUDX1NSUk5M7deqUxK/OLdUzMjJijP3www8ATpw4IfFopGYqKiri2gaGh4dfuHCBy74kaDi5e/duAAMGDJBueOnp6RYWFgC6d+8u3ZFrglqWEBYUFKipqQGIjY3dv38/gK5du1ZohOBgpqzMAOa9Uiw+dHjsN+EA01fJeT5/K4uIYLdusStXWFAQe/2ahYQUbvx93w8nrQySuC/RLk3+HmpqGjB+PFu5kvuNzjw8xJ6ePtOn6+rqch+UM2fOlOza6q1bt4YNG1ZWaZf7TbZt2zYJhiJ1hEjE1qzh3mbMw2PPgAEOzZpFzJjBPrvSj9QK3E+rtrq64iVLxllYAJg3c6bEoz18yLS1GcBGjmSfLtB7+JD17FmaCcjLs2nTirnk886dOz/88AO3AVsgEFhZWXE13OXl5X/66af09PTKnCD5+goLWatWDGCrP2n3XVDAnj1jz56x0FAWEsKuXy++cuXK6dOn/fz89u/fv2PHjszMTO6Zd+/e5arLJCcnSxAD92Pu1atXa9asATCzEu9qUgPNmjULgL6+/qNHj+7cuePj47No0aJhw4ZZWlpyhWo/pa+vb29v37p1a+7HfUZGhmQv/ebNGwA6Ojrs3cTAgQMHpHpypEaYMWMGgNmzZ4tEosaNGwO4detWRQfhWuZUxU/o1NRULS2t3r17l3PDWi1SyxLCU6cKunYNGzTIgzHm5OQk2d/3n38yPp/xeMzvULFw605H42cqckVXR/swDw+2bBn3v6IlS2+N36OrnMf9itJTzl1ofzPxl83s7Fn25g0Ti9nDh+zUKXbuHDe1mJ6ePnPmTC6La9iwoY+PTzkvaRQWFvr5+XXu3LksD3Rycrpy5crBgwd5PJ6MjMzJjzYDkZrq5cuXV69ePXr0aH5+vnRGjI9nK1cyD4+A8eNjZs401dMDIODzpw8ZkpqaKp2XINVEKBQ2atQIwLWxY8MmTwagoaCQe+AAKy6u6FCxsaxhQwaw/v0/d/T9+2zUKCYQMHv7CD6f7+TkdPfuXcZYbGzszJkz5eTkGjVqxOPxnJ2dY/91uQSp8RYtYgBr166yq3YHDBgAYMaMGRU9MDs7m5tzFovFU6dOBbBx48ZKhUJqGKFQyO3f+1eamppWVlbOzs5ubm47duwICAgouz5eUFBgZWXFTRpLtq00NzcXgJKSEmNs0qRJAHbs2CHNcyM1A7dZVFtbu6ioyM3NDcCkCu7JKikp4UqNSPG7zN/f/+XLl4yx169f83g8rhOmtAavIWpZQjhkCAPY+vUsPZ05ONxr29YlJSVFgnF++42ZmLDoaMZycjJXbrs/ZbtTyyifgSeZh8cIswep81et7nk5Ye56NflCy4ZJO/qdzV+/nQUFsaKizw8bFhb27bffcp+MXbt2ffDgwWeenJSUtGTJEm5qEYCenp6bmxu3kYP7uFyyZAn35Xrnzh0JzpF8Nfn5+d7e3qqqqtwl0saNG5f/isDnPH6c+Msvo8zNeYBTy5bpbm5udnZy3HI+DQ1vb++iL70hSU22xN0dwJC2bdmSJZ0NDQHs+OEHVr4d0WVevWLNmjGAOTiw8qzujIlhc+eulZeX5z52HB0dg4KCGGPc9+6YMWMkOhVS/aKimLw84/FYxS+mfywyMlIgEMjKylb051R4eDgAU1NT9m6X17lz5yobDalhtm7dyuPx5OXlra2tf/zxR3d39wMHDty9ezftgy3uGRkZwcHBhw4d8vDw8Pb25u58/vw5N4Es2YJksVjM4/F4PJ5YLOYmKn/77TfpnBKpYczMzACcPHkyKioKgJqaWl5eXvkPv3v3LgATExNpxVNSUqKtrQ0gPj7+jz/+ANCvXz9pDV5z1KaEMDeXKSszHo+9eMH27GEA69VL8tHev7sCA5mHx2jz+2O+uZ/mtmqE2YP42Rvcu954NW/d89m/sT17WFRUeYsqMCYWi318fLi2JwKB4F9XkIaEhIwaNapsdailpeWOHTvKppVyc3P79evn5eUlFovHjh0LQFdXNyYmRvJTJVVGLBYfPXrUyKi0V2mPHj3atWvH3ba3tw8vf4G/T+Tl5S2ZP19JVhaAokCgqaCw74cfxEuWPJo2zfFdo+deNjbs8mUpng75mpIuX5aTkRHw+S/nzFndqxeA0ebmbMUKVu4150VFrF07BrBOnVhOTgVeOiUlZcmSJRoaGgDOnDnDGJs8eTKALVu2SHAipNqJxeL+/QsBJq3qZuPHjwfg4uJSoaO4ghD9+/dnjHHdJp4+fSqdgEiNYW9vD2Dnzp3cfxYWFj579uzMmTPe3t6urq6Ojo7GxsY8Hq9s2tDY2Ljs2KtXr8rIyPD5fMmuFHDdJvLy8rgO456entI5JVLDrF27FsAPP/zA3m1LPnjwYPkPX7p0KYDpn+6nl1RQUBCAZs2asXelbipTirnGqk0J4cGDDGBdujDGWK9eDGB79khj3Js32dKlo83vR83Y/D+boBFmD5iHR95CT+bhwby8/r3YzJdkZGSUrSDV19fn5osKCwt9fHy++eYb7lNSVlbW2dn5ypUrHx17+fJlPp/P4/EOHjwoFAodHR1lZOScne/Tjp6aJiwsjPtqBGBhYcFVNy4pKdmxYwc38cvn8ydNmvSmopPYYvHhw4e5Ct08Hm9Y+/aTray4V7E1MgpxdWUeHldGj26rqxtqYsIA5ujIHj+ukjMkVer8+eHt2gFYZG8/5t3HgrKcnGmLFt9///20adM2btzl58eCgthH76AzZ9iRI4wxdukSW72aWVhIWH02IyNj69at3FQ216yJ5nNqKR8fH3X1Jn37PpZWHeLExEQlJSUejxcaGlr+o1avXg1g9uzZJSUlsrKyPB6PihLVMZGRkdwWU65pzcuXL/917aiysvI333zj7Oy8YMECX1/fD0fw8vICoKGhIcFl7nHjxk2aNCk3N3f58uUAFi5cKLUTIzVJcnKyrKysQCBITk7etm0bgF4Vmf/hVuqdPn1aWvEsW7YMwLRp00QiEffrLjo6WlqD1xy1KSHs358BbMsW9vYtEwiYrKyUivBHRzNPz9Hm95mHx+Ku180aJJeV8WArVlSmgMeHK0hbtGjBrWkG0KBBg8WLFyd9VBf8A9u3bwcgJyd39erVrKysIUOeA6xrV1bnVizXVqmpqWUJv7a29oYNGz4qpZ2Tk7NkyRJ5eXmBQPDQzIwtWVLev7zQUNaly3IbGy7JvHntGjt+XLx8uY+zs76KCpcijjI3f/3TT4WLFpX06sXk5RnA5OTY/Pnln1kiNcLNm/emTFnXu3fGL7+4d+36jb6+pqLihz+qvvmmW1lZSEVF1rYt++47NnUqW7SI2duz5GS2dSsLCJBg1+G/aNWqFYDK10kmX19aWhq3JsXHx0eKw/78888AevfuXaGjXr169fr1a64lfePGjaUYD6kJ5s6dC8DV1ZX7T5FIpKqqamxs7Ojo6OrqumHDhitXrjx79uwzuwTFYjFX8KN9+/a5ubmShbFu3ToAc+bMkezwfycUsr/+Yl5ebOlStmULo2VZ1YqrErJhw4b09HQFBYXGjRuXc9VoRkYGt+Jd4t45n+LamJ86dSo4OBhA06ZNpTVyjVJrEsKMDCYvz2RkWHIy276dAUxq5azFYrZ+/bxvbzMPj/yFK2yNXpZmg15e7K+/Kj222MfHR0dHh1tVaGVl9eHq0M+YPXs2ABMT2ydPSl69YoaGDGDDhv1LCUHyNQmFwg0bNqirq+NdUdmy6nyfioyM3DVtWukv+lat2OenX5KT2YQJjM9nQL6V1a5du95/p+blsaSkrMTEn3/+WU5ODoCavPyb775jixax+fNZx47cUUxbm23YwIqKWFYWvVFqgYwM5un5/vKThwdbujTT2zvi/v3Tp09v3LhxxYrDAwcyS0umpfWPngELF7KzZ9mkSaUJYeWJxWIFBQUAORVaeEpqhokTJ3Jr1KWwb/kDGRkZ3EXMT5exfNHly5dR8RrgpIYrKiripkfufbF182fl5ORwTcOHDx8uweF3797t2rUrt91GaiXcxGK2cydbvpz9+CP7/ns2cybz9KSlN9Xo2LFjeNdyPCwsrPztK7mF61L88MnKyuKmKzMzM7mp6SlTpkhr8Bql1iSEhw4xgPXowRhjOTns4EF27ZrUBi/csN1EK21qh3tC92XMy4t5ezNPT3bzZvm3Dn7eqVOnuGyw/IeIRKKJEz0NDYubNmWvX7NHj5iGBgPYr79KJSIiiStXrnBfYwAcHR3LO51y5UrpTi/uHfxpI0GhkG3YwNTVGcBkZdnMmey/k8yYmBhnZ2c3bkAtLebszDw82OTJrEkTBjADA7Z0KfP0ZJ6ezN9fWm9gUlUiItiKFaXFjT092erV7O3bf31idjZ78ICdOcM2bWKrVrGICLZyJRs+XDoJYVJSEgBdXV0pjEW+rrt37/L5fDk5uSdPnkh98JUrVwKwtrYuT6opFAofPHhw4MCB+fPnc5+Tjo6OUg+JVKODBw8CMDc3r/xQUVFR3HXVdevWlfOQxMTEDRs2mJubc1/B3NWKVq1a3b59u/LxsPBw5uXFunRhQ4awGTNY26GZIioAACAASURBVLZs1iy2ahV9h1aXsoaE9+/fL+chJSUl6enpLi4uALy8vLg709LSJOugU+bPP//krrgxxrgSu3W1+L/gX9d/1yhRUcjLw/DhkJUFnw8AKipwcZHeCyQnX7irGZuupa5QJNu0ESwtoaYGQ0O8K/pSedz2+oKCAgBxcXHPnj0zNTU1MDD4zCF8Pn/TpgWOjrh9G05OuH4dJ06gTx+sXIlGjTB9urRCI+USHR09d+7c8+fPA2jZsuX69eu///778h7s6IiwMGzdiqVL4e8PS0scPw5tbZw/DwMDjBuHTp3w6BEA9OuHdevQosVnBjMxMfHz8xP6+2PWLDx+jGPHEBaG3r0xdiwePYKqKiIikJICrs5NXh769avcqZOqZGYGQ0M8eICsLDRsCDMzvKv/+RFVVbRvj/btAWDtWgCYOxcWFtKJIjFRYG/v16BBknSGI19LSUnJ5MmTxWKxm5tbmzZtpD7+7Nmzt23bFhIScuzYsaFDh370aEZGxuPHj0NDQ588efL48eOwsDDuO46jra197dq1vXv3cvVpSB1w4UJbW9uRY8Y4VH6oli1b+vj4DBw40M3NzdLSslu3bv/1zMLCwrNnz/r6+l68eLGkpARAw4YNnZ2dv/3221WrVoWHh9vZ2U2cOHH9+vXKysqShPLoEVavxoMHGDgQqano0QMAbGwQFYUGDZCainel4MnXJCcnN3z48C1btvz00099+/YtKCjIycnJzc0tLCzMzs4uu5GXl1dQUMDdEAqF3LGysrLGxsYAMjIyevfunZOTc/36dX19fckiuXTpEgBunKCgIIFA0L17d2mdZs1S3Rnpl+3dyywsWG4uO3KESW+P6AeuXh3e7iHAVve8XEUrBLiGqtra2oyxkSNHotybPVJTWcuWDGDffceKi9nevQxghoasIgV4SaVkZGS4ublxCzU1KtnsIS2NzZzJGjZkt2+zCRNYYSELCGBTp7Jff2WtWrHz5ys2WnEx27SJaWoygPH5rGNH5ubGevdmAwcyd3fWowcbOpStWMEk7QJMaqzkZMatk7pzh40Y8XHJGQlw6y+cnSsfGvmqLly4wOPxmjVrJrWFc5/YtWsXAGNj45ycnPDwcB8fn59++qlnz54NGjT46LcEn883MTEZPHjw0qVLT5w4wdWB5PF41BugboiKYjweU1aW5l517k2ip6eXkJDw0UMikSggIMDV1bWs3728vLyTk5Ofn5/wXZ9NoVDo7e3NFWxv3rw5V9etAkJD2YABjMcrXZszZw5r06Z09f64cax3b+blJYWPVyKpffv2lZXeKA8ej6epqclVz9bT03v8+PGbN2+4wu/t27d/+x+rb76oWbNmAEJCQk6ePAmgC1fZsi6qBTOEAMaMwYoVeFeHT8ry70efi+7CA3M2j0aLblXxEtra2gKBID09vbi4mPseTUlJKd+BOHcO336LnBzk52PcOBQWwsYGkyfDxwfZ2ThyBFOmVEXIpFRkZOTq1at5PN6oUaPWrl3LFW+QkJYWNm7EihXYsQPjx0NeHnZ2+O03rF+PZcsgqOA/RoEAM2Zg5Eh4eGDbNoSEwMYGL19i2DAA6NABly7BwgKJidDQkDxmUvOU/RRfvRonT0JdHVu3VmrA588BoGnTyoVFvjo5OTl1dfWmTZsqKioCCA0NDQ0NdXV1leJLjB07dvXq1TExMRoaGiKR6MOH1NXVzczM2rdvb25ubmZm1q5dOxUVlbJHBw4caGho+L///W/OnDnZ2dmLFy+WYlTk69u1C4zhxx+hpia1MVesWHH//v0LFy4MHjz45s2bXH/UqKiow4cP79+/Py4ujnualZXVqFGjRo4cyfWCKyMrK+vm5tanT59x48aFh4d37969vFOFERHw9MTx42AMAgHMzdG1K1RVoamJmBgYGCAkBN27g8eDjo7UzpZURFFR0erVq9PT062srOzt7RUUFNTV1ZWUlBQVFT+6oaCgoKGhoaSkxL1/hELh4MGDz507171792vXrvn7+zs4ODx8+NDR0dHf3/+jt9AXRUVFxcfH6+joWFhY7N69GwBXkbtOqh0Jobk5Xr7Ekyd4V35fel69OhekmyuU62yY2LSTvhSXiX6Iz+fr6OgkJye/ffu2QgkhgBYtcOMGmjcvXUo2dSqeP0d8PLZvh7MzoqOrIl7yXqdOnby9vfv06cN1SpUCVVXIy6NsbZVYDAUFyUfT1MTGjZg0CUeOQEEBPB7EYvD5KCkpzTBlZKQQM6mRVq7E2bPYsQPTp+Pd5lZJvHgBAE2aSCsu8pW0adOmuLj4+vXrd+7cady4cadOnfh8fs+ePblL2hITi8UDBgzo16/fpEmTZGRkVFRUNDU1MzIyGjZsaGVlZWVlZWpq2rZt2zZt2vC5XRz/YerUqaqqqmPHjl2yZEl+fr63t3dlokJ0NG7fRnY29PVhbw9JF4ARCQiF8PUFgEmTpDksn88/cOBAhw4dgoODp0yZ0r179/379/v7+zPGABgaGrq4uEyYMKHFZ7dRmJubBwUFrV+/3t3dfefOnf7+/nv37i3rCPWRu3fvenp67klM1Lt/H3JysLCAnR1UVBAdjcOH8f33SE9HWBi6dEGDBujTB599h5Oqs3Tp0idPnrRq1SogIEDxn/W3P09OTu7PP/8cNGjQ+fPnHRwcynLCiIgILies0Kwjt160V69efD6fq5XVq1evip5LrVHdU5Rftncvu3aNZWYyE5MqWDJ66dKgNk8AtqHPBRYZKe3R3+N2QoeFhfn4+AAYOXKkxEPFx7MlS9iYMez+fSbdqsvkK3n1ig0axEJC2LZt7N3W58p684atWMGGDWN2dmzKFGZlxSZMYJ6etLy4bpsyhQFswIBKDdK7NwO+UASX1EwLFizAu4IHo0ePBjBixIhKjvn7778DMDAwyMnJ4b6wtLS0Xr58Kdlohw8f5hb1TZ8+XfI6qH//zby82Ny5bNw49uuvzNOzSr+vyUcOH2YAMzOrksHDwsIUFBTk322fVlNTmzBhwo0bNyr6brl//z7X55nP57u6upb2tMjNZZGRLCbm1rVrZT/lpxkYMDs79vPPbPFiNmgQ09UtrfrWvTtbvpwtW8bWrfuX8m/kawkLC5OVleXz+QGSlk3Lz8/v0aMHgEaNGsXGxiYnJ7du3RqAhYVFekWaen/33XcAfHx8oqOjAWhra3+mpUptVwsSwgcP2IsXjDF28yY7d451787evJHS0GJxtvfq1jqJfJ741a+bpdPP6z9wn0QXLly4ePEigJ49e0o8FJcQPn/OhgyhhLDWevWKHTjAbt6U5pjnzzMvLzZlChs4kM2YwTw9WWCgNMcnNU9KClNTYwDz95d8kNatGUC/f2qlzMxMbhHUhQsXnj9/Li8vz+fzK9RN/iPJycmampoA/Pz8pNXh8OzZs1xfE1dX14r9nCopYYGBbM4ctmQJc3FhNjZs+HBmaspmzmQrV1bpVzb5kIMDA9jWrdIc8/Tp06dOnSouLmaMmZmZKSoq2tjYHDx4sDIbYj/eVbh+PVux4taUKU6tW3OpoIqc3MyOHZN/+oktWcKcnZmOTmkq2KQJ27CBFRQwsZhJXCaASENRUVH79u0BzJs3rzLj5OXlcdVfDA0Nnz17lpCQwNV37NSpU/lbFAYGBi5YsOD169ebN2+GpI1SaotakBB+qEsXBrAuXVhBgTSGe/HiwKBBAIaaDmRVXEZ21KhRAPbt2xceHg7ArBKX2riEkDHm5UUJIfmAWMzu3WMbNrAVK9iWLYyajNcPy5YxgHXoIGGBdLGYKSkxgGVnSzsy8lVwTbrNzMxEItGcOXMA9OnTR+LRuLJnXD/6SZMmQUodDi9cuMCt+3JxcSn+YiKXlsb8/JirK9PXL/29Pnw4a9uWLV7MPDzYtGmsSxfm7c3i4ysZFSmP1FSmrMyUlD7TDkkSXG+SU6dOxcbG8ng8ZWVlaXUSfz9VyOO5tG8vw+MBUFdQWNy1a7qbm9Ddfe+AAYtNTErfWs2bsz172LtCNaTaubu7AzA2Ni6d462EvLw8roCtkZFRXFzcy5cvueX0nTt3zq7gF56TkxOAP/74o5Ih1WS1LCFMSmJGRqUF8aQwbXv+vFPLlgC2OzmxmBgpxPfffvrpJwCrVq3iWn41aNBAsnGio9m337KrVxljrLiYpaZKM0hCSK2Tm8saN2Z2drF+fv9ZqDY/n929y7ZvZ66urEMHdubM+4fy8piLC+vd+2uESqpCUVERV2P9wIED6enp3PzeVe5LooKuX7/O4/EUFRVjY2Ol3uHwxo0bXMXI/v37FxYWfvqE8PBwT0/PfCcnJiNT+mOd67basSObOvV9Bci5c5mNDfP2plWjVS0urnQl+aNH7PffpTnyzZs3Aejr6wuFQu7X0cSJE6U4fmFh4S/duwv4fACaioozOnbM+OUXobv7rv79jTU1udnCV05ObN8+mmeuUe7fv88tFq1wzdj/kJuby20oNTIyio+Pf/HiRdOmTQHY2trm5OSUc5DCwkKuUtGn5XDrktpRVKZMw4a4cAG2tjh2DM2aYdWqCo+Qm5srIyOjqKiI7OzMe/cuP3sm4PMHffMNKrcL/4vKasno6ury+fzU1FSRSCRT8YIf06bh9m0cP44ePSAQoIIFkwghdY2yMjw9T44ZM+jVq2b9+z/ltuJkZmbev38/LCwsPDw8PDxcRubugwfvK0AGB5f2p7x6Fb6+OHgQgYE4fhxDhlTXSRDJycnJLV68eOzYsYsWLRoyZMi8efMWLVr066+/BgUF8Xi88o8jFAqnTJnCGFu0aFGTJk0GDx4sFovnz58vrQ6H9vb2f//9d58+fc6cOTPIyen4jz8qpqTki0S3i4vPvn178ty5hIQEAAObN2/DGIyM0LIljI1hYACxGK9eQUsLiYlo3BhPnqBpU5SUoGFDqQRG/ktUFObMgakp0tKkPDLXzmTChAmMMV9fXwCTpFqvRl4gWNmt2/BWrcaeOvUmL2+Rvf2ZqKjlN27EpqcDMDY2dnNz0xs/vsLFvUlVKikpmTBhQnFx8axZs/6rLFBFKSsrnz17tlevXkFBQT179rx+/frVq1e7desWHR2dkJDw+Q+3uLi4W7duBQYGnjlzhqtiqlG3a7ZXd0YqiWvXmLw8A9jmzV9+cnZ2dkBAwIYNG0aNGtW2bVsZGZnDBw6wI0fY8uW7+/cH0Kt5c/bnn1UdM/eRx23319HRAZBS8f42fn6lF0wl7adCCKmDRCKRhYUFgLVr13L3NPlnzdBu3SLMzdmYMWzDBnbjxvtOYqdOse++YydPsitX2N691RY/qSSRSMStkdu4cWN+fn7jxo0BHDt2rEKDeHh4AGjVqlVhYeGqVasANG/eXOodDsPCwnS1tQF0bdrU1cpK/oNf5I3U1CZaWoaMGMEWLGAeHmz+fObszKysmIoKA9jEiaxHD9a5M+vfny1fzo4fl25g5FMXLrCNG9moUezGDWnOEKanZyoqKvL5/Li4uCNHjqBym2j+k5cX8/AoWLTo8fTpU6ytufdYWwODQ4cO1eG6ILXa0qVLATRr1qz8c3fllJmZaWNjA6BFixavXr2Kjo5++B+b5hMTE319fceMGWNoaPjhd6iamhoAe3v7yi9krbFq5dWRbt2wYwfGjcPx40+aNo3jlvaWSU9PDwsLCw0NDQsLCwsLe/bsGWOs7FE5ObnkS5fQqhVEoqOPHwMY1q4d4uMhElVpgf4Pu000aNAgNTU1JSWlQk3t8vPx888A4O1NrXEIIe/x+XwvL6++ffuuWLFi7Nix2tradnZ2+vr6FhYWlpaWFhYW7du34mr4JSXhyRP88QdCQxEaimnTMHYsDhzAqFHVfQ6kEvh8/vLly/v167d8+fKxY8cuXLhw6tSpCxcuHDBggGz5einFxsZ6e3vzeLzt27enpKQsX74cwMaNGytU8L08LCwsbs6b5+jtfeP587iMjGKRyMrAwNHY2KllS1tDQwDhycklwcGCyEgkJUEsLj3MxARqanBwgIwMSkpgalo6x02qmK4uOnfGmTP4bOuHitm/X71Jk1R7+yvNmjXjJgYnT54stdHLWFnh3j0FoK2u7nQbm9sJCQu7dx/i7s6vTIse8nkiEYqLJeuk9eDBA09PTx6Pt3Pnzg87mkqFurr6pUuXevbsGRIS0r179+vXr3/YyyQ1NfXOnTuBgYFXr14NCwsrSxl0dHQ6depkZ2fn6Oioo6PTtWvXmzdv9u3b98KFC1/udVkbVXdGKrkNG+4BUFZWvnfvXtmda9as+egEFRUVO3bsOHXq1F27doWFhQlfv2aenszD456rq4DPl5WRSXNzYytXssePqzTa+/fvA2jfvj1jzMHBAcCVK1cqNMIvvzCAWVlJY/MkIaTO4UoZz507t+wesVgcExPj5+e3fPnu3r2Znt77nVncn9mz2fHjLCSE2dnRDGGtx5XUW7x4cXFxMbcU6vdyT+s4OjoCGDduHGOsf//+qLp6emIxW7YsesYMI3V1HuA7cCDz8MhbuPDK6NEzO3ZsrKYGILVZMwYwgYDZ2jJv7/ffzpmZ7MULaqXz1Vy4wA4dYiIRs7X9eIZQ0i4kjDHWrh0D2PHjLCaGdekSaWk5KVO69Wo4JSXM15d5ebGlS9myZWzFClbBH12kAgoL2fHjbPlytnw5W7WKhYRU6Oji4mJra2sA06dPr6IAGWMZGRlWVlYAWrVq9ezZsytXrri5uVlZWX3YT1VZWdnR0dHb2zskJOSjmeTo6GgDAwMAjo6OUl86URPw2AezZ7XO1KlTf//9d11d3du3b5uYmAA4derUqFGjWrVq1bZtW66FbocOHbhNNUlJSaGhoaEXL4b+/XdQQsLbvLw2urrmDRocHjIEPB7s7dGtW9WFmpyc3LBhQz09vZSUFHd394iIiAULFnTq1Kmch8fGol07FBfj9m107Fh1YRJCaqsHDx5YWFjIyMh4enomJSVxuwezs7MByMurMpYtFEJdHe3awcqq9E90NMRiDB6M6dNhbY1x46r7HEglBAcHd+rUSVlZOSYmJiAgYOjQoQYGBvHx8XJycp8/8NChQyNGjNDS0oqMjLx169agQYPU1NSePHnSqFEj6UfJGFasgFj8IjPz5osXRSLRkUePAl68EIpE3OONGzfeP25cNysrODqiTl6Grz0SEiAUonlzREUhMxNHj8LTE4qKWLoUK1fC3x+2thUeMzAQdnZo0AAJCXB3x6pVGD8ee/ZUQfSc+Hi8eAGBAC1boiJrskgFiMXYuRNv3iAsDJmZMDGBsTGePIGODtTVS/9oaEBd/aW2tlBVVUNDQ11dXVYgQGAggoKQl+cVHLzw/PkmTZo8fPiQKz1VRVJTUx0cHB4+fCgjIyN695mjqKj47bffOjg4ODg4WFtbC/57Z2l0dHS3bt1ev37dq1ev06dPK0g0F1pj1colo2U2bdoUFxd3+fLl/v3737p1S0tLy8nJKTMzk/ubjo6ODgsLO3HiBFdZgfthVEZfRWVAq1YrHR0BQCCAklKVhsrVkklLSxOJRNxqnAqZORNFRZg4kbJBQsi/MzMz69u3b0BAwPz588vubNy4sYWFhYWFhbV1vpmZ0j+3FsLUtPTG1q1fMVBSNWxsbAYMGHDq1KkVK1Zs3rx52rRpo0aN+mI2CEAoFKqpqa1Zs0ZZWXnu3LkAvLy8qiQbBMDjoUkTPH/eRENjlIbGqBMn/OPiZPh8qxYtnFxc+vXrZ2lpWaFaOKTqlO2iatUKffrg0iWkp2PfPuTkoKgIgwcjNBQVfZvs2gUA48cDgK8vAEi1mswnmjWr6pKBBE+fIiMDly7B2Bimprh0CTIyOHECBQUfPfFPC4u54eHcbSV5eQ15eXV5+T7Nm28PCeHxeDunTq3SbBCAjo7O1atX16xZc/36dcaYo6Ojo6OjnZ1dOVO7li1bXrlyxcHB4bXe61EvRx1scVCO9+UP2Nqids8QAsjJybG3t79//76dnd2mTZsePnwYGhr65MmT0NDQjIyMD5/ZsGFDKysrK0tL0+fP26qomH54rUhWFjNnQtqrlj+ip6f39u3b27dvd+7cuUIHnjiBwYOhqYmoKOjqVlF0hJBaz97ePiAgwNraevDgwVweWKGNyqS2i4qKateuHY/He/LkCbdqppy4Pe3z5s377bffrK2t7969K0ER7PJKS8OuXRAKwdidhIQXOTm9zMy05s2TbOsR+ToePkTnzsjLw5YtmDIF332Hy5fRuTOuX0c5rjm8N3QoTp5EZCTCwjB0KNq3x4MHVRY0+TrOnkVYGI4exbBhAJCcjKgoaGggPx9FRSgsLP3fwsL1iopbX7/OLCzMKioSvdsh3EhV9VVOjquV1Y5Bg/C//0FN7SuELFmdf86jyEdOQqcXJS8GqA84ZnxMlleufdo1X61PCAEkJiZ27NjxzZs3JSUlH95fmgG+Wziqr69f+sDr1/DxgViM4mLw+ZCRwQ8/oOr3Gbu5ufn4+KSkpKirq3fo0MHW1tbOzs7W1vbzu/YLCtC2LZ4/x7ZtmDq1qmMkhNRWwcHBHTt2VFNTe/nypbq6enWHQ6rHpEmTdu/ePXz48MOHD1fowIcPH1pZWYnF4uDgYEtLyyoKr1RmJq5cQXw8ZGTQujUcHCDt6jVE6o4cwY8/QlYW/v5o1QrW1khNxfz5Fz08+lRonLdvoauLXr1w5Qo2bcKMGVUUL/la/voL9+69TwgTExEfDxMTKCiU/vm3Of+coqKsoqKI5OTxp0/LCwSPpk1TU1VFv35o1+5rx19xDwoeOMQ4pJWkDdIYdKTZkbqRE9aFhBDAzJkzt27dqqGh4ejoaGlpaWVlZWlpqaWl9Z8HFBQgIgLJydDUhLk5vkprEcbYsGHDbt68ydUa5cjLyw8fflRHZ4CdHTp3RoMGHx+VnY1ff0VwMO7ehYwMRCLw+f/6j4sQUq8NHDjw1KlTCxYs8PT0rO5YSLVJTExs2bJlYWHht99+q6mpqaioKCsrq6KiwufzucsEGhoaPB5PVVVVIBBwzbXk5eUVFRV//vnniIiI2bNn//bbb9V9EqSGmjcP69dDXx+hoUhMFE+aNP7BAx8fH5/Ro0dXaBwuX5CXx6tXeNcontRaMTE4fhzXr0NWFk2b4sYN2Nhg7973T5CX5zLD2ZqasWKxhoKCury8hoKCuoKChoKCtYEBD7Bo2BDy8ujf/ytMz0jF/YL7jjGOaSVpgzUGH2l2RMCr3VvwUGcSQjMzs4cPH54/f/67776r7li+LCkpKTAwkOt3GR4e3rlzXGBg6c4eExN8+y2+/RZduqBHD1y8CHNzjByJoiIcOwYAixZhzBhpFoAmhNQBkZGRpqamcnJycXFxDalhd/22Z88ef3//is4QGhkZiUSip0+fVvU2HlJ7lZSgZ09cv46RI1/t3at3+PDhMWPGKCgo3Lp1i6vfWE5bt+J//8Po0fDxqbpgydfCGA4cQEICYmKQkYFmzSAQ4OxZFBYiKwuZmWVPNNfUfPDPzVwADgwaNMLMDAAEAsyZU9UVPaQoPD/cMdYxvSTdWdP5UNNDtT0nrAsJYWRkZJs2bTQ1NZOTk8uzgb5GycrKCg6WDwhQuH0bQUHIzS29v2dPqKuDz8fhwxg9GsXFOHoUoISQEPJvxo0bt2/fvmnTpm2l+jAEiIqKSkhIKCgoKCwsFAqFeXl5IpGIq6zG7a7Pzs4WiUR5eXlCobCwsLCgoKBfv35Dhw59v7eCkH/z5g0mTQo6f95+2rTJmzZtcnV13bVrV5MmTUJCQnTK0SL59GlYWsLQEFu3okcPtG79FUImVU8kwo0bCAtDYSG0tdGzJz7cw5yZyWWGt7Oz0zIzMzMzs7KyMkNDs2JjM/PzJ1tbWxsYQFYWPXrUusKJYflhjjGOfdX7+jTxeVr4VASRuaL5ofRDI7RGVHdoFVYXEsIlS5YsW7Zs4sSJu7jyVbWWSIQHDxAYiDt30Lkz7t1D//5IS8PNmyguRuPGABAYiP37KSEkhLz36lWeqWmL3Nw30dHRxsbG1R0OIaQuCw4Otre3Lyoq2rt3r4uLi729PYCTJ09yXdo+b+RIyMtjzx6MHYvdu/HfFf5JPfDoEW7fRnY2tLRgb4+K1MGqOaKLok3kTeYkzjGSNVKWUW4q1/Rw+mGfprVv7rsu/Fs8duwYgGHcZtbaTEYGFhawsMD//gcAY8Zg8GCMHo28PMjJYd06AFi0qHpjJITUOOvWKQsEiXPm3KFskBBS1WxsbDZt2jR58uRp06aZmZmdPXtWXV2da/j8qbQ0REcjJgbR0WAMAgE6dsTJk185ZFIjtWtXK0rIfF5L+Za54tzk4uSNjTdy9xxOr9hy/Rqi1ieE9+/ff/r0qa6ubreqbCtfLZo2BYDFi7F69fsyvA0a4D8+dQkh9VF6OnbtQm4u38Wl4l2iCSGk4lxdXe/du7d79+7BgweHhIRw2WBWVlZMTExsbGxMTExOzqAbN0y5PWVlNDXRvz8mTsSwYVQbj9QdeaI8dZlaX9m71ieER48eBTB06FBBnVt5sHQpAJiYYOfO93dSgWZCyIc2b0ZuLvr2hYVFdYdCCKk3Nm/eHBERce/ePRsbm0aNGkVHR79586bs0a5dTYODTQGoq6NFi9I/LVvi8mXw+fjlF3TpUn2hEyJVerJ6L4UvM0QZany1QlZY3eFIqNbvITQxMXn27NnNmze70KcLIaSeyc9H06Z4+xbXr6Nr1+qOhhBSnyQkJAwYMKCgoCAyMhKAkpJSi3fat+9raNilZUvo6f3jkOvXwS3nOnMGTk7g86shbEKkLroo+ve3vwuZcJz2uJD8kMk6k6s7ogqr3Qkh14jZwMAgISGBT58rhJB6ZuNGzJ4NGxsEBVV3KISQ+ocxdu3aNR6P16JFi8Zc7TtCSC1Uu5dZcutFhw0bRtkgIaS+KS4G10J8wYLqDoUQUi/xeDwHB4fqjoIQJdMmqwAAIABJREFUUlm1eIaQMda0adOXL1/evXu3Y21rXUIIIeVRUgKhEEpKYAy5ueB6hhcVgccDnw9fX5w9iz//pJVXhBBCyP/Zu/O4mtIHDODPbbntqxSRlJBC9i37mrENpihk3/dhLDNmimGEn7GMMYNhbGOLGbIN2UWYGmvRSKUoUmlfb/f9/XFMY4wx1E1xn+8fPnU65z3vub1u9znnXaiY3uEPEUFBQbGxsdWqVWvWrFlZ14WIqFTcuIE1awAgMxMff/xs43ffwdMTWlooLMTUqUyDREREVHzv8OcIqb+op6enjLMXE9H7S6lEQQEUir9trFQJ+/eXUYWIiIjoPfKujiFUKpU///wz3ov16ImIXuH4caSlIT//bxuHD4efH6duJyIiopJ6V58Qnj59OiEhoVatWg259hYRvdfc3LB4MXx9AaBo0LeGBubOfdablIiIiKjY3tUnhPv27QMfDxLR+87QEFWqAICmJuzs8MMPiIxEgwbQ14ejIwYOfDbNDBEREVHxvKuzjObk5Bw5cqRhw4b29vZlXRciordECCxahHnzyroeRERE9L54VwMhEZG6ycvDV1+he3e0aFHWVSEiIqL3xbvaZZSISN0olejdu6wrQURERO8XPiEkIiIiIiJSU+/qLKNERERERERUQgyEREREREREaoqBkIiIiIiISE0xEBIREREREakpBkIiIiIiIiI1xUBIRERERESkphgIiYiIiIiI1BQDIRERERERkZpiICQiIiIiIlJTDIRERERERERqioGQiIiIiIhITTEQEhERERERqSkGQiIiIiIiIjXFQEhERERERKSmGAiJiIiIiIjUFAMhERERERGRmmIgJCIiIiIiUlMMhERERERERGqKgZCIiIiIiEhNMRASERERERGpKQZCIiIiIiIiNcVASEREREREpKYYCImIiIiIiNQUAyEREREREZGaYiAkIiIiIiJSUwyEREREREREaoqBkIiIiIiISE0xEBIREREREakpBkIiIiIiIiI1xUBIRERERESkphgIiYiIiIiI1BQDIRERERERkZpiICQiIiIiIlJTDIRERERERERqioGQiIiIiIhITTEQEhERERERqSkGQiIiIiIiIjXFQEhERERERKSmGAiJiIiIiIjUFAMhERERERGRmmIgJCIiIiIiUlMMhERERERERGqKgZCIiIiIiEhNMRASERERERGpKQZCIiIiIiIiNcVASEREREREpKYYCImIiIiIiNQUAyEREREREZGaYiAkIiIiIiJSUwyEREREREREaoqBkIiIiIiISE0xEBIREREREakpBkIiIiIiIiI1xUBIRERERESkphgIiYiIiIiI1BQDIRERERERkZpiICQiIiIiIlJTDIRERERERERqioGQqDiysrIiIiLy8/Nf2K5QKKKiojIyMv7twNzc3KioqJycnGKfOikp6f79+8U+nMoztisqDWxXVBrYrqg0sF2VCQbCUieEEEKUdS1IxU6ePOno6Hj37t0XtsfFxdWoUWPv3r3/duDly5dr1KgRHBxc7FP7+vo2adKk2IdTecZ2RaWB7YpKA9sVlQa2qzLxDgTCwMDABw8elHUtiq9NmzY9e/YEoFQq/f39s7Ozy7pGREREREREwDsRCEeOHHn58uWyrkXxzZ07d9q0aQASExM9PDySk5PLukZEREREREQAoPUWzlFQUKCtrf2aOysUCi2tv2qlVCoTEhJeumd+fr5cLv/ndqVSCUBD429Z94ViX7HxFdtf3/Ml9OjRQ/ri4cOHr7O/JC8vT0dH56U7/9uF/9v2l5ZPb+T27dsREREymaxu3bo1atT45w5xcXG//fabEOKF1zkyMjI0NFRTU7Nly5ZVqlR5/keJiYlBQUHa2tpt2rQxNja+evVq5cqVra2ti3a4c+eOXC63t7cHoFAogoODHz58WKFChaSkpKJ98vLygoKCEhMTrays2rRp8/r/0ag8YLui0sB2RaWB7YpKA9tVeSFKzYULF9q3by+lGktLS3d39wcPHsybN69KlSpF+6SmppqZma1duzYqKmrQoEGWlpYAzM3Nhw4dmpKSMnHiRFNTUwAGBgZmZmYtWrQQQuTn58+aNatChQoATE1NZ8+eXVhYKIQYMWLEhAkTPvnkE11dXVNT08LCwvHjxw8bNmzTpk12dnYAKleuvHXrViFEWFhY//79pRIsLCwmTJiQlZUlhGjXrt2iRYuGDBmiqanZqFGjHj16dOzY8fkr6t+/f9++fV96sdHR0WZmZidPnuzfv79cLpfL5T169Hjy5IkQok+fPoMHD27VqpWRkREAExMTMzOz8ePHCyHq1q27atWqDz/8UCaTde3aVQiRnp4+evRoY2NjAGZmZlOmTMnJyZFOcfv27V69eunq6ko/ql69+syZM4UQd+7c6datm/T/xMnJKTAwUAjx5MkTMzOzI0eOeHp66urqamtrd+7cOT4+XuW/ZXXQrVs3bW3tmjVrVqtWTUND49NPPxVCHDhwAMCtW7cUCsWECRM0NDTMzc0dHBykt4xNmzYplcrJkyfLZLJq1apZWVnJ5fLt27cLIc6cOQNg0KBBxsbGjo6OhoaGVlZWkZGR9erVk9qAJCsry9DQcNmyZUKIa9euOTg4aGpqOjg4WFhYSO1WCBEeHm5vb6+rq1u7dm1tbe0GDRo8ffq0jF4kemNsV1Qa2K6oNLBdUWlguyo/SisQnjt3Tltbu1+/fleuXAkLC1u0aBGA4ODgGTNmGBgYFO329OlTAF9//XVSUtKUKVMCAwPDwsL8/f0NDAwmTJgQFha2bt06AF988UVgYODFixeFEOPGjZPL5d9+++2NGzeWLl0qNQ4hxIABA+Ryea9evXbv3r1r1y4hxNChQ/X09Nq0aXPs2LEbN2707dtXLpfHxcVFRUXNnDnz9OnTYWFhW7Zs0dLS+uKLL4QQjRo1ksvlo0aN8vf3P3To0Lfffgvg7t27UlVTUlLkcvkPP/zw0uu9d++eFGX9/Pxu3ry5b98+XV3dCRMmCCFcXV0/+OCD4ODgjz/+GMCOHTsCAwNv3bolhLCxsdHR0Zk+fbq/v78U5Nzc3IyNjX/44Yfr16+vWbNGX1/f09NTCBETE2Nubu7o6Lh///4bN24cOnTIyMhowoQJKSkp1tbW9evXP378eGhoaKdOnYyNjVNTUx8/fiwF5vnz59+4cSMgIMDIyMjb27uUft3vt9DQ0KI3gs8//1xDQyMmJqboDUtq299++620Q2RkpNQmN2/eDOD7778XQhQUFPTp08fKyio7O1t6w2rTps3Dhw+FEA8ePDA0NJw0aZKfn5+mpuajR4+kcvbs2SOTyWJiYrKysqpUqeLk5BQdHS39aPz48RYWFkqlsl69erVr15Zy/rVr1+Ry+YIFC97ua0PFx3ZFpYHtikoD2xWVBrar8qO0AmHz5s0bN26sUCikb48dO/bqQPjC4R4eHk5OTkKI69evA9i7d6+0PTU1VUtLa8aMGc+fyNXVVQgxYMAAa2vrgoKCoh8NHTq0YsWKRU/YfvvtNwD79+9/4VwdO3Zs27atEKJRo0ZSUZLk5GS5XL5o0SLp2/Xr18vl8uTk5Hv37q3+u/Pnz0uBcPny5UWH9+jRo1GjRuLPQCiE2LBhA4DY2NiifWxsbPr06VP07a1btwCsWLGiaIuPj49MJouNjZ04caKurm5MTEzRjypWrDhhwgQptd68eVPaGB4eDmDDhg1SIJw/f37R/gMGDKhVq5agkrl06RKAo0ePFr1hWVtbP3/nKSoqSnrD6t27t729fcqfdu3aBeDs2bPSG9aJEyeKDmnevHnXrl1jY2M1NDTWrFkjbezfv7/ULH/66ScAx48fL9p/4sSJFhYWd+7ckVpL0Slat27dvHnzt/VKkCqxXVFpYLui0sB2RaWB7apslcq4soyMjCtXrixdulRTU1PaUlhY+J9HPX78+KeffoqKikpMTPz9999futLI3bt3FQrF8ePHu3TpIm2R8pX0tbGx8Qs9jA0MDKQ+lgCk3qfp6ekA4uLiduzYERMTk5yc/Mcff0hdNAGYm5sXHWtubt6lS5ft27d/+umnAHbv3u3m5mZubh4aGrp69ernzzJixIgBAwYAkLqhFp0uIiLiP6/6+TOGhYUB6NixY9GWTp06zZ8///bt2+fPn2/atKmtre0Lh4eHh2toaEyfPl36VnoppP8z/6yPdO30psLCwhYvXnzhwoWEhIS8vDwA2dnZUktLT0+Pj48fNWrUP4+KjIyMiop6/vcLIC4urmrVqgBkMlnRRh0dnYKCAhsbG1dX1507d06cODEzM/PIkSNff/01/mwVLVq0eKF86R7E9OnTi377ACpXrqyii6ZSx3ZFpYHtikoD2xWVBrar8qNUAmFaWpoQQhoQ+JouXLjQtWvX2rVrd+3a1cbGJi4u7qWBMDMzE0CHDh2cnZ2lLe7u7i/MH/Of9uzZM3jw4CZNmnTo0KF69ep37tz5t7zq5eU1aNCgW7duWVlZnT17dtu2bQC6dOnyz9VRijJYSWRlZQHQ09Mr2qKvrw8gPT09JyfnpWNtMzMzjYyM3N3di7Z4eHjUqVOn5JUhyYMHD9q1a1e/fv3169fb2Njcu3dPWkREoqOjI5PJXtoC9fX1O3Xq5O/v/8JG6R7YS3l5eU2YMCEmJubChQsFBQX9+vUDIN3ReP4NTiK1k/3797dt27Zo4z93o/KJ7YpKA9sVlQa2KyoNbFflSqkEwsqVK8vl8ujo6KItubm50heampoKheKfhyxcuNDBweHKlSvSjYH79+9LEeuFX4A0I1DNmjXHjBlT7OotXbrU1dX11KlTUuGhoaHSTYJ/+vDDDw0NDXft2mVtba2jo/N8Sy2G/2xM0tVFRETUrFlT2iI9tnZwcKhevfrzr6dCoZBeUnt7+8zMzIEDBxY95JQkJiaWpKpU5OTJk8nJyZs2bapevTqea8kSHR2dqlWrhoSEFG2R+rgDcHR0PH78uI6OjpTqX4eHh8fUqVP37NkTFBTUpUsX6ZaK1BhCQ0PbtWv3/Clq164tk8muX7/ep0+fEl4jvX1sV1Qa2K6oNLBdUWlguypXSmUdQk1NzVatWq1bt05aMSItLW3hwoXSj+zs7PLy8m7cuAGgsLBQGjAq7WNoaCilwZiYmNOnT0vbrays8GcuAlCtWrWGDRuuXLmyaAmHhw8f/tu6FP8mLS3NxMREimfh4eGvWORQX1+/T58+O3fu3L17d58+fQwNDd/oRC+oVKkSnruWf2revLmVldVXX30l9e1MTk5eunRpjRo16tWr16FDh2vXrh06dAiAEGLx4sXSE9RevXoJIebOnSsttiGECA0NLUkl6QVSt9vAwMDs7OygoKDhw4e/sMPQoUOPHDmycuXKuLi4kydPjh07Vto+ceLE5ORkb2/vW7duPXz48OjRo0uWLHn1uczNzd3c3DZt2nT8+PGBAwdKGz/44ANLS8vJkydfvnw5NjZ23rx50ohca2trd3f3ZcuWbd26NT4+PiwsbNWqVa+4PUblCtsVlQa2KyoNbFdUGtiuypdSGpt4+/bt2rVrm5qadujQwcLColGjRgCCg4NTU1NtbW1NTEzatWtnbW3t4eFhYWHx9ddfb926VSaTNWrUqG3btpaWltIvSSpqwIABmpqazs7OzZo1E0KEhYVVq1bNwMCgRYsWTk5O2traq1atknZzdHR8vg5Dhw6tXr160bdSP8+tW7euWLECQMuWLVu1alW5cuXOnTtLE9g0atRIylfPO3LkiPRCBQQEvOJ6pQ7HmzdvLtoyaNAgBwcH8dykMtnZ2U5OTvr6+k5OTqNHjxZC2NjYDB8+/PlyTp06ZWZmZmpq2qJFC2NjY0tLyytXrgghcnJyOnbsKK2HYW9vX7t2bUNDQ2kW0xUrVmhpaVWtWtXV1dXa2trU1DQuLk6aVKZoBK0QYuzYsZUqVXrNXx8VUSqVI0aMkG4fVKxYcefOncbGxvv27QsICJDJZGFhYfn5+VOnTjUxMQFgZmb2ww8/mJmZSTPf7t+/v6ijb8WKFadPn15YWCgNej558mTRKdq2bduhQwfp6507dwLQ1dWV+l1LQkJCmjRpIo3IbdeunY+PjzQtcmZm5ogRI6Q+DxoaGq1atXq+WCrP2K6oNLBdUWlgu6LSwHZVrsjEnzOyqFxubu7p06fj4uJcXFxSUlKkpRdatGiRnp5++PDhxMTExo0bt27dOjAw0NbWtlatWqGhoadOndLV1e3bt6+WltaVK1d69+4NQKlUnjhxIj4+3sXFpWHDhgBycnKOHTv24MEDCwuLli1bSlOtXLp0KTU11c3NragCv/3225MnTz744APp28zMzKNHjzZr1szW1vbChQsXLlwwMjLq169fbm6utJTfiRMn9PT0XF1dn78KhUIxePDgwMDAhISEf1v2HUBWVtaRI0eaNm0qPfgGcPny5ZSUlO7du0srcLRs2RJAdnb20aNHc3JyWrduXb169cOHD1taWjZt2vT5olJTU48dO5aYmFi5cuVu3bpJqxcCEEIEBweHh4dXrlxZGv3o7u4uzTJ6//7906dPZ2Vl2dnZdejQQU9PLy8vLyAgoGHDhg4ODtLhoaGh8fHxvXr1KsGvVH2lpKQ8efKkRo0aL8xa9LzExEQzM7N/Ll2alJSkpaUlzWn0OqSlR/bs2fPC9tzc3Ozs7BdGUQPIy8tLSUmxsLB4/1dNfe+wXVFpYLui0sB2RaWB7aqcKMVA+LyjR48WBcK3cDrVatmyZf369aUVEcuJgoICfX39+fPnSzOg0nsjKSnJ2tp69+7dffv2Leu60PuD7YpKA9sVlQa2KyoNbFevVipjCN8nsbGxly9f9vT0LNtqxMTEbNmyJTs7G4AQYvny5QqFQnrqSO+Tffv26enpde/evawrQu8VtisqDWxXVBrYrqg0sF29WqnMMvo+2bVrV6VKldq0aVO21bh169ann346atSoSpUqZWZmZmZmzp07t0OHDmVbK1K548ePe3l5FS2eSaQSbFdUGtiuqDSwXVFpYLt6tbfUZTQ5Ofnq1atNmzaVxoa+Q27cuCGEcHFxKeuKoLCw8Pbt2zExMUZGRk5OThUrVizrGhERERER0bvtLQVCIiIiIiIiKm84hpCIiIiIiEhNMRASERERERGpKQZCIiIiIiIiNcVASEREREREpKYYCImIiIiIiNQUAyEREREREZGaYiAkIiIiIiJSUwyEREREREREaoqBkIiIiIiISE0xEBIREREREakpBkIiIiIiIiI1xUBIRERERESkphgIiYiIiIiI1BQDIRERERERkZpiICQiIiIiIlJTDIRERERERERqioGQiIiIiIhITTEQEhERERERqSkGQiIiIiIiIjXFQEhERERERKSmGAiJiIiIiIjUFAMhERERERGRmmIgJCIiIiIiUlMMhERERERERGqKgZCIiIiIiEhNMRASERERERGpKQZCIiIiIiIiNcVASEREREREpKYYCImIiIiIiNQUAyEREREREZGaYiAkIiIiIiJSUwyEREREREREaoqBkIiIiIiISE0xEBIREREREakpBkIiIiIiIiI1xUBIRERERESkphgIiYiIiIiI1BQDIRERERERkZpiICQiIiIiIlJTDIRERERERERqioGQiIiIiIhITTEQEhERERERqSkGQiIiIiIiIjXFQEhERERERKSmGAiJiIiIiIjUFAMhERERERGRmmIgJCIiIiIiUlMMhERERERERGqKgZCIiIiIiEhNMRASERERERGpKQZCIiIiIiIiNcVASEREREREpKYYCImIiIiI6J20Zg2iogDg4EGcOlXWtXk3aZV1BYiIiIiIiIojKQl5eQCQng4hyro27yYGQiIiIiIielctWwZzc9y+jbFjy7oq7yZ2GcXkyUhMBIDVq8u6KkRERERE9CY++QT/+x+8vMq6Hu8sBkJERsLXFwCuXCnjmhAREREREb1NDISwsoKt7bNBqGFhePy4rCtERERERESvoVMnPHoEADVqoF69sq7Nu0ndA6FSCQDTp2PtWigUmDwZ1tZo3Rrr1yM9vawrR0RERERE/y4kBJ99hvR0XL+O2Niyrs27SX0DoUKB8eMxaxYAyOWYOBERETA1hZYWLlzA2LGoVAkDByIgAPn5ZV1XIiIiIiJ6mQkTsGBBWVfiXSYTajk/69On6N8fp0/DwADnz6NhQwBISEDlynj6FHv34qefcP78s+eH3bpNr149x8vLq3Xr1hoa6huh6XXk5uLQIXz0ERQKXLyItm3LukJERERE76PgYGzZglq10KEDdu9GZibc3dGuXVlX6x2kjoEwKgo9e+L2bVSujIAANGnyt5+GhqJKFVSqhLg47NoFf//cO3esMjLSAVSrVs3T03PQoEH12EOZ/kVyMpydsWMHWrbElCnYsEGlRV+9ivR0WFqiUSPo66uuaCIiIqJ3xpUr8PXF0aMAMGQIpk+HgwNcXLBxI7S10bp1WdfvXaN2z7uCg9GyJW7fRr16uHTpxTQIYORIVKmC1q1x9CjGjsWVK7rBwRc//fTT6tWrx8bGLlmypH79+vXr179w4UJZVJ/eAQMGYO3aZ2ukqsyNG/j+ewQH4+ZNnD2L1asRH6/SExARERGVdzdvwsMDLVrg6FEYGmL2bEyZAjs7GBlh/35s3Ih27bB5c1nX8l2jXoFw377fOnZEYiJ69MDFi6hW7cUdcnJgbw9t7b+GEU6duiwyMtLHxyc6OjokJGTKlCmWlpY3b9785ptvIiMjy+IiqJxKTMSnn+LaNWhpYcoUfP01ADx9qoqi09Nx6BAUimedmBUK5OVh585n3xIRERG9765fvz5y5FMXF/j7w8AAc+ciJgZ+fmjSBKamAFC/Pho1glKJkSOxZUtZV/edUn4D4blzOHYMAKKjsWED3NyeLR//+efFKU0IsWTJEnf35s2bnxkzBvv3w9DwJbvp6eHnn/H4MbZsQc+eMDB4um7d5x9++KGVlZW3t3d8fPzXX3/94MGDNm3a7N69+/LlyyW4Pnp/PHqEOXNgZ4fFi5/lwLZtkZgIhQLNm8PDAykpJTtBeDiUyoLCws3Xrt1KTLwuTa5cUIC4uJJXnoiIiKg8CwsL8/b2btSoUXj4Jn19TJmCu3fx1VeoUOHFPT/+GMuXQ6nEiBHYurUs6vpuKr+B8OlTJCcDQE4O4uOhVD5bPj46GoWFb1ZUXl6et7f3nDlzNDQ0+ve/uW4dtLRetb+JCby9cfAgrl/XWLhwYYMGDVJTU7dt29avX78nT55oa2t36tQJwPXr14t3afTeiI7G1Kmws8OSJcjJQc+emDULPXoAwIIFcHREfDz8/eHigsDAYp1AqcT16/lnzmz9/Xenb78dvn9/3127mm7Y4HvmTGFeHhfNfO9Nm4bwcABYvLisq0JE9O+ionDnDgDExiIhoaxrQ++RsLAwDw+P+vXrb9u2TVdXt3Xrx1FRYtUqVKr0r4d8/DH+979nmXDbtrdY13fZK4NRWfvpJ4SGIiUF1avD2hrVquH0aQBo3x737sHeHnZ2f/1rb19gba35z1lAU1JS+vXrd/bsWUNDwx07dvTq1ev1K2BtbTJz5syZM2eGh4fv2LHj8ePHlSpVAtCgQQMwEKq3mzdvbt2avmKFa2EhNDXh6Ym5c/+2HKqlJWbPhocHhg3DuXPo1g2jR2P58pc/mn4JhQK//55x+vT3J09+HRz8KDMTQJ2KFW1NTO6lpMw/c+b4vXtb0tNrAmjaFDJZaVwjlbn4eCxahO3bcetWWVeFiOjfnTyJH37AuXM4fx5mZqhcuawrRO+++Pj4GTNm7NmzR6lU6unpjR07ds6cOVZWVq9z7IwZyMvDZ59h/Hjo6p51d+fEo/+h/M4yeuAAsrLg5YXwcPj7Izoa69dj0CBoauLyZcTEvLh/mzZ3rlxpYGtra29vb29vb2dnZ29vr62t/cknn0RERFhbWx88eLBRo0YqqVtMTIydnZ2lpeVjPqJRP9euXfvqq6/27t1raGitqxvn5ib77DPUro3z53HuHD777MX9CwuxbBl8fJCfDwcHbNuW06KF3qtOkJ+Pq1fTT5787vTppRcupOTkAHCpVOnjli0H1aunqaFxIipqxIEDcWlpetraPu3afTJwoEa/fjAzK7UrpjIzdCi6d0duLgIDYWiIgwdRrRpsbGBjA1tbVKuGatXybWxSLS0ty7qmRKTWNmxAWhqys1GjBszM8MEHZV0hevedOHGiT58+CoVi2LBhPj4+1tbWb1rC4sXKffvmXbu2dOvWrV5eXqVRyfdGuX5C+AK5HJMnw9cX9+7hwQNERyMq6q9/TU1j8vLy/vjjjz/++OO5Q+T5+fmNGzcOCAgoRkv6N7a2tmZmZomJiY8ePar0iofW9H45ffr0V199deLECQD6+vrDh/efNetplSrmQUGYNAknTkAmQ58+qFv3b0dpamLOHPTqBW9vRERkeXo27N27+9KlS3V0dKBU4skTaGjAwgIyGXJycPly4qlTa8+fX3npUlpuLgDXatVmu7r27NBBlp+P1FRoaja1sbk1deonhw+vDw2dc+LEiaioTZGRNh99hMaNy+RloVI1cCC8vJCRgadPkZCAhAQ8P3i5Xr3fbt5sraura2tra2NjY2NjY2trW61atT59+pibm5ddrYlILSQlYft27NkDLy+0aIGdOyGTqfpvUUEBkpOhpYUKFdgdRq3MmTMnOzv7wIEDvXv3Ll4Jc+dqaGqahoYWent7K5XKwYMHv9HhWVlISoKtLXJz8fTpe/7cu/wGwh49ID28dHREbi4sLJCUhLZtERAADQ3p1vgLS0+65eRkR0VFRUVFRUdHR0VF3bt37+jRozKZ7ODBg5VV+muUyWT16tU7d+7ctWvX3NzcVFgylU/5+fkdO3aU1hoxNjaeOHHitGnTLCwsfv75lxVCMlYOAAAgAElEQVQrPrx4UROAuTmmTEGVKi8vwdkZwcFYtSpw7tyo1atXnzlzZuu8eS5FE9VqaaFmzfuXLn195syG33/PKSgA4Fqt2vz27Tu5uaFt22flpqVt37bt4+XLv1+zZl3Tpn127RoVEHAiKqruihXLwsLGDBiA3r1hZPQ2XhF6i774Ap07IzYWjx4hJgZxcYiNRVwcYmKgr58WH18hOTk5IiIiIiKi6BA/P7/Ro0czExJRaVAqcfw4Nm3CgQPIzweAOnXQoAHmz0ezZqhdGxMmYPFimJiU+ExBQTh7FhoaEAL6+hgw4D3/VE7PcXR0DA0NTU5OLigoCAoKevjw4ZsmOgCzZs3Kzs6eP3/+sGHDZDLZoEGDXv/Y8HB89BGuXUNCAn755SVdwN4n5TcQFs378vQpvvkG2dkYOhQWFq8agqWnp+fs7Ozs7Fy0pWnTpiEhIZGRkaoNhAAaNGhw7ty569evMxCqgzVr1iQmJpqZmU2ZMmXq1KkmJib79u3z8fG5fft2u3a/W1o2HD8e06f/xx8/uRyffPJh27YXhg4deuPGjaaenp+2afN527aaGhr3Hj1aunv3j9euFRQWashkPWvV+rx9+2adO6N9e1Ss+FcRJiYHzp59kpTUf+BAb2/vVVOmXKtRY5y//y+3b489ePDAnTs/3LlT2csLdeqU9gtCb0FAANLTcf06XFwQEgINDVhbIyoKtrZo2xaVKkn3yj8AkrKysu7fvx8XFxcbGxsXF7dhw4Y5c+Y4Ozv37NmzrC+CiN4r0dExmzfb/vijTJrlWlMTPXtixAhYWcHaGhYWWLMGa9fi8GGcOoX9++HoWIKTXbqE8+ehUDz7Ni0Nmzdj4kQYG5f8Qqj8q127NoCIiAghRNeuXYUQ7u7uOjo6b1qOr68vgPnz5w8dOhSAlAnT0tKysrKysrLS09MzMgoyMlpkZSE9HenpyMpCVhbS0uDqin794OODceNUfGnlUPkNhEW+/hpZWejT528zdvyn1NRUExMTFxeXkJCQa9eutWnTRrW1cnFxAeeVURs7d+68e/fu2bNn27ZtGxAQMG3atOjoaADVq1cfPDhy8OCGurqvW1Tz5s1///33WW5ua8+fn3/mTEBERCVDw2ORkUohtDQ0hri4zG3Xrk6XLnB1femwwD179mzYsGHGjBlbt24NDAzc8M03Pzs5+e/bN+7QoSN377qsWLHu7t2+nTsjNxfp6TA0RMuWaNKE3WzeRUuW4OJFdOwIF5e/plObMAE3bwKAXI6qVdGhw+qCgtCi/qJubm42Nja5ubnLli0LDQ1lICQilcjLywsICNi6devRo0fr1XsSF2dmYwMvL4wfD1vbv+35wQeoVw/9+iEkBM2aYcsW9O1brFMKgdOnkZ8vhEjJyTHX05PJZFAocPEieCNePTg6OgK4c+eOXC6vXr16ZGRkZGTk8099Xp+vr68QYsGCBePGjRs3blxmZubzPzU3r5WSEvHPoypXhr09kpOhDsvMlfdAmJ6OtWsBYNasNziqefPmV65ciYmJKb3YxkCoVpKSkgBUrVoVgLa2dnR0dI0aNWbNmjV8+HBtbe03LU1fX39Np04f2tkN378/PDHxWkKCtqbmgLp1P2/Xrmb37mjV6hW3P2Uy2ZgxYzp37jxs2LDz58/3cncfPXr08lmzbtWqNWrPniN37/bbvdv91q3ve/Y019PD06c4cQKPHuFNJtel8uD8eVy8CHNzDB/+t+0NG0JHB3FxePwYUVGoUCHwt98OFf101qxZS5Ysady4MYDQ0NC3XGciev9cvXp148aNO3bsePr0KQA9Pb0uXc6tXNmnbVtkZ2PvXmzciO+/h5PTX4fY2OD8eYwdi61b0b8/Zs3CV1/hH3PAv1JCAkJCEpKTt16//sPvv1c2MkrLzV3h5tbRzq5UFuDNzERBAbS0YGjI+6flh/SE8M6dOwAcHR0jIyMjIiKKFwgB+Pj4rF+/PisrKyMjA4CxsbGBgYGBgYGJiYmZmZWODgwMYGoKQ0MYGMDAAGZmMDPDo0eYPRtduqB7dxVeWXlU3gPhmjVITUWnTmjV6g2OMjExAXD9+vXSWx+ibt262traERER2dnZ+vr6Ki+fypXk5GQAFhYWALp3737kyJFu3br9c42TN6Cj09ne/oCnZ+N16yoaGFwbN87ayAgWFq9549Pe3v706dP/+9//pDe4wMDAzd9+e8jBYcPPP3987Jh/WFhQbOwPvXt/ULMm8vNx8yaaNcPrzdRM5cSyZQAwadKLneS3bHn2RW4uYmMRHz8vJqb//fv3Y2NjY2NjpXc8KRD+9ttvb7fKRPS+6d+//88//yx93bRp0xEjRnh6epqYmFy5ohw3TmPXLqSnA8DmzVi69G8H6upi82bUqYPPPsOSJXj8OOebbwoN/3PZpdxchIUVXL586Ny5TVevHo2MLFQqASRmZaXn5blt377KzW18+/bIy8Ob9xt8kRAID8dvv+HhQ8hkkMkgBAoLUakSGjeGiws0NUt6CiqZWrVqaWpqRkVFFRQUODo6Hjp0SAqHxbN79+5Hjx7Z2Njcu3ev4vODcf5OCKSmwsgIWlq4dw9370JPD/PnIzER4eF/u/HxninXgTA3F998AwBz577ZgS4uLoGBgdevX586dapMJrt586ZCodB69Wr0b0hHR6dWrVphYWFhYWFNmzZVYclKpfKLL74wMDDYvn27t7f30KFDOZFp2crLy8vIyJDL5UZ/ztfSveR3iurVw9Wr+QoFADtTU2sjI2hr400akqam5uzZs3v06OHt7X316tUOPXtOmjRp6fDh7atXH/rLL5cePJh29GgXe3ttTU0olYiKYiB8h0RE4PBh6Opi/Ph/3UdXF7VqoVat5kDzF35Uo0YNc3PzR48eJSQkqHz4NBGpic8//zwsLMzQ0NDLy2vcuHENGzZ8+vTp7t27v/vuO2Pj7efOOQNo3BhjxsDT8yWHy2SYMwcNGmDoUPz++ydNmpzYv3+/1AkQCgU0Nf96FicEoqJw9WpEUNCPoaGbr117nJkJQK6p2b1WLW8Xl96Ojj6nTy8NCppw+PDFuLj1crnekCElWmzpyZPH6w+Yi2TtwtwnWfo6Wgq5plJXS5Gr0CqITjJKOoZTp+DhgWrVin8KKjFpAm1pksii8YTFK6qwsHDBggUAfHx8Klas+OTJk7lz56anp6enp2dlZWVnZxcWXklI0MzMRHY2ABw5gu7dUaMGatQAgBo1MHYsCgtx8+Zrryb9rinXgXD79jPm5k1tbQ06dXqzA4v6cxobG1evXj06OvqPP/5wUnWub9CgQVhY2PXr11UYCLOzswcPHvzLL78YGBhkZWXNmTNn3rx5nTt39vLy+vDDD404gWRZkPqLWlhYyFTYk6RLF9y/n3z7NgALfX1oaq6KiJAZGAxzdDR+k+HydevWDQ4O9vX1XbZs2erVq0POnQtydz8/YsQHP/0UeO+eX1DQ5+24GOu7Z+lSKJUYPhzFuxckk8kaNGhw6tQpDiMkomI7c+ZMRETEr7/+2q1bt8uXL7u7uwcEBOTn5wNo1WrtzJnfjhz533PGuLkhKOhhnz6nIiIiXF1ddy1f3iU9HWlpAFCzJtq1Q1RUTnDwoStX1oeGnoyKkpbGrlOx4lAXl+EtWljq6ysUCi2l0q9z54aVKo04cGD7jRv3/ve/fU+eVB4+HPb2xbmwxERs3DhtV696Vomftjk/K7BL8yoPa1ZI7mQfHRxXNSLZYlyTEOTnY/t2DBxYzFOQitSuXTsqKurOnTtF4wmLV862bdvu3LlTo0YNb29vAAqFYuPGjc/vYG0tEhOffW1q+mzu3CI2NjAzQ0gI5s3DypXFq0J5V4I+b6UsPz9/wQLv8HDDL7649KbHSoHw2rVrL3ytWiofRpiQkNC+fftffvnFzMxs7969u3fv7t27t4aGxq+//urt7V2pUqXJk788eBAFBao6Ib0Wqb9ohQoVVFmoXI7evZOysyEFwnr1Fhw6NHXatPwX3oReg46OzuLFi4OCgmrVqjVk2DCZEFoaGnUtLQEYyOUAoKHBP2nvkMePsWMHNDUxfXrxC+EwQiIqIenDd7169QDExMTs3btXoVB07tx5z549Z86sXLbsdWcQrVmzypUrV/r165eSktJ95MglBw+KwkIolfjjj1Bf37FTp1rNm+fh738iKspIR2eIi0vg0KHhy5ePnz9/f5UqrQ8d8r1/H/XqoUmTAaNHXxwzxs7MLDgursmqVZf8/HDhwhtflRDYsQP5+TpahYlZBneTn63Nk5kvf5qjm5kv/2vPggL4+/81xymVBSkHRkREPD+e8E0VFBR8+eWXAHx8fKR5H8zNzdevX79nz54jR46cPXs2JCQkKAiPHiEjA0Lg6VP06fO3EjQ1sXEjtLXxzTfFaXTvhPL7hHD79u1xcXFOTk5ubs3e9Ng6dero6upGRUWlp6e7uLjs37//+vXrXl5eqq2haqPmrVu3evbsef/+fXt7+0OHDtWpU0cI4eHhkZqaGhAQsG3btlOnTt24UXHNGpiZoWdPeHujUycOfn4b0tLM27WbWaPGv/Y4L6bc3KJAWFi1ampqqoaGhllx+8C0aNHi6tWrenp6uHgRp0//FTW1tVG/PvuLvkNWrEBuLtzdUbNm8QthICSikkhOTk5KSjI2Npa6nX/44YdLly4dNGiQtbV1MUozNDTcu3fv0p49Pz16dM6JE5cePGhqbb3txo07SUkAZEBbW9uRjRp91KqVXtOmZzIzh+zatW/fvpycHADpGRkLf/hBKselTp3frKwGbN58Miqq/Y8/fvv48Uhvb/TujdeZ3S0zE9ev5178fd+lag/SjQF83vbslKPd5ZqFAA5EON5MtIp+atq0SvxfhwiBu3e5klMZKuopWrFixQoVKiQnJxdjKMSmTZuioqJq1arl+WfnZh0dndGjR79RIfXr45NP8NVXGDUKV6/i9eeWf1eU0yeEhYWFS5YsAfDZZ58VY+oOLS0tJycnIcTNmzdVPq9MVFSU9EXDhg0B3LhxQwhRwjKPHz/eunXr+/fvt2zZMjg4uE6dOgC+/fZbZ2fndevWde3aNTAwMDo6um9fr/r18fQptm1Dly6ws8PcuTh+HAMHQgjEx+O770pYEXqJhISqZ88uy8h4k4luX0d2dnJODoAK+vopeXlKpdLc3FyzBKPY9fX1ZTIZXF3h4PBXIGzTBj16qKzOVMoyMrBuHQB8/HGJyuG8MkRUErdv3wbg6OgojZXQ0dH55JNPipcGJbLMzNmtWu0bMMBQLj8aGfnZqVN3kpIqGxlNad78xqRJZ5ct6/zxx98oFLVGjerYs+f27dvz8vJcXV3XrVt36dJz3cRsbCpMm/br7NmzW7fOUyhGBQSMXby4YMMGpKb+64mlAYr+/mFzt8+ZAxvfkYN/7ud7pn2+QrOCfk4Hu5iT0fYABtW7Ma/tucH1bwDIVWg9+1inULyqZCp9z/cULV6v0fz8fD8/PwBffvllCScT+eILODnhzh34+ZWkmHKqnAbCvXv3/vHHH/b29h4eHsUroag/p/TF1atXS16rwsLCOXPm1K1bV3p7qlixooWFRXp6+ubNmxUl6FSwfv36Hj16pKWlubu7nzx50tLSUtp+4MCB8PDwOXPmVK1a1c3NLTj43siRxtevIywMPj5wcMD9+/Dzw759iI/Hpk3Iy0N8/KtPRcWRlAQAqu0xCgA5OcnZ2QAq6Okl5+VBhb1S9fT+CoTNm/M58jtk3TqkpqJ9e7RoUaJynp9XRkVVe44QePIEjx9DqVR94fR2JCfj2jXcuoWcnLKuCpVHz38EVw0tLQjxoaPj4s6d8xSKykZGAZ6esdOnf+3p+cjNzcPf37ZDhzlz50ZGRlapUmX27Nl3794NCgoaM2bMixO5GxlpjRjhN3Pm9n799LS114eGdlyy5PGKFQgLw9WruHTpr09Cyck4cSLly1XfTIpoOKVN3TXjlgS5JmXrN6vycKXbr86WiQBGNLza0S66qkl6Bf0cAOZ6OfpaBbtvOfsFtX5WZxMTlb0C9OakFijdniher9Hvv/8+Jiambt26H330UQkro6ODdeugoYHAwEe3boWVsLTyppx2GV26dCmA2bNnS2n+4cOHVapUeaMSigLh+PHjTU1NExMTHz16VJLpOjMzM728vA4ePKijoxMbG9uiRYtVq1YlJydbWVmNGDFi5syZ0nyPnTp1ev2pRwoLCz/77LMlS5bIZLLZs2cvXrz4+WMPHjwYGBjo7++/b9++Y8eOpacPHzYMnTvD2xuffgofH1y4gB074OaGGjVw6hTq1y/2xdGrJCcDgIWFqsvNzi6Kbc++UNU5srOfRU0jI8jl/7k7lYnsbCiVMDREQQEyM5GVhapV4eGBu3fRv39JCy/FeWXu38fevc9G3Mtk6NED9eqpsnwqbULg0CHcvPlsqn2lEj178u8HvUD62C19BFcNPT1YWODx46z8fAADnJ171a4Nbe3OO3acvHIFgI6OTr9+/UaMGNGlS5f/6BqmpYU+fQZVrVrHyqrvjh1BsbFNVq78OSGhabVqz1q1hYVSV/fi2bPbrl8/FhnzMCNeoZSb6uZ6OIeNaxLS0CapaGSghkxs/nB/UcEulR67VHqclquz+VoDAJDJStR3n0rMysrKzMzs6dOniYmJxZhoNDc3VwoUCxcuLNFSYX9q3Rrz5h1csKD3qFHNL1y4UJJeXeVNeXxCeO3atRs3blSoUGHo0KEA9u7dW7Nmzb17975RIUUD/GQyWf369VGyXqPx8fHt27c/ePCgubn5sWPH+vbtO2rUqGnTpslkssaNGzs7O6ekpGzbtq1Lly4ODg6ff/65dDPj1bKysvr167dkyRIdHZ0tW7b4+fm9kCR1dXV79eq1devWBw8erF+/3ti4V34+Dh2ChwcqV8bx42jdGmvXPpsuZP58LFpU7OujV5ECoeqfED4fCDMzodJAqOKESaUgMBABAQBw9y5Wr0aTJrhwAdWqISsLXbuqoPxSGUb45Al27EBsLA4fxqFDuHcPBw/i7l1VnoJKW1AQbt5EcDACArB3L6KjceiQqrqXBAdj4EAAuHYNW7dixoxn20vYBZrePtU/IQTQrx80NSOSkwHUtrCAlhaqVu0zaFCdOnX8/Pzi4uJ27979Bmv8Nm7caPbskOnT21Wv/iA9ve2PP24JDYVCEZuUNH/nzhpTp7bZtGl9aGhcesqwBj/scfd/vGTzum/yGy4fjJEjX3Gr9GG60WenOnW0i4a2Nvr3f63RiVSaih4MtmnTZty4cR06dHj9Y9esWfPw4cPGjRv37t1bVfWZObO9jY3N5cuXv5FWxntflMdAWKdOHWdn56dPn/70008AQkJCcnJyBg4cuHXr1tcvpEGDBtIKhIWFhSWcDvTGjRstW7YMDQ11cHC4ePFi/fr13dzcNm7cqKur+9NPPx0+fPjWrVu3bt3y8fGxt7ePiopauHChk5OTs7Ozr69vdHT0S8uMj49v165dQECAlDCHDBnyigqYmZmNHj3611/1Y2OxciVcXfH0KV64befgwDu8pUXqMloaTwifjSE0MEjOyIDquozmZ2Rk5OVpa2oam5qqpEAqJZmZSE5+NgF7x45YtUqVcwiXSiA8cwb5+fj1V7Rti06dcOEC0tNx/LgqT0Gl7cIFxMcjORlubujRA2fPoqAAp069OM96seTkIDUVu3cjNxdpaXj48Nn2oi/oXVEqgdDSEo6O0kQyjhYWaNcOgwdPmDgxPDx89uzZr1gr/F/Z2lacMuXYyJGjGjXKVSiG7d9f+5tv7Fau9D1zJiY11c7MbEGHDjEzZ26YU9Hdr7F88li0bAkDA1SqhBEjYGr60lhoopv3cZvfzM0EPD3h4FDyi6YSKho62LJly++++67PCxOA/rvMzMxly5YBWLhwoQqXDTMyMlq3bh2Azz777N69e6oqtsyVx0Coo6Pj6empVCpHjRq1YsUKPz8/Pz+/wsLCYcOGrXzt5T9MTU1r165dr1695OTkkgTCX3/9tU2bNrGxsa6urhcvXpTL5a6urqdOnapcufK5c+cGSvdCASn+3b179/z581OmTKlYsWJ4ePj8+fMdHBxat269atUqaS07yY0bN1q0aFGUMNu99kpxVapg6lQEBeHePVSv/mxjnTqYMgVHjyInB337FuMS6T+U1hPCnJxnz/HMzJKSk6G6B3rJSUkCqKCnJzMwUEmBVEpOnsS6ddizBwC0tTFmjGoWOFIqlQCaNGkC1c4rc+QI7t1DejrMzKCjA01N2NsjIQHJySjxxFr0luTlQaFAYiKkURgaGjAwQG4ufvgBzs7w9y/5GQYOxM8/Iz0dAG7cwMyZmDkTT56UvGB6e/Ly8mJiYrS0tGpIy3KrUHp6hBQIq1RB69bQ0ChppzszM50KFTb07r2uVy+5pmZKTo62pqa7s3OAp+fdhQs/X7bMZuFCuLvD3v5vw+mtrDB5Mnr0QNWq0NCAtjbkcmhrQ0PDsJq5vUeTKr6jYWdXsksl1ahVqxaAwMDANx0Sv2rVqsTExFatWrm5uam2St27d/f09MzOzh4zZkzJ55UsJ8rpGMLZs2cbGxtPmjTp448/fvz4sZ+fn6Gh4eTJk6dPn56Wlubj4/M6hRT125QC4e+///6m1Vi1atWMGTMKCwsHDhz4448/Xrt2rU+fPomJifXq1Tt48KCtre0L+2toaLRu3bp169bLli07duyYv7//zz//fOHChQsXLsyePbtLly7u7u7GxsZDhw5NT093dXX95ZdfinNLDH97m9LUhKYmdu3C1q1wcECjRsUoj16lRQtoav6VwFVFZGWl5OQAMLewSH74EKp6QqhUJqWkQJpR5oWx+FTO9OkDLy+Ehz/7HN65M/bsQUYGHj16lrneVGho6IwZMwYNGjR69Gh7e/uieWXedJLuF+XkYM4crF6Npk3RuTNyc//arqsLTU1OXPTOkB6JGBsjJubZlpwcyOWIiMCjR/DwQLduWLGiGPPsh4Rg7lwMHw6ZDPPmYepU9O2L+vXxv/8BwIABqrsEKn1//PFHYWFhrVq1dIrxNvRKj2NiUnJyTHV1K6kwbllaIjFxeIMGkw4fTsnJefjxx5WMjKCpifHjX/XWpKGB+vVRvz6EQEYG8vOhrQ0jI6hipBmpihAiNDS0cuXKe/fu3bt3r4mJiYODg9QLz97e3snJydHR8aX3FNLS0r7++msACxcuLI2KrV69+uTJk6dOndqyZcuwYcNK4xRvWflt9+PHj9+yZYuWltaSJUvmzJkzceLEdevWaWho+Pr6zpkz5/XLSUlJ2bVrl1wuf/DggbOz85IlS17nHkNhYeHkyZOnTZumVCp9fHx27Nhx8ODBjh07JiYmdu3a9fz58/9Mg8+Ty+XS8L/4+PjNmzd37dpVoVAcOnRo6NChgwYNSk9PHzZs2KlTp4qXBl/KxQUAVLe4Bj3TsSM8PHDoEDZsUHHJaSkpBYWFJrq6ciMj6QGyap4QFj14ZCAs3ywtIcU0Q0M4OMDZGQB8fWFjg44d0b37s2csrykuLm7IkCFNmzY9e/bsmjVrhBAymUxawObo0aMlquiVK3BxwerV0NZGxYrQ0YG+PkJCcPMmnjxB1aqcdOFdIpPB2RnVqyMjA6dO4fBh1KmD3FyMGYNevaCvj2PHUL8+xo7Fc71aXi0+Ht7eaNYMJ05g504AqFcPDRu+uNvOnfjqK5X0S6VSVyr9RQFkZd2Ji4PUX1RFPWLWrl375eXLURkZd1NSCpRKOzOzSkZG0NZGs2ave6NKJoOxMSwsYGLCNFiuCCGmTp26b9++pKSkhg0bmpubp6WlhYaGbtu2bc6cOR4eHnXr1jU2Nm7cuPGgQYMWLVq0b9++27dvFxQUAFi+fHlKSkrHjh3faMzhf8rKyjp9+jQACwuLuXPnGhoayt+bqftE+bZ7925tbW0A48aNKyws3Llzp/TthAkTCgsLX31sdnb2kiVLpJW+NTQ0DP7sPqepqdmlS5cff/wxLS3t346Vuh3r6uru2rVLCLFy5UpplPOYMWMKCgqKcSEJCQkrV660s7PT1dVt06ZNMUp4tRMnBCBatlR5weruo4+El5dQKsWgQaorVKkUZ87cnTIFQA1zc7F8ea8ePQAcOHBABYUnJu5xdwfwkZOTOH1aBQXS23XrlqhUSQCiWTORlPTf+2dmZkp9KADI5fIpU6akpqZmZWX5+fnp6upWr15dQ0OjZ8+ely5deuOqFBaKlSuFXC4AYWkpxo0Tn38u2rcXM2aIsWPFqFFi/nyxbJnIyCjGZVKZyckRa9aIr74Sc+eKzz8Xw4YJbW3RurX49FMxa5Zo0kRoaAggq2HDtWvXKhSKV5SUlydWrhRGRgIQcrmYMkW88Ee16K+09MW6da/VpKnMLViwAMCsWbNUXG5MzPc9ewIY1qCBCApSSZFNmzYFEPTdd/sGDADQo1YtsWCB8PcX//URkco5pVI5efJk6e9aQECAtPHRo0enTp1au3btpEmTOnXq9NKFMbW1tWvVqiXltCAVNbMiixcvBjBt2jQhxKhRowAMHz5ctacoK+U9EAohDh8+rKenB8DLy6ugoODgwYO6uroABg8e/G/ZrLCwcM+ePXZ/dkjo3LlzaGhobm5uQEDAkCFDita00dHR6dmz55YtW7Kysl4oITc3t2/fvhcvXszLy/P29pZipJ+fXwmv5cCBAwC6dOkifZuSkvKKUPpGkpIEIAwM+B6oMnl5IilJDB0qduwQmzerNBAeOSIWLQoeNQpA86pVxfz5P40aNXPmzIiICBUUHhPzXc+eAMY2aSKKkQGoHIiKEg4OAhB16ojY2H/drbCwcMuWLUXdQXv27Hnv3r3CwsKNGzdKG2UyWd26dbX/nCWvc+fOx44de806REdHJw4cKAAhk4lWrcS8eWLSJGFtLQDRtKlYs0asWmLV+kMAACAASURBVCWOHBH/ePOkd4BCIX7/XezZI/bvF2PHCkAAwtRUuLsLX18xfryws5tXtSoAR0fHo0ePvrSMgIAHdnbPDu3fX0RF/cc5g4PF/v2qvxQqDYMGDQKwceNGFZcbEjK9ZUsAizt3FnfuqKRIY2NjAEnBwYs6dQIwo1UrceaMSkqmMqRUKidNmiR9UD948OAr9kxNTQ0JCdmzZ4+Pj4+7u7uTk5PUg9TW1tbExCQ9PV0I8eDBg8GDByckJJSwVhkZGVLPvsDAwLt372pra2tqat5RUUsuc+9AIBRCnDlzxsjICEDv3r1zc3OPHz8uPe4bMGDAPzNhYGBggwYNpA9Azs7O/2xJqampW7Zs6dmzp7TIIQBTU9MhQ4YEBAS8UFpycnL79u0BGBgYqOTpTUxMDICKFSsKIaZOnQrg+++/L3mxkipVBCD++ENV5amv3FyxZYuoUUMMHiyGDhVCCC8v0aePOHBAnDhR4tIzMsTChcLX95CXF4APatYUvr7iq6+EStKgUikOHfqyY0cAn7VtK4KDVVAmlYWEBNGggQBEtWov/+B04sSJoje6Zs2anT9/Xghx8uTJoo1NmzY9d+6cECIhIcHHx8f0zyln69evv2XLlvz8/Fecfc+ePWampm0rVCg0NxeDBglfX9G377NHhba24uzZ0rloKiOXLonmzZ9lu6pVxahRwtc3wNPT3szs2b2GZs3uLVoktm4VYWFCiPDw8G7dupma2pmbK+vUEf8SGF+0Zo1Yt048eVK6l0IqIc1RfOHCBRWXe+xY95o1AfwycKBKHhY/ePDg2Weq8+e9XVwArO/VS9y/X/KS6Y0VFIiLF8XGjWLjRhEcLF7ZueDVXj8NvlR2dnZISIj0p3DChAlCCA8PDwDu7u7FrpLE19cXQOvWrYUQgwcPBjBy5MgSlll+vBuBUAhx5coVacqN7t27Z2dnX7lyxdzc3Nvb+/mOo1euXCnqK2xjY7Nu3bpXd3d5+PDhypUrXV1dix40V6lSZcqUKdJHq8jISKkDvbW1dUhIiEquQqlUSl1Y4+Pjly9fDmD8+PEqKVkI0aOHAIS/v6rKU0fp6cLPT1hZPfto5OIihgwRQoiICNGwoTA3FzKZmDy5ZA9FIiKEn9/5ESOaV61aUV+/irFxxOTJYv58ERhY7CIfPXo0a9asO7dvi+3bxZdfTmvRAsDX3bqJhQvFgwclqCuVpZQU4eoqANGgQeTzb0GxsbE9evSQ3rLs7Ox2796tVCojIiLc3d2ljVWrVt2yZYtSqXy+tPT09JUrV1atWlXap3Llyj4+PqmpqX/toVSKhITU27c9/5w8ub+TU8qsWeKTT4Sj47P/Eu7uIiXlrb0C9PYoFGLdOlGxogCEltaiFi0ef/JJzrx5izp1MpTLAehqac1t0+bR3Llju3WTbsBbWFhs2RJagk99VE4plUqpC3pSUpIQ4t69/7N333FV1X0cwD+Xy14KAgoEKuJATAXcORP3IAemFlgO3JQ2LBeouR4tRzlTcw/MPXJrojkRUFBBRAUERIYoe9zf88dBMitjXLzA/bxfvZ7X9Y7f+R79Peec72/eHzNmTEZGhhKK3rattokJgLve3koZznTq1CkA7dq1E/v2tbC2BuA/fDiHLahAdrb46Scxd67w9hbe3mLuXLFypXhjs+O/USgU48ePB6Cnp3fixIkSR3Tnzh0dHR0NDY3z588/evRI6lXau3dviQtMTk6T2lV///33sLAwTU1NLS2tyP8cGlFxVJiEUAgREhIijYNq3759ampqWFhYYb738OFDDw8PaZsRU1PTBQsWZGZmFr3kO3fuzJgx49XllevUqSONQ3B2do5R6iO1tMnE0aNHpQtZa+VN+1u48HHHjhcXLSpaay39VWJi7owZwsSk4Lm3WTOxb99fbli5uWLBgoI+Ejs7cf58SY6Sn5+/d/XqZi8fyqUnLUNt7VW9eyuWLXt9/k0RPHr0yNvbWxoF/ckHH4h584Sv78eNGwPY3K+f8PUVy5aVJFAqH9LTxeDBT2xs7IyNjc+cOSO9mZycbGpqamho6OPjk5mZmZSUNGXKFGm+hIGBgfTmvxWYnZ29adOmhg0bSjXQ2NjY29s7JiZGRESIhQsvjR1bp1o1AHpaWku7dxe+vr99/PEDafRq1api5863dd6kIikpYvLky+3aSdcln44ds6ZPj/3iCy8XFw2ZzKlGDTN9fQCacrmXl9dTdvZVUlFRUdLIKalRqXXr1tKz0KNS97xlLl4s19DQkstzlHRj+umnnwCMGjVK/PxzFV1dAE99fJRSMhXP8ePiu+9Eixaie3fRtato2VJ8950YP15s3Sri44tejEKhGDdunJQNnixFK7lk5syZAOrVq5eZmSltIm9paZlc0jbNqVNFw4ZXP/10uhBCan6Vuh8rjYqUEAoh7t69K7Vwu7i4SG1XiYmJU6ZMkVZG1tfXnzJlSkpKSonLDwkJmTJlSo0aNaQBV927d1fWHL9C0kjR+fPnSwtLGhgY/OfqOEW0a9cuAH369FFKaerjyZMnPj4+NWvaGRi8AMR774mDB8VfO1f+dOuWcHKS2tDFlCkiO7uoR8nPzz948KDzy11BzA0MfDp2fPT5514uLtI7XerUif72WxEcXMQC79+/7+3tLdV8mUzWu3fvy7NmCV/fm2PH2hgbA1jQpYvw8RHffSde7QWiiiY3N1da0lpHR2f3ywEAp06dSkhIyMnJWbp0qdRmqaGh4eHhEV+0W69CoTh48KCrq6tU97S1tDycnDb16yfX0ADQ8p137nl7Z06f7t2ypUwmq21omPHBB2+ay0iVS3h4eGFvc91q1fzc3YWv7+BGjaR3utvb3/npJ1XHSGUoJyfnq6++AjBo0KC0tLSwsDBpveJq1aqdKs2sidzcoLFjATiYm4tdu5QSqrToyOLFix9PnQqgmr6+2LBBKSVT8SxaJD77TLRqJXx9ha+vaNZMTJokdHULmtjt7ISXl/DzE8+fv6GMwmxQX1+/9NmgECI7O9vR0RHAtGnT8vPz27ZtW9B8UHxPnxasnnXpkggOznZyel9XV1e53UUqV8ESQiHEw4cP7e3tATRo0GDq1KlVqlSRHobc3d0fPHiglEPk5uaeOnXq+fPnbx5xWjIbNmwAMHjwYCGElNyGK2nan7ROtI2NjVJKUweRkZFjxowpzKnGjv21KOtRZWWJr78WcrkAxKBBETdv3nzz96U+GWlnVQC2trZLp09P9/UVs2dLl87dgwZJ7e5VdHXX9Okjtm1787KNN2/e9PDwkEZtSTU/1N9f7N0bOGaMR5MmGjIZAD1NTQ2Z7PNWrTKmTxe3bhXrr4XKG4VCMXnyZAByuXzt2rXSmwcPHiwc1ODq6hpc5KaEV128ePGDDz6Q6oyGTGZuYODRpEn2jBkh48Y1qVEDgKampo+PT1lcCamcO3r0aP2XFaxH3bpXRo1qWqPG4aFDha+vsp7mqdw6cuSI1NLUuHHjyMjI5ORkaWvvOnW6rVhRoibs5GSxevXOgQMB9HNwEH5+SomzS5cuAA7/+uvpYcMAtLW1FS+Xo6S3au5c4eUlOncuSAg7dBBeXqJbN1G3bsHAKuk/Pb2FHh7/+9//AgMDCyY1ZGaK2FiRlqZQKMaOHStlg6Vqd/iry5cvy+VyTU3NgICAu3fv6urqymSyEmSbX3whANG7txBCuLkJQPj4RCgryHKi4iWEQoiYmBgHBwfZyx1m+vbtGxoaquqgiiogIACAg4ODEEKaCLRbSdP+8vPzpXH/HMnznyIiIry8vKRVhaRF+a9evVqsEi5cEK1aZZuY2Glpaf3bE3NaWtqrs7bs7OyWLl2alZUlhBBPn4oDB8SaNWLnTnHu3JOZMz94uePTwIYNn/r6ijt3/l5gQECAu7u7VPO1tbU9PDzCzp8XO3b4Dx/e+2XCqaOpOdLZ+du2bbXlcgB1TE0vjBwpzpzh+rMV3YIFC6SWi4kTJ7Zv3176527QoEEJ5ty/JmLqVO+WLfW0tGTArXHj1vTpo6+lJRUeEBCglOCpIsrJzFzzwQdm+vrVDQ1Tv/224FFv7lxRzKslVUTh4eGFHYMnT57My8v79lsfe/ssQAwfLqT7WFGlpYmFC4Wvr2/HjgC+bddOzJmjlFVGbWxsAEScO7eiVy8AI52dxR9/lL5YKrY1a8TUqcLBQcycKWbMEA0aiNGjxVdfCV9fMXOm8PISrq7C1laho6P/chN5czMz99at17i5PfrmG8Xs2WPef1/KBk+fPq3c0KRu5KZNm+bk5MyZMwdA7dq109LSil5CbKzQ1xcymbh6VVy/LmQyYWBQrJGwFUOFTAiFEDdu3JAmwJwv2Vwu1cnKypJWqk1PT586dSqA6dOnK6vwVq1aASica0T/Rmrs1NLS8vT0vPNPqVdRZGRkeHt7S+lZq1atXt00QlrAQxp7DODdd9/dtGnTm3awTEsTO3b4ubub6OkBsDAw2Dd4sPDzE69MBvP29pZKMzAwmDRpUsyVK2L79pOenm1sbKT3DbW1vVu2fPzll9Jz282xY5tKnTwaGlPats1evlyUes1lUq0ff/yxcEvV6tWr/+e6WUW1apXw9Y378stfPvjghIcHABkwpmXLv+/HQ2rn0qWEadMujhhRkA3Oni2WLhUl2oyXKpyUlJSePXtKIwWWLVsuhNi1SxgYCEA4OxdnLc9jx8ScOYUDjzd+8IHw9RVLlixYsKDEezsLIdLS0mQymY6OTt6VK94tWwJY1LUrV1pXjYgIMXeuGDFCtGolWrUSXl7CxkYAwtxctG0rPD3F9OnC1zfj6693Dhw4wtnZpkoVvGJAw4YA9LW1Tyuvb7BQWlqanZ0dgEWLFuXm5jo5OaGYe2w+eiTc3cXAgUII0a2bAMQ33yg9TNWrqAnhmTNn8HLt1wqnUaNGAK5cuSLN+ustdUKXVHZ29o0bN6TXo0ePBrBkyRJlhFmZ+fv7jx07ViljjE+cOCH1Aerp6S1dujQhIeHVJf6dnJz8/PwU/zYl8TVBQQ+//rrTy/0z3R0dk+fOFZGRIi5O3Lhx4KefjIyMvL294y5fzv/554NDhjS3tpa+aaav79OxY5K0VKmfn5gzR8yaJb7/PnPRoi/atJEGBA5u1Ddkwipx9uy/zo+kiqBv374A3n///edvnIxRPNeuScsRSf95t2x58OOPxZEjSiufKrSAALFwoZgzR8yeLbZvF8VpWaeKTqFQLFiwQENDo2PHc0OHiowMERgoatUSgOjYscilrFp13cvLu2VLA21tQ21t344dhY9PzJdfSntKd+3atWTrfFy/fl1qbxW//da1Th0Ah4YO5TLIKhMYKObNE/Pni/nzxdy5ol07oaf352BRLS1hb3+lT59b48ZJN5r7n322pk+fgQ0bVtXVBaCvpXVm1CgRUSbjME+fPi2TyfT09O7du3f16lW5XC6Xy69du1asQnJzxYULAhCGhiIhoSzCVLGKmhCuX78egKenp6oDKQlp95K1a9eGhYWVctaftFOikZFRUFCQEGLFihUAPvnkE+UFS/8tOTl56NChUm5WuAl4586dS9JV++yZ4pdf1vTpY6CtDaBm1aqnhw0Ts2eLuXMV8+alzpiRs2TJpn79GpiZSUexMDDw6dgxdf58cfnyX5rtpY6j3Fxx8uT54cNbWNc20X2sq5m7wPVk3tr1StkAilRCWu1jx44dyixUoRC7dom5cwtywnnzxNq1JVsxnCqtzMzSbCxGFdq+fZekFTVatBAxMeLpU+Hm9o/TGl739OnTJUuWNHrZdllocuvWuTNnXjhyRBpHU6dOnVvFn+u+detWAO4DBohVq2yrVAFwb9IktniqUk6OePhQPHxYcPvIzBQnT4opU4SLi9DQEEAXc3PpucXd0XFNnz7RkyfnzZz5UePGBtraZ6RHnaIs5FAiHh4eADp27KhQKL744gsAjRs3fvN+vH/XqZM0e7BsQlS1ipoQTp8+HYBPxfxnWbRoEYDx48eXctZfeHi4tFSJtbV1YGBgZmZmjx49LC0t/ZQ0XZuKbsKECdWqVatVq1bz5s2trKxGjx5d8rIUCnH9esQXX7xnaysN3vNycUmbOjV7xoxN/frZm5pKN9RaVasu7d49Y8kSERT0H/MDo6LSF6/0bnlZBgUgWttEh09aKS5fLrhxpqSIgABx+LDYuVPs2SPOnBHh4RwSVm61bNkSZbFhtBAiIkIcPiz27xchIXyoIqJXBQcLO7uCMYBnz/7Hl/PzxbFjikGDhkjb4QCwMDT8sk2b2+PHr+nTR5rf3r5mzSe+vjFXr7Zo0QKAoaHhr7/+WqyQoqOjt61ceXLUqLSpU2WAtlye6+MjYmNLfI5UhuLjc7dvHzZsmJWVVWG7gAxoXL16wOjRBd2G8+aJMpu1npiYWL16dQA///xzenq6nZ1dly5dEovTOP7ggTAwECYmlXbhdk1UTJGRkQBqvxxcV7E0adIEQHBwsIaGRqNGjS5fvnzr1q1OnToVq5CLF0Pc3DomJSU5OTkdOnRILpd36NDh6tWrVatWrV+/ftkETv8qOjo6KSnp559/NjIy6tKli7TiawnJZHBxqVOz5jl7+3l+ft+dP782IOBIeHiOQvE0PR1AQ3Pzb9q2HeLqqvnee2jcGC9XV/pXNjb6E0csq3+i565tIw66XYp+p+lPI+fdOe09YINMkY+nT6GhgZycP4+urQ2FAs2bo2NHvOzwpHJC2iLM1tZW+UXXqYNX9mIlIirUuDGuXcPgwTh5El264Pvv8XJW+1/ExGDbNqxZgwcPZM2a1cnLy3N1dfUaNeqD9HStuDjk5jqYmzeysBjo53f+0aNmS5bsi48///33Y9av37hxo7u7+9dffz1v3jwNDY2ihPSOpeXQjAxYW9+IixNAvWrVNGUybNmCyZOhWVEfbiut6tU1hwzZOGQIgMjIyFPHj59aterEvXshCQk2xsbmBgYAIATK7PG1WrVqS5cuHTJkyJdfftmjR48LFy7UqFFD9p+PTwCAnTvx/vuoVQurV6NGDfx1/mPlUVH/PyMlhNI80QqnadOmAKRl4tu0aQNAoVAUq4RduzBmjKO1tVvz5rG7du2Kiorq3bv3o0ePateufeTIEWllMHqbpF0lzc3Nnzx5AqBatWqlLdHMTHPAgJmJif0aNPDcty9fiFtPnjSpUWNy69YfNWsmHzgQdev+dypYSFsbvXt3c7h/s/6Wcbs67Apx/PxY9ztPA7rZR/RziPN/ZAsgJUuvb/2wvHzZL384jnK5gWvXEBqKTz+ttBe/CignJ+fJkydaWlqWlpaqjoWI1IupKY4exddfY8kSfPYZsrIwfDjMzHDmDNq0wd692LABZ89Cepyxt4en5+gDB8YW9AgJgRs3cPMmcnLaODpet7Dov2XLlZiYDhs2/JKU9IunZ+uWLSd4ey9cuPDWrVvbtm0rnIf/JvfuIStLCLHvzh0ABTMp8vNx7x74FFSO2dnZeY0d69WjR86WLcGxseYGBtDQgIYG3NwgZYZlY/DgwTt37jxw4MCYMWMOHTpU9B/6+eH8eaxciWPHsHVr2QWoYjIhhKpjKIkaNWo8efIkJibG+m9j0ysEKyuruLi4iIiIOsVskhcCPj747jsIgW+/zZwzR/vMmTPu7u6pqamtWrU6cOCAhYVFGcVMb9CgQYOwsLDbt2+fP39+zJgxXl5ea9asKW2hOTn43/+Qn5+Vl5eSmfng2bOCBUWbNUOvXiUsMzMThw/v3o3vzrf/0DH0aETdPYN2HQhroK2RH/3ceEaH89l58lGH+m7utw8ANDRgbIwJE/BynWhSrfv379vb29eqVevBgweqjoWI1NSWLbh8GYmJMDfHTz/h44/x8CEuXgQAfX0MGIARI9C+/RtbLJOTs7duHbdx44bAQBnwddu2c4cNu2hj4+7pmZCQULdu3QMHDrypaTsuDsHBcefPb752bd2NGxHJyZ3t7D5r2bJP/frQ1ETnzmjVSulnTcr3/DkCAhAfDzMzODuj9C3p/yU2NtbR0fHZs2ezZ892cXFJT09PSUlJT09PT09PS0vT1PR69MguLQ1paXj2DOnpSE9H7dqoWRONGsHZGb/8UpkTwgrZQ5ienp6QkKCrq1txm8mbNm0aFxcXHBxcrIQwOxsjR2LrVsjlWLIEEyfqrVuX8dVXI1JTUwcPHvzLL79Ia3bR25eUlATAzMxM6io0e7noS6loa8PBAXfv6gKWRkaWRkYAoKWFFi1KXqaeHtzd3aO+H9hw9dLLrb5qc3HG2febWcUCOH7fPjVbN1/xyj1coUBGBoKD4excylMhpYiJeaKlpV8m40WJiIrGwwMeHvjkE9ja4uxZAOjXDykp8PTEyJFFe6o3NdUZM2Z9jRott26dcPTowgsXguPjd3zyyaX9+/uNGXPz5s02bdqEhYW93sCdlYXQ0NwrVw6dP78hMPBYRES+QgHApkqV3vXq9ZFGG8rlbyGvIOUwNkYxZ0uVkpWV1bRp06ZNmzZz5sy/f9qu3TB//9ff1NFBzZr4/HMMGVLJ28YrZEIYGRkphKhVq1YRB5qXQ02aNDl37tyECRPu3bvn6elZxMxWJkNMDAwNsWMHevTA5MlYskS/efPrPXqs9PX1KeJgaFI6hUKRkpKioaFhamoqZYZKGDIq6dMHL14gLg5CQCaDEOjbF+bmpSozKwuZmTIIALZVUu1MUvwf2Xau/aBbnYjCHsI/v5yTg/BwJoTlxMOHbRSK9Pr1s1UdCBFRwVOypiYmTcIXXxTzx9racHf3srZ2MDd39/M7FhHR/Icf9j958sfq1Z8uWFDfysqicPyaEIiMxI0bYRcv/hIQsDEo6ElaGgBtubxHvXqeTZr0a9BAU3pUl8mgp8e50PQGiYmJOTk5FhYWzs7ORkZGVapUMTQ0NDAwMDIysrLSGjUKBgYwNoaxMQwMYGAAExN4e0NLCxMnYuBAVUdflipkQigNl6qgEwglM2bMkNYg+eabb6ZNm9a5c+ehQ4f269fP2Nj4Db/S1oafH548Qe3aGDAABw5AWxsTJlh4evq+rcDpH6SkpOTn55uamsrlciUnhNra+OQTREfj8WPo6aFuXejrK6fklya3vuS0enTn2n8ZgrgzpJG2PL+/wx3lHotK6dEj5OfDwkJH1YEQEUlPIPjgA5SwcV4mw3vvtbOwuG5h0W/z5uuxsa3Xrt2UkLDLxQXa2li/HiYmqF8/88aNw1evrg0IOB0ZKeWIDubmw5o0+bRVKwsnJ8TEID29oEAjI3z8cUmjocovMTFx5cqVAA4ePCgt2V0Un3wCAB06YP36MousHKiQCWGFXmJUoq+vv3z58q5du27fvv3o0aMnTpw4ceLE2LFjPT0n9uixsHt36PzLI5+5OXJz0aEDAgJgaoo9e9Cx41uNnP6uanJyRr16L+ztAXxlaDi8Y0cr5Q5mtrGBNHtQKXR1YWyMlJSh794y0snRluef9NyiKVPkKOQAtOX5U9udtzJK++lqCwDQ1oa9vdIOTaUTHQ1AmXWBiKhk3N0BoFMn/Phj6QqqW/edL7/0r1599MaNm4ODB+za9XXbtvM6d5bJZAFBQWvXr99+61ZaTg4AYx0dtwYNPJs2de3SBU5OqF8fcjmEwOPHeP4cRkZ4551irLVG6mfevHkvXrzo27dv0bNB4M9hrX37vvF7FVyFTAilHsIKnRAC0NXVHThw4MCBA1NTUw8cOLB79+5jx47dvWu4Zg2qVkWfPnB3R8+erw9ZvnULvXsjKgp16uDwYTRooKLo6RXyhAS98HA9MzMAja5fx9WrWLBA1UG9Uffu+PXX6oYFrapWRi8KP5HJ0MAsKTi+el3TpILhN02bqihKel1UFABwCiERqVzh0maenqUuq1o13TFjNhoYNPTzm3b69MILF07ev5+emxuWmAhABrSvWXOEs/PAli31XVzQrBleXYNUJsM775Q6Aqr84uLiVq9eLZPJZs2apepYyqMKmRBW6D0n/q5KlSqenp6enp6PHz/et08nNRVBQdiyBVu2wMYGgwejb1+sWIEtW5CTg82bkZiINm2wf39pp5KR0iQlASiYyP7q63KrXj106oQzZ5CX9/cPX2Rrbw5uUt8iRaFvqDFsGDd0Kj+YEBJR5aSrK2vadEp8fNMaNYbs2aMQIiwx0dLIyL1hw1HNmzdq3x4uLqhdmx2AVGLfffddZmamu7t7UzZz/5OK9qgXEYETJyKvXAFgFxeH3NzKtHG2tbX1hAmYMAF37mDXLmzfjnv3sGgRYmMRHY3lyzFyJNLTcfo0nJz+dUwpqUBiIgBIK4u++ro8a90aNjY4cgRJSRDi1czQyFj2fa8zcHJC5/GsZ+UKh4wSUaVlbAwtrW729gFeXnkKRVhSUg97e7mWFnr35kAVKqVHj/LOnImXy+W+vr6qjqWcqlAJYUhI/LZtp8PDHz57BqB2fDw2bMCoUZVvArGDA3x94eODS5ewfTu6dcPFi7hzp+BxkPvrlDuFSWBuLp4/h6ZmxdjM/Z13MHo0kpJw/z5iY5GWBk1NmJrCxgZ16kBbW9Xx0V8kJiI9HSYmeOPKU0REFVOdOtLjXG0TEwB1pYE2WlpwdFRtXFQJzJmjGR6+Z9KkiIYNuSzCP6swCWHAtWtrJ0zYfONGdl6eAMz09Y01NJCUhJAQNG6s6ujKhEyGNm3Qpg3i4nDxImbNwuTJMDVVdVj0d4XDRKXetmrVKtKwlmrVyvsAVwLCw/HwIZKTERiIoCA8eYJu3QDg0CH06aPq4IiISk9TEx99hC1boFAUjP/S0MBHH1WmgWCkEhER2LwZMhlGjWI2+K/Ke9/a8+fPV65c2ahRo2YtWqy9ejVPoehUu7aJrm5tExPIZMjNRXi4qmN8S6ysUJxVkegtKkwIK8p4UapoQkLw+efIzERuLq5exe7dBe9v3arSsIiIlMjaGp9/jm7d0Lo1D+JwsAAAIABJREFUunXD559zwRgqvVmzkJuLTz5B/fqqDqUck4nCrT/Lm1u3sGrVhKtXVwQEALA0Mhrp7Ozl4vKOsXFwfHxtExNjaXbTu++if38Vh1rG8vORmgpTU+TnIyWF6Ub5c+sWQkPRsCEMDLBsGapVg4+PqmOiSmXvXsTHIyAAgwbh0SNs2VKwst+hQzh4UNXBERERlUvh4XB0hEyGsDBU8N0Jylb5GzKak4MDB7B2LU6fhhCTa9YMrVVrbPPm/Ro0EMCBu3fXBgSciozc3K+fR5Mm0NaGg4OqIy5zcnnBSFG5nNlgueToiB9/xO3biIvD++9jyBBVB0SVkJUVMjNx+jTs7VGjBtq3B4Djx1UdFhERUXk1fTry8jBuHLPB/1AOEsLHjxEVBU1NGBlhyxasX48nTwBARwdNmtg1b37W3Pzhs2czz55dHxj4ND0dQBVd3WdZWdDSgo0Nd+Ij1Tt5Ek2aYPx4AOjThwkhlRFvb7RuDXt7VKlSMPRFLsfly3jxAl26qDo4IiKi8uTxY+zfD11dTJ2q6lDKPZUmhAoFdu/G/fvIz4dcjogI/PILAJiZoVkzODtDSwsREWeuXety7ZpCCABNHR3HtWw5tE4dA2NjuLigZcuKtHoHVVZxcX/uDaenh7w87t1HyuXkBJkMWlrYtAkaGn+2g3l5wcQE/v547z3o66s0RCIiorfu5k3Y2MDEBA8fQiZDzZoA8NtvaNUK1tZYuxaamrC2VnWU5Z5KH1vPncP9+zh3Di9eIDsbjRqhdWs4OMDWFllZuHEDV64gJaW9mZm+rm6P3r29vLxcXV1VGTDRP2rSBL/+ij59kJ2NnBxmg6R0hWNdpAXYC0fKd+6MtDTIZMwGiYhIHR0+jF69YGKCa9egoVGQEK5bh5Mn8cMPOHWKq68VieqeXIXA1auIiUFmJrp3hxDYsQNDhuDxY+zbh9DQgp2ya9fWHD06dsQII06eo3LLyQn+/pg8GRkZ4J6n9BYJgSlT0K4d0tJgaKjqaIiIiN66s2fx4AGuXftzNX5DQ1StisuXVRpWhaK6hDAnB7m5SEpC9eoAIJPBwADPn2PzZuTkQEMDPXti3Dj06AENDSOVRUlUNN7eqo6A1JFMhhUrVB0EERGR6piYwMwMRn/NFr76Ch4e3MayqFSXEGprQ0MDJia4e7fgnYwMGBvD1RXvvovRo7keEBERERERvUHTpmjSBHFxyM/HiRNwcQEAPT0MH16wRRP9J9UlhDIZmjYFgNu3cewYcnIgbSOxdCnq1lVZVEREREREVBF07AhLSwB4913ExKBuXaxahUGDAKBnTyxapNroKgyVbkyfm4vNm5GQgKwsyOXQ1ETz5lw9nYiIiIiIiuvaNSQkoFcvVcdR0ag0IQQgBMLCEBkJHR04OMDKSpXBEBERERFRBfTHH1ixAh9/jB49VB1KRaPqhJCIiIiIiIhUREPVARAREREREZFqMCEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU0wIiYiIiIiI1BQTQiIiIiIiIjXFhJCIiIiIiEhNMSEkIiIiIiJSU5U/IUxPTw8LC8vJyXnt/by8vMjIyBcvXvzbD7OysiIjIzMzM0t86MTExEePHpX450Skbni9orLAekVEFQWvVypR+RPC06dPN2jQ4N69e6+9Hx0dXadOnV9//fXffnjlypU6depcunSpxIf29fVt1qxZiX9OROqG1ysqC6xXRFRR8HqlEpU/ISQiIiIiIqJ/xISQiIiIiIhITWmqOgAlu3PnTlhYmEwma9SoUZ06df7+hejo6GvXrgkhNDX/cu4REREBAQFyubx169bW1tavfpSQkHDhwgUtLa127doZGxsHBgZaWlpaWVkVfuHu3bva2tp2dnYA8vLyLl269Pjx42rVqiUmJhZ+Jzs7+8KFCwkJCdWrV2/Xrp2WlpaSz5wqlIcPHx47dmzw4MFVq1ZVdSykMrxeUVlgvaIKgfdBAq9X5YeoRLp166alpVW3bl1bW1sNDY2pU6cKIQ4cOAAgJCQkLy9v3LhxGhoapqam9vb20j/thg0bFArFxIkTZTKZra1t9erVtbW1t27dKoQ4d+4cgI8++sjY2LhBgwaGhobVq1ePiIh49913u3btWnjQ9PR0Q0PDRYsWCSGCgoLs7e3lcrm9vb2ZmRkAMzMzIcTt27ft7Ox0dXXr16+vpaXVtGnTlJQUFf0lkSrFxcWNHj06KCho3759AG7fvn38+PHRo0crFApVh0ZvG69XVBZYr6ic432QCvF6VX5UqoQwICCg8B9sxowZGhoaDx8+LKxYc+fOBbBixQrpCxEREVLF2rhxI4DVq1cLIXJzc93c3KpXr56RkSFVrHbt2j1+/FgIERMTY2hoOGHChAULFsjl8vj4eKkcPz8/mUz28OHD9PR0a2vrhg0bPnjwQPpo7NixZmZmCoXi3XffrV+/fmxsrBAiKChIW1t79uzZb/fvhsqFBw8eODs7nz17tvBGuHHjRmdnZ94I1RCvV1QWWK+onON9kArxelV+VKo5hM7OzoUDD3r16qVQKO7cuVP46YoVK7p27Tpu3DjpjxoaBee+d+9eOzu7QYMGpaSkvHjxYsiQIU+ePLl27Zr0qY+Pj9TLbG1t7ejoGB4ePnToUCFE4TJHu3btateuXc2aNffv3//48eOlS5fWqlXr1UOEh4ffunVrzJgxurq6KSkptra2LVq0OHLkSFn/bVA5VKtWrYCAgI4dOxa+M2zYsICAAJlMprqgSDV4vaKywHpF5Rzvg1SI16vyo1LNIQwNDZ0/f/7Fixfj4uKys7MBZGRkSGOOnz9/HhsbO3LkyL//KiIiIjIy0tTU9NU3o6Oj33nnHQCvXqF0dHRyc3NtbGzee++9HTt2jB8/Pi0t7ejRoz/88IN0dACtWrV6rfz79+8DmDRp0qRJkwrftLS0VNJJk4pFRETs27fv0aNHurq6rVu37t+/v0wm+/333+Pi4vr06bNx48abN29aWFh4eXnZ2NgkJiauWrVq0KBBhT//448/Tp8+PWPGjH379hkYGDg5Oa1fv/7Bgwe1a9ceM2aMdKFMT0/fvHlzcHCwpqZmly5d+vbtyxtnJcDrFZUF1it6+3gfpJLh9ar8qDw9hDExMR06dIiNjV27dm1QUNDhw4df/VRHR0cmkxW2LrxKX1+/c+fOyX81cODANxxr6NChf/zxh9SvnZub279/fwC6urr4a0WU6OnpAdi/f/+r5d++fbuU50vlQXZ2dps2bY4dOyaEiIqKGjJkyPjx4wEcP378yy+/bN68+ZEjR+Ry+aZNm5o3b/7s2bOnT5/OnDnz1QYwf3//mTNnKhSKrVu3fvXVV87OzgEBAQAWLlz4/vvv5+fnJycnN2/efNq0aXl5edHR0f369Zs/f77KTpiUhNcrKgusV/T28T5IJcPrVblSeXoIT58+nZSUtGHDBqnnNysr69VPdXR03nnnnevXrxe+I41FBtCgQYMTJ07o6Ojo6+sX8ViDBg367LPP/Pz8Lly40KVLFwsLCwB169YFEBAQ0KFDh1cPUb9+fZlMFhwc7ObmVspzpPJGR0fn0aNH0rUDwDfffLN48eIlS5YAiI2NXblyZd++fQF88sknLVu2PHr0qJOT0xtKu3///vnz552dnQG0a9fOw8MjKCho69atDx48CA4OrlevHoDRo0f/73//8/b2NjQ0LPPTozLD6xWVBdYrevt4H6SS4fWqXKk8PYTVqlUDcPLkyYyMjAsXLnz66aevfWHYsGFHjx5dunRpdHT06dOnR48eLb0/fvz4pKQkT0/PkJCQx48f//bbbwsXLnzzsUxNTbt3775hw4YTJ04MHjxYerNnz54WFhYTJ068cuVKVFTU9OnTjx8/DsDKysrd3X3RokWbN2+OjY0NDQ1dtmzZ5cuXlXz+pCJ6eno5OTn37t3z9/eXyWT5+flRUVEAtLS0pLsggIYNGwJ4/Pjxm4uys7OT7oIAHBwcpJ/4+/vb2dkFBwfv3r179+7dBgYGqampr7atUkXE6xWVBdYrUgneB6kEeL0qX1S5oo1SKRSK4cOHSz2/5ubmO3bsMDY23rNnz8GDB2UyWWhoaE5OzmeffValShUAJiYm69atMzEx2bBhgxBi//79hZufmJubT5o0KT8/X1qt6PTp04WHaN++fadOnaTXO3bsAKCrq5uamlr4hevXrzdr1kwulwPo0KGDj4+PtHxtWlra8OHDpb5pDQ2NNm3avFosVWjz5s0zNTXV09OzsbGR2pxu37797bffamtrF34nPT0dwIIFC6QhB/v27StcXW3BggUA8vPz+/fv/+677xb+5MaNG9I3zc3NzczMXP7q999/V8W5ktLwekVlgfWKVIL3QSoBXq/KlcqTEEqSkpLu3r2bm5v7hu88efIkJyfn7+8/ffq0WNuMdOvWzd3d/e/vZ2ZmJiUl/f39rKys2NjYfzw0VVA7d+4EsHr1aumfVbrcKPdG2KhRo379+qng3Kjs8XpFZYH1it4m3gepNHi9KicqzxxCiamp6WvrDv2d1Hz1d9KWlEWUmJh45syZXbt2/f0jXV1dqVHhNTo6OpV+kSJ1c+XKFWNj48JhDImJiUo/hLOz88GDB5OTk/+zYlOFw+sVlQXWK3qbeB+k0uD1qpyobAnhW7Nnzx49Pb0ePXqoOhBSJWdn5yVLlsyYMaNZs2b+/v7r1q1T+iGmTZt24MCB9u3bjxs3zsDAIDAw8PHjx7t371b6gagS4/WKygLrFYH3QaogeL16MyaEJXTixImhQ4f+Y4sCqY+PPvooKipqy5YtmzZt6tatW0BAwJgxYwwMDOrUqfP+++8Xfk0ul7u6utaqVcvAwKBz585SW1fnzp0NDAxq1arVuXNnmUzWuHFjaYK1xMjIyNXV1cLCol69eleuXFmwYMGqVat0dHQaNGjwj9vyEL0Br1dUFlivCLwPUgXB69WbyYQQqo6BiIiIiIiIVKDybDtBRERERERExcKEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNcWEkIiIiIiISE0xISQiIiIiIlJTTAiJiIiIiIjUFBNCIiIiIiIiNaWp6gCIiIiISO3Nno1nz5CaihEj0KaNqqOhyoL1qgiYEBIRERGRSl28CC0t/PAD8vLQrx8OHVJ1QFQpsF4VDYeMEhEREZGKPHsGAHfuoEkTANDUhK4u8vNVGxRVeKxXxcGEkIiIiIjeOiGwcCEcHfHoEezsEB5e8GZWFuRyVQdHFRbrVfFxyCgRERERvV05ORg1Cps3Qy7HH39g8GAcPIgvv0RSEsaNU3VwVGGxXpWITAih6hiIiIiISG2kpKB/f5w7B0NDbN+OXr2wbh2GD4dMxj4cKjnWq5JiDyERERERvS2RkejdG3fuwNIShw7BwQEDB2LfPgQHY8UKVQdHFRbrVSlwDiERERER/bOkJGzbVvB62TLMmlUwJ2v58pKUdunSpasTJxYs9XH1Kqyt0bEj9u2DiQkGDlRa0FTusV6VK0wIiYiIiOifpacjKKjg9R9/IDQU330HIXD1arGL8vPze//99987dizSywv+/khNRevWuHYNtWvj4kV06qTcyKk8Y70qVzhklIiIiIj+1e+/48svASA/HwYG6NKloG/n0CGEheG999CsGbS0/qOQZcuWTZ48WaFQjBo1ynbFiqzz53UHDMCzZ2jdGgcOwNy8zE+DyhnWq/KDi8oQERER0T+LisKPP2LRIgD48EPo6mLjRgwdiowMaGpi714A0NeHkxPatsV776FtW5iY/KWEvLy8iRMnrl69WiaTzZw509fX95dffvn+228DdXW1mjXDli3Q01PBiZFKsV6VK+whJCIiIqKikskwfTo6dcKaNTAzw4ULuHMHFy/i4kUAaNHiWF7etLZt27Zr1+69996ztLQcPHjwnj179PX1t23b5ubmNnXq1Pnz5wPYNHv2yOnTIZOp+HyofGC9UiH2EBIRUUlkZkJTE1payMqChgYAaGtDCGRnQ1dX1cERkZLk5iIhAdbWADBkCLp2xaefAsC9e6hbt+A7SUm4eBH+/rh4EXp63545s6Dw5/b29vb29teuXTt69GiTJk2GDx++fft2TU3N5cuXjx079u2fDpUTrFflChNCIiIqCV9fxMVhzRosWgRzczx/Dm9vJCRgzhz8+KOqg6MyMGkSliz5ywtSK35++PBDVKuGyEgYG//r13Jzc2/evHnq1KkLFy5cvHgxJSUFgLW19dKlS5cvX+7v729kZLRz586ePXu+vdCpHGO9Kg84ZJSIiEpIJsOFC6oOgt6W2NjXX5D6ePECkycDwPz5b3pqB6ClpeXi4uLi4jJlypT8/Pzg4OD9+/fPmTNn9OjRycnJNWvWPHLkiKOj49sJm8o51qtygj2ERERUDKGhOHAAly7B2RmDB2P6dDRrBktLbNkCJydkZkJDgz2ElVPDhujRAwACAnDunIqDobds8mQsWYLmzXH5csEQ8aJ7/vx5lSpVDA0Nv/jiizFjxtSoUaNsYqSKh/WqnGBCSEREAIAnT/DwIWQy1KmDatVe/UShQGAgDh2Cnx/u3Cl4c9QofPMN7t/H+PGYOpVDRiu/Dz/Erl1/eUFqIiQEzs5QKHDtGpycSlKCnp5eVlZWRkaGHhd+pJdYr8oPDhlVjt274e4OAH5+GDRI1dEQERWLEDh4EKGhEAIyGU6eRMuWcHXNzMw8efLk+fPRmzePf/q04LsWFujTB25uiIqCjg66dEG3bjA1LVhIRksLlpZYtQqxsZgzR4WnRETKIQQmTEBuLry9S/jUDsDMzCwmJiYxMdHGxkap0VFFxXpVrjAhVI49ewoSwj17mBASUakkJW188eKcpmY1K6u5GhpvZb3OS5dw+zZyc6U/JWdmnt6w4dDy5fvPnXvx4oWGhqa5+djatTX69EGfPujYEZp/vXW82h9oYoKpUyEE5s59G4HT29S+PXJzoaWFjz5SdSj0Fm3c+EtOzm8NG/44a1b1Ehdibm4eExPz9OlTPriThPWqXGFCqBxxcfj+ewCIilJ1KFReZWdn+/r6PnnyJDw8vE+fPq6uri4uLqoOispcRkbGnj17li5dKntlT6SqVavKZLKlS6tpaycBkMv/3G1XV7dhdnaYtfUCbe2aby/Ky5eRkwMgPCnJ69ChC1FR+QoFAJlM1rJlSzc3t379njVoYFrEwrKzMW9ewWQzqkzWrUN6Or7+Grt2oW9fVUdDb0VycvKUKVOePn26desHVasOLXE55ubmAJ4WjjQg9cZ6Vd4wIVQOMzMMGQKAC+7RP8vIyOjfv//x48f19fUzMjIuXrwIoHbt2j169OjVq1enTp04/L2ymjRp0t69exMTE//+UU5Oraysh6+9aWT0fs2aq+PiZgMatrY/yWQ6byPK9HQAiRkZM86evRgVJQPes7V1b9Jk4KpV1tIuUcWRnY127ZCZWQZxkko1bowHD/DwYdmUrlAgLw/a2mVTOpXQ1KlTnz592r59+6FDh5SmHOnBPSEhQUlxUcXGelXeqFdCGB8fv2LFinbt2j1//nzgwIFKLFlLC1ZWAHgvo3+Qnp7u5uZ2+vRpCwuLgwcPJiQkHD58+PDhww8ePFi5cuXKlSt1dXXbtm3r6urq5ubWoEEDVcdLSpOXl7dv377ExEQ/Pz87O7vC96UNlGxsNLS1FQDy81MKP9LSqq6jU7dmzfXx8QvS0wMMDdu8jUCNjJCaejEqyi8kxMnS8twnnxjr6MDKCsXPBgEYG8PVVekhkioJAYUCAHx98c03ABAXBzMzaGkpo/SMDBw+jLAwyGTQ10f37mjYUBnlUmldv3593bp12traq1evfnWMQwmwJ4cKVYx6deMGzp2DpiZ69oS9vfLLL2fUJSEMDw9fsWLFzz//nJmZaWFhkZCQMGrUqKVLl+rr6yul/L59C9Zi4ARCes2zZ8969ux56dIlS0vLkydPSpvk9OnTB0BoaOjhw4cPHTp06dKlU6dOnTp16ptvvrGzs3N1de3du3fXrl11dN5K7xCVmVOnTj19+rRRo0bu7u5CiCLe+RISlmZnP8jLS7awmFDWERZo3x5Hj16KiQHQs25dYx0daGmhQ4e3dHQq354/x6efwsEBAKpXh4sL9uzBBx8gMxNbtqBJk9KVnpeHdeuQnIzAQKSloX597N8PhQKNGikjdio5hUIxfvz4/Pz8r776ykH65y8FJoQkqRj1KjgYx44VzKv384OHByr7HMVibvlR0Qghfvvtty5dutSvX3/58uU5OTkDBgzw8vLS19f/+eefXVxcgoKClHKgZcuwdSsA7NunlPKokkhJSenWrdulS5dq1qzp7+8vZYPx8fF2dnajR4++ffv2uHHjLly4EBcXt3HjxkGDBlWtWjUyMnLt2rV9+/Y1NzcfMGDA+vXrVX0SVHK7du0C8OGHH2ZkZNSuXXv06NEKqZ/ljSwsPq9R41u53DgqalzZxwgAcHaGmdkf0dEAWr/zTkRq6h6ZLP7NmwSTeggIQNOm2LsXa9fCwwMAxo6FlxcSE3HrFlq1wg8/oAiV+p/k5+PYMXz2GdLScOQIqlVDs2Y4fx4JCTh6FNwTS3USExNPnTrl7u5+9epVW1vb6dOnl77MsksIAwNff0HlU4WpV3l5+O23wKiCvZcCo6rhwAFlll8uVdoewqwsbNmCU6eO+/n1BGBkZPTpp59+9tln0qitoUOHDh48+ObNm61atVq4cKG3t3cp+6wdHHDiBHr3Vk7wf8rIQFAQ4uNhYgInJ1StquwDUBl68uRJly5dbt26Va9evVOnThUugXXy5MkHDx6sXbt27dq1urq6HTt27NmzZ8+ePYcNG5afnx8UFHTo0KHDhw/fuHFj7969ISEhhoaGH374oWrPhUogJyfn4MGDAAYOHHj48OFHjx6FhIRoFG3nXQ0NvcTEdYDCxmbZq0vOlJ3cnJyA2FgZ0LpOnTVy+dSpU8c/fvzTTz+9hUNTubV5M8aMQWYmXFywezdq1wYAuRxDhsDNDd9+ix9/xBdfYM8ebNpUnEFVoaHYsgWbNiE+HjIZJk1Cejpq1gQAZ2fcvw8LCzx7BpO3UfMJQGxsbEBAQEBAwO3bt0NDQ+/cuSNtUl21atXGjRsbGBiU/hBllxAuWFCwK+bChdi5U+nFU8lV1Hp15w6ABRfa7nL/FcDCC+/trHkIcXGwtFTmUcqZSpgQJiTgl1+wfDliY1G9ehdbW/tPP/3I29vb1LRgiby8vDw9Pb0rV65MmTJl+fLln3/++dGjRzdt2lSjRo0SHO70aWlxPkybBl9f5Z0GgPh4bNyI/HxkZEBXF5cuoX9/cIJZBREdHd25c+d79+45ODicOnXKSppjCgDw8PBwdnY+fPjwqVOnzp07d+zYsWPHjnl7excOFv322299fX2jo6N37tz59ddfjxw5sn///lqlnKyTl4fHj5GXB2vrgg3jqIwdP348OTnZycmpQYMG06ZNA1D0xF4ur2Jk1P7581OpqUdMTT8uyzABAFlZN0JCMnJzHczNTR0dL23bBqB169ZlflwqrzIzMXEipAEKXl748cfXZ8jr62PZMnTtilGj8McfcHbGTz+leHq+KYW7d/du3e3bsX077t8veMvcHO++C03NP/sD8/MhNZqUrpWW3iA3N/f27duBgYFBL6Wmpr76BUNDw8aNG1evXv3IkSOHDx/+6aefJkwo7fB1CwsLlE1CmJyMP/4AwIWsVKzy1Ks7d5CdnZyp90e0DYDMPC3k5yM8nAlh+ZWXh+vX0aoVhMDt2xACS5Zg2zZkZwNA8+aYNEnXj3CUAAAgAElEQVQ+cGC4ltZf7iuzZs1atmzZ4sWLly1b1qlTpxEjRpw4caJp06abNm3q1q1bEQ+dk4MDB7B4Ma5eRd26aN0aDRqgShVcu4b165GaikmTSnc7EwI7diA5GceOwdQUSUlo1w779sHbG8poU6Ey9fDhQ1dX1/v37zs5OZ04ccLMzOy1Lzg6Ojo6OkprLh87duzo0aMnTpyQBouuXbvW0NBw+fLln3766VdffbVu3brw8PDAwMAWLVqUPKDwcOzdW/A6Px8dOqBt25KXRkVz4UKKmZnFoEGD0tLSfvvtNw0NjQEDBhT951WquD1/furZswNvIyGMjv4jKgpAGxsbYW19+fJlAG3avJX1bKj8CQsL8/E5uGvXV4aGWLu2YA3tf9SrF27fxsSJ2Lkzb+HCbjt2VFu/fr2VlRXy8xEbC4UClpaxiYm7d+/evXv3xYsX021s9KOjYWwMBwc4OsLWFrm5ePAApqYIDYWFBQID0asXdHRQpcpbPGO1sHnz5t9//z0oKCgkJCRHasl+qXr16k2bNnVycpL+197eXhrLsGvXriFDhnz++ec2NjZubm6lOXpBT86TJ6Up5B9lZyM+HgDy8pReNv23clGvlJsQPn4MIDtfMz7NEECeQgP5+ZV+W7mKnRBmZKBHDxw7BhcXTJuGgwchBDQ00K8fJk1Cu3bSt/6SlgkhIiMjX7x4MXr0aH9//5UrVwYFBX388cfnz5/v0aPHxIkTFy9e/OaumKQkrF6NFSsQFwcAlpYYNgyGhgDwzTdITIS3NzIycPIkNm5E9RJstpmXh717sWwZXF1x7Rpat4aVFbKycPQoPvwQd++Cm9eVb2FhYa6urjExMc2bNz927Fhh1/Q/Mjc39/Dw8PDweG2wqK2trfSFDh06hIeH//777yVPCJ88wa+/4vFjBAQAQJ06kMlgaIimTUtYIBVBVhZWr/bMyPho0KDsEydC9PT0mzdvXqwtHExM+kVHe6emHlMossp8e/roaGlFmTY2NuF5eU+fPq1evXptaYAgVTRhYWGhoaHnzp1r0qRJ06ZNHR0ddYszKMDPz2/kyJEvXrwYMKDenDlu/7noQ9Wq2LIF/fqFjhwZcfv2tSZNmqyePn1ARsaz7Oy9ISHbAgPPPXigkMaJ6epeq1WrQ+fOqFkTQiAmBocOISQE2dmYMAHJyYiKQo8eMDGBmxt7CJVr0aJFu3fvvnbtmvRHS0tLl5ccHR2l2TRZWVkhISG///77smXLpkyZYmtr++GHH969e9fX13fo0KFnz54t+W3o2TPzEycAPI2Nxf/+h27dSr0Y0Z8sLdG/PwD4+SmrSCoqFderMkoI09MBWBq+6O9wB4BfqCMApKS8+UcVnqjIUlPFqFFi4ECRmSk8PUWXLsLLS9y5898/3LRpk6GhIYBatWpdvHgxLy9vwYIFUh7YvHnziIiIf/zV3bt3p07dqq8vAAGIJk3Exo0iO/v1rx0/LmrUEICwsBBHjhTzfBYvFjVrFhygWzfh7CymTBG+vsLXVzg4CF9fcfZscUqkItmwQQQHCyHEmTNi+3bRooVITxdZWWLKlGIXFRoaamlpCaB9+/bPnz8vWTwxMTE5OTnS661btwLo1atXyYoSQgg/P+HrK+rVE9OmCR8f0aSJmDxZ/PBDyQukIti7VwCiRQshhHBzE1paORs2RBe3kNu3Xa5fx7NnxbqOlMjGje8YGwO44+39y/r1AAYMGFDmB6UycPv27apVq9aU5uMBADQ1Ne3s7Hr37u3j43Pw4MHY2Nh/+21ubu6UKVOkXw0ZMuTFixfFOnRcXFzvlzPp3R0de9atK73W1dQc2LDh3g8/zJo+XeHjoxgxQrRoIQwMCu50Mplo3VosXizmzxezZ4tVq8TDh6X+a6C/SE5O1tHR0dDQmDdv3oULFwrvTc+ePfP391+6dKmHh4eLi8ur61rv2rVL+o5CoRg2bBgAS0vLqKiokhw+M1P873+KWbO05XIAWdOni7lzc69fHzFixM2bN0t/dhs3vv6C3g4V16uX5WhrawPIysoSQuTm5pa2XikUwtdX+Phs/GCf9Phd8GLx4pKXWRFU+IRwwgRx9Kj4/nvh6Vm83969e9fJyUm6Wfr4+OTn51+6dElqETc2Nt62bdurX/b393d3d5fL5TKZhr19lqurOHhQKBT/Wnh8vOjWreBO5+39D0nj6x48EFOmCBOTghukqano3l1MmyZ69BAffyx8fcVnn4nmzcW8eUIZV096zfffi8uXhRDi4EGxapVwdRVTp4rMTDFihAgIEHfvioQEkZ//3+UEBARIo0O7d++ekZGhlNiio6MBVKlSJS8vr4RFLFsmvvpKuLgUtCy4uYkhQ8SsWaLEBVIRfPihAMTixSI1VejqCrlcxMcXu5DY2NnXryM4eFIZBPiK/PyHX38NwERPT/Hzz15eXgAWV/abX6WUmJhob28PoGPHjvPnzx8yZEjDhg3lcvlrDcE1atTo1q3blClTtm/fHhoaKl1boqOjpUHCmpqaCxYsKFkACoVi5bBhBtraAKrp6TWzstrg5vbsm2+Er+/t8eN9OnasW61aspVVwZ3OwUH4+Ih795T6d0D/YM2aNQC6du0q/XH79u19+/YtHIfyattBw4YNP/roo0WLFoWHhxf+PCcnp3PnzgAcHR2fPXtW7MOfOye++074+loaGQGImTxZ+Pr+2LcvAC0trS+++KK4TQ+vcXAo6AkYNao0xVCxqbhevSS1wsfExAghfvzxRyXUK19f4evrYP70zoSfhK/vKJcA4esrvv++xBFWCBV7yKikRw/8+muxf1W/fv0rV67MnTt3zpw5s2bNunDhwubNmwMDA8eMGbNz587/s3fncTHnbwDAn5nuu+gSiYQQiRTKXT8hrCNXyi4rlhXryt24KuySa9ucm9yFlchdEUIRRZEOR/d9T00zz++Pb1qLTc1M2/W8X177Ysz3mc/YTzPf53M8H3t7+6tXr3p6el6+fHnnzp3M6RRycnIODg5Ll2Z27fqN00i0tODKFfDwAFdX2LMHcnPPuLr2NfhaCbbIyMjdu3dPTUoaExYGANC+PZibQ7duUF4O4eHQujUkJEBiIlRWwpAhIClJRWXqyd694OcHiYnwv/9Bz55QVgYvXgAAjBgB+flVz1FTg9atoXVr6NPnbFHRpVatWrVu3br6v6mpqb/88ktBQYGtra2fn1+d1mjVoF27dvr6+omJic+ePevTp48wIWRlQVb27+32xcWgoQFsNtSu3CURQmkpXL4MLBZMngwXLgCXC1ZWwiwgFwgmTJt2pLj4VErKr7UsTyqMjIz7CQkAYKGry2rf/v7u3UAbCJsgLpc7bty4N2/e9O3bNzAwsLqCX1lZ2YsXL6Kiop59lJ6enp6efu3aNeYJcnJyXbp0SUpKKiws1NPTO3v2rNAruFgs1k9GRjY//TTrr7/uv3+/0MzMWl//0JMnJ6KjnzK7LAAujh79/YwZYG9Pq9b/M6dOnQKA6R83g8bGxjIFkKWlpQ0MDKrX+PXp0+erhzNLSUmdO3fO0tIyJiZm2rRply5dkpSsy91jYmJCZubBJ09yS0vV5eUXXblycNy4mT17vtLW9jp8+Lfffjtz5szu3YcnTvyfcO/O0BA2b4bjx5mFfuS/08D9CiAhIeHgwYO5ubnq6uqLFi06ePDgzJkzX7165eXlJVK/kpGB8nJD9ezNoYOPTzxfUiEFACAnV+c4TUtDZ6Qi4XLx9Gnk8fDdO/w4C11n169fZ+qLamhoBAYGIqKXl5ecnBwAKCkpMf9K2tramzdvzsrKqmvw+/dx+PCnMjIySkpKvr6+KBBgXBxeuVJ59epZL6/+/fsz8TvJy/NNTHD+fORw0NkZzc1RWhoBUFcX3d1x82Z0d8cdOzAtTcg3SWr02QzhL79gfj5OnoyzZ+PAgdi1K6qrI5tdNagNgIMH//LljxKzCHnatGnVqz3F5YcffgCAnUIv8gwNxU2bcMQIHDIER49GExPctAn9/MTaRvIPZ84gAA4ciIg4ahQC4MGDQoZili3cv39fjM373MOHi8zNAWDriBF54eFsNltGRoZZfkOaCoFAYG9vDwBt27ZlRsoR0c3NbfTo0atXrz5z5kxcXFz1KoOUlJSAgAAPDw8HB4fu3bszYw1aWlqGhoYZGRmiNsXLCzmc0O+/BwB1BQX2x62Aampqc+fODQ4O5tdmuQURn5SUFAkJCVlZ2epJmOjo6FOnTsXGxtZp4UliYiJT0XFurWfi+Hz+pUuXbIyNq7uBJJsNANqKir4TJwqOHHkaHMxUM+7XL3PYMHz5sm5vTSDAkhJ0dERfX/T1xRkz6nb5Nxvv4+Nz6dIld3f3srIycYZuFhq+X9nYVI+TMpmktra2r6+vQCB4+vSp8P0qM1Pg5l6ydqujcZTvxPO+E8/P6PkcORz0969LlJoa3zj7VdNOCBFx0SJks9HLS6QgKSkpzLQ1i8Vyc3NDxJcvX2ppabVp06Z9+/aenp6iLP8rKChgvqcBwM7UNG3Nmp0jR3b4eKJgazm5NYMGpS5bhhwOfv89du2KLFbVYlMbG7x2DRMS8OFDjI1FHk+kN0n+3ZcJISL6+uKcOf94Wk4Ovn6NDx7g9etRx44d8/T0XL9+/cKFC6dNm2ZtbS0pKclisWrYnyO0P//8EwDGjx8v5PUuLigvjxMn4i+/4Ny5uHkz7tyJJSVibSP5h4kTEQB370ZEdHNDY2PMzhYy1JIlSwDARYj9rLXn799XRwcAgr//Puj8eQAYyOSypOlgjnhWUlJ6xuyHRkTE4cOHfzpoJS0t3b17dwcHB09Pzxs3bmR/7JR5eXnr168HAEtLSzE0JSICt2xZZWkJAJO6d5eVlLTt2tVnxYoS+sxpIL/99huIaVfwo0ePmKme3761fC4/P9/T07O6MJWMpKRdjx7358yJ+/lnK3195sHBenrRixbxb93yOXK7VSsEQBkZXLcOa3nD9eABDhqEc+agoyMKBDh9Ok6YgIsXo7MzirYEFRHxxo0bzK6i1q1bA0CnTp0u160mRPPXKPqVjIydnd39+/fj4uKsrKyq+tXgwdHR0Xw+38cntG79qqAAL116MPfwIL23c/o8cTSOErhypveMntAtdvHAR87TM5t3v2ryCeGECQiAZ8+KGkcgEHh6esrKyt64cYN5xNTUFAAePHggamhEZMrYyMkBgJ6qqpaCAgB0atXK08ameM2aivXrj0+cOLdTp6pJKFlZnDsXX7wQy+uSutq2DefOxVev6nwhM6bg7+/P5XL379+/cOFCcTUpKSkJAFq1aiXkyLqREQLgrFn4/ffIYqG1dS12tRKRnDyJo0djSooYQgUHBwNA586dxRDrSwIBPn9evGGDJJstyWYXeXhs2LABAJYvX14vL0fqx6lTp1gsloSExKVLlz59PDEx0c/Pb926dWPHjv1yYw+LxTIwMIiIiEDEkpISRUVFFouVlJQkamsEAty500hTEwBuODoWuLrin3/SjuUGxNzM+ItpfsPPz4/NZrPZ7PPnz3/1CREREU5OTtVLBDt16uTh7p51+DBu3cpszRJwOEe/+05TQQEApCQk1g4eVbzj96yHCbNnV42Hm5rWVKMBEWNj8bvvqhbstG1bNXQbE4PDh6OkJAJgx44YECDkG3zx4kV1baR27dqtWLHCyMiI+aOtrW0yVTz6qOH7lYfHpwv3BALB0aNHmclGKSmptWvdiosxKwtr1a/KyvDGjdjFXt8Zxlb1K+XCOX2eIIcTs2D/8I6Jkmx+s+9XTT4hNDNDALx3Dx8+xBUrMDBQpGgpn9zBMbtURal99JnYX37pra3NLJlwt7Liu7rmurh4WFkxxf0AINHaGjkcFH3FDhEWj4dt2yKAMMVcN23aBACLFi2qrKxUVVUFgLdv34qrYUzNwE/H/mvr3buq8bH169HCAgFwxQpxtYp8ydwcmXtye3vxBKysrGQqFcXFxYknYjWBAE+exK1bb82aBQCmOjq4ZYvV0KEAcO7cOTG/Fqk3d+7cYYr47du3r+ZnMqX/vL29nZ2dLSwsmJ0R1etLZ8yYAQDu7u6iNqiy8u3KlQCgLCNT7u6Or1594+6e1Kf4+HgAUFZWFledM0R0c3MDADk5uU9HzMvLy8+ePVs9S8Nms62srM6ePVu1elAgwJgY9PXFgwfxxg189ixv61Znc3MJNntIB38dpUKfCRfw5MnHwUX9+tW0wD4rC52dq7I+BQV0ccGCgn88ISIC+/WryhVtbTExsQ7v6/37905OTkwRJkVFRVdXV+YfjcfjeXp6KisrA4C8vLyrqyutqG8s/eoLeXl5zs7OEhISQ4Y81tFBHx9ExMeP8V/7FZ+PERFZnH3O5uFM1qcgXeFiGVawbntVHT4OBzdvjthxu9n3qyafEDK378nJuHMnAuCiReIJy+PxJCQk2Gy22PaD8fm4cSN33bqfzczUZGUX9OvnYmmp8rHuSOfOnUVcmErEgjkqwNBQmBuY0NBQAOjVqxcijhkzBgCOHz8uroY5ODgAwJ49e+p8pZcXAmD37sjhoKamkMkuqTUHB5w6FYuLxZYQ4sf/+1u3bhVbRMbTp8yY/ebhwwHA2dwcN268snTpihUr0oWoiEoaQkJCAnMM19KlS+t6bUVFxafF2S9fvgwA3bt3F7VN8fH7Ro8GgCk9euDNm6JGI6LhcDgA8P3334s37Pz58wFAW1s7OTk5JSXF1dWV6YcAoKKi4uTk9PKb27YqKjA4+PH8n83bvmPus0d1jn+z7HfezRB+RSVWVmJ6OmZnV38Zl5SghwcqKyMAstno4ID/tj+Dx0NPz6pnysvjtm1l5d9aFFNUVOTq6soMkUhJSTk5OX26mfbp06dcLjc1NZX5KAaALl26XL9+vfb/XM1P4+1XiIj4+PFTc3NBVb8ahW/eII+HfD7+o18JBPjiRcmO/R5WN5RluADIZgkcjJ+lrtuPYWGYmYkeHrh5M27dip6eWFbW7PtV004IKytRUhJZLORycdkyBEBha2V/jqn1r62tLZ5wjJ07kcO5P2cOAGh9rP9m0aVLQECAgAZQGwfmsJBdu4S5lsvlysrKslis7Ozs7du3Q112SH/ToUOHQLjF+mPHIgCOG4e//IIAqKyM4q55Qz7l6IiPH+OaNWJLCHk83pQpUxQUFBQVFZ2dncW4ZgH//BM5nGc//dRJTQ0ADo8fjxwObtpEPaSpyMnJ6dKlCwCMHj1a+GNpPuLxeMxqK2FWInzq8uVRnTsDgM+ECSi+VRJEON27dweAa9euiTdsRUWFtbU1AKiqqlafa9K3b98jR47UbWg7PZ1/6IjPhAvq8iUAKC1R6WIZVua+C7dsQTc3dHPDnTv5b9/7+GCbNlXzM1ZWtTp+Ky0NHRyQxcKhQ1cZGBhcvXr1396It7c30/NZLJadnd1nJ1Hn5ORoaGgYGBgEBQUh4u3bt7t161a90u/9+zqfLts8NPZ+hcjno48PqqsjAEpLo4sLlt1/UtWp3Nxwxw7+73/4TLjQRqmoql/pJzz/2RuDgrC60EtREYaFYXj4p7tsmnG/atoJYUpK1fnviDhtGgKgr694IoeHhzO9UDzhGE+f4pYtflOmAIB1p05z+vSJdnb+1zEu8p9LSEA2G+XkMCdHyAhDhgwBgL/++uvhw4fMYI+42sYsz9DQ0KjT2IFAwE09PKB0mB4uW4ZjxiAATp4sriaRr2IORF2yBAcNwrAw/LglWUivXr3q168fs06G+aqQlpb+4YcfXoi8x5jP5wcsWGClr8/U/pOTlBykp1e+fj1u3lzbkg6kQVVUVAwbNgwATExMRDzGrdqCBQtA5ApGJdu3y0lJsVmsjPXra3V+K6k3kZGRzBcHrx6K0hUUFGhqanbo0EFaWtrOzu6G0B92AgFGRWW47nc0jmKBAAB7aGZO6v6yeM1W5HBWWoR108hibtnNzfHOnbrFDg7m9ezZi/nwnDZt2qfbggQCwdmzZzt16sT87YABA8LCwr6MEBMTwyQ/ADBlypQPHz5UVFR4enoydcVVVFQ8PT1FH45pWppGv0JExIwMdHSs2kP4r/2q3Yc7PxzBs2cxL6+WYZtlv2raCeHjxwiAJiaIiIMGIQDevi2eyOfOnQOAcePGiSdctUuXPG1sAGChmRlu2YJi3xRERLByJQKgKCsgmIIcv/zyC4/HY84sSRFLXRFERGzbti0A1CkTKCi4GhEBL2+1QQ4ndZ9J/s8mvEtiW8VKvmrZMkTE3FwcNgzbtUM2G9etE7Kgho+PD/Pd0L59+5CQkKioKAcHB6a4NovFsrKyChBqe3tOTs727duZXakAoCwjM9vERJs5NMXISLBpE93EN34CgcDR0REAdHR0xDiWHBYWBgC6urrCnwyRkfHXtGkAMEBXF/+lOAT5zyxfvhwAfv75ZzHGPHr06JMnTxAxJydHWlpaUlJS9PEpRMTSUrx06c7soz21MlyHhpi3+7DK8i5yODN6PjfSzNDTKPHxEXIv6qf32QoKCq6uruXl5ffv37ewsGA+Aw0NDc/WWJmQicB8p1dHSEhIYPaGAEDv3r3r92SgRqYp9StERLxzB3u2yfpKv1LN95lwQeBzTIhD3Zpfv2raCeHFixdVVTs6OKxDxO++OzZ06O1Xrwq+eVVt7NmzBwB++uknsUT7W1TUCgsLAHAbMaLOB+6Q+sTlcgcNygZAUcrK3rp1ixmwR8SRI0cCwOnTp8XVQubs199//732l7x7tzgiAlJODeZvWvfkoVREBKuiQmwJKqmZQICeniglxRxciR8rd9RKVlbW+PHjma8EOzu73Nzc6r9KSkpydnaurrTWp08fHx+fWo4jvnr1ytnZufq8cgN9fY9Ro3JXrUIOJ3LePEVpaQBYN3gwXrxY1zdL/mMbN24EAEVFxadPn4oxrEAgYOq5h4aGChni7t25ffsCwJbhwzE6WoxtI3XF5/PbtWsHAPfu3RNXzNzcXBkZGQkJiYyMDC8vLwCwsbERV3BExHfvKtZv4q7b7GgctcLi3rOfvOx7PU9c7FnuWYcvvq9KTk6u/lBlFvIx4ykHDhyo5ednSkpK9V6vrl273rx5ExEDAgI6dOjADNI5ODgIcVp1k9Mk+1VFRYXrlq/0K46biCX9m1O/atoJ4f79+wFg3rx5iMjs2hTXyhkXFxcA2LJli1ii/e3OnRk9ewKzuYIWizYmJ0+eBIDRo+tcmOFTpaWlMjIybDY7Ly+PqZclyphCZWXl7Nmzd+zYwfyR6e0mJibPa7N/AhERo6M7R0RA8e45Bb/PjIiAly/FugSa1EJoaFXhK3V1vHKlVpdcv35dR0eHWTTi+8ki+LS0tOHDhzNbjrOysjw8PJhKyADQqVOnGqpS8fn8Gzdu2Nraslis6tnFqipt2dl44ABu3oybN1+xt2fOjN4/ZgyGhIjl7ZP6cP/+/a8eMiEWa9asqf5WFYLg8GGmbnbUTz/R2uOGFRISAgB6enpiLFJw8OBBALC2tkbEwYMHA4APU8ZRXAQC3LwZORxH46iC1e7Te0ZXnQl++LBYwt+8eVNXV7dDhw4yMjIuLi6FhYV1jXDr1i1DQ8PqO/WMjIzi4uJVq1ZJS0sDgJOTk1ja2Zg1q3516JBYwjePftW0E0Lmq2vTpk3Z2dnM/ZO4Is+cORMAjh49Kq6AVS5fHtKhAwDcdHQUw8mpRHwGDRoEAN7e3iLGsbS0BIBLly7du3cPRCjZx+PxmClBRUXFtLS08vJyGxsbFRUVJgHQ0tJycHA4e/ZsQcG/TomXlb2KiICoB3ICzoZ3/uYREZCSskHYt0WEl5lZVayIzUYPj9QaNl2UlZW5uLgw2wUHDBiQkJDw6d8yR4cznerIkSPl5eVcLtfHx4cpK8IMT7q6uuZ8sgW2oKDg0zN8lZSUnJycvrIOp6wMCwowJOTQuHEAIMFmX5w+HcU69UTEKDAwsH379nZ2dvUR/OXLlwCgpqYmTAH00tLIn34CAF0VFcGRI/XQOlIH8+bNA4DVq1eLMebw4cMB4MiRIykpKWw2W1ZWNj8/X4zxERH9/HDzZkfjKORwTk32tzGIx61bxfhxxJR8E3rIAxHLyspcXV1lZWWZn5Q///wTEV++fNm2bVsVFRWx11lpbKhffVUz6FdVhQqaqJSUFABo27Ztamoq8xuxRxZXwCqFhSmFhQDQVlUVPi7cIg0uNjY2LCxMSUmJycFEwdSVCQ0N7devn4KCQmxsbGZmZl2DVFRUTJ069dSpU4qKigEBASoqKuPHj7969SoAjB8/vk2bNhkZGb6+vlOmTNHU1Bw5cmR09KHy8vjPglQmPpYt1VbONGABu0AjHgBUVEaJ+O6IEDQ0ICgIPD1BS4u/c6eNhYVFcnLyl0978eJF//79t23bxmazXV1d7969q6+v/+kTXFxcvL29O3fu/PLly9mzZ7dv397d3X3s2LGxsbEBAQHm5uaZmZkbN27U09NbvHhxaGjo4sWLdXR0lixZkpSUxJzh+/btW29v7+qN7H+TlQVlZRgyZI6T05pBg/gCwXR//0deXpCQUG//KkR4RUVF7969Y76kUlJStm/fzmx6F4tu3boZGxvn5eVdu3atzhfHxwfGxQGAbZcurK5dxdUkIgQej+fv7w8A1V9qlZWVIsZMS0sLDQ2VkZGZMGHCiRMnBALB2LFjq4cpxWbMGFBV3TEmBACmGcUctbsCnTuDsbG4wiMiACh/PP9ZCLKyshwOJyYmZvTo0Xl5ecXFxQDQrVu37t27FxQUMAsxmivqV/+mOfSr+s446xVzVOXVq1eDgoLg43SzWDCD7mLc0lrlwAEFaWkAKBT98F8iJvn5+YsWLQKABQsWiB7t+vXrANCvXz9EHDFiBAD4+/vXKQKXyx03bhwAqKmphYeHFxcXM3E0NTWry8HHxMR4eHhYWVlJSUmx2awnT7QiIiA6Wj852cUtLt8AACAASURBVCk/P4DPL8Nr13Dr1sqtq4r2zK5wWx5/ucvzJ20FgpZVCa2xuXfvKbP1Ql1d/fLly9WPCwQCT09P5mxxQ0PDyMjIGoLw+fyAgACm9CgAKCkpOTs7M2VFbty4wRTsBoDWrVsDAIvFGjly5OXLl2tbI4TPFxw75mhsDABtlJSSV65EOpCw8SkpKVFSUmKxWAkJCSdOnAAACwsLMcZnhrqnTp1ah2v4fHzwAD08zNq2BYDAGTOwBWymaszevXtnamqqrq7O/OzHx8f36NHjpmjHQu7cuRMAJk6ciIgmJiYAcL6e6gbxePj4MZ45g+fP46tX4o29ZcsWAFi7dm1hYaGsrKyurq4o0YKCgqq3ijHDwSHNer099at/0wz6VdNOCJlTO6Kjo9++fbt///663nnXgCkcJPY567zNmwFASUZGXAuXiXASEhJ8fHycnJw6duzYq1cvNTU1AGAqXImouLhYSkpKUlKyoKBg06ZNALB48eI6Xc4Mc2hqakZFReXn5w8YMAAAtLW1Y2Jivnx+VlbWpUunExNnREW1jogA5teTSPk3Qd3y9tvHB3XOPjgh749pyOHgzl+FrNFGxCcrK4spIMZisZydnSsqKtLS0kaNqpq5dXBwKC4urmWou3fv2traMhdKS0s7ODgwA1hPnz5lPhgtLCzihKhjXF5esX+/dadOANBNQyN3yxYU4mOQz8fXr/HePXz5EuuhLjlhihBs2bKlpKREUVGRxWIlJiaKK3j1qq0aVqT/A5+PR47g1q0ZK1awWSw5KamStWtpKKFhVVZWMluSlixZgojr1q1jBhljY2OFjsmMQ/n5+cXGxgKAsrJyWfWJbU2Hq6srAHA4HGarUevWrcUVmfmyFmOplUaI+tW/aQb9qgknhGFhYcxa26SkJPFGzs/PBwAFBQXxhkWBIGbhQgAwVFfHM2fEHJzUTCDAFy/e+/hMmzatuhRH9RwLAAwYMEBcL9W/f38ACAoKevv27YMHD2p/UE9+fv7AgQOZ9C86Ojo3N9fMzAwA9PT04uPjv3U1v6QkIi3NIy7OIiKCFREBWUfGxV3X4253Rg6Ht3WlYOMGPHcOExKEPAOBiIlAINi2bRtzeoShoSGzMEZLS+vTOcPae/z48ZQpU5gDfLt168bs8vfw8ACAFStWCNnEwsICd/deWloAMFhPj7t7N9bp6zk/H3fvRjc33LIF3d1x+3YhKnqTmjGLYrp164aI9vb2AODm5ibG+MyY9LFjx2r17MhIdHNDDufI+PEAYNulC3I4+McfYmwPEcKdO3eYdQd79+7l8/kTJ04EgI4dO6YLlau/efOGxWIpKSmVlpYyByzNnj1b7G3+D6xevZr5eWG2Gmlra4srsqmpKQA8fvxYXAEbJ+pXX9UM+pVkDatJGyeBQHD58mUPD4/79++z2Ww2mz148OATJ04wRUGEjhkUFHTy5EkfHx9JScn62kBYVFS1gVBZGZSUxBycfFViIty8CWFhEBwMHz5ot2t3+sMHANDU1DQzM7O0tLSyslJUVBw9enRaWtqHDx+YFX0iGjJkSHh4eGhoqI2NTfv27Wt5VV5eno2NzaNHj/T09G7evKmkpDRkyJDo6OguXbowBay+FYAtL99XXr6vtrYL77JPQcZ51QxDxTzdzI6PJPjSPJmiXJ0XStkdVO90VcntLtXGGLp0gS5dvt4PeTyQlIRmvRGiAbFYrJUrVw4bNszOzi41NbWwsHDkyJFHjx79bJyilkxNTc+cOZOQkPDbb78NGDCA2Wagra0NAOnp6UI2UUlJec6cK0VFA/bvv/P27ayDB0+WlLDl5aFVK7C0hI4dmTKnmZmZqjk5uu/fQ2YmpKZCVhakp0NaGigogJUV3LgBEhJQXg7DhoGvLyxZAlJSQraHfMHKykpLSys2NjYqKmrGjBknTpzw9fVl7kiEVlBQUFlZySw2njFjRmho6JYtW1JSUpgR0rKyMi6XCx8XzpSXl5eWljJXCbKyKsrKSioqskpLAcCS+dDLyspOSYlNTBTlq5mIYtCgQT4+PtOnT1+yZImuru7x48eHDx8eHh4+duzYkJCQ6qNraunkyZOIOGHCBDk5udOnT8Mnu8ialoqKCgCQlpbm8XjMb8QeWVwBGyfqV1/VHPpVfWecYpSfn79jx47qO2x1dfVFixYxUygSEhKurq61PPTjU0yZvuoqC2fOnMGP28CGDRsm5jfw4QMzgOpobIxhYWIOTj7z6BG2bo0Af//S0cHp030PHHj58QTIDx8+nDhxYubMmcw9kK6ublRUlOivfPnyZQAwNDR8+/ZtLS9JT0/v1asXAHTs2DExMfHdu3edO3cGgG7duglztP2TJ7h1q4CzQbBpnYCzIf5yl1dX9asXlEY8hpc3dYqXjcS5c9HbG4OD8cMHFAgwPx/Pn0c3N9y0CTdtwn378MkTWmVafyIjIwFAS0tLjMW7Gcz00f/+9z+RoiQnR//8s4qsLACsHjTIbcQIGwODXtrabdTVmQlJAFhnavqPHzHmV9u2OGIE/vADcji4eDH264fu7nQkndgxO5+XL1/O4/G0tLQAQJSPr4qKCmtrawMDg1evXiFiYGCgoqIiM49dJ9ISEpbt21du2JDq4tJeV1dFRaUWqxtIPeJwOPDxyMqsrKxOnToBwOTJk2u7r/ijHj16AEBQUNCjR48AQFtbW4g7rsaA+cHZvXt3fHw8ABgYGIgrMrOWUpTFk00I9avPNIN+1TRmCJOSYN8+walTZmlprwHA0NDwl19+cXBwkJOTq6ys3LJly+bNmzdu3BgSEnL8+PFaTvKkp8P+/RAU9GNk5HEA0NPTW7RokY2NjUAgCAgIgPpIx1NSUoqKAEBHSYlmCOsFjwfr1kFlJZSWgrMz5OdDmzZgaQkWFmBpCX36AItl/e7dtZCQX3/99c6dO2/evGGu6927t5GRUWhoqKWl5fHjx6uPGRVCfHz89u3bZWRkEhIS9PT09PX1bW1tx44dO3jw4Bp61LFjx54/f85szuZyucOGDUtISDAxMbl+/bq6unpd21DeRa4g7rFCmlZeuxi+VJlW4gClXP0KxcLCVq8L1RMLNd+UqqbKBggg/hqcOAEdO4K+PvTqBTIykJMDsbEgJwe9ekF2NgQFQVwcTJtGs4X1gdnpV109LDs7W1JSUlVVVfTIos4QMvT0jGbOvFBUZHP8uPvduyba2k8/CaipoKChoKAmEECvXqCgAIqKoKgICgqgpASKinD9OpibAwCoqUFxMVRUQG6uSI0hX5gxY8bevXtPnjzp4eExefLk/fv3nzx50ljYonmLFy++ceOGhoaGhIREXFwcs511yJAh/fv3Z7ZYy8rKMof9qqiosNlsaWlpBQUFAFBWVpZ49kzq+XNFCYns0tLvTp8Oe/dufXCw26hR5v37+/n5TZw4MTw8vK7zBkRcNmzYkJiYeOzYsTFjxoSHh1+6dMnCwsLf33/t2rXu7u61DBIVFfXixQsNDQ0rK6uVK1cCwNSpU6sHhpqW6vkWsU+8MAGlWsZSCOpXn2kO/aq+M04RRUSggwNKSiIADhlyzsLCouo85X+6ceMGs+CqdevWV64k1Rzz2TN0ckI5OQTAQYNi+/Tp4+Pjw+PxioqKvL29mVy8bdu21VUfxPNObt3CzZvnm5oCwN7Ro/HAAdrKJX6HDqGfHyJiair+8AN++FD1eEoKnj2LTk7YvfurT9YvKSsrjx49etu2bQ8fPuRyuY6OjgDAYrFcXV2FePHS0tI1a9YwnwIaGhpDhw79tACxqqrqlClTjh49+tV19gKBYPv27VlZWXFxccyIhqmp6acHytVJWpp7RAQkX+iDHNeUk0MKvX7AwAAsL8c3bzAoiL/vt4LfZ+IAc1RT+3tWh83G8eOxWzdcuhS//x5NTNDREe3s0M0Nayx6SUTB7F/Nz89nRlvXr18vlrDMHgYtLS1RA0VE4KZNh8ePBwA1WVm/KVOezJuXsmxZxfr1yOH8/WvDBly2DOfPR3t7/O47tLbGIUNw3jzkcHDFCjQxEe9xT6Qas44gODiYOfW0bdu2dR2eZzBlReXk5B48eJCdnc2EnThxYm2jcbm4cydz7vP9OXOkJCRYABemTSt68IAZ9bC3txeiVURcKioqmFLVRkZG+fn5ISEhzPfU77//XssIu3fvBoAFCxbw+XxmN014eHi9trn+zJ49GwAOHz789OlTADA2NhZXZGZnx7t378QVsJGjfvWpZtCvGiYhzMmpqjJQWorVpdHi4zEjAxExMRHz8/HMGTQ3r7pZlZbGWbPw2bOavpyysrJsbW17917CZqODA5aUfP1pe/dWxZSQwEmTMCyMj4jv3r1buXJl9dh8p06dxowZw4xSMIeGifqG4+Jw61bkcMZ27QoAc/v0ue/khM399NIGsHgxVq/SnDAB791De3ts2/bT9WxcI6Nx48b99ttvjx8//nJkwdPTkzkWfM6cOXUaC7h9+3bXrl2ZfNLBwSE7OxsRKysr79696+Li0rdv309HYbp37+7i4nLjxo3P6s28ePGCGdcYPHhwYWGh0P8McXGDIyIg948ppTvnR0TAsyhtxH8uSszNxYgIPHkSly7FsWOxSxeUlMRRo3Dq1Kpb/O7d0dW16vdHjwrdElIz5s47Li7Oy8sLAJycnMQStrKyktlfXfuCRl/38CFu2VK8Zo2anJyusvKxCRN8JkzY8b//LR0wYGavXlb6+jM6d0ZFxa+sGnV2RmNjtLTEXr3Q2Rnd3LC0VCxvjXxq/fr1APDjjz8iooGBAQhVmjwwMFBCQoLFYp08ebK8vHzo0KEA0Ldv39oXvEVELC7GM2dw0ybkcLZZWwOAmpxcwvLl0XfuMHODhw8frmvDiBjl5OQw31A2NjY8Hu/IkSMAICUlVfvTrt+8eZOUlHTr1i0A0NfXF/tC9//MzJkzAcDX15dZo8icESUWzMpt4WqrNFHUr6o1g37VMAnhlSv455+IiK9f49q1VQ+uXo1TpiAibt6MEyZU3Ve0bo1r12Jqaq3CCgSCffvKZGQQAHv2xK8eIpiYiKqq6OSETD32x49x+fL71VOxgwYNOn/+PDMs+uDBg44dOzLzSCdOnBDpDR89ihxOydq1nVq1AgA2my3JZm+xtubTJKF4/forBgcjIpaU4NSpeP58VTdSVkYrK/TwwIgI/NaYt7+/P3MHY2lpmVWLo7TS0tKYEvAA0KtXr/v373/1aUlJSd7e3nZ2dkqfrBZWV1e3s7Pz8fHJzc2NjIxkVofa2NiUinD3XFmZHxkpFflYonLLqrTjIyIiIDn5x399dkUFJiTguXO4bh1Onox2dlVJYLdufyeEzM8qqQeWlpYAEBoaev78eQAYN26cuCJraGgAQJqI5T3T0nDr1jWDBgFA+68dE9xeU7NqellbG3v1wpEj0dERf/oJORzcsgXXr8ctW3DrVnzzRkxvi/wDU6VdVVWVy+WuXbtWiDGFyMhIZuXntm3bBAIBc0/Ttm3bD9XLK+qqslJw7NjEbt0AwFhbu3TnzhM+PgAgKytb8wGbpL4lJiZqamoCwNy5c/FjUUQlJaXq421r48cffwSAdevW1Vsz692UKVMA4MyZM2FhYSDWMzyZxdW5ubniCtgkUL9iNIN+1WAJ4aZN+PQpXrz4j4Rw0yb088PNm/HIEezUCT09sU5jlIyYGDQyQgCUlUVPz688oawM+XwMCEArKybn5CsoqNva2n55K5+TkzNhwgTm1mfBghVCNIaRvmWL69Ch6vLyLIDlAweutLBgs1gAMHTIEOG/d8mX8vJw+nTcuBFnzMDHjzEnB/ftw5iYulZGefr0KTNHb2BgUMNGXoFA4OPj06pVKwCQl5d3dXUtLy//ZvDS0tIrV64sXLiQGW5gSEhIMFno+PHjuVxunVr7mdzcMxER8OpaR+Rw4q63j4iAvLxvnfEqEODOnbhyJRoaorMz2ttjv35V2aCbG4qj0A75qsmTJzNfIffv3wcAc3NzcUXu2bMniFZlhBG/d6+spCQLYP+YMVb6+jN79/5l/PgdO3b4+PgEBQXFPH+OaWlfGWQpLcUHD/Cvv/DOHazlWXZEKH369AGACxcuMMmhmppa7T9Aqusq//DDD4jI1HxXUlIStduUlua5uTGjn/NNTdHf38nJifk4FfvRvqROHj16xHzR7Ny5UyAQ2NvbGxkZ1bL4GZ/Pj46OZhZSffVQ3Kbiu+++A4Dz58/fvn0bxFo+kBlbKSoqElfApoL6FTaLftVgCaGTEx47hjt2/CMhfPcOJ0/GVavw5ctvTuTUpLgYZ8+umhyaNAmri5xlZGBREe7diwYGVX+rqoorVuD79zUtz/Px8VFQULC0jO/aFet6dHlUVNSsWbOkP9ZqU5eXXzpggMDV9dasWTpKSgCg3rp1QECAsG+UfI04bkBTUlKYdZ6tWrW6ffv2l0+IiopizhsEAFtbW+HWFSckJHh7e9va2srIyMybN2/mzJmi71lNf7g44iEr3de6cqtL5GN2ZKRUZWUtbsLS0tDdHZcvxzFj0M4ON2yoygb9/KjQaP1ZuHAhAOzZsychIQEAOnToIK7IVlZWAHD16lUR44weNQoAZpuaIoeD27bh3bvUHxqVX3/9FQAmT56MiCYmJp06dYpjVr98S2FhIVOBZsiQIeXl5adPn2axWBISEuL5Pvrw4dnChXJSUgDw53ffce/dYz5Ox44d23SXhDUPZ8+eZdaTnz9/vqysrIa9CRUVFTExMT4+Ps7OzhYWFoqKigCgo6Ojq6vbpP8njhkzBgACAwOvXr0Koldj/gSz1qw248LND/WrZtCvGsWS0bdvMT8fV6/GDx/wyRPU0sKP5wKI5Nw5VFPD0aNRTQ0fPUJEnDTp7zoa+vq4ezfWMuV++fIDM+soI4O7d3/7jkggwMuXcdw4x+r5n8lGRvtGj2b++J2hYY6LS8aKFTYGBgCgLC2dv2ZN3Y5+JvWvuLiYKTcqKSn56SbpkpISV1dX5kdUR0fHx8dH9NcqLCwUz/APn49aWqikwFv1c/HGqc9vyL16Nbz2jcDAQNy+HTkc3LwZvb2xKQ/XNQmbNm0CgLVr15aUlDDL6sQVmVn7J2Ln/Ouvv5g186IuPSX1JiUlRUJCQlZWNj8/P4PZhV8LlZWVY8eOBQBDQ8Pc3Ny7d+8yJ03v27dPbC178ODguHEAICcl9XTBguSHD5nTfXbs2CG2lyBCcXNzg481hD59PCcn5+bNm7/++uvMmTONjIy+PHSkXbt2zETQuXPnGqrxorO2tgaA69evX7p0iRnPFUtYgUDAYrFYLFaTzmpEQf2qqferhkkIo6ORWZ6ZkYGnTuGlS7h6NZ4/j3l5iIj799d20+A3JSVhVhZOnYp2dlhZifb2OHQo9u2LPj5Y12oLZWXo7IwsFgKgtTX+2w0Sl4s+PtijB1MW9ZKioqKTk1NcXBw+f45ubucdHFrJywNAO2XlkO+/F7i6/jZy5JOOHREAjY2xZRxf04QIBAJXV1fmM8vZ2ZnP5wcEBOjp6TFZorOzsyilX+rFo0cIgCoqyOGgsTFKSFT61rbeF/nvHThwAADmzJmDiMxAqbjW1C1btgwAtm3bJnSE0lK0tl4HAHv37hVLk0g9GT58OAAcrUvxJ2afj4aGRkJCQkJCArPjdMmSJWJu2dmzP5iYAEDn1q0L3N0v+fuzWCxJScnQ0FAxvxCpo/nz5wOApqbmgQMHXF1dx40bV33CczVJSckePXrY29vv2LHjxo0bTKU0pvyVvr5+050HGzJkCACEhITweLzc3FxRhmIrKioeP37M/L68vBwApKWlxdTMJon6VZPuV43i2ImCAty1qx7jOzpiYCDu3o329rWdEvw3589jq1ZVh5xfu4ZM1y0vx4oKTEvD9etRXb1qBrJ9e9yzp/gft3fl5fj69bvg4EEDBwIAm8VyNjevWL8e582rOkJdTu7rux5Jgzp48GD1fCDziWZmZva0cZbR53AQAPv1Q1dXVFBAABplaMwuXrxYPZTIVIlkjgUXHXOQwNKlS4WOwOEgi4XTpsU00WOCW47Dhw8DQI8ePa5fv17LScIPHz4MGDDg3r171UUCR40aJf7/0eXlZbt2mbRpAwBTevRAX1+XhQv79u6dWF1bvEbPnmG/flhejvHxuH07OjpWPV79GyK0ioqK4cOHy8rKfnqnLi0t3b17dwcHB09Pz7t375Z8rVZ7ZWVl9+7dxTyZ/N8aMGAAANy5c0fEODdu3DAyMlJUVExNTUXEoqIiAFBQUBBHG5sq6ldNul81fEKYloaTJ+OFC/X4Esz3xw8/4MSJYoj2/j0OHowAOHs2TpiAiOjjgz//jEx1U+Zu/PTpmmYgeTzehg0bJCQkeikpcTt3xiVLcO3avw/ZmDgRhT2AjtSTu3fvamhomJubq6ioeHp6Nt5bZKYXzZiBP/6IANixY0M3iNTk4cOHAGBqaoqIFhYWYvk6YRw7dgxEOP/t7VuUl0cWC+t+igH5r+Xl5U2fPr36HGQ1NTULCwtnZ2cfH5+YmH/N5wUCAXP3BgAmJib1VbEgIyN+6VIVWVkA2D1qFG/jxvJNm/DQIaxxbQWfj2/f4p07aGeH7u4YF4cbN1YVIUf8+zdEFFeuXAEAVVVVFxeXU6dOxcbG1vJ7jVlJrqGhUdA060Xt2bNHV1fX0NAwLCxMuAj37t0bOHAg8+NmaGjIlM998OAB89Mn1sY2PdSvmm6/aviEkMfD3Fys19pjzLKp5GRcvVo8ASsr8eJF9PLC2bPxr7/Qxwd37EA2G21t8caN2gYJCQlJs7aumhicMgU5HJw0qSqt/N//8MEDfPAAa70nhNS3tLS0nJycVHGtZq4PWVnIZqOkJK5di0OGIAD+/HNDt4nUJDk5GQB0dXURcdKkSQBw9uxZUQJWnyR+7do1ALCyshIuzvjxCIAODqK0hfx38vPzFy5caGlpqays/NkCLXl5eTMzMycnp/3794eFhX26yt3R0ZFZ+FC/Rx4/f35x+nQWgJSERNjs2cjh4MaN6OnJDJrm5uY+efLCzw+3b8f583HkSOzcGaWlEQDd3XHXLpw3D69exY0b0cQEly3DZcuwf/96bGzL8eeffwo9ZjRs2DBosocEvH//Xl9fHwBYLNbs2bMzMzNrf+2rV6/s7OxYLBYAqKure3p68ni8zMxMZ2dnSUlJaWnpwMDA+mt5k0D9qun2q4ZPCJsuLy8MC8NJk9DLC69exdqV2P2n/HycOrVqYtDYGNesQWdn7NgRf/4ZN23CzZtx61a8ckX8TSfNT0kJennhzJk4ejRyOKijgwB4+XJDN4vUhMvlslgsaWlpgUCwYMECUTbs8Xg8Dw8PW1tbZuv5s2fPAMDIyEiIUNevIwAqKWFKinBtIQ1GIBC8efPm3LlzGzZsGDduHLPh+VMsFqtTp06TJk0aMWIEACgqKj6pa+3suiosxI0bfxkwAAC0FRV3WFuvtLCYbGTUp1s35nwtWVlVNrvqa7D6V5s2uHEj7tqF6ek4dCjNEIofsz1euJvv8PBwTU1FPz/rioomeW5WaWmpq6srs7JRVVW1Nqt+srOzXVxcmNpL8vLyLi4uBQUFRUVFGzZsYE4FkJKSWrBgQW3OLm7eqF813X5FCaHwvLzw/n18/Bi7dUORqrv7+KCcHAKgujrOn48cDn73HZqZYb9+OGECurlh49yuRhqVgwfR1RUHD8aBA3HgQPzxRxw3TphzPMl/izl/KScnx83NTUdHZ//+/UIEef36tZmZGQBISEgw56mGhoYy3yWzZs3y9vaOjo7m1+4kn/Jy7NoVAfDXX4VoCGl0CgoK7t696+3tzRR5l5OTYzJDVVVVNTW1v/76q95b8OYNenhUrF9v0b59B1XVzxJURUXFnj17Tp9evmQJ7tmDly7hixdYWoqI+OwZenkhIv7+O27fjk5OVfGcnNDPD11daWuFSGbNmgUAhw4dEu7y+HiHiAhITp4t3lb9l968eTNq1CimH/bp0yc8PPyrTyspKfHw8FBRUQEANpvt4OCQmprK4/G8vb21tbWZy62srKKjo//j9jdO1K+abr+ihFB4/v74/Dki4rp1+MWZ9nUUHV1VmdTYGFeuRGPjqmPBe/ZEFxcU6h6RtCCpqejmhiNHor09cjjo5IQWFujmhmKqUELqD1PS46UIJ+34+PgwFUrbt28fEhIiEAj27NkjJyfHrD+ppqKiYmNjs3HjxpCQxBo2cD18iEpK2L07inwiJmmMKioqnj9/7uvr6+3tncfU9a5vKSno7o4cTuaKFeE//jinT5+tI0actLML9/Kq/TkZX/rzT/zQJGcRGovBgwcDwK1bt4S7nMtNiIyUjoyUKC19Lt6G/ccCAgKYSpjMTTlT9PJT1QcOjx07lvmgZsp+MA+amZlR1dxPUb9iNMV+xQYiLBYLFBUBAEaPBoFAtFhGRvD4MaxZA2PHQn4+qKtXPa6uDvn5UFAgYlNJM5eZCQCQlgYdOgAA6OhAbi5UVkJWVoM2i3wbMxaYnp4uxLX5+fnTp0+fNWtWcXGxnZ3d06dPu3XrNm7cOGdn57KyMnt7+0ePHnl7ezs4OHTv3r2goODq1auurq7OzilqatCjBzg6woED8OIFIEJmJmzdCgDQpQvs3Al2diAlBQBw+LA43yxpcFJSUj179pw5c6aTk5PqF/N19aJNG5CVBQANBQXzdu0OjRu3ZtCg6cbG5lOmaGpqChfy9m3Q0oK2bcXazhYmKSkJADp27Cjc5TIy+hoa8xD5KSmrxNqu/9rYsWNjY2NdXV0lJSV9fX27du164MABRKx+wk8//dSvX7/g4OCAgICioqKhQ4daW1vHxMR07tz57Nmz4eHhTApEGNSvGE2xX1FCKLz4eMjPBwBITYWUFJHDycnB1q2grg4qKpCbW/Vgbi6oqFTlnYT8G3l5YLFAQQEKCwEAuFyQlgZJqqk1zwAAIABJREFUSfi4PIw0Wn369Gnfvr2Tk9OxY8cqKytrf+HNmzeNjIxOnz6trKx87Nixs2fPPnr0yNjYODAwUFVV9dSpU76+vv369WMiv3jx4sOHD2fPnl2yZImKSl82G16+BF9fmDcPjIxARwf274djxyAwEEpL4fVriI2tepXr1+vlXZMWhMWCadNARgaYA6nZbJCSAhsbaNVK6JClpVBUBBkZYmtjS8PjCaSkusvLq7Vr107oIG3abJCQUCkouFJYeFOMbfvvycvLczic58+fW1lZ5eTkzJs3b8iQITExMczfOjg4PHz4sGPHjo6Ojv379w8NDW3durWHh0d0dHR1IRDCoH71qSbXr1ifJqykTrZtg5gY0NSE+HiYOROmTBFH0IcP4dYtCAuDnBxABE1NsLCAESPAzEwc0UkzVVkJv/4KGRlw8ya0bw8fPsDAgaCrC4sXg4JCQzeO1AQRe/bs+eLFCwDo2LHj0qVLZ8+eLS8vX8MlXC6Xw+Hs2LFDIBAMGDDA19dXR0dn1apVe/bsAQArK6s///yzbY2zJzwePH8OYWFw7x6EhlZND/J4EB0NHh5w4ADcuwdDhwIAXLsGERFifLukpSothchISEkBNTUwMQFh5waJWCQkgIEB6OlBcrJIcdLStqamrpOX792tW2QzmGBARF9f35UrV2ZkZEhKSi5YsGDLli0VFRU7duzw9PQsLy+Xl5dftGjR6tWrma1f5DPUr76qqfQrSgiFt20b/O9/YGIC584Bny+mhBAR/PzgzRuorAREkJaGzp1h0iSgUShSs8REOH0aeDzIywMVFZCRAVtb6NWroZtFvq2iouL06dPbtm17+fIlAKirq8+ZM2fx4sVt2rT58slxcXF2dnYxMTHS0tIbN25cuXLlkydP7O3tX79+LSsry+FwVqxYwWbX7Rv09WsoLISgILCxgYMHQVUVkpPh2DEAAAcH8PMTx5skhDQaN2+CtTUMHQrBwSLFEQhKY2K6SEu3NzC4KCmpIabWNbC8vLx169b98ccfAoFAXV2dy+UWFxdLSEh8//33GzdurHmsrYWjflWDxt+vmnzm3dywWDBlCsyYAQMGwMCBMGMGTJ5M2SD5Nn19mD8f+vUDY2Po2xfmzKFssKmQlpZ2dHSMjo4OCAiwsLDIzs7etm0bs5Lk9evXnz1ZUVExNTXV0NDw/v37K1eu3Lt3r4WFxevXr3v06BEeHu7i4lLXbBAAunQBZlyyX7+qrYMsFsjKgqws1D0YIaSxS0oCABB2n9ff2Gx5Q8P7BgYXU1M3vn//C5f7+edVU6SmprZ///6IiIj+/furqanxeDwrK6vIyMhDhw41hrv2xoz6VQ0af7+iGULhZWeDoiLIylbt2/riQGBCCKmzsLCwPXv2nD9/ns/ns9ns0aNHr1u3ztzcvPoJjx49MjIyysrKcnR0vHPnDovFmjt37q5du2peaFqz0lLIyICOHaGwEDIyoKysajzh+XMaWCCkuVmzBtzdYeNG2LBBDNEyMnbJyfVUVrYCEDSnaQaBQJCWlsblcjt16tTQbWkaqF/VRqPtV83nn/i/p67O1E4DZWXKBgkh4mFpaXn27Nm4uDhnZ2dpaenAwMD+/ftbWlpeunSJGb8zMzO7fPmyiYnJnTt3tLS0AgMDvb29RckGAUBevmpYV1kZOnf+OwmkbJCQ5ofZ4iX6TA5DRWVkRsav6enbEetQFqvxY7PZbdu2bWx37Y0Z9avaaLT9imYICSGkkcrIyPDy8tqzZ09eXh4AGBsb//TTT3fv3j1x4gQATJw48cCBA61bt27oZhJCmpIBAyA8HO7eBUtLscXMzj6CWKahsVBsEUlTQ/2qSaOEkBBCGrWCgoI//vhj9+7daWlpLBYLEZWUlHbv3v3DDz80dNMIIU1Pjx7w8iW8fw8inA4AAFBW9iwr64Cysg2fn1dcHKqqOkFFxVZMbSRND/WrJo0SQkIIaQLKy8uPHz8eHR2tpqY2c+bMRrjghBDSyKWmgq8vuLhAcjJERcF331U9XlEBUlJ1K2DH5b5+9WpQZWVm27Y7lJVHSEq2kpbWq482k8aP+lUzINnQDSCEEPJtMjIyc+bMaehWEEKasLw8OHIE+vQBAwOIiPj7xn3HDjh9GlasgBkzQLIWN4YVFR/i40dWVmYqK1traS1isWTqtdmkkaN+1QxQURlCCCGEkBZh1izw9gYu9x8PXrgAMTEwaxZ07Qp//PH5336msjIrPt66oiJZUXFgp04X6K6dAPWrpk+Cw+E0dBsIIYQQQkj9ysqCN29g6lTw8gIFBdi6FZKSwMQE5s8HfX2Ii4M3b+DyZbh/n5Oe/rBXr14yMp/flPP5BfHxVmVlMfLyvTt3vi4hQTXWCfWr5oBmCAkhhBBCWgoLCwCAhAQIDoaNG0FfH9zcYNw4ePkS/P1hwoTs4OCNq1atat++/dq1azMzM6svLC4u3r7duaQkSla2e+fONyQkVBvsPZDGh/pVk0ZFZQghhBBCmr+SEsjKgg4dID8fcnIgLQ22bYPAQAAABQWYMweWLwddXbh+/bq7u3tISAgAtGvXLjk5WUJCgsvljhkz5vbt20uXfufhsV9KSqdh3wtpPKhfNQOUEBJCCCGEtFD37oG7O1y5AojQrVvZwIGLVq5c2aVLl6dPn+7atatz587r16/n8/lTp049d+6clpbWnTt3unTp0tCtJo0d9aumhRJCQgghhJAW7flz2LYN3r37PSxsIZvNnjRp0qpVq/r06QMAAoHAwcHh5MmT6urqISEhPXr0aOjGkiaD+lVTQQkhIYQQQgiB5OTkXbt2HTx4sKysDAAsLCxWrlx55coVb29vZWXlW7dumZqaNnQbSdND/arxo4SQEEIIIYRUSU9P37lzp7e3d2FhIfOIvLx8UFDQ4MGDG7ZhpEmjftWYUUJICCGEEEL+oaio6MiRI3v37rW3t+/fv/+oUaMaukWkOaB+1ThRQkgIIYQQQr5CIBCw2XREGREz6leNDSWEhBBCCCGEENJCUXZOCCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtFCWEhBBCCCGEENJCUUJICCGEEEIIIS0UJYSEEEIIIYQQ0kJRQkgIIYQQQgghLRQlhIQQQgghhBDSQlFCSAghhBBCCCEtVBNLCCsrKyMjIzMzM6sfycnJiYyMLC8vb8BWEUJIDTIzM9+/fy96nJSUlPT0dNHjkOaB+hUhhDRyJSUl9+7dy8/Pr9NViYmJL1++rKcmJSYmvnjx4rMHm1hCWFBQYGpqevr06ezs7N9///39+/dXrlwxNTUVy5ciIYR8JjAw0M/P78shp+DgYD8/v9zcXOaPFy5cePXq1b8FWbZs2bBhw0RvzKRJk+bPny96HNLgqF8RQoRQWlp6/vz5TZs2rV+//tChQykpKQ3dojo7duzY3bt3G7oVdXb//v2jR48KceHr168tLS3Dw8PrdJWLi8uUKVOEeLnaWL16tZ2d3WcPNrGEsNqHDx+WLFkSFxcnxLX5+fnW1tZFRUVibxVp3vz9/W1sbAQCAQBkZ2evXLly7Nix8+bNE64fNpTs7Gxra+srV640dEOaAES0s7ObMmVKUFDQp4+XlpaOGzduypQpDx48YB6ZNGmSv79/Q7SxgeXn58+bN4/L5TZ0Q5oS6lffRP2KkC/dvXu3c+fOU6dODQgICAkJWb58eadOnbZv397Q7aobV1fXc+fOAUBycrKNjU1DN6e2Ll68uHbt2oZuRT1qqglh7969KyoqrK2thbj27du3N2/e5PF4Ym8VaVoQ8fDhw7a2tj169DA3N58/f/6zZ89qeH5iYuK1a9cQEQAmTJjg4+PTu3fv4uJiGRkZIV49KCioTZs2b968EbL13xIcHNymTZsvVwVwudybN282xWHF/15aWhqXy5WUlDx9+vSnj1++fLmsrIzFYiUlJTGP5OTkLFu2rCHa2MCSkpIOHDhAH6d1Qv3qm6hfEfKZ5ORkW1vbdu3aJSYmRkRE3L17Ny0tbfbs2S4uLj4+Pg3dujpISkry9PQEgDdv3ty6dauhm1Nb27ZtS01NbehW1CPJhm5ArcTExDx48IDH47Vq1Yp5pKCgIDg4eODAgZ89Mzg4uKioaOzYsSwWCwDevn1769atoqIiIyOj4cOHs1isK1euMIOvFy9eVFRUNDAwMDExAYDU1NSbN2/m5OR07NjRxsZGVla2hvbw+fzg4ODY2FhJScmuXbvm5OSMHj06OTk5JyfHzMzswoULhYWFU6dOVVVVFQgEISEhMTExsrKygwcPNjQ0BABE9Pf379GjR/fu3avf4KtXryZNmhQWFqasrKyjoxMYGFhZWWlqatq7d29x/3OSKu7u7mvXrh0zZoyjo2NJScmdO3devXplbGz8zQvz8/PDwsJ27dq1ZMkSoV9dX19/wYIFampqQkeoWfv27RcsWKCurl5P8VsC5r7czs7u4sWLxcXFioqKzOOnT58eOnRodHR0cnIy80h8fHy7du10dHQAICMj4+HDh3w+v0+fPnp6ep8GfP78+atXr/T09MzMzJhHSkpKnj59mp6e3qZNm379+klLSzOPc7nce/fu5ebm6urqmpubMx9oNSstLX3y5El6erq2traZmVl1qPLy8gcPHmRlZenq6pqZmbHZVeOAb9++ffLkCZvNHjBggKamJvNgRUXFvXv3srOz27RpM3DgQObJsbGxrVu3lpeXDwkJkZaWNjY21tLSYt4Os/InKipKXl5eU1NTV1cXAIqLi8PCwoqKijp06GBqaso0PisrKysrq1u3bkxjhgwZoqqqKtT/liaP+hX1K0LqaseOHWVlZf7+/syPAwDIycnt27fv4cOHrq6utra2t2/f7tKlS/U9zL1793JycvT1/8/efYdFdXQNAD+7y9Lb0hVUQKVjwxYFsaDYK6DYS8COsSQYexdj13wafE0itih20aiABQErRUDFBoIgiiKgFCm7e74/RjcbBEJZBOH8njx55HLv7Ozd4e6ce2fOmMbHxw8fPpzH47Htr1+/Dg0N7dOnj4aGBgA8ePDgxo0b+fn5xsbGXC7XwsKiZcuWABAdHX3z5k1EtLe3Z2VmZGRcvXrVxcXl2bNnV65ckZOTc3Z2NjIyKrW2b968uX79uouLy+PHj69evaqgoODs7MwuZZcuXWrUqFFCQsK1a9cQ8dixYwBgbW1taWl5/Pjxnj17pqWlhYSEtGrVqlu3biDVPzc1NXV2dpbun8fHx4eHh+fl5TVt2pTP57ds2dLc3BwAYmJibty4IRKJunTp0q5dOwDIzMy8fPny8OHD2TMhHo/Xu3fvpk2blnW2i4qK/v7779TUVH19/Z49e2pra9+/fz8lJaVfv35Xr141MDAwNTVlO1hYWEg/nfryfEoXi4jXr1+PiYlRVFTs1atX8+bNy//Q379/HxQUlJWV1bZt2/bt20u2v337NjAw8M2bN02bNnV2dmZfIsnJyXFxcQMHDoyJiWHRRP/+/bW1tdkh2dnZQUFBaWlpBgYG6enppbwY1m3FxcUTJ04EgBYtWnTt2pV9W2zfvj0yMhIALl68uH//fgB4+vQpIp44cYLL5e7Zs4cdu2vXLj6fb2Ji0rlzZy6XO2LECETs1q0bOzvGxsampqbLli1DxIMHDyoqKjZu3Pi7775TUVExNTVlBZYqOTm5VatWfD7fzs6uTZs2ampqAJCQkLBs2bLmzZt36NBBU1NTUVHx3bt379+/79q1K5/Pb9++fYsWLbhc7uLFixFRKBQCwMqVKyVlLlq0iM/nI+KAAQPs7Oy0tbXbtm1rY2MDAN9//31NnuCGSywWCwSCwYMHV/yQDRs2AIBQKExISACAffv21Vz1ag6bcCv5MyHlOHDgAABERkbyeLy//vqLbfzw4YOSktLu3bs7derEriqIyOFw1qxZg4g+Pj58Pl9dXV1PT4/L5a5YsQIRx44da2hoOHjwYE1NTWNjYwAYO3YsIl6+fFlNTU0gELRs2VJRUdHExCQxMRER7969a2hoqKSkZGJiwuPxevXqVVhYiIidOnUaMmRIqVW9cuWKurq6dFEJCQmsKCMjIzk5uWbNmrE+emZmplgsnjVrFpfL1dbW1tLSUlBQ+N///oeIsbGxxsbGCgoKpqamcnJyXbt2zcvLQ0Q7O7u+ffvq6+sbGRlpaGjw+fzt27cjopWVlZKSEgBoamoKBIKff/4ZEQMCAgQCgaKiYrNmzTgcTufOnV+/fo2Iu3fv1tXVHTduHPvqiY6OrsmPrk6jdkXtqv4RiURJSUk5OTkVPyQjI+Ply5c1V6V6xsTExMHB4cvtPj4+ABAXF9e/f3+BQPDixQtEjIqKkpeX37JlCxuXHhQUJNl/6dKlOjo6RUVFQqFw0qRJANC8eXNJB3vbtm1isdjDwwMA2rRpY2Njw+FwfHx8EPH69esAMHv2bIFA4ODgYGBgoKamFhMTU2ptg4OD2c5aWloODg76+voaGhoPHz5ExMaNG8+cOdPa2lpTU5PD4Ziampqamm7fvp2NCHB1dVVUVNTW1v7hhx8Q8cCBAwoKCl/2z0UikYeHBzu8a9euBgYGAPDLL78g4syZMwGgVatWtra2ALB69WpEZFP4Zs2axSrfqFEjVVXVyMjIUiufmZlpaWmppKRka2urqanZu3dvRJw3b562tjYi2tvbDxgwoGXLljY2Nh07duRwOFOnTkXEss5nVFQUAFy4cCE/P79Pnz5ycnIdO3Y0MTHh8/nHjh0r6+N2cXHR09MzNTW1tbVt3bo1h8Nxd3cXiUSIGBAQoKqqqqen16VLF/YM6d69e+xc8fn8GTNm6OrqOjg4aGlp6evrp6WlIeL58+c1NTU1NDS6du1qZmbG5/MtLS1LvGJdDwjXr18PAL///jv7MSMjo6yAMCoqSkVFZdGiRWzP+Ph4Ho83Y8YMdvr++OMPAGB3I9ij6nfv3rE9U1NTFRUVR4wYwb4ak5OTDQ0NS/2rY7p27aqnpxcbG8t+3LdvnyQgBIAtW7aIxWL2orNnz+bz+Tdu3GB7Ll26lP1Zlh8QAoCkibAI5NSpU7I6n0Tiw4cPADBt2rQvf+Xm5vbjjz9KfgwMDLSzs0tMTGQfx4YNG1isbmxszDo0bLcnT564ubk1btxYT0+vd+/eoaGhbPuCBQtWr1598uTJzp076+jodOrUibXDq1evtmvX7vnz54h46tQpe3t7XV1dY2Pj+fPn5+bmllrnhISEWbNm2djY6OnptWrVat26dcXFxYhYUFCwZMkSKysrgUDQvn37gwcPImJ4eHi7du0eP36MiDExMS4uLoaGho0bN2Y3mSggrIjVq1crKiqKRCIHB4ehQ4eyjfv37+dyuWlpaSNHjmzXrh3byDruV65cAQAvLy92BTh06BC7azB27FgAWLduXVFRESKyKR8xMTEfPnwIDw8Xi8WImJaWpq2tPXny5IKCgiZNmnTo0CEjIwMRL126xOFw2DWwnI57Tk5OWFgYK+rVq1c6OjoTJ04sLCxs1qyZjY0N63U9e/ZswYIFOTk57Hq4efNmRBSJRNu2bbtw4YJQKGzZsqWtrS3rZ4eGhnK53G3btiGinZ0dl8s9cuQIIgqFwgkTJnC5XNYP2LhxIwB8+PCBVePVq1eqqqrOzs6sXxgdHS0QCFidd+/eDQCTJ0/Ozs7Ozs4WCoU18ZF9E6hdUbuqf96+fVvZb5bJkyc3b9685qpUn4hEIi6XO378+C9/dfToUQA4e/Zseno6637k5+fb2to6OTmJRKLi4mJ9ff3JkydL9re0tJw+fTp+jiT37t3Ltr97944FMOyO1R9//MG2T5s2TVlZ+e3btywg7NevX3Z2NiJmZWVpamqW9dCCBYSDBw9mf8UZGRlqamozZ87EzwEhIi5evFhOTk5yCAsIraysUlNT2VtOSUlRUFBwcXFhl7ikpCRDQ8Nu3boh4pYtWwBg165d7FiWFuSXX35hZ+O3335j2+fMmaOoqPj69WsWEPbu3TszMxMR379/r6OjU+r5RERfX18WYyOiUChkMZV0QKikpHTx4kW2888//8zhcN68eVPW+ZQEhEuXLpWTkwsJCWFvtk+fPiYmJqwX9yUXFxcA+PPPP9mPu3btAoD9+/dnZWVpaGg4OTmx22qvX782Nze3trYWi8Xsg5s0adLHjx8RMTExkcfjrV69OjU1VUVFpVevXuyDQ0Q3N7dvLyA0NTXt3r275MeyAsLQ0NAmTZoMHz6cfV8i4tatWwEgPDw8ISEhISHh4cOHcnJy7AFdiYCQZQ26f/++5FXWrVsHAJmZmR07drSS0qVLF5YEdtOmTZKdpQNCDocjXXkTExMXFxfJjwUFBerq6rNnzy4/ILSxsZFsLyoqUldXnzVrlizOJSmJ3fPesWNHiQDMxsZGcoceEdk8nwcPHrCAMDIycufOnQAwc+ZMf3//gIAARHz58qWurq6FhcWhQ4dOnDjRq1cvyb2AYcOGaWlptWnT5sCBA+fOnevcubOWltb79+9PnjwJAPHx8ceOHeNwOMOHDz99+vTu3bsNDAzKevYYGxs7ZsyYw4cPBwYGrl69msPhbN26FRHd3Nzk5eVXrVp17ty5efPm6erqpqamsrQx0dHRERERysrKrVu3ZhVYs2YNBYQVNGXKFHNzc0Tcvn27vLw8+yIZMGAAuygtXLhQS0uL7ck67tOnT9fU1MzPzy9RztixY01MTCQ/xsbGSt/3kejXr1+nTp1CQkIA4Ny5c5LtlpaWLGxgHfc///yz178FBweXKGrAgAEdOnRg4+6OHz9e4rd9+/a1tLRkvXwJdlGVPLBCxA4dOvTq1QsR7ezsHB0dJdvZEgXsnnGJjjsLCST3y9hZ4nK5eXl5rONODwSQ2hW1q/qoqKjo0qVLrCtfQQ8ePJDcOSXlYwmWSr2Fzb7r2R8+y0FlbW2tpaUl+Sxmz56tqalZUFCAiNHR0QBw/fp1RGzevLn0H6AkgHF3d9fX10/4jA3pPHPmDAsIpR82dunSpVevXn5+flb/dujQIRYQsuCHad++fb9+/fC/AsJVq1ZJtrA//AcPHki2rF27FgCysrIsLS2/++47yXZJQDh+/Hhtbe1nz56xyp85c4adHBYQnj9/XnJI9+7dHRwcDh8+XKLy+/btY3HB1q1b2UljpANCdgVjAgICAOD27dtlnU9JQNiuXbvvvvtOcmLZLbxHjx45OjpKV6Bt27aI6OLiIn15F4lEBgYGEyZMOHv2bIkTy8LXp0+fsoDwyZMnkl8ZGhpOnjyZXU7Z41mm1ICwTs8hFAqFz58/HzZs2H/uGRwcnJKSsnTpUsk0hsTERADo2rWr9G6pqalfHpuYmMjhcMzMzCRb2BDkZ8+ejRs3TjotuJKS0pMnTwCAjUj+z8q/ePHC3d1dskVBQcHY2JiNNiyH9PBoPp9vZGSUnJz8ny9HquDw4cMjR4708vJatGjRyJEjZ82aVZEZm61bt9bU1Jw9e3aHDh0keXt3796dnZ19+/ZtExMTABgwYEDz5s3Xrl177tw5AFBUVAwLC1NRUQEAOTm5vn37SmevWb16devWrY8fP86mxEyYMEFJSenhw4clkpd27NjR1tb24MGD7EeWKfTChQt9+/b19/dfu3btokWL2EuvWbNGSUmJ9Q4BwNvbW01NLTQ0lA1vbt269ZIlS6p77hqG58+fsw90xIgRc+fOPXPmzJAhQ4KCgti9SWNj48zMzPfv37OZGACQkJDQvHlzNtqtBMmlCQDYLKyioiKxWLxnz579+/cnJSWx5ye2trYsz9DAgQOlD1dWVpb8u1GjRmzmswSLH/bs2ePn55eUlJSeni4Wi62trVlRbNiMtISEBDYERXoj29nd3V36qiW5MLLGw+jr6wsEAnaN/bJkHo9naWkp2WJraysWiyXXvYpMWqv3qF1Ru6p/+Hx+z549JRPVAEAsFqekpCgrK+vq6rIt7969KygoaNy4Mfu8LCwsEFG6kJycnMzMTENDQzm5f3qnRUVF7BEHG4PXMCkoKKipqZXaiWXTQNh83REjRgwYMOD8+fM7d+40NDRkO4wePXrnzp0XL14cMmTI0aNHmzRp0rVrV5FIlJiYOGTIkC8LTExMTE9PLzG9LSUl5cuUB/Ly8kKh0NraevLkydLbraysWDj05c6Vetesf87mNDKsf/706dOnT5+WuljO8+fP371716JFC+mNqampkomX0vXJycmxtLQsUXkbGxsrKyt/f/+5c+euWbNm/PjxixYtKicdA5/PB4CioqKiofcKAAAgAElEQVSyzqf028nOzv7yxLq7u+fm5kq2SBq/9PWZy+U2a9YsOTmZXSG/jFlKDS7YOX/y5ImysnKJ2YxfqtMBIY/HU1JSYln+yzd27NinT5/OnTvX3t6efWeoq6vLy8vn5+dLX55Kpaamhoh5eXmSmejsg9HQ0Jg1a1aJndk9j4pUSU5OTllZOS8vT3pjbm6u5Du+gjIyMlq1alWpQ0gFtW/f/unTp9euXTt48KC/v7+fn9/p06fZqN3Kio2NtbS0ZJ08AFBQUOjVqxcb6AUAOjo6LBoEAPbVKFlnTCQSxcfH//TTT5IODev2+fv7l8gl7efn5+rq+uHDhzNnzjx//jw/Pz8jIyMvL48FftL9POmOo0gkun79uoeHh3THi1TQ8+fPnZ2dAcDQ0LBz585HjhwRCoVCoZDdpWIfd1JSkmQSv6Ki4pcry5Vj6dKlmzdvXrVqlaOjo46OzsyZM9PS0tjHd+vWLekrvvR1zNnZmdWqRFG//PLLqlWrunfvrqOjM3v27BcvXrC7S1/m7i+1nux1g4ODpW94SccbEkKhsKzkugoKCmKxuLi4WPKVxl6o1GCmwaJ2Re2q/snIyNDV1d2zZ0/jxo2HDBly/PhxLy8vFqsMGjRo165d06ZN+/vvvxGxWbNmJ06csLOz8/DwCAkJefbsmY2NzZAhQ16+fHn48OHi4mJNTc39+/cPGjRILBYvW7Zs27ZtrCtlb29/7NgxNlusAerQoUNMTIxYLC7x5xMZGcnn89nt7CdPnly7dk1BQWHv3r0eHh7sr6lz584tW7Y8cuQI+1xGjhzJ5XIRsawOtpqa2nfffXfjxo0S28taPNDOzs7Ozq7ERpmkD2X98/z8fEnPmfXPNTU1VVVVy6q8nZ1dREREie23b98u9SXatGlT6pOAv//+OzY29tChQ7/++mtYWNidO3fKryqHw/nPgEVNTW3o0KFfLmbo5ORUfuFMRkaGhYUF68tJBxfsnKirq7Nh218q61yVUKeXneBwOC1atJBulHFxcWXt7Ovra2ho6Obmlp+fDwDW1tZFRUWlNl92G1WSz5rNB5P03QEgODhYRUVF0rmXxr5Kpat0//79sqpkZWV15coVyQ2wZ8+eJScnW1tbc7lcFRUVNoeNYUNhvxQSEvLmzRsHB4eyXoJUE5fL7dmz5x9//BETE6Ojo7Nq1aqqlZOZmamuri69RSAQSKK+cuTm5hYXF5c4FgBWrFiR/2+urq5hYWFNmzZdtWpVYmKiSCRiMWRWVhb8+0a7tMLCwuLi4gb7DVodIpEoNTWV5eoAAFdX18uXL/v6+nbp0oWlSmOXCMkKAQBgYWHx7Nmz0vN3lebIkSNubm4//fRTp06dJI+A2N2+uLg4gZQvW8iXRbm6unp7e0sXxe6OhYeHl9jZwsIiIiKiRIe+1Nct9QZWYGBgcXFx586d4fO9TMl9XzYKRfoKGRYWpqSkVCIrZkNG7YraVb0nEokWLly4b9++7OzsP//8MyAgoE2bNo6Ojunp6Y8ePZKTk5s9e3aJQzZs2GBgYJCQkPDy5UtbW9spU6aIRKJNmzatW7fOx8cnIyMjPDz84cOHCxcurJV3VBdMmTIlJSVlz5490hsfPXp08OBBNzc3dXV1oVA4fvx4c3PzK1euPHz4UHrRvFGjRp09e/bKlSvPnj1jz+rZk7dSO9g2NjaxsbFlRRcyxOfzWdKNsnYoq39ubGxcTuUfPHjw6tWr6levVatWGzZsmDt37t27dz9+/Fj+zuWcTwkbG5uQkJCqraYTGRmZmJjo4OBQ6jmRk5Mr5wGgmZlZQUEBGy0MAGKx+MsFyaCOB4QAMHXq1Nu3b8+fPz8yMvLEiRMs42ipVFVVDx8+/PTp03nz5gHA0KFDzczMJk6cePz48djY2HPnznl4eGRnZ8PngS6bN28OCQm5d+9e7969W7duPXPmzCNHjkRGRq5cufLw4cNz585lT4FLaNq0af/+/Tdu3MhCiI0bN7IZiaVasGBBXFzc5MmTb9++ffHiRRcXF01NzSlTpnA4nE6dOvn7+4eEhMTExHh7e0vGAQLAu3fvLl68GBMT4+fnN2rUKAsLi3LeNZEVlo2W3c7kcrnlXKHKOjwpKUl69EtCQkKp9xRK0NDQ0NDQKHWU1JfmzZtnZWUVHx+/b9++jRs3WltbAwDrWUp3H6UpKysLBALpxXMq9aihIUtNTS0uLjY1NWU/uri4iESiiIgIyThhll9RskIAALC/7lGjRkVHR6enp1+9epWNGS6LlpZWXFzcmzdv0tPTN27cyHZu166dvb394sWLz549+/bt2wcPHmzatOnx48fl11ZLS+v+/fvp6enp6embNm1isxpat27t4OCwbNmyEydOvHnz5v79+5Lpr+np6RMnToyPj3/16tW5c+dCQ0PNzMycnZ1Xr159/PjxN2/exMfHb9u2TTK2OSMjIy4uLj09/fTp056entbW1iNGjIDP3X0/P7/4+PjExMT+/fsbGxvPmDEjNDQ0LS1t9+7dBw4cmDZtWqmX04aJ2hW1q4bA19e3Z8+eGhoaEydOFAgEzs7OP/74o66urrm5+fDhw1lSROn9+/Tp4+Pj06RJk8aNG0+YMOHt27cvX7787bffBgwYMGvWLG1t7S5dukycOPGvv/6q7LDDesPd3X348OGzZs3y8vK6fPnyjRs3tm7d2q1bNz09vU2bNgHAypUr4+LiDh061KVLl0WLFm3dupUNagOA0aNH5+fnT5s2zczMTPKsfurUqXfu3Jk3b15kZOTJkyfHjx/Pts+YMQMAhg0bFhwcHBMT89dff82ZM6cm3hEb+P3LL7+whdy+3KF3796tWrWS9M9XrFjx119/zZs3j8/nT5069d69e15eXpGRkadPnx4zZgw7ZNq0afLy8sOGDQsMDIyJiTl69ChLw1Gpip04cWLlypWXL18ODg4OCAiwsLCoyGCEss6nxIIFC5KTk93d3cPCwiIiIvbu3bt69epyCszOzmYPKg8fPjxs2DBjY+Np06Z16NChW7duCxcu/PPPP6Ojozdt2rRr1y4PD49y1jBzcXHR1taeOHFiUFDQnTt3xowZU+rZrutJZcRi8ebNm83MzHg8XpMmTQ4fPmxvb79v377Y2Fg9Pb2rV68ePXqUzTpg++/YsUMgELB58ykpKS4uLkpKSlwu18jIaMaMGSxTECKuWLFCW1tbTU2NpaN9/fr16NGj2aA+Q0PDdevWSZLTfCkrK2vixImNGjVSUFBwcHBgqwYnJCSsW7dOkglA4tChQ+xmKp/P7927N8tZhIjx8fGdOnViY2InT5586NAhPT09RBwwYICSkhJ7niMQCCZNmpSeni7rk0o+iY+Pl/w7IyODrTaDiAMGDDA3N2epET5+/Dh48GCQSipT6rITbFlYPz8/9mNERIScnNy8efMQcdiwYa1atZLsyVIsnD59WpJUxtXVVV1dXbLSSUFBAUt4+6UmTZqMGTOG/TslJaVly5atWrXKzs5WV1d3dnaWzH5+//49fp5oHh0dPWDAAG1tbdb4xWLx9OnTgZLKVMDVq1cB4M6dO5ItnTt35nA4LKk3Y2RkNGfOHJRaHuDKlSuSkX56enobN25ExLFjx0on02OzQw8dOhQWFtaoUSO28+DBg3/88UdbW1tEfPPmzbBhw9hDEg6H4+joyKpRTjbI8PBw9nwJAAYNGvTTTz9ZW1sj4tu3b11dXdnAIQUFBUnON39/f8lMhmbNmu3fvx8RMzMzR40axTrZHA6na9euLPeAnZ0dn89n45Tk5eVHjBjx6tUr9rpisXjKlCk8Ho/D4SxZsgQRHz9+3K1bN/b4WllZ+YcffmDtmSX/kFyEGyxqV9Su6iVJllF2A+L27duSXzVp0kQ6y+WKFSsAQCQSSbKMWltbS2fg++uvv9iXF5fLbdSokd1nbNU46b+Uhqa4uHjjxo2SOXXa2tqenp5snnBUVJSOjo4k62ZxcXH37t1tbGxYfwAR2Viz5cuXS0qTdLDl5ORatmzJHm+wDMC3b9/u1q0bj8fj8/lmZmbLly8vLCy8ceOGQCBgadKZgQMHDhw4sNSqhoSECASC8PBwyRZnZ+dhw4YhYuvWrdlaMmKx2MvLS1NTU1NTc9euXcXFxQKBgF3cJF6/fu3u7l5q/3z79u3m5uZycnItWrTYsWMHfF52IiIionv37nJycmxlwiVLlnz8+DEiIkIgEAQGBkpKHj58eJ8+fUqt/N69e1nJfD7f3t6epbNavnw5G6rQr18/6Qvm5cuXBQLB7du3yzqfcXFxenp6bMAge1rO4XAUFRXbtm27c+fOsj7rU6dODR06lK2+rqGhMWbMGEmWoKysrClTprBxFvr6+osWLWJZWFlAxFYGYtq0acMSEUVHR/fo0UNNTU1RUXHcuHGbNm1ia2lIq+sBoUSJxGWVUk50V+U98XOV/ve//wFA+Zm1yir2y37/gAED2rdvX9makCpgY31btWo1YcKE8ePH6+npKSoqXr58GRHPnDnD5XLt7OxGjRplZGTEZgmXHxCKRCIXFxfWx+rbt6+ysrKdnR3L8PufASEL7VRVVfv27cuCN5aH/Uve3t48Hs/FxWXEiBFsAQlW8rFjx1jKomHDhnXr1k1dXT0nJ0cSED58+FBPT09HR2fo0KG2trbt2rWTl5engFC2SlygPnz4IPkaLl9hYSF7nPLlr/Lz85OTk6WvEmKxuJwrISuq1J5xQUFBRkbGl8dmZmZ+ucbJx48fk5OTpbOr2dnZDRw4sLCw8MWLFyyf9ZdVLVHO+/fvS1SeVAG1K2pX3wqZB4SRkZEcDmfSpElB/1appQ7rq/z8/ApeCiTYFKpHjx59+Sv2J8zS/EoWbGDqTl+0rJqwyrMZOjt27KjIIRV/xbLWhChfOeezChUrZ+fKvsHyL/V1OqmMtOrkECt1/no194TPVbp//76KiorkHmqlimWzGatfE1IF1tbWN2/ePHfuXGJiYlFRkYeHh6enJ7sBOXjw4PDw8MDAQJFINGfOnFatWh08eLBRo0ZOTk47duwo9aPhcrnHjh27fPlyWFiYUCicMmXKkCFD2B3xadOmSc8Xbdq0qa+vb5s2bUQi0Y4dO1hivdjY2DNnzjx+/FhDQ+Pnn38ukR1XYv369W3btg0PD9fQ0Fi/fr1IJGJhrYuLS6dOnQICAjIyMho3bnzw4EFVVVUrK6sdO3YYGRnp6OjEx8efO3fuyZMngwcPdnd3P336dEXyqZKKK3GBqngKH3l5+bKG/ispKbEGWdarVLwoBQWFUnN1lDrIRFFRscTrSsr/MlGbpKoltqirq//n/DTyn6hdldhC7arhYKOlPn78WMGUGw2KkpJSZTMqHT161M7Ojg3GLkHSmwWAEvk5605ftKya1FzluVxu1Uoop0pVqFg5O1e2euVf6r+ZgLDuGDhwIFu5XltbOyoqas+ePRMmTKCc19+izp07swQG//krT09PABAIBOWvOMIW7yqxsU+fPtI/6ujosNIAQDKxXlFRceTIkf9ZYQ6HM3LkSOk9JR21Jk2asHH/Es2aNZOUr6WlJT2cfdSoUf/5WoQQQkgtGj169Pbt28eOHcuyfyckJGRkZHTq1Km26/XtEYvFJ06cYFOcJDZv3hwcHDx8+HAjI6O0tLT169c3b968rPvRdc3OnTsDAgJGjBjRpEmT9PR0Hx+fZs2aOTo61mKVvunzCRQQVhYiTps27fDhwxs2bMjMzGzatOnixYt//PFHWZXfokWLciaGkjqCy+UKBIJSb40TUv+oqampqqrWdi1IfUPtipRv9erVSUlJAwcO1NHR4XA4WVlZXl5eFBBWQVRUlJKSkpubm/TGvn37pqam/v777ykpKTo6Oo6OjitXrpReCrsuc3JySk5O/vPPP1NSUljOoRUrVkgv3Pf1fdPnEwA4WMncO4QQQgghhEgIhcLo6GgTExM+n//s2TMLCwvJ6rtxcXHq6uqSNUJevXqVlpZmZ2eXlJSUk5Nja2v78OFDRUVFSerdzMzM58+fW1tbs870kydP4uPjNTQ0LC0tG/La9ITUKAoICSGEEEIIIaSBqiuzRQkhhBBCCCGEfGUUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQgghhBBCSANFASEhhBBCCCGENFAUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQgghhBBCSANFASEhhBBCCCGENFAUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQgghhBBCSANFASEhhBBCCCGENFAUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQgghhBBCSANFASEhhBBCCCGENFAUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQgghhBBCSANFASEhhBBCCCGENFAUEBJCCCGEEEJIA0UBISGEEEIIIYQ0UBQQEkIIIYQQQkgDRQEhIYQQQgghhDRQFBASQggh5LPCQhAKa7sShBBCvh652q4AIYQQQuqABw/gwgUoKABEMDGBoUNBVbW260QIIaTGcRCxtutACCGEkFr14AGcOQMpKRAfDyoqYGcHAgHMnAny8rVdM/Lti4mBkydBVxemTAElpdquDSGkJBoySgghhDRsiHDhArx9C2Fh0LUrNG4MAQHw8SNERNR2zci3LykJfHzgxx+hQweYMaO2a0MIKQUFhIQQQkjDlpMDRUWQmAitW4O8PBgZQWEhFBfDs2e1XTPy7bt8GcaPB1VV6NQJPnyo7doQQkpBASEhhBDSsHG5n/4vEn3awqaTiMXw5Emt1YrUD3w+FBZ++rdY/Okf1K4IqUsoICSEEEIaNlVVUFEBMzO4dw9ev4a4ONDWBgA4eBBsbSEgoLbrR75lAwaAnx/ExMDhw2BmBgCwdCm1K0LqFAoICSGEkAZvyBDQ0ICBAyE9HZSUwMkJED8NJXV1hYsXa7t+5JulrQ2//QaxsaCtDT4+gAhZWVBUBG5u1K4IqSMoyyghhBBCAF6+hIsXIT0duFwIDARVVWjXDi5ehNu3QV4ejh2DwYNru4rkG7d8ORgagocH/PAD7NhB7YqQOoICQkIIIYRIuXULunQBABgwAOzs4NIluHWL+u6kuiTtavdu8PSEuXNh+3ZqV4TUBbwVK1bUdh0IIYQQUmcYGYGBAZw/D0+fgrIydOsGhYWQnFwYERHcvHkLNg2MkMqStKvz50FHB5YuhexsuHGjMCoq2NSU2hUhtYgCQkIIIYT8W/v2n/ruz56BkhI4OuaKxQ4JCTsOH27Tpo25uXmlCktNBXV1AIA3byA7+59/y8sDj1cDlSd1lqRdXbgA2tqwbFmuUOhw8+YOPz9qV4TUIkoqQwghhJAvTJ0KO3YAAFy8WBAVpdqrl3ObNkVFRS4uLqdPn65USe3aQVgYAMC8eTB//qeNmzdDWppsa0y+BZJ2NWdOwf/+p7pmjfPkydSuCKld9ISQEEIIIaXp2BEaNxZGRjolJORwOIscHIpFomvPn586ftw2IcECEZo0AXn5so7OzYXYWPjwAVJT4cYNGDYMzpwBsRi6doXcXLh8Gbp2BU3Nr/l+SN3A2tW9e07Xr+fweIsWLSouLr527dqpU6dsbW0tLCzKP5raFSEyJ1fbFSCEEEJIXeXhcQQxbNq0sIsXOQBre/UCgHWhoW6HDh0tLh6WkAAzZoCKCgC8e/cuPl49Pp4fHw8PH8KjR5CcDADg6Ql8PkyaBNu2AQCIxXD4MADAw4e196ZIrZO0qx9+4HA4a9euBYB169a5ubkdPXp02LBhkh2pXRHyFVBASAghhJAyjfX0LOByp06dOufiRTHi2l69isXijeHhVxMT3+blPQgNffjxY2JiYmJiYqtW72Nj+ZIDFRTAzAwaNYKkJHBygmPHIC8PFBQ+je5786bW3hGpC/5pV3PmiMXitWvXFhcXb9y48erVq2/fvn3w4MHDhw+pXTVQOTkQHw+pqVBYCFpaYGICLVoAl6a51SAKCAkhhBBSnu+//x4Apnp6/nDxYn5xsbuNzcbw8J23b0vvo6amZmub0qaNtaUlWFqClRWYmn7K7fF//wcAsHw5+Pr+s7+VFSgrf8X3QOqeT+1q6tQffvghPz/f3d1948aNO3fulN6H2lXDgghXr8LNmyAWQ3Ex8HjA4cDt26CmBiNHQuPGtV2/eovWISSEEELIf9szbNi006cBAAHkebxORkaWOjqWRkZWM2ZYWFg0bdq0/MOvXQN3d+jSBU6c+CrVJd+IPXv2TJs2DQAQUV5evlOnTpaWlpaWllZWVtSuGpzLl+HOHQgJgaws4HBARQU6dICbN8HWFgwNYdo0EAhqu4r1Ez0hJIQQQsh/83Rx4YjFt1JS/oiOdjQ2Dhw3DrhcaNMG+vSpyOHm5vDhA5w6BXfvQocONV1Z8s3w9PTkcDi3bt36448/HB0dAwMDK3U4tav6o7gYbt6E3FxIT4ehQwEAzp2Djx9BURGUlEAohLAwGDSotmtZP9F4XEIIIYRUQP/+Hp06WenqAoCFjg5wuaCkBD17VvDoRo1g+nRAhFWrarKS5Bvk4eFhZWUFAP+ZYvRL1K7qg9hYmDULsrOBx4OcHNDQ+LRdIID8fPjuO1BVBbEY3r6t1VrWZxQQEkIIIaQCBALo3Pnxu3cAYK6tDcbGMH06SzFaQQsXgpoanDsHt27VWCXJt+nx48cAUNm16RlqV9+2hARwdob/+z/Ytw8AQFMTMjI+/So9HbS0gMMBAJCTg2bNaquO9R4FhIQQQgipmPz8RxkZwJ4QDh1aqWgQAHR0YPZsAIBly2qicuQb9ujRI6jSE0KgdvUt+/A6H5yd4fVrcHICLy/Q1wceD2xt4fx5OH8ezMw+5Qji8UBJCbp2re361lsUEBJCCCGkYjIyPgWEhoagqlqFAhYsAA0NCAqC0NBiWVeOfMOqExACtatv0/v34NhPeY/BMuz8HZw6BTdvwsyZcPw42NjAsGEwdCi0aQMKCiAnB6amMHUqKCrWdpXrLcoySgghhJAKyVy1Snv5cjUFhfc7d3I8PKpWyKZNr0+dms/np127dlW21SPfqMzMTG1tbTU1tffv33PY+MDKo3b1bcnPhz59IDwcrKwg/LpI8+UDcHSE7GyYPh3+7//g0SPIy4OiIlBXh6ZNQV29tutbz9ETQtlAxPz8/Ozs7NquCCGEEFIzPn6MT04GAAsdHY6OTpWLmTZN9enToJCQa8HBwbKrHPmGxcfHA4CFhUWVo0GgdvWtOXMGwsOhWTO4dAky3nFELiMhOxvc3eHXX2H/fnByAnl56NIFbGwoGvwKKCCUgbi4OAcHh5EjRxoZGS1cuJDCQkIIIfXQ5/Gi5traUI2AUFVVdd68eQCwaNEiGqZE4PN40apllJGgdlU78vIgIgLS0yt7nLs77NkDly4BADj14Y7A4x9HTQI/Pzh1CqZMgbQ0uHNH9rUlZaCAsFry8vJ++uknOzu78PDw69ev5+fnb9iwoUWLFlu2bCksLKzt2hFCCGlAkpPhwAEAAKEQfHxq4AUyMj6lGNXRqU5ACACzZ8/W19e/e/fu33//LaPKkZpS4+2qeilGpVG7+tpevoSJE+HpU1i5Es6ehRMnPkV4FePhATo64OwMycnwWttavPeP0OsonO8NIhGsXg3ff19zFSclNJSA8MUL2LwZAOD1azh/XjZlBgQE2NjYbNy4USQSeXp6pqSk3Llzp2fPnu/evZs/f37Lli337NkjEolk82KEEFJhOTk5J06ciIqKoktQg5KbC8+fAwCIxfDgQQ28wLt3jyUpRqsXEKqoqHh7ewPAsmXL6GFOHVfj7epzQFjljDIS1K6+tn374KefwN0ddu6EffugRw/o3btSBUycCA8fgq0tXLgADx5A/6HyjsLLOYt9YMmSGqoyKVVDCQjfvoW9e+HaNcjOhqio6pb28uVLNze3wYMHJyUltW3b9saNG76+vurq6u3bt798+XJQUFC7du1SUlKmTp3aqlWrY8eOyeIdEEJIhezbt8/c3HzChAl2dnaampq9e/fesGFDWFhYcTEl36v/Ll2C+fPB27tmSpekGNXVBS2tahY2ffp0IyOjqKioxYsX5+TkyKJ+pKbUbLuqdopRadSuvqr37z9dCng8AIBJk0BDA+ztYeFCCAiAzMzyjxYKYdIkcHSES5fg7VsYNAhyc8G0RzOVVTXW1EgZGkpACADffw87d0JREQDA2bPw5k1VChEKhdu3b7e0tDx27JiGhsa2bdvu3r3bqVMn9tudO3e6ubmZmppGRET4+/s3b9784cOHbm5uXbp0CQ0Nld1bIYSQ0h08eHDKlCmvXr1q3bp18+bNc3Nzg4ODFy5c6ODgoKenN3jw4C1btkRGRtKTw/rK2Rk2b4YNG2qk8KL09MSsLB6X28LU9FP/rxr4fL6hoaGuru769esFAkH79u0XLlwYHBxMEy7qoJptV0VFiYmJPB6vRYsW1S+N2tVXZW8PZ88CANy/D0ZG8OoV5OZCeDhs2ACDB4Ou7v9cA6dPh/374enTT0fcvg0REQAAUVFw9SoYG8PgwaCiAklJwOPBoEHw55/ArcPRSWpqan5+fm3XogZgwxARgdu24dWrOHkyensjl4sAaGWF3t4YGooiUYUKuXv3rp2dHTtvAwcOfPHihfRvi4qKDA0NAUBRUXH+/Pnv3r0rKiry9fXV19dnhzg5OcXFxdXI2yOEEMQTJ07IyckBwLp169iWV69e+fv7e3p6WllZSV/5VVVVnZycfHx8QkNDi4qKarfaRFbu38eVKxERCwtx7FiZFl1cjJcuPVsNmqAAACAASURBVJg5EwBaaGnh//5XzfKEQuHYsWMBQFlZuW3btqzdShrngAEDtmzZEhsbKxaLZVJ9Uh012K4QEfHBgwcA0KJFi+oXRe3qaxOLcfdunDcPlyzB9+8REV+9wrNncflydHJCRcU2+mkAyP7T08MhQ/DHH9HBAT9+xF9/xfBwDAvDwED87TdcvhwfPsT8/Np+R2V7+/btgAEDHB0d5eTkrKysPD09/fz87t+/X9v1ko2GFRAi4rhx6OWF/fqhoiJK2qiBAU6ejGfPRn748KHUwzMzM728vLhcLgA0b978woULpe6WnJzs6enJ4/HYpcfb2/vDhw85OTk+Pj5qamoAICcn5+np+fLly5p7p4SQhunChQsKCgoAsJL13RAzMzN379798OFD9mNKSsqBAwemTJlS4ja8hobGwIEDd+3aVXt1J7KRlYWHDyMiFhTg+fOyK1csxt9/xzVrTowcCQADzcxw1SqMjq5yeSKRaPz48QCgoqJy9epVRMzNzQ0KCvL29razs5NeeEBXV9fV1dXX1/f58+eyejeksmqqXX124sQJdp+9muVQu6prxB8LwsJw40YcOhT19T91uRcvxt9/x+XL8ddfcdMmHDUKr13Dt2+xjgdWOTk5HTt2BAAtLS3pGw0AYGRk5ObmtnXr1lu3bn27N1gbREDo54fr12NSEiJiZiYmJiIi5udjUBB6eWHTpgiAfD5qaDTj8Xhdu3b18fGJiIiQHO7v76+npwcAfD7f29v748eP5b/c/fv3XV1dWSsxNDT09fUtLi5OS0ubOnUqa0MqKipLlizJycmpwfdMCGlIAgMDFRUVAWDu3LmSjSdPnmQXIj09vYEDB7IrG7s1Lv3kkPWT2rZt++uvv9beOyAykJKC+vp48yZmZuKsWbIr9+FDXLcOV6xY26sXAMzv0gVXrMB161AorEJhIpFowoQJ0r32El69enXgwIGJEycaGRlJ97rMzMymT59+4sSJzMzM6r4jUhk11a4+W7t2LQDMnz+/OoVQu6r7nj1Df3/csAHj4nDWLJw7F8PDa7tOFVNYWOjs7AwApqamaWlpubm5oaGh27Ztc3V11fl3ei0+n29nZ+fl5eXv75+enl7bFa+E+h8QJiWhujoC4MWL/9p+7BjeufNpsGhMDG7f/s7e3p4nNSmiRYsWkyZNkswP7Nmz56NHjyr+umFhYV27dmXHmpub+/v7i8Xix48fu7q6cjgcTU3NW7duyfSNEkIaqNDQUBUVFQDw8vKS3h4eHu7u7t6oUSPprysDA4ORI0fu2rVL8uQwNTV1586dHA5HRUWloKCgNt4BkY2UFJw/H0eMwDdvZNpxP3oUV6wImTTJRCDgcbm9TE3T5s/H9eux8qNdxGKxp6cnG9F39erVvLy8kSNHSprilxISEnx9fV1dXbWkctisXLkyLS2tem+JVEJNtStERAwJCTExMeHxeL169aryx0rt6hvCAsKMDDQ0/DYCQqFQyB7z6OnpPX78mG28c+fO+/fvEVEsFj948OD333+fPHmypaWl9INoAGjZsuX48eMzMjJq9R1USD0PCEUi7NEDAXDYsH9tFwpRS+vTgOaJE9HfH7OyihHx3bt37K65pAulpqamp6fn5+dXhRHnYrH4yJEjktFZXbp0efbsGSIePXoUACwsLGT0LkntYyPnETE3t1brQRqeGzdusBHpkydPLusy9fjxY19f39GjRzdu3Fj6u0pfX//PP/9k+7Ru3RoAgoODv17ViaylpOCiRXjhAi5fjrNm4fbtGBNTvRKzsjAg4KaHR+/mzVmbUebzAUCJz59rb/+6kqWLxeKpU6eyXvuVK1fy8vJ69OgBAHZ2dv/5DSsUCm/durV27VoTExMAWL58edXfFKkk2bcrRES8efNm789LFCgrKwOAkpLS3LlzX79+XalyqF19W+7dw3fvUCTC337Du3druzb/RSwWe3h4AICGhkZUVBTbWFxcrKqqyh4Yjhs3ztfX9/79+6yxffjwISgoaPny5QMHDtTU1AQAeXn5kSNHljUlre6o5wHh1q2for4Sj22zs3HGDDQ2/mcaYYsWg+zs7JYvX84GiwqFwvDwcHbrKDIysjp1YKllGjVqpKOjk52djYiJiYkAYGxsXJ1iSZ1ia4sBAYiIY8bUdlVIQxIdHS0QCABg/Pjxooplx0pISPDz8/P09GzWrBkAnDp1im1fuHBh9UdtkVr07BkmJ+OiRYiI48bh2LHI4yGHgwMH4uduTGVkZ+OZM7EzZ7paW7M73qry8t729re+/35c69ZcDof1v728vF69elWR8sRi8bRp0yS99vz8/F69erG7EuU8yflSQEAAu8Fa+bdEqkLG7QoREWNjY9loKficcOHWrVvjxo1jmRqoXTUE3t4I8Kld1WWLFxfb2S1SVlYOCwuTbHz58mXnzp3l5eWlb7CyPN4+Pj7Xr1/Pz89HxOLi4sjISJbR7ejRo7X3JiqkPgeE8fGopIQAePJkmfvcv48bNuCQIfnSM0RNTU2fPHmCiOxTfPDgQfUrk5OTc/PmTfbvtLQ0AGjUqFH1iyV1xLhx6OaGeXkyDgjz81Fyv/LHH2VZMqkHYmJitLW1AcDFxaW4uLgKJTx+/Dj380PtkJAQALCyspJpHclXEh2N2tro4oJXriAipqTgsWM4d+6nL0EuF0eOxIp2j3NzMSjogZeXJBRUkZf3trfP9PbGFSvYf3FeXq59+7IOvYqKipeXV/lPdcRi8fTp01mv/fLly/n5+U5OTqzXXtlv2NzcXAUFBR6PRzO+vgJZtitERHzw4IEkFGSLyEt/jnFxcdK/pXZVj12+jABobV3b9SjXxo0IgCoqGBhYSg6tjx8/hoWFbdy4cejQoQYGBtLBIZ/PHzJkCNtt8+bNADB69OivW/dKq7cBYXFxsYODCAAnT67Q/rm5uWfPnmWDRdXV1QsLCxGxbdu2ABBV5ZtgZXj37h0AaGlpybZYUluEQpwwAe/excWLZRwQ5ub+04Dd3GRZMqkLJEnVWKarSnn06BH7Bho6dKhM0poVFxez8S1JLAEX+XawXjsA9u+PJSaBpqWhl9enrNpcLk6eXFRyMnxOzj9D3vPyMCgocf58Tzs7HpcLAApycp52dq+WLCkOCfn9559vzp+Pv/yCfn6YkoL/fs7Duu+lJlEo0WsvKCjo379/ZXvtKSkpY8aMGT58OCJ269ZN+uE2qSHValdfSExMlKRhV1BQ8PT0fPXqVXFx8e+//y65Xc5Qu2oIhMJPrevzpLw6Z/9+5HCQw8F9+yq0/8uXL/39/b28vLp27SovL+/2udP2/PlzNuKURRZ1Vr0NCNesWWNq2r9nz0zJN10FiUQi9ngQEb/77jsAuHHjhmzrlpubyy5hsi2WfH1ZWejpiWPG4IQJiIg//IA9emBMDH5uQdWVm4s2Njh/Ps6fj/36yaZMUndYWiIbRVLZ+whPnz5lswH79OkjwzQwLi4uALB7925ZFUi+gnv3yuy1S6Sno7c3Kipi9+5hXC7X1dX18ePHmJKC27fjmjW4di1u3IgnTyZ5e3va2clxuQAgz+N52tm9XLhQFBjof+iQmZkZANjb239ZeExMTInhf9LPWMRi8YwZM9j0sODg4IKCggEDBlThGc6HDx/4fL6cnNz79+9Xr14NADNmzKjkqSKVUPV29YWkpCRPT082DkteXp4tviUSifz9/aldNWTjxiEAbtxY2/UozZkzKCeHALh1a1UOz8nJSUlJkfxoa2sLAEFBQTKrXw2onwFhdHS0vLw8l8u9wkY5VFX37t0BoNT8xdUhFAoBgMfjybZY8pUdOoR6egiASkq4cCEiYmYmTpiApqaorv5pSmE10RPC+m38eBw1Ct+/xzFj8Oef0dUVx45FT0+cMwe9vXHVKvz111e//vqrr6/vX3/95e/vHxgYGBwcfO7cOTb9r1evXvkyXcT3999/B4DBgwfLsExSo+7dQx0dBMB+/crstUu8eIE//LCCzXuRk5Ob2K5dwpw5uHw5rljxYu5cr06dFOTkAIDP441r3TphwQJxYKD/oUNs6gQAmJmZHTp0qKzCb926NXDgQLanmpqat7d3VlaWdK89KCiosLCQ7aOnp1eF1ZxZ4u6zZ8/eunULZLSOOSlVtdrVxIkJCQmff/XCy8uLrY/K5/PHjRuXkJAgFov9/f2pXZHjxxEAS7sbUMuuXPn09Pvzmr7VtXTpUgCYVRNrtshOPQwICwoKWrVqBQBz5sypZlFs1ZGylqGvDnarrGrTfkitS03FoUM/pSNycMD4+H9+lZODw4YhAPJ46ONT3ReigLB+mzABY2NxwQIcMwa/++6fHFeS/zp3ToHSKCgofPfdd7myzmmblpZGi098Q2JiHjVpIgbAQYOw4mORkpKSPDw8+Dwei/3GtGo1qU0bFgryuNwJbdokzJ+PQUFB5861a9eOtbdmzZqxBXX/s/Dw8HA2iQsABAIBW7dJJr12RFyxYgUAzJ49WygUspRviVUYbE3+S7XaFZ/PYr8xY8ZMmjSJhYI8Hm/ChAksSgwKCqJ2RZicHFRURC4XK5Y/qGZ9/IhsbYiCAvz5ZwSQ5QorERERAGBoaFiFBQu+mnoYEHp7ewOAubl59e+dT548z9LS7ty5azKpmDS2aJjM+3OkpolE6OuLamoIgJqa6OuLX/51i8Xo44McDgLg999X4gu1VNu2fXqJcnIjkW8UG2ns7Y09e+L16+jvj/v3o68vbt2KPj64ZAn6+CRNnz7d09Nz5MiRrq6uTk5OPXv21NDQAIA//vijJqrUpk2buj+yhSBiTEyMjo6Ore2c4cOLq3CRSVq0iI0O5QDwuVwuh+Nqbf1o1iwMCAg6e7ZDhw6s821kZLRt27bK3iAIDw+X9NH5fP65c+cQcdasWVUY0VeiWPbljogjRowAAF9f36oVRcpS3Xb1eXQoh8Ph8/lsHCmbXhgUFETtipQwZkxut273Dh68WtsVwWvX0MIC8/Px7l3csgUDArBiebsrRCwWN2nSBADYQgZ1U50ICKdM+fSPqVNRKERELChAY2N8+xYR0dOzEkXduHGDx+PJycnJZNl3NzcEwCNHql9SSewu1DexVCWRiInBTp0+PboZOBBTU0vZRyxGNiP9yJFPedgcHPDNm6q/aLNm+PvviLSgRb1TVIRr1yIifviAixd/2vj8OT58iAkJmJ6OmZmfroclbNmyBQDGjRtXE7X6+eefAWDevHk1UTiRlfj4eJZSqG/fvh8/fqxKEdu344oVEZ6eAKAkJxc7fTquWBE1axYbPgcABgYG27dvr86z4j179gBA48aN2Y+vX7/u0aNH1Z7hMEKhkC2y8vz5899++w0AXFxcqlwa+ZIM2hUifn4eoqSkFBsbi4hRUVHUrkip2Kc5aNCg2q4IXruGM2bgsmWfAkKZmzlzJgAsXbpU9kXLSJ0ICCVj4UaPRjZ2oKAA+/XDmTMREceMwXnz0NMTx41DV1ccOhSdnNDJCceODbOzszM3Nzc1NTU0NBQIBJqammy4wk8//cQKvHLlyt1qLHs5fjwCoJ9f9d5eaVhCiJcvX8q+aFID2PIP8vIIgI0b44kTZe65bBkCoLs75udjdDQ2bYpGRsW2tj0ru5qlUIi3b+Pjxzh+PI4di2/fUkBY35w9izzep6ucxJgx/xoy6uh4DwA0NDQEAoGJiQlLhRcfHw8Aurq6FVx4sFKuX78OAJaWljIvmciKpNfu7Oxc9V77tWu4dm3o5MkA0NHQEFeswNWrY3fu5HK52traPj4+eXl51aynWCzW09MDgCeyyrKFOHToUADYu3cvS9wnEAiEpd41IZUnm3aFiIihoaEA0LFjR/ZjbGwstStSqvT0dC6Xq6SkVOsj5q5dw717cfZsPHiwRgLCwMBAALC1tZV90TLyz+J7tSgzExYsAACIjv5nY5Mm0KgRhIYCABw8CG/elDzK0ZEXGRlZYiNb1fTNmzcAEBQU1K9fPyMjo6ioKPZErrIUFAAACgurcOh/lqwAAAUFBbIvmlTDrFnw668AAOvWgYkJXLwIfn4QFgY7dsCxY8DlgpcXrFkDamplltCxI6irw19/wfPncPIk3LoFM2cuO3XqiqOj44EDB9i3TjkSEyE4+NN/WVkwezYAwPLlsGqVDN8lqRP27weRCJo2/ddGQ0OwsICiIsjJAaEQOJyPAPD+/XsAyMrKYrlkLCwsmjdvnpCQEBkZKRmCJStdunTR0tKKj49PTEw0NTWVbeFEWn5+/pUrVwICAjQ0NFRUVFRUVNTV1aX/ra6urqKioqqqqq6uLjnq0aNHPXr0eP36dZ8+fU6fPq2oqFjFl7e3h2fPHkVEAIC5jg7w+aChYfv990cNDJydndXKucZVGIfD6dmz55EjRwIDA1u2bFn9AgGgd+/ep0+fDgoKmjJliuSvoGPHjjIpvH6o5Xb1uTQAMDc3Zz/a2toePXqU2hX5kp6eXufOnW/cuBEYGDhs2LDarg6sWAF9+4K7u+xL7t69u0AgiIuLe/r0qazarYzVdkSKWMYTQk9PLChANzccPfrTvBo/P/T3x5MnMSgIg4IwKuptREREfHx8QkJCSkpKZmZmZmZmbGyssrIyAOzdu7eoqIiNUnBycqrazZ5ZsxAAd+yQ3Vv9zNLSEgAeVmo9V1LzJE1xwQLcswcHDsQzZ/DSJdy9G/v2xQoOQ753D5s1QwBs2hSjo58UFBRMnDgRADgcjre395dTip88efLbb79Nm5bFcpZK/mvZElevxvHjERFXrcKhQ/HxY5RpUklSa7KzUUkJuVx88eK/d87KysrMzExISEhLS2NbWIa9lbLKgPZvrq6uALBr166aKJwwIpGoc+fOLBd5Rairqzdq1KhFixa6urpQ7RF9kkosGDcOANaMGIG3bmENJDljeWslCzRX39OnTwFAW1tbJBKxNejWrFkjq8LrgTrRrhAXLFhQox8Ntav6ZMOGDQAwgU2prz0xMcgySB49+mk5KJkbPXo0AGypieePslAnAkJJHkUPDzx/HjdswLg4/OEHRMTAwH9mGFbQoUOHAEBRUTEiIiIlJYVd5qrWc1qwoKbWSGGZG6Kjo2VfNKmGESM+LfrXoQPu2YPHj6OLC548WdFlSSUyMrB7d+ze/aKiouKBAwcQcdu2bWxBXjc3t7y8vFevXvn7+3t6ehobG7MvZkfHKAA0MEBXV/T1xefPPxXFVk75+BH/7/9QRwd790ZZfF+TWubriwDo5FTFwwMCAgCgc+fOMq3UJ3/88QfUjUkd9di2bdsAQFdXd+vWrT4+PkuXLp03b56np6ebm1v//v0dHR3t7OyaN29uYGBQ4qGKvr6+iopKdna2TKoxaNAgADh+/LhMSvtSamoqAKipqRUVFcmqTBMTEwCIiIg4efIkADg6Osqq5HqA2lWVUbuqLSwa19LSqguJ98PCsHXrTzfiGRlW6ujRo3W5adWJgLCEkBAMDa1WCVOnTgWAZs2aZWRkXL58mcfjcbncKqwesXgxAuDq1dWqTKlY0uSbN2/KvmhSDSWeEJ48iXfvYteulQ4IEbGwUPz99x4AwOFwlixZIhaLz507x4bo6OjoSH8T6+rqurm5+fldK21F3388foyNGyMA9ukji5hQLMaPH0vJkUq+Cnv7as1PzsvLa926a48eK1jmLZmQDKN49eoVLT5Ro5KSklRVVQHg9OnTFTwkKysrNTX10aNHbHTJr7/+KpOasJFL1UnI8Z8sLCwAICwsTFYFenp6AsD69euzsrLk5OTk5eVzcnJkVfg3jdpVdVC7qkWswcyZMycqKqp2w8KnTxEAtbSwuBjPn0crK/T2llnhOTk5ioqKPB7vTXUyDdYYbgXHFXw1sbGQkgL29tUqZPv27R06dEhOTp44cWL37t2XL18uFovHjBmTlJRUqXIUFUFTE7gyOkkhISFisfhzyYoAUFgT0xNJNch9nlTL4336R/v20Lp1VYqSl+f873972IPBNWvWsBu0oaGhCgoKcnJyKioqTk5OPj4+ERERr1+/Pnr06PjxjmZm5RVoZgZXroCBAQQGwrBh1ZjaKhZDcDCsWwebNsH69RAcDJ+bJfk6kpMhPByUlaHKMyaUlZX19cOuXl0eGCibKt27d8/GxiYuLg4ADAwMTE1N8/PzhwwZ8scffyQkJMjmNchnU6dOzc3NHTVq1JAhQyr4LaCpqWloaGhubr527VoAWLt2bX5+fjWrUVRU9Pz5cx6P16JFi2oWVY4+ffoAQFBQkKwK7N27t7Ky8vv37zU1NTt06FBUVBQSEiKrwr9p1K6qg9pVbUlNTc3KyjI0NNy+fXu7du00NTXt7e3nzJlz7NixjIyMr1yZFi3A0hIyMyEsDFRU4OFDOHlSZoWrqqr26NFDJBKdP39eZoXKUG1HpCVdvYr+/piQUN1ykpOT2XOYdevWicXiIUOGAEDHjh0rfs/72TPcuhUR8cULvHSpWpVJS0sbN24cAPz2229sC7uWXbx4sVrlkpr399/o7o7V+aACAwMFAgEbNX78+HEAsLS0rPI9sPh41NdHAOzXD6v4/Ob4cVy7FkeNQkdHdHfHtWtpicOvbNu2oI4dX48fX60coVu3IgCOHSuD+ty7d4+l3ZoxYwYiHjx4kMvlSifiMjAwcHV19fX1Lf2Wv1iM8fF44v/Zu/O4mrM2AODPvbe6t30vrZSkkIaQImuGsWSo8NqGvJixjhlkxlKTrWGMzGYwtsEgDGIYyl5StKAI7WlftG93ed4/DvdtskzLTdvz/cxnPvXzu+eee+/p/n7PWZ5zCk+cwOhoWW7e1BYdOHAAALS1tbOysi5cuGBqalrH2SsSiSQqKkoikbBcF9u2bWtkTWJiYgDAwsKikeW8G5ve7OjoKKsCq6qqpNfxtWvXAsDSpUtlVXjrRe2qkahdNYucnBw22NutW7dp06bVyrbC4XCsra09PDz27t376NGj97OrO9uV/vPPUSRCHR0EwMePG1WgSCQ69mr/OravyccffyyDispaiwsIZSgwMJBNFr106VJBQQHLmLewVpb3twsOxu7d8dYtjIzELVsaWAeRSOTn58cm66uqqrLdTp89e2ZsbKyoqDhhwgTairCF8/FBgNp7A9SXNBfIyJEjAeCHxuUpiopCLS0EwEWL7tY1sMzORn9/nDcPLS1xxgz8+GMcNQpXr8YPP8QJE3DjRpTh1EPybywtLQHg4sVG9QfFxSEA6ug0Nv6Ki4tjueY//vjj6urqP//8U05ODgA+//zzH3/80c3NjS3DljI2Np4+ffpvv/327NkzRESxGA8fxk2b0Nsbvb1x40bcuRMbsKF1+5Cbm8vez0OHDpWWlrJlS3W5Ba+qqurXr5+CgkJiYiLrXdbR0SkuLm5MZU6dOgUAY8eObUwh/6q0tJTP5/N4vIKCAtmWLJFI3NzcDAwMLly4INuSWx1qVzJE7eq9KS4u7tOnDwDY2NhIP8fCwsLAwEAvLy9nZ2dFRcWaVx9VVVVnZ2cvL6+AgIAXL140Ua3u3EEA7NgREXHWLARAX99GFchWsa1YsQIRHz58yOVyR44cKYOKylpbDggRcd26dQCgp6eXlpYWHR3N2tbBOizciY/H69fxhx/Q1RXDwhoYENZMWzx27NiUlJTKykofHx82X5T9X0NDY9OmTY3fmYc0kZAQBECZ7MqWmprK4/EEAkF+fn4ji4qIwKFDz/P5/MmTJ78tg25+fn7F2bO4aBF26/aP7KUDB2L37rhuHXp749q12KMHbtqE9dwmkTRYaGgoABgYGDR+n6vOnREAw8IaXsKzZ8/YnqgffvhhZWXl33//zXbE8fLyqnlaQkLCrl27ZsyYYWxsXPPy3KFDB/dhw3Z9/HHMggUSLy/09kYvL9ywAf/6q5Evra2aNGkSAIwaNQpf7VPct2/fOraEmTNnAsDs2bMR0cnJic1/aUxl2CzB5cuXN6aQuhg0aBAAnD59WoZlSiSSuXPnAoCSklJYY/4G2gRqV7JC7eq9qaqqYnPlOnfunJmZ+cZtdaurq+/cubN9+3Z3d3cjI6OaVx85ObkzZ85UNUHno0SCxsYIgNHRePo0yskJJ09ueEv46quvAEBRUfHGjRvSAPjLL7+UYYVlpY0HhGKxeNSoUQDQv3//qqqqXbt2AYCysvLb9jMtKMBdu3DAAORwcMsW/PVXDAzEmTPx22/RwwNDQur6vIWFhUuWLGFZJY2NjVmurRs3bnTr1o0Ngs+YMePWrVssvTsAGBoa7tq1qyVkWCK1CIWopoYA+Px5Y4tis1Cmy2SSH2JkZKSmpiYATHJzE169inv34u+/l4WGBl6+7OnpaWdnx+Vy4z/44GUQKC+P5ubo7IweHrhuHdrY4OrV6O2NX3+NPXvipk1ICW/fF7ZjhEyuBwsXIgB6ezfw4SkpKSzJ7fDhw8vLywMDA1kv1bJly972EIlEEhMT89NPP7m5ubG9oaWM1NQeLVwYv2TJxenTcfPmBtapTTt//jy7ACUkJISGhnK5XDk5ucjIyDo+PCkpSUFBgcfjxcXFBQUFsf7ExnSTs0hgz549DS6hjtavXw+vJiTLhEQiYX9HSkpKV65ckVWxrRS1K1kVSO3qvRGJRG5ubuzuNzExMTU1tWfPnv+aIig9PT0gIMDT03PAgAFycnKampp1GeBpgPnzUVm5ZPv2R2VlQgMDIy6XK53nVS/ff/89AMjLy587d65WACzzOjdeGw8IETE/P5/d9Hz++eeI6OHhsWTJklqpisvK8I8/cMwYlJd/ef+sqorLlyNb8TdlCk6Z8vL4+PEYG/svzxgQEMD60eXl5ZcsWVJSUpKfnz9v3jwOhwMAXbp0CQwMlJ4cEhIy8FUKna5du/r7+7+fSdKk7kaPRgA8fLhRhYhEIlNTUwC4ceOGjOqFoaGhaqqqAPBJ7947x44dYGoqL02GAyCQkzvaqxcOHfoyC+JmcgAAIABJREFUCPT2xpUrcdIk7NsX3dzQ0REXLkQHB5w+HTdsQBllGyfvVl1dzdY2R0dHN7608+cRAO3tG/LYtLQ0Nove0dGxpKQkODiY5SdcvHhx3QtJSEjY5eo6tWdPHSUleR7vyeLFAKCpqChscJDadhUVFbHrwg8//FBZWck6B9euXVuvQv773/8CwLRp0xBxyJAhr4/l1gubwHKrkUm96+DOnTsgu0Vl0rt2RUXFoKAgmZTZelG7onbV6kgkEtbk1NXVo6KisrKy2NLBMWPG1L0QtsPKxIkTm6KGly+HCwSC3r17IyJLQcIWfNXLoUNob5+ppKS9b9++WgFwE1RZBtp+QIiIYWFhbB7UoUOHaoZbIpHo77//njFjhq3tA+k4ytixePQolpfjixcvB4Xy8vDRI/T1fTlSxOWiu/v/t4mrKSUlxdnZmd2OOzk5xcTESCSSgwcPsltARUVFLy+vN2a1CQgIsHyVYrJfv37Xrl1rmneCNMR33yHA/3fLbBi2At7S0lK2AX/IN9+o8vkA0F1PDwB4XK6doaHnwIGBM2eWS8cAZ87EgQPR0BA5nJcdG1Om4Kef4vjx+NlnuHEj1uihIE3qzJkzANC9e3f2a3h4eEIjMmiVleGMGXj2LCJidnY9Hpidnc2yzNvb2xcXF4eGhrJ1zrNnz653+zxy5OcxYwBgjKUlent31dEBgFtvH2Nst1hSe3t7e5FItGbNGtYDWN9NwFNSUvh8PpfLvX//fnBwMACoqak1eAq6hoYGAOQ2/fphkUjEchRJ74TS09MfNyhRg0QiYVMiFRUVA+mLi9oVtatWaMWKFWwY9tatW0VFRb179wYAW1vbeo1Lp6enczgcJSWlplhyVVlZyTYJS0xMZBvzjh49ul4lnD2LcnIIgLt2FdQKgGVeW1lpFwEhIv70008AoKKiEhsbi4gxMTGenp4slQIADB680s4O/fz+5aYqKwsXLHg5iqioiOvXF9Rqvnl5eTo6Opqamn5+fmKx+P79+w4ODuwphg0bFhcX947ChULhrl27DAwM2PnOzs4yGUMgjRcZiQBoatqoQlxcXABgS4PTE72RRII+Pjdmz1ZWUACAFY6ORV99hd7eFWvWXPnkk9WDBjmamFSx/DPsP4EAhw3DDRvw9Gncvh3Xr8ft2/HePVlWibxFdXX11atXe/ToAa+W6GRlZRkZGampqf3Z0CyvEgkqKyNL/DltWl0flZub2717d3YBzs/Pj4qKYnOPZ8yY8cZVHP8iMzNx+fKXA4Pr1i1zcACArz/9tN7ltGnXr1/ncDgKCgoxMTEPHjyQl5fncrkNG0Jht61ubm74Klv1V1991YByMjIyAEBLS6sBj20AV1fXmr3s33zzDQDo6+uz7LWpqal1KUQikSxatIju2qWoXVG7anU2b97MJtBduHChvLycLQS1sLDIysqqy8MrKyvPnj3r5+eHiH379gWAgICApqgnW5e7Y8eOvLw8OTk5Pp9f92RL166hQIAAyAbav/mmQEenm7Ky8u3bt5uiqrLSXgJCfDWvXU9Pr2ZaWysrKx8fn4SEegzgJifjvHnI5WLfvt5aWlq+vr7l5eXSf71x40ZeXl5ZWZmXl5eCggIAGBgY1H2Wc1lZma+vr7q6OgBwuVx3d/cWO7jcfojF+NFH5ywsxjd4MCczM1NeXl5BQSG7XuM4/0ooRB8f9Pa+8sknKwYMuD1nzvphw4aZmQmk2ykCxAwciI6OuGYNXrkii/3sSf1kZ2cfPHjQ3d2d9Zqze47u3bsnJCQUFxezOSQcDsfT07MBwZhEgm5uOGUKSiQ4bRrWcQ3y5MmTAcDGxiY3N/fBgwfa2toA4Orq2vA1zImJVnp6AHDLw+PyjBkA0KtXrwYW1RZVVlay8VgfHx+xWMx6Ces1NbemjIwMJSUlDocTFRV19+5dDoejrKxcx3upmq5evQoAAwYMaFg16oslW2fxBiJu2LBB2iHLdO/efcmSJQEBAW+765JIJIsXLwYAPp9//vz591PtlozaFVK7am0OHDjA4XC4XO7Ro0dFItHEiRMBwMjIKOmNk+7eJC8vj8fjsfBsw4YNADBnzpymqOqRI0fYWA4iTpw40cPDIz09vS4PrK7GTp0QANniVl9fBMAuXSovXWrpq1LbUUBYWlpqaGjIUuppa2vPmzfv1q1bDZ6/FxFROXz4cPaNY2pqun//fmlGr4CAALZajMvlzps3r6ioqL6F5+XleXp6sgQPCgoK8+bNk3EgQeqJdUM2eJU8+9qSXrRkaceOl+n+vb3718gAaW5uPm/ePH9//6ZLzUzeproar13DjRtzevbsWfPWxMbGZvbs2WxJs5aW1sWLFyUSiZ+fH9vmYejQofX9M5dIcNYsPHoU9+3DadOwXz/s1g3nzUN/f3zHdjbZ2dlubm5ZWVlPnjxhN0/jx4+vtay6vpYtWwYAXzs5Va5Zo6KgwOFw6njtbA9WrlzJPv2qqqrvvvuOXTIak9mfvdsuLi6IOG7cOAD44osv6lWCRCJhCTnGjx8fFxeXlpb277n7y8pw+XL88ktcvBjz83HNmpc9ELt3Yx16LZOSklhvyC+//BIfH8/q8PDhw+3bt48dO5atX2Xk5OQcHR3XrVv3vEYiL+ldu4KCAt21M9SukNpVq3LmzBl2sfPz85NIJLNnzwYAHR2d2H/NzPFPLBfuiRMn2I6Xenp6jU/Z/brCwkIFBQU5ObkGbA738CEuXoxiMR44gBwOcrl49KjMKyh77SggRMTOnTsDwPbt22XVegIDA9nsZwCwtrb+9ddfWeQAAL179w4PD29M4YmJiVOnTuVyuezrVSYVJg3z888/A8B//vMf9mtlZWXd43yJRGJhYQEAly5dkn3Nnj7FjRtZQPjj6NEL+/U7OXVqHo0qy5REgtJMQNevv/whPR3ZUt/sbHzw4OUPBw+iuztqaCAA8vmorKyvpKTk7Ozs5+eXkpLCHlhUVMS6RaUDg9evX9fX1wcAExOTOiY6f/EC583DY8dw1ixExOnT0c0NlZX/PzuYy8UPPsDPP8cLFzLeuBZIuuHEiBEj6rvi6HWXL18GgF4GBujtPa5rVwDYt29fI8tsG6Kjo9lEvpCQkMTERCUlJQBo5P5mubm5bM3nnTt3Hjx4wOVyBQJBWlra284XCoUJCQkBAQG+vr7z5s0bMGAAu1FmU4VrUlZW3jp8OJqbo50dDhqEH32E7u44dy6uXo2+vnj1KiJiTAx+8QVOn/5yt8lvvvn3TGuIiLhnzx62LAcADAwM2KQ+dncuEonu3bvn6+vr7OzMFvwDwMuNLhElEsmSJUvYXfu5c+ca89a1GdSupKhdtQpXr15lgxzr169HxC+++AIAlJSUQuqevv8V1v3BEraz7BtNlMFoxIgRULf9PN/o9OmXywj9/GRbr6bSjgLCuLg41jEv274EsVh85MgRlq+PfSlraGj88ssvDVmN85qbN28aGRkZGhqGh4ez3WMbtmCaNNLjx49ZRxQbUj5w4AC7odfU1DQ3N+/du/fQoUMnTJgwa9aszz//3Nvbe/v27dKk1YGBgazvtik6sVjlcOtW3LAB16/HX3+tX3YRUgciEb7qCsBJk17+cO0aduqEaWkYFobLlqGt7T/2euzeHZcvxxs3Yt+4S5JEIvH19WXb0owePbqgoCAtLa1///4AIBAI/nUg+tw5NDBAAOzU6eWGuXFx6O2NQiHeu4e+vujsjIqKL2vi4OAHNUaMWWdnamoqG6gcOHBgaWlp49+iyspKFRUVDoeT/uWXf4wb94OFxbOlSxtfbBvw999/q6urz5gxAxGrqqq++eYbj0bmp0JExFWrVgEA292YTTxeuHAh+6fy8vLIyMg//vhj9erVrq6u3bp1k5eXh9cYGBhMnDjRzs6uS5cuhoaGbJ0CAOwZOPAfTZn9Z2qKU6eidHHExIk4fTouW4ZffomOjnW8ca+oqNi9e/ekSZNYljWGw+F88MEHX3755cWLF1lTLCkpOX/+/Lp166QP9PT0ZHftTbRYqDWidiVF7arlCw8PZ30NrDmxpZ4KCgp///13A0qLj49nd9rV1dXLly+HJtv0csKECWx3pQ4dOowdO9bLyyswMLCO/adXriCfjwC4YUNTVK1JtKOAcNu2bfAqsbLMVVVV7dix49dff124cGEDpt2/zbVr1wBgyJAhiMimn1GmmebCNkWNiYlBxF27dtWci/JG8+bNYw9kS5NZr1gTKi7GGmtZiQyJRDhoEJ45g2fO4NixLw9eu4YbN+KsWRgWhl5eyOGgkhI6O6OfHyYn16nYq1evsouNqalpeHh4ZWUl664GgBkzZpS/6dMsLMR5817eSjk64lu2U0VErKjA69fR2xvHj5/L+mUZLpdrY2Ojq6srw2iQ+dbDI6hr14KJE3HZMgRAdXVs3DTUtsHb2xsAxkrbjYzk5+dra2t7eHhUV1fHxsayreeGDBlibm7OJpXUxOVyzczMRo8evXz58t9+++327dtvm0leXFxclpmJz57hvXt47RqeP4/Hj+OuXbh/P65ciaw7MjcXZ89uwEhOTQkJCbt27XJ3d5eO7QCAnJycnZ2dp6dnYGCgtCeFhSh0114Ltas3onbVMs2fP59d1yQSydGjRwGAx+OxDbobhqVnCwoKunXrFshu65Gadu/ezeFwOByOdP0/w+fzHR0dv/qq+M8/8R27CQ4ZggDYuvpF21FAOGzYMAD4448/mrsi9XD79m0A6N+/P77a26eOM8qIzE2fPh0AfvjhB+kRoVCYl5cXHx9/7969oKCgkydP7t27d9u2bWvXrl2yZMmJEycQMS8vj8/n83i8OqY7Iy2QSITOznjjBt64gS4uLw9eu4Z796KfH37zDW7fjiEh+KaxwH+Rmppqb28PAAKB4LfffkPEvXv3svitX79+OTk5NU++dAlNTF6mOPb1xbpPQRAKhdJ5U4qKigAwcuTIXr16/fvynnr55ZeXY6Pe3qiriwB486Ysy2+dcnJyWOeRzL+6pavFJBJJx44dO3bsKL39NTc3Hzt2rKen565du27dulVSUiKD50tLw8mTcdMmnDIFHz1q5I27VGVl5dWrV1evXm1vb8+rsY2qmpqai4sL28aJsn28jtrVu1G7ajmqqqqMjY15PB7biaSkpGTEiBG7d+9uTJmrV68GgMWLF4vFYrYSnnXWy8rp06elyx0RMT093d/ff8mSJXZ2dlwut0MHI+kgt4EBurujnx/euoW7duHcuYiIR4/i+fO4ZQu2rm3F20tAWFRUpKCgwOPxGrA8tBlFRkbCq5R9bB2tDLc1J/XC9qLR1NR0dnZ2dXWdM2fOF1984ePjs2PHjoMHD545c+b69evR0dFJSUk1e0nZZPdx48Y1Y81JI9WaMvrsGd658zIgFApxwADcvr3hhVdWVrKdxNioclVVVVRUlLm5uYODg7Qzu6ioaO7cuY6Ox9nA4JMnDX+6ioqK69evJycnv3Eua6OkpLxcOrl2LTo4IAA2KG1928OSf3z00UdNVP5vv/0GABoaGvv27Xv8+HHd8wMdOHDgjfvivktOzst7HOm8qaqqenROvFNJSUlgYKCnp6ednR2HwwEAQ0NDOTm5s2yrTfJP1K7qiNpVs2MpGI8cOcJ+bfyKqvDwcAAwMjKSSCRz5swBgI0bNza6mi9duXKFrTjd8Kbpni9evAgKilq3Dp2dUVX1HzOgFy9GNze8fh0PHMCmSBnR1NpLQHjy5Ek2Raq5K1I/sbGxANCtWzd8tbz18uXLzV2pdio3N3f37t1QZxoaGp06dWIDMnThadUkEjx9+uXPf/6JoaH47bd4/z7ev4+IeP8+3r3b2Kc4ePAgayp2dnbJycl5eXnSmedBQUGsk97Q0Pj776uaaCGqbFhbIwDOno0zZyIAfvBBc1eoRcjLy2MT2G42wZBpZmYmy+FxtP5p7H755RfZDPI0gbS0tO3btwOAsrJyI1PgtlXUrhqA2lWz+OGHHwBgknQJfqNJJBJjY2MAiIiICAgIYHNqZFJyeHg4G3tftGjRv54sEuH9+/jLLzhjBlpa4vff440bOGEC7tlDAWELxvLbbt68ubkrUj9s7ay5uTkijh07FppsC05SF6WlpeHh4YGBgf7+/rt37966devq1asXLVo0ffr0sWPHOjk52djYmJqa1ly9wDIMNXyHN9LyCIW4YYOsOq//LzIy0szMDAB0dHRYv095ebmnpydbutOvX79Hjx7J+Cll7osvEACdnHDtWuTzkcPBGhne27O1a9cCwPDhw2VeMstYO3r0aJmX3BKwffaaKIVgG0DtqmGoXb1nz58/53A4Kioqjc9oLbVgwQIAWLduXWVlpaqqKofDeUdG3DqKjcURI5L4fLWZM2c2YFO6X37B0FC8cgV796aAsKWSSCQswfoDlh6+9Xj+/DkbFsdXKb/YyjTSwkkkkoKCgoSEhIcPHzZ3XYiMTZ+O33+Pb9rKobHy8vJGjhwJADwez8PDgyXUlpeX9/T0bB2d2YGBCIAdOqC3N3btigC4d29z16lFKCws1NLSAoCrLMO+jLCZL2pqam11ifLSpUvZPV9zV6SFonbVMNSu3j+2Q1sjd0ap6dKlSwBga2uLr/ovfvnll8YUmJyMxsYIgPPnpzesE3/v3pfThWbNQpn+Rb4ntdNGtUkREREZGRkmJiYsMVEroquomG9nF21uDgB7DAwqLSzGikTNXSny76Q7UrS6Jkf+1aFDsGwZaGnJvmRtbe2//vrr66+/lkgk/v7+T58+7dWrV0REhK+v7xszvLc4gwaBqipkZ0NxMfTpAyNHwvPnkJvb3NVqfurq6mzXbzakIxNFRUXsvvbbb781MTFpQAkxMTFPnz6VVX2awogRIwYO7GhhkdLcFWmhqF01DLWr92/8+PEAcPbsWVkVOGTIEHV19bi4uJycnMYXnpsLo0bB8+fg4ADff2/IMsrUl4cH9OkDALB/Pwwd2uC6NBsOIjZ3HZrcN9984+3t/emnn+7cubO561JPpaWgqgoqKlBSAv/9L+zdC7/9BnPmNHe1CCFNKCAgQENDIyQkZPny5a0jFJRatQrS0kAigZQUkJOD/v1BWxsWLwYlpeauWTMrLS3t3LlzTk7O33//zcaBG2nOnDn79u1zcHAIDg5+fUuAurCzs+vXr19LvixKJKXR0doAElvbXB5P498f0P5Qu2oAalfv3/379z/44AN9ff2MjIyGtavXhYaGdu/eXU1NraCgQF9fHwAuXrw4ePDg+l40i4th2DCIiICePeH6ddDUlEntWp92MUL4119/AcCYMWOauyL1x+cDAFRW1v6ZENJ2ubi4DBo06Kuvvmpl0SAiaGiApiY8ewYffgh9+sDFiyASQVhYc9es+amoqLA9lFevXt34fthr167t37+fz+fv3bu3wXdXERERLfmuHQC4XBUVFQdEUUnJteauSwtF7aoB/tGu0tPh6VMQCpu7Um2cra2tubl5dnY2SxAqEw4ODixlQ3l5uYqKSocOHUaMGKGsrNynT5+lS5eeOHEiJyfnXwupqAAXF4iIAAsLuHSp/UaD0B4CwpycnIiICIFAwPYhbGXk5YHHA5EIxGJgu0tXVTV3nQgh5E2KiwERUlPB2ho4HFBXB4kERCJIoalZAACLFi0yNDSMiIg4f/58Y8opLy+fO3cuInp5ebH0GG2YquoIACguDmzuirRc1K4a4GW7ur8bDh6EU6fgxx+huLi5K9XGubi4gExnjTI5OTnDhw8vLCzk8XjdunUTiUQRERE//PDDpEmT9PX1x46dN3Mm7NwJDx6AWPz/R6Wnv/zh4UN49gyMjCAwEDp0kG3VWpk2HRCmpMCBAxeWLJFIJEPt7JQUFZu7Qg0iHRikEUJCSEsmLw9iMfD5//+akkgAXn2JtXuKiops77jVq1dL2DsDUFJScufOnYcPHyYmJr548aK6uvpfy1m7dm1CQkLPnj3Z0FDbpqY2gssVIFJP6FtRu2oANbURXA4fi3JBKITqaigrg+PHm7tSbZzMlxECQHFx8ejRo58+fdqzZ8+oqKjY2NiioqLAwEAvL6+xY8dqamqWlXU+dAgWLABbW9DUhA8/BC8vuHQJJk2CP/4AANixA4KD4fJl6NRJhvVqldpsQCiMirq9efO3R44EPHgAAGO0tSEgoLkr1SDSgUF2U0UjhISQlklJCXR0wNISYmMhLg6Cg8HUFOTlwcamuWvWUnz66acmJiYPHz78888/2ZGYmBgHB4eePXt27txZS0uLz+crKChoaWmZm5vb2Nj0799/xIgRnp6e0hLu3r27Y8cOOTm5ffv2NWZG8dOnT9kz7t27t7GvqikpK/extS0QCLqzX/Py9orFRc1bpRaI2lV9KSvZ2d78RlCkw37NM7onLnwOaWnNW6u2zcnJSUdH5/Hjx0+ePJFJgdXV1W5ubhERERYWFpcuXWI7Z6qqqjo7O3t7e587dy43N9fPb/FPP8G0aWBmBiUlEBgIPj6wdClYWMCFC1BYCABgZgbdusmkRq1bQxLptFhCofDBgwdBQUHBt27dunKlqLISAFQUFABgVKdO8OgR9O4NDcqa1ZykA4M0ZZQQ0sJNmAD79oGrKzx/Dl27gpERmJhA9+7NXa2Wgs/nf/3115999pmXl9fEiRO5XC6fz7e3ty8tLS0rKysqKiopKREKhS9evHjx4oX0UcJXC5xEItH8+fPFYvHKlSvt7OwaUxMzM7PAwEANDY2a+6a2SFwuV7Gs7OW6o4qK++rqY3k89eatU0tD7aresnK4FZIyjZcTByvUs9VzKnhRUa3vFrH14PF4Y8aMOXjw4NmzZ9mYdmOIxeKpU6cGBgYaGhoGBgZ2eNN0Tx6PZ2urZGsLCxcCAGRlQWgohISAjg48fgyrV4O3dyNr0aa0/iyjJSUQEgK3bsHNmz2ePYvNzmaHOQDWurrddXXPPnlioaUVu3AhcDgwcCC0upWEhw9DWRn07w+FhfDiBXTrBpaWzV0nQgh5ixcv4No1SE0FPh9694a+fUFGOeXaBqFQaGVllZiYePjw4WnTpr1+QlVVVVlZWWFhIbubLysr4/P5Tk5OALB+/fp169Z16dLl/v37iq10EUSDJCRM4PPNAaCk5JqFxUV5ef3mrlGLQ+2qfm7fhqtXE3od4ZdrAkCJTrLFnWnyikbw+efNXbO27PTp0xMnTnR0dAwJCWFH7t69q66ublnP21pEnDt37t69ezU0NK5fv25ra1vfmnzyCRw8CGvWQFAQ3LlT30e3Ta0nICwthatXIT4eOBywsoLycggNhZs3ISoKXm3N962x8e9VVQNNTZ3NzYd06qSrrCxBfJyby+FwuunqAocDjo7g7Ny8r6Mh/vtfsLWFwkIQCsHHp7lrQwghpOH279/v4eGhpKSko6OjrKysrKysoaGhoqKioqIi/Zkd19TUZD+oqKgUFBS4uLhUVVUFBgYOHz68uV/Ee5WYOMXc/BgApKUt6dBhNQWEb0Ttqh5OnYKYmMTeJ80j3QAgrcfFDk+d5EVqsGYNcDjNXbk2q7y8XFdXt7KyMj09nY3p2dvbh4eHq6ur9+3bd8CAAQMHDnR0dFT6t22KVqxY8d133ykpKV2+fHnAgAENqMmWLbByJZSVwZIl0LJnN78/rWTKaEkJ/PorlJZCUhJwuVBSAjt2QEEBAACXC8bG0LEjdOy4omNHTz5fLJHE5eWdjosLSky8lpRULhS+WLUKAEBeHszNm/d1NERUFBgbw+LFAADTp0NJCaiqNnedCCGENNCMGTP09PRcXFxSU1Pr9UA+nz937lyZ3LVHRETs37+/pKSkuLj40KFDKioqjS+TNC9qV/VQ9KaVqFwulJeDsvJ7r017oaSk5OzsHBAQcO7cublz5wKAmZlZampqVlZWUFBQUFAQAMjLy/fq1cvBwcHBwcHR0dHktUm8Gzdu/O677xQUFE6dOtWwaBAAyssBAJSVaY7w/7WSgPDSJaiogFOnwMYGRCI4cwbs7KC6GkxNwcQEFBRALIb09LLIyEkJCSFpaSU1FtqZqqunFRV11tcHE5NWGRAWFICu7sufdXSgsJACQkIIab3k5OTGjBmTl5dXVFTEJu8VFxcXFxezn9mKr5qrv9jxwsLC/fv3N2By1BspKSlZWVmpqqqqqakpKCjIpMymY2y8VSwuFgozO3TwlJPTbu7qtFDUrupBJAIA40cjxHJVQn5Jh/iBckIlkOdKZ5yRJjJ+/PiAgIBt27Z16NChf//+x44dA4DExMTQ0NDQ0NCQkJCHDx+Gh4eHh4fv2LEDAExMTOLi4qRjhrt27VqzZg2Xyz106NCoUaMaXI3Hj2v/QFrJlNHNmyElBZ48gSFDAADOn4chQ4DPh8xMSE2FxERISwOhELhcU0XFtLIyc3PzAQMGDDQ3H1Bd3V0gAEVFsLODwYOBx2vmF9IAubmwZAkcOQLV1TBpEpw5QwtyCCGEtB9CYWZKyjx19VF8vgWPp5mZ+Y2qqrOa2nBFRRsAmuBH6m/vXnj+XMgvSel5Tj3Xgl+mxRMqZlrdVO02W03nI2pXTSc3N9fX1/f7779nvxoYGAwcOJBNFu3VqxeXyy0rK4uKioqIiAgJCbl27ZqWlpY0K+mZM2fc3NwkEsmvv/46b968xlTDyQns7QEALl+GBw8a95LailYyQigWg0gE0t4mBQUoLIT9+/+/zSSHAz16wODBx4cP79S/v4GBQXPVVPZ0dcHDA5YtAw4HNmygaJAQQki7IhIVcLlKWlrTeTz1zEyfoqILRUUXAEBeXl9Vdbim/EgNyRAwNW3uapLWQ00NAETyFVyxvNbznjyRINPyRpHOk6KcVZCzitpV09HV1V2xYoVAILh9+/bdu3czMzNPnDhx4sQJAFBXV+/fvz+bKTp79uylS5ciYvarVJFXrlyZMmWKWCzetGlTI6NBADA0hO++AwCYPLkMlJ5LAAAgAElEQVSRJbUdrWSEcM8eSE6GU6fA1RXEYjhzBqZMgZ9/Bj09GDgQnJ1h6FDQ0WnuWhJCCCFENkSinMLCszo6cwGguPhyXt4+DY2xqqojSkqCiouDSkquVFenAYDJbQe9JaFgbg7OzuDsDMOHg5ZWc9edtFwiUU7hvW06QaogFhfrJuSZRGnkWKrmmJeYZhYPkKd29d6IxeK4uLiQkJDg4OCIiIhHjx5J/4nH43Xt2tXOzo6NH5aWljo7O5eWli5evPiHH35o/FNPngzHj//jB9JKAsLUVDh8GDIzISoKuFzo0wd0deGTT8DQsLlrRgghhBAZE4lynz4dVlER07Hjbm3t2RyOnERSmZQ0hU0WFQisAaCy8klJSZDq4aeC9YdAusMejwf/+Q8cOtSctSct1f/b1aMJ2kk2HORKuKIku5OqueZqWiMF45YAtatmkpGRcfv27du3b4eGhkZGRlZXV0v/SUVFpbS0dNasWfv27ePIIg1sYSFoaPzjB9JKAkIAePYMzp4FoRAQQUkJXF0pNxAhhBDS9ohEuU+fDq+oeCgQWFlaXquuTikoOCaRFAsENs+fLwMAeXl9FZVBamrOamqjFBRMQSyG6GgICoKgIAgOhkWLwMQEUlKgogKWLoWuXZv7BZEW4R/tKsi9GjILDGMk8lWCIr3nPS4BtasWQygUPnjwgI0c3rhxY8iQIVpaWlu3bpWTayUr3Vqh1hMQAgAivHgBXC6F84QQQkibVOOuvaul5TWxuOTp06G6uvMNDNaVlYXn5PxYUhIkFGaxk1XzTS0/k3s5qW/ECNDQgIoKuHEDwsNh3TooLYWZM+HPP5v3FZGWoHa7igp5Kpqjm2Jn8HRwmUZ6TtfoEsM0alctU0VFhaKiYnPXoo1rVaE2h0MTuAkhhJA2Ky+P8+knsDBLoNfN0vKqWPzi6dNhQmFmaWkwokhZuZ+Z2SEAqKiIKSm5UlwcpB1UCYlBsHs37N4NcnLQrx+MHg2amsA2KGux++CR9+z1diVYIhQWl2qnIV9OubKzWd/NoK1N7aplomjwPWhVASEhhBBC2qr8fHB25t2/31XoLDl5WCIpfvp0uFCYqaIyqHPn0xzO/+9YFBV7KCr20NNbCsvF4PxqUt+tW3D7NsjLw9KlIN2cXZqNnLRb72hXqj9wtEVgbQ1KSkDtirRjrWrKKCGEEELapMJCGDEC7t2Drl3h6lUoK32W6V6s/EBVdbiFxTkutw5DBKWlcOMGKCjAkCHg4QE2NpCQAM7O4O7e9LUnLRW1K0LqgAJCQgghhDSr4mIYMgSiosDKCq5ehdJSGDoUlRXSDvUy7nOIy1VqSJnZ2aCuDgKBrOtKWg9qV4TUDU0ZJYQQQkizUlUFBwcoK4MrV6CsDIYOhfR0jpOTabeD0LC7dgDQ15dpFUkrRO2KkLqhEUJCCCGENB+JBMRi4PGgsBBKSmDIEEhOhoED4eJFyt5BGo7aFSF1RiOEhBBCCGkmv/0G9+6BkhIoKsLGjbBtGyQnw+DB8NdfoKzc3JUjrRa1K0LqgwJCQgghhDSHqiq4dAlOnAAA8PSER49gwwbQ1YW5c+munTQctStC6onb3BUghBBCSLuUlwcGBi9/7twZUlOBw4HPP6e7dtIo1K4IqScKCAkhhBDSHPT1ITUVWC6DyEiwtm7uCpE2gdoVIfVEU0YJIYQQ0hzk5GDBAvjsM5CXBzs76NixuStE2gRqV4TUE2UZJYQQQgghhJB2iqaMEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDtFASEhhBBCCCGEtFMUEBJCCCGEEEJIO0UBISGEEEIIIYS0UxQQEkIIIYQQQkg7RQEhIYQQQgghhLRTFBASQgghhBBCSDvV9gPCsrKyJ0+eVFdX1zouEokSExNLSkre9sDKysrExMSKiooGP3VeXl5KSkqDH05aMmpXpClQuyJ1l5OTk5aW1vhy0tPTs7KyGl8OIYS0YVVVVRKJRPqrWCxuxsrIXNsPCK9cuWJlZfXs2bNax9PS0jp37nzy5Mm3PTAsLKxz586hoaENfmpvb+8+ffo0+OGkJaN2RZoCtat24vz58ydOnKiqqqp1/Nq1aydOnCgoKGC/nj59+smTJ28r5Msvvxw6dGjjK+Pq6vrpp582vhxCyHu2cuVKdXX1ZqzA+vXrORwOIjZjHRpg27Zt33zzTb0ekpycLBAITp06BQBZWVnOzs4CgUBFReX7779vmjq+b20/ICSEEEJaDkR0d3efNGnSxYsXax4vLy93cXGZNGmSNLB3dXV9Ry9AG1ZYWDh//vzKysrmrgghpK1BxB07dhgYGDS4hLVr10ZFRQUGBp45c2bs2LEyrFstW7Zseb2DuIlQQEgIIYS8P5mZmZWVlXJycseOHat5/K+//qqoqOBwOElJSexIfn7+l19+2Rx1bGZJSUm7d+8WCoXNXRFCSFsTFhaWnp7u4uLS4BKio6MHDx48ZMgQZ2dnS0tLGdatlg0bNiQnJzdd+TXJvZ+neW8eP3785MkTDofTo0ePzp07v35CWlra3bt3EVFO7h+vPT4+PiIigsfjOTg4GBkZ1fynnJyc4OBgeXl5JycnNTW1qKgoAwMDQ0ND6QlxcXEKCgrm5uYAIBKJQkND09PTtbW18/LypOdUVVUFBwfn5OTo6+s7OTnJy8vL+JWTpkTtijQFalftE4v33N3dz549W1paqqKiwo4fO3ZsyJAhDx8+lN4BPHv2zNjYmH182dnZYWFhYrG4d+/eHTt2rFnggwcPnjx50rFjx379+rEjZWVlUVFRWVlZBgYGffv2VVBQYMcrKytDQkIKCgpMTEzs7e05HM6/1ra8vDwyMjIrK6tDhw79+vWTFlVVVRUaGpqbm2tiYtKvXz8u92X/ckpKSmRkJJfLdXBw0NPTYwerq6tDQkLy8vIMDAwcHR3ZyY8fP9bW1lZSUrp+/bqCgoKtra2+vj57Obdu3QKA6OhoJSUlPT09ExMTACgtLQ0ODi4pKenUqVOfPn1Y5XNzc3Nzc62trVllBg8erKGh0aCPhTShsLCwgoKCjz76qAGPDQgIMDIysrOzk3mtWp3q6uro6OiysjJra+sOHTrU/KesrKxHjx4ZGRl17dqVHRGLxU+ePMnOzu7QoUPXrl3ZH11qaqqWlhaPxwsPDzcwMJAGM0lJSYmJiYqKil26dCkrK+vUqRMAIGJMTEx2draRkZG1tXXNp0tNTY2Pj9fQ0CgtLX13nSsrKyMjIysqKqytrdlXWUFBQWFhoZGREZ/Plz67iopKeXm5oqKi9EsDALKzs8VisfT6lZiYmJiYqKysbGFhUV5ezr4GpZU0Nja2srJiZ6alpWloaKiqqsbGxubl5VlZWbHvFub06dMDBw6UvoH5+fmPHz/m8/k9evRQVFQsLi7Oy8vr2LEjj8eTVk/6rVJdXZ2YmFhcXMx+AABjY2M5Obnk5GRtbW3p9N3c3NzKykoTE5P09HRVVVWBQBAWFqapqdmjR483vkuI+PTp04yMDF1d3a5du8rLy+fk5GRnZ5eUlGRmZiYmJgoEAvY+SCSSmJiYnJwcAwODbt26sa/B0tLSgoICU1PTvLy8hw8famlp9ezZk8PhCIXCiIgIdo+hrKzMnqugoODRo0cKCgo9evRQUlL6RyXajJEjR8rLy3fp0sXU1JTL5X799deIePbsWQCIiYkRiUQLFizgcrlaWloWFhbsFmffvn0SiWTx4sUcDsfU1FRfX19BQeHw4cOIeP36dQCYNm2ampqalZWVioqKvr5+fHy8jY3Nhx9+KH3SsrIyFRWVrVu3ImJ0dLSFhQWPx7OwsNDR0QEAHR0dRHz06JG5ublAIGAf8wcffPDixYtmepNIvVG7Ik2B2lW7dejQIQBgIf3Ro0fZweLiYkVFxZ07d9rb27u6urKDHA5nw4YNiOjr6ysvL6+mpqanp8flcr29vRFx+vTpRkZGLi4uGhoa7AZu+vTpiHjlyhVVVVVNTc0uXboIBAIzM7PExEREvHv3rpGRkaKiopmZGY/HGz58eFVVFSLa29uPHz/+jVW9evWqmppazaISEhJYUew2qGPHjiz2KygokEgkixYt4nK52traWlpafD5/z549iPjgwYNOnTrx+Xxzc3M5ObkBAwaUlZUhop2d3ahRo/T19Y2NjdXV1eXl5Xfs2IGI3bp1U1RUBAANDQ1NTc2vvvoKEc+dO6epqSkQCDp27MjhcPr375+VlYWIO3fu1NXVnTFjBruliYqKasqPjjTQ1KlTu3Tp8vrxp0+frlq1KiMj4x2PNTY2/uyzz5qsaq3GxYsX9fX1uVyuqqoql8v19PRExBUrVqioqCxevFhRUVFLSwsA5syZg4jBwcEGBgby8vK6urpcLrd3797Z2dmIaGZm9tlnn7FuRPZX//z588GDBwMA+xsEAE1NTURMTk7u1asXh8PR1tYGgNGjR1dWViJibm7u6NGjAUBNTU3aPSSRSN5Y51OnTmlra8vJyamqqnI4nFmzZlVVVT169EhJSWnu3LnsnN27d8vJyd2+fXvcuHFWVlY1H965c+elS5ciYlpampOTU81KsqtVYmKira0th8Nhr33cuHHsO83a2nrRokUODg6qqqoqKip8Pl/6TYuIlpaW27dvZz///PPPAoGAlammplZcXPzzzz8DQF5envR8BQWFtWvXso68devW1YrlYmNjX7x4AQDs64uZNWtW586dEbFfv36zZs2ysLAAAEdHxze+S3Fxcew7WVdXV05OztLS8smTJ1OnTq35LIMGDULEJ0+esJBSU1MTAPr06ZOSkoKIhw8fVlFR2bx5s6KiIruaDxs2LDg42MTERFtbW15e3sjIKDY2lr3bioqK7PWqqKgUFBRIq9GmAsKIiAjpjcvatWu5XG5ycrL0Bmvjxo0A8PPPP7MT4uPj2Q3WgQMHAODXX39FRKFQOH78eH19/fLycnaD5eTklJ6ejojPnz9XUVFZtGiRr68vj8djlyJE9Pf353A4ycnJZWVlRkZG3bp1S0pKYv/02Wef6ejoSCQSGxubrl27sq+86OhoBQUFHx+f9/vekIajdkWaArWrdmv9+vUCgUAsFjs5OX388cfs4O+//87lcjMyMiZPnty7d292kAWEV69eBYAlS5aIxWJEPHLkyIEDBxBx+vTpALBp06bq6mpE3LJlCwDcv3+/uLg4JCSE3aJlZGRoa2t7eHiw7uq+ffuyG51Lly5xOJy9e/fiOwPCkpKS4OBgVlRmZqaOjg67pevYsWOPHj1YY4uPj1++fHlJScm+ffsAYNu2bYgoFov9/PwuXrwoEom6dOliY2PDGuGtW7e4XK6fnx8i2tnZcbncY8eOIaJIJPrkk0+4XO79+/cRcevWrQBQXFzMqpGZmamiojJy5MiSkhJEjIqK0tTUZHXeuXMnAHh4eBQWFhYWFopEoqb4yEh9TZ069eLFizV/fWNAePPmTXNzc3ar+jYUECJienq6iorKiBEj8vPzxWLxqVOn1q1bJxaLV6xYAQCffvppYWEhvvrDiYiIKCoq+uuvv4RCISI+ffpUVVV12bJliGhmZqaiohIQEJCXl5eZmSkWi3v16mVoaBgaGoqIQqFw/vz5LCC0t7c3MzOLj4/HV18Xu3fvRsShQ4dqa2tfuXIFEcVisaen59sCwvj4eIFAMHHixJKSEolEcvz4cS6X6+XlhYg//vgjAPj7+yckJKiqqrKDR48eBYDo6Gj28LCwMAC4c+eOSCSytbU1NjYOCwtjlfzvf//LAsI+ffp07tyZ9VJduHCBw+Hs27cPEa2trfl8/sGDB0UiUVVV1YgRIwwNDVmx9+/fBwDWR1ZWViYvLz9v3jyhUFhaWnrjxg1EfHdA6O/vj4g9evSYPHmy9IR3B4QKCgpHjhzJz89//vz5Gz9coVD4559/VlRUIGJmZqaJiYmbmxsi3r59GwAuX77MThOLxT169OjSpcuzZ88QMSYmxsTExMHBAREPHz4MAB999BG7cLN30tjY+ObNm4iYlZWlp6c3derUqqoqgUAwe/bs6urqsrKy69ev16xGmwoIa7pz5w4AXLx4UXqDZWhoWLOnnA317tu3z8XFxdzcvOAVtqjjxo0b7AYrKChI+hB7e/sPP/wwNTWVy+X+9NNP7KCrqysL3I8cOVLzk0PEhQsX6ujoxMXFAcD27dulTzFw4EB7e/v39U4QWaJ2RZoCtat2Zc6cOV27dkXEHTt2KCgosD7aMWPGDBkyBBFXrVqlpaXFzmQB4WeffaahoVFeXl6rnOnTp5uZmUl/ffDgAQCcOHGi1mkfffSRvb39jRs3AOD8+fPS49bW1iwcZQHh/v37h/9TzebEjBkzpm/fvmw+58mTJ2v966hRo6ytrWvdGkZERABAze75vn37Dh8+HBHt7OwGDx4sPc62vvD19cXXAkIWaj548EB68qpVq7hcbllZGQsIWWhKWg49Pb0jR45If31bQFgXFBDiq46Pp0+f1jrORgilf3Ss65BNG6lp2LBh7I/OzMxs5syZ0uPXrl0DgN9//1165IsvvtDU1GTlsAiQ6d2790cffRQdHV0r8vHx8WEVG/9PP/3005YtW7hcbmZmpvTk8ePHszBJIpGMGjVKR0fHzs7O3t6eBa5sAsuqVaukNTE3N5dIJIGBgQBQszktXbpUR0eHZWBmvVqMra3tuHHjENHa2rpmwLZ9+3YAYDGzl5eXnZ0dO15QUMDlcufOncsGPxmZB4SjR4+WHr99+3atN+r48eO1PqwZM2ZYWlriawFhVFRUrQ+XVTU+Pp4FhCxQRES2ARWbSCJ953v37l1SUsLj8T755JPXryaI2KaSysTGxrILpEAg6N+/PwCUl5ezfyouLs7IyGAHa4mPj09MTNR6ZcqUKQAg3dyp5hILPp8vFApNTEwGDBjA4u/S0tILFy785z//Yc8OAK8/RUJCAgAsW7ZM+hTBwcGpqamyfvWkqVC7Ik2B2lW7lZSUZGZmBgCurq4ikejs2bMvXrwIDAx0c3MDgE6dOhUUFBQVFUnPT0hI6Ny5M5tFWYt05R4AsOlb1dXVEonk119/dXR0NDQ05HK5Fy9eLC8vZ3d4Y8eO5bzy+PHjmtsYGhgY9PonFpfu2rWLFcXj8f766y9pUTY2NrUqk5CQ0L1791rrEtnJ//nPf6TPe/fuXenzqqqqSs/U19fX1NRkfR+vl8zj8WquYrKxsZFIJKy5wj9bPmlewcHBu3btysvLu3r16u7du2tmTiorK/vtt99WrVr1yy+/lJWVAUBqauqPP/7IFjCXl5fv379/1apVa9euZYEKkYqPj1dSUurSpcvr/8TlcqXtXyAQAACbNvn77787OztbWFhoaWndunWLveEAIF0aBwAPHz4EADYbs9bTAcC8efOkf7aRkZFpaWlvO19BQcH4n1hUqaenV3Ot4wcffJCcnFxdXc2G8iorK6Ojow8dOsQWySspKX388cd//PEHi09OnTrFvjfeXck5c+ZIK3n//n3p1army5S+LQBw+vTpCRMmsOOamppLly7ds2ePqanp8uXLm+hKV7MmSkpKtd4oNTU1ADh79uzo0aO7du2qpaXl7+8v/bBef701v3g/+OADAJCmIZVeDtjrrfmtKBAIqqqqVFRUli9f/vvvv5uami5btqxWupq2k1SGTYPu2bPn7t27TUxMEhISaqaC5fP5HA6n5rVTSklJafjw4SdOnKh1kPXZv9HUqVMXLFiQnJwcEhIiFAonTpwIb/oAGHYVP3PmzKBBg6QH6erVWlC7Ik2B2lV7lpSUNHLkSAAwMjLq37//sWPHRCKRSCRityksVkxOTra1tWXns2t53ctfu3bttm3bfHx8Bg8erKOjs3DhwoyMDPbJ3rlzp2ZOvJp3KiNHjmS1qlXUli1bfHx8hgwZoqOjs3jx4tTUVNZ4Xt8T4o31ZM8bFBTUu3dv6cE3tm2RSFRaWirNM1ETn8+XSCRCoVCaXYk90RuDZNK8IiMjjx8/LpFIwsLCUlJSDA0NWb/VixcvevXqZWxsrKur+/PPP+/fv//OnTuPHz9esmTJwIEDq6urBw8enJubO3To0BcvXmzcuHHOnDl79uxp7lfTUigoKIhEIolE8sa/nddt3LjRx8dn7dq1Xl5eSkpKn3/+uUgkemOx0v+/fvyPP/6wt7eXHpSTk2MXmtfTjJmamv7000+1Dt6+fbu6urrmEaFQyOPx2NfO7du32VriS5cuSQPdadOmHT58+M6dOxKJJCUlhbWct1WSVeP48eM1d9B9dwq0pKSkBw8e1Oyk+P7772fNmnX48OF9+/YdPnyYDYE2HVtb29ffqAMHDnh4eHzxxRcrV65UVVXdtGkTmy5bC3sHauZeZm/vG78z38bX13f69OlHjhzZu3fv4cOHo6KijI2N2T+1nYDwypUr+fn5+/btY2vra12r+Hy+sbHxvXv3pEdYqA0AVlZWly9f5vP5/0i2806TJk1aunSpv79/cHDwiBEjWE4k1qAjIiLY8lzpU3Tt2pX1W4wfP76Rr5G8f9SuSFOgdtVuicXi58+fs88dANzd3VesWJGfn89G4eBVQJiUlCQNCNmHnp2dXTNR3jscO3Zs0qRJK1euZL+yqInlHnz48GHNO7y6FOXu7s6WCUmLYiN1ISEhPXv2rHmylZVVcHBwZWUlixgZ6fMOHz783c91+fJloVDIRq1Z4Ce9hbW2tmYTqKSFBAcHKyoq1sq2SlqCJUuWjBw50srK6quvvqqZGKOkpOTo0aPOzs4A8Mcff0ybNi08PFz6rytWrMjKyoqOjmb5lnfs2PH555+7uLiMGzfu/b+EFsjKyqq6uvrevXvSTMLvdvjw4UmTJq1du5b9qqamVlBQ8Ppp7N2OjIyUZvJkEyPZhSAlJYXNKJHKzc1l50uzZb5jUwQrK6uCgoKnT59KO6FCQkIsLS15PF5GRsb8+fMXLFhQVVW1YsWKwYMHs4EvZ2dnfX19tq7YxsaGPQvLyBIZGSnNUssqyXKKpqSkTJo0qS7vCQCcOHHC0tKyVsbUnj17btmyZdy4cYMGDQoODmbX1vLycpZNp6KiQiKRvLtYgUDA5XLZRE3mjUN8b3PkyJFBgwZ999137FeWFQZefQ2KxWL2K3u9oaGh0oy7t2/f5nA4bM1/3Z+uR48emzdvnjBhgr29/c2bN6V/pG1nyij75AIDA8vLy4ODg2fPnl3rhE8++eTChQt+fn5paWlXrlyZP38+O75w4cL8/PyZM2fGxMSkp6dfvHjx22+/ffdzaWlpjRo1at++fZcvX2YdGAAwevRoPT29xYsXh4WFpaamrlmz5tKlSwBgaGjo7u6+devW33//PSMjIzY2dseOHe/ozictCrUr0hSoXbVbz58/FwqFbNsPAHBzcxOLxffu3XN3d2dHWN7OmrdZbE7UlClToqKisrOzr127dv78+Xc8hZaW1sOHD1nW8q1bt7KTe/fuPXDgwNWrVwcEBOTm5sbGxn733XdsEc67i2Ip3bOzs7/77rtz584BgK2trZOT07p1606dOpWTkxMTE8NSRCxcuDA7O3vWrFmPHz/OzMw8f/78rVu3LC0tR44cuX79+pMnT+bk5Dx+/NjPz4/ldQAAliQ9Ozv7zJkz8+bN6969u6urK7wKIw8ePPj48ePExMTRo0d36tRpwYIFt27dysjI2Llz56FDhz799FPaEKUVMTU1ZdEgALCuhOfPn0v/9erVq25ubtLddxYuXKimphYUFPT+69kyffzxx0ZGRnPmzGEbAt25c+f48ePvOF9TUzM2NjY3NzcnJ2fLli2XL19+42lOTk4dO3Zcvnx5WFhYZmamr6/vmTNnAMDQ0HDChAnffvutv79/Tk5OXFzcjh07Hj582KtXrx49eqxbt+7mzZtZWVk//fTTwYMH31aHyZMna2trf/LJJ2y6qY+Pz40bNxYtWoSIc+fO1dXV3bJli5+fn6mp6dSpU1mvqJyc3KRJk/z9/U+ePCm9Wg0ePNjU1PTLL78MDw/PzMzctGkT+yIyMTEZP3785s2b2XdLXFycn58fWw3xNqdPn5Z+0wJAcXHx2rVrw8PDk5KSzp8/z+FwLC0t2TzMnTt35ufn379/38XFpS4BoZWVlb+/f3JyckZGho+Pz+nTp9/9kJrYVPnU1NQXL17s2bOHLQgEAHNzc3l5eX9///j4+JiYGEtLy+HDh/v4+Jw7dy4zM/PkyZNbt26dMGFCzW2l3q28vHzNmjVhYWFJSUnsPfzHJoqvLytspSQSiYeHB5vapKure/ToUTU1tX4H0VUAACAASURBVFOnTgUEBHA4nNjY2Orq6qVLl7JNQjQ1NX/77TdNTU2Wj+jMmTPSryFdXd1ly5aJxWKWpIFlUmIGDRo0dOhQ9jNbkyMQCIqKiqQn3Lt3r0+fPmw0fPDgwV5eXiwPUmlpqYeHB+s05XK5jo6ONYslLRm1K9IUqF21W2xxVHh4uPRI//79ORxOamqq9IixsTFLti7dduLq1avSAUM9PT22ccj06dNZ3gKGJQQ6cuQIyzjPTnZxcVmxYoWNjQ0i5uTkTJgwgfU6czicwYMHs2q8I8toSEiI9G5j3LhxK1eu7N69OyLm5ua6u7uzqUp8Pt/FxYUlgPH395c2zo4dO7JkFQUFBVOmTGHBG4fDGTBgAMt9Z2dnJy8vz6bAKSgouLq6SvNPSCSSOXPm8Hg8DoezZs0aRHzy5MmgQYPYnwybAscWSrFkG+/et4C8Z9KmKD1SK6nMo0ePAODo0aN///03ANy5c4fD4dTMgYGI3bp1YwlCKKkMExsbO2TIEPb3oqmpuWLFCkRcsWKFmpqa9BwWY+/duzc0NJTtLcHhcFxdXZcuXdq/f39ENDMzmz17ds1iY2Ji+vfvz/7W7O3tP/74Y5ZltLi4eObMmexvnMvlDhw4MCQkBBHj4+MHDx7MvkZ69uy5efNmePu2E3fv3u3bty/7QtDS0tqyZYtEIvHz85OTk2MpQxHx3r178vLyy5cvZ7+GhoayarNEoMyDBw/s7e15PB7b5Gb8+PHsalVUVDR9+nRpJZ2cnG7fvo2I1tbWU6dOlT6cfUtER0dzOJx79+5Jj0dFRXXr1o1VT1VVVboXxbp169gL1NTU/Pnnn/v16/c/9u4zrKn7iwP4NwlbpiAiiANFARUHbtziQFGrFWlV3NW6bdVabVXU2mIddbWVVltxVMWNWkTcuCrDjRNkqojsGUhy/i8uf2qdjGAInM/ji5jce+7J488k5/7WuxeVIaLz588LH5USicTDw2Pp0qVFi8oIzfgd7t27V1SY9ejRY8mSJVZWVsJLP//8s7B/oJubGxG9ePHC3d1d+CzV1tb29PQUvtOFGlJYbVUAYMmSJUV/9fDwaNKkye3bt4u6dvX19X/88ceX06g8BaEgOTn53r17woJFb5OYmCgs0v2KpKSkEm231adPH3d399efz83NTU5Ofv35vLy8J0+evPHSrILjdsXKA7cr9m6v/MzKyMh4uaR/B6lUKnTTvf5STk5OTEyMUE0VXeVtv+eKQr2x4srLy3vx4sXr56akpGRlZb3yZG5ubkxMzMur+Tk5Obm5uUml0tjYWGHJ9ddTfSVOenr6K8mzCqikBWF4eLiBgcGsWbNeDmJhYTFu3DjigvC/cnJyilbffbf8/HxhY/riHJybmyt8tsyYMcPc3Lzo+by8vPj4+Nf/x0ml0qLdjN4rNTU1Pj6++FvCTJo0SdhN4RU5OTlCklOnTq1Vq9bLyb8xyVds2LChbt26r39eZWVlxcbGvpKe8Ln0tm/n1wtCQXx8fDH/dV4hk8kePXr0xn0pZDLZKzFzc3NjY2Nf/iwtkezs7De+tcozh1AgLIv37mOEKTSvKxq2WxzCClpv7LLX0dF5eQZFEW1t7aK7tky9cLti5YHbFXu3V5bzeXlNznfT0tISJpy8TldXt06dOu+4SvFDaWtrv3E9A2HT5Ffo6Oi8ct2i+NbW1m9L9ZVnDA0NhUX5WEX2tmWH3qFZs2YBAQGrV68WesBCQ0OfPXtW1CvOihR/ISVNTc3/DAh8p6Ivgnv37hV18gPQ1tYWehpfoaWlVcwpzQCMjY2NjY2LebBMJjt48OC33377+ku6urrC238lSR0dnTcm+Ypp06ZNmzbt9eerVasm9MK97B2fS+9QnDTeSCKRvPyOXnnplU9+HR2dUuRWRE9P741rEFS2gvCD2b9/v66ubtEMV8aUgtsVKw/crhhjH4y1tbWlpeXGjRt1dHQKCgpGjx793lMWLlzo5uY2YMCAcePGpaSkLF261MbGZsyYMeWfbJWmUChcXV27dOnSunVrfX39EydOBAUFrV27VoUpCSuuvbxOjFwu79u3b/fu3Vu3bq2npxcYGHj69Glh3rKqzJo1q0T3ZNUCF4SldOLEieHDh7/xzjpjpcbtipUHblesAjIwMNDX11d1Fkz5xGLxgQMH5s+f7+Xl1bZt29GjR9evX79on1UAOjo6Tk5O1atXNzQ0bNWqlZ6eXt++fY8fP+7t7T19+nRdXd0+ffosXbpU6A12dHR8Y98yKzuZTPbxxx/v2bPn119/zc3NrV+//tq1a6dPn67ClC5cuODu7v5y96OQpJ+f3y+//JKbm2tjY7N+/fopU6aoMMnx48er8OrlREREqs6BMcYYY4wxxpgKVJ5tJxhjjDHGGGOMlQgXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRXFByBhjjDHGGGNVFBeEjDHGGGOMMVZFcUHIGGOMMcYYY1UUF4SMMcYYY4wxVkVxQcgYY4wxxhhjVRQXhIwxxhhjjDFWRWmoOgHGGGOMVSVpaThyBNHRIIKlJQYMQM2aqs6JMcaqLhERqToHxhhjjFUNWVn4+WdkZuLmTSgUcHCAiQnGj4e5uaozY+ovKwu7dqGgAEOHcotirPiqzJBRmQwFBYWPc3JUmgpjjDFWVZ05A6kUBw+iVi3Ur4/Dh5Gbi4AAVafF1B8RxoxBq1bo0QPjx0MqVXVCjKmNqjFk9KefEBUFsRjm5pg8GT/9hE8/hYODqtNijDHGqphHj5CRAQMDWFoCQL16ePIEWlqqToupv6dPYWkJJycA6NoV4eHo0EHVOTGmHqpAQZiSghs3sHUrAEyejORkGBnB1FTFWTHGGGNVVtF0FSKIRCpNhVUWIhEUisLHCgW3K8aKr5IOGb15E9OmQSYDgKdPUadO4fP16yM5GV9+yfPXGWOMMRVo2BDGxsjORkICkpIQGwtLS1hbqzotpv5q1cLz5wgJwd27uHgRrVqpOiHG1EZlLAgjI9GnD37+GWvXAkC9erh3r/ClW7dgawtxZXzXjDHGWMXXvTu0tPDRR0hMRHQ0unfH6dO4fl3VabFK4c8/ceMGzp7F0qVYuBDffqvqhBhTD5VtldGMZzmGnRwRGQkXFxw9iitX0KIFzpzBiRMQidClCzw8VJ0jY4wxVoWlpWHFChw7BgcH1KyJ9etRvToSE6FRBaaxsHJ1+jQ2b8bQoWjeHA0bcrtirJgq1X+S9HR0c9WbbLHosxqbRAcP4vJluLrC3h7nzuGjj1SdHWOMMcYAY2NYWODWLRDB3h6mpkhOxj//wNlZ1ZkxNXfrFnbtAhGGDIGtLR4+5HbFWHFUnsGTOTno3x/Xr2Nd6qj0o8GIisLgwcjLQ/v2MDBAZqaqE2SMMcYYAGDAAACIjIRCAVtbADh2TLUZscpAaFeBgZDJ0L8/wO2KsWKpYAVhQQFCQ7FtGzZuxB9/IDi4+HsGHj6MixdRty4CA/EiWSQf6oG0NHz6KTZuhK8v7Oxw82a55s4Yq+JOnkRYGABERODIkcInV6/GyZMAsHFjJb0xVVCAmzdx6hTCw5GXp+psmJqwsYGdHXJzEReHRo0A4OhRVefE1J/QrlJTcelSYUHI7YqxYqhIQ0aTkrBtGzIz8fQpDA2hr4+nT3HhAoYNQ4MG7z3700+RlYUuXQDApbe4hea+XZ+s1vX1wcGDGD8ecjmuXoWjY7m/C8ZYVRUXV7i2cUoKoqMLn4yIQEgInJ1x/z4KClSXXDl58QJbt6KgAPn50NLCiRMYORK1a6s6LaYO+vfHvXt48AA9ekBHB7duIToa9eqpOi2m5oR2dewYvvsORkbcrhgrjgrTQyiXY9s2PHmCvXuRnIxz53D/Pm7eREQE9uxBenpxYnz2GczM0KcPYmLwzLSJYvMfwedJNnse5HIsW4YJE8r7TTDGqrjNmzFnDn7++T9PzpiB779XUULligg7diA5GXv34vhx7NmD58+xcyfy81WdGVMHQgfOgweQSGBjA0ARGKjilFglUNQxqKkJFxdwu2KsGCpMQRgZiYICXL8OZ2c0awZXV1y/jvr10aABZDIEBiIp6c0nEuH+ffj54aef8P33Yzo9iohAs3qZAduS7txBv4+0uspOZX7jzUsPM8Y+gAkTsGoVpk79z5Nt2yI9HZGRKsqp/MTGIi8PV66gTRv07YuePXH+fOFnMmPv1akTjIzw4kVBWtp9B4cxtWp9VDTSmrFSE9rV3bsF0dH3P/54jIMDtyvG3qvCDBnNyQERpFLo6gIo3Crw0CE8fgwLC9Spg0OHYG+Phg1Rpw6srWFpCQ0NpKTgr7+QmSnckJYpxGObh2fmae5yP5C0SXfAH2OzsrRtPqpbbek8lb43xliVk50NHx/UrVv4Vy8v2NmpNKHykJYGIqSkoEYNADA0RE4O8vOLOaaDVXWamkfGjv32jz8+e/BgWJMm2/fv1z59OicnR09PT9WZMXUmtKu//vrs6NFhw4ZtHzlS+/FjbldMaYiQkQFtbejoqDoVZaowBaG1NRQK1KmD+/fRoQOeP4ehIeLjkZ+P2FjExgKASPS7/ZpwPdsO1uEd6hyxtZMgOfmf6JoSsXZryyfhT2sl5+jWM04b2Ph+NQ3prWdmEkXBgFYv/vzTqiJvRB8fH1+9enX+nGKsEvj448L9rlq3RuPGMDXFihXw9oZEgurVsXEjJk7Erl3Q1FR1ospibAyRCKameP4cVlbIyEC1atDSgpGRqjNj6iG1ZcubGRnHHjyY1ratk6VlSELCmTNn+gtD/hgrrdSWLW+uXXvs2LFp06Y5OTmFhIRwu2LKER6OEyegUEChQO3aGDIEhoaqzkk5KkxBaGqKNm0A4MoVBAZCUxM9ekBbG1lZSEjAkyeIi0Ns7C+xbtezGm4KbQ3AvFp2B+v4RqbJV+Jrn/Dcfjmudstaz3ILNJqZJ+661fRplsGpUb71zHM0EofDykrF7+5NXrx4MWbMmKysrIsXLzZq1KhTp07Ozs5OTk5NmjRRdWqMsdIo+l7Q0YGODvbtg6trYeeZXI5Fi3D/PrZsweefqzBHpdLXR1QU2rTByZO4fRu5uejRAyIRGjdWdWZMPbi6ukokkjPR0Vn5+f1tbUMSEo7t28c/3FkZFbarM2eysrL69+8fEhJy7NgxblesrMLDcfw4IiNx/z709NCuHTZvxrRp0NJSdWZKICIiVefwktBQnD4NuRxiMYigUKBdOzRvjoQExMVRZNSlm/qX460vxlpfjrdOzKoG4JsuwTYmqbHpRjX0svNkGqFPLD9vHdrEPCkxq1oT8yRoaKBvXzg5qfqNvSorK6tnz55Xr16tXr16RkaGTFiaEABQu3btjh07dujQoUOHDq1atdKsPL0JjFUhd+9i7140aYKPPy58Zv9+DB0Kc3M8egQDA5UmpyybNmHyZDRtiqFD8fw5atWChgZGjIC1taozY2qjQ4cOV65cOfTJJ1aGhm1++83ayChm715Rr16qzoupt8J2deiQlZVVmzZtrK2tY2JiRCKRqvNiaosIK1YgIQEXLmDAACQl4coVuLuje3d06KDq5JSgwvQQClq3hpMTXrxAZiZ0dWFuDokEAMzM0Ly5CHCWSp0TEubExiIuJDI8PTyh5uM0k7ZWCdeeWmRItYc6RMzueFmIZKaXAyKIxTAxUeU7epP8/PyhQ4devXrVxsbmwoULhoaG165dCwsLu3jx4pkzZ+Lj4/38/Pz8/ABoamo6Ojo6Ozt36tSpa9eu5ubmqs6dMVYs9vZYtOg/z3z8MTp2xKVLWLsWCxeqKC3l2rEDABo1Qloafv0VDRrg5s3CeeCMFU9/e/srV64ce/jQx83N0sAgLj391tGjjlZWcHBQdWpMjfXv3//KlSvHjh3z8fGxtLSMi4u7deuWI+89xkotNRVEePwYjo6QSGBhAakUBQWIjKwcBWHFm10nEqFGDdjYoFatwmrwZdrasLFBt27w9GywwMO9xUPhaa9uZ/3uvDbSUiKBsTHq1y//pEtALpePHDkyMDDQ3Nw8ICCgVq1a1apV09bWHjt2rJ+f3/Pnz+/cubNly5Zx48bZ29vLZLKwsLD169cPGzasZs2ajRo1Gj16dHJysqrfBGOsNLy9AeDHH5GYqOpUyi4mBpcuQVMTdna4dQtEaNeOq0FWUm4GBgCO3r+fkpfnamtrrKMTmZiIy5dVnRdTb25ubgCOHj2akpLi6upqbGwcWQkXemYfkIYGiKCh8e+GwsIQy8oyjq/iFYTFV6MGhg/vYx9rWT3PRDdvYZdzWhL5v69qaaFmTYwejYo0QoCIJk+evHfvXiMjo+PHjzdq1AiATCbr0aOHkZFRgwYNRo8efeHChXbt2m3evDkiIiI9PT0oKGjx4sVubm7GxsYPHz7cvXv31KlTMzMzVf1WWCmNGFH4YMoUZGSoNBX2wXXuDDc3ZGVh+XJVp1J2O3eCCHZ20NLCrVvAS42bsWIiam5iUtvQMF+haPnrr5+3bp301VeD7e35w5GVUfPmzWvXrp2fn9+yZcvPP/88KSlp8ODBqk6qCnn8+NUHMlnhhkQKBWJiVJNVmVSrVjhD/to1xMYiNBS1akFLq9KMZVDnghBAvXrNVwyv3rv1gktunx91O3jfARIJNDRQpw4GDcJnn6GCrd65cKE8PLyGnp7esWPHWrZsKTz5/Pnzpk2bamlpRUVFbd++fdKkSU2bNrWwsBg0aNAvv/yira09b968I0eOJCUlhYWFNWzYcM+ePQEBAap9I5XfrVv49lusXg1l195F00VlMlSoCbzsw/jhB1SvTnfuHCvv29X37t0bNmzYpk2blpdT9blrFwA4OuLZMzx/jho1hD2gGSsBkUhkYODZvHlyTk5idnZyTo6GsCy4mZmqM2PqTSQSeXp6JicnJyYmJicna2hUsBlSld3XX7/6ID0d7drh/n1IpVi2TPlXJCqQSh8Tyd9/aOkcO4YlS3D1KgYORFYWzM3RsycsLNC0aXld8QOjSuHUKQKoiYOCcnNVnctbrVxJAFWrRidOXHv91dzc3AsXLqxcufKjjz6ysLB4+d9IU1Nz0KBBwmGrV68GMHz48A+bexWTkEDu7pSVRbdv06efKjd2v340ezbNnk2OjpSWptzYTD1MnDgTwCeffFJO8ePj4ydMmCCRSABoaWkBmDlzpkKhUOY1rl8v/DhbuJA6diSApk1TZnxWZayfMweARCzePXQoeXmRlxctX07R0arOS928eEGHDtEvv9D27XT/vqqzUb3169cDkEgku3fvVnUuVdHgwRQZSZGR5OZW+MyLFzRuHH36KeXk0PjxSr6cQpH/8KHbs2erk5N3KDl0kV69CKA+fWj+fGrQgEaOpDNnSCYrr8t9cGreQ/h/XbvC1BR3IkQPYivoNpHbt+OrryAS4eef0atXi9cP0NHRcXZ2njNnzsGDB58+fZqQkODn5zdjxgxnZ2eRSKStrS0cNmTIEADHjh3Lz8//oG+gSjl3DsOGoVo1NGkCuRwFBUhMxKVLSomtr49Vq7BqFdq1U0q8d9m4caPw4Oeffy73i7FiW7Rorp6e3p49e0JDQ5UbOSsra8WKFfb29ps3bxaLxRMnTtyyZYuOjs66detGjRr18mrGZbTiwIEvmzZ93KoVxGLcvg3weFFWGlu3bp25erVIJPIZNMjDyQna2tDURP/+qFtX1ampleho+Pjgxg08f47ISOzfjxMnVJ2TKm3dunXmzJkikcjHx8fDw0PV6VRFmZkICEBAwH8mzBsZwdUVf/0FABERUN43EhSKPIUi29R0dPXq5fNN9PAhTp6EpiZatMD164iMREICunV7w1onaquSFIQSCfr1AwB/f1Wn8ib+/hg3DkRYswajRxfrFEtLS3d393Xr1l24cCE5OVnoGARQr169Zs2apaennz9/vhwzruK0tZGbW/hYJoNEgilT0LkzZs6EVFrG2MKudABMTSEu5/9/wcHBrzxgFYGVldW0adOIaM6cOcqKmZ+f/9tvvzVo0ODrr7/OzMx0c3O7c+eOj4/PyJEjAwIC9PX1d+zYMXLkyIKi2fBloFAoNv7xx0+3bz9r1OifmJhlNWo87tjxQ9zhqHT27t2bW/RRU/Xs27dvwoQJADZu3Dh+2zZ89BE+/hizZ6N5c1WnplYUCuzdi4KCokkIe69dy718GQkJqs1LVf7TrsaPV3U6VVT16pg6FVOnon59yOX/loUjRyIwEAUF6NEDzZph796yXqig4FlCwjdEBZaWy+LjZycmrixrxDfasAFEaN4cOjoICQGAqVPL5UKqU0kKQgCDBgHA4cOqzuM1Z87AwwMyGZYswaxZpYmgr69fu3btor9+9NFHAA5XwLdaafTqhX37cPUqdu9GnToggr09xGKsX4+2bXH9elli162LmzcBoFatct+MLiIiYs6cOXPmzHn69Gn5XomV0Pz5801NTc+dOxcYGFjGUES0d+9ee3v7SZMmPX/+vGPHjsHBwUeOHLG1tRUO6NatW0BAgJGR0Z49ewYPHpyXl1fGK547dy4+Pt7GxKR97dq/37y5KDLyz549K9TyXWrhhx9+GDZs2NixY6lKTib29/cfPny4XC7/4YcfpkyZAn192NnB1hb/Hw7DiuvZM8j/nTf1Q3DwsL17x+7bR3fuqDApVXm1XTEVKdqIoUMHnDiB3btx9y6aN4dIhMWLUacO9PVx7x6GDUPPnggPL80lpNLHcXEzb9+2efbs+6SkDfr6HevV25qZeV6hyJXL05X4XpCZiW3bAKBNG0RF4cULWFpi4EBlXqIiUPGQVeXJzCQdHRKL6elTVadClJtLL14QEeXl0fz5Sp5fIwwzs7KyUvKkIPayFy/or78oMJCio2njRlIo6J9/yM6OANLQoHnzKD+/dIGHD6fhw0kupxEjlJvxGwwbNkx44OHhUe4XYyW0cuVKAE2aNEkrw1zSoKCgouWpHBwc/Pz83nZkWFiYmZlZ06Yd+vbNzMgo9QWJiMaPHg3g2y5d8r791lhHB8CdO3fKFLGKyczMfPLkSUREhLGxMYBvv/1W1Rl9aEFBQTo6OgAWLVqk6lzUX3Q0/fADeXllLljwZPbsiKlThf+V35bbLOUKi9tVhbVlC8XG/ueZ/Hzy8SFzcwJIJCJ3d4qKKm607OxrUVGfhIVJQkMRGip+9GhwRkZQbOyM6OjxKSl/3b/f8+7d9nJ5ptKy37CBAKpXj7y8qHFjAui775QWvMKoPAUhEY0YkdWly/UdO86oOhE6e5bs7Cgnh0JCaM0aOnKE5HKlBVcoFNbW1gBCQ0OVFpS9TY8eBFDPnhQTQ9nZNGMGiUQExA4ffu/evRJFysuj+/dp1Cg6cIA2beKCsKrLzc01MzOrWbMmABMTEycnJ3d393nz5vn4+AQFBUVGRsreOVs9JCSkZ8+eQilYu3ZtHx+fdx9PRLduRdjapgPUqVNpFzRSKKRHj1bX1QVwe8qU/R4eAJycnEoVq4pKSEho0aJFixYtMjMzAwMDhcUPfX19VZ3Xh3Pp0iV9fX0AM2bMUHUulUJeHn33XcLs2S0sLFpYWGQuWBA4cqSwWCu3K1YR/PwzrVjx5t6a1FSaO5d0dAggZ+en8+bNS01NfUeoM2fOnDs3MjQUoaEIC9N6/Hhsbu7dlw+QSuNu3qwTGooHD/oqFNKyJ69QKL4fMOBp3bqKYcNo1iwSi0lbm549K3vkiqZSFYS//fYbgAEDBqg6ETp7lqZMoUWLCgtCpZs6dSqAhQsXKj80e8Xff5OlJQFkaEg+PkREwcEFTk6O5ua6urre3t7y99X6cjkFB9OMGWRmRnZ2NGoUEdGIEeTqWr6Jz5gxY9myZQUFBUT08OHD8r0YK7nExERdXV2xWKz9ljFyWlpatra2ffr0mTx58sqVK/fv33/t2rX09PTo6OiJEyeKxWIA1atX9/b2zi326spRUWRjQwC1akXPn5c86TNn9o8YAcDJ0pK8vIbY2wNYs3x5yQNVXWlpaU2aNAHg6uoqk8k2b94MQFNT89SpU6pOrVhksrTo6AlxcV9kZV0qxenXrl0zMTEBMGbMGB7kojRnzqQtWtTE3ByAq62tbNGizQMHcrtiFUR6OqWkkPTt1Vl0NI0YoWjQoD8AMzOzdevWSf97tEKh8Pf379ChAwAPD+fwcP3Y2BlSaewbo+XlPbxxwyI0FI8efaRQFJQx+aCgIACWBgb5Cxfe6NVLoa9PI0eWMWbFVKkKwsTERLFYrKurm5WVpdpMzp6lzZtp+nTasaNcCsITJ04AaNasmfJDs9c9f04ff0wAAeTqSgkJ6enpY8eOFX619+jRyv/P7gAAIABJREFUIyYm5o3n3bxJ8+aRtXXhqcKvcKGv7tEj0tMrx5RDQkJEIpGurm58fHw5XoaVwfz58wEMHDiQiBISEoKDg319fRcvXuzp6ens7FyrVq23jfM3MzMDoKur+96bqW8UE0O2tgSQvT2VrHXI5bR8+RcdOgD4okOH9PnzdTU1xSJRfFXqhVCKqKgoc3NzALNmzSKiL774Qqjt76vDbgEpKfuSkjYLjwsKkkt07q1bt0xNTQEMHTr0vR3arGQuX4766ivzatUAzGrfnry8hP+q1U1MuF0xtRAaGtq9e3fha65u3bq+vr4KhUIqlf7555/29vZFX3/Lly97bwvJybl57ZpJaCgePx5NVKYbBMKyHct69Mj55htTPT1jbe3YkJCyBKywKlVBSEQdO3YEcODAAdWmIRSEycnUpk25FIT5+fnCzbAHDx4oPzp7ox07yNiYgMjevfft20dEf//9t6WlJQBDQ0MfofOQiIhiY2NXrFgxePCaojqwfn365huKiCAievy48LB792jlSlq6tFySFQYTfv311+USnZVZWlqaMH/s4sWLycnJb+xnlkqlkZGRQUFBPj4+8+bNc3d3d3Jy0tHR0dbWbtmyZVxcXKmv/uQJNW1KADVsSE+evOdgqVR6+/ZtX1/fGZ9/7ly3rr6WFoDWlpbbhwwB0NPGhn7/vdSZVFnBwcFCz/CGDRvkcvmgQYMA2NjYPC9Nv+0HVVCQHBX1SUzM5/n5z27erB0ernvnTpOHDwfExs5MTFyXlnYkLS3ijV3WDx8+FG5zDBo0SBi5wJQu+NQpbS0tABv69ZMvXjzIzo7bFVMv/v7+ReWfnZ2dlZVVUYm4fv367OzsYsbJzLwQHq4XGoq4uLmlTiYmKkoikWhJJM/mzBF63Vu1alXqaBVcZSsIV6xYAWD06NGqTePGDQoIICLas4f27CmXSwwfPhzAmvIoN9nbxMXlDh1a39gYwMiRI1NTU5OSkoYOHSp8Wvn5+fn6+rq5uQkbgovFmo0b50+eTBcu0BsHsISHk0RCYnFhU1GigIAAYVpacnLJ7rOyD2bZsmUAevbsSURDhgyxs7MLKd5Nx507dwIYPHhwGRNISaF27ah3b5owgYRexnXrCl9KSKCgIFq7ljw9ycGBunb965UuytqGhsOaNFEsXnx+7NiL48fT21eyYe+we/dukUgkkUj8/f2zs7Pbtm0LoHPnznl5eapO7f2ys8Pi4mZdv15DmMzz8p+goE4ALC0tO3XqNGrUKC8vr23bth04cKBu3boAXFxcij/CmZVCYbsSi/0//TT7m2/aWllxu2LqRS6X+/r61qxZs0aNGgCaNm3q6+ubX/KV/NLTg65dM1ywoP2yZctKk8e9e/O6dgUw0tGRvLycLC0BbNu2rTSh1EFlKwgfPnwojL2pCDeKLlyg5s0L54wJlJjUnj17AHTt2lVpEVkxKBQKHx8fYea6hYXFkSNHiGjdunXW1tZFM8F0dXU9PDz8/f2l7xgyT0REy5cTQCYmJVhc673kcmrbtj2AlStXKi0oU6rs7Gzhe+706dMRERFisVhHRychIaE4596+fVu45V/2NNLTKSeHunWjL74gIhoxggYMEHrB//OnW7e7LVu2HD169Jo1a04tXJi8YAF5ef37Z/nyf3u9WQktWrQIgIGBwY0bN548eSKsFqbyG5rvlpl54cmT76Kjxycn7yQimSw9O/taaur+Z89WxsRMfvCgz19/faylpfX6UGdNTU1nZ+fi3+BnpVbYrrS1b0ye/GT2bGsjI25XTO08evQIgLGxcVkmhZ46dVC4R79x48aSnZmQkLdkiTAG+/KECRfGjQNQw8SkEt93qGwFIREJu2/NnDkzPDxctWXhw4cEUPXqVFBAx46RgwPNm6e04JmZmTo6OhKJpOIPBal8oqKiunbtCkAkEk2cONHb21tTU1MsFjs7O/v4+KSnpxczjkJBgwcTQC1aUE6OcnLbsYOsrKL7959RiT+21N2mTftFIlH79u2JyNPTE8DUqVPffUpAQECHDh2++eabgoICHR0dkUhU/Gb2bqNG0aJFdOUKjRhBzs4EkLExOTvTjBnk40PBwfSfdpSTQz//TN9/T15etHQpLV9OZ88qJY2qSaFQjBw5EoCVlVV8fHx4eLhws+m7irqm+YsXfz554pWb+0AmS3nHYTKZLDo6+vTp05s3b16wYMEnn3xSrVo1AEFBQR8s1ars33ZlaBj/5ZfhkyYJI725XTE1olAodHV1AWRmZvr5+XXs2LF0Y+J8fX1FIpFIJNqyZUsJTtu5M3j8eAMtLVtTU/Ly+qRpUwDf9OpVigTURWUrCOPi4szMzIrGHFerVs3Z2XnGjBl+fn5JSUkfPh97ewLozBk6e5YAsrVVZnBXV1cAf/75pzKDsuKRyWQrVqwQegWF+09vW1rm3VJTC1d9nDxZCVlJpYXRtm5VQjRWHvLyyMqKGjW6HhBwNSoqSkNDQ1NT8/H7OtmOHTsGoHv37kTk5OQE4MKFC0rJZ9QoysmhYcPo008pIuL9UwpJLqc7d+jECTp7lhITlZJDVZabmytMfXdycsrKyjp27JhEIhGJRDt37lR1aq9SKPJv3qwbGorU1IMlPXf06NEANm3aVB6Jsdf9264sLbMWLDg2YoRELOZ2xdRL48aNAdy+ffv3338HMGbMmNLFWb9+vfBTbe/eva+/WjRd39fX19vbe+LEiS4uLjampmKRSCgl7k+friWRaIjFsV988eYpQJWCxuv97+orKSmpV69eL168cHBw6Nat29WrVx8+fHjx4sWLFy+uX79eJBLZ2dl16NDB2dm5Q4cOdnZ2ov//Y5efjz7C3bs4fBirVsHMDA8f4t492NmVPqBcLt+3b5+HhweAQYMGBQQEHD58eMyYMcpKmBWTRCL56quv+vXrt2vXrvXr12dlZQnL/JSUsTH27oWzM/bufd6t2/Vhw3qXJauff0ZUFJo1w8iRZQnDypGvLxIS0Lx58z598PXXce3bj2rUSFyvXr13n9W8eXMAN27cEB6HhYVdv37d2dlZKSnp6mLkSKxYgf/P5H8nsRgODnBwUMqlmY6Ojr+/f/v27cPCwkaPHu3n5/fjjz/Onj17/Pjx9evXF5ZZfxsiioqKuvF/bdu2bd26de/eZfoMeYfk5O35+TE6OvbGxgOLf1ZGRoa2tvbLDZh9AP+2q0ePRh865Ofu/mOvXrMDA8ePGVM/KqqDuzsaN37budyuWAVRr169+/fvx8TECF+R0dHRpYszffr058+ff/fddyNGjLh//76pqWlMTEx0dHR0dHRMTMzTp0/feJamRFLP0LCesbGOhkbAyJFhT55Ym5uj/AsHlVF1Rao0GRkZrVu3BtCsWbOUlMJRB2lpaUFBQYsXL3ZxcRG6nosYGBi4uLgsXrzY39+/FEu3F9OVKwRQ3bpERGPGEEDe3mUKOGnSJABz584lolu3bonF4j59+ighUVYGwjYAZemC3rbtmYWFlZ6e3s2bN0sZoqAgI11hbk4AHTtW6kRY+ZLJCrd82L2bnj4lXV0Si+nOnWKdKzSzuLi4devWAfjss8/Kns+GDbR4MQmzb3ivShW6e/eucEdp/vz5RDRlyhQAZmZmjx49evmwf1d8nTHDxcVFWGq/iKmpqVgsPniwxN0sxSO/fbtxaCiSk3cU/5xPPvlEJBIFBAScOnUKQIcOHconN/Zmd+/eNTE2BjC/c2fy8prSpg0AMz29R3Pm0EvthNsVq5gmTpwI4OeffxbWB6lXr15JI8jl8qIpiJ9//rlYLNbQeLUnTFNT08bGxtnZ2d3dfd68eT4+PkFBQZFHjhQsW/afCfPffUd//63st1iBVJIewvz8/KFDh4aGhjZo0ODEiRNGRkbC80ZGRi4uLi4uLgAKCgrCw8MvX7586dKlS5cuJSQknDx58uTJkwA0NDT27dvn6ur6xinLZdG2LWrXRkwMbtzAoEHYsUN27Vo40LZ00RYsWODj46Orq+vm5paZmTl27FiFQtG0aVPl5sxKShg4KpVKSx3B07Pm2bN9/vjjj4+HDAnZutUoKwtGRmjSBAYG7z/5wQMcP4709LP3G6Umu3ftRP36SUqdCStXu3fj4UM0aIChQzFvHnJz4e5e3M42R0fH06dP37hxQ1k3xbOz4eWF5GS4uKBTJzRsWMZ4rPTs7OwOHjzYu3fvH374oW7duuvWrYuMjAwMDFyyZImHh0dRX83Dhw8VCsXLJ1paWjb/v5CQkDVr1gwfPvzs2bPCmqVKlJq6Ly/vvra2jYmJR/HPMjc3J6IbN25MmDABwM2bNxUKhVgsVm5u7G3s7OwOHjrUu3fvH4KD6xoZrXN1jUxNDXz0aMmJEx7Pn984f/5GQgK3K1ZhCUvIxsTE1KlTRywWx8fHy2Sy1yu6d/j999+3bNmyfv369u3bW1paKhSKWrVqubq61q1bt97/WVpavqHxEEEmQ0QECgoAQEsL5uZwcVHae6uAVF2RKoFMJhOW/re0tIyKioqNjXV0dHzvBJuEhAR/f/958+Y5OztraGiYmJj4ls/2ypMmUbVqmT/9FJGdXVCrlpVYLH7y/mk6b7BmzRoAmpqaR44ckUqlwviNBg0aPH36VOk5sxKxsbEB8Mq9/JLKzc1t5egIYJCDg2LxYlq2jJYvL9y78B3u3Mlb4v2Dy0ny8pIvXrKu3/E783zpfaubMpVQKAp3/9uyhZKTycCAAAoNLe7pwvbly5cvT01NFYlEurq6ZdyCecUKAqhLl7LEYMq0ZcsW4UP+5MmThw8ffmVUi/CSo6Ojp6fnqlWrgoKCXl9RTBhCUqtWrdjYWOXmFhHRKjQUSUk+7z/0JcI7+vTTT4lImNv/kHuiP7gtv/4KQFMiOTlq1OFPPtHV1OR2xdTCvn1Bzs6eX3yxh4h69jxvbR35+HEJpvBlZmZaWFgA2LdvX2JioqGhIYBTp06VIIPoaDp+nI4epbt3K/HsQYHaF4QKhUK4RWRkZHTt2rVnz54Jq4z279+/+EHWrl0LYMiQIeWR4YkTV3V0dIS9LIXdh1/exLyYtm+ndu2e6umZ/vHHH68UwOWQMisZBwcHAHeKOfLvbRSKx0uWVNfVBbC6T5/CIQpLl9LRo3TkCB05Qnv3kp8f/fUXbdtGW7eSjw9t2kRLlyZ99aONScqOIftli5aMan6dvvuOlLTcCFOugwcJIGtrkkrp0CHS0qJ+/Upw+tatWwEMGzaMiOrUqQPg3r17pU4mN5dq1SKAjh8vdQymfHPnzgVgamp65coVAMbGxsK6aD4+PsHBwTnvW4w4Pz+/Z8+eAJo0aZKWlqasrC5dOv7PPy1u3LBSKEq2l11YWBgAe3t7IurXr5/wy0xZWbHiSk2d27kzAFM9vSsTJgAw1tFxrlNnhosLtytWkV28SAC1bUtEhYtgl2hZ64ULFwJo3769QqH4/PPPAQwcOLCcUq0E1L4gFL4+9fT0goOD09PTW7VqBaB58+YlmhaYkJAgEon09PTKYyubvLw84bZEVFTUH3/8AaBfiX4GEh0+TBoaBJCPT8orBbDSs2Wl0LJlSwDh4eFlivLsGX3//aFPPhEBGmJx34YN3Zs0cWvUyMXGplu9ek6Wlk6Wlo41n9iYpNQyyDTRzTXUzhO2ifu6U/DUtlc/bXYr6asfRzW/Tl5evMZoRRMXR0SUnExz5tAffxQ+GRtL9++XIMi1a9cANG7cmIgGDBgAYM+ePaVOacMGAqhly0p/01PNyOXyESNG7N+/XyaTxQntpoRSUlKEpflGjvyqbF3I/xLWq9y165eSnpiXl6epqSmRSLKzs+fPnw9g4cKFysmJFZ9CIf/++xGOjvs9PGSLFsV9+SV5edGyZXT6dPFjcLtiH15CAgFkbk5ENGJEyVZQT0hIEHYluXDhwr1794QGc/v27fLLVt2p95Brb2/vlStXampq7tu3z8nJacCAAeHh4Q0bNgwMDDQ2Nn7v6VKp1N/ff926dZaWlq1bt87JyREmKCuXtrZ23759ARw5cmTgwIEaGhqnTp3KzMws5ulnz8LDAzIZFi/GxIkmy5alHTp0qVq1agEBAS1atFB6tqwUhDmEeXl5ZYqSmQmRaJCdnX2NGmZ6escfPdp7587RBw9ORkWdjY4Oe/Ik7MmTJ5kGUakmTzP1U3N1MqTawnkEiEALu5z77nyXwlAlGWHPPoA+feDvj+rV8eQJxo4tfNLaGo0alSCIg4ODlpbWw4cPs7OzyziNsKAAq1cDwLffVuYl09SRWCzesWPHkCFDJBJJ7dq1SxHBxMTk6NGjzs6zAwN/mD1bCSmdOXPm0qVLpqambm6eJT1XW1u7UaNGcrk8IiKCF4RUGZFI3KvXDg+PIfb2ErG4tqEhRCJoaaF9++LH4HbFPrxataCjg+fPkZ0NYSnu4q8zunDhwuzsbHd3d2dn57lz5xYUFEycOLFJkybllav6U+Mfjr6+vgsWLBCLxdu2bevdu/ewYcPOnz9vZWUVFBRUs2bN4kTIysoaMmSIhobGuHHjBg0aFBIScvjwYeHWu3INGjTIz8/v8OHDM2bMGDhwoLGxcWZmpkEx1gspKMDYscjLw5Qp8PLCihVYvNjE1jZ8586L716OnH1IOjo6KNuiMgBgZga5/ODduxFJSbqamj/17WtlYKCjoaGrqSkRiQy1tQEY6/wm0tbT0ZTr6kKiJTHULUBGRka25JtTPexrvNDXyk/N1YGmJpo1U8r7Ysri5IS//kLPnmUKoqWl1bhx41u3bt25c6eMv4EOHLgkl9dycKj/0UdlSolVTA0bNvT2XuXignXrYGuLqVPLFO37778HMGvWLH19/VKc3rx58zt37ty4cUPYJYV/uKtG69YAcPIkFAooFKhZEx9/jNcmqb4btyv2gYlEsLbGw4eIjUXdugAQE1OsE2/duuXr66upqbl8+fLz588fOXJEX19/0aJF5Zqt2lN1F2UpHTp0SFhoaO3atQqFYuzYsQDMzMxKOo+rc+fOAPbu3Xv79m0A5ubmZVyn4Y3S0tK0tLQ0NDRevHhR0nNv3aLp00kup61bSSQisZh27VJ6gqxM+vTpA+B4mSdjJW7aZF6tGoDfBw4kL6+CxYuDJkw4tnu3386de3bs8PHx+eOPrFWryNubliyhefMoPJzo6dP8Zd7hn/uQl1fWguX/TP6TfH15FGBFM2oUhYXR/Pk0fHiZ4owcORLAb7/99uDBAwC1a9cuRRC5XN64cWMNDQ0/v+AyZcMqtt27SSQiiYSOHCl9kH/++QeAoaFh0WZOJbVixQoA06dPl8lkenp6IpGo1KFYWSkUlJpKZZsaw+2KfUi9ehFAf/9Nz5/TrVuUmVmss4RfZTNnzlQoFG3atAGwbNmycs5U7allQXj69GmhT0b4B/7yyy8B6OnpXbx4saShVq1aBWDkyJFE1KhRIwDBweXyI6lXr14AVq9eXbrTDx4snEa4dq1y82JKMHDgQACHDh0qY5z+rq4AetvaKr7/nn74IfvHH1+5fdOwYeG8QeFP4Wy0lBQ6eJDWr6dNm+iff0guL/s7Yso1ahQR0ZdfUvfu9PQp5ZVsAYV/rVy5EsDXX38tl8uF2+ql2P1yz549AOrXr19QUFDKPJiaWLiQADIwoBs3ShlBWAjt66+/JqLExMQtW7aUNMLx48cBdOnShYiETQvOlmhdCFbxcLtiH8xnnxFAv5Rknqkw+cvY2DgpKWnnzp0ALC0ts7Kyyi3HSkL9CsKrV68Kgy2nTp1KREuWLAGgpaVVuv6ZR48eCe0mPz9/zpw5AObMmaPslImIBg8ebG5uDsDCwsLNzW3x4sVBQUG5ubnFOffUKdLWJoC++648UmNlNWzYMJRthQ8i+v3334WmGHf7Nt29SwkJsoICFxcXV1dXd3d3d3f3iRMnzpmT+uWXNG8eLVxI3t7EiwqpixUriIhSU2nsWLK3p+7di3ub8xUpKSnJycnCY2HQeMlW0CYiImHlrU2bNpUmA6ZWFAr69FMCqG5dKubwlPz8/Bs3bmzbtm3OnDldu3bV1dXV0tJKTEwsKCgQVs9asmRJiXJITEwUPtkUCsVnn30GYN26daV5M6zC4HbFPpjff6f+/engweIeL5fLhe+4H3/8USqVNmjQAMAfRYu5sbdTv4JQ2A/H09NToVDs2rULgEQiKcuKw8LG7idPngwODgbQsGFDJWYr+O2330QikUgkemWpG21t7Y4dO86fn3HgAL1jN8Fu3QigmTOVnhdTDk9PTwDbtm0rdYS8vMft27cAsIsHBFdqt25RzZqFu/9lZJQ+zuPHjxs1aqSpqVmtWjUnJyd3d/d58+b5+PgEBQVFRka+o+vv6NGjwm2pYt6NYuouN5c6dqTp0+nyZSIihYJeWWbvxQs6eZLWrKGZM71atGihpaX18peUqakpgFmzZikUir/++kuYqTFt2jRFScalC7P6Hz9+vHHjRgDjxo1T6ltkKsDtin0YbduSsPnlF18U63hhMf/atWvn5OQIY2ocHR3LYy5Y5aNmBaFUKq1du7ZEIhEGSmVmZvbq1eu3334rS8xvvvlGGIkul8uFLSyVuy7twYMHi6Y7ElFCQoKfn9+MGTOcnJzEYrGFhVXRCMBatcjdndaupeBg8vGhzz4jItq1i44epR9/5HlhFZewEUgZ2qH8/v1uly9r+/h8qcy0WIV07x5ZWxNATk5U8vGe9OLFiy+++EJY2NbS0vLVSeEAAE1NzQYNGvTq1WvSpEkrVqzYu3dvWFiYsBOPsABDqceuM3UklVJGBhkZUVgYyWQ0YgTt2UPz51O/flS79r9D0Dt1GgdALBbb2toOHTp02bJl/v7+W7duFSZojBw5sqCgYP/+/cIv+zlzfiz+4PRBgwa1bt362rVrwl1XJyen8ny77APhdsU+gH79aMwYIqIRI4p1/IIFCyQSyY4dO1JSUqpXrw4gMDCwXDOsNNSsICQiYXfUnTt3Cn+Vl3nG1NWrVwFYWVkpFIrx48cDWL58eZnTLHTq1Cnhp9t3bxrumZqaevLktUWLyMWFDAzo5elh06fT0KF09ixt3UrcmCu4adOmAdiwYUPpTn/2bE1oKK5fNy8oSFRuYqxiio6mhg0JIAcHSkgo7lnZ2dne3t7CKAOxWOzu7h4ZGfn06dOLFy9u3759yZIlo0eP7ty5s5WVlegtW0kYGRkB0NPTu3nzZnm+P1bhZGTQuHHk7k5SKY0cSTo6/37X6OtThw70+ee0bdvNS5cuZb42mvnMmTPCNA0PD4/8/PyAgABra6f69aWffkolnYWanp4uEom0tbV5/mrlwO2KlbdRo2jDBjp8mEaMIDc3cnAgT8/CjpO3DXOJiIiQy+WzZs0C0KNHjw+brxpTv4Jw/fr1AIYNG6asgAqFQtjuKSwszN/fH0Dbtm2VEvnq1avCwg/Tpk1778EyGd24Qb/8Qp6e1KgRrVlD587R4MH0++9cEFZ0s2fPflvN/165uXfDw3VDQ5GWdlTpibEK6+lTataMAGrcuHA8zDvIZLRjR7SVlZVQ1/Xt2/f69evvOF4qlUZGRgYFBfn4+MybN8/d3d3JycnQ0BCA7v8XmndwcPD29n76jqHqrBLJyKCpU+nQIdqwgTw9adYsWriQ9u6lhw+LtQrV1atXhXvt/fv3z83NPXeuQLiDOWQISaXFzUG4o6GlpWVubt6uXTt/f/8SjQ9kFRC3K1beRo0imYzc3cndnczN/9NxoqVFrVrR/PmXN27cePHixZeXjYmKitLW1haLxWFhYSpMXr2oX0EYHx8vEon09fWVOAdmypQpABYtWpSXl2dgYCASieLi4soY884d6tXrsba24ahRo0rx8fTLL3T5Mp06Ra1acUFY0W3ZssXW1lYsFjs7O3t7e4eGhhbzRIWi4O7dtqGhiI6eUK4ZsgooOZnati1cmOHhw7ceFhREjo4kkVCDBgNat25dilVkitjZ2QFwdXUVikMAGhoaffv23bZt2+v371llIvxwJ6LRo8nTszQRQkNDzczMDA2tPT2Ts7IoJIRMTQko1gpJ+fn5v/76qzAjQ+ijFh60adPmwIEDZR/mw1SF2xUrb8Ia3SEh1L07paVRcDCtXUuenuTgQBIJAdSt2xzh310ikdjZ2Q0fPnzlypXdunUDMHbsWFWnr07UryCk/6+S9/fffysrYGBgIIDmzZsT0ZAhQwD8UqI1bl8THV04hn7SpITSjWHYsoVCQoiIxoyh06fLkgv7EGbNmiWRSIrG5jVs2HDmzJlBQUEKxbt2GHjyZEloKG7erCeTpX+wVFnFkZpKHTsSQBYW9PoozosXydm58FZogwZ04EBSWe58Jycni8ViHR2d3Nzc3Nxcf39/d3f3opUedHR03Nzc/Pz8pMW/M8/UR24u/fUXEVFUFJV6vb3bt29365YMUKdOlJZG16+TuTk1bEjPnr3rrKCgIGHlNmH0zZkzZzIzM9euXVs0A7ZJkya+vr482E8dcbtiKpSVRRcv0pYth8ePH9+qVauXFy4yNDTU0tIqe9dOlaKWBaGw1cSkSZOUFVAqlRoZGWlraycmJvr6+gLo06dPqaM9f052dgRQhw5l3ACWqZPk5GQ/P7+JEycW3bB0dbUND9d78MAlMXGtVPqGD6bnzzeFh+tnZJz54MmyiiIzk7p3F24e0YMHRERRUXTxIrm7k0hEAJmakrd36bcuLHLo0CEA3bp1e/nJ1NRUX19fFxeXommHJiYmnp6eQUFBPOyqMnnyhLy8Ch+X5ZszKopsbAigVq0oKYnu3aPo6LcefO4ceXp+L7Srxo0b79u37+VGJZVKfX19GzZsCMDEpF6zZvK1ayknp/S5sQ+P2xWrOKRSaXh4+JYtWyZPnix0F4eHh6s6KXWilgXh9evXAdSsWVOJQwIuXbqUnp5ORMnJyRoaGhoaGkFBQfn5+SWNk55OTk4EkKMjpaT/aLzwAAAgAElEQVQoKzumTmQy2YULF+bPn79nz6ehofj/H1FERKuEhIVZWf/k5T14/NgzNnZWbu69goJkVefLVCwnhzZsoLVrqVMnys+nzZtp+HACqFo1mjeP0tKUcxVhpuuiRYve+GpcXNzatWuFwRcCa2vrGTNm8Bdq5RAXR1/+fw1jD48yhYqJoUaNCCB7e4qPf/MxERHk7k4AmZkl1q1b39vb+209z/n5+X/++ae7+0WhJ9zSklavJt5BWl1wu2IVk/B951HGRlnFiIgIaqhBgwZRUVGXL19u3769ciPHx8c3a9ZMX18/Pj5eU1PT0dHR2dm5U6dOXbt2FXaWf4fcXLi64tw5NGyI4GD8v6OIVV0y2fP09OPp6UczMo7L5ZkAAFGtWgv19TsZGvZScXKsIlm/HlIpAFSvDnNznD2LuXOV+RnStm3bkJCQoKAgFxeXdxx2586dvXv3bt++PSoqCoCtre2DBw+UlgRTkfh4DB6Mrl0BIDoa+/aVKVpiInr3xs2bqF8fJ0/CxuY/F1q8GL6+kMthYIC5c/Hll4pq1cTvDqhQ4NgxLFuGkBAAMDXFtGkYPx4pKWjeHLm5ePIEGRlo2RIArl0rfMBUjtsVq5gSEhJsbGzkcvndu3dtbW1VnY6aUHVFWkrCerJff/21csMmJiY2atQIQN26dR0cHF5Zvb1//888PemXX+jGDXp5l8uiu1n//EOWlmRlRY8fKzcvpvbk8tz09ICYmKmPHg2SSmMjIz1iYqbIZErq/WHqb906Cgmh8ePJy4vKsHDMm2VmZgoDH4q5eIxcLj979uxnn332008/KTkVpgpK7MkRpKRQ+/Zkbk5LlxZunbJzJ82bR7q6hav/TZ9Oz5+XLKZCQUePFs6qBWjAALKwoKgoioqib7+lopXFlbfEOCsrbleswhK2kVPi5LJK7z33VyqsQYMGATh8+LASY2ZkZPTr1+/BgweOjo7Xrl27c+dOenp6UFDQ4sWL3dzcTExMsrMbbN+OKVPQvDlMTNC7NxYvRmAghg3DX38BwLp1uHABJ06gXj0l5sUqA7FYx9Cwb506Gxs0OKSlZW1js9vIqF9y8p+qzotVLEuXYssW5Ye9dOmSTCZzcnISNsJ5L7FY3LVr199++0249cbUnVgMbe3Cxzo6SghoYoLAQJw7h+vX4eUFAH//jRs3kJcHd3fcuYP161GjRsliikTo3x8XL+LMGfTqhdGjMWoUFi0qfDUjA5cu4dIlZGQoIX+mFNyuWIU1d+5csVi8devWJ0+eqDoX9aCh6gRKqXPnzmZmZnfv3r1//37jxo3LHjA/P3/o0KFhYWENGzYMDAw0MTEBYGBg4OLiIoywksvlt29LL1zA5cu4dAmPHyMoCEFBaNwY7drh77/Rrx8A1K9f9lxYJZeW5p+TE5abe6tmzdmqzoVVFK1bw8IClpbYsAF16yo5eHBwMIAuXbooOS5TE5aW+L5wGQ5s3aqcmIaGMDSEvj6aNEFAAAD89BOystC6dVkjd+uGbt1w+zYiI1G/Pg4dAoD8fDx9WviAVRDcrliF1bhx48GDB+/fv3/LloCFC8erOh01oK49hBKJpH///lBSJ6FcLh8+fHhQUJClpWVQUJDFmybuSCSS5s31pk7Fjh2IisLTpzhwALNnY8wYAPjmm8K7WYy9l7HxQAuLuTY2u/X1nVWdC6sozp8vvEVdUIA7d5Qe/DyAzp07KzkuY8DUqdiyBVIp7OyU8Kv9FRMn4vhxADAzw8cf4+OPYWaGtDRERCj5Qqyi4XbFymj+/GUtW6auWjU+PV3VqagDdS0I8aZRoyEhIaVY/4CIJk2atH//fmNj47///rte8YZ7Wlhg8GCsWoWvvwYAe3vo6yMysqQXZ1WUWKwvEmm9/zhWZRQUQKEAAJkMcrkyI0ul0qtXr4rFYmdnvgHBlE9DA198gTNnlBy2Rg20awexGKtWoXPnwjE4APr1w7VrOHMG9+4p+YqsQuF2xcrIycnexMQ4IwO//qrqVNSBuq4yCiAnJ6dGjRp5eXkJCQlCn167du2uXr1qZGTUpk0bYWnQjh07CruRvMPcuXNXrVqlp6d34sSJ0v1g+vFHfPUVsrMxY0a5zP9hjFV6y5YhKgqmprh/H+PGYfBgpUUODg7u0qWLo6PjjRs3lBaUMQDA1ato2xYAzpxB9+4f7ro//YQJE2Bg8OGuyD4kbldMKU6cQJ8+qFkTjx9DV1fV2VRsatxDqKen5+LiolAojhw5IjxTv359CwuL9PT0kydPLlmypFevXsbGxu3atZs1a9aePXvi4uJeD7J8+fJVq1ZpaWnt37+/1LfPc3IAoFo1WFuX9s0wxqq82bOxahVGjFByWGG8KE8gZOVB+NUOfNBf7V99BYUCWVkf7orsA+N2xZSid284OSExEb6+qk6lwlPXRWUEgwYN8vf3X716tYWFRfv27Xfv3g1A2J/w8uXLFy9evHXr1tWrV69evbpu3ToA1tbW9+7dK+oz9PHx+fbbb8Vi8fbt2/v27VvqNO7effUBY4yViKEhNDUBQE8PWkodTSysKMMTCFml8eOPqs6AVUbcriqlr76ChwdWrsSECdBQ76KnfKnxkFEASUlJ3t7ea9asEf5aq1atTp06CYNFW7ZsKRaLs7Ozr127FhYWdvHixTNnzlSvXv3+/fvCwYcOHRo6dKhCodi0adPEiRPLkkbnzmjXDgBOnMDNm2V7S4wxpjwymax69eqZmZkJCQmWlpaqTocxxhj7cORy2Nvj4UPs2oVPPlF1NhWYeheEAJ49e7Zhw4ZLly6FhIRkZ2cXPW9kZNS+ffsOHTp07NixXbt2hoaGRJSYmCjMNjx16lT//v3/x959xkVxdXEAPrt06UUQUEEUC81C7F2xayyxgbHGjpKoiS3xBTXGHlGjETV2RVAUCxqlqAgYpCiKYAApoiBNQDrs7n0/DG4IlijsCrj/5+eH3dmZO3eG48ycmXvvlJWV/fLLL6tWraplHSZNIg+Pf30AAKgPwsLCunTp0rp1a/G9MAAAANlx9CiFhNDq1WRiQlyioKJCfD6VlpKcXGXbHGjwT0+bNGmyYcMGIhIKhY8fPw4ODg4KCoqIiIiJibl27dq1a9eISE5Ork2bNra2ttzzw8LCwjFjxpSVlS1evLj22SAAQL2VmZlpZGSE9qIAACCbpk+nvXspLIxMTGjePDI2pgULyNSUTpwgExMaNKiu61c/NPgnhO+SlpYWEhISEhJy586dyMjI8irvHFVTUyssLJwxY8ahQ4d4PF7t15WXR1pa//oAAFB/lJSUqGCENQAAkEnTppFAQG5utGABGRvTnDlkYkKHDpGZGRLCSp9tQlhVRUXFgwcPuCeHt27d6tevn46OztatW+XRvRQAAAAA4PM1fTotW0bHj1N6OhkbU0EBaWpSVBQtWYKEsJJMZEQKCgq2tra2trbcV9wsBwAAAACQETY2xOdTcjIZG9Py5WRqSgcPEhExRpJoLNjgNeD3ENYYskEAAAAAAFlgakpE9NNPZGxMpqakrExEZGBA2dl0+HBlZijjZKLJKAAAAAAAQFXp6eTjQ7Nn13U96posPiEEAAAAAABZFhdHe/fSqFF1XY96AAkhAAAAAADIFjU1GjOGiovruh71AJqMAgAAAAAAyCg8IQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBJCAAAAAAAAGYWEEAAAAAAAQEYhIQQAAAAAAJBRSAgBAAAAAABkFBLCBqaoqCg4ODgvL++jlkpMTIyJiZFSlRITEx89eiSlwgFkSlFR0d9//11eXl5tukAgSExMLCgoeNeCpaWliYmJJSUlNV51dnZ2SkpKjReH+gxxBQANBY5XdYJ/7ty5devWrVmz5uDBg8+fP6/r+ny0Y8eO3b59u65r8dFCQkIOHz5cgwXj4uJ69er1119/fdRSK1asmDhxYg1W9yFWrVo1YcIEKRUOIFP8/f3btm0bHx9fbXpqamrLli3Pnj37rgVDQ0Nbtmx5586dGq/axcXliy++qPHiUJ8hrgCgocDxqk7wJ02adPHixZs3b37//fctW7bcsmVLXVfp4zg7O3t5eRFRcnLy0KFD67o6H+rChQs//vhjXdcCAAAAAABkmnxiYmKzZs2IqKSkZNmyZStWrDAwMJg+fXpdV+xDJSUlcR8SEhL8/f3rtjIfbvPmzZs3b67rWgAAAAAAgEyT57JBIlJRUfntt99CQ0OdnZ1HjhwZEBDQunXr9u3bc78GBwfn5OSYmZnFxsaOGzdOTk6Om/7ixYvbt28PHjxYU1OTiB49ehQSElJcXGxqasrn89u2bWtubk5E9+7du3PnDmOsV69eXJnZ2dk3btwYP358QkJCQECAvLz8kCFDmjZt+tZaZmZmBgYGjh8//u+//75x44aSktKQIUOMjIyI6Nq1a4aGhk+ePLl58yZj7MyZM0RkaWnZrl27s2fPDhgwIC0t7datWzY2Nn369CGitLQ0Pz8/bluGDBmirKwsXktsbGxwcHBRUVHz5s0VFBTMzc3btGlDRFFRUSEhIUKhsEePHp06dSKily9f+vv7jxs3LiUlxc/PT05ObtCgQc2bN3/XXi4vL79y5cqzZ88MDAwGDBigq6sbHR2dmpo6bNiwGzduNGnSxMzMjJuhbdu2gwYNEi/45v6sWixjLDAwMCoqSllZeeDAgS1btnz/Hzs/P9/X1zc3N7djx45Vn4lnZWVdv349MzOzefPmQ4YMUVNTI6KUlJSHDx+OHDkyKioqKChIQ0Nj+PDhurq63CJ5eXm+vr5paWlNmjTJyMh4/3oB4K1iY2P//vtvHo9nZWX11v+/qampYWFhjDF5efmq0xMSEiIiIuTk5Lp3725sbFz1p8zMzKCgIAUFhd69e2toaNy7d8/Q0JA7WnIeP36sqKhoZmZGRAKB4M6dO8+fP9fV1c3OzhbPU1ZWFhQUlJmZaWBg0Lt3bwUFBQlvOUgT4gqkJzAwMDU1dcqUKZ9sjWVlZYcPH+7bt6+2tvbFixdHjBhRLTihQcPxqr5g/7Zp0yYievjw4fDhw7W1tZ8+fcoYi4yMVFRU/PXXX69evUpEvr6+4vnXrFmjp6dXXl4uEAhmzpxJRC1btuzZs6eBgQERubq6ikSiOXPmEFGHDh2srKx4PN6mTZu4TIaIFi9erK2t3bt37yZNmqirq0dFRbG38fPz42bW0dHp3bu3gYGBpqZmTEwMY8zIyMjR0dHS0lJLS4vH45mZmZmZme3cubOiooKIJkyYoKysrKur+9133zHGjh8/rqSkZGRk1L17d1VVVTMzs/j4eMaYUCicM2cOt3jPnj2bNGlCRFu2bGGMOTo6EpGNjY21tTURrV+/njHGdeFbtGgRV3lDQ0M1NbWIiIi3Vv7ly5ft2rVTUVGxtrbW0tIaNGgQY2zp0qW6urpchjxixAhzc3MrK6suXbrweLx58+Yxxt61PyMjI4no6tWrxcXFgwcPlpeX79KlS4sWLRQUFM6cOfPWCjDGxo8fr6+vb2ZmZm1t3b59ex6PZ29vLxQKGWOXLl1SU1PT19fv0aOHhoaGkZHR/fv3uX2loKCwcOHCxo0b9+7dW0dHx8DAIC0tjTHm4+OjpaWlqanZs2fP1q1bKygotGvX7l2rlgVCoTA5ObmgoODDF8nOzn7+/Ln0qgT135AhQ7gbT82bN+fz+atXr2aMXbhwgYiio6MFAsHChQv5fL6Ojk6rVq24U9GhQ4dEItHixYt5PF7z5s0NDAwUFRVPnDjBGLt58yYRTZkyRUNDo23btmpqagYGBgkJCdbW1oMHDxavtKioSE1NbevWrYyx+/fvt2rVSk5OrlWrVnp6ekSkp6fHGIuJiTEzM1NWVm7Tpo2CgkKHDh1yc3PraCfBR0NcwQc6duzYmjVrPnapuXPnmpiYSKE675STk0NE+/bt464bq16CQkOH41X9UT0h9PDwIKKLFy9mZGTo6+sPGjSouLjY2trazs5OKBRWVFQYGBjMmjVLPH+7du0WLFjAXmeSBw8e5KZz/4FdXV2PHz/O/f246fPnz2/UqFFWVhb3H3vYsGF5eXmMsdzcXC0trdmzZ7+1llxC+OWXX7569Yoxlp2dra6u7ujoyF4nhIyxH3/8UV5eXrwIlxBaWFg8e/aMMSYUClNTU5WUlMaPH19eXs4YS05ONjY27tOnD2Ps119/JaK9e/dyy3JDGG3ZsoXbG/v27eOmf/vtt8rKyi9evOASwkGDBr18+ZIxlp+fr6enN23atLdW3s3NjcuxGWMCgYDLqaomhCoqKn/++Sc386pVq3g8XmZm5rv2pzghXLNmjby8/K1bt7iNHTx4cIsWLSoqKt5ah/HjxxPR4cOHua979+4lomPHjuXm5mpqatrZ2RUVFTHGXrx40aZNG0tLS5FIxP3hZs6cWVJSwhhLTEyUk5Nbv379s2fPVFVVBw4cyP3hGGMTJ06U8YQwKyuLiPbv3//hi8yaNatly5bSqxLUfxEREeITzJo1a/h8fnJysvhEuGHDBiLas2cPN0NCQgJ3ID1y5Ij4oFRRUTF69GgDA4Pi4mLuRNi7d2/uRsOzZ8/U1NQWLVq0adMmOTm5Fy9ecOV4enryeLzk5OSioiJjY2MLC4ukpCTupwULFujp6YlEImtr6zZt2nBHqvv37ysqKq5bt+7T7huoOcQVfKB169aNHj36Y5f6z4TwxIkTkydPrnm13oCE8DOG41X9Uf21E+rq6kRUVlamr6+/d+9eX1/fzp07P3/+/MiRI3w+X15efuLEiefOnSsrKyOi+/fvx8bG2tvbE9GBAwf69u37zTffVCvwypUrBgYGffv2TUxMTExMHDhwYHFxcUhICPfr0qVLubamWlpa3J/k2LFjlv926tQpbuZly5Zx1dPV1W3Tpk1iYuIbzzurmzx5Mvccmc/n+/r6lpWVrV27lrvHYGJisnDhwsDAwLy8vAMHDnTv3n3BggXVFvfx8dHV1bWzs+MqP2DAgNLSUvGgpt999522tjYRaWhoWFlZJSUlubu7V6v80aNHFRUVicjPz6+srExOTs7Q0LDaWnr06DFkyBDxZ8ZYUlLSu/Zn1bp17ty5adOmiYmJT58+tbOzS0pKevLkSb9+/apWgGvjSkQtWrSYMWMG93nevHlNmjTx9/e/fft2fn7+mjVrGjVqREQGBgZLly599OjRkydPuDlXrVrFtapt0aJFkyZNuG0sKiravXs394cDItLU1Lx27drw4cM/fJFly5ZxRzSQWZ06ddLS0uI+jxgxQiQSxcbGin/ds2fP4MGDFy5cyH3l8yuP1efOnTMzM5s4cWJubm5BQYG9vX1GRkZYWBj3q7OzM9cqxtjY2NLSMi4uzsHBgTEmHpbNw8Ojd+/eJiYm3t7ez58/d3V1NTU1rbqKuLi4hw8fzp8/X1lZOTc3t3nz5l26dPHx8ZH23gBJQVzBB1qzZo23t7fEi338+HF6errEi4XPEo5X9Yd8te+pqalEpK+vT0RfffXViBEjfHx8du/eLW6e6+DgsHv37j///HP06NEeHh7NmjXr2bOnUChMTEwcPXr0mytITEzMyMio1iw4NTWVS6WqUlRUFAgElpaWs2bNqjrdwsKCuz/05swftamJiYk8Ho/r08jhugjGx8fHx8fPnz//zUWSkpJycnJatWpVdeKzZ8/EHS+r1qegoKBdu3bVKm9lZWVhYeHp6blkyZKff/552rRpq1ev5p5KvxWXrJaXl79rf1bdnLy8vDd3rL29fWFhoXiKuMk1l/Jx+Hy+iYlJSkoKl1S3bt1a/BO3T8QJYbVtFAgEcXFxjRo1qtabUcYpKCgMGDBA3LGWiEQiUWpqaqNGjRo3bsxNycnJKS0tNTIy4vF4RNS2bVvGWNVCCgoKXr58aWxsXLWVfHl5OfdIlmszDJ+TR48ebdy4MTg4OD09nbvFVlxczP31X716lZaWNnv27DeXSkhISExM1NHRqToxNTWV64DNRRdHSUmpoqKCO0S7u7s7OjoWFhZeuXKFaxDBvTu0W7du1crn/u8vWbJkyZIl4olv3saCegtxBR/o8uXLKSkpjo6OAoHA3d09LCyMz+d/8cUXY8eOVVVVFQqFZ8+eDQwMFAgE1tbW06dP5+7Ii2VmZnp5eT1+/JiIrK2tp06dmp+ff/jwYV9f38zMTG7YvEmTJpmampaVlZ06deru3bs8Hq9Pnz4TJ04UX9lXU1xc7O3tHRkZWVJSYmpqOnPmzPdcL3l4eLx48cLR0ZEL7zt37nh5eRUUFDRv3nzOnDncdeyePXv69u0rJyd3/Pjx/Pz89u3bz5o1i5s/LS3tyJEjKSkpampqkydP7ty5s+R2LXwoHK/qj+oJYUREBNdYloji4uJu3ryppKR08ODBOXPmKCkpEVG3bt3Mzc1Pnz49evTos2fPTpo0ic/nM8ZUVFREItGbK1BXV+/evbv4kaDYu14eaGtra2trW22iRIYPVVdXZ4wVFxeLH21xiZOWlpaamtq7Km9raxseHl5temho6FtX0aFDB27XVXPlypUHDx6cPHnyt99+CwoKunv37vuryuPx3rU/q9ZtzJgxb77M0M7O7v2Fc7Kzs9u2bcsd34uKisTTuX2ioaHBNYN807v2lSzLzs5u3Ljx/v37jYyMuP8XTk5O3L2VUaNG7d27d/78+VeuXGGMmZiYeHl52drazpkz59atWwkJCVZWVqNHj37+/PmpU6cqKiq0tLSOHTs2atQokUj0v//9z9XVlfvr9OrV68yZM1zvVvgMPHv2rG/fvjY2Nvv372/WrNmTJ09Gjhwp/lVJSYnH4731mqlRo0YDBw7kRs+qOvE97yZ1cHBYuHBhcnJycHBwRUXFuHHjiIh78l/1xMlRUVEhIm9vb24ULs6bs0H9hLiCD3f+/Plbt245OjrOmDHjzJkz3POZU6dO2dnZKSkpjRo1ys/Pb/To0Wpqai4uLjt27AgKCqp6TTxu3Ljy8vIOHTpUVFRwbV6OHTsWERHB3WiOiIggouHDhxcXFw8YMCA6Ovqrr74qLS2dMmVKaGjojh073lql1atX+/j49OzZkxvmcPv27Y8ePXprnJw9e9bBweHYsWNc8rB9+/bvv/++f//+5ubme/fudXNzi46O1tDQ2LBhg6enZ1xc3LBhw8rKyhwdHSMjI/ft23fv3r2BAwfq6OjY2dmFhITs3Lnz6tWrVYf0g08Ax6t65V87+vHjxydOnJg4caKGhoZAIJg2bVqbNm0CAgJiYmKqvjRv8uTJFy9eDAgISEhI4NqLck/eqmZ9Dx8+5D5YWVk9ePDgXdmFBCkoKIhEIqFQ+K4ZrKysiCggIEA8xc/PT1VV1dTU9D2Vf/TokUQaP9jY2GzevHnJkiVhYWElJSXvn/k9+1PMysrq1q1bXFfJj8Udsnv37v3WfSIvL/+eB4CtW7cuLS29d+8e91UkEnG3WIAjFApXrlx55MiRvLy8w4cPX7p0qUOHDn379s3IyHj8+LG8vPzixYurLbJ58+YmTZo8efLk+fPn1tbW33zzjVAo3LZt2y+//LJp06bs7Ozg4OCYmJiVK1fWyRaBNPj7++fk5Bw6dGjQoEFt27atNkKakpJS06ZNq96K4vpOEFHbtm0fPnyopKSkXQV3t+5dJk6cqKCg4Onp6eHhMWjQIO7GOddWgrtoq7qKNm3a8Hi8qKioquWLm/RAPYe4go9VVlbm4eGxfPnyc+fOeXt7p6enN2nS5NixY3/++ae7u/vZs2ePHDly9+7dFy9eVHt5sq+v7927d/fv33/48GE3N7fg4OCXL196enpaWlpyDaM8PT2tra1dXV3DwsICAgKOHj3q4eGxatWqvXv3cr25RP9GRJs2bYqPjz9y5Mjvv/8eEBCQkZHh6en5Zp0jIyOnT5++Zs0abrDT1NTUlStXLlq0KCAgwM3N7caNG8+fPz948CA3c2Zm5oMHDw4dOnTy5Mm5c+cePXpUJBItXLhQT08vKipq3759wcHB1tbW69atk/7Ohn/B8ape4Ts5Ofn7+4eEhOzYsaNPnz76+vrbtm0jorVr1z58+PDkyZM9evRYvXr1jh07uJFdiMjBwaG4uHj+/PmtW7cWd1GbN2/e3bt3ly5dGhERce7cuWnTpnHTuba/Y8eO9fPzi4qKcnd3//bbb6WxJdbW1iKRaMuWLTdu3KjaBFls0KBBNjY2jo6Op0+fjoiIcHFxcXd3X7p0qYKCwrx58+7fv+/k5BQREeHt7S0eT3n+/PmKiopjx469fv16VFSUh4fHovpU1D4AACAASURBVEWLqrX0+09eXl5r16719/f38/O7dOlS27ZtuXsP7/eu/Sn2/fffp6Sk2NvbBwUFhYeHHzx4cP369e8pMC8vj3tQeerUqbFjx5qams6fP79z5859+vRZuXLl4cOH7927t23btr17986ZM+fNBr1i48eP19XVnTFjBncymDJlylv3tixzc3MbMGCApqbmjBkztLW1hwwZ8sMPPzRu3LhNmzbjxo3jBnGtOv/gwYM3bdrUrFkzIyOj6dOnZ2VlPX/+fN++fSNGjFi0aJGurm6PHj1mzJjh7u7+sc2kod7i3uDi6+tbXFwcFBTEDSlc1fTp069cueLq6pqamurv7z9v3jxuuqOjY05OzrRp06Kjo58/f3716tX/fKOpjo7O0KFDDx06dP369cmTJ3MThw8frq+vv3jx4tDQ0KdPn/7000/Xrl0jIiMjowkTJmzduvXYsWNpaWmPHj3auXPne267Qr2CuIKPpaioqKur6+Xl5ePjIxQKub4PgYGBxsbG3HB0RGRmZvbll1/eunWr6oIqKipCoTAlJSUkJIRrWyR+L3RVt2/fNjIySklJOXPmzJkzZxQUFMrLyyMjI7t27Sr3b1lZWdwTm/T09PDw8KSkJEVFxeTk5GoFpqenjx49esSIEc7OztyUO3fuCAQCIyMjbhVRUVF6enrillx9+vQR991o165daWlpenr63bt3LS0tr1y5cubMGS8vr6ZNm969exetnz4xHK/qF3GfOl1d3blz53K3bSIjI/X09MSjblZUVPTr18/Kyio/P5+b0rt3byJydnYWj04jEom2b9/eunVreXl5c3NzV1dXInJ1dWWMhYaG9unTR05OTkFBoXXr1s7OzmVlZSEhIdra2tzLAzkjR44cOXLkW4e+uXXrlra2dnBwsHjKkCFDxo4dyxhr3779qlWruAo4OTlpaWlpaWnt3bu3oqJCW1ubG1VW7MWLF/b29qqqqkRkbGz8yy+/cK9eYIzt3LmzTZs28vLyrVq12rVrF71+7UR4eHi/fv3k5eW5gXF/+umnkpKS8PBwbW3t69evi0seN25c1TFtqzp48CBXsoKCQq9evR48eMAYc3Z25kbmHDZsWNVhvvz9/bW1tUNDQ9+1Px8+fKivrx8QEMAY454+8Xg8ZWXljh077t69+60VYIydP39+zJgxXHtrTU3NKVOmcIOvMsZyc3O/+eYbrhmtgYHB6tWruVFYPTw8tLW1nzx5Ii6kQ4cO8+fPZ4zdu3evf//+6urqysrKU6dO3bZtG/cuDZklHmX08uXLRBQaGir+qVmzZlVH5XVxcSEioVAoHmXU0tJy/Pjx4hnc3d2J6N69e3w+39DQ0PY17i2X3Gtg4DMgEolmzZrFNUFp3Lixu7u7hoaGl5fXxYsXeTzeo0ePysvLv/32W+4/pra29sGDB7W1tbnhmr29vcWdhxs3brxkyRKhUMiNrubv7y9eRZ8+ffr378995uJKWVlZfAxnjIWHh3/xxRfc9V/fvn2dnZ254bYLCwtnzZrFXZnx+fwePXpULRbqM8QVfDjxaejGjRvc8AFNmzblLvz69+/ftWvXqjP/8MMP8vLyIpFIPMro6dOnTU1NFRQUjIyMuIEVTp06xRjr169f3759xQtaWFhoaWnZ/pu3t/dff/117d/Ky8tDQ0NtbW35fD73oiw+n7906dJqo4xu375dWVm56rjuW7duJaIOHTpUXQU3ar2hoeHcuXPFc+7Zs4de9/oxNTWtVitu3Hj4ZHC8qleIMVZcXFx173wIrgfg48eP3/xJJBIxxl68eEFVXtjAEWdfde5dNeEq//LlSyLatWvXhyzy4Wt81zsh3u89+7MGFXvPzB+7gVwbj49a5HMl8YQwIiKCx+PNnDnT998+6lWHUP/l5OQ8fvz4/UeGjIwM7h5NNVlZWR/1WqQhQ4ZMmDDhzeklJSU5OTlvTi8tLU1LS3vrqqGeQ1zBh6j29qPQ0FCuY9Xly5cnT55sbm5ebWYjIyP2+rUT0dHRcnJy3333HXdW4hoKvTUh7N+/f69evT6kPmVlZbq6ukOGDElPT+emqKurv5kQ+vr6cq/OOnLkCDfb0aNHiSghIeHNMt+aEHJDhnA3/aHO4XhVT/CJSEVFRUND46OeK3p4eNja2nK3lKrhcv3o6GgiqjY+57vGlfr03lUT6VWee2lHDRZ8T5VqULH3zPyxG8jj8T77LrZ1RUVFpUmTJiUlJXb/pqamVtdVA0nS0dHhmg+8Zx59fX1u8OFq9PT0PrxLQ3Z2dkBAANfluxplZeVqY7VxlJSUDA0N37pqqOcQV1ADXbp04RKt+Pj4jh07JiQkREVFcT8VFxf7+PhUHfAvPDxcKBQuXryYOytlZ2eLf1JRUak6Ul2nTp3Cw8OfPn36nxVISEjIycmZOXMmN3xaXl7eu3pJLFiwwMHBwdHRkUtEub5LXl5eH7ilqqqqrVu3PnfuHPvIHkAgDThe1RM1SVFEIpGXl9eyZcuqTty+fbufn9+4ceOaNm2alpa2cePGli1b9uzZU0L1lK7du3dfunTpq6++atasWUZGxqZNm0xMTPr27VuHVWrQ+xNqz8HBYefOnV9//fWIESOI6MmTJ9nZ2V27dq3rekGD5OXlpaKiMmzYsLquCHxWEFefgezs7KFDh44YMcLY2PjSpUsKCgr9+/c3MTFxc3MbNmzY999/r66uvn///levXnEtXDgdOnTg8/nOzs6TJk168OAB9+SN06tXrzVr1ri4uCgrK0+ePHnZsmUnT57s168f9+rm6Ojoe/fuXbt27c0byiYmJrq6urt371ZRUXn69Onu3bvfU+19+/aFh4dPnDjx7t27VlZW06ZN++mnnzIyMjp16pSRkXHx4sWNGzd27979XYtv2rRp/PjxI0aMGD9+vEAgCA4ObtGiRdUNhM8PjlfvV5OEMDIyUkVFZeLEiVUnDh069NmzZ3/88Udqaqqenl7fvn3Xrl3Ltb6t/+zs7FJSUg4fPpyamsqN4eHi4lL1xX2fXoPen1B769evT05OHjlypJ6eHo/Hy83NdXJyQkIINXP9+nUHBwccQECyEFcNmoWFhUAgEAgE/fv39/Pzy87ONjU1vXz5cvv27YkoODh448aNJ06cKC8vt7GxOXjwIDe9Xbt2RUVF7du3P3HixNatW+fNm9e5c+ebN2+uWbOGe7K3bNmyoqKia9euaWlpDR8+3MbGJjQ09Jdffvnjjz/4fH7r1q0dHR0ZY28mhKqqqpcuXVq5cuWCBQvMzMy48UK55zMDBw5s2rSplpaWnZ0d9yRHXV395MmTq1atOnv27NSpUw8dOtSxY8dz585duXLF2Nh4xIgR3AAZvXv3bteunXgVzZo1s7Oz4wYL9PX13blz59atW3V1dTt27Mg1l4XPGI5X78fDE3OAWhIIBPfu3WvRooWCgkJCQkLbtm25gYuI6OHDhxoaGiYmJtzX9PT0tLQ0W1vb5OTkgoICa2vrmJgYZWVlMzMzboaXL18mJSVZWlpyx6y4uLjY2FhNTc127drh3fQAAAAAIHFICAEAAAAAAGRUfRnlBQAAAAAAAD4xJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyCgkhAAAAAACAjEJCCAAAAAAAIKOQEAIAAAAAAMgoJIQAAAAAAAAyqgEnhAUFBYGBga9evarrisBnBXEF0oC4AmlAXAEAQO014IRw7Nixffv2vXXrVl1XBD4riCuQBsQVSAPiCgAAaq8BJ4S2trZEFBERUdcVgc8K4gqkAXEF0oC4AgCA2kNCWAcSyxIflT5ixDxyPeq6LlAd4gqkAXEF0oC4ggapooLCwsjTky5coKSkuq4NAJB8XVeg5rgTYWRkZF1X5OOsTV8rIpGBvMHj0sdX8q9M0p5U1zWCf0FcgTQgrkAaEFfQ8BQW0sGDVFxMFRVERDExZGVFo0bVdbUAZFoDTgjNzMx0dHTS0tLS09MNDQ3rujofRESisOKwyy0vc18v5l2s2/rAmxBXIA2IK5AGxBU0PN7eVFBAIlHl1/Jyio4mc3Nq27ZOqwUg0xpwk1Eej9ehQwdqUDdHy0Rlany1uq4FvA/iCqQBcQXSgLgCycvPp7g4ioigyEiKj6eCAkkWXlFByckkEmUVFUWkp28JDk7Nz6fycrpzR5JrAVmVlZUVERGxZcuW1NTUuq5LA9OAnxAS0RdfdElNzYqPr6jrinwQ91z3vmp9C0QFOYIcXXndYlFxXdcI3g5xBdKAuAJpQFyBZIhEFB5OISFUXEx8PolExOMRj0dCIWloUO/e1L498Xi1XUtpKTEW9vz5xDNn8svKcktKVvn5DWjRwqlr15Hl5bxu3cjamvgN+FkF1KGwsLCJEyfm5+fn5uauWrVqwIABTk5OI0eO5NU+bmWAnIuLS13XoeZycuz271+gpNTW3r6uq/Jf1qWvc0p18i/w3998/6+Zv3rneWvLaSvyFbuodqnrqkF1iCuQBsQVSAPiCiQgPz/t19NpYc/1KKewRO7+88bGqnkkFIanGhSUyOvxXkYFFyo+fqhiY06KijVfS3Ex8/La7uPj4OX1sqTEUl+/W9OmT16+jH/50j062uOvv1hsbLunT5UYI13dWq0I6o20NEpLIz09Kiyk+/fJ2JiIKDycCgpIT4+iokhRkVRUarsWxtj27dsdHBxevnxpaWnZrVu3J0+exMfHu7u7e3h4MMbatWunpKRU+835jPEYY3Vdh5qLj6fWrcnYmJ49q+uqvJuACRalLnLLdpPjye1qumth44V1XSP4D4grkAbEFUgD4gpqq7SU9uzxe2iQnKs5u1Nkcp7W72FfbB7kR0TON/qFPm/q43ByW0iPYW0SbdqU0YIFJF+jxmVpaa+OH//m2LGzMTE8osVdu24bPFhBTi6zqOjwvXu/h4en5OURkZqiooO1tWO3bjZ9+5KtLZmZSXZb4RPz86PkZJo9m5KT6fffafNmIiJnZwoNJR8f2raNhg0jG5tareLVq1fffPPN2bNneTze4sWLt23bpqCgkJmZefjw4d9//z0lJYWI1NTUHBwcHB0dbWq5ss9Xw04IGSMdHcrLo/R0atJEGuUzxhi/Fq0XCkWFk5ImXcm/ospXdW/hPkoT42g1AIgrkAbEFUgD4gpq69o1Cg/3i2vuFdNuoFlSVlGj5DwtcUJoqF5YJpArFcgPM0+wMcwiW1saPvzjymeM7t69d/ToBA+PJy9faigp/TF69HgrqwKhUF1JiVRV6YsvRLGxAYGBO//6yycujrsqtTUycura1b5fP4WuXUlengID6dUrUlSkjh3Jzq6GSSl8cn5+5OVFAwdSVhYlJ/+TEBoaUlkZlZbWNiG8d+/ehAkTnjx5oqGh8ccff4wfP76goEBdXZ37VSQSBQQE7Ny508fHh8t3bG1tnZyc7O3tFRQUJLB5n5GG3WSUx6Nr1yg5mQYMIHNzCRe+devWGzduTJkyJSUlRV1dvVmzZh/bCjm9In1wwuDAwkBded0rra7YqdtJuIogHYgrkAbEFUgD4gpq6+JFKi1NzNV+Uaje2TiNiJ690hjUMpGIbiabTrCMOR1tLWJ8FXnBsmuDNXMSzbP/4vGI9PU/qLNfWRmdP39s375xp09nFhV1MjT0nz3b5ptvZly8uOvOnWlbt8oNHEjNmvE6dTLr1s3B2trewEBVXj4mKysxN9f78eMDQUHZDx60ycnR5PGIMRKJKDOTnjyhDh0k0KERpC8xkV68oM6diYiePaNBg4iIbt6kCRPo9GkSiUhFhZYtI01NMjf/6D/psWPHxo0bl5mZ2alTJ39/fxsbmxkzZuzatWvatGlycnJExOPxzMzMHBwc7O3tVVVVY2JiEhMTvb29Dxw4kJ2d3aZNG01NTYlvckPFGrhlyxgRW7dOkmUKBAJHR0ciqnr/wMTE5Pvvvw8LC/vAQqKjo22H2hrdM2oV3SquNE6S9QPpQ1yBNCCuQBoQV1ArGzcyFxffaccOfHmRubgkfee6vGfQrZmH4xbv+l/fm0nfuaYs2dFYtWi85SMiRsRMtXI32flmOe9mfn4sL+99JaenF2zZYm9tzcXP1Pbti3fsiLp5s3Xr1kSkoaERGRlZfZHCQhYY+GrjRrdRo6wNDLgFFeXkJlha+k6bJnJ2Zi4u7Jdf2OPH0tsfIEG+vuzAAcYYS0piy5ezW7dYXBz73/9YUhJLSWGNG7Px41llXJmyTZtYVtYHFVtQUGD/utv01KlTi4uLo6Ki3hdXjDHGXr165ebmZv06IBUVFSdMmODr6ysSiSS3xQ1Vg08IT51iRGz0aIkVWFRU9OWXXxKRkpKSu7t7dHS0s7Nzq1atqp4RnZycbt++/Z5CAgICtLS0iGjC8gk5FTkSqxx8KogrkAbEFUgD4gpq5eBB5uKS/N2OqAW/MxeX/FUb//z6ePTCPWv63ro961Deyo3MxeWyw8m4xbu2D7nWSieHu3xXlq+Y3uF+2Lx97Ngx9vffjLukFolYWhpLTmalpez+/dhvv7XS1yciNUXFU199xc6dO3roUKNGjYjIwsLi0aNH76ySSMSePGGnToXPnTu1fXsFOTkiaqen93TJEubiwlxc2J9/frLdA7WRnMyiohhjLD+f/fkni45ma9aw27cr7yRcvszi4tj27axVq8q0UFmZTZ/OwsIE7ykzNjbWysqKiNTU1E6dOsUYO3r06AfF1Wvh4eFTp07l7na1a9fu6dOnEtnYBq3BJ4R//82aNWPz5kmmtOzs7J49exKRjo5OYGBg1Z+io6NXrFhhzA2QREREpqamTk5O4eHh1Qrx9PRUVlYmonHjxhUXF0umZvBpIa5AGhBXIA2IK6iVhAS2YUNlovX637Ol2/ePulhtIlu/XnjgD99pxyZYPpLnC4lYP9M5tkZGbqNGFW3bxi5dYlu2sI0b2caNbO3a4+PGqSoqElFbPb1oJ6eSwMC5c+eKH+kUFRV9UN2io9n69alLl9pbWRGRnZkZc3Fha9cyX18p7xSQimfP2P79b5kuFDJfXzZhApOXZ0SsX78Ntra2bm5ub8bJ8ePHVVVViaht27bR0dElJSU1iSvGGGOpqancY0Y7O7vabNTnoUEmhGvWVH749Vfm5cVWr2aMsVu32PXrtSo2ISHB3NyciFq0aBEbG5ubm3v+/Plq8wiFwtu3bzs5ORkaGorPiBYWFs7OzrGxsYwxV1dXrvO9k5OTUCisVYXg00JcgTQgrkAaEFcgSQEBVXPCjB+2zux474K9+7+ywQ0bWGgoY4xlZbGrVxO/3/NDz2BL/cq7A3qNGq3o1Svpu++Yi0vJTz85de1aeY3evn3htm1/BwdzozsqKysf4FoQfiCBgGvRGrtoERG10tGpbDKKRzoNUEYGmzmTXbjwvnkSE9kPPzBLy46VcaWnt2LFiqSkJMZYSUmJk5OTOPcrLCz8+++/axhXr8XGxhJRq1atarRBn5UGmRBOnFj5YdEi5ubG+vRhf/3FLlxgp0/XvMw7d+40btyYiDp37vzixYuUlBRLS0s5ObnLly+/dX6BQODv7z937lw9PT3xGZE7O8rJye3atavmVYE6grgCaUBcgTQgrkDCoqPZ5s3sl1+qPxV0cWEbN7Jt21hCwr/mLy1l4eElrq6HRo/+wsiI++vL8fl2ZmZt9PSISEVB4eCXXzIPj3MeHlzj4datW0dxzQc/Rvrt26nLlxf/+COPSFFOTuji8h8pBTR8JSUlhw4d+uKLLyrjSk7Ozs6uTZs2RKSionLw4EHG2Llz52oVV+npqampxcXFPB5PUVERt64aZEL45Zds2TK2bBnr2JG5ubFz59i4cezcOXbqFDt+nOXmfnSB586dU1FRIaLRo0cXFRU9ePCgadOmRGRpaZmSkvL+ZQUCAXevtHHjxhoaGqqqqqdrc0KGuoO4AmlAXIE0IK5A8gQC9ugRO3OG7drFNm9mmzax3bvZ+fP/dBF8E9fZz9MzfN68uba2KgoKRKSprGymrX1//vwKF5cVS5dy1/Rjx47Ne/8ING9z9OhRIrIfM4Zt2dJETY2IUn/44Z2Vgc9OeHj43LlzuUOTpqammZnZ/fv3KyoqVqxYIYG4srdnjDVp0oSIUlNTpVD9hqRBJoTV7oxeucJ8fNjQoWzNGkbElJTYyJHs6FGWn/9BpYkbt8yePbuiosLX11dDQ4OIBgwYkPsxJ9WysjJ9fX0iio+P//htgrqHuAJpQFyBNCCuoH45coS5uGT+8AP3ePD85MnMxSVr1aqmTZsqKSnt2bOnZqUGBgYSUffu3dmFC92bNSOiwJkzGXqlypjMzEzu8SDXgj0rK0ticcVY9+7diahaf2kZVPNXzdYrw4eTigrJyZGdHQkEdPkyTZ9OTZrQV1+RpycVF5e+dSnG2IoVK7777jvGmLOz84EDB06cODF8+PBXr15NmDDBx8eHexj9gRQVFbt27UpEERERktkqqGuIK5AGxBVIA+IK6lL37qSo2FhVtVfz5kSUUVhIfL5ex45nz54NCgpauHBhzUpt0aIFESUlJZGWlqmWFhEl5eVRbq4EKw71X+PGjXv16kVEGRkZRKSnpyexuCIyNTUVf5ZpdZeL1pz44fCrV6y0lJWXM8ZYWRkrK2OMsZwcdvQoGzmycqii5s0TVFRURo4cefTo0cLCQnEhpaWlEydOJCIlJaWTJ0+KRCJnZ2dunzg5OX3UO0kuXrz4448/FhQUcCUsX75cctsKnw7iCqQBcQXSgLiCeufqVbZ+/foBA4hoZa9ebPt2VlJSyyKFQqGSkhKPxysKDV3duzcRre3fn33AewXgM7N+/XoiWrlypURK+yeuiopWr15NRGvXrpVIyQ1Xg0wIP9Dz52znTjZjxiEej8ed4TQ0NL7++uuLFy+mpaVxNxu0tbVv3rxZUVExZ84cIpKTk/v9998/dkW2trZEFBgYePHiRSIaOHCgNDYH6gnEFUgD4gqkAXEFn9S9eyfGjSOiSVZW7MYNiRTJvQAz9saN/aNGEdHMjh1ZcLBESoYG5MSJE0Q0adIkSRVYGVexsfv37yeimTNnSqrkBupzTgjFnj59um3bti5duoifi3LvrzQ1NY2JiSkoKBg6dCgRqaqqvmsstffjXoGyY8eO58+fcyfXj7qxCg0U4gqkAXEF0oC4gk+hpCRo1iwi6tq0KfP2lkiRgwYNIqIrXl6+06YRUT9TU+bjI5GSoQEJCgoioq5du0qqwMq4unLF19eXiPr16yepkhuoz6QP4fs1a9Zs2bJloaGhKSkprq6uX3zxhYqKira29p07d9q1a+fm5vbnn38aGhoGBgaOGDGiBuVzd0YjIyONjIwMDQ1zc3PRFlkWIK5AGhBXIA2IK/gUlJVbGBgQUVJuLuXlSaTIyu5e6emmurqEPoSyqmqvP8kWKMU+hNnZdPUq/f477dpFx49TVBSJRJJfi4TIREIo1rx582+//TYoKOjVq1evXr1SV1cnoiVLlqxYseLOnTudOnWqWbHcglwf+qqfJYwxSkiggAC6dImCgigzU/KrgBpBXIE0NOy4gvqqYccVjlf1nmGzZsry8plFRYUvXkikQO56PTklxcTERI7Pf/bqVUVOjkRK/pfkZLp9m4qKJF8ySIKhoaGysnJmZmZhYaFECqyMq+RkExMTOTm5Z8+eVVRUSKTkSnfu0P795OtLYWGUkUGJiXTlCu3ZQxKqv8TJVkLIUVJSsrS0FAqFUVFRRMTn8zdt2mRiYlLjAm1sbBQVFR8/flxYWMjdJZX8iTAjg3bupDNnKDCQIiPp5k06eJDc3am8XMIrgppCXIE0NMi4EhMKpVUy1E6DjCscrxoCno5Oc01NIkpJTZXI8xDxkxwFXV0jdXWhSPTs6VNirPYl/+PwYXJzo+xsmjKFYmPpxAmKi5Nk+VBrPB6vefPmRJSSkiKRAv+JKwUFIyMjoVD47NkziZRMRJSURDdu0N27FBZGxcV07hxlZVF4OD15Qu7uEluLRMliQkivG7dI6nSlqKhoaWkpEomioqKkciIsKqLDhyk+nk6fJl9fOn+e8vMpLo7Cw+n0aUmuCGoHcQXS0MDiivPoEX39Na1cSdOm0YsXdOMGoQFhPdPA4grHq4ZCS6uFtjYRJefmUn5+7csTP8khLa0W3JsnsrMl/Cjv4kXauJHGjqXFi8nXl77+mlq3lmT5IAlcCpecnCyR0v6JKym0R6W//qKKCvr7b7Kzo3btqEsXSkwkGxvS1qasLHr5UmIrkhwkhBIuUPyBSfD21d27JBRSUBANH06DB5OtLd27R7q6pKREz59TRobEVgS1g7gCaWhgccXZuJH27KGtW2nuXDp8mMzNSVdXwquA2mlgM1o22wAAIABJREFUcYXjVUMhTtvy8iTSjfBfr4zT0iKi5Lw88vam4uLaF16J//piWEuLCgokVixIlGTTtjdfRSipVJOIKru5vh7bmZSVqays8jOfT6Vvfyts3ZLphDAyMlKyBUZERBgbGzdp0iQ3N1eSgZWZSQIBVVSQsjIRkY4O5eeThgYpKRGPVz/vNMgmxBVIQwOLK05JCWlqEhGZm9PTp9S0KWloSHgVUDsNLK5wvGooXr9BPllCCaG+vr65ubmFmVl5RAT37DEpN5eSkmj/fgm0Fg4NpWvXSEenso3o2bPUr19tywTpkGzaVhlXFhbl5eWSTDUZo6Agun+fEhJIRYW4/q4xMWRq+s8M+voSWJGkyWhCaGNjo6CgEBMTUyyhO0xVb7VKuD+9SEQFBSQSkYpK5Y2r9PR/gkkkqp+BJZsQVyANDSmuOAIBaWtTejoRUUQEWVpKsnCQkIYUVzheNSDa2lxCKKmBRnk8XlxcXKCDg2LVJ4QiERUXU2horYretYv69CF7e/ruOzp5kr7/njp2pJ49a19nkAbJDgdaGVeBgYqKihJLNcvK6MwZ+uUXOnSIvLyoWzd68ICuXydDQ2renIhIQYFGjSJ5+dquSApkNCFUVla2sLAQCoUPHjyQSIHcmfXx48dFRUWSbIdTUUGnT9PJk+TuTr17040bdO0aJSQQNxCcggK1bo2GWPUH4gqkocHEFWfzZrKzo5Ur6X//o2XL6No1mj1bYoWD5DSYuKqoIA8P8vCgY8eoZ08cr+o7cR/CvDzKzpZMmcXFXKfB1Px8eT7fJz5+c1BQTn4+xcfXsMCCApo8mb79lsrLacIEMjentWtp2zaaOFEyFQYpkGwfwqpSU1Pl5eV9fHw2b96cU+MxbNPTaedOWr+erl4loZAsLKhZMxo0iEaNIltbkpcnXV2ytycrK4nWXWLqY5L6aXTq1CkqKioiIqJbt261L40bse3+/fuS7E9fWEjHj9P+/XT/PvH5lJ9PY8aQnBwJBKSgQCIRtW9Pw4bVvvIgQYgrkIYGEFdEVFFBc+fSkSMkL08pKXTggATKBGlqAHGF41WDU1TUQkeHuD6EsbF06RKNGBF5/76FhYUy19y3BgoLK8rKlvv67vzrLx6Pl1tSstLPb92tWw7duzt26tShQ4ePKiwqis6vjHHxP0eamvTHH/TVVzWsFXxabzbsjIyMrFVcEVVUVCxfvnznzp08Hi83N3flypXr1q1zcHBwdHT8uLiKiIg6HHn+mrFLYiwpK9OXX9LkyTRyJPH5lJ1NZWWkrU3q6jWu56cg5Rff11+//fYbEc2cOVNSBZ49e9bT0/Ply5epqalEpKOjIxKJal5cZibbtImZmzMipqjI7O3Z1assPZ2FhbGgIBYVxQoKJFVzkCDEFUhDfY8rxvLzWcHk2YyIqaqyy5clVU+QqvoeV5mZ+Rv3FFh1qzxeOTjgeFXflZWxbduYi4uaoiIR5a1cyTZsKD5zRldXV0tLy8nJKTEx8aPLjIlJXbmyR7NmRCTP52+0s/O2tx/SsiXv9YgdPXv2dHc/XVb2QYUdPMhUVBgRu2R/ksXHf3RloE6pqakRUV5eHmOsuLi4VnHFWGpqao8ePYhIXl5+48aN3t7eQ4YM+ei4KitjZ84c/PKCikIFEbtkvZItWcIiImpQn7oluwnhnTt3iMjGxkYahWtraxPRunXr0tPTa7L806dpP+0Z3vxhia4xU1Nj8+axsDBJ1xGkAnEF0lCv44qx589Zx46sf/OECgsbBFUDUq/j6unT5z/t7WiY3l8roqKxIY5XDUNYGNuwgbm4WOjrE1HEvHnMxSV+yRLbjh25i2w5ObnRo0dfu3btg+4UCIXM19dv2jQDNTUiaqapGfLNN8zFhbm4sA0b4n/+ecXy5bq6ukTUufMIAwO2YgVLTn5nYaWlbPp0RsSI2OzZrKREgpsNn4iFhQW9HsE4Pj6ea4nw0XHFGGPMz8/PwMCAiJo1axYSEiKeHh8fv2LFiv+IK5GIPX3KIiPZ7dul23+b3uF+ZVx1iij5dS/LyJDYBn9CspsQlpSUKCgoyMvLFxcXS7BYgUAwf/58ItLU1CQiPp/fs2dPV1fXFy9efGgRjx49WLy/mWY+EfvaJJD98AOLi5NgDUGqEFcgDfU3rhh78IA1bcqIWNu2LDlRKMHqgbTVx7gqKmIvXrCQkAeL9zfVyCdibfWykn/4DcerhuHCBebiEjlvno6KipG6emNV1RW9eqUuXcpOnQr385s7d66Kigp3Bd+qVatNmzbl5OS8s6j8fMGBA879+vF5PCIa0bp1tosLO3KEbd/Odu9mt24xgYAxVlhY6ObmNm7cbe6KXF6effUVCwh4S3kiERszhqmosAMHpLb5IE2RkZE6OjpGRkaNGzdesWJFamoqYyw8PPzj4ooxgUDg7OzM5/OJaMSIEdnZ2W/O8764io9nW7eyjRvZ+vVs7VqRs8uYtrEqChUHvrzIPDxYaalUNl76ZDchZIxZW1sT0V9//SWpAgsLC0eNGkVESkpKixcvHjNmjLhls7y8/JAhQ9zdg16+fMfCr16xlBTm6+s/45imcikR694sNWvtHpaWJqnqwaeBuAJpqF9xVcXw4YyI9e7N3nsKhnqqvsRVURG7do1t2cLWr2c//8xcXIabxxGx3iYpOWt343jVYAQE7B05Uklenoi0X//dFeXkHKytg2fPZseO5f71l+uOHaavh+BXVlaeOnXq/fv3q5eTmJjp4jKoZUsikuPznfv1Ex469P4WwoGBbPJkpqhY+QzQwoJt386GDmVCIUtIYL/9xkJC2MOHLDpailsP0rN3714lJSUi4poeEJGioqKDg0NwcDBjLDc319XV9b/jirHMzMxBgwZxDxWdnZ2Fwv+4iVk9rlqVbR/uN7RVvNB5bYLTzt+G+4R8c/Dhgr3RC/e8/T5EwyHTCeGMGTOIaM+ePdzX4uLiBw8e1Li07Oxsri2yjo5OYGAgN7GoqMjT03PkyJGKiopE1LGjv5wc69mTubmxvLzXSyYnsz172M8/s/XrmYvL//reJGKTrKJLd+6rMhM0GIgrkIb6EldV5OWxP/5gt2+zZcvQ/qqhqhdxlZxcebvdxYW5uOSt3PjH6Au3Z/2xrEdIyZoNbPNmVtPGzCDm4FD5Yd48VlhY+VlDg6WkMMbYlCkSWEVBQYH9uHHcFfnU9u2Lf/zx9qxZEywt5V+/9r2joaHbqFGFW7cKbt8+7+ExaNAgcX8tb2/vylJEInbjxq1ZswzV1YlIX1XVd9o0dvUq+68Ld86LF2zTJta8OSNiK1aw4cPZnj0sJoY5O7O1a9nevRLYTKjqE8WVvX1lXE2dWlxcfPv27QkTJsi/fnlDx44d3dzcCgsLBQLB+fPn3x5XjDHGbt26ZWhoSET6+vq+vr4fXod/xVWvoOHmcXtG+MQ4/ubc7+ba/jf2jrjM1q5lXl4S2Nq6I9MJ4e7du4lo1qxZ3FcPDw8isrCwcHZ2jomJ+aii4uPjzc3NicjMzOzx48dvzpCTk/PHH4eHDhXIy1feZlBWZmPGMPdf065MP715kC9zcQn55uCNGUeufn389Pgzog2//PN/CxoUxBVIQ72IK3d25QrbvJkxxkJC2PnzrKKC/fwzEwrZ9eu13kKoC3UfVyMr3Cd7X5lyQny8Oj/5dMX/1v08wF/ovPb61GPMxYVt2oRbDrU0cWLlh2+++edJ2/DhbMYMxiRx4R4bG2tlZUVEao0anZo4ka1bx1xc2M8/s59/Tlu9epOdnbGGBneNrqmsPNfW9tHixczTMy4wcMWKFWbNmxdduMC8vVlYmOjoUdehQxXk5Iior6lp2k8/1WDol/Jy5unJAgPZzp1s6lR24wZbv57l5TXc1nz116eLKzW1U6dOVf0pLS1t06ZNxsbGlXGlqTl37txHjx4xxuLi4lasWGFmZlZUVMTNLBKJXF1dFRQUiKhv375pNWp0UF7OPCeeCZx5aOewq1PbR92YcWT9gIC8lRtLf1rPXFzYb7/VdmvrlEwnhCEhIUTUvn177uuBAwcaN25Mr9nY2GzYsCH+A45Ed+7c4Rbs0qVLxn/1Jc3JYUePspEjmfiMOP+LsG5NU+/P//2Cvfv+URcXdr7759fH2S+/oAN9A4W4AmmoL3E1n3Xrxu7fZxcusNOn2aVLLDSU+fiwRYtYVpYENhM+sfoSV1WOV6fHn7nkcCp0zgGfKScXdQnNWr6FbdiAA1ctDRvGli1jy5Yxa+t/LtynTWN79rALF9iUKczP730jsrzf8ePHVVVViaht27bR0dEsM5P5+jIvL3bnDistZWVlLDy8bNcuzwkT7MzMuNDi83h2ZmaeEyZUbN4s5LJHF5fs5cuHm5sTEY/IqWvXin37WG5ujTc5PJzt3MmSkpidHVu/vsbFwPt80rh6m7KyMk9PTzs7u8q44vPt7Ow8PT0rKirEzUGzs7OHDx9ORDwez8nJqaKiooYVYozt2BE+123nsKtJ37namT1ZPyCgcpSjtWuZh0fNi60HZDohTE1N5fP5ysrKixcvDgoKEolEAoHg9u3bTk5O+vr64jMid6/0XWdELy8vrjPr6NGjxbciPkR6Otu9taS/WfLBLy96TvAcb/Ho/OTTp8efebxod2V4NfDYklmIK5CGuo+r3ax/f3bwIPP0ZOPHs/Pn2YYNbNky5uPDRCL2998S2k74tOo+rmbf798iqerxasNAv2U9QnymnBQ5u/y9eHflxZa/v4S2WEa99UnOtGlMIGCTJrGJE5mxMePzmZ0du3iRffi7QkpKSpycnMTN+Qrf0wJFJGKJiczDI3LBgrm2tqqKitxSxhoazv36ZS1fHjZ3LvdGe91Gja5MmcL+/PMDm4m+C5cQMlbZcwKkoe7j6rXIyMi5c+dyCSQRGRsbOzs7Z2VlhYWFcS8w1NXVvXLlSg228V8ePgxf+MfOYVeZi8vPA/z/SQg3bGigg4uKyW5C+OTJkzZt/s/efcZFcX19AD+7S2/SBAVBiiAIWMAulii2qIkayx+NGmMsTzQYjcYYo2BHYyL2aNDYo9g1lgQrKoqKitJUpCpdpEhn9z4vLtlsELFBdpf9fT++wGF29uxw9s49M3PvNOenE3j2WFlZffPNN2FhYYyxsrKykydPjh07lk+Sxs8rdOzY8eG/JzoLCAjgL584ceK7nHIoK2OLF+/95OCp0buDhgcNcY7ZN+xAZW4tWsTOnKmtDwv/GeQV1AWFyCvGGGN797JTp1hQEBsyhO3bVwsfDeRIIfIqPJwtW1Z9eyX9t2wZZhl9T1OnVv7w7bfsxAm2YgW7fZt98w1jjIWFsbFj2ejRTFOz8oJt8+ZszZrXDzZPTExs164dEWlpaQUEBLxpKAUF7MqVZ0uWrOrTx97YmKeWhkjEhxp2srJKnjGDvcdAVqnbt9nWrSw2lkVHM09PNmzY+28SqlKgvGKMMfbs2bNVq1bZ29tX5pWGBh9q2KlTp+Tk5Hf4gC+7vTdm68fHYqeti5663tM6aZhrDPvxx3e/DKowVLQgvHHjBn/8iJub27lz53x9fZs1ayY9FWptbe3j43P58mWJRFJSUnL8+PExY8YYGBjo6upKz1JUVFRMmzaNHyB9fX3fPZSjR/eOOHJq9G7m59fHPu6fA+HSpZizT+kgr6AuKFBe/V0QMsb69EFBqNwUJa/EYrZxY/XtFf+3ZAnbseMtLi7AG7hyhV24UHVhRgZbupRZWVV23/X02LffLn3VJENHjx41NDQkIgcHh2qnc3yNigoWFSVeujR47NjhLi5aamr9mjWb5OFROn8+W7yYvc115leZPJkRsfXr2ePHjIhZW7//JuE15J9XjDHGxGJxcHDw8OHDtbS0+vXrN2nSpNLXP2D+TVXm1YcnH09fQ8SsLcrf81K2glDFgvDo0aM6OjpE1Lt377y8POnyyMhIX19fu79vcCciGxsbfkRkjBUVFUkn5i4uLh4xYgQRaWpqVhnk+tbKywt+O/DIZ23arFWx09b1a/aor8NjtmwZi4t7r83Cf04R82rmxrTZPyGvlJpi5RVjBQWssJCdOsW++449efKeGwO5Uay8Kikp2H6w0HfFqTF7v/O8/GTmz/+UgkuWsOPH+RPnoLbcvMk2bXrlDCtiMQsOZgMHMlfX6zwHPDw8duzYUVZWxlcoLy+fM2cOn8hx8ODBz99jmB87dowtXMj8/DJnzy5fsKDy7+7vXyv1//LljIjNmsXKyphIxEQiVntFAVRDgfLqb5mZme81YrA6lXnV+WrZ/EUioaTe5JXCFYTSSYEPHWLSZ9h+9x3jB6zAwPfd/q+//sovH48fP16ahVXcunXLx8eHT03LyU65lp2d7enpSURGRkaXLl1634AYW7SIEbF53UIK5y1VE4rVRJKi55gJq5apbl6Nii/8bb+aSIK8qgsqmFdcp06MiJ09ywoK2O7dlQN1oLaoaF5lZnZqkUvEzk49XLBy4+5Jl9b4xL3PnCLwKpcusaCg19+EGxubOG3aNIO/Zwe1sLBYuHBheHg4f7KImpqav7+/5D0rt2fP2LJl/7ogvHQpCwt7r23+bd8+RsQ++YQxxpo2ZUQ4I1q3FCiv6lJlXrWIZn5+TQ1z601eKVxBKB2fOm/eP1nVvTubPZux95vBViKR+Pr6vvnNLRUVFefPn58yZYrslGsuLi6NGjUiIltb25iYmHePRsahQ4yI9Wv2iPn5uZplENVWYwj/UN286scYY66uDHlVF1QtryoqWGQkq6hg06YxIrZiBcvOrrwFCJdwahHyCnmlOPLz8zdu3Oji4sL/+vzCsoWFxcmTJ2vnDZKS2KpVbPly5u/Plixhfz++8v2FhTEi5u7OGGPdu1eewwIFUed5VWcq86pxKvPz626TWG/yShELwpkz2cyZrEOHfw6E48axuXNZeDgbPZrFxLzLGcOSkpJRo0bxcw9btmx5q9dWmXKtS5cu7dq1S5eetn1viYmMiJnqFDI/v3Gt7xLh2am1T3XzypQxxsaNY8iruqBqedWiBSNiUVHst98YUWXdwk+9v+Uj66AmyCuGvFI8ffr0MTU1nT17dosWLYjI39+/1jYtkbC0NJaUVLv33mVkMCJmbMwYY5MnlHeziv9rZ1otbh9qRR3mVd2ozCvtIubnN9n9RjezmPqRV4pYEHKyZ0bHjWMFBWzECDZqFPP0ZCIR8/JiO3YwmYEPNcnJyenevTsR6evrnz59+p1j41OuZWVlvckEuG+lYUNGxJJn/Ly2/ykiNmFC7W4eVDuvktnatQx5VRdULa8++YQRsZ072f37jIjZ2zPG2NChjIjt2lVbbwLIK8aQV4rHysqKiB4/frxu3ToimjJlirwjer2YXlNzWn/AcnOZnx8jYvPmyTsiqEop8+qD/8tp5My++4716FFv8kpICiwujn79lZ48ISLS06MRI+jxY+KPGDl7lsaNI3NzGjqU9u2jwsJXbiQxMbFLly6XLl2ysLAICQnp16/fO8ejrq7+4YcfmpqaSp9zUlvatCEiCk+z8LBIa6P/qHXepdrdPshSubwKJw8PamOeiryqU6qQV+7uRES3b5OzM+nqUnw85eSQhwcRUXh4bb0J/AvyChQEf5hbYmIi/yEhIUHeEb2eU/pFo7sXKDGRbG2JiJQhZlWjlHmVGWKUHkO5uWRkRFRf8kreFWlVsbGVPyQlsdRUlpfH1q1jkZGVC2/fZoyxZ8/Yjh1s4ECmplY5iW337p8PHDhwx44dBdLnYjLGGIuIiLC0tCQiV1fX2noCSV047h91yfXLp30+Y/PmMaGQqauz4mJ5B1WvqG5e9Vjw9Mc9rLCQqakhr2qdquXVmTOMiHXtyhhjKd6zxeaN2dmzD88lx3mOy/tkvLyjqz+QV8grBTRu3DgiCgwMjIyMJKLmzZvLO6I3MGAAI2JHj7JLlxgR69xZ3gFBVUqcV//7Hxs/vt7klcIVhLIqKti6dSwr65UrpKaytWtZjx6lBgaVj83V19cfNWrUsWPHSkpK/vzzT319fSLq1atX7msfhClfBw8yIubgwPz8mJkZI2I3bsg7pnpL5fLqww8ZY8zFBXlVp1QhrzIz2dRWl//os4aJxf9MAJKVVTkBSL14FpOiQV4hrxQEn47ohx9+ePHihUAg0NLSEiv+n4an0+rVLDmZEbHGjeUdEFSlxHnVrx+bMaPe5JVCF4T797PNm9krnl35LykpKT///HPHjh35A0yISE9PTyQSEdHw4cNfNa22AomPrzzy+fmxVq0YEdu0Sd4x1Vsql1fm5owxNnYs8qpOqUpeWVszIhYTw7ZtY0Rs5Mh/LYTahrxCXimI7du3E9Ho0aMZY3xuoadPn8o7qNdZtYoRsenTmVjMNDSYQMCKiuQdE/yLEudVx47M15eJRPUjrxR6DOGIETRpErm5vX7NJk2azJgx49q1a0lJSYsXL27evHlhYeHAgQO1tLSOHz/OGKv7YN+PjQ2ZmNCLF5SfT/y5T7dvyzumekvl8iojg54+/WeYDtQNVckr6dAu2TFeGO9VZ5BXyCsFITvEy9bWtrW5+fOkJHkH9Tq2tiQQUG4uCYU0dSr98AOVl8s7JvgXpcwrGxsSCKikhAQCat+eevSgyEh5x/S+FLogfAdWVlYODg4PHjzo1avXkSNHbGxsSktLo6Ki5B3X6wgElROApKWRhQUR0c2b8o0IZCl9XlXpZoFiUMq8kiaSiwvp6NDjxxQcTKamRET37sk3NODqSV7l5laexoqJkW9owLnZ2kZ263ZYW5uIrtnZ3cnIcImPl3dQrzNwIBUXU+vW9PXXVFhIQ4bQ389DBwWhlHmlq0sLFlCjRnTmDJWVkaMjBQdTVpa8w3ov9a0gJCIPDw8iio6OFggE/OdwpegE8yNfVhY1akQ9elDLlhQRIe+Y4B/Kmle8mxUdTa1bk58fLVki74DgX5Qvr6Qd92vXqGlTcnKiM2fI2JjmziUDAzp2DCfgFYES55VIRL1708CBlJdHkybR06dotRSEkYWFy/Xr5ufPU0mJwNqaSBkmV9TQoPv3KTubAgJo7Vry85N3QFCV8uUVYxQeTmlpVFRE/fpR//508SJVVND16/KO7L3Uw4LQ3t7eyMgoNTU1LS3N3d2dFP9AyLVtS99+SyIRnT9PBQWkrk4nT1JamrzDgkrKmlfTp1NqKmlq0vz59PQpNWgg74DgX5Qvr9q1o4ULqU8fCgkha2tq0IAuXaLsbFJXp1u3KCKCtm8nBb87UQUoa1798AMRUffuZG9PS5dSXByZmdH27TjLoBBEIrKyIsYoKanyKQ6JiXIO6U3cu0cdOhARaWqShgaJxfIOCP5N6fLqxQsSCCgjgywtiYjU1EgkIrGY0tPlHdl7qYcFoUAgaN26NRHdvn1bOc6MEhFjFBdH+flUWEj9+tGAAXT5MpWXU2iovCODSkqZV0TUuDFlZlJmJq1eTRs30vLl8g4I/kX58srEhL76iogoJeVf7dXz55SRQenplJ2Ne/zkTinzasEC6t2bIiL+1V7Fx9O9e/TggbzjAyIisrEhIkpMrPxBwa/kcE2a/FNglJaSSCTPYKBaypVX2tokkZCBAeXmVi4Ri0koVPa7kethQUh/3y0THh7u7u4uFArv3btXruDnF4uLSSKhrKzKAYRCIWlpUXk5ZWbKOzL4h/LlFRcVRW3bEhGpqVGDBlRUJO+A4F+UL6/S00kkqtpeGRhQt25kbk5lZZSaKu8QQQnziqvSXjVpQj/8QK6u8g4LiIj+eby7UlzJ4by86P598vWlSZPo00/lHQ1UR7nySk2NmjWjZs0oM5MuXKATJ6hlS9LQqGy4lJaavAOoE9IDob6+voODg3pOztOYGJuWLeUd16tpaRFj1KABpaRULiktJXV13OCnUJQvrzhr638uNefnk46OXKOBqpQvr0xMSCKppr1SVyciUlcnExM5Rgec8uUV93J7hSZLcUiv5DRtSkIhJSdTRQWpKXZPUiikLVsoL490dCrbKFA0SpdXH31EgYE0dGjlCC8tLWrThuzt5R3We1Hg3f0e2nt4+LZr15OIiO55emps3Uo3b5IiHwiFQmrRgogoKorOnqWiInJzI3V1atdO3pHBP5QvrzhPTzpwgObOpexsGj1a3tFAVcqXV2Zmlcdv2faKEwpJR+eNHpIAdUz58opDe6XIpB13TU1q3JieP6fMzMo7BRQcTq8rMqXLKx0d+vJLunOHEhJIS4tatqz8CMpMoOjPJno3jJGxMeXmUloa7dlDs2bR//0fbdwo77BqVFpKW7dSbi4VF5NQSJqa5O5O/frJOyyQoYx5JVVSQurqGD6hiJQxryoq6MQJiomhsjJijIRCEolIJKKGDWnkSNLXl3d8oJx5JYX2SjE9fkwHD5KzM6mpkVCILgrUDuSVAqinBSERffABXbxIJ0+Sjg598AG1b09hYfKO6XUkErp/nxISSFOTXF3JykreAcFLlDGvQPEpaV49f04xMZSZSRIJmZhQs2aVs66BglDSvAJFVlxM3t40bRolJVF0NP30k7wDgnoBeSVv9XNSGSKZhxq5u5NQSPfuKcG81UIhtWpFgwdT//6oBhWUMuYVKD4lzSsjI+rcmQYPpqFDqXt3VIMKR0nzChTZ2bP00Ufk5UUTJlBSEp7iALUDeSVv9b0gvH2bDAzI3p5KSig6Wt4xgfJDXkFdQF5BXUBeQa0rKflnmh8NDaqokGs0UF8gr+StvheE/MlLsj8DvA/kFdQF5BXUBeQV1DpPTzpyhMrKKDmZxGLS1JR3QFAvIK/krf4WhA4OlbOiZ2SQhwfp6//zBEmAd4a8grqAvIK6gLyCWte4Mc2eTfPn02+/0aZN8o4G6gvklbzVz8dOEBEJBDRuHAmFlJFBrq4UHU1Nmsg7JlB+yCuoC8grqAvIK6gLbdsq+zO4QREhr+RK5OfnJ+8Y6kz//tSwIa1wSnLKAAAgAElEQVRZQy1a0JYtpKtLtrbyjgmUH/IK6gLyCuoC8goAAF6n/j52gps8mRYupEaNqLiYPv+cfv9d3gFBvYC8grqAvIK6gLwCAIAa1d8xhFxhIRkYEBFpa2O6bag1yCuoC8grqAvIKwAAqFF9Lwh79qT9+4mIjh+nDh3kHQ3UF8grqAvIK6gLyCsAAKhRfb9lVCKhLVvo8WNq0oSmTiW1+juJDvyXkFdQF5BXUBeQVwAAUKP6XhACAAAAAADAK9T3W0YBAAAAAADgFVAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAAAAAAICKQkEIAAAAAACgolAQAgAAAAAAqCgUhAAAAAAAACoKBSEAUGFh4dWrV3Nzc9/qVfHx8dHR0XUUUnx8fFRUVB1tHN5WaWmpRCKR/lcsFssxGFBxaK8AAGpX/SkIGWOMMXlHAURERUVFhw8fXrRo0fz58wMDA58+fSrviN7azp07L1++LO8o3lpoaOhvv/32Di98+PChp6fn9evX3+pVc+bMGTFixDu83ZuYO3fu8OHDa1jh22+/bdCgQR29+5tYvHixQCBQumbnp59+Wrhw4Vu9JDExUUtL69ChQ0SUnp7u5eWlpaWlp6f3888/102M/ym0V/KiUu0VAFSBfrtCqT8FYadOnQYPHkxEYrH4wIEDJSUl8o5IRV2+fNnBwWHkyJHHjx+/ePHirFmz7O3tV65cKe+43o6vry/v/iYmJvbr10/e4bypY8eOzZs3T95RgOJijK1Zs6Zx48bvvIX58+ffuXMnODj46NGjAwcOrMXYqli5cuWjR4/qbvsc2is5QnsFoMrQb1coavIOoNb88MMP2traRJSWljZixIjU1NT36fTAu0lMTBw4cKCTk9P169etrKyIqLi4+JtvvpkzZ465ufm4cePkHeCbSkhI4D/ExcWdO3dOvsG8uRUrVqxYsULeUYDiCgsLe/r06UcfffTOW7h792737t179OhRe0FVb8mSJW3atHFwcKi7t0B7JV9orwBUGfrtCkW5C8KKigo1tcqPID1XXcMNP7Lrc6WlpZqamm/4dnzYjEgkeu2WKyoqBAJBtWvW4OXwlM6PP/5YXFx88OBB3rsiIm1t7fXr14eFhfn6+g4cOPD8+fOOjo6tWrXiv7169eqzZ8/s7OxiYmKGDh0q3WPp6emXL1/u06cPvycwKioqNDS0qKjIxsZGKBQ6OTnxbuKdO3euXbvGGPP09OTbzM7OvnDhwrBhw+Li4s6fP6+mpta3b98mTZpUG21mZmZISMiwYcMePHhw4cIFTU3Nvn37WlhYENGff/7ZuHHjx48fX7x4kTF24MABInJxcXF2dj548GDPnj1TU1MvXbrUsmXLbt26EVFqaurZs2f5Z+nbt6+Wlpb0XWJiYq5evVpYWGhtba2uru7g4NC8eXMiioiICA0NFYvFnTt3dnd3J6KcnJxz584NHTo0KSnp7NmzIpGod+/e1tbWr9rbZWVlp06devLkibm5ec+ePU1MTCIjI1NSUvr373/hwoVGjRrZ2dnxFZycnHr37i194cv7U3azjLGQkJCIiAgtLa1evXrZ29vX/EfPy8sLDg5+/vx5mzZt2rZtK12elZX1119/ZWZmWltb9+3bV09Pj4iSkpLu378/cODAiIiIK1euGBgYfPjhhyYmJvwlubm5wcHBqampjRo1ysjIqPJh7969W1hY6Ozs3KhRI9lfpaenR0dHW1pa8h1LRGKx+MGDBxkZGY0aNWrevLlQKCSi5ORkY2NjkUh048aNxo0bOzo68pUTEhLi4+O1tbUdHBwKCwttbGz4ToiMjMzIyLC0tHR2dpZ9u+Tk5Li4OENDwxcvXtS8Z0pKSm7fvl1cXOzs7MzzKicnJzc319LSUtrsJCQk6OnpFRUVaWtrm5mZSV+bkZEhFov5q4goPj4+Pj5eV1e3WbNmRUVFTZs2lQ2ySZMm0j9iSkqKoaGhvr5+VFRUdna2k5OTubm5dLNHjhzx9PSU7sBnz57FxMRoamq6urpqa2vn5+dnZ2c3bdpU+k1MSEgwNDSU/gni4+Pz8/P5D0TUpEkTNTW1xMREExMT6e27WVlZJSUlVlZWT58+1dfX19LSCgsLMzIycnV1rXYvMcYePnyYmprasGHD5s2bq6urZ2ZmZmRkFBQUpKWlxcfHa2lp8f0gkUgiIyMzMzMbN27cokULgUBARC9evMjJybG2ts7Ozr5//76xsXHLli0FAkF5eXl4eLhAIHB1ddXV1eXvlZOTEx0draGh4erqqqOjg/YK7ZV0ee22V/AmEhMTz5w587///U/ayEC9h3674mJK5dGjR0ZGRhcuXBgyZIiGhoaGhsagQYOePXvGGBswYMBnn33Wrl073o43aNDAyMjIx8eHMebk5LR+/fpBgwYJBIIBAwYwxvLy8iZMmKCvr09ExsbGM2bMKCkpqeF99+7d6+bmxveYg4ODsbHx1atXt2/f7ubmtn//fjMzMzU1tdDQUMbYH3/8wY/0QqGwffv2ISEhfAtOTk5ff/21dIOBgYFGRkaZmZkzZswYOXLk3LlzDQwM1NXVW7VqdfTo0brbgXXN1ta2a9euLy/39/cnovv373/44YdGRkbJycmMsdu3b2toaPz888+nT58mouDgYOn68+fPNzU1LSsrq6ioGD9+PBHZ29t36dKFd20DAgIkEsnEiROJqHXr1q6urgKBwN/fnzEWEhJCRF999ZWRkVHXrl0bNWqkr68fERFRbbRnz57lKxsbG3ft2tXc3LxBgwbR0dGMMQsLi6lTp7q4uBgaGgoEAjs7Ozs7uzVr1pSXlxPR8OHDtbS0TExM+N90165dmpqaFhYWnTp10tXVtbOze/ToEWNMLBZPnDiRv7xLly68F75y5UrG2NSpU4moZcuWPK8WL17MGONDYqZNm8aDb9y4sZ6eXnh4eLXB5+TkODs7a2tru7m5GRoa9u7dmzE2c+ZMExMTxpinp+eAAQMcHBxcXV3bt28vEAgmT57MGHvV/rx9+zYRnT59uqioqE+fPmpqau3bt7e1tVVXVz9w4MCr/tzDhg0zMzOzs7Nzc3Nr1aqVQCDw9vYWi8WMsRMnTujp6ZmZmXXu3NnAwMDCwuLu3bt8X6mrq3/55ZcNGzbs2rWrsbGxubl5amoqY+zkyZOGhoYNGjTo0qWLo6Ojurq6s7Mzf6PTp0+bm5sLhUJ9fX2hUDhnzhzG2OzZs/X09L766ittbW1jY2MimjBhAmPsypUrjRs3VldXb9iwoVAodHd3z8jI4Mn5f//3f5aWlkT08ccfM8aePHnSvXt33lyoq6sTkZGREWMsMTGxTZs2AoGA9/w+/PBD3j5kZWV9+OGHRGRgYKChocEbBIlEUu3OOXTokImJiZqamr6+vkAg+Oyzz0pLS6Ojo3V0dCZOnMjX2bJlC286Bg0a5OTkJPtye3v76dOnM8ZSUlK6du0qG6SpqSljLD4+nu9z/tkHDRpUWlrKGHN2dp42bVqnTp309fX19PQ0NTV///136WYdHR1Xr17Nf96wYYOWlhbfpoGBQX5+/oYNG4goOztbur6Ghsb8+fP5BagFCxZUOXxERUU9f/6ciNasWSN9yWeffWZvb88Ya9++/WeffdasWTMi6ty5c7V7KTY21tbWViQSNWzYUE1NzdHR8cGDB6NGjZJ9l27dujHGHjx4wEtKIyMjImrbtm1SUhJjbPfu3Xp6esuXL9fW1jY1NSWinj17XrlyxcrKysTERF1d3dLSMioqiu9tbW1t/nn19PRycnLQXqG9qov2CmqWlpY2efLku3fvHjlyhIiio6P//PPPyZMnv6otBaWGfruyULKCMDY2lohMTExWrlwZGRl54MABTU1N3m3q0KHDRx99dPXq1enTpxPR/v37g4OD+cGycePGWlpa33zzTVBQ0Llz5xhjXl5eDRo02LZtW0RExNq1a7W1tceMGfOqN92yZQsRjRkz5sqVKzdv3vTz8yOiS5cubd68WSAQtGzZcvv27du3b8/LywsJCRGJRIMHDw4NDQ0JCfnggw+0tLQiIyN5DJMmTZJuk3e80tPTJ0+eLBAIunTpcvHixbCwsIEDB4pEorCwsDrflXVALBYLhcKxY8e+/Kv9+/cT0fHjxzMyMszMzHr37l1UVOTm5ubl5SUWi8vLy83NzT///HPp+s7Ozv/3f//H/u6ZBQYG8uXPnj3jHYJdu3YR0bZt2/jyKVOm6OjoZGVl8Q5W//79c3NzGWPPnz83NDT84osvqg2Yd7A++uij/Px8xlh2dra+vv7UqVPZ3x0sxti8efPU1NSkL+EdrBYtWjx58oR/5JSUFE1NzWHDhpWVlTHGEhMTLS0teReWT7mxceNG/tqCggLeweJ745dffuHLp0+frqWllZ6ezjtYvXv3zsnJYYzl5eWZmppWuz8ZY5s3b+Z9VsZYRUUF76PIdrC0tbXPnDnDV547d65AIMjMzHzV/pR2sObPn6+mpnbp0iX+Yfv06WNra1teXl5tDMOGDSOi3377jf9348aNRLRz587nz583aNDAy8ursLCQMZaent68eXMXFxeJRML/cOPHjy8uLmaMxcfHi0SixYsXP3nyRFdXt1evXvwPxxgbMWIE72A9ffpUT0+vd+/ez549E4vFhw4dWrBggVgsnj17NhFNmTKFv+THH38kovDw8Ly8vJMnT/KYHz58qK+vP2PGDMaYra2tnp7e8ePHs7Oz09LSxGJxmzZtLCws+EWb8vLyyZMn84KwQ4cOtra2cXFxjLE///xTIBBs2bKFMfbBBx+YmJjwNkQsFs+ZM+dVBWFcXJyWltbQoUMLCgokEsn+/fuFQqGvry9jbN26dUQUFBT0+PFjfX19vvD3338nIt4HZYyFhYUR0fXr1ysqKlq1atWkSRPeJpSXl3/xxRe8IGzbtq29vf3jx48ZY6dOnRIIBPzr4OzsrKmpuWPHjoqKitLS0t69e1tYWPDNRkREEFF8fDxjrLCwUF1dfdKkSeXl5S9evOB/8ZoLwqCgIMaYq6vryJEjpSvUXBBqaGjs2bPn2bNn/PvysvLy8sOHD/NkSEtLs7KyGjZsGGMsNDSUiP766y++mlgsdnV1dXBw4KVLZGSklZVVp06dGGO7d+/mX3n+FeB7skmTJvygnp6ebmZmNmrUqNLSUi0trfHjx5eVlRUWFl68eBHtFUN7VQftFbxWQkKCu7v7hQsXpAXh9u3b3d3dURDWS+i3KwulLAjXrl0rXdKnT58OHTqwvxOLMbZp0yYi4scbrnHjxryTwd29e5eI1q1bJ10yb948oVD49OnT3bt3r/230tJSMzOzHj16SFfmR2WeWNIjHDd06FALCwvpSYucnBx9fX1+prOGxNLS0srKyuLL8/LyGjRowC90KB0+IHjKlCkv/+rUqVNExM/dHjx4kIhcXFyMjY2l3cSvvvrK0NCQ77o7d+4QEe/P2dvbd+/eXbodaYfA29vb3Nz88d/4LVLHjh3jHSzZk/edO3fu1avXjh07Wvzbnj17pH9K6cpt27bt378/e10Ha9GiRdIl27Zt45dKpEuWLl1KRM+fP3d2duZ9Vk7awRo7dqyJiUlcXBwP/tixY3zn8A7WyZMnpS/p0aNH165d9+7dWyX47du389n5Vq9eLXuSTLaD1atXL+nyEydOEFFYWNir9qe0g+Xu7t6pUyfpjuWza8TGxnbv3l02gDZt2jDGhg0bZmtrK92aWCxu1KjRuHHjjh8/XmXH8i/Lo0ePeAfr4cOH0l9ZWlp+/vnnvJzjRwJO2sHi32jZl3D8CqG0DxEXF0dEu3fvrrJaz549+a6wtbWV7a1euHCBdwdl956RkRHfDq8AOXd39/79+/N2Q7byWbRoEQ/s439bv379ypUrhUJhWlqadOWPP/6Yl0kSiaRfv36mpqYeHh4dOnTgndfCwkI9Pb3vvvtOGomdnZ1EIgkODiaiPXv2SLczffp0U1PTBw8eENHWrVuly1u1ajVo0CDGmLOzs2zBtnr1aiLi3VZfX18PDw++PCcnRygUTpw4UTZ/ar0g/PDDD6XLQ0NDq+yo/fv3V/ljjRkzxtHRkb1UEPI2QfaPy0ONi4vjBSEvFBljxcXFROTn5ye7593d3QsKCkQi0bhx44qKivhytFcc2qvaba/gzUkLQnkHAnUI/XZloZR3vkrv4CciQ0PDlJSU176E31XF8YcF9ezZU7qkZ8+eS5cujY2N3b17N+8OSnXt2jUzM9PX1/dVW+b3L0m33LlzZ+nNzUZGRm3atHnts4kMDQ35nU5EZGBg4Obm9vDhw9d+IgWkqampr6//5MmTl3/F/0Z8iNQnn3wyYMCAkydPrlu3jt+/R0SjRo1at27dmTNneDfRysqqS5cuYrE4Pj7+448/fnmD8fHxGRkZVYaLpKSkyP45OA0NjYqKChcXl88//1x2eYsWLXj34uWV3+pTx8fHCwQC2akv+JCbR48ePXr0aMqUKS+/JCEh4dmzZ/xWOqknT55IBzLJxlNQUODs7FwleFdX1xYtWgQFBc2YMWPJkiVjx479/vvvpVn0Mn6bHB/6Ve3+lP04ubm5L+9Yb29v2SFz0pvmdXR0pAuFQmHTpk2TkpL4ADPpID36e588fvz45Xfk+/zhw4c6OjpVRgdxcXFxOjo61U4uIhQK+UAyIuLjoPhtk7t27dq5c2diYmJOTs6LFy88PDz4OrLDA+7fv09E/G7MKm9HRJMmTZo0aZJ0oaur66vW19DQqDLoy8jI6N69e2ZmZrJjHVu3bv3HH3+UlZVpaGhs27bN0dHx7t27MTExfE/q6OgMHjx47969y5YtI6JDhw59+umnAoGg5iAnTJgwYcKEl3eL7MeU7hYiOnLkiHTafSMjo+nTp69evfrYsWNjxozx8fGpYfTXO5ONREdHp8qOMjAwIKJjx45t3rz58ePHWVlZRUVF1aYx/7zS+3+IqHXr1kQknYaUDxOlvz+vNCv4ktLSUj09vVmzZq1cufLkyZOffvrp9OnTbWxs0F4R2qvabq9UU1xc3JEjR5KSkrS0tDp16jR06FCBQHDp0qW0tLRBgwZt376dN4mTJk2ysrLKzs7etGmT7CNAQkNDz507N3/+/CNHjujq6rZp02br1q0JCQm2trZTpkzhIwwLCwt37twZERGhpqbWu3fvjz76SPZrDgoO/XbFp5QF4XsqLCwkIj61EccPEvn5+XxwiCx+JrKGQ5esFy9eyG6WiHR1dVNTU98qPKFQ+NrJKhRWu3btIiIiJBKJtH/GhYeHq6ur8z7cw4cPL168qKmpGRgYOHHiRP497Nixo4ODw759+z7++OODBw+OHDlSKBQyxrS1tWUfhy2lr6/fqVMnfhlB1qsexuXh4SGtCqRqZTo+fX19xlhRUZF0Ug3+5zM0NOTXr6p9iYeHx61bt6os5zcKvqx169Z811Vx6tSpe/fu7dmzZ/369VeuXLlx40bNoQoEglftT9nYBg8e/PLDwby8vGreOMdnMeF3+fMvGsf3iYGBQVZWVrUvfNW+or97YC8n1assXbqUP1PO19dXR0fn66+/rrbTzAcBSocCVlm+d+/eDh06SBeqqanx6yG8qyrL2tp6/fr1VRaGhoaWlZXJLikvLxeJRLxACg0N5Ten/fnnn9Ku+ejRo3fv3n39+nWJRJKUlPS///2vhiB5GPv375edFePl2GQlJCTcu3dv37590iU///zzZ599tnv37m3btu3evZufgq07rVq1enlHbd++/fPPP585c+a3336rr6+/bNmyar8FfA/w610c371vPrUAEfn7+3/66ad79uzZunXr7t2779y5g/aK0F7VdnulgkpLSzt37uzm5ubk5JScnLx27dovvvhi48aNf/75586dOxctWmRjY2NjY7Njx45ff/01NjY2KytrwYIFsud3Ll++vGDBgnnz5vHOfU5OTseOHY2NjVesWBEUFHTz5s28vDxPT8/09PShQ4empaUNGTJkyZIl33//vRw/NfyX0G//D9Sf5xBK8ZNG7NUPu7SzsyMifs8Vx69oVzkDyvHZ/KSTetPfh4pq2dvby26WMfbgwQN+8lJNTU22N/MqJSUlUVFRynveccKECSkpKfzubSl+CmfEiBEGBgYVFRVjx45t3rz5+fPno6OjZR9C9b///e/48ePnz5+Pi4vz9vYmIn4mW7YXxS+YEJGrq+u9e/dedbSuRerq6hKJhE9UVS0+0cX58+elS86ePaurq2tjY1ND8FFRUWlpae8fXsuWLVesWDFjxoybN2/ym+VqUMP+lHJ1db106dKb5OrLwsPD4+Pju3btWu0+UVNTqyGxHR0dS0pK+N13RCSRSKSn6JycnMrKyl7uj74KT7b58+d37drVw8ODX4Z6Gf9i8iMHx7/mzZs3FwgESUlJdjKsra1fXj8xMfFVMTg5OeXk5MieMrx69aqjo6NIJEpNTZ08efKXX375xRdfzJ49W/on8PLyMjc337dv3/79+93c3Pg+5I3Sy0HyPVklyJev2Mg6cOCAo6NjlRlTW7ZsuXLlyiNHjmRkZFy5coUfYouKivhvi4uLX9vr1dLSEgqFsrkn27F+rT179nTr1m3VqlU9evTw8PCQHsL5JR3p945/3mvXrklfGBoaKhAIpPPKviFXV9fly5f/8ccf2dnZISEhaK8I7VVtt1cqSFNTMykp6dy5cxs2bAgKCpo5c+aWLVv4XQmpqan+/v6nTp3auHHjwYMHMzIy+P3YNeC3JR84cGDz5s3r1q27c+fO3bt3Fy9enJCQcP369cDAwGPHjk2cOHHlypX1oAsOHPrtiqAeFoR8IjLZP3AVnTp1atiw4dKlS/kYiaysrFWrVr3cVeJMTExatmy5ZcuWzMxMIsrPz1++fPmrtjxo0KAbN24cPnyY//eXX36Jj4/nj920sbG5c+cOP06npaUFBga+/PKKiopvv/02Jyfniy++eKuPrDi8vb2HDh06bdo0Hx+fc+fOhYaGrl69ulu3bmZmZqtWrSKihQsX3r9/f8+ePZ07d/7+++9Xr17N7+0molGjRhUVFU2ZMsXR0ZFPa05EkydPvnHjxsyZM8PDww8fPjx27Fi+/MsvvySiIUOGnD17NiIi4vfff+eDkmudm5ubRCJZuXLlhQsXYmJiXl6hd+/eLVu2nDp16r59+8LDw/38/H7//feZM2eqq6vzidR8fHzCw8OPHj06evRo/pIpU6ZoaGgMGTLkr7/+ioiI2L9//7Rp02poCqt16NChhQsXnjt37uzZsydOnHBycqpylqtar9qfUrNmzUpKSvL29r5y5cqtW7cCAwMXL15cwwZzc3P5if+9e/cOGTLExsZmypQp7dq169at23fffffbb7/duXNn1apVGzdunDhx4ss3yEkNGzbMxMTks88+Cw4OvnHjxujRo6V7e/DgwZaWlhMmTLhy5UpmZub169f5LBevYmRkFBUVlZWVlZmZuXLlyr/++qva1bp27dq0adNZs2aFhYWlpaX5+/sfPXqUiCwsLIYMGcLPTGdmZsbGxq5Zs+b+/ftt2rRxdXVdsGBBSEhIenr6+vXrd+zY8aoYRo4caWJiMm7cuNu3b6ekpCxatOjSpUv8rzxx4sSGDRuuXLkyICDA2tp61KhRfDCbmpraiBEjgoKCDh48yC8PElH37t2tra2/+eabGzdupKWlLVu2jA+vsrKy+vjjj5cvX37w4EEeZEBAQM1d0iNHjgwfPlz63/z8/Pnz59+4cSMhIeGPP/4QCASOjo78ws6mTZuePXsWERHx0UcfvUlB6OTkFBQUlJiYmJqaumjRIj4u6A0ZGRnFx8cnJyc/f/78119/5QMCicjOzk5dXT0oKCguLi4yMtLR0bFXr16LFi06ceJEWlrawYMHf/zxxyFDhkgfy/FaRUVFP/zwQ1hYWEJCAt+Hjo6OaK/QXtV6e6WatLW1y8rKHj16dPnyZYFAIBaLk5OTiUhdXV361NMWLVpQjQ8Y4Ozs7KRfKN4re/r06eXLl+3s7CIiIg4cOHDgwAFdXd28vDwV3+f1CfrtCkEuIxffGT8lIDvFgnQkt3RwamFhYfPmzXV1daUzv1UZGMoYCw4O5vPbduzYUV9fv1GjRq+aLJsxduvWrYYNGxoYGHTq1MnQ0JDfySMdnCo7e15ZWdmQIUOEQqGrqys/WzBx4kQ+6cWxY8fU1NTs7e09PT0NDQ35yB8+OJWImjRp0rlzZ3Nzcz6teW3vtv9UeXn5jz/+KL0RzsTEZNKkSenp6Yyx27dvm5qaSmexKy8v79Gjh6ura15eHl/Cx0rxeRc5iUTy008/OTo6qv5hdqoAACAASURBVKmpOTg4BAQEEFFAQABjLCwsrFu3biKRSF1d3dHR0dfXt7S0NDQ01MjIiD+Mixs4cODAgQOrDfXSpUtGRkZXr16VLunbt++QIUMYY61atZo7dy4PwMfHx9DQ0NDQcOPGjeXl5UZGRj/++KPsdtLT0729vfmzziwtLZctW8anMmeMrVmzpnnz5mpqas2aNVu7di39PY37rVu3evTooaamxp/09cMPPxQXF9+6dcvIyEg6kQZjbOjQoX369Kk2+MDAQL5ldXV1T0/Pe/fuMcZ8fX3516F///78yQrcuXPnjIyMwsLCXrU/79+/b2Zmdv78ecbYiRMnWrduLRAItLS02rRpIzuMu4ojR44MHjyY3+jfoEGD0aNHS78Oz58/nzBhAr8tzdzc/Pvvv+ezGu7fv9/IyIjPjcm1bt2aT+xx586dDz74gD+5bsyYMatWreJz0zPGoqKievTowe/rMzIymj17NmNs9uzZBgYG0u3wwWBbt269du0aH+slEAg++eST6dOnd+zYkTFma2s7fvx42fgjIyM7duwoEokEAkGHDh0GDx7MZxnNz88fO3YsvzlQKBR6enryJImLi+vevTu/eNWyZUt+jHnVzHg3b95s164d/xYYGxuvXLlSIpEEBASoqalJpyO7deuWurr6rFmz+H/5FTCBQMAnAuXu3bvXoUMHkUgkFAo7der08ccf81lG8/LyPv30U2mQXbt25TNoOzs7jxo1SvpyPlj/7t27AoHg1q1b0uV37tzh/TMi0tfXlz6LYsGCBfwDGhkZbdiwoX379jVPKsMYCwkJ4YWZSCQaOXLkokWLpJPK8HluahAbGysdu9WzZ8+FCxdaWlryX23YsIF/p/j3Nzs7e/jw4fy2WE1NzTFjxvB2g9eQshlFRAsXLpT+d+TIkS4uLpGRkdIHIerp6fGvIUN7hfaKMVbb7ZUKWrZsmbGxsba2tpWVFR98Gx0dPXfuXA0NDek6/N4Bf3//6OhoIjpy5Ih0Uhk+naxYLB46dKibm5v0JfzmiCNHjjRs2JBPxCVLdh4gUFjotysLJSsI8/Pzg4KC+OOnuGvXrvG5qi9cuMCnj2eMvXjx4sCBA7t27UpMTGSMHT9+XLYnxOXk5Pz+++9r1649ePBgQUFBze+bm5v7xx9/bNmy5caNG/wMcUhIyOPHj4OCgqRz1kmFhYVt2LDhl19+qfI4qejo6F9++WXLli0pKSl5eXlBQUHFxcWTJ082MTE5fvz4+vXrd+3a9fTp03faMYqoqKhI2nN6Q3xETWxs7Mu/4t/P9PR0kpkAnZP2ZuTuVZHw4HNycujfc23V8JI3f8dXzbFesxr25zsEVsPKb/sBJRLJq0qsoqIiPuH+a5WVlfEH07/JysXFxTxRfXx8zMzMpMtLSkqePHnCZ6mRVVpayguGN/H8+fMnT55UVFS84fqTJ0+WnelRSvptmjp1auPGjWWDrzbIKtatW9e0adOXd+yLFy+Sk5OrhFdaWpqcnPyqvHq5IOSePHnyhn+dKioqKuLi4qp9LkVFRUWVbRYXFycnJ9f8+KkaFBYWvuqjob2SQnv1VoHhYQl8ZPIvv/zCq2j+6JfaLQhdXV35uQ9QOui3Kwslm1RGX19f9q4nIurYsSP/oUePHtKFurq6/IlD3KBBg17elJGRkfS+rNdq0KDBgAED+M+8sbOwsODjdl5euX379u3bt395ubOzs+zVbekHUVdXrzZCZaetrf0mNwXJ2r9/v4eHR7Xjgvgt5pGRkfTSXeNvONfIf+BVkdRd8EKh8N22UENI7xBYDSu/bXg1TBz35unEL8K84cpaWlp8asrY2FjZ6Qo1NTWls0rK0tDQ4Pe3vAl+reYNV66oqDhy5MgPP/zw8q+k36YqQWppaVUbZBXTpk2bNm3ay8t1dXX5lSJZGhoaNQ9HrNabhFEtkUhUZZZI2V/xCT+ktLS03iE2KR0dHdl5JmWhvZJCe/W2gam4sLAwAwMDftmEiLKzs2v9Ldzd3Y8fP56TkyM78yQoBfTblYWSFYRy8ccffxgaGnp6ehJRbm7uL7/80rhxYxsbG3nHVd9IJJJDhw598803sgt/+umns2fPDh06tEmTJqmpqcuXL7e3t+/SpYu8gnwr69atO3HixCeffGJlZZWRkeHv79+0adPu3bvLMSSl3p+1SyKR9O/fv1u3bm3bttXT0/vrr7+Cg4P5PWnycu7cuWfPnsnOxi4Wi/v16/fBBx+0bdtWR0fnzz//PH/+PH+0vbx8/fXXbzh7W/2G9uo/oNT7U3W4u7uvXr16/vz5bdu2vXz5crVDrd7TvHnzjh071q1bty+//FJXV/fOnTtPnz7lz/MEeBn67e8ABeHrBQcHb9myRSAQmJmZpaWlGRoa7t+/X/b5WlArbt++ra2tLdsbJqJ+/fo9efJk69atKSkppqam3bt3X7hwIb+eo/i8vLySkpJ+++23lJQUExOTzp07+/n5veoCxX9Dqfdn7aqoqPjkk0/279+/adOm4uJiW1vbgICAr776So4hXblyZfjw4bKXH3mQQUFBGzduLC4utrOzW7t2LZ+hRF6qffKhCkJ79R9Q6v2pOkaPHp2cnLxr164dO3b07ds3PDx8ypQpurq69vb2sg+OE4lEXl5eNjY2urq6vXr14kMNe/XqxSe57dWrl0AgaNmypewD6/T19b28vMzMzBwdHcPCwvz9/Tdt2qSpqenk5FQf5vCAOoN++zsQsLecK0w15efnR0dHZ2ZmWlpauri41OIBKSYmJisrq1u3brW1QQAAAAAAlYV++9tCQQgAAAAAAKCiFGV0OwAAAAAAAPzHUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIQAAAAAAgIpCQQgAAAAAAKCiUBACAAAAAACoKBSEAAAAAAAAKgoFIUD1GGPyDgHqIeQVAAAAKBQUhABVDRgwQENDIywsTN6BQL2CvAIAAAAFhIIQoCqBQFBeXp6VlSXvQKBeQV4BAACAAkJBCFBVw4YNiSg7O1vegUC9grwCAAAABYSCEKAq3nHHlRyoXcgrAAAAUEAoCAGqMjU1JXTcobYhrwAAAEABqck7AACFg1v7oC4gr0D5lJfT3buUkECamtSyJdnayjsgAACofSgIAarCrX1QF5BXoGRevKDAQCoqovJyIqLoaHJ1pUGD5B0WAADUMhSEAFWZm3s6Ot4tL28k70CgXkFegZI5epQKCkgiqfxvWRlFRpKDAzk5yTUsAACoZSgIa5KVlZWcnHzu3Dlvb28rKyt5hwP/EWNjw4cPDfk5cYDagryCWpaXRxkZVFBAAgHp61OjRqSvX2sbLy+nxESSSLIKC5Pz88/Fx3u7ulo1aEDXrqEghPeH/hXUBeTVOxMwxuQdg4K6efPmiBEj8vLynj9/LhQKe/bs6ePjM3DgQIFAIO/QoG7l51ODBqSnRwUF8g7lreTlkY4OqavLOw6oHvIKaodEQrduUWgoFRWRUEgSCQkEJBCQWEwGBtS1K7VqRe9/nCoooICAmykpIw4cyCstfV5cLBQIetra+nToMLB7d0HHjuTmRkLMSwfvAv0rqAvIq/ehZAVhaioVFFDz5vTiBUVHU/v2RES3bpG+PjVvThERZGVFxsbv+y6MsZ9++mnu3LkVFRUeHh7W1tYnT54sKysjIicnpy+//HLcuHEGBgbv/WlAcWlpUWkpFReTlpa8Q3kTEglNmkRNmlBqKnXvTqNHyzsgqB7yCt5XXl7q+sMFz8qaN0h/UaoenW3W3vIpEd1KtdDXKG1u+iwi29LKVs148nDS1X33dykqYgcO/LR379yzZyskEg8LC+sGDU4+fFgmFhORk6npl+3ajfP0NPD0JHd30tOrrQ8HcoT+FdQF5JWyULLTe9HRdPkyEVF2Nh06VLnwxAmaPp3EYjpzhp48ed+3yM/PHzFixOzZs8VisY+Pz7Vr1w4fPpySkuLv79+0adPY2FgfHx9LS8vJkyffu3fvfd8MFJWpKRGR0swHGRxMbdqQnx9t2UL79sk7Gngl5BW8l5ISCgyMfqR++bEFEWUX6x6Kdua/OfHAcfqZ/mKJ4EyszZP4Mtq2jSoq3vFdUlPz160bsXLl7L/+EkskPh06XJsw4fDIkSkzZ/p7eTU1NIzNzvY5fdpy4cLJM2fe++47OnCA4uNr6yOCvKB/BXUBeaUslKwgJKLwcDp4kE6f/tfCwYNp/fpa2PidO3fc3d0PHjxoYGAQFBS0Zs2akpISIjIzM5szZ058fHxwcPDAgQMLCwu3bNnSqlWrtm3b7ty5sxyjguqdhg2JiJRmPsi0NLK2rvxZW5tycyknR64BQfWQV/BeLl2ikhJiLDy18cHoFqcfNZP95WCn2PU32hMRSSSUm0t//fXW22eMwsLuLFnivnLlwehoA03NoBEj1gwYUCIUkoaGWZMmcxYujF+1Knjs2IGOjoVlZVvCw1tt2ND26693zppVvnYthYVReDitXk0LF9Ly5XTmzLsXpSAP6F9BXUBeKQXlKwiNjKhJE2r074n6+vWjO3coI4MePKB+/ejEiX/mRXtzO3fu7NKly+PHj93d3e/cudO3b19vb+/evXvzi85EJBQKvby8Tpw4ERsbO2fOHCMjo/Dw8HHjxllbW3/33XcpKSm18flAIdRdx10ikfDWqnYUFtIvv1CrVhQaSkRUWkplZbRxIzVtStOn18KZN6hVyCt4L1FRvMQy0i5pYpDfSO+F7C/7NYu7k944o1DvQbZpv52jTuzOk2z+lcLD37QqKy2lgwd3rljRJTDwcU6Oe+PGd776qu/Mmd5RUb1PnCgbP558fKhzZ+GECV7+/id++in266/neHoaaWuHp6aOO3LEet6872bNStmzh/LziTEqK6Pbt2nnTlKqYSkqDv0rqAvIK+XAlEpwMPv1V8YYS0hg337LLl1iDx+yBQtYQgJLSmING7JhwxgRI2I2Nszfn2VlvdFmCwoKvL29+Q4ZM2ZMUVFRRESEo6MjERkYGNy+fbvaV+Xn52/evNnNzY2/UENDY/jw4cHBwRKJpPY+MfxHIiIqf3j0iKWksL172ZkzLCGBpaTU5rucPn26RYsWvXv37tKly/Hjx983VcLCWPPmjIht28bWrWNff80mT2Z377IxYyq/BpqabPJkFhdXS+HDW0NeQW1avpz5+QWP3fnrR8eZn1/C1wHfdrlyafxvD79au6D7xYSvA5JmrG6oWzjMJaryOGj43N8rOMt3HTt7luXm1rTltLSClSu9/z6cjWnVqmj16oiLF2s6Dr54wUJC8pcv3zxokJu5eeVxUCQa7uISPHasxNeX+fmxZctYbGzd7Q+oRehfQV1AXikLJSsIExMrO1h5eezMGRYZyebPZ5cvVx7p/viDPXzIfvqJNWtWmV5aWmzcOHbzZkUN24yJiXF1dSUiPT29vXv3MsZ27Niho6NDRC1atIiKinptVLdu3RozZoy6ujoROTs7Jycn18qHhf+StzerqGCMsQULWGAga9aM5eSwy5fZxo21s/38/PzPP/+ct0Faf88o0rZt20OHDonF4rfeXHk58/dn6uqMiLm4sJfbvtu32fDhTChkREwkYt7eWffv18oHgbeCvILaFBjI/PwSv14d8X+bmJ9f3tzlZz7dFfnlhvndL13+fFvud8uZn98fo/Y8/GrtT33/bGb8rPI4qFY+rvXdm5N/YTt3sgcPGO/6SCQsNZUlJrKSEnb3bsz06a5mZkSkp6Gx95NP2OHDO7Zte6PjoETCHj9me/femjRpTKtW6iIRETmbmibPmMH8/JifHztz5j/bPfA+0L+CuoC8UhZKVhBW8eQJ27KlmuViMQsOZsOHMzU1RsR69Fjq4eGxefPmwsLCKmvu2rVLV1eXiJycnCIjI4uLiydNmiQ95fDy+jVISUnhpyu8vLze50OBXHh7s9BQdv06mzCBd7qYj0+tddxDQ0ObNWvGu+z+/v65ubkBAQEWFhY80+zt7QMCAkpKSt50c9HRzMODETGBgPn4sBpe+Pgx8/FhWloSY2NzXV0vL6+rV6/WwueBN4a8gtoUF8eWLq0stP7+92TmT1sGHa+ykC1eLP51a/DYncNdotSEYiLWw2aih4XF5kGDCletYidOsJUr2fLlbPlytnDhrqFDdTU0iMjJ1DTSx6c4JORdjoORkWzx4pSZM71dXYnIy86O+fmxhQtZcHAd7xSoE+hfQV1AXiksJS4IMzLY+PHs2LGa1omPZ7NnMxeXNjxXTE1N58yZk5CQwBgrLi728fGR5tCLFy8ePHjQsmVL3rv6lV/hfksxMTFE1KxZs3f6QCBP3t5s3z4WFMSGDWOBgWz3bjZ/Pvv5Z7ZhA1u2jL3zyaOysjJfX1+RSEREbm5ud+/elf6qpKRkx44dDg4OPAmtra0DAgJqbsskEsmmtWvFlpaMiNnaspCQNwoiJeXGkiW6f89B361bt9OnT7/j54G3hLyCWnb+vGxNmDH7x/Ft7hzz/v1f1eDSpSwsjDHGsrLY6dPxszbM7nLVxcyy8jioozPH0zPh66+Zn1/xDz/4dOggvU30xapVD65efcfjYEUFv6M1Zto0ImpmbFx5yyhOvSsh9K+gLiCvFJkSF4Rvrri4eNu2bW3btuVpJBKJvLy8mjdvTkTa2tqBgYGMscOHDxsaGhKRo6NjhHTczxtLS0tLSUkpKioSCAQaGhrvcrMWyFWVW/t272aFhaxNG/bll4yIqauzMWNYdPTbbfP+/ftt2rQhIjU1tTlz5pSWlkZFRS1YsEB2HbFYHBQU5OLiwpOzYcOGvr6+OTk5L28tKSmpZ8+eRLSiY0f2+ecsP/+tgsnKypo/f76RkRF/ozZt2pw6dertPg+8PeQV1L7ISLZiBVu2rOpVQT8/tnw5W7Wq6vDOkhJ261ZxQMC2jz9u+/cFZJFQ6GVn19zUlIi01dUDP/qI7d9/eP/+9zoOXr6c8u23RfPmCYg0RCKxn99run6g/NC/grqAvPrvqURBKHXr1q1JkyZpa2sTUYMGDezs7O7evVteXj5nzhyec0OGDMmteeR9dXbs2EFE3t7ejLFGjRoRUUrtThkBdW/79sqRNSdPssuXK0+vnz/Pdu1io0ZV3sMgFLJhw1h4+Ou3JhaLAwICNDU1icjW1jYkJEQsFv/88898lNfBgwerrC+RSI4fP96xY0eeh/r6+j4+Pk+fPpWuEBQUZGxsTERmZmZHjhx5549ZUFAQEBDQpEkTItpYW+PY4NWQV1AnKipYVBQ7cICtXctWrGD+/mzd/7N333FNXV8AwE8GIUzZyJRRkeUCrXVbxTqKde9Zd921tXYpuHG0Yl3Vnwu3OBCtrQMXKBUFFREnG5S9REBGcn5/XIwpCiIEk5Dz/fhHeL7cd/Ny8s69791330YMCHhzi+Db2M1+/v7h06ZNdXfXUFMDgEZCoZ2+/t3p08u8vRfOny+DPDhgAK5Z01hbGwCSFyyosjKkwaH2FakPFFcfjWp1CJmMjAx2moE1gDIzMy0tLdXV1Tdv3ly7AoODgwGgffv2iNi+fXsACK7hmCuiJGJjcfp0VFevuOl51Ki4K1euVLVyfHx8165dAYDD4UydOrWgoCAxMfHzzz+XjHN4UfVFmJCQEE9PT7amurr62LFjw8PDR48ezZb06dPn+fPndf84r169+t///ldcXFz3okhdUFwROdizB729MxYsYJcHA0aMQG/vzJ9+klkeDAxsb2UFAMFff41FRbKtO1Fw1L4i9YHi6iNQxQ4hIk6aNAkA/vzzT/bnjRs3bt26VevS2JNMGjdujIjs/lQ/Pz/ZVJQokvR09PJCPT3s3HkyALi5ufn7+1eardjPz09HRwcATE1NT58+jYj+/v5sQJ2JicnJkydrsqGbN28OHDiQy+XC66kjdXV1d+/eXR8fisgdxRX5qB4/ZsNNJ7m5AcCfnp64dCn6+8ssD169yh5f4TdwIEpdjiYqgtpXpD5QXNU35XswvUzY2NgAQEJCAvuzXbt2kpHKtWBubq6urp6enl5UVGRraytdMmlITEzA2xvi4qB370+MjIxu3749bNiwli1bHjx4UCQSZWRkDBgwYPz48QUFBUOHDo2Ojm7Xrt3gwYOHDRuWm5vbt2/fu3fv9u/fvyYbatu27YkTJ6Kiovr06aOmpta4ceN79+5NmDChnj8fkQ+KK/JROThA69bA49no6QFAQl4eaGlBv34yy4NCoa2k5Lw8mVWbKAlqX5H6QHFV31S0Q8i+/vj4eJmUxuVyraysEDEpKalSyJKGR18ffv55YUJCgq+vr5WVVVRU1OjRo21sbJo1axYYGKivr3/w4EF/f//w8PBWrVqdOHFCV1d327ZtZ86cMTMz+6ANOTs7r1y5sqCgwNTUtEmTJvX0cYiCoLgiH0/v3uDpybpt8Xl54OYGrx9iWWtv8mBRkQ11CFUYta9IfaC4qm8q2iGU+dcviVTZhixRWFpaWnPnzo2NjfXz83N0dExLS0PEbt263bt3r3///nPnzmX3ZXXo0OH27duSh+TUXF5eXm5urrGxMQBkZmbWwycgiojiinwkjo5vum35+TIpsiL95eTY6usDQHxuLnUIVRC1r0h9oLiqbyraIZT51y8pkIVsvQRWVhb88w9s3Qp//AH79kFkJIjFst8K+RBqamrjxo2Ljo62sLDIz8/fsmWLpaVlSkrKjh071NXVf/vtt5CQEHt7+w8tdtWqVfr6+qtXrzYyMgKArKwsRKyH6hMFRXFF6p1QaGtqCjLttlXkwdRUG0NDYNcec3NlUjJRIkrZviIKTynjSqna7Xx5V0A+zMzMhEJhRkbGy5cvtbW1616g5NRFkyZNeDxeSkpKWVmZmppa3Uuu8O+/cPkyZGVBXh6YmUFuLqSkQHAwfP01yKL+pC64XK6lpWViYmJWVhYAODg4+Pn5OTk5SZ4C96EkF3DU1dV1dHQKCgpevHjRqFEjWVaaKDyKK1KvzKyshHx+RmHhy7Q0mWSRijyYmNikSRMel5vy4kVZdrbssuBrCQmQnAxubqClJfOySd0pX/uKobhSbMoXV8rWblfRK4QcDsfa2hoAEhMTZVKg5EyDmpqaubm5SCRKSUmRSckAAPHxcPky3LwJt25BURGcOAGZmRAeDrGxcOiQzLZC6qDSGLwhQ4bUutUuKY11A2h0nyqjuCL1h2NgYN2oEQAkJifL5Lz1mzxoaGiuoyMSi1OSkkC2V6F374Zt2yArC0aPhocPYf9+ePJEluWTOlOy9hVDcaXwlCyulLDdrqIdQngdCrIajiw9uFn2w5Fv3ICyMnj8GDw8wMkJPv0U4uKgRQvQ14fMTMjJkdmGSG1JN7VlVRprrMu2ZKJcKK5IPdLTYzf7JeTmyuQ2wjd5UE+vYsaarCwoLKx7yW+cOgWrVsHAgTB7Nly4AGPGgIODLMsnsqBM7SuG4koZKFNcKWG7XdU7hLL6+qVLk/2ERew2DA6n4k+hEEpKKl5zufDqlcw2RGpLttdb3m6405Uc1URxReqRpNsmo+lA/5MHJTPWnDwJRUV1L7wC93WjRU8PCgpkViyRKWVqXzEUV8pAmeJKCdvtKnoPIcj66zcxMWnatGnjxo1LS0tlGbKIcP063L0LxcWgoQHZ2WBoCA8evDl3hQgmJjLYEKkbNkuHrJrX0qXJtmSiXCiuSD3S05Pt8yEq8qCeXmlExJuJRuPjYft2mDEDBII6lR4WBunpYGAAT56AgwMcOwaennWvM6kPytG+YiiulIdyxJWk3f7ypXK121W9QyirwwqHw3nyesS5zEK2pAQCA2HPHjh/HgQC+PpruHcPysrAwgKsrQEA1NSgXz/gq+6XqDhkOwBPT09PTU0tPz+/tLSUruSoMoorUo/09VmHUFYTjVbkQV9fyM9/09UUi6GoCMLCoHPn2he9YQP88AOoq0NwMBw4AIWF8Omn0LFj3etM6oMStK8YiiulogRxxdrtu3fDhQvA5ytXu10R6/RxyHYssrTk5GQ+n3/mzJnVq1dPnjzZ0NCwNqWkpsK+fbBvH9y/DwDg7AxWVmBuDjwecDhQXg6NGsGXX4KtrWwrT2pHts1rDodjaGiYlpaWlZVF93qpMmWNq6IiyM8HoRD09N6MmSGKRnIPYV4eyCoSiorYTYPJ+fl8LvfM06err12b7OZm+PRp7TqEBS9Qe/IIzlF/4HBgxgxwcYFWrWRTVVJvFL19RXGlnBQ9rlJTC/YGaO/byom+DwDQti00aQKWlkrTbkdVlZGRAQD6+vqSJREREcXFxXUps7S0dN68eRwOh/t6PLqmpubkyZPv3LnzYQWFh9+dud3rk/3I5aFQiMOG4YkTWFqK5eWYloaJifjiRV3qSWQuIiICAFq3bi2rAps3mTllRgAAIABJREFUbw4AkZGRu3btAoDx48fLqmSiRJQvrp4+xY0bcdky9PHBFSvQxwevXkWRSMZbITKRk5OxcCEA6Gto4JIleOoUikR1zYPp6aWLFs377DMOAPf1uQBNNbXJXbp8cB5EjI5GZ2e83M0bdXTwyJHa14p8XArdvqK4UloKHVfh4dGztzobZ1y2mYDq6jh0qNK121W3Q4iI7EkmeXl5iFhUVGRoaKinpzdnzpy4uLhalJacnNyhQwcA4PP5q1atOnnyZK9evTivM2LHjh0PHTpcUvK+UkpK8OjRHV8FaqiVAeDp5j/it99iREQt6kM+JjYPsqWlpawK7N69OwAEBQWdPn0aAPr27Surkt84eRK//RaXLlX845TKUrK4unULV6zAESOwfXv8/HP86Sf09sYVK9DPD8ViWW6I1F1JCa5bh97e2gIBAOT9+COuWFF09Gid8uCDB8k//tjBygoA+FzuKg+PkyNH9rK3/+A8iIiIO3aghgYCYFt3UWlM4gdXhsiVIravEJHiSskpUFyVlWFKCkZHY2Qk7tkjabe3NU8pnb9QGdvtKt0hdHZ2BoCIiAhEfPr0qbu7OwsCHo/Xv3//c+fOiWvciAkKCjI1NQUAKyur0NBQyfKnT58uXLiQXX1u2/ZLU1NcuBATEv77ZrEYk5Lw9m0MCXn126bxre4CIABOdoso/n0LpqfL7AOTelNUVAQA6urqsipw+PDhAHDo0KEbN24AwKeffiqrkiv8+y/On4+IeP8+Tp6Mp07hqVMy3gSpM2WKq8JCXL4cJ0/G9u3R2xtnzEA3Nxw5EkeOxJUr8d49mW2IyATrvXt7O5uYAEDEtGno7f3022/dW7euTR4UifDChaBx40y1tQHAqlGj0EmT0NubnRF4unz5wh9+eE8e/K/nz1FXFwFwyhSs2wUAIh+K0r76L4orZacQcZWbi0eP4vLluGoVrlyJS5Y8/26drvorAJzirsTtdg7K9qGxyuPOnTseHh5CobCsrGzixImzZs2ytLSMiIjYvn37vn37iouLAeCTTz6ZPHnylClTDAwMqipHJBItW7Zs2bJlYrH4yy+/9PPze3vwcWFh4YEDB86dcz5xohMA8PnQvz/MnAmffw4QEwMnT0J5OZSXg1iMYhx0ZPi52E/+6PPP5NHF0L8/qKvX634gsqKtrV1YWFhQUMDOYNXRvHnzjhw5snbt2g4dOtjb29va2sbFxdW92DdWrQIPD2jbFgBg8GA4flyWhRPZUZq4evwYTpyAixfBzg4sLAAAjhyB4cMr/tfVFQYPls2GiEycOgV37txJTfXYu1fI55eJxRNbt5716aeWbdpEmJhs9/f/gDz44oXI33/ZgQPLrl4VI37p4OA3apShjQ1kZ4NAAC1aQMeOwONVlwf/UxgcPgxGRoAIRUUwdmy97wkic4rSvpJCcdUAKERc2cTDoUMgEoFYDAAvStQP33c10ixChKIytbGtoqBHD2Wdl0jePVL52LJli7q6OgDo6+uz/SAQCEaNGnX9+nVEzM3N9fX1ZZMOAYBQKBw7duzdu3ffLicjI6Nnz54AwOPxvLy8RO+7VSY4GEeMQIEA2TVA509Kfusb1PuTpyKvJTFzNmzqeyZ00o6ob7bcn7EZL12ql09O6g0LmNqNW6hGfn4+AGhra8uy0LQ03LgRL1yo+HPAAFkWTmRKOeJKJMKAAPz+e+zbF8eNq7g05OhY8WLJEvzrL9lsiMjKpUtbPD3V+XwA0BcKK/IgjzeqefPrkyfj3r25N274rl///jwYF5fh7d3T3h4AeFyuV7duol27sKCgmi1XzoPO+Ntv2Ls3ikQYE4MbN2JZGa5ciYh4+HC9fXxSbxSlfUVx1bAoSlyZZP72xTlJu31jn7/LFi9d2SMIvb0PDzlacZdESkq97IJ6plgdwlGjKl5Mm4YvX1a81tXFxERExNGjZbCJgoKCkSNHsogZO3ZsUVFRSEjI0KFD+a8ngW3duvW2bdtevnxZXl4eEBDQs2dPyXjikydPShd19epVMzMzADAxMbkgaVvXQFoa+vigtTUC4MJO1/o2fbL5yzMPZm7y6nZlyeeXt3z5Fy5ZgsePy+DTko+obdu2ABAWFsb+TEtLK6nhPQ3VevHiBQvOoKCgupeGZWXo44MaGnjuHA4ciP/8g97euG2bDEom9UMJ4io9HbdsQQ8PVFPDsWPRyQnHjMFu3bBfP8mgQXz+vO51VhEfKQ8OGlSRB1u2LPrll5CJE4e6uPBfT6vQ2sxsW79+L9euLQ8JCThy5N15UCzGy5evTpxopqMDACZaWhfGjcN//qnhHEL/yYMLsW9f3LwZHzzAZcswMBDDwvDaNZwxA2V9JkR1qWL7iuKq/qlWXDUuqdRuX9b9UuDIQ2FT/ndt4s4ZbW/GzfXFJUvwvxtVForVIRw2rOLFpElvzjD27YsTJiDKIrAePnzo6urKzosfPHhQ+r+eP3/u4+NjwUY6ATRq1Gjq1KnR0dGI+OTJk4ULF9rZ2RUWFrKVxWKxr6+vmpoaAHTt2vV5rdo6paXoP+xo8Ne7NvT5Z2zLyMsT9izrfinvx1Wvfl2G3t64aVNdPy35uPr06QMAf72+EvLVV1+Zmpp6eXmxu59rJzQ09JNPPgEAFmwdO3Y8depUzYfIVxYdjW5uCIA8Hv7xB+bm4vnz+PBhratHPgKFjiuxGMPDce5cNDNDAORysU8f/PFHHDsWZ81Cb29cuhRXrFDG2+vl6OPlQU3Ng8OG4dKl6O2Ny5fj8uXPf/7Zx8PDQle3Ig8KhVPd3aNnz0Z//yfBwQsXLrSzti4MDMSTJ/HWLbGfn2/v3mo8HgB0tbF5/uuv+PTph1amtBT9/TE4GDdswLFj8fJlXLAAfX3xzBlExLS0un5YIqFy7SuKq49CteIq+F//4cek2+0LOl737f3PmdEH0Ns77fu1FedADx2q68eWB8XqEPbpg999h999h82bvwmsceNw82YMDMTRozEo6D13DFdj3759WlpaAODo6Hj//v13rlNSUuLv7+/h4cHCi8vlenh4+Pv7l5WVSS4rZ2Vl9e3bFwA4HM6cOXPKyspqWSFEXL8+fOq2DX3+iZ/n62EXu6z7pTcjrGgqZGXDzmBt2bIFEQsLC1u2bMmiyMjIaMmSJdnZ2R9UWmlpqZeXF4/HAwBnZ+fp06dLBsS3atXq8OHD5eXlNS9NJMLff8d7PeYhANrZYUjIh302Ij+KG1d5eaLdfr/3OnvPtj8CoL4+TpyIJ0/i1av455+4bh1u3Ih//YWZmR/6kVXcR82DGRl44QIeP47//ouvXmFJCYaHl/zxh//QoR52dhV5kMPxsLPzHzq0bPVqEes9entn/fBD36ZNAYADMKddu7I//8Tc3Fp/5PBw3LAB4+PRwwOXLat1MaQ6Kte+orj6KFQrrtLTccWKd7fbJf9WrsQPfxSKIlCsDuE7zzSMG4fl5Th8OA4bhhYWyOWihweeOvUB05gXFxfPmTNHcrn5peSqdtVu3749depUFogAYGFh4eXllZmZeevWLfZkTENDw7///rsWn/E/oqLCZ+zc0Ocf9PZe3v3im8BasUJJJylSKGfPVrwICkLWyhWLcd++ioUXL8pyWxcuXDAwMLCxsdHQ0JgzZ05KSgoihoSE9OjRg4WQtrb2nDlzkpOTa1JaVFRU69atAYDP5y9cuJANESwoKFi3bp25uTkr0MnJeefOGg0eTEzEzz9HADTSLHw57xd6yEQdqW5clZZiQgLeu4eRkXj5cuKPWz63jQdAI7W8l5/1QB8fjI+X4WdXWfLPg2IxxsXhkSO3v/lmqru7lkBQkQd1db26dcv84YdbU6eyJ9obamr+PXo0nj1bx0dNsoY7Ii5fTg33+iL/uHrtI7WvKK4+CpWLqwsX3t1ul7TelfYxS4rVIZw5s+LFDz/g6dO4ejXevo3ffYeIGBaG48bh6NGorl5xZ2ezZrhhA7532FRCQgK7CUcoFPr6+n5QfbKzs9etW2dvb8/CSyAQsCHL7du3T0pKqsUHfNvtgw93Dvrr0fxtD2Zt7tQkaYjrQ1y7tvanU4gUyXFqwgQsKkJEFInQ1BT9/RFlNLQdEYuKimbPns0GrDdu3JiFilAo/Oabb9hEICEhIZ6enmwFgUAwduzYx48fV1WaSCTy9fVld07b2toGBwdXWqGkpMTPz69Zs2adOk0AQFNT9PKq7leQkoKNGiFbk54rIROqGFdZWXjw4JtZtpcuTZn/WyPhKwA01X55auRB9PenSdxlRYHyYEEBXruWvXz5ui++sH99JVnA47FbDdtbWSV9+60MHyiyZAmOGUNxVF8UKK4Q8aO0rxiKq3qlinEVEYGrVi3xCB7TIrL41+VvLgwuX45BQXU8OyZHitUhrOTaNbx8ufLC9HRcsQKtrCrCS1sbf/hhxb0qctLJkyf19PQAoGnTpu+cbqgmRCLRhQsXhg4dKhQKe/fuPXXqVJlM6sBMm4YAuOnX1NhDYQBobV6mvMGkaPr1w/37cf9+7NLlTcN9/HgcPhzz82XTcL9586ajo6Pkkktpaendu3fHjh3LhuRxuVxPT8/w8HBEjIiIGDJkCJfLZSuPGjXq7eZ7fHx8165d2aiGqVOnFlQ9U195efnRo7ktW1b8CgwN0dsbs7L+s05mJm7fjidP4vjx2KcPTeohMyoXV/8+wRUrcMkSlvYyf1izvd+pkyMOjW91t0/Tp8+/W1dxXw6pH/LPg+XlGB0tWrHiwrhxQ11chHx+708+meruXrJoES5bhq9v0ak7OzsEwMePMTsb//qLZtquX/KPK0Ss5/YVQ3H1MalKXJWX21mVAuDj305n/+n/l/etSztilf2sg+J2CG/dwq1b8dWrd/+vSIQXLqCnJ7q63mCnAdzd3f38/EpLS9kKZWVlCxcuZKfPBwwYkFuH2xskMjIy6jii/W2rViEAfv89lpYij4c8Hsr6YKi6Bg7E27fx9m386qs3DfcJE/DePVywAEePxmXLcO9erN1XWlZW5uPjIxAIAMDJyYm1ziViYmLmzJnDLshwOBxPT0/22NPY2Ng5c+YIhUIACPnvjXx+fn46OjoAYGpqevr06ZrUQSzGv/7CTp3eHGQXLMABA1AsxshI3LkTRSJcuRJfvcIDB2rzGck7qVxcCUoWdLw+wPGh2Ms78putO78KFHktWdkj6NWiZQcGH68YJEOzNNQPBcqDgYHspEDGggVlixdXnBT38anj4KgXL3DbNmTXAHr0QAA8exbPnkUA7NGjLgWT6ihQXL0m2/YVxZVcUFwpNcXtEF69iv7++OTJe1Z79Chh1qxZuq9nRTM3N1+yZElERESHDh3YKXMfH5/az8pY/w4fRgAcPBgRsUkTBMCYGHnXqaGQHtoXF4fHj+OrVxUzX/34I3p6VjxYpkkT9PX9sNPcsbGxHTt2lFxyKazizYmJiXPmzNHU1GTBKZnLMSkpSXoURHp6ev/+/dk6Q4cOzap0pa8GQkLQ0xM5HFyxAr/8Enfvxps3cf16PHQI793DK1dw5kys2V1m5P1UK6465nA4uKLHxS8dnuwecPLmlO3re589NOTYvW+2XJmwe+anN5Pn/45LlqAsbvghb1OgPJidjStXVr5b5vXTUOpSKgDq6CAiTpqEALh1Kz5+XDH7FaknChRX9YPiSi4orpSa4nYIP8iLFy+2bNni4uLCwos1lczNzc8o/FimsDAEQDc3RMSuXREAZfK0OYL4po16/jzeu4fh4XjiRMXothcv8OhR9PNDZ+eKyyDGxujlhTk57ylTLBZv27aN3bVsbW19qQajTzIzM728vCSPUm3ZsqWfn59kLsfjx48bGRkBQKNGjbbV7XmAUVF46RLu3IkjR+LZs/jLL7hpE547h4g0RZEsqVZcXb4cNXPrpfF7dvYPHNk86uyYfb90Cd7U98y5sfvQ2zt9wetZtpXzsUsNTL3nwcREXLcOV61CHx9cvhzfuhO1dthNztnZuHx5xbPjXr1CLhfV1PBDplIm9UVJ21cUVwqO4krRNJAOocQXX3xhZGS0YMECZ2dnAPDx8ZF3jd4jPR0B0MAAEXHapLIuVnHn96bKu1IN05Yt7xjXJhLh8ePYtm1F893EpHjx4qXpVfSfUlNTv/zyS8kll5z3NvOlFBQU+Pr6Sh6YY29v7+PjM2nSJPanh4dHDSeKrN7ly7hzJz56hF274vr1dS+PvF8Dj6uUFFyx4vKEPTv7Bz6atbGrTcL63mffMcv2o0d12gqRqXrMg2IxpqZiYqIM721g96yGh+P+/QiAw4cjIpqbI0DFs62JglCu9hXFlbKguFIQXGhYHj58mJWVNX369G+++QYAEhIS5F2j9zAxgYc9ZsVYd4f8/D+tVlxNtuv5eJO8K9UAbdgAxcVQUFB5OZcLgwbBzZsQEgKenuDouHvp0sXW1tbjxo2LiYmRXvPo0aMuLi5nzpwxNjY+fvy4v7+/5OJMTWhra8+dOzcmJmbz5s22traxsbE//fTTzp07NTU1N27ceP78eUtLy7p/TKZZM+jYUVaFkeo0/LiysIBWrYDPB4BmRtkdrZIqr6CmBnZ24OBQp60QmarHPMjhQOPGYG0Nr59FUXc2NgAA8fHQ3/5+maXtoaSOALCh51/Xuv2qnfRAVlshdadc7SuKK2VBcaUg+PKugIzZ2tomJycnJCSwp47Ex8fLu0bv55h2BaKjISEBbG0BAJShzkpn7tz3rNCpE3TqBGFhn65a1f/UqVP79u07fPjw6NGjFy5c2Lhx49mzZ+/fvx8AevXqtWvXLslD2z6UUCicMWPG1KlTDx06FBERYWBgMHz48GbNmtWutLd16wYuLjB3LggEMG+erEolVVKJuOrbt5tJuEtg6NzzXwo4ZfM+uwEAwOGAQABiMXTuDJ06AYcjm20RWVCuPPhr23O/ZR/Sy+ij3aEzpCRASSEADCk/DFcOQGxT6OQs7wqSChRXpD5QXCmIhnaFUBJPNjY2oPBnGiqwEw4JCW9eEDlp18795MmTUVFRY8aMQcQ9e/a4uLg0adJk//79Ojo6//vf/86ePVvrVrsEn88fO3asr6/v4sWLZdgbZMRi+OMP8PMDAMjPhwcPIDNTtlsgH0zp46pNG/E3M/8IbeN33x0cHfOtXB+Y9cjsPAgWLIDOnak3qGiUKw+20X5kf83PMDoYzMxAKITMTHj5kk6PKiCKK1IfKK4UREPrEEriycbGhsPhJCYmisVieVfqfSSR1CBCqgFwcXHZt2/fuXPnPvvsMz6f7+HhYWBgYG5uPnDgQHlXrUrXr8P06bBnDxgZAZcLOTkgEoG3N7i4wP798q4cAQBljytTHpcLOS8FoiHDvaMGu0ztuP+mA6ipybuC5B2ULA+yxJeQABwONGkCAJCYSNlQAVFckfpAcaUgGlqHUHKmQUtLy9jY+NWrV2lpafKu1PtILgxaWIBAAGlpUFws5yoRgJKSkhs3bnTq1OnQoUPGxsaPHz/OyMiQd6WqFBsL27bBpUvA44GeHohEkJsLRkYAQFcIFQvFFalvSpYHpdtSktc0XkbxKHFcsXA6d66icRUXJ7dakbcocVw1rONVA7yHEF4PQba1tTXncHITE+s+Fqt+2doChwN5ecDlwsyZoK0NZWWgoSHvaqk6Nmt/fn6+QCBgDffMzEwnJyd51+vdpNvoxsaQkwOZmWBsDACQlSXPipFKKK5IfVOyPChpSyGCuzsUFIC6OrRsCTt3gqOjnOtGpChrXF2/DqWl0KQJREWBuTkMGQIGBnDuHHh4AI8n50oS5Y2rBne8amhXCJvb2t7v0uWEhgYA/Gtndyc93UXxTwV5ekJxMbRqBfPmQWEhDBwIr5/XSeTI2NgYADIzMyWvsxS4Ccza6JKGOwBkZf1nIVEQFFekvilZHtTRgaAguHMHAMDICNq0gWPHICkJJk6EpLdmtSXyo5RxtX49XL0K6upgZgZRUZCdDa6ukJMDERFw4AAgyruWRDnjqiEerxraFUJ9c3P9GzegrAxeveJYWwMow6BegQDCwyErC3x9oaQEhg2DwEB514n8p+HOrupkKnATWPqizZlm87WeHoHsP6NMe/zsHuKsywH4Qr7VIxIUV6S+KV8e7NEDACrnweXL4fp1cHaGFi3kXT8CoIxx1aoVhIVBYiIUFUHv3lBeDkePQvfukJQExsbA4UBMDDRtKu9aqjrli6sGerxqaB1C4PHAygpiY9/c5akUg3rv3YN27QAA1NVBIACRiEYyyJ2WlpampmZRUVFRUZF0I14xmRuXpbcdqFn+AiBYl1cI6c8h/Xkrx6RWEb3hZTOAR/KuIKlAcUXqXcPIg87OsHhxxTkJogiULq5SU4HDgfR0sLAAAODzgccDY2Po2hW0tKC0FJ49ow6h/CldXDEN7njV0IaMArz1FAcFP9PAWFq++QGUlFBvUEFILuAo/tA+gZaaSfRl7TshUFT05sYvGtunkCiuSL1rGHlQmVtXDZNyxZWeHgCAri7k5VUsEYmAywUtLQAAgQD09eVWNyJNueKKaXDHqwZ3hRCkpv3p3h1ASc40eHjAsWPg5QWpqTBmjLxrQyosat9e18ZGIydnoKXloPbthQp+v4GRESQl/WfSD3194PEgNxfKy4HfEH/syoniitQ7yoOkPihXXFlaQuPGIBLBgwdw+TK8fPlmOB+XC5qa4OIi1/qR15QrrpgGd7xqiLlccqahSRPgciEpSQlaLVwubN8O+fmgqUmP9lIck/PyIDgY0tJARwf+/Re0teVdo2pVarjHxMC9e9CoEeTkQHY2mJrKu36kgnLHVWYmcLlgYACZmRRXiovyIKkPShdXo0fDiRMwaBAUFgKPBzwecDigpgZGRjBihELXXKUoXVxBAzxeKfburh1JYLF5pXJzISMDFHYGW2mNGsm7BuS/JC1gV1cAhZ9on9U2KgoiIsDICHJz4Z9/oGVLEIng0iUYPBgEAnlXkQCAcsZVZiaYmYGDQ8WfU6eCSNQwsmDDRHmQ1AeliyuBAEaMgIwMePgQ0tNBLAZjY3BwACsredeMSFG6uJJoQMcrDir4aKVaiI2FY8fAyQn4fOByoXdveVeIKK3582H9evjtNxg6FKytwdISkpPlXaeqJSdDTAxcuwYxMfDoEQCAiws0aQIPH0Lz5qCvD1OnKvopNxWhdHHF54OREVy9CoGBgAjDhkGXLhAQAAMHyrtypAqUB0l9oLgi9YHiSgE0xEll7O1hzhzYtQsEAnj2DL77Tt4VIkpLuWbRMDeHsDAoKoKICOjTB3r3hn//hawsiIuD2FjIy4PwcHlXkQCAssWVlRWYmUFhIWzfDhs2wIYNsH49PH4MQUEQEiLvypEqUB4k9YHiitQHiisF0EAvFwQFwVdfgYcHAMCQIfQUB1JLklk0hELQ1oaXL6GgAHR05F2tKmRnAyJkZ4OZGXA4wOGAqSmIxdC5M+jqQlkZxMbCZ5/Ju5ZE2eKKefIE3NyAywUAaNECysrgp5/A0lLe1SJVozxI6gPFFakPFFfy1hCvEALAq1egqVnxWiCA8nK51oYoLekLOJKrOgpLWxtEItDSgoKCiiUFBaClBbq6AFAxEQhRBMoVV4yJCTx/XvH62TMwMaHeoKKjPEjqA8UVqQ8UV/LWQDuEnTpBQACUlkJSEohEoK4u7woR5WRtDR4e0KoVAMAvv8DmzQrdp9LUBFdXMDICHg+Cg+HKFdDRqXjgEgDw+XR5UFEoV1wxNjagrg7Ll4O3N5ibg4mJvCtE3ofyIKkPFFekPlBcyVtDnFSGCQ+Ho0dBUxNmz1aCxhZRWCIRzJsHAgFkZcE33yh6n0okglOn4OHDiufwSh6/y+fDiBE0r5oCUa64kkhNBR6PeoNKg/IgqQ8UV6Q+UFzJVcPtEBIiE8eOwcuXMGEClJbC8OEQECDvCtVARgbcvw8pKVBWBnp64OBQMXkXURzKGFeEEEIIaYiojUhItWJjoVs3AACBoGJGDcVnYgLdu8u7EqRayhhXhBBCCGmIqCFCSLUcHOD+fQCA0lJ5V4U0IBRXhBBCCFEMNGSUkGqJxTB/PvB4kJMDM2dCmzbyrhBpECiuCCGEEKIYqENICCGEEEIIISqKhowSQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBBCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOISGEEEIIIYSoKOoQEkIIIYQQQoiKog4hIYQQQgghhKgo6hASQgghhBAgO4BYAAAgAElEQVRCiIqiDiEhhBBCCCGEqCjqEBJCCCGEEEKIiqIOoZIpLCy8fv16Xl7eB70rLi7uwYMH9VSluLi46OjoeiqcfKiSkhKxWCz5UyQSybEyRMXR8YoQ8vFRHiSKQ1nyIPfEiRNLly5dtGjRjh07nj17Vk/brj979+4NCQmRdy0+WGho6O7du2vxxidPnnTq1OnGjRsf9K6FCxcOGzasFpuriZ9++mno0KHVrPDDDz80atSonrZeE8uWLeNwOIgoxzrUwm+//bZkyZIPektCQoJQKDx+/DgApKWleXh4CIVCbW3t33//vX7q+FEVFRXR8UouVOp4RUh9oDxYO5QHK6E8KC8NPg9yhw8ffurUqStXrnz//ff29vZr1qypp83XEy8vL/azT0hI6N27t7yrU1OBgYG//PKLvGtBFBcibtiwwczMrNYlLFq06M6dOxcuXDh58qSnp6cM61bJmjVrnj59Wn/lMyEhIU2bNqXjlVzQ8YoQ8vFRHqyE8qAcNfg8yI+Li7OysgKA4uLi7777buHChaampuPHj5d3xWoqPj6evYiJibl48aJ8K1Nzq1evXr16tbxrQRRXWFjYs2fPvvrqq1qXcPfu3a5du3br1k12lXq35cuXt27dumnTpvW3iYSEBE9PT0dHxxs3btDx6uOj4xUh5OOjPCiN8qB8Nfg8yGdRBQAaGhqbNm0KCwvz8vLy9PS8dOmSg4NDy5Yt2f9ev349Ozvbzs7u4cOHgwYN4vF4bHlaWlpISMgXX3zBxkJER0eHhoYWFRXZ2NhwuVxHR0f287hz586///6LiJ06dWJlZmVlXb58eciQITExMZcuXeLz+b169bK0tHxnLTMyMoKDg4cMGfL48ePLly+rq6v36tXL3NwcAM6dO2dmZhYbG3vlyhVEPHr0KAC4uLg4OTkdO3ase/fuz58/v3r1aosWLbp06QIAz58/DwoKYp+lV69eQqFQspWHDx9ev369sLDQ2tpaTU2tadOmzZo1A4DIyMjQ0FCRSNShQwc3NzcAyMnJuXjx4qBBgxITE4OCgng8Xs+ePa2travay6WlpX///XdKSoqpqWn37t0NDQ3v37+fnJzcp0+fy5cvN27c2M7Ojq3g6OjYs2dPyRvf3p/SxSJicHBwZGSkUCjs0aOHvb199V92fn7+hQsXcnNzW7du3aZNG8nyzMzM8+fPZ2RkWFtb9+rVS1tbGwASExOjoqI8PT0jIyOvXbumq6vbt29fQ0ND9pa8vLwLFy48f/68cePG6enplT7s3bt3CwsLnZycGjduLP1faWlpDx48sLCwYDsWAEQi0ePHj9PT0xs3btysWTMulwsASUlJBgYGPB7v5s2bZmZmDg4ObOX4+Pi4uDgNDY2mTZsWFhba2NiwnXD//v309HQLCwsnJyfpzSUlJcXExOjp6b18+bL6PfPq1avbt28XFxc7OTmxuMrJycnLy7OwsFBXV5dsXVtbu6ioSENDw8TERPLe9PR0kUjE3gUAcXFxcXFxWlpan3zySVFRUZMmTaQraWlpKfkSk5OT9fT0dHR0oqOjs7KyHB0dTU1NJcUGBAR06tRJsgOzs7MfPnyorq7u6uqqoaHx4sWLrKysJk2aSH6J8fHxenp6kq8gLi7uxYsX7AUAWFpa8vn8hIQEQ0NDybClzMzMV69eWVlZPXv2TEdHRygUhoWF6evru7q6vnMvIeKTJ0+eP39ubGzcrFkzNTW1jIyM9PT0goKC1NTUuLg4oVDI9oNYLL5//35GRoaZmZmzszOHwwGAly9f5uTkWFtbZ2VlRUVFGRgYtGjRgsPhlJWVRUREcDgcV1dXLS0ttq2cnJwHDx4IBAJXV1dNTc21a9cWFxcfO3aMjleSrdDxSibHK1ITCQkJZ8+eHTFihOQgQ6pHeZDyIOVByoNKlgfxv3x8fAAgKiqqb9+++vr6SUlJiHj79m2BQPD777//888/AHDhwgXJ+osWLTIyMiotLS0vL//6668BwN7evmPHjuwn7evrKxaLp0yZAgCtWrVydXXlcDg+Pj5sjwDA7Nmz9fX1O3fu3LhxYx0dncjISHyXoKAgtrKBgUHnzp1NTU0bNWr04MEDRDQ3N585c6aLi4uenh6Hw7Gzs7Ozs9uwYUNZWRkADB06VCgUGhoazps3DxH37dunrq5ubm7evn17LS0tOzu7p0+fIqJIJJoyZQp7e8eOHdnRZ82aNYg4c+ZMAGjRokXz5s0BYNmyZYjIhgLPmjWLVd7MzExbWzsiIuKdlc/JyXFyctLQ0GjevLmenl7Pnj0Rcf78+YaGhuyX9uWXXzZt2tTV1fXTTz/lcDjTpk1DxKr25+3btwHgn3/+KSoq+uKLL/h8/qeffmpra6umpnb06NF3VgARhwwZYmJiYmdn17x585YtW3I4nJEjR4pEIkQ8ffq0tra2iYlJhw4ddHV1zc3N7969y/aVmprajBkzjI2NO3fubGBgYGpq+vz5c0Q8c+aMnp5eo0aNOnbs6ODgoKam5uTkxDb0zz//mJqacrlcHR0dLpe7cOFCRFywYIG2tvbs2bM1NDQMDAwAYNKkSYh47do1MzMzNTU1Y2NjLpfr5uaWnp6OiLa2tt98842FhQUA9O/fHxFTUlK6du0KAI0aNVJTUwMAfX19RExISGjdujWHw2ER37dv31evXiFiZmZm3759AUBXV1cgELBQF4vF79w5x48fNzQ05PP5Ojo6HA5nwoQJJSUlDx480NTUnDJlCltn+/btfD4/NDS0X79+jo6O0m+3t7efO3cuIiYnJ3fu3Fm6kkZGRogYFxfH9jn77P369SspKUFEJyenWbNmtW/fXkdHR1tbW11d/dChQ5JiHRwc1q9fz15v3rxZKBSyMnV1dV+8eLF582YAyMrKkqwvEAgWLVrETrwtXry40s88Ojo6NzcXADZs2CB5y4QJE+zt7RHx008/nTBhwieffAIAHTp0eOdeevToka2tLY/HMzY25vP5Dg4Ojx8/HjVqlPRWunTpgoiPHz9mqVRfXx8A2rRpk5iYiIj79+/X1tZetWqVhoaGkZERAHTv3v3atWtWVlaGhoZqamoWFhbR0dFsb2toaLDPq62tnZOTY2tr27lz57drRccrOl7V5XhFqpeamjpt2rS7d+8GBAQAwIMHD86dOzdt2rSqjqWEoTxIeZDyIOVBpcuDlTuER44cAYBTp06lp6ebmJj07NmzqKioefPmHh4eIpGorKzM1NR04sSJkvWdnJy++eYbSUTu2LGDLc/OzmY7Yt++fQCwa9cutnz69OmampqZmZkssPr06ZOXl4eIubm5enp6kydPriawvvrqqxcvXiBiVlaWjo7OzJkzJYGFiL/88gufz5e8hQWWs7NzSkoKC53k5GR1dfUhQ4aUlpYiYkJCgoWFBfvpsluNt2zZwt5bUFDAAovtjT///JMtnzt3rlAoTEtLY4HVs2fPnJwcRMzPzzcyMho3btw7K79t2zb2W0XE8vJy9t1IB5aGhsbZs2fZyj/99BOHw8nIyKhqf0oCa9GiRXw+/+rVq+zDfvHFF7a2tmVlZe+sw5AhQwBg9+7d7M8tW7YAwN69e3Nzcxs1auTh4VFYWIiIaWlpzZo1c3FxEYvF7Iv7+uuvi4uLETEuLo7H4y1btiwlJUVLS6tHjx7si0PEYcOGscB69uyZtrZ2z549s7OzRSLR8ePHFy9eLBKJFixYAADTp09nb1m7di0ARERE5OfnnzlzhtX5yZMnOjo63377LSLa2tpqa2ufOnUqKysrNTVVJBK1bt3a3NycnawqKyubNm0aS4Tt2rWztbWNiYlBxHPnznE4nO3btyPi559/bmhoePHiRfbVL1y4sKpEGBMTIxQKBw0aVFBQIBaLjxw5wuVyvby8EHHjxo0A4O/vHxsbq6OjwxYeOnQIANhvDxHDwsIA4MaNG+Xl5S1btrS0tAwLC2OVnDx5MkuEbdq0sbe3j42NRcS///6bw+Gwn4OTk5O6urqfn195eXlJSUnPnj3Nzc1ZsZGRkQAQFxeHiIWFhWpqalOnTi0rK3v58iX7xqtPhP7+/ojo6uo6fPhwyQrVJ0KBQHDgwIHs7Gz2e3lbWVnZiRMnWDCkpqZaWVkNGTIEEUNDQwHg/PnzbDWRSOTq6tq0aVN2yL5//76VlVX79u0Rcf/+/ewnz34CbE9aWloGBwez2DMxMRk1alRJSYlQKPz6669LS0sLCwuvXLkiEom4XO47f190vEI6XtX2eEXeKz4+3s3N7fLly5IO4Z49e9zc3KhDWA3Kg5QHKQ8i5UElzIOVO4R///03ALA+67FjxwDAxcXFwMBA8vOYPXu2np4eO/90584dAGBxbG9v37VrV0k5kh0xcuRIU1PT2NfYpeHAwEAWWNInLTp06NCjRw8/Pz/n/zpw4AALLLYTmTZt2vTp0wffF1hLly6VLNm1axc7RSRZsmLFCgDIzc11cnJiv1VGEljjxo0zNDSMiYlhlQ8MDGQ7hwXWmTNnJG/p1q1b586dDx48WKnye/bsYbMSrV+/nu00RjqwevToIVl++vRpAAgLC6tqf0oCy83NrX379pIdy+4qfvToUdeuXaUr0Lp1axZYtra2ktJEIlHjxo3Hjx9/6tSpSjuW/QyePn3KAuvJkyeS/7KwsJg4cSJLY+w0DyMJrK1bt1Z6C8POjEryUExMDADs37+/0mrdu3dnu8LW1lb6V3r58mX2M5Dee/r6+qwclvkYNze3Pn363L17t9IRf+nSpaxi/f9r06ZNa9as4XK5qampkpX79+/P0oNYLO7du7eRkZG7u3u7du3Yj7awsFBbW/vHH3+U1MTOzk4sFl+4cAEADhw4ICln7ty5RkZGjx8/BoCdO3dKlrds2bJfv36I6OTkJJ2o1q9fDwDs5+rl5eXu7s6W5+TkcLncKVOmSMePzBNh3759JctDQ0Mr7agjR45U+rLGjh3r4OCAbyVCdkyQ/nJZVWNiYlgiZAkSEYuLiwHA29tbes+7ubkVFBTweLzx48cXFRWx5a9evWINKXwLHa+Qjle1PV6RmpN0COVdESVAeZDyIOVByoOohHmQD/+VnJwMAGxo+ODBg7/88sszZ85s3LiRjVsAgFGjRm3cuPHs2bPs52FlZdWxY0eRSBQXF9e/f394S1xcXHp6eqVhssnJyewyujSBQFBeXu7i4jJx4kTp5c7Ozmy3vr3y25urRlxcHIfDkb7llw01fvr06dOnT6dPn/72W+Lj47Ozs9kQAomUlBTJAG7p+hQUFDg5OVWqvKurq7Ozs7+//7fffrt8+fJx48b9/PPPbJzAO7HhAWzI+zv3p/THycvLe3vHjhw5UvpWAT6/4ivW1NSULORyuU2aNElMTGQD6yU3J8DrfRIbG/v2Ftk+f/LkiaamZqVR0UxMTIympuY7b6rmcrlsAD0AsPHfbLjIvn379u7dm5CQkJOT8/LlS3d3d7aOZLA7AERFRQEAG4VSaXMAMHXq1KlTp0oWurq6VrW+QCCoNNhdX1//3r17JiYm0vd4tGrV6q+//iotLRUIBLt27XJwcLh79+7Dhw/ZntTU1BwwYMDBgwdXrlwJAMePHx8zZgyHw6m+kpMmTZo0adLbu0X6Y0p2CwAEBARIphvW19efO3fu+vXrAwMDx44dO2fOnGpGvdeadE00NTUr7ShdXV0ACAwM3LZtW2xsbGZmZlFR0TvDmH1eNk6DadWqFQBIpl9jt8fA688riQq2pKSkRFtb+/vvv1+zZs2ZM2fGjBkzd+5cGxsbHR2dlJSUtzdHxytpdLyq9BmrP16pppiYmICAgMTERKFQ2L59+0GDBnE4nKtXr6ampvbr12/Pnj3skDh16lQrK6usrKytW7dKT30eGhp68eLFRYsWBQQEaGlptW7deufOnfHx8ba2ttOnT2e3bxUWFu7duzcyMpLP5/fs2fOrr76S/pk3eJQHKQ9SHqQ8WNXHUeQ8WLlDGBERoaamxmL3yZMnV65cUVdX37Fjx5QpU9hdxZ999lnTpk0PHz7cv3//Y8eODR8+nMvlIqKGhob0Y0AldHR02rdvz06fSKvqISTu7u6So6GETKYh0tHRQcSioiLJzcTsC9DT02Pn7d75Fnd39/Dw8ErL2QCJt7Vq1Yrtukr+/vvve/fuHThwYNOmTdeuXbt582b1VeVwOFXtT+m6DRgw4O2Honh4eFRfOMPu3tbR0QGAwsJCyXK2T3R1dTMzM9/5xqr2FbyOPLFYLDnYVW/FihXsWTpeXl6amprz5s1758GC3fwguQWi0vKDBw+2a9dOspDP57PzQOwnKs3a2nrTpk2VFoaGhpaWlkovKSsr4/F4LDGEhoayi/Lnzp2THJJGjx69f//+GzduiMXixMTEESNGVFNJVo0jR45I3w38dt2kxcfH37t37/Dhw5Ilv//++4QJE/bv379r1679+/ezU7/1p2XLlm/vqD179kycOHH+/Pk//PCDjo7OypUr3/krYHuAnedj2O6VzElQEz4+PmPGjDlw4MDOnTv3799/586dtm3bRkZGvh1adLyq9BY6XlVSzfFKBZWUlHTo0KF58+aOjo5JSUl//PHH5MmTt2zZcu7cub179y5dutTGxsbGxsbPz+9///vfo0ePMjMzFy9eLN2uDQkJWbx48S+//LJ///6YmJicnJzPPvvMwMBg9erV/v7+t27dys/P79SpU1pa2qBBg1JTUwcOHLh8+fKff/5Zjp/6I6M8SHmQ8iBQHqzi4yhyHvxPVD169Gj//v3Dhg3T1dUtLy8fN25cs2bNLl269ODBA+mHb4wYMeLUqVOXLl2KiYkZOXIkALAevHT0sBNFAODq6nrv3r2qailDampqYrFYJBJVtQK7wffSpUuSJUFBQVpaWjY2NtVUPjo6OjU1te7Va9GixerVq7/99ttbt26xQQLVqGZ/Sri6ul69elX6iFNzERERcXFxnTt3fuc+4fP51ZxIcHBwePXqFRt1AABisTg6Opq9dnR0LC0tfft3WBUWbIsWLercubO7uzs7/fY2djaFXXNn2ICQZs2acTicxMREOynW1tZvr5+QkFBVHRwdHXNycp48eSJZcv36dQcHBx6P9/z582nTps2YMWPy5MkLFiyQfAUeHh6mpqaHDx8+cuRI8+bN2T5kp6PeriTbk5Uq+faZKmlHjx51cHCoNFNcixYt1qxZExAQkJ6efu3aNXbeqKioiP1vcXHxe3/tQqGQy+VKx570AeW9Dhw40KVLl3Xr1nXr1s3d3V1ytoydypL87tjn/ffffyVvDA0N5XA4kvn0asjV1XXVqlV//fVXVlZWcHDwpEmTkpOTt2/fLr0OHa8YOl7V7nilgtTV1RMTEy9evLh582Z/f//58+dv376dXY15/vy5j4/P33//vWXLlmPHjqWnp7NxaNVgw7GOHj26bdu2jRs33rlz5+7du8uWLYuPj79x48aOHTsCAwOnTJmyZs2a985v2ZBQHqQ8SHmwhigP1txHyIPcOXPmXLx4MTQ0dP369V26dDExMVm3bh0ALFmyJCoq6sCBAx06dPj555/Xr1/PBgQDwKhRo4qKiqZPn+7g4MCmcwWAadOm3bx5c/78+RERESdOnBg3bhxbPmPGDAAYOHBgUFBQZGTkoUOH5s6dW4t98V7NmzcXi8Vr1qy5fPnyw4cP316hZ8+eLVq0mDlz5uHDhyMiIry9vQ8dOjR//nw1NTU2kdqcOXMiIiJOnjw5evRo9pbp06cLBIKBAweeP38+MjLyyJEjs2bNQsQPqtjx48eXLFly8eLFoKCg06dPOzo6amhovPddVe1Pie+//z4xMXHkyJHXrl0LDw/fsWPHsmXLqikwLy+PnfA4ePDgwIEDbWxspk+f3rZt2y5duvz444+7d+++c+fOunXrtmzZMmXKlLcHBkgMGTLE0NBwwoQJFy5cuHnz5ujRoyV7e8CAARYWFpMmTbp27VpGRsaNGzfY3b1V0dfXj46OzszMzMjIWLNmzfnz59+5WufOnZs0afL999+HhYWlpqb6+PicPHkSAMzNzQcOHMjOTGdkZDx69GjDhg1RUVGtW7d2dXVdvHhxcHBwWlrapk2b/Pz8qqrD8OHDDQ0Nx48ff/v27eTk5KVLl169epV9y1OmTDE2Nl6zZo2vr6+1tfWoUaPYIH4+nz9s2DB/f/9jx46x06IA0LVrV2tr6+++++7mzZupqakrV65kw8qtrKz69++/atWqY8eOsUr6+vpW3yQNCAgYOnSo5M8XL14sWrTo5s2b8fHxf/31F4fDcXBwYCe0tm7dmp2dHRkZ+dVXX9UkETo6Ovr7+yckJDx//nzp0qXsvqAa0tfXj4uLS0pKys3N/d///sduhAAAOzs7NTU1f3//mJiY+/fvOzg49OjRY+nSpadPn05NTT127NjatWsHDhwomY78vYqKin799dewsLD4+Hi2Dx0cHEaOHDlo0KBZs2bR8YqOV7I6XqkmDQ2N0tLSp0+fhoSEcDgckUiUlJQEAGpqapKnvTk7OwPAs2fPqi/Kzs5O8oNiDfdnz56FhITY2dlFRkYePXr06NGjWlpa+fn5KrXPKQ9SHqQ8WEOUBxUrD0oGABgaGk6dOjUtLQ0Rb9++bWRkJJm9p6ysrFu3bq6urvn5+WwJGyPO5ptixGLxb7/95uDgwOfzmzZt6uvrCwC+vr6IGBYW1qVLFx6Pp6am5uDg4OXlVVJSEhoaqq+vzx5Cwnh6enp6euK7XL16VV9f//r165IlvXr1GjhwICK2bNnyp59+YhWYM2eOnp6enp7eli1bysrK9PX1165dK11OWlrayJEj2TNeLCwsVq5cyaZwRcQNGzY0a9aMz+d/8sknf/zxB7yevjY8PLxbt258Pp894eTXX38tLi4ODw/X19eX3ECMiIMGDfriiy/eWfkdO3awktXU1Dp16nTv3j1E9PLyYjd09unTh80ozVy8eFFfXz8sLKyq/RkVFWViYnLp0iVEPH36dKtWrTgcjlAobN269caNG99ZAUQMCAgYMGAAm+65UaNGo0ePltxtnJubO2nSJHY53tTU9Oeff2azOR05ckRfX5/NCca0atWK3dB8586dzz//nD2xZ+zYsevWrWNz8iJidHR0t27d2HgGfX39BQsWIOKCBQt0dXUl5bBB8Dt37vz333/ZGHcOhzN48OC5c+d+9tlniGhra/v1119L1//+/fufffYZj8fjcDjt2rUbMGAAm13txYsX48aNY4MiuFxup06dWJDExMR07dqVnbRr0aLFqlWroOrptm/dutW2bVv2KzAwMFizZo1YLPb19eXz+WyqNBYGampq33//PfuTnfnjcDhsAjTm3r177dq14/F4XC63ffv2/fv3Z7Or5efnjxkzRlLJzp07h4aGIqKTk9OoUaMkb2dTEdy9e5fD4YSHh0uW37lzh7XPAEBHR0cyB/fixYvZB9TX19+8efOnn35a/c30iBgcHMwSEo/HGz58+NKlSyU307P7+6vx6NEjyZj17t27L1myxMLCgv3X5s2b2W+K/X6zsrKGDh3KhgOpq6uPHTuWHTdY7pSOKABYsmSJ5M/hw4e7uLjcv39f8gAobW1t9jNExLKysrVr19Lxiv0XHa9kcrxSQStXrjQwMNDQ0LCysmI3HT148OCnn34SCASSddg1Ex8fnwcPHgBAQECAZFIZNo2eSCQaNGhQ8+bNJW9hF4UCAgKMjY3ZBCTSpOc/UAWUBykPUh6kPKh0eRAQsaioSBIxNcRGEj969Ojt/2KHm7S0NJCa+JWRfItyV1VNWOVzcnIA4I8//qjJW2q+xarmlq1eNfuzFhWrZuUP/YBisbiq1FJUVMQmGn6v0tJS9kDemqxcXFzMAnXOnDkmJiaS5a9evUpJSWF350srKSlhB8qayM3NTUlJKS8vr+H606ZNk57hSkLya5o5c6aZmZl05d9ZyUo2btzYpEmTt3fsy5cvk5KSKlWvpKQkKSmpqrh6OxEyKSkpNfx2KikvL4+JiXnnfNzl5eWVyiwuLk5KSpKeoeuDFBYWVvXR6HglQcerD6oYPSyB3ZH1559/stYDm/Jeth1CV1dX1uYjlAeR8iDlQdmhPFjHcvB9eZAPABoaGjW5GCrtyJEj7u7u7xwPzaZLun//PrweUC5Rw3usP4KqalJ/ledyubUroZoq1aJi1az8odWrZuK4mocTO/lUw5WFQiGbkuvRo0fS0zSpq6tLZtOSJhAI2INBa4Kdo6rhyuXl5QEBAb/++uvb/yX5NVWqpFAofGclK5k1a9asWbPeXq6lpcXOkEkTCATV34bxTjWpxjvxeLxKs2NJ/xe70VlCKBTWom4Smpqa0vNrSaPjlQQdrz60YiouLCxMV1d32rRp7M+srCyZb8LNze3UqVM5OTnsxLYqozz4diUpD34QyoPSKA/WsRx4Xx6sPMtoTYjF4uPHj3/33XfSC3/77begoKBBgwZZWlo+f/581apV9vb2HTt2rEX5H9/GjRtPnz49ePBgKyur9PR0Hx+fJk2adO3aVY5VUur9KVtisbhPnz5dunRp06aNtrb2+fPnL1y4wK7Fy8vFixezs7OlZ2MXiUS9e/f+/PPP27Rpo6mpee7cuUuXLrFH+srLvHnzqpkoWXXQ8eojUOr9qTrc3NzWr1+/aNGiNm3ahISE7NixQ+ab+OWXXwIDA7t06TJjxgwtLa07d+48e/aMPceM1AXlwdqhPMhQHvwIlHp/Qu06hLdv39bQ0JA+CgBA7969U1JSdu7cmZycbGRk1LVr1yVLlrDzWIrPw8MjMTFx9+7dycnJhoaGHTp08Pb2rurEzMeh1PtTtsrLywcPHnzkyJGtW7cWFxfb2tr6+vrOnj1bjlW6du3a0KFDpU+7skr6+/tv2bKluLjYzs7ujz/+YHdmy8s7n/ikguh49REo9f5UHaNHj05KStq3b5+fnzz1p5sAACAASURBVF+vXr0iIiKmT5+upaVlb2/fvXt3yWo8Hs/Dw8PGxkZLS6tHjx7sVsMePXqwyf169OjB4XBatGhhaGgoeYuOjo6Hh4eJiYmDg0NYWJiPj8/WrVvV1dUdHR0nT54sh4/a4FAerB3KgwzlwY9AqfcnAHDwA+feIYQQQgghhBDSMCjK4GBCCCGEEEIIIR8ZdQgJIYQQQgghREVRh5AQQgghhBBCVBR1CAkhhBBCCCFERVGHkBBCCCGEEEJUFHUICSGEEEIIIURFUYeQEEIIIYQQQlQUdQgJIYQQQgghREVRh5AQQgghhBBCVBR1CAkhhBBCCCFERVGHkBBCCCH/Z+/O46Iq3zaAXzPDsO/I5oIIgqCoIC6puORG7pqCZqW5pab1ZsvPLEvNMjNTS9NMyzRNA3NfUnFlUVEEFAEREAVRFkF2mO28f4yRrQrMOMBc309/TDNznnPPeDFz7jnPOYeIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9xYaQiIiIiIhIT7EhJCIiIiIi0lNsCImIiIiIiPQUG0IiIiIiIiI9ZaDrAuqB0lLcuoX791FRASMj2NjAxQU2Nroui4iIiIiISLv0uyHMysKxY7h7FxIJ5HKoVABgaAiVCtbWGDgQnp66LpGIiIiIiEhb9HjK6OnTv7x7SbidCYUiLKlZXomx+u7lp7pUVAD5+TsXJmH37oddIhEREVGj9tNPP/Xr1+/69eu6LoQaFeaq/tPXhvDiRURF7b/mrhJEAMJvudyvMFU/si+5zbKIAAAHE92QnIwjR3RZJxEREdFTcfLkyVOnToWEhOi6EGpUmKv6Ty8bQrkcYWGQywF8EdXz84iekZku1Q+2ti0okRkl5tk/fGZ8PAoLdVUpERER0dMRFBQEIDQ0VNeFUKPCXNV/etkQ3rkD8cMX/opv3GS/OD+nu48+/mHvM5+c7f3H/6elPc3qiIiIiJ6+gQMH2traXr16NTExUde1UOPBXNV/etkQKhQQBPVNe9MyB7MyU6n8Xqn595f98stNAdiYVAa6p6YW2AKASgWlUofFUv0iCLh+HWFhiIxEQYGuqyEiItIYqVQ6atQocGcOaRRzVf+JhN9bIz1SXo5Vq6BQRN9p1rXZHQCJefYiCC2sijdd7tSjRWbXZncEAb8mtj2X1fzzQScMpk5Cixa6LprqgaoqbNmC+/chk0EigUiEQYPQpYuuyyIiItKM3377bfDgwV5eXklJSbquhRoP5qqe08uGEMDBg4iPh0Lx6H0/xPr1b5Xe0roIgCDA/7sZsXedlvY/MX+xMXr21FGhVJ/s2oXkZBw6BACVlejYEZ6emDwZzs66rowaOEHAW28BQGEhJk3Cs8/quiBqFJgrqjm5XO7s7FxSUhIXd8Pb2+XxC9TQrVu3MjMzV65c2blzZ39/f39//yZNmmh8LVTfMFf1nL42hEoltm1DdjZkMvUde5K8bj6wGeCW3sExR33P6QzXfj9ONDRQxb620fvDsWCw9Jxcjs8/x/XrKChA164QBOzciRdegJ8fRozQdXEAoFKpUlNT4+LiunTp0qpVK12XQzXx229ITcWcOVCpMGoU9u/XdUF/YK4aMOaKauWDDyLXrWv7xhs2ixdreOTCwsKePXvm5OQUPHLMhbOzs//vnnnmGXt7ew2vleoH5qo+09eGEIAg4Nw5nD0LAFVVf3rIyAhKJWxtp2585odYv+4tsiIWnxC/MhEikU4qpXqhoAAbNiAyEnZ2cHMDgF9+wbhxaNECU6bopCK5XJ6SkhITExMTE5OYmHj58mX1R+E333zz2muv6aQkqqV16+DpiQEDAGDMGPz6qw5rYa4aD+aKauX4cQwahDZtkJysyWFlMtngwYNPnjzp5eU1d+7cpKSkS5cuxcXFlZaWPvo0Nzc3f3//6v081tbWmiyCdIe5qs8MdF2A7ohE6NEDXbvixg2kpyMnB5WVMDREkyZwc4OnJ0SilQ++P5rW+lxm8w2/NpnV4TL8/XVdNOmOhQWUStjZIScHbm5QqSAIEInwFH9zKiwsjI2NjftdUlKS4s/Tnps3b+7r69usWbOnVhJpRps2uHIFAwZAqXz6Z7Firhot5opqpV8/ODjg+nVcuYIOHTQzpiAIU6ZMOXnyZLNmzY4dO9bi91MzKJXK69evX7p0KSYmRr0dn56enp6erj77iEgkcnd39/f3HzNmjPrSBdRwMVf1mR7vIXwSKSkHFsWM2PGCpVFVwtzvW8x/CZaWuq6JdOfXX5GcjN9+g0KBqip06gQ3N0yZAicn7a0zOjr6yJEj6i2qjIyMRx+SSCRt2rTx/Z2fnx9nzDdg772HykqUlGDqVPTooe21MVf6grmiWpk5Exs2YMECLFmimQHffvvtlStXWlpanj171sXFxcrKSiz+hxPdK5XK5OTkmN/FxsaWl5cDGDBgwOjRo7kzuaFjruovgf5bSMiYtld7tXz/ee/2wvbtuq6GdKqyUujaVejcWVi0SAgOFnr1En74QasrPHTo0IQJE6r/WqVSadu2bV9++eXVq1eHh4eXlpb+x7Lx8fELFy7UanmkGSqV8OKLwowZgiAIoaHCvHlCZKRWV8hc6QXmiuogLEwABHd3zYy2bt06dSSOHz9eXFzs5+c3atSosrKyxy4ol8vj4+M/+OADAM7OzkqlUjMFkY4wV/UWG8LHKSvL/vAjGxMTAD+PGSMkJNRs8cpKIT5eiIgQkpMFBq6hq6wUAMHAQFi0SOjcWQCEb7/V6gq7du0KYMSIET///HNiYqJCoXjyZRUKRUJN40o6oc6VkZEgCMKMGcwVaQZzRXWgUAiOjgIgXL5c16H2798vkUhEItHWrVtlMllgYCAAT0/P/Pz8JxxBpVK5uroCCA8Pr2s1pFPMVb2lx8cQPiFTU+cxz6+4Ej913743jhzp36aNg58fXF3RsSOk0scse/s2fv4ZggCFAgYGMDHBK6+Ah7E2XOpz0kokAB4ekPPYDNRBWlraxYsXLSwsduzYYWpqWtPFJRJJu3bttFEYaZg6V4aGf9xmrqjumCuqA4kEzz+PM2fwyFkbayM6Onr8+PFKpXLZsmUvvfTS1KlTjx492qRJk4MHD9rZ2T3JCEVFRWZmZkFBQV988UVoaGhAQECdCiKd0rtclZcjIQFZWVAo4OSEtm3r7TUL/mGiLf1Vx46Tx4wZ6O6eX17+1sGDuHYNx45hzRoUFf3DkxUKVFSgsBCZmdi+HVVVkMmgUkEmQ3Extm0DD9psuNQbVerp6eqGUL2xpR07duwQBGHUqFG12Lp6VERExPTp0zVVFWneoxvrcjnAXJEmMFdUc4sWPbzx7bcYNAijRqF/f1y+jKNHazNaWlrasGHDysvLX3311Xnz5i1evHjz5s2mpqYHDhzw8PB4khHeeustR0fH48ePq8/8ERISotTe6ZHkcpSUaGtw/aanuYqNxerVOHoUly4hKQlnzuC773DwYP1sBLiH8ImIunb9bvjw9uvWbb9yJbhduxFt2kChwLffomlTdctXXFJSWlxcVlZWXFFRXFVVKpOVyeXFVVXq28M9Pf2cncUASkuRnQ2eVK2BUm9UPbqHUJsbWDt37gTwwgsv1HGcLVu28CRa9dqjG+uP7tXRDuZKXzBXVHNJSQ9v3LwJAwOcPYszZyCXIzu7xkPl5eUNHjw4Ly9v6NCh33zzzffff7948WKJRPLzzz8/88wzTziIjY1NVVVVSEjI5s2bW7dunZqaGhER0adPnxpX81g//YSICDg44N49fPABYmPRowccHTW/Ir2kj7lKTcWRI7h0Cbdvw8wMpaXo3Rt376K0FMbGD68GVJ80vIbw7Fn06AEDA8THo3lzqPcMh4Zi5EgYGuLkSfTrp4W1pqa6WlsvfvbZt48enbRnj6+TU4lMVlRZWSaXl8lkxX+5jOHfa87IcLWx+WHkSAAoKmJD2FD9fcqo1jaw4uLirl271qRJkwF1/tTYuHGjRkoibfn71D7miuqOuaKaU6nwzjsAcPYsPDwweza+/hpTp6KsDH36wN8fnTvD3x8eHvinUzn+oby8fMSIETdu3OjSpcsvv/wSFhY2c+ZMAF999dVI9bbQkxk3btxHH320d+/eb7/9duzYscuWLQsNDdVKQxgSggMHAGDVKty4gUGDYGys+bXoK33M1alTkMtx7RrUp9o6dw4FBXB3h4EBLlxAv36PealPXf2q5kls3YrKSgA4cgS3bz+8c/VqrFoFAD/8oJ21lpQAmNapk7mhoYlUejojIyY7O7Wg4G5JibobtDAycjI3d7e19W/atK+r61BPz+B27V7193+re/c3unU7n5W1OTb2aGqq+nr32imRtO8pHkO4Y8cOAMHBwVLNreLKlSujRo3S4nwbqp2neKwXc6VHmCuqObEYK1ZgxQo8+ywASKWYPRtr1+LWLZw9i1Wr8OKL8PKCjQ2efRbvvIPdu8/euHFD+PMUOKVSOWHChPPnz7u5uR04cCA9PX38+PEKhWLBggWzZ8+uUT2enp4dO3Z88OBB9ey+Xbt2aT4VMhnMzB7ebtUK9+7BzOzhdz1pgj7mqrgYSuUfP8PZ2KCkBIaGEIshEqG8XJPr0oSGt4cQwJ49MDbG1asIDHx4T+vWuH0bN29qbZXNmyM1df3Fi6UymYuV1U+jR1sbG1sYGZlZWJiZm1tbWcHQEEZGMDKCVPrwtoEBzp1Tfw03s7Scd/z4jIMHr7q6WrAhbLDyFIpL3bpJS0sHANGWlip/f1czM21cglAQhJCQEGhi/lW1S5cuDR069Ouvv5bwS66eyVMoLvXpI3V0HABEN2+u6tOHuaK6Y65II/r1w6ZNaNUKhw8jJgYxMbh0CVlZOH0ap09j27YXcnKyLSwsOnTo4P+7devW7du3r0mTJkeOHJHL5UOGDCkqKnrhhRc+/vjjWhQQFBQUHx8fGhq6ZcsWDw+PGzdunD179ll1Y6EphoYoL4dMBkNDREXh5Zc1OTj9k8afKwsLlJZCLodSCYkEmZno0OHhQxLJHz9A1BsN78L006bhpZdgYoKtWzFtGvz8AGDSJHzxBd59F0oltm3TwlpLS0uXLXNbvTqvrOzYyy8PdHdXSiQb8/KKmjYtKSkpLS0tKysrKip69HZxcbGsqqpo0SLIZMrKymc2bryUnf1Gt25fLV78RyNLDUp8fLyvr29HJ6e4mTP7/vjjmYyM06dPa2PuSkRERK9evVq0aJGRkfGPl1ithYqKisTERH9/f42MRhr0MFcdO8bFxfXt2/fMmTPMFdUdc0W18ODBw1Ohl5RAKoVYDEPDf5hxnJODmBjExVVcuDA+Jibmzp07jw4ilUoNDAxOnjzZpUsXPz+/q1ev9u/f//Dhw4a1mrSclpbWunVrS0vLnJycJUuWLF26dObMmevXr6/Dq/yz9HSYmiI7Gxs2wNQUrVujhrub6LH0LlfZ2fjyS4jFKC5GTAykUtjaomtX9cvA8OFo314zK9KcBrmHsHNnmJvj1CmUl2P//ocHDTo4oFs3bN6snVUmJq6KisorK+vp4jLQwwNisdjff86wYY/dv1w1a5bR3buSrKzv8/M7r1+/Njo6ODS0Z9u2aNFCO4XqscJC3LmDoiIoFDA2RpMmaNFCs8fMyGQyAIYSCQCZUgmgdh9Dj6WefzVhwgRNbV0BMDExqd66unnz5quvvrpr1y4rKytNjd9oPbVcGRr+5bbGMVf1CHP1n5grXam+MJaFxR93/j04jo4YMgRDhpgA+wAUFhZeu3YtMjIyIiIiIiKivLx8wIAB6jN8fPnllwsXLty1a1et4+fu7u7n5xcbG3v06NHg4OClS5fu2rVrzZo1Bgaa2ILNy8Nzz0GhQFgYNmzQwID0T/QrVw8eYONGbNkClQoTJ2LECEilEISHk0WHDoWPT11XoQUNryEMCoKREQA8+yzkcnTujO++Q3AwAMyYASMjrF2L117T6LGaCkVRWNiq8+cBfNKvH4YPh5eXyNj4tddeMzU1NTc3NzMzMzMzs7GxUd82Nze3trZW3zYyMYGbG9zcOiiV7165sjQ8fNq+fbE+Psavv87p6Rpz7RpOnUJREcRiyOUQBBgYwMAAcjk8PTFwIGxsNLKep9MQKhSKXbt2QaPzrx61cOHCVatWvfXWW9y6eoynnCstb7gzV/UFc1UTzFWDYGNjExAQEBAQMG/evOjo6G7dul26dEmlUonF4oEDBw4YMEAkEtVl/ODg4NjY2NDQ0G3btnl7eyclJZ0+fbruZzBCRQVGjcKNG/D3h4NDXUcjTWuQuaqowObN+P573L+Ppk3RtCmCglBUBJUKtrZwcalv55KpVk/L+g+BgQ8PjO/WDQEBiIlB374YOhQAJBL89BNefx3r1ml0lRcvrjh6tLCior+bW98hQ+Drqz731Ndff71s2bIFCxbMnTv31VdfDQoKGjx4cO/evTt16uTm5ubg4GD26BTh3r0/Gju2rb19cn7+Z3v3IiJCoyXqK4UC27fv/uw67t+HQrE73l19dZf8YsPt0R5QKovjb56ddwhXr2pkbbL8fPy5IZRqYcb18ePHc3Nzvby8OnbsqPHBAXz99dclJSU+9fIHqvriKefqbxvuGjwzRzXmSveYq5pjrhqcrl27uru73717NzIyUn1PHbfaAYwbN04kEu3fv7+iomLs2LEAQkND6zimUomq6XMQFYVWrXDwIMzN6zggaVXDyJVCody+s2rzDmRmwsYGU6Zg6lS0agVfX3TqBFfXetsNoiE2hI86dAhRUXg0Eu++CwDvvae5E8zI5fePH//6wgUAC/v2Ra0PwJBIjMaM+X7UKLFItDQ8PDYkBHl5GipRj4WG4tatkPg26v8LudZOfSO3zOyDk/2jMlsUlhsdTW6JAweQnl7XdcnlskOHAEjFYgBy9R7CEyfqOuzfqOdfvfjiixofGUBaWtqDBw8sLS2Hqn9EoX/0NHP15411uVwO7ezJYa50j7mqIeaqgRozZgwA9amGNKJVq1b+/v4lJSW//fab+pyQu3fvVigUdRlz7lwEnv2gwrc7jhyBkzZOt0QaVt9zJQjYvXvupnaBt7+rcGqFSZPw6qsPL47XEDTshnDoUHz22cPzylTfExSEsjLNHRJ84cLyY8eKq6qGeHj0Gjq0TpMKmjV7ZvToWV26KFSqGfv2KffsQUM7o0/9oj6xrFyeVWy55kLXNRe63iv94xe+KX6xK891V6jEACCXY//+uq4uMVFeVQVAAMrk8ip1Q5iXh/z8uo78iMrKyn379gEYN26cBoettm3bNgCjR482MTHRxviNwVPO1e8b64IglJWVVVVVQQsb7syV7jFXNcdcNVDBwcHQ9Hn81dvrISEh7du3b9u2bX5+/smTJ2s92rJlWLMGF/LcYtZEoU0bTRVJWlXfc3X06LKNdmsudL1Q5hMz9CO8+mrDOl1Iw24I/9G6dbC3x5EjmjjdqEyWFxa27uJFAAuffbb2uwerDRjweVBQKxubi3fufLV7N6Kj61yiHktJgUIBoIlp+Yg210e0uW5rUlH9oKFEOb1TzNrorgBCrrUrzy9HfHzt1yUISEpyMjLq5eISfuvWhF27CioqAlxcLE1MNNsQ7t+/v7i4uFu3bh4eHhoctprGzw7fCD3NXAEAnJycevXqFR4ePmHChIKCgoCAAEtLyzqO+RfMle4xVzXHXDVQ/v7+rVu3vnfvXnh4uKbGDA4OfvnllydPnozfN+K3b99eu6FCQvD++xCLsW0bAgI0VSBpXX3MlSAgLQ3Hj2Pt2pAfSt8P6ycWCdue3x0w3Rve3poq8ulohA1hkyb44gsAePNN5ObWbaxz5z49erRUJhvl5dV1yBAN7PmVSs3GjPlmyBAAH548mRYaitxcqFR1HVY/yWTqXazGBoqW1kUtrYsMJcrYu04h19qp97wGtk7LLTPLLLIaHzrGc83rWxffRGgoSkpqvKKsLMX332/Yvn34jh3ht29XKhTns7KKKisjbt+esWdPZi0G/Hfq+Vda2gC6fPlyYmKivb19//79tTF+I/HUcgUoFIoNGzYMHz48PDy8srLy/PnzRUVFERERM2bMyMzM1OBrYq50j7mqIeaqQVNvW9f9SL9qrq6uW7duHTRoEIAePXpIpdKQkJCmTZsOHz580aJFBw4cyMnJecKhunSBpye+/BJjxmiqOnpK6leubtzAypUIDUVUFO7f79L0jmeTgi8Dj43xuY6bN+vhpef/m2TRokW6rkHzOnbEuXMwNj6SnPzt8OG1vehfZeXdH3+ctGuXUqXaGRzsNHkyNDJrxcbGQyxOTUq6fPfu1Xv3JsrloshI5OaiVSto4Yj/xqyqCmlpUCodzUpbWhcBcDQrtTcrzyk1MzJQejXJdzIv7dEiUyRCRpFNyn27vclel69Iu9/bY21YjhYtnujQ3rw87NsX9t13z2/c+ENsbKlM1qVZs5/HjFk9eLCdiUlUZmbc3bsbtm+Xy+Xdu3ev46mKk5KSPvnkk8OHD1dWVq5evdpOC/POV65cGRUVNWXKlGHDhml88MbjKeQKABAWFvb888//8MMPpaWlXbp0+fnnn9X/7lFRUXFxcRs2bGCuGhXmqoaYqwbN1tZ2w4YNGRkZc+fO1eD1SADcv38/ODg4NzdXIpE8ePAgJSXlzJkzO3bsWLFixebNm2/dan35cpvyctjYwNT04SKCgKQk2NsDQFoaTp6EmRk+/hi5ufXw8uD0X+pRruLjhT17kzIt7I2KAaQV2JzMcDOTyj5+9nRuqalZaQ6uXoWvbwPasG94F6Z/Qrdu5bdr51pWVnbgwIEaf50IAu7cQVTUaytWrL94Mbhdu18+/xwaPKi9ouL+Z5+1Xbkyt6zs+5Ejp/j5QSKBtTVmzeK1KGpAqcSaNSgufvRQzCqF5KsLz7zdPUoi/uNOFcSbYvz+d3xgUaWRiVTxv56R80cmGo0IhJvbw2fIZHjwAPb2f5yhqKQEZ85EH8hZF22zJW4MgNa2tkv79x/brp1IIoFSCUPDuxUV865f/ykkBICnp+fatWsHDhxY0xchk8l27dr1zTffREVFARCJRIIgDB48eP/+/Zq5yNLvVCpVy5Yts7KyIiMje/ToocGRGxut5goAEB2NdevStmxpDaB169ZLly4dO3Zs9QnT7t69O2/evJ9++gnMVWPCXNUEc9UIeHt7Jycnh4WFaXAfb2Vl5cCBAyMiInx8fCIiIsrKymJ+FxUVVVBQ0LFjeHz8w2mgrq7w90fnzujdG4GBOHUKnTvjpZewbRuWLMHo0Vi/HtOnw9dXU9XR01AvcuWn6lx+tnez9MBtL516ZUvnptkv7X5+2/O7l5zpPdo7ef3FztP9L/s2z0fHjmg4v2c12oYQwFdfffXmm282bdr02rVr1tUXxXyswkJs24bS0tt5eZ5r1ihUqqtz5ngvWQINHn2hVGLZsp9jY1/89VcrY+Nrr73WzNISUikCA/H7pXjpidy/j++/h0yG348wfi9sQDv73EHuaY7mZQ+fI5WidWt4et7bHfW//QHb4tsLELW2LVg75HDg82YYNAgZGdi3DyIRTE0xaRLMzBAdfXt/3IKjvdRP7ukyYVy7BzMHD5b274+WLXHtGoqLYW+Ptm0hlZ46dWr27NlJSUkAhg0btn79+ubNmz9J7Xfv3t26devatWuzsrIAWFpajh8/fsyYMRMnTszJyZk2bdrGjRs1+FadOXOmb9++LVu2vHnzZt1P1tzIaSNX1tYAbt/GggXYtg2CgJ49540b13zmzJn/eDEA5qoRYq6eGHPVCHz44YeffPLJjBkzvv32W40MqFKpxo0bt2vXrmbNmp07d67Fn8/YoVKprl+/HhvbKjraOCYGsbEo+/2vasoUVFWhqgo7d2LiRPj4oFs39O2LkBCMH6+R0ujpqUe58outUhpUKSQ7x+6auOd5H4ecbs3v9HXNCLnWbrxPAgBYWmLuXI0U+RQ05oZQpVL17t07MjJy5syZ69evf6JllEp8/TVKSiAI0/bv//7y5Zc7dtz60kt45x1NVpaTg82bUVXVe/Pm+JycfePH93V1BQBvbwQHa3JF+qCsDIcO4cYNAPjLyYKNjABgwAD4+0MkQmUlTp8+G5rz2sEh13LtAQzzTFn3fFgL0/sPD+MUiWBqWlBhsvyY7+rzz1QpJKZS+evdoucPibca1A2dOuFftkvkcvm6desWLFhQWlpqZWW1ePHiOXPmSP59Z29ERMTXX3+9d+9e9WkAvby8Zs6cOW3aNPWFKy9dutSnT5/y8vIVK1a8/fbbGnmTAMycOXPDhg3z589funSppsZszDSbKxubgglzln8hWr0aVVUwNcXrr2P+fPz3pbaZq0aIuXoyzFUjcOXKlY4dOzZp0uTu3bsa2YE8d+7c1atXW1pahoeHd+jQ4b+frFQiORkxMQ+vVn3oEEaOxO3biIyEOqe+vpySsMDukwAAIABJREFU1SDVi1ydeBDzS2pfl7RDKZ4j2yTfLrKKzHR5u3sUAF+ne3/M+HBwwKxZda/wKREataSkJGNjY5FIFBYW9m/PUSgUBQUFN2/eTEhIOL9z5/EpU3YFBy8fONBAIpGIxclz5ghLlwpZWZoqafHixd9++aVsyRJh0aI+rq4ANo4YISxaJCxaJOzdq6m16J0HD4Rz54Sffxa++Ub46ithwwZh3z4hKUlQKP76zDt3qtZt+mxAmJmhDBAsjSo/6nv6+MStwqJFR1/+6ZN+J6yMKwFBIlZN8buc9d4a4dQpQS5/khLS0tKqL5bl6+sbFRX1lycUFxdv2LChffv26ucYGhoGBQUdP3780eccOHCgqqoqNDRULBaLxeJff/21Dm/KH2QymfognytXrmhkQH2hqVwNPG1lrgAEiUSYMqVmHyfMVSPEXP0n5qrR8Pb2BnDs2LG6D/Xll1+qc/gfm3P/Ri4Xpk4VBEGYPFkYP77utZCO6T5XKpWwZo184ZKpnS4LixZN9osd73P14ZZ89X+ffipcvlz3Cp+aRt4Qnjp1ql+/fgAcHBwmT54cFBQUGBjYs2dPX19fNzc3Ozs7Y2Pjf2uVXaysOjo6CosWCUuXFoSHr1+/vu71ZGRkGBoaSiSSxHffjZgyBYCVsfH9efMeRufGjbqvgh5PqRTOn8+av/bljvEWRlVvdY/q1yq9eP7S5QOPvd0jEhAGuKXFzf5OOHJEKC+v6dj79+93dXUFIBKJXn755dzcXEEQrl+/Pm/ePBsbG3W0nJ2d582bl5mZ+Zdl1R9ML730kkql+uyzzwCYmJicO3eu7q/4wIEDANq2bVv3oehfPTZXA4S4uFqOzVzpL+aKGqyPPvoIwLRp06rv2bJly/HjxwsKCmo0TkhIiFgsFolEW7durUUZCoWg3oK7eVNYtKgWA1D9Ui9yVVio+GLl+pFHhEWLbr65elHfU3/tBg8erPGYOtXIG8Lu3bsD8PT07Ny58781fmKx2MbGxsXFxdvbu0u7dgNatx7t7T2iTRsDsVgsEoVPmSL/5BMPV1cAe+u8B2/q1Knqb1Bh82b1NNFFffuqe04hNFQjL5meVEmJsGXLrbmrFvY9vWf8znd6RC4feCx6+nenX9kshIQI9+/XeuCysrL58+errwFta2vbsWNHddJEItGzzz67a9cu+b/scrx69aqVlRWAhQsXCoIwa9YsAE2aNElNTa11MWoTJkwAsHTp0jqOQ4/3b7maulVQqeoyMHOl15graoDUR6va2NhUVVUJgqBQKMx+P62ns7PzsGHDFi5cuH///ry8vP8Y5Pz586ampgCWL19el2JKS4X27QVzc6G8XHjwQNiwQVi5si7jkc7Ul1xVVQknTpR+/GV7xxxzw6ryJSseLFy5YeShlUFRQp0/Bp++xtwQHjp0SP39VFxcPGvWLEtLy7lz5x45cuTs2bMxMTFpaWm5ubllZWV/WqayUvjsM3V//2GfPgA87ewqPvro61Wr1Dmr6c8Pj0pNTZVKpRKJJDk8/PjEiQCsjY0L339f2LRJiIur45c61UZkpLB48cK+p9P+76t3ekRO8o2Lnfmt8MkndekGq6WkpAQGBhoaGpqampqbm7/66qtPMv3p8OHDBgYGIpFoy5YtcrlcfW0cb2/vwsLCWldSVlZmbm4uEonS09NrPQjVwD/maulS5orqhLmiBqhdu3YAjhw5IghCUVHR66+/3r17d9PqK0L8/uuDh4fH+PHjV6xYcerUqUcXv3Hjhr29PYAZM2bUvZiuXQVA2LVLSEoSAMHGRqiqqvuopAP1KFcqVddOckDYtToz6cSdhpurxtwQdu3aFcCXX35ZXl7etGlTAPv373/8YrduCZ99JixdWvXhh+0cHAB80Lu38sSJgIAAANOnT691PS+//DKAKVOmCNu392rZEsBnAwYIly7VekCqq8OHhUWL1BtYRfM/a2FVFDvzW2HZMuHWLU2tQX26qriazOj67rvvAEil0rCwsOLiYvUhzn379q2q7QfMzz//DKB79+61W5xqjLkibWCuqAFasGCBegLwli1bEhISFAqFIAgKhSIhIWHLli1vvPFGz549H92Od3V1rV42Nze3devWAIYNG6b4+xG2T6ygQPjhB6GwUPjiCwEQgoMFQRDatRMA4fDhOr9C0gXmSuM0eVXHemXv3r3R0dHOzs4zZ85cu3Ztdna2v7//E12Q0MUFb76J554z7Nz5+xEjJGLx5xERcbt2bVq2zNjYeNOmTWFhYbWoJyUlZceOHVKp9INp0w4fPhx+61YTU9PZAwbwCji6JJMBeLbVTTuTckujqh1jdjmYlgGAXK6pNTRr1gxAeXl5QkLC1KlTly9f/thFpk+fPnfuXLlcHhwcnJ2dffjw4WbNmp0+fXpWrc5VVVZWpj4d/AsvvFCLxak2mCvSBuaKGhpBEBISEszNzRMTEydNmuTj42NlZRUQEPDWW2/FxMT4+/uvWrUqIiKiqKgoLi5u06ZNs2bNGv/7hSDKy8uHDx+emprapUuXnTt3/seJcB9r/HhMmYK9ezFuHEQiHDyIsrKH53QPDdXIC6WnirnSCl13pFqhUqnUB0KsWbOmpKTEwcEBwG+//VbjgX777Y1u3QD4OjnJ1q9f8vHHAFq1alVaWlrTkcaNGwdg1qxZwpYtXZs1A/BlYKAQG1vjkkiDDh0SFi1685lzd97+Uli06Juhh06/sllYtkzIyNDUGoYPHw5g3759J0+eBNCnT58nWUqpVI4ePVodtpycnEuXLqnnxz/JQTWFhYXh4eGrV69++eWX27ZtK5FIzM3NW7Roce/evbq+GHpCzBVpA3NFDc27774LwNzc/I033hgzZoz6DEaPsrCw6N2799y5c7dv356cnKxUKtULKhSKkSNHAnB3d8/JyaljGd9+KwDC4MGCIAjduwuA8MsvD2eNdnXLU1XJ6jg+PWXMlTZo4Aoe9VDhvn3tZbKCFi2mT5++YsWK3Nzcnj17BgYG1nigfv0+u3r1YEpK3L17q3fvfu+jj3b7+cXGxi5evPhJfjqtlpCQEBoaamxs/P6kSXtWrYq+c8fZwmLmwIF43AVPSLusrdXXIUq5b1dYYXy3xLydfS5UKpiba2oN6knqeXl57u7u6htPspRYLN6+fXu/fv3Onz8/bNiw06dP//LLLyNHjvzggw9cXFxefPHF6mcKgpCWlhYbGxv3u+zs7EeHkkql7u7u4eHhFhYWmnpR9BjMFWkDc0UNyoYNG7744gupVLp79+6BAweq77x///6lS5diYmJiYmIuXbp0+/bts2fPnj17Vv2opaVlp06d/P39k5KSDh8+3KRJk8OHD6t/06+LMWMwZw7CwnD/Pha+csvFYGmrQzAO3nBn9JymBzbg+F78fgkWqv+YKy1pjA2hUmn7/vs/JSfn/vhjZWWl+tTYS5Ysqc1QUqnp2LEbExIGbNmy8PTp0e3b/7B6dZf+/VeuXBkcHPwfZy79iw8//FClUs2YMaNZYuKwM2cAfNCrl+mgQRA32im7DYO9PaRSALF3nayNK28VWQOAUonfz7euiTU83MCqvvGEC5qYmOzZs+eZZ565ePHiK6+8snPnzuXLl7/99tvTpk2TyWQqlUq9OXXlypXi4uJHF7S0tOzQoYOvr6+vr6+fn5+Pj4/6/IH09DBXpA3MFTUcBw8enD17tkgk2rhxY/VWOwA7O7vAwMDqH+gfPHiQkJAQ87vExMTTp0+fPn3azc3N1NT04MGDnp6edS+mSRP064djx7BvrzBliASzNuGiIdauaNrJCXsUCA1tWBvu+oy50iId76HUhq1bBUBwdRWqqlQffXS7e/cFdbwQ6d69Ezt2BNDH1VW1efM777wDoEOHDjLZE+0OjomJEYlEJiYmd6Kido4dC8DFyqryq694WlHdq6wUliz56xSsTZs0uIYVK1YAeOuttxQKhVgslkgkNTqCufrE7upLnsycOROAgcGffsexsbHp2bPnG2+8oT60unpqBOkMc0XawFxRAxEdHa2eNvzpp5/WaMF79+4dPHhw8eLFO3fuTEtL02BJF7bfyOkyVDlkmCAIQs+eAiDs2CGkpgqAYGkpVFRocF2kJcyVVjW6PYRKJT79FAAWLUJJiWj16hbFxUuWLavTmM89t+rq1aNpaWcyMjbt3v3x++/v3bv3ypUry5cv/+CDDx679GeffSYIwpw5cxwTEhafOQNgQe/eRgMGQCSqU1VUd0ZGcHXt2jzbVCoH4NUk38lWhs7dNLiG5s3b9+gxwcDAVyKRDBq0sbDQprAQTZo86eI+Pj6hoaFXr15Vz3p3c3MD4ODg0Lt3b/UP6r6+vnWf9kAaxlyRNjBX1BCkpaUNGzasrKxs2rRp77//fo2WdXR0HDp06FAt7FfpOtgOk49DpUJuLoKCEBmJkBCMHw9fX8TF4dgxjBih8ZWSBjFXWqfrjlTTNm4UAMHDQ5DLhXnzBEB47jkNDHvtmnrnnqWRUeZ77504cEAkEgUEBDzJr5v5WVnvv/BC3iefbB09GoCrtXXV119z92B9ce+e8Omn6itPCosXC6tXCxr9xfrw4T8y6OUlAEJiYi2HyszMNDc3B3Do0CENVkhawVyRNjBXVL/l5eWpJ+MNGTJELpfrupw/GzxYAIQNG4TsbEEiEYyMhN9+E157TRgyRDhwQLN/SqRZDSlXxsZCUZGwdq0wZYpQk0v46FzjOoZNLsfSpQDw8ccoLMS6dQCwaJEGRm7bdlxQ0Cgvr+Kqqlm7d/e7fPnI9OmnP/pIrFI9ZsHiYruff/60XTsbmezT8HAAi/r2NRw4kLsH6wtHRwwdCgMDGBnBzAwvvaTZAzvt7QFAfSTOo7drYe7cuaWlpWPHjh0yZIiGqiOtYa5IG5gr0pD16/96486dhxtQ+fnYv782Y1ZUVIwYMSIlJcXf3/+XX375y2xh3QsKAoDQUKhU8PZGu3Y4cQIODnjmGSQkYMUK3Lih6xIbPL3OlbMzhg7F+PEoLcXs2fj+e3TsqOviaqCeva11dOECsrPh44PgYLz9NkpKMHIkumloRs2QIevi4k6vWnUwJSU0ISGoXTtERyMjA5MnQ6FAZSVkMsjlqKpCZSXkcshkkMlw+TIqKiAIm+Pirufne9javtixI/LzNVMSaUTHjvDwQGEhnJxQhyvS/CNNbWAdP358165dpqam6oN8qAFgrkgbmCvShDNnoL5UZPWNggJs3w5fX3h54dKlGs90UyqVL7744rlz51q1anXo0CFzzZ38VmNGjcL//gc7O/z4IwICcP48IiOhVCIwENevQyKBXI7gYHh46LrQBkx/c9W8OQQBH3+M1auxciVkMnz5JY4fh6Eh+vdvEDuBGldDGBCAGzeQm4ucHGzYAJFIM7sH1czMnC0tlw0YMPPgwdcOHerWvLmxRFKal/dgzpxSmaxMJiuVyQorK9U3yuTywoqKMrlc/VBhZWVqQQGAxc8+ayAS4epVBARorDCqO1NTmJpqY2CNbGBVVVW9/vrrABYvXtyyZUtN1kdaxVyRNjBXVGcpKXjnHQDIzPzjzokT8cMPD7ebZs5Emzbw94efH57kIiBvvvnmnj177Ozsjhw54ujoqJWi68jGBvfuYft23LyJs2cxejSkUly5goQEqFQQiyGT4fBh/N//6brQBkx/c6X+ee6TT7B1K0xMsG0bfvkFCgWkUqhUGv/xThsaUUNYVYUvvsCDB2jSBBMmYNw4VFbC11dj4z94AEF41d9/R0JC5O3bLVetqtHS9mZm3w0fPs7HBwAUCo1VRfWbesutvBylpZg8GX374plnajzI2rU5YrF5u3bt/o9fVASAuSLtYK70h6cn1Ltvx4//406xGO++ixUrYGODDRv+uFO9Be/vj27dbrVvb/f3vTSfffbZ2rVrjY2N9+3b16ZNm6fzEmpDIkFuLgAIgvoiLnBwQHIyevUCALEYDx7osryGT39zpaZSwcQEANq3x969mD8fIlGD6AbRqBrCL75A9+7o3x979mD3bmzejMce4FdzIpHo+xEjzmVlvXrggJlUamlkZGVsbCaVmhsaWhgZWRkZmRkamhsaWhgaWhkbmxsamkml6vstjYzaqE/WJpHA1VXjhVG9ZW+PW7eQl4du3Wozfzk9HR9+6CKTXThz5q5U/QVGxFyRdjBXeujECaSno0sXAOjWDZs3QyrFd98hJgYxMbhyBUlJSErCtm3w85sSG3vS2dk5ICCgZ8+e/v7+fn5+Bw4c+OCDD8Ri8bZt23r27KnrV/M4Dg7IyIBIBIUCBgbIy4Od3R+b7NbWOi2uUdGvXKmJxaishLExrl2Dhwca1FVVRYIg6LoGDRkzBr/+CgByOV56Cb/8ouHxBQErV6K09E/3iMVo2hROTjA2hlQKQ0MYGsLY+OENQ0Pk5+PAAcjlDxcRiWBoiNmzn2hPOTUKEybg3j1s2gQ3t9osPnw4Dh7ExInYskXTlVFDxlyRNjBXeuL6daj3uFy/DgcHnDgBd3fY2qJlSxQVIT8f7u4PnymT4epVXLqEmBhcv97/3LlwefUmDSCRSAwMDKqqqoYMGbJu3boGMEn43j388ANu3UJ0NExMoFDgueceNoRSKYKCeAxhXehvrtRiYrBmDezsUFmJ1avRoH4Ua0QN4cSJWLMGVlbIzsaSJX+c4UiD0tLwyy9/dHcGBnBwwNSpjznPW0YGDh5EYSEANG+OESNgZ6f52qheOnAAFy7gk08eHlrcp0/NFt+zB88/D0tLJCfD2Vk7JVIDxFyRNjBX+ik/H9u3P+mhc3K5PCUlJSYmJiYmJjIyMj4+fs6cOSdOnLh69ernn3/+v//9T8vFakJWFkJDUVkJpRJK5cNf6sVijByJ+jwvsaHRu1w1cI2oIbx0CWvWIDAQhw7h/ffRrp1W1pKVhWPHkJMDIyN07Ig+ffCEJ8CVyyESPemTqbH48Uds24alS5GRASMjjBxZg2XLy9GuHTIy8M03eO01rZVIDRBzRdrAXOmnJUvQpg369oWDQw2WUiqVTk5O+fn5Fy5cyM7OHj16tL+//6VLl7RWpkYJAm7dQlYWSkthbIxmzeDm1lCO9Woo9DFXDVkjaggBFBUhJQVeXpyQSfXEjz/C3h4//ICxY1FZiX370KsXAgLQqdPjpxK89x4+/xz+/rhwgd9T9CfMFWkDc0U1MmPGjO+++27BggULFixwdHQsKiq6ceNG69atdV0XNWzMlU40rgvTW1mhSxd2g1SvmJhg8mRs2oRr17BvH955B888A2trBATgvfdw4MDD2cR/5+QECwusW8etK/oHzBVpA3NFTy44OBhASEiIkZHR8OHDAYSGhuq6KGrwmCudaFwNIVG9NGwYLCzQvj22bMH06fD2RkUFIiPx+ecYMQIODujcGW++iV9/xb17mD0be/cCQFYWVq58eK7cc+ewc6duXwTVO8wVaQNzRU+ob9++jo6OKSkpcXFxQUFBAEJCQnRdFDV4zJVONK4po0T1jEwGsRgGBpDJIBL9Me0qPx+RkQgPR2QkYmL+dBraoCAYGODbbzFnDrp1g7c3nn0WJ04gLQ2vvqqr10H1C3NF2sBcUU299tpr69evf//99xcuXOjk5FRYWJiUlOTl5aXruqhhY66ePjaERDpWXo4LFx5ubBUUoG1bvPUWtm9HTg66dcPp02jRArdvY+BAbmBRDTBXpA3MFT3q1KlT/fr1c3NzS01NPTR/freTJ21Hj5bMn6/ruqhhY66ePjaERPXLpEnYsgXvvovwcEycyF/cSTOYK9IG5krPKZXKjUOHji4stF+3TnzvHoYNQ4cOiI/XdV3UsDFXTx+PISSqjz76CJmZEIkgEgH44wZRXTBXpA3Mld6SSCQzPTwco6PFoaEYNAi2trhyBUlJuq6LGjbm6unjHkIiIiIiqpWzZ9GnD1q1Qloapk7F5s1YvBgffaTrsqiBY66eLjaERERERFQrKhVcXHDnDqKjkZ+PIUPg5cWdOVRXzNXTxSmjRERERFQrYjHGjAGA0FAMGAA7OyQn49o1XZdFDRxz9XSxISQiIiKi2goKAoCdO2FggFGjYGCAS5d0XRM1fMzVU8Qpo0RERERUWyoVWrbE3bu4ehXm5jAxQZMmuq6JGj7m6iliQ0hEREREdRAVhdatsWMHUlIgl6NbN0ydquuaqOFjrp4WThklIiIiojro0QNyOZKS8M03+O47hIWhuFjXNVHDx1w9LWwIiYiIiKhubt2Ch8fD2+7uyMrSaTXUWDBXTwUbQiIiIiKqGzc3JCc/vJ2aChcXnVZDjQVz9VQY6LoAIiIiImrgnJzQqRNmz4ZSieHDYW6u64KoUWCungqeVIaIiIiIiEhPccooERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRERERERER6ig0hERERERGRnmJDSEREREREpKfYEBIREREREekpNoRENaZUKq9fv15cXKypAe/evZudna2p0ag+Ky0tTU9Pl8vltR7h3r17WVlZGiyJqGEpKyuLjIx88OBBjZZKT09PTEzUUknp6enXrl3T0uBUU1VVVSqVqvp/lUqlDoshPddQPq/YEBLVWE5OjpeX1549e3JyckJCQnJzc//yhL1798bExDz5gBMnTgwODq5jVdnZ2SEhISUlJXUch7Rq37597u7uN2/erPUIM2fOHD58eB3LUEe3sLCwjuM0AuXl5bt37/74448//PDDTZs23blzR9cV1djWrVvDw8N1XUWNRUVFbd68uRYLpqSkBAQEnD9/vkZLzZs3r+4fs/9m/vz5QUFB//GE//3vf1ZWVlpa+5NYsmSJSCQSBEGHNdTCl19+uXjx4hotkpGRYWxs/OuvvwK4d+/egAEDjI2Nzc3NV65cqZ0anyp+XulKo/+8YkNIVHtXrlwZN27clStX/nL/pEmTNm7c+JSLiY6OHjduHPcd0ZNQRzctLU3XhehYeHi4h4fHuHHj9u/ff/r06Xfeecfd3X358uW6rqtmFi5cqN78zcjIeO6553RdzpPat2/fBx98oOsqqP4SBOGrr75ydnau9QgffvhhbGzs8ePH9+7dO2zYMA3W9hfLly+/ceOG9sZX4+eVDjX6zysDXRdARJoxbNiwoqIic3NzXRdCDUC/fv2YloyMjGHDhnl5eZ0/f75FixYAKioq3n777Xnz5jk6Ok6aNEnXBT6p6h3OqampJ06c0G0xT+7zzz///PPPdV0F1V8XLly4c+fOiBEjaj1CXFxcnz59+vbtq7mi/tknn3zi5+fn4eGhvVXw80q3Gv3nFRvCx8jIyPjtt9/Gjx9vbW2t61pIMxQKxcWLFzMzM62trTt37mxra6u+X6VSnTt3Tn1/nz59VCpVcnKym5ubjY1N9bKXL19u2rTpE64lJibG1dXVzs6u+s64uDgHBwf1CBUVFREREffv33dyciotLZVIJAASEhKcnZ0FQTh16lTTpk179uwJICkp6fr16yKRyMfHx93dHUBycnJZWdmjq/Px8SkrK0tKSurUqVNBQUF5ebmHh0diYuLVq1cdHBx69+6tHh9AZmbmhQsXlEpl165dW7VqVZd3kuoiMzPz3LlzVlZWAQEBBgYGCQkJLi4u9vb21U+4cuWKra1t8+bNAVRWVkZGRubl5Tk6OlYfvJqYmGhvb29gYBAWFubg4NCnTx8A169fT05OFgShbdu2np6eAFJSUv4ykbht27YymSwhIcHX17e4uLi4uLhNmzbXr1+Pi4tr0qRJ7969pVKp+pl37ty5cOGCTCbr0qWLOnuNyRdffFFRUbFr1y711hUAExOTtWvXXrhwYeHChcOGDTt58qSnp2fHjh3Vj0ZGRt6/f9/NzS0pKen555+v/pu6d+9eeHj4oEGD1HMCr127FhUVVV5e7urqKhaLvby81JuJsbGx586dEwQhICBAPWZ+fv6pU6fGjh2bmpp68uRJAwODwMBA9b/43+Xm5p49e3bs2LHXr18/deqUkZFRYGCg+sPk6NGjzs7OaWlpp0+fFgQhNDQUQLt27by9vXft2tWvX7/s7OwzZ8506NChd+/eALKzs8PCwtSvJTAw0NjYuHotSUlJkZGRZWVlLi4uUqnUw8OjTZs2AOLj46OiopRKZY8ePTp16gSgoKDgxIkTzz///K1bt8LCwiQSycCBA11cXP7t3ZbJZIcPH87KynJ0dOzXr5+dnV1CQkJmZubgwYNPnTrl5OTk5uamfoKXl9fAgQOrF/z7+/nosIIgnD17Nj4+3tjYuH///o9NaVFR0fHjxwsLC/38/Dp37lx9f15e3rFjx3Jzc11cXAIDA9W/ldwQEY2/AAAgAElEQVS6devq1avDhg2Lj4+PiIiwtLQcMmRI9Uf6gwcPjh8/np2d7eTklJOT85cXGxcXV1ZW5u3t7eTk9OhD9+7dS0xMbNasmfqNxe8Hpefk5Dg5ObVp00YsFgO4ffu2ra2tRCKJjo52dnZW/y0DuHnzZnp6uomJiYeHR1lZmaurq/pNSEhIyMnJadasmbe396Oru337dmpqqrW1dWlp6X+/M5WVlZcvX66oqPD29lbnqqCg4MGDB82aNTMyMqpeu7m5eXl5uYmJiYODQ/WyOTk5SqWy+ssxPT09PT3dzMysdevW5eXlLVu2fLTI5s2bV/8jqr9wLSwsrl27lp+f7+Xl5ejoWD3snj17AgICqt/A+/fvJyUlGRkZ+fj4mJiYFBcX5+fnt2zZsvov8ebNm9WbajKZLD09vbi4WH0DQPPmzQ0MDDIyMuzs7Kqn7+bl5VVWVrZo0eLOnTsWFhbGxsYXLlywsbHx8fH5x3dJEISUlJTs7Gx7e/s2bdpIpdLc3NycnJySkpK7d++mp6cbGxur3weVSpWQkJCbm+vs7Ny2bVuRSASgtLS0oKDAxcUlPz//6tWrtra2HTp0EIlEcrk8JiZG/S1vZmamXldBQUFiYqKhoaGPj4+pqSk/r/h5VX2/Zj+v/iiO/u7u3bszZsyIi4vbs2cPgMTExKNHj86YMUOlUum6NKqT7OxsR0dHCwsLb29vGxsbKyurI0eOCIJw584dX19fsVjs5uZmbGzcokWLCxcumJmZzZs3r3rZuLg4ACdOnFDP2v/xxx+PHTsG4Pjx439Zi6Wl5bRp06ytrV9//fXqO1NTUwHs379fEITffvvNwcFBKpW2adNG/aHcs2dPQRBatWo1YcIEdY8aGBgoCEJgYKD6Y87FxUUsFr///vuCIAwcONDmd1KpVCQSZWVlVWd1/vz5bdu2nTRpkpWVlZeXl0Qi6d27t0KhEARh0aJFBgYGzs7OzZo1k0gkX331ldbfcfqzbdu2AXjllVcsLCy8vLyMjY3d3d1zcnIcHR2nTJlS/bTMzEyxWLxz505BEE6dOuXs7CyVSj09PdWbO76+voIg+Pj4jBs3Tr1ZFhAQIAjC6NGjDQwM3N3dXV1dRSLRm2++KQjCiBEjqtNiaGgIICUlRR3dixcvLlmyxM3NbcaMGZaWll5eXgYGBt26dauqqhIE4fPPP5dKpY6Oji1atBCLxcuWLdPNW6Y1rVq16tWr19/vX7ZsGYCrV68OGTLExsbm9u3bgiBcvnzZ0NBw5cqVR44c+ctf/YcfftikSROZTKZQKCZPngzA3d29Z8+e6k3b1atXq1Sq6dOnq//hfHx8RCKR+s08e/YsgNdff93GxqZXr15OTk4WFhbx8fH/WG1YWJj6yba2tr169XJ0dLSyskpMTBQEoWnTprNnz27Xrp21tbVIJHJzc3Nzc/vqq6/U5y4KCgoyNja2s7NT5+Gnn34yMjJq2rRp9+7dzczM3Nzcbty4IQiCUqmcPn26evGePXuqt8KXL18uCMLs2bMBdOjQoX379gCWLFkiCIL6kJg5c+aoi3d2djY3N4+JifnH4gsKCry9vU1MTNq3b29tbT1w4EBBEN566y07OztBEAICAoYOHerh4eHj49O1a1eRSDRjxgxBEP7t/bx8+TKAI0eOlJeXDxo0yMDAQP3zllQqDQ0N/bd/7rFjxzo4OLi5ubVv375jx44ikeiFF15QKpWCIBw4cMDc3NzBwaFHjx6WlpZNmzaNi4tTv1dSqfS1116zt7fv1auXra2to6Njdna2IAiHDh2ytra2srLq2bOnp6enVCr19vZWr+jIkSOOjo5isdjCwkIsFqu/RN59911zc/PXX3/dxMRE/Qk/depUQRAiIiLUf9329vZisbhTp045OTnqcM6aNatZs2YARo4c+f/s3XlczOkfAPDPTPdJJGehSJcz1n3HuilCyK3srs2xbK6UYyu5wjpqXREp2bYcv7URJa1UEiJK6b5Lpbvm8/vjYXa2azsmqT7vlz80xzOf+c5nvvM83+dCxISEBHbRp02bNuySjYKCAiK+f/9+4MCBHA6H1fymTZtWVFSEiOnp6dOmTQMAeXl59sUHgOrqMNevX2/fvr2oqKicnByHw1m+fHlxcfGrV6+kpaXXrFnDHuPo6CgqKhoQEDBz5kwNDQ3Bp6upqa1fvx4R4+PjR48eLRikoqIiIkZHR7Njzt77zJkz2UlGU1Nz3bp1w4cPl5OTk5WVlZCQcHFx4Rerrq5+5MgR9v8TJ05ISkqyMuXl5XNzc0+cOAEAGRkZ/MeLi4tbWFiwDqhdu3ZVqO6Gh4ezWdOCP3zLly9XU1NDxG+++Wb58uW9evUCgBEjRlR5lCIiInr27CkiIsKuxKmrq79582bRokWCrzJmzBhEfPPmDWtSsgvKgwcPjo2NRURnZ2dZWVkbGxspKSlFRUUAmDBhgr+/v7Kycvv27cXExLp27RoeHs6OtpSUFHu/srKyWVlZdL6i81VjnK/4qEFYtZiYmEGDBt2/f59fyb5w4cKgQYOoQdgC+Pr6lpaWImJhYeHIkSO1tbURcdq0ae3atWNfqtzcXHNz84SEhAULFqioqPA/9G3btnXq1KmsrKxCg3DRokXb/01CQsLU1HTFihVKSkrstRBx7969CgoKRUVFMTExMjIyEyZMyMzMZHdNmDCB3yBs06aNn58fj8fLyclBxJCQkOzsbPYwCwsLLpf7/v17/nuJjo6Wl5fftGkTIgo2CAFg06ZNhYWFiOjq6goAN27cYD8Me/fu5fF4PB5v5cqVMjIygr+m5AtgDcI5c+awT//58+esrbVu3Tp5eXn2kSHioUOHZGRkPn78mJiYKC8vP3LkyLS0NHbXzJkz+Q1CGRmZu3fvIuKHDx8QMTQ0lJ9UNjY2LB/4L52QkNC+fXv20yXYIASA7777Lj8/HxFv3LgBAFevXvX19eVwONu2bSsvL+fxeOvWrZOQkEhMTPxiB6qxlZeXc7ncpUuXVr6LfWW8vLxSU1OVlJQmTZpUUFDQt29fPT298vLy0tLSCq13TU3N7777Dj/XzM6cOcNuz8zMZBWCS5cuAcC5c+fY7WvXrpWWlk5PT2cVrKlTp7KPLzs7u23btqtXr64yYFbBmjVrVm5uLiJmZGTIycn98MMP+LmChYg7duwQFRXlP4VVsLS0tBISEthbjo+Pl5CQmDdvXklJCSK+f/++a9eurArLltw4efIkey7rVbazs2NH4/Tp0+z29evXS0pKpqSksArWpEmTsrKyEDEnJ0dRUbHK44mIDg4OrM6KiGVlZayOIljBkpKS+vPPP9mDt23bxuFw0tLSqjue/AqWhYWFqKior68ve7OTJ0/u2bMn/5Rbwbx58wDg/Pnz7M+TJ08CwMWLF7Ozs9u0aaOnp8e+AikpKX369NHW1ubxeOyDW7FiBftiRkdHi4iI7N27NyEhQUZGZuLEieyDQ8T58+ezClZiYqKsrOykSZMyMzPLy8uvX7++a9eu8vLyLVu2AMDatWvZUw4cOAAAISEhOTk5t27dYjG/fftWTk5u48aNiNizZ09ZWVkvL6+MjIzk5OTy8vKBAwd26dKFddqUlpaampqyBuHQoUN79uwZFRWFiHfu3OFwOI6Ojog4fvz49u3b37t3j3305ubm1TUIo6KiJCUlDQwM8vLyeDyeq6srl8u1tLRExOPHjwOAm5vbu3fv5OTk2I0uLi4AwH4uETEwMBAAHj9+XFZW1r9//27dugUGBrIgV69ezRqEgwcPVlNTe/fuHSLevn2bw+Gwr4OmpqaEhISTk1NZWVlxcfGkSZO6dOnCig0LCwOA6OhoRMzPzxcTEzMxMSktLf348SP7xGtuELq5ueHnq2b8B9TcIBQXF798+XJmZib7vlRWWlr6+++/s2RITk5WVlaeN28eIgYEBADAX3/9xR5WXl6uo6PTu3dv1nR5+fKlsrLy8OHD8fP5f+rUqewrwI5kt27d/Pz8WO4pKSktWrSouLhYUlJyxYoVJSUl+fn5Dx48oPMV0vmqEc5XgqhB+B/4leymDoQ0CktLS1FR0Q8fPnA4nB07dlS419PTEwAePXrE/uzVqxe7CFqhQaijozPq30RERExNTb29vQWvzOno6LBLrbt27eJwODExMfwX0tPT4zcIlyxZUl207IzGujQRsbS0dMSIEdra2uzLL9ggFBcX5//wZ2VlAcDhw4fXrFmjoKCQnp6elZWVlZXl4+MDADVcoCKNgVUI2KhOpkuXLqtWrWJVij/++IPd+M033yxatAg//2YLnoJmz57NbxDq6+tX90IvXrwAAHd3d/ZneXn5xIkTe/XqlZeXh5UahOxqPSIWFxezqwbr16+XlpZOSUlh2fL333+znBfy4Wg6RUVFrIJe+a7bt2/zvxru7u4AoK2t3a5dO3418ccff2zbti3rhwkNDQUAVp9TU1MbO3Ysvxx+hcDIyKhjx47vPmNDpDw9PVkFS/Di/YgRIyZOnOjk5KT1b5cvX2YVLFaZYAYPHjx16lT8rwrWnj17+LecO3eOdZXwb/nll18AIDs7W1NTk9VZGX4Fa+nSpe3bt4+KimLBs7PitWvX2Ono1q1b/KeMGzdu9OjRV65cqRD8hQsX2Op8R44cYQeNEaxgTZw4kX87uyoRGBhY3fHkV7AGDRo0fPhw/oFlq2tERESMHTtWMICBAwci4rx583r27Mkvrby8vFOnTsuWLfPy8qpwYFl1MDIyklWw3r59y7+ra9euK1euZM05wW8lv4J16tSpCk9hWA8h/7TMBow4OztXeNiECRPYoejZs6dgbfX+/fusOih49BQUFFg5rAXIDBo0aOrUqWw8i2DLZ8+ePSyw2f/266+/2tnZcbnc5ORk/oNnz57Nmkk8Hm/KlCmKioq6urpDhw5lldf8/HxZWdmtW7fyI1FVVeXxeOwn7/Lly/xy1q9fr6io+ObNGwA4e/Ys//b+/fvPnDkTETU1NQUbbEeOHAEAVm21tLTU1dVlt2dlZXG53DVr1gjmj9AbhNOmTePfHhAQUOFAubq6VviwjI2N1dXVsVKDkJ0TBD9cFmpUVBQ7/7OGIiIWFhYCgJWVleCRHzRoUF5enoiIyLJlywoKCtjtdL5i6Hwl3POVoFY0hzAqKsrDwyM2NlZSUnL48OEGBgYcDsfX1zc5OXnmzJkXLlx4/vy5kpKSiYmJsrJyRkbGqVOnBJd8DQgIuHfvnoWFhYeHh4yMzMCBA8+ePRsTE9OzZ8+1a9eycVz5+fkXL14MCwsTFRWdNGnSrFmz2Khx8lXx9PQ8duzY69evU1NT2VZF7Oysra1d4ZFTp05t3769i4vLiBEjgoKCoqKijIyMKhd45MgRPT09wVvYKNAJEyZ07drVxcVFT08vIiLi5cuXx44dA4Dw8PDOnTuzuR+VsQkkfOHh4TY2No8ePUpOTmaV9YKCAnbXvn37nj59GhgYKDikno+fe2z6R0lJSVRUVHZ2tuAsNQCIj4+v+jCRxiR4ZpCQkCgtLR0+fHjv3r1dXFxmz54dFxcXFBRkYWEBAK9evWrTpk2FeUF8FbLl9evX+/fvf/jwYVJSEqtA8LPl0KFDfn5+/v7+VS4kw49HXFycTWiJiooqKCioMP2pJWWLhISEnJxclavysrfJxuLOnTt3+vTpt27dOn78OBu/BwCLFi06fvz4n3/+yaqJysrKI0eOLC8vj46Onj17duUCo6OjU1NTK0wXiY+PF5yfzIiLi5eVlWlra69cuVLwdi0tLVa9qPzgOr3r6OhoDocjuPQFm3ITGRkZGRm5du3ayk+JiYnJzMxkQ+n4EhIS+BOZBOPJy8vT1NSsELyOjo6Wlpabm9vGjRv37du3dOnS7du3s/FyVWLD5NjUryqPp+Db+fDhQ+UDa2RkJDhlTlT0U1VHWlqafyOXy+3evXtsbCybYMafpAefj0mVa/CyY/727VtpaekKs4OYqKgoaWnpKhcX4XK5/C8aO2mzCzGXLl26ePHi+/fvs7KyPn78qKuryx7Dn/QFAOz6DhuNWeHlAMDExMTExIR/o46OTnWPFxcXrzDpS0FBgVV+BL/sAwYMuHnzZklJibi4+Llz59TV1Z89e/b69Wt2JKWlpefMmXPlyhVra2sAuH79+pIlSzgcTs1Brlq1atWqVZUPi+Db5B8WAPDw8ODXwRQUFNavX3/kyBFPT09jY2MzM7MaZn/Vm2Ak0tLSFQ6UvLw8AHh6ejo4OLx79y49Pb2goKDKNGbvl41XZAYMGAAA/GVI+edt9n4Ffw4kJSWLi4tlZWU3b95sZ2d369atJUuWrF+/vkePHnS+AjpfCft8Jai1NAiLi4tHjBjRt29fDQ2NuLi4Y8eOrV69+uTJk3fu3Ll48eKePXt69OjRo0cPJyen3377LSIiIj09fdeuXYLf54cPH+7atWvHjh3Ozs5RUVFZWVnDhg1r167d/v373dzcgoKCcnJyRo0alZKSYmBgkJycrK+vv2/fvu3btzfhuyaVubu7z58/38zMbN++fUpKSg4ODgcOHGBNJlaBFiQmJjZv3jxXV9cjR464urqqqqp+8803tX8tLpc7f/78s2fPnjhxwsXFpXPnzmyGtJSUVIV6fHXYpJF+/fo5OjoqKyu/e/eOv3B2UFCQtbX14cOH+/XrV8t4pKSk+vXr9+DBgwo31v4dkUa1YMGCw4cPf/z40cXFpW3btpMnTwYAKSkpwWpKDVJTU4cPH66jo3PixInu3bunpKRMmDCB3fXy5ctdu3bt3bu39gnMVq1gg8H4qrz00HwNGTIkLCyMx+NV+D6GhISIiYmxOtzbt28fPHggISFx5syZNWvWsHPFsGHDevfuffXq1dmzZ7u7uy9YsIDL5SKilJSU4HbYfHJycsOHD2fdCIKq24xLV1eX3yrgE8pyfHJycohYUFDAX1SDVUTatm3L+q+qfIqurm5wcHCF2yvkBt+AAQPYoavg9u3bz58/v3z58q+//urv7//kyZOaQ+VwONUdT8HY5syZU3lzsApX6KrDVjGRk5MDAMFlutgxkZeXT09Pr/KJ1R0r+FwDq5xU1fnll1/YnnKWlpbS0tIbNmyostLMJgHypwJWuP3KlStDhw7l3ygqKsr6Q/irQ/GpqKj8+uuvFW4MCAgoKSkRvKW0tFRERISdeQICAtjgtDt37vCr5osXL3Z2dn78+DGPx4uNjV24cGENQbIwXF1dBVfFqByboJiYmOfPn1+9epV/y+HDh5cvX+7s7Hzu3DlnZ2fWBdp4+vfvX/lAXbhwYeXKlZs2bfr555/l5OSsra2r/BawI8D6uxh2ePlr89SGra3tkiVLLl++fPbsWWdn59DQUDpfAZ2vhH2+EtRa9iGUkJCIjY29d+/eiRMn3NzcNm3a5OjoyK5CJSUl2dra3r59++TJk+7u7qmpqaz/vQasG/ratWsODg7Hjx8PDQ199uzZ3r17Y2JiHj9+fObMGU9PzzVr1tjZ2f3nul7kC7t27ZqGhoa9vf3w4cPV1NRY12737t2lpKSqPNktWrQoPT3dx8fH3d3dyMiorl2+ixYtys3NvXPnzrVr1xYsWMB+X3v37p2cnMzfT5ZdqKvy6ffu3cvMzDx37tykSZM0NDT4F/w+fvy4ePHiCRMmsMnTtaSpqRkVFVVeXq4goIVV8Zu1xYsXFxQUeHl5ubq6GhoaslpF7969s7Ky+Bf/8PNgs8p8fX1zcnIcHR2nTJmiqanJz5aioqJFixYNGTJk8+bNtQ9GU1Pz/fv3hYWFgtnSwi4frFq1Kj4+3tHRUfDGiIgIZ2fn+fPny8vLl5WVLV26tE+fPj4+Pq9evRLchGrhwoVeXl4+Pj78gQPsSrZgLYp1mACAjo7O8+fPq/u1FiIxMTEej1deXl7dA9hCF2y4OHP37l0ZGZkePXrUEHx4eHhycnLDw+vXr9/+/fs3btwYFBTEBsvVoIbjyaejo8PmhNcjmJCQkOjo6NGjR1d5TERFRWu4oK6url5UVMRG3wEAj8cLDw9n/9fQ0CgpKalcH60OSzYLC4vRo0fr6uqybqjKWK8CG3vGsIGRffr04XA4sbGxqgJUVFQqP/79+/fVxaChoZGVlfX27Vv+LY8ePVJXVxcREUlKSjI1Nf3+++9Xr169ZcsW/kegp6fXsWPHq1evurq69u3blx1D1i1TOUh2JCsEWbnHRtC1a9fU1dUrjIzo16+fnZ2dh4dHamqqv78/6z/hD4IoLCz8z1qvpKQkl8sVzL0K63XX7PLly2PGjDl48OC4ceN0dXX5vUasS4f/vWPvlw2zZwICAjgcDn9d2VrS0dGxsbG5efNmRkaGn58fna+AzlfCPl8Jai0NQgCQkpIqKSmJjIx8+PAhh8MpLy+Pi4sDADExMf4uN1paWgDAr6lXR1VVla1jCwDshJWYmPjw4UNVVdWwsLBr165du3ZNRkYmJyfn9evXjfiWSN0pKiomJSWFhYV9+PDh8uXLbGi1mJjYd9995+zsfPjw4djY2Ddv3hw7doxNNhg9erSKisqWLVv4F0HrZPDgwX369Nm1a9fr16/5T1+4cKGoqOiKFSvCw8MjIyNXrlxZXYOQrRrn7e2dn5/v7+/PFrACgB9++CE+Pt7MzOzp06chISEhISEfPnz4z2DYDEYjI6PQ0NDk5GQfHx8rK6u6viPSeDQ0NAYNGrR///7Q0FB+thgaGkpLS69YseL58+fv3r1bu3ZtladyAGC1E29v74KCgsePHxsbG7PbN23aFBERsWnTpmfPnrFsYdNKa7Zy5UoJCYmFCxcGBQUlJyc/ePBg586diCik9/pVMDIyMjAwWLdunZmZ2b179wICAo4cOTJmzBglJaWDBw8CwO7du1+8eHH58uURI0Zs3779yJEjbGIMACxatKigoGDt2rXq6ur8nwNTU9MnT55s2rQpJCTk999/X7p0Kbv9+++/BwB9ff27d++GhYW5uLisX7++Md5R3759eTyenZ3d/fv3q/z1mTRpUr9+/X744YerV6+GhIRYWVm5uLhs2rRJTEyMLaxtZmYWEhLyxx9/LF68mD1l7dq14uLi+vr6f/31V1hYmKur67p16+qaCdevX9+9e/e9e/fu3r1748YNDQ2N2lxcqO548m3evDk2NtbIyMjf3z84OPjMmTNsTmx1Pnz4wC78X7lyRV9fv0ePHmvXrh0yZMiYMWO2bt16/vz50NDQgwcPnjx5ks24rq6cefPmtW/ffvny5d7e3k+ePFm8eDH/aM+ZM6dr166rVq3y9/dPS0t7/PgxW+WiOgoKCuHh4enp6WlpaXZ2dmxyb2WjR4/u3r375s2bAwMDk5OTbW1t//jjDwDo0qWLvr4+G6mUlpYWERFx9OjRFy9eDBw4UEdHZ9euXX5+fikpKb/++quTk1N1MSxYsKB9+/bLli17+vRpfHz8nj17fH192ae8Zs2aDh062NnZ2dvbq6ioLFq0iA2lERUVnT9/vpubm7u7O/9kNXbsWBUVlZ9++unJkyfJycnW1tZsepWysvLs2bNtbGzc3d1ZkPb29tWdxxgPDw9DQ0P+n7m5uRYWFk+ePImJibl58yaHw1FXV2cdO6dOncrMzAwLC5s1a1ZtGoQaGhpubm7v379PSkras2cPm3tfSwoKCtHR0XFxcdnZ2b/99hubEAgAqqqqYmJibm5uUVFRL1++VFdXnzhx4p49e27cuJGcnOzu7n7gwAF9ff1a7lkFAAUFBTt37gwMDIyJiWHHUF1dnc5XdL4S+vnqX7DVsLa2bteunZSUlLKyMhtszV9+g/8Ydq3I1tb21atXAODh4cFfqIMt7VBeXm5gYNC3b1/+U9jFMA8Pjw4dOrCJ14IE532Sr0FiYiL/bKirq8sWbiooKCgpKfn555/ZN0pMTGz06NGvX79mT2GLswl+6ElJSRwOx8nJydvbm8PhsGUeBbVt25at4oWIrNGlpqYmuLzbrVu32MVCLpc7b968tWvX8heVEVxIgK0FyrolO3To4OLiIi8vz2aNV+Dh4fHHH39wOJzXr19Xl9WI6OPjw99eqW3btqampvw56+TLYHWIN2/e8G8R/NDZFYrOnTuzbUIYb29vto0Vl8udNWuWmZkZf1GZuXPnChb+ww8/sNFE7dq1c3Jy6tix48WLFyv/kjk7O7PUDQ4OZj9IbA03hsPh7Nq1CxH9/f35Y2nk5eVXrVrF1otrSUpLSw8cOMAfCNe+fXsTE5OUlBREfPr0qaKiIn8Vu9LS0nHjxuno6LDlfxGRzZVi6y4yPB7v0KFD6urqoqKivXv3tre3BwB7e3tEDAwMZNuBsu1DLC0ti4uLAwICFBQU2GZczIwZM2bMmFFlqL6+vgoKCvw1rhDx22+/ZasK9e/ff9u2bSwAMzOztm3btm3b9uTJk6WlpQoKCgcOHBAsJyUlxcjIiO111rVrV2tra7aUOSIePXq0T58+oqKivXr1YhOe2TLuwcHB48aNExUVZVvg7Ny5s7CwMDg4WEFBgb+QBiIaGBhMnjy5yuDPnDnDShYTExs1atTz588R0dLSki1sMHXqVLazAnPv3j0FBYXAwMDqjifbXtXHxwcRb9y4MWDAAA6HIykpOXDgwOPHj1f3WXt4eMyZM4dte9CmTZvFixfzV93Izs5etWoVG5bWsWPH7du3s2+Eq6urgoICWxuTGTBgAFvYIzQ0dPz48WznOmNj44MHD7K16RExPDx83Lhx7JuooKCwZcsWRNyyZYu8vDy/HDYZ7OzZs3///TfrzOdwOHPnzl2/fv2wYcMQsWfPnitWrBCM/+XLl8OGDRMREeFwOEOHDp0zZw5bZTQ3N3fp0qVscCCXyx01ahRLkqioqLFjx7LOq379+rFlh6tbKT0oKGjIkCHsW9CuXTs7Ozsej2dvby8qKsqWDGVpICYmtnnzZvYn6wHjcDhsIVDm+fPnQ+cML+IAACAASURBVIcOFRER4XK5w4cPnz17NltlNCcnZ8mSJfwgR48eHRAQgIiampps9SyGLcnz7Nkzdnbi3x4aGsqu1wOAnJwcfy+KXbt2sTeooKBw4sSJb775puZFZRDRz8+PNcxEREQWLFiwZ88e/qIybJ2bGkRERPDnbk2YMGH37t1du3Zld504cYJ9p9j3NyMjw9DQkA2LlZCQMDY2ZucNdv4XzCgA2L17N//PBQsWaGtrv3z5kv9LLSsry76GSOcrOl8horDPV3ytpUHIRqKfPn2aHTW21K9wG4Q1r/hHvh5szoPg5g2Cd2VlZQnWxRGR7bdrbW1d71dUU1NjvSsV5OTk1KaGnZmZGRERUd3axPWQlZVFu018tbS1tdk+IhXk5eXxf9prkJWVFRERwV81tOGys7P5O160YAUFBbU5vILYIHPBBWP5WLU7JSUFBBZAZ/i1mSZXXSQseNaNfOzYsdo8pfavWL/zWA3Hsx6B1fDgur5BtoVPlXcVFBTU8gJKSUkJ25i+Ng8uLCxkiWpmZqakpMS/vaioKCEhofIXv7i4mDUYaiM7OzshIaHCL2ANTE1NBVd65ON/m3744YfOnTsLBl9lkBUcP368e/fulQ/sx48f4+LiKoRXXFwcFxdXXV5VbhAyCQkJ9bu8VVZWFhUVVeW+FGVlZRXKLCwsjIuLE1ypsk7y8/Ore2t0vuKj81WdAqth87zWsqhMYGCgvLy8qakp+zMjI0PoLzFo0CAvL6+srCzWoCdfLQ6HU90CZRwOp3K3u5+fX3Jycj3GizJPnjx59+5dlU+vbrpIBe3atRNuUtUwtIA0rYiIiPDw8AsXLlS+q8rVQStjk/2EGBKbZ9viSUlJ1XWGpKurq66ubpXzgliv/suXL+HzxCq+Wq418gVUF0njBc/lcutXQg0h1SOwGh5c1/BqmFVe+3RinTC1fLCkpCSb+B0RESG4XKGEhAR/2rAgcXFxtkF2bbC+mlo+uKyszMPDY+fOnZXv4n+bKgQpKSlZZZAVrFu3bt26dZVvl5GRYT1FgsTFxWuejlil2oRRJRERkQqrRArexRb84JOUlKxHbHzS0tKC60wKovMVH52v6hpYdVpLg3DQoEFHjhyxsLAYPHjww4cPz5w5I/SX2LFjh6en55gxY77//nsZGZnQ0NDExES2fwtp1lxdXYcNG9azZ896P71///6V97QgpLIrV66oqalVXrGNfG14PN7169d/+uknwRsPHTp09+5dAwODbt26JSUl2djYqKmpjRw5sqmCrJPjx4/fuHFj7ty5ysrKqamptra23bt3Hzt2bBOG1KyPp3DxeLypU6eOGTNm8ODBsrKyf/31l7e3NxuT1lTYmmeCu3OVl5dPmTJl/PjxgwcPlpaWvnPnjo+PD9vavqls2LChhg0DWg86X30Bzfp4QutpEC5evDguLu7SpUtOTk7ffvttSEjI2rVrZWRk1NTU+CuzA4CIiIienl6PHj1kZGQmTpzIphpOnDiRLWo0ceJEDofTr18/ttQHIycnp6enp6SkpK6uHhgYaGtre+rUKQkJCQ0NjdWrVzfBWyVCxePxfHx8NmzYUL+nI+Ldu3crzy0mpEre3t7Lli2j/Uu/fk+fPpWSkhKsDQPAlClTEhISzp49Gx8fr6ioOHbs2N27dzeXhXz19PRiY2PPnz8fHx/fvn37ESNGWFlZVddB8WU06+MpXGVlZXPnznV1dT116lRhYWHPnj3t7e1//PHHJgzJ39/f0NBQsPuRBenm5nby5MnCwkJVVdVjx46xFUqaSpU7H7ZCdL76Apr18QQADrasVeMIIYQQQgghhNTS1zI4mBBCCCGEEELIF0YNQkIIIYQQQghppahBSAghhBBCCCGtFDUICSGEEEIIIaSVogYhIYQQQgghhLRS1CAkhBBCCCGEkFaKGoSEEEIIIYQQ0kpRg5AQQgghhBBCWilqEBJCCCGEEEJIK0UNQkIIIYQQQghppahBSAghhBBCCCGtFDUICSGEEEIIIaSVogYhIYQQQgghhLRS1CAkhBBCCCGEkFaKGoSEEEIIIYQQ0kpRg5AQQgghhBBCWilqEBJCCCGEEEJIK0UNQkIIIYQQQghppahBSAghhBBCCCGtFDUICSGEEEIIIaSVogYhIYQQQgghhLRS1CAkhBBCCCGEkFaKGoSEEEIIIYQQ0kpRg5AQQgghhBBCWilqEBJCCCGEEEJIK0UNQkIIIYQQQghppahBSAghhBBCCCGtFDUICSGEEEIIIaSVogYhIYQQQgghhLRS1CAkhBBCCCGEkFaKGoSEEEIIIYQQ0kpRg5AQQgghhBBCWilqEBJCCCGEEEJIK0UNQkIIIYQQQghppahBSAghhBBCCCGtFDUICSGEEEIIIaSVogYhIYQQQgghhLRS1CAkhBBCCCGEkFaKGoSEEEIIIYQQ0kpRg5AQQgghhBBCWilqEBJCCCGEEEJIK0UNQkIIIYQQQghppahBSAghhBBCCCGtlGhTB0AIIYQQQlqE3FxwdIScHFi4ELS1mzoa0lJQXjUy6iEkhBBCCCHCYGIC06fDli2wcyekpjZ1NKSloLxqZNQgJIQQQgghDVZSAlwuaGqCvDzMnw9+fk0dEGkRKK8aHzUICSGEEEJIg4mIQGnpp/8XFoKERJNGQ1oKyqvGRw1CQgghhBBSXx8/goEBvHoFIiLQuTNcuwaBgeDpCRMnNnVkpDmjvPqCOIjY1DEQQgghhJBmqKwMZs+G27dh6FD4+29AhDt3ICcHvv0WFBSaOjjSbFFefVnUICSEEEIIIfWybh2cOAGKihAQACIi8OQJLFzY1DGR5o/y6suibScIIYQQQkjd2drCiRMgJQWentC+PYwYAW/fAgDV3UmDUF59cdQgJIQQQgghdeTmBjt2AJcLzs4weDBMnQpv3oCODkyd2tSRkeaM8qop0KIyhBBCCCGkDh4+fLjk118LJSTg0CHQ14dVq8DHB7p0gdu3oU2bpo6ONFeUV02FeggJIYQQQkhtvXnzZs6cOVlZWYN37tywYQNs2wbOziAnB7dvg7JyU0dHmivKqyZEPYSEEEIIIS1fXh4UFwMAFBVBbi4kJX26PS2tDoVkZGTMnDkzKytr+vTpP1pZuZw/H3n1KoiJwfXr0L+/8IMmXz3KqxaAGoSEEEIIIS2fkxM8eQIA4OsLly+Dpia8ewc8HmzeXNsSCgsLZ82aFRkZOXjwYFdX17/++mupicmI3NyM8+dh0qTGi5x8zSivWgAaMvofjhyBNm1g5Uo4dQo6dwYOB2bPhvh4+OMP+PHHpg6OEEKarZiYmPj4eC6XO2rUqKaOhbQclFc1y8+HnBwoKAAAmDEDLC3h4kUAgLNnQUwMOnSAzp1BSQk6dAAxsYrP5fF4S5Ys+fvvv3v27Hnz5s2YmBgjI6OysrLv161TXLz4S78T8jWhvGruqEH4HxISICAApk6FpCSQlAQuFwCguBhSU5s6MkIIaZ6io6P3799//vx5BQWF9PT0yZMnnzlzplu3bk0dF2neKK9qw90dnjyBqCgYPhwUFGDgQHBzAwDYsgWys//1SEVFmDDhQmrqhU6dOil9lpeXJy8vf/v27bKysmnTpuXk5CxcuNDKyqop3gr5ilBeNXfUIPxvO3aAhQV07gwAcPUqvHgBHz5Ap05NHRYhhDQ3L168sLa2dnNz4/F4YmJiOjo6oaGhd+7c6d+///HjxxctWtTUAZJmifKq9pYtg9Gj4c4diI4GAFi5EoyMQFwcVqyAtDRIS4OUFEhPh7Q0yMiAlJTnfn6+FUpQUFB49erVnj174uPjx44de+HCBQ6H0wTvhHxNKK+aOw4iNnUMX7WffoLt2+HsWbh1C5YvBy4Xli2DqCi4cAH27Wvq4AghpJkICws7dOjQ5cuXeTyeuLj4ggULLCwsevfunZqaampq6unpCQDTp0//7bffOrPLb4TUAuVVnXh6gpoa6OhAcDBERkJ6OpiZwbNncOcOmJv/65GIkJ4OmZlxKSnvkpOT09PT09LSkpOT09LS/vzzT9bw7t27t7+/f9u2bZvo3ZCvBeVVS4CkRps2YUYGlpZi37547hxeuICIGBmJW7bgiRN47lxTx0cIIV83f3//GTNmsGu9EhISJiYm8fHxPB7v3bt3/Me4ubkpKCgAQIcOHa5fv96E0ZLmgvKqgRYuxF690N+/zk8cM2YMANjY2Lx//74R4iLNG+VVM0WrjP6348chKwueP4fly8HYGACgVy+wsYHvv4eUlKYOjhAidOHhcO7cp0XTSAP4+/vPnDlz1KhRN2/elJGRMTMzi4mJOXXqVGho6NChQ7/55puPHz+yRxoaGj579mzixInp6elz586dP39+ZmZm0wYvfJRXQkJ51XDJyXD9Orx/D9271/m5I0eOBICcnJzu9XgyadEor5qxpm6RftXy8lBKCrlcTEqq4t7Ll/H58y8eEyGkUfn54XffYXg4WlqiszNevowPHjR1TM2Pt7f3sGHD2K+MvLy8ubl5ZmZmaWnppUuXtLS02O1du3YNCQkRfBaPx3NwcJCVlQWATp06eXp6NlX8wkd5JQyUV8JiYYEAaGhYn+fevHkTAEaPHi3soEizR3nVfFGDsCaurgiAo0ZVcVdCAh49ipcuffGYCCGNau1aTE5GRCwvx7lzmzqaZobH47m7uw8cOJBVzZWUlGxsbHJyckpKSpycnNTV1dnt3bt3t7e3LygoqLKQ6OjosWPHskcaGhpmZWV94XfRKCivGoDySriKi7FTJwRAP7/6PD0rK4vL5UpKShYXFws7NNKMUV41a9QgrMnChQiAhw41dRyEkC9mzRpMT//0f6q411FMTEzfvn1Zld3W1jY/P7+4uNjJyUlNTY1VxFVVVe3t7YuKimouh3XpSEtLs1r+vXv3vkz8jYjyqgEor4Tr0iUEQB2d+pegqakJAH///bfwgvrHli2f/nPsGCYkNMYrkEZBedWs0RzCahUXw+3bAABz5jR1KISQL2bmTDh6FAoL4cwZGDeuqaNpZn766acXL16sWbMmLi7OzMzs1KlTPXr0WLZs2bt373R0dK5cufL27dv169dLSEjUXA6HwzExMQkKChoyZEhsbKyenp6pqSl/YlizRHnVAJRXwnX8OADAhg31L4FN9woICBBSRP8SG/vpP8nJUFzcGK9AGgXlVbNGDcJqeXtDbi4MGgSqqk0dCiHky+DxYONG8PWFBQuAw4F165o6oGYmKysLABYtWiQhIYGIdnZ2ycnJ/fv3d3JyevbsmZGRkYiISO1L09LSCggI2L17t6ioqKOj4507dxot8EZGedUwlFdCFBT0VFp6l4ZGkpFR/QthFfdHjx4JLSwBiLB5M2zeDD4+jVE8aRSUV80dNQir5eXFA+oeJKRV4XIhIABWrwZpaVBUbOpomh+2hGO7du0AQFpa2t7e/vbt28+ePVu6dGmdqux8oqKiu3btYvWD5cuXCzXYL4jyqmEor4To2LEjDx7snTXrqLR0/Qtp1Io7hwMHD8LBgzBhgpBLzszMjIqKunDhQn5+vpCLbvUor5p7XtHG9FUrLy9XUendtevSCxe2aGnJNHU4hBDSDHTr1i0xMTEhIaFr165CLDYlJaVz584dO3ZMoa1+WiXKK2FJT09XUVEpLS2NjIzs2bNnvctBxE6dOqWlpUVFRfFncgrLggXg6goAsH07rF4ttFFaQUFBCxYsKC8vj4uLk5eXX7hw4caNGzU0NIRTeutGedUC8op6CKvm6+ublBSTk+NCrUFCWpH0dEhLa+ogmjE2tI/15DTcoUOHDAwM/Pz8WLHt27cXSrFNgPKqYSivhOX06dNFRUUzZ85sSK0dADgczvDhw6FxpnstWQKRkQAAY8ZAp05CKBARDx48OHLkyJiYGFlZ2cGDB+fm5jo6Ompra8+aNcvb25u6RhqI8qoF5BU1CKvm4eEBAPPmzWvqQAhpKF9fXz8/v6aOopm4fx/69AEDg6aOo1kqKCgoLCyUkpKSkpISSoGPHj3y8PDIyMgQHDHYLFFeNQDllbCUlZU5OjoCwI8//tjw0hpvdJ+XF1haAiL8739QUNDQ0nJycubPn79ly5aysjIzM7PQ0NCgoKCQkBATExNJSckbN25Mnjy5T58++/fv//DhgzDCb3Uor1pGXlGDsAqI6OnpCQD6+vpNHQshDeLs7Dx58mR9ff24uLimjqU5mD8f0tJg//6mjqNZEnp/C79fiFXcm3FPDuVVA1BeCcv169cTEhK0tLTGjx/f8NIadbrXtGlw4YIQygkODh44cKC7u3ubNm3c3NyOHj0qLi4OAGVlZQ4ODomJifb29t27d4+MjNy6dauKioqpqemrV6+E8MKtSaPk1b178PYtlJY2vEBBlFc1oAZhFQIDA+Pj47t166arq9vUsRBSf0ePHl26dGlJScmSJUu6devW1OE0E2Ji0Lu3UErKzs6Oi4tzdHSMj48XSoFfOaH3t/Dr68IdMdg0KK/qi/Kq4VJSUn799Vdzc3MAMDY25nA4DS9TV1dXUlIyPDycHUYAOH/+fMNHo7Cum/nzwdsbsrPh5k0YNQquXYOysrqVg4hHjx5lw/kGDx789OlT/pivgICAoUOHampqOjk5rV69Ojo62svLS09P7+PHj46Ojjo6OpMmTbp27Vp5eXkD30uLJ/y8Ki3VfftWUlQ0/N27LGdnOHQIYmIor76Qptn+8Ov2888/A8CGDRuaOhBC6qm0tNTExAQAREREjh071tThNLoDB/75z+XL6OmJiHjtGiYkYFJSHcpJTz9bUpIslJBSU1P79++vpaXFzrSqqqpmZmbe3t7FxcVCKf8r5OPjAwDjx48XVoFdunQBgMTERDs7OwDYvHmzsEquJcqrr0HLy6svJisry8nJacaMGaKioixhuFyusrLyixcvhFL+iBEjAOD27duImJubKy8vDwAaGhr29vYfP36sa2k8HtraYo8eaGyMxcUYEYFycjhpEgIgAHbvjvv3Y0ZGrYrKyclh1XQOh2NmZlbh2+Hu7t6xY0d2QNq1a7dly5aYmBhEfP36tZmZmYzMp5Uj1NTUbG1tMzMz6/pGWrxGzCt3d9y3b4SyMgDcXrwYraxyd+2Sl5OjvPoCqEH4SXJyspeXl6Wl5YwZM2RkZDgcjpubW1MHRUh9ZGdns5EbMjIyXl5eTR3Ol7Bgwaf/zJ+PW7fi1KmYlYW7d2N4OCopYadOaGyMbm6Yk/Mf5cTHbykuft/weBITEzU1NQFARUVl+vTpcnJy/Gtwbdu2nT9//vnz51NSUhr+Ql+Va9euAcDcuXOFVaCkpCQAFBYWbt26FQCsra2FVXItUV59DVpeXjW2nJycixcvTp8+XUxMjKWHhITE7Nmzz5w5M2rUKACQlZVlrbgG2rhxIwCsXr0aEbOzsy0sLPgV4vbt21tYZMbE1Lao1FTU00MA5HJx1y4sL0dE/N//MCUF7e2xd+9P1XcpKVy1Cp89K6mhqKCgIFVVVQCQl5evriJXXFzs5uamp6fHb8/o6el5eXnxeLzMzEw7O7sePXqwuyZMmFCXQ9KSNXpeFRbi3r1oZbVx+HAAWD1oEFpZZW/fbmFsTHn1BbTeBmFREQYE4G+/hS1cuJD/CQnS1NTMqOVFA0K+GtHR0az3oHPnzsHBwU0dzhcyZAj+9BP+9BMOGYJbt6KPD5qZ4e7dePcuduz46YwPgJKS+O23+OhRSFFRZOMFExsb26tXLwDQ0tJKSkpCxLKysocPH5qbm1cYha6lpWVubu7t7V1aWtp48XwxDg4OAGBiYiKU0j5+/AgA0tLSiMi6ux0cHIRScu1RXn0NWl5eNZLCwkIvLy9jY2N+X4SIiMjIkSPt7e3T09PZY4qKihYtWgQAoqKiDXzjd+/eVVFRUVJSAgBdXV0HB4eCggJ+hXjQoEmsFq6nh15eyOPVVJSvL3bpggDYoQP+739VPIDHQ29vNDREEREEwFGjVurq6jo5OZWUVKzBOzg4sNlcurq67969+893ERwcbGJiwl+vSF1d3d7ePi8vr6yszMPDQ0dHp02bNt9//30djkuL8+XyKjkZbWzuLl2q0qaNkowMAOh26eIwc2aBlVXx/ftuly9TXjWqFt4g3LcPT59GRDx0COPjMTERvbzQ3BxHjkRJSQRADY0Q9mnJysqOHDnSzMzMzc0tMjJy4MCBAPDNN9/k5eU19ZsgTefDBwwMxAcPMDLyP048X4fAwEB2IU1HRyc2Nrapw/lyKvTkJCbizp04Zw6+fo2I+PIl2tqinh6KiiIA3rw5OTgYXrxQff/e5MMHr/LyQiFGEh0dzdbd1tXVzcjI4FVKm5iYGAcHB0NDQ8Hunfbt2xsaGjo4OCQnC2dgYZOwtrYGgK1btwqlNLYMkrKyMiLOnTsXAK5duyaUkmuP8upr0PLySriKiopYfZ3/0XO5XFZfZ93FcXFxBw8edHR0ZI/n8XiWlpbskWZmZpVz6T9FR0fPnj2bldCtWzf+JMyOHTvu3LkzISEBEYOC8pYsQQmJTxdNpkypuigeD+3tUUwMAXDMGExM/I+XfvsWN20q7tjx06YBXbt23bdvX2pqKiLm5OQYGhqy201MTOo0iDolJWXv3r38XS4VFBQ+fPiAiH/88QcATJ8+vfZFtRhNkFfh4bM1NT/llbx8u8+tqY6ysjvHjEnYuhVv3Aj6K47yqpG08Abhpk1oaPjpV9zU9J8LugAoIoJ9+6KpaenZs2dfvnxZXl6OiAUFBWxcb2pqau/evQFAT0+vBc/NaHUKC7HWLfzM+/dfb9jgt3o1z8oKbWzw9GksFGYNr7Li4uKjR496eXnVr2vaw8NDWlqaJS076bQelSvu+fnYowdOnIimpujpiWzeQVoaurmVREcbPXvWLjgY2L+nT2UyMy8JJYzXr1+zU//IkSNzcnJCQ0P79+8fFRVV5YMLCgpu3769bt06VYH9cUVERLy9vdnpqNnZvHkzANjZ2QmltNDQUADo378/IrIh0D4+PkIpufYor74GLS+vhCU8PHzFihVt27ZlnzLbw83e3j4xMRERMzIynJyc9PT0uFwuAKiqqgrW0c+cOcMG/i1durT2lZzi4mJ7e3tZWVkAkJGRsbS0LC4uLigoOHPmzIABA1gYYmJia9ZsevgQETE1FW1tUUUFbW2rKC09HadMQQDkcNDMDCv1ylQrLy/vxIkTmp8bDxISEtOnT1dWVgaAtm3b/v7777Ut6N/KysrYKiCzZs1it7Bs0dHRqV+BzVQT55W4uOXYscUWFgU7dpyZNWvA5x0DxURE1uiOfbjqPDo7pz6OtrXhUV4JV8tvED57hitX4s6daG+PnTrhjBloaYleXpiV9ekxb9++v3jx4g8//KCrqysmJrZp0yZ2e1RUFOtsWbx4cTP9HSX/yMjA337DPXtw3z48eBBfvsTISAwIQE9PPHsW9+3DDRti1q2bPHlyv379unTpIvZ5qjQAZJmbo6Ul7t2LV682XoAPHz7s1q0bf4q2qqqqsbGxg4PDy5cva3Olzd7enp2dV65cWXm0Q4sXH//PfxISPv0AhIYil/vpApCEBE6ejPb2GB+fj4g8Xll+fnBysm1ExMjgYE5a2q/R0Yvj4jaUlWVV/yL/ITQ0tEOHDgAwduzY3Nzcx48fKygoAICpqel/Pvfdu3cODg4zZswQFxdXVFS8f/9+vcNoQitWrACAs2fPCqW0e/fuweeJFv369QOAZ8+eCaXk2qO8+hq0vLwSisTERDYHEgC0tLQsLS0jIyMRMTMz87fffps4caKIiAi7V1paesGCBb///nuFmsydO3fYMjATJkzIzs7+z1e8e/euhoYGK3PGjBlxcXEVHhAcHGxsbCwmJjZ27EEAHDAAHRwwPx9LSrCgoGJpvr7YtSsCoKIi1nve2cOHDw0NDUVFRblcroSExMCBA6u7UFInhZ8v/rIFVOXk5BpeZnPRxHk1bVqcjQ1aW+OePWhtjfv24Zkzwaamxv37i4mIjO3xIwAO6JTsMPNG/oETJQ8eFWQWYFYWenujszP++SdmZlJe1VvLbxBmZOCBAzhqFEZ+ntyRm4sPH6KtLc6YgR064Nixm/lVf1FR0eXLl/OfHhYW1qZNGwBYt25d07wBIhQfP6KtLW7bhnp6OHo0/vADzpnzr/5iAASI/ffi420kJfsoKo5UUYnbtKl01y60ssK9e7GoqDECLC0t7d+/PwCMGTNm3LhxrKOPr3PnzoaGhkePHg0ODq48KaisrIztBsvhcCwtLRsjvOaLP6iPDR0BwLNnt7NBfVlZbuXleYhYUpL4/v3q4uKYhrxQcHAw281s6tSpBQUFfn5+7Bdx5syZRXXJmR9++AEAdu/e3ZBgmgobRebh4cH+zMzMbMilNDc3NwCYN28eIrJNU+L57bOmRnn1JbWevKoTFxcXANDW1o6IiEDE/Px8Nzc31vjn92/MmDHDyckpNze3ukLCwsLYQdDW1n7/vtp1j+Lj442NjVmxffr0+euvv2oILCEhYc+eD0pKn74aiopobo6xsfjx46cL8fn5ePDgp4HWY8ZgQkL9DwITExPDhq2+ffu2oWVVwiqBWVn1v6bTvDR9XvF4+O4dPnqEISGfxmBkZaG3d8L27XvGeyjJfPyUV9L55qP8Yzcf+7jTJmubHVpZ5VvYHJx6V1SER3lVP62iQVhaiv37Y3T0pxuXLPlXQ2Dy5P/p6+vv37/f19e38oK2Pj4+EhISAHCAvwB5XfF4+OgRHjmCv/yCp0//0zAlX8yff+LevailhWZmuG0bamjgvHmooIDduqG6Og4ciKNG4bfflhgY/G/JktC1axM2bSq2sEArK7Syit24cVyPHpbjxiEbONo46wwdPnwYANTU1NgFpNLS0pcvXzo4OBgbG7PhCnwyMjIjR440Nzf38vLKzs7++PHjzJkz2Tn68uXLjRFby5CeXu0o/AAAIABJREFUjpcv49KlvCdPVAUG9UlHRs7Izb1bUPD83bt58fE/lZamvHkzISXFrqDgZe0Lf/jwoWA1/f79+2zoy8KFC+u6qsf169fhq1x/rDbYQnN+fn6IWF5ePnbs2BEjRtT7p/T06dP8fjA2NT8/P1+Y4QoD5dUX0Arzqja2bNkCAFZWVuzPoUOH8q9rT5ky5fz587XpnEHEhIQENtqzynXIqhwjWptii4rQyQmHDPlnko6pKQ4ahCUlePs2btuGoqJ1G85XM5Yk9+/fLy0tff369dOnT4VTLmLfvn0BIDQ0tEGllJXhzZvo6opf/WyOrzeviovxyZMi+1NO+h5DuiZ+yisuz3Rw8KDOSSUWe24vdt422k+UW272fSnlVT208AahmRnu2IGpqf+60dERR43Cn37Ca9ew0pCHKly9epXL5XI4nHPnztUniKtX8ZdfWOsCrazwl19QeClFauXECdy+Hfv3//QRzJmDRkb/fCJWVrhzJ27ciCYm3kuWOOnrH5w8efOIEcsGDJiurq7ZoQOXwxHlch+vXo1792IjrNqXnJzMrhXdvHkTETMyMjZv3uzp6clfvysiIuLs2bMrVqxQV1cXbByKiop26tQJABQVFf39/YUeWAtVLjioLzgYMjOd2R2pqUcSE7fxq/VhYR1jYoyzstzKymraVaBCNf3mzZtsUfs1a9bUvh/j+fPnW7dudXFxycjI4HK5UlJSder/+RrExcV16dKFy+UeOnQIESMjI1lyysrKnj59uh4LDMTHx9+6devZs2eFhYUAICkp2QhRCxHlVaNo9XlVrYkTJwIAf2MhOzu7cePGnTp1iv/DUXu5ublTpkxhVfMbN27wb/f29q55jGhtBAejiQlKSeHhw7h5M9rY4O3beOkS1mKlxjpYvHgxAFy4cEHos7NmzJgBAH/88UeDSlm9Gj080N8fZ85spHFGwtIM8io2Ft3cgtf+ZqIbLCVWevjbPzePeGSjd/f2YudLBr+/23wSw8LqGmp1WlVeteQGYV4eSkoil4sNX1/t5MmTACAmJnbr1q26PTM6Gq2t+Q2P6PXrN48YUb5vn9Aui5HaOH0ad+5Ebe1PH8T06WhoiH36oLIytmuH4uL8/mK1f48aZSapqQGAWrt2ee7ujRGdkZERAOjr67M/2fJTTOWZhKmpqV5eXubm5iNHjhQXF1dSUlJSUmJDO0hdlZQkJSfblZamp6c7xMdviYycXlj4OivLLSZmeVhYR4EOH8kff1x69OjRyErd+7du3WLV9NWrV5eXl7u5ubH59N99912dRrVdunSJ/TQiora2NgA0rxb+X3/9paioCAAcDgcAjIyMMjMzs7Oz2bL+ADBp0qT61SYRMSEhAQC6du0q3JgbD+WVsFBeVYfH47HBbAkNHxiHiIilpaVr1qwBABERkRMnTtRpjGhtZGWhuzt6eqKJCZ46hZeEs9zSP7Zv3w4Au3fvzs7OBqHOzmLDrY8ePVr/IvLycMmST/8/fhzv3RNKYI2hOeVVbi5euZK1db/7fFdPIxcT3eBTM25eMvgd9+3Dx4+FEjy2srxqyQ3Cq1c/jVAXih07dgCAlJRU7X9Qy8rKXv72m5O+vtnQobpduvgsW6ahqAgA64YPx9pvq0kazs8P9+3DIUNw/nxctQr79MEtW/41blhCArt2xYEDNyxbZmxsvGnTJltb23P7999Ytuzv775L2bGjf+fOAPDd2rVCD83X15fD4UhJScV8TomIiIhdu3aNHz+ev+cP06lTp7lz5x45ciQoKIgNGHvy5AkAaGtrCz2qVoMXFtbl2TOl4uL4wsKoCit/FBS8TE62fftWz9dXkT+NXlVV1cTExMvLq6ioyNPTk40nX7t2bXl5+eXLl9maQD///HNd44iPjweANm3alJWVff/99wDwyy+/CO9tCuDxMD0dU1KwrExI5fFsbW3Z8Zk2bdrhw4dZv1bHjh3ZtU83NzdWp2/Tpk099qcqKSnZvXs3APTt21coAX8RlFcNL4/yqibR0dHsaAixTB6Pt2vXLpaQbMKYvLz84cOHhbWbJWsQJiejlpbwG4Rss8qVK1fi59lZbMX4hrOzswMA/nKD9ZGdjStXfvq/gwP++adQAmsMzSyvEhPR2po1CJM3H9TqkHbJ4He0tkbh7bnVqvKqJTcIFyxAADxyRDil8Xi81atXA0D79u1fvXpV3cOSk5O9vLwsLS1nzJjB1oLjsxo/PmDVKmkxMQDY+9NPwgmL1EZJCR49inv34uLFaGiIW7eitTU6OaG/P755gznVD9wqLcWoKHz1KvzvvyUlJTkcDhvVKSzFxcVsgWNra+uqXrw0MDDw8OHDBgYGbMFbvp9++gkRU1JSAEBJSUmIIbUq+flPg4Ph+fNuiLz371eGhIhkZFys/LC8vPRLly4ZGRm1E+hAlpKSYsu6smq6o6Mj+9Pc3Lx+wbBd5p4+ferq6goAkydPbtB7q9L793jwIFpbI1vGLSSkgeXl5OQYGBiwDhxzc3PWeRUTEzNu3Dh2lAwNDbOyslJTU/X19dktU6dOTfzPPaEQEbG4uNjJyYltxa6goFDDWfdrQ3nVwPIor/6Tu7s7ayoLveTTp0/Lysq2adOm3mNEq/P4MQYFISJeuYJ+fkIsGBHxzz//BICJEyfi59lZwpruxb44BgYG9Xw+mxpnYIDv3uGHDzh79tc8jbD55ZWT02PTc0EmjmhldWWuu99qJzxzRoi7RreqvGqxDcKiIpSXR4B/1pJpuLKyMraPbdeuXfnrJpWUlAQHB9vb2xsbG2tpacG/dVZSmqGhsWLgQHERkYmqqsUWFl5GRqJcLgAcP35caJGR/1RUhDdv4v79aGODly5h3UfDHzx4EADGjtWv+1OrZWtrCwC9e/euzcSet2/fnj9/fuXKlRoaGu7u7ohYVlbG5XJFRETKhHRVvrVJStoXHAzv35uwLp3gYCgoeF7D48vKyoKDg21tbUeOHMnhcJSUlNhahYWFhX369OFwOPVfegpx+fLlAHDkyJHU1FQOhyMjIyPk7UPS0vCXXzaPePT8u5NoZWU98S7+8gu+eFHv8kJDQ9XU1Ng1sv/973+Cd/F4PAcHB9bFraKicvfuXUR0c3NjLZ+2bdtevFhFA4nv48eP9vb2/M18tbS0nJychNVN8QVQXlFeNTY2ZGnnzp1CL/nhw4cAMGDAAKGX3Khev34NAL169cLPs7P4y9I20OPHjwFAV1e3Pk8uK0N1dTQywpgYtLHBnTuxEdarFKLml1fFxejmhnv3oo0N7tuHLi7CnaLZqvKqxTYIvbwQAOt3qGtQUFAwZswYAOjRo8eaNWuGDBnCpnbwtWnTZtKkSTt37rxx40ZaWhoiootL9ObNneXkAGChjk65paWTvj6HwxEREbl27ZqQ4yONpry8fPXq8yIiZfW+oFNBfHw8GwRVodJTJ2zQVGqFdZNI7UREjAwOhuxsj/z8EH6XTi2fa2FhAQCrV69mf8bFxV24cKEhwZw/fx4A5syZg4hswv3ff//dkAIrcnPD3bsX6Lxc1Pd5ueXuxf2eo5UVHjhQv4uply5dYpujDBw4MLqaq25RUVFsiTYOh2NiYpKXlxcfHz958mR2qrS3t6/8lLy8PHt7+86dO7PH9OvXz8nJqdld76C8qvfIHMqrWpo6dSoAXL9+XVgF9u/ff+bMmXl5eUePHgWANWvWCKvkL6OgoIDD4YiLi5eXl69bt666TKiH5ORkAFBUVKzPkz08EADV1LC8HA8fxvPn8fNOdF+n5ppXhYWYlFTFZpcN1qryqsU2CE1MygFw3z7hl5yTk6OqqsoWOgMAERERLS0tY2Nje3v74ODgKmb883jo7//i558VpKQA4LshQ9DKau+ECZJc7uvRo/HBA+GHSBpHfDwqKCAAnj8vhNJYb/OCBQsaUgjrlH75sg5r2ROmrCwrJEQ0JES8rCw3KWlPcDDExv73Tt98bAJn7969hRUPm7zRrl278vJyU1NTALC1tRVW4YiIR4+ildXS/s/c57s6zLyxuN9zvxXnXOa5Z1odQzc3fPaslr8oRUVFZmZm7OxnbGxcUONvcGlpqa2tLZsR17NnzwcPHiCik5NTz549U1JSBB+Zk5Nja2vLHzw5cOBANze3eqwh2eQorz7lVXrdtgqkvKoTVgOJEdJiBO/fv+fXTVmX8smTJ4VS8pekpKQEAElJSQcOHACAjRs3CqVYHo/HtiepvC3Zf5sw4dPMpdzcT4PWntc0WKDJUV5V1nryqmU2CEtLSzt3VtHV3fbqVd0PdDXu379vb2/PdrBlnYSGhob379/Py8urZQkPHjxgC8ftmzABrazix45FAJSXx2fPhBUkaWwXLyIAyso2dDvJv/76CwDk5OQauJbX2LFjAcDHx6dB0bRKPPerpd8O+XBpDSK+fj08OBiysz1r//TS0lK2R1wtZy7VhoqKCgCEhYVduXIFAKZOnSqskhERHR1ZxR2trJb0C5vW++187ZcAKMIp1+2SZDnuQbCpI++0A96/j0lJ/3Qb8ngYGYl//42vXmFJSXx8/LBhwwBAUlLyt99+q+Urv3jxYtCgQfwunfz8fMFRi2lpaZaWlmy+PgCMHDmSv+J5c9Tq8upzg7BiXomgri5aWmJw8H93QlNe1QlbH1VBQUFYLdvff/8dAKZMmYKI/fr1A4DHwlun8YsZMmQI6wB3c3ODhszOqoRt+FTn6abh4cjhoKwsfviA9vYIgF/3RqCUV1VqPXnVMhuEd+/eBQB1dXUhlrlw4UIAOHToUHZ2tpiYmJiYWD3WGrp+/bqIiEhPSckP+vpoaYna2giAHTp85cPKiSC2WNHIkfVfTq+4uLhPnz4AcPDgwQYGs3Hj9VGjznp4CK3u2IoYGyMAHjqEGRk87d4f108sL6/txR2G7bDk4uIivIiMAeDYsWNJSUnseoEQJzjdd3y7YUQgq7hHmh1TkvnoMPPGRNVocZEy/mq7XeVzzUc5/r5gQa6NDd64gU+f4tGjn+Zm2Nj4mJh07NABAFRUVJ48eVKnVy8pKbG1tWUD7LW0tNjTU1JSzM3N2RBBVmW/9xUvyF5brSqvgoLur3DaMOzvf+XV7FsT+6UJ7OaDXbuiufmr33//PTc3t3IZPj4+bNEsyqta8vLyAgA9PT1hFcgGKm/fvr2wsFBMTExERCQ/P19YhX8x8+bNY1+cwMBAABg0aJCwSp40aRLUY3LHj+sQAL/7Dnk87NMHAVBI088aCeVVlVpPXnGhJfLw8AAAQ0NDYRVYXFx8+/ZtAJgzZ84ff/xRWlo6fvz4dlXtWVczAwMDp9OnX3Xu3MbTE968AQMDUFOD9HSYOhVSU4UVLWlUp0+DsjI8egQHD9azhP37979580ZbW5s/RKreSkoM/P1XJiR0aWA5rQ6PB3fuAABMmwZ//skJj5R5LcLlytapDNY96+vrK6yg+AV27ty5V69eeXl5z549E0rJd+7A9A297QO+Gd4jBQB6tcsKMztrMj7y7uHn2b+c9F56yWxooHKb3MRcuccJ3gaurgo7doz6/vv9P/8cEh4OxcVYWrr/3r1JZ86kpqdPmzIlNDSUXTStPTExMXNzc39/fw0NjVevXo0YMWLYsGEqKir79+8vLCzU19cPDg729/efMGGCUN5vk2lVeRUUdOdoxHRnI/vHw4YrJwA/rya/v/tEPjsbvL3BzAyUlf/P3n0HRFn/cQD/3LFRliAgKgQOUMARjhQVcw/Mkaho7hw5U/NnlgWpOVJLSy3NXJUmbsyRqDhxHTJUUJnKkL33jc/vj4eIXCEcHHLv1z/Cc8/zvc9zfrjnPvd8ByUk0I0bu0aMGGFiYtKtW7e1a9cGBgYSETOvXbu2b9++ycnJgwYNQl5V0J07d4hIuDuqxAbbt28fGhoqlUpbt25dVk6/QWxsbIjo8ePHZT9UuqmioqK5c+cKa5GXb7niLcjl2ffHHM7yduO5s+nMGXr4kKytaciQSodUA5BXL6RGeaWUsrJWUSgUTZo0ISKJRKKsNk+cOEF/fzHw3nvvEdGPP/5Y+eaWL2ci1tTkyZN56VK2smIi7tCBX/TtKdRCZ86wmRlXbpn6x48f16tXTyQSCf08U1NTq9I9w9ubifjLLyvdgLq6cYOJ2NaWmXncuMotUBMQEEBErVq1UlZQERERRNSwYUOFQjF16lRSxj1kZj5xgnV1mYinTWP5g0d89Cj7+HBQEMtkISH89dd852K24voNxZ69QbO2fzdgtKu1tYb4n+8K7UxMWjdsSERikWh5nz6Kqk26XVhYuGTJErFY3KRJE7FY7O7uHljlVQpqEfXJq6tXT4zdp6spJeJpLoHyLT/yoUPP5tUdVihYoeCgIP7uu52urq5l6y4SkZ2dnTAEWiwWL1++vIq91Op4Xv3b0KFDSan3kIXpdqKion788UcimjhxorJarknff/89EX300UcKhUIoPF54R/o/RUREtG/fnoicnJyEWSHGjh0rfAKseO++pKRvJRJ6+LA3M6eenCbt24G/WVuJYGoS8uqF1Cev6mBBKFxNbWxslDhwfMqUKUS0YsWK3NxcYZ2oxMTEKrU4f37peugzZ/LixWxmxp06cVgYP3mirIV9Qenu3+dvv2VmLizkGTPYzY2vXWNmnj79X7vl53NMDN+4wWfOPN65c+eaNWsWLFgwfvz4AQMGtG/fXhjT8v777zNzaGiotbX1F198UemQtmxhIp45swpnpZ6+/JKJeM4clsvZ3JyJ+OHD121DKpUaGBiIRKJn5rGoCmFO/AcPHuzdu5eIhgwZUsUGDxxgLS0m4lmzXjCU64svSjv1WVnx1Kl87FBmdmAgnziRvmKFj4fHdBcXKwMDIrI1MdHT1DzzwQfs7c3+/lUMqaSkRJhf17/KTdU6apJX/v4HPA5qaciJeFbHW4pdu0sXxfrbs3l1LDc7O5uZ09PTfXx8pk+fbmVlRUS2trZ6enpnlLROd13Oq39r2rQpET18/dR6IWE9W2NjY4VCMX36dFLePIo17Pjx4/T3Gnru7u7u7u5Pnz593UaOHj1qbGwsfIa8ceNGSUnJggULRCJR+cGoPj4+/9XpWnHvXkuJhDIzjxUVRUgk4jt39KTStMqeWQ1BXr2Q+uRVHSwIFy9eTOUmAlIoFFVcdkkm4zZtitzcJPfvRwqDSl1dXasapVzOo0YxERsY8Pz5vGgRf/mlMFCH16yp6owlUD1CQkrnrS0o4EmTeOxYHjWKS0p43DhesoQ7d+a33mJ9/X9GznTs+OcLb8uLxeK2bdvm5+efPn1aU1OTiH766afKhXTwIBOx8gY5q42ff+YOHfj0aQ4IYCK2s6tcM8IYAB8fH2XFde3aNWE2kSdPnhCRkZFRVSbH/+031tRkIn7ZquYXL/L06dykSWnGdu++RUNDw9XVdc2aNRIfH8Xy5fIvvzw2ZoxYJNLV0sr69FNetarqk2AJY7ydnZ2r2E5tVOfzSqHgM2d+G3FYUywn4iXdrvLvv/NzH2JelVcSiUKhkMvlx44dE4vFurq6WUpap7su51U5qampRFS/fv2yKc2r+Annzz//JKJevXoxc4cOHYjostKXja8RQkdoR0fHyh1efp7bYcOGZWZmPnnypGvXrkSkqak5a9asGTNmCGtgCt9lrFu3LiMj44VNZWX9KZFQaKiNQiF78mS+REKxsVOrcGY1AXn1MuqTV3WwIJw0aZJYLBYupTKZ7MMPPxwzZswLVoOosPPnmYiFGWqmTy/o3v3+jz8q4xvNoiLu3ZuJeMAA9vbmDz7gLl34nXd41iz++mtW3nfDoCwhIezqygsX8rx5PGkST5jAZ8/yunU8bhy///4/daCeHltbc8eOPHHiw4kTJ37yySfr16/fs2fPyZMnJRJJSEhI8+bNiWjw4MEymeznn38mIi0tLT8/v0qEdOmS8HlL6eda1+Xm8q5dvGMHX7rEHh78+eeVa2blypVENHv2bOVGx8zp6emGhoYNGjSwsbGZPn26r69v0Wuut/vTTywWv6oaLC84mFev5g8+WCJ8QyGY6urKy5ezt7fbW28R0a5hw3jt2mfuBVXCokWLiOjTTz+tYju1UZ3Mq5wcvnWLIyNZoeBTp35yPyEWKUqrwYMH+ZXX1hfn1dTSDzHC4MZdSlnGp27nVTlnzpwhoq5duwq/SiQSa2vrK1euVLrB5cuXE9Enn3xSUlKiq6srFosr1yNO5bKzs4moXr16lTg2Nja2c+fORKSjoyPcyDpx4oQwT0TTpk2vCX2BmDMzMzds2NCsWTMhk/v16xwbO62gIOSZ1iIiBkkk9PTpWrk8NyjISCKh/HyljWCqJsirl1GfvKqDBeGWLVuIyN7ePjU19cGDB8IU3vPmzat0g3PmMBF/9hkXFZUu+BEVpaRYc3J4717++mtetIjbtGEvL/78c27Zkr28WHnfDYOyPHOHcMIEZuYPP+S+fTk0lAMCOCqKK7IKSWRkZMOGDYno448/5r/vaffoMer+/dcOKSyMidje/rUPVGtyOY8Ywdev8+3b/N57z9/fqLgrV64QkZOTkxKjY+bk5OS2bdsKF6Gyj9H169cfOnTotm3bnjz570llN29mkYhFIt6w4fWeOi8vz9fXV+jU99PGjbx5M69a9fOwYUTUu0ULfv2uMs9r1aoVEV26dKnqTdUudTKv4uJ41SpeuZJXreJNmzYPOikihYgUG/r/xYcPv7oaLO9fefV3hwjh67DevXsr5ezqbF7926NHj/r3729sbHznzh3+e3k3PT29Si8mPnz4cCL6/fffhbku7N/ky0nv3r2NjY3bt2+/bdu2wgov1X306FETExMisrGxuX79ulQq9fLyEovFROTu7v78fPJyufzPP//s37//tm2dJRKSSCgszCUtbY9CUXpLrbj4SULC51JpekrKFomEHjx4A76yRV69gprkVR0sCHNycoRZkjp27Jibm+vv7y+s/rdq1apKtKZQcNOmTMS3b/OffzIRt2+v1HDlcv7qKx43jt97j7292dubO3TgTz7hN7Ozdd127x4LczEUFvKsWaUj9xISuHPn127q8uXLwqrKmzZtksvlH3+8XVNT+tZbr/15++lTnj+fv/uO8/K4pKR0/KlMxlXr61HXRUTw4sWlP3t5cciz38NVXHFxsb6+vkgkSk5OVk5szE+fPnVychKuoI8fP5ZIJF5eXi4uLiKRSPgE7+b2jZ0dz5vHfn4vvl23fTsTsVjMVZn6Si6XFxcXs0LBMTHZly7p6eqKxWJhIdaqENZJNzIyqmJ/pNqo7uWVTMbr1pVemLy9tw/xJWKxSPGj+5984sR/Ly/4IqV5xczM2dnZwph85FXFyWQy4c6qkZGRn5+fTCabPXs2EYlEIi8vr0o0KEx1GB4e/ssvvxCRp6enskOuObGxscJHcCKytLT08vJ69XQPJSUlS5YsEf4Ehg4dmpGRERcX5+rqKnTn8/LyenXnsqKiiPj4JUFBJsLH95CQRgkJXlJpSk7O+fj4/2Vl+WZl+YaFuWRkHFD2iSof8uoV1CSv6mBByMwpKSnCgo+9evUqKio6duyYhoaGSCTasWPH6zb18GFpD0CFgqdOZSJevlypsSoUvHIlT5vGvXqVXncdHXnZsip9lIM3we+//y4SiTQ1Nc+ciSos5K5dmYhdXDgv7zUa8fAo/epg4kTeupWF1bbOn+fKjklUD48e8f/+V/qzt3cVB8W9++67RHTkyBElBMb8+PFjoUdx69atn7nkxMfH//zzz8OHD3d2vl/WP9nYmEeN4t27OTSUBw7k4mLOymJvb3Z25p07lRJRKWEtpm+++aaK7WzevJmIRo0apZSoape6l1dfxYbO/3lgi4jiL1Zkfbrau6e/s0XyzqHH+OTJylWDz0NeVUJRUdG4ceOED5fC7daNGzcKdx6mTZv2WotM5uTkGBgYCCPH5syZo5T/C9UqKiras2ePcCeciLS1tT08PF42IkPom62jo/P9998z84kTJ0xNTYmoSZMmV69ereAzymQ5yck/3LtnL3x8j42dGhExUC7PLSl5yszx8Z+mp+9VKKra074GIK9eQR3yqm4WhMwcFRVlaWkpfC0hl8t/+uknItLQ0KjE7e+8PA4OZpmMGzZkIr53T9mxHjzIX33F7dqxuzv36sXvvstff803bij7aaDW+frrNV26HKhXjyUSTknhZs2YiIcNq3g/LJ4wgWfM4Lg4FISvQy7nYcM4LIwfPapi1z5m9vb2JqL58+cLv8pksrVr1wYFBVViluPo6GhbW1sicnFxSUt76dRhMhlfucJLlrCLyz8jVydM4N69efVqTkvjefOUf4v42LFjVIWB9WXGj491c/t2376zSomqdqmTedUuuLdd9Oo+59L+t3Ze5xslXyznEycqf1bPQV5VjkKh8PLyEj6bzps3T6FQHDp0SE9Pj4gGDBjwWoO15HL5kydPmFmY6OLcuXPVFnWNkkgk48ePLxu8+vbbb2/btq2goKD8PgUFBUOHDr19+3b57nx9+vSp1AS/iuzsvyIi3PPzgyIihjx9ukoqTSkujg0M1JBIKDjYPD5+SXHxE2WdXTVBXv2nOpxXdbYgZObQ0FBhmtdZs2Yxs5Dlenp6lZvp6MIFJuIWLZQdJTPn5fG33/KKFTxnDn/8MX/9Ne/c+Ro1AbzJZsxgIra05NhYjoxkc3OuYO+MsDD+9VeeMIHj43ny5NKC0MODFy5kDw8UhP8lI4M3beLvvuPU1Cq25O/vT0Rt27YVfr169apwnTA3Nx8/fryPj08FJ1EMDw8X1gZwdXUV5uiviOho3ryZBw3iX3/lZct4xgy+fZurMGL6pUpKSszMzIgopAo9IQsLWV+fRSKlDEWslepSXv2gGNQy4tcRR5b1uDSjg+T29O3zOt/g5ctZeQv8MvKqan755RctLS3h1mhhYeH169eF0ekdO3Z83Y+eMpmJ3T1wAAAgAElEQVRMWCD3+aFNb7TExEQvLy/hZSEiY2PjefPmxcbGlt8nLi6uW7duFezOV0F5eQEREUPk8oLU1J/v328r3OQJDNSKjh4TGlrRP0NVQV79pzqZV3W5IGTmsgGEa9asYWZh7lcjI6OgoKDXberzz5mIq2sCs6Ii9vfnbdv4l1/41i1Ug+qjpIT79mUibt2aMzP55V/fl5LL2c+P3d1ZJGI9PR49mpl5wwZu0QJ3CFWjqKhImEJNuPdy7969adOmNWnShP6mra3dq1ev9evXv2Lx2aCgIOHS4ubmVrmp2B4/5mXLOCmJhw2rloKQmT/66CMiWlw2TO71nTrFRNyhgxKDqrNUn1c5Obxy5eMF3y3rcSnpk3XDHMLndb7B3t588mQVT+0ZyKuqOHv2rDBzXq9evTIzMyMjI4XxMra2thVf7ToxMXHp0qXCUdUaraoUFRX5+Ph06dJF+NsRi8Xu7u5+fn4KheLcuXMWFhZCd76qTKpZRi4vzMw8mpNzMSJi8NOna6TSFGbOz5fExIwPDNQ6depdsZjbt+dt2zg/v+rPVl2QVxVRx/KqjheEzFx+AKFcLvfw8CAiKyurmJiYCrYQEMCBgczMe/fyrVvVFymoqexsbtOGibhnz1dN6Z+SwqtXs7V1aVeu+vV55kxeuJCZWSrlwYPZx6c0P2/d4kOHaih4YGY3N7d69eo5ODgsWbLkypUrQqe+4ODg1atXd+/eXUNDo+xDvK2t7axZs279+31EIpEIAwwGDhz4TM+TihMKQmbevLm6CsJr164Jb56VXhpRmLG5UjMUqCMV51VSEq9eLRSE7O29edDJ0oLwjz+UdYIC5FUVhYaGCkuKt27dOjY2Njk5WZjpvkGDBq++75qRkbFnzx53d3eh/1vLli0vXrxYY2GrxNWrV8eMGSPc/hI+rAszfwwcODC1ynf1BQqFLDvbLy1tb3LyeomEAgO1o6I8cnOvMXNxcdyhQ/eEwUdEbGbGS5fy48dKeVrlQ15VXN3Iq7pfEDJz+QGEhYWFPXv2FFK8gtORrVzJPXtyURF/9x0KQqgWsbFsaclE/PHHL3hUIuHp0/9Z8r55c16zhutW/4s3W3p6eo8ePco+nTdq1GjKlCmHDh0Seujl5uaWTbgv7LB169ayY69cuSJ8ETtkyJDXXWmwvJQUFgary2Ts61vlU3oJ4UviSo8GEUbJYnx0Bak4rxITefXqlMXfXJ3yC3t7y778ytdzH3t78++/K+sEyyCvqighIaFdu3ZEZGlpKZFICgsLR48e3alTp/wX3SzIysravXv3wIEDyz6/6urqDh8+/A9ll/q11tOnT9esWdOkSRNbW1tzc3Nlded7htC7TyIRC/36wsPfefr0SHExFxXx7t3/jNR1cFD6MysN8uq1vOl5pRYFITN/+eWXRKSnp3flypXs7Ox33nln//79rz5EKuXAQN65k1eu5J07eflyFIRQjSQSbtuWjx7l8HBm5tBQTkhgHx/u06f0z1ss5j592NdXWdP7gTLl5+f7+fnNmzfP2tq67BO8hoaGi4uLl5eXRCJRKBRyufzmzZteXl7CUHtm9vf3r1+/PhGNGTPmteZwe15oKK9YwcxcWFi6QmZ1EEZiT5o0qRLHhoeXfnmJHvEVp8q8Sk3l1atDP9q6otcF9vYuXLZyQttg9vbmyq5L9grIq6rLyckZOHAgEdWrV8/X11culz8zZLSgoMDX13f8+PH6+vplieTq6rpt27YKjketY4qLix8+fFjxgbWVU1QUFR+/JDjYVCKhr7/eZ2HBS5aw8JcaEMCenuzmxsJcwosX82+/cUAAM/P167xvX7XGVVHIq9f15uaVuhSEzDx37lwiMjIyCg4OflnVnpDAvr7s5cV9+vxzQ2bJEn7wgGfO5PnzURBCNVIoeMUK7tOHpVLesIFHjSrNQFNTXryYo6NVHR9UTFRU1MaNG/v06aOtrV32Id7Gxmb69Ok+Pj5lQ7lOnjwpjHD+8MMPq/49YmgoDxnCW7bwpk3VWBBGRESIRCIDA4MXfkP8ahs3MhF/8EF1xKUWajqviot5+fLQj7YOsX+4ZfDJTQNPT2gbzF99xf7+Sjmd8pBXSiGVSqdPny58It+8ebOwsaioSPi8bmBgUDbSydXVdePGjUpc5RIEmZnHpdIX9N6Ry/NTU7eNGJEjXNO1tdnTs/Qz+oQJ/MEHnJPDkybx1q0s3Ca/cKEWLT2GvFK5mskrETOTelAoFGPGjDl48KCVlVVAQICwaGZBQUFgYOCNGzdu3LiRm9vJz29J2f4iEbVsSZ07U8OGNG0amZhQu3Z0/Dh17Ki6c4C6buVKMjWlwkIiIgsL+vZbmj2bPD1JT0/VkcHry8rKOnv27KlTp86cOZOcnCxs1NXV7dmzZ9OmTffu3VtcXDxz5swtW7YI01JXxd27tHs3zZ5NJSW0ejXt2VPl6F+iS5cuN27c2L9//5gxYyp4SFISJSRQ27Z06hSJRNSgAbm6EhFdvUrdulVXnHVYzeXVhg13o/R3B7eb3el2iVxj9ZVue8acpuHDyd5eCafxb8grZVm7du3SpUuZecSIEfXr1z9+/Hh2djYRiUSirl27jh492sPDQ1iUC5TuyZOPGjacpafn/LIdLl6kzZvp+HGSyYiIVq2ihw9p0SLau5fS0qhTJ/L3J2trioujd9+lmTNrLvL/hLxSoRrKq+qoZWutsgGENjY2kydPbt++fdlaIkRkbGxrasoDBrCXF58+zRkZpUfducOZmczMV65wSooKw4e6b8UKfvSIp0zhRYuUO7s7qNi9e/fWrFnTp08f4T3HwMBAQ0OjKjMrPqNmuozy3yuADx48uOKHnD7NzZtzcjJfvsxbtrCnZ+l29VhFvHpVb175+obO+vFfXUZXruQqjHR9BeSVEu3evVtLS0uY5JCIWrdu7eXlFRkZqeq4oFRiInt5ccOGfPcuT5zIzPy//3HnzrX0DmEZ5FUtV8W8UqM7hIKcnJyePXuWlJTcv3+fiDQ0NOzt7V1cXLp16+bq6tqqVauqf1UPUGkrV9Lo0aSvTy4udPIkubioOiBQttTU1DNnzuTk5HTt2rV9+/bKajYzk+LiqE0bksspIIC6d1dWw/8SERGxbNmyY8eOyeXyNWvWiMViqVSan59fUlJSUFCgrW2akuJVVERFRVRYSMXFVFBAUimNH09yOcXE0LhxdPcu+fjQ//5HRPTTT+TrWy1xqqFqyaukpMwt++LS9dtYJMsVooAEm+59dWn0aOU0Xg7ySul69ux56dKlkSNHrl69unnz5qoORw1IJOTkRLq6FT9CKiUtLZo0iXbvptxcatWKli2jli2pVy+6eJEePqQZM6ov3EpCXtW0GswrtSsIiSg9PT0pKenMmTOdO3d+++23ywbCAqhcQAC1akUmJnT6NLVvT+h/AbWHXC7v0aNHQECAg4ODWCwOCwt7Zoe33moZG/vw+QO9valFC3r8mBQKMjGhw4fp88+JiDZtouPHayBwqIJDh+jhw9J+SNra9NFHZGys3GdAXlUHW1vb2NjYsLCwVq1aqToW9TB+PJ09S7/+Sv36qTqUaoS8qmk1mFea/71LnWNqampqauro6KjqQACe1bVr6Q8DB6o0DoDnrF+/PiAgQBiDvXr16qKiov79+xsaGurr6+vo6Ojp6RkYNNTQID090tEhfX3S1qZ69UhTk2JiqKCAFi0iV1eaPJksLKhXLyKibdtUfUrwn4YNI19fun+fDA3p/feVXg0S8qoaZGZmPn78WF9fX1jPA2rCr79SZCQZGqo6jmqEvFKBGswrdSwIAQDgtYSHh3t7e4tEoh07dshksj179qSkpLRr106Yfe7V9PSooIC0tWnzZmKmv0eg0MiR1RszKIGmJo0YQSNGVFPzyKvqEBgYyMzt27fX0NBQdSxq4PFjatqUxGKq610okVc1qsbzCgUhAAC8ikwmmzhxYlFR0YwZMwYOHDhq1KiUlJRevXpNmzatIoeXfZvcufO/tnt4KDtQeKMgr6rJnTt3iOjtt99WdSDq4X//o8BAmj2bJk+ujlvotQfyqkbVeF6hIAQAgFfZsn797du3bW1t161bt2/fvoMHDxoaGu7cuVMkEqk6NHiDIa+qSVBQEBEpcc4qeDGFgtaupaZNSSSiK1dIQ4NmzqRyy4TWMcirGqKivMKMmgAA8HJ37kxfvXphz547d+7My8ubO3cuEX377bfCUq4AlYS8qja4k1NDjhwhMzNav57WrydDQ2renK5eVXVM1Qh5VUNUlFe4QwgAAC9RXEyTJunl5Gxo14569pwxfnxGRsagQYOmTJmi6sjgTYa8qjZ5eXmRkZE6OjqtW7dWdSx1XWAgTZpERNSkCeXk0KBBKo6nOiGvao6K8goFIQAAvISXF929S/b2tGoV7dy54ehR/X79Fv/8Mzr1QZUgr6rNnTt3FApFmzZttLS0VB1LXdeoEcXHk709SaWqDqXaIa9qjoryCgUhAAC8yPXrtH49icW0Ywelp9OiRfXz87+bOJGsrFQdGbzJkFfVCf36as6ECTR9Ot27R8HBNGeOqqOpXsirmqOivEJBCAAAzykooEmTSC6npUvJ1ZUGDqSsLBo6lMaOVXVk8CZDXlUzzPxRc4yN6cABio+nmTNJR0fV0VQv5FXNUVFeoSAEAIDnSCQUH0/OzuTlRVu20F9/kZkZ1vyGqkJeVTPcyalRIhE1barqIGoC8qpGqSKvRMxcw08JAABvgIgIKi4mfX1q25by8ujgQaz5DUqAvKomcnlBZKSRoyOJRLm5ubq6uqoOCOqIgoICIyMjIkJe1WG4QwgAAP925QqdOEGGhjRvHp06RTIZjRuHT+1QVcir6hMTQwcPhsTGyuTytpaWuv7+NGAAYZIeUIaQkBCZTNa2bVtUg3UYCkIAACjn0SPauZN27KDISJo1i377jZydMeEHVBXyqtoUJiaeWrbsj+Bg4de3GzWioCDS1aV331VtYPBGKywsPHXq1B9//CH8iv6idRsKQgAAKMffn8aMIQ0NsrenggIiIkdHVccEbz7klbKVlJScPXv2wIEDxw8fzi0sJCJTfX0SCkKplK5fJzc3EotVHSa8Yf7Jq+PHc3NzicjU1JRQENZ1KAgBAKCcevUoL6/0Z4VCpaFAHYK8Uha5nC5cOHfx4qgff8zMzBS2dW7SZLSjIxNde/KkS5MmpXvm5ZGhocrihDfLC/Oqc+fRo0cz87Vr17p06aLaAKFaoSAEAIByhgyhiRPJ1JTu3aMOHVQdDdQVyKsqUigoIIAOHiQfH0pKcjI0zMnLa92woYej4zhn5xamppmFhUcfPHi/dWsXoSOuQkH6+qoOGmq9Z/LK3DwnJ6d169YeHh7jxo1r0aJFZmbm0aNH33//fRcXF1XHCtUIs4wCAMC/ZWfT5ctkYUGdOqk6FKhDkFcVV1xM167RgwckFlOTJnT+PB06RPHxpY+amZGT0xNnZ2tT00Kp9Fx09K+hoccfPCiRyx3MzMJnzyZNTbK3Jw8PlZ4D1G7p6bRqFfn4/JNXDg40evQTT09re/vCwsJz5879+uuvx48fLykpcXBwCA8PV2m4UL1whxAAAP7NyIiGDFF1EFDnIK8qqLCQtm2jvDyKjyexmJKT6aefqKiIjIzIwYEcHcnamqRSWXS0x/nzJyMiCqVSItIQi/s1bz7a0VGhrS02NcVLDS+mUFBICGlqUosWtGMH5eSQtTUNG0YeHtStGxUWys6f91i27OTJk4WFhUSkoaHRr1+/0aNHKxQKMYak1l24QwgAAABQa/j60t27dOgQWVuTTEZpadSkCTVoQI0bEzPFxlJICD14kKapaVVcLFcounTp4uHhMbpPH8v0dCopoSZNyN4ea07Ai02eLBR+9PAhde5MLVpQp06kUJC/P+3dS8ePp2lqWuXmyuXy0rwaPdrS0lLVQUO1wx1CAAAAgFojPJwSE8nAgIR5HU+cIDs7SkmhEycoPJwKC4W9zNq12z958jvu7o0bN1ZltPAGuX+fGjWiqVOJiKZPp9696f59mjaNjhyhvyeSMevcGXmlhlAQAgAAANQaUikVF5OeXumvenpUWEgHD5aWgq1bk4cHjRtHLVq8r8Ig4U2Uk0MNGpT+3KABZWXR6NGUkUGEvFJ3KAgBAAAAao2GDamggAICSC4nhYJSU8nUlAYOJGdnGj2aWrVSdXzwxnJyonXrqKSEZDIKC6MWLWjePGJGXgHGEAIAAADUGlFRdOAAxcbS3bskEtHbb5OVFU2aRMJ6EgBVcfs27dtHIhF9+CG1bq3qaKC2QEEIAAAAUJuEhtKpUyQSETOJRDRsGNnbqzomAKizUBACAAAA1DJyOT19SmIxWVoSpvsHgOqEghAAAAAAAEBN4TsnAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTKAgBAAAAAADUFApCAAAAAAAANYWCEAAAAAAAQE2hIAQAAAAAAFBTdb8gzM/Pf/jwYUlJyTPbZTJZdHR0bm7uyw4sKiqKjo4uLCys9FOnpaU9fvy40odDbYa8AgBQifz8/GvXrmVlZb3WUdHR0WFhYdUUUnR09P3796up8VoL10GAOqPuF4Tnz593cHCIiIh4ZntcXFyzZs0OHTr0sgNv3rzZrFmz69evV/qpvb29O3ToUOnDoTZDXgHUDQUFBUeOHFm+fPkXX3yxY8eOhIQEVUf02vbu3XvlyhVVR/HaAgICdu3aVYkDHz161K1btxs3brzWUUuWLBk1alQlnq4ili5d6uHhUU2N11q4DgLUGXW/IAQAAHihK1eutGjRYvTo0b6+vhcvXvzkk0+aNWv2zTffqDqu1+Pl5XX48GEiio2NHTBggKrDqajjx49//vnnqo4CAABIU9UBAAAAqEBsbKy7u7uDg8ONGzeaNm1KRIWFhYsWLVqyZImFhcXEiRNVHWBFxcTECD9ERkaeP39etcFU3Nq1a9euXavqKAAAoM4VhOHh4Q8fPhSJRE5OTs2aNXt+h7i4uNu3bzOzpua/zj0yMjIwMFBDQ6NLly6NGzcu/1BKSsrVq1e1tLS6d+9uaGgYFBTUqFEjKyursh0ePHigra1tZ2dHRDKZ7Pr16wkJCaampmlpaWX7FBcXX716NSUlxcLConv37lpaWko+c6hOyCuAumfdunWFhYWHDh0SqkEi0tPT27x5882bN728vNzd3S9cuNCyZcu2bdsKj167di09Pd3Ozi48PHzEiBEaGhrC9qSkpCtXrvTr18/IyIiI7t+/HxAQUFBQ8NZbb4nFYgcHhxYtWhBRUFDQ9evXmblbt25Cm2lpaf7+/iNHjoyMjLxw4YKmpmb//v2bNGnywmhTUlIuX748cuTIhw8f+vv76+jo9O/fX3jH+Ouvvxo1ahQVFXXx4kVmPnjwIBE5Ojq2atXq0KFDvXr1SkxMvHTpUps2bXr06EFEiYmJ586dE86lf//+urq6Zc8SHh5+7dq1/Px8a2trLS2tFi1a2NvbE1FISEhAQIBcLu/atevbb79NRBkZGefPnx8xYsTjx4/PnTunoaHRt29fa2vrl73aJSUlp06dio+Pt7Cw6NWrl6mp6b179+Li4gYOHOjv729paWlnZyfs4ODg0Ldv37IDn389yzfLzJcvXw4JCdHV1e3du/cL35/Ly87O9vPzy8zMbN++ffk+h6mpqWfPnk1JSbG2tu7fv3/9+vWJ6PHjx3fv3nV3dw8JCbl69aqhoeGgQYNMTU2FQ7Kysvz8/BITEy0tLZOTk1/9vHUAroMAdRnXIf379xcuYNbW1mKx+LPPPmPm48ePE9G9e/dkMtmsWbPEYnGDBg2aN28uvGXs3LlToVDMnTtXJBJZW1tbWFhoa2v/9ttvzHzx4kUiGjdunKGhoYODQ/369S0sLCIjI52dnfv161f2pPn5+fXr11+3bh0zBwcHN2/eXENDo3nz5mZmZkRkZmbGzGFhYXZ2drq6uvb29lpaWu3atcvMzFTRiwSvDXkFKiGXy2NjY3Nzcyt+SFpaWkJCQvWFVMfY2tp27979+e1r1qwhort37w4aNMjExOTJkyfMfOfOHW1t7W+//fb06dNE5OfnV7b/F198YWZmVlJSIpPJJk+eTETNmjVzdXW1sLAgoo0bNyoUimnTphFRu3btnJycRCLRmjVrmPny5ctENHfuXBMTk+7du1taWhoYGISEhLww2nPnzgk7N2jQoHv37hYWFkZGRmFhYcxsZWU1e/ZsR0dHY2NjkUhkZ2dnZ2e3adMmqVRKRB4eHrq6uqamph9//DEz//rrrzo6OlZWVl26dKlXr56dnV1ERAQzy+XyadOmCYe7urpaWloS0TfffMPMs2fPJqI2bdo4OzsT0YoVK5hZGMI3Z84cIfhGjRrVr18/MDDwhcFnZGS0atVKT0/P2dnZ2Ni4b9++zLxw4UJTU1Nm7tat2+DBg1u0aOHk5NSpUyeRSDRjxgxmftnreefOHSI6ffp0QUFBv379NDU1O3XqZGtrq6WldfDgwZf9d48cOdLc3NzOzs7Z2blt27YikcjT01MulzPziRMn6tevb25u3rVrV0NDQysrq+DgYOG10tLSmjVrVsOGDbt3796gQQMLC4vExERmPnnypLGxsZGRkaura8uWLbW0tFq1avXfOffGwnUQVALXwRpTpwrCwMDAsjeCL774QiwWx8bGlr1hff3110S0ZcsWYYfIyEjhDWv37t1E9NNPPzGzVCodOnSohYVFQUGB8IbVvXt3IbHi4+Pr168/Z86cNWvWaGhoJCUlCe34+PiIRKLY2Nj8/PzGjRu3bt06JiZGeOijjz4yMzNTKBTOzs729vbCVSQ4OFhbW3v58uU1+9pA5SGvQCVSU1OJaPv27RU/ZMqUKc2aNau+kOoSuVwuFosnTJjw/EMHDhwgIl9f3+TkZHNz8759+xYUFDg7O/fp00cul0ulUgsLiylTppTt36pVq48++oj/riR37NghbE9PTxcKmF9//VV4WxC2z5w5U19fPzU1VSgIBw4cmJWVxcyZmZnGxsYffvjhCwMWCsL33nsvJyeHmdPS0gwMDGbPns1/F4TM/Pnnn2tqapYdIhSErVu3jo+PF045Li5OR0dn5MiRJSUlzBwbG9u4ceMePXow87fffktEW7duFY4Vpoj85ptvhFdDeCtj5vnz5+vq6iYlJQkFYd++fTMyMpg5OzvbzMzsha8nM2/btk2osZlZJpMJ71rlC0I9Pb0zZ84IOy9dulQkEqWkpLzs9SwrCL/44gtNTc1Lly4JJ9uvXz9bW1upVPrCGEaOHElEu3btEn7dunUrEe3duzczM9PIyKhPnz75+fnMnJSUZG9v7+joqFAohP+4yZMnFxYWMnN0dLSGhsaKFSvi4+Pr1avXu3dv4T+OmUeNGlW3C0JcB0ElcB2sMXVqUpm3337b2NhY+Hnw4MEKhSI8PLzs0S1btvTr12/WrFnCr2Jx6bkfOXLEzs5u1KhRmZmZubm5np6eycnJt2/fFh718vISei80btzY0dHx0aNHY8eOZeay6bMOHDjQvXt3GxubY8eOJSQkbNy48a233ir/FI8ePbp79+7MmTN1dXUzMzOtra07dep08uTJ6n41QFmQV6ASRkZGf/3116BBgyp+yKJFi4RPYPCfpFKpQqHQ19d//iEDAwMiKi4uNjc337p1q5+fX8eOHRMSEnbv3i0WizU1NUeNGnXkyJHi4mIiCg4ODg8P9/T0JKKff/7Zzc1t6tSpzzR46tQpCwsLNze36Ojo6Ojo3r17FxQUBAQECI8uXLhQ6GtqbGwsfOTdu3ev47/t27dP2HnRokVCeKampvb29tHR0f95pmPGjBH66YnFYj8/v+Li4q+++kq4h2NjYzNr1qzLly9nZWX9/PPPXbp0+eijj545/OTJk6ampn369BGC79WrV1FRUdmkph9//LGJiQkRGRoaOjk5xcTE7N+//5ng9+zZo62tTUTnzp0rLi7W0NBo1KjRM8/StWvX/v37l/3MzDExMS97PcvH1rFjxyZNmkRHRz958qRPnz4xMTFRUVE9e/YsH4DQx5WIbG1tJ02aJPw8Y8YMS0vL8+fPX7lyJTs7+4svvhCSwcLCYuHChffv34+KihL2XLp0qdCr1tbW1tLSUjjH/Pz8H374QfiPUwe4DoJK4DpYY+rUGML79++vXr362rVrT58+FS7VBQUFQl/2nJycxMTEDz/88PmjIiMjo6OjGzRoUH5jXFycMJBDJBKVbdTR0ZFKpU2bNnV1dd2/f//s2bPz8vJOnTolfLEqrEH0zjvvPNO+cFFZsGDBggULyjY+fzmEWgt5BSqhpaXVq1evsoFqRKRQKOLi4vT19Rs2bChsSU9PLyoqsrKyEjLKwcGBmcs3kpubm5GR0bhx4/KjekpKSoRbHEIfPPWko6NjYMrQiFQAACAASURBVGAQHx///ENxcXFEZG5uTkTvv//+4MGDT548+cMPP5QNfxo7duwPP/xw5syZoUOHHjhwQPjjlcvl0dHRQ4cOfb7B6Ojo5OTkZ4ZdxcXFCaVUedra2jKZzNHRccqUKeW3t27dWrg/9vzOr3XW0dHRIpFIGNMoEIYIRkREREREzJw58/lDYmJi0tPTmzdvXn5jfHx82cDL8vHk5ua2atXqmeCdnJxat27t4+OzYMGClStXTpgw4bPPPhN6/b2QUKyWlJS87PUsfzpZWVnPv7Cenp55eXllW8qSv3z9LxaLbWxsHj9+LBTVLVu2LHtIeE3KCsJnzlEmkz169EhfX/+Z0Yx1G66DoBK4DtaYulMQxsfHu7m5tWnTZvv27U2bNo2KinJ3dy97VEdHRyQSlX1rVZ6+vn7v3r2FUfjlN75ijaOxY8fOmjUrNjb22rVrUql0xIgRRCR8g1j+DU6gp6dHRMeOHRNG8wue3w1qJ+QVqEpaWlrDhg23b99uZWU1dOjQQ4cOzZs3T6hVhgwZsnXr1pkzZ546dYqZbWxsDh8+7OLiMm3atEuXLkVGRjo5OQ0dOjQhIWHfvn1SqdTY2Hjv3r1DhgxRKBRffvnlxo0b8/Pziahbt24HDx4URoupoY4dO4aEhCgUimf+hAMDA4XBSET06NGjixcv6ujo7NixY9q0aTo6OkT0zjvvtGjR4o8//hD+X0aPHi0Wi5lZT09PoVA8/0QGBgZdunQpuyVY5mWLB7q4uLi4uDyzUSnThxoYGDBzQUFB2a0toXAyNjauX7/+y4J3cXGRSCTPbL958+YLn6Jdu3bCS/eMU6dOhYaG/v7775s3b7569eqtW7deHapIJHrZ61k+tmHDhj2/mGGfPn1e3bggLS3NwcFBuOMq/EUIhNfE0NBQ6K72vJe9VnUVroOgKrgO1pi602X0/Pnz6enpO3fu7Nu3r4ODwzMzWeno6DRp0qT8JU3o405EDg4Od+/e1dHRMSlHuOq/zKhRo7S0tHx8fA4cONC3b1/hi2ThO9fAwMBnnsLe3l4kEoWEhJRvv6zrBdRyyCuoDeRy+aeffrp79+6srKxdu3adOHGiXbt2bm5uycnJDx480NTUnDt37jOHrF271tLSMioqKiEhwdnZeerUqXK5fP369atWrVqzZk1aWtq1a9fCwsI+/fRTlZxRbTB16tS4uLjt27eX3/jgwYPffvtt1KhRhoaGMplswoQJ9vb2Fy5cCAsLK79o3pgxY3x9fS9cuBAZGSn0FxXuvJWv+u7evSv84OTkFBoa+rLqQom0tLQUCoVcLn/ZDk5OTkR04cKFsi3nzp2rV6/eW2+99Yrg79+///Tp06qH16ZNm7Vr1y5YsOD27duFhYWv3vkVr2cZJyenS5cuCUMlX1dgYGB0dHT37t1f+Jpoamq+4gZgy5Yti4qKgoKChF8VCoVwC6uuwnUQagNcB6tV3SkIhZmg/fz8CgoKrl69KkxNVt7EiRNPnTq1cePGuLi48+fPz5gxQ9g+e/bs9PT0CRMm3Lt3LyEh4fTp0/+5MlKDBg0GDBiwc+fOs2fPjhkzRtg4aNAgc3PzuXPn3rx588mTJ8uWLfvrr7+IyMrKysPDY926dXv37k1MTLx///6mTZte8fUY1CrIK6gltm3b1qtXLyMjo0mTJpmYmPTv33/x4sUNGza0t7cfMWKEMCli+f379eu3Zs2apk2bWllZTZw4MTU1NSEh4aeffho8ePCcOXNMTU27du06adKk/fv3v263wzrD09NzxIgRc+bMmTdv3vnz5wMCAr777rsePXqYm5uvX7+eiL766qu7d+/+/vvvXbt2/eyzz7777jthZhciGjt2bEFBwcyZM1u2bFk2RG3GjBm3bt1auHBhYGDgkSNHJkyYIGwXxlYNHz783LlzISEh+/fvnz9/fnWckbOzs0Kh+Oabb/z9/csP8SrTt2/fNm3azJ49+48//ggMDPT29t6/f//ChQu1tLRmzJgRHBw8b968wMDAY8eOjRs3Tjhk5syZ2traw4cPP3v2bEhIyIEDB+bMmfNMsv2nw4cPf/XVV+fPnz937tyJEyccHByEezuv9rLXs8wnn3zy+PFjT0/Pq1evSiSSHTt2rFix4hUNZmVlCTcq9+3bN3z48LfeemvmzJkdO3bs0aPHp59+umvXrqCgoPXr12/dunXatGnPd+gtM3LkSFNT00mTJvn5+d26dWvcuHEvfLXrDFwHoZbAdbAaqWQqm+qgUCimTJkidBVo2LDh/v37DQ0NDx8+7OvrKxKJ7t+/X1JSMn/+fKGfjImJyY4dO0xMTIRp344dO1Y2CKFhw4YLFiyQy+XCLFjnz58ve4oePXq8++67ws/79+8nIl1d3ezs7LIdJBJJhw4dhL7Obm5uXl5ewrTIeXl5U6ZMEfo8iMXirl27lm8WajPkFahK2exqf/75JxHdvHmz7KGmTZuWn+XS29ubiORyednsao6OjiNHjizbQciroKAgsVjcqFEjl78Jq8YJyyqoJ6lUum7durIxdaamptOnTxcmObxz546ZmVnZrJtSqbRnz55OTk5lf5vdu3cnIi8vr7LWFArFhg0bWrZsqamp2aJFi40bNxLRxo0bmfnmzZs9evTQ0NDQ0tJq2bKll5dXcXFxQECAiYmJsHigwN3d3d3d/YWhXrp0ycTE5Nq1a2Vb+vfvP3z4cGZu27bt0qVLhQDmzZtnbGxsbGy8detWqVRqYmIizNpfJikpydPTs169ekTUuHHjVatWCUsvMPOmTZvs7e01NTWbN2/+/fff09/LTkgkkp49e2pqagoLDyxbtqywsFAikZiYmJw9e7as5REjRpRfM6C8HTt2CC1raWl169YtNDSUmb28vISZOQcOHDh06NCync+fP29iYnLz5s2XvZ537941Nze/cOECMwt3CUQika6ubvv27X/44YeX/V8fPXp02LBhwng2IyOjcePGCZOvMnNmZubUqVOFt3ELC4vPPvtMmIX1wIEDJiYmUVFRZY20a9du5syZzBwUFPTuu+8aGBjo6uqOHz9+/fr1wloadRKug6AquA7WmLpTEArS09MfPHjwslmnBcnJycJ7/TNSU1Nfa/ma/v37e3h4PL+9sLAwPT39+e1FRUWJiYkvfGqo5ZBXUPOUfiEMDAwUiUSTJ0/2+7fXWuKpriooKCj/6bMihBGADx48eP4hhULBzElJSVRuwQZBWfWlci+LRAg+IyODiL7//vuKHFLxZ3z1u+jLvOL1rERgr9j5dU9QoVAIsakDXAeh5uE6WGPqzqQyggYNGjwzn9XzhC7pz3vFpGfPS0tLu3DhgrBA0zN0dXWFL6ueoaOjg8mv3lDIK6gD9PT0LC0tCwsLKzjlhlrR09OrSCfG8g4cOODi4iLMSPkM4V7KvXv3iOiZ+TlfOPeGSrwskuoLXiwWV66FV4RUicBesfPrhqdW85fgOgh1AK6DL1PXCsIac/jwYT09vYEDB6o6EKhTkFdQrcaOHbtp06YPPvhg8ODBRBQVFZWWlta5c2dVx/XmUSgUhw8fXrRoUfmNGzZsOHfu3IgRI5o0aZKYmLh69epmzZq5urqqKsjX8sMPP5w4ceL9999v2rRpcnLymjVrbGxs3NzcVBjSG/16QqXhOgjVCtfBF0JBWElnz54dO3bsC7+pAqg05BVUqxUrVsTGxrq7u5uZmYlEoszMzHnz5uFCWAl37tzR09MbNWpU+Y0DBgyIj4//5Zdf4uLizMzM3Nzcvvrqqzflz7lPnz6PHz/etWtXXFycMNeCt7d3+YX7at4b/XpCpeE6CNUK18EXEvFrzhUGAAA1QCaTBQUF2draamlpRUZGOjg4CBOBENHdu3cNDQ1tbGyEX58+fZqYmOji4hIbG5ubm+vs7BwWFqarq2tnZyfskJGRERMT4+joKHzGevToUXh4uJGRUatWrbAmLwAA1E64DtYYFIQAAAAAAABqqraMbgcAAAAAAIAahoIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATaEgBAAAAAAAUFMoCAEAAAAAANQUCkIAAAAAAAA1hYIQAAAAAABATWmqOgAVycmh7dspO5vGjCFHR1VHAwAAAAAAoALqeodw+nQaPJgWL6Zlyyg5WdXRAAAAAAAAqIBaFoQlJSQWU6tWZGhIo0bR5cuqDggAAAAAAEAF1LIg1NAgqbT058JC0tFRaTQAAAAAAACqoU4FYV4ejRhBYWGkoUGNGtHBg3TzJh0/Tr17qzoyAAAAAAAAFRAxs6pjqBEyGQ0dSqdOUefOdP06MdNff1F2NvXvTyYmqg4OAAAAAABABdSmIJwzh7ZsITMzCgggDQ26dYvGjFF1TAAAAAAAAKqkHstOrFlDW7aQnh4dP06mptS1Kz16RESoCQEAAAAAQJ2pQUHo40Off05iMf32G3XoQAMH0sOH5OREAweqOjIAAAAAAABVquOTyly5cuWDzZsLdXRowwYaPpymTqULF8jKik6dIiMjVUcHAAAAAACgSnX5DuHDhw+HDRuWkZHRYdmyjz/+mJYupd9+IwMDOnWKmjZVdXQAAAC1TG4upaWRkRE1aKDqUAAAoIbUxoIwN5e0tUlHh4qKqKSE8vLIyoqIKCWFzM0r2khaWtqQIUMyMjIGDx4819t7/65dHf74o4WWFh0+TG3bVl/wAAAAbx6plI4cochI0tIimYzMzWnMGKpfX9VhAQBAtauNXUb37KFbt4iILl2i33+nVq0oKooUCvrkk4q2UFhY+N5770VERHTo0OHAgQNnz56dMH1615yctF27qG/f6oscAADgjXToED16RFeu0LFj5OdHT57Q7t2kJvOQAwCot9pYEBJRfj5lZ1NBARGRuzt5eZVu/+UX2ruXTp+m4GBKTCSp9AXHKhSKDz744Pr167a2tn/++WdMTIynp6dMJps1Z47ZuHE1dw4AAABvhPR0iokhiYTq1aP+/cnOji5epLw8ioxUdWQAAFDtamOXUSI6dIhu3aLISOrShUxMqH178vEhIlq8mDIz/7WnmRn16rU7OXm3paWl+d9yc3MNDQ1PnTolk8kGDRqUnZ09ZswYb29vVZwKAABA7ZaURCIRxcVR//5ERNbWdP06lZTQ06fUooWqgwMAgOpVSwvCiROpe3f66y+KjiYimjKFPD1JW5smT6aUFEpJoaQkSk2llBRKS6OkpNDLly8904KJiUlYWNjy5cvj4uLc3Nx2794tEolUcCYAAAC1nI4OiUSkp0f5+aSrS1IpaWiQWEy6uqqODAAAql1tLAibNiUTEyIiU1PKyKCWLUkkok8/pb/+oiVL/rUnM6WmUnr6x0lJQ54+fZqampqSkvL06dOUlJQzZ86MHDlSS0vL0dHx2LFjOjo6KjkXAACA2s7GhpjJxYX8/cnBgaKiqGNHysujc+eoUydVBwcAANVLxLV7yLinJ0kktHs3ubq+3oFubm6XL19evXq1p6enjY1N9UQHAABQJzx4QEeOUF4epaVRgwako0ObN1NGBh09SsOGqTo4AACoRrV0UhnB06d0+DDFxlIlCjpXV1ciys7Orq5qkJkiI+nOHcrPr5b2AQAAaoyDA02ZQm+/TUR08CDJ5fTOO0REixZRUZFqQwMAgGpVqwvCH38kqZSGD6cmTV77WKEgvHbtmvLDIiJm8vGhgwfpzBn64QdKSqqWZwEAAKgxlpY0YgTduUPR0XT1KnXoQBYWFB1NGzeqOjIAAKhGtbfLaEkJ2dhQUhJdvkzdu7/24ZmZmWZmZtra2tnZ2dra2koOLjCQzp6lkpLSX42MaN48Etfq6hoAAOC/Xb9Orq6kqUmzZ1NmJu3ZQ/XqUUQENWqk6sgAAKBa1N4axseHkpLIyaky1SARmZiY2NvbFxUV3blzR8mRMZO///9Ougm//XCzU0KKFoWHK/lZAAAAal6XLjRmDEmldO4c2dqSgwPl59Pnn6s6LAAAqC61tyD84Qcioo8/rnwLQq/RgIAAJUX0t6dPSSZ7nGVU+lueQXGBnIKDlfwsAAAAKvHNN1SvHt27R48fU79+pKX1IDw8UCJRdVgAAFAtamlBePv2HX39Lx0cEj09K99IdQ0jfPKEZDIm0Sdn+31ytt+FGFsiorg4JT8LAACASjRpQosXExGdOUPGxj9169bqxo158+fX2jEmAABQFbW0IPz+++8uXlzx3nub9PUr30h1FYTJySSXi4jX9zu7vt/ZXrYxRERSKRUXK6X59PT0yMjI3bt352P+UgAAUInFi4s7ddqir/9LcPC4d95pZGAQEBCwb98+VYcFAADKVxsLwtTU1EOHDmloaMycObMq7TRv3tzc3Dw5OTkqKkpZsRER5eS8YKOmplLWn7h9+3bHjh179+49efJkKyurGTNmPHjwoOrNAgAAvAZ9/aMLFsyJivrs/HkF89e9ehHRkoUL8zGrNgBAnaPh7e2t6hie9e233/r5+Q0dOrSKBaFIJLp27drDhw87dOjQtm1bZYVHQUGUna2rKROL2FS/UKrQcDRP0dIW0dtvUxVuaDLzhg0bxo0bl56e3rhxYxsbm5iYmMDAwB9//DEwMNDMzMzOzk4kEintLACg9svPp4sX6exZCg0lmYwaNSJlvQnExdGJE3TuHIWFkb4+mZkpp1lmCg4mX1+6fJmePCFzc6pXTzktQ41zcnLy9/cPi4yUKRSfuLqeiYx8kJSkcefOuw0bUvPmSktFAABQtVp3h1Amk23fvp2I5s6dW/XWqqXXqK4uEfk+tPe6+C4znY5oXiDVJmaqwuIW2dnZo0aNWrx4sUwmmzdvXlBQ0O3btwMDA6dPn66rq3vixIl+/frZ29uvXbs2KytLeWcC1WvLFnr4kIjol19UHQooXXY2JSQQEZWUUEQEEdGdO3TxorK6jhMRZWXRli106xalpFB8PJ07R7t3k0KhhJbv3aNff6XQUAoOpnv36OhRunBBCc0S0bFjdOYM3btHISEUEkI7dlBsrHJaBqKFC0t/WLq0dNkjuZzatSPhslD2qBJt3LhRQ0Pj+5s3I9LTNw4YICJad+VK7MWLdOXKfx67bl3p5HCbN9Phw+TjQ0T09CmtW6f8OOHN9eABZWYSEUVEKPPtE9Qc8up1aao6gGcdPnw4Pj6+devW7777btVbq5aCsEED4d9BLSJ2B7cr3SiXU/36lWtPIpGMGjUqJibGyMhox44dI0eOFLbLZLJt27atXbt2z5493333XURExKeffvr11197enrOnz+/devWVT4TqF7XrtGNG7R3L/n706BBlJHx7A5isVShePT8gdbW1gYGBjURIlRaaCiFhNCcOZSRQZs3k54eWVuTpSV5etIff1Tl66F/+PpScfE/FaBUSklJJJFQp05ValYqpRMnKCGBrl4lZ+f/s3ffcVXX3x/AX3dxWQICAiqioOCeOHLPXIAzQk1RM8lRSmaOUsGZmpU5Uvw5Mv2m4kTckDhykLgFBZWNDNmbu87vjw9qmRXjXtE4z0ePHtfL53M+517fXu75vBcuX0ajRtBo0Lo1LCwqFTk2Fg8e4OpV5OTA1haHD8PFBQcPYtYs7k3SiidPSh8kJ79oF2Zm8PXF2rVIS9P+Fdu2bTuxV6+tv/46+8yZwDFjutSrl5CbuzU0tE5UFO7eFf5ajYyaFxT0/Ou56el49AhDhyIrC8bGpRWsUqmTPNnba/16aDTYtAlbtmDWrH/Z7TIvL0+lUgmPZTKZcUW/d7H/PG5X5fUGFYQpKSkHDhxYs2YNgHHjxmlleKSzs7O+vn54eHhmZqa5uTmAHTt2NGzYsEePHhWMqNEgO7tQKQPwfvPwCUeGScWaY1FOW293mNlEPHw4pOV5R4lo3bp1c+bMUSgU7du337dvn4ODg/Cjy5cvd+3atUmTJlOmTPnoo48+/fTT48ePr1u37tdff92yZcv//d//9e3b18vLa8SIERKJpIKvhemYnh7efRe7dwPA0qXYtOnlA+zsEB/f4q8nrly5cvjw4U5OTrrPkVVCYiJu3kRGBjQaPH6MlSsBIDkZ586hf//KBlerERcHjeZyQkJkenpibu7Etm1tTUxw+3ZlC8L4eAC4eRO9esHcHA4OOHgQTZogKgqdO1c87NWrOHkSYjGiojBqFADIZLh3DxYWSE9HrVqVypkBAHJy8PnnAPDHDSAcHGBigtBQXV102bvv7r906VhUVOetWxNzcxNzc5dfuAAAAQHCAd27e128+IqC8PPP8dVXWLgQjRoBwIEDiIxEXh5MTXWVKntL1a5dOkZhx47SATXFxSgqKv0pEWVnv2I425IlS0aOHMk3x9nf4XZVLlVfEGZlZQUGBu7fv//UqVNCgS4Wi3/88UdXV9cWLV7xXblc5HJ5u3btLl++HBoaOmjQoLy8PG9v79zc3OeFllG55rfk5tKBg6v31NscNq27XTwAn57nOvyfV0q+8aWYOpfeR/36mDYNkyaV6T57bm7upEmTDhw4IBKJZsyY8c033+j9oVchOTnZ2tr6wYMH3t7eS5YsmTRp0rRp04KCgh48eLBp06Zt27YFBwcHBwc3bNhw8uTJkydPNn/Wb8neKGPGYPRoFBaiSRP89ePFykptbPzys0+fPp03b15SUtK6deteU5asYpKTER6OnByo1TAwKH3S1BQFBSgsrMyMYmg0CA1Nys6eHxy8+84dmUSiUKtX/vbbp506Lejd2zgi4hWNqYyKihAaioICKBSQywFAIgERSkpw7RoaNapI5fbkCRYvxtatMDTEJ5+86AyUy6FUQiQq7RtilWZqim+/BYCMjD89P28ePvwQOro3aF2v3pLevffcvXs1MbGeqenUDh0AQCRCu3bC37WVVfdX/q6WSGBjA2dnHDiADz/Ee+/Bywvx8aXjSBl7bsYMTJoEW1sUFCA6+uWfyuUvugdq1KghlUoBKBSKRYsW3bp16+DBg68zVfYW4XZVPlRFcnJyfv75ZxcXF5lMJmQil8uHDh26devWbt26ATA2Nj5x4kTlL/TZZ58B+Oijj4goKytr4cKF1tbWwhUtLCwWLsyIiSlboOjoVN8f+zk8Bkgs0izqdU7ts5h8fU+O3Z0yf+3a5fmOjgQQQAYGNGkS3bql+Idg165dEzoDTUxM/P39X3lMSUmJv79/v379hGzFYnG/fv2OHj2q0WgyMjJWr17doEED4Ud9+vQp79vCXoPx44mIwsPJ2LgcZ127dg1A3bp1NRqNbvJi2nDhAq1fT0SUnEwzZtDw4ZSaSkoleXhQaCiZm9PcuZSXV5HIUVGF3323sl+/GnI5AAOZbFqHDqNathR+d9mamOwcPlyzaxc9fVq+sCoVXbpE8+dT69ZkY0MjR9KgQeTrS+PGUc+e1KIFNWhA06bR6dNUXFzWmEVFtGwZGRoSQFIp9ehBX31F7dvTtGnk60tdutCkSbRsGZWUlPc9YK/k4VH6YPx4CgykNWsoMpImTiQiCgigkSNJJ58Zd+8+njlTLpWKRaLQyZPJ15eWLaOjR//1vHnzKCmJVCpq25a2byc/PyKiuDiaPVsHSbK31rRplJ9PISFkaUkPHtDjx/T4MSUmUmZm6X+v/EBKTk6WSCT6+vrZ2dmvPWX2FuB2VV6vuyAsKio6evTouHHjnnfNSSSSrl27rl279umz7zfFxcVjxowBIJVK/YTfIRUVHBxsZ2dnZWUFwNnZ2c/Pr7Cw8Hmh1a7duwCJxdSvHx09+ve/SjUaCgk5/+FPdWrkAlTLqODk2N20ZAn5+pKvLy1fTgEBwlFBQeTuThIJAdSt24fOzs47d+5UKF6uDP38/ITOQGdn58ePH//rqwgLC/Py8jJ41gXh5OS0du1aYcTz4cOHW7RoYWpqOm3atMq8UUwX5s+nq1dJo6Hr18t3onCz4MqVK7rJi2nDw4cUEkJElJNDe/fSkyc0bx59/jldvkzff196c8jOjvbtK0fM9HT63/+Ojh5tX7Om8I/d1ckpeuZM8vEhX99zEya0sbERnu9ka3vVy4sCA6mgoEyRHz+m77+nXr1IJiOAZDLy8qJhw6hzZ+rfn2bPJiMjEj4N27enRYtKG+4/Uh48SA0alL7SZs1o5kxatIhcXWnKFOrThzp3plGjaMUKCg4uxzvA/pFa/acHYWF0+nTpM1lZNGMGjRqlg6sePDi0SRMAE9u2pcWLacUK2rGD/vJ77R+cOEHNm9Pdu6V/fP4qGCOijRupsJCI6JtvqFxfwoWVJnbu3KmjxNhbjdtVeb2mgrC4uFioA58vlSEWi4U6MCUlhYji4+PXrFmzZcsW4XiNRuPj4yMcOWPGjAp0lURHRw8dOlSIYGtr+3xEpbW19YIFCxITE4no2rW8sWNJLi/9SjNw4KsC5edrdv68duBJmUQNUI/6sUnz11N4OMXE0Lff0pIlFBBAKtUfz4iKolmzSqytS7+61a1bd9myZampqUSUk5Pj7u4uPO/l5VVSnhvnKSkpS5curVu3rnB6zZo1hRsYR44cAeDi4lLeX/gmOAAAIABJREFUt4jpVGIiicVkaEj5+WU6vqSk5PPPP2/fvr1SqZw1axaA2Xwj/e0VGkrvvFP6ydKxI/1rbV9UREFBN6ZN61G/vvAPvG3t2ucnTqSff7746acqX19asoT8/NR+fjuHD7c2NgYgFonGtW6dsnDhvxRv6en0v//R6NFkZlaaj5MTzZ5NmzfT0qW0ciUtW0abNtHy5dStG0mlBJC+PvXrRxs2UGzsK0NGREQMGDDgcMeOBFCtWjR2LPn60oQJZGNDALVoQcuW0ddf07JlFBysm04rRrGxtHnzi3c3MZGMjQmgM2e0epmEhF/HjwdgrKf3ZN48Cgqi6Ojy/p1On04A8UAW9krOzmRj8+J+wb/atWvXgAEDkpOTN2/eDGDw4MG6zI69rbhdlZfOC8Lw8PCJEyeamZkJ33JEIlHnzp3Xrl2blJREROnp6Tt37uzXr59YLAbg4ODwx9pv69atwoBST0/PstdOJSUla9euFdYIMjIy8vHxKSkpKSws3Lp1a5s2pYuCymSyyZNnXbxIRJSaSitXkp0drVz5l1jR0U8XbxzY6CFAImhmdLqq2LSVMjPLkkZeXt7GjRubNm36fECsi4tLvXr1AJiZmR06dKiML+clKpXq6NGj/fr1GzJkiPDMzZs3AbRo0aJiAZmOrFtHAI0cWY5ThNYSHBwsrIvboEEDHjX6FlOracsWsrISet72zJsn3BUiItJoKC2N0tJIoyGNhm7dSl+8eEanThKxGICFoeHagQNVmzfHh4aOGzcOwOYNG0ipLD0xPDxv5UqfXr3kUqnwNd2nV6/itWvp0SMiIoWCkpNLb4cWFVFQ0PWpU++2aVNaCtauTRMn0qFDpWNZi4vpyZPSxwoFhYTQzJnUqJFwcKqT04kPPqBffqGsLCKi/Hx68iQtIcHLy0tYyMquRo2SIUNo0SKaOZOaNi29hL09HThAOTmUnMwjRXXK35/8/OjevRfPLF1KADVvXtpYtECjUfn5tbS2BvB1v34UGlqxMJmZZGFBAB05oqXE2H9FYiKJRGRsTEVFZT1FuNe/fv36jIwMPT09mUyWnp6uyxzZ24fbVQXotiBMSkqaN2+eUBE1a9bMx8fn4cOHRJSRkSGsk/l8hUxDQ0MPD49Dhw6p/zya5PTp0yYmJsI0uSzhe8k/Cg4ObtKkSeloK1fX+Pj4lw4ICwsbN26cTCbr2XMNQG3akJ8fFRSQQkGFhUSZmRQURLt306lTdOLE+Q9/qmuSC5ClYcGJD3bTyZMvdQaWxcWLF93d3aVSqVgslsvlbdu2fSR8daucomfNPDMzE0CNGjUqH5NpUc+eBNAvv1B8PPn7l6mfcOHChQCmTp2q0WhsbW0BXC/vYFP2psnLIx+f9E6dhHnRPj4+xXfu0KpVtGIFrVhBX3+t+PbbtQMHmurrA5BJJDM6dcpevjz30qV58+bJ5XLhrI0bN/4ppkJBISFRn33m3ry58FnnaGHh7+5O69aVds0tX07ffZfu4yMUmfb6+ipzcxo4kDZvpoSEf8o2J4cOHSJPT421tbulJYB+Dg73Pv2U1q5V+PqudXMze5anl7Pz0zlzCr/8krp3L+1XNDKi5cvL8euXaVtREdnbE0CbNmkp4s2b6wcPBuBQs2bR999XZqyncIPMwaEcE1RZdbBhw4s7p2WcFr1nzx4AXbt2JaJBgwYBqOTcIvbfw+2qAnRbEArvb/PmzR88eEBEBQUF/v7+rq6uz5fTlMvlrq6uO3fuzM3N/bsgt2/fFr4cN2/ePPZvhjARUUJCgnA3HUDjxo3P/OO4mcTExCVLsoV79wBZWtLcuRR3LjrfZ3Xm/NXk61uwYMWaAael4tJhoonzN1B4eGXeipiYGGHYalRUVGXivJKpqSmAzLJ1XbLX4OlTkkpJLqecHFq5kgCaMOHfz7p165YwqlmlUk2fPh3Al19+qftkmc5FRUa6uLiUzgG2tDw2ZowwAznI07O5lZXwfD8Hh3szZmjOnPH/5RdhKIFIJHJ3d4+Li3t10JwcOnTopQh3p00jX9+ShQu/6d/fRC4HoCeRzO7SJXf5crp1q6wj/WJilBs2rOnf/3mZOqtzZ9dnm6AMcnS8/8knGh8ff3d3O1PT1AYNSCQid3f6uzzZa7R/PwFkbk4ZGZWOVVKSuXSppaEhgMOjRlHl7mOqVNSyJQG0alWlE2P/If37E0A7d9LjxyQW/83MnT8rKCgwNjYWiUQxMTE//fQTeF099hfcripAtwXhF198AcDX11f4Y6dOnYSvFFKpdODAgTt27ChLpx8RJSYmCqM9a9euHRYW9tJPXzlGtCxhi4tp507q0KG0LJSINR+3D2tX+4li4ZITH+ye3/2CVKye0emqYvM2Klue/0xYPTUkJESpVN6/f//GjRuVjylo2bIlgJs3b1YqikpFx47Rvn3lm37LXsXPjwBycyMiat+egLKsyUdE1KhRIwAXL148e/YsACcnJ53myV6nkydPNnm2KkyP+vWfTxdsYml5cuxY8vf//ezZLl26CE+2b9/+0qVL/x40NlaxceN3AwY877sb0bRpo2dTpl2dnCK9vSkkpFxLgBARaTR07VrqokWTnZ3FIhEAM319a2Njf3d38vW98tFHHZ9NZp41ZAhdvVqxN4TpQq9eBNBnn1U6UFDQJx07Auhjb0979lQ+sTNnCCATE0pO5pHwb4OsLNq9m5YupcWLads2SknR+hXy8kguJ4mEnj6l774jgEaPLtOJo0aNArB69eqcnBwDAwOxWCzMQmKMuF1VlG4Lwr59+wI4+uy78OrVq3v16rVp06an5V0wnSg3N3fgwIFCyRcYGPj8+aCgoH8eI1oWYWHk5Z5pIFN+N+DU7C6Xvu4XfOKD3btGHHo88wf66acKDBN9pQ8++ADATz/9pPVZf66urgCOVHJ+xkcf0eHD9Ntv5ObGw3oqSbg79dNPFB9fvoHsc+bMAeDt7a1SqYTVce/9cZIQe8sply/3c3OzNDSUiMVSicRMX39lv37FCxcmhYZ6eXkJU6nr1Knj5+enLvvwPI2Gzp/PmDt3RqdOEpHI3MAAgJOFxbExY2jNmkrdzCoqoh07bnz8sVC7DmnSJHTyZK9nJWKd2rXLlyd7LW7doo4dUxwdXe7fv1/xKJmZETNmyCQSiVh855NPSEtzacaMKereffdHH32slWhMh3Jz0xYu/NHV9fbUqaULqq9YofWacN8+AqhHD6JnNzLKeOfh8OHDAJydnYlo+PDhAH744Qft5sZ0JC0t7ccff7x9+7buLsHtqmJ0WBBqNBphkKSwpGflKZXKyZMnA5BIJBs3bizXGNF/d/165oJvD7y/L2D0Hi/nsE2ux3aNOERLl2rx5veXX34JYPHixVlZWdqd9ScML6xUw83Lo7FjSx+vX0+//qqVxKqnzMxMZ2fvXr3uZmTQt98SUI614ENDQwHY2tpqNBqhtS9evFiXybLX69tvydf36Zw5wgfX0zlzyNf35OTJwjY8BgYGCxYsyC/jurR/lJ1Ny5aRr+9GFxcALaysFAsX0uLFdOxYZRMOCxMiuzg5ATCSyQDoS6VfTpmSV7FdFpnuffzxxwD69etX8RB79w5o1AjA9I4dKShIW4k9evRILpeLxeLQiq5Pw3QtOzt7586dru3byyQSAJ926lRaEPr60vbt2r3WnDl369RRfvMNZWSQVEoyWVnvXxUXFwtLFUZGRu7duxdAly5dtJsb067SduXqKiwV+emnn+ruWtyuKkYMnYmNjc3MzLS2tn6+U0IlCdsSLlq0SK1WT58+vWHDhrt27TIxMfnuu+/u3bv37rvvViq6jU1NwxLh4eLe59aHdgQAiQS1a1c68VL169cHEBcXZ2ZmZmpqmpeXJ6wHo8XIFQ+hUuHZxE7o6UGp1EZe1VRAQMD162vl8tnm5ggNXd6zZ9j77xeV8dwOHTrY2dklJiZeu3Zt5MiRAA4ePKjLZNnr1aYNZDJhXhYAS0NDyGSdXFz09fVdXV3Dw8OXLl36fI/WcjA1hYUFRKKGNWsCqFOjhkwigVSK1q0rm3CTJhCJADhZWADoZGvr6uQUPmvW8vXrhVH67A20YsUKc3Pz4ODg48ePl+9MtRr37yMwMODIkdOPHtU0MPAdPBjdu2srsYYNG86cOVOj0Xh7exORtsIyLSgouHb48LBhw6ytrcePH38sLEwEuDo59bG3X3zu3M3kZABITNTiBVUq1datPZ88kQ0dGhcSEunoWNizJ54tSP8v5HL5sGHDAOzbt8/Nzc3Y2PjKlSuxsbFaTI9px0vt6tgxkUjk6urap0+fxYsXC8PltIvbVYXpsCC8ceMGAGdnZy3GFIlEixcv3rx5s7GxsYGBgaur67179z777DOpVFrZ0HXqoG5d25oFdWrk2RjnL+hxob55HqysUK+eNhIH/ly22dnZoZIl3F8iV7zVKhQwM0N2NqKjkZODEyfwzjtaSax6Ekq4kSNHpqSkHDiw6Pffe7z7rrqM54pEImGgwsGDB/v06WNubn7nzp3IyEgdpstep549Ubu2UGIBgEgEG5uarq7h4eGBgYH29vYVj/z++9DXf/FHsXhqaKjb1KlJSUmVStjICEOG4Nly0IMdHQM9PR2mTkXlP3KZzpibmy9YsACAt7f3nTt3wsPDhWEp/yIzE+vW4cgRxbVrc4KCACzu1ctyyBDI5VrMbcGCBbVr175y5cquXbuCXqXk7FkEBb38XyWbMfs7JSUIDISnJ2rXru3rGxAQoFQoutrZrR04MGHWrMAxY5Jyc33PneuxY8eJhw8h1uY3xosXL2ZmZjZt2tTRsb6//6L7942GDdta9tM9PDwA/PLLL4aGhm5ubkS0b98+LabHKuWP7Wr16oCAAKVSKew9npCQEBgYmJSU5Ovr26NHjxMnTmj3ytyuKk53nY9fffUVgAULFmg98sWLFwG0adNGy3FLSsjfn5YuLd1Sec8e7U6lu3//PoBGjRrRs1l/hw8f1krkq1ev4tm453JTqcjJiUaPppgY+vprWrCAdLAOavWRm5urr68vkUhSU1PXr18PYNiwYeWKcOHCBQD29vZE5OnpCeDrr7/WTbKsKmg09N13pR+/332nzX3b09JOjR0LoH/DhnTgQOPGjQFUaiLZcxcufNa5M4BvBwygO3e0EJDpmFKpbN68OYDnezvp6+s7ODh07drV3d19xowZK1eu3LlzZ1BQ0L179zIzM0mjoR9+EEYGrnr3XQBNa9VSLFqki31Etm3bBqD234y+UdSvX7rO2x//27KFduygjz+m6dPpm2+0nlJ1ER9Ply/TtWuUkUGnTtGECWRmVvoOi0Rqe/sNgwcnz54tDGv3c3PramcnAppaWgKQiMUbJk7UYi7e3t4A5s2bV1JSIuwuFh0dXfbTlUqlMM3+zp07AQEBANq2bavF9FhFKJWvaFd9+mxYvz45OZmInj596ufn17VrV5FIJGy8LJFINmzYoMUUuF1VmA7v8go9hG3bttVWwDZt2tjZ2f3yyy9C5A4dOmgrcik9Pbi7o7gYWVkwM4OBgXbD169fXyQSxcfHazSaBg0aQNs9hBWMFhiIqCio1bCzg1wOGxstdopWQ4GBgcXFxb169bKysjp06BAAYeRn2XXt2rV27doxMTG3b98eOXLkzz//fPDgwef7ebK3nkj0ostFLn/RW1h5f+zJ0e54zj9Gezbelb3J7t69a2lpCUCtLh2eUFxcHB0dHR0d/crj9eXyOkZGtY2NLQwMgh4/BrB24ECZXI4HD9CmjXZzmzBhwo8//nj9+nUHBwcHB4eXfqo0N5c5Or58jqUl/P2xZw8ATJuGuDg8W6SXlYlajb17ER8PlQpiMeLjsWVL6Y9q1ULz5mjVSmxuPrqwcH9ExN579y7ExWmIABjr6fV1cBjfrt38oKBPduyIqlHj+++/F2ujq/DYsWMA3NzcQkJCcnNzW7duXa4hElKpdMSIEZs3b967d6+Pj4+5ufnNmzfv378vlBmsaly7hoEDSx83awZ3d4wbJ27YcHR6+v6DB/fu3XvhwgWNRgPA2Ni4b9++48ePnz9//ieffBIVFcXtqsrpsCAUBge3a9dOK9Hi4uJu376dlJRkbGwsRNZiqfkn+vpanDf4RwYGBrVq1UpLS0tNTdXCrL8/sLa2NjAwSE9PLygoKPcEpPXrAeCTT1BQAF9f5ObC2RktW2olsWro+XjR7Ozs3377TU9PT+gNLjuxWDx8+PAbN27k5+cPGDDAxMQkLCwsJiamUuMJGWPVibe394ULF8zNzcs4U724pCS6pCQ6MxOAjbGxuUj0roMDlErk5Gg9N7FY7OHhERsb+9133w0dOrRM5zx6hKtXSx83boyYGC4Iyyc4GHFx+PVXFBaipAStWqFhQ9jZoUULWFhAqURUFE6dUhQVTUlIAKCvr9+vTx/35s1H1KplLJOhUSObESO8ZsxYt25dSkrazp2/6OtX6k7WvXv3Hj16ZGVl1alTp5kzZwIYMmRIeYOMGjVq//79enp6enp6w4YN2759u7+/v4+PT2USYxWxbBkyMpCTg3Hj0L8/unWDhwecnFBYiOPH4e2tyMiYcuUKhHbVr5+7u/uIESOEWeg2NjZeXl7crt4EuioIk5KSUlJSatasWV9Ln9pCr2D79u2fP9ZWqfk61a9fPy0tLS4uTrsFoUgkqlevXlRUVHx8fPluY0REICQExsaYOBHbtyM3F336cDVYMY8fP/b39z9x4oRIJBo4cKCZmdnjx4/DwsLMyjid+Q/Wr1///FZZ27Ztz58/7+np+dVXX/Xp00fv+do/jDH2Kvv27btw4YKVlZWbm5swPvOfGRoa1rW2tiGqa2xsbmDwy9272cXF/uHhHm3awMJC6+kpFIpt27ZlZGR4eXn9dezDDWtrg9TUl89ZuBAxMaWPw8Px3ntaz+q/jAhhYYiLg0aDgQNBhD17MG4clEpERiIoCI8eQaUCYGNoOHb48P7Dhw8dOlQYbvfceKCeo+PIkSNTU2f17i0KCICVVcUz2rx5MwA3NzeJRNK3b9/k5OSy3hr4g+7duycnJwurVvbv33/79u0//vijvr7+kCFDqkN/zpvi2jWo1fj+e2g0GDIEp0+jsBCBgZg7F6dOobgYgI2R0d+2q/Hj69Wrx+3qTaCrgvD5ijIiLQ2Iet7fWFxcfP/+fYlE0vItrFvq169/7dq12NhYYZyMFhcvql+/flRUVFxcXPna6+ZNIMK4cTAxwaZNAPDpp9pKqZqIjo4ODAzcv3//5cuXicjAwICIhg4dumfPnlatWtWr0PhboRpUKBTz588XbvP/9ttvgwYNMjMze/fdd11dXUeOHFmRtSgZY/91RUVFQpW1bNkyW1vb7du3E5Genl79+vVtbGzq1q371/+XfkXz80NaGtTqNjY2XoGBs8+ccWvSxPCvozcrbd26dZGRkY0aNXr06FFaWtpLP5UWFeGvt0oLCjByJKZOhUSCtm2hpaXLq4vCQgBIT4e1NfBs1Hp6OrZsgUIBABIJevfGqFEYOXLX398C6NOnz+XL9wcOtImPR7duOHECjRqVL5Hw8PD9+/fv3bs3MjKyVq1aN27cSExMHD58uLCUWnmJxWLhd+XZs2e9vb1FIlFaWtq8efPmzZtnb2/v5ubm5ubWs2dP4Zs905UHD9CqFQCIxTAxQVQU2rVDQQHA7eoto9uCUIudeM9nJN65c0epVLZs2dLwLZzK8rxjsHfv3qhcD2FxcfEXX3zx4YcfCkNnK9DlqFbnPBh1sK5FT9P3p4tOnUJkJOzs4OZW4ZSqlVu3cPbs7a1bRwtrBQEwMzNzc3Pr2LHjli1b7t6927Fjx1WrVs2YMaNi90RiYmLGjBlz9epVqVQ6ZswYS0vLw4cP3759e//+/fv3758+ffqQIa7r1480MxskFv+lMiwoQGwsMjOh0aBGDdSvr4vb/IyxN9A333wTGxvbpk2bDz/8UFjUrUOHDqGhof/+QTR2LHbtQlbWJGfnLdevhz15subSpUU3bqBzZy2ml5aWtmzZMgDff/99w4YN/3qASCyGRvPys7Vrw8wMHh5azKQaERZEMDd/UWmXlMDSEhYWqFkTnp7CapBlidS0qU1oKFxdcf06OnXCkSNl2pTk0aNHe/fu3bdv371794RnrKysiouLb9682bp1682bN7u7u1fohYGIVq9e/dVXX6nV6h49enh6el68ePH48eMxMTHr1q1bt26dhYXFxo0f9e/f3tR0oFjMO+XoQMOGuHCh9HFeHpycYGcHkaj6tqvkZNy6hfh4lJRAKkWdOmjRAg0banO9AB3R0WI1Qi/tnj17tBVQWJHs8ePHmzZtAjB+/HhtRX6d1q1bB2Dq1KkajUYoaHNzcysQ5+HDh0Id2KJFC7VaTURjxowB0K5du4iIiDIGSUn5LiwMkZF9iejp8cnKd9vT6lUVSKZauXePfHyocWMCyN6+BIC5ufm4ceOOHj1aUlIiHFNUVPS8Duzfv7+wuFa57Ny5Uxhe36BBg0uXLj1/PiYmZu3atcIKXZ6ercLCcOOG/sOHrunpO1WqbCKiwsIXK+UuXky+vrR8OS1fTn5+lJampfeAVdrGjaUfvxs3ajNsTs6LVUZPndLmKqM3brxYZfTRIy0EZLqRmJgojB04d+7c48eP9fX1RSJROXaB12goMZHOnftt0iQRYCCTxc6ZQ3l5Wsxw8uTJAFxcXLQYk/27w4dp6VLq0oU6d6a2bWnMGFq+nMLDKxYsP5/c3AgguZz+4VtefDytWUMdO5K1dem6RBYWFl5eXmfPnlWr1ampqW7PbkC7u7tnZmaWN420tLQBAwYAEIlEc+fOValUwvNqtTosLMzHx6dZs2YAjh1rEBaG69elDx50TU1dW1KSIBymUuXk5V1UKp8WF0cLv0CVylSFIqki70g198UX9Nln9OGHFBhIRFRQULEwb327Uiho717VqkV56ycpV8wpXjVTtWwe+foq13yp2LaSKvRt/3XSVUEojJSLjIzUSrSUlBQAZmZmGo3Gy8sLwNq1a7US+TUTFrEdPHgwEbm6urq6ulagWjh8+LAwLa1+/fpXr15VKBSfffaZSCQyNTUV/g107drV399fqVT+YxjNvXtOYWHIyjpSXPwwLEx844aBUple0Vf2dnv6lLy9Sx+PGVP64MAB6tePiOjkSVq1imbOpHr1XqyCXrs2TZ1KZ89eev5h8ZJDhw6Zm5sDqFu3blTUhTJmolLleHtPEv4ex44dm5OT88rD4uLirl//vwcPuoWFicPCEBaG69flDyMHPt0zOm+91+OjzRP2dy5ePSM6oKWwjnz00Va0YgWlpJTjTWG6wwUh042iyZN/6dFjjIcHEQnDpSp48/TIkfebNwcwpmVLOnpUW+nduHFTIpHIZLIHDx5oKyYrk5IS8vOjFSvIx4eWLKHlyykkpDLxVCqaOpUAkkho3z5Sq4mI7t4lIkpNpQ0bqFs3EotLf10OGBDo6el54sQJhULxUpzndz/t7OxCypPS7dsXhX4Ca2vr4ODgvzssKupBcvKqBw+6Xb8uEX5XhoWJIiLaZ2TsevhwcEbGnszM/Skp3+Tn/05EWVlHMjL+V+73ghGVtoBKe7vb1W8OGdvdH55wzNjyXqbf+ym7+ud/P5l8fbM2jcr4v5H0ww/aepd0RCdDRtPT0xMSEoyNjRs9GwisVCorM9w2LCwMQLt27UQi0du7ogz+PLAzMDCwvKeXlJTMmTNH6GYcNmzYjh078vLyevXqdfnyZalU+sEHH6jV6t27d1+6dOnSpUv29vbTpk2bNGlSzZo1/xoqJ+dEcXGUnl59U1PXxMTPAY25+RiptJoOLCQSZtQDePEAQK1a2L0blpbIyMAPPwBAvXoYPhxubujVS9iau8vfxRw+fHj79u3Hjh1rb5+dl9c3IWGqre0akeif/hUUFFyLiRkzYoTltm011qxZI9z7eCU7Ozs7u4+Aj1Sq9JycE1lZ+3NzT+fkncptJLGhbpbx7UzSGwIgUenIK4IaCgWOH8eHH5b1TWGMvV2uXNHfunW0vr5HRMSN8+cPHz5sbGy8YsWKioTq12/N1avHoqL23L075ciR7s7OqFOn8gnOmdO4e3ffTp1KhLsV7PXR08PkyXjwADExMDBA06awsalMPIkEP/4Ie3soFPj2W+TkYPJkrFyJ3FycOAFhrxNDQ7i6YtQoDBrkqq//6tW2PT09u3Xr5unpeenSpeTkxQkJh21tV4tE8lce/Aylpa1Tq32aNbNwcur5yy+/1Pn7xuno2BiYY2MzR6XKyMs7m5MTmJ0dUFgYplJlqtU5BgbNDAxapaauKSq6C6iKiyP19Gwr87ZUX9rYMQJvdbvKOlKoH62SOKllJQb5tQxyrVMbXi4ySYNYU2ycoVdsgsJCPHoEJ6fKvD86pZOC8Pr16wBatWolzMu8fv36iBEj/ve//3Xr1q1iAZ8XgUql8t69e2KxuI22d0Z6PYSdAyq2lkxcXJyHh0doaKhcLl+1atXMmTOPHTs2fvz4zMzMevXq7d27t0uXLgBWrlwprIn0+PHjL774IijowJYtraysPjEwaPXHaE+f/gigVq1pREUZGT8BqFVraqVf31vst9/w+ecAhDWxSnl4YM8eDBuGpk3x1VcYOhTt25djHHi9evXOnj2bkPBNZuaCtLR1BQXXHBx+0dNr8KpjNSkpq588WUSktLQ0ffjwhrV1mWZVS6WWFhaeFhaeKlV69ql5irxHteI6PGnya6btHduIASXGGYnNTgNQGOQCwF/X7mOM/TdoNPD2BhG++EJcr167IUMS33nn7Pvv/8N3mn9iZFTP1XX2lStLzp+fefJkWJcu4g8/rOQcmH37EBxsYGW14PDhyoRhFSUSoWlTaHWZxC++AICHD3HpEoTVHCUSAOjXD+PGYfhw1Kjx70EcHBxCQkJ27vy2cWPftLRz+fkG0DfoAAAgAElEQVQX7e136+s3e+XBKtXTmJhxubmnAfHmzfPt7WdLhEv+G6nUomZN95o13TWaory8s4aG7czMhqSnb336dLNc7qBSpSsUT9TqTIALwqr3VrYrg/i8wEWG6ZZmqU3S7W48rR8mL6yp0itUyPPUekUoNgFR6fJObyrt1PQvcXBwGDBgQEREhLA06IYNG+Lj4/v37y/s010BzzceDA8PLy4udnR0rFGW5vDmMTEx6du3r0wma9eu3ZYtW4r/WHz8oyNHjrRt2zY0NLR+/frnzp2bPn26r6/v0KFDMzMzXV1db926JVSDAMzMzGbNmhUVFXXs2LEBAwaMHIn09P+LiGh9/377jIyfiZTCYXZ2m2vX/srS8qOMjJ/V6hxj4+6Ghs46ec1viW7d8O23+PZb6Ov/6flFi7BmDSQSLFuGDh3K/Y1IIpE0aDCvceNLcrl9QcGViIjWmZm/vHSMSpX28KFLUtJ8IpWV1YwmTS6XsRr8I6nU0tLogzrR78pKjOvfHlrzSYusOvfk+Ra2EQNsIwboFZkAgKVlecMy7UtNRVZW6eOsLG1W6ZGRLx4/egQi7YRVqxER8eKPERFai8y0aOdO/P476tbFnDnYvBl379ZNSxs3tRK3+d55Z96QIXampjeTk3cGBv6pDZRfURGEDSaWLUP5N+Jhb7pFi+DrCwDffYenTxEUBE/PMn1rF8hkso8+mte48Xm53LGw8Ob9+84pKauAl9cWKij4/f79jrm5p6VSS0fH440azS3jt/Y/EosNTE1dZLLaUqllnTpLFIo4ADVq9K5Zc6SRkTbXT2KV9za1K6t6ptktZCU1pArDOpG9FQbZAGqkN6iZ0swo0xYAiODgUN6wr5OuCsLi4uLs7OzevXsHBwdv3bp1+vTpRUVF7733nq/wd1tOz3sI3+rxooJt27aJRKKbN29+/PHH9vb2vr6+ycnJ/3C8UqmcN2/eiBEjsrKyhg4devPmTVtb2169ei1evFgsFvv4+AQEBAhz1f5ILBa7uLicOnVq/PjdNjZzJZKahYXXY2PH371b/8kTX5XqaUnJQyJlQcElPb16hobOVlaf6PJFv+kkEjwfV2tpiW3bMH8+DA1hZIRmzeDqWo4PoFcyMurUtOlNc/NRanVuTMwHsbGeGk2+QhGnVufk5gZFRLTOzT0lldZq1CiwXr0fRKKK7jTYuTMMDLLrRiY2P51e/7pxRgOpwhAAiKQKQ+jpwcWlUi+DVV56OrZv/9MA5e3bkZ6+adOmpKSkSkW+cQNnzrz4Y2bmxv79Dx88aGtbwRveGo1mx44dMTEx8Pd/sQUcgDt3cPJkpVJlWpeXh6++AoBVq6BQlH6HWrPm5ftb5SKRGAwevKJvXwDzf/015+hRKJUVDvbNN4iNRZs2PGj9v8nBAXXr4vFj2NvjVZNUysTIqFOzZresrGZoNMVJSfMePhygUCQ++yGlpf0QGdlNoYg1Nu7RrNktE5OBlUlYoylKTl4eHz+jVq1PDA3byWTWAORyB319Hsz8Bnmb2pVIhFGjNPqiZMeL8c1P1orpaJhTW6YwBiAvMtcvtsbgwfjzHoxvGknFKrR/JhaLR48eHRMTc+3atT179tjY2CxatKhmzZpnzpw5d+7ckydPBg0aJC7zgOO8vLzly5fr6emtWbNmx44dv//+u6enZ9euXbWe9uthZmbm7e3t6OgYExPz+PHj8+fPr1+//u7duzVr1nR41c2DlStXLl26VC6Xf//9999///2vv/46cODAyMhIW1vbY8eOeXp6/vNi4lKpuYlJv1q1pslkdRSKaIUiNj//vFqdmZt72s5ug1Ray9DQWaGIkUrN9fWbikTlviny32BggN69Sx+7uKBdO1y7hvHjISyK3qsXmjSp7CXEYv2aNd+Tyx1yc4NUqhS1Oq+o6GZh4TWFIjon52SNGn2dnE5XtpNWKkWrVvrRZPKolnlaG1mRvmmaE6RSSKWmqk4YPVors4BYpRw+jPR0AIvPnQPg26sXNJoroaEj587dvHmzUql85513pNLyj+RXq7FrF5TKx5mZu+/caWhuPq5VKwdT0ybOznoNGlQgzWvXrr3//vsbN25MfPjwfRMTqFSnHz++mpg4oFGjznXrIi0NrVtXqthg2uXjg1On0Lkz1q7F3Lk4dw59+uDrrysb1tKypUJx9saNiKdPqaSkn6MjKtSckpIwejSUSuzdC3v7yibF3jTZ2WjTBp064elT9OhRqVAikczUdJChYZu8vLNFRfdUqqc5OYF5eWcVirgnTxZpNIU2NvMbNPhJIqlsL7NIJDMx6WdqOlhf31Eut5dITAHIZNYyGf+WfFO8fe3KxETUso1JrJVppKV+iZVcUUtCRgBktZvLXCdCB3u6apnu1qvRaDQ+Pj7CVWbMmKHRaA4cOGBgYABg4MCB5dpuQa1Wx8fHE5EwMPIfVv55u4SFhY0bN+7597927dr5+fkVFhb+8ZjCwsKhQ4deu3ZNqVT6+PgIhXS/fv1SKrJipCYn5/TDh64FBTcfPnRLTl6hVKaVlMQKqyTdumWVmDi3pCReW6/u7bVzJwUF6Wo5qMLCu/n5V2NiPPPyzhORRqNKT/+ZSKPNa2Rn040bFBxMp09TaCiVfyVbpitffy2s+2prYmIgla4dOFC1aFHM7NkjR44UPgTs7e0PHDhQ7rDJybRsWda8eWNatqwhl1sZGZ2bMIF8fel/5V4xLyEhYcyYMcJtJltb2/8tWkRLljz45BMnC4taRkZb3NzI15e+/rp03Tf2hggOppYtKTSUIiJIJiOJhG7f1k7ktLTrU6eKRSI9iSRyxgzat49u3qS/WVr574wdSwC5u2snI/ammTr15QeVp1Akx8SMKyy8Ex39gfBMdvax7OwTWrsAe+O9xe1KraanTykhgVJT6V8W/H+D6LAgFGzbtk1YX/T9998vKiq6cuVKrVq1AHTo0KG8JY1KpTIyMhKJRBkZGTrKtko8efLEx8dHeFsAmJmZzZgxIzY29o/HJCQkCEvySKVSHx8ftTaKlfz8yw8fuqnVhU+f/l94eOtnuxfIoqNH3bnz6t0OqgOFgvz9yd+f/lyYa5lSmfHkyZJHj4aoVG/61jRMm1avFgrCk2PHCv/eW9vYhEyYQP7+IceOtW7dWniyZ8+et27dKmvMpCTVpk2bXF0tDQ0B6D2b/ODevHnsrFkUElLGX0iFhYUrV64UpmcbGBjMnTs39/ffM319Z3TqJBWLAbzbsKGQPH39NWllNwumLSkppZtcubsToM0vUER0/PjEtm0BDG3ShHx9acUK2rChLJ+PGRmlR507R337lm56p1JR+TcGY280D4+XH2hRaur3jx4N5VKwGuJ29ZrpvCAkojNnzpiYmADo06dPVlbWo0ePnJychHvhZd9F/cmTJ/PnzxfO0mm2VaW4uNjf379z59I5zWKx2NXVNSgoSKPRBAcHW1tbCzfsL168WPlrqdVFWVmHc3PPPXzokpy8UqlMI6KCgrCYmHHXr8tOnOgtFlPbtuTnV+H9Rdm/0GhURJScvDw//3JV58Jeo6NHadkyoaw6Onq0w7NZEa5OTo9nz1afP79z+3YrKyvhE2DcuHGpqan/FC03lw4dCpkwobW1tRCnV4MGoR99tLJfvxpyuVAczujUKXf16n+t344ePWr/bDCfq6tr9OXL6i1bdg4fbmVkBEAsEo1r3Tr1iy9KC8Lly6moSJtvC6swtZrGj6eVK2n6dNqyhTIy6PPP6elTbV7i9u3k2bNN5HIAp8aOJV9fWrqU/P3/9bx582jyZCKiJUtoxw7y8yMiiouj2bO1mR2rcp060eef0+efU/v2Oomv0SgfPRqqk9DsDcbt6jUT0WtZL+7u3bsuLi4JCQnNmjU7ceKEgYHBkCFDQkNDzc3NQ0JCWrVq9XcnZmVlBQYG7t+//9SpUyqVysnJacuWLT179nwNOVeVS5cubdiw4eDBg0qlEoCtrW1SUhIRDRo06Oeff7bUxkKRROq8vBClMlmtTktImC0S6ZmZDbWy8jY27qJQJAYG5kyd2vzpUwCwtMTkyZgyBXZ2lb8seyEtbV1JySORSFa37iqRSCe7v7A3UVER/PyQny9sqKRQqzddu7YwJCSvpERPIpnSvv3SoUM13buvPHZs7dq1JSUlZmZm8+bN8/b2lsv/vIGSWo2wsIQjR746eXLX7dsA6pmaLuvTx/NZH+OT/Px5QUG7b98moE6NGj69en00YoR40CA8Kx2fu3nzpre394ULFwC0bdt27YoVPVSqkIMHvU+evJOaCqC3vf3agQNbPT9RJsPgwXg7N/75DwoKwoMH+PRTABgyBEePav8SP/+8cNu2Y1FRt1JSahkZvSMsUyQSoVEjYdnl+vUHxsVN++t5TZpAqcSwYbhwAfXqIScHEyYgMRE//YRvvtF+mqyqjBqFvXv/9EBblMqklJRVanWeoWEbK6uZ2gzN3njcrl6z11QQAnjy5ImLi8utW7dsbGyOHTvWvHnzCRMmxMTEhISEGBoavnRwTk7OkSNH9u3bFxwcLNRF+vr6gwYN8vDw8PDweD0JV62UlJSdO3du2LBBJpMVFBRMnTp10aJFZV+Jp4wKCq4kJ3+dk3NcWIfXyOgdM7M55ubDibB3L9avx/XrANCkCe7f1+6VGauuSkpw6RIePACAxo1hbPzk2LHFJ09uvXFDQ/S8eIts1GjW8uWnTp0CMGHChB07dryIEBVVePTo6uPHV/32W7FKZSiTfdG167whQ/R79EBsLJ48gYEBWrVCRsa1I0dmnjx5JSEBQIe6ddcOGtRl8GD07w8jIyHS7du327Vrp9ForKysli5ePKl16ycBAV+dOvWnInP4cDRrhnv3kJMDS0t074569V77u8b+xu7dMDTEiBEAMHo0fvoJ8n/efLncYpYta7Z4cYlKNbRJk+vJyQk5OS8d0L2718WLfn898fPP8cknmDULLVvC3h6HD8PZGTk5EIu5IPxPGT8eO3f+6QFjlcft6jV7fQUhgLy8PA8Pj5MnTxoZGe3Zs8fFxSU/P9/kD8uwFhUVBQcH79+//+DBg4WFhQAkEsk777zj6enp4eFhamr62lJ9QygUitjYWBsbGxNdLlZbUhKdnr4lPX2rSpVx+vQv69aNnjAB06ejXj1cuYL16/HkCWbOxPDhmDMHrVvDwQGdO+PqVcTEYPRo3eXFWPVQVITz58OOHJl54sTlhAQA7evUWTtoUFcXl2CZbNYXX+yYO9e5RQs4OkKppJMnDwQGzj5zJj4nRwS817z5Gjc3O1dXvPMO/rp1UkoKnTx54OTJz8+cSXjp+I4dERODp09dv/yyYcuWSyZOlJ49+82JE0KRaaSnN7tLl3lDhui7ur4Fa6NVZ+Hh2LoV33+PoiKMHo0jR7R+hfe6dj14+fK41q1/Hj78na1bozMz53br5li7dmkVCsjlDUpKXjHM5/JlzJiB+/fx4YdYvBgKBby8EB+P9eu5IGSMsTfLay0IAahUqunTp2/ZskUikfzwww/Tp08HUFJScubMmf379x85ciQvLw+AWCzu3Lmzu7v76NGjhRk1TFuys48aG3eTSl/eulCjKczM3P3xx6MPHaoBQE8PI0fi00/RuTPGj4dGgx9/xIwZ6NgRTk7o2xchIYiMxJQpVfEaGPvvSU9/RbE3cKCtqalYqPTU6rCkpL8WjX/s8Xu1qKiCgICXi72ePfVlMhBpRCKRWn3g3r1XFI2vLDLZm2b7dty9C4UCU6eiRQvtxg4JCenTp4+hTHb/k08i09P779plIpdHzpplM3IknP9lm5xt2zBsGCwsMHcueveGRoPBg5GWhiNH4OWl3TQZY4xVyusuCAWrVq2aP38+EY0YMcLY2DggICAnJweASCTq0qWLh4eHu7u7jY3N60+sOoiPn1qr1jQDg5Z/d8C5c9iwAQEBpbtnr1iByEh8/jl+/hnp6ejYESEhsLNDQgJ69+aCkDGtiogoPH589bPirXQ4aLdumUVFi8+de2lY6SvnBL6aSoXLlxOOH//q9OmX5hxeS0ryPnXq8h+HlQ4bhj59YGCg0xfK3nxqtdrZ2fn27dvL+vSZ07Vry02bItPTvx08eNZXX6FLl6rOjjHGmNZUTUEIYOfOnZMnTzY3N09NTQXQrFkzd3f3cePGNRT2AmdVLTkZfn748UecPYs1a/DTT5g7F+fPY/x47iFkTJfUaoSFRR848MXx44fu3wdgZWSUp1AUKZX6Uumszp3nDx5sPGgQnq0fUw55eTh//tcDB7xPnryXlgagvplZfHY2AXVNTFb26/eBm5uo7EUm+6/b4uf38ZQpDczMIqZP3xQW9vnp040aNLh3967c2LiqU2OMMaZNVVYQAujVq9f58+ffe++9r7/+ulGjRlWVRjUSFoYWLaCvX/YzlErIZJgwAT/9hLw8NG2KBQvg5IQ+fXDuHCIj8fHHukuXsWosIwMbN56LifE+dapAoUjIzX3XweGHQYMc6tTBrFmQVmJl2t9+0/z66+7bt784c6aVtfWFuLgp7dsv69OnRqtWGDVKey+AveWys1WdOu1RKg07dOhRv77T+vXZxcXHjx8fPHhwVWfGGGNMy6qyILS3t4+NjY2IiGjatGlV5VC9jBuHM2ewaxf696/qVBhj/4gIq1ahpESt0TzJy1MTNTAzA4DGjStbtiUn46efoFBkFhUByFco7ExNoacHFxf8/Q5ArNr57DOsXQs7O0ycuPXXXyf/9tvAgQNPnjxZ1WkxxhjTviorCLOysiwsLAwMDHJzcyW8bsFr8+gRTEzA6/Qw9uYLCcGVK1AqXzwjk8HTE8JGcJXh54e0NKjVwj5yAGBoCG9vyGSVjcz+Gx48QKtWUKkweTLEYmzZEt+xY+H27U347i1jjP0XaXlfu7K7fv06EbVt25arwdchLg4aDQA0asTVIGNvh1690Lw5ZDLo6UEuh0wGFxctVIMAPvgAlpaQy0sjGxtj/HiuBtkLs2ZBqYSzM+rUwalT0GjsOnfmapAxxv6rKjERpXJu3LgBoF27dlWVQPUyZw6uX8f06Zg4EcLAM8bYG04kwtCh6N4d8fGQyeDgoLWVP42NMWUKEhPx9ClMTdGgAW8vwV44dgwnT0JfH717IzwcsbEwN8eCBVWdFmOMMV2psoLw5s2bANq2bVtVCVQXGg1WrUK9ehCJcPEiJBJMmQI9vapOizFWNubmMH9511AtEIlQrx7q1dN+ZPZWU6kwezYA9OwJuRxBQQCwYoVOGiFjjLE3Q5UNGeUewtfk0CFYWmLNGqxZAxMTNGqE336r6pwYY4y9eZKS4O+P7t3RpAk6dsTly8jORvPmmDSpqjNjjDGmQ1XTQ5ifn//o0SO5XN6sWbMqSaAauX4dEyYAgK0tcnPBK4Yzxhj7q/BwBAQgJwdqNVxcAOD6dQBYv75S25wwxhh741XNp/yNGzc0Gk2rVq1kvIyBrtWujcRENG78p7UKGWOMsecUChw9iqQkXLyIFi1w/jyaNsWUKahdG717V3VyjDHGdKvKCkLweNHXw9MTXl64dw+3buGTT6o6G8YYY2+e+HiIRLhxA337wswMDRvi0CE0box33qnqzBhjjOlc1RSEvKLM62Nmhn37kJiIKVMgl1d1Nowxxt48JSUAoFCU/pqQSkEEtbr0ecYYY/9pVbOoDPcQvlbCcoJcDTLGGHul2rWhVqNBA0REAEB0NKytIZOhTp2qzowxxpjOVUEPYWFh4YMHD6RSacuWLV//1RljjDH2J+bmcHQEgKtXceYMjI3Rq1fp2FHGGGP/dVVQEN6+fVulUrVu3VpfX//1X50xxhhjLxsxAgEBACCRQK2GrS3c3SESVXVajDHGdO71FYRFRUUnTpzYu3ev8EceL8oYY4y9KaRSjByJwkJkZaFGDZiYVHVCjDHGXhOdF4QKheLMmTP79u0LCAjIy8sDYGFhAS4IGWOMsTeNoSEMDas6CcYYY6+VzgpCtRpnzwafO/f+pk1ZWVnCc506dfLw8CCiS5cude7cWVeXZowxxhhjjDFWBiIi0mY8jQaXL2P/fvj7IyUlxcrKNiOjcePG7u7uH3zwgaOjY1ZW1uHDh/X19ceMGaPN6zLGGGOMMcYYKyftFYQZGVixAv7+SEwsfaZJE3h4xI8ebde4cVFRUXBw8K5duwICAhQKRZMmTe7fv6+d6zLGGGOMMcYYq5BKDxnVaHD7NqRSODpi61bk5sLODsOGwd0d3bqhqEj166/uCxYcP368qKgIgEQi6d+/v4eHh0ajEYurZhdExhhjjDHGGGPQQg/hxIlC4YfISHTqBEdHdOwIjQYhIfj5ZwQEpEuldfLy1Gp1586d3d3dPTw8bGxstJQ8Y4wxxhhjjLGKq1wPYXg4atfGpEkA4OWFvn0RHo7Jk3HoEJ4tJGPZqdOeiRPfcXWtW7dupbNljDHGGGOMMaY1lSsIc3Nhbl762Nwc2dnw8EBmJgA0awZ3d3zwARwdR1Y2ScYYY4wxxhhj2le5grBFC3zzDRQKqFSIiICjI2bMABE8PNC0qZYyZIwxxhhjjDGmE5WeQ3jtGn75BSIRPvoIzZppKSvGGGOMMcYYYzqn7X0IGWOMMcYYY4y9JXjjB8YYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggZIwxxhhjjLFqigtCxhhjjDHGGKumuCBkjDHGGGOMsWqKC0LGGGOMMcYYq6a4IGSMMcYYY4yxaooLQsYYY4wxxhirprggfMsUFBRcunQpOzu7XGdFR0dHREToKKXo6Ojw8HAdBWeMsbdaSkpKUlKSLiLn5+dHR0crlUpdBK+8xMTE1NTUCp+uUCiio6Pz8/PLfgoRRUdHl/f3I6uwgoKCyMhIhULx0vMqlSo6OjovL+/vTiwuLo6Oji4qKqrwpdPT0+Pi4ip8OmPsJeJDh/6fvfsOi+LqGgB+dilLWToCIoLSQcDeQMSCigIqqCgY0SgqihJFY4sFYgOjRpOIwdhrwKgRCwqIBeyCEpr03ntvu3u/P67Zb18skSYq5/fkycPO7tw9MzvOzLltLv/4449btmw5evRoJ120OtXp06fDw8O7OopWe/To0YkTJ9qwYlJS0qhRo548edKqtdavX+/g4NCGr/sYGzdunDVrVicVjhBCXzQXF5fp06d3RslXr17V0tJKT0/vjML5zp49a2pq2oYVJ0+evHz58jZ/b0pKipaW1o0bN95+q7y8PCAg4O1ss6mpSUtLy9fXt81filrlzp07+vr6ycnJLZZnZ2draWn99ddf71vx6dOnWlpajx8/bvNXe3p6DhkypM2rI4RaYM6ePTswMPDevXtr167V0tLas2dPV4fUOtu2bbt06RIAZGRkWFlZdXU4H+vq1as//PBDV0eBEELoc7R8+fK8vLwOL7ampmbp0qWtanY7d+5c//79OzyS9khNTZ09e/Y///zT1YEghNBXgpmWlvbixYvw8PD8/PyFCxeuX7/+1KlTXR1VK6Snpx84cAAAUlJS7ty509XhfCwfH5/OuNgjhBD60pWVlR0+fLisrKzDS87Kyjpy5EhDQ8NHfr6ysjIsLMzOzq7DI2mPQYMGVVZWjhs3rqsDQQihr4Rw79696V/i4uK//fbb06dPt23bZmNjExYWpqury68XfPjwYWlpqaamZkJCgr29vZCQEF1eUFAQHh4+ceJEGRkZAIiLi3v06FFdXV2fPn2YTKa+vr6Ojg4AvHz58vHjx4SQUaNG0TJLSkru3r07c+bMlJSUsLAwYWHhSZMmqampvTPKoqKiBw8ezJw5MzEx8e7duywWa9KkSaqqqgBw+/btnj17pqam3rt3jxBy8eJFAOjXr5+BgcFff/01bty4vLy8+/fvm5iYjB49GgDy8vJCQ0PptkyaNElMTIz/LQkJCQ8fPqytrVVXVxcREdHR0dHT0wOA6OjoR48ecblcU1PTQYMGAUBZWdmdO3fs7e0zMzNDQ0OFhIQmTJigrq7+vr3c1NR08+bNnJwcZWXlcePGKSgoxMbGZmdnT548+e7duyoqKpqamvQD+vr6EyZM4K/49v4ULJYQ8uDBg+joaDExsfHjx2tpaX34x66srAwJCSkvLx84cKBgX4vi4uLg4OCioiJ1dfVJkyax2WwAyMzMjImJsbGxiY6OjoiIkJaWnjJlioKCAl2loqIiJCQkLy9PRUWlPaNEuoOnT5+WlZVNnjy5DesGBgb26tVr8ODBHR4VQuhTqq+vf/r0aVVVVf/+/TU0NPjLq6urHzx4UFVVpampOXz4cABITEyMiYkBgPj4+MbGRllZWXpuj42NTUpKEhERMTY27tOnz75XbRIAACAASURBVNtfkZSUVFdXN2DAAPqyrKwsIiKitrbWwMCALoyNjY2IiACA6OhoWVnZHj160MtWVVVVeHh4VVWVmpqaqakp//oOANeuXZOQkBgzZgx9mZ2dHR0d3djYqK2tTS/l9fX18fHx/fv3r6qqevDgAQCMGjVKUVGRXwKXyw0PDy8qKjI0NDQyMsrMzCwvL+cHCQClpaUZGRn9+/cXFhYGgIyMjMjISAaDweFw6AcqKyvT09MHDBjw7NmzzMxMMzMzGRmZmJgYIyMjeuNRWFj4+PHj5ubmnj17Cu6Q7OzsZ8+ecTicYcOG9e3bty0/GxKQkJCQmJjIYDCMjIzeeb+RnZ39/PlzQgj9KflSUlIiIyOFhIRGjhzZq1cvwbeKiooiIiJERETMzc2lpaVfvnzZs2dPendHvX79WlRUVFNTEwA4HM7jx49zc3MVFBRKSkr4n2lsbIyIiCgqKlJWVjY3NxcREengLUefK7y/6kjkf3l7ewNATEzMlClT5OTksrKyCCFRUVGioqL79+8PCgoCgJCQEP7nt2zZoqio2NTUxOFwvv32WwDQ0tIyMzNTVlYGgAMHDvB4vMWLFwPAgAEDjIyMGAyGt7c3zWQAYOXKlXJycubm5ioqKlJSUtHR0eRdQkND6Yfl5eXNzc2VlZVlZGTi4+MJIaqqqm5ubv369ZOVlWUwGJqampqamgcPHqTj7GfNmiUmJqagoLBq1SpCyJkzZ1gslqqq6siRIyUlJTU1NZOTkwkhXC538eLFdHUzMzMVFRUA2LNnDyHEzc0NAExMTIyNjQFg+/bthBA6hG/FihU0+J49e7LZ7MjIyHcGX1ZWZmBgIC4ubmxsLCsrO2HCBEKIh4eHgoICzZCtra11dHSMjIyGDRvGYDCWLl1KCHnf/oyKigKAoKCgurq6iRMnCgsL00udiIjIxYsX3xkAIWTmzJlKSkqamprGxsb9+/dnMBiOjo5cLpcQcu3aNTabraSkZGpqKi0traqq+urVK7qvREREli9f3qNHD3Nzc3l5eWVl5by8PELIjRs3ZGVlZWRkzMzMdHV1RUREDAwM3vfVyMnJSUdH5+3lSUlJGzZsoLv0fdTU1JYtW9ZpoaFuKj09nZ760CdgbW3du3fvPn369OrVq2fPngwG4/vvv6dvBQcHy8vLS0tL6+joMJlMW1tbLpdrZWUlKSkJANLS0nJycnPnziWEjB49WlRUVFdXV01NTUhI6McffySEnD17FgASExMJIffv36eXaVryn3/+yWaz5eTk6I27i4sLIWTgwIESEhIAICsrKycnt2bNGkLIjRs35OTkJCQktLW1hYSE+vfvn52dzQ/e3t7e2dmZ/r1u3TohISF1dXVdXV0mkzl16lQulxsdHQ0AW7dulZGR0dfXpzHTiwi9qBkbG/fq1UtdXZ3BYOzevfv333/nx0ytXLlSQ0ODx+M1NTW5uLgwmUwFBQUtLS2aVPz555/Xrl1jMpn0WgwA169ff/78OQAEBwcTQrZu3SoiIiItLa2rq8tisQBg586dhJDt27cLCwurqKjQPcbfM6htJk2aRCvK1dXVmUzmpk2bCCFXr14FgNjYWA6Hs3z5ciaTKS8vr62tTVOy48eP83i8lStXMhgMdXV1ZWVlUVHRs2fPEkLu3bsHAHPnzpWWltbX12ez2crKyikpKcbGxhMnTuR/aW1tLZvN/umnnwghr169ooeotrY2rXFQVFQkhMTHx2tqaoqJienp6YmIiAwYMKC8vLyLdhL61PD+qgO1TAj9/f0BIDAwsLCwUElJacKECXV1dcbGxpaWllwut7m5WVlZeeHChfzPGxgY0B1KM8mjR4/S5aWlpTSBOXPmDD0v0OWurq4SEhLFxcU0IZw8eXJFRQUhpLy8XFZWll603kYTwqlTp1ZVVRFCSkpKpKSk3NzcyL8JISHkhx9+EBYW5q9CE0JDQ8OcnBxCCJfLzc7OZrFYM2fObGpqIoRkZGT06tVr9OjRhJD9+/cDgK+vL12XTo21Z88eujd+//13uvy7774TExMrKCigCeGECRPKysoIIZWVlYqKivyrZgt+fn40xyaEcDgceoAKJoTi4uK3bt2iH964cSODwSgqKnrf/uQnhFu2bBEWFr5//z7d2IkTJ/bt27e5ufmdMcycORMATpw4QV/SMfenT58uLy+XkZGxtLSsra0lhBQUFOjp6fXr14/H49Ef7ttvv62vryeEpKWlCQkJbd++PScnR1JScvz48fSHI4Q4ODhgQijIyckpKChI8OU7T1gPHjzQ1NSMi4v7QFF4wkKdYdq0acOGDevqKLoLa2trAPj11195PB4hZPPmzQBw48YNetWbOHFidXU1ISQgIAAALl++zP+bXjWo58+fV1ZW0r/Xrl0rJCSUn5/PTwhTU1MVFRX5l+aMjAwxMTFHR8eGhgZCyMGDBwGAdtL55ZdfAKC4uJh+sri4WEpKytLSksYQFxdHr/v03draWklJyStXrtCXr1+/5ueKdOj+1atXaUI4aNCgtLQ0QkhpaWmPHj2cnJwIIUZGRmJiYnSLeDzevHnzWCxWfn4+i8Xy8vKi5XC5XFVV1Y0bN9I9w2Awjh07Rt+KjY3lJ4QAMH369PLy8vr6+oaGBn5CSOdm27JlC63frKurowlhcHAwAHh6evJ4PB6Pt2TJEgkJiaKioo7+bbuRyMhIfqK1ZcsWJpOZkZHBTwh37twJAIcOHaIfSElJoTd+J0+e5N9ENTc3T5s2TVlZua6ujiaE5ubmubm5hJCcnBw2m71ixQpvb28hIaGCggJaTkBAAIPByMjIqK2t7dWrl6GhYXp6On1r2bJlioqKPB7P2NhYT0+P3lm9evVKVFSUVpegrxLeX3Welo+dkJKSAoDGxkYlJSVfX9+QkJChQ4fm5uaePHmSyWQKCws7ODhcvny5sbERAF69epWQkODo6AgAf/zxh4WFxaJFi1oUePPmTWVlZQsLi7S0tLS0tPHjx9fV1T169Ii+6+HhQbt8yMrK0n/qp0+f7ve/zp8/Tz+8Zs0aGp6CgoKenl5aWtrbDZ4tzJkzh/ZPYDKZISEhjY2NXl5etO5KQ0Nj+fLlDx48qKio+OOPP0aOHLls2bIWq9+4cUNBQcHS0pIGP27cuIaGBv6kpqtWrZKTkwMAaWlpIyOj9PT0CxcutAj+1KlToqKiABAaGtrY2CgkJNSiTwsAmJqaTpo0if83ISQ9Pf19+1MwtqFDh6qpqaWlpWVlZVlaWqanp6empo4ZM0YwANrHFQD69u27YMEC+vfSpUtVVFTu3LkTHh5eWVm5ZcsWWm2srKzs4eERFxeXmppKP7lx40baq7Zv374qKip0G2tra3/99Vf6w6G3hYaGfszgH3Nz89TUVENDw08QEkKC9u7dS2/U0Kehq6u7YsUKBoMBAJs3b5aWlr558+adO3cqKio8PDyam5vLy8stLS0VFRXfOakmAAwZMkRaWpr+bW1tzeVyExMT6cuqqqqpU6caGhoePnyYLrl+/XpDQ8O6devq6urKy8tnzZolLCz8zpKDg4Orq6u9vb3pSAFDQ0M3Nzc6sgAAaE3lxIkT6Yf19PT4wzpolst/4NDGjRtpn0x5efnBgwfzp52cPHkyHX/IYDAmTJjQ2NhYU1MzadKkCxcu0A/cv38/Ly/P0dGRx+MdPnx46tSpCxcupG/R3cW3ceNGWVlZMTEx2gxIHTp0yNjY2MvLi8lkAgD9PwBcvnxZRkbGzc2toqKioqJi7ty5dXV1YWFh//E7ofcbNGiQrKws/dva2prH4yUkJPDfPXTo0MSJE/mTygr+EJqamg4ODuXl5dXV1Y6OjoWFhTSfB4Bt27bR3qG9evXq169fUlISrUrgT0/q7+9vbm6uoaHx999/5+bmHjhwgN9Zmn5FUlJSTEyMq6urmJhYeXm5urr6sGHD3vePCH0F8P6q8wi3eJ2dnQ0ASkpKADBjxgxra+sbN278+uuv/G7fTk5Ov/76661bt6ZNm+bv79+7d28zMzMul5uWljZt2rS3vyAtLa2wsLBFd/Ps7GyaSgkSFRXlcDj9+vXjXw8oQ0ND2j729odbtalpaWkMBoOOaaToEMHk5OTk5GRXV9e3V0lPTy8tLdXW1hZcmJOTwx94KRhPdXW1gYFBi+CNjIwMDQ0DAgJWr169Y8cOZ2fnTZs2CY6vaIEmq/T5S+/cn4KbU1FR8faOdXR0FJxBjt+Vn6Z8FJPJ1NDQyMzMpEm1rq4u/y26T/gJYYtt5HA4SUlJEhISLUYzIioiIiIuLq6kpCQsLKympkZaWnrOnDn0rdra2gsXLqSkpKirq8+fP19SUjIrK+vq1auOjo6Kiop1dXX+/v6JiYkiIiLjxo0bO3Zs124I+gTo0CkFBQV6i8PhcKqrq9lsNn8ATE1NDSFESkqqoqJCUlJSREQkNTW1pqZGV1dXXFwcACorK1NTU9XV1QVPKfn5+QUFBSoqKvy6p+rqahERERaLFR8fLykp2adPH2VlZR6PR0sQFxcXFRXNzs4uLy/X0tKinRUp+qQvGRmZFudA1Fr8XA4AWCxWnz590tPT6fi9FpNjZ2VlvbOE6Ohob2/vx48fFxQU0ApZ2hoGAJcuXYqLizt58iStfIR/T+ADBw78z5JpS47gbRMdHJGSkjJ06NArV65MmTKFf+0oKCjw9va+detWdnY2/Xb+c+QEkzcWi8V/NKLgchpeU1OTk5PTnDlzXr16NWDAAH9/fwMDA2Nj47y8vNLS0hEjRrxz8+Gt/JCKjY395ptv3n4rJSWlsrKyR48eggvp7Q1qm7i4uN27dz98+DA/P59/BNIbjKqqqry8PBcXl7fXSklJSUtLk5eXF1yYnZ1NaxbePmzoLeWFCxfc3Nxqampu3rxJO3DRqoe3Dw96qK9evXr16tX8hW9Xu6OvAN5fdbaWCWFkZCTthA0ASUlJ9+7dY7FYR48eXbx4Ma2WGzFihI6Ozp9//jlt2rS//vpr9uzZTCaTECIuLk7vMFqQkpIaOXIkv0mQ730PDxw8ePDbQzw7ZPpQKSkpQkhdXR2/aYsmTrKysmw2+33BDx48+MWLFy2WP3369J1fMWDAAMGx8nw3b978559/zp0799tvv0VERDx79uzDoTIYjPftT8HYpk+f/vbDDC0tLT9cOFVSUqKvr09bXGtra/nL6T6RlpYuLi5+54rv21cIAKKiovz9/Xk83tOnTzMzM1VVVekJi07ko6am1qNHj0OHDp04ceLJkycJCQnu7u6jRo1qamqysLAoLi4eO3ZseXn5zp07Fy1a9Mcff3T11qDOUl1d/e23316+fBkACCHm5uYBAQHp6emmpqZBQUH8DMHOzq6+vj4iIkJHR2fZsmXBwcHPnj0jhMjJyV25ciU4OHjv3r3Nzc10TJq3t/fz58/nz5+fkJDAZDJ5PJ6pqemlS5dUVFQmTJgwYMCAyMjIFy9eGBoaxsXFzZs3Lz8//+nTpwYGBkuWLHn48CE9x0pJSZ0/f97a2rq+vn7p0qXnzp2jPUmGDx8eGBhIKwpR+5WVlWlpadFEKzExUTBvaTEbB5Wenm5hYTF8+PCjR4/27t07Li5uxowZ/HcXLFgQHx+/atWq0aNH02Y6cXFxERGRvLw8welh+OmiINoBpLGxkVYxwL85nqSkZHNz840bN3777Te6nMPhWFpacjicXbt26enpiYuLt7maYNq0aTIyMhcuXDAyMrpy5Yq7uzv8W2XJb1n6SOLi4oLbKLjcyMiIjkwRXNi2gFFOTo6FhYWJicmRI0d69+6dmppqY2PDf5fFYjEYjHf+dhISEuPHj6ez/Qku/MCzlJ2cnJYvX56RkfHw4cPm5mZ7e3v490B9O/Onv+nff/9NZw2k3ll3gL50eH/V2f7nH/Dr16/Pnj3r4OAgLS3N4XCcnZ319PTCwsLi4+MFH5o3Z86cwMDAsLCwlJQU2l+UtrwJZn10kjQAMDIy+ueff96XXXQgERERHo/H5XLf9wEjIyMAEOw0EhoaSuvLPxB8XFxcfn5++8MzMTHx8fFZvXr18+fP+bWq7/OB/clnZGR0//59fkVsq0RGRqalpZmbm79znwgLC3+gAVBXV7ehoeHly5f0JY/H4/caQu7u7sePHweAjRs3hoSE8J/gUl1d7evrGxYW5u/v7+fn9+LFC8FKge+//76goCAyMvLKlSv37t37+eefjx49SofNoK+Sm5tbUFDQX3/91djYGB0draCg8J9nyJ9++snFxaW+vj4/P19JSWny5MnJycmpqalNTU3ff/+9j49PTEyMtrb2unXriouLuVzuq1ev4uLitm3bRlf/448/HB0dExMT6eA0Qbt3754+fXptbW1ZWZmhoeGKFSsAYN26df7+/pcvX25qanrx4kV8fLyXl1dn7Ipu6OXLl7m5uSNHjqSn2ZiYGDkBtJKOpoX8XjC3b9+urKw8deqUpaWlnp5eiwYQBoNx4sQJaWnp2bNnNzU1AYC+vn5zc3NSUpJgybTtt0XJtG3w4cOH/NLCw8NZLJampuadO3dqamqmTJlCl8fGxsbFxXl7e9vb2/fr1++d05x+JDExsWnTpl24cCE0NLSoqGj27NkAICsrq6ioKFj9SlsvP0xHR4ff/1BwFQMDg5SUlObmZsE9IDipOGqVO3fulJaWHj9+fMKECfr6+i1mCmWxWGpqau/87fT19WNiYlgsluAPIdjp920ODg4iIiIBAQH+/v4TJkyg9VC0b1dkZGSLr9DT02MwGNHR0YLl87u2oq8J3l91Nqa7u/udO3cePXr0888/jx49WklJae/evQDg5eUVExNz7tw5U1PTTZs2/fzzz3RmFwBwcnKqq6tzdXXV1dXlD1FbunTps2fPPDw8IiMjL1++7OzsTJfTPuV2dnahoaHR0dEXLlz47rvvOmNLjI2NeTzenj177t69K9i1nW/ChAkmJiZubm5//vlnZGSkp6fnhQsXPDw8REREli5d+urVK3d398jIyL///nvu3Ll0FVdXV1FRUTs7u+Dg4OjoaH9//xUrVhBCWhXYpUuXvLy87ty5Exoaeu3aNX19/Y+pp3zf/uRbu3ZtZmamo6NjRETEixcvjh49un379g8UWFFRQRsqz58/b2dn16dPH1dX16FDh44ePXrDhg0nTpx4+fLl3r17fX19Fy9e/HaHXr6ZM2cqKCgsWLAgJCTk2bNnc+fOfefeRoLU1dX5LbcmJiYAkJOTw383LCxs5syZ/N6/bm5u0tLS/H9u6CtTX19/4cKFJUuW2Nvbi4iImJiYXLlyhfbT+4BvvvnGxcWFxWKpqKhYW1s3NjaeO3dOTU1NWFiYjg2OjY2Vk5NbsGAB7T7av39/CwsL/v2ThYWFh4eHrq5uv379WpTs6Ojo5uYmLi4uKys7Y8aMjIyMysrKkydPOjs7T5s2TVhYePDgwbNnz+YP+kJtUFlZ+eLFi7y8vKCgIAcHh169erm4uIwdO9bExGTVqlU3b97Mz89/+fKll5cXPTPo6+szGIzTp08nJCTExsbS5/2EhITU1tbev3+fTtwtSF5e/syZMy9fvqRVt3Z2durq6osWLbp3715+fv6zZ882bdpEJ0ujWeixY8fi4uKSkpImTpyoq6u7cuXK0NDQrKysw4cPHz9+fMmSJWJiYleuXJkwYQL/3lpeXp7JZN69e7e2tjYmJmb69OmtvRQKmjt3bnZ29vr164cNG8ZvaZw/f/6VK1cOHTqUk5Nz+/Zt/rSiHzB//vyoqKgtW7ZkZWU9fPiQf+2ms5U6OjpGRUXl5+eHhYXxK0dQG/CPwLq6uoiICDoFuqD58+ffvHnzwIED2dnZd+7cWbp0KV3u5uZWWlrq7OwcGxubm5sbFBTk4+Pz4e+Sl5e3srI6fvx4cHAwv0/glClTlJSUVq5c+fTp06ysrM2bN9++fRsAVFVVZ82a9dNPP50+fTovLy8uLu7gwYMfaH5EXx+8v+oozFu3bllaWpqZme3cudPOzu7JkycqKiovX778/fff9+7dSy8emzdvHj169OrVq6uqqgBAX1/f3Nw8OTmZNg9Srq6u+/btu3HjxogRIzZs2ODh4UGX6+johIWFCQkJWVlZDR061NPTU05OrqmpSVhYWE5OTvBxMWw2m1aOvk1EREROTk6wL42UlBQdBN+jRw86PMPOzs7d3X3Pnj329vZ0Ais5OTnB1EtERCQ4OHjMmDEuLi5DhgyhGZSnpycALFq06ODBg8HBwSNGjPj+++/5ndH79u0bFhYmLi5ubW09dOjQLVu2yMnJNTY2tir4ioqKCxcuWFlZTZkyRVpamtbQS0lJ0Xov/oa02NL37U8RERElJSUWizVu3LirV6+mpqaOHj3a3Nzc19f3A1nc3Llzhw4dOm/evP79+y9fvnz06NHh4eEyMjIMBuPq1at2dnarV68eNGjQ3r17165dS6ekExUVlZOTE+yNIyMjIyEhoaioGBoaqqioOGPGDAsLCxERkT179rzvAZLobXSX8puym5qaCgsLBavbhYWF1dTU0tPTuyQ81NnS0tI4HM7QoUNbtZZgfz/a1MM//9CzHO13EBYW5uzsPGrUqCFDhkRERNAzNgB8oEpe8C3abS8jI6OmpubKlSta/7p06RKdE6JVMSPKzs5OQUFh+PDhvXr1mjp1qp6e3v379+nZNSgoqH///lOnTlVVVR0+fPjz58/pT2ZgYODp6Xn48GFDQ8O9e/fa29vPnTvX2dmZzWbPmTNn27Ztb9cqjh49euvWrfv27QsMDGSz2SEhIcrKyuPHj1dVVbWwsEhOTqbzxIwdO3bFihVeXl7GxsbHjh0TFRW9ffu2jo6OlZWVhobG999/v2zZsr179/J4vMDAQMHn0aurq/v4+Pj5+bHZ7OHDh5uZmY0cObLN+2T8+PEqKir//POPk5MTf+HOnTsXL168adOm3r17f/PNNzt27BAc+i6I8a9ly5bRHaWhoWFlZeXo6EjbPHV0dG7evFlcXDx48GBVVdUZM2YUFBTwR12i1rK2tl64cOHSpUslJSXt7e3Xr19P77v4P8TWrVtXrlzp6emprq4+a9asH374gd6QjBgx4tKlS69evTI2NlZTU5s/f35hYeF/jjqh3RkYDMb06dPpEjoPE4vFMjMz09DQiIiI4Gf4x48fd3BwWLp0aa9evUxMTAICAvCH7rbw/qpd6LA6/nzWH4mOAHz9+vXbb9GZtQsKCkDggQ0UnRj6c/C+SGjwdAqjX3755WNW+fhvfN8zIT7sA/uzDYF94MOt3UA6nXerVukOXr9+DQD8wVfkrWmR4+PjAeDChQu3bt0CgKioKCkpKfqcTD4VFRU6gzxOi/z1od2/BY8QinYRF5xQm1bVEUIUFRWXL1/OX07nfOe/zMjIAIBjx44dOXKEwWAsXLjw3Llzt2/fHjduHD3whg8fbmVlJfhd/MdO9OzZc8mSJfzlhw4dAgDaIXzDhg0v/hd9YA9qm8bGxry8PPoUnxbq6ury8vLePgM3NzfTBwJRJSUliYmJHA7n47+0pqYmLy/v7RN1Y2NjXV2d4JLa2trc3Fz+T3z//n0hIaHCwsIWK1ZXV79+/ZpOd9RO9OmC9LlQLRQWFrb2cllcXNzY2Pj28rKyMv4zNlA7lZaWvn79+sM/TWFh4TtPFMXFxa16POCkSZNmzZr19vL6+vrS0tK3lzc0NOTl5eE56uuG91edShgAxMXFWzvY2t/ff/DgwXRGyhbocF76BKEWg85bO16887wvks4Lnslktq2ED4TUhsA+8OHWhofjtt+JDlNpaGj4+FWMjY2DgoL27dtHf4IXL14UFBT079+/s0JEXUpLS0tISCgyMlKwbQT+bamj0/dRrZ1I+dChQzY2NseOHaMvT5061bZpFVVUVCQlJUtLS9+e3wu1maio6PsmP3zfJVhYWFiwX4yCggLtuffxJCUlBaeNFQymxRIJCQnB5rjRo0e/8/Bjs9nvvO63gb+//9ixY1uMRqPaMH3R++bu/kDHGdRa8vLyLeYLfdv7frsPTK7+NjqTJH0QdAtiYmLvHAvKYrFwctGvHt5fdap3TGj2n3g83qVLl9asWSO4cN++faGhofb29mpqanl5ebt379bS0jIzM+ugODvXr7/+eu3atRkzZvTu3buwsNDb21tDQ8PCwqILQ/qi92d31rt3b1VV1d9++01MTKy5uXn+/Pn/ucqWLVtsbGxsbW0XLlxYVlb2448/ampq8h8aib4y4uLiDg4OR44cGT9+vJWVFY/HCw0NHTNmjJaWlqioaGBgoK2tbXNzs6+v74MHD1rVK09ISKi4uJh2yL9+/XpQUFCrbsL4GAyGs7Pz8ePHra2tbW1tAeDp06eEEFNT0zaUhtDbGhoarl27tm/fvq4OBH2OLl26JC4uPnny5K4OBH1e8P6qU7WlzSoqKore0wgutLKy0tfXP3bsmIuLyy+//GJhYXHv3r0vZVIvS0tLExOTEydOLF68+OeffzY1Nb1///77Ri98Gl/0/uzOmEzm5cuXZWVlPT09Q0JCAKBv376CM3mIiYkNHjxYXl5eRkZm0KBBEhISVlZWt27damxsXLlypbe396RJk8LDw+kIDRMTE/qwMvQ18fX1HT9+vLW1NZvNFhcXd3FxSUpKkpGR2bFjx6lTp6SlpWVlZW/dujVv3rxWFfvjjz/GxMQoKyvLy8v/8MMPggPAWuunn36aNm3a9OnT2Wy2mJjYpEmT3n50EEJtdvfuXVFRUfpEAYRaCA4OdnJywhse1ALeX3UqBmnHRGEIIYTaJj8/PycnR05Orm/fvvzZm3JyclJSUnr27Kmnp1dRUVFXV6eqqpqZmSkpKclv7isvLy8vL9fU1KQvORxOVlZWjx49pKSkCgsLIyMjpaSkRowY0dTUVFZW1rt379zcXCEhIRUVFcGv5nA4vXv3blFyVVVVSUmJhoYGjSc35YrPxgAAIABJREFUNzc5OVleXl5bW7trK8gQQggh1HkwIUQIIYQQQgihbupzmeUFIYQQQgghhNAnhgkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQQgh1U5gQIoQQQgghhFA3hQkhQgghhBBCCHVTmBAihBBCCCGEUDeFCSFCCCGEEEIIdVOYECKEEEIIIYRQN4UJIUIIIYQQ+tQGDoSSEgAAD4+uDgWh7g0TQtTNcDjQ2NjVQSD0xcrKgsBASE0FAHj16s3CpCSore3CoBBCXyI5Odi2DQCgqKirQ0Ffl6ampocPHzY1NXV1IF8MTAhRt1FdDWfOwO7dsGcP7N8Pr193dUAIfWkePwYvL5CVhf374fZt2LMHeDwAgLNnISenq4NDCH1hevcGVVV48AAAwNcXzp6FsrKujgl9+Xx8fExNTc3NzeXk5GxtbY8cOVJYWNjVQX3uGISQro4Boc7X2AiHDkFFBURGQn09GBhAr15gbw/6+l0dGUJfDhcX8PYGRUVoaIAFC4DJBDc3YDDg6FFYvx709Lo6PoTQl2T+fDhyBObNAyEhCA2FkhIQEoIRI8DWFqZOBQODro4PfWl4PN7KlSt9fX2FhYXV1dXT0tLocmFh4VGjRk2dOnXq1KlaWlpdG+TnCVsIUffw/DnU10NgIKipwfDhcO8elJbCjRtdHRZCnSI2NjYwMHD37t0FBQUdVigh0NAAEhIAACwWcDgAAPn5kJ8PNTUd9i0Ioa8dlwsLF4KfHwAAiwWLF0NlJWzdCpaWwGTCw4ewYQMYGkK/frBnz4vHjx/zaE8EhD6Iy+UuWrTI19eXxWL5+/unpqZmZGT4+fnZ2Ngwmcx79+55eHhoa2traWl99913oaGhHHoVQwCALYSouzhxAjIz4eJFcHAAAEhIgKYmGDwYvvsO2OyuDq7LDBsGfn4wcCAsXQpSUrB5M8jKgq8vjBgBgwZ1dXCoTerr6318fLy9vYWEhOrq6iQkJFauXLlhwwZZWdn2FAo+PvDqFdjZQX09uLqCvz8UFMDTp3D2LDCZsHUrzJ2LLYRIUGNjY1lZmZCQkJKSUlfHgj4j9fUwezZcuwayspCSAgoK//NubS2EhcH16/D331BUBDo6M5KTLysoKEyZMsXW1tbKykpKSqqLAkeftcbGRicnp8uXL7PZ7CtXrlhaWgJAeno6m83u0aNHbW1tWFjYxYsXr1+/Xl5eTldRVFScPHkyHlcUthCi7oHJBADgV39wuSAkBIS8Wd5d9e0LPj7A40FtLdTWvhkO1tAAWGv2hQoJCTE2Nvby8mpubp42bZqtrS3ND7W0tPbs2VNfX9+WQoOCoF8/8PKC69ehf3+QkAAPD6iqgpUrwcoKGAwAgJEjQU6uY7cFfdH++eefkSNHTpgwoW/fvj4+Pl0dDvpc1NTA1Klw7RrIyUFQUMts8MgR+O030NYGPz/IzYWwMK61tbqmpmZpaemZM2ccHByUlZVtbW3Dw8O7KHz0maqpqbGxsbl8+bKcnFxISAjNBgFg8+bNKioqQ4YM+emnn1RVVU+fPl1UVHTnzp3vvvtOU1OzpKQEj6v/RxAhhBAul9vVIaDO9PQp2bWLjBhBHByIqyvR0yMbNpBffunqsLqYszO5coX4+pK5c4mrK1m+nHh4EAsL8vRpV0f2NTp/nkRFEUJIRATx9yfjxpGaGsLlki1bOqDw0tLSJUuWMBgMADA2Nn706BFd/uzZs/Hjx9OzfY8ePby9vRsaGj620IICMm8eASAApH9/8uRJBwSKvnaNjY0//PCDsLAwACgqKtJjz9nZua6urqtDQ12stJSMGEEASM+e5J9/3vEBA4M35xttbbJmDYmIKOZwOISQ1NTUAwcOmJmZMZlMAJg/f/6LFy8+dfToc1VWVjZixAgA6Nmz5z//e2A5OjqyWCx+yqOtrb1mzZp79+7hcfU2TAhJcnLy+vXrdXV1PT09Y2Njuzoc1Dk4HHLoEPnxR+LkROzsyIIFxMqK+Pt3dVhdprKSFBcTZ2dCCHF2JjY2xNWVlJYSQsi+fZgQdopffyXh4YQQEhREfH3JmDFk0ybC4ZB589pVLI/HO3XqFL3zFhcX37ZtW2NjY2pqqmDiFxISMmTIEHpF1NDQ8PPzo5fD9+FyuQWnThFZWQJAJCXJvn2kubldUaLuITo6euDAgQDAYDCWLFlSU1Pz999/S0tLA8CAAQNSU1O7OkDUZXJyqmi+p61N0tPf/ZlLl8j8+URR8U1aOHDg9/Ly8rNmzTp16lRFRQUhJD8/38rKCgC2dEhFGvry5eXlGRsbA0Dfvn1TUlLe/kBtbW1gYOCSJUtUVFT4mSEeV2/rvgkhl8u9evXqxIkTaZ06/1YpPz+/q0NDnaOhgYwYQSQkyNq1ZOJEAkBWrOjqmLpGairp14+YmpLFi9+8HDOGrFlDyssJIcTXl5w5Q/z8yPXrXRvm1+bXX8mcOWTNGjJjBvH1JW5uZM0a8uoVmTeP7NxJTpwgbTj3JCUl8RsAx44dm5iY2NzcfODAAUlJSS8vrxYfDgkJMTExoR/u169fQEDAO8tMTEwcO3bscFVVHptNrK1JRkYbNhZ1N01NTd7e3qKiogCgqal57949Ho9H30pISDAwMKA3Ybdu3eraOFGXSEtL09LSsrB4YmhIcnL+48McDnnwgKxfz+vXbyD/9ozFYt2+fZsQcvXqVXq6+xRxo88bPa4AwNDQMOe/DiwOhxMeHv7999/rCQx3l5WVbWpqInhcdc+EsKSE6+Pj06dPH3o0SEpKLlmy5NmzZ6ampgAwaNCgmpqaro4RdY5RowgAcXYm33xDAIiFRVcH9FGysoitLWluJkVF5Oef21va/ftv6l+NjUle3ns/VlpKDh9u73chQS1aCN3cSEUFmTOHODkRcfE3NeKGhmT9ehISQhob/6M0ev9NO8MoKyufOnWKEPLw4UMjIyN6ZnNxcXl7LS6XGxAQ0LdvX/qZkSNH3rt3j/9uXV3dpk2bREREaN+b2KtXO3Dz0Vfs7YbBvLy8qVOnnjlzhn6gvLzcxsYGAIYP375rF/k3VUSfL/75//ffycmT5NkzQgi5cIHU1ra6qOjoaNo4Y2pqVlbW1Kp1aac+S0tLMTGx4uJiQkhxcTGDwZCQkKD38ejL0oHHVVxcXK9evQBg6NChJSUlrVqXf1zNnDmTLsHjqnslhJGRZMkSIiFBjI1dAUBLS8vb27ukpIRWZJaUlOjq6gKAtbX1h/tToS/VsmUEgFhZkTVrCACRl+/qgD5KcjKxtCT79pHcXLJ2bbuKOnaMiIq+2QcVFe/9WH4++e23/85JUKsIJoSHDhE3N0IIOXuWODqSQ4eIjQ2RlHyTFgIQWVmyatWN48eP570ra79//z5tcmEwGPPmzSspKamoqHB3dxcSEqJnNlqV/j6NjY1+fn7Kyso0LbS0tHz58uW9e/dovSkts5R2IEbog97ZMHj06FEZGRkA0NHR4V9MuVzu7t2+cnI8AGJvT6qqujZw9B8cHN78MXs2+fZbMns2aWoiK1aQsrLWlfPs2TMFBQXa9lLVjl+9srKS/7e+vj4APKPJBPqifG7HleAEIt38uOoWCWFjIzl79s1QZgDCZBJX19SbN29yudyqqio/Pz8jI6Pw8HBCSEpKSo8ePQBg6dKlXR016gSHDtFxCcTTk0hIEIAPtZF9NpKTiZcXcXEhT56QtWvJ1auksLDVhfB4ZNu2N/8E3N3Jh2s8Xr0iAQGkGw+u7hQcDqGXntOnyfDh5OVLQgjh8Qi/R0JzMwkPJ+vXk8GDCYNBevUypQmbpqamu7t7SEgIncefP3mMrq5uWFgYISQwMFBNTQ0ARERE3N3dP7KPQ2Vl5datW9lsNk0C6XeZmJg8fvy4c3YA+hxxudVtXvd9DYP0WLK2ts7NzW2xyo0bRE6OABBdXYJj9j9n+vrEw4N4eJBx48i335Lbt8mePWTFCrJjB+nZkxgbE0tLMncuWbWK7NpFTpzgBQYGPn78OD09vVagrScsLIzO5j916tT6+vqOim3RokUA8HP7O8ygTw6Pq8/W15kQrl9P9u0jhBAvL+LlRZSV39wHy8mRNWsIHXQaH5/g5ubGf/CIq6srXTc8PJz2wjp48GDXbQHqHA8eEADSqxfx9CR9+hAA8sGGlM9BaembhDA3l9jakhUrCItFhISIpSU5dYp8ZO/mqqqq+fO9pKR4oqLk+PFOjhh9UF4ekZcnAOTEiQ99LD292dfX19bWVlJSkj/aQVpams7PIS4uvnPnzqamppycHDs7O/qumZlZG6bFKikpWb9+PZvNlpSU3Lp1ayO2C3cjvNTUWTk5G4qLj7V2zRYNg3fv3iWEBAQEyMvL02E5fn5+71s3OZkYGxMAwmaTixfbEz/qRC1acjgcsmgRsbcnbm7/35GB/5+iIhcESEpKampqDhw4kPY///bbbzu219Xx48cBgN/ZD31BOvC4WrBgAR5XHejrfDD9d99BWRns2AF+fsDlwp49oK8Prq7g4gLi4hAWBgcPQm3t3bt3xwHA4MGD3d3dHR0d6REGAAEBAXPmzGEwGJcuXZo+fXqXbgrqUOXlIC8PoqKwcSMEBcGzZ7BvH3h4dHVY7/XkCdjZweLFICwMW7fC/v2QkADFxRAUBE1NAACysjBrFsybB6NGgcDsSP8jIyPD1tY2NjZ23DgfT8915uafcgtQS/b2cOUKWFvD9esf9XkOh/PkyZPr16+HhoZGRUUpKyv37Nnz/Pnz2trahw4d2rx5c01NjaysrKen58qVK5ltfa6mpKRkXV1dbW2thIRE20pAXxwerz4lxVZb+xqTKV5aeqqhIYHBEGUyJYWE2AyGqJCQLIBYZKS4lJSUiIiIrKwsi8WSkJCQkpKKj4//9ttvo6KiGAzG4sWL9+/fX1VV5erqGhgYCADW1tZHjhxRVVX9wFfX1oKLC/z5JzAYsH8/zJsHCgqQnAwaGiAq+qm2H33Q7Nng7w8AMGcOSEjAH39AYSEYGkJSEnA4UFwMBQVQXAzFxVBYCPX1Nampc4qLi/Pz80tKSviPPFVWVh4wYEBQUBDjfdenNklKStLT01NRUcnPz+/AYtEn0CHHlZKS0sCBA/G46mBdnZF2Cnd38vo1mTePbNxIXr58M26nuJjs2kXU1d9UPGhqNi9btux9Ferbt28HAHFx8Sf46K2vjJoaAeC5uxfb2UXq69/csKGrA3qvc+eImBgBIJMnt5yDoayM+PkRMzPCYBAAIixM+vefuH79+sTExBaFPHr0iA4V09XVfftd9IkdP/5mfGB2dltWt7a2BgB/f39CSG1tLZ0bxsbG5j9nV3sn2gG1vLycEEIHY9A5G1D3UVFxMzXVobDw17S0OS9eQIv/oqJk33nbQCcI0dHRoUMtPrJh8G1+fmTIEOLiQhYtIoSQNWvaMtEu6iQJCW/+eP6cLFpE6BND/vmHfMyMG9XV1cnJyR4eHgCwYMEC/sIOnLGPHoT4IJMvDh5Xn62vNiEsLye//kqGDCGZmW8W0t6C9Bk43t7kP2dMcHV1pVe+DJx1/StycOFCXUnJK3PmRCxcCABDhgzp2PJ5PF5lZWU7O7XT8X402Vuy5EMnyoQEsmkTmTIli3+vZmpqevjw4bKyMkLIhQsXxMXFAWDSpEkVH5hDBn0SublvRk+dPdvGEpydnQHg5MmT9GVoaGh7JvG/dOkSANjZ2RFC6BDErKysNpeGvlzJybaVlUH5+d55eZ45OeszM5dlZLikps56/XqOpaXlsGHDBgwYoKmp2bNnTzk5OSaTKSIioq2tTYf0zJo1i5557OzsCgoKWvvVzc3E1ZX4+JAbNzAh/Ez98gsBIOPGtXrFqKgoANDW1iaErFu3TlhY+HjHjVigvbdOnz7dUQWiTwyPq8/N15kQrl9PKioIh0PMzP6nJn7lSnL79sdOeN3U1DRhwgQAMDQ0pJXordLQ8GaSxoYG0tT0//f0Ag+LRl3g+++/B4Dt48ZVbNjAABAXF+/APuh5eXkjR450cnKSkZGZN29eSEgIr/XTq9fXEycnAkCEhAgdx/qflRdcLvfu3bvffvstf0wsi8XiP35g1apVOGvu52DyZAJApk5tewm0lupwBz0P5ObNmwBgZWVFCKETLGMbcrfC4ZRnZrplZCwpKvr949fKzs4GAGlpaTo5++HDh1vbMNiCqyupqiIzZhA3N0wIPzs8HtHXJwDk0qVWr8vhcOhks/n5+T///DMALKJtwR3hp59+Apz/74uFx9VnqI0DTj5z3t4QEQHTp4OTE6ip/f/yX36BiRPfO9SqBRERkb/++svExCQ+Pt7Ozq6Jjtn6aL//DvPmAQCcOQPnzsGuXQAAzc2waFGrikEdjKZJsUVFMmJivWVk6uvr09LSOqTkqKioYcOGPX78OCgoqLKy8syZMxMmTNDR0fH09ExNTf3IQnJyclxc7p8/D3JycOsWrFwJnp5gbAw5OR9ai8lkjhkz5vjx40VFRQEBATY2NjweLz8/n8Vi/fbbbz///DN9GgHqQn/8AUFBoKAAfn5tL4S299bV1XVISHS4IB2V0bEloy8BSUoaB8BVU9vbo8fSj19NTU3N0NCwqqrqyZMnALB06dLk5OQlS5a0JxQhIVizBi5caE8ZqFMEB8Pr19C7N/w7d2wrCAkJDRs2DAAePXo0atQoAHj48GFHBUYLjIiI6KgC0aeEx9Vn6OtMCAEgPx+uX4fIyHYVIi0tffPmTTU1tXv37tG6+Q+or4esLHj+HG7cgFOngMMBaWm4caNdAaAORxPCmMJCADBSUgKAmKCg9hd76dKl0aNH5+TkmJmZvX79OiEhYdu2bZqamqmpqV5eXtra2kOGDDl48GBJSckHCnn+/PmwYcPOnx9nZ/f6yRMYPhxsbcHLC0pKPvZIFhMTmzVr1rVr1xITE8vLy3k83uLFi9u/daidcnNh3ToAgEOHQEWl7eXQtI0/sL6dBJPAji0Zff6qqx/U1b2srAwSEpL870//LysrKwC4ffs2ADAYDEVFxfZEoqsLQkIwciTs3g2SrY4Fda5DhwAAli0DYeG2rG5mZgYADx8+HDBgAJvNTkxMLC4u7pDABg8eLCEhER8fX1ZW1iEFok8Jj6vP0FebECopAQAUFbW3nF69el29elVSUvLEiROrV68ODg4+e/bsgQMHfvjhh0WLFk2dOvWbb7ZoaYGUFEhIgIYGDBsGNjawYAFUVsLixXD8ONBbrOBgWLsW1q9vbzyonQx79xZiMpNKSxs5HGNlZQCIDQyE16/bXCAhxMfHx8HBoba2dtGiRWFhYUpKSvr6+p6ensnJyeHh4UuWLJGSkoqMjFy1apWampqtre3FixffbnC+ePHimDFj8vPzR40y8/NTEBHhmZrCjRugqAihoTBtWuui6tu3r7a2dnNzc2JiYps3DXWUkyehogJmzoTZs9tVTmckhLQ0wdZC1MXS0uDoUfDxgUOHICoKOmcm8NLSUwCgoDCvDbcBkyZNAoBbt261+dvPnoXMTACA4mJYvx4MDaGpCZYsgX/7vKPPQmYm3LwJLFbbezbxb9yFhYWHDRtGCHn8+HGHxCYiIkKnAOioAtEng8fV5+krTwjbWWVQWloKAIMGDTp//jyTyTx//vykSZPmzZu3evXqXbt2HT9+/Nq1a3FxEWlpUFMDYmKgpgaDB8PkyeDsDAwGCAnBunVvKkImToS9e8HHp/1bhtpF7NkzbXl5Do+XWFqqr6AAALEFBdDWO5vGxsYFCxZs2LCBwWB4e3sfPXr04sWLYWFh9F0mkzlq1Cg/Pz9+T04ul3v9+nUHBwcVFZWlS5fSbgk0pZwzZ05dXd3ixYvv3LmTkpJiY2NZVsbR1YWHD+HjHxRRVFQ0btw42pviTefY2Ni2bRpqv5Mn4eVLAIC+feHkSfD1bW+BHZu2YZfRz1F0NPz5J8THQ1QUxMfD7dud0c+Ex6uvqLgMAPLy37RhdQsLC0lJyaioqMLCwjasnpcHCxaAgQHU1MD589DcDP364dMmPke//QZcLsyZ8+aGqg1GjhwpLCwcFRVVV1fHv4nvqPA6vED0aeBx9XlqU2Ptl6BHD4D2tRCGhITY2dnt2rXL3d2dzWbzeLy6urpx48apqKj06NFDUVGR/qGsrKGgACoqLas2//wTJCTAwADs7N60HwIAgwEaGu3YKtR+mZnGSkqJJSXxxcW/v3ihJCnJFhUtLSxUaGpq7S1JSUmJvb19eHg4m80+d+6cra3t5s2bd+3aJScnl5CQoCRwqqM9OWfNmpWXl3fu3LkzZ87ExMQcOXLkyJEjhoaG4uLikZGRwsLCBw4cWLly5alTp5YuXdrY2Dh//k+//LJRWroVIcnLyz969Kipqam6utrY2Pjy5csxMTGOjo6t2i7UUe7fh9u34exZePgQdu4E2XfP4d8KHZu2YZfRz05zM9y8CTk58OgRDBkCMTFQWAiEwODB0LNnB35PRcVlLreSzTYVE9Nrw+osFsvCwiIpSeTBg5JZs5Rbu/rZs8DlgrU1sNlw+jQAgLNzG6JAnau+Hk6cAABwc2t7IZKSkiYmJlFRUc+fP6f32e0fnVVfX0/PV932xv2LhsfV56srZ7TpTFVVBIBISrZx9cbGRn19fQDYs2dPY2OjgYEBAOzevbsNRaWlkYEDyYgRpLm5jcGgjnTsWNp33xWsXVu+YYMUi0X/FYgJC892cLh+/XrzR/9I0dHRGhoaAKCmphYVFVVfX+/k5AQAQkJCB+ncoB8UGxu7fv16+sQbdXV1cXHxa9eu8Xi8bdu20ZCWLFny8cEI6t+/PwA8efLk4sWLAGBra9uGQlCHWLCAXL9ODh4ky5eT1k9U/A4nTpwAgPnz53dAWYTQMRKysrLk3wdanDp1qkNKRm2Umkp27yZmZmTlSuLpSbZtIwYG5Mcfyf37Hfs9SUkTXryAVk0u2sKhQ80AxMmpLesaGxMAcu0aiY0lAERODiff/hz98QcBIMOHt7ccd3d3ANi5c2dlZaWQkBCLxWrPY5m8vb2NjY1LS0sJIeXl5UwmU1RU9Ny5c5WVle0NFH0SeFx9tr7aLqNSUiAuDrW10LbK9J9++un169eGhoarVq3av39/QkKCjo7O6tWr21CUvDyUlcGTJ28mGkVdrH//vsrKymy2rJhY4dq1AbNm2ejpcQjxDwiwsbFRVlbm9+T8gJs3b5qbm2dmZpqamr548UJZWdnc3Pz8+fNycnK3bt2i56kP69evn7e3d3Z29qZNm7KyskaOHGljY1NRUXH27FkREZEjR474+fkJt2m0tbGxMQDExMS8mT4nJqYNhaCOMnkyvHwJbepY9w7YZfQrx+EAgwEcDoiIAMCbGbF5PGhqgoqKjvqSgoLcsrJSJlNcXt6hzYVYWgoDQHAw8HitWzEyEmJiQEkJJk2CU6cAAObMgX+r5tBn5PffAQBWrGhvOfz2FmlpaSMjo8bGxhcvXrShHEKIh4fHhg0b4uPj6TWaPuxEVFR07ty58vLyo0aN8vHxSUpKam/EqDN9KccVi8XqdsdV1+ajnUpdnQCQ9PRWr5iZmSkpKQkAd+7cycrKYrPZABAaGtrmSB48IEJCRFiYPHnS5jJQB+HxyJkzZNcu4ulJPD3Jjh1k796chIQDBw4MHDiQ/+/CwMBg27Zt6e86eg4cOMBkMgHA0dGxvr7+5cuXvXv3BgBtbe34+PjWhkMnfdHQ0KAv4+Pj7969257t8/HxAYBVq9ZwOJwxY/6wsHhRVdWe8lDbLVhAuFySmUmkpP6nhbCqiiQnt6XAwMBAALCxsemoCOmRzOFwVq1aBQD79+/vqJJRW1RXkx07yNy5ZMwYsm0bcXJ688f48URPj+TkdMiXeHt7A8B33y1oZzlaWgSAPHvWurXWrdsyerTr1q3JXC5RUyMA5PHjdgaCOl55ORk7ligrd0DjbW5uLgDIyspyudzly5cDgLe3d2sL4XA4Li4uACAqKhoQEMDj8b777jsAEBYWnjNnjoWFheCjlQYMGLBly5bnz5+3fA5wdTV58IBcukTu3CFlZe3dMNR6eFx9zr7mhHDIkLZcrggh06ZNA4C5c+cSQuzt7QFgzpw57QxmzRoCQLS0SHV1O0tC7cbjkVevyOnT5OhRcu8eEehmQHtyKiu/GRXDZDLNzMz8/PyqqqoIIQ0NDfPnzweq9hdNAAAgAElEQVQABoOxbds2QkhAQABtZjE3Ny8qKmpDLBwOR1xcnMFglHdIn0JCQkJKNTSaxo/nEUIGDsT7ra4UG0vohePVK3LhAtm4kRBCsrKIgQHR0mrLhSMkJAQAxo8f31ER0qO3pqZm06ZNALBz586OKhm10Y0bZOdOMmcOMTUlNjZk61aycSNRUSEAREeHZGW1/xto34Hr16+3s5zlywkA+fHHVqzS1NTUo0cPAIiKigoJCR8zZseoUR2wRagD3btH3N0JIeTJE3LuXMeU2adPHwCIiYk5d+4ctH4gQ2Nj46xZswBAQkLi1q1bzc3N9ELMYrGuXLlCP1NaWhoQEDBv3jz6yHKqR48e8+bNCwgIqKmpIVlZZNcusn078fQk27eTnTtJXFzHbB76CHhcff6+5oRw8mQCQFp71aNTaUtLS+fm5tLnLElJSeW0u2q2oYGYmBAAsnx5O0tCna65ufnatWsODg5iYmL03z+bzXZwcKDD89hsdmBgII/H8/b2pg0sixcvbmpqavPXDRo0CAAePnzYIcFnZREAoqhICCHOzgSAHDnSIQWjtsvOJiwWASDnzpGGBjJ0KAEgEyYQDqd15dBh7qamph0VmLa2try8fGlp6fbt2wFg8+bNHVUyaiMej4SEkB07yM6d5McfyfjxZPlysmHDm9Y0DQ2SktKe4p89ewYASkpK7TllUVevEgBiZtaKVf7++28A6NevHyGETna1Y8eOdoaBOtbff5Px40lwMAkOJidOdEyZc+fOBYDDhw9nZGT069dv3bp1H79ubW0tfcyJrKxsREREQ0PD9OnT6YX4nf22mpubw8PD3d3dac8dSlxc3MbAwM/WNm/Nmjedgzw9yc6dpKamY7YQ/Rc8rj5/X3NCOH8+ASDHj7dilYaGBl1dXQA4cOBAQ0ODnp4eAOzbt69D4omOJiwWGTKk6Nattvc+RZ9SRUXFqVOnLC0tGQwGAMjJyamoqERGRtbX1zs4ONB+Bb/88ks7v4VWStFu6x1CVpYAkMJCsmcPASArV3ZUwajtfv+dABBxcRIVRbKySI8eBIB4ebWukKioKNpxhb+kuLi4Q8Lbu3cvAHh4eHRIaai9OBxSVkaOHXszN5qrK9mwgfTuTQBI795t7HBMCCFkxYoVHfVD19QQFosICZHS0o9dxc7ODgD27t1bWVkpISHBYDDS0tLaHwnqQH//TQICiL09CQxseePe5roIX19fAPjmm29au2J5eTkdKqasrPzy5cv/Y+++46quvz+An3svW0CWCiKggIqIpmI5cKW4EjUHDhIqLXKPrxnmAhMTR4Yt059amqVhmqJpiZobB+QARJElMmSLsrnc8/vjY0Q4YtzrvZf7ej76Q+9433PlxL3n836/z/vx48eDBg0iIjMzs0u12IETGRkZEBDQrVs34ROciCRi8XvdunFAwJ05c3KXLeOIiHq9Iagz5JXqa8wF4caN3L8/h4bW4SkrVqwgIhcXl/Ly8pUrVwrXMht+JbXK5s3hIpHYysoqJyenbs+USvnkSV63jj/5hL/5piFfCKAeEhIShHm8devWMbNUKvXw8DAyMjp8+HDDB1+/fj0RzZFf3ebmxkR84gQfO8ZE/Prr8hoYGmTaNCbi1q05J4ePH2eJhLt0eXj06PHajxAbG0tE7du3F/4aFxenq6vr6en5zM2udSL8uhsxYkQDxwF5Kivj0aOZiPX0+P33+eOPhZ3xj3v1un37dr3GK7OwsCCi69evM/OBAwcauDBh0iSeMqW261jLyspatWqlpaWVnp7+f//3f0Q0cODAhrw6KMLBg7x/P587x4MG8Xff/bPXa+NG1tWt52K/GzduEFGbNm3q9KwHDx506dKFiOzs7OLi4nJzc3v06EFEVlZWUVFRdRoq8/Tp7z093WxttcTigAEDpnXrRkRbR43is2frNA7UG/JK9TXaLqMZGXTyJIWFUd++tGFDrZ6SkJCwbt06kUj01Vdfpaenr127VvizttDwTR58fV8bMKB/RkbGe++8Q3/9ReHhlJLy7IcWFVFSEl26RIcP044dFBhIly5RVBRFRNDt2xQSQjhw/CWyt7cXTpVISUkhIolEsnv37qtXr3p4eDR88Kq+oA0fStC5M4nFlJxMnToREaHPqIr46ivq3p2Sk+mdd2jQINq06U5MTMu33pqYmJhYyxEeP35MRAUFBTKZjIjOnDlTWVm5b98+Z2fnjz76SDhGoq6kUummTZuCgoIsLS1/++233r17nzlzph7jgPzp6FBICI0dS6Wl9MMPlJ1NU6Y86tixV3T0gP79b926VafBsrOzFy9enJOT4+Tk9Morr9y5c8fb2/v111/fvHlzvQM0NqZx48jGhmrTgVtHRycxMfHs2bNWVla7du0iImFxBKigPn3IxobS0sjRkY4cISK6d4/KymjKFAoKqvNoWlpaOjo66enpkyZN2rdvn/B77MXu3bvXt2/f69evOzk5CYf99u/f//Lly23atDl37pywD7b2mjs7+7zySmx2tlQmG+fs3MXSkogupKZSizqfogkNgbxSacquSBUlOZkHDuS1azk7m+fNq9VTRowYQUTvvvsuMwtf9H18fOQe2P37902NjYlop6fnbz4+Oz09N0ycuGjhwrfffnvEiBGvvfZa3sCBrK/PRP/67/XXeeBAHjmSZ81iFxeeM4fXrOHKSrmHB88jbCjt37+/3EdOTU0lIjMzM3kNmJ39zwp2MzMm4owMeY0NDZKUxObm3KQJb9p0UiaTjR8/nog6d+5cVFT0gmeVlJSEhIR4eHhoaWkZGBhoaWl16NBBaImWlJTk6+sr7GU1NDT08/Or07lJFy5cED4CRSJRr169zM3Nhc8FDw+PmzdvNvjtgjyUl7OnJxOxrm7l1KlFS5cOdnAgomYWFjdu3HjxU6VSaURERFBQkJubm5AkNjY2pqamFy5cqKio8PPzE37cb7311osz8Hm8vdnLix89Yi8vvnaNQ0L42DE+eZIjIjg6mhMSODu78umETEpKEolETZo0eYwea6qnvJyFRVHl5Tx/PhOxlhYLGxo2bmSxmInY15crKmq1AbqwsHDx4sU6Ojr099k2RCSRSNzc3IKDg+/du/e8J8bFxbVo0cLV1TUrKysxMdHBwYGIOnbsmJaWVs83tnv3G+3aEdHe8eOvTZ9ORI7NmnGNdpGgMMgr1deYC8Lly9nXl69e5XnzeNIk9vPj0NAX7XYIDQ3t0qVLZmbmoUOHiMjY2Dg9PV3+kWVkfD9uHBE11dMzeNbcY5rQPEBbm01MuFUrbteOu3ThSZPYyenJjtX33mN3d16zhhURHjyH0ONYjmVbdcIXcUXk29KlvGIFP3gg94Ghno4fL2/ffrxYLD527NijR486dOhAf/c0rqGysvLkyZPvvPOOkZGR8MtBV1e3f//+VZvae/Xqdfr0aWaOiooSuqURkYWFRVBQUOl/dfV++PDh3LlzhSLBwcHhjz/+YObCwsKgoCChnZpYLPb09LyL1emqQCplH5+KZs0Gm5md8PEpXbZsVPv2RGSqr39l4UI+eZL/va8hNTV127Ztnp6epqamVZ8s+vr6gwcP7tixIxHp6Ohs3ryZmX/66SfhjKXJk39ITq5zXD4+fP06L1rEXl48Z07Ny5hE3KpVUtWrm5qa2tnZtW3b1tramogmTpwor38eUBCZjP39WSRiIp47lysr+ddf2cCABww45+7u/vDhwxc/PTQ01M7OTrje5O3tffXq1eDgYHd39+qrrpydnf38/M6dO1ezlT9zVFRUQUFBdHR0y5Ytiei1116r816b6srLV0+eTERzevSQrljRVE9PQZ+58J+en1erkFdK1DgLwuLiJwVhRga/+Sa///4/n08iEXfsyL6+vGsXJyXVvDwpk8mKi4vbtGlDRF9++aVCgjt0iAMCxjk7E5GloaH3K68s6NUryN19x+jRh728wt9779H8+bxkyT8Ni4T//P25Q4cnf/b15UGDeM0aeR1LBbUklG31v5L0fP369SOi48frsJ2sNrKy2MKCs7K4qIjff1++Y0P9CS09TU1N4+Pjb9++bWpqWuMApdjYWH9/f3t7+6qPN1dX1+DgYOFok/Ly8i1btlhZWQl3ubu7R0REMPOFCxeERCIiW1vbLVu2SJ/TxjQ0NLRVq1ZEpK2t7efnV1Lt5BVmzsnJ8fPzE1rsamtr+/r6qunHW6Mila6aPZuIDLS1w3x8ypYvf9PJiYhM9PQuTZ/OX31VUVx87tw5Pz8/V1fXqlYHRGRvb+/r6xsSEiKcnVN9YnDKlClFRUU3btwYNGi+gQFbWHBYWG3DOXeOAwJYWEPz4Yfs6spbt7KnJw8ZwgMGsKsrd+jA9vbcteudqssZ1ZmammIDobr47jvW1mYiHjeOi4v56tWCFi0sieiVV155XgP2u3fvDh8+XPhZd+vWLfzfZx89s5V/8+bN/2nl/7fLly8LH7sDBw581OATdU+fPk1E3aysOCBgiIMDEf3yyy8NHBPq7am8yhNO/EJeKUsjLAgTEtjJiVev5uXLmZk3beLZs/noUV62jPv3/9dizO7dh1taWnp4eAQFBZ07d66srIyZly5dSkSdOnWqqKhQSHzbt3NAQJ6fX/eWLY94eXFAQMWKFRkffnhzxowTPj4/jhsXO3o09+vHrq7s5MQ2Nmxuzrq6bGfHbm7s5cUff8xdu/KMGbx6NSsoQniO/v37E5EwlyJfwrGq8upnWyUriydM4OnTURCqFplMJhxwKiwWzfv7RMK8vLwtW7YI3c8ENjY2fn5+cXFxTw8izOaZmJgIF0o9PT3v3LnDzAcPHhRmgYjIy8urxrMSExOrPlDd3Nyio6OfF2RKSoqvr6+WlhYRGRgY+Pn5PTkqUybjuDg+dYovXlTrQ3jVjkwmmzVrFhHpamkdmjy5fPnycc7OIqK3Onf2dHExbtKkKm2aNGni7u4eHBz8vG5De/bsESYGu3btmpiYWFDAb77JRCyRsL//f+xFKCri+fNZLGaRiIcMYWZ+9Iitrf8jeCHPExMT79y5c/ToUSFvf/rpp3r9S8DLFhbGTZsyEU+enJGTk5OYmCgsbbCysoqMjKz+yOLiYn9/f11dXaHsDw4Oft5lKX5OK38DAwMPD48tW7aEhIQIVxNGjx5d46JV/RQXF+vo6EjE4kcff7zy9deJaMGCBQ0fFuqtWl5dRl4pXWMrCM+fZwsLJuIePZ4cAV9ZydU3R5SXc3g4b9jAb77JDg7tql+zNDIycnNz09bWFovFFy9eVFSIR47wJ58Ic33Tu3dvVu1TXLCvQ4dnrLyxsuKVK3nMGB4wgH19efVqrkVvXJAv4dvYhg0b5D6y0NdB2L8qR1lZvHAhr17NR4+iIFQtjx49cnJyIqK33nqrtLQ0NDTU09NT2BFBRE2bNvX29g4LC3t6uUsNubm5fn5+wiYKLS0tX1/f1NTUysrKkJAQBweHY8eOVT2yoqIiODjY0NCQiExMTIKDgytrsQk5NjbW09NTmHEyMzMLCgws/uorXrOGV67kVas4MBC/iF4mmUw2d84cItKRSH6dNOmEj0/VB4dIJOratevixYtPnz5dm87Y169fd3BwEIu1Bg5MPXGCKyt5xYoni7hesDjm4kVu3/7J/h8/P/6vhcnPtW3bNiIyNzfPwP5mNREVxX36FJqYtHFwcLh9+3ZeXp5whXT9+vVVjwkNDRXOChfW8gkrGmpDJpNFRkb6+/sL3byrvpIR0bRp017w1b+uhH6SYT4+J3x8Ohsabp88WV4jQ/1ERXGfPrdMTEyRV0rXqArCX355MgE4dCjXsrFCQkLCzp07fX19nZ2dhS89AwYMmD59ugKjzM7m1auFglDoUSsWiVqYmLi4uAwYMGDy5MmHAgL4k0/422/511/53Dm+fZvz8ri0lH/5hVet4lWreN06/ve1E3g5vv32WyJ655135D7yuXPniKh79+5yHPP6db5/nxcu5NJSHj0aBaHKuXnzpjBL0+Tvq0La2tojR47ct29fXS9bpqamVs3m6ejo+Pr6ZmZmCkseBJGRkd27dxdexcPD43kLcp7nypUrwjFNRNSsSZMgd/fSZcv+OYQXa9dfIplUOr9XL6EmvDFjhk3TppNcXL5/882M1avrOlReXt6MGZeEicF161gm49BQ7t+fn9lfpriY/fxYImEidnHhq1cb+kaEmepRo0Y1dCB4WdLT011dXYVrQ2fPni0tLf3u7xPl4uPj33jjDeFXRNeuXRtyST0lJeXrr78eOnRoYGDg2rVr//OiWJ1sWbHihw4dEocNq1yyhMVi1tZ+drrDS4S8UhGNpyAMDn7Sp+j99+u5lPLBgwf79+9v+Ile/y02lj/9lNesyV66NHPJEtmePVzLCxWVlSyPCW6on/PnzxORq6ur3Ed++PChSCQyMDComrRZtWrVzp07692Fb98+NjDg0aM5MJCZOSyMP/5YXsGC3CxZssTS0lIkEjk7OwcFBT1oWPOf27dve3t71+g4WlhY6OfnJ5FIiMje3v7333+v9/jHjx7tbm0tfDa3NTfP/ugjDgjglSv5118bEjbU2ebNfn36BAwY8M8m81WruNpscO3JZBwU9OSjc9Qofl43B3lNDFaXlpYm9LzBwlE1UlhYOHLkSCLS1dUVfnDCWj5hy7Gw9ECOEy/yt38/E7GDAwcEcMuWTMR//qnsmAB5pRIaQ0FYUVGxbNkRIhaLeeNGZUdTS6WlfOsWX7vGtZ77BqUTyjZ9fX1F/GISFrsLTR3z8vKEtfJ6enqenp6hoaG139Eqk3FAwJOlXx98gH2mKm3evHlENHv2bDmOGRERMWTIEKFss7CwEA4i19bWXrx4cXFxcYOGzsvjTz+d2rVrsyZN+tjaHvHy8uzYce/48bx9u5xih9pJTa1aZsLCipL16xtyQfrIETYxYSJu355jYv51l9wnBqvDwlF1JJVKhd0TIpFo8uTJQhM+YS1fZmamsqP7Lw8eMBHr6PCKFdyzJxPxqlXKjgmYkVcqQO0LwoKCgqFDh4pEotdf//HAAWVHA42dra0tET2zyUcDubu7E9Hnn3/OzEVFRdu2bevXr19Vt0Bra+tFixZFRUW9eJDSUp4y5UlziH/3rQRV1K5dOyK6cOGC3Ec+f/5837599fT0bG1tu3XrJrQhbSiplAMDrY2Niej69OlrBw8mokV9+vDRo3IYHOokLY23buVPPuHAQN67lxvcKO/OHe7YkYnYwoJ37Hhy465d3K7dk4nBZcu42hpkuREWjo4cOVL+Q4MirVu3TiwWGxsbE1GXLl0U8UtMURwdn1wuFY73HDZM2QHBP5BXSqTeBWFaWlrXrl2FC+Hnz59XdjjQ+AnL2ffv3y/fYW/evGlhYSFsmxZWDwqXzO/fvx8UFCSUDYLq99aQns6vvcZEbGTEoaHyDRDkLzExkYhMTU0V1NBYJpNFR0cnJyfXpnlMbf3xh6O5ORHFzZnz5RtvENHsnj3Ra7RxePyYJ0zgr79ma2v++Wdm5kmT2NlZ/hOD1WHhqPry8PAgorFjx6r0Wr6nvf02E/Ebb/DChUzExsa13bMDLwXySlnEpLZu3rzZs2fPa9euOTo6Xrx4sXqvdgAF6dSpExFFR0fLcczQ0NDevXsLR6Oam5vfunVr8eLFrVq1euONN4TWyXfu3Ll48eKMGTPMzMyEe21sbNatW1d9kL/++uudd9b/9Rc5ONClSzRypBwDBIU4evQoEQ0ZMkRoBiN3IpGoY8eOdnZ2wq5C+XB31zc0JKISqVRfS4uIim1sqNrp56C+DA1p716aOZMGDqRff6WCApJI6MgRioykvxsSyV/Lli3Xr19PRHPmzHnw4IGiXgYUQGhZPG7cOGGLstoQviumpJCREZma0qNHdOuWsmOCfyCvlEVdC8Ljx4/37dv3/v37bm5u4eHhbdu2VXZEoBFcXFyIKCoqSvirVCpduXLlrQb8b79p06YxY8YUFhZOmjQpNjY2MzMzLCzM29tbR0fn2LFjXl5elpaWPj4+OTk5X375ZUZGhnA+gVgsFkpTwf79+/v163f8+Ec+PkcuXSJn5wa+S3gZjh07RkRVpwKqB7HYwNKSiEoqKvS1tYmoRDHVLCiFsERdJKKlSykwkIioTRv6+zAURZk2bdrw4cNzc3N9fX0V+0ogV1lZWUQkHCauTvr0ISJKSSEicnSktm1Jrld4oYGEvGrevLmyA6kj9c8rdS0IT548+ejRIx8fn1OnTgldEwBeghozhGFhYQEBAR07duzYsePatWszMzNrP1R5efm77747f/58Zvb399+zZ4++vr5EInF3d9+1a1d6evrOnTvd3d0fP378ww8/jBo1qnXr1osWLbK1tQ0JCUlPTx88eLAwzqZNmyZMmFBUVDR16tTNm4fg/wa1UFZWdubMGZFIVNUARl0IZx4WV1QYaGsTUXFxsbIjAvlzcSEtLXr8+CW93LZt20xNTQ8fPvzTTz+9pJeEBhM+79Tvi7uTEw0cSG5ulJJClpbk7k7JyXT+vLLDgifUtSBU/7xS14JwzZo1e/fu/f7773UUffUSoBonJyctLa27d+/m5+cTkZ2d3QcffGBqalq1knPUqFH79u0rLS198Ti5ublDhgz5/vvvmzRpcuDAgYCAgBoPMDEx8fHxCQsLS0pKCgoKcnR0TE1N/eKLL7p06dKxY8dt27bl5eWVlZW9/fbb8+fPF4lEQUFB27dvx/8O6uLMmTOFhYVdu3a1srJSdix1Y2BgQNWWjJaUlCg7IpCzCROIiJYsoSlTXtIrtmzZcsOGDUQ0d+5cLBxVF+r6xT07mwYNIn19SkoiOzuKiKC4ODpzhnBtSzUgr5RFXQtCsVg8ceLEqh6MAC+Hrq6ut7e3paVl69atfXx80tPTN2/eXLWSUyQSHT58eMKECcI6zxMnTjDz04NER0e/+uqrZ86csba2PnPmzJtvvvmCV7Szs/Pz84uLiztz5sy0adOaNm1aVXza29vv2rXLyMjo0KFDfn5+CnvTIH9quV6UiIh8HR1/aNu2tUzWQVf3oqNj4N8nE0KjMWIEEZGREXl6vrwXnTp1KhaOqpHKysq8vDyxWGxubq7sWOooMZFkMrp9m/r1IwsL6t+foqNJIqF795QdGVBlZWVubq5YLFa/pX/qn1fqWhACKMs333xjY2Pz6NGjH374YfDgwQ4ODp9++qmTk1NISIgwiffqq68WFBQI9zo6OkZERFR/+u+//96nT5+kpKSePXtGRES4urrW5kVFIlG/fv22bduWmZkpFJ/M3K1bN1tb2zNnzowQvsGB+lDfgnB0Xt6Uu3edS0ttJZJe8fGv3ryp7Iigkdi6dWvTpk0PHz68Z88eZccC/yEnJ6eystLc3FxBPbEUSCYjIqq6VisWEzMxP7kdlCovr0BPz8LU1BR59fKhIASoGz09vfDw8Nu3b/v7+9vb2yclJX3yySft2rXr3r37Tz/9NGnSpCtXrsTGxgr3pqamCuerCjZt2uTh4VFQUDBx4sRTp05ZWlrW9dV1dXVHjhwZEhJy//79rVu33rlzRzh5BdRIUlLSnTt3TE1Ne/TooexY6k5fn4hIKiXhAxtLRkFOWrVqtXHjxqFDh/YR2jOAClPXdX1EZGtLEgnZ21NkJJWX06VL5OREMhnZ2Cg7MqCsLLOiogetWmUrO5C6U/+8QkEIUB/t27cPCAi4e/fuuXPnfH19jY2NIyMj58+fb2NjM3LkyKioqCVLlty9ezciIkJYUSOVSmfNmjV//nyZTFbVQqYhAbRo0cLKykpPT09ObwheHmF6cPDgwep3EZSIDAyIiCoqSFubCAUhyNPUqVN///13G/X5CqWx1LXFKBG1akV2dtS7NzVpQhcvUps21LEjdetGxsbKjgxI2EFsZqaG28HUP6/U8OsIgMoQi8V9+vTp06fPpk2bDh8+vGvXrj/++OPIkSNHjhwxNTX19PT09vZm5vz8/PHjx//55596enrbt2/38vJSduCgTOq7XpTo7xlCFIQAGkyNZwiJaOJEOn6ciEgmI4mE3Nyob19lxwRERFlZRERqmlbqnlcoCAHkQE9Pz9PT09PTMyMjY8+ePTt37rx58+bWrVu3bt3q6OhYWFj44MGDVq1aHTp0qFu3bsoOFpSprKzs9OnT6njgxBM1loyqTws1AJAXdT1zQiCR0PDhNGwYlZWRri6hPaHKUO+CUM3zCktGAeTJysrqf//7340bN6Kjo/39/e3s7OLj421tbbt06XLx4kVUg3D27NnCwsIuXbq0bNlS2bHUC2YIATRednY2ETVr1kzZgTSASER6emr3rb1xy84mUt+CUKC2eYUZQgCFEE6rX758eVhY2Guvvaavr9/ATYPQOKj3elEisrAgBwcyMSGJhLp2JX19evyYjIyUHRYAvDzqvWQUVFVmJpG6F4RqCzOEAAokkUiGDRtmZmaGahAEzGxkZDRs2DBlB1IvFRWUk0NvvknZ2XT8OOnp0aBBhEMCADSMGjeVARWm3ktG1RwKQgCAl+fzzz/Pzc3t3bu3sgOpl9hYkkrp9Gnq04eGDCF7e4qIoJycJ9d1AUAzqPceQlBJO3bQjh2UkkIVFXTyJBUVERH99Rfdv6/syDQDCkIAgJdKW1tbIpEoO4p6yc2l8nIqLqamTYmIrK0pK4vEYsrNVXZkAPDyYMkoyN2PP9LGjWRjQ4cO0ZEj9OgREVF4OCUlKTsyzYA9hAAAUDtGRqStTdraVFpKenqUl/ekMsQeQgBNIhaLxWKxejeVARVjY0MVFRQV9eSvP/xAxsZ0/jx16qTUsDQGCkIAAKidDh3o+HHq04d++43MzCg/n4YNI11datVK2ZEBwMsTHx8vk8nEYqwyA3latox8fUlYQNOnDzVr9uSoengJ8D8zAADUTpMmNGYMWVuTpye5udGECWRqSpMnq2OLbQBoCFSDIHfGxhgXSfoAACAASURBVDR6NN24QUTUpg21bUvNmlFREe3e/aTfDCiOiJmVHQMAAKiP/Hy6fp3y86lFC+ralQwMlB0QAACot9OnacAAIqJDh8jSkjp3Jn19io2lx4+pc2f6/HP6+GMlR9i4oSAEAAAAAABVFBpK1tbk6qrsOBo1zPgDAAAAAIDKOXWKIiJIJlN2HI0dZggBAAAAAAA0FGYIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDoSAEAAAAAADQUCgIAQAAAAAANBQKQgAAAAAAAA2FghAAAAAAAEBDNf6CsKio6M6dO+Xl5TVul0qliYmJjx8/ft4TS0tLExMTS0pK6v3SOTk59+7dq/fTQZUhr0ARkFegCMgrUATkFSgC8kopGn9BePLkSScnp7t379a4/f79+w4ODr/88svznnj58mUHB4fw8PB6v3RAQED37t3r/XRQZcgrUATkFSgC8goUAXkFioC8UorGXxACAAAAAADAM6EgBAAAAAAA0FBayg5AzmJjY+/cuSMSiVxcXBwcHJ5+wP37969evcrMWlr/eu/x8fGRkZESiaRXr17W1tbV78rKyjp//ry2tnbfvn2NjY2vXbtmZWXVsmXLqgfcvn1bR0fH3t6eiKRSaXh4eFpamrm5eU5OTtVjysrKzp8/n5WV1aJFi759+2pra8v5nYMiIa9AEZBXoAjIK1AE5BUoAvJKVXAjMnToUG1t7bZt29ra2orF4iVLljDzoUOHiCg6Oloqlc6cOVMsFpuZmTk6Ogo/2h07dshksjlz5ohEIltb2xYtWujo6OzevZuZT58+TURvvfWWsbGxk5OToaFhixYt4uPjO3XqNGTIkKoXLSoqMjQ0XL9+PTNfv37d0dFRIpE4OjpaWFgQkYWFBTPfunXL3t5eT0+vffv22traXbp0yc/PV9I/EtQZ8goUAXkFioC8AkVAXoEiIK9UR6MqCCMjI6t+YMuXLxeLxcnJyVWJtXr1aiL6+uuvhQfEx8cLifX9998T0bfffsvMFRUVo0ePbtGiRXFxsZBYffv2TUtLY+bU1FRDQ8PZs2cHBQVJJJIHDx4I44SEhIhEouTk5KKiImtra2dn56SkJOGuGTNmWFhYyGSyTp06tW/fPj09nZmvX7+uo6PzySefvNx/G6g/5BUoAvIKFAF5BYqAvAJFQF6pjka1h7Bbt24mJibCn0eMGCGTyWJjY6vu/frrr4cMGTJz5kzhr2Lxk/d+4MABe3v7CRMm5OfnP378ePLkyZmZmVevXhXu9ff3F2aZra2tO3bsGBcX5+XlxcxVbY5+/vnnvn372tnZHTx4MC0tLTg4uHXr1tVfIi4uLioqavr06Xp6evn5+ba2tq+99tpvv/2m6H8NkBfkFSgC8goUAXkFioC8AkVAXqmORlUQxsTETJkypU2bNnp6ej179iSi4uJi4a5Hjx6lp6cLN9YQHx+fmJho9rdJkyYR0f3794V7RSJR1SN1dXUrKipsbGzc3Nz27NlDRIWFhUePHp08ebLw6kT09EskJCQQ0YIFC6pe4vz58ykpKfJ+96AoyCtQBOQVKALyChQBeQWKgLxSHY2nqUxqamr//v07d+68detWGxubhIQEDw+Pqnt1dXVFIlHV1YXqDAwMBg0atG/fvho3Xrp06Xmv5eXlNXPmzOTk5AsXLlRUVIwdO5aI9PT06N+JKNDX1yeigwcP9uvXr+rGpx8Gqgl5BYqAvAJFQF6BIiCvQBGQVyql8cwQnjx5Mjc3d8eOHYMHD3ZycqrRcUhXV7dVq1YRERFVtwhrkYnIyckpKipKV1fXtBpdXd0XvNaECRO0tbVDQkJ+/vnnwYMHN2/enIjatm1LRJGRkTVeon379iKR6MaNG9XHr5oiBxWHvAJFQF6BIiCvQBGQV6AIyCuV0ngKQnNzcyIKCwsrLi4+f/78u+++W+MBb7/99tGjR4ODg+/fv3/y5MkPPvhAuH3WrFm5ubk+Pj7R0dFpaWnHjh1bu3bti1/LzMxs2LBhO3bsOH78uDBVTURvvPFG8+bN58yZc/ny5ZSUlGXLlv3xxx9E1LJlS09Pz/Xr1+/atSs9PT0mJmbTpk0vuIwBKgV5BYqAvAJFQF6BIiCvQBGQV6pFmR1t5Eomk02dOlWY0m3WrNmePXuMjY33798fGhoqEoliYmLKy8vnzZvXtGlTIjI1Nd22bZupqemOHTuY+eDBg1WHnzRr1mzBggWVlZVCt6KTJ09WvUS/fv1ef/114c/CWmQ9Pb2CgoKqB0RERHTv3l0ikRBR//79/f39hfa1hYWFU6dOFeamxWJx7969qw8Lqgx5BYqAvAJFQF6BIiCvQBGQVypFxMwNrSlVSV5eXnZ2toODQ43zK6vLysoyNTV9+ojJnJwcLS2t2k8KDxs2zNjYOCQkpMbtpaWlxcXFZmZmNW4vKyvLy8uzsLBo/KdbNjrIK1AE5BUoAvIKFAF5BYqAvFIRja0gfGlycnJatmz5888/jxkzRtmxQOOBvAJFQF6BIiCvQBGQV6AIyKsXazx7CF+y/fv36+vrDx8+XNmBQKOCvAJFQF6BIiCvQBGQV6AIyKsXQ0FYT8ePH/fy8hKWFwPIC/IKFAF5BYqAvAJFQF6BIiCvXgxLRgEAAAAAADQUZggBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQEOhIAQAAAAAANBQKAgBAAAAAAA0FApCAAAAAAAADYWCEAAAAAAAQENpXkGYlkY3b1JFhbLjAAAAAAAAUDIRMys7hpfo228pJYXat6dDh2j3bjIwUHZAAAAAAAAASqOl7ACeLzeXzMxIJPrvR2Zl0alTxEyvv06Wls94QGkpVVSQkRH9/jsdPEhEpKNDhw7R5MlyjhkAAAAAAEB9qOSS0QcPaOJE+vZbmjyZrl//jwdnZ9P27RQXR3FxtGMHPXhQ8wE3b1KvXjR7NhGRRPLkxmbNKD9f3nEDAAAAAACoE5UsCL/+mj7+mJYupa1bacMGIqLp0+no0Wc/+OBBmayImIlIJiuiAwf+uauiglasIFdXun6drlyhggLS1qasLCKiI0fIzU3hbwQAAAAAAECFqWRBmJFBtrZERMbGVFxMx4/Tli00YgS5utKvv1L1TY9ZWZSdndz5oPC35M6HqKCA0tKIiKKjqWdPWrWKKivJ15ciIig/n5Yvp/XraeFC6t2bXnnl5b8zAIA6qaig8nIiIpmMSkuf3FhSQlLpkz/IZEqLDQAAABoBlSwIu3ShixeJiO7epVatyM2NPvuMrKzor79o7Fjq3JkPhTBXEhHdufOvb0MiEUmlfDvmwYO12Sdm0V9/UZs2dOoUbdlC+/dT585PCsLPPqMJE5Tz1gAA6uLoUfrlFyKi27dp7donN65YQYsWEREFBVFiotJiAwAAgEZAJZvKvP8++fvTn39SRQUNH05bttAHH9Ds2bR3L61aRdHRjyK+ue+wuHnzec2SDUWVleUGBanOx4morEleqUFWss70orQk6itq+tVynXf86OFDGj6cfv+diEhLi8rKSFdXyW8QAKAunu4GXV5OERHKCAUAAAAaF5UsCHV1KSjoyZ/d3enkSVqzhmbNovnzadIk+nF3RqfgsrKk+/fnZzmYt5D20ikxbnVrCBHH9vm/2L5bZZJyHR1bO7vtOq7uHPKT6INZ9PAhmZvTV1/RpElKfWMAAHX200/011+Um0utW/9z46JF9OGH5OSktKgAAACgcVDJgrC6//2PiospPJxWrqQvvqC5c3nB3PbGPvn5ezMyPi2l2JTORyRS3Urt0iLT1GKTdCKySHNtNeIUc2lCwtgm+emWwgzh//0fWVsr+80AANSZlxd5edGtW7Rv3z83GhiQtzctXEjvvKO0wEDFFRYW5v0tPz8/Ly8vNze36q8bNmywsbHR0lL5rwGgYpBXoAjIK+VSk4Ppz5+ntWvpyBFqanzrqKGRzXhLy8Xa2i0Ktr+b3vqETpmhYU6bSp2Scv0C0/SOTfOc82e2S0mZKZXmSCRNXXK+1XLHxCAAqKWzZ6mkhIYOpaQkOnKEtLUpO5uMjMjHh8zM6L33aNYscnEhbW1lBwrKU1FR8dFHHwlfoap/oyoX+hE9R/PmzWfPnr18+fKXFieoF+QVKALySjWpSUEouHChMPrHO903E5FYbGBh4Wt50FA7T5JtGykSiczSOjExiTi146mcVleIyNh4sJ3ddh0dG2XHrVqqNlFevUoyGfXoQdeuUbNm1KqVsiMDgP8ildL69fTxx0/+un8/vf8+LVxIS5cqNSxQnuTk5LfffvvixYtSofNsNYaGhmZmZqampmZPycrKWr58uVgsvnTpkqurq1IiB1WGvAJFQF6pLLWae3VzM3Rz61A8NSMj8OHD0Kys4OyeWja3hhrm2aY6/yGp0DXN6PiweVxOqytisWGrVuubNfuASKTsoFXLvn20YAGdPk2OjnT2LB04QGFhdOkSubigIARQdY8f05o15OX1zy0WFvTwIa1aRWPHUocOyosMlCcoKOjs2bM9e/acPn16ja9TOjo6NR5cVlZWUlJiYmJCRJmZmV988YWPj09kZKSenp4yYgfVhbwCRUBeqSy1miGspqQkOjNzXV7uj+3C3zHMtZWJK7LbXBFVajdPfu1B3yRTtxW6uvbKjlG1pKXR++/TsWNERKtW0bJl9NlnZG5OcXFkY0MuLtS3r7JDBIAXevSI7t4lHR3q1OmfG6dOpe++o3796PRpEuEKmIZJTU11dHSUSqUxMTHt27d/+PDhyZMn855StTqrqKioZ8+e4eHhRFRcXNy1a9e4uLilS5cGBgYq+62ACkFegSIgr1SZWs0QVqOv79K69a6WFdN0CsOLjZNlkgpiMYmYdHQsWy4mVIP/tm8fzZhBublkYkJr15KvL92/T0TUtSvduEG3b5OLi7JDBID/YmxMTy+W2bCBjh6ls2dp+3Z67z1lhAXKs27durKyssmTJ7dv356IkpKSxo8f/4LH6+joiMVPzh82MDD4/vvv+/btu3bt2lGjRr322msvI2KiyspKiUTycl4L6gd5BYqAvFJl6jpD+IRMRp99Jq3IedjylkwkM0/vJBGZ0KJFpBk/vNrIzMxcufK3b7+dykwjR9LWrWRgQIsW0a5dNHs2TZlCdnb0yiu0ezdmCAHU1d69NHkyNW1KMTHopqxBMjMz27RpU1paeuPGjU6dOhHRgwcPZs2a9fQOnCpNmjSpMciiRYs2bNjg5OT0119/6evrKzTggwcPnj17dvfu3QMGDPD29h4+fDh6Bqog5BUoAvJK1bG6u3GDP/007phjRAQVbHmbIyOVHZAKCQkJsbCwIKIhQ25+/z0z88mTbGfHRKynx0FBnJPDzBwezhkZyo0UABpkxAgWi3nBgihlBwIvz4cffkhEY8eObcggpaWlLi4uRLRo0SJ5BfZMa9eurbrYL7CxsVm8eHF0dLRCXxfqCnkFioC8UnHqXxAy8/nziYc7R0RQ7vllyg5FVeTn5/v6+gpJPHjw4JSUlOJi9vNjsZiJuHNnvn6dKyr4/HllBwoA8nDvHvfs+SERHTp0SNmxwMuQk5NjZGRERFevXm3gUJGRkdra2mKx+OzZs3KJrYaysrJ33nmHiEQikb+/f3JyclBQkKOjY9U3LWdn56CgoAxcmFQByCtQBOSV6msUBSFzyr1ZERGUmfmlsgNRCVeuXLG0tCQiIyOjb7/9ViaThYfnODoyEevo8KpVXFHBMTH86quso8M3big7XACQh+DgYCJq2bLlw4cPlR0LKNzSpUuJyMPDQ46j2dvbP378WC4DVsnJyRkwYAARNWnS5MCBA9XvioiImDt3rrCMhYjEYrG7u/vOnTvlHgPUHvIKFAF5pfoaSUGYlrYiIoLS0wOUHYhKyM/Pb9WqlZub2927d0tKSvz8/AwMTB0dS11cODKSpVJet4719JiIW7fm8HBlhwsA8lBZWdm7d28imj17trJjAcV6+PCh0Ir9vJyWeZSVlXXu3JmI5s2bJ5cBBXFxce3atROuU1SfGZg4caK3t3dYWJhMJistLQ0NDfX09KxqOq+vr+/p6RkaGiqVSuUYDPwn5BUoAvJKLTSSgjAzMzgiglJS5io7EFWRkJBQWVl59epVZ2dnItLS0goK2ltWxnfvcu/eTMQiEfv68qNHyg4U/ktRUdHly5e3bNkyZ86c1NTUiooKZUcEquvmzZvCWhp5fe6Calq5cqWwHUCOY16/fl3o6ffnn3/KZcDjx48L3wK7dOmSkpJSdXt2dnZVb4bWrVsvW7bs9u3bwu1ffvlljx49amzaefDggVzigf+EvAJFQF6phUZSEObk7IqIoMTEKcoORFVUVFQEBQUJFzA6dOhw5coVmUy2ZcuWV1+dK5GwpSWHhio7RHiOvLy8c+fOBQcHe3t7Ozs7V+93bGVl9d577yk7QFBpS5YsIaJ27drFx8c/qt0ln9RU3rqVmTkri0+eVGx40HCPHz8Wli2dOXNGviML39tat25dy8x5gS1btmhraxPR+PHji4qKatwbGxvr7+9vb//PAVHCtpzMzExmrr5pRyKRfPHFF+p+6V0tIK9AEZBX6qKRFIR5eUevXWsRE/OWsgNRCVFRUV26dBGWOC9cuLCkpCQpKen1118X8tjPLzI/X9khwt/Ky8tv3Lixa9euhQsXuru7Vy1Pr6Ktrd2pU6cpU6bMmzdPaLK8ceNGZUcNqqukpMTGxqYqkSQSiZmZmb29vaurq7v70LFj+d13ecECDgjg4GD+7js+cIB/+40dHfnCBY6N5U8+UfYbgP+yZs0aIurdu7fcR66oqHj11VeJaMaMGfUeRCqVzp07l4hEIpGfn19lZeXzHllZWXnu3Lm5c+eam5tXpauwLaeoqEgmk509e9bMzIyIhEvyoFDIK1AE5JW6aCQFYXh4OBH16NFD2YEomTAxaGxs7Ojo2KZNm9OnTzPzzp07heZOzZs3r7FHFpRo/vz5Xbt2rVqGXsXU1PT111+fN2/ejh07IiMjy8rKqp6yb98+sVgsFot//fVXJUYOKs7JyYmIzM3NaxziZGJiT8RP/7diBa9bx2PHclQUCkJVV1RU1Lx5cyIKCwtTxPhRUVG6uroikWj+/PknTpxISkp6wTekpz169GjEiBFEpKuru2vXrlo+q7i4eM+ePSNGjKhamlX1Dc/Dw4OI9u3bV+d3AnWBvAJFQF6pkUZSEN65c4eI2rZtq+xA6kAqlZaXl5eUlMhrwFu3bgkXS0Qi0dKlSwsLC5n5yy+/FPJ14sSJ2dnZ8notaKBx48Y5ODgIPxorKysPDw9/f/+QkJDo6GiZTPbMp1RUVMhkssDAQCLS19e/fPnyS44Z1MKlS5eIqEWLFuXl5cxcXl6enZ199+7diIiIkyfP79vH27bxhg28fDnPmcM+PjxqFG/dysHB/PvvPH06CkJVt3HjRkVc/RSyRTBhwgShT3XVIgV7e3t3d3dfX9+goKCQkJCIiIji4uKnB4mPj+/QoQMRWVhY1K8jfGZmZnBwcPfu3YWrmcz88ccfE9GKFSvq976glpBXoAjIKzXSSArCnJwc4Yq4sgOprfj4+D59+kydOrV58+b+/v4FBQUNGU3YH2hgYEBEdnZ2J06cqLqrqKjo1Vdfrf2VD3gJrl27RkQmJiZnz56t5dr3vLy8gQMHfvLJJ8wsnDBpZWVVfd8zgGDatGlE9NFHHzHzqVOnFi5cuGrVqi+++GLXrl2//XbuzBm+fp2Tk7n6uvGICA4OZmaeOBEFoUorLS21trYmoiNHjsh35HHjxo0cOTIhIUEqlbZv356I+vXr169fPysrK3oWLS0tR0fHoUOHzpo16/PPPz98+PDevXubNWtGRJ06dUpKSpJXYD/99BMRjRkzRl4DwtOQV6AIyCv10kgKQqlUKiylq9NksVJUVlZ+9tlnwmawpk2bCslqYWGxevXq+pWFiYmJ/fv3F8bx9PTMy8uTe8yapaCAk5O5YSX6i3344YdENGfOnNo/5fjx4xKJRCQS/fTTT+Xl5YMGDSIiFxeXBl5KgJdKJuOSElbk76jHjx8L68NjY2OZefXq1dU/FLt2XVh9pai+/pNn5eVxXBw/esS7d7N6LnXRFFFRUdbW1vb29lXrCK5cudLwYWNiYsRisZ6eXnp6+o8//khEDg4OVQ2NS0tLExISwsLCtmzZMnfuXHd3d3t7++rNrgTCt6uRI0c2vMFDddHR0UTk6OgoxzGhBuQVKALySr00koKQmU1NTYlIxcuhxMRE4cjLquLt3LlzAwcOFG4xMjLy8/PLzc2t5WjCxKChoSERWVpaHjp0SKHBN34lJfzDDxwYyEFBHBjIP/zA8lvQW6WysrJVq1ZEFB4enpaWVvszxIVjx/X09C5cuJCbmytcFRs+fLia9rPSLDIZnz3Ln37Kq1ZxYCCHhrJijg/ZsmULEQ0YMED469WrV9etW7dkyZJZs2a99dZbH3zwfZ8+7OLCNjZsbMyWlv967vr1TMTTpikiLpCPlJSUJk2a6Ovr37lzh5k9PT1FItGpU6caOOzEiROJaN68eTKZzMXFhYh27Njx4qeUlpbGxMQcOnTos88+mzlzpnAAZosWLeR+TbaiokJXV1csFgubIEARkFegCMgr9dJ4CkJhR9bdu3eVHcizyWT89dffCD0erKysakygnzt3TtiKSkSGhoZz585NS0t78YDJycnCNJFQW+bk5Cgy/EYuLS0t9NAh/5EjPV1cnJs1e/DhhxwQwKtW8dat/JwdffX2559/Che0ZDLZtGnT9PT09uzZU8vnzp49m4jMzc3v3r2bmJgoXOKaP39+Q+Ipl5Uz893Su9kV2GKqML//zqtXl2yYnbanX/b2URwYyDt3KuJ1unfvTkS7d++ux3MjI5mI7ezkHRPI1dtvv01EvXr1kkqlq1atogZ3XY+Li5NIJLq6uvfv39+3bx8R2draVu9lVRvl5eXCmWCFhYUVFRUxMTFRUVH1DqkG4QRq7JpWKOQVKALySo00koIwKSnJ3NxcT0/Px8cnIyND2eHUlJ7OI0Zw377vP128BQcHe3p63rp1i5kvXLjg4eEhEomISFdX19fX9/79+88cMCQkRJgRbd68+f79+1/S21BH5eX84AHX2E/86BFfuMDffCOdObNHjx41OjES0bEpUzgggAMC+NNP+d49+Ub03nvvEdHy5ctLS0uFU1BjYmJq+VypVDpy5EgicnJyEqaXdXV1iejLL7+sRyQJpQnjE8b/7/7/Pkr9aEv2lvOPcZS5Yjx+zIGBHBAQ/1v7ik8Xla1d8CS15LdvQXD9OnfseGnw4Jn1a1VVWckWFkzEiYnyjQvk6eHDh7a2tkS0bt26qq7rH3zwQb0H9PHxIaLp06czs6urKxFt3ry5HuN06tSJiK5evbp3714iGj16dL1DquGtt94iom3btslrQHga8goUAXmlRtS+IBSWTQrbZoQO/vr6+rNnz1adfhs7dnDTpkzEbdo82r//YPW7Kisr7ezsiEgsFk+cOPHGjRvMfP36dW9vb7FYLLwjb2/v6tOeGRkZo0aNEuqWESNGpKenv+z3oy5kMv7jD1616sn6z82becUKHj+eHR1ZLK7aR9XTxISIrIyM3O3t5/bosXPMmOiZM3+ZMGFat24yf38ODGR5LHmvUlZWJhxTExMTs3//fiJydXWt0wiPHj165ZVXOUkvjwAAIABJREFUiKhfv35lZWV79+4ViUQSiSQ0NLT2g2SUZ0SXRE+/Nz2hNEG4BQWhAsXG8po1HBCQEtLzfkjv0nVzOSCAV67kv/uSycusWUzEc+fWf4SxY5mI1fCDTLOEhYWJRCJdXd2oqKhbt27p6emJRKKjR4/WY6iEhAQtLS1tbe3ExMTQ0FBhAUv9Lih4eXkJa7diYmKIyN7evh6DPFNQUJCwQkxeA8IzIa9AEZBX6kIJBWF8fPwHH3yQKI+r0BkZGcKEiTDzdvbsWW9vb2HzqLa2tre3t7BwWVkePODRo5+UHiNG8DNrt3v37s2dO1foMSMSiTw8PC5dusTMUVFRNd7L7du3Q0JChAMxTUxMtmzZ8rLfj3r57TdevZrHj+devXjIEF68mEWiJz8MiYStrLhLFx427Na77+b5+QnzgUVLl156772Nw4YZaGsT0fL+/XnNGo6OlmNQv/76KxF169aNmceNG0dEn332WV0HSUtLE3Yhvvvuu8y8YsUKYQPq9evXn/n4CllFQmlC6MNQ/3R/j3gPq5tWFEmusa6j40fL+MmCWBSEChQXJxSEHBBQsmH2nd/bVK5aWrZ+we3LnUtL4+X1IsXFbGrKRPycLKiVr75iIvbykldQoCjvv/++8JukvLx87dq1RGRtbV2PLfTCgoWpU6cy82uvvUZEmzZtql9IwvHTCxYsqKioEL7zyavl1W+//UZEAwcOlMto8ALIK1AE5JVaUEJBKHRFF4vFnp6eQiu8+gkJCREmW2pURzExMd7e3sJ5kcKrCAsyX4Lc3CeLE/PzedcuNjNjIjYz4x9//I8nZmZm+vn5CedGEJGbm5twdMTt27d9fHyq3gsmBmursJADA9nLiwcN4oAAfvdddnPjgQN5zBieMYOXL3+yIvR//4v38fl00KAJHTu2t7CQ/P0vbNu0qZZYLCLa5enJdVyb/mLjx48XisCCggJ9fX2xWJyamlqPcSIjI4WVrmvXrpXJZFOmTBF+wwprjPPz80+fPr1p06apU6e6uroOPDyQIqn6fybXTYbcHbIodVFkUaQwIApCBSop4dWrOSDg4TdeRZ/73j3aVhr4cWKoS0QE3bxpW1aWJJcX2bmTibhnzwYNcusWE3GLFnLfOQtyVlhYKGybDwwMrKys7Nu3LxG98847dRokJSVFR0dHIpHcuXPn999/J6IWLVoUFRXVL6QjR44Q0aBBg5i5S5cuRBQeHl6/oZ6Ok4gsLCzkMhq8APIKFAF5pRaUUBAmJibOnTtX2PskFos9PDwiIyPrNEJmZuaYMWOE7+7Dhw9PTU0tKCiosZXu6VeJiIiQ6/t4hmXL+L33mJlXr+YJE5iIhw3j52wDfIbs7Gx/f39hX5lQFgrrAJOSkubOnWtoaGhoaPjtt98qLPxG5O5dDgriXr14/vwntV+HDrxiBc+cyZ6ePGAAt2vHhoZMdN/Ojv6mraXV2dLSu0uX4GHD/u/NN4VbGt4Rq0r1InD79u1Vv4zq58iRI8JBFHv27CktLXVzcyMiS0vL1q1b07+5rXazj7YfmzB2ZfrKgw8PJpY9mZzPrsh+/977s1Nm+6f7783bW1UcgvxdvsyrVxduei9n+5sPv3mrcNO0ylVL7xxvLdSEpaVyWC7Rpw8T8fbtDR/n2oABa27dwj5CVXfq1CmRSKStrR0ZGZmQkCBcITpw4EDtR5g5cyYRTZkyhZmFr2jr1q2rdzz37t0jombNmjGzt7c3EW3durXeo9UgXPx98OCBvAaE50FegSIgr1Sf0vYQJicnz507V09Pr2qpZC178oSEhFhYWBBR06ZNhYnBc+fOOTo6isXis2fP1nhw9QWZROTu7i4syFSQZct4zhw+fZpXr+bLl7lerf44NzfX399f6BlD1XamCoWiip+roSqSk3nNGu7fn2fM4IAA9vfnDh14wACufgobEZuZFXp6Lliw4Pvvv//rr7/Kysr40SM+c4b37+czZ+bPnElEZmZm8lp4/N1331UtJBDOGvnPXskvtnbtWnNz8zNnzjBzdnZ206ZNW7ZsKawxdnZ29vb2Dg4ODgsLy85G+1AVEBvL33xT9tmHNy4aXrukWxj8XuWqJbf/sIuIoJs37crKkhsy9u3bLBKxoSE3/EQlYUN8/doUwUs2a9YsInrllVfKyso+//xzIrKysqrlwUUZGRnC9amoqKhTp04Rkbm5eUO6/8lkMuFDKjMzc926dVTHo1ZfTPj+FxYWJq8B4QWQV6AIyCsVp+SmMg8ePKixVPIFEzL5+fm+vr7CIwcPHpySklJYWDh79myhLeerr776vKWhz1uQKXfLlnF8PI8ZwytXNnTr2ePHj4ODg52cnPLz84VbhAn3+Hi5bTpqzCoqeM0anjOHXVz47bfZzY09PXnKFG7ThseP58BAPnyY/6vtkNDSU0tLb9y46FqfDfki7u7uRLR9+/b09HSJRKKnp1f1w623zMxM4Q8RERFC+RoVFYWTCVWWTCZNTJwSEUHXLukVBr8vDfw49oR1RARFRbUtL/+Pk2ZeICSEjYzY11cOEQpz12PGjJHDWKBgRUVFbdu2JaIVK1ZUVlb279+fiLxqtwf0q6++IiJPT0/++/pUYGBgA+Pp06cPEZ04ceLYsWNU7TzMhhMmB+qx4xrqAXkFioC8UnEq0WU0KyvL39+/adOmNZZKVnf06FFh9sPAwCA4OFgmk128eLFdu3ZEpKWl5efnV15e/uJXyczMXLx4sdCPVFitVyHvs6GXLeOUFD5xglu3lk8vElm1rTxCu151PNtEOWJiePVqXrSIvbx4zhz+9FP+99mPtfH48ePx49OIuH//hu4lFIpAXV3d/Pz8zz77jIjGjRvXoBH/bcGCBaSeja00jUwmTUz0ioiga+F6RcG+0tWLb51s+dclw1mzhtTjyJydO1n4lbBjh3yOixAW0piYmOCyglq4cOGCRCLR0tK6cuVKQkKCoaGhkZHRvdodlnPhwoXbt2+Hh4cLK24afn1qxowZRPT555+npaUJ16caOGDVZ/TmzZup7puOoN6QV6AIyCtVphIFoSAnJ6f6UsnevXuHhobKZLKHDx9WTQy6ubnFxcWVlJT4+fkJHThdXFzqtAWxoKAgKCioadOmTk5OX331lXzfwnffcVYWM/NHH3Fyg5aAPcPQoUOJ6NixY3IetxFLSeGdO3n9et68ma9dq98YaWlsY8NE/PbbDYpl48aNRDR27Fhm7tatW11Xz79YZWWltbU1rheoC5lMmpg46UlN+LlvxWq/OcPaEZGzs3PVlG8tTZ3KEydyeTnPmcMNnMeurKwU/mBvb09EL2HTNciFcDGoQ4cOJSUloaGhSXU833LYsGHCNfuGR/LNN9/Q3z0AhYbYaWn1nPeWSqV+fn5jx44V0vL8+fNU90N6oCGQV6AIyCuVpUIFoeDh/7N353E1Z/8fwN/3dm/7vhdJJUUpa2ixZmcsU4aQGftYss5gholZTMPMCMOIhimDiWmYjL3sGUuppJBKqZBKhfa65/fH4f76RiQ3yX09H/6oz/18zufc23E/n/fnnPM+BQXffvstnyXI75CMjIykHYNVVVWxsbF8HTbeMVhaWlqPs/C0sD169JB5/ffuZe3bs2++kXnBT1dN2fnKjKUga1eu8AQ07E1GKHTu3JmIQkNDr1+/zp9v1W/xnBcKDw8nIisrKwmyQzYREkl5cvLwqCiKi9BPmD3z4eLFHU1MiMjW1rYuM9GLitixYywwkE2axI4fZ35+bxoQHjx40NbWlo9I56m932S+PrxNpaWldnZ2RLRkyZLXPfa///4TCARqamoymWl89uxZIurcuTNjjI8HO3LkSD3KKSwsHDRoEBEpKSnxBxP+/v6amppLly5980pCHaFdQUNAu3pniegdo6Wl9eWXX86bNy8wMHD16tVJSUlKSkpdu3YNCgqysrJas2bN8uXLKyoq2rRpExQUxEdR1kOLFi2I6OHDhzKtOxHRkycUG0uOjjIvmHjaory8PNkXDS/VoQOFhNAHH9Dy5dSyJY0b93qHFxcXHzlyJCoqSlNTc9CgQSKR6MCBA/fu3eMZlWRi586dRDR+/Hg+nxbefQKB2NJyz82bn8zyOXUtLujkxx8fGT++T1DQtRs3BnTsGPH553ru7mRnV/2QqiqKjaXwcAoPp3PnqLSUVFXJ05N69aI9eyg3l4hIIqFni6fUVXZ29ty5c0NCQohow4YN/v7+vXr1CgwMDA0NnTNnjgxbKTQQJSWl3377zcXFZfXq1UOGDHF1dS0pKcmvm/v37ysoKAwbNkz6EPZNtGvXTiAQJCQkVFVVOTg4nD59Oj4+no9tqbvbt28PGzYsISFBT08vNDTUwcFh6tSpgYGBAoHAsSGurFALtCtoCGhX767Gjkhfpri4mHfj8tXVLly4IBQKhULhwoUL69e7smPHjt69e//+++98xLCpqamsq8z++YcRsWHDGGOsRw+mqclklQWGrz++YsUK2RQHr+nnnxkRs7Vlr5qsyh4+fHj27Fl/f/8JEya0bduWj222sLCwsrKS+bRVxlhJSQlPlnXjxg2ZFw4NqqysbOjQoURkqKaWMGtW9meftTUwIKL2xsZ5y5axQ4eqqqqioqJWr149Y8a/amr/nx9XQYF17sw+/5yNH88qKti9e0xbm/36K+vendV9HqJEwnbtOsVH6aurq69du7aysvLWrVuurq4qKioikUhLS2vatGkx9R1uDW/T4sWL+d/xtWJ4sVgsFAqVlZUPHTokk2qYmZkRUVJS0p49ez788MN9+/a91uHnz5/nY4Ls7OxSU1Pz8vJ4AgllZWWMjmkUaFfQENCu3kHvdEDIGOM9y9eeZWhZs2bN2bNn613aqlWriGjJkiWlpaVEpKSkJKNq/r9z5xgRc3FhjLEuXRgRu3RJNiX7+/sTkY+Pj2yKg9f300/swgXGRwFkZDC+8mVFBbt2je3Zw3x92dChzNiYmZn1qPEV1rZtW57NaObMmTKv1d69e4moS5cuMi8Z3oKysrLBgwcTkZG6euKsWVkLF7bW01MWiT5zcfG0t9d9tippy5b9iZilJZs2je3Z8/+jQ9PSni4if/Mms7ZmRMzMjF258urzpqQwd3emq5urr284aNCgtLS0srKyFStW8LVb9fX17ar1T3bt2jUwMPDx48cN+EHAmyktLV2zZo25uTm/HTExMWnbtq2Li8vQoUMnTJjg4+Pj6+vr7+8fFBQUFhZ29uzZa9euZWVlVVVV+fj4EJGiomKNtXzrZ8iQIURUv6J2797N7w779+9fUFBw69YtW1tbIjIxMbkkq+sovCa0K2gIaFfvoHc9IOSrefCV1t5cQEAAEU2bNo0xxlehePLkiUxKlkpMfNqPxBgbMIARMVllgQkODqZni3JCY7l8mXXsyP75hyUksHnzWIcOTFGx5uqGffuu69Wr19y5c7dt2xYdHV1WVsYYu3TpEm9y/v7+sq3SyJEjiWjt2rWyLRbemuLi4j7duxNRc03N+E8/ndutW/UHCpaWllOmTNm1a9e9e6+YIJqTw3r2ZERMWZnt2FHrbuXlbNUqpqLCiJihIQsNTWeMRUZG8ghQIBBMmDAhNzeXMRYbGzt79mztZ0Gpnp7JzJkVTfNKJy9ycnJed/iMRCJZsGABESkoKAQHB79hBZYsWUJEX3755evWwdfXlzezadOmVVRUHD9+nPddOzo61jEJITQctCtoCGhX75R3PSAcMWIEEb1uN25teF8KT/fPe4rvvGoxuteVnf30Nosx5uXFiJis+o15IpzBgwfLpjiol8uX2dq17MMP2aVLbNkyJhAwImZiwoYOZb6+bM8edu0aqy2xy549ewQCgVAo3L9/v6zqU1BQoKysLBQKMzMzZVUmvH1Prl7tYWFBRHqqqppKSlpKSp52dgHDhqW+5tdHWRmbNIkRMYGALV7MnuUN/R+zZj3dYeJElpvLCgrYsmW/CoVCIrK1tT1z5kyN/UtLS/fs2ePu7t69+8/8kUebNszPj8liVj+8K/j9jYKCwrZt2+pdSEJCQrdu3bS1tcVisaenZ1hYWF0GyT958oQ/1RKJRBs2bGCMbdmyRSwWE9GoUaNk/tAW3ia0K2gIaFcN4V0PCCdNmkREv/32m0xKi4iIIKLevXszxvh0z9jYWJmULFVRwQQCJhIxiYTNns2I2Pr1simZr77StWtX2RQH9XL5Mlu3jl2+zDw92TffsMuX2WsNo/v666+JSFVVVVYjCrZu3UpE/fr1k0lp0GiKix9/9dXAVq1a6eoSUcTEiWzFCrZqVf2mIAcEMJGIEbGhQ1lhYc1X09JYu3bs6FHGGAsLY2ZmrFmzNC0t7Vcmbb55s2LRImZo+LQnXEWFTZjAzpxh06YxfhFct45t2PB055AQ9poraEAj8/Pz413EG6R/xTpLTU0dP348f6ygrq4uzW7VrFmzzz//PD4+/iXH9ujRg4h0dHTCw8N59nZ+rI+PT9ULH2lAk4J2BQ0B7Urm3vWAcNGiRSS7BOixsbG8S5cx1rt3byKKiIiQScnV9e27pXPn5YWFj1et2qyjYyWrNDA3b94kImtra5mUBvXDA0LG2Kef1mdxEYlE4u3traysPXhwsky69Hgz3r59uwzKgsZ18uS9JUsERGqKiqXLlrHvvmNBQbV2N7/K0aNMW5sRMQcH9vw6TxIJy8pio0Y9De26d2eJic8FjrUoK2NhYczTkykoMCLm5MS6d386sXbcODZ69NPdli6VWT4teGt++eUXgUAgEAh+/vnnOh6Sk5OzePFiPpdGUVFx2rRp9+7dS09P9/Pzs7a2lo58btu2rZ+f3927d58v4fDhwzY2NomJiY8ePRo2bBgRKSkp/f777zJ9Z9CY0K6gIaBdyda7HhBK08DIpLQ7d+4QkZmZGWPMw8ODiPbu3SuTkqtr2bIlEaWmpvI0MHPnzpVJsbm5uUSkp6cnk9Kgfm7fZnzt9wcP2PHj9SmhrKzMy+sBEevY8fV6FxljRUVFFy5ckPYuZmVlKSgoKCsrFxQU1Kcq8I4JWrmSiIa0bs1WrWJHj7I3y0l76xZr04YRMX19durU/2+XSFhQENPVZURMVZX5+bHKyvqUf/s2W7aMhYQwb2+2aBGLi2PjxjFPT7ZgAVuwgDk5ISBskjZv3swfnK9cufLlez5+/NjPz09TU5OIhEKhp6dnSkpKjX2ioqJ8fHwMDAz4bZZQKHRxcQkICKiRoKi8vDw1NZXPYtXT0ztVvb3CewHtChoC2pUMvesB4ebNm+lZGpg39+TJEz5gjzE2bdo0IgoICJBJydV17NiRiKKiomSSBqb82SoHVVVVfNWNpt4r3aSFhzPeZNLT2aJF9SwkL4+1bs2I2ODBr7gXz8xkBw+yX345P3r0aBsbG76CxdChQ/mra9asISJPT8961gPeMV5eXkS0jvdBy8LDh6x//6cL4fz0E2OMnT7Nxox52jH4wQcsI0MGZ/H2ZoWFbMwY5uWFHsL3wR9//CESiYho8eLFjDEmkbCSkuoTUsvKygICAni+dSJyd3d/+eSLsrKysLCwCRMm8MRaRKSiolJ90k5kZKShoSER2dvbp6amNvD7g8aBdgUNoWa7eg7aVR296wEhTwPj4eEhqwJ5UvWSkhKeXGjVqlWyKlmqX79+RHTs2LF///2X3iwNzNWrVzt06PDHH3/wX3kWozxpynl468LDmY8PO3yYBQfXPyBkjKWkMAMDRsTmz3/Bq9u3s759mb7+0xt3N7cE/q0kFosdHBwWLFjAd2vfvj0RyTBFDTSiqqoqfo2R7XqSFRVs/XoWGMicnZ+uj7JpE2vZkgUFyewU3t6MMbZrF+vd+38CwoMH2a+/Mlnn7YK3Yffu3fwe67OPPmLffce++YZ9+y3799+qsrI9e/ZYWFjwb6Tu3bu/Vg7wvLy8TZs2OTs7V5+0M2TIEH5dHjx4cOHzc17hPYJ2BQ3h/9vVZ59V315VVYV2VXfvekBYPQ2MTJiYmBBRVlbW6tWriWjRm9zU1+Kjjz4ioj///JOngenWrVs9CikvL1+5ciXPXNStWzeJRCKRSHjlb926JfM6Qx2Fh7N589ixY2znzjcKCBljZ84wJSVGxH75peZLvr5PQ0FdXda7N/P1zdu+ffuVK1f4ChaMsbt37/J0Mjo6Oi9PBAJNRUxMRvPmLc3NzRui8O3b2b59bPRoFhLC9u2r5xjR2kjnKCYlMemXU0YGy85m+fls40ZZngvemrCwMCWxmIhmdO5c5evLVqw4PmmSg5kZvzGys7Pbs2dPvQuvPmlHT09PQUGBZ2+XYf3h3YR2BQ0hLCyMx2kzZszgw+iOHz/u4OCAdlV373pAGBMTQ8/SwMiEvb09EcXHxwcGBhLRpEmTZFWy1KeffkpEGzduLCsry87OrkejSUws6NSpEx/BPHfu3OLi4vT0dHd3dyJasmTJo0ePZF5nqCOZDBmVCgpiAgGzt2fPAr2nrl9nYWFMuphNRQWLj7/2xx9/fP755/369ZOOfOjevfuyZcvetBLwbvjuO0bE5s1rkMUctm9nERFs5042YgST0SI+r1ZRwdatYxjQ0FTl5x/09lYWiYhoiLV11+bN+deOlbn5rl27ZDJzQSKRREZG7t+//+Vp/eC9gnYFDePgwYM8W8yQIUO6du36tF1ZWaFd1ZGI3m16enpE9PDhQ1kVqKurS0R5eXkyL1mK91zHx8crKiryMWB1J5HQhg20eLFW+/YeLVvmbdu2rXfv3tu2bVuwYEFhYaGBgYGzs7OGhobM6wx1ZGFBWlpERFpa5O7+pqV5exNj1K4dzZ5NAQGUlUUnT9KECWRqSrm5dOQIJSRQdDTFxJCR0aLbt49ID9TW1nZ0dPTy8uJTYeE9cPQoEZGbm37DnWLsWAoMbLjia9q7l8rLKSWFdHXf3klBZjIze1lZ+XTt6n/hwvnMzPySEgM1tYXOzvOWLlXq3VsmZxAIBM7OzjIpCpoMtCtoGL169fLx8fH39z9//nx+fr6BgcHChQvnzZvHew7f3Pvfrho7In2F6mlgZOLy5cvnzp0rKCg4ffo0Ebm5ucmqZG7Pnj2ampotWrQgIhcXl/Dw8Lofe/Mm69796ZrRCxcWPX78+P79+8OHD+d/qSFDhmRlZcm2tvAuiIlhLi5sxw528yabM4e1bPl0vKj0n0DAPvhg66hRo1auXLl///73aRIzcI8eMbGYiUQsP7+hyi8uZoyxwkLWlBfOhbfo5s3CFSuISFksjpwyRVkksjM0LFy+/GmeZYD6QbuChlFYWEhEysrKkZGRysrKdnZ279kcv4b2rvcQqqmpKSkpFRcXl5aW8r7gkpISFRWVehfYuXNn/gPvKrx//75M6smLmj59elhYGBGZmZlpaGhERka6u7v36tVr2bJlffv2ffnhMTHk6krFxWRmRoGB1L+/6t9/Z0+d2vbhw4c6OjobNmwYN26crKoK75oPP6R//yVra9LUpIwMEovJ2po6daJOncjOjtq3J339KURTGrua0FBOnKCKCnJ1JW3tBilfOqpAU7NByof3kLm5pqKimqJiUXl5/P37pZWVmkpKmkpKVG21LoDXhnYFDUNTU1NNTa2oqCg+Pr60tFRTU1MTF7zXIWzsCrwaj9z42E7GmJubW79+/S5evPgmZT548GDJkiVaWlppaWkuLi4HDhxgjL1JgXv37m3Xrl1YWJiWllZAQMC1a9fS0tJ8fX11dHROnTrl7u7u7Ox89Oill5zE0ZG6dCFPT4qNpQ4dyMODPvzQyMbmywEDBly9ehXR4HvP15dWrSKxmG7epJISSkig4GCaO5fc3Um/AUcRwjuBjxcdMKCx6wEgpaREH3xgrK5ORFuio4loapcu1Ls36eg0ds2gKUO7ggZjbGxMRFu2bCGiqVOnNnZ1mprG7qJ8NZ4G5urVq4yxhIQE6cIgAwcOPHv2bD0KDAkJ0dfXJyJ1dXXtZw/kO3fuvH//folE8rqlPXjAxo+fwQsZNGhQZmZm9VcfP37s7+/Ps4O2bXvJwYEFBdWa4q+khDHGQkOZoSEjYpqabPt2JJB8/8XEsJ9/ZoyxxYvZihWNXRtoDFZWjIhdutTY9QD4X65WVkQkINJQUnqckNDY1YH3BNoVNARXV1ciEggEGhoaNVaTh1dqAj2E7u7uZmZmHh4ewcHBNjY26enpvr6+2traR44ccXNzc3V1PXDgQB2LKigomD59+kcffZSbm9uvX7/ExMTMzMwff/zR2Ng4KipqxIgR7du337s3VCKpa90OHaL27enOnTmampoBAQEHDx5s1qxZ9R3U1dXnzp1769atzZv3FhR0uXqVJk6k9u1p926qqqpZWmkpTZ9OH35IDx6QuzvFx9PHH8tmLiy8y9q1o08/JSL69ltavLixawNvXXExtWtHFhbUqVNjVwXgfxmrqhIRIxrn7Kzetm1jVwfeE2hX0BB4DyFjbNy4cerq6o1dnaamsSPSVysqKjI3N+e1bdOmTXBwcEVFRWFhoZ+fn+6z7HUdOnTYs2fPy/v3Dh06xKM1VVVVf3//6juXlZUFBQVZWVkRkavrJEtLFhDAXr5axMOHbMKEpzk/+vRhaWl3X/lGSkrYxo2sRYunR7VuzbZvZ5s3s6IixhgLCmKmpoyIqamxjRvZ63dVAkDTM3YsS0xkjLFly5i/P7t/nzHGQkPZ5cuNWy8AxoqKZjo58YtsNB/GAPDm0K6gYcycOfNpu4qObuy6ND1NoIdQVVU1KSkpKCjI2tr6+vXr3t7e1tbW27dvnzt3bnp6Oh+QGRMTM3r06Pbt2wcHB1c91/VWWFg4ffr0wYMHZ2VlOTs7x8bGzp07VyAQSHdQVFT09vZOTEzcsmUL0dLUVJo+nWxsaOtWKi9/QZWOHiUHB9qxg1RUyM+Pjh8nc3OTV74RZWWaOZOSkykoiGxsKCmJvvmGdu4kP7+nZTo7k7MhqGdoAAAgAElEQVQzXblCM2dStdoBwHurvJy+/ZYYo9u3KSPj6RdOTg49etTYNQN4+PBRaWsFgZWJuk7HZ/nYAN4U2hU0jEePWiooWJuYmHXs2LGx69L0CNibJVN5myQSSWho6FdffXXjxg0iatGixYIFC6ZNmyaRSAICAn788cd79+6JxeJbt25JexSJ6NixY1OmTMnIyFBRUfH19f3ss8+EwpeFwRIJhYaSry9dv05EZGRE8+eTqysZGFDr1hQXR5s3U0AAMUbOzvT77/XMjFVZSX/+SWpqtH8/6evT5Mn03XcUEECqqvTS2gHAe2XiRBo4kMrL6fhxMjamx49JQ4OuXqUlS6hPn8auHMi5q1ft3E0ScwyczWIjD4vJzq6xKwTvBbQraBh2dpSYSM7OeZGReo1dl6anKQUfQqHQ09MzISEhLCysY8eOd+7cmTdvXsuWLdesWTNlypTU1NRffvll0aJF0miwuLh47ty5AwcOzMjI6Nat25UrVxYvXvzyaJCIhELy9KRr1ygkhBwcKDubliyhTZto7lyqqqKjR0lPj5SUyM+Pzpypf55kkYjGj6eRI4mIli+nb78lIlJXRzQIIHfGjqWjR592CS5bRj/+SB9+2Nh1AiC6nVB8PVefiJRE2vRsggbAG0K7goZw+/bTjhwlJUSD9dH04g+hUDhs2LCoqKiwsDAnJ6cHDx6sXLnSysrKz89v3Lhxq1at4rtFRkY6OjquX79eJBL5+vqeO3fO1tb2dc5Co0dTbCzt308ff0ytWtGQIfTrr0REHh6UkECLF5OCgmzekbY2DRpEiYmyKQ0AmpwVK+jWrf/ZkpJCv/1Gp041Tn0AiGhrqC5jAiLKKVLFjTvICtoVNIStW4kPeczJaeyqNE1NacjoC507d87X1/fEiRNEpKGhMXPmTB8fn/Xr169Zs0YikTg4OAQFBbVv3/4Nz7JiBU2cSCtWkKEhjR9Pjo6yqDoREZ08Sb17E2N04AB98IHMigWAJqGoiNTUiIiePCGRiJSUSCCg8vKns4jXraNFixq3giCnKivJ3KD4boEqEempluQWqTR2jeB9gHYFDaGykszN6e5dIiI9PcrNbewKNUFNPiDkTpw48e233548eZKIVFRUSkpKxGLxl19++cUXX4jF4jcvnweEAgF17UrHjskyIAQAeF5pKW3ZQuPH4wE6NI79+2nkSLLVz03J162UCEtLSVGxsesETR/aFTSEp+3KllJSqLKS0K7qoekNGX2hPn36nDhxIjIycujQoRMmTOjWrdvFixd9fX1lEg0SUZ8+pKtLLVtSYCAZG8ukSACAWsXGko5OzXGkAG/N1gAJEU3vHG2oVsQYZWc3doXgvYB2BQ1h61YioumTKw0NCe2qft6TgJBzdnY+cODAr7/++t9//3Xo0EGGJe/bR8XFRER37tDNmzIsGADgBbp1owkTqGvXxq4HyCWWX2BRet1ArXi8w1Vj9SdEdO9eY9cJmj60K2gILL/AouyGgVrx+Lx1xoJsQruql/cqIORemUcUAAAAXqykRBC41UHjdrh3sL5q8RDrpMszfmsnut7Y1YImDu0KGgJvV6rJ4d7B+spPhljduDxzO9pVPSB2qquvv6ZFi2jfvsauBwAAQMP57z8qKzuTbr460kXCBHcKtRwN7qqcONjY1YImDu0KGsLz7UovE+2qHkSNXYEm46uvyMSENm5s7HoAAAA0nJSU4lKhgkDygc3N3648m3xRWvr/KXEBXte9exQdjXYFMoZ2JTsICOvEyIh4ehpdXVJVbezaAAAAyFp5Of3zD21ZNzTvoaCdYfaHba+P/3vU47Jn2fpklKQN5EhZGV27Vv5f9D9ndLZEf5hXoop2BTKAdtUAEBDWyZIlT38YO7ZR6wEAACBrycm0dStt387XdDbRUCq31HlIRCt6nXL8dQYJBGRigjzu8BoyMykqKvnM3a2XHLfHjs8pUiUitCt4U2hXDeY9WYcQAAAAXk9FBYWFUUCAV+bq3dfbE1GHDjR9GvMS7blz7ZGdzl0iinnQrL1ZnmDaVKyJCU+VltLNm5SWRvn5VFVF6urUrBlZW5OREZWXU3w8XbxIp09TdLRX4ebdue5E1MHk/vROUV7tE+8UaNrpZxPaFTwP7apRISAEAAB471RVUWHh07uiBw/I0JAKCyk3l1q2JAUFSk+nrVtp2zaeoP1Gn5lrWm6cPp2cnIiIiDGKiaGrV6m0lCwsyNUVs3GAiEgioWPH6Nw5UlOj8vKn07RKS6msjHR0SFmZcnPpwgWKiaHHj4nohsWgNdrfTe9yxclVkTp1IhsbiotDu4Ka0K7eAQgIAQAA3juZmbR2Lf30ExHRRx/RqFF05gy1aUOnT5OHB3l5kURCRGRvT9On04QJpKXVuPWFJuCPPyg+ns6epQEDiIj27qU2bSg9nQwMKC2N2ral0FDid5WGhtS5M7m4UPfu1LEjWhe8DNrVOwBzCAEAAN5HZWWUn//051276J9/iIhMTSk7m7S1qW9fmjaN+vYlgaAR6whNRno6ZWRQZSVVVVFJydON8fFPkytoaNCTJ6SsTJaW1Lkz9elDnTuTrS1haWh4ObSrdwMCQgAAgPdRbOzTtZIqK0n07HJvYkIpKZSVRcrKjVg1aHoKCp7+cP8+Xb5MRCSR/P99ubo6PXxICxeSpiZNmUI6Oo1TSWhy0K7eDYiwAQAA3kddu9KyZbRsGYlEpKTEU4hSeDh164ZoEF6bhcXTYXvNmlGPHtSjBwmFJBJRURERUWoqNW9OKirk5IS7dngNaFfvBvQQAgAAvHeUlcnG5unPjo7k7U3ffUdCIVlbk5tbo9YMmiZNTRo2jEJCSF//6RZjY3J0pLNnSSAgXV1q1YrMzMjVtVFrCU0N2tW7AUllAAAAAKAOcnLoxAlKTiYFhadbBAKqqCBtbXJzIwcHTEmF+kC7amwICAEAAACgzqqq6MEDKiwkiYRUVcnAAIn+QQbQrhoPAkIAAAAAAAA5haQyAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAgAAAAAACCnEBACAAAAAADIKQSEAAAAAAAAcgoBIQAAAAAAgJxCQAhQH0VFRTdv3iwvL6+xvbKyMjU19fHjx7UdWFpampqaWlJSUu9T5+bmpqen1/tweF2VlZXR0dEPHjx4+6d+/PhxdHT0kydPGvQsycnJV65cadBTAAAAyKGioqLIyMiCgoLXOio1NTUxMbGBqpSampqQkFBjo4Ax1kDnA3iPhYWFDR8+/Nq1a3Z2dtW3375929LSctu2bZ988skLDzx9+nSvXr0iIiL69OlTv1PPnj07JCQkJyenfofDC4WGhmZnZz+/3dHR0cbGxsDAYP369XPmzKnx6sGDBysqKkaMGNFAtYqIiHB3dz99+nSPHj0a6BRENHny5NOnTycnJzfcKQAA4M0VFxcfOXLk2rVrFRUV5ubmgwYNatasWWNX6vUEBwdbWFi4ubk1dkVez/nz52/evFnbrd1LxMTEdOzY8fDhwwMHDqz7UZ6entevX7927drrnq4uPvroo/j4+BoBp6ghzgQA0LTs3LkzLi6OiEpKSu7du2dqaqqsrExEn3zyiY2NTW1Hbdmy5fHjxw0XEAIAAHBnz54dM2bMgwcPHB0dVVRU4uPjZ8+e/fXXX3/++eeNXbXX4OvrO3z4cDc3t7S0tBkzZhw5cqSxa1Qn//zzz44dO+oREDYVCAgBAOjvv//mPxw+fHjw4ME7d+7s1asX35Kbm1vbUf/8889bqBsAAMi5tLS0oUOH2traXrhwwczMjIhKSkoWLly4ePFiIyOjiRMnNnYF6+r27dv8h+Tk5IiIiMatTN398MMPP/zwQ2PXogEhIPx/Fy9efPjw4aBBg+pxbFhYWLNmzTp16iTzWsG74Pr16zdv3hQIBPb29lZWVs/vkJGRcfnyZcaYSPQ//6eSk5Ojo6MVFBS6d+9eY1zHgwcPzp07JxaL3dzcNDU1Y2JiTExMTE1NpTvcuHFDUVHR0tKSiCorK//777+srCw9Pb3q8UlZWdm5c+cePHhgZGTk5uYmFotl/M6hmnv37h07dqykpKRHjx5t27YlogsXLlRWVrq6uhLRgwcPjh07lpOTY25uPnDgQFVVVemBkZGRMTExIpGoT58+rVu3JqKqqqqzZ88mJSUpKCg4Ojp27tyZiDIyMuLi4gYPHnzw4ME7d+4MGzZMWsL58+evXr1qZmbWo0cPDQ0NvlEikZw4cSIxMVFFRaVnz568ZCLat29f165dVVVVDx06lJ+f37Vr186dO585c6a0tLR///7SMhMTE2/cuDFq1KhXvvGcnJzjx49nZ2cbGBgYGRkpKir27NnzwIEDHTp0KCsrO3z4sJWVFf/mfPjw4ZEjR7Kzs5s3bz5w4EBe1ZSUlCtXrgwbNox3uhJRWFhY8+bN27Rp8++//w4aNOjGjRsXLlwwMTHp0aOHgYHBm/yNAADeS2vWrCkpKfnrr794NEhEKioqv/zyy8WLF319fYcOHXrixInWrVs7OjryVyMjI/Py8iwtLa9fvz5q1CgFBQW+/f79+2fPnu3fv7+WlhYRJSQknD9/vri4uGXLlkKh0NbW1tramohiYmL+++8/xpirqysvMzc39+TJkx4eHsnJySdOnBCJRAMGDGjevPkLa/vgwYMzZ854eHjcvHnz5MmTSkpKAwYM4Hc4R48eNTExSUlJOXXqFGNs7969RGRnZ9emTZu//vqrT58+d+/ePX36tIODA58rcffu3fDwcP5eBgwYIL2OENH169cjIyOLiopatGghFoutra35iJ64uLjz589XVVU5Ozt37NiRiB4+fBgRETFq1Kj09PTw8HAFBYV+/fq1aNGitk+7vLz80KFDmZmZRkZGffr00dPTu3btWkZGxqBBg06ePGlsbGxpacl3sLW17devn/TA5z/P6sUyxs6cORMXF6esrNy3b98X3k9WV1hYePz48fz8/A4dOvD7BC4nJ+fYsWMPHjxo0aLFgAED1NXViSg9PT0+Pn7o0KFxcXHnzp3T1NQcPHiwnp4eP6SgoOD48eN37941NjZ+4QQZYvCMl5eXtbX189uTkpKWLFly9+7dlxzbvHnzTz/9tMGqBo1pwIAB/IumRYsWQqHwiy++YIzxrqFr165VVlbOnDlTKBTq6uq2atWKh2Tbtm2TSCRz5swRCAQtWrTg99B//PEHY+zUqVNENG7cOE1NTVtbW3V1dSMjo+Tk5Hbt2vXv31960qKiInV19TVr1jDGYmNjW7VqpaCg0KpVK319fSLS19dnjCUmJlpaWiorK9vY2IjF4vbt2+fn5zfSh/T+OHToEBGdPHlSuoVP1+zXr5+Ojo6Li4ulpaVYLP7nn38YY4MGDXJ1dWWM7du3T1VV1cjIyNnZWUNDo3nz5teuXWOMlZaWDh48WCgUOjo6tm7dWkFBYd26dYwxJycnXhq/Vs2ePZsx9ueff4rFYg8PDzU1NQ0NjbNnz4aHhxNRt27dDAwMXFxcNDQ0TExMeMn5+fndu3cXi8VdunSxsrISCoW+vr68whoaGhMmTDAwMHBycmrbtq1AIPjll19WrFghFotzc3Ol76t///68yU2aNMnKyqq2DyQoKEhVVVVfX5+/d5FI1LdvX8aYiYnJiBEj1NTUDAwMPvzwQ8bY0aNHNTU19fX1nZ2dtbS0DA0N+VOSX3/9lV/UpWUaGBjMnDkzKyuLiPr376+pqeni4qKvr6+hoREeHi6jvyS8WFVVVVpa2uPHj+t+SG5ublZWVsNVCeRKRkYGLlX1wOfdPb/dz8+PiOLj4wcPHqyjo3Pnzh3G2JUrVxQVFX/++efDhw8T0fHjx6X7L1++XF9fv7y8vLKykg+AtLKycnFxMTIyIiJ/f3+JRDJ16lQiat++vb29vUAg8PPzY4ydOXOGiObMmaOjo+Pm5mZsbKyhoREXF/fC2vKL15w5c3R1dd3c3IyMjLS0tBITExljpqams2bNsrOz09bWFggElpaWlpaW69atq6ioICJPT09lZWU9Pb158+Yxxnbs2KGkpGRqatq9e3c1NTVLS8tbt24xxqqqqqZOncoPd3FxMTY2JqLVq1czxmbNmkVEDg4O7dq1I6JvvvmGMXbhwgV+qeWVNzExUVdXj46OfmHlHz582KZNGxUVlXbt2mlra/fr148xtmDBAj09PcaYq6vrkCFDrK2t7e3tnZycBALB9OnTGWO1fZ48Z9vhw4eLi4v79+8vEomcnJwsLCzEYvHevXtr+3N7eHgYGhpaWlq2a9fO0dFRIBCMHTu2qqqKMXbgwAF1dXVDQ0NnZ2dNTU1TU9PY2Fj+WYnF4pkzZxoYGLi5uenq6hoZGfEr78GDB7W1tbW0tFxcXFq3bi0Wi9u0aVPjjHIdEHp5eR0+fLj6ry8MCM+cOWNpaZmQkPCSohAQvseio6OlV6/ly5cLhcK0tDRpQPjdd98R0caNG/kOPDPHtm3bfv/9dyLavHkzY6yiomL48OFGRkbFxcU8IHRzc+M3WJmZmerq6rNnz/bz81NQULh//z4vZ8+ePQKBIC0traioqFmzZm3btr19+zZ/6dNPP9XX15dIJO3atbOxseH/22NjYxUVFb/++uu3+9m8h2oLCB0cHPiFtqKiwsHBwcXFhT0LCHNzc9XV1QcOHFhSUsIYu3v3rpWVVfv27SUSCW8e+/bt40UFBQXxy2dSUlJ5eTnf+N133/G/9Z9//klEM2bMKCsrY4xVVVXxa2rv3r2LiooYY5mZmc2aNXN2dmaMzZgxQ0lJ6dKlS7yQpUuXEhF/4Fo9IpVIJEOGDDE1NU1OThYIBAEBAdI3JRKJtm/fzl4aEF69elUkEo0ePZq/NcaYq6urNCA0NTW9ceMGr+qTJ0/09PTc3Nx4pJGTk2Nvb9+qVavKysqXB4Q2NjbZ2dmMscLCwo4dO5qamvK3Dw2Et+ctW7bU/ZCXPzIAeC26urqLFi1q7Fo0MVVVVUKh0Nvb+/mXQkJCiCgsLCw7O9vQ0LBfv37FxcXt2rVzd3evqqqqqKgwMjKaNGmSdP82bdrw+1UeSQYGBvLteXl5PIDZsWMHv43h22fMmKGqqpqTk8MDwkGDBhUUFDDG8vPztbW1p0yZ8sIK84vXBx988OjRI8ZYbm6uhobGrFmz2LOAkDH25ZdfikQi6SE8IGzbtm1mZiZ/yxkZGUpKSh4eHvxymZaW1qxZsx49ejDGfv75ZyLatGkTP5andl+9ejX/NPitF2Ns7ty5ysrK9+/f5wFhv379Hj58yBgrLCzU19d/4efJGAsICOAxNmOssrKSX7yqB4QqKipHjhzhOy9dulQgEDx48KC2z1MaEC5fvlwkEp0+fZq/2f79+1tYWFRUVLywDh4eHkTEr9GMsU2bNhFRcHBwfn6+lpaWu7s7vyu4f/++jY2NnZ2dRCLhf7hPPvmEX69TU1MVFBS++eabzMxMNTW1vn378j8cY2z06NHPB4RyvexEeHj4w4cPX7mbm5tbSkoKHyEGcqhjx47a2tr85yFDhkgkkuvXr0tf3bhxY//+/WfOnMl/FQqf/p/6+++/LS0tR48enZ+f//jx47Fjx2ZnZ1++fJm/6uvry8dONGvWzM7OLikpycvLizH2119/8R1CQkLc3NzMzc3379+flZXl7+/fsmXL6qdISkqKj4+fMWOGsrJyfn5+ixYtnJycDh482NCfhtyaMmUKH6gjEom6dOkinQVBRKdPn37y5Imvry8fymJiYjJv3rzY2NiMjIwDBw64uLhIs854e3s7ODgQkbW1Ne9MfvLkSYcOHRhjt27d4vvMmTNHUVGRqrWlxYsX8wGozZo1mzx58n///VdcXPzvv/+OGjWqS5cufJ/ly5erqamFhYXxX0ePHs3z3woEgu7du9+9e7d58+ZdunTZvXs33yE0NFQkEo0cOVL6Lo4cOWL3v9auXbt9+3aBQLBx48bqo3Skhg4dysfnCIXC//77Ly8v78svv+RjV/T19T/77LPk5ORXJs6eOXOmoaEhEWlqas6bN+/u3bs3btyo298E6kNLS+vo0aODBw+u+yELFy7kT7gA3lxoaCjvgIK6q6iokEgk1WciSPGR+WVlZYaGhps2bTp+/HiXLl2ysrJ+//13oVDIn+j9/fffZWVlRBQbG3v9+vWxY8cS0datW3v27Dl58uQaBR46dMjIyKhnz56pqampqal9+/YtLi4+f/48f3XBggV8rKm2tjZ/VB0cHFzj2rFr1y6+88KFC3n19PT0bGxsUlNTX/lOx4wZw+fXCIXC48ePl5WVrVy5kl8uzc3NZ86ceebMmYKCgq1bt3bv3v3TTz+tcfjBgwf19PTc3d155fv06VNaWnr27Fn+6rx583R0dIhIU1PT3t7+9u3bu3fvrlH5oKAgfgkODw8vKytTUFAwMTGpcRZnZ+cBAwZIf2aM3b59u7bPs3rdunTp0rx589TU1Dt37ri7u9++fTslJaVXr17VK8DHDRGRhYXFxx9/zH+ePn26sbFxRETE2bNnCwsLly9fzhuDkZHRggULEhISUlJS+J5Lly7l12sLCwtjY2P+HouKijZs2MD/cLWR0zmE586dS0hIyM3NPXHixJMnTzQ1NceMGcNfKioq2r17d3JycosWLSZOnKimpnbnzp1//vln7Nix+vr6xcXFISEhN2/eFIvFffr06d27d+O+EXgLEhISvv/++8jIyHv37vGv1OLiYj5X8NGjR3fv3p0yZcrzRyUnJ6empurq6lbfmJGRwQfcCwQC6UYlJaWKigozMzMXF5fdu3fPmjXryZMnhw4d4g/A+Fox3bp1q1E+/88/f/78+fPnSzc+/7UFDUFRUbGyslL6K7/ISafwEREPk1JSUm7fvj1kyJDnS4iMjPz666/55Ae+pbS0tLbTqaioSH+2tLRkjCUlJWVlZVU/o4qKSosWLaSXhOr4pbSystLLy2vBggVZWVnNmjULCQkZPHhw9cuDhYXFpEmTqh/YuXPniIgIc3NzPlD55fiHUD0jK5878cIqVaekpFS9DkSUlpbGw2ZoCPziJZ1QREQSiSQjI0NVVVU6gTMvL6+0tNTU1JR/U9na2rL/XaHq8ePHDx8+bNasWfVZ0+Xl5fxRNB8rBfKjsrIyIyNDLBbXNqOsOjc3t+pXQCLKzMwUCoXSKfSPHj0qKCho1qxZ9VYq561LSUlJQ0MjMzPz+ZcyMjKIiD9W+/DDD4cMGXLw4MENGzZI0xZ4eXlt2LDhyJEjw4cPDwkJ4TcbVVVVqampw4cPf77A1NTU7OzsGtPbMjIyeChVHb8U2tnZ1bh2tG3blvePPb/za73r1NRUgUDA5zRy/BJz69atW7duzZgx4/lDbt++nZeX16pVq+obMzMzpRMvq9fn8ePHbdq0qVF5e3v7tm3b7tmzZ/78+d9++623t/cXX3zxkosgv8KWl5fX9nlWfzsFBQXPf7Bjx46tvtqw9Eu1evwvFArNzc3T09Nfcr/x/Bn5Z56UlKSqqlpjNuPz5DQgvHLlSkhIiEQiuXjxYnp6uqmpKQ8I+cTN5s2bGxgYbNy4cfv27RcuXLh+/bqPj4+rq2t5eXnPnj1zcnJ69+6dn5//3XffTZ48eevWrY39bqABZWZm9uzZ08HBYcuWLWZmZikpKUOHDpW+qqSkJBAIpD051amqqvbt25fPlq6+kY9beCEvL6+ZM2empaVFRkZWVFTwbB/8SU+Nyyc9CxL2799ffYW653eDt4A/AS0qKpLG//zLXVNTU0NDQxrySSUlJfXv33/w4MFnz55t0aJFXFxc375963guPt5PR0dHWVm5RslPnjx5+fO/sWPHLlq0aO/evWPGjDlz5gwfoSplY2Pz/AIbGzdulEgkdakY/xCqX9WkH8L9+/frUgI9S+iqpqZWx/2hHnJzcw0MDLZs2WJqajp8+PC//vrLx8eH31MOGzZs06ZNM2bMOHToEGPM3Nw8NDS0U6dOU6dO5StV2tvbDx8+PCsra9euXRUVFdra2sHBwcOGDZNIJF999ZW/vz9vk66urnv37uWzeuC999NPP3377bd83W1LS8uNGzcOHDjw66+/Xrly5bFjx/iX2xdffLF+/forV660bt3a0NBw0qRJ06ZNa9269Y4dO3744Qe+2JqTk9PevXtXrlwZHBxcWVmpq6v7+++/P9+63Nzc9uzZI4etq0uXLnFxcRKJpMYtR3R0NE8iQERJSUmnTp1SUlIKDAycOnUqf9zWrVs3a2vrP//8k/9//+ijj4RCIWNMRUXlhV/vGhoa3bt3l3YJSkn72Wro1KnT8ykVZZI+VENDgzFWXFwsvbTxy4q2tra6unptle/UqVNUVFSN7RcvXnzhKdq3b88/uhoOHTp09erVnTt3/nKTyPcAACAASURBVPLLL+fOnbt06dLLqyoQCGr7PKvXbcSIEdu3b6+x3d3d/eWFc7m5uba2ttL7Del26aW2tuWpa/usapDTIaM+Pj7btm0joqVLlx4/fjwoKIhvf/z48aZNm06cOBESEhIQEBAVFVW9EXz22Wf379+Pjo7et2/fqVOn1q5dGxgYeODAgcZ5D/BWRERE5OXlbdu2rV+/fra2tjUyhSopKTVv3rz6V490dW9bW9v4+HglJSWdaqp3hjxv9OjRYrF4z549ISEh/fr14w/8+LOx6OjoGqewsbERCARxcXHVy5cObYW3yd7enohOnDgh3RIeHq6oqNi6dWt7e/uzZ8/W6P07ceJEcXHxhg0bOnTooKen98LRmC/EBxW3bNnS3Ny8TZs21c9448aNrKwsPky0NoaGhn369Nm9e/fevXtVVVVf2HVZQ+vWre/cuSN9LF1aWiod2lrDCz8EoVDYtm1bTU1NInr06BHf/uTJk9q6Q//66y9VVdXqudSgQVVVVS1ZsuT3338vKCjYvn37gQMH2rdv37Nnz+zs7Bs3bohEojlz5tQ45IcffjA2Nk5JScnKymrXrt3kyZOrqqp+/PHHVatW+fn55ebmRkZGJiYmLlmypFHeEbxlQUFBixYtmjFjRlZWVlJSkq2t7YgRI65fv/7FF1907dp14sSJeXl5kZGRq1evXrduXfVuDW7hwoW+vr75+fkRERExMTEODg4aGhq8ddnZ2b2wdSUkJPAp0/Jm8uTJGRkZW7Zsqb7xxo0bf/zxx+jRozU1NSsrK729vW1sbHj26S+//FK625gxY8LCwk6cOJGcnMzHi/Ket+pRX3x8PP/B3t7+6tWrtUUXMiQWiyUSSVVVVW07vPCyoqam1rJly5dUPiEh4d69e29ePQcHhx9++GH+/PmXL18uKSl5+c4v+Tyl7O3tT58+zadKvq7o6OjU1FQ3N7cXfiYikeglHYCtW7cuLS2NiYnhv0okEj70rAY5DQhr06JFC2mkzscsVe+gP3HihIeHh7S3d9asWZqamnziLLyveMbe48ePFxcXnzt37vk1SSdOnHjo0CF/f/+MjIyIiIjp06fz7bNmzcrLy/P29r527VpWVtbhw4dfuYKNrq7uwIEDt23bduzYMekY5sGDBxsaGs6ZM+fixYt37txZtmzZ0aNHicjU1NTT03PNmjXBwcF3795NSEhYt27dS7ofoeE4Ozs7OzsvWrQoODj4ypUrP/zww9atWz/99FMNDY0FCxZkZ2d7eHicOnUqOjp68+bNERERfOzKrl270tPT9+3bN378+JeXf/r06cuXL58+fXrMmDGXLl36/vvviWjRokVXrlyZOnXqxYsXDx8+7Onpqaen98o1c728vC5fvrx+/foRI0ZUH4laG29vb7FYPHbs2DNnzpw7d27EiBEvTldNxNPkfvXVV1u3bo2JifH391+7dq23t7exsXHnzp0VFBS+//77xMTEo0eP9u/fv7y8XHpgVFTU+fPnL1y4MHfu3F27di1duvTl/ZwgWwEBAX369NHS0vr44491dHQGDBjw2WefGRgY2NjYjBo1iievq75///79/fz8zMzMTE1NJ06cmJOTk5WVtXnz5iFDhsyePVtPT8/Z2fnjjz/evXv36w4Pg6Zo8+bNHTt2/P77701NTa2trYODg4VCYWBgoEgk2rFjR2Fh4aRJk8aPH//BBx+8cG7Vt99+6+Hhoa2t3adPn06dOrVq1crf379Fixampqbe3t61ta5du3bJYesaO3bsqFGjZs+e7ePjExERcf78+bVr1/bo0cPQ0PDHH38kopUrV8bHx+/cudPZ2fmLL75Yu3at9AbVy8uruLh4xowZrVu3lk5Rmz59+qVLlxYsWBAdHf333397e3vz7TwnwsiRI8PDw+Pi4nbv3j137tyGeEft2rWTSCSrV68+efJk9dQMUv369XNwcJg1a9aff/4ZHR29YsWK3bt3L1iwQCwWT58+PTY21sfHJzo6ev/+/ePGjeOHzJgxQ1FRceTIkceOHYuLiwsJCeFJvF+rYqGhoStXroyIiAgPDz9w4ICtrW1dLpe1fZ5SixYtSk9PHzt27Llz56KiogIDA7/55puXFFhQUMA7Knft2jVy5MiWLVvOmDGjS5cuPXr0WLJkyfbt22NiYn788cdNmzZNnTr1+QG9Uh4eHnp6eh9//PHx48cvXbo0bty4F37a8ptllOct2Llzp3RLjSyjPBfC7t27jxw5QkQXLlwQCAQrVqyoXkjbtm2HDRvGkGX0/SWRSCZNmsSHYhoYGOzevVtTUzM0NDQsLEwgECQkJJSXl8+dO5ffwuro6AQGBuro6PD0XPv375c+PjAwMJg/f35VVRXPMhoRESE9RY8ePXr37s1/5jk/lJWVCwsLpTtERUXxW2oi6tmzp6+vL1924smTJ5MmTeL9S0Kh0NnZuXqxUD8RERGGhoaRkZHSLbm5uTo6OtWzMi5cuJB/V3h5eX3wwQeMsby8vI8//piP5TA2Nl6+fLk0ddiRI0e6deumpKTEMz4fPnxYIpHMnz+fT1u3tbWNiIho3rz5kSNH/v77bx0dHZ63k8vIyJg9e3br1q1FIpGCgkLnzp2lCUsZY8HBwfyhoFgsHjBggDQTspmZ2Zdffindbd26dTo6Ojwj2aNHj/gzDj4mkJs/f37Xrl1r+0BOnTrVvXt3FRUVQ0PDWbNmOTk58Syjtra2PC241KNHj6ZPn867qQ0MDBYtWlRaWspf+vXXX3mPd8uWLYODgz09PRctWsSzjBoZGfGZEm3atJGmhoOGI80y+u+//xLRxYsXpS+ZmZlVz0a4YsUKIqqqqpJmGbWzs/Pw8JDuwL+vYmJihEKhiYlJp2f46l48Ky+833R0dHjGSClHR8fBgwfznwMDA/lXYk5OjnQHnmU0KSmJiHbs2CHd7u7uzrM3c2hdz6uoqFizZo10Tp2ent60adN4cvIrV67o6+tLs25WVFT06tXL3t5eei/h5uZGRNLViRhjEonkp59+4tcXa2trf39/IvL392eMXbx4sUePHgoKCmKxuHXr1r6+vmVlZefPn9fR0eG5rLmhQ4cOHTr0hVU9ffq0jo5O9SvpgAEDRo4cyRhzdHRcunQpr4CPj4+2tra2tvamTZsqKip0dHT4altS9+/fHzt2LJ9H0KxZs1WrVvGlFxhj69ats7GxEYlErVq1Wr9+PT1bdiIqKqpXr14ikYgvGLZs2bKSkpKoqCgdHZ1jx45JSx41alT1tb6qCwwM5CWLxWJXV9erV68yxnx9fXlmzkGDBg0fPly6c0REhI6OzsWLF2v7POPj4w0NDU+cOMEY46MwBAKBsrJyhw4dNmzYUNvfet++fSNGjODzULS0tMaNG8eTrzLG8vPzJ0+ezG87jYyMvvjiC56FNSQkREdHJyUlRVpI+/btZ8yYwRiLiYnp3bu3hoaGsrLyhAkTfvzxR76WRnUICOsaEF65ckVDQ6PGDZCxsTG/fCIgfL/l5eXduHGjtuzAXHZ2tnQhgepycnJea82lAQMGeHp6Pr+9pKQkLy/v+e2lpaV379594anh7ZNeq16poqKC57+uY7ESieQNz8j9+OOPBgYGr9tgpGd3cnKS3u3VprYq1VhPggeEPAh83XcB9SbzgDA6OlogEHzyySfH/9drLXUITZS6urqPj0/1LV26dJHea65evZrfzkqXTWKvGRCidb1QcXFx9afGdcFnAFZ/4CjFv975ZO8aT+XenW/m2mrCK8+XDFi/fn1dDqn7GV9+11ebl3ye9ajYS3Z+3TcokUhqu5FgjMlpUhl6lqvjJZn9nteuXbvDhw//9NNPfEZvVFTU/fv3HR0dG6qK8M7Q1dWtkS/0ebwD5Hl1ydAoxTPf8oV0alBWVn7hZDMlJSUkF313vDDD0AuJRKKXjPGoe7F1PyMXEhLi6enJE6PVHe8kLy0tTU5Ofj7nbR2rxDtFX+sQePepqKgYGxuXlJTUMTUCvE9atWp19epV6a/FxcVJSUl8/F5cXNzy5cs///zzP/74Y8KECadOnaqeNbSO0LpeSEVFpS6DGKsLCQnp1KnT85nD6NnXO0/tUyM/57vzzVxbTRqu8kKhsH4lvKRK9aiYDK/+L887+K78pd8+PgXil19+2bVrlzSpzMstX748OTl52LBhoaGhW7duHTlypKWlpXSREIA3FxoaqqKiMmjQoMauCLyfUlNTo6KieFKBurh+/bqdnZ2fn19YWFhoaKinp+ejR4+kszUAOC8vr7/++ku6DmpKSkptOf3gPTNmzJhTp0798ccfRFRZWbl48eJHjx55eXmVlZV5e3t36dJl1apVv//+e2RkJJ/8XA9oXW9OIpGEhobW+Ob/6aefBg0atHXr1sOHD//222/Tp0+3srJycXFprEq+lg0bNvTv3z8gIODQoUPbt2+fMmWKubl5z549G7FKTfrzJLlddoKIhELh33//vXTp0hUrVjg5OU2cONHCwqK4uFi6g7KycqdOnXR1dTU1NTt27Kiqqjpw4MAjR474+fnNmTNHRUVlwIABX3/9NU+g5+DgwMe1A7yJY8eOeXl51T3tJMBrOXnypJOTk7Ozcx33NzQ0nDJlyoEDB7Zs2SIUCm1tbY8ePerk5CSTyojF4k6dOknXvoOm65tvvklLSxs6dKi+vr5AIMjPz/fx8enatWtj1wsa3IIFC27cuOHt7T1v3rzS0tKqqip/f38XF5d58+alp6fHxsYqKCj069fPx8dn5cqV7u7urxxf8Dy0rjd35coVFRWV0aNHV984cODAzMzM3377LSMjQ19fv2fPnitXrmwqtx/u7u7p6enbt2/PyMjg2YZWrFhRfeG+t69Jf55EJGCvmXsHAAAAmqjKysqYmBgLCwuxWJycnGxraytd+DE+Pl5TU9Pc3Jz/eu/evbt373bq1CktLe3x48ft2rVLTExUVla2tLTkOzx8+PD27dt2dnb8picpKen69etaWlpt2rSRz9XD5VZaWtrVq1cVFRWdnJx0dXUZYzExMTo6OhYWFnyHsrKya9eu6enptWzZMiYmxsDAwMDA4Nq1axYWFtLpGLdu3ZJIJNIxjWhdAG8TAkIAAAAAAAA5Jb9zCAEAAAAAAOQcAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5hYAQAAAAAABATiEgBAAAAAAAkFMICAEAAAAAAOQUAkIAAAAAAAA5JWrsCjQljLG4uLjw8HAjI6M2bdp07ty5sWsE7wO0K2hABQUUH08FBWRiQg4OpKjY2BUCAACAd4uAMdbYdXjX3b9//+zZs+Hh4QcPHszKyiIiU1PT+/fvb9269f/YO++wKK4ujL+7yy69KIIdAhbEhr2hgrioGGLHGrBjiWKsYKWIQjSWGBvWiCWKxgLGBipF0CgiYhfBAgoqvW893x+DxPgZhd0xtvk9Pnk248w7Z/Cwc+89554zbty4j20dx+cK51ccVYMId+4gIQFlZTA3R+fO0NN7zyU3byI0FEolFAoIhRAKMXYsatT4T8zl4ODg4ODg+DzgJoRvJz8/PzIyMjw8PCIi4t69exXHzczMHB0d5XL5rl27eDzexo0bJ0+e/BHt5Pi84PyKQ3X++AP37kEmAwCBABoaGD8eJiZ/nyCRQCqFTAaJBBIJ8vJw/DgUir9P4PFgaAgPD/B4/7XxHBwcHBwcHJ8qXMro3ygUisTExIiIiIiIiOjoaKlUyhzX09Pr1KmTWCwWi8Vt27ZlDtrY2MyaNWvq1KkAuLE7xzvg/IqDBe7d+3s2CEChgEKBrVul2trFxcW5+fnFxcXFMlmRVJpfVlYskxVLpQUSSYFEUiKTFctko1u1al2rlo5QiNJSZGaidu2P+jAcHBwcHBwcnxDchBBSqXTTpk0RERGRkZFFRUXMQaFQ2L17d7FY7Ojo2L59e4FAkJGRERERsXXr1k2bNvF4vJkzZwLgxu4c/wbnVxxscv06MxvMLCryOHnyytOn+RJJkVQqez0A+O/EPnnSombN/UOGAMArb+Tg4ODg4ODgAJcyCmDDhg3e3t7Z2dkALC0tmYhNr169DA0NS0pK4uLimNhOQkIC87NKTEy0sbFhrl2zZs2sWbO4HD+O/4fzKw422b0bqamZRUUN163T0dB4WVLCHBYKBHoikaGmpq5IpCsUGmhqGmhq6giFuiKRkZaWnkikKxRKFIqlUVElMtmR4cMHNGuGadNgZPRxn4aDg4ODg4Pj0+FrjxCmp6dPmzZNW1t7586dvXv3rl27tlwuv3Llyrp16yIiIi5evCh7laOlp6dnb28vFotrv5ZtxcVzON4K51ccLGNpiUePAmJiiqXSrmZmG7/9tpqWlq5IJKpXDyIRhEKIRNDSKv+gqQlNTYlcXnrqlBGPByJtDY0fT52a+uef9g0bGmlrf+yH4eDg4ODg4PiE+NonhGfOnAHQu3fvMWPGAPD39//555/z8/OZv9XQ0OjSpQsT2+nUqZNQKPx/BW7szvH/cH7FwTLNmz87enRrQgKfx/tJLLasVq0UWPLoUe7z58XFxcXFxUVFRfnMTsLi4oKCgsLCQrlcrq+nV/DTT8jPn96588Hbt2OfPFlw+vTGLl3g5PSxn4eDg4Pjg6NUKrdu3Vq/fv2rV6/OnDlT772VmTk4vla+9glhREQEAEdHR+Z/tbW18/PzKxL8xGJxtWrV3ivCjd053oDzKw6WiY/3PX++VCYb0aKFTZ060NTk2dn91KnTO64QCoUiTU2aMoX38iX/2bNtOTmtNmwIio8fcehQt2bNYGb2n9nOwcHB8d9z//79yZMnnz9/vkaNGllZWevWrZszZ86MGTO0tLQ+tmkcHJ8cX/UeQiJiOr/du3evcePGALKzs0tKSurXr6+CGrfvi4OB8ysOlikpeeTjY7V6tYLo5vTpTebNQ506AFasWGFoaKijo6Orq2tgYGBgYMB8NjIy0tPTezPyHB3t4+3tGxnZ2Nj4+sKFWtOnQ+NrXxDk4OD4IiktLf3pp58CAwMlEkmtWrUmTpwYHR0dFRUFoH79+osWLRo/frxAIPjYZnJwfErQV0xiYiIAMzMztgRXr14NgMfjbdq0iS1Njs8Ozq84WObUqdGtWgEY06oVnTqloohCIVm/vpmpKYAF3brRuXOsmsjBwcHxSRAZGdmkSRPmpenq6pqdnc0cDw8Pb926NTP0tba2DgkJUSqVH9dUDo5PB/5Hmod+EoSHh+O1vD71mTlz5urVq4lo6tSpmzdvZkuW4/OC8ysONikqSj59em9SklAgWNyzJ7p2VVGHzxcNHLi9f38Bn78iNjbh4EFkZrJqKAcHxxdCfv6J58/XlJXd/s/umJaWdvXqVaVSqY5ITk7OpEmTevTocffu3RYtWsTGxgYHB1evXh3A5cuXmzRpEh8fHxIS0rBhwzt37gwdOrRTp05nz55l6Qk4OD5vvuoJIbPRSywWs6g5c+bMlStXEtEPP/xw6tQpFpU5Phc4v+Jgk6ioJeHhcqVyfOvWlk5O0NVVXapOnY6DB//Qvr1cqRx/5Ijs6FF8xVsGODg43kppaVJe3rFq1Qbz+f9RCRZXV9fx48e3a9euZs2aQ4cO3bJlS2YVl6uIKDg42MrKasuWLVpaWt7e3vHx8Z07d2b+Vi6Xjx49ukGDBlOmTLGzs7t9+3ZQUFDt2rUvX77MtAWOj4//AI/FwfFZ8VHjkx8TiUSiq6vL4/GeP3/OuvjMmTNNTEx27NjBujLHJw7nVxxskpd3Y9o0Po+nqaHxxMuLSkrUFZRKi1eutKxWDcDKXr3o4kU2rOTg4PhCKCtLlUqf3b3bPTf3sFIp+w/uuG/fPgBaWlqvb7MXCASdOnXy8/O7fPmyQqF4t0JycnLFCqy9vf3du3ffOCE7O3vYsGE8Hg+AoaHh0qVLCwsLi4uLAwMDjYyMAPB4PGdn56SkpA/2lBwcnzpfb4TwwoULxcXFrVq1MjU1ZUWwtLQ0LS2N+Vy9evWXL19evXqVFWWOzwjOrzjYJCpqcUSEkmhyu3b1e/eG+i0EhUKdIUO29uvHA5acP//g4EE8eoSysspe/vgxgoKwdCkCAnD0KEpL1bWHg4PjE0ChyM3K2nLvXtebNxsoFAWNGv0pk714+nT+h75vZmbm9OnTAWzYsOHJkycpKSlBQUHOzs5CofDSpUtLlizp0KFDRdgwIyPjjctlMtlPP/3UvHnziIiImjVr7tq16/z581ZWVm+cVr169f379yclJbm4uOTn5y9evNjCwuLXX3+dMWNGSkqKp6entrb28ePHW7VqNXTo0IcPH37op+b4ZCkpKYmMjFQzdfkz5eudELKe1xceHm5mZjZq1KgPIc7xucD5FQdr5ORcPXny2N272kLhPAcHvLPJRBX45huHgQO/t7EplckmHj5Mu3bh558RHIyiovdcmJKCvXuRmQmlElIpbt7E1q2QydixioNV8vPznz9/zg1tOd4NkSQ399CDB/2uX6/5+PGkoqJYgcCwuPiSRJKqrd1MocghkgIfMLH8hx9+yM7OdnR0HDt2LABLS0t3d/ewsLCcnJzw8HBPT09ra+usrKyDBw9OmjSpXr167dq18/LyioiIkMvlMTExNjY2Xl5eUqnU1dX15s2bbm5u77hX8+bNQ0JC4uLi7OzssrKyvLy8rKysDh06tGzZsuTk5MmTJwsEgoMHD3bo0KGUW+r6migqKoqIiPDx8XF0dKxevXqPHj2cnJxWrFjxse36r/l62060b98+Pj7+9OnTvXr1YkXQw8Pj119/9fX1nT17trGxsVwuf/nyZWXazXF8SXB+xcECZWW4exd//dV31aqTycnzbG1/CgxUvZzM/1Namu3v3/SXX14UF2/r1298mzbg86GriwEDoFBAJkNpKWQyyGSQSCCRQCqFTIb796FQACiVybSZnhZCIezt0aULa4ZxsMHjx4979OhhamqakJAwfPhwX19fCwuLj20UxycEEcXFxYWFHRo2bJdSmQuAxxMaGPQxNnY1NPxOqSzJyztCJNPXt3/0aJyR0Xe1an2QUGFwcPDo0aMNDQ1v3LjxjrZM9+7dO3ny5MmTJ6Ojo8tepTMYGBgUFhYSUdOmTTdv3tytW7cq3ToiImLu3LlMSXBra2tfX98hQ4Y8efJkxowZsbGx33333Y4dO9R5NI5PnBcvXsTExERHR0dHRyclJVWEBAUCgaWlZUpKChFt2rRp0qRJH9fO/5KvdEKYm5trYmIiFAqzs7N1dHRY0bS2tr57925cXFxubu63337buXPnuLg4VpQ5Phc4v+J4C0+eICkJxcUwN0fr1tDUfM/5Dx9i/34QxaWm2m7fricSpXh6mi5aBJGINZPKyvDzz78nJo784w8DTc2g774T8vklMlmxTJZfVlYolZbIZMVSaW5ZWbFUWiKTFUql+WVlxTJZiUyWX1bWvm7daR06uNnYAIC5OcaMYc0wDrV58OCBg4NDWlparVq1Xr58qVAotLS0Jk2aNH/+/Jo1a6qvX1paevjwYS0tLV1d3T59+qgvyPFfkpaWtm/fvu3btycnJwP4/fcWLVoojI3djI3HCIVvukdBwank5G95PF7DhicNDFirm82QkSFp08YiMzNj165d747sVVBaWhobGxsREREWFpacnKylpTVz5swFCxZovvdL9W0olcq9e/d6e3s/fPhQW1s7JSWldu3a58+fd3BwsLe3P3/+vAqaHJ8yGRkZFy5cuHDhQmxsbEJCQsX0R0NDw8bGxtbWtmvXrmKxuFq1ajt27JgwYQKArVu3jh8//qNa/R/yMTcwfjwOHjwIoGfPnmwJpqenA9DX15dKpTNnzgSwePFitsQ5Phc4v+J4k/BwWraMfH3Jx4eWLaOVKyk39y2nlZZSQQFlZVFqKi1bRj4+5OPjYGEBYImdHf38M7HbL+vRIwoIIB+fTvXqVa/6vkQ9kQjAnkGDyMeHdu1i0zAO9bh//369evUAdO3ataCg4M6dO66urkwDbh0dHQ8Pj8zMTJXF4+PjPTw8jI2NATB7pCdOnCiRSFi0n+MDUVRUFBQUZGtryxRWAVC/fn0vL6+HD++8+8Jnz3zj45GYWL2sLJVdk/r2JUvL2xMmeKl2uba2NoDi4mI1zZBIJL/++uvy5cuZ/7148SKAjh07qinL8ekQGhrq6ur6zTffvP4W09XVFYvFfn5+kZGRJW+r1rZ27VoAAoHgwIED/73NHwUN1aaRnzus78U6c+YMAAcHB6FQyLSh4zZ6fYVwfsXxDx49wuXLf++yY5Iwg4JgagqZTFJUVFxUlFdYWFRcXCyVFstkeWVlzIdCieTmixfnHj400tL6sVMnSKV4/hy1J+0YeQAAIABJREFUarFi1NixYxvXru2hqalNlF9WllNa2tzUtJGxsa5QqCsSGWlpMR/0RCJDTU1dkUhXKDTQ1NRnjguFRlpaO65dG3/s2IxTpxwbNDBt2JAVqzjUJzk5uUePHk+fPu3ateuJEycKCgqaNGkSHBzs6enp6+t76NChdevW7dix44cffvDy8mKKK1aGjIyMPXv2/Pbbb7dvl3el69SpU/Pmzfft27d169bbt28fOnSolvrOWVqKs2dx7x4UClhYwNERlbaQ473cuXNn+vTpUqlUW1vb2dnZ1dXVyclJQ+P9I8DatReXlCTm5R1JTR1kZRXH56td1woAsH07TpyAkZG1t3eAago6OjqlpaUlJSUvXrxISkqysLBo0aKFCjoikWjatGmvywIoKSlRzSqOT42DBw/u2rXrzz//BKCvr9+xY0cmEtitW7d/CywzeaSLFi3Kycnx8/NzdXXV1dX99ttv/1vDPwYfe0b6cbC0tAQQHx/PluDIkSMBrF+/PjMzk8fj6erqlpWVsSXO8bnA+RXHPzhyhIn1FS9cOK1Dh/Z16zY1MTE3MqqmrS3gv7+gl7mRUad69cjHhwIC6P8KqatGfHw840iZS5bsHTwYgJmhYdmiReTjQ0uXUkQEJSbSrVuUkkJpaZSZSTk5VFJCMhkR0dOntHw5+foqvb0dGzQA8H3LlnTkCCuGcajJvXsFdevWBdCjR4+ioqLY2FgDA4OlS5dWnHD9+nUXFxfGtapXr+7t7Z2fn/8OQYlEEhoa6uLiImT2iwK1atXy8PBITExkTrh27Zq5uTmAunXrXrlyRS3rS0tp9WpaupT5fVEwPp+drZYmx2sw2cLr168vKiqq6rVyee6NGw3j4/HwoSsrxqSnU7VqBNCePaqLMJHwJ0+erFy5EsDs2bNZse3+/fsAGjZsyIoax0enVatWAKZOnXr9+vX39i8houzsbENDQwABAQFENG/ePADa2trnz5//4LZ+bL6uCCER3bx5MyQkJDU11dDQsHXr1mzJnjt3DoBYLA4PDycie3t71ZLaOT5HOL/ieDtFRQDyysqarF+vweM9LSx8/S9FAsHrETl9kchQS0tHKNQVCg21tCRy+cYrV57k5YWnpDhaWcHYmBWLFi5cSEQeHh41TE2XbtwIYImdnaaGBoRC2NrCzu5dF9epA3f3pJ07FU+fbunXr8WGDXuSkoaGhHzXogUaNGDFPA7VuHcPDg76DRr4NGq0NzQ09Nq1a3379i0sLGQasjFZgi1btgwJCbl48eLixYvPnj3r6+u7YcOGOXPmeHh4aP8zbfj27dvBwcE7d+588eIFAJFI5Ozs7ObmNmDAAB6Pd+LECZFIZG1t3apVq/j4eBcXl8jIyG7dum3duvX7779X8QEiI1FczJQsIqKRf/zxjZHR8jp1+JXbWsbxXpjAV9++fXV1dat6rUBg1KDBH3fvds7NjU5MDB4wQK1/FCJMmIDcXPTrh1GjVNdhnqi0tJTxXrbqglbIsqLG8XF59uzZ9evXdXV1V61apaWlVZlLqlevvn379mHDhs2fP18oFAYGBhYUFGzevNnZ2fnUqVNdWSzt9gny0aai/yGZmZkhISHu7u4VZaxq1arF5/ODg4NZ0WcKVdWrV4+ImL3Ra9asYUWZ41OG8yuO9xAZSUuXLrazA9C6du2/Jk68MXVq6owZOUuXSlevpqAg2rmT9u6lkBAKC6NTp+jsWYqKouXLmTjJsp49AXxjZFS0ZEl5jE49Lly4AMDAwCD70qUd/fsDaFi9uszfn/74gx4/rozC6dOnhUJhixYtJNHRP/fqBcDM0LAgMJC4jWQfj1u3qFYtAkgsppISRUxMjL6+PoDhw4fL/sVtYmJi7F5N/k1NTQMDA0tLS3Nzc5ltZhXDg6ZNmwYGBj5//pyI7ty54+npyaSGTp48uUJKIpEwRRd4PJ6np2dl1uDfwtq1mXPmrOrd+9vGjS+MH8/Ezwc1bcqUkeRQn6ZNmwK4efPmiRMnxGLxzz//XFWFhw9D6tUz1NTUvHz5sjqWbN5MABkbU0aGOjJkY2MD4Nq1a0w50DFjxqgl94rs7GwA1apVY0WN4+MSFBQEYMCAAUT08uXLyl/422+/8fl8Ho+3ZcsWpVLJfMUZGhpevXr1gxn78fliJ4SFhRQWRjNm0ODB816fANetW3fMmDFMVzeBQMDK2P3nn38GMG7cOHqVxnDz5k31ZTk+QTi/4qgC+flZ8+YZaGoCiBo7lnx8pEuXrpwyxcfHZ968ee7u7iNHjuzfv79YLG7Xrp21tbWZmVm1atUM9PVp1SoKCJB5e7epXRvAnC5dKDxcfXPs7e0BeC9ZIl2/3rJaNTCFYe7fr7xCWVmZtbU1AD9fX8W2bZ3r1wcwvWNHOnVKffM4VODOHapdmwDq1YtKSuj8eRKLN/B4vNGjR793bhYWFlaRzmBqalqRfWBsbDx9+nSmCl9ubu7GjRs7dOhQ8V3XrFmzTZs2vSEVFBTEZJb27ds3Ly+v8vZLpdIjR470a95cKBAw+ufGjDnt6lpNWxtAixYtUlNZrmXyddK2bVsAV65cCQ4OBvD999+rIMJ0kK9fv/6LFy9UtmT4cALo999VFiinc+fOAOLi4n7//XcAw4YNU1eRiIiY3YNaWlqsqHG8C6WSXr6kzEySyz/QHfr16wdg69atT5484fP5Dg4Olb/2119/ZYZz+/btk8vlQ4cOBWBiYnLr1q0PZO1H57OfEHp5ETNjX76c5HKKj6fAQBKLSSQigADq2vU3pppQYGBgfHy88lWxvp9++omtsTtTenvfvn23bt1iwkRKdksCcvzncH7FwQIxMfNsbQE4NWpEfn7k7y8ND397qsZr8Hg8hUxGqakUFXVtyhShQCDg869MmkTPnqljC1OUyMjIKPfixU3OzgCampjIN2+uav3SyMhIHo8nEoluxsQkTZsmFAj4PF7M+PH05Ik65nGowBuzwXPnSFeXAJo//3QlI3VKpTI0NNTS0rJmzZo8Hk8sFu/ataukpEShUMTExLi7u1dkGBoaGrq7u8fExPybVFRUFFN6tHHjxncrseX19u3bnp6eFZ0wBHx+x3r1NDU0nBo2zPPySvbwaGpiAsC4evWzZ89W4YfC8TaYNn3R0dFMKezBgwerICKVShkdBweHfws+/xuTJxMT7v3lF4qIUOHmb+Lg4AAgIiLi2LFjAPr168eCKJFSqWRCQyrGujkqyZMntGoVLV9e/kfNTchvo6ysTE9Pj8fjpaenb9y4UQW39/f3ByAUCkNDQyUSCVNXpm7dukyXwi+Pz35COGIEDR9OcjmNGkWOjuWDdYA0NMjWlry9KTa27P+/uZgis6yM3SUSia6uLo/Hy8jIYMrUurqys/Ga4yPC+RWHupSVvViyhOnQ8Je7O925Q1IpEc2dO3fx4sWBgYFBQUG7d+8+fPhweHj45cuXb968+fDhw5ycnH/4VXj4nC5dALSsWVO6fj2pMUZhFtQDli8vXbOmvqEhgINDh5JK4Rd3d3cAHTt2lJ89u7B7dwBWNWqUrlnz4RZ6Of6fkhKqV48AcnKi0lKKiiI9PQJo3Lgqu8mCBQsAzJo1i4iUSuWSJUsq0uD5fH6vXr327dtXWlr6Xp2UlJTmzZsDqF69evi/xLT/PzHV2to6cOnSzCVLIseNM9bRAdDM1PSBh0eel9e3jRsDcG7QQLFxY9UeieOf9OrVC8CpU6eYcotOTk6q6WRkZNSpUweAp6dnZc4vKKCcHHr5krp0IeaKUaNUu/ObMKPzsLAwpha3WCxmR5eI2UaofkMLjrcil8vjz51b3bfvgCZNPLt2ZfZH0LJl9KpaFVucPHkSQOvWremVt+zYsaOqIvPnzwcgEolOnDhRUlLCZNmYmZk9evSIXWs/BT77CaGbGx07RuvX06hR5O1Nlpbk7k4hIW/v9cWQk5PTtm1bX19fYmPsnpeXt3DhQmaw7uzsDICtLWQcHxHOrzjU5fz5GZ06ARhobU3HjqkoIpcXr17dsHp1AMt79qQLF1STOX78OIAaNWoUxMau6dMHQIuaNRXbt6umlp+fz+Qw//rLL2W//MJEcpbY2VFkpGqCHJVn4ULato2IyN+fdu+mAQOorIxeviR9fQJo4kRVFg0GDhwI4PdXaXw9e/ZkMgM9PT2rmrFZWFjIqAkEgsDAwIrjCoUiPDzc1dWVGW0zwep/hBwLC+nQoZR585rXrAmgurb2GVdXhbe3X7dukurVCaBJk7itqiozYMAAAEeOHGEKldnb21dVIS8vLycnh4iio6OFQiGPx3Nycho1apSLi0vv3r3FYnHbtm1tbGzs7Arq1qVq1UhT8++FVFdXcnOjefMoMZG1CSFTMjckJITZGm1ra8uOLhHTabNKW8443kNZWUpc3LJly/r06cPscC5fDDIxKZ8Q+vhQ1fe1vhumm8jixYtLSkp0dHR4PN7Tp09V0Jk9ezYAHR2dqKiooqIipq5Mo0aNMtTcBfvp8SVMCJn/9ulT2RdhaGgo06jXz8+P2Mvxk8lkBgYGANLT09XR4fgU4PyKQy1KS58uWKAtFPKAxKlTKSdHdalHj86PGcMDNDU0bnt4UNWHKUqlsn379gBWr1pVtHJlTT09AKEjRpAaa5zMDFNXVzc1Lu7ixIl8Hk+Dz782dSqpsbmIozJMmkTff0+ZmTRrFr3eZH7vXpo6tar5v+VYWVkBqOgnERcXFxUVpXKCulKpDAwM5PP5AEaNGnX9+nVvb++KrtB8Pp9JTP23CExBQUH//v0BaPD56/r0IR8fGjKEhEICyNb2H8/MUWlGjBgBYO/evZcuXYJKjdfHjh1bp06dqKgoInJycvq3PpbNmxdUzAMB0tOjatVo6lRyc6OCAho2jEaOZOeJmEJrv/3229WrVysCQaxQ0dCCLcGvhfx8evKEKvqaFBdTTEz5Zhtt7cdt2lQ4SW19fZdmzYK++y5pypQJbdrsHzKEfHzIz4/dFZ8GDRoAuHTpEvO2at++vWo6SqVy3LhxAAwNDZOSknJycpiCRqtXr2bR2k+BL2RCmJpKxsZVuOrAgQNMS1a24jlEFB0dDaBZs2YqK3B8OnB+xaEWERGT2rUDMLx5czp+XF210NBxrVsD6Fy/vmLHjqqO+g8dOgSgdu3aJbGxgWIxgHZ16ih371bTKGaF3snJiU6cmNq+PYAOdevKV66k8HC6f1/FqQnH+5g0ie7coYkT35wQqoxEItHQ0BAIBEzGO1uEhIS80eGgcePGy5cvr8zCVsWU8nKDBtSyJS1cSJMnk5ERAVSv3ofYbvTFw4xot23bdv36dQAtWrSo0uXMkFpTU/PmzZu3bt3S0tLi8XgzZszYvXt3SEjIyZMnw8PDr1y5kpCQkJpalpZGOTn0Roox80rdv5+6dWPniSZNmgRg06ZNt2/fBtCkSRN2dIkaN24M4N69e2wJfvmUlNCuXeTvTwEB5O9PCxZQp07liziv/kjMzX/o0GH/kCHPZs9mQoJ3pk1zb9sWgEggODFqFC1dyuJbg/EKExMThUIxZcoUAD4+PiqryeXyESNG2NvbM3WPIyMjATg6OrJl7SfCZ9+HsHFjbNuGwYNx82YVrmLqBY0aNcrb2xvAkiVLAHh6eo4dOxaAq6tr5aVKSkri4uIiIiIOHDggEomYtSWOzx3OrzhUp6Tk8ZkzO69dE/D5S3r2RLdu6gr26rX65s3TKSkX09K2HD482cYGr622vhdmP/2iBQsUFy6sungRwPKePXk9eqhp1MaNG8+fP3/y5Mm9w4cHDhkSdv/+5adPfz179sfiYly5glq14OoKjc/+FfMJYm4OCwuEhrKjdv/+fblc3rBhwze6EaqJi4tL7dq17e3tdXR0BgwY4Obm1rNnT6Yj4nthOlg4NmnSZuRIlJQgNxfDhmHCBBw4gLQ02Nnh4kVYWEBPD5UT5Khor6dCn738/PzJkycDWLZsmZWVVefOncvKyqZNm8Zsbq8kvr4AMGwYmjbFxIno2xcDB1bpCd6EeRAmGxCsdg5kfhGYcqMc74cIwcHIyEBcHIqKYGSEGjVw6RL4fJiYwMwMlpawsBDp6KwHUnNzw+7fv/DkSeSjR2n5+QDa1akT/+zZ4JCQEwsX2rP368wsYTg5OfH5fGYzIbONUDUEAsGuXbsUCgXTzDAuLg6AmZkZS8Z+MnzsGalaKBRkYkIAPXigyuVvxHNWrFiBysVzZDJZXFycn59f9+7dmVrbDFpaWozfqGINxycD51ccanHq1JhWrQCMbtWKtX4M9+4dGjoUgIGm5hMvL3r5svKLqUWPHq0bPVqydKlvjx4AbM3MWCj6TkREO3fuBGBsbPz84METo0YB0BEKH3h4lBcJOHmSlbtwvM6kSVRSQhIJWVsTK1nkISEhYK9IIxFVVEW6ePEi1Mzlu36dLCwIIH19mjiRFi2i1q3J2pp8fWnZMlq+nGJjuVh0ZZg7dy6An376KT09HUCdOnUqf62Hhw+ALl26yOVyZq3TwsJC5RaRwcEEkIEBVaIS7btgKiH5+/s/f/4cgImJiTpqr9cUrWhooZZ9Xw+pqbR8Odnbk5sb+fjQwIHUty99/z3Nn08+PrRkCU2YQI6O1LjxdkvL12cftfX1hzZrFuLiMqVjRwC6urrvKGJcVZg+qwcOHEhKSgJgamrKYtlYpibW4cOH2RL8RPi8l28TE/HyJczN0aCBKpe/NZ4zb968f4vnpKamRrwiNzeXOSgQCNq2bSsWi8Vi8dWrV728vMaOHUtEo0ePVuPJOD4mnF9xqE5RUfKZM3uSkoQCweKePdG1KzuyjRsPHjJk0I0bh+/cmfzHH39qa4PPR/PmcHLCq/Zxb+fZM929e6dbWuYVF6+9dAmAv4MDundnxajRo0fv27cvIiLiWFjYxEaNRrRo8fuNGzNPnw4dMQIyGa5dQ58+rNyIo4LNmwEgPx92dujbFwkJeNXAT0WY3CqmcTkrNG/eXC6Xnz9/ngXlli1x5QpcXHD+PHbuxHffoX9/yOW4ehU5OWDGlxIJ1A53f/FUhNGY8Ffl42lhYdi4cZGjo9b69QNv3rwZEBDA5/N37typp6enmiWuroiIQHAw+vfH5cswMFBNBhUPoqen5+joWLt2bRWFgKioqB9++GHPnj2tWrUCFyGsKhkZkMvx/Dns7QGgaVOEhaF+fVy6hMePkZ4OqZQ50a59+9qlpV27drW1te3atWsbQ0Pe7duQSIY0aCDdsGH7jh3Ozs7nzp1rU5X8l7eSn58fFxenoaHRq1evzZs3A3B2dmZ2NatPTk7OpUuXRCKRWCxmRfDT4fOeEDI9vXr1AhEmT0bHjnBzq1qO0nvH7llZWefPn4+IiDhz5syjR48qLrS0tBS/olq1asxBsVisoaExZ84cJl+fG7t/pnB+xaEKCgUePcKFC97h4XKl0r1t2wZOTvjnNiq1cHLakJBw/tGjE8nJB27cGNa8OW7dwtOnGDYMMhkkEshkkMlQWgqZDFIppFKUleHWLchkAFbGxuaWljpaWtpbWCAtDXXqqG8Rj8cLCgp68OCB461byM+f06XLsbt32zIjMyLIZFAqwdJrmON1dHRw5gxSU7F/P0aNUkvqzp07AKytrVkxrKys7MGDBzwez9TUlB1lY2OcPo3p0xEUhNOnYWWF2FjUrw8bG0REgM+HUonOnaGlxYr9XyoV06cqJVjm5WHKFMjlAmdnz2++wZAho6VSqYeHBxN+UZmNG5GQgJs3MXo0Dh9WMe339SRYpvOECrx48WLWrFl79+4FsG7duh07dgAoKCgAkJSUxJTb5XgPmpoQCCAQQCaDUIiSEmhr48YNxMWVn2BtjW7d0L27pZ3dszc2vzRsCIAHbA4KysvPj4iI//FHiy1b0KSJWhadPn1aJpPZ29sbGRkxfVbUyRd9g5MnTyoUCgcHh9fLpX4ZfN4TwogIABCLceMGtmzBn39i3Lgqi/z/2F0ikSxevHjMmDG+vr5M0W3mTFNT0549ezo6OorF4oo2TW/AFKhlbewuk+HJE8jlqFePzZElxzv58v2Kg3UyM7F3L6TSW+npB27eFAkE83v0QOfObN5CU7OWru5PYrF7WNgPJ07U0dcXCQSFUml+dHSJTFYsk+WXlRVKpcVSaYlMlltWViyVFstkRVJpXllZiUxWJJEA8HNwABHu3EHHjqwYZWFhYWFhgaws5OdvvHKlRCZ7kJMDADwe9PS42eAHQijEokUYNw6+vhg2TK2tmkwcj60J4b179xQKRZMmTTQ1NVlTFgqxeTNsbJCdDYUCWVlgRurt2iEhAU2aICMDFhZq2/4lUxH10tTU5PP5ZWVlTAf2d181dSqePoWtLaZNg48PTp7cPmRIm4CAiWoao6uLw4fRoQOOHsXq1Zg9u8oKSqUyLS0NQHJysmo2ENHu3btnz56dlZWlra09b968BQsWpKamTp06NT4+3tTUdNasWSdOnFi1alXLli1Vu8XXQsOGOH0a7dvj5Ek0boxbt9CtG2QytG6NHj3QrRtMTZkT3zHx19DQ2Ldvn7t70a5d1cRiREfjn+mlVaNiEshE84RCIYtze9ZnmJ8QHzVhVS1KS0lbm/h8evGCVq0igMaOVV1t7969AoHAxMTk+fPnRDR9+vQaNWoA0NbWFovFgYGB8fHxlU9BDggIANCxo59aHQfu3KGAgPI//v507pwaWhyV5cv3Kw7WkUjop5+YymmDrK0BeHTsSKtWsXyXJ08oIEDp7d2uTh1dkaiqX/V6IhGAYyNGkI8PqdqB8F9JTk728NDg8wV8/t1p08jHh5Yvp6tXWb4Lx2vI5dS4MQGkzreBXC5nKkYWFBSwYtW+ffsADBo0iIgsLCwA3LlzhxVlIqKICPL1JWvr8sZlU6aQnR0FBNDjx6zd4gtly5YtACZMmEBE4eHh4eHh733vJCURn096epSSQgkJJBQSn0/R0ayZdPQo8XjUtOm1yMgq7By7e/eut7e3paUlAGb91NbWNrqKZiUnJ1fMEHr06HHv3j2pVLp8+XJm2mxsbNyvXz8mAikQCMaNG/eYc7B3ExdHy5bRnDk0dix5etKyZZSUpIJMSQnZ2xNAZmaqN0VSKBSmpqYAbt++nZGRMWvWrPHjx6uo9X/I5dSz56+6ujXv37/Pluanw2ccIbxwAaWlaNsWJiblOX7qJPSOHDlSQ0PD2tqa8SRjY+OsrKwhQ4bs2bNH891bdN6Gl5eXnp7NnDlOY8eCCG5uVbyeCPHxCA9HWhoSEsDjwdwcfD709dGuXVWN4agSX7hfPX6Mb75BYiK2bYNAgO7dMXhwVc3geJNbt6BQAEjIyDhy546WhsY8W1tIJHj+HDVrsnKHBQsWNDQxcVMoNHg88HjFUmldA4M6+vqGmpr6mpq6QqGuSGSkpcV80Hv1WUcoNNDUNNDU1BWJdl+/7hURMfn48e7m5kaq7Y59B8nJvpGRcqVyQps2VrVqAUC3blUqhcpRVQQCLFiAMWPg54cRI1QMEqakpJSVlZmZmbGV/lSRJlpSUvL48WOhUNiARWdr2BCXL6NhQ1y4gIYNEReH7t1BxEr+85fN65mildz71KIFzp3D06eoWxcDBkAmw5w5LJRMrqB/f6xYcc3bu+uwYfpXr16tW7fuO07Oysrav3//7t27L1++zByxsLCwsbEpLi6OjY21s7MbMGCAv7//ezesymSy1atXe3t7SySSmjVrrlixws3NLS4ubvDgwTdv3gTg4uKyYcMGExOTjIwMf3//rVu37tixY9++fdOmTl3h5cUzMWHr8b8oOndGzZq4cAF5eahRA927Q6W66NraOH4cffrgwgU4OiI6GszLpDIQ0Z07d2JiYsLCwrKysmrWrMnkJqxatUoFS/6Nixdx9uy0Zs1+aNToS6xv/LFnpKrj57e1e/eQgIB0iYR0dYnHo4wM1sS7du0KIDQ0VB2RlSsJID6ffvutchdkZFBICLm7U926pK1NS5ZQ48a0aBH5+FDr1vTjj/Tzz+rYw1EZvnC/MjQkmYycnamsjIho3Dh1upNzlBMRwYQsUmfMaFenTqd69cjHhwICnkZF/fLLL+rL37lzRyAQiESih15eTDHPGjo6BUwNNz8/+uMPunCBLl+mxES6dYtSUigtjTIzKSeHSkooJYWWLSMfH4W3t62ZGYDJ7dpRWJj6Vv1Nfv69GTMEfL5QIEidPZvu3HmzBxnHh0EuJysrAir9VfB/HD16FECfPn3YMmnw4MEA9uzZw7QLZ7+B6oEDtGwZTZhAAwfSjz/SsmWUmMjyLb5EZsyYwefz9fT03N3dQ0NDS6vyG+rlRQBZWRGrjSqJiBQKhZOTE4COHTuWMa+kf1JWVhYaGuri4iJ6lRNhaGjo6uoaHh6uVCqJqLCwMDAw0MDAAACfz3dxcUlJSfm320VHRzOTBB6Px+zkz8vL8/DwEAgEABo0aHD69Ok3Lnn06JG7u7tAINhka0u6uuTpSXl57P4QON4gL4/atCGAWrak7Ox3nSmXU0LCjbVr1w4cONDktbl6tWrVeDzepk2bWLfN05MAmjWLdeFPgs94QshUIoqIiDh/PqpFi0kjRrBWr7agoEAoFGpoaOTn56sp9d6xe1ERhYeTpye1bUthrRf/3cfT0JAmTaK2bctzYwYMoOHDyc+PXlX05vhAfIF+1d73b78yM6OrV2nixPLzfvuNjh5V0xgOio9nJl3Xp0xh0iYvTZhQ5utbp2ZNAH/++aea8sOGDQMwZcoU2rKlQ926AH7u1au8tUNlFhfS02nbNvL3vzNtmpaGBg84O2YMm1l2YWEuzZoB+KFDBy6z/T+GKeLfoIGKb4bly5cDmMXeAIcJ0SQkJOzevRuAi4sLW8rlKJV04QKtXk3LltGmTZSczLL+R0SppIQECgqidevo0CHKymJFVSqVTps2DcDrOSk6OjrOzs4bNmx4x/SJ4erV8mRETnEaAAAgAElEQVRR9joC/IPs7Gwm/3PKlCmvH4+Pj/fw8KgY5QsEArFYvGvXrqKiov8XefnypaenJ/OAIpHI3d094//WcW/dusW0wWzatCnT3iA0NJRp8CsUCj08PN6qzHD9+vVCN7fyd6iJCa1ZQ2+bvnKwxfPn1KQJWVnR0aPlbWVu3Cj/K5mM4uNp7VpycaHq1cnW9u+aWnXq1BkxYsTGjRv9/f15PB6Px9u2bRu7hjVrRgCdPcuu6qfC5zohzMrK4vP5WlpaJSUlTDuaOXPmsCUeGhoKoGvXrqyo/T1236Gg+Hjato1WrqQ1a+jgwZN7sjQ0/h6rz2pwlJo0oW+/penTyceHFi+mpk3LJ4QODjRhAvn7cz2XPihfpl/1ukEDBtCGDXTvHhGRVEqDB5er+PvTpUus2PNVU1JCy5czv6peXbsCaFKjRpmPz6qVKwGYmZmps0Hrxo0bjE+mXbp0ZPhwALX19YsXL6bt2+nmzappRUX52NsDaGxsXLJ6NTurS7m516ZusTWLtqrR+en8+ewHETjeiVxOTZoQQDt2qHI50wVn69atrBgjlUpFIhGfzy8uLma+P5csWcKK8lfBwYO0bBlNn05jx9LChbRsmfqNJp8+fdqlSxdmNrh69eqYmJgFCxa0adOG96qyp4FB/aZNlTNm0KlTb4/r//EHGRjQvHlqGvIuEhMTmYzW7du3P3nyJDAwsFGjRhWj/KZNmwYGBmZmZr5X5/Hjx0w0D4Curq6np2feP6N57u7uS5culUgk6enpgwYNYvRtbW1vVvKL9OLF8i1uANWrR0FB5V+hL16o8tgc7yQ9nTIzqUWL8m+2kSPJ35969CBt7b/HNgANGBAyZsyYnTt3Pvhn2+i1a9cy6wj79+9ny6THj8tbaEokbEl+WnyuE8L9+/cDcHR0JKIOHToAOMVWA2giDw8PAD4+PmwJBgQQQGM63bk2bRv5+DyfuzJ1xtqHP659NmeVUKBoW+eZZ9cL4W7B0sV+5ONDs2fTwIFkY0NNm1Lv3tS1Kzk6Utu25OdHhw6xZRLHW/lC/MrrF6GGsm1b8vSk8HCSSomI6NkzCg4mV1caMoRWrSJPT1qxgiZO5JYY2OHxYwoIoOXLyxYtsjYxAeDbo4ciMpLpcTxt2jSVhQcMGADgxx9/VO7YYVOrFoBf+/ZVbcs+KRSS9eubm5oCmN+tGzvRvCNHvrO6B9CsznEUFcWCIEcV2bOHADI3V2WY0rZtWwAXLlwgosLCQg8Pj9zcXJUtYcqKWlpa0iu//f3331VW+7p48ICWL6dvvyU7Oxoxgpo0oXnzaOVKqsRE6N+IiYlhuvPVq1fv0j8X/jIyMnbu3Dls2LCePTdWjK11dKhvX/r1V3rwgAICiEmfXLOG7t//sPGw7Oxspoy2hoZGxUy1Xr16np6elZ2qvcatW7dcXFwYHWNj48DAwJLXVqlkMtnatWuZJopGRkZr166tcr/yP/8kG5vyn1dsLA0bRsuXk4sL/XNCwsEKbm7k6kovX9LIkdSxY7mjWlqSqysFBdHDh++6linwLhQKjx8/zoox69cTQKwnPXw6fK4TwgkTJgBYsWJFbm4us7vmHeH+qsJkmTPvSLY45XX+2Mj9VjWycjwDI9x2/dr3xI+dLh4d/nvxwmXk41O4YPnxkXt/7HTx2Ted/176EAhoyRKaN49mziR/f1q7loqLWTSJ4//5cvzKZwWlpBQW0vHj9OOP9Kz7sL/9SiikggLKyuJK87GMREJJSfTnn1HjxvEAkUBwc/r0pKgoJmYSo1LGVXx8PI/H09XVzbx06fchQwCYGRqW/fKL6tP4p0//cncX8PkafP7VKVPU3SCblXVl0lYelLoiaebi9Vwa1UdBLidra9LTo8uXK3U+U4r9t99+mz9/vlAoBMDUQGZa2lhZWd29e1c1Sw4dOgTA2dmZiKysrABcv35dNamvjqNHyceHmjQpzwkaNYqcnWnQIBIISCym0NCq/soHBQUx/7h2dnbvCK/J5XThAi1aRG3bEo9X/org88nFhUaOpOJimjSJCgvVfrp3smvXLmYL36RJk0QikZOTU2hoqEy9/IVLly716NGjYm4ZFBQkk8kSEhLat2/PHHR2dk5XOQCrUNC+fbR2Lbm707NnRERPntA/U145WMHNjZKTado0GjmSQkPpyBF6+bIKl8+bNw+Atrb2OTZWP52c1Nqw/enzuU4ImXrWCQkJJ0+eBNCjRw+2lJ8+fQpAX19fWh5YYQOZjPz8QkfsCxBHTO/4V4Tbru39j51xDZYu9jvjGtzd/JFQoGC+iHe1WUs6OiQWU2AgXblC16/T3r20cyfFxhKL9nD8C1+UX1m/EArLX/C7bIP+9qv4eC4q+GH5889J7doB6FivnnzLlkWLFjHj7CoVcmDo06cPAE9PT3lQEBN43PLdd3TrllrmnTo1o1MnADa1akk3bVLLGQ4e7NXgAUALukVTbKxaVnFUkZSU8h95fj6tXk3e3uUD99djcjIZJSfT8eP088+0aFFU9+7dTV/1BGMQiUQCgaB79+4vXrxIS0tjAob6+vrHjh1TwSQ/Pz8Ac+fOlUgkGhoaAoFABZ//Stm/n3x8/u6oMX489epF3bsTn1/+Jd6wIf30Ez1//l6lkpKSMWPGAODxeB4eHpWfWWVm0q5dNHw49epFbm505QotXPhfTAiHDx8O4Ndff3348CGfz9fR0WHLbU6cONG6dWvG1U1NTZlsUgsLi5MnT7KiT4MHl39/KhR/b8TgYA83NyIiX1/q3l2Vy5VK5ZQpU5hNs5Vck5XJ6NIlWrmSFix4869WrqTOndWJ2X/qfJZtJ5KTkx8+fGhkZGRjY8Pn89PT03OYVshsEB4eDqBHjx7M6ho7KJXg8QA0rJ5TKtO4/LRuTb1ixwapAORKfvRjcw0NdO4MR0e07+2G9lPx+q25pqj/FV+aX90xec2vXNB+LFi8Ncc76NlzxfXrf96//1d6+sYjRxYtXHj48OHbt28vX76cGTFXkri4uFOnTunp6c3u33/PihV3Xr78xshotKMj1Oz07eCw/MaNsHv3rmdmrj18eK6NDTp3VkXnxYsLp4rOpDQw1JLMdkxCe3e1rOKoImlpuHULXbqgqAhPnuDaNUgkCAjA8eN49AhXruDuXTx4AKm0/Pxu3UxjYqIB6OrqWr2Cz+dv2LAhOjq6S5cux44di4qKGjNmzKFDh0aPHuPr+9DDw7BKJhUXF2tqalpbW9+/f18ulzdq1EhLS4v1B/8yMTdHSgo0NZGdDWNj3LqFFi1Qty7at0dCAhIS8OABPD2xeHHC9On5335rb29fkV35Og8ePBg0aNCNGzf09fV37NgxZMiQyptQsybc3Mq7GY0ejXbtsGcPHjxg6wnfjkKhYF6Offr0iYqKUiqVPXr0YMttnJyc+vTpc+jQoUWLFunp6RUWFk6cOHHZsmVMyigLNGuGK1fQoQMuXoSNDTuaHK9hbw8Ac+ei6l26AIDH423YsEEqlW7fvt3Z2fncuXNt3tYMqays7PLly9euZf3556CLF1FUBADa2vD2BlPd1s0Nffpgzhw8eIB/Lql9WXzsGakqSKVSNzc3Pp+/b98+1sW///57AOvWrWNZd8uW0BH7Dg4NKVnob1Mrc3v/Y8xCYJHPyqO/POLqGH8KcH7FwRr37x8fORKArkiUOnfuxYgIPp+voaGRkJBQeQ0m5WnJkiXSDRsaVK8OIHjgwPLKQGry8OHZ0aN5gLZQmDxrFuXkqCKyZ4/9Nw8B8rE/z2a/ao7KERlJzs7k50dz59KPP9Lo0TRvHiUm0qhR1K1beVSJxyNzc3J0pGnTaPv2rPDw8CdPnryhk56ezuTR6enpHTlyRKlU+vn5dehwHKDvv69yAxG5XC6RSA4cOACgf//+rD3tF09ZGa1cSfPnU/fu1LkzDR9OHTpQnTr03Xe0YAF5e5ObGzVrRgJBzxo1ADRq1CgwMPBFejrdv09JSUx5/rCwMCMjIwBWVla31MsjYCIzOTlkavphI4RxcXHM49CrUOH69etZv4tUKn327NkL1qu/FBTQrFk0cybNnv3BA6lfJWPGvPlBBeRyOVOp28TE5PXfi9TU1IULF3br1o2pT1u7dj3ma7NJE5o4kXbv/nsPhJsbublRTg59//2XnF/1WUYIhUKhubm5UqlkKqSNGDGCLWUiOnv2LABHR0e2NMsZMMD4r7C0fANNDcX6vie0NOQAIBLpWtbvP9QMX2KLy88Ozq84WKNRo28HDXK5fv3grVs/HD16wsZmypQpGzZsmDRp0sWLF5nMpXcTExNz/vx5IyOjH52cdi5fnpKT09jYeETv3nit/p7qfPONw8CB3ycm7r5+feLhw+fMzXnt28PcvFINvpVKxMcjOro0T1JLz6aGTsnMzpcQJUdiIuzs0KIF3ha44PgQ9OiB8eORmYnNmwFg0SJMnAiBAHPn4ocfYGWFxo2ho1NxujHwlo7kdevWjY6OnjRpUnBw8KBBg+bNmxcQENCmDW/UKOzZg1u3cPQozMwqa5JAIBAIBEx1mfd2Cef4G01NjBuHAwfQuzf4fMjlOHcOL17g2TNERKBlS7RrBxeXsoKC7teu3U9ISE5O9vLy8l60aHDz5pPat+9mbr7i3r0Fe/cqlcr+/fvv2rXL0LBq0d032LgRAKpVQ2rq6y7EPszuDCcnp9dDhazfRSgUMvV1WEZfH87OWLMG3buDragjx2uUlLz5QQUEAsHu3buLior+/PPPXr16RUdHM51OsrOzly1bBoDP59vY2NjZ2dnbS7p00axZE0S4fRs7diAmBkolNDUxfz58fNR/oE+bjz0jVZ3FixcDEAgELMZzkpKSANStW5ctwb9JSdnkfBygMa2ukY8P+frS+vV07dqXvNrwecL5FQc7FBe/9PauoaMDYM+gQUWXLzM7VFevXl2Zq5m1g2X+/pJffvnGyAjAARcXel/TsCpQVpbl51dTTw/Atn79yM+Pli2jAwfo3TX3JBLasmW547n9Qw6Sj8+aPqf2DPoj3C2YfHySPdZtH3Scfv+d873/hshI2rCBiOjp0/IIIRHt309t26oouHbtWj6f36nT4GHDlMXFdOMGWVoSQNbWJJdXVqS4uHj37t1169YFsGvXLhVN+ZrJyaFnz0gioaIi2raNOnR4vYtsnItL6aJF8iVLQkeMcG7cWMDnA9AWCntaWAAQ8PmBgYHKz+oXsF27dgBOnjz5eqjwc2LvXgJo5MiPbceXSatWNGsWzZpFnTurK1VSUsIk3ZiZmT169IiIZDKZl5dXWFgYU1pZLpcnJOSuWUMDBlCNGn//2mlp0ahRREQLF5KNzZf8fvssI4QMzG6cpUuXshjPYRao2A/jAEhNDU+xBGBrlobvv4elJbeO/mnC+RUHO+jo1Bg0aOX162OPHp1x6pRj8+brV636dtCgyMjImTNnvvfqPZs3r/Xy8uDzN5869Sgvr7mp6ZDevWFpyZp5mprGtrZr+/QZcejQ7DNn+jRsWNfAAPfvY+dO1KoFmQxSKSQSSCSQyQqLeCUF8uISXm6RUKLQeJKrfz3D1LFBanqBgb5IklOqDaBEJszI00bqdSQm4lUhB44PR/PmMDcHAGNjTJhQvoI+bBhq1VJRcMaMGY0btxg7ttOlS7zkZBw9isuXMWIEZs1CJULauHr1anBw8N69e7OzswH4+/sPHDhQRVO+ZqpVK/8gEmH8eIwfj9u3ERyMLVuUhYXiw4eFQuGwZs2mdegQNnLkk/z8FbGxe5KSzj58aKqre2D4cPu5cz+jVwC9eBGor7/bxsbOzi4gIACAk5PTxzaqimhrA+oFsDj+ncaNsWoVAAwbpq6Utrb28ePHe/fufeHCBUdHx+jo6Fq1ai1duvT69eu7du2KjY2NiIho3nxQTMw25vxatdCtG2xt0bUrtm4FgAULcOSIumZ8ynzGE0KoPXYvKiqKjIy8e/funDlzmCMREREAxOK35NWoiSI5NfKRLYCejdPwTd/P6Cv7K4TzKw52aNlyzNChv9+4cSYlZeaRI3sFgnOTJtkPHgy5HBrv/O7NzjYNCVnesmVZScmK2FgA/g4OfAcHls1LS5PI5a1r176WkSEODu5ubp5bVlYikxVLpYVSaYFE0qTG4OjH6/LL/rGdX1soH22T6NX1gvd5e00NBYDd11v+lV43q0SnsXE2ZDIkJ3MTwv8AY2MYGwOApiaaNfv7uJ2d6ppOTg4xMejXDwkJaNMGBw/izJn3XPLsGfbtW7d9+6a7d+8yRzp37jx27NihQ4fq6+urbgpHBU2bIjAQixYlHzvWdO3a+Pj4LVevbk1I6G5u7t627TIHh0vp6QD+GDrU3MQEhYVQL1n0v4R3+nTP8+d7OjlBW9s1JcW4c+dWfft+bKOqCDMhLC392HZ8mRgYvPlBHXR0dEJDQx0cHBITEzt06PDNN9/Ex8eXvvZvR/Rk7FjY2aFbt3+svrZty1yOW7dYMOOT5fOeEKLqY3eFQpGYmBgRERERERETEyORSAQCwbhx46pXry6VSmNiYng8ngPrA6/S0quJgpxS7UbGORatDCu13MrxUeH8ioMd+vbdkpDQfN26fTduDGvevJ+VFa5cQXo6RoyATAaZrDwKJ5VCJkNZWfmH+HhIJAB+/euvpwUFbevU6dekCXJyYGHBomlFL17MDQ9/WVzc1MTkZXHxlqtX3zihjn4WMxvUFcl0hVI9kdRIq0xXJCPwGhtnV9Muu/DEzLrGS1ebpKHNbiU9rxl2rzE0NFCzJotGcvzHNGqEv/7C998jLAyOjlizBtOmveU0qRSnT2P3bhw9irZtJXfv3q1du7aLi8v48eNbcpWxPwR6elajRl0ZNerq1atbtmzZFxwc9ehR1KNH9t98EzZihLGOjkgggFIJXd2PbWhVOHkSAJyc8PJlo/37Z2hqolu3j21TFWF2WHITwg8DE5p7/YOaVKtW7cyZM/b29gYGBjExMQAsLS3FYrGtra2dnZ05k3TxtfLZTwhRubH7vXv3wsPDIyIiIiMj8/PzmYMaGhpdunRxdHRUKpUALl68WFRU1LJlS/Y3H6emhj+wACC2TGUz6YvjQ8L5FQcL6OmZGxn59egx6/TpyceP29SsqSAqTk8vjosrkkrzXkXkCiSSAomkWCYrlkrzJZIiqbRYKi2Wye5nZQHwd3DgAbhxo3yhkiV+uXLlZXFxl/r1Y8eP77Zjh2Ze3tT27VvUrKkjFBpqaupraenqGevobqpmqIRIBC0tCIXg8fDgwZRjfQDM7xrTbOMP/1Dk86Gri06dWDSS47/HwABHjmDePKxejenTUVSECRNQowauXUPz5rh5E7/9hr17kZ0NAJqaaNduxKJFTfv06VOZakkcatK2bdugoKCfZ8363csr6K+/hjRtWpuJxGpooFmz96QefFIolYiIAAAnJ5w6BaUS9vYftoLNh4BLGf3cMDEx+euvv9LS0u7fv9+1a1djJtGC48uYEOKdY3cfH58dO3akpaVVHGnSpIlYLHZ0dGQWCUpLS5ns4f379wuFwg+R14eUlHEZv9Q1i2raqDosh7Ovz/Fh4PyKQ12eP4dA4NGx44FbtxIzM79Zu7ZKVzcyNl7XrVufhg0BQCZj0a78/PzV4eEAljo4JGdnX0pP5/F4Q1u1atC7N7p2hVD4ryPLgoJVdU5qPyWehuDm1I0afCWPB2hqNq+TY9U9FwMmq9gxiuNTQiDAqlVo1w6//Ya7d+HtjQ0bsH07Xr5ESEj5Oa1bY8wYjBoFY+N6QL2Pau9Xh76VlfvChe5nziiJoFBAKEStWvi88i2vXMHLl7CwQMOGWLIEAD67DYTgUkY/S/T09Kytra3V7Oj7xfGFTAjx72P33NzctLQ0ExMTe3t7sVjcu3dvc3NzhUKRkJCwYcOG8PDwuLg4iUTCnDxnzhwvLy/2jbt3r3Zy9BhlJJr4fNFdLb9AOL/iUAseD4CAzw8eOPByerrHqVNGWlq6QqGOUGigqWmgqakrEukKhYZaWnoika5QqCsSVdPS0hWJdIRCfZHIWEeHKTEKgQANGrBo16pVq3Ly8rq1bu3QuPHIkBC5Uunevn2DHj0gFr9nJ6qBgc7YYSgsxMOHOllZkEqh+T/27jyu5uz/A/j7bq3aU8paoVD2nTDKvhvxiy9j+NqXESa7wiDLjHVsk30sYYzdUIlUhNBQokRSEq3au/ee3x9n5k7fJJXbtNzX8+EPffp8zj33c9/303l/zvmco04mJkJLS3XeNoLqwtmZnJ1pwgSysPirL6ddO/L2JicnmjKFilrhGf5FbdtSo0bCZ88oP5/MzKhBgyr2DDkfLzpgwP90FVY1Sdrai+3tdQwMNlZ0TQC+kIAxVtF1UKbly5evWrWKrzrC2+5RUVFZWVl2dnYCgSA6Opo/5eXr65ucnMwPEQqFrVq1cnR0dHR07Nq1q4aGhpLrlJxMs2fTkSNUpw5t2ULDhyu5fCh/iCsoI7mcNmygnJz/2SgUkoUF1axJEgmpq5O6OkkkpKb2z/9fv6bLl0kqJcZIICCBgLS0aMYMUlLGlZSUZGlpmZ6efuPGDaMaNZq3aycWiZ7evdugRQullA/VyYQJtHMnjR5Nhoa0ahUZGpKaWkXXCaqBDh3ozh26eJEMDalTJ7K0pOfPK7pOpfbmzRtzc/NatWq9efOmousC8EWqTw8h93F/jqmpaXBw8Jw5cy5cuBAdHa3Ykz9I6ujo6ODgYGhoWI51ev6c+OtaWuJBryoKcQVlJBTSkCF0+vQ/Az4lEmrQgJydi7udb2JCurp06RKlpZFAQBYWNGiQsrJBIkry9GxSo4Zhly7dunX7+uuv5XL5lBkzkA3Cp0gk9N13NGQIbdiAbBCUZOlSunyZevSg9euJiAYMqOgKlYWmpiYRZWPIKFR91a2HkFuyZMmaNWvEYrGVlVVkZCSf24OIjIyMHBwceHvdQqnz9RXnyBGaN4/evqXx42nLFuXMngsVAXEFZRQbS76+9O4daWhQ27bUoQMJhSU6MD+fRKKS7lxCb9+SlRXJZIlBQa8Za9u2rbq6elRUFF9MHKCQU6fo669JIKCdO2n8eCXelwDVdv06nTtHNWrQ4MHk709dulCHDhVdp1LLy8tTV1dXU1NTPCECUEVVtx5CbvXq1SKRyM/PLyAgQCwW85F7AwcO7Ny5s1C5TavivXtHZ87Q69dkaEhZWVSvHv36Kw0ZQmh4VU2IKyijunVp/PiyHCiRKLkmRLR2LWVm0tChJq1aGX399e1u3QLs7ZENwqeMGPHXf6ZNq9B6QHUSHU3799O+fRQfT/Pnk5dXRVeojNTU1MRicV5enlQqFVehKV4BPlI9ewi5/Px8f3//zp07a1bILc1378jTk169ogcPiDGysiJrayIiiYTGjqW6dSugSqAMiCuowuLjqWFDysmhBw8oL486dCBtbXr+HJMSAcC/59Ah0tOjIUOIiEaOpGPHqu46ujo6OhkZGenp6Tp8/Q+Aqulf7Nb410kkEgcHh4pptRPRpUuUl0fXrlGvXtSvH4WH08uXFBpKaWl07lzFVAmUAXEFVdiqVZSdTaNGUYsWtGgRMUZz5iAbBIB/VY0a9PfKvX8NjK+ytLS0CI8RQtWHDu5yExdHGRmkp/fXcl7161N+PvFpG5KSSC5X8nNBoCIQV1BmMTG0bx+JRLR8OQUEkK8v6emRi0tFVwsAVEzfvjRmDNWsSVFR1KpVRdfmi7i6ukqlUuVPJA7w70JCWG40NSk7m7Ky/vrxwweqVeuv/0skVWy9IKg8EFdQZhcuUH4+jR1LTZpQjx5ERPPnU7nOhQsA8DEtLTp8mIKCqGvXqp4Qzps3r6KrAKAE1fkZwgp29y75+NC1a5SXR1palJhIgwcTEUkk1LEj9exZ0fWDqglxBV/i/n0yMqKICOrbl4yMKDoa89MCAACoOPQQlpu2bSklheRySkv7a/IGgYDEYmrShL76qqIrB1UW4grKJjGRfvyR8vOpdWtq1owcHKh3b2SDAAAAgB7CcpaYSA8f0uvXxBiZmVHLlmRuXtF1gqoPcQWlNWYMrV9PtWvTwoU0dCh17IgnTgEAAICQEAIAqIThw+n0aSKiwEAKDqa5cyu6QgAAAFAp4PYwAIAKkMn++k9iIiaSAQAAAAX0EAIAqID9++nJE2rRgk6fpoMHqUaNiq4QAAAAVApICAEAVENcHCUkkK0tqatXdFUAAACgskBCCAAAAAAAoKLwDCEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAFHCGZ4AACAASURBVAAAqCgkhAAAAAAAACoKCSEAAAAAAICKQkIIAAAAAACgopAQAgAAAAAAqCgkhABAmZmZgYGBqamppToqOjo6PDy8nKoUHR0dFhZWToUDqJTMzMynT5/m5eUV2i6VSqOjoz98+PCpA3NycqKjo7Ozs8v80u/fv4+JiSnz4VCZIa6gPCCuKkT1SQgZY4yxiq4FEBFlZWWdPn165cqVy5Yt8/T0jIuLq+galdqhQ4du3rxZ0bUotaCgoP3795fhwGfPnnXt2vX27dulOmrBggUjR44sw8uVxKJFi5ycnMqpcACV4uvra2NjExkZWWh7bGyslZXVqVOnPnVgcHCwlZXVrVu3yvzS7u7ubdu2LfPhUJkhrqA8IK4qRPVJCDt16jR06FAikslkJ0+ezMnJqegaqaibN282atRo1KhR586du379+vz5862srNavX1/R9SodNze33377jYhevnzZt2/fiq5OSZ09e3bJkiUVXQsAAAAAqDKqT0K4dOnS2bNnE9GbN29GjhyZkpJS0TVSRS9fvhw4cGCdOnWio6Pv3bt38+bNN2/eTJgwYcGCBQcPHqzo2pXCixcvNm/eTERRUVG+vr4VXZ2SWrduXXx8fEXXQvmeP3/u4+Pj4+Pj7+//8uXL4scC5ObmikSiixcvlkdN3N3dW7VqRUQ8tsvjJcpJdna2n59fRkZGCffv3LnzrFmzyvBCgYGBAoHg5cuXZTi2VDZv3lyzZs3yfhUAAIBqT1zRFfgiUqlULP7rLQwcOJD/p5gBigX353Jzc9XV1Uv4cjKZjIhEItFnS5ZKpQKBoMg9i/Fx9aqcDRs2ZGdnnzp1qm7dunyLpqbm9u3bg4OD3dzcBg4ceO3atcaNG7do0YL/NjAwMCkpydLS8smTJ8OHD1ecsYSEhJs3b/bu3VtPT4+IwsLCgoKCsrKyGjRoIBQKbWxsGjVqREQPHjy4desWY6xr1668zPfv3/v5+Y0YMSIqKuratWtisbhPnz516tQpsraJiYn+/v4jRox4+vSpn5+furp6nz59zM3NiejKlStmZmbPnz+/fv06Y+zkyZNE1KxZsyZNmpw6dapnz57x8fE3btxo3rx5t27diCg+Pt7Hx4e/lz59+mhoaChe5cmTJ4GBgZmZmfXq1ZNIJI0aNbK2tiai0NDQoKAgmUzWuXPn1q1bE1FycrKvr+/w4cNjYmJ8fHxEIlGvXr3q1av3qbOdl5d36dKl169fm5qa9uzZ08jI6PHjx7Gxsf369fPz86tVq5alpSXfwcbGplevXooDPz6fBYtljPn7+4eGhmpoaDg4OFhZWRX/oaelpXl7e6ekpLRq1argWIt3795dvXo1MTGxXr16ffr0qVGjBhHFxMQ8evRo4MCBoaGhAQEBurq6/fv3NzIy4oekpqZ6e3vHx8fXqlXr7du3iqIOHTr0ww8/8GBISUlp06bN8ePHGzZsWGR9GGNyubycBpDL5XJ+HRg4cOBPP/00ceLE8ngVZVm9evWoUaP4iYqLi+vZs+eDBw9atmxZ0fWC8vXkyZOnT58KBAJbW9siv7+xsbF3795ljBX6ixMVFRUSEiISiTp16lS7du2Cv0pMTAwICJBIJPb29rq6ug8ePDAzM+NXSy4iIkJNTc3S0pKIpFLprVu34uLijIyM3r9/r9gnNzc3ICAgMTHR1NTU3t5eIpEo+Z1DeUJcQXlAXFUWrEqJjIw0MDDw8/MbNmyYmpqampraoEGDkpKSGGMDBgwYP358u3bteLtTT0/PwMBg9uzZjDEbG5vt27cPGjRIIBAMGDCAMZaWljZx4kQdHR0iMjQ0dHFxycnJKeZ1jx49amdnx89Yo0aNDA0NAwMDDxw4YGdn5+XlZWJiIhaLg4KCGGMXLlzgmYlQKGzfvr2/vz8vwcbGZs6cOYoCPT09DQwMEhMTXVxcRo0atWjRIl1dXYlE0qJFizNnzpTfCSxvFhYW9vb2H2/38PAgokePHvXv39/AwODVq1eMsfv376upqf3000+XL18mIm9vb8X+y5YtMzY2zsvLk0ql3377LRFZWVl16dLF1NSUiDZv3iyXyydNmkRELVu2tLW1FQgEHh4ejDF/f38imjVrloGBgb29fa1atXR0dEJDQ4usrY+PD9/Z0NDQ3t7e1NRUT08vPDycMWZubj5jxoxmzZrp6+sLBAJLS0tLS8stW7bk5+cTkZOTk4aGhpGREf9MDx8+rK6ubm5u3qlTJ21tbUtLy8jISMaYTCabNGkSP7xLly61atUiovXr1zPGZsyYQUTNmzfncbVq1SrGGH+Eb+bMmbzyZmZmNWrUCAkJKbLyycnJTZo00dTUtLOz09fX79WrF2Ns7ty5RkZGjLGuXbsOGDCgUaNGtra27du3FwgEU6ZMYYx96nzev3+fiC5fvpyVldW7d2+xWNy+fXsLCwuJRHLy5MlPfdwjRowwMTGxtLS0s7Nr0aKFQCBwdnaWyWSMsfPnz9eoUcPExKRz5866urrm5uYPHz7k50oikUyfPr1mzZr29vaGhoampqbx8fGMsYsXL+rr6+vp6XXp0qVx48YSiaRJkyb8hZYvX16/fn3+/1evXtnY2Dg4OHyqVvyB8vPnz39qhy+xbNkyOzu78ii5PJibm9+8eVPxI8+TS6hTp04zZ84sw4sGBAQQ0YsXL8pwbKls2rTJ2Ni4vF+lyunTpw+/8VSvXj2hULh48WLG2NmzZ4no8ePHUql0+vTpQqHQ0NCwYcOGvImzb98+uVw+a9YsgUBQr149U1NTNTW1X3/9lTF2/fp1IhozZoyurq6NjU2NGjVMTU2joqLs7Ox69+6teNHMzMwaNWps2LCBMfbw4cOGDRuKRKKGDRsaGxsTEf+YwsPDLS0tNTQ0rK2tJRJJy5YtU1JSKugkQakhrqA8IK4qjyqWEEZERBCRkZHR+vXrHz9+fPLkSXV19e+++44x1qFDh8GDBwcGBn733XdE5OXl5e3tzRv3ZmZmGhoa8+bNO3HihK+vL2PM0dFRT09v3759oaGhW7du1dTUHDt27KdedM+ePUQ0duzYgICAu3fvuru7E9GNGzd2794tEAiaN29+4MCBAwcOpKWl+fv7i0SioUOHBgUF+fv7f/XVVxoaGo8fP+Z1mDx5sqLMn3/+mYgSEhKmTJkiEAi6dOly/fr14ODggQMHikSi4ODgcj+V5UAmkwmFwnHjxn38Ky8vLyI6d+7c27dvTUxMevXqlZWVZWdn5+joKJPJ8vPzTU1NJ0yYoNi/SZMm06ZNY39nkp6ennx7UlIST2AOHz7Mrwt8+9SpU7W0tN69e8cTwn79+qWmpjLGUlJS9PX1//vf/xZZYZ4QDh48OD09nTH2/v17HR2dGTNmsL8TQsbYkiVLxGKx4hCeEDZt2vT169f8LcfGxqqrq48YMSIvL48x9vLly9q1a3fr1o0x9tNPPxHRjh07+LF8aqz169fzs7Fr1y6+/bvvvtPQ0EhISOAJYa9evZKTkxljaWlpxsbGRZ5Pxtju3bt5js0Yk0qlPKcqmBBqamr+8ccffOdFixYJBILExMRPnU9FQrhs2TKxWHzjxg3+Znv37m1hYZGfn19kHUaMGEFE+/fv5z/u2LGDiA4dOpSSkqKnp+fo6JiZmckYS0hIsLa2btasmVwu5x/ct99+m52dzRiLjo4WiUSrVq16/fq1tra2g4MD/+AYYyNHjiwyIWSMrV69WlNTk6c3wcHBHh4eixYtOnr0KL+twxPCjRs3bt68uWBtt2/ffv/+fcZYamrqvn37XF1dV69eHRMTExgYuG3btoJ7btmyhd9ESElJ2bt3r6ur69q1a2NjY1mBhHDr1q385CcmJu7evXv+/PkbNmxITEws8kSlp6cfOnRo4cKFy5Ytu3LlCt/o6ekZFRV1/PjxefPm8Zd7//79nj17XF1dt2zZwu8pMMZOnz59+/bt+/fvL1myxNXV9c6dO4wxPz+/+fPnr1q1Kjo6mn9SFy5ccHNzc3V1PXz4cF5eXkhIiIeHh1gsnjp1qoeHx82bN1NSUhQ1jIiI2Lx587x583bv3s0/iI/xhPDPP/9cu3btkiVLQkNDY2NjPTw83r17p9jn999/VyTeN27c8PDwcHV1nTNnDk8Iz507FxgY6O/vP2/evMuXL/OP5ujRo4sWLfLw8OBvhHv9+vXOnTvnzZu3adMmHvxJSUn8zLu7uyty2i1btsTFxe3du3f+/PmRkZE8IYyKilq9erWbm1vB1PfVq1c///zz/Pnzd+7c+ebNG75x3759ERERwcHBixcvXrp0aVhYWJFvvKoLCQlRNFyWLVsmFApfvnypaGCtXr2aiH7++We+Q1RUFL+QHjhwQHFRys/PHzJkiKmpaVZWFm9g2dvbx8XFMcZev35do0aNmTNnenh4iESihIQEXs6JEyf4OOHMzMzatWs3bdpUcUdg2rRpxsbGcrnczs7O2tqaX6kePnyopqa2cuXKf/fcQNkhrqA8IK4qjyqZEG7dulWxpXfv3h06dGB/J4SMsZ07dxIR/xQ5MzOzESNGKH58+PAhERVsAi5ZskQoFMbFxf36669b/1dubq6JiUmPHj0UO/MsgieEihY5N3z4cHNzc0VnY3Jyso6ODu+ZKSYh1NDQULSx0tLS9PT0Jk6cqJzz9e/iE/lMnTr1419dunSJiHhfE58hqlmzZoaGhjytYozNmjVLX1+fn7oHDx4QEe9ctbKy6t69u6IcRQLj7Oxsamr6/G98SOfZs2d5Qliws7Fz584ODg4HDx5s+r+OHDmi+CgVO7dt27Zfv37scwlhwevCvn37iKhg45JfwlJSUpo0adKpUyfFdkVCOG7cOCMjo6ioKF55fu07efIkTwgvXryoOKRHjx729vZHjx4tVPkDBw7w2UQ3bdpUsHO7YEJYsA/t/Pnz9PcEXEWeT0VC2Lp1606dOilOLJ8NKCIionv37gUr0KpVK8bYiBEjLCwsFKXJZLJatWp98803586dK3Ri+ZclMjKSJ4TPnj1T/Kp27doTJkzYsGEDEfE7OFwxCeGkSZPq1avHixUKhc7OznPnzq1du3aHDh2ys7N5Qsizcd4tyf6+dISFhaWkpFhYWDRu3Hj+/Pl9+vQxMjLiwclv3DDGQkNDeVXfv39fr149Gxub+fPn9+rVy8TEJC0tTZEQ6urqenp6xsTEmJiYtGzZ8vvvv7e3t7ewsChyrAF/rYULF06bNk1LS2vdunWMsaZNm7Zu3drW1nbo0KHBwcFv3rwxNzdv0aKFq6uro6OjpqbmtWvXGGPDhg3jY5UXLlw4aNAgiUQyceLE9u3bL168mHexvnv3zsvLq02bNnPmzHF1da1du/bQoUOvXbs2evRofr9j8uTJ586d4zO2PXjw4Nq1a2pqao6OjvPnz7exseGXzY916tSpYcOGrVu3XrRoUf/+/dXV1R89eqSnp7d9+3bFx21mZrZ3717G2PTp09XU1L755htXV1c+OPnFixejR4+2s7Nr2LDhsGHDjh49mp+f36FDhzp16sydO9fZ2VkoFPI/80+ePNHX1+/QocP333/fvn375s2bS6XS8ePHDxw4cNGiRRMnTpRIJPymg7GxcevWrdu2bTt48OCnT59u2rRJXV3dwsJizpw548ePF4vFW7Zs4Z+gjo5O165dXV1d27dvb2RkxLPrFi1atG3btlWrVosWLerdu7eWlhZ/HrUa45eUy5cvKxpY5ubmBe+UR0dH8wbW4MGDLS0tk/92/Phx/hXmDSwfHx/FIR06dOjdu/erV6+EQqEiGL7++mt+F+zIkSNEdPXqVcX+M2bMMDY25l9AnvBzXbt25X+7ocpBXEF5QFxVrCr5xJriiSMi0tfXj42N/ewhhoaGiv/zxc169uyp2NKzZ8/Vq1dHRET8+uuv/A6Egr29fWJiopub26dKNjAwKFhy586dFQ8lGhgYtGrV6rNrqenr6/N+aiLS1dW1s7N79uzZZ99RJaSurq6jo/P69euPf8U/IxMTEyL6+uuvBwwYcPHixW3btimGfY8ePXrbtm1//PHHkCFDvLy86tat26VLF5lMFh0dPWTIkI8LjI6Ofvv2baHh5rGxsQU/Dk5NTU0qlTZr1mzChAkFtzdt2pSnQx/vXKp3HR0dLRAI+DONHH9EMDIyMjIycurUqR8f8uLFi6SkpEKPwL1+/Vrx4GXB+nz48KFJkyaFKm9ra9u0adMTJ064uLj88MMP48aNW7x4sSKKPsYHWuTl5X3qfBZ8O6mpqR+fWGdn54LzkSiG8mtpaSk2CoXC+vXrx8TE8Kt248aNFb/i5+T58+cfvyI/58+ePdPS0ir0NGNBGRkZe/bskclkDx8+3Ldv34YNGz58+LBgwYIVK1YsXbqUiL777jtra+t9+/bxc8Wf1Tx27Bgfwu3l5dW6deumTZsuXbo0Kyvr2bNnurq6/P1aWFhYWFh4eXmtXLmS79mxY8eGDRu6urrKZLK7d+/yUejR0dH8kILc3d2NjIyCg4PV1NTkcnlMTIxQKAwODi64j52dHU93OW1t7UOHDrm6uhKRqanphQsXhEIhEc2YMUNLSys4OJhfQL7++us5c+bw7FQsFt++fVtDQ0Mul9euXfvNmze3bt0SCoXp6ekGBga+vr6jRo1SrP/RsWPH4cOHHzx40NLS8ujRo99//33Xrl2JSHFlmzNnzpAhQ06cOMHrn5GRkZqa+vTpU0UNBQJB+/btiahOnTpXr16VSCQ81b9y5cqwYcOOHTvGBzz7+fklJSUNHTrUz89vx44dZ86c4aEVGBjo7e3Ni8rOzg4JCeHnzdPTMzQ0NDIykj/Ta2Nj4+rqOnbs2EWLFllbWwcGBopEIt7XLRKJCq6ekp+ff+jQofHjxxNRs2bNDh06xLdfunQpPz//999/5x9x48aNly5d+u233y5cuLBNmza+vr5CoVAqlXbs2HHp0qW8xWBsbHzhwgWRSJSXl2dsbHzp0qVp06Z9KuSqqLCwsLVr1wYGBr558yY3N5eIsrKy+Bc2PT09Pj7+v//978dHRUVFRUdHF/xDSUSxsbH8wxIIBIqN6urq+fn5/BLNgyEjI+PSpUv8Fgz/e9exY8dC5fPvvouLi4uLi2KjmZmZkt40lDvEFZQHxFXlUSUTwi+UmZlJRJqamootvFGbnp7OH2YriPecFNPULigjI6NgsUSkra1d2lkfhUJhyWcCrGzatWsXGhoql8t5G1chJCSED8ImomfPnl2/fl1dXd3T03PSpEm8+duxY8dGjRodP358yJAhp06dGjVqlFAoZIzxkYEfv5COjk6nTp2CgoIKbf/U4oFt2rRp06ZNoY1KmT5UR0eHMZaVlcWnPCEi/vHp6+vXqFHjU5Vv06bNvXv3Cm0vlEgotGzZssiJQC5duvTnn38eOXJk+/btAQEBd+7cKb6qAoHgU+ezYN2GDh368WKGjo6OxRfOvX//3sbGhj+dy79oHD8nurq67969K/LAT50rhQ8fPuzZs0dDQ8PCwuL3338fNGjQnTt3UlNTFWsV1qtXr1OnTvfu3VMkz87Ozvv27Vu7dq1AIDhx4gTPKIKCgvr27atI7fgz5c7OzkePHl2xYoVAIDh58uTMmTP5ngMGDODZoGLPQoKCgoYPH66mpkZEQqHQwsLizZs3vXv3LriPv79/ixYt/vzzT39//7dv3z58+FBxTWjdurXim3Lr1q1BgwYpbieNHDly9OjRvNe9UaNGfJoioVBoZmZmY2PDj9LV1dXV1eUPwcfHx1+8eDE+Pv7Fixf8x0LXIi4rK+vRo0fLly/nP2pra2tra1++fPn//u//FPsIhUI+S7OtrS2/lSASiUxNTd+/fz9mzJjevXu/fPmyQYMGXl5e/fv35w9U161bt8gbDY0bN1ac6qCgoI4dOypmeBo1apSbm9uTJ0+CgoLmz5/PJ5QSi8WKWZTu3Llz+/btt2/fRkVFJScn842FvsWGhoaKGaoGDx68ePHiZ8+eBQUF/fDDD/wUicXir7/+mg9mJiI7Ozv+QmpqajVr1iw4f0D18Pr16+7duzdv3nzPnj1169Z9/vy5Yro1IlJXVxcIBIUuzpyWlpaDgwMfalFwYzFrk44ePXr69OkvX74MDAzMz88fPnw4EfFALdgg43g0njlzhs/CxX28G1ROiCsoD4irSqX6LDuhwD8z9uk5BnnDruAdcd47XOSkhfXr1yci3sbiisnWrKysChbLGHv69CnvbBGLxXy0YfFycnLCwsKK6Sep5CZOnBgbG8ufulTgXa8jR47U1dWVSqXjxo2ztra+du1aeHh4wUXz/u///u/cuXPXrl2LiopydnYmIt7zVjDre/ToEf+Pra3tn3/++ansQokkEoliYski2draEtG1a9cUW3x8fLS1tRs0aFBM5cPCwpSyaEHz5s3XrVvn4uJy9+5dPlSyGMWcTwVbW9sbN26UJFY/FhISEh0dbW9vX+Q5EYvFxQR248aNc3Jy+GhhIpLL5YW61s3MzO7duxcQEHD48OFBgwYRUVpaGhEpEjYi0tHRSU1NVfz4n//8JzY29tatW48fPw4PD+epY1paGs9XC/rPf/7z/PnzkJCQkJCQ58+f82cji9yzkI/3MTMzS/tfLVq04N10Dx8+lEgk2traRV6dUlNTCxalo6Mjl8vT09ML7Vbk3yQvLy8rK6srV67IZDKegH3qApiRkcEYK1Tnfv36FaxwkWv28Nft2bOnubn5iRMnpFLpmTNn+Pc0ISGBd/4Xr9C54v9PTU1NT08vVB/G2Pjx4/v37x8eHq6hoaGpqVnM9VyBp+VZWVkZGRnFREXBd1SSYqsWX1/fpKSkffv29erVy8bGptDMe+rq6nXq1Cl4K0rRb2xjY/Po0SN1dXWDAoqfgnvkyJESieTEiRNeXl58TDUR8bESISEhhV7C2tpaIBCEhoYWLF9fX195bx3KEeIKygPiqlKphgkhnzixYGJWSKdOnWrWrLl69Wr+TNe7d+82btzYuHHjJk2afLyzkZERv3uRmJhIROnp6WvXrv1UybzX4vTp0/zHXbt2RUdHDx06lIgaNGjw4MEDnle8efPG09Pz48OlUqmrq2tycnKRXeRVgrOz8/Dhw2fOnDl79mxfX9+goKBNmzZ169bNxMRk48aNRLRixYpHjx4dOXKkc+fOixcv3rRpE3+Qj4hGjx6dlZU1derUxo0b82UYiGjKlCl37tyZO3duSEjI6dOnx40bx7dPnz6diIYNG+bj4xMaGnrs2DE+mZDS2dnZyeXy9evX+/n5PXny5OMdevXq1bx58xkzZhw/fjwkJMTd3f3YsWNz586VSCRTpkx5+PDh7NmzQ0JCzpw5M2bMGH7I1KlT1dTUhg0bdvXq1dDQUC8vLz6dY6kq9ttvv61YscLX19fHx+f8+fM2NjZF9ggV8qnzqTB//vyYmBhnZ+eAgIB79+55enquWrWqmAJTU1N5R+XRo0eHDRvWoEGDqVOntmvXrlu3bgsXLty/f/+DBw82bty4Y8eOSZMmfTygV2HEiBFGRkbjx4/39va+c+fOmDFjijzbBfFbLYrdGGPh4eEFB7taWVm1bdv22LFjXl5e9vb2/OaOlZXVx6O4mzRp0qJFi+PHj3t5efGch+/5+PHjz9bhs/skJyf/+OOPBw4c8PT0XL58+af6Wq2srMLDwxU/hoWF6erqliTRIiJ3d/eZM2eeOnVq5cqVvCOUPnFrzNjYWEtL67Pj2D9FKBQ6OTkdP37cx8cnKytrwIABRFS3bt1Xr14pxlp/ag1YKyuriIgIRX14HaysrCwtLQvV5+nTpwcPHjxz5syuXbuWLVvWpUuXktTt9u3bAoGgadOm9evXLxg8YWFhn1qhpPrhz1N4e3tnZWUFBATwKYUL+uabby5durR58+bY2FhfX98pU6bw7TNmzEhKSho3btzjx4/j4uIuX768bt264l/L0NCwb9+++/btu3r1qqKHuX///iYmJrNmzQoODn716tXSpUuvXLlCRObm5k5OThs2bDh06FB8fHxYWNiWLVuKuZ0PlQriCsoD4qpyqYgHF8uOd+UdOXJEsUUx84RiUpnMzExra2ttbW3FTJWFJnRhjHl7e/N1KTp27Kijo1OrVq1PTe7PGLt3717NmjV1dXU7deqkr6/PxywpJpVRTIvCGMvLyxs2bJhQKLS1teWdIZMmTeJzIZ49e1YsFltZWXXt2lVfX58vX8YnlSGiOnXqdO7cmU+e+9NPPyn7tP2r8vPzN2zYoHimzsjIaPLkyXxyp/v37xsbGytm3czPz+/Ro4etrW1aWhrfYm9vT0Rubm6K0uRy+Y8//ti4cWOxWNyoUSO+WDyfPTI4OLhbt24ikUgikTRu3NjNzS03NzcoKMjAwIAvHsgNHDhw4MCBRVb1xo0bBgYGgYGBii19+vQZNmwYY6xFixaLFi3iFZg9e7a+vr6+vv6OHTvy8/MNDAz4bMUKCQkJzs7O2traRFS7du01a9bwpRcYY1u2bLG2thaLxQ0bNty6dSv9vezEvXv3evToIRaL+YTLS5cuzc7OvnfvnoGBQcHnm4cPH17wieqCPD09eckSiaRr165//vknY8zNzY1/Hfr16zdkyBDFzr6+vgYGBsHBwZ86n48ePTIxMeGzmJw/f75ly5YCgUBDQ6NVq1aFZuAs6Pfffx86dCgfx6+npzdmzBjF1yElJWXixIl8GK2pqenixYv5LKxeXl4GBgbPnz9XFNKyZUs+EdGDBw+++uorHR0dDQ2NsWPHbty4ka+lwT6aVEahd+/erVu3fvr0aXp6upubm1gsfvDgQcFlJzZv3mxqatqoUSNF1F27dk0gEOzYsSMjI+Pdu3fnzp3j29etW1enTp0GDRoopmD9448/BALBL7/8kpGRkZiYyAssNKnMr7/+KpFIjh07lp2dHR8fz+fSLOT9+/dCoXDnzp2MsYcPlmOUDQAAIABJREFUHzZv3lxfX58x1rRp0yVLlih2O3XqlFgsPnbsGP/TWKtWLX6bYNiwYQXnxGrduvXcuXMVP+rr62/fvr1Jkybjx4+XyWRxcXF8JEx4eDhfZNXNzS0xMfHdu3eKSWVcXFzMzMz8/f1zc3MjIyMLxn9BhZadsLW1XbhwIWPs7t27RNS1a9cxY8bwXz1//lxNTW3p0qUZGRlPnjxp3rw5/T2pTP/+/RUlRERESCSSFStWpKenP336tFWrVl26dGGMbdu2TVtb+8yZM7m5ua9evfL29ubX+dOnT8vl8lu3bllZWVlbWzPGjI2NC84cu2nTJn19/ZiYmJycnOvXr9epU8fZ2Zkxtn79en19fd7IOHfunJaW1u7duxljvKtWcbiVldWKFSuKfO9Vl1wunzBhAr8XULNmzWPHjunq6v7222/nzp0TCARhYWF5eXnfffcd/2IaGBjwBZD4dM1nzpxR3E+pWbOmi4uLTCbjkzTw2bm5bt26ffXVV/z/x44dIyINDQ3FNZwxdu/evbZt2/Khud27d3dzc+PTuGdkZEyYMEEx+Llz584Fi4XKDHEF5QFxValUsYQwPT39xIkTMTExii23bt3ic+v7+fnxNcoZYxkZGSdPnjx8+DCfRO7cuXP37t0rVFRycvKxY8e2bt166tSpDx8+FP+6qampFy5c2LNnz507d3iPlr+///Pnz0+cOJGVlVVo5+Dg4J9//nnXrl2Flr8LDw/ftWvXnj17YmNj09LSTpw4kZ2dPWXKFCMjo3Pnzm3fvv3w4cN8qtzqISsrq+C3riT4E4C8G6EQnlcnJCRQgQUbOEX2VeE+VRNeef4cVME5cos5pOSv+Kk1IYpXzPksQ8WK2bm0b1Aul3+8XN6nEsK4uLj+/ftraWkJhcLGjRufOnWKMZaTk6Ourn7p0iXG2Nu3b8VisVgsfvv2reKonTt3NmrUSCQSaWtrDxs2LDc3lzHGZyFTU1Pj65pyW7dubdiwoVAorFGjxogRI/Lz81euXNm2bVvGmImJyYEDB+Ry+erVqxs0aCAQCPT09L799tsi1/pbt26dmpoaX9Fow4YNRSaEjDEPDw/eOWlgYDBp0iR+bSlJQnjp0iUjIyO+NubOnTs1NDT4fK27d+/W1dUViUQ//fTT8+fP1dXVQ0NDMzMzJ0+ezEdS1KpVi9+h+NinEkLGGJ8iqOB0uGfPnuVD8c3NzX/55RcDA4OYmJhCCSFj7MSJE40bNxYKhVpaWgMGDOBzQUul0sWLF/NHBxWLx7q6uopEIn5LYsWKFUUmhP7+/g4ODnykaM2aNadPn84HxObl5bm4uPAHv01MTJYsWSKVSplqJIRcUlJSRERE8VeGt2/f8ns0hbx7965Uy2316dPHycnp4+3Z2dkFv0oKOTk58fHxRb40VHKIKygPiKtKooolhJXB0aNHiSgqKkoppU2ZMqVWrVpKKaoamDlzZps2bYrZgWfjBecUrkL4khg8UakkqvT5VJDJZB/fl1FwdXUtlJZwH1/iv/vuu6FDh5ZkzzLsk52dXTApLQbPakorPz8/Li7u43RULpd/6g9tmf/InT171tDQkCfSBRXzKRTarcjbBIXqk5GR8f79+8+Wxp+0LPJXZTuTUHLv3r2TSCSnT5+u6IpAtYK4gvKAuCqeKs4yWloXLlzQ19fnU7enpqbu2rXLzMysQYMGFV2v6kYul//222/z5s0ruPHHH3/08fEZPnx4nTp14uPj165da2VlVcJniirctm3bzp8///XXX9etW/ft27ceHh7169fv3r17BVapSp/PTxEKhZ96fpIxduLEiSIfg+TzZyrI5fJTp07xqaiL37NIn91HQ0ODDz75LD72uLTEYjHvXSxEIBAo1ggppCTvq0heXl5OTk68a66gkjzFWsxuherDZ0D9bGkCgeBTc/+U7UxCyf3222+ampr9+vWr6IpAtYK4gvKAuCoeEsLP8/b23rNnj0AgMDExefPmjb6+vpeXFx9wDEp0//59TU1NxXJqXN++fV+/fr13797Y2FhjY+Pu3buvWLGihA3rCufo6BgTE7N///7Y2FgjI6POnTu7u7sXXLjv31elz2cZBAcHJyQkDB48+LN73rx5MzU1lc+SAsXIycm5cOHCuXPnKroiUPGuXr06evToanwBgQqBuILygLgqXjWcd7s8pKenh4eHJyYm1q5du1mzZkqMpydPnrx7967gUicAoCx+fn6RkZGTJ0/+7J4+Pj4xMTF8ticoxosXL/bu3bty5coil4cCAACAKgcJIQAAAAAAgIrCLV4AAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFICAEAAAAAAFQUEkIAAAAAAAAVhYQQAAAAAABARSEhBAAAAAAAUFFVJiH85ZdfZs6cmZ+fX9EVgWoFcQUAAAAAqkzAGKvoOpRIo0aNoqKiHj9+3KxZs4quC1QfiCsAAAAAUGVVpofQzs6OiB49elTRFYFqBXEFAAAAAKoMCSGoNMQVAAAAAKiyKpMQ2traEhruoGyIKwAAAABQZVUmIURPDpQHxBUAAAAAqLIqM6mMTCbT0dHJyclJTU3V1dWt6OpANYG4AgAAAABVJq7oCpSUSCQaPHj227e6ERGy9u0rujZQXSCuAAAAAECVVZmEkIjU1T2uX6fQUELDHZQIcQVVSFxc3LVr1x4/fjx27FgbGxuxuCpdw6HSQlwBAKiyqnTRt7MjIsLTXqBciCuo5DIyMm7fvu3j4+Pj43P//n0+zn/Hjh19+vQ5fvw42u5QNogrAADgqtIV39aWCA13UDbEFVRCWVlZAQEBvr6+165du3//vlwu59t1dHS6d+9ubW29b9++3377zdnZ+dixY2i7QwkhrgAA4GNVZlIZIoqLozp1yNCQkpIquipQjSCuoJKQyWQPHz7kPTYBAQE5OTl8u1gsbtGihaOjo6OjY7du3dTU1Ijo/v37jo6OKSkpI0eOPHLkCNru8CmIKwAAKF5VSgiJyNiYkpIoPp7MzCq6KlCNIK6gYh0+fNjLy8vf3//Dhw98i0gkatWqlYODQ8+ePbt27aqlpfXhwwd/f39fX99x48a1bNmSiG7fvt2nT5/09PRRo0YdOXJEJBJV6JuASgdxBQAAJVHFbv41a0b+/vToERruoEyIK6hAhw4dOnDggJ+fHxFZWlryHhsHBwdDQ0OpVBoaGrpt2zYfHx9/f/+8vDwiMjAw4A33jh07/vHHH3369PHy8tLU1Ny7d69QWGWWloXyhrgCAIASqmI9hDt30osXNH48NW1a0VWBagRxBRWoSZMmERERy5Ytmzp1qrm5uUwme/Dgga+vr6+vb2BgYFZWFt9NLBa3a9fOwcFh+PDhrVq1UhweFBTUt2/fDx8+fPvtt56enmi7A4e4AgCAEqpiCWGDBnTqFLVtS//5D/36a0XXBqoLxBVUlNevX9etW1dXV/f9+/cSieTKlSvOzs4pKSn8twKBwM7OrmfPng4ODt27d9fR0SmykICAgH79+mVkZEyYMOGXX35B2x0QVwAAUHJVbMhox460YQMdPVouha9aRYaGNGMGbdxIzs5Uu3a5vApUQogrqCiXL18mIgcHB4lEQkRWVlYpKSlmZmZdu3Z1dHQcMGBA7RJETNeuXS9dutS/f/99+/YJhcI9e/YIBIJyrzpUYogrAAAouSqWEKqrk5MT7dhBRBQdTaampK2ttMKTkigiggYPppQUkkqVVixUfogrqCje3t5E1Lt3b/5jw4YNY2Ji6tWrV9py7O3tf//998GDB3t6egoEgt27d6PtrsoQVwAAUHJVbwTIwIF0/z6lp9M331CDBuTuTqmpX1pmejpdu0ZEtGQJLVv25XX8SF4evXlDfw/XgUqoSsYVVHEymczX15cKNNyJqAytds7R0fHs2bMaGhq//PKLi4uLcqoIVRDiCgAASqXKJITr1tHOnVSzJhGRmxuJRCST0fv3tGIFWVrSihVlbL6HhNCUKVS7Ng0cSLm5ZGZGrVrRtWuUn08hIcqoN2N09Spt2EAHD9LOnbRzJyUnK6NcUI6qGldQLdy9ezc5Oblhw4aWlpZKKbBXr1687b5ly5aStN3T0tISEhKio6Pv378fEBDg7e2djAtU1Ye4AgCAUqkak8ps3kwuLiQSUVgYWVv/s93Xl1atohs3iIh0dWnWLHJxyTEy0vhsgR8+0NGjtGcP3b9PRCQQUM+eVKcObdpEurrUti01a0ZeXvTDD7RgwZdV/erV+GsRS6922zv4bEqO5smwplO6PaHZs0ld/cvKBSWownFFFB9PS5fS3r2UkkInT9KUKV9aIPz7Vq5c6ebmNmPGjO3btyux2IsXLw4fPjwvL++rr75q1KhRdnZ2VlZWWlpaZmZmVlbWhw8fPnz4kJ2dnZGR8fGx8+bNc3Z2btOmjRLrA/8yxBUAAJQOq/T27mUCARMI2O7dRe9w8yYbOJARMXNzqaFhrdmzZ8fHx3+qtJCQkNmz5+vrS4kYEatZk33/PXv27H/2kcvZ3LmM7zBmDMvMLGvVc3LYDz9Ezd7Srnac5+Czb+ZvnNc5iP3wA7t1q6wlgtJU4bhijDEWFcXatWOenuzNGzZv3hcVBRWlS5cuRHTmzBmll3zhwgUtLa0aNWoUf/3X0dExNTW1tLRs1apV586dLSwsiGj8+PFKrw/8mxBXAABQKpW9h/DgQZowgRij7dtp+vTi9rx1iw4fvrBz5yAi0tLSmjx58vfff29ubs5/m5OTc/78+T179vj4+BBR+/bnZLJBkyfT2LEkkdDVq9SvHxV6VP7sWfrmG0pLIxsbOn2amjQpfe3j4xN2nE5KEZ4KbxqZbLSwa8CBhy039r5KTZuSk1PpiwOlqdpxRZSQQElJdOoURUbSwoV04ABt3FiWcqACpaenGxsbM8bev3+vp6enlDLfvn1rampKRLdv3+7UqZOJicnKlSs1NTU1NTUNDAy0tLQ0NTX19PS0tbW1tLQ+XmwgMjLS2tpaS0srISHhs41+qJwQVwAAUGoVnJAW6+RJJhYzIrZuXUkPCQ0NHTt2LF8uSU1NbezYsefPn582bZquri5/v0ZGRi4uLk+fRjPG4uKYhwerV48RsWvXiigtLIxZWzMipq/Pzp+Xl7zmcjnz9mZOQ3IlIpmHo7d7D7/I2VtH2T6e1zkoYf4Gtm0by8sreWmgXFU+rpyYRMI8PJi7O4uMZKNGsXnzWEJCyYuBSuH06dNE1K1bN2UVmJycLBKJmjdvLpPJVqxYQUQzZswo+eFyuZwx1rVrVyI6cOCAsmoF/zLEFQAAlFblTQh/++23Hj1OCARs9epSHxsaGjpy5EjefDcyMuJN9jZt2uzevTszM1MqlZ49e3bMmNdC4V/j92xs2KVLRReVns5GjGBErHPnzQsWLJBKpcW/9Nu3zMODWVn9VbJEJJve7o57Dz/m7r68+/XJbe7V1M6c3OZe7rbdLCmp1G8Mvlg1iSsJmz6dubszxtjy5WzyZFazJps8meXmlvpNFe39exYWxqKj2ecqBmU2depUIlq1apWyCjx58iQRffXVV6z0gwaXL19ev379+Pj4X375hYh69OihrFrBvwxxBQAApVVJE8Lz58+rqakR0Y8/+pW5kPDwcHNzc4FAMGzYsLCwMMZYfHy8h4dH/fr1iahHj2VqaszJiXl7M3mxnTRyOfv55wiRSEREffv2TSoqkZPL5b6+vrNmvVFT+6vJ3qABW72axYcl563dmLxkI3N3z13+w5Hhv2mI84lYxzqxsQu3s/DwMr87KIPqE1fxLC+PJSczxlhuLjtyhGloMCLWsSOLjS3zO2OMMZafz44dY6tXs7Vr2dq1bP169urVl5UIReMzQN65c0dZBU6ePJmI1qxZk5aWJpFIxGJxampqCY8dPnw4Ea1fv/7Dhw81atQQCARRUVHKqhj8mxBXAABQWpUxIfT29tbQ0CCiOXPmfGFR/Fn2Z8+eMcZ++ukn3vgmosaNG2/d6vnuXSmKun79On+Iom7dusHBwYrtKSkpu3fvtrW1JaJOnTYJhczRkZ04wfLz/94jO5sFBTEvL3bpEvPxeTB9j6VBMhEz1sr0Hnfo83kDKEl1i6v/9eABs7RkRMzYmHl7f8F7O32arV7N3N3/+bdmDUtP/4ISoQiRkZFEZGBg8NnO4ZLjYXnv3r0yDBo8e/YsEVlbWzPGxo4dS0Rubm7Kqhj8axBXAABQBpUuIQwICOAPnc+aNesLi8rNzRWJRCKRKDc3lzF28+ZNNTU1Jycnb29veZlysNjY2I4dOxKRurr6L7/8cuPGjdGjR6v/vYBE3bp1V63yeP36M4W8exCbtHJ734aRREwklHs4esv3H2AZGWWoD2Ps1atX4ehmLIHqH1fvWFIS69uXETGRiHl4lOk+Q3Y2++EH5u7+ysUlfMaMvxLCVauYn18Z3hcU4+effyaiUaNGKavAiIgIIjI2NpbJZGUYNJifn1+rVi0iCg4O5mua169fXyaTKat68O9AXAEAQBlUroTw1q1bfIKyb7/9tmxt64L4XzIrKyvFlnel6rspSk5ODh8/I/h77kiRSDRw4MDz58+X5I7sxo3M2Jj5XMiW7T+4tNsNAcktDG6PsWudvnYt+2yT/29SqfTevXtubm5t2rQRCASdOnXq1atXVlbWl72z6kxV4sqHyWRs6VImEDALi4gxY75JL03PnlQqvXf5spuDQxtzcwFRpzp1ellZZS1Zwtzd2fHjX/DmoAhDhgwhor179/If8z/V81tiW7duJaLRo0ezsg4anDdvHhFNmzZNLpfzEq4VOScSVGKIKwAAKIPKlRCePn1aLBaPGjVKcQfxS5rvFy5cIKI+ffooqXb/mDt3rpaWlq6u7oIFC168eFHCo+TyvzpwxGL240Y58/Y+63ysZS1LIrIxNg6fPZt5e7MLF5iXF7tz5+NpSF+9erV79+5hw4YVnNRbV1dXX1+fiL7//nslv8lqRIXi6kfGGDt7lrVs2ZmIbGxsPtuBXHRcqavra2gQ0fddurAVK9jVq1/2zuB/yGQyQ0NDIuKfcmZmpqOj48qVK7+kzIEDBxLR/v37yzxo8PHjx0Skp6eXlZW1fPlyIho3btyXVAn+ZYgrAAAom8qVEDo5ORHRvHnzGGOhoaG9e/fesmVLmUvbtGkTEc2cOVNZ1Tt//vzDhw+lUikfljN58uTSliCVsoULmUDAiNioUezDnZDIuXPtTE2JqIaampeT01+D9FavZj/9xNLTpVLpzZs3FyxYwDsDFe11S0vL2bNne3t75+bm3r9/XyKRCIVCf39/Zb3Takbl4upDVmRkpJ2dHRHVqFHDy8vro/0/HVe9enmPH5+7bNn9KVMkIpFQIPD/9lv2559Keq/wFw8PDyIaO3asTCa7cuUKfwx17dq1ZSstNzeXj4iOjY39kkGDbdu2JaJjx45FR0cLBAJtbe1SdTJDhUNcAQBAGVSuhDA0NFQoFGpoaLx69ercuXNEVLNmzTL/5Zg5cyYRbdq0SSl1y8nJEQqFEokkPz/fxcWFiNavX1+2os6dY/r6rHv3jdbW1o/9/bN//HF8y5a8RT65TZu8ZcsS5s8/OHy4U7t2BZcV1tbWdnR03Lx5c0xMjKKo6OhouVy+ZMkS3prPKOuziNWbKsbV48fZ2dnjx4//K64mT87Ly0tISDh48KCTk1NxcZWZybZvj3Z1lbu5LenWjYgsDQwyNmxQ3ooWwBhjQUFBvEv2m2++kclkXl5eYrGYiNasWVOG0vz8/IjIzs6O/T1o0NPTswzlbN++nYj69u3LGOvevXvBwYdQJSCuAACgDCpXQsgY+7//+z8imjRpEvv7L8eKFSvKVlTfvn2J6Pz580qpGB/30rhxY8bYoEGDiOj06dNlLu3p07zmzVvwMZ+nvbzYTz9t7ttXIhIRkYm2NhXQvHnzBQsW+Pn55X00iHTPnj2amprbtm3Lzc1t3rw5KWP+zOpKFePq9GnG2ObNmyUSCRGZmJiUNK5279bU0Ng2e3bu+vXNTU2JaE7Hjuzy5S95m/CxwMBAxaOtMpnswIEDfInLMvTnLF68mPeB5+fn82y/4G2jkktKSlJXVxcKha9evdq3bx8R2dvbl6EcqECIKwAAKK1KlxA+e/ZMIpGIRKLw8PCbN2/yMW9v374tQ1FWVlZEFBERoZSKnTlzhogGDBjAGGvSpAkR/fll4+g+fPgwcuRIIhIIBAv792fu7gETJhhqahpqampKJI6WlpsHDnz16FExJfDOLi0trWfPnikGjgYGYpWnIqhoXC1cyBgLCAgwNDQ0NDTU1NTknYGvil1a8J+4Cgy8P20aHzgaOHExe/nySyoGH1NMfjthwgSZTLZ//37edl+3bl2pymnTpg0R/fHHH/7+/kTUtGnTMleJj69es2ZNRkYGzyuUFerwr0FcAQBAqVS6hJAxNmXKFCJycnJijPXv35/+fvqrVPLz83mClJOTo5Rabdy4kYi+++47mUymoaEhEAiUMj5z9+7dEolk/siRbNUq5u5ua2JCRA+mTPlr/bfPTc/9n//8h4g6d+4slUrXrNnZvn2ClVWZ17Co5lQxrubP5z/y9QwfPHhQwsP/iStf3zUOI9rXDrEyTM5Y/zMGjirdzZs3edv9v//9r1wu37t3r1AoFAgE27ZtK2EJcrl8+fLlXbp0ycrKWrp06ReOFLh48SLvspbL5XzI8dKlS8tcGlQUxBUAAJRcZUwI4+PjtbS0BALB7du3//zzT/70V2lHqjx79oyILCwslFWr5cuPt2nTZ9euX1+8eEFEtWvXVlbJd+/ezU9JYWvXMnd3SwMDIoqaPZutWcMCAj57bHJysrm5ORHt3u2Xn8/atmVETHnTnVQrqhhXf086z2d7j4oqae/xP3G161r+zl/amscRsZntg9nFi8qqHij4+/tra2vzIc1yudzT05O33bdv317aotq3b09Ely5dKnNlpFJpv379tm7dmp+ff/36dSIyNzdX1u0P+DchrgAAoIQqY0LIGFuwYAER9e7dmzHm7OxMRBMnTixVCZcuXSKiXr16KatKjo6MiF2+zHx9pQ0aPBs79paySv5LQgLbutVMR4eI4hYsYDdulHBl8YsXr3bsGKepySIiWFgY09BgAgG7ckXJtaseVDGuGGOMmZmZEVFcXFzJD/knrgLfh83aqSHOF5D8ytjDrMRZJZTc1atXNTQ0iGj27NlyuXzPnj0CgUAgEPz8888lLyQ5OVkkEqmpqSlrcqmIiAhNTU1zc3MtLS1HR0cPD4+wsDCllAz/DsQVAACURCVNCFNSUvh6Sj4+PtHR0Wpqavzpr5KXwJfTnTZtmrKq1KABI2KRkWznTkbE/vtfZRX8P/T19IgoJTGxVEd9+y0jYh07MqmU/fADI2L16zNM6/0x1Y0rfX0iSklJKdVR/8SVn/8PPX2JWH391HSPnxnu65eDK1eu8LY7H5i3ZcsWgUBQkiddpVJpcHDwmjVrWrduLRaL69Wrl5mZ+eX1OXv2rK6uLhHVrFmz4HREVlZW06ZN+/3339PS0gofk5/PQkLYyZPs/HkWHf3ldYAvVx3iCgAAylklTQgZY6tXryaidu3ayeXyqVOnEtGIESNKfvjs2bOJ6Ee+UPcXy8lhIhETi1leHps3jxExDw+lFFyYmpoaEZV2IE1aGqtXjxGxdetYfj5r354RsSlTyqWGVR3iquT+iSsPef4uz/a1XxOxKW3vsfPnWU4OS05mWVnlUl1V9ccff/C2u4uLC2Ns69atN27c+NTOz58/3717t5OTk4GBgaJVzRvZDRs2LObAz5LL5R4eHnwaklGjRmVkZLx58+bEiRNjx47l91M4kUjUpk2bBQsWeHt75+XlscxMtnUrW736r8VU16xhZ8+WuQ6gRFU7rgAAoPxV3oQwKyurdu3aRHT69OmCT3+V8HA+a8hZJbVIwsMZEWvYkDHGhgxhROzUKaUU/D9kMhkRCYVCeckGixb0xx9MIGDGxuzDBxYWxtTVWdOmmF2mCIirUvknrl6+D5u9S10sbVozMWPxarZyJVuzhq1axbZs+fyy9Tk57OFDFhDAHj1ifz/WCEW6fPmyurr6/7d332FNXe8DwN8kEPZesocIyJAiWkRQFBxYxI0K4lbcs1rtcNaqxVrROopbiwNwF20F90BRcSAgIBvZQ2RDxvn9cfjlSxEVgRgg7+fp0yfc3Jzz3uRNvO8d5wDA8uXL3382JycnJCTEz89PX1+/4dkVExMTPz+/Y8eOXbt2rWfPngDAYDD8/PxaMNlmWVnZ6NGj6X751q1bG+UMj8d78uTJ1q1bBw0aRI8yUPLy8sN79gwcMSJ96dL6gpDWhJ9z+h0JTwfOq+HDAwMD03GIY4QQEqb2WxASQvbs2QMA5ubmHA5n9erVALBx48ZmvtbMzAwABHcmzJ4uS5+DAAAgAElEQVQ9+9SpUy2O5PVrMm0aof+SWloSAPL8eYsb+6CKigoAkJOTa9nLAwJISkr94xs3yMmT5OZNQgi5dInk55NWHNjtbDCvPsv/8uru3RtTj54ce/bmtKNk/fpL3ifzV267Pf0I+eUXEh7+wddnZZEtW8jmzWT9erJlC/ntN1JY2LJIxMSVK1fovjsdJLagoCAkJGTx4sV0DgABTU1NLy+vwMDAtLS0hi/ncDhbt26le9VGRkYRERHN7zo+ngwdOhEA1NTUwj/ymRJCCHn37t358+fnzZtHJ2IRsNbUrFuzJmnRohfz5pFjxz7/DUBC0eHzytq6rq4uKSnpxYsXn7/1CCGEPoZBCIH2isPhdO/ePSUl5fDhw6NGjUpMTOzTp8+HVs7JyYmPj4+Li6P/f/z4MZfLffLkiZ2d3b///jts2DAAWLp0qb+/P52nu2X4fJCXh5oaKCsDefkWN9O0wsJCTU1NdXX1wsLC1re2ciXEx0NoKPj7g5MThIaCry/079/6hjs8zKsWqqyE7dtXXh0UX6gROj7U/76Tk0FmaJyVr01Mf+NMUFcHOTlgMkFaGhgMkJYGJhNYLHjyBLjc/7SjpASLFwOT2apgOrVz585NnDiRw+Ho6enRoYDocmVl5QEDBri5ubm6ulpaWn6khZiYmOnTpz99+lRf32X48BtbtzIVFT/R6eXLMGkSyMlldes288iRQGNj4+YHnBoff+2HH8ISEq6nplqoq690cvI+c2a4mdnfy5bB3LnNbwcJVcfLq9TUa9euhYWFXb9+3cLCYuXKld7e3sOHD//777+b3whCCKFPatcFIQCcOHHC19fXwMAgKSmJHt2k3r59+/Lly9jY2JcvX9IH7969a/hCeoGcvLz8oUOHxo8fv3///kWLFtXV1Tk7O4eEhNBBF1sgMxMMDUFHB7KzW7VdH2g809DQUF9fPzMzs/WtrVwJrq5w7x5ISoKvL8yYAXfvAgDIyQGbDQoKICEBDg4bk5PDlJSUJCQkFBQUpKSkZGVlR48e7e7u3voA2jPMq5ZITIRz51aGubgap93LNJBk8X17xMy4OPJuhgEAyLE5bBZPgV0rweQ76PkllzxQkpKSYDIVpKSkWCxZScnR3bu7m5oCALDZ4O0NRkZtsG2dV2Bg4HfffVdVVSUpKenk5OTk5OTs7Ozi4tL84w5cLtff3//ixbmPHqnq60NgIAwb1vSahIC/P/zwA/D5MGECHDoEcnKfH7G/v/dff52Ojd3k6jrdzk53+3YFKani06clR436/LaQsHS8vALw9vY+ffr0pk2bpk+frqurq6CgUFxc3JoDcAghhBoT7QnKT+LxeHZ2dgCwYsWK48ePr1y50t3dXU9P7/0N0dTUdHNzW7p06cGDBx89elRUVDRjxgz6lJ+fX11d3ePHjw0NDQFAQ0Pj+vXrLQgmIYG8ekWiosiRI6SoqM23lSQkJACAmZlZm7S2YgXJzydLlxJvb/L6NRkxgkhLE4D//Ne3r/f77+SOHTvaJID2DPOqJdLTyc8/r+h7P3/ltqV9HnjbvHy9eNcI8wRpCU7jvNJ3biKv3N3/d2uZMC6N7VwCAwMBwM3NrZVztb1+Tfr3r/9cvLyaSLCyMjJ6NAEgLBbZurWZk9005cmTA6NHA8CY7t3J+vXm6uoAEPmp6wPRF9bx8oqQAwcOAMCYMWMIIebm5gAQGRnZitgRQgg1JvF55eMXx2QyN2zYMHLkSDquo2A5m802NTW1t7e3srKytLTs1avX+ydnDh065ODgsGjRov3797969So4OPjJkyfe3t7Xrl0bOnTopk2b6Kx0zXfxIly9CuHh8OgRJCWBo2MbbGBD1dXVACArK9uGba5dC/QKoIsX65dUVACHA+/eAY8HZWWbOJylZWVlHA6noqKipqamurraycmpDQNonzCvWqK8HHg8+nCty23LPQtgIFz0Pg0AwGBUSKtzavnvKiV4NZyymr4cfvey2loOj1dRV1fD5VZzuU50vApCgMEANbXWBtPZhYeHA4CXl1fDM9gtYGoKN2/CwYOwfDmEhsKdO7BnD4wdW/9scjJ4eEBSEqipwenTMGhQK3qytx88eTKcP38jLY3H57sZGycWFV2PinIcPLg18aO21fHyCmDw4MEAcOPGDR6P5+bmlpiYeP36dcc2/6FECCEx1t4vGQWAkydPTpo0SUNDY+DAgTY2NtbW1jY2NsbGxszm3YP05MmTsWPHZmZm6ujohIaGOjg4/Pjjj/7+/oQQb2/vAwcOyDX7KhZ/f2CxQFISmEywt2/7HffIyEgnJydHR8fIyMjWtJOcDCtXwqpV0LMnsNmQkAAGBtCmZWZngHn1eQoKkn89u/LKwFXO93tq57JZvIQidQOld7KyACwWTJ4MOjr/Wb+mBgiByko4ehSqqoD+zhACLBZoaMCcOcBgtGqrOjUej6epqVlSUpKSkmJiYtImbSYlwcyZcO8eGBlBZSVERoKpKXh5wdOnoKAA585Bm/RjYmyclp7+xM8vo7R0bEjIgAEDbt682QbtorbQgfPKxCQtLe3JkycZGRljx47FvEIIoTYm0vOTn8bj8aytrQHg8OHDLW6koKDAzc0NACQkJLZu3UoIuXjxopKSEgBYWFh8cl7ysjISGEiGDydbtpDYWDJ1KvnxRyKMK1auXbsGAK6urq1ppLKS9OiB8xB+AubV56mtrfz9zx5aefXzEO7ZQ06cIIGB5Phx8vAhqa392GuLi0lAQP1Ao5s3k337SHl5yyMRD7R0b6urxwV4PLJrF7l2jYwYQXx9CSHEx4ckJZG2mG+83qxZswDg18GD365ezWIy2Wx2Bc5+0250+Lz69de3b9+yWCzMK4QQalvtvSAMCQkBAAMDg9qP73R+CofDWbVqFYPBAAAfH5+Kior4+HgLCwsA0NXVra6ubvJV0dFkzhyioFB/p8S0aSQ2lmRkEB0doey405HThg8fTgipqqrq3bv3xo0bG439/UlTpxIAYmZGSkvbPsJOA/PqM/KKzyfBwVO/eg5AzNSKSrfs/ewdPT6fZGSQ2Fjy5k2r7iUSG+vXrweAhQsXCqn9KVPIoUMkOJj4+LRxy6dOnQKAIV27kvXrJ5qYBNja5t+40cZ9oJbq8Hk1ZAghZKKbW4CjI+YVQgi1oXZdEPL5fFtbWwAIDAxskwYvXLhAT+B079791atXZWVlY8eOfX8euYqK6oMHSe/e9fvrDAZxcSEnT5KICJKXRwghZ86QjIw2ieg/aJXi5eVFCAkNDaWncBkMRv/+/Q8ePFha+uk96Z07CQCRlyexsW0fXqeBefV5eXXnzs5h/wAQeXZt7OJAkp3d9iGi/3J2dgaAixcvCqn9KVMIn08mTiTjxrVxy/n5+evs7J6bmJCffiJOTgSArF7dxn2glurYedW79/NBg0hNDfnuO8wrhBBqW+26IDx//jwA6OnptXI8tIYSEhLoPEuKiornzp1r9Gx8fPyqVatUVVW7dasGIEpKxM+PxMS0VeefcPToUXppH4fD4fF4d+/e9fPzk5eXBwArq6+lpMjw4SQkhNTVNf3yBw8Im00ASHDwFwq4g8K8+oy8Sk19MPsQm8UFIMFeoeTp0y8UtBgrLSVqam+dnM6UlQnr2tpvvyWEkOfPyeTJQmjd2poAkOnTia8vASC9ewuhD/TZOkle3b5N/v0X8wohhNpWuy4Ie/fuDQB//PFH2zZbVlY2btw4epJk1apVXC63srLyyJEjDWcnnzbtwl9/kQ9c8Scsr169GjNmDACoqqr6+fndvXuXEFJeXn7s2LHZsy8ymfVnljQ1ycaNjV+bl0d0dQlA/T/J6CMwr0gz86q0NG/tHl3FMgDybd9IcunSF41bXJ09SwCIi4uw2ufzyZ9/1j/eu1cIHSxZUr8BP/5IJCQIi0VKSoTQDfo8nSSv1q4llZVESgrzCiGE2lD7LQgvX74MAF26dKmqqmrzxvl8/pYtW1gsFgB069ZNWVmZ7q8rKysvXrw4VnQXXAYFBVlZWQnqB0tLy61bt2ZlZRFC3rwhAQHEzq6Jqo/DIS4udF7BD54/RBTmVXPzisPh/HnQxSgdgPTVz6zbs59wOKKKX6zMnUsAyKZNwmqfyyXe3vWPJ0wQQgeXLhEAYmBA1q8nhoYEgJw/L4Ru0OfpJHnl5EQIqZ8DEfMKIYTaSPstCOlseHSaOCG5deuWkpKSkZERANjb2wcGBraTgctiY2NXrVrVpUsXuvvu4DDCyYkEBpKyMkIIiY4m6en/WX/5cgJAdHTqb0VDH4F59Ym8qqsjT56Q8+fJvn3LHSMBiI5CWd6a3eTtW1GHLy5MTAgAefRIWO1zucTCgixfTpYvJ4MHC6GDsjIiKUmYTPL992TAAAJAFi0SQjfo83SSvJKQIGVlZP16zCuEEGpD7bQgjIiIAAB1dfVyIY9QP2zYMADYtm2bUHtpGQ6HExYWNmHCBGfni/SiPllZMmkS+fdfwuUSDqe+/ONyyaVLRE+P3Lkj6ojbPcwr8vG8KnrL2bYj7/sAsn49d+2GS94n9RTf3ZlxhCQnizpqcZGURACImhrh8YTVhdDP5BBC+vQhAGTSJDJjBgEglpbC6QY1V6fKqytXyN27mFcIIdSGmjUH95f3888/A8CKFSvo0BfCk5WVBQCDBg0Sai8tIyEh4eHhcfr06bCwEQcPgosLVFfDiRPg7g4GBvDLL9CjBxQUQHEx3LgBr19Dv36ijrjdw7yCj+eVKfuXK3Y9ds0qqJQrrpa9kWb8evEf/cZpQdeuoo5aXISHAwAMHgzMdvrb3DyurgAAaWmgqwvm5mBsDK9eiTomsdap8ur6dXBwAE9PmDoVCBF1TAgh1Bm0x38cbt++fefOHVVV1fnz5wu1I0JIamoqAHRt3/u7SkowcybcugWZmRAQAD16QE4OcLng4QHr1tWvIy0t0hA7AsyrRhrnlRUvp1SWy2N4mL1ed3MAXUdagou7XMKTlgZhYf9ZEhMDADBgAPz7L5SVCaVTFgvWr69/vGGDULqA4cPB1RUsLODxY9DWBiMjOH8ekpKE0xlqrNPm1ZgxsGYNjBoFe/eCvT0MHw4MhnB6Qggh8dIeC0J6Gmfp0qUKCgpC7Sg7O7uqqqpLly7C7qit6OnBkiXw4gU8fAhjxoC+Phgawq1bog6rg8C8+pD6vIooeLjgrzHdX+krvjNUfncr3aj+6fJyUQbX+eTnl565Nns2mJiAiQmMGwdVVQAA9+/D9esQGAjnzoGWFlhZwd69UF4OiYltH4KZWf0Dc/O2bxwAoLYWXF3hyRMwNgZHR7hxA0pK4PJl4XSGAEA88sreHjZuhD//hIEDYdkyWLMGcnOF0xNCCImXdlcQPnz48Pr160pKSgsXLhR2X69fvwYAU1NTYXfU5hwcQEUFAGD5cjh8WNTRdASYV5+mqurQJUNFpgYAljs+OPzMDgBAQgL09EQcWOdQUwNLl4KNDWhrK0z0OHuGpKWBqip4eMDbtwAAT57ATz9BaSkUFYGyMqSkgKMjnD0LQUEdsCRPToa6OuDxQEsLpKTAxgbS06GyEqqrRR1ZpyNWeQUAXC5wONCjBygqgrc33Lwp6oAQQqgzkBB1AI1t3LgRABYvXqxCKx5hSk5OBoBu3boJuyNhkJEBExNgs2H1arw959Mwrz5NSgrs7WXuJpmovGWzeKud770q0gAJCejZU9SRdQrS0nDmDGRng6wsq1+/QyPyDBy07eyAyYScHPjrL6irg0WLYMMGsLSEx48hPh6mTIExY+DNG+ggZ5obYLGAwQA+v/5PLhckJAAAL/Bre2KVVwDAZAKXW/+4pgZkZEQaDUIIdRIM0p5uEIqOju7Vq5eCgkJaWpqampqwu/v119grV16OGSO/ZImnsPtCIoR51Vx8PvzzDzx/DhISwOeDnBxMnAiamqIOq7M4exY0NKBPH2CzoaTkYSQ/6F/169chIQEAYO5cmD0bzp6Ft29h/HgYMEDEwbbKw4dw4wZcugSGhqCiArduwZgxoKcHQr59t/MjBJKSIDYWCgqAEFBVBSsrSEgALS2xyCtqyRLo1w9MTGDDBggK6ph1LUIItS+iLwgPHjyooaExYsQIBoMxatSovLw8T0/PH3/88Qt0PXYsnDsHwcEwfvwX6A19UZhXLVddDfn5ICsLGhp4SqfleDxITgYVlfqKOj8flJXh1i24cQOuX4dnz/Y4n1p4ZzwAKCiAiwuYmMDUqWBuDra2cOAASEqCs7OIt6DluFwIDIS3byEhAaqrwdQUlJRgyhS8/LhVysshKAhKSiAvD2RkQE4OAKCuDpSVwdAQoqM7f15RfD78+y+UlIC7O6irizoahBDqDERcEJaWlhoZGb179+7x48eSkpJ2dnYyMjJpaWmaX+SkhK0txMRAdDReE9fZYF4hEaurg8mTwc0NkpPByAicnSEwEEaOhKFD61eQkkrzXHzC1t/VFb7+GiQk4PVrUFcHFRWIjQV/fzhxAg4ehOnTRboVrVFbC9euQVwccLmgrQ3u7qCtLeqYOjJCYM8eKCqCM2fAxARKSkBZGQwM4MkTsLCAv/6qX63T5xVCCCEhEPE9hLt27Xr37t2gQYN69eo1btw4QsjcuXO/zF47IZCSAgA4xVonhHmFROzKFRg6FGbMAAAYORLmzwcXFxgyBMaOhW7dwNUVnJ2NZWSWlMPt27ByJejowMqV9S+1tgY7O/jrL5g1C1gsmDJFhJvRClJS4OEBHh6ijqOzSE+vHxvU1BTs7AAATp2C3r3ByAi6dgVra+jVC3x8On9eIYQQEgJRniGsqKgwNjYuKiq6ffu2urq6jY0Nm81OSUmJiYnJy8ubNGmSpKSk8HrPyQFdXdDUhPx84XWCRADzCone4cOgqQnDhwMAeHlBcPD/ZgSvrYXISLhx4+9M2zEnx9EBMiwtIS7uPw38/jt8+y2wWHDkCEye/GWDR+1QbCyEhcHDhyAnVz+9Q0gIeHnVX9TNZIKTEzAYmFcIIYRaQJRnCP/444+ioqK+ffv279/f29ubz+fPmjVLW1vb3d395cuXTCZzijCPYb5+DQDQ4aYGQJ+EeYVEz8EBAgNh+HAoLQVC/lcN3r4Nw4bR2RdsdfoAjOvbF9zcwNW1cQPLl0NtLfzwA9Qc+AskJMDb+8tuAGpn9PWBzwddXYiOBjMzqKkBaDBqa1YWeHjQhZhXCCGEPpfICsLKSrhwIRkANmzYkJycHBoaKikpuWLFigsXLrx8+VJfX3/ixIlCDSA5GQCgw00NgD4O8wq1C1ZW0LcvLFsGDAb89tv/lltbQ10d2NqCq6uBm1upC5GT/+CwPd9/D46yLwZ8Ox0eMIDF6rCDFKG2oKQE/fvDnTtQUAD//gsMBgwZUv+UpCT07w+HD2NeIYQQahmRFYSBgfDkySFf3x8HDTJZsuSdo2OgjU2MoaHhuHHjAGD16tVsNluoARgYwIQJ0L+/UDtBXxrmFWovJk6E948+qKlBYSH8/2SYcp9qY8ASW3j7E2zYAD4+wOc30SASH87OoKoKsrJQVQUsFgAAnw8SEjBwINjbg4cH5hVCCKGWEc09hDU10LUr5OTAlStgbg7m5sBgQGIixMdfHj58eJcuXVJTU2WEOeHskCHw00/Qvz/MmQNGRjBxIhgbw+nToKEBbm7C6xYJF+YV6pzWrIFNm0BSEv7++3/jlCKxVVICRUVACKiotGpuGMwrhBBCACCqM4QHDkBODvTsCe7u4OcHXC7MmAHGxrBqVQwAfPfdd0LdawcALS3Yswf69IHKSqisBB4PAKCmBurqhNotEi7MK9Q5/fwzEAJhYWBvD6mpEB8Ptragry/qsJCIqKqCqmobtIN5hRBCCABEcoaQw4Fu3SAjAy5eBDs7MDUFHg/i4yEjA4YMgYED88PCFGRlZYUaw7RpMG0aPHgAcXFgZAS5uaCsDHFxsGQJDBsm1J6RsGBeoU6ushLu34eLF2HcODh+HGbOhLQ0MDeHr78WdWSoI8O8QgghsSeCM4RHj0JGBtjagqcnLFwIdXXg6wtmZjBrFgCAu7uWkHfa6w0YAKdPQ14eGBnB99+DqSkcPfol+kVCgnmFOjk5OTh0CI4fBykpsLKCn36C/ftFHRPq+DCvEEJI7ImgIJw4EYqLwdoa8vLgyBFgMmHVKrh1C+7eBVVVmDfvS8RAa4P168HTE6Sl6+/PZ7MhOxsOHABVVRg79kuEgdoQ5hXq/LhckJICAFBQoHNXINQGMK8QQki8iaAgVFCA1asBAG7erB9J29q6fsiNZctAQeFLxLB3LwBAly7w+PH/Fvr4AABUV8Off36JGFDbwrxCnZ+TE4SGgpcXHDsGgweLOhrUWWBeIYSQeBPNKKOLFsGaNaCpCdu3g68vpKZC376grAzp6aCk9OXD+Z/S0vp7KOQ+OW43an8wr1Anx+fD/v2QmAhffQVTprR8eEmEGsK8Qggh8SaagnDYMDA2hr17wdcXgoKgthaOHAEuFxYu/PKx/MezZ/D4MRgb40HSDgnzCiGEEEIIoc8immkntLTA0BBu3Kj/U0oK5s4VSSCN2dmBnZ2og0AthXmFEEIIIYTQZxFNQQgAy5aBjw9IiKx/1DlhXiGEEEIIIdR8TFF1zGbDggWQlCSq/lHnhHmFEEIIIYRQ84nmHsLCQtDQAADIzQVt7S/fP+qcMK8QQgghhBD6LKIpCBFCCCGEEEIIiZzILhlFCCGEEEIIISRaWBAihBBCCCGEkJjCghAhhBBCCCGExBQWhAghhBBCCCEkprAgRAghhBBCCCExhQUhQgghhBBCCIkpLAgRQgghhBBCSExhQYgQQgghhBBCYgoLQoQQQgghhBASU1gQIoQQQgghhJCYwoIQIYQQQgghhMQUFoQIIYQQQgghJKawIEQIIYQQQgghMYUFIUIIIYQQQgiJKSwIEUIIIYQQQkhMYUGIEEIIIYQQQmIKC0KEEEIIIYQQElNYECKEEEIIIYSQmMKCECGEEEIIIYTEFBaECCGEEEIIISSmsCBECCGEEEIIITGFBSFCCCGEEEIIiSksCBFCCCGEEEJITGFBiBBCCCGEEEJiCgtChBBCCCGEEBJTWBAihBBCCCGEkJjCghAhhBBCCCGExBQWhAghhBBCCCEkprAgRAghhBBCCCExhQUhQgghhBBCCIkpLAgRQgghhBBCSExhQYgQQgghhBBCYgoLQoQQQgghhBASU1gQIoQQQgghhJCYwoIQIYQQQgghhMQUFoQIIYQQQgghJKawIEQIIYQQQgghMYUFIUIIIYQQQgiJKSwIEUIIIYQQQkhMYUGIEEIIIYQQQmIKC0KEEEIIIYQQElNYECKEEEIIIYSQmMKCECGEEEIIIYTEFBaECCGEEEIIISSmsCBECCGEEEIIITGFBSFCCCGEEEIIiSksCBFCCCGEEEJITGFBiBBCCCGEEEJiCgtChBBCCCGEEBJTWBAihBBCCCGEkJjCghAhhBBCCCGExBQWhAghhBBCCCEkprAgRAghhBBCCCExhQUhQgghhBBCCIkpLAgRQqi9qKysTExMrKura7Scy+WmpqaWl5d/6IU1NTWpqanV1dUt7rqoqCgjI6PFL0eoBWpra/l8vuBPHo8nwmAQQkhsYUGIUIdECCGEiDoK1MauX79uYWHx+vXrRsuzsrK6du165syZD70wKiqqa9euDx48aHHX69ev79WrV4tf3ml89913SkpKIgzg559/ZjAYHe7bvX379g0bNnzWS9LT06Wlpc+ePQsAeXl5gwYNkpaWlpeX//3334UTI0IIoaZhQYjEVERExJs3b0QdRcv169dv+PDhAMDn80NDQ6uqqkQdEUJITBFCdu7cqa2t3eIW1qxZ8+zZs4iIiAsXLtBfNiHx9/d//4ALQgiJOQlRB4CQaMycOXPHjh16enqiDqSFvv/+ezabDQAFBQXjx4/PzMyUlZUVdVAIIXEUFRWVnZ09YsSIFrfw/PlzFxeXAQMGtF1QTdu0aZOdnV23bt2E3RFCCHUgWBCijorD4UhKSjZzZS6XKyHxv2zn8/m5ublNrllXV0cLrUbojS5M5n9Oqjdq9iMLP7K8+Rq24OHhQR9kZ2c3Z32qtrZWSkqqyZU/tOEfWt5k++izvHr1KjExkcFgWFtbd+3a9f0VsrKyHj9+TAhp9D4nJydHR0ezWCxHR0ddXd2GTxUUFNy7d09SUrJfv36KiorPnj3T1tbW0dERrJCQkMBms01MTACAy+U+ePAgOztbTU2tqKhIsE5tbe29e/cKCgq0tLT69evX/C9ah1NXV/f8+fPKysru3bt36dKl4VN5eXnx8fG6urrm5uZ0CY/HS0xMzM/P79Kli7m5Of01yMzMVFVVZbFYjx490tbWNjMzoyunpaWlpqbKyMh069atsrLSyMgIAAghsbGx+fn5urq63bt3b9hdZmZmcnKysrJyRUXFx2Ouqal5+vRpdXV19+7d6SdbUlJSWlqqq6sr+HanpaXJy8tXVVXJyMhoamoKXpufn8/j8QT5kJqampqaKicnZ2pqWlVVZWho2DBIPT09CwsLumZWVpaysrKCgkJcXFxRUZGFhYWWlpag2fPnzzs7OwvewOLi4levXklJSVlbW8vIyJSVlRUVFRkaGrJYLEF4ysrKgo8gNTW1rKyMPgAAPT09CQmJ9PR0NTU1weW7hYWFNTU1+vr62dnZCgoK0tLSUVFRKioq1tbWTb5LhJCkpKScnBwNDQ1zc3NJScmCgoL8/Pzy8vLc3NzU1FRpaWn6PvD5/NjY2IKCAm1tbUtLSwaDAQAVFRUlJSUGBgZFRUUvX75UVVXt0aMHg8HgcDjR0dH0OysnJ0f7KikpiY+PZ7PZ1tbWeGAOIdQhEXHC4/HS09PLy8ub/5KioqLs7GzhhYQ+1/379wcMGED3ezQ1Nb28vN68efPTTz/p6uoK1iktLVVRUdm7d4YBg94AABwiSURBVG9qauqkSZPo/pCqqurUqVNLSkoWLFhA90Xk5ORUVFT69OlDCKmrq/vuu+/U1NQAQFlZedWqVTwejxAyY8aM+fPnr1y5UlpaWllZmcfjzZs3b9q0aYcPHzY2NgYAbW3t48ePE0Li4uLGjh1LW1BXV58/f35lZSUhxMXF5Zdffpk8eTKLxerZs6eHh4erq2vDLRo7duzo0aOb3Ni0tDQVFZXr16+PHTuWzWaz2WwPD4/CwkJCyMiRI319ffv27augoAAASkpKKioq8+bNI4RYW1vv3Llz1KhRDAZjyJAhhJCysrLZs2crKioCgIqKyuLFi6urq2kXr1698vT0lJaWpk8ZGRmtWLGCEJKQkDB06FBah1haWkZERBBCCgsLVVRUrly54u3tLS0tLSkpOWjQoJycnDb/lMXB0KFDJSUlu3XrZmBgwGQyf/jhB0LIxYsXASA2NpbL5c6fP5/JZKqqqpqamtKS7PDhw3w+f9GiRQwGw8DAQEtLi81mBwUFEUJu3boFAJMmTVJUVLSwsJCXl9fS0kpOTraxsaE5QFVWVsrLy2/bto0Q8vz5c1NTUxaLZWpqqq6uTvOWEBIfH29iYiItLU13o7/66qu3b9+K6E0Srn/++UdLS4vJZCooKDCZzFWrVhFCVq5cKS8vv2jRIhkZGVVVVQCYOXMmIeTevXva2tqSkpIaGhpMJrNnz575+fmEEGNj43nz5tGyfOTIkYSQN2/euLi40G8l/eBUVFQIIenp6XZ2dgwGg/5KfPPNNzU1NYSQwsLCb775BgAUFRUFB1/4fH6TMZ89e1ZNTU1CQkJBQYHBYEybNq22tjY+Pl5WVnb27Nl0nf3790tISERGRnp6elpYWDR8edeuXZcsWUIIycrK6tevX8Mg6aefmppqa2vLYDDotnt6etbW1hJCunfvvnDhQkdHRwUFBXl5eSkpqVOnTgmaNTMz27FjB328Z88e+uNAt6isrGzPnj0AUFRUJFifzWavWbMmLS0NANauXdtotyQuLu7t27cAsHPnTsFLpk2b1rVrV0LI119/PW3aNFNTUwDo27dvk+9SQkKCsbExi8XS0NCQkJAwMzNLTEz08fFp2Ev//v0JIYmJibSkVFFRAYBevXplZGQQQoKCguTl5bds2SIjI0O/Ha6urvfu3dPX11dTU5OUlNTV1Y2Li6PvtoyMDN1eeXn5kpKS5uYfQgi1G+JVEBYWFgLA/v37m/+SGTNm0H+EUHtw584dSUnJMWPGPHr0KC4u7pdffgGABw8efPvtt3JycoLV6M7E77//XlRUtHjx4oiIiLi4uNDQUDk5ufnz58fFxQUGBtIdkYiIiMjISELI3Llz2Wz2nj17YmJi/P396c43IWTChAlsNtvT0zM4OPj06dOEkKlTp8rIyPTr1+/q1asxMTGjR49ms9lZWVmpqakrVqy4efNmXFzcsWPHJCQk1q5dSwjp2bMnm82eNWtWaGhoWFgY3Td6/fo1DbWkpITNZh88eLDJ7U1JSaGl7NatW1++fHn27Flpaen58+cTQpycnL755psHDx4sX74cAE6ePBkREREbG0sI0dfXl5KSWrZsWWhoKC3k3N3dFRUVDx48+OLFi927d8vKynp7exNC0tPTVVVVLSwsLly4EBMTExYWpqCgMH/+/JKSEh0dnR49eoSHh0dHR7u5uSkqKpaWlubn59OCecOGDTExMZcuXVJQUJgyZYowP/NOKzo6WlBorVmzhslkpqenCwpCmtt79uyhKyQnJ9OcPHr0KAD8+eefhBAOhzNy5EgtLa2qqipaEPbr148ewHrz5o28vPzChQu3bt3KYrHy8vJoOyEhIQwGIz09vbKyUldX19LSMi0tjT41b948dXV1Pp9vY2Njbm5O6/znz5+z2eyNGzd+2ffmS8jOzpaXlx88eHBxcTGPxzt79uzatWt5PN7KlSsBYO7cuaWlpYSQbdu2AUB0dPS7d+8uX77M4XAIIUlJSQoKCsuWLSOEGBsby8vLX7p0qaioKDc3l8fj2dnZ6ejoPHjwgBDC4XDmzJlDC0IHBwdjY+Pk5GRCyNWrVxkMBv3HaODAgWpqatevXyeE8Hi8VatWfaggTE5OlpaWHjNmTHl5OZ/PDw4OZjKZ69atI4T88ccfABASEpKSkqKgoEAXnjp1CgCeP39OXx4VFQUADx8+5HK5tra2enp6UVFRNMhZs2bRgrBXr15du3ZNSUkhhFy5coXBYNBfwu7du0tJSR07dozL5dbW1g4ePFhHR4c2++LFCwBITU0lhFRWVkpKSvr5+XE4nIqKitu3bxNCPl4QhoSEEEKsra0nTJggWOHjBSGbzT5x4kRxcfGbN2+a/HA5HM65c+foYa/c3Fx9ff1x48YRQiIjIwEgPDycrsbj8aytrbt160Z/kGNjY/X19R0dHQkhQUFBADBs2DD6RaDvpJ6e3p07dwgheXl5mpqaPj4+tbW10tLS06dPr6urq6ysvHXrVnNyDyGE2hvxKgjr6uquXr36oX9CmhQXF3f37l3hhYQ+i4ODg729PZfLpX9evXr14wVho5ePHz/e0tKS/P8ezJkzZ+jy0tJSCQmJb7/9tmFHTk5OhJAJEybo6OjQvUBq6tSpGhoagjNsjx8/BoALFy406svV1ZUege7ZsydtiiouLmaz2b/88gv9c//+/Ww2u7i4OCUlZdd/3b17lxaE27dvF7zcw8OjZ8+e5P8LQkLIgQMHACAzM1Owjr6+Pj1TQcXGxgKA4Pg9IWTdunUMBiMzM3PBggXS0tLp6emCpzQ0NObPn0934F6+fEkXxsfHA8CBAwdoQbhhwwbB+hMmTDAzMyOodR4+fAgA//zzj6Ag1NHRaXhmj15Kd/jw4REjRpiYmJT8v9OnTwPA7du3aUF47do1wUscHByGDBmSmZnJZDJ3795NF44dO5am5YkTJxruGRNCFixYoK6unpCQQLNF0IWzs7ODg8OXeie+nH379gFAUlJSo+X0DKGgHqOlOD0N25Crq6ubmxshxNjYuOExkZs3bwIAvWqAWr58uYqKCm2n4eHInj17Dhs27Pnz540qn40bN9LARv7X7t27/f39mUxmbm6uYOWRI0fSMonP57u7u6urq9vb2zs4ONCfLHpCePXq1YJITExM+Hx+REQEAJw4cULQzpIlS9TV1RMTEwHg0KFDguW2traenp6EkO7duzcs2Hbs2AEAtGZet26dvb09XV5SUsJkMmfPnk1PflJtXhDSnz4qMjKy0RsVHBzc6MOaPHky/ZlqVBA+e/as0YdLQ01OTqYFoeDIHZ3QZf369Q3f+Z49e5aXl7NYrKlTp1ZVVRGEEOqwxOv+H0lJSVdXV8FtDADA5/OzsrJkZWU1NDTokuLi4pqaGh0dHXojAb3epmEj5eXlJSUlurq6De/qqaure/PmjZycXMPbKlDbKi8vf/Tokb+/v+ATbM6kVfn5+SdOnEhNTS0oKHj69GmTM7m9fv2ay+WGh4cPHjyYLqH1FX2sqKjY6A4uOTk5eo0lANCrT8vKygAgKyvr5MmT6enpxcXFSUlJ9BJNAKAXXwkeDx48OCgo6IcffgCA4OBgd3d3VVXV6OjoXbt2NexlxowZEyZMAAB6gZmgO7rT9nENe4yLiwMAV1dXwRI3N7cNGza8evXq7t27vXv3pjcONRQfH89kMpctW0b/pG8FrUnej4duO/pccXFxW7ZsuX//fm5ubm1tLQBUVVXRTCsrK8vJyZk1a9b7r0pOTk5NTW34+QJAVlYWHR6J/mpRUlJSHA5HX1/fycnp1KlTCxYsqKiouHLlCh3Tn2ZFnz59GrVPj0EsW7ZM8OkDQGtGj2y3kpOTZWVlmxxchMlkCt5J+k2nl03+9ddfx48fT09PLykpqaiosLe3p+s0/Dfl5cuXAECvxmzUHQD4+fn5+fkJFlpbW39ofTab3WjIKxUVlZiYGE1NzYb3On711VdhYWH0Rt/Dhw+bmZk9f/781atXNJFkZWVHjRp18uTJzZs3A8DZs2d9fX0ZDMbHg5w5c+bMmTPff1sabqbgbQGA8+fPjx8/XhDkkiVLduzYcfHixcmTJy9evNjAwOD9plqpYSSysrKN3ij6w3vx4sXAwMCUlJTCwsKqqip62WcjdHttbGwES7766isAEAxDKrhpnG5vw++XtLR0bW2tvLz8ihUr/P39L1++7Ovru2TJEnqzKEIIdSziVRAWFRVpaGjs379fR0dn5MiRZ86cWbx4cVZWFgB4enru3bt37ty5V65cIYQYGhqePXvW3t5+9uzZt2/fTk5Otra2HjlyZHZ29smTJzkcjrKy8vHjxz09Pfl8/tq1awMCAiorKwHA2dk5NDS00eAEqE28e/eOENJwgIRPun///pAhQ8zNzYcMGaKvr5+VldVkQUhHcRg4cKCVlRVd4uXl1Wj8mE8KCQnx9fXt1avXwIEDjYyMEhISPlSv+vj4TJo0KTY2VktL6/bt23/99RcADB48+P3B0AU1WGvQzJSRkREsocMelJWVVVdXNzmWSUVFhYKCgpeXl2DJ+PHjG42BgVqD3mbWo0eP/fv36+vrp6SkNBxqX0pKisFgNJmBsrKybm5uoaGhjRbSc4xN8vHxmT9/fnp6+v379zkczpgxY6CpHVyK5smFCxf69+8vWPj+ap0Am83mcrl8Pr+Z3/Rffvll48aNa9asWbdunays7NKlS7lcbpPNCv7//vKTJ086ODgIFkpISNAP7v1hewwMDHbv3t1oYWRkZF1dXcMlHA6HxWLRAikyMpLet3z16lVBoTtp0qSgoKCHDx/y+fyMjIyJEyd+JEgaRnBwcMMZKT8+pFBaWlpMTAw9U039/vvv06ZNCwoKOnz4cFBQED0FKjy2trbvv1FHjx6dMWPG8uXLv/vuOwUFhc2bN9PLZRuh7wCHwxEsoW/vh0beatLWrVt9fX1PnDhx6NChoKCgZ8+eddzBqxFCYku8CsKGeDze6tWrjx49am9vf/78+enTp0dGRq5aterIkSMlJSUeHh6LFi2il5cI/PrrrytWrEhJSWGxWBMnTpw5c2Zubu727ds3b968a9cub2/vxMRET09P2qyINqsz09bWZrPZ9Cojqqamhj5gsVhN7pxt2rTJ1NT00aNH9Hh5RkYGLbEa7eDSERe7devW8OD95/L393dycrpx4wZtPDo6mp6Eed+oUaPk5eVPnz6to6MjJSXVykm3PrmzTrcuMTFRsI9ILws0NTU1MjJq+H5yuVz6lpqYmFRUVEycOFFwkpMqKChoTahI4Pr168XFxYcPH6bnEwSZTElJSenp6T158kSwhJ7KAAALC4vw8HApKanmD2Y4fvz4JUuWhISE3Lt3b/DgwfSQCk2G6OhoOvyJoAtzc3MGg/HixYuRI0e2chvbOQsLi7q6uidPnnz99dfNWT8oKGj8+PFr1qyhfyoqKpaUlLy/Gj3C8vTpU8FInvQrRt/YjIwMb2/vhuvTO9ufPn0qGC0zPT39IzGXlJQkJSUJxjK9f/++mZkZi8XKycmZM2fO/Pnza2trV65c6eLiQk98DRo0SEtLi97/bGNjQ3uhI7I8ffp02LBhDYOkY4pmZGQIzvh9UmhoqJmZWaOjRT169PD39/f09Ozfv/+9e/dorlZVVdGLC6qrq+mgzR8hLS3NZDLphZoUPbDVTCdOnOjfv/9vv/1G/xScHqT/EAgO1dHtffDggeBkb2RkJIPBoPfQNr87a2vrLVu2jB492sHB4c6dO41Gr0EIofZPrCemDwwMdHV1VVJSmjZtmoqKytChQ1euXEmHqB4zZgy9Eb/h+kOGDNm6dau+vr6Ojs7UqVMLCwuzs7P//PNPDw+PhQsXqqmp9e3bd9q0aadOnWqyOEGtxGKx+vbtGxgYSGeMePfu3aZNm+hTxsbGtbW1MTExAMDj8eiAHHQdeXl5uhOQnp5Ob+8BAHplL62LAMDAwMDOzi4gIEAwhUN2dvaH5qX4kHfv3ikpKdHyLD4+vskD0pSsrOzIkSNPnToVHBw8cuRIeXn5z+qoEXo6WrAt73NwcNDS0tq8eTO9trO4uNjf379r1642NjYDBw58/vx5WFgYABBCtmzZQs+g0ruGvv/+e7rfRgiJjo5uTZCoEbpnHBERUVVVde/evenTpzdaYerUqVeuXAkICMjKyrp+/fqcOXPo8gULFhQXF0+ZMiU2NjY7O/uff/759ddfP96Xqqqqu7v74cOHw8PD6QkiAPjmm280NTUXLVoUFRWVmZn5008/0TtydXR0vLy8tm3bdvz48ZycnLi4uJ07d37k9GPHNWrUKF1d3ZkzZ9IJNh4+fBgcHPyR9VVUVOLi4goLCwsKCvz9/cPDw5tcrV+/foaGhitWrIiKisrNzd26deuFCxcAQEdHZ/To0b/++mtISEhBQUFCQsLOnTtfvnxpZ2dnbW29du3aO3fu5OXl7d69+9ixYx+KYcKECWpqalOnTn369GlWVtbGjRtv3769cOFCQsjs2bM1NDT8/f0DAgIMDAx8fHzoUQYJCYnx48eHhIScOXNG8Om7uLgYGBh8++23jx49ys3N3bx5899//w0A9PbjLVu2nDlzhgYZEBDwoQNb1Pnz5xteSlBWVrZmzZpHjx6lpaWFhYUxGAwzMzN6Hea+ffuKi4tfvHgxYsSI5hSEFhYWISEh6enpOTk5GzduPH/+/Mdf0pCKikpqampmZubbt28PHDhAbwgEABMTE0lJyZCQkOTk5NjYWDMzMzc3t40bN/7999+5ublnzpzZtm3b6NGjG07T8nFVVVU//fRTVFRUWloafQ8FtTpCCHUgYl0QNryITl5eXnBXGADIycnRUUMari+YdEjwuKSkJCMjIzo6utf/O3PmTF1d3efWEqiZ9u3bp6ioaGlp6erqSg9yU97e3oaGhv379x8wYICBgUFmZiY9JDxv3jx69NfFxcXBwYGeKwMATU3NCRMmrFu3ztraml7BFRQUxOFwzM3NHR0draysjI2NG12V90kLFiy4ePFi3759nZycBg0a9PHdgkmTJqWmpt65c0ewi9Zirq6ulpaWo0aNsrKyavIMp7S09KlTpxISEgwNDR0dHU1MTPLy8k6dOsVisZYtW+bq6jpq1Ch7e3tTU9MTJ07Q6tTOzm779u379+83NDR0dnbW09MbNGjQmzdvWhkqEvDw8JgxY8acOXPk5OTGjBmzatUqejKW8f/Wrl27aNGi9evXGxgYeHl5/fjjj3RY/D59+pw9e/b58+c2NjZ6enpTp07Nz8//5O41vX6BwWCMGjWKLlFUVLxy5YqUlJSTk5OhoeG9e/fWrVtHnzp8+PD48ePnzJmjq6vbo0ePkJCQqqoqYb4ZoqGoqBgeHq6uru7i4qKlpfXNN998/KjHjh07CgsL6S18jx49WrBgQZOrSUlJXb58WUVFxcnJSVdX98KFC4JzrUePHh0xYsSUKVO0tLSsrKzOnDlTXl7OZDIvXLhgZGTk5uamra194MABwXGu92loaPz77788Hs/e3t7AwGDnzp3+/v5+fn67du0KDw8/duyYrKysnJzcyZMnExMTBSczfXx88vLy8vLyBCcnpaWlw8LCFBUV+/btq6enFxYWJphT/vjx4x4eHr6+vjTIc+fOfeQm4dzc3KioqNGjRwuWpKamnjt3jv7Y7tu37/fff+/Ro8dXX321du3abdu2qaurDxw4cPTo0Q0vSf2QP//8My8vz9jY2MDAID4+/v3ZKT7i559/lpGRMTQ0VFVVPX36NB24FQDU1NQCAgJCQkK6dev2/fffA0BwcPCAAQPGjh2ro6Pj6+vr6el55MiR5neUlpZ28eLFPn36mJiYBAQE+Pv7N2fTEEKovWE0qnk6t4b3EA4fPjwqKkpwsZCBgcHgwYMPHTpE/9ywYcP69et5PF7Dewi7d+8uKBJOnz7t7e1NS8Fp06Y1ukSkT58+rTztgz6kpqbm5s2bWVlZtra2JSUldOqFPn36lJWVXb58uaCgwN7e3tnZOSIiwtDQ0MzMLDo6+saNG9LS0qNHj5aQkHj06BHd9eHz+deuXcvJybG1tbWzswOA6upqOgiturq6o6MjHWrl4cOHpaWl7u7uggAeP34smDcMACoqKv7555+vv/7a0NDw/v379+/fV1BQGDNmTE1NDZ3K79q1azIyMk5OTg23gsvl+vr6RkRE5ObmfmjadwCorKy8cuVK7969BQMVREVFlZSUDBs2jM7A4ejoCABVVVX//PNPdXW1s7OzkZHR5cuXNTU1e/fu3bCp0tLSq1ev0smXhw4dSmcvBABCyIMHD+Lj47W1tendj15eXnSovYyMjJs3b1ZWVhobGw8cOFBGRqa2tvbSpUt2dnaCajw6OjonJ8fT07MVH6n4KikpKSws7Nq1a6NRixoqKChQUVF5/z6uoqIiCQkJwezen0SnHgkJCWm0vKampqqqqtEoNQBQW1tbUlKirq7eiWelp6qrq7lcruAb8REcDofOqN6cO5lramrq6uoUFRWXLFly+vRpOkIvANTW1tJ/iRp98evq6t6+fdvMYclKS0srKyu7dOnScHiVj5g7d25MTEyjmyAAoLq6msPhKCoqLly48Ny5c4LrJGtqaoqLi98PspHdu3f/9ttvaWlpjS5cr6yspFPXNAyvrq4uPz9fW1u7yWy3sbGxsrJqeC8ilZ2draio2JxPpxE67bC0tDSdIrLRU1VVVQ3brKmpodX+Z909KFBVVVVcXPyhTUMIoQ7gyw9sKkKCeQjpNXJ0CiZKX19/xowZgj/Xr18PADweTzAPoZWVFZ3IiKKzEtHd6IkTJ37JrUACV65cAQA631eH06dPHz8/P1FH8R91dXUSEhKCKTFQp1FYWCgpKXnu3DlRByKOhgwZQqe2ExUOh6Opqblr166PrOPm5ubs7PzFQnpfo2knEEIIfUl4NKu1fHx8du7c6evr6+HhAQApKSlFRUUNx5FD6H2ZmZlRUVFbtmwRbRjp6em3b9/28vKSlZUlhGzfvp3L5dKzjqgzOXv2rIyMjGAEESQ8fD5/2LBh/fv379Wrl7y8fHh4eEREREBAgAhDoiMYNRwnhsfjubu7Dxw4sFevXrKyslevXr1x4wad2l5Uli5d2uTMEAghhL4ALAhb6+eff05PTx8+fLi6ujqDwXj79u3ixYuxIEQfd/r06S5durw/D9gXFhsb+8MPP8yaNatLly4VFRUVFRXff//9wIEDRRsVanPh4eE+Pj4Nb5NGQsLlcseOHRscHLxv377q6mpjY+OAgIBFixaJMKR79+55eXk1vBiVBhkSErJ3797q6moTE5Ndu3bNnz9fhEE2OfMhQgihL0O87iHkcrnPnj0zNjaWlJRMTk62sLAQjBPz8uVLRUVFwQzdubm5OTk59vb26enp5eXlNjY28fHx0tLSglFJSkpK0tLSrKys6D5WUlLSq1evlJSUunfvjnPTfzHFxcXPnj3r3bu3kpKSqGP5PDExMYQQW1tbUQcCPB7v1atX6enpCgoKlpaWGhoaoo4IIYQQQgh9OeJVECKEEEIIIYQQEhDraScQQgghhBBCSJxhQYgQQgghhBBCYgoLQoQQQgghhBASU1gQIoQQQgghhJCY+j8sjD9/yPxuHAAAAXJ6VFh0cmRraXRQS0wgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAISAWAeIGRjYGDSDNzMLmAKUZ0GiYuEMGiGZmxCJAmMHOAGYwMhFWw8TIAbGaiZuBUYWZgUmLiYmJmYeBWYWFkSWDiZE1gYlNhZmJR4WFWUCBWVCDiYU9gUVAgZUjg4mNN4GNP4OJnTODiYMzgYsvg4mLP4GbN4OJmy9BhJmVmYGRRYCNlYOTnYWRjYufjZebT/wR0CZGeKicvmtqf3B/nz2Ic+jxdPto17n7QOxXiRb7vYpPgMXnOHy1f1fL4ABiP/+g7fAxZxpYzZSGp3ZTC8/tB7Ezd77cfyWbF6xefl2MQzzrabD4lFuz7O+8tTwAYgfk6DqcF4Kwba6qHUio+AZWkzej+4DpN809IHb0idb9Up8cwXYtygk4UJLZADZzqlHjgWtH9oDVMysd2M9Qlglmrznl4TC/ZSJYTWPXZ/svNQlgvWIAr4RhqD+CbNsAAAHlelRYdE1PTCByZGtpdCAyMDIxLjA5LjUAAHicfVTLjhQxDLzPV+QHuuW3k+M8Vgih7ZFg4IoQQmIvnPb/hd3DkKyISM+hbZft2FU9+voDvn7/+e3l1/FQ8ny8fHh5LX8PXQ7hh//8WmvlCwPA4bnkSzk9vXu/lfPteHp4ztfP2+1TwVoIyv68xR5v1+eHB8u5wOoIglZwRVQiDw/sp2dS4CJczbiWBVYGR4cJkAMYcScgkUhRM4ib/AuUvWJDA5ZCEXarNsFp4GiNmHrLytS4wqyz7aOIVBIvC66GVAUnQM8r4lpJm2dclWQ6dA0gZ0WkvaJWQ5hVbPssBM2bloXWBorCEyDCPo0Hki2RtaH7FJnMBMDA3DS7N1KVNoMmOYusbMTquSNAYJcZlMuWtUA0+sZwwCBAM2Tys/BKQWCaAWCaEol6b58tSbK6uLjOFop2X73mBXcdNcQ2h3rclFdkZ8/2yCGBGe1xp2sKCchMIkNDSFM2n7bLG+nfP4bTdbv0jyEf6pqnMLkrO6PS9RuyLdplmqZ1MUZm8S65NJG7sqJSzNgFRGnXQScSJeugBgy7J2DirbSBWMkuMvC3O2ygSbLvSIZEYxxXLnsnHXZ79/QqLT00NCL449Fx0eNa0378P8X74TeGde/ndN6EAwAAAXR6VFh0U01JTEVTIHJka2l0IDIwMjEuMDkuNQAAeJxlkU1OAzEMha/CspXS4H8nrVgg9tADsIFRFwjRIiisengcWMXMYqJ537Mdv7m/vlvd3OFjvB/W9wstuMRD679zwavLaoMVRLEVrsAgZbeB6gQkUrCqGVDZhYIgaKEgKnHZYe1owIUqgFv/FYDMoouGEA6uyM4+StialR3VOLSV6E+d2yjBZiZDYHD0MUekkXiJSxlSk2Ei6FFE0V9RRhuH7jKU1tF9TIoq5FGkzTA2wNpIuxeoqiTkv5JC7DCGdcSuQ4sbgbmNwk6qGpJECC40JHEJNiQ2YhuV0SF2GiJXimw4tgNgorIuT+fT2/7j9L6F+vn1/H5aXg/neruPz8Px++XjdHw7HM9VtzhjnLBvacaUMM+YJ4y2lZlL5jpzzdxmbpn7zD3zNvOWeZ95zxxTegj/HDlA/OdIGSLlX5BSRM6GFCNKNqQcUbMhBYmWDSlJnKPUyw+7ThamD/6GIwAAAXN6VFh0cmRraXRQS0wxIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAACEgFgHiBkY2Bg0gzczC5gClGdBomLhDBohmZsQiQJjBzgBmMDIRVsPEyAGxmombgVGFmYFJi4mJiZmHgVmFhZElg4mRNYGJTYWZiUeFhVlAgVlQg4mFPYFFQIGVI4OJjTeBjT+DiZ0zg4mDM4GLL4OJiz+BmzeDiZsvQYSZlZmBkUWAjZWDk52FkY2Ln42Xm0/8EdAmRnionL5ran9wf589iHPo8XT7aNe5+0DsV4kW+72KT4DF5zh8tX9Xy+AAYj//oO3wMWcaWM2Uhqd2UwvP7QexM3e+3H8lmxesXn5djEM862mw+JRbs+zvvLU8AGIH5Og6nBeCsG2uqh1IqPgGVpM3o/uA6TfNPSB29InW/VKfHMF2LcoJOFCS2QA2c6pR44FrR/aA1TMrHdjPUJYJZq855eEwv2UiWE1j12f7LzUJYL1iAK+EYahXdlvqAAAB5npUWHRNT0wxIHJka2l0IDIwMjEuMDkuNQAAeJx9VMuOFDEMvM9X5Ae65beT4zxWCKHtkWDgihBCYi+c9v+F3cOQrIhIz6Ftl+3YVT36+gO+fv/57eXX8VDyfLx8eHktfw9dDuGH//xaa+ULA8DhueRLOT29e7+V8+14enjO18/b7VPBWgjK/rzFHm/X54cHy7nA6giCVnBFVCIPD+ynZ1LgIlzNuJYFVgZHhwmQAxhxJyCRSFEziJv8C5S9YkMDlkIRdqs2wWngaI2YesvK1LjCrLPto4hUEi8LroZUBSdAzyviWkmbZ1yVZDp0DSBnRaS9olZDmFVs+ywEzZuWhdYGisITIMI+jQeSLZG1ofsUmcwEwMDcNLs3UpU2gyY5i6xsxOq5I0BglxmUy5a1QDT6xnDAIEAzZPKz8EpBYJoBYJoSiXpvny1Jsrq4uM4WinZfveYFdx01xDaHetyUV2Rnz/bIIYEZ7XGnawoJyEwiQ0NIUzaftssb6d8/htN1u/SPIR/qmqcwuSs7o9L1G7It2mWapnUxRmbxLrk0kbuyolLM2AVEaddBJxIl66AGDLsnYOKttIFYyS4y8Lc7bKBJsu9IhkRjHFcueycddnv39CotPTQ0Ivjj0XHR41rTfvw/xfvhN4Z17+dKY/1CAAABdXpUWHRTTUlMRVMxIHJka2l0IDIwMjEuMDkuNQAAeJxlkU1OAzEMha/CspXS4H8nrVgg9tADsIFRFwjRIiisengcWMXMYqJ537Mdv7m/vlvd3OFjvB/W9wstuMRD679zwavLaoMVRLEVrsAgZbeB6gQkUrCqGVDZhYIgaKEgKnHZYe1owIUqgFv/FYDMoouGEA6uyM4+StialR3VOLSV6E+d2yjBZiZDYHD0MUekkXiJSxlSk2Ei6FFE0V9RRhuH7jKU1tF9TIoq5FGkzTA2wNpIuxeoqiTkv5JC7DCGdcSuQ4sbgbmNwk6qGpJECC40JHEJNiQ2YhuV0SF2GiJXimw4tgNgorIuT+fT2/7j9L6F+vn1/H5aXg/neruPz8Px++XjdHw7HM9VtzhjnLBvacaUMM+YJ4y2lZlL5jpzzdxmbpn7zD3zNvOWeZ95zxxTegj/HDlA/OdIGSLlX5BSRM6GFCNKNqQcUbMhBYmWDSlJnKPUyw+7ThamaclhQAAAAWp6VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAEEgFgbiBkY2Bg0gzczCxpABopmRBGB0ApBmZEZSAGM4kMBghxjHDKcVtMDGsrA5QOyBSXAzMKkwM/CosDAIaDExMfHwM/JoMDHyKjAxazAx8SkwszAwsyqwsmkwsfEpsHNkMLFzJ3DwJ3ByJXDyZzBxcWcw8fJpMPELqDCLMLMx8vIxMfCwMjPxsbGysXNzcfJziF8DWQsPhwL1+3bbpZT2gTgzVvTaMx/VOgBiM7p/tNdvzrIDsWvcVBy0Q0/Yg9h3aj/af9xl6QBiH+hqdNisuwosnsXa6bDzvDTYHJHFkw4oecwAi09t9zhw7/ZJMNt8huyBhVfz9oPYJ8OqDvT+WwFmPxSbfyBwSgtY75cQe9veDWfB4vcmKTuo/BYEu6eyysZBTSgULD53A8uB0ywsYDM1T8jvd9FJB7PFAC2iUp92fedNAAAB5HpUWHRNT0wyIHJka2l0IDIwMjEuMDkuNQAAeJx9lLtuHDEMRfv9Cv3ACnxKYuFiH4YTJJ4FkrXbIHCRuEiq/D9CzmQtGRAys8WIOLwUyYttP369fHv5+f3192GX4vly/vT6J709dN55HP7zM7P0zACwe0zxkY73Dx+XdLoejrfI6fK0XL8mrAnNc/x9zx6ul8dbBNMpQRbWJi3tIaM2BvUQrE9PJQcxI5QKDlIupVGdgbyCrYlVr56JDLBMOHGOsroOkCdoUe9twuk/vVKUPcGAgGd1i3OSQRo2bzwzmRJMuLpy1NAQt44JywxsDu4layOBUMRmFXACWoCckTkm4q3UCkQTECFIylJIUKO4+TWlzlDcRP2S6sA+GgIqbYbSdlGrjnKokjYTmaGclghLqZ7logWK6ax5FCd9Pep+sLgzNTBfwITUlfSCVteeGhPDeNF0+vBwh+n58PlO3rLKNgqo7MoOK2qxaXvV9V02ZiYBGDDgzCn3y/mdtze3Hy/Lubs9Xu6eXgPcrbtGarcoRYS7FTHO0i1HniPdWa7t8+gGQpfQbpM4lsEM5Ap12DiGhA57FdewYXlxRhp2JKFahlVI6CIOY94iZRinrLW6TFubGivHVT21TyJGOw4yzre/HP/e/QUw0+jJi8z2+QAAAYF6VFh0U01JTEVTMiByZGtpdCAyMDIxLjA5LjUAAHicZZC9btxADIRfJaWNrNccLrnavYMKQ/3BhZEmSOEcVATxnQznksoPb9JXLaNG0nz8Gc6yYF74frmZD/fHcvSn3B7m5TB/P3z9wcu84Mv7DXJrtWri3IlJ0p6z1toS7KVIe+fSW6LM3Ak17SlL0SYt3VGGtkKa9vZZWSBe16kQummcaSrskkKrzXBJrI69tRfuMplWcgdU0x1yYWKXJPcJKl7G2rrIp6bNVpgxtH7tQ/Hx5nSaiN0YSZ1gu21UpdrV7YNMS7bZrvLhdp+afVe4kdfY6eIn2rZWuJAZFWPouJ7IfrXYcJOSm+zK6TY9X7bT49v2uqP85+/P1+34e73kh0f7Xc//fr1t59N6vmTZYcQImEfMAZcRl4BlxBKwjlgDriOuAU8jngaMumsjb6G9j7jHXEJu+C+4mFyMDiE7xPAQ0kOMD5JP28vTdvn2/LKej+tVGntipgihIqaKECtCru8f2VMN30DgnL4AAAFqelRYdHJka2l0UEtMMyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABBIBYG4gZGNgYNIM3MwsaQAaKZkQRgdAKQZmRGUgBjOJDAYIcYxwynFbTAxrKwOUDsgUlwMzCpMDPwqLAwCGgxMTHx8DPyaDAx8iowMWswMfEpMLMwMLMqsLJpMLHxKbBzZDCxcydw8CdwciVw8mcwcXFnMPHyaTDxC6gwizCzMfLyMTHwsDIz8bGxsrFzc3Hyc4hfA1kLD4cC9ft226WU9oE4M1b02jMf1ToAYjO6f7TXb86yA7Fr3FQctENP2IPYd2o/2n/cZekAYh/oanTYrLsKLJ7F2umw87w02ByRxZMOKHnMAItPbfc4cO/2STDbfIbsgYVX8/aD2CfDqg70/lsBZj8Um38gcEoLWO+XEHvb3g1nweL3Jik7qPwWBLunssrGQU0oFCw+dwPLgdMsLGAzNU/I73fRSQezxQAtolKfaihAhwAAAeR6VFh0TU9MMyByZGtpdCAyMDIxLjA5LjUAAHicfZS7bhwxDEX7/Qr9wAp8SmLhYh+GEySeBZK12yBwkbhIqvw/Qs5kLRkQMrPFiDi8FMmLbT9+vXx7+fn99fdhl+L5cv70+ie9PXTeeRz+8zOz9MwAsHtM8ZGO9w8fl3S6Ho63yOnytFy/JqwJzXP8fc8erpfHWwTTKUEW1iYt7SGjNgb1EKxPTyUHMSOUCg5SLqVRnYG8gq2JVa+eiQywTDhxjrK6DpAnaFHvbcLpP71SlD3BgIBndYtzkkEaNm88M5kSTLi6ctTQELeOCcsMbA7uJWsjgVDEZhVwAlqAnJE5JuKt1ApEExAhSMpSSFCjuPk1pc5Q3ET9kurAPhoCKm2G0nZRq45yqJI2E5mhnJYIS6me5aIFiumseRQnfT3qfrC4MzUwX8CE1JX0glbXnhoTw3jRdPrwcIfp+fD5Tt6yyjYKqOzKDitqsWl71fVdNmYmARgw4Mwp98v5nbc3tx8vy7m7PV7unl4D3K27Rmq3KEWEuxUxztItR54j3Vmu7fPoBkKX0G6TOJbBDOQKddg4hoQOexXXsGF5cUYadiShWoZVSOgiDmPeImUYp6y1ukxbmxorx1U9tU8iRjsOMs63vxz/3v0FMNPoyVjY3sYAAAGBelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wOS41AAB4nGWQvW7cQAyEXyWljazXHC652r2DCkP9wYWRJkjhHFQE8Z0M55LKD2/SVy2jRtJ8/BnOsmBe+H65mQ/3x3L0p9we5uUwfz98/cHLvODL+w1ya7Vq4tyJSdKes9baEuylSHvn0luizNwJNe0pS9EmLd1RhrZCmvb2WVkgXtepELppnGkq7JJCq81wSayOvbUX7jKZVnIHVNMdcmFilyT3CSpextq6yKemzVaYMbR+7UPx8eZ0mojdGEmdYLttVKXa1e2DTEu22a7y4Xafmn1XuJHX2OniJ9q2VriQGRVj6LieyH612HCTkpvsyuk2PV+20+Pb9rqj/Ofvz9ft+Hu95IdH+13P/369befTer5k2WHECJhHzAGXEZeAZcQSsI5YA64jrgFPI54GjLprI2+hvY+4x1xCbvgvuJhcjA4hO8TwENJDjA+ST9vL03b59vyyno/rVRp7YqYIoSKmihArQq7vH9lTDd+7f5QDAAAAznpUWHRyZGtpdFBLTDQgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRzyADSzMxAhgaIwcLGABVghzAYmWAy7BCaWQBCM3EwQGhuBsYMJgbWBEYmBUa2BCZ2DSZmFgUW1gwmFrYEEUZWBkY2FlbxLKBSRrj1/yevtysxm70fxFmzxtp+Wk6hHYi9ehqHw9IaV3sQ+/VzjwOs/Qxg9rnsG/v3JT21BbH5b0/ef5VhKVjvE3G2/dLf28Bq/sgEO+h7G+0DscUAWrkqAWvF5T4AAAEuelRYdE1PTDQgcmRraXQgMjAyMS4wOS41AAB4nH1SyWrDMBC9+yvmByxm0Xr0EkopsaFxew0hhzRQCoX8Px25uEpAdCTBLE9PMw/x5ftyPH3e+uP543T96hrI9jq+XG/wZzw2msd/dkoJ3gURmz1kB/rd0/MEw9L1W2aY36blAFEX5vWI7JZ5v2UIBkAjlhN7aMkwsVN+NLhaucorMIgQWnVYXPC+ghPFsSGxlHI5BLIiFZyFCVpRYCLntO6QKXIF6JRQG/MJQ9K0IWJEVwH6zEhG6YhlnSUmjLGCDHCAVp9kichABp21VBsmwgxiOEVvbb5BwRLV3t5N44Osv0L38zQWoa0eLnLm0BfVtAZSxLEahiKB1iCWQTOZK9NoUKjiGob7zu77yPH2VdRvfgBPm38+pxWYNwAAAOF6VFh0U01JTEVTNCByZGtpdCAyMDIxLjA5LjUAAHicXc0xbsMwDAXQq2RMAFngJynJstGh6N7mCo3hIQhiB4nbKYcvm42aJP1Hfn1OWKZp//H2dXhg99x3EiEVOVBMxOg5jB1irlSqRQATpVeElMDBLtxXqmGkKMqV8yuCnZYUEZDaHksq2SK2cmULSoGKhFEi1z5r6Ky7KPDfbT+z9MQBkZLa+CF8b+v1eF9vA8XHz+m2Tpd5i+9He87L7/m+Ltd52WIa4BmOoQN759bFu7Su3rX15D15H7Ln3HDxXJr25x9Z7X2BTNnSZQAAAWB6VFh0cmRraXRQS0w1IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAAEgFgTiBkZ2Bw0gzczM7mABohmZ2SACLHAJhgwQzcTIBmEwM3IwgGWYYCoRNFQBggFRyQLXwWACpBmZWNgYEkAMZg4GBSDNxM3AmcDAlcDArcDInMDInsDEnMHExKLAxJHAwqrAyqbBxM6RwM6VwcTBmcHEzaPBxM3LwMvPwsjHzyDCxMrAycHOxcrIzMTBLn4KZCrckwVbOvbXLqncA+IY1l+3L4owcgCxV7QYO3yKUrIHsVXXOjr872QHi1syVzg8Sr+6D8Q+xZjgUOzwfj+IreswyeHTY6sDIHbDe0X7w5tvg/VKrVtpf3LzUTsQe8msHrs4BX2w+jfHIvbbfN4NVrOgVvKAW7ApWLx0qeyBE7a8YHOMK7MOsMkftwWxxX1OHPDbGQY2x+/c/AOXOyTA6sUAlsxOWXgBlukAAAHLelRYdE1PTDUgcmRraXQgMjAyMS4wOS41AAB4nH2UTW4bMQyF9z6FLmCBf6LERRexnQZBkDHQutkWQTfNpqsg5y+pwJGCCtWMMSPpI0fvkTC91eefv34/v/w57FKMb6eHl9f0Mei083X4z21m6YkBYPeY4iUdbu/ut3S83ByuK8fzj+3yPaEmrB7j12f25nJ+vK5g2tIeM2gDqGkPGbAQe1iGPkYsOYlZGxe1RLk2VWkLjtPRtxuIVfJtZaHY/ocTz8cZSNHYAxBrtVW+0rlWC1o/oKCfdQWqf5hzAUCw0NTUsMgCrOmcJJcKzJL2lI0AlRdg84yhgIqia6+oQivOnMMcGKlvc1NcWojQE1IVxa5Fm0BbaUF00oEmWlvx5OLG68pGpCApszVyIz2mQmOgFcou3FFxRdSVk9fddIVKZOWsyipdileTlppKkJqpGHUpBObGr0iNz0s2YwvjIRcrjVfyb7fTpy5979vDeTuNvhX/4dSdfY6jCzEuGt0mwYymimkbrSMeIaNB0KdltEHs2qg2erxORSVPUKfSiYfYVKCYj6N5GSSSzGZTYMiTqdhXZDIPA/Tn8evdl5Eszhq4zt7NTsX8+u/g77u/q3DZDOAnlK4AAAFpelRYdFNNSUxFUzUgcmRraXQgMjAyMS4wOS41AAB4nF2QvU4DQQyEX4UySBvLP7te70VIQWlSkfSIAk4pEOKCQqDKw+OlW3d384093tkdnnfb7Z5fdquHw/1C88zPy/5lmVdPOxdmnunutlorcGncEgJj00Zps87QmjRJa4TSiom5JqAqWtyGrTLX7mOQZj7qvoomyP9aVmFO/sGozRUCVEPqLqTCUl1DsKzVSiK3m2jaIPhYUXKlkmZfReCk1MRQTT15I4Cs1Fwgqn4Tg2FuNfXRPiBgtXDPyeSJ1pWCSB5NYP4035GhVBTp5zVG0h7Tc8W3iCn167yJmpVq36SW0Szdp9fr+fN4OX9NCN8/b1/n+eN0hcej/56W3/fLefk8LVeQiUZMAfOIecB5khFLwHnEOeAy4hKwjlgDriOuAduILeA24hYwhdpo7I3cEZsbqysThe5oLI8mCu2RREPoj2KBFBqkUOHtD1XQ+VXSVplZAAABBnpUWHRyZGtpdFBLTDYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRgGGBCDNyMjmoAGkmVnYHDJANDMjNgZECbuDBYhmZGaHCDAj9EJpiJnM3AyMDIxMGUyMLAlMzAnMnBlMLKwZTKxsCaycCWzsCewcGUwcnAkcXAwiTGyMLKyczEA5Vk4OdvE+kHa4W4/3lRxY+Tx+H4jDPFf0ABt/gDWInXz/yf4I3s32IHbu+9n7QovOg9lKGzfv97kxdT+InaC22Hb+syIw+1j0PPuLEz6D2ewqCg66KT1g9hkJDodvX7bagdjCUor2zCeegNm96q4Oc5cdBJspBgBe1jma7jEZawAAAWZ6VFh0TU9MNiByZGtpdCAyMDIxLjA5LjUAAHicfZJNSwMxEIbv+yvmDzTMV5LJsdstItIt2OpVxIu9iIeCf99JS80WgskuTN48+Xhnouef77ePz/fT1zhAbc/T0+kMf42nwXX85yulwKsg4rCDGsC4fXicYXNcjzdls3+ZjwcgAmJf4/2eXR/3u5tCcICVBGNiUlhhYLIUM2DAS2trGTaw4iCSM9plXijHDigVpJDNMGWgIMVMe6BWEIOgxuR3DYl9Qe/oeN1RUUylRpQxJemQyUlXc6nTvndRM+EOmGH2E1ky5VR3LMjWtW0OcojI5Il3EEsy7IHFj+ZAnKIn0l3FKNZzTXi5Y+Lixj1QTSbWA8lBCWgYpfhlI7GV3snbebqr6bXK436eWpVr51ZK9V9aweowtrJolVryq0CLFKtrqSVSXcotXXVIi6yoI7Ywr86UhUd1pvH+YqkKtDS3tFLHt8fu8fALuk2g/0LODsEAAAETelRYdFNNSUxFUzYgcmRraXQgMjAyMS4wOS41AAB4nF3QPU8DMQwG4L/C2Eo5yx+J7dxNiIWxEiNigKgDQr2rysHUH0/Clox5H+dN5KdC6+v6/Fa4lMPLsZRC/HA/CKBjioEgEeewMBBrooAgKYmnliRkDhMBZnUKCwGLkbckI7uGBQEtq0qYEHJ0Fw5L1YjisY2RodaxiUHErJUjClm0NifgTEztLpNrsv+75o5WfyXZa8dSUTAmpRopo3p7VDnXsLbFqC4ejuF93y6n23adEb5/Pq5b+Trv8Hiqx/P6+3nb1st53cFm6pkG5p55YOlZBo49x4FTz2lg7Vk7Jp2td+udZu/dh/rccx4XMyyOhs3d/wB2fKuu/nEnxwAAAR16VFh0cmRraXRQS0w3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAABCbD4gbGAUUDIA0IxsHgwaQZmaC0WwOYJqFzSEDRDMzYmOgKWGHCDDjVsrNwMjBxMAExMxAXgYTM08CC2sCK1sGExt7AjtHAjtPBhMHZwYTJ1cCF3cGEzdPgggTGzMPOxsrCxsHJxc3D7v4MpBz4f4Qyhc48O1buD2Is0oz9wCbxks7EHu1zvv9oTuEHEDsPKmZ++84xu0DsZ+fPrU/2/bqfhA7UYBt/8QGvQMg9r+bOfZXlouC2RVyK+w/bkkGq7ly0sDhfyADmD1xkadDwowisF1bD7A6fG5nAJtfJqFinxt3HizOkd1o985TH+wGMQDttkLCzo9JVgAAAZl6VFh0TU9MNyByZGtpdCAyMDIxLjA5LjUAAHicfZPLbhsxDEX3/gr+gAU+JEpadOFHUBRJxkDielsU7SLJItnk/5GrMSaaAEIkGyA5ZyRekqMv/9/+/Hv6+/y621BbD8fb53f6XHrcIM7f/GqtdDFm3txTM2h/8/PXRIfzbr9EDqff0/mRxEgi3sH+yu7Op/slIvRIWw2aPOdKHEo0F4XB88LLl93dD19wpRNtLWRO7gVUTMmKrfAFtAZKKF5SEsIFVRPLAIx0aKBUF6m05aCSOZYBma5kQop4Dss9VcsD0hvJIal5yU1eVqAjMoPkgNwUyQE0qPHR5QWgBBOLcHB2KTUWHoAVIC50tascqNY0Ei5ME1mQxCm21GrMbqOrReYjudQCNTC4aB2COqvxiCEpyNaV2esItBmE6pybBskiQzE30/HLtFznZ3+ajn1+tP37fDTX+hQIduy9bjv1hjZXrLcND8l7byJCuXcgIlR6nSNCdVXN5vfDULUISNbViQ0TWZUhNk4+05c5IV0d0yqw1tv85VuDvfkAGQq4kSrUb9sAAAE9elRYdFNNSUxFUzcgcmRraXQgMjAyMS4wOS41AAB4nGWQMW8CMQyF/0pHkIJlO3HigBi6dQOpVZeqAz3dgMrdIXrtxI+vc1tCliTvi1+e3mH/8fryudof1h11trhsY8dP99XGQ0KJySEEEa/e7TYMbIqapMFHYpMINKqIM5RZFoFyQRsEpoRBF01sQJwdYpQcTEIQ9lGTM9PEMbodghkwUlG8/ZfcjsCTD754qeZiZabCqYSiRLQIMWDO6syaEW2IATVrtkSIJbUHErSE5h9S9FpepMh+iShILOTW7jRPw/E2XbcIP79f16n77md4Ptq1H//Ot2kc+nEG4i3BMF3epvn9dOnHrodoSjVB7QTXnFvua+5bHmoeWi41l5bHmseWp5qnlmvNteW55vmhsaZSeuy0rfChQ2pKpLbF+z8W49IPg1nNUQAAAQ16VFh0cmRraXRQS0w4IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAG4g5gHiBkZ2hgQgzcTI7mABpJkZmdkcNEAMFnYIzczOkAGimRjZIAxmRg4GsAwTTCWchhjFBKO5GTgZGLgYGJkTGNkTmJgzmJhYFJg4ElhYFVjZNJjYOTKY2LkYODgZRJhYGTg52LlYGZmZONjF+4CaGeEOVZBkObDmMMMBEOffwwv7T4h8sgexn+aJ2K/1TQGz3R6q7VtVxeMAYle1sTgY81iBxc+Iajt4zlXdD1bj0Opw+J4/mL2b6dl+ub9n7EDsnXp39qV0xe0Dsa9FSOw/u+wWWM27RcYHtheagtliACz7N8jC7b6XAAABY3pUWHRNT0w4IHJka2l0IDIwMjEuMDkuNQAAeJx9kr1OAzEMgPd7Cr8AkZ04Tjy2vQoh1DsJCisqLHRhYuDxsQ+1uUoRyQ228/n/4s/76e3j83T+2gzg52l8PH/D9cRxMDv+86kqvCZEHA7gAmz39w8T7I6b7cWym1+m4zMQAUXzsXvLbo7z4WIhmOAuBhTGxItEpJwAAy6n+UYnKUiiqgUoVKWYtQMm2Jk1F61UTDCuEnY49oAYSKKKQgyWV2vpgNlAK6zYrfZcohTuJRZLHIOUFDF7ZGHRRB2wwAxsiRlVHKzWs/Z6rhbRei5WYPbUjJikl1odtHdbDLNLkayM3CFtFAuaNRPKEh1rpC5KjsZQUSqpOxlaRDrofhpv1vq36O08jW3Ry12tc9GpbY3Nxm05rta2AnaiTZpMzW2e/qptamQO0mYTzaGsBsCG6KpLcpdrJeSl6apUb27diuuX/93k4ReJc6F8ROiKsQAAARF6VFh0U01JTEVTOCByZGtpdCAyMDIxLjA5LjUAAHicXdAxT8MwEAXgv8IIkmvdnc9nXyoGlIWpdEcMEHWoUJOqBKb+eM7Zzlvyvvdky2/P42HC+X1+/ZhowvEw0sP9kSMKY9hBrIiqKewpSkm0RcKiCVsEBQoGiIWksIY9xFy0YrGoKlbrWB2FVDRQRGW10g6jJNSArUOyBcUaYisGSKLbjBMAczuP0E7OW5g1I0hoC6hEltklhCGF9mFX5S2qIJXa1FpFJDyFz3W5HG/LdYD48/t1Xabv0xpfjvZ7mv/Ot2W+nOY14oCesWPyTI7zkDwnv+aBvXM3z55zx+JZOi6eS8fVc+1YPWvH2L0b+ofL938atquIsqUIpAAAANZ6VFh0cmRraXRQS0w5IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4obmAUUDAA0oxsHAwaQJqZCUazOYBpFjaHDBDNzIiXAVUL0csCM4OdAayAkYmbgZGDiYEJiJmB0hlMzKwJLBwJrGwZTGzsCewcGUwcnAqcXBpMnNwKIoxszKxs7Bws4rNA7oI7+KGbmgMDg8J+EAfC5jgAYgdlVQLZDHYQ8WX2MDYDw4xlCPUg8Qv2EPGGpQwMEg5Q8f0wcQgbZo7aASS7DiDZdQCmRgwAUtIrkJm50XwAAAE1elRYdE1PTDkgcmRraXQgMjAyMS4wOS41AAB4nI2Ty07EMAxF9/0K/0Aj20kfWbDoY4QQTCsxw2wRICFmAxv+X9hFaVJEqyaplFyfWvV16t6/Xp/fPl6un00GOh77++s3zIP7THTcWN57uFhEzI6gG2gPt3cDdOemDUo3Pg3nExDrQp1LtjmPx6AQnIBN4WusSsjRlFxIbkCD05CXL83DTRlwhjHB2dBfPIBWQGtqXxE5Ca9yDjogw96jrbe4Qrh8lv/70ECWaUZa56pFRja2WgFrBfdk9AtwoxhCJTdtn1ESI/NdlkuzB8j3mH4Y+sUl+L0W7Tj08VqwPrHterSxuSTTxR7qLGKr9FjGfkgMfLRdYlBFc51IdbTQieQTo0g0Su3gSaWkapoUTqtLa9Fz+D1kn/0ALpSpvJLpVWkAAADuelRYdFNNSUxFUzkgcmRraXQgMjAyMS4wOS41AAB4nGXQPY/CMAwG4L/CWKTUit0mTYIYEAsTIHG6BTFAlQFBGwSFiR9P7/iQbDLFfvwqkefTbLwY1lj3J1uvZpu/8r8zuGd5Ac5XiEoDklGjnMB4p53KNVjeoNcEAnmvy0/iXeMzoBVBUfUX0Rcx+Y58RvxLvweHatulZnlOp6Dhct2dUn2IHUyWfRnb2/6c2ia2HZiAnJExBuJMggvOBWcbSu4ldwqGu5FuuVvpFfdKuoMmHX9S97s9xraOYPsOSziZ8Ny9dBT7RP01IVcqdkr3B522ucsXubZ6AAABFXpUWHRyZGtpdFBLTDEwIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRjSEDSDMzM3IwaIAYTOwQmpkNQrOwOcBoqEKYArhCdAWYDG4GRg0mBiYVFiZmLSZmJgY2ZhYVoEYVFhbWDCYWjgRW7gQ2dg0mdg4FDs4MJk6uBC7uDCYRJlZmFg52NjZWbi5ODhbxWUCzGOEe8DxseGB/nd9+EGd3f/uB598mg9kKRWIHshYq2oPYZ8NT9lcKVIPZFbx1dosXHrQGsS03T7Kz1dsPVm+VvGifTIG4A4jdeHaavc4tfjCbs/Ww/f/vnmC9ByXNHF6lT7EFsQP7LRwSVm4D63WPPmt/v5D3AIgtBgB2OTt8vHHYggAAAX96VFh0TU9MMTAgcmRraXQgMjAyMS4wOS41AAB4nH2TzWrDMAyA730KvUCCJMuWdWybMsZoAlu36yiDscLYLn1/Jqe0TsHMjsGWPuvXiZ/n3/fj93n9/vF1PP2sV1DG8/B0OsNt8LByOf7zmRm8BURc7aFsYLN7eBxhe1hvrpLt9DoeXoAYKPgdn/fs+jDtrxKCLXTcq2oUgQ77jCkxAfY4j3qXYYJOeg6JLUJHPcVoyg0ywFhshohKyfUpUEjWAKU4d5dGlqLrLaMyNsDoIPYsGS3P6mjYMpguXE6RpYQoFqK1QC0hYh/IIwzgsZakcwPMDnqqmknUORZN1qqOuWfqI6uYulpzNmllQt4et5MlBp5rpyxJWiBdwBzUPZdcWFGaJM++E0qQXArPhKixQe7G4a75l+ewmcahPgcuq/acfIbaWPYltX3kK9YmlaPWXrgOUq14OVqtqzhBXOvHjuRFmcgZW1RDnKFl0jJTdJOEIqGFzZLuMrlyvv4nvl/9AaWoraM5a6cuAAABGnpUWHRTTUlMRVMxMCByZGtpdCAyMDIxLjA5LjUAAHicZdBNbgIxDAXgq3TZSpnUf7EdEIuKPeUKLWJRVTAIaFccvs7sks5ipHmf/TTy+2b7uttsMV67Ax3ag/T0eJ4kEyunCTOWUi2tJ8pmViRNkB1UCZeMCxglyMrIWiMKrVi1RFa9WYsYDaMtxmMxomg1xxIBibU1zIWs7Zh7lbSm7FK4FUeFKPsSOcdM/JKQgbQlBeFIogYBYgYyuRaSZaiyLok4VG9NUCpU1PSSPu7zaX+dLyvIt5/Py3z4Pt7z2z4+j+ffr+t8Ph3P96wr7BkHpp5pYO6ZB5aeZeDScxlYe9aBrWcb2Hv2gWvPtWOMuwx3w3+HGy83nO7xB4x5ueOEEi7BAAABFXpUWHRyZGtpdFBLTDExIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRjSEDSDMzM3IwaIAYTOwQmpkNQrOwOcBoqEKYArhCdAWYDG4GRg0mBiYVFiZmLSZmJgY2ZhYVoEYVFhbWDCYWjgRW7gQ2dg0mdg4FDs4MJk6uBC7uDCYRJlZmFg52NjZWbi5ODhbxWUCzGOEe8DxseGB/nd9+EGd3f/uB598mg9kKRWIHshYq2oPYZ8NT9lcKVIPZFbx1dosXHrQGsS03T7Kz1dsPVm+VvGifTIG4A4jdeHaavc4tfjCbs/Ww/f/vnmC9ByXNHF6lT7EFsQP7LRwSVm4D63WPPmt/v5D3AIgtBgB2OTt8USrITgAAAX96VFh0TU9MMTEgcmRraXQgMjAyMS4wOS41AAB4nH2TzWrDMAyA730KvUCCJMuWdWybMsZoAlu36yiDscLYLn1/Jqe0TsHMjsGWPuvXiZ/n3/fj93n9/vF1PP2sV1DG8/B0OsNt8LByOf7zmRm8BURc7aFsYLN7eBxhe1hvrpLt9DoeXoAYKPgdn/fs+jDtrxKCLXTcq2oUgQ77jCkxAfY4j3qXYYJOeg6JLUJHPcVoyg0ywFhshohKyfUpUEjWAKU4d5dGlqLrLaMyNsDoIPYsGS3P6mjYMpguXE6RpYQoFqK1QC0hYh/IIwzgsZakcwPMDnqqmknUORZN1qqOuWfqI6uYulpzNmllQt4et5MlBp5rpyxJWiBdwBzUPZdcWFGaJM++E0qQXArPhKixQe7G4a75l+ewmcahPgcuq/acfIbaWPYltX3kK9YmlaPWXrgOUq14OVqtqzhBXOvHjuRFmcgZW1RDnKFl0jJTdJOEIqGFzZLuMrlyvv4nvl/9AaWoraPC9K+TAAABGnpUWHRTTUlMRVMxMSByZGtpdCAyMDIxLjA5LjUAAHicZdBNbgIxDAXgq3TZSpnUf7EdEIuKPeUKLWJRVTAIaFccvs7sks5ipHmf/TTy+2b7uttsMV67Ax3ag/T0eJ4kEyunCTOWUi2tJ8pmViRNkB1UCZeMCxglyMrIWiMKrVi1RFa9WYsYDaMtxmMxomg1xxIBibU1zIWs7Zh7lbSm7FK4FUeFKPsSOcdM/JKQgbQlBeFIogYBYgYyuRaSZaiyLok4VG9NUCpU1PSSPu7zaX+dLyvIt5/Py3z4Pt7z2z4+j+ffr+t8Ph3P96wr7BkHpp5pYO6ZB5aeZeDScxlYe9aBrWcb2Hv2gWvPtWOMuwx3w3+HGy83nO7xB4x5uePnr76aAAABE3pUWHRyZGtpdFBLTDEyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRzSEDSDMzY2VogBgs7A4WIJqRmR0iwIyhAq6SASzBxMjGAFXBwQCWYeJmYMxgYmBLYGRKYGLOYGJmSWBmT2BhTWDlyGBiY89gYudI4OBU4ORS4OLWYBJhYmNgYwcaw8rCzM7BKj4LaAQj3OkJTioHItuf7QdxAjJjD0xtlQCzGQzMD7DtcrcHMZvnr9/fUlAMZveUMOx/ycPtAGIX3si1j6++AxZ3PtK5X2rNBbDePrev+4wMm/aB2HcKCu0N3yTbgdj/e7gccs+rgtVsf5jo8Ij/9B4Q24FzhsNPpVSwuBgA2TE+JPjzZ20AAAF/elRYdE1PTDEyIHJka2l0IDIwMjEuMDkuNQAAeJx9k9tqwzAMhu/7FHqBGkmWfLhsmjLGaApbt9tRBmOFMRj0/ZnU0joFMycQWf4sWb8c/Tz9vh++T8P7x9fh+LNagI/n8el4gtvgcWF+/OettcJbRMTFFtyAYfPwOMF6vxqunvXuddq/ADFQtD323LOr/W579RCsYclBU1IlWFIoSIgKGPA82l52MgbRqhphicGMXEqHjJeYJXE8R8oWs3AHFAcpxMyoDlbFGlMHVJjOGZFyLsCBMqcUO2Ay0OJwxSJAITMr9YrJl8yYU0R2y7/aO2NxEoPkiipusQp3q6lGWm6JxK4KW+5CHY7QDmk1JCmaPGKSnGqvbPLuxKBcBclJZOlLbr3egYSsRFydLKZl6lW+mca7C3C5EsNuGtuVMOmAW999mltzxVyxtVDc1RrlDm3t8GlpqtsapCatGFGbfmJEmclkW9uyiUHG0Lxmcoro5ol2NOd4Xu28Np9ffxWzF39Kna4YGaxtTQAAASF6VFh0U01JTEVTMTIgcmRraXQgMjAyMS4wOS41AAB4nF2QPU8DMQyG/wojSKllO/5IrmJALEzAjhjg1AGh3lWlMPXH49yWZInyPPbryC/3j88zLW/L0/vMczvEN9dbAVeinHYIpSqapn0G5SqNIIsXL2nPQCbFGjNxq5b2CFUycUkIzKyFNsQViyQCDxQk6hXJIyISnC36dgTZGS36Yl7NDTEU4xzEC1LhIBlEq2obGLeXslWpWWMEUYa0ZaFbbsQysm4DxSvq9n1W4Ui7Sx+X9fh6Xk8Tws/v52mdvw8XeHiN52H5+zqvy/GwXIAm6jUNmnvNndYp9zr33TJJ72X02nsdvfXeRu+999GX3pfR197X3ttEw/YIxwQaFzhsUK7/8Ze8+TcPhSMAAADQelRYdHJka2l0UEtMMTMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRz0ADSzCxsDBkgmhkogM5gd7AAMRiZ2SFqmdkhapkYORjAAkzcDMwZTAwsCQxsCoxAxK7BxMScwMSawcTCmiDCyApUwcoingVUygh3QANHnB0LT/8+EGd+hNCBx3Ov2IHYl19pOAiJ3gaLT3283v7yi7n7Qewibxf7mHt99iD2hScCDjfkmsFsXuV5+/nnqYPVrPXKP+CWp2wLYosBADz3KM3NLHwaAAABLnpUWHRNT0wxMyByZGtpdCAyMDIxLjA5LjUAAHicfZLNasMwDMfveQq9QI1tyZJ9zEcZYzSBLdu1lF4WGDt17z+pI3PLwqQE9PFTLP9JWr6W4+nj0h7P76fls23A7Hl4Wi7wa3FotO7/eUop8Ibe++YAFkC3f3gcoZ/bbq300+s4v0BW9+b3ZDtPh7USoAfvYuAcC+w0koK5aMlfrY5GBXfRxcycrE8hRZYNEBWMjrEgon2RouSSNkBSMDgUCgYGFxGZ8waYYNSqMIuwToTA6hscK6cb6tFsnI+EsnUVUe56XiJKtiInksQbZIYJduhEJdEdtY+lWP8PuB+HO1l/hO6mcahCk71VTktTFS2oS5UmKCFVgKie6z1JB6hex1KuO5MO8O1mt3tYvv4qGjff3RB/liAfiswAAADlelRYdFNNSUxFUzEzIHJka2l0IDIwMjEuMDkuNQAAeJxdzD1PAzEMgOG/wghSzoo/Yid3Yqi6MJXuiAFONyDUXFWunfrjSbolo9/H9vvr/jDjPOeP/PaJT/fngcE4JnYePKfkPbppIKCoqqUJBlIrCYE4iLjBgwaxoG7yQKiRUm1kqXxxEwKbILvHPtdLAuXEXJeELKZQE5VmDsGTcKyfTNVMS0FUVPfivrb1dLys59HD3/X7vM6/ywa7YxmXfPu5rPm05A1wxJaxY2qZGg4jt8zttYzSuvQeWg+9a+vau7Vund//AbsRfuy28u3xAAABOnpUWHRyZGtpdFBLTDE0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAD4g5gfiBkY2Bg0gzczCAaGZ2B3ANDO7gwWIZmRmgwiwwCUYMsAKgTrBDGZGmFaYSgQNVYBgMCQAGYzM3AyMGkwMTApANzFxJzDxJDCzJjBzJrCwZjCxsCmwcCWwsSuwc2gwcXIlcPJkMHFxZzCJMLEycXNx8rAys7JwcYpvApkD9810Fu8D/SLR+0GcoAneB/YdETsAYjuav99vcPr5XhB7X72b/cJJRg4gdj7PX3v7Yj17EJtDitNBj50bLP653tWh22rFPhB7O6Ohw6qFT8FmFv8ud/hWYgw2U8y5YN9pw+tgvSlcTPaV9QftQGyFNob9RurWYPUL+G/t54rYAFbz8kPfgcquk2A3iAEAZ9RC8L5LUTkAAAGnelRYdE1PTDE0IHJka2l0IDIwMjEuMDkuNQAAeJx9U8tuGzEMvPsr+AMW+JJIHf0IiqLIGmicXIMgl7qHnnrq15d06miDCNWuAZE7GnGGNP/UP8+vP14uv3YbyPX9+O3yG94XHzeRx/+8vXd4EkTc3ENuYH/35esCh/Nuf8scTo/L+QFIgWqciecjdnc+3d8yBAfYSiFjqhW2WLxWcwYseF3jLMPpinRsrrDlIoGsPkEKLLCl4s3dNDmJhJwmSA0kFrMqbsDFOnJ+/oSrUSWVbq1rltacVNsE14KPCylziOdUJSQTnAVOCnrtci1Q2KvNRHtcHHW1ahGEJuvS++zmHu5ICb3GnOY4KkYNn4GE6TgWFm1CoSrEMNoMmb3BUtG6pXli1nl2N/EbZQ331HJnQtimnJLQ0IHSkOP2IG0+RWoitWhrHT1Jsbtin0DvluOHmXqbsv1pOY4p4/yNUQrhIGNeMiQdU6GZ49H9ayyjy4loo5kZ0qpnGkfa6AxFaCv/8zPRymYKDl+5ycHRV5Yl+/qE/su8V0RZYhLx2pO1Axnf/qOx3/wFt8PCPV1Az78AAAFDelRYdFNNSUxFUzE0IHJka2l0IDIwMjEuMDkuNQAAeJxlkLFOA0EMRH+FMpHuLNvrtb0XUaA0VJAeUcApBUK5i0KgysfjO6pdyp033hnNfr+5f95ONI78Mj2+TuPmaR/CyCPd3Ta9gKgW6noELC7o2u36BGRMuoieszn/aY7qXc+QQltsBK7uttiIEjmtmmHSjiCZaQkBgZNoopDUicODYJZT3DFYwfibgYSD8BIbzh1BiWPpcDkRiawE6LmkJSqxZ1uvTLOFFJHhDYubBIiCjoJrUEYrRvFPtCmsa52MjLKWtkSo1m27t+t8Olzm84Dw9f1+nsfP4xUeDvE8Tj8fl3k6Hacr+EA1pgqTDFxzbnmqeWq51FxanmueW64115Zbza3lXnNveal5qXgeqJmP6v1ooHZAag3NgvRvQmo2pHbE2y8TDtuPzvm27gAAANN6VFh0cmRraXRQS0wxNSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5g5GDQANLMTGwMGSCamZEdwmBiZHMAy7CwOcBkHCxADEZmdogMM1yGm4FRg4mRSYGJWYGZJYOJmT2BhTWBlS2BjT2DSYSRlZmFlY1dPAuolhHugLVe+Qfc8pRtQZz5EUIHHs+9Ygd2pfK8/fzz1PeD2A0ccXYsPP37QOypj9fbX34xFyx++ZWGg5DobbD4hScCDjfkmu1B7CJvF/uYe31gthgAAMko4sBSM4UAAAEpelRYdE1PTDE1IHJka2l0IDIwMjEuMDkuNQAAeJx9UkFqxDAMvOcV+kCMLNmyfdwkSyllE2jTXstSCt1LT4V+v1JK6l0wlWKQxxN5NJi+/fvr28f58nnowOJxerh8wV/Q1CmO/3ylFHhhROxOYAUMx7v7Gcb1MOzIuDzP6xNkTbS8ZR7W5bQjHhbo2SXOhRnQIZeCaMUW9VeCEXpylEVi0fPgI0lqEBlm6L0jjiFE6NFJDClKgxm0JTrykqkYkVJRGQ1iVKJ3nIJXjVtvFskNoujd5IR1FraOgVIusUFMG5GUKaKtkQKn1s15k5hEUjKe96LZ4B3n6cbWX6OHZZ6q0WSr2mkAV9O8rlCdsYx1ftvmOqWegdRZgkKpSg4K5Wtl1zpsvz8Vrbsfcfh9gsGBh3YAAADkelRYdFNNSUxFUzE1IHJka2l0IDIwMjEuMDkuNQAAeJxdzD1PxDAMgOG/wghSasUfsZNWDCcWJrgdMUDVAaFLT0eP6X48CZs7+n1svz4+vcw4v9Xn9zrj3e1+YDDOhUOEyKXEiGEaCCiramuCidRaQiBOImGIoEksaZgiEGqm0htZaV/ChMAmyOF/n/slgXJh7ktClkvqiVqzgBBJOPdPpmqmrSAqangIH9t6Ol7W8xjh5/p5XufvZYPDsY1L/f26rPW01A1wRM+4Y/JMjtPIntlf6yjeZe/Je9q7ete9m3fzLrc/vUR+9PoBC0EAAAELelRYdHJka2l0UEtMMTYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRjYHDSDNzMIOoZnZHSxANCMzTAJBZ4AVMMIZAhAZJnYGsAATIxsDVIaDASLDzcCYwcTAnMDAocDIlMDEksDMksHEzJ7AwprAypbBxMaewMGpwMmlwSTCxMrAyMTCzMrKwszOJt4H1M0Id6t7vYZ93QHZfSBOfhaPfanJ5f0gdkJtxn6eZoYDIPY0Xuv9nlaX7UBs04Kb+9m3WYPVBM52PcC3WAusV2aa3QEWjVX2IHbAjkP7l/+8DmbvyPpu/+qTEpjdExjgsODk5L0gdvfnCQ5XX5qDxcUAeD44jnu8G40AAAFuelRYdE1PTDE2IHJka2l0IDIwMjEuMDkuNQAAeJx9ks9OwzAMxu97Cr/AIttx/h23dUIIrZXY4IoQF3bhgEDi8fmyaUsnItJWauyfY3929Ofz++Xt/fX4sVpQXY/Dw/GLrkuHBez8z1tKoWfPzIsd1R9ab+/uR9ocVuuLZTM9jYc9iZAoYvDcsqvDtLtYhDbELoYsRWnJToJxCDDxabVQpRHWYNlQwFIQwuxzB/QAcVDhLNHTUgGkWvRf0pAbZPIcU4TfREOwDhgqiJQlJ5/OIV4tdshYSe84p8jhpCfG2C0zVVJdSamgS+K8Ft89MtO+Jg+K6tAvF3MtuAMWCBdXcJBVEdHHID3ZggmRdxoMyWuNnFSi9kihiQypC1LCnySb9MDtONxM9Tzn9TQObc6GT9s069bazHBXqLTBGAjf2m8gQutx9YfWyLrNrV3wUWxNMQSkmXZDRJ4pRF6YrwZFZqmOuba5krq/3Hb8L34BoSihSJnyJbQAAAEVelRYdFNNSUxFUzE2IHJka2l0IDIwMjEuMDkuNQAAeJxd0D1PwzAQBuC/wgiSY/m+7LtEDIiFCbojBrAyINSkagNTfzyXbvZmv8978slvj8+vFZb35eWjYoVLrXh3vecoaIVCigWUAcNEEYVNw5BiKggZLEwQjdDYW5my7ImfRMFwr4FwEtkzYWWzMIBrShwmV0sKmcKAMSX1xM208D5YiJDzrVUo5ZL9Ad9BhG89QT8H72sh8ASjlWLgiS9D/uBAMalP7TvknEnDQ/jc1uPhvJ7GFC+/X6e1/sxbfDr4dV7+vs/rcpyXLcIILUPH2DI2LCO1TO00j9w69y6tS++59dx7ab30rq1r79a69Q7d70H3fXz9B2CYrU+WRnVQAAAA+HpUWHRyZGtpdFBLTDE3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAG4g5gHiBkY2hwwgzcyMlaEBYrAQpQRCs0NoZnYGsAJGJm4GxgwmBqYERvYEJs4MJmbWBGZ2IMWZwMKawcTCkcDGnsDGkcHEwaUgwsTGwMTJzM7IxsLBxs7MKt4HNIER7mCZOSYOVcwd+0Ecc6lt9lM1zoLZ54ucHey2X7MDq4r5aXdMM8geLC7NeuB79Rww28JYb7/QwodgdnrJpP1NB2eC9WYta7I7Z6EJZjd9Ej7gfbVlH4jNVPrR/p/lOrD65sbcA7e3+IDViAEAdoM6wlbGfmQAAAFkelRYdE1PTDE3IHJka2l0IDIwMjEuMDkuNQAAeJx9ks1uwjAMx+99irwAkb/iJEdK0TRNFGlju06IC1x22vtrNoilaNHSVrKdnxPb//L5qJ+n8/HytR6Cr9fp5fIdfhdNg8Xhn7fWGj4YAIZdcCOM26fnOWwO6/Ee2ezf58NbQAxIlmPPI7s+7Hf3CIZNoFiIgEpYYQQlBQ0Q4bpaKhmIUYg0JwfVEgA7IBvIERKXYrdHwcqaO5wYZ9slgzlgJUBN0OGScSuKkKtVaSUQUWLugOogRC0gWg3MStma+gtmBzGiCObsFgES9shyrZFSwqzXsxWBenfXW5GMqDeSUhXptYMQZiuuFOXCZrAiSuqBaOCKY0b0CdmZuVblHrqdpwdRbzKP+3lqMot91MR0l5tkYqHSlBEL4UIBj2ibs7ulTdNdXMxMLEPbZNyti/bFUsqiS/fbvklsOYjL3paduH//2c0efgDi1qBXQumGsgAAAQd6VFh0U01JTEVTMTcgcmRraXQgMjAyMS4wOS41AAB4nF3QQW4DIQwF0Kt0mUjE8rfBmMmqF6hyhRZlUVWZiZK0qxy+kB3s4D/4WHxU1Cp1Vyv2a23Lt+fuoJQB1nBgyqWYpnA8CClg3jNJJcYWgRAjWgQShkg4dkvI1k+ZgUV7Fj23MiYXLr2qmXO0EkDZJOurnXNxaYmIpJaA3E29BWpAe02Jk7q3moiilsNRWqH0KUFsYuiXooi9BjIWD/vw+dgup9t2XZjuv1/Xrf6cH/R+atvz+vd929bLeX1QWjAyBoYtMrrMrqPr7HH0OHsaPc1uo9vsefQ8u4/us5fRy+yY/g88nXj+A1b7q468zIq+AAABTHpUWHRyZGtpdFBLTDE4IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAH4gFgTiBkY2hwwgzcyMxGCAi2iAGCxsDFAaxsfUAleZAKQZmdkhfCTaAkQDJRK0wApY2BWMQAwmFm4G5gQGrgwmRmYg5klgYtFgYuIDGqXAwqvAyp7AypvBxMrHwMaRwcTGm8DOncHEwcnAwZ3AxZMgwswKNJKHi5WJhZeVj42Nl5Wdm0N8H8hYuDdj2yIcDK117EGcwzc4HE73b9kPYs/7JmL/3kDMAcTOtGdwYF+1yhbEZo8xt3/mFwVWX2Rwef8M301gdtLHSfsj/0wG67U76X7goWkvWHzrSvUDgiI7weIlm9wOFCeZHwCxg653Owi9ewlyDMOfi2kHzr9eCGZbFaQ5BPncB6s/vV9z/9uLbXYgtn164n7jfm2we8QAte9NmX85KMUAAAHHelRYdE1PTDE4IHJka2l0IDIwMjEuMDkuNQAAeJyFlMtuGzEMRff+Cv1ABL5EUYss/AiSoM0YaN1si6CbZhNkUfT7Q47jSAGEVh4DouZcSrokhv8+vf789fvp+WW7STG+Hb48/0kfgw4bX4d/PK219MgAsHlIMUm7m9v7Je1P291lZX/8sZy+JywJq2v895ndno4PlxVM+8SZjQkwQdZKtZpPYB1dSc5RRjby4AqzICjPQHYQcjE0M1ewaOU64WRNCMBWIV4bM9OEK2u+ikoS21mhqjrh1Dk/l0prqAkzN2qNJ2A9gyjVyXVWFLlNSAuSMxJqMU+J4C7N7tICpKzYKvPqjpRGZUIivOcEUaEQmRY2maGYliSZq3sk6QqyFLU2JclJT6qgxb1xlN2uMnMT2dEgwZ84afWj4uxOKJHUO0LZa+MAqRcIBjLt726vMT1uv17Lh6qcVWYgRl5gNVAs/1HdLIdPTXlu091xOfQ2lfj3bowQsTedxFrvrQiRew+RI6W3CnqIpXdEpC+97OgKlF5dcYkNJYy4v/dCYSyUoR7iSdtgesSDIg7o29BgG/o+2N1XJ9pI1LgyDpcK00aLIr58BXy+eQNHZ9VqyHcZ2QAAAW16VFh0U01JTEVTMTggcmRraXQgMjAyMS4wOS41AAB4nGWQvW7DMAyEX6VjijiC+COKstGhyJKpyFB0CTKkhoeiiR2kbqc8fGlnkrzZ991R5G1baA/9+ojtqu3h+fC2w/Vx+7LFWd8d+xae7qsNOfAsXG3QqQTSqrEvgRSp2oBjDglNAgccU5okCAJsknci5JUq71CIHi7hZH5wlNDczTQdQcQU8IQwK+IlxMryBIIB51GqnhUre1m9mORdUFBVU4gl8qREs7Pacxow2swGnfek0RRbg+bx6IAUH6uDt7Oa6T0vkxDtGBvNjqLlpgU4iKbZQ2oH2EURY9TquTqNw2V/G661dz+/n9eh/e5G97q3367/+7oN/aXrR6c15BgyDFxjzrHk5C7D+X0YP07nrm87NylZgsoE55xLHnIeSi45l5LHxUYxT8QyoTnXkqecp5JD0TH4haOsedEzFEVD3nSqoegVFsVC0SyU1d7/Acgr+ciJOT3DAAAAg3pUWHRyZGtpdFBLTDE5IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAFYgZgHiBkY2hgwgzczMyMGgAWIwwWg2hgQgzQSlGZm5GRg1mBiYFJiYGZhZGEQYxN1AwnADH7ots09Le2YH4jx0U3OYNXPmPpgkjA1Usx9JzQGYuBgA2tcaJDCRXsgAAADUelRYdE1PTDE5IHJka2l0IDIwMjEuMDkuNQAAeJyNUDsOwjAM3XsKX6CRmw80Y9NUCKEmEhRWhGCgCxMsnB5HVZp2oKodS/bT8+dFfr6P6/15618mg2BHe+jfMBq3GeG48LTWcBGImLUQEjDNbu+g7ioTkdqfXXcCBZI6yOfMqvNtRAqooWBcaxQlIJOK5lIDQxySyOPggTOlS9xuIEcm8A9REHFEl4iSNudrVqtAXLW7cXYmbpBrvLNJLg+RVBXkIt1OBch0YUGhptOns0IdP53y7Af9oVvjFn1n+AAAAJR6VFh0U01JTEVTMTkgcmRraXQgMjAyMS4wOS41AAB4nF3LMQ7CMBBE0atQgrRere2NFDuiQD5AcgVALhCKHSWGKoeHgmYo5z9NSmM6j4f9aBx3oZeejLCnwVh2IYiSsHY0yC9jhcuJrq3O01qXKLy9bku9P3Pjy/Sdubwfay1zLo01WmT7xw7ZAfvokT2wjYqsyPsHAbJJZ8Fm/zYAAADaelRYdHJka2l0UEtMMjAgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYGRz0ADSzCzsDBkgmpEJLgChmeESHAxgASa4BJRmgyhgZuRmYFRgYM5gYmBPYGJOYGJRYGLLYGLl0GBiY09g51AQYWQF6mZjFy8DKmeEu8QoK2q3/ZIF+0Gc6duU90c7qR8AsW9fvGy/NYfFHsTWkN5jv3BRBViNzWdbhzUs88Hil+2MDyQyXwCz+49OtytcMhnM5iu32r+KO88WxJ75kPdAk0WlHYgtBgCVCyw24+q+jgAAAUF6VFh0TU9MMjAgcmRraXQgMjAyMS4wOS41AAB4nH1SQU4DMQy87yv8gUa2EyfxcdutEELdlaBwRRUcqIQQh4r3Y6sqoSLC3kM8mXjHk8jr59fz4f00Pr+8HY4f4wAe99Pd8QQ/wdNgOP7zqSo8RUQcduALWG9vbmfY7Mf1Bdksj/P+AdQSPa+Z437ZXRCCDawwIEYLWFFgESQGhzzaWYbZmTmqoMCKQ6aYWDrMaD0pZEk1eSOhwjV1eMk6UkhZpai31kIce78WI3LQXIxhJzhxNPQvL8PiwipiQXUJLISxQyzWEANrTuw8kpgkd3j1PLPpjybR9qUSlQ5R3UYOTLmqj8opxtqTuJ2nK//PN7Je5qndiCc325OVqXnrZW0WJoeaUWSlND98t7Sp2SBtwyWDahvB+rZdF/pblteXJ2br4RtmIYnAPzFk1QAAAPJ6VFh0U01JTEVTMjAgcmRraXQgMjAyMS4wOS41AAB4nF3PTU7DMBAF4KuwTCV3NP+2E7FA7EuvAFEWCNWpSmDVw+OGlb2z3zdPHp9mKmV4fX47zMPpUOjpPjBkjzkGAlYWCROBmyYNCEaR62FC4OzKuc6QiXqYjgiVJOY6hZaI/BEyMHl6ZKwiaU8SYqRadDbae4giwtHCsb5ohv+pSzasGYOT6L6FerYUquVILBwO4X1bL+fbeh0Rvn8+ruv8tWzwcq7Xpfx+3tZyWcoGNlLL1DDpyK1z79K69K6ta+M+WsvW17117z22HrvfpZZTV7//ARUBjaKiS5CIAAABA3pUWHRyZGtpdFBLTDIxIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAG4g5gHiBkY2hwwgzczMyMYAYzigM9gdNMAMJAELEIMRKAKWYUGnORjANBM3A1sCA3sGEyO7AiOXBhMTcwYTE2sCM0sCC2cGEytHBhMbZwI7RwIHZ4IIEysDGycHOxtQmJOFWbwPqJ8R7tzUZafs809sswdxovbKOpRZ9uwHsVO7JQ5oCx8Hs+v/uh4onZO/D6yjWviAVHArWL1+dNJ+uTdnwGqY1+Ta+YmzOoDY9sc22As+zdsLYnd2Htp7eeoysN6Zkn77/b/UgfV+f1bpcPSbDlivGAABSzq9gClvxwAAAWl6VFh0TU9MMjEgcmRraXQgMjAyMS4wOS41AAB4nH1SwU7DMAy99yvyA4uc2E7i47ZOCKG1EgyuCHGAXeDC/4uXjZFORKStZEfv2X7P5c+3/Pz6/nL8WA+unvvx7vjlfk8cB9zTP6+ZuScmomHvauA2u5vbyW0P683lZjs/TocHF4ILERw819j1Yd5fboLbuuC1cCRGIDGbgeTpdBozAhe9JEklulXwZKokHSADuIqeCyuVilTVmHslpSIZlVgtuxX5yGymHaS66VSThNEdzSUobPgLTLUk+VIkYjg0T4RBUweZUbJ2jIEChFE2ldzBlZM/XAIp1dJUrerptnNrMrFiNeKonHq6A/1MiZK5AADRFnq6scHZsTeSHGOlpKxJqIPcTePVWs+L3szT2BYt+HLbZ01L2xpcaKkggdGhLUAAkWZzTVPzUvBoswwJVDZnBAxbyBdQwlKlgNQAdTZbAKq4pZSaX/53xMM3aMihJtM3txsAAAEMelRYdFNNSUxFUzIxIHJka2l0IDIwMjEuMDkuNQAAeJxd0LtOAzEQBdBfoQTJGc3bno0oEA0d6REFrFIglN0oBKp8PHZS2a7se+7Ykl8fn2ea35aX95mXuS7iu8u9QKBmThsEz+aatgzq6iVtCDDM0pZACqG1CloRlmhZ2yUC5Rz1jMDChJQYMF+narugYS4JIcKCWsYgqFLqHCp5DaS+Id6uZpFau3WKGLX3zYzz7aqijNoyRwy/ZhgapUQbFjZxTg/p47wedqf1OCH8/H4e1/l7f4anXT3ul7+v07oc9ssZfKKeaWDumTsmn6R3GV1719Gtdxvde/fRc+959NJ7GT16j9Fp+D7CoXH5B+9trSaj1OpUAAABFHpUWHRyZGtpdFBLTDIyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRzSEDSDMzM7I7aIAZbBCaBZ2GyQtAaCa4RrgCBrAAIxMbA1SGgwGilJuBMYOJgTWBkSmBiTmDiYlTgZklgZktgYU1g4mFI4GNPYGdI4OJg0uBi1uDSQSon5WFmYmRlY2ZhYNdfBbQCEa4u59serr/iiHbARDHNkTvgFFs9n4Qu+c81wGeY5/sQGw7B/398jsN7EHsHaur7BiSfu4Dsdefn7dvzo4PYPUn+sXtbgj+AKu5dOS0vYfgETD7Zc5le1EedlsQO9zL7cDktMtgccmJlg75m33Aer9ebHfonsEFNlMMAA/aPthxAWP7AAABfHpUWHRNT0wyMiByZGtpdCAyMDIxLjA5LjUAAHicfZPBTiMxDIbvfQq/AJEdO7F9pC1arVZMJShcEUKV4MKJ99faRSWDiMjMIXY+Z/L7z8jp9fT08vr89r7dQI67/b+3D/gadb+JPP7yujs8MiJubiEnsL3583eB3fF6e8nsDg/L8R6oAnHUxPOdvT4ebi8Zgh1cUVGXVitc1YLe1Qmw4HmM2gpLrmtl8yCxODlPSc49a6FuThbrokJdJ6AkiKWbNJVY745c2wRsAWKpIuo9K8QUtU/AnofEwoSklsLMsLNMSIX7yJIYogMVZ0OZfdri01RaiBXJCZPqTIufud5I+7knXF1nzSHMI3L02arpZ0nrNiPTm1rMXYxSlbr3dPQnWeEAkv1h9SSJG8tsz5tl/83+zwuxPSz7cSFCJtTheoZ9WCuR4mGgZGrYRBHSyo0E2mh5hjo6G2tjaz+HvupTsGCrbkiU+EozRQ3RV4LjZEFRXYtdS8v48p/EfPMf9LOr6y/f83YAAAEkelRYdFNNSUxFUzIyIHJka2l0IDIwMjEuMDkuNQAAeJxl0D1uwzAMBeCrdEwARSAlij82OhTd21yhFTIURewgcTvl8KWySd3s9/nRBN8q1nSrdff6/L6vaakLPt13hxzBNFnAyAWLhPmQIrJaChBJCLlFEFmpCHnGBjmVMENEUoBWtKxAYcZYDI08KBlFW+Ajhb3kFRPwVopqRhp8opgx5jBTTET5EWEu2dFneyTGLSMV8Blth4zQ5h4wqgJ71Z/EqKTgO4Ox2GN7SVmtVX2bbBj24WNbz8frepkg3n4+L2v9Pm3x5eivp+X367ou59OyxTJhz9gx0pR6T6Pn3vPo1DuNXnovvfPEvXPvk/QsA2vPOv7derfRcbgewr8vxgOOF7z/AawcvJvzm9LTAAABE3pUWHRyZGtpdFBLTDIzIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRjSEDSDMzM3IwaIAYTGwOYJqFzQEqgVOA3cECRDMys0MEmDFUCDIoAGlGbgZGDSYGJgUm5gwmJpYEZvYEFtYMJha2BFauBDb2BDaODCYOzgROrgwmLm4GESZWJmZ2NhY2Vi5ODjYW8VkgE+Dufq0pd+Da5B37QZz9f2oPSHxcA2aH5V7a35nivA/EXnaf6wBv8mx7EHv5C5F9BVn/94LVcGfYf7oxA6zerqTJbrLwSrCabJH6/Zy1nA4g9pfKW/ZN1jfB4lF9Bg65mxTAbPePYg7sSYFgvcudohz8Jn8Es8UApp8+u4OIlq0AAAF/elRYdE1PTDIzIHJka2l0IDIwMjEuMDkuNQAAeJx9k81KAzEQx+99inmBhpnJ5GOO7W4RkW5Bq1cRLxZEL4Kv78yWmi0Gkw0kw28+Mv+sfH+m59e3l9PHZgU+7se70xf8Dh5XZsd/PlWFp4iIqz34Bra7m9sJhuNme7EMh8fp+ADEQNF8bF6zm+Nhf7EQDLDmIIUiVlhTEGE0Tww4j+bLcIB1DJprSuRkTETm85eMHpNClqiZYY2BFKuX8oeUc3bKqmamwGQu2AGTgxZIkpDOO7aSU4fMRmJQzMLRqyAVYuqAZQY5SdFoqSOjUi91hckTqmbBBFasVE6lA6qBFArmKsU2WQuxdjjLMlickmqu3r7MpXCvO0QzGJMFLF5DpaLY08YEG94hBiGMNMtYa4ldcXbTePUAzk9ie5jG9iTYV9OdbMYmrvhqCvoxNZ3cUJsYYqbcWu7H0jorRhC1BoohddEnP+uiHWIMLW8tTrUI9sjIOeLldZeX8/PlX7H96geObqxYUqyB+gAAASN6VFh0U01JTEVTMjMgcmRraXQgMjAyMS4wOS41AAB4nGXQP08DMQwF8K/C2Eo5y89x/vgqBtSFje6IAaIOqPSuKoWpH57cbQnjvd+T7cvL476gvE7Pb0WmUjb7r20pkIf7ZvBkMYfgBpAPANxuENIEjyVSFV4iUFRv0Q1MMM7waw3RzIEEC+2qmUXl4KpolhoxSdBkvpa8sNVJoMR1Xw2ipWWMUAo5mmOKkpKsiQ9Z87IrIxmL23lSsJflopxTPa1ONo5a6zWCKWTdDw0KW6+U+g/Bbd37bT4frvNlZPr++bjM5XS80dOhfh6n38/rPJ2P043iiJbRsbQsDSOOvnXfu7auvYfWQ++x9dh7aj31nlvPvVvr1ju65wP/a/QviK5x/wMKb70QMXmo4gAAAWh6VFh0cmRraXRQS0wyNCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABBIBYG4gZGNgcNIM3MwsaQAaKZEQIOaALsDhYgmpEZSQbKYIcoYUanEWZBaA4GMM2EaQKcwc3AqMDAlMDAnMHEyKvBxMSSwcTEnsDMmsACRBwJbJwZTGxcCezcGUwcAhlMnPwJXHwZTNw8CtwCCTx8CTz8GUwizKwMTCyszGxsXHw8/Jxs7NwCHCxM4teA5jPC/V9d7HSAf5b6fhCn95/fgWvCnAdAbBONO/sf+lfagthMXC0HfrcdtAOxf8r9379kyhF7EPv8nrgDJ1fdBbMzChc5VP4tB5uzZ9ucfa+9H+4DsUvNovYvX6DgAGJ/eFDtkLH6B1jNts0zHS5MYwTrVVgTap+4mQPM9nrB73C9jR1sb+eNyQcWnNUFu0frVYTDoxcNYDVrkxUd3vXuAJszZR+//euJDGDzxQBue13ngb8p+QAAAdp6VFh0TU9MMjQgcmRraXQgMjAyMS4wOS41AAB4nH1Uy45TMQzd9yvyA438Smwv+xghhKaVoLBFiA2zYYUQn499S0lGRCR3kTjHz3N05ddP/Pz125eX74ddyfX+/O7lR/m76LwLO/znc/fyiQFg91zyUI5Pb95eyul2OD4sp+vHy+1DQS3o4RP7NfZwuz4/LFhOZc8V2Mit7KH2Jt1bgQrbGr50RxILmZY9VRQ07gskJxKrortqvnewrgugJFAqUieieGdVN14A2z2iOyNzwdq4qa1S93LJIsWAVAKojBqHf4EaEVsF7SycbXs3RVwALVNHadkE5UkEgGmB9MwN1Rqxc6HawA1WRSIEkqtz6yBbX0JR6AqJgZRqwGg5wAadYDVJTHYiN0tvlkBmtyUwyaFKYq1tk2YGsxVQyjXJiYRBc/Kt2LqulIFJD1c2J6cYOoDiusq+JW+ECp6NS0po2bhu/bSODShcAMyXs3y6nF/p+a7w4/VyHgrPTUPGoYvCQ6t5laHIyBa9D+FJQNqQV15tiEhi9yEVCYc+9JBXn1iX8MCZ3M2AE4kSQZAmsiTCoE6kSAbCPs1eMhK2aciYoZCnYcpmGXGy1Ig+efkfS58nO88x74+/TJx3vwEa9eXDi0PhMgAAAXF6VFh0U01JTEVTMjQgcmRraXQgMjAyMS4wOS41AAB4nGWQMY8UMQyF/wrlnZSJ/GwntvdEgWjouB5RwGgLhG72dCxU9+NxtktWI0WT73uxkvf14+cd+7fjy/ed82d/2HI98sPjfvCH94dNa2eCl42roXUvT5tUFuUYCArXGyJxKRvV3rRHS6QV3JkLVTGLlCOlTmwF1QRmSVAjBJKkSbO4EUOE5zHq5N04WY4YGx7zVYkkIVUX7W0Em0h4TuPK6q2NoyLk1gdqDEPJsZpXzUtIDWl9gFC2BK2SddExO7obUJ60OglijKZ8vY1T4pFPRiW6RVJ1NOLCSTxwu6U3lpBEjcJRHsuP6+Xl+e3yeqL65+/P18v++3ytn55zez7+/Xq7HC/n41r7CbPGonnWPGn0k8xeVq+z19W32bfV99n31dvsbfU+e199zD5Wj6U+zP1BT1gbxF1iKRF8l1hqhNwlliKhd4mlStx1iaVMrG2+/wfFWwsOvi55zwAAASh6VFh0cmRraXRQS0wyNSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZGTKANDMjE5uDBojBwuYAFmBmRAhAaA4GMM3EDuEzszEkAGlGZrgGuASmSVAGNwOjAiNTBhMjTwITcwIzSwIzVwYTC6sGEwtbAhs7AxtHAgdnBhMnVwIXdwI3TwaTCBMbIw83FzMTGwsbBycXs/gykI1wT1h8qXT4dnb1fhDnxj4thwXef/eB2A9CV9hfdpsEFv+/cZ6tsP50sPgGm8X74+sLweIHfm7cHyIucwDE3nFZ4YCk15G9IPaC9PIDEoV2YDUGpZIHwrU224PYEw617lfkZ3YAsZscXe2MF88EizNcOGovN/0NmJ0ga+QgINMAZosBAOb9QtoelS18AAABjnpUWHRNT0wyNSByZGtpdCAyMDIxLjA5LjUAAHicfZPNahwxDMfv+xR6gTX68sg67kcIIWQW2m2vJeSSvfSU96eSw8YTMLVnwJZ/I8l/aert4/XP2/vr7e9hBzl+nJ9vH/A1+LwLO/7ncXf4LYi4e4FcwPHh8WmF0/VwvFtOl1/r9SeQAGl8E/M7e7heXu4WghWkONYqBHsqoswsgAX7GJ8ynIDLsljzBnss6mrUJqAEGH6oEnePpGxtmYAaYFjNtHWP7JUbTcAaYDhiq+yYpKtIxQm5wKVfwlFFYc9FpTnrhLS4d5xHks6cPtFr0xnZMrqUtlTDHt1UnGYSeZIc0c2spQbuJrM0CTM6FdSado6Fmc/EJOoikfMiUc7CiOyz2MRd9qpVwzuVpk0WnoHSC2lNQqMA47DVWXke1vO3TvnsneNlPY/eycmjQzReGX2QW5JRbk3bKGoa6qhcbolGfTiQZRQhWLChNAXRNnpq7H2jmiazVUeTGv5Jerg4+bL0BLYZpwLb++b+/p/FevcPnZ23O9k9y/4AAAEtelRYdFNNSUxFUzI1IHJka2l0IDIwMjEuMDkuNQAAeJxl0E1OwzAQBeCrsGyl1Jpf25OIBWIPvQJYXSDUpGoDqx6ecVjZ3STKfM9PzrzOWOZCZVfK7m1fCu0LPr8/3XcHDjlqGg4QkrAhD9OBgiIZ1RmYZhHdhmwp5QH9banGMIAL+dPHEwQ0isweIACyOoGUJCerRWRKGYfJj6O3D34ahdwmCjH+Z8QkoVdxMFDlmmEhoppJmUG8GwByrDUqKuiDLJnjdhtKSluPCbNuIzYQ76EgnP2H9sPHupyP1+UyQrj9fF6W8n1aw8vRP0/z79d1mc+neQ15xJaxYRupZWoY48itc+/SuvSurWvvsfXYe2o99Z5bz43raC1bfxy77SE8JPoF4kOi2yH2S7z/ATKcyn/7o14VAAAA1HpUWHRyZGtpdFBLTDI2IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAA4obmBkd7AA0syMzGwOGiAGCzuERvAZMsAKmNgcwAxmRjYGKIODAayEiZuBMYGBKYGROYOJkUWBiTWDiZk1gZlNgY1dg0mEkZWBkZmVSTwLqJQRbr+G+//9p9V77UCcyW4p+5cetN0PYq+TWL9/y76L9iD2cvGrdhvW3NsNYhvVdOxPOMl3AMT+N/mn7enU3WA1q3Y9tveVUgLr3W/k4LCiPR9sphgA9Ocsq5JwlcoAAAEqelRYdE1PTDI2IHJka2l0IDIwMjEuMDkuNQAAeJx9UstOw0AMvOcr/ANd+RVvfEyaCiHURILAFVVc6AVx4MTX421VthUR9h68o/GsPVr5PH6/vr0fjh99AyUex4fjF/wGj03g+M9xd3gRRGz2UAoYdnf3E2yXfrgg2/l5Wp6gi8SSt8x+mfcXhGCCDSV3ldYBE+fWXKPAU9RWhi1sMHVOGblUWYnFVphylhTLrgSUTDoTXiFqSGJSMnIriojR0q4Q27MimrEjbDixEIb2X6adJImpM42n1RR1bZscPEo5O4mWp02EaY3YwQwSqKDnYo+I09rSu2m88fXs9DBPY3U6JgKufparVNO0QNWaoEJbDdBgWN1SI60uU7RzHZkD6q4nu56j3C9/JermB2BBfbIWEgVYAAAA6XpUWHRTTUlMRVMyNiByZGtpdCAyMDIxLjA5LjUAAHicXc0xT8MwEAXgv8LYSo7l5zufc44YEAsTdEcMEGWoUJ2qBKb+eJxsl81+n9691xHj4fnx7TjW9/rygYf7oYMPIlFdF30kBHZDF3yvyCG69sqMSOKG4BkClTULQbImVjfA56ygNRSiiNamxgQX2jVSbE1E9MIOnoW3AXhqF9ZEqBfaElVuO62WkzQ6us9lvpxu87UE//P7dZ3H72nxT6f2nerf+TbXy1QXnwoswzC4ROvRuhSyTsalsGXecbKc9utiXfaerWfjev8HJrx/VKati4gAAABtelRYdHJka2l0UEtMMjcgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAZiBmAuIGRjaGDBCfmZEdwmBk4mDQADGYuBkYFRiYNJhEGMT1gAKMcL2rV2ktBdL7QZyHbsvsgcbYQdn7YWwxAO86Dq3SgXYdAAAAvHpUWHRNT0wyNyByZGtpdCAyMDIxLjA5LjUAAHicjVDLCsIwELznK+YHWrYbC+bYNEVEmoBWr6V4sSCeige/3sSSPg6KsznMTmZg2M1LPtvuPuj2euv6RyEQcDSHfsAENsLr9OMppXCRRCRqBAJd7fYWZVPoqJTubJsTJNgn/KydRePqqGQokVBKHwSWj2ySpizDIktZKZJb/835F5+EQ/KPsbJmVWUsp501c7kwPDdgv8plfukOezyC5+INYUVJR+G7bk0AAAB4elRYdFNNSUxFUzI3IHJka2l0IDIwMjEuMDkuNQAAeJzzc7b1V6jRMNQzsrQ0MNEx0DMy1bE20NE10APSuijCmjqJJfm5AUX5BVYGesWlSQX5ydmpJXqOAUBual5ZZlF+Xm5qXomeqZUhqrQhirShlRGqtBGqdA0A2+Qte8E+TLIAAAD6elRYdHJka2l0UEtMMjggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRjaHDCDNzAxkaIAYLEgCuGTYGcAMRiZMGYgAM4zmZmDMYGLgSGBkSWDkTGBiTmDizGBi5spgYmEFYq4EVvYENnYFdo4MJhEmNgYOdlYWRjYmTkYWLmbxPqABjHD3Whjr2QstfLgfzIv5ue+YZhCYfb7I+YDt9mv7QGyZOSYHqpg77EHsrGVN+85aaILZ6SWT7JsOzgSzmxtzHe5s8QGzmz4JO/hcbbEDmyPN6vC9eg7YTKbSj/v/Wa4Ds82ltu2fqnEWrF4MAKo8On+fVcIpAAABanpUWHRNT0wyOCByZGtpdCAyMDIxLjA5LjUAAHicfZLBasMwDIbveQq9QI0k27J9bJoyxmgCW7ZrKdthhbFT9/6TUjqnYOYkIMmfLP9S4k/5OJ6+Lv3x/fN0/t52YOt5eDpf4G/x0Gkc/3lLKfDmEbE7gBnQ7x8eR9jN2/4W2U2v4/wCRECsOfrcs9t5OtwiBDtAJxmDFNiQS8KJs4ZwWTWVFdygCzmhemplxhKxQXojvcPoc+Ylh4qX1CCDkawnMWpNcigsKA0wXotzjJRsX4SQfQMUBclRCJSSGozE1FKTYATvEpGJQZdKER8bXNbz2HkiWepyLCG0NJeFw1RUi7WRmaNvXZBQKyuQs/jszfJCFFq1dX4LGpglRVUj2iWkBrkfh7uhXsfcT+NQxxz04zpMc0udWNBQrGMxl1bdD4bUHptLq15aAlHtWdAUqa0xt26TFRDIK5mkZ1TfLpfr5UzcWor5t79d7e4XLUKifv3sUWYAAAEHelRYdFNNSUxFUzI4IHJka2l0IDIwMjEuMDkuNQAAeJxd0DFuwzAMBdCrdGwBmeCnJIpypl6gyBVawUNRxA4St1MOXzqbtEn/fVKGPxpaa7K2tjZpeHm8RioAx8BUatWYw0koAmqeSK4pHQGXahImkIjkGE5Mapy0HlFRKR5NTMmKL/KDCVdf5Gim0Y5WVMBXTZE4R7OjlVCjFs/EB8QnQayieA4mETeQsthzueSMov5RqmDxB0FICeYdYYiEt/C5b5fzbbvOTPffr+vWfpad3s9+Xda/79u2XpZ1pzyjZ3QMnaV3GT32HkdPvafRc+95dO1dRy+9l9Gtdxu99l5Hx/D/wEPj8Q/IrKtHpVm+EAAAARZ6VFh0cmRraXRQS0wyOSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAeKL+BkY0hA0gzMzOyOcAZGiAGCzrNDlHJyAQXgNDMcJ0wAXYHC7BKZg4GsAATNwOTAgO3BhMjUwYTI1cCE1sCM6sCM1sGEzN7AgtbAgtnBhMLVwI7RwYTB2eCCBMr0A4WLjZmdg5OFjbxWUAjGOEOfztH9oAXW9p+EMen4cJ+bYFL9iD2U+7N+/+tV7IDsd+pptofnr8arCY33sV+UtsCsJrpwuF2/820D4DYKp+X206oWrIXxF6gLemwUHMRWP0jZleHmZ5dtmDbfgk4bP6zEqx359Ip+5yjRBxA7PfOVQcONjCC1YsBAHqFPY4NDRZ4AAABfHpUWHRNT0wyOSByZGtpdCAyMDIxLjA5LjUAAHicfZPJasNADIbveQq9gI2WWTTHJA6llNjQpr2WUFoaKD3l/ankkIwDQ8c+jH5/0mgZp8/w9X78Oa/fP76Pp9/1Cnw9D0+nM9wWDyvT8Z+3lAJvgoirPfgGNruHxxG2h/Xmqmyn1/HwAsRAYj723LPrw7S/KgRb6LgPiTMKdNhr0Sjm1uO8qi87SX1iLRTBNoGItAHKBZSi6nJPUTWHBhgM9AMjEc4eAZVaR8cZzCnbdzuZYyDMDS7BaCoToiSvKuXIwg0wzwFRGS1O5zsUaoFqEdlKEVb1FDkly7cBFosoPWaVNMeZj25wVqlH5BQ5FqvFAiO3mkNkoKXGBYWzJ0HWztIiGSbopC+EUpL7RIyaqYHuxuFu+pf7sJnGod4Hf6QOnV3gOttgitQJuklUBxUMyXUeZEKqXXc+1966qbWDwfzzolFu07Ihs0CLus0dys325MrCw6td1ub29T+x/eoP95KtHQjVH/cAAAElelRYdFNNSUxFUzI5IHJka2l0IDIwMjEuMDkuNQAAeJxl0D1PxDAMBuC/wngnpZY/EsdpxYBYmOB2xABRB4SuPR2F6X48SbeEqe372LXl50yZ8+Hx/uWYX5ent8xLXujudkBgQhR1A4PGwOImBEuByA0E4tGoJmiMqNEN9RWFKLmpejJzCBTMoi8Jg1feqyxZkPKzQSAR+hoFDBZp71O2xK48PRGXpGyRUEong5DhPjJqrMMJOJQqNzGwBtYSCBuWLgGMVjYvK+2bc62RJJzq6qya3NG9b+v5dF0vI8L3z8dlzV/zBg+n8jkvv5/XdTnPywZhpJapYfIjt869S+vSuo6+dd+4jqHl0LG2rP302Hrs3Vq33lPrqXfqrkf4r6I/YH/B2x/B6bww9Q49JwAAASJ6VFh0cmRraXRQS0wzMCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZHDSANDMLm0MGiGaGC3AwgGkmGJ+dAayAkYkdIsAMl3CwAEswo+uES8B0cDOwKjCwZTAx8CQwsiUwsmcwMTFrMDFxJjBxJ7CwJ7AASZ4MJnaOBA7OBE4uDSYRJjYGHhZ2RjY2Jm4Wdg5O8WVAYxjhfpiy0ebArY/L94E4Z59u3T+J67E9iK3FyecgKBu/H8Ru3RTtYJPzAMxeuXDXvv9dkmD2GaOuA05KBWD262VGB158nQLWu3tGyL69kSlg9scrU+w7HQ+A2VeEJRzWHJcDs28cz3dorJgLZk8PibQ3XrwXbE6xwL39WrdmgdliACXKRsseMtvtAAABknpUWHRNT0wzMCByZGtpdCAyMDIxLjA5LjUAAHicfVPLalwxDN3PV/gHxuhly1rOixBK7kA7yTaEQEigZDX/TyWHqW+oqX0Xkn10JB/p1s+39+eX39fd8+v7y8fnbpNi/Tz++Limv4uOGz+H/3xmlp4YADYPKYy0P93dL+lw2e1vJ4fz43L5lZATisf4/o7dXc4PtxNMh7SlbNKYLW0hMzVATZChrxFLgcQshKAlYVZlrTABsgMpExpDZ2yKhWeMks6JszCpYlBrYQaeAEuk9tKqFCxhFTPVGWVNS9pKZmwKGEjjBjTj1EBSVkPh5s/BylpkAmxfyQm0hpy5GZrNgOaMwUMq5kYB6tf/4BC6QK6eS+n3lbzCGSFiF0ilFvVeZmIgmTKSp/bKpJlob1LDIrNX+0wsXWqWph1KYNpm0NNy/DYpX7OzPy/HMTux6xgQcVfHGISLPLotDtHR03DbaBxFxOiOuIurJnSfhtbiDG0lafjj3qXrB7ySSJzFVkKIs4wMGOVgRK4FWD83/Ntv5vbmDzyCuRZHYNKrAAABMHpUWHRTTUlMRVMzMCByZGtpdCAyMDIxLjA5LjUAAHicZZA9TwMxDIb/CmMr5aL4I7F9FQMbE3RHDHC6AVW9q0ph6o/HuS1hieT3eSJb78sEyzTh2/L8Pu0eX/fbs024wMN9N3AkUAlDikaakMJhwGisxDUj1ASyZWLAHCBCIcmeQGSEpJ6IkBRPUsQkBTikqAZmHA5VR9ch5oThgNFNBBcK+i4XKAqXLC4gJeSqIBhBXa4CmaQ6TCh+o6/K5Bc6YjXeElbIvC2nwhly/ZjNRGS7UYhVq4fJRMM+fNzW8/G6XsYUv38+L+t0mm/x6ejjvPx+XdflPC+3mEdoMTQYeMSWY8+p5dRzbjn3PLc897y0vPRcWi4915Zrz63l1nPo+oO2QBuhb/BfhdB1CH2J9z8jcc1eyfDzbgAAATp6VFh0cmRraXRQS0wzMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAA+IOYH4gZGNoYEIM3ExMagAaSZWdgcIDQHhM/EzpABphlhEmwOYAFmTAEBBQUggw3O51BQAjL+M8KMgtHcDIxAGxkYmTWYGFkUmFgzgLYnsLAqsHIlsLFnMLFzJLBzMnBwZTBxcjNw8nAwcfJyMIkwsTIwsrAysbGxc3CxMolvAprECPdNiJnwgUsPV+wHcbQmxhx4KLVlH4hd7N28/6gDO1i84MmcA5JXTcHs1jCLAyeOtdiD2O76G/eLz8sFszvyrtjFmhSB1Tyet9/efPteWxCbf/dE+0dex8Bq/jDZOCRVLgObL7lh1r51R36DxZ2lexw8DezAesXcFB3yWB+B2Y/2hznsOdEHViMGAF6GRovJXgcBAAABs3pUWHRNT0wzMSByZGtpdCAyMDIxLjA5LjUAAHicfZPLTlwxDIb38xR+gRP5losXLOaCoGo5I5WBLUIICTZd9f2Fk9FMgho1OYvE57Od/Hbo3T5e3j5eP/9sN1DH78PPz79wHXzYuB3/85kZPAsibh6gLmB3e/djhf1pu7tY9sen9fQIpEDRfXx+Z7en48PFQrCHhYMHJCNYKAiZGAMGbKP7ciUlqCZJCAsGiZRTmZBSSQrIMWsjIxeRWUyFIywaDLmUVMlMvpQJGWGt5yzF/xN4cMlCaQKmc3IpytFvH8x50wmYHcSgpIYttWkimh2yOEhBLaO0hMZJ4oSzxpGUyPWEUY1cqH85QngEDiauHjchOZKOEeF5++smXflWI8eQiaNHtpRMp5HZ9dQguQiXJqey8Xh52N/f3SzUEtDVTdyNQyQzlCpeTjF7N0wS1IKJVz5q4npZihFn4O16+NZm58bbHddDb7w6uXdX3UpvIfapvU8chdibQZ1IveR1m3thyYnUy6dOEPUyqSNlqIY6Y4Pa5HsaRVV3olEuqm7EgyzcLNfz+8M7W3RUZLx/3V8era83Xx5dxgYxv/J9AAABWXpUWHRTTUlMRVMzMSByZGtpdCAyMDIxLjA5LjUAAHicZZC7TgMxEEV/hXIj7Y48Dz8mKAVKTyKBaBAFWFsgkt0oLFT5eMbb2RSW7HvmembuYbfHfabc5Zy7p2532JTzehjeNpk2j3h36wYBdZS0HxxEtBv39wODSOBQNPYYQzKNgJ1Dq0NgVFaTEBz5KKXMm5Fp1TgJhd6BUkIVk+wTR0i+R9AQioSAnDyZ4EUxFEE0OjGXUwosJhEol87FTh7FF8mjrhPE4KNNwDaet2L7D70VCHC0OdZdhJSslQNBUbfuohIQad0lJVvVfI6jjb3p35f5fLzOl62D75+Py5y/xgUejvYcp9/P6zydx2mBuMUaY4OpxtRgrjE3WGosDfY19g0ONQ4NjjWODU5wnk/P8/LyfhqnPEIwpTKkxqA11jaoJkj8lyQ2HbFItaeNF5t8sQ0Ym4Sxifj2B3mD5xyiOqLgAAABVnpUWHRyZGtpdFBLTDMyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAH4gFgTiBkYOBg0gzczEBqFZ2BkywHxGNgeIAJsDWICZEYkBVQqhmeESAg5Qs+BaoTQDjIYqhFrCyMTNwKjBxMikwMijwsLErMDMksHEzJ3AwprAypbBxMaewMaVwM6RwcTBmcDJlcDFncHEzaPCzMOrxcTExMjHy6fCLMLMygjUwsPGwsrGxc3Mys7Gxckhvg9oOiPcr7OtGhykrTn2gzh3bys47PLSBrN9Wu7bf1j4C8xezTnRbp/FBTC7WbZwf3CD/AEQ+36x8IE7U9+BxY+byxxY07MXZDhDtULmgfdc7PYgtoGD14FbgT/B7G0tV/YfOvINzE6cN3v/50l/7UDsG1dE7dINOMB676kdtn/89hVYXGDCW/uov1/B6rkrghxuFIo7gNhiAHVYUIo3+Rb9AAABvHpUWHRNT0wzMiByZGtpdCAyMDIxLjA5LjUAAHicfZPNahwxDMfv+xR6gTX6smwd9yOUUjILzTbXEAKhufRU8vyVJmw8AVPPDNjyT7Il/Yde39+fXn4/v/057CDHz/OPt7/wOfi8Czv+53V3eBRE3N1DTuB49+37Aqfr4XiznC6/lusDUAVq4RPPV/ZwvdzfLAQX0ILYqCrssVRhqgwYphzDleEEXCqJkido5oQ+AQUWoNLUmCvsqXjtaG0CakTEwl24tQSNrcns6BpgnOhKvQbJRZ0ZZyEtSS6C4rrG7BazPiHbB6mKjmvi0pBJJ2SPfPZSTNkwI1VulWgCeoaUQoZkPUoQV+iEEzCMD2vChtHIJLn1PiUpY1KJnrSWZ6pXtlmNiNdqkpowZj4k7D6rEUmQFGlEhzJfrb2rzUBdwV6rV19vSc1nFQqhLSDRyWhPC5GIxSVkAt4t5y/i+5Dj8bKchxw5vyG6NMiQ1rovQ0EUNh060XjqEEMuiUfLYxNs9FUDaaN7GkTf9CjXRJtWaPj4puAaTrStq6bbxmU9nzZXyF8yPUcKZGtGwX5aWjLhWLdl2xYp17f/Pea7f8Fp0Dwmr1Z2AAABTHpUWHRTTUlMRVMzMiByZGtpdCAyMDIxLjA5LjUAAHicZZC9bgIxEIRfJSVIjuP9tc2JIqInPECaxKKIIu4QkFQ8fNZ03nTn+eZ2Z2f/stvu4H232r6t9w1bazS3a6MG+HRfUcRSpASMpEoYJohFpGqAWBFy7YIgK4YUWUphDRNGAWIMzymqVkhm4phSBumSEII8BmX7zVw2SUrKYUq2izDnLilqpjCZvzIUMQ0jV0QwzbIkqtJtRftHl5htj9kpJwQ2iaIyKlguwSwADwk0Qe7ZOZeu2CJN9Dgml/IQLJ1FsGuqoJ1lqYD75TYbCGvNYR0+bsvpcFnOmxSvP5/npX0fb/H1YM/j/Pt1WebTcb5F2cCIwWEcMTpMIyaHecTssIxYHNYRq8N5xNnhMuLicB1x9bW42uBfb7443xy46sB3B6488O2Bqw9cf/c/XkDoCb80S0QAAAEVelRYdHJka2l0UEtMMzMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAHii/gZGdIQNIMzMxsjFogBgscNoBLMHMiJcBUwuhOSB6mdgYoAqgpjMycTMwKjCwKzAyqbAwcmowMXGosDBxaTExMTFyM7MkMHNkMLGwZjCxsiWwsWcwsXMkcHGrMIswsTIwMnGwszEDMSuL+CygUYxwHygo99u93/3BHsTJYDlkb/inGcw+WdNtb55/YR+IfUZ54/5CpdP7Qey0b2YHmlRXgNn6TOEHVhaetQWxK1ZKHDhxbR5Y713hzP0bN5eD2aUnL+7j734CNqepwdrhsPARsHiBPoNDS94ZsDlasfEO0+I2g9liAJ2tPomm8a4kAAABeHpUWHRNT0wzMyByZGtpdCAyMDIxLjA5LjUAAHicfZPNSgNBDMfvfYq8QId8zFeObbeISHdBq1cRESyCJ98fky7tbHFwZg+ZzC/Zf5Jd+vpIr++fb6fvzQp8PQ4Ppx+4Lh5W5sd/HlWFF0HE1QHcgO3+7n6E3XGzvXh20/N4fAJiILEY27fs5jgdLh6CETBw0ZQTUKgViyTz4Hm1SIadXSdKJVtQQCGS2OHkzGHVEjOsMUQsqLUDRgPXFKSKYnIr1axVO2RykkNNtdi9x5Dk2BOZnZQgSRP6OwlNZ09lmVNKTRLF9HJENfdfsDqIQQljcm2ai+nsgDqDlqdEPFsxS5EOSQgTcFDWQuo9FTIZPZAsJ5ubq84dsgjukmxTlBAVMZOTEUm4V/h+HG7GP38Q22kc2gfhm9vc/VjbeO0OpA2RnViMigzRNg/2CGptj7ZTa64ftbXQ7iAv+hQtQ1m0I1qGuig6WoprOLk2g4iXxS5L8/PlPzF79Qu3mKteSA2uGgAAAR16VFh0U01JTEVTMzMgcmRraXQgMjAyMS4wOS41AAB4nGXQwU7DMAwG4FfhuElpsOM4sVftgHofewAuUPWAprXTKJz28DjllNCT+3+OE/n0PBwHfBt2x9f9aQxj+TA8PXbkowIk16GPgBRcHzxA0BKwZrQAPYhmdh1YSwaVEjFyTs6IEKkc0qA5WMCEwq4HH7JyYktEIEfX23FFiKzOipRZkmXBkzBF6woR1AZ15ImV0ZoQbHjcmoQlb08ipFQiq4T+HilJdZtuA+yeUsREmdzeva/L9XxfbgfwX98ft2W8TKt/OdvvNP983pf5Os2r5wPWjA2HmkPDVDM1HGuODXPN3HCqOTWca84NS83SsNas7VqateG/vbWLazb3+AU9hblo3/JQHQAAAa56VFh0cmRraXRQS0wzNCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABRIJYA4gZGdoYMIM3MxMjGoAFisMBpB3QarJCZEYmBqoIDopOJHUIzC0DEmeAa2CECzAg78ZiNk8HNwKjAwK7AyKTCwsipwcTEocLCxKXFxMTEyMfMksDMkcHEzJ3AwprBxMKbwMqWwMaewcTOkcDFp8LMzZPAw5vBxMevwC+QwcQvkiAgmCAolMEkJJwgLJLBJMLCysDIxMHOxsrGzsHMwsrNzMLLwyYgKCQswi/OxsjAwIgIPk2WAzLnzBxAnIjXUvv/7VUAszV2f9tnqtRkD2IflxI/cL+4aj+InZ5XekDq9QIwO5Zt1oFAnW97Qext2l0Hdl1bClZ/htnswNP2k2D251Pv9jv8u28HYgeqctgHxsSDzRc67WP/OqUYLN79/eL+L+eEDoDYLue0DizaEAFm7zrbcEBkvT6YfTCF3cEptBRs5uu8SAefFeZgveLu4Q6T/q0Au2fBiikOolFsYPXzD+5zUCvbABbvuLrfIeL6d1sQu+TCNAfptDSwOWIAz+NsQ/gsSbAAAAIpelRYdE1PTDM0IHJka2l0IDIwMjEuMDkuNQAAeJx9lM9qHDEMxu/7FH6BGP23dEyyoZSSXWjSXksphYZCT31/Ks2QjAOm4z2MPT9Jtr9Pi79/2rcfv76//Lk9tXo+nz+9/G1vD51PuQ7/+UVE+8oAcHps9dLuHj58vLT759u715X765fL81MjbCQZk+M9e/t8fXxdwXZpN9TBFIAadVfjXIYO23OEUrtvN9ANFFUSVEQNW4C8g+LoMRp2QDOLBSgFUmdDgKiQGM6MC1KL5O4sbtJusJMOHLogrUjpjkxjVE4kyLEgx04yZlHLbVKo4Sql79t04XBKUIeIrW4oCsTuprqdV3iIjwWI0K65rIyO0bhLQN3AAix1oI/UfKSSnXhYrEojtaeqbQJso7ZLwe6ru0Tez2PmzlHXyq5jjUqZQzpQis0VNETBlqgmSj09oVSXGJpSrq4dS6GsGYOjQBzByitw7KDxwE1zTh2XPsJSSPLsqi6bmSNIfEWWRNrD8ji65RxusDIxwU5G2ri+IyHgEsSt+EAKqe+eWsXKRg+X87vG21vx7no5H61Yg46Gq6kfbZXfGh/NQ0VMLYKJxNEHVBF4uF1y6OHpmsbh3JoiTQZNuNnkw5qjTH6TrDEmU0nW8Mk5kkVisgdWFtTJB1UxIyfBpRJNVbyiMtQmAaVCcUxCbSuEkyJSyfBtN1S7rWRv+6HabyajQ8faMcGUpwSb5an5679svp/+ARh9FMd71WVlAAABonpUWHRTTUlMRVMzNCByZGtpdCAyMDIxLjA5LjUAAHicZZDLThwxEEV/JctEMsbX5XoxYhGxn/ALSWsWCDGDYGDFx1PdWXW5Z9O+5065+vy5f8Bx6cuy0Hl5X2jptw+4P94eFyzrgx9fP1tlgsEL1eGtoRxuWpXG4FF6ZUAi6bUJx9FYiLazDXIrqKxjrI1RCWojku4sfUsM1K3EOPQWv8ioGg2TchM1VuhWaz1uKTFTB7f/t4lYzIo6GatFhCqjka6t7mS2tUgQ+8Z8VyPCVjNh1tLqIB2m28cMg7nGZg0iEbWq7q4jWp1UvBx6BZh7BM4xKTaNm13JI4E6MW2JkGJdneJjYs6InZht3am5dy4Hri7A2Dpqgi3xYetk9FhW1n8pQlEkFlvEy6/y93p5eXy7vN61+v7x7/WyPJ+u9fdjHE/nz6e3y/nldL5WyB32HJn3Pe+Z055T5mPPR+a855y57LlkrnuumdueW+a+5z75SQIxG8wKJ4dIEjFZRNKIySOSSEwmkVRicokkE5NNJJ2YfCIJxWQUSSkmpz057dnp1ze+pEfKxGM+xwAAAa56VFh0cmRraXRQS0wzNSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABRIJYA4gZGdoYMIM3MxMjGoAFisMBpB3QarJCZEYmBqoIDopOJHUIzC0DEmeAa2CECzAg78ZiNk8HNwKjAwK7AyKTCwsipwcTEocLCxKXFxMTEyMfMksDMkcHEzJ3AwprBxMKbwMqWwMaewcTOkcDFp8LMzZPAw5vBxMevwC+QwcQvkiAgmCAolMEkJJwgLJLBJMLCysDIxMHOxsrGzsHMwsrNzMLLwyYgKCQswi/OxsjAwIgIPk2WAzLnzBxAnIjXUvv/7VUAszV2f9tnqtRkD2IflxI/cL+4aj+InZ5XekDq9QIwO5Zt1oFAnW97Qext2l0Hdl1bClZ/htnswNP2k2D251Pv9jv8u28HYgeqctgHxsSDzRc67WP/OqUYLN79/eL+L+eEDoDYLue0DizaEAFm7zrbcEBkvT6YfTCF3cEptBRs5uu8SAefFeZgveLu4Q6T/q0Au2fBiikOolFsYPXzD+5zUCvbABbvuLrfIeL6d1sQu+TCNAfptDSwOWIAz+NsQ5C6gx0AAAIpelRYdE1PTDM1IHJka2l0IDIwMjEuMDkuNQAAeJx9lM9qHDEMxu/7FH6BGP23dEyyoZSSXWjSXksphYZCT31/Ks2QjAOm4z2MPT9Jtr9Pi79/2rcfv76//Lk9tXo+nz+9/G1vD51PuQ7/+UVE+8oAcHps9dLuHj58vLT759u715X765fL81MjbCQZk+M9e/t8fXxdwXZpN9TBFIAadVfjXIYO23OEUrtvN9ANFFUSVEQNW4C8g+LoMRp2QDOLBSgFUmdDgKiQGM6MC1KL5O4sbtJusJMOHLogrUjpjkxjVE4kyLEgx04yZlHLbVKo4Sql79t04XBKUIeIrW4oCsTuprqdV3iIjwWI0K65rIyO0bhLQN3AAix1oI/UfKSSnXhYrEojtaeqbQJso7ZLwe6ru0Tez2PmzlHXyq5jjUqZQzpQis0VNETBlqgmSj09oVSXGJpSrq4dS6GsGYOjQBzByitw7KDxwE1zTh2XPsJSSPLsqi6bmSNIfEWWRNrD8ji65RxusDIxwU5G2ri+IyHgEsSt+EAKqe+eWsXKRg+X87vG21vx7no5H61Yg46Gq6kfbZXfGh/NQ0VMLYKJxNEHVBF4uF1y6OHpmsbh3JoiTQZNuNnkw5qjTH6TrDEmU0nW8Mk5kkVisgdWFtTJB1UxIyfBpRJNVbyiMtQmAaVCcUxCbSuEkyJSyfBtN1S7rWRv+6HabyajQ8faMcGUpwSb5an5679svp/+ARh9FMeXT7w5AAABonpUWHRTTUlMRVMzNSByZGtpdCAyMDIxLjA5LjUAAHicZZDLThwxEEV/JctEMsbX5XoxYhGxn/ALSWsWCDGDYGDFx1PdWXW5Z9O+5065+vy5f8Bx6cuy0Hl5X2jptw+4P94eFyzrgx9fP1tlgsEL1eGtoRxuWpXG4FF6ZUAi6bUJx9FYiLazDXIrqKxjrI1RCWojku4sfUsM1K3EOPQWv8ioGg2TchM1VuhWaz1uKTFTB7f/t4lYzIo6GatFhCqjka6t7mS2tUgQ+8Z8VyPCVjNh1tLqIB2m28cMg7nGZg0iEbWq7q4jWp1UvBx6BZh7BM4xKTaNm13JI4E6MW2JkGJdneJjYs6InZht3am5dy4Hri7A2Dpqgi3xYetk9FhW1n8pQlEkFlvEy6/y93p5eXy7vN61+v7x7/WyPJ+u9fdjHE/nz6e3y/nldL5WyB32HJn3Pe+Z055T5mPPR+a855y57LlkrnuumdueW+a+5z75SQIxG8wKJ4dIEjFZRNKIySOSSEwmkVRicokkE5NNJJ2YfCIJxWQUSSkmpz057dnp1ze+pEfKESyMuAAAATF6VFh0cmRraXRQS0wzNiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAA+IOYH4gZGNgcNIM3MwuaQAaKZGdkhAswYEkgMmAyEhutggCmAMTgYwDJMMJodIsHIxM3AmMHEwJrAwKXAyJTAxJzAxJbAzJLAzJHBxMKawcTGDsScCuwcCey8Cpw8Gkxc3BpMIkxsDKwszEyMrGxMzBzs4puARjHCPTT5n7xD1GsjWxDn3+Q59nOy7faD2Gonju19/5NpL4h9U05gX8Tl3fYgtk/qRHvHAAEHEPuZkaxDU9NRsPgWi4P73+ZxgvUudJM+4NumBhZf43Jqf9aFj2D2MdPv+91//AGruVxX4uDBqw1m13uVOzzbwXUAxL71KOLAUm1RMNvEpvrAnHBpsF4xAO+7SLakPgDIAAABpHpUWHRNT0wzNiByZGtpdCAyMDIxLjA5LjUAAHicfVPJbtwwDL3PV/AHYnATJR5nCYqiiA0kk1yDoCjQuRQ99NK/L+nBRA4qRPaBlJ4el0fR778/Xr//fLv82u8g1+Pp2+UPvC8+7WIfP/ndHV4EEXcPkAYc7r98neF43h9uO8fleT4/ASlQiTvxfcTuz8vDbYfgCDxpsJIATqhijdJYV7/JgaOJWdgM7nCqKi22/wcKzHmOXtFotYS81gFSgzLOSTHIglytShsByxqbpDhqJMtFm7cBzq61FIss40JRQS0DXM3AcY4ekEyhRNHqA2RLZFCyUbM4t4I6TNGz6qBsyEwRuzWnKgMg4TW4Cwn7alUTHnFSaiNTY2RdO2khTR2JQwxLIk2cORMmq0VGpYfIC9zJJK01tYSKYG2j2mN85oQ6l1JSaUNraAPk/Xz6MFPXKTss86lPWcwicB+mdK2PDOVHfTBCZpAuvwZEu8rp1i5mwktXLF3vusRZj0RJXqFtWkzh07aTGhy+6ReFT7rpCicNvacXb4xXIt72Y1t9+rf3GfbuHxt0wbagUPyoAAABP3pUWHRTTUlMRVMzNiByZGtpdCAyMDIxLjA5LjUAAHicZZBNTgMxDIWvwrKV0sg/sRNPxQKxh14Boi4Q6kxVCqseHme6Srqz32f7We+tYt28Pr9vZ6r3otZKMz7dNjuORiISICpoAQ37HcVEitYkgVSySxgFTFLYQRTWkmzVjJE5tCKrF3s/xqUUCX6CGXKbggiWQXHdBUYfdQ+MREy5aTlx8V03NTN0U0jugBL2HAsBrYvqSsZVUjZqBqjZH2p7osTBP0wM0k4jiwWKJOn+ACZwE59Imvn+uRQgcqUUwxy24eO6nA6X5TxB/Pn9PC/1+3iNLwdvj/Pf12WZT8f5GmXCHmOHMU3Ucxo595w7rlPqcRqw9FjG69pzHXnuee65TqXnZbC3HtuAccgOYfTHMb6H/HAIEB8SxCFC5GHi9g99f9qxdK3tqwAAANR6VFh0cmRraXRQS0wzNyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5gZHPIANLMzAgGu4MFiMHIzOagAWKwsENoZnYGsAomRjYGqFIOBrAMEzcDYwYTA1MCI3MCE0sCM0sGEzOrAiubAhu7BpMIIysDIzMLk3gWUCkj3AEXnggcuCHXvB/EKfJ22R9zrw/MvvxK44CQ6G07ELuBI24fC08/mD318fr9l1/MtQf7RHmePf88dTB7foSQw+O5V/aB2Gu98h3c8pT3gthiALT2KcyMEaQgAAABLHpUWHRNT0wzNyByZGtpdCAyMDIxLjA5LjUAAHicfVLLTsQwDLz3K/wDGyV2YifHPlYIoW0lKFwR4sJeOCEk+HrsXZXsigi7lZLxdGyPGj6/vp9f316O730HFvfT3fEDfgOnTnH/z1NKgSfy3ncHsAMM+5vbGca1HzZkXB7n9QGypre8ZvbrctiQACPs0CFTYYZdcB4jSQHv/Cnqt2hM74RZ5MQMgTUbTILZNFWSiLQeUXJJDWI8S2LgjNYSpVBu9U6mGBxJDKoYHBIx5waRlWjlFKM15BQlcYMn2lm3zsyp2AgxJGRpEDMsQE50LG2sRE+lWP0PcT9PV8aerR6WeapWR32x+mlXqqZFg6o1UaFUDTAg1TVNjOs2QSGpM6NC+XKyyznsvv0seu5+AEMYfjD2+Z7GAAAA5HpUWHRTTUlMRVMzNyByZGtpdCAyMDIxLjA5LjUAAHicXcw9TwMxDIDhv8IIkmvFH7GTO3VALEzQHTHA6YYKNVeVK1N/PLluyej3sf2+f3mbqHyU189poofbo6BLygK7gEFyDoFgZORkZltTimwOIyFLVIWAFtWjwViRyRLn2thzfVIbobiSwLYu292O0SSL1CVlTzneE9fmULcDq6T7Lzdzt60RGRk8wde6nA6X5TwE/L1+n5fpZ17x+VDHufwdL0s5zWVFGqhl6phb5objIC1Le62Dtq69x9Zj79a69e6te+e3f2D+f0YNggotAAABEXpUWHRyZGtpdFBLTDM4IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRzUEDSDOzsDlkgGhmRnaIADOGBDYGRAlcCwNUgoMBLMDEDhFgZOJmYMxgYmBNYOBUYGRKYGJOYGJLYGZJYObIYGJhzWBiY89gYudIYOdW4OTSYBJhYmNgZWFmYmRlY2LmYBefBTSDEe7yCa0sDkc/+duBOG8XNttbaifsB7Fnz761T1qHGcwW4A3f/+5Xrj2IHS7qb7etg8EBxK7XvmJ/d+IlsDjb7av7d75YA1a/st/swKelt/aB2IJbRA+sra4Gq/m1MtFhC6cKWPy0ZI3DbpGzYPXbcjoP2AiFg9liADJPP9pjb6NQAAABe3pUWHRNT0wzOCByZGtpdCAyMDIxLjA5LjUAAHicfVPNSgNBDL73KfICDknmJ5Nju1tEpLug1auIF4vgQbz49iat7aw4OLsL+fmSfElm6evt4+nl9fnwvl6Bn7vx9vAJl8Pjyuz4z6uq8BgRcbUDF2Czvb6ZYNivN2fLMD9M+3sgBooWY89v7Ho/784WggE4oGDJDBgYI0o2AY+nRbLhKCDXKApXGKrkUrADjDC5P3HRUl3KxFG5g0yW0jMlxGQ8g7IW6qXMBnRqzE7E3DWm1MGVI8eSJYu4kDJK6eDEC5tfUJK4FDPW3KNYHcnBnJnqqS1Bi/mLVG+bQ4xK5PPTyjH3iluHA8SQubjZUlJB0thDEsyG1KjG80gYmbS3HNu0VU+BNWXGn6ES9zraTuOv/Z9uxGaexnYjkn3cFu9qaeslfxZLTAaJbVXJIKltxFVpg3d4btN1VdsIzdcqkScXqItxJAvRRdNkOl2Y2mVnjyJaNrtszfXzj2Ly6hvrSqukMJUQHAAAAR56VFh0U01JTEVTMzggcmRraXQgMjAyMS4wOS41AAB4nGXQzU7DMAwH8FfhuElp5I/YSVrtgLjDXgGiHhBaO42y0x6epJwcTk3/P8eO/FqwLFTK4eX0diyl0IJPj8MQPOUg5AbwKQASuWkgn4T+skARQqwZeo0QxdUDCySpUVPNmlqdIHGud9EDJd6jFEXVTeQhgooDT8Ctw8ReSFsFKmDmFmTOEFtvBdq7qERJrn5DHeamdpmIXW0GicM+vD4XAte+mbLi/mzmjNSSRCzqju59Wy/n23odwX//fFzX8jVv/vlcf+fl/nlbl8u8bF5GtIyGMYxknXpn69x7sB56F+tiXUe1rsZ1jJZjx8ly6qdn67l37LaH8K+iX2C/wccvhAK66VcursQAAAHdelRYdHJka2l0UEtMMzkgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAACSCWBuIGRjaHDCDNzIyfoQFisMBpBhUgzQSkE4A0IzMHhGZkY4DIszOANTLBBWA0B4RmQihANxnTSnTHCCgYgCxjg5kFo7kZGDOYGFgTGJkSmJgzmJhZElhYM5hYuBRY2RjY2FmYgBrYOFlYOLlUWDi5tZiYmLh4uHlUWLgFVJh5eDWYePgU+PgV+AUymPhFEgQEEwSFMpiEhBOERBmERTKYRMU4mETFOZhEgF5hZQE6nJWNlYWLk5WHW4Cfj01QSFiEX0BcixHoLngIBzZmHPh7iOMAiDPRcMkBf0YWMPuA1K4Da2Ks9oPYbMILDmi6ctiD2NYuCQce1ryyA7HvFZockM9KAKvpDFu9/5uHMpgtenDB/vtrIGYeyVC2W+9vBhbnutq7P0A9AmzOt0kyB64dPgRmv/iZbpe84zCY/ZbplZ3zDgcHEPuou/T+IyZNYPZ73h/2vQwBYHboTXWHyzpfwerlA07YZwtEgdnSbb/seydJgO0K4I9y8HhTBWZ7PehzmPZ8lS2IfSaoyeHrf4hdvlrFDheSpcHu5KzUd5AviwezPX4vd7D/ZQxmiwEAf5Nz1/Z4skUAAAJqelRYdE1PTDM5IHJka2l0IDIwMjEuMDkuNQAAeJx9VctuGzEMvPsr9AMW+JZ0yMGJ06BoYwNNmmvR9uJceur/o6QWthRA6NoGVtwRRc4M1/Trcvnx+/Lz/c9hl+L6dvzy/jfdLjruPA7/+bbW0hsDwO45xU26f3z6fEoPr4f7a+Th/P30+pJIEhXf45+P2MPr+fkawfSQ9pyNqTZOe8rI1gATZOjX2EuBVH+OoBhIMNIKCyRvyIpaTNMecqHSSlkgZUMCEBP5c2Vi0AVQtzIVBC2ei5ZWZQG0AJKf3UQhzq7FDNsCWQKJmblqqYE0LpVpgawbklRro40jVV1x1NLZo6jNy+uNI6HyAoiw5USoYNFHFWFdkYmYTnGmiEnxZVZCWwqEoRBkIlNuHdjAVmQid6BzCCqJMyCS2Aoo3k8w43m8SnHJa5Pl2epVYm5cGqmnJAXglT4YAlE2r1Kim4YqvOw79PEmTFzJIEix4pLK2oFOOWHX0dlvddlOcyRngYK1+7JVQKsrr4c8kp3yWrp3KstSHcIOhEIGJcplp3LlNrf3i59dmndTup4+EzbPRHo7fL2zG56despFsBiF9cWZWjqeQiTNfqz4bfc+4bKGx9Pxw+xvb4P78+k43gbiPxojH0sbc+1vlMRjeCVCY0QjoGMQfTH2Ojm+RBwz5YlTGYODDnElPz3d8TQkEW3TKMQaZ8djR+FkbeoRmjyMHciTV7dImUwZAMdO7sMe0clm2LfaZCeJrSMPwRYhnPwhPVmdjCA9WZuklkhGs6TYI0OJYJdgzhw1ezK69eUv+y0is+CzvLG+/lH4/e4fIT05EMNPAYYAAAH6elRYdFNNSUxFUzM5IHJka2l0IDIwMjEuMDkuNQAAeJxlkj9vGzEMxb9KRxuQVfGfJNookMBLpyZAiy5BhvTgoWjsCxK3Uz58ySs6iGcYxt37PVHkM48Px5ubR9jcbT8eN5+O6L932y8TTThNm4evnx/93b7TRCbjBJN98MP7ZgcZRbqmHWYgEUkHk4i69LQruVLrhOlQMohKU9caIAgtPii91FRyZyZxF2IV0gRZUI2YwtKKcKJcANCrW9FSpXLiXGpXTgfISk3JPCilWGXM1QqxlVEQJnfYARW/SaDDolg7iN6PNabd7qLMpcHStvYCtbvUVLn6cIxNm5duDM0Uc1tx80hGVkb3dJ8sHThz5d7tttKJ/V6TSsMKPhj9G8Mqmqsto4LdbgWlMHgaNrJ2XjwdlMU76q1W0MVWCf/nXV0Re4AirpSK3pJJHaS1JW3vuy1aKWj/hQ1MSObfpqfrfL5/nV/2Jb/9/vEyT79O13x7b6+ny5+fr/PlfLpcM+9hxBAwjhgHTHsaMQ247XnEHLCMWAYMuK8jr5G3kbfI+8h75DpyjRxCdlBWjhgfrByYz/Pzt/n6/en5dJlOubo0HsLVoZAr0MoRogVeOUK6sIoXQr6wChhCwtDi9oSIoUdDyBg0LljIGOOCYogYVysadxSjIaSJY5r8/hf7kH4lAWP8IQAAAd16VFh0cmRraXRQS0w0MCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAJIJYG4gZGNocMIM3MjJ+hAWKwwGkGFSDNBKQTgDQjMweEZmRjgMizM4A1MsEFYDQHhGZCKEA3GdNKdMcIKBiALGODmQWjuRkYM5gYWBMYmRKYmDOYmFkSWFgzmFi4FFjZGNjYWZiAGtg4WVg4uVRYOLm1mJiYuHi4eVRYuAVUmHl4NZh4+BT4+BX4BTKY+EUSBAQTBIUymISEE4REGYRFMphExTiYRMU5mESAXmFlATqclY2VhYuTlYdbgJ+PTVBIWIRfQFyLEegueAgHNmYc+HuI4wCIM9FwyQF/RhYw+4DUrgNrYqz2g9hswgsOaLpy2IPY1i4JBx7WvLIDse8VmhyQz0oAq+kMW73/m4cymC16cMH++2sgZh7JULZb728GFue62rs/QD0CbM63STIHrh0+BGa/+Jlul7zjMJj9lumVnfMOBwcQ+6i79P4jJk1g9nveH/a9DAFgduhNdYfLOl/B6uUDTthnC0SB2dJtv+x7J0mA7Qrgj3LweFMFZns96HOY9nyVLYh9JqjJ4et/iF2+WsUOF5Klwe7krNR3kC+LB7M9fi93sP9lDGaLAQB/k3PXLG+bwwAAAmp6VFh0TU9MNDAgcmRraXQgMjAyMS4wOS41AAB4nH1Vy24bMQy8+yv0Axb4lnTIwYnToGhjA02aa9H24lx66v+jpBa2FEDo2gZW3BFFzgzX9Oty+fH78vP9z2GX4vp2/PL+N90uOu48Dv/5ttbSGwPA7jnFTbp/fPp8Sg+vh/tr5OH8/fT6kkgSFd/jn4/Yw+v5+RrB9JD2nI2pNk57ysjWABNk6NfYS4FUf46gGEgw0goLJG/IilpM0x5yodJKWSBlQwIQE/lzZWLQBVC3MhUELZ6LllZlAbQAkp/dRCHOrsUM2wJZAomZuWqpgTQulWmBrBuSVGujjSNVXXHU0tmjqM3L640jofICiLDlRKhg0UcVYV2RiZhOcaaISfFlVkJbCoShEGQiU24d2MBWZCJ3oHMIKokzIJLYCijeTzDjebxKcclrk+XZ6lViblwaqackBeCVPhgCUTavUqKbhiq87Dv08SZMXMkgSLHiksragU45YdfR2W912U5zJGeBgrX7slVAqyuvhzySnfJauncqy1Idwg6EQgYlymWncuU2t/eLn12ad1O6nj4TNs9Eejt8vbMbnp16ykWwGIX1xZlaOp5CJM1+rPht9z7hsobH0/HD7G9vg/vz6TjeBuI/GiMfSxtz7W+UxGN4JUJjRCOgYxB9MfY6Ob5EHDPliVMZg4MOcSU/Pd3xNCQRbdMoxBpnx2NH4WRt6hGaPIwdyJNXt0iZTBkAx07uwx7RyWbYt9pkJ4mtIw/BFiGc/CE9WZ2MID1Zm6SWSEazpNgjQ4lgl2DOHDV7Mrr15S/7LSKz4LO8sb7+Ufj97h8hPTkQRthHxQAAAfp6VFh0U01JTEVTNDAgcmRraXQgMjAyMS4wOS41AAB4nGWSP28bMQzFv0pHG5BV8Z8k2iiQwEunJkCLLkGG9OChaOwLErdTPnzJKzqIZxjG3fs9UeQzjw/Hm5tH2NxtPx43n47ov3fbLxNNOE2bh6+fH/3dvtNEJuMEk33ww/tmBxlFuqYdZiARSQeTiLr0tCu5UuuE6VAyiEpT1xogCC0+KL3UVHJnJnEXYhXSBFlQjZjC0opwolwA0Ktb0VKlcuJcaldOB8hKTck8KKVYZczVCrGVURAmd9gBFb9JoMOiWDuI3o81pt3uosylwdK29gK1u9RUufpwjE2bl24MzRRzW3HzSEZWRvd0nywdOHPl3u220on9XpNKwwo+GP0bwyqaqy2jgt1uBaUweBo2snZePB2UxTvqrVbQxVYJ/+ddXRF7gCKulIrekkkdpLUlbe+7LVopaP+FDUxI5t+mp+t8vn+dX/Ylv/3+8TJPv07XfHtvr6fLn5+v8+V8ulwz72HEEDCOGAdMexoxDbjtecQcsIxYBgy4ryOvkbeRt8j7yHvkOnKNHEJ2UFaOGB+sHJjP8/O3+fr96fl0mU65ujQewtWhkCvQyhGiBV45QrqwihdCvrAKGELC0OL2hIihR0PIGDQuWMgY44JiiBhXKxp3FKMhpIljmvz+F/uQfiUKefQ0AAABVHpUWHRyZGtpdFBLTDQxIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAAEgFgTiBkY2hwwgzczMyO6gAWbABbDIgGkWdgawBBMjTABTCzYGVLOCFpBmYmLlADMYmZg5FJSAjP+M3AyMGUwMTAmMrAlMzBlMzCwJLKwZTKxsCmzsCuwcGUzsnAkcPAmcXBlMXNwJ3DwZTDy8DLx8HMy8/AwiTGwMQA2sjGwcPNxcnOzip0BGwz07uWCSw8cYN1sQ5+veZIfq6237QWwZgxaHhK699iC21B4th7Lrz8HsS4aX7dVnmYLZ1yTZHE6JWILVe7/ttD8x5SWYfSL76L5N7vvB7Fk7Q/ZLsdftBbFDFm7ez6WpdgDEPllifqCeSRDM3vY1+AB3dChYfesloQOlxZ12IHZxsP6BsC03wXY1J9zZHxNv7ADWW912YBsDE5gtBgBWG1Ku3VrwVAAAAeN6VFh0TU9MNDEgcmRraXQgMjAyMS4wOS41AAB4nH2Uy24bMQxF9/4K/YAHfIrUIgs/grRoYwOtk20QZNMARVZZ5PNLjmFrEgjVjAGJcy4lkRemF/14ev77vn16+fP8+rZZlRy/9j9e38t10H4VcfjP21orjwwAq/uSk7K9vft+KLvTZnuJ7I4Ph9PvgrWghSaez+zmdLy/RLDsikxqlYQKTCAu5DmZR1dSORSeVF1qK2ucQFkUByDPCZHBjQtO4mCuA06Co6lWM8bgHJEqDziNjXGq0prmuQwa+4ircz5oymRlHSBRsxFoc0IwU5W8iZO4jkCPjJGIPW7tSUoTttFd2pl0ju3nzaES4KiMCIlGKmCuWNY0aauko6SYrQnAa1XgnFFVMxuhlChPjOhG56OwEIxQPmelJmGlAKi6aBuREoUK0rhJ9SiZAXh4qpNl9+3uhsrj5ueNXlVajnlBI6xNoyMOlJMvKpxVfFXVVMlEAUeJoo+M1Piran2W4UV2e9h/MvPZ3tvjYd/tLfGj7uJccveqRKh2S0qGuvMyoN1gseiwRaJarJsFI+TdERKhtmh7rnHZXAkIedFCSQxx0SlJDmnREUlwodLYNkCURSVzGV+ukTxpRuqybMsi5fry/xHz1T9uVOK3gRYilQAAAX16VFh0U01JTEVTNDEgcmRraXQgMjAyMS4wOS41AAB4nGWQu27cMBBFfyWAmzXMJebFmeG6yg/YLoI0iy0cQYVhr2TYm1T++AzXFSk1gu45lyPO8fHudHN8uKPT7vi4P91OOMWze5hoifdCEfz42u0xG6Elyg5k6X5P2biKpcgBnCKRTECKoQAj1atDVTBBJnUpLeHMiG5pD9mZha6Sq5bUZC3mkWAWYNYWlapUIoLMXop7arAKh4YZzEppiZN4WDG4FuZ2uBFV4yap1KrxCwaVnZukaoGihUia7iUjg7eLiIPVFhRTkuiAuFA7mXMMj8vGLCgs33/kHOOuVwElwPBu0/NlPT99rO8HyOf17dd6+f38Ni/TnDmSz79/3tfpdb7kn0/xOS//Xj7W5Twvl4x6wKFRIukaODZoaGAkXYPGBvecRy49l5GXnpeRa8915NZzG7n33DteDrXHta/LAYcdI2yMcae4MYYdIm2MYYvIG2PYI8rGGDaJ4yq//gOjrA7iIt/EBAAAAVR6VFh0cmRraXRQS0w0MiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAABIBYE4gZGNocMIM3MzMjuoAFmwAWwyIBpFnYGsAQTI0wAUws2BlSzghaQZmJi5QAzGJmYORSUgIz/jNwMjBlMDEwJjKwJTMwZTMwsCSysGUysbAps7ArsHBlM7JwJHDwJnFwZTFzcCdw8GUw8vAy8fBzMvPwMIkxsDEANrIxsHDzcXJzs4qdARsM9O7lgksPHGDdbEOfr3mSH6utt+0FsGYMWh4SuvfYgttQeLYey68/B7EuGl+3VZ5mC2dck2RxOiViC1Xu/7bQ/MeUlmH0i++i+Te77wexZO0P2S7HX7QWxQxZu3s+lqXYAxD5ZYn6gnkkQzN72NfgAd3QoWH3rJaEDpcWddiB2cbD+gbAtN8F2NSfc2R8Tb+wA1lvddmAbAxOYLQYAVhtSrg0ZrOkAAAHjelRYdE1PTDQyIHJka2l0IDIwMjEuMDkuNQAAeJx9lMtuGzEMRff+Cv2AB3yK1CILP4K0aGMDrZNtEGTTAEVWWeTzS45haxII1YwBiXMuJZEXphf9eHr++759evnz/Pq2WZUcv/Y/Xt/LddB+FXH4z9taK48MAKv7kpOyvb37fii702Z7ieyOD4fT74K1oIUmns/s5nS8v0Sw7IpMapWECkwgLuQ5mUdXUjkUnlRdaitrnEBZFAcgzwmRwY0LTuJgrgNOgqOpVjPG4ByRKg84jY1xqtKa5rkMGvuIq3M+aMpkZR0gUbMRaHNCMFOVvImTuI5Aj4yRiD1u7UlKE7bRXdqZdI7t582hEuCojAiJRipgrljWNGmrpKOkmK0JwGtV4JxRVTMboZQoT4zoRuejsBCMUD5npSZhpQCoumgbkRKFCtK4SfUomQF4eKqTZfft7obK4+bnjV5VWo55QSOsTaMjDpSTLyqcVXxV1VTJRAFHiaKPjNT4q2p9luFFdnvYfzLz2d7b42Hf7S3xo+7iXHL3qkSodktKhrrzMqDdYLHosEWiWqybBSPk3RESobZoe65x2VwJCHnRQkkMcdEpSQ5p0RFJcKHS2DZAlEUlcxlfrpE8aUbqsmzLIuX68v8R89U/blTit5xaY1EAAAF9elRYdFNNSUxFUzQyIHJka2l0IDIwMjEuMDkuNQAAeJxlkLtu3DAQRX8lgJs1zCXmxZnhusoP2C6CNIstHEGFYa9k2JtU/vgM1xUpNYLuOZcjzvHx7nRzfLij0+74uD/dTjjFs3uYaIn3QhH8+NrtMRuhJcoOZOl+T9m4iqXIAZwikUxAiqEAI9WrQ1UwQSZ1KS3hzIhuaQ/ZmYWukquW1GQt5pFgFmDWFpWqVCKCzF6Ke2qwCoeGGcxKaYmTeFgxuBbmdrgRVeMmqdSq8QsGlZ2bpGqBooVImu4lI4O3i4iD1RYUU5LogLhQO5lzDI/LxiwoLN9/5BzjrlcBJcDwbtPzZT0/fazvB8jn9e3Xevn9/DYv05w5ks+/f97X6XW+5J9P8Tkv/14+1uU8L5eMesChUSLpGjg2aGhgJF2Dxgb3nEcuPZeRl56XkWvPdeTWcxu599w7Xg61x7WvywGHHSNsjHGnuDGGHSJtjGGLyBtj2CPKxhg2ieMqv/4Do6wO4jWgrswAAADTelRYdHJka2l0UEtMNDMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRjSADSTEwCDAogmo1BA0gxs3BAaCZ2hgwwzQiTYIfQzIxgmpGRm4ERqI2BkZWFhYlZg4mJRYGFVYWZlU2LCaiJnY2dhUWEkRUkzSSeBdIAdwHXrQP7T1VP2Q/iqH7t3Lu89xSYvSv62P4f+9fagdhJeUYHKk5NtwexPzjy7Kv6Fg5m+5e525cabdgHYldcFnTYpj0LzGbIsXfwzG4CqxEDAEV9KGuRlS7YAAABK3pUWHRNT0w0MyByZGtpdCAyMDIxLjA5LjUAAHicfVLLTsQwDLz3K/wDGzl24jjHPlaA0LYSW7iuEBzYCyfE9+MUSnZFhZ2DMxm/RqFPfD29vD2f39sGij0M9+cP+DUaGsPxn5NzhidGxOYAJYBuf3M3Qj+33Yr00+M4H0HNsfg1s52nw4p46GHnXUSRGErkBZEszeFiNZfgCDuDJbHQkqMUwhaTf2qGLCnYO3PmGDeIASbYkUuasiaw3hpVZIMYYSy9PUtOBjsNLLhVUaw1upSyD7lkcAiet4jJKpKjpJFpIaL3fouocGvEnNGWsRHRq5r+f3n7cbgS9lvqbhqHKnVxqnqWK1fR7A2kSkMGhSqAUSHWNb1BUpexTEh1ZG+QXk52OUe5r5/F4uYLWQ190BcZR2IAAADmelRYdFNNSUxFUzQzIHJka2l0IDIwMjEuMDkuNQAAeJxdzLFOAzEMgOFXYWyl1NhxbMetOqBbOpVKjMAA6AaEeleVg6kP31w7JZvzf45fd++P+21Hb/tusX1edi/0cFlEcEe3QICUPWwiRMvCYYXASEQSNghmTslvLSXi0spIrOUfQk6sOCcCSa5zYnaWOUWwbO7lOmXJdl9CVQllIEXk2ylUY400R8kxSViGj2k8Hs7jaY3w+/d5Gr9++gmeDuXZD//f53E49sMEtqaaqeFYc2yYa+aGU82pYalZGtaatWGr2Wq+XAHfY347XBIxfwAAASt6VFh0cmRraXRQS0w0NCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxg5GDSANDMTG0MGiGZmZIcIMLMxJABpJqCEApBmgXAZmeG0A1gZC7uDBYhmZGZ3gOqDSsAVQAxmZOJmYNRgYmRSYGJmYGJhYOZmYGEFGQtUwM6RwM6dwcTBmcDJlcHExZ3AxaMgwsTKxMzNzsLKwc7NxSm+DGQp3PWfrsQ5zO9lcABxLq+wc9DOlrAHsQ1rDth3flhqB2L7zrhqJ3NjLVicVTvanmVT834Qe6qtoIMT1xEwO46B0f65pvwBEPtRpeJ+mT0hYPHMmT/3H9p3FMw+HO50YOJRJjA754nEgT3TwsFmnnyTtv/8OxUw+9gUtwOvg7nA7hEDAFZAPzVCjw/6AAABi3pUWHRNT0w0NCByZGtpdCAyMDIxLjA5LjUAAHicfVPLTsMwELz3K/wDtfZle32kSYUQaiJB4YoqLvSCOCDx++w2Kk4lCyeRvOPZtT2zoZ+v09v7x+n8OWyCj6fx8fwd/gaNG8Phn7fWGl4ZADaH4JOw298/TGE43u2uyDC/TMfngBxQLMeeW+7dcT5cEQxz4CiKRUqgCKBZLMkmPlomhcGWa6mQfDnVxJo6PA5TwJiAjWnLTIKAHZ5YPYiCBYtaAifFpB1euvA0ZaQUthiBVAt0iPlyQMqVVZyYGFPmDrFcKtoJK1LYkt3dcnpENeIWYmYoOftM2dTvXbrapW3LKmbOsrmIak9GBKdyBM4ZihdNCEqlR0XfnyKrViEXQQi73iAtJ61AkFxss9CE6DF52R5NRjc1YkYu1GHup/GmT5bO2c3T2DqH/GsN4gC3PkD7pNntYWquokPUzEPDcrPIw9KM8FCb2mJQXUnqcSuGXrsavtJHnIa40kGct0ryEzrCawXW9/X4+pfZfPMLpPy2/MMtdM0AAAE4elRYdFNNSUxFUzQ0IHJka2l0IDIwMjEuMDkuNQAAeJxl0D1PwzAQBuC/wphIrnWf9l0iBpSFqXRHDBB1QKhJVQpTfzxON5steZ/L2XmnCbupn2nupj1Ojy/93O375XV5fqOHW0eRkrOFHUZl1BRGiKYJSbcIyCxvkQI7UthRFCvzYdxBTAw5pVCejMFd76EDgWIoKlI2b98KZswWMLIalgNw25a9zDAJAoaRomcHLYm6spVNXM7BrIEigCUpqymymUuZMSGULeKI5YJchjAh53sCnBJud1IEoy3D6OLu9z8UMQt9eL+up8NlPQ8Qv38+zuv8dbzGp0N5PS6/n5d1OR2Xa9QBa8aGqWZqmGvmhqVmaVhr1oZTzanhXHOuGAer2Rr2mr1mGbDpDf8V1zbXVodNd9iUd/sDVYDKrskiOTwAAAEPelRYdHJka2l0UEtMNDUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAHihuYGRjyADSzExMUAYzUCQByGBiYofKMLI5aIAYLOwQmhnGh9ECEBqmgRFhFAcDRIabgZGPiZWRgZGJgYkZqEOBhTWDiYUjgZUtgY09g4mNU4GdI4GdS4GLW4NJhJGVhZWNnUN8FlArI9zB3mZLD0ycXGMP4mwUbTvA9UFuH4jtdlD3QIzSO1sQW5nh/v4lrs37QexF6zv2/eJyBLPP3Q20b7/zBMwWeMLhcLW0E8z+xf7efmrlWTsQu/HSITvTcEmw+XNq4h3iwu6A1TStt3QwrdwHFg/tlHOICbR2ALHFAIjLO1zVIvfUAAABf3pUWHRNT0w0NSByZGtpdCAyMDIxLjA5LjUAAHicfVPBasMwDL3nK/wDNZIs29Jhh6btyhhNYOt2LWWXlY1Bof/P5JTOKZg5NkjPz7L05ITz+etw/L70h4/P4+ln2bkyXtbPp4v7G7TuDId/pqq69wAA3c4Vw/Wb7dPgVvtlf0NW49uwf3VIZUL57rnL/bi7IehWbhE9JpIsDrxKSpTNgGnUo1SI7FEBWdwCPMZIGBrMUJjkM7IS2j5a8JwaRHaDW6DPTKhULKAYUytkLCHBU0qaYrFyZMjcYCaLCV5Qs+IUXLIKNIjZQpLHIEow3Z2DgjSIYkT0kjKHUg0DBmzx1L0aGgRiUd1HFZWWkAiWYvCsqHJN0WSUlj6IU46meAjZcmCRdtF24WhEzhkDlROUhLFB3Azru+5f30M/Duv6Hmhaq8ftA9XeFyjUBqMtrm1EW7H2yhyXakOKq1V2NihXcdkgqRqiuTjXio2jM0XQfMRZ5TShNC9xXlDxbz+H2d0vjHKsHOLIpO8AAAEjelRYdFNNSUxFUzQ1IHJka2l0IDIwMjEuMDkuNQAAeJxd0LFuAjEMBuBX6QhSsPInTmzfiaG6nfIKLWKoKu4Q0E48fH1syZb4s/NbmfbTdDhhPm0O29Nm2n9s73h7bnaFUJNqiGRaa5Iw7phgESXsIqGUhOy1RAK25G3wfqleAgknWPBDTKWspUipVquvUSkchcMYSWFiWPtExTSMiZDVH1snJTuNmdjgtPZ4oIURpFU4eyBHZLymfKvMAcSqUdYCi/h2DqnqKyprLFi3LKamErbh87FcjrflOkS6/35dl9PP+UHvR7+e57/v2zJfzvODeEDL6Di1nDrOLeeGy8Atc8PgobReeq+t196ldenitWXtx611a7wO6L4OsW/oPw9dwvMfKxa6qklAQD4AAAEPelRYdHJka2l0UEtMNDYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAHihuYGRjyADSzExMUAYzUCQByGBiYofKMLI5aIAYLOwQmhnGh9ECEBqmgRFhFAcDRIabgZGPiZWRgZGJgYkZqEOBhTWDiYUjgZUtgY09g4mNU4GdI4GdS4GLW4NJhJGVhZWNnUN8FlArI9zB3mZLD0ycXGMP4mwUbTvA9UFuH4jtdlD3QIzSO1sQW5nh/v4lrs37QexF6zv2/eJyBLPP3Q20b7/zBMwWeMLhcLW0E8z+xf7efmrlWTsQu/HSITvTcEmw+XNq4h3iwu6A1TStt3QwrdwHFg/tlHOICbR2ALHFAIjLO1xEBKyCAAABf3pUWHRNT0w0NiByZGtpdCAyMDIxLjA5LjUAAHicfVPBasMwDL3nK/wDNZIs29Jhh6btyhhNYOt2LWWXlY1Bof/P5JTOKZg5NkjPz7L05ITz+etw/L70h4/P4+ln2bkyXtbPp4v7G7TuDId/pqq69wAA3c4Vw/Wb7dPgVvtlf0NW49uwf3VIZUL57rnL/bi7IehWbhE9JpIsDrxKSpTNgGnUo1SI7FEBWdwCPMZIGBrMUJjkM7IS2j5a8JwaRHaDW6DPTKhULKAYUytkLCHBU0qaYrFyZMjcYCaLCV5Qs+IUXLIKNIjZQpLHIEow3Z2DgjSIYkT0kjKHUg0DBmzx1L0aGgRiUd1HFZWWkAiWYvCsqHJN0WSUlj6IU46meAjZcmCRdtF24WhEzhkDlROUhLFB3Azru+5f30M/Duv6Hmhaq8ftA9XeFyjUBqMtrm1EW7H2yhyXakOKq1V2NihXcdkgqRqiuTjXio2jM0XQfMRZ5TShNC9xXlDxbz+H2d0vjHKsHDUYu2kAAAEjelRYdFNNSUxFUzQ2IHJka2l0IDIwMjEuMDkuNQAAeJxd0LFuAjEMBuBX6QhSsPInTmzfiaG6nfIKLWKoKu4Q0E48fH1syZb4s/NbmfbTdDhhPm0O29Nm2n9s73h7bnaFUJNqiGRaa5Iw7phgESXsIqGUhOy1RAK25G3wfqleAgknWPBDTKWspUipVquvUSkchcMYSWFiWPtExTSMiZDVH1snJTuNmdjgtPZ4oIURpFU4eyBHZLymfKvMAcSqUdYCi/h2DqnqKyprLFi3LKamErbh87FcjrflOkS6/35dl9PP+UHvR7+e57/v2zJfzvODeEDL6Di1nDrOLeeGy8Atc8PgobReeq+t196ldenitWXtx611a7wO6L4OsW/oPw9dwvMfKxa6qnmPCWwAAADcelRYdHJka2l0UEtMNDcgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYGR30ADSzMxsEJqFnSEDRDMywQTYIALMjBwMYAEmAYgEE4YObgbGBAb2DCZGJgVG5gwmZhYFZrYEFlYNJjb2BHYOBRFGVgZGZjZ28TKgcka4SzSk9+xfuKhiP4hjlBVlbb9kAZg9fZuyfbST+gEQm6/cyn4Vd54tiD3zIa9Dk0WlHYh92c7YIZH5gj2I3X90+r7CJZPB7NsXL+/fmsMCZtt8tj2whmU+mC0GABUWK7p4k6Q5AAABQnpUWHRNT0w0NyByZGtpdCAyMDIxLjA5LjUAAHicfZJRSwMxDMff9ynyBVbSpGmbx9tuiMjuwE1fx/DFgQjKvj8mk9kNiukdtMmvafJv+ev8fTh+nIfD2/vx9DkswO15fDqd4c9oXJgf//lUFV4ZERdb8AmsNg+PE6z3w+rqWc8v034HagN93JPDft5ePREmWMaQskpRWGLQEokJMODF2l6C9cXLZr6FRDD2QLaUGDKroMCSQo6cSDpgumQsVNmOtrDUGEuHE+MoUMxVk4UpMVfscBlm4ypiQYUYMklE7nAFdt4paU7kYBROkjtgtYOt0yypJu9UohWbOqC6ihQ0F5PPMlIi5l6Jm2m8k//3QlbzNLYLSfZTU92XtWlrMeCmYHKiCeW7penh8dLaJiNya85iLbP6MaC3hd6W5evrC7P54gf/eYmVRqBGKgAAAPN6VFh0U01JTEVTNDcgcmRraXQgMjAyMS4wOS41AAB4nF3OvW7DIBDA8VfpaEv4dN+ArQ5R9jSv0Foeqip2lLid8vDFI2zw/4k7LjOtc3fp5+78/tE/6e3VDQzZY46BgJVFwjQQuGnSgGAUuRyOpJ4thQEhR2LhMCEgighHC4XZDOmILtmwJAYnUTlSmSExl3Foicg9TAxMno7EKpKOkBAjlU84W5lT9nB25VwKmaiHPnzu2+362O4jwvP3677NP8sOp2u5Luvf92Nbb8u6g41UM1VMOnLt3LrULq1r7dqst5qtfe61e+U+xppjw6nm1Ex//QMjKI1Ag7Y7MwAAATx6VFh0cmRraXRQS0w0OCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB+KG5gZGfIANLMTDAGIxO7ghaQwcjMwuYAFmFmZHPQADFYEDQuCQYYnQA2ggPCZ4LTYKP/MzMKMiiAFHAzsCowcDEwcioApZh4NJiYeBWYWTKYmDkSWFgTWDgVWNkymNjYE9g5MpjY+Rg4uTWYRBjZmDnY2VhZxPeBTIB76MU6vQMzc5bagzh8SikHzlVN3Q9i73tv4xD4TAnMzrp6zu5z0CQw+6dk0342M00wu6Zv+f7ATH+w3tS5lvtSfJ6B2ctmz7MvmbICzNYSOGJ/4KYsyFKGFCvOA/uMLoP1amY6HlC6Z+AAYrsyvN1vetD9ANhFq/wdsh6ygdmT+5ocfCZtsQOxravFHSSmCYPViwEAP+tIYY7/gZcAAAHKelRYdE1PTDQ4IHJka2l0IDIwMjEuMDkuNQAAeJx9U01rHDEMve+v8B9Yo0/bOuSwOxvS0mYW2k2uIfTShBAoBPr3K82y8SSY2nOwpacn+UnDf/4+Pzy+vO0ffv1+fHrdbVKsH4dvT2/pfdFh43b4z2dm6Z4BYHOb4pD21zdf5zSddvuLZTrezaefCTU+iP0Ruzsdby8WTHPaUq5kQo7PZMS1JsiwrB5KAeSsRbS2tMWMpTaEAZIdSdmUkDltIRcuTGvKNH25ucJ0v/t+JZcgSZMjBNgqLezCqGXArg50P2ARbAt9AWs4QJYzksGAg8mrJRgBawAhY0Mq4hpUM4JR7uZAl4gNF60YK/BIAVtw6n5ZFEAV1FFm128K+VH8MRbVFjFro9yIAeUMRCDiAtfCqm2EpHQMqqaoFSMGCb1bIyg7lDOJVK8vCoGqMCQVR0oG1wbE/axUqn1u6vbcVXyP8m69eK1cSrMSByjnZnzmv54PH+byPKn743zokxq79HlcDNinDsMGfaDQbdbHhgLCfTjCjdJnQHxr73RcrTfUfT03RjW6SubNEaesqxaIU7aVzuKctlIT/Y66EooWWloLsn5+3C8/uZ83/wDuTtGgWijK4QAAAXJ6VFh0U01JTEVTNDggcmRraXQgMjAyMS4wOS41AAB4nGWRMW/cMAyF/0pHG9UJfCRFWTYyBLffZSi6BBlSw0PRu3OQXjrlx5f2JmWT+L1HkU/H04x57o6Xfu6eT99fuodz/3w+vPTzjGN36h/O3z67g0RiJg0cs0myMB38xEUlIHJhGbyCKFRcQ3EAMcFLFDGATV2VS2EvuVwKNpsgk4SJo5gVbyxkbnZBcqJh8yZFwiYpid3jJRMTzmGSyKo5BR8DlDeRRvIn/HFJbLmEiaKSlMzBB4MKbB+RYMp7J6MyYF8EqiibzLR4i8m3TaZp2J2WdxXikJBycAYGcujD6329Pr2vbyPFvx+/3tb5z3KPj09+XW7/fr+vt+tyu0cdUWNUOI1cY64wbJSaS8u15tryVPPUcqu5tTzH63r5sd5/vl6W27z4Qrl25NYx1HxoeWk6wiuVo7QONBGDvijalPFF0QSNJukRTdKQ5qfQRI0m68//dkH3cPIxJLEAAAE8elRYdHJka2l0UEtMNDkgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAfihuYGRnyADSzEwwBiMTu4IWkMHIzMLmABZhZmRz0AAxWBA0LgkGGJ0ANoIDwmeC02Cj/zMzCjIogBRwM7AqMHAxMHIqAKWYeDSYmHgVmFkymJg5ElhYE1g4FVjZMpjY2BPYOTKY2PkYOLk1mEQY2Zg52NlYWcT3gUyAe+jFOr0DM3OW2oM4fEopB85VTd0PYu97b+MQ+EwJzM66es7uc9AkMPunZNN+NjNNMLumb/n+wEx/sN7UuZb7UnyegdnLZs+zL5myAszWEjhif+CmLMhShhQrzgP7jC6D9WpmOh5QumfgAGK7Mrzdb3rQ/QDYRav8HbIesoHZk/uaHHwmbbEDsa2rxR0kpgmD1YsBAD/rSGFs/QToAAABynpUWHRNT0w0OSByZGtpdCAyMDIxLjA5LjUAAHicfVNNaxwxDL3vr/AfWKNP2zrksDsb0tJmFtpNriH00oQQKAT69yvNsvEkmNpzsKWnJ/lJw3/+Pj88vrztH379fnx63W1SrB+Hb09v6X3RYeN2+M9nZumeAWBzm+KQ9tc3X+c0nXb7i2U63s2nnwk1Poj9Ebs7HW8vFkxz2lKuZEKOz2TEtSbIsKweSgHkrEW0trTFjKU2hAGSHUnZlJA5bSEXLkxryjR9ubnCdL/7fiWXIEmTIwTYKi3swqhlwK4OdD9gEWwLfQFrOECWM5LBgIPJqyUYAWsAIWNDKuIaVDOCUe7mQJeIDRetGCvwSAFbcOp+WRRAFdRRZtdvCvlR/DEW1RYxa6PciAHlDEQg4gLXwqpthKR0DKqmqBUjBgm9WyMoO5QziVSvLwqBqjAkFUdKBtcGxP2sVKp9bur23FV8j/JuvXitXEqzEgco52Z85r+eDx/m8jyp++N86JMau/R5XAzYpw7DBn2g0G3Wx4YCwn04wo3SZ0B8a+90XK031H09N0Y1ukrmzRGnrKsWiFO2lc7inLZSE/2OuhKKFlpaC7J+ftwvP7mfN/8A7k7RoJjxcGQAAAFyelRYdFNNSUxFUzQ5IHJka2l0IDIwMjEuMDkuNQAAeJxlkTFv3DAMhf9KRxvVCXwkRVk2MgS332UougQZUsND0btzkF465ceX9iZlk/i9R5FPx9OMee6Ol37unk/fX7qHc/98Prz084xjd+ofzt8+u4NEYiYNHLNJsjAd/MRFJSByYRm8gihUXENxADHBSxQxgE1dlUthL7lcCjabIJOEiaOYFW8sZG52QXKiYfMmRcImKYnd4yUTE85hksiqOQUfA5Q3kUbyJ/xxSWy5hImikpTMwQeDCmwfkWDKeyejMmBfBKoom8y0eIvJt02madidlncV4pCQcnAGBnLow+t9vT69r28jxb8fv97W+c9yj49Pfl1u/36/r7frcrtHHVFjVDiNXGOuMGyUmkvLteba8lTz1HKrubU8x+t6+bHef75eltu8+EK5duTWMdR8aHlpOsIrlaO0DjQRg74o2pTxRdEEjSbpEU3SkOan0ESNJuvP/3ZB93B6qUcCAAABQnpUWHRyZGtpdFBLTDUwIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAH4obmBkZ8gA0sxMMAYjE7uCFpDBxMTK5gAWYWZkc9AAMVgQNC4JBhidAKQZmTkgfCYOsJGMTMwcCkpAxn9GQQYFkAA3A6sCAxcDI6cCEwcDEw8HMxMvUHcGUF0CC2sCC6cCK1sGExt7AjtHBhM7HwMntwaTCCMbMwc7GyuL+D6QCXAPvVind2BmzlJ7EIdPKeXAuaqp+0Hsfe9tHAKfKYHZWVfP2X0OmgRm/5Rs2s9mpglm1/Qt3x+Y6Q/WmzrXcl+KzzMwe9nsefYlU1aA2VoCR+wP3JQFWcqQYsV5YJ/RZbBezUzHA0r3DBxAbFeGt/tND7ofALtolb9D1kM2MHtyX5ODz6QtdiC2dbW4g8Q0YbB6MQABQ0gbAeVdrQAAAdB6VFh0TU9MNTAgcmRraXQgMjAyMS4wOS41AAB4nH1Ty24bMQy8+yv0Axb40oOHHNbrIC3arIHWyTUIemmQIECBAP39kjJsbQyh0h4kcjikhlz+8/f16fntY3r69fv55X3aBF8/9t9ePsJl0X5jdvjPp6rhkQFgcx/8EHa3d1+XMB+n3dkyHx6W48+AyT/w/Rk7HQ/3ZwuGJWwpFlIhw0dS4lICRGirh5IDOaYsqdSwxYi5VIQBkg1JURMhc9hCzJyZ1pRh/nJ3Q+Fx+n6TzkESZkMIsBZq7MKY8oA9GdD8gFmwNvoMWnGAzCckgwI7k1VLMAIWB0LEipTFNCiqBKPc1YAmESs2rRgL8EgBbbhkfmkKYBJMo8ym3+zyo9hj1KvNolpHuREdyhGIQMQELplTqiMkhYNT1YSpoMcgoXVrBGWDciSRYvV5IVAS1OteYesVX6LEoiSC6QRiWE6Ui14HbU9ReImyzr1Z3Zxz1ewHyKfGXFd1u+w/zehpaneHZd+n1nfus9kM2CcQ3QZ9uNBs2keIHcJ9UNyN0udBbKfedb9qb675em70atIqmTVKjLKs2iFGWVeai3HqSk20O6aVUNRoaS3I+vl+P//wdt78A8O+1Ha5m3yCAAABeHpUWHRTTUlMRVM1MCByZGtpdCAyMDIxLjA5LjUAAHicZZExT8MwEIX/ChJLIlzL7+58jhMxoO4tA2KpOkCUAdE2CAoTP55LNpstue999uVluxsxjs321I7NYXdHx+b2sL87tof95tiOI7bNrr3f3/w2G/aBKIgjn5SjumFjT5SFHTxl4s4m8ByyZYLvECjARsGjA6lYKuVMNrI4ZywaIwV2A3lWzXYwBzXZAtGIuMWNgoglkiOZYyNlZUpuYE8iKTpbAyEtIfHBrrDLOZKm7IbgJXBO5GwxCEPXFQNUaD1JQ+6wfghEkJeYSrYjBvvaqBK71dS0puC7iJicMRCQXOtervP58XP+6IP/+n79mMf36eofHu11uvy8fc6X83S5eulRYhQ49lRiKjC055JzzaXkUvNY8lhzLbnWPPnzfHqar88vp+kyTrZxKo1UG11lsE0Ko6uNXBmwSWHk2kBVOsK/RN07/iWq6lF136PqHlz9O1Tlo2r/9w+A8f6qy5G2wAAAAUJ6VFh0cmRraXRQS0w1MSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB+KG5gZGfIANLMTDAGIxO7ghaQwcTEyuYAFmFmZHPQADFYEDQuCQYYnQCkGZk5IHwmDrCRjEzMHApKQMZ/RkEGBZAANwOrAgMXAyOnAhMHAxMPBzMTL1B3BlBdAgtrAgunAitbBhMbewI7RwYTOx8DJ7cGkwgjGzMHOxsri/g+kAlwD71Yp3dgZs5SexCHTynlwLmqqftB7H3vbRwCnymB2VlXz9l9DpoEZv+UbNrPZqYJZtf0Ld8fmOkP1ps613Jfis8zMHvZ7Hn2JVNWgNlaAkfsD9yUBVnKkGLFeWCf0WWwXs1MxwNK9wwcQGxXhrf7TQ+6HwC7aJW/Q9ZDNjB7cl+Tg8+kLXYgtnW1uIPENGGwejEAAUNIG4L4ER4AAAHQelRYdE1PTDUxIHJka2l0IDIwMjEuMDkuNQAAeJx9U8tuGzEMvPsr9AMW+NKDhxzW6yAt2qyB1sk1CHppkCBAgQD9/ZIybG0ModIeJHI4pIZc/vP39en57WN6+vX7+eV92gRfP/bfXj7CZdF+Y3b4z6eq4ZEBYHMf/BB2t3dflzAfp93ZMh8eluPPgMk/8P0ZOx0P92cLhiVsKRZSIcNHUuJSAkRoq4eSAzmmLKnUsMWIuVSEAZINSVETIXPYQsycmdaUYf5yd0Phcfp+k85BEmZDCLAWauzCmPKAPRnQ/IBZsDb6DFpxgMwnJIMCO5NVSzACFgdCxIqUxTQoqgSj3NWAJhErNq0YC/BIAW24ZH5pCmASTKPMpt/s8qPYY9SrzaJaR7kRHcoRiEDEBC6ZU6ojJIWDU9WEqaDHIKF1awRlg3IkkWL1eSFQEtTrXmHrFV+ixKIkgukEYlhOlIteB21PUXiJss69Wd2cc9XsB8inxlxXdbvsP83oaWp3h2Xfp9Z37rPZDNgnEN0GfbjQbNpHiB3CfVDcjdLnQWyn3nW/am+u+Xpu9GrSKpk1SoyyrNohRllXmotx6kpNtDumlVDUaGktyPr5fj//8Hbe/APDvtR2ZOZdYQAAAXh6VFh0U01JTEVTNTEgcmRraXQgMjAyMS4wOS41AAB4nGWRMU/DMBCF/woSSyJcy+/ufI4TMaDuLQNiqTpAlAHRNggKEz+eSzabLbnvffblZbsbMY7N9tSOzWF3R8fm9rC/O7aH/ebYjiO2za6939/8Nhv2gSiII5+Uo7phY0+UhR08ZeLOJvAcsmWC7xAowEbBowOpWCrlTDayOGcsGiMFdgN5Vs12MAc12QLRiLjFjYKIJZIjmWMjZWVKbmBPIik6WwMhLSHxwa6wyzmSpuyG4CVwTuRsMQhD1xUDVGg9SUPusH4IRJCXmEq2Iwb72qgSu9XUtKbgu4iYnDEQkFzrXq7z+fFz/uiD//p+/ZjH9+nqHx7tdbr8vH3Ol/N0uXrpUWIUOPZUYiowtOeSc82l5FLzWPJYcy251jz583x6mq/PL6fpMk62cSqNVBtdZbBNCqOrjVwZsElh5NpAVTrCv0TdO/4lqupRdd+j6h5c/TtU5aNq//cPgPH+qh6PWfUAAAEbelRYdHJka2l0UEtMNTIgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAXihuYGRnyADSzIxMCIaCFpDByMzC5gAWYWZkc9AAMVgQNFwCXQUDhOaA0ExwGmzmf2ZGbgZWBUZOBaAAE7cGExOPAjNLBhMzRwILawILpwIrWwYTG3sCO0cGEyeXBpMIIxszBzsbK4v4MpCL4I6f/E/zgELve3sQx88p64BvENt+ELtVy8JhvcTTfSD2l5Mz7VSXuIHF+Rd17f/70gMsPuvFov2+EUvBeltXLtzbfIbHAaz+5zJ7k5TzYPE6h/32lqXsdiA2xw7BAz9je8HmHJ7CeuDwS9UDIPYpXxeHHbu/Q8Q9mhwsXr0GqxcDAG1bRWgBHCwkAAABoHpUWHRNT0w1MiByZGtpdCAyMDIxLjA5LjUAAHicfZPLSixBDIb38xT1AtMkqdQlCxc9M6LisQd0dCviRkEEwYWP758Z+lQrhVXdUJ36ck/Hjy95fHr7HB+fX55e38dV8HW7u379DP+X7FaQ0x+PmYWHSESrm+CHsDm/uJrC9jBuZsl2fz8d7gJHf8j3T3Y87G9mCYcprGXIKXMGP9TCahpooONqquJgHHImsRLWNCTRbLFDRpACQyVZclC1aFqaDNvLizMOD+O/M52VNGxBIK+YzZVcW6VjPQFc80A1UmEn2bJQ6pD5RErB9tTEuKTSAYuDEJdqsSB0Ro1rz3cFyAhSE7lB+BXtebYjhzpyyrjmKFJ7lWJyz4IQc0VkCJZJFRcdlMPeUarFs8UpmcRu/VmAxoFyEa1u1GJSzj0yglQkzvGYr2YqKOqvTq1PreJZ63za/Rih01Bt9tOuDZXv3EaH/V0MCOO11npxkbQO+zXH1kfFTq1b/mmtJ7hrvgzKaeGL3X4OZVFHhYm6KJbChi1K4qGCW6a7TM6/578N59U3Ysq7mfSuA0kAAAFQelRYdFNNSUxFUzUyIHJka2l0IDIwMjEuMDkuNQAAeJxlkLFuwzAMRH+lY4LKAilRpGSjQ9E9yVB0CTKkgoeiiR2kbqd8fKl2kgIPhu7d8QhuXlZP23XGnFf7zeOhPPbb7rDOOePm4bbqvGUGbzqwwREnb4bOWScc2XRoEYj+JYjijP5Dcj6pgqp4kBLExA6CGcB6AM+paCIhkTMDWkqEbNTlnYs6y9kowsVDJBTIDN4CiwulL/lQUmRB0EdNEYMIljkeKBi0WqXWQeMgMXlm43SBlOLfTk70U5dLqB1lbw6s9ailSMmszXGZz7vrfOnBfn2/X+b8OS72eafPcfr5uM7TeZwWG3qsMVYYe1dj12BfY19j7qnm1PJQ89Bytuf59Dovb8fTOOXRkipVgtuE1FxaHpuJqEqViG0i1Ty1HJsLI9w52iPjnaO5M9aHDrdfSNjYoOWQiuEAAAEbelRYdHJka2l0UEtMNTMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAXihuYGRnyADSzIxMCIaCFpDByMzC5gAWYWZkc9AAMVgQNFwCXQUDhOaA0ExwGmzmf2ZGbgZWBUZOBaAAE7cGExOPAjNLBhMzRwILawILpwIrWwYTG3sCO0cGEyeXBpMIIxszBzsbK4v4MpCL4I6f/E/zgELve3sQx88p64BvENt+ELtVy8JhvcTTfSD2l5Mz7VSXuIHF+Rd17f/70gMsPuvFov2+EUvBeltXLtzbfIbHAaz+5zJ7k5TzYPE6h/32lqXsdiA2xw7BAz9je8HmHJ7CeuDwS9UDIPYpXxeHHbu/Q8Q9mhwsXr0GqxcDAG1bRWi64K45AAABoHpUWHRNT0w1MyByZGtpdCAyMDIxLjA5LjUAAHicfZPLSixBDIb38xT1AtMkqdQlCxc9M6LisQd0dCviRkEEwYWP758Z+lQrhVXdUJ36ck/Hjy95fHr7HB+fX55e38dV8HW7u379DP+X7FaQ0x+PmYWHSESrm+CHsDm/uJrC9jBuZsl2fz8d7gJHf8j3T3Y87G9mCYcprGXIKXMGP9TCahpooONqquJgHHImsRLWNCTRbLFDRpACQyVZclC1aFqaDNvLizMOD+O/M52VNGxBIK+YzZVcW6VjPQFc80A1UmEn2bJQ6pD5RErB9tTEuKTSAYuDEJdqsSB0Ro1rz3cFyAhSE7lB+BXtebYjhzpyyrjmKFJ7lWJyz4IQc0VkCJZJFRcdlMPeUarFs8UpmcRu/VmAxoFyEa1u1GJSzj0yglQkzvGYr2YqKOqvTq1PreJZ63za/Rih01Bt9tOuDZXv3EaH/V0MCOO11npxkbQO+zXH1kfFTq1b/mmtJ7hrvgzKaeGL3X4OZVFHhYm6KJbChi1K4qGCW6a7TM6/578N59U3Ysq7mTTBIFYAAAFQelRYdFNNSUxFUzUzIHJka2l0IDIwMjEuMDkuNQAAeJxlkLFuwzAMRH+lY4LKAilRpGSjQ9E9yVB0CTKkgoeiiR2kbqd8fKl2kgIPhu7d8QhuXlZP23XGnFf7zeOhPPbb7rDOOePm4bbqvGUGbzqwwREnb4bOWScc2XRoEYj+JYjijP5Dcj6pgqp4kBLExA6CGcB6AM+paCIhkTMDWkqEbNTlnYs6y9kowsVDJBTIDN4CiwulL/lQUmRB0EdNEYMIljkeKBi0WqXWQeMgMXlm43SBlOLfTk70U5dLqB1lbw6s9ailSMmszXGZz7vrfOnBfn2/X+b8OS72eafPcfr5uM7TeZwWG3qsMVYYe1dj12BfY19j7qnm1PJQ89Bytuf59Dovb8fTOOXRkipVgtuE1FxaHpuJqEqViG0i1Ty1HJsLI9w52iPjnaO5M9aHDrdfSNjYoCJbQXMAAAEbelRYdHJka2l0UEtMNTQgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAXihuYGRnyADSzIxMCIaCFpDByMzC5gAWYWZkc9AAMVgQNFwCXQUDhOaA0ExwGmzmf2ZGbgZWBUZOBaAAE7cGExOPAjNLBhMzRwILawILpwIrWwYTG3sCO0cGEyeXBpMIIxszBzsbK4v4MpCL4I6f/E/zgELve3sQx88p64BvENt+ELtVy8JhvcTTfSD2l5Mz7VSXuIHF+Rd17f/70gMsPuvFov2+EUvBeltXLtzbfIbHAaz+5zJ7k5TzYPE6h/32lqXsdiA2xw7BAz9je8HmHJ7CeuDwS9UDIPYpXxeHHbu/Q8Q9mhwsXr0GqxcDAG1bRWgv9SzoAAABoHpUWHRNT0w1NCByZGtpdCAyMDIxLjA5LjUAAHicfZPLSixBDIb38xT1AtMkqdQlCxc9M6LisQd0dCviRkEEwYWP758Z+lQrhVXdUJ36ck/Hjy95fHr7HB+fX55e38dV8HW7u379DP+X7FaQ0x+PmYWHSESrm+CHsDm/uJrC9jBuZsl2fz8d7gJHf8j3T3Y87G9mCYcprGXIKXMGP9TCahpooONqquJgHHImsRLWNCTRbLFDRpACQyVZclC1aFqaDNvLizMOD+O/M52VNGxBIK+YzZVcW6VjPQFc80A1UmEn2bJQ6pD5RErB9tTEuKTSAYuDEJdqsSB0Ro1rz3cFyAhSE7lB+BXtebYjhzpyyrjmKFJ7lWJyz4IQc0VkCJZJFRcdlMPeUarFs8UpmcRu/VmAxoFyEa1u1GJSzj0yglQkzvGYr2YqKOqvTq1PreJZ63za/Rih01Bt9tOuDZXv3EaH/V0MCOO11npxkbQO+zXH1kfFTq1b/mmtJ7hrvgzKaeGL3X4OZVFHhYm6KJbChi1K4qGCW6a7TM6/578N59U3Ysq7mRhfw8gAAAFQelRYdFNNSUxFUzU0IHJka2l0IDIwMjEuMDkuNQAAeJxlkLFuwzAMRH+lY4LKAilRpGSjQ9E9yVB0CTKkgoeiiR2kbqd8fKl2kgIPhu7d8QhuXlZP23XGnFf7zeOhPPbb7rDOOePm4bbqvGUGbzqwwREnb4bOWScc2XRoEYj+JYjijP5Dcj6pgqp4kBLExA6CGcB6AM+paCIhkTMDWkqEbNTlnYs6y9kowsVDJBTIDN4CiwulL/lQUmRB0EdNEYMIljkeKBi0WqXWQeMgMXlm43SBlOLfTk70U5dLqB1lbw6s9ailSMmszXGZz7vrfOnBfn2/X+b8OS72eafPcfr5uM7TeZwWG3qsMVYYe1dj12BfY19j7qnm1PJQ89Bytuf59Dovb8fTOOXRkipVgtuE1FxaHpuJqEqViG0i1Ty1HJsLI9w52iPjnaO5M9aHDrdfSNjYoBi7OU4AAAFNelRYdHJka2l0UEtMNTUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAAShuYGRnyADSzEwwBiMTu4IWkMHExMrmABZhZmRz0AAxWBA0LgkGGJ0ApBmZYTQHRJyJA2w0IxMzh4ISkPGfESbBzcCqwMDFwMipwMTBwMTLwczEBzQmA6gwgYU1gYVTgZUtg4mNPYGdI4OJnV+Bk0eDiZufQYSRjZmDnY2VRfwUyFi4534+Nj7Q1H7QHsSpl64+sPVL6H4Q+7eUuoNXRjuYrXNuvY2P/yIw2/HAqv0b1RTA7AqPXfvlpseB9a7rTNrXkncHzHbRm2g/0agLzK7etsA+euOVfSD2oWiVA35me8F6RVdYHzAtdnAAsRuC8hwmSy4Fq182XebAbC+7AyC22H09h5nJymD2HLEyh+VaQWBzjkwSd2gL/Q5WLwYAzMJNNhjQvKIAAAHaelRYdE1PTDU1IHJka2l0IDIwMjEuMDkuNQAAeJx9lLtuWzEMhnc/hV7AAq+SOGTwJUiLNsdA62Qtii7JUqBApz59SRm2TlKh0hkk6iNFkT8O//rz8u3Hy/fXn7tNivHl+On1d7oNOm7cDv/5zCw9MwBsHlMs0v7+4eOSDufd/mo5nJ6W89eEJT6I+ZbdnU+PVwumJW0pN4TaLGFWRJOWIEMfw5UC5GzEqpy2kBtrLToh2UnKBRGI0hYzaG0VVmA6fHi4o/S8+3ynVydJhyAIpWA4UWkgs+jqoJ8zsxlFHoVUDSZkuZDi+XL181ZMjCdgDRAyERI1r0GN1QxsDmJGFiLxBVQrZVYr65znpcUisqBKtOIfECGupqzFGwA929qIZq9BvKDG5AkkdqAC04wkJ9lfwbWVyKNZk9lzkNMpQoqUqqUHr8wwRcVRypWJSydVyVTeNxV7U/nmpe7FuYmi76LEoCT43mt7ccObW+mXcWneZX+AP5msTrK6X45vxHyR9/60HIe8Y5Yh4m7AIVUMGwwVottsaI0DkaGoOEYdwhGfOuQRWxsq8LNxN0Y2urrMOyoesq76Jh6yrdojHtNWPUDfY1mVl3pYXlUOI85gokTrgsT++q/w9eYv99ndQJiO/Z8AAAGIelRYdFNNSUxFUzU1IHJka2l0IDIwMjEuMDkuNQAAeJxlkTtvwjAUhf9KpS6JMJbvy49EHSp2YKi6IIY2ylAVEkRpJ358r7PZbPH9zrmPk812gGFodpt2aA7bFR6b58NudWwPu/WxHQbYNNv2Zfd0b9ZoEyGQIetccGR6rURwIRmwApBEK2BZhNg4G33ilEXOIgJiVFXIX6YHC8SIWlCzD6ZHSz4SaUEnqIdUSUtfjClydqCIBKPNGITBZ48HcGh0pJMQly5B3SpCK4J5HbKRRTfOOzhBBtM76xDYO5+N6KPjZWsiSinrvA5Ky2niI2QRh6i79muyCUkkiyJJ8LKomH3weWQKekBrPm7zeX+dL52zP7+fl3n4Hm/2da/Pcfr7us7TeZxuljsoMRRYOiwxFhh8RyWnmnPJueZScik4db7EvsKhxKHuHu15Pr3Nt/eP0zgNo94TS0esHalykFYKR6od4CoL5FIZqnsw1bHDg6JKHh6ihyp7qMLvoAofuPq5UKUPZfxw/wdIxw1NKcvvyQAAAU16VFh0cmRraXRQS0w1NiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAABKG5gZGfIANLMTDAGIxO7ghaQwcTEyuYAFmFmZHPQADFYEDQuCQYYnQCkGZlhNAdEnIkDbDQjEzOHghKQ8Z8RJsHNwKrAwMXAyKnAxMHAxMvBzMQHNCYDqDCBhTWBhVOBlS2DiY09gZ0jg4mdX4GTR4OJm59BhJGNmYOdjZVF/BTIWLjnfj42PtDUftAexKmXrj6w9UvofhD7t5S6g1dGO5itc269jY//IjDb8cCq/RvVFMDsCo9d++Wmx4H1rutM2teSdwfMdtGbaD/RqAvMrt62wD5645V9IPahaJUDfmZ7wXpFV1gfMC12cACxG4LyHCZLLgWrXzZd5sBsL7sDILbYfT2HmcnKYPYcsTKH5VpBYHOOTBJ3aAv9DlYvBgDMwk02hNzTNgAAAdp6VFh0TU9MNTYgcmRraXQgMjAyMS4wOS41AAB4nH2Uu25bMQyGdz+FXsACr5I4ZPAlSIs2x0DrZC2KLslSoECnPn1JGbZOUqHSGSTqI0WRPw7/+vPy7cfL99efu02K8eX46fV3ug06btwO//nMLD0zAGweUyzS/v7h45IO593+ajmcnpbz14QlPoj5lt2dT49XC6YlbSk3hNosYVZEk5YgQx/DlQLkbMSqnLaQG2stOiHZScoFEYjSFjNobRVWYDp8eLij9Lz7fKdXJ0mHIAilYDhRaSCz6OqgnzOzGUUehVQNJmS5kOL5cvXzVkyMJ2ANEDIREjWvQY3VDGwOYkYWIvEFVCtlVivrnOelxSKyoEq04h8QIa6mrMUbAD3b2ohmr0G8oMbkCSR2oALTjCQn2V/BtZXIo1mT2XOQ0ylCipSqpQevzDBFxVHKlYlLJ1XJVN43FXtT+eal7sW5iaLvosSgJPjea3txw5tb6Zdxad5lf4A/maxOsrpfjm/EfJH3/rQch7xjliHibsAhVQwbDBWi22xojQORoag4Rh3CEZ865BFbGyrws3E3Rja6usw7Kh6yrvomHrKt2iMe01Y9QN9jWZWXelheVQ4jzmCiROuCxP76r/D15i/32d1An9yxJAAAAYh6VFh0U01JTEVTNTYgcmRraXQgMjAyMS4wOS41AAB4nGWRO2/CMBSF/0qlLokwlu/Lj0QdKnZgqLoghjbKUBUSRGknfnyvs9ls8f3OuY+TzXaAYWh2m3ZoDtsVHpvnw251bA+79bEdBtg02/Zl93Rv1mgTIZAh61xwZHqtRHAhGbACkEQrYFmE2DgbfeKURc4iAmJUVchfpgcLxIhaULMPpkdLPhJpQSeoh1RJS1+MKXJ2oIgEo80YhMFnjwdwaHSkkxCXLkHdKkIrgnkdspFFN847OEEG0zvrENg7n43oo+NlayJKKeu8DkrLaeIjZBGHqLv2a7IJSSSLIknwsqiYffB5ZAp6QGs+bvN5f50vnbM/v5+Xefgeb/Z1r89x+vu6ztN5nG6WOygxFFg6LDEWGHxHJaeac8m55lJyKTh1vsS+wqHEoe4e7Xk+vc2394/TOA2j3hNLR6wdqXKQVgpHqh3gKgvkUhmqezDVscODokoeHqKHKnuowu+gCh+4+rlQpQ9l/HD/B0jHDU2tAIJzAAABIHpUWHRyZGtpdFBLTDU3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAF4obmBkZ8gA0syMTAiGghaQwcTEyuYAFmFmZHPQADFYEDRcAl0FA4TmgNBMHGCzGJmYORSUgIz/jNwMrAqMnApMHAxM3BzMTDxAtRlA2QQW1gQWTgVWtgwmNvYEdo4MJk4uDSYRRjZmDnY2VhbxZSBT4I6f/E/zgELve3sQx88p64BvENt+ELtVy8JhvcTTfSD2l5Mz7VSXuIHF+Rd17f/70gMsPuvFov2+EUvBeltXLtzbfIbHAaz+5zJ7k5TzYPE6h/32lqXsdiA2xw7BAz9je8HmHJ7CeuDwS9UDIPYpXxeHHbu/Q8Q9mhwsXr0GqxcDADUURSJLqvW+AAABpXpUWHRNT0w1NyByZGtpdCAyMDIxLjA5LjUAAHicfVPJTsMwEL33K/wDjWbzMgcOaYsKgqYSlF4R4gIS4gD9fzHTKnVaWdiJ5Izfm+XNhH/w9/Xt69C/vn+8fX73s+DrafXweQjnRauZ2eGfR1XDngFgtgl+CIvb9f0Qlrt+MVqW25dh9xyQ/QHfl9h+t92MFgxDmFOXYsJk+K5kFJUAHRxXpZIDuUsJSHOYQxdJknIDyYYkc5SjRgeKZIlTl2F5t76hsO8fb+JIkrA0hNXFSZ3kbKGG92jAOXZQGDI6EjURxAYynZCUbXtppJhjbgCzA82ci3K21NE0Lq3YxYBoSUoEd2hxSVqR9YgzHTEmu0YmKi2lEDwyWYqpWGaWLIKIXTSgGLYOhZK9WjtFJW7qj2RQ7iBlkuJOlaNgum4AHhvAZxYbS0wE5GPtkiCbwFek+YmFI+t2WF2M02nAFtthVQfMd6pjhP5OhgXt1ToG7Caq3fZr5NpTsR1r5/xTa3/srsZSI8dJLHT/KeSJpmIuykQ4MR86kcRTNdy03Glx/j3+eXae/QHtxb5q/6pxjAAAAVp6VFh0U01JTEVTNTcgcmRraXQgMjAyMS4wOS41AAB4nGWQsU7DMBCGXwWJpVEdy3dn39mJGBB72wGxVB2KlQHRJlUJTH14LjDZVYYo//d/udNtXlZP2yZDzqv9Zo2H1eN+uz40+217aHLOsHm4rVqyzI5M62xAz4lM36JF4cimBQvO+//IRUGj75CQkiagCTlZREiMLpjeWXKOOC2ZSEgeTQ/WJw9stEWIUf+FNorw0vFefPCmJ+tYMCzzEoXF8tYJUFTLsxOB5T/kfDBgdZRWe9WdxETMBnWBlOLfTij6aAsT6Ixlbw6s40GHgk+mMcd5Ou+u06Vz9uv7/TLlz2G2zzv9HMafj+s0nodxtqGDEkOBocMSY4WpxFRi7nzJfc1DyUPN2Z6n0+s0vx1Pw5gH3ZdLg2tDKoM0KQypjVgZoElhxNpIJU81h+rm4O4a9dnhrlFdHsrTh9svtVff2RQV/2YAAAEgelRYdHJka2l0UEtMNTggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAXihuYGRnyADSzIxMCIaCFpDBxMTK5gAWYWZkc9AAMVgQNFwCXQUDhOaA0EwcYLMYmZg5FJSAjP+M3AysCoycCkwcDEzcHMxMPEC1GUDZBBbWBBZOBVa2DCY29gR2jgwmTi4NJhFGNmYOdjZWFvFlIFPgjp/8T/OAQu97exDHzynrgG8Q234Qu1XLwmG9xNN9IPaXkzPtVJe4gcX5F3Xt//vSAyw+68Wi/b4RS8F6W1cu3Nt8hscBrP7nMnuTlPNg8TqH/faWpex2IDbHDsEDP2N7weYcnsJ64PBL1QMg9ilfF4cdu79DxD2aHCxevQarFwMANRRFIj4oTIEAAAGlelRYdE1PTDU4IHJka2l0IDIwMjEuMDkuNQAAeJx9U8lOwzAQvfcr/AONZvMyBw5piwqCphKUXhHiAhLiAP1/MdMqdVpZ2InkjN+b5c2Ef/D39e3r0L++f7x9fvez4Otp9fB5COdFq5nZ4Z9HVcOeAWC2CX4Ii9v1/RCWu34xWpbbl2H3HJD9Ad+X2H633YwWDEOYU5diwmT4rmQUlQAdHFelkgO5SwlIc5hDF0mScgPJhiRzlKNGB4pkiVOXYXm3vqGw7x9v4kiSsDSE1cVJneRsoYb3aMA5dlAYMjoSNRHEBjKdkJRte2mkmGNuALMDzZyLcrbU0TQurdjFgGhJSgR3aHFJWpH1iDMdMSa7RiYqLaUQPDJZiqlYZpYsgohdNKAYtg6Fkr1aO0UlbuqPZFDuIGWS4k6Vo2C6bgAeG8BnFhtLTATkY+2SIJvAV6T5iYUj63ZYXYzTacAW22FVB8x3qmOE/k6GBe3VOgbsJqrd9mvk2lOxHWvn/FNrf+yuxlIjx0ksdP8p5ImmYi7KRDgxHzqRxFM13LTcaXH+Pf55dp79Ae3FvmrvbTm6AAABWnpUWHRTTUlMRVM1OCByZGtpdCAyMDIxLjA5LjUAAHicZZCxTsMwEIZfBYmlUR3Ld2ff2YkYEHvbAbFUHYqVAdEmVQlMfXguMNlVhij/93+5021eVk/bJkPOq/1mjYfV4367PjT7bXtocs6webitWrLMjkzrbEDPiUzfokXhyKYFC877/8hFQaPvkJCSJqAJOVlESIwumN5Zco44LZlISB5ND9YnD2y0RYhR/4U2ivDS8V588KYn61gwLPMShcXy1glQVMuzE4HlP+R8MGB1lFZ71Z3ERMwGdYGU4t9OKPpoCxPojGVvDqzjQYeCT6Yxx3k6767TpXP26/v9MuXPYbbPO/0cxp+P6zSeh3G2oYMSQ4GhwxJjhanEVGLufMl9zUPJQ83ZnqfT6zS/HU/DmAfdl0uDa0MqgzQpDKmNWBmgSWHE2kglTzWH6ubg7hr12eGuUV0eytOH2y+1V9/ZdsSuMwAAASB6VFh0cmRraXRQS0w1OSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABeKG5gZGfIANLMjEwIhoIWkMHExMrmABZhZmRz0AAxWBA0XAJdBQOE5oDQTBxgsxiZmDkUlICM/4zcDKwKjJwKTBwMTNwczEw8QLUZQNkEFtYEFk4FVrYMJjb2BHaODCZOLg0mEUY2Zg52NlYW8WUgU+COn/xP84BC73t7EMfPKeuAbxDbfhC7VcvCYb3E030g9peTM+1Ul7iBxfkXde3/+9IDLD7rxaL9vhFLwXpbVy7c23yGxwGs/ucye5OU82DxOof99pal7HYgNscOwQM/Y3vB5hyewnrg8EvVAyD2KV8Xhx27v0PEPZocLF69BqsXAwA1FEUiWuecxQAAAaV6VFh0TU9MNTkgcmRraXQgMjAyMS4wOS41AAB4nH1TyU7DMBC99yv8A41m8zIHDmmLCoKmEpReEeICEuIA/X8x0yp1WlnYieSM35vlzYR/8Pf17evQv75/vH1+97Pg62n18HkI50Wrmdnhn0dVw54BYLYJfgiL2/X9EJa7fjFaltuXYfcckP0B35fYfrfdjBYMQ5hTl2LCZPiuZBSVAB0cV6WSA7lLCUhzmEMXSZJyA8mGJHOUo0YHimSJU5dhebe+obDvH2/iSJKwNITVxUmd5GyhhvdowDl2UBgyOhI1EcQGMp2QlG17aaSYY24AswPNnItyttTRNC6t2MWAaElKBHdocUlakfWIMx0xJrtGJiotpRA8MlmKqVhmliyCiF00oBi2DoWSvVo7RSVu6o9kUO4gZZLiTpWjYLpuAB4bwGcWG0tMBORj7ZIgm8BXpPmJhSPrdlhdjNNpwBbbYVUHzHeqY4T+ToYF7dU6Buwmqt32a+TaU7Eda+f8U2t/7K7GUiPHSSx0/ynkiaZiLspEODEfOpHEUzXctNxpcf49/nl2nv0B7cW+ajcrYmoAAAFaelRYdFNNSUxFUzU5IHJka2l0IDIwMjEuMDkuNQAAeJxlkLFOwzAQhl8FiaVRHct3Z9/ZiRgQe9sBsVQdipUB0SZVCUx9eC4w2VWGKP/3f7nTbV5WT9smQ86r/WaNh9Xjfrs+NPtte2hyzrB5uK1assyOTOtsQM+JTN+iReHIpgULzvv/yEVBo++QkJImoAk5WURIjC6Y3llyjjgtmUhIHk0P1icPbLRFiFH/hTaK8NLxXnzwpifrWDAs8xKFxfLWCVBUy7MTgeU/5HwwYHWUVnvVncREzAZ1gZTi304o+mgLE+iMZW8OrONBh4JPpjHHeTrvrtOlc/br+/0y5c9hts87/RzGn4/rNJ6HcbahgxJDgaHDEmOFqcRUYu58yX3NQ8lDzdmep9PrNL8dT8OYB92XS4NrQyqDNCkMqY1YGaBJYcTaSCVPNYfq5uDuGvXZ4a5RXR7K04fbL7VX39mnfpEWAAAA6XpUWHRyZGtpdFBLTDYwIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4obmBkZ8gA0syMTHAGmwOYwczI5qABYrAgaLgEBoMBooQDQjNxM7AoMHIoMDFnMDGxJzCzJDBzKLCwZjCxsiWwsWcwcXBqMIkwsjGxs7GyMIs3AbUwwl3m63l1X0aDiAOI0xKkdsCLP9MexH7HzG5/Ie3IfhBb5+CkfdM6e/aB2LvqT9ul7WkHq8la9Mn+WNhEMDssS9fB79a/vSC25SJGh4Izu8B6jxc92S/+eRNYbwOj3IGJs6+DxcUA48o1kuvT3N8AAAFVelRYdE1PTDYwIHJka2l0IDIwMjEuMDkuNQAAeJx9ks1OwzAMgO97Cr/AIju283Ps1gkhtFaCwRVNXJiEOKBdeHvsopFNinAS1Xa+xLFd/qLv1+PHeXh9ez+ePocVuDyOD6cz/EkcV+bHf2atFV4YEVd7cAU2u7v7CbaHYXPxbOfn6fAEhD6XccsOh3l/8RBMsMYglDQrxMARmTNgwEXa0ehgDFpLLsn2KyFX7IAMW/NqzIICawrKwqV0QDHQQseSklmuZZHSi63LlVyzaAUKmFC6b0zGUShVtURTiFUSdbhsXAwZayL1wBRFpJdLWUCMqjF5Lhafk3TA6rlQyEWysl/JUpV6sa0lsxdSUikS/VAqIqwddDeNN7367d5mnsbWPR/aekS2auuE+Gr1drO0orpDW+3IzNpKZHuQWiHEiNzSFSPKVU4W1j7XL79+p9uXP9T01Q/UkZULnqA6oAAAAPx6VFh0U01JTEVTNjAgcmRraXQgMjAyMS4wOS41AAB4nF3QTU7DMBAF4KuwbCVnNP+2E7FA7EuvAFEXCDWpSmDVw2Ozm3hlv+95ZPn0enh+O84090Wnp8dhYLBack0IlVBqmgaCXDRbGhBEqxG1jEG9FE0NvahKixC4uEuvcVYtOU0I1rb4XzPRPo0B2Ux6olbFe5KxOvd7xKqaJoJSzUoiIDH1PkdqbvWWoGOvtLKSW3sVgzCKpmN639br+b7eRoTvn4/bOn9dNng5t+Nl+f28r8v1smxgI0WmwDRyZN6xRJbIPmp03btFt717dN97jp73XqKXvdfoNX7O4w+HVpu54DPItgAAASl6VFh0cmRraXRQS0w2MSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZHTSANDMzu4MFiGZkZoMIsLAxJABpJiYEbQKkGZkQEjCFcA0Qmp0hA0QzMbKDFTIycUAkmLgZGBMYODKYGJkSmJgZmNgzmJhZGFhZWJhY2RjY2BnYORI4OBU4uRQ4eTSYuLgZRJhYgZrZOdiYWVjZ2JnEl4EMg3uANVpp/035H/tBnOXRwfYqSkIHQGzp9LP2RkYNYPEp7K4OnVyWYPbrfSkOc1MN7UFsayU1h8+2r8DszDn99mwTj4HZZdEK9jOPc9mB2AYPHPffFXu8D8QWb2Q64HBuNVhcdkvYgbVSR8HiU+KmHCg4dRIsLhPOcED4OcRMMQCUpzre8jhVvQAAAZh6VFh0TU9MNjEgcmRraXQgMjAyMS4wOS41AAB4nH2Ty0oEMRBF9/MV+YEJ9UxSCxfzUBGxB3R0K+JGQVyI/49VLWNaDKZ7IKk+qVTureGP9vb49Pa5eXx+eXp936xSjNv99etn+hm0X3kc/nnNLD0wAKxuUkzS9vzyakq742Z7iuwO99PxLiEnFN/jz292czzcnCKYprSGXFgIMK0xGzeplCDDPPpechJyIy1Y05oyNWaWAchplzAXkAoWGQFQeZRRHOQMtWlrUUQlap77L6gzqFU8kX8uRqYjrjhHWU0bm5fQXCYsA67OFSKhFfSJKrJf/i/XnPPjqLBFGmRVGp1rzkX9Wtm/+0yEdagNQqCUgQ3JHGDPqW1Ezs5wZpUqHEndGCs2QsOatbiJRUUjqQkSj0hOh/l4UHalQyLFOrrS+bT/1SffnbM9TPveOeI/6u0RS+tNIB7ibjVGqBsqvmzdt0im3R70kJt+cXnG3YsI1i45OtcWuoojtlAPg1lqhEEhLrSgOfJzBEaVsZOWKizvHOvTP83nqy/R0bmgIXthmAAAATt6VFh0U01JTEVTNjEgcmRraXQgMjAyMS4wOS41AAB4nGXQPW/CQAwG4L/SEaSL5c/7SFSJKgsTZUcMbcRQVSSI0k78+N7R6a5j3sexfd7txtXz63qi+TBvjxNPNB7GzWbLx3Hkp/uqU/DizRyCJCUWN3QCYhrUdTmLmnzKGQNKIillYmbxL0ITdgRRjEqCECwIh/KnqpjoI/SijOQ6gpT7BTcgRDZPuY6Bo0geSuBRw6MIkUxKkWcvyeeRlEfmrrmImHJCYJZ3GRgsWdTHBojsBgELSuUxPnGyUBIM0VLZKDDHPHPt3m7LeX9dLj3C1/f7ZZk+Tzd42efP0/zzcV3m82m+ge+pZmqYa+aGpWZpWGvWikl7q91a97X71kPtofVYe2w91Z5ap+Z4VF+PrKf2fvSvR3NC4qbi/gshDsz4pghh0AAAASl6VFh0cmRraXRQS0w2MiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZHTSANDMzu4MFiGZkZoMIsLAxJABpJiYEbQKkGZkQEjCFcA0Qmp0hA0QzMbKDFTIycUAkmLgZGBMYODKYGJkSmJgZmNgzmJhZGFhZWJhY2RjY2BnYORI4OBU4uRQ4eTSYuLgZRJhYgZrZOdiYWVjZ2JnEl4EMg3uANVpp/035H/tBnOXRwfYqSkIHQGzp9LP2RkYNYPEp7K4OnVyWYPbrfSkOc1MN7UFsayU1h8+2r8DszDn99mwTj4HZZdEK9jOPc9mB2AYPHPffFXu8D8QWb2Q64HBuNVhcdkvYgbVSR8HiU+KmHCg4dRIsLhPOcED4OcRMMQCUpzrehszf9gAAAZh6VFh0TU9MNjIgcmRraXQgMjAyMS4wOS41AAB4nH2Ty0oEMRBF9/MV+YEJ9UxSCxfzUBGxB3R0K+JGQVyI/49VLWNaDKZ7IKk+qVTureGP9vb49Pa5eXx+eXp936xSjNv99etn+hm0X3kc/nnNLD0wAKxuUkzS9vzyakq742Z7iuwO99PxLiEnFN/jz292czzcnCKYprSGXFgIMK0xGzeplCDDPPpechJyIy1Y05oyNWaWAchplzAXkAoWGQFQeZRRHOQMtWlrUUQlap77L6gzqFU8kX8uRqYjrjhHWU0bm5fQXCYsA67OFSKhFfSJKrJf/i/XnPPjqLBFGmRVGp1rzkX9Wtm/+0yEdagNQqCUgQ3JHGDPqW1Ezs5wZpUqHEndGCs2QsOatbiJRUUjqQkSj0hOh/l4UHalQyLFOrrS+bT/1SffnbM9TPveOeI/6u0RS+tNIB7ibjVGqBsqvmzdt0im3R70kJt+cXnG3YsI1i45OtcWuoojtlAPg1lqhEEhLrSgOfJzBEaVsZOWKizvHOvTP83nqy/R0bmgPVXzbAAAATt6VFh0U01JTEVTNjIgcmRraXQgMjAyMS4wOS41AAB4nGXQPW/CQAwG4L/SEaSL5c/7SFSJKgsTZUcMbcRQVSSI0k78+N7R6a5j3sexfd7txtXz63qi+TBvjxNPNB7GzWbLx3Hkp/uqU/DizRyCJCUWN3QCYhrUdTmLmnzKGQNKIillYmbxL0ITdgRRjEqCECwIh/KnqpjoI/SijOQ6gpT7BTcgRDZPuY6Bo0geSuBRw6MIkUxKkWcvyeeRlEfmrrmImHJCYJZ3GRgsWdTHBojsBgELSuUxPnGyUBIM0VLZKDDHPHPt3m7LeX9dLj3C1/f7ZZk+Tzd42efP0/zzcV3m82m+ge+pZmqYa+aGpWZpWGvWikl7q91a97X71kPtofVYe2w91Z5ap+Z4VF+PrKf2fvSvR3NC4qbi/gshDsz4PZHV6QAAASl6VFh0cmRraXRQS0w2MyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZHTSANDMzu4MFiGZkZoMIsLAxJABpJiYEbQKkGZkQEjCFcA0Qmp0hA0QzMbKDFTIycUAkmLgZGBMYODKYGJkSmJgZmNgzmJhZGFhZWJhY2RjY2BnYORI4OBU4uRQ4eTSYuLgZRJhYgZrZOdiYWVjZ2JnEl4EMg3uANVpp/035H/tBnOXRwfYqSkIHQGzp9LP2RkYNYPEp7K4OnVyWYPbrfSkOc1MN7UFsayU1h8+2r8DszDn99mwTj4HZZdEK9jOPc9mB2AYPHPffFXu8D8QWb2Q64HBuNVhcdkvYgbVSR8HiU+KmHCg4dRIsLhPOcED4OcRMMQCUpzreqp9ZzwAAAZh6VFh0TU9MNjMgcmRraXQgMjAyMS4wOS41AAB4nH2Ty0oEMRBF9/MV+YEJ9UxSCxfzUBGxB3R0K+JGQVyI/49VLWNaDKZ7IKk+qVTureGP9vb49Pa5eXx+eXp936xSjNv99etn+hm0X3kc/nnNLD0wAKxuUkzS9vzyakq742Z7iuwO99PxLiEnFN/jz292czzcnCKYprSGXFgIMK0xGzeplCDDPPpechJyIy1Y05oyNWaWAchplzAXkAoWGQFQeZRRHOQMtWlrUUQlap77L6gzqFU8kX8uRqYjrjhHWU0bm5fQXCYsA67OFSKhFfSJKrJf/i/XnPPjqLBFGmRVGp1rzkX9Wtm/+0yEdagNQqCUgQ3JHGDPqW1Ezs5wZpUqHEndGCs2QsOatbiJRUUjqQkSj0hOh/l4UHalQyLFOrrS+bT/1SffnbM9TPveOeI/6u0RS+tNIB7ibjVGqBsqvmzdt0im3R70kJt+cXnG3YsI1i45OtcWuoojtlAPg1lqhEEhLrSgOfJzBEaVsZOWKizvHOvTP83nqy/R0bmggGCA/wAAATt6VFh0U01JTEVTNjMgcmRraXQgMjAyMS4wOS41AAB4nGXQPW/CQAwG4L/SEaSL5c/7SFSJKgsTZUcMbcRQVSSI0k78+N7R6a5j3sexfd7txtXz63qi+TBvjxNPNB7GzWbLx3Hkp/uqU/DizRyCJCUWN3QCYhrUdTmLmnzKGQNKIillYmbxL0ITdgRRjEqCECwIh/KnqpjoI/SijOQ6gpT7BTcgRDZPuY6Bo0geSuBRw6MIkUxKkWcvyeeRlEfmrrmImHJCYJZ3GRgsWdTHBojsBgELSuUxPnGyUBIM0VLZKDDHPHPt3m7LeX9dLj3C1/f7ZZk+Tzd42efP0/zzcV3m82m+ge+pZmqYa+aGpWZpWGvWikl7q91a97X71kPtofVYe2w91Z5ap+Z4VF+PrKf2fvSvR3NC4qbi/gshDsz4/cm7wQAAATV6VFh0cmRraXRQS0w2NCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAA+KG5gZGfIANLMjExQBhMju4IWkMHExMrmABZhZmRz0AAxWBA0XAJdBQOMTgDSjMwcED4TB9hMRiZmDgUlIOM/IzcDpwIjqwIjFwMTBwMTDwczEy9QWwZQQQILawILpwIrWwYTG3sCO0cGEye3BpMIIxszBzsbK4v4JpBBcH90e/sfOMm+fT+IY1mmd+DAzz57ENvml6cD95muvSD23KmG9lrzUsFqbt5y2//ylCSYbbFlwX57hSCwelXu9n0iMj/B7MLSWfYlRpfBbNs91+1/P8u0A7Fvxz3an/nxDljvfEnfA6vKlRxAbH6Jpfvriz0PgNiL5mY4hC7aB1ZTtbPFwTi+HWyOGAAcXUdQ7cXGygAAAbh6VFh0TU9MNjQgcmRraXQgMjAyMS4wOS41AAB4nH2TzWrcMBDH7/sUeoEVmk9pDjl4d0Na2nih3eQaQi8NtD2UvD+d8eLICaKSDSPpN39rPkx/f+vT86/X6enHz+eXP9Muxfh2+vLymt4Gnna+X/7zmFl6pFLK7j6FkQ63d5/ndLxMh3XneH6YL98TcDwl5nt2upzv1x1Ic9pTRmrWNO0hM5qhpJLLMrovBom5ophqggygZnUAkoOUQcQl097PtdaKGzAdP93dYHqcvt7I6sTp6IQaabNwaqbGo2uIg35ea6iGpaVUwQGpQUJGEYnt3LC0MpKsV0lUqlI9MmP12AZgc9AFPaBibih7AkYZsIXTJkxxMcTGWAYclOsVq6MOhIUKMJIECNQLVTgyhFmoifCIxHRe4m5WvT7uA+zJGqLkKGUlVoSl+M0I7WOpYCkVvXmxe/GiyuBxFqli9NFpf/WC1et2Pr1rvGsrHs7zqbfiMjcNB/5qb6tYAvSOAd+z3hcUCPXqxzFwLzL7lF7KWFqvmJ/1b0HcRjZ38fSzS9ZNktkl2yaT7Jq2yREuKriNfxttrNef1u3dP63zyZi9OfIsAAABZHpUWHRTTUlMRVM2NCByZGtpdCAyMDIxLjA5LjUAAHicZZExb8MgEIX/SqUutkIQd8Ad2OpQZU8yVF2iDCnyUDWxo9TtlB/fw5mgI+977w4em22ClFJz2K7w2Dwfdqtje9itj21KsGm27cvu6d6srUbjKCrU3gbvVb9GzegjK9AALGfQ6AUYHdAEkx1GI1n22RIdZZN4DDGIQC7GkAUK3llJIQaHqrcavI9KsmJkXhSyjlDJAheitap3GhyTkynGs5h7oylaCkssRIrusZ05j8giGcMel0uyLFyGMRJkSV5mQ4zLfIzRPp4S5HaC8iJWrTrN02V/m66d0d8/H9cpfQ2zft3LcRh/P2/TeBnGWbsOSgwF9h2WGAsM1NmS25q7krua+5L7mpO+TOe3aX4/nYcxDXIjKhNUJ7hKWFGKBNeJUCVAlCIR6kQseaw5VKWD+eeoey+Lhw6q5gGrn4Gqeqi6v/8BIqnumRVIoUwAAAE1elRYdHJka2l0UEtMNjUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAPihuYGRnyADSzIxMUAYTI7uCFpDBxMTK5gAWYWZkc9AAMVgQNFwCXQUDjE4A0ozMHBA+EwfYTEYmZg4FJSDjPyM3A6cCI6sCIxcDEwcDEw8HMxMvUFsGUEECC2sCC6cCK1sGExt7AjtHBhMntwaTCCMbMwc7GyuL+CaQQXB/dHv7HzjJvn0/iGNZpnfgwM8+exDb5penA/eZrr0g9typhvZa81LBam7ectv/8pQkmG2xZcF+e4UgsHpV7vZ9IjI/wezC0ln2JUaXwWzbPdftfz/LtAOxb8c92p/58Q5Y73xJ3wOrypUcQGx+iaX764s9D4DYi+ZmOIQu2gdWU7WzxcE4vh1sjhgAHF1HUM33eX8AAAG4elRYdE1PTDY1IHJka2l0IDIwMjEuMDkuNQAAeJx9k81q3DAQx+/7FHqBFZpPaQ45eHdDWtp4od3kGkIvDbQ9lLw/nfHiyAmikg0j6Td/az5Mf3/r0/Ov1+npx8/nlz/TLsX4dvry8preBp52vl/+85hZeqRSyu4+hZEOt3ef53S8TId153h+mC/fE3A8JeZ7drqc79cdSHPaU0Zq1jTtITOaoaSSyzK6LwaJuaKYaoIMoGZ1AJKDlEHEJdPez7XWihswHT/d3WB6nL7eyOrE6eiEGmmzcGqmxqNriIN+XmuohqWlVMEBqUFCRhGJ7dywtDKSrFdJVKpSPTJj9dgGYHPQBT2gYm4oewJGGbCF0yZMcTHExlgGHJTrFaujDoSFCjCSBAjUC1U4MoRZqInwiMR0XuJuVr0+7gPsyRqi5ChlJVaEpfjNCO1jqWApFb15sXvxosrgcRapYvTRaX/1gtXrdj69a7xrKx7O86m34jI3DQf+am+rWAL0jgHfs94XFAj16scxcC8y+5Reylhar5if9W9B3EY2d/H0s0vWTZLZJdsmk+yatskRLiq4jX8bbazXn9bt3T+t88mYDV7KawAAAWR6VFh0U01JTEVTNjUgcmRraXQgMjAyMS4wOS41AAB4nGWRMW/DIBCF/0qlLrZCEHfAHdjqUGVPMlRdogwp8lA1saPU7ZQf38OZoCPve+8OHpttgpRSc9iu8Ng8H3arY3vYrY9tSrBptu3L7unerK1G4ygq1N4G71W/Rs3oIyvQACxn0OgFGB3QBJMdRiNZ9tkSHWWTeAwxiEAuxpAFCt5ZSSEGh6q3GryPSrJiZF4Uso5QyQIXorWqdxock5MpxrOYe6MpWgpLLESK7rGdOY/IIhnDHpdLsixchjESZEleZkOMy3yM0T6eEuR2gvIiVq06zdNlf5uundHfPx/XKX0Ns37dy3EYfz9v03gZxlm7DkoMBfYdlhgLDNTZktuau5K7mvuS+5qTvkznt2l+P52HMQ1yIyoTVCe4SlhRigTXiVAlQJQiEepELHmsOVSlg/nnqHsvi4cOquYBq5+Bqnqour//ASKp7pkHNqRFAAAA3HpUWHRyZGtpdFBLTDY2IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4obmBkc8gA0szMCAa7gwaYwQahWWA0XJwBqpCDASzAxA4RYGTiZmDMYGJgTWBkSmBizmBiZklg5lBgYc1gYmFTYGPXYBJhZGNgZWFmYhQvA2pghDtmv8vK/QcuPNwP5uiLHjBMVQez7117v18kxM0exA6/eWFf64tuMPvPUUn7hRm9e0Bsr3tCdq5CO8HqDzuyOCQqz7IDsXPPuTjM0/IHi9+S9rKdnKToAGKLAQALQS5F0G7yigAAAUF6VFh0TU9MNjYgcmRraXQgMjAyMS4wOS41AAB4nH1SzWrDMAy+5yn0AjWyJFv2sWnKGKMJbN2uo/SywrZT359JHZ1bMJMTkD591q/lcPx6P3yex/fjx+H0vR7A5Xl6Op3hT2gaDMd/vlorvDEiDjtwBcbtw+MMm/16vCKb5XXev0C1g37umev9srsiETawioGJJKJrmiUWBgx4kXaXnEmB2QrIsMKQE5dSOkyG2SMVZZVkflVRwg5RPCQGQa1YIAasjNzLnYxoCRGzqt/AqJSpQ8yWGkMUFspeg0gq2kutFpEC5pyimJsxYoodXoEFOKAm69ozF6wk0iHWS2aUysIWOVHM0qtwO093C/hdybjMU1uJ2E9t7m7mNlwxiNsIxaE2KAdSG4cHq61p87VQNnIztXVAxii3hd6W5fb1jZk+/AB+BYmsmXYZtAAAAOl6VFh0U01JTEVTNjYgcmRraXQgMjAyMS4wOS41AAB4nF3MvU4DMQzA8VdhBClY/oqdu4oBsUNfAaIbEGquag+mPjy5bs4W/3+O3yu1Wlult5ePh9sjAuokKokhM5mmwzOCok9YEgFOgtITQXFxTQju6twLgwilvmtZSin3HWHW3gjclHpCIBVl25NqLr4nQzT3/SeSs+17DGiWqV8XJOyPgwB6vp8vOLFqekqf23o6XtbzjHD9/Tqv9WfZ4PXYx6X9fV/WdlraBnmmyBSYdOboPLpEl9E1uo6eo+fRLbqN7tE9+lwil8i3f9V4jHPgOppGAAAA5HpUWHRyZGtpdFBLTDY3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4obmBkd9AA0szM7AwZIJoJKGABYjAyszEkABmMzBwMYBVMbA5gFcyMbAwwBkQvC4zmZmBKYODIYGJkU2DkUGBiTwCaysKmwcTKnsHEypEgwsjKwMTOyiFeBjIX7pRKM0f7ZOEL+0Gcpa539icIyIHZAcc4HB51tYLZr7w9Hf6HbrcHsV8ENh2wjf1pB2JLH+GxP/TFCyze9lvlwCQJWTD78moGhxNiz8Fq2lek77vh83sfiC0GANDGLsAcGDavAAABQ3pUWHRNT0w2NyByZGtpdCAyMDIxLjA5LjUAAHicfZJRSwMxDIDf71fkD1xJ07RpHne7ISK7A52+jjEEh+LT/j8myuyGh+kdJOmXNEnLr++8P3ych/3x7XD6XHXg8jg+nM7wKzR25sd/PlWFl4SI3RZcgWFzdz/BercaLp71/DztnkBtoa9bcrWbtxdPhAkwSGZJAn0MhXJWMhd+SwslA21fCKtk6DGUKGwxf8lkJIWYJCJ7CHJKGBdAhjWkEDlTrhADJ0px6egMM/QcUIi12j5XwaQLYLGEGLJRxQsTJdGlCsW4nkIWqdkPLDGVXBbAaiAFtEaq5+EcEy9x6gkxEBUidY0VKy31vJnGm/n/3MgwT2O7EbY/tbm7qW240VzSRuimtkmxEbXNw5PV1jYZIa05NqK2HtzU60Kvy3L78sRM774A0rCJiErkVqUAAAD2elRYdFNNSUxFUzY3IHJka2l0IDIwMjEuMDkuNQAAeJxdzj1PwzAQBuC/wthKzsn35bMdMaAuTNAdMUCUAaEmVQlM/fHY42Wz3+e+ThNO0+Hl9Ph6XN6W53d8uB8YUJRSQBAmxjASRIxSQgRRZElhjKBScrIWWSErFsYhAlEiKqG9pMRMrXNAMIo59yyhCfdCAjXLGnrESdu4QSAa9USyRS59galYK28TEqmWfgWyYQ+iMIdj+NjWy/m2XmuEn9/P6zp9zxs8ndt3Xv6+butymZcNckXP6BilknfaO3vnvYt3ca5VPatvr8lz2rF5tv3y7D3v/P4Pm0ONeV4iGmsAAAHAelRYdHJka2l0UEtMNjggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAMSCWAOIGRgEFFSDNyMbmoAGkmVnYGTJANBMjh4ISkPGfkc0BLMDMiJBhACtlQpIBCzAjJNDMYoNIsMBpBxgNNQEvA5dabgZGBgYmDiagJBMDGwcTI0sGE6NoAgt7AiuHCgsrlwI7VwYTB48WExMTKy8nrwYTl0gCN68CN58CD68KM4+wCgsffwKfcAYTv0AGk4BggqBQBpOQcIKIaAaTCDMbo6gIFzsLKzcvjzAfG7+AoJAwn7gQ0EJGeBgWmO4+UKkrbQ/iBEn1HrCtcbQDsfsCXh74+LcJLL749toDsxiZHUDsHT9DDigYzwWL/7DdtFeMrWM/iG3bf+JAxepQMPt728f916b7g9V8Wlxn3zf/wB4Qe9cUNgfpz64HQOyICYf3H7FVBau/btrncOjsMzDb8r60w5llD/eB2A0VNg7yjG/B4kv6Zzuote4Ei7MdOuYQHjkV7E5F61MOjVefgO2607jIoc1PA+zOL/PyHHKf/gGL712T7sAx8ytYvQSz+oGqRdfBZq6a03jA1XoRmC0GAB9cczC2hct9AAACV3pUWHRNT0w2OCByZGtpdCAyMDIxLjA5LjUAAHicfZTJbhsxDIbvfgq9gAVxkUgecvCSukUbG2jcXIOgQNGgRU/p+5dU4owMCJ3xYYbzcRF/0vzj19/Hp98vm8fvP5+e/2xWKa6v+8/PL+n9wv3K7eU/PzNLD1RKWd2leEjb28OnY9qdN9uLZXf6djzfJ8SE7D5+X7Ob8+nuYoF0n9Y1ay0olEpupUGLh9Ivd37YfLlpFxzTLq05czHuFKhaLQN+ASkd01oyGhSlBLkgkdQJyOkUBTCRZ06YCzeTqwJ2Hw83a+h1wMWrRh2UCUUYPTyiAtIkfIs63KxSCNPaC2nYtE1IiUJaxiasNXyUuLFOSI3kkFWbEfh3hWIAE9A8ecnmvVLrVSBV4AkIxZNjhoKKGgcrhtZm5/E8PXlFUT+5B21cWaZB0dO7VsxF+tG1ENQpSR4UXYPK1gvtLrMmefVBGnuPao9ZoZrMyJCIszZA5YhJDYmn2ZuT3ngA0PjuM9PmIaWDBCagLrqoSJtWGQrVXESp+hLkhiY27aY5SFm8xBpjZFKlzpTE0sEGZhAjwWJNZxGx6+Mpi9XG0aGmPkazKvFtmUotJB2N2aNZi26P+6utfd3j7em4X/Y4blz21I+TaNnG+OrafTjc0LJ5wciyUmGoy+LEK+KyHuyILjsAjtgy6fEKMAw0BwPD3GJQNEwnBgY8TCF3DoZpgwAHpr5Z6jA9EK4DI68WHOeBu2sbhO8WHBXmHkwGKbkH00ExjmDwfm7sNdsYh6NxMHQuxBulivfL37U/r/4B6BAlpJjsQYMAAAHbelRYdFNNSUxFUzY4IHJka2l0IDIwMjEuMDkuNQAAeJxlkLtu20AQRX8lpQRQm3nszsxaEODAvWwgQRrHhb1QEcQSDUdJ5Y/PLFNxtiPvY3h5jofHr7e3T5vD/XbzeL972jZsrW2On4+HO/px1/Vj40YuNt62hp8+NjtNVBFswgTErNN+V5IVIJ0gCQgKuySJRHOddpCMs2RbYpkZZKIEWWov5pShZvEimtXiCicm1ezHiQzJFUxmUtkzhlARF6mQWu7HJZfs8b0/gikw8eQ2CEmd9pCqX7dlhW8tyDLtyVeU0qWcQWlRas5WetEKLgICmV/iBJWqKz60p5cIMJaumCBZv8NCnH0DJ8FayZdmreJ9V5QsF/+bqkW9VRKocXEEQlV9oiTGquQJNVXtAiGi+RGn/J+Sh6EW6R8Xy1IWcFCAlz2dM0/b6fk6nx/e57cbSL//vLzN7dfpmr48+Ovp8vfn+3w5ny7XhHKD6Ty/fpuv359fT5d2Sl1ZNTA2aO1T9DlcRFdWDY6NvPZz9MvaL9GXtS/R17Wv0be1b9Gva78ODANkHClHqANVDFhx4IoBIw4cMYDEgSQGlDiwxAATB5oYcOLAEwNQHIhiQIoDUwpMaWBKgSlFph//AMB9Z4InBRBiAAABwHpUWHRyZGtpdFBLTDY5IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAADEglgDiBkYBBRUgzcjG5qABpJlZ2BkyQDQTI4eCEpDxn5HNASzAzIiQYQArZUKSAQswIyTQzGKDSLDAaQcYDTUBLwOXWm4GRgYGJg4moCQTAxsHEyNLBhOjaAILewIrhwoLK5cCO1cGEwePFhMTEysvJ68GE5dIAjevAjefAg+vCjOPsAoLH38Cn3AGE79ABpOAYIKgUAaTkHCCiGgGkwgzG6OoCBc7Cys3L48wHxu/gKCQMJ+4ENBCRngYFpjuPlCpK20P4gRJ9R6wrXG0A7H7Al4e+Pi3CSy++PbaA7MYmR1A7B0/Qw4oGM8Fi/+w3bRXjK1jP4ht23/iQMXqUDD7e9vH/dem+4PVfFpcZ983/8AeEHvXFDYH6c+uB0DsiAmH9x+xVQWrv27a53Do7DMw2/K+tMOZZQ/3gdgNFTYO8oxvweJL+mc7qLXuBIuzHTrmEB45FexORetTDo1Xn4DtutO4yKHNTwPszi/z8hxyn/4Bi+9dk+7AMfMrWL0Es/qBqkXXwWaumtN4wNV6EZgtBgAfXHMwBxkYiAAAAld6VFh0TU9MNjkgcmRraXQgMjAyMS4wOS41AAB4nH2UyW4bMQyG734KvYAFcZFIHnLwkrpFGxto3FyDoEDRoEVP6fuXVOKMDAid8WGG83ERf9L849ffx6ffL5vH7z+fnv9sVimur/vPzy/p/cL9yu3lPz8zSw9USlndpXhI29vDp2PanTfbi2V3+nY83yfEhOw+fl+zm/Pp7mKBdJ/WNWstKJRKbqVBi4fSL3d+2Hy5aRcc0y6tOXMx7hSoWi0DfgEpHdNaMhoUpQS5IJHUCcjpFAUwkWdOmAs3k6sCdh8PN2vodcDFq0YdlAlFGD08ogLSJHyLOtysUgjT2gtp2LRNSIlCWsYmrDV8lLixTkiN5JBVmxH4d4ViABPQPHnJ5r1S61UgVeAJCMWTY4aCihoHK4bWZufxPD15RVE/uQdtXFmmQdHTu1bMRfrRtRDUKUkeFF2DytYL7S6zJnn1QRp7j2qPWaGazMiQiLM2QOWISQ2Jp9mbk954AND47jPT5iGlgwQmoC66qEibVhkK1VxEqfoS5IYmNu2mOUhZvMQaY2RSpc6UxNLBBmYQI8FiTWcRsevjKYvVxtGhpj5GsyrxbZlKLSQdjdmjWYtuj/urrX3d4+3puF/2OG5c9tSPk2jZxvjq2n043NCyecHIslJhqMvixCvish7siC47AI7YMunxCjAMNAcDw9xiUDRMJwYGPEwhdw6GaYMAB6a+WeowPRCuAyOvFhzngbtrG4TvFhwV5h5MBim5B9NBMY5g8H5u7DXbGIejcTB0LsQbpYr3y9+1P6/+AegQJaRubWvDAAAB23pUWHRTTUlMRVM2OSByZGtpdCAyMDIxLjA5LjUAAHicZZC7bttAEEV/JaUEUJt57M7MWhDgwL1sIEEax4W9UBHEEg1HSeWPzyxTcbYj72N4eY6Hx6+3t0+bw/1283i/e9o2bK1tjp+Phzv6cdf1Y+NGLjbetoafPjY7TVQRbMIExKzTfleSFSCdIAkICrskiURznXaQjLNkW2KZGWSiBFlqL+aUoWbxIprV4gonJtXsx4kMyRVMZlLZM4ZQERepkFruxyWX7PG9P4IpMPHkNghJnfaQql+3ZYVvLcgy7clXlNKlnEFpUWrOVnrRCi4CAplf4gSVqis+tKeXCDCWrpggWb/DQpx9AyfBWsmXZq3ifVeULBf/m6pFvVUSqHFxBEJVfaIkxqrkCTVV7QIhovkRp/yfkoehFukfF8tSFnBQgJc9nTNP2+n5Op8f3ue3G0i//7y8ze3X6Zq+PPjr6fL35/t8OZ8u14Ryg+k8v36br9+fX0+XdkpdWTUwNmjtU/Q5XERXVg2Ojbz2c/TL2i/Rl7Uv0de1r9G3tW/Rr2u/DgwDZBwpR6gDVQxYceCKASMOHDGAxIEkBpQ4sMQAEweaGHDiwBMDUByIYkCKA1MKTGlgSoEpRaYf/wDAfWeChUmlPwAAAdF6VFh0cmRraXRQS0w3MCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAJIJYC4gZGAQUVIM3Exs6QAaSZmRjZGTRADGYkASiDAyLDBKcVlID0f7g4mwNYITMjmQwGuAjYPBYMmgGNRpPnZmDmYGJgZ2Fi4ADSwgyMIgqMYgpMLCrMTKJaTExMLCIsggqsAhpMbCIaTJzcGUycgglcPAlcghlM3MIJPMIZTLx8CbxCGUx8YhlM/EIJ/OIZTAJCCiKiKiyi4iosYuIJIsysjCKi4mJsnIJcPMLcbLxC/OJifOJajAwMjPCgPVd6wmEKf/1+EKd9YtYBsTkaDiD2pJ8v9rkdfG4HYu+Z/8XBZt8psJp5BXb2/wLX2oPZchcPbGnNPABiXzo8ff+G1gywXsMVWx0OiUuAxbOcbzscrD8CNidudYiDRe1VsN6ODmEH1Z8WEDPrpzkcd+sCi6feyXZg2bwcLM69ed+B/9EmYLZj7dYDmY0uYDUqZlEHrP7OBIvv2b74wLVYL7BdrB/YHSTMIWo+N8468N3nBljNfe85DvGuF/eBzf/IdaBRWQHsTvlnr/YfVmsFq08Q6zhQNGEBmD3xlPuBV0c7wW4WAwDT7n0weJZQcwAAAoZ6VFh0TU9MNzAgcmRraXQgMjAyMS4wOS41AAB4nH2V224TQQyG7/MU8wI7Gh/Hc5GLHEpA0ESiobdVhYSoQFxVPD/2rsJOxYhNIu1anw/z297wtx+/n55/vu6fvn5/fvm126S4Ph8/vrymvxceN24v//m21tIjlVI29ylu0v7u9OGcDtfd/mY5XL6crw8JOaG6j3/esrvr5f5mgfSQNKMyWUlTya0pEaSSy3y58+Pu01ZvOKZzmiirChAmzEosWDv8BlKAJbNIwZbixnPoAGQHa1Zm9oNNkMWouflfUBwsuTK1ogkyCReVAafpkibNQtyszsWyVRulrkFCBhNVSg76yXWU2hyUrFWrQZowU1WWHkyH96ftBLNWcPNq7qXZBFoNBcio2kgqcHfPTojNs4OLW814BIKDnr0IFgt1K6IIjkh0knMtVKp5yGIFbSQW0JxbTcjb6GIQFBAYkezkJLlJI9E5e/GmthEqC6oVvEnRNJeujIQFDZIylybCkR+9ZB6idQkKoOB6upPftDoU1GadALmgzOl99EYDAC1icjY08gnw9GrNeHQmLLOi3hhUnCe7WKWR9hhd8iGBWpqR1+EbADqqE6NLntRIgOc2ecE8ahPSUij6svl2ukzCXsCI5EVRQKgUB0FtxUbk3fn45k2wvBv2l/NxfTeg/3jdfc/su3B4d9rSuudhbus2B4Pd0kYQhHU552daVxA8hKyLhhER1xWCCGHdqmDEqN1KoAdZE/jkc2CA3YgvFutGmcMTqJvYxWLdZHIEw34AOYJhP2ccwUC6gVosrZubALoj+3xwhO8YXCzIXb8hEnZMKOuuqzY4a4u9V9Tsrqsletx3NJ5v/xR+v/kDJUY8LZ00GEYAAAH7elRYdFNNSUxFUzcwIHJka2l0IDIwMjEuMDkuNQAAeJxlkkFv2zAMhf/KjgkgayIpUlSMAC1yTwts2KXroTN8GNbERZfu1B8/yjdTF0t+j48mP/h8fPp2d/e8Oz7sd08Pw/N+gmmaduev5+MJf56afp6oSSe7ThOSPeDL565EyZnDAJGVKoVRIkomDUOKtQoRNEkZqoYUSaloCSNHKVKsCCMVsfyYo2pGabGctBCGkaIoE7XeBAmsyKoTI7SigsiMTQLMCa13EckiYbRbppokWIyznWPryZywhnax8ZoGUYmtKcRkeWtus0BJNiZGq4Wy1oCy9bRJbJGWspswkNUIZbZ1hxyRsZD1Qc7Zth3acsB5HanIKlSutO5Wkg1Q15iiNg1sy6q8lgEIGBSKdtog4yCRKdfaJMla6jpBTpVX4pgo5VUCm7d9EKUm1YaOEGtDIIZZG95ixdq21YQa9uHltlwe35e3Q4p/P369LdOf+RbvH+11vv77/b5cL/P1ZoMcIF6W1+/L7cfL63yd5tiUTQJ8Arc+ep9cRzBlkyCfyFs/e5+3Pntftr54v2z94n3d+ur9uvVrx9BBhp6yh9pRBYcVOq7gMELHERxI6EiCQwkdS3AwoaMJDid0PMEBBUf0AI4oOKQHdESxI4qOKPb/qf9RO6LoiKIn+vkfN7yFhzJ9t3YAAAHRelRYdHJka2l0UEtMNzEgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAACSCWAuIGRgEFFSDNxMbOkAGkmZkY2Rk0QAxmJAEogwMiwwSnFZSA9H+4OJsDWCEzI5kMBrgI2DwWDJoBjUaT52Zg5mBiYGdhYuAA0sIMjCIKjGIKTCwqzEyiWkxMTCwiLIIKrAIaTGwiGkyc3BlMnIIJXDwJXIIZTNzCCTzCGUy8fAm8QhlMfGIZTPxCCfziGUwCQgoioiosouIqLGLiCSLMrIwiouJibJyCXDzC3Gy8QvziYnziWowMDIzwoD1XesJhCn/9fhCnfWLWAbE5Gg4g9qSfL/a5HXxuB2Lvmf/FwWbfKbCaeQV29v8C19qD2XIXD2xpzTwAYl86PH3/htYMsF7DFVsdDolLgMWznG87HKw/AjYnbnWIg0XtVbDejg5hB9WfFhAz66c5HHfrAoun3sl2YNm8HCzOvXnfgf/RJmC2Y+3WA5mNLmA1KmZRB6z+zgSL79m++MC1WC+wXawf2B0kzCFqPjfOOvDd5wZYzX3vOQ7xrhf3gc3/yHWgUVkB7E75Z6/2H1ZrBatPEOs4UDRhAZg98ZT7gVdHO8FuFgMA0+59MBXWpDYAAAKGelRYdE1PTDcxIHJka2l0IDIwMjEuMDkuNQAAeJx9ldtuE0EMhu/zFPMCOxofx3ORixxKQNBEoqG3VYWEqEBcVTw/9q7CTsWITSLtWp8P89ve8Lcfv5+ef77un75+f375tdukuD4fP768pr8XHjduL//5ttbSI5VSNvcpbtL+7vThnA7X3f5mOVy+nK8PCTmhuo9/3rK76+X+ZoH0kDSjMllJU8mtKRGkkst8ufPj7tNWbzimc5ooqwoQJsxKLFg7/AZSgCWzSMGW4sZz6ABkB2tWZvaDTZDFqLn5X1AcLLkytaIJMgkXlQGn6ZImzULcrM7FslUbpa5BQgYTVUoO+sl1lNoclKxVq0GaMFNVlh5Mh/en7QSzVnDzau6l2QRaDQXIqNpIKnB3z06IzbODi1vNeASCg569CBYLdSuiCI5IdJJzLVSqechiBW0kFtCcW03I2+hiEBQQGJHs5CS5SSPROXvxprYRKguqFbxJ0TSXroyEBQ2SMpcmwpEfvWQeonUJCqDgerqT37Q6FNRmnQC5oMzpffRGAwAtYnI2NPIJ8PRqzXh0Jiyzot4YVJwnu1ilkfYYXfIhgVqakdfhGwA6qhOjS57USIDnNnnBPGoT0lIo+rL5drpMwl7AiORFUUCoFAdBbcVG5N35+OZNsLwb9pfzcX03oP943X3P7LtweHfa0rrnYW7rNgeD3dJGEIR1OednWlcQPISsi4YREdcVgghh3apgxKjdSqAHWRP45HNggN2ILxbrRpnDE6ib2MVi3WRyBMN+ADmCYT9nHMFAuoFaLK2bmwC6I/t8cITvGFwsyF2/IRJ2TCjrrqs2OGuLvVfU7K6rJXrcdzSeb/8Ufr/5AyVGPC3T9mwBAAAB+3pUWHRTTUlMRVM3MSByZGtpdCAyMDIxLjA5LjUAAHicZZJBb9swDIX/yo4JIGsiKVJUjAAtck8LbNil66EzfBjWxEWX7tQfP8o3UxdLfo+PJj/4fHz6dnf3vDs+7HdPD8PzfoJpmnbnr+fjCX+emn6eqEknu04Tkj3gy+euRMmZwwCRlSqFUSJKJg1DirUKETRJGaqGFEmpaAkjRylSrAgjFbH8mKNqRmmxnLQQhpGiKBO13gQJrMiqEyO0ooLIjE0CzAmtdxHJImG0W6aaJFiMs51j68mcsIZ2sfGaBlGJrSnEZHlrbrNASTYmRquFstaAsvW0SWyRlrKbMJDVCGW2dYcckbGQ9UHO2bYd2nLAeR2pyCpUrrTuVpINUNeYojYNbMuqvJYBCBgUinbaIOMgkSnX2iTJWuo6QU6VV+KYKOVVApu3fRClJtWGjhBrQyCGWRveYsXattWEGvbh5bZcHt+Xt0OKfz9+vS3Tn/kW7x/tdb7++/2+XC/z9WaDHCBeltfvy+3Hy+t8nebYlE0CfAK3PnqfXEcwZZMgn8hbP3uftz57X7a+eL9s/eJ93frq/br1a8fQQYaesofaUQWHFTqu4DBCxxEcSOhIgkMJHUtwMKGjCQ4ndDzBAQVH9ACOKDikB3REsSOKjij2/6n/UTui6IiiJ/r5Hze8hYfXBlVKAAAB0XpUWHRyZGtpdFBLTDcyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAAkglgLiBkYBBRUgzcTGzpABpJmZGNkZNEAMZiQBKIMDIsMEpxWUgPR/uDibA1ghMyOZDAa4CNg8FgyaAY1Gk+dmYOZgYmBnYWLgANLCDIwiCoxiCkwsKsxMolpMTEwsIiyCCqwCGkxsIhpMnNwZTJyCCVw8CVyCGUzcwgk8whlMvHwJvEIZTHxiGUz8Qgn84hlMAkIKIqIqLKLiKixi4gkizKyMIqLiYmycglw8wtxsvEL84mJ84lqMDAyM8KA9V3rCYQp//X4Qp31i1gGxORoOIPakny/2uR18bgdi75n/xcFm3ymwmnkFdvb/Atfag9lyFw9sac08AGJfOjx9/4bWDLBewxVbHQ6JS4DFs5xvOxysPwI2J251iINF7VWw3o4OYQfVnxYQM+unORx36wKLp97JdmDZvBwszr1534H/0SZgtmPt1gOZjS5gNSpmUQes/s4Ei+/ZvvjAtVgvsF2sH9gdJMwhaj43zjrw3ecGWM197zkO8a4X94HN/8h1oFFZAexO+Wev9h9WawWrTxDrOFA0YQGYPfGU+4FXRzvBbhYDANPufTCiF7j5AAAChnpUWHRNT0w3MiByZGtpdCAyMDIxLjA5LjUAAHicfZXbbhNBDIbv8xTzAjsaH8dzkYscSkDQRKKht1WFhKhAXFU8P/auwk7FiE0i7VqfD/Pb3vC3H7+fnn++7p++fn9++bXbpLg+Hz++vKa/Fx43bi//+bbW0iOVUjb3KW7S/u704ZwO193+ZjlcvpyvDwk5obqPf96yu+vl/maB9JA0ozJZSVPJrSkRpJLLfLnz4+7TVm84pnOaKKsKECbMSixYO/wGUoAls0jBluLGc+gAZAdrVmb2g02Qxai5+V9QHCy5MrWiCTIJF5UBp+mSJs1C3KzOxbJVG6WuQUIGE1VKDvrJdZTaHJSsVatBmjBTVZYeTIf3p+0Es1Zw82rupdkEWg0FyKjaSCpwd89OiM2zg4tbzXgEgoOevQgWC3UrogiOSHSScy1UqnnIYgVtJBbQnFtNyNvoYhAUEBiR7OQkuUkj0Tl78aa2ESoLqhW8SdE0l66MhAUNkjKXJsKRH71kHqJ1CQqg4Hq6k9+0OhTUZp0AuaDM6X30RgMALWJyNjTyCfD0as14dCYss6LeGFScJ7tYpZH2GF3yIYFampHX4RsAOqoTo0ue1EiA5zZ5wTxqE9JSKPqy+Xa6TMJewIjkRVFAqBQHQW3FRuTd+fjmTbC8G/aX83F9N6D/eN19z+y7cHh32tK652Fu6zYHg93SRhCEdTnnZ1pXEDyErIuGERHXFYIIYd2qYMSo3UqgB1kT+ORzYIDdiC8W60aZwxOom9jFYt1kcgTDfgA5gmE/ZxzBQLqBWiytm5sAuiP7fHCE7xhcLMhdvyESdkwo666rNjhri71X1OyuqyV63Hc0nm//FH6/+QMlRjwtALDwyAAAAft6VFh0U01JTEVTNzIgcmRraXQgMjAyMS4wOS41AAB4nGWSQW/bMAyF/8qOCSBrIilSVIwALXJPC2zYpeuhM3wY1sRFl+7UHz/KN1MXS36PjyY/+Hx8+nZ397w7Pux3Tw/D836CaZp256/n4wl/npp+nqhJJ7tOE5I94MvnrkTJmcMAkZUqhVEiSiYNQ4q1ChE0SRmqhhRJqWgJI0cpUqwIIxWx/JijakZpsZy0EIaRoigTtd4ECazIqhMjtKKCyIxNAswJrXcRySJhtFummiRYjLOdY+vJnLCGdrHxmgZRia0pxGR5a26zQEk2JkarhbLWgLL1tElskZaymzCQ1QhltnWHHJGxkPVBztm2HdpywHkdqcgqVK607laSDVDXmKI2DWzLqryWAQgYFIp22iDjIJEp19okyVrqOkFOlVfimCjlVQKbt30QpSbVho4Qa0Mghlkb3mLF2rbVhBr24eW2XB7fl7dDin8/fr0t05/5Fu8f7XW+/vv9vlwv8/VmgxwgXpbX78vtx8vrfJ3m2JRNAnwCtz56n1xHMGWTIJ/IWz97n7c+e1+2vni/bP3ifd366v269WvH0EGGnrKH2lEFhxU6ruAwQscRHEjoSIJDCR1LcDChowkOJ3Q8wQEFR/QAjig4pAd0RLEjio4o9v+p/1E7ouiIoif6+R83vIWHI/t1TwAAAK16VFh0cmRraXRQS0w3MyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB2KG5gZHPQANLMLGwOGSCaGS4gwJAApBkZ2SF8ZnYGsAJGJgGIABM3A2MGEwMzAwNbAiNLAhNLBhMTqwITW4IIIysDIwsTm3gcSD/cxnMhs+0zT0rsg3Ad7NUbF9uDWEDx/TDxid81HL7eltkPVbMfpgYofgAhzrD0/+dmMFsMAEa3JPO38U7TAAAA/3pUWHRNT0w3MyByZGtpdCAyMDIxLjA5LjUAAHicjZFLiwIxDMfv8ynyBaYkfcUe5yHLstgBHb2K7GUF8eTFb2/iMlZh2DVtof3n1+ZRf7qe998/h+O5qUBt3X8dL/Aw21ei4x8zpQQ7h4jVCnQD7fLjM0M3Nu2kdMM2jxtgGajjlWzGYTUpBB2QseSCDVCjIZ8sRkCDdytXrYBoONxVucHsOM1wTrj6rRc9bMCa6JEIFYxk2dEMGCCr///YUcG3nmSJXT9kyRcdLhZ+hlzm/qVhvy1sh9yXFnpZtjSKVCr9UC+Xor0QoZTmhQilAJJjLFmql59TeQ6s5+nXZV/dAKiPc3eRLfxfAAAAtXpUWHRTTUlMRVM3MyByZGtpdCAyMDIxLjA5LjUAAHicbcw9DsIwDAXgqzAWyY3sOD8lnbgAqsQJIOqAUJOqLUw9PGF01PG9z363SCnG5n5e6bQ3rVbOIBG0qBxpzwR9S0oTW/53ZC4aXelQeQsFvOcOepkO7g9mEcowMnYdnOGx5WlY8hxQrZ/nnON73NR1KHFM39eS0zSmTdlAkkkwmaCl69pZOtdupJvarXQrnYKT7qr//Qdr0GxYYgO8hwAAANZ6VFh0cmRraXRQS0w3NCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAeKL+Bkc0hA0gzMwMZGiAGC2EBDgjNhCQBZXAwwGSgKhnAEoyM3AyMCQxMGUyMzEDMksDEmsDMlsDMnsDCkcHEypbAyqnBxM6VwcTBlcDFrSDCxMYAFAWay8LBxc7MKD4LaAgj3OkP3ZbZMzA82A/irF71ainQF2D2Qzc1Bxg7NPSqCpCyh4gv2w9TD1EDFwfSC5DUwNhqB2DmBGVVOqCKQ/QCxQ/AxMUADQo0LcXXRYIAAAExelRYdE1PTDc0IHJka2l0IDIwMjEuMDkuNQAAeJyNU01rwzAMvedX6A/EWP6I42M+ShmjCWzZrqPssPXS0/4/faakchg1cQKRnp8kS8/x5+vP1/fv+XLtKkrrbXy9/NFjmbECrgtvjJE+rda6OlEyqD8cXyYalq5fkWH+mJZ3YkNsEYNny+2W+bQiTAOxMjFq21LNKnikRoTS+m6sRANi/YDBXAn/mBZMo3xsdWiKRAeioMo/4/lUetchm7x0IWOgWbqG8Sxfu6lcIMZE3NU0a9S2qo2B2ZVSMm9yFrqB0DPVe3IepnGj/v0+9PM0yn1AAjKienKtSOsSJAIm14tODoxGxEj7QWae3FZG6xAQZYAOASGbkoHP+TQQjE/WtENUBlicFDQ2ebd5b8lf/xPY1Q0otaqagpWr3AAAANN6VFh0U01JTEVTNzQgcmRraXQgMjAyMS4wOS41AAB4nGXQQQqDMBAF0Kt0qZCETGJMonTRE+gV2sFFKTVibVcevqFScMbdTN7wA787IyCiwQKx6Mo8lQlOa2FViB5AgDJOtEa5GHQQWu0WCaLNHKOu8qx8Jv171Nud/OOWIUmIpB/IfahkqSSnFNclPfs5TY1Wr/dtSvgYFnXp8zqMn/ucxucwLgrqBqgDd0PdcLfULfeKesXdUXfca+o1d0/dcw/UA3HbRMrxUA/rD44F8gZ5hesXTceuXKE8xI4AAADIelRYdHJka2l0UEtMNzUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAHihuYGRnyADSzEyMbAwaIAYLB4RmQufjUWgCpJkYWXDoYGTiZmBUYGBWYGTSYGLkACrQYGJmVWBlU2Bj12Bi42Dg4GRh5OTSYOLkVhABms7MysbBKD4LqJURybkX7B+6LdsP5dsh2Ar7H7qpHYCwJRyAPloKYVeA2KoQNlivPZJeeyS9DjA2A4MDVD0HyDwo2+IAwi4wG6xXDAAJIya3cMKeTwAAATN6VFh0TU9MNzUgcmRraXQgMjAyMS4wOS41AAB4nIVTy27DIBC8+yv2B4J2l2CbQw9+pFFVBUutm2sV9dKoUk79f3WxRRarFQUfYBgWZga7y+3r/ePzcr11FcT2Mj5fv+HeeKwEx8LnvYezRcTqBHEA/eH4FGCYuz4hw/QW5lcgjh/GvuV283RKCEEAMjU7qQg7Muw92hbQ4NJ0K8MgKP1PtDDBDu8l2TjfYlP/wdxLSTa2WYm6/ovopKQ17Uos8OpcTOGKTa6lwGs3UgpKvBRUYuGGhJHJ6ewSk+LhnFSXHJeUQ0YtMA9h3KS/vod+CqO+h9hZU4/TvWbL0q0GKFTwGhML5DQN2Qm1mk4CNeotC9SqgyRTn/lEERO7Ho8PlJnCyxpl2mlBONeYK4rz9HfIuPoBb1KpVt+UoTwAAADielRYdFNNSUxFUzc1IHJka2l0IDIwMjEuMDkuNQAAeJxl0MEKwjAMBuBX8TihK0m7bm1FUHbx5HYXDyo7iGwVnZ58eLU6R+KlJHzpH8i6TObVdFMuVluM5fr74ryaPJJUSVsYgVI5B5mYvXpURkCs3pKOBDL/EMQZDkoaZ8GKGcb2x0rqIn7TMRCGgTH5k/e3KR0Sp2LXh7a+hLMHeb3tz+Fwanq5rF9t092Pl9C1TddL45EyEkavKCvGmrKmbHxGPeNuqBvuOfWce0G94G6pW+6OuqMOHtn1EHgC8gOyC5rHE7pPsRASWn7kAAAA33pUWHRyZGtpdFBLTDc2IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4obmBkY8gA0szMjGwOGiAGiwBDApBmRPAhNBObA1QhO0SAmR2ik4mRgwGigpuBXYGBQ4OJkSWBkS2DiZFdgYkZaEACM2sGEytbgggjKyMLMyubeBnIfLhLzBQNDxzsn2sH4vTNjNun/NRhH4gdbpTpcPO06H4Q2yGV1+HWI1Gw+Pz8Rvt/Tm1gcWb/O/YKFxbZg9j/NiXZddbOB7PXxl/c72ygC1az63Prgcw9FmC9YgDYky804wQYZQAAATt6VFh0TU9MNzYgcmRraXQgMjAyMS4wOS41AAB4nH1Sy04DMQy871f4Bxr5kcTJse1WCKHuSrRwRRUcKAdO/L+wWy2hIiLew9iaTOzxpjf6eHl9P50/1wP4eRwfzl/wc3gcrI7/fLVWeBZEHPbgADa7u/sJtsf1Zqls56fpeIBqgR63zPVx3i8Vgi2sOGjWnBgwCKqKGsDLaVfZiRiYVIo4olJEY4cpcAAJOUquxYmpJIrcIUaT5MBYBdNFMWZR6RCTKVJAIqYKK0OxVEN/idkUKSgTZTLASlV7wyhMVmUmKdl5MWNXrxjP3suSVNhbdJuodJgVZlhFMyUj8tUejJg7zN003mzgupPNPI1tJx6lOc+W1mZvtEJqJnqqzSqytDRDyC+0uZ2e2nie5jaDJU3KG/3dlufLT2Z4+AZ6BYfr/+yHSwAAAPB6VFh0U01JTEVTNzYgcmRraXQgMjAyMS4wOS41AAB4nF3NPW7DMAwF4Kt0TACZ4J9EWUaHonsboCdoDQ9FETtI3E45fJlkoidB7+Mj359f30aax3H3sb/Q03XXKVAtqUN/ULGkoWOwYiUnBEEzMY8IimST29iNqHqGwGRS5dGtYpoGz5jE9xGwFuQ0EBgT3QOj3nsMjP2jpEV85yBQ1K94kmsmvZeQiDn5XdTac9qnz3U5Hs7LqSFcfr9Oy/gzrfBy8O80/32fl/k4zStQo8i0YY7MgXOTyBLb2jS6bj1Hz1sv0cvWLbpFp1aj103/+g878oyMVEOjagAAAN96VFh0cmRraXRQS0w3NyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOKG5gZGPIANLMzIxsDhogBosAQwKQZkTwITQTmwNUITtEgJkdopOJkYMBooKbgV2BgUODiZElgZEtg4mRXYGJGWhAAjNrBhMrW4IIIysjCzMrm3gZyHy4S8wUDQ8c7J9rB+L0zYzbp/zUYR+IHW6U6XDztOh+ENshldfh1iNRsPj8/Eb7f05tYHFm/zv2ChcW2YPY/zYl2XXWzgez18Zf3O9soAtWs+tz64HMPRZgvWIA2JMvNF2YqZMAAAE7elRYdE1PTDc3IHJka2l0IDIwMjEuMDkuNQAAeJx9UstOAzEMvO9X+Aca+ZHEybHtVgih7kq0cEUVHCgHTvy/sFstoSIi3sPYmkzs8aY3+nh5fT+dP9cD+HkcH85f8HN4HKyO/3y1VngWRBz24AA2u7v7CbbH9WapbOen6XiAaoEet8z1cd4vFYItrDho1pwYMAiqihrAy2lX2YkYmFSKOKJSRGOHKXAACTlKrsWJqSSK3CFGk+TAWAXTRTFmUekQkylSQCKmCitDsVRDf4nZFCkoE2UywEpVe8MoTFZlJinZeTFjV68Yz97LklTYW3SbqHSYFWZYRTMlI/LVHoyYO8zdNN5s4LqTzTyNbScepTnPltZmb7RCaiZ6qs0qsrQ0Q8gvtLmdntp4nuY2gyVNyhv93Zbny09mePgGegWH61d8DzwAAADwelRYdFNNSUxFUzc3IHJka2l0IDIwMjEuMDkuNQAAeJxdzT1uwzAMBeCrdEwAmeCfRFlGh6J7G6AnaA0PRRE7SNxOOXyZZKInQe/jI9+fX99Gmsdx97G/0NN11ylQLalDf1CxpKFjsGIlJwRBMzGPCIpkk9vYjah6hsBkUuXRrWKaBs+YxPcRsBbkNBAYE90Do957DIz9o6RFfOcgUNSveJJrJr2XkIg5+V3U2nPap891OR7Oy6khXH6/Tsv4M63wcvDvNP99n5f5OM0rUKPItGGOzIFzk8gS29o0um49R89bL9HL1i26RadWo9dN//oPO/KMjKw+AS8AAADhelRYdHJka2l0UEtMNzggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYGRjyADSzMyM7A4aYAY7RICJkQ0iwMLGkACkGZnZHKAqORjAEkxwAZhWbgYmBQY2DSZGFgZG1gRGjgQmZgVm1gwmZvYEdo4MJhFGVkZWZnYO8TKQeXCntP1WcZgkIbsfxLm8muHACbHn+0Dspa537BME5OxB7PYV6XY3fH7bgdivvD0P/A/dDlYvfYRn/6EvXmD2i8AmB9vYn2C9lWaO+5OFL4D1BhzjOPCoqxXMFgMAVl0v4627pLkAAAFDelRYdE1PTDc4IHJka2l0IDIwMjEuMDkuNQAAeJx9ks1qwzAMx+95Cr1AjCzJln1MmzLGaAJbt2spvawwxg497eknN2RewczKwRI/6+Ov6PfX+Xj6uA7H8/vp8jl0UM7z+HS5wu+hsbM4/vPlnOGNEbHbQ7nAZvfwOMH2MGzWyHZ+nQ4vkM2w2D05HOb9GvGwBXJBNQWCHl30HEMEdHg79SnBBD059ChJCynBs7RINtI7JUwaoGRUYW1wYqXREUUia9NJxkS+wQXjenZeAoUEvXfCxJ4aZCwkuiA5xVuPmklzq7bCDOJQydDbMEmRcwNMS0oNojaEd5FCyK3aedHHs5pCBqIwY2uc3TTebWDZyWaexrqTYlyVJ3O1yustEKqKYm6sYhU3V0UsEUgdu+CxDlfcVEcwp74tjf5tq/jrT2b37gebPYofg6OgbQAAAPN6VFh0U01JTEVTNzggcmRraXQgMjAyMS4wOS41AAB4nF3OPW7DMAwF4Kt0TACZ4K8oKehQZG9zhdbIUBSxg8TtlMNX8UaPet8jxeNE47h7P75+7MeJXh67QYDUOKeBQIWF0mFgQEKtaUBQI9HcMwTTWrI/Q6/s1dMBgTkz19R7FQv3WQJnLKUnmVyllxjMvdhzLpNk68sU0HlNtDhKXde7qfc+QWazul5B4tQDVJG0T5/LfDnd5mtDuP9+Xefx57zA26k/z9Pf922eLudpgdIoMgWujSNzYMpNosvWNboGt2aRLY63HDlv2CP79vMSvWz88Q8DR4yvOxDNyAAAAR96VFh0cmRraXRQS0w3OSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAQmw+IGxjZHDKANDMzIxsDjOGgAWKwIGRwC6BJsEMEmOE0xExGJg4GsAATNwNzBhMDSwIjkwIjjwYTE3MCE0cGEwsrELMnsHImsHFmMLFxJbBxK7BzJLBzZTCJMLExsLBzMDGzsXKycbGziC8DmsMI98b006r7+5ezHQBxDlvkHdg14bwdiD1LWOTAdLVHe0Fs/hnMB9o8Tu8HsR/dYrCfqT8JzD68/Yu9odkVMPtrp7HDAzkPexD7xqZqO95bq8HmfL88Zb/5r0iweAOri0OkrhFY/YyTm+w5xJaBxScb1zp81bsPZvttqTvgzfURzBYDAG3aRB/nFnFQAAABkHpUWHRNT0w3OSByZGtpdCAyMDIxLjA5LjUAAHicfZPJagMxDIbveQq/QIxWL8dslFIygTbtNYS20EDpoeT9qTQh8QRMPTNgiU+SrV9TPn8/Dsfv8/Lw/nU8/Sxmwdfz+ul0DrdF65n54Z+31hreGABm2+CbsNw8PA5htV8sr57V7nXYvwTkgGIx9tyzi/1ue/VgWIU5xCQ5cQlzighccw4QYVwtlpzkmInI00YBFcAOyA5SZORUkydHBCHtkHIhQROqkRi1FNReTjUSogKzgIMoBLl0wGQgxopYtDiYNFeQDpgNpFhAqfrRcsFMvcplrExieaptmDVJr3D1u9jBEmV0sChK7hVGCEPgCIkKj+2xLkH3iIhGYuSasimCkWpW6UmDNKasasVN9JiFE0EP5LBzEWu2VGpkKYzUS7kZ1ndzcpmc5W5Yt8kR/9p4uKltCNBc3JQme5CbnmKINNXcrE0bMSI1CdwsrdNiAThtqFgITvs2OnDSH3QHTfoglvZW0Aba7Rbh159e1u3rL2b72R8XKrhgQlyTzAAAAS16VFh0U01JTEVTNzkgcmRraXQgMjAyMS4wOS41AAB4nGXQvU4DMQwH8FdhbKXU8necOzEgdugrwKkDQtxVpTD14Um6JWyX/88+W35ZaF0WXpZl9/z4uq+fKz3cdgLFnHMiyCrOaWYINEkIOSgzpVkAnUPTAcGLI2qaCQpReDoQuOWSZgRDEW0BKWOkuVVrdol0YCCU0jIGNKd7n0WQ3SMhye3nRKjcIoHMXCcjKJoi3aOSS7a6ZUStr0kdVNfmWhRGmrXtwFqXKTUSMddoe0rxHLWNa7elfXq7bl/Hy3aeEL5/3s/b8nm6wtOxPk/r78dlW79O6xVsop6pY9KJe+fRpXcZXXvX0a13G91799Fz77l3n6L36H0qPZeBabge4TifxgP+uyANJ6Txhrc/AGXKDN9cSjYAAAEoelRYdHJka2l0UEtMODAgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAEJsPiBsY2RgygDQzMyMHgwaIwcTmABVgcwALsBCm4SaAGYyM7A4WYAYzO0QJMxtDApBmZOZmYNRgYmBTYGLOYGJiS2BmTWBmT2Bhy2Bi4Uhg4VRg5c5gYuVhYOfIYGLnSuDiThBhYmNiY+FgZ2ZlZWbn4hZfBjIF7off/XYOt4NL94M47vxODstdZA+A2De0DtsFHW8Di+fsK9wfPHPzPhC7uPyMfYHYfHsQe8YMsQPMG2LBarjLLtsfUG4Gq5m1u34/989JYDXyZt12ud9/gNkpE80dMruYHEBsM0eZAxfmHAeL77oQeGCd+EI7ELvqlcGBgH3CYDeIAQBzhEJbqvChogAAAY96VFh0TU9MODAgcmRraXQgMjAyMS4wOS41AAB4nH1Ty2oDMQy85yv8A1n0tK1jXpRSsoE27bWkvaRQesr/U2nb1BswtdcgidHYGmn1/PX2evq8rF7fz6ePr9UixXrcPnxc0t+i7cLj8M9nZumFAWCxT2Gk9e7ufkyb42p9jWwOz+PxKSEnFM/xfYtdHQ/7awTTJtFgpSjXtITBtDJiggGm1VIpHRIPwISV0pIG0cKoHSA7IwxcEWtOSxxAyUk7QHFg3CjCSGGxQinWQaojcVArbOoGCdVCHVwORnIehizBWLNaLh1kmRizEggEkDQj9yjr7yOtmmZPQalEvbJtKpsKViuOM1HQno4ILiT5yyqJuQFs2XryeBfGSWjxOyHqV5PCPSQFkv3yyjnexiiZpYfkH4VKluhyaAVVrPfO3bi9GZSf0Vkfxm0bHYrTBgR9lzYGEqc1O9zSOhqB3BoXbm3dEUeU1oNwrSmN7uJcUadyFWbKYQR4JpCzNwbkyUf8C8T1kUbz8ufFhn/9x9xefAM4TLigJ8vPEQAAATV6VFh0U01JTEVTODAgcmRraXQgMjAyMS4wOS41AAB4nF3QPU8DMQwG4L/C2EppFH8l9p0YUBc2uiMGiDog1LuqFKb+eJwyJcsp8fNa8XlfYXldnt8q1rp52dbN/tG/FfDhttlhLJkJgh8oKVuY20ko5bBLUbNYLl6jiEUphxQJOBPfY8zAGiCKGLdQimZqkr3kgBTm5G2gVrxiLEnC7Gkr7HdkVG9Cf0NRAsZEnnPPgonb4ygZCFvESpF7yUQJIMzkaQRtU7OUFvLBFEB9aohJ0PL/POz/hq2TJJViYRver+vpcFnPU4rfPx/ntX4dr/Hp4Nfj8vt5WZfTcblGnaBn6Bh4wt6x9zxR7zQ6986jS+8yeu49j156L53TpD3r2G69W+8TDNuDNAbG/cH4AgwbhHGFtz+O6cvV4UiJ3AAAAQd6VFh0cmRraXRQS0w4MSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABuIOYB4gZGNgcNIM3MAqcZEoA0IzMbQwaIz8zIwQCWYGKHKGCG0WwOUAUIAYgJAhCaiZuBWYGBNYOJgSuBkS2BkT2DiZErgYkTqEKDiZUtgY0zgZ0jgYMzg0mEiZWBlY2Ri5WdkY2TQ7wPZD/coUukbux/YLRpH4iTFLvSbu2aensQWyjSxaE/68F+EPt3uceBXxyOYDbj9LYDrW7T7EDs6mtM+6s6F4PFrefZ2L///RhszmbBU/ZXEl6BzelNMHBQPZEGZl8W5nfISGAEqzdsnLq/v70dLC4GAHFhOWubXnaYAAABbnpUWHRNT0w4MSByZGtpdCAyMDIxLjA5LjUAAHicfVLBasMwDL3nK/wDDZJlWdYxbcoYowms3a6j9LLCGDv0/5nU0ToFMzsHyX5P8tMLn08/H8evy/Bx+jyev4cu+HodX86XcF9x7Owc/vlUNbwTAHS74EFYb5+ep7A5DOvbyWZ+mw77gBgwGsf2I3Y4zLvbCYZNWGGfSyGksIKeUoGUAvRwXZUbDWnXBKJogWqRqA0cGY56yKIkXlqYIscGMHlr6pGibW8tnCBRA8lhDqvUR2Alv49KDNIA5jB5IUaEwt48imRqlRRDWkfKUtQpKXEs2AAWeyX2LCVntsDGBAUaOLWC0SRwUe+ngElb9dD8MWAkQ/L1scAkLTHm3941YC4A3hu4lNiyZjuND6b+2byep7Ha7DtVL5OluVrmKWJ1JhlE6vg9LXXInla0GJdMV52Yl+c6mGQUWehPTlnKTMbRe+5sXQBc3VKL57ff3eLuF+x+oyOhiZjvAAABEXpUWHRTTUlMRVM4MSByZGtpdCAyMDIxLjA5LjUAAHicXdBNbsIwEAXgq3QJkhnNr2ecqIuKA5QrtBGLqiJBELri8HXY2Uu/bzx+8nGieZr4Pu2O75/7eSZ+e+4EMHvRdCBwE7Y0MrCYlXRAMDRx3yI3i5IQCpIWSiOBeWRPBCGEkUYEEfRKdaaEc0ljXUk5kOoQWgS/khz1wrZbNFC1ZgIkLLxlbooqNVNgtCJ1GRcxrBW2NlRfsq0pu2fZ3nTJHq+qqsZBaZ++1uVyui3XAeH++L4u0+95hY9TPZ7nv5/bMl/O8woxUMvUMOnArXPv0rr0rq1r79a69Z5bz7176976EC1Hx6Xl0m+n7vcIu4nnP6k7rKWhe+GbAAABGXpUWHRyZGtpdFBLTDgyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4ov4GRzUEDSDOzsDlkgGhmJAE0CXYHCxCDkRkuwwCV4WAACzCxQySYYTQbQwKQZmTmZmDMYGJgSWBgV2BkSmBizmBiYktgZk1g5kxg4cxgYuVKYOPKYGLjZmDn0GASYWJjYOFkZmJkZWVmYuMSnwUyAu5uhT3v7R9d77EDcX7cdbN33WG/H8SeXqKxX2HC/H0g9j2d+v16apPtQey/8Ufs9RzugdkL8uUP7N26GMy+te3Hfr+3XWC9WzYFOwgIqoH1Hk3IdIg4cx4sHp592lZVhtsBxD541+VAQ8vFvSC26WKWAwLSqgdAbDEAZFI/d5EtfHMAAAF/elRYdE1PTDgyIHJka2l0IDIwMjEuMDkuNQAAeJx9k8lKBDEQhu/zFHkBm9qSSh1nERGxB3T0KoMeHBBPvj/+GRnTQjDphqrqL5XaOp/ePl+OH1+bl9f34+lzvUptPezuTl/pd8luBTv980REelYiWt2nJqTN9c3tnLaH9eZi2e6f5sNjYkmsOIP9l10f9vcXC6dt4qm6hESiSTxTzRDovPpJAUeTe6li6QqS1aARqADxveRK8AhJmYuVAWk/ZERxrwiCLQrpAMznGLMae0BwLao24Eqa05VMFsy1ORSvUUegt5t5ClOq1CTkrMUHZAWpkxIilBYsF2EfuYy0B4hEs3LzWERNRiATooQ5QqUkmdg1xyhr5paOTuSoSj5fTqI09Nm6g8zJxQo3KXu4jxK6nnd/+v8zEZv9vOsTYXilN76pubeXsWvvoYHQ3ikDYb0hTfVe9oaXXtum8qKEBge8rBRo1GFREYOThQET3gy/wWLeBX5jme0yt6Zf/hTIq2/OcK3x2FtfDAAAASZ6VFh0U01JTEVTODIgcmRraXQgMjAyMS4wOS41AAB4nF3QPU8DMQwG4L/C2Eqp5Y/Eju/EgLqw0R0xQNQBod5V5WDqjydhS7bET/w68rHQ8ro8vxUuVMru+PiyLws/3HcHBjSOGuohmVsO84HAo2AO9YA5idWS1FeKEg4IhCwYa40hOpEHArbsrRHBXa1mEFB0/a9oysjeGoVI66AZwUwzx1azmB1TmAmysUvAmpXq0DALCLaoNlGZLLZS7U/S/qUskVtbkkhtnomKtGx0F045MJBJ8rAP79t6Od3W64Tw/fNxXcvXeYOnU72el9/P27pczssGeaKeqWOKE/fOveskvcvosfc4euo9ja696+jWu42ee8+9T96zD0zD9gjHfBoXOGxQ73+n9b0QlnX05QAAARh6VFh0cmRraXRQS0w4MyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAeKL+BkY0hA0gzMzOyOWiAGCxsDrgEOBjAAkwYEuwOFiAGIzM7RIYZpoIdYjgjEzcDowIDqwYTI1MGEyN7AhNzAjNbBhMzVwILWwILewYTG0cCB2cCJ1cGExe3gggTGyM7CxszEysHGzMXp/gsoBmMcJdv2RTsICCotg/EUdjz3v7R9R47EPvHXTd71x32+0Hs6SUa+xUmzAerCc8+basqw+0AYh9NyHSIOHMerOaeTv1+PbXJ9iD23/gj9noO98DsBfnyB/ZuXQxmH7zrcqCh5eJeEPvWth/7/d52gfWaLmY5ICCtegDEFgMA5ro//KblYBIAAAF+elRYdE1PTDgzIHJka2l0IDIwMjEuMDkuNQAAeJx9k91KQzEMx+/3FHmBlXy0TXO5DxGRnYFOb0X0woGIF3t/TDZmj1Bsz0XS/pLyT3LK8f375fXztHp5+3g9fq0WEOthe388we/i7cLP8Z/PzOBZEHGxgzBgfXN7N8HmsFpfTzb7p+nwCMRA4jG+/7Krw353PSHYgCRB1cawxESVSTNgwvPqoewgpaZsbH7NWrCVASfOYVKtjXMk1NwMR2B20O9raegZ3RKimuuALOeUrly4AidSKSYDrsLetXiOIgRLSpUl80iLXp42qy7bVVG2iqOM7Sy6SCY1N1SqyCihwQRLTtmIWiRkbdZGIGGQklD9wXIuOLLgEI3WuArLgg3D8oJL1RHKl/dROVcKq6ipjtCbafun/5eJWO+nbZ+I2Nz77mMEtbc3+4H0JobbeqdyEL0hca+97OES9epmj9BexHDbrFQeCzarR3aG5qpzUD2hjzsFRzyXOxcX/vVXcXvxA2j9riW5dSHYAAABJnpUWHRTTUlMRVM4MyByZGtpdCAyMDIxLjA5LjUAAHicXdA9TwMxDAbgv8LYSjnLX4njOzEgFibojhgg6oBQ76pSmPrjSdiSLfET+438XGh9XZ/eChcqZfd4/7Ivhe9uu4kBjTWFeojmlsMyEbgK5lAPmKNYLUl9lVDChEDIglprDOpEHgjYsrdGBPdkdQYBqaf/SooZ2VujEKUatCCYpczaaqbZMYaFIBu7BKyzYg0Ni4BgG9USE5NpK9X+KO1fiUW5tUVRankmSaTNRnfhmAMDmUQP+/B+3U6Hy3aeEb5/Ps5b+Tpe4eFQr8f19/OyrafjeoU4U8/UMenMvfPo0ruMrr3r6LH3OHrqPY1uvVvvac69595n79kHpmF7hGM+jQscN3j7A5txvP/R9zzIAAABiXpUWHRyZGtpdFBLTDg0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAGEgFgHiBkY2hwwgzczMyO6gAWawQWgWdgawBBMjTACuEiYgoGAApBnZOBjAfCYYDdfAkACSZ0bSiGEXmpFsYCOYgJaDaWZuBsYMJgaBBEamBCZmBSa+DCZmFgUW1gwmFt4EVrYENnYGNq4MJnYODiZ2Tg4mLm4GLp4EHt4MJj7+BH6BDCYBQQVBIQ1mESY2BgF+PqBXWNm4eHhZxN+B3AUPi2P/Gx1uOc/eD+I8qjdxCC9iPgBiL/faY/+HaTNYfG5Ult2LQH6w+MnM/v1yh06BxSfLz92f+3PzXhA74pXKAQsXQXsQ2/ao9oEgIRYHEFu9e8f+PY8swexn/I0HtJn1wGymrJIDj3917wOxPZKWHnjefdgOxJbtzz3g0PgIbH6fifiBSkNpsL13p6yz3/TjuC2ILXFKzeGAQwHYrmUqtQ5bf00A69UIWubQdL8fLP5X8JxDWMNvMFsMAHzdYFp0ESejAAACB3pUWHRNT0w4NCByZGtpdCAyMDIxLjA5LjUAAHicfVTLbhsxDLz7K/QDFvgSRR568CMoijZroHFzLdpckktP/X+UXMPRBhCqtQFROxyLw6Hl98vrz5fXX29/DruS6/v569vf8r7ovItz+M/H3cszA8DuseSmHB8+f1nK6Xo43k9Olx/L9amgF4KyPh+xh+vl8X6C5VSkgpJ0KnushMFtBSqsa6RSWQpVI2BoZU8VGluTCZCDEat0BLJkZLdGPgFKMEIlMlNMRmLnPmNswRhESCCouWsmIDNKvSGJeqNABsB6PBNkTyTV1tWA433TLtInQCtPCVRjRwkFQFlxy1ieD98+6R3u5ZI3EMEedFQdRHRWFEIiQ3pmdAxkR3PhGTJ7tOdqAeiQVVHnUHUGpYS2imq0VsOGTrOykG+kHdEU8spdvelM1Ch71YqVmnHuhMS8zaAtehot1xBrvZ93FZoBs1OhKihYEjmb2LSibBRXby1+Pu1ijDpVyQIYlXtPt6VbZG7kGIulaBV2dQ2gq8yN/LCcP4zKbXiOl+U8hkfiS2NEMsQ+JiEMU3j4HfNouFoixDa8m3RtGDSCosOGGaIMn0lk9I2bMFJs4xmJGHHjDAoS3/Q/Y9x2GTMNadNMWU940zXJzHENzGsGEHXTB0ngkCEET1XizbtQqU0A0bdab5XN+P6XFvvdP0jU+qJDZBZiAAABq3pUWHRTTUlMRVM4NCByZGtpdCAyMDIxLjA5LjUAAHicZVA9b90wDPwrBbq8B+gJ/BJJOehQZOmUBmjRpeiQGh6K5tlB+topP76UN8mQAcl3R/J49zPOp+9fPv04ffh8jm+eTw8zrXHdv384zysFgu/eTpeSUZ1KgsyOlSzdXTg7erV0gUzGXD0wysXUQ1XURGxH1LliogzKSoFgFkErgVQQ0UAkAzPWQCw6yq4hssKtN7jFwR1EAqEUj+ICJd3FZHJXTDGGuHIMjO6GwE0UlqJFIKxcKUxBNRUKKEyBQvNZ2cXDOedaCmsg5Iwamti4NgttqkDM1ywc62KuKh7Dw7VS7NjMIjcFZSfg3Q0Ubpp4xdLFGyQkXvfcDNG11ZnWYumcnm7b9fF1e5kg//n782Wbfy+3/PExfpf136/Xbb0u6y37hD2NHY06Uc9Tz9PE+bo9f91u356el3VesgbSVfBYIT0vI196voy89ryOvPW8jRt5z3vHl6n2dO3LZcIhUISDYswUD4ohVaSDYkgR+aAYckQ5KIYksRwUQ5aoB8WQJtoYNw55og+Kt/9aJS/GeT1dlwAAAOx6VFh0cmRraXRQS0w4NSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuKG5gZGPIANLMzIxsDhogBgubA1wAyuBgAMswsUOUMmEqZYcIMAsyKABpRm4GFg0mBlYFRqYMJkYgxZHAxJzAzJbBxMaewMbJwM6RwSTCyMbIwc7GzCTeBNIBd9euEvsDQg8Y7EGcb++59v9bv2sfiP3BUmtvgXcbWJy5aru9iuVKMDvobd+B1UI5diD2c0XGA2nGyvtB7Kv8Ug721ZZg8bqfn+05TswFi6/fdsduz9YDYPa+0gqHvJIXYDViAKSYNBgpdkMgAAABT3pUWHRNT0w4NSByZGtpdCAyMDIxLjA5LjUAAHicfZLBTsMwDIbvfQq/wCo7cZz4uLUTQmitBIMrmrgwCXHixNNjdyrZRISTSo7zRfZvV745vb69n86f2w7cHseH8xf8Whg7i+M/W1XhJSJidwB3YLe/u59gOG53a2SYn6fjExD6XtYtuz3OhzVCMMAm9KqU0MA+YWRSc3Cx+jQ4aPcccmD3orCY95eMFxKZUlIgc5RyboBsIPUcLSOZE0PAJA0uwQwb7lmEs9cYIibGBigwuRikLLrUKDGboAaZLXXoGXMgz0iFKLa0lKVERcFEsCFLHURaWtRSo2khLAuYMCVuibGRDB8Q+1ICFQfYtFCrxv003ozqMrzdPI11eMG+VEdkbQSpc2ALxdptx6U21W+1to79Qe0P28q1DXaAUsWSHelaExuj15Vf1+nn9Qc1v/sBeeeSm955IVgAAAD/elRYdFNNSUxFUzg1IHJka2l0IDIwMjEuMDkuNQAAeJxdzktOwzAQgOGrsGwlx5qnH4lYoO6hVwArCwRNqhJY9fBMuhvv7P/TjP32fHpt2Fo7nL6PbcGn+2GQKClJDhCJQSVMA8VaUS0osGB9FMCcahggJs6WrRkLZZI9cpJE8oggqFopoJ0qljBhFLY1FpgIUpgoCmQi248FkW2MYylkD0EUFUDehyok0DCg/YpSDpMZIxTck4KqhmN439bL+bZeR4g/vx/XtX3NW3w523Ve/j5v63KZly3iiJ6xY/JMjnVkz+ynZRTv0rt6V+9pTN5TP5+9596L99J79V47v/8D5yKcL3CvdMoAAADmelRYdHJka2l0UEtMODYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAALihuYGRnyADSzIxMbAwaIAaLAIRmYncA08wwmg1Cs8A14JTgZmBUYGTSYGJkVmBmSWBmTWDhyGBiZVNgZc9gYudI4OBUEGFkZWbhYGcVbwLqYIQ7ins//4Gm7YwHQBx9/Tf7Ra+K7AexPRMtD+RK/7IDsacYn9y3eXfQPhC7dYuz/cryKWA1r9oV7Cb7zLAHsbMN1fbHyso6gNhhWy/bh0zpAYubPmF0uGm+FazXyizaYWN4OlivGABa4TBgkMl1VAAAAVR6VFh0TU9MODYgcmRraXQgMjAyMS4wOS41AAB4nH2SsW4CMQyGd57CL0DkOHYSjxyHqqrikArtik5dilR14v1VG0QDatQ4g2N/vji/j+d5Ps5f5+H48TmfvlcL8PU6vpzO8LtoXFgc/9mqCu8JERdbcAeGzdPzBOvDarhF1ru36bCHiL4v9siuDrvtLRJhgiUF4oxJ3EPKlQQw4GW1WoI1LGOoLFERlhikxlRyh0yw9y9VzZKT5blWtpK/IPvlGJKSFnKPUIpyhxQjMZTMXJJ3EUUVqQNm6xItnUuuYFzVmkqHK9erM2tUAgos5vXAamAMWZKWaA5qpdLj1C529VSEL4+yCu51aDOZIAUmiVWcVEwmeYfcTOPDrK7TG3bT2KbnRm1EbqnNwXLATW03aZL6MTfhLAfa9IkWKk0FQ6G2x7KF9O5J0WLxofP7Pv18+0PNX/wAcH2VYaIlLZQAAAEDelRYdFNNSUxFUzg2IHJka2l0IDIwMjEuMDkuNQAAeJxdzrFOxDAMBuBXYWyl1Iod27FbMSD26iSeAKoOCF17OgrTPTwpWzIl+T/nT+bX7vmt33BburnfFpyfHt1AQKyRQ9lEUkthGhCMBT0MEcQwZS0ZgbmKhghsxl6SCMnJM51jFCU7hylCVuacQulA8TJ2trrIOZQkOVOYEjAJ2hl5TGolQtCCOSBEN7KzCEWzWknQ3Pj/PWVHp0DAwmXtw/uxXy/3/TZG+P75uO3L13rAy6Uc1+33875v13U7QEasGStGHql2aj3Vnlrn2rl1qV1a19q1+X6uObfXrXZr3Wv3uv7xB737nNRRj9ymAAABPnpUWHRyZGtpdFBLTDg3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAH4gFgTiBkY2hwwgzcyMn6EBYrDAaQYIzQ6hmTkYwAoZkRRi6MRpODcDYwYTA1MCI2sCE3MGEzNLAgtrBhMLtwIrmwIbux4TKyMDG6cCO4cCJ1cCJ3cGExdfBhM3TwIPbwYTL1+CCDMbA1APKyMrGysLNycbFx8vDzen+D6g2Yxwz85lLHIQSXQCCTL8qNJw0Nw/eT+InRuQ6KBxfIk9iD1dgt0hO/0ZmH3Cvcz+5ItQMNu1bY79GVsVsHrvDef35vqsAbMrF87bd9Xc9ACIzbXy5v5i40gw+6389P0yl2eD7docrH3AdfJFCPsf6/59C1vBZtqnrdsvmyLkAGLf+WZ2QHwNN5itxp54IKQZYq8YAMjdTREhM/j3AAABw3pUWHRNT0w4NyByZGtpdCAyMDIxLjA5LjUAAHicfZO/bttADMZ3PwVfwAL/HY83dLDlNCiK2EDrZi2KDG2WTOn7l5RgnwIcKnnQ0T+S4sdP/PL778+XP79e3w47yOvb6evrO9wvPu0ijv/5tdbgWRBx9wT5AMeHxy9nmK+H4y0yX36cr9+BClCNnLg/sofr5ekWIZhBpuok2mCPE3lzFsAJl6uncoA8mXDBAnuaqChXGoCyVCyMRRRoYq/CPuB0KUiEXi04jz9lVK8Eh1MzRsn3cinFRy9owUU7ZlfPSUyp2KhxDTAnRVLCHEXU0HlAOpyTFAxNDPYczanIqHmDS1aqiBqi7GWSJtXKgIyW86Kfoxmv5VV0iOZyoqtVa66JKjbhOkJ5HaqwKHnoEDVbG01PsvYXY20lNpALMhyRurb34h5Gil2FM2obkbmjGLqQodGyJEUZjfRwPn2w32rI4+V86oYM1wB32+VRurk0QtY9pBnqVslA6Y6IQ4drFIpPgvt2KZDaV8iBOMyfHz/xZluUidudUEBtI7wuFG0EXiO8EVKXxLIRTDOV7oNRvmyk0n2YkFwztWeleFup8nz77uN59w9hzNGXdj9zDwAAAUJ6VFh0U01JTEVTODcgcmRraXQgMjAyMS4wOS41AAB4nGWQzU4DMQyEX4VjK2Uj/8SOtxUHxB36CrDqAaHuVqVw6sPjpqd4c0rmy9ijeX97fsWJps3kh7aDX7Fdn26bAXMFKDUNnHnkWtN+gMwwGmkaKBujcNMQsGDy/1wULO0xE5FJcqQFRV2CPCoBcwL3iZgbKSOCWcJsAOACZyHwkW63yk2ohtzmoPnaZlImactQCj0yCXHB+yAoxQVHBqqppS1cxDX3VR3trhUYuRl9Hypoi1SAH99MzCh5Nl9nbRgriQv3TJq26eO6nA6X5byD/PP7eV6m7+M1vxz8eZz/vi7LfDrO14y6w55j5NRzipx7zpGXnpfIpecSufZcI689r5Fbzy3ysefjqp9QIK4bjBWuOsRQIq5axFAjrnrEUCTGJm//tPTqg95U5n4AAAE+elRYdHJka2l0UEtMODggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAfiAWBOIGRjaHDCDNzIyfoQFisMBpBgjNDqGZORjAChmRFGLoxGk4NwNjBhMDUwIjawITcwYTM0sCC2sGEwu3AiubAhu7HhMrIwMbpwI7hwInVwIndwYTF18GEzdPAg9vBhMvX4IIMxsDUA8rIysbKws3JxsXHy8PN6f4PqDZjHDPzmUschBJdAIJMvyo0nDQ3D95P4idG5DooHF8iT2IPV2C3SE7/RmYfcK9zP7ki1Aw27Vtjv0ZWxWweu8N5/fm+qwBsysXztt31dz0AIjNtfLm/mLjSDD7rfz0/TKXZ4Pt2hysfcB18kUI+x/r/n0LW8Fm2qet2y+bIuQAYt/5ZnZAfA03mK3GnnggpBlirxgAyN1NEdukqfoAAAHDelRYdE1PTDg4IHJka2l0IDIwMjEuMDkuNQAAeJx9k79u20AMxnc/BV/AAv8djzd0sOU0KIrYQOtmLYoMbZZM6fuXlGCfAhwqedDRP5Lix0/88vvvz5c/v17fDjvI69vp6+s73C8+7SKO//m11uBZEHH3BPkAx4fHL2eYr4fjLTJffpyv34EKUI2cuD+yh+vl6RYhmEGm6iTaYI8TeXMWwAmXq6dygDyZcMECe5qoKFcagLJULIxFFGhir8I+4HQpSIReLTiPP2VUrwSHUzNGyfdyKcVHL2jBRTtmV89JTKnYqHENMCdFUsIcRdTQeUA6nJMUDE0M9hzNqcioeYNLVqqIGqLsZZIm1cqAjJbzop+jGa/lVXSI5nKiq1VrrokqNuE6QnkdqrAoeegQNVsbTU+y9hdjbSU2kAsyHJG6tvfiHkaKXYUzahuRuaMYupCh0bIkRRmN9HA+fbDfasjj5XzqhgzXAHfb5VG6uTRC1j2kGepWyUDpjohDh2sUik+C+3YpkNpXyIE4zJ8fP/FmW5SJ251QQG0jvC4UbQReI7wRUpfEshFMM5Xug1G+bKTSfZiQXDO1Z6V4W6nyfPvu43n3D2HM0Zdb2BeKAAABQnpUWHRTTUlMRVM4OCByZGtpdCAyMDIxLjA5LjUAAHicZZDNTgMxDIRfhWMrZSP/xI63FQfEHfoKsOoBoe5WpXDqw+Omp3hzSubL2KN5f3t+xYmmzeSHtoNfsV2fbpsBcwUoNQ2ceeRa036AzDAaaRooG6Nw0xCwYPL/XBQs7TETkUlypAVFXYI8KgFzAveJmBspI4JZwmwA4AJnIfCRbrfKTaiG3Oag+dpmUiZpy1AKPTIJccH7ICjFBUcGqqmlLVzENfdVHe2uFRi5GX0fKmiLVIAf30zMKHk2X2dtGCuJC/dMmrbp47qcDpflvIP88/t5Xqbv4zW/HPx5nP++Lst8Os7XjLrDnmPk1HOKnHvOkZeel8il5xK59lwjrz2vkVvPLfKx5+Oqn1AgrhuMFa46xFAirlrEUCOuesRQJMYmb/+09OqD/308wAAAAT56VFh0cmRraXRQS0w4OSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB+IBYE4gZGNocMIM3MjJ+hAWKwwGkGCM0OoZk5GMAKGZEUYujEaTg3A2MGEwNTAiNrAhNzBhMzSwILawYTC7cCK5sCG7seEysjAxunAjuHAidXAid3BhMXXwYTN08CD28GEy9fgggzGwNQDysjKxsrCzcnGxcfLw83p/g+oNmMcM/OZSxyEEl0Agky/KjScNDcP3k/iJ0bkOigcXyJPYg9XYLdITv9GZh9wr3M/uSLUDDbtW2O/RlbFbB67w3n9+b6rAGzKxfO23fV3PQAiM218ub+YuNIMPut/PT9Mpdng+3aHKx9wHXyRQj7H+v+fQtbwWbap63bL5si5ABi3/lmdkB8DTeYrcaeeCCkGWKvGADI3U0R7tFZbgAAAcN6VFh0TU9MODkgcmRraXQgMjAyMS4wOS41AAB4nH2Tv27bQAzGdz8FX8AC/x2PN3Sw5TQoithA62Ytigxtlkzp+5eUYJ8CHCp50NE/kuLHT/zy++/Plz+/Xt8OO8jr2+nr6zvcLz7tIo7/+bXW4FkQcfcE+QDHh8cvZ5ivh+MtMl9+nK/fgQpQjZy4P7KH6+XpFiGYQabqJNpgjxN5cxbACZerp3KAPJlwwQJ7mqgoVxqAslQsjEUUaGKvwj7gdClIhF4tOI8/ZVSvBIdTM0bJ93IpxUcvaMFFO2ZXz0lMqdiocQ0wJ0VSwhxF1NB5QDqckxQMTQz2HM2pyKh5g0tWqogaouxlkibVyoCMlvOin6MZr+VVdIjmcqKrVWuuiSo24TpCeR2qsCh56BA1WxtNT7L2F2NtJTaQCzIckbq29+IeRopdhTNqG5G5oxi6kKHRsiRFGY30cD59sN9qyOPlfOqGDNcAd9vlUbq5NELWPaQZ6lbJQOmOiEOHaxSKT4L7dimQ2lfIgTjMnx8/8WZblInbnVBAbSO8LhRtBF4jvBFSl8SyEUwzle6DUb5spNJ9mJBcM7VnpXhbqfJ8++7jefcPYczRlzF74+AAAAFCelRYdFNNSUxFUzg5IHJka2l0IDIwMjEuMDkuNQAAeJxlkM1OAzEMhF+FYytlI//EjrcVB8Qd+gqw6gGh7lalcOrD46aneHNK5svYo3l/e37FiabN5Ie2g1+xXZ9umwFzBSg1DZx55FrTfoDMMBppGigbo3DTELBg8v9cFCztMRORSXKkBUVdgjwqAXMC94mYGykjglnCbADgAmch8JFut8pNqIbc5qD52mZSJmnLUAo9MglxwfsgKMUFRwaqqaUtXMQ191Ud7a4VGLkZfR8qaItUgB/fTMwoeTZfZ20YK4kL90yatunjupwOl+W8g/zz+3lepu/jNb8c/Hmc/74uy3w6zteMusOeY+TUc4qce86Rl56XyKXnErn2XCOvPa+RW88t8rHn46qfUCCuG4wVrjrEUCKuWsRQI656xFAkxiZv/7T06oNP/08dAAABI3pUWHRyZGtpdFBLTDkwIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAABCbD4gbGNkcMoA0MzMWBruDBpjBBqFZ8ChFKIHQHAxgmolDQQtI/weaBWYwMrNwMzBmMDFwJjAyJTAxZzAxsySwsCawcGYwsbJlMLGxJ7BzZDBxcCZw8Chw8WgwcfMoiDCxMXCyMDMxsrGysXNwsogvAxkE90iZhMr+3Ljz+0GcrQdYD3xuZzgAYk9c5HkgYUYRWPzKSYMD/wMZ7EHsCrkV+z9uSQaz/93M2X9luagDiJ0owGY/sUEPzH5++pR9tu1VsJo8qZn2dxzj7EBsjuzGfe889feB2Ks0cx3YNF6C2at13tuH7hAC2yuUL+Dw7Vs42F4xAL/URP876s7ZAAABnXpUWHRNT0w5MCByZGtpdCAyMDIxLjA5LjUAAHicfZO5TgNBDED7fIV/ICNfcxUpciBAkI0EIS1CKSANFeL7sTcKO8CI2Y1ke5/t8RE+vn4+H99eTu/LGfh52NydPuD78GZmdvznrbXCQRBxtgUXYHV1fTvAer9cXSzr3dOwfwQSIDUfe36yy/1ue7EQrGGOIakFLjCnkBgxVcCA45l82UkOWGopeZSwsPn8JcVJCRQxavboVXOSHqkweKScWMhzRiSO1AGjh6QgJGoahlKqFuyA6VxP5chIwEGkSOqlzgZaQrav2bjMKdbc4YpxFGJR0WJCMkx6XB05qonGSpgyai8v4fmGdsGc0SXKRN1aiGAHEjLGZCUYqTFaOT2SjaRQUonWPusoWwOwbSSsb64Xc4LD8n5B325i/Tc4ppyrJ7Aqk8X65Xb20ovX1bD5sULnpVrths20VGo/njbHVWr2Q80m0xKom6ZRuyFOAzUF0jQ2V6kZjxqSpymoIaVpthpSm46qMdQ2jtwgTUvYscYyXp4bizegLdf1y//P5NkXzmO9Fi+LxisAAAFFelRYdFNNSUxFUzkwIHJka2l0IDIwMjEuMDkuNQAAeJxlkDFPAzEMhf8KYxE5y3ZiJ+mJgT9AOyCWqkM53YBo76pyMPXH45QpaZYo7/Nznt7meff6tF/tNt3+caDBDt+uiR+uKw8RRaPrEIKIT971DGxKKlIKXoldT5A0ibjOWGYpAuVCEJgihlQUsWlxBKqSg+sRhL2m6Bgiq7re9pmXkUzx9lM0icCTD972pJTLGhuymXgLRJHoX9KAOVsiW86IxciAKadcEiGW1J0HEiwZ7ZsQ1afbVFT2JaYgsZB7dIdlPm0v83mN8P3zcZ6Hr3GBl609x+n38zJPp3FagHRNcJqPb/PyfjiO0zBCMKVyUOvgxkGmVA5uHb7mvuWh5qHlUnNpudZcWx5rHlueap5anmue7zpsSqb7lttS71qlpkRqW7z+Aeht2VfQSWOIAAABI3pUWHRyZGtpdFBLTDkxIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAABCbD4gbGNkcMoA0MzMWBruDBpjBBqFZ8ChFKIHQHAxgmolDQQtI/weaBWYwMrNwMzBmMDFwJjAyJTAxZzAxsySwsCawcGYwsbJlMLGxJ7BzZDBxcCZw8Chw8WgwcfMoiDCxMXCyMDMxsrGysXNwsogvAxkE90iZhMr+3Ljz+0GcrQdYD3xuZzgAYk9c5HkgYUYRWPzKSYMD/wMZ7EHsCrkV+z9uSQaz/93M2X9luagDiJ0owGY/sUEPzH5++pR9tu1VsJo8qZn2dxzj7EBsjuzGfe889feB2Ks0cx3YNF6C2at13tuH7hAC2yuUL+Dw7Vs42F4xAL/URP/GmvGfAAABnXpUWHRNT0w5MSByZGtpdCAyMDIxLjA5LjUAAHicfZO5TgNBDED7fIV/ICNfcxUpciBAkI0EIS1CKSANFeL7sTcKO8CI2Y1ke5/t8RE+vn4+H99eTu/LGfh52NydPuD78GZmdvznrbXCQRBxtgUXYHV1fTvAer9cXSzr3dOwfwQSIDUfe36yy/1ue7EQrGGOIakFLjCnkBgxVcCA45l82UkOWGopeZSwsPn8JcVJCRQxavboVXOSHqkweKScWMhzRiSO1AGjh6QgJGoahlKqFuyA6VxP5chIwEGkSOqlzgZaQrav2bjMKdbc4YpxFGJR0WJCMkx6XB05qonGSpgyai8v4fmGdsGc0SXKRN1aiGAHEjLGZCUYqTFaOT2SjaRQUonWPusoWwOwbSSsb64Xc4LD8n5B325i/Tc4ppyrJ7Aqk8X65Xb20ovX1bD5sULnpVrths20VGo/njbHVWr2Q80m0xKom6ZRuyFOAzUF0jQ2V6kZjxqSpymoIaVpthpSm46qMdQ2jtwgTUvYscYyXp4bizegLdf1y//P5NkXzmO9FrNsYxcAAAFFelRYdFNNSUxFUzkxIHJka2l0IDIwMjEuMDkuNQAAeJxlkDFPAzEMhf8KYxE5y3ZiJ+mJgT9AOyCWqkM53YBo76pyMPXH45QpaZYo7/Nznt7meff6tF/tNt3+caDBDt+uiR+uKw8RRaPrEIKIT971DGxKKlIKXoldT5A0ibjOWGYpAuVCEJgihlQUsWlxBKqSg+sRhL2m6Bgiq7re9pmXkUzx9lM0icCTD972pJTLGhuymXgLRJHoX9KAOVsiW86IxciAKadcEiGW1J0HEiwZ7ZsQ1afbVFT2JaYgsZB7dIdlPm0v83mN8P3zcZ6Hr3GBl609x+n38zJPp3FagHRNcJqPb/PyfjiO0zBCMKVyUOvgxkGmVA5uHb7mvuWh5qHlUnNpudZcWx5rHlueap5anmue7zpsSqb7lttS71qlpkRqW7z+Aeht2VdSvA1iAAABPXpUWHRyZGtpdFBLTDkyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAH4gFgTiBkY2hwwgzcyMn6EBYrAgaNJVsDtYgBiMzDAlHAxgmombgTGDiYE5gZEpgYk1g4mZJYOJhTWBhSOBlS2BjT2DiZ0zgYMzg4mDN4GTK4GLO4OJmyeBhzeBl0+DSYSZDWgQKxMjGxs7JwcLKxsXNw8vB6f4PqDBjHCvZiTbHQgyOb8fxJkbX3QgXGs7SAHDowq3A90vK+1B7A8Me/dvuncUrOZjmtf+rb8iIGq0z+5P9WoDq7m+J2v/gxYJBxD71TkR+w36smD2BRVT+52+fGD19+M32S/5OgOs/oGQpYOL9yIwW5Q/10G046E1iB2p4ehw+e5KsF2Xug7ZFxtvBrO3VYXap//UOwBiiwEAzLtSZZOfFPUAAAG1elRYdE1PTDkyIHJka2l0IDIwMjEuMDkuNQAAeJx9k0tuGzEMhvc+hS5ggS+J5NKPoCiKjIHW7bYoukk2WRTN/UOO62gCCJXHAEV95FD8OfQHXn/+fvr1/HLYlVxfz1+e/5b3Redd+OE/j7uXHwwAu8eSRjk+fPq8lNP1cLx7Tpfvy/VbwVZQIyZ+H9nD9fJ492A5lT1VV7GA91g7mpoUqLCuEUtJclVTsF72ULmpSpuQfCMREMni3LUTwQSUBLGK9uaYVpNmzSdkSxKqOnTmtAjRfFZmv+XsQA5UsII4TqvUW0rH7iKFKhsjzqq0AKE2i8tQcNI6cJ9wvnIK2nwtEdm82wSMt5yiMnZuDcNAF/dZRkx1qJqjqgZIXZ1oBqY4oQ0I/LtrN+MZyGUJENDALPvEFHJOU8paZEO3vmojeT69TiuXcBuzg+QwaVg6y/mwnD8M320cj5flPMZR4k9j5nIrY7BCqMJjfCRcfcxIOtoYhNiMU123PkSVIHRoJ0HYRiEJBLdKSEC47fjqkE1nJeMQNx2UDETadEoyEt+vgFllhG7yaFwxQrFtu7btUe7vn3vYuzcEx8/b8DMuCgAAAUt6VFh0U01JTEVTOTIgcmRraXQgMjAyMS4wOS41AAB4nGWQu07DQBBFf4USpM1q7uxjZhJR0NFBjyjASoFQ7CgEqnw8s+52bUvW+h7N7NV5eZzwNj+/T9PEE/xtj3/57nZPUVMyymHHUfwk4YBYYFrDDjETEcIhRYKStSSxkLZEKFMJFImqKlfPOKpBNCByFeO2KFkqxQNYCQfyGSmWwo4iklqb8aMY1bSGDKhlD/1iqWW9r+TiVQ7eziQrt6hCpY16B5XWimIqIrmsGQhI3sukMq+7KrF5B8qGst5oqJZz4Jg0Aa1YUbAv55hLdRcP4eO6nF4vy3lP8ef387xM38drfHr13+P893VZ5tNxvkbUPXqOkXPPeeSp52nkued55KXnZeS153Xk0nMZufZcR249t42fQSC2BkeFG4cYJGJjEYNGbDxiEInR5O0fBgXrodSQfDwAAAEIelRYdHJka2l0UEtMOTMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRjaGDCDNzMzIwaABYjCxOYBpFjYHqAQ7RIAZJsHuYAGiGZkRElCVGFq5GRg1mBiYFJiYM5iYuBKYWRJYWDOYWNkSWDkT2NgT2DkymDg4Ezi5MphEmNiYuDhZWZhZ2Vg5OdjF+4AGMMJde0rDwUHxTpA9iNPg0OrwJoxhH4i9+NgZe+npU+1AbNk3a+2LpGfsB7ELbxnv3aN8B8y295+1f3aoK5idzalzoPtIPZgt4hB+oMNxHVhvorDwgSN7N4HNL35Ztv/aGlMw+37EA7ut9+aB2WIAhNM6VWO0db8AAAFrelRYdE1PTDkzIHJka2l0IDIwMjEuMDkuNQAAeJx9kktOAzEMhvc9hS/QyK+8lp1OhRDqjASFLarYUAlYdcPtsYtKplJEMpFi54s99h/+/tTX48d5eH17P56+Nivw8Tg+nM7wN3hcmR//+Wqt8CKIuNqDb2DY3d1PsD1shqtnOz9PhycgAmK7Y/OW3Rzm/dVDsAUJiKzVuFBYUibb4GW0mwwzaKCkxAJrDMRRhDugWEAKsdbiyQNXplQ6nF44iSXb8ZoClSLSAyNMnhBVKlYnM9Wi2CGThbRzxhj18pM5Y5HcIbPH5JBKwRydtK5ilQ5ZnJQgSbgkOxdFUe2A1ZOz1VswFq+sWq9SByR00lImje4PGWvqtohcHAwqhbKHZCXqirObxhtRf2Ue5mlsMrOvpqa9DZCmmfpq0rhJ1BRwT2xtNgNS66WaK7eGuUmLvqghZVG9GlMXNaoxjbdXo0619F7dsha3r8/d9qsfbXyi/Oa44SwAAAETelRYdFNNSUxFUzkzIHJka2l0IDIwMjEuMDkuNQAAeJxd0D1PAzEMBuC/wghSavkriX0nBsTCRnfEANENCPWuKgdTfzxJt2RL3seOI78+Phcqa+G39eV9LYUL3V3vFSgpcTggEEcRDrMAIqsHBGNJmcJMEN2NasLOlKwlEi3ncCAgM9Ew1wdQxdFjCzO5tZCAMUZtz+eMJrlmDMkMc8vca4PUTECScJspiqJ6K2M3TKGO8qR8m1APsdZk9NR+gaBilK3WsBLl8BA+9u10vGznCeHn9/O8le9lh6djvS7r39dlW0/LugNN1DMNzD1zz2mS3mV07V1Hj73H0VPvafTcex7derfedfLefeynYX007C9d/wGdVa11DJWFlgAAAYl6VFh0cmRraXRQS0w5NCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABhIBYF4gZGNoYMIM3MzMjBoAFiMLE5gGkWdgjNDOMLOMDkoRrYGaAKIDQLTCGcZkgA0kwIDQgFcAE0u+FuAGtlZOZmYNRgYmBSYGJOYGLLYGJmyWBiYU1gYVdgZUtg51Bg52bg4FTgENBg4uTKYOLkSeDiZuDiT+DhzWDi5UvgFVTg489gEhRiEGFmBeplZWPlYOfm4mTj4eXj5+IUfweyAh4gURs3HqiWWbkfxBGxvndAn8MZzHZ/033gaP2pfSC2dIv1gaxMP7C44G/WAz2rH9iB2GGWjgcM7M/bg9iX1vceuGPXC2Yv15PY7/rkD1jNzSkr7cq36YP1Xtl4z975uh7YzGWLr9s/ZV4FVs9wrdxu5Yx7YHa7oYuDZUw8WH3bwS4HbY1Ze0HsX387HLxttoHVRCjbOuxn53AAsW/8WLRX0InjANh83a0Oua/dwHoTPm5zcFolCBYXAwA9LGAArBCk3wAAAgt6VFh0TU9MOTQgcmRraXQgMjAyMS4wOS41AAB4nH1Uy24bMQy8+yv0AyvwJVE8+hEURZE10Li9BkEuDlD0lEv+PuQu7FVQoVovIHFHI5EztFw/rs8vf973z6/Xl7e/+12K8fP04+093Qeddh6H//zMLP1mANg9ppikw8O373M6XvaHW+R4/jVfnhJaIvQ9/nzF7i/nx1sE0zFNJZdCzYknzEyIjRJkWMa2l9I5TTWbiCKmCbJWbCIDJAenZFYqRoFkKwXqAClpThNlIzNugWxQyUbIEpyUwVjE/Ltwa2ADYE1PaeIMaEiSMFef4IhR11sKqSI7EIGl4QDY4pKQi2deozBi7BceAM0ZPVlGQokdtVXWNgCia+QnKluDpUCooMIjJC7I2qS6KKFOo2HNkZbDSQhIV27PZwQMdbw+1SXnpeQuE4zy9iSOyWXkiisStJCOrIFlQVJDgCilEKvHBsDqQNc77EY+QSqiw7w13BZHWtEayiN5QsPDm0NLrqsbw5eq4PEBMgQqWbFaLcFJWsFP+hf5MJ++dMnaN4fzfNr6huLdmgP94a0DJN7N5rHUzcsRKJtjfZHq5kv0ZdvcJ47QzWPoIeucFGukzjAYoN4YFAHtDCDLPuyEXiPcCYoLFXXKyRKpnUQSZCidEhJkWLqK4xK5p0NRjaC/81Dc2Lei9dXvax3r2/+bz3efq/j+IOp72+gAAAGRelRYdFNNSUxFUzk0IHJka2l0IDIwMjEuMDkuNQAAeJxlkM1uGzEMhF+lRxuQBf6JlHaRQ+B7nVdoBR+KInaQOD3l4UttTuKeFpqPS87M+dKxd+qH3vF4/nnoeOuH89Pl2D/8TU+XH1+Hkg21aTpRJlOgtJasilXSCbKZAadVMrMiDQWskGFLK2fQUjatGhXAtGI2bnUoaGDCQ9EqWhNmpkqSVsrNf6qJMlIRG6uponMhNl8BmYSALG27xm3fVpqIUoIsjRv5bfcKjaUMiWuFb8lR21xXUPJE68l9u7U2NPa7MLSS3YBLwxJidUWz7/fjI+8ILtufQmbDGALLmPK82LwDj7R93SozEm4XtSpb3cyCtWLu9jQijgTH9Otxf315v78tkD8+f7/d+9/rIz+/+PN6+/fn/X57vd4emRecMQZMM6YJoy48c45cZi6Rl5mXyHXmGrnN3CKvM6+Rt5m3mcOCoT6c+0NZMDaIu4lQItJuItSIoccFQ48ocSAUiWV3I1SJupsIZeKuTQx1Yuzz6z/4oyigZ/oQ+QAAAN56VFh0cmRraXRQS0w5NSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOKG5gZGPIANLMzIzsEAYTIweDBpjB5gCmWdgcoCowGewQJcxwAW4GRgUGJg0mRmYFZpYMJmaOBBbWBFa2DCY29gR2jgwmEUY2Zg52NlYW8TKgBka4czZ1qh6YtPWyHYiTsPzY/udGOvtB7H/ZjQeCAytsQez1aw7sTd21eB+ILTl9hZ2kc789iB196In959w9YLb+dBOH7DlHweY8r5N0mH6qDWxO4aEC+8Kvm8FsMQCx3TLbv82v7wAAAUJ6VFh0TU9MOTUgcmRraXQgMjAyMS4wOS41AAB4nH2Sz2rDMAzG73kKvUCMJMt/dEybMsZoAlu2aym9rDC2Hfr+TO7I3IKZlYP86WdHn5Lw9c2H48dlOJzej+fPoYOynsen8wX+Fo+d6fjPo6rw5hGx20NJYLN7eJxguwybVdnOr9PyAmqBJe7JYZn3q0KwhZ5dyDGwwU7IiwZL8LrqUYYJenIhkGYPPbqY2M40SA8z9OJQRLwv9YiRpQFKebfJKpi0ZJ40ZWqQwUgrs3LKQI5I2beajMaRSzmRXUNOEhO2uGQcu8yUOJeLc9CgDS6baXbeHCcs7jF4DLkB6rVBMyIxFVAwKLfA3TTezf/3i2zmaaxfpATXubNtfR2u1UDqCEuEOqey1ToOq0GsrsWkVM2JSblaEJP0ttHbtsp+/cUs734A5RqJlI2iMxYAAADvelRYdFNNSUxFUzk1IHJka2l0IDIwMjEuMDkuNQAAeJxdzbFOAzEMgOFXYQQpZ8WOHdtXdUDs0FeA6AaEele1B1MfvglbsiX/Fzsfx7f3gqWUteDT/XliiMycQoSYYybmcJgIxLK0xpjYpSYEEXQLU4SslIVqqyPOUZ1bTehqGA71RE5qAQHRqa5DUFNsgZWwPiEwQm3rk4mLt5Lckob6TZQUc1tTV3P+TxzFU3gJn/t2Pl23yxzh9vt12crPssPrqV6X9e/7uq3nZd0BZ+wZB6aeqWOZU8+pn84z986jS+8yeu49j6696+jWuw1+fwBw241MXFB9VgAAAaJ6VFh0cmRraXRQS0w5NiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAARIBYD4gZGNocMIM3MDGRogBgsbAwgmomFHUIzw8WhNDsDWAMjEztEgBkhAeUzwAyCmsyuoAVkMIJEEsAMhEqYCnSjYHyoBm4GxgwmBqEERiYFRpYEJmYNZhbWDCYWwQRWNgVW9gR2jgwmDk4VFg6BBE4uLSZmJg5uLm4VFi5+FWZuHg0mHl4GHj4FPn4NJgHBDCZBoQQhYQYRZlYGRhZBITZWdg4BQRZWbi5+Ph7xXyDb4GGUx9t9wEAl0h7EaVfMPHDF8ss+EPvh8s4De9pf7gex/+2bd6CJwfsAiC0zievAztx4sJrnn6v3W/lNAqvxfjljv6iJBljNgroLdjM1RcHi/2Xl7N240sHm+01hcJhgtxvMLtD0cZDZwwlmN9hMcVDSKgazMznWOyy6NQ1sfj7DfQfG1k1gtkfBRIc3D/aAzVTZ4uEgzlIGZneaCexf9vQlWO8Dk1/7LXUWgdki4cEH1nd8A7OLnycfOHQ50gHEFgMAMHVhIjfV8wAAAAIuelRYdE1PTDk2IHJka2l0IDIwMjEuMDkuNQAAeJx9VE2PEzEMvfdX5A80sh3HsQ976MdqQbCtBGWvq4ULixCnPfDzsVPaSUXETCtNPM/Pcd7ztK8/fj+//HzbPn/7/vL6a7NKcX3af3h9S9eL9iuPw39+ZpaeCgCsHlM8pO39w/tD2p0220tkd/xyOH1OBInIc/y+xW5Ox8dLBNMurTkXrkUtQVZWAvUH6NeSSgEsWZikYVpD5tYAeIIsfykBG5e0xqzEXOsEyekQSBNQrMGODQ1kgqzBSRmlomhUJ1Q0miAlkJBN2amiOrLvZIZsUd3fG4sflbMLKTabINWR3jA0QgnyqiQy26Z5cciCTTj6NaAKOMEhOCN52KBSwuw7UG4zYOjj52IAFDtzlYCmwNCHsxQq2kuzqcy6xuKlq1e01noz5P2XkTLt3j3cYXrafLzjaxY7vbhSqlAiq7CGDyb81fk5V2arEufLrQrOfIJy7q1Us9o1E+yAf5FdKu9eSilxXkqt0LS6hvyYrXIr5kgXytrMe2jBWdymFEbxFBLgmahujm79GttD3zFDqXW2z/vD/ma4zuO2PR72y7ix/2kZqliiLaPjL1NZ5oN9WZchKH7z4nT2kCx2jiXqYlp0SFusyb7UwYHsEBuMho7B0VAcgTYYhyINcTAF9kQaxD9HZBCZggvLICYGGfIg2jlSB3Gok8kgAvfUawfUz1KH0/OvHfbUG0HG44/15Uvpz6s/tSUMaULJqPYAAAG4elRYdFNNSUxFUzk2IHJka2l0IDIwMjEuMDkuNQAAeJxlkD2P1DAQhv8KEk1WeI3f8XjsyeoKlD66AtEAxV2UAnGbnI6F6n48k2xlp7PfD8/4GRZMUzd8HE8TTd14Wqbu8/gwxB/Dw/h9/PSzG052M5nw4b07R58ELnoOMSV3sXsMBHXwShI2hX3kFNUFX7hQKHtImCS7c/Cccwh8jwVkdmf4Qsz3pkoocJZHhsIk8pCEvUkoUDIteC1sI60JtkdMspOykLO8UIHNtEkhE2RrpkIismmCLDbKXgiUtib5ENTWhrd6sSVstIYQLZJiCZR3JSbV7SG1r1/YJ2aVbTznDcYlWVlz2Ze0NaKVxLJlVyIXyXtNIu1YlLXI/SNJYozkNgQ50v4RTWxU4G1lze7knm7r9fFtfe2D//P3+XWdfs83/+XRrvPy79fbulzn5eZLj9pGZWtPtU2VDe5j7cfW59rn1k+1n1pfal9aP9d+bv1S+6XyU6+1rW0dDT2EQ6IFiEOiYYgDRDQUccCIhiMOIJH8dX35ut6+Pb3MyzT7XapLB7po8OLAFw1gHAijQYxySDSU0WJ+/w9hnz/mQSsNiQAAAaJ6VFh0cmRraXRQS0w5NyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAARIBYD4gZGNocMIM3MDGRogBgsbAwgmomFHUIzw8WhNDsDWAMjEztEgBkhAeUzwAyCmsyuoAVkMIJEEsAMhEqYCnSjYHyoBm4GxgwmBqEERiYFRpYEJmYNZhbWDCYWwQRWNgVW9gR2jgwmDk4VFg6BBE4uLSZmJg5uLm4VFi5+FWZuHg0mHl4GHj4FPn4NJgHBDCZBoQQhYQYRZlYGRhZBITZWdg4BQRZWbi5+Ph7xXyDb4GGUx9t9wEAl0h7EaVfMPHDF8ss+EPvh8s4De9pf7gex/+2bd6CJwfsAiC0zievAztx4sJrnn6v3W/lNAqvxfjljv6iJBljNgroLdjM1RcHi/2Xl7N240sHm+01hcJhgtxvMLtD0cZDZwwlmN9hMcVDSKgazMznWOyy6NQ1sfj7DfQfG1k1gtkfBRIc3D/aAzVTZ4uEgzlIGZneaCexf9vQlWO8Dk1/7LXUWgdki4cEH1nd8A7OLnycfOHQ50gHEFgMAMHVhIqsyVjwAAAIuelRYdE1PTDk3IHJka2l0IDIwMjEuMDkuNQAAeJx9VE2PEzEMvfdX5A80sh3HsQ976MdqQbCtBGWvq4ULixCnPfDzsVPaSUXETCtNPM/Pcd7ztK8/fj+//HzbPn/7/vL6a7NKcX3af3h9S9eL9iuPw39+ZpaeCgCsHlM8pO39w/tD2p0220tkd/xyOH1OBInIc/y+xW5Ox8dLBNMurTkXrkUtQVZWAvUH6NeSSgEsWZikYVpD5tYAeIIsfykBG5e0xqzEXOsEyekQSBNQrMGODQ1kgqzBSRmlomhUJ1Q0miAlkJBN2amiOrLvZIZsUd3fG4sflbMLKTabINWR3jA0QgnyqiQy26Z5cciCTTj6NaAKOMEhOCN52KBSwuw7UG4zYOjj52IAFDtzlYCmwNCHsxQq2kuzqcy6xuKlq1e01noz5P2XkTLt3j3cYXrafLzjaxY7vbhSqlAiq7CGDyb81fk5V2arEufLrQrOfIJy7q1Us9o1E+yAf5FdKu9eSilxXkqt0LS6hvyYrXIr5kgXytrMe2jBWdymFEbxFBLgmahujm79GttD3zFDqXW2z/vD/ma4zuO2PR72y7ix/2kZqliiLaPjL1NZ5oN9WZchKH7z4nT2kCx2jiXqYlp0SFusyb7UwYHsEBuMho7B0VAcgTYYhyINcTAF9kQaxD9HZBCZggvLICYGGfIg2jlSB3Gok8kgAvfUawfUz1KH0/OvHfbUG0HG44/15Uvpz6s/tSUMaeY5/ekAAAG4elRYdFNNSUxFUzk3IHJka2l0IDIwMjEuMDkuNQAAeJxlkD2P1DAQhv8KEk1WeI3f8XjsyeoKlD66AtEAxV2UAnGbnI6F6n48k2xlp7PfD8/4GRZMUzd8HE8TTd14Wqbu8/gwxB/Dw/h9/PSzG052M5nw4b07R58ELnoOMSV3sXsMBHXwShI2hX3kFNUFX7hQKHtImCS7c/Cccwh8jwVkdmf4Qsz3pkoocJZHhsIk8pCEvUkoUDIteC1sI60JtkdMspOykLO8UIHNtEkhE2RrpkIismmCLDbKXgiUtib5ENTWhrd6sSVstIYQLZJiCZR3JSbV7SG1r1/YJ2aVbTznDcYlWVlz2Ze0NaKVxLJlVyIXyXtNIu1YlLXI/SNJYozkNgQ50v4RTWxU4G1lze7knm7r9fFtfe2D//P3+XWdfs83/+XRrvPy79fbulzn5eZLj9pGZWtPtU2VDe5j7cfW59rn1k+1n1pfal9aP9d+bv1S+6XyU6+1rW0dDT2EQ6IFiEOiYYgDRDQUccCIhiMOIJH8dX35ut6+Pb3MyzT7XapLB7po8OLAFw1gHAijQYxySDSU0WJ+/w9hnz/mz3oXmQAAAT56VFh0cmRraXRQS0w5OCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAA+IOYH4gZGDgUtIM3IxMwOZjAxsXIoKAEZ/xnZHDSANDMLm0MGiGaGC7A7WIBoRmacKpAEYAwGKIODAayEiZuBkYOZkYmBkRmoPoOJmTWBhTuBlS2BlTODiY09gZ0jg4mdR4GDM4GTK4GLO4OJh1eDSYSJjZmVk4ubhZWNlZODXXwTyOVwLynviDwQosp6AMT5u/rnftUjN/eD2C7tqfvfGBiCxfkuHNt/sL5pH4htekftQPNvf3sQO2TPhb3Gmf9sQeygwMn2m2OMwXp3LxFxaFtRaAdiM895ah/y6CJY/RKH6XYnuE6C2ckGTvttr2g4gNi2ebwHfk8QALOvmhU6vDFTBdvFs7fFQT37HNhMMQCXG0j0E370tQAAAcR6VFh0TU9MOTggcmRraXQgMjAyMS4wOS41AAB4nH1Ty27cMAy871foB1bgUxIPOewjSII2XqDd5hoEvTRA0VOA5vNDeuFYSYXKNiBKM6Q0Q9Pf+vr49Ptl//jz19Pzn90mxfh2/PL8kt4HHTe+Dv95zSw9MABs7lNM0v765m5Kh/Nuv6wcTj+m8/eEklCd489H7O58ul9WMJ3SlrMAtiJpSxkaCHCCDPNw9uH25grTw+7rFS8sSlPaYjYFLRizCkjWPrNoZunC4qgFuVlR06hVSyuIn1nbSzFcaJIOUUKViSQSkEprPW1BaiApF6hovpwbkjANgCWAkBHQKPYdF7n/BVa/KGZUMLRgVIDCPAA2z0jZT6gaeYjVbJTQHOdyGTevh7mw+VkHOHQtIo+puIl++wpFRldx/ea7VG2q6GcoXE1HpZEu8hBYc4BPtDUZFmdHcthjlWahCvK4urinklEa1BouFaQiOkBeT8cPjXdpxf1pOq6tyP7R2mMeJF6bJ0JZmyIeXZ2PsKz++p5feLXRN1NdzYoQO1PEIa3TXhxjncToMXKnpDgJe8EkaIidMDIT38/gNlIAUXpJegEiXv5jn2/eANR6zI7sPnC9AAABY3pUWHRTTUlMRVM5OCByZGtpdCAyMDIxLjA5LjUAAHicZZA9TwMxDIb/ChJLT00t24nz0YoBsTBRBsRS3VCiGxDtXVUOpv54nDIlnaK8jx8nercPT5ly5rzYjc89dXq+LLlf3O+2y77bbVd9lxXfXRYOyEWMZkXgib0zGwvBxxTMCoE8Wcdmw2CZRQwCW0lJhwhCspGNWjYFHVGUxJFoIgHLnuIjJWbViB3zVSPBxGV3QPTW6pgKoutLxuJipGuWBMWXXwWkMmXBIUVNGDDi//qYvCQpkf7YF4/BY6CkL0Z90vI1YkxRjJ4S9SxikChCGnkbdEFn9vN0fD1PpzXC98/HacpfwwyPr3odxt/P8zQeh3EGWlONqcFcY66xW9ua25a7mruWS82l5b7mvuWh5qHlEY7T4W2a3/eHYcwDiCaVEVsjNYbVpDJSaxA2CpWorhVvpLZ4uplouqeb8qlpn9r6L38JcPHTSu9KtwAAAT56VFh0cmRraXRQS0w5OSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAA+IOYH4gZGDgUtIM3IxMwOZjAxsXIoKAEZ/xnZHDSANDMLm0MGiGaGC7A7WIBoRmacKpAEYAwGKIODAayEiZuBkYOZkYmBkRmoPoOJmTWBhTuBlS2BlTODiY09gZ0jg4mdR4GDM4GTK4GLO4OJh1eDSYSJjZmVk4ubhZWNlZODXXwTyOVwLynviDwQosp6AMT5u/rnftUjN/eD2C7tqfvfGBiCxfkuHNt/sL5pH4htekftQPNvf3sQO2TPhb3Gmf9sQeygwMn2m2OMwXp3LxFxaFtRaAdiM895ah/y6CJY/RKH6XYnuE6C2ckGTvttr2g4gNi2ebwHfk8QALOvmhU6vDFTBdvFs7fFQT37HNhMMQCXG0j0JgsEIQAAAcR6VFh0TU9MOTkgcmRraXQgMjAyMS4wOS41AAB4nH1Ty27cMAy871foB1bgUxIPOewjSII2XqDd5hoEvTRA0VOA5vNDeuFYSYXKNiBKM6Q0Q9Pf+vr49Ptl//jz19Pzn90mxfh2/PL8kt4HHTe+Dv95zSw9MABs7lNM0v765m5Kh/Nuv6wcTj+m8/eEklCd489H7O58ul9WMJ3SlrMAtiJpSxkaCHCCDPNw9uH25grTw+7rFS8sSlPaYjYFLRizCkjWPrNoZunC4qgFuVlR06hVSyuIn1nbSzFcaJIOUUKViSQSkEprPW1BaiApF6hovpwbkjANgCWAkBHQKPYdF7n/BVa/KGZUMLRgVIDCPAA2z0jZT6gaeYjVbJTQHOdyGTevh7mw+VkHOHQtIo+puIl++wpFRldx/ea7VG2q6GcoXE1HpZEu8hBYc4BPtDUZFmdHcthjlWahCvK4urinklEa1BouFaQiOkBeT8cPjXdpxf1pOq6tyP7R2mMeJF6bJ0JZmyIeXZ2PsKz++p5feLXRN1NdzYoQO1PEIa3TXhxjncToMXKnpDgJe8EkaIidMDIT38/gNlIAUXpJegEiXv5jn2/eANR6zI5BM1sPAAABY3pUWHRTTUlMRVM5OSByZGtpdCAyMDIxLjA5LjUAAHicZZA9TwMxDIb/ChJLT00t24nz0YoBsTBRBsRS3VCiGxDtXVUOpv54nDIlnaK8jx8nercPT5ly5rzYjc89dXq+LLlf3O+2y77bbVd9lxXfXRYOyEWMZkXgib0zGwvBxxTMCoE8Wcdmw2CZRQwCW0lJhwhCspGNWjYFHVGUxJFoIgHLnuIjJWbViB3zVSPBxGV3QPTW6pgKoutLxuJipGuWBMWXXwWkMmXBIUVNGDDi//qYvCQpkf7YF4/BY6CkL0Z90vI1YkxRjJ4S9SxikChCGnkbdEFn9vN0fD1PpzXC98/HacpfwwyPr3odxt/P8zQeh3EGWlONqcFcY66xW9ua25a7mruWS82l5b7mvuWh5qHlEY7T4W2a3/eHYcwDiCaVEVsjNYbVpDJSaxA2CpWorhVvpLZ4uplouqeb8qlpn9r6L38JcPHTgwMT7gAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from rdkit import Chem\n", + "to_highlight = [\n", + " row.fragment.GetSubstructMatch(row.substructure) for _, row in brenk_structs.iterrows()\n", + "]\n", + "Chem.Draw.MolsToGridImage(\n", + " list(brenk_structs.fragment)[:100],\n", + " highlightAtomLists=to_highlight,\n", + " legends=list(brenk_structs.substructure_name),\n", + " molsPerRow=6,\n", + " maxMols=100,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb b/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb new file mode 100644 index 00000000..74a9447e --- /dev/null +++ b/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb @@ -0,0 +1,1377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2c7f363a-9ffe-41bf-97dc-eef0bc56f206", + "metadata": {}, + "source": [ + "# Filter fragments for drug likeness" + ] + }, + { + "cell_type": "markdown", + "id": "8c2d9a60-89b7-419f-a7bf-280ee08368db", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "id": "688e45e3-605f-442d-ac01-b92068fb635b", + "metadata": {}, + "source": [ + "This notebook is filtering the fragments for drug likeness. \n", + "* The first filter step checks whether the fragments fulfill the Rule of Three (Ro3) ([Drug Discovery Today, 2003, 8(19):876-877](https://www.sciencedirect.com/science/article/abs/pii/S1359644603028319?via%3Dihub)). \n", + "* The second filter calculates the Quantitative Estimate of Druglikeness (QED) ([Nat Chem. 2012 Jan 24; 4(2): 90–98](https://www.nature.com/articles/nchem.1243)), reflecting the molecular properties of the fragments." + ] + }, + { + "cell_type": "markdown", + "id": "791bf17a-a11b-4bd1-856e-c84dc5d84e4d", + "metadata": {}, + "source": [ + "## Table of contents\n", + "1. Load fragment library\n", + "2. Apply pre-filters\n", + "3. Filter for Rule of Three (Ro3)\n", + "4. Filter for Quantitative Estimate of Druglikeness (QED)\n", + "5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s)\n", + " \n", + " 5.2. Histogram of QED values" + ] + }, + { + "cell_type": "markdown", + "id": "28fdcb9a-62e4-421c-94e0-feb2f49a187d", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e21ff76d-e6b9-41d5-8c99-9c8cf331111d", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit.Chem import PandasTools\n", + "from IPython.core.display import HTML\n", + "\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b0b98f88-8429-47fa-9ca6-9b4d2c225119", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ca329332-8304-46ad-85da-291709385db3", + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "18774eb6-3f6f-45ea-b58f-7388e8c85b12", + "metadata": {}, + "source": [ + "### Define global Paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b69f472d-063d-4897-84d0-ca03fb9d5129", + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data\"" + ] + }, + { + "cell_type": "markdown", + "id": "cd394dd5-0f9a-49a1-b465-767121ea6cd7", + "metadata": {}, + "source": [ + "## 1. Load fragment library\n", + "\n", + "The fragment library is stored as a dictionary, with the individual subpockets as keys." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "839a6067-16d4-4077-9252-cceb56261fc8", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_original = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "67852002-8ed8-4230-813e-492a590df8d3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2', 'X'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_original.keys()\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "1d8ce30a-c2c9-4305-a1a5-139898306744", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9505, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat(fragment_library_original).reset_index(drop=True).shape\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "0cc41e97-4cdf-426c-b1f4-92723a979776", + "metadata": {}, + "source": [ + "## 2. Apply pre-filters\n", + "Pre-filters include \n", + "- removing fragments in pool X\n", + "- removing duplicates\n", + "- removing fragments without dummy atoms (unfragmented ligands)\n", + "- removing fragments only connecting to pool X" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ed3c2041-0404-4711-bdac-c36a85e2940c", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.prefilters.pre_filters(fragment_library_original)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c712bf41-00fc-4713-ad12-a2d2723f7bd4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_name
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "17a6cd26-296f-441a-8d36-97d28e660909", + "metadata": {}, + "source": [ + "Count number of fragments in the original fragment library and after pre-filtering the fragment library." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8c710616-304e-4696-97f5-3d4792f7f885", + "metadata": {}, + "outputs": [], + "source": [ + "num_fragments = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library_original, \"original\"),\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments = pd.concat([num_fragments, pd.Series([num_fragments.sum()], index=[\"Total\"]).rename(\"Total\")])\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "a614fd56-2c3e-4e64-b3cf-fc8511968bfc", + "metadata": {}, + "source": [ + "Note: The number of fragments in pool X in the original fragment library is not displayed." + ] + }, + { + "cell_type": "markdown", + "id": "5d89140d-2abb-4aab-8255-ee404d36769b", + "metadata": {}, + "source": [ + "## 3. Filter for Rule of Three (Ro3)" + ] + }, + { + "cell_type": "markdown", + "id": "b08461ab-0379-4d3b-8840-fd5a85bc68c2", + "metadata": {}, + "source": [ + "The Rule of Three (Ro3) ([Drug Discovery Today, 2003, 8(19):876-877](https://www.sciencedirect.com/science/article/abs/pii/S1359644603028319?via%3Dihub)) is adapted from the Rule of Five (Ro5) ([\n", + "J Pharmacol Toxicol Methods, 2000, 44(1): 235-249](https://www.sciencedirect.com/science/article/abs/pii/S1056871900001076?via%3Dihub)) to check if small molecules make good lead compounds.\n", + "It is looking at the molecular properties, namely\n", + "- molecular weight (MW) <= 300\n", + "- number of hydrogen bond acceptor (HBA) <= 3\n", + "- number of hydrogen bond donor (HBD) <= 3\n", + "- number of rotatable bonds (NROT) <= 3\n", + "- polar surface area (PSA) <= 60" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e19dad22-c75e-4c4d-8ac7-26438445a28d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrug_likeness\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_ro3_frags\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfragment_library\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mmin_fulfilled\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mcutoff_crit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'>='\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Check if the fragments fulfill the rule of three criteria\n", + " - molecular weight <300\n", + " - logp <=3\n", + " - number of hydrogen bond acceptors <=3\n", + " - number of hydrogen bond donors <=3\n", + " - number of rotatable bonds <=3\n", + " - polar surface area <= 60\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "min_fulfilled : int\n", + " defining the number of Rule of Three Criteria that need to be fulfilled to be\n", + " accepted. By default min_fulfilled=6.\n", + "cutoff_crit : str\n", + " Cutoff criterium, defining if the number of fulfilled parameters is \">\" or \">=\"\n", + " than min_fulfilled. By default cutoff_crit=\">=\".\n", + "\n", + "Returns\n", + "-------\n", + "dict\n", + " fragment library organized in subpockets containing a boolean column if they fulfill the\n", + " defined number of Ro3 parameters (bool_ro3).\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/drug_likeness.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "filters.drug_likeness.get_ro3_frags?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a31c893f-f85d-455a-9fe3-9c01f81050f1", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.drug_likeness.get_ro3_frags(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "5e8e78ab-1afc-4a29-bc76-0f01408fce87", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if Ro3 fulfilled (`bool_ro3`). " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "493c4061-4a42-47b2-8e80-dc831baa97a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_ro3
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]1
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]1
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]0
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]1
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]1
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "1cf9e65b-7847-4139-a4c4-8d3f91cea2e7", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the Rule of Three filter." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "f6aedaa5-af5d-4454-b0b5-0815310f745d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_ro3rejected_ro3
AP1201606595
FP1100840260
SE743613130
GA35531243
B147443
B259554
Total350524701035
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_ro3 rejected_ro3\n", + "AP 1201 606 595\n", + "FP 1100 840 260\n", + "SE 743 613 130\n", + "GA 355 312 43\n", + "B1 47 44 3\n", + "B2 59 55 4\n", + "Total 3505 2470 1035" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_ro3 = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_ro3\", \"ro3\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "\n", + "num_fragments_ro3 = pd.concat(\n", + " [\n", + " num_fragments_ro3,\n", + " num_fragments_ro3.sum().rename(\"Total\").to_frame().T\n", + " ],\n", + " axis=0\n", + ")\n", + "num_fragments_ro3\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "1a429670-b20d-4ba9-9188-1cb7c896a1d0", + "metadata": {}, + "source": [ + "## 4. Filter for Quantitative Estimate of Druglikeness (QED)" + ] + }, + { + "cell_type": "markdown", + "id": "54aea94d-b3bc-4c0c-8e13-65b8acc710c1", + "metadata": {}, + "source": [ + "Quantitative Estimate of Druglikeness (QED) ([Nat Chem. 2012 Jan 24; 4(2): 90–98](https://www.nature.com/articles/nchem.1243)) reflects the distribution of the molecular properties, namely\n", + "\n", + "* molecular weight\n", + "* octanol-water-partition-coefficient\n", + "* number of hydrogen bond donor and acceptor, \n", + "* polar surface area, \n", + "* number of rotatable bonds, \n", + "* number of aromatic rings \n", + "* and number of structural alerts. \n", + "\n", + "For each property, a desirability function is used and with them the estimate is calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c954d397-c471-4091-9ad5-d956e9d3cdce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrug_likeness\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_qed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfragment_library\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mcutoff_val\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.492\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mcutoff_crit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'>'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Calculates the Quantitative Estimate of Druglikeness.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "cutoff_val : int\n", + " A value defining the cutoff for accepted/rejected fragments. By default, cutoff_val=0.492.\n", + "cutoff_crit : str\n", + " Defining whether the QED value should be \">\", \"<\", \">=\", \"<=\", \"==\" or \"!=\" compared to\n", + " the cutoff-value. By default ,cutoff_crit=\">\".\n", + "\n", + "Returns\n", + "-------\n", + "dict\n", + " Containing a pandas.DataFrame for each subpocket with all fragments and an\n", + " additional columns (bool_qed) defining whether the fragment is accepted (1) or rejected (0)\n", + " and the calculated QED value for each fragment (qed).\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/drug_likeness.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "filters.drug_likeness.get_qed?" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e4b4015d-f41c-429d-9fd3-07a4faa0ae12", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.drug_likeness.get_qed(fragment_library, cutoff_val=0.492)" + ] + }, + { + "cell_type": "markdown", + "id": "62d13015-6794-46f0-8b89-236477b30d3d", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if QED threshold fulfilled or not per fragment (`bool_qed`) and calculated QED values (`qed`). " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "736f1790-40c5-4cbc-bc82-08d778fba09a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_ro3bool_qedqed
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]110.565900
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]110.747185
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]010.656515
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]110.563803
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]100.488854
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "18150516-a807-4f67-b4a8-24057fab0498", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the QED filter." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "c64b76c9-7c7d-41c1-9ecf-e2227498d280", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_qedrejected_qed
AP12011064137
FP1100759341
SE743550193
GA355234121
B1472522
B2593326
Total35052665840
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_qed rejected_qed\n", + "AP 1201 1064 137\n", + "FP 1100 759 341\n", + "SE 743 550 193\n", + "GA 355 234 121\n", + "B1 47 25 22\n", + "B2 59 33 26\n", + "Total 3505 2665 840" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_qed = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_qed\", \"qed\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_qed = pd.concat(\n", + " [num_fragments_qed,\n", + " num_fragments_qed.sum().rename(\"Total\").to_frame().T],\n", + " axis=0\n", + ")\n", + "num_fragments_qed\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "86821d5e-96d0-4bbb-8361-cb05185b3aed", + "metadata": { + "tags": [] + }, + "source": [ + "## 5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s)\n", + "\n", + " 5.2. Histogram of QED values" + ] + }, + { + "cell_type": "markdown", + "id": "caadc4fb-3824-4dcf-9d1a-c55af7b59905", + "metadata": {}, + "source": [ + "### 5.1. Count number of fragments that are accepted by the filter(s)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2ee5ec2d-4520-4b85-9ead-06ce2f2e95dc", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.analysis.number_of_accepted(\n", + " fragment_library, columns=[\"bool_ro3\", \"bool_qed\"], min_accepted=2\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "4346069b-b2bf-4d18-a0e9-53f53ca3b7ce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
drug likeness filters
 pre-filteredaccepted by 2accepted by 1accepted by 0
AP120154158872
FP110054650747
SE74343928519
GA35520613415
B14723231
B25929300
Total350517841567154
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.analysis.accepted_num_filters(\n", + " fragment_library,\n", + " [\"bool_qed\", \"bool_ro3\"],\n", + " filtername=\"drug likeness filters\",\n", + " max_num_accepted=2,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a9e42609-517a-4714-84ff-489f562a8e51", + "metadata": {}, + "source": [ + "### 5.2. Histogram of QED values\n", + "Create a histogram for each subpocket showing the QED values and the chosen threshold." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "ba548049-9271-4467-820e-c842b86eedcc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAVjCAYAAABKZ0mAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5hVdb0/8PfmNlwE5KIzzBGFFC+Jt6RU9BeQCOEttaKTHVMzs1QUwSwyFTsFQaUmmh2LxEtmnbyU9fOC5uWYmoJxvGSWBqYGhzAahEGu+/eHh/1jBJTZzswG5/V6nv08s9f67rU/GzvPvM+891qrUCwWiwEAAAAAAKBR2lR6AAAAAAAAgK2RkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAaHGPPvpoPv7xj6dPnz7p0KFD+vTpk9GjR+fxxx9vsG7GjBkpFAqbfNx///2ltf369Sttb9OmTbp375499tgjn/70p3P33Xe38CcEAABag3aVHgAAAGhdpk2blrFjx+YDH/hApk6dmp122il//etfc+WVV+bAAw/MVVddlc997nMNXnPNNddk99133+BY733vexs8P/jgg/Ptb387SbJ06dI899xzuemmmzJy5Mh89KMfzU9+8pO0b9+++T4cAADQqhSKxWKx0kMAAACtw29/+9t88IMfzOGHH55bb7017dr9/+99rV69Oscee2zuuOOOPPLII3n/+9+fGTNm5OSTT87jjz+eQYMGveWx+/Xrl4EDB+ZXv/rVBvsmTpyYiy++OOedd16mTJnS5J8LAABonVwuDAAAaDGTJ09OoVDIVVdd1aBgSZJ27drle9/7XmldU5o4cWL23HPPXHHFFXn99deb9NgAAEDrpWQBAABaxJo1a3Lfffdl0KBB2WGHHTa6pm/fvtl///1zzz33ZO3atQ1eu3r16gaPNWvWNOr9jzrqqNTX12fWrFnv6HMAAACso2QBAABaxKJFi1JfX5/+/fu/5br+/fvntddeyz/+8Y/StgMPPDDt27dv8KiqqmrU+++0005Jkr/97W+NHx4AAGAj3PgeAADYoqy7bWShUChtu+6667LHHns0WLf+/sYcFwAAoKkoWQAAgBbRu3fvdO7cOXPnzn3LdfPmzUunTp3Sq1ev0rY99tjjbW98/3ZefPHFJEltbe07Og4AAMA6LhcGAAC0iLZt2+ZDH/pQZs2alZdffnmja15++eXMnj07H/rQh5r0vYvFYm6//fZ06dLlHZc1AAAA6yhZAACAFvPlL385xWIxp59++gY3rl+zZk2+8IUvZM2aNTn77LOb9H0vvvji/OEPf8jZZ5+djh07NumxAQCA1svlwgAAgBZz8MEH57LLLsvZZ5+dQw45JGeeeWZ23HHH/PWvf82VV16ZRx55JBMnTsxhhx3W4HVPP/10Vq9evcHxdt5552y33Xal5//85z/z6KOPJkmWLVuW5557LjfddFP+67/+K6NHj87FF1/cvB8QAABoVQpFd38EAABa2COPPJLvfOc7eeihh/L3v/89a9euTceOHXPzzTfn8MMPL62bMWNGTj755E0e5wc/+EE++9nPJkn69etXuu9KoVBIly5d8i//8i/5wAc+kH/7t3/LiBEjmvdDAQAArY6SBQAAqLjrrrsuJ554Ys4777xMmTKl0uMAAABsFpcLAwAAKu7Tn/505s+fny9/+cvp0qVLLrzwwkqPBAAA8LacyQIAAAAAAFCGNpUeAAAAAAAAYGukZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBKuLyyy9PoVDIwIEDN7q/UCg0eHTv3j1Dhw7Nr3/96xaeFAB4t5kxY8YGWWPd49xzz02S9OvXr8H2bbbZJgcccECuu+66Ck8PAGztfve73+XYY4/NjjvumKqqqlRXV+eggw7K+PHjS2uGDh26ybzSr1+/yg0PbKBdpQcAWqcf/ehHSZJnnnkmv/vd73LAAQdssOZjH/tYxo8fn7Vr1+Yvf/lLvv71r+eoo47K7bffniOOOKKlRwYA3mWuueaa7L777g221dbWln4++OCD8+1vfztJ8vLLL+fb3/52TjzxxCxbtixf+MIXWnRWAODd4de//nWOPvroDB06NFOnTk2fPn0yf/78zJo1KzfddFO+853vlNa+5z3vyY9//OMNjlFVVdWSIwNvo1AsFouVHgJoXWbNmpX3v//9OeKII/LrX/86p556aq6++uoGawqFQs4444xcccUVpW0vvPBCdtlllwwfPjwzZ85s6bEBgHeJGTNm5OSTT87jjz+eQYMGbXRNv379MnDgwPzqV78qbfvnP/+ZnXbaKdtvv33+/Oc/t9S4AMC7yJAhQ/LKK6/kj3/8Y9q1a/j997Vr16ZNmzcuPDR06NAsWrQoTz/9dCXGBBrB5cKAFjd9+vQkyTe/+c0MHjw4N910U+rr69/2dTvvvHO22267vPjii809IgDABrbddtvstttusggAULZXX301vXv33qBgSVIqWICti//LBVrU8uXL85Of/CTvf//7M3DgwHzmM5/Ja6+9lv/8z/9829cuXrw4r776arbbbrsWmBQAeLdbs2ZNVq9e3eDxVlatWpUXX3xRFgEAynbQQQfld7/7Xc4666z87ne/y6pVq95y/ZuzyurVq7N27doWmhbYHEoWoEX9/Oc/T11dXU455ZQkySc+8Ylss802pbNb1lcsFrN69eqsWrUqf/zjH/OpT30qa9euzac+9amWHhsAeBc68MAD0759+waP9YuWdVlk9erVmTdvXk499dQsXLhQFgEAyvbNb34zhxxySKZNm5YDDzwwXbp0ycEHH5xvfvObWbp0aYO1zzzzzAZZpX379vnc5z5XoemBjXFPFqBFDR06NI899ljmz5+f7t27J0k+85nP5Jprrsmf/vSnDBgwIMkb92R5s+7du2f8+PG54IILWnRmAODdZd09Wa677rrsscceDfatu0dLv379NrgsWKdOnfLZz3423/72t9OhQ4cWmxcAePeZNWtW7r333syaNSv3339/Fi1alH79+uXxxx9P7969M3To0Lz88su56aabNnjtdtttl5122qkCUwMbs+HF/wCayfPPP58HH3wwH/3oR1MsFvPPf/4zSfKxj30s11xzTX70ox9l8uTJpfWjR4/OF7/4xRQKhXTt2jU777xz2rZtW6HpAYB3mz322GOTN75PkkMOOSSXXnppCoVCOnfunJ133lm5AgA0iUGDBpVyyKpVq/KlL30pl156aaZOnZqpU6cmSTp27PiWWQXYMrhcGNBifvSjH6VYLObnP/95evToUXocccQRSZJrr702a9asKa3fbrvtMmjQoOy///7ZddddFSwAQIvq3r17KYvsscceChYAoFm0b98+F110UZLk6aefrvA0QGM5kwVoEWvWrMm1116bnXfeOT/84Q832P+rX/0q3/nOd3LHHXfkyCOPrMCEAAAAAM1r/vz56dOnzwbbn3322SRJbW1tS48EvENKFqBF3HHHHfnb3/6WKVOmZOjQoRvsHzhwYK644opMnz5dyQIAAAC8K40cOTI77LBDjjrqqOy+++5Zu3Zt5syZk+985zvZZpttcvbZZ5fWLl++PI8++uhGj3PggQe21MjA21CyAC1i+vTp6dChQ04++eSN7u/du3eOPfbY/PznP8///M//tPB0AAAAAM3vq1/9an7xi1/k0ksvzfz587NixYr06dMnw4cPz4QJE7LHHnuU1v7lL3/JQQcdtNHjrFq1Ku3a+dMubAkKxWKxWOkhAAAAAAAAtjZufA8AAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGdpVeoAtwdq1a/O3v/0tXbt2TaFQqPQ4ALBFKBaLee2111JbW5s2bXwvoznJIgCwIVmk5cgiALChzc0iSpYkf/vb39K3b99KjwEAW6SXXnopO+ywQ6XHeFeTRQBg02SR5ieLAMCmvV0WUbIk6dq1a5I3/rG6detW4Wko27JlSW3tGz//7W9Jly6VnQdgK7dkyZL07du39HuS5iOL0OLkJmArIIu0HFmEFiF/AFuZzc0iSpakdCpst27dhImtWdu2///nbt38sgZoIi4Z0fxkEVqc3ARsRWSR5ieL0CLkD2Ar9XZZxEVNAQAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAzuyQLQyhWLxaxevTpr1qyp9Ci0sLZt26Zdu3aucw5Axa1ZsyarVq2q9Bi0MFkEgC2FLNI6NVUWUbIAtGIrV67M/PnzU19fX+lRqJDOnTunT58+6dChQ6VHAaCVWrp0aV5++eUUi8VKj0IFyCIAVJos0ro1RRZRsgC0UmvXrs3cuXPTtm3b1NbWpkOHDr5F2IoUi8WsXLkyf//73zN37twMGDAgbdq4iigALWvNmjV5+eWX07lz52y33XaySCsiiwCwJZBFWq+mzCJKFoBWauXKlVm7dm369u2bzp07V3ocKqBTp05p3759XnzxxaxcuTIdO3as9EgAtDKrVq1KsVjMdtttl06dOlV6HFqYLAJApckirVtTZRFfEwFo5XxjsHXz3x+ALYFvjbZesggAWwJZpPVqiiwizQAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAUAFPPfVUhgwZkk6dOuVf/uVf8rWvfS3FYvFtX/frX/86BxxwQDp16pTevXvnuOOOa7D/7LPPzv7775+qqqrsu+++zTQ9ALC1KyeL9OvXL4VCocHjy1/+coM1jz/+eA499NBsu+226dGjR0aMGJE5c+Y04ycBALZGzZVF7r333gwePDhdu3ZNnz598qUvfSmrV69uzo+Sds16dABgA0uWLMlhhx2WYcOG5fHHH8+f/vSnnHTSSenSpUvGjx+/ydfdfPPNOfXUUzNp0qR86EMfSrFYzFNPPdVgTbFYzGc+85n87ne/y5NPPtncHwUA2AqVm0WS5Gtf+1pOPfXU0vNtttmm9PNrr72WkSNH5iMf+Ui+973vZfXq1bnooosycuTIvPzyy2nfvn2zfSYAYOvRXFnkySefzOGHH57zzz8/1113XV555ZV8/vOfz5o1a/Ltb3+72T6PM1kA2OoMHTo0Y8aMydixY9OjR49UV1fn6quvzrJly3LyySena9eu2XnnnXPHHXc0eN0f/vCHHH744dlmm21SXV2dE044IYsWLSrtv/POO3PIIYdk2223Ta9evXLkkUfmhRdeKO2fN29eCoVCbrnllgwbNiydO3fOPvvsk0ceeaRR8//4xz/O66+/nhkzZmTgwIE57rjj8pWvfCWXXHLJJr+1sXr16px99tn51re+lc9//vPZdddds9tuu+VjH/tYg3WXX355zjjjjLznPe9p1EwAwOZrjVlkna5du6ampqb0WP8PG88991wWL16cr33ta9ltt92y55575qKLLsrChQvz17/+tVEzAgCbJotsPIvcdNNN2XvvvXPhhRdml112yZAhQzJ58uRceeWVee211xo1Y2MoWQDYKl177bXp3bt3HnvssYwZMyZf+MIX8vGPfzyDBw/OE088kZEjR+aEE05IfX19kmT+/PkZMmRI9t1338yaNSt33nln/ud//iejR48uHXPZsmUZN25cHn/88dx7771p06ZNjj322Kxdu7bBe59//vk599xzM2fOnOy666755Cc/2eDU00KhkBkzZmxy9kceeSRDhgxJVVVVadvIkSPzt7/9LfPmzdvoa5544om88soradOmTfbbb7/06dMno0aNyjPPPFPGvx4A8E61tiyyzpQpU9KrV6/su++++cY3vpGVK1eW9u22227p3bt3pk+fnpUrV2b58uWZPn169txzz+y0006b888KAGwmWWTDLLJixYp07NixwfpOnTrl9ddfz+zZs9/yuO9IkWJdXV0xSbGurq7So/BOLF1aLCZvPJYurfQ0sMVbvnx58Q9/+ENx+fLllR6l0YYMGVI85JBDSs9Xr15d7NKlS/GEE04obZs/f34xSfGRRx4pFovF4gUXXFAcMWJEg+O89NJLxSTF5557bqPvs3DhwmKS4lNPPVUsFovFuXPnFpMUf/jDH5bWPPPMM8UkxWeffba0bbfddivecsstm5z/sMMOK5566qkNtr3yyivFJMWHH354o6/5yU9+UkxS3HHHHYs///nPi7NmzSp+8pOfLPbq1av46quvbrD+oosuKu6zzz6bnGGdt/rfgd+PLce/NS1ObmILsbXmkdaYRYrFYvGSSy4p3n///cX//u//Lv7gBz8o9u7du3jKKac0WPP0008Xd95552KbNm2Kbdq0Ke6+++7FF198cZPHlEW2DP6taRHyB1sgWeTdlUXuuuuuYps2bYo33nhjcfXq1cWXX365eMghhxSTFG+88caNHrMpsogzWQDYKu29996ln9u2bZtevXplr732Km2rrq5OkixcuDBJMnv27Nx3333ZZpttSo/dd989SUqnvr7wwgs5/vjj8573vCfdunVL//79k2SDy1us/959+vRp8D5J8sc//jHHHnvsW85fKBQaPC/+7+mwb96+zrpvjZx//vn56Ec/mv333z/XXHNNCoVC/vM///Mt3wsAaHqtLYskyTnnnJMhQ4Zk7733zmc/+9l8//vfz/Tp0/Pqq68mSZYvX57PfOYzOfjgg/Poo4/mt7/9bfbcc88cfvjhWb58+VvOAwA0jiyyYRYZMWJE6TLrVVVV2XXXXXPEEUeU/o2aixvfA7BVevONUwuFQoNt634prysn1q5dm6OOOipTpkzZ4FjrAsFRRx2Vvn375gc/+EFqa2uzdu3aDBw4sMGpp29+7ze/z+aoqanJggULGmxbF0bWhaBNzfje9763tK2qqirvec97XOMcACqgtWWRjTnwwAOTJM8//3x69eqVG2+8MfPmzcsjjzySNm3e+E7njTfemB49euQXv/hF/vVf/3Wzjw0AvDVZZMMskiTjxo3LOeeck/nz56dHjx6ZN29eJkyYUCqMmoOSBYBW4X3ve19uvvnm9OvXL+3abfjr79VXX82zzz6b//iP/8j/+T//J0ny0EMPNcssBx10UL7yla9k5cqV6dChQ5Lk7rvvTm1tbfr167fR1+y///6pqqrKc889l0MOOSRJsmrVqsybN881zgFgK7C1Z5GN+f3vf5/k//9hpr6+Pm3atGnwDdR1zxvzhxcAoOm1hiyyTqFQSG1tbZLkJz/5Sfr27Zv3ve99TTP8RihZgC1OXV1d6aZcW6rOnTune/fulR6DRjjjjDPygx/8IJ/85CfzxS9+Mb17987zzz+fm266KT/4wQ/So0eP9OrVK1dffXX69OmTv/71r/nyl79c1nvtvvvumTx58iZPjT3++ONz8cUX56STTspXvvKV/PnPf86kSZNy4YUXlv4o8dhjj+XTn/507r333vzLv/xLunXrls9//vO56KKL0rdv3+y000751re+lST5+Mc/Xjr2888/n6VLl2bBggVZvnx55syZk+SNM2DWBReAStkafscnfs/TPLb2LPLII4/k0UcfzbBhw9K9e/c8/vjjOeecc3L00Udnxx13TJIcdthh+eIXv5gzzjgjY8aMydq1a/PNb34z7dq1y7Bhw8r7hwNoYltDHlm9evVG/wi+JZGXtj6tIYskybe+9a18+MMfTps2bXLLLbfkm9/8Zn72s5+5XBjQetTV1eXyK6/I2lWrKz3KW2rTvl3OOuNMgWIrUltbm9/+9rf50pe+lJEjR2bFihXZaaedSr94C4VCbrrpppx11lkZOHBgdtttt1x++eUZOnRoo9/rueeeS11d3Sb3d+/ePTNnzswZZ5yRQYMGpUePHhk3blzGjRtXWlNfX5/nnnsuq1atKm371re+lXbt2uWEE07I8uXLc8ABB+Q3v/lNevToUVrz2c9+Ng888EDp+X777ZckmTt3bqO+DQLQ1LaW3/GJ3/M0j609i1RVVeWnP/1pLr744tLsp556as4777zSa3bffffcfvvtufjii3PQQQelTZs22W+//XLnnXdu8A1TgErYWvLI2kLSpljpKd6avLT1aQ1ZJEnuuOOOfOMb38iKFSuyzz775Be/+EVGjRrV6M/QGIXiujvKtGJLlixJ9+7dU1dXl27dulV6HMq1bFmyzTZv/Lx0adKlS2XnoSzz58/P1VdfndsO7JdF3TpWepyN6r3k9Rzz6Lx87nOf26r/n8XXX389c+fOTf/+/dOx45b5b03ze6v/Hfj92HL8W9PiKpCbtobf8cm75/f81kIeQRbZMvi3pkVsAX+32RryyM7z6zLsqflb9Izvprwki9AUWcSZLMAWaVG3jlnQs3OlxwAAmpjf8QBApW3JeaTXkteTbNkzAg21qfQAAAAAAK3Rgw8+mKOOOiq1tbUpFAq57bbbNrn2tNNOS6FQyGWXXdZg+4oVKzJmzJj07t07Xbp0ydFHH52XX365eQcHAEqULAAAAAAVsGzZsuyzzz654oor3nLdbbfdlt/97nepra3dYN/YsWNz66235qabbspDDz2UpUuX5sgjj8yaNWuaa2wAYD0uFwYAAABQAaNGjXrbm/G+8sorOfPMM3PXXXfliCOOaLCvrq4u06dPz/XXX5/hw4cnSW644Yb07ds399xzT0aOHNlsswMAb6jomSxXXXVV9t5773Tr1i3dunXLQQcdlDvuuKO0v1gsZuLEiamtrU2nTp0ydOjQPPPMMw2O4bRYAAAA4N1o7dq1OeGEE/LFL34xe+655wb7Z8+enVWrVmXEiBGlbbW1tRk4cGAefvjhTR53xYoVWbJkSYMHAFCeipYsO+ywQ775zW9m1qxZmTVrVj70oQ/lIx/5SKlImTp1ai655JJcccUVefzxx1NTU5PDDjssr732WukYTosFAAAA3o2mTJmSdu3a5ayzztro/gULFqRDhw7p0aNHg+3V1dVZsGDBJo87efLkdO/evfTo27dvk84NAK1JRUuWo446Kocffnh23XXX7LrrrvnGN76RbbbZJo8++miKxWIuu+yynH/++TnuuOMycODAXHvttamvr8+NN96Y5P+fFvud73wnw4cPz3777ZcbbrghTz31VO65555KfjQAAACAss2ePTvf/e53M2PGjBQKhUa9tlgsvuVrJkyYkLq6utLjpZdeeqfjAkCrtcXck2XNmjX5z//8zyxbtiwHHXRQ5s6dmwULFjQ45bWqqipDhgzJww8/nNNOO+1tT4vd1LVHV6xYkRUrVpSeOy2W1qKuri719fWVHuMtLVq0qNIjAAAAVNx//dd/ZeHChdlxxx1L29asWZPx48fnsssuy7x581JTU5OVK1dm8eLFDc5mWbhwYQYPHrzJY1dVVaWqqqpZ5weA1qLiJctTTz2Vgw46KK+//nq22Wab3HrrrXnve99bunZodXV1g/XV1dV58cUXk7yz02IvvvjiJv4ksGWrq6vL5VdekbWrVld6FKiI+++/P8OGDcvixYuz7bbbVnocAKCVkUVorBNOOKF0M/t1Ro4cmRNOOCEnn3xykmT//fdP+/btM3PmzIwePTpJMn/+/Dz99NOZOnVqi88MwJZLFmk+FS9Zdtttt8yZMyf//Oc/c/PNN+fEE0/MAw88UNr/5tNb3+6U181ZM2HChIwbN670fMmSJa4/yrtefX191q5andsO7JdF3TpWepxN2nl+XYY9Nb/SY/AuNHjw4MyfPz/du3dv8mPffPPNueCCC/LCCy9k5513zje+8Y0ce+yxTf4+AMDWSxZhY5YuXZrnn3++9Hzu3LmZM2dOevbsmR133DG9evVqsL59+/apqanJbrvtliTp3r17TjnllIwfPz69evVKz549c+6552avvfbaoKABoHWTRZpPxUuWDh06ZJdddkmSDBo0KI8//ni++93v5ktf+lKSN85W6dOnT2n9woULS2e3OC0WGm9Rt45Z0LNzpcfYpF5LXq/0CLxLdejQITU1NU1+3EceeSSf+MQn8u///u859thjc+utt2b06NF56KGHcsABBzT5+wEAWydZhI2ZNWtWhg0bVnq+7guhJ554YmbMmLFZx7j00kvTrl27jB49OsuXL8+hhx6aGTNmpG3bts0xMgBbKVmk+VT0xvcbUywWs2LFivTv3z81NTWZOXNmad/KlSvzwAMPlAqU9U+LXWfdabFvVbIAsHUbOnRoxowZk7Fjx6ZHjx6prq7O1VdfnWXLluXkk09O165ds/POO+eOO+4oveb+++9PoVDIP//5zyTJjBkzsu222+auu+7KHnvskW222SYf/vCHM39+486kuuyyy3LYYYdlwoQJ2X333TNhwoQceuihueyyy5rwEwMAWxJZhKYydOjQFIvFDR6bKljmzZuXsWPHNtjWsWPHTJs2La+++mrq6+tz++23u1oHwLucLLJlqWjJ8pWvfCX/9V//lXnz5uWpp57K+eefn/vvvz+f+tSnUigUMnbs2EyaNCm33nprnn766Zx00knp3Llzjj/++CQNT4u999578/vf/z7/9m//5rRYgFbg2muvTe/evfPYY49lzJgx+cIXvpCPf/zjGTx4cJ544onS9arr6+s3eYz6+vp8+9vfzvXXX58HH3wwf/3rX3PuueeW9q8LIPPmzdvkMR555JGMGDGiwbaRI0eW7i0GALw7ySIAQCXJIluOipYs//M//5MTTjghu+22Ww499ND87ne/y5133pnDDjssSXLeeedl7NixOf300zNo0KC88sorufvuu9O1a9fSMS699NIcc8wxGT16dA4++OB07tw5t99+u9NiAd7l9tlnn3z1q1/NgAEDMmHChHTq1Cm9e/fOqaeemgEDBuTCCy/Mq6++mieffHKTx1i1alW+//3vZ9CgQXnf+96XM888M/fee29pf+fOnbPbbrulffv2mzzGggULSpexXKe6ujoLFix45x8SANhiySIAQCXJIluOit6TZfr06W+5v1AoZOLEiZk4ceIm16w7LXbatGlNPB0AW7K999679HPbtm3Tq1ev7LXXXqVt637BL1y4cJPH6Ny5c3beeefS8z59+jRY/4EPfCB//OMf33aWQqHQ4HmxWNxgGwDw7iKLAACVJItsOba4e7IAwOZ487coCoVCg23rfpmvXbu2UccoFouNmqOmpmaDb2csXLhwg29xAADvLrIIAFBJssiWQ8kCAO/AQQcdlJkzZzbYdvfdd2fw4MEVmggAaE1kEQCgkmQRJQsAbNJjjz2W3XffPa+88som15x99tm5++67M2XKlPzxj3/MlClTcs8992Ts2LEtNygA8K4kiwAAlSSLbB4lCwBsQn19fZ577rmsWrVqk2sGDx6cm266Kddcc0323nvvzJgxIz/96U9zwAEHtOCkAMC7kSwCAFSSLLJ5KnrjewAox/3337/Btnnz5m2wbf3riA4dOrTB85NOOiknnXRSg/XHHHPMW75mUz72sY/lYx/72NsPDgC8K8giAEAlySJbFmeyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZ2lV6AAAAAAAAti6LFi2q9Ahvq3PnzunevXulx+BdTskCAADwJlv6Hw38wQAAqJQuy1dlbZJbbrml0qO8rTbt2+WsM86Um2hWShYAAID/tbX80cAfDACASum4ak3aJLntwH5Z1K1jpcfZpN5LXs8xj85LfX29zESzUrIAQBN6/fXX8/nPfz6zZ8/Os88+myOPPDK33XZbpccCYDNtDX808AcD3oosAkBLWdStYxb07FzpMdjCtMYsomQBgCa0Zs2adOrUKWeddVZuvvnmSo8DQJn80YCtlSwCAFRSa8wibSo9AAA01tChQzNmzJiMHTs2PXr0SHV1da6++uosW7YsJ598crp27Zqdd945d9xxR+k1a9asySmnnJL+/funU6dO2W233fLd7363tP/111/Pnnvumc997nOlbXPnzk337t3zgx/8YLNn69KlS6666qqceuqpqampaZoPDABsUWQRAKCSZJEti5IFgK3Stddem969e+exxx7LmDFj8oUvfCEf//jHM3jw4DzxxBMZOXJkTjjhhNTX1ydJ1q5dmx122CE/+9nP8oc//CEXXnhhvvKVr+RnP/tZkqRjx4758Y9/nGuvvTa33XZb1qxZkxNOOCHDhg3LqaeeWnrfQqGQGTNmVOIjAwBbEFkEAKgkWWTLoWQBYKu0zz775Ktf/WoGDBiQCRMmpFOnTundu3dOPfXUDBgwIBdeeGFeffXVPPnkk0mS9u3b5+KLL8773//+9O/fP5/61Kdy0kknlcJEkuy77775+te/nlNPPTXnnHNOXnjhhfzwhz9s8L677bab698DALIIAFBRssiWwz1ZANgq7b333qWf27Ztm169emWvvfYqbauurk6SLFy4sLTt+9//fn74wx/mxRdfzPLly7Ny5crsu+++DY47fvz4/OIXv8i0adNyxx13pHfv3g32//GPf2yGTwMAbG1kEQCgkmSRLYczWQDYKrVv377B80Kh0GBboVBI8sbpsEnys5/9LOecc04+85nP5O67786cOXNy8sknZ+XKlQ2Os3Dhwjz33HNp27Zt/vznPzfzpwAAtlayCABQSbLIlsOZLAC0Cv/1X/+VwYMH5/TTTy9te+GFFzZY95nPfCYDBw7MqaeemlNOOSWHHnpo3vve97bkqADAu5AsAgBUkizSfJzJAkCrsMsuu2TWrFm566678qc//SkXXHBBHn/88QZrrrzyyjzyyCO57rrrcvzxx+djH/tYPvWpTzX4Vsfuu++eW2+99S3f6w9/+EPmzJmTf/zjH6mrq8ucOXMyZ86c5vhYAMBWQhYBACpJFmk+zmQBoFX4/Oc/nzlz5uQTn/hECoVCPvnJT+b000/PHXfckeSNa4p+8YtfzPTp09O3b98kb4SLffbZJxdccEGmTJmSJHnuuedSV1f3lu91+OGH58UXXyw932+//ZIkxWKxOT4aALAVkEUAgEqSRZqPkgWArc7999+/wbZ58+ZtsG39X95VVVW55pprcs011zRYM3ny5CRvfBOjvr6+wb5u3bpl7ty5mzzmpmxsFgDg3UMWAQAqSRbZsihZAAAAAIB3pK6uboM/0K6vUF+fmv/9ecGCBSl27twyg61n0aJFLf6ewLufkgUAAAAAKFtdXV0uv/KKrF21epNr2q9cma/8788/+tGPsqpDh5YZDqCZKVkAAAAAgLLV19dn7arVue3AflnUreNG13Ra/nq+MumNn2ccumuWd9r4uua08/y6DHtqfou/L/DupmQBAAAAAN6xRd06ZkHPjV8GrHN9m9LP/9Ojc+o7t3zJ0mvJ6y3+nsC7X5u3XwIAAAAAAMCbKVkAWrlisVjpEagg//0B2BL4fdR6+W8PwJbA76PWqyn+2ytZAFqp9u3bJ3nj2rm0Xuv++6/73wMAtKS2bdsmSVauXFnhSagUWQSASpJFaIos4p4sAK1U27Zts+2222bhwoVJks6dO6dQKFR4KlpKsVhMfX19Fi5cmG233bYULAGgJbVr1y6dO3fO3//+97Rv3z5t2vgeYGshiwCwJZBFWq+mzCJKFoBWrKamJklKRQutz7bbblv63wEAtLRCoZA+ffpk7ty5efHFFys9DhUgiwBQSbIITZFFlCwArdi6MLH99ttn1apVlR6HFta+fXvfGgWg4jp06JABAwa4TEcrJIsAsCWQRVqvpsoiShYA0rZtW/8PLgBQMW3atEnHjh0rPQYA0ErJIrwTLjIHAAAAAABQBmeyAADAu0BdXV3q6+s3a22hvj7rrjq8YMGCFDt3br7B/teiRYua/T0AAABampIFAAC2cnV1dbn8yiuydtXqzVrffuXKfOV/f/7Rj36UVR06NN9wAAAA72JKFgAA2MrV19dn7arVue3AflnU7e2vJd1p+ev5yqQ3fp5x6K5Z3qn5rz+98/y6DHtqfrO/DwAAQEtSsgAArdbkyZNzyy235I9//GM6deqUwYMHZ8qUKdltt91Ka4rFYi6++OJcffXVWbx4cQ444IBceeWV2XPPPUtrVqxYkXPPPTc/+clPsnz58hx66KH53ve+lx122KESH4tWbFG3jlnQ8+0v/dW5/v/fmvF/enROfefmL1l6LXm92d8DAACgpbnxPQDQaj3wwAM544wz8uijj2bmzJlZvXp1RowYkWXLlpXWTJ06NZdcckmuuOKKPP7446mpqclhhx2W1157rbRm7NixufXWW3PTTTfloYceytKlS3PkkUdmzZo1lfhYAAAAQAtxJgsA0GrdeeedDZ5fc8012X777TN79ux88IMfTLFYzGWXXZbzzz8/xx13XJLk2muvTXV1dW688cacdtppqaury/Tp03P99ddn+PDhSZIbbrghffv2zT333JORI0e2+OcCAAAAWoYzWQAA/lddXV2SpGfPnkmSuXPnZsGCBRkxYkRpTVVVVYYMGZKHH344STJ79uysWrWqwZra2toMHDiwtObNVqxYkSVLljR4AAAAAFsfJQsAQN6498q4ceNyyCGHZODAgUmSBQsWJEmqq6sbrK2uri7tW7BgQTp06JAePXpscs2bTZ48Od27dy89+vbt29QfBwAAAGgBShYAgCRnnnlmnnzyyfzkJz/ZYF+hUGjwvFgsbrDtzd5qzYQJE1JXV1d6vPTSS+UPDgAAAFSMkgUAaPXGjBmTX/7yl7nvvvuyww47lLbX1NQkyQZnpCxcuLB0dktNTU1WrlyZxYsXb3LNm1VVVaVbt24NHgAAAMDWR8kCALRaxWIxZ555Zm655Zb85je/Sf/+/Rvs79+/f2pqajJz5szStpUrV+aBBx7I4MGDkyT7779/2rdv32DN/Pnz8/TTT5fWAAAAAO9O7So9AABApZxxxhm58cYb84tf/CJdu3YtnbHSvXv3dOrUKYVCIWPHjs2kSZMyYMCADBgwIJMmTUrnzp1z/PHHl9aecsopGT9+fHr16pWePXvm3HPPzV577ZXhw4dX8uMBAAAAzUzJAgC0WldddVWSZOjQoQ22X3PNNTnppJOSJOedd16WL1+e008/PYsXL84BBxyQu+++O127di2tv/TSS9OuXbuMHj06y5cvz6GHHpoZM2akbdu2LfVRAAAAgApQsgAArVaxWHzbNYVCIRMnTszEiRM3uaZjx46ZNm1apk2b1oTTAQAAAFs692QBAAAAAAAog5IFAAAAoAIefPDBHHXUUamtrU2hUMhtt91W2rdq1ap86Utfyl577ZUuXbqktrY2n/70p/O3v/2twTFWrFiRMWPGpHfv3unSpUuOPvrovPzyyy38SQCg9VKyAAAAAFTAsmXLss8+++SKK67YYF99fX2eeOKJXHDBBXniiSdyyy235E9/+lOOPvroBuvGjh2bW2+9NTfddFMeeuihLF26NEceeWTWrFnTUh8DAFo192QBAAAAqIBRo0Zl1KhRG93XvXv3zJw5s8G2adOm5QMf+ED++te/Zscdd0xdXV2mT5+e66+/PsOHD0+S3HDDDenbt2/uueeejBw5stk/AwC0ds5kAQAAANgK1NXVpVAoZNttt02SzJ49O6tWrcqIESNKa2prazNw4MA8/PDDmzzOihUrsmTJkgYPAKA8ShYAAACALdzrr7+eL3/5yzn++OPTrVu3JMmCBQvSoUOH9OjRo8Ha6urqLFiwYJPHmjx5crp371569O3bt1lnB4B3MyULAAAAwBZs1apV+dd//desXbs23/ve9952fbFYTKFQ2OT+CRMmpK6urvR46aWXmnJcAGhVlCwAAAAAW6hVq1Zl9OjRmTt3bmbOnFk6iyVJampqsnLlyixevLjBaxYuXJjq6upNHrOqqirdunVr8AAAyqNkAQAAANgCrStY/vznP+eee+5Jr169Guzff//90759+8ycObO0bf78+Xn66aczePDglh4XAFqldpUeAAAAAKA1Wrp0aZ5//vnS87lz52bOnDnp2bNnamtr87GPfSxPPPFEfvWrX2XNmjWl+6z07NkzHTp0SPfu3XPKKadk/Pjx6dWrV3r27Jlzzz03e+21V4YPH16pjwUArYqSBQAAAKACZs2alWHDhpWejxs3Lkly4oknZuLEifnlL3+ZJNl3330bvO6+++7L0KFDkySXXnpp2rVrl9GjR2f58uU59NBDM2PGjLRt27ZFPgMAtHZKFgAAAIAKGDp0aIrF4ib3v9W+dTp27Jhp06Zl2rRpTTkaALCZ3JMFAAAAAACgDEoWAAAAAACAMlS0ZJk8eXLe//73p2vXrtl+++1zzDHH5Lnnnmuw5qSTTkqhUGjwOPDAAxusWbFiRcaMGZPevXunS5cuOfroo/Pyyy+35EcBAAAAAABamYqWLA888EDOOOOMPProo5k5c2ZWr16dESNGZNmyZQ3WffjDH878+fNLj//7f/9vg/1jx47NrbfemptuuikPPfRQli5dmiOPPDJr1qxpyY8DAAAAAAC0IhW98f2dd97Z4Pk111yT7bffPrNnz84HP/jB0vaqqqrU1NRs9Bh1dXWZPn16rr/++gwfPjxJcsMNN6Rv37655557MnLkyOb7AAAAAAAAQKu1Rd2Tpa6uLknSs2fPBtvvv//+bL/99tl1111z6qmnZuHChaV9s2fPzqpVqzJixIjSttra2gwcODAPP/zwRt9nxYoVWbJkSYMHAAAAAABAY2wxJUuxWMy4ceNyyCGHZODAgaXto0aNyo9//OP85je/yXe+8508/vjj+dCHPpQVK1YkSRYsWJAOHTqkR48eDY5XXV2dBQsWbPS9Jk+enO7du5ceffv2bb4PBgAAAAAAvCtV9HJh6zvzzDPz5JNP5qGHHmqw/ROf+ETp54EDB2bQoEHZaaed8utf/zrHHXfcJo9XLBZTKBQ2um/ChAkZN25c6fmSJUsULQAAAAAAQKNsEWeyjBkzJr/85S9z3333ZYcddnjLtX369MlOO+2UP//5z0mSmpqarFy5MosXL26wbuHChamurt7oMaqqqtKtW7cGDwAAAAAAgMaoaMlSLBZz5pln5pZbbslvfvOb9O/f/21f8+qrr+all15Knz59kiT7779/2rdvn5kzZ5bWzJ8/P08//XQGDx7cbLMDAAAAAACtW0UvF3bGGWfkxhtvzC9+8Yt07dq1dA+V7t27p1OnTlm6dGkmTpyYj370o+nTp0/mzZuXr3zlK+ndu3eOPfbY0tpTTjkl48ePT69evdKzZ8+ce+652WuvvTJ8+PBKfjwAAAAAAOBdrKIly1VXXZUkGTp0aIPt11xzTU466aS0bds2Tz31VK677rr885//TJ8+fTJs2LD89Kc/TdeuXUvrL7300rRr1y6jR4/O8uXLc+ihh2bGjBlp27ZtS34cAAAAAACgFaloyVIsFt9yf6dOnXLXXXe97XE6duyYadOmZdq0aU01GgAAAAAAwFvaIm58DwAAAAAAsLVRsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAQAU8+OCDOeqoo1JbW5tCoZDbbrutwf5isZiJEyemtrY2nTp1ytChQ/PMM880WLNixYqMGTMmvXv3TpcuXXL00Ufn5ZdfbsFPAQCtm5IFAAAAoAKWLVuWffbZJ1dcccVG90+dOjWXXHJJrrjiijz++OOpqanJYYcdltdee620ZuzYsbn11ltz00035aGHHsrSpUtz5JFHZs2aNS31MQCgVWtX6QEAAAAAWqNRo0Zl1KhRG91XLBZz2WWX5fzzz89xxx2XJLn22mtTXV2dG2+8Maeddlrq6uoyffr0XH/99Rk+fHiS5IYbbkjfvn1zzz33ZOTIkS32WQCgtXImCwAAAMAWZu7cuVmwYEFGjBhR2lZVVZUhQ4bk4YcfTpLMnj07q1atarCmtrY2AwcOLK3ZmBUrVmTJkiUNHgBAeZQsAAAAAFuYBQsWJEmqq6sbbK+uri7tW7BgQTp06JAePXpscs3GTJ48Od27dy89+vbt28TTA0DroWQBAAAA2EIVCoUGz4vF4gbb3uzt1kyYMCF1dXWlx0svvdQkswJAa+SeLAAAAABbmJqamiRvnK3Sp0+f0vaFCxeWzm6pqanJypUrs3jx4gZnsyxcuDCDBw/e5LGrqqpSVVXVTJMDbFkWLVpU6RHeUufOndO9e/dKj8E7oGQBAAAA2ML0798/NTU1mTlzZvbbb78kycqVK/PAAw9kypQpSZL9998/7du3z8yZMzN69Ogkyfz58/P0009n6tSpFZsdYEvQZfmqrE1yyy23VHqUt9SmfbucdcaZipatmJIFAAAAoAKWLl2a559/vvR87ty5mTNnTnr27Jkdd9wxY8eOzaRJkzJgwIAMGDAgkyZNSufOnXP88ccnSbp3755TTjkl48ePT69evdKzZ8+ce+652WuvvTJ8+PBKfSyALULHVWvSJsltB/bLom4dKz3ORvVe8nqOeXRe6uvrlSxbMSULAAAAQAXMmjUrw4YNKz0fN25ckuTEE0/MjBkzct5552X58uU5/fTTs3jx4hxwwAG5++6707Vr19JrLr300rRr1y6jR4/O8uXLc+ihh2bGjBlp27Zti38egC3Rom4ds6Bn50qPwbuYkgUAAACgAoYOHZpisbjJ/YVCIRMnTszEiRM3uaZjx46ZNm1apk2b1gwTAgBvp02lBwAAAAAAANgaKVkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMjS6ZLn22mvz61//uvT8vPPOy7bbbpvBgwfnxRdfbNLhAADeTBYBACpJFgEA1tfokmXSpEnp1KlTkuSRRx7JFVdckalTp6Z3794555xzmnxAAID1ySIAQCXJIgDA+to19gUvvfRSdtlllyTJbbfdlo997GP53Oc+l4MPPjhDhw5t6vkAABqQRQCASpJFAID1NfpMlm222SavvvpqkuTuu+/O8OHDkyQdO3bM8uXLm3Y6AIA3kUUAgEqSRQCA9TX6TJbDDjssn/3sZ7PffvvlT3/6U4444ogkyTPPPJN+/fo19XwAAA3IIgBAJckiAMD6Gn0my5VXXpmDDjoof//733PzzTenV69eSZLZs2fnk5/8ZJMPCACwPlkEAKgkWQQAWF+jz2RZsmRJLr/88rRp07CfmThxYl566aUmGwwAYGNkEQCgkmQRAGB9jT6TpX///lm0aNEG2//xj3+kf//+TTIUAMCmyCIAQCXJIgDA+hpdshSLxY1uX7p0aTp27NioY02ePDnvf//707Vr12y//fY55phj8txzz23wfhMnTkxtbW06deqUoUOH5plnnmmwZsWKFRkzZkx69+6dLl265Oijj87LL7/cuA8GAGwVmjKLPPjggznqqKNSW1ubQqGQ2267rcH+k046KYVCocHjwAMPbLBGDgGA1qUpswgAsPXb7MuFjRs3LklSKBRy4YUXpnPnzqV9a9asye9+97vsu+++jXrzBx54IGeccUbe//73Z/Xq1Tn//PMzYsSI/OEPf0iXLl2SJFOnTs0ll1ySGTNmZNddd83Xv/71HHbYYXnuuefStWvXJMnYsWNz++2356abbkqvXr0yfvz4HHnkkZk9e3batm3bqJkAgC1Tc2SRZcuWZZ999snJJ5+cj370oxtd8+EPfzjXXHNN6XmHDh0a7JdDAKB1aI4sAgBs/Ta7ZPn973+f5I1vbDz11FMN/sDQoUOH7LPPPjn33HMb9eZ33nlng+fXXHNNtt9++8yePTsf/OAHUywWc9lll+X888/PcccdlyS59tprU11dnRtvvDGnnXZa6urqMn369Fx//fUZPnx4kuSGG25I3759c88992TkyJGNmgkA2DI1RxYZNWpURo0a9ZZrqqqqUlNTs9F9cggAtB7NkUUAgK3fZpcs9913X5Lk5JNPzne/+91069atyYepq6tLkvTs2TNJMnfu3CxYsCAjRoworamqqsqQIUPy8MMP57TTTsvs2bOzatWqBmtqa2szcODAPPzwwxv948aKFSuyYsWK0vMlS5Y0+WcBAJpWS2SRjbn//vuz/fbbZ9ttt82QIUPyjW98I9tvv32SlJVDElkEaBobuyfElqZz587p3r17pceAJlGpLAIAbNk2u2RZZ/3LZTSlYrGYcePG5ZBDDsnAgQOTJAsWLEiSVFdXN1hbXV2dF198sbSmQ4cO6dGjxwZr1r3+zSZPnpyLL764qT8CANACmiuLbMyoUaPy8Y9/PDvttFPmzp2bCy64IB/60Icye/bsVFVVlZVDElkEeGe6LF+VtUluueWWSo/yttq0b5ezzjhT0cK7SktmEQBgy9fokmXZsmX55je/mXvvvTcLFy7M2rVrG+z/y1/+UtYgZ555Zp588sk89NBDG+wrFAoNnheLxQ22vdlbrZkwYULpWqrJG98e7du3bxlTAwAtrbmyyMZ84hOfKP08cODADBo0KDvttFN+/etfly5lujFvl1VkEeCd6LhqTdokue3AflnUbcu9yXbvJa/nmEfnpb6+XsnCu0pLZhEAYMvX6JLls5/9bB544IGccMIJ6dOnz9uWHZtjzJgx+eUvf5kHH3wwO+ywQ2n7uuufL1iwIH369CltX7hwYenslpqamqxcuTKLFy9u8C3ShQsXZvDgwRt9v6qqqlRVVb3juQGAltccWWRz9enTJzvttFP+/Oc/JykvhySyCNA0FnXrmAU9O7/9QqBJVTKLAABbnkaXLHfccUd+/etf5+CDD37Hb14sFjNmzJjceuutuf/++9O/f/8G+/v375+amprMnDkz++23X5Jk5cqVeeCBBzJlypQkyf7775/27dtn5syZGT16dJJk/vz5efrppzN16tR3PCMAsGVpyizSWK+++mpeeuml0pc/5BAAaH0qmUUAgC1Po0uWHj16lG5M/06dccYZufHGG/OLX/wiXbt2LV27vHv37unUqVMKhULGjh2bSZMmZcCAARkwYEAmTZqUzp075/jjjy+tPeWUUzJ+/Pj06tUrPXv2zLnnnpu99torw4cPb5I5AYAtR1NmkaVLl+b5558vPZ87d27mzJmTnj17pmfPnpk4cWI++tGPpk+fPpk3b16+8pWvpHfv3jn22GOTyCEA0Bo1ZRYBALZ+bRr7gn//93/PhRdemPr6+nf85ldddVXq6uoydOjQ9OnTp/T46U9/Wlpz3nnnZezYsTn99NMzaNCgvPLKK7n77rvTtWvX0ppLL700xxxzTEaPHp2DDz44nTt3zu233562bdu+4xkBgC1LU2aRWbNmZb/99iudMTtu3Ljst99+ufDCC9O2bds89dRT+chHPpJdd901J554Ynbdddc88sgjcggAtGJNmUUAgK1fo89k+c53vpMXXngh1dXV6devX9q3b99g/xNPPLHZxyoWi2+7plAoZOLEiZk4ceIm13Ts2DHTpk3LtGnTNvu9AYCtU1NmkaFDh75lHrnrrrve9hhyCAC0Lk2ZRQCArV+jS5ZjjjmmGcYAANg8sggAUEmyCACwvkaXLBdddFFzzAEAsFlkEQCgkmQRAGB9jb4nS5L885//zA9/+MNMmDAh//jHP5K8cTrsK6+80qTDAQBsjCwCAFSSLAIArNPoM1mefPLJDB8+PN27d8+8efNy6qmnpmfPnrn11lvz4osv5rrrrmuOOQEAksgiAEBlySIAwPoafSbLuHHjctJJJ+XPf/5zOnbsWNo+atSoPPjgg006HADAm8kiAEAlySIAwPoaXbI8/vjjOe200zbY/i//8i9ZsGBBkwwFALApsggAUEmyCACwvkaXLB07dsySJUs22P7cc89lu+22a5KhAAA2RRYBACpJFgEA1tfokuUjH/lIvva1r2XVqlVJkkKhkL/+9a/58pe/nI9+9KNNPiAAwPpkEQCgkmQRAGB9jS5Zvv3tb+fvf/97tt9++yxfvjxDhgzJLrvskq5du+Yb3/hGc8wIAFAiiwAAlSSLAADra9fYF3Tr1i0PPfRQfvOb3+SJJ57I2rVr8773vS/Dhw9vjvkAtliLFi2q9Ahvq3PnzunevXulx4AmJYsAAJUkiwAA62t0ybLOhz70oXzoQx9qylkAtgpdlq/K2iS33HJLpUd5W23at8tZZ5ypaOFdSRYBACpJFgEAkjJLlsceeyz3339/Fi5cmLVr1zbYd8kllzTJYABbqo6r1qRNktsO7JdF3TpWepxN6r3k9Rzz6LzU19crWXjXkUUAgEqSRQCAdRpdskyaNClf/epXs9tuu6W6ujqFQqG0b/2fAd7tFnXrmAU9O1d6DGh1ZBEAoJJkEQBgfY0uWb773e/mRz/6UU466aRmGAcA4K3JIgBAJckiAMD62jT6BW3a5OCDD26OWQAA3pYsAgBUkiwCAKyv0WeynHPOObnyyitz2WWXNcM4sPWqq6tLfX19pcfYpEWLFlV6BIAmIYsAAJUkiwAA62t0yXLuuefmiCOOyM4775z3vve9ad++fYP9t9xyS5MNB1uLurq6XH7lFVm7anWlRwF415NFAIBKkkUAgPU1umQZM2ZM7rvvvgwbNiy9evVyUzdIUl9fn7WrVue2A/tlUbeOlR5no3aeX5dhT82v9BgA75gsAgBUkiwCAKyv0SXLddddl5tvvjlHHHFEc8wDW7VF3TpmQc/OlR5jo3oteb3SIwA0CVkEAKgkWQQAWF+jb3zfs2fP7Lzzzs0xCwDA25JFAIBKkkUAgPU1umSZOHFiLrrooi36Bt8AwLuXLAIAVJIsAgCsr9GXC7v88svzwgsvpLq6Ov369dvgBm9PPPFEkw0HAPBmsggAUEmyCACwvkaXLMccc0wzjAEAsHlkEQCgkmQRAGB9jS5ZLrroouaYAwBgs8giAEAlySIAwPoafU8WAAAAAAAAyjiTpUePHikUChtsLxQK6dixY3bZZZecdNJJOfnkk5tkQACA9ckiAEAlySIAwPoaXbJceOGF+cY3vpFRo0blAx/4QIrFYh5//PHceeedOeOMMzJ37tx84QtfyOrVq3Pqqac2x8wAQCsmiwAAlSSLAADra3TJ8tBDD+XrX/96Pv/5zzfY/h//8R+5++67c/PNN2fvvffO5ZdfLkwAAE1OFgEAKkkWAQDW1+h7stx1110ZPnz4BtsPPfTQ3HXXXUmSww8/PH/5y1/e+XQAAG8iiwAAlSSLAADra3TJ0rNnz9x+++0bbL/99tvTs2fPJMmyZcvStWvXdz4dAMCbyCIAQCXJIgDA+hp9ubALLrggX/jCF3LfffflAx/4QAqFQh577LH83//7f/P9738/STJz5swMGTKkyYcFAJBFAIBKkkUAgPU1+kyWU089NQ888EC6dOmSW265JT//+c/TuXPnPPDAAznllFOSJOPHj89Pf/rTJh8WAEAWAQAqqaWzyOrVq/PVr341/fv3T6dOnfKe97wnX/va17J27drSmmKxmIkTJ6a2tjadOnXK0KFD88wzzzTJ+wMAb63RZ7IkycEHH5yDDz64qWcBANgssggAUEktmUWmTJmS73//+7n22muz5557ZtasWTn55JPTvXv3nH322UmSqVOn5pJLLsmMGTOy66675utf/3oOO+ywPPfccy5bBgDNrKySZZ3ly5dn1apVDbZ169btHQ0EALC5ZBEAoJJaIos88sgj+chHPpIjjjgiSdKvX7/85Cc/yaxZs5K8cRbLZZddlvPPPz/HHXdckuTaa69NdXV1brzxxpx22mlNOg8A0FCjLxdWX1+fM888M9tvv3222Wab9OjRo8EDAKA5ySIAQCW1dBY55JBDcu+99+ZPf/pTkuS///u/89BDD+Xwww9PksydOzcLFizIiBEjSq+pqqrKkCFD8vDDDzf5PABAQ40uWb74xS/mN7/5Tb73ve+lqqoqP/zhD3PxxRentrY21113XXPMCABQIosAAJXU0lnkS1/6Uj75yU9m9913T/v27bPffvtl7Nix+eQnP5kkWbBgQZKkurq6weuqq6tL+95sxYoVWbJkSYMHAFCeRl8u7Pbbb891112XoUOH5jOf+Uz+z//5P9lll12y00475cc//nE+9alPNcecAABJZBEAoLJaOov89Kc/zQ033JAbb7wxe+65Z+bMmZOxY8emtrY2J554YmldoVBo8LpisbjBtnUmT56ciy++uEnnBIDWqtFnsvzjH/9I//79k7xxndF//OMfSd44ffXBBx9s2ukAAN5EFgEAKqmls8gXv/jFfPnLX86//uu/Zq+99soJJ5yQc845J5MnT06S1NTUJMkGZ60sXLhwg7Nb1pkwYULq6upKj5deeqnJ5waA1qLRJct73vOezJs3L0ny3ve+Nz/72c+SvPFNjm233bYpZwMA2IAsAgBUUktnkfr6+rRp0/DPN23bts3atWuTJP37909NTU1mzpxZ2r9y5co88MADGTx48EaPWVVVlW7dujV4AADlafTlwk4++eT893//d4YMGZIJEybkiCOOyLRp07J69epccsklzTEjAECJLAIAVFJLZ5Gjjjoq3/jGN7Ljjjtmzz33zO9///tccskl+cxnPpPkjcuEjR07NpMmTcqAAQMyYMCATJo0KZ07d87xxx/f5PMAAA01umQ555xzSj8PGzYsf/zjHzNr1qzsvPPO2WeffZp0OACAN5NFAIBKauksMm3atFxwwQU5/fTTs3DhwtTW1ua0007LhRdeWFpz3nnnZfny5Tn99NOzePHiHHDAAbn77rvTtWvXJp8HAGioUSXLqlWrMmLEiPzHf/xHdt111yTJjjvumB133LFZhgMAWJ8sAgBUUiWySNeuXXPZZZflsssu2+SaQqGQiRMnZuLEic02BwCwcY26J0v79u3z9NNPp1AoNNc8AACbJIsAAJUkiwAAb9boG99/+tOfzvTp05tjFgCAtyWLAACVJIsAAOtr9D1ZVq5cmR/+8IeZOXNmBg0alC5dujTY74azAEBzkkUAgEqSRQCA9TW6ZHn66afzvve9L0nypz/9qcE+p8sCAM1NFgEAKkkWAQDWt1kly5NPPpmBAwemTZs2ue+++5p7JgCABmQRAKCSZBEAYFM2654s++23XxYtWpQkec973pNXX321WYcCAFifLAIAVJIsAgBsymaVLNtuu23mzp2bJJk3b17Wrl3brEMBAKxPFgEAKkkWAQA2ZbMuF/bRj340Q4YMSZ8+fVIoFDJo0KC0bdt2o2v/8pe/NOmAAACyCABQSbIIALApm1WyXH311TnuuOPy/PPP56yzzsqpp56arl27NvdsAABJZBGArdm6SyxtqTp37pzu3btXegy2cLIIALApm1WyJMmHP/zhJMns2bNz9tlnCxMAQIuSRQC2Ll2Wr8raJLfcckulR3lLbdq3y1lnnKlo4W3JIgDAxmx2ybLONddc0xxzAABsFlkEYOvQcdWatEly24H9sqhbx0qPs1G9l7yeYx6dl/r6eiULm00WAQDW1+iSBQAAADbXom4ds6Bn50qPAQAAzaJNpQcAAAAAAADYGilZAAAAAAAAyrBZJcv73ve+LF68OEnyta99LfX19c06FADA+mQRAKCSZBEAYFM2q2R59tlns2zZsiTJxRdfnKVLlzbrUAAA65NFAIBKkkUAgE3ZrBvf77vvvjn55JNzyCGHpFgs5tvf/na22Wabja698MILm3RAAABZBACoJFkEANiUzSpZZsyYkYsuuii/+tWvUigUcscdd6Rduw1fWigUhAkAoMnJIgBAJckiAMCmbFbJsttuu+Wmm25KkrRp0yb33ntvtt9++2YdDABgHVkEAKgkWQQA2JTNKlnWt3bt2uaYAwBgs8giAEAlySIAwPoaXbIkyQsvvJDLLrsszz77bAqFQvbYY4+cffbZ2XnnnZt6PgCADcgiAEAlySIAwDptGvuCu+66K+9973vz2GOPZe+9987AgQPzu9/9LnvuuWdmzpzZHDMCAJTIIgBAJckiAMD6Gn0my5e//OWcc845+eY3v7nB9i996Us57LDDmmw4AIA3k0UAgEqSRQCA9TX6TJZnn302p5xyygbbP/OZz+QPf/hDkwwFALApsggAUEmyCACwvkaXLNttt13mzJmzwfY5c+Zk++23b9SxHnzwwRx11FGpra1NoVDIbbfd1mD/SSedlEKh0OBx4IEHNlizYsWKjBkzJr17906XLl1y9NFH5+WXX27sxwIAthJNmUUAABpLFgEA1tfoy4Wdeuqp+dznPpe//OUvGTx4cAqFQh566KFMmTIl48ePb9Sxli1bln322Scnn3xyPvrRj250zYc//OFcc801pecdOnRosH/s2LG5/fbbc9NNN6VXr14ZP358jjzyyMyePTtt27Zt7McDALZwTZlFAAAaSxYBANbX6JLlggsuSNeuXfOd73wnEyZMSJLU1tZm4sSJOeussxp1rFGjRmXUqFFvuaaqqio1NTUb3VdXV5fp06fn+uuvz/Dhw5MkN9xwQ/r27Zt77rknI0eObNQ8AMCWrymzCABAY8kiAMD6Gl2yFAqFnHPOOTnnnHPy2muvJUm6du3a5IOtc//992f77bfPtttumyFDhuQb3/hG6fTb2bNnZ9WqVRkxYkRpfW1tbQYOHJiHH354kyXLihUrsmLFitLzJUuWNNv8AEDTauksAgCwPlkEAFhfo+/Jsr6uXbs2a5AYNWpUfvzjH+c3v/lNvvOd7+Txxx/Phz70oVJBsmDBgnTo0CE9evRo8Lrq6uosWLBgk8edPHlyunfvXnr07du32T4DANB8mjuLAAC8FVkEAGj0mSwt6ROf+ETp54EDB2bQoEHZaaed8utf/zrHHXfcJl9XLBZTKBQ2uX/ChAkZN25c6fmSJUsULQAAAAAAQKO8ozNZWlqfPn2y00475c9//nOSpKamJitXrszixYsbrFu4cGGqq6s3eZyqqqp069atwQMAAAAAAKAxtqqS5dVXX81LL72UPn36JEn233//tG/fPjNnziytmT9/fp5++ukMHjy4UmMCAAAAAACtQKNKllWrVmXYsGH505/+1CRvvnTp0syZMydz5sxJksydOzdz5szJX//61yxdujTnnntuHnnkkcybNy/3339/jjrqqPTu3TvHHntskqR79+455ZRTMn78+Nx77735/e9/n3/7t3/LXnvtleHDhzfJjADAlqOpswgAQGPIIgDAmzXqnizt27fP008//Zb3O2mMWbNmZdiwYaXn6+6TcuKJJ+aqq67KU089leuuuy7//Oc/06dPnwwbNiw//elPG9xU7tJLL027du0yevToLF++PIceemhmzJiRtm3bNsmMAMCWo6mzCABAY8giAMCbNfpyYZ/+9Kczffr0JnnzoUOHplgsbvCYMWNGOnXqlLvuuisLFy7MypUr8+KLL2bGjBkb3KC+Y8eOmTZtWl599dXU19fn9ttvdxN7AHgXa8osAgDQWLIIALC+Rp3JkiQrV67MD3/4w8ycOTODBg1Kly5dGuy/5JJLmmw4AIA3k0UAgEqSRQCA9TW6ZHn66afzvve9L0k2uAap02UBgOYmiwAAlSSLAADra3TJct999zXHHAAAm0UWAQAqSRYBANbX6HuyrPP888/nrrvuyvLly5MkxWKxyYYCAHg7sggAUEmyCACQlFGyvPrqqzn00EOz66675vDDD8/8+fOTJJ/97Gczfvz4Jh8QAGB9sggAUEmyCACwvkaXLOecc07at2+fv/71r+ncuXNp+yc+8YnceeedTTocAMCbySIAQCXJIgDA+hp9T5a77747d911V3bYYYcG2wcMGJAXX3yxyQYDANgYWQQAqCRZBABYX6PPZFm2bFmDb2qss2jRolRVVTXJUAAAmyKLAACVJIsAAOtrdMnywQ9+MNddd13peaFQyNq1a/Otb30rw4YNa9LhAADeTBYBACpJFgEA1tfoy4V961vfytChQzNr1qysXLky5513Xp555pn84x//yG9/+9vmmBEAoEQWAQAqSRYBANbX6DNZ3vve9+bJJ5/MBz7wgRx22GFZtmxZjjvuuPz+97/Pzjvv3BwzAgCUyCIAQCXJIgDA+hp9JkuS1NTU5OKLL27qWQAANossAgBUkiwCAKxTVsmyePHiTJ8+Pc8++2wKhUL22GOPnHzyyenZs2dTzwcAsAFZBACoJFkEAFin0ZcLe+CBB9K/f/9cfvnlWbx4cf7xj3/k8ssvT//+/fPAAw80x4wAACWyCABQSbIIALC+Rp/JcsYZZ2T06NG56qqr0rZt2yTJmjVrcvrpp+eMM87I008/3eRDAgCsI4sAAJUkiwAA62v0mSwvvPBCxo8fXwoSSdK2bduMGzcuL7zwQpMOBwDwZk2ZRR588MEcddRRqa2tTaFQyG233dZgf7FYzMSJE1NbW5tOnTpl6NCheeaZZxqsWbFiRcaMGZPevXunS5cuOfroo/Pyyy+X/fkAgC2bv4sAAOtrdMnyvve9L88+++wG25999tnsu+++TTETAMAmNWUWWbZsWfbZZ59cccUVG90/derUXHLJJbniiivy+OOPp6amJocddlhee+210pqxY8fm1ltvzU033ZSHHnooS5cuzZFHHpk1a9Y0ahYAYOvg7yIAwPo263JhTz75ZOnns846K2effXaef/75HHjggUmSRx99NFdeeWW++c1vNs+UAECr1lxZZNSoURk1atRG9xWLxVx22WU5//zzc9xxxyVJrr322lRXV+fGG2/Maaedlrq6ukyfPj3XX399hg8fniS54YYb0rdv39xzzz0ZOXJkOR8XANjC+LsIALApm1Wy7LvvvikUCikWi6Vt55133gbrjj/++HziE59ouukAAFKZLDJ37twsWLAgI0aMKG2rqqrKkCFD8vDDD+e0007L7Nmzs2rVqgZramtrM3DgwDz88MNKFgB4l/B3EQBgUzarZJk7d25zzwEAsEmVyCILFixIklRXVzfYXl1dnRdffLG0pkOHDunRo8cGa9a9fmNWrFiRFStWlJ4vWbKkqcYGAJqBv4sAAJuyWSXLTjvt1NxzAABsUiWzSKFQaPC8WCxusO3N3m7N5MmTc/HFFzfJfABA8/N3EQBgUzarZHmzV155Jb/97W+zcOHCrF27tsG+s846q0kGAwDYlJbIIjU1NUneOFulT58+pe0LFy4snd1SU1OTlStXZvHixQ3OZlm4cGEGDx68yWNPmDAh48aNKz1fsmRJ+vbt2yRzAwDNr6X/LvLKK6/kS1/6Uu64444sX748u+66a6ZPn579998/yRtf8Lj44otz9dVXZ/HixTnggANy5ZVXZs8992zyWQCAhhpdslxzzTX5/Oc/nw4dOqRXr14NvqVZKBSULABAs2qpLNK/f//U1NRk5syZ2W+//ZIkK1euzAMPPJApU6YkSfbff/+0b98+M2fOzOjRo5Mk8+fPz9NPP52pU6du8thVVVWpqqpqkjkBgJbV0n8XWbx4cQ4++OAMGzYsd9xxR7bffvu88MIL2XbbbUtrpk6dmksuuSQzZszIrrvumq9//es57LDD8txzz6Vr165NOg8A0FCjS5YLL7wwF154YSZMmJA2bdo0x0wAAJvUlFlk6dKlef7550vP586dmzlz5qRnz57ZcccdM3bs2EyaNCkDBgzIgAEDMmnSpHTu3DnHH398kqR79+455ZRTMn78+PTq1Ss9e/bMueeem7322ivDhw9/R7MBAFumlv67yJQpU9K3b99cc801pW39+vUr/VwsFnPZZZfl/PPPz3HHHZckufbaa1NdXZ0bb7wxp512WrPPCACtWaPTQH19ff71X/9VwQIAVERTZpFZs2Zlv/32K52pMm7cuOy333658MILkyTnnXdexo4dm9NPPz2DBg3KK6+8krvvvrvBN0IvvfTSHHPMMRk9enQOPvjgdO7cObfffnvatm37jucDALY8Lf13kV/+8pcZNGhQPv7xj2f77bfPfvvtlx/84Ael/XPnzs2CBQsyYsSI0raqqqoMGTIkDz/88EaPuWLFiixZsqTBAwAoT6MTwSmnnJL//M//bI5ZAADeVlNmkaFDh6ZYLG7wmDFjRpI3LvkxceLEzJ8/P6+//noeeOCBDBw4sMExOnbsmGnTpuXVV19NfX19br/9dvdXAYB3sZb+u8hf/vKXXHXVVRkwYEDuuuuufP7zn89ZZ52V6667Lskb949LUrpn3DrV1dWlfW82efLkdO/evfSQXQCgfI2+XNjkyZNz5JFH5s4778xee+2V9u3bN9h/ySWXNNlwAABvJosAAJXU0llk7dq1GTRoUCZNmpQk2W+//fLMM8/kqquuyqc//enSuvXvDZO8cRmxN29bZ8KECRk3blzp+ZIlSxQtAFCmRpcskyZNyl133ZXddtstSTa4wRsAQHOSRQCASmrpLNKnT5+8973vbbBtjz32yM0335wkqampSfLGGS19+vQprVm4cOEGZ7esU1VVlaqqqiafFQBao0aXLJdcckl+9KMf5aSTTmqGcQAA3posAgBUUktnkYMPPjjPPfdcg21/+tOfstNOOyVJ+vfvn5qamsycObN0n7mVK1fmgQceyJQpU1pkRgBozRpdslRVVeXggw9ujlkAAN6WLAIAVFJLZ5FzzjkngwcPzqRJkzJ69Og89thjufrqq3P11VcneePsmbFjx2bSpEkZMGBABgwYkEmTJqVz5845/vjjW2xOAGitGn3j+7PPPjvTpk1rjlkAAN6WLAIAVFJLZ5H3v//9ufXWW/OTn/wkAwcOzL//+7/nsssuy6c+9anSmvPOOy9jx47N6aefnkGDBuWVV17J3Xffna5du7bYnADQWjX6TJbHHnssv/nNb/KrX/0qe+655wY3eLvllluabDgAgDeTRQCASqpEFjnyyCNz5JFHbnJ/oVDIxIkTM3HixCZ/bwDgrTW6ZNl2221z3HHHNccsAABvSxYBACpJFgEA1tfokuWaa65pjjkAADaLLAIAVJIsAgCsr9H3ZAEAAAAAAKCMM1n69++fQqGwyf1/+ctf3tFAAABvRRYBACpJFgEA1tfokmXs2LENnq9atSq///3vc+edd+aLX/xiU80FALBRsggAUEmyCACwvkaXLGefffZGt1955ZWZNWvWOx4IAOCtyCIAQCXJIgDA+prsniyjRo3KzTff3FSHAwBoFFkEAKgkWQQAWqcmK1l+/vOfp2fPnk11OACARpFFAIBKkkUAoHVq9OXC9ttvvwY3eCsWi1mwYEH+/ve/53vf+16TDgcA8GayCABQSbIIALC+RpcsxxxzTIPnbdq0yXbbbZehQ4dm9913b6q5AAA2ShYBACpJFgEA1tfokuWiiy5qjjkAADaLLAIAVJIsAgCsr8nuyQIAAAAAANCabPaZLG3atGlwzdGNKRQKWb169TseCgDgzWQRAKCSZBEAYGM2u2S59dZbN7nv4YcfzrRp01IsFptkKACAN5NFAIBKkkUAgI3Z7JLlIx/5yAbb/vjHP2bChAm5/fbb86lPfSr//u//3qTDAQCsI4sAAJUkiwAAG1PWPVn+9re/5dRTT83ee++d1atXZ86cObn22muz4447NvV8AAAbkEUAgEqSRQCAdRpVstTV1eVLX/pSdtlllzzzzDO59957c/vtt2fgwIHNNR8AQIksAgBUkiwCALzZZl8ubOrUqZkyZUpqamryk5/8ZKOnyQIANBdZBACoJFkEANiYzS5ZvvzlL6dTp07ZZZddcu211+baa6/d6LpbbrmlyYYDAFhHFgEAKkkWAQA2ZrNLlk9/+tMpFArNOQsAwCbJIgBAJckiAMDGbHbJMmPGjGYcAwDgrckiAEAlySIAwMY06sb3AAAAAAAAvEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUIaKliwPPvhgjjrqqNTW1qZQKOS2225rsL9YLGbixImpra1Np06dMnTo0DzzzDMN1qxYsSJjxoxJ796906VLlxx99NF5+eWXW/BTAAAAAAAArVFFS5Zly5Zln332yRVXXLHR/VOnTs0ll1ySK664Io8//nhqampy2GGH5bXXXiutGTt2bG699dbcdNNNeeihh7J06dIceeSRWbNmTUt9DAAAAAAAoBVqV8k3HzVqVEaNGrXRfcViMZdddlnOP//8HHfccUmSa6+9NtXV1bnxxhtz2mmnpa6uLtOnT8/111+f4cOHJ0luuOGG9O3bN/fcc09GjhzZYp8FAAAAAABoXbbYe7LMnTs3CxYsyIgRI0rbqqqqMmTIkDz88MNJktmzZ2fVqlUN1tTW1mbgwIGlNRuzYsWKLFmypMEDAAAAAACgMbbYkmXBggVJkurq6gbbq6urS/sWLFiQDh06pEePHptcszGTJ09O9+7dS4++ffs28fQAAAAAAMC73RZbsqxTKBQaPC8Wixtse7O3WzNhwoTU1dWVHi+99FKTzAoAAAAAALQeW2zJUlNTkyQbnJGycOHC0tktNTU1WblyZRYvXrzJNRtTVVWVbt26NXgAAAAAAAA0RkVvfP9W+vfvn5qamsycOTP77bdfkmTlypV54IEHMmXKlCTJ/vvvn/bt22fmzJkZPXp0kmT+/Pl5+umnM3Xq1IrNDgAAAAAAm2PRokWVHuFtde7cOd27d6/0GFukipYsS5cuzfPPP196Pnfu3MyZMyc9e/bMjjvumLFjx2bSpEkZMGBABgwYkEmTJqVz5845/vjjkyTdu3fPKaeckvHjx6dXr17p2bNnzj333Oy1114ZPnx4pT4WAAAAAAC8pS7LV2VtkltuuaXSo7ytNu3b5awzzlS0bERFS5ZZs2Zl2LBhpefjxo1Lkpx44omZMWNGzjvvvCxfvjynn356Fi9enAMOOCB33313unbtWnrNpZdemnbt2mX06NFZvnx5Dj300MyYMSNt27Zt8c8DsCXa0r8N4ZsQAAAAQGvUcdWatEly24H9sqhbx0qPs0m9l7yeYx6dl/r6en/D2YiKlixDhw5NsVjc5P5CoZCJEydm4sSJm1zTsWPHTJs2LdOmTWuGCQG2XlvLtyF8EwIAAABozRZ165gFPTtXegzKtMXekwWAd2Zr+DaEb0IAW4u6urrU19dXeoxN2tLPWgQAAHi3UrIAvMv5NgTAO1NXV5fLr7wia1etrvQoAAAAbGGULAAA8Bbq6+uzdtXqLfrMwJ3n12XYU/MrPQZstbaGs8Hcxw4AYMukZAEAgM2wJZ8Z2Ov/sXfvYVYV9P7435vbwBggoDKQqGh4v2dewHPAFM3UMjPzkqkZR8MbUpl4Bb8KaUWkqGUpYmnWycvpVCqcNMy0xFspmldUVOYQiqAOAsL+/eFxfo5cZLYzs2dmv17Ps55n9lpr7/1eM9i8m89eay16u9wRoE1qK/ewS9zHDgCgtTJkAQAAoCK1hXvYJe5jBwDQmhmyAAAAUNFa85lqAAC0bh3KHQAAAAAAAKAtMmQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAANAGTJgwIYVCIaNGjapfVywWM3bs2PTv3z/dunXLsGHDMmvWrPKFBIAKY8gCAAAA0MrNnDkzV111VbbffvsG6y+55JJMnDgxkydPzsyZM1NTU5Phw4fnjTfeKFNSAKgshiwAAAAArdibb76Zo446Kj/96U/Tq1ev+vXFYjGTJk3K2WefnUMOOSTbbrttpk6dmrq6utxwww1lTAwAlcOQBQAAAKAVO+mkk3LAAQdkn332abB+9uzZqa2tzb777lu/rqqqKkOHDs2999672tdbsmRJFi1a1GABAErTqdwBAAAAAFi1G2+8MQ899FBmzpy50rba2tokSd++fRus79u3b1544YXVvuaECRMybty4pg0KABXKmSwAAAAArdCcOXNy2mmn5Re/+EW6du262v0KhUKDx8VicaV17zdmzJgsXLiwfpkzZ06TZQaASuNMFgAAAIBW6MEHH8y8efPyyU9+sn7d8uXLc/fdd2fy5Ml58sknk7x7Rku/fv3q95k3b95KZ7e8X1VVVaqqqpovOABUEEMWAAAAgFZo7733zqOPPtpg3XHHHZctt9wy3/nOd7LpppumpqYm06dPz0477ZQkWbp0aWbMmJGLL764HJFpJgsXLkxdXV25Y6zW/Pnzyx0BoGwMWQAAAABaoe7du2fbbbdtsG6dddZJnz596tePGjUq48ePz6BBgzJo0KCMHz8+1dXVOfLII8sRmWawcOHCXHr55KxY9k65owCwCoYsAAAAAG3UGWeckcWLF2fkyJFZsGBBdtttt0ybNi3du3cvdzSaSF1dXVYseye37r5J5vdY/b15ymmzuQuz16Nzyx0DoCwMWQAAAADaiD/96U8NHhcKhYwdOzZjx44tSx5azvweXVPbu7rcMVapz6K3yx0BoGw6lDsAAAAAAABAW2TIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAYA3Gjh2bQqHQYKmpqanfXiwWM3bs2PTv3z/dunXLsGHDMmvWrDImBgAAAFqKIQsAwIfYZpttMnfu3Prl0Ucfrd92ySWXZOLEiZk8eXJmzpyZmpqaDB8+PG+88UYZEwMAAAAtwZAFAOBDdOrUKTU1NfXL+uuvn+Tds1gmTZqUs88+O4cccki23XbbTJ06NXV1dbnhhhvKnBoAAABoboYsAAAf4umnn07//v0zcODAHH744XnuueeSJLNnz05tbW323Xff+n2rqqoydOjQ3Hvvvat9vSVLlmTRokUNFgAAAKDtMWQBAFiD3XbbLdddd13uuOOO/PSnP01tbW0GDx6cV199NbW1tUmSvn37NnhO375967etyoQJE9KzZ8/6ZcCAAc16DAAAAEDzMGQBAFiD/fffP1/84hez3XbbZZ999snvf//7JMnUqVPr9ykUCg2eUywWV1r3fmPGjMnChQvrlzlz5jRPeAAAAKBZGbIAADTCOuusk+222y5PP/10ampqkmSls1bmzZu30tkt71dVVZUePXo0WAAAAIC2x5AFAKARlixZkieeeCL9+vXLwIEDU1NTk+nTp9dvX7p0aWbMmJHBgweXMSUAAADQEjqVOwAAQGv2rW99KwcddFA22mijzJs3LxdeeGEWLVqUY445JoVCIaNGjcr48eMzaNCgDBo0KOPHj091dXWOPPLIckcHAAAAmpkhCwDAGrz00ks54ogjMn/+/Ky//vrZfffd89e//jUbb7xxkuSMM87I4sWLM3LkyCxYsCC77bZbpk2blu7du5c5OQAAANDcDFkAANbgxhtvXOP2QqGQsWPHZuzYsS0TCAAAAGg13JMFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJehU7gCwNhYuXJi6uro17lOoq0vN/31dW1ubYnV18wf7P/Pnz2+x9wIAAAAAoHUwZKHVW7hwYS69fHJWLHtnjft1Xro0Z/3f19dcc02WdenS/OEAAAAAAKhYhiy0enV1dVmx7J3cuvsmmd+j62r367b47Zw1/t2vr9178yzutvp9m9pmcxdmr0fnttj7AQAAAABQfoYstBnze3RNbe/VXwKsuu7/v8XQ//aqTl11yw1Z+ix6u8XeCwAAAACA1qFV3/h+7NixKRQKDZaampr67cViMWPHjk3//v3TrVu3DBs2LLNmzSpjYgAAAAAAoFK06iFLkmyzzTaZO3du/fLoo4/Wb7vkkksyceLETJ48OTNnzkxNTU2GDx+eN954o4yJAQAAAACAStDqhyydOnVKTU1N/bL++usnefcslkmTJuXss8/OIYcckm233TZTp05NXV1dbrjhhjKnBgAAAAAA2rtWP2R5+umn079//wwcODCHH354nnvuuSTJ7NmzU1tbm3333bd+36qqqgwdOjT33nvvGl9zyZIlWbRoUYMFAAAAAACgMVr1kGW33XbLddddlzvuuCM//elPU1tbm8GDB+fVV19NbW1tkqRv374NntO3b9/6baszYcKE9OzZs34ZMGBAsx0DAAAAAADQPrXqIcv++++fL37xi9luu+2yzz775Pe//32SZOrUqfX7FAqFBs8pFosrrfugMWPGZOHChfXLnDlzmj48AAAAAADQrrXqIcsHrbPOOtluu+3y9NNPp6amJklWOmtl3rx5K53d8kFVVVXp0aNHgwUAAAAAAKAx2tSQZcmSJXniiSfSr1+/DBw4MDU1NZk+fXr99qVLl2bGjBkZPHhwGVMCAAAAAACVoFO5A6zJt771rRx00EHZaKONMm/evFx44YVZtGhRjjnmmBQKhYwaNSrjx4/PoEGDMmjQoIwfPz7V1dU58sgjyx0dAAAAAABo51r1kOWll17KEUcckfnz52f99dfP7rvvnr/+9a/ZeOONkyRnnHFGFi9enJEjR2bBggXZbbfdMm3atHTv3r3MyQEAAAAAgPauVQ9ZbrzxxjVuLxQKGTt2bMaOHdsygQAAAAAAAP5Pm7onCwAAAEAlmTBhQj71qU+le/fu2WCDDXLwwQfnySefbLBPsVjM2LFj079//3Tr1i3Dhg3LrFmzypQYACqLIQsAAABAKzVjxoycdNJJ+etf/5rp06fnnXfeyb777pu33nqrfp9LLrkkEydOzOTJkzNz5szU1NRk+PDheeONN8qYHAAqQ6u+XBgAAABAJbv99tsbPJ4yZUo22GCDPPjgg/n3f//3FIvFTJo0KWeffXYOOeSQJMnUqVPTt2/f3HDDDTnhhBPKERsAKoYzWQAAAADaiIULFyZJevfunSSZPXt2amtrs++++9bvU1VVlaFDh+bee+9d5WssWbIkixYtarAAAKVxJgsAAAC0AfPnzy93hDWqrq5Oz549yx2jXSsWixk9enT23HPPbLvttkmS2traJEnfvn0b7Nu3b9+88MILq3ydCRMmZNy4cc0bFgAqhCELAAAAtGLrLF6WFUluvvnmckdZow6dO+XUk042aGlGJ598cv7xj3/knnvuWWlboVBo8LhYLK607j1jxozJ6NGj6x8vWrQoAwYMaNqwAFAhDFkAAACgFeu6bHk6JLl1900yv0fXcsdZpfUWvZ2D//p86urqDFmaySmnnJLf/va3ufvuu7PhhhvWr6+pqUny7hkt/fr1q18/b968lc5ueU9VVVWqqqqaNzAAVAhDFgAAAGgD5vfomtre1eWOQQsrFos55ZRTcsstt+RPf/pTBg4c2GD7wIEDU1NTk+nTp2ennXZKkixdujQzZszIxRdfXI7IAFBRDFkAAAAAWqmTTjopN9xwQ/7rv/4r3bt3r78HS8+ePdOtW7cUCoWMGjUq48ePz6BBgzJo0KCMHz8+1dXVOfLII8ucHgDaP0MWAAAAgFbqyiuvTJIMGzaswfopU6bk2GOPTZKcccYZWbx4cUaOHJkFCxZkt912y7Rp09K9e/cWTgsAlceQBQAAAKCVKhaLH7pPoVDI2LFjM3bs2OYPBAA00KHcAQAAAAAAANoiQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFCCTuUOAADz588vd4QPVV1dnZ49e5Y7BgAAAACtiCELAGWzzuJlWZHk5ptvLneUD9Whc6ecetLJBi0AAAAA1DNkAaBsui5bng5Jbt19k8zv0bXccVZrvUVv5+C/Pp+6ujpDFgAAAADqGbIAUHbze3RNbe/qcscAAAAAgEZx43sAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJehU7gAAAAAAAEDrNn/+/HJHWKPq6ur07Nmzxd/XkAUAAAAAAFildRYvy4okN998c7mjrFGHzp1y6kknt/igxZAFAAAAAABYpa7LlqdDklt33yTze3Qtd5xVWm/R2zn4r8+nrq7OkAUAAAAAAGhd5vfomtre1eWO0eq48T0AAAAAAEAJDFkAAAAAAABK4HJhFW7hwoWpq6srd4w1mj9/frkjAAAAAADASgxZKtjChQtz6eWTs2LZO+WOAtAmtPahb3V1dYvf3A0AAACgkhmyVLC6urqsWPZObt19k8zv0bXccVZrs7kLs9ejc8sdA6hg6yxelhVJbr755nJHWaMOnTvl1JNONmgBAAAAaCGGLGR+j66p7V1d7hir1WfR2+WOAFS4rsuWp0PSqofS6y16Owf/9fnU1dUZsgAAAAC0EEMWAFhLrX0oDQAAAEDL6lDuAAAAAAAAAG2RIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEnQqdwAAACrXwoULU1dXV+4YazR//vxyRwAAAKCVMmQBAKAsFi5cmEsvn5wVy94pdxQAAAAoiSELAABlUVdXlxXL3smtu2+S+T26ljvOam02d2H2enRuuWMAAADQChmyAABQVvN7dE1t7+pyx1itPoveLncEAGiT2sJlQd9555106tS6/zzm0qUArVvr/i0CAAAAQJvTVi4LuqKQdCiWOwUAbZkhSzNq7Z/Y8EkIAAAAoDm0hcuCvndJ0NacMXHpUoDWzpClmbSVT2wAAO2XD3wAAOXWmi8L+t4lQVtzxsSlSwFau3YzZLniiivyve99L3Pnzs0222yTSZMm5d/+7d/KlqctfWIDAPjoWlsX8YEPAKgsra2LAEClaBdDll/96lcZNWpUrrjiigwZMiQ/+clPsv/+++fxxx/PRhttVNZsrfnTED4JAQBNozV2ER/4AIDK0Rq7CABUinYxZJk4cWKOP/74fP3rX0+STJo0KXfccUeuvPLKTJgwoczpAID2rjV3ER/4AID2rzV3EQBo79r8kGXp0qV58MEHc+aZZzZYv+++++bee+9d5XOWLFmSJUuW1D9euHBhkmTRokVNluuNN97I22+/nV5zF2TFW63zWugf+9eiVp8xWfucXRcvyXs/wfVeejVvd6tqmYBpG9/LtpAxaRs520LGpG3kbAsZk7aRs9eiJXn77bfzxhtvZJ111mmS13zv92KxWGyS12uvdJHStYX/tpK2kbOxGcvRm9rC9zFpGznbQsakbeRsCxmTtpFTFykfXaR0beG/raRt5FybjOX8u8172sv3stzaQsakbeRsCxmTtpGzrF2k2Ma9/PLLxSTFv/zlLw3WX3TRRcXNN998lc85//zzi0ksFovFYrGsxTJnzpyW+JXeZukiFovFYrE076KLrJkuYrFYLBZL8y4f1kXa/Jks7ykUCg0eF4vFlda9Z8yYMRk9enT94xUrVuS1115Lnz59Vvuccli0aFEGDBiQOXPmpEePHuWO0+Icv+N3/JV7/InvQWs4/mKxmDfeeCP9+/cvy/u3NbpI29FejytxbG1Rez2uxLG1Va3p2HSRxmlvXaQ1/VtsSo6r7WiPx5S0z+Nqj8eUtM/jamvHtLZdpM0PWdZbb7107NgxtbW1DdbPmzcvffv2XeVzqqqqUlXV8JTEddddt7kifmQ9evRoE//omovjd/yOv3KPP/E9KPfx9+zZs2zv3VboIm1Xez2uxLG1Re31uBLH1la1lmPTRT5ce+8ireXfYlNzXG1HezympH0eV3s8pqR9HldbOqa16SIdWiBHs+rSpUs++clPZvr06Q3WT58+PYMHDy5TKgCgUugiAEA56SIAUF5t/kyWJBk9enSOPvro7LLLLtljjz1y1VVX5cUXX8yJJ55Y7mgAQAXQRQCActJFAKB82sWQ5ctf/nJeffXVXHDBBZk7d2623Xbb/OEPf8jGG29c7mgfSVVVVc4///yVTuGtFI7f8Tv+yj3+xPeg0o+/rdFF2pb2elyJY2uL2utxJY6trWrPx9aetccu0l7/LTqutqM9HlPSPo+rPR5T0j6Pqz0eU5IUisVisdwhAAAAAAAA2po2f08WAAAAAACAcjBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyFJmV1xxRQYOHJiuXbvmk5/8ZP785z+vdt977rknQ4YMSZ8+fdKtW7dsueWW+eEPf9iCaZteY47//f7yl7+kU6dO2XHHHZs3YDNrzPH/6U9/SqFQWGn55z//2YKJm1Zjf/5LlizJ2WefnY033jhVVVXZbLPNcs0117RQ2qbXmOM/9thjV/nz32abbVowcdNq7M//+uuvzw477JDq6ur069cvxx13XF599dUWSts8Gvs9uPzyy7PVVlulW7du2WKLLXLddde1UFLaq8b8G7z55pszfPjwrL/++unRo0f22GOP3HHHHS2YtnHac8dqz/2pvXaj9tx52nOfaa9dRf+gNWmvXaQ99pD22j/aY/dor72jvXaO9tg3KrJrFCmbG2+8sdi5c+fiT3/60+Ljjz9ePO2004rrrLNO8YUXXljl/g899FDxhhtuKD722GPF2bNnF3/+858Xq6uriz/5yU9aOHnTaOzxv+f1118vbrrppsV99923uMMOO7RM2GbQ2OO/6667ikmKTz75ZHHu3Ln1yzvvvNPCyZtGKT//z33uc8XddtutOH369OLs2bOLf/vb34p/+ctfWjB102ns8b/++usNfu5z5swp9u7du3j++ee3bPAm0tjj//Of/1zs0KFD8Uc/+lHxueeeK/75z38ubrPNNsWDDz64hZM3ncZ+D6644opi9+7dizfeeGPx2WefLf7yl78sfuxjHyv+9re/beHktBeN/Td42mmnFS+++OLi/fffX3zqqaeKY8aMKXbu3Ln40EMPtXDyD9eeO1Z77k/ttRu1587TnvtMe+0q+getSXvtIu2xh7TX/tEeu0d77R3ttXO0x75RqV3DkKWMdt111+KJJ57YYN2WW25ZPPPMM9f6Nb7whS8Uv/KVrzR1tBZR6vF/+ctfLp5zzjnF888/v1X+kl5bjT3+936ZL1iwoAXSNb/GHv9tt91W7NmzZ/HVV19tiXjN7qP+93/LLbcUC4VC8fnnn2+OeM2uscf/ve99r7jppps2WHfppZcWN9xww2bL2Nwa+z3YY489it/61rcarDvttNOKQ4YMabaMtG9N0UO23nrr4rhx45o62kfWnjtWe+5P7bUbtefO0577THvtKvoHrUl77SLtsYe01/7RHrtHe+0d7bVztMe+Ualdw+XCymTp0qV58MEHs++++zZYv+++++bee+9dq9d4+OGHc++992bo0KHNEbFZlXr8U6ZMybPPPpvzzz+/uSM2q4/y899pp53Sr1+/7L333rnrrruaM2azKeX4f/vb32aXXXbJJZdcko9//OPZfPPN861vfSuLFy9uichNqin++7/66quzzz77ZOONN26OiM2qlOMfPHhwXnrppfzhD39IsVjM//7v/+Y3v/lNDjjggJaI3ORK+R4sWbIkXbt2bbCuW7duuf/++7Ns2bJmy0r71BT/O7RixYq88cYb6d27d3NELFl77ljtuT+1127UnjtPe+4z7bWr6B+0Ju21i7THHtJe+0d77B7ttXe0187RHvtGJXcNQ5YymT9/fpYvX56+ffs2WN+3b9/U1tau8bkbbrhhqqqqsssuu+Skk07K17/+9eaM2ixKOf6nn346Z555Zq6//vp06tSpJWI2m1KOv1+/frnqqqty00035eabb84WW2yRvffeO3fffXdLRG5SpRz/c889l3vuuSePPfZYbrnllkyaNCm/+c1vctJJJ7VE5Cb1Uf77T5K5c+fmtttua5P/7SelHf/gwYNz/fXX58tf/nK6dOmSmpqarLvuurnssstaInKTK+V7sN9+++VnP/tZHnzwwRSLxTzwwAO55pprsmzZssyfP78lYtOOfNT/HUqSH/zgB3nrrbdy2GGHNUfEkrXnjtWe+1N77UbtufO05z7TXruK/kFr0l67SHvsIe21f7TH7tFee0d77RztsW9Uctdonf9LV0EKhUKDx8VicaV1H/TnP/85b775Zv7617/mzDPPzCc+8YkcccQRzRmz2azt8S9fvjxHHnlkxo0bl80337yl4jW7xvz8t9hii2yxxRb1j/fYY4/MmTMn3//+9/Pv//7vzZqzuTTm+FesWJFCoZDrr78+PXv2TJJMnDgxhx56aC6//PJ069at2fM2tVL++0+Sa6+9Nuuuu24OPvjgZkrWMhpz/I8//nhOPfXUnHfeedlvv/0yd+7cfPvb386JJ56Yq6++uiXiNovGfA/OPffc1NbWZvfdd0+xWEzfvn1z7LHH5pJLLknHjh1bIi7tUKn/O/TLX/4yY8eOzX/9139lgw02aK54H0l77ljtuT+1127UnjtPe+4z7bWr6B+0Ju21i7THHtJe+0d77B7ttXe0187RHvtGJXYNZ7KUyXrrrZeOHTuuNMWbN2/eStO+Dxo4cGC22267jBgxIqeffnrGjh3bjEmbR2OP/4033sgDDzyQk08+OZ06dUqnTp1ywQUX5O9//3s6deqUO++8s6WiN4mP8vN/v9133z1PP/10U8drdqUcf79+/fLxj3+8/pd+kmy11VYpFot56aWXmjVvU/soP/9isZhrrrkmRx99dLp06dKcMZtNKcc/YcKEDBkyJN/+9rez/fbbZ7/99ssVV1yRa665JnPnzm2J2E2qlO9Bt27dcs0116Suri7PP/98XnzxxWyyySbp3r171ltvvZaITTvyUf536Fe/+lWOP/74/PrXv84+++zTnDFL0p47VnvuT+21G7XnztOe+0x77Sr6B61Je+0i7bGHtNf+0R67R3vtHe21c7THvlHJXcOQpUy6dOmST37yk5k+fXqD9dOnT8/gwYPX+nWKxWKWLFnS1PGaXWOPv0ePHnn00UfzyCOP1C8nnnhitthiizzyyCPZbbfdWip6k2iqn//DDz+cfv36NXW8ZlfK8Q8ZMiSvvPJK3nzzzfp1Tz31VDp06JANN9ywWfM2tY/y858xY0aeeeaZHH/88c0ZsVmVcvx1dXXp0KHhr6z3PtFQLBabJ2gz+ij/Bjp37pwNN9wwHTt2zI033pgDDzxwpe8NfJhS/w3+8pe/zLHHHpsbbrih1Vz394Pac8dqz/2pvXaj9tx52nOfaa9dRf+gNWmvXaQ99pD22j/aY/dor72jvXaO9tg3KrprFCmbG2+8sdi5c+fi1VdfXXz88ceLo0aNKq6zzjrF559/vlgsFotnnnlm8eijj67ff/LkycXf/va3xaeeeqr41FNPFa+55ppijx49imeffXa5DuEjaezxf9D5559f3GGHHVoobdNr7PH/8Ic/LN5yyy3Fp556qvjYY48VzzzzzGKS4k033VSuQ/hIGnv8b7zxRnHDDTcsHnroocVZs2YVZ8yYURw0aFDx61//erkO4SMp9d//V77yleJuu+3W0nGbXGOPf8qUKcVOnToVr7jiiuKzzz5bvOeee4q77LJLcddddy3XIXxkjf0ePPnkk8Wf//znxaeeeqr4t7/9rfjlL3+52Lt37+Ls2bPLdAS0dY39N3jDDTcUO3XqVLz88suLc+fOrV9ef/31ch3CarXnjtWe+1N77UbtufO05z7TXruK/kFr0l67SHvsIe21f7TH7tFee0d77RztsW9UatcwZCmzyy+/vLjxxhsXu3TpUtx5552LM2bMqN92zDHHFIcOHVr/+NJLLy1us802xerq6mKPHj2KO+20U/GKK64oLl++vAzJm0Zjjv+DWusv6cZozPFffPHFxc0226zYtWvXYq9evYp77rln8fe//30ZUjedxv78n3jiieI+++xT7NatW3HDDTcsjh49ulhXV9fCqZtOY4//9ddfL3br1q141VVXtXDS5tHY47/00kuLW2+9dbFbt27Ffv36FY866qjiSy+91MKpm1ZjvgePP/54cccddyx269at2KNHj+LnP//54j//+c8ypKY9acy/waFDhxaTrLQcc8wxLR98LbTnjtWe+1N77UbtufO05z7TXruK/kFr0l67SHvsIe21f7TH7tFee0d77RztsW9UYtcoFIut4FwiAAAAAACANqYNXdgMAAAAAACg9TBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAZrVnDlzcvzxx6d///7p0qVLNt5445x22ml59dVX6/cZNmxYCoXCSsuJJ55Yv8/716+zzjoZNGhQjj322Dz44IPlOCwAoI3QRQCActNHoH0zZAGazXPPPZdddtklTz31VH75y1/mmWeeyY9//OP88Y9/zB577JHXXnutft8RI0Zk7ty5DZZLLrmkwetNmTIlc+fOzaxZs3L55ZfnzTffzG677ZbrrruupQ8NAGgDdBEAoNz0EWj/OpU7ANB+nXTSSenSpUumTZuWbt26JUk22mij7LTTTtlss81y9tln58orr0ySVFdXp6amZo2vt+6669bvs8kmm2TffffNMccck5NPPjkHHXRQevXq1bwHBAC0KboIAFBu+gi0f85kAZrFa6+9ljvuuCMjR46sLxHvqampyVFHHZVf/epXKRaLH+l9Tj/99LzxxhuZPn36R3odAKB90UUAgHLTR6AyGLIAzeLpp59OsVjMVltttcrtW221VRYsWJB//etfSZIrrrgiH/vYxxosU6dO/dD32XLLLZMkzz//fJNlBwDaPl0EACg3fQQqg8uFAWXx3qc0unTpkiQ56qijcvbZZzfYZ4MNNljr1ykUCk2cEABoz3QRAKDc9BFoHwxZgGbxiU98IoVCIY8//ngOPvjglbb/85//zPrrr5911103SdKzZ8984hOfaPT7PPHEE0mSgQMHfpS4AEA7o4sAAOWmj0BlcLkwoFn06dMnw4cPzxVXXJHFixc32FZbW5vrr78+xx577Ed+n0mTJqVHjx7ZZ599PvJrAQDthy4CAJSbPgKVwZAFaDaTJ0/OkiVLst9+++Xuu+/OnDlzcvvtt2f48OHZfPPNc95559XvW1dXl9ra2gbLggULGrze66+/ntra2rzwwguZPn16Dj300Nxwww258sor6z/1AQDwHl0EACg3fQTav0LxvYv2ATSD559/PmPHjs3tt9+eefPmpVgs5pBDDsnPf/7zVFdXJ0mGDRuWGTNmrPTc/fbbL7fffnuShtcV7dq1az7+8Y9nzz33zKmnnpqdd965ZQ4GAGhzdBEAoNz0EWjfDFmAFnX++edn4sSJmTZtWvbYY49yxwEAKowuAgCUmz4C7YshC9DipkyZkoULF+bUU09Nhw6uWggAtCxdBAAoN30E2g9DFgAAAAAAgBIYkwIAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSEL0OL+8Y9/5Pjjj89mm22Wbt26pVu3bhk0aFBOOOGEPPDAA6t8zujRo1MoFHLggQe2cFoAoD259tprUygUGizrr79+hg0blt/97ncN9r3uuuty+OGHZ4sttkiHDh2yySablCc0ANBurG0XmTt3bs4555zsscceWW+99dKjR4988pOfzFVXXZXly5eX8QiADzJkAVrUT37yk3zyk5/M3/72t5x22mn53e9+l9///vcZNWpUZs2alU996lN59tlnGzxn2bJl+cUvfpEkuf322/Pyyy+XIzoA0I5MmTIl9913X+69995cddVV6dixYw466KD893//d/0+P//5zzNr1qzsuuuu2WyzzcqYFgBobz6sizz44IO57rrrsvfee+e6667LTTfdlKFDh+Yb3/hGRowYUeb0wPt1KncAoHL85S9/yciRI3PAAQfkN7/5Tbp06VK/7dOf/nROOumk/Od//me6devW4Hn/9V//lX/961854IAD8vvf/z5Tp07NWWed1dLxAYB2ZNttt80uu+xS//gzn/lMevXqlV/+8pc56KCDkiR33HFHOnR493NpBx54YB577LGyZAUA2p8P6yJDhgzJs88+m86dO9fvM3z48CxdujSXX355xo0blwEDBpQjOvABzmQBWsz48ePTsWPH/OQnP2kwYHm/L33pS+nfv3+DdVdffXW6dOmSKVOmZMCAAZkyZUqKxWJLRAYAKkTXrl3TpUuXBn/IeG/AAgDQ3D7YRXr16tWgl7xn1113TZK89NJLLZoPWD3/rwFoEcuXL89dd92VXXbZJf369Vvr57300kuZNm1aPv/5z2f99dfPMccck2eeeSZ33313M6YFANq75cuX55133smyZcvy0ksvZdSoUXnrrbdy5JFHljsaAFABSu0id955Zzp16pTNN9+8hZICH8blwoAWMX/+/CxevDgbb7zxStuWL1/e4MyUjh07plAoJHn3GqUrVqzI8ccfnyT52te+losuuihXX311hg4d2jLhAYB2Z/fdd2/wuKqqKpMnT85+++1XpkQAQCUppYtMmzYtP//5z3PaaaelT58+zR0RWEvOZAHK7pOf/GQ6d+5cv/zgBz9IkhSLxfpLhA0fPjxJMnDgwAwbNiw33XRTFi1aVM7YAEAbdt1112XmzJmZOXNmbrvtthxzzDE56aSTMnny5HJHAwAqQGO7yEMPPZTDDjssu+++eyZMmNDCaYE1cSYL0CLWW2+9dOvWLS+88MJK22644YbU1dVl7ty5+dznPle//s4778zs2bMzevToBgOVww47LHfddVd++ctf5oQTTmiR/ABA+7LVVlutdLPZF154IWeccUa+8pWvZN111y1fOACg3WtMF3n44YczfPjwDBo0KH/4wx9SVVVVhsTA6jiTBWgRHTt2zKc//ek88MADmTt3boNtW2+9dXbZZZdst912DdZfffXVSZKJEyemV69e9cs3vvGNBtsBAJrC9ttvn8WLF+epp54qdxQAoAKtqos8/PDD2WeffbLxxhtn2rRp6dmzZxkTAqtiyAK0mDFjxmT58uU58cQTs2zZsjXuu2DBgtxyyy0ZMmRI7rrrrpWWo446KjNnzsxjjz3WQukBgPbukUceSZKsv/765Q0CAFSkD3aRRx55JPvss0823HDDTJ8+Pb169SpjOmB1XC4MaDFDhgzJ5ZdfnlNOOSU777xz/uM//iPbbLNNOnTokLlz5+amm25KkvTo0SPXX3993n777Zx66qkZNmzYSq/Vp0+fXH/99bn66qvzwx/+sIWPBABo6x577LG88847SZJXX301N998c6ZPn54vfOELGThwYJLk8ccfz+OPP54kqa2tTV1dXX7zm98kefdM3K233ro84QGANu/DusiTTz6ZffbZJ0ly0UUX5emnn87TTz9d//zNNtvMB0OglSgUi8ViuUMAleXvf/97fvSjH+VPf/pTXnnllRQKhWy44YYZPHhwjjnmmHz605/OTjvtlFdeeSVz5sxJly5dVvk6e+yxR5555pm8/PLLq90HAOD9rr322hx33HEN1vXs2TMDBw7MV7/61YwcObL+Oudjx47NuHHjVvk6559/fsaOHdvccQGAdmZtu8iq9nu/KVOm5Nhjj23mtMDaMGQBAAAAAAAogXuyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJOpU7QGuwYsWKvPLKK+nevXsKhUK54wBAq1AsFvPGG2+kf//+6dDB5zKaky4CACvTRVqOLgIAK1vbLmLIkuSVV17JgAEDyh0DAFqlOXPmZMMNNyx3jHZNFwGA1dNFmp8uAgCr92FdxJAlSffu3ZO8+83q0aNHmdNQsd56K+nf/92vX3klWWed8uYBKt6iRYsyYMCA+t+TNJ+K7iJ+/wGwGrpIy6noLlIJ9C2AkqxtFzFkSepPhe3Ro4cyQfl07Pj/f92jh9IDtBouGdH8KrqL+P0HwIfQRZpfRXeRSqBvAXwkH9ZFXNQUAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIF7sgCQ5cuXZ9myZeWOQQvr3LlzOr7/+swAUCYrVqzI0qVLyx2DFqaLANBa6CKVqam6iCELQAUrFoupra3N66+/Xu4olMm6666bmpoaN5QFoGyWLl2a2bNnZ8WKFeWOQhnoIgCUmy5S2ZqiixiyAFSw9wYsG2ywQaqrq/2f2wpSLBZTV1eXefPmJUn69etX5kQAVKJisZi5c+emY8eOGTBgQDp0cEXrSqGLANAa6CKVqym7iCELQIVavnx5/YClT58+5Y5DGXTr1i1JMm/evGywwQYu1wFAi3vnnXdSV1eX/v37p7q6utxxaGG6CADlpotUtqbqImUdzd1999056KCD0r9//xQKhdx6660NtheLxYwdOzb9+/dPt27dMmzYsMyaNavBPkuWLMkpp5yS9dZbL+uss04+97nP5aWXXmrBowBom967B4sSUdne+/m7Jw8A5bB8+fIkSZcuXcqchHLRRQAoJ12EpugiZR2yvPXWW9lhhx0yefLkVW6/5JJLMnHixEyePDkzZ85MTU1Nhg8fnjfeeKN+n1GjRuWWW27JjTfemHvuuSdvvvlmDjzwwPr/QABYM5cIq2x+/gC0Bn4fVS4/ewBaA7+PKldT/OzLermw/fffP/vvv/8qtxWLxUyaNClnn312DjnkkCTJ1KlT07dv39xwww054YQTsnDhwlx99dX5+c9/nn322SdJ8otf/CIDBgzI//zP/2S//fZrsWMBAAAAAAAqS6u9k8/s2bNTW1ubfffdt35dVVVVhg4dmnvvvTdJ8uCDD2bZsmUN9unfv3+23Xbb+n0AAAAAAACaQ6sdstTW1iZJ+vbt22B9375967fV1tamS5cu6dWr12r3WZUlS5Zk0aJFDRYAaEmPPvpohg4dmm7duuXjH/94LrjgghSLxTU+Z5NNNkmhUGiwnHnmmfXbX3311XzmM59J//79U1VVlQEDBuTkk0/2ew4AWElzdJG///3vOeKIIzJgwIB069YtW221VX70ox8196EAAG1Qc3SR93v11Vez4YYbplAo5PXXX2+GI/j/lfVyYWvjg9dEKxaLH3qdtA/bZ8KECRk3blyT5AOAxlq0aFGGDx+evfbaKzNnzsxTTz2VY489Nuuss06++c1vrvG5F1xwQUaMGFH/+GMf+1j91x06dMjnP//5XHjhhVl//fXzzDPP5KSTTsprr72WG264odmOBwBoW5qrizz44INZf/316y/jfe+99+Y//uM/0rFjx5x88snNdjwAQNvSXF3k/Y4//vhsv/32efnll5s0+6q02jNZampqkmSlM1LmzZtXf3ZLTU1Nli5dmgULFqx2n1UZM2ZMFi5cWL/MmTOnidMD0JyGDRuWU045JaNGjUqvXr3St2/fXHXVVXnrrbdy3HHHpXv37tlss81y2223NXje448/ns9+9rP52Mc+lr59++boo4/O/Pnz67fffvvt2XPPPbPuuuumT58+OfDAA/Pss8/Wb3/++edTKBRy8803Z6+99kp1dXV22GGH3HfffY3Kf/311+ftt9/Otddem2233TaHHHJIzjrrrEycOPFDP7XRvXv31NTU1C/vLxO9evXKN77xjeyyyy7ZeOONs/fee2fkyJH585//3Kh8AMCa6SKr7iJf+9rXcumll2bo0KHZdNNN85WvfCXHHXdcbr755kblAwDWTBdZdRd5z5VXXpnXX3893/rWtxqVq1StdsgycODA1NTUZPr06fXrli5dmhkzZmTw4MFJkk9+8pPp3Llzg33mzp2bxx57rH6fVamqqkqPHj0aLAC0LVOnTs16662X+++/P6ecckq+8Y1v5Etf+lIGDx6chx56KPvtt1+OPvro1NXVJXn398PQoUOz44475oEHHsjtt9+e//3f/81hhx1W/5pvvfVWRo8enZkzZ+aPf/xjOnTokC984QtZsWJFg/c+++yz861vfSuPPPJINt988xxxxBF555136rcXCoVce+21q81+3333ZejQoamqqqpft99+++WVV17J888/v8bjvvjii9OnT5/suOOOueiii7J06dLV7vvKK6/k5ptvztChQ9f4mgBA4+kiH95FkmThwoXp3bv3GvcBABpPF1l1F3n88cdzwQUX5LrrrkuHDi00/iiW0RtvvFF8+OGHiw8//HAxSXHixInFhx9+uPjCCy8Ui8Vi8bvf/W6xZ8+exZtvvrn46KOPFo844ohiv379iosWLap/jRNPPLG44YYbFv/nf/6n+NBDDxU//elPF3fYYYfiO++8s9Y5Fi5cWExSXLhwYZMfI6y1N98sFpN3lzffLHcaKsDixYuLjz/+eHHx4sXljtJoQ4cOLe655571j995553iOuusUzz66KPr182dO7eYpHjfffcVi8Vi8dxzzy3uu+++DV5nzpw5xSTFJ598cpXvM2/evGKS4qOPPlosFovF2bNnF5MUf/azn9XvM2vWrGKS4hNPPFG/bosttijefPPNq80/fPjw4ogRIxqse/nll4tJivfee+9qnzdx4sTin/70p+Lf//734k9/+tPieuutVzz++ONX2u/www8vduvWrZikeNBBB63xZ7ymfwd+P7aciv5e+/0HFa2t9hFdZM1d5D333ntvsXPnzsVp06atdh9dpHXwvW7n9C1YLV2kfXWRt99+u7j99tsXf/7znxeLxWLxrrvuKiYpLliwYLWv2RRdpKz3ZHnggQey11571T8ePXp0kuSYY47JtddemzPOOCOLFy/OyJEjs2DBguy2226ZNm1aunfvXv+cH/7wh+nUqVMOO+ywLF68OHvvvXeuvfbadOzYscWPB4CWs/3229d/3bFjx/Tp0yfbbbdd/br3Lhs5b968JO9eI/yuu+5a5Wmkzz77bDbffPM8++yzOffcc/PXv/418+fPr/+kxosvvphtt912le/dr1+/+vfZcsstkyT//Oc/PzT/qu45tqr173f66ac3yNCrV68ceuih9Z/ieM8Pf/jDnH/++XnyySdz1llnZfTo0bniiis+NBMAsPZ0kdV3kSSZNWtWPv/5z+e8887L8OHDPzQPANA4usjKXWTMmDHZaqut8pWvfOVD378plXXIMmzYsDVeY61QKGTs2LEZO3bsavfp2rVrLrvsslx22WXNkBCA1qpz584NHhcKhQbr3vul/F4hWLFiRQ466KBcfPHFK73We4XgoIMOyoABA/LTn/40/fv3z4oVK7LtttuudOrpmt5nbdTU1KzynmNJ1nhPsQ/afffdkyTPPPNMgz9svHdd0i233DJ9+vTJv/3bv+Xcc8+tP04a5+677873vve9PPjgg5k7d25uueWWHHzwwUmSZcuW5Zxzzskf/vCHPPfcc+nZs2f22WeffPe7303//v3LGxyAZqWLrL6LPP744/n0pz+dESNG5Jxzzlnr1wMA1p4usnIXufPOO/Poo4/mN7/5TZL/f3Cz3nrr5eyzz864cePW+rUbo6xDFgBoKTvvvHNuuummbLLJJunUaeVff6+++mqeeOKJ/OQnP8m//du/JUnuueeeZsmyxx575KyzzsrSpUvTpUuXJMm0adPSv3//bLLJJmv9Og8//HCSrHF48l6hWLJkSemBK9xbb72VHXbYIccdd1y++MUvNthWV1eXhx56KOeee2522GGHLFiwIKNGjcrnPve5PPDAA2VKDEBrVCldZNasWfn0pz+dY445JhdddFGT5gYASlcJXeSmm27K4sWL67fPnDkzX/va1/LnP/85m222WdMdwAe02hvfA0BTOumkk/Laa6/liCOOyP3335/nnnsu06ZNy9e+9rUsX748vXr1Sp8+fXLVVVflmWeeyZ133ll/GcvG2nLLLXPLLbesdvuRRx6ZqqqqHHvssXnsscdyyy23ZPz48Rk9enT9J0Duv//+bLnllnn55ZeTvHtTuB/+8Id55JFHMnv27Pz617/OCSeckM997nPZaKONkiR/+MMfMmXKlDz22GN5/vnn84c//CHf+MY3MmTIkEaVFBraf//9c+GFF+aQQw5ZaVvPnj0zffr0HHbYYdliiy2y++6757LLLsuDDz6YF198sQxpAWitKqGLzJo1K3vttVeGDx+e0aNHp7a2NrW1tfnXv/5V0nEAAE2nErrIZpttlm233bZ+GThwYJJkq622ygYbbFDSsawNZ7IArc7ChQtTV1dX7hhrVF1dnZ49e5Y7Bo3Qv3///OUvf8l3vvOd7LffflmyZEk23njjfOYzn0mHDh1SKBRy44035tRTT822226bLbbYIpdeemmGDRvW6Pd68skns3DhwtVuf+8P8yeddFJ22WWX9OrVK6NHj25QXurq6vLkk09m2bJlSZKqqqr86le/yrhx4+qzjxgxImeccUb9c7p165af/vSnOf3007NkyZIMGDAghxxySM4888xGHwOlW7hwYQqFQtZdd93V7rNkyZIGZxctWrSoBZLxUfjdBHxUldBF/vM//zP/+te/cv311+f666+vX7/xxhvn+eefb/RxAG1LW+hLic5E5aqELlIuheKabopSIRYtWpSePXtm4cKF6dGjR7njUKneeit578ZTb76ZrLNOefOUycKFC3Pp5ZOzYtk75Y6yRh06d8qpJ53cpovZ22+/ndmzZ2fgwIHp2rVrueNQJmv6d+D348oKhUKDe7J80Ntvv50999wzW265ZX7xi1+s9nXGjh27ymvBVuT3ug38/vO7CZqPPoIu0jr4XrdzLdC32kpfSnQmGtJFaIou4kwWoFWpq6vLimXv5NbdN8n8Hq3zl9t6i97OwX99PnV1dUoZUG/ZsmU5/PDDs2LFilxxxRVr3HfMmDENPqGzaNGiDBgwoLkjUiK/mwAA1qwt9KVEZwKahyEL0CrN79E1tb2ryx0DYK0sW7Yshx12WGbPnp0777zzQz8BWlVVlaqqqhZKR1PxuwkAYM30JaASGbIAAHwE7w1Ynn766dx1113p06dPuSMBAAAALcSQBQBgDd58880888wz9Y9nz56dRx55JL17907//v1z6KGH5qGHHsrvfve7LF++PLW1tUmS3r17p0uXLuWKDQAAALQAQxYAgDV44IEHstdee9U/fu9eKsccc0zGjh2b3/72t0mSHXfcscHz7rrrrgwbNqylYgIAAABlYMgCALAGw4YNS7FYXO32NW0DAAAA2rcO5Q4AAAAAAADQFhmyAAAAAAAAlMCQBQAAAAAAoASGLABUhD/96U8pFAp5/fXXyx0FAKhAuggAUE66SPMxZAGgIgwePDhz585Nz549m/y1b7rppmy99dapqqrK1ltvnVtuuaXJ3wMAaNt0EQCgnHSR5mPIAkBF6NKlS2pqalIoFJr0de+77758+ctfztFHH52///3vOfroo3PYYYflb3/7W5O+DwDQtukiAEA56SLNx5AFgDZn2LBhOeWUUzJq1Kj06tUrffv2zVVXXZW33norxx13XLp3757NNtsst912W/1zPnha7LXXXpt11103d9xxR7baaqt87GMfy2c+85nMnTu3UVkmTZqU4cOHZ8yYMdlyyy0zZsyY7L333pk0aVITHjEA0JroIgBAOekirYshCwBt0tSpU7Peeuvl/vvvzymnnJJvfOMb+dKXvpTBgwfnoYceyn777Zejjz46dXV1q32Nurq6fP/738/Pf/7z3H333XnxxRfzrW99q377ewXk+eefX+1r3Hfffdl3330brNtvv/1y7733fuRjBABaL10EACgnXaT1MGQBoE3aYYcdcs4552TQoEEZM2ZMunXrlvXWWy8jRozIoEGDct555+XVV1/NP/7xj9W+xrJly/LjH/84u+yyS3beeeecfPLJ+eMf/1i/vbq6OltssUU6d+682teora1N3759G6zr27dvamtrP/pBAgCtli4CAJSTLtJ6dCp3AAAoxfbbb1//dceOHdOnT59st9129eve+wU/b9681b5GdXV1Nttss/rH/fr1a7D/rrvumn/+858fmuWD1zMtFotNfo1TAKB10UUAgHLSRVoPZ7IA0CZ98FMUhUKhwbr3fpmvWLGiUa9RLBYblaOmpmalT2fMmzdvpU9xAADtiy4CAJSTLtJ6GLIAwEewxx57ZPr06Q3WTZs2LYMHDy5TIgCgkugiAEA56SKGLACwWvfff3+23HLLvPzyy6vd57TTTsu0adNy8cUX55///Gcuvvji/M///E9GjRrVckEBgHZJFwEAykkXWTuGLACwGnV1dXnyySezbNmy1e4zePDg3HjjjZkyZUq23377XHvttfnVr36V3XbbrQWTAgDtkS4CAJSTLrJ23PgegDbnT3/600rrnn/++ZXWvf86osOGDWvw+Nhjj82xxx7bYP+DDz54jc9ZnUMPPTSHHnrohwcHANoFXQQAKCddpHVxJgsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAE3o7bffzrHHHpvtttsunTp1ysEHH1zuSABABdFFAIByqsQuYsgCAE1o+fLl6datW0499dTss88+5Y4DAFQYXaT9ufvuu3PQQQelf//+KRQKufXWW+u3LVu2LN/5zney3XbbZZ111kn//v3z1a9+Na+88kr5AgNQ0SqxixiyANDmDBs2LKecckpGjRqVXr16pW/fvrnqqqvy1ltv5bjjjkv37t2z2Wab5bbbbqt/zvLly3P88cdn4MCB6datW7bYYov86Ec/qt/+9ttvZ5tttsl//Md/1K+bPXt2evbsmZ/+9KdrnW2dddbJlVdemREjRqSmpqZpDhgAaFV0EVrSW2+9lR122CGTJ09eaVtdXV0eeuihnHvuuXnooYdy880356mnnsrnPve5MiQFoKXoIq2LIQsAbdLUqVOz3nrr5f77788pp5ySb3zjG/nSl76UwYMH56GHHsp+++2Xo48+OnV1dUmSFStWZMMNN8yvf/3rPP744znvvPNy1lln5de//nWSpGvXrrn++uszderU3HrrrVm+fHmOPvro7LXXXhkxYkT9+xYKhVx77bXlOGQAoBXRRWgp+++/fy688MIccsghK23r2bNnpk+fnsMOOyxbbLFFdt9991x22WV58MEH8+KLL5YhLQAtRRdpPQxZAGiTdthhh5xzzjkZNGhQxowZk27dumW99dbLiBEjMmjQoJx33nl59dVX849//CNJ0rlz54wbNy6f+tSnMnDgwBx11FE59thj68tEkuy444658MILM2LEiJx++ul59tln87Of/azB+26xxRbp2bNnix4rAND66CK0VgsXLkyhUMi666672n2WLFmSRYsWNVgAaFt0kdajU7kDAEAptt9++/qvO3bsmD59+mS77barX9e3b98kybx58+rX/fjHP87PfvazvPDCC1m8eHGWLl2aHXfcscHrfvOb38x//dd/5bLLLsttt92W9dZbr8H2f/7zn81wNABAW6OL0Bq9/fbbOfPMM3PkkUemR48eq91vwoQJGTduXAsmA6Cp6SKthyELVJCFCxfWnyLYWs2fP7/cEWgjOnfu3OBxoVBosK5QKCR593TYJPn1r3+d008/PT/4wQ+yxx57pHv37vne976Xv/3tbw1eZ968eXnyySfTsWPHPP300/nMZz7TzEcCALRFugitzbJly3L44YdnxYoVueKKK9a475gxYzJ69Oj6x4sWLcqAAQOaOyIATUgXaT0MWaBCLFy4MJdePjkrlr1T7ihQFn/+858zePDgjBw5sn7ds88+u9J+X/va17LttttmxIgROf7447P33ntn6623bsmoAEA7pIvQnJYtW5bDDjsss2fPzp133rnGs1iSpKqqKlVVVS2UDoDWQBdpPoYsUCHq6uqyYtk7uXX3TTK/R9dyx1mtzeYuzF6Pzi13DNqhT3ziE7nuuutyxx13ZODAgfn5z3+emTNnZuDAgfX7XH755bnvvvvyj3/8IwMGDMhtt92Wo446Kn/729/SpUuXJMmWW26ZCRMm5Atf+MJq3+vxxx/P0qVL89prr+WNN97II488kiQrnYILAFQOXYTm8t6A5emnn85dd92VPn36lDsSAK2QLtJ8DFmgwszv0TW1vavLHWO1+ix6u9wRaKdOPPHEPPLII/nyl7+cQqGQI444IiNHjsxtt92W5N1rin7729/O1VdfXX+phMsvvzw77LBDzj333Fx88cVJkieffDILFy5c43t99rOfzQsvvFD/eKeddkqSFIvF5jg0AKAN0EUo1Ztvvplnnnmm/vHs2bPzyCOPpHfv3unfv38OPfTQPPTQQ/nd736X5cuXp7a2NknSu3fv+j+IAYAu0nwMWQBoc/70pz+ttO75559fad37f3lXVVVlypQpmTJlSoN9JkyYkOTdT2J88J5FPXr0yOzZs1f7mquzqiwAQPuhi9CSHnjggey11171j9+7l8oxxxyTsWPH5re//W2SlT8dfNddd2XYsGEtFROAFqSLtC6GLAAAAACt1LBhw9b4B632+qlgAGgrOpQ7AAAAAAAAQFtkyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFoMKtWLGi3BEoIz9/AFoDN+6uXLoIAK2BLlK5mqKLdGqCHAC0QV26dEmHDh3yyiuvZP3110+XLl1SKBTKHYsWUiwWs3Tp0vzrX/9Khw4d0qVLl3JHAqACde7cOYVCIf/617+y/vrr6yIVRBcBoDXQRSpXU3YRQxaACtWhQ4cMHDgwc+fOzSuvvFLuOJRJdXV1Ntpoo3To4ORWAFpex44ds+GGG+all17K888/X+44lIEuAkA56SI0RRcxZAGoYF26dMlGG22Ud955J8uXLy93HFpYx44d06lTJ5/UAaCsPvaxj2XQoEFZtmxZuaPQwnQRAFoDXaRyNVUXMWQBqHCFQiGdO3dO586dyx0FAKhQHTt2TMeOHcsdAwCoULoIH4XzcQEAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQBYg7vvvjsHHXRQ+vfvn0KhkFtvvbXB9mKxmLFjx6Z///7p1q1bhg0bllmzZpUnLAAAANCiDFkAANbgrbfeyg477JDJkyevcvsll1ySiRMnZvLkyZk5c2ZqamoyfPjwvPHGGy2cFAAAAGhpncodAACgNdt///2z//77r3JbsVjMpEmTcvbZZ+eQQw5JkkydOjV9+/bNDTfckBNOOKElowIAAAAtzJksAAAlmj17dmpra7PvvvvWr6uqqsrQoUNz7733rvZ5S5YsyaJFixosAAAAQNtjyAIAUKLa2tokSd++fRus79u3b/22VZkwYUJ69uxZvwwYMKBZcwIAAADNw5AFAOAjKhQKDR4Xi8WV1r3fmDFjsnDhwvplzpw5zR0RAAAAaAbuyQIAUKKampok757R0q9fv/r18+bNW+nslverqqpKVVVVs+cDAAAAmpczWQAASjRw4MDU1NRk+vTp9euWLl2aGTNmZPDgwWVMBgAAALSEVj1keeedd3LOOedk4MCB6datWzbddNNccMEFWbFiRf0+xWIxY8eOTf/+/dOtW7cMGzYss2bNKmNqAKA9efPNN/PII4/kkUceSfLuze4feeSRvPjiiykUChk1alTGjx+fW265JY899liOPfbYVFdX58gjjyxvcAAAAKDZterLhV188cX58Y9/nKlTp2abbbbJAw88kOOOOy49e/bMaaedliS55JJLMnHixFx77bXZfPPNc+GFF2b48OF58skn07179zIfAQDQ1j3wwAPZa6+96h+PHj06SXLMMcfk2muvzRlnnJHFixdn5MiRWbBgQXbbbbdMmzZNDwEAAIAK0KqHLPfdd18+//nP54ADDkiSbLLJJvnlL3+ZBx54IMm7Z7FMmjQpZ599dg455JAkydSpU9O3b9/ccMMNOeGEE8qWHQBoH4YNG5Zisbja7YVCIWPHjs3YsWNbLhQAAADQKrTqy4Xtueee+eMf/5innnoqSfL3v/8999xzTz772c8mefdyHbW1tdl3333rn1NVVZWhQ4fm3nvvXe3rLlmyJIsWLWqwAAAAAAAANEarPpPlO9/5ThYuXJgtt9wyHTt2zPLly3PRRRfliCOOSJLU1tYmSfr27dvgeX379s0LL7yw2tedMGFCxo0b13zBAQAAAACAdq9Vn8nyq1/9Kr/4xS9yww035KGHHsrUqVPz/e9/P1OnTm2wX6FQaPC4WCyutO79xowZk4ULF9Yvc+bMaZb8AAAAAABA+9Wqz2T59re/nTPPPDOHH354kmS77bbLCy+8kAkTJuSYY45JTU1NknfPaOnXr1/98+bNm7fS2S3vV1VVlaqqquYNDwAAAAAAtGut+kyWurq6dOjQMGLHjh2zYsWKJMnAgQNTU1OT6dOn129funRpZsyYkcGDB7doVgAAAAAAoLK06jNZDjrooFx00UXZaKONss022+Thhx/OxIkT87WvfS3Ju5cJGzVqVMaPH59BgwZl0KBBGT9+fKqrq3PkkUeWOT0AAAAAANCeteohy2WXXZZzzz03I0eOzLx589K/f/+ccMIJOe+88+r3OeOMM7J48eKMHDkyCxYsyG677ZZp06ale/fuZUwOAAAAAAC0d616yNK9e/dMmjQpkyZNWu0+hUIhY8eOzdixY1ssFwAAAAAAQKu+JwsAAAAAAEBrZcgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAKCVuvvuu3PQQQelf//+KRQKufXWWxtsLxaLGTt2bPr3759u3bpl2LBhmTVrVnnCAkAFMmQBAAAAaKXeeuut7LDDDpk8efIqt19yySWZOHFiJk+enJkzZ6ampibDhw/PG2+80cJJAaAydSp3AAAAAABWbf/998/++++/ym3FYjGTJk3K2WefnUMOOSRJMnXq1PTt2zc33HBDTjjhhJaMCgAVyZAFAAAAoA2aPXt2amtrs++++9avq6qqytChQ3PvvfeudsiyZMmSLFmypP7xokWLmj0rH83ChQtTV1dX0nMLdXWp+b+va2trU6yubrpg/2f+/PlN/poAbYUhCwAAAEAbVFtbmyTp27dvg/V9+/bNCy+8sNrnTZgwIePGjWvWbDSdhQsX5tLLJ2fFsndKen7npUtz1v99fc0112RZly5NFw4AQxYAAACAtqxQKDR4XCwWV1r3fmPGjMno0aPrHy9atCgDBgxotnx8NHV1dVmx7J3cuvsmmd+ja6Of323x2zlr/LtfX7v35lncrfGv8WE2m7swez06t8lfF6AtMGQBAAAAaINqat69CFRtbW369etXv37evHkrnd3yflVVVamqqmr2fDSt+T26prZ34y/1VV3Xof7r/+1Vnbrqph+y9Fn0dpO/JkBb0eHDdwEAAACgtRk4cGBqamoyffr0+nVLly7NjBkzMnjw4DImA4DK4UwWAAAAgFbqzTffzDPPPFP/ePbs2XnkkUfSu3fvbLTRRhk1alTGjx+fQYMGZdCgQRk/fnyqq6tz5JFHljE1AFQOQxYAAACAVuqBBx7IXnvtVf/4vXupHHPMMbn22mtzxhlnZPHixRk5cmQWLFiQ3XbbLdOmTUv37t3LFRkAKoohCwAAAEArNWzYsBSLxdVuLxQKGTt2bMaOHdtyoQCAeu7JAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEjR6yTJ06Nb///e/rH59xxhlZd911M3jw4LzwwgtNGg4AoBT6CgBQTroIAFSORg9Zxo8fn27duiVJ7rvvvkyePDmXXHJJ1ltvvZx++ulNHhAAoLFasq+88847OeecczJw4MB069Ytm266aS644IKsWLGiSd8HAGg7/O0EACpHp8Y+Yc6cOfnEJz6RJLn11ltz6KGH5j/+4z8yZMiQDBs2rKnzAQA0Wkv2lYsvvjg//vGPM3Xq1GyzzTZ54IEHctxxx6Vnz5457bTTmvS9AIC2wd9OAKByNPpMlo997GN59dVXkyTTpk3LPvvskyTp2rVrFi9e3LTpAABK0JJ95b777svnP//5HHDAAdlkk01y6KGHZt99980DDzzQpO8DALQd/nYCAJWj0WeyDB8+PF//+tez00475amnnsoBBxyQJJk1a1Y22WSTps4HANBoLdlX9txzz/z4xz/OU089lc033zx///vfc88992TSpEmrfc6SJUuyZMmS+seLFi1q0kxUrvnz55c7whpVV1enZ8+e5Y4B0Oz87QQAKkejhyyXX355zjnnnMyZMyc33XRT+vTpkyR58MEHc8QRRzR5QACAxmrJvvKd73wnCxcuzJZbbpmOHTtm+fLlueiii9b4PhMmTMi4ceOaNAeVbZ3Fy7Iiyc0331zuKGvUoXOnnHrSyQYtQLvnbycAUDkaPWRZtGhRLr300nTo0PBKY2PHjs2cOXOaLBgAQKlasq/86le/yi9+8YvccMMN2WabbfLII49k1KhR6d+/f4455phVPmfMmDEZPXp0g7wDBgxo0lxUlq7LlqdDklt33yTze3Qtd5xVWm/R2zn4r8+nrq7OkAVo9/ztBAAqR6OHLAMHDszcuXOzwQYbNFj/2muvZeDAgVm+fHmThQMAKEVL9pVvf/vbOfPMM3P44YcnSbbbbru88MILmTBhwmqHLFVVVamqqmqyDPCe+T26prZ3dbljAFQ8fzsBgMrR6BvfF4vFVa5/880307Vr6/zUHABQWVqyr9TV1a30KdWOHTtmxYoVTfo+AEDb4W8nAFA51vpMlvcuaVEoFHLeeeeluvr//4Tc8uXL87e//S077rhjkwcEAFhb5egrBx10UC666KJstNFG2WabbfLwww9n4sSJ+drXvtak7wMAtH7+dgIAlWethywPP/xwknc/jfHoo4+mS5cu9du6dOmSHXbYId/61reaPiEAwFoqR1+57LLLcu6552bkyJGZN29e+vfvnxNOOCHnnXdek74PAND6+dsJAFSetR6y3HXXXUmS4447Lj/60Y/So0ePZgsFAFCKcvSV7t27Z9KkSZk0aVKzvxcA0Lr52wkAVJ5G3/h+ypQpzZEDAKDJ6CsAQDnpIgBQORo9ZHnrrbfy3e9+N3/84x8zb968lW7q+txzzzVZOACAUugrAEA56SIAUDkaPWT5+te/nhkzZuToo49Ov379UigUmiMXAEDJ9BUAoJx0EQCoHI0estx22235/e9/nyFDhjRHHgCAj0xfAQDKSRcBgMrRobFP6NWrV3r37t0cWQAAmoS+AgCUky4CAJWj0UOW//f//l/OO++81NXVNUceAICPTF8BAMpJFwGAytHoy4X94Ac/yLPPPpu+fftmk002SefOnRtsf+ihh5osHABAKfQVAKCcdBEAqByNHrIcfPDBzRADAKDp6CsAQDnpIgBQORo9ZDn//PObIwcAQJPRVwCActJFAKByNPqeLEny+uuv52c/+1nGjBmT1157Lcm7p7q+/PLLTRoOAKBU+goAUE66CABUhkafyfKPf/wj++yzT3r27Jnnn38+I0aMSO/evXPLLbfkhRdeyHXXXdccOQEA1pq+AgCUky4CAJWj0WeyjB49Oscee2yefvrpdO3atX79/vvvn7vvvrtJwwEAlEJfAQDKSRcBgMrR6CHLzJkzc8IJJ6y0/uMf/3hqa2ubJBQAwEehrwAA5aSLAEDlaPSQpWvXrlm0aNFK65988smsv/76TRIKAOCj0FcAgHLSRQCgcjR6yPL5z38+F1xwQZYtW5YkKRQKefHFF3PmmWfmi1/8YpMHBABoLH0FACinluwi77zzTs4555wMHDgw3bp1y6abbpoLLrggK1asaNL3AQBWrdFDlu9///v517/+lQ022CCLFy/O0KFD84lPfCLdu3fPRRdd1OQBX3755XzlK19Jnz59Ul1dnR133DEPPvhg/fZisZixY8emf//+6datW4YNG5ZZs2Y1eQ4AoO1o6b4CAPB+LdlFLr744vz4xz/O5MmT88QTT+SSSy7J9773vVx22WVN+j4AwKp1auwTevTokXvuuSd33nlnHnrooaxYsSI777xz9tlnnyYPt2DBggwZMiR77bVXbrvttmywwQZ59tlns+6669bvc8kll2TixIm59tprs/nmm+fCCy/M8OHD8+STT6Z79+5NngkAaP1asq8AAHxQS3aR++67L5///OdzwAEHJEk22WST/PKXv8wDDzzQ5O8FAKys0UOW93z605/Opz/96abMspKLL744AwYMyJQpU+rXbbLJJvVfF4vFTJo0KWeffXYOOeSQJMnUqVPTt2/f3HDDDau8yRwAUDlaoq8AAKxOS3SRPffcMz/+8Y/z1FNPZfPNN8/f//733HPPPZk0adJqn7NkyZIsWbKk/vGq7h8D7dn8+fPLHWGN3nnnnXTqVPKfbVtEdXV1evbsWe4Y0CqU9F/r/fffnz/96U+ZN2/eStf4nDhxYpMES5Lf/va32W+//fKlL30pM2bMyMc//vGMHDkyI0aMSJLMnj07tbW12XfffeufU1VVlaFDh+bee+9d7ZBFmQCA9q+l+goAwKq0VBf5zne+k4ULF2bLLbdMx44ds3z58lx00UU54ogjVvucCRMmZNy4cU2WAdqKdRYvy4okN998c7mjrNGKQtKhWO4Ua9ahc6ecetLJBi2QEoYs48ePzznnnJMtttgiffv2TaFQqN/2/q+bwnPPPZcrr7wyo0ePzllnnZX7778/p556aqqqqvLVr341tbW1SZK+ffs2eF7fvn3zwgsvrPZ1lQkAaN9asq8AAHxQS3aRX/3qV/nFL36RG264Idtss00eeeSRjBo1Kv37988xxxyzyueMGTMmo0ePrn+8aNGiDBgwoElzQWvUddnydEhy6+6bZH6PruWOs0qbzV2YvR6d26ozrrfo7Rz81+dTV1dnyAIpYcjyox/9KNdcc02OPfbYZojT0IoVK7LLLrtk/PjxSZKddtops2bNypVXXpmvfvWr9ft9sKAUi8U1lhZlAgDat5bsKwAAH9SSXeTb3/52zjzzzBx++OFJku222y4vvPBCJkyYsNohS1VVVaqqqpo9G7RW83t0TW3v6nLHWKU+i95O0rozAg11aPQTOnTIkCFDmiPLSvr165ett966wbqtttoqL774YpKkpqYmSerPaHnPvHnzVjq75f2qqqrSo0ePBgsA0H60ZF8BAPigluwidXV16dCh4Z93OnbsuNIlygCA5tHoIcvpp5+eyy+/vDmyrGTIkCF58sknG6x76qmnsvHGGydJBg4cmJqamkyfPr1++9KlSzNjxowMHjy4RTICAK1PS/YVAIAPaskuctBBB+Wiiy7K73//+zz//PO55ZZbMnHixHzhC19okfcHgErX6MuFfetb38oBBxyQzTbbLFtvvXU6d+7cYHtT3jjq9NNPz+DBgzN+/Pgcdthhuf/++3PVVVflqquuSvLuZcJGjRqV8ePHZ9CgQRk0aFDGjx+f6urqHHnkkU2WAwBoW1qyrwAAfFBLdpHLLrss5557bkaOHJl58+alf//+OeGEE3Leeec12XsAAKvX6CHLKaeckrvuuit77bVX+vTp06w3j/3Upz6VW265JWPGjMkFF1yQgQMHZtKkSTnqqKPq9znjjDOyePHijBw5MgsWLMhuu+2WadOmpXv37s2WCwBo3VqyrwAAfFBLdpHu3btn0qRJmTRpUrO9BwCweo0eslx33XW56aabcsABBzRHnpUceOCBOfDAA1e7vVAoZOzYsRk7dmyL5AEAWr+W7isAAO+niwBA5Wj0PVl69+6dzTbbrDmyAAA0CX0FACgnXQQAKkejhyxjx47N+eefn7q6uubIAwDwkekrAEA56SIAUDkafbmwSy+9NM8++2z69u2bTTbZZKWbtz300ENNFg6gNZs/f365I3yo6urq9OzZs9wxoMXpKwBAOekiAFA5Gj1kOfjgg5shBkDbsc7iZVmR5Oabby53lA/VoXOnnHrSyQYtVBx9BQAoJ10EACpHo4cs559/fnPkAGgzui5bng5Jbt19k8zv0bXccVZrvUVv5+C/Pp+6ujpDFiqOvgIAlJMuAgCVo9FDFgDeNb9H19T2ri53DAAAAACgTBo9ZOnVq1cKhcJK6wuFQrp27ZpPfOITOfbYY3Pcccc1SUAAgMbSV6D1ck8zoBLoIgBQORo9ZDnvvPNy0UUXZf/998+uu+6aYrGYmTNn5vbbb89JJ52U2bNn5xvf+EbeeeedjBgxojkyAwCskb4CrY97mgGVRBcBgMrR6CHLPffckwsvvDAnnnhig/U/+clPMm3atNx0003Zfvvtc+mllyoKAEBZ6CvQ+rinGVBJdBEAqByNHrLccccdufjii1dav/fee+eb3/xmkuSzn/1szjzzzI+eDgCgBPoKtF7uaQZUAl0EACpHh8Y+oXfv3vnv//7vldb/93//d3r37p0keeutt9K9e/ePng4AoAT6CgBQTroIAFSORp/Jcu655+Yb3/hG7rrrruy6664pFAq5//7784c//CE//vGPkyTTp0/P0KFDmzwsAMDa0FcAgHLSRQCgcjR6yDJixIhsvfXWmTx5cm6++eYUi8VsueWWmTFjRgYPHpwk9ae+AgCUg74CAJSTLgIAlaPRQ5YkGTJkSIYMGdLUWQAAmoy+AgCUky4CAJWhpCHLexYvXpxly5Y1WNejR4+PFAgAoCnpKwBAOekiANC+NfrG93V1dTn55JOzwQYb5GMf+1h69erVYAEAKDd9BQAoJ10EACpHo4cs3/72t3PnnXfmiiuuSFVVVX72s59l3Lhx6d+/f6677rrmyAgA0Cj6CgBQTroIAFSORl8u7L//+79z3XXXZdiwYfna176Wf/u3f8snPvGJbLzxxrn++utz1FFHNUdOAIC1pq8AAOWkiwBA5Wj0mSyvvfZaBg4cmOTda4i+9tprSZI999wzd999d9OmAwAogb4CAJSTLgIAlaPRQ5ZNN900zz//fJJk6623zq9//esk735KY911123KbAAAJdFXAIBy0kUAoHI0eshy3HHH5e9//3uSZMyYMfXXFz399NPz7W9/u8kDAgA0lr4CAJSTLgIAlaPR92Q5/fTT67/ea6+98s9//jMPPPBANttss+ywww5NGg4AoBT6CgBQTroIAFSORp3JsmzZsuy111556qmn6tdttNFGOeSQQ5QEAKBV0FcAgHLSRQCgsjRqyNK5c+c89thjKRQKzZUHAOAj0VcAgHLSRQCgsjT6nixf/epXc/XVVzdHFgCAJqGvAADlpIsAQOVo9D1Zli5dmp/97GeZPn16dtlll6yzzjoNtk+cOLHJwgEAlEJfAQDKSRcBgMrR6CHLY489lp133jlJGlxfNIlTYQGAVkFfAQDKSRcBgMqxVkOWf/zjH9l2223ToUOH3HXXXc2dCQCg0fQVAKCcdBEAqExrdU+WnXbaKfPnz0+SbLrppnn11VebNRQAQGPpKwBAOekiAFCZ1mrIsu6662b27NlJkueffz4rVqxo1lAAAI2lrwAA5aSLAEBlWqvLhX3xi1/M0KFD069fvxQKheyyyy7p2LHjKvd97rnnmjQgAMDa0FcAgHLSRQCgMq3VkOWqq67KIYcckmeeeSannnpqRowYke7duzd3NgCAtaavAADlpIsAQGVaqyFLknzmM59Jkjz44IM57bTTFAUAoNXRVwCActJFAKDyrPWQ5T1TpkxpjhwAAE1GXwEAykkXAYDKsVY3vgcAAAAAAKAhQxYAAAAAAIASGLIAAAAAAACUYK2GLDvvvHMWLFiQJLngggtSV1fXrKEAABpLXwEAykkXAYDKtFZDlieeeCJvvfVWkmTcuHF58803mzUUAEBj6SsAQDnpIgBQmTqtzU477rhjjjvuuOy5554pFov5/ve/n4997GOr3Pe8885r0oAAAGtDXwEAykkXAYDKtFZDlmuvvTbnn39+fve736VQKOS2225Lp04rP7VQKCgKAEBZ6CsAQDnpIgBQmdZqyLLFFlvkxhtvTJJ06NAhf/zjH7PBBhs0azAAgMbQVwCActJFAKAyrdU9Wd5vxYoVSgIA0Kq1dF95+eWX85WvfCV9+vRJdXV1dtxxxzz44IMt9v4AQOvibycAUDnW6kyWD3r22WczadKkPPHEEykUCtlqq61y2mmnZbPNNmvqfAAAJWmpvrJgwYIMGTIke+21V2677bZssMEGefbZZ7Puuus26fsAAG2Lv50AQGVo9Jksd9xxR7beeuvcf//92X777bPtttvmb3/7W7bZZptMnz69OTICADRKS/aViy++OAMGDMiUKVOy6667ZpNNNsnee+/tDygAUMH87QQAKkejz2Q588wzc/rpp+e73/3uSuu/853vZPjw4U0WDgCgFC3ZV377299mv/32y5e+9KXMmDEjH//4xzNy5MiMGDFitc9ZsmRJlixZUv940aJFTZanrVm4cGF6/t/XtbW1KVZXlzXPqsyfP7/cEQBoY/ztBAAqR6OHLE888UR+/etfr7T+a1/7WiZNmtQUmQAAPpKW7CvPPfdcrrzyyowePTpnnXVW7r///px66qmpqqrKV7/61VU+Z8KECRk3blyT5miLFi5cmCuv+knO/L/H11xzTZZ16VLWTADQFPztBAAqR6OHLOuvv34eeeSRDBo0qMH6Rx55xE3dAIBWoSX7yooVK7LLLrtk/PjxSZKddtops2bNypVXXrnaIcuYMWMyevTo+seLFi3KgAEDmjRXW1BXV5cVy96pf3zt3ptncbeuZUy0apvNXZi9Hp1b7hgAtCH+dgIAlaPRQ5YRI0bkP/7jP/Lcc89l8ODBKRQKueeee3LxxRfnm9/8ZnNkBABolJbsK/369cvWW2/dYN1WW22Vm266abXPqaqqSlVVVZPmaA/+t1d16qpb35Clz6K3yx0BgDbG304AoHI0eshy7rnnpnv37vnBD36QMWPGJEn69++fsWPH5tRTT23ygAAAjdWSfWXIkCF58sknG6x76qmnsvHGGzfp+wAAbYe/nQBA5Wj0kKVQKOT000/P6aefnjfeeCNJ0r179yYPBgBQqpbsK6effnoGDx6c8ePH57DDDsv999+fq666KldddVWzvB8A0Pr52wkAVI5GD1neT0EAAFq75u4rn/rUp3LLLbdkzJgxueCCCzJw4MBMmjQpRx11VLO+LwDQNvjbCQC0bx9pyAIAQHLggQfmwAMPLHcMAAAAoIV1KHcAAAAAAACAtsiQBQAAAAAAoASNGrIsW7Yse+21V5566qnmygMA8JHoKwBAOekiAFBZGjVk6dy5cx577LEUCoXmygMA8JHoKwBAOekiAFBZGn25sK9+9au5+uqrmyMLAECT0FcAgHLSRQCgcnRq7BOWLl2an/3sZ5k+fXp22WWXrLPOOg22T5w4scnCAQCUQl8BAMpJFwGAytHoIctjjz2WnXfeOUlWur6oU2EBgNZAXwEAykkXAYDK0eghy1133dUcOQAAmoy+AgCUky4CAJWj0fdkec8zzzyTO+64I4sXL06SFIvFJgsFANAU9BUAoJxaqou8/PLL+cpXvpI+ffqkuro6O+64Yx588MFmeS8AoKFGD1leffXV7L333tl8883z2c9+NnPnzk2SfP3rX883v/nNJg8IANBY+goAUE4t2UUWLFiQIUOGpHPnzrntttvy+OOP5wc/+EHWXXfdJn0fAGDVGj1kOf3009O5c+e8+OKLqa6url//5S9/ObfffnuThgMAKIW+AgCUU0t2kYsvvjgDBgzIlClTsuuuu2aTTTbJ3nvvnc0226xJ3wcAWLVG35Nl2rRpueOOO7Lhhhs2WD9o0KC88MILTRYMAKBU+goAUE4t2UV++9vfZr/99suXvvSlzJgxIx//+MczcuTIjBgxYrXPWbJkSZYsWVL/eNGiRU2aCagM8+fPL3eED1VdXZ2ePXuWOwbtXKOHLG+99VaDT2G8Z/78+amqqmqSUAAAH4W+AgCUU0t2keeeey5XXnllRo8enbPOOiv3339/Tj311FRVVeWrX/3qKp8zYcKEjBs3rklzAJVjncXLsiLJzTffXO4oH6pD50459aSTDVpoVo0esvz7v/97rrvuuvy///f/kiSFQiErVqzI9773vey1115NHhAAoLH0FQCgnFqyi6xYsSK77LJLxo8fnyTZaaedMmvWrFx55ZWrHbKMGTMmo0ePrn+8aNGiDBgwoElzAe1X12XL0yHJrbtvkvk9upY7zmqtt+jtHPzX51NXV2fIQrNq9JDle9/7XoYNG5YHHnggS5cuzRlnnJFZs2bltddey1/+8pfmyAgA0Cj6CgBQTi3ZRfr165ett966wbqtttoqN91002qfU1VV5exe4COb36NranuvfNYeVJpG3/h+6623zj/+8Y/suuuuGT58eN56660ccsghefjhh91UDQBoFfQVAKCcWrKLDBkyJE8++WSDdU899VQ23njjJn0fAGDVGn0mS5LU1NS4dicA0KrpKwBAObVUFzn99NMzePDgjB8/Pocddljuv//+XHXVVbnqqqua/b0BgBKHLAsWLMjVV1+dJ554IoVCIVtttVWOO+649O7du6nzAQCURF8BAMqppbrIpz71qdxyyy0ZM2ZMLrjgggwcODCTJk3KUUcd1aTvAwCsWqMvFzZjxowMHDgwl156aRYsWJDXXnstl156aQYOHJgZM2Y0R0YAgEbRVwCAcmrpLnLggQfm0Ucfzdtvv50nnngiI0aMaPL3AABWrdFnspx00kk57LDDcuWVV6Zjx45JkuXLl2fkyJE56aST8thjjzV5SACAxtBXAIBy0kUAoHI0+kyWZ599Nt/85jfrS0KSdOzYMaNHj86zzz7bpOEAAEqhrwAA5aSLAEDlaPSQZeedd84TTzyx0vonnngiO+64Y1NkAgD4SPQVAKCcdBEAqBxrdbmwf/zjH/Vfn3rqqTnttNPyzDPPZPfdd0+S/PWvf83ll1+e7373u82TEgDgQ+grAEA56SIAUJnWasiy4447plAopFgs1q8744wzVtrvyCOPzJe//OWmSwcAsJb0FQCgnHQRAKhMazVkmT17dnPnAAD4SPQVAKCcdBEAqExrNWTZeOONmzsHAMBHoq8AAOWkiwBAZVqrIcsHvfzyy/nLX/6SefPmZcWKFQ22nXrqqU0SDADgo9BXAIBy0kUAoDI0esgyZcqUnHjiienSpUv69OmTQqFQv61QKCgKAEDZ6SsAQDnpIgBQORo9ZDnvvPNy3nnnZcyYMenQoUNzZAIA+Ej0FQCgnHQRAKgcjf5NX1dXl8MPP1xJAABaLX0FACgnXQQAKkejf9sff/zx+c///M/myAIA0CT0FQCgnHQRAKgcjb5c2IQJE3LggQfm9ttvz3bbbZfOnTs32D5x4sQmCwcAUAp9BQAoJ10EACpHo4cs48ePzx133JEtttgiSVa6eRsAQLnpKwBAOekiAFA5Gj1kmThxYq655poce+yxzRBnzSZMmJCzzjorp512WiZNmpQkKRaLGTduXK666qosWLAgu+22Wy6//PJss802LZ4PAGgdytlXAAB0EQCoHI2+J0tVVVWGDBnSHFnWaObMmbnqqquy/fbbN1h/ySWXZOLEiZk8eXJmzpyZmpqaDB8+PG+88UaLZwQAWody9RUAgEQXAYBK0ughy2mnnZbLLrusObKs1ptvvpmjjjoqP/3pT9OrV6/69cViMZMmTcrZZ5+dQw45JNtuu22mTp2aurq63HDDDS2aEQBoPcrRVwAA3qOLAEDlaPTlwu6///7ceeed+d3vfpdtttlmpZu33XzzzU0W7j0nnXRSDjjggOyzzz658MIL69fPnj07tbW12XfffevXVVVVZejQobn33ntzwgknrPL1lixZkiVLltQ/XrRoUZNnBgDKpxx9BQDgPboIAFSORg9Z1l133RxyyCHNkWWVbrzxxjz00EOZOXPmSttqa2uTJH379m2wvm/fvnnhhRdW+5oTJkzIuHHjmjYoANBqtHRfAQB4P10EACpHo4csU6ZMaY4cqzRnzpycdtppmTZtWrp27bra/QqFQoPHxWJxpXXvN2bMmIwePbr+8aJFizJgwICPHhgAaBVasq8AAHyQLgIAlaPRQ5aW9OCDD2bevHn55Cc/Wb9u+fLlufvuuzN58uQ8+eSTSd49o6Vfv371+8ybN2+ls1ver6qqKlVVVc0XHAAAAAAAaPcaPWQZOHDgGs8See655z5SoPfbe++98+ijjzZYd9xxx2XLLbfMd77znWy66aapqanJ9OnTs9NOOyVJli5dmhkzZuTiiy9ushwAQNvSkn0FAOCDdBEAqByNHrKMGjWqweNly5bl4Ycfzu23355vf/vbTZUrSdK9e/dsu+22Ddats8466dOnT/36UaNGZfz48Rk0aFAGDRqU8ePHp7q6OkceeWSTZgEA2o6W7CsAAB+kiwBA5Wj0kOW0005b5frLL788DzzwwEcO1Fj/X3t3H2RVfd8P/LPLwj4QdhVUIIJIfACVaBUNiEZJVWzGNqUZJ7YxVh3N1BF8KNNE+NEJ0FqJtjUGAVsdRWtFnURQM00ITBrwgZpaxGp8jg8JNrvRVbyLubCycH5/pG5dgXX37L337L37es2cGe/Zu3ff3+/37p6P3w/33m9+85uxffv2uPzyy2Pr1q0xZcqUWLt2bQwbNqzkWQCA/qG/1SsAwMCiFgGAgaO6UA/0xS9+MR544IFCPdw+rV+/Pm666abO21VVVbFw4cJobm6OHTt2xIYNG/Z49QsAQETp6hUAgL1RiwBA5SlYk+X73/9+DB8+vFAPBwBQcOoVACBLahEAqDy9fruw448/vsuHtyVJEi0tLfH222/H8uXLCxoOACAN9QoAkCW1CAAMHL1ussycObPL7erq6jjwwANj+vTpMXHixELlAgBITb0CAGRJLQIAA0evmywLFiwoRg4AgIJRrwAAWVKLAMDAUbDPZAEAAAAAABhIevxKlurq6i7vJ7o3VVVV0dHR0edQAABpqFcAgCypRQBg4Olxk2X16tX7/NrGjRvj5ptvjiRJChIKACAN9QoAkCW1CAAMPD1usvzxH//xHudefPHFmDdvXvzgBz+I888/P/72b/+2oOEAAHpDvQIAZEktAgADT6rPZPn1r38dX//61+PYY4+Njo6OePrpp+Ouu+6KQw45pND5AABSUa8AAFlSiwDAwNCrJksul4trrrkmDj/88HjuuefiJz/5SfzgBz+ISZMmFSsfAECvqFcAgCypRQBgYOnx24XdcMMNcf3118eoUaPi3nvv3etLYAEAsqReAQCypBYBgIGnx02WuXPnRn19fRx++OFx1113xV133bXX+61atapg4QAAekO9AgBkSS0CAANPj5ssf/7nfx5VVVXFzAIA0CfqFQAgS2oRABh4etxkufPOO4sYAwCg79QrAECW1CIAMPD06oPvAQAAAAAA+B1NFgAAAAAAgBR6/HZhQPdyuVzk8/nU31+Vz8eo//3vlpaWSBoaChPsf7W2thb08QAAAAAABjpNFiiAXC4XS5Ytjd07O1I/xuAPPoj/97//fccdd8TOIUMKEw4AAAAAgKLQZIECyOfzsXtnRzw49dBobaxL9Rj123fE/7vud/995xlHxvb6dI+zL4c15+ILzzYX9DEBAAAAAAYyTRYooNbGumgZnu5tvhry//cRSb/ZvyHyDYVtsoxo21HQxwMAAAAAGOh88D0AAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAEABLV68OKqqquLqq6/OOgoAAABQZJosAAAF8uSTT8att94axx57bNZRAAAAgBLQZAEAKID3338/zj///Ljtttti//33zzoOAAAAUAKaLAAABTBr1qw455xz4swzz8w6CgAAAFAiNVkHAAAod/fdd1889dRT8eSTT/bo/u3t7dHe3t55u62trSi5crlc5PP5ojx2IbS2tmYdAQAAAPpEkwUAoA+2bNkSV111Vaxduzbq6up69D2LFy+ORYsWFTVXLpeLJcuWxu6dHUX9OX01OOsAAAAA0AeaLAAAfbBp06Z46623YvLkyZ3ndu3aFY888kgsXbo02tvbY9CgQV2+Z968eTFnzpzO221tbTF27NiC5srn87F7Z0c8OPXQaG3sWfOn1A5rzsWMTb/MOgYAAACkpskCANAHZ5xxRjz77LNdzl188cUxceLEuOaaa/ZosERE1NbWRm1tbUnytTbWRcvwhpL8rN4a0bYj6wgAAADQJ5osAAB9MGzYsJg0aVKXc0OHDo0RI0bscR4AAACoLNVZBwAAAAAAAChHXskCAFBg69evzzoCAAAAUAJeyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAFWLx4sVRVVUVV199ddZRAGBA0GQBAAAAqABPPvlk3HrrrXHsscdmHQUABgxNFgAAAIAy9/7778f5558ft912W+y///5ZxwGAAaMm6wAAAAAA9M2sWbPinHPOiTPPPDOuvfbabu/b3t4e7e3tnbfb2tqKHQ8gM62trVlH6FZDQ0M0NTVlHeMT5XK5yOfzWcfoVlZzqckCAAAAUMbuu+++eOqpp+LJJ5/s0f0XL14cixYtKnIqgGwN3b4zdkfEqlWrso7SrerBNXHlrNn9utGSy+ViybKlsXtnR9ZRupXVXGqyAAAAAJSpLVu2xFVXXRVr166Nurq6Hn3PvHnzYs6cOZ2329raYuzYscWKCJCJup27ojoiHpx6aLQ29uzvY6kd0LYjZj7xRuTz+X7dZMnn87F7Z4e53AdNFgAAAIAytWnTpnjrrbdi8uTJned27doVjzzySCxdujTa29tj0KBBXb6ntrY2amtrSx0VIBOtjXXRMrwh6xgVwVzunSYLAAAAQJk644wz4tlnn+1y7uKLL46JEyfGNddcs0eDBQAoLE0WAAAAgDI1bNiwmDRpUpdzQ4cOjREjRuxxHgAovOqsAwAAAAAAAJQjr2QBAAAAqCDr16/POgIADBheyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKdRkHQCA4mptbc06QrcaGhqiqakp6xgAAAAA0GuaLAAVauj2nbE7IlatWpV1lG5VD66JK2fN1mgBAAAAoOxosgBUqLqdu6I6Ih6cemi0NtZlHWevDmjbETOfeCPy+bwmCwAAAABlR5MFoMK1NtZFy/CGrGMAAAAAQMXxwfcAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAo1WQcAAACgMuVyucjn81nH6FZDQ0M0NTVlHQMAgDKlyQIAAEDB5XK5WLJsaeze2ZF1lG5VD66JK2fN1mgBACAVTRYAAAAKLp/Px+6dHfHg1EOjtbEu6zh7dUDbjpj5xBuRz+c1WQAASEWTBQAAgKJpbayLluENWccAAICi8MH3AAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAACnUZB0AAAAAALKQy+Uin89nHaNbra2tWUcAoBuaLAAAAAAMOLlcLpYsWxq7d3ZkHQWAMqbJAgAAAMCAk8/nY/fOjnhw6qHR2liXdZx9Oqw5F194tjnrGADsgyYLAAAAAANWa2NdtAxvyDrGPo1o25F1BAC64YPvAQAAAAAAUtBkAQAAAAAASEGTBQAAAAAAIAVNFgAAAAAAgBR88D1lIZfLRT6fzzrGPrW2tmYdAQAAAACAEtNkod/L5XKxZNnS2L2zI+soAAAAAADQqV83WRYvXhyrVq2KF198Merr62PatGlx/fXXx4QJEzrvkyRJLFq0KG699dbYunVrTJkyJZYtWxbHHHNMhskppHw+H7t3dsSDUw+N1sa6rOPs1WHNufjCs81ZxwAAAAAAoIT6dZNlw4YNMWvWrDjppJOio6Mj5s+fHzNmzIjnn38+hg4dGhERN9xwQ9x4441x5513xpFHHhnXXnttnHXWWfHSSy/FsGHDMh4BhdTaWBctwxuyjrFXI9p2ZB0BAAAAAIAS69dNljVr1nS5vWLFijjooINi06ZNcdppp0WSJHHTTTfF/Pnz48tf/nJERNx1110xcuTIWLlyZfzFX/xFFrEBAAAAAIABoDrrAL2Ry+UiImL48OEREfH6669HS0tLzJgxo/M+tbW1cfrpp8fGjRv3+Tjt7e3R1tbW5QAAAAAAAOiNsmmyJEkSc+bMiVNPPTUmTZoUEREtLS0RETFy5Mgu9x05cmTn1/Zm8eLF0dTU1HmMHTu2eMEBAAAAAICKVDZNltmzZ8czzzwT99577x5fq6qq6nI7SZI9zn3UvHnzIpfLdR5btmwpeF4AAAAAAKCy9evPZPnQFVdcEQ8//HA88sgjMWbMmM7zo0aNiojfvaJl9OjRneffeuutPV7d8lG1tbVRW1tbvMAAAAAAAEDF69evZEmSJGbPnh2rVq2Kf//3f4/x48d3+fr48eNj1KhRsW7dus5zH3zwQWzYsCGmTZtW6rgAAAAAAMAA0q9fyTJr1qxYuXJlPPTQQzFs2LDOz1lpamqK+vr6qKqqiquvvjquu+66OOKII+KII46I6667LhoaGuKrX/1qxukBAAAAAIBK1q+bLLfccktEREyfPr3L+RUrVsRFF10UERHf/OY3Y/v27XH55ZfH1q1bY8qUKbF27doYNmxYidMCAAAAAAADSb9usiRJ8on3qaqqioULF8bChQuLHwgAAAAAAOB/9evPZAEAAAAAAOivNFkAAAAAAABS0GQBAAAAAABIQZMFAAAAAAAgBU0WAAAAAACAFDRZAAAAAAAAUtBkAQAAAAAASEGTBQCgDxYvXhwnnXRSDBs2LA466KCYOXNmvPTSS1nHAgAAAEpAkwUAoA82bNgQs2bNiieeeCLWrVsXHR0dMWPGjPjtb3+bdTQAAACgyGqyDgAAUM7WrFnT5faKFSvioIMOik2bNsVpp52WUSoAAACgFDRZAAAKKJfLRUTE8OHD93mf9vb2aG9v77zd1tZW9FxA77S2tmYdoVsdHR1RU9O//3euv89hucnlcpHP57OO0a2GhoZoamrKOgYAQEn176ocgAGhHDZhbBrQE0mSxJw5c+LUU0+NSZMm7fN+ixcvjkWLFpUwGdBTQ7fvjN0RsWrVqqyjdGt3VUR1knUKSiWXy8WSZUtj986OrKN0q3pwTVw5a7aaCQAYUDRZAMhMuWxkRdg0oGdmz54dzzzzTDz22GPd3m/evHkxZ86cztttbW0xduzYYscDeqBu566ojogHpx4arY11WcfZq8Oac/GFZ5v7dcaI/8tJ3+Xz+di9s6Nfr/kBbTti5hNvRD6fVy8BAAOKJgsAmSmHjawImwb0zBVXXBEPP/xwPPLIIzFmzJhu71tbWxu1tbUlSgak0dpYFy3DG7KOsVcj2nZERP/OGPF/OSmc/r7mZGPx4sWxatWqePHFF6O+vj6mTZsW119/fUyYMCHraAAwIGiyAJA5GwaUsyRJ4oorrojVq1fH+vXrY/z48VlHAgAGkA0bNsSsWbPipJNOio6Ojpg/f37MmDEjnn/++Rg6dGjW8QCg4mmyAAD0waxZs2LlypXx0EMPxbBhw6KlpSUiIpqamqK+vj7jdABApVuzZk2X2ytWrIiDDjooNm3aFKeddlpGqQBg4NBkAQDog1tuuSUiIqZPn97l/IoVK+Kiiy4qfSAAYEDL5XIRETF8+PB93qe9vT3a29s7b7e1tRU9FwD71tramnWEbvX3fFnTZAEA6IMkSbKOAAAQEb+rS+bMmROnnnpqTJo0aZ/3W7x4cSxatKiEyQDYm6Hbd8buiFi1alXWUegDTRYAAACACjB79ux45pln4rHHHuv2fvPmzYs5c+Z03m5ra4uxY8cWOx4AH1O3c1dUR8SDUw+N1sa6rOPs02HNufjCs81Zx+i3NFkAAAAAytwVV1wRDz/8cDzyyCMxZsyYbu9bW1sbtbW1JUoGwCdpbayLluENWcfYpxFtO7KO0K9psgAAAACUqSRJ4oorrojVq1fH+vXrY/z48VlHAoABRZMFAAAAoEzNmjUrVq5cGQ899FAMGzYsWlpaIiKiqakp6uvrM04HAJWvOusAAAAAAKRzyy23RC6Xi+nTp8fo0aM7j/vvvz/raAAwIHglCwAAAECZSpIk6wgAMKB5JQsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKNVkHAAAAgCy1trZmHaFb/T0fAMBApskCAADAgDR0+87YHRGrVq3KOgoAAGVKkwUAAIABqW7nrqiOiAenHhqtjXVZx9mnw5pz8YVnm7OOAQDAXmiyAAAAMKC1NtZFy/CGrGPs04i2HVlHgFRyuVzk8/msY+yTt+IDoBA0WQAAAAAoqFwuF0uWLY3dOzuyjgIARaXJAgAAAEBB5fP52L2zo1+/HZ+34gOgEDRZAAAAACiK/vx2fN6KD4BCqM46AAAAAAAAQDnSZAEAAAAAAEhBkwUAAAAAACAFTRYAAAAAAIAUNFkAAAAAAABS0GQBAAAAAABIQZMFAAAAAAAgBU0WAAAAAACAFDRZAAAAAAAAUqjJOgAAlIvW1tasI3SroaEhmpqaso4BAAAAMGBosgDAJxi6fWfsjohVq1ZlHaVb1YNr4spZszVaAAAAAEpEkwUAPkHdzl1RHREPTj00Whvrso6zVwe07YiZT7wR+XxekwUAAACgRDRZAKCHWhvromV4Q9YxAAAAAOgnfPA9AAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAo1WQeoZLlcLvL5fNYxutXQ0BBNTU1ZxwAAAAAAgLKjyVIkuVwulixbGrt3dmQdpVvVg2viylmzNVoAAAAAAKCXNFmKJJ/Px+6dHfHg1EOjtbEu6zh7dUDbjpj5xBuRz+c1WQAAAAAAoJc0WYqstbEuWoY3ZB0DAAAAAAAoMB98DwAAAAAAkIJXshCtra1ZR+hWf88HAAAAAMDApMkygA3dvjN2R8SqVauyjgIAAAAAAGVHk2UAq9u5K6oj4sGph0ZrY13WcfbpsOZcfOHZ5qxjAAAAAABAF5osRGtjXbQMb8g6xj6NaNuRdQQAAAAAANiDD74HAAAAAABIQZMFAAAAAAAgBU0WAAAAAACAFCqmybJ8+fIYP3581NXVxeTJk+PRRx/NOhIAMICoRQCALKlFACAbFdFkuf/+++Pqq6+O+fPnx+bNm+Pzn/98fPGLX4xf/epXWUcDAAYAtQgAkCW1CABkpyKaLDfeeGNccsklcemll8ZRRx0VN910U4wdOzZuueWWrKMBAAOAWgQAyJJaBACyU5N1gL764IMPYtOmTTF37twu52fMmBEbN27c6/e0t7dHe3t75+1cLhcREW1tbQXLtW3bttixY0fs37w1dv82X7DHLaRPvd3W7zNGlEfOQmSs294eHz4DD3jzndhRX1u4gFEe8xhRHjnLIWNEeeQsh4wR5ZFz/7b22LFjR2zbti2GDh1akMf88LqYJElBHq9SqUXS+9TbbbGjvbjXv0Ioh78BMhZOOeQsh4wR5ZGzHDJGlEdOtUh21CLplcPvVkTfcxZ7vyFi4MxlKchYOOWQsxwyRpRHzkxrkaTM/c///E8SEcnjjz/e5fzf/d3fJUceeeRev2fBggVJRDgcDofD4ejBsWXLllJc0suWWsThcDgcjuIeapHuqUUcDofD4Sju8Um1SNm/kuVDVVVVXW4nSbLHuQ/Nmzcv5syZ03l79+7d8e6778aIESP2+T0f19bWFmPHjo0tW7ZEY2Nj+uAVxJx0ZT66Mh9dmY+uzEdX/WU+kiSJbdu2xac//enMMpSTUtciWegvz81iMb7yV+ljrPTxRVT+GCt9fBGFHaNapHfKoRYZCL8DxWLu0jN36Zm79MxdOv1t3npai5R9k+WAAw6IQYMGRUtLS5fzb731VowcOXKv31NbWxu1tV1fGrnffvul+vmNjY39YsH7E3PSlfnoynx0ZT66Mh9d9Yf5aGpqyvTnl4Osa5Es9IfnZjEZX/mr9DFW+vgiKn+MlT6+iMKNUS3yycqxFhkIvwPFYu7SM3fpmbv0zF06/WneelKLlP0H3w8ZMiQmT54c69at63J+3bp1MW3atIxSAQADhVoEAMiSWgQAslX2r2SJiJgzZ05ccMEFceKJJ8bJJ58ct956a/zqV7+Kyy67LOtoAMAAoBYBALKkFgGA7FREk+W8886Ld955J/7mb/4mmpubY9KkSfHDH/4wxo0bV7SfWVtbGwsWLNjj5bUDmTnpynx0ZT66Mh9dmY+uzEf5yaIWyUKlPzeNr/xV+hgrfXwRlT/GSh9fxMAYY39ULrWI50d65i49c5eeuUvP3KVTrvNWlSRJknUIAAAAAACAclP2n8kCAAAAAACQBU0WAAAAAACAFDRZAAAAAAAAUtBkAQAAAAAASEGTpRvLly+P8ePHR11dXUyePDkeffTRfd531apVcdZZZ8WBBx4YjY2NcfLJJ8ePf/zjEqYtvt7Mx2OPPRannHJKjBgxIurr62PixInxne98p4Rpi6838/FRjz/+eNTU1MTv/d7vFTdgifVmPtavXx9VVVV7HC+++GIJExdfb58j7e3tMX/+/Bg3blzU1tbGYYcdFnfccUeJ0hZfb+bjoosu2utz5Jhjjilh4uLq7fPjnnvuieOOOy4aGhpi9OjRcfHFF8c777xTorRUqmJcyx544IE4+uijo7a2No4++uhYvXp1gVP3XKHHd+edd+71b9OOHTuKkL5ninH9Ldc17Mn4yn0NI3pWL5TrGkZ88vjKfQ17WuOU6xr2ZHz9cQ0pLHsH6dlnSM+eRHr2LtKxx5FeRe6HJOzVfffdlwwePDi57bbbkueffz656qqrkqFDhya//OUv93r/q666Krn++uuT//zP/0xefvnlZN68ecngwYOTp556qsTJi6O38/HUU08lK1euTH7+858nr7/+enL33XcnDQ0NyT//8z+XOHlx9HY+PvTee+8ln/nMZ5IZM2Ykxx13XGnClkBv5+OnP/1pEhHJSy+9lDQ3N3ceHR0dJU5ePGmeI1/60peSKVOmJOvWrUtef/315Gc/+1ny+OOPlzB18fR2Pt57770uz40tW7Ykw4cPTxYsWFDa4EXS2/l49NFHk+rq6uS73/1u8tprryWPPvpocswxxyQzZ84scXIqSTGuZRs3bkwGDRqUXHfddckLL7yQXHfddUlNTU3yxBNPFHEke1eM8a1YsSJpbGzs8vepubm5iKPoXjGuv+W8hj0ZX7mvYZJ8cr1QzmuYJJ88vnJfw57UOOW8hj0ZX39bQwrL3kF69hnSsyeRnr2LdOxxpFep+yGaLPvwuc99Lrnsssu6nJs4cWIyd+7cHj/G0UcfnSxatKjQ0TJRiPn4kz/5k+RrX/taoaNlIu18nHfeeclf//VfJwsWLKio4qe38/FhQbN169YSpMtGb+fkRz/6UdLU1JS88847pYhXcn39G7J69eqkqqoqeeONN4oRr+R6Ox9///d/n3zmM5/pcm7JkiXJmDFjipaRyleMa9lXvvKV5A/+4A+6nDv77LOTP/3TPy1I5t4oxvhWrFiRNDU1FThpesW4/pbzGvZkfOW+hj2pF8p5DXsyvnJfw4/bW41Tzmv4cXsbX39bQwrL3kF69hnSsyeRnr2LdOxxpFep+yHeLmwvPvjgg9i0aVPMmDGjy/kZM2bExo0be/QYu3fvjm3btsXw4cOLEbGkCjEfmzdvjo0bN8bpp59ejIgllXY+VqxYEa+++mosWLCg2BFLqi/Pj+OPPz5Gjx4dZ5xxRvz0pz8tZsySSjMnDz/8cJx44olxww03xMEHHxxHHnlk/NVf/VVs3769FJGLqhB/Q26//fY488wzY9y4ccWIWFJp5mPatGnx5ptvxg9/+MNIkiR+85vfxPe///0455xzShGZClSsa9l//Md/7PGYZ599do9/1wulmNfq999/P8aNGxdjxoyJP/zDP4zNmzcXLHdvFOv6W+5rGPHJ9UU5r2FP6oVyXsOe1kPlvIYft7cap5zX8OP2VcP1lzWksOwdpGefIT17EunZu0jHHkd6lbwfUpN1gP6otbU1du3aFSNHjuxyfuTIkdHS0tKjx/jHf/zH+O1vfxtf+cpXihGxpPoyH2PGjIm33347Ojo6YuHChXHppZcWM2pJpJmPV155JebOnRuPPvpo1NRU1q9dmvkYPXp03HrrrTF58uRob2+Pu+++O84444xYv359nHbaaaWIXVRp5uS1116Lxx57LOrq6mL16tXR2toal19+ebz77rtl/96mff2b2tzcHD/60Y9i5cqVxYpYUmnmY9q0aXHPPffEeeedFzt27IiOjo740pe+FDfffHMpIlOBinUta2lp6VP9VCjFGt/EiRPjzjvvjM9+9rPR1tYW3/3ud+OUU06J//7v/44jjjii4OPoTrGuv+W8hj0ZX7mvYU/qhXJew56Mr9zX8KP2VeOU8xp+1L7G15/WkMKyd5CefYb07EmkZ+8iHXsc6VXyfsjA/SvcA1VVVV1uJ0myx7m9uffee2PhwoXx0EMPxUEHHVSseCWXZj4effTReP/99+OJJ56IuXPnxuGHHx5/9md/VsyYJdPT+di1a1d89atfjUWLFsWRRx5Zqngl15vnx4QJE2LChAmdt08++eTYsmVL/MM//ENFFTS9mZPdu3dHVVVV3HPPPdHU1BQRETfeeGOce+65sWzZsqivry963mJL+zf1zjvvjP322y9mzpxZpGTZ6M18PP/883HllVfGt771rTj77LOjubk5vvGNb8Rll10Wt99+eyniUqGKcS1L+7teDIUe39SpU2Pq1Kmdt0855ZQ44YQT4uabb44lS5YULngvFOP6W45rGNGz8ZX7Gva0XijXNezJ+Mp9DT+quxqnXNfwo/Y1vv64hhSWvYP07DOkZ08iPXsX6djjSK8S90M0WfbigAMOiEGDBu3RQXvrrbf26LR93P333x+XXHJJfO9734szzzyzmDFLpi/zMX78+IiI+OxnPxu/+c1vYuHChWVfKPV2PrZt2xb/9V//FZs3b47Zs2dHxO8uSkmSRE1NTaxduzZ+//d/vyTZi6Evz4+Pmjp1avzrv/5roeNlIs2cjB49Og4++ODOIiUi4qijjookSeLNN98s63/V15fnSJIkcccdd8QFF1wQQ4YMKWbMkkkzH4sXL45TTjklvvGNb0RExLHHHhtDhw6Nz3/+83HttdfG6NGji56bylKsa9moUaP6fD0ohFJdq6urq+Okk06KV155pTgD6Uaxrr/luob78kn1RbmtYU/qhXJewzT1ULmt4Ye6q3HKeQ0/1JsaLss1pLDsHaRnnyE9exLp2btIxx5HepW8H+IzWfZiyJAhMXny5Fi3bl2X8+vWrYtp06bt8/vuvffeuOiii2LlypX97n3h+iLtfHxckiTR3t5e6Hgl19v5aGxsjGeffTaefvrpzuOyyy6LCRMmxNNPPx1TpkwpVfSiKNTzY/Pmzf3mD2NfpZmTU045JX7961/H+++/33nu5Zdfjurq6hgzZkxR8xZbX54jGzZsiF/84hdxySWXFDNiSaWZj3w+H9XVXS/ZgwYNiojf/W2F3irWtezkk0/e4zHXrl3bq+tBIZTqWp0kSTz99NOZXL+Kdf0t1zXcl0+qL8ptDXtSL5TzGqaph8ptDT/UXY1Tzmv4od7UcFmuIYVl7yA9+wzp2ZNIz95FOvY40qvo/ZCEvbrvvvuSwYMHJ7fffnvy/PPPJ1dffXUydOjQ5I033kiSJEnmzp2bXHDBBZ33X7lyZVJTU5MsW7YsaW5u7jzee++9rIZQUL2dj6VLlyYPP/xw8vLLLycvv/xycscddySNjY3J/PnzsxpCQfV2Pj5uwYIFyXHHHVeitMXX2/n4zne+k6xevTp5+eWXk5///OfJ3Llzk4hIHnjggayGUHC9nZNt27YlY8aMSc4999zkueeeSzZs2JAcccQRyaWXXprVEAoq7e/M1772tWTKlCmljlt0vZ2PFStWJDU1Ncny5cuTV199NXnssceSE088Mfnc5z6X1RCoAMW4lj3++OPJoEGDkm9/+9vJCy+8kHz7299OampqkieeeKKYQ9mrYoxv4cKFyZo1a5JXX3012bx5c3LxxRcnNTU1yc9+9rNiDmWfinH9Lec17Mn4yn0Ne1IvlPMa9mR85b6GH+quxinnNfxQd+Prb2tIYdk7SM8+Q3r2JNKzd5GOPY70KnU/RJOlG8uWLUvGjRuXDBkyJDnhhBOSDRs2dH7twgsvTE4//fTO26effnoSEXscF154YemDF0lv5mPJkiXJMccckzQ0NCSNjY3J8ccfnyxfvjzZtWtXBsmLozfz8XGVWPz0Zj6uv/765LDDDkvq6uqS/fffPzn11FOTf/u3f8sgdXH19jnywgsvJGeeeWZSX1+fjBkzJpkzZ06Sz+dLnLp4ejsf7733XlJfX5/ceuutJU5aGr2djyVLliRHH310Ul9fn4wePTo5//zzkzfffLPEqak0xbiWfe9730smTJiQDB48OJk4cWKm/7Na6PFdffXVySGHHJIMGTIkOfDAA5MZM2YkGzduLFL6ninG9bdc17An4yv3NUySntUL5bqGSfLJ46uENexJjVPOa/hJ4+uPa0hh2TtIzz5DevYk0rN3kY49jvQqcT+kKkn60+tqAAAAAAAAyoPPZAEAAAAAAEhBkwUAAAAAACAFTRYAAAAAAIAUNFkAAAAAAABS0GQBAAAAAABIQZMFAAAAAAAgBU0WAAAAAACAFDRZAAAAAAAAUtBkAQAAAAAASEGTBSiqLVu2xCWXXBKf/vSnY8iQITFu3Li46qqr4p133um8z/Tp06OqqmqP47LLLuu8z0fPDx06NI444oi46KKLYtOmTVkMCwAoE2oRACBr6hGobJosQNG89tprceKJJ8bLL78c9957b/ziF7+If/qnf4qf/OQncfLJJ8e78RN4qQAAA1lJREFU777bed+vf/3r0dzc3OW44YYbujzeihUrorm5OZ577rlYtmxZvP/++zFlypT4l3/5l1IPDQAoA2oRACBr6hGofDVZBwAq16xZs2LIkCGxdu3aqK+vj4iIQw45JI4//vg47LDDYv78+XHLLbdERERDQ0OMGjWq28fbb7/9Ou9z6KGHxowZM+LCCy+M2bNnxx/90R/F/vvvX9wBAQBlRS0CAGRNPQKVzytZgKJ4991348c//nFcfvnlnUXEh0aNGhXnn39+3H///ZEkSZ9+zl/+5V/Gtm3bYt26dX16HACgsqhFAICsqUdgYNBkAYrilVdeiSRJ4qijjtrr14866qjYunVrvP322xERsXz58vjUpz7V5bjrrrs+8edMnDgxIiLeeOONgmUHAMqfWgQAyJp6BAYGbxcGZOLDf6UxZMiQiIg4//zzY/78+V3uc9BBB/X4caqqqgqcEACoZGoRACBr6hGoDJosQFEcfvjhUVVVFc8//3zMnDlzj6+/+OKLceCBB8Z+++0XERFNTU1x+OGH9/rnvPDCCxERMX78+L7EBQAqjFoEAMiaegQGBm8XBhTFiBEj4qyzzorly5fH9u3bu3ytpaUl7rnnnrjooov6/HNuuummaGxsjDPPPLPPjwUAVA61CACQNfUIDAyaLEDRLF26NNrb2+Pss8+ORx55JLZs2RJr1qyJs846K4488sj41re+1XnffD4fLS0tXY6tW7d2ebz33nsvWlpa4pe//GWsW7cuzj333Fi5cmXccsstnf/qAwDgQ2oRACBr6hGofFXJh2/aB1AEb7zxRixcuDDWrFkTb731ViRJEl/+8pfj7rvvjoaGhoiImD59emzYsGGP7z377LNjzZo1EdH1fUXr6uri4IMPjlNPPTWuvPLKOOGEE0ozGACg7KhFAICsqUegsmmyACW1YMGCuPHGG2Pt2rVx8sknZx0HABhg1CIAQNbUI1BZNFmAkluxYkXkcrm48soro7rauxYCAKWlFgEAsqYegcqhyQIAAAAAAJCCNikAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAr/H9h4X4/PqXB/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filters.plots.make_hists(\n", + " fragment_library, \"qed\", \"QED\", plot_stats=True, cutoff=0.42\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb b/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb new file mode 100644 index 00000000..0ca94288 --- /dev/null +++ b/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb @@ -0,0 +1,1451 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d311b2a8-0e3d-4f85-8e35-bb07c52854c0", + "metadata": {}, + "source": [ + "# Filter fragments for synthesizability" + ] + }, + { + "cell_type": "markdown", + "id": "cfd46558-1296-4d2f-b84a-9eb6c1212d4f", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "id": "9f4ec9e6-4f74-4188-81ca-597f0d9100a5", + "metadata": {}, + "source": [ + "#### This notebook is filtering the fragments for synthesizability.\n", + "* The first filter checks the availability of similar buyable building blocks in the [Enamine REAL Space](https://enamine.net/compound-collections/real-compounds/real-space-navigator) to ensure that the resulting molecules can easily be synthesized.\n", + "* The second filter calculates the SYnthetic Bayesian Accessibility (SYBA) [(J Cheminform 12, 35 (2020))](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00439-2), which estimates whether a fragment is more likely to be easy or hard to synthesize." + ] + }, + { + "cell_type": "markdown", + "id": "925ac4ac-187b-4e6d-a3df-738773af9bef", + "metadata": { + "tags": [] + }, + "source": [ + "## Table of contents\n", + "1. Load fragment library\n", + "2. Apply pre-filters\n", + "3. Filter for buyable building blocks\n", + "\n", + " 3.1. Data preparation\n", + " \n", + " 3.2. Filter fragments for buyable building blocks\n", + "4. Filter for SYnthetic Bayesian Accessibility (SYBA)\n", + "5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s)\n", + "\n", + " 5.2. Histogram of SYBA values" + ] + }, + { + "cell_type": "markdown", + "id": "97f9da9e-220f-4a7c-8f45-aea77bc791d4", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1dd944e3-b604-4861-ba09-f24c919b6307", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit.Chem import PandasTools\n", + "from IPython.core.display import HTML\n", + "\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e4583095-e1cd-40b2-acdf-270569426bcd", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9dedca62-bb8e-402e-a537-9b863cf3fced", + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "4c4d28b1-ee98-4d44-8ad0-a55e86a52fa2", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6da76800-c2e8-41dc-a01f-c3b23a3e2b7c", + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data\"\n", + "PATH_DATA_ENAMINE = HERE / \"../../data/filters/Enamine\"" + ] + }, + { + "cell_type": "markdown", + "id": "c8cf946b-884f-4637-8fdc-535433630908", + "metadata": {}, + "source": [ + "## 1. Load fragment library\n", + "\n", + "Fragment library is stored as a dictionary, with the individual subpockets as keys." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e60cbaf4-8038-44b7-9691-3c93c13e356a", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_original = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b26e8b25-6843-48d3-b1a3-eaf4ecc33bce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2', 'X'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_original.keys()\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c93b7836-a0ec-4aab-a763-df83971eaa47", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9505, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat(fragment_library_original).reset_index(drop=True).shape\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "4326002e-dc84-4580-b850-606e22c69def", + "metadata": {}, + "source": [ + "## 2. Apply pre-filters\n", + "Pre-filters are \n", + "- removing fragments in pool X\n", + "- removing duplicates\n", + "- removing fragments without dummy atoms (unfragmented ligands)\n", + "- removing fragments only connecting to pool X" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d458a48b-8b5f-4078-b1cf-00f6335cbb28", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.prefilters.pre_filters(fragment_library_original)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2197c596-adc5-4894-ab5e-892769f912fe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_name
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "ccbdc199-c186-4629-a297-b18f3a86e911", + "metadata": {}, + "source": [ + "Count number of fragments in the original fragment library and after pre-filtering the fragment library." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "233a4114-54af-4a76-9c9c-2862406aa638", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
originalpre_filtered
AP32401201
FP23851100
SE1962743
GA1305355
B112647
B211359
Total91313505
\n", + "
" + ], + "text/plain": [ + " original pre_filtered\n", + "AP 3240 1201\n", + "FP 2385 1100\n", + "SE 1962 743\n", + "GA 1305 355\n", + "B1 126 47\n", + "B2 113 59\n", + "Total 9131 3505" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library_original, \"original\"),\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments = pd.concat([num_fragments, num_fragments.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "efe8044a-565c-499e-909e-014132f6e078", + "metadata": {}, + "source": [ + "Note: The number of fragments in pool X in the original fragment library is not displayed." + ] + }, + { + "cell_type": "markdown", + "id": "56b3380e-05b0-49bf-9ed9-380942d64c15", + "metadata": {}, + "source": [ + "## 3. Filter for buyable building blocks\n", + "The [Enamine REAL Space](https://enamine.net/compound-collections/real-compounds/real-space-navigator) contains over 19 billion building blocks that can be used to create compounds which can be synthesized on demand. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "84799da9-1800-43fb-ba2e-10bea6b1c73c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msynthesizability\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_building_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfragment_library\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mpath_to_building_blocks\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Read in Enamine Building Blocks from SDFile created with filters/enamine_substructures.py\n", + "and check if the fragment molecules are a substructure of building block molecules.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "path_to_building_blocks : str\n", + " path to SDFile with overlapping building blocks is saved\n", + "\n", + "Returns\n", + "-------\n", + "dict\n", + " Containing a pandas.DataFrame for each subpocket with all fragments and an\n", + " additional columns (bool_bb) defining whether the fragment is accepted (1), meaning found\n", + " as a substructure in a building block, or rejected (0).\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/synthesizability.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "?filters.synthesizability.check_building_blocks" + ] + }, + { + "cell_type": "markdown", + "id": "27d043f3-ad07-4ed9-a619-368a36d39f8c", + "metadata": {}, + "source": [ + "**Note**: A description to the generation of the `data/filters/Enamine/Enamine_Building_Blocks.sdf` file used in this function can be found in the [README](https://github.com/volkamerlab/KinFragLib/blob/master/data/filters/Enamine/README.md) file in the `data/filters/Enamine` directory." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "059f4310-a41a-466f-aeee-a96e5a293a64", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of building blocks: 1562\n" + ] + } + ], + "source": [ + "fragment_library = filters.synthesizability.check_building_blocks(\n", + " fragment_library,\n", + " str(str(PATH_DATA_ENAMINE) + \"/Enamine_Building_Blocks.sdf\"),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "aa2bafac-69ac-4c9b-877e-82a435e3fa84", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if similar building block found in ENAMINE (`bool_bb`). " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "2b1eff37-c889-4341-b7ca-68da2e0b93c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_bb
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]1
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]0
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]0
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]1
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]1
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "ef7296a8-19fe-40a7-a712-0bbfe3f848c3", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the Building Block filter." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2f1f27a2-32b5-4491-95f8-c861c5e40c63", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_enaminerejected_enamine
AP1201520681
FP1100527573
SE743399344
GA35528669
B147425
B2594613
Total350518201685
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_enamine rejected_enamine\n", + "AP 1201 520 681\n", + "FP 1100 527 573\n", + "SE 743 399 344\n", + "GA 355 286 69\n", + "B1 47 42 5\n", + "B2 59 46 13\n", + "Total 3505 1820 1685" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_bb = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_bb\", \"enamine\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_bb = pd.concat([num_fragments_bb, num_fragments_bb.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_bb\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "8378013e-fdd4-4b64-86f1-543e788054d8", + "metadata": {}, + "source": [ + "## 4. Filter for SYnthetic Bayesian Accessibility (SYBA)" + ] + }, + { + "cell_type": "markdown", + "id": "bfe8c53c-b0e1-4d01-b250-5674bc8e96ca", + "metadata": {}, + "source": [ + "The SYnthtetic Bayesian Accessibility Score (SYBA) [(J Cheminform 12, 35 (2020))](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00439-2) is a Bayesian probabilistic modeling method ([SYBA github repo](https://github.com/lich-uct/syba)) for calculating a fragment-based score using the frequency of fragments in easy- and hard-to-synthesizable molecules. \n", + "\n", + "A more negative score indicates a molecule which is more likely hard to synthesize, and a more positive score indicates a molecule which is more likely easy to synthesize." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "69b09b15-6bac-4c77-b287-79950d97f6bd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msynthesizability\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcalc_syba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfragment_library\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mcutoff\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mcutoff_criteria\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'>'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mquery_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'mol'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Calculate the SYnthetic Bayesian Accessibility (SYBA) for each fragment and add a boolean\n", + "column if the fragment is accepted for the defined cutoff or not and a column with the\n", + "calculated SYBA values.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_library : dict\n", + " fragments organized in subpockets including all information\n", + "cutoff : int\n", + " defining the cutoff value for rejecting/accepting fragments. By , cutoff=0\n", + "cutoff_criteria : str\n", + " defining if the fragment values need to be \">\", \"<\", \">=\", \"<=\", \"==\" or \"!=\" compared to\n", + " the cutoff_value. By default, cutoff_criteria=\">\"\n", + "query_type : str\n", + " \"mol\" or \"smiles\". Defining if the SYBA score gets predicted using the ROMol from the\n", + " fragment library or the SMILES string. By default, query_type = \"mol\".\n", + "\n", + "Returns\n", + "dict\n", + " Containing a pandas.DataFrame for each subpocket with all fragments and an\n", + " additional column (bool_syba) defining whether the fragment is accepted (1) or rejected (0)\n", + " and the calculated SYBA score (syba) for each fragment.\n", + "-------\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/synthesizability.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "?filters.synthesizability.calc_syba" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6063ef2c-ef6f-49e6-bf04-fa5d0c270a95", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.synthesizability.calc_syba(fragment_library, cutoff=0)" + ] + }, + { + "cell_type": "markdown", + "id": "b8379a14-2434-4f36-952a-9440c6e481d2", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if SYBA score threshold fulfilled (`bool_syba`) and calculated SYBA score (`syba`). " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d3a7906c-bf9d-4d06-bdf3-6bacbb3c028c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_bbbool_sybasyba
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]1130.950959
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]0117.682659
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]010.611823
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]1128.754427
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]1115.727015
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "a4e2a5a5-3ef4-4b15-a66e-b561d746498e", + "metadata": {}, + "source": [ + "Count number of pre-filtered fragments and number of fragments that are accepted and rejected by the SYBA filter." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "2155cee8-3cbe-45d0-a26b-7f04f6b3feae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_sybarejected_syba
AP12011070131
FP1100858242
SE74366479
GA35532827
B1473710
B259536
Total35053010495
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_syba rejected_syba\n", + "AP 1201 1070 131\n", + "FP 1100 858 242\n", + "SE 743 664 79\n", + "GA 355 328 27\n", + "B1 47 37 10\n", + "B2 59 53 6\n", + "Total 3505 3010 495" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_syba = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(\n", + " fragment_library, \"pre_filtered\"\n", + " ),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_syba\", \"syba\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_syba = pd.concat([num_fragments_syba, num_fragments_syba.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_syba\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "07f0fada-85df-4c5c-bde7-ec0fd0453b50", + "metadata": { + "tags": [] + }, + "source": [ + "## 5. Analyze accepted/rejected fragments\n", + "\n", + " 5.1. Count number of fragments that are accepted by the filter(s)\n", + "\n", + " 5.2. Histogram of SYBA values" + ] + }, + { + "cell_type": "markdown", + "id": "94be7358-b8f2-4a94-9c48-74d30bd848b9", + "metadata": {}, + "source": [ + "### 5.1. Count number of fragments that are accepted by the filter(s)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2cde65fc-d66f-4339-94c8-9ab53c74a872", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.analysis.number_of_accepted(\n", + " fragment_library, columns=[\"bool_syba\", \"bool_bb\"], min_accepted=2\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "43fc28c6-db67-4823-861f-5c380c507ad1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
synthesizability filters
 pre-filteredaccepted by 2accepted by 1accepted by 0
AP1201505580116
FP1100426533141
SE74335435534
GA355267808
B14734112
B25940190
Total350516261578301
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.analysis.accepted_num_filters(\n", + " fragment_library,\n", + " [\"bool_syba\", \"bool_bb\"],\n", + " filtername=\"synthesizability filters\",\n", + " max_num_accepted=2,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2e42ad43-ded7-4384-ae65-2236861fdc72", + "metadata": {}, + "source": [ + "### 5.2. Histogram of SYBA values\n", + "Create a histogram for each subpocket showing the SYBA values." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4379c74f-08ff-40d5-b7f7-2fdaee686f78", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAVjCAYAAABKZ0mAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebyUdd0//tewLwKyCBySFBfcwJVKwW9CouaCa2HqraKEmSuKS5QLdpeouWOaFgquqKWmmfuauWOkuC9oahBpCLLIOr8//Dk3RxY50zkMy/P5eFyPzlzXZ655X6eD877mNZ/rKhSLxWIAAAAAAACokXqVLgAAAAAAAGBlJGQBAAAAAAAog5AFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMogZAEAAOrMM888k3322Sdf//rX07hx43To0CHbbbddhgwZkgkTJqRFixbZb7/9FvvcG2+8MYVCIVdeeWWSZMCAASkUCqWlfv36WXvttdO/f/+MHz9+iTXceeedKRQKadu2bWbPnl0nxwkAAKyehCwAAECduPvuu9OzZ89MmzYt5513Xu6///5ccskl6dWrV26++eZ06dIlF154YW677bbceOON1Z47adKkHHvssdlll13yox/9qLS+adOmeeqpp/LUU0/lscceyy9+8Yu88MIL6dmzZz788MPF1jFy5MgkyX/+85/ccccddXa8AADA6qdQLBaLlS4CAABY9eywww758MMP89prr6VBgwbVti1YsCD16n3+na/ddtstzzzzTMaPH5+qqqokyV577ZW//OUveemll/K1r30tyeczWX7/+99n+vTp1fb18MMPZ8cdd8yVV16ZI444otq2SZMmpXPnzvn2t7+dJ598Mv/v//2/3H///XV1yAAAwGrGTBYAAKBOfPzxx2nXrt0iAUuSUsCS/N9Mky8Ckuuuuy533nlnLrvsslLAsjStWrVKkjRs2HCRbaNHj868efNywgknZN99981DDz2U9957r6zjAQAA+DIhCwAAUCe22267PPPMMznuuOPyzDPPZO7cuYsdV1VVlV//+tf505/+lOHDh+f444/PfvvtlwMPPHCx4+fNm5d58+bls88+y/jx43PyySendevW2X333RcZe/XVV6eqqiq77rprDj/88CxYsCCjRo2qzcMEAABWYy4XBgAA1ImPP/44e++9d5544okkn880+cY3vpF+/frlmGOOyRprrFFt/P77759bbrklHTp0yPjx49OuXbtq2wcMGJDRo0cv8jpVVVW59dZb06tXr2rr//KXv+Tb3/52fvKTn2T48OEpFotZf/31s2DBgkyYMCGFQqGWjxgAAFjdmMkCAADUibZt2+Yvf/lLnnvuuZxzzjnZa6+98sYbb2To0KHp3r17Pvroo2rjf/7znydJjjvuuEUCli80bdo0zz33XJ577rk888wzue2229K1a9fstttueeqpp6qN/eIyZIcffniSpFAoZMCAAXnvvffy0EMP1fbhAgAAqyEhCwAAUKd69OiRU089Nbfeemv++c9/5oQTTsi7776b8847r9q4xo0bJ0kaNWq0xH3Vq1cvPXr0SI8ePfLNb34z++yzT/785z+nQYMGOfHEE0vjPv3009x666355je/mbXWWiuffPJJPvnkk+yzzz4pFAqlAAYAAOC/IWQBAACWm4YNG+bMM89MkowfP75W9tmsWbOsv/76+fvf/15ad9NNN2XmzJl59tln07p169Ky+eabp1gs5vbbb8+UKVNq5fUBAIDVV4NKFwAAAKyaJk6cmKqqqkXWv/rqq0mSTp061crrTJ8+PW+99Vbat29fWjdy5Mi0aNEid9xxR+rVq/7dsueffz4nn3xybrjhhhxzzDG1UgMAALB6ErIAAAB1Ypdddsnaa6+dfv36ZeONN86CBQsybty4XHDBBVljjTVy/PHH13ifCxYsyNNPP136+cMPP8yll16aKVOmZNiwYUk+nyHz7LPP5sc//nG+853vLLKPXr165YILLsjIkSOFLAAAwH9FyAIAANSJ0047LX/84x9z0UUXZeLEiZk9e3aqqqrSt2/fDB06NJtsskmN9zlr1qxst912pcft27fPJptskttvvz177713kv+74f2PfvSjxe6jYcOGGTBgQM4555y88MIL2XrrrWt+cAAAAEkKxWKxWOkiAAAAAAAAVjZufA8AAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyABVx6aWXplAopFu3bovdXigUqi2tWrVK7969c/fddy/nSgGAVc2oUaMW6TW+WE466aQkybrrrltt/RprrJFvfetbufbaaytcPQCwsnvmmWeyzz775Otf/3oaN26cDh06ZLvttsuQIUNKY3r37r3EfmXdddetXPHAIhpUugBg9XT11VcnSV5++eU888wz+da3vrXImO9973sZMmRIFixYkHfeeSe/+MUv0q9fv9x1113Zfffdl3fJAMAq5pprrsnGG29cbV2nTp1KP/fq1Svnn39+kuSDDz7I+eefn0MPPTQzZszIj3/84+VaKwCwarj77ruz5557pnfv3jnvvPNSVVWViRMn5vnnn8+YMWNywQUXlMaut956ueGGGxbZR+PGjZdnycBXKBSLxWKliwBWL88//3y+8Y1vZPfdd8/dd9+dQYMG5aqrrqo2plAo5Oijj85ll11WWvf2229ngw02SN++ffPAAw8s77IBgFXEqFGjcthhh+W5555Ljx49Fjtm3XXXTbdu3fKnP/2ptO6TTz7JOuusk/bt2+fNN99cXuUCAKuQHXbYIR9++GFee+21NGhQ/fvvCxYsSL16n194qHfv3vnoo48yfvz4SpQJ1IDLhQHL3ciRI5Mk55xzTnr27JkxY8Zk5syZX/m89ddfP2uttVbee++9ui4RAGARa665ZjbaaCO9CABQto8//jjt2rVbJGBJUgpYgJWLf7nAcjVr1qzcdNNN+cY3vpFu3brl8MMPz6effppbb731K587ZcqUfPzxx1lrrbWWQ6UAwKpu/vz5mTdvXrVlaebOnZv33ntPLwIAlG277bbLM888k+OOOy7PPPNM5s6du9TxX+5V5s2blwULFiynaoFlIWQBlqvf//73mTp1agYOHJgk2X///bPGGmuUZrcsrFgsZt68eZk7d25ee+21HHTQQVmwYEEOOuig5V02ALAK2nbbbdOwYcNqy8JByxe9yLx58/Luu+9m0KBBmTx5sl4EACjbOeeck+233z4jRozItttum+bNm6dXr14555xzMn369GpjX3755UV6lYYNG+aII46oUPXA4rgnC7Bc9e7dO88++2wmTpyYVq1aJUkOP/zwXHPNNXnjjTey4YYbJvn8nixf1qpVqwwZMiSnn376cq0ZAFi1fHFPlmuvvTabbLJJtW1f3KNl3XXXXeSyYE2bNs0Pf/jDnH/++WnUqNFyqxcAWPU8//zzeeihh/L888/n0UcfzUcffZR11103zz33XNq1a5fevXvngw8+yJgxYxZ57lprrZV11lmnAlUDi7Poxf8A6shbb72Vxx9/PPvtt1+KxWI++eSTJMn3vve9XHPNNbn66qszfPjw0vj+/fvn5JNPTqFQSIsWLbL++uunfv36FaoeAFjVbLLJJku88X2SbL/99rnoootSKBTSrFmzrL/++sIVAKBW9OjRo9SHzJ07N6eeemouuuiinHfeeTnvvPOSJE2aNFlqrwKsGFwuDFhurr766hSLxfz+979P69atS8vuu++eJBk9enTmz59fGr/WWmulR48e2WabbdK1a1cBCwCwXLVq1arUi2yyySYCFgCgTjRs2DBnnnlmkmT8+PEVrgaoKTNZgOVi/vz5GT16dNZff/387ne/W2T7n/70p1xwwQW55557sscee1SgQgAAAIC6NXHixFRVVS2y/tVXX02SdOrUaXmXBPyXhCzAcnHPPffkn//8Z84999z07t17ke3dunXLZZddlpEjRwpZAAAAgFXSLrvskrXXXjv9+vXLxhtvnAULFmTcuHG54IILssYaa+T4448vjZ01a1aefvrpxe5n2223XV4lA19ByAIsFyNHjkyjRo1y2GGHLXZ7u3btss8+++T3v/99/vWvfy3n6gAAAADq3mmnnZY//vGPueiiizJx4sTMnj07VVVV6du3b4YOHZpNNtmkNPadd97Jdtttt9j9zJ07Nw0a+GgXVgSFYrFYrHQRAAAAAAAAKxs3vgcAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAAAAog5AFAAAAAACgDA0qXcCKYMGCBfnnP/+ZFi1apFAoVLocAFghFIvFfPrpp+nUqVPq1fO9jLqkFwGARelFlh+9CAAsall7ESFLkn/+85/p3LlzpcsAgBXS+++/n7XXXrvSZazS9CIAsGR6kbqnFwGAJfuqXkTIkqRFixZJPv9ltWzZssLVwGpsxoykU6fPf/7nP5PmzStbD6zmpk2bls6dO5feJ6k7ehFWOd7TgVqgF1l+9CIswns5wDL3IkKWpDQVtmXLlpoJqKT69f/v55YtNXGwgnDJiLqnF2GV4z0dqEV6kbqnF2ER3ssBSr6qF3FRUwAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDe7Iso2KxmHnz5mX+/PmVLoUVTP369dOgQQPXCQYAgMWYP39+5s6dW+kyWAE5lwJgRaFfWT3VVi8iZFkGc+bMycSJEzNz5sxKl8IKqlmzZqmqqkqjRo0qXQoAAKwwpk+fng8++CDFYrHSpbCCci4FQKXpV1ZvtdGLCFm+woIFCzJhwoTUr18/nTp1SqNGjXzLhpJisZg5c+bk3//+dyZMmJANN9ww9eq5Ch8AAMyfPz8ffPBBmjVrlrXWWst5FNU4lwJgRaBfWX3VZi8iZPkKc+bMyYIFC9K5c+c0a9as0uWwAmratGkaNmyY9957L3PmzEmTJk0qXRIAAFTc3LlzUywWs9Zaa6Vp06aVLocVkHMpACpNv7J6q61exNdElpFv1LA0/j4AAGDxfCOUpXEuBcCKQL+y+qqNXkQ3AwAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsrBCevTRR7PXXnulqqoqzZs3z5ZbbpkbbrhhieP/+te/pkGDBtlyyy2/ct8PPfRQevbsmRYtWqSqqiqnnnpq5s2bV9r++uuvp0+fPunQoUOaNGmS9dZbL6eddlrmzp1bG4cGAABQZ5blXOq2227LTjvtlLXWWistW7bMdtttl/vuu2+p+x01alQKhcJil8mTJydxLgUALJua9gzL+tnv3//+9xxwwAHp3LlzmjZtmk022SSXXHJJHRxBdQ3q/BWgDE8++WQ233zznHrqqenQoUPuvvvuHHLIIWnZsmX69etXbezUqVNzyCGHZMcdd8y//vWvpe73xRdfzG677Zaf/exnufbaa/Phhx/myCOPzPz583P++ecnSRo2bJhDDjkkW2+9ddZcc838/e9/z6BBg7JgwYKcffbZdXbMAAAA/61lOZd6/PHHs9NOO+Xss8/OmmuumWuuuSb9+vXLM888k6222mqx+91///3z3e9+t9q6AQMG5LPPPkv79u2TOJcCAJZNTXqGmnz2O3bs2Ky11lq5/vrr07lz5zz55JM54ogjUr9+/RxzzDF1d0BFilOnTi0mKU6dOnWRbbNmzSq+8sorxVmzZlWgsvLtsMMOxWOOOaZ4/PHHF9dcc81i+/bti1deeWVx+vTpxQEDBhTXWGON4nrrrVf885//XO15L7/8cnHXXXctNm/evNi+ffvi//zP/xT//e9/l7bfc889xV69ehVbtWpVbNOmTXH33XcvvvXWW6XtEyZMKCYp/uEPfyj27t272LRp0+Lmm29efPLJJ//rY9ptt92Khx122CLr999//+Jpp51WPPPMM4tbbLHFUvcxdOjQYo8ePaqtu/3224tNmjQpTps2bYnPO+GEE4rbb7/9ErevrH8nK5zp04vF5PNl+vRKVwOrvaW9P1K7/K5Z5XhPp7jy9sir07nUwjbddNPiWWedtcz7nDx5crFhw4bFa6+9dqnj/ptzKe+Py4/fNYvwXs5qQr+y4vQrS+oZavLZ7+IcddRRxT59+ixxe230Ii4XtgobPXp02rVrl2effTbHHntsfvzjH+f73/9+evbsmRdeeCG77LJLDj744MycOTNJMnHixOywww7Zcsst8/zzz+fee+/Nv/71r/Tv37+0zxkzZuTEE0/Mc889l4ceeij16tXLPvvskwULFlR77Z/97Gc56aSTMm7cuHTt2jUHHHBAtUtyFQqFjBo1qkbHM3Xq1LRp06baumuuuSZvv/12zjzzzGXax+zZs9OkSZNq65o2bZrPPvssY8eOXexz3nrrrdx7773ZYYcdalQvAACwclodzqUWtmDBgnz66adLHfNl1157bZo1a5bvfe97SxzjXAoA6s6q1K8sqWeo6We/i/NVfVCtqHH0swpaVWeyLJz8zZs3r9i8efPiwQcfXFo3ceLEYpLiU089VSwWi8XTTz+9uPPOO1fbz/vvv19MUnz99dcX+zqTJ08uJim+9NJLxWLx/9LM3/3ud6UxL7/8cjFJ8dVXXy2t22ijjYq33XbbMh/PrbfeWmzUqFFx/PjxpXVvvPFGsX379qXaliXNvO+++4r16tUr3njjjcV58+YVP/jgg+L2229fTFK88cYbq43dbrvtio0bNy4mKR5xxBHF+fPnL3G/K+vfyQrHN2VgheIbjcuP3zWrHO/pFFfeHnl1OJf6svPOO6/Ypk2b4r/+9a9l3u+mm25a/PGPf7zYbbV1LuX9cfnxu2YR3stZTehXKtuvLK1nKOez3y978skniw0bNizef//9SxxjJgtLtfnmm5d+rl+/ftq2bZvu3buX1nXo0CFJSjcpHDt2bB555JGsscYapWXjjTdOkrz99tul/z3wwAOz3nrrpWXLlunSpUuS5B//+McSX7uqqqra6yTJa6+9ln322WeZjuPRRx/NgAED8tvf/jabbbZZkmT+/Pk58MADc9ZZZ6Vr167LtJ8k2XnnnfOrX/0qRx55ZBo3bpyuXbtm9913T/L572hhN998c1544YXceOONufvuu0v3bAEAAFZtq/K51JfddNNNGTZsWG6++ebSvVW+ylNPPZVXXnklAwcOXOx251IAUPdWhX5lST1DuZ/9Luzll1/OXnvtlTPOOCM77bRTWftYVm58vwpr2LBhtceFQqHaukKhkCSl6V4LFixIv379cu655y6yry/+sfTr1y+dO3fOb3/723Tq1CkLFixIt27dMmfOnCW+9pdfpyYee+yx9OvXLxdeeGEOOeSQ0vpPP/00zz//fP72t7+Vblq0YMGCFIvFNGjQIPfff3++853vLHafJ554Yk444YRMnDgxrVu3zrvvvpuhQ4eW/qPxhc6dOydJNt1008yfPz9HHHFEhgwZskgYAwAArFpW5XOphd18880ZOHBgbr311vTt23eZ9/273/0uW265ZbbZZpvFbncuBQB1b1XoV5bUM/w3n/0mySuvvJLvfOc7GTRoUE477bQa11VTQhZKtt566/zhD3/IuuuumwYNFv3T+Pjjj/Pqq6/myiuvzP/7f/8vSfLEE0/UWT2PPvpo9thjj5x77rk54ogjqm1r2bJlXnrppWrrLr/88jz88MP5/e9/v0hg8mWFQiGdOnVK8vk3tzp37pytt956ieOLxWLmzp2bYrFY5tEAAACrqpXpXOoLN910Uw4//PDcdNNNpdn9y2L69Om55ZZbMnz48GUa71wKAFYMK1q/8mUL9wz/zWe/L7/8cr7zne/k0EMPzS9/+cu6LjuJkIWFHH300fntb3+bAw44ICeffHLatWuXt956K2PGjMlvf/vbtG7dOm3bts1VV12Vqqqq/OMf/8hPfvKTsl5r4403zvDhw5c4bezRRx/N7rvvnuOPPz777bdfJk2alCRp1KhR2rRpk3r16qVbt27VntO+ffs0adKk2vrbb789Q4cOzWuvvVZa96tf/Srf/e53U69evdx2220555xzcsstt5S+VXXDDTekYcOG6d69exo3bpyxY8dm6NCh2X///Rf7HyBWT1OnTi3dOGxF1qxZs7Rq1arSZQDASmVleJ/3Hr9iWZnOpZLPA5ZDDjkkl1xySbbddtvSmKZNm5b+rhZ3LpV8Pvtl3rx5OeiggxZ5bedSwMrA+zyrqxWpX1mWnqGcz35ffvnl9OnTJzvvvHNOPPHEUo9Tv379rLXWWmUdy7LQ5VDSqVOn/PWvf82pp56aXXbZJbNnz84666xTCiQKhULGjBmT4447Lt26dctGG22USy+9NL17967xa73++uuZOnXqErePGjUqM2fOzPDhw6t9Q2qHHXbIo48+usyvM3Xq1Lz++uvV1t1zzz355S9/mdmzZ2eLLbbIH//4x+y6666l7Q0aNMi5556bN954I8ViMeuss06OPvronHDCCct+gKzSpk6dmkt/fVkWzJ1X6VK+Ur2GDXLc0cdozgBgGa0s7/Pe41csK9u51JVXXpl58+bl6KOPztFHH10ac+ihh2bUqFFJFn8ulSQjR47Mvvvum9atWy+yzbkUsKLzPs/qbEXqV2qrZ/hyv3Lrrbfm3//+d2644YbccMMNpfXrrLNO3n333Rofx7IqFM3ZzbRp09KqVatMnTo1LVu2rLbts88+y4QJE9KlS5c0adKkQhWyovN3UktmzEjWWOPzn6dPT5o3r2w9SzBx4sRcddVVuWPbdfNRyxX3/+920z7L3k+/myOOOKJ0bU2oiaW9P1K7/K5Z5awk7+mLszK8z68s7/F6ZJbF0v5OVof3x+HDh+e2227La6+9lqZNm6Znz54599xzs9FGG5XGFIvFnHXWWbnqqqsyZcqUfOtb38qvf/3rbLbZZqUxs2fPzkknnZSbbrops2bNyo477pjLL788a6+99jLVsTr8rqmhlfi9fGm8z/Nl+hVqoxcxkwWgTB+1bJJJbZpVugwAoA54nweWh8ceeyxHH310vvGNb2TevHn52c9+lp133jmvvPJKmv//H2qfd955ufDCCzNq1Kh07do1v/jFL7LTTjvl9ddfT4sWLZIkgwcPzl133ZUxY8akbdu2GTJkSPbYY4+MHTu2dGls4P94nwdqk5AFAAAAoALuvffeao+vueaatG/fPmPHjs23v/3tFIvFXHzxxfnZz36WfffdN0kyevTodOjQITfeeGN+9KMfZerUqRk5cmSuu+669O3bN0ly/fXXp3PnznnwwQezyy67LPfjAoDVSb1KFwAAAABAStevb9OmTZJkwoQJmTRpUnbeeefSmMaNG2eHHXbIk08+mSQZO3Zs5s6dW21Mp06d0q1bt9KYL5s9e3amTZtWbQEAyiNkAQAAAKiwYrGYE088Mdtvv326deuWJJk0aVKSpEOHDtXGdujQobRt0qRJadSoUVq3br3EMV82fPjwtGrVqrR07ty5tg8HAFYbQhYAAACACjvmmGPy4osv5qabblpkW6FQqPa4WCwusu7LljZm6NChmTp1aml5//33yy8cAFZzQhYAAACACjr22GNz55135pFHHsnaa69dWt+xY8ckWWRGyuTJk0uzWzp27Jg5c+ZkypQpSxzzZY0bN07Lli2rLQBAeYQsAAAAABVQLBZzzDHH5LbbbsvDDz+cLl26VNvepUuXdOzYMQ888EBp3Zw5c/LYY4+lZ8+eSZJtttkmDRs2rDZm4sSJGT9+fGkMAFB3GlS6AAAAAIDV0dFHH50bb7wxf/zjH9OiRYvSjJVWrVqladOmKRQKGTx4cM4+++xsuOGG2XDDDXP22WenWbNmOfDAA0tjBw4cmCFDhqRt27Zp06ZNTjrppHTv3j19+/at5OEBwGrBTBZKHn300RQKhXzyySeVLgUAAGCl4VyKcl1xxRWZOnVqevfunaqqqtJy8803l8accsopGTx4cI466qj06NEjH374Ye6///60aNGiNOaiiy7K3nvvnf79+6dXr15p1qxZ7rrrrtSvX78ShwXACki/UneELJT07NkzEydOTKtWrer8tT799NMMHjw466yzTpo2bZqePXvmueeeqzZm+vTpOeaYY7L22munadOm2WSTTXLFFVfUeW0AAAA1sTzPpebNm5fTTjstXbp0SdOmTbPeeuvl5z//eRYsWJAkmTt3bk499dR07949zZs3T6dOnXLIIYfkn//8Z53XRs0Vi8XFLgMGDCiNKRQKGTZsWCZOnJjPPvssjz32WLp161ZtP02aNMmIESPy8ccfZ+bMmbnrrrvSuXPn5Xw0AKzIlme/srDhw4eXZmYurFAoLHb51a9+tVzrqw0uF0ZJo0aNSjfVq2s//OEPM378+Fx33XXp1KlTrr/++vTt2zevvPJKvva1ryVJTjjhhDzyyCO5/vrrs+666+b+++/PUUcdlU6dOmWvvfZaLnUCAAB8leV5LnXuuefmN7/5TUaPHp3NNtsszz//fA477LC0atUqxx9/fGbOnJkXXnghp59+erbYYotMmTIlgwcPzp577pnnn39+udQIAKx4lme/8oXnnnsuV111VTbffPNFtk2cOLHa43vuuScDBw7Mfvvtt7zKqzVmsqyievfunWOPPTaDBw9O69at06FDh1x11VWZMWNGDjvssLRo0SLrr79+7rnnntJzvjxlbNSoUVlzzTVz3333ZZNNNskaa6yR7373u4v8A6ipWbNm5Q9/+EPOO++8fPvb384GG2yQYcOGpUuXLtVmqjz11FM59NBD07t376y77ro54ogjssUWWzgxAAAA6syKfC6VfH6etNdee2X33XfPuuuum+9973vZeeedS+dJrVq1ygMPPJD+/ftno402yrbbbpsRI0Zk7Nix+cc//vFfvz4AUHkrer+SfH6VooMOOii//e1v07p160W2d+zYsdryxz/+MX369Ml6661XK6+/PAlZVmGjR49Ou3bt8uyzz+bYY4/Nj3/843z/+99Pz54988ILL2SXXXbJwQcfnJkzZy5xHzNnzsz555+f6667Lo8//nj+8Y9/5KSTTipt/+If57vvvrvMdc2bNy/z589PkyZNqq1v2rRpnnjiidLj7bffPnfeeWc+/PDDFIvFPPLII3njjTeyyy67LPsvAQAAoIZW1HOp5PPzpIceeihvvPFGkuTvf/97nnjiiey2225LfM7UqVNTKBSy5ppr1ui1AIAV14rcryTJ0Ucfnd133z19+/b9yrH/+te/cvfdd2fgwIE1fp0VgZBlFbbFFlvktNNOy4YbbpihQ4emadOmadeuXQYNGpQNN9wwZ5xxRj7++OO8+OKLS9zH3Llz85vf/CY9evTI1ltvnWOOOSYPPfRQaXuzZs2y0UYbpWHDhstcV4sWLbLddtvlf//3f/PPf/4z8+fPz/XXX59nnnmmWlJ66aWXZtNNN83aa6+dRo0a5bvf/W4uv/zybL/99uX9QgAAAJbBinoulSSnnnpqDjjggGy88cZp2LBhttpqqwwePDgHHHDAYsd/9tln+clPfpIDDzwwLVu2rNFrAQArrhW5XxkzZkxeeOGFDB8+fJnGjx49Oi1atMi+++5bo9dZUVQ0ZBk2bNgiN7ZZ+LpwxWIxw4YNS6dOndK0adP07t07L7/8crV9zJ49O8cee2zatWuX5s2bZ88998wHH3ywvA9lhbTwte7q16+ftm3bpnv37qV1HTp0SJJMnjx5ifto1qxZ1l9//dLjqqqqauO/+c1v5rXXXivdR+XL/vKXv2SNNdYoLTfccEOS5LrrrkuxWMzXvva1NG7cOJdeemkOPPDA1K9fv/TcSy+9NE8//XTuvPPOjB07NhdccEGOOuqoPPjggzX8TQAAACy7Fflc6uabb87111+fG2+8MS+88EJGjx6d888/P6NHj15kH3Pnzs0PfvCDLFiwIJdffvkyHj0AsDJYUfuV999/P8cff3yuv/76Ra5ktCRXX311DjrooGUev6Kp+EyWzTbbLBMnTiwtL730UmnbeeedlwsvvDCXXXZZnnvuuXTs2DE77bRTPv3009KYwYMH5/bbb8+YMWPyxBNPZPr06dljjz0yf/78ShzOCuXLCWOhUKi2rlAoJEkWLFhQo30Ui8VlrqFHjx4ZN25cadlzzz2TJOuvv34ee+yxTJ8+Pe+//36effbZzJ07N126dEny+X1bfvrTn+bCCy9Mv379svnmm+eYY47J/vvvn/PPP3+ZXx8AluaKK67I5ptvnpYtW6Zly5bZbrvtql2z1hc+AFZPK/K51Mknn5yf/OQn+cEPfpDu3bvn4IMPzgknnLDIN0Xnzp2b/v37Z8KECXnggQfMYgGAVcyK2q+MHTs2kydPzjbbbJMGDRqkQYMGeeyxx3LppZemQYMGi3xu/5e//CWvv/56fvjDHy7z665oGlS8gAYNqs1e+UKxWMzFF1+cn/3sZ6VpQqNHj06HDh1y44035kc/+lGmTp2akSNH5rrrritd2+36669P586d8+CDD7p3xwqgadOm2WCDDZa4vXnz5mnevHmmTJmS++67L+edd16Sz08I5s6dm3r1queA9evXX+p/GACgJtZee+2cc845pfeq0aNHZ6+99srf/va3bLbZZqUvfIwaNSpdu3bNL37xi+y00055/fXX06JFiySff+HjrrvuypgxY9K2bdsMGTIke+yxR8aOHVtthiYA1MSSzqVmzpz5ledJXwQsb775Zh555JG0bdu2zusFAFY/i+tXdtxxx2oTKZLksMMOy8Ybb5xTTz11kfPkkSNHZptttskWW2xR5/XWlYrPZHnzzTfTqVOndOnSJT/4wQ/yzjvvJEkmTJiQSZMmZeeddy6Nbdy4cXbYYYc8+eSTSZKxY8dm7ty51cZ06tQp3bp1K41ZnNmzZ2fatGnVFsrz7LPPZuONN86HH35Yo+fdd999uffee0vfqurTp0822mijHHbYYUmSli1bZocddsjJJ5+cRx99NBMmTMioUaNy7bXXZp999qmLQwFgNdSvX7/stttu6dq1a7p27Zpf/vKXWWONNfL0008v8oWPbt26ZfTo0Zk5c2ZuvPHGJCl94eOCCy5I3759s9VWW+X666/PSy+95PKWACxVuedS/fr1yy9/+cvcfffdeffdd3P77bfnwgsvLJ0nzZs3L9/73vfy/PPP54Ybbsj8+fMzadKkTJo0KXPmzKmLQwEAVlHl9CstWrRIt27dqi3NmzdP27Zt061bt2pjp02blltvvXWlnsWSVDhk+da3vpVrr7029913X377299m0qRJ6dmzZz7++ONMmjQpyf9dO+4LHTp0KG2bNGlSGjVqlNatWy9xzOIMHz48rVq1Ki2dO3eu5SNbfcycOTOvv/565s6dW6PnTZ06NUcffXQ23njjHHLIIdl+++1z//33V5uiNmbMmHzjG9/IQQcdlE033TTnnHNOfvnLX+bII4+s7cMAgMyfPz9jxozJjBkzst122/nCBwB1qtxzqREjRuR73/tejjrqqGyyySY56aST8qMf/Sj/+7//myT54IMPcuedd+aDDz7IlltumaqqqtKytPcmAIAvK7dfWVZjxoxJsVjMAQccUCf7X14qermwXXfdtfRz9+7ds91222X99dfP6NGjs+222yb5v2vHfaFYLC6y7su+aszQoUNz4oknlh5PmzZtlQtaHn300UXWvfvuu4usW/gae7179672eMCAARkwYEC18XvvvfdSn7Os+vfvn/79+y91TMeOHXPNNdfUeN8AUBMvvfRStttuu3z22WdZY401cvvtt2fTTTctfRC1uC98vPfee0n+uy98nHXWWbV8JADUhhX9XKpFixa5+OKLc/HFFy92+7rrrlvWfgGAlceK3q8sS71JcsQRR+SII474r/dfaRW/XNjCmjdvnu7du+fNN98s3aflyx9QTJ48ufRhR8eOHTNnzpxMmTJliWMWp3HjxqUb3H6xAACrp4022ijjxo3L008/nR//+Mc59NBD88orr5S219UXPqZOnVpa3n///f/uIAAAAICKWKFCltmzZ+fVV19NVVVVunTpko4dO+aBBx4obZ8zZ04ee+yx9OzZM0myzTbbpGHDhtXGTJw4MePHjy+NAQBYmkaNGmWDDTZIjx49Mnz48GyxxRa55JJLfOEDAAAA+EoVvVzYSSedlH79+uXrX/96Jk+enF/84heZNm1aDj300BQKhQwePDhnn312Ntxww2y44YY5++yz06xZsxx44IFJklatWmXgwIEZMmRI2rZtmzZt2uSkk05K9+7d07dv30oeGgCwkioWi5k9e3a1L3xstdVWSf7vCx/nnntukupf+PjiMphffOHjvPPOq9gxwIpq6tSpmTlzZqXLWKqPPvqo0iUAAAArkYqGLB988EEOOOCAfPTRR1lrrbWy7bbb5umnn84666yTJDnllFMya9asHHXUUZkyZUq+9a1v5f7770+LFi1K+7jooovSoEGD9O/fP7NmzcqOO+6YUaNGpX79+pU6LABgJfHTn/40u+66azp37pxPP/00Y8aMyaOPPpp7773XFz6glk2dOjWX/vqyLJg7r9KlAAAA1JqKhixjxoxZ6vZCoZBhw4Zl2LBhSxzTpEmTjBgxIiNGjKjl6gCAVd2//vWvHHzwwZk4cWJatWqVzTffPPfee2922mmnJL7wAbVp5syZWTB3Xu7Ydt181LJJpctZovUnTk2flyZWugwAAGAlUdGQBQCgkkaOHLnU7b7wAbXvo5ZNMqlNs0qXsURtp31W6RIAAICVyAp143sAAAAAAICVhZAFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkoSJuueWWbLnllmnWrFnWWWed/OpXv1pkzA033JAtttgizZo1S1VVVQ477LB8/PHHFagWAACg8j777LMMGDAg3bt3T4MGDbL33nsvMua2227LTjvtlLXWWistW7bMdtttl/vuu2+RcRdffHE22mijNG3aNJ07d84JJ5yQzz77bDkcBQCwKqutfmXUqFEpFAqLLCtivyJkYbm75557ctBBB+XII4/M+PHjc/nll+fCCy/MZZddVhrzxBNP5JBDDsnAgQPz8ssv59Zbb81zzz2XH/7whxWsHAAAoHLmz5+fpk2b5rjjjkvfvn0XO+bxxx/PTjvtlD//+c8ZO3Zs+vTpk379+uVvf/tbacwNN9yQn/zkJznzzDPz6quvZuTIkbn55pszdOjQ5XUoAMAqqrb6lSRp2bJlJk6cWG1p0qTJ8jiMGhGyrKJ69+6dY489NoMHD07r1q3ToUOHXHXVVZkxY0YOO+ywtGjRIuuvv37uueee0nPmz5+fgQMHpkuXLmnatGk22mijXHLJJaXtn332WTbbbLMcccQRpXUTJkxIq1at8tvf/naZa7vuuuuy995758gjj8x6662X3XffPaeeemrOPffcFIvFJMnTTz+dddddN8cdd1y6dOmS7bffPj/60Y/y/PPP18JvBwAAYPFW5HOp5s2b54orrsigQYPSsWPHxY65+OKLc8opp+Qb3/hGNtxww5x99tnZcMMNc9ddd5XGPPXUU+nVq1cOPPDArLvuutl5551zwAEHON8CgJXE6tCvJEmhUEjHjh2rLSsiIcsqbPTo0WnXrl2effbZHHvssfnxj3+c73//++nZs2deeOGF7LLLLjn44IMzc+bMJMmCBQuy9tpr55Zbbskrr7ySM844Iz/96U9zyy23JEmaNGmSG264IaNHj84dd9yR+fPn5+CDD06fPn0yaNCg0usWCoWMGjVqiXXNnj17kcSxadOm+eCDD/Lee+8lSXr27JkPPvggf/7zn1MsFvOvf/0rv//977P77rvX8m8JAACguhX1XKocCxYsyKeffpo2bdqU1m2//fYZO3Zsnn322STJO++8kz//+c/OtwBgJbKq9ytJMn369KyzzjpZe+21s8ceeywy02VFIWRZhW2xxRY57bTTsuGGG2bo0KFp2rRp2rVrl0GDBmXDDTfMGWeckY8//jgvvvhikqRhw4Y566yz8o1vfCNdunTJQQcdlAEDBpT+oSXJlltumV/84hcZNGhQTjjhhLz99tv53e9+V+11N9poo7Rq1WqJde2yyy657bbb8tBDD2XBggV54403cvHFFydJJk6cmOTzkOWGG27I/vvvn0aNGqVjx45Zc801M2LEiFr+LQEAAFS3op5LleOCCy7IjBkz0r9//9K6H/zgB/nf//3fbL/99mnYsGHWX3/99OnTJz/5yU9q9bUBgLqzqvcrG2+8cUaNGpU777wzN910U5o0aZJevXrlzTffrNXXrg0NKl0AdWfzzTcv/Vy/fv20bds23bt3L63r0KFDkmTy5Mmldb/5zW/yu9/9Lu+9915mzZqVOXPmZMstt6y23yFDhuSPf/xjRowYkXvuuSft2rWrtv21115bal2DBg3K22+/nT322CNz585Ny5Ytc/zxx2fYsGGpX79+kuSVV17JcccdlzPOOCO77LJLJk6cmJNPPjlHHnlkRo4cWdbvAwAAYFmsqOdSNXXTTTdl2LBh+eMf/5j27duX1j/66KP55S9/mcsvvzzf+ta38tZbb+X4449PVVVVTj/99FqtAQCoG6t6v7Lttttm2223LT3u1atXtt5664wYMSKXXnpprdbw3zKTZRXWsGHDao8LhUK1dYVCIcnn07GS5JZbbskJJ5yQww8/PPfff3/GjRuXww47LHPmzKm2n8mTJ+f1119P/fr1y0oOC4VCzj333EyfPj3vvfdeJk2alG9+85tJknXXXTdJMnz48PTq1Ssnn3xyNt988+yyyy65/PLLc/XVV5dmuwAAANSFFfVcqiZuvvnmDBw4MLfccssiN509/fTTc/DBB+eHP/xhunfvnn322Sdnn312hg8fXjomAGDFtqr3K19Wr169fOMb3zCThRXbX/7yl/Ts2TNHHXVUad3bb7+9yLjDDz883bp1y6BBgzJw4MDsuOOO2XTTTWv8evXr18/Xvva1JJ8nltttt10prZw5c2YaNGiwyPgkKRaLNX4tAACAurK8z6W+yk033ZTDDz88N91002LvszJz5szUq1f9O5f169dPsVh0vgUAq6iVrV/5smKxmHHjxlWbrbOiMJOFkg022CDPP/987rvvvrzxxhs5/fTT89xzz1Ub8+tf/zpPPfVUrr322hx44IH53ve+l4MOOqha4rnxxhvn9ttvX+LrfPTRR/nNb36T1157LePGjcvxxx+fW2+9tXRfliTp169fbrvttlxxxRV555138te//jXHHXdcvvnNb6ZTp061fuwAAADlWl7nUsnnl1YeN25c/vOf/2Tq1KkZN25cxo0bV9p+00035ZBDDskFF1yQbbfdNpMmTcqkSZMyderU0ph+/frliiuuyJgxYzJhwoQ88MADOf3007PnnnuWvtwGAKxaVrZ+5ayzzsp9992Xd955J+PGjcvAgQMzbty4HHnkkbXzC6lFQhZKjjzyyOy7777Zf//9861vfSsff/xxtWTztddey8knn5zLL788nTt3TvL5P7xPPvmk2nV7X3/99Wr/IBZn9OjR6dGjR3r16pWXX345jz76aOmSYUkyYMCAXHjhhbnsssvSrVu3fP/7389GG22U2267rZaPGgAA4L+zPM+ldtttt2y11Va566678uijj2arrbbKVlttVdp+5ZVXZt68eTn66KNTVVVVWo4//vjSmNNOOy1DhgzJaaedlk033TQDBw7MLrvskiuvvLK2fiUAwApmZetXPvnkkxxxxBHZZJNNsvPOO+fDDz/M448/Xu0z5BVFoWgucKZNm5ZWrVpl6tSpadmyZbVtn332WSZMmJAuXbqkSZMmFaqQFZ2/k1oyY0ayxhqf/zx9etK8eWXrWYKJEyfmqquuyu923jiT2jSrdDlL1PE/M/PD+1/LEUcckaqqqkqXw0poae+P1C6/a1Y5i3lPX1nePzd79z/Z5+l3V+g6V5b3eD0yy2JpfyfeH5cfv2sWsZKcn9fUytCPrCzv86sK/Qq10YuYyQIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiHLMioWi5UugRWYvw8AAFg8vTJL4+8DgBWB96PVV238fy9k+QoNGzZMksycObPClbAi++Lv44u/FwAAWN3Vr18/STJnzpwKV8KKzLkUAJWkX6E2epEGtVXMqqp+/fpZc801M3ny5CRJs2bNUigUKlwVK4pisZiZM2dm8uTJWXPNNUv/YQYAgNVdgwYN0qxZs/z73/9Ow4YNU6+e7/jxf5xLAbAi0K+svmqzFxGyLIOOHTsmSSlogS9bc801S38nAABAUigUUlVVlQkTJuS9996rdDmsoJxLAVBJ+hVqoxcRsiyDL/6xtW/fPnPnzq10OaxgGjZs6FtXAACwGI0aNcqGG27oEhwslnMpAFYE+pXVV231IkKWGqhfv74GEAAAoAbq1auXJk2aVLoMAIAl0q/w33CROQAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAqIDHH388/fr1S6dOnVIoFHLHHXdU214oFBa7/OpXvyqN6d279yLbf/CDHyznIwGA1ZeQBQAAAKACZsyYkS222CKXXXbZYrdPnDix2nL11VenUChkv/32qzZu0KBB1cZdeeWVy6N8ACBJg0oXAAAAALA62nXXXbPrrrsucXvHjh2rPf7jH/+YPn36ZL311qu2vlmzZouMBQCWDzNZAAAAAFZw//rXv3L33Xdn4MCBi2y74YYb0q5du2y22WY56aST8umnny51X7Nnz860adOqLQBAecxkAQAAAFjBjR49Oi1atMi+++5bbf1BBx2ULl26pGPHjhk/fnyGDh2av//973nggQeWuK/hw4fnrLPOquuSAWC1IGQBAAAAWMFdffXVOeigg9KkSZNq6wcNGlT6uVu3btlwww3To0ePvPDCC9l6660Xu6+hQ4fmxBNPLD2eNm1aOnfuXDeFA8AqTsgCAAAAsAL7y1/+ktdffz0333zzV47deuut07Bhw7z55ptLDFkaN26cxo0b13aZALBack8WAAAAgBXYyJEjs80222SLLbb4yrEvv/xy5s6dm6qqquVQGQBgJgsAAABABUyfPj1vvfVW6fGECRMybty4tGnTJl//+teTfH4pr1tvvTUXXHDBIs9/++23c8MNN2S33XZLu3bt8sorr2TIkCHZaqut0qtXr+V2HACwOhOyAAAAAFTA888/nz59+pQef3GflEMPPTSjRo1KkowZMybFYjEHHHDAIs9v1KhRHnrooVxyySWZPn16OnfunN133z1nnnlm6tevv1yOAQBWd0IWAAAAgAro3bt3isXiUsccccQROeKIIxa7rXPnznnsscfqojQAYBm5JwsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAq63hw4fnG9/4Rlq0aJH27dtn7733zuuvv15tzIABA1IoFKot2267bbUxs2fPzrHHHpt27dqlefPm2XPPPfPBBx8sz0MBAAAAKkDIAgCsth577LEcffTRefrpp/PAAw9k3rx52XnnnTNjxoxq47773e9m4sSJpeXPf/5zte2DBw/O7bffnjFjxuSJJ57I9OnTs8cee2T+/PnL83AAAACA5axBpQsAAKiUe++9t9rja665Ju3bt8/YsWPz7W9/u7S+cePG6dix42L3MXXq1IwcOTLXXXdd+vbtmyS5/vrr07lz5zz44IPZZZdd6u4AAAAAgIoykwUA4P83derUJEmbNm2qrX/00UfTvn37dO3aNYMGDcrkyZNL28aOHZu5c+dm5513Lq3r1KlTunXrlieffHKxrzN79uxMmzat2gIAAACsfIQsAABJisViTjzxxGy//fbp1q1baf2uu+6aG264IQ8//HAuuOCCPPfcc/nOd76T2bNnJ0kmTZqURo0apXXr1tX216FDh0yaNGmxrzV8+PC0atWqtHTu3LnuDgwAAACoMy4XBgCQ5JhjjsmLL76YJ554otr6/fffv/Rzt27d0qNHj6yzzjq5++67s++++y5xf8ViMYVCYbHbhg4dmhNPPLH0eNq0aYIWAAAAWAmZyQIArPaOPfbY3HnnnXnkkUey9tprL3VsVVVV1llnnbz55ptJko4dO2bOnDmZMmVKtXGTJ09Ohw4dFruPxo0bp2XLltUWAAAAYOUjZAEAVlvFYjHHHHNMbrvttjz88MPp0qXLVz7n448/zvvvv5+qqqokyTbbbJOGDRvmgQceKI2ZOHFixo8fn549e9ZZ7QAAAEDluVwYALDaOvroo3PjjTfmj3/8Y1q0aFG6h0qrVq3StGnTTJ8+PcOGDct+++2XqqqqvPvuu/npT3+adu3aZZ999imNHThwYIYMGZK2bdumTZs2Oemkk9K9e/f07du3kocHAAAA1DEhCwCw2rriiiuSJL179662/pprrsmAAQNSv379vPTSS7n22mvzySefpKqqKn369MnNN9+cFi1alMZfdNFFadCgQfr3759Zs2Zlxx13zKhRo1K/fv3leTgAAADAciZkAQBWW8VicanbmzZtmvvuu+8r99OkSZOMGDEiI0aMqK3SAAAAgJWAe7IAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGVaYkGX48OEpFAoZPHhwaV2xWMywYcPSqVOnNG3aNL17987LL79c7XmzZ8/Osccem3bt2qV58+bZc88988EHHyzn6gEAAAAAgNXNChGyPPfcc7nqqquy+eabV1t/3nnn5cILL8xll12W5557Lh07dsxOO+2UTz/9tDRm8ODBuf322zNmzJg88cQTmT59evbYY4/Mnz9/eR8GAAAAAACwGql4yDJ9+vQcdNBB+e1vf5vWrVuX1heLxVx88cX52c9+ln333TfdunXL6NGjM3PmzNx4441JkqlTp2bkyJG54IIL0rdv32y11Va5/vrr89JLL+XBBx+s1CEBAAAAAACrgYqHLEcffXR233339O3bt9r6CRMmZNKkSdl5551L6xo3bpwddtghTz75ZJJk7NixmTt3brUxnTp1Srdu3UpjFmf27NmZNm1atQUAAAAAAKAmGlTyxceMGZMXXnghzz333CLbJk2alCTp0KFDtfUdOnTIe++9VxrTqFGjajNgvhjzxfMXZ/jw4TnrrLP+2/IBAAAAAIDVWMVClvfffz/HH3987r///jRp0mSJ4wqFQrXHxWJxkXVf9lVjhg4dmhNPPLH0eNq0aencufMyVg4AAAAALGzq1KmZOXNmpctYqo8++qjSJQCroIqFLGPHjs3kyZOzzTbblNbNnz8/jz/+eC677LK8/vrrST6frVJVVVUaM3ny5NLslo4dO2bOnDmZMmVKtdkskydPTs+ePZf42o0bN07jxo1r+5AAAAAAYLUzderUXPrry7Jg7rxKlwKw3FUsZNlxxx3z0ksvVVt32GGHZeONN86pp56a9dZbLx07dswDDzyQrbbaKkkyZ86cPPbYYzn33HOTJNtss00aNmyYBx54IP3790+STJw4MePHj8955523fA8IAAAAAFZDM2fOzIK583LHtuvmo5ZLvmJNpa0/cWr6vDSx0mUAq5iKhSwtWrRIt27dqq1r3rx52rZtW1o/ePDgnH322dlwww2z4YYb5uyzz06zZs1y4IEHJklatWqVgQMHZsiQIWnbtm3atGmTk046Kd27d0/fvn2X+zEBAAAAwOrqo5ZNMqlNs0qXsURtp31W6RKAVVBFb3z/VU455ZTMmjUrRx11VKZMmZJvfetbuf/++9OiRYvSmIsuuigNGjRI//79M2vWrOy4444ZNWpU6tevX8HKAQAAAACAVd0KFbI8+uij1R4XCoUMGzYsw4YNW+JzmjRpkhEjRmTEiBF1WxwAAAAAAMBC6lW6AAAAAIDV0eOPP55+/fqlU6dOKRQKueOOO6ptHzBgQAqFQrVl2223rTZm9uzZOfbYY9OuXbs0b948e+65Zz744IPleBQAsHoTsgAAAABUwIwZM7LFFlvksssuW+KY7373u5k4cWJp+fOf/1xt++DBg3P77bdnzJgxeeKJJzJ9+vTssccemT9/fl2XDwBkBbtcGAAAAMDqYtddd82uu+661DGNGzdOx44dF7tt6tSpGTlyZK677rr07ds3SXL99denc+fOefDBB7PLLrvUes0AQHVmsgAAAACsoB599NG0b98+Xbt2zaBBgzJ58uTStrFjx2bu3LnZeeedS+s6deqUbt265cknn1ziPmfPnp1p06ZVWwCA8ghZAAAAAFZAu+66a2644YY8/PDDueCCC/Lcc8/lO9/5TmbPnp0kmTRpUho1apTWrVtXe16HDh0yadKkJe53+PDhadWqVWnp3LlznR4HAKzKXC4MAAAAYAW0//77l37u1q1bevTokXXWWSd333139t133yU+r1gsplAoLHH70KFDc+KJJ5YeT5s2TdACAGUykwUAAABgJVBVVZV11lknb775ZpKkY8eOmTNnTqZMmVJt3OTJk9OhQ4cl7qdx48Zp2bJltQUAKI+QBQAAAGAl8PHHH+f9999PVVVVkmSbbbZJw4YN88ADD5TGTJw4MePHj0/Pnj0rVSYArFZcLgwAAACgAqZPn5633nqr9HjChAkZN25c2rRpkzZt2mTYsGHZb7/9UlVVlXfffTc//elP065du+yzzz5JklatWmXgwIEZMmRI2rZtmzZt2uSkk05K9+7d07dv30odFgCsVoQsAAAAABXw/PPPp0+fPqXHX9wn5dBDD80VV1yRl156Kddee20++eSTVFVVpU+fPrn55pvTokWL0nMuuuiiNGjQIP3798+sWbOy4447ZtSoUalfv/5yPx4AWB0JWQAAAAAqoHfv3ikWi0vcft99933lPpo0aZIRI0ZkxIgRtVkaALCM3JMFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAAAAog5AFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKEODShcAAAAAAMD/+eijjypdwlI1a9YsrVq1qnQZsEIQsgAAAAAArACaz5qbBUluu+22SpeyVPUaNshxRx8jaIEIWQAAAAAAVghN5s5PvSR3bLtuPmrZpNLlLFa7aZ9l76ffzcyZM4UsECELAAAAAMAK5aOWTTKpTbNKlwEsAze+BwAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMpQ4xvfjx49Ou3atcvuu++eJDnllFNy1VVXZdNNN81NN92UddZZp9aLBAD4gl4EFm/q1KmZOXNmpctIkhRmzkzH///nSZMmpdisWT766KOK1gRQW/QiAMDCahyynH322bniiiuSJE899VQuu+yyXHzxxfnTn/6UE044IbfddlutFwkA8AW9CCxq6tSpufTXl2XB3HmVLiVJ0nDOnPz0///56quvztxGjSpaD0Bt0osAAAurccjy/vvvZ4MNNkiS3HHHHfne976XI444Ir169Urv3r1ruz4AgGr0IrComTNnZsHceblj23XzUcsmlS4nTWd9lp+e/fnPo3bsmllNm2T9iVPT56WJlS0MoBboRQCAhdU4ZFljjTXy8ccf5+tf/3ruv//+nHDCCUmSJk2aZNasWbVeIADAwvQisGQftWySSW2aVbqMNJv5f7d+/FfrZpnZrEnaTvusghUB1B69CACwsBqHLDvttFN++MMfZquttsobb7xRugbpyy+/nHXXXbe26wMAqEYvAgBUkl4EAFhYva8eUt2vf/3rbLfddvn3v/+dP/zhD2nbtm2SZOzYsTnggANqvUAAgIXpRQCAStKLAAALq/FMlmnTpuXSSy9NvXrV85lhw4bl/fffr7XCAAAWRy8CAFSSXgQAWFiNZ7J06dIlH3300SLr//Of/6RLly61UhQAwJLoRQCAStKLAAALq3HIUiwWF7t++vTpadKkyX9dEADA0uhFAIBK0osAAAtb5suFnXjiiUmSQqGQM844I82aNSttmz9/fp555plsueWWtV4gAECiFwEAKksvAgAszjKHLH/729+SfP6NjZdeeimNGjUqbWvUqFG22GKLnHTSSbVfIQBA9CIAQGXpRQCAxVnmkOWRRx5Jkhx22GG55JJL0rJlyzorCgDgy/QiAEAl6UUAgMVZ5pDlC9dcc01d1AEAsEz0IgBAJelFAICF1ThkmTFjRs4555w89NBDmTx5chYsWFBt+zvvvFNrxQEAfJleBACoJL0IALCwGocsP/zhD/PYY4/l4IMPTlVVVQqFQl3UBQCwWHoRAKCS9CIAwMJqHLLcc889ufvuu9OrV6+6qAcAYKlqsxcZPnx4brvttrz22mtp2rRpevbsmXPPPTcbbbRRaUyxWMxZZ52Vq666KlOmTMm3vvWt/PrXv85mm21WGjN79uycdNJJuemmmzJr1qzsuOOOufzyy7P22mv/1zUCACsWn4sAAAurV9MntG7dOm3atKmLWgAAvlJt9iKPPfZYjj766Dz99NN54IEHMm/evOy8886ZMWNGacx5552XCy+8MJdddlmee+65dOzYMTvttFM+/fTT0pjBgwfn9ttvz5gxY/LEE09k+vTp2WOPPTJ//vxaqRMAWHH4XAQAWFiNQ5b//d//zRlnnJGZM2fWRT0AAEtVm73IvffemwEDBmSzzTbLFltskWuuuSb/+Mc/Mnbs2CSfz2K5+OKL87Of/Sz77rtvunXrltGjR2fmzJm58cYbkyRTp07NyJEjc8EFF6Rv377Zaqutcv311+ell17Kgw8++F/XCACsWHwuAgAsrMaXC7vgggvy9ttvp0OHDll33XXTsGHDattfeOGFWisOAODL6rIXmTp1apKUvp06YcKETJo0KTvvvHNpTOPGjbPDDjvkySefzI9+9KOMHTs2c+fOrTamU6dO6datW5588snssssuZdcDAKx4fC4CACysxiHL3nvvXQdlAAAsm7rqRYrFYk488cRsv/326datW5Jk0qRJSZIOHTpUG9uhQ4e89957pTGNGjVK69atFxnzxfO/bPbs2Zk9e3bp8bRp02rtOACAuuVzEQBgYTUOWc4888y6qAMAYJnUVS9yzDHH5MUXX8wTTzyxyLZCoVDtcbFYXGTdly1tzPDhw3PWWWeVXywAUDE+FwEAFlbje7IkySeffJLf/e53GTp0aP7zn/8k+Xw67IcfflirxQEALE5t9yLHHnts7rzzzjzyyCNZe+21S+s7duyYJIvMSJk8eXJpdkvHjh0zZ86cTJkyZYljvmzo0KGZOnVqaXn//ffLqhsAqAyfiwAAX6hxyPLiiy+ma9euOffcc3P++efnk08+SZLcfvvtGTp0aG3XBwBQTW32IsViMcccc0xuu+22PPzww+nSpUu17V26dEnHjh3zwAMPlNbNmTMnjz32WHr27Jkk2WabbdKwYcNqYyZOnJjx48eXxnxZ48aN07Jly2oLALBy8LkIALCwGocsJ554YgYMGJA333wzTZo0Ka3fdddd8/jjj9dqcQAAX1abvcjRRx+d66+/PjfeeGNatGiRSZMmZdKkSZk1a1aSzy8TNnjw4Jx99tm5/fbbM378+AwYMCDNmjXLgQcemCRp1apVBg4cmCFDhuShhx7K3/72t/zP//xPunfvnr59+9begQMAKwSfiwAAC6txyPLcc8/lRz/60SLrv/a1ry3x5q4AALWlNnuRK664IlOnTk3v3r1TVVVVWm6++ebSmFNOOSWDBw/OUUcdlR49euTDDz/M/fffnxYtWpTGXHTRRdl7773Tv3//9OrVK82aNctdd92V+vXrl3+gAMAKqTZ7kccffzz9+vVLp06dUigUcscdd5S2zZ07N6eeemq6d++e5s2bp1OnTjnkkEPyz3/+s9o+evfunUKhUG35wQ9+UNaxAQA1V+Mb3zdp0iTTpk1bZP3rr7+etdZaq1aKAgBYktrsRYrF4leOKRQKGTZsWIYNG7bUmkaMGJERI0bU6PUBgJVPbfYiM2bMyBZbbJHDDjss++23X7VtM2fOzAsvvJDTTz89W2yxRaZMmZLBgwdnzz33zPPPP19t7KBBg/Lzn/+89Lhp06Y1qgMAKF+NQ5a99torP//5z3PLLbck+fyDh3/84x/5yU9+skhDAABQ2/QiAEAl1WYvsuuuu2bXXXdd7LZWrVpVu+dbkowYMSLf/OY3849//CNf//rXS+ubNWuWjh071vBIAIDaUOPLhZ1//vn597//nfbt22fWrFnZYYcdssEGG6RFixb55S9/WRc1AgCU6EUAgEqqZC8yderUFAqFrLnmmtXW33DDDWnXrl0222yznHTSSfn000+Xup/Zs2dn2rRp1RYAoDw1nsnSsmXLPPHEE3n44YfzwgsvZMGCBdl6663d2BUAWC70IgBAJVWqF/nss8/yk5/8JAceeGBatmxZWn/QQQelS5cu6dixY8aPH5+hQ4fm73//+yKzYBY2fPjwnHXWWXVaLwCsLmocsnzhO9/5Tr7zne/UZi0AAMtMLwIAVNLy7EXmzp2bH/zgB1mwYEEuv/zyatsGDRpU+rlbt27ZcMMN06NHj7zwwgvZeuutF7u/oUOH5sQTTyw9njZtWjp37lw3xQPAKq6skOXZZ5/No48+msmTJ2fBggXVtl144YW1UhgAwJLoRQCASlqevcjcuXPTv3//TJgwIQ8//HC1WSyLs/XWW6dhw4Z58803lxiyNG7cOI0bN67VOgFgdVXjkOXss8/Oaaedlo022igdOnRIoVAobVv4ZwCAuqAXAQAqaXn2Il8ELG+++WYeeeSRtG3b9iuf8/LLL2fu3Lmpqqqq1VoAgMWrcchyySWX5Oqrr86AAQPqoBwAgKXTiwAAlVSbvcj06dPz1ltvlR5PmDAh48aNS5s2bdKpU6d873vfywsvvJA//elPmT9/fiZNmpQkadOmTRo1apS33347N9xwQ3bbbbe0a9cur7zySoYMGZKtttoqvXr1+q/rAwC+Wo1Dlnr16nmjBgAqRi8CAFRSbfYizz//fPr06VN6/MV9Ug499NAMGzYsd955Z5Jkyy23rPa8Rx55JL17906jRo3y0EMP5ZJLLsn06dPTuXPn7L777jnzzDNTv379WqkRAFi6GocsJ5xwQn7961/n4osvroNyAACWTi8CAFRSbfYivXv3TrFYXOL2pW1Lks6dO+exxx77r+sAAMpX45DlpJNOyu677571118/m266aRo2bFht+2233VZrxQEAfJleBACoJL0IALCwGocsxx57bB555JH06dMnbdu2dYNZAGC50osAAJWkFwEAFlbjkOXaa6/NH/7wh+y+++51UQ8AwFLpRQCAStKLAAALq1fTJ7Rp0ybrr79+XdQCAPCV9CIAQCXpRQCAhdU4ZBk2bFjOPPPMzJw5sy7qAQBYKr0IAFBJehEAYGE1vlzYpZdemrfffjsdOnTIuuuuu8gN3l544YVaKw4A4Mv0IgBAJelFAICF1Thk2XvvveugDACAZaMXAQAqSS8CACysxiHLmWeeWRd1AAAsE70IAFBJehEAYGE1vicLAAAAAAAAZcxkad26dQqFwiLrC4VCmjRpkg022CADBgzIYYcdVisFAgAsTC8CAFSSXgQAWFiNZ7KcccYZqVevXnbfffecddZZGTZsWHbffffUq1cvRx99dLp27Zof//jH+e1vf/uV+7riiiuy+eabp2XLlmnZsmW222673HPPPaXtxWIxw4YNS6dOndK0adP07t07L7/8crV9zJ49O8cee2zatWuX5s2bZ88998wHH3xQ08MCAFYStdmLAADUlF4EAFhYjWeyPPHEE/nFL36RI488str6K6+8Mvfff3/+8Ic/ZPPNN8+ll16aQYMGLXVfa6+9ds4555xssMEGSZLRo0dnr732yt/+9rdsttlmOe+883LhhRdm1KhR6dq1a37xi19kp512yuuvv54WLVokSQYPHpy77rorY8aMSdu2bTNkyJDsscceGTt2bOrXr1/TwwMAVnC12YsAANSUXgQAWFiNZ7Lcd9996du37yLrd9xxx9x3331Jkt122y3vvPPOV+6rX79+2W233dK1a9d07do1v/zlL7PGGmvk6aefTrFYzMUXX5yf/exn2XfffdOtW7eMHj06M2fOzI033pgkmTp1akaOHJkLLrggffv2zVZbbZXrr78+L730Uh588MGaHhoAsBKozV4EAKCm9CIAwMJqHLK0adMmd9111yLr77rrrrRp0yZJMmPGjNJMk2U1f/78jBkzJjNmzMh2222XCRMmZNKkSdl5551LYxo3bpwddtghTz75ZJJk7NixmTt3brUxnTp1Srdu3UpjFmf27NmZNm1atQUAWDnUVS8CALAs9CIAwMJqfLmw008/PT/+8Y/zyCOP5Jvf/GYKhUKeffbZ/PnPf85vfvObJMkDDzyQHXbYYZn299JLL2W77bbLZ599ljXWWCO33357Nt1001JI0qFDh2rjO3TokPfeey9JMmnSpDRq1CitW7deZMykSZOW+JrDhw/PWWedtczHDACsOGq7FwEAqAm9CACwsBqHLIMGDcqmm26ayy67LLfddluKxWI23njjPPbYY+nZs2eSZMiQIcu8v4022ijjxo3LJ598kj/84Q859NBD89hjj5W2FwqFauOLxeIi677sq8YMHTo0J554YunxtGnT0rlz52WuGQConNruRQAAakIvAgAsrMYhS5L06tUrvXr1qpUCGjVqVLrxfY8ePfLcc8/lkksuyamnnprk89kqVVVVpfGTJ08uzW7p2LFj5syZkylTplSbzTJ58uRSY7M4jRs3TuPGjWulfgBg+avNXgQAoKb0IgDAF2p8T5aFzZo1q9bvbVIsFjN79ux06dIlHTt2zAMPPFDaNmfOnGrfDNlmm23SsGHDamMmTpyY8ePHLzVkAQBWDXXRiwAALCu9CABQ45ksM2fOzCmnnJJbbrklH3/88SLb58+fv8z7+ulPf5pdd901nTt3zqeffpoxY8bk0Ucfzb333ptCoZDBgwfn7LPPzoYbbpgNN9wwZ599dpo1a5YDDzwwSdKqVasMHDgwQ4YMSdu2bdOmTZucdNJJ6d69e/r27VvTQwMAVgK12YsAANSUXgQAWFiNZ7KcfPLJefjhh3P55ZencePG+d3vfpezzjornTp1yrXXXlujff3rX//KwQcfnI022ig77rhjnnnmmdx7773ZaaedkiSnnHJKBg8enKOOOio9evTIhx9+mPvvvz8tWrQo7eOiiy7K3nvvnf79+6dXr15p1qxZ7rrrrtSvX7+mhwYArARqsxcBAKgpvQgAsLAaz2S56667cu2116Z37945/PDD8//+3//LBhtskHXWWSc33HBDDjrooGXe18iRI5e6vVAoZNiwYRk2bNgSxzRp0iQjRozIiBEjlvl1AYCVV232IgAANaUXAQAWVuOZLP/5z3/SpUuXJEnLli3zn//8J0my/fbb5/HHH6/d6gAAvkQvAgBUkl4EAFhYjUOW9dZbL++++26SZNNNN80tt9yS5PNvcqy55pq1WRsAwCL0IgBAJelFAICF1ThkOeyww/L3v/89STJ06NDSNUhPOOGEnHzyybVeIADAwvQiAEAl6UUAgIXV+J4sJ5xwQunnPn365LXXXsvzzz+f9ddfP1tssUWtFgcA8GV6EQCgkvQiAMDCajSTZe7cuenTp0/eeOON0rqvf/3r2XfffTUSAECd04sAAJWkFwEAvqxGIUvDhg0zfvz4FAqFuqoHAGCJ9CIAQCXpRQCAL6vxPVkOOeSQjBw5si5qAQD4SnoRAKCS9CIAwMJqfE+WOXPm5He/+10eeOCB9OjRI82bN6+2/cILL6y14gAAvkwvAgBUkl4EAFhYjUOW8ePHZ+utt06SatcgTWK6LABQ5/QiAEAl6UUAgIUtU8jy4osvplu3bqlXr14eeeSRuq4JAKAavQgAUEl6EQBgSZbpnixbbbVVPvrooyTJeuutl48//rhOiwIAWJheBACoJL0IALAkyxSyrLnmmpkwYUKS5N13382CBQvqtCgAgIXpRQCAStKLAABLskyXC9tvv/2yww47pKqqKoVCIT169Ej9+vUXO/add96p1QIBAPQiAEAl6UUAgCVZppDlqquuyr777pu33norxx13XAYNGpQWLVrUdW0AAEn0IgBAZelFAIAlWaaQJUm++93vJknGjh2b448/XjMBACxXehEAoJL0IgDA4ixzyPKFa665pi7qAABYJnoRAKCS9CIAwMKW6cb3AAAAAAAAVCdkAQAAAAAAKIOQBQAAAAAAoAzLFLJsvfXWmTJlSpLk5z//eWbOnFmnRQEALEwvAgBUkl4EAFiSZQpZXn311cyYMSNJctZZZ2X69Ol1WhQAwML0IgBAJelFAIAlabAsg7bccsscdthh2X777VMsFnP++ednjTXWWOzYM844o1YLBADQiwAAlaQXAQCWZJlCllGjRuXMM8/Mn/70pxQKhdxzzz1p0GDRpxYKBc0EAFDr9CIAQCXpRQCAJVmmkGWjjTbKmDFjkiT16tXLQw89lPbt29dpYcDqbdKkSSk2a1bpMhbro48+qnQJsNrRiwAAlaQXAQCWZJlCloUtWLCgLuoAqObqq6/O3EaNKl0GsALSiwAAlaQXAQAWVuOQJUnefvvtXHzxxXn11VdTKBSyySab5Pjjj8/6669f2/UBq6m7vrlOPmjfqtJlLNb6E6emz0sTK10GrNb0IgBAJelFAIAv1Dhkue+++7Lnnntmyy23TK9evVIsFvPkk09ms802y1133ZWddtqpLuoEVjMft2icSW1WzMuFtZ32WaVLgNWaXgQAqCS9CACwsHo1fcJPfvKTnHDCCXnmmWdy4YUX5qKLLsozzzyTwYMH59RTT62LGgEASvQiAEAl1WYv8vjjj6dfv37p1KlTCoVC7rjjjmrbi8Vihg0blk6dOqVp06bp3bt3Xn755WpjZs+enWOPPTbt2rVL8+bNs+eee+aDDz74bw8TAFhGNQ5ZXn311QwcOHCR9YcffnheeeWVWikKAGBJ9CIAQCXVZi8yY8aMbLHFFrnssssWu/28887LhRdemMsuuyzPPfdcOnbsmJ122imffvppaczgwYNz++23Z8yYMXniiScyffr07LHHHpk/f37NDgwAKEuNQ5a11lor48aNW2T9uHHj0r59+9qoCQBgifQiAEAl1WYvsuuuu+YXv/hF9t1330W2FYvFXHzxxfnZz36WfffdN926dcvo0aMzc+bM3HjjjUmSqVOnZuTIkbngggvSt2/fbLXVVrn++uvz0ksv5cEHHyzr+ACAmqnxPVkGDRqUI444Iu+880569uyZQqGQJ554Iueee26GDBlSFzUCAJToRQCASlpevciECRMyadKk7LzzzqV1jRs3zg477JAnn3wyP/rRjzJ27NjMnTu32phOnTqlW7duefLJJ7PLLrssdt+zZ8/O7NmzS4+nTZtWa3UDwOqmxiHL6aefnhYtWuSCCy7I0KFDk3z+Bj5s2LAcd9xxtV4gAMDC9CIAQCUtr15k0qRJSZIOHTpUW9+hQ4e89957pTGNGjVK69atFxnzxfMXZ/jw4TnrrLNqrVYAWJ3VOGQpFAo54YQTcsIJJ5SuAdqiRYtaLwwAYHH0IgBAJS3vXqRQKFR7XCwWF1n3ZV81ZujQoTnxxBNLj6dNm5bOnTv/d4UCwGqqxiHLwnygAQBUkl4EAKikuuxFOnbsmOTz2SpVVVWl9ZMnTy7NbunYsWPmzJmTKVOmVJvNMnny5PTs2XOJ+27cuHEaN25cR5UDwOqlxje+BwAAAKBudenSJR07dswDDzxQWjdnzpw89thjpQBlm222ScOGDauNmThxYsaPH7/UkAUAqD1CFgBgtfX444+nX79+6dSpUwqFQu64445q2wcMGJBCoVBt2XbbbauNmT17do499ti0a9cuzZs3z5577pkPPvhgOR4FALCymj59esaNG5dx48Yl+fxm9+PGjcs//vGPFAqFDB48OGeffXZuv/32jB8/PgMGDEizZs1y4IEHJklatWqVgQMHZsiQIXnooYfyt7/9Lf/zP/+T7t27p2/fvhU8MgBYffxXlwsDAFiZzZgxI1tssUUOO+yw7Lfffosd893vfjfXXHNN6XGjRo2qbR88eHDuuuuujBkzJm3bts2QIUOyxx57ZOzYsalfv36d1g8ArNyef/759OnTp/T4i/ukHHrooRk1alROOeWUzJo1K0cddVSmTJmSb33rW7n//vurXabsoosuSoMGDdK/f//MmjUrO+64Y0aNGqUPAYDlpEYhy9y5c7PzzjvnyiuvTNeuXeuqJgCAxartXmTXXXfNrrvuutQxjRs3Ll0T/cumTp2akSNH5rrrrit9W/T6669P586d8+CDD2aXXXb5r2sEAFYctd2L9O7dO8VicYnbC4VChg0blmHDhi1xTJMmTTJixIiMGDHiv64HAKi5GoUsDRs2zPjx41MoFOqqHgBq2UcffVTpEpaqWbNmadWqVaXLYCVRiV7k0UcfTfv27bPmmmtmhx12yC9/+cu0b98+STJ27NjShy1f6NSpU7p165Ynn3xyiSHL7NmzM3v27NLjadOm1e1BAAC1wuciAMCX1fhyYYccckhGjhyZc845py7qAaCWNJ81NwuS3HbbbZUuZanqNWyQ444+RtDCMluevciuu+6a73//+1lnnXUyYcKEnH766fnOd76TsWPHpnHjxpk0aVIaNWqU1q1bV3tehw4dMmnSpCXud/jw4TnrrLPqunwAoA74XAQAWFiNQ5Y5c+bkd7/7XR544IH06NEjzZs3r7b9wgsvrLXiAChfk7nzUy/JHduum49aNql0OYvVbtpn2fvpdzNz5kwhC8tsefYi+++/f+nnbt26pUePHllnnXVy9913Z999913i84rF4lK/4Tp06NDSNdeTz2eydO7cuXaKBlYbK/ps1cSMVVZNPhcBABZW45Bl/Pjx2XrrrZMkb7zxRrVtpssCrHg+atkkk9o0q3QZUGsq2YtUVVVlnXXWyZtvvpkk6dixY+bMmZMpU6ZUm80yefLk9OzZc4n7ady4cRo3blyntQKrrpVltmpixiqrJp+LAAALq3HI8sgjj9RFHQAAy6SSvcjHH3+c999/P1VVVUmSbbbZJg0bNswDDzyQ/v37J0kmTpyY8ePH57zzzqtYncCqbWWYrZqYscqqy+ciAMDCahyyfOGtt97K22+/nW9/+9tp2rTpV14WAwCgNtVGLzJ9+vS89dZbpccTJkzIuHHj0qZNm7Rp0ybDhg3Lfvvtl6qqqrz77rv56U9/mnbt2mWfffZJkrRq1SoDBw7MkCFD0rZt27Rp0yYnnXRSunfvnr59+9bq8QJ8mdmqUFk+FwEAkqReTZ/w8ccfZ8cdd0zXrl2z2267ZeLEiUmSH/7whxkyZEitFwgAsLDa7EWef/75bLXVVtlqq62SJCeeeGK22mqrnHHGGalfv35eeuml7LXXXunatWsOPfTQdO3aNU899VRatGhR2sdFF12UvffeO/3790+vXr3SrFmz3HXXXalfv37tHTQAsMLwuQgAsLAahywnnHBCGjZsmH/84x9p1uz/vjW1//775957763V4gAAvqw2e5HevXunWCwusowaNSpNmzbNfffdl8mTJ2fOnDl57733MmrUqEVuUN+kSZOMGDEiH3/8cWbOnJm77rrLTewBYBXmcxEAYGE1vlzY/fffn/vuuy9rr712tfUbbrhh3nvvvVorDABgcfQiAEAl6UUAgIXVeCbLjBkzqn1T4wsfffRRGjduXCtFAQAsiV4EAKgkvQgAsLAahyzf/va3c+2115YeFwqFLFiwIL/61a/Sp0+fWi0OAODL9CIAQCXpRQCAhdX4cmG/+tWv0rt37zz//POZM2dOTjnllLz88sv5z3/+k7/+9a91USMAQIleBACoJL0IALCwGs9k2XTTTfPiiy/mm9/8ZnbaaafMmDEj++67b/72t79l/fXXr4saAQBK9CIAQCXpRQCAhdV4JkuSdOzYMWeddVZt1wIAsEz0IgBAJelFAIAvlBWyTJkyJSNHjsyrr76aQqGQTTbZJIcddljatGlT2/UBACxCLwIAVJJeBAD4Qo0vF/bYY4+lS5cuufTSSzNlypT85z//yaWXXpouXbrkscceq4saAQBK9CIAQCXpRQCAhdV4JsvRRx+d/v3754orrkj9+vWTJPPnz89RRx2Vo48+OuPHj6/1IgEAvqAXAQAqSS8CACysxjNZ3n777QwZMqTUSCRJ/fr1c+KJJ+btt9+u1eIAAL5MLwIAVJJeBABYWI1Dlq233jqvvvrqIutfffXVbLnllrVREwDAEulFAIBK0osAAAtbpsuFvfjii6WfjzvuuBx//PF56623su222yZJnn766fz617/OOeecUzdVAgCrNb0IAFBJehEAYEmWKWTZcsstUygUUiwWS+tOOeWURcYdeOCB2X///WuvOgCA6EUAgMrSiwAAS7JMIcuECRPqug4AgCXSiwAAlaQXAQCWZJlClnXWWaeu6wAAWCK9CABQSXoRAGBJlilk+bIPP/wwf/3rXzN58uQsWLCg2rbjjjuuVgoDAFgSvQgAUEl6EQDgCzUOWa655poceeSRadSoUdq2bZtCoVDaVigUNBMAQJ3SiwAAlaQXAQAWVuOQ5YwzzsgZZ5yRoUOHpl69enVREwDAEulFAIBK0osAAAurcTcwc+bM/OAHP/j/2Lv7sCrq/P/jr8M9KKBAcmBFJRd1A1PT8qYbMe8ytRtLU/uVmpnlTbnmVnazYVuy+m3NVu3GMtDUdHe9WdvKpBLNVUtUypvyptA0IRbXDioICPP7o6/n64kb4QjMOYfn47rmupyZz5nzHkad9zkvZoZGAgAAmIJeBAAAmIleBAAAXKzGV7KMHTtWf//73/XUU0/VRT0AAABVohcBAABmohcBgF/k5eWZXcIlBQUFKTQ01Owy4OFqHLIkJydr0KBBWr9+vdq3by9fX1+H9XPmzKm14gAAAH6NXgQAAJiJXgRAQ9eosERlklavXm12KZfk5eujRydOImhBnapxyDJz5kx9/PHHatu2rSSVe8AbAABAXaIXAQAAZqIXAdDQBZSUykvS2m6tlBcSYHY5lYrIP6c7th9RQUEBIQvqVI1Dljlz5uidd97R6NGj66AcAACAqtGLAAAAM9GLAMAv8kIClBMWZHYZgOlq/JQ2f39/XX/99XVRCwAAwCXRiwAAADPRiwAAgIvVOGR57LHHNG/evLqoBQAA4JLoRQAAgJnoRQAAwMVqfLuwL7/8Up999pn+9a9/KT4+vtwD3tzhgUcAAMB90YsAAAAz0YsAAICL1ThkadKkiYYMGVIXtQAAAFwSvQgAADATvQgAALhYjUOWlJSUuqgDAACgWuhFAACAmehFAADAxWr8TBYAAAAAAAAAAAA4cSVLbGysLBZLpeu///77yyoIAACgKvQiAADATPQiAADgYjUOWaZMmeIwX1JSot27d2v9+vX6wx/+UFt1AQAAVIheBAAAmIleBAAAXKzGIctjjz1W4fIFCxYoIyPjsgsCAACoCr0IAAAwE70IAAC4WK09k2XAgAFatWpVbW0OAACgRuhFAACAmehFAABomGotZPnHP/6hsLCw2tocAABAjdCLAAAAM9GLAADQMNX4dmGdOnVyeMCbYRjKycnRf/7zH7322ms12lZycrJWr16tb7/9VoGBgerRo4dmzZqltm3bOmx/xowZWrhwoU6dOqWuXbtqwYIFio+Pt48pKirStGnT9N5776mwsFC9e/fWa6+9pubNm9d09wAAgIurzV4EAACgpuhFAADAxWocstxxxx0O815eXrriiiuUmJiodu3a1WhbmzZt0sSJE3Xttdfq/PnzeuaZZ9SvXz/t379fjRo1kiTNnj1bc+bMUWpqqtq0aaMXX3xRffv21YEDBxQcHCzpl4fOvf/++1qxYoXCw8P1+OOPa9CgQdq5c6e8vb1ruosAAMCF1WYvAgAAUFP0IgAA4GI1Dlmef/75Wnvz9evXO8ynpKSoWbNm2rlzp2666SYZhqG5c+fqmWee0ZAhQyRJixcvVmRkpJYvX67x48fLZrNp0aJFevfdd9WnTx9J0tKlSxUTE6NPPvlE/fv3r7V6AQCA+WqzFwEAAKgpehEAAHCxWnsmS22w2WySZL+HaVZWlnJyctSvXz/7GH9/f/Xs2VNbt26VJO3cuVMlJSUOY6Kjo5WQkGAf82tFRUXKz893mAAAAAAAAAAAAGqi2leyeHl5OdxztCIWi0Xnz593qhDDMDR16lTdcMMNSkhIkCTl5ORIkiIjIx3GRkZG6ujRo/Yxfn5+atq0abkxF17/a8nJyZoxY4ZTdQIAAHPUdS8CAABQFXoRAABQkWqHLGvWrKl03datWzVv3jwZhuF0IZMmTdLXX3+tLVu2lFv36ybGMIxLNjZVjZk+fbqmTp1qn8/Pz1dMTIwTVQMAgPpS170IAABAVehFAABARaodstx+++3lln377beaPn263n//fd17773605/+5FQRkydP1rp167R582Y1b97cvtxqtUr65WqVqKgo+/Lc3Fz71S1Wq1XFxcU6deqUw9Usubm56tGjR4Xv5+/vL39/f6dqBQAA5qjLXgQAAOBSzOpFWrVqZb+bx8UmTJigBQsWaPTo0Vq8eLHDuq5du2r79u21XgvMY7PZVFBQUG/vZykokPV//5yTkyMjKKjK8Xl5eXVfFAC4qBo/+F6STpw4oeeff16LFy9W//79lZmZab/FV00YhqHJkydrzZo1Sk9PV2xsrMP62NhYWa1WpaWlqVOnTpKk4uJibdq0SbNmzZIkde7cWb6+vkpLS9OwYcMkSdnZ2dq7d69mz57tzO4BAAAXV1u9CAAAgDPqsxfZsWOHSktL7fN79+5V3759NXToUPuyW265RSkpKfZ5Pz+/OqkF5rDZbPrrgvkqK6m/W9H5Fhfr6f/98zvvvKMS/k4BQKVqFLLYbDbNnDlT8+bNU8eOHfXpp5/qxhtvdPrNJ06cqOXLl+uf//yngoOD7c9QCQ0NVWBgoCwWi6ZMmaKZM2cqLi5OcXFxmjlzpoKCgjRy5Ej72LFjx+rxxx9XeHi4wsLCNG3aNLVv3159+vRxujYAAOB6arsXAQAAqAkzepErrrjCYf7Pf/6zWrdurZ49e9qX+fv72+8GAs9TUFCgspLzWtutlfJCAurlPQMLz+npmb/8ObV3GxUGVv2+rbNt6rUnux4qAwDXU+2QZfbs2Zo1a5asVqvee++9Ci+TranXX39dkpSYmOiwPCUlRaNHj5YkPfHEEyosLNSECRN06tQpde3aVRs2bFBwcLB9/CuvvCIfHx8NGzZMhYWF6t27t1JTU+Xt7X3ZNQIAANdQF70IAABAdblCL1JcXKylS5dq6tSpDs+hTU9PV7NmzdSkSRP17NlTL730kpo1a1bpdoqKilRUVGSfz8/Pr9O6UTvyQgKUE1b1bbtqS1CBl/3PPzUNUkFQ1SFLeP65ui4JAFxWtUOWp556SoGBgfrtb3+rxYsXl7vf5wWrV6+u9ptX54FwFotFSUlJSkpKqnRMQECA5s2bp3nz5lX7vQEAgHupi14EAACgulyhF1m7dq1+/vln+y+mStKAAQM0dOhQtWzZUllZWXruued08803a+fOnZU+jzY5OVkzZsyoszoBAGhIqh2y3H///Q6/JQEAAFCf6EUAAICZXKEXWbRokQYMGKDo6Gj7snvuucf+54SEBHXp0kUtW7bUBx98oCFDhlS4nenTp2vq1Kn2+fz8fMXExNRd4QAAeLBqhyypqal1WAYAAEDV6EUAAICZzO5Fjh49qk8++eSSV8pERUWpZcuWOnToUKVj/P39K73KBQAA1IzXpYcAAAAAAADATCkpKWrWrJkGDhxY5biTJ0/q2LFjioqKqqfKAABo2AhZAAAAAAAAXFhZWZlSUlI0atQo+fj8301Jzpw5o2nTpmnbtm06cuSI0tPTNXjwYEVEROjOO+80sWIAABqOat8uDAAAAAAAAPXvk08+0Q8//KAHHnjAYbm3t7f27NmjJUuW6Oeff1ZUVJR69eqllStXKjg42KRqAQBoWAhZAAAAAAAAXFi/fv1kGEa55YGBgfr4449NqAgAAFzA7cIAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAA3W5s2bNXjwYEVHR8tisWjt2rUO6w3DUFJSkqKjoxUYGKjExETt27fPYUxRUZEmT56siIgINWrUSLfddpuOHz9ej3sBAAAAAADMQsgCAAAarLNnz6pDhw6aP39+hetnz56tOXPmaP78+dqxY4esVqv69u2r06dP28dMmTJFa9as0YoVK7RlyxadOXNGgwYNUmlpaX3tBgAAAAAAMImP2QUAAACYZcCAARowYECF6wzD0Ny5c/XMM89oyJAhkqTFixcrMjJSy5cv1/jx42Wz2bRo0SK9++676tOnjyRp6dKliomJ0SeffKL+/fvX274AAAAAAID6x5UsAAAAFcjKylJOTo769etnX+bv76+ePXtq69atkqSdO3eqpKTEYUx0dLQSEhLsYypSVFSk/Px8hwkAAAAAALgfQhYAAIAK5OTkSJIiIyMdlkdGRtrX5eTkyM/PT02bNq10TEWSk5MVGhpqn2JiYmq5egAAAAAAUB8IWQAAAKpgsVgc5g3DKLfs1y41Zvr06bLZbPbp2LFjtVIrAAAAAACoX4QsAAAAFbBarZJU7oqU3Nxc+9UtVqtVxcXFOnXqVKVjKuLv76+QkBCHCQAAAAAAuB9CFgAAgArExsbKarUqLS3Nvqy4uFibNm1Sjx49JEmdO3eWr6+vw5js7Gzt3bvXPgYAAAAAAHguH7MLAAAAMMuZM2d0+PBh+3xWVpYyMzMVFhamFi1aaMqUKZo5c6bi4uIUFxenmTNnKigoSCNHjpQkhYaGauzYsXr88ccVHh6usLAwTZs2Te3bt1efPn3M2i0AAAAAAFBPCFkAAECDlZGRoV69etnnp06dKkkaNWqUUlNT9cQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcH217zyyivy8fHRsGHDVFhYqN69eys1NVXe3t71vj8AAAAAAKB+EbIAAIAGKzExUYZhVLreYrEoKSlJSUlJlY4JCAjQvHnzNG/evDqoEAAAAAAAuDKeyQIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAgItKSkqSxWJxmKxWq329YRhKSkpSdHS0AgMDlZiYqH379plYMQAADQshCwAAAAAAgAuLj49Xdna2fdqzZ4993ezZszVnzhzNnz9fO3bskNVqVd++fXX69GkTKwYAoOEgZAEAAAAAAHBhPj4+slqt9umKK66Q9MtVLHPnztUzzzyjIUOGKCEhQYsXL1ZBQYGWL19uctUAADQMhCwAAAAAAAAu7NChQ4qOjlZsbKyGDx+u77//XpKUlZWlnJwc9evXzz7W399fPXv21NatWyvdXlFRkfLz8x0mAADgHEIWAAAAAAAAF9W1a1ctWbJEH3/8sd566y3l5OSoR48eOnnypHJyciRJkZGRDq+JjIy0r6tIcnKyQkND7VNMTEyd7gMAAJ6MkAUAAAAAAMBFDRgwQHfddZfat2+vPn366IMPPpAkLV682D7GYrE4vMYwjHLLLjZ9+nTZbDb7dOzYsbopHgCABoCQBQAAAAAAwE00atRI7du316FDh2S1WiWp3FUrubm55a5uuZi/v79CQkIcJgAA4BxCFgAAAAAAADdRVFSkb775RlFRUYqNjZXValVaWpp9fXFxsTZt2qQePXqYWCUAAA2Hj9kFAAAAAAAAoGLTpk3T4MGD1aJFC+Xm5urFF19Ufn6+Ro0aJYvFoilTpmjmzJmKi4tTXFycZs6cqaCgII0cOdLs0gEAaBAIWQAAAAAAAFzU8ePHNWLECOXl5emKK65Qt27dtH37drVs2VKS9MQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcEmVw4AQMNAyAIAAAAAAOCiVqxYUeV6i8WipKQkJSUl1U9BAADAAc9kAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcIKP2QUAAAAAAAAAAFAX8vLyzC6hSkFBQQoNDTW7DFwGQhYAAAAAAAAAgEdpVFiiMkmrV682u5Qqefn66NGJkwha3BghCwAAAAAAAADAowSUlMpL0tpurZQXEmB2ORWKyD+nO7YfUUFBASGLGyNkAQAAAAAAAAB4pLyQAOWEBZldBjwYD74HAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnGBqyLJ582YNHjxY0dHRslgsWrt2rcN6wzCUlJSk6OhoBQYGKjExUfv27XMYU1RUpMmTJysiIkKNGjXSbbfdpuPHj9fjXgAAAAAAAAAAgIbI1JDl7Nmz6tChg+bPn1/h+tmzZ2vOnDmaP3++duzYIavVqr59++r06dP2MVOmTNGaNWu0YsUKbdmyRWfOnNGgQYNUWlpaX7sBAAAAAAAAAAAaIB8z33zAgAEaMGBAhesMw9DcuXP1zDPPaMiQIZKkxYsXKzIyUsuXL9f48eNls9m0aNEivfvuu+rTp48kaenSpYqJidEnn3yi/v3719u+AAAAAAAAAACAhsVln8mSlZWlnJwc9evXz77M399fPXv21NatWyVJO3fuVElJicOY6OhoJSQk2MdUpKioSPn5+Q4TAAAAAAAAAABATbhsyJKTkyNJioyMdFgeGRlpX5eTkyM/Pz81bdq00jEVSU5OVmhoqH2KiYmp5eoBAAAAAAAAAICnc9mQ5QKLxeIwbxhGuWW/dqkx06dPl81ms0/Hjh2rlVoBAAAAAAAAAEDD4bIhi9VqlaRyV6Tk5ubar26xWq0qLi7WqVOnKh1TEX9/f4WEhDhMAAAAAAAAAAAANeGyIUtsbKysVqvS0tLsy4qLi7Vp0yb16NFDktS5c2f5+vo6jMnOztbevXvtYwAAAAAAAAAAAOqCj5lvfubMGR0+fNg+n5WVpczMTIWFhalFixaaMmWKZs6cqbi4OMXFxWnmzJkKCgrSyJEjJUmhoaEaO3asHn/8cYWHhyssLEzTpk1T+/bt1adPH7N2CwAAAAAAAAAANACmhiwZGRnq1auXfX7q1KmSpFGjRik1NVVPPPGECgsLNWHCBJ06dUpdu3bVhg0bFBwcbH/NK6+8Ih8fHw0bNkyFhYXq3bu3UlNT5e3tXe/7AwAAAAAAAAAAGg5TQ5bExEQZhlHpeovFoqSkJCUlJVU6JiAgQPPmzdO8efPqoEIAAAAAAAAAAICKuewzWQAAAAAAAAAAAFwZIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAACAKiQlJclisThMVqvVvt4wDCUlJSk6OlqBgYFKTEzUvn37TKwYAAAAAADUF0IWAACAS4iPj1d2drZ92rNnj33d7NmzNWfOHM2fP187duyQ1WpV3759dfr0aRMrBgAAAAAA9cHH7AIAAABcnY+Pj8PVKxcYhqG5c+fqmWee0ZAhQyRJixcvVmRkpJYvX67x48fXd6kA4HLy8vLMLqFKQUFBCg0NNbsMAAAAuClCFgAAgEs4dOiQoqOj5e/vr65du2rmzJm68sorlZWVpZycHPXr188+1t/fXz179tTWrVsrDVmKiopUVFRkn8/Pz6/zfcDlsdlsKigoMLuMSrn6l9homBoVlqhM0urVq80upUpevj56dOIkghYAAAA4hZAFAACgCl27dtWSJUvUpk0b/fTTT3rxxRfVo0cP7du3Tzk5OZKkyMhIh9dERkbq6NGjlW4zOTlZM2bMqNO6UXtsNpv+umC+ykrOm10K4FYCSkrlJWltt1bKCwkwu5wKReSf0x3bj6igoICQBQAAAE4hZAEAAKjCgAED7H9u3769unfvrtatW2vx4sXq1q2bJMlisTi8xjCMcssuNn36dE2dOtU+n5+fr5iYmFquHLWloKBAZSXnXfqL4tbZNvXak212GUCF8kIClBMWZHYZAAAAQJ0gZAEAAKiBRo0aqX379jp06JDuuOMOSVJOTo6ioqLsY3Jzc8td3XIxf39/+fv713WpqGWu/EVxeP45s0sAAAAAgAaJkAVoQFz9fvKWggKVf6w0ALiWoqIiffPNN7rxxhsVGxsrq9WqtLQ0derUSZJUXFysTZs2adasWSZXCgAAAAAA6hohC9BAuMP95H2Li/W02UUAwK9MmzZNgwcPVosWLZSbm6sXX3xR+fn5GjVqlCwWi6ZMmaKZM2cqLi5OcXFxmjlzpoKCgjRy5EizSwcAAAAAAHWMkAVoINzhfvKBhef09EyzqwAAR8ePH9eIESOUl5enK664Qt26ddP27dvVsmVLSdITTzyhwsJCTZgwQadOnVLXrl21YcMGBQcHm1w5AAAAAACoa4QsQAPjyveTDyrwMrsEAChnxYoVVa63WCxKSkpSUlJS/RQEAAAAAABcBt9oAgAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAADgopKTk3XttdcqODhYzZo10x133KEDBw44jBk9erQsFovD1K1bN5MqBgCgYSFkAQAAAAAAcFGbNm3SxIkTtX37dqWlpen8+fPq16+fzp496zDulltuUXZ2tn368MMPTaoYAICGxcfsAgAAAAAAAFCx9evXO8ynpKSoWbNm2rlzp2666Sb7cn9/f1mt1vouDwCABo8rWQAAAAAAANyEzWaTJIWFhTksT09PV7NmzdSmTRuNGzdOubm5lW6jqKhI+fn5DhMAAHAOIQsAAAAAAIAbMAxDU6dO1Q033KCEhAT78gEDBmjZsmX67LPP9Je//EU7duzQzTffrKKiogq3k5ycrNDQUPsUExNTX7sAAIDH4XZhAAAAAAAAbmDSpEn6+uuvtWXLFofl99xzj/3PCQkJ6tKli1q2bKkPPvhAQ4YMKbed6dOna+rUqfb5/Px8ghYAAJxEyAIAAAAAAODiJk+erHXr1mnz5s1q3rx5lWOjoqLUsmVLHTp0qML1/v7+8vf3r4syAQBocAhZAAAAAAAAXJRhGJo8ebLWrFmj9PR0xcbGXvI1J0+e1LFjxxQVFVUPFQIA0LDxTBYAAAAAAAAXNXHiRC1dulTLly9XcHCwcnJylJOTo8LCQknSmTNnNG3aNG3btk1HjhxRenq6Bg8erIiICN15550mVw8AgOfjShYAAAAAAAAX9frrr0uSEhMTHZanpKRo9OjR8vb21p49e7RkyRL9/PPPioqKUq9evbRy5UoFBwebUDEAAA0LIQsAAAAAAICLMgyjyvWBgYH6+OOP66kaAEBdyMvLM7uESwoKClJoaKjZZbgkQhYAAAAAAAAAAOpZo8ISlUlavXq12aVckpevjx6dOImgpQKELAAAAAAAAAAA1LOAklJ5SVrbrZXyQgLMLqdSEfnndMf2IyooKCBkqQAhCwAAAAAAAAAAJskLCVBOWJDZZcBJXmYXAAAAAAAAAAAA4I4IWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJzgY3YBgKew2WwqKCgwu4xK5eXlmV0CAAAAAAAuxdU/y0t8ngcAV0fIAtQCm82mvy6Yr7KS82aXAgAAAAAAqoHP8gCA2kDIAtSCgoIClZWc19purZQXEmB2ORVqnW1Trz3ZZpcBAAAAAIBLcIfP8hKf5wHA1RGyALUoLyRAOWFBZpdRofD8c2aXAAAAAACAy3Hlz/ISn+cBwNXx4HsAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEH7MLAAAgLy/P7BIuKSgoSKGhoWaXAQAA6gC9CAAAAJxFyAIAME2jwhKVSVq9erXZpVySl6+PHp04iS83AADwIPQiAAAAuFyELAAA0wSUlMpL0tpurZQXEmB2OZWKyD+nO7YfUUFBAV9sAADgQehFAAAAcLkIWQAApssLCVBOWJDZZQAAgAaKXgQAAADO4sH3AAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAn+JhdAAAAAAAAuLS8vDyzS6hSUFCQQkNDzS4DAACgXhGywC3YbDYVFBSYXUalXP3DDgAAAAD31aiwRGWSVq9ebXYpVfLy9dGjEycRtAAA4KFc/TtQs37hg5AFLs9ms+mvC+arrOS82aUAaOBoJgAAgBkCSkrlJWltt1bKCwkwu5wKReSf0x3bj6igoIB+BAAAD8MvfFSNkAUur6CgQGUl5136A0XrbJt67ck2uwwAdYRmAqg7rn61quT6ASuAhiMvJEA5YUFmlwFUm6uf5znHA0D18AsfVSNkgdtw5Q8U4fnnzC4BQB2imQDqBlerAgDguTjPA4DnceXvZ83kMSHLa6+9pv/5n/9Rdna24uPjNXfuXN14441mlwUA8CA0E6gKvUjNucPVqhJXrAIA3IOr9SLucJ7nHA8AqA0eEbKsXLlSU6ZM0Wuvvabrr79eb775pgYMGKD9+/erRYsWptXl6pfFSty/HwCA2kAv4pwLt+hw9QCTK1YBAK7OVXsRybXP85zjAQC1wSNCljlz5mjs2LF68MEHJUlz587Vxx9/rNdff13Jycmm1OQul8Vy/34AAC4fvQgAADCTK/YiAAA0FG4fshQXF2vnzp166qmnHJb369dPW7durfA1RUVFKioqss/bbDZJUn5+fq3V9dNPP6ng9Bltaxep/EZ+tbbd2hRytljdv/1J+/fvV3h4uNnlVOrkyZM6d+6cmmafUtlZ1/xt3Mb/yafGWhBQWKQL/wpDf/pZzcrKTK2nMu7ws5Tco053qFFyjzqb5hfp3LlzOn36tBo1alQr27xwXjQMo1a256noRZxnPXlWHY7816X/bUnu8X+Aq9V48Tk94vhJnQv0d7kaK+MOdbpDjZJ71OkONUruUSe9iHlctRc5ffq0y/+9dYd/W5I5dVZ0Lq8KP8vaQ421xx3qdIcaJfeo09RexHBzP/74oyHJ+Pe//+2w/KWXXjLatGlT4Wuef/55QxITExMTExNTNaZjx47VxyndbdGLMDExMTEx1e1EL1I1ehEmJiYmJqa6nS7Vi7j9lSwXWCwWh3nDMMotu2D69OmaOnWqfb6srEz//e9/FR4eXulrLiU/P18xMTE6duyYQkJCnNqGq2Gf3IOn7ZOn7Y/EPrkLT9un2tgfwzB0+vRpRUdH13J1nsnsXgT/x9P+PbsrjoPr4Fi4Do5FzdCL1IwZvUhD+zvN/no29tezsb+era72t7q9iNuHLBEREfL29lZOTo7D8tzcXEVGRlb4Gn9/f/n7O17m2KRJk1qpJyQkxOP+4rJP7sHT9snT9kdin9yFp+3T5e4Pz+y6NFfrRfB/PO3fs7viOLgOjoXr4FhUH73IpblCL9LQ/k6zv56N/fVs7K9nq4v9rU4v4lWr72gCPz8/de7cWWlpaQ7L09LS1KNHD5OqAgAADQW9CAAAMBO9CAAA5nL7K1kkaerUqbrvvvvUpUsXde/eXQsXLtQPP/yghx9+2OzSAABAA0AvAgAAzEQvAgCAeTwiZLnnnnt08uRJvfDCC8rOzlZCQoI+/PBDtWzZst5q8Pf31/PPP1/uclt3xj65B0/bJ0/bH4l9cheetk+etj+uzhV6Efwf/v67Bo6D6+BYuA6OBeqKWb1IQ/s7zf56NvbXs7G/ns3s/bUYhmGY8s4AAAAAAAAAAABuzO2fyQIAAAAAAAAAAGAGQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsTnjppZfUo0cPBQUFqUmTJhWO+eGHHzR48GA1atRIERERevTRR1VcXOwwZs+ePerZs6cCAwP1m9/8Ri+88IIMw6iHPahaenq6LBZLhdOOHTvs4ypa/8Ybb5hYedVatWpVrt6nnnrKYUx1jpsrOHLkiMaOHavY2FgFBgaqdevWev7558vV6m7HSJJee+01xcbGKiAgQJ07d9bnn39udknVkpycrGuvvVbBwcFq1qyZ7rjjDh04cMBhzOjRo8sdj27duplU8aUlJSWVq9dqtdrXG4ahpKQkRUdHKzAwUImJidq3b5+JFV9aRf8PWCwWTZw4UZJ7HKPNmzdr8ODBio6OlsVi0dq1ax3WV+e4FBUVafLkyYqIiFCjRo1022236fjx4/W4F0Dd8KRzvSdw13O6O/PEc7c74NyMhqohnXc9+TN4VTz1XO6Jn9+r0tD6A0/43F+VhtZ3VLW/JSUlevLJJ9W+fXs1atRI0dHRuv/++3XixAmHbSQmJpY75sOHD6/VOglZnFBcXKyhQ4fqkUceqXB9aWmpBg4cqLNnz2rLli1asWKFVq1apccff9w+Jj8/X3379lV0dLR27NihefPm6eWXX9acOXPqazcq1aNHD2VnZztMDz74oFq1aqUuXbo4jE1JSXEYN2rUKJOqrp4XXnjBod5nn33Wvq46x81VfPvttyorK9Obb76pffv26ZVXXtEbb7yhp59+utxYdzpGK1eu1JQpU/TMM89o9+7duvHGGzVgwAD98MMPZpd2SZs2bdLEiRO1fft2paWl6fz58+rXr5/Onj3rMO6WW25xOB4ffvihSRVXT3x8vEO9e/bssa+bPXu25syZo/nz52vHjh2yWq3q27evTp8+bWLFVduxY4fD/qSlpUmShg4dah/j6sfo7Nmz6tChg+bPn1/h+uoclylTpmjNmjVasWKFtmzZojNnzmjQoEEqLS2tr90A6oynnOvdnTuf092dp5273QHnZjRkDeW866mfwaviyedyT/38XpWG1B94wuf+qjS0vqOq/S0oKNCuXbv03HPPadeuXVq9erUOHjyo2267rdzYcePGORzzN998s3YLNeC0lJQUIzQ0tNzyDz/80PDy8jJ+/PFH+7L33nvP8Pf3N2w2m2EYhvHaa68ZoaGhxrlz5+xjkpOTjejoaKOsrKzOa6+J4uJio1mzZsYLL7zgsFySsWbNGnOKckLLli2NV155pdL11Tlurmz27NlGbGyswzJ3O0bXXXed8fDDDzssa9eunfHUU0+ZVJHzcnNzDUnGpk2b7MtGjRpl3H777eYVVUPPP/+80aFDhwrXlZWVGVar1fjzn/9sX3bu3DkjNDTUeOONN+qpwsv32GOPGa1bt7b/v+tux+jX/8arc1x+/vlnw9fX11ixYoV9zI8//mh4eXkZ69evr7fagbrg6ed6d+JJ53R30hDO3a6OczMakoZ+3vWEz+BVaUjnck/4/F6Vht4fuPvn/qo0tL6jOv/Hfvnll4Yk4+jRo/ZlPXv2NB577LE6rY0rWerAtm3blJCQoOjoaPuy/v37q6ioSDt37rSP6dmzp/z9/R3GnDhxQkeOHKnvkqu0bt065eXlafTo0eXWTZo0SREREbr22mv1xhtvqKysrP4LrIFZs2YpPDxcHTt21EsvveRwaW91jpsrs9lsCgsLK7fcXY5RcXGxdu7cqX79+jks79evn7Zu3WpSVc6z2WySVO6YpKenq1mzZmrTpo3GjRun3NxcM8qrtkOHDik6OlqxsbEaPny4vv/+e0lSVlaWcnJyHI6Xv7+/evbs6TbHq7i4WEuXLtUDDzwgi8ViX+5ux+hi1TkuO3fuVElJicOY6OhoJSQkuM2xA6riyed6d+Fp53R348nnbnfEuRmeriGfd939M3hVGtq53FM+v1elofYHnvi5vyr0Hb/8e7ZYLOUe8bFs2TJFREQoPj5e06ZNq/UrtXxqdWuQJOXk5CgyMtJhWdOmTeXn56ecnBz7mFatWjmMufCanJwcxcbG1kut1bFo0SL1799fMTExDsv/9Kc/qXfv3goMDNSnn36qxx9/XHl5eQ6XB7uSxx57TNdcc42aNm2qL7/8UtOnT1dWVpbefvttSdU7bq7qu+++07x58/SXv/zFYbk7HaO8vDyVlpaWOwaRkZEu//P/NcMwNHXqVN1www1KSEiwLx8wYICGDh2qli1bKisrS88995xuvvlm7dy50yFwdRVdu3bVkiVL1KZNG/3000968cUX1aNHD+3bt89+TCo6XkePHjWj3Bpbu3atfv75Z4cA2d2O0a9V57jk5OTIz89PTZs2LTfG3f6tAb/myed6d+JJ53R34+nnbnfEuRmerCGfdz3hM3hVGtK53FM+v1elIfcHnvi5vyoNve84d+6cnnrqKY0cOVIhISH25ffee69iY2NltVq1d+9eTZ8+XV999ZX9VnK1gZDlfyUlJWnGjBlVjtmxY0e5Z5JU5uJ09ALDMByW/3qM8b8Pva/otbXBmX08fvy4Pv74Y/3tb38rN/biJqFjx46Sfrkfa302DzXZp9///vf2ZVdffbWaNm2qu+++2/6bN1L1jltdcuYYnThxQrfccouGDh2qBx980GGsKxyjmqro30V9/fxry6RJk/T1119ry5YtDsvvuece+58TEhLUpUsXtWzZUh988IGGDBlS32Ve0oABA+x/bt++vbp3767WrVtr8eLF9ofCufPxWrRokQYMGODwm3Xudowq48xxcadjh4bF0871DYk7nyPclaefu90Z52a4i4Z23uUzeNUawjnDUz6/V6Uh9wee/Lm/Kg2x7ygpKdHw4cNVVlam1157zWHduHHj7H9OSEhQXFycunTpol27dumaa66plfcnZPlfkyZN0vDhw6sc8+srTypjtVr1xRdfOCw7deqUSkpK7Emi1Wotlw5euDTt12ljbXFmH1NSUhQeHl7hA4N+rVu3bsrPz9dPP/1UZ/vwa5dz3C6cSA4fPqzw8PBqHbe6VtP9OXHihHr16qXu3btr4cKFl9y+GceouiIiIuTt7V3hvwtXq7UqkydP1rp167R582Y1b968yrFRUVFq2bKlDh06VE/VXZ5GjRqpffv2OnTokO644w5Jv/wGRFRUlH2Muxyvo0eP6pNPPtHq1aurHOdux8hqtUqq+rhYrVYVFxfr1KlTDr+5kpubqx49etRvwUA1eNq5viHwlHO6J/Ckc7e74twMd9PQzrsN+TN4VRrKudyTP79XpaH0B576ub8qDbXvKCkp0bBhw5SVlaXPPvvM4SqWilxzzTXy9fXVoUOHCFlqW0REhCIiImplW927d9dLL72k7Oxs+1/oDRs2yN/fX507d7aPefrpp1VcXCw/Pz/7mOjo6GqHOTVV0300DEMpKSm6//775evre8nxu3fvVkBAQLl73tWlyzluu3fvliT7MarOcatrNdmfH3/8Ub169VLnzp2VkpIiL69LP2LJjGNUXX5+furcubPS0tJ055132penpaXp9ttvN7Gy6jEMQ5MnT9aaNWuUnp5erVv+nTx5UseOHXM48bmyoqIiffPNN7rxxhvtl1mmpaWpU6dOkn651+mmTZs0a9Yskyu9tJSUFDVr1kwDBw6scpy7HaPqHJfOnTvL19dXaWlpGjZsmCQpOztbe/fu1ezZs02rHaiMp53rGwJ3P6d7Ek86d7srzs1wNw3tvNuQP4NXxdPP5Q3h83tVGkp/4Kmf+6vSEPuOCwHLoUOHtHHjRvuVlFXZt2+fSkpKaveYG6ixo0ePGrt37zZmzJhhNG7c2Ni9e7exe/du4/Tp04ZhGMb58+eNhIQEo3fv3sauXbuMTz75xGjevLkxadIk+zZ+/vlnIzIy0hgxYoSxZ88eY/Xq1UZISIjx8ssvm7Vb5XzyySeGJGP//v3l1q1bt85YuHChsWfPHuPw4cPGW2+9ZYSEhBiPPvqoCZVe2tatW405c+YYu3fvNr7//ntj5cqVRnR0tHHbbbfZx1TnuLmKH3/80fjtb39r3Hzzzcbx48eN7Oxs+3SBux0jwzCMFStWGL6+vsaiRYuM/fv3G1OmTDEaNWpkHDlyxOzSLumRRx4xQkNDjfT0dIfjUVBQYBiGYZw+fdp4/PHHja1btxpZWVnGxo0bje7duxu/+c1vjPz8fJOrr9jjjz9upKenG99//72xfft2Y9CgQUZwcLD9ePz5z382QkNDjdWrVxt79uwxRowYYURFRbns/lxQWlpqtGjRwnjyyScdlrvLMTp9+rT9vCPJ/n/b0aNHDcOo3nF5+OGHjebNmxuffPKJsWvXLuPmm282OnToYJw/f96s3QIum6ed692dO5/T3ZmnnrtdHedmNEQN7bzrqZ/Bq+LJ53JP/PxelYbYH7j75/6qNLS+o6r9LSkpMW677TajefPmRmZmpsO/56KiIsMwDOPw4cPGjBkzjB07dhhZWVnGBx98YLRr187o1KlTre4vIYsTRo0aZUgqN23cuNE+5ujRo8bAgQONwMBAIywszJg0aZJx7tw5h+18/fXXxo033mj4+/sbVqvVSEpKMsrKyup5byo3YsQIo0ePHhWu++ijj4yOHTsajRs3NoKCgoyEhARj7ty5RklJST1XWT07d+40unbtaoSGhhoBAQFG27Ztjeeff944e/asw7jqHDdXkJKSUuHfwYtzU3c7RhcsWLDAaNmypeHn52dcc801xqZNm8wuqVoqOx4pKSmGYRhGQUGB0a9fP+OKK64wfH19jRYtWhijRo0yfvjhB3MLr8I999xjREVFGb6+vkZ0dLQxZMgQY9++ffb1ZWVlxvPPP29YrVbD39/fuOmmm4w9e/aYWHH1fPzxx4Yk48CBAw7L3eUYbdy4scK/a6NGjTIMo3rHpbCw0Jg0aZIRFhZmBAYGGoMGDXK5/QRqytPO9Z7AXc/p7sxTz92ujnMzGqKGdt715M/gVfHUc7knfn6vSkPsD9z9c39VGlrfUdX+ZmVlVfrv+cL39D/88INx0003GWFhYYafn5/RunVr49FHHzVOnjxZq3VaDON/n7YOAAAAAAAAAACAarv0DSQBAAAAAAAAAABQDiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELgFqXm5ur8ePHq0WLFvL395fValX//v31+eefy2q1aubMmeVeM2zYMF177bU6f/68kpKSZLFY7FNoaKhuvPFGbdq0qcL3mzlzpry9vfXnP/+5rncNAAC4AXoRAABgJnoRoGEhZAFQ6+666y599dVXWrx4sQ4ePKh169YpMTFR+fn5WrhwoWbMmKE9e/bYx//jH//Q+++/ryVLlsjHx0eSFB8fr+zsbGVnZ2vbtm2Ki4vToEGDZLPZyr1fSkqKnnjiCb3zzjv1to8AAMB10YsAAAAz0YsADYvFMAzD7CIAeI6ff/5ZTZs2VXp6unr27FnhmDFjxigzM1Nffvmlfv75Z8XHx+vpp5/WlClTJElJSUlau3atMjMz7a85duyYWrRooS+//FLXXnutffmmTZt07733KisrS61atdJ7772nm266qS53EQAAuDB6EQAAYCZ6EaDh4UoWALWqcePGaty4sdauXauioqIKx7z66qv673//qz/96U+aMGGCEhIS9Nhjj1W6zaKiIqWmpqpJkyZq27atw7pFixZpxIgR8vX11YgRI7Ro0aJa3R8AAOBe6EUAAICZ6EWAhocrWQDUulWrVmncuHEqLCzUNddco549e2r48OG6+uqr7WM+++wz9evXT40aNdLXX3+tli1b2tclJSXpT3/6kwIDAyVJBQUFCg4O1sqVK3XLLbfYx+Xn5ysqKkpbt25Vhw4dlJmZqeuvv17Z2dkKCQmpvx0GAAAuhV4EAACYiV4EaFi4kgVArbvrrrt04sQJrVu3Tv3791d6erquueYapaam2sfcfPPN6tatm+677z6HRuKCtm3bKjMzU5mZmdq5c6ceeeQRDR06VBkZGfYxy5cv15VXXqkOHTpIkjp27Kgrr7xSK1asqPN9BAAAroteBAAAmIleBGhYuJIFQL148MEHlZaWpqNHj9qXJSYmqmPHjpo7d67D2IruPSpJ7dq1U5cuXbR06VJJ0nXXXaeMjAx5ef1fXlxWVqZrr71WX3zxRZ3tCwAAcD/0IgAAwEz0IoDn8jG7AAANw1VXXaW1a9de1ja8vb1VWFgoSdqzZ48yMjKUnp6usLAw+5iff/5ZN910k/bu3auEhITLej8AAOA56EUAAICZ6EUAz0XIAqBWnTx5UkOHDtUDDzygq6++WsHBwcrIyNDs2bN1++23V3s758+fV05OjiTp9OnTWrlypfbv368nn3xS0i8Pdrvuuut00003lXtt9+7dtWjRIr3yyiu1s1MAAMBt0IsAAAAz0YsADQ8hC4Ba1bhxY3Xt2lWvvPKKvvvuO5WUlCgmJkbjxo3T008/Xe3t7Nu3T1FRUZKkoKAgtW7dWq+//rruv/9+FRcXa+nSpfbG4tfuuusuJScna9asWfLz86uV/QIAAO6BXgQAAJiJXgRoeHgmCwAAAAAAAAAAgBO8Lj0EAAAAAAAAAAAAv0bIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBUO++/vprjR07Vq1bt1ZgYKACAwMVFxen8ePHKyMjo8LXTJ06VRaLRYMGDarnagEAgCdJTU2VxWJxmK644golJibqX//6l8PYJUuWaPjw4Wrbtq28vLzUqlUrc4oGAAAeo7q9SHZ2tp599ll1795dERERCgkJUefOnbVw4UKVlpaauAcAfo2QBUC9evPNN9W5c2d98cUXeuyxx/Svf/1LH3zwgaZMmaJ9+/bp2muv1XfffefwmpKSEi1dulSStH79ev34449mlA4AADxISkqKtm3bpq1bt2rhwoXy9vbW4MGD9f7779vHvPvuu9q3b5+uu+46tW7d2sRqAQCAp7lUL7Jz504tWbJEvXv31pIlS7Rq1Sr17NlTjzzyiMaNG2dy9QAu5mN2AQAajn//+9+aMGGCBg4cqH/84x/y8/Ozr7v55ps1ceJE/f3vf1dgYKDD6/75z3/qP//5jwYOHKgPPvhAixcv1tNPP13f5QMAAA+SkJCgLl262OdvueUWNW3aVO+9954GDx4sSfr444/l5fXL76UNGjRIe/fuNaVWAADgeS7Vi1x//fX67rvv5Ovrax/Tt29fFRcXa8GCBZoxY4ZiYmLMKB3Ar3AlC4B6M3PmTHl7e+vNN990CFguNnToUEVHRzssW7Rokfz8/JSSkqKYmBilpKTIMIz6KBkAADQQAQEB8vPzc/gi40LAAgAAUNd+3Ys0bdrUoS+54LrrrpMkHT9+vF7rA1A5PjUAqBelpaXauHGjunTpoqioqGq/7vjx49qwYYNuv/12XXHFFRo1apQOHz6szZs312G1AADA05WWlur8+fMqKSnR8ePHNWXKFJ09e1YjR440uzQAANAAONuLfPbZZ/Lx8VGbNm3qqVIAl8LtwgDUi7y8PBUWFqply5bl1pWWljpcmeLt7S2LxSLpl3uUlpWVaezYsZKkBx54QC+99JIWLVqknj171k/xAADA43Tr1s1h3t/fX/Pnz1f//v1NqggAADQkzvQiGzZs0LvvvqvHHntM4eHhdV0igGriShYApuvcubN8fX3t01/+8hdJkmEY9luE9e3bV5IUGxurxMRErVq1Svn5+WaWDQAA3NiSJUu0Y8cO7dixQx999JFGjRqliRMnav78+WaXBgAAGoCa9iK7du3SsGHD1K1bNyUnJ9dztQCqwpUsAOpFRESEAgMDdfTo0XLrli9froKCAmVnZ+u2226zL//ss8+UlZWlqVOnOgQqw4YN08aNG/Xee+9p/Pjx9VI/AADwLL/73e/KPWz26NGjeuKJJ/T//t//U5MmTcwrDgAAeLya9CK7d+9W3759FRcXpw8//FD+/v4mVAygMlzJAqBeeHt76+abb1ZGRoays7Md1l111VXq0qWL2rdv77B80aJFkqQ5c+aoadOm9umRRx5xWA8AAFAbrr76ahUWFurgwYNmlwIAABqginqR3bt3q0+fPmrZsqU2bNig0NBQEysEUBFCFgD1Zvr06SotLdXDDz+skpKSKseeOnVKa9as0fXXX6+NGzeWm+69917t2LFDe/furafqAQCAp8vMzJQkXXHFFeYWAgAAGqRf9yKZmZnq06ePmjdvrrS0NDVt2tTE6gBUhtuFAag3119/vRYsWKDJkyfrmmuu0UMPPaT4+Hh5eXkpOztbq1atkiSFhIRo2bJlOnfunB599FElJiaW21Z4eLiWLVumRYsW6ZVXXqnnPQEAAO5u7969On/+vCTp5MmTWr16tdLS0nTnnXcqNjZWkrR//37t379fkpSTk6OCggL94x//kPTLlbhXXXWVOcUDAAC3d6le5MCBA+rTp48k6aWXXtKhQ4d06NAh++tbt27NL4YALsJiGIZhdhEAGpavvvpKr776qtLT03XixAlZLBY1b95cPXr00KhRo3TzzTerU6dOOnHihI4dOyY/P78Kt9O9e3cdPnxYP/74Y6VjAAAALpaamqoxY8Y4LAsNDVVsbKzuv/9+TZgwwX6f86SkJM2YMaPC7Tz//PNKSkqq63IBAICHqW4vUtG4i6WkpGj06NF1XC2A6iBkAQAAAAAAAAAAcALPZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJ/iYXYArKCsr04kTJxQcHCyLxWJ2OQAAuATDMHT69GlFR0fLy4vfy6hL9CIAAJRHL1J/6EUAACivur0IIYukEydOKCYmxuwyAABwSceOHVPz5s3NLsOj0YsAAFA5epG6Ry8CAEDlLtWLELJICg4OlvTLDyskJMTkauC2zp6VoqN/+fOJE1KjRubWAwCXKT8/XzExMfbzJOoOvQhcEr0NAJPRi9QfehEncJ4EAI9X3V6EkEWyXwobEhJCMwHneXv/359DQmiwAHgMbhlR9+hF4JLobQC4CHqRukcv4gTOkwDQYFyqF+GmpgAAAAAAAAAAAE4wNWTZvHmzBg8erOjoaFksFq1du9a+rqSkRE8++aTat2+vRo0aKTo6Wvfff79OnDjhsI2ioiJNnjxZERERatSokW677TYdP368nvcEAAAAAAAAAAA0NKaGLGfPnlWHDh00f/78cusKCgq0a9cuPffcc9q1a5dWr16tgwcP6rbbbnMYN2XKFK1Zs0YrVqzQli1bdObMGQ0aNEilpaX1tRsAAAAAAAAAAKABMvWZLAMGDNCAAQMqXBcaGqq0tDSHZfPmzdN1112nH374QS1atJDNZtOiRYv07rvvqk+fPpKkpUuXKiYmRp988on69+9f5/sAAK6urKxMxcXFZpcBF+Tr6yvvi+8lDQBAHaAXQWXoRQAA9YFeBJWprV7ErR58b7PZZLFY1KRJE0nSzp07VVJSon79+tnHREdHKyEhQVu3bq00ZCkqKlJRUZF9Pj8/v07rBgCzFBcXKysrS2VlZWaXAhfVpEkTWa1WHigLAKgT9CK4FHoRAEBdohfBpdRGL+I2Icu5c+f01FNPaeTIkQoJCZEk5eTkyM/PT02bNnUYGxkZqZycnEq3lZycrBkzZtRpvQBgNsMwlJ2dLW9vb8XExMjLy9Q7RMLFGIahgoIC5ebmSpKioqJMrggA4GnoRVAVehEAQF2jF0FVarMXcYuQpaSkRMOHD1dZWZlee+21S443DKPK5Gn69OmaOnWqfT4/P18xMTG1UisAuIrz58+roKBA0dHRCgoKMrscuKDAwEBJUm5urpo1a8btOgAAtYpeBJdCLwIAqEv0IriU2upFXD6+Kykp0bBhw5SVlaW0tDT7VSySZLVaVVxcrFOnTjm8Jjc3V5GRkZVu09/fXyEhIQ4TAHia0tJSSZKfn5/JlcCVXWg0S0pKTK4EAOBp6EVQHfQiAIC6Qi+C6qiNXsSlQ5YLAcuhQ4f0ySefKDw83GF9586d5evrq7S0NPuy7Oxs7d27Vz169KjvcgHAJXF/a1SFvx8AgLrGuQZV4e8HAKCuca5BVWrj74eptws7c+aMDh8+bJ/PyspSZmamwsLCFB0drbvvvlu7du3Sv/71L5WWltqfsxIWFiY/Pz+FhoZq7NixevzxxxUeHq6wsDBNmzZN7du3V58+fczaLQAAAAAAAAAA0ACYGrJkZGSoV69e9vkLz0kZNWqUkpKStG7dOklSx44dHV63ceNGJSYmSpJeeeUV+fj4aNiwYSosLFTv3r2VmprKvVwBAAAAAAAAAECdMvV2YYmJiTIMo9yUmpqqVq1aVbjOMAx7wCJJAQEBmjdvnk6ePKmCggK9//77PMQeAGCa9PR03X777YqKilKjRo3UsWNHLVu2rNLx//73v+Xj41PuFwoqsmPHDvXu3VtNmjRR06ZN1a9fP2VmZtrXHzhwQL169VJkZKQCAgJ05ZVX6tlnn+Ue5wAANCDnzp3T6NGj1b59e/n4+OiOO+4oNyY9PV0Wi6Xc9O2331a63ZMnT+qWW25RdHS0/P39FRMTo0mTJik/P98+JikpqcLtNmrUqC52FQAAuKDqfC8yevToCnuG+Pj4Srebmppa4WssFotyc3MlmdeLuPQzWQAAcDdbt27V1VdfrVWrVunrr7/WAw88oPvvv1/vv/9+ubE2m03333+/evfufcntnj59Wv3791eLFi30xRdfaMuWLQoJCVH//v3tIYqvr6/uv/9+bdiwQQcOHNDcuXP11ltv6fnnn6/1/QQAAK6ptLRUgYGBevTRRy95G+0DBw4oOzvbPsXFxVU61svLS7fffrvWrVungwcPKjU1VZ988okefvhh+5hp06Y5bC87O1tXXXWVhg4dWmv7BwAAXFt1vhd59dVXHfqFY8eOKSwsrMqe4Z577inXZ/Tv3189e/ZUs2bNJJnXixCyAABcSmJioiZPnqwpU6aoadOmioyM1MKFC3X27FmNGTNGwcHBat26tT766COH1+3fv1+33nqrGjdurMjISN13333Ky8uzr1+/fr1uuOEGNWnSROHh4Ro0aJC+++47+/ojR47IYrFo9erV6tWrl4KCgtShQwdt27atRvU//fTT+tOf/qQePXqodevWevTRR3XLLbdozZo15caOHz9eI0eOVPfu3S+53QMHDujUqVN64YUX1LZtW8XHx+v5559Xbm6ufvjhB0nSlVdeqTFjxqhDhw5q2bKlbrvtNt177736/PPPa7QPAAA0ZO7eizRq1Eivv/66xo0bJ6vVWuXYZs2ayWq12qeqbrvdtGlTPfLII+rSpYtatmyp3r17a8KECQ59RuPGjR2299NPP2n//v0aO3ZsjfYBAICGzN17kep8LxIaGurQM2RkZOjUqVMaM2ZMpdsNDAws17d89tlnDn2GWb0IIQsAwOUsXrxYERER+vLLLzV58mQ98sgjGjp0qHr06KFdu3apf//+uu+++1RQUCBJys7OVs+ePdWxY0dlZGRo/fr1+umnnzRs2DD7Ns+ePaupU6dqx44d+vTTT+Xl5aU777xTZWVlDu/9zDPPaNq0acrMzFSbNm00YsQInT9/3r7eYrEoNTW1Rvtjs9kUFhbmsCwlJUXfffddta8yadu2rSIiIrRo0SIVFxersLBQixYtUnx8vFq2bFnhaw4fPqz169erZ8+eNaoXAICGztN6kcp06tRJUVFR6t27tzZu3Fij1544cUKrV6+uss94++231aZNG914442XWyoAAA2Kp/UiFX0vcrFFixapT58+lX6/UZElS5YoKChId999d6Vj6q0XMWDYbDZDkmGz2cwuBe7szBnDkH6ZzpwxuxrAKCwsNPbv328UFhaaXUqN9OzZ07jhhhvs8+fPnzcaNWpk3HffffZl2dnZhiRj27ZthmEYxnPPPWf069fPYTvHjh0zJBkHDhyo8H1yc3MNScaePXsMwzCMrKwsQ5Lx9ttv28fs27fPkGR888039mVt27Y1Vq9eXe39+fvf/274+fkZe/futS87ePCg0axZM3ttzz//vNGhQ4dLbmvv3r1G69atDS8vL8PLy8to166dcfTo0XLjunfvbvj7+xuSjIceesgoLS2tdJtV/T3h/Fh/+FnDJdHb4DLRi5jfi4waNcq4/fbbyy3/9ttvjYULFxo7d+40tm7dajzyyCOGxWIxNm3adMltDh8+3AgMDDQkGYMHD670+J47d85o2rSpMWvWrCq3Ry/iGvhZO4HzJODy6EXM70UMo+LvRS524sQJw9vb21i5cmW1t2kYhnHVVVcZjzzySKXr67MX4UoWAIDLufrqq+1/9vb2Vnh4uNq3b29fFhkZKUn2B5vt3LlTGzduVOPGje1Tu3btJMl+6et3332nkSNH6sorr1RISIhiY2MlyX6rrYreOyoqyuF9JOnbb7/VnXfeWa39SE9P1+jRo/XWW2/ZH95WWlqqkSNHasaMGWrTpk21tiNJhYWFeuCBB3T99ddr+/bt+ve//634+HjdeuutKiwsdBi7cuVK7dq1S8uXL9cHH3ygl19+udrvAwAAPKcXqUzbtm01btw4XXPNNerevbtee+01DRw4sFo9wyuvvKJdu3Zp7dq1+u677zR16tQKx61evVqnT5/W/ffff1m1AgDQEHlKL1LR9yK/lpqaqiZNmuiOO+6o1jYladu2bZe8DVh99iI+df4OAADUkK+vr8O8xWJxWGaxWCTJfklrWVmZBg8erFmzZpXb1oWGYPDgwYqJidFbb72l6OholZWVKSEhQcXFxZW+96/fpyY2bdqkwYMHa86cOQ4n9NOnTysjI0O7d+/WpEmT7Ns3DEM+Pj7asGGDbr755nLbW758uY4cOaJt27bJy8vLvqxp06b65z//qeHDh9vHxsTESJKuuuoqlZaW6qGHHtLjjz9e5X3WAQDA//GEXqSmunXrpqVLl15y3IV7nLdr107h4eG68cYb9dxzz9n384K3335bgwYNuuRzYXBpmzdv1v/8z/9o586dys7O1po1a+xfRJWUlOjZZ5/Vhx9+qO+//16hoaHq06eP/vznPys6OtrcwgEATvOEXqSy70UuZhiG3nnnHd13333y8/Or9rbffvttdezYUZ07d65yTH31IoQsAAC3d80112jVqlVq1aqVfHzKn9pOnjypb775Rm+++ab9Ppxbtmyps3rS09M1aNAgzZo1Sw899JDDupCQEO3Zs8dh2WuvvabPPvtM//jHP+y/SfJrBQUF8vLysjc4kuzzVTU7hmGopKREhmFcxh4BAICquFov4ozdu3eXC0ou5UJ/UVRU5LA8KytLGzdu1Lp162qtvobs7Nmz6tChg8aMGaO77rrLYV1BQYF27dql5557Th06dNCpU6c0ZcoU3XbbbcrIyDCpYgBAfXO1XqSq70UutmnTJh0+fLhGD6Y/c+aM/va3vyk5ObnSMfXdi3C7MACA25s4caL++9//asSIEfryyy/1/fffa8OGDXrggQdUWlqqpk2bKjw8XAsXLtThw4f12WefVXpri0tp166d1qxZU+n69PR0DRw4UI8++qjuuusu5eTkKCcnR//9738l/RKMJCQkOEzNmjVTQECAEhIS1KhRI0nSmjVr7Jf2SlLfvn116tQpTZw4Ud9884327dunMWPGyMfHR7169ZIkLVu2TH/729/0zTff6Pvvv9ff//53TZ8+Xffcc0+FTRYAAKgdrtSLSNL+/fuVmZmp//73v7LZbMrMzFRmZqZ9/dy5c7V27VodOnRI+/bt0/Tp07Vq1Sr7VbZS+V7kww8/VEpKivbu3asjR47oww8/1COPPKLrr79erVq1cnj/d955R1FRURowYIBT+whHAwYM0IsvvqghQ4aUWxcaGqq0tDQNGzZMbdu2Vbdu3TRv3jzt3Lmz3O1fAACey5V6kUt9L3KxRYsWqWvXrkpISCi37te9yAUrV67U+fPnde+991ZaQ333InzjAsDl2Gw2FRQUmF1GlYKCghQaGmp2Gfhf0dHR+ve//60nn3xS/fv3V1FRkVq2bKlbbrnFfrXHihUr9OijjyohIUFt27bVX//6VyUmJtb4vQ4cOCCbzVbp+tTUVBUUFCg5Odnhtyp69uyp9PT0ar+PzWbTgQMH7PPt2rXT+++/rxkzZqh79+7y8vJSp06dtH79evtvnfr4+GjWrFk6ePCgDMNQy5YtNXHiRP3+97+v8X4CQENGL4KacqVeRJJuvfVWHT161D7fqVMnSf935UlxcbGmTZumH3/8UYGBgYqPj9cHH3ygW2+91f6aX/cigYGBeuutt/T73/9eRUVFiomJ0ZAhQ/TUU085vHdZWZlSU1M1evRoblVqEpvNJovFoiZNmlQ6pqioyOEKpPz8/HqoDHANnOfhiVypF6nu9yI2m02rVq3Sq6++WuF2ft2LXLBo0SINGTJETZs2rfB1ZvQiFoP7hyg/P1+hoaGy2WwKCQkxuxy4q7NnpcaNf/nzmTPS//42OmrGZrPprwvmq6zkvNmlVMnL10ePTpzk0k3PuXPnlJWVpdjYWAUEBJhdDlxUVX9POD/WH37WcEkNtLehF6k99CKoDnqRmrFYLA7PZPm1c+fO6YYbblC7du2qfMZOUlKSZsyYUW45P+saaKDnSXfHeb5hoRdBddRGL8KVLABcSkFBgcpKzmttt1bKC3HNE2BE/jndsf2ICgoKaHgAAPAw9CIA3FVJSYmGDx+usrIyvfbaa1WOnT59usNtYvLz8xUTE1PXJQKm4zwPoC4QsgBwSXkhAcoJCzK7DAAA0EDRiwBwJyUlJRo2bJiysrL02WefXfJqFH9/f/n7+9dTdYDr4TwPoDYRsgAAAAAAALipCwHLoUOHtHHjRoWHh5tdEgAADQohCwAAAAAAgIs6c+aMDh8+bJ/PyspSZmamwsLCFB0drbvvvlu7du3Sv/71L5WWlionJ0eSFBYWJj8/P7PKBgCgwSBkAQAAAAAAcFEZGRnq1auXff7Cs1RGjRqlpKQkrVu3TpLUsWNHh9dt3LhRiYmJ9VUmAAANFiELAAAAAACAi0pMTJRhGJWur2odAACoe15mFwAAAAAAAAAAAOCOCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAIDbS09Pl8Vi0c8//2x2KQAAoAGiFwEAAGaiFzEXIQsAwO316NFD2dnZCg0NrfP3ev3113X11VcrJCREISEh6t69uz766COHMaNHj5bFYnGYunXrVue1AQAAc9RnL5KcnKxrr71WwcHBatasme644w4dOHDAYQy9CAAADUt99iKbN2/W4MGDFR0dLYvForVr11Y5fvz48bJYLJo7d26d12YWQhYAgNvz8/OT1WqVxWKp8/dq3ry5/vznPysjI0MZGRm6+eabdfvtt2vfvn0O42655RZlZ2fbpw8//LDOawMAAOaoz15k06ZNmjhxorZv3660tDSdP39e/fr109mzZx3G0YsAANBw1GcvcvbsWXXo0EHz58+/5Ni1a9fqiy++UHR0dJ3XZSZCFgCAS0lMTNTkyZM1ZcoUNW3aVJGRkVq4cKHOnj2rMWPGKDg4WK1bt3a4euTXl8WmpqaqSZMm+vjjj/W73/1OjRs3tn/RcLkGDx6sW2+9VW3atFGbNm300ksvqXHjxtq+fbvDOH9/f1mtVvsUFhZ22e8NAADqnqv3IuvXr9fo0aMVHx+vDh06KCUlRT/88IN27tzpMI5eBAAA9+TqvciAAQP04osvasiQIVWO+/HHHzVp0iQtW7ZMvr6+l/2+royQBQDgchYvXqyIiAh9+eWXmjx5sh555BENHTpUPXr00K5du9S/f3/dd999KigoqHQbBQUFevnll/Xuu+9q8+bN+uGHHzRt2jT7+gsNyJEjR5yus7S0VCtWrNDZs2fVvXt3h3Xp6elq1qyZ2rRpo3Hjxik3N9fp9wEAAPXLXXoRSbLZbJJULkShFwEAwH25Uy9SkbKyMt133336wx/+oPj4+FrfvqshZAEAuJwOHTro2WefVVxcnKZPn67AwEBFRERo3LhxiouL0x//+EedPHlSX3/9daXbKCkp0RtvvKEuXbrommuu0aRJk/Tpp5/a1wcFBalt27ZO/TbFnj171LhxY/n7++vhhx/WmjVrdNVVV9nXDxgwQMuWLdNnn32mv/zlL9qxY4duvvlmFRUV1fi9AABA/XP1XuQCwzA0depU3XDDDUpISLAvpxcBAMC9uUsvUplZs2bJx8dHjz76aK1v2xURsgAAXM7VV19t/7O3t7fCw8PVvn17+7LIyEhJqvI3MoOCgtS6dWv7fFRUlMP46667Tt9++61+85vfVPj6zz//XI0bN7ZPy5Yts69r27atMjMztX37dj3yyCMaNWqU9u/fb19/zz33aODAgUpISNDgwYP10Ucf6eDBg/rggw9q8FMAAABmcfVe5IJJkybp66+/1nvvveewnF4EAAD35i69SEV27typV199VampqfXyjBhX4GN2AQAA/Nqvf4vCYrE4LLtwki4rK6vRNgzDqHYNXbp0UWZmpn3+QgMj/fJAud/+9rf2cTt27NCrr76qN998s8JtRUVFqWXLljp06FC13x8AAJjH1XsRSZo8ebLWrVunzZs3q3nz5lVui14EAAD34g69SGU+//xz5ebmqkWLFvZlpaWlevzxxzV37tw6uT2Z2QhZAACoQGBgoD1IuRTDMKq8/cbJkyd17NgxRUVF1VZ5AADAw1XWixiGocmTJ2vNmjVKT09XbGzsJbdFLwIAAGqqJt+LXOy+++5Tnz59HJZdeIbMmDFjaqs8l8LtwgAADdKXX36pdu3a6ccff6zR655++ml9/vnnOnLkiPbs2aNnnnlG6enpuvfeeyVJZ86c0bRp07Rt2zYdOXJE6enpGjx4sCIiInTnnXfWxa4AAAA35GwvMnHiRC1dulTLly9XcHCwcnJylJOTo8LCQkn0IgAAoHqc7UXOnDmjzMxM+1UuWVlZyszM1A8//CBJCg8PV0JCgsPk6+srq9Wqtm3b1vZuuASuZAEANEgFBQU6cOCASkpKavS6n376Sffdd5+ys7MVGhqqq6++WuvXr1ffvn0l/XKv1D179mjJkiX6+eefFRUVpV69emnlypUKDg6ui10BAABuyNle5PXXX5ckJSYmOixPSUnR6NGj6UUAAEC1ONuLZGRkqFevXvb5qVOnSpJGjRql1NTU2izRbRCyAABcSnp6erllFd2v8+L7iCYmJjrMjx49WqNHj3YYf8cdd1T5mupatGhRlesDAwP18ccf13i7AADANbh6L3Kp19CLAADg3ly9F3HmdZ74HJaLcbswAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQCAakpKSpLFYik3NWrUyGHcggUL9Lvf/U6BgYFq27atlixZYlLFAADAUx0+fFjBwcFq0qSJw/L09PQK+5Vvv/3WnEIBAIBH+fjjj9WtWzcFBwfriiuu0F133aWsrCyHMUVFRXrmmWfUsmVL+fv7q3Xr1nrnnXdMqrju+ZhdAAAA7mLatGl6+OGHHZb17t1b1157rX3+9ddf1/Tp0/XWW2/p2muv1Zdffqlx48apadOmGjx4cH2XDAAAPFBJSYlGjBihG2+8UVu3bq1wzIEDBxQSEmKfv+KKK+qrPAAA4KG+//573X777Zo6daqWLVsmm82m3//+9xoyZIh2795tHzds2DD99NNPWrRokX77298qNzdX58+fN7HyusWVLAAAl5KYmKjJkydrypQpatq0qSIjI7Vw4UKdPXtWY8aMUXBwsFq3bq2PPvrI/prS0lKNHTtWsbGx9qtHXn31Vfv6c+fOKT4+Xg899JB9WVZWlkJDQ/XWW29Vu7bGjRvLarXap59++kn79+/X2LFj7WPeffddjR8/Xvfcc4+uvPJKDR8+XGPHjtWsWbMu8ycDAADqgyv3Ihc8++yzateunYYNG1bpmGbNmjn0Ld7e3jV+HwAAUP9cuRfZtWuXSktL9eKLL6p169a65pprNG3aNH311VcqKSmRJK1fv16bNm3Shx9+qD59+qhVq1a67rrr1KNHj1r46bgmQhYAgMtZvHixIiIi9OWXX2ry5Ml65JFHNHToUPXo0UO7du1S//79dd9996mgoECSVFZWpubNm+tvf/ub9u/frz/+8Y96+umn9be//U2SFBAQoGXLlmnx4sVau3atSktLdd9996lXr14aN26c/X0tFotSU1OrXefbb7+tNm3a6MYbb7QvKyoqUkBAgMO4wMBAffnll/aGAwAAuDZX7kU+++wz/f3vf9eCBQuqHNepUydFRUWpd+/e2rhx4+X9QAAAQL1y1V6kS5cu8vb2VkpKikpLS2Wz2fTuu++qX79+8vX1lSStW7dOXbp00ezZs/Wb3/xGbdq00bRp01RYWFh3PzCTEbIAAFxOhw4d9OyzzyouLk7Tp09XYGCgIiIiNG7cOMXFxemPf/yjTp48qa+//lqS5OvrqxkzZujaa69VbGys7r33Xo0ePdreTEhSx44d9eKLL2rcuHH6/e9/r++++05vv/22w/u2bdtWoaGh1aqxqKhIy5Ytc7iKRZL69++vt99+Wzt37pRhGMrIyNA777yjkpIS5eXlXeZPBgAA1AdX7UVOnjyp0aNHKzU11eFWYBeLiorSwoULtWrVKq1evVpt27ZV7969tXnz5lr4yQAAgPrgqr1Iq1attGHDBj399NPy9/dXkyZNdPz4ca1YscI+5vvvv9eWLVu0d+9erVmzRnPnztU//vEPTZw4sZZ/Sq6DZ7IAAFzO1Vdfbf+zt7e3wsPD1b59e/uyyMhISVJubq592RtvvKG3335bR48eVWFhoYqLi9WxY0eH7T7++OP65z//qXnz5umjjz5SRESEw/qaPBB29erVOn36tO6//36H5c8995xycnLUrVs3GYahyMhIjR49WrNnz+Y2HQAAuAlX7UXGjRunkSNH6qabbqp0TNu2bdW2bVv7fPfu3XXs2DG9/PLLVb4OAAC4DlftRXJycvTggw9q1KhRGjFihE6fPq0//vGPuvvuu5WWliaLxaKysjJZLBYtW7bMHtjMmTNHd999txYsWKDAwECnfiaujCtZAAAu58IlphdYLBaHZRaLRdIvl8NK0t/+9jf9/ve/1wMPPKANGzYoMzNTY8aMUXFxscN2cnNzdeDAAXl7e+vQoUOXVePbb7+tQYMGyWq1OiwPDAzUO++8o4KCAh05ckQ//PCDWrVqpeDg4HLNCwAAcE2u2ot89tlnevnll+Xj4yMfHx+NHTtWNptNPj4+eueddyp9Xbdu3S679wEAAPXHVXuRBQsWKCQkRLNnz1anTp100003aenSpfr000/1xRdfSPrlqtrf/OY3DlfE/O53v5NhGDp+/HiN39MdcCULAMDtff755+rRo4cmTJhgX/bdd9+VG/fAAw8oISFB48aN09ixY9W7d29dddVVNX6/rKwsbdy4UevWrat0jK+vr5o3by5JWrFihQYNGiQvL363AQAAT1Rfvci2bdtUWlpqn//nP/+pWbNmaevWrfrNb35T6et2796tqKioar8PADjDZrPZnw/hqriFMzxVffUiBQUF5e7ScWH+QuBz/fXX6+9//7vOnDmjxo0bS5IOHjwoLy8v+/cknoaQBQDg9n77299qyZIl+vjjjxUbG6t3331XO3bsUGxsrH3MggULtG3bNn399deKiYnRRx99pHvvvVdffPGF/Pz8JEnt2rVTcnKy7rzzzirf75133lFUVJQGDBhQbt3Bgwf15ZdfqmvXrjp16pTmzJmjvXv3avHixbW70wAAwGXUVy/yu9/9zmE+IyNDXl5eSkhIsC+bO3euWrVqpfj4eBUXF2vp0qVatWqVVq1aVQd7DgC/sNls+uuC+SorOW92KUCDVF+9yMCBA/XKK6/ohRdesN8u7Omnn1bLli3VqVMnSdLIkSP1pz/9SWPGjNGMGTOUl5enP/zhD3rggQc88lZhEiELAMADPPzww8rMzNQ999wji8WiESNGaMKECfroo48k/XJP0T/84Q9atGiRYmJiJP3SXHTo0EHPPfecZs2aJUk6cOCAbDZble9VVlam1NRUjR49usJnrJSWluovf/mLDhw4IF9fX/Xq1Utbt25Vq1atanenAQCAy6jPXuRSiouLNW3aNP34448KDAxUfHy8PvjgA916662Xt5MAUIWCggKVlZzX2m6tlBcSYHY5lWqdbVOvPdlmlwHUuvrqRW6++WYtX75cs2fP1uzZsxUUFKTu3btr/fr19gClcePGSktL0+TJk9WlSxeFh4dr2LBhevHFF+v4p2Aei2EYhtlFmC0/P1+hoaGy2WwKCQkxuxy4q7Nnpf+9BE5nzkiNGplbj5vKzs7WwoUL9Xa/dsoJCzK7nApZ/1ugBzd8q4ceesilb7tw7tw5ZWVlKTY2VgEBrtvkwlxV/T3h/Fh/+FnDJTXQ3oZepPbQi6A66EVcAz9rJzTQ82Rl3OH8KUnxR/6rO7cfcek63eU87w7oRVAdtdGLcHN4AAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAeDjDMMwuAS6srKzM7BIAAB6OXgRVoRcBANQ1ehFUpTZ6EZ9aqAMA4IJ8fX1lsVj0n//8R1dccYUsFovZJcGFGIah4uJi/ec//5GXl5f8/PzMLsltnT9/XklJSVq2bJlycnIUFRWl0aNH69lnn5WXF7/PAqDhohdBVehFAAB1jV4EVanNXoSQBQA8lLe3t5o3b67jx4/ryJEjZpcDFxUUFKQWLVoQBlyGWbNm6Y033tDixYsVHx+vjIwMjRkzRqGhoXrsscfMLg8ATEMvguqgFwEA1BV6EVRHbfQihCwA4MEaN26suLg4lZSUmF0KXJC3t7d8fHz4bZ7LtG3bNt1+++0aOHCgJKlVq1Z67733lJGRYXJlAGA+ehFUhV4EAFDX6EVQldrqRQhZAMDDeXt7y9vb2+wyAI91ww036I033tDBgwfVpk0bffXVV9qyZYvmzp1b6WuKiopUVFRkn8/Pz6+HSgGg/tlsNhUUFJhdRpWCgoIUGhpqdhkAAKCO8L0I6hohCwAAwGV48sknZbPZ1K5dO3l7e6u0tFQvvfSSRowYUelrkpOTNWPGjHqsEgDqn81m018XzFdZyXmzS6mSl6+PHp04iaAFAAAATiFkAQAAuAwrV67U0qVLtXz5csXHxyszM1NTpkxRdHS0Ro0aVeFrpk+frqlTp9rn8/PzFRMTU18lA0C9KCgoUFnJea3t1kp5IQFml1OhiPxzumP7ERUUFBCyAAAAwCmELAAAAJfhD3/4g5566ikNHz5cktS+fXsdPXpUycnJlYYs/v7+8vf3r88yAcA0eSEBygkLMrsMAAAAoE54mV0AAACAOysoKJCXl2NL5e3trbKyMpMqAgAAAAAA9YUrWQAAAC7D4MGD9dJLL6lFixaKj4/X7t27NWfOHD3wwANmlwYAAAAAAOoYIQsAAMBlmDdvnp577jlNmDBBubm5io6O1vjx4/XHP/7R7NIAAAAAAEAdI2QBAAC4DMHBwZo7d67mzp1rdikAAAAAAKCe8UwWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOMHUkGXz5s0aPHiwoqOjZbFYtHbtWof1hmEoKSlJ0dHRCgwMVGJiovbt2+cwpqioSJMnT1ZERIQaNWqk2267TcePH6/HvQAAAAAAAAAAAA2RqSHL2bNn1aFDB82fP7/C9bNnz9acOXM0f/587dixQ1arVX379tXp06ftY6ZMmaI1a9ZoxYoV2rJli86cOaNBgwaptLS0vnYDAAAAAAAAAAA0QKY++H7AgAEaMGBAhesMw9DcuXP1zDPPaMiQIZKkxYsXKzIyUsuXL9f48eNls9m0aNEivfvuu+rTp48kaenSpYqJidEnn3yi/v3719u+AAAAAAAAAACAhsVln8mSlZWlnJwc9evXz77M399fPXv21NatWyVJO3fuVElJicOY6OhoJSQk2MdUpKioSPn5+Q4TAAAAAAAAAABATbhsyJKTkyNJioyMdFgeGRlpX5eTkyM/Pz81bdq00jEVSU5OVmhoqH2KiYmp5eoBAAAAAAAAAICnc9mQ5QKLxeIwbxhGuWW/dqkx06dPl81ms0/Hjh2rlVoBAAAAAAAAAEDD4bIhi9VqlaRyV6Tk5ubar26xWq0qLi7WqVOnKh1TEX9/f4WEhDhMAAAAAAAAAAAANeGyIUtsbKysVqvS0tLsy4qLi7Vp0yb16NFDktS5c2f5+vo6jMnOztbevXvtYwAAAAAAAAAAAOqCj5lvfubMGR0+fNg+n5WVpczMTIWFhalFixaaMmWKZs6cqbi4OMXFxWnmzJkKCgrSyJEjJUmhoaEaO3asHn/8cYWHhyssLEzTpk1T+/bt1adPH7N2CwAAAAAAAAAANACmhiwZGRnq1auXfX7q1KmSpFGjRik1NVVPPPGECgsLNWHCBJ06dUpdu3bVhg0bFBwcbH/NK6+8Ih8fHw0bNkyFhYXq3bu3UlNT5e3tXe/7AwAAAAAAAAAAGg5TQ5bExEQZhlHpeovFoqSkJCUlJVU6JiAgQPPmzdO8efPqoEIAAAAAAAAAAICKuewzWQAAAAAAAAAAAFwZIQsAAAAAAAAAAIATCFkAAAAAAABc1ObNmzV48GBFR0fLYrFo7dq1DusNw1BSUpKio6MVGBioxMRE7du3z5xiAQBogAhZAAAAAAAAXNTZs2fVoUMHzZ8/v8L1s2fP1pw5czR//nzt2LFDVqtVffv21enTp+u5UgAAGiZTH3wPAAAAAACAyg0YMEADBgyocJ1hGJo7d66eeeYZDRkyRJK0ePFiRUZGavny5Ro/fnx9lgoAQINEyAIAAAAAAOCGsrKylJOTo379+tmX+fv7q2fPntq6dWulIUtRUZGKiors8/n5+XVeKy6PzWZTQUGB2WVUKi8vz+wSAMA0hCwAAAAAAABuKCcnR5IUGRnpsDwyMlJHjx6t9HXJycmaMWNGndaG2mOz2fTXBfNVVnLe7FIAABUgZAEAAAAAAHBjFovFYd4wjHLLLjZ9+nRNnTrVPp+fn6+YmJg6qw+Xp6CgQGUl57W2WyvlhQSYXU6FWmfb1GtPttllAIApCFkAAAAAAADckNVqlfTLFS1RUVH25bm5ueWubrmYv7+//P3967w+1K68kADlhAWZXUaFwvPPmV0CAJjGy+wCAAAAAAAAUHOxsbGyWq1KS0uzLysuLtamTZvUo0cPEysDAKDh4EoWAAAAAAAAF3XmzBkdPnzYPp+VlaXMzEyFhYWpRYsWmjJlimbOnKm4uDjFxcVp5syZCgoK0siRI02sGgCAhoOQBQAAAAAAwEVlZGSoV69e9vkLz1IZNWqUUlNT9cQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcFmlQwAQINCyAIAAAAAAOCiEhMTZRhGpestFouSkpKUlJRUf0UBAAA7nskCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOMHH7AIAAAAAADBTXl6e2SVcUlBQkEJDQ80uAwAAAL9CyAIAAAAAaJAaFZaoTNLq1avNLuWSvHx99OjESQQtAAAALoaQBQAAAADQIAWUlMpL0tpurZQXEmB2OZWKyD+nO7YfUUFBASELAACAiyFkAQAAAAA0aHkhAcoJCzK7DAAAALghHnwPAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJ7h0yHL+/Hk9++yzio2NVWBgoK688kq98MILKisrs48xDENJSUmKjo5WYGCgEhMTtW/fPhOrBgAAAAAAAAAADYFLhyyzZs3SG2+8ofnz5+ubb77R7Nmz9T//8z+aN2+efczs2bM1Z84czZ8/Xzt27JDValXfvn11+vRpEysHAAAAAAAAAACezqVDlm3btun222/XwIED1apVK919993q16+fMjIyJP1yFcvcuXP1zDPPaMiQIUpISNDixYtVUFCg5cuXm1w9AAAAAAAAAADwZC4dstxwww369NNPdfDgQUnSV199pS1btujWW2+VJGVlZSknJ0f9+vWzv8bf3189e/bU1q1bK91uUVGR8vPzHSYAAAAAAAAAAICa8DG7gKo8+eSTstlsateunby9vVVaWqqXXnpJI0aMkCTl5ORIkiIjIx1eFxkZqaNHj1a63eTkZM2YMaPuCgcAAAAAAAAAAB7Ppa9kWblypZYuXarly5dr165dWrx4sV5++WUtXrzYYZzFYnGYNwyj3LKLTZ8+XTabzT4dO3asTuoHAAAAAAAAAACey6WvZPnDH/6gp556SsOHD5cktW/fXkePHlVycrJGjRolq9Uq6ZcrWqKiouyvy83NLXd1y8X8/f3l7+9ft8UDAAAAAAAAAACP5tJXshQUFMjLy7FEb29vlZWVSZJiY2NltVqVlpZmX19cXKxNmzapR48e9VorAAAAAAAAAABoWFz6SpbBgwfrpZdeUosWLRQfH6/du3drzpw5euCBByT9cpuwKVOmaObMmYqLi1NcXJxmzpypoKAgjRw50uTqAQAAAAAAAACAJ3PpkGXevHl67rnnNGHCBOXm5io6Olrjx4/XH//4R/uYJ554QoWFhZowYYJOnTqlrl27asOGDQoODjaxcgAAAAAAAAAA4OlqfLuwxYsX64MPPrDPP/HEE2rSpIl69Oiho0eP1mpxwcHBmjt3ro4eParCwkJ99913evHFF+Xn52cfY7FYlJSUpOzsbJ07d06bNm1SQkJCrdYBAAA8T332NAAAoGGhzwAAoOGoccgyc+ZMBQYGSpK2bdum+fPna/bs2YqIiNDvf//7Wi8QAACgLtRmT/Pjjz/q//2//6fw8HAFBQWpY8eO2rlzZ12UDQAA3EB9fndy/vx5Pfvss4qNjVVgYKCuvPJKvfDCC/bn2QIAgLpV49uFHTt2TL/97W8lSWvXrtXdd9+thx56SNdff70SExNruz4AAIA6UVs9zalTp3T99derV69e+uijj9SsWTN99913atKkSd0UDgAAXF59fncya9YsvfHGG1q8eLHi4+OVkZGhMWPGKDQ0VI899litvhcAACivxleyNG7cWCdPnpQkbdiwQX369JEkBQQEqLCwsHarAwAAqCO11dPMmjVLMTExSklJ0XXXXadWrVqpd+/eat26dZ3UDQAAXF99fneybds23X777Ro4cKBatWqlu+++W/369VNGRkatvg8AAKhYjUOWvn376sEHH9SDDz6ogwcPauDAgZKkffv2qVWrVrVdHwAAQJ2orZ5m3bp16tKli4YOHapmzZqpU6dOeuutt6p8TVFRkfLz8x0mAADgOerzu5MbbrhBn376qQ4ePChJ+uqrr7Rlyxbdeuutlb6GXgQAgNpT45BlwYIF6t69u/7zn/9o1apVCg8PlyTt3LlTI0aMqPUCAQAA6kJt9TTff/+9Xn/9dcXFxenjjz/Www8/rEcffVRLliyp9DXJyckKDQ21TzExMZe9PwAAwHXU53cnTz75pEaMGKF27drJ19dXnTp10pQpU6p8H3oRAABqT42fyZKfn6+//vWv8vJyzGeSkpJ07NixWisMAACgLtVWT1NWVqYuXbpo5syZkqROnTpp3759ev3113X//fdX+Jrp06dr6tSpDrXw5QYAAJ6jPr87WblypZYuXarly5crPj5emZmZmvL/27v38KjqO3/gn+GWEIQIWG4tCqL1Ri0qWhUrWBVrtb/66GNvtN5aflpBQLpV0a2CVVC3Zali2cUL6s+1urui1a43thWodS2IUNG6uCqia8nSVJugAyGQ8/vDmjUCQoY5mSTn9XqeeZ7MmTOT9/kmZN7OxzMzaVIMGDAgzj777G3eRxcBgOJp9pBl8ODBsXbt2ujTp0+T7W+//XYMHjw4tmzZUrRwAABpKVan6d+/fxx44IFNth1wwAFx//33b/c+ZWVlUVZW1vzQAECb0JKvnfzgBz+Iyy67LL7+9a9HRMRnPvOZWLNmTcyYMWO7QxZdBACKp9lvF5YkyTa3v/vuu1FeXr7LgQAAWkKxOs2IESNi1apVTba9/PLLsddee+1SPgCg7WrJ107y+fxWZ8x07NgxGhoaivp9AIBt2+kzWT44jTSXy8WVV14ZFRUVjbdt2bIlfve738WwYcOKHhAAoJiK3WkuvvjiOProo2P69Onx1a9+NZYsWRJz586NuXPnFjs6ANDKleK1ky9/+ctx7bXXxp577hkHHXRQLF++PGbOnBnnnXdeUb8PALBtOz1kWb58eUS8/39jrFy5Mrp06dJ4W5cuXeKzn/1s/M3f/E3xEwIAFFGxO83hhx8eDzzwQEyZMiWuvvrqGDx4cMyaNSvGjBlT9OwAQOtWitdObrrppvjhD38YF154Yaxbty4GDBgQ559/flx55ZVF/T4AwLbt9JDlySefjIiIc889N376059Gjx49UgsFAJCWNDrNqaeeGqeeeuouPw4A0LaV4rWT7t27x6xZs2LWrFmpfy8AYGvN/uD7efPmpZEDAKBF6TQAQFr0DADIjmYPWd5777247rrr4le/+lWsW7duqw9Se+2114oWDgAgLToNAJAWPQMAsqPZQ5bvfve7sWjRovj2t78d/fv3j1wul0YuAIBU6TQAQFr0DADIjmYPWR599NH4t3/7txgxYkQaeQAAWoROAwCkRc8AgOzo0Nw79OzZM3r16pVGFgCAFqPTAABp0TMAIDuaPWT50Y9+FFdeeWXk8/k08gAAtAidBgBIi54BANnR7LcL+8lPfhKvvvpq9O3bNwYNGhSdO3ducvtzzz1XtHAAAGnRaQCAtOgZAJAdzR6ynHbaaSnEAABoWToNAJAWPQMAsqPZQ5arrroqjRwAAC1KpwEA0qJnAEB2NPszWSIi/vKXv8Stt94aU6ZMibfffjsi3j/V9a233ipqOACANOk0AEBa9AwAyIZmn8ny/PPPxwknnBCVlZXx+uuvx9ixY6NXr17xwAMPxJo1a+Kuu+5KIycAQFHpNABAWvQMAMiOZp/JMnny5DjnnHPiv/7rv6K8vLxx+8knnxyLFy8uajgAgLToNABAWvQMAMiOZg9Zli5dGueff/5W2z/5yU9GVVVVUUIBAKRNpwEA0qJnAEB2NHvIUl5eHrW1tVttX7VqVXziE58oSigAgLTpNABAWvQMAMiOZg9ZvvKVr8TVV18d9fX1ERGRy+XijTfeiMsuuyzOOOOMogcEAEiDTgMApEXPAIDsaPaQ5cc//nH86U9/ij59+sSGDRti5MiRsc8++0T37t3j2muvTSMjAEDR6TQAQFr0DADIjk7NvUOPHj3iqaeeil//+tfx3HPPRUNDQxx66KFxwgknpJEPACAVOg0AkBY9AwCyo9lDlg984QtfiC984QvFzAIA0OJ0GgAgLXoGALR/BQ1ZlixZEgsXLox169ZFQ0NDk9tmzpxZlGAAAGnTaQCAtOgZAJANzR6yTJ8+Pf72b/829ttvv+jbt2/kcrnG2z78NQBAa6bTAABp0TMAIDuaPWT56U9/Grfffnucc845KcQBAGgZOg0AkBY9AwCyo0Oz79ChQ4wYMSKNLAAALUanAQDSomcAQHY0+0yWiy++OG6++eaYNWtWCnGANNXU1EQ+ny91jI9VXV1d6ghARug0AEBa9AwAyI5mD1n+5m/+Jk455ZQYMmRIHHjggdG5c+cmt8+fP79o4YDiqampiRtvnh0N9ZtLHQWgVdBpAIC06BkAkB3NHrJcdNFF8eSTT8Zxxx0XvXv39oFt0Ebk8/loqN8cDx45KKp7lJc6znYNWVsTx61cW+oYQAboNABAWvQMAMiOZg9Z7rrrrrj//vvjlFNOSSMPkLLqHuVR1aui1DG2q3ftxlJHADJCpwEA0qJnAEB2NPuD73v16hVDhgxJIwsAQIvRaQCAtOgZAJAdzR6yTJ06Na666qpW/+HZAAAfR6cBANKiZwBAdjT77cJuvPHGePXVV6Nv374xaNCgrT687bnnnitaOACAtOg0AEBa9AwAyI5mD1lOO+20FGIAALQsnQYASIueAQDZ0ewhy1VXXZVGDgCAFqXTAABp0TMAIDua/ZksAAAAAAAAFHAmS8+ePSOXy221PZfLRXl5eeyzzz5xzjnnxLnnnluUgAAAadBpAIC06BkAkB3NHrJceeWVce2118bJJ58cRxxxRCRJEkuXLo3HHnssxo0bF6tXr47vfe97sXnz5hg7dmwamQEAdplOAwCkRc8AgOxo9pDlqaeeimuuuSYuuOCCJtv/8R//MZ544om4//774+CDD44bb7xRUQAAWi2dBgBIi54BANnR7M9kefzxx+OEE07Yavvxxx8fjz/+eEREfOlLX4rXXntt19MBAKREpwEA0qJnAEB2NHvI0qtXr3j44Ye32v7www9Hr169IiLivffei+7du+96OgCAlOg0AEBa9AwAyI5mv13YD3/4w/je974XTz75ZBxxxBGRy+ViyZIl8cgjj8Q//MM/RETEggULYuTIkUUPCwBQLDoNAJAWPQMAsqPZQ5axY8fGgQceGLNnz4758+dHkiSx//77x6JFi+Loo4+OiIjvf//7RQ8KAFBMOg0AkBY9AwCyo9lDloiIESNGxIgRI4qdBQCgRek0AEBa9AwAyIaChiwf2LBhQ9TX1zfZ1qNHj10KBADQ0nQaACAtegYAtG/N/uD7fD4f48ePjz59+sRuu+0WPXv2bHIBAGgLdBoAIC16BgBkR7OHLD/4wQ/i17/+dfzsZz+LsrKyuPXWW2PatGkxYMCAuOuuu9LICABQdDoNAJAWPQMAsqPZbxf28MMPx1133RWjRo2K8847Lz7/+c/HPvvsE3vttVf80z/9U4wZMyaNnAAARaXTAABp0TMAIDuafSbL22+/HYMHD46I999D9O23346IiGOOOSYWL15c3HQAACnRaQCAtOgZAJAdzR6y7L333vH6669HRMSBBx4Y//zP/xwR7/9fGrvvvnsxswEApEanAQDSomcAQHY0e8hy7rnnxu9///uIiJgyZUrj+4tefPHF8YMf/KDoAQEA0qDTAABp0TMAIDua/ZksF198cePXxx13XPznf/5nPPvsszFkyJD47Gc/W9RwAABp0WkAgLToGQCQHc06k6W+vj6OO+64ePnllxu37bnnnnH66acrCQBAm6HTAABp0TMAIFuaNWTp3LlzvPDCC5HL5dLKAwCQOp0GAEiLngEA2dLsz2Q566yz4rbbbksjCwBAi9FpAIC06BkAkB3N/kyWTZs2xa233hoLFiyI4cOHR7du3ZrcPnPmzKKFAwBIi04DAKRFzwCA7Gj2kOWFF16IQw89NCKiyfuLRoRTYQGANkOnAQDSomcAQHbs1JDl+eefj6FDh0aHDh3iySefTDsTAEAqdBoAIC16BgBk0059JsshhxwS1dXVERGx9957x5///OdUQwEApEGnAQDSomcAQDbt1JBl9913j9WrV0dExOuvvx4NDQ2phgIASINOAwCkRc8AgGzaqbcLO+OMM2LkyJHRv3//yOVyMXz48OjYseM2933ttdeKGhAAoFh0GgAgLXoGAGTTTg1Z5s6dG6effnq88sorMWHChBg7dmx079497WwAAEWl0wAAadEzACCbdmrIEhHxxS9+MSIili1bFhMnTlQUAIA2SacBANKiZwBA9uz0kOUD8+bNSyMHAECL0mkAgLToGQCQHTv1wfel9NZbb8W3vvWt6N27d1RUVMSwYcNi2bJljbcnSRJTp06NAQMGRNeuXWPUqFHx4osvljAxAAAAAACQBa16yPLOO+/EiBEjonPnzvHoo4/GH/7wh/jJT34Su+++e+M+N9xwQ8ycOTNmz54dS5cujX79+sWJJ54Y69evL11wAAAAAACg3Wv224W1pOuvvz4GDhzY5DTbQYMGNX6dJEnMmjUrrrjiijj99NMjIuLOO++Mvn37xj333BPnn39+S0cGAAAAAAAyYqfOZDn00EPjnXfeiYiIq6++OvL5fKqhPvDQQw/F8OHD48wzz4w+ffrEIYccErfcckvj7atXr46qqqoYPXp047aysrIYOXJkPP3009t93Lq6uqitrW1yAQDav1J1GgCg/dMzACCbdmrI8tJLL8V7770XERHTpk2Ld999N9VQH3jttddizpw5se+++8bjjz8eF1xwQUyYMCHuuuuuiIioqqqKiIi+ffs2uV/fvn0bb9uWGTNmRGVlZeNl4MCB6R0EANBqlKrTAADtn54BANm0U28XNmzYsDj33HPjmGOOiSRJ4sc//nHstttu29z3yiuvLFq4hoaGGD58eEyfPj0iIg455JB48cUXY86cOXHWWWc17pfL5ZrcL0mSrbZ92JQpU2Ly5MmN12traw1aACADStVpAID2T88AgGzaqSHLHXfcEVdddVX88pe/jFwuF48++mh06rT1XXO5XFGLQv/+/ePAAw9ssu2AAw6I+++/PyIi+vXrFxHvn9HSv3//xn3WrVu31dktH1ZWVhZlZWVFywkAtA2l6jQAQPunZwBANu3UkGW//faLe++9NyIiOnToEL/61a+iT58+qQaLiBgxYkSsWrWqybaXX3459tprr4iIGDx4cPTr1y8WLFgQhxxySEREbNq0KRYtWhTXX3996vkAgLalVJ0GAGj/9AwAyKad+kyWD2toaGixknDxxRfHM888E9OnT49XXnkl7rnnnpg7d26MGzcuIt7/vz8mTZoU06dPjwceeCBeeOGFOOecc6KioiK++c1vtkhGAKBtaslOAwBkS0v3jLfeeiu+9a1vRe/evaOioiKGDRsWy5Yta7HvDwBZtlNnsnzUq6++GrNmzYqXXnopcrlcHHDAATFx4sQYMmRIUcMdfvjh8cADD8SUKVPi6quvjsGDB8esWbNizJgxjftccsklsWHDhrjwwgvjnXfeic997nPxxBNPRPfu3YuaBQBof1qq0wAA2dNSPeOdd96JESNGxHHHHRePPvpo9OnTJ1599dXYfffdi/p9AIBta/aQ5fHHH4//83/+TwwbNixGjBgRSZLE008/HQcddFA8/PDDceKJJxY14Kmnnhqnnnrqdm/P5XIxderUmDp1alG/LwDQvrV0pwEAsqMle8b1118fAwcOjHnz5jVuGzRoUNEeHwD4eM0eslx22WVx8cUXx3XXXbfV9ksvvdQLEgBAm6DTAABpacme8dBDD8VJJ50UZ555ZixatCg++clPxoUXXhhjx47d7n3q6uqirq6u8XptbW3R8nxYTU1N5PP5VB67WCoqKqKysrLUMQBow5o9ZHnppZfin//5n7faft5558WsWbOKkQkAIHU6DQCQlpbsGa+99lrMmTMnJk+eHJdffnksWbIkJkyYEGVlZXHWWWdt8z4zZsyIadOmFTXHR9XU1MSNN8+OhvrNqX6fXdWhc6eYMG68QQsABWv2kOUTn/hErFixIvbdd98m21esWOHDYwGANkOnAQDS0pI9o6GhIYYPHx7Tp0+PiIhDDjkkXnzxxZgzZ852hyxTpkyJyZMnN16vra2NgQMHFjVXPp+PhvrN8eCRg6K6R3lRH7tY9qjdGKc983rk83lDFgAK1uwhy9ixY+P//t//G6+99locffTRkcvl4qmnnorrr78+vv/976eREQCg6HQaACAtLdkz+vfvHwceeGCTbQcccEDcf//9271PWVlZlJWVFTXH9lT3KI+qXhUt8r0AoBSaPWT54Q9/GN27d4+f/OQnMWXKlIiIGDBgQEydOjUmTJhQ9IAAAGnQaQCAtLRkzxgxYkSsWrWqybaXX3459tprr6J+HwBg25o9ZMnlcnHxxRfHxRdfHOvXr4+IiO7duxc9GABAmnQaACAtLdkzLr744jj66KNj+vTp8dWvfjWWLFkSc+fOjblz56by/QCAppo9ZPkwL0QAAO2BTgMApCXtnnH44YfHAw88EFOmTImrr746Bg8eHLNmzYoxY8ak+n0BgPft0pAFAAAAgNI69dRT49RTTy11DADIpA6lDgAAAAAAANAWOZMFoEDV1dWljrBDFRUVUVlZWeoYAAAAANAuNWvIUl9fH6NHj45//Md/jE9/+tNpZQJo1bptqI+GiJg/f36po+xQh86dYsK48QYt8BE6DQCQFj0DALKlWUOWzp07xwsvvBC5XC6tPACtXnn9lugQEQ8eOSiqe5SXOs527VG7MU575vXI5/OGLPAROg0AkBY9AwCypdlvF3bWWWfFbbfdFtddd10aeQDajOoe5VHVq6LUMYAC6TQAQFr0DADIjmYPWTZt2hS33nprLFiwIIYPHx7dunVrcvvMmTOLFg4AIC06DQCQFj0DALKj2UOWF154IQ499NCIiHj55Zeb3OZUWACgrdBpAIC06BkAkB3NHrI8+eSTaeQAAGhROg0AkBY9AwCyo0Ohd3zllVfi8ccfjw0bNkRERJIkRQsFANBSdBoAIC16BgC0f80esvz5z3+O448/Pj796U/Hl770pVi7dm1ERHz3u9+N73//+0UPCACQBp0GAEiLngEA2dHsIcvFF18cnTt3jjfeeCMqKioat3/ta1+Lxx57rKjhAADSotMAAGnRMwAgO5r9mSxPPPFEPP744/GpT32qyfZ999031qxZU7RgAABp0mkAgLToGQCQHc0+k+W9995r8n9hfKC6ujrKysqKEgoAIG06DQCQFj0DALKj2UOWY489Nu66667G67lcLhoaGuLv/u7v4rjjjitqOACAtOg0AEBa9AwAyI5mv13Y3/3d38WoUaPi2WefjU2bNsUll1wSL774Yrz99tvx29/+No2MAABFp9MAAGnRMwAgO5p9JsuBBx4Yzz//fBxxxBFx4oknxnvvvRenn356LF++PIYMGZJGRgCAotNpAIC06BkAkB3NPpMlIqJfv34xbdq0YmcBAGhRaXSaGTNmxOWXXx4TJ06MWbNmFfWxAYC2w2snAJANBQ1Z3nnnnbjtttvipZdeilwuFwcccECce+650atXr2LnAwBITbE7zdKlS2Pu3Llx8MEHFzkpANDWeO0EALKh2W8XtmjRohg8eHDceOON8c4778Tbb78dN954YwwePDgWLVqURkYAgKIrdqd59913Y8yYMXHLLbdEz549U0gMALQVXjsBgOxo9pks48aNi69+9asxZ86c6NixY0REbNmyJS688MIYN25cvPDCC0UPCQBQbMXuNOPGjYtTTjklTjjhhLjmmms+dt+6urqoq6trvF5bW9v8A2gnampqIp/PlzrGDm3evDk6dSroJPAWU1FREZWVlaWOQQuqrq4udYSP1drztUWtfU39HfpfXjsBgOxo9n8pvvrqq3H//fc3loSIiI4dO8bkyZPjrrvuKmo4AIC0FLPT3HvvvfHcc8/F0qVLd2r/GTNmeI/2eH/AcuPNs6OhfnOpo+xQQy6iQ1LqFB+vQ+dOMWHceC9wZkC3DfXREBHz588vdRRaSFv5mfs79L+8dgIA2dHsIcuhhx4aL730Uuy3335Ntr/00ksxbNiwYuUCAEhVsTrNm2++GRMnTownnngiysvLd+o+U6ZMicmTJzder62tjYEDB+7092wv8vl8NNRvjgePHBTVPXZu7UphyNqaOG7l2ladc4/ajXHaM69HPp/34mYGlNdviQ4Rrfp3MuJ//+2w69rCz9zfoaa8dgIA2bFTQ5bnn3++8esJEybExIkT45VXXokjjzwyIiKeeeaZuPnmm+O6665LJyUAQBGk0WmWLVsW69ati8MOO6xx25YtW2Lx4sUxe/bsqKura/J/sUZElJWVRVlZ2S4eTftR3aM8qnpVlDrGdvWu3RgRrT8n2dPafyc/+LdD8bT2n3nWee0EALJpp4Ysw4YNi1wuF0nyv++RcMkll2y13ze/+c342te+Vrx0AABFlEanOf7442PlypVNtp177rmx//77x6WXXrrVgAUAaJ+8dgIA2bRTQ5bVq1ennQMAIHVpdJru3bvH0KFDm2zr1q1b9O7de6vtAED75bUTAMimnRqy7LXXXmnnAABInU4DAKRFzwCAbGr2B99HRLz11lvx29/+NtatWxcNDQ1NbpswYUJRggEApC2tTrNw4cJdTAYAtHVeOwGAbGj2kGXevHlxwQUXRJcuXaJ3796Ry+Uab8vlcooCANAm6DQAQFr0DADIjmYPWa688sq48sorY8qUKdGhQ4c0MgEApE6nAQDSomcAQHY0+5k+n8/H17/+dSUBAGjTdBoAIC16BgBkR7Of7b/zne/Ev/zLv6SRBQCgxeg0AEBa9AwAyI5mv13YjBkz4tRTT43HHnssPvOZz0Tnzp2b3D5z5syihQMASItOAwCkRc8AgOxo9pBl+vTp8fjjj8d+++0XEbHVh7cBALQFOg0AkBY9A2jvampqIp/PlzrGDlVUVERlZWWpY9DONXvIMnPmzLj99tvjnHPOSSEOAEDL0GkAgLToGUB7VlNTEzfePDsa6jeXOsoOdejcKSaMG2/QQqqaPWQpKyuLESNGpJEFAKDF6DQAQFr0DKA9y+fz0VC/OR48clBU9ygvdZzt2qN2Y5z2zOuRz+cNWUhVs4csEydOjJtuuiluvPHGNPIAALQInQYASIueAWRBdY/yqOpVUeoYUHLNHrIsWbIkfv3rX8cvf/nLOOigg7b68Lb58+cXLRwAQFp0GgAgLXoGAGRHs4csu+++e5x++ulpZAEAaDE6DQCQFj0DALKj2UOWefPmpZEDAKBF6TQAQFr0DADIjg6lDgAAAAAAANAWNftMlsGDB0cul9vu7a+99touBQIAaAk6DQCQFj0DALKj2UOWSZMmNbleX18fy5cvj8ceeyx+8IMfFCsXAECqdBoAIC16BgBkR7OHLBMnTtzm9ptvvjmeffbZXQ4EbVVNTU1U/vXrqqqqSCoqSprno6qrq0sdAaBV0WkAgLToGQCQHc0esmzPySefHFOmTPHhbmRSTU1NzJn7j3HZX6/ffvvtUd+lS0kzAVAYnQYASIueAQDtT9GGLP/6r/8avXr1KtbDQZuSz+ejoX5z4/U7jv90bOhaXsJEWxuytiaOW7m21DEAWj2dBgBIi54BAO1Ps4cshxxySJMPb0uSJKqqquJPf/pT/OxnPytqOGir/qdnReQrWteQpXftxlJHAGhVdBoAIC16BgBkR7OHLKeddlqT6x06dIhPfOITMWrUqNh///2LlQsAIFU6DQCQFj0DALKj2UOWq666Ko0cAAAtSqcBANKiZwBAdnQodQAAAAAAAIC2aKfPZOnQoUOT9xPdllwuF5s3b/7YfQAASkmnAQDSomcAQPbs9JDlgQce2O5tTz/9dNx0002RJElRQgEApEWnAQDSomcAQPbs9JDlK1/5ylbb/vM//zOmTJkSDz/8cIwZMyZ+9KMfFTUcAECx6TQAQFr0DADInoI+k+WPf/xjjB07Ng4++ODYvHlzrFixIu68887Yc889i50PACA1Og0AkBY9AwCyoVlDlpqamrj00ktjn332iRdffDF+9atfxcMPPxxDhw5NKx8AQNHpNABAWvQMAMiWnX67sBtuuCGuv/766NevX/z85z/f5imwAACtnU4DAKRFzwCA7NnpIctll10WXbt2jX322SfuvPPOuPPOO7e53/z584sWDgCg2HQaACAtegYAZM9OD1nOOuusyOVyaWYBAEidTgMApEXPAIDs2ekhyx133JFiDACAlqHTAABp0TMAIHua9cH3AAAAAAAAvM+QBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEAB2tSQZcaMGZHL5WLSpEmN25IkialTp8aAAQOia9euMWrUqHjxxRdLFxIAAAAAAMiENjNkWbp0acydOzcOPvjgJttvuOGGmDlzZsyePTuWLl0a/fr1ixNPPDHWr19foqQAAAAAAEAWtIkhy7vvvhtjxoyJW265JXr27Nm4PUmSmDVrVlxxxRVx+umnx9ChQ+POO++MfD4f99xzTwkTAwAAAAAA7V2bGLKMGzcuTjnllDjhhBOabF+9enVUVVXF6NGjG7eVlZXFyJEj4+mnn97u49XV1UVtbW2TCwAAAAAAQHN0KnWAHbn33nvjueeei6VLl251W1VVVURE9O3bt8n2vn37xpo1a7b7mDNmzIhp06YVNygAAAAAAJAprfpMljfffDMmTpwYd999d5SXl293v1wu1+R6kiRbbfuwKVOmRE1NTePlzTffLFpmAAAAgFKZMWNG5HK5mDRpUqmjAEAmtOozWZYtWxbr1q2Lww47rHHbli1bYvHixTF79uxYtWpVRLx/Rkv//v0b91m3bt1WZ7d8WFlZWZSVlaUXHAAAAKCFLV26NObOnRsHH3xwqaMAQGa06jNZjj/++Fi5cmWsWLGi8TJ8+PAYM2ZMs10RUQAAJD1JREFUrFixIvbee+/o169fLFiwoPE+mzZtikWLFsXRRx9dwuQAAAAALefdd9+NMWPGxC233BI9e/YsdRwAyIxWfSZL9+7dY+jQoU22devWLXr37t24fdKkSTF9+vTYd999Y999943p06dHRUVFfPOb3yxFZAAAAIAWN27cuDjllFPihBNOiGuuuabUcQAgM1r1kGVnXHLJJbFhw4a48MIL45133onPfe5z8cQTT0T37t1LHQ0AAPiQmpqayOfzpY7xsaqrq0sdAaDZ7r333njuuedi6dKlO7V/XV1d1NXVNV6vra1NK1qbUMjf/lw+H/3++nVVVVUkFRXFDfUhnpugfWsLHTkioqKiIiorK0sdo1Vqc0OWhQsXNrmey+Vi6tSpMXXq1JLkAQAAdqympiZuvHl2NNRvLnUUgHblzTffjIkTJ8YTTzwR5eXlO3WfGTNmxLRp01JO1vp121AfDRExf/78Zt+386ZNcflfv7799tujvkuXomYDsqEtdeQOnTvFhHHjDVq2oc0NWQAAgLYnn89HQ/3mePDIQVHdY+deBCyFIWtr4riVa0sdA2CnLVu2LNatWxeHHXZY47YtW7bE4sWLY/bs2VFXVxcdO3Zscp8pU6bE5MmTG6/X1tbGwIEDWyxza1FevyU6RBT03NR1w8a4fPr7X99x/KdjQ9f0nts8N0H71VY68h61G+O0Z16PfD5vyLINhiwAAECLqe5RHlW90ntLlV3Vu3ZjqSMANMvxxx8fK1eubLLt3HPPjf333z8uvfTSrQYsERFlZWVRVlbWUhFbvUKemyryHRq//p+eFZGvSO/FUc9N0P619o7MxzNkAQAAAGijunfvHkOHDm2yrVu3btG7d++ttgMAxddhx7sAAAAAAADwUc5kAQAAAGhHFi5cWOoIAJAZzmQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUIBOpQ4AQLqqq6tLHeFjVVRURGVlZaljAAAAAECzGbIAtFPdNtRHQ0TMnz+/1FE+VofOnWLCuPEGLQAAAAC0OYYsAO1Uef2W6BARDx45KKp7lJc6zjbtUbsxTnvm9cjn84YsAAAAALQ5hiwA7Vx1j/Ko6lVR6hgAAAAA0O744HsAAAAAAIACGLIAAAAAAAAUwJAFAAAAAACgAIYsAAAAAAAABTBkAQAAAAAAKIAhCwAAAAAAQAEMWQAAAAAAAApgyAIAAAAAAFCATqUOAAAAAADA/6quri51hO1qzdmgFAxZAAAAAABagW4b6qMhIubPn1/qKMBOMmQBAAAAAGgFyuu3RIeIePDIQVHdo7zUcbZpyNqaOG7l2lLHgFbDkAUAAAAAoBWp7lEeVb0qSh1jm3rXbix1BGhVfPA9AAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAALtgxowZcfjhh0f37t2jT58+cdppp8WqVatKHQsAAABoAYYsAAC7YNGiRTFu3Lh45plnYsGCBbF58+YYPXp0vPfee6WOBgAAAKSsU6kDAAC0ZY899liT6/PmzYs+ffrEsmXL4thjjy1RKgAAAKAlGLIAABRRTU1NRET06tVru/vU1dVFXV1d4/Xa2trUsuTz+VQeuxiqq6tLHaHdKeaa5vL56PfXr6uqqiKpqNilx/PzBgAA2iNDFgCAIkmSJCZPnhzHHHNMDB06dLv7zZgxI6ZNm5Zqlpqamrjx5tnRUL851e9D69BtQ300RMT8+fOL9pidN22Ky//69e233x71XboU7bEBAADaC0MWAIAiGT9+fDz//PPx1FNPfex+U6ZMicmTJzder62tjYEDBxY1Sz6fj4b6zfHgkYOiukd5UR+7WIasrYnjVq4tdYx2obx+S3SIKOrPu+uGjXH59Pe/vuP4T8eGrrv2uH7eAABAe2TIAgBQBBdddFE89NBDsXjx4vjUpz71sfuWlZVFWVlZi+Sq7lEeVb127W2e0tK7dmOpI7Q7xfx5V+Q7NH79Pz0rIl+xa0MWP28AAKA9MmQBANgFSZLERRddFA888EAsXLgwBg8eXOpIAAAAQAsxZAEA2AXjxo2Le+65J37xi19E9+7do6qqKiIiKisro2vXriVOBwAAAKSpw453AQBge+bMmRM1NTUxatSo6N+/f+PlvvvuK3U0AAAAIGXOZAEA2AVJkpQ6AgAAAFAizmQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAK06iHLjBkz4vDDD4/u3btHnz594rTTTotVq1Y12SdJkpg6dWoMGDAgunbtGqNGjYoXX3yxRIkBAAAAAICsaNVDlkWLFsW4cePimWeeiQULFsTmzZtj9OjR8d577zXuc8MNN8TMmTNj9uzZsXTp0ujXr1+ceOKJsX79+hImBwAAAAAA2rtOpQ7wcR577LEm1+fNmxd9+vSJZcuWxbHHHhtJksSsWbPiiiuuiNNPPz0iIu68887o27dv3HPPPXH++eeXIjYAAAAAAJABrfpMlo+qqamJiIhevXpFRMTq1aujqqoqRo8e3bhPWVlZjBw5Mp5++untPk5dXV3U1tY2uQAAAAC0NTvzVusAQHrazJAlSZKYPHlyHHPMMTF06NCIiKiqqoqIiL59+zbZt2/fvo23bcuMGTOisrKy8TJw4MD0ggMAAACkZGfeah0ASE+rfruwDxs/fnw8//zz8dRTT211Wy6Xa3I9SZKttn3YlClTYvLkyY3Xa2trDVoAAACANmdHb7UOAKSrTQxZLrroonjooYdi8eLF8alPfapxe79+/SLi/TNa+vfv37h93bp1W53d8mFlZWVRVlaWXmAAAACAEvjoW61vS11dXdTV1TVe9zbqQHtWXV1d6gjb1ZqzbUtrz1tRURGVlZUt/n1b9ZAlSZK46KKL4oEHHoiFCxfG4MGDm9w+ePDg6NevXyxYsCAOOeSQiIjYtGlTLFq0KK6//vpSRAYAAAAoiW291fq2zJgxI6ZNm9aCyQBaXrcN9dEQEfPnzy91lDavraxlh86dYsK48S0+aGnVQ5Zx48bFPffcE7/4xS+ie/fujZ+zUllZGV27do1cLheTJk2K6dOnx7777hv77rtvTJ8+PSoqKuKb3/xmidMDAAAAtJyPe6v1D/M26kAWlNdviQ4R8eCRg6K6R3mp42zTkLU1cdzKtaWOsUNtYS33qN0Ypz3zeuTzeUOWD5szZ05ERIwaNarJ9nnz5sU555wTERGXXHJJbNiwIS688MJ455134nOf+1w88cQT0b179xZOCwAAAFAa23ur9W3xNupAllT3KI+qXhWljrFNvWs3ljpCs7TmtSylVj1kSZJkh/vkcrmYOnVqTJ06Nf1AAAAAAK3Ijt5qHQBIV6sesgAAAACwfTt6q3UAIF0dSh0AAAAAgMLMmTMnampqYtSoUdG/f//Gy3333VfqaACQCc5kAQAAAGijduat1gGA9DiTBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAXoVOoAsDNqamoin8+XOsZ2VVdXlzoCAAAAAAAtzJCFVq+mpiZuvHl2NNRvLnWUj9W51AEAAAAAAGhRhiy0evl8PhrqN8eDRw6K6h7lpY6zTUPW1sToZWtKHQMAAAAAgBZkyEKbUd2jPKp6VZQ6xjb1rt1Y6ggAAAAAALQwH3wPAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACdSh0AAKqrq0sdYYcqKiqisrKy1DEAAAAAaEUMWQAomW4b6qMhIubPn1/qKDvUoXOnmDBuvEELAAAAAI0MWQAomfL6LdEhIh48clBU9ygvdZzt2qN2Y5z2zOuRz+cNWQAAAABoZMgCQMlV9yiPql4VpY4BAAAAAM3ig+8BAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMAH32dcTU1N5PP5Usf4WNXV1aWOAAAAAAAAWzFkybCampq48ebZ0VC/udRRAAAAAACgzTFkybB8Ph8N9ZvjwSMHRXWP8lLH2a4ha2viuJVrSx0DAAAAAACaMGQhqnuUR1WvilLH2K7etRtLHQEAAAAAALbig+8BAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABOpU6QHtWU1MT+Xy+1DG2q7q6utQRAAAAAACgzTJkSUlNTU3cePPsaKjfXOooAAAAAABACgxZUpLP56OhfnM8eOSgqO5RXuo42zRkbU0ct3JtqWMAAAAAAECbZMiSsuoe5VHVq6LUMbapd+3GUkcAAAAAAIA2ywffAwAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABOpU6AAC0FdXV1aWO8LEqKiqisrKy1DEAAAAAMsOQBQB2oNuG+miIiPnz55c6ysfq0LlTTBg33qAFAAAAoIUYsgDADpTXb4kOEfHgkYOiukd5qeNs0x61G+O0Z16PfD5vyAIAAADQQgxZAGAnVfcoj6peFaWOAQAAAEAr4YPvAQAAAAAACtBuhiw/+9nPYvDgwVFeXh6HHXZY/OY3vyl1JAAgQ3QRAKCUdBEAKI12MWS57777YtKkSXHFFVfE8uXL4/Of/3ycfPLJ8cYbb5Q6GgCQAboIAFBKuggAlE67GLLMnDkzvvOd78R3v/vdOOCAA2LWrFkxcODAmDNnTqmjAQAZoIsAAKWkiwBA6bT5D77ftGlTLFu2LC677LIm20ePHh1PP/30Nu9TV1cXdXV1jddramoiIqK2trZoudavXx8bN26MnmvfiYb38kV73GLa7U+1rT5jRNvIudufamNjXV188Bu0x3//OTZ2LStppo9qC+sY0TZytoWMEW0jZ1vIGNE2cvasrYuNGzfG+vXro1u3bkV5zA+eF5MkKcrjtVe6SOHawr+tiLaRM42M5RuK223awjpGtI2cbSFjRNvI2RYyRrSNnLpI6egihduVf1vFfp78OG3hb0BbyBjRNnLKWDxtIWdbyBjRNnKWtIskbdxbb72VRETy29/+tsn2a6+9Nvn0pz+9zftcddVVSUS4uLi4uLi47MTlzTffbImn9DZLF3FxcXFxcUn3oot8PF3ExcXFxcUl3cuOukibP5PlA7lcrsn1JEm22vaBKVOmxOTJkxuvNzQ0xJo1a2LYsGHx5ptvRo8ePVLN2lbV1tbGwIEDrdHHsEY7Zo12zBrtmDXasWKsUZIksX79+hgwYECR07VPu9pF3n777ejdu/d279OaZenfZJaONSJbx5ulY43I1vFm6Vgj2tfx6iLNk+UuUirt6d9bqVnL4rGWxWMti6Mtr+POdpE2P2TZY489omPHjlFVVdVk+7p166Jv377bvE9ZWVmUlTU9jbNDh/c/nqZHjx5t7ofd0qzRjlmjHbNGO2aNdswa7diurlFlZWUR07RPxeoiu+++e1oRW0yW/k1m6VgjsnW8WTrWiGwdb5aONaL9HK8usmO6SOm1l39vrYG1LB5rWTzWsjja6jruTBdp8x9836VLlzjssMNiwYIFTbYvWLAgjj766BKlAgCyQhcBAEpJFwGA0mrzZ7JEREyePDm+/e1vx/Dhw+Ooo46KuXPnxhtvvBEXXHBBqaMBABmgiwAApaSLAEDptIshy9e+9rX485//HFdffXWsXbs2hg4dGo888kjstddeO/0YZWVlcdVVV211uiz/yxrtmDXaMWu0Y9Zox6zRjlmjllWMLtKWZen3LUvHGpGt483SsUZk63izdKwR2Tte3pf1LlIq/r0Vj7UsHmtZPNayOLKwjrkkSZJShwAAAAAAAGhr2vxnsgAAAAAAAJSCIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEOWD6mrq4thw4ZFLpeLFStWNLntjTfeiC9/+cvRrVu32GOPPWLChAmxadOm0gRtYa+//np85zvficGDB0fXrl1jyJAhcdVVV211/Fleow/87Gc/i8GDB0d5eXkcdthh8Zvf/KbUkUpixowZcfjhh0f37t2jT58+cdppp8WqVaua7JMkSUydOjUGDBgQXbt2jVGjRsWLL75YosSlN2PGjMjlcjFp0qTGbdYo4q233opvfetb0bt376ioqIhhw4bFsmXLGm/P+hpt3rw5/vZv/7bx7/Pee+8dV199dTQ0NDTuk/U1Ij1Z7AfXXnttHH300VFRURG77777NvdpT8fbXnvN4sWL48tf/nIMGDAgcrlcPPjgg01ub09/N7PWyebMmRMHH3xw9OjRI3r06BFHHXVUPProo423t6dj/ShdElpee32eTFPWnpdakueBXeO1h12X+dcnEhpNmDAhOfnkk5OISJYvX964ffPmzcnQoUOT4447LnnuueeSBQsWJAMGDEjGjx9furAt6NFHH03OOeec5PHHH09effXV5Be/+EXSp0+f5Pvf/37jPllfoyRJknvvvTfp3LlzcssttyR/+MMfkokTJybdunVL1qxZU+poLe6kk05K5s2bl7zwwgvJihUrklNOOSXZc889k3fffbdxn+uuuy7p3r17cv/99ycrV65Mvva1ryX9+/dPamtrS5i8NJYsWZIMGjQoOfjgg5OJEyc2bs/6Gr399tvJXnvtlZxzzjnJ7373u2T16tXJv//7vyevvPJK4z5ZX6Nrrrkm6d27d/LLX/4yWb16dfIv//IvyW677ZbMmjWrcZ+srxHpyWI/uPLKK5OZM2cmkydPTiorK7e6vT0db3vuNY888khyxRVXJPfff38SEckDDzzQ5Pb29Hcza53soYceSv7t3/4tWbVqVbJq1ark8ssvTzp37py88MILSZK0r2P9MF0SWl57fp5MU9ael1qK54Fd47WH4sj66xOGLH/1yCOPJPvvv3/y4osvbjVkeeSRR5IOHTokb731VuO2n//850lZWVlSU1NTgrSld8MNNySDBw9uvG6NkuSII45ILrjggibb9t9//+Syyy4rUaLWY926dUlEJIsWLUqSJEkaGhqSfv36Jdddd13jPhs3bkwqKyuTf/iHfyhVzJJYv359su+++yYLFixIRo4c2ViIrFGSXHrppckxxxyz3dutUZKccsopyXnnnddk2+mnn55861vfSpLEGtHystIP5s2bt80hS3s63qz0mo8OWdr7380sdrKePXsmt956a7s9Vl0SSiMrz5Npy+LzUrF5Hth1Xnsojqy/PuHtwiLif/7nf2Ls2LHx//7f/4uKioqtbv+P//iPGDp0aAwYMKBx20knnRR1dXVNTh3LkpqamujVq1fj9ayv0aZNm2LZsmUxevToJttHjx4dTz/9dIlStR41NTUREY2/M6tXr46qqqom61VWVhYjR47M3HqNGzcuTjnllDjhhBOabLdGEQ899FAMHz48zjzzzOjTp08ccsghccsttzTebo0ijjnmmPjVr34VL7/8ckRE/P73v4+nnnoqvvSlL0WENaLlZb0ftJfjzXKvae9/N7PUybZs2RL33ntvvPfee3HUUUe122PVJaHlZfl5stiy9LyUFs8Du85rD8WR9dcnOpU6QKklSRLnnHNOXHDBBTF8+PB4/fXXt9qnqqoq+vbt22Rbz549o0uXLlFVVdVCSVuPV199NW666ab4yU9+0rgt62tUXV0dW7Zs2WoN+vbtm4nj/zhJksTkyZPjmGOOiaFDh0ZENK7JttZrzZo1LZ6xVO6999547rnnYunSpVvdZo0iXnvttZgzZ05Mnjw5Lr/88liyZElMmDAhysrK4qyzzrJGEXHppZdGTU1N7L///tGxY8fYsmVLXHvttfGNb3wjIvwe0bL0g/ZzvFnuNe3572ZWOtnKlSvjqKOOio0bN8Zuu+0WDzzwQBx44IGN//Heno5Vl4TSyPLzZDFl5XkpTZ4HisNrD8WR9dcn2u2ZLFOnTo1cLvexl2effTZuuummqK2tjSlTpnzs4+Vyua22JUmyze1txc6u0Yf98Y9/jC9+8Ytx5plnxne/+90mt7XHNWqujx5r1o5/W8aPHx/PP/98/PznP9/qtiyv15tvvhkTJ06Mu+++O8rLy7e7X5bXqKGhIQ499NCYPn16HHLIIXH++efH2LFjY86cOU32y/Ia3XfffXH33XfHPffcE88991zceeed8eMf/zjuvPPOJvtleY1ovqz1g0KO9+O09uNtjiz/7WiPx56VTrbffvvFihUr4plnnonvfe97cfbZZ8cf/vCHxtvby7HqklB6/n3tmqw8L6XF80DxeO2hOLL++kS7PZNl/Pjx8fWvf/1j9xk0aFBcc8018cwzz0RZWVmT24YPHx5jxoyJO++8M/r16xe/+93vmtz+zjvvRH19/VbTt7ZkZ9foA3/84x/juOOOi6OOOirmzp3bZL/2ukY7a4899oiOHTtu9X+trFu3LhPHvz0XXXRRPPTQQ7F48eL41Kc+1bi9X79+EfH+FLt///6N27O0XsuWLYt169bFYYcd1rhty5YtsXjx4pg9e3asWrUqIrK9Rv37948DDzywybYDDjgg7r///ojwexQR8YMf/CAuu+yyxr/ln/nMZ2LNmjUxY8aMOPvss60RBclaP2ju8X6ctnC8OyPLvaa9/t3MUifr0qVL7LPPPhHx/n/TLV26NH7605/GpZdeGhHt51h1SSidLD9PFkuWnpfS4nmgeLz2UBxZf32i3Z7Jsscee8T+++//sZfy8vK48cYb4/e//32sWLEiVqxYEY888khEvD99u/baayMi4qijjooXXngh1q5d2/j4TzzxRJSVlTX5Y9bW7OwaRUS89dZbMWrUqDj00ENj3rx50aFD01+d9rpGO6tLly5x2GGHxYIFC5psX7BgQRx99NElSlU6SZLE+PHjY/78+fHrX/86Bg8e3OT2wYMHR79+/Zqs16ZNm2LRokWZWa/jjz8+Vq5c2fi3Z8WKFY3D3RUrVsTee++d+TUaMWJEYzH8wMsvvxx77bVXRPg9iojI5/Nb/T3u2LFjNDQ0RIQ1ojBZ6wfNOd4daQvHuzOy3Gva299Nnez9Nairq2t3x6pLQulk+XlyV3leKh7PA8XjtYfiyPzrEwlNrF69OomIZPny5Y3bNm/enAwdOjQ5/vjjk+eeey7593//9+RTn/pUMn78+NIFbUFvvfVWss8++yRf+MIXkv/+7/9O1q5d23j5QNbXKEmS5N577006d+6c3Hbbbckf/vCHZNKkSUm3bt2S119/vdTRWtz3vve9pLKyMlm4cGGT35d8Pt+4z3XXXZdUVlYm8+fPT1auXJl84xvfSPr375/U1taWMHlpjRw5Mpk4cWLj9ayv0ZIlS5JOnTol1157bfJf//VfyT/90z8lFRUVyd133924T9bX6Oyzz04++clPJr/85S+T1atXJ/Pnz0/22GOP5JJLLmncJ+trRHqy2A/WrFmTLF++PJk2bVqy2267JcuXL0+WL1+erF+/PkmS9nW87bnXrF+/vvFnFxHJzJkzk+XLlydr1qxJkqR9/d3MWiebMmVKsnjx4mT16tXJ888/n1x++eVJhw4dkieeeCJJkvZ1rNuiS0LLac/Pk2nK2vNSS/M8UBivPRRH1l+fMGT5iG0NWZLk/f+oPuWUU5KuXbsmvXr1SsaPH59s3LixNCFb2Lx585KI2Oblw7K8Rh+4+eabk7322ivp0qVLcuihhyaLFi0qdaSS2N7vy7x58xr3aWhoSK666qqkX79+SVlZWXLssccmK1euLF3oVuCjhcgaJcnDDz+cDB06NCkrK0v233//ZO7cuU1uz/oa1dbWJhMnTkz23HPPpLy8PNl7772TK664Iqmrq2vcJ+trRHqy2A/OPvvsbR7vk08+2bhPezre9tprnnzyyW3+HM8+++wkSdrX382sdbLzzjuv8Xf2E5/4RHL88cc3DliSpH0d67boktCy2uvzZJqy9rzU0jwPFM5rD7su669P5JIkSVI6SQYAAAAAAKDdarefyQIAAAAAAJAmQxYAAAAAAIACGLIAAAAAAAAUwJAFAAAAAACgAIYsAAAAAAAABTBkAQAAAAAAKIAhCwAAAAAAQAEMWQAAAAAAAApgyAIU3bp16+L888+PPffcM8rKyqJfv35x0kknxW9+85vo169fTJ8+fav7fPWrX43DDz88Nm/eHFOnTo1cLtd4qaysjM9//vOxaNGibX6/6dOnR8eOHeO6665L+9AAgDZAFwEASkkXgWwxZAGK7owzzojf//73ceedd8bLL78cDz30UIwaNSpqa2tj7ty5MW3atFi5cmXj/v/6r/8aDz/8cNx1113RqVOniIg46KCDYu3atbF27dr4j//4j9h3333j1FNPjZqamq2+37x58+KSSy6J22+/vcWOEQBovXQRAKCUdBHIllySJEmpQwDtx1/+8pfo2bNnLFy4MEaOHLnNfc4999xYsWJFLFmyJP7yl7/EQQcdFJdffnlMmjQpIiKmTp0aDz74YKxYsaLxPm+++WbsueeesWTJkjj88MMbty9atCjGjBkTq1evjkGDBsXPf/7zOPbYY9M8RACgFdNFAIBS0kUge5zJAhTVbrvtFrvttls8+OCDUVdXt819fvrTn8bbb78dP/rRj+LCCy+MoUOHxsSJE7f7mHV1dXHHHXfE7rvvHvvtt1+T22677bb4xje+EZ07d45vfOMbcdtttxX1eACAtkUXAQBKSReB7HEmC1B0999/f4wdOzY2bNgQhx56aIwcOTK+/vWvx8EHH9y4z69//esYPXp0dOvWLZ5//vnYa6+9Gm+bOnVq/OhHP4quXbtGREQ+n4/u3bvHfffdF1/84hcb96utrY3+/fvH008/HZ/97GdjxYoVMWLEiFi7dm306NGj5Q4YAGhVdBEAoJR0EcgWZ7IARXfGGWfEH//4x3jooYfipJNOioULF8ahhx4ad9xxR+M+X/jCF+LII4+Mb3/7202KxAf222+/WLFiRaxYsSKWLVsW3/ve9+LMM8+MZ599tnGfe+65J/bee+/47Gc/GxERw4YNi7333jvuvffe1I8RAGi9dBEAoJR0EcgWZ7IALeK73/1uLFiwINasWdO4bdSoUTFs2LCYNWtWk3239d6jERH7779/DB8+PO6+++6IiDjiiCPi2WefjQ4d/nde3NDQEIcffnj87ne/S+1YAIC2RxcBAEpJF4H2q1OpAwDZcOCBB8aDDz64S4/RsWPH2LBhQ0RErFy5Mp599tlYuHBh9OrVq3Gfv/zlL3HsscfGCy+8EEOHDt2l7wcAtB+6CABQSroItF+GLEBR/fnPf44zzzwzzjvvvDj44IOje/fu8eyzz8YNN9wQX/nKV3b6cTZv3hxVVVUREbF+/fq477774g9/+ENceumlEfH+B7sdccQRceyxx25136OOOipuu+22+Pu///viHBQA0GboIgBAKekikD2GLEBR7bbbbvG5z30u/v7v/z5effXVqK+vj4EDB8bYsWPj8ssv3+nHefHFF6N///4REVFRURFDhgyJOXPmxFlnnRWbNm2Ku+++u7FYfNQZZ5wRM2bMiOuvvz66dOlSlOMCANoGXQQAKCVdBLLHZ7IAAAAAAAAUoMOOdwEAAAAAAOCjDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAvx/xiL/Ulv8BDAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filters.plots.make_hists(\n", + " fragment_library, colname=\"syba\", filtername=\"SYBA\", plot_stats=True, cutoff=0\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/1_4_custom_filters_pairwise_retrosynthesizability.ipynb b/notebooks/custom_kinfraglib/1_4_custom_filters_pairwise_retrosynthesizability.ipynb new file mode 100644 index 00000000..b1d934a3 --- /dev/null +++ b/notebooks/custom_kinfraglib/1_4_custom_filters_pairwise_retrosynthesizability.ipynb @@ -0,0 +1,3297 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a2c6d3e2-8fc9-47bf-8d42-10114ffe3c70", + "metadata": {}, + "source": [ + "# Filter for pairwise retrosynthesizability" + ] + }, + { + "cell_type": "markdown", + "id": "8f269914-05af-47eb-9cbe-d84f2499cc45", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "id": "c98ff012-da23-461c-80a6-a06063814536", + "metadata": {}, + "source": [ + "This notebook is filtering the fragments for pairwise retrosynthesizability using the web API from [ASKCOS](https://askcos.mit.edu/) ([Documenation](https://askcos-docs.mit.edu/)).\n", + "\n", + "**Note:** The ASKCOS results for the given KinFragLib data are already precomputed, thus for that ASKCOS does not need to be installed to successfully run this notebook. However, if the notebook is executed on new data, the ASKCOS needs to be installed beforehand. To install ASKCOS, please follow the installation given at [https://askcos-docs.mit.edu/](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html). \n", + "\n", + "We build all valid fragment pairs and look if a retrosynthetic route can be found to create this pair from the fragments given. To reduce the number of requests we, first apply all filters from the previous notebooks." + ] + }, + { + "cell_type": "markdown", + "id": "ac3d7a2a-6ef0-4589-8d9b-05a590f26562", + "metadata": { + "tags": [] + }, + "source": [ + "## Table of contents\n", + "1. Load fragment library\n", + "2. Apply filters\n", + " \n", + " 2.1. Apply pre-filters\n", + " \n", + " 2.2. Apply filters for unwanted substructures\n", + " \n", + " 2.2.1. PAINS filter\n", + " \n", + " 2.2.2 Brenk filter\n", + " \n", + " 2.3. Apply filters for drug likeness\n", + " \n", + " 2.3.1. Rule of Three filter\n", + " \n", + " 2.3.2. Quantitative Estimate of Druglikeness filter\n", + " \n", + " 2.4. Apply filters for synthesizability\n", + " \n", + " 2.4.1. Filter for buyable building blocks\n", + " \n", + " 2.4.2. Filter for Synthetic Bayesian Estimation\n", + " \n", + " 2.5. Process filtering results\n", + " \n", + " 2.5.1. Check which fragments pass all filters applied\n", + " \n", + " 2.5.2. Save the values computed by each filtering step\n", + " \n", + " 2.6. Remove fragments not passing the previous filtering steps\n", + " \n", + "3. Apply pairwise retrosynthesizability\n", + "\n", + " 3.1. Get valid fragment pairs\n", + " \n", + " 3.2. Calculate pairwise retrosynthesizability\n", + " \n", + "4. Analyze accepted/ rejected fragments\n", + "\n", + " 4.1. Count number of accepted/rejected fragments\n", + " \n", + " 4.2. Plot number of retrosynthetic routes found per fragment and subpocket\n", + " \n", + " 4.3. Inspect fragments with no retrosynthetic routes found and with most retrosynthetic routes found\n", + " \n", + " 4.4 Save custom filtered fragment library\n", + " \n", + " 4.4.1. Add results from pairwise retrosynthesizability to the filtering results\n", + " \n", + " 4.4.2. Save fragment_library_custom_filtered to data" + ] + }, + { + "cell_type": "markdown", + "id": "af64d85b-04f4-466d-af18-b5ccd06a17b3", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "01c3d56e-ec28-4e3b-8ccd-f9330bbb748c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:14.817029Z", + "iopub.status.busy": "2024-05-13T08:41:14.816309Z", + "iopub.status.idle": "2024-05-13T08:41:16.914752Z", + "shell.execute_reply": "2024-05-13T08:41:16.914176Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "import warnings\n", + "import pandas as pd\n", + "from pathlib import Path\n", + "from rdkit.Chem import PandasTools\n", + "from IPython.core.display import HTML\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0e733735-05c5-45cf-99e1-05be23b7b5ad", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:16.917559Z", + "iopub.status.busy": "2024-05-13T08:41:16.917301Z", + "iopub.status.idle": "2024-05-13T08:41:16.936878Z", + "shell.execute_reply": "2024-05-13T08:41:16.936297Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "26f66b6d-5405-4e07-8999-5d187a819d4e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:16.939209Z", + "iopub.status.busy": "2024-05-13T08:41:16.938993Z", + "iopub.status.idle": "2024-05-13T08:41:16.958352Z", + "shell.execute_reply": "2024-05-13T08:41:16.957744Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "5ba93340-d630-450e-827e-d086ed243216", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f9aca1d4-c22d-4c73-839c-9a9000f81fcd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:16.960634Z", + "iopub.status.busy": "2024-05-13T08:41:16.960441Z", + "iopub.status.idle": "2024-05-13T08:41:16.980834Z", + "shell.execute_reply": "2024-05-13T08:41:16.980252Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data\"\n", + "PATH_DATA_BRENK = PATH_DATA / \"filters/Brenk\"\n", + "PATH_DATA_ENAMINE = HERE / \"../../data/filters/Enamine\"\n", + "PATH_DATA_RETRO = HERE / \"../../data/filters/retrosynthesizability\"\n", + "PATH_DATA_CUSTOM = PATH_DATA / \"fragment_library_custom_filtered\"" + ] + }, + { + "cell_type": "markdown", + "id": "41adb7e7-9985-43e8-b43f-e181d6ac3e22", + "metadata": {}, + "source": [ + "## 1. Load fragment library" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "62f4cf77-0b8b-4bef-903b-924e79ed8cc7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:16.983159Z", + "iopub.status.busy": "2024-05-13T08:41:16.982944Z", + "iopub.status.idle": "2024-05-13T08:41:21.522406Z", + "shell.execute_reply": "2024-05-13T08:41:21.521732Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "79aecd8e-fbf2-4a60-a656-11a6f7e7adba", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:21.524594Z", + "iopub.status.busy": "2024-05-13T08:41:21.524392Z", + "iopub.status.idle": "2024-05-13T08:41:21.542094Z", + "shell.execute_reply": "2024-05-13T08:41:21.541542Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2', 'X'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ca64d645-2bda-426e-9d64-ec820b9356a4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:21.544064Z", + "iopub.status.busy": "2024-05-13T08:41:21.543901Z", + "iopub.status.idle": "2024-05-13T08:41:21.572408Z", + "shell.execute_reply": "2024-05-13T08:41:21.571790Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(9505, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat(fragment_library).reset_index(drop=True).shape" + ] + }, + { + "cell_type": "markdown", + "id": "92118459-57c7-4b54-a1e5-65cadc72dcc0", + "metadata": {}, + "source": [ + "## 2. Apply filters\n", + "\n", + " 2.2. Apply filters for unwanted substructures\n", + " \n", + " 2.2.1. PAINS filter\n", + " \n", + " 2.2.2 Brenk filter\n", + " \n", + " 2.3. Apply filters for drug likeness\n", + " \n", + " 2.3.1. Rule of Three filter\n", + " \n", + " 2.3.2. Qunatitative Estimate of Druglikeness filter\n", + " \n", + " 2.4. Apply filters for synthesizability\n", + " \n", + " 2.4.1. Filter for buyable building blocks\n", + " \n", + " 2.4.2. Filter for Synthetic Bayesian Estimation\n", + " \n", + " 2.5. Process filtering results\n", + " \n", + " 2.5.1. Check which fragments pass all filters applied\n", + " \n", + " 2.5.2. Save the values computed by each filtering step\n", + " \n", + " 2.6. Remove fragments not passing the previous filtering steps" + ] + }, + { + "cell_type": "markdown", + "id": "09a9082c-df5b-4061-9c8f-38f138f03e8f", + "metadata": {}, + "source": [ + "These filters are applied to reduce the number of fragments before building pairs for the pairwise retrosynthesizability filter to avoid the combinatorial explosion and enable this analysis." + ] + }, + { + "cell_type": "markdown", + "id": "9d20c6ef-d5c8-432d-aa6b-d019fbddd5d0", + "metadata": {}, + "source": [ + "### 2.1. Apply pre-filters\n", + "Pre-filters are \n", + "- removing fragments in pool X\n", + "- removing duplicates\n", + "- removing fragments without dummy atoms (unfragmented ligands)\n", + "- removing fragments only connecting to pool X" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "31db9422-b201-4136-942a-c4654f82b3a6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:21.574631Z", + "iopub.status.busy": "2024-05-13T08:41:21.574456Z", + "iopub.status.idle": "2024-05-13T08:41:21.730506Z", + "shell.execute_reply": "2024-05-13T08:41:21.729953Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library = filters.prefilters.pre_filters(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "21e3b8dc-ebbd-4d10-b028-d3d7cc0cbf1a", + "metadata": {}, + "source": [ + "### 2.2. Apply filters for unwanted substructures\n", + "Filter out fragments that could cause unwanted side effects.\n", + "\n", + "For more information, check [/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb](https://github.com/sonjaleo/KinFragLib/blob/custom-base/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "0cc5b943-2290-498f-8050-b740a440e3d2", + "metadata": {}, + "source": [ + "#### 2.2.1. PAINS filter\n", + "Remove fragments that can appear as false positive hits in HTS assays.\n", + "\n", + "[ J. Med. Chem. 2010, 53, 7, 2719–2740](https://pubs.acs.org/doi/abs/10.1021/jm901137j)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "76cbf696-84a9-41fa-9c3d-f6cd725245b5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:21.733010Z", + "iopub.status.busy": "2024-05-13T08:41:21.732820Z", + "iopub.status.idle": "2024-05-13T08:41:25.772794Z", + "shell.execute_reply": "2024-05-13T08:41:25.772157Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library, _ = filters.unwanted_substructures.get_pains(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "ca4e28a6-9b05-4b64-aa73-8e32cafb1984", + "metadata": {}, + "source": [ + "#### 2.2.2 Brenk filter\n", + "Remove fragments containing substructures which do not enrich libraries for lead like compounds, defined by Brenk et al. ([ChemMedChem, 2008, 3(3),435--444](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.200700139))." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c2259261-f754-40b7-aa14-95c9af5e345e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:25.774983Z", + "iopub.status.busy": "2024-05-13T08:41:25.774783Z", + "iopub.status.idle": "2024-05-13T08:41:41.951113Z", + "shell.execute_reply": "2024-05-13T08:41:41.950460Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of unwanted substructures in Brenk et al. collection: 104\n" + ] + } + ], + "source": [ + "fragment_library, brenk_structs = filters.unwanted_substructures.get_brenk(\n", + " fragment_library, PATH_DATA_BRENK\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "bbd034f4-5b12-4a4d-adba-67d8e1fb4acf", + "metadata": {}, + "source": [ + "### 2.3. Apply filters for drug likeness\n", + "For more information, check [/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb](https://github.com/sonjaleo/KinFragLib/blob/custom-base/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "7caff38b-cafd-4b43-9243-d67d366edbd3", + "metadata": {}, + "source": [ + "#### 2.3.1. Rule of Three filter\n", + "Filter the fragments according to the Rule of Three ([Drug Discovery Today, 2003, 8(19):876-877](https://www.sciencedirect.com/science/article/abs/pii/S1359644603028319?via%3Dihub))." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e8ededec-2f36-49c5-8f4a-31d36d8383ea", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:41.953508Z", + "iopub.status.busy": "2024-05-13T08:41:41.953313Z", + "iopub.status.idle": "2024-05-13T08:41:44.873001Z", + "shell.execute_reply": "2024-05-13T08:41:44.872371Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library = filters.drug_likeness.get_ro3_frags(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "dfe2a2db-4955-4154-834c-60c3ed210fc0", + "metadata": {}, + "source": [ + "#### 2.3.2. Quantitative Estimate of Druglikeness filter\n", + "The Quantitative Estimate of Druglikeness reflects the molecular properties ([Nat Chem. 2012 Jan 24; 4(2): 90–98](https://www.nature.com/articles/nchem.1243))." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "36a60b40-8fb5-4fc0-b00c-976705253af5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:44.875792Z", + "iopub.status.busy": "2024-05-13T08:41:44.875600Z", + "iopub.status.idle": "2024-05-13T08:41:47.087585Z", + "shell.execute_reply": "2024-05-13T08:41:47.087024Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library = filters.drug_likeness.get_qed(fragment_library, cutoff_val=0.492)" + ] + }, + { + "cell_type": "markdown", + "id": "3f35c52a-abd6-484d-8d9e-08128f168f48", + "metadata": { + "tags": [] + }, + "source": [ + "### 2.4. Apply filters for synthesizability\n", + "\n", + "For more information, check [/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb](https://github.com/sonjaleo/KinFragLib/blob/custom-base/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "49834ec2-0c9f-42af-82a5-29bef4c522a3", + "metadata": {}, + "source": [ + "#### 2.4.1. Filter for buyable building blocks\n", + "Building blocks can be used to synthesize molecules on demand.\n", + "\n", + "**Note**: A description to the generation of the `data/filters/Enamine/Enamine_Building_Blocks.sdf` file used in this function can be found in the [README](https://github.com/volkamerlab/KinFragLib/blob/master/data/filters/Enamine/README.md) file in the `data/filters/Enamine` directory." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f6b5c7c3-a54a-4300-87fb-6ff3dbf98a94", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:47.090546Z", + "iopub.status.busy": "2024-05-13T08:41:47.090363Z", + "iopub.status.idle": "2024-05-13T08:41:52.359381Z", + "shell.execute_reply": "2024-05-13T08:41:52.358807Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of building blocks: 1562\n" + ] + } + ], + "source": [ + "fragment_library = filters.synthesizability.check_building_blocks(\n", + " fragment_library,\n", + " str(str(PATH_DATA_ENAMINE) + \"/Enamine_Building_Blocks.sdf\"),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "74d78673-5f57-4e82-8111-49936fcf3271", + "metadata": {}, + "source": [ + "#### 2.4.2. Filter for Synthetic Bayesian Estimation\n", + "The Synthetic Bayesian Estimation is a fragment based estimate, determining whether a molecule is easy or hard to synthesize.\n", + "\n", + "[(J Cheminform 12, 35 (2020))](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00439-2) " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "7f9edb39-3542-4d4b-914e-f9cea422f643", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:41:52.361624Z", + "iopub.status.busy": "2024-05-13T08:41:52.361458Z", + "iopub.status.idle": "2024-05-13T08:42:34.684786Z", + "shell.execute_reply": "2024-05-13T08:42:34.684126Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library = filters.synthesizability.calc_syba(fragment_library, cutoff=0)" + ] + }, + { + "cell_type": "markdown", + "id": "b6f96499-9758-4e62-91c2-6acf3e0741c5", + "metadata": { + "tags": [] + }, + "source": [ + "### 2.5. Process filtering results\n", + "* 2.5.1. Check which fragments pass all filters applied\n", + "* 2.5.2. Save the values computed by each filtering step" + ] + }, + { + "cell_type": "markdown", + "id": "2db5b757-427b-4a82-a84f-6d071c748ff1", + "metadata": {}, + "source": [ + "#### 2.5.1. Check which fragments pass all filters applied" + ] + }, + { + "cell_type": "markdown", + "id": "5d8015d5-75ea-4040-ab7a-7c4387630e8d", + "metadata": {}, + "source": [ + "Check which fragments pass all filters applied." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "33791673-b26c-4ce3-85d1-ea2f2f69f95a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.687417Z", + "iopub.status.busy": "2024-05-13T08:42:34.687168Z", + "iopub.status.idle": "2024-05-13T08:42:34.721477Z", + "shell.execute_reply": "2024-05-13T08:42:34.720772Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(3505, 27)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library = filters.analysis.number_of_accepted(\n", + " fragment_library, columns=[\n", + " \"bool_pains\",\n", + " \"bool_brenk\",\n", + " \"bool_ro3\",\n", + " \"bool_qed\",\n", + " \"bool_bb\",\n", + " \"bool_syba\",\n", + " ],\n", + " min_accepted=6)\n", + "pd.concat(fragment_library).reset_index(drop=True).shape" + ] + }, + { + "cell_type": "markdown", + "id": "d36e754b-9081-490d-b3d6-02cc81a07142", + "metadata": {}, + "source": [ + "Count number of fragments pre-filtered and accepted by all filters, or not accepted by at least one filter." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7e6740cd-147b-4bc6-8a96-68926dfb50b8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.723687Z", + "iopub.status.busy": "2024-05-13T08:42:34.723487Z", + "iopub.status.idle": "2024-05-13T08:42:34.767396Z", + "shell.execute_reply": "2024-05-13T08:42:34.766808Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_filteredrejected_filtered
AP1201248953
FP1100206894
SE743179564
GA355114241
B1471334
B2591841
Total35057782727
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_filtered rejected_filtered\n", + "AP 1201 248 953\n", + "FP 1100 206 894\n", + "SE 743 179 564\n", + "GA 355 114 241\n", + "B1 47 13 34\n", + "B2 59 18 41\n", + "Total 3505 778 2727" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_filter = pd.concat([filters.analysis.count_fragments(\n", + " fragment_library,\n", + " \"pre_filtered\"),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library,\n", + " \"bool\", \"filtered\")],\n", + " axis=1)\n", + "num_fragments_filter = pd.concat([num_fragments_filter, num_fragments_filter.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_filter\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "a23453ca-f1be-4b5e-931f-02e92cc050b3", + "metadata": {}, + "source": [ + "#### 2.5.2. Save the values computed by each filtering step\n", + "\n", + "Save filtering results for analysis to [/data/filters/fragment_library_custom_filtered/custom_filter_results.csv](https://github.com/sonjaleo/KinFragLib/blob/fragment_pairs/data/fragment_library_custom_filtered/custom_filter_results.csv)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "79c48c15-1328-4b56-b5f4-4e4051d37dd4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.769780Z", + "iopub.status.busy": "2024-05-13T08:42:34.769535Z", + "iopub.status.idle": "2024-05-13T08:42:34.811079Z", + "shell.execute_reply": "2024-05-13T08:42:34.810523Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "columns = [\n", + " \"bool_pains\",\n", + " \"bool_brenk\",\n", + " \"bool_ro3\",\n", + " \"bool_qed\",\n", + " \"qed\",\n", + " \"bool_bb\",\n", + " \"bool_syba\",\n", + " \"syba\",\n", + "]\n", + "filters.retro.save_filter_results(fragment_library, columns, PATH_DATA_CUSTOM)" + ] + }, + { + "cell_type": "markdown", + "id": "a971c87a-b3a9-46dd-90b8-d1bf0cb161ea", + "metadata": {}, + "source": [ + "### 2.6. Remove fragments not passing the previous filtering steps" + ] + }, + { + "cell_type": "markdown", + "id": "54a63bbf-652a-4237-bb9a-8620d61058f2", + "metadata": {}, + "source": [ + "We are removing the fragments not passing the previours filtering steps, namely\n", + "* PAINS filter\n", + "* Brenk filter\n", + "* Rule of Three filter\n", + "* QED filter\n", + "* Building Block filter\n", + "* SYBA filter\n", + "\n", + "to reduce the number of fragments used in building fragment pairs to avoid the combinatorial explosion and enable the use of the pairwise retrosynthesizability." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "bfc64f6d-282f-44b7-80e4-22a219405081", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.813369Z", + "iopub.status.busy": "2024-05-13T08:42:34.813202Z", + "iopub.status.idle": "2024-05-13T08:42:34.841146Z", + "shell.execute_reply": "2024-05-13T08:42:34.840539Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(778, 27)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for subpocket in fragment_library.keys():\n", + " fragment_library[subpocket].drop(\n", + " fragment_library[subpocket].loc[fragment_library[subpocket]['bool'] == 0].index,\n", + " inplace=True,\n", + " )\n", + " fragment_library[subpocket] = fragment_library[subpocket].reset_index(drop=True)\n", + "pd.concat(fragment_library).reset_index(drop=True).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e50df849-7063-40a8-8345-95b40531c7c6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.843478Z", + "iopub.status.busy": "2024-05-13T08:42:34.843229Z", + "iopub.status.idle": "2024-05-13T08:42:34.923611Z", + "shell.execute_reply": "2024-05-13T08:42:34.923004Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybabool
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]11110.5659001130.9509591
1APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11110.5638031128.7544271
2APCNc1ncnc2[nH]ccc12\"Mol\"/\"Mol\"/\"Mol\"/ACKAckTK4ewhT77BAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na ...[26*]c1[nH]c2ncnc(NC[54*])c2c1[37*]11[FP, SE, FP][AP=FP, AP=SE, AP=FP]11110.6339121138.3863711
3APc1cnc2ccnn2c1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3q4tTAKABAP AP AP AP AP AP AP AP AP AP AP AP SE GA16 16 16 16 16 16 16 16 16 16 16 16 na na[33*]c1cnc2c([46*])cnn2c111[SE, GA][AP=SE, AP=GA]11110.5113761139.6228981
4APNc1cc(C2CC2)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3socGVDAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5...[17*]Nc1cc(C2CC2)[nH]n15[SE][AP=SE]11110.5817561118.5248611
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "14689485-43a9-4238-9842-e0cc0e69bc24", + "metadata": { + "tags": [] + }, + "source": [ + "## 3. Apply pairwise retrosynthesizability\n", + "\n", + " 3.1. Get valid fragment pairs\n", + " \n", + " 3.2. Calculate pairwise retrosynthesizability" + ] + }, + { + "cell_type": "markdown", + "id": "42a78877-0e1a-4285-a452-a757be2cdc8a", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.1. Get valid fragment pairs\n", + "First we need to get all valid fragment pairs, meaning fragments which have adjacent subpockets, the same bond type and matching BRICS [(J. Chem. Inf. Model. 2017, 57, 4, 627–631)](https://doi.org/10.1021/acs.jcim.6b00596) environment types." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "03aa03a9-791b-4eb9-93a0-dac1edb2809e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.926023Z", + "iopub.status.busy": "2024-05-13T08:42:34.925815Z", + "iopub.status.idle": "2024-05-13T08:42:34.976008Z", + "shell.execute_reply": "2024-05-13T08:42:34.975400Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mfilters\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_valid_fragment_pairs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfragment_library\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Gets all possible fragment pairs and validates if their bond type, BRICS environment type\n", + "and adjacent subpockets are matching. Then it creates the SMILES string from the combined\n", + "pairs.\n", + "\n", + "Parameters\n", + "----------\n", + "fragment_libray : dict\n", + " fragments organized in subpockets including all information\n", + "\n", + "Returns\n", + "-------\n", + "DataFrame\n", + " SMILES from valid paired fragments.\n", + "\u001b[0;31mFile:\u001b[0m ~/KinFragLib/kinfraglib/filters/retro.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + } + ], + "source": [ + "?filters.retro.get_valid_fragment_pairs" + ] + }, + { + "cell_type": "markdown", + "id": "db9b43d7-dded-4935-9fbe-cdf0cb747f42", + "metadata": {}, + "source": [ + "Note: this function might take a few minutes" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "1117a8b8-b194-4c0f-b351-759de62cb7d5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:42:34.978600Z", + "iopub.status.busy": "2024-05-13T08:42:34.978357Z", + "iopub.status.idle": "2024-05-13T08:45:42.371278Z", + "shell.execute_reply": "2024-05-13T08:45:42.370725Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of fragments: 778\n", + "Number of unique pairs: 46415\n" + ] + } + ], + "source": [ + "valid_fragment_pairs, unique_pairs = filters.retro.get_valid_fragment_pairs(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "3b41ee6c-81e6-43a0-9a02-ed93b2da1b7b", + "metadata": {}, + "source": [ + "Note: valid_fragment_pairs contains also the duplicated pairs like [AP_0, SE_0] and [SE_0, AP_0]" + ] + }, + { + "cell_type": "markdown", + "id": "7047f58c-4888-4afd-ad13-3f7c21e1abab", + "metadata": {}, + "source": [ + "### 3.2. Calculate pairwise retrosynthesizability\n", + "ASKCOS is used to check if for the fragment pairs a retrosynthetic route can be found. We will exclude all fragments without at least one retrosynthetic route found.\n", + "\n", + "For each fragment pair, we will start an ASKCOS query, requesting if ASKCOS can find a one step retrosynthetic route building this fragment pair. For all routes found, we will retrieve the children building the requested fragment pair and also the plausibility of this reaction.\n", + "Afterwards, we will compare the children retrieved from ASKCOS with the fragments building the pair. If the fragments are substructures of the children their `retro_count` is increased by one and the fragments, pair, children and plausibility are stored in the `mol_df` dataframe. If they are no substructures, we will store the information in the `diff_df` dataframe." + ] + }, + { + "cell_type": "markdown", + "id": "fea233ff-ad56-4bcd-97c5-be9e8ae06acf", + "metadata": {}, + "source": [ + "ASKCOS query is started for fragment pairs which were not already requested (already requested fragment pairs can be found in [/data/filters/retrosynthesizability/retro.txt](https://github.com/sonjaleo/KinFragLib/blob/fragment_pairs/data/filters/retrosynthesizability/retro.txt)) and children retrieved from ASKCOS get compared with the fragments building the pairs.\n", + "Depending on the number of new queries and molecule comparisons this could run a long time (a query of 1000 fragment pairs takes about 1h 30min on an 8 core machine).\n", + "\n", + "**Note**: Make sure that ASKCOS is running if the input is changed (using `make start` within the `askcos2_core` directory which is obtained following the [installation](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html))." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b95e14ee-d016-44ed-b2ed-63a0cb01bab7", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:45:42.373926Z", + "iopub.status.busy": "2024-05-13T08:45:42.373738Z", + "iopub.status.idle": "2024-05-13T08:55:41.472077Z", + "shell.execute_reply": "2024-05-13T08:55:41.471496Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ASKCOS query started for 0 fragments.\n", + "ASKCOS query finished.\n", + "Comparing ASKCOS children with fragments..\n", + "Checking if all fragment pairs were requested..\n", + "All fragment pairs were requested.\n", + "Done.\n", + "CPU times: user 12min 9s, sys: 6.03 s, total: 12min 15s\n", + "Wall time: 15min 43s\n" + ] + } + ], + "source": [ + "%%time\n", + "warnings.filterwarnings(\"ignore\")\n", + "fragment_library, mol_df, diff_df = filters.retro.get_pairwise_retrosynthesizability(\n", + " unique_pairs,\n", + " PATH_DATA_RETRO,\n", + " valid_fragment_pairs,\n", + " fragment_library,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "23ffbc33-356a-4d1c-860a-bc372b5454f3", + "metadata": {}, + "source": [ + "Inspect individual subpockets, including the new column if at least one retrosynthetic route was found or not per fragment (`bool_retro`) and number of retrosynthetic routes found (`retro_count`). " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "27ec3820-7d31-491c-953a-a8680a3b5d17", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:41.474240Z", + "iopub.status.busy": "2024-05-13T08:55:41.474054Z", + "iopub.status.idle": "2024-05-13T08:55:41.547650Z", + "shell.execute_reply": "2024-05-13T08:55:41.547091Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybaboolretro_countbool_retro
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]11110.5659001130.95095917041
1APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11110.5638031128.75442711881
2APCNc1ncnc2[nH]ccc12\"Mol\"/\"Mol\"/\"Mol\"/ACKAckTK4ewhT77BAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na ...[26*]c1[nH]c2ncnc(NC[54*])c2c1[37*]11[FP, SE, FP][AP=FP, AP=SE, AP=FP]11110.6339121138.386371121
3APc1cnc2ccnn2c1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3q4tTAKABAP AP AP AP AP AP AP AP AP AP AP AP SE GA16 16 16 16 16 16 16 16 16 16 16 16 na na[33*]c1cnc2c([46*])cnn2c111[SE, GA][AP=SE, AP=GA]11110.5113761139.622898128701
4APNc1cc(C2CC2)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3socGVDAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5...[17*]Nc1cc(C2CC2)[nH]n15[SE][AP=SE]11110.5817561118.52486114541
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3faadcb8-2f14-4682-a483-7ba4deee749b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:41.549961Z", + "iopub.status.busy": "2024-05-13T08:55:41.549742Z", + "iopub.status.idle": "2024-05-13T08:55:41.635909Z", + "shell.execute_reply": "2024-05-13T08:55:41.635421Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fragment idsfragment 1fragment 2pairchild 1child 2plausibility
0[AP_0, FP_0]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999674
1[AP_0, FP_0]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.997180
2[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999986
3[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999856
4[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.997353
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(mol_df.head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "2623b6c3-9471-4e1d-93f9-1488a285cf10", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:41.638223Z", + "iopub.status.busy": "2024-05-13T08:55:41.638026Z", + "iopub.status.idle": "2024-05-13T08:55:41.730118Z", + "shell.execute_reply": "2024-05-13T08:55:41.729592Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fragment idsfragment 1fragment 2pairchild 1child 2plausibility
0[AP_1, FP_170]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.786395
1[AP_3, SE_6]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/1.000000
2[AP_3, SE_11]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999914
3[AP_3, SE_12]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999415
4[AP_3, SE_14]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999660
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(diff_df.head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "0baf9851-65ad-4b9f-b035-2b33d57fd625", + "metadata": { + "tags": [] + }, + "source": [ + "## 4. Analyze accepted/ rejected fragments\n", + "\n", + " 4.1. Count number of accepted/rejected fragments\n", + " \n", + " 4.2. Plot number of retrosynthetic routes found per fragment and subpocket\n", + " \n", + " 4.3. Inspect fragments with no retrosynthetic routes found and with most retrosynthetic routes found\n", + " \n", + " 4.4 Save custom filtered fragment library\n", + " \n", + " 4.4.1. Add results from pairwise retrosynthesizability to the filtering results\n", + " \n", + " 4.4.2. Save fragment_library_custom_filtered to data" + ] + }, + { + "cell_type": "markdown", + "id": "6cab8269-47eb-403e-aef5-504155546de5", + "metadata": {}, + "source": [ + "### 4.1. Count number of accepted/rejected fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "1de5d54c-aab5-4441-9b36-4e3df55ffb4e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:41.733682Z", + "iopub.status.busy": "2024-05-13T08:55:41.733219Z", + "iopub.status.idle": "2024-05-13T08:55:41.771491Z", + "shell.execute_reply": "2024-05-13T08:55:41.770834Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
custom_filteredaccepted_pairwise_retosynthesizabilityrejected_pairwise_retosynthesizability
AP248145103
FP20613967
SE17913841
GA1149222
B11394
B218018
Total778523255
\n", + "
" + ], + "text/plain": [ + " custom_filtered accepted_pairwise_retosynthesizability \\\n", + "AP 248 145 \n", + "FP 206 139 \n", + "SE 179 138 \n", + "GA 114 92 \n", + "B1 13 9 \n", + "B2 18 0 \n", + "Total 778 523 \n", + "\n", + " rejected_pairwise_retosynthesizability \n", + "AP 103 \n", + "FP 67 \n", + "SE 41 \n", + "GA 22 \n", + "B1 4 \n", + "B2 18 \n", + "Total 255 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments_retro = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(\n", + " fragment_library, \"custom_filtered\"\n", + " ),\n", + " filters.analysis.count_accepted_rejected(\n", + " fragment_library, \"bool_retro\", \"pairwise_retosynthesizability\"\n", + " ),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments_retro = pd.concat([num_fragments_retro, num_fragments_retro.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments_retro\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "1eed107d-5000-4519-8811-8d3cd163e243", + "metadata": {}, + "source": [ + "### 4.2. Plot number of retrosynthetic routes found per fragment and subpocket" + ] + }, + { + "cell_type": "markdown", + "id": "fb2f5195", + "metadata": {}, + "source": [ + "**Note:** the following plot only displays subpockets if they comprise at least one fragment after filtering. Here, subpocket B2 has no fragments that were accepted for pairwise retrosynthesizeability, thus B2 is not shown in the following plot." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6a4c85ee-142d-4037-8cd0-42b775d4dd54", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:41.773630Z", + "iopub.status.busy": "2024-05-13T08:55:41.773439Z", + "iopub.status.idle": "2024-05-13T08:55:42.786595Z", + "shell.execute_reply": "2024-05-13T08:55:42.785976Z" + }, + "metadata": {}, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB90AAAYzCAYAAABZYS1RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e5yVZb0//r8WpxGUgydmIBFQAUVCScwA22AKRurHsrSE7TlLMRUPaXgKS0HMCI8UHhB3GR2UskyESnCbmoiyU1Q84SFlpBRBAQFh/f7w5/o2ocaMM8wMPJ+Px/2Idd3XWuu9WD7s5f1e13UXisViMQAAAAAAAABAtTWp7wIAAAAAAAAAoLHSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHAAAAAAAAgBrSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHAAAAAAAAgBrSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHqCNXXXVVCoVCevXq9YHnC4VClaNt27YZNGhQ7rzzzo1cKQAAm5Obb755vSz6/nH22WcnSbp06VJlfKuttso+++yTW265pZ6rBwBgU/fXv/41X/rSl7LjjjumrKws5eXl6devX84666zSnEGDBn1opu3SpUv9FQ9stprVdwEAm6qbbropSTJ//vz89a9/zT777LPenK985Ss566yzsm7dujz//PO55JJLcsghh+R3v/tdDjrooI1dMgAAm5HJkydn1113rTLWsWPH0p8HDBiQK664Ikny97//PVdccUWOOeaYLF++PCeffPJGrRUAgM3DnXfemf/3//5fBg0alMsvvzwdOnTIokWL8vDDD2fq1Kn54Q9/WJq700475Wc/+9l6r1FWVrYxSwZIkhSKxWKxvosA2NQ8/PDD2XvvvXPQQQflzjvvzIknnphJkyZVmVMoFHLKKafkmmuuKY0999xz2WWXXXLAAQdk5syZG7tsAAA2AzfffHOOO+64zJkzJ3379v3AOV26dEmvXr3y+9//vjT25ptvpnPnzmnfvn2eeeaZjVUuAACbkYEDB+aVV17JU089lWbNqq4bXbduXZo0eW8D50GDBuWf//xnHn/88fooE2A9tpcHqAM33nhjkuSyyy5L//79M3Xq1KxYseI/Pm/nnXfO9ttvnxdffLGuSwQAgGpp165devToIasCAFBnXn/99Wy33XbrNdyTlBruAA2Rf0MB1LKVK1fm5z//efbee+/06tUrxx9/fN5666386le/+o/PXbJkSV5//fVsv/32G6FSAAA2Z2vXrs27775b5fgoa9asyYsvviirAgBQZ/r165e//vWvOe200/LXv/41a9as+cj5/55n33333axbt24jVQvw/9F0B6hlv/71r7N06dKccMIJSZKvfvWr2WqrrUqr3/9VsVjMu+++mzVr1uSpp57K8OHDs27dugwfPnxjlw0AwGbmM5/5TJo3b17l+NfG+/tZ9d13380LL7yQE088MYsXL5ZVAQCoM5dddln23XffXH311fnMZz6TLbfcMgMGDMhll12Wt99+u8rc+fPnr5dnmzdvnm984xv1VD2wOXNPd4BaNmjQoDz00ENZtGhR2rZtmyQ5/vjjM3ny5Dz99NPp1q1bkvfu6f7v2rZtm7POOisXXnjhRq0ZAIDNx/v3dL/llluy2267VTn3/j3eu3Tpst428i1btszXv/71XHHFFWnRosVGqxcAgM3Pww8/nD/96U95+OGHM2vWrPzzn/9Mly5dMmfOnGy33XYZNGhQ/v73v2fq1KnrPXf77bdP586d66FqYHO2/k0xAKixZ599Nvfee2++/OUvp1gs5s0330ySfOUrX8nkyZNz0003ZezYsaX5RxxxRL797W+nUCikdevW2XnnndO0adN6qh4AgM3JbrvtVmqyf5B99903P/rRj1IoFNKqVavsvPPOmu0AAGwUffv2LWXVNWvW5Nxzz82PfvSjXH755bn88suTJFtsscVH5lmAjcn28gC16KabbkqxWMyvf/3rbL311qXjoIMOSpJMmTIla9euLc3ffvvt07dv3+y1117p3r27hjsAAA1G27ZtS1l1t91203AHAKBeNG/ePN/97neTJI8//ng9VwPwwax0B6gla9euzZQpU7LzzjvnhhtuWO/873//+/zwhz/MXXfdlYMPPrgeKgQAAAAAaLgWLVqUDh06rDf+5JNPJkk6duy4sUsC2CCa7gC15K677sqrr76acePGZdCgQeud79WrV6655prceOONmu4AAAAAAP/mwAMPzA477JBDDjkku+66a9atW5d58+blhz/8YbbaaqucfvrppbkrV67Mgw8++IGv85nPfGZjlQyQRNMdoNbceOONadGiRY477rgPPL/ddtvlS1/6Un7961/ntdde28jVAQAAAAA0bBdccEF++9vf5kc/+lEWLVqUVatWpUOHDjnggAMyatSo7LbbbqW5zz//fPr16/eBr7NmzZo0a6YFBmw8hWKxWKzvIgAAAAAAAACgMWpS3wUAAAAAAAAAQGOl6Q4AAAAAAAAANaTpDgAAAAAAAAA1pOkOAAAAAAAAADWk6Q4AAAAAAAAANaTpDgAAAAAAAAA11Ky+C2gI1q1bl1dffTWtW7dOoVCo73IAAGpNsVjMW2+9lY4dO6ZJE7+3rG1dunTJiy++uN74iBEjcu2116ZYLObiiy/OpEmTsmTJkuyzzz659tprs/vuu1frfeRVAGBTJa9uGuRVAGBTVJ2squme5NVXX02nTp3quwwAgDrz8ssvZ4cddqjvMjY5c+bMydq1a0uPH3/88QwePDiHH354kuTyyy/P+PHjc/PNN6d79+655JJLMnjw4CxYsCCtW7fe4PeRVwGATZ282rjJqwDApmxDsmqhWCwWN1I9DdbSpUvTrl27vPzyy2nTpk19lwMAUGuWLVuWTp065c0330zbtm3ru5xN3siRI/P73/8+zzzzTJKkY8eOGTlyZM4999wkyapVq1JeXp5x48blm9/85ga/rrwKAGyq5NVNg7wKAGyKqpNVrXRPSlsetWnTRigEADZJtnise6tXr85Pf/rTnHnmmSkUCnn++edTWVmZIUOGlOaUlZVl4MCBuf/++z+y6b5q1aqsWrWq9Pitt95KIq8CAJsuebVxc30VANiUbUhWdaMkAACoBb/5zW/y5ptv5thjj02SVFZWJknKy8urzCsvLy+d+zBjx45N27ZtS4etOgEAAACg4dJ0BwCAWnDjjTdm6NCh6dixY5Xxf/8lbLFY/I+/jh01alSWLl1aOl5++eVarxcAAAAAqB22lwcAgI/pxRdfzB//+MfcfvvtpbGKiook761479ChQ2l88eLF661+/3dlZWUpKyurm2IBAAAAgFql6Q4Am7C1a9dmzZo19V0Gdah58+Zp2rRpfZex2Zs8eXLat2+fgw46qDTWtWvXVFRUZObMmenTp0+S9+77Pnv27IwbN66+SgWABmPdunVZvXp1fZdBHZNXAYDGyrXVzUOLFi3SpMnH3xxe0x0ANkHFYjGVlZV5880367sUNoJ27dqloqLiP25ZTt1Yt25dJk+enGOOOSbNmv1/8bpQKGTkyJEZM2ZMunXrlm7dumXMmDFp1apVhg0bVo8VA0D9W716dRYuXJh169bVdylsBPIqANCYuLa6eWnSpEm6du2aFi1afKzX0XQHgE3Q+6Gwffv2adWqlYtbm6hisZgVK1Zk8eLFSVJlC3M2nj/+8Y956aWXcvzxx6937pxzzsnKlSszYsSILFmyJPvss09mzJiR1q1b10OlANAwFIvFLFq0KE2bNk2nTp1qZVUJDZO8CgA0Rq6tbj7WrVuXV199NYsWLcqOO+74sb5rTXcA2MSsXbu2FAq33Xbb+i6HOtayZcsk790nvH379rburAdDhgxJsVj8wHOFQiGjR4/O6NGjN25RANCAvfvuu1mxYkU6duyYVq1a1Xc51DF5FQBoTFxb3fxsv/32efXVV/Puu++mefPmNX4dPyUGgE3M+/cZcgFz8/H+d+0eUwBAY7B27dok+djbN9J4yKsAQGPh2urm5/3/Lnn/v1NqStMdADZRtj3afPiuAYDGSIbZfPiuAYDGRn7ZfNTWd63pDgAAAAAAAAA1pOkOAAAAAAAAADWk6Q4AUMueffbZtG7dOu3atasyvmjRogwbNiw9evRIkyZNMnLkyPWeO3/+/Hz5y19Oly5dUigUMmHChI1SMwAAm7ZZs2bl0EMPTYcOHbLllltmzz33zM9+9rMqczYkrybJhAkT0qNHj7Rs2TKdOnXKGWeckXfeeWcjfAoAADZVG5JXk2T27NnZa6+9ssUWW2SnnXbKj3/84/XmvPnmmznllFPSoUOHbLHFFtltt93yhz/8oU7r13QHAKhFa9asyZFHHpnPfvaz651btWpVtt9++5x//vnZY489PvD5K1asyE477ZTLLrssFRUVdV0uAACbifvvvz+9e/fObbfdlr/97W85/vjjc/TRR+d3v/tdac6G5NWf/exn+c53vpPvfve7efLJJ3PjjTfmF7/4RUaNGrWxPgoAAJugDcmrCxcuzBe+8IV89rOfzaOPPprzzjsvp512Wm677bbSnNWrV2fw4MF54YUX8utf/zoLFizI9ddfn0984hN1Wr+mOwDQIAwaNCinnnpqRo4cma233jrl5eWZNGlSli9fnuOOOy6tW7fOzjvvnLvuuqvK85544ol84QtfyFZbbZXy8vIcddRR+ec//1k6P3369Oy7775p165dtt122xx88MF57rnnSudfeOGFFAqF3H777dlvv/3SqlWr7LHHHnnggQdq9DkuuOCC7LrrrjniiCPWO9elS5dceeWVOfroo9O2bdsPfP7ee++dH/zgB/na176WsrKyGtUAAEDta+x59bzzzsv3v//99O/fPzvvvHNOO+20fP7zn8+0adNKczYkrz7wwAMZMGBAhg0bli5dumTIkCE58sgj8/DDD1erHgAAatfmkFd//OMfZ8cdd8yECROy22675etf/3qOP/74XHHFFaU5N910U95444385je/yYABA9K5c+fsu+++H/qj0tqi6Q4ANBhTpkzJdtttl4ceeiinnnpqTj755Bx++OHp379/HnnkkRx44IE56qijsmLFiiTvbX85cODA7Lnnnnn44Yczffr0vPbaa1Ua3suXL8+ZZ56ZOXPm5E9/+lOaNGmSL33pS1m3bl2V9z7//PNz9tlnZ968eenevXuOPPLIvPvuu6XzhUIhN99880fW/+c//zm/+tWvcu2119beXwoAAA1GY8+r/27p0qXZZpttqvWcfffdN3Pnzs1DDz2UJHn++efzhz/8IQcddFC1XgcAgNq3qefVBx54IEOGDKky58ADD8zDDz+cNWvWJEnuuOOO9OvXL6ecckrKy8vTq1evjBkzJmvXrq3We1dbkeLSpUuLSYpLly6t71IA4GNbuXJl8YknniiuXLmyvkuploEDBxb33Xff0uN33323uOWWWxaPOuqo0tiiRYuKSYoPPPBAsVgsFi+88MLikCFDqrzOyy+/XExSXLBgwQe+z+LFi4tJio899lixWCwWFy5cWExSvOGGG0pz5s+fX0xSfPLJJ0tjPXr0KN5+++0fWv8///nPYqdOnYqzZ88uFovF4uTJk4tt27b9yM97+umnf+j5YrFY7Ny5c/FHP/rRR84pFj/6O5dzNg2+RwA2JfJq/eTVf/erX/2q2KJFi+Ljjz/+oZ/3w/LqVVddVWzevHmxWbNmxSTFk08++SPfS17d9PkeAdhUNNasWixuHnm1W7duxUsvvbTKvL/85S/FJMVXX3219D5lZWXF448/vvjwww8Xf/7znxe32Wab4sUXX/yB71NbWdVK90bi3nvvzSGHHJKOHTumUCjkN7/5TZXzxWIxo0ePTseOHdOyZcsMGjQo8+fPrzLnm9/8Znbeeee0bNky22+/fQ499NA89dRTG/FTAMBH6927d+nPTZs2zbbbbptPfvKTpbHy8vIkyeLFi5Mkc+fOzT333JOtttqqdOy6665JUtri6LnnnsuwYcOy0047pU2bNunatWuS5KWXXvrQ9+7QoUOV90mSp556Kl/60pc+tPYTTzwxw4YNy3/9139V/4PDJuiVV17Jf//3f2fbbbdNq1atsueee2bu3Lml84VC4QOPH/zgB/VYNQB8tMacV//VrFmzcuyxx+b666/P7rvvvmEf/l+ee+mll+a6667LI488kttvvz2///3v8/3vf79arwP1bezYsSkUChk5cmRp7Pbbb8+BBx6Y7bbbLoVCIfPmzau3+gCgJjaHvFooFKo8LhaLVcbXrVuX9u3bZ9KkSdlrr73yta99Leeff34mTpy4Qe9dU83q9NWpNcuXL88ee+yR4447Ll/+8pfXO3/55Zdn/Pjxufnmm9O9e/dccsklGTx4cBYsWJDWrVsnSfbaa68MHz48O+64Y954442MHj06Q4YMycKFC9O0adON/ZEAYD3Nmzev8rhQKFQZ+9fg9P7/HnLIIRk3btx6r/V+sDvkkEPSqVOnXH/99enYsWPWrVuXXr16ZfXq1R/63v/+Phviz3/+c+64447S/YOKxWLWrVuXZs2aZdKkSTn++OM3+LWgsVuyZEkGDBiQ/fbbL3fddVfat2+f5557Lu3atSvNWbRoUZXn3HXXXTnhhBM+MOsCQEPRmPPq+2bPnp1DDjkk48ePz9FHH13t51944YU56qij8vWvfz1J8slPfjLLly/PN77xjZx//vlp0sQaHxq+OXPmZNKkSVWaA8l712AHDBiQww8/PCeeeGI9VQcANbep59WKiopUVlZWGVu8eHGaNWuWbbfdtlR38+bNq/Q+d9ttt1RWVmb16tVp0aJFtWvaEJrujcTQoUMzdOjQDzxXLBYzYcKEnH/++TnssMOSvHfPhvLy8tx666355je/mST5xje+UXpOly5dcskll2SPPfbICy+8kJ133rnuPwQA1LJPfepTue2229KlS5c0a7Z+rHn99dfz5JNP5ic/+Uk++9nPJknuu+++OqnlgQceqHJfoN/+9rcZN25c7r///nziE5+ok/eEhmrcuHHp1KlTJk+eXBrr0qVLlTkVFRVVHv/2t7/Nfvvtl5122mljlAgAG0VDyqvJeyuGDj744IwbN67KdaLqWLFixXqN9aZNm6ZYLJZWGUFD9vbbb2f48OG5/vrrc8kll1Q5d9RRRyVJXnjhhXqoDAA2vsaWV/v165ff/e53VcZmzJiRvn37lpr+AwYMyK233pp169aVcuvTTz+dDh061FnDPUn89HQTsHDhwlRWVmbIkCGlsbKysgwcODD333//Bz5n+fLlmTx5crp27ZpOnTptrFIBoFadcsopeeONN3LkkUfmoYceyvPPP58ZM2bk+OOPz9q1a7P11ltn2223zaRJk/Lss8/mz3/+c84888wavdeuu+6aadOmfej53XbbLb169Sodn/jEJ9KkSZP06tUrW2+9dWnevHnzMm/evLz99tv5xz/+kXnz5uWJJ54onV+9enVpzurVq/PKK69k3rx5efbZZ2tUN9SHO+64I3379s3hhx+e9u3bp0+fPrn++us/dP5rr72WO++8MyeccMJGrBIA6l5DyquzZs3KQQcdlNNOOy1f/vKXU1lZmcrKyrzxxhtV5v2nvHrIIYdk4sSJmTp1ahYuXJiZM2fmwgsvzP/7f//PToo0CqecckoOOuigHHDAAfVdCgDUu8aWV0866aS8+OKLOfPMM/Pkk0/mpptuyo033pizzz67NOfkk0/O66+/ntNPPz1PP/107rzzzowZMyannHJKjereUJrum4D3t1F4/z4M7ysvL19vi4XrrruudE+G6dOnZ+bMmXX6qw4AqEsdO3bMX/7yl6xduzYHHnhgevXqldNPPz1t27ZNkyZN0qRJk0ydOjVz585Nr169csYZZ9T4ftELFizI0qVLP3bNffr0SZ8+fTJ37tzceuut6dOnT77whS+Uzr/66qulOYsWLcoVV1yRPn36lLbvhMbg+eefz8SJE9OtW7fcfffdOemkk3Laaafllltu+cD5U6ZMSevWrUu7NgHApqIh5dWbb745K1asyNixY9OhQ4fS8e////uf8uoFF1yQs846KxdccEF69uyZE044IQceeGB+8pOf1Khu2JimTp2aRx55JGPHjq3vUgCgQWhsebVr1675wx/+kFmzZmXPPffM97///Vx11VVVblfYqVOnzJgxI3PmzEnv3r1z2mmn5fTTT893vvOdGtW9oQpF+z5l2bJladu2bZYuXZo2bdrUdzn/UaFQyLRp0/LFL34xSXL//fdnwIABefXVV0v3V0iSE088MS+//HKmT59eGlu6dGkWL15cuoj/yiuv5C9/+Uu22GKLjf0xAKgj77zzThYuXJiuXbv69/tm4qO+88aWc/hgje17bNGiRfr27Vtl16XTTjstc+bMyQMPPLDe/F133TWDBw/O1VdfvTHLBKCeyKubH3l109cYvseXX345ffv2zYwZM7LHHnskSQYNGpQ999wzEyZMqDL3hRdeSNeuXfPoo49mzz333PjFAlBvZNXNT21lVSvdNwHv3w/z31e1L168eL3V723btk23bt3yX//1X/n1r3+dp5566iO3cgAAgOrq0KFDevbsWWVst912y0svvbTe3P/93//NggUL7OYAAECdmjt3bhYvXpy99torzZo1S7NmzTJ79uxcddVVadasWdauXVvfJQIAjZim+yaga9euqaioyMyZM0tjq1evzuzZs9O/f/+PfG6xWMyqVavqukQAADYjAwYMyIIFC6qMPf300+ncufN6c2+88cbstddepdVGAABQF/bff/889thjmTdvXuno27dvhg8fnnnz5qVp06b1XSIA0Ig1q+8C2DBvv/12nn322dLjhQsXZt68edlmm22y4447ZuTIkRkzZky6deuWbt26ZcyYMWnVqlWGDRuW5L37av7iF7/IkCFDsv322+eVV17JuHHj0rJlyyr35QIAgI/rjDPOSP/+/TNmzJgcccQReeihhzJp0qRMmjSpyrxly5blV7/6VX74wx/WU6UAAGwuWrdunV69elUZ23LLLbPtttuWxt9444289NJLefXVV5Ok9EPSioqK0m6jAAAfRNO9kXj44Yez3377lR6feeaZSZJjjjkmN998c84555ysXLkyI0aMyJIlS7LPPvtkxowZad26dZJkiy22yP/+7/9mwoQJWbJkScrLy/Nf//Vfuf/++9O+fft6+UwAAGya9t5770ybNi2jRo3K9773vXTt2jUTJkzI8OHDq8ybOnVqisVijjzyyHqqFAAA/j933HFHjjvuuNLjr33ta0mS7373uxk9enQ9VQUANAaFYrFYrO8i6tuyZcvStm3bLF26NG3atKnvcgDgY3nnnXeycOHCdO3aNVtssUV9l8NG8FHfuZyzafA9ArApkVc3P/Lqps/3CMCmQlbd/NRWVnVPdwAAAAAAAACoIdvLb2yFQn1XUHM2RQAA2PTJqwAANFSNKavKpgCwWbHSHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AaLRmzZqVQqGQN998s75LAQCA9cirQF0ZO3ZsCoVCRo4cWRorFosZPXp0OnbsmJYtW2bQoEGZP39+/RUJQIMnr9YeTXcAoNHq379/Fi1alLZt29b6a992223p2bNnysrK0rNnz0ybNq3W3wMAgE2bvArUhTlz5mTSpEnp3bt3lfHLL78848ePzzXXXJM5c+akoqIigwcPzltvvVVPlQLQ0MmrtUfTHQBotFq0aJGKiooUCoVafd0HHnggX/3qV3PUUUfl//7v/3LUUUfliCOOyF//+tdafR8AADZt8ipQ295+++0MHz48119/fbbeeuvSeLFYzIQJE3L++efnsMMOS69evTJlypSsWLEit956az1WDEBDJq/WHk13AKBBGDRoUE499dSMHDkyW2+9dcrLyzNp0qQsX748xx13XFq3bp2dd945d911V+k5/7790c0335x27drl7rvvzm677Zatttoqn//857No0aJq1TJhwoQMHjw4o0aNyq677ppRo0Zl//33z4QJE2rxEwMA0JjIq0BDcMopp+Sggw7KAQccUGV84cKFqayszJAhQ0pjZWVlGThwYO6///6NXSYA9UBerV+a7gBAgzFlypRst912eeihh3Lqqafm5JNPzuGHH57+/fvnkUceyYEHHpijjjoqK1as+NDXWLFiRa644or8z//8T+6999689NJLOfvss0vn3w+SL7zwwoe+xgMPPFDlQkWSHHjggS5UAABs5uRVoD5NnTo1jzzySMaOHbveucrKyiRJeXl5lfHy8vLSOQA2ffJq/dF0BwAajD322CMXXHBBunXrllGjRqVly5bZbrvtcuKJJ6Zbt2656KKL8vrrr+dvf/vbh77GmjVr8uMf/zh9+/bNpz71qXzrW9/Kn/70p9L5Vq1apUePHmnevPmHvkZlZaULFQAArEdeBerLyy+/nNNPPz0//elPs8UWW3zovH/fHrhYLNb6lsEANFzyav1pVt8FAAC8r3fv3qU/N23aNNtuu20++clPlsbeD2qLFy/+0Ndo1apVdt5559LjDh06VJn/6U9/Ok899dR/rMWFCgAA/p28CtSXuXPnZvHixdlrr71KY2vXrs29996ba665JgsWLEjyXpOjQ4cOpTmLFy9er+kBwKZLXq0/VroDAA3Gv/86slAoVBl7P5StW7euWq9RLBarVUdFRcV6v7p0oQIAAHkVqC/7779/HnvsscybN6909O3bN8OHD8+8efOy0047paKiIjNnziw9Z/Xq1Zk9e3b69+9fj5UDsDHJq/VH0x0A4N/069evyoWKJJkxY4YLFQAANAjyKjU1duzYFAqFjBw5sjRWLBYzevTodOzYMS1btsygQYMyf/78+iuSD9S6dev06tWryrHllltm2223Ta9evUrf65gxYzJt2rQ8/vjjOfbYY9OqVasMGzasvssHYDOzOeZVTXcAYLPy0EMPZdddd80rr7zyoXNOP/30zJgxI+PGjctTTz2VcePG5Y9//GOVC1MAAFAX5FXqypw5czJp0qQq284myeWXX57x48fnmmuuyZw5c1JRUZHBgwfnrbfeqqdKqalzzjknI0eOzIgRI9K3b9+88sormTFjRlq3bl3fpQGwCZFXP5imOwCwWVmxYkUWLFiQNWvWfOic/v37Z+rUqZk8eXJ69+6dm2++Ob/4xS+yzz77bMRKAQDYHMmr1IW33347w4cPz/XXX5+tt966NF4sFjNhwoScf/75Oeyww9KrV69MmTIlK1asyK233lqPFbMhZs2alQkTJpQeFwqFjB49OosWLco777yT2bNnp1evXvVXIACbJHn1gxWK1d2Evxbde++9+cEPfpC5c+dm0aJFmTZtWr74xS+WzheLxVx88cWZNGlSlixZkn322SfXXnttdt9999KcVatW5eyzz87Pf/7zrFy5Mvvvv3+uu+667LDDDhtcx7Jly9K2bdssXbo0bdq0qc2PuL7//70SGqX6+0cFgGp45513snDhwnTt2jVbbLFFfZfDRvBR3/lGzTnUGXl1A8mrAI2CvLr5kVfr3zHHHJNtttkmP/rRjzJo0KDsueeemTBhQp5//vnsvPPOeeSRR9KnT5/S/EMPPTTt2rXLlClTPvD1Vq1alVWrVpUeL1u2LJ06dar777ExZVXZFKBRklU3P7WVVZvVZZH/yfLly7PHHnvkuOOOy5e//OX1zr+/tdHNN9+c7t2755JLLsngwYOzYMGC0pY4I0eOzO9+97tMnTo12267bc4666wcfPDBmTt3bpo2bbqxPxIAAAAAQIMxderUPPLII5kzZ8565yorK5Mk5eXlVcbLy8vz4osvfuhrjh07NhdffHHtFroZ6PKdO+u7hA32wmUH1XcJANCo1GvTfejQoRk6dOgHnvv3rY2SZMqUKSkvL8+tt96ab37zm1m6dGluvPHG/M///E8OOOCAJMlPf/rTdOrUKX/84x9z4IEHbrTPAgAAAADQkLz88sule6p+1Gq9wr+tIC8Wi+uN/atRo0blzDPPLD1+f6U7AMDmqsHe033hwoWprKzMkCFDSmNlZWUZOHBg7r///iTJ3Llzs2bNmipzOnbsmF69epXmfJBVq1Zl2bJlVQ4AAAAAgE3J3Llzs3jx4uy1115p1qxZmjVrltmzZ+eqq65Ks2bNSivc31/x/r7Fixevt/r9X5WVlaVNmzZVDgCAzVmDbbp/1NZG75+rrKxMixYtsvXWW3/onA8yduzYtG3btnT4FSYAAAAAsKnZf//989hjj2XevHmlo2/fvhk+fHjmzZuXnXbaKRUVFZk5c2bpOatXr87s2bPTv3//eqwcAKBxqdft5TdEdbc22pA5tj8CAAAAADZ1rVu3Tq9evaqMbbnlltl2221L4yNHjsyYMWPSrVu3dOvWLWPGjEmrVq0ybNiw+igZAKBRarBN94qKiiTvrWbv0KFDafxftzaqqKjI6tWrs2TJkiqr3RcvXvyRv8QsKytLWVlZHVUOAAAAANA4nHPOOVm5cmVGjBiRJUuWZJ999smMGTPSunXr+i4NAKDRaLDby3ft2vU/bm201157pXnz5lXmLFq0KI8//rjtjwAAAAAA/s2sWbMyYcKE0uNCoZDRo0dn0aJFeeeddzJ79uz1VscDAPDR6nWl+9tvv51nn3229HjhwoWZN29ettlmm+y4447/cWujtm3b5oQTTshZZ52VbbfdNttss03OPvvsfPKTn8wBBxxQXx8LAAAAAAAAgM1EvTbdH3744ey3336lx+/fZ/2YY47JzTffvEFbG/3oRz9Ks2bNcsQRR2TlypXZf//9c/PNN6dp06Yb/fMAAAAAAAAAsHmp16b7oEGDUiwWP/T8+1sbjR49+kPnbLHFFrn66qtz9dVX10GFAAAAAAAAAPDhGuw93QEAGqJnn302rVu3Trt27aqML1q0KMOGDUuPHj3SpEmTjBw58gOff9ttt6Vnz54pKytLz549M23atPXmXHfddenatWu22GKL7LXXXvnf//3fOvgkAABsSn75y19mzz33TKtWrdK5c+f84Ac/WG/OqlWrcv7556dz584pKyvLzjvvnJtuuqnKnA3JqwAAUB2jR49OoVBY79hyyy2rzNuQvPrmm2/mlFNOSYcOHbLFFltkt912yx/+8IeN+XE+UL2udAcAaEzWrFmTI488Mp/97Gdz//33Vzm3atWqbL/99jn//PPzox/96AOf/8ADD+SrX/1qvv/97+dLX/pSpk2bliOOOCL33Xdf9tlnnyTJL37xi4wcOTLXXXddBgwYkJ/85CcZOnRonnjiiey44451/hkBAGh87rrrrgwfPjxXX311hgwZkieffDJf//rX07Jly3zrW98qzTviiCPy2muv5cYbb8wuu+ySxYsX59133y2d35C8CgAA1XX22WfnpJNOqjK2//77Z++9964y9p/y6urVqzN48OC0b98+v/71r7PDDjvk5ZdfrnJr8vpipTsA0CAMGjQop556akaOHJmtt9465eXlmTRpUpYvX57jjjsurVu3zs4775y77rqr9Jy1a9fmhBNOSNeuXdOyZcv06NEjV155Zen8O++8k9133z3f+MY3SmMLFy5M27Ztc/3111e7xgsuuCC77rprjjjiiPXOdenSJVdeeWWOPvrotG3b9gOfP2HChAwePDijRo3KrrvumlGjRmX//ffPhAkTSnPGjx+fE044IV//+tez2267ZcKECenUqVMmTpxY7XoBAKg9DTmv/s///E+++MUv5qSTTspOO+2Ugw46KOeee27GjRtXurXj9OnTM3v27PzhD3/IAQcckC5duuTTn/50+vfvX3qdDcmrAAA0TA05r2611VapqKgoHa+99lqeeOKJnHDCCaU5G5JXb7rpprzxxhv5zW9+kwEDBqRz587Zd999s8cee9T0r63WaLoDAA3GlClTst122+Whhx7KqaeempNPPjmHH354+vfvn0ceeSQHHnhgjjrqqKxYsSJJsm7duuywww755S9/mSeeeCIXXXRRzjvvvPzyl79MkmyxxRb52c9+lilTpuQ3v/lN1q5dm6OOOir77bdfTjzxxNL7FgqF3HzzzR9Z25///Of86le/yrXXXlvjz/fAAw9kyJAhVcYOPPDA0qr51atXZ+7cuevNGTJkyHor6wEA2Pgaal5dtWpVtthiiypjLVu2zN///ve8+OKLSZI77rgjffv2zeWXX55PfOIT6d69e84+++ysXLmy9Jz/lFcBAGjYGmpe/Xc33HBDunfvns9+9rOlsQ3Jq3fccUf69euXU045JeXl5enVq1fGjBmTtWvXfsy/uY9P0x0AaDD22GOPXHDBBenWrVtGjRqVli1bZrvttsuJJ56Ybt265aKLLsrrr7+ev/3tb0mS5s2b5+KLL87ee++drl27Zvjw4Tn22GNLoTBJ9txzz1xyySU58cQTc8YZZ+S5557LDTfcUOV9e/To8aGr05Pk9ddfz7HHHpubb745bdq0qfHnq6ysTHl5eZWx8vLyVFZWJkn++c9/Zu3atR85BwCA+tNQ8+qBBx6Y22+/PX/605+ybt26PP3006XV6YsWLUqSPP/887nvvvvy+OOPZ9q0aZkwYUJ+/etf55RTTim9zn/KqwAANGwNNa/+q1WrVuVnP/tZlVXuyYbl1eeffz6//vWvs3bt2vzhD3/IBRdckB/+8Ie59NJLa/pXVmvc0x0AaDB69+5d+nPTpk2z7bbb5pOf/GRp7P0LgIsXLy6N/fjHP84NN9yQF198MStXrszq1auz5557Vnnds846K7/97W9z9dVX56677sp2221X5fxTTz31kXWdeOKJGTZsWP7rv/6rph+tpFAoVHlcLBbXG9uQOQAAbHwNOa8+99xzOfjgg7NmzZq0adMmp59+ekaPHp2mTZsmeW8VU6FQyM9+9rPSBdHx48fnK1/5Sq699tq0bNkyiSwKANCYNdS8+q9uv/32vPXWWzn66KOrjG9IXl23bl3at2+fSZMmpWnTptlrr73y6quv5gc/+EEuuuiiDa6hLljpDgA0GM2bN6/yuFAoVBl7/2LfunXrkiS//OUvc8YZZ+T444/PjBkzMm/evBx33HFZvXp1lddZvHhxFixYkKZNm+aZZ56pdl1//vOfc8UVV6RZs2Zp1qxZTjjhhCxdujTNmjXLTTfdtMGvU1FRsd4qocWLF5fC7nbbbZemTZt+5BwAAOpPQ82rhUIh48aNy9tvv50XX3wxlZWV+fSnP50k6dKlS5KkQ4cO+cQnPlFlBdJuu+2WYrGYv//970n+c14FAKBha6h59V/dcMMNOfjgg1NRUVFlfEPyaocOHdK9e/fSD0vfn1NZWblezRubpjsA0Gj97//+b/r3758RI0akT58+2WWXXfLcc8+tN+/4449Pr169csstt+Scc87JE088Ua33eeCBBzJv3rzS8b3vfS+tW7fOvHnz8qUvfWmDX6dfv36ZOXNmlbEZM2akf//+SZIWLVpkr732Wm/OzJkzS3MAAGg8NlZefV/Tpk3ziU98Ii1atMjPf/7z9OvXL+3bt0+SDBgwIK+++mrefvvt0vynn346TZo0yQ477JDkP+dVAAA2LRs7ry5cuDD33HPPelvLJxuWVwcMGJBnn3229KOB9+d06NAhLVq0qFFNtUXTHQBotHbZZZc8/PDDufvuu/P000/nwgsvzJw5c6rMufbaa/PAAw/klltuybBhw/KVr3wlw4cPr/LLx1133TXTpk370PfZbbfd0qtXr9LxiU98Ik2aNEmvXr2y9dZbl+a935R/++23849//CPz5s2rEkBPP/30zJgxI+PGjctTTz2VcePG5Y9//GNGjhxZmnPmmWfmhhtuyE033ZQnn3wyZ5xxRl566aWcdNJJtfA3BgDAxrSx8uo///nP/PjHP85TTz2VefPm5fTTT8+vfvWr0n3dk2TYsGHZdtttc9xxx+WJJ57Ivffem29/+9s5/vjjS1vLb0heBQBg07Gx8ur7brrppnTo0CFDhw5d79yG5NWTTz45r7/+ek4//fQ8/fTTufPOOzNmzJgq932vL5ruAECjddJJJ+Wwww7LV7/61eyzzz55/fXXM2LEiNL5p556Kt/+9rdz3XXXpVOnTkneC4lvvvlmLrzwwtK8BQsWZOnSpR+7nj59+qRPnz6ZO3dubr311vTp0ydf+MIXSuf79++fqVOnZvLkyendu3duvvnm/OIXv8g+++xTmvPVr341EyZMyPe+973sueeeuffee/OHP/whnTt3/tj1AQCwcW3MvDplypT07ds3AwYMyPz58zNr1qzSFvNJstVWW2XmzJl5880307dv3wwfPjyHHHJIrrrqqtKcDcmrAABsOjZmXl23bl1uvvnmHHvssVW2h3/fhuTVTp06ZcaMGZkzZ0569+6d0047Laeffnq+853vfNy/io+tUCwWi/VdRH1btmxZ2rZtm6VLl6ZNmzZ1+2b//3slNEr+UQFoFN55550sXLgwXbt2zRZbbFHf5bARfNR3vlFzDnVGXt1A8ipAoyCvbn7k1U3fRvseG1NW/YBs2uU7d9ZDITXzwmUH1XcJAPVCVt381FZWtdIdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0ANlHFYrG+S2Aj8V0DAI2RDLP58F0DAI2N/LL5qK3vWtMdADYxzZs3T5KsWLGinithY3n/u37/uwcAaMiaNm2aJFm9enU9V8LGIq8CAI2Fa6ubn/f/u+T9/06pqWa1UQwA0HA0bdo07dq1y+LFi5MkrVq1SqFQqOeqqAvFYjErVqzI4sWL065du48dDAEANoZmzZqlVatW+cc//pHmzZunSRNrQjZV8ioA0Ni4trp5WbduXf7xj3+kVatWadbs47XNNd0BYBNUUVGRJKVwyKatXbt2pe8cAKChKxQK6dChQxYuXJgXX3yxvsthI5BXAYDGxLXVzUuTJk2y4447fuwfV2i6A8Am6P0Lme3bt8+aNWvquxzqUPPmza0YAgAanRYtWqRbt262mN8MyKsAQGPj2urmpUWLFrWy+5amOwBswpo2beoCFwAADVKTJk2yxRZb1HcZAADwgVxbpTrcNAsAAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAD6GV155Jf/93/+dbbfdNq1atcqee+6ZuXPnls4Xi8WMHj06HTt2TMuWLTNo0KDMnz+/HisGAAAAAGqTpjsAANTQkiVLMmDAgDRv3jx33XVXnnjiifzwhz9Mu3btSnMuv/zyjB8/Ptdcc03mzJmTioqKDB48OG+99Vb9FQ4AAAAA1Jpm9V0AAAA0VuPGjUunTp0yefLk0liXLl1Kfy4Wi5kwYULOP//8HHbYYUmSKVOmpLy8PLfeemu++c1vbuySAQAAAIBaZqU7AADU0B133JG+ffvm8MMPT/v27dOnT59cf/31pfMLFy5MZWVlhgwZUhorKyvLwIEDc//999dHyQAAAABALdN0BwCAGnr++eczceLEdOvWLXfffXdOOumknHbaabnllluSJJWVlUmS8vLyKs8rLy8vnfsgq1atyrJly6ocAAAAAEDDZHt5AACooXXr1qVv374ZM2ZMkqRPnz6ZP39+Jk6cmKOPPro0r1AoVHlesVhcb+xfjR07NhdffHHdFA0AAAAA1Cor3QEAoIY6dOiQnj17Vhnbbbfd8tJLLyVJKioqkmS9Ve2LFy9eb/X7vxo1alSWLl1aOl5++eVarhwAAAAAqC2a7gAAUEMDBgzIggULqow9/fTT6dy5c5Kka9euqaioyMyZM0vnV69endmzZ6d///4f+rplZWVp06ZNlQMAAAAAaJhsLw8AADV0xhlnpH///hkzZkyOOOKIPPTQQ5k0aVImTZqU5L1t5UeOHJkxY8akW7du6datW8aMGZNWrVpl2LBh9Vw9AAAAAFAbNN0BAKCG9t5770ybNi2jRo3K9773vXTt2jUTJkzI8OHDS3POOeecrFy5MiNGjMiSJUuyzz77ZMaMGWndunU9Vg4AAAAA1BZNdwAA+BgOPvjgHHzwwR96vlAoZPTo0Rk9evTGKwoAAAAA2Gjc0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAABgEzRx4sT07t07bdq0SZs2bdKvX7/cddddpfPHHntsCoVCleMzn/lMPVYMANA4NavvAgAAAAAAqH077LBDLrvssuyyyy5JkilTpuTQQw/No48+mt133z1J8vnPfz6TJ08uPadFixb1UisAQGOm6Q4AAAAAsAk65JBDqjy+9NJLM3HixDz44IOlpntZWVkqKirqozwAgE2G7eUBAAAAADZxa9euzdSpU7N8+fL069evND5r1qy0b98+3bt3z4knnpjFixf/x9datWpVli1bVuUAANicaboDAAAAAGyiHnvssWy11VYpKyvLSSedlGnTpqVnz55JkqFDh+ZnP/tZ/vznP+eHP/xh5syZk8997nNZtWrVR77m2LFj07Zt29LRqVOnjfFRAAAaLNvLAwAAAABsonr06JF58+blzTffzG233ZZjjjkms2fPTs+ePfPVr361NK9Xr17p27dvOnfunDvvvDOHHXbYh77mqFGjcuaZZ5YeL1u2TOMdANisaboDAAAAAGyiWrRokV122SVJ0rdv38yZMydXXnllfvKTn6w3t0OHDuncuXOeeeaZj3zNsrKylJWV1Um9AACNke3lAQAAAAA2E8Vi8UO3j3/99dfz8ssvp0OHDhu5KgCAxs1KdwAAAACATdB5552XoUOHplOnTnnrrbcyderUzJo1K9OnT8/bb7+d0aNH58tf/nI6dOiQF154Ieedd1622267fOlLX6rv0gEAGhVNdwAAAACATdBrr72Wo446KosWLUrbtm3Tu3fvTJ8+PYMHD87KlSvz2GOP5ZZbbsmbb76ZDh06ZL/99ssvfvGLtG7dur5LBwBoVDTdAQAAAAA2QTfeeOOHnmvZsmXuvvvujVgNAMCmyz3dAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGGnTT/d13380FF1yQrl27pmXLltlpp53yve99L+vWrSvNKRaLGT16dDp27JiWLVtm0KBBmT9/fj1WDQAAAAAAAMDmokE33ceNG5cf//jHueaaa/Lkk0/m8ssvzw9+8INcffXVpTmXX355xo8fn2uuuSZz5sxJRUVFBg8enLfeeqseKwcAAAAAAABgc9Cgm+4PPPBADj300Bx00EHp0qVLvvKVr2TIkCF5+OGHk7y3yn3ChAk5//zzc9hhh6VXr16ZMmVKVqxYkVtvvbWeqwcAAAAAAABgU9egm+777rtv/vSnP+Xpp59Okvzf//1f7rvvvnzhC19IkixcuDCVlZUZMmRI6TllZWUZOHBg7r///g993VWrVmXZsmVVDgAAAAAAAACorgbddD/33HNz5JFHZtddd03z5s3Tp0+fjBw5MkceeWSSpLKyMklSXl5e5Xnl5eWlcx9k7Nixadu2beno1KlT3X0IAAAAAADYjE2cODG9e/dOmzZt0qZNm/Tr1y933XVX6fztt9+eAw88MNttt10KhULmzZtXf8UCQA006Kb7L37xi/z0pz/NrbfemkceeSRTpkzJFVdckSlTplSZVygUqjwuFovrjf2rUaNGZenSpaXj5ZdfrpP6AQAAAABgc7fDDjvksssuy8MPP5yHH344n/vc53LooYdm/vz5SZLly5dnwIABueyyy+q5UgComWb1XcBH+fa3v53vfOc7+drXvpYk+eQnP5kXX3wxY8eOzTHHHJOKiook761479ChQ+l5ixcvXm/1+78qKytLWVlZ3RYPAAAAAADkkEMOqfL40ksvzcSJE/Pggw9m9913z1FHHZUkeeGFF+qhOgD4+Br0SvcVK1akSZOqJTZt2jTr1q1LknTt2jUVFRWZOXNm6fzq1asze/bs9O/ff6PWCgAAAAAAfLS1a9dm6tSpWb58efr161ff5QBArWjQK90POeSQXHrppdlxxx2z++6759FHH8348eNz/PHHJ3lvW/mRI0dmzJgx6datW7p165YxY8akVatWGTZsWD1XDwAAAAAAJMljjz2Wfv365Z133slWW22VadOmpWfPnvVdFgDUigbddL/66qtz4YUXZsSIEVm8eHE6duyYb37zm7noootKc84555ysXLkyI0aMyJIlS7LPPvtkxowZad26dT1WDgAAAAAAvK9Hjx6ZN29e3nzzzdx222055phjMnv2bI13ADYJDbrp3rp160yYMCETJkz40DmFQiGjR4/O6NGjN1pdAAAAAADAhmvRokV22WWXJEnfvn0zZ86cXHnllfnJT35Sz5UBwMfXoO/pDgAAAAAAbHqKxWJWrVpV32UAQK1o0CvdAQAAAACAxu28887L0KFD06lTp7z11luZOnVqZs2alenTpydJ3njjjbz00kt59dVXkyQLFixIklRUVKSioqLe6gaADWWlOwAAAAAAUGdee+21HHXUUenRo0f233///PWvf8306dMzePDgJMkdd9yRPn365KCDDkqSfO1rX0ufPn3y4x//uD7LBoANZqU7AAAAAABQZ2688caPPH/sscfm2GOP3TjFAEAdsNIdAAAAAAAAAGpI0x0AAAAAAAAAasj28gAAAAAAwEfq8p0767uEDfLCZQfVdwkAbIasdAcAAAAAAACAGtJ0BwCAGho9enQKhUKVo6KionS+WCxm9OjR6dixY1q2bJlBgwZl/vz59VgxAAAAAFDbNN0BAOBj2H333bNo0aLS8dhjj5XOXX755Rk/fnyuueaazJkzJxUVFRk8eHDeeuuteqwYAAAAAKhNmu4AAPAxNGvWLBUVFaVj++23T/LeKvcJEybk/PPPz2GHHZZevXplypQpWbFiRW699dZ6rhoAAAAAqC2a7gAA8DE888wz6dixY7p27Zqvfe1ref7555MkCxcuTGVlZYYMGVKaW1ZWloEDB+b+++//yNdctWpVli1bVuUAAAAAABomTXcAAKihffbZJ7fcckvuvvvuXH/99amsrEz//v3z+uuvp7KyMklSXl5e5Tnl5eWlcx9m7Nixadu2beno1KlTnX0GAAAAAODj0XQHAIAaGjp0aL785S/nk5/8ZA444IDceeedSZIpU6aU5hQKhSrPKRaL6439u1GjRmXp0qWl4+WXX6794gEAAACAWqHpDgAAtWTLLbfMJz/5yTzzzDOpqKhIkvVWtS9evHi91e//rqysLG3atKlyAAAAAAANk6Y7AADUklWrVuXJJ59Mhw4d0rVr11RUVGTmzJml86tXr87s2bPTv3//eqwSAAAAAKhNzeq7AAAAaKzOPvvsHHLIIdlxxx2zePHiXHLJJVm2bFmOOeaYFAqFjBw5MmPGjEm3bt3SrVu3jBkzJq1atcqwYcPqu3QAAAAAoJZY6Q4AADX097//PUceeWR69OiRww47LC1atMiDDz6Yzp07J0nOOeecjBw5MiNGjEjfvn3zyiuvZMaMGWndunU9Vw4AwOZg4sSJ6d27d+mWRf369ctdd91VOl8sFjN69Oh07NgxLVu2zKBBgzJ//vx6rBgAoHGy0h0AAGpo6tSpH3m+UChk9OjRGT169MYpCAAA/sUOO+yQyy67LLvsskuSZMqUKTn00EPz6KOPZvfdd8/ll1+e8ePH5+abb0737t1zySWXZPDgwVmwYIEfigIAVIOV7gAAAAAAm6BDDjkkX/jCF9K9e/d07949l156abbaaqs8+OCDKRaLmTBhQs4///wcdthh6dWrV6ZMmZIVK1bk1ltvre/SAQAaFU13AAAAAIBN3Nq1azN16tQsX748/fr1y8KFC1NZWZkhQ4aU5pSVlWXgwIG5//77P/K1Vq1alWXLllU5AAA2Z5ruAAAAAACbqMceeyxbbbVVysrKctJJJ2XatGnp2bNnKisrkyTl5eVV5peXl5fOfZixY8embdu2paNTp051Vj8AQGOg6Q4AAAAAsInq0aNH5s2blwcffDAnn3xyjjnmmDzxxBOl84VCocr8YrG43ti/GzVqVJYuXVo6Xn755TqpHQCgsWhW3wUAAAAAAFA3WrRokV122SVJ0rdv38yZMydXXnllzj333CRJZWVlOnToUJq/ePHi9Va//7uysrKUlZXVXdEAAI2Mle4AAAAAAJuJYrGYVatWpWvXrqmoqMjMmTNL51avXp3Zs2enf//+9VghAEDjY6U7AAAAAMAm6LzzzsvQoUPTqVOnvPXWW5k6dWpmzZqV6dOnp1AoZOTIkRkzZky6deuWbt26ZcyYMWnVqlWGDRtW36UDADQqmu4AAAAAAJug1157LUcddVQWLVqUtm3bpnfv3pk+fXoGDx6cJDnnnHOycuXKjBgxIkuWLMk+++yTGTNmpHXr1vVcOQBA46LpDgAAAACwCbrxxhs/8nyhUMjo0aMzevTojVMQAMAmyj3dAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN1pMF555ZX893//d7bddtu0atUqe+65Z+bOnVs6//bbb+db3/pWdthhh7Rs2TK77bZbJk6cWI8VAwAAAAAAAJu7ZvVdACTJkiVLMmDAgOy3336566670r59+zz33HNp165dac4ZZ5yRe+65Jz/96U/TpUuXzJgxIyNGjEjHjh1z6KGH1l/xAAAAAAAAwGZL050GYdy4cenUqVMmT55cGuvSpUuVOQ888ECOOeaYDBo0KEnyjW98Iz/5yU/y8MMPa7oDAAAAAAAA9cL28jQId9xxR/r27ZvDDz887du3T58+fXL99ddXmbPvvvvmjjvuyCuvvJJisZh77rknTz/9dA488MB6qhoAAAAAAADY3Gm60yA8//zzmThxYrp165a77747J510Uk477bTccsstpTlXXXVVevbsmR122CEtWrTI5z//+Vx33XXZd99967FyAAAAAAAAYHNme3kahHXr1qVv374ZM2ZMkqRPnz6ZP39+Jk6cmKOPPjrJe033Bx98MHfccUc6d+6ce++9NyNGjEiHDh1ywAEH1Gf5AAAAAAAAwGZK050GoUOHDunZs2eVsd122y233XZbkmTlypU577zzMm3atBx00EFJkt69e2fevHm54oorNN0BAAAAAACAemF7eRqEAQMGZMGCBVXGnn766XTu3DlJsmbNmqxZsyZNmlT9R7Zp06ZZt27dRqsTAAAAAAAA4F9Z6U6DcMYZZ6R///4ZM2ZMjjjiiDz00EOZNGlSJk2alCRp06ZNBg4cmG9/+9tp2bJlOnfunNmzZ+eWW27J+PHj67l6AAAAAAAAYHOl6U6DsPfee2fatGkZNWpUvve976Vr166ZMGFChg8fXpozderUjBo1KsOHD88bb7yRzp0759JLL81JJ51Uj5UDAAAAAAAAmzNNdxqMgw8+OAcffPCHnq+oqMjkyZM3YkUAAAAAAAAAH8093QEAAAAAAACghjTdAQAAAAAAAKCGbC/Px9LlO3fWdwk19sJlB9V3CQAAAAAAAEAjZ6U7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1FC1m+5TpkzJnXfeWXp8zjnnpF27dunfv39efPHFWi0OAADqgkwLAEBDJq8CADQu1W66jxkzJi1btkySPPDAA7nmmmty+eWXZ7vttssZZ5xR6wUCAEBtk2kBAGjI5FUAgMalWXWf8PLLL2eXXXZJkvzmN7/JV77ylXzjG9/IgAEDMmjQoNquDwAAap1MCwBAQyavAgA0LtVe6b7VVlvl9ddfT5LMmDEjBxxwQJJkiy22yMqVK2u3OgAAqAMyLQAADZm8CgDQuFR7pfvgwYPz9a9/PX369MnTTz+dgw46KEkyf/78dOnSpbbrAwCAWifTAgDQkMmrAACNS7VXul977bXp169f/vGPf+S2227LtttumySZO3dujjzyyFovEAAAaptMCwBAQyavAgA0LtVe6b5s2bJcddVVadKkar9+9OjRefnll2utMAAAqCsyLQAADZm8CgDQuFR7pXvXrl3zz3/+c73xN954I127dq2VogAAoC7JtAAANGTyKgBA41LtpnuxWPzA8bfffjtbbLHFxy4IAADqmkwLAEBDJq8CADQuG7y9/JlnnpkkKRQKueiii9KqVavSubVr1+avf/1r9txzz1ovEAAAaotMCwBAQyavAgA0ThvcdH/00UeTvPcry8ceeywtWrQonWvRokX22GOPnH322bVfIQAA1BKZFgCAhkxeBQBonDa46X7PPfckSY477rhceeWVadOmTZ0VBQAAdUGmBQCgIZNXAQAapw1uur9v8uTJdVEHAABsNDItAAANmbwKANC4VLvpvnz58lx22WX505/+lMWLF2fdunVVzj///PO1VhwAANQFmRYAgIZMXgUAaFyq3XT/+te/ntmzZ+eoo45Khw4dUigU6qIuAACoMzItAAANmbwKANC4VLvpftddd+XOO+/MgAED6qIeAACoczItAAANWW3l1bFjx+b222/PU089lZYtW6Z///4ZN25cevToUZpz7LHHZsqUKVWet88+++TBBx/8WO8NALA5aVLdJ2y99dbZZptt6qIWAADYKGRaAAAastrKq7Nnz84pp5ySBx98MDNnzsy7776bIUOGZPny5VXmff7zn8+iRYtKxx/+8IeP/d4AAJuTajfdv//97+eiiy7KihUr6qIeAACoczItAAANWW3l1enTp+fYY4/N7rvvnj322COTJ0/OSy+9lLlz51aZV1ZWloqKitLhB6oAANVT7e3lf/jDH+a5555LeXl5unTpkubNm1c5/8gjj9RacQAAUBdkWgAAGrK6yqtLly5NkvWa6rNmzUr79u3Trl27DBw4MJdeemnat2//oa+zatWqrFq1qvR42bJlNaoHAGBTUe2m+xe/+MU6KAMAADYemRYAgIasLvJqsVjMmWeemX333Te9evUqjQ8dOjSHH354OnfunIULF+bCCy/M5z73ucydOzdlZWUf+Fpjx47NxRdfXOs1AgA0VtVuun/3u9+tizoAAGCjkWkBAGjI6iKvfutb38rf/va33HfffVXGv/rVr5b+3KtXr/Tt2zedO3fOnXfemcMOO+wDX2vUqFE588wzS4+XLVuWTp061XrNAACNRbXv6Z4kb775Zm644YaMGjUqb7zxRpL3tjR65ZVXarU4AACoKzItAAANWW3m1VNPPTV33HFH7rnnnuywww4fObdDhw7p3LlznnnmmQ+dU1ZWljZt2lQ5AAA2Z9Ve6f63v/0tBxxwQNq2bZsXXnghJ554YrbZZptMmzYtL774Ym655Za6qBMAAGqNTAsAQENWW3m1WCzm1FNPzbRp0zJr1qx07dr1Pz7n9ddfz8svv5wOHTp83I8BALDZqPZK9zPPPDPHHntsnnnmmWyxxRal8aFDh+bee++t1eIAAKAu1FWmHTt2bAqFQkaOHFkaKxaLGT16dDp27JiWLVtm0KBBmT9//scpHwCATVxt5dVTTjklP/3pT3PrrbemdevWqaysTGVlZVauXJkkefvtt3P22WfngQceyAsvvJBZs2blkEMOyXbbbZcvfelLtf65AAA2VdVuus+ZMyff/OY31xv/xCc+kcrKylopCgAA6lJdZNo5c+Zk0qRJ6d27d5Xxyy+/POPHj88111yTOXPmpKKiIoMHD85bb71Vo/ehfkycODG9e/cubZ/ar1+/3HXXXaXzr732Wo499th07NgxrVq1yuc///mP3JIVAOCj1FZenThxYpYuXZpBgwalQ4cOpeMXv/hFkqRp06Z57LHHcuihh6Z79+455phj0r179zzwwANp3bp1rX0eAIBNXbW3l99iiy2ybNmy9cYXLFiQ7bffvlaKAgCAulTbmfbtt9/O8OHDc/311+eSSy4pjReLxUyYMCHnn39+DjvssCTJlClTUl5enltvvfUDL6TSMO2www657LLLsssuuyR573s89NBD8+ijj6Znz5754he/mObNm+e3v/1t2rRpk/Hjx+eAAw7IE088kS233LKeqwcAGpvayqvFYvEjz7ds2TJ33313tesDAKCqaq90P/TQQ/O9730va9asSZIUCoW89NJL+c53vpMvf/nLtV4gAADUttrOtKecckoOOuigHHDAAVXGFy5cmMrKygwZMqQ0VlZWloEDB+b+++//0NdbtWpVli1bVuWgfh1yyCH5whe+kO7du6d79+659NJLs9VWW+XBBx/MM888kwcffDATJ07M3nvvnR49euS6667L22+/nZ///Of1XToA0Ai5BgsA0LhUu+l+xRVX5B//+Efat2+flStXZuDAgdlll13SunXrXHrppXVRIwAA1KrazLRTp07NI488krFjx6537v2tP8vLy6uMl5eXf+S2oGPHjk3btm1LR6dOnapVE3Vr7dq1mTp1apYvX55+/fpl1apVSVLlfqtNmzZNixYtct9999VXmQBAI+YaLABA41Lt7eXbtGmT++67L3/+85/zyCOPZN26dfnUpz613qoeAABoqGor07788ss5/fTTM2PGjCoN139XKBSqPC4Wi+uN/atRo0blzDPPLD1etmyZxnsD8Nhjj6Vfv3555513stVWW2XatGnp2bNn1qxZk86dO2fUqFH5yU9+ki233DLjx49PZWVlFi1aVN9lAwCNkGuwAACNS7Wb7u/73Oc+l8997nO1WQsAAGxUHzfTzp07N4sXL85ee+1VGlu7dm3uvffeXHPNNVmwYEGS91a8d+jQoTRn8eLF661+/1dlZWUpKyurcV3UjR49emTevHl58803c9ttt+WYY47J7Nmz07Nnz9x222054YQTss0226Rp06Y54IADMnTo0PouGQBo5FyDBQBoHGrUdH/ooYcya9asLF68OOvWratybvz48bVSGAAA1KXayLT7779/HnvssSpjxx13XHbdddece+652WmnnVJRUZGZM2emT58+SZLVq1dn9uzZGTduXO18EDaaFi1aZJdddkmS9O3bN3PmzMmVV16Zn/zkJ9lrr70yb968LF26NKtXr87222+fffbZJ3379q3nqgGAxso1WACAxqPaTfcxY8bkggsuSI8ePVJeXl5lW8yP2iITAAAaitrKtK1bt06vXr2qjG255ZbZdtttS+MjR47MmDFj0q1bt3Tr1i1jxoxJq1atMmzYsNr5MNSbYrFYup/7+9q2bZskeeaZZ/Lwww/n+9//fn2UBgA0cq7BAgA0LtVuul955ZW56aabcuyxx9ZBOet75ZVXcu655+auu+7KypUr071799x4442lLTyLxWIuvvjiTJo0KUuWLMk+++yTa6+9NrvvvvtGqQ8AgMZnY2bac845JytXrsyIESNKeXXGjBlp3bp1nb83tee8887L0KFD06lTp7z11luZOnVqZs2alenTpydJfvWrX2X77bfPjjvumMceeyynn356vvjFL2bIkCH1XDkA0Bht7GuwAAB8PNVuujdp0iQDBgyoi1rWs2TJkgwYMCD77bdf7rrrrrRv3z7PPfdc2rVrV5pz+eWXZ/z48bn55pvTvXv3XHLJJRk8eHAWLFjgQiYAAB+oLjPtrFmzqjwuFAoZPXp0Ro8eXSfvx8bx2muv5aijjsqiRYvStm3b9O7dO9OnT8/gwYOTJIsWLcqZZ56Z1157LR06dMjRRx+dCy+8sJ6rBgAaq415DRYAgI+v2k33M844I9dee20mTJhQB+VUNW7cuHTq1CmTJ08ujXXp0qX052KxmAkTJuT888/PYYcdliSZMmVKysvLc+utt+ab3/xmndcIAEDjszEzLZuGG2+88SPPn3baaTnttNM2UjUAwKZOXgUAaFyq3XQ/++yzc9BBB2XnnXdOz54907x58yrnb7/99lor7o477siBBx6Yww8/PLNnz84nPvGJjBgxIieeeGKSZOHChamsrKyyZWNZWVkGDhyY+++//0Ob7qtWrapy78Vly5bVWs0AADR8GzPTAgBAdcmrAACNS5PqPuHUU0/NPffck+7du2fbbbdN27Ztqxy16fnnn8/EiRPTrVu33H333TnppJNy2mmn5ZZbbkmSVFZWJknKy8urPK+8vLx07oOMHTu2Ss2dOnWq1boBAGjYNmamBQCA6pJXAQAal2qvdL/lllty22235aCDDqqLeqpYt25d+vbtmzFjxiRJ+vTpk/nz52fixIk5+uijS/MKhUKV5xWLxfXG/tWoUaNy5plnlh4vW7ZM4x0AYDOyMTMt9avLd+6s7xJq7IXL/PMJAJsreRUAoHGp9kr3bbbZJjvvvHNd1LKeDh06pGfPnlXGdtttt7z00ktJkoqKiiRZb1X74sWL11v9/q/KysrSpk2bKgcAAJuPjZlpAQCguuRVAIDGpdpN99GjR+e73/1uVqxYURf1VDFgwIAsWLCgytjTTz+dzp07J0m6du2aioqKzJw5s3R+9erVmT17dvr371/n9QEA0DhtzEwLAADVJa8CADQu1d5e/qqrrspzzz2X8vLydOnSJc2bN69y/pFHHqm14s4444z0798/Y8aMyRFHHJGHHnookyZNyqRJk5K8t638yJEjM2bMmHTr1i3dunXLmDFj0qpVqwwbNqzW6gAAYNOyMTMtAABUl7wKANC4VLvp/sUvfrEOyvhge++9d6ZNm5ZRo0ble9/7Xrp27ZoJEyZk+PDhpTnnnHNOVq5cmREjRmTJkiXZZ599MmPGjLRu3Xqj1QkAQOOyMTMtAABUl7wKANC4VLvp/t3vfrcu6vhQBx98cA4++OAPPV8oFDJ69OiMHj164xUFAECjtrEzLQAAVIe8CgDQuFT7nu4AAAAAAAAAwHuqvdJ96623TqFQWG+8UChkiy22yC677JJjjz02xx13XK0UCAAAtU2mBQCgIZNXAQAal2o33S+66KJceumlGTp0aD796U+nWCxmzpw5mT59ek455ZQsXLgwJ598ct59992ceOKJdVEzAAB8LDItAAANmbwKANC4VLvpft999+WSSy7JSSedVGX8Jz/5SWbMmJHbbrstvXv3zlVXXSXwAQDQIMm0AAA0ZPIqAEDjUu17ut9999054IAD1hvff//9c/fddydJvvCFL+T555//+NUBAEAdkGkBAGjI5FUAgMal2k33bbbZJr/73e/WG//d736XbbbZJkmyfPnytG7d+uNXBwAAdUCmBQCgIZNXAQAal2pvL3/hhRfm5JNPzj333JNPf/rTKRQKeeihh/KHP/whP/7xj5MkM2fOzMCBA2u9WAAAqA0yLQAADZm8CgDQuFS76X7iiSemZ8+eueaaa3L77benWCxm1113zezZs9O/f/8kyVlnnVXrhQIAQG2RaQEAaMjkVQCAxqXaTfckGTBgQAYMGFDbtQAAwEYj0wIA0JDJqwAAjUeNmu7vW7lyZdasWVNlrE2bNh+rIAAA2JhkWgAAGjJ5FQCg4WtS3SesWLEi3/rWt9K+fftstdVW2XrrrascAADQ0Mm0AAA0ZPIqAEDjUu2m+7e//e38+c9/znXXXZeysrLccMMNufjii9OxY8fccsstdVEjAADUKpkWAICGTF4FAGhcqr29/O9+97vccsstGTRoUI4//vh89rOfzS677JLOnTvnZz/7WYYPH14XdQIAQK2RaQEAaMjkVQCAxqXaK93feOONdO3aNcl79w564403kiT77rtv7r333tqtDgAA6oBMCwBAQyavAgA0LtVuuu+000554YUXkiQ9e/bML3/5yyTv/fqyXbt2tVkbAADUCZkWAICGTF4FAGhcqt10P+644/J///d/SZJRo0aV7it0xhln5Nvf/natFwgAALVNpgUAoCGTVwEAGpdq39P9jDPOKP15v/32y1NPPZWHH344O++8c/bYY49aLQ4AAOqCTAsAQEMmrwIANC7VWum+Zs2a7Lfffnn66adLYzvuuGMOO+wwYQ8AgEZBpgUAoCGTVwEAGp9qNd2bN2+exx9/PIVCoa7qAQCAOiXTAgDQkMmrAACNT7Xv6X700UfnxhtvrItaAABgo5BpAQBoyORVAIDGpdr3dF+9enVuuOGGzJw5M3379s2WW25Z5fz48eNrrTgAAKgLMi0AAA2ZvAoA0LhUu+n++OOP51Of+lSSVLmvUBJbHgEA0CjItAAANGTyKgBA47JBTfe//e1v6dWrV5o0aZJ77rmnrmsCAIBaJ9MCANCQyasAAI3XBt3TvU+fPvnnP/+ZJNlpp53y+uuv12lRAABQ22RaAAAaMnkVAKDx2qCme7t27bJw4cIkyQsvvJB169bVaVEAAFDbZFoAABoyeRUAoPHaoO3lv/zlL2fgwIHp0KFDCoVC+vbtm6ZNm37g3Oeff75WCwQAgNog0wIA0JDJqwAAjdcGNd0nTZqUww47LM8++2xOO+20nHjiiWndunVd1wYAALVGpgUAoCGTVwEAGq8Naronyec///kkydy5c3P66acLfAAANDoyLQAADZm8CgDQOG1w0/19kydPros6AABgo5FpAQBoyORVAIDGpUl9FwAAAAAAAAAAjZWmOwAAAAAAAADUkKY7AAAAAAAAANTQBjXdP/WpT2XJkiVJku9973tZsWJFnRYFAAC1TaYFAKAhk1cBABqvDWq6P/nkk1m+fHmS5OKLL87bb79dp0UBAEBtk2kBAGjI5FUAgMar2YZM2nPPPXPcccdl3333TbFYzBVXXJGtttrqA+dedNFFtVogAADUBpkWAICGTF4FAGi8NqjpfvPNN+e73/1ufv/736dQKOSuu+5Ks2brP7VQKAh8AAA0SDItAAANmbwKANB4bVDTvUePHpk6dWqSpEmTJvnTn/6U9u3b12lhAABQm2RaAAAaMnkVAKDx2qCm+79at25dXdQBAAAbjUwLAEBDJq8CADQu1W66J8lzzz2XCRMm5Mknn0yhUMhuu+2W008/PTvvvHNt1wcAAHVCpgUAoCGTVwEAGo8m1X3C3XffnZ49e+ahhx5K796906tXr/z1r3/N7rvvnpkzZ9ZFjQAAUKtkWgAAGjJ5FQCgcan2SvfvfOc7OeOMM3LZZZetN37uuedm8ODBtVYcAADUBZkWAICGTF4FAGhcqr3S/cknn8wJJ5yw3vjxxx+fJ554olaKAgCAuiTTAgDQkMmrAACNS7Wb7ttvv33mzZu33vi8efPSvn372qgJAADqlEwLAEBDJq8CADQu1d5e/sQTT8w3vvGNPP/88+nfv38KhULuu+++jBs3LmeddVZd1AgAALVKpgUAoCGTVwEAGpdqN90vvPDCtG7dOj/84Q8zatSoJEnHjh0zevTonHbaabVeIAAA1DaZFgCAhkxeBQBoXKrddC8UCjnjjDNyxhln5K233kqStG7dutYLAwCAuiLTAgDQkMmrAACNS7Wb7v9K0AMAoLGTaQEAaMjkVQCAhq9JfRcAAAAAAAAAAI2VpjsAAAAAwCZo7Nix2XvvvdO6deu0b98+X/ziF7NgwYIqc4rFYkaPHp2OHTumZcuWGTRoUObPn19PFQMANE6a7gAAAAAAm6DZs2fnlFNOyYMPPpiZM2fm3XffzZAhQ7J8+fLSnMsvvzzjx4/PNddckzlz5qSioiKDBw8u3UseAID/rFpN9zVr1mS//fbL008/XVf1AABAnZJpAQBoyGozr06fPj3HHntsdt999+yxxx6ZPHlyXnrppcydOzfJe6vcJ0yYkPPPPz+HHXZYevXqlSlTpmTFihW59dZbP/b7AwBsLqrVdG/evHkef/zxFAqFuqoHAADqlEwLAEBDVpd5denSpUmSbbbZJkmycOHCVFZWZsiQIaU5ZWVlGThwYO6///5af38AgE1VtbeXP/roo3PjjTfWRS0AALBRyLQAADRkdZFXi8VizjzzzOy7777p1atXkqSysjJJUl5eXmVueXl56dwHWbVqVZYtW1blAADYnDWr7hNWr16dG264ITNnzkzfvn2z5ZZbVjk/fvz4WisOAADqgkwLAEBDVhd59Vvf+lb+9re/5b777lvv3L+vqi8Wix+50n7s2LG5+OKLq10DAMCmqtpN98cffzyf+tSnkmS9+wrZohMAgMZApgUAoCGr7bx66qmn5o477si9996bHXbYoTReUVGR5L0V7x06dCiNL168eL3V7/9q1KhROfPMM0uPly1blk6dOlW7LgCATUW1m+733HNPXdQBAAAbjUwLAEBDVlt5tVgs5tRTT820adMya9asdO3atcr5rl27pqKiIjNnzkyfPn2SvLfKfvbs2Rk3btyHvm5ZWVnKyspqpUYAgE1Bte/p/r5nn302d999d1auXJnkvQAHAACNiUwLAEBD9nHz6imnnJKf/vSnufXWW9O6detUVlamsrKy9HqFQiEjR47MmDFjMm3atDz++OM59thj06pVqwwbNqzWPw8AwKaq2k33119/Pfvvv3+6d++eL3zhC1m0aFGS5Otf/3rOOuusWi8QAABqm0wLAEBDVlt5deLEiVm6dGkGDRqUDh06lI5f/OIXpTnnnHNORo4cmREjRqRv37555ZVXMmPGjLRu3brWPxcAwKaq2k33M844I82bN89LL72UVq1alca/+tWvZvr06bVaHAAA1AWZFgCAhqy28mqxWPzA49hjjy3NKRQKGT16dBYtWpR33nkns2fPTq9evWrz4wAAbPKqfU/3GTNm5O67784OO+xQZbxbt2558cUXa60wAACoKzItAAANmbwKANC4VHul+/Lly6v8uvJ9//znP1NWVlYrRQEAQF2SaQEAaMjkVQCAxqXaTff/+q//yi233FJ6XCgUsm7duvzgBz/IfvvtV6vFAQBAXZBpAQBoyORVAIDGpdrby//gBz/IoEGD8vDDD2f16tU555xzMn/+/Lzxxhv5y1/+Uhc1AgBArZJpAQBoyORVAIDGpdor3Xv27Jm//e1v+fSnP53Bgwdn+fLlOeyww/Loo49m5513rosaAQCgVsm0AAA0ZPIqAEDjUu2V7klSUVGRiy++uLZrAQCAjUamBQCgIZNXAQAajxo13ZcsWZIbb7wxTz75ZAqFQnbbbbccd9xx2WabbWq7PgAAqBMyLQAADZm8CgDQeFR7e/nZs2ena9euueqqq7JkyZK88cYbueqqq9K1a9fMnj27LmoEAIBaJdMCANCQyasAAI1LtVe6n3LKKTniiCMyceLENG3aNEmydu3ajBgxIqecckoef/zxWi8SAABqk0wLAEBDJq8CADQu1V7p/txzz+Wss84qhb0kadq0ac4888w899xztVocAADUBZkWAICGTF4FAGhcqt10/9SnPpUnn3xyvfEnn3wye+65Z23UBAAAdUqmBQCgIZNXAQAalw3aXv5vf/tb6c+nnXZaTj/99Dz77LP5zGc+kyR58MEHc+211+ayyy6rmyoBAOBjkmkBAGjI5FUAgMarUCwWi/9pUpMmTVIoFPKfphYKhaxdu7bWittYli1blrZt22bp0qVp06ZN3b5ZoVC3r1+XPuD77/KdO+uhkNrxwmUH1XcJAFDnNmrOaeAac6aVVzeQvAoAjY68+v+RVzdAY8qqjTybflAWbSz1y9EA1JbqZJwNWum+cOHCWikMAADqi0wLAEBDJq8CADReG9R079y5c13XAQAAdUqmBQCgIZNXAQAarw1quv+7V155JX/5y1+yePHirFu3rsq50047rVYKAwCAulQbmXbixImZOHFiXnjhhSTJ7rvvnosuuihDhw5NkhSLxVx88cWZNGlSlixZkn322SfXXnttdt9991r9LAAAbHpcgwUAaDyq3XSfPHlyTjrppLRo0SLbbrttCv9yH51CoSDwAQDQ4NVWpt1hhx1y2WWXZZdddkmSTJkyJYceemgeffTR7L777rn88sszfvz43HzzzenevXsuueSSDB48OAsWLEjr1q3r5LMBAND4uQYLANC4VLvpftFFF+Wiiy7KqFGj0qRJk7qoCQAA6lRtZdpDDjmkyuNLL700EydOzIMPPpiePXtmwoQJOf/883PYYYclea8pX15enltvvTXf/OY3P9ZnAABg0+UaLABA41LtxLZixYp87WtfE/YAAGi06iLTrl27NlOnTs3y5cvTr1+/LFy4MJWVlRkyZEhpTllZWQYOHJj777//I19r1apVWbZsWZUDAIDNh2uwAACNS7VT2wknnJBf/epXdVELAABsFLWZaR977LFstdVWKSsry0knnZRp06alZ8+eqaysTJKUl5dXmV9eXl4692HGjh2btm3blo5OnTrVSq0AADQOrsECADQu1d5efuzYsTn44IMzffr0fPKTn0zz5s2rnB8/fnytFQcAAHWhNjNtjx49Mm/evLz55pu57bbbcswxx2T27Nml8/96/80kKRaL6439u1GjRuXMM88sPV62bJnGOwDAZsQ1WACAxqXaTfcxY8bk7rvvTo8ePZJUvYj4ny4eAgBAQ1CbmbZFixbZZZddkiR9+/bNnDlzcuWVV+bcc89NklRWVqZDhw6l+YsXL15v9fu/KysrS1lZWbXqAABg0+EaLABA41Ltpvv48eNz00035dhjj62DcgAAoO7VZaYtFotZtWpVunbtmoqKisycOTN9+vRJkqxevTqzZ8/OuHHjav19AQDYdLgGCwDQuFS76V5WVpYBAwbURS0AALBR1FamPe+88zJ06NB06tQpb731VqZOnZpZs2Zl+vTpKRQKGTlyZMaMGZNu3bqlW7duGTNmTFq1apVhw4bVwqcAAGBT5RosAEDj0qS6Tzj99NNz9dVX10UtAACwUdRWpn3ttddy1FFHpUePHtl///3z17/+NdOnT8/gwYOTJOecc05GjhyZESNGpG/fvnnllVcyY8aMtG7d+mO/NwAAmy7XYAEAGpdqr3R/6KGH8uc//zm///3vs/vuu6d58+ZVzt9+++21VhwAANSF2sq0N95440eeLxQKGT16dEaPHl3TUgEA2Ay5BgsA0LhUu+nerl27HHbYYXVRCwAAbBQyLQAADZm8CgDQuFS76T558uS6qAMAADYamRYAgIZMXgUAaFyqfU93AAAAAAAAAOA91V7p3rVr1xQKhQ89//zzz3+sggAAoK7JtAAANGTyKgBA41LtpvvIkSOrPF6zZk0effTRTJ8+Pd/+9rdrqy4AAKgzMi0AAA2ZvAoA0LhUu+l++umnf+D4tddem4cffvhjFwQAAHVNpgUAoCGTVwEAGpdau6f70KFDc9ttt9XWywEAwEYn0wIA0JDJqwAADVOtNd1//etfZ5tttqmtlwMAgI1OpgUAoCGTVwEAGqZqby/fp0+fFAqF0uNisZjKysr84x//yHXXXVerxQEAQF2QaQEAaMjkVQCAxqXaTfcvfvGLVR43adIk22+/fQYNGpRdd921tuoCAIA6I9MCANCQyasAAI1LtZvu3/3ud+uiDgAA2GhkWgAAGjJ5FQCgcam1e7oDAAAAAAAAwOZmg1e6N2nSpMp9hD5IoVDIu++++7GLAgCAuiDTAgDQkMmrAACN0wY33adNm/ah5+6///5cffXVKRaLtVIUAADUBZkWAICGTF4FAGicNrjpfuihh6439tRTT2XUqFH53e9+l+HDh+f73/9+rRYHAAC1SaYFAKAhk1cBABqnGt3T/dVXX82JJ56Y3r1759133828efMyZcqU7LjjjrVdHwAA1AmZFgCAhkxeBQBoPKrVdF+6dGnOPffc7LLLLpk/f37+9Kc/5Xe/+1169epVV/UBAECtkmkBAGjI5FUAgMZng7eXv/zyyzNu3LhUVFTk5z//+QdudQQAAA2ZTAsAQEMmrwIANE4b3HT/zne+k5YtW2aXXXbJlClTMmXKlA+cd/vtt9dacQAAUJtkWgAAGjJ5FQCgcdrgpvvRRx+dQqFQl7UA8P9j787joiz3/4+/B1QExQ1kc0E095XUzC1xw5BMS22xTCtL0xbU9GSeihaX6mRWnOxYSnbK9NdxybIUK9dMUwxzXxJxxX0DFVSu3x8d5ytHMEDlnnt4PR+P+5H3fQ32vmZk5jPzmeu+AQA3FTUtAAAAXBn1KgAAgD3luen+6aef3sQYAAAAwM1HTQsAAABXRr0KAABgTx5WBwAAAAAAAAAAAAAAwK5ougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFBBNdwAAAAAAAAAAAAAACshWTfdx48bJ4XAoJibGecwYo9jYWIWEhMjb21sRERHatGmTdSEBAAAAAAAAAAAAAEWGbZrua9as0eTJk9WoUaNsx9966y1NmDBBcXFxWrNmjYKCgtS5c2edOXPGoqQAAAAAgMI0btw4NW/eXL6+vgoICFCPHj20bdu2bLfp37+/HA5Htu3222+3KDEAAAAAAHAntmi6p6Wl6aGHHtLHH3+s8uXLO48bYzRx4kSNHj1a9957rxo0aKBp06bp7Nmzmj59uoWJAQAAAACFZenSpRoyZIhWrVqlRYsW6eLFi4qMjFR6enq229155506ePCgc/vuu+8sSgwAAAAAANxJMasD5MWQIUMUHR2tTp066Y033nAeT05OVmpqqiIjI53HvLy81K5dO61cuVIDBw7M8e/LyMhQRkaGc//06dM3LzwAAAAA4KZasGBBtv34+HgFBAQoMTFRd9xxh/O4l5eXgoKCCjseAAAAAABwcy6/0n3GjBlat26dxo0bd9VYamqqJCkwMDDb8cDAQOdYTsaNG6eyZcs6typVqtzY0AAAAAAAy5w6dUqSVKFChWzHlyxZooCAANWqVUtPPPGEDh8+bEU8AAAAAADgZly66b53714999xz+vzzz1WyZMlcb+dwOLLtG2OuOnalUaNG6dSpU85t7969NywzAAAAAMA6xhgNGzZMbdq0UYMGDZzHo6Ki9MUXX+inn37SO++8ozVr1qhDhw7ZzoIGAAAAAABQEC59evnExEQdPnxYTZs2dR67dOmSli1bpri4OG3btk3Snyveg4ODnbc5fPjwVavfr+Tl5SUvL6+bFxwAAAAAYImnn35av//+u1asWJHt+P333+/8c4MGDdSsWTOFhoZq/vz5uvfeews7JgAAAAAAcCMuvdK9Y8eO2rBhg5KSkpxbs2bN9NBDDykpKUnVq1dXUFCQFi1a5PyZzMxMLV26VK1atbIwOQAAAACgsD3zzDOaN2+eFi9erMqVK1/ztsHBwQoNDdWOHTsKKR0AAAAAAHBXLr3S3dfXN9vpACWpVKlS8vPzcx6PiYnR2LFjVbNmTdWsWVNjx46Vj4+P+vTpY0VkAAAAAEAhM8bomWee0Zw5c7RkyRKFhYX95c8cO3ZMe/fuzXbWNAAAAAAAgIJw6aZ7XowcOVLnzp3T4MGDdeLECbVo0UIJCQny9fW1OhoAAAAAoBAMGTJE06dP19dffy1fX1+lpqZKksqWLStvb2+lpaUpNjZWPXv2VHBwsHbv3q0XX3xR/v7+uueeeyxODwAAAAAA7M6lTy+fkyVLlmjixInOfYfDodjYWB08eFDnz5/X0qVLr1odDwAAAAD4P+PGjVPz5s3l6+urgIAA9ejRQ9u2bcv19gMHDpTD4cj2XsyVTJo0SadOnVJERISCg4Od28yZMyVJnp6e2rBhg7p3765atWqpX79+qlWrln755Re+sA0AAAAAAK6b7Ve6AwAAAADyZ+nSpRoyZIiaN2+uixcvavTo0YqMjNTmzZtVqlSpbLedO3euVq9erZCQEIvS/jVjzDXHvb29tXDhwkJKAwAAAAAAihqa7gAAAABQxCxYsCDbfnx8vAICApSYmKg77rjDeXz//v16+umntXDhQkVHRxd2TAAAAAAAAFug6Q4AAAAARdypU6ckSRUqVHAey8rKUt++fTVixAjVr1//pv2/q70w/6b93Tfb7vF8EQEAAAAAANjwmu4AAAAAgBvHGKNhw4apTZs2atCggfP4m2++qWLFiunZZ5+1MB0AALhey5YtU7du3RQSEiKHw6G5c+dmG+/fv78cDke27fbbb7cmLAAAgE2x0h0AAAAAirCnn35av//+u1asWOE8lpiYqPfee0/r1q2Tw+GwMB0AALhe6enpaty4sR599FH17Nkzx9vceeedio+Pd+6XKFGisOIBAAC4BZruAAAAAFBEPfPMM5o3b56WLVumypUrO48vX75chw8fVtWqVZ3HLl26pOHDh2vixInavXu3BWkBAEBBREVFKSoq6pq38fLyUlBQUCElAgAAcD803QEAAACgiDHG6JlnntGcOXO0ZMkShYWFZRvv27evOnXqlO1Yly5d1LdvXz366KOFGRUAABSCJUuWKCAgQOXKlVO7du00ZswYBQQE5Hr7jIwMZWRkOPdPnz5dGDEBAABcFk13AAAAAChihgwZounTp+vrr7+Wr6+vUlNTJUlly5aVt7e3/Pz85Ofnl+1nihcvrqCgINWuXduKyAAA4CaJiopS7969FRoaquTkZL300kvq0KGDEhMT5eXllePPjBs3Tq+++mohJwUAAHBdHlYHAAAAAAAUrkmTJunUqVOKiIhQcHCwc5s5c6bV0QAAQCG7//77FR0drQYNGqhbt276/vvvtX37ds2fPz/Xnxk1apROnTrl3Pbu3VuIiQEAAFwPK90BAAAAoIgxxuT7Z7iOOwAARUNwcLBCQ0O1Y8eOXG/j5eWV6yp4AACAooiV7gAAAAAAAAAASdKxY8e0d+9eBQcHWx0FAGChZcuWqVu3bgoJCZHD4dDcuXNzve3AgQPlcDg0ceLEQssHuBqa7gAAAAAAAADgptLS0pSUlKSkpCRJUnJyspKSkrRnzx6lpaXp+eef1y+//KLdu3dryZIl6tatm/z9/XXPPfdYGxwAYKn09HQ1btxYcXFx17zd3LlztXr1aoWEhBRSMsA1cXp5AAAAALCJai/kfm1VV7d7fLTVEQAAKJLWrl2r9u3bO/eHDRsmSerXr58mTZqkDRs26LPPPtPJkycVHBys9u3ba+bMmfL19bUqMgDABURFRSkqKuqat9m/f7+efvppLVy4UNHRvOdD0UbTHQAAAAAAAADcVEREhIwxuY4vXLiwENMAANxFVlaW+vbtqxEjRqh+/fpWxwEsx+nlAQAAAAAAAAAAAOTZm2++qWLFiunZZ5+1OgrgEljpDgAAAAAAAAAAACBPEhMT9d5772ndunVyOBxWxwFcAivdAQAAAAAAAAAAAOTJ8uXLdfjwYVWtWlXFihVTsWLFlJKSouHDh6tatWpWxwMswUp3AAAAAAAAAAAAAHnSt29fderUKduxLl26qG/fvnr00UctSgVYi6Y7AAAAAAAAAAAAAKe0tDTt3LnTuZ+cnKykpCRVqFBBVatWlZ+fX7bbFy9eXEFBQapdu3ZhRwVcAk13AAAAAAAAAAAAAE5r165V+/btnfvDhg2TJPXr10+ffvqpRakA10XTHQAAAAAAAAAAAIBTRESEjDF5vv3u3btvXhjABjysDgAAAAAAAAAAAAAAgF2x0h0AAAAAAAAAAABwI9VemG91hDzbPT7a6gjAdWOlOwAAAAAAAAAAAAAABUTTHQAAAAAAAAAAAACAAqLpDgAAAAAAAAAAAMBtLFu2TN26dVNISIgcDofmzp2bbTw2NlZ16tRRqVKlVL58eXXq1EmrV6+2JizcAk13AAAAAAAAAAAAAG4jPT1djRs3VlxcXI7jtWrVUlxcnDZs2KAVK1aoWrVqioyM1JEjRwo5KdxFMasDAAAAAAAAAAAAAMCNEhUVpaioqFzH+/Tpk21/woQJmjJlin7//Xd17NjxZseDG2KlOwAAAAAAAAAAAIAiKTMzU5MnT1bZsmXVuHFjq+PApljpDgAAAAAAAAAAAKBI+fbbb/XAAw/o7NmzCg4O1qJFi+Tv7291LNgUK90BAAAAAAAAAAAAFCnt27dXUlKSVq5cqTvvvFP33XefDh8+bHUs2BRNdwAAAAAAAAAAAABFSqlSpXTLLbfo9ttv15QpU1SsWDFNmTLF6liwKZruAAAAAAAAAAAAAIo0Y4wyMjKsjgGb4pruAAAAAAAAAAAAANxGWlqadu7c6dxPTk5WUlKSKlSoID8/P40ZM0Z33323goODdezYMX344Yfat2+fevfubWFq2BlNdwAAAAAAAAAAAABuY+3atWrfvr1zf9iwYZKkfv366aOPPtLWrVs1bdo0HT16VH5+fmrevLmWL1+u+vXrWxUZNkfTHQAAAAAAAAAAAIDbiIiIkDEm1/HZs2cXYhoUBVzTHQAAAAAAAAAAAACAAmKlOwAAAAAAAAAAAACXUe2F+VZHyJPd46OtjgAXwUp3AAAAAAAAAAAAAAAKiKY7AAAAAAAAAAAAAAAFRNMdAAAAAAAAAAAAAIACoukOIE8mTZqkRo0aqUyZMipTpoxatmyp77//3jlujFFsbKxCQkLk7e2tiIgIbdq0ycLEAAAAAAAAAAAAwM1H0x1AnlSuXFnjx4/X2rVrtXbtWnXo0EHdu3d3NtbfeustTZgwQXFxcVqzZo2CgoLUuXNnnTlzxuLkAAAAAAAAAAAAwM1D0x1AnnTr1k1du3ZVrVq1VKtWLY0ZM0alS5fWqlWrZIzRxIkTNXr0aN17771q0KCBpk2bprNnz2r69OlWRwcAAAAAAAAAAABuGpruAPLt0qVLmjFjhtLT09WyZUslJycrNTVVkZGRztt4eXmpXbt2WrlypYVJAQAAAAAAAAAAgJuLpjuAPNuwYYNKly4tLy8vDRo0SHPmzFG9evWUmpoqSQoMDMx2+8DAQOcYAADuaNy4cWrevLl8fX0VEBCgHj16aNu2bdluY4xRbGysQkJC5O3trYiICOflWQAAAAAAAADYH013AHlWu3ZtJSUladWqVXrqqafUr18/bd682TnucDiy3d4Yc9UxAADcydKlSzVkyBCtWrVKixYt0sWLFxUZGan09HTnbd566y1NmDBBcXFxWrNmjYKCgtS5c2edOXPGwuQAAAAAAAAAbhSa7sBNkpeVb4cOHVL//v0VEhIiHx8f3XnnndqxY4dFif9aiRIldMstt6hZs2YaN26cGjdurPfee09BQUGSdNWq9sOHD1+1+h0AAHeyYMEC9e/fX/Xr11fjxo0VHx+vPXv2KDExUdKfX0CbOHGiRo8erXvvvVcNGjTQtGnTdPbsWU2fPt3i9AAAAAAAAABuBJruwE3yVyvfjDHq0aOHdu3apa+//lq//fabQkND1alTp2yr41yZMUYZGRkKCwtTUFCQFi1a5BzLzMzU0qVL1apVKwsTAgBQuE6dOiVJqlChgiQpOTlZqampioyMdN7Gy8tL7dq108qVK3P9ezIyMnT69OlsGwAAAAAAAADXVMzqAIC7WrBgQbb9+Ph4BQQEKDExUXfccYd27NihVatWaePGjapfv74k6cMPP1RAQIC+/PJLDRgwwIrYuXrxxRcVFRWlKlWq6MyZM5oxY4aWLFmiBQsWyOFwKCYmRmPHjlXNmjVVs2ZNjR07Vj4+PurTp4/V0QEAKBTGGA0bNkxt2rRRgwYNJP3fWWD+98wvgYGBSklJyfXvGjdunF599dWbFxYAAAAAAADADUPTHSgk/7vyLSMjQ5JUsmRJ5208PT1VokQJrVixwuWa7ocOHVLfvn118OBBlS1bVo0aNdKCBQvUuXNnSdLIkSN17tw5DR48WCdOnFCLFi2UkJAgX19fi5MDAFA4nn76af3+++9asWLFVWMOhyPbvjHmqmNXGjVqlIYNG+bcP336tKpUqXLjwgIAAAAAAAC4YWi6A4Ugp5VvderUUWhoqEaNGqV//etfKlWqlCZMmKDU1FQdPHjQ4sRXmzJlyjXHHQ6HYmNjFRsbWziBAABwIc8884zmzZunZcuWqXLlys7jQUFBkv5c8R4cHOw8fvjw4atWv1/Jy8tLXl5eNy8wAAAAAAAAgBuGa7oDheDyyrcvv/zSeax48eKaNWuWtm/frgoVKsjHx0dLlixRVFSUPD09LUwLAADyyhijp59+WrNnz9ZPP/2ksLCwbONhYWEKCgrSokWLnMcyMzO1dOlStWrVqrDjAgAAAAAAALgJWOkO3GS5rXyTpKZNmyopKUmnTp1SZmamKlasqBYtWqhZs2YWpQUAAPkxZMgQTZ8+XV9//bV8fX2d13AvW7asvL295XA4FBMTo7Fjx6pmzZqqWbOmxo4dKx8fH/Xp08fi9AAAAAAAAABuBJruwE1ijNEzzzyjOXPmaMmSJVetfLtS2bJlJUk7duzQ2rVr9frrr9+wHNVemH/D/q7Ctnt8tNURAAC4pkmTJkmSIiIish2Pj49X//79JUkjR47UuXPnNHjwYJ04cUItWrRQQkKCfH19CzktAAAAAAAAgJuBpjtwk/zVyjdJ+uqrr1SxYkVVrVpVGzZs0HPPPacePXooMjLSyugAACCPjDF/eRuHw6HY2FjFxsbe/EAAAAAAAAAACh1Nd+AmycvKt4MHD2rYsGE6dOiQgoOD9cgjj+ill14q5KQAAAAAAAAAAAAACoqmO3CT5GXl27PPPqtnn322ENIAAAAAAAAAAAAAuBk8rA4AAAAAAAAAAAAAAIBd0XQHAAAAAAAAAAAAAKCAOL08cIVqL8y3OsJ12T0+2uoIAAAAAAAAAAAAQJHCSncAAAAAAAAAAAAAAAqIpjsAAAAAAAAAAAAAAAVE0x0AAAAAAAAAAAAAgAKi6Q4AAAAAAAAAAAAAQAHRdAcAAAAAAAAAAAAAoIBougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFBBNdwAAAAAAAAAAAAAACoimOwAAAAAAAAAAAAAABUTTHQAAAAAAAAAAwA0tW7ZM3bp1U0hIiBwOh+bOnZtt3Bij2NhYhYSEyNvbWxEREdq0aZM1YQHAxmi6AwAAAAAAAAAAuKH09HQ1btxYcXFxOY6/9dZbmjBhguLi4rRmzRoFBQWpc+fOOnPmTCEnBQB7K2Z1AAAAAAAAAAAAANx4UVFRioqKynHMGKOJEydq9OjRuvfeeyVJ06ZNU2BgoKZPn66BAwcWZlQAsDVWugMAAAAAAAAAABQxycnJSk1NVWRkpPOYl5eX2rVrp5UrV1qYDADsh6Y7AAAAAAAAAABAEZOamipJCgwMzHY8MDDQOQYAyBua7gAAAAAAAAAAAEWUw+HItm+MueoYAODaaLoDAAAAAAAAAAAUMUFBQZJ01ar2w4cPX7X6HQBwbTTdAQAAAAAAAAAAipiwsDAFBQVp0aJFzmOZmZlaunSpWrVqZWEyALAfmu4AAAAAAAAA4KaWLVumbt26KSQkRA6HQ3Pnzs02boxRbGysQkJC5O3trYiICG3atMmasABuuLS0NCUlJSkpKUmSlJycrKSkJO3Zs0cOh0MxMTEaO3as5syZo40bN6p///7y8fFRnz59rA0OADZD0x0AAAAAAAAA3FR6eroaN26suLi4HMffeustTZgwQXFxcVqzZo2CgoLUuXNnnTlzppCTArgZ1q5dq/DwcIWHh0uShg0bpvDwcL388suSpJEjRyomJkaDBw9Ws2bNtH//fiUkJMjX19fK2ABgO8WsDgAAAAAAAAAAuDmioqIUFRWV45gxRhMnTtTo0aN17733SpKmTZumwMBATZ8+XQMHDizMqABugoiICBljch13OByKjY1VbGxs4YUCADfESncAAAAAAAAAKIKSk5OVmpqqyMhI5zEvLy+1a9dOK1euzPXnMjIydPr06WwbAABAUcZKdwAAAAAAAAAoglJTUyVJgYGB2Y4HBgYqJSUl158bN26cXn311ZuaDcD/qfbCfKsj5Mnu8dFWRwAAy7DSHQAAAAAAAACKMIfDkW3fGHPVsSuNGjVKp06dcm579+692REBAABcGivdAQAAAAAAAKAICgoKkvTnivfg4GDn8cOHD1+1+v1KXl5e8vLyuun5AAAA7IKV7gAAAAAAAABQBIWFhSkoKEiLFi1yHsvMzNTSpUvVqlUrC5MBgHs6c+aMYmJiFBoaKm9vb7Vq1Upr1qyxOhaAG4CV7gAAAAAAAADgptLS0rRz507nfnJyspKSklShQgVVrVpVMTExGjt2rGrWrKmaNWtq7Nix8vHxUZ8+fSxMDQDuacCAAdq4caP+/e9/KyQkRJ9//rk6deqkzZs3q1KlSlbHA3AdaLoDAAAAAAAAgJtau3at2rdv79wfNmyYJKlfv3769NNPNXLkSJ07d06DBw/WiRMn1KJFCyUkJMjX19eqyADgls6dO6dZs2bp66+/1h133CFJio2N1dy5czVp0iS98cYbFicEcD1ougMAAAAAAACAm4qIiJAxJtdxh8Oh2NhYxcbGFl4oACiCLl68qEuXLqlkyZLZjnt7e2vFihUWpQJwo3BNdwAAAAAAAAAAAOAm8vX1VcuWLfX666/rwIEDunTpkj7//HOtXr1aBw8etDoegOtE0x0AAAAAAAAAAAC4yf7973/LGKNKlSrJy8tL77//vvr06SNPT0+rowG4TjTdAQAAAAAAAAAAgJusRo0aWrp0qdLS0rR37179+uuvunDhgsLCwqyOBuA60XQHAAAAAAAAAAAACkmpUqUUHBysEydOaOHCherevbvVkQBcp2JWBwAAAAAAAAAAAADc3cKFC2WMUe3atbVz506NGDFCtWvX1qOPPmp1NADXiZXuAAAAAAAAAAAAwE126tQpDRkyRHXq1NEjjzyiNm3aKCEhQcWLF7c6GoDrxEp3AAAAAAAAAAAA4Ca77777dN9991kdA8BNwEp3AAAAAAAAAAAAAAAKiJXuAAAAAAAAAAAAwP+o9sJ8qyPkye7x0VZHAIo8VroDAAAAAAAAAAAAAFBANN0BAAAAAAAAAAAAACggmu4AAAAAAAAAAABweRcvXtTf//53hYWFydvbW9WrV9drr72mrKwsq6MBKOJougMAAAAAAMDtLFu2TN26dVNISIgcDofmzp2bbTw2NlZ16tRRqVKlVL58eXXq1EmrV6+2JiwAAMiTN998Ux999JHi4uK0ZcsWvfXWW3r77bf1wQcfWB0NQBFH0x0AAAAAAABuJz09XY0bN1ZcXFyO47Vq1VJcXJw2bNigFStWqFq1aoqMjNSRI0cKOSkAAMirX375Rd27d1d0dLSqVaumXr16KTIyUmvXrrU6GoAirpjVAQAAAAAAAIAbLSoqSlFRUbmO9+nTJ9v+hAkTNGXKFP3+++/q2LHjzY4HAAAKoE2bNvroo4+0fft21apVS+vXr9eKFSs0ceJEq6MBKOJougMAAAAAAKBIy8zM1OTJk1W2bFk1btzY6jgAACAXf/vb33Tq1CnVqVNHnp6eunTpksaMGaMHH3zQ6mgAijia7gAAAAAAACiSvv32Wz3wwAM6e/asgoODtWjRIvn7+1sdCwAA5GLmzJn6/PPPNX36dNWvX19JSUmKiYlRSEiI+vXrZ3U8AEUYTXcAAAAAAAAUSe3bt1dSUpKOHj2qjz/+WPfdd59Wr16tgIAAq6MBAIAcjBgxQi+88IIeeOABSVLDhg2VkpKicePG0XQHYCkPqwMAAAAAAAAAVihVqpRuueUW3X777ZoyZYqKFSumKVOmWB0LAADk4uzZs/LwyN7a8vT0VFZWlkWJAOBPrHQHAAAAAAAAJBljlJGRYXUMAACQi27dumnMmDGqWrWq6tevr99++00TJkzQY489ZnU0AEWcS690HzdunJo3by5fX18FBASoR48e2rZtW7bbGGMUGxurkJAQeXt7KyIiQps2bbIoMQAAAAAAAFxBWlqakpKSlJSUJElKTk5WUlKS9uzZo/T0dL344otatWqVUlJStG7dOg0YMED79u1T7969rQ0OAABy9cEHH6hXr14aPHiw6tatq+eff14DBw7U66+/bnU0AEWcSzfdly5dqiFDhmjVqlVatGiRLl68qMjISKWnpztv89Zbb2nChAmKi4vTmjVrFBQUpM6dO+vMmTMWJgcAAAAAAICV1q5dq/DwcIWHh0uShg0bpvDwcL388svy9PTU1q1b1bNnT9WqVUt33XWXjhw5ouXLl6t+/foWJwcAALnx9fXVxIkTlZKSonPnzumPP/7QG2+8oRIlSlgdDUAR59Knl1+wYEG2/fj4eAUEBCgxMVF33HGHjDGaOHGiRo8erXvvvVeSNG3aNAUGBmr69OkaOHCgFbEBAAAAAABgsYiICBljch2fPXt2IaYBAAAA4M5ceqX7/zp16pQkqUKFCpL+PC1YamqqIiMjnbfx8vJSu3bttHLlylz/noyMDJ0+fTrbBgAAAAAAAAAAAABAfrn0SvcrGWM0bNgwtWnTRg0aNJAkpaamSpICAwOz3TYwMFApKSm5/l3jxo3Tq6++evPCAgAAAAAAIN+qvTDf6ggFtnt8tNURAABwOXZ6bee1HMD1sM1K96efflq///67vvzyy6vGHA5Htn1jzFXHrjRq1CidOnXKue3du/eG5wUAAAAAAAAAAAAAuD9bNN2feeYZzZs3T4sXL1blypWdx4OCgiT934r3yw4fPnzV6vcreXl5qUyZMtk2AAAAAAAAAACAv1KtWjU5HI6rtiFDhlgdDQBgEZduuhtj9PTTT2v27Nn66aefFBYWlm08LCxMQUFBWrRokfNYZmamli5dqlatWhV2XAAAAAAAAAAA4ObWrFmjgwcPOrfLPYrevXtbnAwAYBWXvqb7kCFDNH36dH399dfy9fV1rmgvW7asvL295XA4FBMTo7Fjx6pmzZqqWbOmxo4dKx8fH/Xp08fi9AAAAAAAAAAAwN1UrFgx2/748eNVo0YNtWvXzqJEAACruXTTfdKkSZKkiIiIbMfj4+PVv39/SdLIkSN17tw5DR48WCdOnFCLFi2UkJAgX1/fQk4LAAAAAAAAAACKkszMTH3++ecaNmyYHA6H1XEAABZx+dPL57RdbrhLksPhUGxsrA4ePKjz589r6dKlatCggXWhAQAAAAC4TsuWLVO3bt0UEhIih8OhuXPnZhufPXu2unTpIn9/fzkcDiUlJVmSEwAAoKibO3euTp48ma1vAQAoely66Q4AAAAAQFGUnp6uxo0bKy4uLtfx1q1ba/z48YWcDAAAAFeaMmWKoqKiFBISYnUUAICFXPr08gAAAAAAFEVRUVGKiorKdbxv376SpN27dxdSIgAAAPyvlJQU/fDDD5o9e7bVUQAAFmOlOwAAAAAAAAAAQD7Fx8crICBA0dHRVkcBAFiMpjsAAAAAAAAAAEA+ZGVlKT4+Xv369VOxYpxUGACKOpruAAAAAAAAAAAA+fDDDz9oz549euyxx6yOAgBwAXz9CgAAAAAAAAAAIB8iIyNljLE6BgDARbDSHQAAAAAAAAAAAACAAmKlOwAAAAAALiYtLU07d+507icnJyspKUkVKlRQ1apVdfz4ce3Zs0cHDhyQJG3btk2SFBQUpKCgIEsyAwAAAABQVNF0BwAAAADAxaxdu1bt27d37g8bNkyS1K9fP3366aeaN2+eHn30Uef4Aw88IEl65ZVXFBsbW6hZAQAAXF21F+ZbHSHPdo+PtjoCAKAAOL08AAAAAAAuJiIiQsaYq7ZPP/1UktS/f/8cx2m4o6CWLVumbt26KSQkRA6HQ3Pnzs02fvnfV0hIiLy9vRUREaFNmzZZExYAAAAAXAxNdwAAAAAAgCIuPT1djRs3VlxcXI7jb731liZMmKC4uDitWbNGQUFB6ty5s86cOVPISQEAAADA9XB6eQAAAAAAgCIuKipKUVFROY4ZYzRx4kSNHj1a9957ryRp2rRpCgwM1PTp0zVw4MDCjAoAAAAALoemOwAAAAAAN4idrhf6v7h+KHKTnJys1NRURUZGOo95eXmpXbt2WrlyJU13AAAAAEUep5cHAAAAAABArlJTUyVJgYGB2Y4HBgY6xwAAAACgKKPpDgAAAAAAgL/kcDiy7RtjrjoGAAAAAEURTXcAAAAAAADkKigoSJKuWtV++PDhq1a/AwAAAEBRRNMdAAAAAAAAuQoLC1NQUJAWLVrkPJaZmamlS5eqVatWFiYDAAAAANdA0x0AAAC4DsuWLVO3bt0UEhIih8OhuXPnZhs3xig2NlYhISHy9vZWRESENm3aZE1YAABykZaWpqSkJCUlJUmSkpOTlZSUpD179sjhcCgmJkZjx47VnDlztHHjRvXv318+Pj7q06ePtcEBAAAAwAXQdAcAAACuQ3p6uho3bqy4uLgcx9966y1NmDBBcXFxWrNmjYKCgtS5c2edOXOmkJMCAJC7tWvXKjw8XOHh4ZKkYcOGKTw8XC+//LIkaeTIkYqJidHgwYPVrFkz7d+/XwkJCfL19bUyNgAAAAC4hGJWBwAAAADsLCoqSlFRUTmOGWM0ceJEjR49Wvfee68kadq0aQoMDNT06dM1cODAwowKAECuIiIiZIzJddzhcCg2NlaxsbGFFwoAAAAAbIKV7gAAAMBNkpycrNTUVEVGRjqPeXl5qV27dlq5cmWuP5eRkaHTp09n2wAAAAAAAAC4Jla6AwAAADdJamqqJCkwMDDb8cDAQKWkpOT6c+PGjdOrr756U7MBANxDtRfmWx2hwHaPj7Y6AgAAAADcEKx0BwAAAG4yh8ORbd8Yc9WxK40aNUqnTp1ybnv37r3ZEQEAAAAAAAAUECvdAQAAgJskKChI0p8r3oODg53HDx8+fNXq9yt5eXnJy8vrpucDAAAAAAAAcP1Y6Q4AAADcJGFhYQoKCtKiRYucxzIzM7V06VK1atXKwmQAAAAAAAAAbhRWugMAAADXIS0tTTt37nTuJycnKykpSRUqVFDVqlUVExOjsWPHqmbNmqpZs6bGjh0rHx8f9enTx8LUAAAAAAAAAG4UVroDAAAA12Ht2rUKDw9XeHi4JGnYsGEKDw/Xyy+/LEkaOXKkYmJiNHjwYDVr1kz79+9XQkKCfH19rYwNAAAAAAAAG4iNjZXD4ci2Xb6kIVwHK90BAACA6xARESFjTK7jDodDsbGxio2NLbxQAAAAAAAAcBv169fXDz/84Nz39PS0MA1yQtMdAAAAAAAAAAAAAFxUsWLFWN3u4ji9PAAAAAAAAAAAAAC4qB07digkJERhYWF64IEHtGvXLqsj4X/QdAcAAAAAAAAAAAAAF9SiRQt99tlnWrhwoT7++GOlpqaqVatWOnbsmNXRcAVOLw8AAAAAAAAAAAAALigqKsr554YNG6ply5aqUaOGpk2bpmHDhlmYDFdipTsAAAAAAAAAAAAA2ECpUqXUsGFD7dixw+oouAJNdwAAAAAAAAAAAACwgYyMDG3ZskXBwcFWR8EVaLoDAAAAAAAAQBEVGxsrh8ORbQsKCrI6FgAA+K/nn39eS5cuVXJyslavXq1evXrp9OnT6tevn9XRcAWu6Q4AAAAAAAAARVj9+vX1ww8/OPc9PT0tTAMAAK60b98+Pfjggzp69KgqVqyo22+/XatWrVJoaKjV0XAFmu4AAAAAAAAAUIQVK1aM1e0AALioGTNmWB0BecDp5QEAAAAAAK5TtWrVrjo9s8Ph0JAhQ6yOBgB/aceOHQoJCVFYWJgeeOAB7dq165q3z8jI0OnTp7NtAAAARRkr3QEAAAAAAK7TmjVrdOnSJef+xo0b1blzZ/Xu3dvCVADw11q0aKHPPvtMtWrV0qFDh/TGG2+oVatW2rRpk/z8/HL8mXHjxunVV18t5KQAANhDtRfmWx0hz3aPj7Y6gttgpTsAAAAAAMB1qlixooKCgpzbt99+qxo1aqhdu3ZWRwOAa4qKilLPnj3VsGFDderUSfPn/9komDZtWq4/M2rUKJ06dcq57d27t7DiAgAAuCRWugMAAAAAANxAmZmZ+vzzzzVs2DA5HA6r4wBAvpQqVUoNGzbUjh07cr2Nl5eXvLy8CjEVAACAa2OlOwAAAAAAwA00d+5cnTx5Uv3797c6CgDkW0ZGhrZs2aLg4GCrowAAANgGTXcAAAAAAIAbaMqUKYqKilJISIjVUQDgLz3//PNaunSpkpOTtXr1avXq1UunT59Wv379rI4GAABgG5xeHgAAAAAA4AZJSUnRDz/8oNmzZ1sdBQDyZN++fXrwwQd19OhRVaxYUbfffrtWrVql0NBQq6MBAADYBk13AAAAAACAGyQ+Pl4BAQGKjo62OgoA5MmMGTOsjgAAAGB7nF4eAAAAAADgBsjKylJ8fLz69eunYsVY5wAAAAAARQVNdwAAAAAAgBvghx9+0J49e/TYY49ZHQVFxP79+/Xwww/Lz89PPj4+atKkiRITE62OBQAAABQ5NN0B4ApnzpxRTEyMQkND5e3trVatWmnNmjVWxwIAAABgA5GRkTLGqFatWlZHQRFw4sQJtW7dWsWLF9f333+vzZs365133lG5cuWsjgYAAAAUOZzrDACuMGDAAG3cuFH//ve/FRISos8//1ydOnXS5s2bValSJavjAQAAAAAgSXrzzTdVpUoVxcfHO49Vq1bNukAAAABAEUbTHQD+69y5c5o1a5a+/vpr3XHHHZKk2NhYzZ07V5MmTdIbb7xhcUIAAAAA16vaC/OtjlBgu8dHWx0BLmTevHnq0qWLevfuraVLl6pSpUoaPHiwnnjiCaujAQAAAEUOp5cHgP+6ePGiLl26pJIlS2Y77u3trRUrVliUCgAAAACAq+3atUuTJk1SzZo1tXDhQg0aNEjPPvusPvvsM6ujAQAAAEUOK90B4L98fX3VsmVLvf7666pbt64CAwP15ZdfavXq1apZs6bV8QAAAAAAcMrKylKzZs00duxYSVJ4eLg2bdqkSZMm6ZFHHrE4HQAAAFC0sNIdAK7w73//W8YYVapUSV5eXnr//ffVp08feXp6Wh0NAAAAAACn4OBg1atXL9uxunXras+ePRYlAgAAAIoumu4AcIUaNWpo6dKlSktL0969e/Xrr7/qwoULCgsLszoaAAAAAABOrVu31rZt27Id2759u0JDQy1KBAAAABRdNN0BIAelSpVScHCwTpw4oYULF6p79+5WRwIAAAAAwGno0KFatWqVxo4dq507d2r69OmaPHmyhgwZYnU0AAAAoMjhmu4AcIWFCxfKGKPatWtr586dGjFihGrXrq1HH33U6mgAAAAAADg1b95cc+bM0ahRo/Taa68pLCxMEydO1EMPPWR1NAAAAKDIoekOAFc4deqURo0apX379qlChQrq2bOnxowZo+LFi1sdDQAAAACAbO666y7dddddVscAAAAAijya7gBwhfvuu0/33Xef1TEAAAAAAAAAAABgE1zTHQAAAAAAAAAAAACAAmKlOwAAAAAAAHCTVHthvtURCmz3+GirIwAAAAC2QNMdgK3wYQUAAAAAAAAAAABcCaeXBwAAAAAAAAAAAACggGi6AwAAAAAAAAAAAABQQDTdAQAAAAAAAAAAAAAoIJruAAAAAAAAAAAAAAAUEE13AAAAAABgqXHjxsnhcCgmJsbqKAAAAAAA5BtNdwAAAAAAYJk1a9Zo8uTJatSokdVRAAAAAAAoEJruAAAAAADAEmlpaXrooYf08ccfq3z58lbHAQAAAACgQGi6AwAAAAAASwwZMkTR0dHq1KmT1VEAAAAAACiwYlYHAAAAAAAARc+MGTO0bt06rVmzxuooAAAAAABcF5ruAAAAAACgUO3du1fPPfecEhISVLJkSavjAAAAAABwXWi6AwAAAACAQpWYmKjDhw+radOmzmOXLl3SsmXLFBcXp4yMDHl6elqYEAAAAACAvOOa7gDgpmJjY+VwOLJtQUFBVscCAAAA1LFjR23YsEFJSUnOrVmzZnrooYeUlJREwx0AAAAAYCusdAcAN1a/fn398MMPzn0+vAQAAIAr8PX1VYMGDbIdK1WqlPz8/K46DgAAAACAq6PpDgBurFixYqxuBwAAAAAAAAAAuIlougOAG9uxY4dCQkLk5eWlFi1aaOzYsapevbrVsQAAAICrLFmyxOoIAAAAAAAUCNd0BwA31aJFC3322WdauHChPv74Y6WmpqpVq1Y6duyY1dEAAAAAAAAAAADcBivdAcBNRUVFOf/csGFDtWzZUjVq1NC0adM0bNgwC5MBAADALqq9MN/qCAW2e3y01REAAAAAAEUEK90BoIgoVaqUGjZsqB07dlgdBQAAAAAAAAAAwG3QdAeAIiIjI0NbtmxRcHCw1VEAAAAAAAAAAADcBk13AHBTzz//vJYuXark5GStXr1avXr10unTp9WvXz+rowEAAAAAAAAAALgNrukOAG5q3759evDBB3X06FFVrFhRt99+u1atWqXQ0FCrowEAAAAAAAAAALgNmu4A4KZmzJhhdQQAAAAAAAAAAAC3x+nlAQAAAAAAAAAAAAAoIFa6A4CFqr0w3+oI12X3+GirI9japEmTNGnSJO3evVuSVL9+fb388suKioqyNhgAAAAAAAAAAMgzVroDAGCRypUra/z48Vq7dq3Wrl2rDh06qHv37tq0aZPV0QAAAAAAAAAAQB6x0h0AAIt069Yt2/6YMWM0adIkrVq1SvXr17coFQAAAAAAAAAAyA9WugMA4AIuXbqkGTNmKD09XS1btrQ6DgAAAAAAAAAA123ZsmXq1q2bQkJC5HA4NHfuXKsj3RQ03QEAsNCGDRtUunRpeXl5adCgQZozZ47q1atndSwAAAAAAAAAAK5benq6GjdurLi4OKuj3FScXh4AAAvVrl1bSUlJOnnypGbNmqV+/fpp6dKlNN4BAAAAAAAAALYXFRWlqKgoq2PcdDTdAQCwUIkSJXTLLbdIkpo1a6Y1a9bovffe07/+9S+LkwEAAAAAAAAAgLzg9PIAALgQY4wyMjKsjgEAAAAAAAAAAPKIle4AAFjkxRdfVFRUlKpUqaIzZ85oxowZWrJkiRYsWGB1NAAAAAAAAAAAkEc03QEAsMihQ4fUt29fHTx4UGXLllWjRo20YMECde7c2epoAAAAAAAAAAAgj2i6AwBgkSlTplgdAQAAAAAAAAAAXCea7gAAAAAAAAAAAACAGy4tLU07d+507icnJyspKUkVKlRQ1apVLUx2Y3lYHQAAAMBVLVu2TN26dVNISIgcDofmzp1rdSQAAAAAAAAAsI21a9cqPDxc4eHhkqRhw4YpPDxcL7/8ssXJbixWugMAcA3VXphvdYQC2z0+2uoItpeenq7GjRvr0UcfVc+ePa2OAwAAAAAAAAC2EhERIWOM1TFuOpruAAAAuYiKilJUVJTVMQAAAAAAAAAALoymOwAAAAAAAAAAAADAVmd/daWzvXJNdwAAAAAAAAAAAAAACoimOwAAAAAAAAAAAAAABUTTHQBgKx9++KHCwsJUsmRJNW3aVMuXL7c6Ev4HjxEAAAAAAAAAoCih6Q4AsI2ZM2cqJiZGo0eP1m+//aa2bdsqKipKe/bssToa/ovHCAAAAAAAAABQ1NB0BwDYxoQJE/T4449rwIABqlu3riZOnKgqVapo0qRJVkfDf7nbY5SWlqakpCQlJSVJkpKTk5WUlMSXCAAAAAAAAAAATjTdAQC2kJmZqcTEREVGRmY7HhkZqZUrV1qUCldyx8do7dq1Cg8PV3h4uCRp2LBhCg8P18svv2xxMgAAAAAAAACAqyhmdQAAAPLi6NGjunTpkgIDA7MdDwwMVGpqqkWpcCV3fIwiIiJkjLE6BgAAAAAAAADAhbHSHQBgKw6HI9u+MeaqY7AWjxEAAAAAAAAAoCih6Q4AsAV/f395enpetWL68OHDV62shjV4jAAAAAAAAAAARRGnlwcA2EKJEiXUtGlTLVq0SPfcc4/z+KJFi9S9e3cLk+Eyqx6jai/Mv2l/9822e3y01REAAAAAAAAAANeJpjsAwDaGDRumvn37qlmzZmrZsqUmT56sPXv2aNCgQVZHw3/xGAEAAAAAAAAAihq3Ob38hx9+qLCwMJUsWVJNmzbV8uXLrY4EALjB7r//fk2cOFGvvfaamjRpomXLlum7775TaGio1dHwXzxGQO6oVwEAAODKqFcBAAAKzi2a7jNnzlRMTIxGjx6t3377TW3btlVUVJT27NljdTQAwA02ePBg7d69WxkZGUpMTNQdd9xhdST8Dx4j4GrUqwAAAHBl1KsAAADXxy2a7hMmTNDjjz+uAQMGqG7dupo4caKqVKmiSZMmWR0NAAAAoF4FAACAS6NeBQAAuD62v6Z7ZmamEhMT9cILL2Q7HhkZqZUrV+b4MxkZGcrIyHDunzp1SpJ0+vTpmxfUHeRw/2RlnLUgyI2R0+Nt5/lI7jcn5uP6isLzpp0fo6Lw+Eg8Rnn9fxhjbvr/CzmjXi1EbvZa6261Q27/ft1tTszHdfBvzvUVhflI7jmnm/H/oF61DvXqTWLz5zg7P0fbObtk7/x2zi7ZO7+ds0v2zm/n7JJ75r8Zf3+ealVjc/v37zeSzM8//5zt+JgxY0ytWrVy/JlXXnnFSGJjY2NjY2NjKzLb3r17C6M0Qw6oV9nY2NjY2NjY/nqjXrUO9SobGxsbGxsb27W3vNSqtl/pfpnD4ci2b4y56thlo0aN0rBhw5z7WVlZOn78uPz8/HL9GVd3+vRpValSRXv37lWZMmWsjnNDuNucmI/rc7c5MR/X525zYj6uyRijM2fOKCQkxOooRR71qnv8Tl3J3ebEfFybu81Hcr85udt8JPebE/NxTdSrrqOo1qt2/12yc36yW8fO+e2cXbJ3fjtnl+yd387ZJXvnz0+tavumu7+/vzw9PZWamprt+OHDhxUYGJjjz3h5ecnLyyvbsXLlyt2siIWqTJkytvsH+1fcbU7Mx/W525yYj+tztzkxH9dTtmxZqyMUadSr2bnD79T/crc5MR/X5m7zkdxvTu42H8n95sR8XA/1qrWoV/9k998lO+cnu3XsnN/O2SV757dzdsne+e2cXbJv/rzWqh43OcdNV6JECTVt2lSLFi3KdnzRokVq1aqVRakAAACAP1GvAgAAwJVRrwIAAFw/2690l6Rhw4apb9++atasmVq2bKnJkydrz549GjRokNXRAAAAAOpVAAAAuDTqVQAAgOvjFk33+++/X8eOHdNrr72mgwcPqkGDBvruu+8UGhpqdbRC4+XlpVdeeeWq0zrZmbvNifm4PnebE/Nxfe42J+YD5I561T1/p9xtTszHtbnbfCT3m5O7zUdyvzkxHyB3Rbletfvvkp3zk906ds5v5+ySvfPbObtk7/x2zi7ZP39eOYwxxuoQAAAAAAAAAAAAAADYke2v6Q4AAAAAAAAAAAAAgFVougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFFAxqwMAgFUyMjL066+/avfu3Tp79qwqVqyo8PBwhYWFWR2tQJiP63O3OTEfAAAAAACsk5GRIS8vL6tjAAAA0XSHi9i2bZu+/PJLLV++/KpmR5cuXdSzZ09bFZDGGC1dujTH+XTq1ElVqlSxOmK+7d69O8f5tGzZUiVLlrQ6Xr6sXLlSH3zwgebOnavMzEyVK1dO3t7eOn78uDIyMlS9enU9+eSTGjRokHx9fa2O+5eYj+tztzkxHwBFEfWq63OnObnTXC5ztzm523wk95uTu81Hcs85AcifhQsXOmvSPXv2KCsrSz4+Prr11lsVGRmpRx99VCEhIVbHzNGpU6c0Z86cXOvpVq1aWR0xV3Z//rVzfjtnl+yd387ZJXvnt3P2y9xhDgXB6eVhqd9++02dO3dW48aNtWzZMjVv3lwxMTF6/fXX9fDDD8sYo9GjRyskJERvvvmmMjIyrI58TefOndPYsWNVpUoVRUVFaf78+Tp58qQ8PT21c+dOvfLKKwoLC1PXrl21atUqq+PmyfTp03X77berevXqGjFihObOnavly5frk08+0Z133qnAwEANHjxYKSkpVkfNk+7du6tXr16qVKmSFi5cqDNnzujYsWPat2+fzp49qx07dujvf/+7fvzxR9WqVUuLFi2yOvI1MR/Xno/kfnNiPq49HwA3HvWq63OnObnTXC5ztzm523wk95uTu81Hcs85AcifuXPnqnbt2urXr588PDw0YsQIzZ49WwsXLtSUKVPUrl07/fDDD6pevboGDRqkI0eOWB3Z6eDBg3riiScUHBys1157Tenp6WrSpIk6duyoypUra/HixercubPq1aunmTNnWh03G7s//9o5v52zS/bOb+fskr3z2zn7Ze4wh+tiYDv33HNPvrdDhw5ZHTtHVatWNR988IE5duzYNW+3cuVK07t3bzNmzJhCSlYwlStXNj179jTffPONyczMzPE2u3fvNmPHjjVVq1Y1kydPLuSE+RMeHm6aNm1qPvjgA5OSknLV+Pnz583ixYvNwIEDjb+/v/l//+//WZAyf+Li4kxGRkaebrtx40aTkJBwkxNdH+bj2vMxxv3mxHxcez6Aq6BedV3uVq8a415zcqe5XOZuc3K3+RjjfnNyt/kY455zAqxi1zq1efPmZt68eebSpUvXvN2+ffvMiBEjzD/+8Y9CSvbXKlasaIYPH242bNiQ623Onj1rpk+fbm677Tbz9ttvF2K6a7P786+d89s5uzH2zm/n7MbYO7+ds1/mDnO4Hg5jjLG68Y/88fDw0H333Sdvb+883X769OnasmWLqlevfpOT5V9mZqZKlChx025f2DZu3KgGDRrk6baZmZlKSUlRzZo1b3Kqgps/f76io6PzdNujR48qOTlZzZs3v8mpAACAq6NepV4tTO40J3eay2XuNid3m4/kfnNyt/lI7jknwCruVKfaxZEjR1SxYsWbdvubye7Pv3bOb+fskr3z2zm7ZO/8ds5+mTvM4XrQdLchDw8PpaamKiAgIE+39/X11fr16ykOgb/w6aef6p577lHZsmWtjlJgKSkpSk1NlcPhUGBgoEJDQ62OdEPs2LFDe/bsUWhoqG655Rar4+C/Ll26JE9PT+f+r7/+qqysLIWHh9vqusa5cYfnBMAq1KsAAABwRdSpAADgZilmdQDk3+LFi1WhQoU83/77779XpUqVbmKi67Nv3z6VLFlS/v7+kqTly5fro48+cjbYhgwZopYtW1qcsmi7dOmS8/Hw8PBQRkaGvv76a2VlZal9+/YKDAy0OuIN8eSTT6pFixa2bLC9++67mjBhgg4cOKDL36VyOBwKCQnR8OHDFRMTY23AfBg/frxuu+02dejQQSdOnFDv3r31008/SfpzTpGRkfryyy9Vrlw5a4Pm0/z58zVnzhxVqFBBjz32mOrUqeMcO3HihHr27Omcp6vbvXu3evbsqfXr16tLly768ssv1bNnT/3444+SpLCwMH3//feqVauWxUmvj52fEwCruVu9+s4776hXr15u82W23Dz66KMaM2aMQkJCrI5yw6WnpysxMVF33HGH1VHy5PDhw9q0aZOaNm2qMmXK6NChQ5o2bZqysrIUHR2thg0bWh3xup04cUI7d+5UcHCwKleubHUc/NeuXbu0YsUKHTx4UJ6engoLC1Pnzp1VpkwZq6Ndl5MnT+qrr75yvq/t3bu3bWu8//3i6+rVq5WRkaGWLVuqePHiFiYD7MGd6tQTJ05o2rRp2rFjh4KDg9WvXz9VqVLF6li5Msbohx9+0MqVK7MtGGndurU6duwoh8NhdcQ8s2Mds2PHjqvu+1atWtluhSn3vXW4761jx/tecp/7P1+sPLc9YIwxLVu2NN99950xxpi5c+caDw8Pc/fdd5u//e1v5p577jHFixc333zzjcUp8y4zM9OMGDHC1KhRwzRv3txMnTo123hqaqrx8PCwKF3+JSUlmaCgIOPh4WEaNWpk9u7daxo0aGBKlSplSpcubcqXL29+/fVXq2PmS/ny5XPcHA6HKVu2rHPfLl577TVTpkwZM378ePPbb7+ZAwcOmP3795vffvvNjB8/3pQtW9a8/vrrVsfMs6pVq5r169cbY4wZMGCACQ8PN+vWrTPnzp0zSUlJ5vbbbzePP/64xSnz54svvjCenp4mOjratGnTxpQsWdJ8/vnnznG7PS/07NnTtGvXznzzzTfmvvvuM61btzYRERFm37595sCBA6ZLly6mR48eVsfMM3d7TgBw4zkcDuPp6Wk6depkZsyYYTIyMqyOdF3Wr1+f41a8eHEzZ84c5747SUpKss1r7eLFi02pUqWMw+EwwcHBZv369aZy5cqmZs2apnbt2sbLy8ssXLjQ6pj5MmrUKJOenm6M+fP90hNPPGE8PDyMw+EwHh4e5p577jHnzp2zOGXeudt7PmOMSUtLM7169TIOh8P5uAQFBRlPT09TunRpExcXZ3XEfOnZs6eZNWuWMcaYTZs2GX9/f1OxYkXTokULExgYaIKCgszmzZstTpk/Bw4cMK1btzaenp7mjjvuMMePHzfR0dHOx6xWrVrmwIEDVscEcBMFBwebo0ePGmOM2bVrlwkKCjJBQUGmc+fOpnLlyqZs2bJmy5YtFqfM2b59+0yTJk2Mp6enady4sYmMjDSdO3c2jRs3Np6enubWW281+/btszpmjuxex5w8edLcfffdxuFwmHLlyplatWqZmjVrmnLlyhkPDw/TvXt3c+rUKatj5oj73jrc99ax+31vjL3v/+tF093mzpw5Y5YsWWJmzJhhZs6caZYsWWLOnDljdax88fX1NcnJycYYY1q0aGHGjx+fbfyDDz4w4eHhFiQrmFdeecUEBgaat99+24wePdqULVvWPPnkk87x1NRU43A4LEyYP5GRkaZXr15mw4YN5rnnnjP16tUzvXv3NpmZmebChQvm4YcfNp06dbI6Zr6ULl3aREdHm08//dS5xcfHG09PTzNmzBjnMbuoXLmymTNnTq7js2fPNiEhIYUX6Dp5eXmZ3bt3G2OMqVatmlm6dGm28bVr15rg4GArohVYeHi4ef/99537X331lSldurT55JNPjDH2+2C2YsWK5rfffjPG/FlEORwOs3z5cud4YmKiCQwMtChd/rnbcwLgatyhXnU4HCY+Pt50797dFC9e3Pj5+ZnnnnvObNiwwepoBXL5zfrlRs2V25Vv5t2JnZrurVu3NkOGDDFnzpwxb7/9tqlcubIZMmSIc/z55583rVq1sjBh/nl4eJhDhw4ZY4wZM2aMqVixopk1a5bZv3+/+eabb0ylSpXMa6+9ZnHKvHO393zGGPPkk0+a1q1bm6SkJLN161bTs2dPM3LkSJOenm6mTJlifHx8zBdffGF1zDzz9/c327dvN8YYExUVZfr06eP8wlRmZqZ5/PHHTWRkpJUR861v376mVatWZt68eeb+++83rVq1Mm3btjX79u0ze/bsMW3bts32XAHgr9mtTnU4HM7X0wceeMBEREQ4GzPnz583d911l+nVq5eVEXN19913mw4dOuT45aADBw6YDh06mO7duxd+sDywex3Tt29f07BhQ7Nq1aqrxlatWmUaNWpkHnnkEQuS/TXue+tw31vH7ve9Mfa+/68XTXebunDhgnn22WeNt7e3cTgcxsvLy5QoUcI4HA7j7e1tnnvuOZOZmWl1zDwpW7ascyVNQEDAVatqdu7caXx8fKyIViC33HJLtpX5O3fuNDVr1jT9+/c3WVlZtmuulS9f3rkC4OzZs8bT09OsXr3aOb5x40bj5+dnVbwC2bFjh2nevLl55JFHsr2ZKlasmNm0aZOFyQrG29v7mqs0Nm7caLy9vQsx0fWpVauW+fbbb40xxoSFhZmff/452/hvv/1mypQpY0W0AitVqpTZtWtXtmOLFy82vr6+ZtKkSbZ7XvD19XXO59KlS6ZYsWImKSnJOb5jxw7j6+trVbx8c7fnBMBVuFO9euUHnIcOHTJvvvmmqVOnjvHw8DDNmzc3kydPNqdPn7Y4Zd41btzYREdHmy1btpjdu3eb3bt3m+TkZFOsWDGzaNEi5zE7ye2sJZe3MmXK2Oa1tkyZMmbnzp3GmD9/j4oVK+b8spsxxmzfvt2ULVvWmnAFdOXvUJMmTcyUKVOyjc+cOdPUrVvXimgF4m7v+Yz5s0m9du1a5/7x48dNyZIlnc2cuLg406RJE6vi5Zu3t7fz9yg4ONisW7cu2/i2bdts93sUHBxsfvnlF2OMMceOHTMOh8P88MMPzvGffvrJVK9e3ap4gK3YtU698vU0LCzM/Pjjj9nGV61aZSpXrmxFtL9UqlSpbJ8b/K9169aZUqVKFWKivLN7HVO2bNkcG1+X/fLLLy77msh9bx3ue+vY/b43xt73//XysPr09iiY4cOHa9asWYqPj9fx48d1/vx5ZWRk6Pjx44qPj9fs2bM1YsQIq2PmSbt27fTll19KksLDw7VkyZJs44sXL3bZayflZP/+/WrQoIFzv0aNGlqyZIl++eUX9e3bV5cuXbIwXf4ZY1SsWDFJuuq/kuTp6amsrCxLshXULbfcopUrVyooKEhNmjTRzz//bHWk63LbbbdpzJgxunjx4lVjFy9e1NixY3XbbbdZkKxgnnjiCY0YMUI7d+7U008/reeff15//PGHJCk5OVlDhw5VZGSkxSnz5/K1WK8UERGhb775RiNGjNAHH3xgUbKCqV+/vqZOnSpJmjZtmvz8/DRjxgzn+Jdffmmr67m723MC4CrcqV69UkBAgEaOHKktW7ZoyZIlqlevnoYOHarg4GCro+XZr7/+qltuuUU9e/bU8ePHFRoaqmrVqkmSQkJCFBoaarvr12dkZOixxx7Tu+++m+M2fPhwqyPmWYkSJXT+/HlJUmZmprKyspz7knTu3DlbXrf58nVa9+7de1VtettttyklJcWKWAXibu/5pD/fN1x53fbSpUvr4sWLSk9PlyRFRkZq69atVsXLt0aNGumnn36SJAUFBV317yslJUXe3t5WRCuwEydOOD8bqVChgnx8fLI9V9eoUUMHDx60Kh5gK3auUy+/nmZkZCgwMDDbWGBgoI4cOWJFrL/k7e2t48eP5zp+4sQJl35etnsdczl/fsdcAfe9dbjvrWP3+16y9/1/Xazu+qNg/P39r/o245V++OEH4+/vX4iJCm7z5s3Gz8/PPPLII+b11183pUuXNg8//LAZM2aMeeSRR4yXl5eJj4+3OmaehYWFZfu2+WX79+83tWrVMp06dbLVqoeOHTuaxx9/3Ozbt8+8+uqr5pZbbjGPPvqoc3zw4MGmbdu2Fia8Pj/++KOpWrWqGTVqlClevLgtV7X+/vvvJigoyJQvX9706NHDDBw40AwaNMj06NHDVKhQwQQHB5uNGzdaHTNfnnnmGVO8eHFTp04dU7JkSePh4WFKlChhPDw8TLNmzczBgwetjpgv3bt3Ny+//HKOY5ev22qn54UFCxaYkiVLmhIlShhvb2+zbNkyU6tWLdO8eXNz++23G09PTzNz5kyrYxaIOzwnAK7CnerVK0/vlpNTp06ZyZMnF2KiG+O7774zlStXNmPHjnWeucSuz3utWrUyEydOzHXcTqeX7969u7nrrrvMihUrzJNPPmmaNWtmoqOjTVpamklPTze9evUyd955p9Ux88XhcJgxY8aY9957z4SEhJhly5ZlG09KSjLly5e3KF3+udt7PmOM6dy5c7ZTk7/99tvZLum0bt062zxnG2PMt99+aypUqGDi4+NNfHy8qVatmvnkk0/Mzz//bKZOnWqqVKliRowYYXXMfKlatWq2s8797W9/M8eOHXPuJyUl2eoxAqxk1zrV4XCYhg0bmvDwcFO6dGkze/bsbONLly41lSpVsijdtT399NOmSpUq5quvvjInT550Hj958qT56quvTNWqVc2zzz5rYcLc2b2Oefjhh02jRo3MmjVrrhpbs2aNadKkienbt68Fyf4a9711uO+tY/f73hh73//Xq9hft+Xhis6dOyd/f/9cx/38/HTu3LlCTFRwdevW1erVq/X3v/9db731ltLT0/XFF1+oWLFiat68uWbMmKEePXpYHTPPOnTooOnTp6tjx47ZjoeEhOinn35SRESENcEKaNy4cbrzzjsVHx8vf39/LV68WI899piCg4Pl4eGhEydO6JtvvrE6ZoF16NBB69at0xNPPKFSpUrJ09PT6kj51rBhQ23fvl2ff/65Vq1apeTkZEl/rugYM2aM+vTpk23Vih28//77euqpp/Ttt99q165dysrKUnBwsFq3bq1OnTrZ7ttwQ4cO1cqVK3Mci4iI0Lfffqtp06YVcqqC69KlizZv3qx169apWbNmCg0N1bJlyxQXF6dz585p7Nixat++vdUxC8QdnhMAV+FO9aox5prjZcqU0RNPPFFIaW6cqKgorV27Vo8++qi+++47q+Ncl+joaJ08eTLX8QoVKuiRRx4pvEDX4e2331bXrl3Vtm1b1atXTwkJCXrqqadUrlw5SVL58uW1YMECa0PmU9WqVfXxxx9L+nMl/7p169S2bVvn+OLFi1W7dm2r4uWbu73nk6Tx48erc+fOmjVrlkqUKKHU1NRs9enKlSvVtWtXCxPmT3R0tCZPnqyYmBgdOHBAxhjn87SXl5cGDRqkcePGWZwyf5o0aaJffvnFudpp/Pjx2cZXrFihRo0aWRENsB271qmvvPJKtn0fH59s+998802211dX8s477+jixYt66KGHdPHiRZUoUULSn2f1KVasmB5//HG9/fbbFqfMmd3rmA8++EAPPvigbrvtNpUrV04BAQFyOBw6dOiQTp06pS5duuj999+3OmaOuO+tw31vHbvf95K97//r5TB/9QkSXFK3bt107tw5ffHFF1edSujQoUPq27evSpYsqXnz5lmUsGCMMTp8+LCysrLk7+9vy9MmpqSkaOvWrerSpUuO4wcPHlRCQoL69etXyMkKLi0tTdu2bVPt2rVVunRpnT9/Xl988YXOnTunzp07u/yTPAAAKHzuWq+6q/fff1+LFy/WBx98oMqVK1sdB5KOHTsmPz8/5/6PP/6oc+fOqWXLltmOu4NVq1bJy8tL4eHhVkfJE3d8zyf9mfvbb79VRkaGOnTooHr16lkd6bpdunRJ69aty/ZF3qZNm8rX19fqaDfcmjVr5O3tne3SBwByRp1qndOnTysxMVGpqamS/lww0rRpU9stFrmSXeqYrVu36pdffsl237ds2VJ16tSxOFnBcd9bxy73/ZYtW7Rq1Srue4u447/9v0LT3ab27t2rrl27auvWrWrQoIECAwPlcDiUmpqqjRs3ql69epo/fz4fmAFFxKVLl7Rnzx6FhobKw8NDGRkZ+vrrr5WVlaX27dtf9SbSjg4dOqSMjAxVrVrV6igFlp6ersTERB08eFCenp4KCwvTrbfearuV+7l59dVXNWTIkGuuGHBlaWlpzjf/DodDQUFBuvXWW1W6dGmrowG2RL0KAAAAV+SOdaoxxm0+WwAAwK5outtYVlaWFi5cmOM3dSIjI+Xh4WFxwoI5ceKEpk2bph07dig4OFj9+vVTlSpVrI51w1w+HbtdTm/5v06ePKmvvvpKe/bsUbVq1dSrVy+VLVvW6lj59uGHH2r27NmqUKGCBg0apA4dOjjHjh49qttuu027du2yMGHerV+/XnfeeacOHz6sBg0aaP78+YqKilJycrIcDoeKFy+uhQsXqnnz5lZHzZMzZ87oqaee0vLlyxUREaGPP/5YQ4cO1aRJk+RwONSmTRt98803tvoW9KVLlzRq1Cj985//1Pnz5yX936mKq1atqg8++EDdunWzMmK+nD59+qpjxhhVrFhRK1ascH5b0S6P0cWLFzV8+HB9/PHHOn/+vEqUKCFjjC5cuKCSJUvqySef1Ntvv23Ls68AVnOnenXfvn2aNGmSVq5c6fxyTmBgoFq1aqVBgwZRr7qIrKysHP9dZWVlad++fbb68p47zUX6s1bYvXu3qlSpomLFiikzM1Nz5sxRRkaGunbtatsv7V2pQ4cOio+PV2hoqNVRbhh3mlNSUpLzc4bWrVvbrjmVkZEhDw8PZ036xx9/aOrUqc4vXz/++OMKCwuzOCVgH3asUzMyMvTiiy9q7dq1uuuuuzRixAi98cYbGj9+vIwx6t69uz766COXfC/+zjvvqFevXm7xeiLZ/zVFstdrvLvVxZfZ4X3XTz/9pBUrVmRbQHT33XerZs2aVkf7S+vXr9e6desUERGhsLAwbdq0Sf/85z+VlZWle+65J9ezVlnNXWs+d3jezBMLriOP67R+/Xpz6dKlPN9+48aN5sKFCzcx0fUJDg42R48eNcYYs2vXLhMUFGSCgoJM586dTeXKlU3ZsmXNli1bLE554yQlJRkPDw+rY+RZz549zaxZs4wxxmzatMn4+/ubihUrmhYtWpjAwEATFBRkNm/ebHHK/HnvvfeMj4+PGTJkiHn44YeNl5eXGTt2rHM8NTXVVo9RZGSk6dWrl9mwYYN57rnnTL169Uzv3r1NZmamuXDhgnn44YdNp06drI6ZZ08//bSpU6eOef/9901ERITp3r27adCggVmxYoVZtmyZadCggXnxxRetjpkvf/vb30zdunXN3LlzzYIFC0zbtm3Nm2++abZs2WJeeukl4+XlZRYuXGh1zDzz8PDIcXM4HNn+axfPPvusqVSpkpkxY4Y5ceKE8/iJEyfMjBkzTJUqVcxzzz1nWT7AjtytXl2+fLkpXbq0qVu3rnnuuefM2LFjzZgxY5yvu76+vmbFihVWx7xh7FavGmPMqVOnTO/evU3JkiVNQECAefnll83Fixed43aq79xpLpdt3brVhIaGGg8PD3PLLbeYXbt2maZNm5pSpUoZHx8f4+/vb7Zv3251zDz7+uuvc9w8PT1NXFycc99O3G1ODz74oDl9+rQxxpgzZ86YyMhI43A4TIkSJYzD4TDNmjXLVvfZQfv27Z3vzVesWGG8vLxMo0aNzP3332/Cw8ONj4+PWblypcUpAddn5zp16NChJiQkxAwfPtzUrVvXDBkyxFStWtV8/vnnZvr06eaWW24xzzzzjNUxc+RwOIynp6fp1KmTmTFjhsnIyLA6Up7Z/TXFzq/x7lgXX8mV33cdOnTI3Hbbbc7fXQ8PD9O0aVMTFBRkPD09zYgRI6yOeE3/+c9/jKenp/Hz8zO+vr7mhx9+MOXKlTOdOnUyXbp0MZ6enuaLL76wOmaO3KHms/vz5vWg6W5DHh4e5vDhw3m+va+vr/njjz9uYqLr43A4zKFDh4wxxjzwwAMmIiLCpKenG2OMOX/+vLnrrrtMr169rIyYL6dOnbrmtnz5cpd9Mc3JlR+ARUVFmT59+jgL48zMTPP444+byMhIKyPmW7169bK9qK5cudIEBASYl156yRhjv4KtfPnyzi8+nD171nh6eprVq1c7xzdu3Gj8/PysipdvVapUMT/99JMxxpj9+/cbh8Nh5s2b5xyfP3++qV27tlXxCiQkJMQsW7bMub9v3z5TunRpc/78eWOMMa+99ppp2bKlVfHyrVKlSiY6Otr89NNPZsmSJWbJkiVm8eLFxtPT08THxzuP2YW/v7/58ccfcx3/4YcfjL+/fyEmAuzP3erVZs2amZiYmFzHY2JiTLNmzQox0fVxt3rVmD+/QFWrVi3z1VdfmY8//tiEhoaa6OhoZ92amppqHA6HxSnzxp3mcln37t3N3XffbX7//XcTExNj6tWrZ7p3724yMzNNRkaG6d69u3n44YetjplnV37RMLfNbr9D7jYnDw8P5+cMzz//vAkLCzOJiYnGGGM2bNhg6tata4YOHWplxHwrV66c2blzpzHGmHbt2l2V/+9//7tp3bq1FdEAW7FznVqlShWzaNEiY4wxf/zxh/Hw8DBz5851jickJJjQ0FCL0l2bw+Ew8fHxpnv37qZ48eLGz8/PPPfcc2bDhg1WR/tLdn9NsfNrvN3rYju/77r//vtNjx49zIkTJ8zZs2fNkCFDzCOPPGKMMebHH380fn5+ZuLEiRanzN2tt95q3njjDWOMMV9++aUpV66cee2115zj//jHP0yTJk2sindN7lDz2f1583pwenkb8vDw0JNPPikfH5883f7DDz/U5s2bVb169ZucrGA8PDyUmpqqgIAAVa9eXZ988km2U32vXr1avXr10t69ey1MmXceHh7XPDWG+e81li5dulSIqQrOx8dHGzZsUI0aNRQSEqL58+crPDzcOb59+3bddtttOnnypHUh88nHx0ebN29WtWrVnMc2bdqkjh076tFHH1VMTIxCQkJs8xiVL19ev/76q2rWrKkLFy7I29tbv/76q2699VZJ0tatW9WqVSsdP37c4qR5U7JkSe3YscN5mt5SpUrpt99+U61atSRJKSkpqlevntLT062MmS9lypRRUlKS83k4KytLXl5e2rt3r4KCgrR582Y1b97cNnM6fvy4Hn/8cZ06dUr//ve/ValSJUlS8eLFtX79etWrV8/ihPlTunRprVy5Uo0aNcpxPCkpSW3atFFaWlohJwPsy93qVW9vbyUlJal27do5jm/dulXh4eE6d+5cIScrGHerVyUpNDRU06ZNU0REhCTp2LFjio6OVtmyZTVv3jydPHnSNvWdO83lsoCAACUkJKhJkyZKT0+Xr6+vli1bpjZt2kiSfvnlFz3wwANKSUmxOGneREVFydPTU1OnTlVAQIDzuF1rIcn95nTl5wwNGjTQyy+/rPvuu885/t133ykmJkbbt2+3MGX+lC5dWmvXrlWdOnUUFBSkhQsXqnHjxs7xP/74Q02aNNGZM2csTAm4PjvXqT4+Ptq6davzVNolSpTQb7/9pvr160uSdu/erfr167vkZwtXPi8fPnxYn376qeLj47V9+3Y1bdpUTzzxhB544AH5+vpaHfUqdn9NsfNrvN3rYju/7ypbtqxWrlzpfH5JT09X+fLldfToUZUpU0aff/653njjDW3dutXipDkrXbq0Nm7cqGrVqskYIy8vLyUmJqphw4aSpF27dqlx48YuWTe5Q81n9+fN61HM6gDIvzvuuEPbtm3L8+1btmwpb2/vm5jo+l1+8cnIyFBgYGC2scDAQB05csSKWAXi6+ur0aNHq0WLFjmO79ixQwMHDizkVAXXqFEj/fTTT6pRo4aCgoKUkpKSremekpLi8v++/pe/v7/27t2brelev359/fTTT+rQoYP2799vXbgCaNq0qd588029+uqrmjJlisLCwhQXF6epU6dKkj744AM1aNDA4pR55+fnpyNHjjib7t27d1e5cuWc42lpafLy8rIoXcE0bNhQX375pUaPHi1J+n//7/+pdOnSCgoKkvR/TXi7qFChgubMmaNJkybptttu0z/+8Q89+OCDVscqsPbt22vYsGH64osvrnoNOnTokEaOHJnty2AA/pq71avBwcFauXJlrk33X375RcHBwYWcquDcrV6VpKNHj2a7HqWfn58WLVqkLl26qGvXrvrkk08sTJc/7jSXy9LS0lShQgVJf36hslSpUtl+ZypXrqxDhw5ZFS/fvv/+e7377rtq3ry5/vnPf+quu+6yOtJ1c8c5Xf6c4dChQ1e9H6pfv75tvth/WYsWLfTNN9+oTp06qlGjhtavX5/tA9ikpCTn7xmA3Nm5Tq1atap++eUXVa1aVWvWrJHD4dCvv/7qbIqtXr3a+aV4VxYQEKCRI0dq5MiRWr58uaZMmaKhQ4dq6NChLvtldzu/ptj5Nd7udbGd33d5eXll+8KAh4eHLl26pIsXL0qSWrVqpd27d1uU7q/5+vrq2LFjqlatmk6ePKmLFy/q2LFjzvFjx46pdOnSFibMnbvUfHZ+3rweNN1taMmSJVZHuOE6duyoYsWK6fTp09q+fbuzWJSkPXv2yN/f38J0+XN5dXG7du1yHC9XrpzsdIKJl156SY888oiKFy+uZ599VkOHDtWxY8dUt25dbdu2Ta+88or69u1rdcx8adOmjWbNmqW2bdtmO16vXj39+OOPat++vUXJCmbcuHG68847FR8fL39/fy1evFiPPfaYgoOD5eHhoRMnTuibb76xOmaeNWrUSGvWrHH+Lk2fPj3b+Jo1a1S3bl0rohXYa6+9pujoaM2bN08lS5bUypUr9fbbbzvHFyxYkO3LLHbx1FNPqV27durTp4+t/o39rw8//FBdu3ZV5cqV1aBBAwUGBsrhcCg1NVUbN25UvXr1NH/+fKtjArbibvXq888/r0GDBikxMVGdO3fO9jyxaNEiffLJJ5o4caLVMfPM3epVSapSpYq2bNmisLAw5zFfX18lJCQoMjJS99xzj4Xp8sed5nJZSEiI9uzZ41yZ99Zbb2VbaXXkyBGVL1/eqngFMnToUHXo0MFZB7377rtWR7pu7janl156ST4+Ps6VNleu5Dt69KjLftCamzfeeENRUVFKT0/Xgw8+qOHDh2vHjh3O9+bvv/++Ro0aZXVMwOXZuU4dNGiQ+vfvr08++USJiYl655139OKLL2rr1q3y8PDQpEmTNHz4cKtj5ii31b5t27ZV27Zt9f7772vmzJmFnCrv7P6aYtfXeLvXxXZ+39WmTRu9/PLLmjZtmkqUKKEXX3xR1atXdzZ7Xb1+79Spk4YMGaJnnnlGM2fOVJcuXTRq1CjFx8fL4XBoxIgRzrNuuRp3qfns/rxZUDTdYblXXnkl2/7/nt7pm2++uao56sr69OlzzVOLBgUFXTVnVxYdHa3JkycrJiZGBw4ckDFGTzzxhKQ/v/E2aNAgjRs3zuKU+fPCCy8oMTExx7H69etr8eLF+s9//lPIqQquefPmSklJ0bZt21S7dm2VLl1aS5Ys0RdffKFz586pc+fOua7Mc0VffPGFPDw8ch0PDAzUmDFjCjHR9evYsaN+/fVXzZw5UxkZGfr73/+uzp07O8eff/55Pf/88xYmLLh69erp119/1QsvvKAGDRq4zAqA/KhSpYrWr1+vhQsXatWqVUpNTZUk3XbbbRo3bpwiIyOv+W8SgPsbPHiw/Pz89O677+pf//qX8/R/np6eatq0qT777LNsp0pzde5Wr0pSZGSk4uPj1bVr12zHS5curYULF2Z73XV17jSXyzp16qStW7c6P9h66qmnso0nJCQ4P5S0k8aNG2vt2rUaOnSomjRp4rIfmuaHu8zpypWs9erVU3Jycrbx7777LtuX/e2gZcuW+v777zVs2DCtXr1akpzvi0JCQhQbG6vnnnvOyogAbrKYmBhVrFhRq1at0oABA3T//fc7T9t79uxZDR061HmGPVfzV68nZcqUcX7e6Grc5TXFjq/xdq+L7fy+6x//+IciIyNVrlw5ORwOlSpVSl999ZVzfMuWLerfv791Af/CP/7xDz388MMaNGiQ2rZtq5kzZ2r06NGqV6+eHA6HatSooSlTplgdM0fuUPO5y/NmQXBNdwB5cunSJa1bt067du1SVlaWgoOD1bRpU5e81hIAAMDNcuHCBR09elTSn5esKV68uMWJIEknTpzQgQMHcn3jnpaWpsTExFxXmbgSd5pLXiUnJ6tkyZK2ukzD/5o3b54WL16sUaNGZVvFb2fuOKfLdu3apRIlSqhy5cpWRymQI0eOZHtvfuWl0wAAhcuOryl2eY0vinWxKzl79qx+/vlnZWRk6Pbbb7fV2Yhz88cff+jcuXOqU6eOihVz/TXJ7lrz2fF5M69ousNlJScnq0qVKrZ48oP9HD58WJs2bVLTpk1VpkwZHTp0SNOmTVNWVpaio6PVsGFDqyMWWYmJiWratKnVMQpVenq6EhMTdccdd1gdpUBOnjypr776Snv27FFoaKh69+6tsmXLWh3rhrH74wMAAAAAAAAAuLk4VypcVu3atbVjxw6rYxTIuXPnNHXqVD322GOKiorSXXfdpWeeeUY//vij1dEKxBij5ORkXbx4UZKUmZmpmTNn6rPPPnOu9LKTJUuWqHr16urYsaPq1Kmj33//Xc2aNdMnn3yiTz/9VM2bN1dCQoLVMfPswoULGjlypG655Rbddtttio+PzzZ+6NAheXp6WpQu/5o3b64aNWpo7Nix2r9/v9VxCsXOnTvVvn17q2PkWa9evTR79mxJ0ubNm1WzZk2NHj1aixYt0t///nfVqVNHW7ZssTjljWO3xwdA4fvjjz/UoUMHq2Pk2759+5SWlnbV8QsXLmjZsmUWJLo+x44d0+LFi3X8+HFJf14n7s0339Rrr73mFq9L1atXt+37o/914cIFzZ07V2+//bY+//xzpaenWx0pX/bt25ftfdDy5cv10EMPqW3btnr44Yf1yy+/WJiuYN555x2lpKRYHeOG+uabb/TKK684H4+ffvpJXbt21Z133qnJkydbnK5g3O2zBgC4bO/evXrsscesjnFNdq6d3a1OtmtdbOca2G7Z7Vyvu0td7o61eF6w0h2Wu/fee3M8/vXXX6tDhw7O05dfbvC4up07d6pTp05KS0tTiRIllJqaqq5du+ro0aNau3at7r33Xk2fPt02K/i3bdumLl26aO/evapevboSEhLUu3dvbd26VcYY+fj4aOXKlapZs6bVUfOsTZs2atKkicaPH6+PPvpI7733nrp37664uDhJ0ogRI7Ry5Ur9/PPPFifNm9jYWH300Ud6/vnndfLkScXFxen+++/Xv/71L0l/Nt2Dg4OVlZVlcdK88fDw0IABAzRv3jwdO3ZMXbp00YABA9StWzdbfXkgP9avX69bb73VeY1gV1exYkXn733Xrl1Vvnx5xcfHq0SJErpw4YKeeuop7d27VwsXLrQ66g1ht8cHQOGz2/PEwYMH1b17dyUmJsrhcOihhx7SP//5T5UuXVrSn7VDSEiIbeYjSb/++qsiIyN1+vRplStXTosWLVLv3r1VrFgxGWO0f/9+rVixwhbXDX///fdzPD5s2DCNHDlSQUFBkqRnn322MGNdl1atWum7775TuXLldOTIEXXs2FHbtm1TaGio9u7dq4CAAK1cuVKVKlWyOmqetGrVSi+99JKioqL09ddf695779Vdd92lunXravv27fr22281e/Zs3XXXXVZHzTMPDw95eHioffv2GjBggO655x6VKFHC6lgF9tFHH+mZZ55R48aNtWPHDn344Yd66qmndP/998vT01OfffaZxo0b5/LXw7ySu33WAABXcuV62u61s53rZLvXxXaugf83e4cOHbR9+3ZbZJfsXa+7Q13ujrV4XtF0h+U8PDx0xx13KCwsLNvxzz77THfffbfKlSsnSVet3nVVXbt2VdWqVfXhhx/Kw8ND48eP17Jly/Tdd99px44dioyMVL9+/RQbG2t11Dzp0aOHjDF64403NHXqVCUkJKhmzZr66quvZIzRfffdJ19fX/373/+2OmqelS1bVuvWrVONGjV08eJFeXt7a82aNWrSpIkkaceOHWrevLlOnjxpac68qlmzpt59911nkfDHH38oKipKrVu31tSpU3X48GGXLv7/l4eHh1JTU1WhQgV9/fXXmjp1qhYuXCh/f3/169dPjz32mGrXrm11zHypUKHCNccvXbqktLQ02zxGPj4+2rBhg2rUqKGQkBDNnz9f4eHhzvHt27frtttus83vkLs9PgBuvNw+7Lls//79+sc//mGb54l+/fpp+/bt+uCDD3Ty5EmNGjVKxhgtWrRI5cuXt90X9iSpc+fOqlatmiZMmKB//etfeu+993TnnXfq448/liQNGDBAx44d05w5cyxO+tc8PDxUqVKlqxpnKSkpCgkJUfHixeVwOLRr1y6LEubf5fouICBATz75pNasWaPvv/9eQUFBOnbsmO6++27VqVNHU6ZMsTpqnpQpU0a///67qlWrpttvv1333HOP/va3vznH4+LiNHXqVK1bt87ClPnj4eGhqVOnau7cufruu+9UpkwZPfzwwxowYIAaNGhgdbx8q1evnoYOHaonnnhCixcvVteuXfXOO+9o8ODBkqRPP/1Ub731ljZv3mxx0rxzt88aABQt8+bNu+b4rl27NHz4cJesp+1eO9u5TrZ7XWznGtjO2SV71+vuUJe7Yy2eZwaw2JdffmkqV65spk6dmu14sWLFzKZNmyxKVXA+Pj5m+/btzv2MjAxTvHhxc/ToUWOMMXPnzjXVqlWzKl6+VaxY0fz222/GGGPS0tKMw+Ewy5cvd46vXLnSVK1a1aJ0BePv7282btxojDEmPT3deHh4mF9++cU5vn79euPv729VvHzz9vY2ycnJ2Y7t37/f1K5d2zz00ENm//79xsPDw5pwBeBwOMyhQ4eyHdu3b5957bXXTPXq1Y2Hh4dp27atRekKxsfHxwwfPtx8+umnOW6vvvqqrR6jFi1amMmTJxtjjAkPDzdz5szJNp6QkGCCgoIsSFYw7vb4ALjxHA6HCQkJMdWqVctxCwkJsdXzREhIiFm9erVz//z586Z79+6mSZMm5tixYyY1NdVW8zHGmPLly5vNmzcbY4zJzMw0Hh4e2ea4bt06U6lSJavi5cuTTz5pmjRp4pzPZXZ9f2RM9vquVq1a5ttvv802vnjxYlu9RypbtqxZv369McaYgIAA558v27lzp/Hx8bEiWoFd+RgdOnTIvPnmm6ZOnTrGw8PDNG/e3EyePNmcPn3a4pR55+3tbVJSUpz7xYsXNxs2bHDuJycn2+4xcrfPGgAULQ6Hw3h4eBiHw5Hr5qr1p91rZzvXyXavi+1cA9s5uzH2rtfdoS53x1o8r7imOyz3wAMPaMWKFZo6dap69uypEydOWB3pupQrV05nzpxx7p89e1YXL150ngKkUaNGOnjwoFXx8i0tLc25CrRUqVIqVaqUgoODneOVK1fWoUOHrIpXIK1bt9YLL7ygn3/+WUOHDtWtt96qN954Q+np6Tp79qxef/11NWvWzOqYeRYUFKQ//vgj27GQkBD99NNPWrNmjfr162dRsoJxOBxXHatUqZJeeukl/fHHH0pISFCVKlUsSFZwTZo0UZUqVdSvX78ct+7du1sdMV9eeuklvfDCC/r000/17LPPaujQoZoyZYpWrlyp+Ph4Pf744+rbt6/VMfPM3R4fADdeaGio3n33XSUnJ+e4zZ8/3+qI+XLq1CmVL1/eue/l5aX//Oc/qlatmtq3b6/Dhw9bmK5gMjMz5e3tLUkqXry4fHx85O/v7xz38/PTsWPHrIqXL//617/0yiuvqEuXLs7LH7mDyzXeyZMnrzrLWVhYmK3eI7Vr105ffvmlJCk8PFxLlizJNr548WKXPdVmXgQEBGjkyJHasmWLlixZ4lypcuX7QFfn5+fnvBbmgQMHdPHiRe3Zs8c5npKS8pdnO3I17vZZA4Cb47PPPrvqMyJXEBwcrFmzZikrKyvHzRVXm15m99rZznWyO9TFdq6B7ZzdXep1u9bl7liL5xUXeoJLCA0N1dKlS/Xqq6+qcePG+vjjj3NsvNlB586dNWzYMH300Ufy8vLSqFGj1KRJE+e16ffs2aOAgACLU+ZdSEiI9uzZo6pVq0qS3nrrrWz5jxw5kq3wtIO3335bXbt2Vdu2bVWvXj0lJCToqaeecl7KoHz58lqwYIG1IfOhQ4cOmj59ujp27Jjt+OXGe0REhDXBCsj8xVVPOnbseNVcXV10dPQ1T7VeoUIFPfLII4UX6DpFR0dr8uTJiomJ0YEDB2SM0RNPPCHpzzefgwYN0rhx4yxOmXfu9vgAuPGaNm2qxMRE3XfffTmOOxyOv3z9ciXVq1fX77//rpo1azqPFStWTF999ZV69+7tkte1+ytVqlTRrl27VK1aNUnSjBkzsn0QcfDgwWwfLrq6Hj16qHnz5nrkkUc0f/5821xq61r69+8vLy8vXbhwQSkpKapXr55z7ODBg85a3A7Gjx+vtm3b6sCBA2rTpo1Gjx6tNWvWqG7dutq2bZtmzpypjz76yOqY+ZLb+++2bduqbdu2ev/99zVz5sxCTlVw3bt31+OPP65+/fpp3rx5euSRRzR8+HB5eHjI4XBoxIgRioyMtDpmvrjbZw0Abo7+/furePHievLJJ/XBBx9YHcepadOmWrdunXr06JHjuCvX03avne1eJ9u9LrZzDWzn7Hau192hLnfHWjyvuKY7XM7PP/+svn37KiUlRRs2bMj2ZG4Hhw8fVvfu3bV69Wo5HA5VrVpVs2fPdl7v+D//+Y8OHjyoZ555xuKkeTNo0CA1a9ZMAwYMyHF8/PjxWr58ue1WeEnSsWPH5Ofn59z/8ccfde7cObVs2TLbcVeXkpKirVu3qkuXLjmOHzx4UAkJCbZZ8b506VK1bt36qus1wfVcunRJ69at065du5SVlaXg4GA1bdrU+cEfALiLzZs36+zZs7meCefChQs6cOCAQkNDCzlZwfztb39TUlKSFi5ceNXYxYsX1bNnT3377bcueU3N3Lz66quqXbu2HnjggRzHR48era1bt2rWrFmFnOz6GGM0fvx4vf/++zpy5Ih+//13270/kqRHH300237Xrl3Vu3dv5/6IESO0YcMGW33x9Y8//tDf//53zZ8/X2lpaZL+/AC+efPmGjFiRK5NBVd15XU73UF6erpiYmK0atUqtWnTRu+//77ee+89jR49WhcuXFC7du00c+ZMW83X3T5rAHDz7N69WwsXLtTAgQOtjuK0fPlypaen684778xxPD09XWvXrlW7du0KOdlfs3vt7C51sh3rYjvXwHbOfpld63V3qMvdsRbPK5rucElpaWn6448/VLduXeep0uxmx44dysjIUJ06ddy6eZicnKySJUu6/ClNAAAA8KeLFy/q7NmzKlOmTI7jly5d0r59+2zzJYK8OHv2rDw9PeXl5WV1lAJJTEzUihUr9Mgjj9juLFN5kZ6eLk9PT5UsWdLqKPlmjNHhw4eVlZUlf39/FS9e3OpIuIbz58/rwoULtv6SaFH5rAEAXIW71852q5PdqS62cw1sp+zU667DHWrxv0LTHQD+x4kTJ/TNN9/Y7nTSWVlZ8vDwyPH4vn37nJcIsAt3m48xRrt371aVKlVUrFgxZWZmas6cOcrIyFDXrl1d+lReOXG3+eSkQ4cOio+Pt+0bZwAAAACA+0lLS1NiYqJSU1PlcDgUGBiopk2bqnTp0lZHAwCgSKPpDuC6HDp0SP/617/08ssvWx3lhlm/fr1uvfVWlz0t1P86ffq0BgwYoG+++UZlypTRoEGD9PLLL8vT01PSn49RSEgI87HQtm3b1KVLF+3du1fVq1dXQkKCevfura1bt8oYIx8fH61cuTLb9cFcmbvNZ968eTkev/fee/Xee++pSpUqkqS77767MGMBAAAAAOB08eJFDR8+XB9//LHOnz+vEiVKyBijCxcuqGTJknryySf19ttvs4oTAACL0HQHcF3s1qCW/mzqXsvvv/+udu3a2WZOzz33nBYsWKAxY8bo5MmTeuONN9SgQQPNnj1bJUqU0KFDhxQcHKysrCyro+aJu81Hknr06CFjjN544w1NnTpVCQkJqlmzpr766isZY3TffffJ19dX//73v62OmifuNh8PDw85HA5dqyRyOBy2eU4AAAAAALif5557TrNmzdI777yjLl26qFy5cpKkkydPauHChRoxYoTuvfdeTZw40dKcAAAUVTTdAVzT77//fs3xrVu36sEHH7RVM+pygy03xhhbNdhCQ0M1bdo0RURESJKOHTum6OholS1bVvPmzdPJkydttTLc3eYjSQEBAUpISFCTJk2Unp4uX19fLVu2TG3atJEk/fLLL3rggQeUkpJicdK8cbf5REVFydPTU1OnTlVAQIDzePHixbV+/XrVq1fPwnQAAAAAAEgVK1bUzJkz1aFDhxzHf/zxRz3wwAM6cuRIIScDAACSVMzqAABcW5MmTXJdAXr5+LUa2K7I19dXo0ePVosWLXIc37FjhwYOHFjIqQru6NGj2a457efnp0WLFqlLly7q2rWrPvnkEwvT5Z+7zUf683prFSpUkCSVKlVKpUqVUnBwsHO8cuXKOnTokFXx8s3d5vP999/r3XffVfPmzfXPf/5Td911l9WRAAAAAADI5ty5c/L398913M/PT+fOnSvERAAA4EoeVgcA8uKzzz7TH3/8YXWMG2bPnj22WaXr5+enjz/+WMnJyVdtu3bt0rfffmt1xHy79dZbJUnt2rXLcWvevPk1TzPtaqpUqaItW7ZkO+br66uEhASdO3dO99xzj0XJCsbd5iNJISEh2rNnj3P/rbfeyrai+siRIypfvrwV0QrE3eYjSUOHDtW8efP0t7/9TQMHDtTZs2etjgTAZqhXXZ87zcmd5nKZu83J3eYjud+c3G0+knvOCcD/ad++vYYNG5bjl9wPHTqkkSNH5roK3g6WLVumU6dOWR2jQOz+/Gvn/HbOLtk7v52zS/bOb+fsl7nDHHJC0x220L9/f9WrV0/PPPOM1VFuiGrVqqlevXqaPXu21VH+UtOmTXXgwAGFhobmuFWqVMlWDWpJ6tOnj0qWLJnreFBQkF555ZVCTHR9IiMjFR8ff9Xx0qVLa+HChdecqytyt/lIUqdOnbR161bn/lNPPSVfX1/nfkJCgvPLIHbgbvO5rHHjxlq7dq0cDoeaNGliu+c2ANaiXnV97jQnd5rLZe42J3ebj+R+c3K3+UjuOScA/+fDDz/UoUOHVLlyZYWHh+vOO+9UVFSUwsPDnWec+/DDD62OWWARERGqXr263nnnHauj5Jvdn3/tnN/O2SV757dzdsne+e2c/TJ3mENOuKY7bGP37t1auHChrU77nZulS5cqOTlZCQkJmj59utVxrmnOnDlKT0/Xww8/nOP4iRMnNG/ePPXr16+Qk+GyEydO6MCBA6pfv36O42lpaUpMTFS7du0KOVnBuNt88iI5OVklS5bMdop2O3OH+cybN0+LFy/WqFGjsq3iB4BroV51be40J3eay2XuNid3m4/kfnNyt/lI7jknANllZWVp4cKFWrVqlVJTUyX9uXikZcuWioyMlIeHfdfYpaSkKDk5WQsXLtS4ceOsjpMvdn/+tXN+O2eX7J3fztkle+e3c/bL3GEOOaHpDgAAAAAAAAAAAABAARWzOgBw2eXVq6mpqXI4HAoMDFTTpk1VunRpq6Ndt4yMDO3bt0+VK1eWl5eX1XEAAABQAO5cr7qrJUuWqEWLFvL29rY6CnJw6NAhGWMUFBRkdRS4sUuXLuno0aPy9PSUv7+/1XFuKD5rAIqOPXv2qGrVqnm+/f79+1WpUqWbmKhouvya4nA45OfnJ09PT6sjFRnc99bhvrcO97392Pd8M3AbFy9e1HPPPaeAgAC1b99e/fr1U9++fdW+fXsFBAQoJiZGFy5csDpmnn366adatWqVJOn8+fMaMGCASpUqpVq1aql06dIaNGiQMjIyLE4JAACAvHK3erVhw4Z6/fXXtXfvXquj3HSRkZHavXu31TFuqC1btqh69epWx8iX48ePq2fPngoNDdWQIUN06dIlDRgwQMHBwapUqZJatWqlgwcPWh0zz7Zv364rTxq4YsUK9ejRQ/Xr11enTp309ddfW5iu4NavX6833nhDH374oY4ePZpt7PTp03rssccsSlYw8+fP1x133KFSpUopJCREgYGBKleunPr27as9e/ZYHS/f+KwBKNqaN2+uJ554Qr/++muutzl16pQ+/vhjNWjQwOWukZuQkKCLFy8696dPn64mTZqoVKlSuuWWW/T+++9bmO6vzZkzR61bt5aPj49CQkIUHBwsHx8ftW7dWnPnzrU63jXZvW7hvrcO97117HzfS/a//68HTXdYbvjw4Zo1a5bi4+N1/PhxnT9/XhkZGTp+/Lji4+M1e/ZsjRgxwuqYeTZmzBgVK/bnSSReeukl/fjjj/rqq6+0adMm/ec//9HixYv10ksvWZwSAAAAeeVu9eqmTZv03nvvKSwsTHfeeadmzZqV7UNQO7r11ltz3C5evKiePXs6991BZmamUlJSrI6RL88//7y2/3/27js8iup/+/i9CWlAEmqaQAg9BIFIKAlIb4IIVgREuqKhSfuJjaJIUFRQEaUFFAMoTekgJKCi9KJ0EQQkAUEI0gJJzvMHD/t1aSYhZLPL+3Vde8nMmZ29z05MPjtn58y+fRo0aJB27typJ554Qhs3btT333+vH374QampqXr55ZftHTPDQkND9ddff0m6OptCvXr1lJ6erg4dOqhAgQJ67LHHtHz5cjunzJwVK1aoRo0amjVrlkaPHq3Q0FDFx8db2y9evKjp06fbMWHmfPHFF2rXrp2qVauml156SUWLFtXgwYMVExOjI0eOqFq1atq/f7+9Y2YK5xqAe9vu3bvl6+ur5s2by9/fXy1btlSPHj3Uu3dvPfPMM3rggQfk5+enadOm6d1331Xv3r3tHdnGQw89pL///luSNHfuXD377LOqW7euJk2apDZt2mjw4MGaOXOmnVPe3Geffaann35alStX1uzZs/XDDz/o+++/1+zZs1W5cmU9/fTTmjRpkr1j3pIj1y289/bDe28/jv7eS479/t8p7ukOuytatKhmz56thg0b3rR91apVevrpp63/k+Z2np6e2rdvn0qUKKHy5ctr3Lhxat68ubV97dq16tixo8OdKAMAALhXOVu96uLioqNHj2rDhg2aOnWqli5dqoIFC+rZZ59Vt27dFBoaau+Imebm5qbGjRurVq1a1nXGGL355pvq2bOn/Pz8JElDhw61V8QM69+//23b//rrL8XFxSktLS2HEt25oKAgzZkzR1FRUTp+/LgCAwO1fPlyNWnSRJL0448/qm3btjp69Kidk2aMi4uLkpKS5Ofnp8aNG6t8+fIaP368tX3IkCFat26d1qxZY8eUmRMVFaUGDRpo5MiRMsZozJgxGjFihL7++ms1b95cx48fV1BQkMP83IWGhmrYsGFq27atJGnTpk169NFHdfjwYVksFj399NO6fPlyrrsS9HY41wBAujrTxZIlS/T999/r0KFDunjxoooUKaLw8HA1a9ZMlSpVsnfEm/r33846deqoUaNGGj58uLV9zJgx+uqrr257Jb+9lClTRkOGDFG3bt1u2j516lSNHDlSBw4cyOFkGePIdQvvvf3w3tuPo7/3kmO//3eKe7rD7q4Vh7dSuHBhXbx4MQcT3ZmAgAAdOHBAJUqU0Pnz52/oW9GiRXXq1Ck7pQMAAEBmOVu9Kkl58uRRmzZt1KZNGyUlJSk2NlaxsbH64IMPVLNmTXXv3t2hppJOSEhQp06dVKNGDQ0dOlQuLlcndRs5cqSio6NVsWJFOyfMuHHjxqlq1ary8fG5afu5c+dyONGdS05Ott5X1t/fX3ny5FFgYKC1PSgoSGfOnLFTujuza9cujRw50mZdx44dc/3VJ9fbuXOnvvjiC0mSxWLRoEGDVKxYMT3xxBOaOXOmatSoYeeEmfPHH3+oZs2a1uWIiAglJSUpMTFRQUFB6t+/v5o1a2bHhJnHuQYA0tUv4Dz22GN67LHH7B0ly/bv33/DdPKPPPKI3nrrLTslur0///xTderUuWV7VFSUjh07loOJss7R6hbee/vhvbcfZ3rvJcd7/+8U08vD7ho0aKD+/fvr+PHjN7QdP35cgwcPvuVVRblRhw4d9Oqrr+rMmTPq2LGjRowYYT0xduHCBQ0bNky1a9e2c8rsdfjwYYe54iGjXFxc1LBhQ23evNneUbIF/cn9nK1P9AeAM3G2etVisdgsBwQEaMiQIdq3b59WrVql0qVLq0+fPnZKlzW1a9fWli1btG/fPkVGRubqb/3/l7Jly+qll15SfHz8TR+OeHKibNmyWrRokSRp6dKl8vT01IoVK6zty5cvV0hIiL3iZck///yjs2fPysvLSx4eHjZt7u7uDvdFHA8Pjxu++NCuXTtNmTJFTz/9tObPn2+fYFlUsmRJbdq0ybq8ZcsWubi4yN/fX5JUqFAhXblyxV7xsuRePNcAwLns2rVLO3bskJeXl9LT023a0tPTc+25xbCwME2cOPGW7ZMmTVJYWFgOJso8R61beO/th/fefpzhvZcc9/2/U1zpDrv75JNP1KJFCxUrVkyVKlWSv7+/LBaLkpKS9Ouvv6pixYpavHixvWNm2NChQ/Xrr7+qVKlSioiI0Pfffy9/f3/dd999OnbsmAoXLqyVK1faO2a2KlmypMqWLatRo0Y59Ddt/23q1Kn6448/1KdPH/3444/2jnPH6E/u52x9oj8AnImz1au3u8NY/fr1Vb9+fZ09ezYHE2UPHx8fzZw5U7GxsapTp46GDx9+wxcMHEG1atW0efNmPfPMMzdtt1gstz2GudGgQYPUqVMnjR07VkePHtWMGTPUp08frV+/Xi4uLpo3b57ef/99e8fMlHLlykm6+v/T5s2bVbVqVWvbzp07rVf2O4qqVasqPj5e1apVs1nftm1bpaenq1OnTnZKljXR0dHq3r27Nm7cKE9PT02ePFkdO3aUq6urJGn9+vXWY+go7sVzDQCcS6NGjaw1zI8//qiIiAhr29atW1WiRAl7Rbut9957Ty1bttSyZcvUtGlTm88CK1eu1B9//KElS5bYO+ZtOWrdwntvP7z39uMM773kuO//neKe7sgV0tPTtXz5cv38889KSkqSdPWKm8jISDVt2tQ6PaQjWbZsmRYuXKjff/9d6enpCgwMVO3atdW+fXvly5fP3vGy1Zo1a3Tw4EGtWLFCcXFx9o4DAACQ7ZypXu3SpYs+/PBDeXt72zvKXbN//3516NBBmzZtsn4xwlEkJSUpJSVFwcHB9o6SrX744QetX79eUVFRioyM1K5duxQTE6MLFy6oVatWDjWoe/29BwMDA20GcMeNG6fLly9r0KBBOR0ty+bPn6+1a9fqgw8+uGn7zJkzNXHiRMXHx+dwsqybMGGCZsyYoZSUFDVr1kyvv/66PD09JV39HZGWlqYKFSrYOWXm3UvnGgA4jz/++MNmOX/+/CpcuLB1+fPPP5ckPfvsszmaK6MOHTqkCRMm3PSzQM+ePVWyZEn7BrwNR69beO/th/fefhz5vZcc//2/Ewy6A8C/GGMc8oqomzl48KCKFy+uPHmY1CS3Sk1N5fjkcs70OwEA7jXp6en6559/5OPjw+9yAAAAAABwVznO5RhwSocPH87U9n/++eddSoJ7SUpKigYMGKB69erp3XfflSS99dZbyp8/v/Lnz6/27ds75JSq1ytfvrz2799v7xhZsnHjRnXo0EEhISHy8vJS3rx5FRISYr1izdEsW7ZMv/zyi6SrAwBvvfWW7rvvPnl4eKhYsWKKiYlxuGliExMTNWPGDC1ZskSXL1+2aTt//rxGjBhhp2SZd6/8TgCQNc5er/7xxx9av369NmzYcMMVSI7OxcVFvr6+DLgjxxhjbrhHraObNm2akpOT7R0j2zhbfwDAkaSlpengwYPWv5UpKSn66quvNGvWLB0/ftzO6eBI+HuOzDh8+LDWr1+vTZs26eTJk/aOk2FpaWk2yxs2bNDPP/+slJQUOyW6M/v379eqVav022+/2TvKXcWgO+yqevXq6tGjhzZs2HDLbZKTkzVp0iRVqlRJ8+bNy8F0WbNixQqlpqZal+Pi4lS1alXly5dPZcqU0YcffmjHdFmzfft2vfXWW/rkk09u+MN09uxZde3a1U7JsmbIkCGaNWuWqlevrtjYWPXq1UuTJk3SZ599psmTJ2vjxo167bXX7B0zwx577LGbPtLS0tSnTx/rsqNYsGCBateurb///lt9+/bV1KlTNXnyZPXt21enT59W7dq19c0339g7ZqYMGDBA//zzjyRp9OjRGjt2rAYOHKjFixdr0KBBGjt2rN555x07p8y4jRs3qmLFioqOjtYTTzyhSpUqaefOndb2c+fOafjw4XZMmDnO9jsBQPZyxnpVkj744AMVL15cpUqVUmRkpGrVqqVSpUqpePHiGjt2rL3jZbvt27db7+XsCBYvXqzu3btr8ODB2rNnj03b6dOn1bBhQzslyzpn6lNqaqpee+011atXT0OHDpUkvfvuu8qfP7+8vLzUqVOnG76U6Kiee+45HTt2zN4xso0j98cZzzUAuHds375dxYoVU5kyZRQeHq6jR48qIiJCXbt2VY8ePRQaGnrbetuevL291a1bN61bt87eUbLEGf9+ONLfc2eqgf/NET5fffLJJwoODlZISIiioqJUs2ZN+fv7q06dOtq8ebO9493SoUOHVK1aNXl4eKhly5Y6e/asmjRpolq1aikqKkoVK1bUvn377B3ztmJiYrR69WpJV3/OGzdurPLly6tJkyYqX768HnroIZ05c8a+Ie8WA9jRqVOnzIABA0zBggWNn5+fadGihenevbvp1auX6dChgwkPDzfu7u4mKirKLFmyxN5xM8TFxcUcP37cGGPMnDlzjKurq+ndu7f58ssvzYABA4yHh4eJi4uzc8qMW758uXF3dzdhYWGmRIkSpkiRImb16tXW9qSkJOPi4mLHhJlXvHhxs3LlSmOMMQcOHDAuLi5mwYIF1vYVK1aY4OBgO6XLPIvFYurVq2c6d+5s83BxcTFt2rSxLjuKsLAwM2rUqFu2x8TEmIoVK+Zgojvn6elpDh8+bIwxplKlSmb27Nk27YsWLTJlypSxR7Qsady4senatatJS0szZ8+eNS+++KIpXLiw2bJlizHG8X4vONvvBADZyxnr1REjRhgfHx8TExNjtm7dao4dO2b+/PNPs3XrVhMTE2N8fX3Nm2++ae+Y2Wrbtm3GYrHYO0aGfPnll8bV1dW0bNnS1KlTx3h6epoZM2ZY2x3t76wxzten1157zfj7+5v+/fubihUrmp49e5rixYubGTNmmM8//9wUK1bMjB492t4xM6VgwYI3fVgsFuPr62tddhTO1h9jnO9cA4B7S9OmTc0TTzxhfvnlF9O3b19TsWJF8+STT5rLly+bK1eumGeeecY0btzY3jFvymKxmLCwMGOxWEyFChXMmDFjrL+PHYEj//1w9L/nzlYD/1tu/3z17rvvmsDAQDN27Fjz6aefmtDQUDNixAizdOlS07FjR5M3b16zceNGe8e8qccff9zUq1fPLFy40Dz11FOmdu3apn79+ubo0aPm2LFjplmzZqZNmzb2jnlbJUqUMNu3bzfGGNO9e3cTHh5utmzZYi5evGi2bdtmatWqZbp162bnlHcH93RHrnDp0iUtWbJE33//vQ4dOqSLFy+qSJEiCg8PV7NmzVSpUiV7R8wwFxcXJSUlyc/PT3Xq1FGjRo1srvgcM2aMvvrqq1z77c3rRUVFqUGDBho5cqSMMRozZoxGjBihr7/+Ws2bN9fx48cVFBR0w3QnuVnevHm1Z88elShRQpLk7u6urVu3KiwsTNLVb5OFhYXp/Pnz9oyZYbNmzdKgQYM0YsQIdenSxbrezc1N27dvV8WKFe2YLvM8PT21Y8cOlStX7qbte/fuVZUqVXTp0qUcTpZ1QUFBmjdvnmrVqqWAgAAtXbpU4eHh1vb9+/erSpUqunDhgh1TZlyhQoX0888/2xyjd955RzExMVq+fLlKlCjhUL8XnO13AoC7w5nq1eLFi+ujjz5SmzZtbto+f/589erVy6Gmyv+vWX2Sk5OVkJDgEH+bHnjgAXXp0kW9e/eWJM2ZM0ddunTR2LFj1a1bN4esv52tT6VLl9a4ceP08MMP67ffflP58uUVFxentm3bSpK+/vprjRgxwnp7IUfg7e2tevXq6cknn7SuM8aoe/fuGjFihO677z5JUqdOnewVMVOcrT+S851rAHBvKVSokH788UeFhobq4sWL8vb21rp161SjRg1J0s6dO1WvXr1cOfXztd+/iYmJmjx5suLi4nTu3Dk9/PDD6t69u5o3b56rb2fkyH8/HP3vuSPXwI7++SokJESffPKJHnroIUnSvn37FBUVpaSkJOXJk0d9+/bV7t27tWLFCjsnvZGfn59WrFihqlWrKjk5WQULFtTatWtVp04dSdKWLVvUokULJSUl2TnprXl6emrv3r3WmQamT5+uunXrWts3b96sVq1aOcyMFZmRx94BAOnq/4SONgV2Ruzfv/+GKXoeeeQRvfXWW3ZKlHk7d+7UF198IUmyWCwaNGiQihUrpieeeEIzZ860FseOpESJEvrpp59UokQJbdy4URaLRRs2bLAOsK1fv95atDmCp59+WpGRkXrmmWe0aNEiTZ48WQULFrR3rCwrXbq0FixYoMGDB9+0/ZtvvlGpUqVyONWdefTRRzVy5EgtWLBArVu31ieffKKJEydaP5R9/PHHqlq1qn1DZtL1X3oYPHiwXFxc1LRpU02dOtVOqbLG2X4nALg7nKlePXXqlMqXL3/L9nLlyun06dM5mOjOLVy4UE2aNJG/v/9N23PryaCb2bdvnx5++GHr8hNPPKEiRYrokUce0ZUrV/Too4/aMV3WOFufjh07pipVqkiSypQpI3d3d+uyJEVEROiPP/6wV7ws2bp1q9q3b6/Vq1dr/Pjxyp8/vySpR48eatOmjcN9kdfZ+nM9ZzjXAODeYoxRnjxXhyKu/68kubq6Wu/1nltVqVJFH330kd577z3NnTtXU6ZM0cMPP6ygoCB16dJFI0aMsHfE/+Rofz8c/e+5I9fAjv756sSJEwoNDbUuly1bVsnJyfrrr78UGBiorl27Wgexc5tLly7J19dX0tUvnri6usrb29va7uPjk+sv3AoODtavv/6q4OBgWSwWm9/30tXf+c56cROD7sBdsGvXLiUlJcnLy+uGgjE9PT3X/1H6Nw8Pjxvur9GuXTu5uLjo6aef1nvvvWefYHegZ8+e6ty5syZPnqzNmzfrvffe0yuvvKI9e/bIxcVFEyZM0IABA+wdM1OCg4O1Zs0aDR8+XFWqVNGkSZNy9bdsb2fEiBF6+umntWbNGjVt2lT+/v6yWCxKSkrSypUrtWLFCs2aNcveMTPl7bffVuPGjVWhQgVFRkbq66+/1sqVK1WuXDn99ttvOnXqVK78ZuWtVKpUSevWrVPlypVt1g8cOFDGGLVr185OybLGGX8nAMDt1KhRQyNHjtS0adNu+PCbmpqqt99+2+G+WBkaGqrHH39c3bp1u2n7tm3btGjRohxOlTU+Pj46fvy4QkJCrOvq16+vhQsX6uGHH9bRo0ftmC5rnK1Pvr6+OnPmjIoXLy7p6lVM/z4RlpKS4nC1eJkyZbRu3Tq9+uqrqlq1qqZPn67atWvbO1aWOVt/rnGmcw0A7i3VqlXT6NGjNXz4cE2ZMkUhISH6+OOPrV/a/+ijj3LtzFHX/013d3dXu3bt1K5dOx06dEhTpkzRtGnTcvWgu6P+/XD0v+eOXAM7+uercuXKaeXKlerRo4ckKT4+Xu7u7goICJB09Uv1ubVeDwsL09SpU/Xmm29q+vTpKly4sGbNmmX9ku/MmTNvOUNsbtGjRw8NGjRI5cuXV69evTRw4EB98cUXKl26tA4ePKiXXnpJTZs2tXfMu8N+M9sDzslisRgXFxdjsViMxWIxY8eOtWmPi4tzqPtRN2nSxLz77rs3bYuLizNubm4Oee+ZGTNmmF69eplZs2YZY4yJj483Dz74oKlWrZoZNmyYSUtLs3PCrPvhhx9MSEiIcXFxMTt37rR3nCxZt26dadu2rSlRooRxd3c37u7upkSJEqZt27Zm3bp19o6XJZcvXzYTJkwwLVq0MBUqVDDlypUz9erVM6+88oo5cuSIveNlyqRJk8wzzzxzy/bRo0ebkiVL5mCiO+fMvxMA4Ho7duwwAQEBpmDBgqZNmzbm+eefNz179jRt2rQxhQoVMoGBgebXX3+1d8xM6dy5s3nxxRdv2b5r1y6H+dvUunVr88Ybb9y0LT4+3uTLl8/h6m9n61ODBg3MtGnTbtn+1VdfmWrVquVgouy1atUqU6JECTNkyBDj5ubmsJ8prnGW/jjbuQYA95YNGzaYQoUKGRcXF+Pn52d27txpatasaQICAkxQUJDx8vIy3333nb1j3pTFYvnPe7inp6fnUJrMc5a/H47499yRa2BH/3w1e/Zs4+bmZp566inz7LPPmvz585uXX37Z2v7pp5+ayMhIOya8tWXLlhlPT0/j7u5uvLy8zNq1a025cuVM9erVTa1atYyrq6uZPXu2vWP+p969exs3NzdToUIF4+npaVxcXIy7u7txcXExERERJjEx0d4R7wru6Q5ks+unEcyfP78KFy5sXf78888lSc8++2yO5sqq+fPna+3atfrggw9u2j5z5kxNnDhR8fHxOZwMt3Pu3DkdOHBAoaGhcnd3t3ccAACQy/zzzz+aMWOGfv75Z+u94AICAhQZGan27dvLx8fHzgkzJyUlRWlpacqbN6+9o9yxNWvWaN26dRoyZMhN2xMSEjR9+nTFxsbmcLKsc7Y+7du3T25ubjZXLf1bXFyc8uTJo6eeeiqHk2WfU6dOqUePHoqPj9fPP/9821tSOAJn6I+znWsAfxNZvAABAABJREFUcO85d+6c9u7dq/Llyyt//vy6dOmSvvzyS128eFFNmjTJtb+bhw8frkGDBjlsnelMfz8c7e+5I9fAzvD5aunSpZoxY4ZSUlLUrFkz61Xv0tWfJUk2/y/kJgcPHtSWLVsUERGh4OBgHT9+XOPHj9eFCxfUsmVLNWjQwN4RM2T37t1atGiRfv/9d6WnpyswMFC1a9dW48aNc+1MA3eKQXcA0NVC4ujRoypWrJg8PDzsHQc3cfz4cRljrNMAIXdIS0vTyZMn5erqqiJFitg7TrZKSEhQzZo15eXlZe8oAAAAAAAAAIBczMXeAYB7xfDhw3Xy5El7x4CkadOm6eeff5YkXbp0Sd27d1e+fPlUrlw55c+fXz179lRKSoqdU2bO9u3b9dZbb+mTTz654efs7Nmz6tq1q52SZd7ff/+txx9/XMHBwYqOjlZaWpq6d++uwMBA3XfffYqKilJiYqK9Y2ba5MmT1alTJ+u3V2fPnq3Q0FCVKlVKQ4cOtXO6zFu8eLHq1q2rfPnyKSgoSP7+/ipQoIA6duyow4cP2ztetmjatKkOHTpk7xgAkOOuXLniNL/Lncnx48ed7rg422ekv/76S1euXLF3jGyRmpqqlStXasqUKVq1alWuvdfrrTjTz9W/paWl6eDBg9b78aakpOirr77SrFmzdPz4cTunA4Cb27Fjxw33Eb+dnTt3KjU19S4myl6pqalOV6Pldo5eFztyDezo9a4j5nfEutxRf76zA4PuQDY7e/bsDY/k5GSNHDlSv//+u3Wds9i+fbtcXV3tHSNTRo4cqTx58kiSXn/9da1atUpff/21du7cqTlz5ig+Pl6vv/66nVNm3IoVK1SjRg3NmjVLo0ePVmhoqM10/xcvXtT06dPtmDBzBg4cqH379mnQoEHauXOnnnjiCW3cuFHff/+9fvjhB6Wmpurll1+2d8xMGTt2rPr166dz587p1Vdf1ciRIxUdHa1nnnlGXbp00bhx4zRx4kR7x8ywL774Qu3atVO1atX00ksvqWjRoho8eLBiYmJ05MgRVatWTfv377d3zAx74IEHbvpITU3V448/bl0GgHvFrl27bjltdm72ySefqHHjxnrqqae0evVqm7aTJ0+qVKlSdkqWOf/884+eeeYZBQcHq1OnTrp8+bKio6MVGBiokJAQ1atXz+E+TzjbZ6SJEydav6RrjNHbb7+tggULKiAgQAUKFFD//v0zNbiQG/Tp00eLFy+WJB09elT333+/HnroIb366qtq1qyZwsPD9eeff9o5Zcb5+/urUaNGiouLc7gvVN/K9u3bVaxYMZUpU0bh4eE6evSoIiIi1LVrV/Xo0UOhoaHasGGDvWMCwA3Cw8OtUzlnRGRkpEMNqO7cuTPX186OWic7el3syDWwo9e7jpzfGepyZ6zFM4rp5YFsdqsBaGOMLBaL9b+O8I2kjNi+fbvCw8Nz7R+pm/H09NS+fftUokQJlS9fXuPGjVPz5s2t7WvXrlXHjh1vuOdRbhUVFaUGDRpo5MiRMsZozJgxGjFihL7++ms1b95cx48fV1BQkMP8zAUFBWnOnDmKiorS8ePHFRgYqOXLl6tJkyaSpB9//FFt27bV0aNH7Zw040JDQ/X666+rffv22rp1q2rUqKFPP/1U3bp1kyTFxsZq/Pjx2rRpk52TZkxoaKiGDRumtm3bSpI2bdqkRx99VIcPH5bFYtHTTz+ty5cva968eXZOmjFubm5q3LixatWqZV1njNGbb76pnj17ys/PT5IcckYCAMiK7du364EHHnCY2kGSPvzwQw0ZMkRdunRRcnKyvv76aw0dOtR6/0RHqod69+6t7777Ti+++KLmzZsnX19fHThwQJ9++qnS09P14osv6pFHHtHIkSPtHTXDnO0zkqurqxITE+Xn56fPPvtMAwYM0IgRI1SrVi1t2bJFr732mt566y316tXL3lEzLCgoSKtWrVJoaKjatm2rv//+WzNnzlSRIkX0999/q1OnTvL09NTXX39t76gZ4uLiombNmmn16tXKly+fOnTooG7duqlq1ar2jpZlzZo1k4+Pj4YOHarJkydr5cqVCgsL05dffimLxaIuXbooKSlJK1eutHdUALDh4uKi5557LsP3hv7kk0+0a9euXDsQfL3cXjs7cp3s6HWxI9fAjl7vOnJ+Z6jLnbEWzygG3YFsVqxYMVWtWlUDBgyQi8vVySSMMWrcuLEmT55s/eZjvXr17Bkzwx577LHbticnJyshISFXFge3UrJkScXGxqpBgwYqVqyYFixYoIiICGv77t27Vb16dZ07d86OKTPO19dXW7ZsUenSpa3rZs6cqR49emjmzJmqUaNGri2ebyZfvnzatWuXgoODJUnu7u7asmWLKlWqJEk6ePCg7r//foc5PpKUN29e7dmzRyVKlJB09YsfmzdvVlhYmCTpt99+U/Xq1XX69Gl7xsywvHnzateuXSpZsqR1nZubm/744w8FBQVpw4YNatasmcP058cff1SnTp3UoUMHDR061Pq7283NTdu3b1fFihXtnBAAstd/zd5x8eJF7du3z2FqB0kKCwvTq6++qvbt20uSfvrpJ7Vp00bPP/+8RowYkatPJl6vRIkSmj59uho0aKBjx46pWLFi+uabb9SqVStJ0pIlS9S/f3/t2bPHzkkzztk+I7m4uCgpKUl+fn6qUaOG2rVrp5deesnaPnnyZH300Ufavn27HVNmjpeXl3WWi+LFi2vu3LmqUaOGtf3XX39VgwYN9Ndff9kxZcZdO0YuLi6aPn26YmNjtXv3blWtWlXdu3dX+/bt5evra++YmVKoUCH9+OOPCg0N1cWLF+Xt7a1169ZZj9POnTtVr169e3o6TwC5U/369WWxWDL1nLi4OAUGBt6lRJnj6LWzI9fJjl4XO3IN7Oj1riPnd4a63Blr8YzKY+8AgLPZsWOHunXrpjfffFNffPGF7rvvPkmSxWJRjRo1HG7wZuHChWrSpIn8/f1v2p4bC7L/0qFDB7366qtasmSJOnbsqBEjRiguLk758+fXhQsXNGzYMNWuXdveMTPMw8NDZ86csVnXrl07ubi46Omnn9Z7771nn2BZVLZsWS1atEjR0dFaunSpPD09tWLFCuug+/Lly3P9tF3Xy5s3r86fP29dLlq0qPLnz2+zjSPdr6xkyZLatGmTddB9y5YtcnFxsf6eKFSokEPdH6l27drasmWLnn/+eUVGRiouLs7mSywA4Gx27dqlp59++pZ/TxMTE7Vv374cTnVnDh48qKioKOtyZGSkVq9erUaNGunKlSvq16+f/cJl0okTJ1SmTBlJV69y8PLyUvny5a3tYWFhOnLkiL3iZYmzfUaSZB08OHjwoBo1amTT1rBhQ5uTeo6gXLly2rBhg0JCQuTt7X3DVKf//POPQ81udk2RIkU0YMAADRgwQD/99JMmT56s//u//9PAgQP1+OOP6/PPP7d3xAwzxlhvk3b9f6WrV3Q54jEC4PwSEhLsHeGOOHrt7Mh1sqPXxY5eAzt6veuo+Z2pLnemWjyjGHQHslmhQoU0f/58TZgwQTVq1NCYMWPUrl07e8fKstDQUD3++OPWabCvt23bNi1atCiHU92ZoUOH6tdff1WpUqUUERGh77//Xv7+/rrvvvt07NgxFS5c2KGm5Ktatari4+NVrVo1m/Vt27ZVenq6OnXqZKdkWTNo0CB16tRJY8eO1dGjRzVjxgz16dNH69evl4uLi+bNm6f333/f3jEzpUKFCtqxY4dCQ0Ml6YYPBHv27LG5ajy3i46OVvfu3bVx40Z5enpq8uTJ6tixo3XarPXr16tcuXJ2Tpk5Pj4+mjlzpmJjY1WnTh0NHz4809/EBwBHUalSJdWsWVMvvPDCTdu3bdumSZMm5XCqO1OkSBEdOXLE5u9pWFiYVq9erYYNG+b6e979W+HChfXXX3+pePHikqTWrVurQIEC1vZz587Jw8PDTumyxtk+I0nSsmXL5OvrKy8vL128eNGm7eLFi9armRzFSy+9pIEDB8rf319DhgxRnz599NFHHyk0NFR79+5V3759/3MWtNzkZnVcZGSkIiMj9eGHH2rWrFmaOnWqHZJlXbVq1TR69GgNHz5cU6ZMUUhIiD7++GNrPz766CPrF5UBANnH0WtnR66THb0udvQa2NHrXUfN7wx1uTPW4hnFoDtwl7zwwguqV6+e2rdvr4ULF9o7TpZVq1ZNW7ZsueWgu4eHh3XKbEfh7u6ub775RsuWLdPChQutVwQEBgaqdu3aat++vfLly2fvmBn2wgsvaO3atTdtu1bITZw4MScj3ZEOHTooODhY69evV1RUlCIjIxUaGqqYmBhduHBBEydOdLgvEowePfq2P1OHDx/W888/n4OJ7kx0dLRcXFw0Y8YMpaSkqHPnznr99det7TVq1FBcXJwdE2Zdly5dVKdOHXXo0MGhZh8AgMyoU6eO9u7de8t2b29v1a1bNwcT3bk6depo7ty5evDBB23WV6xYUatWrVKDBg3slCzzKleurI0bN1qnMr3+b+rGjRutX+RzNM7yGUmSTT26atUq1axZ07r8008/OdysOZ07d9bff/+tli1byhijtLQ0NW3a1Nr+yCOP6IMPPrBjwsy53Z0U8+XLp27dut3yM25uNWrUKDVv3lyxsbEqUqSI4uPj1bVrVwUGBsrFxUWnT592+P+vACA3cvTa2ZHrZGepix21Bnb0etdR8ztDXe6MtXhGcU934C67fPmyXn75ZcXHx2vevHkONy12SkqK0tLSlDdvXntHAYAck56ern/++Uc+Pj5c8Q4ADmDHjh3avHmzunTpctP2nTt3as6cORo6dGgOJ8u8v//+Wy4uLjZX8fzb0qVL5eXlpfr16+doruzk6J+R/suiRYvk5uamZs2a2TtKpp05c0YrV67U77//bvPF5LJly9o7WqZMnz5dTz/9dK6++i0rzp07p71796p8+fLKnz+/Ll26pC+//FIXL15UkyZNbKbcBQBAcuw62dnqYmeqgR253pUcI78j1+XOWotnBIPuAPD/GWNkjMm1U8v8l7S0NOv03pK0YcMGpaenKzw8/J78Awfcif379+vw4cMKDg623j8MAAAAAAAAAICbccyRJSCX2rFjh9LT0zO8/c6dOx1m+uLz589r7dq1mj17tubMmaPNmzffdpqQ3Cw1NVWvvfaa6tWrZ/0W57vvvqv8+fPLy8tLnTp10uXLl+2cMuMOHTqkBx54QB4eHmrZsqXOnj2rJk2aqFatWoqKilJoaKj27dtn75iZsnjxYnXv3l2DBw/Wnj17bNpOnz6thg0b2ilZ1nh7e6tbt25at26dvaPkiO3bt9t8ASS3i4mJ0erVqyVd/flq3Lixypcvb71a6KGHHtKZM2fsGxIAsokz1qvO1Cdn6ss1ztYnZ+uP5Hx9crb+SM7ZJwBwBI7++9eR8ztydsmx8ztydsmx8zty9mucoQ93gkF3IBuFh4fr1KlTGd4+MjJShw8fvouJ7lx6eroGDx4sPz8/NWjQQO3bt9dTTz2l6tWrKyQkxKHuQ3PN8OHDNXnyZEVERGjOnDl64YUX9NFHH2nixImaPHmyVq9erbFjx9o7ZoYNHDhQPj4+WrBggfLnz68WLVooNTVVR44c0Z9//qly5crp//7v/+wdM8Pi4uLUunVrJSUl6aefflJ4eLi+/PJLa/vly5e1Zs0aOybMvPPnz2v9+vWqU6eOQkND9d577+nEiRP2jnVXOdKXciZMmKAiRYpIkgYPHqy///5bmzdv1oULF7RlyxadOXNGAwcOtHNKAMgezlivOlOfnKkv1zhbn5ytP5Lz9cnZ+iM5Z58AwBE4+u9fR87vyNklx87vyNklx87vyNmvcYY+3Ik89g4AOBNjjF5//fUM3//cEa6mfuWVV7Ro0SLFxcXJ09NTI0eO1MMPP6xHHnlEcXFxevLJJ/Xtt9+qadOm9o6aYXFxcZo8ebIefvhhvfDCCypfvrzi4uLUtm1bSZKnp6dGjBihwYMH2zlpxqxdu1YrVqxQ1apV9eCDD6pgwYJau3at7rvvPknS22+/rRYtWtg5ZcaNGTNGH3zwgXr37i1JmjNnjrp06aJLly6pW7dudk6XdatXr1ZiYqImT56st99+W6+88ooefvhhde/eXc2bN3eo+4Y/9thjt21PTk52qP4cP35cvr6+kqTvvvtO06dPV3h4uCSpSpUq+vjjj9WqVSt7RgSAbOOM9aoz9cmZ+nKNs/XJ2fojOV+fnK0/knP2CQAcgaP//nXk/I6cXXLs/I6cXXLs/I6c/Rpn6MOdYNAdyEZ169bV3r17M7x9ZGSkvLy87mKiO/fFF19o1qxZevDBByVJlSpVUoUKFdS3b1+NGDFCbm5uGjZsmEMNuh87dkxVqlSRJJUpU0bu7u7WZUmKiIjQH3/8Ya94mXbp0iXrgKG3t7dcXV3l7e1tbffx8dGFCxfsFS/T9u3bp4cffti6/MQTT6hIkSJ65JFHdOXKFT366KN2THdnqlSpoo8++kjvvfee5s6dqylTpujhhx9WUFCQunTpohEjRtg7YoYsXLhQTZo0kb+//03b09LScjjRnQkODtavv/6q4OBgWSwW5cljWx65urrq/PnzdkoHANnLGetVZ+qTM/XlGmfrk7P1R3K+PjlbfyTn7BMAOAJH//3ryPkdObvk2PkdObvk2PkdOfs1ztCHO2ExjjT/K4Ac5+Pjo23btqlUqVKSrk437+HhoSNHjiggIEC7du1S9erVHWpAKiAgQCtXrtT9998vSapdu7a++uor65Xhe/bsUc2aNZWcnGzPmBkWGRmpxo0b680331RsbKyGDBmiLl26aNSoUZKkN998U9988402bdpk56QZExQUpHnz5qlWrVo269esWaOHH35Yffv21ahRoxxqYNfV1VWJiYny8/O7oe3QoUOaMmWKpk+f7jBT6VSuXFl9+/a95cwD27ZtU7Vq1RzmGI0ZM0ZTp07Vt99+q2+//VZz5szRF198odKlS+vgwYPq2rWrihQpoq+//treUQEAAAAAAAAAuRD3dAdwW/fff79mzpxpXf7qq6+UP39+BQQESPrfILwjqVixorZs2WJd/vHHH60D7pL0yy+/qGzZsvaIliXDhg3TmDFj5OHhoejoaH399deaN2+eatSoocjISA0fPtxhpsqXpBo1amjp0qU3rK9Xr54WLlyosWPH5nyoO3S777eVLFlSb775pkPNrlCtWjWb/4eu5+HhoRIlSuRgojszcOBANW7cWBUrVtSkSZO0detWlStXTh4eHipTpozOnTunjz76yN4xAQAAAAAAAAC5FFe6A7itVatWqWXLlqpSpYo8PT21bt06vfvuu+rXr5+kq1eILl26VKtWrbJv0EzYt2+f3NzcFBISctP2uLg45cmTR0899VQOJ8u6gwcPasuWLYqIiFBwcLCOHz+u8ePH68KFC2rZsqUaNGhg74gZtmbNGq1bt05Dhgy5aXtCQoKmT5+u2NjYHE6WdcOHD9egQYMyfC+b3C4lJUVpaWlO059rdu/erUWLFun3339Xenq6AgMDVbt2bTVu3Nih7lEPAAAAAAAAAMhZDLoD+E87duzQ7NmzlZKSombNmqlJkyb2jgQAAAAAAAAAAADkCgy6A8B1UlNTdezYMYeaHvt2nK0/yL2OHz+ulJQUp/lZc7b+AAAAAAAAAADuDu7pDuCWduzYofT09Axvv3PnTqWmpt7FRDlj586dt5x63hE5Yn8++eQTNW7cWE899ZRWr15t03by5EmVKlXKTsmyzpn69M8//+iZZ55RcHCwOnXqpMuXLys6OlqBgYEKCQlRvXr1dPbsWXvHzDBn6w8A4H8OHToki8Wibdu22TuK1Z49e1SrVi15enqqatWq9o6T63Tu3Flt2rS5K/suWbKkxo4de1f2DQAAkBXUq46HehXArTDoDuCWwsPDderUqQxvHxkZqcOHD9/FRLgXfPjhhxo0aJAqVKggDw8PtWjRQqNGjbK2p6Wl6Y8//rBjwsxztj698sor2rx5swYOHKjDhw/rqaee0tq1a/X9998rISFBf//9t0aPHm3vmBnmbP0BgNykc+fOslgsiomJsVm/YMECWSwWO6Wyr6FDhypfvnzau3evVq1ala37rl+/vvr165et+7xb7uYJ5mnTpqlAgQI3rN+4caOee+65bH+9O5WQkCCLxaIzZ87YOwoAAPcc6tUbUa9eRb36P9SrQMbksXcAALmXMUavv/668ubNm6HtL1++fJcTZY8HHnjgtu0XL17MoSTZw9n689lnn2nSpElq3769JOnFF19UmzZtdPHiRY0YMcLO6bLG2fr0zTffaPr06WrQoIEef/xxFStWTN98841q164tSRo9erT69++vkSNH2jlpxjhbfwAgt/H09NTo0aP1/PPPq2DBgvaOky0uX74sd3f3LD33wIEDatmypYKDg3Pk9a5njFFaWpry5Ln3TgcULVo0W/d35coVubm5Zes+AQBAzqNetUW9aj/Uq4Bj40p3ALdUt25d7d27V1u3bs3QIzIyUl5eXvaO/Z927dqlypUrq3Xr1jd91KtXz94RM8XZ+nPw4EFFRUVZlyMjI7V69WpNnDhRQ4YMsWOyrHO2Pp04cUJlypSRJAUFBcnLy0vly5e3toeFhenIkSP2ipdpztYfAMhtGjdurICAAJtZXq43bNiwG6auHDt2rEqWLGldvjaN49tvvy1/f38VKFBAw4cPV2pqqgYNGqRChQqpWLFimjp16g3737Nnj6KiouTp6amwsDAlJCTYtO/atUstWrRQ/vz55e/vr44dO+rkyZPW9vr166tXr17q37+/ihQpoiZNmty0H+np6RoxYoSKFSsmDw8PVa1aVcuWLbO2WywWbd68WSNGjJDFYtGwYcNuup9bvd7tcnbu3Flr1qzRuHHjZLFYZLFYdOjQIetVKcuXL1dERIQ8PDz0/fffKyUlRX369JGfn588PT1Vp04dbdy40Zrh9OnT6tChg4oWLSovLy+VLVtWsbGxkqSGDRuqV69eNplPnTolDw8P6210SpYsqbfffltdu3aVt7e3SpQooYkTJ1q3v3b7o/DwcFksFtWvX99mf2PGjFFgYKAKFy6s6OhoXblyxdp2+fJlDR48WPfdd5/y5cunmjVrWo9pQkKCunTpouTkZOv7cO19vn66zjNnzui5556Tv7+/PD09ValSJS1atOimx+Ta8fv000/VunVr5cuXT2+99ZYkacKECSpdurTc3d1Vvnx5ffHFF9bn3OwKqTNnzshisSghIUGHDh1SgwYNJEkFCxaUxWJR586dJV094fzOO++oVKlS8vLyUpUqVTRnzpwMHSMAAJBx1KvUq9Sr1KtAtjAAcI+pVq2a+eSTT27ZvnXrVuPi4pKDie6Ms/WnePHiZu3atTes37lzp/H39zcdO3Z0qP4Y43x9CgoKMps3b7Yut2vXzhw/fty6/Ouvv5qCBQvaI1qWOFt/ACA36dSpk2ndurWZN2+e8fT0NEeOHDHGGDN//nzz74+jQ4cONVWqVLF57gcffGCCg4Nt9uXt7W2io6PNnj17zJQpU4wk06xZMzNy5Eizb98+8+abbxo3Nzdz+PBhY4wxBw8eNJJMsWLFzJw5c8yuXbtM9+7djbe3tzl58qQxxphjx46ZIkWKmCFDhpjdu3ebLVu2mCZNmpgGDRpYX7tevXomf/78ZtCgQWbPnj1m9+7dN+3v+++/b3x8fMzMmTPNnj17zODBg42bm5vZt2+fMcaYxMREExYWZgYMGGASExPNP//8c9P93Oz1/ivnmTNnTGRkpOnRo4dJTEw0iYmJJjU11cTHxxtJpnLlymbFihXmt99+MydPnjR9+vQxQUFBZsmSJWbnzp2mU6dOpmDBgubUqVPGGGOio6NN1apVzcaNG83BgwfNypUrzbfffmuMMebLL780BQsWNJcuXbJmHjdunClZsqRJT083xhgTHBxsChUqZMaPH2/2799vRo0aZVxcXKzv3YYNG4wk891335nExETr63bq1Mn4+PiYnj17mt27d5uFCxeavHnzmokTJ1pfq3379iYqKsqsXbvW/Pbbb+bdd981Hh4eZt++fSYlJcWMHTvW+Pj4WN+Ha+9zcHCw+eCDD4wxxqSlpZlatWqZsLAws2LFCnPgwAGzcOFCs2TJkpseE2OMkWT8/PzMlClTzIEDB8yhQ4fMvHnzjJubmxk/frzZu3evee+994yrq6tZvXq1zc/g1q1brfs5ffq0kWTi4+NNamqqmTt3rpFk9u7daxITE82ZM2eMMca88sorpkKFCmbZsmXmwIEDJjY21nh4eJiEhIT/PEYAACBjqFepV6lXqVeB7MKgO4B7Tt++fU3fvn1v2f7bb7+Z+vXr51ygO+Rs/WnXrt0t+/Prr7+aokWLOtQAtTHO16fmzZubTz/99JbtsbGxJioqKgcT3Rln6w8A5CbXTmIaY0ytWrVM165djTFZP4kZHBxs0tLSrOvKly9vHnzwQetyamqqyZcvn5k5c6Yx5n8nkGJiYqzbXLlyxRQrVsyMHj3aGGPM66+/bpo2bWrz2keOHLGeVDLm6knFqlWr/md/g4KCzMiRI23WVa9e3bz44ovW5SpVqpihQ4fedj83e72M5ry+5rh2EnPBggXWdefOnTNubm7myy+/tK67fPmyCQoKMu+8844xxphWrVqZLl263DTfpUuXTKFChczs2bOt66pWrWqGDRtmXQ4ODjbPPPOMdTk9Pd34+fmZCRMmGGNufnLPmP8d59TUVOu6J5980rRt29YYc7W2tVgs5s8//7R5XqNGjcyQIUOMMVf/dvv6+t6Q+98nMZcvX25cXFys711GSDL9+vWzWRcVFWV69Ohhs+7JJ580LVq0uGU//30S05j/HaPTp09btzl37pzx9PQ069ats9l3t27dTLt27Ywxtz9GAAAgY6hXqVevoV79Xz+pV4GsufduigHgnvfvKXpupnTp0oqPj8+ZMNnA2frz8ssva/PmzTdtCwsLU3x8vM00RY7A2fr05ZdfysXl1neo8ff3d6j7nztbfwAgtxo9erQaNmyoAQMGZHkfYWFhNr+z/f39ValSJeuyq6urChcurBMnTtg8LzIy0vrvPHnyKCIiQrt375Ykbd68WfHx8cqfP/8Nr3fgwAGVK1dOkhQREXHbbGfPntWxY8dUu3Ztm/W1a9fW9u3bM9jD/7n+9TKaMyP7O3DggK5cuWKT1c3NTTVq1LC+Ly+88IIef/xxbdmyRU2bNlWbNm2st8vx8PDQM888o6lTp+qpp57Stm3btH37di1YsMDmNStXrmz9t8ViUUBAwA3H5mbCwsLk6upqXQ4MDNQvv/wiSdqyZYuMMTf0NyUlRYULF/7PfV+zbds2FStW7D/ft+tdf1x2796t5557zmZd7dq1NW7cuEzt93q7du3SpUuXbpga9vLlywoPD5d0+2MEAAAyj3o1c6hXqVepVwFbDLoDAHKVypUr2xS81wsLC1NYWFgOJrpzztanQoUK3bb9oYceyqEk2cPZ+gMAuVXdunXVrFkzvfLKK9Z7AF7j4uIiY4zNun/fE/EaNzc3m2WLxXLTdenp6f+Zx2KxSLp6X8tWrVpp9OjRN2wTGBho/Xe+fPn+c5//3u81xpgb1mXE9a+X0ZwZ2d+19/p2WR966CH98ccfWrx4sb777js1atRI0dHRGjNmjCSpe/fuqlq1qo4ePaqpU6eqUaNGCg4OttlfVo/N7Z6Xnp4uV1dXbd682eZEp6SbnuC9FS8vrwxv+283+zm43ft47aT7v3++b/azfb1r/V28eLHuu+8+mzYPDw9J/32MAABA5lCvZg716s2fR71KvYp7160v6wIAJ7Rjx44MFU7X7Ny5U6mpqXcx0Z2hP7m7P5Lz9Yn+5O7+AEBuFxMTo4ULF2rdunU264sWLaqkpCSbEz3btm3Lttf9+eefrf9OTU3V5s2bVaFCBUnSAw88oJ07d6pkyZIqU6aMzSOjJy4lycfHR0FBQfrhhx9s1q9bt06hoaF33IeM5HR3d1daWtp/7qtMmTJyd3e3yXrlyhVt2rTJJmvRokXVuXNnzZgxQ2PHjtXEiROtbffff78iIiI0adIkxcXFqWvXrpnqj7u7uyRlKO+/hYeHKy0tTSdOnLjhfQgICLDu+7/2W7lyZR09elT79u3L1OtfLzQ09LbHvGjRopKkxMREa/v1P9s3ey8qVqwoDw8PHT58+IZ+Fi9e3Lrd7Y4RAADIPOrVrKNevYp6lXoV9y4G3QHcU8LDw3Xq1KkMbx8ZGanDhw/fxUR3hv7k7v5Iztcn+pO7+wMAud3999+vDh066KOPPrJZX79+ff3111965513dODAAY0fP15Lly7NttcdP3685s+frz179ig6OlqnT5+2nnSLjo7W33//rXbt2mnDhg36/ffftWLFCnXt2jXTJ9gGDRqk0aNHa/bs2dq7d69efvllbdu2TX379r3jPmQkZ8mSJbV+/XodOnRIJ0+evOUXy/Lly6cXXnhBgwYN0rJly7Rr1y716NFDFy5cULdu3SRJb7zxhr755hv99ttv2rlzpxYtWnTDydju3bsrJiZGaWlpevTRRzPVHz8/P3l5eWnZsmU6fvy4kpOTM/S8cuXKqUOHDnr22Wc1b948HTx4UBs3btTo0aO1ZMkS6/tw7tw5rVq1SidPntSFCxdu2E+9evVUt25dPf7441q5cqUOHjyopUuXatmyZZnqx6BBgzRt2jR9+umn2r9/v95//33NmzdPAwcOlHT1CqVatWopJiZGu3bt0tq1a/Xaa6/Z7CM4OFgWi0WLFi3SX3/9pXPnzsnb21sDBw7USy+9pOnTp+vAgQPaunWrxo8fr+nTp0vK2DECAACZQ72addSrV1GvUq/i3sX08gDuKcYYvf7668qbN2+Gtr98+fJdTnRn6E/u7o/kfH2iP7m7PwDgCN5880199dVXNutCQ0P1ySef6O2339abb76pxx9/XAMHDsy2qyBiYmI0evRobd26VaVLl9Y333yjIkWKSJKCgoL0448/6v/+7//UrFkzpaSkKDg4WM2bN7e5H2dG9OnTR2fPntWAAQN04sQJVaxYUd9++63Kli17x33ISM6BAweqU6dOqlixoi5evKiDBw/ecn8xMTFKT09Xx44d9c8//ygiIkLLly9XwYIFJV29mmXIkCE6dOiQvLy89OCDD2rWrFk2+2jXrp369eun9u3by9PTM1P9yZMnjz788EONGDFCb7zxhh588EElJCRk6LmxsbF66623NGDAAP35558qXLiwIiMj1aJFC0lSVFSUevbsqbZt2+rUqVMaOnSohg0bdsN+5s6dq4EDB6pdu3Y6f/68ypQpo5iYmEz1o02bNho3bpzeffdd9enTRyEhIYqNjVX9+vWt20ydOlVdu3ZVRESEypcvr3feeUdNmza1tt93330aPny4Xn75ZXXp0kXPPvuspk2bpjfffFN+fn4aNWqUfv/9dxUoUEAPPPCAXnnlFUkZO0YAACDzqFezhnr1f6hXqVdxb7KY629EAgBOrH79+pm+R1FcXFyG7jtkD/Qnd/dHcr4+0Z/c3R8AAHLSkSNHVLJkSW3cuFEPPPCAveMAAAAANqhXAeQkBt0BAAAAAECGXblyRYmJiXr55Zf1xx9/6Mcff7R3JAAAAMCKehWAPXBPdwAAAAAAkGE//vijgoODtXnzZn366af2jgMAAADYoF4FYA9c6Q4AAAAAAAAAAAAAQBZxpTsAAAAAAAAAAAAAAFnEoDsAAAAAAAAAAAAAAFnEoDsAAAAAAAAAAAAAAFnEoDuALDt06JAsFou2bdtm7yhWe/bsUa1ateTp6amqVavaO06u07lzZ7Vp0+au7LtkyZIaO3bsXdk3AAAAAAAAAABAbsWgO+DAOnfuLIvFopiYGJv1CxYskMVisVMq+xo6dKjy5cunvXv3atWqVdm67/r166tfv37Zus+75W5+IWLatGkqUKDADes3btyo5557Lttf704lJCTIYrHozJkz9o4CAAAAAAAAAACcEIPugIPz9PTU6NGjdfr0aXtHyTaXL1/O8nMPHDigOnXqKDg4WIULF77rr3c9Y4xSU1OzbX+OpGjRosqbN2+27e/KlSvZti8AAAAAAAAAAIC7hUF3wME1btxYAQEBGjVq1C23GTZs2A1TrY8dO1YlS5a0Ll+bdvztt9+Wv7+/ChQooOHDhys1NVWDBg1SoUKFVKxYMU2dOvWG/e/Zs0dRUVHy9PRUWFiYEhISbNp37dqlFi1aKH/+/PL391fHjh118uRJa3v9+vXVq1cv9e/fX0WKFFGTJk1u2o/09HSNGDFCxYoVk4eHh6pWraply5ZZ2y0WizZv3qwRI0bIYrFo2LBhN93PrV7vdjk7d+6sNWvWaNy4cbJYLLJYLDp06JD1Kurly5crIiJCHh4e+v7775WSkqI+ffrIz89Pnp6eqlOnjjZu3GjNcPr0aXXo0EFFixaVl5eXypYtq9jYWElSw4YN1atXL5vMp06dkoeHh1avXi3p6lTub7/9trp27Spvb2+VKFFCEydOtG4fEhIiSQoPD5fFYlH9+vVt9jdmzBgFBgaqcOHCio6Othngvnz5sgYPHqz77rtP+fLlU82aNa3HNCEhQV26dFFycrL1fbj2Pl8/vfyZM2f03HPPyd/fX56enqpUqZIWLVp002Ny7fh9+umnat26tfLly6e33npLkjRhwgSVLl1a7u7uKl++vL744gvrc252Rf+ZM2dksViUkJCgQ4cOqUGDBpKkggULymKxqHPnzpKufkHinXfeUalSpeTl5aUqVapozpw5GTpGAAAAAAAAAAAA1zDoDjg4V1dXvf322/roo4909OjRO9rX6tWrdezYMa1du1bvv/++hg0bpocfflgFCxbU+vXr1bNnT/Xs2VNHjhyxed6gQYM0YMAAbd26VVFRUXrkkUd06tQpSVJiYqLq1aunqlWratOmTVq2bJmOHz+up556ymYf06dPV548efTjjz/qs88+u2m+cePG6b333tOYMWO0Y8cONWvWTI888oj2799vfa2wsDANGDBAiYmJGjhw4C37ev3r/VfOcePGKTIyUj169FBiYqISExNVvHhx6/4GDx6sUaNGaffu3apcubIGDx6suXPnavr06dqyZYvKlCmjZs2a6e+//5Ykvf7669q1a5eWLl2q3bt3a8KECSpSpIgkqXv37oqLi1NKSop1/19++aWCgoKsA8iS9N577ykiIkJbt27Viy++qBdeeEF79uyRJG3YsEGS9N133ykxMVHz5s2zPi8+Pl4HDhxQfHy8pk+frmnTpmnatGnW9i5duujHH3/UrFmztGPHDj355JNq3ry59u/fr6ioKI0dO1Y+Pj7W9+Fm73N6eroeeughrVu3TjNmzNCuXbsUExMjV1fXWx4T6ertAVq3bq1ffvlFXbt21fz589W3b18NGDBAv/76q55//nl16dJF8fHxt93PNcWLF9fcuXMlSXv37lViYqLGjRsnSXrttdcUGxurCRMmaOfOnXrppZf0zDPPaM2aNf95jAAAAAAAAAAAAKwMAIfVqVMn07p1a2OMMbVq1TJdu3Y1xhgzf/588+//vYcOHWqqVKli89wPPvjABAcH2+wrODjYpKWlWdeVL1/ePPjgg9bl1NRUky9fPjNz5kxjjDEHDx40kkxMTIx1mytXrphixYqZ0aNHG2OMef31103Tpk1tXvvIkSNGktm7d68xxph69eqZqlWr/md/g4KCzMiRI23WVa9e3bz44ovW5SpVqpihQ4fedj83e72M5uzbt6/NNvHx8UaSWbBggXXduXPnTJ48eUy9evVMqVKljKenp/H09DSurq6mZs2aZuPGjaZVq1amS5cuNvt66aWXjCTz0EMPmUKFCpnZs2db26pWrWqGDRtmXQ4ODjbPPPOMdTk9Pd34+fmZCRMmGGP+d2y2bt1q8xrXjnNqaqp13ZNPPmnatm1rjDHmt99+MxaLxfz55582z2vUqJEZMmSIMcaY2NhY4+vra64XHBxsPvjgA2OMMcuXLzcuLi7W9y4jJJl+/frZrIuKijI9evSwWffkk0+aFi1a3LKfp0+fNpJMfHy8MeZ/x+j06dPWbc6dO2c8PT3NunXrbPbdrVs3065dO2OMuekxAgAAcHSxsbFGks2jSJEipl69embhwoU2206fPt20bdvWlCtXzlgsFpvPDwAAAAAA4H/y2GGcH8BdMHr0aDVs2FADBgzI8j7CwsLk4vK/CTD8/f1VqVIl67Krq6sKFy6sEydO2DwvMjLS+u88efIoIiJCu3fvliRt3rxZ8fHxyp8//w2vd+DAAZUrV06SFBERcdtsZ8+e1bFjx1S7dm2b9bVr19b27dsz2MP/uf71MpozI/uLiYlRamqqEhMT1bdvX4WFhcliseill17SwYMHVb16dU2ZMkW9evXSli1b1LRpUz388MOaMWOGJGnFihXq1KmTpk6dqqeeekrbtm3T9u3btWDBApvXrFy5svXfFotFAQEBNxybmwkLC7O54jwwMFC//PKLJGnLli0yxtzQ35SUFBUuXPg/933Ntm3bVKxYsf983653/XHZvXu3nnvuOZt1tWvXtl6tnlW7du3SpUuXbriVweXLlxUeHi5JeuGFF/T4449bj1GbNm0UFRV1R68LAACQW8TGxqpChQoyxigpKUkff/yxWrVqpW+//VatWrWSJH3xxRdKSkpSjRo1lJ6ebnNLIgAAAAAA8D8MugNOom7dumrWrJleeeUV6z2rr3FxcZExxmbdzU6Yubm52SxbLJabrktPT//PPBaLRdLVacZbtWql0aNH37BNYGCg9d/58uX7z33+e7/XGGNuWJcR179eRnP+1/5+/PFHvf3225KkxYsXq0yZMtZtQkJCFBERoebNm6t27dr6448/tHjxYn333Xdq3Lixrly5opYtW2rx4sXKly+fVq5cqaNHj2rq1Klq1KiRgoODbV4zq8fmds9LT0+Xq6urNm/efMNU8Df7QsKteHl5ZXjbf7vZz8Htjvm1L4n8++c7IyeDr/V38eLFuu+++2zaPDw8JEkPPfSQzTFq1KiRoqOjNWbMmEz0CAAAIHeqVKmSzRcemzdvroIFC2rmzJnWQffly5db662HH35Yv/76q12yAgAAAACQ23FPd8CJxMTEaOHChVq3bp3N+qJFiyopKclmYHLbtm3Z9ro///yz9d+pqanavHmzKlSoIEl64IEHtHPnTpUsWVJlypSxeWR0oF2SfHx8FBQUpB9++MFm/bp16xQaGnrHfchITnd3d6Wlpd12P2+//bZcXV3l5uZmva+6dHUgeNOmTQoNDdWTTz6poKAgFS1aVJ07d9aMGTOsV4THxsaqePHiWrp0qapVq6ZJkyYpLi5OXbt2zVR/3N3dJek/814vPDxcaWlpOnHixA3vQ0BAgHXf/7XfypUr6+jRo9q3b1+mXv96oaGhtz3mRYsWlSQlJiZa26//2b7Ze1GxYkV5eHjo8OHDN/SzePHi1u3+fYzGjh2riRMn3lF/AAAAcitPT0+5u7vbfEHz37NgAQAAAACAW+MTNOBE7r//fnXo0EEfffSRzfr69evrr7/+0jvvvKMDBw5o/PjxWrp0aba97vjx4zV//nzt2bNH0dHROn36tHWQODo6Wn///bfatWunDRs26Pfff9eKFSvUtWvXTA8IDxo0SKNHj9bs2bO1d+9evfzyy9q2bZv69u17x33ISM6SJUtq/fr1OnTokE6ePHnDVeVpaWmKj49XRESEXnzxRQ0aNEjLli3Trl271KNHD124cEHdunWTJL3xxhv65ptv9Ntvv2nVqlXauXOnChUqpKJFi6pTp0767bffVLduXcXExCgtLU2PPvpopvrj5+cnLy8vLVu2TMePH1dycnKGnleuXDl16NBBzz77rObNm6eDBw9q48aNGj16tJYsWWJ9H86dO6dVq1bp5MmTunDhwg37qVevnurWravHH39cK1eu1MGDB7V06VItW7YsU/0YNGiQpk2bpk8//VT79+/X+++/r3nz5mngwIGSrl5RX6tWLcXExGjXrl1au3atXnvtNZt9BAcHy2KxaNGiRfrrr7907tw5eXt7a+DAgXrppZc0ffp0HThwQFu3btX48eM1ffp0SbbHaOfOnVq0aFG2fMEDAAAgN0hLS1NqaqquXLmio0ePql+/fjp//rzat29v72gAAAAAADgcBt0BJ/Pmm2/eMJV8aGioPvnkE40fP15VqlTRhg0brIOW2SEmJkajR49WlSpV9P333+ubb75RkSJFJElBQUH68ccflZaWpmbNmqlSpUrq27evfH19M33lTJ8+fTRgwAANGDBA999/v5YtW6Zvv/1WZcuWveM+ZCTnwIED5erqqooVK6po0aI6fPiwzT5OnjypixcvKjg4WDExMXr88cfVsWNHPfDAA9q/f78WL14sb29vpaamys3NTUOGDFHlypWt03e+//77kqSuXbvKYrHo2LFjypMnj9q3by9PT89M9SdPnjz68MMP9dlnnykoKEitW7fO8HNjY2P17LPPasCAASpfvrweeeQRrV+/3noFeFRUlHr27Km2bduqaNGieuedd266n7lz56p69epq166dKlasqMGDB2f6ixZt2rTRuHHj9O677yosLEyfffaZYmNjVb9+fes2U6dO1ZUrVxQREaG+ffvqrbfestnHfffdp+HDh+vll1+Wv7+/evXqJenq/ytvvPGGRo0apdDQUDVr1kwLFy5USEiIpKtXyF87RnXr1pWrq6tmzZqVqfwAAAC5Va1ateTm5iZ3d3cVL15cn332mT7++GM1a9bM3tEAAAAAAHA4FnP96BwAIEuOHz+ugIAAPf3005o5c6ZNW9WqVbV9+3br8rvvvquBAwfKGKPSpUsrNTVVhw4dsg7wN2zYUD///LMuXbqkTZs26YEHHsjRvgAAAMA5TZs2TV26dNHnn39uncXn5MmTmj9/viZNmqQPP/zQ+iXFf7t2T/dDhw7lcGIAAAAAAHK/PPYOAADOokiRIvLy8tIff/xxQ1tcXJwuXLigxMREPfLII9b1q1ev1sGDB9W/f3+dPXtW0tX7vzdu3Fjx8fEqVaoUA+4AAADIdqGhoYqIiLAuN2/eXH/88YcGDx6sZ555RgUKFLBfOAAAAAAAHAzTywNANnF1dVXDhg21adMmJSYm2rRVrFhRERERuv/++23WT5kyRdLVqeULFiyoggULys/PT6+++qokKW/evDkTHgAAAPe8ypUr6+LFi9q3b5+9owAAAAAA4FAYdAeAbDRkyBClpaWpZ8+eunLlym23PX36tObPn6/atWsrPj7+hkeHDh3066+/6tdff82h9AAAALiXbdu2TZJUtGhR+wYBAAAAAMDBML08AGSj2rVra/z48erdu7ceeOABPffccwoLC5OLi4sSExM1d+5cSZKPj4++/PJLXbp0SX369FH9+vVv2FfhwoX15ZdfasqUKfrggw9yuCcAAABwZr/++qtSU1MlSadOndK8efO0cuVKPfroowoJCZEk7dq1S7t27ZIkJSUl6cKFC5ozZ46kqzM5VaxY0T7hAQAAAADIZSzGGGPvEADgbLZv365x48YpISFBx44dk8ViUbFixRQVFaVOnTqpYcOGCg8P17Fjx3TkyBG5u7vfdD+RkZH67bff9Oeff95yGwAAACCjpk2bpi5dutis8/X1VUhIiJ599lm9+OKL8vDwkCQNGzZMw4cPv+l+hg4dqmHDht3tuAAAAAAAOAQG3QEAAAAAAAAAAAAAyCLu6Q4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBblsXeA3CA9PV3Hjh2Tt7e3LBaLveMAAABkG2OM/vnnHwUFBcnFhe9bOirqVQAA4KyoVwEAAOAMGHSXdOzYMRUvXtzeMQAAAO6aI0eOqFixYvaOgSyiXgUAAM6OehUAAACOjEF3Sd7e3pKuFvc+Pj52TgMAAJB9zp49q+LFi1vrHTgm6lUAAOCsqFcBAADgDBh0l6xTdPr4+HASEwAAOCWmJHds1KsAAMDZUa8CAADAkXGjJAAAAAAAAAAAAAAAsohBdwAAAAAAAAAAAAAAsohBdwAAAAAAAAAAAAAAsoh7ugMA4MTS0tJ05coVe8fAXeTm5iZXV1d7xwAAALAbat7cjXoVAAAA9wIG3QEAcELGGCUlJenMmTP2joIcUKBAAQUEBMhisdg7CgAAQI6h5nUc1KsAAABwdgy6AwDghK6dfPTz81PevHk5ueWkjDG6cOGCTpw4IUkKDAy0cyIAAICcQ82b+1GvAgAA4F7BoDsAAE4mLS3NevKxcOHC9o6Du8zLy0uSdOLECfn5+TF1JwAAuCdQ8zoO6lUAAADcC1zsHQAAAGSva/ezzJs3r52TIKdcO9bcyxQAANwrqHkdC/UqAAAAnB2D7gAAOCmm17x3cKwBAMC9ijrIMXCcAAAA4OwYdAcAAAAAAAAAAAAAIIsYdAcAAAAAAAAAAAAAIIsYdAcAAMgGly5dUufOnXX//fcrT548atOmzQ3bdO7cWRaL5YZHWFiYdZsrV65oxIgRKl26tDw9PVWlShUtW7YsB3sCAAAA3N7y5ctVq1YteXt7q2jRonr88cd18OBBe8cCAAAA7IZBdwAAgGyQlpYmLy8v9enTR40bN77pNuPGjVNiYqL1ceTIERUqVEhPPvmkdZvXXntNn332mT766CPt2rVLPXv21KOPPqqtW7fmVFcAAACAW/r999/VunVrNWzYUNu2bdPy5ct18uRJPfbYY/aOBgAAANgNg+4AACBXqF+/vnr37q1+/fqpYMGC8vf318SJE3X+/Hl16dJF3t7eKl26tJYuXWrzvF27dqlFixbKnz+//P391bFjR508edLavmzZMtWpU0cFChRQ4cKF9fDDD+vAgQPW9kOHDslisWjevHlq0KCB8ubNqypVquinn37KVP58+fJpwoQJ6tGjhwICAm66ja+vrwICAqyPTZs26fTp0+rSpYt1my+++EKvvPKKWrRooVKlSumFF15Qs2bN9N5772UqDwAAAHInR697t2zZorS0NL311lsqXbq0HnjgAQ0cOFDbt2/XlStX7uzNAQAAABwUg+4AACDXmD59uooUKaINGzaod+/eeuGFF/Tkk08qKipKW7ZsUbNmzdSxY0dduHBBkpSYmKh69eqpatWq2rRpk5YtW6bjx4/rqaeesu7z/Pnz6t+/vzZu3KhVq1bJxcVFjz76qNLT021e+9VXX9XAgQO1bds2lStXTu3atVNqaqq13WKxaNq0adna3ylTpqhx48YKDg62rktJSZGnp6fNdl5eXvrhhx+y9bUBAABgP45c90ZERMjV1VWxsbFKS0tTcnKyvvjiCzVt2lRubm7Z+0YBAAAADsJijDH2DmFvZ8+ela+vr5KTk+Xj42PvOAAA3JFLly7p4MGDCgkJuWHwNjerX7++0tLS9P3330u6Ol27r6+vHnvsMX3++eeSpKSkJAUGBuqnn35SrVq19MYbb2j9+vVavny5dT9Hjx5V8eLFtXfvXpUrV+6G1/nrr7/k5+enX375RZUqVdKhQ4cUEhKiyZMnq1u3bpKuXkUUFham3bt3q0KFCpKkChUqaNSoUXr00Uf/sy+dO3fWmTNntGDBgltuk5iYqOLFiysuLs7mZGn79u21fft2LViwQKVLl9aqVavUunVrpaWlKSUl5ab7ut0xp85xDhxHAABsOWrNKzlH3bt27Vo9+eSTOnXqlNLS0hQZGaklS5aoQIECN92eehUAAADOjivdkWNGjRql6tWry9vbW35+fmrTpo327t17w3a7d+/WI488Il9fX3l7e6tWrVo6fPiwHRIDAHJa5cqVrf92dXVV4cKFdf/991vX+fv7S5JOnDghSdq8ebPi4+OVP39+6+PaycJrU2keOHBA7du3V6lSpeTj46OQkBBJuuFvy79fOzAw0OZ1JGnPnj0ZGnDPqGnTpqlAgQJq06aNzfpx48apbNmyqlChgtzd3dWrVy916dJFrq6u2fbawO2MGjVKFotF/fr1s3cUAACcliPXvUlJSerevbs6deqkjRs3as2aNXJ3d9cTTzwhru0BAADAvSqPvQPg3rFmzRpFR0erevXqSk1N1auvvqqmTZtq165dypcvn6SrHxDr1Kmjbt26afjw4fL19dXu3bsd7lvrAICsuX46SovFYrPOYrFIknWKzPT0dLVq1UqjR4++YV/XTiC2atVKxYsX16RJkxQUFKT09HRVqlRJly9fvuVrX/862c0Yo6lTp6pjx45yd3e3aStatKgWLFigS5cu6dSpUwoKCtLLL79sPWkK3E0bN27UxIkTbU7GAwCA7OfIde/48ePl4+Ojd955x7puxowZKl68uNavX69atWpleF8AAACAs2DQHTlm2bJlNsuxsbHy8/PT5s2bVbduXUlX7yvWokULmw9upUqVytGcAADH8cADD2ju3LkqWbKk8uS5saw5deqUdu/erc8++0wPPvigJOWKe6OvWbNGv/32m3Vaz5vx9PTUfffdpytXrmju3Lk2U9ADd8O5c+fUoUMHTZo0SW+99Za94wAAgH/JTXXvhQsXbpiF6dry3frSKgAAAJDbMb087CY5OVmSVKhQIUlXP5gtXrxY5cqVU7NmzeTn56eaNWve9n64AIB7W3R0tP7++2+1a9dOGzZs0O+//64VK1aoa9euSktLU8GCBVW4cGFNnDhRv/32m1avXq3+/ftn6bUqVKig+fPn33abXbt2adu2bfr777+VnJysbdu2adu2bTdsN2XKFNWsWVOVKlW6oW39+vWaN2+efv/9d33//fdq3ry50tPTNXjw4CzlBjIqOjpaLVu2VOPGje0dBQAAXCc31b0tW7bUxo0bNWLECO3fv19btmxRly5dFBwcrPDw8Kx2EQAAAHBoDLrDLowx6t+/v+rUqWMdcDhx4oTOnTunmJgYNW/eXCtWrNCjjz6qxx57TGvWrLFzYgBAbhQUFKQff/xRaWlpatasmSpVqqS+ffvK19dXLi4ucnFx0axZs7R582ZVqlRJL730kt59990svdbevXutXxi7lRYtWig8PFwLFy5UQkKCwsPDbzjxmJycrLlz597yKvdLly7ptddeU8WKFfXoo4/qvvvu0w8//KACBQpkKTeQEbNmzdKWLVs0atQoe0cBAAA3kZvq3oYNGyouLk4LFixQeHi4mjdvLg8PDy1btkxeXl5Z7SIAAADg0CzGGGPvEPZ29uxZ+fr6Kjk5WT4+PvaOc0+Ijo7W4sWL9cMPP6hYsWKSpGPHjum+++5Tu3btFBcXZ932kUceUb58+TRz5kx7xQUAh3Lp0iUdPHhQISEh8vT0tHcc5IDbHXPqHOdwN4/jkSNHFBERoRUrVqhKlSqSpPr166tq1aoaO3Zstr4WAADZhZrXsVCvAgAAwNlxpTtyXO/evfXtt98qPj7eOuAuSUWKFFGePHlUsWJFm+1DQ0N1+PDhnI4JAABwT9i8ebNOnDihatWqKU+ePMqTJ4/WrFmjDz/8UHny5FFaWpq9IwIAAAAAAAC5Wh57B8C9wxij3r17a/78+UpISFBISIhNu7u7u6pXr669e/farN+3b5+Cg4NzMioAAMA9o1GjRvrll19s1nXp0kUVKlTQ//3f/8nV1dVOyQAAAAAAAADHwJXuyDHR0dGaMWOG4uLi5O3traSkJCUlJenixYvWbQYNGqTZs2dr0qRJ+u233/Txxx9r4cKFevHFF+2YHAAA4OZGjRoli8Wifv363Xa7NWvWqFq1avL09FSpUqX06aef5kzADPD29lalSpVsHvny5VPhwoVVqVIle8cDAAAAAAAAcj0G3ZFjJkyYoOTkZNWvX1+BgYHWx+zZs63bPProo/r000/1zjvv6P7779fkyZM1d+5c1alTx47JAQAAbrRx40ZNnDhRlStXvu12Bw8eVIsWLfTggw9q69ateuWVV9SnTx/NnTs3h5ICAAAAAAAAuJuYXh45xhiToe26du2qrl273uU0AAAAWXfu3Dl16NBBkyZN0ltvvXXbbT/99FOVKFFCY8eOlSSFhoZq06ZNGjNmjB5//PEcSJt5CQkJ9o4AAAAAAAAAOAyudAcAAAAyKTo6Wi1btlTjxo3/c9uffvpJTZs2tVnXrFkzbdq0SVeuXLnpc1JSUnT27FmbBwAAAAAAAIDciSvdkWElX15s7wgZdiimpb0jAAAAJzVr1ixt2bJFGzduzND2SUlJ8vf3t1nn7++v1NRUnTx5UoGBgTc8Z9SoURo+fHi25M00i8U+r5udMjjDEgAAAAAAAJAduNIdAAAAyKAjR46ob9++mjFjhjw9PTP8PMt1A9nXbrtz/fprhgwZouTkZOvjyJEjWQ8NAAAAAAAA4K7iSncAAAAggzZv3qwTJ06oWrVq1nVpaWlau3atPv74Y6WkpMjV1dXmOQEBAUpKSrJZd+LECeXJk0eFCxe+6et4eHjIw8Mj+zsAAAAAAAAAINtxpTsAAHBYCQkJslgsOnPmjL2j4B7RqFEj/fLLL9q2bZv1ERERoQ4dOmjbtm03DLhLUmRkpFauXGmzbsWKFYqIiJCbm1tORQcAAA6MuhcAAADI3Rh0BwAADisqKkqJiYny9fXN9n3PnTtXFStWlIeHhypWrKj58+dn+2vA8Xh7e6tSpUo2j3z58qlw4cKqVKmSpKtTwz/77LPW5/Ts2VN//PGH+vfvr927d2vq1KmaMmWKBg4caK9uAAAAB0PdCwAAAORuDLoDAACH5e7uroCAgFveFzurfvrpJ7Vt21YdO3bU9u3b1bFjRz311FNav359tr4OnFNiYqIOHz5sXQ4JCdGSJUuUkJCgqlWr6s0339SHH36oxx9/3I4pAQCAI6HuBQAAAHI3Bt0BAECuUL9+ffXu3Vv9+vVTwYIF5e/vr4kTJ+r8+fPq0qWLvL29Vbp0aS1dutT6nOun2Zw2bZoKFCig5cuXKzQ0VPnz51fz5s2VmJiYqSxjx45VkyZNNGTIEFWoUEFDhgxRo0aNNHbs2GzsMZxFQkKCzc/GtGnTlJCQYLNNvXr1tGXLFqWkpOjgwYPq2bNnzoYEAAC5BnUvAAAA4HwYdAcAALnG9OnTVaRIEW3YsEG9e/fWCy+8oCeffFJRUVHasmWLmjVrpo4dO+rChQu33MeFCxc0ZswYffHFF1q7dq0OHz5sM433tROWhw4duuU+fvrpJzVt2tRmXbNmzbRu3bo77iMAAABA3QsAAAA4FwbdAQBArlGlShW99tprKlu2rIYMGSIvLy8VKVJEPXr0UNmyZfXGG2/o1KlT2rFjxy33ceXKFX366aeKiIjQAw88oF69emnVqlXW9rx586p8+fJyc3O75T6SkpLk7+9vs87f319JSUl33kkAAADc86h7AQAAAOeSx94BAAAArqlcubL1366uripcuLDuv/9+67prJwRPnDhxy33kzZtXpUuXti4HBgbabF+jRg3t2bPnP7Ncf79MY0y230MTAAAA9ybqXgAAAMC5cKU7AADINa6/Csdisdisu3byLz09PVP7MMZkKkdAQMANV/ecOHHihquAAAAAgKyg7gUAAACcC4PuAAAA14mMjNTKlStt1q1YsUJRUVF2SgQAAABkP+peAAAAIHsw6A4AAO4pGzZsUIUKFfTnn3/ecpu+fftqxYoVGj16tPbs2aPRo0fru+++U79+/XIuKAAAAHAHqHsBAACAnMOgOwAAuKdcuHBBe/fu1ZUrV265TVRUlGbNmqXY2FhVrlxZ06ZN0+zZs1WzZs0cTAoAAABkHXUvAAAAkHMsJrM3e3JCZ8+ela+vr5KTk+Xj42PvOLlWyZcX2ztChh2KaWnvCABgN5cuXdLBgwcVEhIiT09Pe8dBDrjdMafOcQ45ehz//z1kHRofcQDA6VHzOhbqVQAAADg7rnQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLcvWg+6hRo1S9enV5e3vLz89Pbdq00d69e2226dy5sywWi82jVq1adkoMAAAAAAAAAAAAALiX5OpB9zVr1ig6Olo///yzVq5cqdTUVDVt2lTnz5+32a558+ZKTEy0PpYsWWKnxAAAAAAAAAAAAACAe0keewe4nWXLltksx8bGys/PT5s3b1bdunWt6z08PBQQEJDT8QAAAAAAAAAAAAAA97hcfaX79ZKTkyVJhQoVslmfkJAgPz8/lStXTj169NCJEyduu5+UlBSdPXvW5gEAAAAAAAAAAAAAQGY5zKC7MUb9+/dXnTp1VKlSJev6hx56SF9++aVWr16t9957Txs3blTDhg2VkpJyy32NGjVKvr6+1kfx4sVzogsAAAAAAAAAAAAAACfjMIPuvXr10o4dOzRz5kyb9W3btlXLli1VqVIltWrVSkuXLtW+ffu0ePHiW+5ryJAhSk5Otj6OHDlyt+MDAAAHdujQIVkslhse198K58svv1SVKlWUN29eBQYGqkuXLjp16pTNNnPnzlXFihXl4eGhihUrav78+TnZFQAAAOCWLl26pM6dO+v+++9Xnjx51KZNm5tul5G6FwAAALiXOMSge+/evfXtt98qPj5exYoVu+22gYGBCg4O1v79+2+5jYeHh3x8fGweAAAA/+W7775TYmKi9dGwYUNr2w8//KBnn31W3bp1086dO/X1119r48aN6t69u3Wbn376SW3btlXHjh21fft2dezYUU899ZTWr19vj+4AAAAANtLS0uTl5aU+ffqocePGN90mI3UvAAAAcK/J1YPuxhj16tVL8+bN0+rVqxUSEvKfzzl16pSOHDmiwMDAHEgIAACyS/369dW7d2/169dPBQsWlL+/vyZOnKjz58+rS5cu8vb2VunSpbV06VLrc9LS0tStWzeFhITIy8tL5cuX17hx46ztly5dUlhYmJ577jnruoMHD8rX11eTJk3KdMbChQsrICDA+nB3d7e2/fzzzypZsqT69OmjkJAQ1alTR88//7w2bdpk3Wbs2LFq0qSJhgwZogoVKmjIkCFq1KiRxo4dm+ksAAAAcEy5ue7Nly+fJkyYoB49eiggIOCm22Sk7gUAAADuNbl60D06OlozZsxQXFycvL29lZSUpKSkJF28eFGSdO7cOQ0cOFA//fSTDh06pISEBLVq1UpFihTRo48+auf0AAAgs6ZPn64iRYpow4YN6t27t1544QU9+eSTioqK0pYtW9SsWTN17NhRFy5ckCSlp6erWLFi+uqrr7Rr1y698cYbeuWVV/TVV19Jkjw9PfXll19q+vTpWrBggdLS0tSxY0c1aNBAPXr0sL6uxWLRtGnT/jPfI488Ij8/P9WuXVtz5syxaYuKitLRo0e1ZMkSGWN0/PhxzZkzRy1btrRu89NPP6lp06Y2z2vWrJnWrVuX1bcMAAAADii31723k5G6FwAAALjX5OpB9wkTJig5OVn169dXYGCg9TF79mxJkqurq3755Re1bt1a5cqVU6dOnVSuXDn99NNP8vb2tnN6AACQWVWqVNFrr72msmXLasiQIfLy8lKRIkXUo0cPlS1bVm+88YZOnTqlHTt2SJLc3Nw0fPhwVa9eXSEhIerQoYM6d+5sPfkoSVWrVtVbb72lHj166KWXXtKBAwc0efJkm9ctX768fH19b5krf/78ev/99zVnzhwtWbJEjRo1Utu2bTVjxgzrNlFRUfryyy/Vtm1bubu7KyAgQAUKFNBHH31k3SYpKUn+/v42+/b391dSUtIdvW8AAABwLLm17s2IjNS9AAAAwL0mj70D3I4x5rbtXl5eWr58eQ6lAQAAd1vlypWt/3Z1dVXhwoV1//33W9ddG7A+ceKEdd2nn36qyZMn648//tDFixd1+fJlVa1a1Wa/AwYM0DfffKOPPvpIS5cuVZEiRWza9+zZc9tcRYoU0UsvvWRdjoiI0OnTp/XOO+/omWeekSTt2rVLffr00RtvvKFmzZopMTFRgwYNUs+ePTVlyhTrcy0Wi82+jTE3rAMAAIBzy611b0ZktO4FAAAA7iW5+kp3AABwb3Fzc7NZtlgsNuuuDU6np6dLkr766iu99NJL6tq1q1asWKFt27apS5cuunz5ss1+Tpw4ob1798rV1VX79+/Plqy1atWy2deoUaNUu3ZtDRo0SJUrV1azZs30ySefaOrUqUpMTJQkBQQE3HBV+4kTJ264+h0AAADOzZHq3utlpO4FAAAA7jUMugMAAIf1/fffKyoqSi+++KLCw8NVpkwZHThw4IbtunbtqkqVKunzzz/X4MGDtWvXrjt+7a1btyowMNC6fOHCBbm42JZWrq6ukv43e09kZKRWrlxps82KFSsUFRV1x3kAAADgvOxZ914vI3UvAAAAcK/J1dPLAwAA3E6ZMmX0+eefa/ny5QoJCdEXX3yhjRs3KiQkxLrN+PHj9dNPP2nHjh0qXry4li5dqg4dOmj9+vVyd3eXJFWoUEGjRo3So48+etPXmT59utzc3BQeHi4XFxctXLhQH374oUaPHm3dplWrVurRo4cmTJhgnWazX79+qlGjhoKCgiRJffv2Vd26dTV69Gi1bt1a33zzjb777jv98MMPd/FdAgAAgKPLqbpXujp9/OXLl/X333/rn3/+0bZt2yTJOpV9RupeAAAA4F7Dle4AAMBh9ezZU4899pjatm2rmjVr6tSpU3rxxRet7Xv27NGgQYP0ySefqHjx4pKunow8c+aMXn/9det2e/fuVXJy8m1f66233lJERISqV6+uWbNmaerUqTb3ee/cubPef/99ffzxx6pUqZKefPJJlS9fXvPmzbNuExUVpVmzZik2NlaVK1fWtGnTNHv2bNWsWTO73hIAAAA4oZyse1u0aKHw8HAtXLhQCQkJCg8PV3h4uLU9I3UvAAAAcK+xGOZ90tmzZ+Xr66vk5GT5+PjYO06uVfLlxfaOkGGHYlraOwIA2M2lS5d08OBBhYSEyNPT095xkANud8ypc5xDjh7H/38PWYfGRxwAcHrUvI6FehUAAADOjivdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQBwUsYYe0dADuFYAwCAexV1kGPgOAEAAMDZMegOAICTcXNzkyRduHDBzkmQU64d62vHHgAAwNlR8zoW6lUAAAA4uzz2DgAAALKXq6urChQooBMnTkiS8ubNK4vFYudUuBuMMbpw4YJOnDihAgUKyNXV1d6RAAAAcgQ1r2OgXgUAAMC9gkF3AACcUEBAgCRZT0LCuRUoUMB6zAEAAO4V1LyOg3oVAAAAzo5BdwAAnJDFYlFgYKD8/Px05coVe8fBXeTm5sYVQwAA4J5EzesYqFcBAABwL2DQHQAAJ+bq6soJLgAAADg1al4AAAAA9uZi7wAAAAAAAAAAAAAAADgqBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAACADJowYYIqV64sHx8f+fj4KDIyUkuXLr3l9gkJCbJYLDc89uzZk4OpAQAAAAAAANxNeewdAAAAAHAUxYoVU0xMjMqUKSNJmj59ulq3bq2tW7cqLCzsls/bu3evfHx8rMtFixa961kBAAAAAAAA5AwG3QEAAIAMatWqlc3yyJEjNWHCBP3888+3HXT38/NTgQIF7nI6AAAAAAAAAPbA9PIAAABAFqSlpWnWrFk6f/68IiMjb7tteHi4AgMD1ahRI8XHx+dQQgAAAAAAAAA5gSvdAQAAgEz45ZdfFBkZqUuXLil//vyaP3++KlaseNNtAwMDNXHiRFWrVk0pKSn64osv1KhRIyUkJKhu3bq3fI2UlBSlpKRYl8+ePZvt/QAAAAAAAACQPRh0BwAAADKhfPny2rZtm86cOaO5c+eqU6dOWrNmzU0H3suXL6/y5ctblyMjI3XkyBGNGTPmtoPuo0aN0vDhw+9KfgAAAAAAAADZi+nlAQAAgExwd3dXmTJlFBERoVGjRqlKlSoaN25chp9fq1Yt7d+//7bbDBkyRMnJydbHkSNH7jQ2AAAAAAAAgLuEK90BAACAO2CMsZkK/r9s3bpVgYGBt93Gw8NDHh4edxoNAAAAAAAAQA5g0B0AAADIoFdeeUUPPfSQihcvrn/++UezZs1SQkKCli1bJunqFep//vmnPv/8c0nS2LFjVbJkSYWFheny5cuaMWOG5s6dq7lz59qzGwAAAAAAAACyEYPuAAAAQAYdP35cHTt2VGJionx9fVW5cmUtW7ZMTZo0kSQlJibq8OHD1u0vX76sgQMH6s8//5SXl5fCwsK0ePFitWjRwl5dAAAAAAAAAJDNLMYYY+8Q9nb27Fn5+voqOTlZPj4+9o5zS6NGjdK8efO0Z88eeXl5KSoqSqNHj1b58uUlSVeuXNFrr72mJUuW6Pfff5evr68aN26smJgYBQUF3fHrl3x58R3vI6ccimlp7wgAAOQKjlLn4PZy9DhaLHd3/zmBjzgAADgM6lUAAAA4Axd7B0DGrVmzRtHR0fr555+1cuVKpaamqmnTpjp//rwk6cKFC9qyZYtef/11bdmyRfPmzdO+ffv0yCOP2Dk5AAAAAAAAAAAAADgnppd3INfuFXpNbGys/Pz8tHnzZtWtW1e+vr5auXKlzTYfffSRatSoocOHD6tEiRI5GRcAAAAAAAAAAAAAnB5Xujuw5ORkSVKhQoVuu43FYlGBAgVyKBUAAAAAAAAAAAAA3DsYdHdQxhj1799fderUUaVKlW66zaVLl/Tyyy+rffv23BMLAAAAAAAAAAAAAO4Cppd3UL169dKOHTv0ww8/3LT9ypUrevrpp5Wenq5PPvkkh9MBAAAAAAAAAAAAwL2BQXcH1Lt3b3377bdau3atihUrdkP7lStX9NRTT+ngwYNavXo1V7kDAAAAAAAAAAAAwF3CoLsDMcaod+/emj9/vhISEhQSEnLDNtcG3Pfv36/4+HgVLlzYDkkBAAAAAAAAAAAA4N7AoLsDiY6OVlxcnL755ht5e3srKSlJkuTr6ysvLy+lpqbqiSee0JYtW7Ro0SKlpaVZtylUqJDc3d3tGR8AAAAAAAAAAAAAnA6D7g5kwoQJkqT69evbrI+NjVXnzp119OhRffvtt5KkqlWr2mwTHx9/w/MAAAAAAAAAAAAAAHeGQXcHYoy5bXvJkiX/cxsAAAAAAAAAAAAAQPZxsXcAAAAAAAAAAAAAAAAcFYPuAAAAAAAAAAAAAABkEdPL5zSLxd4JMo6p6gEAAAAAAAAAAADgtrjSHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALMrVg+6jRo1S9erV5e3tLT8/P7Vp00Z79+612cYYo2HDhikoKEheXl6qX7++du7caafEAAAAAAAAAAAAAIB7Sa4edF+zZo2io6P1888/a+XKlUpNTVXTpk11/vx56zbvvPOO3n//fX388cfauHGjAgIC1KRJE/3zzz92TA4AAAAAAAAAAAAAuBfksXeA21m2bJnNcmxsrPz8/LR582bVrVtXxhiNHTtWr776qh577DFJ0vTp0+Xv76+4uDg9//zz9ogNAAAAAAAAAAAAALhH5Oor3a+XnJwsSSpUqJAk6eDBg0pKSlLTpk2t23h4eKhevXpat27dLfeTkpKis2fP2jwAAAAAAAAcwYQJE1S5cmX5+PjIx8dHkZGRWrp0qb1jAQAAAMA9y2EG3Y0x6t+/v+rUqaNKlSpJkpKSkiRJ/v7+Ntv6+/tb225m1KhR8vX1tT6KFy9+94IDAAAAAABko2LFiikmJkabNm3Spk2b1LBhQ7Vu3Vo7d+60dzQAAAAAuCc5zKB7r169tGPHDs2cOfOGNovFYrNsjLlh3b8NGTJEycnJ1seRI0eyPS8AAAAAAMDd0KpVK7Vo0ULlypVTuXLlNHLkSOXPn18///yzvaMBAAAAwD0pV9/T/ZrevXvr22+/1dq1a1WsWDHr+oCAAElXr3gPDAy0rj9x4sQNV7//m4eHhzw8PO5eYAAAAAAAgByQlpamr7/+WufPn1dkZKS94wAAAADAPSlXX+lujFGvXr00b948rV69WiEhITbtISEhCggI0MqVK63rLl++rDVr1igqKiqn4wIAAAAAAOSIX375Rfnz55eHh4d69uyp+fPnq2LFivaOBQAAAAD3pFx9pXt0dLTi4uL0zTffyNvb23qfdl9fX3l5eclisahfv356++23VbZsWZUtW1Zvv/228ubNq/bt29s5PQAAAAAAwN1Rvnx5bdu2TWfOnNHcuXPVqVMnrVmzhoF3AAAAALCDXD3oPmHCBElS/fr1bdbHxsaqc+fOkqTBgwfr4sWLevHFF3X69GnVrFlTK1askLe3dw6nBQAAAAAAyBnu7u4qU6aMJCkiIkIbN27UuHHj9Nlnn9k5GQAAAADce3L1oLsx5j+3sVgsGjZsmIYNG3b3AwEA/h979x0mVX32j/+epSxEKYICi9KMihQFhKgQFbCgizVgSTSIGvVRsbEqEY1YoqLG3qNRlMdEfRLAaFB0EykasdBEDRakSlgRVBA01PP7Iz/3mw0Lwrizs7O8Xtc1l5wy57w/zp7lZu/9nAMAAFRBSZLE6tWrsx0DAABgm1Slm+4AAAAAlHXFFVdEYWFhtGjRIr766qt46qmnYsKECTFu3LhsRwMAANgm5WU7AAAA5IoHHngg9t5776hfv37Ur18/unfvHi+88MJm3zNx4sTo2rVr1KlTJ3bdddd48MEHKyktANXVp59+GgMGDIi2bdvGIYccEm+88UaMGzcuDjvssGxHAwAA2CaZ6Q4AAFtol112iZtuuqn0GbqPP/54HHvssTF9+vTo0KHDRvvPnTs3+vbtG2eddVY88cQT8fe//z3OO++82GmnnaJ///6VHR+AauKRRx7JdgQAAAD+g6Y7AABsoaOPPrrM8g033BAPPPBAvP766+U23R988MFo2bJl3HnnnRER0a5du5gyZUrceuutmu4AAAAAUE24vTwAAKRh/fr18dRTT8WqVauie/fu5e4zefLk6NOnT5l1hx9+eEyZMiXWrl27yWOvXr06VqxYUeYFAAAAAFRNZroDAMBWeOedd6J79+7xr3/9K7bffvsYM2ZMtG/fvtx9S0pKomnTpmXWNW3aNNatWxdLly6NgoKCct83fPjwuPbaays8OwDVT+vLx2Y7Qtrm3XRktiMAAABUCDPdAQBgK7Rt2zZmzJgRr7/+epx77rkxcODA+Mc//rHJ/VOpVJnlJEnKXf+fhg4dGsuXLy99LVy4sGLCAwAAAAAVzkx3AADYCrVr147ddtstIiK6desWb731Vtx1113x29/+dqN9mzVrFiUlJWXWLVmyJGrWrBmNGzfe5Dny8/MjPz+/YoMDAAAAABlhpjsAAHwPSZLE6tWry93WvXv3KC4uLrPupZdeim7dukWtWrUqIx4AAAAAkGGa7gAAsIWuuOKKeOWVV2LevHnxzjvvxJVXXhkTJkyIU045JSL+fVv4U089tXT/c845J+bPnx9FRUUxa9asePTRR+ORRx6JSy+9NFtDAAAAAAAqmNvLAwDAFvr0009jwIABsXjx4mjQoEHsvffeMW7cuDjssMMiImLx4sWxYMGC0v3btGkTzz//fAwePDjuu+++aN68edx9993Rv3//bA0BAAAAAKhgmu4AALCFHnnkkc1uf+yxxzZa17Nnz5g2bVqGEgEAAAAA2eb28gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnKSNP98ccfj7Fjx5YuDxkyJBo2bBg9evSI+fPnZ+KUAABQLrUpAAAAAJBJGWm633jjjVG3bt2IiJg8eXLce++9ccstt8SOO+4YgwcPzsQpAQCgXGpTAAAAACCTambioAsXLozddtstIiKeeeaZOP744+Pss8+OH//4x9GrV69MnBIAAMqlNgUAAAAAMikjM9233377WLZsWUREvPTSS3HooYdGRESdOnXim2++ycQpAQCgXGpTAAAAACCTMjLT/bDDDoszzzwzunTpEh9++GEceeSRERHx3nvvRevWrTNxSgAAKJfaFAAAAADIpIzMdL/vvvuie/fu8dlnn8WoUaOicePGERExderU+NnPfpaJUwIAQLnUpgAAAABAJmVkpvuKFSvi7rvvjry8sj39a665JhYuXJiJUwIAQLkqsjYdPnx4jB49Ot5///2oW7du9OjRI26++eZo27btJt8zYcKE6N2790brZ82aFXvuuedWnR8AAAAAqHoyMtO9TZs2sXTp0o3Wf/7559GmTZtMnBIAAMpVkbXpxIkTY9CgQfH6669HcXFxrFu3Lvr06ROrVq36zvd+8MEHsXjx4tLX7rvvvlXnBgAAAACqpozMdE+SpNz1K1eujDp16mTilAAAUK6KrE3HjRtXZnnEiBHRpEmTmDp1ahx00EGbfW+TJk2iYcOGW3U+AAAAAKDqq9Cme1FRUUREpFKpGDZsWPzgBz8o3bZ+/fp44403onPnzhV5SgAAKFdl1KbLly+PiIhGjRp9575dunSJf/3rX9G+ffv41a9+Ve4t57+1evXqWL16denyihUrvldOAAAAACBzKrTpPn369Ij492yid955J2rXrl26rXbt2tGpU6e49NJLK/KUAABQrkzXpkmSRFFRURxwwAHRsWPHTe5XUFAQDz30UHTt2jVWr14d//u//xuHHHJITJgwYZOz44cPHx7XXntt2tkAAAAAgMpToU338ePHR0TE6aefHnfddVfUr1+/Ig8PAABbLNO16fnnnx8zZ86MV199dbP7tW3bNtq2bVu63L1791i4cGHceuutm2y6Dx06tHSmfsS/Z7q3aNGiYoIDAAAAABUqI890HzFiRCYOCwAAWy0TtekFF1wQzz77bEyaNCl22WWXrX7//vvvH0888cQmt+fn50d+fv73iQgAAAAAVJKMNN1XrVoVN910U/ztb3+LJUuWxIYNG8psnzNnTiZOCwAAG6nI2jRJkrjgggtizJgxMWHChGjTpk1amaZPnx4FBQVpvRcAAAAAqFoy0nQ/88wzY+LEiTFgwIAoKCiIVCqVidMAAMB3qsjadNCgQfGHP/wh/vznP0e9evWipKQkIiIaNGgQdevWjYh/3xp+0aJFMXLkyIiIuPPOO6N169bRoUOHWLNmTTzxxBMxatSoGDVq1PcfHAAAAACQdRlpur/wwgsxduzY+PGPf5yJwwMAwBaryNr0gQceiIiIXr16lVk/YsSIOO200yIiYvHixbFgwYLSbWvWrIlLL700Fi1aFHXr1o0OHTrE2LFjo2/fvt87DwAAAACQfRlpuu+www7RqFGjTBwaAAC2SkXWpkmSfOc+jz32WJnlIUOGxJAhQyrk/AAAAABA1ZOXiYP++te/jmHDhsXXX3+dicMDAMAWU5sCAAAAAJmUkZnut912W3z88cfRtGnTaN26ddSqVavM9mnTpmXitAAAsBG1KQAAAACQSRlpuh933HGZOCwAAGw1tSkAAAAAkEkZabpfffXVmTgsAABsNbUpAAAAAJBJGXmme0TEl19+Gb/73e9i6NCh8fnnn0fEv2/duWjRokydEgAAyqU2BQAAAAAyJSMz3WfOnBmHHnpoNGjQIObNmxdnnXVWNGrUKMaMGRPz58+PkSNHZuK0AACwEbUpAAAAAJBJGZnpXlRUFKeddlp89NFHUadOndL1hYWFMWnSpEycEgAAyqU2BQAAAAAyKSNN97feeiv+53/+Z6P1O++8c5SUlGTilAAAUC61KQAAAACQSRlputepUydWrFix0foPPvggdtppp0ycEgAAyqU2BQAAAAAyKSNN92OPPTauu+66WLt2bUREpFKpWLBgQVx++eXRv3//TJwSAADKpTYFAAAAADIpI033W2+9NT777LNo0qRJfPPNN9GzZ8/Ybbfdol69enHDDTdk4pQAZMCkSZPi6KOPjubNm0cqlYpnnnmmzPbTTjstUqlUmdf++++fnbAAm6A2BQAAAAAyqWYmDlq/fv149dVX4+WXX45p06bFhg0bYp999olDDz00E6cDIENWrVoVnTp1itNPP32Ts0GPOOKIGDFiROly7dq1KysewBZRmwIAAAAAmZSRpvu3Dj744Dj44IMzeQoAMqiwsDAKCws3u09+fn40a9askhIBpE9tCgAAAABkQsaa7m+++WZMmDAhlixZEhs2bCiz7fbbb8/UaQGoZBMmTIgmTZpEw4YNo2fPnnHDDTdEkyZNsh0LoAy1KQAAAACQKRlput94443xq1/9Ktq2bRtNmzaNVCpVuu0//wxAbissLIwTTjghWrVqFXPnzo2rrroqDj744Jg6dWrk5+dnOx5ARKhNAQAAAIDMykjT/a677opHH300TjvttEwcHoAq4qSTTir9c8eOHaNbt27RqlWrGDt2bPTr1y+LyQD+H7UpAAAAAJBJeRk5aF5e/PjHP87EoQGowgoKCqJVq1bx0UcfZTsKQCm1KQAAAACQSRlpug8ePDjuu+++TBwagCps2bJlsXDhwigoKMh2FIBSalMAAAAAIJMycnv5Sy+9NI488sj44Q9/GO3bt49atWqV2T569OhMnBaACrZy5cqYPXt26fLcuXNjxowZ0ahRo2jUqFFcc8010b9//ygoKIh58+bFFVdcETvuuGP85Cc/yWJqgLLUpgAAAABAJmVkpvsFF1wQ48ePjz322CMaN24cDRo0KPPaGpMmTYqjjz46mjdvHqlUKp555pky20877bRIpVJlXvvvv38FjgZg2zVlypTo0qVLdOnSJSIiioqKokuXLjFs2LCoUaNGvPPOO3HsscfGHnvsEQMHDow99tgjJk+eHPXq1ctycoD/pyJrUwAAAACA/5aRme4jR46MUaNGxZFHHvm9j7Vq1aro1KlTnH766dG/f/9y9zniiCNixIgRpcu1a9f+3ucFIKJXr16RJMkmt7/44ouVmAYgPRVZmwIAAAAA/LeMNN0bNWoUP/zhDyvkWIWFhVFYWLjZffLz86NZs2YVcj4AAKqXiqxNAQAAAAD+W0ZuL3/NNdfE1VdfHV9//XUmDr+RCRMmRJMmTWKPPfaIs846K5YsWbLZ/VevXh0rVqwo8wIAoHqq7NoUAAAAANi2ZGSm+9133x0ff/xxNG3aNFq3bh21atUqs33atGkVdq7CwsI44YQTolWrVjF37ty46qqr4uCDD46pU6dGfn5+ue8ZPnx4XHvttRWWAaCqan352GxH2GLzbnLbZyAzKrM2BQAAAAC2PRlpuh933HGZOGy5TjrppNI/d+zYMbp16xatWrWKsWPHRr9+/cp9z9ChQ6OoqKh0ecWKFdGiRYuMZwUAoPJVZm0KAAAAAGx7MtJ0v/rqqzNx2C1SUFAQrVq1io8++miT++Tn529yFjwAANVLNmtTAAAAAKD6y8gz3bNp2bJlsXDhwigoKMh2FAAAAAAAAACquYzMdN9hhx0ilUpttD6VSkWdOnVit912i9NOOy1OP/307zzWypUrY/bs2aXLc+fOjRkzZkSjRo2iUaNGcc0110T//v2joKAg5s2bF1dccUXsuOOO8ZOf/KRCxwQAQG6qyNoUAAAAAOC/ZaTpPmzYsLjhhhuisLAw9t1330iSJN56660YN25cDBo0KObOnRvnnnturFu3Ls4666zNHmvKlCnRu3fv0uVvn8U+cODAeOCBB+Kdd96JkSNHxpdffhkFBQXRu3fvePrpp6NevXqZGBoAADmmImtTAAAAAID/lpGm+6uvvhrXX399nHPOOWXW//a3v42XXnopRo0aFXvvvXfcfffd3/mDzV69ekWSJJvc/uKLL1ZIZgAAqqeKrE0BAAAAAP5bRp7p/uKLL8ahhx660fpDDjmktEnet2/fmDNnTiZODwAApdSmAAAAAEAmZaTp3qhRo3juuec2Wv/cc89Fo0aNIiJi1apVbgEPAEDGqU0BAAAAgEzKyO3lr7rqqjj33HNj/Pjxse+++0YqlYo333wznn/++XjwwQcjIqK4uDh69uyZidMDAEAptSkAAAAAkEkZabqfddZZ0b59+7j33ntj9OjRkSRJ7LnnnjFx4sTo0aNHRERccsklmTg1AACUoTYFAAAAADIpI033iIgf//jH8eMf/zhTh4dKN2nSpPjNb34TU6dOjcWLF8eYMWPiuOOOK3ff//mf/4mHHnoo7rjjjrj44osrNScAsDG1KQAAAACQKRlrun/rm2++ibVr15ZZV79+/UyfFircqlWrolOnTnH66adH//79N7nfM888E2+88UY0b968EtMBAFtCbQoAAAAAVLSMNN2//vrrGDJkSPzf//1fLFu2bKPt69evz8RpIaMKCwujsLBws/ssWrQozj///HjxxRfjyCOPrKRkAMDmqE0BAAAAgEzKy8RBL7vssnj55Zfj/vvvj/z8/Pjd734X1157bTRv3jxGjhyZiVNC1m3YsCEGDBgQl112WXTo0CHbcQCA/5/aFAAAAADIpIzMdH/uuedi5MiR0atXrzjjjDPiwAMPjN122y1atWoVv//97+OUU07JxGkhq26++eaoWbNmXHjhhdmOAgD8B7UpAAAAAJBJGZnp/vnnn0ebNm0i4t/PyPz8888jIuKAAw6ISZMmZeKUkFVTp06Nu+66Kx577LFIpVLZjgMA/Ae1KQAAAACQSRlpuu+6664xb968iIho3759/N///V9E/HuWUcOGDTNxSsiqV155JZYsWRItW7aMmjVrRs2aNWP+/PlxySWXROvWrbMdDwC2aWpTAAAAACCTMnJ7+dNPPz3efvvt6NmzZwwdOjSOPPLIuOeee2LdunVx++23Z+KUkFUDBgyIQw89tMy6ww8/PAYMGBCnn356llIBABFqUwAAAAAgszLSdB88eHDpn3v37h3vv/9+TJkyJX74wx9Gp06dMnFKyLiVK1fG7NmzS5fnzp0bM2bMiEaNGkXLli2jcePGZfavVatWNGvWLNq2bVvZUQGA/6A2BQAAAAAyqcJvL7927dro3bt3fPjhh6XrWrZsGf369fNDTXLalClTokuXLtGlS5eIiCgqKoouXbrEsGHDspwMANgUtSkAAAAAkGkVPtO9Vq1a8e6770YqlaroQ0NW9erVK5Ik2eL9v312LACQPWpTAAAAACDTKnyme0TEqaeeGo888kgmDg0AAFtFbQoAAAAAZFJGnum+Zs2a+N3vfhfFxcXRrVu32G677cpsv/322zNxWgAA2IjaFAAAAADIpIw03d99993YZ599IiLKPD8zItzak6xpffnYbEfYYvNuOjLbEQCg2lCbAgAAAACZVGFN95kzZ0bHjh0jLy8vxo8fX1GHBQCAraY2BQAAAAAqS4U9071Lly6xdOnSiIjYddddY9myZRV1aAAA2CpqUwAAAACgslRY071hw4Yxd+7ciIiYN29ebNiwoaIODQAAW0VtCgAAAABUlgq7vXz//v2jZ8+eUVBQEKlUKrp16xY1atQod985c+ZU1GkBAGAjalMAAAAAoLJUWNP9oYcein79+sXs2bPjwgsvjLPOOivq1atXUYcHAIAtpjYFAAAAACpLhTXdIyKOOOKIiIiYOnVqXHTRRX6wCQBA1qhNAQAAAIDKUKFN92+NGDEiE4cFAICtpjYFAAAAADIpL9sBAAAAAAAAACBXaboDAAAAAAAAQJo03QEAAAAAAAAgTRXWdN9nn33iiy++iIiI6667Lr7++uuKOjQAAGwVtSlA+oYPHx4/+tGPol69etGkSZM47rjj4oMPPsh2LMgZriEAANj2VFjTfdasWbFq1aqIiLj22mtj5cqVFXVoAADYKmpTgPRNnDgxBg0aFK+//noUFxfHunXrok+fPqXfV4HNcw0BAMC2p2ZFHahz585x+umnxwEHHBBJksStt94a22+/fbn7Dhs2rKJOCwAAG1GbAqRv3LhxZZZHjBgRTZo0ialTp8ZBBx2UpVSQO1xDAACw7amwpvtjjz0WV199dfzlL3+JVCoVL7zwQtSsufHhU6mUH2wCAJBRalOAirN8+fKIiGjUqFGWk0Bucg0BAED1V2FN97Zt28ZTTz0VERF5eXnxt7/9LZo0aVJRhwcAgC2mNgWoGEmSRFFRURxwwAHRsWPHbMeBnOMaAgCAbUOFNd3/04YNGzJxWAAA2GpqU4D0nX/++TFz5sx49dVXsx0FcpJrCAAAtg0ZabpHRHz88cdx5513xqxZsyKVSkW7du3ioosuih/+8IeZOiUAAJRLbQqw9S644IJ49tlnY9KkSbHLLrtkOw7kHNcQAABsO/IycdAXX3wx2rdvH2+++Wbsvffe0bFjx3jjjTeiQ4cOUVxcnIlTAgBAudSmAFsnSZI4//zzY/To0fHyyy9HmzZtsh0JcoprCAAAtj0Zmel++eWXx+DBg+Omm27aaP0vf/nLOOywwzJxWgAA2IjaFGDrDBo0KP7whz/En//856hXr16UlJRERESDBg2ibt26WU4HVZ9rCAAAtj0Zmek+a9as+MUvfrHR+jPOOCP+8Y9/ZOKUAABQroqsTYcPHx4/+tGPol69etGkSZM47rjj4oMPPvjO902cODG6du0aderUiV133TUefPDBrTovQGV64IEHYvny5dGrV68oKCgofT399NPZjgY5wTUEAADbnow03XfaaaeYMWPGRutnzJgRTZo0ycQpAQCgXBVZm06cODEGDRoUr7/+ehQXF8e6deuiT58+sWrVqk2+Z+7cudG3b9848MADY/r06XHFFVfEhRdeGKNGjdraoQBUiiRJyn2ddtpp2Y4GOcE1BAAA256M3F7+rLPOirPPPjvmzJkTPXr0iFQqFa+++mrcfPPNcckll2TilAAAUK6KrE3HjRtXZnnEiBHRpEmTmDp1ahx00EHlvufBBx+Mli1bxp133hkREe3atYspU6bErbfeGv37909rTAAAAABA1ZGRpvtVV10V9erVi9tuuy2GDh0aERHNmzePa665Ji688MJMnBIAAMqVydp0+fLlERHRqFGjTe4zefLk6NOnT5l1hx9+eDzyyCOxdu3aqFWr1kbvWb16daxevbp0ecWKFd8rJwAAAACQORlpuqdSqRg8eHAMHjw4vvrqq4iIqFevXiZOBQAAm5Wp2jRJkigqKooDDjggOnbsuMn9SkpKomnTpmXWNW3aNNatWxdLly6NgoKCjd4zfPjwuPbaa793RoDvq/XlY7MdIW3zbjoy2xEgIlxHAACwLcjIM93/U7169TTcAQCoEiqyNj3//PNj5syZ8eSTT37nvqlUqsxykiTlrv/W0KFDY/ny5aWvhQsXfv/AAAAAAEBGZGSmOwAAVGcXXHBBPPvsszFp0qTYZZddNrtvs2bNoqSkpMy6JUuWRM2aNaNx48blvic/Pz/y8/MrLC8AAAAAkDkZn+kOAADVRZIkcf7558fo0aPj5ZdfjjZt2nzne7p37x7FxcVl1r300kvRrVu3cp/nDgAAAADkFk13AADYQoMGDYonnngi/vCHP0S9evWipKQkSkpK4ptvvindZ+jQoXHqqaeWLp9zzjkxf/78KCoqilmzZsWjjz4ajzzySFx66aXZGAIAAAAAUMEqvOm+du3a6N27d3z44YcVfWgAANgqFV2bPvDAA7F8+fLo1atXFBQUlL6efvrp0n0WL14cCxYsKF1u06ZNPP/88zFhwoTo3Llz/PrXv4677747+vfvXyGZAAAAAIDsqvBnuteqVSvefffdSKVSFX1oAADYKhVdmyZJ8p37PPbYYxut69mzZ0ybNq1CMgAAAAAAVUtGbi9/6qmnxiOPPJKJQwMAwFZRmwIAAAAAmVThM90jItasWRO/+93vori4OLp16xbbbbddme233357Jk4LAAAbUZsCAAAAAJmUkab7u+++G/vss09ExEbPz3TbeQAAKpPaFAAAAADIpIw03cePH5+JwwIAwFZTmwIAAAAAmZSRZ7p/a/bs2fHiiy/GN998ExERSZJk8nQAALBJalMAAAAAIBMy0nRftmxZHHLIIbHHHntE3759Y/HixRERceaZZ8Yll1ySiVMCQBmTJk2Ko48+Opo3bx6pVCqeeeaZ0m1r166NX/7yl7HXXnvFdtttF82bN49TTz01/vnPf2YvMJAxalMAAAAAIJMy0nQfPHhw1KpVKxYsWBA/+MEPStefdNJJMW7cuEycEgDKWLVqVXTq1CnuvffejbZ9/fXXMW3atLjqqqti2rRpMXr06Pjwww/jmGOOyUJSINPUpgAAAABAJmXkme4vvfRSvPjii7HLLruUWb/77rvH/PnzM3FKACijsLAwCgsLy93WoEGDKC4uLrPunnvuiX333TcWLFgQLVu2rIyIQCVRmwIAAAAAmZSRme6rVq0qM4voW0uXLo38/PxMnBIAvpfly5dHKpWKhg0bZjsKUMHUpgAAAABAJmWk6X7QQQfFyJEjS5dTqVRs2LAhfvOb30Tv3r0zcUoASNu//vWvuPzyy+Pkk0+O+vXrZzsOUMHUpgAAAABAJmXk9vK/+c1volevXjFlypRYs2ZNDBkyJN577734/PPP4+9//3smTgkAaVm7dm389Kc/jQ0bNsT999+f7ThABqhNAQAAAIBMyshM9/bt28fMmTNj3333jcMOOyxWrVoV/fr1i+nTp8cPf/jDTJwSALba2rVr48QTT4y5c+dGcXGxWe5QTalNAQAAAIBMyshM94iIZs2axbXXXpupwwPA9/Jtw/2jjz6K8ePHR+PGjbMdCcggtSkAAAAAkCkZa7p/8cUX8cgjj8SsWbMilUpFu3bt4vTTT49GjRpl6pQAUGrlypUxe/bs0uW5c+fGjBkzolGjRtG8efM4/vjjY9q0afGXv/wl1q9fHyUlJRER0ahRo6hdu3a2YgMZojYFAAAAADIlI7eXnzhxYrRp0ybuvvvu+OKLL+Lzzz+Pu+++O9q0aRMTJ07MxCkBoIwpU6ZEly5dokuXLhERUVRUFF26dIlhw4bFJ598Es8++2x88skn0blz5ygoKCh9vfbaa1lODlQ0tSkAAAAAkEkZmek+aNCgOPHEE+OBBx6IGjVqRETE+vXr47zzzotBgwbFu+++m4nTAkCpXr16RZIkm9y+uW1A9aI2BQAAAAAyKSMz3T/++OO45JJLSn+oGRFRo0aNKCoqio8//jgTpwQAgHKpTQEAAACATMrITPd99tknZs2aFW3bti2zftasWdG5c+dMnBKAaqb15WOzHWGLzbvpyGxHADZDbQoAAAAAZFKFNd1nzpxZ+ucLL7wwLrroopg9e3bsv//+ERHx+uuvx3333Rc33XRTRZ0SAADKpTYFAAAAACpLhTXdO3fuHKlUqswzcocMGbLRfieffHKcdNJJFXVaAADYiNoUAAAAAKgsFdZ0nzt3bkUdCgAAvhe1KQAAAABQWSqs6d6qVauKOhQAAHwvalMAAAAAoLJUWNP9vy1atCj+/ve/x5IlS2LDhg1ltl144YWZOi0AAGxEbQoAAAAAZEpGmu4jRoyIc845J2rXrh2NGzeOVCpVui2VSvnBJgAAlUZtCgAAAABkUkaa7sOGDYthw4bF0KFDIy8vLxOnAACALaI2BQAAAAAyKSM/dfz666/jpz/9qR9qAgCQdWpTAAAAACCTMvKTx1/84hfxxz/+MROHBgCAraI2BQAAAAAyKSO3lx8+fHgcddRRMW7cuNhrr72iVq1aZbbffvvtmTgtAABsRG0KAAAAAGRSRpruN954Y7z44ovRtm3biIhIpVKl2/7zzwAAkGlqUwAAAAAgkzLSdL/99tvj0UcfjdNOOy0ThwcAgC2mNgUAAAAAMikjz3TPz8+PH//4x5k4NAAAbBW1KQAAAACQSRlpul900UVxzz33ZOLQAACwVdSmAAAAAEAmZeT28m+++Wa8/PLL8Ze//CU6dOgQtWrVKrN99OjRmTgtAABsRG0KAAAAAGRSRpruDRs2jH79+mXi0AAAsFXUpgAAAABAJmWk6T5ixIhMHBYAALaa2hQAAAAAyKSMPNMdAAAAAAAAALYFGZnp3qZNm0ilUpvcPmfOnEycFgAANqI2BQAAAAAyKSNN94svvrjM8tq1a2P69Okxbty4uOyyyzJxSgAAKJfaFAAAAADIpIw03S+66KJy1993330xZcqUTJwSAADKpTYFAAAAADKpUp/pXlhYGKNGjarMUwIAQLnUpgAAAABARajUpvuf/vSnaNSoUWWeEgAAyqU2BQAAAAAqQkZuL9+lS5dIpVKly0mSRElJSXz22Wdx//33Z+KUAABQLrUpAAAAAJBJGWm6H3fccWWW8/LyYqeddopevXrFnnvumYlTAgBAudSmAAAAAEAmZaTpfvXVV2fisAAAsNXUpgAAAABAJlXqM90BAAAAAAAAoDqp0JnueXl5ZZ6XWZ5UKhXr1q2ryNMCAMBG1KYAAAAAQGWo0Kb7mDFjNrnttddei3vuuSeSJKnIUwIAQLnUpgAAAABAZajQpvuxxx670br3338/hg4dGs8991yccsop8etf/7oiTwkAAOVSmwIAAAAAlSFjz3T/5z//GWeddVbsvffesW7dupgxY0Y8/vjj0bJly0ydEgAAyqU2BQAAAAAypcKb7suXL49f/vKXsdtuu8V7770Xf/vb3+K5556Ljh07VvSpAABgs9SmAAAAAECmVejt5W+55Za4+eabo1mzZvHkk0+We0tPAACoDGpTAAAAAKAyVGjT/fLLL4+6devGbrvtFo8//ng8/vjj5e43evToijwtAABsRG0KAAAAAFSGCm26n3rqqZFKpSrykAAAkBa1KQAAAABQGSq06f7YY49V5OEAACBtalMAAAAAoDLkZTsAAAAAAAAAAOQqTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJqqfNN90qRJcfTRR0fz5s0jlUrFM888U2Z7kiRxzTXXRPPmzaNu3brRq1eveO+997ITFgAAAAAAAIBtSpVvuq9atSo6deoU9957b7nbb7nllrj99tvj3nvvjbfeeiuaNWsWhx12WHz11VeVnBQAAAAAAACAbU3NbAf4LoWFhVFYWFjutiRJ4s4774wrr7wy+vXrFxERjz/+eDRt2jT+8Ic/xP/8z/9UZlQAAAAAAAAAtjFVfqb75sydOzdKSkqiT58+pevy8/OjZ8+e8dprr23yfatXr44VK1aUeQEAAAAAAADA1srppntJSUlERDRt2rTM+qZNm5ZuK8/w4cOjQYMGpa8WLVpkNCcAAAAAAAAA1VNON92/lUqlyiwnSbLRuv80dOjQWL58eelr4cKFmY4IAAAAAAAAQDWU0033Zs2aRURsNKt9yZIlG81+/0/5+flRv379Mi8AAPgukyZNiqOPPjqaN28eqVQqnnnmmc3uP2HChEilUhu93n///coJDAAAAABkXE433du0aRPNmjWL4uLi0nVr1qyJiRMnRo8ePbKYDACA6mjVqlXRqVOnuPfee7fqfR988EEsXry49LX77rtnKCEAAAAAUNlqZjvAd1m5cmXMnj27dHnu3LkxY8aMaNSoUbRs2TIuvvjiuPHGG2P33XeP3XffPW688cb4wQ9+ECeffHIWUwMAUB0VFhZGYWHhVr+vSZMm0bBhw4oPBAAAAABkXZVvuk+ZMiV69+5dulxUVBQREQMHDozHHnsshgwZEt98802cd9558cUXX8R+++0XL730UtSrVy9bkQEAoIwuXbrEv/71r2jfvn386le/KlPflmf16tWxevXq0uUVK1ZkOiIAAAAAkKYq33Tv1atXJEmyye2pVCquueaauOaaayovFAAAbIGCgoJ46KGHomvXrrF69er43//93zjkkENiwoQJcdBBB23yfcOHD49rr722EpMCAAAAAOmq8k13AADIVW3bto22bduWLnfv3j0WLlwYt95662ab7kOHDi29w1PEv2e6t2jRIqNZAQAAAID05GU7AAAAbEv233//+Oijjza7T35+ftSvX7/MCwAAAAComjTdAQCgEk2fPj0KCgqyHQMAAAAAqCBuLw8AAFto5cqVMXv27NLluXPnxowZM6JRo0bRsmXLGDp0aCxatChGjhwZERF33nlntG7dOjp06BBr1qyJJ554IkaNGhWjRo3K1hAAAAAAgAqm6Q4AAFtoypQp0bt379Llb5+7PnDgwHjsscdi8eLFsWDBgtLta9asiUsvvTQWLVoUdevWjQ4dOsTYsWOjb9++lZ4dAAAAAMgMTXcAANhCvXr1iiRJNrn9scceK7M8ZMiQGDJkSIZTAQAAAADZ5JnuAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03WEb1Lp160ilUhu9Bg0alO1owCa4bgEAAAAAoGqqme0AQOV76623Yv369aXL7777bhx22GFxwgknZDEVsDmuWwAAAAAAqJo03WEbtNNOO5VZvummm+KHP/xh9OzZM0uJgO/iugUAAAAAgKrJ7eVhG7dmzZp44okn4owzzohUKpXtOMAWcN0CAAAAAEDVoekO27hnnnkmvvzyyzjttNOyHQXYQq5bAAAAAACoOjTdYRv3yCOPRGFhYTRv3jzbUYAt5LoFAAAAAICqwzPdYRs2f/78+Otf/xqjR4/OdhRgC7luAQAAAACgajHTHbZhI0aMiCZNmsSRRx6Z7SjAFnLdAgAAAABA1aLpDtuoDRs2xIgRI2LgwIFRs6abXkAucN0CAAAAAEDVo+kO26i//vWvsWDBgjjjjDOyHQXYQq5bAAAAAACoekyTg21Unz59IkmSbMcAtoLrFgAAAAAAqh4z3QEAAAAAAAAgTWa6Qw5offnYbEfYYvNuOjLbEaBKcN0CwKZNmjQpfvOb38TUqVNj8eLFMWbMmDjuuOOyHQvIEt8TAACAXGemOwAAAJVq1apV0alTp7j33nuzHQWoAnxPAAAAcp2Z7gAAAFSqwsLCKCwszHYMoIrwPQEAAMh1ZroDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAC20KRJk+Loo4+O5s2bRyqVimeeeeY73zNx4sTo2rVr1KlTJ3bdddd48MEHMx8UqriVK1fGjBkzYsaMGRERMXfu3JgxY0YsWLAgu8GArPA9AQAAyHWa7gAAsIVWrVoVnTp1invvvXeL9p87d2707ds3DjzwwJg+fXpcccUVceGFF8aoUaMynBSqtilTpkSXLl2iS5cuERFRVFQUXbp0iWHDhmU5GZANvicAAAC5rma2AwAAQK4oLCyMwsLCLd7/wQcfjJYtW8add94ZERHt2rWLKVOmxK233hr9+/fPUEqo+nr16hVJkmQ7BlBF+J4AAADkOjPdAQAgQyZPnhx9+vQps+7www+PKVOmxNq1azf5vtWrV8eKFSvKvAAAAACAqslMdwAAyJCSkpJo2rRpmXVNmzaNdevWxdKlS6OgoKDc9w0fPjyuvfbayogIWdf68rHZjpC2eTcdme0IUO34ngAAAOQiM90BACCDUqlUmeVvb5/73+v/09ChQ2P58uWlr4ULF2Y0IwAAAACQPjPdAQAgQ5o1axYlJSVl1i1ZsiRq1qwZjRs33uT78vPzIz8/P9PxAAAAAIAKYKY7AABkSPfu3aO4uLjMupdeeim6desWtWrVylIqAAAAAKAiaboDAMAWWrlyZcyYMSNmzJgRERFz586NGTNmxIIFCyLi37eFP/XUU0v3P+ecc2L+/PlRVFQUs2bNikcffTQeeeSRuPTSS7MRHwAAAADIALeXBwCALTRlypTo3bt36XJRUVFERAwcODAee+yxWLx4cWkDPiKiTZs28fzzz8fgwYPjvvvui+bNm8fdd98d/fv3r/TsAAAAAEBmaLoDAMAW6tWrVyRJssntjz322EbrevbsGdOmTctgKgAAAAAgm9xeHgAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSlPNN92uuuSZSqVSZV7NmzbIdCwAAAAAAAIBtQM1sB6gIHTp0iL/+9a+lyzVq1MhiGgAAAAAAAAC2FdWi6V6zZk2z2wEAAAAAAACodDl/e/mIiI8++iiaN28ebdq0iZ/+9KcxZ86cbEcCAAAAAAAAYBuQ8zPd99tvvxg5cmTsscce8emnn8b1118fPXr0iPfeey8aN25c7ntWr14dq1evLl1esWJFZcUFAAAAAAAAoBrJ+ZnuhYWF0b9//9hrr73i0EMPjbFjx0ZExOOPP77J9wwfPjwaNGhQ+mrRokVlxQUAAAAAAACgGsn5pvt/22677WKvvfaKjz76aJP7DB06NJYvX176WrhwYSUmBAAAAAAAAKC6yPnby/+31atXx6xZs+LAAw/c5D75+fmRn59fiakAAAAAAAAAqI5yfqb7pZdeGhMnToy5c+fGG2+8Eccff3ysWLEiBg4cmO1oAAAAAAAAAFRzOT/T/ZNPPomf/exnsXTp0thpp51i//33j9dffz1atWqV7WgAAAAAAAAAVHM533R/6qmnsh0BAAAAAAAAgG1Uzt9eHgAAAAAAAACyRdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03YGcNnz48EilUnHxxRdnO0pacj0/AAAAAADAtk7THchZb731Vjz00EOx9957ZztKWnI9PwAAAAAAAJruQI5auXJlnHLKKfHwww/HDjvskO04Wy3X8wMAAAAAAPBvmu5ATho0aFAceeSRceihh2Y7SlpyPT8AAAAAAAD/VjPbAQC21lNPPRXTpk2Lt956K9tR0pLr+QEAAAAAAPh/NN2BnLJw4cK46KKL4qWXXoo6depkO85Wy/X8AAAAAAAAlKXpDuSUqVOnxpIlS6Jr166l69avXx+TJk2Ke++9N1avXh01atTIYsLNy/X8AAAAAAAAlKXpDuSUQw45JN55550y604//fTYc88945e//GWVb1jnen4AAAAAAADK0nQHckq9evWiY8eOZdZtt9120bhx443WV0W5nh8AAAAAAICy8rIdAAAAAAAAAABylZnuQM6bMGFCtiN8L7meHwAAAAAAYFtmpjsAAAAAAAAApEnTHQAAAAAAAADS5PbyQMa1vnxstiNssXk3HVlmOZezAwAAAAAAkHlmugMAAAAAAABAmjTdAQAAAAAAACBNmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKRJ0x0AAAAAAAAA0qTpDgAAAAAAAABp0nQHAAAAAAAAgDRpugMAAAAAAABAmjTdAQAAAAAAACBNmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKRJ0x0AALbS/fffH23atIk6depE165d45VXXtnkvhMmTIhUKrXR6/3336/ExAAAAABApmi6AwDAVnj66afj4osvjiuvvDKmT58eBx54YBQWFsaCBQs2+74PPvggFi9eXPrafffdKykxAAAAAJBJmu4AALAVbr/99vjFL34RZ555ZrRr1y7uvPPOaNGiRTzwwAObfV+TJk2iWbNmpa8aNWpUUmIAAAAAIJM03QEAYAutWbMmpk6dGn369Cmzvk+fPvHaa69t9r1dunSJgoKCOOSQQ2L8+PGb3Xf16tWxYsWKMi8AAAAAoGrSdAcAgC20dOnSWL9+fTRt2rTM+qZNm0ZJSUm57ykoKIiHHnooRo0aFaNHj462bdvGIYccEpMmTdrkeYYPHx4NGjQofbVo0aJCxwEAAAAAVJya2Q4AAAC5JpVKlVlOkmSjdd9q27ZttG3btnS5e/fusXDhwrj11lvjoIMOKvc9Q4cOjaKiotLlFStWaLwDAAAAQBVlpjsAAGyhHXfcMWrUqLHRrPYlS5ZsNPt9c/bff//46KOPNrk9Pz8/6tevX+YFAAAAAFRNmu4AALCFateuHV27do3i4uIy64uLi6NHjx5bfJzp06dHQUFBRccDAAAAALLA7eUBAGArFBUVxYABA6Jbt27RvXv3eOihh2LBggVxzjnnRMS/bw2/aNGiGDlyZERE3HnnndG6devo0KFDrFmzJp544okYNWpUjBo1KpvDAAAAAAAqiKY7AABshZNOOimWLVsW1113XSxevDg6duwYzz//fLRq1SoiIhYvXhwLFiwo3X/NmjVx6aWXxqJFi6Ju3brRoUOHGDt2bPTt2zdbQwAAAAAAKpCmOwAAbKXzzjsvzjvvvHK3PfbYY2WWhwwZEkOGDKmEVAAAAABANnimOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AZNTw4cPjRz/6UdSrVy+aNGkSxx13XHzwwQfZjgUAAAAAABVC0x0AyKiJEyfGoEGD4vXXX4/i4uJYt25d9OnTJ1atWpXtaAAAAAAA8L3VzHYAAKB6GzduXJnlESNGRJMmTWLq1Klx0EEHZSkVAAAAAABUDDPdAYBKtXz58oiIaNSoUZaTAAAAAADA96fpDgBUmiRJoqioKA444IDo2LFjtuMAAAAAAMD35vbyAEClOf/882PmzJnx6quvZjsKAAAAAABUCE13AKBSXHDBBfHss8/GpEmTYpdddsl2HAAAAAAAqBCa7gBARiVJEhdccEGMGTMmJkyYEG3atMl2JAAAAAAAqDCa7gBARg0aNCj+8Ic/xJ///OeoV69elJSUREREgwYNom7dullOBwAAAAAA309etgMAANXbAw88EMuXL49evXpFQUFB6evpp5/OdjQAAAAAAPjezHQHADIqSZJsRwAAAAAAgIwx0x0AAAAAAAAA0qTpDgAAAAAAAABpcnt5AGAjrS8fm+0IW2TeTUdmOwIAAAAAANs4M90BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AIDNmDRpUhx99NHRvHnzSKVS8cwzz2Q7EgAAAAAAVYimOwDAZqxatSo6deoU9957b7ajAAAAAABQBdXMdgAAgKqssLAwCgsLsx0DAAAAAIAqykx3AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANNXMdgAAgKps5cqVMXv27NLluXPnxowZM6JRo0bRsmXLLCYDAAAAAKAq0HQHANiMKVOmRO/evUuXi4qKIiJi4MCB8dhjj2UpFQAAAAAAVYWmOwDAZvTq1SuSJMl2DAAAAAAAqijPdAcAAAAAAACANGm6AwAAAAAAAECa3F4eAKhWWl8+NtsRtti8m47MdgQAAAAAAL4nM90BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AACgWrv//vujTZs2UadOnejatWu88sor2Y6UluoyjurK51P1+YwAAADIFE13AACg2nr66afj4osvjiuvvDKmT58eBx54YBQWFsaCBQuyHW2rVJdxVFc+n6rPZwQAAEAmaboDAADV1u233x6/+MUv4swzz4x27drFnXfeGS1atIgHHngg29G2SnUZR3Xl86n6fEYAAABkkqY7AABQLa1ZsyamTp0affr0KbO+T58+8dprr2Up1darLuOornw+VZ/PCAAAgEzTdAcAAKqlpUuXxvr166Np06Zl1jdt2jRKSkqylGrrVZdxVFc+n6rPZwQAAECmaboDAADVWiqVKrOcJMlG63JBdRlHdeXzqfp8RgAAAGSKpjsAAFAt7bjjjlGjRo2NZrIuWbJkoxmvVVl1GUd15fOp+nxGAAAAZJqmOwAAUC3Vrl07unbtGsXFxWXWFxcXR48ePbKUautVl3FUVz6fqs9nBAAAQKbVzHYAAACATCkqKooBAwZEt27donv37vHQQw/FggUL4pxzzsl2tK1SXcZRXfl8qj6fEQAAAJlUbWa633///dGmTZuoU6dOdO3aNV555ZVsRwIAoJra2tpz4sSJ0bVr16hTp07suuuu8eCDD1ZSUk466aS4884747rrrovOnTvHpEmT4vnnn49WrVplO9pWqS7jqK58PlWfzwgAAIBMqhZN96effjouvvjiuPLKK2P69Olx4IEHRmFhYSxYsCDb0QAAqGa2tvacO3du9O3bNw488MCYPn16XHHFFXHhhRfGqFGjKjn5tuu8886LefPmxerVq2Pq1Klx0EEHZTtSWqrLOKorn0/V5zMCAAAgU6pF0/3222+PX/ziF3HmmWdGu3bt4s4774wWLVrEAw88kO1oAABUM1tbez744IPRsmXLuPPOO6Ndu3Zx5plnxhlnnBG33nprJScHAAAAADIh55/pvmbNmpg6dWpcfvnlZdb36dMnXnvttXLfs3r16li9enXp8vLlyyMiYsWKFZkLmov+6//HhtVfZynI1ivvs8zl/LmcPSK38+dy9ojczp/L2SPkryy5nD2icmqPb8+RJEnGz7UtSKf2nDx5cvTp06fMusMPPzweeeSRWLt2bdSqVWuj96hXvyf/n3JKLn3f/m/bwjXp86n6qttnVN3GE1E9x5SJc6hXAQDIZTnfdF+6dGmsX78+mjZtWmZ906ZNo6SkpNz3DB8+PK699tqN1rdo0SIjGXNWgwbZTpC2BndmO8H3k8v5czl7RG7nz+XsEbmdP5ezR+R2/lzOHlG5+b/66qtokMN/t1cV6dSeJSUl5e6/bt26WLp0aRQUFGz0HvXq9+RrnUqS638PVXc+n6qvun1G1W08EepVAADYUjnfdP9WKpUqs5wkyUbrvjV06NAoKioqXd6wYUN8/vnn0bhx402+p6pasWJFtGjRIhYuXBj169fPdpytlsv5czl7RG7nz+XsEbmdP5ezR+R2/lzOHpHb+XM5e8S/a6Kvvvoqmjdvnu0o1crW1J6b2r+89d+qTvXqt3L9Wvpv1W08EdVvTMZT9VW3MRlP1VfdxlRdxqNeBQCgOsj5pvuOO+4YNWrU2Ghm0ZIlSzaaUfSt/Pz8yM/PL7OuYcOGmYpYKerXr5/T/8DK5fy5nD0it/PncvaI3M6fy9kjcjt/LmePyO38uZzdjKGKk07t2axZs3L3r1mzZjRu3Ljc91THevVbuXwtlae6jSei+o3JeKq+6jYm46n6qtuYqsN41KsAAOS6vGwH+L5q164dXbt2jeLi4jLri4uLo0ePHllKBQBAdZRO7dm9e/eN9n/ppZeiW7du5T7PHQAAAADILTnfdI+IKCoqit/97nfx6KOPxqxZs2Lw4MGxYMGCOOecc7IdDQCAaua7as+hQ4fGqaeeWrr/OeecE/Pnz4+ioqKYNWtWPProo/HII4/EpZdemq0hAAAAAAAVKOdvLx8RcdJJJ8WyZcviuuuui8WLF0fHjh3j+eefj1atWmU7Wsbl5+fH1VdfvdHtR3NFLufP5ewRuZ0/l7NH5Hb+XM4ekdv5czl7RG7nz+XsZMZ31Z6LFy+OBQsWlO7fpk2beP7552Pw4MFx3333RfPmzePuu++O/v37Z2sIWVHdrqXqNp6I6jcm46n6qtuYjKfqq25jqm7jAQCAXJZKkiTJdggAAAAAAAAAyEXV4vbyAAAAAAAAAJANmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKSpZrYDsO1avXp15OfnZzsGAABskbVr10ZJSUl8/fXXsdNOO0WjRo2yHel7q25jqm7jiaieY4rw70EAAACqF013Ks2LL74YTz75ZLzyyiuxYMGC2LBhQ/zgBz+IffbZJ/r06ROnn356NG/ePNsxy7V8+fIYM2ZMvPLKKzFv3rzSH3h16dIlDj/88OjRo0e2I25WkiQxceLEcvMfeuih0aJFi2xH3KRczh6R2/lzOXuE/NmUy9kjcj8/ULFWrlwZv//97+PJJ5+MN998M1avXl26bZdddok+ffrE2WefHT/60Y+ymHLrVLcxVbfxRFTPMeXyvwfL88EHH5SOp7x/I/bv3z/nfqmguo3JeAAAgMqUSpIkyXYIqrdnnnkmfvnLX8by5cujb9++se+++8bOO+8cdevWjc8//zzefffdeOWVV2Ly5Mlx2mmnxa9//evYaaedsh07IiIWL14cw4YNi9///vfRrFmzcrNPnTo1WrVqFVdffXWcdNJJ2Y5cxjfffBN33HFH3H///bFs2bLo1KnTRvn/+c9/Rp8+fWLYsGGx//77ZztyqVzOHpHb+XM5e4T82ZTL2SNyPz9Q8e6444644YYbonXr1nHMMcdsso4dM2ZM7L///nHPPffE7rvvnu3Ym1XdxlTdxhNR/caUy/8eLM/06dNjyJAh8corr0SPHj02OZ4VK1bEkCFD4uKLL67yjdDqNibjqdrjAQCA6krTPYf069dvq9/z4IMPRpMmTTKQZsvtu+++cdVVV8WRRx4ZeXl5m9xv0aJFcdddd0XTpk3jkksuqcSEm9akSZM49dRT47TTTouOHTuWu88333wTzzzzTNx5551xwgknxKWXXlrJKTetRYsWsd9++8Vpp50Whx9+eNSqVWujfebPnx9/+MMf4sEHH4xf/epXcdZZZ2Uh6cZyOXtEbufP5ewR8mdTLmePyP38UFXkas1anhNOOCGGDRsWe+2112b3W716dTzyyCNRu3btOPPMMyspXXqq25iq23giqt+Ycvnfg+Vp1apVXHbZZXHyySdv9lb/kydPjjvuuCM6d+4cV1xxRSUm3HrVbUzGU7XHAwAA1ZWmew7Jy8uLE088MerWrbtF+//hD3+IWbNmxa677prhZNXXZ599tlWzLLZ2/0x79913N/nLAv9tzZo1MX/+/CozSyaXs0fkdv5czh4hfzblcvaI3M8PVYWaFajO1qxZE7Vr187Y/tlQ3cZkPFV7PAAAUF1puueQvLy8KCkp2eJZQPXq1Yu33367Sv8AM0mSSKVS2Y4BAEAFqY4167Zi7ty50aJFi6hZs2a2o1SIdevWVZux/Cf/hgIAAICqZ9P3dqPKGT9+/GZvJfbfXnjhhdh5550zmOj7y8/Pj1mzZmU7xnd6++23Y8SIETF37tyIiHjvvffivPPOi3POOSdefPHFLKfbdnz55Zfx8MMPx1VXXRW/+93vYvny5dmOtEU++uijePzxx+Pmm2+OW265JR5//PH46KOPsh0rLaeffnr885//zHaMLbJkyZIYP358rFixIiIiPv3007jlllvipptuinfeeSfL6bYdrlvY9lTHmnXx4sXxxBNPxPPPPx9r1qwps23VqlVx3XXXZSlZxWrbtm1Ofq8bN25c6d/tGzZsiOuvvz523nnnyM/Pj1122SVuuummyLXfNV+9enVccskl0bNnz/jNb34TERHXX399bL/99rH99tvHySefXFrj5IpPPvkkrrzyyujdu3e0a9cu2rdvH717944rr7wyFi5cmO14afnkk09i5cqVG61fu3ZtTJo0KQuJKt6uu+6ak98XPvnkk1i6dGnp8iuvvBKnnHJKHHjggfHzn/88Jk+enMV06Xnuuefi6quvLs3+8ssvR9++feOII46Ihx56KMvpAAAAM92pFEVFReWuv+uuu+LnP/95NG7cOCIibr/99sqMtUVGjRoVJ510UjRs2DDWrFkTY8aMieOPPz66desWNWrUiL/+9a8xcuTIOPnkk7MdtVxr166NK6+8MkaPHh2NGjWKc889N04//fTS7Z9++mk0b9481q9fn8WU5Tv++OPj5JNPjn79+sU//vGP6NmzZ6RSqdh1111j3rx5kUql4uWXX4527dplO2q5li9fHqeeemo899xz0aBBg2jSpEkkSRKfffZZrFixIo4++ugYOXJk1K9fP9tRNzJz5sxy13fr1i3+7//+r3Q24t57712ZsbbYhAkT4qijjoqvv/46mjVrFuPGjYsjjzwy6tatG3l5eTFv3rx49tlno0+fPtmOWi7Xbfbk8nULZMZbb70Vffr0iQ0bNsTatWtjl112iTFjxkSHDh0iomp/T96Ufv36lbv+z3/+cxx88MFRr169iIgYPXp0ZcZKW4cOHeLhhx+OHj16xPDhw+O2226LK6+8Mtq1axcffPBBDB8+PAYPHhy//OUvsx11ixUVFcXTTz8dP/vZz+L555+Pgw8+OJ577rm48cYbIy8vL4YNGxaFhYVx9913ZzvqFnn11VejsLAwWrRoEX369ImmTZtGkiSxZMmSKC4ujoULF8YLL7wQP/7xj7MddYssXrw4jj322Jg6dWqkUqk45ZRT4r777ovtt98+InLz+8KmvpaKiopiyJAh0axZs4iIuPDCCyszVtp69OgRV111VRQWFsaf//zn6NevXxx11FHRrl27+PDDD+Mvf/lLjB49Oo466qhsR90iDz74YFxwwQXRqVOn+Oijj+L++++Pc889N0466aSoUaNGjBw5MoYPHx4XXXRRtqMCAMA2S9M9R61cuTKmTp0aJSUlkUqlomnTptG1a9fSf+RXNXl5edGpU6do2LBhmfUTJ06Mbt26xXbbbVfaiKlqunbtGv369Ysrr7wynnrqqTj33HOjqKgorrrqqoiIuO222+KJJ56I6dOnZzlp+a655pp48MEH49JLL40vv/wy7r333jjppJPit7/9bUT8+wdCBQUFsWHDhiwn3dhOO+0Ur732Wuy+++7Rt2/f2GGHHWLEiBFRu3btWLt2bZx77rmxcOHCKnu3gVNPPTVmzJgRDz/8cOy3335ltr3xxhtx9tlnR+fOnePxxx/PUsJNy8vLi1QqVe6ssG/Xp1KpKvuDxAMOOCA6d+4cN910Uzz44INx1113xbHHHhv33ntvRERcdtll8dprr8Xf//73LCctn+s2e3L5uoWqKNdq1vIcdthh0bJly3j44Ydj1apVcfnll8fTTz8dxcXF0aVLl5xsruXl5cVBBx0Ubdq0KbN+5MiRccwxx5TW7CNGjMhCuq1Xt27d+PDDD6NFixax1157xVVXXRUnnnhi6faxY8fGxRdfnFOzdVu2bBmPPvpoHHrooTFnzpzYfffdY/To0XHsscdGRERxcXGcddZZMW/evOwG3UI/+tGP4oADDog77rij3O2DBw+OV199Nd56661KTpaegQMHxocffhj33HNPfPnllzF06NBIkiSKi4tjhx12qNK12qbk5eXFzjvvvNEjGebPnx/NmzePWrVqRSqVijlz5mQp4dapX79+zJw5M1q3bh37779//OQnPynzizf33ntvPProozFt2rQsptxy7du3j8GDB8dZZ50V48ePj759+8Ztt90W5513XkREPPbYY3HLLbfEP/7xjywnBQCAbVhCTlm7dm1y4YUXJnXr1k1SqVSSn5+f1K5dO0mlUkndunWTiy66KFmzZk22Y27kxhtvTNq0aZP87W9/K7O+Zs2ayXvvvZelVFtmu+22S+bOnZskSZJs2LAhqVWrVjJz5szS7R9//HGy/fbbZyndd9ttt92S5557rnR59uzZye67756cdtppyYYNG5KSkpIkLy8viwk3rW7dusns2bOTJEmSgoKCZNq0aWW2f/DBB0mDBg2ykGzLNGjQIHn99dc3uX3y5MlVNn+nTp2SI488Mpk1a1Yyb968ZN68ecncuXOTmjVrJsXFxaXrqqr69euXfu2sXbs2qVmzZjJ9+vTS7R9++GGV/X+fJK7bbMrl6xaqklytWcuzww47JB988EGZdTfffHOyww47JG+++WaV/p68KU8++WSyyy67JI8++miZ9blQm5enoKAgmTx5cpIkSdK0adON/u758MMPk7p162YjWtrq1q2bzJ8/v3S5Vq1aybvvvlu6PHfu3OQHP/hBNqKlpU6dOsn777+/ye2zZs1K6tSpU4mJvp/mzZsnb7zxRunyv/71r+TYY49NOnfunCxbtiwnvy+cffbZSefOnZN//OMfZdbn6veFBg0aJG+//XaSJEnSpEmT0j9/a/bs2Tl1DZX3PeGdd94pXc617wkAAFAdeaZ7jrnkkkti1KhRMWLEiPj888/jX//6V6xevTo+//zzGDFiRIwePTouu+yybMfcyNChQ+Ppp5+Oc889Ny699NJYu3ZttiNtsXr16sWyZcsi4t/PJl63bl3pckTEsmXLqvRsrUWLFkXHjh1Ll3/4wx/GhAkTYvLkyTFgwIAqPStr7733Lr37QbNmzWL+/Pllts+fPz/q1q2bjWhbLJVKpbUt2958883Ybbfdon///vH5559Hq1atonXr1hER0bx582jVqlW0atUquyE3o3bt2vGvf/0rIiLWrFkTGzZsKF2OiPjmm2+iVq1a2Yr3nVy32ZWr1y1UJblas27Kf/4dEhExZMiQuOKKK6JPnz7x2muvZSlV+n7605/Gq6++Go8++mj0798/vvjii2xH+l5+8pOfxA033BDr16+PY489Nu6///4yd+u59957o3PnztkLmIaWLVuWPrf5rbfeilQqFW+++Wbp9jfeeCN23nnnbMXbagUFBZu9ViZPnhwFBQWVmOj7Wb58eeywww6ly/n5+fGnP/0pWrduHb17944lS5ZkMV16fvvb38bVV18dhx9+eOndoXJZz54948knn4yIiC5dusSECRPKbB8/fnxOXUONGzcurav/+c9/xrp162LBggWl2+fPnx+NGjXKVjwAACDCTPdcs+OOO240W/w//fWvf0123HHHSky0db766qvk1FNPTfbee+9k5syZSa1atar8b83//Oc/T/bbb7/kiSeeSI4++ujkiCOOSPbff/9k1qxZyfvvv5/07NkzOf7447Mdc5PatGmT/PWvf91o/aJFi5I99tgjOfTQQ6vsLIy//OUvSaNGjZIRI0YkI0aMSFq3bp387ne/S/7+978njz76aNKiRYvksssuy3bMTfr5z3+e7L333slbb7210ba33nor6dy5czJgwIAsJNtyzz//fLLLLrskN954Y7J+/fqcmely7LHHJkcddVTy6quvJmeffXbSrVu35Mgjj0xWrlyZrFq1Kjn++OOTI444ItsxN8l1mz3V4bqFqiDXa9b/dOCBByYPPPBAudtuueWWJD8/v8p+T/4u69evT4YNG5a0aNEiGTduXE7U5uX58ssvk27duiW77bZbMmDAgKROnTpJq1atksMOOyxp06ZNUr9+/c3exaQquuOOO5I6deokhx56aLLDDjsk99xzT9KsWbNkyJAhyeWXX540aNAgue6667Idc4vdd999Se3atZNBgwYlzzzzTDJ58uTk9ddfT5555plk0KBBSX5+/iavs6por732Sv70pz9ttH7t2rXJcccdl7Rs2TJnvy988sknycEHH5wcccQRyeLFi3Om/v9v//jHP5LGjRsnp556avLrX/862X777ZOf//znyQ033JCceuqpSX5+fjJixIhsx9xigwYNSnbffffk+uuvT/bdd99k4MCByZ577pm88MILybhx45K99torOeOMM7IdEwAAtmma7jlmu+222+i2aP9p+vTpyXbbbVeJidLz5JNPJk2bNk3y8vKq/D/gS0pKkkMPPTTZfvvtk8LCwmT58uXJ+eefn6RSqSQvLy/ZfffdS2+lXBX94he/2OQ/vj/55JNkt912q9I/EPrTn/6U7LLLLkleXl6SSqVKX3Xq1EkuvvjiZN26ddmOuElffPFFcsQRRySpVCrZYYcdkrZt2yZ77rlnssMOOyR5eXlJYWFh8sUXX2Q75ncqKSlJCgsLkwMOOCBnfuj24YcfJrvttluSSqWSDh06JIsWLUqOOeaYpGbNmknNmjWTnXbaKZk6dWq2Y26S6zZ7qst1C9lWXWrWJEmShx9+OPn5z3++ye0333xz0rp160pMVPFeffXVpE2bNjlRm2/KmjVrkgceeCDp27dvsueeeyZ77LFH0rNnz+SKK65IFi5cmO14aXniiSeS888/P3nqqaeSJEmS8ePHJwceeGDStWvX5JprrknWr1+f5YRb56mnnkr222+/pGbNmqW1Qc2aNZP99tsvefrpp7Mdb6sMGTIk6dOnT7nb1q5dmxxzzDFVulb7Lhs2bEhuvPHGpFmzZkmNGjVy9vvC7Nmzk5/+9KdJvXr1Sr/matWqlfTo0SMZM2ZMtuNtlZUrVyZnnnlm0rFjx+Scc85J1qxZk/zmN78pfXRLr169kk8//TTbMQEAYJuWSpL/uO8eVd7RRx8d33zzTfz+97+Ppk2bltn26aefxoABA6JOnTrx7LPPZinhllu4cGFMmzYtDjnkkCp9e/ZNmTNnTnz99dex5557Rs2aNbMdZ5Pmz58f77//fhx++OHlbl+8eHG89NJLMXDgwEpOtuXWr18f06ZNizlz5sSGDRuioKAgunbtGvXq1ct2tC3y/vvvx+TJk6OkpCQi/n3L7e7du8eee+6Z5WRb5+67747x48fHPffcE7vssku242yRZcuWRePGjUuX//a3v8U333wT3bt3L7O+qnHdZl91uW4hW6pTzbqtWLlyZXz88cfRrl27qF27drbjUI2tXbs2li5dGhERO+64Y5V+5M+mrFu3Lr7++uuoX79+udvXr18fn3zySZV+HNOWmDp1arz66qtx6qmnlrmdfq5JkiSWLFkSGzZsyNmvuU3517/+FWvXrs2ZGhsAAKozTfccs3Dhwujbt2+8//770bFjx2jatGmkUqkoKSmJd999N9q3bx9jx47NmYbYunXrqnTDGgCArVfdalYAAAAA2Jy8bAdg67Ro0SLefvvtePbZZ+OYY46JVq1aRcuWLeOYY46J5557LqZPn14lf3g5bty4eOeddyIiYsOGDXH99dfHzjvvHPn5+bHLLrvETTfdFFX99z8++eSTWLly5Ubr165dG5MmTcpCoq3z8ssvx3XXXRfnnntunH/++XHbbbfFRx99lO1YW23GjBnxxz/+MV599dUq/zXzrQ0bNmxy/YIFCyo5zZZ7++23Y8SIETF37tyIiHjvvffivPPOi3POOSdefPHFLKdLz8EHHxzz58/Pdozv7YsvvoiRI0dmO0a5Ro0aFV9//XW2Y1S46vK1A5UlV2tWIDs+/vjjOPjgg7Mdo8IsXLgwzjjjjGzHqFDVbUzGAwAAVDQz3XPIzJkzo2PHjpGXt2W/K/Hee+9F27Ztq8RM8g4dOsTDDz8cPXr0iOHDh8dtt90WV155ZbRr1y4++OCDGD58eAwePDh++ctfZjvqRhYvXhzHHntsTJ06NVKpVJxyyilx3333ld4S/9NPP43mzZvH+vXrs5y0fEuWLImjjz463nrrrcjLy4skSaJLly6xaNGi+Oyzz6KoqChuueWWbMcs18knnxy//e1vo169erFy5cro379/FBcXR61atWLt2rXRtWvXKC4ujoYNG2Y7arlWrFgRZ555Zjz33HNRv379OOecc2LYsGFRo0aNiKjaXzujRo2Kk046KRo2bBhr1qyJMWPGxPHHHx/dunWLGjVqxF//+tcYOXJknHzyydmOWq5N3a64X79+cdddd0WLFi0iIuKYY46pzFgV5u2334599tmnSn7t5OXlxfbbbx8//elP4xe/+EXst99+2Y60Var71w5UhlyuWYHsqMq1TTqq23giqt+YjAcAAKhomu45pEaNGlFSUhI77bTTFu1fv379mDFjRuy6664ZTvbd6tatGx9++GG0aNEi9tprr7jqqqvixBNPLN0+duzYuPjii6vkzOuBAwfGhx9+GPfcc098+eWXMXTo0EiSJIqLi2OHHXaITz/9NAoKCjY5mznbfvrTn8bq1atjxIgRkZ+fH5dddll89dVX8fjjj8fLL78cJ554Ylx11VVx0UUXZTvqRmrUqBGLFy+OJk2axGWXXRajRo2KP/3pT7HPPvvEu+++GyeeeGIcccQRcfvtt2c7arkuuuiiGDduXNxwww3x5ZdfxvXXXx8dO3aM0aNHR+3atav0107Xrl2jX79+ceWVV8ZTTz0V5557bhQVFcVVV10VERG33XZbPPHEEzF9+vQsJy1fXl5epFKpzd4NIZVKVdkfSq1YsWKz22fOnBk9e/askvnz8vLi2muvjTFjxsSMGTOiffv2ceaZZ8aAAQOicePG2Y73nXL9aweqglyuWYHMuPvuuze7fdGiRXHrrbfmzN+vm/olvW/NmTMnLrnkkpwZT0T1G5PxAAAAlU3TPYfk5eXF2WefHT/4wQ+2aP/7778//vGPf1SJH2A2b948Ro8eHfvvv380a9YsXnjhhejSpUvp9o8++ig6depUJW9JvPPOO8eYMWNi3333jYiI1atXx0knnRTz58+Pv/3tb7F27doqO1s5IqJBgwbx2muvRYcOHSIiYtWqVbHDDjvE0qVLo379+vHEE0/E9ddfH++//36Wk24sLy8vSkpKokmTJtGxY8cYNmxYmV/WeP755+Piiy+ODz/8MIspN61Vq1bx+OOPR69evSIiYtmyZXHkkUdGgwYN4tlnn40vv/yyyn7tbL/99vHuu+9G69atI0mSyM/Pj6lTp8Zee+0VEf/+oU6nTp3iq6++ynLS8hUWFkaNGjXi0UcfjSZNmpSur1WrVrz99tvRvn37LKb7bt82fjclSZIq2/j9z+t26tSp8cgjj8STTz4Z33zzTRxzzDFx1llnxWGHHZbtmJuU6187UBXkcs0KZEZeXl4UFBRE7dq1y92+Zs2aKCkpqZK1TXmq4y/pVbcxGQ8AAFDZPNM9hxx00EHxwQcfxPTp07fo1b1796hbt262Y0dExE9+8pO44YYbYv369XHsscfG/fffX+Yfi/fee2907tw5ewE3Y/ny5bHDDjuULufn58ef/vSnaN26dfTu3TuWLFmSxXTfLT8/v0zzLi8vL9avXx/r1q2LiIgePXrEvHnzspTuu32b/dNPP42OHTuW2dahQ4dYuHBhNmJtkaVLl0arVq1Klxs3bhzFxcXx1VdfRd++favkL5l8q169erFs2bKIiPjyyy9j3bp1pcsR//4Fgm8fsVAVvfDCC3HIIYfEj370o/jLX/6S7ThbrV69ejF8+PB4+eWXy3099NBD2Y64Rbp27Rr3339/LF68OB5++OH47LPP4ogjjojWrVtnO9om5frXDlQFuVyzpmvkyJHx8ccfZztGhapuY6pu44nIrTG1atUq7rjjjpg7d265r7Fjx2Y74lYpKCiIUaNGxYYNG8p9TZs2LdsRt1p1G5PxAAAAlc2DE3PIhAkTsh0hbTfeeGMceuihseeee0b37t3jj3/8YxQXF8cee+wRs2fPjmXLlsVLL72U7Zjl2nXXXWPmzJmx++67l66rWbNm/PGPf4wTTjghjjrqqCym+24HHHBADBs2LB5//PGoXbt2XHHFFbHrrrtGo0aNIiLis88+K/NLBVXNVVddFT/4wQ9KZ8/+5yzTpUuXVunGb4sWLWLWrFnRpk2b0nX16tWLl156Kfr06RM/+clPsphu8w499NAYNGhQXHDBBfH000/H4YcfHkOHDo0RI0ZEKpWKyy67LA444IBsx9yswYMHx8EHHxwnn3xyPPfcc3HHHXdkO9IW22effSIiomfPnuVub9iw4WZnuWRTeTP069SpEwMGDIgBAwbE7NmzY8SIEVlItuVy+WsHqoJcrlnTddppp0WtWrXi7LPPjnvuuSfbcSpEdRtTdRtPRG6NqWvXrjF16tQyd636T981g7eq6dq1a0ybNi2OO+64crfn2ngiqt+YjAcAAKhsZrpTKb69xfkll1wSy5Yti9atW0d+fn6sWbMmfvazn8V7770X++23X7ZjlquwsLDcWaXfNt6r6gz9b916660xY8aMaNiwYWy33Xbx2GOPxQMPPFC6fdasWXHaaadlL+Bm/OdMufbt28fcuXPLbH/++edLb5tfFfXp06fc5uL2228fL774YtSpUycLqbbMrbfeGvXq1Ytzzjkn1q1bF08//XR069Yt2rdvH+3bt49//vOfcdNNN2U75nfq1KlTTJkyJVKpVHTu3DlnfhB18sknb/bro1mzZnH11VdXYqIt913/j3fbbbe44YYbKilN+nL1awfIjg0bNsQHH3yw0V15cll1G1N1G09Ebo3puuuuixNOOGGT28ur9auyyy67LHr06LHJ7bvttluMHz++EhN9f9VtTMYDAABUNs90h++wbt26+Prrr6N+/frlbl+/fn188sknZW4jXtV8/fXX8fe//z1Wr14d+++/f+y4447ZjlQh5syZE7Vr145ddtkl21HK9cUXX8Q///nPTf5iwMqVK2Pq1KmbnM1cFc2ZMye+/vrr2HPPPaNmzdy6Wcqzzz4b48ePj6FDh5Z5VjcVa/78+dGyZcvNPpM+1/jaAQAAAABgczTdAQAAvsO3vyxXUlISqVQqmjZtGl27dq3Sj7rZ1l177bUxaNCgavELp+vWrYvx48fHggULolWrVtG7d++oUaNGtmMBAAAA/z+3l4fvaeHChXHGGWdkO0baPv3007juuuuyHWOzPvnkk1i5cuVG69euXRuTJk3KQqItt2zZshg/fnx8/vnnEfHv59DffPPNcd1118WsWbOynG7zcjn7puy6667x0UcfZTvGVlu7dm0888wz8Zvf/CaeeOKJWLVqVbYjbbFcy/7JJ5/E0qVLS5dfeeWVOOWUU+LAAw+Mn//85zF58uQspgOyYd26dXHRRRdFkyZNonfv3jFw4MAYMGBA9O7dO5o0aRIXX3xxrF27Ntsxt9r9998fhx56aJx44onx8ssvl9m2dOnS2HXXXbOUbOutWLFio9fy5cvjhhtuiDlz5pSuyyUXXnhhjB07NiL+/XfTXnvtFYWFhXHllVfGEUccEV26dIlFixZlOSUAAADwLTPd4Xt6++23Y5999on169dnO0paqnL+xYsXx7HHHhtTp06NVCoVp5xyStx3332lM8o+/fTTaN68eZXMHhHx5ptvRp8+fWLFihXRsGHDKC4ujhNOOCFq1qwZSZLEokWL4tVXX4199tkn21E3ksvZIyLuvvvuctcXFRXFkCFDolmzZhHx7x9oV0U9evSI559/Pho2bBifffZZHHLIIfHBBx9Eq1atYuHChdGkSZN47bXXYuedd8521I3kcvaIf+e/6qqrorCwMP785z9Hv3794qijjop27drFhx9+GH/5y19i9OjRcdRRR2U7KlBJLrroohg1alTcdtttcfjhh0fDhg0jIuLLL7+MF198MS677LLo169f3HnnnVnNuTXuvvvuGDp0aJx++umxfPny+OMf/xhXX311DB06NCKqfo313zY14ztJkkilUqX/zZXxREQ0b948/va3v0W7du3ipJNOis8//zyefPLJ2HHHHePzzz+PgQMHRp06deKPf/xjtqMCAAAAoekO3+nZZ5/d7PY5c+bEJZdcUmV/iDdz5szNbn///ffjZz/7WZXMP3DgwPjwww/jnnvuiS+//DKGDh0aSZJEcXFx7LDDDvHpp59GQUFBbNiwIdtRy3XYYYdF69at4/bbb4/f/va3cdddd8URRxwRDz/8cEREnHnmmbFs2bIYM2ZMlpNuLJezR0Tk5eXFzjvvvNFz5+fPnx/NmzePWrVqRSqVijlz5mQp4ebl5eVFSUlJNGnSJM4+++x466234oUXXohmzZrFsmXL4phjjok999wzHnnkkWxH3UguZ4+IqF+/fsycOfP/a+/O42rOGj+Af26LbsrWqkRFaVqoiFEZlS27jDEma0WW4WdrGQyTZVAe63jsRnqG8DzCPBiyFabGMhGjyIis2RMGbff7+8Or+7jabqHvvc3n/Xr1mu4533vu59zv947qfM85sLKyQrt27dCvXz9888038vp//vOf2LhxI86ePStiSiKqTsbGxti+fTs6duxYav2RI0fw1Vdf4eHDh9WcrOocHR3x7bffYtCgQQCA3377DX5+fhg9ejTmzJmjdoPuFhYWcHFxQUhICDQ03izmJggCOnfujA0bNsDa2hoA4OXlJWbMStHV1UV6ejqsra3RuHFjxMXFoW3btvL6ixcvwsfHR62uOyIiIiIiIqKajIPuRBXQ0NCQz5ApiyrPnCkvv6rP/GnUqBF27dol/wNjXl4eBg4ciBs3buDIkSMoKChQ6T8IGxgYICkpCfb29igoKIBUKsVvv/0m78+5c+fQu3dv3L59W+SkJalzdgAYPXo0Tp8+jdjYWNjb28vLtbW1cf78eTg4OIiYrmJvD1zb2dlhyZIl6Nmzp7w+MTERgYGBuH79uogpS6fO2QGgfv36OH78OFq2bAlTU1McOnQILVu2lNdnZmaiZcuWKr9MPhF9OPr6+khOTlb4f8HbUlNT0b59+1K3wlFVtWvXRnp6OqysrORlaWlp6NSpEwIDAzFp0iSV/hnrXU+ePMGIESOQm5uLn376Sb6airr8u18aZ2dnTJ8+HQMHDoSDgwN++OEHdO7cWV7/22+/oVevXnj8+LGIKYmIiIiIiIioGPd0J5Xxr3/9C5mZmWLHKMHMzAxxcXGQyWSlfqn6bEdDQ0OsX78e169fL/F17do17N27V+yIZcrNzUWDBg3kj3V0dLBjxw5YWVnBx8cHDx48EDFdxfLz86GrqwvgzR99a9euDSMjI3m9oaGhyv6hVJ2zA8DatWsREREBX19f/POf/xQ7TpVIJBIAb5YvLp6hV8za2hrZ2dlixFKKOmf38vLC1q1bAQCurq5ITExUqE9ISFDZpfGJ6OPw8fHBlClTcP/+/RJ19+/fR3h4eJmz4FWVkZERbt26pVDm6OiIo0ePIjo6GmFhYSIlqxoDAwPs2rULAwYMQNu2beX/H1dnkydPRmhoKBITEzFt2jRMmDABR44cwd27d5GQkIDRo0fj888/FzvmB6Wqvw9W1fHjx5Gbmyt2jA+qpvWJ/SEiIiIiog9Jq+JDiKpHQEAAtLW1MWrUKKxYsULsOHKtW7fG2bNn4efnV2p9RbPgxda6dWvcvXsXlpaWpdY/ffpUZfM3bdoUFy5cgK2trbxMS0sL//nPfzBgwACV31O5cePGuHbtmnwW2bZt22BmZiavz87OVhjIViXqnL2Yn58f2rRpg2HDhmHfvn2Ijo4WO1KlBAQEQEdHBwUFBbhx44bCLL3s7Gz5nsKqSJ2zR0ZG4rPPPsPdu3fRvn17fPvttzhz5gzs7e2RkZGB7du3Y82aNWLHJKJqtGrVKvTo0QMWFhZwcnKCqakpJBIJ7t27h4sXL8LBwQH79u0TO2altG/fHnFxcfjss88Uyh0cHHDkyBH4+PiIlOz9jB07Fl5eXhg0aBD27Nkjdpz3EhAQgCdPnqBnz54QBAFFRUXo2rWrvL5Pnz5YunSpiAk/PFX9fbCqvL290aBBA0yfPh0hISFix/kgalqf2B8iIiIiIvqQOOhOKkMmkyErKwvx8fFiR1EQFhZW7jLCNjY2SEhIqMZElTN69Ohy8zdp0kRlByO7d++OdevWoX///grlxQPv/fv3V9nlzQHgq6++UpiN//YS2wDw3//+V2FvTlWiztnf1qhRIxw+fBiRkZFwdXVV2RtM3jV8+HD593379i2xZHFcXBxcXFyqOZVy1Dk7ANjb2+PUqVOYMWMGFi5ciL/++gtbtmyBlpYW2rRpg23btpV5ExYR1UyNGzfG+fPnER8fj5MnT+LevXsAgLZt22LBggXo2rWrfB9xdTF16lSkpKSUWufo6IiEhATs2LGjmlN9GA4ODjh9+jSmTp0KJycn+co96mjKlCkICgrCoUOHcO3aNchkMpiZmcHT01PhptSaQlV/H6yq4tXFakp/gJrXJ/aHiIiIiIg+JO7pTkQqq7CwEC9fvkTdunVLrS8qKsLt27fLnMWv6l6+fAlNTU3o6OiIHaXS1DF7SkoKfv31VwwbNkxh2wJ19Ndff0FTUxNSqVTsKJWmTtkFQcCDBw8gk8lgZGQEbW1tsSMRERERERERERERkQrioDtVqxcvXiAlJQX37t2DRCKBqakpWrduDX19fbGjEREREREpuHnzJpo0aaL08Xfu3EGjRo0+YqL3d+HCBTg5OSk9Oz8tLQ12dnbQ0lLNRdJqWn+Amtkn4M0Nszdv3oSlpSU0NDSQl5eHn3/+GTKZDD4+PjA1NRU7YpXcuHFD4fdbdb0h+O9i06ZN6NevH+rVqyd2lPf2559/yj9TNjY2YschIiIiIvrbU691EEltFRYWYuLEiTAxMYGPjw+GDx+OoUOHwsfHByYmJpg0aRIKCgrEjklEREREJNemTRsEBwfj9OnTZR6Tm5uL9evXw8nJCTt37qzGdFXj6uqKx48fK328u7s7bt68+RETvZ+a1h+gZvbp/PnzsLCwgI2NDVxdXXH79m24ubkhKCgIwcHBsLe3x5kzZ8SOWSlLly5F48aN0bRpU7i7u6Ndu3Zo2rQpGjdujGXLlokdr0r27duHkSNHIjw8HJcvX1aoy8nJQceOHUVK9uGMGjUKd+/eFTtGpUVGRuLo0aMA3pyLzp07w87ODl26dIGdnR26d++Op0+fihuSiIiIiOhvTrVvhacaIyQkBHFxcYiOjoavry/q168PAHj69Cni4+MRFhYGAGr7xwkiIiIiqnkuXbqE+fPno1u3btDW1oabmxvMzc0hlUqRk5OD9PR0pKWlwc3NDf/4xz/QvXt3sSNXSBAEzJw5E7Vr11bq+Pz8/I+c6P3UtP4ANbNP4eHhaN++PSIiIrBhwwb4+vrC0dERZ8+ehUQiQWBgIKZPn45Dhw6JHVUpc+fOxaJFizB9+nT4+vrC1NRUvi1NfHw8Zs2ahRcvXmDGjBliR1VabGwshg0bhm7duiEjIwMrVqzAhg0bMHjwYABvrrNjx46JnFJ5BgYGpZYXFhbC3d1dvpLEkydPqjNWla1evRo9evQA8Obz9OTJE6SkpMDe3h4ZGRkYM2YMQkNDsWHDBpGTEhERERH9fXF5eaoWxsbG2L59e5l3xh85cgRfffUVHj58WM3JiIiIiIjK9/r1a/zyyy84ceIEsrKy8OrVKxgZGcHV1RW+vr5wcnISO6LSvL29IZFIKvWc2NhYmJmZfaRE76em9QeomX0yMDBAUlIS7O3t8erVK9SpUwfJyclo27YtgDdL5Ht5eeHRo0ciJ1VO48aNsWLFCvj5+ZVav2vXLowfPx537typ3mDvoVWrVggMDMT//d//AQB27NiBwMBALFu2DCNGjMD9+/dhbm6OoqIikZMqp06dOvDy8sKAAQPkZYIgYOTIkZgzZ458K5Dhw4eLFbFSpFIpMjIyYGlpCWtra8TExKBDhw7y+pSUFPTu3VstZ/ETEREREdUUnOlO1aL4D5NlMTQ0xKtXr6oxERERERGRcqRSKT7//HN8/vnnYkd5b4mJiWJH+KBqWn+AmtknQRDke86/+18A0NTUhEwmEyVbVTx+/Bh2dnZl1jdv3hw5OTnVmOj9XblyBb169ZI//uKLL2BkZIQ+ffqgoKAA/fr1EzFd5Z07dw6DBg3C0aNHsXLlSujr6wMAgoOD4efnBwcHB5ETVo6lpSUuXrwIS0tLSCQShc8P8OYz9Ndff4mUjoiIiIiIAO7pTtXEx8cHU6ZMwf3790vU3b9/H+Hh4Wq9P9zx48eRm5srdowqu3nzptrMWHiXOmcH1Du/OmcHmF9M6pwdUP/8RERE1a1169aIiorCnTt3sGDBAlhbW+Of//ynvH7FihVqtWJE27ZtMW/ePBQWFpaoKywsxPz58+Wz+NVF3bp1S/y+7u3tjT179iAsLAwrVqwQKVnV2NjYIDk5GQ0bNoSLiwuSkpLEjvRegoODERYWhqtXr2L8+PEIDQ1FZmYmAOD69euYPHkyunbtKnJKIiIiIqK/Ny4vT9Xi1q1b6NGjBy5fvgwnJyeYmppCIpHg3r17uHjxIhwcHLBv3z5YWFiIHbVKNDQ00KBBA0yfPh0hISFix6k0DQ0N2NraYsGCBWo3g0udswPqnV+dswPMLyZ1zg6of34iIqLqdubMGXTr1g1Pnz6FkZEREhISEBQUhBs3bkBDQwM5OTnYs2cPOnXqJHZUpfzxxx/o2rUr8vLy4OXlpfD77fHjx6Gjo4NDhw7B0dFR7KhK8/Pzg7OzM2bPnl2iLjExEb169cKrV6/U8sbDo0ePIjAwEIMHD8aiRYuQmpqqdjPdAWDChAlYs2YNmjVrhqysLOTn50NLSwuFhYVo1aoV9uzZg4YNG4odk4iIiIjob4uD7lRtZDIZ4uPjcfLkSdy7dw8A0LBhQ7i7u6Nr167Q0FDfhRdu3LiB69evIz4+HgsWLBA7TqUdO3YM169fx8GDBxEbGyt2nEpR5+yAeudX5+wA84tJnbMD6p+fiIhIDC9evEBGRgbs7Oygr6+P169fY8uWLXj16hW6dOlS7nLtquj58+fYvHlzqb/fDho0CHXr1hU5YeUcO3YMycnJmDZtWqn1iYmJiImJQXR0dDUn+zAeP36M4OBgJCQk4OTJk2p3vRW7dOkS9u7di2vXrkEmk8HMzAyenp7o3LkzJBKJ2PGIiIiIiP7WOOhORERERERERERERERERERUReo7tZjUxs2bNyt1/J07dz5Skg9r06ZNar2P+/379+UzMqj65OXlITMzE3l5eWJHUVpRURHu37+PBw8eqOVykm9LTEzEq1evxI5RZfzcikMdP7dERESq4sKFC5DJZEofn5aWVupe6eqkoKCg0r8Hq7rCwsIa1aea1p+aeM0REREREakbDrrTR9emTRsEBwfj9OnTZR6Tm5uL9evXw8nJCTt37qzGdFU3atQo3L17V+wYFXry5An69+8PS0tLjBs3DkVFRRg5ciTMzMzQqFEjeHh4IDs7W+yYZTp//jy+//57rFq1Co8ePVKoe/bsGYKCgkRKVrFNmzbh5MmTAIDXr19j5MiR0NPTQ/PmzaGvr48xY8ao9CDerl274Onpidq1a8Pc3BxmZmaoXbs2PD09sXv3brHjVUnXrl2RlZUldowK8XMrHnX/3BIREakaV1dXPH78WOnj3d3d1X7wMD09HdbW1mLH+KDS0tJqVJ9qWn9q4jVHRERERKRuuLw8fXRPnjzB/PnzsXHjRmhra8PNzQ3m5uaQSqXIyclBeno60tLS4ObmhhkzZqB79+5iR1ZgYGBQavnTp09Rt25d+V70T548qc5YSgsKCsKZM2cwevRo7NixAw0aNMC1a9ewatUqaGhoYOLEibC3t0dMTIzYUUs4ePAgevfuDVtbWzx//hwvX77Ev//9b/j4+AB4M+vX3NxcZWdf29raYuvWrXBzc0NYWBh27NiBJUuWwN7eHhkZGQgPD0ffvn2xcOFCsaOWsHbtWkyYMAFBQUHw9fWFqakpBEHAgwcPEB8fj+joaKxYsQLBwcFiRy1Vq1atSi1PTU3FJ598AqlUCgA4e/ZsdcZSGj+34lHnzy0REZEq0tDQwKhRo1C7dm2ljl+1ahXS09PRtGnTj5zs4zl//jxatWqlsj/vVEVN6xP7Q0REREREHxoH3anavH79Gr/88gtOnDiBrKwsvHr1CkZGRnB1dYWvry+cnJzEjliqOnXqwMvLCwMGDJCXCYKAkSNHYs6cOWjUqBEAYPjw4WJFLJe5uTl27NgBDw8P3L9/H2ZmZoiPj0eXLl0AAElJSRg4cCBu374tctKSPDw84OPjg3nz5kEQBCxatAhz5szBf/7zH3Tr1k3lB++kUimuXLmCJk2awM7ODsuXL0e3bt3k9cePH8fQoUNx48YNEVOWzsbGBtOmTcOIESNKrd+4cSPmzZuHzMzMak6mHG1tbXTu3Bnt2rWTlwmCgLlz52LMmDEwMTEBAERERIgVsVz83IpHnT+3REREqsjb2xsSiaRSz4mNjYWZmdlHSvT+yrrBs9irV69w5coVlf15pzQ1rU/sDxERERERVTctsQPQ34dUKsXnn3+Ozz//XOwolXLu3DkMGjQIR48excqVK6Gvrw8ACA4Ohp+fHxwcHEROWL7c3Fz5jQGmpqbQ0tJS+AOWubk5nj59KlK68qWlpeGnn34CAEgkEoSFhcHCwgJffPEFtm7dirZt24qcsHwNGzZEZmYmmjRpgr/++gtGRkYK9cbGxpVaarM63blzB+3bty+z3sPDQ6W3V0hMTMTw4cPRtm1bREREyFekmDdvHsaNG8fP7UfEzy0RERG9LTExUewIH1x6ejq++uqrMpfzzs7OxpUrV6o51fupaX1if4iIiIiIqLpx0J2oAjY2NkhOTsa3334LFxcXxMTEwNPTU+xYSrO1tcXevXsxbtw47N+/H1KpFAcPHpSvLBAfH6+ye7/p6OiUGFj09/eHhoYGvvrqKyxevFicYEoaPHgwvv32W/zyyy8YOnQo5syZg9jYWOjr6+Ply5eYNWuWyl5Ljo6OWLduXZnv8fr16+Ho6FjNqZTn6emJs2fPYvTo0XB3d0dsbCyaNWsmdiyl8XMrHnX+3BIREVH1cHJywqeffoqxY8eWWp+amor169dXc6r3U9P6xP4QEREREVF146A7kRK0tLQQFRUFX19fDBo0CIMHD670EoliCQsLw/Dhw7Fs2TLcvn0bmzdvxoQJE3Dq1CloaGhg586dWLJkidgxS+Xi4oKEhAS0bt1aoXzgwIGQyWQqu6R/sYiICFy8eBFNmzaFm5sbTpw4AVNTUzRq1Ah3796FoaEhDh06JHbMUi1evBg9e/bEgQMH0LVrV5iamkIikeDevXs4dOgQbty4gV9++UXsmOWqW7cutm7diujoaLRv3x6zZ8/m57Ya8HNLRERENV379u2RkZFRZn2dOnXQoUOHakz0/mpan9gfIiIiIiKqbtzTnaiSHj9+jODgYCQkJODkyZOws7MTO1KFfv31V5w6dQoeHh5wd3dHeno6IiMj8fLlS/Tu3VtlB8F27dqF48ePY+nSpaXWb926FevWrUNCQkI1J6ucAwcOYM+ePbh27RpkMhnMzMzg6emJQYMGQU9PT+x4ZcrKysLq1atx8uRJ3Lt3D8Cbpbfd3d0xZswYWFlZiRuwEv78808MHjwYv//+Oy5evKjyy8sD/NyKTV0/t0RERERERERERERU/TjoTkREfwsymQzPnz9H3bp11WbGOxERERERERERERERqT4NsQMQqZvCwkIcOnQIP/74I44cOYKioiKxI/0t3Lx5E6dOncLvv/+OR48eiR2H1MTbn08NDQ1kZGTg1KlTyMvLEzFV1W3atAm5ublixyAiIiL627pw4QJkMpnSx6elpaGwsPAjJnp/Na1P7I9q94eIiIiIqKbioDtRBSZMmIB9+/YBAG7fvo0WLVqge/fu+Pbbb+Hr6wtXV1fcuXNH5JTl27dvH0aOHInw8HBcvnxZoS4nJwcdO3YUKVnFVq1aBUtLS1hbW8PDwwOffvopTE1N0b59e6SkpIgdr1wHDx5U+GNHbGwsXFxcoKenBxsbG/zwww8ipqvY29fNpUuXFOpU/brJyspC69atoaOjg549e+LZs2fo0qUL2rVrBw8PDzg4OODKlStix6y0UaNG4e7du2LHeC/nz5+Hpqam2DHKVKdOHYwYMQLJycliRyEiIiIV5OrqisePHyt9vLu7O27evPkRE72/mtYn9ke1+0NEREREVFNpiR2ASNXt2LEDY8eOBQCEhITAwsICJ06cgJGREZ48eYLhw4dj0qRJ+M9//iNy0tLFxsZi2LBh6NatGzIyMrBixQps2LABgwcPBgDk5+fj2LFjIqcs3aJFi7BkyRJ88803kEqlWL58Ofz9/dGmTRvExsaiQ4cOOHbsGNzc3MSOWqru3bsjOzsbJiYmiIuLw7Bhw/D1118jPDwcZ8+eRXh4OIyNjeHv7y921BLU+boBgNDQUNSpUwe7d+/GTz/9hB49ekBbWxu3bt2ChoYGAgMD8c0332DXrl1iRy2VgYFBqeWFhYVwd3eHhsabe+aePHlSnbE+GFXe2eavv/7CqVOnEB0dDTs7O4wcORJDhw6FiYmJ2NGIiIhIBQiCgJkzZ6J27dpKHZ+fn/+RE72/mtYn9ke1+0NEREREVFNxT3eiCujq6iI9PR3W1tZo3Lgx4uLi0LZtW3n9xYsX4ePjg4cPH4qYsmytWrVCYGAg/u///g/Am5sIAgMDsWzZMowYMQL379+Hubm5Si6Tb21tjVWrVqF79+4AgCtXrsDDwwP37t2DlpYWJk6ciEuXLuHgwYMiJy2dhoYG7t27BxMTE7Rv3x6dOnXC7Nmz5fWLFi3Cv//9b5w+fVrElKVT5+sGAExMTHDw4EG4uLggNzcXDRo0wPHjx9G+fXsAwNmzZ9GjRw/cu3dP5KSlq1OnDry8vDBgwAB5mSAIGDlyJObMmYNGjRoBAIYPHy5WxDJ9/vnn5dbn5uYiMTFRZa+d4s9tdnY2NmzYgNjYWLx48QK9evXCyJEj0a1bN0gkErFjEhERkUi8vb0r/bNAbGwszMzMPlKi91fT+sT+qHZ/iIiIiIhqKs50J6pA8+bNcfr0aVhbW6NOnTp49uyZQv3z588rtb9adbty5Qp69eolf/zFF1/AyMgIffr0QUFBAfr16ydiuvI9ePAA9vb28se2trbIzc3Fw4cPYWZmhqCgIPkgqqr7888/Sywn36dPH3z//fciJSqfOl83APD69WvUq1cPwJsBbE1NTdSpU0deX7duXbx8+VKseBU6d+4cBg0ahKNHj2LlypXQ19cHAAQHB8PPzw8ODg4iJyzbnj170KVLF5iampZar6qD7e9ydnbGihUrsHjxYsTFxeHHH39Er169YG5ujsDAQMyZM0fsiERERCSCxMREsSN8cDWtT+wPERERERGJgYPuRBWYPHkyQkNDYWpqimnTpmHChAlYsWIF7O3tkZGRgYkTJ1Y4s1NMdevWxf3792FtbS0v8/b2xp49e9CrVy/cvn1bxHTla968OQ4dOoTg4GAAQEJCAmrVqoWGDRsCAKRSqcrPOE1PT8e9e/egq6tb4uYMmUymsgOQ6nzdAICjoyM2btyIuXPnIiYmBoaGhti2bRucnZ0BAFu3bkXz5s1FTlk2GxsbJCcn49tvv4WLiwtiYmLg6ekpdiyl2Nvbo3///hgxYkSp9ampqdi7d281p1Leu/9PqVWrFvz9/eHv74+srCz8+OOP2LRpEwfdiYiIiIiIiIiIiEiOg+5EFQgICMCTJ0/Qs2dPCIKAoqIidO3aVV7fp08fLF26VMSE5Wvbti3279+Pdu3aKZR7eXnJB1BV1bRp0zBkyBAcPnwYUqkUO3fuxIQJE+SDYomJiXBychI5Zfk6deok3786KSlJYf/5c+fOoUmTJmJFK5c6XzcAMGvWLPj5+WHhwoXQ1NREfHw8Ro4ciSNHjkBTUxNnzpxBbGys2DHLpaWlhaioKPj6+mLQoEEYPHiwyt9kAgCtW7fG2bNnyxx019HRUdnrHih/v3krKyvMnTuXA+5EREREREREREREpIB7uhMp6enTpzh06BCuXbsGmUwGMzMzeHp6wtbWVuxo5Tp27BiSk5Mxbdq0UusTExMRExOD6Ojoak6mnP3792Pz5s3Iy8uDr6+vfNY7ADx+/BgAYGhoKFa8ct24cUPhsb6+vkLWf/3rXwCAYcOGVWsuZaj7dQMA169fx9mzZ+Hm5gZLS0vcv38fK1euxMuXL9GzZ0/4+PiIHVFpjx8/RnBwMBISEnDy5EnY2dmJHalMeXl5KCoqQu3atcWOUiWzZ89GWFiY2uYnIiIiIiIiIiIiourHQXciIiIiIiIiIiIiIiIiIqIq0hA7AJEqu3DhQol9uMuTlpaGwsLCj5jowyssLMTNmzfFjlEl6pxdXd2/f1+t33N1zz979mw8evRI7BhV8vDhQxQUFIgdo8rUPT8RERERERERERERfTwcdCcqh6urq3wJc2W4u7ur3YBeWloarK2txY5RJeqQfdWqVejcuTO+/PJLHD16VKHu0aNHaNq0qUjJyvf8+XMMGTIElpaWGD58OPLz8zFu3DiYmZnB2toaXl5eePbsmdgxy6Tu+Z89e1biKzc3F/PmzcO1a9fkZapo3bp1yMvLA/Bmf/T58+ejQYMGaNiwIerXr48pU6ZU6mam6qbu+YmISFFWVhYkEglSU1PFjiJ3+fJltGvXDlKpFC4uLmLHUTkBAQHw8/P7KG1bWVlh2bJlH6VtIiIiIiIi+nvTEjsAkSoTBAEzZ85Uem/f/Pz8j5yI1MkPP/yAadOmITAwELm5uejRowciIiLk+6QXFRWV2PddVUyfPh0pKSkIDQ3Fzp078eWXXyIzMxMnTpyATCbD119/jaioKMybN0/sqKVS9/wNGjQotVwQBLi7u0MQBEgkEhQVFVVzsoqNHTsWfn5+MDExwbp16zB//nzMmTMH7dq1w9mzZzFjxgw0bdoU48ePFztqqdQ9PxGRqgkICEBMTAwWLFiAqVOnyst3796Nfv364e+421lERAT09PSQkZEBfX39D9q2t7c3XFxc1GJgOSsrC9bW1jh37twHv/lg06ZNmDRpEp4+fapQfubMGejp6X3Q1/oQEhMT4ePjg5ycHNSvX1/sOERERERERFQFHHQnKkeHDh2QkZGh9PHu7u7Q1dX9iIkqr1WrVuXWv3r1qpqSVJ46ZweAtWvXYv369Rg0aBAA4Ouvv4afnx9evXqFOXPmiJyufD///DNiYmLg4+OD/v37w8LCAj///DM8PT0BAFFRUZgyZYrKDlqre34zMzO4uLggJCQEGhpvFqURBAGdO3fGhg0bVHqFh7cHT3788UfMnTsXkydPBgB4eHhAKpVixYoVKjtore75iYhUkVQqRVRUFEaPHl3mjWXqJj8/H7Vq1arSczMzM9GzZ09YWlpWy+u9SxAEFBUVQUvr7/fnAGNj4w/aXkFBAbS1tT9om0RERERERKSeuLw8UTkSExORkJBQqS8zMzOxYytIT09Hy5Yt0bdv31K/vLy8xI5YJnXODgDXr1+Hh4eH/LG7uzuOHj2KdevWyWe7q6oHDx7AxsYGAGBubg5dXV3Y2dnJ6x0dHXHr1i2x4lVI3fNfuHAB2tramDt3LmxsbODl5QVvb29IJBK0bdsWXl5eKn39SyQSAG8+A506dVKo69ixI65duyZGLKWpe34iIlXTuXNnNGzYEAsWLCjzmFmzZpWY7bxs2TJYWVnJHxcvOz5//nyYmpqifv36mD17NgoLCxEWFgYDAwNYWFhg48aNJdq/fPmy/OYpR0dHJCYmKtSnp6ejR48e0NfXh6mpKYYOHYpHjx7J6729vTF+/HhMmTIFRkZG6NKlS6n9kMlkmDNnDiwsLKCjowMXFxccOHBAXi+RSJCSkoI5c+ZAIpFg1qxZpbZT1uuVlzMgIADHjh3D8uXLIZFIIJFIkJWVhcTEREgkEsTHx8PNzQ06Ojo4ceIE8vLyMGHCBJiYmEAqlaJ9+/Y4c+aMPENOTg4GDx4MY2Nj6OrqwtbWFtHR0QDe/Hv47g1ojx8/ho6OjnxLJSsrK8yfPx9BQUGoU6cOmjRpgnXr1smPL76J0NXVFRKJBN7e3grtLVq0CGZmZjA0NMS4ceNQUFAgr8vPz0d4eDgaNWoEPT09fPrpp/JzmpiYKF9pqvh9KH6f311e/unTpxg1ahRMTU0hlUrh5OSEvXv3lnpOis/fmjVr0LdvX+jp6eH7778HAKxevRrNmjVDrVq1YGdnh59++kn+nNK2OHj69CkkEgkSExORlZUFHx8fAG9WO5JIJAgICADw5gaJhQsXomnTptDV1YWzszN27Nih1DkiIiIiIiKi6vX3u7Wd6G/GyckJn376KcaOHVtqfWpqKtavX1/NqZSjztkBwMjICLdu3VL4Y7GjoyOOHj2Kjh074s6dO+KFq4ChoSEePnyIxo0bAwD69u2rsNTlixcvoKOjI1K6iql7fgMDA+zatQurV69G27ZtsWjRIvj7+4sdS2kHDhxAvXr1oKurW2JFilevXsln76sqdc9PRKRqNDU1MX/+fAwaNAgTJkyAhYVFlds6evQoLCwscPz4cSQlJWHEiBH47bff0KFDB5w6dQrbt2/HmDFj0KVLF/nPAQAQFhaGZcuWwcHBAUuWLEGfPn1w/fp1GBoaIjs7G15eXggODsaSJUvw6tUrfPPNN/jyyy/lA8gAEBMTg7FjxyIpKanMZfGXL1+OxYsXY+3atXB1dcXGjRvRp08fpKWlwdbWFtnZ2ejcuTO6deuG0NDQcpeXf/f1Ksq5fPlyXLlyBU5OTvJVlYyNjZGVlQUACA8Px6JFi9C0aVPUr18f4eHhiIuLQ0xMDCwtLbFw4UL4+vri6tWrMDAwwMyZM5Geno79+/fDyMgIV69elf+7OHLkSIwfPx6LFy+W/0y1ZcsWmJubyweQAWDx4sWYO3cupk+fjh07dmDs2LHo0KEDPvnkE5w+fRpt27bF4cOH4ejoqDCTv/hm5oSEBFy9ehUDBw6Ei4sLgoODAQCBgYHIysrCtm3bYG5ujl27dqFbt274448/4OHhgWXLluG7776Tr1pW2vssk8nQvXt3PH/+HJs3b0azZs2Qnp4OTU3Nsi9AvNkeYMGCBVi6dCk0NTWxa9cuTJw4EcuWLUPnzp2xd+9eBAYGwsLCQuG9KEvjxo0RFxeH/v37IyMjA3Xr1pWvnjZjxgzs3LkTq1evhq2tLY4fP44hQ4bA2NgYXl5e5Z4jIiIiIiIiqmYCEdVoEydOFCZOnFhm/dWrVwVvb+/qC1QJ6pxdEATB39+/zPwXL14UjI2NBQ0NjeoNpaRu3boJa9asKbM+Ojpa8PDwqMZElaPu+d+WlpYmODs7C/7+/oKWlpaQlpYmdqRySSQSha958+Yp1K9fv15wdXUVKV3F1D0/EZGqGT58uNC3b19BEAShXbt2QlBQkCAIgrBr1y7h7V9HIyIiBGdnZ4XnLl26VLC0tFRoy9LSUigqKpKX2dnZCZ999pn8cWFhoaCnpyds3bpVEARBuH79ugBAiIyMlB9TUFAgWFhYCFFRUYIgCMLMmTOFrl27Krz2rVu3BABCRkaGIAiC4OXlJbi4uFTYX3Nz8xL/drRp00b4+uuv5Y+dnZ2FiIiIctsp7fWUzfnuz58JCQkCAGH37t3yshcvXgja2trCli1b5GX5+fmCubm5sHDhQkEQBKF3795CYGBgqflev34tGBgYCNu3b5eXubi4CLNmzZI/trS0FIYMGSJ/LJPJBBMTE2H16tWCIPzv3Jw7d06h7eLzXFhYKC8bMGCAMHDgQEEQ3vwOIJFIhDt37ig8r1OnTsK0adMEQXjzs169evVK5La0tBSWLl0qCIIgxMfHCxoaGvL3ThkAhEmTJimUeXh4CMHBwQplAwYMEHr06FFmP3NycgQAQkJCgiAI/ztHOTk58mNevHghSKVSITk5WaHtESNGCP7+/oIglH+OiIiIiIiIqHpxpjtRDff28omladasGRISEqonTCWpc3YAmDp1KlJSUkqtc3R0REJCgsLykKpky5Yt5c7mNTU1Vdn90AH1z/82BwcHnD59GlOnToWTk5N85pOqkslk5dZXtLyw2NQ9PxGRKouKikLHjh0REhJS5TYcHR0V/o03NTWFk5OT/LGmpiYMDQ3x4MEDhee5u7vLv9fS0oKbmxsuXboEAEhJSUFCQkKps6EzMzPRvHlzAICbm1u52Z49e4a7d+/C09NTodzT0xPnz59Xsof/8+7rKZtTmfYyMzNRUFCgkFVbWxtt27aVvy9jx45F//79cfbsWXTt2hV+fn7yrZN0dHQwZMgQbNy4EV9++SVSU1Nx/vx57N69W+E1W7ZsKf9eIpGgYcOGJc5NaRwdHRVmnJuZmeGPP/4AAJw9exaCIJTob15eHgwNDStsu1hqaiosLCwqfN/e9e55uXTpEkaNGqVQ5unpieXLl1eq3Xelp6fj9evXJbYyyM/Ph6urK4DyzxERERERERFVLw66ExF9JC1btlT4Q+O7HB0d4ejoWI2JlGdgYFBufffu3aspSdWoe/531apVC0uWLBE7xgfRq1cvsSO8F3XPT0Qkpg4dOsDX1xfTp0+X71ldTENDo8SS7W/v4V1MW1tb4bFEIim1rKKbqIqPA97ccNW7d29ERUWVOMbMzEz+vZ6eXoVtvt1uMUEQSpQp493XUzanMu0Vv9flZe3evTtu3LiBffv24fDhw+jUqRPGjRuHRYsWAXizxLyLiwtu376NjRs3olOnTrC0tFRor6rnprznyWQyaGpqIiUlpcRS8OUt1/+uqt7IWNp1UN77WHyTyNvXd2nX9ruK+7tv3z40atRIoa54Sf+KzhERERERERFVH25KSlSDXbhwQak/ahVLS0tDYWHhR0ykPHXODqh3fnXODjC/mNQ5O6D++YmI1EFkZCT27NmD5ORkhXJjY2Pcu3dPYWAyNTX1g73uyZMn5d8XFhYiJSUFn3zyCQCgVatWSEtLg5WVFWxsbBS+lB1oB4C6devC3Nwcv/76q0J5cnIy7O3t37sPyuSsVasWioqKKmzLxsYGtWrVUshaUFCA33//XSGrsbExAgICsHnzZixbtgzr1q2T17Vo0QJubm5Yv349YmNjERQUVKn+FO/hrkzet7m6uqKoqAgPHjwo8T40bNhQ3nZF7bZs2RK3b9/GlStXKvX677K3ty/3nBsbGwMAsrOz5fXvXtulvRcODg7Q0dHBzZs3S/SzcePG8uPKO0dERERERERUfTjoTlSDubq64vHjx0of7+7ujps3b37ERMpT5+yAeudX5+wA84tJnbMD6p+fiEgdtGjRAoMHD8aKFSsUyr29vfHw4UMsXLgQmZmZWLlyJfbv3//BXnflypXYtWsXLl++jHHjxiEnJ0c+SDxu3Dg8efIE/v7+OH36NK5du4aDBw8iKCio0gPCYWFhiIqKwvbt25GRkYGpU6ciNTUVEydOfO8+KJPTysoKp06dQlZWFh49elTmzWR6enoYO3YswsLCcODAAaSnpyM4OBgvX77EiBEjAADfffcdfv75Z1y9ehVpaWnYu3dviZsHRo4cicjISBQVFaFfv36V6o+JiQl0dXVx4MAB3L9/H7m5uUo9r3nz5hg8eDCGDRuGnTt34vr16zhz5gyioqLwyy+/yN+HFy9e4MiRI3j06BFevnxZoh0vLy906NAB/fv3x6FDh3D9+nXs378fBw4cqFQ/wsLCsGnTJqxZswZ//vknlixZgp07dyI0NBTAmxn17dq1Q2RkJNLT03H8+HHMmDFDoQ1LS0tIJBLs3bsXDx8+xIsXL1CnTh2EhoZi8uTJiImJQWZmJs6dO4eVK1ciJiYGgHLniIiIiIiIiKoHl5cnqsEEQcDMmTNRu3ZtpY7Pz8//yImUp87ZAfXOr87ZAeYXkzpnB9Q/PxGRupg7dy7+/e9/K5TZ29tj1apVmD9/PubOnYv+/fsjNDT0g83ajYyMRFRUFM6dO4dmzZrh559/hpGREQDA3NwcSUlJ+Oabb+Dr64u8vDxYWlqiW7duCvvHK2PChAl49uwZQkJC8ODBAzg4OOC///0vbG1t37sPyuQMDQ3F8OHD4eDggFevXuH69etlthcZGQmZTIahQ4fi+fPncHNzQ3x8PBo0aADgzezradOmISsrC7q6uvjss8+wbds2hTb8/f0xadIkDBo0CFKptFL90dLSwg8//IA5c+bgu+++w2effYbExESlnhsdHY3vv/8eISEhuHPnDgwNDeHu7o4ePXoAADw8PDBmzBgMHDgQjx8/RkREBGbNmlWinbi4OISGhsLf3x9//fUXbGxsEBkZWal++Pn5Yfny5fjHP/6BCRMmwNraGtHR0fD29pYfs3HjRgQFBcHNzQ12dnZYuHAhunbtKq9v1KgRZs+ejalTpyIwMBDDhg3Dpk2bMHfuXJiYmGDBggW4du0a6tevj1atWmH69OkAlDtHREREREREVD0kwrsb5xFRjeHt7V3p/SNjY2OV2hPyY1Pn7IB651fn7ADzi0mdswPqn5+IiKi63bp1C1ZWVjhz5gxatWoldhwiIiIiIiIi0XDQnYiIiIiIiIiUVlBQgOzsbEydOhU3btxAUlKS2JGIiIiIiIiIRMU93YmIiIiIiIhIaUlJSbC0tERKSgrWrFkjdhwiIiIiIiIi0XGmOxERERERERERERERERERURVxpjsREREREREREREREREREVEVcdCdiIiIiIiIiIiIiIiIiIioijjoTkRVlpWVBYlEgtTUVLGjyF2+fBnt2rWDVCqFi4uL2HFUTkBAAPz8/D5K21ZWVli2bNlHaZuIiIiIiIiIiIiIiEhVcdCdSI0FBARAIpEgMjJSoXz37t2QSCQipRJXREQE9PT0kJGRgSNHjnzQtr29vTFp0qQP2ubH8jFviNi0aRPq169fovzMmTMYNWrUB3+995WYmAiJRIKnT5+KHYWIiIiIiIiIiIiIiGogDroTqTmpVIqoqCjk5OSIHeWDyc/Pr/JzMzMz0b59e1haWsLQ0PCjv967BEFAYWHhB2tPnRgbG6N27dofrL2CgoIP1hYREREREREREREREdHHwkF3IjXXuXNnNGzYEAsWLCjzmFmzZpVYan3ZsmWwsrKSPy5ednz+/PkwNTVF/fr1MXv2bBQWFiIsLAwGBgawsLDAxo0bS7R/+fJleHh4QCqVwtHREYmJiQr16enp6NGjB/T19WFqaoqhQ4fi0aNH8npvb2+MHz8eU6ZMgZGREbp06VJqP2QyGebMmQMLCwvo6OjAxcUFBw4ckNdLJBKkpKRgzpw5kEgkmDVrVqntlPV65eUMCAjAsWPHsHz5ckgkEkgkEmRlZclnUcfHx8PNzQ06Ojo4ceIE8vLyMGHCBJiYmEAqlaJ9+/Y4c+aMPENOTg4GDx4MY2Nj6OrqwtbWFtHR0QCAjh07Yvz48QqZHz9+DB0dHRw9ehTAm6Xc58+fj6CgINSpUwdNmjTBunXr5MdbW1sDAFxdXSGRSODt7a3Q3qJFi2BmZgZDQ0OMGzdOYYA7Pz8f4eHhaNSoEfT09PDpp5/Kz2liYiICAwORm5srfx+K3+d3l5d/+vQpRo0aBVNTU0ilUjg5OWHv3r2lnpPi87dmzRr07dsXenp6+P777wEAq1evRrNmzVCrVi3Y2dnhp59+kj+ntBn9T58+hUQiQWJiIrKysuDj4wMAaNCgASQSCQICAgC8uUFi4cKFaNq0KXR1deHs7IwdO3YodY6IiIiIiIiIiIiIiIiKcdCdSM1pampi/vz5WLFiBW7fvv1ebR09ehR3797F8ePHsWTJEsyaNQu9evVCgwYNcOrUKYwZMwZjxozBrVu3FJ4XFhaGkJAQnDt3Dh4eHujTpw8eP34MAMjOzoaXlxdcXFzw+++/48CBA7h//z6+/PJLhTZiYmKgpaWFpKQkrF27ttR8y5cvx+LFi7Fo0SJcuHABvr6+6NOnD/7880/5azk6OiIkJATZ2dkIDQ0ts6/vvl5FOZcvXw53d3cEBwcjOzsb2dnZaNy4sby98PBwLFiwAJcuXULLli0RHh6OuLg4xMTE4OzZs7CxsYGvry+ePHkCAJg5cybS09Oxf/9+XLp0CatXr4aRkREAYOTIkYiNjUVeXp68/S1btsDc3Fw+gAwAixcvhpubG86dO4evv/4aY8eOxeXLlwEAp0+fBgAcPnwY2dnZ2Llzp/x5CQkJyMzMREJCAmJiYrBp0yZs2rRJXh8YGIikpCRs27YNFy5cwIABA9CtWzf8+eef8PDwwLJly1C3bl35+1Da+yyTydC9e3ckJydj8+bNSE9PR2RkJDQ1Ncs8J8Cb7QH69u2LP/74A0FBQdi1axcmTpyIkJAQXLx4EaNHj0ZgYCASEhLKbadY48aNERcXBwDIyMhAdnY2li9fDgCYMWMGoqOjsXr1aqSlpWHy5MkYMmQIjh07VuE5IiIiIiIiIiIiIiIikhOISG0NHz5c6Nu3ryAIgtCuXTshKChIEARB2LVrl/D2xzsiIkJwdnZWeO7SpUsFS0tLhbYsLS2FoqIieZmdnZ3w2WefyR8XFhYKenp6wtatW3/++0MAAAjiSURBVAVBEITr168LAITIyEj5MQUFBYKFhYUQFRUlCIIgzJw5U+jatavCa9+6dUsAIGRkZAiCIAheXl6Ci4tLhf01NzcX5s2bp1DWpk0b4euvv5Y/dnZ2FiIiIsptp7TXUzbnxIkTFY5JSEgQAAi7d++Wl7148ULQ1tYWtmzZIi/Lz88XzM3NhYULFwqCIAi9e/cWAgMDS833+vVrwcDAQNi+fbu8zMXFRZg1a5b8saWlpTBkyBD5Y5lMJpiYmAirV68WBOF/5+bcuXMKbRef58LCQnnZgAEDhIEDBwqCIAhXr14VJBKJcOfOHYXnderUSZg2bZogCIIQHR0t1KtXr0RuS0tLYenSpYIgCEJ8fLygoaEhf++UAUCYNGmSQpmHh4cQHBysUDZgwAChR48eZfYzJydHACAkJCQIgvC/c5STkyM/5sWLF4JUKhWSk5MV2h4xYoTg7+8vCEL554iIiIiIiIiIiIiIiKgYZ7oT1RBRUVGIiYlBenp6ldtwdHSEhsb//rdgamqKFi1ayB9ramrC0NAQDx48UHieu7u7/HstLS24ubnh0qVLAICUlBQkJCRAX19f/vXJJ58AeLP/ejE3N7dysz179gx3796Fp6enQrmnp6f8tSrj3ddTNqcy7WVmZqKgoEAhq7a2Ntq2bSvPOnbsWGzbtg0uLi4IDw9HcnKy/FgdHR0MGTJEvpR/amoqzp8/L18WvVjLli3l30skEjRs2LDEuSmNo6OjwoxzMzMz+fPOnj0LQRDQvHlzhffi2LFjSr0PxVJTU2FhYYHmzZsr/Ryg5Hm5dOnSBzvnb0tPT8fr16/RpUsXhX7+61//kvezvHNERERERERERERERERUTEvsAET0YXTo0AG+vr6YPn16icFZDQ0NCIKgUPb2Ht7FtLW1FR5LJJJSy2QyWYV5JBIJgDfLjPfu3RtRUVEljjEzM5N/r6enV2Gbb7dbTBCEEmXKePf1lM2pTHvF73V5Wbt3744bN25g3759OHz4MDp16oRx48Zh0aJFAN4sMe/i4oLbt29j48aN6NSpEywtLRXaq+q5Ke95MpkMmpqaSElJKbEUvL6+foVtF9PV1VX62LeVdh2U9z4W3yTy9vVd2rX9ruL+7tu3D40aNVKo09HRAVDxOSIiIiIiIiIiIiIiIgK4pztRjRIZGYk9e/aUmJFrbGyMe/fuKQxMpqamfrDXPXnypPz7wsJCpKSkyGeJt2rVCmlpabCysoKNjY3Cl7ID7QBQt25dmJub49dff1UoT05Ohr29/Xv3QZmctWrVQlFRUYVt2djYoFatWgpZCwoK8PvvvytkNTY2RkBAADZv3oxly5Zh3bp18roWLVrAzc0N69evR2xsLIKCgirVn1q1agGAUnnf5urqiqKiIjx48KDE+9CwYUN52xW127JlS9y+fRtXrlyp1Ou/y97evtxzbmxsDADIzs6W1797bZf2Xjg4OEBHRwc3b94s0c/GjRvLjyvvHBEREREREREREREREQGc6U5Uo7Ro0QKDBw/GihUrFMq9vb3x8OFDLFy4EF988QUOHDiA/fv3o27duh/kdVeuXAlbW1vY29tj6dKlyMnJkQ8Sjxs3DuvXr4e/vz/CwsJgZGSEq1evYtu2bVi/fn2J2dTlCQsLQ0REBJo1awYXFxdER0cjNTUVW7Zsee8+KJPTysoKp06dQlZWFvT19WFgYFBqW3p6ehg7dizCwsJgYGCAJk2aYOHChXj58iVGjBgBAPjuu+/QunVrODo6Ii8vD3v37i1x88DIkSMxfvx41K5dG/369atUf0xMTKCrq4sDBw7AwsICUqkU9erVq/B5zZs3x+DBgzFs2DAsXrwYrq6uePToEY4ePYoWLVqgR48esLKywosXL3DkyBE4Ozujdu3aqF27tkI7Xl5e6NChA/r3748lS5bAxsYGly9fhkQiQbdu3ZTuR1hYGL788ku0atUKnTp1wp49e7Bz504cPnwYwJsZ9e3atUNkZCSsrKzw6NEjzJgxQ6ENS0tLSCQS7N27Fz169ICuri7q1KmD0NBQTJ48GTKZDO3bt8ezZ8+QnJwMfX19DB8+XKlzRERERERERERERERExJnuRDXM3LlzSywlb29vj1WrVmHlypVwdnbG6dOnERoa+sFeMzIyElFRUXB2dsaJEyfw888/w8jICABgbm6OpKQkFBUVwdfXF05OTpg4cSLq1aunsH+8MiZMmICQkBCEhISgRYsWOHDgAP773//C1tb2vfugTM7Q0FBoamrCwcEBxsbGuHnzZpntRUZGon///hg6dChatWqFq1evIj4+Hg0aNADwZvb1tGnT0LJlS3To0AGamprYtm2bQhv+/v7Q0tLCoEGDIJVKK9UfLS0t/PDDD1i7di3Mzc3Rt29fpZ8bHR2NYcOGISQkBHZ2dujTpw9OnTolnwHu4eGBMWPGYODAgTA2NsbChQtLbScuLg5t2rSBv78/HBwcEB4eXumZ935+fli+fDn+8Y9/wNHREWvXrkV0dDS8vb3lx2zcuBEFBQVwc3PDxIkT8f333yu00ahRI8yePRtTp06Fqakpxo8fD+DNZ+W7777DggULYG9vD19fX+zZswfW1tYAlDtHREREREREREREREREEuHd0TkiIlIJt27dgpWVFc6cOYNWrVqJHYeIiIiIiIiIiIiIiIhKwUF3IiIVU1BQgOzsbEydOhU3btxAUlKS2JGIiIiIiIiIiIiIiIioDFxenohIxSQlJcHS0hIpKSlYs2aN2HGIiIiIiIiIiIiIiIioHJzpTkREREREREREREREREREVEWc6U5ERERERERERERERERERFRFHHQnIiIiIiIiIiIiIiIiIiKqIg66ExERERERERERERERERERVREH3YmIiIiIiIiIiIiIiIiIiKqIg+5ERERERERERERERERERERVxEF3IiIiIiIiIiIiIiIiIiKiKuKgOxERERERERERERERERERURVx0J2IiIiIiIiIiIiIiIiIiKiKOOhORERERERERERERERERERURf8PYfVhxyVCNSAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filters.plots.make_retro_hists(fragment_library, \"retro_count\", cutoff=0)" + ] + }, + { + "cell_type": "markdown", + "id": "04dd64c2-ba0e-4ae8-8805-93bb11a421a6", + "metadata": {}, + "source": [ + "**Legend**: red bars display the number fragments without a retrosynthetic route found" + ] + }, + { + "cell_type": "markdown", + "id": "1a8b225a-5db9-42bf-a6cb-0ea227c51110", + "metadata": {}, + "source": [ + "### 4.3. Inspect fragments with no retrosynthetic routes found and with most retrosynthetic routes found" + ] + }, + { + "cell_type": "markdown", + "id": "17a131a6-afbd-43df-ac17-9e20bc6f3b7b", + "metadata": { + "tags": [] + }, + "source": [ + "#### Adenine Pocket (AP)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "7c016b3b-4f15-467c-b4eb-3f393f8faf1d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:42.789341Z", + "iopub.status.busy": "2024-05-13T08:55:42.789146Z", + "iopub.status.idle": "2024-05-13T08:55:43.281709Z", + "shell.execute_reply": "2024-05-13T08:55:43.281174Z" + }, + "metadata": {}, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "103 AP fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAiYCAIAAAAAGavGAAEAAElEQVR4nOzdd1hUVxMH4N/SQUEULKhYsGOJClawY8eCirFhTFRioiEaC/FLIYkmIcYY7KLGiF2wYotiR6xYUKzYu0hVOuzO98dZlxUVEXb3UuZ9ePK4l+WeQ1x375k7Z0ZGRGCMMcYYY4wxxhhjjDHGWMHoST0BxhhjjDHGGGOMMcYYY6w44IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcZY8fHyJR48yH4YHY2XL6WbDWOMMcYYY6zoePIEoaHZDy9fxuPHuHQJMTHZB8+exYsXup8aY0UJB9wZY4yx4mPTJtSogRMnlA+nTMGWLZJOiDHGGGOMMVZE7N+P9u2xY4fy4ezZ+O8/fPstjh7Nfs6YMbhyRZLZMVZkcMCdMcYYK1YaNsSXXyIrS+p5MMYYY4wxxoqaNm3wzTdISZF6HowVZRxwZ4wxxoqV1q1Rrx7mzcs+kpYm3WwYY4wxxhhjRUf9+ujRA7/88trBrCykpyu/iCSaGWNFh4HUEyienjx58vTp0+3bt7dq1apVq1blypWTekaMMcZKkNmz0aIF3N2VD6tUQWoqypWDlRWsrGBtDWtr5Z/FwQoVXlhaPrO2ti5btqykE2eMMcYYY4xJ7Jdf0LgxRozIPjJlSnYI/tYtSSbFWFHCAXfNi42N7dy5c1ZW1s2bN8URGxsbZ2dnJycnBwcHR0dHExMTaWfIGGPv9fQpAgIwZgysrADg1CmkpKBTJ6mnxfKmalV88w2mToWREYiQno7UVDx6hEeP3v58Z+fnx47VBaCvr29lZWVlZVWuXDmrV6ytra2trfv162dtba3TX4MxxhhjjDGmc2XL4tdf8fXXsLVVHvHzw4AByj83aybVvBgrMjjgrmEpKSl9+/a9du1arVq1JkyYEBERcfbs2SdPngQFBQUFBQEwMTFp3rx5q1atWrZs2aZNm+rVq0s9ZcYYe4uHD/G//+HGDfzzDwAcOYKYGA64FyUTJ6J5c2RmoksXJCUhNRWxscqv58+Vf4iLU/7B2jrh6dPaMTExCQkJ0dHR0dHRb57w5s2b48aN448txhhjjDHGir2RI/HPPzhwAO3bSz0VxoogDrhrUmZm5qBBg44fP16zZs3Q0FAbGxsAcrn82rVrZ8+ePXv2bFhY2Pnz548fP378+HHxI5aWlo6OjiL53cnJiYvPMMYKj+bNcfo0jh2Ds7PUU2EfztAQixdnXx+bmqJqVVSt+q6nOwBRALKysuLi4mJfFxMTs3nzZl9f32rVqn3xxRe6mT8rlsqVw7Rp+PZbAAgNxZ9/IjhY6jkxxhhjjLE3yGRYvPidyezR0RgxAkZGaNcOn36q25kxVhRwwF1jiMjT03PPnj3W1tZ79uwR0XYA+vr6DRs2bNiw4ciRIwG8fPlSpL2HhYUdOXIkOjp6//79+/fvF0+2s7MTwXcHB4eWLVsaGRlJ9vswxko8AwPMmYNx43D+vNRTYXlWp46yChAAZ2f8+y8cHD7gxw0MDCpUqFChQoUcx2vWrPnFF1+EhoZywJ0VRGIili+Huztq1UJmJpKSpJ4QY4wxxhhT0749jI2Vf27YEPv2oXp11KuHmjWznzN7Nuzs4OSEcuXg4sIBd8beQkbcXVhDpkyZ8tdff5mZme3fv79NmzZ5/KnHjx+L4PuxY8fOnTuXmpqq+lapUqWaNm0qgu/t2rWrqf72xhgr1p48eWJoaGhiYlK6dGmp5hAejq++wokTGDwYjo4AEBODWbOkmg7Lq6+/xtq1WLo0u8aiRly5cqVhw4Y2NjaPHz/W5HlZCWNoiKVLsXEj/vsPBw9i5kwcPCj1nBhjjDHG2Cv37qFmTTRujAsXIJO958mXL2P+fCxZopOZscIkMzNzw4YNBw8eBNCxY8f27dtz0DIHDrhrxp9//jlt2jRDQ8MdO3Z07949fyfJysq6fv26CL6fPXv26tWrqr+d+vXrBwUFNWrUSHNTZowVRpmZmYsWLfruu+9atmx56dKlKVOmTJw40ViVY6Arly8jNVUZcH/4EC1bYsgQGBjAyQlWVlxhpvBKSUHVqoiPx7lzGu5lRESVKlWKjo6OioqqXbu2Jk/NSoaMDOjrw8QE6elo2xaTJqF8eQ64M8YYY4wVLn//jW++wccfY8OG9zzz5k34+mLOHFhY6GRmrNCQy+XDhw/fuHGjoaFhZmamOGhjY+Ps7Ozi4uLk5GRvby977+2a4k5P6gkUB+vWrfv2229lMtny5ctV0fbz588vXLjwg85jYGDQsGFDT0/PVatWXb58+dmzZzt37vzhhx86dep09+7ddu3aZWRkaGH6jLHC4tChQ02aNJk4cWJKSkpUVFRMTMy3337buHHjoKAgnd0cvXMHvXujaVNERSmPVK2KyZPh74+MDIwbh3bt0LUrLl7UzXTYh1m3DvHxcHLSTLQ9NjZ29+7d4s8ymczZ2RnA0aNHNXBqVmLcuYOlSzF4MCpUgOhfo6eHRYswbRqSk6WeHGOMMcYYe93WrQDg5vaep504gS5dUK0aVqzQwaRYIUJE48aN27hxY5kyZVasWPH333/369evXLlyT548CQoK+vzzzxs1amRraztixIilS5dev/5A6vlKhjPcC2r//v29e/fOyMiYM2fOpEmTxMFbt245Ozs/ffp0w4YNH3/8ccFH+eijjy5evLh79+6ePXsW/GyMscImLi5u+vTpy5YtI6I6deosXLiwa9eu+/fvnzx58sWLFwG0aNHC19e3c+fO2ptDRgZmz8bMmUhNRdmy+P57BAXhxAkAyMqCoyM6dULZsvjzTyQlQV8fo0bh559RpYr2ZsQ+mKMjzp7FmjUYPrygpyKi8uXLx8bG3r17t3r16gDmzp07ceLETz75ZOXKlQWfKivGUlNx+DD++w///YcbN5QHZTLMmYOpUyGSYL76ChERMDAovBnu0dFo0wZz5qBfPwDYvh2HD6NpU9y9Cx8f5XNmz0apUuC+BowxxhgrHqKjUbkyDAwQHf2evPUXLxATAwB6eqhRQyeTY4UAEY0fP37x4sWlSpXas2dPu3btVN+6ffv2/v37jx07dujQoYcPH4qD7dtfvH69cYsWcHaGiwuaN39LnaKDB1GxIho2BAC5HNu3a7g4qmSIFcDp06dFheXp06erDkZHR9etWxdA586d09LSNDLQTz/9BGDs2LEaORtjrPBQKBQBAQFWVlYATE1NfXx81N835HJ5QEBA5cqVxTu2i4vL+fPntTGNI0eoYUMCCCB3d3r6lLKy6MWL7CekpFBKChFRTAx5e5OxMQFkZEReXhQfr40ZsQ926hQBZG1NqanKI+p/g/nQp08fAKtWrRIPz58/D6BmzZoFmyYrtm7dIn9/cnen0qWVbyYAlS5Nrq7k70/37xMRGRgon5yYSDY21KmThPN9j8ePqXRpql2bXr4kIlqzhoYNozlz6Isvsp8zdSr98otUE2SMMcYY07ClSwkgV1ep58EKq2nTponAxaFDh971HIVCERkZuWDBgsGDB7dqlaxaFwBUoQK5u9P8+XTpEikUyue3aUPVqlFSEhFRSgqZmOjiF9EBLimTfzdv3nR1dU1KShoxYsSvv/4qDr58+bJHjx43btxwdHTcvn27piovDxgwAMDWrVuzsrI0ckLGWGEQERHRtm3bTz75JDY2tnfv3pcvX/7pp5/U3zf09PRGjhwZFRXl6+traWm5f/9+BweHwYMH37lzR1NziIvD55+jY0dcvow6dbBvHwIDUbEi9PVhbp79NFNTmJoCgJUVfH1x/To8PZGVhXnzUKsW/vgDaWmamhHLp8WLAeCzz2BiojzSpg06dMCr9IIP1r59ewChoaHiYZMmTSwtLe/cuXP//v0CT5YVE8nJyfv37//6669r1rRr21b++ecICkJKChwc4O2NkBDExWHHDnh6wtYWAMaMUf6ghQWWL4erqzI3qnAqWxZubtn57IwxxhhjxVse68mwkun777+fNWuWkZHRpk2bOnbs+K6nyWSyhg0bjh8/fuPGjSdPml25giVLMHQobGwQHY2gIHz1FRo3RoUKGDgQ69cDQJ06mDFDZ7+HjhSrkjKPHuH2bag2NFy6hAoVULGiVsZ6/Pixk5PT3bt3e/fuvW3bNgMDAwAZGRl9+vTZt29frVq1wsLCKmp07Pr161+/fv3w4cMdOnTQ4GkZY5JITk6eMWPG7Nmz5XJ55cqVf//995EjR+b+I3FxcbNmzZo7d25aWpqRkdGoUaNmzpxZvnz5fM+BCKtXY/JkxMTA1BTTpmH6dHzQXcIzZ+DtjUOHAKB6dfzxR4y7ezk9Pb6VK4GEBFSpgtRUXL+OOnUA4PBhdOoEGxvcuwdDw/yc8/Tp061atapbt+7169fFkT59+uzcuXP16tUjRozQ3NxZEUNEFy5c2Lt373///Xf8+HFVo6RevSKtrRv26IGuXWFtnadT+fpi5kwcOoQWLbQ44fx58gStWiEyEo0aITgYly9j9244OsLfH61bK59z9iwGD8YPP0g60cJMocCaNTh2DGlpaN4cY8eiVCmp58RKlpiYmMmTJycnJ1erVq169erVqlWztbW1tbXV7DKNMcaKh8REVKgAuRxPnqAAq0xWPM2cOfOHH34wNDTctGlT375983eS27dx7BjCwrBvH+7eBYDx43HuHGbMwKefYvdu1KqFcuWQmqrBiUtH6hR7TVqyhADauVP58OOPaf16rQyUkJDw0UcfAWjVqlWS2PZAJJfLBw8eDKBChQo3btwo4BByuXz27Nk9evTIyMgQR7y9vQF4eXkV8MysKBoyhE6fzn7YpQvduSPZZFjBBQcH29raAjAwMPDy8nrxjsIf+/fvDwoKUqi2WhER0b179zw9PfX19QGULVvW19c3RZR6+UDnzp3r1ClTbOzq1Ytu3crrD0ZF5TwSEkLNmhFAzZu72NvbBwYG5mM+rIDmzCGAunfPPjJ4MAHk45P/c2ZmZpqbmwN49OiRODJr1ixwfbOSKiYmJjAw0NPTs2rVqqrLSH19fQcHB29v79DQULlc/q6fff1tLNuUKQRQgwbZdZAKj8ePydaWiGjdOmrbllavVpaUcXOjY8eUX8OGcUmZXI0bRx060P79FBZGHh7UocM7XwqMacGNGzeMjIzeuuHY2NjYzs7OycnJ3d3d29vb398/ODg4PDz8XZdkjEmO14PFwKlT9OWX9CqARKtWUWiopBN6w9q1BFDHjlLPgxU+c+fOFVf+69atUx28d+9eu3bt8h3/vHmT/vmHTp6kNm3o9GlatYqcnSk5ufiUlCluAff27alOHWWhYS0F3FNSUkRbAHt7+9jYWNXxiRMnArCwsDh37pxGBmrYsCGAffv2iYenTp0CUKVKFQWvVUqe1q1JvUBW9ep07Zpkk2EFcfPmzR49eojFnoODw5kzZ971zKysLPEm0KJFi4MHD+b4bmRkpLu7uzhP1apV/f39s7Ky8jiHpKQkb29vfX399u2DKlemgIAPmP/mzaSnR+7uOS/x5XJav/5ptWrVxJS6dOmSy6/GNE6hoHr1CKBt25RHnjwhIyMyMKAHDwp05u7duwPYuHGjeHjy5EkA9erVK9h8WdGTlJSkHrSqVq2ap6fn5s2bExMT3/UjKSkUEkLe3uTgQO+6DZeWRvb2BJBaK5zCQhVwJ6LOncnVlWu4f6B796hMGVJdKsvl1Lgx7d4t6ZxYyeLp6Qmgb9++GzZs+PPPP7/66qu+ffs2a9ZMNM55lwoVKjg6Orq5uX399ddz5swJCgo6derU48ePpf5tWEnH68FiYO1aMjamKVOUD8eMoaVLJZ3QGwYNIoDmzpV6HqyQ+eeff2QymUwmW7ZsmerggwcPatasCWDIkCEFPL8IuCsU1KEDLVvGAfdCackSGj+exo2j//2PSDsB96ysLFFOvUqVKnfv3lUdnzFjBgAjI6OQkBBNjfXDDz8AGDdunHioUChEMOvUqVOaGoIVFXyBVQxkZGT4+vqamJiIzHQ/P79cskGJKCsra8mSJTY2NmL517t370uXLuV4TkhISPPmzcUTGjRokJfU8o0bN4oWrAYGBlOmeItmgHnn60uGhgSQmRlNn04JCa99Nz093d/fv0KFCgBkMpm7u3vUm/nwTAsOHMgEqGpVysxUHpk5kwBycyvomWfOnAlg/Pjx4qEq551DDyVNgwYNjIyMWrZs6evrGx4ensu9/8hImj2bunYlE5Ps/khffvnOM584Qfr6ZGBAhe3qRj3gfuUKGRm9M+B+/DjNmEFHj0oyzUJs1y5q1+61I199RTNmSDQbjbl///6ff/753XffrVy5MrUQbs1grzx79szU1FQmk125cuXN7yYnJ1++fPm///5btmzZDz/8MHLkyI4dO9aqVSuX/lvGxsa1a9dWfSCyYk+hoFu3KC1N+TA5mZ48kXI+vB4sBtaupUGDqGZNioggKnwB99RUMjcnmYzu3ZN6KqwwCQgI0NPTk8lkixYtUh189uxZgwYNALRu3brgm8NEwJ2IIiPJ1pYD7oWSCLjHxFDlynTlijLgPm0a+fnRiRPZH5b5plAoxowZA6BMmTIR4j2SiIhWrVolk8n09PSCgoIKOoaa8+fPA6hYsaIqcdXLywuAt7e3BkdhRULr1tSjB40apfwqXZovsIqYw4cPiw8kmUzm4eHx7NmzPP5gcnKyr69vmTJlAOjp6bm7u9++fVv9CQqFIjAwsFatWmI12KZNm6PviPrcvHmzZ8+eeUmuz93du+ThQTIZAVSuHPn65qwF8fLlSx8fH1NTUwCGhoaenp5PpF2glADu7oObNZvs53dfPJTLqUYNAujVFqn8Ex1TGzVqpDrSrVs3AFw4qKQR70Lx8fFv/W5CQsKmTZvGjh3br1+oKsiur0+tW9NPP9HJk5T7DhxRWKZ+/UJUWObFC4qNpaFDs4/89Rf99htt3kzz5mUfXLaMVq6kP/6g58+pU6fsTeKMiCgoiFxcXjsybVph3MuQN7GxsQEBAS4uLqJPiaGhIQAnJ6fnz59LPTX2dt999x2A/v37f+gPxsXFhYeHBwcH+/v7e3t7u7u7Ozk52dnZib/6qlWrDhs2TBsTZoVNaioBNGmS8uGuXdSzp5Tz4fVgMbB2LY0cSRs2UNu2JJcXuoD7rl2HO3TYOmAAf66xbJs2bRIdK2fNmqU6+Pz580aNGgFo2rRpXFxcwUdRBdyJaMoUDrgXSiLgTkTLl1O3bvTxx7RiBenrKxd+BgZkb0+enhQQQJGR+akh+f333wMwNTUNVSu1FRwcLF5/89RXYBoigmiq4Q4fPgygdu3aGh+IFXKtW9O8eRQaqvyqVIkvsIqMJ0+eeHh4yGQyAHXr1s3fJpiYmBhvb2+RHW9kZOTp6RkdHa3+hIyMDH9/f1UHMBcXF/V0+A9Nrs+LU6eoY0flu2vdumnr1m3Mcc6HDx96enqKt8dSpUp5e3vnUnqCFcTjx48NDQ0NDAwePnwojuzYIQeodm0NVEtOT083MzOTyWSqoJLY0TVhwoSCnpoVKSK8mJ6ern4wMjLS19fXxcXFyMhIvPk0bPhZ+fLk7k7+/h+QCZiWRg0bEkDffqv5mefD9etkZUW+vh/2U337csD9defPk60tqX80uLrSihXSTSg/EhIS/v333+7du4uPM7EQGDx48Ny5c8XGUzs7u2t8TVb4JCUliboxYWFhqoMFLMuZkpISFhYGwMLCouDXUazwS00lU1OqX59EvdjCEHDn9WBRJwLuRNSlCy1bVugC7qNGjQLw22+/ST0RVlhs27ZNLAF+/fVX1cGEhARHR0cAjRs3jomJ0chAp0+TKlRw6xZt2KCRs0qveAbcFQpq25ZsbOjff2n5cho9mho3zo68iy9ra+rdm37+mQ4cePKujC11ixcvBqCvr79lyxbVwRMnTpQqVQrATz/9pI3faMqUKQC++eYb8VAul1eqVAnAxYsXtTEce1NmZmZh2C/MWwiLIrlcHhAQINZ7pqamPj4+aQXbaCPapYoEq7e2S3358qWvr6+o+GFgYODp6fn48eN8J9fnRUgINW1KHTr8BaBhw4ZvZj1HRkb26dNHBCnU74ozDfr5558BDBo0SHWkT5/+rVr9tmjRU42cv2PHjgC2bt0qHh49elRcYGnk5KxIyMzMFO8qqiPh4eGqO3wi27djx46///77+fMX8hfROnmS9PVJX1/6wjIvXyqj/25uH3DLav16+vNPbU6riHJyoj/+UP55926ysaEi0pEyJSV148aNbm5u4l61uNvt6uq6Zs2al69qsT1+/NjBwQFAuXLljhw5Iu2EWQ5///03AGdnZ/WDv/32m4mJiZ2dnYuLi6enp4+Pj7+/f0hIyK1btzJVFdneR3SNvn79uhZmzQqX1FQqXZq2bqUWLSgrq1AE3Hk9WNSpAu5Xr1LVquTuTkuXvmcXoM5kZWVZW1sDuHr1qtRzYYXCvn37xFXQDz/8oDqYlJQkWlrWqVNHGyVGFy0imSy3WpRFS/EJuMfFZQfciejiRTIweK2G+8uXFBpKfn7k4aHcay++nJwWA7CxsXF3d/fz8wsNDX0zKLZ161Z9fX2ZTPbPP/+oDkZGRpYrVw7A559/rqVf6vjx4wBq1KihysgYO3as9uL7TF1mZqa3t3f79u1tbGx8fX3z3pFSG/gCq8g5d+5cq1atxCrd1dX1To4eowVw6dIlV1dXcea3tkt99OjR2LFjRS6eqhRpw4YNtRQOkMtp9epA9Xap4eHhOZ5z9OhRcQHHLSg0Lisrq3r16gAOHDggjty7d09fX9/Y2DjHNoh88/HxATDp1Z7qtLQ0ExMTmUymqYwGVvglJCSIpE7VkcTERENDw0qVKnl4eAQGBuYlceG9pk6VvrCMQkHu7spp5HFPjkJBvr7k60txcZTnkF2Jcfcude9OdepQgwbUujWdOCH1hN4jK4tCQsjDg+rWvSe2punp6Tk5Ofn5+b31dnVSUpK4qWxsbLxmzRrdT5i9VWZmpvhk3L59u/rxCRMm4B0MDAyqV6/u7Ow8YsSI6dOnL1q0aOfOnZcuXXpzc16/fv0ArFu3Toe/EJOGCLgTUY8etHAhB9xZgQQEUJcutGqVMuBORNOnk6EhLVlC7dqRtzdlZEg6P6L9+/cDaNCggcTzYIXDsWPHRG7x119/rTqYkpIiMrGqVaum3tJSg06dIoBq1tTGuSVQTALuP/5I1avTkSOkfjfu9Gl6+u70vnv3aONG+uYb6t//a1FrWMXMzMzZ2Xny5MmBgYH3798/dOiQCFr5qu0ufvDggQgw9e3bV3uhWIVCIdIoVAGsPXv2AGjSpImWRmTC06dPO3ToIPY0iFdFu3btJGz/+NVXdOFC9sPhw+nBA6nmwt5v6tSp4pVTrVq1bdu2aWOI97ZLvXbtWt++fcuVK2dmZlbw5Pr3em+7VGdnZwDvqi/P8m3r1q0Aateurbov++233wIYqbqcL7ADBw4AcHBwUB0Rb49aem2zQujx48cAKlWqpH7wnqY7ahWGwjK//UYAmZvT25osvt2zZ+Ttrfy6f1+bkytaZs+mNm1o82YiIrmcXi9GVNhkZdGBAzR2LJUrp0zHkclo0KBxfn5+783eysrKEmFcmUzm4+Ojk/my91izZg2AevXqvVn4JTo6+uzZs9u2bZs7d+7kyZMHDx7cunXrypUri/srb1WmTBn1tIlffvkFwOTJk3X6KzEpqALuN2+SjQ0FBEgccOf1YBH14gUNG6b8cJk8mcaNUx5PTiZ7e5o6lfT0CCBnZ9JOADOvxo8fD+C7776TchKscDhx4oTYNP/ZZ5+p1pjp6em9evUSOX85usppkFxOFSsS8AGX4oVZcQi4L1qkLNEeHJzPM2RkZISHhy9cuHDkyJH16tXLcclVunTpHDd2YmJiRImGDh06aLveSI43voyMjLJly4J3MmpTeHi4yIupUqXK8ePH9+zZI257mJqa+vr6SlK0MSCA1q7Nfvjjj4WosxzL4eLFiz179tTX1/fy8ip4w+5cvNkuVb29BBE9efIEQIUKFbQ3hxzi4uKmTZsmbmHa2NhkqKVqdOnSBUD+StizXHTv3h3A33//LR6mp6eLQh/Hjx/X1BApKSlGRkb6+vqqLOYff/wRauXOWLF38+ZNALVq1dL2QNIWltm/n/T1SSYjtdqBLL/c3AjIvnY5eZI++ogk2qB56BBZWSmrMBPRzz/TnDnKP0dGkrc32dhk73y1tycfH7px48OG8PPzEwXfPvvsswzJ0xRLvGbNmgFYvnx53n8kIyPj0aNH4eHhgYGBvr6+Xl5e7u7uDg4OZcqUkclkycnJqmfu3r1brAE1P29WmNy7lx1wJyIfH6pfn3r2pP37ae5ckqSGP68Hi6KzZ6lOHQKodGlatertzzl4kKpWJYAsLGj1at3O7xWFQmFra6ue6MkKM4UiIynp+IsXBzIzNb/h+Pz58yLk+Mknn6hiXxkZGX379hWxhStajoWPHEkAzZ6t1UF0pMgH3LdtU66OPuSa6j0SExNDQ0N9fX1dXV3LlStnZWVlY2OjHma9efNmzZo1P/roo4SEBI2N+g5ia0/dunVVR0aMGAHgD1VNTKZR/v7+ovlbu3btnrzq+JaQkODp6SnCmm3bttX93Y7+/cnUNPsun4UFaf+lx/Jp/vz5AIYOHaqb4dLS0ubMmSMqxRsbGz9V29cTFxcHwNLSUjczUXnw4MGnn36ao4+0uB++c+dOHU+meLt165aenp6pqWlsbKw4sm7dOm3sgmrbti2AXbt2iYfig8nR0VGzo7BCKyIiAroq3C9VYZl798jamgDiHGXNENUbVRcu8+cTQKNHSzKXffuoUiVq2VIZI5s+nXx8aPp0qlkzO85euzZ9/z1FRub1nIGBgV9++aX6JtctW7aYmZkBcHFx0cECgb3LwYM3jI0tbGxsNLW3Ly4uTv1hdHQ0uG9qcefvT0ZGtHx5dsA9LY3q1qXu3al6dQKofXu6eVPXs+L1YNGiUJCfHxkbE0ANG77n8yUhgYYMUX4eubuTJgr1fZiTJ0+KzOUCNpdmOpCVFX/5csObN/vdvTv6+vXOmj35xYsXRWBh4MCBqu4mWVlZQ4YMAWBtbX3p0iXNjkhEFy/Sr79m5zqsX08Ademi8XEkULQD7ocOkYkJAaTWMlfDUlJSSpUqJZPJcmydfvz4sTZaBLwpKyurfPnyAC5fviyObN68GUDr1q11MHqJkpaWNmbMGBFV9/T0fDNBaffu3VWqVJEk1b1/f/r0U+rQQdnAjS+wCrOlS5cCGDNmjC4HTUhImD59+rRp09QPJicni5erLmfyLm5ubgA2i/ICTEOmTp0K4NNPP1UdEU1slixZotmBRJkab29v8TA5OVnkvHNQqYQ4ceIEgFatWulgLFVhmVcvN11ITSVHRwKoW7fC0rusaIuPJ5mMzMyy/29+9hkBtGCBJNPZt4969iQ3N1q4kIho+nSaOZOqVCGAqlQhLy8KDf2ABrlElJCQYGlpCaBXr16qHqpEdOrUKbHHqFGjRhqvucTyyMWFKlaUL1x4VntDcN/UYiw1lT79VBn3/Pbb7N0wRHT6NAUG0u7dyncPU1Py9dVpqjuvB4uQ58/J1VX5QvLwoJSUPP1UQACVLk0A1ahBx45peYqv8/b2zlHUgRVaMTEBN2700MaZb9y4YWNjA6Bfv36qaJhCoRBRsjJlymhpA8SoUQTQrFnKh3FxZGBAhobF4S2uCAfcL14kS0sC6IsvtDvQoEGDAMydO1e7w7zbZ599BmDGjBniYXJysrgHcJ9rhWrOgwcPWrZsCcDExOTff/9919Pi4+NVqe5OTk46u9Tu35927KCOHWnlSiK+wCrcAgICAHh4eEg9EcrKygKgp6cn9USIiMRdcW4ypkFpaWmiaP7p06fFkStXrshkMnNz8zebvBWQ2EHfpk0b1ZE2bdoA2L17t2YHKghpW1sXb6KOf6dOnXQznCgso6enu9WmiAbXqEHcCVgzDhwggNTeMahZMwIoLEyS6YiA++3bZGNDT57Q9On0668UGEiHD+c/WHbixAnxDty4cWP1C/Lbt2+LspM2Nja8MV/3LlwgmYzMzbWbH8p9U4urBw+oZUsCyMSE3r0cpPh48vRUxlKdnEhnd154PVhUHD6svCtTpgy90WbrPa5do+bNlQWTfXx0lwRQr149AIcPH9bReKwAEhKCL1wo//KlsjWaQpH5/Ln/8+f/xMUFxsdvSUwMefHiUHJyeHLy+bS0W+npd7Oy4jIz3782vHfvnqir3LVrV1XdbIVCMW7cOAClSpXKUb1WgzZuJIDU1xnOzgQUhxqPeu/qD1PI3bmD7t2RkICPP8aCBcqDKSlISdH8WAMGDACwZcsWzZ86b0RmqOiMB8DMzKxHjx5EtG3bNqmmVMwcOLC/WbNmp0+frl279qlTp0aNGqX+3YsXLz5//lz82dLS0t/ff9euXVWqVAkLC2vatOkff/yhUCi0N7eYGDx8qPzzggX43/8QH6+90ZgGiB7L6enpqiPTpk37/PPP5XK5jmeir6+vr6+vUChE5F1ab/5vYQWRkpLyzTffREdHN27cuEWLFuJgjRo1/vnnn59//tnCwkKzwzk7OxsYGISHh4ttEwDat28PIDQ0VLMD5U9mZuYff/zRtGnTXr16rV+/XurpFEMpKSkARLkMHWjVCpMno3x5vHq5adeiRYtv3/7R3FwRHAwrK12MWPydPw8AzZopH2Zk4MoV6OmhSRMJJ1WzJr74AtOmKR+6u6NDB+jldyXUunXrEydO1K9f/9KlS61btz4vfmWgZs2aYWFhHTt2fPLkSYcOHXbu3KmJubO88vUFETw9YWmpxVEcHBwAnD17VotjMJ07fBiOjjh9GrVr4/RpvL4cfI2lJfz9sWsXqlRBWBiaNsUff0Cby0FeDxYZcrn8778fdumCR4/g7IxLl+DurvyWQoHZs7P/Ht+lXj2cPAkfHygU+PlntGuHO3e0PWtERkZev37d2trayclJ64OxAitTpo+Nzfd37466fNk+IWGbQpF0797n9+6Nvn178K1bA6Kiut640enqVcerV5tFRta6dKnGhQvlLlxoJ5PJ9PX1RcXsWrVq1a5d29HR0dHRsWvXrl27dh04cGDLli3v3bvXqVOn7du3m5iYiLG8vb2XLFliZma2c+dOZ2dnLf1G3bvD0BDHjiExUXmkZ08A2LNHSwPqkNQR//x4/pzq1VPeA1FV58vKIjc3atmSoqM1PNyLFy9MTEz09PRUFb11LC0tTURPbt26JY6sWbMGOsw1K9YUz575nTjR0tBQv1evXjmqNBJRcnJy7dq1y5Ytu+r1Lic5Ut1vfGh3rfdJT6fgYHJ3JyMjGj1amdFARFOnkpcXZzQUauLeWL9+/VRHRBNR9Y5bOiMCZElJSbofOgfx70XjpU5KGrlcHhoa6unpKRrH29jYVKpU6erVqzoY2tHR0dTU9MyZM+Lhrl27ALRt21YHQ+fuwIEDIitHNDyXyWS//fab1JMqbjZu3Ahg8ODBOhsxNZUiIsjFhc6fVx4JDqZXvYE1KSwsTDRu2bRpv+bPXmINH04ALVumfHjunLIwv0REhjsRpaVRvXrUubPGalHGxsaKu4+lS5dWb1KSnp7u4eEBQF9ff4FEhXRKoDt3lJvQtV3Oh/umFjOi1raBAQHUqxe9sRx8pxyp7ppeDvJ6sIh5+vRpt27dypSpXq1appcXqZenffKEXFwIoI4d83q2/fuz0+S1tJ0mKipqzZo1EyZMqFmzpp6ensjpZEWHIjHxv3PnTFNSLt+963nnzqe3brnfvNn/xg2X69c7XLnicPnyR5cu2V28WO38+bInT7Z9b2TY1ta2SpUqL168UA1w6NAhACYmJvv27dP2L9O+PQG0aZPy4fnzBJCNzYdV/CuEil7A/eXLl87OWQA1b06qF4NCoaz7Y22tlV1dvXv3BrB06VLNnzpvhg4dCmD2q069CQkJon5utMZvL5QkWVkvbt4cEB6O8HC90FC/t9Zkf/r0qYuLi3gPGjx4cI7/4Tt37qxcuTIAMzMzTVV1P3mSvvySypVTXr0ZGNDQodkXWC9fUq1aZGhI8fHE7ScLJ7EMU79kEZVe37ydowOiw7iqo6aEvvrqK0ham6uoCw8PnzRpkiirJ8LKLVq0sLOzA1CuXLlDhw5pewJ3795NT09XPUxMTNTX1zc0NJTkTpIQGxvr6ekp4ux16tQJCQnx8/PT09MDMGTIkFQd99ws1lasWAFg1KhRuhz0+nUyM6NWrZRFPxYtos8/1/AQT58+Fa1ZJk+erOFTl3D29gTQ2VdFtP/5hwAaNkyq6agC7uLPmm3+lJaWNnz4cBFbX7Rokeq4QqHw8fERb1BeXl7cYFMHvvqKAPrkE60PJPqmmpub819rMfDiBQ0aRADJZOTt/VqZqTwGerZsoYoVCSBzc/rnn50a6TnJ68EiZ+fOndbW1iIb5uDBU+rf2r+fbGwIoPLl6YNqMT5/Tn37ZheCV+sYkk8vX74MDQ318/Nzd3cXVdFUzMzMzMzMTp48WdAxmG5dulQrKSmvf2tZWVlxcXExMTG3bt2KiooKDw8/c+ZMSEhISEjIggULAJQtW1bVKFX4+++/g4ODtTDxnH7/nQAaPVr5UKFQ3nC6cEEHg2tREQu4Z2RkdO/e3d7+EweHDPV0c29vAsjMTFvFIZcvX54jgqZjgYGBIpNadaRnz54Ali9fLtWUirrU1OuXLzcMD8f58xbx8VtzeaZCofD39xf5pBUqVAgKClL/rnqqu7Ozc1RUVP7m8/Ah+fnRRx8pP1MBsrcnX18Sr3PVBRYRbdpEAE2fTgCNGUNqETBWKLxZ7Fi0UJNki4yIz+qmw3PupkyZAmCWqhkKy5v79+/7+fk1bdpUdUFcvXp1b29vsasmKSmpf//+AAwMDBYvXqzjuTVr1gzA9u3bdTwuESkUioCAALGwMTU19fHxSXu132337t1iT5iTkxPfk9YUcRX+5Zdf6nLQ69fJ3p4GDiQRw9R4wD0jI0PkJjs5Ob3ZJp3lX3KyMs1YddNrwgQC6M8/pZpRRMRrEfbvv9dwVVARWxdv0Tli6//++6/YQuHm5ibh7cmSIDZW2WxQN4tz7ptaPFy5ctXRMQGgsmVzRq5Xr6a2bfPa61Kkurdvf5HXgyVQZmamj4+PSPhwcXFRX/FlZpKPD+npKWszPHqUn/MHBJCZGQFUrx6dPUvJyaT+YZKQkFszErmcLl+mlSvTxo4d27hxY319ffUge8WKFfv16/f7778fPHjwk08+AWBlZXXlypX8zJLp0PPnS+/cGfX06V+3b4+4fLmJQpH2/p/Jg/r16wM4evSoRs72oSIicqa0f/NNYocOZ+fNK9o3FTUfcL93756W4kpyuVwkeleqVElVXIWIFi4kgAwNP+yG4QeJiYkxMDAwNDSUJEeViJKTk83MzPT09B69ep9etmwZgF69ekkyn6IuISH4/Pky4eG4fLlJWtrNvPzI3bt3Vanu7u7uz58/V/9uvlPdX758uXHjzc6dlZ/E4l1m8mS6eDHH017blRYXRxs3Kj96nZ01X0bpXbKyyN2dVM1Uzp+nGTPo2DGaPz/7OTt30urVOppP4XTs2DG8XmqjWrVqAO7evav7ydSoUQPAnTt3dD90Dt999x3Umj+z3MXHxwcEBLi4uIjsSJHG7unpGRoamiNzKpdAj1YdPHjQ2tra1tbWyMjI3d39mM66WxJFRES0bavcF9mpU6dr1669+QTxj65WrVq8bNCIWbNmAZgyZYouBxUBd1WjSxFwP3mSwsI086kntt3Y2NgUhluSxcqJEwTQRx9lH3FyIoD2S1m0Z/9+6t1b2WlQS/755x9DQ0MAgwYNSlGL0h04cEBsdGvVqtWzZ8+0OIOS7eeflfVAdEPc7V67dq2OxmNaEBwcXKZMmZYt+zRtKr+pthxMS6PPP1euyz7ob3jLlu0ia9jc3Hzx4sV5T3UvWutBpu7u3btt2rQRuS8+Pj7q1+F37mS1bq3coPDrr/nv0U1EkZHUuDEBZGREAwZQtWqkKhdasyapBcaIiBITKTSUfH3J1ZWsrJSvqEqVqohJ2tvbe3p6BgQEREZGqr9Es7KyBg4cCKBKlSqSLFpZ3mVkPElM3BcdvSAuLlAu19iO3m+++QbA9OnTNXXCD2VrS6amdOGCcivH5s2bAbRr106q+WiE5gPuY8aMEQsYV1dXHx+fkJAQTSV0TJo0CYCFhcVZ1R5VovXrSU+PZLLcOolrROfOnQGsli6U2K9fPwCqzarPnz8X9wDi4+OlmlJRpFBkPXrkEx6uFx6O27eHyuUfUNs6R6r7JlWJKSIiiouLU6W6t2vXLvfUBlUh5tKlS9eo0Q0gExNydaXAQMp7mt3582RrSwDVqkWXL+f998i/jAzS1yd7e2XW2p491K0brVpF7u7Zz/njD/Ly0sVkCq0zZ84AcHBwUB2pU6eOVGlQorb1mxFJ3fvrr4TatdNmzsxbplBJlZaWFhwc7O7uLjIiRfq2u7t7cHBw7hm4y5cvF4GeAQMGaDuJ8tGjR4MHDxbTs7GxUd0SaNGixT///KPV0ZOTk318fMT/HBsbm4CAgFwm6ejoKLZGHjhwQHtTKiF++uknAD/++KMuBxUBdyL65RcaMUIZcO/eXbl0tLQkBwdydydvb/L3p5AQ+qBkj7Vr1wIwNDTU5b2iEiJ52bLX6nrI5crE49czFXTsp58IIG9v7Y4SEhJSpkwZAK1bt1bfYRMZGVm9enUANWvW1E3XjZImNZUqVSKAtF9fTWnGjBkAvvnmGx2NxzQqKyvr22+/FRcww4YNS07Ozg99+JDatCGxNMvHTvKSsB5kKps2bRL3U6tVqxb2eqWFrVu31qnjVLGi3NaWQkM1MFZqKnl708CBNHo01a5N06Ypj9esSTdu0NmztHAheXhQ3brZ2yPEV7VqNHgw+ftvDwsLy73cYkpKitj5V6dOHb49XGhlZsaeO2dy/XpnhSLz/c/+ECEhIQA+Uk+Y0K3p09eYmpabOXOmePjixQtRRrswVMfNN80H3MeNGyeuNVUMDQ0dHBy+/PLLgICAa9eu5a+u2a+//grAyMhIvWD/vn0hDg7xAL2qba5F8+fPF7EMrY/0DmFhYbt27VLtmieijh07cm7FB8nMjLlxo1t4OM6eNXjyxDd/J7lz506XLl3eleq+Y8cOUcTDzMzMz8/vzVf75cuXv/32W7ERFYBMJmvXrl1AwMv8Nb159IhatFAWDdRBca2MDDI1pS+/JB8fIg64v8PFixcBNGrUSHWkUaNGAC7mSFPRiSZNmgCIiIjQ/dA5/PEHATR1qtTzKJTEisvLy8vKykq8M+jr6zs5Ofn7+6s3rsnd/v37xUV/06ZN79+/r6V5+vv7i4ItZmZmPj4+6enpUVFR3t7eorqLuCnu6empjVd7cHCwiFjp6el5enomJiaqfzc8PDz99Q3V6vV2Fi5cqPH5lCjTpk0D4Oubz8/N/FEF3NPSqG5dGjmSPv+cJk+mFi3I0jLnelJ8WVtT3753Pvnkk5kzZ27cuPHcuXMv31bxNCIiQjSU9vf31+VvVEJ4enqWtbTc9Or/bcb161n6+lStmrSz6tePANqwQesDXbp0SbXDRv1u95MnT1R3AQ+rtgoyDRHbnR0ddTci900tumJiYrp16yYuD3J8rh09qrxzY2tLp0/nf4jivR5kRJSamurl5SX++tzc3NSrIKSkpHzxxRfiW19++Y9m6yNkZdHo0bRgAVWvTpcuERHVrElLl752LWRmRk5O5OVFAQF0+/aHnT8xMVFUjGzZsuVbr6CY5KKjF4eH48aN7ho/c3p6ukgtvaftzuPvsHXrVrxeRlskPW/QwdWb1mirhvutW7cCAgK8vLycnJxUmXqCubm5k5OTt7d3cHBwHuurrl69WiaT6enpBQYGqg6eOXOmdOnSpqblfv31gZZ+C3UPHz6UyWRmZmZJSR+QE61V8+bNAzBw4ECpJ1J4paZeffx4xqNH38fHb01OPnfpUs3wcFy4UP7FiwIlPIpU99KlS4tU982bN6t/Nzo62t3dXbzau3btKt6w4uLi/P39nZycVP8QqlWr5u3tne8afyqpqTR8OAGkr0/aDoaIgHtMDFWuTNevZwfcmzenBQuUX/37l/SA+/Xr10VqgOqIg4MDgDNnzuh+Mi1atABwuiCLBg3x8yOgpL823hQZGenj41OzZk3VO4O9vb2vr2/+KrNdvXq1Vq1aAGxtbSMiCvreksO5c+datWolJunq6ppjt2laWlpgYKCq7hYABweHgIAAjZTGfvjw4aBBg8RpmzVrdurUa62oEhISvLy89PX13yxYJJfLp06dCqBJky+9vRXc3C7fJkyYAGDevHm6HFQVcCeivXtJT++1Gu5xcRQeToGB5OtLHh7k4EAWFgRQy5Y78LrKlSt36NBhzJgxf/zxx5YtW8LCwkS3YQ8PD13+OiWHCCuHvsroW79+vZmZ2bQxY6SdVbVqBJBudpo9fvxYfO6XK1fuyJEjquNJSUl9+/YFYGxsvHHjRl1MpcQYPJgAUlsmah33TS2izp07Jy66ypcvn2MD3IIF8QYGBFC3bhQTU9CB4uLiPDw8iuV6kIhiYmIWLFig49vwhcqqVasAmJqa5rhzf/Xq1Y8++ki8z7/1XkvBjR5NK1fSmjXk5EQKBdWsSWfOUN265OFBCxfSuXOU+eF5z+rzfPbsmdic7eLiks7NAQqfa9ecwsMRG6uVwhsiV2np0qXaOPl7JSUlGRsb6+vrx7x6C/7zzz8BfKKDZuhao4umqUlJSaIbsoeHh729fY6FkCg+4+vrGxoa+tZNLjt27DAwMADg5+enOnjz5k3Rh3DYsGE6u9Bp3bo1gByFRCQ0bdo0CwuLdevWST2RQio19VpERMVnz+bHxq59/PiXxMS9Z8/qX7nimJ6umVt2d+7cEffc8LZU940bN4qUT3Nz81atWqluO1laWnp6eh47dkyDH8AKBfn6Kqv+aaltTno6bdtGL1+SqSkRkb8/de2aHXBv2pT+/lv51adPSQ+q3r17V1xAq46IetOSFC5wdnZWD3xIaPFiAjTc87DoevjwoZ+fX/PmzXOsuApe/Cc2NrZDhw4NGowoX16xbZtGJpsd0Raxy8BcQxpXrlzx8vIS9yMBVKxY0dvbO99dBDIzM/38/ES2RZkyZfz8/LKystSfsG7dukqVKgEwNDT0EVtv3vDvvxsqVpQD5OZGheaOeRHz2WefQbd92uVyun2bunVTnwN99917furxYzp27P6yZcumTZvm5ubWqFEjExMTvMHQ0LBp06a5b6xm+ZOZmWliYiKTyVR7UMRNr59//lnCWcXEEEClS2eX0N24kdat00BM7V2SkpJcXV1FzEV9K2pWVpZ4O/3tt98y8xEUKanCwki9vMGBA5SYSNu2kSoJLz6e/vqLXv980DpbW1sUjqp9LI9Wr14ttjc5Ojqqp3CmpKR88skndes2KVUq2dtbky+kjRs3li9fvtisB7OyskJCQjw8PExNTQFYWFiU2F7QIsUkR1woICCgVKlSAOrVq3f+/HktDS0C7kTUuTMFBLylhvuHSk5O7t2799y5c1VHJAm1sbxIT78THi47d66UXK6V/Qf+/v4A3NzctHHyvBD/slQRzsuXL4v7o0X3daiLgHsOjx8/Dg4O9vHxcXV1FfvfVd5s43Dy5EnxtqW+kH78+LG4Na3j226iadjw4cN1NmIuli9fLpPJ9PX1t27dKvVcCqno6CU3b/ZVP5KQsFOh0OQLRj3VvWLFilu2bFH/7rNnzwYOHGhgYGBubq6vr+/i4hIQEKC9HRIbNpCpKQHk7n4zRnOLyMhI8vamChUIoI0blQF3uZxataIvvuCSMm/x5MkT8XpQHenUqRMASQpJi/JH+yVtVSesWEEAjRol9Tyk9vLlyw4dOujp6YlPPWtr6/Hjxx8/flyDK660tLRx41JEltOcOQU92+bNR8S2aAMDgylTpuTxHezFixf+/v4ixweAnp6ei4tLYGBg1oesYsPDw0WWKABXV9ccdXJu3rzZvXt38V1nZ+dLYmPtO4SGkrW1so+jdsrtFHNDhgwBsH79et0Md/8+2dtrpsWmXC6/e/duSEjIokWLJk2a5OrqWq5cOQCTJk3SwNnZGyIiIvD6Hi+xdgqWtMxBSAgBpLZHmZo0IYBOntTioJmZmePGjRPXA+rFwWJiYgCULl266K4eda9jR9qzJ/th3boUEUHlypGzM4kPz3PnSPdVZ7lvahGSlpamKgDi6empHkCIiopq3LixCB/v2nUql5Pkj2o9aGFhUXTXg6dPn54wYYKqfqC+vn6vXr3Wr19fYjOgxdv7d2qJAL/99pv4n/PJJ59otRiLKuB++TLVqEGVKhU04L5161YRVlK/fxARESEidePHjy/YfJkmPX78c3g47tzR1h7NBw8eyGSy0qVLqxey1qW//voLr29CFdtSC8N+/fyRIOCuLjMz88KFC0uWLPn000/t7e1VMQihfPnyItru6emp+hEJC0vdvn1bJNlJ/tGiyvpXvxXJckhKOn3+vPnjxz+np2u36NDNmzdFgxHx7pCgVn7v2LFjInf16dOnWp2DcP48NWoUV6NGXTs7u8jIyIKc6sED+v13atAgux5ckya0ebMy4E5EZ8+SsfE7A+4xMRQcXEIDW3FxcSJ1RXWkR48eAHbv3q37yfTq1QvArl27dD90DmvXEkBDh0o9D6mNHTu2YsWKJiYmrq6ugYGB2vs08fPLznLKX1mXW7eoZ0+qXTvN0NDMwcEhfzWRwsPDPT09RSYUgKpVq/r4+Ly3mlx8fLyXl5e4JLCzs9ujHmghysjI8PX1FZnLZcuW9fPzy0vcKiqK6tUjgCpXpvDwfPwqJVqfPn0AbN++XQdjpaaSoyMB5OqqlfMfOHBAvBQ/6PYPy6OVK1cC+Pjjj1VHRIDm4cOHEs5q1iwC6KuvlA/T0sjQkPT1SQepmbNnzz5+/Lj6kX379onbhFofuxh5V8DdxUXZ1lKSgDv3TS1CJk+eDMDExGSlCFW+smvXrrJly4qU5MtaazladNeDYkdm06ZNVfGZglQ+LE7EtUTdunVVRx48eFCjRo3Vq7VS6EOdKuBORNOmEVDQgDu9uluQo13iwYMHjY2NofMWPiwXkZH1wsORmLhXe0OIDnBSpetdvXpVZKSpFndffvklgJ9++kmS+RScxAH3HF6+fCmKz7i7u4ttLNWqVatbt65qUZSVldWhQwcA9evXz1HBQzdEvp4kgTOVt2b9s7dKTg6/e3f0hQtWDx5o92pYlepevXp19Tym77//HsDEiRO1Orq6hw8fi/KpZcqUyccLNTWVAgPJ1ZVEEUOAypUjT09ld/WMDLKxyX7ypEk0YABt2PBa2vLcufTttzR2LO3cSR07Unx8gX+loiY5ORmAqerWBFG/fv0ASLIZxc3NDUCOvReS2LSJAJKu7XShkJiYKJPJjI2N4zTbQekdgoLIzIwAcnH5sH+J6ek0Y4YyQ6pcOVq9+lIBMzHj4+P9/PxEhoK4oHd3dw8JCXlrXn9gYGCFChUAGBoaenl55cgCO3z4cIMGDQDIZDIPD488doIRYmOpY0cCqFQp4r1hH0TslQkJCdHBWKNHE0DVq5OWrvIUCoUoTrpz506tDFCyff311+qL83v37omFk7SzGjqUAFqxQvkwPJwAathQmsn88ccfAL5Shf9ZHnTsSBs20LNnyq9atZQB93PnqHJlev5cmoA7900tKjIyMvr162doaKhe3VGhUPj6+opb+3379k3IX7vSt0lMTLx69ar6kSK4HkwNDAx0dXUVGX4AypUr5+npWRhqVBYSWVlZ4mI1IiJCdVA3SZlBQdmJI0lJNH06xcZq4LTffPON2Odx9uxZ1cGtW7fq6+vLZDJdFhVk75KUdDI8HBERFRUKLZak+/bbbwFMnjxZe0PkTjQkO/lqE+KOHTsAtGrVSqr5FFDhCrjnsHfvXgBWVlbqVQ7/+eefatWq5WjXpjM///wzgDHStX6KjIwUu6HVs/5Z7jIzn50/b5GSklvBAY2Iioo6ceKE+hFxrfPff/9pe2h1qampI0aMENv98nhHWi6XHzhw4OuvY0uXVsbZTUzo449p58789F1R+fxzunkz/z9eRGVlZYkaGqojgwcPhkT9tXVcCCIXO3YQQL17Sz0PSYWGhgJwdHTU2YgnT1KlSgRQnTp57RZ45AjZ2yvfB9zdXyubW0ByuTwkJMTd3V21fqtfv76vr6/q9sONGze6du0qvtW+ffscuWZPnz718PCQyWSiYEX+gr/p6TRqFAEkkxHfs867Nm3aAAgLC1Mdefr06YQJEzS+wVM0ezAxIbXlnub5+voC6NevnxbHKKnEhr+9e5W5V9u2bQPQTb0YvxTq1yeAVAV1ly4lgEaMkGYy4nN5hSr8z/KgY0eyt6e2bZVfJibKgHtiIn3/PX36qTQB90LVNzU5OTkoKEjqWRReok/pqlWrVEdE1qS+vv4ff/yh2c6Wa9asyVESoQitB0NDQz09PUXvHADGxsZiR2ZG/jZLFmuff/45gO+//17H4+7YQVWq0OzZGj6tQqH45JNPRJEJ9dYUixcvFq+izZs3a3hI9oHu358QHg5tJ5IeOXIEQIMGDbQ6Si78/Px+/fXXBw+UNSpSUlJMTU319PSeaXBRqkOFOuBORPXr1wdw8OBB9YMSdue4dOmSSNWRpNPRgwcPqlWrJu7Dc6ul95LLk4gURCSXp1y4UCE19YqOJ/D8+XM9PT1TU9OUlBQdD62etTF69Ohc7rdfu3bNx8dHZJ526LANIAcH8vPTQGrh9evkoa3yYoWdaC+p+kfq4eEBICAgQPczEVdOOfbPSmLfPmWqdUm2YMECAJ999pkuB334kJo1I4CsrOjw4dyeGRtLnp4kkxFAtWuT2qZSDbt79+7//vc/0exURCvGjh07btw40UysQoUKAQEB6qtfhUIREBBgZWUl9o74+PgUsLCgqt7O6NH5rLdT0ojtfeodwESNRXHXxMfHJ999cdWdOEHGxgTQv/8W/GS5ef78ubGxsYGBgbR1ToofhUJRpkwZAKqyCT4+PgC+/fZbCWeVlER6emRklN1C8IsvCKC//pJmPvXq1QNw4cIFaYYvmt5VUiYxkVJSqFYtWrxYRwH3HJHZQtI39dKlS40bN5bJZIWhhGDhJDoBdu3aVXXk6tWrNWvW3KeFax0R5vbz8xMPi9x6UHBwcPDz85OkokBRsX///hxVZXTj008JoJkzNX/mjIyMnj17ArCzs3v8+LHquPgoNzU1PXr0qOZHZXmjUGRGRFQMD0dy8jmtDpSZmSnK998qeK0iDWnbti2KbMeUwh5wnz59OoAJEyZIPZFs4kL50KFDOh43JiZG7KPv0KFDamqqjkcvip4/X37pUp2oqN6XLtW6d0+Cdh+rV68G0LNnT90PLQQFBZmZmQFwcnLKcUswNjZ2wYIFrVq1Ul1X2dnZ/fbbIk0lpB8/Tl99RSX2dSr+t6tKYYwZMwbA0qVLdT8TT09PAP7+/rofOocjRwigdu2knoekxF+Hag326NGjZcuWqe9F1ZIXL6hnTwLI2JhWr6a4OFJl46WnU1ISKRQUEKBsK2piQj4+pINOOenp6YGBgS4uLiJpvUyZMqJKTI7VXUREhEivBtC5c2dNxTVEvR2ZjH74gfr1yy7l/P33FBZG48eT+l/L0KH0QLutQAo7UYPlxo0bqiNXrlyZNGmSqP4n9vR07dp19erV+U6JePqUqlYlgLSx516hUISEhMyYMUN1xN3dHcAvv/yi+cFKsKioKABVq1ZVHenbty+AjRs3SjirsDACqHnz7COtWxNAOr+QJyJ6+fKlnp6ekZGR5O2gipZcAu5EtGMHVayo9YB7TEyMt7f36NGj1Q9K3jdVLpf7+vqK29WNGjXSwRVFEZWQkCByJNUbsGsja1sul4tKI6rLlcK8HoyPj/f393dychJXYgBsbW29vb3VP+7Zu6iqyly8eFGHgyov169oJ5MwOTlZBDcbN26sXgBT9BwuU6aMeu4F06WEhB3h4YiMtNfBWOIieeHChToY671EPe3GjRsnio/8oqawB9zPnDkDoEqVKprd6lUQoqqRjmsvpqSkiK1wjRo10k3x3+JBLk9OTb2SmRmTlnb75ctj7/8BjRo+fDikbmx7/vx5sStCtM3JysoKCQnx8PBQ9TC0sLDw8PB4VzHl/ElKol69aPRo8vSkS1ov5FMYif5Lsa8q6o0fPx7A/PnzdT+Tr776CsC8efN0P3QOJ08SQC1bSj0PSYlbXKr7tevXr9dZXYusLPL2JoB+/ZUAUr0trVhBw4ZR27bKGjLdu0tQBurKlSsigXrcuHHqx5OTk318fEQcwcbGRuN7RE6fpr/+or//ptKlSZWA26cPbdtGrVq9thugWrW8FuQpripXroy39b1UfaaIxbxIgMqlQP+7ZGZShw4EUNu2pI04ZEJCgpmZmUwmi4qKEkdE40pbW1tunapBgYGBAPr06aM6IvJ/pY3dLF78b8OGn02frqxyk5VFpUqRTEaSXE2L3onN1cP/LA9yD7gTUb9+9NFHFBxMgwZpPtsjLS3tjz/+ELs3jIyMHqjdgJW2b+r9+/c7duwIQCaTeXp6SrgFvEgQBR5///13rY5y+vRpADVq1FAdKbHrwZJAZNL88MMPOhvxwAECSKtZ9W/N8pTL5eJfUOXKlTWyqVElISFh7969P//8c69evf7V9g7HoszL69M5c9pdv66LeMKKFSsAuLq66mCs3EVERIh62u7u7kX0ir2wB9yJqGbNmgBylMaWkPgc1eU9gIyMjF69eomVofpteZZHL18eCw+XRUbqtBCVKsHhutRxmuPHj4vSgaampiIQDEBfX79nz57r16/X/fbGkkDUylDtxRNdaGZrvNheHkyZMgXAn3/+qfuhc4iLo8BAOqbr216FiFwuL126NICYmBhxRGzh+vHHH3U2h7AwunuXKlSg6tVJxE5XrKBRo6hXL6pUiaQoeqS0bt06AL169VI/KN649PX1v/76a+0lNfz9N40bRzVqUGQkEQfc3yYwMNDS0tLExKRVq1b+/v4vX7588zkJCQkBAQGq/QoizTnvWXJff00AVapEjx5pevavjBw5EsD//vc/8VChUNSuXRtAPrrJsXdZsWJFpUqVvvrqqzVr1ty5c+f58+cASpcuLW2F69GjRwNYsGCBeHjlytW6dQf17btGksnMnz8fkvaCKqLCw+nVJycRUVgYvXxJhw9n9xmKjqZDh5Q9S1xc6G3vUvkUHBysqrPh4uKSI5V1165doviG7l/kQUFBIgxRoUKFHTt26Hj0omjnzp3QfmHiX375BcAXX3whHvJ6sHgLCQkBUK9ePZ2NOGECATR9unZHefDgQfXq1fF6HeP09PRu3boBqF27tqpwXD5kZWVFRkYGBAR4eXk5ODiIkkfCsGHDNPQbFDeJiYlv7tHRnmfPnklVCEvdtWvXxFZaNze3oltPuwgE3CdOnAhg6tSpUk9ESaFQiFvEqs65QkZGhoeHx9y5c0+ePKnBjaIKheLTTz8FYG1tLXmJwCJKociMiKgUHo7k5DM6G1TcmKlZs6bORnyrjIwMIyMjU1PToUOHdurUCUCtWrWmTZv2SHtRDUYkrlFU9/9FXPXXX3/V/Uy+++47ADO1UefvQ1hYkGpT0JkzVDJz+27cuJGj2ELv3r0BbNq0SZfTuHuXatUiPz9ydyd6FXB/9IgSEnQ5i5weP34sEqzUkxfWrl3brFmzU6dOaXXov/+mKVNozRpq144UiuyA+/DhNH268svCooQG3J88edKvXz+xClK1urWwsPjss8+OHDny1rSDe/fu+fr61qpVS7V8em8d2HXrNrRuHWRkRMePa/F3ES2LK1WqpKoh8Ntvv4mLeC2OWpLExMSoShPo6+uXL1/excWlZs2azs7O0k6sWbNmUGv5K/oZDhw4UJLJfPbZZ4Vnm3bxExlJVaoQQI6OFB1d0LOdPn26Xbt24n2sQYMGb5ZHP3jwYOPGjc3MzIyMjOzs7Pz8/HSTY56YmCjyagF07979yZMnOhi0GMjMzBQJMWfOaHE9KMpxbN++XTzk9WDxpqoqEymyNrRMoSBbWwJI0x3r3+Ly5cvilt7IkSNV13svXrxwcHAA4Ojo+OLFi7yf7dmzZ8HBwd99913nzp1VLXkFExOTtm3bTpo0aePGjQ9KeAHHd/vnn38AdOrUSWcjir/oPeqby3QrKipK7K/t1q1bAXt3SasIBNyPHj1aGD6o1H399dcAvL291Q+Gh4er3jgMDAzs7e09PT0DAgIiIyMLkgs/depUAGZmZse1uhIt7h48+CY8HPfv664Q0M8//wzgyy+/1NmIbyXa/NapU0ehUKSnp1+6dKlz586c06dtdevWhVr1xp9++kk3iczRb6wvRaKNLrc6vpWFBdWpQ2KBU2ID7kFBQQB69+6tOlK1alXovNiCCLhnZlKjRrR7tzLgXhiIEG14eLj6QR3kDIqAu0JBHTrQypXZAfeffqLAQOWXtbVkAXcJU4MDAwOtra0BlClTxt/fPy4uLkcOey6VXuVy+aFDh0aNGqVaVpmYmAwePPjNMEdERIQo9rJqldY3MjZs2BDA5s2bxcOnT58aGhoaGBhwxKEgYmNjly1b1rlzZ9EtXKS0d+3aVWzocXJyUm+8pnvp6enGxsZ6enqqnRmTJ0+W8D5006ZNAfAlvfbcvk21axNADRpQvhMBHzx44OHhId7rrK2t/fz8cuxkv3btmuhPIG7jiU9zkWw+Y8YMVUVBbbh34oTY/F2qVKnC0KGnaJk0aRK0WRg2Li7OwMDAyMhIFYvk9WCxN3bsWAA+Pj46GOvUKQKoShXSTZ2FU6dOlSpVCsB3332nOhgdHS06Gnbq1CmXMGhmZmZkZKS/v7+Hh4e9vb3q0lGwsbFxdXX19fUNDQ3l3oR5Ie6T/fPPPzob8YcffgDg5eWlsxHV3b9/v0aNGgC6dOlS1F8hRSDgLpfLbWxsAFy4cEHquSgdPnwYQO3atdUPRkdH+/v7f/bZZw0bNlTfGgOgfPnyrq6uv/zyy969exM+JI1wwYIFAAwNDSW8uVQ8JCefDw/HhQtWCoWOulSJBIfg4GDdDPcuoki0egafuA/PtYm0qnHjxgBUrauePXt269YtrS7A5HK5v7+/hYVFjt50f/zxB4Bp06Zpb+i8sLCgwEBycKCsrJIbcBcXLtNf7QKNjY0VC2YdR1RFwJ2IQkOpdm1avLiwBNzFXq45c+boeFwRcCeiyEiqVo06dSpEJWViYmJq1Kjh4+PzQVcOBff06dMBAwao0idzfF7cvXvX19dXVWMBr3LYY9QrPrySmpoaGBjo6uoqEuRzfCbGxcWJGy0eHh7a/ZWIiOjvv/8G0KNHD9WRgQMHShh7LdJSUlKCg4Pd3d1FlwUAxsbGrq6uAQEBIrR96dIlsdnLzs5Owg2a586dA1C/fn3VERFmejNbWQfS09ONjIzUo/9MG548oY8+IoCqV6cPfeklJSX5+PiYmJgAMDU19fb2zlHQLDY21tvb29jYWHyC+/j4pKSkyOXy4ODg1q1bi38LpUqV8vT01Pzd9MxM8vWVGxt3btbM0dGR9z3nw/nz5wFYWVlpqWvxxo0bAXTu3Fl1hNeDxd7evXtzfMpoz7ffEkC6DIGGhISIT3n16/Pbt2+L6Fz//v3Vb0Y+evQoODjYx8fHxcVF1R5A9a7o5OTk5eUVGBhYkHI0JdPDhw/19fVNTEzi4+N1Nujx48fFJZzORlR5+PChWB20adOmGFwvFYGAOxF9/vnnuskPzSO5XC62pL2rJ/XLly9DQ0P9/Pzc3d3FM3Pc03N3d/fz8wsNDc3lxuC6dev09PRkMtnKlSu19quUIJcvfxQejvj4bToYS5XgIPl7xPfffw+1BGdRULVMmTLcEkerRJHE0zrY70dERCdPnhRb5qFWNVLw8/MD8PXXX+tmJu9iYUFJSdSnD/n5ldyAuyjNsWHDBvHw0KFDAFq3bq3jaagC7kQ0ciQ1aVJYAu7//vuvuHbX8biqgDsRTZ1KMlkhCriLm+4iOjBz5kztFbJXlyOx/V0fFnK5PDQ01NPTU5XDLuKtgYGBqpot6h48eDB79mz1b8nlctGfpmnTprqpERkfH29mZqanp6eq9/Xff/8BqFmzprRFxouQtLS04OBgDw8PkcAOQF9f38nJ6a1Vgx4/fiy2JJcrV+7IkSOSTFjswh46dKh4qFAoxB55SfLuRfRf2yWkGRHFx5OzMwFUrhy9XgH0neRyeUBAgCgXK5PJ3N3dczQGzMjI8Pf3F2+Penp6Hh4eb9ZyCQ0NdXV1Fbmcenp6rq6uGquKFhVFrVoRQPr6z3/++a1vsywvmjRpAmDbNq2sB0XNqFmzZomHvB4sCTIzM8uXLw/g8uXL2h6rfn0C6NAhbY/zmrVr174Zkrp06ZLoBDBw4MA///xzwIABVapUUY93yWSyBg0ajBo1asmSJREREUW03WUh8fvvvwP4+OOPdTmoVP0noqOj7e3tATRr1ixOku72mlY0Au579+61tKw5ePB6qSeSTdTO++STT/LyCXr37t0NGzZMmjSpbdu2OW73mZmZHVZf1r+yf/9+kT3x119/aWH6JdHTp7PDw3Hz5gAdjLVhwwYAXbp00cFYuevfv796jO/AgQMAnJycpJ1Vsefk5AQgNDRU2wPFx8d7eXmJjfxVq1bNUQ08MzNT5G82aNBA2qJ4IuB+7x5VqkQ7dlDz5pSRQdrJLiq8unaNbd/+wtWryuIV4l6Ip6enjqehHnB/9ozKli0sAffbt2+LwJyOQ5/r1tHffyv//PIldexIhw/T0KGkXvvExYXu3tXlpLKFhoZ26dJFXDCYm5t7e3tr7+oz98T2d8mRwy6yCry8vM6ePZv7D4o9H+XKlbt9+7Ympp8nI0aMAPD999+LhwqFQiTR/PfffzqbQ1GUlZUVGhrq5eUloo2C2NmQe/3opKSkPn36iPsxa9eu1dmEVSZMmKAe/7pz5w6AChUq6H4mRLR8+XJwUzhdSU6mnj0JoNKlad++9zw5JCRExGHFjXBVxX+V4OBgVWsKFxcX1RbGt4qIiPDw8DA0NBTPvzN69PtnkLuAADI3J4CqVaO3LRtZ3s2d69++/XhPzysaP7NCoRAxR1VCHq8HSwjRmvunn37S6iiXLxNAVlak++aRs2fPBmBkZKReD+3IkSNGRkYiJitYWFg4OTl5e3sHBwfn0rmHfahGjRoB0H1z7OHDhwP4W7VMekV7dxDj4+ObN28OoEmTJlqtDaBLRSPgnpGRVaECAYWoa9lXX31lZWUlUnvs7e09PDz8/PzCw8Pfe/tOFLQKCAjw9PS0t7fX09N7s3jo6dOnRerQt99+q7XfoMTJyHh69qzB2bNGmZla/wAQtRH+/PNPbQ/0XmJ5oGrkMnfuXACff/65tLMq3hQKhSgpo+3amoGBgSIVy9DQ0MvLK8eH37Fjx8TqUeSfip3RutyJRkT379PgwXTjhjLgTkQzZ1KLFtS8Oc2dS9Wqkb8/lZCMh8REksnI1DT7KnnixBdt2jxYseLt26S0Jz6eXoWeiIh27KDAQB1P4Z1EQ/JLly7pctBFi2jqVLp3T5djfjCRNakedtf4Zagqsd3CwiKXxPZcPHz40M/P76OPPlItvezt7X19fd+6dzg4OFhPT09PT0/Hke4jR47g9dapM2fOhHQtNAu/8PBwLy8v9c2a9vb2Pj4+N2/ezOMZsrKyRNRbJpPppsqtOnH/e//+/eLhli1bAPTs2VPH0xDGjx9fSC4OS4iMDBo6VOS5K4KDD731OVevXlW9u1arVi0gICDHu9+ZM2fat28vnlC/fv28hzyePHni4+MzqEkT0tMjgD76iAICPjhUlpCg/B0AGjSIiksAQkJPn5KBARkZkcbjgRcuXABQpUoV1UuI14MlhNgt17BhQ62OMm9eWPPmsaNHS7Mhb9q0af3798+xH9HW1haAm5vbypUrr169yhsmtEHsjStfvrzuNzaJJvPdunXLcbxz586iYoe/v38B21WqS0xMbNGiBYC6desWp2bgRSPgTkQjRxJAv/8u9TyIiGj9+vViZ03dunVV+QuqlXDnzp3/97//bdu2LS8vlDfjX1FRUSKINmLECH7b0qyoqJ7h4YiOXqjVURQKhWiprOOw0ZuSk5P19PSMjIxUlQpFX5f58+dLOzHtkby5+bVr10R92PLly4stybdu3dL4KDdu3Ojatat4z2nfvr3qAlqIi4vz8vISnSTs7OzE7T3xsFy5cr6+vjroPZKZSX/+SaVLE0BubtkB9/R0ql+fmjenTp2U68fmzQua+FUkhIYSQI6O2UccHQkg7e+CeItbt6hiRRoxQoKhcycyKRYsWKCzEeVyqlmTACoS+c3Hjh1TBYZKly7t5eWlkTqYz549E1th8CGJ7bkQIVqxw1rkJbi4uAQEBCQnJ4sn3Lhxw9LSEsAff/xR4Ol/MLFTdevWreLhkydPuHXqmyIjI318fFQpvQBq1qzp7e2d77LRs2fPFh9Dnp6f6yw7Ty6Xi/wVVapdQEBApUqVVL00dExUcz5w4IAko5dMcjl5eckdHP5nYGCwYsWKN58gbsmULVt2zpw5Oep6P3jwQHX5ZGVl5efnl/nhr11FfDz99htVqqS86KlRg+bOVV4SvdeBA1S1KgFkYUHcH1VzxNaHhZpeDvr6+gIYPXq0eMjrwZIjIyNDJGJqtaqMKNEmVT8AhUKRI6/04sWLAKytrblcjFa9tdXzL7/8ooOi07Gxsfr6+sbGxupZfXK5XNxoUalSpcqwYcP8/f0L0lkkOTlZ3NuuXbt2MbsgLzIB961bCaAWLaSeB9GBAwdEsRdxvzojI+O9LZh9fHxCQkJUS81cPHr0SDTk7d27dz6u6ljuYmPXhYfj6lXtFk0WDXmqVq0q+f2S06dPA2jSpInqSJs2bQAc0nHtN12Jj4+3srJycXEJDw/X/ehJSUlTp04Vd+AqVarUp08f8UZhbGw8efJkTaWjpqSk+Pj4iDOXK1cuRyKqQqEICAgQcS5DQ0Nvb29VbP3MmTOqwhRVq1b19/fX3uXRsWPUuLFyaenqSvfv048/ZheQOXGC5s0juZwCA5WxToBcXOh99SeKtgULCKDPPlM+zMoiMzOSyUi3Ww6UNm8mgCRK8cyNv78/gMGDB+tsxJ07CSA7OypCFbzDwsJUYfdSpUp5eXkVJA2k4Int75Kenp6jqaalpaWHh0dwcLDYG9u/f39JPiX/+usvAL169VIdcXNzA/B7IcnpkNTt27d9fX3r1aunuo61tbX18vLSSIW0LVu2mJmZdewY6uJCumkDfO3aNQDVq1fPcVySC2xV9L/Y7JIuQkQkVCaTvXmTLyws7Ouvv87xlyJap4oqoEZGRl5eXgXtXJ2eTgEBZG+vvOixsCAvL8oRU0hLI9U91PR0mjJFmRrv5ESvV5NnBbR+PQHUqpWGT9uxY0cAQUFB4iGvB0sUUb7/559/1tL57969K5PJSpcurYOsqTz6+eefAYwZM0bqiRRnWVlZYouhejuQCxcuiJDj559/nks/SI0Q7xXbt2/PcfzWrVsi/lm1alX14GfFihVdXV19fX3Dw8Pz/taXkpLSqVMncc15p9h93hWZgHtqKpmbk0wm8b7vM2fOiPoMEyZMeOsTEhISQkJCfHx8XF1dxa1OFQMDA1F8Rmy+eLNMbWJiYtOmTQG0bNkyKY+5D+xDyOUp58+XOXfO9PlzLRYnEn0tCsPHz4oVK6BWLVShUJQpUwZAdHS0tBPTksOHD4v+LTKZbNiwYbqsCxwcHFy9enW86qMlVm7379/39PQUBdZLly7t4+NTwMaABw4cEHEQmUzm4eGRozre9evXVSH1Dh06XLnylvKUISEhqvaq9vb2gZouJhIXR15eyhVirVq0e/d7np+eTv7+VL48ASSTkbs75blKQRHj6UkA+fkpH165okx0k4SPDwFUCCuWXb16Vdyv0tmIvXsT8FqNnaLi/Pnz7u7u4oJbhN0/tAmkxhPb3yU6OtrPz0/UZFRp0KDBixcvtDRi7mJiYkxMTPT09O6+Ksy/e/duAHZ2diW8derSpUtVf0GVKlX66quvwsLCNBsqOnPmtigR2aQJaXtD2rlz58StKd33pn4r8f72ZvSf6cbChQtFrrqXl1cur2rROlUEOMQ+RU1eTMrltHUrtW2rDLubmtK4cXT3Lj15Ql26UL161KYNVa9Oy5eTXE4dOpCBAXl7E/dH1bTUVLK0JICuXtXYOV+8eGFkZKSvr6+6ecPrwRJlz549ABo1aqSl8//999/QedvM3Imw1a5du6SeSHH24sWLkSNHGhsb5yjAuHr1ajMzMwDNmzfXasTjl19+ATBu3LhcnqMKvufIfC9fvrwq+J7LBXZ6enrv3r1FsL4gOfKFVpEJuBORu/trAQvdu3nzpij2MmzYsDyuym7duhUQEODl5eXk5KRK8hLU20pER0enpqaKbRR16tThzz/tCQz8X6VK5v/73/+0N0SHDh0A5GhfKYnJkycD+PXXX8XDu3fv6jiYpXtxcXHe3t4iKcnQ0NDT01MjJRdy8fDhw0GDBol/1M2aNTt58mSOJ0RGRrq7u4snVKlSxd/fPx+5dY8ePfLw8BAn+eijj9Rb1hBRcnKyj4+PeIepVKnSmxVI1SkUisDAQDs7O3G2tm3baiR1UaGggABl6NzQkLy9Ke8ZGHFx5O1NpqbKn/X0JC3/pUmgdWsC6OBB5cMNGwigfv2kmYybGwG0bp00o+fOxsYGwHWdNGy5d4/09cnYmJ4908FoWnHhwgVV2N3Y2NjT0/Phw4d5+UHtJbbn4tKlS1OmTLG2tjYwMJgxY4YORnyXYcOGAfjxxx/FQ7lcLjYXhoSESDgryd27d69s2bJiF4L2SoXevk0NGhBANjakjd1od+7c8fX1rV+/vviMs7KykslkqgshCa1btw6Am5ub1BMpudatWye2IY4cOfKtV2L79+9XdaFo2bLlsWPHtDWV8HDy8CB9fQIoLIy6diVvbxLvw1FRVKECHT9Ot2/TG5eUTFPGjCGANLgc3Lp1KwBnZ2fVEV4PligZGRnlypUD8NaEp9x/MO5tcsSaRJhI1fZWcqIDubm5eeHJuC+uxo0bB0BfX3/GjBnql+vnz58Xdf+srKy01w8pKCgIQJkyZcaMGbN69er3Fu+9cuXKkiVLhg4dKgpqqVhbWy9fvvzN52dlZQ0ePFhE57VakUlCRSngvm4dAdShgzSjP3v2rE6dOgC6dOmSo8ZfHiUlJR05cmTWrFkDBgwQTczViczcqlWrai/LjNGrhmlVq1bVUj2NFy9eiGqwOu5O+VZzRo2qU66cahPQzp07Abi4uEg7Kx0QZTdVqeXe3t7aSKXMzMz08/MTO8TLlCnj5+eXy4tq//79ovQegPr16+c9tVyMIjbWlCpVytfXN8cqMTg4WISKRHJ9TExMXk6bnp7u7++v6izv6up648aNPE7pTdevU5cuyoStDh3oAy81le7do08+UWbHt2x56tdff81LGa4iQS5XlrNX7Un43/8IoB9+kGY+dnYE0OuV/wsLcXdq2bJlOhhr+nQCCmMt+w8VERGhCrsbGRl5enrmckGsntjerVu3ezrfNhgQECCCWToeV92hQ4cA2NjYqN5ORQqPLssZFU66qbUSF0cdOxJApUpRnjtQvse9e/dmzZql2sIlUqUmTJgwceJEkdc8atQo3TccUzd16lQAv/zyi4RzYPv37xeXbf369VOPE127dk2VG2Fra5t74oLGXL1Kv/5K8fFkbEzqFzzTp9M332h99JLt6FECqEoV0tRy8PPPPwcwc+ZM8ZDXgyWQ6JGb401+zJgxyBf1bYvPnz8XpbQTExN1/mu93ezZswEMHTpU6okUfwqFwtfXV4Q1evfuHRcXp/pWYmKiKIook8m8vb01u00zKytr1qxZJiYmOV6Z6u1Scz+DyDz29PSsWbMmgM2bN+d4glwuFxkwlpaWZ4tvbdmiFHB/8YJMTEhPj3TftDYxMVFcxLdo0UK9aUBBPHr0KDg4WBSfsbS0NDU1NTU1PXz4sEZOzt5FoVCI3F4tNa3asmULgHbt2mnj5B+sShUCFK+adh5btOjThg1/mjpV2knpzJUrV1TLp/Lly+ev29W7HDlCvXuPFCcfOnRoXmooi9Ty2rVri59q3br10aNHc/8RuVzesmVL8fxBgwblyF19b3L9e718+dLX11dE88WGgA8tBi2S67t0+R6gSpUoIIAKuESNiKCePal5887a+FuTyo0bBFDVqtlHRCWTV3U+derFC5LJyNi4kG5SnzdvHgAPDw9tD5SeThUrKpMLi4dLly55eHiIK3IjIyMPD483OzZLktieQ0pKisgCO3funO5HV2nQoAHUqlI+fvzY0NDQyMjoWdHd71CkpKeThwcBpK9PBWmTHBsbGxAQ4OLiomqhpGoVoAqvb926Vey87tKlS0ErcReAi4sLgB2ausPA8uvUqVOi5mfHjh0TExNjYmK8vLwMDAzwqvqfrhM2z5/PWWBuxQrq31+ncyh5FAqqVYsA0tRyUESUVE2keD1YAonydOq18ulVFD4XhoaGZd9GPeAuCr717t1b57/TO4l20xqvTcre5eDBgyJPrlq1aqdPn1YdzyUcXxC3b98We3QAjBgx4tSpU/7+/u7u7uICPn/B9xwVsxUKhaenp1iSqP9GxU9RCrjTqyDF0qU6HTQ9Pb1r164AateuraWVWGZmprgQX7x4sTbOz9T9+OOPAEaNGqV+MDU1NTw8PCQkZPfu3YGBgQEBAf7+/n/++edvv/3m7e09ceJET0/PYcOGubu7d+3atWPHjg4ODvb29nZ2dt999536ecQbR2HYvExxccr8MdXdTrG6fdt2nmLs0KFDImYtk8l69Tq9ZUtBTxgbqyxTXqfOxXr16n/oHq6MjAx/f39RnAqAi4vLxYsXc3m+j4+PnZ3d7teroWdkZOQ9uf69Hj586OnpKVabpUqV8vb2zmMCxbZt26pVqwbA2NjY2/upBuMYYWFhzs7O4n9RvXr1AgMDJW85VRCbNhFAaj0aycmJANJJ3ZScwsIIoGbNJBg6LyIiIgDY2tpqeyDRM+31ZVFxEBkZmSPsHhUVRYUgsV2dl5cXgPHjx0s4hz///BOAq6ur6ki/fv0AvNlTkWmJQkE+PiSTEUBeXh/WuDg+ngICyNWVOnf2Fa9qExMTV1fXgICAt26NOn36tPjYbdiwoap2v46Je115LPrEtOrixYuifFm1atVUOQfjx4/P0RpHR+7coXLlXjvy9980erQEMylhRD+bTz7RwKmePXtWtWrVChUqqDJMeT1YAqmqylxVaw6gkZ1VPXv2BPDWihySePr0qci4l6oZT8l0//79Vq1aiQueHFuB3xWOzweFQuHv7y+CDJUqVcrRLjUrKysyMlIE33O0q6xUqZK7u7ufn19e2qUqFIovv/wSgJmZ2ZEjRwoy4cKviAXc//mHAOrRQ3cjyuVykSRbuXJlrfbMXblyJYCuXbtqbwgm3Lx5UyaTlSpVSn2zQlRUVO73n99l7Nix6icXnTMLxaaYI0cIoFatso80bUpACawIKVLL+/f/RtQ8aduW8le0XKGgZcuoXDkCyMSEfv6ZUlPzuXUrKSnJ19fXwsICgIGBgaen57saHqalpeVotXr06NFGjRqJl5+rq+t7i6nl0dWrV1VVKaytrX19fXPpe17w5Pq8CA4OFoW8ALRq1arobgD68UcCaPr01w7Gx39YgElTFi0igF6/4ViIKBQKcQGn7Sb17dsTQEuWaHUQyVy+fHno0KGikoaRkVG3bt3E/1ULC4tly5ZJfvvqypUr4mahhP3hY2JijI2N1Vunil32tWrVkvz/T4myciUZGRFAbm703ipiSUm0fj3160fGxsoiZjVr3unTp8+6deve+1q6c+eO2NZgY2Nz5swZjf0Cbzh37tzUqVM7dOig/kK6d+8egAoVKmhvXPZB7ty5U61aNRF2d3FxuXTpkmRTycqiKlXo1KnsI926kU7qqpVwt2+TTEalSpGG9q7To0ePVH/m9WDJNGrUKKhVFtKIFy9emJiY6OvrF54deEuWLAHQp08fqSdS4qSlpYmcFQAeHh7qIYJcwvF5d/fu3c6dO4vzu7u7v7dQrWiX6u7uLlIKVCpWrJh78N3b2xuAsbHxnj178jfVIqSIBdxjYsjAgAwNSUO7Jd5PvKbLlClz/vx5rQ4UHx9vZGRkaGioam7OtEdsg1q1apXqSHR0tIODQ+fOnbt37+7u7u7h4eHp6Tl58uRvv/3W19f3r7/+8vf3X716dWBg4N69ew8ePBgeHh4ZGXnr1i317cmXL18W9/cKxXJ94UICsnNksrLI1JRkMiqp96IzMsjfn2xslKt0FxeKiPiAH4+IoLZtlT/bqROp5S7k3/Pnz729vUWzUzMzM29v79x3u8fGxnp5eYkgWu3atbXRIOXEiROiLQ+A6tWrv1nG9IMq1xec2BBQqVIlMSUXF5eID/prKxz69yeA1q+Xeh5ERDRuHAE0Z47U83i3vn37AggICNDeEFeukExG5uZUaIphasWtW7fE5hXxL0jyxHZ1bdu2BbBixQoJ5zBkyBB9ff01a9aIh3K5XIRItFRxjr3L/v1kaUk2NjR+PHXpQqoqYh07krgbkpZGwcHk4UHm5spPYT09cnIiPz+Kjv6AgeLi4jp16gSgVKlSwcHBmv0trl696uPjU69ePdWC85RaCFU0VOzevbtmB2UFMWXKFAAjR46UeiJE69ZR9eoUEEB799KYMdSsWSEt+lbsODuTvb3mW9rwerDEEnfuP/roIw2eUzTc7iBVG8O36d69u+SXcCXZqlWrRKG85s2b3759W3U8l3B8XgQGBoqmkhUqVHiz3vp7ieC7h4dH1apV1YPvFSpUcHV19fX1VQXff/jhB5EPVEKK7BWxgDsR+fnR/v2km6K+Pj4+4jbRe0sta4QoXLNy5UodjFXC+fv7Qwv7Cf766y8An2hkd2LBffnla3G1q1dFMpikc5JeUhL5+pKFhXLF7u5O782jTU4mHx9lCp6NDWk8DHj9+nVVarmVldVbU8sVCkVAQIC4e2xiYqLtGqMhISGNGzcWH5MtWrQ4ePCgOK6l5Pr3evnypY+Pj4jyGxgYTJkyRTfjasq1a7RmDallPklJ3Dfav1/qebybaMQ0Wpsb6idMIIC+/FJ7IxQiN27cOHLkyIEDBwrFyv+Vf//9F0CbNm0knENUVFSONvXiqm/IkCFSTanEioyks2dp7FiqUCH7sqVWLdq9mz77jMqWVcbZZTJq25bmzct/M6f09PSRI0cC0NfXX7EiX5vdXnf3Ls2Zs+jNZq3Hjh1T/xcnihl+++23BR+RaYqoraybHt3vd/w4/fgjjR9P/v4k3dafYmzXLlLvG7JxI924QQsX0qsrXEpL01guAq8HS6yMjAwRshw8eLDn60aNGuWeKzc3N5e3EfXQZs2aJfUvp5SQkGBkZKSvry9NDS5GRETnz58XXQmtrKxyZOC9KxyfiydPnohsJwCDBg2K/qBchjcoFIrLly8vWrTo448/VuXMCeXLl2/atKlYzm8peJ3fIqJQB9xlMkpPV/75yROysqILFwgg1d/OnDk0caK2RhcxWX19/U2bNmlrjNctXrwYQN++fXUzXEmWkJBgamqqp6eXY7FdQOKWybp16zR4zvwTFRP27VM+DAoigHjzFxERPX9O3t7KPelmZuTtTfHxFBFBc+aQKl17xw6KjKTgYKpWTRmd9/TUYj7sqVOnOnbsKD6NqlWr5u/vryoEGRERIbJBAXTq1OmqRrLr3yczM9Pf31/sthap5f379xd3BerWrRsSEqKDOeQgNgQYGxsXnovO3P30E1lYZMfZO3SgQ4eknA8RyeUKEboq2KWUdp0+fRpAnTp1tHT+5GRl/C7X7glMu1JSUsSiVNvbBz/IpUuXDA0NC0XGa4k0diz9/jtVqULiZm6tWrR6tTLUbm9PPj4UFaWZgfz8/D76aIKx8QfXjleJjaWAAHJxIZmM2rUbjbc1a1XXp08fABs3bizo1JnmdOnSBcDevXulngjThU8/pUWLsh/26EFbt5KDA5UvTyJsmJBA5uaaGYvXgyXZ33//reo2qSmlS5fu3LmzRsrBF9yaNWsAdO7cWeqJlHSJiYlubm4AZDKZt7e3XO1qJpdw/JsCAwNF2UlLS0t/f3+Nz/PWrVsBAQGenp5iF6mxsXHp0qULT0MCHTDQ7NuBZhGBKPvPCgUA2Nhg6lS4uMDcXItDBwcHjx8/HoCfn5+qz5i2ubm5TZgwYe/evS9fvjTX6q9X4pUpU6ZPnz6BgYFr16799ttv3/qchISEzMzMly9fpqampqWlvXjxIjMzMzExMT09PSUlJTk5OSMjQ/05ycnJhw4d0tPTE/1vpXf5MgC8ykdGZORrD0s2a2v4+mLMGHz3HYKC8McfWL4cEyZgxgwYGWH8eADYuBFVquCPPwCgZUssWQK1DDbNa9my5aFDh/bv3z9lypSIiIjPP/98/vz5P//888WLF3///feMjAwbGxtfX1+RmqcDorJ87969582bt2TJkv3795cqVcrQ0NDNzc3Dw0OSF7moLD969OgcW9UKs/LlMWUK1q2Teh6v3Lt3Ny3N0dl5RPnyc6Weyzs1a9bMwsIiKirq8ePHlStXFgfv3bsXHR1tbW1tbW1dwM/HtWsRHw9nZ7zaxcEkYGpqOnz48AULFqxYsWLevHlSTwcA5HL5lClTMjMzFeJyk0mhYkV88w28vLBlCwC0bInff0f//qhfX5OjfP3111ZW8tGjMW8eHj7EmjUwNc3TDyYkYOtWrF+PgwchlwOAmRmaNfOaPLlPjx49jI2NczxfoVAcP348KCjoyJEjRkZGIrGLFRL3798HIHq/sxKrWzdMm4YVK975hPh4ZGYiKQkpKUhPR2IiiI7HxT0S68GkpKTMzMz4+PisrCxeDzIAEydOdHBwuHr1ao7jRkZGpUqVyuUH9fX1RXOvHB4/fjx16tSDBw+OGjVq9erVorKohESFNBHqZRKysLDYvHnzrFmzvvvuuz/++CMyMnL16tUil6Vp06Znzpzx8PDYvXt37969N2/e3K9fvzfPEB0d/cUXX2zZsgVAjx49li9fXqVKFY3P087Ozs7OTkQwoqKi+vfvf+XKlRwNV4s5qSP+uQFIVVnh8WMqW5YuXCAHB5oyhSZNItJahvvhw4dNTEwAzJgxQ/Nnz5WzszM4BUYnRJE1CwsLFxeXli1bNmvWzM7OrkqVKmXLljU0NMzfv6Y6deoUlnJmjx4RQOXKZR8ZNIgAelWslqmcOUOdO1PNmuTvT/36UdWqJNqXjhhBq1bRwIG0aJFOm1tmZWUtX75cxJT19fXFf7/++utEKapNT58+HcB33303b968HTt27Nq1C0DDhg11P5Oi6KefyMeHmjRR5hUVhgx31UWVxPN4nx49egBYr1b2XhRkEAwNDStVqtSwYcP27dt/9dXmMWNo+nSaPZv+/ZeCgyksjK5do/j4d57cwYEAWrtWB78Hy01ERAQAS0vL5OR39mfWJfF2Z2Vlpe2Gvexdxo6lFSsoM5MaN6Y9e6hWLY2ltL/VsWNkbU0AtWxJT5++//nbtmU3azUyor59ad26txf/EHF2Ly8v9c3UR44cKVRlnUo4hUJhamoKQMLWzUyXPv2UJk6kgweVXy1bKjPcT52iunXpyBFlhvvGjWRnR5UrU9myZGCg/Pee46tBA4fc14N169bl9SDToDNnzohck/Hjx0s7k5SUlFKlSslkMs0WCWAFcfDgwQoVKgCoVq3a6dOnVccVCoWvr6+9vf2LtzVsCAoKKl++vIiGaSOx/V1mzpwJwNPTU2cjSq5QZ7gD6NQJMhkAZGZmH/zhBzRqBA8P5cNTp2BigoYNYaCJ3yYyMtLNzS0tLW3cuHHff/+9Bs74Idzc3I4dO7Z169bBgwfreOiSpnv37j4+PvPnz9+/f/9bn1CmTBlDQ0MLCwsTExNTU1Nzc3MDAwMRji9durSZmZmxsXGO51SsWFHVcFJiIn9BPYGTMxrewdERBw7g2TPs2oWKFfHVV5g0CRs2KL+7aZOu56Ovrz969Ohhw4bNnTs3MTHx1q1b06dPb6bV7Pp3E/l6+vr6X331FYCoqCgA6enpkkymKNLXx7x5GDsWFy9KPRUAwMWLFwF89NFHUk/kPdq3b//ff/+FhoYOGTJEHKlQoYKjo2NMTExsbOzLly+fPn369OlTAMCko0ffcgZXV+zY8Zbjp07h7FlYW2PAAK3NnuVNkyZNRo7cfvx496Ag408+kXgy27dv9/X11dfXX79+fY0aNSSeTclmYICFCzFuHLKytDuQkxNOnECvXjh9Gm3aYNcuNGiQ2/NbtoRCAScnuLtj2DCUL/+W51y+fDkoKGjt2rU3b94UR6pXr96vX79Ro0ZJ9TnO3io6Ojo1NdXa2jr3nFNWnJw5g6Qk5Z8fP1b+wcgI8+bhiy9w5AgApKXh9u3XfsrSEoaGMDeHqSlMTGBuDlvb9o0a2YmE5VKlShkZGfF6kGmVo6Pj9u3be/bsuXDhQltbW29vb6lmsnfv3uTk5JYtW9ra2ko1B5ZDp06dwsPD3d3dT5061b59+/nz548ZMwavSs1MnDgxx/a7hIQEb2/vpUuXAnBxcfnnn390udOrV69e33///e7du4lI1Kot9gp7wD0wEEZGABAdDdUnl4UF/vgD48dj0CAAmDYNR4+iVCk0bQoHBzg4wNkZdnb5Ge7Bgwe9evWKj4/v37//ggULNPRLfIABAwZMmTJl586daWlpIsueaYmBgcFPP/0kthSYm5sbGhpaWlqqB9OlnmDB5LicSk/HzZswMNDwruxipGJF5R8mTkTTpti3T9LZAKampu8qdqRL4h+CKsKe4yHLiw4d0Lo1Zs+Weh4AXgXcmzRpIvVE3kOsVI+I5S8AYPz48aLOG4CMjIzYV5KSqg0fjpgYxMZmf8XFoXr1t5958WIAGD0a/AFbGHTo0HfVKixbBmkD7jdu3BDd7WbNmiVq7zJptWuHFi0QEKD1gWrXxvHj6N8fYWFwcsKWLXjVS+UtbGzw7BnKln3Lt6Ki0tavn7VhwwZVGQFbW9vBgwcPGTLE0dFRK1NnBcP1ZEqg4cPxxRfKP/fsmX28e3fY22PRIgDo2xe3bsHYGGZmKFVKGYV4wxxtT1VjeD1YXHTq1GnDhg2DBg2aPn26tbX16NGjJZkG15MpnGxtbY8cOTJt2rR58+aNHTv26NGj/v7+YhdXjqDWf//9N2bMmEePHpmamvr4+EydOlXHRYqaNm1apUqVhw8fXrp0qfAvSDWisAfcy5eHeJGIUokqQ4fin38QFITWrdGgAZ48QVQUwsIQFqZ8QtWqaNkSbdqgZUs4OCAv6QsxMTFdu3Z98OBBx44dN2zYIIo56FiNGjWaN29+9uzZkJAQ0WGJaVVhqa+ncaamsLeHqlro1avIykKDBijqNxK0z8gICxdiwgSUjI+A9+CAu0b8+SccHVG6tNTzAEQRj8J/fdOiRQszM7MrV65ER0eLbZLqjIyMbGxsVB19P8i4cZDLMXasJmbJCmzIEEyejLAwREZKlm+XlJTk5uaWmJg4YMCASZMmSTMJBgBwcEDNmso/z5qF1FRdvG1aW2P/fowahY0b0b07li/P3kH7phzR9ocPsXkzgoJw/Lhx1aorHzy4U65cud69e7u7u/fq1UuSdQTLIw64M3V//40WLQDA0hKWlhJPRpN4PViMiHzQL7744vPPPy9btuwAnW/VzMrK2r17NzjgXigZGxvPnTvX0dFx3Lhxq1evvnz58qZNm2qqLqqAFy9eTJ06ddmyZUTUpk2blStX1q1bV/fzlMlkPXr0+Oeff3bv3l34F6QaIXHXhYJYvBjnzwPAkiW4cQOJiQgNha8vXF1hbY2HD7FlC6ZORYcO6NHjXsOGDUeOHDl37tyzZ8++tR1WSkpK3759r1+/3rhx461bt0qY4CzewsT9Q8by6YsvcPkyxoyBKjbapw84cS9vOnVC06bYuVPqeRQCHHDXiIoV4e2Na9eQmgoXF6jlbetUcnLynTt3jI2N69WrJ80M8szIyKhVq1ZEtGnTpsTExAKe7csvUb06kpMBoHVrnDmDjAwNTJIVnJkZhg4FgOXLpZkAEX322WdXrlypX7/+ypUrS8jm1kLL2Bjlyin/XKECnJyQlqaLcU1MsHYtvv4aGRn45BP89htu384uaJOUhOjo157//DkWLUL79qheHRMnIiwMFhay4cNn/ffff8+ePVu1alWfPn042l7IccCdqataFd98I/UktIHXg8XLuHHjfvzxR7lcPmLEiKNvraioTYcPH46JibG3ty/864gSy8PDIywszM7O7ty5cy1atNi7d684vn///saNGy9dutTY2NjX1zc0NFSSaLvQs2dPAHv27JFqAjpWqDPcv/gCquvVUqUwejSsrKC6o1anDhYuhLm58qGFBZyd4ewMb28Q4fp1nD6NU6dw6hQMDE5fuXLlypUrq1evBmBubt6kSRMHBwdnZ+f27dtXrFgxMzNz4MCBJ06csLOz27dvn6Wkt7bd3d2///774ODgrKwsA42UpWcl0PPn8PTEpUswNoaBAWbORHCw1HMqSubMwe7dUk+iEOCAe0E4O0MVvvviC8TG4sABHDiAY8ewbFluSZQFl5CQsHnz5t69e6u37Lt48aJCobC3t893X2hd6tSpU1RUlKgkY2BgYGVlVa5cOSs15cuXt7KyqlRpoLl5GSsriK93fWbKZJg5E7//rtvfgeXBuHFYvBgBAfjtN5iZ6Xp0X1/foKAgc3PzrVu3mqsuKJlEtmxBqVLZ28tWrYKDA3RTUV9fH35+sLfHhAmwtEStWvj1V/zvfwCwbRv++w9r1iAxEdu3IygIe/cqO0uZmMDFBe7uGDgQpUoN0sVEmYY8ePAAAJchLjnmzIH6tc+aNShVCi1aZDdjmDQJ7u6STE2beD1Y7Pz888/R0dFLliwZNeqz4OBrjRrpLlgk8kF1n1nPPkjTpk3Pnz8/atSorVu39uzZ85tvvtHX1589e7ZCoWjZsmVAQEB9qStKde3a1cjI6Pjx4wkJCdLGXXVEyo6tupKSkhIaGvrXX3+5u7u/mctgZ2dXu3ZtAOXLl//ll1927dol9XypQYMGAPbv3y/1RFiR5eJC33xDcjkR0enTZG1Nd+9KPafC7v59un49++Hly/TwoXSzKRzETcrhw4eLh3K5HIBMJpN2VkVXVhZ5exNAAHl5Kf+BalBaWlpwcLCHh4eZmRmAOXPmqH938eLFAESt6iJh7dq1tWrVsrCwyOUapl69FPH/U3yVKUO1alGrVtSzJ40YQV9/TUuX0hdf0OzZVK0aRUYSEdWrR1euSP27MTUtWhBAq1fretz9+/fr6+vLZLItW7boemz2Nn36UGBg9kMHBzp2TNdzuH2bHj2i8uWpZk26dYuIaPVqGj6chg0jExPl+4yREbm60po19PKlrqfHNGXgwIEANm7cKPVEGNMmXg8WR1lZWZ9+Or5WrcuVK9OdO9oaJSEhQf2hQqGoWrUqgLNnz2prSKY5crn8p59+0tPTE3s3jYyMfv3118zMTKnnpdSpU6eS8xFcIhKoTU1NnZ2dRXtMAE+fPj1z5szZs2fPnj0bFhZ2+/bt2rVr169f/+OPP/7xxx+7d+/eq1cvaSc8cODAmTNnbtmypUuXLtLOhBVJT5/i5EkEB0M0wWjRAu7uCAjAjz9KPbNCbc0aPH+OOa86IS1ZAltbTJ0q6ZykliOlXU9Pz9DQMDMzMzMzs0hkSRc2+vrw9UWtWhg/HvPm4fFjBARoIKuXiI4dO7ZmzZqgoKD4+HgA+vr6Li4uOXYLFpWOqSrDhg0bNmwYgKysrNg3xMTExMbGZmTIypfPbpeamIjERNy6lX2STp1Qvz7MzfHrrxg3DjrfgMveb+xYnDmDZcswYoTuBr1///6QIUPkcrmPjw9XIy08Tp/O3tuakCDBBGrWxOPHMDXFd9/hyy/x33/K45mZyMiAkxPc3TF0KN5oLcGKGC4pw4o/Xg8WU/r6+kuWLOjTB/v2oWtXHDuGihU1cNqXL19GRESEhYUdO3bs1KlTrVq12rFjh+q7p06devjwYfXq1Zs1a6aBwZiW6enp+fj4tGrV6uzZs1euXPH29i5UC8CePXseOnRoz549gwcPlnouWlciAu45VKpUqU+fPn369Nm8efOjR4/GjRvXo0cPJyenhISEX3/99eDBg/Hx8WVz9EXSLTc3NxFwnz9/vo4bB7Pi4PZtVKsGU9PsIw0a4MwZ6SbEiqo3a8gYGxtnZmamp6dzwD3fxo5FjRoYPBibNuHBA2zbBrW6Lx/m6tWrGzduXLNmza1XMWZ7e3t3d/dRo0bVeKMQQ5ELuKsYGBhUrFixYh7WEwkJiInJjr/HxqJSJWWQfcQIrFiB1au1Plv2oYYOxZQpOHoUV67A3l4XI6alpQ0cODAmJqZbt24//PCDLoZkeRMVBdVlr+i7IJVPP8XSpQgKUj787TfMnYt8tWpmhREH3Fnxx+vB4svICJs2oVMnnD0LV1ccPIh8VMWTy3HlCiIiHh069OPJkyevXbum3unw3r176k8W9WTc3Ny4200R0qNHjx49ekg9i7fo1avXtGnTrp84AYUCxT3aWRID7ippaWnnz5+3tLT87bffAFhZWXXo0OHAgQM7d+700Gp53fdp3ry5nZ3d7du3T5482bZtWwlnwookc/Oc69SkJORaloGxtzIxMcEbAfekpKT09PTSpUtLN68ir2tXnD6N3r1x6hQcHbFjBz4oX+Tx48dBQUFBQUFhYWHiSNWqVQcMGDBq1Ki3Jp7cvHlz3bp158+fR9EMuOedpSUsLVG79msHVVntCxagd2/I5bqfF8tN6dIYMgRLl+Kff/DXX7oY8csvvwwPD69Ro8a6deu4uWWhMnx4dhnlAweknImeHhYtwoABykruOd5VWJGWnp4eHR1tZGRUKd+3uxkr/Hg9WKyZm2PPHrRrh/Bw9OuHPXtgbPz+n0pMxJkzOHYMZ8/i+HHExaF69Qr37q0AYGho2KxZMycnJwcHBwcHh4YNG6r/4LZt2wDwjkCmEQ0bNoxxcbE6dAjnzsHRUerpaFcxv5+QO1dXVyMjo6NHjz5//lwcEV0gtmzZIum8AKB///4oHDNhRU+tWoiLQ1RU9pGDB4v9e5lG/Psv6tRRfq1aJfVsCgFjY2Mjff0yaneeu9SsOaJBA0VamoSzKh7q1MGJE2jfHo8eoX17qO3afKfU1NSgoKA+ffpUr1594sSJYWFhlpaWHh4eISEh9+/fnzt3bo5oe3x8/NKlS52dnevWrevj45OSknLw4MEKJbgUgr093N3x4IHU82BvGDsWAAIC8K63lvR0HDmCJ080MNaCBQv+/fdfU1PTLVu2WFlZaeCMrJhycICrK+bOlXoeTNPu379PRFWrVuVtxKw44/VgcVe+PPbsgY0NDh3CkCHvSSi5fRu1a8PSEl274uefsXMn4uJQsyacnAznz1988uTJpKSk8PDwuXPnjhw5Mke0/dKlSzdu3LC2tnZyctLur8RKDKs6dSCXY/duqSeidSX6OqNMmTJdunSRy+XBrxp2DxgwQE9Pb+/evcnSbmR9FfrfvHkzEUk7E1b0mJlh+nQMGoTdu3HmDCZORHQ0hg+XelpFwKefIipK+TVypNSzKQQ6GBuny+WBapV0N8bGrr56tXxGhnSTKj6srLB3L4YNQ1ISfv/9yfz589/1zPDw8CFDhlhZWQ0ePHjnzp0GBgYDBw7cunXr06dPV61a5eLior7BMy0tbceOHYMHD65YseLnn38eFhZmYmLi7u4eHBzcrl07nfxmhYuzMxo0UP75xx/x5ZewtJRyPuxNjo4YNQq+vnjXTuUbN9CxIypXhoUFmjfHxx/j++8REIATJxQxMTF5H+jEiROTJ08GsGTJEq5Dyt7r99+lKSXPtIrrybASgdeDJUDNmti3D2XLYts2fPVVbs+0tcXjxyhVCk5O8PJCYCCePsXt21i7FhMmjGvVqpWRkdGbP/Xo0aPNmzePGzcOgJubG28KZBrTsycA7Nkj9Ty0rkSXlAEwYMCAPXv2bNmyZfTo0QAqVarUunXr48eP79mzZ9CgQRJOrE2bNjY2Nnfv3r1w4QKvCdkHmz4dDRti504kJKBZMxw5Aq64zfJB7E5UKynzliOsAExMsGYNmjR5MWNG0xMnoq9fv+7n52dgkPOj+fHjxxs3btTT03NycnJ3dx8+fLi1tXWO5ygUiuPHj69evXr9+vUvX77Eq9apHh4eAwYMKMklgIYNy/5z6dJYuFC6qbB3e/oU168r32BiY9Gjx2uVZjMy0KYNoqIQE4Pz53H+vPK4re29Bw/sLC0ta9WqZaemcePGbxb9f/bsmbu7e0ZGxuTJk0fyPdXCZ9MmqL/5hYVJc+ViYYFvv83+8/r1ePFCgmkw7eGAOyspeD1YAjRqhF274OKCxYthY4N3NaYxNMTFi6hZE7nHzDMzMy9evHjs2LGzZ8+Kfpvi+BdffPHZZ59peu6sBOvcGSYmOH0a0dHFuxN9SQ+49+/f/4svvggJCUlISLC0tATg5uZ2/PjxrVu3Shtw19PT69+//+LFi7du3coBd5Yfffuib1+pJ8GKOA64a59MBm9vCzu7BZ988snChQtv3LgRFBRUpkwZ9ef07Nlz9uzZgwcPtrW1ffMMly9fXr169apVq568qrjh4ODg4eExZMiQvDQaZawwePgQ585h0CC0agW5HK8364KDA44fB4D4eOUmpBs3EBWFrKynL19aJiQkiJWh6vlWVlY5Mt8zMzMHDx786NEjJyen33//XRe/EvtAObLr8lKOVhtKl8YXX2Q/7NBBmmkw7eGAOytBeD1YArRpg7VrMWgQZs7EsGGoVevtT3tXM5Lbt1NPnNhy8uTJU6dOXbhwITMzU/WtsmXLtmrVqlWrVoMHD7bXTV97VkKUKoUOHbB3L/btw4gRUs9Gi0p6wN3a2trZ2fnw4cO7d+8eNmwYgEGDBk2bNm3Hjh1paWmiYaBU3NzcFi9evHnz5l9++UXCaTBWQnTtipSU7IcDB6IE5wS/wgF3XXF3d7e1te3fv39ISIiTk9POnTtr1Kih+q6hoaGog6HuwYMHW7ZsWbly5YULF8SR6tWrDxkyZPTo0XXq1NHVxBnTmO+/x7hxryW2v6lsWbRsiZYtVQfaAPHPnz+/ceNGlJo3t4B88803R48etbGxCQoKMuQUP8ZKsAcPHgB46w1sxhgrivr3x7JlqFIFK1ciLQ1//qk87uqKTZuQI6aVlIQLF3D2LMLCcOQIUlNNUlI+k8szAOjr69vb2zs4ODg7Ozs5OTVo0IB7XTBt6dkTe/dizx4OuBdzbm5uhw8f3rp1qwi416hRo2nTpufPnz9w4EDv3r0lnFinTp2sra2vXLly7dq1+vXrSzgTxkqCHG2EOKkN4IC7TrVu3To8PLxPnz4XLlxwdHTcunXrW0uuJyQkBAcHr169+sCBA6LJR7ly5QYNGuTh4eHk5CR7Vw1sxgq9rl1x6BDmz1fWmL16FQcPKrtYV6uW2ybo8uXLly9fPpdeXmvXrl2wYIGhoWFQUJCNjY0W5s4YKzI4w50xVvx8+ikAzJ+Po0fRpQt69ACAQ4cgl0OhwNWrOHUKJ07g5Elcvfpah9WKFWUDB3rXq2fWunVrR0fHklyFkulUnz6YOBH//Qe5/D2ljooyDrhj4MCBEydO3L17d0pKipmZGQA3N7fz58+f3LNH2oC7gYGBq6vrypUrt2zZ8r///U/CmTDGSigOuOtW1apVjx49OmzYsJ07d3bt2nX58uUjXt3zT09P37dv3+rVq7dv356RkQHA1NTU1dXVw8OjR48enLHLigc/P7Rqhc6dAeDgQUyYoDxuaAhbW9jZwc4O9vZo2BB2dqhRA3nJu4qIiPD09ASwcOHCXILyjLESggPujLFibNo0eHkhIgKmpgCwdSvGj3+tGYmRERwd0bo1WrVCmzaoUQMAF1RgOmdnhzp1EBWFU6fQtq3Us9EWDrijSpUqLVq0OH369L59+/r37w9g7KBBU9atM924EX5+eKN5nS65ubmtXLly69atHHBnjEmAA+46Z25uvm3btkmTJs2fP3/kyJGXLl1ydXXdtGnT2rVrY2NjAejr6zs5OY0cOXLo0KHm5uZSz5cxTapWDV9/je+/BwB7e3h6IioKN2/iwQPcvo3bt197spkZ2rTpY2lpXKdOnTp16tStW7dOnTo5+hbEx8cPGDAgJSVl5MiRY8eO1eGvwhgrpLikDGOsGHNwwN27+PVXzJwJADY2ePECNjZwcICzM5yc4OCgjMUzJrFevTB3Lvbs4YB7MTdw4MC6L1/anjyJ/v0BVGrQAABiYhAaik6dJJxYt27dqlev3qhRo8zMTE5gZIzpGgfcpaCvrz9v3rzatWt/8803s2fPnjVrljjesmXL4cOHf/zxx9wKlRVj33yDVasAoFOn7EuwjAw8fIjbt3H5Mq5cUQbfHz7MPHp0r3p3LwAWFhZ11Cxfvvz27dvNmjVbsmSJzn8Vxlih8/z585SUlHLlyvEda8ZYceXri8aNMXIkADg44PFjcDk9Vhj17Im5c7F7N2bMkHoq2sIBdwCY6uYm8/bGkyf45RcYGQGAmxt+/x1btkgbcDcxMblz5w7X5GWMScPICDIZMjJABPFGxAF3XfHy8qpVq1ZUVNTSpUvd3d2HDx9et25dqSfFmLa0bo1SpQDAyAiLF2P+/Ne+a2SkrCfj4pJ98MULvaioE6JLqqppalxc3NmzZ8+ePSueU6VKlQoVKmzfvt2Us7kYY1xPhjFWAlhZ4ZdfMGUKABgawtJS4vkw9nYdO6JpU3ToAIUiT2UiiyCZaLnG0KQJLl3Cf/+he3cACA9HixaoUgUPHoDj3YyxEsvYGBkZSE9X3oz89FOsXIl//8WoURJPjDHG3hAbG6segndzc2vSpEkDsXORMVbibd26dcCAAX379t2+fbvUc2GMMQ3r0wfjx6NHDygUcHLCqVN4+VKZ0MBYYRQRga1b8egR6tTB8OGoUgX372PDBkybpnxCZCSOHcO4cZLOMv+K522E/BgwAAC2bFE+dHREzZp49AinTkk4KcYYk1iOlHZzc5QtC75TyxgrlKysrFq3bu3h4TFjxowNGzZ8/PHHHG1njKlwhjtjrBirXRtlygCAnh4WLULz5sU1b5gVCyEh6NEDlSph+HCkpKBFCzx+jGfPsGZN9nNu3cK2bZLNsMA4w/2Vixfx0UeoUAGPH0NfHwAmTYKfH6ZOxav6uYwxVuI8eIDSpaFQ4NIllC6Nhg25zw5jjDHGiqKXL1/evHnT3Ny8du3aUs+FMcYYK8FatsQ332DIEOXDKVOQkQEPD4wejYsXlQe3b8fixfjvP6nmWEB8w+uVJk1Qty6ioxEWpjwict43bZJwUowxJjFbWyxfjqZNsXYtZs1CrVo4elTqOTHGGGOMfTBzc/NmzZpxtJ0xxhiTksjn69o1+0i3bjhzBgASE7F+vfIrNFSqCWoEN01V078/Zs3Cli1o3x4AnJxgY4M7dxARgY8+knpyjDEmhStXMHs2Ll5ExYoAsGsXPvsMV64oS7ozxhhjjDHGGGOM5ZHoEmdmln2kdGm8eAEAaWm4elV58OFDCeamOZzhrkaktG/erCxPrKeHvn0BtcLujDFW0uzYgQEDlNF2AL17QybDpUuSzokxxhhjjDHGGGNFkIkJKlfGjRvZR65dg9h/VrEifvlF+TV0qFQT1AgOuKtp2RK2tnj4EOHhyiM5OqkyxlhJ8/AhKld+7UiVKnjwQKLZMMYYY4wxxhhjrCgbMgQ//oi0NACIjsZff8HTU+o5aRgH3NXIZOjfH1CLsHfqhE6dMHQo5HLppsUYY9KxscHz568diY7OGYJnjDHGGGOMMcYYy4uZM2FtDXt7tGmDVq0wYgR695Z6ThomI1E+hQmHD6NTJ9Svn10ziDHGSrIjRzBiBG7cgKkpAISHo18/3LypfMgYY4wxxhhjjDH2oRQKxMXB2jr7CBFksnc+LFI44P46uRwrVqBPH+jp4bvvcPo0FAo4OmLmTFSpIvXkGGNMCl9+ibAwjBiBly+xbBkWLMDAgVLPiTHGGGOMMcYYY6ww4oD728jlaNECPXvif/+DTIa//sK6dYiIgJGR1DNjjDEpnDuHM2dgbg5nZ1SrJvVsGGOMMcYYY4wxxgopDri/TWgoRo/GtWvQe1XjvmlT/PYbevWSdFqMMcYYY4wx9n/27jwsqvKLA/iZYV9UcN9wAdwwNcUyxTWxMjHNxCXF3JpKE9t0XCps0abUQisLMxPNX4pLhpraaO477rgi4obiBsi+zvn98U6XEVwQ7swd8Pt5eHq61+G+78Awc++55z0HAAAAAKwXmqbez7lz1KpVQbSdiNq0obNnlZsQAAAAAAAAAAAAAFg7BNzvx8aG8vLu2ZOXR3Z2Cs0GAAAAAAAAAAAAAMoABNzv56mn6PDhgpi7wUAHDlCLForOCQAAAAAAAAAAAACsGgLu99O2Lfn40PjxlJBAt27RxIlUvTp16aL0tAAAAAAAAAAAAADAeiHg/gDLl5OrK/XvT6+8QkS0Zo3C8wEAAAAAAAAAAAAA66ZiZqXnAAAAAAAAAAAAAABQ5iHDHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADW6UnAAAAAAAAAABgTS5epL17KTWV2rShtm2JiE6coKwseuYZ4wMOHCBnZ3rqKQXnCAAA1gkZ7gAAAAAAAAAA/4mIoOeeo5MnKTmZRo+mt94iIlq/nv73v4LHLF1Kf/+t1AQBAMCaIcMdAAAAAAAAAICIiDIyaPx42rCBWrcmIho3jpo1o927lZ4WAACUGQi4AwAAAAAAAAAQEVF0NLm7G6PtROTkRK++Slu2kL09JSXRmTPG/UlJVKeOUnMEAABrhoA7AAAAAAAAAAAREd24QVWq3LOnalW6do08PGjHDrpzx7jz5EkUcAcAgPtCDXcAAIAnSEZGxnfffWcwGJSeCAAAAIBVqlePrl69Z8+VK1SvHhFRnz60dq3xq3dvRWYHAADWDwF3AACAJ8grr7zywQcffPbZZ0pPBAAAAMAq+fhQXh6tXWvcTEig1aupb18lpwQAAGUKAu4AAOXB5s20fHnB5qpVtHGjcrMBKzZ58mRbW9svvvhi5cqVSs8FAAAAwPrY2dEff9A779CAAfTmm/TMMzRlCjVpovS0AACgzFAxs9JzAACA0po9m+Li6IcfjJsffkhVqtCUKYrOCazVrFmzJkyY4Orqum/fvubNmys9HQD5eXhQ9+60aBER0dmz1Ls3nTun8JQAAKCMycigY8coO5tatSJ3dyKiGzcoN5fq1jU+4OpVsrOjGjUUnCMAAFgnZLgDAAA8WT766KNBgwalpaX169cvOTlZ6enAk+WHH+j99ws2P/6Yvv6axo6lZ56hnBzjzpYt6cqV0g60axdt21bagwAAwJPrxg3q0IFGjTJG24moRo2CaDsR1a2LaDsAANwXAu4AAOXEmTMUHm78OnVK6dmAdVu4cKGvr++5c+eGDRuGBqpgSbm5lJ1dsJmTQzk5lJFBCQk0a5Zx5927VLJXpcFASUmUlUVE9NVXNGZMQRAfAADg8aSkEBG5uio9DwAAKHtslZ4AAADIIy2tICc0NVXRqYDVc3JyWrVqVdu2bdeuXfv5559PmzZN6RnBk+6jj2jmTBo0iDw9iYgSE+nAAbp7l3JyKDWVMjMpK4vu3qXcXEpJMW6mpFBODqWkUFYWZWZSSgrl5xMRffIJEVGnTtS6NX3zDQUGKvm8AACgrBIB9woVlJ4HAACUPQi4AwCUE23b0scfG/8/KUnRqUBZUL9+/WXLlr300kuff/75U0891b9/f6VnBE+KyEg6e9b4/+fP0+jRRGRsO/Huu/T330REly/TgAGPfWSVitzcSOpP9O239PTT9OyzsswarNrIkdS9Ow0ZYtx8+WX68EPq3l3ROQFAWScSWCpWVHoeAABQ9iDgDgAA8ITq3r37jBkzJk6cOHLkyGbNmqGBKljG88/Tl18a//+rrwr2v/UWLVxIa9YQEVWrRoGBVLEi2dlRpUrk6EhOTlShAtnbU6VK5OBAzs5UoQLZ2ZGbm3HT1ZXs7IyHEu1Sa9SgyZNp6lTLPTVQSmYm5eYWbGZkUF6ecrMBgPIBGe4AAFBSCLgDAJQHajXZ2BRs2tiQGk06oBgmTJhw+PDhZcuW9evX78CBA5UqVVJ6RlD+ubpSvXrG/zeNY9jY0Lx5FBREublUpw5FRMgw1tixxuA7AADA40GGOwAAlBQC7gAA5cHgwXTuXMHm8OHk5qbYZKBsWbhw4blz5w4fPhwUFLRmzRo17tWAcp59lrp1o7Cw0h5nzBhycSEisrGhX3+lf/4p/dTA2s2aRf/7n/H/jx9XdCoAUD4gwx0AAEoKF9UAAOXB5s3UpQv99Zdxc/Zs2rBB0QlB2eHk5LR69eqqVauKBqpKTwfKuaeeog4dCjafeYaefpq6dKFGjYx7Zsygt94iV9dSjTJ5sjFCcvkyabW0enWpjgZlwvDhFBZm/GrcWOnZAEA5gAx3AAAoKQTcAQDKifbt6cMPKT1d6XlAGSQaqNra2n7++eerVq1SejpQnvXoQUOHFmwGBlLv3tSjBw0bRlOmEBFVrkw//0xVqsgzXPXqFBVFBw5QdLQ8BwSrVbUqNWxo/HJ0VHo2AFAOiIA7MtwBAODxIeAOAFBONGlCAQE0bZrS84CyqXv37tOnT2fmESNGnDx5UunpwJNl40Y6d47OnJH/yI6ONGAAEdHvv8t/cAAAKM9QUgYAyqaVKyktrWBz8WLKz1duNk8qBNwBAMqPadNo2TLUroUSmjBhwqBBg1JTU/v163f37l2lpwNPkE2biIhefNEsBx82jIhoyRJcaZRnnTuTt3fB5ksvUZ06ys0GAMoHlJQBgLJp/Hi6ebNgc/hwyslRbjZPKgTcAQDKDzc3mjGDxo8nZqWnAmWQSqVauHBhmzZtzp07FxQUZDAYlJ4RPBHy82nLFiKiF16Q87BSXk+HDtSkCV27ZhwFyqUqVe75/ebkUKVKys0GAMqFXqmpFVxc/kHAHQAAHh8C7gAAZdvFizR/fsHm0KHETP/8Q0T0668UG6vUvKBMMm2g+sUXX8h78AsX6PLlgs1jxygvj44eLdiTm4tC20+iffsoMZGaNaOGDeU5YGoq9ehB3t6Um2vcM2QIEdHixfIcH6zQ3r00YwZJHShWraI7dxSdEACUfSkpKWnp6U4oKQMAZdDFi3TunPELFIGAOzzR5s2jH38s2Bw/nrKylJsNwOOLiKCnn6Z33iGp5rZKRfPm0c2bFBNDb71FbdrQ0qWKThHKmvr16//xxx82NjafffaZvA1UJ02idu0oOdm42b073blDrVtTXp5xz40b1K2bjANC2bBxIxHRSy/JdsAKFejmTbpxg/7+27hn2DBSq2n1akKppHLszTfpo4+MFSAAAEovJSWFiCog4A4AZdCXX9L77xu/sPxdEQi4y2zwYDp4sGDT358uXlRsMvBI//xDEyYU/Mp++60MV7aKi4s7ePDglClTNm3alGbaIAPKqcxMGj+eBg6ku3fplVdo0CAaM8b4Tz4+pNfTkCE0aBClpNDQoTRgQEGUE+CR/P39pQaqp06dkvHIHh706acyHg/KAxFwl7eAe1AQkUlKe/361LkzZWbS6tVyjgJWpWlTevVV+uQTpecBAOVFamoqEVVESRkAKIMWLKD1641fKpXSs3kiIeAus4sXKT29YPP8ecrOVm42UAxvvUVvv13mG6ldvny5W7dugYGBX3311UsvveTm5ta2bdvx48evWLEiGXHW8ujkSWrXjubOJUdHCg2lP/+kVq3omWcKHtClC7VoQb//TuHh5OpKK1ZQ69a0d69yM4ayZuLEiQMHDixlA9WUFLpxgy5coMOH6cIFIqL336f162n/fjmnCmXa7dt0+DA5OVHnznIeNiiIbG1p3Tq6fdu4R7RORVWZcub0aZo5k7780rg5bRqtXn1PoSoAgBITGe4IuAMAQAnYKj0BAIX5+1NcHP34IwUHKz2Vkrp69Wq3bt0uXbrUsmXL999/f+/evVFRUYcOHTp06NDcuXNtbW19fX27dOnSpUuXTp06YVFkWcdMv/xC771HmZnUrBktW0YtWz7s8cOGUbt2NHgwHTlCnTvT1Kn06aekNv/N1sxMys8nV1fjZkoKubiQjY3ZxwW5qFSq3377LSYm5vDhw4GBgZ9//nlaWlpaWlpmZmZqampKSkpmZmZ6enpycnJmZmZGRkZ6+vK7d9UZGZSSQmlplJFBhVbaDB5MROToSDNn0tix98TcmzY1/k9Zv/cJJbBxIxkM1LUrOTnJedgaNcjfnzZupIgI4+qfwEAKDqbt2+nCBfL0lHMssLCsLNq1izZvpr/+ojNniIgqVaI33iAiqliRvvmG3ntP0fkBQHkhMtxx9QQAACWAgLv8vv6awsON/49+TWVCaCi1b0+BgUrPo0Ru3rz5wgsvXLhwoV27dnq9XpwRpqen7927d9euXbt37965c+f+/fv379//zTff2NjYPP30035+fh07dvT393d3d1d6+vB4bt+mkSNp7VoioqAg+vlncnZ+9Hc1aUJ791JICM2cSZ99Rrt20ZIlVKuWeaf66af0yy90+rRxoG7dKCyM2rY176AgLycnp4iIiDZt2hw9erR9+/YPf3DlypSYWHinqys5O5OrK1WsSLVrGzum9utHCxbQggUFDztzhmxtiYiuXqXWreV8CmD9Nm0ikruejDBsGG3cSIsXGwPurq40bFj6qVPH/vwz7sMPh8g/HpjZ1au0fj39/Tdt3kwZGcad1apRz57Uqxft3m3cM2gQLVhAp08rNU0AKCeysrJycnLs7e0dHByUngsAwONZsYKqVjX+PzNt2UKOjopO6ImEgLv8Xn65IF4gypKCFcrKopQU4/83aEDjxtGUKYpOqERu377dvXv306dPt2rV6u+//5byL1xcXPz9/f39/YkoIyPj8OHDu3fv3rx5886dO6XMdxsbmyZNmojIe/fu3StXrqzoU4FH27o1f+hQm2vXqHJlWrCAXn31Mb7XwYF0OurUiUaMoC1bqHVrWrIkr0cP834E1KlDEyfSkiVmHQTMy8vLq2nTpgcOHPDy8mrYsKGzs7Ozs3PFihVdXV2dnZ1dXV0rVqwodlaunOfoaO/kRG5u5OxMzs5UdAX2gAHG//n+e3r+eZRcAzIYDHFxqWp1JRk7pkpefZXc3Gj/fjpzxriKok+f3fPmvXj1qvcHH7yuQjFLpeXlUWoqSbf+s7KIufBCB4OBjhyhtWtp3To6fLig5ZePD/XuTf7+1LWr8Xbd0aMFV5I//ECdO2NNFZRnERGUkkKjRxs3v/qKxowhnY6mTSMRHM7IoBkzCqotQQmggDsAlF3jxlHVqsa8lrt36dVX0dFNASouL91q8/Ly8vLyHJW+a9O+PX31FXXtatxs0IA2baImTZScEhR17Bi98QZVrkwVK9Kbb1KvXpSdTa1b07lzdOECffEFff01WX/8+e7du927dz906FCTJk22b99eo0aNR36LafB9165dWVlZYr9p8P3555+vUqWKmedermRmZl68eLFJkyZqsxVqycvL+/LLL1etunL27K++vvS//1HDhiU81M2b9MYb9M8/hqeffrFjR5+ZM2fa29vLOlmjCROoZk1avJi+/Za6dydfX2S4l0np6elVqlTJy8u7efNm6W/LDRhAgwcb7xVNm0affUYJCVSzJuXm3pPhfutWqecNZcShQ4fatm379NP+R47ozXH8SZMSdu2K7N49+bPPJhKRwWBo0KDBlStXdu/e3aFDB3OMCMW3ezd17EirVlG/fkREn39Oubn0xRdERImJtGULbd5MkZGUkGB8vLMzdehAAQH02mtUt+4jDp6fT7NmkVpNEyaY8zkAKOSNN+iPP2jHDnruOSIiDw/as4e8vOjOHRLpN3fuUP36hWu7wWOJjY319vZu2LDhBdGFBgCg7PD1pZQU+uILGjSIkpOpQQME3BVQHpqm5uXlTZo0qXv37p6enl9//XU+SsDCg+Xk0McfU9u2dOwY3bhBNjZkZ0dE5OBAc+dSxYo0cSItWEBt29Lhw0rP9aHS09MDAgIOHTrUqFGjrVu3Foq2r1+/fsuWLRnSiuv/ODs7d+zYUavV6vX6O3fubN68+ZNPPunUqZOtre2pU6fmz58/YMCA6tWrt2nT5v333//3338t+ITKqhkzZowcOdLHx8fNza1jx47jx49fvHjxxYsXZRwiLi6uU6dOn3322Zkzi2fNOrJrV8mj7URUvTqtX0/ff7/vxIntc+fO9fPzO3/+vHyTpRs3aO1aY9EbGxsKDaWxY5HIXIZt27YtOzu7bdu2siyC0WgKVoBNmkTTp1PFirRgQUEiauXKNGdO6ceBB0pLS7OqTIsNGzYQUfv2jcx0/F69YnbvfuvXX+eKk0O1Wv36668T0WL0TrUOnp40YQKlpho3DQb6+mvq3JmqV6cBA2j+fEpIIG9vGj+e/vmHEhNJr6fx4x8dbSeigwdp8mT6+GM0UIVya/hweucdystTeh7lFzqmwhPl2rVrKVIFACgXvvySJk6ku3eVnsf9JCUlKT0Fi+AyLiEhoUuXLkRk89/1eqdOnWJiYpSaz7hxfPRoweaQIXzlilJzgcJOnOA2bZiI1WrWaDg9/T6PuXqV27dnInZw4PnzLT7F4klPTxcv+3r16l28eLHoA1q0aEFEol2qVquNjIxMTk5+yAFzcnKioqJ0Op2/v7+0TKRXr15///232Z5EefDbb7+pVCq1Wl2zZs1Cb60eHh79+/f/5ptvtm3blpqaWuIhVq5cKUrte3h47NixQ8bJHzhwwNvbm4gqVKgQFhZW4uPk5HBUFIeGclAQ+/iwSsVE3LYtf/QRf/cdM/Prr/NXX3GbNnzwoFxzB8sZP348EX366afyHtZg4E6dWK3muDh5Dwz3l5+fv3PnTo1G4+rqOmbMGI1Gk5OTo/SkmJk7duxIRGvWrDHT8Q0Gg5eXFxFt3rxZ7Dl16hQRVapUKSMjw0yDQjHt2sVduvCECfzee8zMn33GH3/MXl5MxDY27OfHOh1HRZX8+MHBTMQ+PpyZKdeUAazFsGG8dCm/9hrPns3MXLcuX77Mdna8dCmvWsWrVnF4OLu4KD3Lsiw7O/uDDz4QZ+BJSUlKTwdATvHx8Xq9PiwsTKvVBgYG+vr6isq0H3744c8//6z07EAebdrwsWP84Yc8ZgwnJXGlSmwwKD0n5ujoaJ1O5+fnV69evbFjx16/fl3pGZlX2Q64R0VF1a9fn4jq1KmzZ8+eDRs21K1bl4icnJx0Ol1+fr7lpxQezkuXFmx++inO8q1Cbi7rdGxvz0TcsCFv2/awB2dlGS/SiDgoiK3tkjw7O7tnz55EVLdu3QsXLhR9gMFgmDBhQtu2bW1Mypfa2dl16NBh8uTJGzdufHj8NzMzc9u2bUFBQUT09NNPm+15lHnr16+3tbUlojlz5jDz9evXIyMjQ0JCAgICCtXksbGx8fHxCQoKCg0N3blzZ3Z2dnGOn5GRERwcLI7w6quv3rlzR/ankJKSMnToUDFEYGBgMS8n8vLyTpzI/vVX1mi4VSu2tTX+sYivihX5+ec5JKQg4H7tGtety/XrI+BeJjVt2pSIdu7cKTbT09MNMp2svf46E/Fnn8lyMHig06dPT5482cPDQ/ylq1QqOzs7InrxxRcVjyDcvXvXzs7Ozs7u7t275hslJCSEiIYNGybtadu2LREtX77cfINCcYiAe0oK16vHhw4ZA+5Ll/LKlSzLKyIzk5s3ZyKeNEmGowFYFRFwv3SJa9bkq1cLAu7vvccTJ/LEiRwcjIB7CeXk5ISHh4ubtc7OzkRUu3Zt890YBjCfzMzMkydP/vXXX99+++3YsWNfeuklb29vcR5YlLu7uzhL3LVrl9ITBxmIgHtKCnt4sF7PlSrxli3coAEHB/POnZYOvh86dGjKlClNTGpti2bUL7zwgiJhW4spwwH3sLAwUXq4U6dO0o2R5ORkjUYjfoUdOnQ4e/ashWfVty87OfGpU8bNihX5oYnFYAknT/IzzzARq1Ss0XAxs41//52dnZmIW7fm+4W1lZGTkxMQEEBE1atXP3369MMfnJaWptfrQ0JC/P39Tet029jY+Pr6BgcHR0REPCjgkp2d7erqqlKprl69Kv/TKPsOHDjg6upKRJ988sl9HxAfHx8REREcHOzn51eot4SLi4ufn19wcHB4eHh0dPR9w5fR0dFPPfUUETk6OoaGhpr1uYSHh4vn0qBBg927dz/o6Ui3E9zd3Tt1OiVF2G1t2ceHg4I4NJSjolj6xJQC7swcGspECLiXPVeuXCGiihUrStnQ48ePr1Wr1qpVq0p/8H/+YSJu0MAqsi3Kn6SkpLCwMD8/P6k1qIeHh1arjYmJ2bNnj6hC1qhRo0d+jpjVihUriKhbt25mHSUuLk6lUrm4uKSkpIg9c+fOFau4zDouPJIIuDPzH39w+/Y8bRp//LHMQ0RFsZ0dq9Us6woxACUZDJydbQy4M7NOx0OHFgTc/3uf49u3EXB/bPn5+REREY0aGauc+fj4fPPNN2JVMREFBATEx8crNbEzZ84oNbrpPHjOHH7xRfb15aAgPnZM4fmAiczMzNjY2MjISJ1Op9Fo/P39PT09bR7QPdzd3d3X1zcwMFCr1YaHh0dFRYmYwIQJE4ioZs2ayr/YoNREwJ2ZIyLY15crVeKPPipIkqtfn99/n3ftYrOGu6Ojo0NCQho3biy99qpUqRIUFBQZGXn16lVRJOCbb74x4wyUViYD7llZWaP/a8p+32XRf//9d506dUiJVPe+fXnECO7SxRhBQMBdWfn5HBZmjJvXr89btjzetx89alzaXKUKb9xonik+jry8vIEDBxJRtWrVoqOjH+t7ixN8T0xMNP2WV155hYgWLFgg65MoD2JiYqpXr05EQUFBxcn2zcnJiY6ODgsLCwoK8vHxkeJfgpubm7+/f0hISGRk5K1btwwGQ2hoqLjl6+Pjc/z4cQs8owsXLjz33HNEZGtrGxISkp+ff/fu3c2bN0+fPr1Pnz61atUqdJbWp8/iwYP5u+949+4HLgH599+CCHteHs+ezfv38zPP3FN0C6zcL7/8QkSvvvqqtKdQwntp5OdzvXpM9IglR/BY8vLy9Hp9UFCQk5OT+GutWLFiUFCQXq83fbO6cuVKmzZtiKhy5cpSrRXLE+dyOp3O3AN16tSJiBYtWiQ2b9++7eDgYGtrW+7XsVo5KeDOzP7+3KKF/AF3Zp46lYnY07O4+RagoNTU1KysLKVnYdWuX+fevXnMmIKAe04ON2/ODg4PDLifPcuxsYpNuKwQoXYp+7JZs2bh4eF5eXnMbDAYwsLCRMENd3f30pRhLBm9Xt+mTZtKlSrVqlWrV69ely9ftvAECkyfzh078smTnJzM4eFcrRonJCg2GWC+fPnykCFDnnvuuWrVqt03sG5nZ+ft7f3SSy+NHTv222+//euvv06ePJn54AoMeXl5PXr0IKIOHTpYSe1BKDEp4M7MPXtypUqcn887d7JWa4xxia+qVTkoiCMjWa5fuKhjGRwcXNek5U61atVEnN30dbVhwwaxqGLv3r3yjG19yl7A/cqVK88++6xI/Pztt98e9LCkpCQp1d3Pz89iqe59+/Latdy1K4vLOgTcFRQby507F1SGkU5AH27TJjYt3XH3Lr/6qjE7Xqs17w3Ah8vPzx8yZAgRVapUKao0NU3vDb6LwK7w5Zdfmj7sp59+IqLXXnutdBMvb65du9agQQMi6tWrV25uruk/JScnF6cwwp07dzZs2PDZZ5/16tWr0OmRSqUSmacqlWrs2LEPOR+SXVZW1vvvvy9uBtSsWVOtvqeldpUqVXr27BkSErJ+/fpbt26VbAiNhomMSVhQJgQGBhLRvHnzxGbRhPdS+vhjJuLhw2U52JMuOjpaq9VKDbTVarW/v394eLjoklpUampq3759xW02URfL8urVq0dER81/F07cOnr++eelPeK5zxbFj0EhpgH3c+fYwcEsAffcXG7blol47Fj5Dw4yWrlyZc2aNWfNmqX0RKzX0qXs7s5EXK0aDxxYUMV0xw5Wqe4fcP/5Z/78c9ZoeNkypWZt7QwGQ2RkZKtWrcSnZ4MGDcLCwkSo3VRcXNwLL7wgHtOzZ89Lly5ZYG5r164Vd8eJqHr16mJBqpub2y+//CJXfb/HkJvLFSrw+fMFe955xyzv2lA8Bw8e7N69u3SxZm9v7+np6e/vr9FodDpdREREdHR0oWvV4rhx44ZIXf3www/NMW2wgLQ0vnqV585lKbEkJoZDQgoeYDDwvn08YQJ7et4TeX///dQNGzYUs/5tIXl5eSLObpqrV69eveDg4J07dz4oB/r9998nIi8vL7OWl1RQGQu4b9u2TVxMent7F038PHbs2M2bN033rF+/3mKp7rdu8ZUrxoB7dDTXrs2JiQi4K8Ng4LAwdnFhIq5ZkyMji/uNR4+yszN7ePD+/fccTadjGxtu0+Z27959C6WBW4bBYBA3kCpWrLjfdHKllpaW9s8//0ydOtXPz6/QrcXLly/LG1wrB+7evdu6dWsievbZZ4uGsb777jsi8vT0lMq1FydRS6rW4u/v7+zs7O7ubmdnt2TJEvM8g0f4+++/7e3tK1eubGdn5+Pjo9FoHlL35nFlZ7O/v7GFnRkq0oPM8vLyKleuTETn/7u4KprwXkoXLrBKxS4uxb0hCkVdu3YtNDRUvC8JPj4+ISEh9+2nXYjBYAgJCRG32SzfRvXEiRPi9p7p20tsbOwVM/SaT05ObtOmzddffy3tWb16NRE99dRTso8FxXf16j19j1avNlfhl5Mn2dGRVSresMEsxwdZbNiwQWQQm6NpTVmXlMRDhxpjIi+9xPHxnJbGpiGRpCTOzy/cOUzajIriiRMtN9syRCSPi0/P+vXrh4WFPTxAGRERIRo1VaxYMTQ01HyxBb1eL1IMRahdp9NlZmZeu3atX79+YmenTp0sXTv3wgWuUuWePb/9xn37WnQOYGLUqFHi9s/27dvlrQG7d+9ee3t7lUoVEREh42HBYkaO5CpVuJhLWKOjOSSEfXyYiLt0OSDu6gUGBj4ka8dUVlaWXq8PDg4WBQCEhg0bijj7I2MIOTk54r1uwIABxZpuWVNmAu6izIJoUfjyyy8XDXqmp6d7e3u7u7svXrzYdH+hVPdz587JO7HsbI6M5MBAtrfnUaOMAXdmnjCBg4MRcFdAXBx362Y8JQ0MfLy43pUr/NxzTMSOjvzLL/f806ZN+Z6ebcXNnmOWrVhnMBjGjBlDRM7OztssW3yhefPmRLR161ZLDmq1srOzxSK7Ro0aFbq3J3z66aeFyrU7OTl16NDhvffe+9///nfeNCXkAXJzc0U3v5UrV5rhGTza2rVriahFixZmCr3dvctPP81E3K4dF+MTHJS0b98+8Y4n7SmU8C6Ljh2ZiB+8XA3uLzMzMyIiIiAgQJwXiSiVRqMpTrWfQqvRly1bJurPdOrU6b7vbGYyc+ZMIhoxYoS0Jz8/v2PHjpUqVQoLCzN37l5sbKy9vX21atW6du0aERGB+8oKCg3lZs3Y3EUavvqKidjDg5OSHjvdDyxGZGtOsu4ut4mJiQsWLDglNewyvw0buHZtY1/6kv2lvP02Hz4s97TKOL1eL065icjDwyM0NLRQlkx2dnbG/comJiQk9O/fX4otyN4KZefOnV27dhXHr1atmk6nKzSNiIgIsUBWJBQWTcY3l9hYrlz5nj2LFiHgrpTk5GQXFxeVSiXjfRfTQJnoduPq6nry5Em5jg+WsWKFMZz1uCGrkyd59uyV0nIf8QIYOHBgRERE0ch7RkZGZGRkUFBQpUqVTJN+tFptcS5GDh06JN2wjImJETW7CgVyy4eyEXBPTU0VH2wqlUqr1d73ZnJCQoK/v7/4TQ8YMKDQReO6detq164tQpZypbrv28djxnDlygWdAwcPLgi4p6aylxfb2XFSEq9bV/rRnnRz57Jp+vXnn/OpU/zxxyyFJe/cYa2Wf/6ZXV0fO7HdVFYWBwcXFKIxPcO5fPlyu3btiMjR0fHXX38txbN5PFqtlogcHBw2WDw166OPPiKiiciKYc7P58GDszt0eL127doPSR3Nzc2Njo4ODw/XaDQ+Pj6FCrNUqlTJz89Pq9VGRkY+KLA1e/ZsIho8eLDZnkqBnTt39unTZ614z2Jm5uHDhxPRjBkzzDdofDw3aMBEHBDAj7/MESzns88+I6IxY8aIzaIJ77JYsEDkU8h4yHIuKioqODhYZNiJj4aAgIDih4zj4uKqVas2atQo0+Wie/fuFW2LvL29LRNFys3NFX0jlpmUObh7926fPn3E83r55ZfN17L733//FWk40i3SWrVqTZky5YL1dEh/kkyaxERszo8dZua8PH7hhdyuXRcOGzbMvCNBKRw8eFClUjk6OipZpfqhfvjhh+rVq4uzO7GcKC4uznzD3b1rLMdHxH5+XIKP3+xs1mofu4tV+Xbf5HHTB4h67t7e3p9//vmDDhIZGWm6jF6WqPfu3bulCiFVq1bV6XTp6en3fWRiYqKUUPjcc889bmevx3bwII8Zw9nZ7OzMpi/4ceN4yhTOy8MJveWJgHiPHj1kOVp2dvagQYMqVKhgegNp2LBhRNSkSZPyWuujXLp82Vh57OefS36QuLi40NBQPz8/qfOco6NjQEBAeHj49evXRZxdhMilOHtISEjxryC+++47Gxsb02rGCxcuFPH9M2fOlHzeVqkMBNzPnj0r0mwrVqz4559/PuSRpi1NqlevvmLFCtN/NU1179ixY0xMTMnmc/Uqh4Zyq1YF1Y58fFinMxZIkgLuzLxyJRPx5MlMxKNHc4lKIYFRv373rDtu357//Ze9vbl6db52jZn50iX28OARI4yJ7SWtMm20ZImx1WqbNmx6AZ6VlSW9ijQaTcnqWz2WqVOnEpG9vb1pVNRitmzZIvKdLT+0tRk3jonY3d0QHf0Y5Q6Sk5P1ev2XX375yiuviHiWKW9v79dff33OnDmmuZxxcXEqlapChQoWKOD+7rvvEtGUKVPEZk5Ojoioyp6tw8ym6aoxMVy9OhPxm2/KPg7IpmPHjkS0Zs0asVk04V0Wqans6soqVUniCE+Uy5cv63Q6b29v6Q3E19c3NDT0cXPS169f7+zsTESdO3c27cdw9epVketXoUIFs37cSLXmHR0dHR0d+/TpU6h8RERERNWqVcUdSnOkuoeFhdnZ2RFR165dY2JiwsLCWrZsKX6kovA9Et4t7P33mYi//dbsA8XGxooKyIUuEMCqDBw4kIhGjx6t9ETuY//+/aL1Uffu3d3c3MT7ho2NTY8ePRYtWiR7TGrXLmNfO0dH1ulK2Edq+nQODGStlhUqVWhdHpk8npeXFx4e7uXlJR7j5+f3kM8gEVsQAalWrVodOnSoxBPbu3dvQECAGLRy5cohISHFeTmtX7/ew8ODiOzs7LRarVkuS0+c4MBAVqmYiJct4/ff5xde4OvXOS+PIyO5enWOj2edjlu25IMH5R8dHuypp54iWZdEFw2vZ2RkPP3000Q0cOBAuUYxq/x8vnTpie7jm5vLHTowEffrJ88BL1269N1333Xs2FFKIhTtl8Q5c/v27WfNmlWCu85bt261sbGxtbXdvXu3tFN0K/T19bVAhM2SrD3gHhkZKRYptGzZsphZdRcvXpRS3QMDAwv19ytxqntqaury5eeff57VamOcvVYt/vBDLlRJPjX1nva+iYm8fLkxdNuxI1tsrXZeHgcGslR95MgR/uIL3rWLv/++4DHr1pWlc68HBdw//JDFR4AIuCcn8+rV8ox4+LCxicRLL536559/TP8pPDxcBCx8fX3Nmtgya9YscSq/fPly843yEDk5OeIP0DKtgazW9OlMxPb2xS2F9iBSufaAgADpUs3Ly6vQw3x9fYnI3LdYDAaDOE2XrhA2bdpE5ilqnJjIXbqw6Tnh/v3GLgum/VvAety9e9fOzs7W1jb5v7JohRLeZTRsGBPxp5/KfuDy49atW+7u7tKZ7tSpU0uTAHL06FFxuuzh4XHYpMpAWlqaKA5rY2Oj0+nkmHiBa9euzZo1q0WLFtINg/r164sE87p16/7999+mD05ISJDK1L700kty5bqmpqaKWJ5YLmmakBgVFaXRaFxcXMSgNWrU0Gq18i7mgAcZM4aJ+McfjZs3b3JEBP/7r1nG+uGHH4ioatWqCU/yFbl1u3Dhgr29vY2NjdmTdh/TnTt3GjRoQETvv/8+M2dlZYksP3FFQP8lAEZERJQ+WJCRkfH++xPr1csVJfjKXcKfAnbt2vX888+L39R9k8dFVnuTJk3EYxo2bHjf1qlFbdiwoX79+kRka2ur1WqL073J1LFjx0S9PnHDW6vVJiUlPejBFy5c+Ouvv0z33L17Nzg4WMTCnnrqKTkbfZ08yUFBxsCHiwsHB3NCAufm8pdf8jPPcJMm3Ls379/PubnG2s92djx1Kj/m04eS2bFjBxHVrFlTyg9IKXU3pLS0NBHENw2vnzt3ToQCvvvuu1IeX145ORwby3o9h4WxVsuBgezra7y0/OQTpSennClTmIjr1uXbt2U+8rVr1+bNm+fl5aVWqxs0aPD999+Xch2qKOHg4eEhpd2kpqY2atSIiCZMmCDHlK2F9Qbc8/LyQkJCxOfH4MGDi1OwX1Io1b3QrT/TRVidOnV6eKp7fn7+zp07NRqNq6trgwYviCyDgACOiODi5z8dOcIeHkzEXl5smSpYOTlsY8M+PsZuORs28Asv8OLFHBhY8Jivv+bgYEtMRhb9+vGIEfzjj8avhg2NAfeYGH7qKd6wwRhwl1diIo8YccfR0c3Gxmb69OmmOQ6HDx9u2LChOGkrFI6Xy5w5c0TgY6nprQaLe/XVV4kozNzVVa3YkiWsUrFazfKmxOXl5R07duyXX36ZP39+oX+aMWMGEQ0fPlzO8YrYs2cPETVo0EB6YYs3xhAzhMDnzWMidnJi05Jua9eyra1Y8mbeYs1QAqKlZKdOnaQ9hRLeZbRtW1qXLu+3bv2sWRubl2leXl5OTk79+/ffsmWLLD+la9euiQX1rq6upr9Tg8Gg0+lEvt6bb75Z+kRvEZMKDAwUSeV0b6352NjYLl26SBkSRVPdReUckepeypnExMSIcH+FChUelBGWnJwcFhYmFa9UqVR+fn5hYWH3LeMLchk5kol4wQLj5pYtTMTPP2+WsQwGw0svvUREffr0McsAIIexY8da2+8oPz9fvHKee+65QvH05OTk8PDwQh01goKC9Hp9yRbo7Nu3T4R9fX0/+PJL1OoorT179kjJ41WqVCmaPG4wGCIjI0UmrzgxfmTr1ELS09O1Wq2IWjRv3nyvaRXUBzt+/HhgYKD4wHV1ddVqtUV71BWa5wsvvCA+Lm/cuGH6Tzt37hSvGVtb2+Dg4McKm9zH6dMcFMQ2NkzEDg6s0RiXkz9IejprtcbHe3tzOWr9lZmZaZ05ZyIX+JP/Qsv5+fne3t7dunUr5b1kKbweGhoq7fzrr79UKpWtre327dtLNemSSk9PP378+OrVq2fOnPn222/36NHj5Ze/FS+3ol81a/K0aZyXx1FRnJpqPEJS0hOxjnbbNraxYbXaXCkLzPzFF18Q0dSpU0t/qNzc3Pbt2xNR//79pZ0HDhwQ3XrXlaOS3FYacL99+7b4RLG1tS1xmlVcXJxUB61oqvvatWtr1aolUt1DQ0OLnhKdPHly0qRJdevWla67OnXqFB6eWrImqPHx/MwzTMQVKpSwtvhjyclhJyceM8aYPVo+Au5Dh/K33xq/GjQwBtzj4nj7dvb25nPn5A+483/RB3EK1atXL9Mzodu3b7/44osiJv7uu+9GRESsW7dOr9fv2bMnKirqzJkzsbGxN27cSExMfKyTNuHXX39VqVQqlapoNNbC5s+fT0R9n9SWOOvWGYPCc+ZYbtBz584RkZubm1lXVH344YdE9OGHH4rN/Px8UfTmeKFlOzIZP56JuFIlPnq0YOeSJezubmjdOlipJrEWMHUqmy4yHjPmnipV589zYCBLPYr++staFh698847RPTFF1+IzaIJ7zIyGAyenp5EtAVVZu8nPT1drVY7ODiU4KPkIbKysoKCgsTpTaHbbMuXLxc5mx07dixxG9VCtebt7e3vm/uZn58fFhYmUstr1apVKHcvISFB3PQVqe5XrjxGRS9T69evF0sEGjduXJy02UIJ7+ImgbXl25YbQ4YwUcFb3/r1TMQ9e5pruKtXr4oXQ7nszVU+3Lx5U2RNFafxmmV88sknIovrITl9V69eFUVv6T8eHh7BwcGHi92uNDc3V6fTiduTzZs3L02JEmDmo0ePFkoeL3oOo9fr27RpIx5Tv379xw21m9q9e3fTpk2JSK1WazSaVCnaV0R0dLQUandxcQkODi5OnDQ/P3/OnDnig6lq1aq///676b9mZGRotVobGxsi8vT03FyyNblxcazRGK987O1Zo+H4+OJ+7549xlR3lYo1Gi51wrWFZWZmxsbGRkZG6nQ6jUbj7+/v6elpY2PTqFGjd9999yHLDizv9u3bjo6OarVaaiq2ceNGIqpXr17pewncN7w+ceJEIqpRo0Z88V8PpZORkTF8+PBOnTqJeF0hnp4vE7G7O/v6clAQ63QcEcFRUSzdSktJYSJ+6y3j5po1/Morlpm4Ym7dMvbWnjbNjKPIGHBn5tjY2IoVKxKRaXNEkXdYvXr166Jgd9lnjQF3KXe4WrVqpbz8FqnuomJj9erVV61aZfqvN2/elD6Ge/ToIW5gJiYmhoWFmZ4t1atXT6vVlrjmuyQz03hRYWPDcq/VLkwE3G/f5tq1+ezZgoB7mzb8ww/Gr759y1jA/b4lZURBl6AgHjPGLAF3QWqw5u3tfcyk37OUDCgWmT5cxYoV3d3d69ev7+np2bp1a19f3+7du/v7+wcGBgYGBmo0mrfeekur1U6ePHnQoEFqtVqlUv3000/mekrFFh8fr1KpXFxcHneNZDlw4IBxbZrli12INX2bNm0y3xAixLlnzx6xuW3bNiJq1KiRmYbLz+fAQCbi2rXZtOnszJkLicjJycl6rqvl1a0bm1bLaNqUjxwp2Dx4kJ2d2d/fuPn112wlq+hEAVNpbXLRhHd5hYSEEFFQUJCZjl+mHThwgIhatmwp+5FN7ygPHjzYNI/78OHDouSUl5fXYwWaRa15sSZU8PHx0el0hdLxCjl//nznzp3F4+VNdTd9jr17936sO0Z3794NCwuT0h6JyNfXFwnvsuvfn4kK1pCtXs1E/OqrZhwxPDxcvJysM3UR+L8PhXbt2snexaEE9Hq9jY2NWq0utKT1QfnIJ0+eDAkJEWdZ0tvgI9urRkdHi8ivWq0ODg5+As+65fXHH39I11+ffvpp0YCpXq8XnUuIyMPDIzQ0tPQ/88zMzJCQEHHLpGHDhnq9vtADTp06FRQUJMLizs7OwcHBjxtUiouLE1mJRNSzZ89Cb2JHjhwRryKVSqXRaIrfV+DChQvjNRqDaLZob89jxnAJ7nDn5LBOx/b2TMQNGrA5r2JK48aNG3v27FmyZElISMiQIUOee+65atWq3ffi3c7OTmR89+7d2xrei4RvvvlGTEnaI1ITZsjUfHzChAl0b3g9Ly+vR48eRNShQwfL1Nc2GAxStS57e/smTZr06tUrODh47ty569evP3v23MNnkZLCFStyixYsKoSX+4C7wcB9+jARd+rEcvRvfiB5A+7MvHz5ciJycXGRGsjl5+eL8uAvvvii9fzRlYbVBdyXLFki/rratm0r13lwXFycVLWtaKr78uXLRXuuChUqtGvXzt7eXjzSzc1No9Hs2rVLxt+0wcA6nbEYmpnaqGZn85o1nJrKTk7MzGFh3KNHQcD96af5u++MX717l5+Ae0ICV6tmxoA7M1++fFkswHd0dDS9C3f16lW1Wm1ra9u3b9+XX37Z39//ueee8/X1bdy4saenZ7Vq1dzd3cV51WOpUKHCNLPeoHwcoqFcCXMlyiypsacijbvEpaZGozHT8aOiooioTp06UnmKcePGEdHkyZPNNCIzZ2ezv7+x0bRpPG38+PEi9nHUNPu9vHhkwP2559jf3/j+ZiUB95iYGCJyd3eXMmXefvttMkl4l11cXJxarXZycrKqHCIrsXDhQiJ6/fXXzXT8devWiQST9u3bmybZxcfHP/PMM+LzKPJRS/Pu3r0bHh7u7+8vUvbE20twcHDx/6jNkep+9+7dvn37EpGNjU1ISEiJq/GIhHeRvSGdH544caJkR4NCevdmooLVn3/8wUQ8aJB5B+3fvz8Rde/evXxczpU/qampYtWdOeqYPZZLly6J68RCwazMzMxKlSqJ5tX3vaEoqpIGBwdLsTy1Wu3n5xcaGnr73vK6+fn5oaGhoh1rw4YNlarbUJ5cuXKldevWrq6uwcHBRX87er1eXNMRUfXq1XU6XaaowSqTo0ePim5MKpUqKChI3EK+cOGCRqMRl4T29vYajaY0ycLSfeiKFSuGhoaafrrl5OTodDrxcqpVq9aff/758ENdvnw5ODhYPH7b88/zm2/ekxdTAkePsq+vMdV9xIi7995Bt7DExMSoqKiIiIiQkJDAwEBfX18RQC/K3t7e09PT399fo9HodLqIiIjo6Ojc3FzpHeDLL79U8IlIDAZD48aNiWj9+vViz7Vr1+zs7Ozs7K49vPJPsZmG16XSgjdu3BCFHz744ANZRnmkiIiIzZs3X7x4sQQnbykp7O7OmzZxy5acm1v+A+5z5jARu7mV9m+3qNatWzs6OkrRcNkD7vxft94WLVpI78MJCQk1atQgolmzZsk4kFKsKOCelZUVHBws3vI0Go28d89MU91r1Kix+t7Gmjdu3HjttddsbW0rVKhgY2Pj7+8fHh5e2vJnD7ZsGTs5MREHBp6/LV9Hg+ho1mqNIcLly40B9/x8bteO33mnzJeUCQq6p4J2jx68Ywe3acPSTZmffmIz9Hq8R1ZWlihyPXbsWGmnTqcjogEDBjzy25OTkxMTEy9cuBAbG3vo0KGoqCi9Xv/PP/9EREQsX748LCzsp59+0ul006dPF+3sIiIizPlsHsOkSZPIpPbIkyA+nhs0YCIOCFCmeuaJEyeIqGrVqvIWkZBMnjyZiMaNGyc2pQaqUVFR5hhOkpzMLVuKYEqClCWan58vFhvVrl37ouxnCkrr1o3feIOnTzd+Vat2n4B7dDTXrctJSdYScP/xxx/p3qZJIlPvwIED5hu0a9euRPTLL7+Yb4gySlR/mj59uti8dOmSt7f3aFnvBB47dkz0fKtbt67pm0BmZubQoUPpwW1UpT43UvUVR0fHwMDAyMjIkr13yZjqfvr0abG6v0qVKrKsFhIJ71LxAfov4b1Q5z14XD16MFFBKuRvvzERv/GGeQe9deuWuJz7UerWClbm+++/J6ImTZqY6USoOLKyssR9x4CAgEJBn3379knve/b29q+88sry5cvvu/xFaq9q+j4pldi6cOGCeNMTKckPqUMCxXf06FERwSm0f+fOneJkg4iqVaum0+nMtGIpJyfniy++EFHsmjVr9ujRQ5T4d3BwGDt2bCmbDQoJCQnixiER+fn5SRExITo6ul27dtKH6X2rw924cUOr1Yru5Wq1OjAw8JxU4rCUcnM5NJRdXH7386tRo4aFL2nnzZsXEBDQrFkz8fMvys3NrW3btgMHDpwyZcqvv/66ffv2h/9GpDUuGzZssNizeJBNmzbRvdVjpk2bVuikvfSk8Lrp5f/evXtFZury5ctlHKuUsrL49Gleu5a/+47ffZd79uTGjXnnTnZ3Z2bu149nziznAfcTJ4yhxWXL5D94s2bNiOjkf10ozRFwT0tLEy0o3nvvPWnn33//rVKp7Ozs9u3bJ+NYirCigLu4pHR0dFy0aJGZhjC9kAsKCjJdWbxr1y7x5lXKXhPFdOQIP/VUYoMGjT09PUtZFfTKFf7qK27WrKBZRMuWvGqVMeDOzIcOsYPDAwPut29zZCRfvlyaKSgvNpZnz+b/amOY18qVK03vBokmbGvXrpVxiK+//pqIRowYYbrz7NmzSpWy2r59OxE1a9ZMkdEtIDeXo6JYipkkJvKRI9ylC7drx2a77/ZoIlS0bds2Cxy8aANV84mP5169Ljo5VX7llVekk8Xs7GyxfMzHx+eOorkwsuvWjd9/nxcuNH7VqnWfgDszf/ghjx1rLQH3Pn36ENGC/5oYFk14N4dFixaJi0bzDVFGiWYhUsb3unXriMhfqkMkk1u3bokTJFdXV9OkBNOSLKNGjZI+/k6dOhUSEiKVUxOZm2FhYSmlLtsqUt3FYsdatWoVSq6Pj4+X2t8FBAQ86GPxjz/+ELGtp59++oJp2wQ57N+/f/To0VLCe5UqVT744IPyd7PQYjp3ZiKWknp//vme0qtyiY+PL5T9JyplOTk5ScX9Ro8erdFo3nvvPa1WO3XqVJ1Op9Ppfvrpp7CwsCVLlkRERKxevVqv1+v1+oMHD0ZFRZ06dSo2Nvby5cuJiYmJiYlIlpdXTk6Ot7e36YeR5b311ltEVL9+/fsmSGVkZERERAQEBEhNoZ2cnB5yxzEpKenXX3/t1q2beEcV9w5FTNDDw6NQvRoojR07dhQ9o1i6dKkUap81a5YF7pXGxMSI+H7FihXt7OyCgoJiY2PlHSIyMrJOnTritafT6UzP08SHqVRZNzw8XPqnmzdvarVaJycnKdR+9uxZeSfGzHz27Ku9eomf+WuvvWaxy9hRo0ZJsXV3d3dfX9/AwECtVhsWFqbX60v2KxBB7cqVK8t+RvG4+vXrRyZJGHl5eSJh4l+5G2WK8LpKpTK9XyLug7q6ukoRWEtKSUk5fPjwX38d0en4zTe5WzeuV89YOqLQ12+/GQPuly5xzZr888/lNuCelmYMA77zjlmOb4GAOzNHRUWJF5vp8laxAt7Ly6v4pbGsk7UE3HNycvr06WNnZ7dr1y6zDiSlutevX9/0svDjjz8udF/F3K5evSYqx1WqVOlv04oDxZOZyRERHBBg7GtCxJUrs0bDogxyTg7XqlXw4Pff5379eNkyHj68YOecOTxpEr/5Jq9bx127cplex//552Z8o3mIw4cPi/M2ab2VLI4fPy4SIqSLN61Wa/rhamG5ublubm5EJPtpopW4fZuJePx44+by5dy/P2dm8gOKc1pIoSR0GRVNny/UQNXcYmJiRFME0yzdu3fvilrJ7dq1M98CI8srTkkZZk5J4fr1edgw5QPuubm5Yr2tVNWtaMK7OaSlpYkueYWytEBcS0tvv2JZlTlOV7Kyst544w36r42qafRwxYoVIgLerl27L7/8UiyWFxo3bvzFF1/IXgu7UKp7oVrJItW9YsWKl4vkC+Tm5opPTCIaOnSo+UIqKSkpYWFh0o/i22+/RWpqybRrx0Qs5TCJldHyLsHMyclp3759zZo1TRdwXL582dnZWfx9yWjNmjUPKu0Nj0uU4a5du7Yi60hEfNbR0fGRi//u3LkjGoBJNbVq164dHBz8oOY0UntVlUpVrVq1V155pZylGihu/fr1RNTz3ubLmZmZLVq0CAkJsWT4Jj8/XxQkMV+IIykpSaPRiNdeq1atCvXavXDhgshoIaJevXodPXpUq9WKD3SVShUQEGDWco4i8CLO7tzc3MLCwixwY3Lfvn2rVq06evSojB/K+fn5L7/8MhE9++yzCvZXkKrHSPWI1qxZQ0RNmjQxxw927ty5VCS8Lk4UmzRpYta/I6kWkGkPW/Eif+qp0aaxdVtb9vLiF17gMWN49mxes4ZPnOBbt4wBd2b++muuV6/cBtxHjTIWazXTh6RlAu7MPHPmTCKqVq2a9NrOyspq3bo1Eb1h7jWPZmYtAXdmFn1KFy9ebLozMzPTHOdYMTExe/fuNd0jYt8bN26UfayHeORi7aLy8/O3bNkyfvwdV1fju4yjIw8cyOvWlarwxVtv8fnzJf92xR08yETmreF+X++//z6ZJyQqblZL50wiD6tjx46yD1RMouLHvHnzlJqAWd2+zVWqcLNmLH7eIuCuuKJl1uUi0jRMC8QXaqBqAfv37xf5p5+adKSNj48XCbMBAQEKLiGX130D7rt28f/+x+npBQF3Zo6IYLWaJ0zg339nufNUHoPIC/Px8ZH2iIR3094VZjJy5EgimjJlirkHKkMSExOJyMXFRXofCAoKInPW3gkNDRXZlwMHDjRdax8VFVW7dm2xKJ6IKlWqFBQUpNfrzXfx/MhU96KFYm7dutW9e3cisrW1LeZpVekdPHiwdu3aFn4LLU/69fumfftvjx413rP56adDXbr8rdPtl3EI0aTEw8NDauOUk5Mjrjs6d+68fv36iIiIiIiI+fPnh4WFffvttzqd7osvvtBqtVqt9q233tJoNEOGDAkMDOzbt6+/v7+/v7+vr6+vr2/Tpk09PT3r1q3r7u7u7u4u/jRsbGw++ugjGSf/JDMYDKIsxldffWXhoU+cOCHefB4rv/7ixYs6nU5UWBaaNWsWEhISExNz38eLtw4075WduFVTtOCnIstQRBKDuVvUbNiwQVw82traarVa06CwiHqLaYiEd5VK9dprr1msE0l8fLw4kySiF198sYwuCEtMTBSXS2+//bZSc/jss88KvbB79uxJRN9++62ZRhT1tU3D6xkZGSIM2rdv39L/QRkMhsuXL2/duvWXX36ZNGlSYGBg7969RWOhohwdHZs3bz548JgPPuAff+SNGzkmhu+b9ChquAu5udyiRfkMuF++zBUqsJMTm+9P2WIBd4PBIBawdunSRVqpExMTI27XLVmyRPYRLcaKAu5hYWFE1KNHD2nPvHnzKlWqFBoaau6hb926Jdq1mamO20M8aLF2UWfOnJFa3nfpsoaIfX05NJTvbQFbEmfPclBQaQ+iLIOBa9ViIi5deZ7Hk5eXJxo6maOusSgWL7VnSU1NdXBwsLGxUSoFRnTtM+2HXp7cvs01avCaNdy2LeflWUvAnc0WBxd1kKRY1aFDh4ioZs2askf2H27dunUieDd37lxp5+nTp0WNZvM1jLWwwYN569aCze7dOSKCv/yS163j11/n48e5X7+Cfx0wgN97jx0c2NaWf/jB4nNl5iLrvaSE96KpxKV0/fr14OBg0089EeuvU6eOWWvXlC3iZ/Lss89Ke8R1TqGkAXn99ddf4pq8UEvJyMhIIqpateqKFSssluH18FR3U1FRUSLcULt27d27d1tmesLgwYOJyHTBPhSfKHF26tQpsfn5558T0SeffCLX8ZcvX05EdnZ2pq+KMWPGEFG9evVulf402sTRo0fVarWjoyNCqHLZunWryI2VsevVI6Wmpooow9ChQ0t2hOjoaK1WKy4ThPu2VxWr/SxTzvSJIqIK8jY7KRmDwSAapVogjyQ9PV2r1YqoQvPmzQudJ1y9etXb29vNza1NmzZHTNdaWkpERIRI9nd2dtbpdBa+6JDF0aNHxX24hQsXWn50qXrMli1bxJ5Lly7Z2Ng4OTmZLz6QkZEh1h+bRvnPnTsnLg0eK9Cfk5MTGxur1+vDwsK0Wq3oYSt1tpCIe+GOjo4+Pj6FagEV/zUjGqVKzp5lMxfRsJD9+9m0C/Kff/LevbxypRlHtFjAnZlv3LhRq1atQrfYFyxYIO4UmqXslUVYUcA9OTnZyclJrVZLV/UrV64kojZt2ph76CVLllCRdWeWJC3W9vPzK3QqdufOnR9++EFqe0JEnp6eM2bMkyshfc8eHjeOZe3Nrow33mAinjnTciNu2LCBiBo1amSOg//55590b/HB559/npTrUnL9+nWVSuXi4pJZDl4rRYiAOzP37Mk//GBFAXdzVHo5d+6cuHaVAp1TpkwhonfffVfGUYppyZIlKpVKrVavNDlZOHDggKOj4/jx4+VtnW1tsrL45Zfvs99g4JAQVqmYiN98ky3/M3j22WeJSCp0Jur7mya8y2Lfvn2ikoNpPrvBYBAVe9E6VfLTTz8R0ciRI8VmXl6ek5OTSqUy94r448ePN2zYcNm9DZjmz59PRMOGDTPr0EU9PNVdCA8PF+VoO3bsWKhUtwWEhIQQ0ccff2zhccuHhg0bEpFUGHfq1KmmCQeldPbsWZErZ7pET2S/Ojg4HDx4UJZRTL3++utENNy0hiOUzgsvvEBEFls3YDAYRC/Kli1blnKZdW5u7t9//z1kyBApqNSlSxfTB4iglWlTMZDFrFmziOiDDz5QeiKcmpoqQsyme8x6MbVjxw6xxsLGxqZQd3GxsL5QOQFLMm302rFjx7JYfevXX38lorp12xw7Jmc52eL466+/iMjb21vKhBDVR81dcEMKr3/33Xemk1GpVLa2ttulBiwm0tPTjx8//ueff86aNevtt9/u0aOHp6entESykBo1anTo0GHYsGGfffbZ0qVLDx48WLIb4RkZfOIE//knz5rFEyeW+OlatUmTWK1mKXng2WfZnOk3zJYNuDPzpk2b1Gq1ra2tabqhOK1q27ZtGY0MWFHAnZkHDBhgek8jOztbpDoeP37crOMOGTKEiCyQSv8QR44cqVevnoinR0dH5+Xl6fX6oKAgcQFJRBUrVpR9+XZaGr/8Mo8axRqNGZeiWMayZUzEzz9vuRHFH79c14SFpKWliZR2KaNHVLZS8BJOpFUWXcJfDkgB9/PnuVYtnjfPWgLu5uhlOmPGjEIvJJFduNU0DduCvvzySxsbG9MAa1xcnEqlqlChQrm8uyMJCeH7hQ2Nli9nZ2cmYj8/tmTqW2Jioo2Njb29vWkZ/XPnzj2oEG3JLF68WIqNmjbRunPnTuPGjUV2Q40aNQIDA8PCwiwfPLUqEyZ8Y2vrOHv2bLF55swZ8Z5ggaGL/gGK/kVff/21BUYvKiYmplOnTuKMyDTVPSsra/To0WK/RqNR5HT8999/J/P3OSivxJ+8VLXzo48+IqKZciRQpKWl+fj4ENHgwYOlnWfOnBErlAuFouQSFxfn4OCgVqsVySEtl44dO2bJdQMiVuvm5nZevmqbaWlpv//+e8+ePQvdTnZ0dCSi8n22owhxEzQkJETpifC1a9eIqGbNmtIekUGl1+vNN2hmZmZISEilSpUK1TJ65ZVXiOhP0xRZJaxdu7Zu3bpdu3Yto42mJ078tWbNPC8vSzfAE0XkpRPC7OzsGjVqkJmXPAr3Da+LfjnVq1dfv379H3/88eWXX44YMaJTp06iUlZRarW6fv363bt312g0X3/99cqVK0tcZz8xMfHgwYMrVmRNn84jRnDnzlynzj1NU1Uqc9U0V9akSdy3L7dsaSykU/4C7vzfSaCnp6d0Kzo5OVlkZmi1WvONaz7WFXBft24dETVr1kza88477xDRRHPepcrPzxcL+hRfp7Bnzx5RSt7Jycm0FmTPnj3/+OMPy5e7KVsSE9nWlu3s2DJpImlpaa6uriqVynzNykUh2j/++ENsRkdHi081pZbgiaQzSzYWthgp4M7M06Zx/frWEnA3GAweHh5kUs2/9ESLv7Vr14rNog1ULa9Qv6bZs2cXio+UM7m5PHkyP7IY3ZEjXL8+E3Hduvyohm2yEf1RnzfbrUvThpYajca03fSxY8dEDaWKFStWq1bN9AT92Wef/fjjj3fs2FFuKvsXX9eu7ODAer3xBCAy8oCHR+eAAGWqe4lPpfXr1ysyOjPn5eXpdDoRoqpdu/batWuvXLkilgA6OjoqssRb2L9/PxG1bt1aqQmUaZUrVyYiKb3g3XffpXtLjZWYaHjQpEmTlJQUsSc1NVWE4F9//fXSH/9BgoODiSggIMB8QzxpRGqUBTqn7dmzx97eXqVSrVq1ytxjMbPoAVgWa2tYOdFka9asWUpPxHib3HQ99DPPPENE+/fL2abivoqWGenWrRuZFCRRUGJi4pUrV5SeRQllZXHbtkzEAQFssb9dUT3GwcHh5s2bYo9YqtWyZUvLTGDixIl07xrHvLy8jh072tnZFY2t29nZeXp6+vv7azQanU4XERERFRVVsgVD9+2eKkZp2TLFNMhub8+NG3PPnjxuHIeGskniUPkxaRLPnMmDBvE33zCX04B7dna2iIiOHz9e2rl3715bW1u1Wi1vBphlWFfAPTc3V1S7k9Z47t27V1xWma+i64EDB4ioYcOGZjp+MeXk5Njb2zs5OQ0ePFh8HHp5eU2cOFFK+YFH6tiRiXj1akuMtWjRIiLq3Lmz+YYQKTamH2yin2SUxWJv99q1axcRNW7cWJHRzco04J6VxY0bW0vAnf8LPcjVRrJo8njRBqqK69ChAxGtNGtFOkVt2MAjRrBWy1988YhH3rzJnTszEbu4mLdCX1ZWVkREREBAgI2NTZ06dWrXrm2O1hQ3b97s2rUrETk4OBRqwbps2TKx4r5169ZxcXHMHBsbGxYWFhAQIKKrgouLi7+/v06nU+pt0PKqVWMivnrVuPnZZ0zEkyYpkxQmcqkUL0598uRJUfhIFDoTiTDKZhOL3raurq5lNF9PWeKXKK2qefPNN0mO9PO5c+eKX4pUHZ7/W0rbokWLUpYKebhbt26JOjb/Ktj/unyxzLqBhIQEUets0qRJ5htFkp2dTUT29vYWGOtJI5Y9zZ8/X+mJ8MGDB4nI19dX2tOkSRMy6VphSSLnxhwneE+aS5e4alUmYvMsdL8PUf/TNCwgzqh/+ukny0wgNzd3wYIFhe4OimTkatWq9evXb+LEiWFhYZs3b46Li5MrcCcWVhbl4uLSsmXLcePOTZjAP//Mej3HxfGT0P5JBNyvXuWaNfnSpfIZcGfmmJiYESNGFCq25uvrW79+fcWvQUrAugLu/N8d6XHjxkl7RLmDjRs3mmlE0e55zJgxZjp+MYk800aNGhkMhuzs7BMnTogVZ1IhXXik6dONVY8tQCT6mbXQ8KlTp8RnmPTZ9vbbbxPR559/br5BHyIvL0+UeCq0PrEcyM6+p7jH3r38zz/KzeZeol2YXPc5iiaPF2qgqrjr16+r1WpnZ+e0cpmZ8PiysnjECOPqSK1W/lSaPXv2aDQaUZxRpAmL7HJbW9spU6bI2BgzKipKlE2rW7euaWJXXl6eVqsVWX5DhgwpupYrIyNDr9drtVpfX1/xMMHT01Oj0URERJTFGqDFdP06E7G7e8GeAQOY6NHLI8zh1q1bRFShQgVriCnn5ubqdDoHB4datWp16NBBqXbipkQvONMSSVBMhToKDhs2jErdgXb//v329vZEFBERIe387rvvxGv49OnTpZpxMYjWr88++6w1/L2UDyLy0qtXLzMdPy8vr0ePHkTUtWtXy6ymSklJES9IC4z1pBG31qRVwgrasmWLeFFJe0TBjavSjXQLErXdz5w5Y/mhy5/Nm9nGhtVq3rDB7GPl5OSIl43U+vv06dMqlcrV1dXcHX0eIjc3V9yh3LZtm5mG+O6779zd3X19fUvcPbWcEQF3Zp41iwcOLLcB96IiIiKIyNnZWZFblaVkdQH3I0eOEFGVKlWkKpzi9zpkyBAzjdi5cyci+uuvv8x0/GISy4JeffVVaY8odCO1kIVHOnKEibhWLTb31U18fLyNjY2jo2OSmYu3iTVTUiaCaJbSvn17sw4qKfphNmjQIJJpobfVmjGD7ez4v/p4ysvLyxNvBSfkaLMgKiCvWLFCbBZtoKq477//nohee+01pSdiXWbPZhsbtrfPfuedEFluRcTHx4eGhrZs2VKKX/v6+oaGht66dSsjI0Or1YoQmLe39327IT0uqWh7p06dEkxq0t+5c0d0w7O1tdXpdI88TkJCQkREhEajEUWfBRsbG19fX61Wq9frTWvUlAN6PRNxp04Fe3x8mIgVSeYWN/8s9gFUHKL/248//qj0RJiZ27dvT0Sy/L08UfLy8sRfsbRn4MCBRFSoYe9juXPnjlgR+P7770s79+7dK0qFWGb5VFpamnibskxlkieBtG7ATAUxRMGEmjVrWmxt8c2bN4moatWqlhnuidKzZ09StACaZM2aNUT0yiuvSHtcXV2JSJE4qSgk8IS3xpGRWHRYuTKbrb6s0fLly+ne6jHvvfceEb399tvmHfihVq9eTURNmzY1331l3LEuRAq45+Rwixbs5vZEBNxjY2NFZphZU13Nx+oC7swsQgBr1qwRmxcvXlSr1U5OTubo4Z6Xl7hnT4X58zuUrGODjD7++GMi+uSTT8SmSCWrVKkS3miKz2Awdsy4tyK0/L7++msiCgwMNO8wzGPGjCGiadOmic2inVTNJyEhoU2bNoWuasLDw4moZ8+e5h5dQStXMhF36FCw5+xZnjrVvAU9Hk6j0Zi+DErjzp07CxculCK2ooGqBYqiFp9YIPm///1P6YlYnY0b+YUX3iOiVq1aXbx4sWQHycrKioyMDAwMtLW1FdHqWrVqBQcHF12kv3fvXnGOpVarNRpNiaP8xSnaXrVq1ccNoOTn50dFRel0On9/f5HHKri6ugYEBISFhZX4R2RVQkOZiN95x7iZnc12dmxjw4q0dBE3w960zCKy4hGfxaZBVQWJvOwFCxYoPZEyJi0tTWQtSXuOHTum1+tv3LhRsgPm5+e/+OKLRPTcc89J95Jv3LghEvEmTJggw6SLZ968eWKBWjm7EaggcalvjnUDkZGRoiXgjh075D3yQ1y5coWI6tSpY7ERnxx+fn5EZMnf5oMsXrzYNHEwPz9fpVKpVCpFUnSdnZ2JSPGgR7lhMHDfvkzEzz7L8q0IvQ9R9kBKL8jIyBC9T2Rs8VUC4qM2NDRUwTk8aaSAOzPv3Mkq1f0D7iapTaWleMA9NzdXZLSU3Ww8awy4z5w5k4j69esn7RE1zc3RDisxcVlUFJ092132Iz+uvn37mmb0iAVofn5+ys6qzJk6dW/Tpq9/9dWjMyVLQ1ThsMCqiLVr1xJRu3btpD1iuevSpUvNOm5CQoIo5WS6BJKZP/roowoVKpRyobeVS09nFxdWqVhaW7JoERPxCy8oNqVNmzYRUYsWLWQ/sijmGGlaT0dRt27dsrW1dXBwUHCBpDWLiYkR7f6qVKnyuKWBo6OjtVqtqHpBRPb29gEBAREREQ+JBGVmZoaEhIhuSJ6eniUoRiwVbXd0dHxI0fZSBsdTUlLWrFkzZswYb29vMtG0adPg4GBp+W1Z9OabTMQ//GDcPHaMibhJE2UmI2qaWdWV1Z9//klW05pSXIRotVqlJ1LG3Llzh4gqV64s1wE/+eQTIqpevbpUsSE/P1+spGnfvr0lY9+5ubniSvXnn3+22KDlW0ZGRt26dYnom2++iYqKiomJiY2NvXbtWmJiotQXtwRiYmLc3NyIaLZllzeeP3+eiLy8vCw56BNCZO8dNXcGVjGIXvTv/HfnPDk5mRSqI5SXl6dSqdRqNZL5ZJSYyJ6eTMTmyzWPiYkpVD3mt99+EzeVzTVkMcTGxoqMWGuo6ffkuHr1nmD68eN84gR///09jwkJYScnlutejOIB90mTJhGRh4dH2X2lWWPAPSEhwdbW1t7e/tatW2LPwoULi8b+ZBEXNyIqihISZj76oWbm5eVFRNHR0WJzzpw5RPTWW28pO6syZ+XKlWTmXqai6lHlypUtUIUjIyPDyclJrVZLqV7ffvstEQ0dOtR8gyYlJbVp00asXDNNpRe5hLa2ttLqk/KqXz8mKvj0Skpie3u2s2Ol3udzcnJEIoO8VReLNlBVXFhYmPWEz6xTSkrKK6+8Iv4Svy90hnU/169fDw0Nffrpp6UwtI+Pj06nu3nzZjFHPHr0aOvWrYlIpVJpNJriJ0aVuGh7aYhWq4GBge7u7uL5fvbZZzIe38Lat2cilmpjLl3KRKxUhkfHjh2JaPPmzcoMfz/R0dFkNa28ly1bVihZBIrj0qVLROTu7i5LjT69Xm9jY6NWq/8x6cQyefJkIqpRo4bFSoVIRNXRWrVqoSuJXH766SfRT+hBKlWq5O7uXrt2bU9Pz8aNG/v6+vr6+j7//PP+/v6vvPJKYGDg4MGDNRqNRqOZMGGCVqv95JNPxFqr1157zTQQKUsdv4c7ffp2ly66AQPmmHugJ5AoKhUbG6v0RPirr74iookTJ4pNBZc1JCUliT8Qyw9dvh0+zI6OTMRmahnwwQcfEJFGo5H2HDt2bPjw4eZOv3s4sXp1xIgRCs4B7t7lKlVYpWLT6lnBwUzE3t5citvQBZQNuG/bts3GxsbW1nbXrl2WGdEcrDHgzv9VXpMWzqSmprq6uqpUqgsyl8gyHDtWOyqKMjLMflL1cOnp6Wq12t7eXorhvvnmm0RUnHgKmLp7966dnZ2tra35qqt/+OGHRDR27FgzHb8QsVxryX898s6cOUNEVatWNdNSxOTk5GeeeYaImjRpYtr8TRQTUKvVSxTp1mdZIqpleoPvhReYiH/7TbEpvfHGG0T01VdfyXjMog1UFSeSEH9T8AddFoiAtYgsFCrSIsnOzhalY0R+urhHqNFoDh8+XIIRc3JydDqdqNzSoEEDvV7/yG8JDw93dHSkUhdtL7Hc3Nxdu3Z98sknx48fN98oZmUwcKVKTMTSzZEpU5iIQ0KUmY+47Zcg4zrVUsvKyrKxsbGzs7OGkh2HDx8m8yxFKsdOnjzZpk0bNzc3lUrl4OAQEBAQHh6enp5esqNdunRJLOKZMWOGtHPt2rVqtdrW1tZ8Xd0ewmAwiKXQX375peVHL5dyc3NPnTolwuheXl6enp41a9Z0d3cXdbFLpkmTJi4uLlKaFzOPGzdOpVL9/fffZn0uhw4xEbdubdZBnlDirozp71QpU6ZMIaIvvvhCbJ48eZKImjZtavmZiLubdevWtfzQ5d6SJdyzp2yJWRkZGcePH//zzz9nzZql0WhEIaCoqCh5ji6H7Oxs0WBs3759Ss/lSff110zE1aqx1JohK4tbt2YiHj5chuMrGHC/efOm6BUsvX+WUbYlPjsxq6CgoA0bNixevFjUsHZ1de3Tp8/SpUuXLl0qap3LIjPzeG7uNXv7uk5OzeU6ZsmcPHnSYDA0bdpUqkUr8raeeuopRedV9lSsWNHPz2/btm16vT4wMFD24xsMBpHFFhQUJPvB76tnz56bNm3asGGD6A7XpEkTLy+v2NjYgwcPtmvXTt6xMjIyevfuffDgQW9v73///Ve01iGi3377bfz48SqVat68eWIa5Vvv3uToSDt30s2bVL06EdFrr9E//9CqVTR8uCUmsGXLlrZt24r2IMJrr70WHh6+aNGi5s1le7MSK4dee+01uQ5YSsnJydu2bbOzsxMZ3PAgNjY2Op2uVatWo0aNmj9//unTp1etWlWtWjXxrydPnlyyZMlvv/0murHZ2Nj4+/trNJq+fftKwffHZWdnp9VqX3755ZEjR0ZFRb3wwgtDhw6dM2eOlEVuymAwvPPOO/Pnzyei8ePHz5o1S6oXf/z48VdfffXChQtVq1Zdvny5KElpJra2tn5+fqKKaxl1+TLdvUs1a9J/v1vq2JHefpu6dFFgMvHx8YmJiVWrVq1Ro4YCwz+Ag4ND3bp1L126dOnSpUIFhSyvUaNGKpXq/PnzBoNBrVYrOxnrZzAYvvvuu48//jgrK6tOnTrNmjU7cODAunXr1q1b99577/Xv33/IkCGdOnUq/k8yOzu7f//+t2/fDggIEAuQiejSpUvDhw83GAw6na6LEn85KpVKDP3111+/+eabIkIBpWFra9usWbOoqKgHPUB0/MrIyMjOzs7NzRVNAsTO9PT0nJycQjuTkpIWLlyYnp7+888/S9eY9evXZ+ZRo0ZFR0eLe43mkJ1NROToaKbDP9FSU1OJSHTZtaqZKDgx6/mZlAOrVtG2bfT998bNlBRq355++ok2bKAtW8jBgYgoIIC++YZ8fB52nKQkunAhOiYmOvY/58+fv3btmulj3N3ds7Kyrl+/bqbnUgKrVq26efNmq1atZI9FwOOaMIF27KD16+n112nLFlKrycGBli8nX19atIj8/WnIEKWnWCLMPHr06GvXrnXu3FmsUyzDlIz2P1hmZqaopnf69GmxR1Qx9vb2lrHu2PXrX0VF0cWLo+U6YImJyNfrr78uNg0Gg4i1FX/VP0hE5ZNCS5wuXry4YsUKvV6/ZcuWqKioI0eOxMbGXrx48XHLPprjdfhw586dI6LKlSvn5eWJPe+++y4Rhcid5ZiRkSGaJXh4eMTFxUn7Fy9eLK54Z82aJe+I1iwggIl4/nzj5q1bbGvLDg5sgdLi//77r4ODQ8uWLU1rd8TExLi4uFSoUEHGN38XFxcXF5ei3TKVsmjRIiJ6QcFi+WXNoUOHPDw8iMjLy2v37t1hYWGiGJQgSseUuPHgfeXm5up0OgcHByKqVavWg6pLvf32246OjoXarshYtP0JsW4dE7G/v9LzYGbmjRs3knkq+5WSv78/EZk7EbWYxF3qy1IDEHiAuLg40d2BiIKCgsRpWHx8fGhoqOlNsjp16gQHBxczrW/Hjh2Ojo6enp6JiYliT2ZmpuhT0rt3b2VrFr/88stkNd19oaidO3eKZRAHDx4Ue/Lz88UdGrOuAvz338LrKUEWmZmZROTg4KD0RJj/W6IqnRH9888/RNS9uwLd4/bs2UP3NgaDElu0iAcOLNicMYPff58/+ICrV2epkGGrVmy6rDQxkaOiOCKCdTrWaNjf31j8/ZlnphW6QLO3t2/SpMnLL788bty4OXPmjBw5kojc3NzOnz9v0Sf5YOLtEe1JrMSNG1yzJhPx118X7PzlFyZiV1c+e7ZUB1cqw33HjgX29vZVqlS5cuWKuccyNyvNcHd0dOzfv/+CBQuWLFkyffp0IvL3969bt+758+f37dsnlmeWXkrKJiKqWPElWY5WGmJ9mZS7evny5bt379asWVNKWoTi69mzp1ar3bBhAzOLMsFEpNfrRZWeB7Gzs3N1dRX/tbe3d3FxcXBwcHZ2njp1qnRZSERLliwhomHDhklHNrdGjRp5e3ufP3/+wIED4pXfs2fPH374YcOGDdOmTZNrlJycnP79+2/durVOnTpbt24VpQ+JaPXq1SNHjjQYDF999ZWopfOEeO01WreOVq0i8aqpWpU6dqRt22j9eho82Izjnjhxol+/ftnZ2R07dpTWR4uUvfT09MaNG8uYoxcTE3P27Nn+/fvv3r3bGrJWV61aRdaUcW/9HBwcxowZs2TJklOnTr344osiZa9q1aqvv/76iBEjTOu2y8XW1lar1QYEBIwcOfLAgQN9+/YNDAwsWlF3zpw5Y8eOlVZo5efnT5069ZtvvmHmoUOHzp8/38nJSfa5lT+JiVSpEsm3pqVUrHbVXaNGjTZv3hwTEyNKESqrcePGCQkJMTEx4k4Y3NfixYvffffd1NTUGjVq/PLLL7179xb7a9euPX78+PHjx58+fXr58uVLly49f/783Llz586d6+PjExgYOGzYMFFr+746deq0e/dutVotrbx59913Dx065O3tvWTJEouds92XTqfbuHHjjz/+OHbsWNGxCaxKx44dRWDrjTfeOHTokKOjo1qt/u2331q1avXHH3/07dt3wIAB5hhXZLiLZFiQUUpKChHJm6RSYshwf6KMHUsLFtDgwdSoERHR5cv0xRcUG0uxsZSefp/Hu7qSt/czHh79vLy8vL29vby8vLy8PDw8bGxspMcwc0pKysqVK/v167d3715RYUZBZ86c2bFjh6ur62CzXhJDsVWvTosWUc+eNHUqde5Mzz1HRDR6NOn1FBFBY8bkbdjAJV7l7OvrW6VKFZEyZTEZGUddXMYuXepdoYJOdEov2xQO+D/Y9u3biahOnTpSYu/EiRPJpM13KeXlpRw6ZH/okG1eXpIsByyNb4cPb1S58l9//SU2161bR0T+VpLYVgbVr1+fiEyrFW/YsKFfv37+/v7dunXz9fVt1aqVp6enh4fHI8s+/vnnn9JB0tLSRC8BCzfhCQ4OJqJPPvlEbGZkZDg7O6vVarlq6ebk5IgiHtWrV5duYDLzhg0bRCprme46WDJFG6V+/z27uRmCg0t3m/ihLl++LD5UBg0aJNXoT09P79ChAxG1aNFC3s4E5jtyCaSkpIhLXNPOAfBwogq/RqMZN27cxx9/3KtXrxdffPGHH36wwND5+flhYWHi9KtmzZqrVq160CPv3LnTo0cPMn/R9nIjKYnDwjg52bh56BDv3KnohJiZecSIEUT0008/KT2RwkQj8XfffVfpiTAzjxo1yjp/SlYiISFBCq8HXBk9VgABAABJREFUBgaadmW/r6ioqODgYKkMi1qt9vPzCw0NLU5dZpEe4ejoeOjQIZmmXyrDhg0jM3e8h9LIzMwUaU9Sc0v+r5F7lSpVzHRmsmYNE3GfPuY49hPt/PnzROTp6an0RJj/W4YltXH+7bffiGjYsGGWn8mKFSsInb1lsmgR16vHAwcav1q2NGa4z5nD8+dzjx7MzK1a8dq1TGT8cndnX18ODGStlsPCWK/n2Fgu5uKrlJQUkWg8ZMgQsz6v4hg/fryMETmQywcfMBF7ehYsx09K4h49btWp00Gr1co1igUy3PPz06Kjm0ZF0eXLVnFuX3rWG3A3GAwiDWTLli1ij0gDF3WsSn/8pKTVUVF05kyn0h9KBnXqMJHhvzDurnnzRjRvPm3CBGUnVXZpNBp6zBZV2dnZiYmJ169fj42NPXXqVFRU1K5du/R6vel13eLFi4moY8eOZpjyw2zYsIGIfH19pT09e/asU6fOnj17Sn/wvLy8QYMGEZGbm5vpLQq9Xi96Hj6xi6B79GAiXrTIuBkfn2hv7+Ls7Fzifm4Pd+vWraZNmxJRt27dpLe4nJwckbbp6elpjuu9+w6qiP/9739klQUrrJmI7kkR9iNHjpBlO3GdP39eWgAUGBhYNAp27NgxkZFatWrVf//912ITK9NOnWIiHjPGuPn99wX/ryDRTHunNcT+7yUSFF588UWlJ8LMrNPpiOiDDz5QeiLW6H//+5+ohV21atWIiIjif2NeXp5erw8KCpISrB7ZXvXYsWMiB7BQYSsFXbx40cHBQa1WW8kNACjq0KFDdnZ2arV6+/btYo/BYBDnYAMGmKX66LJlTMQDBpjj2E800cK6VatWSk+EmVkUud67d6/YnDt3rlI3iUUB2+GyNFJ84i1axC+8wFFRxq933y0IuOfnc7t2HBHBrVpxVBQvW8ZRUVz6vKbTp0+LRRthYWEyPIGSysjIEB/lpkEDsAY5OdyuXeHPlP3794vPNb1eL8soFgi4X7w4MiqKTp5snp+fYb5RLMl62zqpVCrRnlFEOYnIx8fH19c3KSlp7dq1pT++qCdTqZLy9WQoKYni48nFRfVfHQ+/vXsXnjwZ0qSJotMqw8T5sYhTF5O9vb27u3vNmjU9PT2bNWvm6+vr5+fn7+9ftWpV6TEiYcpi7VIlXbt2dXZ2Pnz4sNQvZenSpVeuXCl9bSVmfuutt5YtW1apUiW9Xt+6dWuxf/fu3X379s3Kyho3bpzIH3wCDR6c0bnzid27fxSbtWu7+/q2zMjIeKzXVTFlZGT06dPnzJkzLVq0WL16tVhYIH47GzZsqFq16t9//y31sJVR1apV//nnn7p1627dulV0lpN9iGJCPZkSOHXqFBH5/NePqdCmBXh5ef37779hYWGurq4rVqxo3ry59HlNRMuWLevQocOFCxfatGkTFRUlWkRAcTRtSlu30oEDSs/jPwaDwfKvrmJq1KgREYlmJ4oTk4mJiVF6ItYlOZmCguinnwyJiYkvvfTS0aNHH6unvej8vHjx4lu3bkVERAQEBOTn569bt+6NN96oXbv2sGHD1q5dm5+fLz0+NTV1wIABGRkZGo1GrMywBvXr1x87dqzBYJg6darSc4H7a9OmjVarNRgMw4cPF8U3VCrVggULunadsX37zwsXyj8imqaaiVXVThH1baTJKFjuptBMoJTc3cnX1/hVu3bBfrWa5s2jyZMpK4vUaho4kHx9yc2ttMM1bdp0/vz5RBQcHHzw4MHSHq6kli1blpiY2L59eyloAFbCzo6WLCFXV4qIoN9/N54UPfvss59++qnBYBg6dOiNGzdKP4qIFZgvYpCUtPL27YVqtWPDhv9Tq8tLAVKlI/4Pc+HCBZVK5eLiIjUPnDt3bocOHUR57lK6fDn4yBG39PRi9WIyr+3bmYhNe5g8/TQT8b59ys2pbEtLS3NwcLCxsTl16lRiYmJ2dnbpjxkfH29jY2Nvb//IRdDm0KtXLyL67bffZDymwWB4++23icjFxWXHjh3S/r1794oTQVG9XcYRy5Zbt27Z2to6ODjc/W9p1qxZs8gMHbTy8vL69OlDRdLYtVotETk7O8uylOEhjh8/LppUj1EokzY9Pd3FxUWlUqHZ4GMRpYql0lIff/wxEX388ceWn8mFCxe6d+8uTioCAgIuX76s1WpF0eShQ4dmZJSTDAXLOHWKW7Tgdeu4dWvOzbWKDPfY2Fgiqlu3rsLzuJ+cnByRvKPsGh3h+PHjZNlVJtYvMtLYy6tWLcOiRX/IcsyHtFc1GAz9+vUjolatWlnbO09iYqJIDNy8ebPSc4H7y83Nbdu2Ld1bLWHpUmPrOdkbFs6fz0T85psyHxZEZt7LL7+s9ESYmUWtSOn8Vpzbz5gxw/Iz+fzzz8ki3Q6fBA9qmjpnjnHPu+8yEcueBf7uu+8SkYeHR3FKq5mDWLGxSFoADlbmt9+4Xbtrdeu2OnPmjNiTn5///PPPE1HPnj1LHNjJysrS6/XBwcEVK1asWrWqs7NzYGBgeHh4WlqafHPn7OzLR464R0XRrVtKLuOQnVUH3JlZnE8vXrxYbMoS/svOvnTjxvcJCbNTUv5ltoJ44o8/MhGPGmXczMtjJydWqTglRdFplW3du3eXGmcJLi4u7u7uHh4enp6erVq18vX17datm7+/f79+/QIDA0ePHq3RaCZOnKjVar/66iudThcWFjZ//vyIiIiVK1fq9fq33nqLiF577TVFns4PP/xARANkXXf60UcfEZGTk9PWrVulnUeOHBE/t6CgIKmM+BNLdCj94w9jjCAuLk6lUlWoUCEzM1OuIQwGg0jBq1q1qvTRyMzz5s0jIjs7O1nuLz7S1q1bRVq96GxpYSK9vX379pYfuuy6evUqEVWpUkXaI8JM//vf/xSZj8FgmDdvnrhXJ6pR2dnZ/fjjj4pMpkwTAXdmfuUV/u47qwi4//XXX2Q1ZVuK8vb2JqJTp04pPRHOyMhQq9X29va5ublKz0V5d++yRmOsXevnxzEx8g9x6tSpqVOnNmzYUDrTq127NhG5u7tfuHBB/vFKbcaMGUTUtm3bJzmbwcqdOHHCwcFBpVJt3lyQ9jRgABNxx44s73nx3LlMxNbRgaJcEVUKBw0aZLrzwIEDFy9etPxkREZ58n+NWcaMGUMmxQAtacKECUSEbjqy2LKFTS+YVqzgBQs4PJz//tu4JymJBw9m2T+IsrOzxQL3F154wfLX6UePHiUiNzc3M5VXBVm8/vrrROTr6yulnF69elXUbAgNDX2sQ6Wnp69ater11183XRkjqtEKFSpUGDRo0IoVK0ofeTcYcs+c6RAVRefPl7c+E9YecBf9anqI3hNyyMqKOXasxrVrX9y48f2VKx/JddhSGTOGifjbb42bp08zETdsqOicyrz09PRJkybVqFHD3d29xH2ZC3F0dAwKClLk6Vy4cEFcQ8p1GT958mQisre3X79+vbTz+PHjVapUIaJ+/fohXsD/VVrs37+/tMfX15eI1q5dK9cQ901jX7ZsmVqtVqlU8q5peLg///zTxsbGwoMK4sxg1qxZFh63TPvnn3+IqFOngjYkTZo0IaKjR48qOKv4+Pjnn3++Tp06bm5uKNpeMlLAPS6Oa9XiTz9VPuA+ffp0Ivrwww8VnscDiCJyUtt5ZXl4eBCRhTurW6Fdu9jbm4nY0ZF1OpnDlEVJ7VXt7Oy6dOli2u7eqmRkZIhXyLJly5SeCzzQrFlzu3Q5WK9eQdnlW7eMCzUeM1jxCDNnMhF/ZB0Xo+XJzz//TEQajUbak56e7uXl5ezsrNPpLBmmNBgM4nw+Ly9P7BH1csPDwy02B4lY1jxv3jzLDw0yun79uodHwy5d9lp+RavIPnxiu7uVFampqaLCoel5+5o1a1QqlYODQ3FWk6enp0dGRgYFBZkWv/Lx8QkJCRHZLXFxcWKhoVjNLKJkormOdHPxcV29OiUqio4fr5ube6dkR7Ba1h5wT05OdnJyUqvVcpUauHnzh9jY/o9+nCV17sxE/F/7cl6xgom4d29F51QOpaSkJCYmXrp0KTY29siRI1FRUVu2bNHr9StXroyIiJg/f35YWJhOp/vqq6+0Wu3EiRM1Gs3o0aMDAwP79evn7+/fpk0b8Z4yaNAgqcaRJdWpU4eIhg8fvmXLllIulD558qS9vb29vb1p4PjcuXO1atUiopdeeska1uZbg6tXr6pUKmdnZ+m2rUhPk6vj0H3T2KVk85kzZ8oySinnY25ZWVnitjlCVI8lNDSUiN5++22xmZ2dbWtra2Njo3gVhX379hFR27ZtlZ1G2SUF3Jl5+nR2d+cxY/jyZb6j3PmnuCVmPf0nCwkODraeO3Zi3e7GjRuVnohiMjNZq2W1mon42Wf59GnLDZ2dnb1v3z4rTx4XRXgbNmwoS7VDMIf8fOOV2dChBTsjI403kKKjZRvo77952DBWaFlaefbNN98UCjbduXNHah3RsWNH0xWlZiWqybu4uEh7fvjhh8DAQEU6kIuP8iVLllh+aJDXtm1ZtrasVrN8CWCPlpqaKq7XTp48ablRoUQOHDhgb2+vUqlMQz2TJ09evnz5Q74rKSkpPDw8MDBQ6lEvxdnPnj1732+5ePHit99+6+fnp1YbO4M6ODgMG9b/9u2FjxU3T0nZduiQTVSUOiVla/G/q6yw9oA7Mw8YMICIvvrqqwc9IDEx8caNG5cuXcjIOJGeHpWS8u/du5sSEyPu3Fly61ZYQsLs69d1V69OunLlw5s356WkbD1ypOLNmz/k5SVZ8Ek8VJUqTMTXrhk3Q0KYiCdPVnROcB+RkZGi1HWTJk2iZTzjfpSkpCTRqVUkRhGRra2tr6+vVquNjIws2Y3EyMjIFStWSJsXL16sX78+EfXo0UPGeinlgFi4t2rVKrF59uxZIqpSpYqUq1Jiy5cvL5rGLpVTHzt2bCmPXzKTJk0qmnEvl2vXru3fv7/QTlFq09fXV/bhyjeNRkNEc/6rFimKRzdq1EjZWTFzdHQ0ETVr1kzpiZRVpgH37Gxu2pTffJNbtmQvL7ZA0ZTU1NSit75atmxJRAcOHDD78CXy/fffE9Fbb72l9ESY/0sh/P7775WeiAzOnmWTriJ84sQ9d32ys1mvZyn9ICGBjx/n/fu5aVMmYltb1mo5J8eiEy4T8vLyRPNhRWpKQDFduMAVKjARR0QU7BwxwngbqdQngLxyJY8ezdJS0mnT+MQJHjuWTd99Bw/mxMTSDvRkmjVrVoUKFZ555hmpCZOwdu1aUVHd0dExJCTEAje94uPjiahWrVrmHqg4evfubT2rwaCUvv6aidjNTf7eEg8isrK6detmofGgdESOYLVq1a5JMcYHuHPnTnh4eEBAgL29vQg0qdVqPz+/0NDQK1euFHO4W7duiYPY2dlNm9YhKooOHbI5c8bvxo3QnJxHTICZExMjDh92vXbts2IOV7aUgYD7unXriKhixYr+/v7PPvts69atPT0969SpU6hUSP36daOi6OFfMTE9mTklZfP5832PHHG7fl2BjiWFxcczEVeuXLCnf38m4t9/V25O8EDnzp1r0aIFEVWoUCHC9DTcbNasWVOjRg0x4ocffvjhhx+2bdvWxsZGeuXb2dn5+flNmTJl06ZNJaufdfnyZVEC1c/PT97eF+WAaJT6+uuvS3vCw8OvXr1aysPeN439woULYpHBoEGDlCqgbzAYRo4cSUVqypdMWlrazp07Q0NDg4KCRIih6FXH8OHDSaH+UWVax44diUiv14vNZcuWEVGfPn0UnRQz88WLF4moXr16Sk+krMrMZNPkofh4PnCAW7c2Xllt2mSWQfPz83fu3KnRaCpUqFCoiF9ubq6Dg4NarbbaT4dNmzYR0fPPP6/0RJiZZ8+eTUTBwcFKT0QGb7zBP/9csPnCC2waqLlxg4lYeqJ//MH9+nGlSkzELVrI3ymuPPnzzz87duy4b9++Rz8UlDNvHhNx1aoFt53u3uWWLTlMjl5un3/Ozs4snQB268abN7OPDx86VPAYd3d+VJwE7i8/P1+cc3p4eJhWzmTmpKSkkSNHiiXLbdq0OXZMngX0D3L69Gkiaty4sVlHKSbRmArl/soHg8EYMWrZkmUvqJ6bm1v0lK9169aoh1aG5Ofn9+jRgx5c7t80RC5iSjY2NiLO/sgY/UPcvHnz7Nkl5869eOiQnQjAHjpkc/Zslxs35mRn3xO+T03dHRf3RkxMr6tXJ+fnZ2ZnxxkMpb6bbZXKQMA9Nzc3JCSkcuXK9ABubm7VqlVr27Z1dLTPqVO+Z892PXeuR2xs4IULQy5e1Fy+/N7Vq9rr12ckJMxMTi5YVZGVdeHwYaesLDN0cXosmzYxEXfpUrBHZAcpWocXHiI1NXXQoEFEpFKpgoODc8yWwZWcnCySWEUoPMak41hqaqper9dqtX5+ftLdSPFG6evrGxwcHBERkSTVnnyohIQE0fviueeeS0Gf3iLM0Sj1vmnst27dEjW4u3XrpmxJn7y8vL59+xJRw4YNr5vmNxZDbm7u0aNH58+fP2rUqBYtWpjeGSKiSpUq+fv7m57D5eTkiPf205asO1AuiHYL8fHxYjMkJISIJlvB0qjbt28TUWXTu8hQapmZ/PrrTMQ2Nixvw7PTp09PmTJFWj6lUqm6dOli+rl26tQpIvLy8pJzVFmJHid169ZVeiLMzJGRkUT00ksvKT0RGTwy4F6tGjdrxlFRzMx//MEDB/K8eTxxIqMoHZQDBgP37MlE/Mor9+yUxeef87vvct26fOkSMwLuZnDixIl27dqJz7XAwMBbt26Z/uv27dsbNWrUoEG3ihUNWi2bb2WvaDnetGlTcw1wP2lpaaGhod27dy8UZWvTpg0RRYm3bCj7UlK4WTMm4iFDSn6Q7Ozs2NhYvV4fFham1WoDAwN9fX0dHR2nTp1q+rA9e/aIdGlUnS1DEhISatasSUTfmHT4vXTpkii/bloExt/fPzQ09MaNGzKOnpeXlJgYERcXdPiwi5T9HB3tEx8fkpl5Njv7ytGj1ZKS1mRmnrpz53dmqy4GWEplIOAu6PV6vV6/b9++Q4cOxcbGXrlyJTExsQRrwQyGnP/+J+vo0eqZmUpHeWbPZiKW4m5ZWWxry7a2uF6xcmFhYSLS3blz58cNShbHxo0bxbJHJyenh3f4SUtL0+v1ISEh/v7+jxt8v3nzZvPmzYno6aefTsTK1QcQZ6hyNUq9bxp7enq6qF3TsmXLEjcbkVFGRkaHDh2IqEWLFo+8cxMfHx8ZGSlegaZF34jI1tbWx8cnKCgoLCwsOjq66MtYpKY+9dRT5nom5VRuQsK/XbvONlnX2b9/f7KO0pxZWVlEZG9vr/REyhuDgXU6VqmYiEeP5lIuhReFGv39/aV+Rx4eHlqt1vTOrhAREUFEr5jGnKxMfn6+g4ODSqWyhhz8qKgoK78/UXxvvMHz5nFOjvGrR4/CAffatfmvv7htW87LMwbcAcqT+HiuXJmJeNEimY/8+ec8bRrPmcNiWZoUcB87lr/80vjl5ISAe6nk5+eHhYW5uroSUfXq1Qv1KU1LS/v00+ui20TTprxrl8yjX7lyJTg42MHBoVq1akQUEBBQ+tWxj5SRkTF79uzq1auLj/V/pP5wzMzs7e1NRA+qxQxl0enTxuJXpnfHHyQzk6OjOSKCdTrWaNjfnz09uVu3v4sms6rV6nfeecf0e9944w0rSeuBx7JhwwaVSmVnZ7d69WrZ25wWU15eSmListjYQCnyfuiQQ3LymhMnlK+DahllJuAulxs35p461ebChaEnT7aIi3tD+dsp8+axjw//8otx88gRJmJUvy0Ldu7cWbt2bSKqU6fO7t275Trs3bt3NRqNeDds3779Y50YmQbfRcWSosF3KbCelJQkQsktWrS4ffu2XPMvf6ZPn07yNUr95JNPiMjf31+6X5iTk9OzZ08i8vT0NMfNm5K5ffu2WPrwoIz7devW9e7dW9Q7MtWoUaMhQ4bMmTNn7969j8yDEGs4QkJCzPIcyrEtW5iI/fykHZdefXV7164XjhxRbk4FxOJEtAQ0h4gIdnZmIu7YkUuQiZKXl6fX64OCgpydncUfbMWKFYOCgvR6/X1bTZ47d65z585ENGXKFBlmbzbNmjUjomPHjik7jXPnzjVv3tze3t60RUrZ9cYbXLMmN21q/HJxuU/AnZlffpm//x4BdyiflixhIq5UyZiKXhp5ebx7N0+ZwlOmGAPuubn89NMcGVkQcA8J4YULjV8uLgi4y+DChQvdu3cXn3e9evUqVJJ4zx728WEiVqlYo2FZFvrGx8ePGzdOXIWJEg0i6O/u7r5I9ls3/8nOzg4LCxOXpUT03HPPRUZGFnqMOGO3ngsNkMUffzAR29nxw0MRH3zARPf56tLlXKNGjV566aV33333u+++W7t27alTpwpdviUlJTk7O6vV6gsXLpj3yYAZvPfee6bX6RUqVBg0aNCKFSvSZS9F9Cj5+RlJSasvXBhy4cLgvLzEEyc8z53rkZT0p5QPXV49cQF3Zs7JSUhL25OVZWVvGeKt7cgR7t2by0X1zyfBzZs3xWmcra2tTo51/jt37hQJCI6OjjqdrjSdOVNTUzdu3Dh58uQOHTqYdjuwsbF55plngoODRX3Dxo0b49zr4c6cOSM+n3r37v3FF1/8888/xSzXc18Gg+GHH36QqvcYDIYRI0YQUdWqVa0t6+TKlSui0MTAgQOLJqfPnz9fvKJEoZiQkJDIyMibN28+8rDJycl6vX769Ol9+vQR/e4VD5OVPXPnMhG/+aZxMyeH7e1ZrWYryPBlZlExCYtmzOTIEfbwYCL29OTid++Ojo7WarXSHTK1Wu3v7x8eHn7frPDk5GTT/PdRo0ZZ27tTIa+88goRrVy5UsE5rF27VmqrfsoC/W3N75ElZUTAPTaWa9Xi779HwB3Kp8BAJuLnny9hPZnERI6IYI2Ga9UyRrgqVeKQEJ42jZl5925u0oT9/FBSxowMBkN4eLgoYFipUqWwsDDTG8w5OazTsb09E3GDBqVqlHLr1i2tVuvk5CQ+ZAMDA0UzpPj4+D59+ogP3xdffPHixYulf1KSnJyc8PBw0YuLiFq2bFm0x1hKSopOp3N1dfX09LSGpWAgr3HjmIg9PPghF2GzZ7ODA3t6sr8/azSs03FkJMfGFrRufohvv/2WiHr27CnjnMFisrKyFixY0LNnzzfeeCMyMlLGGrmllJd399atX06ffu7UqdZ5eXcf/Q1l1pMYcLcuN29y377s5cU+PtyyJRe5HQ1WLjc3V6vViqjE66+/XuLzmIyMDK1WK8ppPfvss/Jerqenp+/cuVOn05lmvjds2NDLy0uqAQ0PsXfv3kLlyGvVqhUYGBgaGrpz587SfHRNnDiRiJydnffu3SvjhOVy4sQJd3d3IhozZkyhf7p8+fIff/xRnGSH3Nzc6Ojo8PBwjUbj4+Mj1YwjIpVKtW3bNvPMvVx75x0m4m+/NW6ePGmMv1oHUQ7r8mXz9iJ7kl29ym3bGgM3ev3D3sPj4+NDQ0NFqyvBx8cnJCTkvhf8ubm5a9euDQwMdHR0lBJhRowYYf3dHT/88EMi+uqrrxQZ3WAw6HQ68c7Wp0+fu3fLyWVDMQPuzPzZZ+zhgYA7lE83b3L16qxS8WM1mzxxgnU67tSJbWwKkkm9vTk4mDdt4mnTjAF3Zh41itVqBNzN7sqVKwEBAeKjbcSIS7Gx9/zrkSPcpg0Tce/eJTn47du3Q0JCRBKJSqUKCAg4UmTFYURERNWqVcU5fylzqgQRavfy8hJP6qmnnoqIiCi0WO3u3bvTpk0TN4OJSK/Xl3JQsELZ2dyhA7u68pYtD3tMiY6cfebMGfEaW7NmTYlnCPBghlOnfBMTlys9DTNCwF1p/v78wQcsskcPHOCqVVnW+95gGWvWrKlUqRIRNWvWrASx8j179jRu3JiI7OzstFqt+RqxMnN6erper//444+PHDlSaGUlPIRppXKpGoMgKpVrNJrw8PD7Vip/kB9//FH80jdu3GjWyZfGtm3bRPTt66+/Lv53iR+X6Osrkn0kdnZ2pj+u+xaygEfo0oWJWHrZRESU/DLRDEQxovKR5Gu1MjN56FBu2/amvb3Tg9ZXZWZmipXsRFS9evXx48cfPnz4vo8U+e+it5JIzfPz8wsLC0tNTTXnk5DNzz//TEQjR460/NB37tx56aWXxOoxnU5Xnt7Qigbcly7lN97g0aP5u+/uCbhnZXGTJgi4Q7n199+8di3HxrIUI717l+9tw8nMnJHBej1rtdykSUGQ3caG/fxYp2PTXpXff89z5hj//9Ytfuop3r2be/S4Z9FSq1YPy1eFklm6dOlLL4UTsYsLf/cdm56w5+byN9/w4xZav3OHP//8R/FRq1Kp+vbt+5BVmzdu3AgKChKfsx06dCjxaVJ+fn5ERESjRo3EoZo3bx4eHl7o6iMtLU2n04m8fiLy8/NDgks5dvUqnzzJ69ez6Uq/H3/k4icAZGVlSd1Tg4OD/f39PT09RbZZvXr1mjdvnlucZHiA4snNvZWTc5WZ8/LunjjhlZKyVekZmREC7oq6fp1dXTkjo2DPO+/wZ58pNyEouTNnzogGpBUrViz+wvbMzEytVis+z1q0aPGgaAhYFSllOzg42NfX1zRlW7wA/Pz8RMX8hISEBx1k2bJlarVapVKZr6SjXNasWWNjY6NSqRYuXPigxyQnJ4tVFAEBAaJDlClPT8+goKDSLwgAo2rVmIilG2bTpjERa7WKzqlA27ZtiejAgQNKT6ScMxj4yy9ni/VVI0eOvG/R/BEjRvTv3z8yMvK+93Hv3LkTFhYmmnkITZs2DQkJiYuLM/vsZfXvv/8SUadOnSw87tGjRz09PYmoatWqhdrTlQMHDrBpEuj27XzuHItFcV27clYWm7YSP3WKrXKZFoA8Tp9mIp41y7j5ww8s9RRMSODwcA4MNHYvFF9Vq3JgIIeHcylqEIJZJCayRmP8NT33HJ88WcLjpKSwTsdubtyly1Ei8vf3P3jwYHG+ce3atWIhoKOjY0hIyGM1vBGh9iZNmoiP7GbNmoWHhxdKlk9PTw8NDZXuoPv5+f37WKszoMwaPpzt7fnECeOmh8f90zhv3eJ9+3jpUv78cx42jPv2/aBoRy4ppczT03P48OHlKZkArEFq6u5Tp9qcOOF9/LjH1atW3Saq9BBwV9Tu3ezjc8+euXM5KEih2UBppaamBgYGihwHrVb7yNWC+/fvF6mgtra2Wq0WPQbLqNTU1J07d4aGhgYFBYngi6latWoFBASEhITo9XqpP8nWrVtFbZ9Z0tWbdfvpp59Ecvrff/8t9uTk5ERHR4eFhQUFBfn4+EhNzws968jISLTkldmtW0zEFSsWFJQdOJCJODxc0WkV6NKlCxFt3bpV6Yk8EVasWCHW3HTo0OEhd/hMZWVlRUZGBgYGSu093N3dNRrNzp07zT1bM7ly5QoR1ahRw5KDLl26VPzkW7duXeZuUZTG1atIZocnzunTXK8e169v7J76ww/81lus1XKLFgVBdrWa27blkBA+cICLvdYRlLF+vbEbip0da7WPV3AjJYW/+ILd3Y2/99698/ft2/9YoycnJ2s0GnHm3LJly+JE6g0GQ2RkZKtWrcSndsOGDcPCwgpdaYrWqbVq1ZKS6FFD5okyfDgPGMAdOxqvDzw8+ORJ3raNf/2VJ0/mAQPY15fd3Ar3TX3mmc+JyN7e3tPT09/fX6PR6HS6iIiIqKioDNOsUAAoEQTcFXX8ONevf8+eGTN47FhlJgMyCQsLE1GMrl27Pij8kZOTo9PpxMOaN29ezJwIKBOuXr26evVqrVbbtWvXChUqFMoUaN26dWBgoFh8+sEHHyg92ccwefJkInJ2du7fv7+vr69pJ14icnV17dKly4QJE1auXIni3ea1dasxL0vy1FNMxFbzNtKrVy8iWmua/grmdPTo0Xr16hFR3bp1H75MKioqKjg4WJSRJSIbGxt/f/+IiIiyfrvXYDBUqlTJxcWlX79+Fogv5OTwp5+eFkvTRo0a9USt2omP55EjuXh3dgDKj9On+amn+IcfuG9f5v8y3L28mIidnTkggMPCHrsaCSgrOZmDg1mtZiJu0YL3FyNmnpbGoaFco4YxUunn93iV/QvZvn27KAsj8q4e8lGSk5MjrUXz9PT87bffCtX3EKH2OnXqiMc899xzkWgL9+QZPpyXLOEePXjBAmZmDw9eurRweF1k7LRuzYGBPGkS//IL79x58fLly8hhBzATBNwVlZ7OFSrwuXMFe/z9+bffFJsPyGT79u0iv6Bu3bpFm2EeP35ctLBTq9XBwcFZWVmKTBIsIzY2VhSf8fPzkzrWPvXUU4MGDSp+tXdrYDAYRo4cKdZkiFCdj4+PVCimrAfsypIff2QilspV5+aygwOrVGw15bYHDhxIRH/88YfSE3mCXLt2rV27duLWV9HGVpcvX9bpdFK9VyLy8fHR6XQ3btxQZLbmcPnyZam6V6tWrX788cfk5GRzDHT9OnfqxETcvfvMn01rnD8BTp7k+vV56lTW6bjUDf8AyhIRcM/L46ef5r/+MgbcV6/mzZtL2I0QrMSOHcaa+7a2HBzMaWm8ZUtB9fzkZBbl8bKyOCyMa9Uyhiw7dODNm2UYPT09Xaos6uXl9ZClgaNGjfLw8AgNDS102Shap0rra1u2bFm0dSo8IUTA/fRprlWLb99mDw/eu5fbt+ehQ3naNF6yhPfuRWcIAEtDwF1pM2Zwy5a8fj0fOMDjx3PLlmzOhplgMfHx8R06dCAiBweH0NBQsTM3N1en09nb24sMhe3btys7SbCw9PT0nTt3zp49+8aNG2UxQp2bm3vr1q1Zs2bt2LEjLS1N6ek8qd59l4l45kzjpqgs26CBonO6x6hRo4jol19+UXoiT5asrKxhw4aJmmYhISHMfPfu3fDwcH9/f6niU+3atYODg48ePar0ZM3i3LlzWq22evXq4sk6OjoGBgbKm/B+8CDXq8dEXKfOk1iyPDWVY2ONX4jnwBNFBNyZec8e9vLi2bMLarhDWZeezh98wDY2TMSvvcaOjvzSS8Z/2r2b27fn778vCLW3b8+yL6Pas2ePj4+P+PjWaDQpKSlFH5OYmFjowkGE2r28vKRUHoTan3Ai4M7MkyfzmDEPrOEOAJaEgLsV+OsvfucdHjyYv/kGvXXKk9zcXK1WK06Dhg4dGhUVJXoJitMpxCsBoCSef56JeP164+aqVUzEL7+s6JzuERwcTETfffed0hN54hgMhunTp4tE7yZNmjg5OYkPIBcXl6CgIL1eX7ZW1ZRMdnZ2RESE6W2Gpk2b6nS60jeTCAtje3sm4k6d+Pp1WSYLAGWDFHBn5tGj2dsbAffy5sgRfuYZjopiR0fu0oVXrmT+L+AeGMhE3LIlR0SYa3RRa1SkZDVo0GDTpk0PebBonSqtWvPx8QkPD38SPt/h4aSAe3o6e3uzszMC7gDKUxMo7pVXaN48+t//aMIEcnNTejYgG1tbW51O9/vvvzs7O//+++/t2rWLiory9PTctm1bWFiYi4uL0hMEgDJo2DB6+216+mnj5smTRETNmys3ocJEi4L09HSlJ/LEUalUU6ZMiYyMdHNzc3V1zc7O9vPzCwsLu379+uLFi/39/aWiK+WYvb29SGw/d+7cxIkTq1evfubMmUmTJjVu/PTo0fl79pTkmFlZNHo0vfUW5eSQRkNbtlDNmnLPGwDKiK+/puRkpScBcnv6adq/n3x9iYhmz6YPP6TUVOM/ffEFRUbS0aMUGGiu0e3s7LRabVRU1DPPPHPx4sUXX3xxwIABd+7cKfQwg8GwYsUKHx+fAQMGxMTENG3aNDw8/Pjx48OGDXsSPt+hmJydadYsyshQeh4AQKRiZqXnAFDOnThx4q233mratKmdnd3s2bNFNAoAoIQSEujwYSKiNm0oMZF27KCnn6bnnlN6WkYzZsyYOnXq5MmTZ8yYofRcnlCJiYnXr193dXWtX7++0nNRWE5OzqZNm5YsWXLjxss7dgwnoqZNafhwGjWK/usd+whXrlD//nTgADk60s8/0xtvmHW+AGCNkpNp82bq39+4uXs3MVPHjorOCczDyYlSU+mDD8jGhgID6aOPqGR3aksmLy/vxx9/nDp1anp6eo0aNb7//vvAwEAiYuZ169Z9+umnR48eJaIGDRpMnjx55MiRtra2lpscWLdbt8jJiaQwQ1wceXgQXiAAykLAHcBCmFla4Q4AUELz59Nnn9FrrxERrVpFn31Go0crPad7zJ07d/z48ePGjZs7d67ScwEwio3NX7DAZtEiSkggInJyov79SaN5RMhs2zYaOJBu3iRvb1q9mlq0sMxkAQBAGSLgnp5OTz1FISG0cKFFA+5CbGzsm2++uXXrViIKCAgYMmTIzJkzDx8+TET169efMmUKQu0AAGUCAu4AAABlxJUr5ONDx49Tw4ZEROfPU7t2dPKkVVW4WLhw4ahRo0aMGLFw4UKl5wJwj/x82rqV5s+n1aspP5+IqEkTGjHCmPBeowYNGEDff09EdOIEDRpEzHT6NPXqRb//jpp/AADlnwi429rS0qWk1VK9egoE3InIYDD89NNPkydPTk1NtbOzy83NrVev3scffzx8+HA7OzsFJgQAAI8P1b4AAADKiD17qFMnY7SdiLy9qV072r5d0TkVJqpmpaWlKT0RgMJsbMjfnyIiKCaGpkyhWrXo7FmaNIk8PGj6dCKi9evp4EHjg1UqWrnSWL0X0XYAgCfKkCHUpIlio6vV6rFjx0ZHR48bN27atGk//vhjTEzMm2++iWg7AEAZgrVIAAAAZcS1a1Sjxj17atak+HiFZnN/oiM0Au5gzRo2pOnT6fPPjQnvf/5JdesSEX3xBb39Nh04YHyYjw/5+Cg4TQAAsKilS8nGxvj/ixZRTIySk6lXrx6q8wEAlF3IcAcAACgj6tQxlqCWXL9ujBRaDZHhnp6ervREAB7BNOF9wAAiop49qU4d+vFHpWcGAABK6NePpJZbHh70/POKzgYAAMoyBNwBAADKiA4daNcuunjRuBkXRwcPUpcuSk6pCJSUgTKnQQNycjL+/5w59NVXdPOmohMCAAAAAICyDCVlAAAAyoi6dWnmTOrUiQYNIiJatox0usJFZpSGgDuUaQ0b0rvv0qefKj0PAAAAAAAos1TMrPQcAAAAoNiuXaP9+4mI2rWj2rWVnk1h8fHxdevWrV27dryVFZcHeLgaNej0aapcmXJyqFUrsrGh6Gil5wQAAAAAAGUQMtwBAADKlNq16dVXlZ7EA4mmqajhDmVOUBA5OBAR2dvTL7/Qli1KTwgAAAAAAMom1HAHAAAA2VSqVOnmzZtIb4eyhZkSEsjR0bjZvHnh/sQAAAAAAADFhJIyAAAAAPBEMxjIxoZycsjOjogoPp5ataLbt5WeFgAAAAAAlEHIcAcAAAAAAAAAAAAAkAFquAMAAAAA0E8/kVpNRHT3rtJTAQAAAACAMgsBdwAAAAAAysszBtzz8pSeCgAAAAAAlFmo4Q4AAAAATzTUcAcAAAAAALmghjsAAAAAAAAAAAAAgAwQcAcAAACAJ5pKRW5upFIZN9VqcnNTcj4AAAAAAFB2oaQMAAAAAAAAAAAAAIAMkOEOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAwP/Zu/O4qKo+juO/YRNR3DdccssNl1TccRfXSC2zxcSylGwjW6l8CnMpKivKMs0W0bQi0yK1FFMTNRdwxSVNXHEXZVNkmfP8cWgccUO4M4Pweb98Pa/mOs4583gd7nzvOb8fAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADODi6AkAAAAAAAAAAApEKTV37tylS5eeOHGiZcuWd91111133dWkSRMXFxJguzIppRw9ByC/EhNl2zbp0SPn4fHjcvCgdOwoIrJ1q+zaJZUrS/v2UqaMA+cIAMVNdLRkZ0v37jkPf/9dKleWNm0cOSUAAAAAKPLefPPNSZMmeXh4XLhwwXLQ1dW1QYMGPj4+TZs29fb27tChQ+XKlR04yeKAwB23s7//lmeekc2bcx4uWCBffy2RkTJ0qBw9Kv37y9GjsmSJREZK27YOnSgAFCPjx8ulS/LuuzkPn3xSmjaVoCCHzgkAAAAAirQffvhh2LBhTk5O33zzTfXq1Xfu3BkbGxsbG7tnzx6z2Wz9TC8vL0v+7uPj06RJEycnqo4biQ0FKHJmzZKEBFm3TvR+mVmzZNQo2bbN0dMCAAAAAAAAjBcdHf3YY48ppT799NMRI0aIiJ+fn/6tlJSUvXv3WvL3rVu3Hj9+fNGiRYsWLdJP8PT0bNiwoQ7ffXx8Wrdu7eHh4bB3UiSwwh23s7//lieflKVLcx7+/rv8/LNUriw+PvLcczkHs7PFw0NOnpRy5Rw0SwAoXsaPl717ZdSonIcffyy9e7PCHQAAAABsYv/+/R07djx9+vRLL700ZcqUGz85Ozt7796927Zt27p169atW7dt23bixAnrJ7i4uDRq1EjXf2/VqlWrVq0qVapky+kXQaxwx23uwAF58MGc/z57VurUkRMnpEqVy09wdpaKFeXYMQJ3ALCb3bvlxx9z/nv/fund26GzAQAAAG4oOzs7JSXlp59+6tKlS+PGjR09HeAWnD17dsCAAadPn7777rvfe++9mz7f2dm5SZMmTZo0eeihh/SRc+fOWda/79q1Ky4ubufOnTt37pw3b56IjBo16vnnn2/WrJlt30bRQuCO21yDBrJ6dc5/6xruNWrIsWOXn5CRIWfOSK1aDpkdABRP/fpdUcMdMNzFixIZefmee2KirFkjAwc6dE4AAOD2pJQaM2bM2rVrd+/eLSJVqlRp165d586d/fz8WrVqRW1rFGYZGRlDhw7du3dv69atf/zxR2dnZxExm823dN6WL1++c+fOnTt31g8vXry4c+dOvfh91apV33777d69e//66y+bvIEiisAdRU7PnjJlijz9tJQoISLyzTfSubN4ejp6WrmdOHEiJCQkMTGxdOnSnp6epUuXLlu2bNmyZS0Py5UrV6ZMGctDR88XAIBC5Nw5efrpy4H7gQPyxhsE7gAA4JYppZ555pmvvvrKw8Ojd+/eO3bsOHHihKW8dYUKFTp37ty9e/cuXbq0atVKp5lAIaGUGjVq1MqVK6tXr/7rr7+WKlVKH3/22Wezs7M///xzF5f8BL8lS5Zs06ZNmzZtRCQtLa1q1arR0dEHDx6sU6eOgZMv2gjcUeQ8/LAsXSpt20r//nLkiKxdK0uWOHpOuW3YsKF79+4eHh6JiYl5/CPly5f39PTU4bunp2f58uUtWXyZMmXKlStXqVKlIUOG2HTaAAAAAAAUJa+99toXX3xRsmTJRYsW9ejRQ0Ti4+PXrFmzdu3aqKioAwcOREZGRkZGikipUqU6duzo6+vbuXPnLl26lNCL/ADHefvtt+fMmePp6blkyZKaNWvqgx988IE+pceOHdukSZMCDlGqVKl77rnnhx9+iIiIePXVVws85eKCpqm4nSUnyz//SNu2OQ9Pn5bjx6VFCxGRvXslLk6qVBEfH/n3X2nYUArNz8KMjAwfH5+4uLhHHnlk0KBBKSkpKSkpqampKSkp586d0/+RmpqanJx8/vx5/fDChQs3fdnq1asPHjz4o48+4qc+AMc6flzOnxfLpd2//0qZMlc018Dt6PRpEZHKlXMeHj4s1atLvlbMGOPYMWnaVDZsyHm4c6e8+abExTlsPgAA4HYUEhIyYcIENze3BQsW3H333Vc/4dixY2vXrl2+fPmaNWt2795tydA8PDxatWqly874+vqWLFnSvhMHJCIi4qGHHnJyclqwYMHA/3Z6Llq0aPDgwWazee7cuQ8//LAhA/32228DBw686667tm7dasgLFgcE7ijq/vc/efdd+eQTefZZR08lh/6J3rBhw61bt+bxp7LZbE5KSkpKSrLE8efPn09OTrY8PHfu3C+//HLq1KnPPvvsmWeesfVbAIAbmD5dnnlG1q2T9u1FRB54QIYMuVz6A7epkSPl999l924pX15EpHZtWb1aatd22HyOHZM6dS73401OlnPnCNwBAMAtCAsLe+GFF5ydnefNm/fAAw/c9PknTpyIjo7Wi983b95sydNcXFzuuusunbx36dKlXLlytp03ILJmzRo/P79Lly5NnTr12f/yrtjY2G7duqWlpb333nsGrkbPzMysXr36mTNnduzYQevUPCJwR1H3yy9y773i5SX790shuOe8Y8eONm3aZGVlrVy5smvXrga+8sKFC++77z4vL6/9+/dzdx2AA02fLtOni6urrF8vzs4E7kXEyJGyZYt07ChffCFSOAL35s3l7Nmch7Gx8uijBO4AACCvPv/882effdbJySk8PHz48OG3+sdPnToVHR29evXqv/76a8eOHWazWR93cXFp06ZN165du3btes0l89DS09NjY2NdXV1bt26dvzrjxdmBAwc6dOhw6tSpoKCgTz75RB9MSEho3759QkLC448//vXXXxfk9S9dujR79uzo6OjZs2frI0899dT06dPfeOONyZMnF3T2BklJEVdXcXfPeXjunJQtK+fOScWKOUeysiQlJWe1kP3RahlF3eDB0ratHD8uM2Y4eiqSnZ39xBNPZGRkjBkzxjptz8rK2r1799GjR8+fP5/vFx88eHDbtm2PHz/+5ZdfGjBXOFp6enp6enpKSoqjJwLkR5cucscdMm2ao+cBQwUFycqV8vffjp4HAACOkJmZGRsby/V50RAeHh4UFGQymT7//HNL2n7s2DHdKDUvqlSpMmTIkE8++WTr1q3nz5+PiooKDg729fV1cnJav379+++/HxQUpCu/42rbtm1r0KDBU0891b59+3LlynXu3Pm1115bvnx5enq6o6d2G0hMTOzfv/+pU6f69+//4Ycf6oMpKSkDBgxISEjo1q3bF3qBTAG4urqOHz9+zpw5sbGx+siwYcNEZO7cuYVn3Xb//tK1q+hbXZcuSbVqkpAg1iXrN2+W7t0dNDmaphorK+us2Zzm6lrDZKJvdWHy1ltyzz3y3nsSGCgeHg6cyEcffbRp06YaNWq888471sdPnjzp7e1teVimTBndENXT07NcuXI36JVav379unXr6j9lMpnefPPNgQMHhoaGjh492sOh7xQF9Ntvv40dO7ZNmzZ//vnnm2+++eyzzzo786mC28yHH0rHjkIv56LEzU3ef1+eflo2bXL0VIDC5sgRWbBADh6UunVlyBCpUcPRE0KRwHlVCBw7diw2NjY2Nnbt2rXr1q27cOHC448/3q1btxEjRjh6asi/n3/+edSoUWaz+f333x8zZow+ePr0aT8/v3379i1cuNDf3/+WXtDT09PPz8/Pz09EUlJS1q1bt2zZsrCwsAceeOD06dOenp7Gv4d8OXhQvvlGJkzIebh1q6xYIS++aO9p7Ny508/P78yZM6VKlWrUqNE///yzdu3atWvXvvfeeyVLlmzfvn23bt26du3aoUMHYo2rZWZmPvDAA//880+zZs2+//57vTkgOzt72LBh27dvb9KkycKFC93c3Ao4ipOT09ChQz/55JN58+b5+PiISOfOnevUqXPw4MF169b5+voa8E6MkJoqX34p//0jLmQUjGA2Z+7fPyQurvE//3TbubOZUtmOnhGu1KGDElEffODAKcTHx5cqVUpEfv3111y/dfDgwUaNGlWvXr1MmTK39O/3ySefzPVS7du3F5EpU6bY623BYNu2bevZs6f++61UqZL+j1atWq1evdrRU0PhlZiosrJy/jsjQ6WkOHIyFy6oL75Qzz6rlFKTJqnhw9XQoeqHH9SFC46cFQrCbFYXLqjHHlNz5iil1D33qKlT1R13qIMHHfnXmpGhVq26fOafP682bnTYZFDcbd+uqlVTb7+tfvtNvfWWqlZN7dzp6Dnh9sd55SDJyckrV6589913Bw8e7OXlZf3ly2Qy1axZU0QqV6587tw5R88U+fT777/rOHLy5MmWg+fPn9epYvPmzc+cOWPIQJ06dRKRhQsXGvJqhti4UTVvfvnhr7+qPn3sPYd9+/ZVr15dRPr06ZOenq6UOnHiRGRkZHBwsI+Pj5PT5TocLi4uPj4+QUFBERERiYmJ9p5oYRUYGCgiXl5ehw8fthzUnfwqVaq0b98+owbasGGDHijrvwvu4OBgEXn66aeNGqKAfH3V/PnKy0slJKj0dOXmpg4fVpUrX37Chg2qRQuHTY/A3Rjnzy/atau1ztnN5qybPh/29scfSkRVqqSSkx0yvtls7tWrl4iMGDHipk8+d+7ckSNHdu3atXHjxqioqPnz58+aNWvq1KnvvPNOcHDwU089NXz48MGDB/fq1SssLCzXn/3999/152yyg94p8u3s2bNBQUH6BnWFChXCwsIyMzMjIyMtmxj8/f3j4+MdPU0UOpcuKRH11ls5D3//3QHXzVpCggoIUK1aqc8/zwncL11SjRurBg3Ud9+pRo1UQIA6ccIxc0O+xcaqLl1UYODlwD0+XtWqpSpWVKtXqwoVVEiIunjRARPLylIiaty4nIfLlik/PwdMA1BKqcGDr1jVMXGiGjrUcbNBUcF5ZS9ZWVlxcXG6wIivr6+rq6t1yF6mTBlfX9/g4ODIyMjTp08rpXr37i0izz//vKMnjvyIiopyd3cXkRdffNFyMDU1tXPnziLSoEGD48ePGzXWpEmTRGT06NFGvWDBOTxwP3z4cJ06dUSkZ8+eF691BZmcnGwpzmP9j9HZ2dnb2zswMDAiIsKoOyK3o4kTJ4qIh4fHhg0bLAc/+ugjEXF3d1+7dq2xwzVs2FBEli9frh9u27ZNx00ZGRnGDpQ/vr5q/Xo1caIaNuxy4O7srOrXz/lVs6YjA/fi3jT1p59+Sk5OvsETnJ2d/P3NN34RF5fKJpPLoUNPNGq0tkSJeoZOEMbp1k1Wr5Z33pHXX7f/4NOnT3/qqacqVaq0a9euypUr23Ssrl27RkdHv/vuu6+99ppNB4JRsrKyvvnmm3Hjxp05c8bFxeXxxx+fPHmyZXn7xYsXP/3008mTJ6ekpJQsWTIoKGjcuHGFZ1siHC4jQzw95Y47ZNEiadRI/vhDPv5Yli616xwuXpQpU+S99yQtTUqWlLFjJSVFpk4VEVm+XHr3ljfflPfek4wMKVtW3nxTnntOCrzNETZ34oSMGyezZonZLNWrS48e0q+f6BqnkybJm2/KuHGieybVrSsffGDv8kHZ2VKypNSpI7/+Kk2aSFSUvP++REXZdQ5AjjvukN9/l6ZNcx5u3iwPPCD//uvQOeH2x3llSydOnNi0aZOuFbNu3brExETLb7m4uDRs2LBz586+vr4+Pj7e3t4mk8n6z+7cubNly5Yisnnz5ubNm9t55nm3d+/ecuXKValSxdETKUTWrVvXt2/f1NTUZ599dqq+VBW5ePHigAEDVq1adccdd6xevbq2cR3ht27d2qpVKy8vr4SEhFxnkaNs2iT33itvvpnzcPt2+fdf+31xOHXqVLdu3fbs2dOxY8dly5aVLl36xs9PTU1dv379mjVr1q5dGx0dfenSJctv1atXz8/Pz9fXt0ePHrVq1bLxxAuLn3766aGHHhKRBQsWDBo0SB9csmTJwIEDzWbznDlzHnnkEWNHHD9+/Ntvv23dgrVFixY7duxYvHjxgAEDjB0rHzp3lg8/lFat5K675JNP5J575N9/xcdHTp3KecLGjTJ6tGzb5qD5OSzqdzSz2RwcHJxrj9jV3N3dY2Lkxr927WpjNmcdPfrqli1l9+7tl5KyxtFvDteyfLkSUeXKKbvv/ktISChXrpyIRERE2GG4qKgoEalYsWJSUpIdhkMBLV++vFmzZvoDp1evXjt27Ljm044ePRoQEKAv1KpXrx4eHm42m+08VfbxFU6XLqmSJdWcOapHD2U2O2CFe2SkqltXiSgR5e+v4uPVli1q2bLLT/j6a7V7t9q7Vw0dmvO0Bg2UXT4OkU8ZGSosTJUtq0SUq6sKClLnz6vFi1VcXM4T0tPV+++rpCS1cqW6666cv9bu3dXWrfabZFaWKlFCzZununVTZjMr3IuyrKyswn5JU7asOnjw8sN9+1TFio6bDfKE86q4ycjIiImJCQsLCwgIsO6epXl5efn7+4eGhkZHR1/IQ7m0p59+Wl+622Hm+XDq1KmxY8dWrFhRRNzc3Ly8vHx8fPz9/QMDA0NCQmbMmBEZGRkTE5OQkGD/LxQOtHnzZv2t/LHHHsvOzikCfOnSJZ0b1qhRY//+/YYMpMukKKXMZrOuQbRlyxZDXrngNm5UXl7qgw9yfo0cab8vDqdPn27atKmItGzZ8urvlVu2bMnMzLzBH09NTV22bNmbb77ZpUuXEiVKWP/79fb2HjNmzNy5c/UelKJq48aNuqL9xx9/bDm4efNmfd/Cuj6Sgfbt2yciZcqUsXww6n6Ew4YNs8Vwt0qvcFdKLVummjenpEyhsWnTJhHx9PR8/IbGjAk8ePDxG/86dmyifs3s7LTTp2du2eJ56dIBh745XEf37kpETZhg52H1vUd/f3+7jdi9e3cRmThxot1GRD7s3bt36NCh+iqhQYMGebkfs2bNmjZt2ug/MmTIuE2b7DBNderUqfDwcH9/fzc3t+DgYKrJFzY6cDebVZcuavbsnMDdPt+eNm9WXbvmhK0tW6q//rr5H1m+XDVrlvNHevVS17nBBEeKilJNmuT8Hfn53bxicHa2Cg9XVaooEeXkpAIC1MmT9pinDtzNZtWtm/r2WwL3IigrKys6OjooKMjLyysgIOCll15y9Iyur2VL9eeflx/+/rtq29Zxs8GNcF4VT9csFOPn5zdu3LjIyMiTefi5derUKessLzExUe9G/eWXX2w58fwwm8333HOPiJQrV65ChQo3Xl9YsmTJO++8s0uXLg899NDYsWOnTJny3XffrVq1as+ePampqY5+K0bavn27vgNx//33WwpSZ2Vl6a9jlStX3rVrV8FHOXv2bOfOnWvUqGG5kzF69GgRmTRpUsFf3BCOKilz/vx5/TX2miXyT548aTKZSpUqpcs3RUVFXbPajEVmZmZMTExoaKi/v3/ZsmUt53NoaGhCQoIt34fDHDhwoGrVqiIyatQoy8GEhAR9R+exxx6z3dD6L+7nn3/WDw8dOmQymTw8PFIc2zdMKWUVuCulHnjguoH7ypUqMFA995yy83324hu462obQUFBhr/yrl0+SUl/GP6yMMBff2XWrPm1n589W9zMmTNHRMqWLXv06FG7DRodHa0HZUly4ZSSkhISEqLvzJcqVSokJMSyDkLbtWvXmjXX3itjNpvDw8OrVavm43PGZFIBAcq4MoNXOHDgwJQpUzp27GjZ/6i/qNSqVevs2bM2GRL5ogN3pVRcnKpRQ/3wg+rTR02erLy9VUiI2rPHJoOeOaOCgpSzsxJRFSuqsLDLvStvKjNTzZihKlVSIsrFRQUGqiK9GOV2smePGjAgJ2pv1EgtXnwLf/bcORUcrEqUyNlLFhqqrvxUM0xcnAoJUQ0aqNhYVaJEzpEaNdRPPxG4FxEXL16MjIx89NFHy5cvb/kKrX9iTps2zdGzu46JE1Xv3jlNhNPSVPfu6osvHD0nXIHzqjh78MEHK1SooAtABwQEhIWFxcTEWBY4X09mZmZcXNyMGTP0iniTyTThymVbn332mYjUq1fvxsmg/X366ac6bT948KBS6uLFi/v374+Ojv7xxx/DwsJefvnl4cOHd+/evXHjxjct6OHp6dmkSZMePXoMHz78888/d/Q7y7+9e/dWq1ZNRAYPHmxZRp2dnT1s2DD9/9XmzZuNGktXpImJidEPFy5cKCKdOnUy6vULyCGBe1paWpcuXfQis2PHjl39hE2bNjVq1CjXraDu3buHhIT8+eefaWlpN3jxjIyMdevWhYaG3nHHHSLy3nvv2ex9OExSUpLeE9+3b1/LCZySkqJrW3Xt2jXdRpfdSqn/CsQPGTLEckQ3PJg7d67tBr2pzz9X0dFqzhxlucOSkKA++EAlJakpUy4/LSFBzZihli9XWVlq9mz15Zd2nWTxDdz1v+e/8rIeLw/On1987Nj48+cjjx9/d9u2apmZxbeHQyF3d9++IvLmm2/aZ7jTp0/rqnlff/21fUa00D1aQ0JC7Dwubiw7Ozs8PFzfnXZycgoICDhxZRPJc+fOBQcHu7m51atX7wY/OJOSLrz6ak625elpZLYVHx8fFhbm6+trydlLlizp7+8fHh5+5syZTp06ici9995rzGAwgiVwV0q9+KLy8VF9+qjOnXNiUxHVqpWaOFEZsWpHD3dpxow1lmIjL76YzzJdp0+rMWNyIvtKldSsWSuy8p7Zw2hnz54dP36Pi4sSURUqqE8/VTfc1Htdu3apfv1yTrwWLbL/+CPKkOllZakVK9Qzz6jq1S+f2BMn5gTuSqlXXlE+PgTut7cLFy5ERkYGBARYL1Xz9vYODg6Ojo6eP3++iLi7u2+1Z92im3riCRUcrFJS1KVLatQoVbu26tNH1a6tnn46n/+EYDTLeVWmTBnOq2JLx8rXjPly2b9//9y5c4OCgjp06JCrZkXp0qVfe+016ydnZWW1aNFCRN555x2bzf2WxcXFlSxZUkR++OGHvDzfEsdHRESEhYUFBwcHBAT4+fl5e3tb/6sRkZYtWz744IO2nr8tHDp0SIfgvXv3ti72EhgYKCJlypTZuHGjgcM9+eSTImK5PZOamlqiRAlnZ+dCUu0kNla1b3/54eLFatAg24544cKFHj166GVbB63LZF3l5MmTkZGRwcHBPj4+Tk5OlnPPxcXFx8cnKCgoIiLiBgsKf/zxRxHp1q2b8e/B0e69914Rad68uaUSWnZ2tq6jUL9+fVufWseOHXN2dnZ3d7esW502bZqI3H333TYd9wYWLFBOTqpkSXVLi1onTVL/NX+1k2IauG/fvl1EqlatatTX+8zMU6dPzzh8eOyxY5MuXTqoVDEqhXZ7Wbdunb5gOnXqlB2Ge/DBB0WkZ8+e9q+Ot3btWn0BwWLkwmP9+vXt27fX1w3t2rX7+++/rX83Kyvriy++0LtTnZ2dx4wZk5ycfOMX3LfvclHsO+5Q4eH5n9v27ertt7Nat/axXNmUKVNm2LBh8+fPt15TcPjwYb019QvWWBUa1oF7crKqUUP16aMuXlSRkSogQJUrdzmgrFdPBQWp6Oj8F5yJiopq2rSpk5OLt3eqn9/lit75tmuX6ttXtWqVKCKNGzf+/fffC/qKuEX6LmDlypUrVmxcrpw5IEDd0o/HN95QkZG5D0ZFqaZNVffua0TEz88vLr8nSlaWio5WQUGqWrXLp3Ht2jmncUbG5cA9LU3Vrk3gfntKSlJz554eM0aXJdV8fHzefffdf/75x/qJele+t7f3jVe62c+6dcpkUiVLqgMHco5kZKj4eJWR4chZQSmlVFZW0tmzc8ePH219XrVp0+bdd9/du3ev9TM5r4q8pKQkEfHw8Ljm7yYnJ0dHR4eFhQ0dOvTq5qL16tXTK+J1t8ar//iKFSv0ix86dMjG7yNPLl68qO8BjB492pAXTExMjIuLW7Zs2cyZM3X+vm7dOkNe2W6OHj1ar149EfH19bUukvPSSy/pvzujlmBaREZGikh7q1S7d+/eIvLdd98ZO1D+XLyooqKUpRZIQoIB1/M3cOnSpbvvvltEatSo8e+//+b9DyYnJ0dFRQUHB+eqB6W3qgQGBkZEROQqTXP+/HlXV1cXFxd71jOwg/T09CeffNLT0zM+Pt5yMDExsX379pUqVdq3b58d5uDn52e9ivTs2bNubm4uLi55qcdluNhYVaqUElG3tJkhKkq9+qrN5nQdxTRwDwkJEZEnn3xSPzSbzUbFr8nJK/bs6Xz06BuGvBpsoX///iLy+uuv23qgRYsW6Z/it/SjxUB9+/YVkTfe4Gx0vCNHjlhantasWfPqlqcrV66866679GVE9+7db2ml1Z9/qhYtcqKoHj3Utm23MDFdnMFSr7lNm/7ly5cPCAiIiIi4Xt3Gn376SS8H23ZLI8E2jhxRKSnqf/+7fGTFCvXVV5cfXrqkFi9WTzyRU8JF/6pfX7377sENGzbk/V7g7t27+/Xrp0/Rxo0bL1u2/uZ/Js9++WVF3bp19YsPGTLE+moSNhUVFWXdtHnnziO39Mc3blQmkxJRffrkLvV+6ZIKC5uhlyq7urq++OKL58+fz+PLXrx48ddffx0zJr18+csnbePG6o03VGzs5adlZ6tx4y4/XLlSzZypDhxQ14pEUPgkJqrwcDV0aM53JienllWrent7h4SE5MpDLS5evNi8eXMReeqpp+w82WvIzlbt2ikRZb1p8vBhx00ISimVlZV45kz4/v1DN2/2iImRefO6Ozk5+fj4cF4VZ7t37xaRBg0aWB+cOXPmY4895u3tbb2KVi/IGzhw4OTJk5cvX57Hnrr333+/m5vbK698b5vp35qnnnpKv9lctZVjY2O//PLL3377bfPmzcePH8/fUrA33nhDriwrUfidOnWqSZMmOv62Xsmkywu7ubktWbLE8EEvXLhQsmRJJycnyz7msLAwEXn44YcNHysfDh9WIspSWfnbb9WIEbYaKysr64EHHhCRypUr77xpU6DrS0pKWrx4cXBwcMeOHa3Ddycnp1xfSLt16yYieWmNdntp2LChiCy/cnn2hQsXdtirHdY333wjV7aJ9vf3FxH7V5o6elTVrKlE1MiRt/CnPv1U3X23iopS17kWsJViGrjr5sjLli3TD2NiYpydnQ1ps5ucvComRnbsaHDzp8JBYmJidEcOm96OO3/+vO5f8cknn9hulBuzzzvFjaWlpYWGhuqtrB4eHsHBwbmugA8fPhwQEKAvGmrVqhWer2Xquih25cqXmxZu3678/JRlDcqiReqjj3L+OztbrV2rXnxR1alzOcyqUkUFBqoVK45lXGcJlfV+oCeeeEJEmjZtamlWDodIT1etWytvb7V//82fbFksrItydOjwgT7lAgMDIyMjM6+/S91S5khEypUrFxoaaosqgZcuXQoLC9OLp9zc3IKCgvL4RRf58++//1qaNhfwk8e6HH+u1QtnzpwJCgpydnYWkQoVKoSFhd1gZ2Guyg+dO+8VyWlF8F8d1Jv45RdVpox6+eV8vBUYKitLhYWpQYNUt24qKEhZL/w8cUJNn65691a6gJGIcnZWPXqoqVPT8lDtYceOHbdUKsGGvvlGiagaNZTl5nRMjHJxUU8/7dBpFXHp6f8ePBi4d2/vgwdHp6df/smXmXny1Knpe/f2jo11iYmRmBiJjXX+558eBw7MzEv3PM6rou3PP/+Uq6pMtGrVSv8EdHV11atlw8PD4+Li8pFEHzhwuHHjPSaTWrvWsDnnz+LFi00mU4kSJa4uR66XG1orX768t7e3n59fYGBgSEjIjBkzIiMjY2JiEhISrlfd/sSJE+7u7s7Ozo5aTHarzp07p/+iW7RoYb3n++2339Z/9ZFX79EziF6kYrm42r9/v/7//AbX23Zz+LCqWVM1aZJzcWW7wD07O/uRRx4RkbJly8Zar5gomLS0tOjo6NDQUD8/v8qVK+f6v/T9998XkUcffdSo4QoJ/U/48ccfd9QEkpKS9G0kS2PCefPm6Y0j9pxGcrK66y4lorp1u7UVNuvWqagoAne7+Oeff/TnnWVfmKENVLO3bfOKiZELF7Yb8WqwCd23/WVbfikfNWqUvpfu2KrE+sbjq/bfPAOllFKRkZG6YqCI+Pv7H7DsDlZKKZWWlhYSEuLu7q6z+JCQkAL2XDp7Vj3zTE6IERysSpdWd92VswV5+nQ1erRauVI9+6yqUeNyzl6jhnruObVq1U06XkZERDRt2tRSHi41NVWvFnmab4AO9cILOcvVbymazs5W0dHqlVfG685CWrVq1Z566qnly5dbX7bqYiN6h7VuOWDru3fHjh0LDAzUy828vLxmzJhx055muFWpqamWTx7dtLngnzxBQTmfPOXLq7Cw3EWGN2/e3LVrV32mtWzZctWqVda/e/78+e++++7ee+/VgZeImEymtm3bfvbZ0lvdI7txo3JzUyaTWrSoIG8IBfbKK6pXL7V9uzpyRL33nqpTR6WlqWnTVNeuOX0bdAuIvn3Vl1/etIZRdnZ2jNUtl1zNAB0jOVl5eSkRZakPYDarLl1yfvrCZuLiGp48+Ul6+r/nzy/OyDiemXnqzJnwffv8rXP2PXt8T54My8i4SUN5zqviY86cOVcvLv7222+nTp26cePG6y00uSVvvqlEVOvWyoHXLEePHtV1KT/++OOrf/fXX38dOXJk//79mzdvXrlyZbmhEiVK1KlTx9fX9/7778/15eWxxx4Tkeeee84+b6ogkpKS2rZtKyINGza07pj1ySefiIizs/P339twU4L+SLEued+gQQMRWbNmje0GzaPDh1XduioyUrVpo7KybBW4m83mMWPG6EvN6Oho4wdQSl25IEzbuXOnXlBfxL5B7Nu3T0TKlCnjwOVuQ4YMEZEPP/xQP0xLSytdurTJZLLb1uSsLHXPPTnbXq9fyb9wKY6B++TJk0VkpNUOBGMbqB469GRMjCQkhBjyarCF7du3Ozk5ubu752XZSz6sWLFCry/Id+Fao8TGxupF7rk6c8LWYmNjdfNuEWndunWu6wyz2RwREaHjTpPJNHToUAMrP+7YoR57TO3cqRo3ViNGqPffV+q/wL1x48sF33UR5LxcimRnZ+u28gMHDrQs/LEsB/vxxx+Nmjluye+/K5NJubqqK3sBXOGRR9Sbb6obFCiKi4sLCQnRPwS1ChUqBAQEREZGLlu2LN9ljgpo06ZNvr6+emgfH5/C8OWkaDCbzeHh4dWqVdOfPAEBAceP3ySTyrvt21XPnkpEmUzqnnvGL7+qJ1FkZKSlcJC/v/+WLVvCw8P9/f0tXeluWvkhL955J2fLjnHvDLcoMVF5eirrq46BA9W0aapvXyWi3N2Vv7+aMUPl7e5dRkZG7969rXtams1m3SWsS5cuDlvTEBysRFTHjpcbYsydm3Pm5bl0Em5VdnZqTIxkZFw+tXbsqKtz9s2b3f/9d+CZM7OysvL0FZzzqlh57733ROSll16y3RAXLqjatZWI+q++sb1lZ2f36tVLRPr27ZuXRfqXLl1KSEiIiYmJjIycMWNGSEhIYGCgv7+/j4+Pl5eXroGp5boFtWPHDpPJ5OHhkat2diG0d+/eqlWr1q5d2/r7/pdffmkymZycnGbNmmXT0ePj4/XKbssdnbFjx4pdqtrelA7clVJ3362mTs0J3H/7TYWHqytvrxTIK6+8IiIlS5ZcuXKlYS+aN7pk/4YNG+w8rq21adNGRH7++WdHTWDBggX6q5nliN7BYLeu0c88o0RUpUrKLlXrjVEcA/fWrVuLyKL/lj8Z3kA1KWlZTIzs3NnMkFeDjdx3330i8vzzzxv+ymlpafXr1xeRSZMmGf7i+TB48GAReeGFFxw9kWIkMzNT50rVqlX75ptvct1g37RpU6dOnfRVbJs2bdbaZgPqvn2qcWOVkKCqVVMHD+YE7lOn5i6CnEdHjhypWLGiiEydOtVyUK8QqVix0tGjN2nuCsOdPJnTRlLfULmmw4dz6muLqDp1btIudevWrW+++aa3t7flK5ZuNFe3bt358+fb6F3cgNlsnj17dvXq1UWkVq1a1+xUhlul64yJSKdOnTZu3GiLIX7+WQ0evEufQvfee+/+K6sdXbhwYcKECaVKlRIRvRBPrzLr2bPn559/fiwPFUVuKjtb+fkpEdW3b/6bA6NA1q9XTZpcceTdd9VTT6nly9UPP6ibNQO/2tNPPy0iDRo0sJTfTUxM1Hesx48fb8iUb83+/apECeXkpCxf5h0ethUb//57b1xcw5MnP9XBekLC//bvv//s2e+zsjivcF066JwyZYpNR/n+e0feHHnnnXdEpEqVKobcR79w4cK+fftWr149b968qy/A+vTpIyLvvvtuwQeyKV3DIDAw0Prgpk2bKlasOG3aNDtMoHHjxtZrOqOiokSkRYsWdhj6xiyB+/79qnp1NWWKGjEi59pJRHl5qaFDVViYionJ/3WULvfv5ua2ePFiA2eeR/rjPSQkxP5D29RHH30kDm2icOnSpQoVKoiIpRz/4sWLRaRJrqs+2/joo5xlGw4v3nVLil3gfuDAAZPJ5OnpadlAnauBasGZzZlbt1aKiZGLF3cb9ZowXFxcnF7kfuTIrfWIu6kXXnhB/zQ1ZItiwe3YsUO/U0u9Ldjak08+6ezs3L9//+Qrk4WEhARLuYzq1avbtFyGDtyVUh99pAYPzgncC0Lf0y5RosSWLVv0EbPZ/NBDz7Zte7Jr15tUpIGxsrNV7945nSpvcAZlZqqoKDVmTE40b9nc8PLLWdHR0dc793bt2jVx4sSyZcs6OTmNGDGigMVGCiglJWXgwIHOzs6PPfaYA6dRZFSrVs3JyWnGjBn565aWRxkZGZZy/K6urleX4z9y5EijRo2cnJyaNm06c+ZMS60qo5w4oapWVSLKxukKrmPtWuXtfcWR998vyE+gixcv6t02o0aNshz866+/nJ2dnZycVqxYke9XzqfBg5WIsv5QeustJaJatXJkOYniwWzOOn9+cXz8w1u3VrpwoUCd2zmvig/ds3HevHm2HqhbNyWibLmS/to2bdrk5uZmMpkW2aWe2tKlS/UXmUK+GGLlypUi4p3r55FShl91XM9LL70kIsH/1YO6dOmSp6eniBi4rTl/LIG7Uurtt5WXlxoxQk2bpgYOVBUqXP7KIKKqVVMPPKA++0zt2HEL4fuHH36ol1M4qnOpToHbtGnjkNFt59ixY87Ozu7u7ufOnXPUHHQjt7feeks/zMzMrFq1qojYeid0ZOSSZs1STCbl8E4rt6rYBe4ffPCBiFj3R23WrJlYNVA1xIEDI2Ni5PjxyQa+Jgyn+8XVr1//4YcfDgwMDA4OnjhxYlhY2Ndffx0REbFs2bK///57x44dBw8eTExMzGM8sX79emdnZxcXl02bNtl6/nmn3+ltUW6vaNA/imbOnGl98P3339frOt3d3d94441crVMNZwncMzNVixbqgQcKGrgrpXQlPm9v77S0NH0kMVHdcYcSUW+/XdAXR96FhioRVbmyyuOCYF20PThY3XmnElFt257U64t16Zhr3hq8++67ReS3334zeOq3bvbs2SIyfPhwR0+kKND7VOzzVfPqcvzW+wj14qPPPvvMRqMvWZJTcGn9ehuNgOs7dUqVLn3FIs9hwy637c6XnTt36j031pHZuHHjRKRmzZp2rWzw559KRJUurSw1Co4cUR4eymRSq1fbbxrF3uHDYw8fLuhlLedVMaFrPOZqH2ILW7YoZ2fl6qr27LH1UJelpKQ0bNhQRF588UW7DapvVuWv3brdZGZmlitXTkQc1eJVd+tt1uxy2QO973zGjBkOmY+2evUVgXt6umrU6HIN9+xstX27mjpVDR2as3bB8qtnz8WDBg36+OOPY2Njb1AZQhevd3Jymjt3ru3fzbVduHDBw8PDZDLZqHqwA/n5+YnI147b9rRixQoRueuuuyxHnnnmGbFxy8DY2NhSpUqVLFnhk08MXilrB8UucO/QoYN15SPdQLVcuXLG3qE9f35RTIzs2tXawNeE4YKCgkqXLi15VqpUqWrVqt15550+Pj49e/YcNGjQI488MmbMmODg4MmTJ3/66aczZ87UJcNee+01R7+5K+zcudPJycnNze2AgYXZcH3XDNx1JTt/f/9cNRZsxBK4K6XWrFFOTgYE7hcuXGjatKmIBAaOsRxctUo5OysnJ2X3An3F1KZNOW0h8xGGm81qwwb17rvLddkrrVKlSk888cSSJUusfw4SuBdJ9gzctQ0bNujrrtKlS1tXjLF14K6Uev75/LQUhjEee0yNGKHS0pTZrBYuVFWrqgKvxvriiy9EpGzZspYrmczMTF2f7b777ivgi+dRZmbmjw88kF2hgrIuV/rgg0pEXdmPEbaRnZYWq5QymzP//Xfw8eMGFI3lvCoO9LezgnQHybvAQCWieve2w1A5hg8fLiLNmze355bEb7/9Vg9q0w1zBafXnNn0YuMGMjIyypYtKyKWj5eZM2eKyMCBAx0yH6XUlClKRL32mrLujrR/v7pe17n9+1V4uAoMVHXrqq5dn7V8dyhdurSfn19ISEhUVFR6errl+d9++63JZDKZTI69qaD++yLzzTffOHYahvvmm29EpFevXo6aQHZ2dkREhGXtnVJq7dq1IlKrVi0bbdxPSEioVauWiDz66KO2eH1bK16B+9GjR3WXj9TUVH1EN1A1fK+62Zy+ZUvZmBhJT3fMDVXc1O7du93d3U0m09tvv/3dd9998cUXoaGhb7zxxnPPPffYY4/df//9fn5+7dq18/b2rlWrVvny5fMYytesWbNy5coObB59PcOGDRORMWPG3PypKLBrBu5JSUn2bBpz+LCyrvD28stq4kQDXjYuLu7OO3s1b570/feXD77xhhJRNWuqs2cNGAI3kJKiGjY0ZsPyli1b/ve//zVp0sTy8fXGG29YfpfAvUiyf+CulDKbzXPmzMlVL9UOgXt6umrVSomo2/P6/DaXmqqefVY1baoaNFD9++enc8i1PPjggyLSrl07y76cw4cP63Ki06dPN2SIG/v8889FpEfLlsqSL6xdq0wmVbKkurKvIGwhM/PU3r19duxosH17nfj4h7OzUw15Wc6rIq9kyZIiYuutpdrZs6piRSWi7FLcRf344496Tdju3XatZHvp0iUvLy8RiYqKsue4t2rWrFki0r9/f0dNYMiQISJiuQQ6duyYyWQqVaqUQwo2fv21MpmUyaS++io/fzw+/tCsWbNGjhxpvWpHn35+fn4TJkyYMGGCs7Oz2L5fQl7oz9X777/f0RMxWFJSUsmSJZ2cnApPrWCz2Vy9enWTyeTn5zd58uRFixYZOLeUlJSWLVuKSJcuXaxv7dxGilfgrne4WP/D0w1UbZEpxMcPi4mREyc+MPyVUXDZ2dm+vr5yi7X7k5OTExIS/vnnn5iYmKioqIULF86ePfvzzz8PDQ197bXXnnnmmSFDhjg5Obm6usbHx9tu8vmzd+9eFxcXI+e2bp0aOFA1aaI6dFATJ6rMTGNetki4ZuDuEPv2qddfV8be3Z82zSyiypW7/DUwM1N16qRElL1WgxVfzz03tU6dSz4+ysBNWTt37pw4cWLLli03WBq1OTRwHzRokLu7+9KlS/VDAncD5QrcX3rpJXd3988//9z+M7FD4K6U2r1blSql2rc/Pm+eAxr/Qi1apGbPVomJRr3euXPnateuLSJvvvmm5eBPP/0kIu7u7tu2Faii900lJibqTr8LFy7MOZSdrVq3ViLKIT02i6vk5OWJiT9lZZ0z6gU5r4q2s2fP6k0MdhsxLEyJqKZNbd64e//+/bpdylf5C1ALRi9b7Nevn/2HzrtTp07pTmbWC3Lt6euvvxYRf39/y5FWrVqJyB9//GHnmcyerZyclMmkDOkXe/z48YiIiKCgIB8fH5PJpJN3XcAnNDTUgAEK7NChQyJSpkyZQt5pIB/0XZyPClapz0Br1651c3PTXzEsypUr5+vrGxQUNGPGjOjo6PzdYcrOzh40aJCI1K9f386rhQxUvAL3bt26icj3/63MvLqBqoHOnl2wYcNds2aNuPlTYXe6xXP16tUN7zjx6KOPisgTTzxh7MsaYsSIESLSvn37adOmzZkzZ+HChcuXL4+Jifnnn3+OHTt2a+s+Dh9WlSuryEiVmamOHFG9eqn//c9mE7/9FJ7AfdkyJaL8/Ax+Wd3Zq107Zan+ffiwKl9eiShH7yAsyvQ6napV6+/da/N1MQ4M3Pv16yciS5Ys0Q8J3A2UK3B/7rnnROSTTz6x/0zsE7grpebN26y/cTmqhGux1rKlElGbNxv4kqtXr9Y9Lf/880/LQf0zt2nTpjbdX6j/vfTs2dNy5Kuvvhrftm1ap07KQVFO8bRrV8uYGElL47xCnuzYsUNEmjRpYrcRMzLUU0/ZvIx7ZmZmx44dRWSI9YZWO0pMTNSlWW19U6qA2rZtKyL2aSd7tePHj5tMppIlS1oSf90lIigoyJ7T+Pln5eKiRNR77xn/4idPnvzpp59GjRql720UnmXIug6qAzpg29jPP/8shaYlbHx8fJUqVURk6NChs2bNeuGFF3r27Km3iFlzc3Nr3br1yJEjw8LCVq1alccITv98rFixon0KgtlIMQrcT58+7eLiUqJEiaT/ynlOmTJFrmygaqALFy6UKlXKZDIdPnzYFq+PfDtw4IC+Pvjll1+sjyclJe3fvz8xMTGzAIu1Dxw44Obm5uzsvMee7XKu5aeffkpOTrY+8ttvv3l6elruQl9T+fLlF/Xvr7y9Vfv2ys9PDR2qRo5UQUFq3DgVGqqmT1dz56pNm9Srr6oXXrj80gcOqFKlWORuUeQD98REVbu2ElH/tShXSqmfflIiyt1dbd9u8HBQSu3bt8/T01NEvv32WzsMR+BeJBXDwF39V1GtTZs2RW+VU2Fng8BdKRUSEiIiNWrUsJzJqampujrWM888Y+xYFrt27XJ1dXV2drZES8nJydWqVRORH374wUaD4ppsEbgrzqui648//hC7lzw+cUKJKMtP13nz1EMPGTzE66+/LiI1a9Y867h6jrpZ4uOPP+6oCeTF+PHjReSpp55y1AR8fHysL2vXrVsnIvXq1bPbBP74Q5UooUTUhAm2HUiX/rBsUdVu0F7V1l599VURefnllx01ARu5dOmSTrQdHjclJSU1a9ZM73TJFaAlJCRERUWFhYUFBAR4e3s7OTnlCp28vLz8/f2Dg4PDw8Pj4uKurv/+5Zdf6qT+dr9lUowC9+nTp4vIPffcYzmibwtbGqga7v777xeRTz/91Eavj3wwm829e/e+5o0WfYZo7u7ulStXrlevXuvWrbt163b33Xc/9NBDgYGBr7766oQJEz7++OOZM2dGREQsXbp07dq1iVdulx41apSIjBjhyM0N69atc3JyqlevnmX3RkZGhm4o37Zt2yeffHLYsGEDBw7s0aOHj4/PnXfeWbVqVQ8PD/3eo/Q+1hv8euYZdc89avbsK4asWFGxfvA/RT5wV0qtXp3TK9VqNZgaOVKJqGbNVOHrYnB7y8jIaN++vV4+YJ8RCdyLpOIZuJ8/f75u3boiEhwcbIfhcJltAvfs7OwePXqIyIABAyz9+nbs2KHLNF+uy2Govn375gpeX375ZRHp1KlTIe8ZWPTYKHDnvCqqdI/BgIAAew564oQqV07VqaN0KWPDA/e//vpL78mwZ3eoq8XHxzs7O5coUcK6KXphs3HjRhGpVauWoybw1ltvWf8zz87O1iuC7ZOW/vmncndXImrsWJuP9cYbb4jI888/bzny1FNPVahQYd++fTYf+1pWrVol9t3dYjc6aggJCXHgHDIyMvz8/ESkadOm58+fv/GTk5OTY2JiwsPDg4KCfH19S5UqlSt/9/T09PHxCQgICAsLi46O/uWXX1xcXEwm07ffflsImyPekmIUuOuYddasWfrh0aNHnZycrBuoGu77778XkW7dutno9ZEP+l5ZpUqVTp48meu3vvrqqzp16pQvX/7qW3A3liuTOnTokF7kbuf2NRbp6ene3t4iMm7cOMvBCRMmiEjdunVvUDomOzs7MTHx0sGDascOtW6dWrpURUSor75SH3+sJk5Ur76qAgPVQw+p2bPVvfeqXMtsy5ZVhw7Z7D3dZopD4K6UeuutnF6plltOqamqUSNVrpzatMkmIxZbL774ol4Oc9MLGqMQuBdJxTNwV0pt3LjR1dXVyclp2bJl9hkRStkqcFdKHTlyRJ/M1qdQWFiYiJQvX/6Q0Vcjv/zyi35ly7+df//9t0SJEk5OThs3bjR2LNyUjQJ3xXlVRE2aNMn+N1xPnFA1aqiwMKU7xxkbuCcmJt5xxx0Oj9u0e++9V0T+V4gri2ZnZ+tdI3FxcQ6ZwPr160XE29vbcmT48OEi8uGHH9p66HXrVOnSOYvl7GDt2rVy5eL9hx56yFHXmUqpzMxMXVa+6BUV/PPPP0Wkfv36Drw1O2bMGBGpVq1aPn44ZmVl7dq16/vvvw8ODu7bt6/+F2pNJ/L33HNPxYoVb/fly8UlcD937pybm5urq6tl15VuoGrTqmcpKSnu7u5OTk6F+a5vsXLs2LHy5cuLyLx58278zLS0tBMnTvz7778xMTErVqyIjIycO3fujBkzQkNDx40bFxQU9Pjjjw8dOtTPz69Dhw4xMTG5/rj+AHr44Ydt9lZuRNeGa9SokWV5++7du93d3U0mk2Gt5N94Q1lvzdu9W5Urp67aClRsFZPAPTtb+fmpkBBlvVkwLk4dPKi++uryhofjx9WV1Ztwa/744w+TyeTi4rJu3Tq7DUrgXiQV28Bd/Ze5VKlS5fjx43YbtLizWeCu/qthWqJEia1bt+ojZrN54MCBItKlSxcD97BfunSpYcOGcuWOVX9/fxEZNWqUUaMg72wXuCvOq6JIlz0JCwuz56A6cM/IUM2aqcWLcwL3ceNUly7qoYfU2LFqyhT13Xdq1Sq1Z4+61bV/gwcPFhFfX9+CFEE1ypo1a0SkQoUKtlvCWHCPPfaYiLxni/rleZCdnf37779br9KdN2+e2L7M0aZNm3x9z4ioxx+3ef9eLSsrS19n/vPPP/rInDlzRKRPnz72GP5aHnjgARGZOnWqoyZgI9nZ2TVq1BCRDRs2OGQC7777roiULFly/fr1hrzgiRMnli5d+t577w0YMKBRo0bDhw8PCwvTy5c7duxoyBCOUlwC92+//VZE+vbtazmiG6jeNHgtIH2JNn36dJuOgjzSN+HvvvtuWw+UkJBQsmRJJycn+7eR2bZtm17HFx0drY9kZ2f7+vqKSGBgoGHDxMerKlXU3LkqLU3t2aM6dbJJE5bbVjEJ3JW67k2WEiWUr2/O765Zozp1stUEiryTJ0/q2/7vvvuuPcclcC+SinPgnp2d3atXLxHp168ftRrsxJaBu1LqySef1MsGLc3oTp8+Xb16dRGZOHGiUaO89957ItKkSZOM/7qER0VFiYinpyfraRzCpoG74rwqcvS3v4iICHsOqgN3pVR0tKpfX337rXroITVgwHWrdXp6qiZNVP/+KcOHD3/llVfCwsJ+/PHH6Ojo/fv3W5ZPadOmTRORsmXLHjhwwJ7v6AY6dOggItOmTXP0RK7rp59+EpGuXbs6eiI5EhMTXVxcXFxclixZkuvv1yjbt2+vWLFiyZIVgoKO2LOIuu6a8/HHH+uHZ8+e1UWHbrDD3qZmzZolIv3793fI6Daldz9bF/Cxm/nz5zs5OTk5OS1YsMDYV37ppZdE5P3339cPL168WLZsWRGhaeptQC8Z+PLLL/XDqxuo2kh4eLiI9O7d26ajIC/0LbIyZcocOXLEDsPpIMNuBZe1zMxM3ZjFuvX5Rx99JCJeXl557AedV9u2qeHDVYsWqndv9dlndrp1fpt44YWE+vXjwsPPOXoiNg/cr6dECTV4sNKfuATu+WY2m3Xw3b17dzs3HSJwL5KKc+CulDp69GilSpWsvwrCtmwcuF+8eLFFixYi8uSTT1oOrlq1ytnZ2cXFZc2aNQUfIjs7u3Xr1mLVBS4zM1O3CPvggw8K/vrIB1sH7pxXRYxugWPIX1zeWQJ3pdSjj6o2bdRDD6kDB9TKlWrOHPXBB2rsWPXgg6pzZ1W/vipZMid2r1dvt1xLhQoVmjZt2qdPn8GDB5coUUIKWU/diIgIEWnQoMHVbQ8LiaSkJFdXVxcXF4O/C+fXtm3bSpUqpVcou7i4+Pj4BAcHR0ZGGlU3cu/evV5eXiIycOBAyy09+5g7d66I+Fl989T3Y3799Vd7TsPi1KlTTk5O7u7ulhuoRUZMTIzeuGnnnS6bNm3Snf+mTJli+IvrSmstW7a0HBkxYoSxd7vtz+WaH+tFTEpKyvLly52dnQcNGqSPLFiwICsrq3///mXKlLHp0AMHDnRzc1u5cuWZM2f01zw4xNmzZ8eOHSsiU6ZMqVmzph1GfP3117/++uv58+dv3bpV9+y2gylTpsTGxtauXVvvnReRgwcP6lYt06ZN01XMDNOihcyZk/PfO3bI/ffL+PHSvLmRQ9y2kpOr799fPSPD0fNwqA8+kG7d5L8PXeTHtGnTFi9eXLly5Xnz5jk7O1uOm83mW201ARRP1v9YatSo8c033wwaNOjVV19dt26dgT8TAwMD27RpY9SrIY/c3d2/++679u3bz5gx45FHHunSpYuIdOvW7dVXX3333XcHDx48cOBA60/O/GnZsmX58uXnz5/v4+NTsWLFzz77LC4urn79+vp+FYoezqsi5tixYyKi9yg4xPvvS+PGcuedUqeO1Klz7eecOyfHjsnJk5WPHg1PSEg4fvx4QkLCiRMnjh49euLEicTExMTExJ07d4pInTp1Kleu/OCDD9rzLdzYfffdV79+/X379v3222+DCuV1f5kyZXx9fVetWrVs2TJdY8SBdu/e3bt377S0tFq1arVo0SIuLi42NjY2NlZEXF1d27Rp07Vr165du3bu3Dl/OdXhw4d79+59/PhxPz+/H3/80dXV1eh3cCP9+vVzcXFZvXp1SkqKp6eniNx9993r169fvHixLvxgZ5UrV27Tps3GjRtXrFihF+AWGT4+Pt7e3rt27VqxYkWfPn3sM+jBgwf9/f0vXLjwxBNP6NXoxurfv3/FihW3bt26c+fOpk2bisiwYcNmz549d+7c//3vf4YPZyeOTvztQdfJ6t69u+XIO++8U6pUqW9zdX00wurVq3PdwdMN6G0xFvLukUce0eeAPTeSv/DCCyIyePBg+wz3zz//lCxZUkT++OMPfcRsNuvPX5tXkx87Vomo++6z7Si3jyeeUCKqEFSUceQK96wsNX68GjGCFe75t379+rJly1ovslNKRUVFeXt7Hzx40KZDs8K9SCpuK9znz5/frl0762ZZZrO5Xr16hicv33//vU3fyO3KxivctS+//PKzzz6zvro7deqUh4dHrVq1jP1bbtq06bfffqv/ETnksxGarVe4a9c7r3SzSs6r20V2drarq6vJZLJR4Y6rJSaqQYPUjh1q8uTLBxctUgWpYnvy5Mlt27YtXrz4tddek6sKpusS4Y4tlaZ7C3fp0sWBc7ixDz74QERGjBjh2GkcOnRIf4b07t07PT1dKZWcnBwVFRUcHOzr6+vm5mb5ZHB2dvb29g4MDIyIiLBctt3U0aNH69WrJyKdOnVyVBUXXcnWUmxk8+bNIlK9enVHnaJvv/22iIwZM8Yho9uUfmuPPvqofYZLTk5u3ry5iPTp08d2y+oDAwNFZNy4cfphVlZW1apVRWSzjS8mbadYrHDXDXCGDBliOfL666/r9c4Gys7OnjRp0sSJEz09Pbdv32650B8yZMjSpUt//vln3a8D9vf777/PnTvXw8Nj5syZJpPJbuO+8cYbM2fO/OWXXzZt2tS2bVubjmU2m0eNGnXx4sWRI0fqezwi8vXXXy9btqxixYr6MsiGgoPlyy9l4ULZtEls/E5xGwkOlhYtpEULR8/jtnXmzJnk5ORZs2Y9+eSTrVq10gc///zzXbt2BQQErFy5suCL7ICi6uDBg6NGjTp//vyff/5Zv359ffCjjz6Kj48vX778e++9Z+AKd1v/iMcNjB49OteRoKCgCxcu1KpVa9q0aUZ9SK5evXru3LlvvPFGw4YNPT09i9hCOVzteudVyZIlOa9uI6dPn87MzKxUqZK7u7s+opT6+eef77nnHl2bxVjp6TJokERHS2qqLF9++fjddxfoZatUqVKlSpUWLVoMGDBg1apV69evnz179lNPPaV/t0ePHqtXr166dKndVrlebdSoURMmTIiOjt6wYYOu4VPYDBgw4JVXXtF3Jhy1SfTo0aPdu3c/fPiwr6/vwoUL9Rno6enp5+fn5+cnImlpaX///feaNWvWrl0bHR29a9euXbt2ffnllyJSr149Pz8/X1/f7t27X++23+nTp/v06RMfH9+uXbs//vijdOnS9nx3FgMGDFi7du2SJUt0+4SWLVvWqFEjISFh+/btd911l0PmExISsnjxYvsPbWuPPPLI+PHjFyxY8MUXX+hll9rff/89duzYli1b3nXXXS1btmzevLnebVAQ2dnZw4YN27FjR5MmTX788UcXF1vFyMOGDfvyyy+/++67iRMnmkwmZ2fnBx54YOrUqfPmzbN8F77NODrxtyGz2fz333+/9NJL+gyztJu3hcOHD3ft2lVETCZTUFCQdbWsPXv2mEymUqVKPf/882vWrCm01c2KqqSkJH3z48MPP7T/6K+++qqI+Pv723qgzz77TESqVat29uxZfeTYsWPly5cX23cGzvHyy0pE3XOPPcYq9ArPCveVK4/5+n47evRSO4+rV7grpZYsUeXLs8I9//RC4AYNGiQnJ+sjiYmJ+lJ7/PjxthuXFe5FUvFZ4Z6ZmanXWN17772Wg7GxsW5ubiaTyVG1RIubhCFDTrZpk2Lf7vHTp08XkbJly8bHxxv4sllZWTopmDhxolFldpE/Gzbc9/ffPmfPcl7h5vTq2hYtWliOLF26VESqVKkSHByckJBg4FjZ2er++5WIqlFDHTpk4Atf4eqC6e+++66I9OnTx1ZD5o3+zvvggw86dho3oG+9b9iwwSGjnzx5skmTJiLSoUMHyyX9DaSlpUVHR4eGhvr5+VlnqSJSr169gICAGTNmWH8cnT9/XneGaNGihSUNcIitW7eKiJeXl2VJ+xNPPCEi77zzjkPmYzab9b7GHTt2OGQCNqXvb+VqCv3JJ5/kiny9vLz8/f1DQkIiIiLi4uLysdtAX7dXqlTJetuoLZjN5jp16ojIunXr9JG///5bRKpXr27nfmZGKYKBe3Z2dnR0dHBwsGVBk74DU61atWXLltlixIULF1aoUEFEqlataqnmoa1cuVI3xLDcRa9UqVJAQEBkZKSdW1gUW2PGjBGRdu3aOeSf6JkzZ/T9nr///tt2oxw6dEiP8vPPP1sO6rvKAwYMsN24Vzh9Wnl6KhG1fr2dRizECk/gvmzZMrmyd419WAJ3pdS99xK459/Fixf1t/FRo0ZZDv7111/Ozs5OTk4rVqyw0bgE7kVS8QncdanHmjVrnjlzRh9JTU1t1KiRiDz//PM2GhS56AY29twFvHPnTt3La+7cuYa/eHR0tMlk8vDwOGS7LA15wHmFvFu0aJGI9OvXz3Jk+fLllt5a7u7uo0ePjouLM2SsoCAlosqWVbZc46eysrJ0xPHLL7/oI4mJiXots00XF97U0aNH3dzcnJ2d9+/f78Bp3MAzzzwjIm+99Zb9hz537pxenHvXXXflIw1PT0+Pjo6eNGlSnz59cq1br1u37qOPPvrFF1+0a9dO34nZvXu3Ld7CLdELgyyf0gsWLBARX19fOwy9Z8+ewYMH5+qOq+tMhIaG2mECdqaz9VwVjJOSklauXBkWFjZy5MhWrVpZlyrSKlSo0LNnzxdeeCE8PHzr1q03jSV1RSZ3d3dLCG5T+u7ds88+aznSoEEDEVm5cqUdRjdc0Qncs7KyoqOjg4KCdFNm7Y477ggKCvr11191kQ29/PzSpUtGDXrx4sWgoCA91sCBAy3f65RSmZmZISEhesthhw4dli5dGhIS0rBhQ+sTXSfvBs4HuaxatcpkMrm5uTnwlua4ceNEpG/fvrYb4p577hGR+++/33Lkhx9+EJEyZcocPnzYduPm9vrrSkT172+/EQur4hy4L1qkli1TsbHKcu/83Dm1Z4/dxi+CLF/1rXer6A8W6zzRWATuRVIxCdyveUfq0UcfFZFmzZpduHDBFoPianYORtPT0/XtySeeeMJGQ+jqlAEBATZ6feQF5xXyTpfjePzxx3MdX7FixcCBA3VpEZPJ1KdPnz//3F6QEtOTJysR5eamli8v0ITz4uqC6fqn+WOPPWbzsf+TlJS0aNGiXAd79OhRvnz5XKsPC48lS5aIiI+Pj53HTUpK0m3VGzVqdOLEiQK+WlZWVkxMTFhY2NChQ/WKT61s2bJ169Zt1qyZh4eHw69zdEmuiRMn6ocpKSklSpRwdna20XcWi/j4+Jo1a4rI2LFjLQfNZvOAAQNq1679559/2nR0hzh58qSLi4ubm9sN/r/NyMjYtm3b7NmzX3rppV69eunvAtbc3Nxatmz56KOPHj169Oo/vmjRImdnZ5PJZKeqCf9tkqhcubLlTsCbb74pIqNHj7bPBIx12wfulpxdV9PX6tSpExQUFB0dbdkuYTabw8LC9O2dNm3a7N27t+BD79q1q0WLFvpuT1hYmPXWjEOHDnXu3FlEnJ2dg4ODre8axcbGjhs3rnHjxpbZli9ffsSIEb///o+9urkUFxcuXNB3w2xaeOGmzp07pwvF/vXXX7Z4/VmzZolIuXLlLPsiz5w5o/85zJgxwxYjXte5c6pcOSWiVq+267iFT7EN3I8cURUrKicntWaNfQYsLr744gu5cjN7ZmZmp06dROQ+2zQrJnAvkopD4G6puRQSEmI5+OOPP4pIqVKldu3aZfiIuB47B6N69eKdd96Zl936+XPo0CEPDw+TyRQdHW2jIXBTnFfIo/j4+FatWpUqVapmzZoRERFX73Xev39/cHBw2bJlTSZTvXq7GjRQYWEqLe2WB/ruO2UyKScn9dNPxsz8xpKTk/VXy/X/7SqOj493dnZ2c3M7duyYPWag1PDhw0Xkgw8+sBw5fPhwuXLlXFxcNm3aZJ853KqLFy/qf2jGlhK6sbS0NF12+M477zR83KSkpMmTJ99zzz333nvv6tWrDxw4oJP9xYsXGzvQrfrll19EpGPHjpYjvXr1EhvXubVuGGvdVVivjvXw8HDsFhDb0c0bxo4de/LkyTz+kYSEhKioqLCwsICAAG9vb8utx8TExFzPjI2NLVWqlNh9f0CzZs2svwzu3r37006djnfrptLT7TkNQ9yugfvFixcjIyMDAgLKli1rSa69vb2Dg4NvcLGycePGO++8U0Q8PT1nz55dkAmEh4frJYeNGzfesmWL9W/9/PPPunZ2rVq1bpCx7t+/PywsTNcYFZG6dfd4eCh/fxUermx2RVe8vPLKKyLSpEmTdEf/ywwJCRGRnj17Gv7Kp0+frly5sojMmjXLclBfA3Xr1s0B3cDfekuJKLsXMClsimfgnp2tevbM2eTgoEb0RdmDDz4oIu3atbPcwT18+LBe2zJ9+nTDhyNwL5KKQ+A+aNAgEencubMlW9m/f3+ZMmVE5KuvvjJ8ONyAPYPRxYsXm0ymEiVK2Ho4vbvIx8eHnkyOwnmFm0pNTR03bpxulGrpj924cePp06enXRWonzt37rPPfqhVS4koEVWpkho3TuU9uF6+XLm5KREVFmbwu7iBqwum630Sb7zxhh1Gt9zDtlQvyc7O7tmzp4j079/fAV8/80xf3H7zzTe5jj/99NOffvrptm3bjP0HeOnSJX1NW6tWrQMHDhj4ytqpU6ecnJzc3d0tZ/Vbb70lIs8884zhY92S1NRUd3d3JycnSwT80UcficgjjzxioxFPnTrl7e0tIu3bt7e+Ofr666/rFdyWrxVFz/fff69X+uqFvL6+vkFBQeHh4XFxcXmsqJySkrJu3TrrNElLSEjQOwZGjhxpg4nfyOTJk3N/+2vdWomohQvtPJOCu80C97S0NJ2zW3fa9fb2DgkJyeOqpaSkpEceeUT/waFDh+Yq8JQX58+f18GHiAQEBFjfQLtw4YKlwszgwYPzWKJr3759H388o00bZTLl/KQvWVLdd5/67jtl3T7nwAH13nvKskNo1Sq1bp36/XdlnfbPn6+MWLtfFGzevNnV1dXJyWnt2rWOnos6f/68zsUMrzx1//33i0ivXr0sFzd6u5yHh8e+ffuMHStPzp9X5csrEbVqlQNGLzSKZ+D+9ttKRFWtqgq8XRLXcO7cudq1a4vI//73P8vBn376Se+y2mZ0W0IC9yKpyAfuU6dO1fHKwYMH9ZHMzMyOHTvKlVXXYB92C0aPHj1aqVIlEQmzfeKVlpamt1Bc/dUU9sF5hRuLjIzU10smk2no0KE7d+4MCwvTR0SkbNmyQUFBV5fczMxUP/yg2rfP+TLu5qYCAtSVa+quYdMmVbq0ElGvv26jd3NtVxdM37hxo47bUlJSbDr0Ne9hT5gwQUSqVq1a8JIpNjVt2jQRGTJkiPXBY8eOWWIlT09PPz+/0NDQ6OjoAlb9zcjI8Pf3F5EqVarssVltTV263XK5vmHDBhG54447bDRc3ull13PmzNEP//nnHxGpUKGCLZrqnTt37poNYydNmiQirq6uv/76q+GDFiorVqzo3Lmz/odpzcPDo127doGBgdOmTVu7du0tfTgkJyfrcmpdu3a1fwXsQ/HxW7t1y6pdW1my1ilTlIgaOtTOMym42yNwP3fuXEREREBAgN7RYJ2z//PPP/l4wfDwcN1xok6dOrdU+//vv/+uW7euiJQpUybXppi4uLjmzZvLfxVm8jGrw4dVWJjy81MuLjk/7J2dla+vCgtTJ06oZcuUyXT5x/lrr6nJk9Xjj6vPP7/8Cv37qwUL8jFyUZOZmak7k7z88suOnkuOiRMnitHdQiIjI/X6AsvFVlJSUq1atURkypQpBg50ayZMUCJp997rsAkUAsUwcN+wQbm6KicnFRVl66GKr+joaF2ZerlVidAnnnhCRJo2bWpsxUYC9yKpaAfucXFxJUuWFJEffvjBcjA4OFgvLstHmzIUkH2CUfuvrNQfSlWrVk1KSrLDcMjl6vPq6l3wBZeVpUaNmmkyme6++27Oq9tFbGysZaWnj4/PGqv6htnZ2ZGRkX5+fvp3XV1dhw4des0QICZGBQTkfBl/+ukbDbd/v6paVYmoYcMcsLNTb2h+4YUXLEf03WXbdSNXVvewrTPrjRs36lVuy5Yts93Qhjh8+LCOcawDxPPnz8+cOTMgIEDf9LIO3/v37//uu++uXbv2pl0lc8nKynrooYdEpFKlSkZ15b2mt99+W0TGjBmjH2ZnZ+u6sjt37rTdoHmhOw08/PDDliO6zoThSyGTkpL0XYeGDRseP37ccvzTTz8VEWdnZ7tVHi8MEhISIiMjQ0JChg4d6u3tbTKZckXwXl5e/v7+ISEhERERcXFx1/vplpWVpXsENm7c2BY/YfOkUyclor7/PudhQoJydlbu7lcsSb4dFOrA/ezZs+Hh4f7+/pbWuk5OTr6+vmFhYUeOHCngi+/Zs0dnsi4uLiEhITfdQJSVlWVpgtquXTvrBtxms3nGjBm6woy3t3fBVxomJKjPP1c9eypn55zk3cVFTZ2qunVTdesq/flJ4H4D+mdP3bp1rfcfOFZKSkqVKlVEJMq4PPKvv/6qX7/+1KlTLUeeeuopEWnbtq0t7h7nVVLSj/36ebi6LrdD26DCavNmtWCB+m+FpSNdM3APCAjw8/MLCwvLe623Gzt3TtWpo0SUXXayFmu6PlWNGjUsmWlqamqTJk3E6A2kDgzcX3755c6dO1sqkxK4GyhX4B4WFta5c+f58+fbfyaGB+4XL17UbXUsXzuVUitXrnR2dnZxcSkMe92KoauD0U2bNtWtWzdXm6UCsv/KSrPZ3KFDhxYtnnnnHe7iOMDV51Xbtm0NP68mTlQiqnfvZadOnTLkBW+K86ogzpw5ExQUpL+nV6tWbcaMGdf7av/3338/+OCDLi4uOlvo2rXrokUHrn7uwYPqpZfUDdYlnz6tGjZUIqpnT2X31Z9KKbVt2zaTyeTp6WnZrz9//nz9/dd2XwN1gY6aNWta7mGfP39eL0Z89dVXbTSosZo2bSoi1j3VrSUkJERERAQGBuYKKz08PHx9fYODg6Oiom66wMVsNuvVMGXLlo2JibHBm7hs06ZNelWB5YhuEf/+++/bdNyb2r9/v4iUL18+MzNTH9F1IMaNG2fgKGlpad26dROR+vXrW5fI/+abb0wmk8lk+vLLLw0c7raTlJQUHR09Y8aMoKAgX19fvSrFWtmyZXUJmhkzZkRHR1/8r6Xks88+KyIVK1Z0TMkE7bPPlIi6557LR3r0UCLqdtsHVngD9yeeeEL/1NSZeO/evadPn27sxXRGRkZISIjuEtCrV68bNLI4fPhwly5dRMRkMgUFBVnf5Dx9+rS+/yMiAQEBVxeGK4izZ1V4uPL3V1WqqCVLVP/+6rvvVNeuymy+HLi/8IL666+cXx06ELir3bt3u7u7m0wmA6NtQ4SGhsqV/UMKLi0tzXJBuWrVKpPJ5OLiYrdGUtfzzjvviEinTp0cOw2HmDRJlSmjLJ8lvXo5eMX31YF7RkaGpZylq6tr7969Z8yYUcDk/aGHlIhq21bd4voP3LLs7OwePXqIyIABAyyxwo4dO/Ql1ELjCttdM3DfunXrjBkz7Hw/j8DdQLkCd/tITEwMCQnJ1UzF8MA9MDBQL3qwXIadOnXKy8tLRCZNmmTUKLglVwej+pahVqdOnZdeemnt2rUFqZm7YcMGvbLSzpd8MTHnnZyUu7uyWn4DO8l1XiUlJekVndbn1bp16wp2Xjlm0x7nVT5kZKipU8N1Uzc3N7dXXnklL1sEjh07FhISUqFChYoVK5cseaFuXRUaqvJeaDYtTXXsqESUj4+ycQWXG9GbeyydS7OysurXry8iC2wTB/z11196n6V1idRhw4aJiI+Pj/2LTuSPLn/fr1+/f//998bPTEhI+P7775966qlc4XuJEiU6d+48bty4+Pj4q/+U2WzWC+A8PDxWr15tmzdxxXDVq1cXkR07dugjusJ+9+7dbT30TTVs2FBELO0Vly5dKiItW7Y06vUvXbrUv39/fQfI+u9izpw5Ot/78MMPjRqraMjIyNi2bVt4ePiLL77Yq1cv/aXAmpubW6tWrTp06CAi7u7uDl6tcuqUcnVVrq7K8rVl5kwlovr0ceSsbl3hDdzHjRtXokQJvQzTpotWli1bVq1aNRGpXLny9Xo69+7dW/9jXnVlZeoVK1bUqFFD3x2y3sJsuPR0tWxZTivCbt3Ut99eDtw7dlQjR+b8qlmTwF1t2rSpevXq/v7+jp5IbqmpqforgS26dqSnp+tVriEhIYa/+K1KTU3Vy/n/+OMPR8/F3iZNUnXrqoceynlYCAN3ZfTmoRkzlIgqW1Zd67ITxjty5Ii+QrLe3aJ3bpYvX/7QoUOGjHLNwF2vImnSpIk9/2kTuBvIzoF7dnZ2eHi4/nHw7rvvWv+WsYH7zz//rL8bbN26VR8xm816MUTXrl0dueWreLs6cM/Ozo6Ojg4KCtJtuLTKlSsHBARERkbe6p79c+fO1alTR0Ret3P5ZKWUUiNGKBF13332H7m4u/q8ysrKWrly5XPPPae/lP2XvDccOzZ75Up1qx8Alk17jjitOK9uzfLlqmlT1bnzXn2te6tlNFJSUr75Zv2dd+ZsKC9bVr30krppb8uMDNW/vxJR9eo5uGvR4sWLRaRGjRqWD09dRsPYEqZaYmKirrhi/U3z22+/FZFSpUrZrka54TZu3KiLvYhItWrVhg4dGhYWFhMTc+PNMUlJSVFRUcHBwb6+vq6urvqPx8bGXv1MHeiXLFnyeovoDTdy5EgRCQ0N1Q/Pnz/v6urq4uKSj1aFxho7dqz1D+j09PRSpUqZTCZDkr2MjIyBAweKSJUqVaxbOS5cuFDvX8l12YlrSkhIiIqKCgsLCwgI8Pb21jcqnJycypYta/0102EGDFAi6osvch6eP6/c3ZWzs7KqHVT4Fd7A/cyZM3arYXfy5El9f0wvYL/6Du2+ffuGDRt25swZy5HMzExLhZkOHTpc8w6nsXTgrpSKi1O1aqmnn6akzLXpdiitW7e2/sGZkpIyY8YMh7dNnzJlil4FYPhMXnnlFR2E5VpF6CgffPCBiLRp08bh/5/b2aRJatw4ddddaulSpa4TuK9bp/z81Pbt9piPDtx79Ohxzd9NTEwMDw8fOnRovttj7N6d4eFxRYE12MGCBQv0Epst//XzMpvN+rqzS5cuhsSLffv2vTpwj4yM1BuHRcTf33+/XdbgEbgbyJ6B+4oVK3S3Jb3SyhKFa3r916efflrwgY4cOaLbkn9udT300UcfGXsLCvlw4xrucXFxISEhegWcVrFiRZ2853Gl5MMPPywibdu2dcjKyhMnVJkySiTnxz3sJo/nVdu2ITpFrVhRBQSoyMi81v14+OGcTXsOWbDLeZVHe/cqf/+coLxJE/XHH/lfSpydraKilL+/MpmUiHJyUv7+V1y9nzt3eQdnVpbatk15eanKlZUDay1oZrPZ29tbRObOnauPpKWl6R/0f//9t7FjDR48WEf5lgoh//77r27SeNt1+o2Jibn33nsrV65svba3SpUqQ4YM+eSTT7Zu3Xrj/THnzp377bffXnvttauvt9988029THjRokW2fAdX+Omnn/TyAssRvT4mIiLCbnO4pqioKBFp0aKF5cgff/xx9OjRgr9yVlaWvgAoV66c9c+CpUuXlihRopAsQLwdpaSkrF27tm3btlJI9gd8950SUV26XD5y771KRNm+k7mBCm/gbmdmszksLEyv9/Tx8dm7d+8Nnnzw4EFfX18RcXZ2DgkJsc/iKUvgrpR65RXl6XndwP3iRXX4sAOatxQSFy9e1CtcrBtS66tzA+st5FGue8uWuY0aNerrr7+OiIiIior6+++/4+LiDh48mJiYmL94esuWLXpLdeEpU3vx4kW9wc0hNaAdaNIkFRKi/vpLNWigLl68duDeu3dOY4agIGXTNiRHjhwZMGBApUqVnJ2db1y0PS0tLTIyMiAgwNPTM1fybr1qIJf09PTWrX26dQsZNYoFpPY2ZswYubKAxunTp/U/ugkTJuT7ZS0tyl1dXStVqtS2bdtcJ8ClS5fCwsL0eeLm5hYUFJScnFygd3JDe/bsadu27R133PH222/bbpTio3///mXLln3sscdsmrkfPnw4ICBAf4zUqlUrPDw81xOWL1/u5eVVuXJlT0/PWwpYr5adnd29e3cRsW5suH37dl1Z7pdffinQO0HBPProo+XKlatZs+aNi2vrhFTv0tPKly8fEBAQERFxg048X375pYiULl36xlfsNjV5shJR3t7qvwAK9pDH82rLlqTXX1eNGuVksiKqfHn16KPqxqtOv/xSiajSpZXjTivOq5tITVUhIapECSWiSpVSISHKqLVGW7aowEDl7p5zwrRurcLDVUaGqlRJPfpoznO2blXNm6sDB9S1Fjc7wMyZM/U6M8uR1157TUSGDh1q4Ch6NVvZsmUP/Lf+PyMjo3379iJy//33GziQne3fv3/GjBkBAQG1a9e2Dt89PT39/PxCQ0Ojo6Pzfn3y8ccf63Toxx9/tOm0c0lKSnJzc3N2drYU1n/vvfdE5LHHHrPnNK526dIl/X3hoKFtzcxm8+jRo0WkTJkymzZtshyPjo7WC8ief/55A4crhvS6Lh8fH0dPRKnUVFW6tDKZLu88+uknJaLatXPkrG4RgfsVNm3apBsoe3p6zpgx45rPmT9/fvny5fXXSDtU5rKwDtzT0lTt2tcO3GfOVIMHq0mT1MiRdptaoaP30zVv3txyg3rq1Kki0qxZs4KUdLxVly5datas2f3332/5+aeUGjRokC5hdD2lS5euVq1agwYNfHx8evbsOWjQoOHDh48ZMyY4OPidd9759NNPv/32259++ikqKmrDhg27du2Kj4/Xqwhfeuklu721vNCXHbm2GhR5OnBXSgUEqAkTcgL3XP8HnD2rgoKUi4sSURUqqLAw479Tpaamjhs3zt3dXURKlixp6Yfh6urap0+fGxRtT0tL+/nnn4cNG6YXrWjNmjULCQm5+o8888wzItKwYcPC0524+LC0iAwMDLQcXLVqlW4RuWbNmlt6tdOnT8+cObNfv37WVYb0ZWuJEiWCg4NzpeoJCQmBgYF642H16tVv0J0s386ePfvcc8/pbaG1atW6XWqDFnKbNm3SnwaVKlX64osvDF8ukJaWFhISoj95PDw8QkJCLP2XtL1791ra3ugC61qFChUee+yx33777VY3ab311lsiUqNGDcsexNTU1MaNG4vIc889Z9gbQ75cunTJunTMTYu279ixY/z48c2bN7f8kTJlyjz88MNLr1rru3fv3tKlS4vId999Z/v3cV2XLqkGDZSImjbNgbModm71vIqLU6Ghytc3J0UNDr7uK+/dq0qXViLKoacV59V1mc0qIkLVqqVElMmkAgJsUtHl2DE1bpyqVCnnhBk5UlWqpBo3zrlVowP3wiM9PV1/r7TUVU9ISNDx601rlOfRzp07PTw8RGTevHmWg7pwSq1atRJtunTIjqzbpVp/MS9VqpSfn19ISEhUVFSuSxprn332mb54dshPJd3eyVLfeGdc3PAmTaLvvlvZMfe4pnvvvVdEpk+fbuBrvvjii/oi86+//rIc/Pvvv3W4//jjjxer5MEWLl26pHeO3mqRLpvQm84sBYIuXlRlyyoRlbe9+IUBgXtuycnJw4cP15+wQ4cOtV6hfOHCBd1eWUTuvfde6xTVDi5cuKJa0enT6tw5lZh4RauW06fVhQs5xQp79bLn7AqX9PT0WrVqicj8+fP1kUuXLulCnz/99JPdpqGDgIYNG1q6me/Zs0cvuxs8ePBjjz12//33+/n5tWvXrkmTJrVq1bK0srxVpUuXrl+/vrENewvu4sWL+huR/TcWOJAlcD9xQtWooby91e+/q3btVGho7r3Ju3erfv1yruYbN1ZGFfY3m80RERF6pYbJZBo6dOjBgwfPnDlzvaLt19vZl56eHhUVFRQUpOsvOzk5Hb+yXNrixYtNJlOJEiWuWcEQdhAXF6d7pX5vVdDn9ddfb9y4ca7yHddz+vRpfWJY6lE6OzvrEyMhIeHYsWOBgYGWfDYsLCxXPrtx48ZOnTrpP9imTRujdthYF/52cnIKCAgoYFNfWNu1a5euFySGluPXnzy6wKv+5MlVyyU1NTUkJERv9S1VqpRuoxoXFxcaGqq3DGoeHh7+/v7h4eF53Dkxe/bssmXLWvfX0cVMmzVrZvnJCwfKX9H2+Pj4sLAwX19f3afu1Vdftf7d9PR0vW1xZCFYWvLzzzn3zq2qTsLm8nde7d2r3n33ugX90tNVy5Y5AavDFe3zKj1dWedviYlq9uwrnrBhg/rvC5xSSi1cqE6cUDExqlOnnMvmtm3VunU2n2R4uGrWTK1apSpVUosXq0aNVHp6oQvclVJvv/22iFh3LxsxYoQYtM43PT1dr+t6/PHHLQctyzsKz9ZqYx07diwiIiIoKMjHx8e6Xaqrq6uPj09wcHBkZKR16eNZs2Y5OTmZTCZjk+W800VrR1svadedKDZudMh8LPQOjIEDBxr1gnoDh5ub2++//245uHXrVr0cdsSIEfZcW1mEPfHEEyLy1ltvOXoiSv32W86eLwvduHLZMsfN6dYQuF9beHi4XjtTu3Zt/bMkLi6uWbNmIuLu7h5W6MsGbdigivnSLr33rWnTppaP3enTp4uIt7e3fT6It2/f7ubm5uTkZLn7mp2d3aVLl1yXLFdLTk5OSEjYs2dPTExMVFTUggULZs+e/fnnn4eGhgYHBz/zzDMjRoy47777/Pz82rRp07hx4xo1anz22Wd5zNfsTN/tt/PGAseyBO5Kqc8+UyLqjTesS0zmfn5kpKpXT4mozp33+vv7F3A1SkxMjCW68vHxuXqZcz6KtmdkZCxbtuz999+3Pnj06NFKlSqJyEcffVSQCaOAPv/8cxEpV66c9Sbfm957O3z4cFhYmJ+fn14/bp2zX93IKDY2tnPnzvpprVu3jo6Otv7dm8ast2rFihV65b6I9OjRY9u2bQV5NVxPZGRkvXr19P/PBS/Hv2nTphvcejGbzeHh4XoJnslkCggIOH5Vs6NcAauIlCxZUifv58+fv/Ho1k+IiIjQ12nb7dMlA7ciH0XbDxw48OGHH+b623zuuedE5M4777RpPau802Xi2MLuEGazed26dS+99JKlv4iIVKlS5X//27V0qbqlLrzPPadE1J13qsJxWhXl8yoxUZUsefnhzp2qXr0rnvD668rJSVlupLZvr0JCcgqs16ih5syxX91UPVClSurcOfXII2rChMIYuJ89e1b3orTUANy+fbvJZCpVqlTBVwc+++yzuT5vDSlgeBs5duzYDz/88PTTTzdt2tQ6fHdzc/P19X3jjTfGjRunL6c/+OADR00yYffus61amatXv7yk/emnlcjlL6UOcuzYMZPJVLJkyfXr1xd8V+X8+fPlqhL5e/bsqVq1qojcd999mdThMsiff/4pIvXr13f8doHMTFWlihK5fLf8/HmHb924JQTu1xUfH9+hQwcRcXFx6devn16W5e3tXfi/xUVHqxdfvLWrzKInIyNDX3xb1n5mZGTofMF6Q5yNZGdnd+zYUUSefvppy0Fd6KZatWpFZvPdTVk2Fji8bYvdrFhx+YZrVpYaP17t26eiopS3d07s7uen4uKu+CMXL6p33zXXrdtJREqUKPHaa6+lWO9byRu9GFmX+PDy8rppiY/8FW3XsrOze/bsKSL9+vVz/I/hYu+BBx4QkXbt2l1vTZ/FgQMHcmWa7u7ueck0rbdN6Hw2VzVGvXhZFxLRi5dvsOv2em5a+BvGurocfz461d+0uNCGDRv0pZQ+S2/axu3QoUP6LNWvqT8Vb9yCwvrP6iVOX3755a2+EdhT/oq2a0uWLDGZTK6urhs2bLDPbG8qLk65uCgXF7Vjh6OnUrxZzisnJ5eqVbN10faAABURofJS9+6XX1S1aqrQnFZF+bzKS+A+ZIjy9s7ZG9q+vVq6VFWvroKC1K3/mDKADtxPnFDVqqlffy10gbtS6sknn5Qrawz6+fmVKFFi8eLFBXlZy+ft+vXr9RGz2Txw4EAR6dKli32a2BUqSUlJUVFRwcHBvr6+lr2hZcuWFZF33nnHwZOrX1+JqP/+ptSiRTmbQRwtMDCwfv36IlK6dGlLcZ5brR+oZWVlBQYGWpcr2Ldvn77907dv3/y9Jq4pOztbbyArFNdaL76ohg5VO3ao5GQ1a5YaN0599pkq2FIheyJwv5GMjIyQkBAnJye9tz0gIKCwVe242oYN6o471OjRKjAwdwmL4kZvYmrYsKHlbudXX30lIg0aNLD1/c/3339fRGrUqGEpSXTo0CGda/z88882HbqwmTFjRrVq1exwk6OQy8hQYWE5NcdcXVVQkMqVcF6dmOfxQlanZrrkej5Ss4sXL+rkXV8vWpL34ODgXGuZLSZMmCAiVatWvXqZKuwvMTFRR+HX2/e3f/9+nWBa/n4ta4dvaX1oWlpaaGio3vvl4eERHByc685QvhNzQ/J65E++y/HftH3u0aNHAwIC9N2dGjVqhIeH39L9uVOnTl2v3tGxY8eufn5mZqa+zz1kyJC8jwLHutWaQidOnNAL2Qrb5qqnnlIi6uWXHT0PKKWUiouLHz9eNW9+uV2qp6d6+GE1f76yfI3bvl35+V3ujDp7tpo1SxW2nzxF9bxKTFQlSqhNm3J+RURcI3B//30VEKAmTVJKqfbt1bp1jvzb0YG7UurTT1WLFoUxcP/nn3+cnJxKlChh2ae4e/fuAl6lWz5vp0yZYjmom6KVK1fO2DaYt6Pz588vWrTo+eefd3JycnFxcfyOq2efVSLqzTdzHl64oDw8lJOTKgRf1saMGWPZVamVKlWqd+/eEydOXL16db6D8sOHD+uFfb169eKLg+FeeuklKVQdaJOSVIMGKjBQ/fCDmjRJVa5s88piBiFwv7nff/999+7d1ltXcFvIysrSO5fnzJljOdKoUSMRmZ2rWKCh4uPjdb2OX3/91XKwX79+YnTL+NtCXgpcFB9nzqigIOXsrERUxYoqLEzlCtWtV4O2bdv2pqtBDawLkatou1a3bt2goKDo6GhLUrZhwwZXV1cnJ6dlt0/ptCJv9erVzs7OTk5Of/75p+WgXutn3fqpXLlyQ4cODQ8PL0iT2yNHjlhS1Jo1a16doi5fvtzS87Bnz543vgLWa+d1yw1DKtIgf3LVhLlp092tW7fqLzk64I6Pj7f+3QsXLljuzZQsWfLqezO3JI8tKF5//XV9p8fO/XVgiKtrCl29/yY7O7tXr15SKDdXnT6tZsxQ1hWw4uPVmTNq1y5lvadx27Y8LbWGUf75R737rvLxuZy8e3ioIUPU3Lnqjz+Up6fq3TvnmePHq8JQqzaXonpeJSYqZ2f14IM5v/r3v3bgfvy4qlZN7d+fE7g7kCVwz8pSrVoVxsBdKaUbko8fP96oF3zmmWdEpE+fPpbb8NdsHQR9z3jBggUOnseSJUpEtW59+ciAAUpEffutw6Z0petVxndxcbFUxr9pFUGLEydO6FSnY8eOBbnIxPXExsaKSJUqVQpLoZ6QkCtarMyZozp1ctxsbgGBO4qyWbNmicidd95p+aQIDw8Xkfr169vos8NsVoMHX+zQ4f3hw4dbDn777bciUqFChavrI6MYio1VXbrkfPdr1UqtXbvb+nety3fcYH/i7t279V0cEWncuLF165gCysrK0r3IvLy8LBdDd9xxR1BQ0O+//65Tttdee82o4WCIkJAQvY54zZo1ISEh+hpUq1Chwo2rJOfD+vXr27dvr1+/ffv2lr3GmqXr6f3333+DF7Huudq2bdui2nrrdnFL5fiTk5O9vLyu2XM1MjLSksX7+/tbugsU3A1aUMyZM8fZ2dnZ2XnlypVGDQeHuEFNIX1PpUqVKoVzc9XXXysRFRWV83D4cBUernr3VpGRl5/TrJnatMkhsyvuDh1SYWHK11c5OeVcfU2frnr0UD17qrlzlSqsgbsqoudVXkrK6M5Bn36q7rvP8YH7hAnK0oR7yxb18ceOnMz1rFq1SkQqV65sVMPw9PT0119/3fJ5e/HiRd1iZ/To0Ya8fpExefJkERk1apSD53HxovLwUCaTSkjIOaKbid3wUtxRTp48GRkZGRwc7OPjY/lxbwnfg4KCIiIiblCD9/Tp002bNhWRli1bFp9Svfanl20tXbrU0RNRSinl56esb2slJysXl9uioAeBO4qyrKysxo0bi8g333yT68jXX39tixGnT1ciqkoVdeZMzr//48ePV6hQQWy8rB63nchIVbeuatUqUcdSuZaIpqamhoaGXnN18NmzZ4OCgnR/ngoVKoSFhdno7lFWVtaqVauee+65GjVqWK6ETCZTXsqFw86ysrI6d+5svWCkevXqzzzzzJ9//mmjIps6VdfbjZ2cnAICAnLdUDx79uw1S3+oApQxga2lpaVZyvt4eHjcoLzPnj17cp1asbGxujG4iLRu3Xr16tU2mmRSUtK8efOGDBni4eFhWfMuIm+//baNRoT9HT16dOrUqd27d3d2drYk74V5c9XXX6v27VXjxjmFL4pGMFr0JCSoqVPV0KHqr79Ujx5qxw5Vs6Y6d65QB+5F77y6XuB+7lzO27QE7llZqnVrVbbs7VI5wMHatWsnNuti8tRTT+lFbKwmzmXr1q0i4uXl5fitV/7+SkRZIo5Dh5SIKlOmkHf2S05OtlTGt+xlFBFnZ2dvb+/AwMCIiIjTp09bnn/+/HkfHx8Rad68+ZkzZxw48yJvwoQJ1apUmVtIltn5+Kjlyy8/zM5WLi7qdjgBCNxRxH333XciUrt2bcvqzrlz5+Y6YpSEBFWunBJR1i1ChwwZIiL9+/c3diwUARcuqA8+mKczo5IlS7711ls3Lr+TmZk5Y8aMSpUq6SUAgYGBp06dssM8zWbzunXrXnrppcaNG//888///vuvHQbFrTp06ND8+fObNGnywgsvrFmzxj4RdkpKSkhIiG4qXrp06ZCQkBuXYtTFRm5Q+BuFwa2W4z9z5kxQUJAORitWrBgWFmafXmppaWnz589/+OGHH3jggZkzZxbDBm7FwalTp2bMmNGnT5+QkJC5ejVyofT11yowUI0apUJClCoqwWgRtnq16tFDKaVefFE980yhDtyL3nl1zcD9ww/V88+rQYPUxo2XA3el1MaNysmJwD1P5s2bJyINGjQwvHvk4sWLTSZTiRIlNm/ebOwrFw16d6Dj/8/54gslou677/IRb28lom6fzX/JyclLlix57bXXOnXqZGnho9d7NWvW7Nlnn509e7YuvtqgQYPrLeuBUVL3789ycVGensqgfTMFMmSIsr6beOCAKlPGcbO5BQTuKOKys7N1QWHLDf/s7Gy9J27GjBnGjjVokBJR/v6Xj/z6q/LxOd2ggV+u9cuARR5bCy5fvrxZs2b6sqNXr17bt2+3/1SBa9q7d+/QoUP1ydmgQYMI61uOViIjI+vWrWspNsKnYiG3cuXKu+66S/99de/efevWrVc/JyMjIywsTLdcdnV1DQoKynv9TaAo0cHoqVPKy0v988/lYNTLS915Z84vN7fbLBgtwiyBe3Kyql1bPfBAoQ7ci9h5lZ19uV2tUurSJRUfr3RE/Pvv6oMP1NmzOTXTtUOHCl0/28IpMzPzjjvuqFixooiUL1/e29vbz88vICAgODg4LCwsIiIiOjp6//79t7ov9ujRo3qtz8eFs5hOITB69GgRmaSb/DrQ4cPKZFKlSyvLHZdXXrl9Oy+npaVFR0eHhob6+fnp5gFaqVKl6tate+TIEUdPsHho316JqB9/dPQ8lJozRzVvrvS3DLNZjRqlnnvO0XPKEwJ3FH0//vijiNxxxx2WG/4RERF64Z6BSwC++06JqLJllaWLW2KiqlZNiajPPnP0FjMUehs3buzYsaO+kmjbtu06q8U8+/bts6SZd9555/XSTMCxoqKirO8J7dixw/JbW7Zs6dq1q/6taxb+RuFkKcdvKRx08uRJy+9GRUVZuvL6+fnt3LnTgVMFHEsHo0qp6dPV3XcXkZXIRZglcFdK/fijMpkKdeCuis15NWqUsrp2wC07cuTIiBEjLJW4rsnFxaVGjRrt2rUbOHDg008/PWHChG+++WbJkiXbt2+/euOspVt13759HV8ypbD65ZdfRKRjx46OnohSzZsrkcuVN1atUiKqSROHzskA6enp0dHRkyZN6tOnz59//rl//35Hz6jY+OQTJaIGDXL0PJQym9Wrr6o77lCDBqmmTVW/flfcmC3ECNxR9JnNZr1M7/PPP8915LPPPjNkiNOnVZUqV5RNU0o99pgSUR07KqoTIy/MZnN4eHi1atX01rmAgID9+/db6nWUKlXqpvU6AMfKyMjIVfXon3/+sRQb0S0HqPtx2zl37lxwcLAurFmuXLnQ0NAdO3YMGDBAf3Vv1KjR4sWLHT1HwMEswWh2tmrbVtWuXcSD0dvd5s3qyScvPxwxQn3xheNmc33F57zKylJvvaX4YWKIrKyshISETZs2RUZGTps27a233nr88ccHDBjQokUL3XrnBkqUKFG7du1OnToNGTIkKCiob9++Uoi7VRcSqampJUqUcHZ2ti417hjBwUpEvfhizsPMTDVtmjKufT2KnZMnlYuLcnMrLNXSL11ScXG3S9SumZRSN/7YBYqABQsWDBkyxMvLa//+/XpT0sKFC++77z7rIwWxapXcd5+0bi1RUaLbFq5YIX5+4uYmW7ZIkyYFfwcoLpKTkydPnhwWFpaRkVGqVKm0tDQnJ6eRI0dOnjz5plfJQGFw+vTpN99886uvvsrOzi5dunRqaqqrq+uzzz771ltvlStXztGzQz7t3r37hRdeWLp0qYi4urpmZmaWL19+/PjxTz/9tO7hDBRn33wjGzbIjBkiIrGx0r69fPONfPedPPec3HNPznOaN5f335fvvxcXF+ndWx5+2IHzxe2h+JxXTz8t8fHSsqV06CCDBzt6NkVaRkbGmTNnjh8/fuzYsav/98SJE9bpkIuLyx133PHJJ5/4+/s7cM6FX58+faKior777rtHHnnEkfOIjpaAAAkMlDfekBMnZOdOKV9emjUTq2akwK3p10+WLpUvv5TRox09ldsSgTuKBaVU+/btN23a9MknnwQFBVkfCQsLe/755ws+xIkTkpkptWqJiKSlSYsWEh8voaESHFzw10ax8++//7700kstWrT466+/wsLCWrdu7egZAbdm27ZtY8eO7dKlS2xs7EcffdSoUSNHzwgG+O2338aPH687Vk2YMEHXigVw4IAkJoqPT87DP/+UO++U/fulUSOpUSPn4OLF0rChlCsnFSpI376yfLmjJovbBucV7OzixYs6fE9ISDh+/HhKSsorr7zi7u7u6HkVdp988snYsWMffvhh3brWYZTKWfr38suycKH4+cnJk7Jli/z2m7Ro4ciJ4fY1e7Y8+qh07y4rVzp6KrclAncUF7/99tvAgQOrVau2f/9+Dw8PEVm0aNE999xjfcQozz0nn30mLVvKxo1i1WEbAAAAxdquXTJ1qnzxhaPngaKF8wpwlAP//jtz9OjB6ent1qyRG9bQt4cVK2TMGImNFU9PEZGvvpKvv5a//3bwrHCbSkmRatUkPV0OHsxZW4pb4eToCQB2cs8997Rv3/7EiRNf/Hcp6u/vP2DAgOeff96kbwUbZP16mTZNXFzk669J2wEAAJAjPl4++khCQx09DxQtnFeAA9W98853EhLarV8v69c7ei4iv/wiI0bkpO0iMnKkxMXJiRMOnRNuW56e4u8vZrP88IOjp3JbInBHMRISEiIioaGhKSkp+sjixYtfe+21gtdwt7h0SZ54Qsxmee01oQoIAAAAtPXrpW9fuesu+fVXR08FRQjnFeB4d98tIrJ4saPnIXL0qFSvfvmhs7NUqyZHjjhuQrjNDRsmIuLYckm3LQJ3FCP9+/fv0qXLmTNnpk2bZqMhJkyQXbukSRP53/9sNAIAAABuP02ayNKlcvfd0q2bo6eCIoTzCnC8whO4e3nJ6dOXHyolp05dEcEDt6R/f6lQQbZulX37HD2V2w813FG8LF++vHfv3hUrVoyPjy9Tpozhrx8XJ6NHywcfSOfOhr82AAAAAAAoTDIypFIlSUmRgweldm1HzuSXX2TCBNm0Kaea/G+/yRtvyPbtYmgRXRQvv/4qDRrIHXeIi4vQRflWsMIdxYufn1+3bt3Onj376aefGvKCTz4pQUE5/202y8iR8vffpO0AAAAAABQDbm7Sq5eIyB9/OHgmgwdLvXrStat8+KG88oqMHi3TppG2o0DKl5eHHpLOnaVNG2nbVrZvd/SEbhuscEexs2bNmi5dupQuXXrixIleXl6enp6enp6lS5cuW7Zs2bJlS5cuXaJEiby/Wo8esn27fP+99OkjZrO4uIjZbLu5AwAAAACAwuSrr2T0aBk4sFC0U1i3TrZvl4oVpVs3qVLF0bPB7SwlRRo1ktmzxc9PRCQ8XEJDZccOcXFx9MxuAwTuKI6GDBly+PDhmJiYa/6um5tb6dKly5UrV7Hibnd3t9KlpXRpKV9ePD2ldGnx9BRPTylXTjw9pXZteeYZuecemTFDtm0TNzcCdwAAAAAAipPjx6VGDfHwkDNnKLuBomPePJk9+4qtG82by9Sp0r27w6Z0++CmBIqjn3/+ee7cuatXrz537lxKSkpqampKSkpKSsq5c+dSU1MzMjISExNTU1Pj491u/DpPPiki0q6d7Nwp77wj48fbYe4AAAAAAKDQ8PKSli1lyxb56y/p29fRswEMEh8vd955xZGGDSU+nsA9LwjcUUw98sgjjzzyyDV/Kz09PTU1NTk59fx5SU2VlBRJTZWkJElKuvzw/HlJSZGWLeWff0REQkPlrrtk+HC7vgUAAAAAAOB4d98tW7bIkiUE7ig6ypaVffuuOJKcLOXKOWYytxsCdyA3d3d3d3f3SpUq5eXJP/4oIlK5soSEyCuv2HZiAAAAAACg0BkwQCZNylmRBxQNrVrJlCmSkSFubiIi587Jli3i4+Poad0enBw9AaCIGD1aTpxw9CQAAAAAAICdtWsnu3bJO+/I0qVy5EjOwTNnZOfOy885diz3emGgMPP1FR8fufdeWbpUfvtN/P1l5EipXdvR07o9ELgDBeLjk7OfxslJvvgip3UzAAAAAAAoLvbulf79ZcIE+e038fOTwEARkVWr5LXXLj9n/nyZMsVREwRuzbFjYjJJRIQ8/LBERsqff8pLL8n77zt6WrcNk1LK0XMAAAAAAAAAbk89e8r998vTT4uIXLgg7dvL5MmSkSHh4fLbbznP+fRT2blTZsxw4DSBPPngA5k4UX78Ufr3d/RUblescAcAAAAAAADyJTlZ1qyR0aNzHnp4yOOPy6+/iogoJZmZOb/MZgfOEcirxYvl9dclNVXOn3f0VG5jNE0FAAAAAAAA8iUhQSpWFFfXy0dq1JA//hAR+esvueuunIOJiTJokAOmB+Td5s3y4IOSnS2hofLww46ezW2MwB0AAAAAAADIFy8vOXtWsrPF2TnnyIkTUr26iEj37rlLygCFVkKCDBokaWkycqQEBzt6Nrc3SsoAAAAAAAAA+VKunDRqJBEROQ+zs2XePOnb16FzAm5RSorcfbccPSrdusn06Y6ezW2PFe4AAAAAAABAfn35pdx7r6xfLzVrSmSkVK0qDz4oP//s6GkBeZOdLY88Itu2SePGsnChuLk5ekK3PZNSytFzAAAAAAAAAG5biYmyerWcOiXNm0uHDmIyydGjcvCgdO6c84R//5WkJPHxcegsgWt59ln5/HOpVEn+/lvuvNPRsykKCNwBAAAAAAAAoNjZNXOmd2CguLvLihXSsaOjp1NEUMMdAAAAAAAAAIqXyMjIFk899XXnzurbb0nbDUTgDgAAAAAAAADFyJYtWx555JHs7OwT/fqZHnrI0dMpUigpAwAAAAAAAADFxbFjxzp06HDkyJFHH3101qxZjp5OUUPgDgAAAAAAAADFQmpqapcuXbZu3dqlS5eoqKgSJUo4ekZFDSVlAAAAAAAAAKDoM5vNw4cP37p1a/369RcsWEDabgsE7gAAAAAAAABQ9I0dO/bXX3+tWLHi77//XqlSJUdPp2gicAcAAAAAAACAIm7mzJlTp051c3P76aefGjRo4OjpFFnUcAcAAAAAAACAouzChQve3t6HDx+eM2fOI4884ujpFGUE7gAAAAAAAABQxB07dmzJkiWjRo1y9ESKOAJ3AAAAAAAAAAAMQA13AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAKqS+++OJ///vfxYsXHT0RAAAAAADyhMAdAAAUUqGhoZMnTz558qSjJwLAkWbOFD8/uXAh52FgoMTGOnRCAAA42sKF8vnnlx9OmSKnTztuNgCuROAOAAAKqSpVqojIqVOnHD0RAI507Jhs2SKTJuU83LtXUlIcOiEAABxt2TJ54QX588+ch19+KYmJDp0QACsE7gAAoJCqXLmyiJxmuQ5Q7I0aJfPmya5djp4HAACFxsiR8uyzcumSo+cB4CoE7gAA3B7Wr1+/c+fO1NRUR0/EfljhXqzEx8fv2rXrxx9/pGo/rla6tEyYIE89JUo5eioAABQObdtKhw4SGuroeQC4ioujJwAAAG7ixIkTo0eP3rVrV3x8vIiUL1++Xr16Xl5e1atXr/efBg0alClT5qYvtWePDB8uM2dKq1YiIt99J2fOyNixNn4D+aUDd1a4Fwdr164dPHhwtWrV4uLiSpYs6e/vHxAQ0K9fP1dXV0dP7f/s3XdYFFcXB+CzS1cRQUWwgxoVey/YxQ527GBLiMaIRo2YLxo00YjGgsao2LEDYgGs2LErYgEVC4oFbHSk797vj4vrCqgIszuL/N7HJw87LHPvhmF35sy554CYzp8nxR03BwfauJG2bxd1QgCF9ujRozt37syZM6fJe40bNzY0NBR7XgBQZKSnU1xc9teLFlGjRjRypKgTAoBcEHAHAADQaDKZbMSIEadOnapYsWKdOnWePHkSFxcXnFfHwM6dh757t7t6dcrxz8Dgw3NSUujhQ5owgS5eJKmUXr6kly/V91q+FkrKFBObNm2aMGFCZmZm9erVW7VqdfnyZR8fHx8fHzMzsyFDhowcObJly5ZizxHU6uVL8vKiTZvo1i2qVInGjyeplCQS+u8/srWl8uXFnh9AQcXGxvbp0+fx48cZGRk3b97csmUL325ubt7svRYtWpiZmYk6zeJHLqft2+ncOUpLo6ZN6YcfqGRJsecEkIcHD2jjRtq8mdq3z/40NDWlP/6gGTPEnhkAfAwBdwAAAI02d+7cU6dOVahQ4erVqxUrViSiuLi4iPeioqKio6MjIiLCw8NlsrJXrtCVKzn3YGb2IfjeoQPVrk2VK9OaNTRpkggv56vwgDtKynzDGGPz5s2bN28eETk7Oy9fvlwqlT59+nTXrl1btmy5d+/eypUrV65cWa1atWHDho0dO7Z27dpiTxlUKCuLDh+mTZvo4EHKzCQiqliRHB0pK4u0tYmI6tcne3tasoQyMqhfP/rtN2rdWtwpA3yFjIwMe3v78PBwKyurlStXPnjwICQk5Pr166GhodHR0QEBAQEBAfyZlSpVaqKkevXqok68GJg0ie7epTlzyMCA1q6lPn3o1CmSSMSeFkC29HTau5fWraMzZ7JLqz19SmXLZn/XyYk2baKnT0kmo9mzafp0MjYWcbIAQEQkYaiDCAAAoKlOnDjRo0cPxtjRo0dtbGw+80zG2KtXaRERBk+ekPK/yEjKyPjwtH37aOFC2r2b2ral69dpxw56+ZKWLFH5CymYQ4cO9enTp2fPnocPHxZ7LiC8tLS0cePG7dq1S1tbe8WKFT/99FOOJ4SFhfn4+Hh6ej558oRvsbKycnR0dHR0NDc3V/d0QZUePKAdO2jLFoqMJCLS0qLOncnJifr3Jx0d2raNpNLs9fLJyTRiBFla0ooVpKdHq1fTuHHizh0gXxhjo0eP3rZtW8WKFS9dulSlShXFt7KyssLDw4ODg+/cuRMWFnbp0qW3b98q/6yRkVH9+vUVKfB16tTR0tJS+yv4dj19Sg0bUkQEmZgQEcnl1LgxLVpEvXqJPTMAun+fNm2iTZuIL/jU1yc7O3JyIhsbmjiRmjWj778nIgoOplat6IcfaO1aqlGD9u6lhg3FnThAcafagPuFC/T0KQ0blv3wyBGSy6l37w9PWLyYGjem7t2JiOLiyMODZs1S3XTgG4HjCgCKiefPnzdt2vTNmzfz58///fffC7YTuZyio+nx4+z4u40NTZlCly/T/Pl07x41bqzRAferV6+2bNmyWbNm165dE3suILC3b98OGDDg3LlzhoaGXl5evT4d15DL5RcuXPDx8dmxY0dMTAwRSaXSNm3aODo6Dhs2LD+tC0BjpaSkHDhwfu3abkFB2Sl7derQuHHk6EgVKnzuB7OyaPZsWrSIiMjJif79l3R11TFhyKeMjIyjR48ePHhw5MiR7du3F3s6GmH27NkLFiwwNDQ8e/Zs48aNP//kqKioYCXR0dHK39XV1a1Zs2YzJQbKxePgax06RG5udPbshy3OzmRqSrNnizcnATx79szLyys+Pr5WrVpDhw7V19cXe0bwFdLTydeX1q2js2ezPx+bNCEnJxoxgj5z4vP8OQ0eTJcvk74+rVlDY8aoa7oAkItqA+5r19Lly7R5c/ZDV1fKzKS///7whBo1KDWVQkPJxISePKFOneh9AhPAJ+G4gqIlPp5KliTe9k8mo3fvPneSBKCQlZXVuXPnc+fOde3a9ejRo4pcNsbY7Nmzq1atWv09PT29/O/2+nWaOJEuX6b0dGrUiBo0oGrVNDfgHhkZWb169SpVqjx9+lTsuYCQQkND7ezsnjx5YmFhERAQYGVlpfzd1NRULS0t3VwB1PT09GPHjvn4+Pj6+qakpBCRvr6+jY2No6Njv379cj8fNFlwcPDWrVu3b98eFxdfrVray5c6PGWva9evqOKwYwf98AOlplK7drRnzxdi9KAGMpns1KlTu3fv3rt3b1xcHBFJJJLXr1+XK1dO7KmJbNOmTePHj9fS0tq3b5+dnd3X/nhUVFSIksePHyt/V0dH5+LFi02aNJFKpcJNuTjZs4c8PCgw8MMWFxfS0vroCrPoiI2NDQgI2LZt28mTJ+VyuY6OTmZmprW19f79+/GXWCTcv39/06ZNBw5cfvToVGbmRynt+ZGeTpMn0/r1REROTrRqFamt/TxjTIJCTAAKTJXWrGFjxnx4+Mcf7LffPnqCpSWbMIH98ANjjD1+zKpVU+l04BuB4wqKlrJlmZNT9tchIaxhQ1FnA0XH9OnTiahy5cpv3rxR3h4VFaX8OS6RSCpWrNi2bdsRI0bMmZOybh07dozdv8/S0/PebXAwa9ky++tjx5hEwqZPV/ErKQRFUFXsiYCQjh07ZmRkREStW7d++fJl7if8999/ZcqUcXBw8PPzy8rKyv2EuLg4T09PW1tbxY0o/vzAwECZTKb6VwAF9+bNm+XLl9evX1/xJta2bdudO0MTE/N4cmQki47+wg6vX2dVqzIiVrkyu3JFFVP+SEZGxv79+0eNGnXgwIH79++rfLyiZsKECbmvN/fv3y/2vER26tQpfkfwv//+U2yUy+UF3mFCQkJQUJC7u7uDg0OzZs10dXX19PROnTolwFyLp5AQVqUKU/74sLVlmzaJN6GCiI+P37x5c48ePbS1sxv1GRgYDBkyZMWKFVWrViUiS0vLe/fuiT1N+KTU1NRt27Z16NBB8eY5bNijtWtZnp+PX+TpyQwMGBFr145FRQk911zu37/v4uJiaWk5ffr0PXv2qHw8gKJA5RnuXl6kOO/y8aHvvsuZiXz4MPXpQ56eVLGihmYiv3nz5uDBg+vWrRNwn//880+DBg2wCLpgcFx9Co4rzVSuHJmY0JYt1LYt3bhBo0fTzZtiz+kTUlJS7t+/n7uMcmEMGzZs2LBhpqamAu6zOAgICOjbt6+Wltbp06etra2VvxUTE7N69eonT548efIkMjLy6dOnmZmZRFSyZKl375IUT5NKydycLCyoenVatYqMjLK337tHCxeSp2f2w59/ppo1aepUtbyqAjE0NExOTk5ISMCb27dh/fr1kyZNyszMHDx48NatW/MsgzB27NgtW7bwr6tWrTp8+PCRI0c2aNAg9zNfvHixZ88eHx+f8+fP8y2VK1ceOHCgo6Njs2bNVPYi4KvJ5fKTJ09u3bp1z549qampRGRsbGxvb//TTz81atQox5MzMujoUdq2jfbto19//XKO6Zs3NGQInT6t2hX09+/f37lz5+bNm/mCGz09PQMDg507d36mGlIxVLNmzUePHuXYOH369CUau5BK9e7cuWNtbR0fH+/i4uLm5sY3PnnyZMCAARs2bBDknWrWrFmLFi368ccf165dW/i9FVPt2lHfvjRzJhHR4cM0fjyFh5OhodjT+rK0tLTAwEDltV9aWlqdO3d2cHAYMGCAoaEhEUVHR9vZ2QUHB5uYmOzbt085pAuaIDw8fPPmzRs3buTNGwwNDfv37+/o6Pj57k1fdP06DRxIkZFUsSL5+FDbtgJNV0l6erqvr++6devOnj2rCC1KJJKZM2cuWLAArSY0yps3b/bv379ZUSlCCMuWLatfv36pUqUE3Oc3RaXh/DVrWMOG7Pffs/+1b59HJnJkJAsIYA0asIcPNTETWSaTtWjRQrmnjSAqVKjw008/if3iiiocVziuipayZZmvL2vQgGVkaHqG+5w5cwRfalqlSpXvvvsu/VPp1pCXiAh5w4YtiWjp0qVffHJWVtbTp0/Pnj27Y8e+efPY2LGsc2dmYcG0tRkRI2JaWiwjI++fffOG/f47mzxZ4PkLy8LCgogePnwo9kSgsLKyslxcXPg7g7Oz8+dT0e/cuePq6lqzZk3Fm4mVlZWrq+unjoTQ0NDffvutevXqiue3atWqMAmkICA3NzfFOY+Wlpatre3evXsz8npjunmTTZnCypbNfvvS12dTp+ZriMxM5uyc/VNOTp980yuApKSkTZs2Kd/4tLKy+vvvv3lVEIlE4uLigiNNYcGCBbnPBFoq1lUVP1FRUdWqVSMie3t7xZtebGxs3bp1iWjAgAGCjHLnzh0iMjExwelWwT15wnr0YLVqsbp1WevW7OJFsSf0BVlZWYGBgQ4ODobv7wpIpVJra2t3d/dXr17lfn5ycjJ/19LT09u+fbv6Jwy5paWleXt729jYKMqwNGvWzMPDI7FgOe2MMcauXWPx8R8evnnDbGwYEdPWZm5uAsxZITw83MXFpXz58nzm+vr69vb2gYGBHh4efEFPx44d81zFCKLIyspq3LixKgJQU/N5olYsiV/D/dQpqlqVBgygWrXI21vjMpE3b948btw4MzOz7du3C9WL5smTJ2PGjJHL5devX2+I1tFfD8dVnnBcaSbGqHx5evSIvv+eWrakbt00N8P92bNnderUSU1N/e+//3LnGxaMTCb7/vvv79+/v2TJEl4gBb4oPZ3ataPw8ERHxw3//vtLgSshZmXR8+f05Am9ekVDh+b9nKgo4vHJx4+pUqUCTljVWrduffny5QsXLrRp00bsuUDBvXv3buTIkQcOHNDV1V2/fr2jo2M+f5BX+t69e/fr16/5lmbNmjk4OAwfPjzPpTP8+Tt27DA0NOzQoYOnYjUHiGTfvn1Lly49f/58lSpVRowYMXHiRB5/VJaQkLBv3/X//uus6I7cpAmNG0cjR5Kx8VeMtW4dTZ5MtWtfMDWdu2vXDkUgoGCCg4PXrVu3a9eupKQkUko57Nq1q0QiYYwtXrz4f//7n1wuHzJkyKZNm0qWLFmY4b4NCQkJ1apVS0hIUN6ora0dFxdXDDPgUlJSOnfufOXKlZYtW546dapEiRJElJmZ2atXrxMnTlhZWZ0/f75MmTKCjNWgQYPQ0NCDBw/27t1bkB0WI0uXkq8vzZhBAweSXE5ZWZrcglnRRVz5Y9HKysrR0dHBwaFixYqf+VmZTDZ16tRVq1ZJJJI//vhj7ty56pgxfFqHDh2CgoKIqHTp0sOHD3dycmratGlhdvj0KTVvTmXK0N69pKjclpVFLi60bBnVrBnaqdOqlSuXFyb+kJ6e7ufnt27duhMnTvBYIj/8nJycjN9/YJ87d27IkCHR0dGVK1fes2dPq1atCvOiQBAeHh4TJkyoWLHitm3bhOqf/Pjx4zFjxhDRjRs36tWrJ8g+vzUqDefnWWs7OZlduJB9241nIjPGnjxhJiYal4mcmJhobm5ORILfBJ48eTIRdenSRdjdFhM4rj4Fx5XmCA1lrq6sbl129CgrW5bFx7Nnz5ipKfPz09wMd3t7eyIaOXKksLsNDAwkIkNDw+gvFuIFxhhjkyYxIlatGouJUcdwgwczIjZ3rjrGKhiekHXgwAGxJ/KtCQ9nP/7I3r7NfnjgAPPzU9VYL1684GUTTExMClZlWJHKp4jZaWlp2djYeHp6JiUl5X5+dHQ0f+dBSXfRde3alYgWLVqUZxr4tWvXnJycSpYsqa2tX6GCzMiIOTmxoKCCDxcUJLeyakhENWrUuH37dgH2EBsb6+HhoXzjmacc5nmkHTp0iAdMGzZsGBERUfB5f0PyvL/OQzPFSlZWVr9+/YjI0tJSkXEsl8tHjx5NRObm5pH8ckUg8+fPJyIHBwcB91lcDBjAiNiOHdkPL11ijRpp4IlRaGioi4sLv4rk+MKvr20m4e7uzpvrjhs3Ls+VRqAe48ePNzU1rVWr1qc+XwogIoI1asSIWKlSzNv7o2/t2iWvW7cxETVt2vTx48cF2Pm9e/dcXFwUi6ENDAx4SnueT37x4kXbtm2JSE9Pb/369QUYDgSUkJBgZmZGRN45DotC+/HHH4nIxsZG2N1+M9QdcJ81iw0fzjw9WadOLDX1Q2CUMfb33xoXGOULn9u0aSP4QtHY2Fj+VrVv3z5h91wc4Lj6FBxX4pLJ2PnzbPp0Vr169qp2ouyl8fxW0OLFrGlTDQ24nzt3TiKRGBgYCHv5x/Xp04eIfuCNjOGzvLwYEdPTY9euqWnEU6cYETM3F7ICg7DGjRtHRDhZF9zp00xHh40bl/3wjz+Yq6tKBrp58yZfwVqjRo3Ct2tLSUnx9va2tbXV0dFRvuTz8/PLETjgiX4oRiS6SpUqEVGOYPTz588XLFigKBkklUq7du3q6/soNVWAEZ8/f96yZUsiKlWqlI+PTz5/SiaTBQYG2tvb675PbjUzM3N2dr5169bnf/D+/ftWVlZEVLZs2U+FHoqV58+f6+ZKEJ6reeFLVeN5MGXLllV+33N1dSWiEiVKXL58uZD7f/v27dq1a3ndZMbYo0ePJBKJoaFhSkpKIfdc7PAT9zt3sh/++y8jYuPHizqnD0JDQ11dXWvVqqX4a6pWrZqzs3NwcHA+9+Dt7f3TTz8pdyDfu3cvX29hY2MTr1x/BNSodevWRKT4ExZKaiobNy7vAmt3797lxazKli175MiRfO6wwHVvMjMzFYUEnZycUPBKRL/88gsRWVtbCx6AiomJMTExIaKAgABh9/xtUG1JGcaIMZJKsx/K5USU/XD0aPr775wL2AMD6cIFcnVV3Yy+QkREhJWVVWZm5sWLF/lZOxccHHzx4sUC7HDAgAGVlF7wf//99/PPP1taWoaFhQm1pqOYwHGlDMeV6ORyunCBfHzI15devMjeWL489exJ9vbUsyeZm9OjR2RkRFlZxDtjaVpJGblc3rJly+Dg4D///HPOnDmK7TExMbt27SrADps2bdpWqS/Pw4cP69evn5mZefny5ebNmwsw42/UgwfUvDklJtJ//5GgnWu/oGFDun2bdu/+ZOUZcf32229ubm4LFiz43//+J/ZcvilnzpCrK719S2vWUPv25OpKEgkJvr78yJEjQ4cOTUxMtLa23rdvXyFLfCh7/fq1l5fXzp07L126xLf4+voOHDhQ8YQ+ffocOnRoz549gwYNEmpQ+FpJSUlGRkZ6enrJycmK5mm//fbbP//8I5PJiKhKlSpjx44dM2YM79YglPT09IkTJ27evJm3bvv777+lihPHXJ49e7Zz5841a9ZERkbS+36DTk5O/fv3V9zXUbhx44aVlVWOgHJSUpKjo+P+/fu1tLQWLFigCDEUW2PGjMlRzalr167Hjx8Xaz7qt3Tp0hkzZujq6h45cqRz5858465du0aOHCmVSn19fXnye+GHsLe39/b25ltatWp15coVHx+fwYMHF3LnxUh8PJmYkIEBJSYSf48aP542baJVq2jSJBHnFRERsXPnzt27d4eFhfEtlStXHjJkyLBhw1q0aJH//SQkJFSvXj0+Pr53795eXl6KVWJXrlzp27fvq1ev6tevf/DgwapVqwr/GuCzypUrFxMTEx0dzVOPhcULrGVkUIcO5O1NFSpkb09MTBwzZsy+ffvy8+GYu5Urr3vz+VbPSUlJhkrdhnfs2OHk5JSSktKsWTNfX9/cNeVA1RRX4leuXFH+3V29evXy5csF2OGgQYOUl9osX7582rRpNWvWDA0N1dPTE2DG3xJRwvwPH7Jhw3JujIpienpMKmWFvt8vjP79+xPRGOVUasYYY38rFwv/GidPnlTeT1ZWVoMGDYho4cKFanxZ3zIcVwzHlRplZGQcOXJk2rSE8uU/5LNbWLDp09mFC0z55vG8eUyRsnflClu+nJ0/zwRaOCgMDw8PIqpSpcq7d++Ut9+4caNgh+WMGTNyDDFt2jRSzX31b0ZqKmvShBGxIUPUPfTq1YyItW+v7nHzaenSpUSEhjyCO32ade3Kjh1j9eqxjIzsDPfr19m9eywtTZgh3N3deYx1zJgxqstsevDgwbx581q2bJn6cXb0b7/9RkRz5sxR0biQH1euXCGiRo0aKW/cuHGjrq6ura2tt7d3Zmam6kb38PDgEfNevXrFxcXl+G5qamqOrL3vvvvO1dU1z5Ve8fHxHh4evHXq3r17cz9BLpe7ubnxyMXw4cNzfJ4WN3fv3s0RxClRokTxSW/08/PT0tKSSCTbtm1TbDxz5gyPRPz777+CjPLixQupVKqvr5+QkMC3LFu2jIgGDRokyP6LixMnGBFr0+bDFn42dv68eHNiz549mzBhAv/bMTY2dnBw8PPzK/C75cWLF3nLkwYNGjx9+lSxPSIiguc7m5ubX1PbykpgjDEWGxtLRKVKlVLdldHZs8zMjBGxnj0Dr1y5otiu/Glla2ub+8PxUynt+al78+rVqypVqri4uCgX9AsJCeH31MuVK3f8+HGBXh/kF2/s4eTklGP7vHnzCnalH/Rx4b/MzExewH3p0qVqfFlFg2oz3PMUEkLLl9PKlZS7Q8xvv5GbG7VuTRcuUEG7xAnj5MmTXbt2LVWqVHh4eI7eI4GBgQcOHCjAPqdMmaK8Fuzzo8DXwnGVn1Gg8NLT04OCgvz9/Xmroo4dL54509rCguzsyN6erK2/fIxt2EATJtDIkaQhnfwSExNr16798uVLLy+vIUOGKH/rxYsXCxcuLMA+bWxs+L2l/IwCHE+oqlWLrl2j0qXVOnRyMlWuTAkJdPMmaWDH5e3btzs4OIwcOXL79u1iz+WbcuYM/fUXHT9OQ4ZQs2aUkkISCfn5UUgIEZGxMVla5vxXvTp9OhHqI5rQmc3Ly2vYsGF9+/Yt2McrCGLbtm2Ojo5Dhw7dvXu3YmNqauq7d+8UdWBV6uzZs/b29q9fv65Vq9b+/ft57ZewsLBt27Zt2LAhJiaGiPT19e3s7JycnHg3VOUfZ4ydOnVq06ZNvr6+aWlpRGRiYuLm5vbDDz/kOZy/v/+oUaMSExObNGmyb9++4pzKZ2dnFxAQoLzl8uXLyos7v1XXrl3r1KnTu3fvFi5cOGvWLL7x7t271tbWcXFx06dPX7JkiVBj8Y6L27ZtGzVqFBFFR0dXqVJFR0fn5cuXRkZGQo3yjVu6lGbMoJ9+ov/+IyLKyKDSpSkzkxISSLw2v3xtX+PGjf/+++9u3bppa2sXcocRERF9+vS5d+9exYoVAwICmjRpwrfHxcUNHDjw9OnTJUuW3L17t62tbaHnDvly5cqVVq1aNW3aNDg4mG+5fft2pUqVeHUOoURF0U8/PTlzpmlaWuqqVavGjx+v+Nbhw4dHjhwZFxf33Xff7d27lwdM7927t2XLlhwp7T/++GP+W7l6e3uPGDFCJpP17t17+/btijaqMTExI0eOPHr0qLa29vz587EOTG0CAwO7d+9eunTp8PDwHGspjhw5kuNjOp+mTZtmaWmZz1GKOzUH+OPiWPv2bNo05uLCcjcWSkpiFSsyIqaUDSACdeYIfyrfGb4KjqsccFwJ7t27dz4+PsOGDVNeItewYcMlS7xCQ79uVw8eMEND8Q9IBbXlnn8qjx4YYzt2MCKmr89CQsSZgLNzdqlHDXTkyBEi6tatm9gT+dbwDHfG2PPnrGJF5uTEXF3ZwIHM0pJpa39YuKP8r0QJZmd3pW/fvlOnTl2xYoW/v39YWFhqrqrbiYmJvHODnp7eDkUbOrW7e/cuEVXTtEYuxczvv/9ORK4q6g+QP0+fPuVrqA0NDcePH99Q6b5i69at161bl2ch2hcvXri5udWoUYM/UyqVWltbe3h4fPEj7NatW/xCtFy5cjmWIRYrZ8+ezXHVuWTJErEnxRhjMpns9u3bTk5Oc+fOPXDggHLCb+FFRERUqFCBiMYrVQB//fo1b1dga2urXEe78FavXk1Effr0UWzp1KkTEXl6ego4yjdu5EhGxBR9Yq5fZ0SsTh1R58S6d+9OQreLj4mJ6dChAxGVKlVKudpyenq6g4MDEWlpaa1atUrAEeEzeBLJ0KFDFVv4NWZsbKywAykXUndwcFDu8fDgwQP+gViqVKlJkyYplwNt2bLlhg0bkpOTCzDimTNn+Ntg1apVr169qtiunFk/bNiwgu0cvoo6c88/lUdfzIlTUuYzNm9mRKxSJTHrLfz7779EZGlpmfsaUnCPHj3S19eXSCSF75wDn4HjCgrm3bt3fn5+Dg4OpZSSXKysrFxdXe/evZvnj2RlsZMn2c8/sz/++ORuN2zIbh8fHq6qmefTgwcP9PT0pFKp8vmQishkMl7A/c8//1T1WEVLWBgrUYIRsU2bRJvD/ftMKmUlSrCYGNHm8CnXr18nosaNG4s9kW+NIuDOGFuyhOnpfdQ0NTaWXbvGvL2ZmxtzcmI2NszSkpce2pg7e6NixYrW1tYODg6urq5Lly7lS9QrVKhw8eJFMV5ZtqysrBIlSkgkEsEvXyH/eFX9nTt3ijuN1NRUHlEqXbo0ERkbGzs5Od24cSP3M9PT0/38/Ozt7RUppZUqVXJxcXn06FH+h4uJienWrRsRaWtru7m5Cfc6ihjl8A0R9evXT+wZMcbY1KlT+UmyYmJlypSxtrZ2dnb29PQMDQ1VroTwVeLj4+vXr09EnTt3VtTPSUlJ4a0RmzdvLniA6c2bN9ra2jo6Om/fvuVb1q5dS0S9evUSdqBvmZUVI2KKBqQbNzIiNmKEqHNivN+JsHeDGGNpaWkjR47ksfXVq1crtsvlcldXV/5H4ezsXOA/Acg/3j959uzZ/GFUVBS/Taui4bZv387b5DZt2vTx48eK7ampqWPGjCGismXL8o9IJyen69evF3K4Z8+etWrVioj09fU3fXx54+/vX6ZMGSKqU6fOp66mQSi8zljNmjXThCoW+WnqjCoUIRoXcJfLWcuWjIi9f/NRt9jYWL7Edd++feoZkd9ybNOmDUobqw6OKyiYYcOGKae2LV269MmTJ3k+MyuLBQUxZ+fsYnlErEIF9pk0phEjGBFr3pyJW9FUzfeiz507J5FIDAwM8qyQW2ylpLDx40W/uGPduzMitmyZyNPI7dmzZzykK/ZEvjXKAffMTNaoEftiFnJ8PLtx4/mePXsWL148ceLEHj161KpVK0f3SCIyNDSsU6eO8hWdWHj9itOnT4s9keKLl3Ap/NV74cnlcp4/uGHDhjyLid+9e9fFxYVXOiYiPT09e3t7Pz+/gqUkZ2VlKZIKnZycik/5cmX79u1TfmcwMTERPZDHF9vp6OjMnj3bxcWlW7duuUsbGRoatmvXbvLkyZs2bQoJCcnIyMjPnjMyMrp27UpE9erVU9RElslkAwYMICILC4uXL1+q4hX16NGDiDw8PPjDmJgYXV1dbW3tV69eqWK4b827d0xbm+nofOi29PPPjIj984+Ik+KnPWXLllXFznlsnR/qOWLrmzdv5h/oAwYMwGpUVRs+fDgpLUY5c+YMv3JX3YghISGK1VeBgYHK3+Itc11dXQW8KZiWlqaovZbjQzA8PJynXZcuXTrPniggiNevmbV1TO3aQ5VXtKgUerblpnEBd8bYxYtMImH6+kyUK7Wff/6ZiLp06aK2ERMTE3mT3+3bt6tt0GIIxxV8rb/++ktLS8vCwmLVqlUvXrzI8zmpqamHDl1wdGTGxh+qLtSqxWbNYp+/uRsfzywsGBFzcVHJ5PMjMDCQn+tER0erbVB7e3siGjlypNpG1EDduzN39+yvIyLY4MGMMabKxoH54ucnb9UqunfvBaIHRHJIT0+XSCQ6Ojo4exPWmjXMx4cV/redlZX15MmTU6dObdy48ffff+elG0XPaOb4xd6KFSvEnkgxlZmZqaenJ5FI8tNpTdVevnzJc5lzbE9ISPD09LSxsVHEW62srNzc3F6/fl34QXft2sWTCtu2bRsVFVX4HRYtcrmc33FRCAsLE3E+Bw8e1NbWlkgkOSquvHjxws/Pz83NzcHBwcrKKkcdf21tbSsrKwcHB3d396CgoDwDUnK5nC+hMDc3V04pmDJlChEZGRndvn1bRS9qy5YtRNS5c2fFFp5LsWbNGhWN+E25eJERMeWuztbWjIiJ2tfRz8+PPq6kd/r0aWHvoGzcuJE3lB48eLByjZETJ07w7ONWrVrhno1K8VW/Fy5c4A83bNhARI6Ojiod9O3bt7xa0WB+7cEYY0wulxsYGBBRntXVCsnT05PvvF27dsofgklJSfySUCKR5OiwCkKZMIERsV691Hf1lJCQwK8CvL291TaohtPEgDt7X0vN3l7d4965c0dHR0dLS+vWrVvqHHfTpk1EVKlSJZSyUikcV/BVeJe/P/IqDZOSksJLzRgZGUml2qamWUTMyoq5uLCPu3Z/zpUrTEeHSaXs2DEhp51PYvUTf/r0KS/ycPbsWXWOq1HMzFjFiuzhQ8YYCwtjdeuKPSHGGGMymczCwoKIDh8+LPZccuLN31AYREBxcax06Y+W0SuTy9n8+Wz7dnb+PPva+3G//vorEc2bN0+QeRbSqlWriGjcuHFiT6SYCg8PJ40po3/69Gkiat26tfLGI0eO8IA4j8VPnDjx2rVrwo4bEhJSvXp1IqpYseKlS5eE3bnmW79+vXLweu3atWLNJDg4mJcH/OK7U3x8fFBQkLu7O4+/a2lp5UiBNzc3t7W1dXV19fPz40HJOXPmEFGpUqWUF3Pw6i46OjrHVRm9TUhIMDAwkEqlz58/51u2bt1KRB07dlTdoN+Md+vXMyI2enT2Y5mMlSrFiNibNyLOil+AzJw5kz9MSkqSSqV6enr5XGyRT4GBgfzkqnXr1sr3F0NDQ3m3ZwsLC1T8UB3eTfTN+yONr4j666+/VD1uVlbWP//8k5CQoNjy9OlTIjIzM1PRiMHBwYoPwfPnzyu2y+Vyd3d3Xr2td+/eOMkX1o0bTEuLaWuzr+02V0jo2ZaDhgbcnz9nJUsyInbqlFrH5YvyJk2apNZRGZPJZHzV85w5c9Q8dLGC4wq+Su6Ae0JCws6dOwcNGqS4Piei5s2br1r14N69ggwxfz4jYqamXx3SKjx11nTLgV+XNm3atNimM5iZsSVLWI8ejGlSwJ0x5ubmRkS2trZiTySnWrVqEVG46E0PviF//smIWPfueX83Ojpnr9T69VnfvmzKFLZq1dpP9UrleB+wgQMHqnD2+RYUFEREzZo1E3sixdSBAweIqAd/sxMbj37m6Cf/9u1bPT29Zs2aeXh4qC474c2bN126dCEiPT29jRs3qmgUzZSWllaxYkXFKZNY69ueP39euXJlIho+fPjXLpZKSko6d+7cqlWrxo8f37Rp09xFtHhCn7a29sGDBxU/FRAQoKWllTubXhV41Zrly5fzh4mJiTwE/+zZM1UPXdQ5OTkZlymz531Bnozw8CwtLVa1qriz6tevHxHt2rWLP+T9h5s3by74QLdv3+a1RGrUqHFP6UomOjqa518bGxujJpsqvH79mj5eccX7nezevVv9kzlx4gQRtW/fXnVDvHnzhi8jy93X5PTp07zDas2aNdWcm/ht69SJEbFfflH3uDKZjLepR882TkMD7uz9peDAgVHCNnP/jP379/PPlTdi3NO+cOECL22sCTVPv2E4riD/cgfc+b0TIpJKpW3btl26dGkh/8fKZKxrV0bEevZk6qyWERMTY2JiQkRqq+mmLCUlhZ/fb968Wf2jawIzM/b6NWvdmnl5aVbAPTY2lq8/uH//vthz+SAzM5MXnZwzZ06m6JV3vgnJyax8eUbEPnUd/fIlmzWLDRnCWrRgZct+iLyXLJmsXGxBuVeqIlh5+/ZtfvWuvtfzaQkJCRKJRPDEQMinRYsWEdGUKVPEnghjjP3yyy9EtHDhwhzb1XN6lpmZqVzSvVgdkPxWLldVjFBmQkJCw4YNedJ34ZMMMjMzQ0NDPT09nZ2dbWxs+NlU+fLlR3zciWXbtm26urrqiTh4e3sTUatWrRRbBg8eTGpfwlgU8bBy0PvVqbwG1Mzvvxd3VvwkWZFksGLFClJZv6WoqCgeHTMxMTlz5oxie3Jyct++ffltQi8vL1UMXZydP3+eiFq0aKHY0qBBAyIKznPVoYrxu9Hjx49X6Si8rwk/hxw5cqRy+vOzZ894jqC+vn6xvTYUlo8PI2ImJiwmRoTR0bNNmeYG3FNSmK3tOlJqAqNS6enp3333HRGtXLlSDcPlacSIEUQ0ZMgQsSZQHOC4gvzLHXD38PDo1KnTv//+q1i3W3jPn7Ny5RgRe5+ZpA4//vgjEdnY2KhvyI9t27aNiCpUqKC8pLH4MDNjb96w4GBWpQq7fFmDAu6MsTFjxhDRjBkzxJ5ItoiIiHbt2hERX/hcrVo1d3d3rFIspKVLGRH7uLTG58THs+vX2Z49bOXKN3n2StXS0lK0w8rMzNTX15dIJBry183v1oSqeUktMMYYGzduHBGtXr1a7IkwxlivXr1Ijb3r87Rt2zZezbZ9+/bFpz5yQkICfwPn1HwFnpGR0a1bNyKqW7euomSBTCabOHHi1c8328kfmUzG7yh06tQpx7dCQ0PV03okNTW1dOnSRPTgwQO+Zc+ePTnCeZBb7k8rTSiJ9vbtWyIqVaqUYhkoPzFTXVH+5ORkW1tbHlvfsWOHYntWVpazs7OWltbff/+NdAdh8dYLihU/crm8ZMmSRCTKidP06dOJKEfiuYrs3r2bv9LGjRtHREQotqempvLjnIiWLFmihpl8w1JTsxvFiVfCDT3bPtDcgDt7f7u+fPnyilbvqsNzcOrWrStiysnz58/5GxCWbqkUjivIp8/UcBfWoUNMImF6ekyp8qcKhYaGamtra2trixiBksvlPIo6a9YsseYgIh5wZ4z9/DMbMECzAu7Xr1/nq1w1Iajt6enJS+5WrVp15syZderU4efipqam8+fPV8N7+DcpLY1VqsSIWCHXtyj3Sl28eLHyt5o2bUpE586dK9QAAuHFFpSDCKA2bdu2JaKTJ0+KPRHGGOM9KkQvSXzhwgVzc3OJRLJ3715xZ6JOPI7Jbd++XZ1D8wyD8uXLP+SNUxhjjM2YMYOv0flUaayvoijhImA2xtcaOXIkES1YsIA/TE1N5Tc5NGq9mqa5efMmEdWqVUuxhVe98PPzE3FWgYGBRGRtba3YwtdnqLQDRGZm5oQJE3gqjHLnzNzRfxDE77//TkRz587lD589e0aqrKL+eXwpg6+vr3qGu3v3bt26dYmobNmyR48eVf6Wh4eHvr7+hAkT0H+uMP76ixGxevWYiLfJFD3bgvLf3e4bpdEBd8ZYx44diWjatGkqHeXVq1f8pOTIkSMqHeiL5s2bx+/4qa3gSfGE4wryQ20Bd8bYzz8zIlazJlNBf/iceKrX1KlTVT7SZwUHB0ulUl1d3WJ4NagIuMfFMTMzzQq4M8Zat25NRBs2bBBxDq9eveIXAERkb28fExPDGJPJZH5+fnx6/ArQ2dkZNWq/1tq1jIg1aqTCMlZjx44lov/++09VA3yNHN3nQJ3Kli1LRNHq71KSS2pqqpaWlo6OjibUcrl8+TIRVa5cWeyJqE90dLS+vj5/6/7xxx/VNu6ff/5JRAYGBhcvXlRs5H1cdXR0jgnXs37QoEFEtGzZMqF2+LUCAgKIqEGDBootjo6OpJYejEUXzzIeOnSoYku5cuWISMQbJ4yxxYsXE9HkyZP5w7S0NB0dHS0tLTWkQSxZsuTChQvKW44dO0ZE7dq1U/XQxc2QIUOUUwHUUEX9M3g6izrrp8fFxfFFFQYGBspnCGlpaVpaWtra2prwSV1EPX+e3fhZuM+3Apo9ezYV755tnKYH3ENCQvj58b2CdSTMH77itW/fvqobIp9SUlJ4E+d169aJPZdvGY4ryA91BtzT0ljjxoyIjRun2oF8fHyIyMTE5O3bt6odKR9Gjx5NRAMGDBB7IurWvTtTJGd7ebHBg8WcTG684E/jxo3FmoCvry+/6C1TpkyeuZBBQUG2tra8EKSurq6Dg4PoWatFRVYWq1WLETGVVmR1d3cnlRWc/Vr79u0jjenbWay8evWKPm4KJ6IbN24QUZ06dcSeCGOMHTlyhIg6d+4s9kTUip8VE5GVlZV6Rty9e7dEIpFKpcqLCQ4dOqStrU1EawVdbM9Prlq2bCngPr9KRkYGv791+/ZtvuXQoUOac8xrpilTpihX0oiMjCSicuXKiTur4cOHE9GmTZv4w6tXrxJRvXr1RJkMX6utiP6DUBo3bkxEV65c4Q95FfVxqr4IzItMJtPT05NIJGpOKpfL5fPmzctRKOnOnTtEVLNmTXXO5BszahQj0ohLy3fv3hXznm2cpgfcGWNOTk5E1K1bNxXt//r16zzLUtGZRFy7d+/m6+WxWF6lcFzBF6kz4M4Yu3OHlSjBatdmqvsVpaam8jX1qisE+VVevnzJq47mWFFYfMhk7L//WPv2TIhF7YJJT0+vUKECEZ0/f17NQyckJPA3Z/7+/Pkssxs3bjg4OGhpaRGRVCq1tbW9fPmy2qZaRG3fzohYjRpMpeudTp06RR938BPR48eP+cef2BMpds6cOUNErfPfK0CV+FlQ//79RRk9R90Sfkdq4sSJokxGLPfu3ZNKpUQkkUhev36t6uHOnj2rp6dHRCtWrFBsvH37Nl97KvipnSaUcPnhhx+IaPbs2fxhZmamqampmhNXi5YOHToon4Lu37+fiLp37y7urHi6cUhICH+4bt06Iho1apQokxk2bJhy9B+EYmhoSESKrhK8inrunt5qEBERoTkrrg4cOEBEvXr1EnsiRdW7d6xRI6avz5TK44upmPds46Sk8ebPn1+mTJnAwEB+o15YjLEpU6bI5fKpU6fy5paiGzp0aMeOHV+/fj1//nyh9pmaFB98ZHvwke1hQX4Jr58LtdsiDceVII7Hxe1/+5b/u5aUJOCei6G6denQITp2jLy9KTk5e+PNm3TpkmBDLFmy5PHjx/Xq1fv+++8F22khVKhQYdasWUT0yy+/ZGVliT0dEUiltGULBQXR7t0fNu7eTS1a0M2bos1KV1eXHyGLFy+Wy+VqG/fChVuNGjVat25diRIlVq1adfTo0UqVKn3m+Y0aNdq6dev9+/ednZ11dXUDAgJatWrVrl07f39/tc25aGGM3NyIiH7/nbS0VDhQ48aNJRLJ7du3ZTKZCofJn2rVqpUpU+b169c84RrU5t69e0SkaL0gLhEnk5GRYWRkVKNGDcXHXHh4OBHVrl1b/ZMRUe3ate3s7IiIMXbx4kWVjnXv3r3+/funp6dPnTrV2dmZb4yKiurdu3dCQsKwYcN4RoWA9PX1eRk03ilKFDwzeteuXYwxItLW1h44cCDfItaUNBl7X8O9UaNGfEtISAgR8R4kYnn37t39+/d1dXWtrKyUZ9WkSRNR5qMJ/0++PdHR0UlJSeXKlTM2NuZbHjx4QES1atVS/2REHDo3jZpMUeHvT4pPVH19mjiRzpwhCwtR5/TeyJEj27Vr9+rVq4ULFwq538REOnKENm2is2eJX2i8fUvHjn14wrNnFBQk5IiFUAQC7uXLl58zZw4RTZkyJSMjQ9id7969OygoyNTU9H//+5+wey4Md3d3LS2tlStX8jPywkuKiT65fVFacsLLx2Ebf7V7GHxSkN0WaTiuBLH6xYuI1NTYrKzYrKx3GhBYKeo6dqQ3b+jHH0lxJXj0KPn6CrPzFy9e8JWhy5cv5+upNcH06dNr1ap1584dnsJTDE2aRES0cuWHLZcu0bVrtHq1miaQlZXVv3//w4cPK2/s2bNniRIlTp8+XbVq1SlTpvDul6qbQ2YmzZ1L/fpVTE1Nb9GiRXBw8KRJk3jFmC+ytLRcsWLFkydPXF1djYyMzp8/37dv36ZNm27dulUTor0axc8vwMhonbX1u1GjVDtQmTJlOnXq37y546NHqaodKR8kEkmDBg2I6KaId7GKJY0KK4s4mYcPH2ZkZEgkEsUnr0bdilCn3377jX8RpMor4bdv39rZ2cXGxvbp02fJkiV8Y1JSUu/evZ89e9a+ffstW7bk8/Plq/Bc4B07dgi+53zq2LFjpUqVHj16dO3aNeUp7dy5U6Wf4EXUo0ePEhISKleuzJf0kdihbe7mzZtyubx+/fq6urrKsxIl5J2cnPzgwQNdXV3e4hKEkjusjIA7p1GTKSqWLKF+/SgmhohILqdJk6hlS7Hn9J5EIlmxYoVUKl22bBn/5Qrg/n2ysiJvb3r9mubPp/btKS2N7t2j33//8JxLl+iff4QZrtCKQMCdMdaiRYvatWs/fPjwv//+E3DPqamp/Mxv4cKFfBmghmjcuPHYsWMzMzNnzJgh1D5LGBpbD57U1fG3Vn1/uHM+IDM99WnY5bfPH946tad4noThuBJK//Llx5mZjTMz61imjIC7Lc4aN6YDB4RPcP7tt9+Sk5MHDRrEm6ZqCF1dXX4bYM6cOTH8ZKGYGTaMTE0pJIQuX87e8vPPJJXS9u0UG6uOCcyaNevAgQMTJ05MT0/nW9LS0qZMmZKSkiKXy1+8eLFy5cr27dvXrVt37ty5PE4krNu3qUULmjeP4uPL/frryQsXLhQgDlWhQoW5c+c+ffrU3d3d3Nw8JCRk9OjRderUWbFiheJ1waJFf58//+PQoZt0dFQ+VqlSe8+eXXPjRimVj5QPvFgqr+INaqNRYWURJ5N7aI36P6NOfBESqTLgnpqa2rdv34cPHzZr1szLy4vXHMvKyrK3t79582adOnX279/PS80Irnv37qampnfv3g0NDVXF/r9IKpX+9ddfXl5e9evX51vat29fuXLlyMjIK1euiDIlTZY7vK4JAffr168rz0Emk926dUsikSjS8NUpd/S/SEtMTHR2dk5ISBB7IjnDynK5/PHjxxKJpEaNGqJPRlwaNZkixNqaXFzEnsQnNG3a1MHBISMjw0WoKU6fTjNm0KZNNGsWHT1K5cuToKE8wWlKkuNneHl5DR8+vEePHuHh4bNnz75x44ZQ50nXr1+PjIxs2rTpmDFjBNmhgBYsWODj4xMQENCnT5/Pr6lvW79qWekXPjkadOgvk2XFvYx8F//23qXDLXqPTkmM9Vr4fVWrlhWqW6kiy0Pz4bj6/HFV3dqader0+b11LlOGiB6kpCTLZERkqa9fSqVFCooNPT36/XeaMIHOn8/e4uZGERGf+5HSpV8kJs77zBPevHlz4MABfX39fzTmfq/CgAEDunTpcvLkyfnz5y9fvlzs6aibnh6NG0dubvTff9SqFRFRzZpkY0PHjtGWLTRtmmpHDwgIWLZsmba29o4dOxTvgb/88sv169dr1KgRHBz8/Pnzbdu2bd26NTw8fN68efPmzbOysrK3t3dwcCj8hQFjtH49/fILpaSQhQVt3Urt2hUqAlW6dOkpU6ZMmDDBy8vrr7/+evjw4dSpU5ctWzZt2rTvv/++ZMmShZxwkRYYGHjx4kVTU9Px48erYbhGjcjfn27epCFD1DDaFyfTiJDhrnaaE1ZmjPHLeFEy3HP8f0hISIiOji5RokSVKlXUPxnR/frrr+fOnbt27dq6devatGlTt25dAZfcyeXyUaNGXbx4sXr16gEBAYr3fGdn56NHj5YrV87f39/ExESo4XLQ1tYeMGCAh4fHrl27FixYoKJRPm/s2LHKD6VS6eDBg93d3Xft2tWKn2HAe8nJyWZmZtWrV9+xY4e1tXWpUqWePXtWqlQpUYKeCjmC/uHh4SkpKZaWloraI+qfzDdTT2bKlClbtmw5evTo3r1769WrJ+JMcoSVnz59mpaWVrlyZVFOU/lkNKQErkZNpghxdqYff6Rz56h1a7GnkpeFCxfu3bt33759dnZ25ubmn3qaiZ6e2xdzpH79lY4fpy1bsh9KJOTgQOvXU6tWlJFBT55kb3/zRoB5C0TTA+6pqam8wq+9vX21atUePHiwdetWAfdvbGxsa2vLe/goREVFVaxYUcBR8iPHoKampk2aNHnw4MEXK4zrDutePvn2559Tu4XNu/i3xz3/TktOSE2KL2NahYgkEumQ39ZLJEVglYPgcFx98bjqSfTmfYLMp5jr6RHRwdjYUlIpEY03Ny9lYFDoKQMR0eDBtG4drV+f/XDfPvp8clKtWjEPHqz/3DOIqlSpUq5cOYuPi7q9fPmyfPnyWuq9U5L7b8He3j44OLjYXg1OnEj//ENeXvTPP8RXNk+aRMeO0erVNHUqSVX2Jh0ZGTlmzBjG2KJFi6ytrflGLy+vtWvX6uvre3t7GxkZGRkZubm5LViw4OTJk7t27dq3b9+dO3fmzZv3559/Wltbjxmzp2/fCuXLF2T0p09pzBg6dYqIyMGBVq+mUgIlQ+vp6Tk6Og4fPnzXrl2LFy8OCwubOnXq/PnzJ02a5OzsrLpoi4bj9RN/+eWXEiVKqGE4no2nISFuBNzVLy0tLTIyUkdHR9zoFff06VMeXBMlaJWjmg2Pv9euXVuqujd3DWZnZ+fo6Hjy5Mkff/yRiHR0dGrVqtXsvSZNmhQm5PTrr7/u3bu3dOnSfn5+ZmZmfOPff/+9Zs0aAwMDPz+/mjVrCvMyPmHYsGEeHh67d++eP3++huQzRUdHm5qa9u/fX+yJaJaYmJjMzMwaNWqsWrVq9erVJiYmjRo1srCwqFSpkrh/mDkC7ppQwF3clH8B/fnnn2FhYVevXm3duvXGjRuHiJcOkCOsLG5at+Yklaempr548UJXV7dq1apiz6WI0dOjFStowgS6elXsqRAxxqKjo5Wv9M3NzRs1avTkyZOAgIDP/GBNY2O3uLgv7H3gQMrIIOVzufLl6eVLIqInT+iHH7I3vn5N1aoVbP6C0/SA+6JFiyIjI5s0aTJ27Njx48efPXu2fv36iYmJbdq0Kfx5zPnz57du3bpx48aZM2fy0zuZTDZ27FgfH5+wsDBLS0shXkG++Pr6Ojg4/Pnnn4paH3fv3j1//rxcLp8zZ07lypU/87M1K5Yx0v5CCfISpU1KlzWzd/EgosjQS3uXTR7rtk9LW6d4RtsJx1U+jiuT776Tful9qn6JEgFv306tXNlSX1+wScN7q1ZRly7k6EhE9Ntv9Pr1556sp1c5Pd3jM0+Ii4ubO3fu8+fPz507xxd0E9G6deumT5++bNmyHxSfT6r36tWrunXrdu3adefOnfr6+kSUlZW1atWqhISEFy9eqG0aGqVqVbK1pQMHaONG4n0fbG3JwoIePaKjR6lXL5UMmp6ePmjQoJiYGDs7u19++YVvvH//vpOTExGtWLFCOadJS0urW7du3bp1W7NmzbFjx3x8fPbt2xcREenkVP7HH6l1a3J0pKFDKf81tHx86McfKS6OTE1pwwaysxP65RHp6Og4OjqOGjXK39/fzc3t0qVL8+bNW7p06YwZM1xdXYUfT7Ndvnz51KlTRkZGEyZMUM+IjRsTEWlIEZd69eppa2uHh4enpaXp4wNLLcLDw2UyWa1atXTUUMDoS8TNtc8x+t27d0WcjOgkEomnp+eyZcsuX74cEhLy8OHDO3fu3LlzZ9u2bUSkra1du3btJkrK5Ltc4fr165ctW6ajo+Pr68vbNhCRj4/PnDlzpFLp9u3b27Rpo6IXpdChQ4dKlSpFRERcvXq1pQaU0f3nn3+8vLwMDAwMkBBDRESxsbF79+7dtWvXmTNneJeXUqVKtWnT5uLFi8ePH7e2thax5y0RZWRk3LlzRyqVNmzYkG8RN+Sdo75NUVelSpWzZ89OmjRp06ZNQ4cOPXHixKpVq0T5hMoR4xYx5J2VlfXkyROpVGqhAU02Hz58KJfLLS0t1ZwH9m3o1Ys2bKA1a8SeB5GXl9f48eMXLFgwdepUviUsLOzSpUuMMVdX18+kn5bU1qb3veU/qUkTKlGCXr4kxX6ePyd+h+a77ygwMHujjw9t21a41yEcpsGePXvG45VnzpzhW1JTU3m8krd/KSSZTMZPhv744w/FxtGjRxPRgAEDCr//fEpNTeXvcWvWrFFs7NGjBxFNmjRJkCFePb6zakJ7/vWT2xdXfN86/vXzZWOaCbLzIgfHlVDHFWNswO3bj1JThdqbppk7d26O36MaXLvGWrXK/vr335mxMZsxQ5g9z549m4iaNm0qk8n4lt27dxORqalpXFycMGPkw7hx44iob9++ii28jEzNmjXT0tLUNg1Nc+wYI2JVqrDMzOwtixYxItanj6pG/Omnn4ioWrVqMTExfEtKSgpPBB42bNgXfzwpKcnX97qtLdPVZUSMiOnrs4EDmY8PS0n58LSbN9mpUx8eHjvGHj9mI0dm/8jAgezNG2Ff1icFBQXZ2tpKJJL//e9/ahpSk9ja2hLR7LN8vYkAAQAASURBVNmz1TaiTMZKlWJE6vsVK7x7927Pnj05NlpZWRHRtWvX1D2b4op/vvTv3z/H9rCwMPVPxt3dnYgmTJig/qEZY7ydz+vXr/lDvsJy7ty5okxG0yQmJgYFBXl4eDg7O1tbW+e+H2Zubm5ra+vq6urn5/fo0aNP7efQoUPa2toSiWTLli2KjUFBQXyHS5cuVcurYYwxfgN76tSpahvxU3x8fKRSqUQiEeTqpkhLSUnx8/Ozt7dX1CLX09OztbX19PRMSkpijN2+fbtatWpEZGlpee/ePbHmyQPcderUUWzp3LkzER08eFD9k0lPT9fV1ZVKpfx/0bfEw8ODHwkdOnR4+fKlmkeXy+X8BlhiYiLfcvfu3VWrVp04cULNM2GM3b9/n4iqV6+u/qFz8/X1JSI7OzuxJ1LEdOjAzp9njLHISFa5MtPSEnMyKSkp/L10w4YNio28e5xgH4ujRrHff8/+OjOTdezINm5kQUGsefMPz/H2ZhpzIGl0wH3o0KFENHz4cMWW+fPnE1G9evUyFTGJwrlw4YJEIjEwMHj8+DHf8vLly9KlSxPR0aNHBRnii/76668cL+rAgQNEZGxs/Eag69RXj+/8bV/L281p11+jl41peud8QHEOuOO4Euq4Ygi4q4BywD0lhVlYCBZwf/fuHV+jp3w52rFjRyKaPn26MGN8yfXr16VSqa6ubnh4ON8SExNTtmxZIgoICFDPHDSTXM7q1GFEzNc3e8vbt6xdu6imTWc8fPhQ8OG8vLz4Bady/JG3nfjuu+8U1wD5ERfHPD2ZrS3T1s4OoxsYMHt75ufH0tPZjBlMW5tdv5795CZN2LRpjIiVLs2UDkP1uX79uiLsVXzcvHlTIpGUKFFCza+9TRtGxNR8CRkVFdW8eXOJROLt7a28fdiwYUS0ZMkStc6mGOMfoLNmzVLe6OvrK5VKXVxcFPd91WPixIlE5O7urs5BOb5yy8TERLGFF/fYvXu3+iej+TIyMkJDQz09PXn8PXd5GWNjY2tra2dnZ09Pz9DQUH4gBQcHlypViohcXV0Vu3r48GH58uWJyMnJSZ0v4fLly/w+QVZWljrHzeHKlSu8elixftNLS2P79rEhQ+zeFzbW1tbu0aPH5s2b4+Pjczw3KiqqWbNm/K9VkZKlZhs3biSiESNG8IdyuZwXwYuOjlb/ZHj0v27duuofWg3OnTvHa0lXrlz54sWL6hz66dOnRGRmZqbOQT/l4MGDRNStWzexJ8IYY25ubkQ0bdo0sSdSxCgC7owxNzeRA+58DXGTJk0Up3l79uzh76tv374VZoznz1m9eqx3bzZ1KmvShA0ezLKyEHAviPPnz/OQ5ZMnT/iW6OhoHrI8duyYgAMNHz6ciIYOHarY8vfffxORlZWVUOHXz3j+/Dk/R1S8qPT0dF7Sa8WKFUKNkpmeGvXgZtSDm68j72WmpzLGsjIzXj2+I9T+ixAcVwIeV4yxx6mp6XK5gDvUKOoPuP/3H7t5k929+2HLs2fs2TPB9s+XbFeoUCEhIYFvCQkJ0dLS0tHRUUNGj1wub9++PRHNnDlTsZEXuLCxsVH16Jpv5UpGxLp0+bCFdz8T/HbI/fv3+Zve6tWrFRs3bNhARAYGBjdu3CjYbl+8YMuXs5Yts8PuRKxSJTZtGuvZk7Vuzfh5V5Mm7MoVNnUqe38vEtSBx5p/+eUXNY87cSIjYsuWqW9E5SzFO3c+nOTExsbWrVu3atWqEonE2tra3d29GN53UZuUlJRt27bxxuw5jrqVK1fypeJ9+/ZVfAypAc8SPXLkiNpGVDhx4gQRWVtbK7bwYjIFfqctVrKyssLCwrZv3z59+vQuXbrkLsFvZGTUtm1bXnbGwcFB/v6M9O3bt/ykt3fv3mo4686Bl4Y4pby8S70ePXpkampKRD/88INYcxATD744O7Ny5fjpyNZ27dq1a/fff/+9evXqMz+XnJxsZ2fH0xF27Nihtvkq/Pzzz0T0zz//8IcRERH8pF39M2HvTwsV0f9vT1RUFG9fpK+vv23zZrWNyxPglD8URMSXf/30009iT4QxxsaPH08fL82H/Lh3jylWoWRksMBAppRcnu3gQaaGW8C5y0ikpaXx1ikC/1qzstj168zPjymS0hIT2c2bH57w9i27oymhTg0NuMtkshYtWuRIVXBwcCCiQYMGCTuW4sg4ffo035Kens5Plf777z9hx8pt1KhRRDR48GDFlkWLFvH7yRkZGaoevbjBcYXj6quoOeB+9CiTSpmxMVNdfRe5XM4LuP/222+KjbyAex/V1S55b+fOnURkamqqSCwKDQ3V1tbW1ta+ffu2qkfXfAkJrFmzxHbtPBQlF3h6UZkyZZKTk4UaJTU1lZfjHDJkiGLj7du3eSrcFiHSziMjmbs7a9qUDRjAZsxgy5ezPn0YP9Fq0oShpIeaPXz4UFtbW0dHJzIyUrFRLpcHBQWpeui1axkRGz1a1eNkO3r0KK/d0aZNG+WoyoMHD3i/SiMjI0UhYz09vf79++/Zsyf1212kpX5Xr16dOHGioui2vr6+VCpduHChXOnG/JkzZ3go8LvvvrujrsshnsmoyLRQp//++4+Ixo8fzx9mZGTo6OhIpdJ3796pfzLfgBcvXvj5+bm6utrb2/M6UfwGm4WFhXJVukOHDunp6TVt2lSUahi///67+jPrFWJiYvg7Xq9evdR/s0FIz58z5cpLd+5k37+NiWFLlrAxY9j06SzHXbRr15izMzMz+3Dn38qKubqyfK8UzMrK4lFviUSifLWoHjz+e/z4cf6QV9jo3bu3mqfBTZo0STn6/03KzMx0cXHR0tI60qwZc3D4qCSiCly7ds3JycnAwKB69erGxsZXrlxR6XD5wX/Ly5cvF3sijDHWoUMH5eMfCuDdO2ZqyiQSprxsY9QoRsTWrVP56GooI1EUaWjAff369XyNjyLKcO3aNV6I4MGDB4IPx8NqjRs3Vqz+27t3r8BrH/Jy8eJFiUSip6eneFGvXr3il4uHDx9W3bjFFo4rHFdfRZ0B99evmbk5I2J//63agRTH/P379/kWxeFx6NAh1Y2rqOm2ceNGxUaBa7oVfbyuunKXhdatWxPR+vXrhRqC19CvVauWIr00KSmpbt26RPT9998LNQqXnJwdcH/wgJmbs1evEHAXAb+jluOXO2XKFKlUquq7vxcvMiLWqJFKB8nm4eGhra3N7ySlKF0zX7hwgYd3GzRoEBkZmZKS4u3tbWtrq+iTZmRk5ODg4OfnV5wvBgopLi7Ow8NDuc1ys2bNli9f/scff0ilUiKyt7dXvmv49OlTXrrB0NBw//79qp5eQkICEZUoUULNdWw4Z2dn5aAV75hqYWGh/pl8k169erVixQrKq4TL2bNno6KiRJnVnTt3iMjY2Dg9PV3NQ6enp/P1HE2aNCnypbdv3mTffffh4ZEjrGNHlprK6tZlU6eys2eZjw+rWZN5eLDISDZjBqtS5UOcvW5dNm8ee1+98GstWbKEv3c5Of2otk8GmUzGVycrKn+mpKRcunTp8uXLaprBx9q2bUtEohQWV7Mwb29mYMCIWKtWQi4rfi82NnbFihX16tXjn49SqbRChQr8U2nbtm2CD/dVunfvTiI1CciN3xpXzg6BAvj9d0bEmjVjilMeLy9GxMqXV2FKH1NjGYkiRxMD7skJCfxtSNHjRS6X81u+Kup1lpKSUr16dSJap3Trh78BOTs7q2JExphcLm/VqhUR/a6o+p9XO0EQCo4rHFdfS20Bd7mc2doyItaxozoWfOVu4fvPP/8QUZ06dVS3AEIdNd2Kvjt37kgkklKlSikWAfAqQI0Eilnu2LGDp52GhIQoNvIFMQ0aNFBFxiUPuDPGXF3Z998j4C6CCxculCxZskuXLsqp3KtWrZJIJEQ0b9481Q2dnMykUqary1QadMrKynJxceEJiS4uLsrJ1Lt37+YtE3v06JGjgMnbt289PDysra35/wciqlixorOzsxoS/78ZMpksKCjIycmJr4/hEUYnJyflt5dDhw7xhPeGDRtGREQoticnJw8ePDjP35rgLl26xD99VDfEZ/CzPn9/f/5w3759PPVYlMl8q0Qv4ZJb/fr11R/GksuZg8MYIqpSpcqLFy/UObRK5BlwX7WKKV/O3LzJypdnt29nx9mrVGHOzkyIt/G9e/eWKFGiU6cgGxuWq967Sty7d4+IqlWrpo7BvkQR/Y+JiRF7Lmpx4waztGRErFw5Fhgo1F55SruiF0WFChVcXFwePnyYlpbG78XypTBquzOXe0mfhYUFESlysESUnJwskUj09fVFuTX+LXn3jlWtyog+6pXVsSMjYqpr2abOMhJFjiYG3Nmvv75q0WLmwIGK829PT0/6uO6w4Hbv3k1Epqamce9v/YSFhfFaB7du3VLFiFu2bCEiMzMzxYvK3U4QhITjCsfVV1JbwH3JkuxzPPVcH+Vu4Zuens4XIKtoUaH6aroVfTw37d9//+UP09PT+Z3Cc+fOFXLPiroxmzZtUmxctWoVEZUqVequcusA4SgC7qmprFYtZmKCgLu6Xb58mRc+7tWrl3Lq97p163gGn4uLi+pG/+EH9r//sa/pwvt1kpKSFCV3t27dqtgul8tdXV15MN3Jyekz2etPnjxxc3Pj5Z65OnXquLq6asL1p8Z6/vy5m5ubpaWlIl/PxsbG09MzJa/1+Pfv3+elP8qWLRuoFMiQy+Vubm55psALi58XKa9xVifeq1yx4nDhwoUkRkOFb5u4JVzytGDBAiIaNWqUOgedNYvVq3fZwqLmN9Ih4OZNZmbGtmzJ/jdjBuvYkY0Zw3I0ozI1Zffvs/nz2fnzTNBbd1evRpiaMiLWsKEq8p4/cv36dVtbWyJq3bq1akfKH74WR0Oi/2oSE8N69mRETEuLubkV5ljKiI11d3dX1LySSqXdu3ffs2dPjqwmT09PXubO2tpapctx+No+GxubMWPGKG9PT0/X0tLS1tbWhHqzISEhRFSvXj2xJ/It2LqVEbEKFZgixBUSwrS0mI4OU1HLtk+VkVCuuFBsaV7A/eFDpqfHpFL2vqxVUlJSxYoVicjT01OlI3fs2JE+bk/HV/d37dpV8LEUL0r5+pAXrvr1118FHw5wXOG4KoDcAXe5XN6wYUMHBwdvb2+hogPBwUxXl0kk7MABQfaXL7lb+Pr7+xNRmTJlVNFLEDXd8o8n/teqVUtxa5CHEgoZLVLUjRk3bpxi440bN3j+7/bt2ws16U9TBNwZY0eOMCIE3EUQGhrKF+q2b99e+Qbzrl27eGWVn376SRUpRaNGMUXRmuhoNnKkwPt/8eIFL2NiYmKiaJfCGEtLS+PrNrS0tFauXJnPvYWGhrq4uJiZmSki71ZWVm5ubtHR0QLPu8hKS0vjBXl441N+ceXi4vL4S02QExMT+/fvz38jbm5uyt9SToF/9OiRKqb922+/EdFc5WLQjDHG1NC1lafs6erqKj7pxowZQ0QeHh6qHrpYEbGEy6c8evRIIpEYGhrmeRdKFdatY0RMR4cdPfqtnFbdvMnKlmV//pn9z9GRdezI7O1zliK2sGDXr6toChERrG5dRsTMzVVy9vL48WM3NzfeSJnflZRIJAsWLBB+pK/Euy4pr4UtFuRy5ubGpFJGxPr1YwX4jLh2jTk5sZIlu1WvzhPgXFxcPvPRFhwczFfDly9f/uTJk4WafN7Tuebk5GRoaKj4yFaOrfN3zpo1awo+bgF4e3sXx0NONeRy1q4dI2JKLdvYDz8wIqaKlm2JiYn8KmPXrl3vJ5BHxYViS/MC7nZ2jIi9by7EGDv1zz/aUmnLli1VuuCUMRYSEqKlpaWrq3vv/a2fmJiYsmXLEpGfn5+wY/Gz/2bNmikucXO3EwQh4bjCcfX1cgfc+e13ztDQcPjw4T4+PoUpxJGczGrXZkRsyhQBJpx/ebbw7dWrFxFNmDBB2LFQ0+2rZGVl8WL3ilTQp0+f2tjYHCjcDRm+rK9+/fqKwzUuLo4nqE6ePLmwk/60+/dZZCR7/ZrFxrLMTHbmTEGuX6Dw7t27V7lyZf4BoVzEyd/fn990GTVqlOB3vywsmKlpdrO6iAhWvbqQO79x40aVKlX4teI9pYydt2/f8tvMpUqVUtTxyD9FmRT+HsVjxNbW1h4eHomqS9TXeGFhYS4uLuXLl+f/T/T09Ozt7QMDA/N/BqWczz58+HDlz01FCryJiYkqPhQGDBhARLt371be+O+//1aqVEnVxZGDg4P5G69iC2/LoVjsBUIRpYTL57Vs2ZKIfHx8lDe6ubmZm5vb2tq6urr6+fm9fPlSkLGOHGHa2oyIrV4tyP40Q54lZWbNYtOmfdiYmMj09FR6YhEbyzp1YkSsZEn29R8peYuMjFy8eDHvYM9VqFDh559/njp1Kn+THDNmjLhJx7/++isR/fnnnyLOQTT+/qxMGUbE6tRh+ezsHRPDli/PvjlDxKTS4AkTfH198/NLfPPmjY2NDRFpa2vnuCFdYImJiR4eHrxXCtesWTMPD48cV6wHDhwgjSlxxlcFzZw5U+yJfCOuXcsu6qhYrvnqVfZxLXjLthkzZhBR27Zt1VlGogjRsID78eOMiBkaMsWymsePmb7+uzp1bqmlYcj3339PRLa2tootvBVPjRo10tLShBolIiJCX19fIpFcunSJb1G0E9ywYYNQo8AHOK5wXBVIniVlHj9+7O7urlz5V19f39bW1tPTswB3NUaPZkSsfn2mrhSoD3x9fenjEup3797V0dHR0tIScDGyoqabcnYharp9Hk//79+/v1A7XLt2Lb9FpIhLyuVyHoRq0aKFgO9Cn9K6NSNiFy+qehz4nCdPnvA6TlZWVsrlfU+dOsVLtQ4dOlTYK3wLCzZ/PuvRgzGhA+68ui4RWVtbK/rLMcbu37/Pi8NUqlTpeuFyHlNTU/38/Ozt7XV1dZXf6r29vTUni1bVEhISeKX7HFn/yv/Pv4qfnx+/k9GkSRPFLVjGWGJiIn9Hyp0CXxgymezw4cM8xUF5DYRMJuvUqRMRGRgYqLRnHW+bMXjwYMUWXt/p1atXqhu0eOKfm2ou4fJ5y5cvJ6KBAwcqbxwxYgR9rGrVqv369Vu+/OyBA+zp04IMFBqaHUZRTUcq8eQZcA8JYeXKsdBQxhiTydjPPzPV/9LT05mDQ3atkVWrCr6fmJgYT09PGxsbxRVEmTJleNduxYfvvn37+Kdb165dRUyW4iHgAty0/kbcu8esrBgRMzVlvPnw69fszBkWGspypCbwlPYSJbJD7WZmzMWFfeVqLd6Khh8VI0eOLEwiF09p5yd1/ABzcnLKs4xtbGxsv379iGjYsGEFHk5AfPnX+vXrxZ7It8PRkREx5Y+gpUtZmzbPOnZ0FPBs/+HDh3p6elKp9Iray0gUFZoUcM/MZA0aMCK2ePGHjYMGMSLm4KCeKbx69crIyIiIDr2/9ZOZmcmTJhYrz6pwBg4cSESOjo6KLbnbCYJgcFzhuCooHnCfPXt2nt+NjIzkkXeejcKT/mxsbNzd3fN5Lb1rVxZPmVFN9ewvy93Cd8qUKUTUuXNnoYb4VE03XV1d1HT7lNevX+vr62tpaX2xUEM+3b17t379+spxJd4mt0yZMsptDFWnWTMUk9EI0dHRDRo0IKLatWs/VQrtBAUF8Q+pPn36CFgAwcKCRUay1q2Zl5eQAXd3d3f+rjt27Fjl2Pfx48d5cZLGjRs/E67g7tu3b9esWdOuXTtFiKRcuXKTJk36tsPuOVq9GRkZOTk5BQcHF37Pt27d4mtrypUrp7yC/jMp8AXw7NkzNzc33g6OZw5aWFjcvHlT8YTMzEzea5eInJycVJRM+scffyifRURHR/M3XlWMVcypv4TLF0VFRWlpaenr6yuHTTMzM0NDQz09PZ2dnW1sbExMTPhB2L59GI/XlSnDrK2ZszPz9GShoeyL5+9RUdn98eztv/zkIubWLVa37oeHR4+yLl0YY8zLi9Wpwxo1YjVqsIEDmVq6esrlzNWVSSSMiDk7f93/6rg45unJbG1Zly7nc2Tq5PlGd+XKFd68p169eso3JtWpXLlyRPT8+XNRRtcISUlsyBC2di1jjE2bxiws2LhxrFcvZmnJ7t5lMTFs2TJWp44ipZ317Mn27s0Zjv8a+/fv52dijRs3/toCa/zuOC+yx+WZ0s7xz3d+X8fMzExXV3ddjjJNYuC39pVvjUMhvXzJSpdmROx9yzaWnp7Os1IE7NnGGymNVyoj8b///Y8+rrhQzGlSwH3FCkbEatRgimy7kycZEStRgkVGqm0WPAxRp04dxcn38ePHeW6gIO0sTp48SUSlSpVS5JflbicIQsJxheOqoDZu3GhpaVmiRInPF21/8+aNp6enra0tr4ZM70sQuLu7f+aX++jRo0qVrNq2fSLi8oPcLXxjY2P5SfaePXsKv/88a7rxM6r/fWuJWALjFah/U669VzjKwcFLly7p6upKJJK9e/cKtf/P4zc9lYJdIJqYmBhe6KBatWrKN72Cg4P5336nTp2Eqp1iYcGePmXBwaxKFXbrFqtenYWHs5UrWYGzezMzMydNmkREEonE1dVV+VsbN27k78ADBw4sZKz2U549e+bu7s4vaBs3bqyKITTB33//XaNGDf5Zxruh7ty5MzU1VcAhYmJiunXrRnmtoPf39+cp8I0bNy5ApCk1NXXnzp1du3ZV3AivWbOmi4sL/62VLFnS29tb+fkeHh58BUOHDh1UkXU+ZMgQIlLc7Dx16hQRtW3bVvCBgH2ihIu4+EKKLVu2fOoJMpksPDx89+7df/31tls3Vq5cdvhO8e+ffz63/6Qk1qQJI2Lt2jFB/0aLgqQklpWl5jG3bGG6uoyIDRjAvvg5k5zMdu1i/foxPb3s36aFRYadnd3OnTu/2AUqIiKC990xNze/pspshevXr8+cOTMoKEh5Y2RkJBGZmpqqbtyi5NgxVrv2h+bvK1eyTp1YYOBHKe0CJa/cu3eP/95NTEyOHDmSnx/Jf0p7TEzM8uXLc7Ry5dFSfuNZDQteP4PXrFNefwmFt2ABI2Lt22dkvX+3DAgIIOF6tuUOZykqLuR4VynONCbgHhPDypZlRB/6BmZlsUaNGBGbP1+dE0lPT69du3aOOz+5b90UTFZWVsOGDYlIuR3KsGHDSGOW83xrcFzhuCocJycnRbLAF4u2v379et26dT169FCOvHfs2HHlypU5iiNnZGTwK8MhQ4ao5XV8Uu4WvqtXryYiCwuLwkdYUNOtwC5evMjPh06fPi3IPTmFmJgYXmlKnY2UeQ6QWCs5IIe4uLi2bdvyzCblq7I7d+5UqlSJiFq0aBFTiJzBBw/YkCHs4sXsgDtj7Oef2fDhrHp15uKSvSrf2pp5eLCvDexPnDiRiAwMDJRjanK5nC/nIiJnZ2c1JNTcvHnzG07C6tKlCxFVqlTp863eComvoFdc5yvfEbx16xaP+Hfv3j3/O+RV5vlNI55AqlxlPi0tbdy4cfxWjYuLi/JBcv78eX5juEqVKoIHtrZt2/b999/feV8FeM2aNfRx52oQUJ4lXMTl4eFBRM2bNw8NDc3KX3T46VN24ACbO5f168eqVmWfaWqQlcX69s3OKVJBt3vI2/HjrEwZZm7OJk1iXbt+SGju1InxW4RpaczPjzk4MEPDD9nP1tbM3f3rfk2xsbGdO3fmdwoFb/qVo1nrmDFjlL+7b98+IurB68HBhAls0aIPDzMymJ4ee/uWjRvH9u0rTEp7nhITE/ma9dyfVjmsXr26UaNG/DcokUg6d+68a9euPIPmyintlKuV644dO/i3mjZtKtTK2s+7cuWKcusdxlh8fDw/1FXdWq+4SU1l/ftfL126ymql/h5C9WzLs2BD7ooLoDEB959+YkRMKejD1qxhRKxKlS/fQRaav78/j3QoilTmLk5UMLkjWbnbCYKQcFzhuCq0AhRtj4uL8/T0tLe354sMatWqleMJM2fO5Jf3hYlqCSJ3C9+srCx+Aqd8/6YAUNOtkDp37szv0hGRrq6upaWljY2Nk5OTq6urh4dHYGDgo0ePvja2KJPJevbsSUStW7dWZ0GMGjUYUXbzTNAEycnJPMXY2NhYuW9kREQEL/fRtGnTAiS/vHrFJk1iOjqMiHXv/iHgHh/PzM1Z9ers4EHWt292hiBfaTZ8OPP3Z/ms5/H48WMrKyvlrJnU1FR+d1lbW3v1N9UuUDRBQUFHjhxRz0LgXbt28ev8tm3bKt9ZjImJGTp0aH6u/OPj4/OsMq/cGVjBw8OD3w7v1atXXFycYvuLFy9atWqVZwq8sKZOnUpEi5RjNyCcPEu4iMvPz8/Q0FBPT4+IdHR0rKysHBwc3N3dg4KCCr8QZ/JkRsTKlWOoz6dmoaEsOJj98AMzNWXLlmVvrFGDHTrExo1jxsbZH3ASCWvblq1cyaKjCzhQenq6o6MjT99ZuXJl4Weeu1mrqanppEmTFN2/OF4La9asWYUf8Vtga8tytPqoWpUJ1+wqN15gTUtLi4hsbW2VP62U8bvjxsbGTk5Ot2/fzv2EuLg4Dw8PnpNH75eseXt75y6hduPGDUWpt8DAQMFfEadc92b06NHK37p69SoRNWrUSEVDF2eq69mWuyUhr7hQokSJpwVrSPKN0oyAe1gY09ZmWlpMkWkVF8fKl2dETKSFgTwkMXHiRMUWnqrZvn37Au8zPj4+R60GRTvBHCujQRg4rnBcCaoARdsTExN37dq1Y8cO5Y2nTp2SSqXa2trnzp1Ty8S/IPfn5YkTJ4ioVKlS0QW+SmCMt+JRTuVDTbevNXv27BYtWvBVlnkyMDCwsrLq3bv3Tz/9tHjxYm9v7ytXrnwmTvrXX3/xsy4134qrUoURqbOIF3xZWlpa//79icjIyEj5vSgyMpJXeKxTp07+67cmJzM3t+xikVIps7dnjx8zOzv28mX2E7y8mKJxOC9oa2OTXQ+XiBkbMwcHFhjIvpjbpJz9FBUVxT/sjI2NT5w4kd9XDpokJCSkevXqRFSxYsUcQZ/PkMlkQUFByil7fB39Fzvlnj17lhdHrlmzZijvu8gY+2wKvIB69OhBRAcUay5BaLyEi4bc1A8NDeVdJaysrHgwS5mOjk7Dhg1Hjx7t7u5+7lz4F1f9PX36USPGsDB24gSrXJlpxolkcfTDD2zhQlapEuMdQ2rUYNu2ZX+iWVkxV1dhboTw2CvP+CnwEq7czVqNjIxyNGtVxldge3l5FXr634Tx4z/cV2GMyeWsRImCl8bLt8OHD/MeD7Vq1coznn7q1Kndu3fnmT3z+ZT2PMXExPAwBW9dLmym+eXLl8ePH6/oClOuXLkcDdJ27txJHzcYBwHxDJspU6YotvDb/+3atSvwLzo2NpYfn4pTGqEy9r49mhFwv3SJWVmxn3/+sGXq1OyKdCKtK7lz506OOz8JCQm2trb5vxjIk5eXl4NSo84NGzbQx+0EQUg4rnBcqUbBirZzr1+/5qvX//rrL/XM9ovyXBE2ceLEzZs3FybocPPmTTs7O0XIHjXdCiMtLe3Ro0eBgYEeHh4uLi729vbW1taWlpaKa6cc9PT0FBnxbm5u3t7eQUFBO3fu1NLSkkql+awLKSAzM0ZU8CQvUJHMzEwHBweejXJU0VOJsZcvX/KUqOrVqz/80sKEjAzm4cHMzbMDDTY2X1GsPzKSLVyYXeKf/+vbN/x///ufciT0U27dusWLI1laWipKdkBR9ObNG56pp6ent3Hjxs8/+cWLF25ubjmqzH+q92Cenj171rx5cyIyNDTM0cfiUynwQuFHbHh4uOB7Bo6XcOnZs6fYE2HR0dH81z148GB+KpWQkBAUFOTu7u7k5GRtbc3T3rmOHa8TMXNzZmvLXF2Zn18eH5eTJ7PSpZmivnG9euzWLaYxDWKLox9+YJs2saVL2YABjDFWowYLD2cLF6qket7u3bv19fWJaMCAAfl/r4uPj89xtfL5Zq38Rqazs3Pp0qV1dXXxTpVt927WuvWHPrl79zJ1NXGJjIzkWQWlSpXKz+orntLeoEED5c/HPFPa86Tcurxfv36FL/7JU9qVV1TwVq65W1vPmzePBO1cBcpCQ0N5zzbFnRves83AwKDA589yuXznzp3K1agErEn7jdGMgDtjLDOTKYKDd+8yHR0mlTJVNgn5oilTphBR586dVbR/RTvBnTt3qmgIwHEFKsVzRmxtbXnXNX5ywyPveWaGyuVynjbSoUOHfFbzVA9hW/jmadCgQUSkfGcICi81NTVHIL5Zs2b8HSA3fsWVI6lEPXgrjbxqPIDIsrKyxo8fT0S6urrKwce3b9/yy7y+fft+5sf9/FitWtmx8pYtWYELm4eGMldXZmnJGjVy5oerlZWVq6vrpxKyjh49amRkRERt2rRRRa9LULPMzEzlku65owPp6el+fn729vba2tr8abzKfESBWtWlpqbyQg2589k/lQJfeOfOnZNIJLq6uplC1/wFhdjYWF1dXW1tbXHfFlJSUlq3bk1ELVq0+FR4NCUl5fLly2vXrnVycho8+LW+fs52qZUqMVtbNmcO27uXPX7MJk9mTZsyRWMmHnAHEfGAe2Yma9CAHT7MatRQbW2fc+fO8QXNLVu2fKlYO5aX1NRUPz8/BwcHRYKzlpYWvzGZZ0d0uVx+4cIFZ2dnMzMzxRnjmTNnUE07m1zO+vRhnTszd3c2cyarUEGd60pSU1PHjh3LP62cnZ0/FTrPkdJubm5e4M9Hf39/vjSnTp06BY7G5tnKNc88fV4XztTU1NDQcNOmTQUbDr6I90BS7tl29OhRAUv28wg+KVVcAAUNCLinp7Nbt9jNm0yxIsbWlhExJydRp6Xy4+bXX3/l14r4PFMJHFc4rtQoNjZWuWi7csBIOUNk6dKlRGRsbBypecU1hGrhmydFTTcNfOHfpPj4+Bs3buzfv9/d3X3KlCn9+vVr1KgRL00jykI/XmkEjXI1k1wu52tLtbS0lEsxJCQkjBs37lMVik6fPt21awYPDNWuzXx9BZiJTMbOnDnr5OTEl6nyW5idOnVav359bGys4mkeHh486jpkyJDceVJQdG3bts3AwICI2rdvrwiY3r1718XFxdTUlB8Senp69vb2fn5+hb9p7e7uriiSq1z1+zMp8AXAUw551dqyZcuuW7eukDuEz+vduzcRrVmzRqwJyGQyXq3LwsLi84FRZZmZLDSUeXszV1dma8vKlfso+F63Lps8mf37L2vUiB08yBgC7hqAB9wZY2fPMisrVq2ayovpP3jwoFatWvzQ+lQk9MCBA4orES0tra5du27YsEH5A1RZaGioq6trzZo1FVcu1apVc3Z2/mJtrmJHLmenT7OVK9nu3Szff9QC8vDw4KldHTt2VH5X4Z8vfJkyfX1K+6fcv3+f79PQ0ND3a07v8p/Szhg7c+bMyJEj+dINIpozZ45G5aJ9Y3L3bBOWqjNKizSxA+7797OKFdmAAWzAAGZuzvbtY4yxW7dY//5qqI31RapbGSFUt0zIG44rHFcieffuHc8rMTQ0zBF537Nnj56enkQi2b9/v9jTzIPqDh5FTbf58+cLu2f4KoGBgRKJREdH5+rVq2oemufuYYmhJnN1deXX5+vXr//8M+/cuWNvb09EHTsGlC/P3N2Z4Am7WVlZgYGBDg4OisCBnp6era3t5s2bp02bpkhMxn3lb8+FCxf4Gp3KlSv/73//471MuUaNGq1cuVLYTuNHjhwxNjYmotq1a99VqgTxmRT4fJLJZMeOHRs2bJiicki5cuWmTp2aZ4YpCGjbtm1E1KFDB7Em4OzsTEQmJib37t0r8E7kcvbwIfP2Zr/9xnr2ZD//zCZPZqtXs7NnWc2aLCUFAXfxKQLujLHRoxmROrrXvnnzhveINjY2PnXqVO4nREZGSiQS3jv6U4tWnzx54u7urhwVrVSpkrOzc1BQED5VNda5c+cUH46XLl3iKeT8FnUhU9rzlJSUNGTIkPx/CPL5KM7ZeCvXPFeJFbLuDRSYu7s7fdyzTSi5ayaDMlED7q9fs9KlP9T3uHKFlS/PPnEPVhSqq/2v0mTS4g7HFY4rDfDu3TtfX98RI0aULl2alPys3FRAw6hoecSaNWuIqGrVqvmvOwkqMnnyZH4HSM15wVpajIghc0XDubm58YurZcr9wZQ8e/Zs7NixPCm4dOnSf/+9VNWNQhISErZs2dK9e3c+KBHp6Ojo6enl6EQN35Lnz5/zODtP6DMyMnJyclJd848HDx7wVD4TExPlTga8mi0/8ObNm5f/HT5//tzNzU3RJFNRZR6rMdQjMTHRwMBAIpGouTc4t3z5cn7oCt7GmQfcGWOOjuyvvxBwF9/atUwR8X71ig0ZoqZGNampqUOHDuWH2datW3M/4VNx9ufPn7u7u1tbWyva/5iYmPDWqcgsLhJevHjRtm1bIlJkhWtpadna2qruN6jc1+RT6yTevXvHu/7wE8iuXbt6eXnlp5Wr4DcJ4PMUPdv++ecfYffM2+1OnDhR2N1+MySMMRLL3r20ejUdP/5hS7du9OOPNHiwaFPK5dSpU126dClRooSLiwsvGFp49+/fX716taGhYXh4+KeK7ULB4bjCcaVJ0tPTAwMDfX19o6Kihg4dOmLECMV5kqZJSkqqXbt2dHS0o6MjX/9eeKmpqYsWLYqPj9+zZw8v4w4iSktLa9GiRWho6LRp03iBIzWQy+Vly9aUSCSxsY/UMyIU2Jo1a37++We5XO7i4sLj71xSUtLSpUsXL16cmpqqo6MzduzYP//8k5e6Vo+XL196eXn5+Ph8//33tWrV4il+8K1KT0/fv3//06dPzc3NBw0apEjiU5Hk5OTRo0fv3btXS0trwYIFM2fOVASkjh496uLicuzYMUVNm8/M2c/Pb+vWrUeOHMnKyiKiypUrjxw5csKECdWrV1fp/CEHe3v7PXv2LFmyZPr06eoc9+DBg/369ZPL5Z6enrwftYCcnaluXZo4kV6/pubNKTOTjh2j90miIIItW6hpU3ofaaSVK6lvX1LP3zpjbN68efPmzZNIJH/88Yerq6viLSu32NjYgIAAHx+fw4cPy2QyIjIyMurbt6+9vX3Pnj0V/VShSMjIyJg2bZqhoeHWrVsdHBzU8Ply9uzZIUOGvHr1qmrVqr6+vrzeWg5du3YNCQmxt7d3dnauV69eju/Gx8d7e3uvWrXq9u3bRCSVSrt06eLk5NS/f38cfmp24sQJGxubEiVKzJo1K0dGYIGFhYWtX7++TJkyDx484GWTIScxo/3u7mz06I+2jBvHli4VZzKfNmTIEOU1rYJo3br1okWLxH5l3ygcVwAFtWHDBt4pUUDNmzfv3r272K8MsgUHB+vq6kqlUsHz7z4lLS2NiPT09NQzHBTStm3beIX0mTNnMsbS09N5Pysikkgk9vb2D9SwbB5AvXg+u1QqJaJhw4Ypr8f64lL6sLAwFxcX3iSDBK0yDwXj6+vLzz3UOei1a9d4OQUVVc9TZLgzxlatYkTIcBeZnR3z9v7wsFkzdbbSZEypncno0aNzJxTHx8d7enra2toqYpr6+vq2traenp7Jql6bBioml8vV+fny7NkzHrLQ19fPs6/ps2fPPpPSrrq6N1AAAwYMEDwA1apVq+XLl4v9yjSXqBnuu3bRzp3k7/9hS9++NHQojRwp2pTywhgLDAw8ePCggPv86aefvvvuu8/cjoaCw3GF4woKijH24sWLf/75R8B9du7cuV+/fjgsNcdff/31xx9/VKpU6fbt27x+sUolJycbGhqWKlUqKSlJ1WOBILy9vUeNGpWZmdmlS5dHjx5FRkYSUZcuXRYtWpRnchPAt+HgwYMjR45MSEho1KjR/v37P585mJiYuHv37q1bt54/f55vsbKycnR0HD9+PJK8xJWWlmZmZpaQkBAeHv7dd9+pYcQnT560bt361atXY8eO3bRpkyqGOH+ejI3JyoqISCYjT0/q35/et5cGEfTtSw4OZG+f/bB5c1qxgtS8+Oro0aP29vZJSUldunTx9fUtU6ZMWlpaYGCgj4/P3r173717R0RaWlqdO3d2cHDo37+/UDmtUNykp6dPnjx5/fr1ROTk5PTvv//ymm95iouL8/Hx+ffff0NDQ0kppX3AgAH8FhGIiDF25MiRI0eOCLhPZ2dnS0tLXOl/iqgB98hIatqU7t0jnhXy5g3VqUPXr1O1aqJNCb4BOK4AAD4tKyurQ4cOFy9eHDVqFO8vp1JxcXEmJibGxsaxsbGqHguEEhAQYG9vb2Rk9OrVKysrq7lz59or4goA36779+/379//7t27ZcuW9fLy6tq1a+7nBAcHr1u3bseOHTyeZWRkNHTo0B9//FGoUmxQeKNHj966deuff/45Z84c5e0LFy5MTExs2rRpkyZNatSoIUiAIDExsV27drdv3+7UqdPRo0c/E4eCb0nfvlS7NrVpk/1w5kzy9FR3wJ2Irl27Zmdn9/Llyxo1ajRs2DAwMDA5OZmIpFJpx44dhw8fPmjQIBPcmQEhbN26dcKECampqe3atfP29s5dwJZ/OG7bti01NZWIzM3NHR0dUVcNijlRA+5EtGABbdtGEycSEa1ZQw4O9PvvYs4Hvg04rgAAPi0iIqJx48ZJSUm7d+/m3bdU5/Xr1xUqVDA1NX316pVKBwJhXbp0qUSJEjdv3hw5ciQvtQFQHCQmJvJGgtra2vPnz3dxceHbo6Kitm3btmHDhocPHxKRVCpt06aNo6PjqFGjFF3gQEMcOXKkV69ederUuXv3rvL2WrVq8V8fERkaGjZs2LBevXpWVlbNmjVr0aKFnp7e1w6UmZnZu3fv48ePW1lZnT9/vkyZMoLMHzRf374klVLt2tkPt26lPXtECLgT0YsXL2xtbV+9ehUdHU3vl9o4ODhUrFhRhNnAN+369esDBw6MjIysWLGij48Pb+LKU9pXrlwZFhZGSGkH+JjYAXciCg6mixeJMbK2JuSGgFBwXAEAfJqHh8fMmQtatz65eXNNlV6UPX/+vEqVKpUqVXr+/LkKhwEAEAhjbN68eX/++SdjbMSIESNGjPD09Ny3bx/vhlqpUqVRo0Y5OTlZWlqKPVPIW1ZWVqVKlV6/fn3z5s2Gir6WRH5+fsHBwSEhISEhITk+kvT09Bo0aMCT35s0adKgQYMv3kdhjI0dO9bT09Pc3PzixYvVsJS2ONGEkjIKCQkJb9++3bt37+DBgy0sLMSZBBQPb9++HT58+PHjx7W1tceOHZuQkLB///6MjAwiqlKlyvjx48ePH1+5cmWxpwmgKTQg4A4AAADqxRgbNSp1584SPXrQ4cMkSOU9mUx28eJFf3//mJiYDRs28I2PHz+2tLS0sLCIiIgQYAwAALXw8vIaN25camoqv1bS09Pr16/fuHHjunXrhjUfmm/ixIlr16797bff/v777zyf8ObNGx55v379ekhIyKNHj+RyueK7WlpaderU4cH3du3atWzZMvce5s6dO2/evBIlSpw8eVLwNnSg4TQq4A6gTllZWS4uLsuWLTMzM3v58iVS2gE+AwF3AACA4ujNG2rQgF69on//pZ9/Lvh+UlJSTpw4ERAQ4O/vz1c0a2trv379mndkvX//fu3atb/77rvw8HChZg4AoAY3bty4cOHC/v37+/TpM2rUqLJly4o9I8ivs2fPduzYsVKlSnfv3jU0NPzi85OSkm7evHnnzp2wsLDg4ODg4OC0tDT+LQcHh61bt+Z4/u7du0eMGCGVSn19ffv16yf8CwDNhoA7FHP79u3T19e/du3auHHjKlWqJPZ0ADQUAu4AAADF1IED1L8/6evTtWtUr97X/ezTp3TwYNaBA3anT59KT0/nG2vVqtW3b19bW9t27drxPJewsLD69evXq1cvNDRU8PkDAADkJpfL69Wrl5iYGBUVZW5u3uy9li1bVqhQ4Ys/np6eHhoaylPgO3TokKPZydmzZ7t3756enr5y5crJkyer7EWA5srIIG1tUqx1SU8nHR3C0hcAAFCGgDsAAEDxNW4cbd5MTZvSpUuko/Pl54eFUUAA+fvThQvEGNWv3+bOnStNmjSxtbW1s7Nr1qxZjuffuHGjSZMmjRs3DgkJUckLAAAAyEUul9vZ2R0/fpzXF1aoUqVKEyVVq1b9qt3evXvX2to6Li5u2rRpS5cuFXTKAAAA8O1AwB0AAKD4Sk6mJk3o4UP64w+aN++TTztxgry8KCCAoqOztxgaUs+eZG8f2qWL+acqLdy7d2/16tX//vtvixYtrly5ooLpAwAAfFJWVlZ4eHhwcDAvF3Px4sWYmBjlJxgZGdWvX1+RAl+nTh0tLa1P7e3t27dt2rR5+PChra3t/v37P/NMAAAAKOYQcAcAACjWzp+njh1JIqGgIGrdOu/nODnR+vVERNWqUY8eZGtL3buTnl4ez+StU3lJ9zt37hCRubn5yZMn69Spo7qXAAAAkB9RUVHB7127du3ly5fK3y1VqlTt2rWtrKwUIXgDAwP+rdTU1C5duly6dKl58+anT58uWbKkGNMHAACAogEBdwAAgOJu1ixatIgsLenGDcqzvdy5c3TmDNnaUqNGee8hISHhyJEjfn5+hw8fjouL4xvLlSvXu3dvOzu7gQMHSlHcFAAANMzz589DlERGRip/V1dXt169erww2oEDB06cOFG9evVLly7lpxA8AAAAFGcIuAMAABR3GRnUqhXduEETJ9Lq1V/xgxERdPLk6d275589ezYzM5NvrFu3rp2dnZ2dXZs2bbDiHgAAioqEhITbt28rUuDDw8NlMhn/VuXKld+9e3f+/Pm6deuKO0kAAADQfAi4AwAAAN25Q0OGkIcHWVt/4ZlyOYWEkL8/BQRQcDA1bXr8+vVuWlparVu3trOz69u3L4IRAADwDXj37t2tW7d48nufPn1q1KjRoEEDsScFAAAARQAC7gAAAEBExBj98AOlptKOHdlb6tWja9eIF7B9946OHSN/fzp4kF6/zn5CmTJka5vRu7dvz549jY2NxZk3AAAAAAAAgMbQFnsCAAAAoBEkEnr5ki5dIl9fGjSIiOjxY4qOpmPHyM+PTp2itLTsZ9aoQXZ2ZGdH7duTjo4u0XARpw0AAAAAAACgORBwBwAAgA/+9z+aMYO6d8/unnrwIDk7ExFJpdSsGdnakp0dNWsm7hwBAAAAAAAANBQC7gAAAPBBvXrUrx/NmUPu7kREvXrRwIFka0u2tlS+vMhzAwAAAAAAANBwCLgDAADAR/78k+rVo3HjiIgqViRfX7EnBAAAAAAAAFBESMWeAAAAAGiW0qVp0SKaNk3seQAAAAAAAAAUNQi4AwAAQE4jRpBcTqmpYs8DAAAAAAAAoEhBwB0AAACyNW5MZctmf/3ff2RjQ1paok4IAAAAAAAAoEiRMMbEngMAAAAAAAAAAAAAQJGHDHcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAokp4+pXv3Pjx8+JAePxZvNgAAAAAAACCEly8pOvrDw2fP6O1b8WYDAF8PAXcAgCJp715aseLDw/Xrads28WYDAAAAAAAAQli9mlat+vDwzz9p927xZgMAXw8BdwAAAAAAAAAAAAAAAWiLPQEAACigrCxKTs7+OjNT1KkAAAAAAAAAAAAC7gAARdf+/XTtWvbXUVE0aZKoswEAAAAAAAAhrFlD3t7ZX79+TY0aiTobAPhKKCkDAFBUDR5MISHZ/8aMEXs2AAAAAAAAIISJE+nBg+x/Q4aIPRsA+EoIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAAaCGOwBAkdS374eOqUQ0ejRp4x0dAAAAAACgiBswgBj78HDMGDIxEW82APD1kOEOAFAk3bhB3brR/fvZD9etowsXRJ0QFEFyuVzsKQAAAAAAwEfCwmj0aHr7Nvvhzp305ImY8wGAr4WAOwBAkZSRQdra9NNP2Q9TUig9XdQJQdERExOzdevWIUOGWFlZzZgxIywsTOwZAQAAAABAtoQEevmSfv01++GrV/TunagTAoCvhIA7gPgePKDNm0mRaXr6NIWHizohKCK6dCHGaPt2secBRUR4ePjixYutra1NTU1Hjx7t4+Nz//79pUuXduzY8fLly2LPDr4pcrn8/PnzAQEBqampYs/ly44fp5iY7K9jYyk4mF6/ptDQD094/vzDciIAABBdenr6jh07xJ4FgGoNGUJXrtCZM2LPAwAKBAF3APFdvEjjx9P69dkPPT1RGwTya+VKmjWL4uLEngdoKrlcHhwcPHfu3ObNm9epU8fFxeXChQu6uro2Njbu7u6PHj0aNGhQTExM165djx07JvZkociTyWTnzp2bMmVKlSpV2rVrN27cOEtLy1u3bok9ry/o1u3DaqEbN+jXX+nkSZoz58MTfHzI3V2MmQEAQC6MsZ49e44aNWrTpk1izwVAhXR0yN2dfvqJMjLEngoAfD202APQCD170oIFNGAAmZqKPRUoUurVo+HDPwoMARBRWlrauXPn/P399+zZExUVxTcaGxvb2NjY2tr279+/dOnSfKOXl5eTk9OmTZvs7Oy2b99ub28v3qyhqEpJSTly5Mi+ffsCAgLi4+P5RktLy5IlS96+fXvEiBFXr141MDAQdY6fo61Nz57RkSPUs6fYUwEAgC+RSCROTk6nT5+eNGlS48aNmzZtKvaMAFSlWzeqX5+WLxd7HgDw9RBwB9AI5ubUrh1Nn07btok9FdB4797RpUsfHrq6UoMGVLkyNWtGSUlkaCjezEBssbGxJ06c8Pf3379/f1JSEt9YrVq1Hj162Nra9uzZU0dHJ8ePaGlpbdiwwdjYeOnSpcOHD4+Pj//hhx/UPnEokuLi4o4fP+7v779v377k5GS+0crKys7OztbW1traOiUlpXnz5mFhYbNmzVqxYoW4s/285ctp1ChSzsWXyyktLfvrrCxRJgUAAHkbPnz46dOn161bN3To0GvXrhkZGYk9IwDByOX07NmHh8uWUatWZGlJRBQbSyYmYs0LAL7ON1hS5uZNMjGho0ezH/77L/3xh6gTAsif6dPpyhU6dSr74YMHJJOJOiHI0+7dNHYs2dnRrFn0/Ln6x790iZo2pT59PpyHlSpFixfTuXOUnk5t2pCjIxWFmskgpMePH69YsaJbt25mZmZDhgzZtm1bUlKSlZWVq6vrtWvXHj9+7OHhYWdnlzvazkkkkiVLlri5uclksh9//HHx4sVqnj8ULW/fvt26daudnZ3ieEtOTubH2927d8PCwtzc3Nq1ayeRSEqWLLljxw5dXd1///3X399f7Il/TqtW1KEDLVjwYcvp09SiRfY/ZJYBAGialStXNmvW7OHDhw4ODowxsafzbdq1iwIDs79mjBYtEnU2xcOzZ9S1K7VrRykp2VsqVaJffqGgIHr3jpo2JUfHD98CAE2mQRnujDGJRFL4/WRlkZ4eTZlCISFkYEBpaYg9QdGgp0f//ktTplCjRsQYde5MaWk0aBA5OJC1NQnxxwGFtnAheXvTsmVkZkb79lHbthQaSu9Lc6haRga5utI//5BMRo0bU6VKpK+f/S17e5o+nTIy6NEjCguju3fJx4eqV1fPvEA0YWFhPj4+AQEBwcHBfIuWlpa1tbW9vf2gQYMqV66c50+Fhob6+fkZGxtPnDhRebuLi0vp0qV//vlnFxeX2NjYhQsXCvKhDN+MJ0+eHDhwwMfH5+LFi3K5nJSOt8GDB1eqVCnPn2ratOmCBQt+/fXX8ePH37x509zcXL2z/gqLFlGjRlStWvbDLl1o377sr5cvpwcPxJoXAADkQU9Pz9fXt1mzZv7+/suWLZs+fbrYM/oGrVtHN2/SnTtkZkaM0axZ5OIi9py+ab6+5OREsbFkbk7a2vTdd9nbp0yhq1fp1St69Yq2baObN8nLi+rUEXWuAPAlEg25G5yYmHj06NEhQ4YQUZkyZSQSiZGRkVQq5f8tXbq0lpaWoaFh9er94uNH6+hQqVKko0MlS5KuLpUoQXp62f81MKAyZWjGDGrWjIyNaf58+ucfev2a/vlH7FcIkBe5nB4/pvPn6cwZ2riRiGjIEDp2jGbPpg0bKDw8+2m1atGIETRixIcPXRBBVhaZmNCVKx/ObkaOpIYNycWFFi+m+/dp5Ejq2JGkKlk5FBZGDg4UEkJaWjRjBs2bR3p6eTztxg0aPJgePaLSpWnzZho4UBVzAZGdPHnS29vbz88vOjqabylTpkyvXr369+/fs2fP0nndAZLJZDdu3PD39/fy8rp37x4R1apV6/79+7mfuWvXrtGjR2dmZo4ePXrDhg3a2hp0Yx5EERYWFhAQ4O/vf/78eb5FX1/fxsbGzs6uf//+pnk1HklLS0tJSTF5v+aZMWZra3vo0KHu3bsfOXJEA2/k6OhQZiYR0bp19NdfVKsWOTmRl1fOgPvq1SLOEQAA8hAQENC3b18tLa2TJ0+2b99e7Ol8azp3JjMzIqJdu0guJy0t0ozo0TcoNZVmzaKVK4mIevSgLVuy/8/nEBZGw4ZRaCgZGNDChTRlipqnCQBfg2mGyZMn52e2HTvOImKf/7d/P2vVir19yypWZHfusMWL2YwZYr88gLykprLhw1nZsmzxYjZuXPbGqChWujTbtIkxxkJDmasrq179w+FtZcXc3FhUlIizLsYePmTly3+0Zc0aNnw4k8tZjRrZv6FKldj06ez6dQGHlcmYuzvT02NEzMKCnTnzhecnJLDBgxkRk0iYszPLyBBwLiC+8+fP9+rVi38mVq1a1cnJyc/PLz09Pc8nJycn+/r6jh49uly5copP0vLly48bN27//v1yuTzPnwoICChRogQR9e/fPzU1VZWvBjSUTCa7du2aq6tr7dq1FUdOyZIlbW1tPT09ExMT8/ypd+/e+fn5OTg4lC5desqUKcrfevnyZYUKFYho2bJl6ngBX0lbO/sLmYy1bs06d2a7drH+/T88YdkyNnEic3FhEyawceNYZqYo0wQAgDzMnDmTiMzMzKJwjSSc+HgWE8M6dWKnTrH69dnRo0wmYxoTPfrWXL3KvvuOETF9febuzj5xhp4tJYX98EP2pefgwSw+Xl2zBICvpBEZ7teuXWvdurVEIrl27VqjRo3i4uKIKD4+njHG/5uQkCCXyxMTE7W1a799Wy8ri5KSKCuLkpMpM5PevaOMjOz/pqTQ1Kk0ezZdukQbN9KuXdSjh+ZmuO/Zsyc5OblkyZI6OjqlSpXi/9XW1jY0NNTS0ipdujTP8Rd7mqASL19Sv3505QqVKUO7d1PTplS+/IdvlSz5ofWlTEanTtHOnbR3LyUkEBFpaVHXrjR69BFb27Z5ZrOCSty5Q9260YsXH7Zs3kz+/rR3Lz15Ql5etGkTKVKG69alIUNo5EiqVaswYz55QqNH09mzJJHQDz/Q0qVUqtSXf4oxWrmSfv2VMjOpY0fatYs0uIoDfJ3OnTufPn162LBhM2fObNKkSZ7Pefv27aFDhwICAg4fPqxoZWlhYWFnZ2dnZ9epU6cv5q1fvny5d+/esbGxXbp02b9/vyFa8RYnv/766/bt21++fMkfmpmZ9evXb8CAAZ07d9bV1c39/Ddv3vj5+e3bt+/48ePp6el8Y79+/fbv36/8tMOHD/fp00dXV/fSpUuNGzdW7WvIt7NnqXJlun6dBg/O3vL4MT19SjVq0PPn1Lp19saHDykpiYyMyNKSpkyh77+nBg3EmjIAAHxEJpP17Nnz+PHjnTt3DgwM1NLSEntGRUlmJj17RhER2f+ioig6OvvrX3+lq1fpr79IJqMffqCbN6lECWS4C4xftc2cSRkZVK8e7dxJDRvm6we3bqVJkyg5mb77jnbvpk9cEwCAmMQPuMtkspYtW16/fn3WrFkLFy4s/A6Dg2nSJLp0ieRyateOdHSoZUuNC7jHx8cPHz783r17T548+eKTJRIJL7NTpkwZIjI2NqaPC+/wkjvm5uZz585V7bxBIKGhZGtLkZFkYUEBAWRlla+fSk+nY8fIx4d8fcnYOCsqSk9PT9fGxsbR0bFfv355xkFASKmpVKYMvXhBimThX34hAwP6++8Pz7l8mXbuJC8vevWKiEgiodatacSIxCFDSudVeOEzGGMbNmRNm6aTnEyVKtGmTdS9+9fN9+xZGjaMoqPJ1JR27qSuXb/ux0EDZWZmlilTJjU19dWrV+UV9+jei4iI8Pf3DwgIOH36dFZWFhFJpdImTZrY2tra2dk1a9bsq8YKDQ3t0aNHVFRUixYtDh06pJwjL6DExMQjR44cPnzYycnJwsLCLM/Vs6BGBw4c+OOPP27dulWtWrV+/fp95g7Ns2fPDh8+7O/vf/To0czMTCKSSqVt2rSxs7MbOHBgrbzuNU6aNGn16tV169a9du0aX0UhrqgoatyYMjLo4kWqWzdfP5KVRf36kbc3lSyp4skBAEC+vXr1qmnTplFRUbNnz/7rr7/Eno6Gio6Ofvz48ePHjyMiIp48efL48fpHj6QvXpBMlseTS5SgH3+kkBD66y9q144cHalOHfr9dwTchfTyJY0ZQ0ePZmdWubuTgcFX/Hh4OA0bRjdukJ4eLVpEzs7o+gagYUTNr2eMsWXLlhFRtWrVkpOTBdnhtWusVavsr2/dYtramlhShreqq1at2ujRo+3t7fv162djY9OhQ4dmzZo1bNjQ0tKyatWqxsbGX5W8bGJi0qRJk+joaLFfHHzB0aPMyIgRsdat2atXBdlDbCzbseNep06dpO/LhZuYmPz4449nzpyRyWRCzxeUODiwESNYWhpjjF26xMqXZ0+e5PE0mYwFBTEnJ1a6NCOSlStXUk/P2traw8PjU6UYcnj58qWdnV27duuJmL09e/u2gPONjmYdOzIipq3N1q4N/lQJESgqrly5QkS1a9dW3hgREfHrr79+p9ThQV9fv0+fPuvWrSvkJ0JERESNGjWIyMrK6vnz54Wb+0dev37t6elpa2ur974XgaGhYY0aNSIiIgQcBQrA3t6eiBYvXvypJzx69Mjd3d3a2lpRip23TnV3d//iWv7U1NSGDRsS0YQJE4Se+FeTyVjXroyI9ejB8vnJmZ7OfvmFnT+v4pkBAMDXO336tLa2tkQi2b9/v9hzEd+zZ8/279+/fPnyyZMn29raWllZGeQK5ZqbP+VlSYyNWbNmzN6eubgwDw8WGMgePcr+ZOzUiQUFMcbYy5esShWUlBHSnj17evVaRcTMzNiRIwXcSWoqmzgxu7zMlCkXY2NjBZ0jABSKyBnuUVFRVlZWCQkJ/v7+tra2guzz6VPauZNmzcp+uGYNGRnRiBGC7FsYV69ebd26tba2dkhIiFU+cpvlcjkvqpOQkMAYi4+PJyLlwjv8u2vXrg0JCZk4ceJqdPXSYOvX06RJlJlJ9vbk6fl1N7Fze/HixZ49e3x8fBS97CpXrjxw4EBHR8evzWaFfHn3jqZNo9OnSSajsmXpzz9JS4u2bKERI6h7d8qdBJqaSn5+N8+da7luXUZGBhGVKFGiX79+I0aM6NGjh46OTp6D7N69e9KkSbGxsWXLlt248X6/fiaFmbJMRn/9RXv3Xg4P79CzZ88tW7bwVTJQFK1YsWLq1Kljx47dtGmTYuPVq1dbtmxJRCYmJl27drW1te3fv79Qxaaio6N79Ohx+/bt6tWrHzt2LM+05fy7ffu2n5/fgQMHrl27xk8/tLS02rZta2Njc+DAgevXr5uZmR05cqRRo0aCTB4KYPDgwb6+vnv27Bk0aJDy9rCwMB8fHx8fnzt37vAtBgYGXbt25UkD+S9/FxYW1qJFi9TUVG9vbx7cF8u8eTR3LlWoQDdu5N2XLIeMDOrUiWrVIisrGjiwkNXCvk1yuTw2NlZFq2EKiTH27NmzYcOGCbjPdu3azZgxI8++wVCEvH79+ueff37+/LlQOzQ1NV23bh0ODFEsXLjwf//7n7GxcXBwsIWFhdjTEc2FCxe8vLxW8v6bSsqVK2dhYWFpaWlhYWFhYVGrln3VqsZVq9InrkiIiDp3zs5wJ6JVq2jyZGS4C+Ddu3dTp07dsGGDjo6Og8MtN7c6uZatfp09e2jlyrcXLlSqWLHCrl27rK2tBZrpR9LS0m7evHnt2rVRo0YZGhoqMv+gqMPnoAqJGu5n/fv3JyJ7e3vFlid5posWwvbtrGJF5ucn7F4LLjMzk1fd/f3334Xd871797S1tXV0dO7fvy/snkEQWVnMxSW7laWLy0f5dJ/od/gVQkND//e//1WvXl3xp92qVSukM6vDyJHZSQUmJszBgQUG5tnmJi4ujufzKspKGhsbOzg4BAYGKv+a4uLiHBwc+BN69OghYE6xv/9hXpOqZs2aN27cEGq3CtHR0UeOHFm0aNH333//8OHDrKwswYcAxtiQIUOIaP369cob5XL57NmzT506paL/7bGxsW3atCEiMzOzAhw8WVlZQUFBLi4uyu03DQwMbG1tPTw8FDnRycnJ3bp1438a55FCLJ6BAwcSka+vr2LLoUOHqlatqvjdlS1bdsyYMX5+fgVuqLtixQr+i46MjBRo1l/t7FmmpcWkUnbsWH5/RCZjjx5l/3v3TpWTK5rC/8/encfVlP5xAP/edi0IoSLKnl327LJnnzAIYwnDhNkyv2HCmJEZRmPGEsPILnt22bMrRJKlaNFKpX279/n98eS4iiY6956Wz/vlNa+5p9t5njvu3HPu9/k+3++jRzY2Nj169JB6Iu/n6ekpes8bMzMzY2Pj+Ph4qV8cfLo7d+7o6emJ2zHLyMhIV1f3xo0bUr+48kihUPDwQrt27TL5htRyicdb27RpM3v27JUrVx48ePDu3btF3GWbz4sXTLja5+aykBDm58d++UXM2ZY3fn5+fFuqnp6eu7u7WF/Yw8LC+N+7lpaWq6urKLvec3JyAgMDPT09nZ2dbW1t9fT0+Kdcq1atZs6cWfzzQ0mA66BKSZnhfuLEiYEDB1asWDEoKMjc3JyIXr582bhx4/bt23t5eRkWpTNgEfz5J82dS82a0d27VBIaqKxYseK7776rW7duYGCggdgVQKdMmbJ58+bRo0fv3r1b3DNDMaWmpo8dW+HIEZmuLv3zD40fn3ecMfrtN9q/ny5cIFHq2fr7+2/dunXHjh1GRkbdunXz9PQU4aRQiIgIOnCAtm6l27fzjtSuTcOH06RJ721eEx4evnv37h07dty7d48fqVOnzuLFiydOnHj69OkpU6ZERkbq6+v/+uuvzs7OMlHr8IWHhzs4ONy8eVNPT+/PP/90cnL65FPJ5fKwsLAHDx74vxEdHS381MjIaNKkSQXTaqD4ateuHRkZGRQU1KSIBadFkpaWNmLEiNOnT1euXPno0aNFSZzJyMg4c+bM0aNHDx8+HMtbGhBVrVp14MCBgwcPHjBgQMGrfFZW1vjx4/ft22dgYLBv377+/fuL/0rgvwwfPvzQoUMHDx7kMQsiunfvXsuWLU1MTPr37+/g4NC/f/8P7c4pIsbY0KFDjxw50r1797Nnz6q/u11iIrVuTWFhtGABodKvWJKSkho2bBgfH793797PhBa0JUNqamqjRo2ioqIWLlwo4gfL/PnzfX19sbW0VOvRo8fFixfHjx/Pq32KYuPGjVu2bOnYsePVq1fFvZGDokhMTGzbtm1oaOisWbP+/vtvqacjgYCAgFatWlWuXDkyMlL0aENiItWtS8nJtGcPjRol7rnLPsbY6tWrv//+++zs7KZNm+7cubNFERukFk1ubu7SpUt//vlnhULRq1ev7du3m5qaftQZ5HJ5cHCwn5+fn5/frVu3AgICMjMzhZ9qamo2adKkdu3aZ8+ezc7OXrFixTfffCPi/EESuA6qllSR/rS0NL7P66+//hIOTpw4kYj69u0r4kBZWczKihGxLVtEPOsnCgsL4yGGo0eP5vtR1apV69SpY2Vl1apVK54iZGdnN2zYMAcHhy+++MLJyWnevHkuLi5Llixxc3NbvXq1h4fH1q1bL168qHwSHqqTyWR8tz4U4tEjNn3629LYhw+rcBvEixcvbGxsevT4qUoVduHC2+OZmXnp0Zqa7PhxMUfk0U8jIyOUdFefgAD2/fd51Q35n1at2O+/Z34gS/3Bgweurq7169cnon/++UcIr3fq1El1m1QyMzOdnZ35h7+jo2NakbM0k5KSLl269Ndff02dOrVt27ZCgoOgUqVK3bp1++qrr+bPn89/unr1ahW9inKLN9k2NjaW5P/rrKwsHkTT19c/ceLEh54WHx/v6enp4OCg/B3PysrK2dnZx8cnJyen8FFyc3OnTJlCRDo6Onv27BH7RcB/Gzp0KBHlK4Dr5+cn7papuLg4/iXQzc1NxNMWhULBhg5lRKxDB5adrebBy7h169YRUe3atYt+cVGPH374gYg6duwo7ts4KChIW1tbU1NTFfvGQA327NlDRCYmJomJiSKeNiUlxczMjIi2bdsm4mmh6O7evcvrlW/dulXquUiAp9TMnTtXRef/+29GxAwNWVCQikYom2JiYviKr0wmc3JyUt2F8syZMzVr1iSi6tWrF3LHLnjx4oW3t7erq6u9vX3BuqOmpqb29vaurq7e3t5Cgfg9e/ZoaGjIZLLy+b9YWYLroKpJFnDnq2Ft27YVtsBfvHhRJpPp6uoGBweLO9bWrYyI1anDJN9YNmTIECL6/PPP8x3Pysr6tPWSgQMH5jvVt99+K/qiRZl04QLT1maTJ+c9/Okn5uqqkoH8/f35x02jRo2ePn3bGfjVq7xuloaGKon180GfPn0q/qmhELxdqrMzq16dh92HNmjA2wnGxcUVfLpCoVi1ahW/K+IbANVQjGXbtm08GNqqVasnT5689zn83svNzc3R0dHa2rpgkT5+++Xi4uLp6RkYGKgcAt6zZ49MJtPU1Dx8+LCqX0u5snPnTiIaNGiQVBPIzc2dOnUqj4bv3r1b+UdCI03hraKhoWFjY+Pq6vqxC8AKhYJfyDQ1NT08PER9BfDfBg8eTETeqq/Ed+rUKZlMpqWldf36dVWPpWzVqrwGcc+eqXPYckEul/P+MT///LPUc3krNDRUT09PJpOp4p02Z84cIurZs6foZwZVy8jI4JUYVXGh+ffff4nI3Nw8JSVF9JNDUfD1PwMDgwcPHkg9F7VKTk42MjKSyWSiR1SUOToyItasGUtN/e8nA2PswIEDVatW5UHwgpmXoouNje3bty8P7js7O2e/m1+gHGEv2HZFOcJeSM2033//nX8j8PHxUfXLARXBdVANpAm437t3j6eE+Pv78yNZWVl8g/zSpUtFH04uZ61aMSK2apXo5/4I+/fvJ6KKFSu+ePEi3494m6lnz56FhITcvn3bz8/v3LlzPj4+Bw4c8PLy2rRpk4eHx8qVK93c3BYsWODi4jJ79mwnJ6dx48b99ttv+U6VkJBQpUoVIjpz5oy6XlmpdOEC696dNW3KLl1iTGUB9+PHjxsZGRGRra2t8hXryRPWqBEjYubm7M3/BCIbOHAgEe3bt08lZ4f/lJXFDh9Omj69wpvGuLq6usOGDfPy8kpPT2eMRUVFrVixokePHsrbrEQs2l64hw8f8o7NRkZGXl5e2dnZvEKfi4uLvb29SYHGPdra2tbW1o6Ojm5uboXffnGLFi0iIkNDwzt37qjlBZULs2fPJqJfJC2cqVAovvvuOx4NX7dunZ+fn6urq3J9Gz09PTs7O3d394JXukJcvnx53rx5yss2bm5u/HuCq4rWQuEDeAf7I0eOqGGsuXPnElG9evU+rbDsJ/DzU+jqMpmMHTyongHLHV9fX5lMpq+vL2GB/nx4W4IJEyao4uRCk1jltgdQKixZsoSIWrZsqYpEB4VCwZuZL1iwQPSTQxHxrfONGjVS2yWmJOBdUvr06aPSUVJTmbU1I2IF0gjhPVxcXPhN8qBBg2JjY9UzqEKhcHd35zUA27Ztu2HDBl5UrWCE3dzcfOjQoT///POJEyc+qisJv4urWLEitnmVUrgOqoEEAXe5XM7br82bN084yP+yGzZsKFZ7k5AQNnv22xYfR48yIlatGnv9WpTTf7Tk5ORatWoR0bp161Q91q+//so/WNEzsxAXLrDevdnp06xpU5adnRdwv32bBQeLthPC3d2dJ3tOmjQpS6kv6rlz2cbGjIi1bcve9AsUH99AvXDhQlUNAEWTnp7u5eVlb28vVD3W19d3cHBo27YtFaCeIBf3+vVrXiFEU1OzYA3lGjVq9O3b9/vvv9+xY0dgYOB/VgLJR6FQ8O6vZmZmERERKnoJ5Q1vuH1BuS6VRPhVRkdHR3jDVKtWbdKkSQcOHEj9+GSn9PR0Xl3k888/V87BWbduHf8IdXZ2xuVMbfhi7bFjx9QwVmZmZqtWrYhosrDdTJVSUlLatOnRqVPYV1+pYbTya+TIkUTk6Ogo9UQYY+zcuXN89VdYAvzYy9l7KZ+EF3C3tLT85DbCoH5Cbevz58/zI7m5uaJcaIT3xrVr12QymZ6e3jPsppFIampq06ZNiWjMmDHinlmhUERGRqotcvpR+Es+cOAAfxgfHz9x4kRV7O8JDmZGRoyIYS9i4ZKSkqZOnaqlpSVif9Siu3jxopmZWb4vepUqVbK1tXV2dvb09AwNDf3kk8vlcv5d0szMrOSsskMR4TqoHhIE3NesWUNEpqamSUlJ/MiTJ0/4Zs+zZ8+KNUrbtoyI/fHH2yM9ezIiJlX4ke85bdeunRpq76anp/Pg/t69e1U9VunFA+6MMQcH5uaWF3Bv3Tqv+LaxMbOxYQ4OzMWFeXgwHx8WEsKK/leXm5s7a9as96Znbt68uV69xlWqxA8fzsQt3bZo0aLmzZtf4hn7jPHGuUOGDBFzDCiGmJiYP//8s0OHDgXj7IIlS5aoeVbDhw/X09PT0NCwsrIS9g+GhIQU8dejo6NPnjzp5uY2ceLEfFfo7Ozsnj17ElGbNm0+IQgL+aSksF69rnbo8FMJ+Y9pb2+vp6dXrVo1Xpw9u3jFsC9evFipUiUi6t27t/LGw127dvGVqgkTJogSJoP/NGDAACI6Lm5fkQ8LCgrS19cnol27dql6rHHjxhFR69atMzNVXrmrPAsLC+P9hHx9faWdSW5uLu9Hp7wx6PPPPx81alRx9pOdOnWqUaNGQtml944CJRz/NHBwcBCO/Pbbb507dy7Otrz79+93795d+Uau4CigZo8ePapYsSIRrV279tPOkJGRERIS4uPj4+Hh4eLi4uDgYGNjw1uyTZ48uaRlbp45c4aIatWqJdwyLVu2jIiGDh1a/JOnp7PJk9mff749smsXI2K6ugzN4wqRlJSko6Ojqan5UcnjItq+fTvPjJk/f/6+ffueP39enLPJ5XIPDw/hDZaVldWrVy8iatq0qVDhHUoFXAfVQ90B9+jo6MqVKxPRQaXdvH369BE9v+nYsbyU9jdRfXbjBpPJmIEBi44WcZwiCQgI0NLS0tLSun37tnpG5HXrGjZsWMwgSBkmBNwjI5mZGXNyYq6ubMQIZmXFtLTetr1U/qOvzwYPjh8yZMjcuXP//PPPI0eOPHjwoGBCU3Jy8qBBg4hIV1d3x44dwnG5XC5sKPvll42ir7zwDjnu7u784cOHD4moTp06Ig8DxRYWFubm5lawbAsRjRgxQs2T4Vu9lN+ohcjJyQkJCRGq/uVrfF8wTP/q1auGDRsS0aBBg9RQm75sO3OGEbF27aSexxv8wi1i0Sp/f//q1asTUYcOHV4K/awZO3PmDP9mO3ToUCSQqkG/fv2I6OTJk2obkScIV65cuZhfAgu3efNmIjIwMHj48KHqRgHuxx9/JCIbGxtpO7fzFB/l3POrV6/KZLIKFSoU583m7u5ORPXq1RN25RbMo4eSjL8NlHPuYmNj+aJvcT76Ll++zN9dQqZnwfxBUD/eElBbW/vq1auFPC0rK+vx48enTp1av379999/z7ei8jKt71W9enVdXV0qYX1Z+QYjoYuGXC63tLQU65p+9CiTyZiODrt27e3BL7/Ma5WndOMG+fE7q3///Vc48uTJk99//51XGRXXs2fPwsPDlY+MHz+eiJYtWybK+adPn84Dd0KiVVJSUvPmzYmoe/fuYhWrAFXDdVBt1B1wHz16NBENGDBAOMLX3KpWrfrejoLFwVPalReehwxhRGzWLHHH+Q9yubxjx45E9N1336lt0JycnMaNG5NqGiCUDULAnTG2YgXT1X2nhntCAvPzY15ezM2NOTkxOztmZcWIWNeujwrecpmZmdna2jo6Orq6uq5cuZL/l69Ro8Y1pfuRjIyMzz//nIi0tLTWrFmjilfEv1h+8cUX/GFubi5PMcNqc8kUHx+vXJGDs7S0VOccnj59KpPJKlas+KEbvsTExIsXL65evXrKlCk2NjZ6enr5Jly5cuVu3bp99dVX//zzz3vfaU+fPuVLC998842KX00Zt2QJI2Jz5kg9D8YYY3K5nN+Tidt1IDg42MLCgoiaNm2qHLe6ceMG7zTVs2fPclWJVRJTp27t1OmPs2cD1Tno0KFDiahLly4qWpl7/Pgx76fi6empivNDPmlpafz/5S1btkg1h4LV1eVyebt27YiomJ0hcnJymjVrRkS///67cFClleJBREJVWeWii5MnTyYxdoU6ODgQ0bhx44QjKq2QC0XEW+BYWFjwFOOEhAQ/Pz8vLy83NzcnJyc7OzsrK6uCxRU5XV1dKysrOzs7JycnNzc3Ly8vPz+/169fM8b++ecfItLT0ysh/YqioqK0tbW1tbWFO6gjR47w1UGx1j7nzWNErHZtJuRqZ2aydu0YEZs2LRbV/z5k/fr1+T5h+MXo8OHDoo81depUmUwmhIAyMzP5HfuTJ09EOf+tW7d4/FT5ShoREVG7dm0iGj16tLQL7VAUuA6qk1oD7qdOnSIifX19oVZUUlISz5FUxR15wZT2wECmqck6d458+rSoBROKj7cusbCwUHN/Xr6eb2pqmiZu4ZKyQjngnpPDWrb876apSUns7t2offv2/fbbbzNnzuzXr1+DBg0KxkwNDQ0bN26sXKkqOjqaX1aNjIxUt0//8uXLRNSmTRvhCP8kLQkVn+G9+B4rZWpeIOGtTYVFGu7evXuurq7Dhg3jSTH5pmdlZTV8+PBFixYdPHiwiFX/Ll26xJOAVLTUVE7078+I2J49Us+DMcbY3bt3VbQ+9OLFCx7JsrS0fPr0qXA8MDDQ3NyciNq1ayfVntxyws6OETEfH7UOmpCQwOOzQl6eiIRK8aKX8YVCbN26lYhq1KjxWqLuSbyWY8+ePYUjPDpWq1at4hfm8vHx4Td1UW9a8YSGhvLymKqolQwi+vfff4nI3NxceBvcvn1bQ0NDR0fn0aNHxTx5eHg4T3YRCjxmZGTUrVuXiNavX1/Mk8Mny8rK4hUdq1SpUqFChfcG1jU1NevWrduzZ88pU6YsXbp0x44d165di4mJKfzMX3zxBRE1aNBAqg86Za6urvmudLxG3IoVK8QaIieHdenCiFjv3kwInT17xvr399fS0nNzcxNroDImJiZGQ0NDT09PyBrhzZAmTZok7kDZ2dk8Q+XBgwf8yOHDh/PFB4rv6NGjWlpa+b7Z3b9/n9exUGeOKXwaXAfVSX0B9/T09Hr16uX70OdFMLp166aiFdGhQ/OntM+b9zcRjR07VhXDFRQVFcUXFVWxgFk4hULB7y1w8XuvdevY3r0fUZb9Q3Jzc58/f37+/PlNmzb9+OOPNWvWJKKdO3cKT3jw4AGPI1hZWQUFBRV3vA9LTk7W0NDQ1dUV6ghNmzaNiP5ULrYHJYmvr2/BO3517rdq1KgREfm8G1rju444bW1ta2trR0dHd3d3Hx+fTw50btmyhX+ZUWdX2LJEoWC803IJaUDL99OMHz9eFSd/9eoV3xZmamoaEBAgHA8NDa1fvz4RNWnSBJ14VadXL0bExGup835xcXH52s2dOXNGQ0NDX1+/c+fO48ePnz9//l9//XX48GF/f///DHkU7ssvvySi+vXrY3uEOikUii5duhDRDz/8oP7Rg4KCtLW1NTU17969y48kJyfzFB/lO7TisLe3J6KpU6cKR/73v/9RCSikA4VISUkxMzMjom3btvEjCoWia9euRPT999+LMsTChQt5eEt4G3h5eRGRiYlJYmKiKEPAJzh16pSuri5PkzI2NraxsXFwcHBxcfHw8PD29vbz8/u04h4ZGRm8of2oUaNEn/NHycnJ4XkJFy9e5EdCQkI0NDQqVKjwUtRqL9HRrGZNRsQWL3578NixYxoaGpqamj5qXq4vPTp37kxKlRgfPXpERFWrVhW3QdGJEyeIqGnTpsIRcevJCDZu3Mi/2R06dEg4eO7cOZ5iJVS4hRII10E1U1/And+GNm/eXIgG3rhxgy+kqC4KyVPatbXZ06d5f9mRkZEVKlSQyWT+/v4qGlQZr6Sm/rrM3Pnz54mocuXKr169kmQCJVZiIqtYkREx0d8F3333HREtVroHiY6OtrCw6Nixoxp62fM1rfv37/OHf//9N4ndHQHExWveKftDudezKt26dYvHNPNt7woNDXVxcdm5c+eDBw9E3PnFS/oaGRkph1ChiO7fZ0TMwkLqebzBN2cILcgePXpkYmKiHHgqppSUFF4j3tjY+MqVK8Lx6Oho3pywbt26jx8/Fms4UMbL8Z07p8Ih5HJ5v379TE1Nb9y4IRx8+vSpnp7ehwrm6ujomJqa8hCJs7Mz39fv6+sbEhJSeHBz//79RKSrq6u2Jjog8PPz4/f56v+/tX///kQ0c+ZM4Qi/PevUqZNYKT5Pnz7V1dXV0NC4efMmPyJ8iS1RNZ1B2fz584moY8eOwttgx44dRFS9evUkoetX8aSnp/M8m82bNwsHu3fvTkRff/21KEPAJ5gxYwYRTZgwQfSV1ydPnvDsOmkznPjWdmtra+G9zT/0VPE18PRppqHBNDTY2bNve8XxUE+NGjXQyuK9fv/9d3q3zgYvQntO1PstXhVk0aJF/KHo9WSULViwgIj09fWVuyPs3LlTJpNpaGjs3btX9BFBFLgOqpmaAu7BwcH8rlT4HzInJ4fv8FWuHKQKzs7Jtrbrxo59m4j39ddfE1H//v1VOi57s8ZoZGQkYS6enZ2diKtVZQavhty3r/hn5tnB+ZZYnj59qp5ef7yE6Pbt2/lDnkBtY2OjhqHh0/BFEWVqqwA7d+5cIpo3b556hlMoFDxKW6dOnWLmq5ZD69czIvb551LP4w1ebkhIHd20aRMRffbZZyIOkZmZyVesDQwMlLv3JCQk8CyhGjVqlJCqqWVM9+6MiKm0FJmbmxvPcxG+lmdnZ/NtDYMGDTp37pynp+fSpUtnzpxpb2/fqlUrXon7Q3R1devVq9etW7eCefHh4eE8gr969WoVvh74sAkTJqg/74SXLTY2NhZ2ZRUMjovi22+/JaLOnTsL31r5dq6aNWuWhPoSkE9ISAgv+yMs9aWnp9epU4eINm3aJOJA/LuAcj2lO3fuaGpqamlpBQaqtT0GcMnJyRUrViQiEf/7K5/q8OHDMplMW1v78uXLYp3/Y/Xo0UM5EyIzM5O3ULp165Yqhlu0iNnahtSq1VBoQC2Xy3mqRPfu3cXN2i4bQkNDiahSpUpZWVn8yA8//EBEX331lVhDqKeejEChUPCSStWqVVOuQ8Kr5ejp6fn6+qpiXCgOXAfVTx0Bd4VC0bNnTyL68ssvhYPLly8novr166s6EFkwpT0hIcHY2JiIzqpyy3RaWpqVlZXky91+fn68AXG+dtXlWWoqMzFRVUDh/v37RFSvXj3xT10EixcvJqXSaa9fv5bJZMpFZqCkSU5O5q38BM2bN1fDuHK5nO88VdGN+HtlZGTwUKmNjU3xS+iWKxMnMiJWQmKGMTExfC1Z2AAxdepUIlq5cqW4A+Xm5vJUHR0dHS8vL+F4ampqv379iKhy5cq4mxddt26MiL3Zki6+mzdv6ujoyGQy5VJ7PBPCwsLiQxvy0tPTHz9+zGPxv/zySxFj8bwJ3tChQ9HJTSoxMTE8znXq1Cn1jJiVlcWrpSlvaR8yZAipINMzOTmZFxLcvXs3PyKUc/zxxx/FHQuKb/jw4UQ0ceJE4Qived26dWtxqwAJ9ZTmz58vHORlVPv06SPiQFBEf/31FxH1Fpp3FY9CoZgyZYqWlpZQoZi9uYrVqlUrLi5OlFE+SlBQkEwmMzIyEmJbfPGvffv2KhpRLlfwO7HOnTsLXzNjY2P5lwvldz4I+LZm4Wp48+ZNIjI3NxfrFoXnejZr1kw4oqJ6MoLs7Gy+n6xevXrK2VRfffUVX124d++eioaGT4ProPqpI+DOmxTVrFlTKNkTFhZmaGhIRKdPn1bDBAqmtP/8889E1K5dO9V9B+PbuGxsbCTvxss7BYu42b+0W7mSEbGOHVVy8pycHL5sKEly06FDh4ior1LqPl/1KW8LiaULv/YItLS01LAfgjd8q1+/vqoHyic+Pp6X4R45ciSq3BZd/foqKYH1afbt25fvbqlJkyZEpIpWgQqF4ptvvuGR0w0bNgjHs7KyRo0aRUT6+vqq60RdPvF+aCpayEhMTOTbI7799lvh4PHjx2UymZaWlvKu5KLLzMx88eKFn5+fl5eXu7u7i4uLg4ODra2tlZWVlpaWTCYTgqEgiV9++YWIrK2t1ZPzyLftN27cWIgBnTlzht5tcCqiDRs20LuNWK9du8ZzHVSxhR8+2dmzZ4nI0NBQ2FgTERFhYGBASjWvReTv75+vnlJcXBzvKHjs2DHRh4PC8WbsQvns4uM1GWrUqCF8quTk5PAiyL1791b/d/9Zs2YR0SyltnXt27cnon///Vd1g7569Yo3QlTeLHv16lVtbW2ZTHbgwAHVDV1K/fTTT0Q0Y8YM/lChUNSuXVvE5CeepCIUtlVpPRlBWloaX2Zu166dcB2Uy+V8232tWrXQdankwHVQEioPuL98+ZLnHyl/4Rk8eDC9W8RKpQqmtKempvKclP3796tixPv372tra2toaKgiAPGxHj9+zDtHCduLyrPMTGZuzojY0aN5R16/ZuL2d2nTpg0RSbKp8Pnz50RkYmIiHOHLmDt27FD/ZKCI7t69my8rUw1Z55MmTaJ3mw2ozcOHD/kHMvJfiig+nslkzMCAlZAdunwN29XVlT9MSEjQ0NDQ09MTNsmKjlcgkclky5cvFw7m5ubyzHptbe1PC9TCe9naMiKmoivY559/TkRt27YV3i2RkZH8LvH3338XfTj+zilvqTQlTVZWVoMGDUip1oHqxMbG8viCsA6Xk5PDkwqVPz1EJJfL27ZtS0o1cxljjo6OfF1ZFSPCJ8jNzeX9P3799Vfh4OjRo4noc5UVa+M3WsOGDROOrFy5kuc6qO5yCQWdO3eOiMzMzIRFuPv376elpRXnnLm5ubxqa48ePYTwenR0NA8vKH8aqEFKSgrfSCRkE9++fZuIjI2Ni/ky/9ONGzd4H1rlgt181bNy5cohISEqHb3UuXPnDl+nEVKOZs+eTUT/+9//in9yNdeTURYXF8ezqQYNGiSsrKenp9va2hJR8+bNy2GfzBII10GpqDzgzqs3KqfcPnz4UFdX19jYWJ1lfJcuXZovpX3NmjVE1LBhQ9EzbuRyOS+b4OzsLO6ZP9n06dNx68/xUsgtWzJhb8OyZYyIKeUEFBcvZ7ZmzRrRzlhkCoWChzKjo6P5kUWLFhGK+Jd4PDVAoJzJqwoZGRk8JKFccU+dLly4wG/Q169fL8kESpeDBxkR69VL6nm8wd+uwga1o0ePElHXrl1VOujff/+toaFB7/Z9USgUjo6ONWvW9PT0VOno5UqnToyIqWIJY926dTyzRvjkkcvlvXv3JqL+/furYsfh69eveRgCvZqlxVvXVqlS5eXLlyodiC/C2dvbC0f+/PNPIqpXr15mZqaKBr1y5YpMJqtQoYJQyzgyMlKdG3nhP/EvfVZWVsIOwoJ/a6IT6ikJbUiys7N5vaM//vhDRYNCQXyrt5BiIpfL69WrZ2xsHBwcXJzTxsTE8CbJyvWjzp07p6mpqaGhodx7RtXWrl1LRN27dxeO8ExnocSoSvHPWENDw4cPH/IjCoWC9+Bp2bJlenq6GuZQivCt50KaCM84btKkSfHPrP56MsqePHlSvXp1Ipo2bZpw8OXLl/wTr2fPnqq7BEMR4TooFZUH3GfPnq2rq5svrPPo0aOjQoKxWqSnp/OaYkJKe3Z2Nl+L27hxo7hj8a+UpqamYvX5Lb6oqCi+W6ScpwHm5rIGDRgR27Mn70hGBjM1ZURiJrm7u7sTkZOTk2hn/BjdunVT/lA7ePAgEfXr10+SyUAR/fvvv8oBd+V2F6qwd+9eUmVhx6LgbTa1tbV9xN1gUhZFRrL165l4O6GLJT09XUdHR0NDQ7jA/e9//1PPfoWdO3fq6enl2xLOV9NFbDkFHTsyInbtmsinDQwMrFChQr4dV7xwZI0aNYRFYtHxQqLK3wBBEryZ3pw5c1Q3BO/Hpa2tLcTREhISeMafcsMAVSiYI8ZrVzZt2hTNAyWXkJDAt9EINS7euy9BFZYtW0bv1lPiS9QVK1ZU3YceKIuKitLW1tbS0oqMjORHjh07xqNOxS9seOHCBV647NChQ8LBJUuW8PXFZ8+eFfP8RcSzVve8+XKbmJior68vk8mEMg6qxkv82draCkeSk5OrVas2cODAlJQU9cyhtJg3b57yWkhubi7/dBKWKz6ZJPVklN24cYOHm5YuXSocDA0N5ds+Pv/8c3TTkRCugxJSbcBdLpfzbaSbN29W6UBFwVd1RowYIRzZtWsXvyJ+8803S5YscXNzW716tYeHx9atW728vI4cOeLj4+Pr6+vn53f//v2QkJCIiIiEhITCrxwxMTE8xVhFxWo+GW+E3a1bN6knIqXt2xkRq1ePCbX1Vq9mRKxdOzFHOX/+PBF16NBBzJMWmbOzs/LW6WfPnhFR9erVJZkMFFF6enqVKlWEgHunTp1UOtywYcNI6n7OjLHvv/+eX27v378v7UwkFxDAOnd++/D0aTZ8ONuxg9WsyYTva9Ons5JQifrSpUs8a0k40qNHDzXEs7iCJZgHDhxIRLt27VLD6OVE+/aMiN24IeY509LSrK2t8wW+L126xDMBVbHqJmTVPXnyRENDQ1dXNzY2VvRRoOgCAwO1tLS0tLRU94HfvXt3Ivrmm2+EI7yucS/V7w+KiIjgES6hiWJGRgZvV7Bu3TpVjw6F4zfGPXv2FI5s3LiR3q28ryJCPaW///5bODhgwAAimj59ukqHBo4v644aNUo4MmjQIBKviBmPJRkbG4eGhvIjcrmc/xV36NBBDTUT+F1ZzZo1hYI5vGLDgAEDVD20IDk5efjw4co7BuLi4nR1dbW0tFC/Ox/+96XcQ2vixInFz0OXsJ6MMm9vb01NTZlMphz68/Pz41u+RKmcA58G10EJqTzDffv27URkbm4u+Zai7OzsXbt2Ka9mJycnV6pUqVatWvTxtLW1jY2NTUxMrKysGjRoYGNj065dOzs7O3425d2sJURSUhL/IFbnHrcSRaFgzZoxIiZcArKzWZ06jIgp5SWIIDExkW/PkaRfLk8cHjt2LH+oUCh4bwp1VnCCTzB37lzh40VfX191b57ExERdXV1NTU3JV5UVCsWYMWOIyNLSspzHwvz9mbX124dHj7LevdnmzczMjAkXE0dHVhLqpvCi2DNnzuQPc3JyDA0NZTJZXFyc+iejUCj4SlVYWJj6Ry+rJkxgNjZM3E7bPPHK2tpaqCebkJBgYWFB79YIEoW/v3+7du3Gjx8vHOF9g5RTrkASM2fOJKLevXur4uS7d+/m6QVCrdgHDx5oaWlpamoKdY1VinfDa926tfBFg28mU0MhnVJm3z4m1BbIzWXCcumTJ2zXLrZrFxM1HzMoKIg3shLqSiUnJ5uamqptpfbAgQM8ICu8DR4+fMgbffn5+Yk1SkSwn9+Jbf6ndjy+dSYnC6Ub8uTk5PAN7hcuXOBHnj9/rqmpqaurK9ZNi0Kh4O2y2rVrJxTNSEhI4Ottc+fOFWWUQvAb6Z9++kmYT8OGDYnI29tb1UMXgm/xUU5zBE4ul/OMb2Ht+dChQ1TsbcfS1pNRtn79eh4oO3HihHDw+PHjWlpaRLRlyxY1z6dUiM2JvZd+L1uRzRjbn7jfK8FL3POXk+sgY4w9fcp27WI7dzJhf8+tW0y51MqlS0zt3xlVHnCXy+WtW7cmopUrV6p6rI/FO79ZWVn9+uuvCxYscHFxmT17tpOT0/jx4x0cHAYNGmRnZ2dra2tjY9O0aVMrKytzc3NjY2O+WaYQ+vr627dvzzdWSShcxXuYtGjRovh76EqjQ4eO2Np62NqmvskAYJs2MSLWpAkT/b8HjyMUszjgp/Hz8+NxDeFI165diejUqVPqnwwUXXBwsEwmEz5Gir+18EP4grZyXw0JpaWltWvXjog6d+4sVJQrhz4UcJ86lXXuzPh2qRIScB8yZAgRbdu2jT+8efMmETVq1EiSyTx48ICIzM3NJRm97NmyhSk32F64kIly57Jnzx4i0tPTu3v3Lj+iUCiGDh1KRF26dBG94EZERIS2tra2traQWHfmzBkiMjMzKz8NmkqmV69e8cyPI0eOiHvm9PT0unXr0rsdUPr27UtqrDeVnp5ep04dItq0aZNwkBfSUUPQrTSpVIkJKSDp6UwmY4wxd3dmYcF+/JEtWMAsLJh4pV379+9P71bq+/bbb/ldh9rqGxR8K/KyEra2tmLN4dSmxdtdx13e+/eBlbP/mt4lO0O1rTJLC77o1aRJE+G/s4uLCxFNmjRJxFESExN5YW7lt9mNGzd0dXWJyMtL5NiZsoKJ5CdPniQiCwsLSbK+uNzcXP5heObMGanmUJLxXiNLlizhD9PT0w0MDGQyWXh4+CefU/J6Msr4/2X5FtdXrVpVqVKlklD0okR5lPmo6YOmLYNa9nzcs+79ur4pvj9H/+wa5SruKOXkOsj++ovVrs1+/JEtXMjq1GG//cYYYzNmsFWr3j5n6FD1bxhXecCdMXb8+HG+ppGQkKCG4Yro3r17fKnH39//E349KysrISEhNjY2JCTk0aNHfn5+N27c8PHx4Z93LVu2FILar1+/njZtWpMmTYStXlJJT0+vUaOGvr6+epJ9SppOnToR0erVq/lDuZw1asSIWIHFERHwfDqhmp46ZWZm8pQuYU8Jr2ArFJmBEqtXr15CwH3nzp0qGoUXACk5TSajo6OrVKnSp0+fktP0Qv38/ZmhIRs0KO9Pu3Z5Afdp05i/P6tThyUnl4iAu0KhMDExIaKQkBB+hLes+OKLLySZz4YNG4ho9OjRkoxe9gwZwipUYG+2IzNDQ/b6dXHP+fTpU94uSTkS+scff/DbQhW1aeIt8hYsWCAcadmyJREVTIYAdQoICPjtt99IBS1MFy9eTEStWrUSYkwF06nUYMeOHTzLXricCYV0AsXdM1KqFQy4R0SwKlXYmxLbeQ+LEXsSeHt787dBfHw8P/L06VNdXV0NDY2bN28W//xFVHCzxevXr2vUqEFEe/fuFWWIU5sWX96bt1v/75ndwgKvx4U/SoqLfHzTJzxIfa+0pOnZsycp1THIzMzkfR1viFs0jbG7d+/yJiXKd9erV68mIkNDw6CgIHGHE/BE8pEjRwpH+GK2+vOalfH+YQ0aNEDN7vfiXQRat24tHBkxYgS9W3Djo5SQejIChULh7u4u7Gjkli9fTkpb8IHr+qjr4qi8ZZI76XdismNED7iXl+tgVNQ7dw4vXrAqVdjz5yUh4K5VeLK2KAYMGNCrV69z586tXLmS9zeTnEKhmD59ek5Ozrx589q0afMJZ9DR0dHR0SEifuUW2Nranj59OiAgYN++fbyFiIGBweXLlx8+fLhp06YZM2aIMv+iuHDhwr59+3755Re+wklEOTk5CoXCyMjoP5P0yx4fH59r165Vr159ypQp/MiRI9d1dZtYWVUaPVr84Vq1anXkyJGAgAD+HlAnXV3dhg0bBgUFBQUF2djYEBEPNAQEBKh5JvCxpk+ffu7cOf7vd+/e/fzzz0UfIioqytfXV09Pj9+RlwTVqlXT1NT08fEJDw9v3ry51NORTM2atHJl3r9fvEheXnn/3qYN2dvTzz9LNa93PHnyJD4+vkaNGjyZi4iuXr1KRJ07d5ZkPteuXSMivpgKohg7lr78ks6fJ6X9Np8uJydn3LhxycnJn3322bRp0/hBf3//+fPn8xKfPAlOdHPnzt27d+/69ev/97//8SDIV199NXXq1D/++GPcuHGqGBH+U0ZGxpAhQ3JycurVqxcSEtKjRw+xPvDT09P37dtHRO7u7pqamvygpaVl165dR40axcMQ6vH5559v2LChdevWwn61pk2bTpkyxcPDw8XFhXcJAyKiiAjKyCAiysoiIrp8mTp1InPzvJ/WqkWdO5OvLwUHU0xMIae5XLPm1g8/gb2JOrm6uvJmcUSkp6c3fPhwAwMDvrtOPaytradPnx4bGyt8I6tYseLixYtnzJgxffr0kydPamhoFPLrQ1pVYQp5IU8wrlmHiDJSE1+9CI0JDczJyjCxaHjz6Ob7Fw/Vb9OjbgtbEV9LKfLw4cMLFy4YGho6OjryI3v27ImLi2vdunX79u3FHatly5arVq2aMWPGl19+yXfGE9FXX3118+bN7du3jxo16saNG/r6+uIOKpfL//nnHyLi1bqIKDc3NzMzU09Pj+f/SWXt2rVENGvWLJkodxJlTu/evStWrHjnzp1nz57x0kPDhw8/cODAoUOHeN+Rj3X27NlXr141a9aMN8shIr63gycfqJ9MJpszZ06+g9JOqWSKyom6lX7rdP3T/GGrCq2EHy2KXhSVE1X4r2sxrdxfcgt/Ttm4Do6tWbNHoTcDVK0atWlD7dpR7dp5R8zMqFs3uniRiCghgZ4/zzuenl7sl/Lx1BPXv3HjBq9qLbQIlxZvoFq7du3k5GTRT+7h4UFEDRo0EFLa+UeMqampqpsSCDIzMxs3bkxEK1asEA7ybgnt27cvhyVleI6DsOCvUChatWpFRP/+K/K+Zo5/9xs4cKAqTv6fxo4dS0T//PMPf3jr1i0iatq0qSSTgaLLzs42MzPjn8x9+vRRxRA8u1C5eZSaZWRkODs7+/r6CkeOHDlC7xZBKoc+VFKGN5hMTGS1a7POnaXPcN+8eTO9m0vF25YIOTVqxguV3rp1S5LRy54hQ9ixY6xXL/bvv4yJkeHOt4taWVkJCb8pKSmNGjUiImdn5+JOt1AdOnQgoo0bN/KHGRkZ1atX19HRuXr1ceG/CCqyaNEiImrVqtXx48dHi53pUKdOHTMzs3zZlAqFQv23uwXLOFy5csXAwAC7DN+qVIl168bs7JidHevVi8lkbNUqNnHiO8/54gu2ciVr2JARFfLnaPfuhb8xTE1NDQ0NhbQ+gfqrbRQcMSkpycjIyFxYZviwJcMsFtmbFvJn4zeDTm1avHZ2rz2/TvGY22/Xz5MyU19f2Lni9Oaf1fwySxS+wVdoOcMY69ixIxGprqgF737ZsGHD12+unSkpKTwGKmJir0KhiIiIuHTpEv9eXzCRXNquXbxRub6+fokqbFDS8IvgqjeJt4mJiTo6Otra2q9evfqEs5WoejLv9ezZM5lMZmhoKHlPxxLleur1uvfr5jvIM9ytH1iTPxX+R++OXlFukMrAdXBft26F3wywOnXYX3+xcePeOfu0aWz5cjZjBmvYMO+Ww86OmZiUzQx3Imrfvv2wYcMOHjz4yy+/8GVPCcXExPz4449EtHr1aiMjI9HPP2XKFHd3d+WU9pEjR3bs2PH69eurV6/+4YcfRB+xoOXLlwcHBzdq1Gj27Nn8iL+//5o1a7S0tDw8PArPpCh7bty4cf78+UqVKgk7DI4fP3737t2aNWuOGWOnihGlTSrv3bt3Tk5O7TdLfE2bNtXS0nr06BHPepBkSlAU2traX3zxxS+//EJEt2/fVsUQO3fuJCIJczyPHTu2evXqa9eu8drfwpQmTJgg1ZRKvsqVaelSmjiRpk+nEyeoc2d6kxygbvny2cPDwyMjI42Njfn6rpq9fPnyyZMnFSpU4J+3IJa//yY7OxoyhIgoK4t27KDBg6lixY8+z4kTJ9zd3bW1tbdv3y7ks8ycOfPRo0fNmzfnm4tVx9nZedy4ce7u7lOmTJHJZHp6evPn73Jzs/7jj5p796p0ZHiPFy9e8DZC7u7u3bt379ChQ7du3Q4dOmRnZ8f7uhdHVlbWkiVLXr58uX37diGVlYhkMpn68yuFFHvB0qVL09LSnj17puaZlGheXlSjBhFRRgYZGFDt2nTs2DtPePGCBgygn3+mpKRCTmNhYOAxdmwhT/jrr7+io6OXLVu2UthBRkTv+2tStYIjLl++PCUlxdzcfP369YW/UdvWNWQKRSFPMDQ2CXtwo0X3EbafzSKiw3/Ou3Z4o0xGWjq6xZ95KZWamrp161ZSyv6+e/fu9evXK1euLPqCn2DdunUBAQF37951cnLibZwNDQ0PHDjQrl27nTt39ujRQ9jpVUSZmZlRUVGh7woODk5LS+NPsLCwqFWrVr73D6/SIJW1a9cqFIrx48cbGxtLOI0Sbvjw4Xv27Dl48ODcuXOJqHLlyt27d/fx8Tl27JjyVawocnJyeNtVIXn81KlTr1+/btOmTf369UWe96finQyGDBnCNx0CV1WraoI84b0/Wmy2OCH3/T8SaDANhUdhlwauDFwH6xkYUOGxCyMj0ten/fvfOfjiBfXsSc+e0cyZNHdu3sFhwz5h5sWlttB+cHAwr2OoumaARcQvtCrNPi6Y0n7hwgUiqlSpkhqqST558kRPT08mk507d44fkcvlPNvr+++/V/XoJZC9vT29W861S5cupMpGvgqFgletLbicKAmeXiFyG2hQgbCwMOFqJHRAEktQUBARGRsbS9jDefjw4aSU05GammpoaCiTyZ49eybVlEqCZ8/Yd9+9fXjnDvvlF3b+PFu/Pu+IQsG++ootX860tFibNiw2VpJp5n2SXLt2jT/kiyWDBg2SZDJ8j2SPHj0kGb1M4hnujDEXF+bszAwN2e7djIjp6jJ7e+bpyYreZyEzM5Pv1/n999+Fg3zzu4GBgRruA7Ozs3nKzNmzl/iR2Fimp8c0NVloqKoHh/z4xjvlzVVubm5E1KFDB1HOv2XLFiIyNzdPSUkR5YRi4Vu4KleuHBcXJ/VcSoyCNdxjYpiR0dv2EUFBrFo1JsbXpTt37mhqamprawcHBxf/bCIKCQnh39SuX78uygmVa7gfcp97YdfKCztXnNv+mygnL43Wr19PRN26dROO8Jqi33zzjUrHffz4Mf8CuGbNGuHgrl27iEhPT+9DX8SysrIeP3588uTJdevWff/995999pmNjU2VKlU+FL2pUaNGp06dBg4cyMvbqq7t08dKT0/n0/60DnnlR0pKip6enqamZuybG/pt27ZNmzbtE76qx8fHOzo62traCkfGjx9PUtfxz6dt27ZEdPDgQaknUrJkK7LN7pmdSz6nfFD0Gu7l5ToYF8eMjNj9+3kPHz1i1aqxuLiSUMNdfQF39uZSN2mSkzoHzYc379bX11dpfEehUPBta7/++qtwkDfn/fbbb1U3LmdnZ0dEkydPFo7wvnYWFhYl7auIGgQEBMhkMn19feHbzvnz54moatWqKv2vwZNAS0h/9jFjxtC79YWgxOLrQ0Tk7e0t7pn5zh4nJ8k+gV+/fq2np6ehoSHUFtu2bRsRde3aVaoplS7Pn+ftsLeyYm+6lqpPYmKihoaGrq6usGDD92svXbpU3VNhjDHm4uJCRP/73/8kGb0sSU9nzs5szZq3AffUVFavHtPSYt7erEcPpqmZt2VTiLwnJv73af38/GbOnClsdX/8+DHfU7h161YVvhglq1fva936jL392yMTJjAipvq7MHjH1atXeVVJ4cY7JiaGx6ROnjwpyhAKhYIXZVZOrZBcdnY2L6C0SvnLHhQMuDPGtm9nZmZs2jTm5MTMzJh4AUSeUyzVwvCH8OSDifkK6RQDLynj5ea0+fuh653t0pJelvOAe+vWrYlo95vASmJiooGBgUwme/TokaqH3rNnDxFpa2tfuXJFOMj3WNepUyckJMTPz8/Ly8vNzc3JycnOzs7KyupDqaa6urpWVlZ2dnZOTk5ubm5eXl5+fn6vlWq9rVu3ji9jS1XZL5+NGzcSUefOnaWeSCkwcOBAUioAKxbUkylddibsNAkwWR6zfGfCzrkRc6+nXhc94M7KzXWQ7drFTE3Z1KnMyYmZm7Nt2xhj5S7gHhERYWf3i4FBqlSrnunp6fXq1VNparOgYEr73bt3NTQ09PT0wsLCVDfu9u3beTRZiC9HRUXxT17R43elAo81z5s3TzjCVz6WLFmi0nH5HkY1vNP+U0JCQpMmTSwsLGQyma2trbu7OzKtSjKhr5pQjE8UCoWCN7q8ePGiiKf9KDy/Vbk8/YABA4hovZDIDf8lNpa1bs2ImKkpe9PmXU2OHTtGRF26dBGO8Jbj58+fV+s83ujatSsRHT16VJLRyww/P9aoESNiVaqwgQPzAu6Msf37GVFeDfeXL5mnJ7O3Z9raeZF3TU1ma8vc3Yu62SIjI4P3TZk0aZKqXkkBr14xAwMmkzEhn/72bUbEKlYsbm16KDq5XM5D4T/99JNwcNKkSUQ0bNgwEQe6du0arx0UWmK2MKxYsYKIGjduLLR0AsYYu36dCf9B5HImBCUTE9nZs+zs2SIt6BVZbGwsL1t0/PhxEU9bHOfOnSMiQ0PDFy9eiHXO1/FRUU8Cop4EJMVFKhRyxljKq5jkV1LW8paQr68vEdWsWTMrK4sf+eOPP4iof//+6pkAT0dQrtuemZnZunXrQmq6Ghsb29jYODg4uLi4eHh4+Pj4hISE5CvO/l68cHyjRo1U0ZfuY9nY2BDR9u3bpZ5IKcAXJ0SPgfLyMjY2NuKetjh4CUER2xiUMQHpAatiVy2MWrgzYWe6PP1q6tXLKZfFHaKcXAcZYywpiZ07x86cYUIPiZAQFhX19gkPHzK1159Qa8CdMfbtt4yI9e2r5mHz8PrpzZs3V8+9b8GUdl7NRjn3XFxJSUmmpqZE5KnUXG/EiBH0bpu78uPp06daWlra2trCIsft27dlMpmRkZGqe7nwzYwTJkxQ6Sj/6cmTJzzBqlKlSkLdNF1d3WHDhu3duzcjI0Pa6UFBcrm8bt26RDR8+HART3vlyhUiql27toQ9k3nv4n95Q0bG4uLitLW1tbW11VBoqyxJSWG9e+dFSN8Ud1EHvkPCxcWFP0xNTeVl4iTZOJWdna2vry+TyT6twRQwxhQK5u7OdHQYEbO2ZgEBLCWFKd8cJSSwfF/2Y2PZunWsd++3Oe+NGgUNGDBg8+bNhf9F8OS++vXrqzki4OTEiNisWW+P8MZLf/2lzlmUa7zTsrm5uVBi0d/fX0NDQ0dH5/FjkRvY8n30n332mbin/TQl8PttuVWiVj5yc3NbtGhBRL/88ovUcymzeA2rhQsX8ocKhYJ/FTp8+LB6JpCVleXu7p6Tk6N88Pvvv5fJZAYGBu3btx89evQPP/ywYcMGHlgvzjszPT2dd7IZM2ZMsSdeLNeuXSOiatWq4dtlUcTGxmpqaurq6r4WNQWAt+lyc3MT8ZzFhHoyJQGugxJSd8A9IYFVqcKImPorbQQGBuro6GhoaFy9elU9IxZMaQ8NDdXR0dHU1FTRzi++YaRbt27Ckvjx48eJyMjISPR60KUC/w8ydepU4ci1a9fat28vxIxUh992tGzZUtUDFeLq1avVq1fni0xhYWHp6eleXl729vba2to88l6pUiVHR0dvb+98N4UgLd43tXr16ocOHfLx8fHx8blx44afn19AQEBISEhISEhsbGxCQsJH3aLNmjWLJO3i8OLFC01NTT09vaQ3daD/+usvIho8eLBUUyq9MjPZ8OGMiBkastOn1TRojx49lL+vpqam/vvvv6reKvQh/APW2tpaktHLgJgYNmAAI2IyGXNyYmlpH/frcXHMw4PZ2bGePV351URTU5PvoIqJyZ9TuW/fPr7Qe/v2bdFeQNEEBzOZjOnrM2E5gGfu16/PpFt5LEeSk5N5FoiQ8KhQKPjeFFXchkVGRhoaGhLRabV9LH5YydzBXT4JtX3++OMPqefC1qxZQ0SWlpYISqpIXFycrq6upqbm8+fP+ZHTp08TkYWFRW5urlSzEpJpVPHp9OjRI16ka+3ataKfvOh4t88ffvhBwjmULvxquGfPHrFOiHoy8CG4DkpI3QF3xtivvzIi1rZt/swplVIoFDy5cpZyppPq8XomyintvNKIuLmr3PXr13nSUFBQED+SlpZmaWlJRKtXrxZ9uFLh6tWrBgYGvXr1yvf/s7DHUHVSU1P5X4caxnqv3bt36+npEVG/fv3yRWajo6Pd3d3btWsn7GQ0MzNbumhB1JMASaYK+dy8eVNXV1dXV/dDO0/zMTAwMDY2rlKlipWVlZWVVdOmTW1sbGxsbOzs7Ozs7AYNGvTZZ5/p6+sTUUDAO3/FT548Ud4No1J8ad3BwUE40qlTJ1KqsAkfJTeXffFFXlntfftUPlxOTg5vb1tCClKtXLky32IqFN3Jk6xmTUbETEzYkSPFOtWrV688PT3t7e1567aCkffw8HDeQu3vv/8WZ/YfqV8/RsR+e1PKODeX1avHiFi5rLGnbgv/9z8i6tSpk5AFwsse1qhRI6noHXg/xs8//0xETZs2lTaNoMT2KCu3eLG+ihUrFlwRVKeEhIRq1aoR0f79+yWcRtm2dOnSfF+0hw0bRu+2VVM/3ua9fv36KtpmKhSOV1taYT7x8fG8S1PJKepV8s2fP18mkyl/odPV1TX+gDp16li9T4MGDWzeaNCgARE1adJE6lf2FurJlBy4DkpFgoB7ejqrVYsRsb171Tcor5NVs2bNRFErA/4nIaU9MDCQH4mNjeV9w5RbqRRfTk4O31CmXCXz22+/JSIbGxsJl/SldePGDWNjYyIaMGCA+ldWGzZsSER3795VPhgWFrZhwwaVFrRRKBSurq78Eu7k5FTI187nz5+7ubnxebpMGrjI3tR9cnufLUtfvcDdkmQyMzN5DcT69esPGTKEB83btWtnY2PTvHlzfndlYmJibGzMP0mKqEaNGjo6OsqZNa9evapWrZqmpqZ6ujvwet/CjsLnz5/zrbVCnQH4WHI5mz2bETEtLbZ1q6o+5BUKxY0bN3jPczMzMxWN8rFGjhxJRJs3b5Z6IqVMRgZzdmYyGSNidnZMxMKJL1++/Oeff/r16yfsoNLS0rKzs+Nf/+zt7YtSi1YVjh9nRMzCgglXwj/+YESsd29JplOePH2aW7v2P1263Lhxgx9IT0+3sLBQ6f+5GRkZPI1U2tYg3bt3J6JvvvlGwjlAPrxnzIwZMyScg7OzMxH17NlTwjmUbbm5ufwTwMfHhx8JDw/X0tLS0dGRNsbUr18/UnFuKS8cb2FhIUmdRjc3NyIaMmSI+ocupTIyMpo2baqlpVX0r3JFYWpqamBgcE/NXZ4+DPVkShRcByUhQcCdMbZuHSNiDRsy9RQRevnyJV9IEXHPTtHxlHbl3lC8Em7Xrl1FHIVf5+rXry+kct+7d09bW1tDQ+P69esiDlTqBAYG8h3NXbt2FbdK2n9ycHCgd+vpszfpV7q6uvb29p6enqJHGzMzM3kZU01NzaLvbLh+/fqxf5f/Pr7FIntT/uefb+1veG9KTXqnrUR8xJOoJwHRIYHpyaqtgF+eTZ8+nYjq1KlT9OLUqampCQkJL1++5AVn7t+/7+fn5+fnx8vRHDlyxMvL6/PPPyeiihUrKt+E8Xejvr7+zZs3VfNq8jx8+JCIjI2NMzMz+RGeguTo6KjSccsDNzemr89atJj5+++/i3janJwcX19fZ2dnc3NzfhPP85SFoqjS4rNC9uhHCQgI6NAhke+KWLVKVbsMExISlHPeTU1Nq1SpouqmKYVQKFjjxoyIHTqUdyQ5mVWqxIjYu6vhILZhwxgRU2qTu3DhQiJq06aNSluJeHl58c8rqRo88FTT6tWrqznFBwr38OFD/rXIz89PkgkEBQVpa2tramrm22sIIuIdI+vXry8s8bq6upLUCbZPnz7V0NCoUKGCSj+UsrKyOnToYGBgMHPmWTUvcMvlcr6l/sSJE2oduDR7b2+bzMzMhA94/vx5yPs8fvzY741bt27xfBQzMzOhoLGEUE+mpMF1UBLSBNxzcvK+/3h4qGM4XlOsX79+6hisgIIp7UlJSVWrViXxOimFhYUZGBgor+fL5fLOnTsT0Zw5c0QZolQLDg6uVasWEdnY2Khz2Z+HFL/++mvlg97e3n379tXU1OQxrEqVKk2aNMnHx0eUXQgvX77s1q0bERkaGh75+EoBCoU87MGNI39/t2xUQx52Xzyk1qbvhvid2JaVnsIY2/j1QM//OXi5Of05tePFXdKXACt7du7cSUR6enr+/v7inlmhUPAuUnXr1lVO85kwYQK/MwsPDxd3RGULFiwgomnTpglHmjZtSkQnT55U3aDlh4fHcb6jZcGCBcU8VUJCwrZt2xwcHJT3T1hYWMyePft///sfT16eOXOmhK13GWOhoaFEVK1aNamSpksdhULh4eGhr6/fsePIJk3YnTvqGDQhIeHXX3+VyWT6+vrS9rb19maHDr1TtN3ZmRGxYv/vAh929mxel4k32yhywsK6WlrKZLLLly+renDecGLevHmqHqig9PR0nmC7YcMG9Y8OhZs7dy4RdenSRZJrR//+/fkFVP1Dlx99+/YlolWrVglHUlJSPDw8RL+p/ijffPMNqaUIXlhYWNu2gURMzeVzjhw5QkT16tWT9uawFFFdb5usrKzevXsTkbW1tYS5DhzqyZRAuA6qnzQBd8bYnj2MiJmZfXSrro914cIFmUxWoUKFp0+fqnakDyuY0s7LGTdv3lyUK9PgwYOJaNy4ccKRdevW8cwyFVXJLHWeP39ev359fvl5IeIu+kLx+4/e79u4/vLlSw8PD1tbW6F2W9WqVZ2cnHx9fT/54+/x48e8OIy5uXkxr985WRmBlw7vXDLh52EWPPL+y0ir05t/3vj1wPCgW4yxpLjIpSPqKuS5Ka9i5DnZ8RFPMlLwTiuu+/fv85Wzf/75RxXnz8jI4GXT27Ztm/bmkzc7O7tXr15E1Lp165SUFFWMyxjjZSXOnz/PH96+fZuITExM0K1XLNu3by9ONPz58+ceHh7Klbj5p6WLi4vyh5K3t3eFChWI6PPPP5ewzf22bdsIO5eLLCYmhu8h5dtI09LU+j8d30fv5uamzkH/05MnbO1a9ma/DXv5kj17JuV8yprcXNa8OSNiy5a9PThqFNPXv/Ltt2oY/+7du5qamlpaWkI5R7VZvHgxEbVq1arc1nIsyRITE01MTIhonxo6n7zL29ub7/OLj4//72fDJ0lLS2vSpImOjo60S7z5pKen8zQ79aSUnjnDNDWZhgZTZ+vogQMHEtGKFSvUN2RpFhYWxveMrlmzRhXnT0pKatGiBRF169ZN2FgsCdSTKYFwHVQ/yQLuCgXr0IERsUK+hXl7Mxsb1q4ds7NjffowBwc2ahRzcmIuLvEuLi4uLi7Lli1zc3Nbv369h4fH7t27jx49mu8MWVlZTZo0Iak7pSQnJ1evXp2Ijh07xo9kZGTwQpbbt28v5sn37t3LE6WjoqL4kZiYGF64vPz0IiiK6OjoZs2aEVGjRo1Umswr8PT05Mnmixcv/lC7cF5FnbeN5urWrevi4vL48eOPGuvMmTOVK1fmX/MiIiLEmD5jjGWkJN0967V1wahFg83ObVvOA+4KhSLQ9/Bf020ZY1sXjN62cMy2nz5/FqDynLWyLSUlhX9YKa+ciS4+Pp6vPH322WdCWPbVq1f8HThgwABVxAiuXbvGk+iFk/P2El999ZXoY5VnR44c+dhoeGBgoJubm/LKH+946ebm9qGPoAsXLlSsWJGIBg0alKbqBfMP+PLLL4lomXIsDz7g9OnTvKhatWrVDglFVdTo+PHjfBlYwhWagsLCGBETyiNt3swmTpRyPmXNX38xImZlxYR+9ZcvM5mMVajA1LXJ3cnJiYj69OmjnuG4yMhIvmp+4cIFdY4LRccTkiwsLNR5/crKyuIJMe7u7mobtHzi23yVM9wlt2nTJiLq2LGj2kZcuJARserVWWSkOoZ7/vy5pqZmhQoVJKkdX+rk5OTw5KcRI0aobpTIyMjatWsT0ahRo6TadoB6MiUWroNqJlnAnTF2+jTT0WE//vjBJ2zcyIje86dNm1f0PvXq1ct3hkWLFhFR06ZNs7KyVPti/svKlSvzpbRv3ryZR1eLs/b4+vVrXspWee8qL9Y8YMCA4k66zHn16lX79u2JqE6dOh+KgIvi5s2bPXv2zPf+tLa2dnNzi46Ofu+vBAYGuri48MhIUZ6vbNOmTTy5dcSIESr66EyKjUhNjNv49cCVE1qtmtzu5+F1bh33ZIxtXTD63nms64hg3Lhx/CNC1Re/oKAgvjbzww8/CAdDQkL4cvfcuXNFH3H27NlE9N133/GHcrmcl3gq5+0lVOHixYuVKlUiot69e39ov0Jubi4vzs7vxTl9fX3eVaIoRYf9/Pz4u6VDhw6S5JHxDuGXLl1S/9ClSGZmpouLi4aGBhH16tUrUj3fvAtQKBR8KXH37t2STOC9wsKYmRmzsmIPHzKGgLu4EhJYtWqMiAlJbXI5a9uWEbHFi9U2i7i4OH6lEzJd1IDXbRs1apTaRoSPlZuby68gS5cuVdugv/32GxE1adKkRK07lkne3t4ymUxLS8vX11fqueThSb5bt25V24hyOevblxGxTp3E6ZYnl8vDw8MvXrz477//FmwX9N133xHRF198IcJI5QBPOapdu7aq75/v37/PL4JSte9GPZkSC9dBNZMy4M4Y27+f/frr285dmzfnffnhEhKYnx+7cYP5+LBTp5iXF9u9m3l4ME/PODc3Nzc3N57n7uTk5OTkNGrUqHyhosePH+vp6clksnPnzqnxNb1fVlYWbycipLTn5uZaW1u3atXqWTF2MvNIVocOHYQ4/qlTp3j0JDQ0tPjTLnsSExM7duwok2kMGhT04IH453/+/LmjoyNPF61SpcqyZcvOnj3r5OTEc0KJSENDw9bW1sPDQ7lHiiA3N/fUqVMTJkwQCihraWkNGDDg6tWr7x1OoVDwdkBE5OzsrOpFbKGkTGpS/B+T2rx4fHfrgtFPbyOTq7jc3d2JyMjI6KHyJ6DKnD9/nlcOWb9+vXDQ19dXV1eXiP766y8Rx8rJyalRowYR3XlTN/rcuXN8fRQFuFXB39+fb6jq0KGDcrZRamqqt7e3o6Mjv//mqlev7ujo6O3t/bHrvg8fPuTx+mbNmqmuSJdcLr927VpsbKzyweTkZE1NTW1tbany60uFoKCgVq1a8SuIq6urtGVV165dS0SdOnWScA75hIUxKyu2bRvr1o0pFAi4i+qrrxgR69Xr7REPD0bEatdWeRHJd/FMl/r166tnT/3Vq1d5Bcvi3NWDGvCbEH19ffU0FYyNjeUL4egnqR48oFmzZs2iZCyp2o0bN4ioWrVqGcJ2H7WIjWXm5oyIff/9x/0ij73s3cv+/DNlxowZ/fr1a9iwoXKxQU1NTeV4WWZmJs/AuHnzpsivoSw6ceIEXxASGvup1Pnz5/k3O0n2fKCeTEmG66A6SRxwX7GCaWqyLVvyHg4cyD6+0eMH8ZYRamhRUkT//vtvvpT2yMjIYn4NvnjxYosWLe7evcsfZmZm8tIQBdefQZCSkjJ16h0iZmLCRGyi8/LlSxcXF35h09fXd3FxUc4VzcjI8Pb2dnBwEO5a9PT07O3tvby83rv9It/z37tolJGRMWbMGB5SWbt2rWiv5MOEgDtjbMPc/o9vnUHAvfiuX7+uo6Mjk8n27t2rtkH5Fldtbe0zZ84IB3fv3i2TyTQ1Nb29vcUa6MSJE3xBWzgydepUIlooVHMAsQUHB/OSZU2bNr1582ZRirN/grCwMH65sbS0FLdFSkZGho+Pj7OzM9+/9eeffyr/9PTp03w5QcQRyxhPT09e18LS0vJDi7XqlJaWxivYXrt2Teq55OEBd4WCde3Ktm5FwF08QUFMW5tparKAgLwjr1+zmjUZEduzR81zyc7O5p9RK1euVPVYcrmcb6D86aefVD0WFN/IkSOJyNHRUQ1jTZkyhYgGDx6shrGAMZaTk9O1a1e+tUvyVgoTJ04kIhcXF/UPfe0a09FhMhkrvL5sTAz79ls2ciRr04ZVrvy2nICBgYKUmJqadu7cedy4cQsXLlTeQLllyxYiat++vcpfT+kXExNTs2ZNIlq+fLnaBt21a5eGhoaGhoaXl5faBmWoJ1Ma4DqoNtIH3MeMYbVrM56HJ2LAfevWrURUtWrVklOVPzc3t2nTpkS0evVqEU+rHDHh3VmbN29eDjdrfJTMTDZsGCNilSqxy8WuPZ6amurm5sYX7jQ0NBwcHArJb0pMTPT09LSzs+M7/YnI2NjY0dHRx8fnvcGvV69ebdq0qeDCTFRUVLt27fivnz17trivoWg2fj3w6Nr5l/b86eXmtN7ZLicrAwH3Ynr16lXdunUl2fHHN4FWrFjx/v37wsGffvqJ59oLy3jFNH78eOU9a1lZWbxT0ANVbDABxhhjHh4eM2bM4HuqhM8ZLS2tnj17rlq1SsTNT69everQoQP/Jnbv3r1inu3ly5eenp4jR440NDQUvuPVqVMn32oirxQ3b968Yg5XVmVnZ/OsoilTpqSmpko9nTwuLi5ENGbMGKknkocH3Blj9+6xWrXYn38i4C6Sfv0YEZs16+2Rr79mRMzWlkmxpYmvz1WsWFHVua68SqS5uXnJ+Z8OChEaGsr3QKu68Mjt27c1NTV1dHQePXqk0oFAWXR0NC/R6erqKuE0EhIS9PX1NTQ0pNp0vnIlI2KVK7NCkiKio98p22tkxFq0YEOHsnnz2N9/bzh69OiDBw8KiZnym8B///1XFfMvS+RyOc8E7devn5o3Hbq5uRGRjo6OcoqVqqGeTMmH66DayBhjJJ2VKyk+nnR0KDqaNm6kQYNoxgw6epQqViRNTTIyIi0tMjQkbe28fxoYkI4OGRklaGk909fX19XVrVChgp6enp6eHm8WxyUkJDRp0iQuLm7r1q2Ojo4SvsB8Dh8+PGzYMBMTk6dPnwo1RsTy+PHjFi1a5OTk+Pr6du7cWdyTlz25uTR5Mm3bRvr6dPAg9e37KSfJyaHdu299//2QmJgYIhoyZMiyZcusra2L8ruRkZH79+/fu3fvlStX+JHatWsPHz584sSJbdq0Kfx379+/P3jw4LCwMCsrq6NHj/IKuWoQfP1kWtJLDU2tSibmdZt11NDSfnLrTA3LphWrmf73L0MBCoVi4MCBp06d6tix48WLF5VzkNUzuoODw4EDBywtLa9fv87rkDDGJkyYsH37dnNz8+vXr/Ni658sMzOzevXqqampT58+tbKyIqKDBw+OGDGiTZs2/v7+4rwMKKBr166XL1/euXPnvXv37t27l5OTU7t27S+//NLGxkb0sVJTU4cPH37mzBljY+Njx47xTlAf5fnz56dPnz5y5MipU6dycnL4QWtr68GDB9vb2ys3dOX69et3+vTpvXv3fvbZZ+K8hjLnyZMnAQEBJeq/z4sXLywtLRljoaGhys0DpBIeTj17UkgIEdE339DBg9StG23ZIvGsSr2sLPrqKzp4kIKDqWpVIqKnT6lZM8rJoRs3qG1bSSY1cODAEydOTJ8+ff369crHMzMzu3fv/gkn7N69Oy9FKkhJSWnUqFF0dPT27dt5OxYo+X788cdff/3Vxsbm5s2bwso05+DgEB4e/rEnNDU1PXToUL6D3bt3v3Tp0rfffvv7778XZ7bwsc6fP897Jh89enTAgAGSzOH333///vvv7e3tjxw5IskEGKPPPqMDB6hHDzp//oPPWb6c6tYlKyuytCQTk484/507d9q0aWNsbBwZGamvry/KnMuqxYsXL1q0qEaNGnfv3uV57uo0Z86c1atXV6pU6dKlSy1atBDrtDk5Offv3/fz8+vUqVPz5s2Vf9SuXTs/P7+DBw8OGzZMrOFAdLgOqom08f4VK5iLC0tPZ1ZW7MoVNnAg27fv/Y1Slf907373va9FT0/P2Ni4Zs2afPNy9+7dS2CNYFtbWyJatGiRuKdVKBS9evUiohkzZoh75jIsN5dNnsyImI4OO3Dgo3/dx4c1a8YMDFKqV6/Zvn378+fPf9o0AgMDXV1d69WrJ7yTra2tXV1dQ0JC3vv8U6dO8Wz6Tp065atuDKULTyevXr26VP0M09PTO3bsSES2trZCfcmsrKwePXoQUZs2bYqfrBccHOzh4SE85EFANWzwL7eys7MrVKggk8mEdkz8baa6LRSZmZkjRowgIgMDg1OnThXxt/jnno2NjRBP19TUtLW1dXNze/z4cSG/xYulSPW/DHwyXgBt/vz5Uk+EMaUMd8ZYcjIzN0eGu3iSkt7++6BBjIhNmybdbNiTJ090dHQ0NDT8/PyUj6empn7a96ahQ4fmG4Jv4OjUqVMJ/NIBH5KWlsYX/zw9PfP9qEGDBp/wxrCwsMh3nl27dvF7vCTl/ylAXZYuXUpEVapUkaStgkKh4G8kdfZtLigpiY0cWViG+0eRy+UREREXL17csmXLTz/9xF+gVD05S5GLFy9qampqaGj4+PhIMgG5XM5v1M3NzcPDwz/5PLm5uYGBgZ6ens7Ozra2tkK265IlS5SfhnoypQWug+pRIjLc3dzoyBFavJhMTGj6dIqLo9evSaGg5GSSy/P+mZJCubmUmko5OWRufiMwcFZaWlp2dnZ6enpWVlZGRkZmZqbymfX09KZPn85bEZYoly9f7tq1q6Ghob+/v6mpqdAbs5j+/fffyZMn16hR4+HDh8bGxqKcszxgjL7+mtzdSVOTNm+mCROK9FuXLpGLC12/TkTUqBGtWPF80KA6+dIwP4G/v//WrVt3794dFxdHRBoaGp06dXJwcBg7dqzJm5SDDRs2zJo1Kzc3d9SoUVu2bFHe2AGly9mzZ/v168cYO3HiRN9P22EhhpiYmA4dOoSHh48aNYrXcCeiV69ederU6cmTJ4MGDTp8+LCmpqYoYyUnJ9esWTMrKys8PJyX5wbRXb9+vVOnTtbW1g8ePOBH+vTpc+bMmf379/O7bVWQy+VOTk6bN2/W0dHZsWPHh3Krc3Nzr1+/vnfv3gMHDkRGRvKD+vr6vXr1cnBwGDJkiHJDV4FCobhz586RI0f27t0bFBRkYmLi6OjI2yFCKXL9+vURI75q1Wrdvn1tpc2Eu3CBGjQgX18aMybvyK1blJZGPXpIOauy4MULCg+nBg2oWjUiIh8f6tuXKlWiR4+oRg0J5/X111+vWrXK1tbW19dXuFVTKBS3bt36hLNVqVJF+YtoaGiotbV1Tk7OtWvXeBl3KC22bt06ceLEGjVqPH78WHnb8b179zIyMj72bLq6urxVNZeRkdGkSZOwsLCNGzfy1jWgZoyx4cOHHz58uH379r6+vmreRXrixImBAwfWqVMnJCRErLvoT3buHPXuTT4+ZGdHRLRgAenq0sKFhf1KUhKFhUU/fXr12bNnz549Cw0Nffbs2fPnz7OyspSf5uLiMm3aNOWkMcgnISGhdevW4eHhCxcuXLJkiVTTyMjI6NOnz5UrV5o1a+br6/ve++2CGGNPnjy5deuWn5+fn5/fnTt30tLShJ/KZLKGDRu2bdt29OjRgwcPFo7/9ttvLi4uY8eO3bFjh+gvBMSF66A6SBvv5xnu3JAhTF+/WDXc09PTExISoqKi+FqKkZFRycz/HTRokHKcXVNT09jYuFq1alZWVvXr17exsWnXrp2dnV2fPn0cHBwcHBycnJycnJxcXFxcXFyWLVvm5ua2bt06Dw+P3bt3e3l5nTx5cv/+/Typf+fOnVK/uFLJ1ZURMU1NtnHjfzwzKIg5OOTttKhWjbm5sfd1PC2W3NxcHx8fR0dHoZCxrq6uvb39v//++/XXXxORTCZzcXFBIlWpFh4eXq1aNVIqbi6hBw8e8D0Tyt3egoOD+dLdd999J9ZAvMptr169xDohFLRixQoimvYmpTQ3N5ffP0VFRal0XIVCwT+gNDU1N37gk1T5ZotXuTl16tR7u0YzxtLS0g4dOjR58mQTpR3O1apVmzRpUlpamipfCqiKra2CiK1fL+UcHj1ihoasbl0WFyflNMqahATWowdr04aNH88aNmSjR7OsLJaezpYsYX//LfXk2OvXr/kWflV0jRs6dCgRffHFF6KfGVRNoVDwbcf/+9//RD+5q6srEbVu3Vryvp3lWUJCAu9n4+zsrOah7e3tiei3335T87jvdfYsq1uXNW7M+F7WH39kQkZydjYLCWE+PszDg7m4MAcHZmvLrKwYEevaNbhg4KhmzZqdOnUaN27cggULNm/e/JJ34YMPUCgUQ4YMIaKuXbvm5ORIO5mXL182btyYiHr06JGZmfmhp7148cLb29vV1dXe3p7Hl5SZmpra29u7urp6e3t/6G+fdxI6ePCgql4JiAfXQTUoQQH3sDBmYCBa09T+/fsT0ddffy3O6UQVERGxefNmY2Nj5dZwxWRubt63b1+pX1kp9ssvjIjJZOxDX8ciI5mTE9PU5K3bmYsLe/1atVN6/fr1li1b+vbtK2RGaGtr6+rq7tixQ7UDg4plZ2fza9vAgQPV3DnnQ06ePKmlpSWTybZu3SocPHfuHN+JHxAQIMoodnZ2RLRp0yZRzgbvxZvOb968mT+8c+cOEVkJ5TNUjLdmkslk7/2SeeDAgZYtWy5cuNDPz+9DS4a8daqDg4PysrSlpaWzs7OPjw/6gZdqu3czItaoEZPqYy8zk7Vpw4jYqFHSTKDMmjaNTZ6c1xY1K4v17s1+/VXqOb2DF3CvXbu2uMt1Z8+eJSIjIyNVr2iCivj5+WloaOjo6Dx58kTE00ZERPDqZxcvXhTxtPAJbt68qaurS0Tbtm1T26BhYWGampq6urpxJWNp9+xZ1rcvc3JivIksD7gPGsRq12YaGu+v32tgwIYMiRsyZMicOXP+/PNPb2/vwMBApDt8LF602tjY+Pnz51LPhTHGQkND+fLzmDFjCt6H5+TkFKwvb25uPmzYsKVLl548ebIo6yshISGoJ1O64DqoahKXlMnMJMZIqIqRkkJ6eqStLcKZ792717p1ay0treDgYL64XWLl5OSkpqbm5uampKTI5fLk5GT+T4VC8fr1a8YYr3mUlJRERImJiUQkHGGMvX79WqFQzJkzp2PHjjxnFj7NunW0cSNNnEguLnT3LjVuTEQ0diz17k0REfTbb5SRQdra9MUXtHgxqbPfSUxMzJ49e/bu3Tt16tQGDRrwWC2o2qVLlzp16qQtyufRu7766qu///7bwsLC39+/5Pw/+88//0ybNk1bW/vUqVM9e/bkB7du3WpoaChKKZLw8HArKystLa2YmJgi7mSET2BmZhYdHf3o0aOGDRsS0Zo1a2bPnu3o6Lh161b1TGDt2rVfffWVQqFwcXHh8feiePbsmbe399GjRy9cuJCbm8sPWltbOzg4DB48WBXtXkH9cnOpXj0KD6cTJ6h/fwkm4OxMf/1F9erR7dskdt/68q12bTpxgpo1y3vo7U0rVtClS5LO6R0KhaJ9+/b+/v4DBw4Uq4abQqH4888/w8LC3NzceBl3KI0mTJiwbdu2tm3bjh8/Xqxz7tq168aNG6NHj969e7dY54RPtnbt2lmzZhkaGt64ccPa2loNI86fP3/58uUTJ07cUjKacZ87R8uX0/bt1LIlXbhAW7eSri7t20f37hERGRuTlVX+P5aWVOxSqeXdrVu3unTpkpOTc/DgQb4XqiS4fft29+7dU1NT58+fv2zZsnw/bd269fPnz5s2bWpjY9OlS5cuXbqYmpr+5zmjoqL837h06ZKOjk6fPn127typmlcA4sN1ULUkDfer1tixY4lo0qRJUk8ESo3sbLZhA7O0ZL175x35/HO2bBnT0GAyGXNwYKKu/EHJlZubq6enp7zhTugpWkx79uwhIm1t7atXr4pyQhHNmTOHiKpUqfLo0aPiny0xMdHX19fd3d3JycnW1lZHR6dmzZojRowo/pnhQ0JCQoioWrVqQt4Kvw6uW7dOndPYsWMHX6maMWNGIXs45HK5n58fb50q3JPo6ura2dm5u7ujLWqZtHw5I2L9+0sw9NGjTCZj2trs+nUJRi/LcnOZhgZLTHx75M4dVqeOVNP5kPPnzzdv3lzc71DW1tatW7cuZG8+lHwvXrxo3Lhx9erVRXxjVKlSpVGjRiUkpxUYYxMmTCCipk2bpqaminvmgnVCMjMz+dvpeom52PAMd8bYunXMzo79739syRIWEMBCQhj2DapIUlISz/icN2+e1HPJ7+zZs7ylwerVq/P9qIidLcPCwvbv3//DDz/06dOnYO/Ab7/9Njk5WQUTB1XBdVClJM5wV6lnz541btxYLpcHBAQ0bdpU6ulA6bBxI92+TY8e0ZQpNG4cjR1LgwZRTAx1705t20o9OVCX58+fd+/ePSwsTDjSr1+/uXPnDhgwoDinffz4cbt27ZKTk9euXTtz5sxiT1NkCoVixIgRhw8ftrKyun79unLt7KL87tOnT+/evRvwhtAVk9PQ0Pjmm28WLVqkL23DxDJt+/btjo6OQ4YMOXz4MD9iaWn5/PnzgICAFi1aqHMmx44dc3BwyMjIGD58+K5du/iGbi4zM/Py5ctHjhzZt29fVFQUP2hsbGxnZ2dvbz9s2LCKyD0uu5KSqHZtSkujBw+oSRP1jRsZSa1a0atXtGoVzZ2rvnHLi+rV6do1EvrmnTlDCxbkdZYvSTIzM8VNRW/WrNnUqVNlSAQt5RhjS5cuffnypVgnrFy58qJFi/DGKDnS0tLat28fFBT0+eeff3LibWJiYmgBBgYG93ii+Bvbtm2bMGFC69atb9++LcbcRcAz3E+dIoWCOnUihYKGDPmPpqlQTGPHjt21a5eNjc3Vq1fV3LC3KHbs2OHo6CiTyfbu3VuUfcyJiYn+/v6XL1/29/e/detWbGys8k9NTU1t3mjfvn0NSdukw6fBdVB1tKSegApZWlpOmzZtzZo1P/7446FDh6SeDpQaMhmtXk0DBtDAgXlHvvlG0gmB2oWGhuYrRRUaGmplZSU83LhxY05Ozpdffln0c6alpY0YMSI5OXnMmDElMNpORBoaGjt37uzZs+fNmzdHjhzp4+OjHCfNJzs7+8mTJ8IWwoCAgNTUVOUnGBoaNmrUyNramt+BtW7dmpdyA9W5evUqEXXu3Jk/jIqKev78ecWKFdW/5Dxo0KCTJ08OGTLk4MGDgwYNOnToUHZ29tmzZ48cOXL48OHk5GT+tDp16vTr18/e3r5fv34l8AsJiK5yZZowgdaupdWrad06NQ0ql9OECfTqFQ0YQHPmqGnQ8qVnT9q3j4RY9t691KuXpBN6Pz09vT///FPqWUCJI5PJFiL6WKYZGBgcPHiwXbt2u3bt6t69+/Tp0wt5cmJi4rNnz0JDQ5X/GRYWlp2dXfDJBdN7161bR0SzZ88Wcf5i0dCgtWupQwcaMkTqqZRp69ev37Vrl6Gh4c6dO0vmze24ceNCQ0N/+umn8ePH+/j4FCxX+/r16/v37wvf8oKCgpR/WqlSpWbNmglBdiS2lgG4DqpOWc5wJ6L4+Ph69eqlpKRcvnwZla+hKDZupDt3aO1a+vZbys6mly9p0CAaN07qaYF6/fPPP1evXt28eTN/KJfLDQ0Nk5KShAD0zJkzmzVrNmvWLP4wJCTE29t73rx5hZxz4sSJW7dubdSo0a1bt5QbQpY00dHRHTp0iIiIGDNmzM6dO4Wl6aioqKCgoAcPHvB7r+DgYIVCofyLpqamTZs2FSLsTZo00dDQkOIVlF+tWrUKCAi4dOlS165diWjfvn0ODg59+/Y9deqUJPO5ffv2gAED4uLiatasGR8fL5fLiUgmk7Vp02bo0KFDhgxp2bKlJBMDCT15Qo0bk54ehYdT1arqGHHhQlq6lMzN6e5dKjFdM8qWkBDq1o0++4xatqRLl+j6dbp2jQrEoQAAJLRnz54xY8bo6upeuXKlYG8YFxeXM2fOhIaG8q5pBZmamlpaWlpZWQn/tLS0rFWrlvK97t27d1u3bl25cuUXL16UnA2dISF04QJNmZL3cPNmqlu3ZK6KlgWBgYHt27fPyMjYvn37uJIdQZg9e/aaNWuqVq165coVMzOzgIAAIcL+8OFD5SChkZFRixYthAi7tbU1MpcBiqgsZ7gTkYmJydy5c3/++ef58+f7+vpKPR0oTVxdqUULqlKFBg2Seiqgds+ePVPOcI+IiDAxMVFO9w4NDR2ilB9y586dy5cvKwfcvby8PvvsM+EufO3atbwB6YEDB0pytJ2ITE1NDx8+3K1bt927d+fm5tauXTsgIODu3bsJCQnKT9PR0bG2tm75RqtWrapUqSLVnIGIKCXlVlJSeLduZm+qX+VLeFe/Nm3aXLt2bdiwYSYmJhcvXrS1tXVwcBgxYkTt2rWlmhJIrkED6t+fjh+nDRvohx9UPtzFi7RsGWlo0NatiLarTL16dP8+nTpFYWE0ZAitW0cVKkg9JwCAd4wePfrSpUtr164dOXKkv79/1XeXfJ89e8aLwOjq6pqbm1u9q2HDhkW5e1+zZg0RTZ48ueRE24moXr23Fb+IaPJk6aZS1qWlpY0aNSojI2PatGklPNpORO7u7mFhYUePHu3YsePr16+VI+wGBgatW7du+0bDhg0RYQf4NGU8w52IkpOTGzVq2qDBrz/8MHrAgJK4qQdKFCHDnYi8vGj0aNq+HRnu5Y5cLs/JydHT0+MPs7KygoODlbNxjx492qFDB6HK+fXr1yMiIhwcHITnjxo1SqijTW/S23ft2jVmzBh1vYhiOXLkyMiRI6tUqSLU6RP2D/I09rZt2wr/faBEOH2a+vWjjh3p2jV+IGb06OC4OOOffmrZs6eE81IoFBEREcbGxijODpyPD/XtS2Zm9Pw5aWu/5wmM0fHjVKcOmZsXK086Pj5+wIAZWVmen31m6Or66ecBAIAyICcnp0ePHlevXh00aNCRI0eUY4j37t3LzMy0tLT8qA5GgszMzHv37vXs2TMjIyM4OLhhw4bizRpKjSlTpmzevLlp06Y3b94sUYsuH5KWljZz5sy4uLhz5841aNBAuRR7ySyGA1DqlP2AOxH9/XfWV1/ptmhBd+4QKhxA4S5fpvBwGjs27+FPP5G9PbVvL+mcoEy4cOFCjx49pJ7FR3j+/Pnhw4fT0tJ4DnutWrWknhEUatEiWryYvv6aVq4kIsrIoMqVSS6nV6+oUiWpJwfwFmPUujU1bEhr1tB7Ixvx8VS9et6/6+uThQWZm1OtWmRhQRYWW0xNTSwsLMzNzQvfVcMYGzRo0IkTJ+zsBp48eUxTUwWvBAAASpWIiIg2bdq8fPly2bJl8+fP/4QzvLd76vPnzxUKRcOGDevVq3f8+HHRpw2lwoULF6ZOnXrgwIEWLVpIPZePEBcXZ2xsrP3eDAgAKJ5yEXDPzqYmTSg0lLZuJUdHqWcDJdv+/ZSe/vZ98s8/VLMm2dtLOicAgP/Uty/5+NC+fTRyJBHRpUvUvTu1akV37kg9M4D8du6kp0/pp5/yHi5ZQpMnk7CoFxFBTk4UEUGRkfT69dvf0tPLzMrSF25c9fX1eeS9Vq1a7u7ulStXVh7i999///7776tUqXLnzh0LCwuVvyQAACgNjh8/PnjwYJlMdvLkSTs7uw89jXdPFVqnCt1Ts7KyCj5ZR0fHwsJi4sSJP/zwgyYWeMsxuVyONwAACMp4DXdOR4d++okmTaKFC2nUKFKqwwyQ38OH73y9v3PnnbJ3AAAlkUJBN28SEXXsmHfk6lUiIukKuAMU4tYtWruWmjen4cOJiPbvp6FD3wbca9emEyfy/j01lcLDKTKSXryg2NiskJApL168CA8Pj4yMfP36dXBwcHBwsEwmW79+/bvnv7VgwQKZTPbvv/8i2g4AAIKBAwf+8MMPv/zyy/jx42/fvm1iYhIREZEvYz0qKio6Ovq9v25sbGxVgIWFhZZWuYirQOEQbQcAZeXlwuDoSKtWUUAArV9Pc+ZIPRsAAAAR3b9Pr1+TpSWZm+cdQcAdSrapU+mbb6hPHzI0LOxphoZkbU3W1vxRJaKNwo9SU1PDw8NfvHgRFxen3FIiJSVl3Lhx2dnZX3/9tXJ3awAAACJavHjxtWvXzp0716hRo/T0dIVCUfA5hoaGlpaWVlZWlpaWwr9YWVlVQFNoAAAomvIScNfQoJ9/piFDaOlS+uILQuc2KISfX14NZCK6excZ7gBQ4uULrzNG16+/cwSghGnShLS0yNU174Kbk0M7d+aVazc3p6I06zI0NLS2trZ+E4wXzJgx48mTJzY2NsuWLVPBxAEAoHTT1NTcuXPnqlWrNm7cmJqa+t6kdUtLS+WuqgAAAB+rvATciWjwYOrRgy5coD/+oEWLpJ4NlGDa2mRg8PbfAQBKunwB98ePKT6eatYkS0sJJwVQuCVLqFkzmjiRiCgmhsaNyzsuk1GNGlSrFpmbk4XF23+pXTvZ1FRXt9DKgBs2bNi5c6ehoeGOHTt0ihK2BwCA8qdGjRpubm7Ozs7Vq1dHNRgAAFCF8nV1cXOjTp1o5UqaOZNq1JB6NlBStWxJM2bk/fv9+5JOBQCgKK5cISKytX3nYZcuks0HoAgqVSI3N5o7N+/hmDEUEUERERQdTTExFBNDfn7vPL9btx8uXVprbGxsampqZmZmZWWl/C9169Z9/vz5vHnziGj9+vWNGjVS9+sBAIBSxczMTOopAABAmVW+Au4dOpC9PR05Qr/8QqtXSz0bAACA4ouNpWfPyMiImjXLO4IC7lBKjB1L//xDwcFUuzbt2pV3UKGgmBiKiKAXLygigiIj8/4YGGRpa2snJiYmJiYGBQUVPJuBgUF6evrkyZPHCdnyAAAAAAAAale+Au5E9OuvdPw4eXjQjz8iyR3ew9CQGHv7sGLFt+VlAABKovv3SUuLOnQgTc28Iwi4Qykhk9GaNdSq1TsHNTTIzIzel3f4D9E/iYmJUVFR0dHRoaGhyv/y/PnzmjVrTpw48euvv1bP5AEAAAAAAN5LxpSDi+XD8uXUsiX17UsaGkRE2dmUk0O6uqRQvG3SlZNDhPrdAABQKqSl0cuXVKcOEVFiIlWrRjo69Pp1kVpPApQJCoUiMTGxatWqUk8EAAAAAADKu/IYcI+OJjMzcnenOXOIiHbsoOPHqW1bevKE1q7Ne87335ORES1cKOE0AQAAimb/fjp3jtLSqGVLmjKFIiLo6VMaOlTqaQEAAAAAAACUOxpST0AaVaqQuzu9eCH1PAAAAIppwQJatowGDaKpU+nhQ+rdmxo3RrQdAAAAAAAAQBLlNOBuYEDz5uVluAMAAJRWiYn055906BANHEhdutCGDaSjQ3v3Sj0tAAAAAAAAgHKqnAbciejLL+nJEzp27O0RLy9q0SLvz5Ytkk0MAACgqB4+pLp1qVatt0d69SJ/f+kmBAAAAAAAAFCuld+Au5YWrV1Lc+ZQVlbekZEj6caNvD/jx0s6OQAAgKJITyc9vXeO6OtTWppEswEAAAAAAAAo78pvwJ2IbG2pa1dasybvoaYmVaiQ90dLS9KZAQAAFEW9ehQaStnZb488fEj160s3IQAAAAAAAIByrVwH3IloxQoKC/vgT//+m2bOpPXr1TghAACAorO0pCZNaOlSYoyI6OpVOnkSu7QAAAAAAAAApFIeE7kNDWnmzLx/r1qVPD0pJYVq1SJLy7fP6dmTNDVJoaDZs2nIEBo9moyNJZksAABAofbupWnTqFEj0tEhbW3auZOqV5d6TgAAAAAAAADllIzxnDj4AMZo4EDy9iZtbamnAgAA8CFyOeXk5K/nDgAAAAAAAADqVR4z3D/Kzz/TzJmItgMAQMmmqUmamlJPAgAAAAAAAKC8K+813AuRmUljxlBODunrU3Ky1LMBAAAAAAAAAAAAgJINGe4flJNDI0cSESUmUm6u1LMBAAAAAAAAAAAAgJINNdwBAAAAAAAAAAAAAESAkjIAAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAggrIScE9KooiItw/T0ykl5e3D1FRKS1P/pAAAAAAAAAAAAACg/Cj9AfdHj6h1a+rViyZOJAsL2r6diGjdOvrhh7fPWbSI3N0lmh8AAAAAAAAAAAAAlAtaUk+geBijSZNo6lSaNYuI6OFD6tqVbG2lnhYAAAAAqFFODh07RoGBZGJCvXpRgwZSTwgA4D1CQ0PPnDlz5syZ9u3bf/vtt1JPBwAAAFSilAfcHz+mZ89o5sy8h02a0MiRtGcPaWtLOi0AAAAAUJfcXOrRg6pXp2HD6MULsrUlT08aMEDqaQEAEBGlpqZev36dx9n9/f35wcjISATcAQAAyqpSHnB//pzq1iUNpcI49epRSAg1bEjbt9PJk3kHX70i3M0AAAAAlElbt1KFCnTwYN7Dtm1p1ix6/JhkMkmnBQDlV25ubkBAAA+yX7x4MScnhx83MjLq3r374MGD7ezspJ0hAEglMDDwwoULw4YNq1WrltRzAQBVKeUB9ypVKCnpnSOJiVStGhHR+PH09995BxFtBwAAACirLl2iYcPePuzbl2JjKSaGTE0lmxIAlE+hoXTmDJ05Ex0f3/bCBX5MS0vLxsbGzs7Ozs6uR48eWlql/Ds4ABTP4sWL9+3bp6+vP3nyZKnnAgCqUsov9k2aUFQUPXpEjRoRETFGx46Rmxs9fCj1zAAAAABALRISqFKld45Urkzx8Qi4A4A4QkJo2TK6e5cqV6Zevei7794pYRoRQWfOkI8PnT1LcXH8WK1Kldq1adOjd287O7uuXbtWqFBBmpkDQMnTuXPnffv2Xb16FQF3gDKslAfcDQ3pl19o4ED68UeqXJm2bKHatWngQATcAQAAAMqLOnXo+fO3DzMyKCaG6taVajoAUKa8fEndutGPP9KKFfTqFTk7U3Q0LV9OPj55cfZHj94+2cKC7OyoTx9Z7943TUykmzQAlFydO3cmoqtXr0o9EQBQIRljTOo5FNu1a3T2LCUnU9u2NHw4aWvTjRuUlET9+uU94exZ0tMjW1tJZwkAAAAAKnD6NDk5kZ9fXl3BpUvp1i06fFjqaQFAmfDnn+TrS/v25T18+ZIsLenSJWrTJu+IgQF16kR2dmRnRzY2Uk0TAEqLnJycypUrZ2RkxMXFVeO3LgBQ5pTyDHeuUyfq1In+/ptWrqSKFal/f+rQ4Z0n9O4t0cwAAAAAQGUYI5mM+valadOodWvq2JFevKDMTDp0SOqZAUBZERxM7dq9fVitGllYUGYmjR5NTZuSnR21b0+amtLNDwBKGW1tbRsbG19f3xs3bgwaNEjq6QCASmhIPQHxREbSzZvk6yv1PAAAAEqi7dupeXN6+TLv4axZdOKEpBMCKL6bN8ncnBYsoB9/pMeP6ccfycuLbt8mCwupZwYAZRpjtHs3LVxInToh2g4AH8vW1pZQVQagTCtDAffOnYmI8IEFAADwPq9fU0wMffdd3sPYWEpLk3RCAMV36hRFRVFSEhFRhQrUvDl5eNDZsxLPCgDKkiZN6Pbttw8TEig8nBo1km5CAFDq8TLuV65ckXoiAKAqZSvgLpPRjRuUnS31VAAAAEqiUaPo5k26eFHqeQCIxceHiKhPn7yHfn60dCnNnCnhjACgrJk0iXx9aft2ysmhhASaMYPGj6eqVaWeFgCUYp07d5bJZDdv3sxG/AqgjCpDAfdq1ahhQ8rIoIAAqacCAFCKXbx4MTw8PDk5WeqJgPi0tcndnb78EmvTUCakpNCNG6SlRT165B05fZqIqG9f6eYEAGVOxYp0+jQdPkwtW1LfvlS/Pq1aJfWcAKB0q1q1asOGDTMyMgIQvwIoo8pQwJ1QVQYAoFguX77cvXv3Hj16DBw4sHHjxgcPHpR6RiC+Pn2oWTPECqBMOHeOcnKoUyeqVCnvSL6EdwAAUYSFUbdudPIk+fnRr7+Snp7UEwKAUo9XlUEZd4CyCgF3AACgixcvduvWrWvXrpcuXTIxMcnOzo6Ojh4xYsTYsWPj4+Olnh0Ul0Lxzu6vP/6gv/6iuDgiooQEqSYFUGz5wuspKXT9+jsJ71CmZWZm7tu3LzAw8OnTp1LPBco6Dw9ydqbz56WeB5RW+LyCghBwByjbymLA/fJlqedBRHTnDl269PbhyZOE8gwAUAJdv3598ODBPXr08PX1rVq1qqur69OnT4ODgz08PAwNDXft2tWoUaMNGzZIPU34dBER1Ls32dpSbGzeEXNzmjePfH0pLY3atKEJEyg9XdIpAnyafAVkeMJ7x45vE96hLFIoFJcvX54zZ06tWrUcHBzGjRvXunXrY8eOST0vKLtyc/Oan/TuLfVUoJTB5xUUggfcL5eM+BUAiK5sBdybNKEqVSgqisLDpZ4KbdpEffpQUFDew3nzKDJS0gkBALzr/v37o0aN6tSp09GjR42MjFxcXEJCQhYtWlSxYkUNDQ0nJ6f79+/37ds3MTFx+vTpAwcODAsLk3rK8NH276dWrejCBapYkfT1qWHDvONz5tDo0RQbS7GxtG0bdepEwcGSThTgYz1/Tk+eUOXK1LZt3hHUkynr/P39v/7661q1anXt2nX16tWvXr1q166dnp5eamrqsGHD1q9fL/UEoYy6cYOSk8nammrVknoqUGrg8wr+U5MmTapUqRIVFRVeAuJXACC6shVwl8moUycioitXpJ4KEVGfPjRzJjEm9TwAAN714MGDUaNGtWzZcu/evYaGhi4uLmFhYW5ubpXeTQutW7fuqVOnvLy8qlWrduLECWtr6+XLl8vlcqmmDR8lI4PmzKHPPqOEBOrXj27fpvnz6csv836qpUW7d9P335OfHzVrRvfuUZs29Oefks4YSgmFQiH1FIiI6NQpIiI7O9LUzDvCA+7omFrmhIeHL1++vEmTJm3btl21alV0dHSdOnVcXFyCg4Nv3rx5/fp1V1dXuVw+c+bMOXPm4CIF4uOfLXZ2Us8DSgF8XkHRyWSyTp06EdGVkhG/AgBxla2AOxF17kyamin37kk9DyKiwYNJR4e2bJF6HgAAbwQHB0+YMIGH2itUqODs7Pz06VM3NzdjY+MP/YqDg0NgYKCjo2N6evr8+fO7dev28OFDdc4ZPoGfH7VqRatXk54eubvTiRNUs+b7n9m0Kd28SdOmUUYGzZ1LDg70+rV65wqlgVwu9/f3X758eZ8+fZo0afLTTz9Jv+UlXz57WBg9fkyVK1O7dhJOCkSUkJCwYcOGLl261K1bd/78+cHBwVWrVnVycvL19X327Jmbm1ujRo2ISCaTLVq0aNeuXXp6eqtXr7a3t09GGUcQ15kzRNg9A4XB5xV8Gh5wv3btmtQTyRMXF3flypXLly9jNQhABKxsuX/pkrmRUZs2baSeCJs1i61fz4KCmJkZe/mSNW7MHjxgJ06wtDSpZwblz8OHD11dXd3d3Tdt2iSXy6WeDkjj2bNnTk5OWlpaRKSjo+Pk5BQVFfWhJ6enpy9atCglJUX54JEjR2rVqkVE2traLi4uWVlZqp81fDSFgrm7Mx0dRsSaNmUBAUX9RU9PZmjIiFjDhuz2bVVOEUqPhw8f/v3338OGDatcubJw6yiTyYjI0tIyLCxMqonl5uaG2tkpjI1ZaGjeIQ8PRsRGjpRqSiCW9PR0Ly8ve3t7bW1t/parUKGCg4ODt7d3dnZ2Ib945coVExMTImrRooWEb04oa5KTmbY209Jir19LPRUocfB5BcV0/vx5IioJ8SvG2JkzZ4yMjKytrYmoatWqjo6OXl5eycnJUs8LoLQqawH39PR0bW1tTU3NfHEi9eMBd8bY/Pnsyy9Z48bsyBFGxPT0mJ0dc3dnH450AYgjPDzc3d3d1taW3/8ZGRkR0ciRI9PT06WeGqhVWFiYEGrX1tZ2cnKKjIws/Ffmz59PRHXq1Dlx4oTy8aSkJGdnZw0NDSJq3rz5jRs3VDlx+GjR0ax/f0bEZDLm5PTRS7zBwaxVK0bEdHWZuztTKFQzSyjZYmJivLy8nJyc6tSpo5yiYWVl5eTk5OnpGRwc3LFjR/4R8ezZM0kmyXPBmjRq9PaQgwMjyrv3glIoNzfXx8fH0dHR0NCQv+U0NTXt7Ow8PT3fe1efnZ1d8H7m6dOnjRs3JiIzMzM/Pz+1TBzKusOHGRHr0kXqeUAJgs8rEEvJiV/t3LmTrxu1adOmfv36wu1fhQoVhgwZsmnTptjYWGlnCFDqlLWAO2Osbdu2RHT27FlppyEE3FNTWb16rHJltnMn69CBaWgwIkbENDWZrS377Tf26JG0M4WyJiYm5q+//rK1teVJiERUuXLlyZMn//bbbzxFsX379jExMVJPE9QhNjbWxcVFT0+PiDQ0NBwcHJ4+fVqUX7x371779u35+8fBwSE+Pl75p5cuXeIbY3lvVclvEIE7cIBVrcqIWPXq7OjRIv3KhQts1CiWmPj2SEYGmzkz7zo1Z86ehIQE1UwWSpaUlBQfHx8XFxcbGxvh2kFEJiYmDg4OHh4eoUIiOWOMsaSkpA4dOkgYc1+8eDERzZ49mz/Mzc1tUqvW0vbtMyRaAIDi8PPzc3Z2rlGjhvDGs7GxcXd3/9B3e/786tWrr1q1quBPX7161aNHDyIyMDA4dOiQaqcO5cFXXzEitmiR1POAEgGfVyC6khC/WrduHU+ocnZ2VigUjLGQkBCeuseP8+99NjY2rq6uDx48kHCqAKVIGQy4z5kzh4iWLFki1QTc3Jiz89uAO2PswAFGxPjnUlwc8/RkDg7MwCAvokHErKyYszPz8WE5OVLNGj7OuhcvFj9/zv/sjYuTejqMMZaYmOjp6am8pVFPT8/e3t7T0zPtTZrrgwcP6taty0sBBAUFSTthUKn4+HgXF5cKFSoIofZHH7m4J5fLPTw8eOZO9erVPT09lX+anp7u4uKiqanJ8159fHxEnT58nPR05uycd0Hp27eoO6jkcmZtzYhY3brs2rV3frR3L+va9YKmpmbt2rUvX76sijkzxjIyMq5fv/73338nJSWh2pX65eTk+Pn5ubm52dnZCRcO/rXfzs7Ozc3Nz89P8eFtDklJSXxZrn79+v+5aUZ0Xbp0IaLDhw/zhzzhvUGDBmqeBhRHUFCQq6urchqdtbW1q6vrhxaGAwMD//e///HbGO7zzz9/7zOzsrImTpzIc07d3NxU+SJAJRYsWCB57tRbTZowInblitTzACnh8wpUx9nZmYh+/vlnqSbg5uZGRDKZ7L3vwPj4eE9PTwcHBwMDA+Vdj87Ozj4+PjkIYJVgCQkJ+IYlrTIYcN+9ezcRDRgwQP1DKxRs3ry87PWTJ5lyGPbOHZaR8c6T09KYtzdzcmI1auRFSQwMUszMzHmpLGSMlnAOgYEH4+NvJSffSk4OkbRCS3p6ure3t6Ojo76+fr4tje8tuBYdHd2uXTsiMjY2Pn/+vNrnWwZNnz59zJgxJWeT3cuXL11dXStWrMjvnOzt7e/evfvJZwsNDbWzs+NvrYEDB4aHhyv/9O7duzY2NnwgR0fHly9fFnv68NH8/FijRnklyz62DkxYGOvcmRExLS3m6sqUb8nCwsJ4QSotLS1XV1dRbtdycnICAwM9PT2dnZ1tbW353gsiatWq1cyZM4t/fvhPubm5QpBd+O/P/5ZtbGxcXFx8fHyK3p4hKSmJX1AaNGjw4sULlc5cWXJysra2tpaWVlJSEj/CE95nzZqltjlAMXXt2lV4+1lYWLi4uNy7d++9z4yMjFSuj0dEtWrVcnZ2/s8KDO7u7jwvb9q0aYUXU4YSZd++fUSkr69fEmLuishIRsQqVkRWVHmGzytQKUnjV4pvv/2WBxA2bNhQ+JPT0tK8vb2dnJyUd3hUq1YN8asS6MWLF506derVq1e9evXc3d0z8sUipaBQKO7du/e6nHVDKYMB98jISCKqXLmymhdzcnPZlCmMiOnosD17PuIXc3LYuXNs7lw2ePAh5fyyESNGbNmyBQGskskhMPCRpHH2zMxMHmfnldmJSENDw9bW1t3dPe6/Mu5TU1OHDh1KRDo6Otu2bVPPhMswU1NTIlJnsKkQixYt4m8JmUw2dOjQgKJ3zPwwhULh6elZtWpVIqpYsaK7u7vyp2tOTo6bmxuP3NWsWXPv3r3FHxEYY97eb8PfmZns5EmWmMi8vN6u3T56xG7fftsf1dqafdrCSk4Oc3XNK3fWuzeLjlb+UY6rqyv/BtirV69Cuux+SG5ubmBg4JYtW2bPnt2hQwflCC+/uW/WrNmAAQN0dHSIaMWKFZ/yAqAIMjMz//rrr3y9TzU0NFq3bv3tt9+eOHEiNTW1kF8PDg5es2bNiBEj8jV1YIwlJibymHvDhg3V9jF48OBBIuratatwhCe8Yz9+aTFlyhRLS8uKFSs6Ojp6e3vn5uYWfI6wb49vpeL39o6Ojj4+PkW/w9+7dy/f6dWnTx9heQZKOIVC8eWXX/KY+5kzZ6SdzJYtW/rUrXv8TfUqKIfweQWqJl38KnfKlCk8JrCnQAArLS3tQzH03NxcX19fFxcXXmKUq1Chgr29vYeHR7TydwmQwsuXL3nnWyEj09zcfMWKFVL1v01JSfHw8GjevLmWllbz5s1HjhxZfj7iymDAnTFmYWFBRPfv31fbiJmZ7LPPeJY6O3mysGcmJ7NCvpAGBga6ubkpV98WSmU9fPhQ9GmXGWsiIwfeuzf4/v3B9+9/rpZKKQ6BgasiIrbHxGyPiXlR5GTA4pPL5b6+vs7OzryvPcdLB35ULCw3N5dvXpPJZK6uriqbb7nAi66UhAbuV65c4Tk4dnZ2N2/eFPfk0dHRn332GX/L2dra5vtEevLkSc+ePflP7e3t1V9fouwhYpmZef8eFcWMjdndu4yILVyYd/CPP9jkyczQkMlkbM6c/JuoPtaxY6xaNUbEzMzYpUvv/PWdOXOmZs2aRFS9evWC8daCXrx44e3t7erqam9vb2xsTO8yNTW1t7d3dXX19vYWCsTv2bNHQ0NDJpNt3bq1WC8DPmDt2rWVKlXifwVC79PC4+OxsbEFW6fOfl/UKTExkZcfbdSo0SesynwCHowTigcWTHiHEo6v4D5//rzgj4R8AuFbIq+P5+XlVfS9F8quXbvGc/GaNWumun4DJ04wF5e3G4xWrWIPHrBly5jyS5w//52GGVCIkhNzHzduHBH99ddfEs4BpIXPK1ADHr8KDAxU24iZmZn8m52BgcHJ9wWwNm3apKura2dn5+7uXsg3O6HUO+JXJURycjJPhWnWrFl8fLy3tze/S+eZc87Ozuq5V+eCg4OdnZ35znsiMjEx4Z+WjRs3Vme0VkJlM+A+ZswYIvLw8FDPcKmprE8fRsSMjf+7vt+GDXmpiK6urJC9ZREREWvXru3bty/P++OaNWsmFOMGZcvDw7ertwuoQ2Dg6sjIXbGxu2Jjo9QScOctd3gyNcdLBz558qSIZ1i+fPmyZcuUj3h4eGhpaRHRpEmTsHvx08jlch4oLAn10aZNm0ZE33//veqG8Pb2Njc3598oXF1dlb9OKBQKDw8Pnl9fuXJlDw+PQqo/w396b8C9SRNmacn47esff7A5c9ju3ez4cXFGjIlhffowa+uburq6zs7Oyp8JsbGxffv25Ut0+X7E3o2wV6tWrZAIe77uu8p+//13nmKDfgCiCw0N5XGrjRs3vjdkIEhKSjp06NBXX33F82IE1atXHzNmTCG/npCQwKtLqSfm3qBBAyK6fv06f3jo0CF6N+EdSrLw8HAiqlq1qvJBIZ+Ax7bozb49Dw+P4u8+Dg0N5W/patWq+fr6FvNs7/Xrr0xbm23cmPewTx928iRr0YLduPH2OSYm7N2qbFCYkhBzVygU/MYbYaNyC59XoB5qjl+lpKT06dOHiIyNja98IIDl4uIitEuVyWTt27f/9ddfC1kSQPyqJMjKyuJf2erVq6d8Q+7r62tvb8//UnR1dR0dHT+2u9tHkcvlPj4+9vb2wjKMjY2Np6dndnb2o0ePWrZsyYMJ7u7uqptD4YIzgg8lHbqWek3BFKny1B6Pe6hooLIZcF+9ejURTZw4UQ1jvXrFOnZkRKxmTVaU4g1LlzJ9/bftUuvVY19/zS5cYO/bncbYm1JZjo6OlSpVMjEx6d69O2JYBUkScFdPSZmAgAAXFxflBMOGDRv+9NNPH3vr//jxYx5bnzZtmnJvkxMnTvAIae/evRORyfDxkpOTicjQ0FDqiTD25l5t586dKh0lMTHRycmJXz5btGhx69Yt5Z+GhYUNHDiQ38ChIlZxELEXL1h8PIuPZ4GBeQF3Gxu2dSvr0YMpFHkBd3Hl5rJly1bzDdHdunWLiIgQfqRQKNzd3XlrzbZt227YsGHhwoX9+/cvGGE3NzcfOnTozz//fOLEiUIi7AXNnTuXJ18Up+sAFLRu3ToiGjVq1Ht/+qHWqfr6+kLr1KIsKMbHxzdv3pwnrah0N/GzZ8/4qp6wr3/WrFmklPAOJdyRI0f4XYfywaNHjwrvvXbt2rm7u4v7LkpOTubXJj09PVVcJX/9lU2axGrVymvghACWKCSPuQcEBPCLmvqHhhICn1egHuqNX73q2LEjEdWsWbPw6qMvX77k7VL5fm7O0tKSt0v9ULoe4ldSyc3NHTlyJBGZmZmFhoYWfIK/v7+joyP/oqehoWFvb5/vi3zxJSUleXh4NG7cWDm4n++bXUZGBq+1QESOjo6Fl7UUXY4ix/6pfdMHTb8M/7LLoy5Dnw59nfva+K6xioYrmwF3Pz8/IrKyslL1QFFRrHlzRsQsLVmR84xZWho7dIhNnsxMTN5G3gcMcJ04ceL+/fs/9IbLzs6uXr06Eal0MaqUWh4ePvz+/RmPHs149Gj/f1UwLya5QsHUFXB/+vSpsBTJW+74+vp+8hXrwIEDfAuPnZ2d8r77u3fv8pzlpk2bFp78CAW9ePGCiExNTaWeCGOMDRo0iIiOHDmihrEuXrzYsGFDItLS0nJ2ds73wTVv3jwiGjx4sBpmUlYRsQ4dWMeOrGNHZmPzNuCuULCuXZmnp0oC7tyFCxf4Z0K1atXyvZ0uXrxoZmYmJLxwlSpVsrW1dXZ29vT0fO/tXSGys7OFN49cLuebW83MzMLCwkR7PeXeiBEjiGijkMzGGGPM39+fB9l5xVhOW1u7a9euixYt8vX1/YRtT3FxcWqIua9fv56IPvvsM+FIvoR3KOF+/vlnIvrmm2+UD2ZnZ3fs2NHV1VV1d7k5OTl8bUbEYnpZWezRI+bvz379lS1cyJYsYRMmMKYUwFqyhG3fnvenYkUEsD6atDH3lStXEtEXX3yh5nGh5MDnFaiHGuNXUfxWzdLSsugb5dPT0318fPLttq9SpYqDg4Onp+eHCqsifqVOCoXiiy++IKKqVas+ePCgkGc+efLE2dlZaKxla2vr7e1d/Ak8fPjQ2dnZwMCAn9bKysrNza2Q9Ltt27bxJ6u5vIxHvEf74PaZikzGmIIpQjJDEHD/aHfv3jU0NKxUqVLt2rWdnJy8vb0/rYxa4YKDg7t0SSViLVqwT/temZvLfH3Zd9+xhg1Z7dqW/K2pp6fHS2UVLK7KF6w2b94swuzLluXh4WsiI8MzM8MzM5OU0rdFl61QzHz0yOPFi/FBQU9UH3Dnsac+ffoUJ86u7MaNG0JlQOV4VmRkJN/aU7NmTdHXOcu24OBgImrQoIHUE2GMsW7duhHRhQsX+MPXr1/Hx8erril5amrq3Llz+SJ5z549lX+0fft2Iho7dqyKhi4P3ltSxsaGMcbu3WO1a7MlS1QVcGeMxcfH8/UbXkNG+RrK/3KrVas2f/78ffv2FWeVLiUlZcCAAQMGDBC23WRlZfXq1Yuv/wkV3qE4cnNzeSX9fNVg+X9n4Z7YycnJy8ur+DXQ4+LimjVrRkQtWrT4qP0NRcfvhYRt1zzh3djY+L2N7KAE4vc2UjVscHd350uGX3zxxUd9O0hIYH5+zMuLubkxJydmZ8esrJimJiNiTZvmBbAyMliDBuzChbcBrKlTmatr3h99fQSwPoWEMff+/fsT0Y4dO9Q5KJQo+LwC9VBP/CokJMTKyorfZn9awy25XO7n5+fq6tqkSRPhNhLxq5KAp7sZGBh8qEZQPtHR0a6urkKHpzZt2nh6en7CvXRubq63t7ednR3f/i6Tyezs7Ly8vIpyqocPH/LlnwoVKvzzzz8fO/SnGRYyzCP+ndpNCLh/nIsXL/L3jfLOF2Nj47Fjx+7Zs6f4hdU4f3//6tWrm5q2GzIkTZQ6HEFBQcuWLev4f/buO66ps4sD+EnYIChOcO+BG1wVnGBdOKqi9m2xahVXRdva4qiitVbUqnHUiloVt9SJ1AW4UHEEcaDiABVFRNl7JHnePx4aIygi3CSM3/fjH+Ym3OeJxJt7zz3POV26KDMHxWJx165dVVf0//HHH0Q0ceJEAcYrW/KXlIlWw1eUgrG5ERE2Umn/27eTNHJhz78RC75F+akiIiL4F6SlpaVUpY1AcnIyv64wMTE5evSogCOWbTwfwdraWtsTYYyx9u3bE5Hy18ozs77//nu1Dnrjxg1ra+sjR46obuQlLCZNmqTWocu2AgLujLEffmAWFmoMuDPGFArFihUreI2RFStWKLd//fXXRJSnIUTRPH78mPd/Hj9+vPKeYlxcHD9GOTj01WBH6jLr0qVLRNSsWbM82zdv3jxx4sR9+/a9FnpZWExMTMuWLYmobdu26qgrdeLEiWHDho0aNcrDw2P//v084d3JyUnwgUBN+IqEgpexq9Xx48d5MT1bW9v8t4UyMjLu3bvn6+u7du3a77//fsiQIUOHvjIxebsmVfWPri5r0IA5OuYGsBhjJ0+ydu1Y794o0SAkrcTcs7KyTExMRCKRWmtkQQmH4xVogCbjV0TUqVMnQU7P7t69mz9+NWfOHNXXIH6lGfPmzSMifX39U6dOfdIPJiUlSSQSCwsL/hts3LixRCIpZLpeTEyMh4cH7/dLRKampi4uLu+t8n/z5s2JEycGBATkfyo9PX3ChAl8D87Ozmqt+C9n8mxFduewzj6J72T0I+D+CXx9ffni6KFDh2ZmZoaGhrq7u/NGXpyOjo6tra1EIlENZH8q5THR3t4+JSVFwPkzxt68ecNLZZmYmFSuXFm13HZQUBARWVlZCTtiGZAn4L41OrrbjRsXip2pl8efL17YSKXdQkIeaKT1R2JiokgkMjIyyhE6Zz8+Pr5nz578S121XkROTo6Liwv/b7J27VphBy2rzp49S0Q9evTQ9kQY+++qQLlqb+HChUS0YMECdY+b/w728uXLiWjWrFnqHroMKzjgnpzMatVSb8Cdu3LlyrBhwzL/m0pmZib/+iv8KtSCXb9+nS8nVP2gPn/+vEmTtp06vRo1ipWAbsSlm7u7OxFNnz5dk4PGxMTwnm/t2rUT5KIuNTXVz8/Pzc3NxsZG2X+JZ+4PGjSoQYMGGuszBsWUmpoqFov19fXVkbtXeFKplK+Lb9KkyR9//LFw4cIxY8bY2dnVrFlT+QFT6t49lIiZmzMbG+bkxNzcmETCvL2ZVMqUax2VASzG2PDhzMAAASyBaT7mzk/w2rZtq4GxoGTC8Qo0oIzFr3bu3Kn6FOJXGrBmzRr+OTlw4EDR9pCZmenl5dW4cWP+kbOwsHB3dy9g2atUKnVxcVEWpWzatKmHh0f+doB5kt8LKDbr5eXFSx9bWVkJm2zKJcoSJTGSBncaeL7xHPJ4yOY375TZRMC9sHbv3s1z8SZPnpynwVdERIREIsnTEMzKysrd3V0qlX5SsY5jx47xz9YXX3yhjEGoQ0pKyrVr11S3ZGdnGxkZiUSiuLg49Y1bGh1980YZXlcw9ktEhI1U2ik4WMB67kffvLGRSjsGB58XOo7/IfxEv0uXLurYeVZWFk9T1dHRWb9+vepTEomEHxNdXV0L0yivnPPx8SEiR0dHbU+EMcb43WllR/JZs2YR0fLlyzU/k/nz5xPRwoULNT90mXHyJFN+NWVlsYAAlpLyzrWQjw/TfG/Ro0ePktBLOnx9fXlLZ9Vj0c2bOWZmjIj99JOAQ5VHXbt2JSJBijN+klevXilj7kU7acnKyjp37tz8+fO7du3KPyGciYlJv379VqxYsWLFCr79119/RT2Z0oJfe5eEIGZUVFTbtm35BZ4qPT29xo0bf/7555MnT162bNk///wTEvLio4tZVQNYz5+zChUQwBKehmPuPGEwT/FuKFdwvAJ1K3vxq/R3i+4ifqVu27dvF4lEIpGo+HV75HK5j4+P8maPmZmZq6urMrDAGMvMzPT29uZXFkQkFosdHBx8fHzyfxoLn/yudO/ePb5A1tTUdO/evcV8L0oh6SHfPv3WKMSIgomCadDjQeter+v2oJtM8fbCAQH3Qvnzzz/5YhY3N7cCDkBxcXHe3t7Ozs58cRZXv359Xirroy3CCjgmaoadnR0R/fvvv5ofuhRRMOYZFWUjldpIpSsiI4v/e5ImJ3cJDraRSr3V3JFV1apVq4hoypQp/GF2dvaZM2fy3zksMoVC4e7u/t7Y+v79+3kbjaFDh6p1XU8ZsHv3biL68ssvtT0RxhjjmcLKtIVJkyYR0V9//aX5mfAqcitXrtT80OWEkxMjYkXNYyg6AevJqNq8eTO//6dam+jMGWZgwIiYRCLsaOVIUlKSnp6enp6eUOuRP8mrV694daD27dsX/kIrPDzc09PTycnJzMxMNb3LxsbGzc3Nz89P9VrR29ubx9wXL16snjcBAuMFx7755httT4Qxxg4ePEhE1atXnzt37pYtW86cOfPkyZPi37yRy9mhQ2zdOkHmCO/QZMy9Q4cORHTy5Em1jgIlGY5XoFaIX0ExHT58mJ8Gr1q1Sqh9KhQKHx8fW1tb/kkzMDBwdna+fPmyu7s7LwRKRJUqVXJ1dc3THYorZPL7eyUnJ3/55Zf8B52dndOL0TFRppD5JPo4PHTgcXZRsMjhoYN3vLdMIctSZHV/0L1LWJeFLxe6Pned+GwiAu4f5+HhQUQikajwuZwZGRm81XLNmjWVRy5lq+X3XpquX79eeUwUdPqfwM3NjYjmzZunrQmUIj6xsZ2Dg22k0p8eP84sxrdLeEZGz5AQG6l0XZFaixSZs7MzEW3atIk/DAkJoffV4S2mbdu28e/gYcOGqR7ULl68WLVqVSLq1KnTq3fr44MqXj64JFSmk8vlIpFILBYrz6X+97//EdGuXbs0Pxlei0356QXBrVjBiNhXX2l0UMHryaj65ZdfiMjGZvK1a28vOfbsYSIRE4vZP/8IPmC5cOjQIdJqzavo6OjmzZsTkbW1dQExdx5kd3Z2Vj0lI5VurgWcqe/fv59fbPz2229qeQ8gqMmTJwt7ZVgcS5cuJaIZQhfnunOHiUTMxISpp21weafWmLuyepW1tbWZmZmBgUFYWJiwQ0ApguMVqE/5iV/9/PPPiF+pg5+fn4GBgfpOgAMDAx0dHXl2pjLUbmNjs3Xr1vxF3guf/P5RXl5ePF5vbW39+PHjT/3xV9mvPF551LlTh4fazW6auTxzuZvxTpkaOZMHpQZti93mk+iTJEvKUeT4Jvp+6kCFVOoD7gqF4scff+TZT5s3b87/gnXr1o0cOXL37t3x8fHv3YOy1bJqqSxlq2Vl++YiHBPV4ciRI0TUq1cvLc6hFLmanMxj5WPv348rUiX0N9nZA2/ftpFK3cLDNXxHmK+puX79On+4detWIho9erTgA/n7+1eqVImIOnfuHBMTo9z+6NEjXhO8QYMG9+7dE3zcsoG3gvnhhx+0PRGWlJRERKampsotgwYNIiKttMAdNWoUEQm4HAzyiIhgRKxiRabJsqLqqCejpFAofvppr4kJq16dqZ5c/f47I2KGhiwwUB3DlnFTpkzReiT6+fPnjRo14p8c1TOx169fe3t7u7i4NGjQQDXIbmlp6eTk5OnpWfhapfv27eMx9yVLlqjnTYBgPvvsMyJ6b+MsdYuPj9++ffudO3eUW0aPHk1ExV+FnZ+jIyNiv/wi+I6BMaFj7jk5ORcvXnR3d7e1tVWtXsUDGQ0aNHj27Jkg04ZSR4vHq/xwvCozEL+C4gsKCuItdtXdpenOnTtNmzYVi8WdO3e+fPly/he8fPmykMnvhXfjxg1eUN7MzGz//v2F/KnLly9/v+V7/Rv6PNTe8m7Lv978lSIXuGPBpyrdAXeZTDZ+/Hgi0tfX/+cD+W9dunThv3vebsLDw0PZUTC/sLCwZcuW2draqrZa7ty5c7du3YhIV1d327Zt6nozhfPmzRuRSGRiYvLR1UPAhaenO96+bSOVDr5z50nhGi4rZcjlY+7ft5FKx9y/n6HZFVgZGRm6urq6urrK+4fTp08nomXLlqljuNDQ0Hr16vF0wvv37yu3v3r1qlOnTkRkbm4eiHDX+/CGhO7u7tqeCHvx4gWPVSm38Na4WrlOGDBgABH5+qrrXjEwxlq3ZkTsE3vRF4ua6skoZWezfv0YEWvUiKmuq5k+Pffuwu3bahq5zOKR7quqZVm1ITIyks+kU6dO+/fvnzFjRqtWrVRbvVWtWtXJyWnjxo1FXjyxd+9eHR0dIvr999+FnTwISC6X8+vDN9rIpTx58iQRde/eXbmFlzwKDg4WfKwrV3KPWsIVAoR3FD/mrqxexZNOlFeLyupVb9684VeRdevWjYiIEPwtQAmn3eNVfjhelQ3lOX6VU6T0x9Jn40bWsydr2pR9/jlTtlB6+JAJVz3/9u3b5ubmRPTNN98UIYX8U/Xv35+Ijh07lmd7YGCgk5OT8kZ1+/btPT09hSpHnJSUxBP4iMjFxaWAztWqyfU6ejp1b9Z1eOjgk+ijYGr/lymMUhxwz8zMHDZsGBGZmJic+nDI4enTp56eno6Ojvr6+srTKSsrKzc3t8DAwA99QGNjY3mrZf5FW6dOHV1d3Q8dEzWsadOmqonP8FFvsrOd792zkUp73bwZnJxcyJ+SyWRu27d3CQ7+4s6dBI1/PVy9epWI2rRpo9zCy5/5+fmpacTo6GherdLc3PzcuXPK7RkZGSNGjDA0NNT6t3XJ9MMPPxDRH3/8oe2JsLCwMCJq2rSpcgv/hebpvawZ/CRP9YMEgluwgBGxyZM1NJxa68kopaWxzp0ZEevYkaWm5m6Uy9mwYYyI1a7NCp30DCwiIoIf0ktCQ9GnT5/WrVtXtfGXsbGxg4ODh4eHVCoVpKjotm3b+NWm+u4JQTE9evSIiGrVqqWV0ZctW6aaC5aenp4ns0FYvXoxIoYPo/oUIeauXFjDs0yUPlS9KikpCTH3cku7x6s88h+vjh49um/fvtcCdRfD8Uozym38ii+aDw6+pe2JqN+OHax1a3b3LpPLWWAgq1mTXb7MEhIYESNi5ubMxoY5OTFXV+bhwby9mVTKCh2e4h49emRhYUFEQ4cO1cw9DH6377ZK3lNWVlbbtm35J1NfX//LL798b/J78Xl6evL/BR06dAgPD8/z7NOnT2fPns3LIBNRtWrV5syZE/mqZLV7Lq0B95SUFAcHB34lWcjfbnx8PG83wUMGXN26dXm7iQ/dM0lLS1u/fj1PvxL0HRTd2LFjiWjNmjXankhpkiaXz3z0yEYqHb58eSHLXPCTeMcff3ymzl7eH5KnS49cLudtUtSaZJGamsqLkLRp00Y1/HH58mUiatu2rfqGLr0mTpxIRBs3btT2RNj169eJyMbGRrmlWbNmRKS6ZEFj2rdvr6Y0HFAKCWFErEYNppnlN2qtJ6Pq9WvWuDEjYgMHMuVpZFoa69KFEbH27RnWdxUS/x4ZOXKktieSixfgql69+vz588+dO1dArkqRbdmyRSwWd+26ViIpEVktkMc///xDRAMHDtTK6LyvyZYtW/jDa9euEVGrVq3UNJyfHyNi1asz9J5Xn8LE3NPS0nhZdhsbG9WFNdWrV+fVqwquGIOYe7ml3eNVHvmPVzwT6/Tp04LsH8crDSjP8auffnpWo4a8XISvWrZkql9G69axYcPY48esYUOmp5cbds//p0YN5yFDRo4c+fPPP//555++vr6hoaGpyswjFS9evKhfvz4ROTg4ZGoqSGViYkJEye/eGBg2bJiFhYWbm1vhK0AWjVQqbdiwIRFVrFjxwIEDfGOe5Hpra2sBk+uFVSoD7nFxcZ07dyYiS0vL25++wjwnJycwMNDV1bV27drKI5eJiYmjo6OXl1f+xlwKhYLXJCohp1mbNm0iolGjRml7IqWMXKFYFRioq6srEok+uuScxwX09fXPnDmjmenl4eLiQkQSiYQ/fPDgAb9Tre5xZTLZnDlz8tw/5FGbsWPHqnv00oi30t69e7e2J8LOnDlDRD179lRu4R11Xmi22S/Hy649fPhQ80OXKw0bMiKmnpSCvNRdT0bVo0esenVGxFS7EcfGMisr9tdf7MgRpgyPxMczgS42yyCeRfXe8qBawcOda9euVesoO3de0tNjIhFT8zhQFLw38ty5c7Uyep7WOJs3byair9TZe/qzzxgRPorq9d6Yu0wmk0qlHh4eDg4OvBR7/oU1hV+Gj5h7+aTd41UeeY5XCoXCzMyMiFSbbxUTjldqVe7jV4yIlf3wlUzG9PVZXNzbLZcvsxYt3j6Mj2dSKfP2Zh4ezMWFOToyGxtmYsKIzFWKmylVq1atQ4cOI0aM+PHHH0NCQt68ecOTzbt06ZKSoqHS5DExMURUuXLl/Ns1VuM6Pj5+8ODBRCQSifr162dlZcX/ffT19b/66qugoCDNTKNoSl/APSoqqlWrVkTUoEGDInStVaVQKK5evTp37ly+Q+Wv7fPPPz9//rzqK3na765du4o3d2GEhoZSiVngVupIJBK+5HzcuHEfOkb4+Pjo6OiIRKKdO3dqeHpKHTt2JCLl53Dfvn1ENGTIEK1Mhkf/sajivRwdHYnIR1mgTXt4AvKgQYOUW/iqiMTERM1PpkaNGkQUHR2t+aHLlR9+YETsp5/UPpBm6smounqVmZqy9evf2chTeczNWbdujIdKgoNZu3aamVEpI5PJeHnHYrYtKrK//vpr9OjRyuYfCoWCL4ANCwtT99BbtjCxmIlEbN06dQ8Fn4afThe+/5WAMjMzdXV1dXR00tPT+ZbvvvuOiNTaSu7IkdxaWJrsbl0OqcbcZ8yYMXz4cH7043R0dDp37jxv3rxPXVgTpxI0Qcy9HNLi8Sq/PMer8PBwerdvU/HheKU+iF/NoMj2AAEAAElEQVSFhjIiVvbDV3I5MzRkqoWeAgNZ69Yf+SmFgkVFXbx4cffu3b///ruLi0vfvn2bNWtmaGioGnzfs2cP75HbunVr1a8ndeOFjjWwxLlgCoVCIpHo6enVqlWLiDSTXC+IUhZwv3//ft26dYmoZcuWUVFRAu75yZMnvFQWLzCap6jW0qVLiWjq1KkCjlhkCoWicuXKRBQZWbLqE5UWhw8fNjY2JiIHB4f8scjr16/zVTNaLAKbk5NjZGQkEomU03NzcyOihQsXamU+vBT4hQsXtDJ6CdejRw8iOnv2rLYnwnbt2kVEX375JX+oUCjEYrFIJNJK+Wb+X+y9S+FAQIGBjIg1bqz2gTRWT0bVh9K2zM2ZgwPbupUxBNw/7NKlS0TUrFkzbU3A3t6eiLy9vfnDGzduEFHt2rU1M/rmzUwkYiJR3ns2oF38HF4DN13yk0qlRGRlZaXcwnuNFFBFt/gUitzu1n//rb5BgDHGFArFxIkTdXR0lAvMlWXZixaYuHnzZtWqVVVzTRBzL2+0eLzKL8/x6tChQ0TUr18/AYfA8UpNEL9ijCkUrHJlRsTKfviqbVvm6/v24cqV7L9r8yJ4+fJlUFDQvn37Fi9ezFdING7cWMMJbfv37yeiYcOGaXLQD+HtW6dOnaqx5PriE+dfuVBiBQcHd+/ePTIysnPnzufPn+fVEoRSv359FxeXY8eORUdHe3l59ezZU/VZW1tbIuKXr1onEon4CV8JmU+pM3To0LNnz9aoUcPf39/Ozi4yMlL51JMnTxwdHdPS0r799tvZs2dra4b379/PyMho1KiRsl5bSEgIEfG62Bomk8lCQ0NFIlGbNm00P3rJl5KSQkQ8l1y7UlNTVWeSnp6uUCiMjIx0dHQ0PBO5XJ6RkSEWi3nYHdSna1eysKDHjyk0VL0D8UqmTk5O6h3mXdWrf/Cp5ctp/nyKjdXgbEqb06dPE9Hnn3+uldHT09MvXryoo6PDw+7K+fATZQ2YMIE8PYmIpk+nDRvUMoRMJrt06dKvv/7Ka77BRyUmJj5//tzIyIjXHNOwW7duEZGyxxdj7M6dO6pb1EEkIn4u+fvvJJerbxwgkUg0ZcoUuVxuYmKyefPmJ0+ehIeHe3p6Ojk58SylTyWVSuPi4mbOnMlLIRORmZnZqVOnunTpEhkZ2bNnzydPngj6DqBk0e7xKo/8xyt+QGvXrp2Ao+B4pQ6IX3EiEXXuTER0+bK2p6JuP/xAP/5IwcGUmUmnT9Mff5CbG02ZQt2705gxtGABbd1KAQEUHk7Z2R/dmaWlZZcuXUaNGpWTk3P16tXatWv7+/vzBaMa8+zZMyLiheO1jgdenJyc+E2mUqHUBNzPnz/fu3fvN2/eDBgw4MyZM1WqVFHTQFWqVBkzZoxqS2gi6tChg76+/p07d5KSktQ07ifp2rUrEV0u+0csdenUqVNQUFCLFi1CQ0O7dOkSHBxMRElJSYMHD46JienVq9cGNV2gF07+8LoWA+7379/PzMxs3LixarcWUOLHfd4OviTMRBlw1+KdAJ7YbmJiotqdDNRBLKZvvnndo4fPiRNe6hslKyvr2LFjRDRixAj1jfJJGjemsWPJzU3b8yjB/Pz8iKhPnz5aGf38+fNZWVk2NjbKUJfm5zNxIm3cSET03Xf011+C7TYiImLTpk0jR46sVq2anZ2du7u7r6+vYHsv027evMkYa9OmjeZvA1O+gPvTp08TExMtLCx4ATT1GTWKundPs7TcduDAQbUOBAEBAUQ0YsSICRMmFD808O23327atEkkErm6uq5du5Zv1HTMfc8eateOGjemZs3o++8LE50BoWj3eJVH/uPVzZs3SQ33C3G8EhbiV6q6diUqDwH3MWNo4UJasIA6dCBPT9qzh9q2patXKTCQdu6kxYvp22/JwYEaNyYjI6pdm+zs6Ouvg1au3Lx58+nTpx8+fJiVlZV/r3p6ejo6Ou7u7vXq1dPwG+IBd82PS0RZWVk5OTmqW54+fUolJvpfSLrankCh+Pr6jhw5MiMj48svv/Ty8tL8DQ0jI6P27dtfvXr12rVr2rp8VYWAe/E1aNDg0qVLw4cPP3v2bI8ePXbt2rV+/frQ0NCWLVseOnQozzeWhuUJr7948eLNmzdVqlSpU6eO5ifD6wBoJdZfKuTJK9eiEhVw19bQ5VCPHsHLlg1JTm7/00/fqGmIU6dOJSUlWVtbl4Q8L6V586hVK+rUSdvzKJGSk5OvX7+up6fHa15pHg+vK/PrlQnvvXv31uQ0XFwoI4NmzqRp00gkosmTi7ifp0+fBgQEBAQEnDlzhjeP4lq0aGFvb89PyeCj8oS8NYzHp5QJoRqbjI4OffXV7kmTJqWktB05chjuQ6uPv78/ETk4OAi1wwkTJhDRpEmTZs6cSUSurq70X8y9b9++V65c6dmz57lz5xo0aCDUiO84c4Z+/pn8/KhFC0pJoZEj6bff6Ndf1TIW5KPd41Ue+SejpunheCUgxK/yKC8BdyIaPZpGj35ny6FD9OQJPX1Kz57Rkyf07Bk9e0YvXlBUFEVF0aVL/7x4sfr8ef5akUhkYWFRv379+vXr16tXr169evXr109PT5fL5atXrx47dqyycppm8Bi3VgLu27dvnzZt2syZM//44w8iysnJiY6O1tHRUW0dXPKVgoD77t27x40bl5OTM2XKlPXr1/OOl5rXtWvXq1evXr58uSQcsDp16qSrq3vr1q3U1NSSkFpbSpmbm588efLbb7/dtWsXr0tVs2bNEydOVHpfk2hN4gF3a2vr9z7UymQQcP+QklNSJk+uvRYnVnL+TcqD3r17m5mZhYSEPHnyRE2X/VqpJ/NRRkYkkZCLC2l2YWXpEBAQkJOT06NHDzMzM61MgBeQUZ4v8YT3Tp06qS+960NmzCC5nH78kaZNIzMz+t//CvuDsbF05gwFBNDVqza3bt1Qbq9Vq5a9vb29vb2Dg4Owa8PLPC0GsD5UkEEzkxk3btySJUtu3br177//8kbrILjs7OyLFy+KRCJh7+ppM+a+fTvNnEktWhARmZrS6tXUtSsC7hpTkgPuSUlJz549MzIyatKkieBj4XglCMSv8uvcmXR16eZNSk2lche+ql+f8idly2QUFcWj8J/FxSU2bPjs2bOnT58+f/48Ojo6Ojo6KChI+VpHR8dGjRrdu3dvx44d48eP1+TctZhU/vTpU7lcrgzNRUZGyuXyevXqafiWQzGV9JIyf/7555gxY3Jyctzc3DZs2KCtoxWVsKRyExOTtm3bymSy69eva3supZu+vv6OHTu6d++uq6srFot79OjBGx9rEWMsT2E+7eaYI+BeAIVCkZ6eLhKJeKNd7cqTV67FWjcIuGuSgYHBgAEDiIj3NRVcCawnozRoEDLc30+79WSioqLu3btnamr62Wefqc5HWwXlf/iBVq2iWrVIV5f+9z9SLq329CR//3demZ5O/v40ezZ16EA1atCoUbRpExkY1KpQoYKDg4OHh4dUKn3+/LmXl9eYMWMQbf9UWgxgRUZGJiQkVKtWTVn5VJOT0dPT4+Ha3377TQPDlU8XL15MS0tr165d9f+6fzx9+pQxVvw9T5gwwdPTUyQSzZw5U6O1ZcLDycrq7cOmTSktjd68EX4geJ+SHHC/desWY6xVq1bqiDrheFV8iF+9l4kJtW1LMhkhfJVLV5fq1aMePWjMGKfvv9+6dWtAQEB4eHhmZmZkZGRgYOCOHTsWL148YcIEBweHLl26LF68mIjmz5+flpamyWnyfodaCbjnKR9fGuvJUAnPcM/IyFi/fj1jbPXq1fzQr0V2dnZEdOXKFblcXhKqudna2gYHB1+6dKlXr17ankvp5uXlFRgYKBKJxGLx3r17c3JyduzYYWRkpK35REREJCYm1qxZU1mnT4sh7/zRf1CVlpamUCgqVKigxXMppTxhbi3WdUHAXcOGDh26b9++w4cPq35RJiUl8SxjkUj0oVU7BgYG+Rvb1qhRQ3WlXgmsJ7N6NWVlEf98bdlCERHanlDJkyfBXMP8/PwYY7169VIuoNbufIjo++/p22/p+HE6coQqVybeBDE4mIioZ0+6epUCAigggK5ceVsk2ciIbG3J3p4+/3xr27bmJeHEr1STyWT37t0TiUStW7fW/Oi8nozqeZSGo2mTJk1aunTp1atXz507l6evHQgiTz2ZrKysli1bVqxY8fHjx8Xv366hPPe0NAoKIn9/8venKVPIyIgyM98+K5ORXE7oRa8R2j1e5Zc/4E7qPHzheFUciF8VoGtXCg6my5cJ4asCiMXiOnXq1KlTh//6lBhj69atCwoKWrVq1fz58zUzmdjY2JSUlIoVK2qlmV+eajYlqn3rJ2Al2J49e0Qika2trbYnkoufSPEmKlq3d+9eIhowYIC2J1K6nTt3zsDAgIjWrVsXEBDAw1KdO3eOiYnR1pR49QZHR0fllrp16xLRgwcPND+ZR48eEVGtWrU0P3SpEBUVRUSWlpbanghjjA0cOJCIjh07xh9KpdJvv/125cqVmp/JkSNHiGjQoEGaH7p8SklJMTQ0FIvF0dHRyo08wFQEP/30k+rOv/76ayJaunSpxt/WB3XqxPT0WGCgtudRUkVERBCRubm5TCbTygT+97//8W9V/jAqKkokEpmammZnZ2tlPkp79zInJ9a0Kbt6lTHGJk5kq1YxU1NGlPtHR4d16sTmzGH+/iwjQ7uTLWt4RZdGjRrl2X7o0KGUlBR1j75o0SLVg1tSUpJIJDIwMMjJyVH30Eo8N61Pnz4aG7Fc6dChAxGdPn2aPzxz5gwRtWvXTsAhNm/eLBaLRSLRmjVrlBuTkpK6dOlCRHXr1o2IiPjknebksIsX2cKFzM6O6eq+PRh9/TWbNYvNmPH2lf7+rHlzAd4GFIJ2j1d55D9effvtt6pfsuqA41WRIX5VgL17mZ4emzlT2/Motc6fP09EFSpUePnypWZG5OU0hP0yLTxLS0siioyM5A8XLFhARAsWLNDKZIqsRGe4t27dmjH2/PlzbU8kV9euXZ88eXL58uWSsL6sW7duRHT58mWFQlESsmtLo/v373/xxRdZWVmzZs367rvviOjatWsDBw68evVqly5djh8/3rx5c83PKk8+e1xcXGRkZIUKFbSSXop6MgXIycn5+++/iSgjI+PFixdab9+RJ6/cxsZmy5YtWpkJmqZqWIUKFXr37n38+PF///2XX4YRUcWKFXnVdcZYYmLie38wKysrPT09z0bVT3IJrCfz9Cldv04mJmRjo+2plFSnTp0ioj59+uTJZtLM2QJjjKeaKgvI8BCYasK7FhkY0IoVNGUKXbtGRGRsTDVrUk4OOTiQgwPZ21PlytqeYhl17tw5IsqTLnr06NERI0a0adPm2LFjav0OzZMQevv2baa2ggwfMn369JUrV/r5+QUFBSmrLYEgEhISQkJCDA0NlfmA6iirJWCee2ZYmKGfH/n707lzlJycu1VXl+zscg9GnTtTbCxZW1PjxvT55xQeTtOn07JlAr4dKIB2j1d55D9eaWCBDo5XRYb41YdkZVFcHD14QPwY+eQJPX5MJaC2fGnSvXv3IUOGHD16dNGiRRs3btTAiFpMKs/KyoqJidHT01OWcNRi+9Zi0WKw/6MUCoW5uTkRPX/+nG9JTEw8dOjQP//8o5X5/Pnnn0T09ddfa2X0/OrUqUNEoaGh2p5IqRQdHc3/uw4fPlwulyu3v3nzxtbWlojMzc3PnTun+Yn179+fiA4dOsQf8msGbd0nnzNnDpXCG4nqJpPJvLy8GjVqREQ8hGRmZrZhwwaFQqHFWfH7IlKpVMPjZmZm5tny119/EdGkSZM0PJPybPPmzUQ0cOBAYXfLFyvY2NgIu9viWL6cEbEvv9T2PEqwYcOGEdHmzZtVN168eLFly5bh4eHqHj04OJiI6tWrp9ySJ+Fdi/buZfwMztGRrV3LJk5kGzey1FRtT6tMS0xM9PLycnR01NHRqVevXsOGDVVXEIaHh/PMBktLy+vXr6tvGvz7+s6dO/zh+vXriWj8+PHqG/G9Zs+eTURffPGFhsct87y9vYnI3t5euaVjx45EdOrUKcHHKnKe++vXr729vV1cXOrVq3ewR4+3yewNGzIXF+btzRIS8v7Mo0fshx9Y//5swgR28iRjjGVmsoULsQBHTUrI8SqPPMcrmUxmbGwsEokS8n9gBIXjVdEgfvUhcXGMiI0Ykfvwn3/Y8OFanVDpFBYWpqenp6Ojo5kY4B9//EFEM1SXW2nKgwcPiKhhw4bKLd27dyeigIAAzU+mOEp0wJ0x1q9fPyLav38/f3jx4kX6786h5vFsX9XfuibxoqiqRo0aRUSbNm3SynxKtfT0dH5m3LFjx7S0tDzPZmRkjBw5koj09fV37typ4bnxjl5PnjzhD5cvX05E06dP1/A0OP4f8PDhw1oZvQRSKBTe3t7NmjXjNyybN2++du1aZfKvra3t/fv3tTKx9PR0fvs3JCREY4NmZ2d7enrWqlXr7Nmzqtv5h3bWrFkamwm8efNGR0fHwMAgKSlJwN1+9dVXROTh4SHgPoupY0dGxP67Iwnv8ffff5ubm+cpDcTzzevXr88bCarP0qVLiWjixIn8oUKh4D0Mw8LC1DpuYSgD7hERrGZNNmwY27hR23MqozIzMw8fPjx8+HBDQ0P+/WhoaMir9jVq1Ej1izI+Pp73IjIxMVHTyUZycrJYLDYwMFAWNZo4cSIRqQZM1eTixYuqKR0xMTE8UqYM/YMgXFxcSKX0WXx8vI6Ojr6+fqp67qcVPuaelpZ24sSJH374oU2bNiKRSJnu9lXHjuzrr9n27ezFi08b+5tvGBHr2xcxdwFlZmYeOnSohByv8stzvLp79y4RNWjQQPCBcLwSCuJX7xUXx6pVY599xv79lzEE3Ith2rRp9G79YfWZPn06Ea1atUoDY+XB+z/17t1buYUny2ogeUhYJT3g/uuvv6reVMnMzOSVauPj4zU/GZlMZmZmRkQaq5rEKRSKH3/8kYh+++031e2rVq0iorFjx2pyMmWAXC4fOnQoP1l59erVe18jk8n4WlGRSHRa/ZdkSi9fvuTJ9cpc6aSkpPPnz2trHQOP/qs7QFNa+Pn5Kavr1KtXz9PTU1lO0cfHhy8vNTQ0dHd3z8rK0tissrKyeNRbJBKZmJjUrVv3JE+DUqfs7OzNmzcrl3S5uLioPssbuSxcuFDd0wBVvM6Y8vy++DIzM3mHnEePHgm1z2J68oSJRKxCBZaeru2plGAHDx7kpWNWrFih3JiamsoTQ+rWrau8oasOvXv3JiJvb2/+MH/CuxYpA+6MscWLmY4OAu4Ck8vlgYGBrq6u1apV498OYrHY1tZWIpG8efPm5cuXPO/Y3NxcNUEpJydn8uTJ/IzL3d1d8FnxYIe1tbVyS6dOnYhI3asYN2/erKOjM2XKFNXVb7yAobOzs1qHLm8aNmyousKPN0NSvUoXXMEx95o1a86aNatnz568TRRnYmLSv3//VatW3b59u+gLIsPCmKUlI2Kff44vwmJSHq+qVq1aco5X+eU5Xu3Zs4eIhg4dKuwoOF4JCPGr94qLY9WrsytXWKNGLC0NAfeii4mJqVatTo8e/545I//4q4tn0KBBpFJ6QZM2bdqkurgnJydHV1dXLBZrMswiiJIecOeVQDt27Kjc0rVrVyI6ceKEVubj4OBARAcPHtTYiDKZjBcN1NfX37dvn3J7Wlpat27datSokT/zHQrGI+mVK1f+aMKdp6fnuNatmYkJGzuWaaTb27///qvui4TC4x1BVaP/5Zafnx/vx0VEderUkUgk+euoJCQkuLi48AymNm3aXLt2Td2zys7O3rRpE++pS0StWrVSdh0YM2ZMbGysOgaVy+Xe3t5NmjThA1lZWXl7e+f5hPAb76rBPtCA2bNn56nQbWBgYP4BfK10fk2aNLH5D/8tt2jRQtvv7K1lyxgR+9//tD2PEm/btm38w6Da7TYpKalz5848/K2mmHtaWpqBgYGOjk5cXBzfkifhXbuOHWPff5/798xMZmvL9uzR6oTKkJCbIT/99JNqXWNra+uVK1e+eDeBNyMjY/To0USkq6u7YcMG1ackEgn/0E6YMEHY/rqenp6q6SnKggxqjX2sX7+enw+o3nuWyWQjRowwMjI6c+aM+oYub548eUJEVapUUSbnTpo0iYh+//13tY77oZi7tbW1iYkJ/1+go6NjY2Pj5ubm5+eX/7yxiBBzL7bwsDuzZs3Kf7yKiopSfZlWjld55D9eubm5EZGwsX4cr4SF+NV78YA7Y+zbb9ncuQi4F8vy5dlEzNqaydUccm/Tpg0R3bhxQ73DvM+8efOIaNGiRfxhREQEj8NofibFVNID7qmpqbq6urq6usqe4LNmzSKi+fPna2U+7u7uRPTjjz9qZrisrCxercLY2Fj1GB0fH88P3DVq1EAN90+y9+VLe1dXAwOD8+fPF+b18qNHmbExI2IODiwxUX0Tk8vlFy5c4FkMo0aNUt9Ahefr60vv1sQshwIDA3v06MFPx6tXr+7h4ZFR4DLe8+fPN23alJ+du7q6qmk5c56od8uWLXnUOycnRyKR8Cu96tWre3l5CTioQqHw8fHh37tE1KBBA09PT5lMpvqa1NRUDw8PExOT2rVrN2zYUCtfz+VTRkZGy5Yt8zTJLD5LS0sTExPesKsk6NCBETHUuCqMrVu38nCAakWgxMREHnNv3Ljxi08tZVAIx48fJ6LOnTsrt+RJeNe65cvZ338zQQsvlWuRWZGSGIn1fesOfXLvSdetW9fV1bWA4mYKhYKfSxORq6uragWDAwcOGBsbE5GDg4Ow5YmfPn2qvMl0//59UvOqCw8PDyISiUSrV69WbszMzBwyZAgRmZmZBQYGqm/08oY3jhs5cqRyCy/Zr4Eq2zwp+K+//lLduGzZMiJq1qzZwYMH1VVlGzH3Ikl6E3Xl6OaNrn2Wf9VaT1enxB6vVOU/XvFyJQImnOJ4JbhyHr/KzGS//87yZyErA+5v3rCaNdmyZQi4F11GBqtblxGxHTvUOxBf66xMo9EkXtd0+/bt/OHZs2eJqFu3bpqfSTGV9IA7Y8za2pqIlDWCDx06pMUg4KlTp4ioS5cuGhgrNTWVF12tVKnSxYsXldujo6N5m+l69eo9ePBAAzMpM84lJHSUSjsHBx+7cuUTfuzaNWZhwYhYy5ZMDcVVQkND3d3d+XpYIjI3N9fT09uh7sNnISxevJjKcSXuS5cu8VAREVWtWtXDwyO9cFc1aWlp33//PQ99nho8mAm6aJ2H2lWLyHt5eeWJeoeHh/NcBiIaOHBgZGRk8cctoJwOl5aW9scffyjLCPCvZ319fQ0X2Cm3+ALnxo0bJycnKzdmZmbGf8DTp0/D3+fhw4fS/1y/fn348OFEVLNmzWfPnmnx3XGoJ/Op/v77b56AuXbtWuXGxMREfme3SZMmgsfcv//+e9VLyvwJ79qVlcUqVGAiEdP2uupS42nW011xu/Jvj82J3fB6g+0DW1GwiIKJgqnPpj7ffffd5cuXC7kk7u+//+Ytx4cNG6baSufKlSs1atQgopYtW6ppHca+ffuIaPDgwerYOfuvqJqOjs7ff/+t3JiWlsZP6c3NzYOCgtQ0dPnEM5OUHa14wru5uXmeUyM1yb9YdvDgwaoxAvUNXJ5j7mlJcS8f3Xr56Fb8yycfPeakJcVd+3fb3z8NXjio5kJHy4WOliu+ar1q6cJSerxq3LgxET1+/FiQ/eN4pSblNn6VksLs7RkRe7faKGMqAXfG2KZNrHJlBNyLZft2RsRq1WL52hEKJj4+nohMTU3VNUCBbG1tSaWa1rZt26hktP/9VKUg4M7Lhy1ZsoQ/jImJISITE5M84R7NSEpK0tHR0dPTK2Torcji4+M/++wzIrKwsLh586Zy+5MnT5TL/AWJo5Uf99LS7G7csJFK/y7CpfaLF6xtW0bELCyYQCkzd+/enT9/vjJJmYjq168/e/bsqVOn0n+VAbVby2XYsGFEtHv3bi3OQSuuXLni6OjIfymVK1d2d3cvQiPKq1evzh85khExkYhNmiTA8giFIu3oUWWCeaNGjXbs2PGh60mFQuHl5VW5cmUe+5ZIJPKiLjn7aDkdXkSet2zl53M+Pj6pqalubm48wbZly5Y4X1erAwcOEJGBgYHgSwqysrLs7e2JyMrKSiulJ1WhnkwRbNmyhcfc161bp9yYmJjIS9M2adIkzwr6YmrZsiURXbhwgT/Mn/CuXWfOMCLWpo2251FSyRSyeVHzGoc2rnm7ZvO7zU8nnT6bfNb+4dsAQYY8wyfRxynCSf+GPo+zG4UYOT529I73zlZ8clEFf39/3pawXbt2z58/V25//vx5u3bt+K1u5WdJQHPmzFFTpqFCoZgxYwa/2ay6qiMxMZFfN9aoUePWrVuCj1ueyWQyfqqj7FPKKwiNGDFCK/PJycnhCQeqH2l1Kccx9+BTuyXjO3l7uGybPcxzxucZKe85x87Jynxw9bS3h8vioXV5nP23YQ28PVweXD0tzynFxyu5XP7w4cPiXyHieKVW5TV+xT77LDdeohK+Yk+esC5d2OXLbwPucjn77DME3ItFLmc2NoyIqRSPFNiNGzdIe/1+edUvZStBvlDjl19+0cpkiqMUBNx5b5CBAwcqt/ClgtoqVsADXmpdXfXy5cvWrVvzCKxqt7q7d+/WqlWLiDp06PD69Wv1TaDsicrK+vzWLRupdFGRExCSk1m/foyImZiwo0eLPJOXT58uXbqUr1HgLCwsXF1dVfMsNm3apKurS0TffPONFrOD69evT0T37t3T1gQ07/bt205OTryOYYUKFdzc3Iq1SjQ7m3l4MAMDRsQsLVlxauf5+fFqGsO7dPlQEfn8oqOjeYYyEdnZ2d2/f/+TxvxoOZ3s7GwvLy/l4ow2bdrkKRxx8eLFFi1aEJFYLHZxcVFNvgahPHv2jIcb/vzzT3XsPzExkX/rde/eXbAStEWCejJFs3nzZpFIJBKJ1q9fr9yYkJDAb6Q1bdpUqJj7ixcvRCKRqampsqAtT3gvOSfHc+YwIlZeV2193LrX66zvW0dnRzPGbqTd8I735gF3OZMHpgS6PHMxvWnK4+w6N3QcHjp4xXkly4p1VH/06BEvwlarVi3Vs/rk5OSBAwfy+4iC3/UfMGAAER04cEDY3cpksnHjxvE5H1Y5TsXHx/M6TnXr1n348KGwg8K1a9d4CoJyi5OTExF5enpqZT68Q6+VlZWGxrt7l9WowYiiR44suOBhGRN8aveR1TP533e5/y/Eb192RlpGSmJaYmxcVETErcBDK6f/PqIxj7P/OrTu7kXOt88dys4oViIojldQeOUyfsVat2ZErH59phK+Yrdv594ZHDr0nSh8TAwLD1ffdMqFs2cZETM1Za9eqWX/fGXGoEGD1LL3AmVlZYnFYl1dXeU9qrFjxxLR5s2bNT+ZYioFAfenT5/yNU3KDM0xY8YQkWq6libxlfvLli1T0/4jIiL4EdnKykp1ufe1a9d4F/WePXsWId+2PEuVyUbdvWsjlbo8eJBdnIyAnBzm4sKImI4OU1mhXyixsczTk9na+tnY8OhkpUqVnJ2dfXx83nuv++TJk6ampkTUu3dv9VUGLEBCQoJIJDI2NtbMmlytu3v3rjLUbmJi4ubmJlg+78OHrGdPRsSImKMj+9TY1unTrEuX3B+vVev1li2feg/Gx8eH36gzNDR0d3cvTHOnj5bT4ZVt+LJWUikin39XGRkZ7u7u+vr6/A7iqVOnPmnyULCcnBy+FmrYsGHqG+XFixd16tQhopEjRxZ5qUQxPXnypG3b6Q4OoeUsjU8YmzZt4jF31bsyyph7s2bNXgpRYyUxMXHz5s3Lly9XbuEJ74XsmKIBPBUIB6EPaXm35b+J/6pu4QH3Hg968Di7KFjUNazr+tfrX+cIlvMRGxvbvXt3fpP72LFjyu0ymYxnCPIFf4KMFRERsXjxYn5ylafudjEpWy6ZmJj4+fkpt7969Yon0DRo0CAcoQU1+P3334lo8uTJ/KFcLufXStr61+YpeK6urpobMizsedu2jevV+/zzz9WdvlpyKAPuKXGv1k2ye3LrYmjg0U0z+239eYjf9t+OrvmBh9o9Z/a9cnRzagKOV+/A8UoDylv8KjycNWrEiJiVFVOtVnjtGqtalRGxnj3RPkctBgxgRGz6dLXsfNWqVUQ0Pd/eNXAx+PjxYx46UG7p1asXEakeskqLUhBwZ/8tKFBm2vL2OF9++aVWJrNjxw4iGjJkiDp2fufOHV6ZoWPHjrGxscrtAQEB/Bt38ODB5SqFofhyFIopDx/aSKVOoaHJxY8dKxRs4UImEjEiVpj6jHFxbPNm1rs309HhMVNZxYou48b5+Ph8NGx669Yt/sm3srJSU2VA9l+z1qlTp+apBnjmzBki+uyzz9Q0bskRERHh4uLCS64bGBi4uLhER0cLPIZCwTw9makpI2KVKjFPT1aYGz+XLrHevXND7VWrMg+PIi8ZTkhIcHFx4bcT2rZtW3AnsYULF/IweuXKlZcuXZqn72ueIvItWrTIX0Q+v1u3bvESFkTk5OT05s2bor0RyIN3YapTp466a2TfuXOHL6bWWM+lPHgbuv+hoExReXp68pj7hg0blBvj4+NtbGwEjLmryp/wrl2xsUwsZoaG5a30wicwCjF6mvVOoxoecF8SvaTF3RbuL90fZqol4TEzM/Prr78mIh0dnbXvZjNIJBL+7Tx27NgiL/iLj4/38vJycHDgX4JK3bp1u3z5siDz590FK1WqdOnSJeX2Z8+eKYtAClu7CZT4Fbgy/1cqlea5RNcwXovDx8dHk4Peu3uXVxLv27dvOblIDD61+3enJmsmdPEY1Wzb7GFZGamhgUe3zR7GMz9ePLhxft/q+Gjh224xHK+g0MpP/Cok5FazZjIi1rUrU01XCwjIvfYdPJiVjyOTFty7x3R1ma4uU0dJAl516o8//lDdeP78eSsrK3XXm/L39yeiHj16KLc0aNCAiErjypvSEXDnywO3bNnCH96+fZvebditSfx+S9WqVQWvr33lyhVeGaB3796qtRcOHz5saGhIRM7Ozlqp/FV6KRhzf/LERirte+vWSwFrs+zfz+zsWGoqS0pirq6sfXtmZcVGjWLK1knp6czHhzk5MX393ICpgQFzdGReXuy/fuWF8eLFC14Z0MLC4tq1a4LNnzGWr1nr4sWLVZ/9448/iGjq1KnCDlqiPH361MXFhVfv0dfXd3FxUe8pZlQUGzIk9/PQt29uA16FgkVEsKtX3ynyHhTEHB1zX1m5MnN3FyQr4Ny5c/xkWldX19XVNU8kXen27dtmZmb5y+koFAofHx/+geQXtJ6enoVfAJGTkyORSExMTIioRo0aXl5exXw7cOLECZFIpKurq3rJpD5nz541MDAgotWrV2tguDx4LvZhFJQpBolEwvPvVHPlXr9+zTPamjdvLuy9xq1bt5I6W1N+qr17c2sdw4dUvlU5LOOdDpA84F6E+uyfSqFQeHh48ACTi4uL6rnukSNH+BfH+PHjP2mf6enpPj4+Tk5OvNshERkZGTk5OR0+fHjDhg0WFhZ8o4ODw+3bt4s889TUVN6lvHr16iEhIcrtDx484AuDbGxscI9ZTfK3ZV66dCkRTZo0SSvzSU5O1tPT09XV1fxC5LCwMEtLSyIqJ3nuygx3hUJ+3HPesfU/hwYe9V46UTOj43gFhVFO4lcXLlyoWLFiy5bjhg7NUb2yPHyYGRoyIubszBC+UquJExkR++ILIfepUCgePXrEs+X++ecf1af69etHRMbGxlu3bhVyyHdt2bKFiL755hv+UCaT6enpiUSi0nhTuXQE3FevXq361SWXyzXXkYaxlHwRUn5OI+wNFl9fX2NjYyIaOnSo6idp+/btPCA4ffp0ba3lL708o6JspFLbGzfufCC2WHT8dzFiBJswgSUmsqwstnEjq1OHpaayr75ixsa50VIdHfb552zrVlbUsjDJycn9+/fnx7UjR44Uf+L37t1bsGBBnmatbm5ud+/eVX3ZV199RaWzTlYhXbp0iZ/U6unpTZo0SXMtiL28WJUqjIht3MiePmWtWrFu3dj//sfq1WM//MAYY7zVKs+FX7RI2AV4aWlpbm5uPAGnUaNGAQEBH3pZni1+fn42/1VDqlu3rqenZ9Fu/oWHh/MmnEQ0cOBAdH4uslevXvELMPWtD81v7969YrFYLBbnKdavbk+ePBGJRBUqVCgPcQS14mdTIpFo48aNyo2qMfdXwpWB/PLLL0l7q6fzGz+eEbEVK7Q9jxKs58OeG99sVN2Sp2mquu3fv5/nl/Tt21c1ZHnr1q22bds+ePCgMDuRyWSBgYEuLi58YShPRHVwcPDy8lI9n09NTfXw8DAzM+M3oV1cXIqwyCMhIYEX9bKwsLhz545y+927d/lyVTs7OxSBVJ+TJ08SUadOnZRb+AlGnuiAxvj4+PBfulZGL1cxd9Ua7tITO/YtGa/JgDuH4xUUrJzEr4yMjN4Xv2K6urmlThC+UreXL1mFCkxXt1g18XNyckJDQ728vNzc3BwdHatUqcKPSNWrV//ss89Urw4yMjJcXV35s87Ozh9K4Cum+fPnE5GyQtezZ8+IqFatWuoYS91KR8Cdt8Rp1qyZckvfvn2JSAPX/Bs2bKhdu3ZERITqxmHDhgl7Gblnzx4e+/vmm29Uw1gSiYTfP3dzcxNqrLLtWWZmeHo6/3MxKamDVNoxOPhC4nua1wsgPJxVqfLOEqn+/dnff+f2VrWxYRIJEyJhMCcnh1deK05lwMjISIlEwte6clWqVHFxcQkMDHzvvW4rKysikkqlxZp6CSaTyaysrJycnFT7EmtITAxbtIgpFGzwYPbbb7kbExNZ8+bs+HE2ezYzMWFubkyoIvL53Lhxo3379vwT5eLiUvDptZ+fX6dOnfhnpnbt2hKJpJj3lhUKhZeXF1/NU7FiRYlEgluJn0oul/OwQt++fTX8r+fh4UFE+vr6/v7+GhsU9WQExAsyisXi7SpV0V6/ft2qVSsiatOmjSDZbVlZWbySciGDDhpQpw4jeqdhF+RxNvlstVvVtsVuu5tx92ji0dNJpzUccGeMXb58uXr16kTUunXrZ8+eKbcXJilPKpW6urry2hqcjY2NRCKJiYn50I+8efPGzc2NdxkxNjZ2c3NLLPQZY0xMTNu2bXnWguqJhFQq5R/+Xr165Q95gIB+/PFHIpo3bx5/mJGRYWRkJBaLtZWiO336dCJauHChVkZn5SnmHnxqt+fMvhf/WX966+KV37R/fOOc5gPuDMcrKFC5jV95eOQW30X4Sk2ePGGqqXGPHrFdu5ifH1OGvjMz36mk/17p6Uwqfb1x40YXF5eOHTvy24eqateu3atXL15QtE6dOnmWU+/cubNChQo8WUf1Bp5Qjhw5Mn78+JMnT/KH58+fJ6KuXbsKPpAGlI6Ae3Z2trGxsUgkev06t+3JokWLiGjmzJlqHXfx4sU8JrVp0yblRplMZmdnZ2lpKRKJbGxs3N3d79+/X5xRNmzYIBaLeVRd+Q2tUCh+/vlnPrpEIinW2yhPBt+5M+nBg5mPHs189GjXq1f/vH7t/VqwVjl5HT/ObG3f2TJvHps1i925w1TOuoQikUj45yTP6sWCxcbGenp62traKksBFtysNTMz08fH5+uvvzY1NTU0NCyNy3YKLzMzU5vDp6czHZ13vjBXrWJjx7LERKb+a8Xs7GwPDw9eIcTS0vLQoUP5X3Px4kVeHZWIqlWrlr91anFER0cPHz6c79zOzi4sLOzjPwP/4XX2a9SoIXy/gULgeQ0VK1YUtn5fdnZ2cHCwp6dn/uXSqCcjrJUrV/KY+44dO5QbX7161aJFCz09veJ0Ng4PD/f09HRycjIzM6tevbqZmdnTp2qpovup7t5lRKxGjUK1zyjPAlMCp0VOG/R40JTIKdI06b2Me0ujl2p4DuHh4c2bN+ffTQV3HOHu3bvn7u6uum7PysrK3d298HfTHzx4oOyaXqVKFQ8Pj4+eHrx8+ZL3BG7evLlquuKFCxd4Fqqjo2PZPoMqCXgA8ezZs/zhqVOniKhDhw7amk+LFi2ISDNF3j6knMTc3zx/JD2xU3pi571L/ybHRjPG4qOfhodooUE3jlfwIeUzfvX77/4iEROLmaCNfuEdtrZMNeupYUN29y4zNWWjRuVuuXaN5f8mTE5mgYFMImEuLszWlhkYsFatUlQj7JaWlo6Oju7u7j4+PsoLzOfPn9vZ2RGRrq6uu7u7appXWFgYXyBrZGSk7qIIXl5epTf1qnQE3BljPXr0IJUuNH5+fvTuKkJhKRQK3oxOR0dH9WiVlZXFC3IZGBgoi6wRUatWrebOnXv16tVPLYyVnp7evHlzkUi0QmWds0wmmzhxIs8i3Ldvn2DvqhwYfOfOU42dMZw6xTp3fmeLmxubO1d9A3p7e/Pbj/369VOt8p9fQkKCl5eXo6Mjr0fED4WOjo7e3t7vbeMjk8lOnz49fvx4fhuTx2JQ7kO9Hj5kVau+s+XAAda7tyanEBoa2qVLF/4bd3JyUp4RBgUFOTo68u1VqlRxd3cv+PNWZD4+PrVq1eKfT3d39xLSXLGEO3/+vI6Ojlgs1lajdrlcztNkatWqVZyjhEwm46sXXV1dbW1t+aJUIvr1119VX4Z6MurAu3To6Ojs3LlTuTE6OvrEiROfuiseZB85cmS1atVUT9zNzc2JqEmTJiWh/drq1bmFRKFUiI+P57d7TUxMPnSnLSoqKs+6vVq1arm6ugYGBhZt0KtXr/JrDfqvcloB64f4tUC7du1U01EDAgJ4wtfo0aPxdaZuMTExIpHI2NhYGW3kYabZs2drZT4vXrwgopLQJrqcxNxLDhyv4EPKavzqr7/+4jH9PPGrb7/9loh69/ZF+EqtPhRwt7Zm/CyeB9xfv2YnT7KlS5mTE2vcOHfZgfKPri7r2FH+zTffSCSS8+fPF7DePScnx93dnd9fGTRokLJpCmMsPT2dBy2JyNnZOX9NWqH8+uuvRDRXnXE29Sk1Afc5c+aonkWlpKTo6urq6emp4/eqPF7o6+vv379fuT01NZV3CahUqVJgYGBaWpqPj4+zs7MyRklE1apV4+nDhU+effbs2a5du5QPlcdEY2Pj48ePC/zeyjqNBtwjI1nFikw1ENmjB9uzR61jXrp0iQc12rZt+6EacGvXruXrDfk365AhQ/bt2/eh/yl8SaOyGw/9l2rx+PFjdb4PYCwxkenqMtWmoxs3Mo03r5fL5Z6envyc29zcfP78+fz4w68bP2m9atEkJCS4uLjwVJ22bdsWJj+oPIuLi6tbty4RzZ8/X4vTSE9P59eNrVq1Sih0gwqFQvHgwYNdu3bNnDnTzs6ONxZTEolEzZo1++qrr5RXJhzqyajJ8uXL88fcC+n169fe3t4uLi4NGjRQ/SVaWFg4OTl5enpGRkYmJibybkslIeb+xRcjbGw+9/a++/GXQsnwoWJ6iYmJefIJCl6396n8/PzatGnD99yhQ4cPdTqJi4sbP358vErlNx8fH54S4eLigjppGrB7924i6tevn+rGx48fa6Y+cn7btm2jEtMmmsfc7ezs1JQtAXngeAXvVVbjVy9evGjUqNF7Y/qIX2nAhwLugYGsQQOWmpobcOe9i5R/9PSYlRVzdmYSCQsMZJ/6GTx27BivB1unTp3Lly+rPuXl5cWv6aysrEJDQ4V4i3nxz7anp6c6dq5upSbgfuzYMSLq3r27cguvQXzu3DlhB8rMzOSFDkxMTJRlgxhj8fHxXbt2JaIaNWqo9vVm/zU8cXNzU10gZmxs7Ojo6Onp+UktyFJTU3l5r0qVKl28eFGoN1V+DL5zp9+tWwNv3x54+/YtDZSiGzWKOTmxZ89YfDxbupQ1b87UnyPw6NGjpk2bElGtWrVuvq8ebUBAgFgstrW1lUgkHypkGRoa6u7u3qhRI+UnlrdOLeb6Mvg0LVqwAwfePrS3Z//1stewiIiIPn36EBHvkVKhQgU3N7d4tRWRz+/cuXP8+Kmrq+vm5oaVre+lUCgGDx5MRN26dRPkUq04YmNj+TLqnj17FnCCHhUV5ePj4+7urtqBR0l19WJsbOx794B6MurDb2bo6Ojs3r37oy9OTU318/Nzc3OzsbHheS7KO3MODg4eHh75e34kJCTwX1/Tpk21GHPPysqqUKGCSCQqQpc50C5lMb1x48YdPnzY2dlZeaPOwMDA0dHRy8tL8MiFXC739vauX78+H8jBweHGjRsF/8ju3bt5QG3atGmfmioIRTNu3DgiWrlypbYnkuurr76iktQm+uHDh2rqZQcfguMV5FGG41eqV2qIX2mYrS2rVYs1bpz7R08vN+Cens7Gj2fz5uUG3P/+m3XvzmbOZF5e7PZtVvwLx8jISP5x0tXV9fDwUD163Lt3j9etMjU13SN0+unDhw8bNmxIRKqf7VKk1ATc4+PjxWKxkZGRsiDGtGnTiOj3338XcJTU1FQedTI3N1etwRcdHc0LBdarV6/g5s6hoaEeHh6qJbN1dHRsbW09PDw+WqS4gGMiFJJGM9wZY5mZbNEi1rMn69CBTZ3KNBVQiI2N5eW0TE1N81cAkMlkH2q58+TJEw8PDx4m42rXrl2cJY1QLGfPsurV2fz5bPNmNmgQ69ZNgC/DolIoFNu2bTt27Jibm9uHQp9qlZaW5ubmpqOjQ0SNGjU6c+aM5udQwq1YsYJ/PZWQutgRERF8cczo0aPzX7Pl5OSoLp3hatWqNXTo0N9+++3kyZOF+ZiFh4ejnoxaubu78xOV954f5+TkSKVSDw8PBwcH5cIpIjIyMuJB9sDAwILv/Shj7s2aNdNWvPvMmTNE1LZtW62MDsXk7e1tZGSkzA/V0dGxt7ffunWruldfpaWleXh48BxAkUjk5OQUHh7+3ldu3LhRWcpWrVMCVdu2batWrdqMGTO0PRHGGFMoFLyKC9JWyjkcr0AV4legDh/KcE9PZ69fM0tLtnfve2q4CyInJ8fNzY1/ToYMGaKanJeSkvK///2Pf36cnZ2Lf+Eml8v9/PycnJx4cGDx4sWazAUUUKkJuLP/etFcuXKFP9y9e7eJicmcOXOE2n9cXBwvZ2xhYaHaCy4iIqJx48ZE1KJFi8IvVHz27Jmnp6ejo6PqNaqVlZWbm1tgYGD+2ER0dDRfFFa/fv2Cj4lQAE0H3LUnMzNz9OjR/B7jxo0bC37x8+fP85QOrFy5srOzs5+fH1IbtOz5c7ZtG/PwYL6+Woy2lxyXL1+2srIiIrFYLGxPztLu2rVr+vr6IpHoyJEj2p7LW8HBwbwe0XvL5rZr165SpUq2traurq7e3t6FjLeqJsWbmZlVrVr1S42XWipXFixYwC+u9u7dy7coe59WrFhR+a2ho6NjY2Pj5ubm5+f3SWtQ4uPjbWxstBhz52u6f/rpJ80PDYK4cuXK1q1bbW1tV61apeGlEnFxcW5ubrz2gr6+vouLS56EhnXr1olEojylbEEDjh07xuOGJeFf/tatW/yOsrYnAtqH4xWoQvwKBFdAwJ0x5unJmjRRV8CdO3r0KG/UVK9ePeVnm/Py8jI2Niai9u3bF74XdB4JCQkrV67kH2Ce5fPtt9+W3vvZpSngzmv3rFq1ij/MzMwUcE39y5cveZvdBg0aqH44QkNDeU+/Dh06fKg6R8Hi4+O9vb2dnZ1VL1yrV6+uWipLeUy0srLSVvHBsqH8BNwZYwqFgicnEpGrq2v+b8G4uDgvLy8HBwfl/Wpl6UC0x4ESKzs728PDwxn9DVUkJibyYtnff/+9tueSV0BAAD8vX7t2bZ6nCpnS9ezZs4MHD86ZM6dPnz78BE7VrFmzUIVW3ebNm8dv33br1q1q1aqq//4tW7acMWOGj49PAf2UPurNmzf8FKt58+bR0dECzrwweLj/9OnTGh4XyozIyEgXFxeeY1WhQgV3d3eeuuXh4cHzSdesWaPtOZZHW7du5TH3JUuWaHcmK1euJKJx48ZpdxoADMerEgbxKxBcwQF3uZx16aLegDtj7NmzZ/xOj4GBgUQiUX3qxo0b/INhZmam2k6gMMLCwlxdXZXFuGrWrOnu7l60z3DJUZoC7n///TcRjRgxQvA9h4eH82LWLVu2fPHihXL71atXec3ZXr16Ff+CPzMz8+TJk5MnT+ZHQK5ixYr9+vXj17ddunRRbfsLRXAiLi5FtQtlObB582a+dHHkyJE86zAhIYG36FE2Ijc0NFRT6UAA0IAvv/ySiGxsbJSLUkuUXbt2iUQisVh88ODBwrw+Pj7ez8+P57DXqFEjT4RdtbD7JzVBgeKYN2+esquHau9Tofb/+vXrVq1aEVHbtm1fv1bXHd83b97kSYF58+aNWCw2NDREVSIoppCQkM8//5z/H6lduzYvWaujo7Nt2zZtT638KiEx9/79+xNRYZphAGgGjlclBOJXILhDh5jKL5zt2sXi49nWrW+Xyj94wA4dUvs0MjMzXV1d+Ufiiy++SEhIUD6VlJQ0YsQIImrYsGFhFsXK5XIfHx/VJFFbW1tvb2+tdywTRGkKuN+/f5/f6BB2t8HBwdWrVyeiTp06qZaUDQgIMDU1JaIhQ4YI3sGPt6y0sbHhn6oGDRoIckyE8snX15dXdWjbtu2AAQMMDAz4oUpfX3/w4MF79uxB3ySA0uuvv/7iaUoPHjzQ9lw+6NdffyUiIyOj97ZLSkxMDAwMlEgkzs7OvGSQqooVK/KyM15eXmrqbg+FkZycvHv3bvUtCn79+nXr1m3s7La3acMEzFZJS0tT7eZqb2+v+uyePXuI6PPPPxdsPCjf/P39+ZoJCwsLfX39Qt5lBPXResxd2ZZZ88t3AAqG45XWIX4FZduhQ4d494imTZvevHlT9al169ZJpdKCfzwmJsbDw6NevXr8ktDU1NTFxeXOnTvqnLKmlaaAu0Kh4HfSnjx5ItQ+z58/z1fK2Nvbp6SkKLcfOnSIRy3HjBmj1lsr4eHh69evf/nyZcnMW4TS4tatW3Xq1OE3usVisa2trUQief36tbbnBQDFcufOHSMjIyLatWuXtufyEbwTVJUqVcLCwpKTk1Uj7MqEBeXplGqEHZ0kyo9Xr7JbtGBErF07VpzezDk5LCgobtGiRd27d1etNGpoaDhw4EDVV44bN45KRpVnKDMUCsXu3btv3Lhx+fJlbc8FGNN2zP3s2bOEtsxQUuF4pV2IX0GZ9/Dhw3bt2vGT8DzlZQoglUpdXFz4RS4RNWnSxMPDo5S2RS1YaQq4M8YcHR11dXU7d+68adOm4q809/X15b/jL774gtei4v766y9+3vbeutgAJVNkZGRYWNjatWuRYgNQNqSmpvJuSxMnTtT2XD4uJyfH0dGRiCpVqpQnwm5iYmJnZzdz5sxdu3aFhYXhi7U8i4lhVlZFjLmHhzNPT+bkxCpVYlWrykUiMX2sm2udOnWICB2YAco2LcbceQ+MH3/8UcPjAkCpgPgVlHkZGRnK8jJff/216n2gPLKysry9vR0cHPiLxWKxg4ODj49PGf7QlrKAe1RUFC+Tx389NjY27u7uH12q8F6PHz/mFa4nT54sl8uV25UdRdzd3QWbNwAAwCcaP348L85YWrovpKamOjs79+3bV09Pz8rKytnZWSKRBAYGIgUGVL169Qkx96wstnkzGz2aVa/OiN7+adGCubmtOnz4sGrVyDzu3r3Ll9KX4fN4AODUHXNPS0s7ceLEtWvX8mzv1KkTEZ04cUIdgwJAaYf4FZQTu3bt4lWOmzVrdvv27TzPvnz50sPDQ9kMoGLFiq6urhEREVqZqiaJGGNUqsTGxh4/ftzX1/fEiROpqal8Y4MGDQYNGjRo0KCePXvyBpKFsXz58qSkpCVLlvCHjDE3N7cVK1bo6Ohs2LDBxcVFLW8AAACgEM6dOzdhwoRDhw61adNG23P5BK9fvzY3N1c2bQbILyaGevWi+/epfXvy96fKlT/4SsbI0pJiYoiIatSg7t3JwYH69aO6dT/4IykpKVevXvX39z948GBMTMzQoUN37Ngh/HsAgBJm27ZtEyZMUCgUS5YsmTt3bvF3qFAoQkJC/P39/f39+c1jZ2dn1eNJYmJi1apVdXR04uPjTUxMij8iAJQ9iF9BOfHgwYORI0fevn3byMhozZo1EydOJKLg4OA1a9bs27cvJyeHiNq1azdlypSvv/7a2NhY2/PVhNIXcFfKyMjw9/f39fX18fF59eoV31ilSpUBAwYMGjSoX79+vGVEIcnl8smTJ2/ZskVfX3/nzp0jR45Uz6wBAAAKSy6X6+joaHsWAMJ79Yp69aKwMLK2Jj+/gmLuq1eTvj45OFCzZh98TXp6+sWLFwMCAvz9/W/evKlQKPj28ePHr1q1ilc7BYAyT5CY++PHj3mQ/cyZMwkJCXyjjo5Ohw4dRo4c+cMPPyhfeejQoeHDh/fq1evMmTMCzB4AyjTEr6DMS09PnzZt2vbt24moR48ecXFxoaGhRKSnpzds2LDvvvvOzs5Oy1PUrFIccFfi2QfHjh3z9vbmnaCJyNDQ0M7OztHRceTIkZaWlgXvITs7+6uvvjpw4ICxsfHBgwf79eun/lkDAAAAlF8vXlDPnhQeTtbW5O9P5uaf9uMyGV2/fjUgwC8gICAoKCgrK4tvNzQ07Nq1q729vb29fYcOHXDLCqBcKVrMPS4u7syZM/7+/n5+fk+ePFFub9iwoYODg4ODg729feV8NwanTJmyceNGoRLqAaCcQPwKyrYdO3ZMnTq1Tp06YWFhNWrUGDt27LRp03hfpfKmLATcVUVERBw7duyff/4JCgri+U1isbh9+/b8yGVlZZX/R9LS0oYNG3b69OlKlSr5+vra2tpqfNYAAAAA5c7z59SzJ0VE0M8/05w5VKlS7vaMDBKJyNDwPT8SEUH+/rl/atVyCQ3dTP+d7Nna2trZ2X1qjhgAlDGFjLnLZLJbt275+/sfO3ZMeeVIRFWrVu3Vq5eDg0OfPn0aNGjwoR9//fp1hw4dnj9/fu3atY4dOwr/NgCgHED8Csqku3fvisXimzdvDh8+XF9fX9vT0ZqyFnBXevPmzYkTJ3x9fY8fP56WlsY3NmzY0NHRUbVUVkJCwsCBA4OCgiwsLE6ePNm2bVutzhoAAACgHHn2jJYtoyFDqF8/OnaMHB2JiH75hQwN6Zdfcl8TGUkBAbl//luETUTk5HSxWrW99vb2vXr1Mv/UDHkAKLs+GnP/9ddfPTw8MjIy+EOeW9qnTx8HB4d27drx/qv5ZWRkXLp0iRecCQkJqVSpUteuXY8cOYKVNABQTIhfAZQ9ZTbgrpSamnry5MmjR48eP348Pj6eb6xRo8bgwYPt7OxWrFgRGhraoEGD06dPN27cWLtTBQAAACiHAgJo0iQSi+nWLTIyol9+IX19srLKDbI/evT2lZaW5OBA9vZkb0+1a2tvxgBQshUcc//rr7+mTp2qrBhTwMoYhUJx48YNPz8/f3//S5cuKatXGRsbd+/e/cCBA2iXCgACQvwKoMwo+wF3JblcHhQU5Ovre+TIkQcPHvCNIpGodevWJ0+e/GidLAAAAABQh4AAWrGCGjWiSpVoyRL65RcyMKB16+jNGyKiChWoSxdycCAHB7K2JpFI29MFgNKggJh7UlJSTk5O1apVP/SzERERytapcXFxfCMv9cBj9HZ2dobvrXsFACAExK8ASrtyFHBXdfv2bR8fn7t37w4ZMqRv375YhgwAAACgLTzgvmcPtW5Nfn60Zw8ZGpJIRCIR2dtThw6Egg0AUASf1EM1JSXl6tWrvKr7vXv3lNsLbp0KAKBuiF8BlEblNOAOAAAAACUED7ifPEl//0179lCXLrmFZQAAiqngmLuydaq/v/+5c+dkMhnfXqVKld69e3+0dSoAAADAe+lqewIAAAAAAERE48fT1q10/DgNH67tqQBAmTBu3DgimjBhwrx584iIx9yVFWNOnjyZkpLCX6mrq2tjY8OT2ZUtCgEAAACKAKcRAAAAAFAiiETk6UnW1gi4A4Bgxo0bxxibOHHivHnzDh8+HBkZ+fr1a/6Ualn2bt26GRkZaXeqAAAAUDYg4A4AAAAA2lSvHo0cmfv3Vq1o82aqU0erEwKAsmX8+PEikWjevHkPHjxISUmxsLDo1q2bg4PDwIEDa9Wqpe3ZAQAAQFmDGu4AAAAAAABQxqWlpZ07d65JkyZNmzbV9lwAAACgLEPAHQAAAAAAAAAAAABAAGJtTwAAAAAAAAAAAAAAoCxAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIB7QRhjjDFtzwIAAAAAAAAAAAAASgEE3N8vLS1t2bJl3bt379q168KFC7OysrQ9IyihXr2i6Oi3D58/p9hY7c0GAAAAAAAAAAAAtEeEDO485HL5li1b3N3dY2JiRKLcfx8rK6t169b17t1b27ODEmfBApLLacmS3IcTJ1LbtvTdd1qdEwAAAAAAAAAAAGgDMtzf4e/vb21tPXny5JiYmM6dOwcGBgYEBFhZWd27d8/e3n7QoEHPnj3T9hwBAAAAAAAAAAAAoCRCwD3X/fv3Bw0a1KdPn9u3b9etW9fLyysoKMjW1rZ37943b96USCSmpqa+vr5WVlaoMAMAAAAAAAAAAAAA+SHgTrGxsTNmzGjdurWvr6+5ubmHh8fDhw/HjBkjEon4C/T09GbMmBEWFubs7Jyenr5o0aJWrVodP35cu9OGkuOvv6hJk9w/3t7ang0AAAAAAAAAAABoSbkOuKen05o14Q0aNFi7dq2Ojs7MmTMfP37s5uZmYGCQ/8U1a9bcsWPH2bNnW7Vq9fjx44EDBw4aNOjJkyeanzaUNFOm0KNHuX9GjtT2bAAAAAAAAAAAAEBLymnAnTH65x+ysqIff2xkafm5o6Pj3bt3V69eXbly5XyvZLdu3VI+7Nmz540bNyQSiZmZma+vb8uWLRcuXJiZmanZ6QMAAABAoSUl0bJlNGoUjR9P27eTQkFEtHQpqZzjkZsbRUZqa4IAAAAAAFBmlMeA+5kzZGNDI0fSs2dkbU3btu04duxY48aN3/viffv2tW/ffsyYMTExMXyLaoWZzMxMXmHG19dXg+8AAAAAAAonK4t69aLISHJzo2++ob//ptmziYj8/Skq6u3LfHwoPl5bcwQAAAAAgDKjfAXcHz6kkSPJ3p5CQqh2bfL0pCtXyNbWpIAfiYmJMTAw2LlzZ7NmzdauXSuTyfh2S0vLHTt2nDt3rk2bNuHh4bzhalhYmEbeB5QgX3xBw4e/fTh2LNnba282AAAAkMfhw2RgQH/+SdbW1KMHHTxImzbRf4kUAAAAAAAAwiovAff4eJo9m1q3pn/+IRMTcnenhw/JxYXEH/sHmDlzZmhoqKOjY1JSEu+t6ufnp3y2e/fuwcHBEomkYsWK/v7+bdu2nTFjRmpqqnrfDJQkd+/SN99QbGzuwz176OlTbc4HAAAA3nHnDvXo8fZh9erUuDHdvUtE5OtLf/6Z+ychQVsTBAAAAACAsqSsBdwDA6lKFQoKyn24ZAl5eNCaNdSoES1bRjIZOTvT48e0cCEZGRV2n40aNTp27Jifn1/z5s3DwsI+//zzQYMGPX/+nD+rq6s7Y8aM8PBwV1dXmUy2du3aFi1a7NixQw1vDkqipCR69Yp++in3YUwMpaVpdUIAAACgKjOT9PXf2WJkROnpRERyOeXk5P4BAAAoGRhj2p4CAAAUS1kLuOfkkKEhTZ1KvPRLZiYlJNCCBZSYSA4OFBJCO3aQhUVR9uzg4HDr1i2JRFKhQgVfX98WLVosXLgwOzubP1ulSpU1a9ZcuXKlU6dOL168+Oabb+zt7e/duyfcO4OSa+RIunaNzp/X9jwAAAC0SqFQxJfAMuiNG5PqKVlODj14QE2bEhENGUIzZ+b+MTfX1gQBAABiYmL++eefSZMmtWzZcsmSJWvWrNH2jAAAoOjKWsCdiFq1IisrUn49mZiQREJ+fuTnR23aFGvP+vr6M2bMuH//vrOzc1pa2qJFi1q3bn3q1CnlCzp27BgUFOTl5VW1atUzZ860a9duxowZKSkpxRoVSjw9PZJIaOpU+u/+CwAAQLkTERFha2s7cuTIEpeX98UXdO4c8ZKAjNGiRWRtnRtwBwAA0J7Xr197e3tPmTKlefPmFhYWI0eO3LRp0717937//feZM2euXLlS2xMEAIAiKoMBdyJavpz++IMiI3MfjhtHDg6C7bx27do7duwICAiwsrJ6+PBhv379Bg0a9OzZM/6sWCweM2bMvXv3vv32W7lcvnbt2pYtW4aEhAg2PJRIffpQq1a0erW25wEAAKAllSpVioiICAgIKHGF9SwsyMeHFiygFi2oSRO6f5+2byciqlCB9PTevszMjHR0tDRFAAAoL1JSUvz9/WfPnt2hQwdLS8tRo0Zt3LjxwYMHJiYmDg4OHh4egYGB69evF4vFs2bNWrFihbbnCwAARSEqcVlIxXPmDC1bRqdO0cqVdOUKNW9Oenq0YIFaxsrJydmwYcP8+fNTUlKMjY1/+umnOXPmGBgYKF8QHBw8derUe/fuzZ07d86cOWqZBGiPQkHPn5OvLz16RBIJRUVR587UsCG5ulLv3lS5srbnB2VCdjbduUMtW5KhIRFRXBylpFD9+lqeFQDAe+3atcvZ2blKlSr37t2rXr26tqfznz//pJYtqWdPkslIV1fbswEAgHInLS0tKCjI39/f398/JCREoVDw7cbGxl27drW1tbWzs+vevbu+SseRrVu3Tpw4kTG2fv36qVOnamniAABQRGU24J6TQzY2VLky9e6troA79/Lly9mzZ+/cuZOIGjduvGbNmgEDBiifjY+Pr1KlSqVKlRISEtQ4CdC4589pzBh6/JhcXSkqiiQSIqKVK2nWLNq+ndzdqXt32riRjI21PE8o7V68oDp1aPZsWrqUiGjHDvL3p5KWPAoAoNS3b9/Tp087OzuXlDz3yEhq2pRycujhQ2rUSNuzAQCA8iI9Pf3y5csXL168dOnShQsXlO3fdHV127Zt6+Dg4ODg0K1bN9WMvTy2bNni4uJCRH/99dekSZM0NG8AAG1484YYI2XGzvPnZGFBkZHUoAGJxUREjFF4ODVurMU5fpqyWVKGiPT0aMMGunBB7QPVrFlzx44d/v7+LVq0ePz48YgRI16/fq18lt+71kU6Vdly8CC1a0fnzpFcTrq6b8vAzphBo0ZRTAzFxNDOnfTZZxQWptWJQplgaUkHDlBoqLbn8emioqK0PQUA0LRNmzaZmJjs3Lnz9OnT2p4LEREtWkRZWfTll4i2AwCAuslksuDg4GXLlvXp06dy5cp9+vRZtGiRv7+/QqGwsbFxc3Pz8/NLTk6WSqUeHh4ODg4FRNuJaMKECatXr2aMTZ06lWf4AQCUVfPmkZUVxcbmPuzVi549o3btKD4+d0taGrVooa3ZFUVZCwRXr07duuX+3c6Ofv2VmjfXxLj29va3bt3incRV11DL5XIi0kFJ0LIiI4Nmz6a1a4mI+val7dvJwuLts7q6tG8fEdHAgTR6NN2+TdbWtHQpzZihndlC2WBgQL/9RlOmaOIOooDOnDkzYMCAX3/99eeff9b2XABAc+rVqzd//vzZs2dPmjQpNDTUxMREm7N5+JB27CBdXZo/X5vTAACAsm7//v2enp5BQUGZmZl8i46OTqdOnXr16tWrVy87O7sCvhBjY2PPnz9/9uzZlJQULy8v1admzJihUCh++OGHcePG6ejo/O9//1Pv2wAA0J7atWn2bNqyRdvzEEhZC7i3akWtWtGBA7RnDw0dSr/8ormh9fT0Zs2alWejTCYjZLiXFVIpffUVPXxIhobk4UGuriQSvf+VLVvStWs0YwZt3kwzZ9LFi7RlC1WsqNnpQqkll1NYGEmlJJXSlClERKNG0aZNtHXrO+39SrI3b944OztnZWVlZGRoey4AoGk//vjj/v37Q0JCFi9e7OHhoc2pzJ9PMhlNmkTNmmlzGlAkPGiVk5Njamqq7bkAaEFycjIRmZmZaXsi8HF79uzZuXPn2bNniahhw4YO/zE3N//Qj6Smpl65ciVPVXd9ff0NGzbkCc1///33crn8p59+GjNmjFgsHj16tLrfDgCUNyXkG2fqVFq1is6do549tTsRYZTNkjLh4XT4MN27p+15IOBeVjBGa9aQrS09fEgtW9LVqzRjxgej7ZyREW3aRF5eVKECHThAnTpRSIimpgul0MuXdOwYLVxIgwZRtWrUqhWNHUvr19OtW7kvWL+e3N0pKUmrsywcxti333778uXL7t27/6LJ254AUDLo6up6enrq6OisXLkyRItffrdv04EDZGhI8+ZpbQ5QVMeOHWvZsuU333zToEGDNWvW8DWjUNK4u5Nqm6rvvyfVX1RICM2fT1lZuQ8PHCCpVKPTK72ioqLGjBnTrl271q1bjxw5MjIyUtszgo/YtGnTyZMnf/7557i4uPDwcE9PTycnp/zR9tTU1BMnTvz8888dO3asVKlSnz59li1bFhwcbGBgYG9v/9tvv509e9bQ0DD//mfNmjV//ny5XD5mzBgfHx+NvCcAKBeeP38+ZsyYTp06NWnSZMyYMTExMVqcjJ4erV5N331HOTlvN3buTE2aUJMm1K6d1iZWRKwsWrKEEbG5c7U9D8bCw8OJqGHDhtqeCBRddDTr25cRMZGIubiw9PRP+/GwMNauHSNiBgZMImEKhXpmCaXN06dPfXyuzJ7NHBxYpUqM6J0/9euzESOYhwcLCmL16+f+yOzZrH595uys1XkXAk9orVat2osXL7Q9l7IsIYFlZ+f+XSZjSUlanQ1APjNmzCCijh07ymQy7cygf39GxGbN0s7oUFS3bt3q3bs3v06pWrUq/0v79u0vXLig7alBXhYW7MmTtw+JWGbm24c7djBdXfbrr7kPx41jf/+tydmVSmlpae7u7sbGxkRkYGCgr69PRBUqVFiyZElGRoa2Zwfvl5ycrKenp6urm5iYmP/Z9PT0wMDA/BXbdXV1lVXdC/nLnTt3LhHp6+sfO3ZM6DfxjoAAdvt27t9lMnbwoFpHg6J49erV4cOHZ8+e/eLFi2zlJQHAp0hOTnZzc+PHJSMjI54oXLFixT/++CMrK0vDk0lPZxMnsq1bGWNs2DC2ahVr1Ig9esQqVGBv3uS+JiWF6epqeF7FUjYD7osWMSK2YEHuw7Q05ufHLl3SwkwePHhARE2bNtXC2CCEAwcO9O9/jYhZWLCTJ4u4k4wMNmVKbiB1xoyg+Ph4QecIpcPLly99fHzc3d0dHR1r1KhBRHXrNlJG2C0tmaMjc3dnPj7s1au3P/X8+duAe1ra24C7XK6Ft1AYV69e1dfXF4lER48e1fZcyrgqVZiLS+7fQ0JYmzZanQ1APqmpqQ0aNCCiNWvWaGH4wEBGxCpUYDExWhgdiiQuLs7V1ZVf71WuXFkikeTk5Pj4+PAPEhE5OjpGRERoa3oJCQdDQ5veudMwNLR5evpNbU2jRPlowH3YMFa3Lnv0iLGSHXBPS5Peu9f+zp2Gd+40jI//R1vT8PHxqV+/vvLT/uTJk8jISGdnZ76ldu3aXl5eCiTvFOD+fTZ2LLOxYQ4OzMOD5eRoZthDhw4RUffu3VU3Pnr0aOHChd27d88TZP/ss8/mzp3r5+eXlpZWhLHc3Nx4zP3ff/8VaPrv0aULs7Rk/PZBWhozNFTfUFBYMpksNDTUy8vLxcXFyspK9N9y+zp16nz55ZfyEntxCCWSQqHw8vKysLAgIpFI5OTkFBkZ+fDhQycnJ/65atKkibe3t2Ymc+MG696djRv3NuAeGclq12bVq5f6gHvZLHXCFzMqO5VGRlKfPtS8Od2/r+mZoKRM6ZWWljZz5swtW7bo6RmPH//cw6NytWpF3JWhIW3YQL1709q1sevX9zh0qMbevXttbW0FnW+uzMzMW7duSaXSr7/+2tTUVCwum2WjSoX4+Phr165J/xMVFaX6bNWqVVu2bDp2bI61tV7HjlSz5vt3UqUK/fln7t+NjenYMUpNpalTSS4nT081v4FPl5iYOHr06Ozs7FmzZg0ePFjb0yn7zp6ly5epa1dtz+Nj0tPTHz58OHXqVAH3OXr06NGjR6t2KYeSxsTE5M8//xwwYMDcuXMHDx6sjCJpCO+SOmsW4UNSGshksq1bt86bNy82NlZXV9fFxWXJkiU8vX3QoEEODg5r165dsmSJr69vQECAq6vrvHnzNFzYnTHZkyffNG8eZGTUSi5PEYlKSU8V9fP1pQLOkCtWpPnzado0OnVKg3P6dJGR02vU+LFy5a8Yy1Eo0jU/gRs3bsycOTMwMJCIrK2tJRJJt27d+FM7duwYP378zJkzb9269c0332zbtk0ikbRt21bzkyzpoqOpVy9avJgkEnr9mqZNo8jIt6fR6nTq1Cki6tu3r+pGHnAnIrFYbGVlZWdn5+Dg0KdPn0qVKhVnrKVLl6alpa1fv37EiBH//vtvr169irO3ArRvTwsX0urVato9FEpCQsKVK1eCgoIuX7587dq1lJQU5VOmpqadOnVq1KjRvn379u7dW6lSpQ0bNmhxqlCKXL9+fcaMGUFBQUTUsWNHiUTS9b/rSW9v74CAgJkzZ4aGho4cOdLe3l4ikbRq1UpNM3n9mn75hf7+mxQKeviQlAfROnXou+9o9uz3/1RICK1fT0T0888lvkmTtiP+ajF3LiNiS5bkPrxzhxGxVq20MJPbt28TUevWrbUwNhSDVCpt2rQpERkaGkokEqFySZ49e8bj7Lq6uu7u7oLciM7JyeH3ul1dXW1tbZVV/9q1azdlypTi7x+K5sGDB999953qwdbU1NTW1tbV1dXLyys0NLTIH6qbN5mhISNiS5cKO2UB8CZOHTt21PwatHKoShV28CBr3ZplZ5f0DPf58+cr60IIpU6dOk2bNsUnreTjmTIDBgzQ5KBpp04xIla1KmotlQr+/v7Kazl7e/s7d+6892UvXrxwdnbmOX21atXScKqvXJ4aHKyTmnpVYyOWChYW7Lvv2Lx5uX/yZ7iPG8fkcta5M9u3r0RnuIeGNn/zxlMrQ8fGxrq6uuro6BBRlSpVJBLJe8twyeVyLy8vfptZLBY7OzvHYPlOHh4e7Kuv3j58+ZIZGbHkZA2M3LBhQyIKDg5W3ZicnDxjxoyjR48mJCQIO5xCoZgyZQoRGRsbnzt3Ttidc126sHPnWL167MYNZLhrWnh4OL+0t7GxyZM8Z2lp6eTkJJFIAgMDlefAyrr/7u7uWp04lAJRUVHKU6maNWt6enq+NySVk5Pj6enJL994GsQbZZK5QLKzmUTCKlZkRExPj7m6ssREduLE22JW2dlsxQoWH882bGDKmlvZ2WzdOhYSwtLTWUgIc3UVdlLCK5sB959/ZkTMwyP34c2bjIi1bauFmdy4cYOI2rdvr4WxoUgUCoVEIuEFE1u2bHnr1i1h95+Tk+Pu7s6/O3v37v3y5ctP3QNfTbZ9+/bvvvuuc+fOefrq6OjotGrVqn///vwt/PHHH8LOHwppyJAhIpGoRYsW33///e7dux88eFCYuMCrV+zYMebuzubMKehlR48yHR0mErHt2wWbcPGtX7+eiCpWrKjF9f7lh0LBqlRhiYlsxAi2fHmJDrhHRkYaGxuLRKINGzZcEsiFCxf4PVEc4kq+6Oho3jXun380VKVBoVBYW1u7d+wY/+efmhkRiqwIi5evXbv22Wef8R/p2LHj5cuXNTBPmSyRMfbq1R8hIWaPHw9JTvbXwKClwkdLyowbxxhjwcGsQQM2alTJDbgnJvrcvFklLKxbbOwOxhRyeZpCofaayNnZ2RKJpGLFikSkp6fn6ur63grgqhISEpT1ditVquTh4ZGp+i9ezo0dyySSd7Y0aMBu3FD3sPfv3yeiatWqabKmh0KhcHFxISITExMB+1vcu8f+/JNdusS6dGHXr7P9+1mnTiwlBQF39UpNTQ0MDJRIJE5OTnkyVPT09GxsbHjC1rNnzz60Bx8fH15TYeXKlZqcOZQi6enpHh4efHWgkZGRm5tb8sfuR/JCf/x+sLLQnyCT8fNjLVvmVtZ1cGChoUXZyZ49bONGQaajRmUz4P7jj4yIKS/DpVJGxGxstDCTa9eu8esBLYwNn+7Vq1f9+vUjIpFI5OLiUrTKeoXh7+/PC2ZVr179xIkTH319VFSUsvx3/n73lpaWjo6O7u7uPj4+ygLx+/fvF4vFIpFox44danoX8CHJycmGhoZisTgqKqrgV8bHp586xZYsYV98werUeds0tWLFj1Rp/+uv3LvBp04JOfMiu337tpGRERHt2bNH23Mpy0JDmbs7a9GCnTqVG3B//pxVr858fEpuwJ1H075STToTgp+fHxGZmppGR0cLu2cQ3MaNG4nIwsJCMy1M9u/fz9N21PclDsWXkpLi7u7O44YmJibu7u554ob37t27ePHie382T+FRZ2dnNR0HsrKexcRIwsJsb9yoIJenMsZkssQ3b7bcvFk9IQF9Shj7QMA9LIzxVQrKgDtj7LvvmIFByQ24M8YUisyEhEOhoVYvXy569WpFSIj5kyfO8fHe/FcvOD8/PysrK34m7+DgcPfuXdVnMzIydu7c+aGfffDggaOjI//Zpk2bqrt/Zqnx3oB7SIi6h129ejUROfMmSxokl8u//vprnuxy7dq1Iu8nPJx5eTEXl7dXIlOm5AbcGWN9+rD16xFwF15UVJS3tzdfoc7z5PJc2nt4eAQGBha+VfLOnTv5tf9WXgMbQEUh2+HI5fIdO3bkiarfu3ePh8iIqHnz5oUJXhXgwQPm6Jh7qGnalBX56+v6dTZlCiv53YLLZsB9xgxG9PYL9+pVRsQ6ddLCTHhdpC5dumhhbPhEhw4dqlKlCg+C+/r6qnu4mJiYzz//nF8rurq65uktrhphz1+KQTXCXsDqnhUrVhCRvr6+n5+fut8OqNq5cycR9ezZM/9TKSkpPIXB2dnZysqqVq26yiA7ETMzY716sZ9+Yvv3f7zP06xZjIiZmmogd+cjUlNTmzdvTkSTJ0/W8lTKIrmcXbrEfvyR1a//9qMyY0ZuwJ0xtnw5s7YuoQH3ixcvikQiIyOjArJyimzgwIFENHHiRMH3DMJSKBR2dnaaOUTIZLIWLVoQkaendqpDwEfxyhi8eTivjPFKtVf4fzm8+vr6DRs2LCB7NzU11d3dna/z4yH7wgcmCpaR8SA6+vd792ykUuJ/btwwTk29onzBixdzIyNL/DJmjcgfcN+1i82bx37+ma1f/07APSmJWVqW6IA7Fx//T1hYtydPnJW//ZAQ04iIL+Pj/5HLhbmHFxYWNmDAAH5K36xZs/ytL318fHiJkoL7z/v5+bVs2VIZsg8tWopgWbJsGRsz5u3DV6+YiYkGSsrwUNSuXbvUPVB+Mpnsyy+/5MsdpFJp4X/w2TO2fTsbM+addB8iZmnJ/vc/dvDg24D7gwesVi0E3IUUGxtraWmpemmvq6vbsWNHV1fXvXv3FueEed26dTwpXgOhDCgtbty40b17d/5Ja9++/fnz5wt4saen50e/mHjIPjw8/FNnkpCQsHjxPT09RsQqVWKrVxc9XL5vH+vQge3bxwIDi7gHjSmbAfdp0xgRW7cu9+GlS4yIde2qhZnw1jd2dnZaGBs+BW/4TkQDBw7UWElEXr5GT0+PiDp06LBp06b58+f369cvf4S9Vq1aQ4YMWbx48YkTJz6pftbMmTOJyMzM7ObNm+p7I5AH7xf6p0o1g/j4eGdn5+bNm+epxGdsbNy3b/yMGWznTnb//key2vNQKJizc+7J8dOnwr+LwhszZgwRtWrVKj09XZvzKFvkchYYyFxdWa1aby+EqlVjzs7Mx4dlZ78NuOfksDZtSmLAXS6X29jYENGvv/6quj02NnZdkVy6dEl1P48ePTIwMBCLxdf5RSGUYGFhYXzdT6CaT423bNlCRI0bN84u+Ukv5dKVK1c6d+7MvwE7deoUFBSk+qxMJvvrr7/4WZCOjs7kyZM/ut750aNHyqI0devW9fLyKvLc0tNDo6M9wsJsVePsjx45xsZ6yWTJMllydPSytLQbKSmX7t5tFReH5VyMMZan2LgyV+DJEzZhQt4XJySwH35gYWGamNinevXqj5SUS+npNx89Gvj8+U+MsczMCL6+QSoV/fd5MPzv8/CRwi8fEh8fz28mEZG5ubmHh0eeTiS3bt1S9sBs06bNhxZ5KOUvSiN4ufDSJD6eWViwfftYTg57/ZoNGcJmzlT3mBkZGcbGxmKxWFsl9WUy2ahRo4ioatWqt5XFj9/n5cuXu3fvnjBhQo8eKapB9mrVmJMT27CB3bv39sXKgDtjbN48ZmjI0tIYVrEW36tXr6pWrWpiYmJmZubg4ODu7u7n51fkBXkymWzRokWxsbHKLXPmzCEiIyOjguOqUB4UskGIqhMnTjRu3Jh/Bw0ePPjRo0eqz2ZlZUkkEjMzM57T6erqmlS4VknKHiSVKjWoUkXu7MyKebwMD2dSKZNK2bsTLInKZsB98mRGxP76K/fh+fOMiHXvroWZnD179kOJrlByJCYmTpgwQVdXV8D+qIV3/vz5mjVr8kOhUsWKFZUNNj+1InZ2dnZqau7qV7lcPmLECCKqWbOmOjJMIb/31pORyWQmJiY8hcHKysrZ2TlPu5uiycpiDg6MiLVoweLiij31Itm+fTvPLrynep4ORZWdnX3y5MkffnhRrdrba6EGDdiPP7LLl5nq8WnRorcNZK5dY6tXs6golpKilVm/H8+SqFOnTp4LiZs3b1KRzJo1K88QP/zwAxHZ2tpq/tANn8rd3Z2ImjVrpr6Kw1lZWXzBLGpblUDPnz9X9umqXbt2/panZ8+ebdu2Lf/P3rNnz09KFAgICGjTpg3/2V69en1SAx6pVHrs2PLQ0KbKOPvNm5WfPBmbmHhMoXj7WZXJkqKjl4WHO4WHj4iN3cYYS0+/nZGBL773++EHlj/aw5cga7aD8sclJBxSKLLevNkUEfHVo0eDoqOXyeXvLJXIynry6tXKsLCuUqmYf0KCgw3u3x+9devWuEKfe/FwQ7Vq1ei/hR2vX79WfUFxSuWqRlX4z340qlJm3bzJhg1jLVqwDh3YggUsM5Pdvs3UeVf+xIkTpO36sdnZ2TzXp1q1ankWOrx+/drHx8fNzc3GxoYffomoR4+bFSowBwfm4cGk0ven+1y79rbpeHo68/dnvXu/U7MXimbTpk1E1LdvX0H2Nnv2bH73OuW/CwBlcX8zM7MbWl8EDVpShAYhhf/Zly9furi48CRCS0vLD7VdVTpz5ozyDK1nz563b2s1T1DjymbAfd68Az16uO3enVvL7MKFpz16eEyYsFfzM/H39ycie3t7zQ8NhZeYmKivr6+joyN48+VC2rVrF09MmD179oEDB54WI105JSWlf//+/fv3V56mZ2Vl9e7dm4hatmypmfq55dyH6skcOnRIKpUKnnSZkMBatWJErFs3lpGhuWZN3MOHD3nrlW3btml46DImMzPTz8/P1dW1evXqRNSjhwePs7u6ssBAVphg8tmzrFq1d9ZSa1dSUhKvsLx///48T7148WJakRw+fLjwo0BJk5WVxYu9LFq0SE1D8EK6rVu31mTnOviotLQ0Dw+PChUqEJGxsbGbm1vKu/cGIyMjnZ2d+cVYnTp1ipalnpOT4+npWUBAM4/Q0FB3d/cmTZoQUYMGlYODdW/erPLkiXNioo9C8fF74cnJATduGN6920oux9Kud+TksHnz2Hura7x+zSpVYkTs+HGNT+sDEhIOSaUUFtaNsY8fNHJy3sTGej165BgcrHfiRDci0tHRsbW1lUgkL1++LOAHC74hxD+6fGGHrq6ui4tL0a5HQkJClHUDWrRocfLkySLspIxQprMcPJjbkk9t+GLi+fPnq2+IwsjKyuJ19mrUqHHlypUjR464urq2bt1aGWQnIlNT0wEDBqxYseLGjUdFuCOzfTsTixkRW75cDW+g3OC/pr8Fqq4VExPTtGlTIurdu7eyqJpcLh85ciS/ARNWMpcUgToJUm3so9nx169ft7W15aPY2Ni8dz1W/rO7cpggVTYD7mPHjiUiZb+I06dPE1GfPn00P5OTJ08KeA8T1Kdv3755goaPHj1asWKFOkpkPHnyJDIyUnUL73izdOnS4u/88ePH/Gpz/PjxyiNaXFwcD3M4OPQpXkY1fFz+ejLqFhXF6tZlPXoEDRkyVJM5TZmZme3btyeiUaNGaWzQMiYtLe2ff/4ZPXo0v2/BtWnT5o8/tn7q2dHDh8zUlBGxD3dZ0yiN5Z5/KI8eSqDz58+LRCIDAwN1LIhJTU3lZcF9fHwE3zkUmY+PT7169fjBzdHR8YlqwW/G0tLSlHXYjY2Ni1+HveCSHTKZ7MyZM9OmTatZs6bykFu7du3p06fHxAQqFJ/wBSqXp4aGNpdK6dmzqcWZcNmzdi0bOpS5ubH3tlH44w9GxBo3ZiXhdDQr6/nNm1WkUoqJWfNJP5iT8/rUqR19+/blZSF55L1Hjx5r1qx5/vy56isfP36sLHn03ptJ/v7+rVq14i+wt7e/w7vNFkMhO+OVWVu2MEtLtmxZ7sPYWCYWM2NjpraVVbyJ0UeL/2hAenq6vb09Eal24DQ2Nu7Tp8/vv/8eFBRU8JqJJ0/Y1q0faTH7999MLGYiEdPgVU6ZkpKSwpdB5+lcUhzh4eG8IvyQIUNU8+14a4E6derkCTtAGfbgwQN+R4cE6qcdHBzcrVs3vkNra+sLFy6oPqtQKLy9vevWrUtEIpHIyclJmTYq+Nld6VU2A+78RsqOHTv4w+PHjxNR//79NT8TX19fIho4cKDmh4ZPsnHjRiIaPHiwckvHjh3pY92KimbChAkikUjZzy0zM5Ov2XkkUA2q69ev8+olCxYsUG58/vx5kybNOnXyGTXq0wqFwyd5bz0ZDbh79wX/FM1Uf7VKpSlTphBR48aNC1m+DZTS0tJ8fHycnZ15yidnZWXl7u5+//79Iu9282ZGxCpUYA8eCDjZotBkdXW5XN6hQwfKVykeSqYJEyYQUffu3QW/E7N48WIi6tSpUzlMnymZgoODebNcfp2Wp3x//us0AQvf5WlKeezYscDAQFdXV74ghqtXr56rq2tgYGCR10Okp9++ccNQKqWEhMNCzbzMy85mzZoxIrZqlbanwuQPHvSSSunRo/6MFfGgkZCQ4O3t7ezszE+8Vb/Nb968WXBT34cPHypj8U2aNPH29hbiTTHGWHp6uoeHB7+Rz8vsfrQXQtmxdy8jYv36vd3SujUjYu/GiYQSGRlJRJUqVSp8/R+1iouL09PTq1ChQrdu3RYuXHjhwoWCa1dGRzNvb+biwqyscmsY/vTTR4bYvJmJREwkYhs3CjnzcuKff/4hom7dugm72zt37lSuXJmIvvnmG+UpUFpaGk9AbtWqVeGLX0Eppew2z49I+RuEFIePj0/9+vULmTmxYMGC3bt3q+nsrjQqmwF33q1bWcHz2LFj/MOh+ZkcPXo0TxgXSqZXr16JxWJDQ0PlKenvv/9ORGPHjhV2oOzs7CpVqhDR3bt3+Rb+IbG2thZwFF9fX11dXSJav369cuPNm9lmZoU6l4Ii+1A9GQ04d+6cgYEBEa1cuVIDwx04cICIDAwMUB+wCEaPHs3PWsRisa2t7cqVK4tTSErVl18yItahg5aTB3moy8XFRTPDXbx4USQSGRkZlfNTulIhMTGRJxdv3ry5+HtLSkp68+ZNeHh4UFBQpUqViOjMmTPF3y0UX05ODk+ztbCw2Lp1a56g9vXr17t27coPgx06dMjTD1koR44cadSoEREZGRkpg6HNmjWbO3ducHCwIEPExEikUgoJMc/KKl81SYvD15cRMTMzJlyKZ1FERblLpXTrVo3sbAHmkZycvHfvXicnJ2XknZ+SicXisWPH5ik4k5KS4u7uzl9QoUIFd3d3dXS2eP78+VdffcUriqxdu1bw/ZdQMTFMJGImJm9Pg3jrgIUL1TEaT9hycnJSx86L4NSpU0RkY2NTwGtevXq1d+/e+fNvNm3KVFunVq7MvviCFea+j0TCiJhYzP5LboTC4ova//ivEH5iYiK/OVf8PQcFBfGDz+zZs5UbExISeGeUzp07p5SoLk8gtF9++YX+6zavjiLJ/D4uTxQzMjLKXxswIiJi+PDh/OuPf+907tz5ypUrgs+k1CmbAXdetUpZ0fXw4cNENHToUM3P5ODBg0Q0bNgwzQ8Nn4pf+x04cIA/fPDgARFVqVJF2JwF3lqnZcuWyi0C1pNRtXnzZn7YPXLkiHLjmTPMwIARMYlE2NEgl+bryajat2+fWCwWiUQ71HwKHBkZyTMpVO/oQCEtXrxYR0enQYMG69evF3wlRGIia9CAETE3N2F3/An8/PyIyMzMLDo6WmOD8jzBr776SmMjQpHt3buXf0IuXLgglUrPnz/v5+fn7e29a9cuT0/PlStXLl261M3N7fvvv3dxcfnf//43YsQIBweHbt262djYNG3atH79+ubm5qohVK5q1aqtWrXS9puDXJMmTdLR0enfv3+e1NqoqChlr62aNWt+tNdWMWVmZk6YMEEsFpuami5atKholUwLpHj8eDAvAv5JFWnKuf79GRGbPFlrE0hJCQwO1pFKxcnJ/sLuOT09/dChQwMGDBCLxebm5teuXVN9lrdO5cWveKcBAStLvNfly5crVqyoq6v7QOtr3zSGZ2srb+MdOcKIWI8e6hjqiy++IKItW7aoY+dFwKv5zZs3L8/25ORkPz8/1dapHTu6EzETk4+0Tv2QVasYEdPRYbt3Czn/si07O9vc3JyIHj58yLfs3r2biHr37i3I/k+fPs1v4y1XqbL/4sULnpvs4OCgvpb1oF2BgYG6urrVqlX7pI7xRfDixQtnZ2d+DKlVq1b+muxnzpwxNjYWi8Xr1q3DelOubAbchw0bRkQHDx7kD/ninREjRmh+Jvv37yeikSNHan5o+FQrVqzIE6/hVfmETZcbP348ES38L89C8HoyqvitThubnteuvT3e7dnDRCImFrN//hF8wPJOW/VkVPGPsb6+vp+fn5qGyMnJ4XenHB0d8VVaBAsXLqR3Kz4VU0rKO6Vyr15lenpMLGanTws1wifIycnhjXo0s9JCKTIy0tjYWCQSXVDPsnEQlp2dnbGxMRVbhQoVKleu3LBhw4YNG4pEIhMTE6xyKCG+/fZbyreOYfny5TwFz9DQcO7cuZpJuOOdnBzU1jUxJ+fNrVs1pVJ6+VJd3YDLnvv3c7+npFItjC6TJdy+XU8qpaiovHFJoYSEhBBR27Zt82zknW+IqFu3bhpbIMh7Kpaj3onTpjEitnhx7sOEBKajw/T1mdCNXnJycvhFXMmpkc1PwFRPhK5du9auXTt+j5MzMTHp27fvH39suHqVFafx04oVuTH3vXsFmHl54O/vT0SqmQE8SXTNmk/rIVGAPXv28NQr1ZtAjx494uXUhg0bJmyvr5SUlICAgMWLFw8YMODw4cNXr14VcOdQeOfPnyc1lCr6kAsXLlhbW/PjiZ2dXZ4oFv+wFdxIvFzRLf7VTgkkl8uJiDfVJSKZTKb6UIszgZJs+PDhP/30k6+vb3Z2Ni+A9cUXXyxduvTw4cO9evUSZIicnBxeQEZZtPHUqVNJSUnW1taNGzcWZAhVv/76a1ZW9Q0bxjs6ii5fpkaNiIi+/JKePqW5c8nZmSws6L/yqiCAo0ePZmZm9uzZU7Ubm4bNmjUrKipKIpEMHz78woULfCGhsObOnXv58uU6deps376d3+IGLVIoqGdPCg4mfX0aO5aIqFMnWrCA5s+nr7+mW7dIpWSxJqxbt+7u3buNGzeeNm2aJsetU6fOjz/+uHjx4pkzZ16/fl312hJKILlcnp6ebmFhUatWLWNjYwMDg4oVK+rr65uamvKHlSpV0tfXr1ChgomJib6+vrm5ub6+vomJSYUKFfT19StVqmRgYJAnZD9q1Chvb+/Jkyfzzj1QAr158yYtLc3R0XHNmjUNGzbU9nSEoatbtUGDPY8e2b98uahChW6mpsKcMZZtzZvTtGkkkdDMmXThAmn4VOLZs8nZ2c9MTDpaWrprclxTU9N79+7Vrl17yZIlyiRBEF6vXvTnn3T2LP3yCxFRpUrUti3duEFBQWRvL+A4ly5dSkpKatWqVZ06dQTcbZG9ePHi7t27ZmZmXbp0UW6sUaPGzZs3dXV127dv7+DgwJeL8TzoYpo1i5KTafFi2rz5urFxNF/jCwXgQYChQ4fyh1lZWSdPniSiQYMGCTXEl19+mZCQMG3atEmTJlWsWHHEiBFE1Lhx41OnTvXo0ePQoUPTp0/fsGFDcYZ4+fLlpUuXLl68GBwcfP369ezsbL798uXLIpHo3Llzbdq0EeCdQAnWrVs3qVS6c+dONze3W7duqbYwgffQdsRfLXhzXl9fX/5w165dpKWV5jt27CAiZ2dnzQ8NRdC6dWsiOnXqFH947do1IqpVq5ZQaby8nozqnW011ZNRys5m/foxItao0Tu1MqdPZ0SsYkV2+7aaRi6PtFtPRkkul/MTrFq1agme7HnixAmxWKyrq3vx4kVh91x+CJ7h7uXF+LpgZb9VuZzZ2+e2DdPkIoS4uDhea0j5/atJ6enpvEXPtm3bND96CRQWFiZUbwBh8SKz5ubm8fHxAu42OjqaL9YWsPcgFNl7M9yTkpLOnj2r4ZmoO8Ode/FijlRKt2/XzsmJVetAZUZ8PKtalZmaKo4dK3qr8CJ4/XqDVEohIRUzMyPUN8p7M9wZY6dPn05PT1ffuO9V7jLc4+KYWMwMDZmyS+2sWYyI5Su0Ukxz5swholmzZgm72yLbtGkTEQ0fPjzP9osXL+Zp2CugZctuEZGBgcHx48fVNESZwUu7XL9+nT/kyQHt27cXfCB3d3ci0tfXV8Y0GGOXLl3iaQqfegGSkZFx8eLFFStWDB061OLdLB49Pb1OnTrNmDFjz549/LZB9erVy1H1qhIjf4b7jBkznJ2dhT3Nzu+9J3XIcM+jbGa485R23jSSiOzs7Ly9vevVq6fucaOioqpXr66np/ehmUAJ98UXX9y5c+fw4cOff/45EXXo0KFOnTrPnz8PDg7u0KFD8ffPqxsp09uzsrJ4R18eHlUHPT06eJB696arV2nQIDp7lvg9SImEoqLo0CEaMICCgqh2bTWNX46kpKScPn1aLBbzeo5aJBaLd+7c+erVq4sXL9rb20+fPp33DSciniL63p8yNTV975FKLBbzBbNEFB8fP3bsWIVC8fvvv/PG91B8jx8/bt26dZMmTW7fvl20PYwZQ35+tGsXffUVXb5MBgYkFpOXF7VrR69enf3zz4jvvvtW2Dl/yNy5c+Pj4x0cHPhtbw0zMjLiaYOzZ88eNmyYmZmZ5udQchw5cmT06NE9e/bk+VMlB2NswYIFRDR79mweHxeKhYWFh4fHpEmTXF1dHRwchN05CMLMzKxnz57qHmXy5MleXl6enp5jxoxR91hKNWsuSkk5Gxyc7un58/r1f2ts3NLL3JxWroycNWugq2uag8M95YmKWt29e/fEiX969zapV8/TwKCBBkbMo0+fPuoeIiQkpGvXrtbW1pcuXVL3WCVU5crUpg3dvElXrlDPnkSUM/rzxDqX0zqH1Bd0HP712rdvX0H3WnT8Znb++aj1jP3nn9vExf28fPnyoUOHHj58eMCAAeobq1QLDg5++vRprVq1bGxs+Bae8D5kyBDBx1q4cGFycvLq1atHjBhx9uxZPmLXrl337ds3bNiwX3/9tWLFirzc/4dER0dLpVJlJntmZqbyqYoVK3bs2NHW1tbOzq5r167KtYbDhw8fPHjwqVOn+vfvf/HiRUtLS8HfFxTegQMHoqKifv/9d7WeDGvmpK7U03bEXy0cHByISH0ljPNLS0vz8PAwNTWVvNuMkjeunDBhgsZmAsXBE1Jq1KihbOH13XffEdHcuXOLv/Ps7OwqVaoQ0d27d/kW/kVrbW1d/J0X7PVr1rgxI2IDBzJlC9i0NNalCyNi7duz7Gx1T6Hs27lzJxH17NlT2xPJlZiYWLt2bcFXuVasWNHOzk6tPe7KvDwZ7rw/c5MmTYqzz5QU1rQpI2I//PB248mTD3R0dAwMDIKDg4uz80IKDQ3V1dXV1dVVQ1vCwlIoFHZ2dkQ0e/Zsbc2hhHjz5k21atWIaHcJ62h24MABIrK0tEx7XzndlJSU2NjY8PDwu3fvSqXSM2fOnDx50tvbm8dPly9f/ttvv7m5uU2fPt3FxWXkyJF5VhQpFApeAm7SpEmaekPwfu/NcNeMcePGEdHff//NH2omw50xFh//hC/x8VTtqgEfJpPJeOG73377TQPDZWRk8JWsixbNUPdYH8pw1wCpVJrn4qLcZbgzJl/yS+Zou+QLub1kZLLk4GC94GBdmSy54B8svOjoaN44pIQ0oszJyalUqRIRaX5lm0Kh4FUEjYyMhO18VpbMnz+fiKZNm8YfKhSK2rVrE9HNmzfVMZxCoRg7diwRVa1a9f79t6uIdu7cyYu8b926VfX1MpksNDTU09PT2dnZyspK9dJPR0fHysrK2dnZ09MzNDS0gHX/aWlpvMtXq1at4uLi1PG+4L3yZ7jXqlWLiJ4/f675ySDDPY+ymXnNi0lppoSrXC7ftm3bggUL+PduWFiY6rPIcC9d2rVr17Bhw4iIiKtXr3722WdE9MUXX6xfv/7w4cNLliwp5s4DAgLi4uJatWql/BrLk/CuPtWq0YkTZGtL//5LU6fSpk1ERMbG5OtL3buTiwsdP07t21PdukRECQkklZL6U3DKGo39NgupYsWKRkZGjx49cnR0VNaUz8rKSk9Pf+/rU1JS+PEqD7lcnpyczP/+4sWLmP+zd+dxNWdvHMCfe9t3RSVb9n1L9kIIg2xjG0uYH7Jnn6yTXRiUZYjBhLFkmwljyV7Wki1CsiXaS/t27/n9cXLdCUl9772Vz/vlNS/3dPue03Td+/0+3+c8T1SUlZUVCmQXN/r6tG8ftW1L69eTnR3xapDdutWeOHHixo0bBw8eHBQUZGBgoNA1TJ8+PScnZ9q0abxnl0qIRCIPD48WLVqsW7fuf//7X61atVS1EpUrV67cqlWr/ve//02dOrVr167lypVT9YqIiCQSCU9vX7hwoXwF9tjYWEtLyy+9O+VDLBZPnDhR9lAkEm3ZsqVp06bbtm0bPny4LbqUgBIZG1f19PQcOHDg1KlTW7dujTq2X6WmprZ+/fpOnTqtWLHC0dGR1wRTnJkzZz548KBWrVrTpy9V6ESgcsmTWj57tkxfX1SHZhCRmpqBrq51auqN1NSrhoY/CDIFL9bRsWNHQeqhF93169cTExPr16+vhD39eYhEoo0bN0ql0i1btjg4OPz7778dOnRQ8hqKvzz57Ddv3nzz5o2lpaUium0RkUgk2rZtW3R09L///tulSxd/f3/+whg+fHhiYuKUKVPGjh2roaFRvnx5nsPu5+f3/v172bcbGBg0btzY1tbWxsbGxsaG30v+Kl1dXR8fn/bt2wcHB/fs2fPcuXOo7g1QCgPB169fv3//fvny5adMmbJ9+3Z+n01Bzp8/P2vWrLt37xJRixYt1q5d265dO/kn8BIBz58/Z4yhN06J0KdPn/Xr1x87dowH3Dt06MDvDD9+/Lhu3bpFObLy68nIq1mTjh8ne3uS/1gvW5bu3CFNTTIxoYYN6fJlEonoxQv65Re6c0cJiyo9ik89GZn79++HhoaWK1fu2LFjQt3zu3LlSocOHYpbhQrgrK1p2TL65RfavPlwixa2PL9gzZo1fn5+d+/enTp16s6dOxU3++HDh319fU1MTBbwHmWq06xZM0dHRy8vLxcXl6NHj6p2Mao1atSoffv2nTt3zsXFZceOYlHjYs+ePY8ePapatSpPf5bR1tbm0fb8W6QaGBhoamoaGRlpa2vr6OgYGhp+GqGrU6eOi4vL4sWLx4wZc/fuXeXUqQDgBgwY8L///W/nzp1Dhw4NCAjQ0dFR9YqKu44dO/bv3//IkSMLFizgja8U5OTJk1u2bNHS0jp48KCibz+DyunrtxeJ1FJTb0qlqWKxHhEZGHRMTb2RnHxRwIA7Fb96Mj/8IMxP961EItHmzZslEsm2bdt69ux56tSpPCGR79zLly/v379vZGQkuxXB4+8KvWzU0NA4fPhwt27d/Pz8eMzdzMyMiCZPnvzu3bsVK1ZMmDAhJSVF9nwLCwseYbe1tS10clXZsmXPnj1ra2t748aNvn37njhxopjckQJQGVWn2AvswIED/OJKX1+fiEQi0c8//xwVFSX4RCEhIbLIaeXKlb28vPLsr3n06BEvYmtubk5E7du3v3fvnuDLAMFduXKFiGrWrCkbGTlyJBW5r6kK68nI+9I/BWNjZm/P+N6y27dZ06bKXFRpUNzqyTDGeNxz/PjxAh4zJyeHn6vJXsZQCIooKcNJJMzJyYOIunTpIiv78/TpU/6BuHfv3qJP8Vnp6enVqlUjoi1btihoim8SGRnJC7jLd4v6Pj19+lRHR0ckEp07d07Va2FZWVnVq1cnot27d3/61eTkZKEmyszM5DvJFi9eLNQx4Vt9hyVluJSUFJ6fMXnyZOXMWNK9evVKV1dXJBL5+fkpaIo3b97wk3APDw8FTZEHSsqoXEhIi8BAev/+LH/4/v3ZwEAKCWkhyMElEgkv2hYaGirIAYuO1+lW7WmPRCIZPnw4ERkZGd26dUuFKylu1q1bR0RDhw6VjdSrV4+IlNBFPDEx0crKqmXLlrGxHxt65+Tk8J3QrVu3njt3ro+PT0xMjICThoaG8gjYkCFDUIZUCVBSpjgrVWUBPDw8hg4dmpGRMWbMmLdv37q6umppae3atatOnToeHh6frZZQCHFxcVOnTm3UqNGhQ4f09fVdXV2fPn06YsQIWQL7u3fvxowZ06hRo5MnT5qYmHTq1MnMzOzKlSvW1tbTp0+X360DxZCNjU358uWfPXsWHBzMR/jN52PHjhXlsCqsJyPPzOyLX1q9mhYupNhYJa6mFClu9WSIiBdKFnZJampqvAd9Ef85gIKIxbR06U/ly5f39fX97bff+GCtWrX4if748eNDQ0MVMe9vv/324sWLBg0ajBkzRhHH/1bm5uZz5syhD1VuVL0cVapVq9b8+fMZYxMmTJDveaUSnp6ez58/b9CgwdChQz/9Kr8tJAhNTc2tW7eKRKIVK1aEhIQIdViAgtDT0/P29tbW1t60aRNPrYD8ValSZfr06YyxadOmSaVSwY8vlUpHjBgRFxfXvXv3KVOmCH58KJ4MDDoSUXLyRf5QX99GJNJKSwuSSBKLfvDAwMCYmJhq1arVrFlTfjxWRddRMTExd+7c0dHRUW1euVgs3rVr18CBA9+/f//DDz88ePBAhYspVvLUkwkNDQ0JCSlbtqwSCt8ZGRmdOnXq4sWL/KYjFxAQ8P79e3Nz8+vXr69YsaJXr17CFh6sWbPmmTNnypQp0zk8nJydBTwyQIlTSgLuEolk8uTJ06ZNY4y5urpu377dwMBg0aJFvIBUYmLitGnTmjdv7u/vX5RZ0tPTV61aVaNGjQ0bNohEIicnp7CwsEWLFsk2LKelpa1atapu3bo7duwQi8VOTk6PHz/et2/fkydPnJ2dicjd3b1GjRoeHh6KOKEEQYjFYgcHB5ILKXbt2lVPTy8gICA8PLzQh1VtPZmCqFmTRo0iFxdVr6MEKp71ZB4/flyuXLn27dvzkZiYmKIckDHG/yLI/SdQHDMzsz///FMkEs2fP//GjRt8cOzYsUOGDElJSRk2bFh2drawM0ZERKxatYqI1q9fX3walsycObNWrVqPHj3axntWfMdcXFyaNGkSGhpa9E4kRZGenu7m5kZEy5YtU1NTU/R07dq1GzNmTGZmJt/lo+jpAOQ1atRo5cqVRPTzzz+/fv1a1cspAebNm1elSpXbt2/v3btX8IMvW7bswoUL5ubmu3btQnnP70eegLtYrKun15IxSUqKX1EOm5KScvr06ZkzZxKRnZ2d/Jfu3LlTt27dNWvWFOX4hXP69GneM1zlZazU1dX379/ftWtXLS2txMRE1S6mmIiLi7t69aqWlpas4A8veOjg4KCc02Zzc3P5rjmklII2TZo0uevjMzowULx5My1erLiJAIo7lebXCyMlJYUnXWppae3bt+/TJ/j4+PBdzETk4ODw+vXrb51CKpV6e3vzLfNEZG9v/+DBA/knSCQSb29vWZcSBweHT7eY3b17V3bbuUWLFjdv3vzWZYBynDx5koisrKxkIz/++CMRbdq0qXAHLCb1ZPJhbMySklhaGqtenW3dipIy34ZXHS3O9WSkUmn16tXr1KlTiHe/U6dONW/e3NXVlT/MyMjgxTp4awooBMWVlJGZPn06EdWoUeP9+/d8JCEhoWrVqkQ0b948ASdijDk6OhJR//79hT1s0fHrGRMTE/ldtN+nGzduiMVidXX1u3fvqmoNK1asIKLmzZvnqb+nOImJibxftEqqmsB3W1KGk0qlvXv3JqL27dvn5OQoc+qS6NGjR1u3biUic3Nz2ceWIG7evKmhoSEWi319fQU87FehpIzKSSTJt29r3L6tnpOT+4qKiPg1MJDCw6d/66HS0tL8/Pzc3Nzs7e1lBanNzMwsLS3lyybs3LlTJBLx3t2C/RgFM2zYMFJixaSvmjdvHhHxnSuwa9cuIurevbtshDeKO3r0qKqWxOueXbp0SeEz/fMPU1dnRGzdOoXP9R3z90+vUSPjxx8/1mZs3Tq1Ro2MN2+ylb8YlJTJo7gkoxVaXFxc7969r127ZmJicuzYMVk6p7xevXrZ29tv2LBh6dKlJ06cuHjx4qxZs+bNm6epqVmQKW7cuDFz5sxr164RUbNmzdauXZvnhvaFCxdmzZrFT62aN2++du3azy6jSZMmV65cOX78+KRJkwICAtq0aTNs2LB169YJu4UHiq5z586GhoZ37tx58eIFv8vSr1+/o0eP/v3335MmTSrEAYtJPZmv0tEhd3dycqLy5VW9lBKlGP4289STCQwMfP78uYWFBS/o9k3EYnFgYGBmZiYPE/MEDW9v7+PHjztjk2BxtWrVqqtXr966dWvs2LEHDx4kojJlyuzdu9fOzs7NzS04OJiXViy6mJiYf/75R1tbWyUpXfnr169fp06dLly4sGzZsvXr16t6OarUqlWr8ePH//777+PGjbt27VrhGmEVRWJiIq9x5ObmprQMUyMjo3Xr1v3000+zZs3q0aMHD74DKI5UKpX94xKJRH/88Qc/8/fw8JgxY4Zq11ac5eTkDBo0KCoqqmHDhsHBwXZ2ds2bNxfkyBKJxMfHJzs7e+7cufb29vJfkv9lQakkFuvr6bVISbmWkuJvZNSDiAwMOsbFeamplSnIt2dlZd28efPChQsXL168ceNGZmYmH1dXV2/dunWbNm3OnDnz6NGjTp06Xbp0iZ9T/fzzzxKJxMnJaeLEiSKRaNy4cQr74f5DKpX6+vqS6jqmvnv3zsjISD6Hmq+n+HSUVa089WSioqJu3rypo6PTtWtXlawnNDT08ePHZcuWtbGxUfhkvXvTzp00ciTNnEnGxjRqlMJn/C5JJNphYVShwsf+tOHhuhERhB2exYKqI/5FEhoaWqtWLSKqVq1aSEjIV58fHh7Oc/GIqE6dOl/tKxIREdG3b1/+/EqVKnl5eeVp+/D48WNZSKtSpUqenp4F6QuRkpLi6urKw/0mJibu7u7oJlHcDB48mIjWr1/PHyYkJGhqampoaMTFxRXiaP/73/9IrntbRkaGkZERFadOOzzDnevdGxnu3yApKUlbW1ssFhefG7n37t0jonLlymVn597Wnj17NhE5OzsX4mhZWVnGxsZE9OTJEz6yf/9+KmYZ/SWLEjLc+WH19fUtLS2jo6Nlg1ZWVmb5dHIolMqVK8vvB+LevXun/KTOiIiIPCNbtmwxMjLav3+/kldSDL1//75SpUpE9Pvvvyt/dp7s1r59e+VPzbOMf/rpJ+VP/Z373jLcIyMjGzZs6OPjIz84depUfX39CxcuKHTqkm7jxo1EVL169StXrgwaNEjYT6jq1avr6upGRkbKpktLS3N2dlZ07i0y3IuDiIj5gYEUEbGwgM+XSrNTUq69e7f8339HyoeP1dTUrK2tZ86ceeLEiaQP10vR0dENGzYkosaNG8tvpPPw8CAikUiktHe/W7duEVG1atWUM92nRo4cqa2tfejQIf4wJiZGLBZra2unpqaqaknFR1pamp6envx1oqenJxH17t1bVUvi9f1GjRqlvCk3bGBETEODnTypvEm/J5cvMyIm1zOVVazIiJgqeqYiwz2vEpzh7udHy5fnPHsW1rJly+PHjxckiFCpUqXdu3ePHDlyypQpISEh3bp1c3Bw2Lx5c5UqVT77fF1dXX9/fz09vcmTJy9YsEC+o1dcXNyaNWvWr1+flZWlr68/c+ZMFxeXAtZN09PTW7Ro0ZAhQ5ydnc+ePTtt2rQ9e/Zs2rSpdevWBfzZQdH69et38ODBY8eOTZs2jYjKlCnToUMHX1/fkydPyu7ZFFB2dvbff/9NcunGZ86cef/+fbNmzfJ02lGh9espM5MMDIiI/viDnj9X9YJKjr///jsjI6Njx44WFhaqXksunnE/YMAAWWVAXlujcDn4GhoaPXr0+Ouvv3x8fGbNmkVEPXv21NbW9vPzi4mJMTU1FW7hIKTatWv7+PhYWVmVKVOGj3h7e9+5c0dXV3fx4sXlBdrGkpCQsGjRojdv3vj7+8taP23btm3mzJnr1q0bO3asILMURFRUVL169Tp37rxv3z7eWCUnJ2fTpk3v37+PiIhQ2jKKLUNDQw8Pj/79+8+ZM6d3796F2OxSaDExMTygxq/xlGzjxo0XLlw4cODA0KFDeflBAMFJpdJhw4YFBwdv2bJF9jJ79OjR9u3b09LSIiMjVbu84iwhIWHx4sVEtHbt2nbt2jVr1qxTp05Hjx61s7OTb/FXOFKpdNOmTWlpaRMnTjxy5AgfDAkJ2bp1a3Z2dufOnXv27FnUHwCKsXLlxpuYDNfWrpuV9SYiYnZa2l11dZPy5efzhPcPpOnpIampV5OSziUl+fKWqmXK6EokkurVq9vb29vb23fu3NnExCTPwU1NTc+fP9+xY8f79+/b29ufP3+eP8fZ2VkikcyYMWP8+PE6Ojq82ItCnT59moi6d++u6Ik+izF29uzZjIyMBg0a8JEzZ85IpVI7O7s8dcO/T2fOnElNTW3durXsOjFPwrvyqWABU6ZQRAStWkUDBtCZM6TS1r4AyqbqiH8hHTjAtLQYEZsy5Xohbp9mZWW5u7vzALqurq6rq2tGRsZnn3n+/Pl3797Jj2RmZrq7u/MMZXV1dScnJ/m8iW/l4+PDw/0ikcjR0VE+FRFUKDk5WVtbW01NLSoqio/s2bNn7NixgYGB33qomJgYR0dHGxsb2cjw4cOJaOXKlYItt8hatmQaGszPT9XrKIH4pXWe+v7h4eHDhg2TZcEoGS/Md/78ef6QZ75YWFgUeicNL1DTtm1b2Qg/rd+5c6cAy/3+KCfDPY9nz57x4vuC/9Z4w4BmzZrJXmAHDhwgIjMzs4SEBGHnygffSCSfMcTLyNSsWfNLn+/fIb5pT8kF96dMmUJEffr0Ueak8tatW0dEVapUSU5O/vqzQSDfVYY7b1FgZmYmu2RIT09v0qQJEY0ZM0Zx85YCkydPJqJOnTrJRnin6zp16giy/ff169d8l56np6dscPXq1URkamr66b4ooSDDvVgJDe0VEfGrVJqZmfk6M/MlY9K0tHtRUe7PnvW+c6dMYCDJ/gQH13v1amJ8vHdiYoEuySMjI/lZd6tWreTbD/A6e2pqakrYY8cLg/zzzz+KnuizgoKCiKhy5cqyEZ6aJtsm/p0bNWqU/FU/jzCIxeKihI+KIjIyUiwW6+jopKSkKHViqZSNHcuImJERCwpS6tTfAWS4F2clMuDu7s7EYkbExo5l2UXoBPDmzRtZtnKtWrX+/fff/J/PW6fK+q/a29vfv3+/8NN/kJqa6urqynuwGBsbu7u7o71ScdCjRw8i+uOPP4Q9bDGsJ/PiBROJmL4+S0tT9VJKoH/++cfAwGD48OHygx07diSirl27ZmVlKXk9wtaT4VJTU3V1deW3Q/Lr4V69egmw4u+P8gPuWVlZfAfVwIEDBT94amoqv238559/ygY7dOhARDNnzhR8us8KCgoSi8WampqywkdxcXE8O/LEiRPKWUOJ8PbtW77j4dixY8qZ8eXLl1paWmKxWIX9WiUSCX/9z5gxQ1Vr+A59PwH3W7duaWpqikQi+XebiRMn8jd2Vd16LxEePXqkoaGhpqYmu556//49v1Y/ePCgULPwbX/a2tr37t3jI1KplOe229nZKeiaCwH3YuXhwwZxcR8D3y9e/CwfZH/woMbLl2Pi4v7KyipMhCg8PJwHB9q2bSv/7/3XX38lIg0Njb///luAn+ELEhIS1NXVNTU1VfVWw283jhs3jj+USqU8lbsgxX5LvZycHL4VWPZ/w9vbm4jayUdGlYsXtFFNDkRODuvfnxGxmjWLFMKDTyDgXpyVsIB7Tg6bNIkRMZGIuboKc8wLFy7I9kA5ODi8ePHis0+7ceOGrLNE/fr1Twpdgurp06eyVidWVlZXr14V9vjwrbZv305EPXv2FPawvLyMtbW1sIctitWrGREbMkTV6yiZbty4wbdMLl++XDb4/Plz/mEzdOhQqVSqzPXwdOPx48fLRmrUqEFEfkXbv8DrIG/dupU/jIqKUlNT09LSQiihEJQfcOc3XapVq5aYmKiI4+/Zs4eIzM3NZeldd+7cUVNT09DQUMIVvlQqbdeuHRH98ssvssHx48crOqe1hOLVXSwsLBT0YsiDhz7z3JJUvnv37vG4XiG2qUHhfCcB9+TkZN5Navbs2bLBEydOiEQiLS2tIOTx5Yv3VJw0aZJshHeXtbGxEfbciW+BatCgQdqH1JKoqCh+nubm5ibgRDIIuBcTGRmhUmlmbOzOoCD9Fy9GJCf7Mcaio7feu2cRFjYwJsYzM/NF0Wd59epVtWrViMjW1lZ+KxXvX6KpqZmnu4OA+P0k+T0iSsYTLI4ePcof8pdf1apVVbWeYuXSpUt5zvCDg4OnT5++a9cuVS2JJxSqbI9yRgYbMIDJh7mUnppWKiHgXpyVpIB7Sgrr1YsRMS0ttm+fkEfmFWYMDAzoQ4WZ9PR02VdfvXrl6OgoEomIqEKFCp6enorLQPfx8alatSp9qDAjq2fyqb179546dUpBywAmF1KU3yFYdLyWn4LO7wunRQtGxD6cKcE38/HxUVNTE4lE8udPgYGBvGjV/PnzlbkYwevJcLt27SKibt26yUZ4wW5ZiyQoOCUH3M+cOSMWi9XV1a9du6agKaRSKX89zJ07VzbIC7gLfs/yU/v27ePFHGQR5ODgYHV1dXV19QcPHih69hJHIpG0bduWiKZMmaLouZ48eaKurq6hofHs2TNFz/VVvAVF48aNlb/x6Pv0nQTc+UmdtbV1ZmYmH3nz5g3fXuPh4aGIGUsNnoBibGwcExPDR0JDQ/mGmICAAGHnSklJ4WdHkydPlg2ePn1aJBIp6MMRAXcVysp6Gx/v/fKl0/37VQMDKSnpImMsKysiMvK3e/csoqM3SaXCX8i/fPnS0tKSv9WkyW0ZdnFx4TF3wXP1uDFjxhDRqlWrFHHwr0pKStLQ0FBXV5edgC1btixP3s/3bPr06UTk4uKi6oXkkpXMVX0RY6mULV/OatVi9eqxmjXZnDksJ4fFxTETk4/PefiQ1a+vuiWWJJ8G3KtXZ5qa7M0bFSwGAfc8SkzA/d071rw5I2ImJuzyZYVMERERIQus16xZ88SJE/Hx8S4uLrzYi66urouLixLSOXmFGd7zrUyZMp+tMBMVFcV3hTs4ODx//lzRS/pu8axJAbe1op5MabVlyxa+b/T06dOywX///Ze3Ld24caNylnH37l0iMjU1FbCeDBcbG8sDZ/Hx8Xxk7dq1PIW/iEf+Dikz4B4dHc339q5YsUIRx5cJDAzkRV2ePn3KR6Kiovjb3VfLtRVFWloav8SVBdcYY126dCGiadOmKW7eEu3BgwcaGhpisVjRe+kGDBhARBMmTFDoLAWUmprKd/2vWbNG1Wv5LnwPAfedO3cSkb6+viyUKZFIOnXqRETdu3dX8v62kiUzM5NHgTds2CAb5GVexo4dq4gZ79+/z6+t5Ot7zJw5k4iqV68ubG4NQ8Bd6bKyIuLi9r58OfrBg+ry5WLu3jWNjz8ge1pCwtGQkBYKWsPTp08rVKhARF27dpWl7kmlUt6oQEdHR5YNIyBe009WLknJjh49SkTt27eXjfBrZ6WVrSvmlixZoq+vv3nzZlUvJBcvaCP/+1KZAwdYkyaMF7KPj2dt27JNm1hsLNPT+/icBw9YzZqqWmDJ8mnAXYUQcM+jZATcQ0NZrVqMiFWrxhRdEEy+wgyvFCEWi0ePHq24vjqfFRoays87+elannIQ2dnZ7u7uvAOejo5OnpR8EMqcOXPEYjHJ0dLSMv4CS0vL6p9Tq1Yt6w/4vuN69eqp+if7aNUqRsQQNS06Hto2MDCQ30L+xx9/EJGamtpRpewgmD9/fp68Eh5gKmI9GY4Xpv/rr7/4wxcvXhCRkZGRLK0PCkhpAXepVOrg4EBEHTp0UEJrkJEjRxJRv379ZCO8aVjdunUVl1Ps6upKRFZWVrI9HLzHr4mJSWxsrIImLQXmzp1LRI0aNVLcryYwMFAkEmlra4erZEfr55w+fZqf2oWFhal6LaVfqQ+4h4aG8q2xu3fvlg0uXryYiMzNzVXVEK+kWLdmDRHVr19flh/g6+vLT6JkjWcFxztpGxsbv3r1io9kZWW1atWKiAYNGiTsXAi4K0FUVFRg4D+vXk0IDq4rH2S/c8f42bM+UVHuaWn3GZMyxhITfbKzoySS1FevJr544ai4JT1+/JgHm3744QdZw3apVDphwgT+6XPp0iUBp3vw4AERlS9fXlW398aNG0dyRTXfv3+voaGhoaGhnJp1xR+/DDQyMiom5cX4lqy1a9eqeiGMdejADh/++PDCBdawIQLuhYaAe3Gm4oD7wYNM/nNn+3YWFMRWrWJ79+aOZGWxiRNZu3aMiLVqxb5cYUVIPJytqalZsWLFDh063LlzRxmzfs6xY8d4hZm6deuOHDkyzzno27dvZSn51atX9/b2VtU6S6X09PQGDRrwDGUBWVhY6OnpCdJuVxB84wgSEYpOKpWOGDGC/4rlW0HwgKCOjo4SGjMoqJ4Mt2HDBiIaMGCAbKRJkyZEJJ/UDwWhtIB7QMA2HR2NcuXKKeeGcWRkJL8NfObMGT6SmZlZp04dIlq/fr0iZgwPD9fT0yOiyx82vmVkZNSsWZOItmzZoogZS42MjAz+q1Hc1gdenVm+sH5xMHToUPpvdSxQkNIdcM/IyGjWrFmeQK2/v7+6urpYLPb19RVwrlIoMlJSpcrB9u3PfviwyM7ObtiwIRH99ttviptWKpXyhjTt27eX3YR+9uwZ/+SS7/tddAi4K0hycrKvr6+Li4u1tbVYLG7btgoPsgcF6T19av/unVtysp9UmvdGckTE/JCQVsHB9V68+Dk7Ozo7OzYh4Wh2tkKqaty/f79cuXJE1K9fP9ktbalU6uTkRER6enpXrlwRai6e1vDzzz8LdcBvxSvX3759mz88cuQIEdnZ2alqPcWNRCL56aefiMjU1FTlXWSzsrKMjY2JSLYVVZUqVWLyVR8jI5m2NouJYWIxa98+90/z5gi4FxAC7sWZigPu48cz+cvwPn3YgQOsbVtmaMh4oZT0dKapyV6+ZGPGsNRU5S0sKiqKfyhmq7qHclpa2q+//mptbc1vkK5fvz7Pkq5cudK4cWMezLW3t1f5u3mpwXvu1axZU76OUEZGRvwXvHz5Muxznj59GvhBQEBA//79iahChQqy/BoVQj0ZYWVlZfFaFjVr1pSvjjdx4kQiKlu2rEKvdr5UT2bq1KmCHP/NmzcikUhfX19Wm5IHjseNGyfI8b8feQLu4eHhtra2Q4RuW5yaevv2bc2AgAa+vgopG/pZK1asoP8mLR4/fpyIypQpo4h6kYMHDyYi+f91vHhogwYNVP7ZXfxdvHiR93VUxPuSn58fP2kpbvsMoqKiTExMiAg5CoqmwoD7ypUrbW1tZRWTFRFw55V5a9SoIStFkpCQwFNk5s2bJ+BEpdP//seIWO/esgGee16jRg1ZUrCCREdH86IfS5culQ3++eef/KJPwDdDFQbcnzx5YmtrO3r0aNlISQ+4JyUlnThxYubMmc2aNZPfeayrq9u1a9fw8NUpKdel0q986EskH3uZhob2Cgyk2Njd+Ty/KO7evcs/aAYMGCA7G5FIJMOHD+efjLdu3RJkIr739MCBA/KDr1+/Vk4K86NHj4jI3Nxcll/PbyqsXLlSCbOXFFlZWd27dyeiypUrq/ban+8iatSokQrX8FHduuzmzY8Pnz1jpqYsNpbp6rI3b3L/nD+PgHsBxcayo0eZcPfyigQB9zyKacB9wgTGG63xgLvy8ZJknTt3VsHcn/P69WtHR0d+elGnTh1Z/iCXnZ3t4eHBq7o3azZxwQKl3pwolXhRAi0tLcG3gGVmZnbu3JnHpGTlsFUF9WQE9/79+6ZNmxJRq1atUj/8O8zJyenTpw8RVatWTXHbzL9UT8bf31+oKZo3b05EPj4+/OG9e/f4qbYgGfTfjzwBd0WQSFKCg+sEBtLr11MVN8unMjMzeeEs+YKV/EpD8A5aV69eFYlEOjo6L1++5CPv3r3jiYpnz54Vdq7SilcBsrOzE3w3eocOHYhoyZIlwh5WEEOHDrW0tLx+/bqqF1LKfTbg/urVqzVr1ii5EJngAfdTp06JRCINDQ35VxFPY2zRogW68n5FUBATi5mmJnvyhA9IY2L6NW4sf3ahUJcuXVJTU1NXV5c/O+KR0GbNmgn14vxSwP23335TfnppyQ24e3p6tm7dWn63sba2tp2d3eLFi69cuVLwX9aTJ51v31bPysoNAEVGrgsMpBcvFJgYHhQUxLOJBw0aJNtOkZOTM2jQIDU1tT179hT6yNHR0d7e3s7OztbW1gYGBpqamrIEcybXHcHV1bWIP8JXrVu3johGjBghG+E9dYpJ+ZTiIzU11dbWlqeDqDALgfcSWLhwoaoW8B+DBjE3t48Pt21j3bujpEwhvH7NiJinZ+7DP/9kcv8iFe7u3bu///57nkEE3PNQfcDd0ZH99VfuH2vr3ID79eusZUt2+LDKAu48M7S4vCV94Ovry0tGEJGDg0Oe26SRkZE///y/+vVTiZilJVNKyejS6dWrVzwxQUFNThITE/mmhPbt2ys6lyd/qCejCBEREfyMs3fv3rKT7NTU1NatWxORtbV1cnJy/kcoHIXWk+GWL1+eZ+9qjRo1iEgJ1XJKEyUE3F+8GBkYSA8fNpRIlL17hW8oli+hHhISoqGhoaamdvfuXaFmkUgkLVq0IKJFixbJBvlt6f79+ws1S6kXGxtrZmZGRF5eXt/6vSkpKfHx8WFhYSEhIYGBgZcuXTp79qy3t/eePXsmTZpEROXKlVNCn/n8xcfHt27dWj6ZPTk52dzcnIiOHz+uwoV9Dz4bcB80aBDfBKbMHQbCBtyjoqL4xeTq1atlg56enjxx9Tnfnwv54HVC5YtNTZjAtLRuCH1TNh9z5szhCadxcXF8JDk5mYcpZ86cKcgUnw24+/v781s1zs7OyixyXXID7vw3paamZm1t7eLi4uvrm1aoPbmhod0DAykubh9/mJp6JzCQ7t+vIuhi87p+/Tpv8zBq1CjZqXhWVtbFixe/9VBxcXFHjx6dMmVKgwYNeC1ZTktLi4gsLS1lmQeMsSNHjvBbFMuWLRPqZ/ksXjhO1tvp4cOHpNKC8sVZYmIiz8dq2bKlgi4D8yeVSitXrkxEgYGByp/9M+7cYeXLs99/Z/fusV27mIUFu3ULAfdCeP2alS3LqlbNrbyttIB7XFycs7OzmpqamppanlLJCLjnofqAe9eubOHC3D916uQG3G/cYIGBrEoVFhOjmoC7jY0NEf37778qmDtfWVlZ7u7u+vr6fPOjq6trnohtQABr1YoRMSLWqRN7+FBVKy2psrOz27RpQ0Q//vij4mZ58+YN/9gbNGiQqrKDX7x40aTJFHv7YNSTEdzDhw95Yot8Vm9MTAxP/u3evbvg9S4UXU+G47tHy5YtK5tl5syZRDRr1iwBZyn1eMB9wYIFCjp+fPxBXs80Pf2RgqbIX9euXYnI2dlZNjJ16lQi6tixo1BTbN++nYgqVaqUkpLCRwIDA8VisaamZmhoqFCzfA92795NRGXKlPntt988PDzc3NzmzZs3a9YsJycnR0fHgQMHdu3a1c7Oztraul69etWrVzcxMeFnIPmrVKnSwIED88x169YtJV+H82CNfKR1yZIl/IoXEQFF+2zA/dy5c40aNeIvks6dOyunnw0PuAvy/iORSHjhuK5du8pO3h4+fKirqysfeIIv2rePETEzMyYLNwcHM3V1pq7+n3q+CiY71Ze/QRsQEKCpqSkSiQS5G/fZgHtsbCyPUPBTKXd3dyX0M2clOeD++PHjU6dOFT1AGRm5OjCQXr4c+2FAcvduucBAyshQ7B2yq1ev8k/M0aNHf+uHTkpKiny1etnHq66urr29vaurq6+vb0JCQvv27T+NuXt7e/OYu+Kqu6Slpeno6IjF4qgPHfbWrl1LRCNHjlTQjCVdREQEL3nfuXNn5efbBQQEEFHFihWL0cnPo0fMxYX168dmzWK8Y2JKCpsy5eMTIiKYwq6VSo3Xr1m1amzVKjZ8OGNKCbhnZWV5enryThXq6upOTk4xMTHyT0DAPQ/VB9w/W1Lmxg3GGJs4kc2cqYKAe0ZGhra2tkgkkiU+FDcvX7788ccf+eduvXr1zp27KP9ViYR5ebFy5RgR09Bgzs5M1UlmJcmsWbPypL0oyIMHD3gVIKGyab7VqlWriGgoCsooxuXLl7W1tYlozZo1ssFnz57xfFL52pqCUEI9GY7n0V/60O3a39+fiKpVqybsLKXbjh07qlevrqur6+jo6O3tLQsZCyIjI+zOHcPAQIqJ+UPAw36Thw8fqqurq6ury6Jp8fHx/Mzs8OHDRT9+UlKShYUFEe3fv5+PSKVSfpsc1ZMLoWvXrrxd4TfR1dU1NjauVq1anTp1rK2t27dvb29vP3DgwGHDhvGsN0NDwzdv3shmmTVrlkgk2rlzp9J+rqioKB7pkNX9iI+P57dCL1y4oLRlfLdWrlxpaWnZqFGjPFtbsrOz81yqKaLBg0x4eHiPHj3KlSunpqZmb2/v7u4uCw8VgpubGxGZmprKriQzMjJ43uL//vc/gZZceqWlMUtLRsT+kPt46tKFETFBkwMKIiwszMjIKM89oU9/v4UQHBzs6upao0YNQ0NDfX19d3f3PDkWt2/fbteuHX8jtbKyErCF5qf4PzcDA4MWLVoUh95RqpKaGhAYSA8e1JCNPHv2Y2AgxcTsUPTUfn5+vLv7FPlI4hekpqb6+vq6urra29tramrKPnDV1dVlOf55YrXv379v2bIlEdWqVSsiIkI2/ueff/IwvfxeHAH9+++//O61bIQnW+zbt08R05UOz54947HIvn37Kudmm8yCBQuIaPLkycqcFJSAB9wzM1mdOuz8eYUH3H19fWWXDJ07d37w3zvlssxgIyOjESNGKPTsrgQp1gH3hARWpYoKAu5Xr14looYNGyp74i+TSCQHDhzIkwp9/vz5+vXrE1H79vcdHJjcjW3GGIuLY87OTE2NEbEKFZiXFys+dzSLLV6XU11dXTklMi5evMg3A66X/2egLLwe9zEUlFGYgwcPisVikUi0e/fHvky3bt3iZ96LFy8WcK489WRu3rxJQteT4XjGqCxxXiKR8NCnchIVSw3eV4ozMDAYMmTI4cOHU4vcfEMqzQ4JaRMYSGFhAwRZZ6HxRsHyfVB+//13fm8mPT29iAfnt0Xbtm0ry9Px8vIiInNzc1kDQyi4tLS0U6dOOTk5TZkyxcXFZdmyZatXr/b09PTy8vL29j59+vSFCxcCAwMfPnwYFhYWGxtbkEIx/fr1o/9uFPvrr7+IyMTEpCjhzm/Cy5X269dPNvLLL78QUbdu3ZSzgO9cdnY2v++rpqY2YcKEPIVr+WZknoNpYmLyaVCy6FJSUubPn8/vfOvo6PC0YiLS0NDo2rWrp6fnt74UP5sBzV9mNWvWVHkBpRLA1ZURMSsrJjszOXyYETETE6aKusbe3t783uGjR7m7wT67g6EgJBLJtWvXZs6cyRvncjygT0SNGzf+9Cafj4+P7MkODg4vXrwQ6ueSOXPmDL9OJKKNGzcKfvwSRCrNuXPHODCQMjNzr5ajojYGBtLz58OVMPvZs2f5G9G0adM+/Wp2dnZgYKCbm5u9vT2/Kvw0yJ7/iVNiYiK/pqtdu7b8vaKdO3fyyxBFlEjlOxdl1RFlCe8IseXv/v37/Mb/uHHjlDkv31vm6+urzElBCXjAnTHm68vq1WPbt7MRIxQS9Hv69OnAgQP5u1OtWrU+LQz4zz//1KxZkz9BtpFr8+bNgp/dlTjFOuDOGPvzTxUE3NesWUNETk5Oyp74y3h1SCsrqzyB4MzMzPXr/zQyYkRMT4+tWMHybFG6eZO1aMGIWNmyLCFBmUsueSIjI/lt51WrVilt0v3794vFYrFYrMx6poyxFy9eiEQifX39whVDhALi+ys1NDTkuzieOHGCRxk+bTNSOJ/Wk/Hx8alUqZJ8TQ+h3Lhxg4iaNm0qG+GxY2HvH3wPXrx44e7ubmNjIyvHqa2t7eDg4OXlVejSrm/euAQG0v37lbOzVbw9Ky4urmzZsiTXBC8nJ6dJkyZEtHz58qIc+dmzZ1paWmKx+NatW3wkOTm5QoUKVKhC5KAgb9++5Vu45O/pOjg4ENGwYcOUsICXL1/y14ksvfrt27e6uroikeiG7BQTFCw+Pt7FxYXnaZYpU8bNzS1Pk8OQkJAffviBvwHWrVtXqEKOUqnU29ubN1MRiUQDBw58+fJlbGysl5eXg4ODLG9ULBbb2Ni4u7vLb8XIR3BwcIMGDWbMmCEbOXnypEgk0tLSQpPArwsPZ3p6jIhdvpw7kpHBatZkREygc6FCGDVqFE+xkp0Mv3v3rnz58i4uLgWJEUgkEj8/P2dn54oVK8ripKampo6Ojj4+PllZWT4+Pvy2E4+qh4WFyX97Wlqam5sb34ijo6Pj4uIiVHHn0NBQWWREyS0Tiq1nz3oHBlJs7J/8YVpacGAg3btXQTmznz59mgfT+bZm+SA7j8XLolTW1tbOzs7e3t7fdCqYkJDQrFkz/kYaGRkpG9++fbtIJBKJRFu3bhX2J6pTpw7J9XA6efIkEbVq1UrYWUqla9eu8dQrYWtL8hfVhg0bhg4dKv8aYIy9ePGC3wJUcsdyUAJZwJ0xNngwa9GCjRjBFixgAwfmTcYttOTkZFdXV/4Opq+v/2lF68ePH/fo0YO/idWpU+fkyZMhISHdu3cX/OyuhFJxwP2rXr1ic+ey+HilTsqrtezatUups+bLx8enSpUq/PJg9OjRee4eR0QwR0cmEjEiVrMmO3nyP98rkbBt21gR2qF/FyQSSefOnXnum5KLqvMdrJqamufOnVPapKgnozTTp08nIkNDQ/lt9Vu2bBGJREuXLhVkik/ryTDGpFKpsLVKZIe9cOGC/IXoqVOn8oTg4Zu8ePFi7dq1bdu2ldXo1NLSGjp0UGzsrm+KmyclXbx9W+32bfXk5GLRw9bDw4OIatSoITstO3/+PD9Xe/fuXaEP26dPH/pv9YZ58+YRkbW1tar6YcBnbdq0iYgsLCwSPtztf/nyJQ8tKaFh6ciRI4lohNzG2gkTJhB66qrCkydPevbsyd/cateufeLEiTxPyBOUfPbsWVGmCwwM5AWm+NvCp3XV4uPjvby8Bg4cyEMeXP369V1dXZ88eZL/wdPS0mQBizdv3vDCOCrZpFjy/PQTI2I//fRxZPlyRsQaNGCqS39LSUnhGwTlExS+GujMycnhcXa+w4+rUqWKs7Ozn59fnk+izMxMd3d3Q0NDfqrv7OycZyfWmzdvHB0d+a33ihUrenl5FaXIckpKiiwy8tleX9+tqKj1gYH04sXIDwPSe/fMAwMpPf0r/+qFcuzYMQ0NDR5+kn/zEYvFVlZWM2bMOH78eFF26UVHR/NSD02aNJHfUcRPxkQiUZ6OGkXBA7jGxsayywFnZ2cicnV1FWqK0u348eP8xfDbb78V5Tjv37/nNYgcHBx4lgOXZ/86T/9STroDKJl8wP3dO2ZkxIYOZcbGucm4S5awoqRWSiQSLy8vc3Nz/k7l6OiY516OfF6FsbFxnrwKHx+fGjVqCHV2V3IV94B79+6MiBXtveib8fOnp0+fKnXWr0lNTXV1deW3wcuUKfNpp51Ll1jDhrntUh0c2HPFtoEpbXgbQ3Nz86JEggqNn6YYGRndu3dPwMNmZWXdvn3b09Pz03IfqCejNFKpdNiwYURUoUIF+QKaRWwTHxER4ePjw8+xeAxLVfuFs7Ky+ALypG7Bt4qOjuYJmBoaGgMH2gQG0u3bao8f20RFuWdlfb2ebHz8gaAg/bdvlylhqQWRnZ3Nr/3k64dOmDBh165dRYmM37t3r1evXrI36ufPn/OeK35+fkVdMQhKIpHwuKd8zVC+g9DS0lKoRM7Pevz4sbq6uoaGhuzk/sWLF5qammpqag/RSl5FfH19ZdUt7O3t8/wi5IOSGhoanwYlC+Lt27dOTk78zqWFhYWnp2f+bzWpqak+Pj6Ojo4GBgZ5Iu+yGiNfIsvS+OGHH4pRD7piSyJh06YxQ0MmOwuKjGSGhoyIye3/U4n79+/zD5G///47/2dmZGT4+vo6OzvzZjxctWrVeJw9/5dBRERE/i/Omzdvtm7dmh+zZcuW165d+9YfRCqVenl58a26IpHI0dFRJVc0xVZa2j2+BVA28v7wzPQuNZjQqd/5OHLkSP369fk5c/Xq1Z2cnLy9vWOFq6cUFRXF32abNm0q34ps3bp1RKSmprZ3715BJjp69Ki6urp8a3Se8F6I1+13a+/evbzgz44d39BIQCKRBAcHb9u2bdSoUXXq1JHtkZXd0h45cuTWrVvzbNvinXWx06VUSkxk8qUZjh1jBw+y8PCPybiVKhWysvSNGzdatWrFX1qtWrXKsz2Ux+JNTU1lsfjPlunjVd2LeHZX0hX3gPuJE4yIWVoypTWWCAsLI6Jy5coVzxPo0NBQ2ZaNpk2b5gkxZGczd/fcM1gdHebqytLTWXIyk2+TEx3Nvr/X+VdcvnxZTU1NLBarqrSZRCLh+yoqVqz4+vXrQh8nJycnODjYy8vL2dnZxsZGR0eHv1SWLFki/zTUk1GyzMxMfmVev379+MJu2Hn37t3x48ddXV179Oghf7Eno6GhsWrVKiW/caWlpfHbRWPGjEGNNqFERUXdv7/76dOut29rBAYSj7w/eWIXFbUhK+s/59DJyX4vXowIDe355s08qTQjI+M5Y8Uoy/vcuXNEZGBgoLhW9f379yciR0dHBR0fiuLBgweamppisVi26zwnJ8fa2pqIZs+erbh5+efppEmTZCOOjo5ENGrUKMVNCl/Fr7t4YWt+3ZUnlfhbI+YyX00izl96ejqPvMuKbvPPaxcXly/dyVu6dKkKszRKKvlf94gRjIjJtXlQIR6ONDY2/mxb0bS0tG99eXxJQECAbPtF8+bN82y/KErEvOjx+u+A9Pm1jlGeHaQvPmRZbt3KiNjgwcpcRHZ29qVLlxTXyyQyMpJv2mjdurX82yC/262mpibrNl9EiYmJsn8vsoR3JTcCLen4RkA1NbUjR47k87Tk5GQ/Pz83NzcHBwderVFGV1fXxsaG1yD60osqNjZWXV1dS0sLjUa+NzdusFatcpNxW7ViBa+nGB4eLtt3ValSpU/3XV24cKFx48b8RdixY8evJoy+fft25MiRsrO7Az4+xehiVfGKe8BdKmW1azMi9rW0A8Hs3r2biPr06aOk+Qrl2LFjvNOOSCSaMyf4v3s72Nu3bNiw3Jta1auz5cuZSMQuXsz96tixzNNT6SsuxuLi4ni5noULF6pwGWlpafwsvGHDhgkFLrcvlUqfPHmyd+/eadOm2draym9R5C+POnXqDBs2TFZGmUM9GeVLTEzkn0zt27cv4PbexMREPz8/d3d3R0dHWWKgjJGRET/H8vLyunfvnqurK/8Y69y5s9Ku/wMDA3lKi46OzpYtW5Qz6XclJyc+NtYrLGxgUJAej7wHBlJwcP2ICNf09CeZma/u3jVNSPgnPf1hXJwwWUuC69WrFxGNHj1aEQe/cOECv974bJQEigNe8Kphw4ZZWVl85O7du+rq6urq6rdv31bEjIGBgSKRSEdHR5bhFRwcrKampqmpiV04xUFsbKyzs7Osodan+zXzhA6/mv6Zf5nsb1LAFOabN29qaGioMEuj5ImMZNeuMdnJSUAAE4mYlhYrHv8kpVIp/6jq0KGD7NVYlA0Q+c/l7e3Nrzt4g4E8n1/v37+fPXs236FvaGh48ODB/A8obEWaUm7AAEbEZJVVnjxhRMzMTCEdBlUnPDycvyW2bdtWPsa6cOFCfrPzq5s5vtXvv/9ORIMGDRL2sN+DBQsW8Muoy7LmFnJev37duHFjWcdvrkqVKj/99JOHh0dAQMBXU53i4uKmTZtGRD169FDMTwDFmkTCvLyYuTkjYmIxc3RkecKGn9qyZQtP2dTT01uyZEme7MzXr1/zFBYiqly58jd1zwoMDLS1tSWiIdeuDX/06I4it7oWK8U94M4YW7+eEbHOnZU0Ha/y6ebmpqT5CistLc3V1bVx45FqakxPj7m6sjxtMK5cYY0bM2NjtnUra9CANWzI+NUuAu7ypFJp7969iahdu3Yqz8+NjY3lWQl2dnb5xGTla4nkudHNbxs6ODi4urr6+Ph86TIV9WRU4s2bN5UrV+anpJ/N2ktKSpKPsOfZJ2hgYCCLsAcHB396QeXr68sTo8zMzE6fPq3Qn0Uqlbq7u/MLwgYNGghbCgk+lZOTFBe3PyxsQFCQLg+7BwVpJyQcCw6uq+qlfcWnPU6FIuvCumxZcamiA5/KyMjgn2vyzXJ5Z4vmzZsrIhuuS5cuROTi4iIb6du3LxFNmTJF8Lmg0IKCgvgmdyKysrLKE2uQdT1t27ZtPtHDPD1XT506JdTy8inSffr06WrVqhHR3LlzhZquNEtNZQ4OrGFDNnw4a9iQ9ejBUlJYZib77TdWtAbawoqOjua/6wULFnypxL+AtUbly4Tq6uq6urqmp6fLP4F3PRWLxQEBAV86iOJ6rpZamzczIiafb1SpEiNiwcGqW5NCvHr1imfm2drayr8qeM8bTU3NPJlYRcSb63xTaRSQmTp1Kr+79mkWQlZWlq6urrq6ev369Z2cnLy8vJ4XoGRwWFgY3+xubW3Nk7G6dOki1M4GKIkSE9mMGUxDgxExIyO2ZUtEPu1z+e5kBweHl/9tusobhPCPLd4gJM/HVkFIpdKjvr7d792zDgxsHhi44PnzqO+gkW8JCLgnJeXWSPmkDLVC8Av4K1euKGOyInv2TOLgkLtVpFEjdunSf76anc3u3WP79jFHR+boyFauZAwB9//iO+yMjY1fCtXIuWieP3/OY6Y//fTTpxeZ2dnZ/KvyKlas2Ldv32XLlp0+fbogdQDDwsJQT0ZVHjx4wHvazJw5kzGWlZUVHBzs6enJI+yynpmcpqamtbW1LMJekJ31kZGRXbt25WlTzs7OspRSYUVGRvIYh0gkcnJySk1NVcQs8FkSSWpCwpHnz4c+fz48Ozv2wYNqT592TUj4WypVyO9aELNnzyaiNm3aCJt2t2XLFh4CwyuwmLt06ZJIJNLS0goJCeEjqampPGS5bt06Yee6cuUKERkZGcnK1wYEBIhEIj09PZT+KIZ8fHx4VIhf3eUJJaSkpHzp3CwuLs7Z2VldXZ2ITExM3N3dFZQzkZOTc+nSpSlTplSsWFH26SwSiVq1aqWgT9jSxsWF/fhjbmHQnBz244+suLZVPHv2rFgs5u1GiUhNTc3Ozm7jxo15qiEL6Kupgvn0nMjzb+fFixcKWmSp8ugRI2IWFh9Hhg9nRExFPZAUKjQ0lL9r2dvby1/xubi48EuMkydPCjJRVlaWoaGhSCRS3L+U0k0ikfz0009EZGpq+vjx4zxfvX///lfDmklJSefOnVuyZEn37t2NjY3lryV1dHTatWunhE71UPw9fcoGDmSamqxq1S61atXKp6Z/no8engPBswY/uzHrW6VLJJ4REW2DgqwDA22Cgja8eZNahOZexZ+IMUbF3uTJtHkzjR9PW7YodqKkpCQTExOxWJyYmKirq6vYyYRz7hxNmUKPHxMROTjQ5s1UpcrHr+7fT6dO0apV1KwZXb9OK1ZQ8+bk5KSqxRYjAQEBtra22dnZx44d4zfni4OgoKAOHTqkpKTMmTNn5cqVeb5qZWX18uXLBg0aWFtb29ra2trayqdffcnbt29vf3DlyhVNTc0uXbrs27dPMT8B5OfcuXM9e/bMysqytLSMiIjIycmRfUlLS6tJkybNP6hfv36eXYQFIZVK16xZM3/+fIlE0r59+3379smHCYru2LFjY8eOjYuLMzMz27lzZ8+ePQU8OHwrieR9QsLB2NidjOXUrn1RTc3g69+jdMnJyXXq1Hn37t2IESOaNWsmyDHT09NXrVqVmJh4+PBhXsYdirOff/75zz//7NChw8WLF/nenVOnTvXo0UNXVzc4OJgH3wVhY2Nz7dq1pUuX8m3aRNSlS5dz587NnTt3xYoVQs0CAkpPT9+wYcOyZctSUlJ0dHScnZ3nz58vX8Qjj5ycnJ07d86fP5/Xpf3f//63bNky3rZLoRhjN27cOHLkyMmTJ5cvX960aVNZHRvIT5MmtHEjfdjNQFev0rhxFBys0jV90f79+588eXL9+vX+/fv37dv3s/1yBHfp0qVp06bdu3ePiOzs7Nzd3Xnu15cEBQVNmzbNz8+PiKysrDw8PNq1a6eEdZYSFSvS27cUEkJ16xIR7dxJo0fTjz/SkSOqXpnwQkND7ezs3r5927Vr13/++YenpjLGnJ2dN23apKur++DBgyK+jz169Gjbtm0eHh6NGzfmr2EohOzs7D59+pw6dapy5cr+/v5V5OM4X/D27durV6/6+/vfvn07ICAgKytL9iULCwseJbCxsWnRooXsJiIAEZ0//2ry5B8eP35MRD/88MP69ev5PtQvCQgImDZt2rVr14ioRYsW7u7ubdu2FWQl0VlZm96+PRUXx4jMNDUnVajQo2xZ0de/rwRSccC/YJ4+ZWIx09Vlcg23FeLMmTNE1Lp1a8VOowCZmczdnenrM6LcCjOykiQ8w50xtn4969cPGe65EhMT+UX+9OnTVb2WvM6fP8+LdWzYsCHPl/J0GPuSV69eHTlyZO7cuV26dMlzr5uIZs2ahcYpKrRnzx4eIuSbBB0dHd3d3f38/AqxM+tLLl68WKFCBSIqV67cqVOfKQtYCLL+qETUtWtXxbXBhG8nffSoaXz8YVUv44v++OOPFi1aCHv20rx5865du6r6J4MC4bfoiGjXrl2ywcGDBxNR9+7dhZrFx8eHiExNTWUfcJcvXyaiMmXKxCn69BGKpoB1qM+dO9ewYUP+DtC5c+f7ytn6CkVhbPyfQu2vXzN9fdWtppiSSCReXl78TVIsFjs6On62/+FX+x/A1w0ZwojY77/nPnz1ihExExNWSvMrHz9+zPdGd+/eXVatVCqVTpgwQb7w2jfhFUucnJx4xisRdevW7dChQ8Kt+nuUmprKy1s3aNDgsxvWs7KyAgMDed1RS0tL+fNh+Zoz6FUDX5Wdne3p6VmuXDn+4nFycoqJifn0aREREbI+9hUqVCh4H/tv8iAlZWRIiHVgoHVg4MiQkAcpKYwx1xcvFj5/zv+ci48XfFIlKxkZ7kT0ww905gz99hvNnKnAWRYtWrR48eIZM2asXbtWgdMozKtXNH06HTtGROTiQm5uRB8y3Hfvppwcat6csrJo2jRkuNPQoUP3799vbW197do1Ht0uVv766y9+8Xno0KEff/zxq89PSEi4ffu27EZ3VFSU/Ff5vW6uZcuW5ubmCls4FAhj7ObNm02aNOFtSRQhNjZ21KhRly4FlC//umdPrTVrqCgv8+BgmjAh6+nTFklJT93c3JydnfOUmAfly8mJYSxbQ6OCRPI+JMSqatXd+vq2ql7U5zHGIiIieAkvoXTs2LFPnz54HZYUe/fudXR0NDExCQkJ4XGlqKioevXqJSQkHDx4cNCgQUU8vlQqtba2vnv3rru7O6+ISkRt27a9fv368uXLeeFaKOYCAgKmTp16/fp1ImrRooWHh0ebNm34l549ezZv3rxDhw4RUc2aNVesWDFw4EBVrhUKqG5d2rOHZDdc79yhQYMoNFSlayqmEhMT3dzc1q9fn5WVVaZMmTlz5kyfPp1foWRnZ//++++urq7v37/X0NCYMGHCkiVLjIyMVL3kEmj7dnJyooEDyds7d6RaNXr5ku7coaZNVbkwhXnw4EGnTp1iY2N//PHHgwcP8kpcjLFvOn169erVpUuXLly4cPHixfDwcNm4hYVFx44dBwwY0K9fP+GX/p15//69nZ3d3bt3W7Zsef78eX19/Xfv3gUGBsoy2TMyMmRPNjIyatGihY2NDc9kV9zlJJRW8fHxixcv3rx5s0QiMTEx+fXXXydPnsxv6PKth8uXL09OTtbU1Bw/fvyyZcvy2XpYRFLG/o6L2xIRkZCTIyYaY2HxR2Tk77VqaYhERGSuqVm++EXqvo1Kw/3f4MQJRsQsLZlC7+Xz8scl/Sbt6dOsRQsmq1Yqy3BnjN28ycRiZLjnFv/V19d/8uSJqtfyRUuWLCEiHR0df3//T7+amJgo32Azz79rIyMj+Qabyl88FAdSqXTLlhe8R0qLFqxwSQ8SCVu9mmlqMiL2449vHjx4IPQyoZCSk/0ePbJ68KDm/fuVIyIWqno5AF/BK1ANHz5cNrJt2zYiKl++fHyRE1j++usvIqpSpYosie/vv/+m/ya8Q/EnlUq9vLx4SqZIJHJ0dAwLC3N1deWb4nmfrny6ykOxM348++WXjw/nzGFOTqpbTQnw5MkTWbG+2rVrHz9+3NfXV3aeb29vn09hd/i60FBGxExNmWwPjYsLGzpUSZ3iVOTu3bsmJiZENGDAgIK3u4iMjPT29nZycspzmWlqaurg4ODm5hYYGChsbx548+YN781QtWrVPIVl1NTUGjduPH78eC8vLwEbOMN37tGjR926deOvsXr16p06dcrHx0dW6fHT5jqKkyqReEZEtLl9+3x8fIvbtzNL0a6jEhNwl0hYnTrSNm3CT568rrApJDxZoJQ1/Xj0iMm3ytizh929q7rVFAMPHjzg94H37t2r6rV8xaRJk4iobNmyjx8/TkpKko+w50lMMDAwkI+w4wQIZAICWI0ajIgZGrJ9+77teyMjWffujIiJRMzJiaE5JQAU2suXL/X09IjozJkzfEQqlXbq1ImInIoWg8vOzq5Tpw4R7dixg49IJBJeB/nTymxQ/L1//3727Nk8t5e/ZsRi8ejRoyMjI1W9NPhGb9+yqlWZkxPbsYONG8eqVmUREapeUwlw/Pjx2rVry5/n169fX/bOCUVSuTIrV469fq3qdShVUFAQLzE6aNCgfCoRRUdH+/j4uLi4WFtby19p6uvr29vb8yC7IspKgMyzZ8/q1q3LOx7xq3sXFxcfHx9UxgPFOXTokKwLN9e0adNLly4pfyURmZmMsRa3b//x9u2ud+92vXuXVPIrp5WYkjJEtHHjNmfncZ07dz537pwijn///v0mTZpUq1bt+fPnijg+FAepqaktWrQICQkZO3Ysz60rznJycvr163fixIkyZcq8f/9e/l+rnp6elZWVrMFm7dq1UVoBviQpicaNowMHiIgcHWnLFtLT+/p3/f03jRlDcXFkZkY7dpCDg6KXCQCl3OrVq11cXCwtLR8+fMgDqU+fPm3SpElmZua5c+d48L0Qrl271qlTp6pVqwYHB/P98ryCjaWl5ZMnT9AxrIR69uzZzJkzGzdufPnyZXd3d6FaLoOyJSfTqVMUFkY1alD37qSwbemlTFZW1oYNG86dO8cbKk6cOJG/uUFRRURQhQoUFkbTp1NICBFRnTq0fj399w5H6XPjxo2uXbsmJyePGjVqx44dvDQzEaWkpNy4cePcuXPnzp27c+eOVCrl43p6em3atLG3t7exsWnVqpWGhobq1v59kUgkd+7c0dbWrl+/vuzXBKBQGRkZa9euvXXrVnx8vKOj4+jRo3l5GZVoGRQ0s1IlNZGIiLqbmOipbiWCKEkB9+Tk5EqVKiUlJd2/f79Ro0bf+u05OTkxMTHR0dFv376NiYmJiooqU6bM2LFjZU/YsmXLxIkThw0btnfvXkEXDsXI6NGjd+7c2aBBg1u3bunq6qp6OV+Xmpo6YcKE6OjoCxcu1KpVS74UezEsPQ/F2e7dNGECpaVRvXp08CDl8yaank5z5tCGDUREXbqQlxdZWChtmQBQauXk5LRq1SooKMjFxcWN95khWrJkyeLFi1esWOHi4lLoI79+/frdu3etWrUiouzs7Hr16oWFhe3cufPnn38WZukAAFA6ZGZS/fo0YwZNmkRE9PvvtHo1PX5M2tqqXpliXbt2rVu3bikpKSNHjhw2bNj58+f9/f1v3bqVnZ3Nn6Crq2tlZWVra2tvb9++fXtcaQKA8rUMCvJv2lSztNxtKkkBdyKaPHny5s2bx48fz2tw55GQkPD27duEhIR3797J/4X/NyYmJicnR/75VlZWQUFBsocjRozYs2fPpk2beB0PKJUuXbo0ZsyYo0ePNm7cWNVr+QbR0dHGxsZILoAievSIBg+m4GDS1iY3N/rQWfA/goNp6FB68IC0tWnRIpo9m0rL5x0AqF5gYGDr1q1FItGtW7esrKyIKCsr6969ey1kbRWLbOvWrRMmTKhdu/bDhw+REwoAAP9x9iz98gvdvftxpHlzWryYPlTPL8UuXLjg4OAgFotTU1P5iLq6epMmTezt7e3t7du1a4c9YQCgWgi4q1JoaGjdunW1tbXDw8N59w+uUaNGwcHB+X+vWCw2MzMzNTUtX758+fLlTU1N69Sp4+TkJHtCzZo1w8LCgoKC+BUglFYSiUSFe2QAVCs1lSZPpj//JCKaMYO8vOjixdxs93nzKDubNmygrCxq2JD276eGDVW6VgAojaZPn+7u7t6iRYvr168L/nGckZFRq1atN2/eHDp0aMCAAcIeHAAASrzff6erV+mvvz6OjBpFVlafz0Mpdc6dOxcZGbl169aOHTt27NixTZs2vLcZAEBx0OnevdONG2uWlmrJJSzxp1atWvb29mfPnt21a9fMmTNl47y+lbGxsYWFhbGxcYUKFT79S5UqVfJJdIqKigoLC9PX1y9EsRooWRBth++Znh7t2kU9e5KHB7VtS/v30/jx5OdHYjGlp1OlSmRrSzVr0vr1VBJKLgFAybN8+fJ//vknICBg06ZNU4UOcGzcuPHNmzfW1tb9+/cX9sgAAFAa6OpSevp/RtLTv5+zXnt7eyIaPny4qhcCAPAZF5o0UfUShFTCMtyJ6MSJE7169bK0tAwLC5NFThMTEw0NDYvSVuLo0aP9+/e3t7f39fUVaKUAAMUXY3TiBO3aRdnZ1Ls3jR1L06dT5co0eTKhZiMAKNSpU6d69Oihp6f34MGDatWqCXXY5OTkmjVrRkdHnz59ulu3bkIdFgAASo+7d8nBgZ4/zz3fzc6mmjXpyBFq3lzVKwMAgFKlhGW4E1HPnj1r16799OnTkydP9u7dmw+WKVPmmw7CGIuOjo6JiYmMjIyMjIyJidm/fz8RtW3bVvAFAwAUQ7J9WuvWUYcO1KdP7kNE2wFA0bp37z5o0CBvb+9Jkyb9+++/snGJRJKUlJSenp6RkfH+/fusrKzk5OS0tLTMzMzExMSsrKyUlJTU1NSsrKyEhISsrKzU1NSUlJSsrKzExMTMzEx+ate+fXtE2wEA4POaNqU2bWjkSJozh0QiWr2amjVDtB0AAARX8gLuIpFo/PjxM2bM2Lhxoyzg/qn09HT5jql5OqmGh4fL+nHLjB07to8s5gQA8H2oVYvGjKG5c8nQUNVLAYDvhoeHx9mzZ0+fPl2pUiXGWHp6elJSkkQiKeJhV61ahWg7AADkZ88e2ryZli4lxqhNG5o0SdULAgCAUqjklZQhouTk5EqVKiUlJXl6eurq6kZHR7979y46Ojo6Ovrt27cxMTHR0dFfvWYzNTU1MzMzMzOzsLAwMzMzNzcfMGBAzZo1lfMjAACo3PHjtGsXHT1K6enUuDFVrEi9e9OMGapeFgB8H44cOXLjxo3ffvtNNiIWi42MjLS1tXV0dAwNDTU1NQ0NDXV0dLS1tY2MjDQ1NQ0MDHR1dbW0tMqUKaOpqamvr6+np6epqWlsbKypqamnp2dubq6np6fCHwoAAAAAAKBEBtyJaNKkSYcOHYqJifnSE7S1tfO0TpV/WKlSJU3UTQCA75ss4E5Ep09T9+60di0C7gCgPPHx8YmJiVpaWrq6ugYGBvk0twcAAAAAACgpSmrAPTk5OTAwcNmyZRYWFqampuXLly9fvrypqamFhYW5ubmpqamGhoaq1wgAUKzdvk0XL9KsWbkP582jtm3JwUGlawIAAAAAAAAAKMlKaiaRgYFBx44dO3bsqOqFAACUVBkZZGb28WG7dpSZqbrVAAAAAAAAAACUfGJVLwAAAFTj0SM6d+7jw4AAun5ddasBAAAAAAAAACj5EHAHAAAAAAAAAAAAABBASS0pAwAARff8Oe3enfv3e/eoZk2VrgYAAAAAAAAAoIRDwB0A4PuVmkqvXuX+PTFRlSsBAAAAAAAAACgFEHAHAPh+NWpECxfm/p0xSk1V6WoAAAAAAAAAAEo41HAHAAAAAAAAAAAAABAAAu4AAN8psZjE4i8+BAAAAAAAAACAbyVijKl6DQAAAAAAAAAAAAAAJR6yGQEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AGUwd+ftm//+HDfPgoPV91qAAAAAAAAAAAAQAEQcAdQhnPnaPx48vHJfejpSc+fq3RBAAAAAAAAAAAAIDQE3AGUZPBgmj6dUlNVvQ4AAAAAAAAAAABQDATcAZSkfn3q2ZMWLVL1OgAAAAAAAAAAAEAxEHAHUJ4lS2j/fnrwQNXrAAAAAAAAAAAAAAVQV/UCAEqzlBTy9KSkJBKJiIjKlKGVK2naNBWvCgAAAAAAAIqV7OzsAwcOXLhwgYjs7Ow6dOhQtWpVVS8KAAAKQ8QYU/UaAEqhxETauJE8PCgujrS1afJkMjKiBQuIMerYkW7fphMnqEMHVa8SAAAAAAAAVE0ikQwbNuzgwYMaGhrZ2dl80MLCwtbW1t7e3sbGpn79+iKexgUAAMUeAu4AAouNpU2byMODEhOJiNq2pTlzKDCQNDRowQIioocPycqKzp6lhw9p1CjS01PpcgEAAEoRqVT68uXL6tWrq3ohAFC83Lt3Lzo62tzcvFy5cuXKldPU1Czccdq0oYYNaft2IqLoaLK1padPhVwnfJ8YY05OTn/88YeRkdGmTZtiY2MvXbrk5+cXHx8ve07FihV52nv79u3r1KmjwtUCAMBXIeAOIJioKFq/njZupLQ0IiIbG3JxoV69iIjS00kkIm3t3GcmJdGaNbRsGXXqRCdPfhwHAACAQkhNTb1w4cKJEydOnjyZnJzcsmXLSZMm9e3bV9XrAgDVY4yNGDEiNjb29OnTssEyZcqYmZmZmpqWK1fO1NTU3Nzc1NS0XDlnU1ORuTmVK0empvTZmHyDBvT+Pe3dS3Z2FBlJTZpQVJTyfhYolRhjkyZN2rJli56e3qlTp9q1ayf70vPnz8+dO3fu3LlLly7FxMTIxs3Nzdu3b29jY2Nra9usWTNkvgMAFDcIuAMI4NUrWreOtm+n9HQiInt7WrqUWrfO71vCwqh9e3r7lrp2JR8f0tJSzkoBFOnqVfr1V3r9mtTVyc6OVq8mAwNVrwkASrPg4OB///3333//vXr1ak5ODh80MTGJj4/X1NTct29f//79VbtCAFA5Dw+PadOmGRgYWFtbx8XFxcbGxsbGykp2yBgYVExOfiM/YmREsuB7uXJUvjx17EjOzjRzJv32G929S/HxCLiDAFxcXFavXq2jo/Pvv//a2dl96Wk8+O7v73/p0qXw8HDZuJmZWcuWLXnlGSsrK7FYrIxFAwBAvhBwByiSx48fr1y58tmzvteu9ROLacAAmjePmjQp0Pc+fUrt21NUFPXrR97epI4exlCiRUdTw4a0ezf98AOlp9P48UREXl6qXhYAlDZpaekXLpzncfZXr17xQXV1dVtb2x49evTo0aNBgwa//vrr0qVL1dTU/vjjj1GjRql0vVCSZGZSRARVrUo8YPX+PeXkUNmyql4WFEFISIi1tXV6evrhw4fl78DFx8dHR0fz4HtUVFRMTExqqtbr17Ojoyk6mmJiKDaWPonJk6srHTpEx47RkiVUty6NGYOAOxTVggULli9frqmpeezYsR49ehTwu54/f+7v73/16tUzZ87IPgqJyNDQsGXLlvb29gi+A0Dx8X2eXyHgDlBI9+7dW758+ZEjR6RSaYMGLZs3vzlnDtWt+5/nxMbS2bM0dOgXD3L/PnXsSPHxNHw4eXkRzoigBFuxgp4/pz/+yH34/j1VrEivXpX+D1IAUIoXL8jXl86do2fPUu/c0eeD5cqV69ixo4ODQ+/evcuUKSP//FWrVs2ZM0ckEm3YsGHy5MkqWDGUQHfuULNmtHUrjRtHRLR2LUVE0Lp1ql4WFFZOTk7btm0DAgLGjBmznZdd/xYJCR+D7zwQb2dH48bRsWNkaEhWVvT339S7NwLuUHjLli1buHChhobG4cOHe/fuXbiDPH369PLly1euXLl06dKbNx93aZiYmNja2v7222+1atUSaL0AAIXxfZ5fIaUW4JvduXNn5cqVhw8fZoxpamoOHjx44cKFeU5joqPp99/J3Z2SkqhxY2rY8POHatyY/v2XunShvXtJQ4N27CDU34OS6ulTsrL6+NDIiKpUoadPqU0b1a0JAIq7Q4coOJgWL859uHQpjRpFlSvnPszKIj8/OnWKTp6kx49zB9XU9Lp0GWpjU7tnz57NmjX7Uvqei4uLWCx2cXFxdnbOzs6ePn26on8WKB2qVaMVK6hvXzI3V/VSoMgWLVoUEBBQrVq1dYW6rDc2JmNj+mxzyvLlad48mjOnqCuE79mGDRsWLlyopqbm5eUli7a/fv16+PDhO3bsKHiUvHbt2rVr1x47diwRvX379urVq7zs+/Pnz318fLS0tFauXFmjRg1F/RgAAAXwHZ5fldqAe1JSkkgk0tfXR/8QEJC/v/+qVatOnDhBRHp6eqNHj549e3alSpXkn/PqFa1eTTt3UkYGiUTUvftX8tZbtaJTp6hbN9q1iwwMyMNDoT8BgMJoa1Nm5n9GMjJIR0dFqwGAkuHGDdq8merXp8GDiYiOHCEHB9LSotOn6cQJOnuW3r/PfaaeHnXsSL16kYMDVajw12ePlpycbCDXOmL27NkGBgaTJk2aMWNGUlKSq6urwn8eKIKkpCQ1NTUtLS11lVbZK1uWBg6kmTNp714VrgIEcP36dTc3N7FYvGvXLvl3hj/++OPixYu8V6qZmZmZmRn/u6lpRRMT/YIff+JE2rVLAeuG78POnTunTZsmEom2bt06ZMgQPvjmzRs7O7sXL178+uuv+/fvL8RhK1SoMHDgwIEDBxLRy5cvhw8ffujQIVtbW2dnZyFXDwAlB86vVKUUBtzT0tI2bty4cuXKFi1aJCYmuru729jYqHpRUOL5+/u7urpeuHCBiAwMDH7++ec5c+ZYWFjIPyc0NGflSvW9eyk7m8Ri6t+f5s//T8rvl9jY0LFj1Ls3bdhAhoa0dKmCfggARWrShM6c+fjw9WuKjyfsYIWiCA+no0fp5UuqVo3696eKFVW9IFCIsWPJxYV++IGMjIiIrl+nyZNJVvKwcWPq0YO6d6e2bb/Y7OT58+fHjx8/ceLElStXXrx4UaFCBdmXxo8fb2BgMGrUqEWLFqWnp7u5uSn6x4FCyM7O/v33311dXTt06PDkyZN169YVvJCxIkybRk2a0LlzKlwCFFVqauqoUaMkEsncuXM7dOgg/6Vr167t27fv02+xszt99Wq3cuWoXDkyMyMzs9xeqa1bU5cuH5/WrVtuS3g1NfL0JE9PkkpRFhK+ze7du3lC+ubNm8eMGcMHo6Oju3bt+uLFi9atW2/btq3os1StWnXcuHFXr149deoUAu5QaAcOUGoqjR6d+3D5cpoyhQwNVbomKBicX6kYK0WkUum+ffsqV65MRCKRyNDQkP9lxIgRERERKlxYfDzLycn9e1YWS05W4VqgMDIyMszNzYmobNmyrq6u8fHxeZ7w4MEDR0fH5s27ETGxmA0cyB4+/OZZjh1j6uqsZctIN7c1wqwbQJnS0lj16szNjb1+zW7fZra2bNEiVa8J8pWWpuoV5Ov+fVa+PFu8mB0/zn79lZUvX5g3Vij2ZsxgHh5s1iw2eTJjjDVpwvz8mJERs7dn7u7s1asvfmNKSso///wzbty4yrICNEQaGhonTpz49Mn79u3T0NAgomXLvKVShf0wUCgnTpyo86Fmh7GxMf9Lnz59nj17puSVpKWxoCDWvDljjF26xOrVY25ubPr04v5mCZ/l5ORERE2bNs3MzMzzpTt37uzdu3f9+vXz588fM2ZMnz59bGxsateu3a3bbSL26Z9x4744y9GjrG5d5u2t2J8FSpnDhw/zPNPVq1fLBmNiYho2bMhftJ9ebBZaTEyMWCzW1tZOTU0V6pjwvRk6lGlqshs3ch+WL89UGl2Dgjp58iTOr1Sr9ATcb9++3a5dO/4aatas2ZUrV1JTU11dXbW1tYlIV1fX1dU1PT1d+QvLyWFEbP783IdnzzJ7e+WvAopk+PDhRDRkyJDkT+6W3Lp1q0+fPrxykaam5qxZL4ry9nX4cLS2tgEReXh4FGnFAMp08iRbtYqFh7M3b9iMGaxjR9a/P9u2jSGsVWxt2MBq1WING7Jq1diYMcX0ZKdvX7ZG7u7j0qVs4EDVrQYUhQfck5JYlSosMJA1acKCglh29hefHxrK3N1Z166sZUsXWZzdwsJi9OjRhw8ffv/+/Ze+8dixY506/U9NTTJ2LJNIFPKzwLd68uSJg4MD/yXWrl37+PHjWVlZ7u7uPGlGQ0PD2dk5n9+pgFJTmasrMzVlZ8/mXhAyxn76idWpw6ZPZwMGsI4d2b17SlgICOP06dMikUhLS+v+/fvf9I2ZmSwigt27x86eZXv3Mnd3tmABO3bsi8///XdGxJo2xSkPFNTff//NbwAvX75cNpiYmNi8eXMiatSoUWxsbNFnkb/P1LJlSyL67N1ogIIYOpSNH8+aNs09PUPAvfjD+VUxURoC7rGxsc7OzmpqajwB2d3dPUeWT87Y69evHR0d+UutcuXKXl5eUuWeEOXkMA0NVqsWe/SIMQTcS6Z58+YRkaurq/ygn5+fg4MDD7VraWk5OTm9fv266HP9+eefYrGYl/Mr+tEAlOGHHxgRwyu2pDh/ntWokZs5nJbGevdm8+apek2fU7kyCw7++PD2bVajhupWA4rCA+6MMW9vZmvLGjdmQUF5n5Odzfz8mIsLs7b+mHNqZxfUunXrpUuX3r59u4CndhcuMH19RsSGDMkvpg9KkJCQ4OLioqWlRURlypRxc3PLyMiQfTUmJkZ2bl+uXLk85/bCkkrZ7t2sQgVGxEQi5ur68YLw3TtmZMTGjWNlyzIipq7OJk9mcXEKWggIJiYmpnz58kS0bt06Rc+VkcEsLBgRO3NG0VNBaXD27FmeDrhw4ULZYEpKCk8crFWr1tu3b4s4RXZ2drdu3QwNDVNSUvgI718yadKkIh4ZSpaoqKgtW7a0+ZouXbLbtGH5/Jkzhw0dyg4eZP37M/6eioB7cYbzq2KlZAfc+V0aIyMj2V2axMTEzz7z4sWLTZo04WF3Ozu7u3fvKm2ROTlMS4vt28c6dGBSKQLuJdKOHTuIyNHRUTYyf/58/nIyMDBwcXGJiooScLqNGzcSkVgs3rt3r4CHBVCImBimocE0NFhMTO7Izp2sWzd29qxKlwVfNmgQ27z548OQEFa2rOpW82VGRuzly48PQ0OL6TqhaGQBd8ZY165MQyNvwH3HDqan9zHObmLChgxhe/d+fMv5JleuMENDRsR69WJyFyCgPBKJxMvLy8zMjJ/qODo6fukk6vbt27a2tvK7VwVfTEAAs7HJfWk1b878/VlkJPvzz49POHWKnT/P4uOZszNTV2dEzNiYubmxT4qUQDHC20W2a9dOopTNLG5ujIh17KiEqaBk8/f319PTI6KpU6fKBtPS0uzs7IioSpUqL+VPe4qgdevWROTj48Mf3rx5k4iqVasmyMGhRMjOzm7YsKF8zb0vMTGRfraUluxP3765AfdXr1j58uzNGwTci6lPz68iIyM/+0ycXylNCQ64+/r61qtXj79K7O3tH36ttGvBz++FxQPuUinr0IHt2oWAe4l06dIlImrbtq1sJCgoyMjIyMXFJU4xd+LWrVtHRGpqagcPHlTE8QEEw3dT9+z5caRjR0b0n09UKFasrdm5cx8f5uQwdXUmXLVQwTRtys6f//jw1CnWooXqVgOKMn8+8/TM/fuTJ8zUNO/G0rNnGRGrXp05OzNfX5aVVdQZAwJyE2q6dy+m5ZRKsQsXWKdOPb4pA8bHx6dq1ar8WxwcHF68eCHISt6+ZU5OTCxmRMzCgnl6fr3Q0OPHrEeP3KvHOnXYyZOCLAQEtmvXLiIyMjISKnb5Ve/fszJlGBG7elU5E0KJdP36dQMDAyL63//+J9uVlZmZyRsYVqpU6fnz50LNtXjxYiKaMGECfyiRSHg3skd8xz18B3gCX5UqVS5evHg1X9ev51y9yvL58/hxbsCdMebmxhwdEXAvjuQzjDt06IDzq2KiRAbcHz9+LGutW6dOnZOf/EKOHDnypTAo32Ghqan52R0WAgoOZq6urFYtdvs209LKHalYkR06hIB7yfP69WsiMjc3lx9UdEuAhQsXEpGmpiYq7kGx1q4dI2Ky3Rhv3zI1Naatzb6w3whUIz2d+fiwkSPZuXPMzo79/ffHLyUnMzW14phOsHQp69IlNyCamsrs7NiWLapeEyjEunXs2DH2pQ/VzEz25o3AM965w0xNGRHr0IElJQl8cPis16+ZoyMjYjY2eypVqvRpjcezZ88OHz78synJqampbm5u+vr6RKSrq+vi4vJpT52Cy8xk7u65Gx00NZmzM/umKqa+vqxevdzLQnt7hvhVsRIeHs77wu3Zs0eZ886dy4hYnz7KnBNKkjt37vBX5siRI2XvcllZWb179yYiMzMzYUPhAQEBvJqubGTEiBFE9Ntvvwk4CxRb8fHx5cqVI6Jj+TSg+BaygHtWFmvQgGlqIuBejPAa2rzQ8WfPr2R8fX3z3IrG+ZWilbCAe3x8vCxcbmxs7Obmlqfv/KNHj3744QcimjJlSj7H+bSHgCDLy8lhFy6wSZNyCxXxP0uX5gbcGWOzZzNrawTcSx6JRMLL7SUp97r8l19+ISIdHZ0LFy4U8VDZ2dnx8fFxcXFhYWFhYWFvBI9egKIlJDBHR1azJqtRg7VsWVxqhb5+zcRipqvLZJ/N69YxIvbjjypdFnyQlsZ8fJijIzMyyv1M+vlnNm0ak/+I/PtvZm2tuiV+YvRo5uLCkpNZZiYbM4ZZWrKuXZmlJZs4EVW3S6WUFKahwdTVlR34DglhFSvy+C/uDypWSgqbP59pazMipqfHli2T5klZCA0N7dOnDz8t37dv35eOEx4eLrukrFixYuHaMh07drpWrdy3wx9/ZGFhhfmJMjKYmxszMGBETEuLubldVPL5IXyWRCLhpTn69eun5KmjopiODhOJ2IMHSp4ZSoD79++XLVuWiPr375/94UwmJyfnp59+4mWUHwj9upFKpRYWFkQU/KEXzv79+4moc+fOwk4ExdPkyZOJqFOnTkIdUBZwZ4xducJEIgTci4XU1FRXV1cep9LV1XV1dc0nJTQhIcHU1FRTU9PZ2TnPSQvOrxSnxATcs7OzPT09TU1NZQVhoqOj5Z8QExMzfvx4Wfn/bdu2ffWYvr6+DRo0kBWlCZZvzvYtcnKYnx9zdmbly3+Ms1taMmdn5ufHsrI+BtxTU5mlJQLuJVLdunWJ6J5yOyhLpdLx48cTkZ6enouLi6enp5ubm5ub2/z5811cXKZMmeLk5DRy5MiBAwf++OOP9vb29vb21tbW1tbWtWrVql69urm5ubGxsa6u7qfF2gYPHrxZvogzFH/DhjEnp9yAo58fK1uWhYerek2MrV7NiNigQR9HWrRgROzQIdWtCRh7/5799Rfr35/p6n78WGrenK1cyUJD2atXrGJFtmIFCwhgf/3FKlUqLvdvGGPXrjGRiOnoMNmuxqws9vy5AGVEoLjiFWNUUi7o+XNWvTojYs2aFbIiPORPKmXe3qxKldx+WQMHsjxFPlJSUmTXinp6evlfK3I3b97k5YmJqGXLltevXy/gYkJCQnhSTvv2wXXrslOn8i71wAG2fPk3/HQxMczZmZmbRxoYGCq68xgUxOrVq4nIwsIiNjZW+bNPmsSI2IgRyp8ZirWnT5/y2HefPn2yPpzMSKXSMWPG8NpHgYGBiph31KhRRLR69Wr+MD4+Xl1d3cDAIClJsVu0QeUePXqkoaGhpqZ2//592WBWVtbGL9iyJWvjRvbpn/8G2/JMwcaPRxqMKkmlUm9v7ypVqhCRSCQaOHDgV6uoRUdHDx06VJYIv3fv3jxRdQWdX+Xv1i02Y0bexJfSdH5VMgLu58+fb9y4Mf/dd+zYMU/Qk8fi+a4ZdXV1JyenmAJfNn3adjUhIaGA35uenv7PP/+MH59hbPwxoFG3Lps3j92+/fFpEgmbP//jw4sX2fbt7MWL4rh9H/LRs2dPIjp69KiS55VKpf369eMNdopCTU3N2NjY2Ni4evXqVatW1dLSEovFBX8bBRWLjf1PFjljbPx4tmiR6hb0gZUVI2Ky7YrPnjGRiBkYoC6ySsTFxd09cIA5ODAtrdzPJLGYtW3L1q5learyhYezRYvYkCFs1izG3weKsH9QMBIJa9mSEbGFCz8Ovn6tugWBMsyfz4jYrFmqmf3lS1azJjMzYx4e/3lPXbqUvXqlmiWVGoGBH/tlWVszf///fFUqlXp5eZUvX55fKzo6Or57966AR+ZtmXhJYp6Fk//3fpKU81eeC7fbt3Oro2losCdPvu3HvH37Sdu2bfm5VvPmza+ijLeKBAcHa2tri0SiT2uNKserV7kt5AWqggsqEBsbu2DBAjc3t7Vr13p6eu7YscPb2/vo0aO+vr4XLlwIDAy8c+dOWFjYixcv4uPjEwuwN+rVq1eWlpZE1KVLF9ndRPmEKj8/PwX9LAcPHuSRE9nI8OGX9fRSlH4tC8rWrVs3Ipo0aZL8YHJy8peiBF9qmhoQ8PnjS6W5dT82bFDGjwOfCggIsLGx4b8+a2tr/zwnWPm6detWmzZt+Pe2aNEiz0mL4OdXX2Vry4iYmRnz9GSfnJuVhvOr4h5wDw0N5Y3miahy5cpeXl55nnDu3LmGDRvyJ3Tu3LlwG7JiY2OdnZ35C8XExCT/WyhpaWk+Pj6Ojo6GhoZEZGv7lIjVr89cXVkB70///TczNFTZtSUUjrOzM6mo8l2XLl2IqGnTpk5OTr/88ouLi8vSpUvd3Nw8PDw8PT137drl7e19+PBhX19fX1/fgICAwMDAJ0+ehIWFvX37Nj4+PiUl5dNjzp07l4gaNWqUhbzREuHmTVa79n9GNm1iw4apaDUfPH7MiJih4cfSy0uXIr9L+WJjY728vBwcHDQ1NRvXrp0bZ7exYe7uBS19feYMK1+eHTmi4JV+zc6djIhVrMhk71qBgUxdnU2cqNJlgWLxQKePj8oWEBHB7t9nM2cyDY2P/wisrP6TPAH5WLCAzZz58aGDA3v+/Cv9sq5eZV26vNPXNyCitm3bBnzpsj5fPDteS0uLPmTHf9qW6atJObGxzNmZqakxIla2LHN3z3u9V0A+Pj48rEaCdh6DAsrIyODN4iaq9PNi+HBGxH75BTkHJdK1a9dkJWcLTiQSGRsbm5iYVK9evXr16nyrMd92/OOPP/K4VceOHdPkMlFmz55NRLq6uhcvXlTcj5OQkNCsWadOndbLaigvX86I2NixipsTVO/vv/8mImNj4zwfdpmZmZO+YMaMrEmT2Kd/8kk7+OcfRsSMjbE7UNkiIiKcnJzEYjERWVhYeHp6frbzTf54dnzlypXpQ3b8q//+sgU5vyqgoCDWvn3uPZ6mTdmlS3mfUNLPr4pvwP2rm0yfPn0qi8XXqlXL29u7iDMGBQW1b9+eH7Bp06aX/vvbTkxM3Lt3b79+/XR0dGSfry1atNi06Uxo6LdNdOsW09RkIhFDL8wSxMPDg+S6vSvNxYsXiahMmTJf6gNcOGlpadWrVyeitWvXCnjYUundu3deXl4qvjPx4AGTa3zEGGOrV7Nx41S0mg9cXRkR+9//Po40aMCIvm0jGRRWeHj4hg0bOnTowO8WE5GGhka3bt3SduzIbxfoZ23YwIhYmTJ5yz0oU1ISs7D4TwNeqTQ3FuviorJVgYKlpzNtbSYWM0E/4gpj5kw2fjyrWjW3lDwC7gXXqxczNPz4xq+nx6ZOZURMW5vNnZt380x4OBs6lIlEjIj17r31r7/+KkSdUHnylwM1a9aUvxzIPyknK4u5u+e2t9DQYM7ORS3lL2znMfgmPIJZo0YN1f4/Dw7OadPmN319w6ioKBUuAwpn3LhxRNSuXTsXF5fp06c7OTn9/PPPAwcO7Nu3r729vZ2dnbW1dZMmTapXr25paWlsbMxz7/JXuXLlihUrytcg5ld22traZ8+eVfRPxMNYhw/nPrxzJ/cmaNHedKH4yszMrF27NhFtUHzyebdujIj9N40eFCgzM9Pd3Z2/7fA67O+/qSHpJ74p3PpN51eF4OPDqlXLDbvzvA15Jfr8qjgG3L+6yTQ5OVl2y0VfX/+zt1wKzcfHp1q1arJbKHfu3OGZg3w6IhKLxdbW1q6urk+fPi30LCtW5G6dKPD2WVCxEydOaGhoDBo0SpmTSqXSVq1aEdGqVasEP/jp06f5e1aJu0+oZC4uLkRkaWnp7u6empqq7Olv32azZ7O0NKavz549+zjesyfbulXZi/mv8717Z6urM9kFw927jIiVK4dy2wr18uVLd3d3GxsbXoOPiLS0tOzt7d3d3Qt/hS+Vsj59GBFr166Q6Z1F5+LCiFibNh8vBP/6K/eTEh0tS6+LF3NTWlRu5kzm7s6mTWPTpjGGgPu36NWLLVvGatbMrSWmp8fevGEjR+btl5WW9rERlo4Oc3ERsk1unmu/EydO5J+Uc/z48V693GWXdt9aRiYfgnQeg2/i7++vpqamrq5+48YNVa+F9erVi4jmy5cThZIgMzOT9zWVL3tdEBKJJD4+PjY2Niws7NmzZ4GBgQEBAXzb8aZNm3iucfZ/a12vX7/eRym7ulauZERs9Ojch1Jpbqvwu3eVMDmogJubGxHVq1dPCYlijx4xDQ2mpsaU2+HuO+Xj48NzJXmIMqxwDUk/5/Xr146OjrIbhF8tKPLV86tCS0tjS5YwPT1GxDp0OLhgwYI8dRpK6PlVcQy4BwYG8v+Pbdu2vXXrlvyXPi0qFBkZKfgC0tLSlixZwqtm810SRKSmptapU6fNmze/ffu26FNIJMzenhGxbt1wk7lkCAnJVlPLqVFDqZMeOHCAiCpUqJAnzhsaGhoYGBgYGHju3DlfX9+jR496e3v/+eefnp6eGzdudHNzW758uYuLi4uLi5OTk5OT008//TRw4MB58+blOf6AAQOIqF+/fkr8mUqeAwcO1KtXj78PmJqaLl26ND4+XhkTv3zJhg/P3ZN//DhbvJhZW7PLl9nDh2zhQla7NhPuRmMh3L59m4ga1q37MT7LA6ZK3wXyXcnMzDQwMOCvRj09vQEDBuzfv1+Y7u3x8bmdDVXSGyAsjGlpMbGY3byZO5KWxiwtGRHbsUMF6wFlWbSIEbGpU1W9jg8B9/fvWaVK7M4dBNy/Qa9e7N9/2ZgxjJ9l6Ol9piVE/rlLguBtmYyNjYmIv08aGRmtWbMm879Nkx49esTr2xJRv36vTp8WfiWMscuXL1tZWRGRurp66LfuhIVvkZycXLNmTSJydXVV9VoYY+zGjRv8tVeQAt9QfBw5coSIrKyshD1s3bp1iejKlSvCHraA7t3Lm9I+ZgwjYitWqGQ5JdWaNWtKRGgvMjKSNyY8raAPtk9MmcKIWKdOypnt+/Xy5UtNTU0iaty48fnz5xUxxYULF/JpmVnA8ytBhIezESMyK1SoTF/o7Frizq+KY8C9fPnyYrHY09Mzz//cGzdu8Gxf+sa2uYUTHh5ep04dsVjcoEGD7du3F64mUT4iI5m5OSNiqqgKDt8sPZ2JxUxdXXnJu1lZWbVq1SKiP/74I8+XZHWNvomNjU2e47x9+5Z/MP/zzz9K+qlKJqlU6uPjI2swoq+v7+zsHB4erqj54uOZiwvT1mZETFOTOTsz3sx53z42ciTr3ZstXMh4LvOGDczJKW9xXKWYOXMmETk7O/OHUql0Sb9+QXXrssuXlb+Y70eLFi3EYnGPHj2OHDmSJnhn2suXmZoaE4vZhQsCH/mr+vZlRGyU3BaiX39lRMzKSiUvb1Ca+TBs6AABAABJREFUTp0YkerbB7APAXfG2F9/MTs7BNy/AQ+4x8YyCwv2+PFnAu7p6bnRdisrhX9ExMTEtGrVSiwWW1lZ5dn0Ex8f7+Liwq9ay5Qp4+bmpohrRRmJRLJs2TKxWFy/fn3FzQKjRo0iombNmhWfpkQdOnQgxWxOBcXp168fKaDS5owZM4ho7ty5wh624HgqRVBQ7sMjR3J3M0IB1a9fX2nRpyL6+eefiahPnz5KmzE+npUrx4jYsWNKm/N7ZGVlJRaLFyxYkE+byaLjmc2mpqayzOY8J1H5nF8J7tatW/m0Sy1Z51fFMeDO93PJB7jj4+MHDRrE/49XqVLl4MGDyrnHOHHiRCLatGmTUAeMi2O7dn18+O+/TCRiGhqsGOyAhK+rVIkR5d0irTibN28mojp16uTZh8gYs7Ky4j15OnXqZG9v37dv34EDB44YMcLJyWnSpEkuLi5z5851c3Nzc3PbunWrp6fnvn37vL29P5te4e7uzv9ZlaBKWCrk5+fn4ODAt+Boamo6OjqGhIQIOUFWFvP0ZGZmjIiJRGzgwPzyACMimK4uI2I//aTkKi4SiaRSpUpEJDv1vHr1KhFVrly5EJ1boOCaNm1KREGyKyfBzZ/PiFilSiw2VlFTfOr8eUbE9PVZRETuSHg409VlIhFTUVIYKEdmZu7vuTiUO5YF3BljnToxTU0E3AuKB9wZY9u3MweHz2e4nzjBtm1T0u2zpUuX0n9revDLSDMzsy9dRirIkydPiKhWrVpKmOv7xNsDamtrBwcHq3otH506dYqIzM3Nhb8vDooRHx+vpaUlFovffGg1//btW0Fu4fj6+hJRkyZNin6ownFyYkRs2bLch0lJTFOTqampvm9KSdGgQQMiqlChAn1oL/lShe2OviwoKEgsFmtqaj4RsERaAWzcyIhY9ersv9W/QUi8osu3VrsqnLi4uClTpqirqxORiYnJ9u3b5b/66fmV4uTf2bUEnV+VjIB7dnZ2w4YNlV8gX9iAe0YGq149b69U3leqRg1WtJ4HoAwdOjAi5uurjLlSUlJ4G4NjCr5lLJFI+MaR2bNnK3Si0uTu3buOjo68U6VYLHZwcLgpq4NRaFIp8/ZmNWrkbrnv3LlAwZ4rV3I7vvXsyZR4XXfp0iUisrS0lN37nDx5Ml5FSqDwgHt2NmvblhGxH39U1BR5J8w+OGiQxMTkPzucBw9mRGzIEOWs4XuQk5Nz/fr1BQsWjB079sCBA8UkDOTvz4hYgwaqXgdj7L8B9ydPmJYWAu4FJQu4SySsTRsmEn0m4K5Mn14QhoaG8sT2Tp063VNiudkSdEFYQp08edLExESF6cNfYm1tTURbVd1rBwpoy5YtRNStWzfZyA8//GBqaurn51fEI8sqAcqHipTp2DFGxOQ3OfONZQcOqGQ5JQ8PuAcEBMjaS+rq6rq6uhaT8yhOKpW2a9eOiH755RclT52Twxo1YkRs5Uolz/wdUWbAnXv8+HGPHj0+3fSjzIA7l5SUNGfOHN5Nc+nSpbLxEnR+JS5EYQrlU1dX9/LyevLkiaw7bUmkpUUTJhBj9PPP9PZt7uCqVWRlRWFh5Oys0sVBAdSoQUQUFqaMudatWxcZGdmyZcs+ffoodCKxWLxp0yY1NbWTJy8+eJCt0LlKjSZNmuzevfvp06fOzs6amponTpxo1aqVra3t8ePHC3dAvytXpB060KBBFBZGjRrRv//SuXPUrNnXv7NdO7pwgUxN6eRJ+uEHSkoq3AK+1f79+4lo6NChPNlfIpEcOnSIiIYMGaKcBYCiqKvTgQNkYkJHj5KnpxIm3LZt22Bvb/sqVWjGjNyha9fI25t0dGjlSiUsoHSLj48/dOjQuHHjKleu3KZNm2XLlu3YseOnn37q0aNHSkqKqldHN2/+aWPj2b//U1UvhIjot99IW5vOnKHMTKpdmzIyCvQeDERUowYZGRERicX0++/UrBmJi9nlRc2aNZcvX37kyJHz58/LqpRCKXD27Nn4+PhXr17JD6anp/v7+6tqSdwvv/xCRKtXr87JyVHtSqAg9u7dS0TDhw/nD6Ojo8+dO/f+/Xtegb0oNDU1O3fuTERnzpwp4qEKx96etLQoNJTS03NHuncnIjp1SiXLKam0tbUXLVoUGhrq6OiYnp6+ePHi2rVr7969mzGm6qUREe3fv9/Pz8/MzGzevHlKnlpNjdatIyLauzcjMjJKybODgtSpU+fkyZOnTp3iGXUqZGBgsHLlyocPH44dO5bXsy15VB3x/4xPM9yVxsLCQltbO4GXS1ZASRmplDk48Ma7HxsNhoQwPT3WqtXf+/YJ1uQXFGHZMkbElJDCGxMTY2hoSEQXlFVJefHi8+rq2W3bolryN4uMjHR1deWl8ImoWbNmXl5eBa+w9vjxY97p+6qdHatQgXl6skJUZwsJyS14ZG3NFP/OmZ2dzTfmy+6086uIOnXqKHpqyJPhvn79em1tbeGT+w4eZETP7OwUvUk/Pj6edyb/uJVHImHNmqmsd2tpcefOnRUrVtjY2PCNOFyNGjWcnZ3/+OOPihUrElHz5s3jVL2lnPeuPFA8Eu3S05m2NhOL2YdzQPg2Hh5s7lwWGanqdagiA0tm+fLl2trasiSsEpSBVUKFh4dramqqqanJOqfFx8ebm5vr6emp5EJSJicnh/dh2rdvnwqXAQXx4sULkUikp6cn20a/bt06Iurbt68gx/f09CSifv36CXK0QggO/s+1xcOHjIiZmuKir0B4hvuDBw9kIxcvXmzSpAk/s+rQocPdu3dVuDzGWFpamqWlJRHt2LFDVWtwdr6oqak/Sr4VEwgnT4b7mjVrtLW1Fy5cqPyVqPD8Ko8SdH5VzFJQVC09PT0jI4Mp7F6lSEQ7dpCFBV2+TGvW5A7WrUvbt1+7ebPv+PFjwpSTPg2ForQM92XLliUlJfXq1atjx44Kn4yIiKZN62Rurn7tGu3YoZwJSw9zc/NFixa9fv3a3d29fPnyQUFBI0eOrFu37rZt27Kz89sxEBkZOX78+IYNGx46dMjAwOBO9+4UGkpOTiQXICuounXJ359q1aLbt6l9e4qIKPzPUwBnz56Njo6uV69eo0aN+AhPeEd6u/JlZ2dnZGTk/0orjEGD/p03r+alS0OGDEmX5UQpgKura2xsbKdOnfr27ctHduzatVhNLa1tW5o9W3HzlkppaWnnzp2bOnVqlSpVrKys5s2bd/XqVZFIZGNj4+bmFhgY+OzZMw8Pj9GjR/v7+9eoUSMwMNDe3j4mJkZVC87Jybl27RoR8X3QyufuTkeOfEz6u36dMjKoSRMqU0Ylyynxtm+nlSspOlrV61ApRb0nwxdUqlRpyJAhEomER0iJyNjY2NraOjU1ddOmTSpcmJqa2uzZs4nIzc1NcdeVIAiep/zjjz/KttHnSXgvoh49eohEIl9f38zMTEEO+K0aNPjPtUX9+mRlRZ06KW1bbGljZ2cXFBTE+4Jcvny5WbNmI0aMiIpSWXK3m5vbq1evrKyseAdplZg6tYpIlL179+5bt26pag3fD5xplCwIuCubmRn9+SeJxbRwIV2/njs4ZEjboUOHJiUl/fTTT1lZWSpdIHwRD7g/f67YWV6+fLl161axWMxvISqHoSGtXUtE5OLyvV8tF46hoeHUqVNfvnzp6elZpUqVZ8+ejRs3rlatWh4eHmlpaXmenJaWtmrVqjp16vCcFycnp6dPn0765RfS1S38Ciwt6coVatyYQkLI1paePSvKj5M/Hl6XXYdkZmbyrmUIuJcmHebNq1ev3oMHD2YrLPAdEhKydetWNTW19evX85Hk5OQFCxYsCgg47uxcpH8O35Pnz59v27atV69eJiYmXbp02bBhQ3h4uJmZmaOjo7e3d2xsrL+/v4uLCy8ozFWtWtXPz69BgwZ37txp3759hIJv0X1JUFBQcnJy7dq1eS8yJcvIoLlzadAgkgVALl8mIurQQflrAYDCmzNnjlgs3rlz57t372QjRLRx48bk5GSlLSMtLS3P/ekRI0aYmpo+fvy4evXqNjY2ffr0GTNmzIIFC9zd3ffu3XvmzJl79+5FRESoKggLMvv27SO509qQkJCgoCAjIyNewrjoKlWq1KhRo5SUFJVXOuJu3aK2bWnnzty7y3v2UPFYV0kiFotHjBjx5MkTFxcXDQ2NPXv21K1bd9WqVcr/5/zmzZu1a9cSkYeHh1h11dyqV68+bdo0qVQ6bdo03GIEkIeAuwp07UozZlBODq1Zszvpw83l33//vVq1aoGBgb/++qtqlwdfwgPuioxkEhEtXLgwMzNzxIgRst1qyjF4MPXsSQkJNGuWMqctVbS0tJycnJ49e+bl5VW/fv1Xr15NmzbN0tJy0aJF8fHxRCSVSnfv3l2zZs05c+YkJSXZ29vfuXPH09OTN8gtqvLl6cIFatmSXr70mTHj0aNHAhzzExkZGT4+PkQ0aNAgPnLy5MnExERra+vatWsrYkZQCT09PW9vbx0dnc2bN/MbKoKbPn16dnb2+PHjZSWVlyxZEhkZ2bZtW9mrCz4rJyfH399/zpw5DRo0qFGjxrhx406cOJGdnW1tbe3i4uLn5xcZGbl79+6BAwfKql3lYWFhwYtZP378uF27di9evFDyj0BEly9fJqIOKopwf5rPfuUKEVH79ipZDgAUUt26dfv06ZOZmblhwwY+0q5dO1tb2/j4+O3btyttGbNnz27WrNndu3dlI+/evUtLS9PW1n758uW1a9d8fHx27NixfPny6dOnOzo6/vDDD02bNq1UqZK2traOjk6FChUaNGjQpUuXESNGTJ06ddGiRdu2bTt+/Li/v//Dhw+TkIqsMDdv3nzy5ImFhQWvtE5Ee/bsIaLBgwfr6OgINQuP3Z8qHnXTnz2jbdto2bLch1euUEiIShdUYpUpU8bNze3+/fsODg6JiYlz5sxp3LjxiRMnlLmGWbNmpaamDhkyRFWbBWXmz59vYWFx/fp1fgcLAHKptqLNZ6mwhnuZMmWIKD4+nj8UvIa7TGYmGzJkPhENGTJENnjr1i0NDQ2xWHz27FnBZwRBGBszIhYdrajj37t3TywWa2trq6SX/cuXTE+PEbFz55Q/eWkjkUiOHj3asmVL/k5rYGAwePBgWfOl1q1b+/v7K2TipKTLY8YQUbly5QIDAwU//JEjR4ioVatWspEBAwYQ0W+//Sb4XPCpPDXcV69eTUSzZs1S0HTu7u5EZGxsLPg7Eg/iGxsbyz7rnz17pqWlJRaLb926JexcpUZkZKSXl9fAgQN5kw+ubNmyAwcO9PT0fPfu3bceMD4+vlWrVkRUpUoVWQVkpXFwcCCiPXv2KHleztWVEbFp03IfZmYyXV0mEimhC0ap1bAhI2IfSoyqkgprjC5atIiIfv31V/6wBNUYLdF4EQNDQ0NZFy7exL5ixYqZmZlKWMCZM2dEIpGWlta9e/f4iEQi4XcTe/fu/fjxY39//2PHjm3btm3p0qVTp04dOnRoly5dGjduXKFCBU1NzYJcsBsYGNSqVatt27ZhYWES1N4WDm8JOHPmTP5QKpVWrVqViK5cuSLgLPwGc7169QQ8ZqH99Rfr359Vrcp4m54xY9i2bapeUzH2aQ33z/L19eXPJCJ7e3tF90DieOVAHR2dly9fKmG6r9q5cyd/401JSVH1WkqVPDXcV6xYQURz5sxR/kpQw70QkOGuGpqatHTpz4aGhvv37//zzz/5YIsWLVxdXaVS6fDhwyMjI4Wa69Ytkk9P/Ptvio6mgwfp/fuPg7t2EcpAFUT16mRgQG/fKur4Li4uUql00qRJVapUUdQcX2ZpSXPnEhFNmEAZGcqfv1QRi8X9+vW7efOmn5+fg4NDSkrK2bNnHz9+bGlp6eXlde3aNRsbG4VMbGDQatOmfv36xcbG2tnZnT9/XsBjp6SkmJmZTZ06tWzZsg4ODhcuXIiNjT158qRYLB48eLCAE0Ex4ezs3Lt374SEhOHDh0skEqEOm5WV9csvvxDR4sWLedNUIpo2bVpmZub//ve/Fi1aCDVRqTF//vzGjRuXL19+5MiRhw4dSk5Obtas2fz5869duxYVFeXt7e3k5FSIjTLGxsZnzpxp27bt69evO3ToEBLyWBGL/yypVMo317dXUUp5nnz2W7coLY0aNKAPr0cAKDFatGjRqVOnpKSkLVu28JGePXtaWVlFRETwbGWFSkhIGD16NGNs2bJlsg1ba9asuXz5coUKFXbu3FmnTh0bG5u+ffuOHTuWl5T566+/zp49Kyspk5aWFhERERgY6OPj4+Xl5e7u7uLi4ujo6ODgYGNjU716dU1NzeTk5NDQ0GvXrrVr105B286+Qzk5OYcOHSK5ejKXL19++fKlpaWlra2tgBO1bdu2TJkyISEhzxVdmbRg9PRo2TKaMIFQ/EMofNeyu7u7kZHRuXPnrKyspk6dmpiYqLgZpVLp1KlTGWMuLi68aarKjRw5smXLlhEREatWrRLqmAEBdPTox4f//EORkXToEMn/r/XyIpTmguJLxQH/z/keMtw5Ly8vItLT0wsJCeEjEomE72j74YcfpFKpILPMmcPEYnbtWu7Dli3ZjRvM0pI9fvzxOZqa7P17QWYrzQ4d+vg/LTqaXbwo8PF5+oORkVFsbKzAhy6wzExWvz4jYosXq2oJpdPZs2eJSFdXVznJVjk5OSNHjiQiLS2tY8eOFfo4CQkJfn5+7u7ujo6O9evXz1McUCwWd+3aVV9fv3379sKtHfKj5Ax3xlhMTAwvsb1kyRKhjslPxOvVq5eVlcVHfH19icjAwODt27dCzVKatGnThr+BODg4eHp6hoeHC3jwlJSULl26VKhQpUmTl3fuCHjg/AQFBRFRtWrVlDTff8ny2aOickeWLWNEbNIklSynlECGO0OGu+rwsywzM7O0tDQ+8tdffxFRjRo1cnJyFDo1r4Fma2srmyg4OFhbW1skEp08eVKoWRISEp48eTJ9+nQiatGihVCH/c7xGon169eXjYwePVpB7x4DBw4kos2bNwt+5G/1119sxAgmlbIOHdiuXchw/4oCZrjLxMbGOjs7q6mpEZGJiYm7u7uC3oJ4yaxKlSoVq3Tya9euiUQibW3tFy9eCHLABQuYWMxkG07atmX+/qxGDSa/hUBXl8XFCTJbMYUM90+VoPMrZLir0ogRI4YPH56amjps2DDeZEMsFnt5eZUrV+706dMeHh5CTdSrF40fTzk5Qh3vOzV4ME2enPv3hw9p0SKBj8+7PLm4uPB7TiqhqUlbt5JIRCtW0JMnqlpFKdSlSxcLCwuexKSE6dTU1Hbt2uXs7JyZmTl48GBvb+8CfuPz58+PHDmycOFCBweHSpUqGRsbt2vXbtq0aXv27Hn06JG6unqzZs1Gjx69cePGPXv2GBgYnD17dsqUKXwLIZRK5cqV27dvn5qa2pIlS65evVr0A0ql0oMHDxKRu7u7hoYGEeXk5PAgwq+//mphYVH0KUqfJUuWnD9/PiEh4fjx405OTpUqVRLw4Hp6ev/880/Hjv737ll26kS3bgl47C9SbQF3WT67mZlsPUTomApQYnXp0qV169bR0dG7du3iI4MHD65Zs2ZYWNixY8cUN+/u3bu9vb0NDQ337NnDQ2yZmZlDhw7NyMiYNGmSUF03iahMmTK1a9desWJF+fLlAwIChN2/+N3au3cvEY0YMYI/zMjI4IUThwwZIvhc3bt3p2JTxp2IRCLavJlcXUmJrYW/C2XLlvXw8AgICGjfvn18fPy0adOaN29+he+qE05ycjJv+/fbb7/p6ekJe/CiaNOmzZAhQzIyMlxcXIQ6Zq9eNHEiijFASaWu6gV877Zs2XLr1q2goKB58+bxHtMVK1bcuXNnnz59fvnll2vXrpWR9fP6HCOj1e/f5/cEvsHI1pa0tcnd/T/9MJ89+xiCx4ayghCLSV2d9u2joUOFP/jhw4evX79uYWHh7Ows/NG/Rbt2NHIk/fkn7dhBq1erdi2lStOmTd+9e3fnzp1q1aoRUVpa2tmzZ2NjY8eMGaOI6UQikbu7u7a29urVq4cOHfr+/fuxY8fmeU5OTs6TJ08ePXr08OHD27dv37hxIzY2Vv4JBgYGjRs3btCgQf369a2trZs3b66trS37arly5Xr16uXm5lanTp0avKcwlApSqVR+N0OHDh1++eWXlStX9u3bt3fv3jymUBRNmzY1NjY+fPiwtbV12bJlN23aFBwcXKNGjSlTphTxyKWVvb29Qo+vo6Ozc2flzEw6fJg6dSIfH+rUSaETfj7gHhMTc/bs2WHDhil2biJ/fymRWFZPJieHbtwgIhK0hAAAKNWsWbMGDBiwatWqsWPHamhoqKmpzZgxY+LEicuXL+/fv79IJBJ8xjdv3kybNo2INmzYwAt/E9GCBQvu379fo0aNlStXCj6jtrb2lClT5s+f7+bmJmvyCYWTlJR0/PhxsVg89MN13fHjxxMTE5s3by4rxi2gnj17isXi8+fPp6enC9iOtSgaNKDBg8nDg/BSEpyVldXly5e9vb1/+eWXu3fvdujQoVu3bgIWjL1169a7d+9sbW35DptiZdWqVf/884+3t3d6enr+1Q7LlFmVmGiczxMqVyYiat2a9PVp7VqaM+fjl8LCPv4dgSwozhBwVzF9ff29e/fa2tqePn166dKlurq6ROTg4FCtWrWMjAxeVy4fdeq455+G3KwZde1KRPTbb9SiBcmXWV6/nvT1c/8uXG3eUm7tWurWjYRLWMklkUj4bepFixYVh9vUa9ZQ27ZkZUXZ2aShQUQUFUVZWbkfe1A4VlZWp079n737jmvy6uIAfhL2VHAi4gAVxS3uPdCqgKMVN86Ko4pbbGuLtbbG8SraOnC0xS3WBYi1uHELTsQJylBAEGTP5L5/XBoi4oInCeP3/fCHuYTn3hSaPM95zj3nxO3bt7/88ksiyszMHDp0qKGh4aRJkwqVahGKSCRauXKlqanp4sWLp06dmpyc7Orq+uTJk+D/3Lx5MzMzU/FHTExMeGyda9KkyQfW1r9//82bN0+ZMmXKlCnm5ubKjgmCysyfP//169ebNm0y/O9DYu7cuevXr9fX1xdwN8Pp06cvX768YMGC5cuXE5GHh4eOjo5QB4fPpa1N+/fT5Mnk5UWOjnTkSP7Jg+Bu3759/PhxXv+hY8eO8vGcnJwvvvji9u3bsbGx8+fPV8rc/zl3zr5BA51+/X4hakpEwcGUmkrW1oT9FQBl19ChQ21sbEJDQw8cOMBLck+aNOnnn3++fft2QEBAP6Hf0WQy2fjx45OSkgYPHsyL+BHRxYsX161bp6mpuWfPHvkHqLBmzpy5atWqU6dOXb16VfEtFD7XwYMHMzMze/fubfHf5Q1PeJfXcxdW9erVW7duHRwcfP78+f79+ytjio968oS8vKhJk4KRpUvpY8EGKL7hw4fb2NiMHj363r174eHhJ0+eFPDglSpVGjp0aKFbiS9fvuR1IFWGMebg4NCvX7+ZM2fyjJzatWs3a9bsxYsXvHn1B9jYrAsN/dATWrSgQYOIiFatIltbGjmy4Fvr15ORUf6/c3JK8goAlAsBd/Vr166dj49Pt27deLSdiNauXRseHm5iYrJy5coPZ7jr6Eg/3COiWrX87eG1a9P8+bRoUcG3Nm4ka2v5cUrwAioSGxsaMYK++4747eSNG+nwYWrenFq0oJYtqWlTUkj//Qzbt29/8OBBo0aNJk6cKOyCi6dqVWrfnlq1olWraOFCIqK9eykigjw81LywMq1169ZEdOvWLf6wSpUqderUiYyMfPr0aaNGjZQ3r5ubm6Ghoaurq5ubG+/KK/+WWCxu2LBh6/+0atWqRo0an3Xwr7/++uHDh//73/+++uqrixcvNm/eXOjlg6odP358/fr1Wlpac+bMadOmDR90dXXNyMjQ09PbtGlTyTPcuQsXLuzZs+e7775r1KiRkZGRg4ODIIeFYtPQoD//JCMj+v13cnSk/ftp6FBhjpyRkXH58mVfX98jR45ERUURkVgsFolEc+bMOXz4MD/50dbWnjZt2vTp0xcsWBAfHy+RSISZ+x15eXmXL19KTU1t124TH7l+fX+3brndu3chslTSpACgbGKxeP78+ZMnT/71119Hjx4tFot1dHRcXV2//fZbiUQieMB93bp1Z86cqV69uqenJx9JSUnhDcaXLl3aoUMHYaeTMzY2njp16qpVq1avXs3rn0DxFAqvJyYm/vPPP5qamiMU09MENXDgwODg4BMnTqgl4P78OdnZUWQk/e9/5OWVP6ivT8+eqX4tFUJKSsry5cvXr1+fk5NjZGQ0cOBAGxsboQ5+9uzZ/fv3b9y48ZtvvuHZKrm5uWPHjvX393/48KG5ublQE33Uzp07/f3979y5M3nyZH6X8datWzdu3OC1KD98XamrK83K+tDBq1Sh27eJiGrVIje3/KAEt2EDyTeilIJkRYD3U3cR+SJUnKapRQoODtbW1haJRMeOHRPkgIsXs9WrGWMsJ4c1a8YqV35v09TsbJaVJcic5ZOmJmOMpaayunWZhwfr0YONHMmICr40NJilJXNwYO7uzNubhYSwT2l8m5GRwQvy/v3338p+CZ/u9m3WoAGrW5c9f84YY2vXstmz1byksu7p06dEZG5uLh8ZNGgQEe3fv18Fs3/xxRd6enoaGho2NjbOzs4eHh4BAQGvhWgxI5PJeLHLevXqxcbGlvyA8AHKbpoaGxvLt3+u5h8bjDHGtmzZQkSVKlUKDw8XaiLGWF5eXsuWLYno559/fvPmjYBHhpKQydjcufmfaDt3luhQjx49Wrt2rZ2dneLehVq1an399dcbNmzg9fq7deuWrNC0fe/evZqamkS0cOHCkr6S97h69SoRWVtby0d4neU9e/YoacYKYvjwR126PLl/P/njT1UyNE2tsHJycnjRBh8fHz6SnJzML+4uXbok4ET379/nVUF8fX3lgzzP3dbWVt4PXEliY2P19PREIlGIYt9A+BzR0dFisVhXV1d++vH7778T0cCBA5U36eXLl4nI0tJSeVO8T3Q0s7JiRKxTJ5aaqvr5y7DPbZrKGJPJZF5eXvx0WiQSOTs7x8TECLuqvLw8nuQkkUjkg8OGDSOisWPHCjvXB6SmpvKE+p0K54vdu3cX8CxuyRK2YgVjjOXmspYtmYnJe5umluNAFpqmvqsMnV+haWrpkp6ePnr06JycHFdXVx6ME5CWFm3eTMnJRX/39GmaOJEmT6ZPbq9YQRka0po1tHw5EdHatXT8OK1YQSNHUtOmJBJReDj5+dFPP9Hw4dSsGVlaJvXs2dPV1XX79u03btzIyMh494Dr1q2Ljo5u164drzRSehgb06JFNH26utdRXlhaWlaqVOnFixdxcXF8hOe83+b37oWTkZHRu3fv3bt3y5PZX79+fenSpaysrCtXrty/f3/nzp2zZ8+2s7MzNTUt+XQikWjHjh2dOnV6/vy5g4NDenp6yY8JaiGTyZydnWNjY/v16zdv3jw+GBoayv+9adMm3n5AKBoaGr///rtIJFqxYkXy+z6ZQOVEIlq7ltzdSSqliRPpc2sIZWXRv//SsmVPGzZsaG1tPW/evFOnTuXl5XXu3PmXX365efNmdHT0tm3bZs2ade7cOQsLi8DAwN69e79+/Zr/+KhRow4dOqSjo7N69erp06cr7sgRSqHy8VKplAdBunXrJvhcFUpo6FeXLjWUSiPUvRCouLS0tHgL7l9++YWPGBsbT58+nYhWr14t1Cy5ubnjx4/PzMycOnWqfG/WsWPHvLy89PX19+zZw/uBK0+NGjXGjx/PGOPdv6AYdu3aJZPJBg8eXKlSJT6i1HoyXIcOHapXrx4eHv748WPlzfKu+Hjq14/Cwqh1azp+nJRT6wjyXb9+vXPnzuPHj4+NjW3fvv2lS5d27tz54VLmxaChoeHh4UFEv/zyS0xMDB9cu3Ytfwu6ePGisNO9z6+//vry5cuOHTvK/8fZv3//hQsXqlev/v333ws7l6YmbdxIb94U/d3z52nCBPr6a9q7V9hpAUpM3RH/IlTkDHeeHNGsWbOMjAyhjhkdzRSzTu/eZWlp7P79t+4B3rnD0tKYVMpiYtjo0ULNXE6kp7Px41lYWH6GOzdwIOvRo/Azc3JYSAjz9mbu7szBgdWsyVq1Olvo/zgzMzMHBwd3d3dvb++QkJCEhAQTExMiOn36tApf08fdvs3atGF5eaxNG3bkCDLchcEDOidPnuQPjx49SkRffPGFsLP89ttvRNSuXTv5yA8//EBEDg4Owk6kKC4ujkdjv/nmT6lUefNUdErNcOcd3qpXr/7y5Us+kpWVxZPQJ0+eLMgU7/rqq6+IyNnZWUnHh2L7+WdGxMRiFhDAnj0rGL97t4gcothY5uXFnJyYsTEjYtWrS0UisampqZOTk6en5/tyu54/f96gQQMiatWq1atXr+Tjx48f59mjY8eOzc3NFfZ12dvbE9Hu3bv5w6CgICKysrISdpYKqFAGlhohw70iS09Pr1q1KhGdO3eOj8TFxfF88M/KUf2AxYsXE5GlpWVKSop8Cl45YePGjYJM8VHh4eGamppaWlrP+UZU+Ez8/crPz48/fPLkiUgkMjQ0TEtLU+q8vCv4unXrCo2nKi3tPCmJtWnDiFiLFiwhQUmTlGefnuEeHR3t7OzMi6qbm5t7eXnJPmWrewnw7MxJkybJR5YsWUJEbdq0kSr/YiwsLExXV1ckEl29epWPZGRk1K1bl4i2bdsm1CwvXjDFU8h791hqKgsNZZmZBYN377LUVCaVsvh4Nny4UDOXIshwf1cZOr9CwP0t6g24HzhwgIgMDAxCQ0NVM+O7fv+d7dqlrslLo5QU1r07I2IdO7Lg4ILx16/Zo0cf//GYmOR//vln5cqVY8aMad68+bs5L7q6ukTUt29fxZ/KyMh48uSJ0C/l8/CAO2Ps6lVmacl+/RUBdwG4uroS0cqVK/nD58+f8/imgFPk5OTUq1ePiA4fPsxH0tLS+JtqYGCggBO9KzQ09Isv9mtqsvnzlTpPhaa8gPuNGzd4NTPFDfLffPMNETVo0EAeVhBcRESEvr6+SCRS9t8nFMPatex//2OTJrEqVZj8pKxePcZrC+XmsgsX2OLFrEWLgtJqIhFr3Zp9/z27evVOXl7eR6eIiYnhV7ONGzeOjo6Wj587d87IyIiIRowYIWB9hry8PH6mFxER8d9rXEtEEydOFGqKCgsBd4aAe+nAfwv9+/eXj/ALunHjxpX84JcuXdLQ0BCLxRcuXJAP8jz3vn37Kju+pmj06NFEtGbJEpXNWG4EBwcTUbVq1eQfLu7u7kQ0YcIEZU/N8+j79etXaLx3795mZmb8FnVISIhQf0jJyaxdO0bEGjViQhc1qSg+JeCekZEhkUh4BXM9PT03Nzfl3UFR9PTpUx0dHbFYfO3aNT6Snp7Oy2r9+eefyp596NChRMR323D8/6PWrVt/yumfMmzZwpT/utUAAfd3laHzKwTc36LGgHtYWJixsTERbd++XQXTFWnPHqZQthdYUhLr2JERMTMzJkiZxNzc3JCQEG9vb3d3dwcHB0tLSyIyNDQcrbCt4NGjR1ZWVk2aNMnOzhZgyuKSB9wZY1OmsLp1EXAXwJ9//klEI0eOlI/wPKwXL14INYWXlxcRWVtby1Mb1qxZQ0TdunUTaooPOH+e6egwIqbazhcViJIC7qmpqbxzr+Khjh8/LhKJdHR05NMpCd92amtrq4J8HCiGSZNYmzZMvsmhXj3m48NGjGAmJgVxdiMjNnQo27aNFePNLC4ujm+kqFevXlhYmHw8MDCQb/Z3cHDIVMxlKgEeZ1EsoTt48GAi+uuvvwQ5fkWGgDtDwL10eP36Nb9dFxQUxEciIiK0tLS0tLSeKe7W+XxpaWkNGzYkoiUKYW7e5qRy5cqRkZElOfjnenT37vlWrZiBAVPHJXOZxusOzZo1Sz7i5eXVqlWrgIAAZU/9+vVrDQ0NHR0dxYCsVCq1sLBQzMcyNzcfPXq0p6fnQ8WWa58pPT0/aaxBg+J8NAP30YC7j48PT3XipyslfJP5XIsWLSKiTp06yW/S7Nq1i4hq1Kih2CBHcOfPxxoZmRsaGsqvYaOiogwMDIjo/Pnzypv3A/bvZwoF7csVBNzfVYbOr1DDvVTIy8sbO3ZsSkrKsGHDJk+erJY1rF9P331HT57QypVqmb/UefWKevWiq1epXj0KDCxohF0SmpqaTZs2dXJyWrp0qa+vb1hY2Llz57Kzs/fv33/t2jX+nHr16mlraz948EDAcpMlJJFQUcXn4bPxaOmtW7fkIy1atCDhyrgzxvifzeLFi8ViMRHl5uauX7+ejwgyxYd1705//UUiEc2eTT4+KpgQhDFt2rTHjx/b2trK696+ePGCJ62sXLmSNxtQnu+++65OnTrBwcH8IgFKoRkz6OJFOncu/2F2Nh04QElJZGlJLi7k40Px8XT4MH39NdWq9dkHr169+tmzZzt06PD8+fNevXo9efKEj3ft2vXMmTNVq1b18/MbOHBgWlpayV+IWCx2cnKSd0xhjPFSp/KS7gBQ1pmamk6ZMoUU6rbXqVNnxIgRhoaG9+/fL8mRZ8+e/eTJk9atW/NKfUQUHh6+cOFCItqyZUuhmKmyNWrevLu5OaWn02+/qXLesk4qle7bt4/eLtc+bty4W7du2dnZKXt2U1PT9u3bZ2dnnzlzRj4oFosjIyPDwsI8PT2dnZ1r16794sWLvXv3Tp06tXHjxjVr1nR0dFy5cmVwcDBj7BMnyswkR0e6cIEsLCggoDgfzfBRN2/e7N69+6BBg54/f966desLFy74+vrKg++qsWTJEjMzsytXrvC/aiIaM2ZM165d4+LieKFIZZBKadasGnp6kStW+Nf6729r4cKF6enpI0eO5E1TVWzjRlq0iMLDSWkvGqC41BruL1oFzHB/JpFYGBvXq1cvKSlJ2XPBp4iJYc2aMSJmbc2iopQ71/z584nI1tZWvv3q3LlzIpFIT0/v6dOnyp37P+9u/AoIYP/8U/AwOJjduqWatZRn2dnZfOufPLGF//aXL18uyPF5UfjatWvLt0ds27aNiFq0aKHKbc4//pif8Yq/GcEpI8Odb7wwMDCQJ1JJpdLevXsT0YABA1Tzl7Nz505Sfj4OFM+kSczLi504wZo2ZTk5rF499uQJ27iRCfsBlZqa2qtXL/5noJglff/+fX45161bN8H/PO7cuUNEFhYWwh62YkKGO0OGe6kRHR2tra2toaHx+PFjPhITE1PC2mjHjh0jIl1dXXmuq1Qq5b15xo4dW9IVF8+VK4yImZoypZV9K39SUlLGjRuno6Pzj+J1jgotW7aMiKZNm/aB58iD74Xu4lSrVs3BwUEikQQFBX1gU2B2dvaQIcM7dYquUYOVIEUeGHtPhntCQoKrq6uGhgYRValSxcPDQ11FVBhjO3bsICJzc3N5B4Lg4GCxWKytrS1/AxTWxo2MiNWvX1BI/fLlyzx2ga4SyoAM93eVofMrZLi/pVOnTl27dlV2c/nCTp2q9913YaamR/bt4xF/UK+ICOrWjUJCyMaGzp6l2rWVO92yZcvq1asXHBy8adMmPtKjR4+xY8dmZmbyWz7Kdu8eWVrSX38VjEREkKMjzZ1bkNjepg21aqWCtZRz2traNjY2Mpns7t27fOTdnPeSkIdftbW1iUgmk8kT3nkPH9VYupScnSk1leztKSpKZdNWRLVr1+7atSsvTlU8T58+5a0FNm3aZG1tzQd/+eWXM2fO1KhR488//1TNX87YsWM7duxYo0ajjRuTVDAdFEP//tS4Mf3+OxGRhgbNmEFWVkIe39DQ0M/Pr2/fvnFxcT179rx+/Toft7GxOXPmTO3atQMDA/v06fP69WsBJz1//jwR9ezZU8BjQkVWt27drl278q5xoEbm5ubOzs5SqVSe5F6zZk1eZ6bY9PT0zMzMJBIJj30Q0a+//hoYGGhubr5hw4aSrrh4Onakrl0pMZG2blXPAsogIyMjfX397Oxse3t7nu+i4gU0adKEiPbt2zdlypTdu3dHR0e/+xxLS0sXF5edO3dGRkaGhoZu2bJl1KhRtWrVio+P9/PzW7x4cdu2bWvUqMEjrYXk5eWNGjXq6FHviIjO589n/ndmB8LgW4etrKw2bNggFotdXV3DwsJmz57Ng+9qMWHChPbt27948YJfBhJRmzZtnJ2dc3Jy3NzcBJ8uKYnc3YmI1qwhXV0iIpmMNmyoYWbWfuHChfj4UwELC4uuXbvWr19f3QuBT6PuiH8RisxwP3To0MmTJ1W8ElVkuL96xczMGBETKMUVSujRI2ZhwYiYra3qmrkfOXKEiIyNjeUt4+Lj43l17wMHDih79oEDGdFbJdrHjWNEzNlZ2TNXRJMmTSKijRs38ochISFEZGVlVfIjnz17loiqVKkiT5/39vYmovr16+fm5pb8+J8lJ4f17s2IWLNm7M0bFU9enhXKcC+hnJycDh06ENHw4cPlg9euXdPS0hKLxSooZqooKOi1WCzT1WUKRbyhVOAZ7oyxyEhWuzarUiW/aaoyZGVlDRkyhIgqV658+fJl+fjz58+trKyIqHXr1q9evRJqumHDhhHRtm3bhDpgRVZkhntAQMDBgwdVvJIiM7BGjhzp6uqq4j00ZSgDq/x5+vQpL5YtYJucxMRE+a6vmzdvamtri8Xi06dPC3X84vDzY0SsZk0mUKOLikAmk0kkEh4htbe3l29tV7a8vLxVq1bp8iClAsV2qR8+QlhYmJeXl4uLC4+1HTp0qNATpFLpmDFj+GcoL0EDJaSY4R4QEGBjY8N/a3Z2dvfv31f36vLJE8zlFeRjY2N5d0DBA2iuroyI9epVMLJjByNiDRtK09MzhJ0LOLXsIExPT3d3d3dyclIcVFeG+5EjR06cOKE4UobOr8pGwD05OblmzZqqf2tTesBdJmOOjoyIde9eRFEPeIeXl5dSdyrdvx/Nb39068ZUXNiA921TDHt5enoSUc2aNZVaaOjCBUbEDA1ZbGz+yN27TCxm2toIeynFb7/9RkRff/01f5iXl6evry8Sid6UOCz9xRdfENFPP/0kH7G1tSWizZs3l/DIxfP6NbO2ZkRswACm8oB/uSVswH3evHlEZGlpKQ9CJSUl8eqT3377rSBTfBZ+q+/LL1U/M3yIPODOGFu5khEpMeDOGMvJyeFxcAMDg1OnTsnHX758ya97GzduLL85XWyPHz9et24db/D16NGjEh4NWFEXhNnZ2bwbc48ePW6psMTYuxeEDx484H1NzMzM/vrrL5XVWCtDF4TlkpOTEwnRV/xdmZmZ/A9+7ty5gh/8s7VuzYgYbhx+pjNnzlSvXp2I6tSpc/36dWVPFx4eLm8WMnbs2GvXrnl6ejo5OZmamhY7+C4vIcLJZDIXFxeewqWCV1RB8BMPX1/fgQMH8t+RtbX18ePH1b2uwkaNGkVEI0aMkI/wwiM2NjYC5l2FhjItLaahwe7cyR9JScnPHd27V6hJoDAVB9xlMtnu3btr165NRCKR6I78l62OgPuDBw8GDBhARBYWFunp6fLxMnR+VTYC7jk5OR4eHpUqVSIiLS0tV1fXkgenPsX06dOJaMOGDcqaYO1aRsRMTFhEhLKmKEeePn3KP+csLS1dXV0DAgLkhaoFERwcXLVq1R49DvXqxRRax6tIZGSkoaEhEfn5+fERqVTaq9fAHj3Ozp2rxJsxnTszIrZsWcGIvT0jYqXhCqJcCgwMJCJbW1v5SPv27anELd1v374tEokMDAzk75wnT54koho1amRkqC3d4OlTVq0aI2Lr1qlrCeWNgAH3f/75RyQSaWpqXrlyRT7Iz9fbtWsn7LvrJ4qNZcbGjIipfD8bfMi5c0xeBTQnh23bpvRywXl5eRMmTCAifX19xTK7MTExzZs3J6Jff/21GIfNzc0NDAx0c3OTZ6hpamruxTWiQN69IJRKpV5eXjVq1CAisVjs7OwcK7+3r0y8RPJ3332nOBgUFNSlSxf+e7e1tQ0MDFTBSsrQBWG5dOvWLZFIpK+vHxISIuyHGi/F1qRJEzWeYhXYu5cRMSsrJG99rsjISL7PT1dXV3lbnWQymaenJ7/Kq1mz5rFjxxS/m5eXFxISwoPvPAYiV7NmTScnJw8Pj6CgoE+5Tcj7Qunr65fwmgIUNW7cmIj4fggTE5P169erft/wp4iKiuI5BOfOneMj2dnZDRs2FDZ5tH9/RsSmTy8YWbiQEbFOnZgKm4VVOKoMuAcFBXXt2pW/BbVp06bQyVKR51dKkpiY6Orqqqmpyf/X8/DwUPxfrwydX5XGgPuAAQMqVao0YcKEQlVlVNye4tSpU2ZmZtWqVTMyMnJ2dvbx8RE4AHH3LtPVZSIRO3pUyMOWXyEhIV999RXfHsVVrlx5+PDhXl5ecXFxJTz4pUuX+B0dR0fHzMwcQRb8uXihybp168oTFu7elfHbyDduKGXGQ4cYEatevSB6whPejYxYif+LQtFSU1PFYrGOjk5OTv6f2dSpU4nIw8OjJIcdPnw4Ec2fP18+wqsSSySSEi23xC5fZl9/ze7cYV5eBadip06xp0/ZsWNv3Wrcu1d1RZzKrvHjx1euXLl27dqurq6BgYHFztOMi4vj+8ZWrlwpH9y6dSsRGRoaKqnJ0qf45RdGxGxssCuiFJk2jSmWF/ryS6aQ7KIsMpls1qxZRKStra24az4hIUEikXzWX35kZKSnp+fgwYP5tShXpUqVUaNG7d69WzFfBkpi7NixVapUGTp0aExMjOJ4UlKSm5ubjo4OP22TSCRZWVnKW8b169cbNGhQs2ZNCwuLQlEnmUy2c+dOc3NznrQ1duzY6GjBio28KyEhYeLEiaampooph6BizZo1kwcxdXV1zczMbG1tHRwcnJ2dXV1dJRKJl5eXj49PYGBgWFjYJ17onTp1it+uLi1JxHl5rGFDRsSUX4Wy/MnKyuK3T4jI2dlZ8Dsoz58/513oicjJySnhY2e6vF2qk5MTrywqV6NGjQ8H33m1bj09PTXXOCp3hg8frqmpye8ZlzzgoFS8a3erVq3kIbLDhw/zYOVH//A+hVTKVq5kdeoweYju6VOmo8PEYlZK3gvLq/edXwnr5cuYCRMm8O2ANWvW/OOPPwp1Zv7A+ZWwcnNzPT09q1WrxjNjXFxcChWTLFvnV6Ux4H7jxg0eVa9atermzZsLRdWDg4N5R3giat269YULFwRfwOPHjx0dHfkUZmZm8o86U1PTCRMm+Pr6CnCpkJbGGjdmRGzWLCGWXIHk5eXxDDVeLoMTi8W2trZubm6BgYEfaNr+PufOneOdlIYPHy4Pg6pebm5uixYtiOjHH1fIB/l9Y1tb4dNW8vKYjQ0jYv+VE2fsv4T3n38WeC5QxNMN5LepN2/eTEQTJkwo9gHDwsI0NDS0tLQi/gtgX7t2jYiMjY2VWo/o03l6MpGI7dqV/3DECLZ3L+vVi/n7FzzH2prdvq2W1ZUl2dnZtRX6ONerV2/+/PmXLl36rPc9mUxmb29PRD179pT/4OPHj3n61e7du5Wz9k+SnZ0fN9i0SY2rgLcMHMgU68S2asUUNkUokUwm41WPNDQ0vORFbT5NXl5eUFCQu7u7ra2tYuNfGxsbNze3gIAANX7Wl1fPnz/nUXVjY+OVK1cWOlV+9OiRg4MD/y00bNjQ19dX8AVER0ePGTOG/7r5SZ1IJBoxYkTE27tIeVlSXV1dsVjcunWQuzsTPEc5Jyfnf//7n3xj7pMnTwSeAD7NnTt3tLW1NTQ0qlevzrPkPqpSpUqNGjXq0qXL4MGDv/766++//97Dw2P37t0nT568ffv2ixcv4uLi6tSpQ0S//PKLul+fgs2bGRFr2RJZpsXzxx9/8NLq04cNE3Dfube3t4mJCRFVr1793XrrH8WD787OzoonfvxoDg4OEolEHnz/8ccfiUhbW1sZb63g6+ur4vLZxZORkcHLQm7dulU+2K9fPyKaJVzESfHsiZdGnjxZqGND0T58flVyOTnMw4O1aJGhpaXPq4kUanjziedXgjh9+jTfzEpEvXv3LvS/Xlk8vyqNAXfGWGhoKK9HTERNmjRR3FDM+fj48DcUInJwcJA3iCihtLQ0d3d3/gdtYGDg7u6elZUVEhIikUjkG1GJSF9f38HBwcvLK6XY26onTszvJ1gatiKWWeHh4TwLgMeJuGrVqjk5OXl5eX1iqNHf319PT4+IxowZo/Y9YpcvX+7Rw7tKFZm8VUF6OqtfnxGx9esFnmvPnid6eszKquCD892Ed1AGno0ujx9dvXqViFq2bFnsA06ZMoUU6sKz/1oCqKUMd5E8PZm9PatTh/HGVAi4l4RUKg0MDHR1dVW8AKtWrRrfifUpYcTc3Fw3N7eaNWvKEyWysrJ4sZqJEycqefkfx9+ITE2x46G0UFfAnZNIJDzmvmPHjo8+OSEhwdvb29nZmcc45OdsdnZ2Hh4ekZGRKlhwRfbkyRNeNZuIGjRo4O3tXegJAQEBvB4uEdnZ2X20SPEnys7O9vDw4BeB2trarq6ucXFxEomEnxzq6em5ubkVOmMPDw+fPduTiBGxevWYgI1dlfQa4XNlZWXxLJZvvvmGj7x+/frBgweBgYFHjhzZsmXLsmXLXF1dR48e3adPn+bNm5uZmWlpaX1KUF4sFnfu3Fmp26w/W2YmMzNjZmYoUlpsN2/e7GhrG12zJqtShb0Tefhs0dFB06fzP5hhw4aVsNe3TCa7f//+pk2bRowYwbcnKp7+8fM3TU3Nw4cPl3TZUMbt37+f35KRl1++f/++pqampqam4PcMTp3K3xb/8qWwB4YifPT8qtiOHGFWVoyfDs2a9e/Tp08Vv/u+8ys+UuT5VbGp6xxS2UppwJ3z8fGxtLSUR9XD3u7hmJGRUehkOrUEhbdlMpmXlxf/DBOJRM7Ozu9u2Xj06NGvv/6qmFitr68fNXMm27v38zps7t/PiJi+Pis1va3LuoyMjICAAFdX17p168p/OxoaGl26dOH3/9/3gz4+Pvz+ytSpU4uRGq8MLi75XVvlSSr+/vmfZyXuElcgIyPD3NzczKzd4cP5H5LyhHc1tdisQFasWEFEc+bM4Q8zMjI0NTW1tLQyMzOLcbSYmBieqSfv+8e7w+nq6r4sNWdAnp5sxgz2/ffMxYUxhYD7b7+xmzfzv+rVQ8D9s4WEhLi7u/O2hFyVKlU+sQaaYisUXrujQYMGQp0zlVDfvoyIzZ6t7nUAY4yxgQNZnz5s0qT8L1NTlQbc2X8xd5FI9L7SWzwxws7OTjGJ1dLS0sXFxcfHR6kFTOBdhbKT7rxdgYi3ZapcuTIRaWlpubi4FCog+bl8fHzq168vv1gIV2jpGx0d7ezszHOyzM3Nvby8CpViOHeOtWyZf53ZowcrYWNXxSz+Ro0aIdVUvRYsWEBEVlZWn3V5mJGR8eLFi6CgIB8fHy8vLw8PDzc3N2dnZwcHhy5dulhaWmpra//111+FQhKlwp07LCOD3b7Njh5lN2/mb4zNzmZnzxY8JyWFXb6spvWVBcnJbOhQRsREIubmxop9YejtzapUYWLxD926KaNNSFhYmJeXl4uLC7/s1dHRMTQ0/JR70lARdO/end5uFj1jxgwi6t+/v4Cz5Oay5s0ZEVOoTAlK9+Hs78/14AEbMCD/FMja+q00OK4k51ef5d2k50JRkTJ9flWqA+6sqJsq725wKPkv+9q1ax07duS/wvbt21/52KVkRESEh4dHly5dahkZMV1dRsR0dJidHfPw+KTS18+fs86dmcJmHxBQWFiYh4eHnZ2dtra2/MK7Xr16Li4u3t7eiqfde/fu5RfnCxcuLMl7hLDevMlv9v3nnwWDgwczIubkJNgsPObbsmVL+W2GrVsZEWvYkGGfvbKdOHGCiHr06CEfsbGx0dHRefDgQTGOxi8pnRT+OMaNG0dEM2bMKPlShcID7ny7xuXLBQH3bt2Yk1P+l5ERAu7FxyPvTZo0kb/pmZiYODs7e3t7y3tCvI+/v79IJNLS0rp27ZpqVvtRISFMU5NparJ799S9FGBs4ED288/s/Pn8r4YNVR1wZ4xt3LiRl5Vc9l+P77S0NB8fHxcXF16Sm9PV1bWzs5NIJPeR0KBWH62/+fr1a3lbJlNT0+K1Zbp161aPHj34r77I7bDc9evXO3XqxJ/Wrl27y28HHPPy2JYt+f29NTTY1Kns9evPXYiq69TDRwUGBmpoaGhqal69elXda1GV5GTWsSPr2ZPNm8d692a2tuz1axYTwypXLnjOzZusSRP1LbEskMmYRMI0NBgRs7fP35j56eLi2Jdf5kew+vcXMlXqPR4/fszbgB85ckTZc0GZcPPmTQ0NDW1t7YcPH/KRhIQEBweH4OBgAWdZvz6/VTM+61Tso+dXnyIpiX3zDdPUzN9S/PvvhVtnCXJ+9Sk+mvRcDs6vSnvAnXvx4oWLiwu/1qpVq5anp2ehZGTFiPln/bJLGK9PefmS/fYb69kz/4OZiGlpsX79mKfnW5H32Fjm5sb69mVffsk8PFhuLvrBqYD8arxWrVryq3E9PT1+Nb5s2TL+F+Xm5qbulRa2cycjYlWqMPn7Z2QkMzRkTZowhZzU4ktMTDQ1NSWigP8a4aWnp/fs6daiRTL6LalAXFwcERkbG8vfbaKioopXUPjNmze8itmN//rqRkZG8oqlpSr9igfcGWNHj7J27ZiTE0rKKMvn1kCLjY2tUaMGEa1du1b1q/2A6dMZEVNI0AG1UW9JGTlPT0/+qf3FF1/06tVLsfhDnTp1pk2b5uPj89HbS6BKiYmJrq6uPLPBxMTEw8OjUOG+jxaQfJ/PjddLpdLt27fz9zqxWDx37tJCu1iTkpibG9PRYUZG7LN6kuXlsV27bvBLXw0NjeJd+oKwUlNTraysiMjd3V3da1Gh775j48YVPJw8mc2di4B7MZ05w6pXZ0SsTp3PaAd58GD+vTtjY+bpqcz1vWX58uVE5ML3kAIw9vXXX/OUZCUdXybLT28/elRJM8BHJCQkzJgxg59fValS5a+/7nxWcDExkVWpwjQ1mYsLK3TO8uoVW7hwIz+/qlat2pYtWz58fvUpZULe58MhXKlU6uXlVb16dX7m5uzsHBsb+xkvstQoGwF37saNG507d+a/krZt2168eFHxu4VOpuXlGt5H2Io0LC6OeXqyfv2YllZ+5F1Dg/XsyX7/neXkMBsbtmQJCwtjt26xvn3ZzJnFnwg+n1QqDQoK4kEofrnOb5GJRKJVq1ape3VF69OncBOSK1fYx0pEfCqeE923b1/5CE94t7W1LTWJ/uUc78asuDOreH7++Wci6tevn3yE1wYZO3ZsCY8sLHnAnTHm4MAqV35vwD07+/MKdMH7hIeH851Y8o6Rurq6PPIuLyYjlUr79OlDRP379y89u3y4+Hjm6ckUa1GEh7OEBBYa+lbC2Z07DCFWZSslAXfG2L59+3j/Qx7ctLW1dXd3l3eNg9Lp4cOHAwYM4O9C1tbWx48fL/QEb29veT3A0aNHf/i3WZKKNPI9y+3aHTcwYO7urFAhtwcP2GfVQOYVafT0MszN6/bo0eNWCUvSgEDGjx/Pz2krVm/kFi2Y4qXxjRusYcP8gHtqav7XpUsIuH+qyEjWoQMjYrq6bNu2jzw5KSm/JCgRs7NTcSX9mzdvElHt2rXxUQhcXFwcz8fyf7dKSHGFhzPFnolXr6JYg/o9ePBgwIAB1ao1MzKSFVkT5gOOHWOFSqDz1qmVK7PWrROLd37FW08XWRPmXRMmTOCXqBYWFnv37i309nX27NmWLVvyM8MePXrcLstJeWUp4M4Yk8lk3t7evDu8SCRycnIq1BtXfjK9evXqDxxHST1XGWMsMZF5eTEnJ2ZgwIhYp05s1y7Wq1fBExISWKVKn5c/A8KJiYnZsWPHsGHDtmzZsnv3bnUv570eP2a6ukwkeqv0oiCio6P19fVFIpG8tP27Ce+gbAMHDiSiQ4pBrGKJiIhwdXU9d+4cf5iQkGBgYCASiUrbZb9iwD0ighkYFB1wP3CADRvGZs5kv/6qlmWWT/IaaPLbjTo6OryH5LfffktE1atX//RkBFXasYMRMfnb0tixzMuL9e3LfHwKntOsGftvdwcoy7ffssDAgocuLiw0VD0rycnJ0dPTE4lEW7du/cS+6FBK+Pj48KRjIrKzswt9+29IXkBywQd3tQjSL+vJkyhHx/zIWIMG7NixYhyDPXvGhg1j8p6rR49GFecooARHjx7lW7vk5RQqiqpVmeLWxhcvmL4+i4lhGhqsVav8L2trBNw/Q1YWc3XN///c2ZllZBT9tBMnmLk5I2J6ekwiKX7l9+KSyWS8tFqhhhlQka1evZqIGjduLNR9x9Gj39p8X7Mme/FCkANDSfn5xcm7ng4Zwoq3xf34cWZtnX+QAQPYw4fFKYf1WZ1dv/vuuyKTnqOiouQFSGrXrl3C6vClQRkLuHPp6enyWyj6+vrv3kJ58uTJ+/rFBQcHd+vWjf8dtGnT5sKFC8paZXIy27uX+fiwhQvZkiVvfcvWlp0+rax5obz48UdGxJo2Fbio+sSJE4lo5MiR8pH58+cXypIGZfv++++JaEmhd4YSW7JkCRE5OjoKe9iSS05mivfIX7xgqans+fO3cpOfPmXp6Swnh8lkzM5O9Wss/6Kjo3/77beePXvyfYI88i4Wi//99191L61oO3awDh1Y48b5WagIuMPly5d57RF1LwSKgyenGxsb8+T0d9syRUVFJb9ni5Niv6yGDRuWvF/W6dP5O+KJWO/e7NMbj6WnM3f3/P5N+vrM3f29UThQvbi4OL7X+ffff1f3WlSuRQt26VLBw6Cgggx3OZSUKYYdO5iuLrOwYPHx7NUr9v33zMGBDR/ONm1ieXnsyJH895Fu3YoZ6BLC5MmTiWjFihXqWgCUNtnZ2dbW1kT0vm7zn2v0aNapE5s0Kf8hAu6lCk9ONzbOr2/t6voZ+8UfPWIODvlvYw0bspK3I/3Ezq6pqamFMqffjfFmlIsTLBFjjMqmqKio77//fteuXURkYWGxfPly3irwfV6/fr1s2bKNGzdKpdIqVar88MMPM2fOlMcdlGjePDI2pqVLC0Y6dqSffqL/ylYCFCk7m1q2pEePaMUKWrxYsMO6ublt3rz55s2bDRo0IKIXL140bNgwKyvrxo0btra2gk0DH/T333+PHDmSiOrWrWv5NisrK75Z/nOlp6fXrVv39evXFy9eVCzhXeb4+dGdO/T99+peR/kVHx9/5MiRQ4cOderUqVGjRqNHj1b3ior2xx907RrJZGRuTkuXkrMz9e1Lu3fTrFnk6Jj/nObN6c8/qW1btS4UVEUikXz77bfTpk3bvHmzutcCxRQTE7N06dIdO3ZIpdKqVasuWbLkw2fjb968kUgkHh4e2dnZlStXXrx48Zw5c3j7rBLKy6M//qAlSyg+njQ1adIkWr6cqlV77/MZo7//poULKSKCRCIaNoxWr6b/auFAqeDo6Ojn59e3b9+TJ0/Ky6lVFLNmUXY2bd1a8FBDgxYvpiZNKCkpf/DWLRozhkJD1bXGsurmTZJKqVUrat2aHB1pwgRKSSE3N2rVilatol69yMGBFiwgFUQV3uPQoUPDhg3r3r37+fPn1bUGKG38/PwcHR2NjIwWL15sYGDwgWdqas7Iy9P6wBMaNKC9e2ngQFq+nDZtol69yMyMgoNJoU0eqF9MDC1dSjt2kFRKVavSkiU0c+aH3pbevCGJhDw8KDubKlemxYtpzhwS4vSK8vLy/vjjjyVLlsTHx2tqak6aNGn58uXV3n+CxRj7+++/Fy5cGBERIRKJhg0btnr16rrl5gRL3RH/klKs79OzZ88i6/vwnBpeyorn1LwRpPXkJ9q0iQ0dWvAwI4OZmLDnz1W3ACizzp5lIhHT02NhYUIeVjGDbMKECUQ0atQoISeAj8nMzDxy5Mj73pZNTU3btGnz5Zdfzps3b8OGDb6+viEhIR9tBsg3D3bv3l01L0FJ/vmHff+96vfjQmm0Y0d+Mx8zM/boUUGGu5kZa9Ag/0tbGxnuFQgvBb537151LwRKKjg4uGvXrvwjr02bNoGKRYv+w/tlyZszKalfVmIic3VlmpqMiJmYMA8P9uQJc3Ji8h4rvr7sr79YUBDr0iU/BczWlr3dRgpKhS1bthBR5cqVIyMj1b0WdUhIYC1bssGD2fLl7MsvWbNmLD4eGe5C2r37rSKxr14xY2MWF1cazlmTk5O1tbU1NTVRbA0UOTo6tm/f/qPxQFNTGf90e9/XkCFs9Gh24AD755/8zffIcC+1goNZ1675v7g2bVhgINuzh7m6Mnldlm+/ZQ8fMi+v/M7QYjFzdmbKaEeamJjo6urKO7uamJh4eHjkFtXaNSgoSJ4paGtre7HcnWCV4Qx3OZlMtnv37oULF7569UosFo8ZM2bNmjW8pxYRnTp1avbs2aGhoURkZ2e3fv16Gxsbla4vPp6aNqXNm+mrryg3l+bOpdhY+vtvla4ByqyJE6l2bfruO9LTE/7gDx8+bN68uUgkCg0N5QnvoEpJSUkvX76MiYkJV/DkyZOUlJQin29iYmJpaWlmZlarVi15RnyjRo2MjIyys7MtLS1fvnzp7+8vb09X5vj707x5NGQIGRkhwx3yM9w9PcnTk3x9ycQEGe4VGt+emJycHB0dzevVQlnn6+s7a9asiIgIInJwcPj999/lCU3nz5+fPXv2nTt3iKhHjx4eHh6tWrVS3kpCQmjOHDp9mojIzY08PKhPHzp+nIjof/+jJ0/Iy4uyssjMjFasoHHjqKIlT5d+4eHhrVq1Sk1N3b9//4gRI9S9HDXJzaUrVyg8nOrVoy5dSEuLsrPpzBmSnxYmJ1NwMPXurdZVllmLFpGuLi1bVjDSujWtW0c9e6ptSQp69+599uzZAwcODB8+XN1rgdKCMXb8+PGAgIAPP01HZ0129ocy3Fu0oDNnaPBgGj6cnJyoc2datQoZ7qUXY7R3Ly1eTNHRpKVFU6fStm3k6UnjxxMRdehAvXuTREJE1KMHeXiQMk+v6OHDh/PmzTtx4gQRWVtbr1u3Th6p4Fset2/fLpPJzMzMli5d+vXXX8tbjpUf6o74CyYpKcnNzU1bW5uIKleuLJFI7t27xzsTEpG1tfXx48fVtrhbt1j//szKijVuzCZPZrj5DJ/jhx9Y374sLy//oZ2dYEUCHR0diWjmzJnCHA4EEhcXd+3atQMHDqxcuXLatGn9+/dv3Lgxr2hWpJo1a1paWhJRy5Yty3pfEQA5nuHOGJNKWbt2rG5d1HCv0G7cuEFEDRo0UPdCQEjp6ekSicTQ0JCI9PX13dzcHj58qK5+WUeOsN692ZUrrG1b1qMHO3iQMcbWrGFz57Lvv2fffsve7uwFpYVUKu3evTsRjRkzRt1rgfJr9my2dOlbI+3bs1LTBWfVqlVENGHCBHUvBMonnuHOGIuKYhYWzNgYGe6lXVoa++EHtmgR+/ZbNmMGs7BgCQmMMda+PbtwgdnZ5Z/kqIaPj4+VlRUPXDg4ODx48EDe1EdbW/vdpj7lSXnIcFf04MGDuXPnnjx5koi0tLRyc3NNTEyWLl06Y8YMvp0BoMyZMYO8vemHH2j2bCKixo3p6FFq3Likh7169Wrnzp0NDAyePHlSs2bNkq8TlC0pKUkxF55nxz98+DA9PZ2Ipk+fbm9vb29vr+5lAghDnuFORMHB1KED/fFHERnuq1bRvn2kqUl9+9KoUWpcLyjX//73vwULFkyePHn79u3qXgsILCIiYuHChQcPHiQiPT29zMxMAwODxYsXz58/X08Z+/s+6NYtcnGhbdto8GC6d4+2baMXL2jtWhWvAj7D8uXLf/jhB3Nz87t375qamqp7OVBObdxIZ88WbFLPzCRzc7p9m+rUUeuy8t2/f79Zs2ZWVg0fP35c/jJEQe3GjMnPcCei1atp0SJ68QIZ7mXDd9+RiQmlpFBMDG3fTh060Pr11LGjqpeRnZ29bt26X3/9NTU1VVdXNysri4iGDh26Zs0anjhYXpW3gDvn6+u7dOnSjh07EtGyZcuqVKmi7hUBFN+MGWRmRp6edO0amZtT48bk7U1SKclklJ5OOTmUlUWZmZSXR6mpxBi9eUNEpKFxJCHhWlpaWm5ubmZmZlZWVk5OTnp6ulQq5RVLHj9+nJqa+uOPP/7000/qfYFQEjKZ7OXLl8+fP7exscF1JpQnz55RYiLJezmfPk0NGlBYGFlbk7ygyPHj1KgRVa5Mpqb0xRd06pS6FgtKN2jQIF9f3507dzo7O6t7LaAU58+fX7hwYc+ePWNiYiQSiboKB/GA+40bNHs2icVUuzYC7qXarVu3OnbsmJub6+/v379/f3UvB8qvuDhq1oz++IMcHSkvj+bPp+hoOnRI3csq8MUXF86e7XT5shbq7IHgrl2jWrXIwoKIKDeXjh4lBwelFLwFwfGA+8yZ1KwZ7dpFc+eqJ+DOxcTEfPfdd6amphcuXFi5cmXvClDirHwG3AHKkxkzqHVrSkmhK1fo77+pcWOSSGjo0I/8VPfurhcu/Pbh52zZsmX06NFGRkaCrRUAQB1CQ+m332jzZnWvA5RDJpNVq1YtMTHx+fPn8jLfAMogD7gnJ1Pz5tS/PxkaIuBeSmVnZ7dr1+7evXtz5sxZt26dupcD5d2NG+TmRhERpKFBnTqRhweZmKh7TQVmzKDNm+mnn+jHH9W9FAAoNXjAfeFC8vWln38mItqwQW0B9woIVVYAygZXV/rrLzp5kojIwIBatSINDdLXJx0d0tEhfX3S0CBjYyLKP/erXXvIwIHmBgYG2traurq6enp6WlpahoaGYrG4UqVKRFS5cuX69euXw8YUAFDBhIfT2rX0v/+pex2gNPfu3UtMTLSwsEC0HVSmUiVasYImTKBZs9S9FHgPNze3e/fuNWnS5Ndff1X3WqACaNeOzpxR9yLea8AA2ryZTpxAwB0AiuDoSNu3k7+/utdRwSDgDlA2aGnRxo00Ywbl5ZGFBd269dGf6E1U/jfpAEAFd/UqOTuTqysdO0bjxql7NaAcjwwMhqxc2Ry7l0H5NDRIvvFv9Gjaswe75kup06dPb9iwQVNT08vLS/W1/gFKm969SVeXrl+nV6+oenV1rwYASgddXdLVzf/3+vV07RqhtaUq4T82QJnRvTvZ2tLOnepeBwBAqdGkSf7WHw0NdS8FlCZIJIrq02ci0ttB+Vq0KMhhFYmQC1ZKJScnT5o0iTH2008/tWvXTt3LAVA/AwPq0YNOnqR//6WxY9W9GgAoHRS3vNSrR7Gx6ltKhYRqEgClXePGBR0CV62iL74gAwO1LggAoNSoVIksLcnSkhCMLa8Y0e20NCJqg44jAEBERDNmzIiMjOzUqZObm5u61wJQWgwYQER04oS61wEAAESEpqkAAAAAUGqFZ2YODw2tqqX1T4sW6l4LAKjf4cOHv/rqKwMDg1u3bjVs2FDdywEoLcLDycqKTE3p1Sts+wMAUD9kuAMAAABAKXUzLY2IbJHeDgBEL1++dHFxIaJ169Yh2g6gyNKSGjakxES6dk3dSwEAAATcAQAAAKDUupmaSkS2hobqXggAqN+LFy/09fXt7e2//vprda8FoNQZOJAIVWUAAEoHlJQBAAAAgFJqwN278bm5fzdtWk9XV91rAQD1e/PmTW5ubrVq1dS9EIBS5+RJ6t+f2rSh4GB1LwUAoMLTVPcCAAAAAACKEJmVFZ+ba6qpWRfRdgAgIqLKlSurewkApVSPHtSoEdnaklSKMu4AAGqGkjIAAAAAUBoFp6URURsjI5G6VwIAAFDKnTtHgwbRli350fb16yk0lJYto2fPCp4zfz4lJqprgQAAFQgC7gAAAABQGt1KTSWiNijgDgAA8DG3b9OGDbRlS/5Df3+KiqLDh+nVq4Ln7N5NaWlqWR0AQMWCgDsAAAAAlEa30tKIqLWRkboXAgAAUAY4O9OKFRQbq+51AABUeKjhDgAAAAClSIZUmpCbS0QrLS0fpKejgDsAAMCnMDOjb76hefNo796CQR8funcv/99ZWWpZFwBAhYOAOwAAAACUIufevNnw4kVDPT3+sIeJSVUtLfUuCQAAoEyYN49ataJTpwpGkpPp9ev8f8tkalkUAECFg4A7AAAAAJQubYyMfq1fX92rAAAAKGO0ten332n2bKpePX/E2Zk6dMj/99q16loXAEDFghruAAAAAAAAAADlQe/e1Lw5BQa+9wn37lFgILLdAQCUCBnuAAAAAFC6XHjzxuHePSJqZmAgsbRU93IAAABKO11dkkrz//2//9GFC6SlRbq6JFZIs9TToytX6O5dqlmTfH1p1Sq1rBQAoPwTMcbUvQYAAAAAgHz+r19fTElBSRkAAAAlSU2lcePoyBF1rwMAoJxCSRkAAAAAAAAAgIpizRqaMkXdiwAAKL9QUgYAAAAAAAAAoPyTSunnn6lePRo4UN1LAQAov5DhDgAAAAClSFMDA8cqVdS9CgAAgHLo0CF6+JAePaK1a9W9FACA8gs13AEAAAAAAAAAAAAABIAMdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AABXUunV0507+v2NiaOdOta4GAAAAAAAAAKDsEzHG1L0GAABQAyMjsrSkoCDS0qLr12nmTLp+Xd1rAgAAAAAAAAAoy5DhDgBQcTVvTuvWqXsRAAAAAAAAAADlBQLuAGWATCZT9xKgfFq+nDw86Plzda8DAAAAAAAAAKBcQMAdoFR79OjRvHnzWrZs2bdv3/Xr17948ULdK4JypWZNcnMjV9f8h9u2UZcuNHs27dxJoaEklap1cQAAAAAAAAAAZQ1quAOUXjdv3uzfv398fLxIlP+/qlgsbt++/eDBgwcPHtykSRN1LxDKNiMjio8nTU1q25a++op8falJk7dapxoaUsuWZGub/9WkCYlxlxYAAAAAAAAA4P0QcP+IuLi477//vnXr1tevX1+xYkWtWrXUvSKoKC5cuDBo0KDk5OQ+ffrs2LHj/Pnzfn5+J06cSEtL40+oX7++o6Ojo6Njz549NTU11btaKIt4wF1Xly5fpgEDyNqaTp6koCAKDqagIAoKooiIt55vbEydO2c0a+betm1bW1vbBg0aqGnhAAAAAPkyMsjPj4YPz3+YkEBXrpCjo1rXBAAAABUbAu7vlZOTs379+uXLl6ekpBgZGaWmphoaGn733Xdz587V1dVV9+qgnPPz8xs+fHhmZubIkSN37typpaXFxzMzM0+dOuXn5+fj4xMbG8sHq1SpMnDgQEdHx/79+xsZGalv1VBmREdT7doFAXcimjyZ7t2j69ffelpyMt27R8HB+V+hodSixcW7d7vx7xobGzdv3tz2PzY2NiKRSOUvBQAAACq0qCiytaVXr/IfXr9OU6bQnTtqXRMAAABUbAi4F+3UqVOzZ88ODQ0lIjs7u2+//favv/7atWsXEVlYWCxfvnzcuHHqXiOUW3v37p0wYUJubu60adM2btwoLqqKh0wmu3Xrlq+vr7e394MHD/igrq5u165dHRwchg8fbmZmptpVQ5kRGkpdu5KzM82eTfXrEw+SZ2ZSYiKZm3/oB2Nj6e7dZ1eu7AwKCgoODo6JiVH8btWqVW1tbdu2bevi4lKnTh1lvgIAAACAfAi4AwAAQGmDgHthvEelv78/EVlbW//vf/+zt7fn3zp79uzcuXPv3LlDRD179vTw8GjZsqU61wrl0caNG11dXWUymZubm0Qi+ZQfCQ8P9/X1PXjw4JUrV2QyGRGJxeLWrVvzyLuNjY2SlwxlycuX1LkzRUTQoEF0+DBpaJTkUC+D/3Pjxo24uDg+PmvWrNmzZ1tZWQmzYgAAAID3i4qiVq3oypX8h/fu0bJlCLgDAACAOiHgXiApKWnlypXr1q3LyckxMTFxc3ObO3eutra24nNkMtnu3bsXLlz46tUrsVg8ZsyYNWvWVK9eXV1rhnJm5cqVixcvFolEq1atWrBgAR/My8uTyWSF/hSLFB8ff+LECT8/P39///T0dD5oaWnp4OCAUu9ARCkp1KMH3b5NHTrQmTOkry/kwSMjI4OCgpYtW3bnzp1ly5b98MMPQh4dypecnJxPeU8DACiJuDhycqILF/If3r9PP/5Ic+fS3Lm0bx/xRiQeHlSlCjk7q3GZUFJRUdSgAdnZ5T9MTqbUVATcAQAAQJ0QcCf6L4y+YMGC+Pj4TwmjJyUlLV26dPPmzbm5uSYmJsuXr58yxfm/ItsAxcEYW7Bgwdq1azU0NDw9PSdPnszHc3JyxowZk5eXd/DgwU8Pl6elpf3zzz/Hjh3z9/dPTEzkgzVr1nR0dBw2bFi/fv2U8hqgdMvNJXt7CgigBg3o8mWqVk0ps/j7+9vb2zdv3vzu3btKmQDKuP379//7779+fn49e/Z0cXHp06cPSv8DgJJER1Pr1hQfn//wxg2aPJlWrKBx48jWlv79l4howQKqUYMWLlTjMqGkUFIGAAAASpsiakNXNGfPnm3duvX48ePj4+N79ep169atnTt3Foq2M8Z2796dk5PDH5qYmKxfvz4kJMTe3j4pKWn//nbNmtHx4+pYPZQLUql08uTJa9eu1dHR2b9/vzzanpqaOmDAgL///vvChQvPnj379AMaGhoOGzZs165dr169CgwMdHNzs7a2jo2N3bZt2+rVqy9evKic1wGlF2M0ZQoFBFC1anTihLKi7UTUt29fU1PTe/fuyVsLAHBSqXTBggWjRo36888/ExISDh482Ldv3wYNGixfvjw6OlrdqwOACqRrV8rNpX371L0OKO9SU1Ozs7MzMzPVvRAAAIDSgjGWkpKSkpKi7oUoXYUOuEdFRY0bN65379537961sLDw8vI6c+ZMixYt3n3mgQMHnJ2dmzVrdvDgQflgo0aN/Pz8jh8/Ex/f+PFjcnAgR0d6/FiFLwDKhezs7OHDh//5558GBga+vr7Dhg3j40lJSV988cWZM2dq1qx55syZhg0bFuPgGhoaXbt2lUgkDx8+vHPnzrhx406dOrVo0SJBXwGUAd9/T15epK9Pvr75m+iJlPJ+paWlNWTIECJSfLcESExMHDBgwP/+9z9NTU2JRBIVFSWRSOrXrx8eHv7DDz/UrVu3b9++Bw8elN/YhlIuKIh+/JFyc/MfHjhAN2+qdUEA75GWRlOm5H/9+mv+oEhEGzbQokX05k3+yPnzFB5O2PcLQmGM7dy5s1GjRuPGjWvUqNHOnTuxrRxURiaT3b59e8OGDcOGDfP39w8ODlb3iqAcSkxMDAoK8vb2XrFixZQpU+bPn//w4UN1LwrKgJs3b/bo0WPIkCG1atWaPXt2OQ+7swopLS3N3d1dV1eXiAwMDNzd3TMzMz/w/DNnzjRp0oT/F/viiy9CQ0MVv5uTwzw8WKVKjIhpaTFXV/bmjZJfACjfq1evLl++PHHixP37979R2m80NTXVzs6OiExNTa9cuSIff/nyZfPmzYmofv36T548EWq65ORkDQ0NbW3tjIwMoY4Jpd/WrfnvTidOFAyeOMG0tNgPPwhw/BMnTowYMeLOnTvyh0TUrFkzAQ4N5cLDhw+tra2JqGrVqmfOnJGPS6XSgIAAZ2dn/f/6CZiYmLi4uNy+fVuNq4VP8ccfTFOTrViR/3DsWOblpdYFARQlKopVqsTOns3/2rKFNW/O/PzY4MGMMTZvHps1i82fz1auzD+NNzJiXbowFxfm4cECAxnOlcqK7Gx2/jzLy8t/mJTErl9X53ouXbrUrl07/rlWtWpV/o/u3bvfvHlTncuCci03NzcoKMjDw8PJycnU1FQe7TE1NTU1NcWZFZREYmJiYGCgp6enm5ubk5OTra1t5cqVC8UVK1WqJBaL//77b3UvFkqvmJiYSZMmicViIjIyMuJlRWvVqrVz506ZTKbu1SlFhQu4y2QyLy+vmjVrEpFIJHJycoqMjPyUH8zNzfX09OTnTJqami4uLvHx8YpPSEhgrq5MQ4MRsSpVmIdHwWkflDkRERHW1taGhob880NDQ6NLly4eHh6f+NfyiV6/ft2hQwciMjMzu3v3rnw8LCzMysqKiGxsbKKjowWckTHG93AEBgYKe1gotU6cSNDQYCIR27GjYDA4mBkaMiL23XcCTDF9+nQi+u6/Y+Xm5larVo2I7t+/L8DRoYzz8fExNjYmotatWz9//rzI5yQlJXl6erZu3Vp+1m5ra+vh4fH69WsVrxY+0R9/sGHDmIUFCw9nDAF3KK2ioljVqgUPr19/K+CeksLq1mUDB7Jly1j//qxmTUb01peWFmvVik2YwNatY2fPsqSkomextGSbN+f/+/JlNnq0Ul8TFCE7mxGxH3/Mf3jiBOvXTz0refHihbOzszyI4OnpmZub6+XlVaNGDSISi8XOzs6xsbHqWRyUOxkZ0rNnz/700099+vQxMDBQjH7Wr19//Pjx27Ztc3BwIKJq1aoVShkEeNebN29u3rx58ODBlStXTp06tW/fvlZWVlrv6VVoZGTUsmXLoUOHzp8/f9OmTTNmzCAiQ0ND/KWVNomJB+/da3jvnmVISOOMjLsf/wElyMnJ8fDw4JeEWlparq6ub968uXHjRufOnfmfU9u2bS9evKiWtSlVxQq4X79+vVOnTvw32q5du0uXLn3uEeLj46dNm6ahoUFE5uYNPD1zC0XVb95k3bvnn6a3bs3On2exsUwiYYmJ8jWw06eFeDGgNA8ePKhTpw4RNW7ceOnSpT179uS/cX6TxtbWdtmyZSVPE+AxfSKytLR8+vSpfPzevXu1atUiovbt2yckJJRwlndNmzaNiFauXCn4kaEUunHjhqGhUZcugUuXFgw+e5YfVhg1iglyL/nMmTP8L1k+8vXXXxORu7u7AEeHMksmk0kkEp7FMGrUqPT09I/+SEhIiJubW5UqVfhbrq6urpOTU0BAQHnNeii7/viDTZnCNm9mAwcy9l/AvWdP1qnTh76cnZ90+pgrV66kpqaq+/VBOfHhgDtjbP9+RsRWrcp/mJjIAgOZhwdzdmY2NvlpNIpfZmbMwYG5uTEvLxYSkv8ZKhaz+vXZixeMMXb6NOvVS4WvEBhjjGVnM21t1qABe/iQMTUF3DMyMiQSiZGRERHp6em5ubmlpKTIv5uamuru7q6jo8MDUu7u7llZWapeIpRuoaHs5MmCh+fOsbi4Ip6WlsYCApi7O7OzY3p6sipVCvoyWVpaOjs7e3p6hvOb4YwxxrKzs+3t7YnI3NxccRzg2rVr27dv//bbb0eMGNGuXTv56XchYrHYwsKiR48eEydO/Pnnn/fs2XP16tVXr169e0BnZ2ciatasWVpamupfDhRJJsu5edMgMzOUMZaXlyKTqeGjJyAgQF4vxM7OTjEnTyaTeXt78+Abz4eOiIhQ/QqVp6IE3N9NN5BKpcU+2oMHD/r379+z5xki1rjxW1UaGGMyGdu/n9Wpw4iYSMR++IGJRMzFJf+7a9awuXNL8EpAyYKCgnhybocOHeTJla9fv/b29nZ2duY35bi6deu6uLj4+PhkZ2d/7iwPHjywsLDgH0gv+CUaY4yxCxcuVKpUiYh69+6teJpeEgsWLKhTp05QUBB/uHPnTiIaLL/WhPIrLCyMZ1RNnjxZPpiQwBo3ZkSsZ08m1LWeVCo1MzMjouDgYD5y8uRJfstKmAmgDEpJSeHV/DU0NCQSSZFPWLJkieLtRrnMzExvb287Ozv+qU1EjRo1cnd3L2dnYGUaD7jn5bG2bdmhQ/kBd13dwtHJQl+dO4cXeS2nqEaNGnPmzFH364Ny4tUrpni+8/AhmzSJXblSkArNGJs6lXl7F/3jaWns8mW2aRNzcWHt2jE9vcJ/0qambM8epqnJ1q9nTk6MIeCuJtnZTE+P7drFevViMpkaAu4+Pj7169fnb2IODg7vC2s+fvzYycmJP61hw4be7/vLgwrp55+ZSMTOn89/2KsXO3Uq/9/x8ezIETZnDrO1fetGoIYGGz584ezZsw8dOlRkAJTLyMjo2bMnEdWpUwenUsDt2rWre/fuhc7BdHR0LC0t7ezsXFxcJBKJt7d3UFDQp0fPU1NTbWxseJ6NUhcPny4vLyU4WCM9PUgtsz98+HDgwIH8r8va2vr48eNFPi09PV1e8VtfX/+jFb/LkPIfcP9wukFJHD6cV79+/qfdl1+ysLBC8zKJhFlYsNOnWatWzMaGXb7MGALupdu5c+d4SN3e3r7IZMzMzMyAgABXV1dzc3P5J5OJiYmTk5OXl9cnlnqXx/S7deum+CN+fn56enpENGTIEAHTXsaPH09EGzZs4A+fPn1KRFWrVkXGqNqlpqYeOXKka9euo0aNWrNmzblz54R6d2KMxcfHN2rUiIgGDBiQm5vLBzMzWdeujIg1a/berfHF88033xDR4sWL+cPc3Nzq1asT0b1794ScBoorKipqwYIFY8eOnTNnjgp+KY8fP+Yn3KampgEBAUU+Z9u2bfwt1NbW1tPTs8iz+cjISIlEUrduXf5MDQ0NOzs7b2/vnJwcJb8C+AgecGeMXb/OrKzYsGHMy4tdvcouXfrQ17VriZc+aPfu3ZqampqamiEhIep+iVA+xcYya2u2fXtxfjYvj4WFMR8f5u7OHBzy94qdOME0NVluLmvWjJ04gYC7evCAu0zGunVjO3fmB9xVc5578+ZNedCqVatW5+Xh0vc7depUs2bN+I/06dMHZ0rA/fwzGzCANW3KeCpXr15s3z42fTpr2pSJRG+Vuurcmbm5MT+/z+gbl5aW1rVrV57BEBMTo7xXAWVCfHy8jo6OWCx2cnJaunTprl27Ll26JMgfxsOHD3k4ZbO81BqoW0zMylu3jJ8+HZKScpoxlpeXzJjSPyATExPd3Ny0tbV5uEwikXw0SzUyMpJvkiAiCwsLr3JRrbKcB9yzsrIaNGjAf2dOTk7vqx5bbNnZzMODGRszIqatzVxdWXJyoQWwmzdZ27bsxAnWogXLzUXAvfTy9fXl8e5Ro0Z9SjQnJCTE3d3d1tZWHnnX1NTkpd6joqLe91OKMX3FzqV79uzh9dEmTJggD48KwtPTk4hGjhwpH+HJyI8fPxZwFvhcubm5AwYMkCfwypmZmTk4OLi7uwcEBBR7O15GRgYviGZraysvziCVSmfM2GhqKrWwYEK3BmDnzp0jovr168tv5EyZMoWIVqzY8eEfBBUIDAzknUt4dRciat++/ZYtW5TUDtrf3593UmrRokVYoXvRCm7evDl+/Hh5ydHKlStPnz79xo0b7z6T91Z1cnLiJ21EVLNmTVdXV8XWF6Bi8oA7Y2zaNKajI1gN96lTpxKRnZ2dMIcDeNu0aYyICbXNLyqKZWQwTU3GGDt/njVowPz9EXBXAx5wZ4yFhDBzc7Z/P+vXj/3yC7OxYe7u+XVmBJeQkODq6srLTlapUsXDwyPvPf27rly5Uiiq/tHeYFAB/fwzc3dnzs7sl18YY6xXL3bwYH6oXV+fdenC3NyYj0/haMOne/PmTZs2bfjpGXrkVHASiYSIHB0dlXHw/fv3E5GWllYxCjiDkuTlJcXHb719u9qbN77h4SPv3rWIjHRNTg6QyYSMO3H8A44nmPLOJe/bf5OcnOzt7V0oDfTs2bMtW7bkV3w9e/Ys6w2fy3nAfd26dQ0bNmzUqNGnpBsU24sXbNy4/I/Ddu0Kf5cH3BljX37J1qxBwL2U2r17N493T58+/XPLDYWHh3t4eNjZ2Sl2FLGxsXF3d5cXcuF8fHx4TH/06NGKMf2NGzfyQJibm5vgief37t0jojp16shHvvzySyL666+/hJ0IPgtvNFq1atVjx45t37592rRpbdu2lccT5fm8zZo1Gz9+/G+//XblyhXFOzQfkJeXN3ToUB7+VkxVmD17NhG1aPHVvXvC39OWSqW894D8b/7cucg6dXJQVEbtPD09+d9Vjx49Lly44Obmxq/wSQkV0hWLtjs5OX3KHaPk5GQvLy87OzvFN0+JRFLkmVlcXNyaNWvkRQBFIlG3bt2ShN2sAZ9GMeCemMiqVxcs4P769WtTU1Mi8vPzE+aIAP95+JBpaTENDSbsDgoecGeMjRvH+vdHwF0N5AF3xti8eczWlvXrl7+lT95Y6+efmVCd/HjzN14EUt787X1Pzs3Nbdq0KQ86xL1dk/v169eurq6ampp8Q5iHh4ewOTdQtvCAe0wMq1mThYfnl5TZtIldusQ+v3xpPolEsm7dOvnDV69e8ZOoDh06CLitFsoWmUzGc1L9/f0FOWBycvLo0aOvXr0qH5k5cyZPUsatxFIlOtotKmru/fvNgoKIf925UzMiYnpKyimhIu+nT59u0aIFv1Lr3bv3nTt3PvDkBQsW8DywK1euKI5LpVIvLy++Xb7IT88ypJwH3EeMGEFEe/bsUcFcQUGsSxe2a1fhcXnAPSKCmZmxRYsQcC91fv/9d3m8Wz4ok8kWLlx49uzZTz9OQkKCl5eXk5MTL2HE1atXj5d6/+uvv/gp9YwZMxRj+vwOs0gkWiVv2iUomUzGgxeRkZF8ZPXq1UTkIm8sACrn7u5ORHp6epd5qan/5ObmhoSEeHl5ubq6dunShRcyU4y/29jYODs7e3h4BAYGvi/+PmvWLJ5s9eDBA/ngmjVriEhbW/uUvB6k0GbNmtWokZNEcos/zMtj1aszIvbBz1lQotzcXFdXV/7H4+LiIr/Jl5WVVahCesOGDd3d3Uu4CSwtLW3YsGH83awY9w4fPHjg5ubGT62ISEdHx8nJycfHp8iEwaCgIBcXF0NDw+rVq8+cObMky4ZiePiQzZv3obJUN26w334r4uuPP6J+K8qhQ4cUf3zt2rVE1KBBAzQVBGENGcKI2NSpAh9WHnCPi2MmJgi4q4FiwD0lhZmbs379WGYm8/Fhzs6scuWCyLulJXN1ZYGBxS84ExAQ0LRpU/5RZWdn99H6V2lpaTNnzpRH1Tds2FAoqs57g/EDNm7c+ESh5mBQYfCAO2Ns/Xr25Zdv1XAvnps3b4pEIpFItHXrVvlgdHQ07zfQpUsXdLZUkoULWevWBb2yOnZkDx4wGxsmz4PKzWU1aqio7NW7jh8/TkSWlpYlaWqoaPny5Ty9Tx5ez8nJ6dKlC3+TfN/WH1CNvLzk2NhV6em3UlMvhoTYJCbuZ4xlZIS8eOEeEmItj7zfvm367Jnzmzc+xe6q+uTJE3mTEisrq09pUvLnn3/Ko+pff/11bGys4neTkpLkRWkqV64skUjK4nVBhQi479u3TzXTyWRFvG/KA+6MMYmEGRkh4F66yOPda9askQ/m5uby0ufVqlWTV+T4dBkZGceOHZs0aZI8eMTjR0T0o0KjLplMNn/+fB5IVTwTEtyAAQOIaP/+/fzh5cuXiahp06bKmxE+YPv27fyXfuTIkQ8/MycnRzH+zv+E5DQ1NRXj77y1yIoVK3jmcmBgoPw43t7eYrFYJBLteveWoHACA/OIWP36BW+DU6cyIrZkifLmVKc3b5hCM1r2/DmbP/+tJ3h5sTlzCv5rLFpUuNWHUr169Yo3yNLV1f3zzz+LfE5UVJREIqlXrx7/ixKLxcWukB4ZGcnraxkZGR09erTYy87Ozvbx8XFycuKxCSIyNzd3c3MrsjRNYmKipqamWCz+xM0fIJSBAxkRmz37vU/4+efPa5rapUsXxR/nCaFE9L///U/ZrwUqjitXmEjEDAzYy5cCH/mLLwr+vXNn4c8CULaoKJaa+tbJxpkzb5Xpz85mx4+zyZNZ1aoFb0dWVmzFiufXrl379NvDjx49sre35+9ajRo18vX1/fRFfrRxnI+Pj6WlJX+Cg4PDBwqyQXklD7jn5bHWrVmVKiUNuDPGNm7cyE/wdu/eLR+MiIioU6cOEfXr168sBrBKv5kzWc2abNmy/Ic2NiwkhFWpUlDSMyeHETGBwt2fzcHBgYhWrlwp1AFzc3O7detGRH369JGH16OionhRkZ9++kmoieCzyGS5SUmH8vKSY2IkYWFOYWHDEhIKVzhIT7/14sUPISE28sj7rVuVb92ae+TIkU+/vEpLS5O3PDUwMPislqf8Z3mUg/9soTelknzylgYIuCudYsA9N5c1b46Ae2khk8nmzp3LQ587dhRUms7Kyvrqq6/4//P//PNPSaaQSqVBQUHu7u61atXS09Pr27ev4nfXrVvHA/GFkvsEt2zZMiKa/V90JCsrq2NHh169licmom+qqvn7+/NI4u+///65P5uenn7p0qUNGzaMGzfOxsaGlw1VvKNjbW0tEonEYvHff/8t/6kLFy7wzz/FW0rKIJUyc3NGxK5fzx85dYoRsUaNlDqt2sTGskqVCh7eusUK1c+ZP5/p6hZse2rdmgWpqj/8zZs3eaNRc3Pza9euffjJvEK6s7MzL3jFU/BcXFw+vAdQ0fnz5/nNxUaNGoUKtGP/xYsXEonEyspKfjOgS5cunp6ehdpZN27cmIg+falQcv/+y4iYsTH7QG+tf/5h33xTxNfSpeHfFGXt2rXvzPIvERkbG6O3W5mQl5dXKC+pFOrShRHlx7OU4Z9/mLMzUwhqgSpkZbE2bZiNzSfd0s7LY4GBzNWV1arFiFjHjquJyMLCgm9F/UA5F6Hy7AICAnhHcZ74ef/+fcXvZmdne3h48FZP2trarq6uycUu1w1lkDzgzhi7fp2JxQIE3Nl/15saGhqKCaePHj3i3X2GDh2KQkaCmzmT/forq12bPXnCWCkLuEdERGhoaOjo6MhrdPj5+X3zzTeKG6OLISYmhneJc1f4lD19+rSGhoZYLMbGHbV48eL7oCCKjJz9KU/OygqLi/N4+LBLUJBo3bpuRKSnp+fg4ODl5fWBTyKZTObl5cXfTEQikbOzc/HO2x8/fizPjm/QoMG72fGfu7es9KhYAfegoKARI0asXr1alWvIymLR0SwxkV27xp48YYmJLCFBlfND0XJzcydMmMDDlIrRydTU1L59+xKRiYmJgI0+fH19iah79+6Kg+np6V988YXySnzInT59ul69hmPGLJOP8MtOgeq2wacKDg42NDQkoiVCZH2npqYGBgZ6eHg4Ozvb2Njwskg1atRQLBb05MkTExMTIpo1a1bJZ/woV1dGxBYuzH+Yl8dq1GBErIw3OynapwTcXV2ZhQVLTGRMhQH3PXv28NB5ly5dFE96PnpBlZiY6Onp2apVK/ldHFtbW09Pzw9X+fT09OTtKwYOHCh4OXWZTHb69OkxY8bIyysV2qUxZMgQIjpw4ICw88L75Oaypk0ZEVNB6jnPBkX1s9Lv3LlzDRs2rFWr1pgxY0ptgYKDBxkRq169+P0GP+r335VSrwY+bO7c/HT1z/rNSqUsMJAtXLiU5/lyNWvWnD59+qlTpxQ/LgWvJPvR+u8vX750cXHhJ3VmZmaenp5ClX2AUu7lS3bwIJMnhoaEMKGqrC9ZsoTfxVHcWnHnzh1edNTZ2Rl/YyUUF8euXGF79rCff2Zbt7KZM9nmzczTk/Xrx5hCwL1/fzZkCBsyhA0erLaA+3fffUdEY8eOlY/06dOHiDZs2FDCI585c4aH1xVLw/O0P1NT02fPnpXw+PBZUlPPBwdrBAWJU1LOfNYPZmWFbd++rkOHDvLSo7q6uoMHD965c2ehC73r16936tSJP6ddu3aFKuUWw6lTp5o1a8YP2KdPn7t37yp+97O6p5QeFSvgfuzYMVJaO+YPO3yYEbEhQ1Q/MxQhKyuLd5U0NDT8999/5eOvX7/u2LEjP+cWNmUyMTFRJBLp6ellF7vrTQmkpTFNTaapyeTVcRYuLM+1PkqnZ8+e8du/o0aNku9fTk5O7ty5syAta5KTk11cXIhozJgx8sHs7OyxY8c6OjqqpnxeYCAjYhYWBXVUpk9nROz771UwuarFxjI9PbZ+ff7XokVFBNw9PNh33zEeMFRBwD0vL8/NzY2fpri4uCi+29y5c6dRo0bnzp37lOMEBQW5urryyzCe4FBkb9XMzEx+25IXbVfq1VpSUtLvv//eo0ePQhnuixcvxmZVVVq7lhGxBg2YCvagP3nyREdHRywW37hxQ+mTQXG9fPmSf7Tx5N/mzZs/evRI3YsqLDeXNWnCiNimTUqc5fhxRpQfXgHVOHGCiURMS4u93W7t84SEhLi7u1tbW8sj76amps7Ozj4+Pv/++2/Lli35YM+ePW8Llz6QkJDg6urKtypWqVLFw8Oj0HlaUFAQr4DMb35fvHhRqKmh1Hr0iBGxOnWUUtp74cKF/IxO8VTw6tWrvPHYpEmTPrf1TsWUnZ39+LH0xAm2cSObP58NHcpatmRGRoWq5+UH3KVS1r49O3iwIOB++jS7d4/du8du3VJPwD07O7tGjRpEJE8rfPLkiUgk0tfXT+T5QSXzyy+/8LTF8PBwPiKVSnlt2/bt26N+kcrk5SXevVsnKIhevlxa7INERkZ6eno6ODjI63xqaGh06dLFw8Pj1q1bzs7OPCJvbm7u5eUl1BtIbm6up6dn1apViUhTU9PFxeXVq1eKT/jop2dpg4C7iiDgXnq8efOGVxkzNTVVbIj88uXL5s2bE1H9+vWf8A1gguKlDz5a3kFJ2rRhREzeAvbIEUbEevdWy1oqotevX/M/gF69esnPNrKysniV7datWwsSrAwPDxeJREZGRoo112Qymcpu88hkrE4dRsTkf+ZnzuSnnpU/POC+YUP+l5tb0QH39HRWvz67ejU/4H72LFPSbyMhIcHOzo7v2tm2bZvitw4cOGBgYPC5H3+ZmZmFeqtaW1tLJBJeOCI6Orp9+/b8tqXiJiEV+/PPP4lo9OjR6lpAhfL6NTM1ZUTsneLDyjJv3jy+VwOBgNIpNze3e/fu/KPt/v37PC/JyMjoUzplqdJvv+XXN/v8/hSfITSUEbGGDZU4BSiKi2M1azIitmqVMAe8ffv2Dz/8IC/5QkT6+vr8ukBJH3PBwcH8koSI2rRpc+HCBcXvymSynTt31qpVi4gsLCzUkrIDqvS//zEippB5LCSZTDZ16lQiMjY2vi4v/sjYxYsX+Sni7A80ZqmQEhMTg4KCvL29JRKJi4uLnZ2dpaWlhoZG06Zp77aoqVyZ2doyJyfm5sb27MkPuDPGgoKYlRWzsiotJWX27dtHRC1atJCPzJkzh4imTJkiyPFlMhnfe9quXTv5BW9iYiLv0ztz5kxBZoGPkT19OjgoiB4+7CaTCRCMjomJ2bx5s52dnTzyzgPienp6P/74Y6FcKEG8fv3a1dVV3mzcw8Oj0Ebtmzdvyj89S55Zr1QIuKsIAu6lRGxsbOvWrfkmzXv37snHw8LCeKuipk2bvnjxQhlTT548mYjerVSrGrNmMSK2fHn+w/j4/NZhqNqnApmZmV27diWiZs2aybdiyWQyZ2dnIqpVq9bz58+Fmqtt27ZEdPjwYaEO+LnmzGFEbMGC/IdSKTMzY0Ts5k11rUhZPqWkjIcHY4wdPco6dmStWjEfHyYSMRMT5uIicJmdO3fu8HPZatWqKeYuyWQyiUTCI+ZjxowpXnPRR48eubm58cqMfBNfz549q1SpQkRWVlaKb6Sqd+XKFR6nUOMaKg7eBtnOTnUzJicn8+zp0hbABY43fq9ZsyavXpWamspPvPkmm2K0X1aGlJSUfv2OEDHB2+Vcu8YmTGDy07qMDCYSMW1ttfXBq1CkUta3b/6WAsH/g4eGhv7888+VKlUSi8Xjxo379OZvxePj4yPvXu7g4FCo8EJaWtqgQYM0NDQmTJig1GWA2vXuzYiY8nrPSaXSMWPGEFHlypVvKpyXnzx5kncsxH7BW7duffXVV61bt+ZlK96loaHh6Pi0Tx82ZQpbsYIdOMBu3GCvXxc+jjzgzhibMYMRlZaAO79HvmXLFv4wIyOD72cNEm4TbmJiIg+qTJ8+XT5469YtXu7Sy8tLqIngfeLiNvDep9nZgkUYuISEhB07drRo0UIsFjdo0CAiIkLY4xfy4MGD/v378//1Gjdu/G5JAC8vL7FYbGJiotRllBAC7iqCgHtp8Pz580aNGvE8TcU3iODgYF6csX379glKK7G/fft2InJyclLS8T9s715GxOztC0YaNGBELDhYLcupQKRS6bBhw/h+q8jISPk439ppbGx869YtAadbuXIlEY0aNUrAY36WS5cYEWvdumDkm28YEfv2W3WtSFmKDLhnZzN/f8YLYMgD7owxe3umqcn++IO1aFGQDtOxI9u2TYACnfIE9jZt2ii+syUnJw8ePJjvyJNIJCWchfdWdXJy0tLSEolEhoaGvXv3FmT/aUkkJSXxJESUH1W2kJD80mQqblPk6enJszuVkUEDJXH06FGRSKSlpRUYGKg47unpycvLdOvWTUkZDJ/lhx9+IKIRI4RPrPP1ZUSsf/+CEZ5wHRUl+FRQmETCiFi1auzlS2VNYW9vT0S+vr7KmkBBenr6jz/+yANS+vr6y+UJMowxxnbu3Elv11yG8ic5mWlrMw0N5TZ7y8vL450Jq1Wrptjl/vDhwzyZdOXKlUqcvtS7evWqPLauq6traWlpZ2fn4uIikUi8vb2DgoI+MXNlxw4mr1mblMRGjmSRkWz06ILQfF4e++orpdQO+oDQ0FC+E1reA3PHjh1E1LFjR2Enun37Nn83++uvv+SDmzdvJiIDA4My1O6yLMrIuHfzpl5QECUm7lfSFNu2bSOiyZMnK+n4hRw6dIjfwiGiL7/8Mj4+Xv6tlJQUvtlaNSspHgTcVQQBd7ULDQ21sLDgMSnFfkfnz5/nN7H79OmTKq9xrgQPHjzg6czKm+IDIiIYETMxKbiXPn48I2Il7o9ShkXlRD3JEr52UCF8p16lSpUUuwJs2bKFZworthAQREREBA+GFi+XueRkMvbvv29t2z93jhExS0tVn1Yq26tXrH79gof37rGOHdmKFczbm02Zwvz92ZIl7L8MEhYWxmrUyM9qDwlhbm6sSpX8sLuuLnNyYgEBxfnvI5PJ3N3di0xgf/ToUZMmTYioSpUqwnZmjomJ4bl4pWQHH8+AVnaSBfBk0jlzVD2vVCq1tbUlomXLln382aAqjx8/5udO69evf/e7N27cqFu3Lo/pBAQEqH55ci9evOD3I5VRAjskhBExa+uCkU6dGBF7uy4ICO/GDaatzUQiptRguCoD7lx0dDSviluouAcC7hUBb+zcrVvByPLlbO9eJvjpfHZ2Nu9JXrt2bXmhbcbYzp07xWKxSCTaLM/NrnhSU1P37dt37do1xaBeyclkbPlyVqkSu39fwKN+tm+++YaIvvnmG/kI3xitjKzzrVu38pIjiollvPNTo0aNkpXXvrxik0oz799vHhREERHTP/7s4lJxwJ0xlp2d7eHhYWxsbGVlpdgJAAF39UPAHbgbN27wUlPdu3dXbGfs6+vLb8COHDlS2XufZTIZX4O6mnTXrs2ICj7pt2xhREx9mdCqJmMyz3jPYWHDujzqsiB6wZu8Nx5xHvOi5il10tWrVxORtra2YsTTx8dHQ0NDJBIp3vYXEK+sfUjwzfPFJZWyIUPYb78pt3huqfL33x9vzZeRwXbuZD16MJEoP/Jubc3WrMnhlRk+RXJy8qBBg4pMYPfz8+OxsJYtWypeTQll1KhRhfJW1Ig3Qjh58qS6F1Ke+freNjZ+U7UqU8uWhosXL/Ku47itUkpkZGTw6nzDhw9/33Pi4+P79evHN+C7u7uraw/K119/TURfffWVMg6elsZEIqarW5DKMHo0I2LYMa9UqamsUSNGxObPV+5Eqg+4cxcuXHj9dokKBNwrggkTGBGTn829ecO0tJimJvuvFKWQMjIyevTowQsDKu5D2rFjh0gkEolE27dvF37Wio0nujVqxNQVak5NTeWXBnfv3uUjN2/eJCITExMl7SCcOHEiETVs2FAee/mUkwcoiefPpwQFUUiIjVSqxF2hqg+4cy9evLjBd5H/p0wE3MVFVqcCKE/OnTvXp0+fhIQEBweHf/75R16Ubc+ePV9++WVmZua0adP27NmjpaWl1GWIRKKOHTsS0eXLl5U60ft07kxEJJ+8SxciokuX1LIWNZDESjbGb5xdffafdf/UII3TqaeVPaO3t7ebm5tIJNqxY0efPn344PXr10eNGiWVSn/55Zfx48crY16+V/TgwYPKOHgx3L9PUVHUvTvx/8P++IN+/13da1KmzEzau5eGD//I0/T0yNmZzp2jiAiSSKhuXXr0iI4ejahdu3bfvn0PHjyYm5v7gR9//Phxx44dfXx8qlSpcvLkSTc3Nz7OGFu5cuWgQYOSk5NHjBhx+fJlXttdWNbW1kT06NEj+cjdu3fV9SfH2xHzLUSgDFlZWa6uQ3V0rNeseWBiooYFdOnSZdiwYZmZmd99950apod3TJ8+/datW40aNeIXXUWqWrWqv7+/u7s7Y+ynn34aMmTImzdvVLhGIqKHDx/+9ddfmpqaP//8szKOb2BA1apRVhbFxuaP8LfbZ8+UMRvkmz6dHj+mNm3o119VOq+3t7eenh7P0FSqbt268arKUHHIZPTPP0REDg75IydPUm4ude1KlSsLP52enp6Pj0+7du3CwsJ69eoVFxfHxydNmrRu3TrG2NSpU729vYWfuALbvJlat6bHj2nKFPUsYM+ePcnJyd26dWvevDkf+f3334lo8uTJvDu04DZt2tSmTZsnT56MHz+eMUZEenp6Bw4cqFSpkre394YNG5QxaUX2998Hr19/IhYbWFoeEIuF/J0OHDhQT0/v3LlzAh6zGGrVqsX3ZJQxagz2qwAy3CE4OJj3gXF2dlbsbvz777+LxWIicnNzU9lifv31V3p7J5cqnTnDdu4sKHYpkzETk4pSbDRXlmt02+h2xlt9KpWa4X7+/HldXV0iWrNmjXzw6dOnvFuAUL3gixQZGSkSifT19dPS0pQ3y6e7coVVrsw6d87PAVy+vBzWc5d7+ZJNnsyKsYklL4/5+bFp0zbK7/yZmZm5ubk9evTo3ScrJrAr7phJTU396quviEhDQ0MikciUVsRn//79RDRE4SON91BVS73mdevW0dutmUBYy5cvJ6KmTZvmqq/LdmRkpL6+vkgkKlQuHFRv48aNRGRoaPiJZVj9/PxMTEyIqEGDBoql1VTAwcFB2SddHTowIiYvV7N9OyNi48crb8KK7q+/GBEzMGAPHyp9rkIZ7nv27CE19chBhrsyhISElJ69cdevMyJWp07ByLhxjIitXq3ESZOSkni6ccuWLRU3Vfz4449EpK2tffbsWSVOX/E8fswqVWJErKhKbErXpk0bItq7dy9/mJSUxE+rirzQEMqTJ0/4BctaeXtxxo4dO1ZkAxgoiefPn1euXJmIjhzZIfjBe/fuTUTy/frqynB/FzLcAdTv8ePH1apVGzp0KM9y4oO//PLLzJkzGWNr166VSCQqW0znzp1JfRnuvXqRszOZmeU/FImoQwcihZz3ciw6N1rGZC31Wr77LZdIl/5P+y95ueTImyNROVGCTBcaGjpkyJCsrKxp06bNnz+fD8bHxw8YMODVq1f29vabNm0SZKIiWVhYdOjQISMj48SJE8qb5bM0a0ZVq9KOHepeh/KtXk2ZmbRiBX1uYpCGBtnb0+bNM+Li4jw9PVu2bBkTE7Ny5Upra+u2bdtu3bo1LS2N3k5gHzly5OXLl3k5dSJ6+vRpp06dDh06ZGxsfOTIEb67QujXl48nlT98+PADIyqjxqkrgtjY2FWrVhHRunXr5J+hqmdhYTFv3jzG2OzZs2UymbqWATdu3Jg3bx4Rbdq0qWnTpp/yI/b29rdv327fvv3Tp087dOjAG8irwIULF/z8/AwNDZcsWaK8WfgbsDylHRnuShUWRq6uREQbN5K1tbpXA2VKYmJiSEiI/GFkZGTPnj2HDBmi9pxN7vhxIoX0dpmMTp4kIrK3V+KklStXPnHiRKNGje7cuTNt2jT5+E8//TRp0qRKlSrxYBYIpWFD8vIikYgWLKCLF1U69eXLl2/evFmtWrUvv/ySj/z1118ZGRn9+vVr1KiR8uZt0KDBrl27RCLRokWLAgMD+eCgQYPmzp2bm5vr5OQUK98gBiWQl5c3ZsyYN2/e2NvbDx48Ud3Lgbcg4A7lXHBwcHR0dPPmzXk+O9ehQwd9ff1t27bNnTtXlYtp3769trb23bt3S8kZzLRptGkTdeqk7nUoXx7L0xBpFPmtf1P+PZly8pfYX74M/7JOSB2TOyZdH3edHT17Z+LO8OzwYswVExMzcODApKSkQYMG/f5f8ZSMjIxBgwY9efKkbdu2Bw4cUHbcqrRVlSGi//2P3N3p1St1r0PJ1q6lPXvI0/PjJWXex8TExMXF5fbt25cvX548ebKRkVFwcPDUqVPNzc0nTpzYt2/fxYsXi0QiiUSyd+9e+SbQkydPtm/fPiQkxNra+tq1a46OjoK9pKJYW1traGiEhYXJ697wBq0IuJc/ixYtSklJ+eqrr/r27avelXz77bd16tS5efMmT/YE1UtMTBwxYkR2drarq6uzs/On/2CdOnXOnz/v6uqalZU1ZcqUcePGZWZmKm+dRMQYW7x4MREtWrSI91VWEktLIoUIu6VlRo8ex/X1sVNeeLm5NGYMpaTQ8OGknIJ8UK4cOHBAMcJ+69atHQp5HxYWFk5OTpmZmQ4ODhdVHPssip8fkUJ4/fp1iouj+vWpSRPlzlujRo1Tp0716dOH31mXq1OnTnx8fOlJ3Ck3Bg+muXMpN5eGDydVhpo3b95MRF9//TXf988Y27JlCxFNnz5d2VM7OjouWLAgLy9v1KhRCQkJfFAikXTt2jU2NnaKuirslC/Lli27dOlS7dq1vby8lJduBcWDgLuKiMV5xsZMRydP3QupcHhS+aW3S5Xb2dk9ffp08uTJKl6Mnp5ey5YtpVLpjRs3VDz1u44coSlTqE8fsrAgIpo7l/78U91rUpo62nWyZdlFBtAvNLpw2PLwdzW/62fcr4pmlTfSN5fSLm14tWH88/FW963M75kPChu0InqFv7+/vMThB6Smptrb20dERHTo0GHfvn0aGhpEJJVKR48effXqVUtLSz8/PwMDA+Ff4duGDx8uEon8/PzS09OVPdcnatCApkyhxYvVvY6yo1OnTtu3b3/16pW3t7ednV1qaupff/0VHBxcuXJlf39/xQT29evX29vbJyUlOTg4XLt2jQeglUpXV7dOnTq5ublhYWF85N2q7ipTp04dfX39mJgY1VeILveuXr26e/duHR0dVW4Fex99ff1ffvmFiBYvXlxKblpXKDKZbOzYsc+ePevQoQPvB/5ZdHV1169f7+Xlpa+vv2vXri5duoSHF+eW9ic6cODAlStXzMzMeD6+8lhb/1OjRptnzybxh7Vra1+6NOTff+dmZ2crdd4K6NQpunGDrKzo/Y0DoGJRPMXNy8vr3bu3YvOboKAgXkuW69OnDy9Ax4lEoo0bN06ePDk9Pd3BwYF3j1SX2NhYXd3N3btH9eqVP1Io4V2pLCwsTp06Jd8uyfn7+xORvVIT7CuqlSupWzeKiaHRo0kqVcWMCQkJf//9t1gslke3z5w58+jRo9q1a6vmV7xixYq+ffuOHTtW3p1CS0tr9+7dRkZGVlZWeXmIj5VIYGDgr7/+KhaLvby8eIVPKFUQcFcRmcw3JUWcne2k7oVUOF26dCGiq1evFno3N5OXVlHHei6Vgl6lOTmkpUUzZhBjREQZGVSOLw+1RdpTq02dETUjIS+BiMKyw2Jz8/MK6mjXGVp56C+1fjnZ4GRCi4QXzV/4WPm4m7k7VHKoqln1Ze5L32Tf/TH77e3ta9asWatWLUdHx6VLl/r6+r56J1ubb467detWgwYNfH195dnHrq6ux44dq1q16okTJ2rUqKGC11u7du2OHTtmZGQc5+fspcPixRQYSGq9qCl7dHV1nZycAgICQkNDW7Ro8ebNm3nz5vXr10/+hLlz586ZM4cx9tNPP/n4+MibQitbobxyNaaZi8Vivh9WLeH+cowxxv+0FixY0KBBA3Uvh4hozJgxXbt2jYuLW7FihZDHTUmhf/6hP/6gCxfyL38TEujffwueEBVF/22FrrCWLVt24sQJU1PTAwcOaGtrF+8g48aNu3TpkpWV1a1bt9q0aXPkyBEBV5iVlfXw4cMTJ0789ttvc+bMIaKlS5cq3uHevHnz119/zfhJj0Bq1dKIi7v17L8Ud01Nzdq1a8tksqgoYSrUVWR+fgU1DxmjqCgKCKB9+8jYWK3LAjW5ffv2ixcv5A+PHz/Od3Nympqab968CQ4Olo8MHTq0Tp06HzigSCTy9PQcMWJEcnJy//79Q0NDlbHsT+Hv73/p0gxj4xl6evkjwcFpRDRwoHrW8+rVq6CgIF1dXV64GYSlqUne3mRmRmfP0tKlqpjxjz/+yMrKGjhwYH1e9ey/hHcXFxfVlArU0NA4ceKERCJRrDdw+fLl1NTUc+fOqbFcoVD++YciIwseHj5M/6XyExG9fk1bt1Jqav7De/foyhXBpk5KSho7dqxUKv3hhx/wP2zphIA7lHPVq1e3srJKT0+/d++eutdCpO4y7oXwTIo9e9S9DpVYWWulja5Nj8c9Gt1vND5ifFRuVGWNylU1qxZ6Wi2tWo6VHJeaLfW18n3V4tXjpo/31d83Km9Uz549jY2NY2Ji/Pz8fvrpp0GDBtWoUaN+/fpOTk4SieTUqVOJiYkuLi4nT56sVq3aiRMnqlWrxg+4bNmyTZs26enp+fj4KLVMXiGlsKqMnh55eJCgAZYKpHHjxmPGjCGixMRExfHx48fXqFHj77///vHHH1W5i7D0BNzVPnt5tWvXrmvXrtWsWXPRokXqXks+kUi0fv16sVi8du3aJ0+eCHPQx4/Jxoa8venVK1q+nLp1o6wseviQvv++4DlXr9Ln53SXJ6dPn16+fLlYLN67d2/dunVLcqhWrVrdvHnzq6++Sk5O/uqrrxYvXiz9/By/pKSk4ODggwcPrly5curUqX379rWysjIwMGjSpMnAgQNdXV21tbW1tLQUP3OjoqLmz5+/Y8cONze3kqy/EB6/eKZQtZ0nij5DHfcSW7uWBg/OD1swRlOnUu/e1K6dupcFavLHH3/whu1cp06drly5ovju0b179wsXLsgfdu7c+aOVrzQ0NHbt2mVvbx8fH9+vXz+lbrv5AJ4cI881fvny5T//GDdq1L9nTyHvDn46f39/mUzWu3dveeYQCKtmTdqzh3R18y5eXKTs1CjGGG+dIq8eExMT4+Pjo6mpqcq9/nzPtyIe9J8xY4bK1qA8a9fSnTsFD93d6fnzgodRUTR1Kv3wQ/7DgAAS8Op80qRJkZGRXbt2VWq7GiiJMn9DCeCjOnfuHBYWdvnyZd6KXb14hjs/R3z3s0f11q+nL75Qbk+eUkJXrLu29lrFkXb6H7luE5GooU7DhjoNqRMtPrtYJpM9fvw4ODg4KCgoODj41q1bz58/f/78+d9//53/fJHIwMDgxIkT8mzQPXv2LF26VENDY8+ePZ1UWyzfyclpwYIF/v7+aWlphoaGqpxaLjubvLyoY8eC5mb29uTiQrVqqWU5ZV6RYeVWrVqFh4er/qKoUA2Z+vXr6+rqRkVFqeXvjf+XQYa7gNLS0r799lsiWrVqlXFpSiht06aNs7Ozl5eXm5vb4cOHBTji/Pm0YAHNmUNE5OZGQ4bQxo35LcWBiIiioqJGjhwplUqXL1/+xRdflPyAxsbGBw8e3LBhw8KFC1euXHn9+vV9+/YVuf0rJibmmYLnz58/e/YsKiqqyB3o2traderUqV+/fr169UJDQ6OiooYOHXr27NlWrVoRkYWFxbFjxxwdHVevXl2pUqXvFW+olEDdunU1NDSio6Nzc3O1tLSIqH79+ufOnUPAXRBdu9LCheW54CF8um7duu3Zs2f+/Pn8oampae3ate/cudOmTRs+MmXKlKysrM89rJaW1sGDBwcOHHju3LlevXpduHChhPcUP1dOTk5AQAARDRgwgI8cP36cMdakia6urnpqMRe6AQDK0KsXrVy5d/bs1Xfv7ggODi5U0kdA//zzz5MnT+rWrSv/+N66dSvfk11LfddjoaGhFy9eNDIyGjVqlLrWoEotWtCJEzRuHP33diWMTZs2HT16tHLlyrt27SoHGwXKK/xioPzr3Lnzrl27Ll++/M0336h7LVSrVq26detGRESEhoY2b95c3cuhpk1p1KiCm67wAWKxuHHjxvJEYyIKDw+/ePFicHBwcHDwjRs3NDQ0RowYYWtrK/+RmjVrGhsbL1++fOjQoSpebe3atTt16nTp0iU/P7+RI0eqeHYiYowmTqR9+2juXNq+vWB8yxbVr6Wc4GHlBw8eFBpXSwpSoei/hoZGgwYNQkJCHj9+3EbY08nPXwyU3KpVq16+fNmhQ4exY8eqey2FrVix4vDhw0eOHHF0dPxAdThDHZ21Hy2UtnAhnTpFf/2V/1AkImdn2raNOnSgnJyCDKX4eAHWXTbl5uaOHDkyISHB3t6e34MRhEgkmj17dqtWrUaOHHn27Nm2bdv++uuv+vr6hWLrRYbPxGJx7dq16yuoV69e/fr1zc3N5XkMUql0zJgxBw4c6Nev3/nz53lX5759++7bt2/48OFLlizR09MTpLy7lpZWrVq1oqKioqKiLC0tqaicdyi2mTPpm2/owgXq2lXdSwF16969+7Rp02QymbwqBU9pl59yNG3atHhH1tPT8/Pz69+//8WLF/v27XvhwgWldlou5Pz586mpqS1atJAH+tUb787NzT116hQRDVRXRZsKY9Ys5/Pnjx0+fHjIkCFXrlzRk1cUEhRPJJ8+fTr/fMzLyyuU8K4WGzduZIyNHz/eyMhIjcsQUGQk3b+f/+93zz21tWnpUpo2raCYzKpV9PTphw5obJyWkvKhs5SUlJSjR48S0bZt2+Q3bJ4/f75///7F6JlWmiDgDuVfqariQkSdO3eOiIi4fPlyaQi4E5G7OzVvTrVrUynYAFDGWFpaWlpajhs3jogOHTo0bNiwu3fvKj6hT58+Dx8+VOWJuyInJ6dLly4dPHhQLQH3RYvya62OG6f6ycsnS0tLHR2dyMjI9PR0FbTe/bB3Y9yNGzcOCQl5+PAhAu7lQNu2bU1NTQcNGlSoTtHLly9VnxL15Zdf9ujRY+bMmfxy0czMrGXLls+fP/fz8/vAT5mamKxNSvrooSknh0xMCkaqVaPYWCKi58/pv/Zi9OoVqTbnsfSYPXv25cuX69at6+XlpVh9VRA9evQICgoaPnz45cuX58+fH//OjQ0TExP+OWtmZlarVi3+78aNG3/0DZBXikhLSzt+/Hjfvn0DAwN5HHzo0KHbt2+fNGnSggULjI2Nv/7665K/ivr160dFRT179kwx4P5ccT85FJe2Nq1fT9Ono/sLUI0aNapWrXr//n351dOPP/4oVMKBgYGBj49Pr169nj6NnTGDdux462NBqQqF17Ozs0+fPi0SieQJ7yoWGBj45s2bZs2aKS/nGjiRSLRjx447d+7cuXNn7ty5W5SQkRQVFeXv76+trT1x4kQ+EhMTU6tWLUNDw549ewo+3SdKS0vbvXs3EU2dOlVdaxDcrl0UEJD/77i4Ip4wdCht3VqQdnbsGH04NGVpqRUe/pEW4RYWFjKZTJ7Vl52d3bVr1xcvXtSuXbsUpstUWAi4Q/nXrFmzSpUqPX/+PDo6unbt2upeDnXu3Hnfvn2XL19W18dMWhqdO1fw0NCQVq2i4cPpv7xtKA4HB4dKlSoFBQU9ffpUscGguqLtRDR8+PB58+b5+/unpKSouCjEli20Zg1padHff1OrVqqcuTzT1NS0srIKDQ19/Pix2gtk1ahRw9TUNDExMTY2lv+Rq7GuS6NGjcRi8dOnT+VVHaCEYmJiEhMTt2zZMmfOHB7RyMvLGzdu3LFjx0JDQ1W5437fvn1Hjhy5dOnShAkTeE/g+/fvX716lTHm7u7+gei/rqYmFVV45C2tW5O+PsXGFhS6io4m3mevUaOCi6eDB2nXrpK/ljJn3759mzdv1tXVPXToUJUqVZQxhbm5ebt27S5fvqytrT148GCeq25pacn/UZL6VLxSxIABA86fP89j7nw/xPjx41NTU2fNmjVt2jRjY+Phw4eX8CXUr1//woUL8pR2ZLgL64svyMaGNm5U9zqgFOjdu7diwL3IOlTFZmJi8u+//06cqHHkSJWXLykggFSTeuvv708KAfdz586lpaW1bt1aXVesqCejSpUrVz58+HCnTp08PT07duw4YcIEQQ6bm5sbERERHh7u4eEhlUpHjhxZvXp1/i0LC4tr164lJSWpsu1TIbt3705JSenevXuzZs3UtQbBff89OTrm//t9GZW//UY9ehC/9+Hmlp/d8T7a2nk5OZ4feEJqaurKlSvj4+NXrVrFNyDq6OgsW7Zs8uTJ06dPb9++vSpbx8EHIOAO5Z9YLO7YsePJkyevXLmi2NFeXdSbcf/6NdnbU1AQLV9O7dvnDzo50fz5ZGWllhWVEzo6Oo6Ojrt37/77779LyU4uMzOzLl26BAYGHj9+XJU18nx9aeZMEolo2zbq21dl01YIjRs3Dg0NffjwodoD7kRkbW195coV+R4OXtVdLWnmenp6devWffbsWXh4uLW8YwCUwJQpU7Zt2xYcHLx27VreiElTU1MkEmVkZCxatOjAgQOqWUZmZia/ivj11195tJ2I5s6dm5eXN2fOnKVLlwowx5AhtGkTLV9ORJSXR9u2YVcOFxISMmXKFCL67bffFEulCevYsWMbNmzQ0tI6cOAAb3IjIN6u3M7O7saNG/369Tt37hy/bTBz5szXr18vXbrU2dnZ0NCwhJUTbGxsmjVrpqOjwx8i4C64deuoc2d1LwJKAV4cQ3mqV6++dSt1707XrtGAAXTyJCl7M+GjR4+ePHliamrasWNHPqL2eLfaF1DRtGjRwtPT09nZefr06S1btvzc0/ukpKTwd0RGRso7nVStWtXc3LzQT5mobAdHUbZu3UrqrmmjAnl5lJNDiptwGjSgKVNowwaaMIEGDfroAQyIXD78jDZt2tjZ2f344489e/bkveImTZp0+vTpvXv3jh49mqcylOxFgAAE3hxayg0YMCAhIWHPnj3KnujZs2fJycnKngU+HX8PuiKvm6VWLVu2NDIyevr0aeyH72wqQUwM9e5N166RhQV99RW5uhZ8a80axEZLit/OOShg6/ESU/2Srl+nkSNJKqVffqHx41U2bUVRqrqDFirkot66LqgqIyyxWLx+/XqRSLRixYrIyEg+uGrVKgMDA29v7/Pnz6tmGStXroyIiGjdurV8N/ShQ4cCAgJMTU35bQABSCR09CjZ29PcudS+PVWrhncuIkpLSxs+fHh6evqYMWMEqbtSpMePH48bN44xtnbtWsGj7ZyxsfGJEyeaNm0aEhJiZ2f35s0bPu7u7r5w4cKcnJxhw4ZduHChJFMsWrTo3r17zs7O/KGZmZmuru6rV6/S0tJKuHjgatemWbOKGE9OprFjqWS/PYC3mJvT2bNUty5dukRDhxZRi1lYPLo9YMAAef+JQgnvKhYeHv7o0SMTExN+4QyqMXbs2EmTJmVlZQ0fPvx9EaS8vLxnz56dPn1627Zt33777fDhw3npP1NT07Zt2w4fPnzx4sVbt249depUeHi4TCarU6dOr169evXqlZCQsGHDhuDgYBW/qPe5dOnSrVu3qlWrpvr2ZqoUFkYjR9L8+bRixVvj335L1aoJNkuvXr3mz5+fl5c3cuTIpP+KKG7atKl+/frBwcE/oEdfKcHKtREjRhDRvn37VDZjenq6u7u7rq7uvHnzFMcPHz5MREOGDFHZSkAR7//evn17dS8kX58+fYjo8OHDioNpaWkzZ848efJkdna2MiYND2dWVoyI2diwqChlzFDRZWVl8RzMx48fq3st+WJiYjQ0NHR1dZOTkxXHX7x4MWvWLC8vr5CQkLy8PKGme/qUVa/OiNiUKUIdEt6yc+dOIhoxYoS6F8IYYxKJhIjmzJnDH6ampopEIl1dXQH/oj7d3LlziUgikah+6nJs2LBhRDR27Fj5yE8//URErVq1UsFvOSoqipfqPn/+PB/JysriBbs2bdok5Ex5eezmTebjw54+zR9JSWF37hQ8ISGBhYYKOWPpJpPJ+K++RYsW6enpSpolLS2NNzlUwRtaXFwc3/vSuXPntLQ0PiiTyXhlP2Nj4xs3bgg1l0wms7CwIKLAwEChjlkxPXrEUlPz/52Tw4KC2Jkz7OjRgiesWsWImIUFe/1aKQvgQU9fX1/+kCdsjRo1SimTfRD/6Fd8KwalevyY1azJiNiQISw3V4kT9e7dm4j27t3LH8pksiNHjri6uqrlPIox5uHhoa4/8gruzp07fCfZoEGDMjIywsLCAgICPD093dzcnJycbG1t39dSVUdHx9LS0s7OzsXFRSKReHt7BwUFKX5wz5gxg4jq1KkTHx+vxhcoN2bMGCL6/vvv1b0QIYWFMcXr7IcPWUoKy8pijLE+fVh6+lunkNHRQsZhcnJy+P4YJycn+eD169e1tLREIpGfn58gs/B3qlOnTvGH27ZtI6LJkycLcvCSSElJISJDQ0N1L+RDEHAXjEwm8/Ly4uVERSJRoT9BBNzVKzU1VVNTU0tLS3mXjp+F33JcuHCh4iD/IyEifX19BwcHLy+vpKQkoWYMCWG1ajEi1q4dKx0fuOUTz3H75Zdf1L2QAj169CCi3bt3Kw4q5rwbGBh06dLF1dWVx9+lUmnxJnr1ijVsyIiYvb1yr08qsuvXrxNRy5Yt1b0Qxhg7evQoEfXv318+wkuOPpVHLZXm/Pnzb968URzhzaYmTpyo7KkrlMjISH19fZFIJA8dZmRk8EZqW7duVfbs/BRO8cp/+fLlRNS0adNcvMUoU15e3vjx48Visbe3t/Jm4f3Gra2tC90PVpLIyEjee6Bv375Z/DqYMalUyuut8WaMJZxCKpX6+Pi0a9eOiMzNzfX19d3c3FJSUkq8dmCMsevXmYYGq1SJhYfnj+Tmsi5dGBEbOlQpMyLgXpHdvctMTRkRGzuWFfe8+L0iIiJ27tw5adIkbW1tDQ2NUhIJZYz17dv33UsGULbnz59raGi0atWqcuXK72tEJBKJateu3b179wkTJixbtmz37t1XrlyJi4v76MFzcnJ4MduBAwcW+xJPKPHx8bq6umKx+NmzZ+pdiWoEBLAfflD6LP9n777Dori6OACfXXoTsfcCIopd7KixYEcTTTCJijFqSIyKGjWkuiZqgtEoGjXBmILGL5FYInaxYxes2AUbiIqIVGm75/vjbpYNTcrsDurvfXjysMMy925cdmbOnHvOjRs3RKu2X3/9Vbfxm2++MTW19PQ8Uoz3yLMh4F4WL3LA/dGjRyKfZfz48Ya+UXzq1Kku/9YXbNeu3eHDh/V/qlarxd1FJyenhw8fGnQmUJjWrVvrJ8rJa8eOHSLTSn/j9evXv/jii5YtW+oOrmZmZh4eHj/88MPt27fLMtzx41y5MhNxz56MSz+DCgkJEemfck8k17Jly4jo1Vdf1d94/fr1b7/99o033hCxM30VKlTo0aPH9OnT//zzz+vXr2s0muKMkpqa6u0dTsQdO3L5uKv1YkpOTnZ0HNS9e4Dc58zMzKJ+S4MGDXRbPDw8iEiqfIrCBAYGmpmZ9evXT//IfuDAASLq1KmTQYd+CYnKLW3bttVdp4kC7tWqVZPwlnB+R4/G29vXs7a21h3+4uLixBXF7t27DTcuCOJuh7m5+fLlyw2x/x9++EFcI5U9zF18165dE10Whw0bprtnk5WV5enpSUS1atWKiooq3Z4zMzN//vlnZ2dncRitWbOmrg5v7dq1V61aJVe+6gvmzTe1iSNZWdotd+5oo6I//ij9cAi4v+SOH2c7Oybid9/l4p0LFyUqKiooKMjHx8fV1VV3ym1paUlEH3zwQTFPtg0qJSXFwsKiXN0AeEmIXjWjRo3auXPnggULLCws6tWrlydpPUW33qfk7ty5U6VKFSKaO3euhNMuBbE0dvDgwfJOwzj27+eZM42UgibOzG1sbC5fviy2qNVqb++HRDxggAQfXwi4l8WLGXDPzs5eunRppUqViMjOzk7kAx44cMAQY8XGxvr4+CiVSnGyHhgYmOfmYVhYmFgiZGtrS0QVK1ZctGhRlu5UEYxl4sSJRPTtt9/KPRFm5qSkJKVSaWFh8fTp0/w/vXXrVmBgoKenp/5dbldXVz8/v7CwsJKek23bxtbWTMSvvsoFjQZSyszMFI1odAc82d2/f9/ExMTCwiJPRrDOkydPwsLCAgICvL299S8DdPF3/fz3At9+2dnZ4rr09dd34JaiodWuzUS5KX4yys7ONjc3VyqVupVDkyZNIqKFCxcaaMSMjAxRy1uhUPj5+ekfbbds2WJmZta7d28DDf3SSktLq1evHhH9/vvvuo1i3cz06dMNNKhazW5uXKWKetGi3HvkYv3Q66+/bqBBQV92drafn584CowYMUJXhkUSJ06cEC1G16xZI+Fui+PcuXPiGP3OO+/oDmeZmZn9+vUjonr16pU0vyE1NTUgIEDUkCGihg0bBgQEpKenM/PRo0d1hembNGli0OUCL4nERK5fn4lYvxrB+vVMxJaW/6kCJQkE3OHwYbaxYSKeMqXEv6tW8/nz15cuXerl5SVu9ek4ODgMHjx4wYIFK1euFJXTppRiAKmJldbu7u5yT+TlkpmZKd4eR44cYebs7OyrV68qlcpBgwZJOMqePXtMTEyUSuXOnTsl3G2JaDQaURVw+/btcs3BaEJCuEoVfu89njbNSCOKk+QWLVrogkv373P16kzE339f1p0j4F4WL2DAfe/evS1atBDHs169ev3www8NGzYUDz09PUudvZJfZmZmQECACOibm5v7+vrmWRUbExPj7e2tUChEhst3330nkmiIyNnZGWfeRvbHH3+Uq3uqYmnz6NGjjx07VtgKr8ePHwcHB3t7e4u0PqFevXo+Pj4hISHFKfX+5585ZmbamtrIrzKOd955pzwkEejr0aMHES1atKg4T05MTNTF3x0dHfPE3yMjI/P/iljBU6VKlatXr0o9d8ird28m4nJystq0aVMiOnPmjHgoslbfM0wJ/5iYmI4dO4rzqr///lv/R4GBgebm5kS0evVqQwz9kluzZg0RVa9eXXeSc+bMGRMTEzMzsytXrhhixJ9/ZiKuU4d1Yd7w8HBxl/r69euGGBEKtGnTJtGYpEmTJgV++JdCQkKCWFmla/9gZMeOHRMZMJMnT9ZtTEtLE8Hxxo0b379/vzj7SUpK8vf3r1y5sjg4tmjRIigoKE+xI41GExwc7OTkJJ7TuXPnPEtgoaTCwtjEhJVK/vfCn5l5/Hgm4mbNOD1dyrEQcAdm3r2bLSx41iwODMytvHzrFu/YUcCTc3I4PJwDAtjLiytX5h49vtGdP1evXt3T09Pf3z88PFz/um/37t3iBqRKpTLG6yncuHHjiOibb76Rdxovm//9739E1LJlS92WqVOnGuJcWqVSEVGlSpVu3bol7Z6LSbQIdnR0lL2yzQspOTm5UaNG1tZV5szJPTPfvp0VCjYz4+PHy7RzBNzL4oUKuF+/ft3Ly0sc1Ro1aqSLaOePjJe9omJISIguFJU/jp+enu7v7y9O6K2srPz8/HTrgEJDQ0WTKCLy8PCQ6gIGnunmzZtEVLly5fKwak8UotVdp1WpUsXb2zs4OLiw9WJPnz7dtm2bj49PzZo19fMjRowYsWHDhsJGWbFiRZMmw+3tNb6+EiwmgmLaunUrlZsq28KIESPEWkJ7e3v9dPXi/G5sbOzmzZtnzZo1cODAhg0b5l8XL5ooWllZHT161ABzh7wmTpQmW0ESQ4cOJb1GKaI9dbdu3SQf6PDhwzVq1CCiunXrhoeH67ZnZ2f7+vqKj0QfHx+sHjMEjUbTtWtXIvr00091G9977z0ikjYDS0hO5po1mYh1/Xc0Gh458mbt2l30JwDGcfXq1ebNmxORnZ3dunXryrg3tVrdv39/IurUqZOB+sMXx549e0QlB/0IV0JCgsjXGTBgQNG/fv/+fZVKJW5FEJG7u3tISEgR55ZZWVmBgYHVqlUjIoVC4eXlhftGZaFSMRFXr866OyNpady0KRPxhx9KOVCegHtoaGjXrl2/+uorKccoHgTc5RUVxWlpTMQDB2q3hISw7uj39CkfPMhff819+mjT4XVfvXqFjx49etWqVUXno2zatMnU1JRkbfyu0Whq165NROckXyoCRerWrRsR/fTTT+Jhenq6KNKgf64rCbVaPWDAACLq2LGjLMdfkXg6f/584w/9kggPP+vi8lSh4G3bcjf6+jIRN2pUpqrCU6dO7dq1q+49iYB7ibwgAffU1FSVSiXuD9vY2KhUqvyVOp5Z+6WYLl26JFaeElHTpk3zL8wJCQnRlUX29PTM3xQiKysrICCgYsWKRGRmZubj44NaacYhziTkrfWh0WhmzJhBRCYmJjNmzJgyZYp+EW0bG5vXX389KCjo0aNHhe0hMjJSpVKJOkVEVFgJhTlz5ohLu2XLNhvs1UABsrKyxKnSJf2W5PLZsmWLOI8Xnzn6qlevPmjQIJVKFRIScu/evVLsfO3atQqFwsTEZOPGjZLPHAq0dCkTsY+P3PNgZubPPvtMP2iVmJj4zz//SN40VZfA/sorr+h3iIqPjxerNywtLX/77TdpBwV9IsHc3Nz82rVrYsuDBw/ER4rkS4NnzGAi7tIl9z7x6tVMxI6OmpQUNIiQQUpKyltvvaW7rVWWC3XRMb5atWoxMTESzrAU/vnnH3Fk/O6773Qb4+LievXqVURoLDo62tfXVwTrdaH2Yo6YkpKiUqmsrKyIqFevb318WJJWZi8htZp79uQ8pWkvXGArKybiTZskGyhPwN04srKyFi9enOcwioC77NLSuEIF7tWLxfo6EXBfvJi7dmULi/8E2Zs0YR8fXrOG79wpwf7XrFmjVCoVCsWKFSsM9BKKFh4eLnIaykNe2svj4sWLCoXCzs5Ot4Lwl19+IYN1JEpISBCFH3x9fQ2x/yLcvn1bFDgtTqNXKLXvvmMirlqVY2O1WzIyuE0bJuIxYyQbRa6A+969e/NkfiDgbhRq9e41a0TpK6VSOXbs2Li4uCKenqe7qaiWVUwJCQm+vr4mJiZEVKlSpYCAgDzJnhEREeIuJRG1adPm0KFDReztwYMHPj4+Ym9Vq1YNDFyJih+G9sYbbxDRL7/8ItcEcnJyxHo9c3Nz/c+LyMhIf39/d3d3UYBIhOPd3d39/f2LuD1w/fr1BQsW5M9w14/pr1y50lAvBgonykx//fXXck+ET506JapDzp49m5ljY2NDQkJUKpWnp6fIttNXs2ZNT09PEX8v+oNU2Lt3rwiD/vDDD4Z/KaC1ezcTcffucs+DmZmDgoKI6K233jLQ/otIYD99+rQozFW7du0TJ04YaAKgI4plDR06VLdl4cKFRNSkSRMJFxbcuMEWFqxU8smT2i0pKVyrFhNxUJBUg0Bp6O57de3aNVZ3JVcSoaGhoobsrl27JJ9eKegiXIGBgc988vnz5729vUWMXqlUenp6ntS9R0vizp07H3wwxcYmnYgrVmR/f4mroLwk7t7lypWZiJcuzd24ZAkTsYMDS1UvwfgB99DQULGg5LXXXtPfjoC77ETA/dw5rlePk5K0AXdvbyZipZJdXdnHh4OCShZkz+OXX35RKBQKhWLVqlXSTby4xHLVDz74wPhDv8xETc6JEyfqtrRr146Iggx2xiNXDxVdY1hjDvoS0mh40CAm4h49cosJX77MNjbctSunSZS1YvyA+507d0SRegcHB/1MZQTcDe/ECe7UKa1pU1OlskOHDsUsaCAqKoomYGJp5zNbJIl0A11O+tSpUx8/fqz/hEePHuli8ZUrV84fiy/MmTNnRPMxd/dRTZuyfH0sXgqLFi2S5XackJmZKSL+NjY2Owqs/Mf84MGDoKAgT09PcSwUHB0dfX19i9kuVT+mjz4Bctm+fTsRtWjRQt5pREVFiZuRhb3n9ePvouZMYfH3/PkI58+fFwvqP/vsM8O/FMh15w4TcbVqcs+DmZlPnDhBRK1btzbEzh8+fFhYAvvatWtFoqi7u3txbg5B2d2/f190E9FFSzMzM11cXIho8eLFUo0yeDATsf4n1mefMRG7uTFqfsru1KlTYk1e1apVd+/eXaLfvX37tjjKlKsCwcuXLxcB9P/973+FPScsLMzT01PkQ5ibm3t7e5d9oeTFi+zlpc2HrV2bAwPRZafENm5kIraw4NOntVs0Gh48mHv14lLdDyqAWNBsnID7tWvXdGVR8zf6QsBddiLgzsy+vjx1qjbgfuIEb9nCiYmSjRIQECDypf766y/Jdlo8HTp0MP56jpdcSkqKOK06f/682HL69GkRSspfqkFC4sBna2t78eJFw42iL09jWDCoBw+4Rg0mYv0KVeHhUp5mrFy5kojGjh0r2R4LJwqZiJWF1tbWeQqZIOBuSHfu8FtvsULBRFy3bsTGjSVdAFX0P14euqvK3r17X7hwQf9Hoj6MCDyZmZn5+vo+efKkpK8mODi4ffu74szby4vzFaEBaRw/fpyImjZtavyhU1NT+/btK+7LFedgk5aWFhIS4u3trV8GpGrVqt7e3iEhIRkZGQX+VkZGxuuvvy5i+jJ2IYesrCxRoN9opzL5PXr0SHxqDRgwIE8bt8Lox99FVZzC4u/nzp2rU6eOSG3G4lMj02jY1paJuPC6U8aTlJSkUCisrKwk74Ckn8Cun0mak5Pj5+eny3mXsQz0S2jevHlE5OrqqvtI2bJlCxFVrFjx4cOHZd+/RsMLF3Lduqy7hxIdzZaWrFBwWFjZdw8SiI+PF1FIExMTlUpVzD/8jIwMkbXn6elZ3g4Z33zzjTiBzx9pCgsL8/DwEJ82NjY2vr6+d3U9E6WwZw+3basNu7u6MnIkSuqDD5iInZ1zS9OmpEhwZy4xMTE4ONjb29vMzKxq1art27c3aIVAUWtI5NnY2tqqVKo8J/lXrlxp3759vXr1ZCkfD4Iu4P7kCdety/PnswE6mDAzz549m4g6d54jdbW2XDk5OboCJsKDBw+USqWVlVWaVBmwUAw//fQTEXXXW7IqVkjPmDHD0EOLNYsuLi553gkGkr8xLBjUzp2sULCpKUvbXi0nJycsLMzX17dSpUpVq1atUqWKQZM7n5kknZqa+tlnn9nZ2RVWYLmceA4D7unp7O+vjTdYWbGfHxfSZ7I4dMsTiKhu3bpFrN/Zt2/f1q1b82wMDQ11dXUVv+7h4VGW4FpmJgcEsJ0dE7G5Ofv6lqmzARQoKyvL2tpaoVDkKZq/evXqI0eOGK5l9uPHjzt37kxENWrUOHv2bIl+V3y0+fn5OTs760Kf1tbWnp6egYGB+nnHKSkpffr0KX5MHwxq7Nix9G8hF+NLT08XtbPc3NwK68RbNLVafenSpTVr1kyZMqVr166iLo2OyPXr3bs3wp2ycHNjIi4Pf+UpKSl2dnYmJiYTJ04suidYiegS2Lt27aqfwP7o0SMR/zI3N//555+lGg6KKTMzUxyJli9frtsoenBJuA5dvz7NsGFMxKNHS7VvkIBGo/H39xctkTw9PfOs+CzQ+++/T0T169cvoj+NjD755BPxqSIyFdRqdUhISPv27cXxrkKFCn5+fgaauUbDwcHs6KgNu/fuzRER/OQJ+/nlJt9ERPC6dXzkCOsH4HbuxF0ofvqUW7ZkIh4/XoK9xcfH//zzz/379xelk8TSB3HyY2Fh4efnlyz1hZlarQ4KCtKVRfX29r6v6wPLzMwJCQmTJ08WhYzq1q2LMy4Z6QLuzLx2LTs4GCrgzszz5m01N2crK96/X7J9Zmdnh4eHBwQEeHl5VapUacKECfo//e2334hooK4nLBjFQHd3Ilq7dq14mJiYKMIUEp5OFyY1NbVZs2ZE9Oabb5Z9bzk5Obdu3dq3b9+qVas+++yzqKioPE/I0xgWjGD6dNH9iMt+SyUzM3Pbtm1jx44V2YS6PDzxzYABAwzRH7HoMuBqtfrnn3/WHT3LeeDreQu4h4Rwgwba01JPT6lSwfft29eyZUvxL9qzZ8/ihESvXLkycOBA8SuNGzfOH4svndhY9vFhpZKJuFYtDgzEGmqJiU98/X+vjIwMOzs7IqpcubK3t3dwcHDpApSFuXv3XtOmTYnIyckp/xGoRIoo9X7y5MlOnTqJmD76y5cHO3bsIKImTZoYf2i1Wj1s2DAiatiwoVTVNnJyci5cuPD7779PmjSpU6dOtra2RKRrVg5GNnIkE7F83Si0bty4IarN6kpgubm5BQYGluUjtIgE9nPnzoleT1WrVj1w4IAUrwBKbMOGDURUqVIlXfzx8uXLZmZmJiYmJb2d/Ez79jERW1uXqSouGMi2bdvEQqj69esXXc187dq1RGRpaVmeDxnTpk0T2Qyff/65WBxGRNWrV1epVKVYt1pST5/yggXs4KCtB/3VV6xU5obzfv+dR4/m777jyZP1J8zlqTaPbCIjtb1SC68J9Azx8fGilqOZmZn+qXVAQEBsbOy9e/d0DbeqVKlS/JKhz3T8+PGOHTuKETt27Hj8+HH9n4pYvOi1I2Lx6DQoL/2AOzP36mXAgLtGwxMmaA9/ZbmvlpbGhw7dmT17dq9evaytrfXzZvr376//TFHyVP9WOhjc0aNsZRU5cKDuRFdUvu3Xr59xxr927ZooaFOiRlwZGRlRUVGhoaGBgYF+fn5eXl5ubm553l1/i87C/7p06VKexrBgBFlZ3LEjE/Hw4aXcw9OnT0W5BVHJQ9AVOs7MzAwMDBSlAs3MzHx8fPLks5ZabGysj4+PyOqoVatWYGBgnqTYEydOiKgXEXXo0OHYsWOSjGs4cgfcjx/nhITchwcPcmoqM3NSEu/bxyEh/0nw6NZNG2pv04aL7EdaCsU/s3n8+LGfn59If3BwcPD395c84+DkSe7SRfta27XjI0dYrebg4NxF1nFxfPAg377N+qdnV6+y1Fe7LyCRx6RfdTohIWHq1KkijiNYW1sPHTr0t99+i48v68LnqCh2dU1v1aq7q6trTExMGfemc+vWrSVLlvTu3VukvdC/GceNGjWKjo6WahQoi+zs7KpVqxJRZGSkkYeePHmyuIFkiBvOgliKOGfOHAPtH4r29ddMxB9/LOccDhw4IN7hjRs3/vvvv318fMSdSyKqUKGCt7d3aGhoSfepS2C3sLDIk8C+bt06kWnYtm3bZ7ZdAYMS5dF8fX11W6ZMmUJEvXr1knCUnBxu1YqJeO5cCfcKUrpz546IGFpaWhbWof38+fPiUlzGfvXFoVarxYJXEVpt2LBhQECAQavo5vf4Mfv5sa0t79vHDRvyK6/w+vXMCLg/y/LlTMT29lyi899bt3jRIh4wYLS4qhfHnUGDBv3666/5VzNERER07dpVPK1t27ZhZVtccPfuXW9vb3HeXqdOnaCgoDx1lvLkgSGNpjzIyeHDh3Mf3r/P/5bdNgiNhseN076xS3SnMiWFQ0NZpWIPD7aw4NatE/UjZd7e3oGBgTf/m7CYlZUlAmo3UdPWmEaNYiLWRSQ0ms6tWhHRpk2bjDaFf/75R6FQmJmZHdZ/c/8rKSnp4MGDv/3225dffjlixIhOnTqJQFmBatas2bVr19GjR8+ePTvPle/EiRPpv41hwThu3OAKFZiIf/+9BL+VksJ//cVTp4bor25v06bN3Llz8wcWEhISdG0sK1WqVMZ70pmZmQEBAeJy0tzc3NfXN8/CspiYGN3Rs3bt2vmPnuWT3AF3d3fesyf3YcOGfOkS79/P1avzu+/yRx+xkxPPnMnp6dpu9NWr888/Gy7rWz+YXrFixTzBdGOmG6jV/PvvXLMmE7FCwV9+yUSsa1m/cyf37curV7OXV+6vzJ/Pete/ULDNmzcTUY8ePfL/KCoqKiAgQJc/7uQ0WKlkNzdWqbh0xRtPn+bq1ZmI+/R5Upw116Xw+PHjP/7444033rC1tVUoFNeuXTPEKFA648ePJyKVSmXMQb/99lsR/ijjBWHRtm7dSijGJ5+tW7ljR16yRLYJBAYGirt9gwYN0qV/pqenBwcHe3h46JbgNGnSxN/fv/gHyiVLloizdv0W6BqNRqVSiX2OHDkyPT1d+tcDJXHx4kVTU1NTU1NdS5vHjx97enoWneZcUitWMBE3bMjGjXlCyWRkZPj6+oq/d29v7zz1f5OTk5s0aULyNasvkezs7A0bNnz77bd//fWXVFnMpfDkCd+5ww0b8pkzXL8+JyfnBtxffZV37NB+DR2KgHuuoUO5aVMuTl3Pmzc5IIDd3bVdwLp1W2Npaenp6RkUFFT0UgZRTFZ0FiEiT0/PW7dulXSeaWlpKpVKFEyztrb28/PLsyCs+JVOwciiorhWrdyHhw+zm5thR8zJ4TffZCKuWvXZ7+3YWJ4yhdu2ZRMTbcYeEZuYcOfO6mnTPtq4cWMRyad79+4loubNm0v8AqAI8fFsaclKZW5q6Z49Gnv740OGFLPtllSmTp0qPm3yd+IJCQnJH1g3Nzd3dHT08PDw8fHx9/cPDg4ODw8votxW/sawYEy//84uLhwR8exnJiZycDB7e7ONjUj5fUhErq6uKpXqypUrRf/upUuXRHcfImratGnp+giGhIQ4OjrqjrB5ykKkpaX5+/uLFfZWVlb5j57lWfkLuJ8/z87OrPt3SkriOnX42DFesYJnzJCgClExXL16ddCgQeLfW1cuRpZ0g9RUVqnY0pK3bWMrK+7enTdvZkbAvQzi4+MVCoWFhcWZM2cKe87du3dXrFjxwQcHzM1zz1qaNeNPP+UTJ4p7u+fQIba3ZyLu1csY5fjFyppdu3YZfCQotl27dhGRi4uL0Ub8888/lUqlUqlcL/LiDCYrK0sUEzBoJzEo0O7dPHNm7gfR0qUFpFnpV8GW1tOnT8X6BoVC4efnV2DriytXrvj5+YnKeuLs3NPTMzg4+JlXESK2Hhsbq9uSlJT06quvEpGpqam/v7/ELwZKa8KECURk0CZFopnkf9clQzm1Zs0akcbepk0b3TWSRqMRXdxbtmyJRnwlIgLuzDxpEn/0UW7AvWVLnjRJ+9W6NQLuuRITOSmJPTw4JES75eRJ9vPLfUJkJH/1lbbgu/iys+O33uJ//klIFUuri0f/mr/AiHlh9OP1ovlbnnh9amqqSqWytLQkIhsbG5VKZeQFFlA04wfcmTkriwcNYiKuXZuLLkr68KH2HpKpKbu5sa8vBwdz0bleGo3mwoULy5cvF4VPP5Z31eTLZv58bXlkHdGyxuhLh7Ozs0W53V69euW503z16tXOnTuPHDnyyy+//O233w4dOhQTE1PShOIff/yR/tsYFozs6VP+/PP/HBAHDWJdZ+74eP75Z+7fn3VRL6WSu3fnH37IuVPCeo5FR8yL8Mx4fUhISIMGDXR7fu7W4pSDgPvmzZyYqP2qX59DQrhu3f88Z8YM/uIL408tJCRE16ZS92/s6Oi4YcMGI88kLo6zstjKiiMiuGFDTk3NDbh7enJMjPbr888RcC+Wjz/+uEaNGuKf1dfXNzQ0NKuQ6FRSEq9bxyNGcMWKuefoxcnT2rpVW1PytdeMlJ330UcfGT+ZGoqWnZ0tFsTo8kCFmJiYJk2ajBw5cvHixWFhYVLdod2/f78opR0QECDJDov27rvvEtHXX39thLFA34IFbGbGukqbAwZw/h4i7u7s4cFBQSxtOvjdu3dFI0FbW9tnHgpzcnJCQ0O9vLx0hXFr1arl5+d348aNYg539epVcR1YuXLlPfr35kFuCQkJonVSiC6+VWY3b/6nIsTJk4z2Ws+Rs2fPNmrUiIgqVKggPhy+++47sVq0+H/yIOgC7omJXKcOf/opSso8W2Ymm5pyo0ba1KwdO7hvXz5zhj//nJs0yT2Hd3Dg0aN58+YynZw/syZMHomJiZ07dxbHwfbt2+dp7yZi8XXr1tXF4lE2rRySJeDOzOnp3LMnE3G9elz0moolS3j//mec9eXk5ERGRgYGBnp5eYniy8Jnn32GD2rj0WjY2ZmJeNs27ZZ799jMjE1NWS/jxGji4uJEA8xZs2aVcVd5uqe+9dZbIj1L1xgWZDFoENvZ5SY5W1lxdDQvX869euWuiTE1ZQ8P/vFHLkv3t2fWhMnPz89PVKSpWrXqTz/9lOeuT0REhLghRERt27Y9JHVRceMoBwH3xo3ZzU37ZW7Oq1Zx+/b/ec733/PYsbLMLisrKyAgwN7evk+fPvKmG4iAOzNPmMAzZ+YG3KtW5e7dtV8NGyLgXiwZGRljx44V1YeFKlWqjBkzZuPGjYXlueTkcFgY+/mxszM/85Cxdi2bmTERv/MOG21Z2Pr164moT58+RhoPisfHxyf/GcymTZv0V+eZmJi4urp6e3sHBASEhYWVLhMwMjKyYsWKRDRjxgyJ5v4M27dvJ6IWLVoYZzjQWbCA33mH69TRnhLlD7jfu8cWFtrzp6pVedo0lqSPQFhYmEhab9SoUZ57SEW7d++ev7+/7ga2QqFwd3cPDAwsOq9w69atoqhoq1at0JqiHAoICCAiJyenDF2eTNmMGcP29nzvnvZh3brPCC5AeZOUlCQ67ykUilGjRpmZmSkUio0bN8o9r+ePLuDOzGvWsLV1oQH3jAy+eBFll5iZMzPZyoo//VR7KSQC7h4e2kNhpUrs7c0hISxh162iu57m0bdv35o1awYGBuaJJpw8ebJLly6FxeKh/IiKYlNTbtpU+9WggZEC7syclsZduzIROzuXJhaWkZEdFhY2b968fv366XrtCHXr1h05cmRgYODdu3cNMHEoxPbtTMT167Pu00ClKlN3yzLbt2+fiYmJUqncvn17MX+lON1ThV9//VXyfodQIoMG8ddfs4uLNrHdyooXLcotPOXuzgEBfP++ZMM9s+upvqVLlxbYc/XRo0e66vCVK1eWsGO58ZWDgHuekjIFZrh/+aWR56Xv/v37iYmJsXLcctTRBdwfP+batXnpUpSUKaucnJywsLCZM2fqwkBEZGVlNXjw4J9//vnBg7wdk/R+sajdLl/OSiUTsZ8fG7OLw/3794nIzs7u+f0weiGFhoZSvqoy2dnZkZGRQUFBvr6+7u7uYgVxYfH34lSsjo2NrVevHhENHz68iEOatLKyskSK68XilE0F6SxYwJ98wt9+y2+/zVxIhvujR7xkyX+Wz3fsyD//nJNU2rJsgYGBIlG9X79+pe5IER4e7uPjo2vCY29v7+Pjk7/ZgEaj8ff3Fydqb775JopRlE/Z2dnNmzcnogULFkiywzFjuHNnHjVK+xAB9+eR+OM1NTUVyb+ffvqp3DN6LukH3DUa7tmz4ID711/zsGG8dCn36WO45lbPDRFwT0nh+vU5PFwbcP/f/3jiRN637xmn7qUmmnuJW9Giudf9QoIWd+7cyZPoV6KQBMhOZLhnZWm/Dh40XsCdmR8/5tatuUEDDglh/ZOmHTsKrrablsZhYezvzx4eXKWKxtQ090JD1zo1UpJcDCiFwYOZiHVlErOzuXZtJuL9+2Wc1Lx584jIwcEhT46LWq2+c+fOgQMHfv311y+++EJ0T9VPW8yjVq1auu6pq1evPnLkiJGr0kN+gwbxzp38zjs8ezYzs5UV37jBQ4fyH39wkb1LyuTUqVO628nt2rUr7HZydnb21atX9bfoMp6JyMzMzNfXt+gOK+WfgpkL+4Mxhq5d6auvqHdv7UNHR9q8mfr1o9WrycODiCgtjVxdKTiY/k0ieDllZ5O9PaWnExH9/jv5+VHr1jRqFG3ZQsHB2ud89x3FxtKSJTJO83kVHR29ZcuWrVu3HjhwICcnh4g6dLivVlf39KTBg8nNrbj7mT+fPvmEFAry96ePPzbghAvk5OQUHR199uzZVq1aGXtsKIRara5Vq9bDhw/PnTunawKRR2Zm5rlz5yIiIsLDw8PDwy9duiTehIKZmVnz5s3btWvXrl271157LX+D+OTk5O7du587d6579+67du3KE743qPHjx//yyy+zZ89WqVRGGxQWLqSEBPrqK2rVipYto++/p4kTqU4dat6cTEzyPvniRVqzhlatooQE6tTp3tmzToMHD/bx8endu7eutWnRMjMzJ02atGrVKiLy9fVdtGiRSf5hSiI5Ofmff/5Zs2bNnj17xBZXV9fRo0ePGzeuSpUqqampY8aM2bBhg4mJybx58z7++ONizhOMb+/evR4eHtbW1p988oloilUYM7P3srMLyHvSadiQNm2iHj3o++9p8WLq3Zvq1aOwMPq3QyE8Tw4cOHDmzJkKFSqMGTOmjB8XLyeNhlJSyN5e+zAzk3JyyMSENBrSpQ+mp5NSSRYWpFDQ66/Tr7/mPv/llJVFFStSejr9/TctXEizZ1NAAO3aZYyhU1NTFy5c6O/vn5mZaWtrO3369E8//VSU+CvQ06dPly5dOm/evJSUFHNz8w8++GDu3Ll5Uo+hvImOpm7dKDZW+/DIEZoyhcLDjTeB+HjKyCB/f/rlFzp7lpo0ISJq2pQ2bqSmTYmIEhPp8GE6dIjCwigignRXEkol9e//iaNjWrdu3bp16yaKh4Bs7t6lhg3JxITu3iVxTbdhA73xBjVtShcvknxnvMz8+uuvb9q0qXHjxuPGjbt79250dHR0dPTNmzczMzPzP9/S0tIxHycnJ2Neh0IxeXrS5MnUpg21akWHD1OLFvToERW0GkFizLx+/foZM2bcuXNHoVC88cYbCxcuFDmChdmzZ8+UKVMuXbpERB4eHkuWLHF1dTX4RA1N5oB//gz3S5d41y6uXp0nTuQvvuCmTfmjj+SbX3mhy3BnZo2Ge/QoNMP9/fd5wgR+800DNs17gcXFxa1cufLVV70qVtToMkMbN+aPP+bDh/+TQJSUxIGBrGvoffkyr1nD5uZsYsK//CLL3HnUqFFEtFxX2hnKhw8++ICIBg0adPr06cK6BejLysrSz383NzfXfVzn7/SblZXVp08fInJ1dS113nGp7dy5k4iaNGli5HFfciLDnZn37OHmzblPH16/nm1tuWZN9vPj69cL+JX0dF6zhkeP/lEXvG7cuLG/v/89Xf2OQsTGxoqGzJaWlkFBQdK+kPPnz0+ZMkVXRdTS0nLw4MGiDLSDg0PpetyDkQ0dOrRjMfIhqlW7pzukFvg1aBCPGcNr1vCePdpFr8hwByiOGzd4xAi5J1EOiAx3oW9fHjGC+/Y16gSuXbvm5eUlPvGcnZ2Dg4MLfFpISEjDhg3F0zw9PVEw7XkhVw33PD78kPv0YQ8P7cMmTXj7dp48mVu21C6w1pVj7tCBp0/nzZs5IUGGeUKhPv+ciXjkyNwtvXszES9dKt+ctB4/fuzo6CjOw/U5ODi4ubl5eXn5+fkFBgaGhoZGRUVhRc5zRGS4M/Py5Tx0KFtZsTEXD+u3BLe2ti6sRveVK1cGDhwo3nIuLi7bdB0Onn9yZ7gfO0aNG1PlytqH+/dT+/Zka0sJCXT8OCUnU9u25OIi5wzLB2bav5969dI+vHePHjygWrUoIYF0d33u3qXMTLK3p6pVaeJEmjxZe/cbSuHpU9qzh7ZupZAQun9fu7FyZRo4kAYPpgED6MEDcnamkSNpzRoiop9/ppMnqW9fMjGhYcPkmfOPP/744Ycfjho1ao2YE5QPR44cCQgIEEX2zczMnJ2d3f7Vvn37InKghLS0tDNnzoSHh585c2bVqlW6/pNExMxjxoxZvXp1rVq1jh49Wt/ouaA5OTm1atWKj4+PjIxs1qyZkUd/aYkM92+/JSIaMYI2bKDvv6dly+jqVSIihYJeeYXGjqU33iArq7y/GxUV9dtvv/3++++xsbFEZGpqOnDgwG+//bbA9IHTp08PHTr0zp07derU2bRpU7t27QzxcrKysnbt2rVmzZpNmzbl5ORUq1bNwcHhn3/+aYID2POAmXfu3CnuvRXB0nJORkZRKfDNm9PRo9S7N40aRSNGUOvWtGwZMtwBnuHCBfrxR/ruO7K1lXsqctNluBPRtWvUqhV1726kDHd9e/bsmTZtWmRkJBH17t07ICBAlN4iorNnz06ZMuXQoUNE1LRp08WLF/fr18/Y84PSSkykn3/OXb585w5t20YTJhh7GhMnUqtW9Mcf9P77NHIkNW1Kc+aQuNFjakqtWpGHB7m7U7duVLGisecGz6ZWU926FBdHYWHUtSsR0Y0b1LgxWVlRTAw5OMg9P4qLiztz5syOHTv089Z1pSDhOSUy3Pv1I7WaOnWiiAhKTTVGhru+u3fvfv755yJIVbdu3blz544ePVr8KDExcf78+YsXL87KynJwcPDz85s2bZp+xuFzT+aAPxjA06c8YABL1MbsZZeTwwcO8EcfsZNTbuKAtTWvXMnOztymDe/dy8y8ciWPHy/zVM+ePUtEDXWFP6HcOHv27MiRI11cXESxTh0rK6vOnTtPnjz5999/j4yMLGn9fT8/PyKys7PLn/luNNOnz+3RY878+WXoaA4lpMtwZ+a4OLa319ZwDw9nHx+2tdV+TFWowD4+nK9AOjOzWq0ODQ318vIyNzdXKBQ3btzI/5w1a9ZYWVkRUbdu3QorSiutO3fuBAQEXLp06Zkd7eGFJDLcmfnePa5blytWRIY7QFHi4rhFC373Xfbx4du35Z6N3LKyuEuX3IfffccTJ8o1k6zAwECxeMvU1NTHx+fq1au65m+VKlV6rpu/gbw+/JADA/ncOa5dmxMTuUkTvnCB583jQ4fQPPk5cekSz52b+3DqVCbi996Tb0Lw4psyhY8e1X5/4gS7ucn2cbFv3z5d6eMePXqcPn06KChItAQQfVAePHggz8wMSe4Md5Baaip9/DFNnEjIN5VcdDRt2UJ//03HjtG+ffT++7RyJfn40LlztHo1nTxJP/8s5/Q0Gk2lSpWSkpJiYmJq164t51SgECkpKaJcu3DlyhWNRqP7qY2NTevWrXX5702bNs0ToNcXGBj4wQcfmJmZbd26tW/fvkaZfgF276Z+/cjFha5ckWsK8B8pKfTXX/Trr3T8uHZLy5Y0bhyPHPm4sm4x2b8ePny4b9++t956S39jTk7OF198MX/+fCLy8fFZtmyZ/roKAAN5911thjsRBQTQtGl06xYy3AHguRQfH//ll1+uWrVKrVbb2tqmpqaamZlNmjRp1qxZFZF7DKUlMtx9fGj6dGKmHTtya7jD8+fpU6pdmxITKSKC2raVezYAxqBWq1euXPnll18mJCSYmJio1Woi6t279+LFi1u0aCH37AwCAfcXSno6tWtHbdpQ3br07rsoxmMoDx9SSgoNGkRXrtCoUeTiQjVqyB9wJ6J+/frfuGESEOA/ePCL+YH1gklOTj5//rwu/n758mX9D2RbW9tWrVoVGH/funXra6+9ptFofv311zFjxsgzeyIiysmh2rXp4UM6f55e0KPk8+rKFfr9d/rtN3r4kFq3Trx0qUbfvn1Hjx49dOhQU1PTwn4rISFh+PDh+/bts7CwWLFixdixY405Z3iZnTpF1appI+w5OfTPPzRwoLFXvAIASOjcuXNTp07t1q1bRETEokWLXHBhBmWjC7inpFCrVvTkCR05goD7c0Kjoa+/pnXrKDubLC3p/fdp8mQ6cYJ27iSVSu7JARhVYmLi7NmzMzIyIiIiPv/886FDh8o9IwNCwP2FwkxPnmi/t7UlZCUaTlSUNuB+/z61bUvvvUf37skfcP/6a7VKZfLRR/T99zLPBEohISEhPDw8IiIiPDw8PDz87t27+j+1t7d3c3Nr165dxYoV582bl5aWNnfu3M8//1yu2eqIpR5ffklffy33VCCfrCzasoX27An++ecRIomgXr1677777pgxYxo0aJDnyWfPnh06dOitW7dq1aq1YcMG0S4VAAAAAGSnC7gT0bp19NZbdOkSAu7PiZ9+ojVrKCSEKlemO3eob1/67jsaMkTuaQGAYSHgDlAauoA7Ef3wA335JXl5yR9wF/U9OnWiY8dkngmU3ZMnTyIjI3X575cuXRLbFQqFmZnZmDFjAgMD5Z2hsGcP9elDjRtrm3ZC+XTv3r01a9asWrXqxo0bRKRUKjt37jx69OhRo0ZZW1sT0V9//TVu3Lj09PQuXbqsX7++Zs2ack8ZAAAAALSuXCE7O9LVDd2/nzp0ILS0fD40a0bLl1OPHtqHf/xBq1fT7t1yTgkADA8Bd4DS0A+4q9XUvj25uckfcE9OpkqVSKmkJ0+wEv9FExcXJ/Lf7969O3ny5ObNmxdRGMSY1GqqVYsePqRz56hlS7lnA0Vi5gMHDvz6668bNmx4+vQpEVWqVGnEiBHp6em//fYbM3t7e69cudLS0lLumQIAAAAAPP+YycqK7tyhatW0W86epaFD6eZNWacFAAaHgDtAaWRn0/37VLeu9uGTJ5SdTVWryjonIiJq3ZrOnaNDh6hbN7mnAi+NCRPop5/oiy9ozhy5pwLFk5SUtG7dutWrVx85coSIqlSpkpSUtGTJkgkTJsg9NQAAAACAF4iDA507R/XqaR8ePUrvv08XLsg6JwAwOKXcEwB4LpmZ5UbbiahixXIRbSeiLl2IiI4elXse8DLx8iIiCg6Wex5QbPb29j4+PocPHz579uzkyZPXrVu3d+9eRNsBAAAAACTWvDkdOpT78NAhatNGvtkAgJEgwx3ghfLHH+TtTUOG0ObNck8FXhoaDdWpQ3FxdOYMtW4t92wAAAAAAADKiV27aNw4Cgigli3p6FH65BM6cICaNJF7WgBgWMhwB3ih6DLccSsNjEappKFDiYj+/lvuqQAAAAAAAJQf/frRunW0dy9NnUqnT1NoKKLtAC8DZLgDvGhq1aK4OLp6lRo3lnsq8NI4cIB69aK33qL//U/uqQAAAAAAAAAAyAcZ7gAvms6diVDGHYyrcmVasiQ32h4aSjdv0o4dFBeX+5yNGykpSZbZAQAAAAAAAAAYCQLuAC8a9E0F4zt0iHx9adMm7cOffqKICPrmG7p4Mfc5M2dSbKwsswMAAAAAAAAAMBIE3AFeNN27U9eu1Ly53POAl0z//jR9OqWkyD0PAAAAAAAAAAD5mMo9AQCQEjMtWEBffUW9ehERXbhAmzaRhwedPElTp2qfs307xcfTO+/IN0t4Ebm4UNOmpFLRokW5G2Ni6OpV7ffZ2bLMCwAAAAAAAADAeBBwB3ihMNOGDXThAp0+TVZW9OABHTpEjRpRWFhuwP3yZbp5EwF3kN7s2dS8OY0enbvlp59o/Xrt9wkJskwKAAAAAAAAAMB4EHAHeNGYmlK/fjRvHs2dK/dU4CVToQL5+9OUKVS5snbL3Lnk4aH93slJrnkBAAAAAAAAABgJAu4ALyCVilq0oJEjc7dERdEPP2i/P3yYateWZV7w4hsxgn75hQ4epBEjCn6CRkPZ2WRhYdxpAQAAAAAAAAAYBZqmAryAHBzo669p4sT/bGTWfgEY1I8/UlpawT+6fJmGD6cJE3Jv/wAAAAAAAAAAvEgUjPAbwAtEoyErK8rMJGbq2pVatqTr12nsWNqwgTZs0D7n++/p5k1atkzWicKLJT6eMjKobl3tw6tXqVo1eviQatUiOzvtxshIqlePLCzI1JQGDKDdu+WaLAAAAAAAAACAoaCkDMCLSaGgFSuoUydydy/4CQkJdPgwtW5N9esbd2bwIqpa9T8PXVyIiBwc/rOxeXPtN9u20SuvGGVaAAAAAAAAAADGhZIyAC8aXZSzVSuaNIlsbcnCIjfLmIisrMjGhj7/nMzN6d13KSFBlmnCS2rvXjp0iD75RO55AAAAAAAAAAAYAErKALzUJk6kKVOocWO55wEvh40b6YMPaOhQcnAgf3+5ZwMAAAAAAAAAIDWUlAF4eV27RsnJiLaD8QwbRsOGyT0JAAAAAAAAAACDQcAd4CV17Bj9+Sf9/LPc8wAAAAAAAAAAAHhRoKQMwMvo6VN64w2qWZNMTGjiRGrZUu4JAQAAAAAAAAAAPP8QcAcAAAAAAAAAAAAAkIBS7gkAAAAAAAAAAAAAALwIEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASMBU7gkAAABAOaZW0759dPEiVa9Or7xCtWrJPSEAAAAAAACA8gsZ7gAAAFCIjAzq0YMWLSJTUzp7llq3poMH5Z4TAAAAAAAAQPmFgDsAAAAUIjCQLC1p+3aaNInmz6fly+mDD+SeEwAAQMFWrqS//9Z+r9HQp59SSgp9+WXuE2JjacECWaYGAAAALxEFM8s9BwAAACiXRoygV16h99/XPlSrycqKHj6kihXlnBUAAEBBevakiAg6e5YcHUmtJjMzunePmjalxETtE06fJm9vunhR1lkCAADAiw4Z7gAAAFCI+HiqVCn3oYkJOTjQw4fyTQgAAKAoI0bQpElyTwIAAABebmiaCgAAAIWoV4/u3s19mJZGCQlUt658EwIAACjKyJH08cf09980bJh2S3Y2rV+v/f7mTbnmBQAAAC8RZLgDAABAIQYMoF9+oZQU7cMlS8jTk6ysZJ0TAABAoRQKWr6cpk/PPXap1RQRof26fFnWyQEAAMDLARnuAAAAUIg33qAjR6hVK+rRg+7epbg42rZN7jkBAAAUpW1bevVV+vZb7UNLy9zvT5+mEyfkmhc8B9LT0+fNm5eTk2NhYTF9+nR7e3u5ZwQAAM8lBNwBAIwoJYWUSrKxkXseAMVw7x5dvUqTJ9Pnn9OlS1SjBjk5kYmJ3NMCAAB4hjlzqHXrQn/KTOfPU6VKqJEG/5Gamurp6Xnw4EETExO1Wr1ixQo/P79JkyZZYW0fvChWrKA336TKlbUPv/uOpkwhCwtZ5wTwgkJJGQAAozhyhFq2pO7dqUsXatOGIiLknhDAs+zeTb160ddfU5Uq1L07OTmRszN17kzMcs8MAACgKBUr0pw5hf7066/p4EGaOZMOHzbinKB8S01NHTx48MGDB2vUqLFmzZpevXolJCR8/PHH9evXnz9/fmZmptwTBJDAwoX08GHuQ5WKnj6VbzYALzQE3AEADC8tjd58k777js6coXPn6JNPaPhwysqSe1oARUpIIKLcHJjHj+nmTbpxgxQKGScFAABQmL176exZOn2aiMjbmzQaqlGDHjzIfUKbNnT2LKlU5OtLb75J587JNVMoX5KSkvr06XPgwIF69eqFhYW9/fbbe/fuDQ0NbdeuXXx8/CeffOLi4rJy5Uq1Wi33TAEAJHP//v0jR44EBQWdP38+Rdf5BCSCkjIAAIa3Ywc1bkz9+2sfvvkmLVhA+/dTv36yTgugSHkC7o8eERFVqSLbfAAAAIp08SJNnkx16tDdu7kbzc1zv1coyMyMiCgnh/78kxYvNvYMoRxKTEzs37//yZMn69evv2/fPkdHR7Hdw8PDw8Njz54906dPP3/+/Pvvv79kyZLZs2e/8cYbCiQfwHPrxAmKi9N+r9HIOhUwosTExOjo6Ojo6IsXL166dCk6Ovr69evJycnipz169Lh//35oaGidOnXkneeLBAF3AADDu3mTnJz+s8XZmaKjZZoNQPHkibAj4A4AAOXboUNERD16PONpycn06af0xRdUu7bh5wTlW3x8fJ8+fc6dO+fs7Lxv3778wSYPD48zZ85s2LDh008/vXTp0vDhwzt06DBv3jwPDw9ZJgxQRjt2UMWK2u+xZuPFk5OTc/v27Rs3bty4cSMqKkp8Ex0dXWBdrEqVKjVq1KhBgwYnT568detW9+7d9+7d27BhQ+NP+4WEgDtAAdLTaetWGj5c+/DRIzp2jAYPlnVO8FyrWJHyLNFKSiIHB5lmA1A8eSLseRLeAQAAypmwMCKibt2e8bQvvqCUFPrf/+juXRo0yAjzgnLq4cOHHh4eFy5ccHFx2bt3b+1C7sAolUovL6/XXnvtt99+mz179smTJ/v06ePu7v7tt992e+a7DaCcmT2bmjbVfr96taxTgbLJysqKiYmJ/q+LFy9mZGTkf7KDg4PjfzVr1qxmzZrip0+ePBk4cOCxY8e6dOmye/fuFi1aGPelvJgUjNZnAPncvUtubrntRE6epPfeQ5FHKIPwcBoyhKKjydKSiCg5mZyc6Phxbdp7dDTVq0emBr8D+s471K0bjR+vfdinD02bRgMHGnpYeG698godOkQHDtArrxARrVpF771H48bRqlVyzwwAAKAAtWvTvXt0+TI1aSL3VKDcu3//voeHx8WLF5s2bbp3715d4Klo6enpP/zww/z58xMTE4nIw8NjwYIFrVu3NuxcASTi6EjbtuUG3K2sKC4uN+EdngvMfOnSpYEDB8bExGjyVQVSKpV16tRxcnJq1KhRo0aNxDdOTk62trZF7zYtLe21117bs2dPpUqVduzY0aFDB4O9gpcFMtxfUsyMwnMAxtOuHfXoQUOG0NSppNHQd9/RyJHaaHt4OA0YQP37U1AQKQ3byJqZ9O+x5nkIkBcy3AEA4Plx4wbdu0dVq5KLi9xTgXLv7t27vXv3vn79euvWrXfv3l21atVi/qK1tbWfn9+HH364YsWKb775Zs+ePW5ubq+//vo333zTqFEjg84ZAICI1q1bN3bsWLVarVQqGzRokCdvvUmTJjY2NqXYrY2NzdatW996661//vmnb9++27Ztc3d3l3zyLxXDBneMKSGBLlzIfXjrljZQAPmp1erhw4cvWrRI7omUa2o1Xbum/dJvuySX5OT/TOPBA0pNlW82UApr1tDYsbRzJ+3dS1Om5Hbp0mgoM5P++IN8fWWdH0A+eSLsCLgDAEA5pqsng7QiKNqdO3d69ux5/fr1tm3b7tmzp/jRdh07Ozs/P7+oqCg/Pz9zc/O///7b1dX1/fffv3fvniEmDC8CtZqio+nJE3lnsXkz6d7vzHTwINnbyzohKKH09HQ/P7+nT5/Omzfv6dOnUVFRoaGhgYGBfn5+Xl5ebm5upYu2CxYWFuvWrfPy8kpKSurbt+/u3bslnPlL6MUJuG/fTi1b0p492odffUUhIbJOqBz78MMP169fP2/evPj4eLnnUn6lptK0adovXWhURv/7HzVoQCdOaB9Onkzbtsk6ISgpExN66y1aupQWL6bXX8+9FuzQgf75hywtaflymjXL0LOYP5+6dNF+hYcbejR4njHT48dERJUqabegaSoAAJRjxSzgDi+5W7du9ejRIyoqys3NLTQ0tHIZMgmqVKni7+9/7do1Hx8fZl65cqWzs/OUKVMe6iqTAghLllD9+jRhAr3yCnXqRHfuyDWRDz6g3r0pO5uIKCODunfHHcrnzJw5c+7cudOuXbuPPvrI1AA1ac3Nzf/888+xY8emp6cPHjx406ZNkg9RoGvXrok6XS+SFyfgTkRubjR5MhXUehdyzZo1a+XKlVZWVps3by7FzfyXh709bdum/SoniwFatKBJk9BJ/EXx5590/rz2+169aN06MjWlOXNowQKDDjtxIm3erP1q1cqgQ8FzLimJsrPJ3p7MzbVbRMAdGe4AAFAuHTpERNS9u9zzgHLs2rVr3bp1u3nzpru7+759+yrpsgrKoG7duoGBgRcuXPDy8nr69OnSpUudnJw++eST5OTksu8cXgQREbRgAZ04Qbt20blz1L8/TZgg43QUClq2TMbxofRu3LixePFipVK5fPlypcGq0ZqYmKxatWrq1KlZWVleXl6rDdlal5m3bNni7u7evHnznj179u/f/0VaJyRnwH3hQrp0Sft9TAz98UfpdyX6BLRsSV27kr+/BHN7UQUGBs6ZM8fExOSPP/7o2rWr3NOBkunWjerVoxUr5J4HlN2OHTRqFPXrR9eva7cMGUK//UZKJfn50cqVhhvZ1paqVtV+mZkZbhx47qU/fpzcsuVT/Q71oqQMMtxBVikpKZmZmU+fPpV7IgBQvsTFUVQUVaiAfAIo1JUrV3r27BkTE9OtW7cdO3ZUqFBBwp03adIkODj45MmTffv2TU1NnT9/vrOz87Vr1yQcomgPHjxYv3793r17IyIioqOjHz9+zGjWVE6sXUtjx1Lt2tqHn3xC+/ZpF5JmZRl/OnPm0PffU0yM8UeGspoyZUpmZua4ceMM3dFUoVAsXrzY399frVaPHTt21apVkg+RnZ29evXqFi1aDBky5OjRo9bW1lFRUbt27WrTps2WLVskH04WcjZN/fxzCg6mY8fIxIRu3qSffqJRo4p6/tOnFBdH9+5RXBxFR2u/Ef+NiaHAQCKiefOodWsaMcI4r+A5s3nz5okTJyoUisDAwGHDhsk9HSiN77+nzp3p9dflngeUUe/e1K8f7dhBvXtTWBjVr09ENGoUJSfTxIk0YQJVqEBvvSX3LOGldiE+vtP58x06dPi3kBV5m5hYNW+uqly5dlG/B2AozLxmzRo/P7/u3bsfPXp03rx53t7e6AAPAMLBg0RE7u5kYiL3VKBcunz5cu/evePi4l555ZWtW7fa2toaYpR27drt2rXr6NGjH3300eXLl0NCQmbMmGGIgfIIDAw8cODAX3/9lWe7paWlQ5GsrKx0z6lZsyaOqgZx6xZ5euY+tLSkWrXo5k2qVIl8fCg2lgICqFkzo02nenWaOpWmTClTzisYX0hIyPbt2x0cHObNm2ecEf38/Ijok08+8fHxSU5O/uijjyTZbWZmZlBQ0Lx58+7cuUNENWrUeP/996dNm/b06dNx48Zt3759yJAh3t7eK1asMNAHtfGwfMzN+e23eelSZuZDh9jdndPS+MoVPniQ//iDFy7kqVP5zTe5a1d2dGRLSyYq6mvJEn73XWbmH3/kgQN5zBj+5RcZX1y5c+DAAUtLSyKaN2+e3HN5DmRm8sGDnJOjfZiYyCdPyjmf9HT+8UeeNImZee5cHjWKvbz4r784PV3OWUGZpKVxt25MxM7OfP9+7va5c5mIzcx461bJxwwK4iNHch8uXcqRkZIPAi+IrVu3EtHAgQN1W0SR0/j4eBlnBS+tI0eOtG/fXpy7Vvl3mUX37t1Pnz4t99TgOTNrFsfF5T6cMoUTE9nHhyMitFvOnuVly2SZGpTJ558H9eixZ+nS+89+Krx8zpw5I44d/fv3TzfKFZQofDxgwAAjjBUdHS3CUl27du3du7ebm5ujo2OlSpVKGj03NzevVq2ai4tLx44d+/fvv2XLlhzd9TCUxfjx/P33/9ni4MC3b/OjR+zgoL30++gjTkw06Cyysjgri7t04RMnODubW7bkjRvZwoKZEVV4DmRkZDg7OxPRDz/8YOShf/zxR1G+xs/Pr4y7SkpKCggIqFGjhvjMadSoUUBAQEZGhu4JGo0mMDDQ2tqaiBo0aHDo0KEyjigvmQPut25xzZocG6sNuI8fX1RI3dKSHR3Z3Z29vNjXl/39OSiIQ0M5MpJTU3n1am3AXa3m9u25YUME3HOdP3/ewcGBiCZMmCD3XJ4PmZlMxLNmaR/u2MF9+8ozk9hY9vbmNm14+XJtwD0zk5s0YWdn/uMPdnFhb+//RGvhefLkCbdty0TcsiU/fpy7feZMJgrr00fyA8yaNezryxqN9uHHH/ONG9KOAC+OoKAgIvL29hYP1Wq1UqlUKpW49AIji42N1WWy16pVKzAwMDs7OygoqHr16kSkVCq9vb3v40AIxeboyBcv5j60suK7d9nEhNu25exsZubNm3nwYLlmB6XXokULIjp8+LDcE4FyJyIiQiQNDBw48OnTp8YZdM6cOUQ0c+ZMQw+k0Wj69OlDRCNGjMj/0/T09NjY2MjIyLCwsJCQkKCgoICAAJVK5evr6+3t7enp6eHh4e7u7urqmj+9vUWLFh988IGh5/9S+Okn7tkz9+GhQ9ygAavVzMwJCezryyYmTMSVKnFAABvmTHvPHm7enBcu1AbcmfngQXZxYQsL3rePK1c23Mggja+//pqImjVrli1OVozrjz/+EA1aJ0+erNFFE0oiLi5OpVLZ29uLj5e2bdsGBQUVdl156dKltm3bEpGJiYmfn19mZmbZpi8bmQPuajV/+y0PH64NuM+bx46O3LUrv/kmT53KCxfyH3/wwYN85QqnpT1jb7qAOzOHh7OJCQLuWtHR0TVr1iSi1157DYGSYsrMZHNzbtSIr1xhlingnp7OX3/NNjZMxFZW/Omn2oA7M4eGMhF/+SWbmzMR29vzwoX83H4KvdwePuQmTZiIO3fm1FTtRo0m7IsviMje3j5Cl3EnhZkz2dKSf/9d+7BtWz51SsLdwwvl+++/J6Jp06aJh/Hx8URUuXJleWcFL5X09HR/f387OzsisrKy8vPzS05O1v00JSVFpVJZWFgQka2trUql0k+QAShMgQH3ihV51ChetIgZAffnU0JCglKptLS0NFo41WgyMjJiYmLOnTu3d+/ev/76a9myZV999dXkyZNHjBhx7949tYjZQeFOnTolOqN6enoa8zDx1ltvEdHvutNug/nhhx+IqGrVqg8ePCjjrjIzM+/fv3/lypXjx4//8ssvpqamZmZmt27dkmSeL7WnT7lDB37rLd6wgZct41q1eNOm/zzhzBl+5RVtnmnTprxzp4SDX73Knp7afbdrlxtwZ2Zvb7awYB8f7U/btOGDByUcGSRz584dGxsbItq/f79cc9i8ebM4637//fdLdOi5fv26r6+vqLdBRO7u7iEhIc/8rezsbJVKZWJiQkTt2rW7fPlyGeYuG/kD7pmZ3LQpz53L7u5l2tu1a3zgQO7Dv//m0NAyTvBFEB8f7+LiQkQ9e/bEhWjxZWaylRWvWcM9e7JGI0PAPSSEGzbUHvk8PTk6ms+c4d27c5/wyy98+TJfu8ZeXtqnOTtzcLBRJwnSuHuXGzRgIvbw4H//SNVqtThNr1KlykX9wEDZzJzJvr5cty4/esSMgDsU6bPPPiOiuXPnioeXL18mIhcXF3lnBbJ4rL8Ex1hCQkIaNmwoTs09PT2jo6MLfNq1a9e8vLzE05ydnYNxIIRncXRkf39evVr7ZW6uDbjHxHCNGnznjjbgHh+fex8cyr/NmzcT0SuvvCL3REomPT09KioqT+qxj4+Pp6dnYUnH+qpXr/59njoV8F9hYWGiM+rw4cOzsrKMObRYchEeHm7QUW7evCluS69fv17ynY8cOZKIJk6cKPmeX0YZGbx2LX/8Mc+fz+fPc2oq792b9zl5QgBRUWUcMyWFVSq2sGAitrFhlYozMnjNGr53T/uEBw94wYICRi7knAtk8/rrrxe2isWYtm/fbmVlRURvv/12cT5RIyIivL29RdBcqVR6enqeLLJS87Vr1/J8Zh47dqxRo0Yi80Z0cC3razAu+QPuzLx3L9vZlTXgru/ECa5albt0kWyHz6m0tLTOnTuL5WCJBq4I9oIRAXeNhrt149Wrtfl+BbMAALsPSURBVAH3Ui2dKbHTp7l7d+3RrnXrYt1kFgvExK/07s0XLhh+liCtq1e5WjUmUr/1lm4ZSlZW1qBBg4iodu3ahUWaSmrmTF60iL/4gseNY0bAHYrk4+NDRD/99JN4ePjwYSLqgiPrS+b48eMff/yxubm5u7u7v7//9evXjTDo6dP85psTRDipdevWB4txINyzZ0/z5s3Fr/Tu3fsCDoRQOEdHnjSJv/pK+2Vmpg24M/N33/Hrr2sD7hMnMhHXrMkeHuzry4GBHBbGekssoHwRfSm//PJLuSdSKI1G89NPP3l6enbq1MnZ2Vm3rP6ZzM3Na9Wq1aJFi549ew4fPvzDDz/88ssvlyxZ4ufnp1AoLCwszp8/L/eLK6f2798vckJHjRpl5HXe2dnZFhYWSqUy1ZA37oooJrNw4cKBAweOHDly4sSJX3zxxcKFC1etWrVhw4a9e/dGRERER0cX51b6tWvXTExMLCws7t69a5hX8BL7/HNtbDtPfc/0dJ4zR7vI3db2x7lzS/cWUqs5KIirV2ciViqLVYQ2PZ39/dnOTru83s8Ph7zyYs+ePWI1Z0xMjNxz4YMHD4q7mIMHDy5iSVlYWJjnv42CLSwsvL29r169WvSes7OzO3bsaGpqqlKp9D+xk5OTxWUpEfXp06c8/E8ovnIRcGfmt9+WMuCelsaVKzMRHzsm2T6fO1lZWf379yciR0fHOP3mUFAMIuDOzJGRXLs2//UX9+3L8+axqyurVNo6M5J79Ci3gFtJy6hlZ3NgIFepwkRsaso+Poy+hs+Zc+c0NWp827Hj6NGjdWXR0tPTX3nlFSJycnK6p0tFKInkZA4NZZWKPTz47be1Aff0dHZ05CNHEHAvvy5evBgfHy9vWWqRSfH333+Lh//88w8RDRkyRMYpgZElJSU5OjoSkZmZmTjNVSgUHTt2nD9/flSZs64KpDsOtmhxpHLlygEBAYWFSI4dO5Ynqp6dnR0YGCh64pmamvr4+KDBLxSosJIyzJyVxc2a8bRpPHgwv/uutnCf/pdCwQ0a8MCBPHMm//57zsmTJ1NSUuR6IaCvQ4cORLRbfzVoOTNo0KBWrVrlCaZbWlo6Ojq6u7t7enp6e3v7+vqqVKrAwMCQkJCwsLDIyMjY2NgiEvree+89ImrTps3zW9/WoPbv329tbT18+HDjJ0VGRkYSUaNGjQw6ShHFZMRK2WdycHBo2LBhmzZtevXqNWzYsHHjxj158iT/fnx9fQ36Ql5GixZpY9sWFgXEtmNj2cfn/Cuv0L/da0r0Hj5+nDt10h62OnQoWUwsJoa9vVmhYCKuXZuDgoyUdAiFyc7OFstl5s+fL/dctMLDw0VXjJ49e+Y5C1Kr1SEhIe3btxefMHZ2dr6+vrGxscXZbUZGhq+vr1jU5e7unudaY8OGDeIkv2LFimvXrpXy9RiSnAH3S5c4JITF0SEtjYv3r1Bcn3zCRPzmm1Lu8zmi0WjeeecdcQB+5q0kyE8XcGfmjz5iNzfu25e7ds294mrThufM4UuXpBouMzDwsL19WVuUx8fzBx9oQ/ZVqvDvv29D1f7nyNljx0QazkcffaTbmJSU1K5dOyJq3rx5QkJCcfYTFcWrV7OPD7u6as+WxFfNmtqAOzOHhHD79tymDQLu5c7Zs2fFyrvu3btXrFjxjz/+kGsm4maPrlDgL7/8QkTv6pqlwEtArCV3c3N78uRJSEiIt7e3SGkRXF1dVSqVVDWvMjN54ULWPw4+eZJe2JOzs7ObNWsm2qXmiTIkJCT4+vqKtk6VKlUKCAiQpbUUlGdFBNyZ+cABtrDQ1nDPzuaoKA4JYX9/9vZmNze2ts49qjo7PxV/CzVr1vTw8PD19Q0MDAwLC0tGTqDRpaammpmZmZqaltv/+SdOnCAiGxubP//88+jRo1evXpWkVFdqaqpYaz9r1qyy7+3F8+677xLRe++9Z/yh161bR0Svvfaa4YYoupjMxYsXt23b9scffyxbtmzOnDnTp08fN27csGHDevXq1aZNm4YNGzo4OBQYgs/zR3Tp0iXRHeH5yip9Pty7xz4+2kv3mjU5MDBPtt3xo0d1gcvOnTuf0FVeL9zt27cnTbonLgDr1eO//ipluPzwYXZz01WYuXcKV4zyWbhwobh7V64KRF+8eLFWrVpE1LVrV3GXLiMjIygoqHHjxuIdW61aNZVKVYoyG6GhoXXq1CEia2vrgIAA/R89ePBg8ODBYv9eXl6yVLwsKTkD7ocOMRG3bWuQncfGsrk5m5ry7dsG2X85N336dHFDydBl415U+gH35GSuXZv79uWnTzkkhL29uWLF3MstR0f29eWwsNLf+w0NDW3WrJlSaerqmurhwZGRJfjdX3/lpUs5TzDh0iXu14/btNlLRE2aNNmxY0cpZwZGt2fPHtGK5KuvvtJtjI+Pd3V1JaIOHToUeCWZk5MTERHx888PvLy4Vq3/5OJZWfErr/AXX/D27fzkSW7AnZmHDGETEwTcy5GwsDCxLEmkvIlLaCIaOXKkLOcTokCHbqH6/PnziWjmzJnGnwnI4tdffyUiW1vbK3qrutLT0zdt2jRq1KiKFSvqLs6bN28xe3bmmTOlHys0lJs1035qFec4mJqaOmnSJF1UfenSpXmi6pcvX9b9NeE4KK8ff+QBA3L7uo8bJ0oG/acyrYcH/zel0rAaNfpPwoSNDcfE5Abcmdnbu9CmqdnZfOUKr1/Pc+bwtGk3W7ZsaW5unj9iVb9+/f79+8+YMeOKgRZFwn/t3r1bnCbJPZFCDRkyhIg+//zzsu8qTzLN4cOHTUxMTE1Njx8/Xvadv2Bu3Lgh2n7evHnTyEPPmjVLqn/xAhVRTKZEHj9+HB0dffr06b17927YsGHVqlWafNe0olHKtGnTyjIQFCo8PDetr21bDgvT/6FGowkODq5Xrx4RKRQKLy+v24WEt9LS0vz9/W1tbRs1etXOjv38uIzrrzQaDgriGjXY3d1boVB4e3ujaoLx3b9/X9Qf2759u9xzyevKlSt169YlolatWs2bN0/E34nI0dExICAgPb3QvJlnevLkyahRo8TeBgwYkGehf1BQkK2trTjXkrGFbDHJGXBfsICJeMIEKfepX+Fq5Egm4vIZHEhPTzfc0jYRFjEzM9spaXvrl8f163z1Kn/xRe6Wfft41arch5mZvG0bjxunLeEivpyc+Ntvb504cSL/aUph8kQEdu8u2Ynykyfa0kmurpx/Be0//+zWtZt7/fXXpSoCDoa2adMmEUVauHChbmNMTIz41xw6dKjYkpqaGhYW5u/v7+npKVJUevTYI96KFSqwhwerVBwaynluhM+axStWaL+/eZOrV+eTJ/mTT4wa6YD89Ivc2dra+vr6xsTEaDSawMBAcT5Ro0aN4jRzl1aNGjWISHeK8/HHHxORv7+/kacBsrh+/brIm1u9enWBT8jJyQkLC/P19a1evXqbNr3Eh0+DBiW+A331Knt6ag+jjRvzli0lmOSVK1cGDhwo/nBcXFy2bduW5wkhISGiJA4ReXp6GqgMDhRt1iyuUIHnzdM+7NqVDx1iZ2fWLzptaytzHbwlS/jPP7l0J+bZ2dlRUVEhISH+/v7e3t5ubm7W1ta6yPuHH36IN54RfPnll0Q0ffp0uSdSsIsXLyqVSmtr6/x1P/Q9ffo0NjY2MjJS10PV39/f19fX29tb9FB1dHS0sLDQNTPXEfXrmzRpUpYAx4tKRG0mSBtxKIZhw4YR0f/+9z8D7b+IYjKSi4yMFEnuxawLASWm0XBwMNevn9u09NYt/Z+npqaqVCpLS0sisrGxUalU+rWzNRrN2rVrRVKwQqF4++23Y2IkW+uTlKTx8/MTCWF2dnb+/v7lKs/6hTd69Ggy8FqZsrh586aTk5OIXYjIe1BQkFRLS4ODgytVqiSS5Tdv3qz/o6ioKHd3d/GG9/X1Lc/vSTkD7m+8wUT8+++S7XDqVLa1ZV1Dr4gIbewpKUmyISTx2WefTZo0ydbW1t3d3dfXNygoSMK77mvXrlUoFAqFIigoSKp9vlQyMrhtW65QIc/d5YLl5HBYGPv6atOKO3VaQER169b18fEJCQkp4rMmMTHRz89PZEVVrFix1Ieu0FB2dc3NCsyzsj8zMzMgIEBUADA3N/f19U0qb38MUJDVq1crlUqFQrFK7z7PjRs3XFxcvv3226lTp7Zv3153YBMaN248Y8Yvv/xS4gYD77/PRNy1K6elSfwq4Jk0Gk1ISEjHjh3FP2KFChX8/PwePXqk/5zo6GhR2oWIvL29jVks+JVXXnFycpo5c+bSpUunTJkiLll//vlno00A5JKVlSWqIQ8fPly3sbACZdnZ2QcOxE6YwDVq5N6BrlePp07lsLDcCOYPP/Do0bkPx43j8+fZz48tLJiIK1Zkf/+8NwiLKTQ0VKwBIiIPD488JW5wHJTdrFk8YwbXqaNNaS+HAfe4OLaxYYWCy7JKQ19OTs61a9c2btzYsmXLIu5agYR69OhBRP/884/cEynY22+/TURTpkzR33jz5s2RI0f269evbdu29erV079PU7T8S80yMjJEhd88QwAzX7t2zdTU1Nzc/NZ/I5iGJuoqGKifbdHFZAxB3D8ot/e0XhBpaaxSsZUVE81xd/fz88tz2n/jxo2hQ4eKzwFHR0eRZxAREdG1a1exsW3btocOHTLE1K5fvy4WOhBRvXr1EGgyjqNHjyoUCktLy/KcOnno0CEisre3Dw0NlXznt2/f7tmzZ4EXwtnZ2f7+/qLLVPPmzc9IdQ4nNTkD7nXrMhFfvizZDseNYyKeNCl3S7duTMRLl0o2RNmJ9WX5T6rq1as3fPjwhQsXhoWFpZU29BUaGipiuIt0ZSOghKZO1RaKKdEluVrNYWE8c+ZsseBLqFGjxoQJE/bs2aMfeVer1UFBQdWqVSOiAuvPllRWFgcE5Na99fXNm6187949Hx8fpVJJRDVr1ixp0xWQhchbMTExCQ4OZma1Wq2LugqmpqYdOnSYNm3axo0by9Ja8+5dbtBAe8OmHN8bftGIfjJt27YV/5pVq1YtosidWq0OCAgQqSUNGjQ4cOCAEWZ4584dX19fKysrIhKtBWrXrh0QEIDFpC+DadOmEZGTk5MuNp2YmNi0adM8hRTzUKv50CGeMkV7dqdrHTFhAu/Zw5MmcYUK/NNP2ie7uvJnnzERm5jw++/zw4dlmnBWVlZAQIBYcmtmZubr65un5xuOg8Z35w7v2cO7dvGsWTxvHq9Ywf37M+sF3EeP5o8+0n6ZmckZcJ88mYn43/VjUhLn/F/oL5kEqWk0mu3bt5ubmysUijx3rMuJqKgoUdUkTyGIq1ev5rkYtLS0rFmzpqurq66Hqp+fX0BAQFBQkK6H6pNC1iSeOXNG/E/A+ub8RowYQUST9GMEBvb06VNR58cQeZdSFZMpkQsXLhRnlQZI4ObNmMmTxWdC/fr1xZWgvn379om7uUuXLvX19TUxMSGiKlWqFNFnXip79+4VQxNRz549z507Z9DhXnJqtVpU8FepVHLPpSgHDx4koq5duxpo/xqNRnch3LBhw7D/ZsWeOHFC3N20tLT09/cvh6f3sgXc791jIra3/0+6U4sWvG9f6fcZGckKBVtbs+50a+NGJuKGDbmcdI786aefRBBtw4YNiYmJoaGhKpXK09NTNPnVMTExcXV19fb2DggICA8PL+b75uTJk6L4wKeffmroF/Ki2rGDFQo2NS1ZL+88IiMjVSqVi4uL7h+0UqVK3t7eISEhu3fvbtWqldjYo0ePs2fPSjXzuDgeO5aVSrEK7atVq1bleducOnVKrLshIjc3t8OHD0s1NBiISqUiInNz8+3bt7do0aJmzZo2Njbu7u5+fn4hISGFXXGVwvXr2tTUoUPz9gMAyWVmZur3k6lXr15AQEBxbrJGRka6ubmR4ZfORUdH+/r6ilWrCoXC09Nz/fr1IndGoVD4+Pik6tdugxfOjh07FAqFmZnZMb0D4RtvvEFEnTp1KuYq0chIVqnYxYV1pWYmTeLPP+c6dVjcH3R15bNneexYlu4wyI8ePdJdeVauXDn/lWd4eDiOg4aQkcGRkRwczP7+7OPD7u5sZ6f9p2/VShtwV6u5XTvesCE34L50KW/erP2yspIt4H77NltYsFIp5VtRZ+3atUTk5eUl/a6B+cmTJ4GBgc2aNRNX2kqlUn9dYPnx3nvvEdH48ePzbE9LS/vjjz927NgRHh5+69atsh9bv/76ayKqU6fOc9FHzphE208LCwujtf08ffo0Ebm6uhpi58YsJqPv1VdfJaKPP/7YmIO+tI4fP65bAtuxY8c8HRrS09N1fexFnoHRVu9lZ2cHBgZWrVpVlzv4sIxJE1CIH3/8kYjq1q1bzq+8/v77byIaNmyYQUeJjIxs06aNSDr08/PLysrS/Sg9Pd3X11ehUBBRr1697ty5Y9CZlJRsAfdNm5iI+/TJ3dKkCRNxGXt89u3LRDx/vvahWs1OTkzEmzaVabeS2Lx5s4mJSZ4yETpRUVFBQUG+vr7u7u7iBo6OnZ2dKD4THBxcWCrr9evXRdL0qFGjil9DHPTdv68NO+reP2V09uzZL7/8UrfUnf5d2dCwYUMDLQAMD+dhw66LYiNubm5h+ZqurF69WrSzqFu3bqauhRmUVyLPVNykqVSpkuH+yc6dYwcHJuJ33il9+18oWmpqakBAgCiwSP/2kykibp6Tk7Ns2TL9J+gvnXN1dZW8J/aFCxe8vb3FB4hSqfT09NQNIYYWK6gcHR0NtF61aFlZWTdu3MBpvUHFxaVVr16DiL777jvdxsDAQCKytbW9du1aSXd45gx/8QUvWsSTJvGPP/LcuTxyJDOzq2vJOoQXX0RERLdu3cRfWf611TgOllFWVtbVq1dDQkIWLFjw3nvvjRx5Rr+UkP5XtWrcrRtPnqwNuDPzqVPcqBG3b1++SsqMH89E2rel5E6dOkVELVu2NMjeX2KnTp169913xRosceta1LswMzMzxJL2soiJibGwsDAxMbl69aqhx8rOzhYRujFjxhh6rOfOm2++SUYsubN69Wr6b1k2qdy8eVMk2BmtmIzO6dOnFQqFjY0NzsSMQyyLr169ui60rQsE/fnnn+LT79VXX72uq6dsRAkJCbre9fmLXEHZJSQkVKlShYg2bNgg91yeYfny5UT0wQcfGHqgrKwslUolEmvat2+f56i6ZcsW8cfy888/l6twqGwB908+YaLcvpRPnrBSyZaWXMZrnx07mIhr12bdPY8lS5iIhw+/VKb9ltmBAwdEwuA8Xd+owmVlZYWHhwcEBHh7e+uHa4WaNWt6enqqVKrQ0FDRGyc2NrZBgwZENGjQIKl6FLxs1Gru04eJuEePUnbNKsKlS5fmzJljb2+vVCpHjx6t3+TEEEJCQsT7gYg8PT3zdAhISUkZMmSIiYkJTsfLP41G4+/vP3v2bCJ65513DDrWsWNsa8tEPHmyQcd5GSUnJwcEBNSsWVP8VbZo0aI4/WS++eYbImrWrFlERIT+9hMnTjRp0qTAO/yldubMGW9vb1Fww8zMzNvb+0pB3QDOnz+vn1xgtAY1YllAo0aNnJycKlSo4OPjU+rCa1AEcRx0c3v0xhsf6tZIXbx4UdwqXrt2bVl2LgLuGRns4sL79xsw4C4UfRxMTU3FcbA4Hj9+HB4eHhQU5Ofn5+Xl5ebmJk5ldbp1CyRic3N2dGRPT/bz48BADg1l/eQQXcCdmSdMYIWiHAXcr19nMzM2MSlx+5PCHDlyZMSIEYsXLxYPk5OTFQqFlZVVOVzj/DzKyMgIDg7WrVNRKBQeHh7BwcHieCo6e1eoUOHChQtyzzTX1KlTieitt94yznA3btyQKxpbzom+tUZr++nn50dEX331lbS7laWYjL7BgwcTFtMbV0pKikqlEumYtra2KpUqLi7O1NTU0tJy9+7d8s4tMjKyRo0apqame/bskXcmL54PPviAiHr37i33RJ5NLMqfNWuWeHjv3j0vLy/dQ8kdOXLE0dGRiKysrAICAvRj6/fv3xf5zeUqn0a2gHvPnkzEW7ZoH+7ezUTcpUtZd6vRaHtI6lqCJydzly6DiUjyZMDiu3DhgoODAxXUIb04p+D37t3btGnTp59+2rNnT9EgRcfMzMzNzU3EcTp37owYRKl9+y0TcdWqfO+eoYYYNGgQEW3RvekNKT093d/fX5xzW1lZ5Wm6ItIuRo0aZYSZQNmJah5GuHYKDdU2MJT6AuHlFR8fr1KpxOc/EbVp0yY4OLiYd92PHz8uKlPlD6w/ffrUz89PxMc7dOhwuQy9UMLCwjw9PcX0LCwsfHx8il6Ip59c0Lx589OnT5d66OJITk7+7rvvatSoIWZYq1YtkU1jiAR/yH8czMjIaN26NRGNHTu2jDsXAXdm3r2bW7fmJk0MG3Bn5rS0tFmzZokcWGtr67lz5+r/FMfBZ7p48SLlo1QqGzZs2K9fP19f3+XLl+/ff+X27Wesi/rxR/71V+33jx+zuzufPs1DhrB+Tl7XrlxIDwvDGjGCifi99yTb4aZNm4ho4MCBui3iFD1P8W4oqevXr/v5+Yl0PyKyt7f38fHJ0yFZo9G89dZbRNSwYcNyUmb60aNHtra2CoXC0MdKfUuWLCGiqlWrlqXBzwtJ1Eb76KOPjDCWOLOSPDVVV0xGrhzziIgIhUJha2uLJHcju3LlysCBA8UHoKii7uDgIPekmJk9PDyISPbQ/wvm9OnToglEubp/XJgPP/yQiH744Qfx8Pjx40TUvn17w4345MmTkSNHir8C/SPdo0ePys+fho48AXe1mitUYKLcFJg5c5iIp02TYOeBgUzE3bvnljqaMWMGEY000HrRZ4mOjhZn26+99lr+Rhavv/66o6OjKNceFhZWnIRB/eIzYoF/w4YNq1SpgiNfqZ06xebmrFBwSIgBRzFmwF24ffv2m2++KQpa6R8IEWh4jjx69MjU1NTCwiI5OdkIw23axKamTMQLFxphtBfZ/fv3/fz8dP2x3d3dQ0r++ZKenq4fWM+TdX748GEnJycqbZeY0NDQLl26iOnZ2tr6+vreK/b9Rt3QFhYWK1ZEGKJLSlJSkr+/f6VKlcQMW7VqFRQUlJOTc+7cOXGlIe5DlKsUhudagcfByZOnEJGLi0vZy0fqAu7MPHw4KxQGD7gLMTEx3t7eCoUiTyUBHAefKSMjo1q1ap07dx4zZsw333yzfv36CxcuSLKuJSKCnZzYKO2fixIZyUolm5tzdLRk+7x06RIRNWrUSLdFNDxHMKJ01Gp1aGiop6enOJUlIjc3t8DAwMISjNLT0zt16iSOuYZeTlocX3zxBRENHjzYmINqNJr+/fsT0auvvmrMccu/yMhIkeRe/LOdUhNLrApcLFhqMhaT0SfCvugFLYvQ0NDmzZt/8skn5SeqiIC75DQaTffu3YloxowZcs+lWMS9zHXr1omHISEhRDRo0CBDj7tu3bo8H4biHMzFxcXQQ5eIPAH3Cxe0vUx1PD2ZiP/6S4Kdp6fzwIFzK1Sw17XDunv3rpmZmZmZ2d27dyUYoCTi4+NFimKPHj0KvEpp1KiRfuqQtbV1t27dpk+f/vfffxen3n9qampwcLC41SzKy0BJpaRw48ZMxIbOeDB+wF0ICwvLU1sNgYbnSFBQEBH169fPaCP++isrFNyjx4Lff//daIO+SG7evKlrOkpEHh4eR48eLcsOQ0ND69WrJ1ar5AmsJyUl+fj46GL6xSnjqFarQ0JCRNd7IqpcubJKpUpISCjprMTNAGfn1ywtuVMnlrA47cOHD1Uqlb29vf69Cv1lAfoJ/i1btpSw+/RLq8Dj4LZt3LRpWuPGnpLkZs6fz7qz4pgY7tCBo6LKvtfiOnToUJ43OY6DMhJVJatXZ6Oflf/H0KFMxL6+Uu4zMzPT1NTUxMREd84vPqKXLVsm5TAvgfv37/v7+9evX1+3AMvLy6vARsd5WgXGxcWJI+bw4cPlreKalJQk1rcZvz9zTEyMGDooKMjIQ5dzQ4cONUIYKyUlRaFQWFpa5s+0KzXZi8noiPTVChUqlOLUEcouKyvr3r17cgXck5OTvb29J06cqNuCgLvkdu3aRUQ1atQwWiPcMhK3B/bv3y8erlq1iojeffdd48/kwIEDRNStWzfjD10EeQLua9dGdO167YMPct9D1aszEf+3xmbpiYSC119/Xbdl+PDhZPSKY2lpaZ07dyaiFi1aJBayVjY7OzsyMjIoKMjHx8fV1VVEEHR05dpDQkKKOKq1a9eOiP755x9DvZIX2siRTMRt27K05YiTk5MtLS2rVaum2yJXwD0/BBqeI+KmsZGv1X/++QgRmZiYGKhPS3Z29qlTp86cOWOIncsrJydHXOorlco333xTqliwfmC9a9euN27c0P/pjh07RBPIChUqBAYGFhZiyMrKCgoKatq0qdhPtWrVVCrVkydPyjKx3buf1qnDRGxjw8uXl7Xj7q1b7Oc3V3evol+/fkV0Zz1y5Ii4Yy0S/CW8rH0J5T8OxsRwlSpMxIsXSxmxCgriTz+VrF52WeA4KCO1mgcMYCJu04blyhWJiMhQKNjGhuPiJN6zWP1z6ZK2d9TChQuJaDK6oxRbeHi4t7e3aA8ulgv4+/s/evSowGf6+PjY2NjcunVLf/vFixfFLVuVSmWkSRdENGLp1auXLKP//vvvRGRvb49yRvrOnDkj2n4atOiQCEm3bt1awn3KXkxGX79+/WT/+3qZJSQkyBVwf/jwIRFVqVJFtwUBd8mFhobWr19/6NChck+kuERrMV2RN3Hs8/PzM/5MgoOD8wSBywN5Au7vvfceEel6Ct28Gd+hQ1zTppJ1+3zw4IGlpaWJiUnUvwlUJ0+eFB9MZV8WXUxZWVliQZ+jo2NcsU/nExISduzYMXv27AEDBlSuXFk/+G5iYtK8efNx48atXLkyzwo18bYePXq0AV7HC+6337ShojLUQC5YUlISEdnZ2em2IOAOJZWZmVmhQgUiuinV3chiE/1PzM3Nt2/fLskOU1NTw8LC/P39PT09K1asSERvvPGGJHsuV1599VUbG5t+/fpdlTDl+1/bt2/XD6zr/ygxMXHUqFHiYNG/f/+YmBj9n4qmo87OzuIJ9evXDwgIkGpR1JMn7OPDREzEHh5cjKVZBYiKYl9ftrDg7t1XKBQKT0/PEydOPPO3kpOTfXx8RKmBLl26FCfBH/LLfxxUq7l3bybi/v3LehMlj0GD/tO/R0Y4DsorIYGdnJiIvb3lmUD//v07dBg8d670sUhRb0GXBLNlyxYjL1N7TiUnJwcGBoqKYeKmtYeHR57lTUJSUtLy5cubN2+uuz76448/8jxn+/btpqamCoVi3Tp5wkBPnz4VBUVDQ0NlmQD/m7HRq1cveTP9y5shQ4YYOhgkEjwlPL6Uk2IyOseOHRO3cx4/fiz3XF5GCLi/2MQdu+rVq+u37yrPRP3P+Ph48XDatGlEtFCO6rTLli2jgrpmykuegLs4ndKtsv/zzz9J6gp377zzDhFN06sKL5LNV6xYIeEohdFoNGICVatWLUvYJTY2NiQkxM/Pz93dXZf0l3+NxrVr14ioYsWKqGZbItevs50dE7EhKmcg4A5lJ9aUSZsjU3yi+4W1tXURWcZFu3fv3t9//z1lyhQ3NzfR61LHxcXl448/lnbC5YGoim649eMPHz4cNmyY+H84YMCA2NhY/Z8GBweLO7UVK1Zcs2YNM6empgYEBNSuXVv8ipOTU2BgYHa2ZLe3ddav56pVmYjt7fm/9wKe4exZHj6clUomYlNTHjPmaZ4+eM+0c+dO8QKtra3zdKuHZyrwOCja6lSvLn3yLwLuoHPuHNvYMBEvX27socPCwkS0yBAlEcSl5vz588XDq1evElGDBg0kH+iFcfnyZV9fXxFPJKIaNWr4+fnlSVrXPdPPz0/Xh7x69eqFPZOZly1b1rPnRGvr7H37DPwCCrJ06VIycNe4Z4qPj69evToRLV26VMZplDenT58WSe6GSxUXHwLffvutJHsrP8Vk9Ikw61dffSX3RF5GCLi/8FxdXctJ1OiZsrOzFQqFiYmJruSpaGe6evVq409G5AuWt8U3MgTcU1NTTU1NzczMdOl1U6dOJaK5c+dKOMr58+cVCoWdnZ1uvbxYYuDs7FzSznKlMH36dBFsDQ8Pl2qfGRkZx44dCwgIGDFixF/5qt03a9aMiHbt2iXVcC+8rCzu2JGJePhwg+wfAXcou0mTJhHRl19+KcvoGo1m/PjxIioRERFRzN8SXZ1FjSxdlzMiMjU1dXV19fHxCQoKKk6DiueUaNpxWfIlM/8VHBwssgmqVq2ap+xPTEyMWFxFRG3bttWtlGrTps369esNevh78EBbE5mIBw7kZ/YkO32avbxYoWAiNjdnb+/SF4JPTEz09vYWr7Rfv355EvyhMAUeB0+cYDMzVirZEFdPCLiDvv/9j4nYzIwPHjTquD169DBcqOjHH38konHjxomH2dnZZmZmSqUSnZbye/jwobu7u/joVigUPXr0CA4Ozp/Tl5mZGRwc7OHhod86NSgo6JnZf1OmMBFXrszXrhnsNRQkKytLVJ+Xvdrn5s2bicjS0jLSOF2qnxOenp5E9Nlnnxlo/yI+LtUV3/fff0/lppiMzpEjR0R6R2FVc8FwEHB/4X333XdENGzYMLkn8myxsbHiTrlui/gA3Llzp/EnM2HCBCp/XXNkCLiLYvbt2rXTbRG555KvuevZsycRLVq0SDzMyclp2LAhEW3dulXagfIQfyFmZmbGfJ/NmjWLiN5//32jjfi8O3uWK1ViR0c2UDsKBNyh7Bo0aEBEJ0+elGsCOTk5ogFG1apVCwsiZ2dnh4eHBwQEeHl5Va1aVT+N3dbW1t3d3c/PLyQkpIy1wp8XIsCtW1VnOHFxceKKkYi8vLzy5GkGBQVZWVnVrVuXCmo6alC//cb29tr86LVr2cuLdbX69+/XprKGhWk7pYtKJr6+0vRO1E/wlyWx4rmT/ziYlMQNGjARG2i1PQLukMf06cZuoLpz504iqly5soHake3du5eIunbtqtsibsReuHDBEMM915YvX+7g4GBnZ+fj43P+/Pn8T4iNjfX3969Tp4442Ilnnjt3rpj7V6v51VeZiJ2c2PCH5Vy//PILETVt2tQIOV7PNGbMGHGL4nmpTmAE4eHhCoXC1tbWQGdrovpfKapBZmRkREZGBgcH+/v7+/j4eHh41KxZU5zYbNy40QAzLRMRaZE2YxKKAwH3F979+/fNzMzMzc3L1W22Ap05c4aIWrZsqdvSqlUrIjp9+rTxJ/P6668TUXBwsPGHLoIMAff58+cTka67cVZWlpWVlUKhkPwGaUhICBE1adJEt0V0Lurdu7e0A+lbu3atUqlUKBRG7gt/9uxZsbgSjeMKs2ULHzmi/V6j4cBAvnOHJepoWAAE3KGMxB91zZo15S2RkZmZOWDAACKqU6eO7uIhOTk5NDRUpVJ5eHhYWVnpB9lFq2d/f/+wsLCX7epOrVYrlUqlUqn7HP71118///zzktZIKSaNRrN8+XIbGxvxr5PnprW4yT9+/HhDDF2027e1FcCXLmVLS+7QgUXM4ddfefRo7txZG2q3t+fPP2dpzyTv378vyrOK+xAF9tl7mT3zOKjRcEAAu7uzgQrUIeAOeeTkcL9+TMSdOkncu74wHTt2JKIFCxYYaP8xMTFEVK1aNd2WwYMHU7kpvlyudOjQgYj279+fZ7tarQ4NDfXy8tIVo2vSpElAQEBKSkpJh0hJ4datmYi7dzfSG0ytVotbLPkry8siKSlJpNvPmTNH7rmUI+LM1hBLSB8/fiwyToo+e09PTz937tz69eu//fbbsWPHduvWTdT/yU80EN6xY4f+r2dkZMi+WnT//v1EVKlSpeTkZHln8rJBwP1lIM4cdD0vyy1R/9bDw0O3RfQvkWW1cbdu3YjowIEDxh+6CDIE3EX9WV322alTp0QWgOQDqdXqRYsW6XchT0xMtLCwsLS09PDw+Oqrr3bs2CFtr489e/aYm5vrp9Ubk5OTExEdNPK63OdHz55cpYo2w0WtZjLwex8BdyijOXPmENF7770n90Q4LS1NLPquV6/eu+++26JFC6VSqbsSUCqVzZs3/+CDD9asWVNYKdWXRHx8vEic1G0RV3Tbtm0z3KDR0dHdu3cnol9//VV/u2hOHliieurS0Wh461a+dYudnPiNN7SJ7b/+ymPG8Ouvc5UqrFKx4VptBQUF2dnZiZvQmzdvNtQwz6FiHgcNl5SJgDvkFx/P9etzx473Jk36xNBjbdq0SdwYTktLM9AQGo1GlCPXLTwSDVG++eYbA434/BINZvVXHickJCxYsEBc0RCRhYXFiBEjytgWJTaW69RhIh4zpswzLoZ169YRkaOjoyHapZTOoUOHlEqlqampjCsmyxvR9rNChQqSt/08ePAgEXXs2FG3JSsrKyoqKjQ0NDAw0NfX18PDw9HRUf9EWsfc3NzR0dHT09PPzy8wMDA0NDQqKmrBggVE1KlTJ90OT548Wbt27Z49e0o781J45ZVXSLpq9VBMCLi/DDZu3EhEzZs3l3siz7BmzRrS6zCh0WjMzMwUCoUsrSXF3e5Lly4Zf+giyBBwF83NdK1ERTPZMYY/CcrKyho9erS4E5snH9PLyysgICAsLOzp06el3v/JkyfFGfann34q4bSLb+bMmUQ0ZcoUWUYv/3r25Nde055tv+QB97/+SnNyypg4EfkI5ZrI/AoJCZF7IszMSUlJjRs31mXfmJqaurm5+fr6BgcHI4lY58qVK0TUuHFj3Rbxj3j8+HGDjpuTk7Nu3bo8G4cOHUpEeSq8G5kIuN+8yTVrclycNuB+7x4bLNKV6+bNm6JMMxF5e3sj/Uow8nEwPwTcoUBnzjy0trYx9D1CtVotVjovN3Cf1jZt2uh/8q9cuZKI3nnnHYMO+jwS12W/67Vs3r17t/jcrlWrlkql0s+aKouICG2HXiMEBtu2bSvj3e7C+Pr6ElHr1q3RV1ynb9++JHV7vZycnK+//pqIOnfuPHny5P79+zs5OekWauSJrTdp0mTIkCHTp08PDAzcu3dvYRnraWlp1apV049pJiUliWiG7Gl2ooJWlSpVyhJCgZKSMeAeH5/j5JTh5pbbkuStt1KcnDL27kWTEollZWWJSq3F76MmC9FkYurUqeKhjG9OZhY91ctbaKKAm6sGde/evdjY2IoVKzo7O4stJ06cICKxwNNw0tLSXn311dWrV9vY2CxevDg4OHj69Oldu3a1traOi4v7+++/p06d2q1bNwcHB3d392nTpv311183b94s/v5v3Ljh6emZmpo6atSoefPmGe6FFEEsHRDhFVkmUP5NmkTHjtGhQ3LPQ25ZWdZRURZJSXZyTwQK9eDBg/DwcCsrq969e8s9FyKiChUqNG7c+MGDB6+99trhw4dTU1PDw8OXLFni5eWla8sJjx49IqIqVaoUscUQTExMRKl9feKMpzz86zRoQB9+SNOnax/WrEnW1kYYtMG+ffsCAwOtra3XrFnTokULsfYZcByEcqh166orVwYS0aRJk8LCwgw0yl9//XXu3Ln69euPGzfOQEMIIsfq2rVrBT4EHXFwFAdKwcPDY9y4cVu2bLl79+7s2bNFnLHs2raldevIxIQ++4z+/FOSXRZs27Ztp0+frlGjhriXUH7Mnj3bzs7Ozc0tOztb7rmUF7NnzyaigICAJ0+elG4PiYmJERERq1ev/uSTT4YPH96uXbsKFSrMmjXLxsbm2LFjP/zww86dO6OionJycmrWrOnh4eHj4+Pv7x8cHBwZGZmenn758uXNmzcvXLjQx8enV69eou9OftbW1tOnT9dNmIgqVKgwZcoUIhJrYY0mICDgjz/+0N/i7OxsZWU1ePBgscQfXnjMJlFRFrdv51YTffTINirKQq22KuK3oBTMzMxGjRpFRL/99pvccymKWN6t6+Im1kBIdewukezs7CdPnpiamoqwe/lRwB1XgxILuDp27KhrND9z5swOHTqIm8wGkpCQMHjw4GPHjlWuXHnLli2iR6uXlxcRqdXqK1euREREREREHDly5MyZM0ePHj169Kj4RXt7+/bt27u7u7u5uXXp0qWwyMW9e/f69Onz8OHDQYMG/fbbb7qXZmQdO3asW7fu3bt3w8PD27dvL8scyjlzc1qyhCZMoNOn5Z4KQJG2bNmi0Wj69OljbYTYZEHOnz/v6OgoVu0QUWZmplgkGxAQIIqBQn75Y9xii6ED7gUyTqy/mGbOpFatyMbGqIMqFAofH5+uXbu+88474eHhvXv3fu+99xYvXizX31Q5geMglE8jR448derUkiVLhg8fHh4eLpbDSkitVovMU5VKZWFhodseEhLSunXrevXqSThW48aNSS/CLh5evXpVwiFeDOJwKQ6UgkKhWLVqlSHGGjSI5s+nGTNo3Dhq3pxatDDEIOTv709EM2fOtLS0NMgAxbN9+/bbt2+/++67umn8+eefKSkpERERoiA4EFHnzp179+69d+/eH3744csvvyz6yQ8fPrx27dr1/0pPT8/zNIVCYWFhkZaWNmjQoJ49ezZu3Lhx48YNGzYsYzx64sSJ33///dGjR/ft29erVy8imjJlSkBAwJ49ew4fPty1a9ey7LyYzp8/7+fnl52d3aJFC7FUiJl9fHyePn2akJBQYIUcACiLsWPHLl68+H//+9+CBQvkPaYUIU+EXcaAu2gwW7Vq1fL2cWTsgPuGDRuISKy1FFq0aNHCQGc9RER08+bN/v37X7t2rWHDhjt37hRnvTomJibNmjVr1qyZyERISUk5d+6cCL4fOnTowYMHe/bs2bNnj3hyzZo1u3btKuLv7du3F+frycnJgwYNunXrVocOHdatW1fgqjHjUCgUr7322g8//LBhwwYE3AvTrx+5utLy5XLPA6BIW7ZsISLRL0UWQ4cOjY2NPXPmTNOmTYlo//79KSkpbdq0QbS9CHli3NnZ2cnJyWZmZhUqVDD+ZMpPhjsRWVjQDz/QwIE0apSxh3Z1dT169Oi8efPmzZu3cuXKw4cPf/jhh23atKn8L7nukcsIx0EonxYuXHj+/Pn9+/d7eXnt379fPyxeUtnZ2Xfv3o2Ojr548eKlS5eio6OvXLmSmJhYvXp1b29v3dN27tz5+uuv169f/8CBA3Xq1JHiRRD9m9Kui7DXqFGjYsWKjx8/fvToUTm5CVpO5M9wN6jp0ykqirKyyNKSbt8m3enMuXPk6kplD0QfPHjw8OHDlStX9vHxKeu+yoCZP/300/Pnz1taWr777rtElJ2dvXDhQiL64osvXsJDXhG+/vrrvXv3Llq0aPLkyRUrVhQbnzx5EhUVFf2vixcvRkZGikqheTg4ODg6Ojo6Orq6ujZr1szR0dHFxaVhw4aZmZkrV66sVauWVPO0sbGZOnXqZ599NmvWLBFwt7e39/X1/eqrr+bOnbtz506pBipMTk7OuHHjsrKyJk2aJKLtRLRq1aqdO3dWrlxZVM0CAGk1b97czc0tIiIiJCQk/1LmcqJcBdzlGrpoRooOZ2VliTVTJ0+erF69+qpVqxo2bDh+/HhD338IDw/39PR88OBBu3bttm7dWlj7bx07O7uuXbt27dpVLNS6devW8ePHT548eeLEidOnT4viM3///TcRWVlZubm5tW3b9sCBA+fPn3d2dt66dauNkfP38hk2bJgIuIsMCyjQ4sXUpYvckwAo3NOnT/fs2aNQKETLTeOLjIyMjo6uVq2aiBpQObgB8FwQUQNdjFt0zKtUqZLxr2+Z+fHjx5SvZ4mRKZVkb6/9vk8fevttYxSTyc/MzGz27NnDhg0bPXp0VFTUpEmT9H9qaWnp4OBQq1atmjVrOvyXbmPVqlVfsKxAuY6D9epdc3dXmpvbET3jfAxeQqampn///Xf79u2PHTs2bdq0FStWFPMXY2Njr/3r6tWrV69evXXrVk5OTp6n2draPnjwYMmSJdP/LXHVpUsXNze3EydO9OzZ88CBA1Kl1edPaXd2dj516tS1a9cQcNdn5IA7ES1bRkoljRhB+/bR5csk1p337UvnzlGNGiXeW3Jycnx8/KNHjx49eiTavRLRlClTdKsDZbF169bz58/XqVNn5MiRYsv//ve/mzdvNmnSRDR3AZ0uXbr06NHjwIEDw4cPr1279tWrV69fv17gG7JSpUrOzs7Ozs6NGzd2/lf+dIr79+8/evRInD9IO9XJkycvXrz4yJEjBw8eFK1Kp02btmTJkl27dh05csTd3V3a4fL45ptvwsPDGzRo8O2334otsbGxH3/8MREtX778mQEWACidd999NyIi4rfffkPAvaQzKT8MHnCPj4//6aefVqxYcf/+fSKqXr26vb39tWvX3n///V9//XXJkiWGq96+d+/eYcOGJScn9+7de+PGjaXIMWzQoEGDBg3eeustIsrJybl69apIfj98+PCVK1cOHz58+PDhOnXqVK5cOTQ0VFe6SEbdunWrVq3ajRs3Lly4YNB1A8+1OnVo8mT6+OOCf/rgAeG0AeS1Z8+e9PT0Dh06SL6mvphCQkKIaPDgwbp7otu3bycE3J8lT1K5jEVdkpKSsrOz7e3t5a2qaWtL8+fnPpw/n6KiZJtMy5Ytjx8/3qVLlzNnztSrV8/S0jIhISEhISEjIyMuLi4uLq7oXxfp8FWqVNGlxlepUqVq1aouLi7GWc0traKPg4Zz585HR45sy8raQuRp7LHheVC5cuWNGze6u7v/+OOPbdu2HT9+fJ4nZGZm3rhxQySti+TTCxcuJCcn599VzZo1Rc6pLv/04MGD48ePnzFjhlqtFqGiChUq7Nq1q0+fPqdOnRIxd0nCZC4uLgqF4vr16xqNRhxGXVxcTp06dfXq1S7I+NBj/IC7LtGrbl36/HMq7J5OWholJFB8PMXHU0ICPXpECQmkVgdcv340Pj4+ISFBRNizsrL0f6tChQq2trZ5UiUiIyN379790UcfGeT1FGT+/PlENGPGDHECwMziTsCnn35a3hbalwcqlerhw4ehoaG6LRYWFrVr19YlresUZ2+RkZFE1Lx5c8nnaWtrO2XKlC+++EJk5RORvb39pEmT5s6d+80332zbtk3yEXXOnz8/b948hUKxcuVKcTOJmcePH//kyZMhQ4a8+eabhhsa4CU3cuTImTNn7t69++7du4W1eZAXAu7PZMCA+/Xr15ctW7Zq1SpR4KxVq1Yffviht7e3paXl+vXrZ86ceeLEic6dO7/xxhsLFy6UtngiEaX++efbvr7Jycne3t6//PJL2XPTTE1N9YvPJCYmnjx5cs2aNWvXrm3WrFk5KbNgYmLy6quv/vzzzxs2bEDAPY+ffiLdZdTUqdSrF+3fT8nJ9Oqr2o1paTR2LB07RmfPkqxZofCykz2dPM8Ezp49e+vWrZo1a7q5uck1pedCnortMhZ1KScF3K9fp+nT6dw57cOTJ+nHH8nwS58LZWlpOX/+/L59+6anp1+6dEksSnv69GliYmJcXNy9e/cS/0u3UURYEhIS8rc97Nix4/Hjx+V4NaWR5zjYsyd9/z3VrUvlNW8GXkaWlpYLFiyYOHHipEmTHBwcLC0tr169qstev3fvXv5fqVKliouLi4uLi6iY7OLi0qhRo/y3Gx0dHZn5vffe++STT6ytrcViF3t7+927d/fp0yc8PFzE3GvWrFnGl2BnZ1ejRo24uLiYmBhxgZOnqjsIxg+460ydSl9/TceOUefORESRkTR6NMXHa2PrT58W8CudOx89duxv/S12dnbizqu4F3v69OmLFy9OnTr14MGDJiYmRJSYmOju7p6SktKiRYs+ffoY4XXt27fvyJEjlStX1nUG3rhx48WLF+vVq/f2228bYQLPnR49ely4cOGLL75wdHQUCexl+QQwXMCdiCZPnrxo0aJ9+/YdOnSoe/fu9G+S+/bt20+ePNmhQwdDDKpfTEb3HkYxGQDjqFix4pAhQ9atW7dmzZrPPvtM7ukUIE+YO08PVRlnUo6wAYSFhXl6eopF9Eql0sPDIyQkRKPR6D8nLS1NpVKJ8v82NjYqlerp06eSzcDfnxWK/a1bf/bJJ3nGlVZGRoZInL9x44ZuY2Ji4o4dOww3aNF27NhBRC1atJBrAs+LkyfZxITt7Tk6WrslO5vd3ZmIhw6VYP+i2J+dnZ1uy6BBg4hoy5YtEuy9bFavZiIeNUrueUBBNBqNSGw/e/asLBN48OCBUqm0srJKTU0VW7766isiev/992WZz3Pk1VdfJaJNmzaJh+vXryeiYcOGGX8mIgTcoUMH4w+t78QJbtky9+E//3C/fvLN5l+icfqSJUuK/ysajSY+Pv7KlStHjhzZvHnzr7/+umDBgvHjx4uQytGjRw03W4MKCWGi/xwHDa08HQdXE9EoHAjLHw8PD3Nz8yFDhoiLiDyXLebm5o6Ojp6enn5+foGBgaGhoXFxcSXa/6pVq5RKpUKhWL58uW5jYmKiuKPs4uJS0h0WqE+fPi4uLrrj+F9//UVEQyU5v3yBPHjwgIiqVq1q5HHffpuDg/mff7h1a87O5mrVeMsWJsr9srbmunW5TRvu149HjGBfX/7qK/7994Pr1q3bt2/f+fPnY2NjMzIy8uw2MTFRZCD6+/vrNs6bN4+Iateu/fjxYyO8NA8PDyKaO3eubku7du2IaMWKFUYYHcSinGXLlhlo/+KE3MPDQ7fl008/JaLBgwcbdMQGDRqkpKSILTExMaLe/V9//WWgQaFoIqHHwcHB+EPHx7O5OdeunbvFw4OJePdu48/lZSGaNDg7Oxs0qlk6qampRGRlZaXbIu7srlu3zviT8fPzI6JvvvnG+EMXTcqAe0ZGRlBQkC6x2tLS0tvb++LFi0X8yp07d3TNi5ycnIKDg8s6CY2GZ8xgIlYoeMGCsu6tGMS7asG/Y6Wnp9vZ2ZmYmDx48MAIo+eXlZXl4OBARFeuXJFlAs+RN99kIm7fnrOytFvu3OFKlZiIf/yxrDtHwB1K5+TJk0RUr149uQ6rv/zyCxENGjRIt0VcrW3dulWW+TxHRGmRQ4cOiYeBgYFE9N577xl/Jlu3biWigQMHGn9ofSdOcNOmfPeu9uuXX8pFwP2ff/4hojp16mRmZpZ6J9nZ2aI5+fjx4yWcm/G99Vbe46BBlafjIALu5VF0dLS44/vgwYMtW7Z07969c+fOY8aMWbZs2a5du27evKlWq8s+ysqVKxUKhUKh0I9CPnz4UFzCtGjRIj4+vuyj6Dtz5gwRNWvWTNrdPu9ycnKUSqWJiYkk/6zFJwLuzOzpycuXc7VqfPUq79zJp0/znTucllb6PYeGhioUCgsLi3PnzoktarW6W7duROTt7S3F3Ity4sQJIqpQoUJiYqLYItKwqlevnp6ebujRgf+9o3/gwAED7f/JkyfiMj8sLExsefTokZ2dHRGdPHlS8uHOnTtnbm6uUCh2/xtP1Wg0/fv3J6JXX31V8uGgmGQMuOeHgLuhqdVqcStX91dffkRHR4sbcvobU1NTpUykLjbRJHzVqlXGH7po0pRye/jw4fz58x0dHd95550LFy7UqFFDpVLFxMSsXr3a1dW1iF+sW7fu6tWr9+zZ07x586ioqEnvvpvxxht06VIp55GVRSNG0MKFZG5O//sfzZhRyv2UxLBhw4ho48aN4qGVlVX37t3VarW4pDc+MzMzcUEr1wSeIz/9RPXr06lT9NVX2i1165JYGzdtGp0/L+PU4OUlyrkMGTLE+J029SegqycTFxcXERFhbW3ds2dPWebzHMlTyEXGui4yVrPJ484dGjVK+7V4sdyzISKiIUOGtGjRIiYmZs2aNaXeydy5c0+dOtWgQYPvv/9ewrkZ348/UoMG/zkOAsjol19+0Wg0w4cPr1atmqen58GDB5VK5Zo1a5ydnfv27dugQQNJilC/9957AQEBzDxx4kRxZ5SIqlatunfv3ubNm1+4cMHDw0N8ikrF2dlZVHVXq9US7vZ5Z2JiUrFiRbVanZiYKMsEli6l+fMpI4MqVKB+/ahNG6pbt0zNvT08PD744IPMzMzRo0eLCu9KpfL333+3tbVds2bN33///cw9lMU333xDRJMmTRIJyLot06dPt7KyMujQQETMfOnSJSIqOvpRFvb29pMnTyaiuXPnii2VK1eeMGEC/ftvLSFdMZmJEyfmLyaj++QEAINSKpWiovVvv/0m91zyKrCKi42NjahiUh4mUy6UMWB/9epVX19f3VG8TZs2QUFBWSVPlMrOzv7hhx+ODxjARGxqyr6+XNKVdykp3LcvE7GtLe/aVdIJlFpaWpq1tbVCobh7967YIvJD+8mXyCei/7IXE3guhIWxiQkrlbxnT+7G8eOZiJs147KkgyDDHUqndevWRLTLiB9i+jIyMmxtbfU/0MQpNTJZikNUrNMtbxJN0hYuXGj8mYgo8LRp04w/tL7yWVKGmdeuXUtETk5O2dnZpfj106dPm5mZKZXK/fv3Sz01GYSFsalp3uOgVFJSUvT/J5en4yAy3Mud7OxsUVFNl8Z1+fJlhUJRoUIFXYkzCS1evJiIlEplUFCQbuODBw9EsKx169YJCQlSjXX06FFra2szM7Pbt29Ltc8Xg6hub+RVuboMd2b++msmYinKCGmlpaWJF/XZZ5/pNi5fvpyIqlSpIknBogJdunRJqVRaWlrqhjh69CgRVapUKTk52UCDgr7bt28TUY0aNQw6ypMnT8QNlcOHD4st8fHx4tQ9PDxcwoFQTKbcQob7yyY6OlqhUNjY2JS3D3NxF1nGsKc+sfL4+PHjck8kr1IG3DUaTWhoqH6hdk9Pz9DQ0LJO5/Fj9vVlU1Mm4kqVOCCAc3KK9Yv37nHr1kzENWvymTNlnUYJvfbaa/T/9u47rsry/+P457CX2xT3Vpy5F7hRHOBKzCyszNB+Gu2w0mhZ2JKmqaVhVoYbd+7ALU5cuAdOFEQFGedcvz9uvkfCkcp9zkF8PR89engubu7rOoLn3Od9X9fnylWvLSkpycHBwdHR0TrV+m6Vlpbm7u5uMBi4rL8XYWFKRJUtq86dy2m5fl3VratE1JtvPviy0uvXr/v4+OR+ASo4QcPJk2ruXKXrVRn0cezYMYPB4OHhkac2aExMzMmTJ60wgMWLF4tI8+bNzS3+/v5SINdnFTRGo9He3t5gMJjjxWeffVZEpk2bZv3BaPvq5K7iahMFNnDPzs6uVauWiPzxxx/3+703btzQ9kN7/fXXLTE2m/jgAyWiKlRQehXSSE5OjoqKCgoKcnd3z337sOC8DxK4F0ALFiwQkTp16pgrqr322msiMmLECAv1qN2btLe3/+2338yN586dq1u3rjaLKP+Z+4YNG/z8/LRpSV9//XU+z1b4tG3bNnd0aAXbt6tFi9SRIzkPb9xQkyfnq4zMrTZs2GBvb29nZ2cuMWcymXr06CGWrLU9ePBgEQkJCTG3aD2GhYVZqEfkoV1Cd+nSxdIdjRkzRv5dNvCNN94QkSeeeEKvLigmU5AVqMA9NlbNnasuXLD1OAo7rTSZTT5U3sn69eurVq1atWpVV1fX3BdRVpCYmHjrnKcqVaqIyFGrbUt1z+47cNcKtdevX1+7dvTw8AgODt6/f7+eg9q/X3XvnrNtTd26atmy/zh+3z5VpUrOwceP6zmSe6N9bOvcubO5pXPnziIyffp06w9GM2DAABHRFszi7oxG1amTElE9eihz0eydO1XHjgnu7mXN+x/mX0EIGv75R4kocy3uDz5Q779vw+FAKaWuX78eExMTHh7u7+9fpEiRxx57LHfcoJRat26dq6trnTp1rLAzxIgRI0Tkww8/1B6mpaW5ubnZ2dlZbk5WoXHr5a8N/8kPHz5cRCbmfzOK/CmwgbtSasqUKSJSr169+60drC1c8PLyKkwlcY1G1blz3vfBB3Dx4sUpU6Z0797dyclJu0q0s7MbP368+QCb/KPIzMycMGFC7s3tFYF7gaRtlGpeFZSRkaEtG9J32mYeX3zxhZa5z5gxw9x49uxZLy8vEWnatOkDz57ZuHGjdsda+7gUGhqq45T5QkP7oc+fP9863V25osqVU5UrW/zz4ujRo0WkevXq5tnBiYmJJUuWFJFffvlF9+6OHDmiTfY6/r8ntmPHDm1GpO4bEuBOxo8fLyKvvPKKpTu6dOlSnrrt586d0xbcmzcPyI+srCxt96ZRo0aZGydPniwipUqVOmeeoQYbuVPgPmnSpLi4OKsN48UXVZUqyrz8rEYNdeiQ1Tp/5EydOlVE2rdvb+uBKKXU9evXX331Va3En7arhHZFnZKSYumujxw5opVXKVu2bJ5K8VrNFUssiMyn+wjcz507FxYWZi5HW65cubCwMAteO0ZHq+rVc2J3f391p5sV2dmqTh0lotq0UUlJlhrMXSUnJzs5Odnb21/43909beWgDe8A//HHHwXn32TBd+qUKlVKiahvvrnZ+M0332gvIsd1uiovIIF75cqqTp2cajkE7rZy/vz5uXPnvv76661atXJ0dMxd5kt7twgNDTUfnJKS0rRpUxFp1KiRRdfNmEymihUrisj27du1Fm2+YevWrS3XaaFx8OBBEalVq5a5pXXr1iKyceNG6w/miSeeEJFZs2ZZv+vcUlP/tZImKUnt3m270fxbZmamNhXivoKe2NhYe3t7BweHzZs3W25sNmF+H/z22/v+3jNn1A8/qGHDltrb22uvYw4ODr6+vhMnTszzydz674MrVqzQViT07ds3dzuBe0Fz9uxZR0dHJycn863lmTNnam98lu76888/1zL33EteTp06VaNGDRFp06bN/S7iJmq/d0OHDrXmKrqXX1Yiyts7X3cW70VGRsbjjz8uIiNHjjQ3zpgxQ/uVyHP/L/+Cg4NF5IUXXjC3aFOv3nzzTX07wl1odZYnT55shb7eeeedPAsmXn31VREJDAzM/8nNxWTML30UkylQbhu4Hz582NnZ2WAwBAUFWWea1IsvqmrV1OjROQ8J3C3q2rVrRYoU0TaDse1I1q9fX6dOHe1SPzQ0VJuN7eHhISKVK1devXq1hfrdtm1bYGCglvLb2dkNGDAg90eM1NRUEXFzc7NQ7/lxr4H7jBkzzPOVWrdu/ddffz1Y5dP7k56uPv5YubsrEeXqqn76SSmlfvxRdeigatdW3bop7TPbpk1q0CCdVwPeJ22Nlfl68ezZs1odPVsVWkpNTXVxcbGzsztz5oxNBvDQmTtXiShnZ7VrV84vtslk6tOnj4i0a9cu+x5LG92VtqbYOkFDQoIKDLxNPbV//lGdOqmXXlLvvacUgbt1JZ0+snxB1PPPP6+9S5k5ODg0b978lVdemTVr1pkzZ/7++29nZ2cR+eyzz8zfe+HCBW2Fe+vWrc2zpXS3bds2EalQoYJ5fv2wYcNEZNy4cRbqsTDRiqXmvjlRs2ZNEUlISLD+YDp06CAihaPCuOVod1VbtGhxj8dfu3ZN+5kW1hX65vfBe6zMd/KkiohQvr45hQAbNEi1t7f39vaOiIi40ww4674PJgQGBmovs7Vq1Yoy12xWShG4FzzaHoC50yJfX18R+eGHH6zQ+/vvv69l7rnjpJMnT1avXl1E2rZte4/X80Tt9+vtt98WkfDwcCv0FRen7O2Vg4PaudMKvan4+HgXFxeDwbBkyRJz48CBA0XEx8fnfhdX3cWZM2dcXFzs7e0PHjyotRw4cMDOzs7Z2TkxMVGvXvCftMkxGzZssEJfSUlJeSa5nz171tXV1WAw7M7f1AaKyRR8tw3cr127FhYWpn2EdHd3DwsLy1OeVHcvvqi++UZVrqzi45UicLe8559/XkTe00IcW0hLSwsNDdXm1jRo0GDr1q3mLx09etTHx0dEDAZDSEiIvr97MTEx5krmTk5OQUFBt5ZX2b17t4hUq1ZNx371cq+B+/Hjx52cnPQp1H6/EhNVUJAyGNTSpWrqVNW4sTpwQBmNKiZGlSunCsYsM22ZVe5ialpRwjwf8Czn1nJF2hX/T9pdCtyDl15S7dvvqFevsTnQvHz5cuXKlSVXhY0HYC5l6+joWLp06RYtWuzbt0+nId9GSop6/XXl6KhE1K0rHLTAPSlJlS+v9u0jcL8/l88c+2ZY62+Gtf5xVOdFP46+cf0/Pn4bs7MunDiwbelvc796+evnmn3gX+7zkTmfw93d3b29vUNDQ6Ojo5OTk/N845w5c7Q3swkTJpgbT506VbVqVRHx9fW10CVUWFiYiLz00ks54zcaPT09RSSf1+6PiOjoaBHx9/c3t2izgWyymYc2pZcf3N2lp6eXK1dORO7xwubFF18UkSZNmjzAzvAPi5deUiKqVi11l/t6ly+r8HDVooUyGHJWIbq6qn791IwZpjstJs39PvjYY49Z+n3w6tWr5o+dHh4et37sPHDgQIsWLSpXrpyfN3foyGQyaXezzBX/jx49amdn5+rqarWXUK0ssqOjY+5VL0ePHtWuA3O/tt8WUfuD0apwvPXWW5buyGhUrVtr+zNZuqubPv30U20eg/mX4eLFi9qVlY4F/bWtDp588klzy3PPPZf7cg5WYDQatR3UrFBUQaPdrMq9eCskJKRo0aL5CR8oJlPwJScnv/baa0WLFtUub/JU1Th06JB5qkHNmjUtmkS9+KKaOlVNn658fJTJROBucf/884/2hqLLTND7devE9jwHZGVlhYeHawv369evb14u/8CMRmN0dLS2Xly7sgoJCTl16lSewy5evBgWFlaiRImKFSvmnq1YcNxHSZkkGxVsybF3r1JKeXmp3FP2vvlG6bFyKv8uXryYZ6PUL7/8UkQGDRpkhd5/++03R0fHKVOm5G58//33HR0dC+tEPEtIS0vTUqphw4aZG9euXattfHS/c0VvW8rW3d1dRJydnUNDQ3Vf/WA0qshIVbasElF2diooSOW5LjKZcgJ3pdSUKapzZwL3+3Px1KFvX2yjlMpMvz5r/PAVv95mR8ob11MPbVu9esbnv77zxLgnqn/gX87835dDGs+e8GZERMS2bdv+c4XQtGnTDAaDwWCYOnWqufHQoUPa57S+fftaYo2RNjfHPBVr06ZNIlKlShXdOyqUpk2bJiLPPvus9jArK8tgMNjb2+s4i+3eab8nrHD6T5999pmIdOzY8T+P/Pvvvw0Gg7Ozc+G+jZGerh5/XImoF1+84zHJycrJKSdn9/dXkZHqTu9mtngfNEZGRpYtW1brKygoKE9AcOnSpZdfftnBwUFEKlWqlJGRoe8A8GC2r1ljZzBUrVrV/IL53nvv5X5FtQ5tu2knJ6cFCxaYG48fP96oUaO7zFolas+PX375RUSef/55S3f0ww9KRFWqdLe7ibozGo3t27fPs5hm2bJl2rvJnj178t9FUlKStpbfXLv55MmTWqVTm1ceeKQkJCSISOXKla3W48WLFz08PAwGg3mXi6SkpHzeofzpp5+0WaLmyWcUkyk4srOzJ02apG1tohXWEJHq1avPmTMnz5ErV65s2LChdkDnzp0tceFqMuUE7iaT6tRJTZ9O4G4NWuRtnppgHXeZ2H6rLVu2aIPUcsgHuzeQkZERGRmpLe4Xkccee+y2lcyPHz8eEhLi5uamHebt7X3lypUH6M7S7nvTVFvKylIODir3feOYGNWgge0G9C8dO3YUEfOeS8eOHTMYDB4eHnluPOpu0aJF2kfH3FukJiQklC5dOs8yRvyn+Ph47R9t7jqe2gewmjVr3kvEefHixcjISH9/f3NhbvMS+8TExDNnzgQHB2svWKVLl46IiNDrFuWmTapVq5zJhq1aqU2b/vVVLYtv1kz9/XdO4G40qjZtVIsWBO73wRy4K6XW/fl19HdvXr9yae5Xoxb9OHriqM6Htq36KcT3w94Vb4bsAeV/eKlD9Hdv7lwVdfnMsfvtLiIiQvv9mT17trlx9+7d2qZbQ4YMMelagjQxMVHbX8v8kqXlHS+//LKOvRRi2s57b7zxhvbQZDKdOnVKl4/TD0DLNy29mLQQuHLlirbbT0xMzF0OS05O1rY3MG/nWIjFxys3NyWicr0N5vX552rBAnWnqxvbvQ9uatWqldZjq1atNv37jVDL4suUKWPO4q2wDTXu1aBBmVWrbv3fRjpZWVkVKlT4z3+YlqDtdenk5JS78NGd7psSteeftlVM7lLUlnDunCpRQomouXMt2s9tHDlyRAvEc081feGFF0SkadOm+V8vpa3MyL0CY+TIkdpVYj7PjPsyb948+fdidyt44403ROSJJ57Q64RZWVnjxo0zTzKjmEzBsXbt2saNG2tvNx06dNixY8fq1au1jSK0iSM7/10qKysry5zOOzg4BAcHm/cazKczZ1RwsAoNzQnclVLx8apqVVW+PIG7xY0bN05EvLy8Fi5caJ1PeevXr69du7Z5Yvu9zFNJS0sLCQnRKsC0bdv2yJEj997d1atXIyIitM9cIlK1atWIiIjrt1QOP3ToUEhIiLaSVYvao6Oj7++JWdFDFbhnZysnJ5X7WnbtWtWkie0G9C/ffvutiPTv39/cok0XteiPf/PmzdpksTFjxpgbz58/X6tWLRHx9fVl9tb9+vHHH0WkePHix44d01qysrKefvrpu9/NO3nyZEREhK+vr3bzI3e+cOv6u7i4OK3KlXa1nc/Pk6dOnQoKCmrffp+IqlhRRUbm3Qlq5UrVsGFOFv/uuzmBu1Jq927l4EDgfh8unjr06YCaUeHBf3w45JthrZPPn7x66dzH/aoc2xV743rqsd3rP/Av91GfSpNe9Vs6aczemOjrV/L7wds8227ZsmXmxo0bN2of3vSNwidOnJjnFaxRo0Yi8vetWwHgdrSY5tNPP7X1QNSVK1dEpEiRIrYeyMNBSyvu/iF50KBB2vWcTVZxWt+PPyoRVby4+t/b4D05flx9/bXq0WOIeeKVs7Nzr169pk6deusSSUu8D2oX9xUrVoyMjMxzP3L16tXaC5qIdOrUadeuXfnpDjpLSlLOzsrOTp04oTVsW7rUyd7ey8tL3/vK90gr1ODk5LRo0aI7HUPUrpf169eLSJs2bXI3nj59Wt9enn5aiaju3fU967364YcftPuL5p0M9doRxHzPODY2Vms5d+6cVsjbVvf7H1kff/yxWKU4Um7nzp1zc3MzGAwWelPTismULl2aYjI2dJcrnP+cSXDp0qWQkBAtnShRokRERER+VkjfuKE++0x5eCgRVbSoevZZZV6G/dZbSoTA3eISExPHjh2rXXu4ubn5+/tHRkZaaFq3NrFdu6Rv2LCheSXNPVq+fHn58uVFpGjRopMmTfrP4y9cuBAWFqZNK9R6jIyMvPXXNS4uLigoSJu1Y2dn5+/vf/eMriB4qAJ3pVSDBmrp0psPx49XQUG2G82/nD592mAwuLm5Xbt2TWvRNoB67rnnLNRjQkKC9gobFBRkfuW9cuVKkyZNRKRFixaW21yxcHvyySdFpGXLlv858eTYsWMRERHe3t7au6CIuLi4aK99dy/hZzKZoqKiqlSpon2Xv7//8ePH73ec165dGzNmjKurq4hUqtT044+NaWn/OuDkSRUUlBO1V6qkIiPVsWNq8uSbB0ybdpuNVXEnF08d+vq5ZmcO7Tq+Z+Pcr0bN/erlq5fOfRn0uPbVrIwbJ+I3ZWXofLdZK83p5uZm/jSllFq5cqV2U1fHAsQ9e/YUkWnTpmkPT5w4ob1HctPuHmkbzN7LJYWlHTlyRArqvjEFkHk9/p0uJefOnSsi7u7uj9Ty/CefVP37q3uJEI8dUxERyts7p6R7u3a/WfN98Pr162FhYdr7oJubW2hoaJ4rn5MnTwYFBWldVKpUKTIy8n67gMV9/bUSUb163Wzp3Tu7XLndNtqFyGQyjRo1SkRcXV1XrlyZ56tE7fo6ePCgiNSqVcvccubMGREpV65cYGCgVoUvn/dd1q1TBoNydVX3M81OTyaTqUePHnkm8sfGxtrb2zs4OGzOx25kKSkp7777bu7Zx9rtotyTJ2Ad2o35X3/91cr9vvrqq/Lv7ab1QjEZm8tzhRMWFpaW56O+Ukqp5OTk0NBQbW1r8eLFw8PD83x2279/v/YSpE2OfrD6B9HRqnr1nFTB318dPqzmzFHmqPPqVfXOO8q29acfEadPn/7kk0+0eb3m9Kl3797Tpk3T8WrkASa23+rChQt9+/bVBjlgwIC71Cdfvny59nsuIu3bt1+8ePGt7/va1qnmCT1BQUEJCQkPMCrre9gC96lTlZeX2rpVpaWpxYuVp6cqSDfwtbXM5kJa2kVk8eLFLZFYJSYmah9T/f39zTd/MjIyunbtKiI1a9ZkrfQDS05O1v5ux44de9sDjhw5ouXs5lc6V1dXLV+4r4q0169fDw8P17Ke2yYFd5I7pzAYDIGBgXlyimvXVFiYcnFRIsrdXYWF3XHtP+5d7pIyyedPfhpYK3fgbiEmk2no0KHaK8mOHTvM7fPmzdMmLOhS48JkMgUEBLi4uJhfN7QlOwMHDsz/yR8RX3zxRaVKldq3b2/N/U60InedOnXK/S6zefNmEWnevLnVhvGwe/311+/0efX8+fPaje2CcCvFmtLTVVaW8vVV5kV6W7ao0NCbB8THqw8/VI0a5Xz6ElFFiqhBg9T8+ZfM0w7uhSXfB6+FhYW5uLho90tu3VsMBUX9+kpEzZuX8/DsWeXoqJyclO2uY00m0//93/9pv5OrV6/WGonaLeHSpUva1Etzy7p167RZ22Zly5Z94oknvv9+0vbt6n5XGWVkqLp1lYiy7fKzxMREbeLeL7/8Ym7U3np8fHz06iUlJaVYsWIiUvBn/BU+2jZg9zsJNP/Onj2rrWlYu3atjoEDxWRs6z+vcG518ODBXr16aa+ZtWvXvnWFVnR0dI0aNcxTHA4fPnyPg9m/X3XvnnOl5+WlKFdcQJw4ceJO9RXys0osnxPbbxUZGVmkSBER8fT0vNPCQW21lr+///r16/N8Sds6VdvMWZsLGBIS8nDtUvawBe5KqT/+UL16qQYN1IABat06W4/mX8aPHy8iTz/9tLmlXr16YoGaDCkpKVrRrlatWpk/2RqNRm1b6vLlyx+7r3XguMU///yj7ZW6atUqc2N8fHxYWJj2M9UUL148MDAwMjLyvvKFPP5zLXweW7ZsadOmjTaAFi1a5HlhMplUVJSqVEmJKINBBQaal2gjvy6eOjRhaIvLZ49fOHlw8cR3f//gGSsE7kqp7OzsAQMGiEiZMmUOHDhgbp8+fbqdnZ3BYPj555916Sh3iTTt1t1vv/2my5kfBUlJSdoH3XLlyi1evNjS3V29evXLL78sV66c9lKQe9uJJUuWiEh3Wy2efwhpn1ft7Ozi4+PzfEn79NK1a1eblLawrYwM5eCgatZU2lrVpUtVt25qxw713nvKy+tmzl6ihBoy5G4l3e/F/b4PJicn3/V90BQVFVWpUiXzJ9UTvBEWWOvXKxHl6anMawo/+USJKAtM2LwvJpPppZde0jL3H374gajdQkwmk4ODg8FgyLNy/MiRI5MmTQoKCjIvgmnSpIuI8vBQvr4qLEytWHFPrznab1Pt2srme5rMmDFD+/0x51zp6ekjR44015nJvw8//FBE/Pz89Doh7lFmZqaTk5OdnV1+Pg8+MD8/P/PkUBcXl3LlytWrV8/b29vX19ff3z8oKCgkJCQsLCwiIiIyMjI6OjomJiY+Pj4xMfEuVfIoJmNDW65veXbxs+YrnLts2X2rFStWmJMKX1/fPJe16enpn376qTbFwdnZOff+f7d16ZIKCVEODkpElSypIiJUPgrSwFLMOydpqxw09erVCwsLy50b3IvY2Nj8T2y/1bFjx7T9ww0GQ3Bw8G1fJ2+9rLpx40ZkZKQ2Hu3We1hYWHJysi5DsqaHMHAvwI4ePSoiRYoUMc+i0orDjhgxQsde0tLS2rVrp/1Dyv2rGRISot32yT0NFg8sLCxMRCpUqBATExMWFqZtuKwpWbJkUFBQdHS0jlMJ7r7bW25ffvmlFupNmjQpz6XSpk37WrTICUHatFH5WKWK27hyMXH6mIHTxwz88+NnV8/4PC01OS01eVb4cCt0nZGR4efnJyKVK1fOnRx999132g3tv/76S8furl696uzsbG9vf/HiRR1PW+gdO3ZM2z1bRIKCgu5rvcu9u3LlSnh4eKlSpbSOGjVqFBkZmfulYPr06SLyzDPPWKL3wmrEiBEi8uyzz+ZunDJlinZj9eTJkzYaly1lZChXV/XOOyokRKn/Be6+vjlvMSVLqqAgFR2tdFzCd+/vg0qpbt263fZ9cMuWLW3btr1TFo8C5/nnlYh6552chyaTqllTiajly206LKWUMhqNzz//vIhoH2KLFi06ZswYonbdaauI7pLrJSQk/PLLL6NHzzcXNND+c3VVHTuqu1QeOn5cubsrEZVr8owtDRw4UER8fHwssR3ItWvXtA0S1xWw6WiPgvj4eBGpWbOm9bv+9ddftSliJUuWzB233Qs7O7tSpUrVqFGjefPmvr6+gYGBwcHBb7/99ujRo7UZqRSTsbIzmWeCTwTbxdk5bHdo+VTLadOm3WnL7rvIzMyMiIjQ5gA5OjqGhITkqe+n7V1vZ2e3YMGCu5xkypRT2l7TDg4qJERdvvwgzwjWdPny5aioqKCgIO2eSu7k/T8nqus+sT0Po9EYERGhvUbVrVv37udPTU2NiIjQSsCLSPXq1SMiIh7eVaoE7jrTJp6bpzdu375duyGj16VVdnZ2//79tSA4d+6mTWpwcXHhMksv2dnZPj4+5uLsIlK+fPmRI0euWrXKQvvmaTuflC1bVv6388ltP35kZGSEh4fnyfISExO1984WLS6UL68mTVL3/waNAu369evaHoO1a9fO/Yuh3RlycnJ6sJJ8txUVFSUi7du31+uEjw6TyTRp0iQ3NzcRqVq16po1a3Q8+blzavz45UWLFtVekby9vW8tcpeVlfXMM8+IyCuvvKJj14XeiRMnHB0dHR0djx49qrUcO3ZM+6vOvXrgkaIF7levqipV1LZtOYH7H3+okSPV6tX3XdjhHt3j+6BS6uTJk3d6H9TerydNmvQAn1RhVampysNDGQzKXIhzxQoloipXttRv2H0yGo1ffPHFF198QdRuOdp8zKeffjoqKuo/p3ufPauiolRIiGrWTNnZKRF1l/3j/f2VSMHZ7UslJSV5enqKyNdff637ybXpOK1bt9b9zPhPM2fOFJG+fftaud8pU6Zob3nmLZ3S0tISExPj4+NjYmJWrFgRHR0dGRkZERERFhYWEhISFBTk7+/v7e1dr169cuXKaRsP3pa3tzfFZKwp05QZcT6i6M6iEieO2x1DToVcyc7XTphJSUkhISHaj7hUqVIRERF54ou9e/fe6XtXrlzZoEGDcuVauLurLl3U7t35GQhsIC0tLTo6OigoSLvvoqlWrVpISEhMTMytS0gtNLH9Vrt3727UqJHWUVhY2K2R2vnz58PCwrTdI0SkcePGeWaVPYwI3HWmBd8vvPCCuUWrlhUTE6PL+bV9nIoVK5Z7O3Jt2Ze9vf3s2bN16QWaEydOzJ49u27duq+99lpsbKx1PrpfvXo1LCxM2xLTw8MjLCzsxl3XwaalpX388cfu7u4i4urq+umn02yxnBHWkJKSom2J3Lhx49wrqt58800RcXNz++eff3TpSNtj8IsvvtDlbI+gvXv3asXmtKVzuWv1PJgTJ1RIiHJzUyVLJrm7e3h7e0ebS2v/j1bPXbtg8vPz21OQNjh5KGi/9i+99JJSymg0aosV+vXrZ+tx2YwWuCuloqJUy5ZqyRLVrZuVun6A98Hw8HBtRp6Tk1NISIiF1pdAZxMnKhHVufPNliefVCLqo49sNyZY24EDBypWrGgOBapXrx4UFDRp0qRba3zlkZSk5s9Xd1rWO3u2ElHFiqkCVet12bJlBoPB2dk5n+/RmZmZZ8+ejY+PX7t27Zw5c7777jtt3ZsVKtohj7S0tLFjx4rImDFjrNnvpEmTtLT9k08+ebAzZGdnJyUlHT58eOvWrStWrIiKipo0adL48eNHjx69adOmTHOZL1hYdEp0jfgaEicSJ/6H/Q/fuNfq6v9p+/btWikPEWnSpMl/zstMSEgw10+rVavWsmW6jQQ2kZ2dHRMTExISot3r1VSqVCk4ODg6OjozMzPPxPa4uDhLDyk9Pd3cY+vWrQ8dOqS1HzlyJCQkxFwd67YfdR9SBO4609aUlSpVylyL8L333uvVq9fdV0bfI61Ajaura+74Pjo6Wtsq4dtvv81/FyggEhIStIr82hteVFTUbQ+Ljo6uVq2adpi/v795biYKq/Pnz2vVjdq2bWuugKZtrOrq6prPD1qZmZkbN278/PPPtQna91v3DbllZWWFh4drS+fq1av3wDuYJSSoF15QTk45uzL06aPi4hLzHHP9+vUJEyaYA4tatWpFRkbm+xk8cvbv329nZ+fs7JyYmPj111+LSJkyZR7l7cfNgbtSqls3NXiw9QJ3De+DhV+zZkpEmReRJCUpZ2dlZ8fmM4+af/755+OPP/bz89Num5lVqFBh8ODBP/744969h+93Hw1tl7+JEy0z4nwYNmyYFn7dKdDUJilv27Ytz/TkwMDAu8xNbtiwYd++fR/B7UZsaMWKFS1btnzppZe01ed//vmn1br+8ccfDQaDwWCYMGGC1TrFg4lPj5+WNO3npJ8TMxOVUgOODFh/LafY3f70/d0Pddeidq+9XkuuWGRD0ujo6KpVq979MknbZ16b6KDtM3/3iQ54uGRnZ69Zs+bll1/W9jfSlC5dWivp5ujo+O6771rzHtuKFSu0z61FihQZO3ZsUFCQ9qZmZ2fn7++vS3BacBC468/Ly0tEVq9ere9pJ06cqE1jnzt3rrlx48aNWjRmXkqGwmTFihXarvci0qVLl9zTYXbs2GG+ZV23bt1ly5bZcJywppMnT2p7iHXr1s18MZSdnZ171cu9u3r16ooVK8LCwnx9fbUXExEpWrTo5MmTdR31I2rLli1169YVkQoVWnz8cfZ97TW0Z4966illb69ElL29GjxY3TofTityZ946tUGDBpGRkVlsafSgnnjiCRHRbl+JSO5320dQ7sD94EHl4mLtwF3D+2ChtWtXzm4A5rqcX3+tRFSvXjYdFmwpOzs7Pj5+0qRJgYGBWkVyTceOo4sWVb6+KjxcxcTcfuuIVavUihU3H/76q5o4sSDWV7x27VrNmjVFpGvXrm+//fbQoUP79Onj7e3t5eVVunTp3KUs78LBwaFs2bL16tVr3759v379goODJxbAewuFlMlkmjdvnrbkVESqVq1aq1YtEdltrdIbX3zxhYgYDIbvvvvOOj3igYWdCau8p/J7ie+9efrNCrsrnMw42SWhy5rUNZeyLoWcCnHY7iBxUnJXyYjzEVkmC169awsBtdLerq6uoaGh5oWAuUv5GQyGoKAgHXdyRgG0bdu2F198UbsH07Nnz4YNG1auXFlEkpKSrDmMS5cuabNqtOVZTk5OQUFB+/fvt+YYrIPAXX/vvPOOiIwcOVLHc86fP9/e3t5gMPz888/mxvj4+BIlSojI8OHW2LYRNpGZmTlp0qTSpUtrl9fBwcEHDx40F2UrWbLkrUXZUOglJCRoF0b9+/d/gJ/+yZMn//jjj5EjRzZq1Ehb0qUxGAz169cPDg6ePn06K0n1kpaW9tprr7VseV5EtWih9u27128cP16JKEdHFRSkbl1scPHixbCwMO0tQESaNGkSFRXF1LZ82rFjh8Fg0P5R5C4N92jKzFRt2958+PnnStfrmvsaCe+DhdGNG2rmzH9teVm/vhJR8+bZbEgoSEwmU3x8/MSJEwcPHty165rc26UWKaL8/NQnn6h//rl5v2bwYOXmpo4cyXno6VmwisnkFhsbW6FCBUdHx9uG6S4uLuXKlWvWrJm/v39QUFBISEhYWFhERERUVFRMTEx8fHxiYiKveDZhMpmio6ObNWum/aTKlCkTHh6enJysbVu6fft2K4whPDxcu2L/4YcfrNAd8iPhRkLRnUW1ie1KqeTsZKVUl4Qun5/7vMTOEhInDtsdXj758qUsK20Qcvr06aCgIO2uXoUKFSIjIzdt2tS6dWvt97lly5YbN260zkhgQ5s2bdI+Oe7Zs+fSpUuZmZmNGzcWkc2bN1t/ML/99tuiRYveeuutxMS8C7gLDQJ3/W3dulVEPD099Sr5vWbNGhcXFxH59NNPzY2nTp3Sbkb17t2bq65C78KFC8OHD9fCBe3utKOj42uvvZa7kDceKTt37tTC1ueee+5eYtYjR45ERkYGBwdru5PlniTVrFmzkJCQqKioixcvWmHkj6b161XNmkpEubio8PB7mnOXmqrefFOdPJm3/fRpNXp0inkbnE6dOq1cudISY340+fr6FilSpHz58leu5Gu7KuiO98FCbsMGJaI8PRVrdHA7R4+qyEj1wguqdm2VO3x3cVHt2qnx49XgwapPH9WjR87xBTlwV0plZGR88MEHn3322c8//zxv3ryYmJh9+/ZduHCBrZ4LJqPRGB0d3bRpU+3Sq1KlShEREWlpadpXf//9dxGxs7MLDAw0lyS2hE8++VZE7O3tp0+fbrleoJdpSdP8D/vnaeyS0GXW5VnuO9y7JHTZnWaDDUljYmLMN4208L1y5cozZ85k1s4jIikpSUSKFi1qbhkwYICI/P777zYcVSFG4G4RWjnRDRs25P9UGRkZWrD+8ssvmxuTkpK0MgUdOnRIN0/tQGG3c+fOjh07jh07tmfPntTXxoYNG7TNcl955ZVbv5qZmblt27aIiIjAwEBtrZZZkSJFfH19w8LCVqxYYf60AEu7fl2FhCiDQYmotm3VA3wiO3ZMhYQoFxclory9n/b19dXlXQa5paSkGI3G48eP23oguD3eBwuJtDQ1apTy8lI1a6q2bdXSpSorSy1YoEiRcA/OnVPR0So0VDVrpuzslIjq3VsNHqxmzlStWyttu4cCHrjjoWE0rps92zxbpUqVKj/99FPGv6saXbhwYejQodr0OEdHx+DgYEvM1hwzRlWtmlm+fHPS9ofF+HPjnzv+XJ5GraTMoRsWvDHzn4xG488//9ymTZsnnnjigw8+uH79ug0HA+vTJu2Z96kaPXq0iHzEfvWWQeBuEa+99pqI1K5d+6OPPlq+fHk+p1/t3Llz1KhR5ikPaWlpbdu2FZEGDRpcvnxZh+ECeDj9/fff2v4248aNU0pduXLFXJBdu+43K1euXGBgYERExLZt25g/ZUPLlqkKFZSIcnNTERHqHmeT7N2rnnlGOTgoEWVnpwYOVDt3MgkUwEPr5ZdVYKDSPuTHxKjSpdXhw7YeEx5Kly+rhQvV2rVq8GD1118qLk5VrqxSUwnckW9Go4qKUl5eF5s316L2iIiIPDtJakVmmjdv7uLisnXr1uDgYAcHB60ecXBwsF77rptM6rXXcsoMzpt3ux0MUCDNuDTDN8E3T6MWuNtiOECO5s2bi8j69Tmb906ZMkVEnn32WZsOqtAyKKVuWz8O+aFVb/j444/NLeXKlfPx8fH29m7WrFmLFi20jOwBZGVl9e3bd8mSJZUqVVq/fn3ujYYBPIKioqIGDx5sNBorVap0+vRp80u6vb19o0aNtJcdHx+fChUq2HacMEtJkZAQ+e03ERE/P/nlF7nLD2fXLvnqK/njDzEaxdFRBg2Sd98VLy+rDRYA9JaRIcWKycmTUqZMTstbb4mIfPGFDQeFh93TT0ufPjJwoLz8sri7S2SkbN8u/9tTHLgf2dny++8ybpwcOiQiUqPGwrCw7oMG5S67bzKZ5syZ88knn+zevVtEKlas+Oeff/r4+Bw4cOD999+fPXu2UsrDw2PkyJHvvPOOuQzgA1BKXn1Vvv1WnJzkr7+kb9/8PjlYzbmsc177vNbVXve46+MiokQZxOB7yHeM55iORTraenR4dD311FMzZ86cPn16UFCQiKxZs6Zz587e3t6xsbG2Hloh5GDrARRONWrUGDVqVP369Tdv3rx58+YdO3acPXt21qxZs2bNEhFXV9emTZu2bNmyVatWrVq10vYIvhdKqeHDhy9ZsqR06dIrVqwgbQcwcODA1NTUxYsXz58/383NrUmTJuaQ3byjJgqU4sVl+nTp1UtGjpTly+Xxx+X552XOHNm2TUqWFBHp3VvefFPs7GT8eFm8WJQSJycZPFjef19q1rT16AEgn44dk+LFb6btItKwocyebbsBoVD5+GNp3FhSU209DjyMsrLkzz9l3DhJSBARqVZNRo+WoUMDHG5mJiaTafHixWFhYTt27BCRypUrv/7668OHD9eWlnp5eUVFRcXFxb333nvLly8fP3781KlTx41bHhTU5N9LT++JUvLyy/LDD+LsLFFR0ru3Xs8T1uDp6Dmh4oSuh7r6FvF1s3PbcH3DFq8tth4UIDVq1BCRI0eOaA9r1qwpIocPH7blmAovZrhbQ3Z29sGDB+Pi4tavXx8bG3vgwAGTyWT+avHixZs3b65Nfm/btm2easu5hYaGfv75525ubitXrmzTpo1Vxg7g4bBt27bGjRs7OHAb9aFx/rwEB8uFC9Kjh0yeLD16yJQpIiKdO0unTvL++yIiRYrIiBHy+uvi6WnbwQKATk6ckMaNJTn5ZsvkybJmjfz5p+3GhIeeeYa7iPz2mwwZImfOMMMd90yL2j/5JGdWe/XqEhoqQ4fKv6P2OXPmhIWF7d+/X0SqVKny2muvmaP2W23YsOG9995LSDh66VLCY485jx2b53z/wWiUF1+UadPEzU3mz5euXfP5DGEbV4xX9qTvEZEGrg2K2xc/cONABccKReyL2HpceHRNmzZt6NChTz/99IwZM0REKeXu7p6enp6amlqkCL+ZOiNwt4GrV6/u2rVLy9/XrVt34cKF3F+tXr26Fr7nKT7zww8/jBo1ytHRMTo6unv37rYYOABAZykp8v33kp4uc+fKzz+Lt7d07iyhofL229Kjh7z9ds60dwAoJIxGKVVKYmOlQYOcliFDpF49GT3apsPCw01bOKEt7VNKduyQhg0lVwkQ4M5WrZIXXpATJ0RE6tWTMWPkySfFzu7mAdnZl+fObTN2bEJCgohUr1793XffHTJkiOM9/Ib9/feZ0NDyO3eKiNSuLR9+KAMH/uvct2U0ytChMn26uLlJdLR06fKgTw0A/i0mJqZ9+/atWrXatGmT1lK/fv19+/bt2LGjcePGNh1aIUTgbntHjx7VKs9s2bJlx44dN27cMH/Jzc2tadOmrVq1ys7O/u6775RSU6dOfe6552w3WACAzj75RLKzpXVreest2b5d/Pzkvfekc2cxGGw9MgCwhM8/lz//lO++kwoVZO5c+eYbiY+XokVtPSwAj6T9+6VBA6lbV95+W55+Wuztb37JZJI5c2TsWDl48Ll69f5JTx89evTQoUPva0WpUjJ7towZk1Oopn59CQuTwMA7Hm80ynPPyYwZ4u4uCxdKp04P/MQAIK+zZ8+WL1++VKlSSUlJWkufPn2io6NnzZo1YMAA246t8KH4gO1Vr169evXqTz31lNyu+ExsbGxsbKy2uOOLL74gbQeAQql7d5kyRb77LuchaTuAQuvtt6VSJfnxR7l4URo1kthY0nYA1pOYKJ9+Klu3ipub+PjIu+/Khg3SosW/Zp5nZcn06fLpp3L0qIhInTpffPBBiX79HqB4o8EggYHyxBMyZ46EhsrevTJwoLRuLePGSefOkpQke/bcTNUTEmTNGpkxQ4oXl6VLpXVrXZ4wAOQoV66ch4fHpUuXkpOTtS3fatasaTAYzmqrfKArZrgXaMnJydrMdxEJCAho0qSJrUcEANCZNsP9gw/k1Clp00ZKlZKvv2b5MAAAgN7S0uTxx+W552TECLl+XUaPFqNR/vrr5gFaPfePPxZtF8Hb1XN/YDduyMSJ8tlncvGiiIifn/TrJyNGyIwZ8vTTIiJvvCHly4uIdOggzZvnv0MAyCvA1zcjOfnnn3+u3KSJiKT8/LPLyy+7PPNMzn5i0A8z3Au0EiVKdO/enYrtAPAoqFRJXn6ZOsYAAACWsWCBlCsn770nIlKqlPz8s1SpIocPS82akpkpM2fKRx/JkSMiIvXqSWho3iIz+ePiIq+9JsHB8v33Eh4uK1dK377StKm895707JmzCYGIvPGGXh0CQF4LixWTVavk4EFp0kREileuLDdu5LzuQVcE7gAA2FLTpmI05vz59dfl7FmpUMGmAwIAACiUDhyQli1vPnRzkwYNZO9eKVtW6teXU6dERBo1krFjpX///97e9IG4u0toqAwbJmvWiIuLVK4sPXrIu+/KxImW6A0A/q1GDRG5mbBrD7U1PdAVgTsAALbUs+fNPzs6SkSEzUYCAABQyN1aU1cpKVJEWraU4sXlzTflmWcsFLXnVqqUDBggixaJiLzzjjRoIJs2WbpPALglcK9aVZyc5PRpSU8XV1cbjqvwsfgbCQAAAAAAgI3VrSvbt998eOOG7N0r9eqJiEydKrt2yZAhVkjb83B3lwkT5OWXxWSycs8AHj01a4rkmtJuby+VK4tScuyYDQdVKBG4AwAAAACAwq5/fzl9Wr77TjIz5epVeeUVaddOatcWESlaVAwGW42rb18pW1bmzrVV/wAeGXkC99u2QA8E7gAAAAAAoLBzcpK//5bNm6VxY+nQQVxd5ddfbT2mHD/8IElJth4EgEKvUiVxdpZz5+TatZwWAnfLoIY7AAAAAAB4BFSrJjNm2HoQOZo1k5Ilc/5cpYr8/bc89phNBwSg0LOzk2rV5MABOXpUGjUSuaWqO3TCDHcAAAAAAACrWrtW/vzz5sNt2+Svv2w3GgCPiDxT2rWHBO56I3AHAAAAAACwqrQ0SU6++fDqVUlNtd1oADwi8iTs2gx3SsrojcAdAAAAAAAAAAq7PDVkqlcXOzu5cEGMRhsOqvChhjsAAAAAAIC1/fOP9O+f8+eDB6VnT5uOBsCjoEEDadZMKlTIeejsLImJ4ulp0zEVQgTuAAAAAAAA1taokXz4Yc6fJ0+26VAAPCI6dpRt2+T8eRk6VDZvFqWkcWP59FOpWtXWIytUKCkDAAAAAABgbcWLS8OGOf+VLWvr0QB4dAwYIOXKSVyc7NwpTZpIz56SnW3rMRUqBO4AAAAAAAAA8AjYtEnOnpWPPxYXF3FykrfeEg8PWbLE1sMqVCgpAwAAAAAAYFXVqsn16zcf1q0raWm2Gw2AR8eBA9KwodjlmoTdpIkcOCC9e9tuTIUNgTsAAAAAAIBVde4snTvffPjEE7YbCoBHiqOjZGX9qyUrS5ycbDSawomSMgAAAAAAAADwCKhXT3bskMzMnIdKyebN0qiRTcdU2BC4AwAAAAAAAMAjoEkTqV9fhg+XEyfkzBl54w0pWVI6dbL1sAoVAncAAAAAAAAAeDTMnSuVKsnzz8ugQeLoKNHRYjDYekyFikEpZesxAAAAAAAAAADw0GOGOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHTgYOsB2IjRKJMny7p1kpYmjRvLK69IqVK2HhMAAAAAAAAA4CH2qAbuL70kx4/LuHHi4SG//CLt28u2beLqauthAQAAAAAAAAAeVgallK3HYHVnz0qdOnLs2M1Z7e3ayfDh8swzNh0WAAAAAAAAAOAh9kjOcN+/X+rU+VcNmXbtZO9eCQyUFSvu8n17WrVqt3nzXQ6oUKHCuHHjevfubWdHcXwUFCaTiV9IAAAAAAAAwAoeycA9M1McHf/V4ugo167JtWty5cpdvs+Qnn7lrgcYjcZ+/fq99957n3zyiS4jBfLJZDK1bt26Q4cOYWFhHh4eth4OAAAAAAAAUJg9kiVljhyRVq0kMVGcnXNa+vWTHj3k6aclK+su35dpMKTd9a9r/fr1ffv2NRqNf/31V2BgoI5DBh7MzJkzn3rqqcqVKx86dMjJycnWwwEAAAAAAAAKs0cycBeRTp2kaVP5/HOxt5cFC+Sll+TgQSlSJP8n/vrrr9944w0PD49NmzbVr18//ycEHpjJZHr88cfj4+OnTJkybNgwWw8HAAAAAAAAKOQe1cA9KUlefVW2bBGTSapUkc8/l2bN9Dr3888//+uvv9aqVWvLli3FixfX67TA/frzzz8HDx5cpUqVhIQEprcDAAAAAAAAlvaIBe5KyQsvyIAB0rOn5TpJT09v165dXFycn5/f4sWL7e3tLdcXcCdMbwcAAAAAAACszM7WA7Cuzz6TadMkKOjum6Pmk6ur65w5c0qXLr18+fKPPvrIch0Bd/HXX3/Fx8dXqVJlyJAhth4LAAAAAAAA8Eh4lAL3FSvk/ffFzk6mT5dixSzaVZUqVWbOnOng4PDxxx/Pnj3bon0BtzKZTJ9++qmIjB07lmIyAAAAAAAAgHU8MoH78ePy1FNiNMpHH0mvXlbosEuXLp9++qlSaujQoXv37rVCj4DZzJkztentQUFBth4LAAAAAAAA8Kh4NAL3a9ckIEAuXZI+feTdd63W7VtvvTVo0KCrV6/279//iiWL2MA6nnpK3n8/588pKdKli01Hc2dGo/GTTz4Rprfj/qWny+TJcvZszsMjR2TVKpsOCAAAAAAA4KHyCATu2kap8fFSp45ERorBYM3Op06d2rRp04SEhCFDhphMJmt2Dd3t2ycTJ8rWrSIi2dmya5etB3QHCxbsPnToWLVq1ajejvuVmiojRsioUTkPt2yRn3+26YAAAAAAAAAeKo9A4D5+vERFSZEiMneupUu338q8gWp0dLQ26RgPtXfflREjxGi09TjuzGiU995rUr586rhxfzk6Otp6OHj4lCsn587JokW2HgcAAAAAAMBDqLAH7itXypgxYjDIr79KvXo2GULVqlX//PNPe3v7Dz/8cBEh1kPOz08qVpTvv7f1OO5s5kw5cEAMBscnnmhh67HgoWQwyIQJEhIiaWm2HgoAAAAAAMDDxpaBe2Ji4vz58/39/b/44ouEhATdz3/s2LEPvv7aKCLvvy/9++t+/nvn6+v78ccfm0ymwYMH79u3T/fzHz58+KuvvurZs2d0dPTJkyd1P/8jLitL5s6VQ4dyHn7zjXz2mZw7Z9Mx3YHRKNo6ivffF4q34x6lp0tMjIwfL337ysWLIiItW4qvr3z0ka1HBgAAAAAA8LAxKKVs0vGhQ4e6det2+vTp7OxsraV69er+/v4BAQEdO3Z0cHDI5/nT0tLatm27a9euj4YPH/vjj2Jn47n8SqlBgwZFRUXVqVNn8+bNxfQobrN3795Zs2YtWrQoLi5Oa3F0dPT09Pz777+9vLzyf34cOiS//CK//irnz8srr8iaNfLnn1Kvnnz6qWzZIrGxkpRk6yH+2++/yzPPSJUqkpBA4I67OXNG4uJk/XqJjZVt2yQjI6d96lQZO1ZOn5ZLl+Txx2XECNm7V/7806ZjBQAAAAAAeHjYJnDfu3dvt27dzpw506xZs5EjR65evXrJkiWXL1/Wvlq2bNnevXv37t27S5curq6uD9bFU089NXPmzNq1a2/ZskWXdDv/rl271qZNm/j4+D59+sybN8/wQNu33rhxY/Xq1QsWLFi4cOHZs2e1xuLFi/fs2dPPz2/atGlr164tWbLk4sWLW7durevwHyHp6TJ7tvzyi/zzj2j/Pho2lFdflW++yQncMzLk8cclKUlWrpTQUImMFE9PWw9axGiUBg3kwAGZOlWef97Wo0EBk5WVtWvXyfXra2zcKBs2yKlTN79kby8NGoi3t7RpI02aiJ+fnD4tIjJ1qrz+uvToQeAOAAAAAABwr2wQuG/evLlXr16XLl3q3Lnz/PnzixQpIiJGo3Hjxo2LFi2aP3/+wYMHtSNdXV27dOkSEBDQu3dvz/tJNL/88su33nrLw8Nj06ZN9evXt8jTeCDHjx9v3rz5pUuXPvnkk/fee+/evzE5OXnlypULFy5csGBBamqq1li5cuXu3bv7+/v7+fk5OTmJSEZGxlNPPTVv3jwPD4+5c+d27drVIk+j8Nq3T6ZPl59/lkuXRERcXcXfX4KDxddXRGT4cHn3XalSRURk7Vr57js5c0Y2bZLKlWXuXGnWzJYjF5EZMyQoSGrUkAMHJN9LRFAYXLlyZevWrbGxsevXr9+wYYOLS8Xk5IPaS36RItKokfj4iLe3+PhIiRI533L+vDRrlhO4KyU+PlK5skyYIOnpUq2azZ4IAAAAAADAw8LagfuqVav69u177dq1vn37/vnnny4uLrces3fv3kWLFi1cuHDDhg3a8Ozs7Jo0aeLv7z9o0KD/LJayatWq7t27G43GqKioAQMGWORp5MOKFSt69OihlIqOju7Vq9fdDz5x4sTy5csXLly4fPnyrKwsrbFevXoBAQH+/v7e3t63TpM3Go0vvvjitGnTnJ2df//99yeeeMIiT6NwSU1NXbDg0rffVtu2LaeldWsZNkyefFI8PO72jRcvysCBsnatODvLjz/K0KFWGOztMb0dImI0Gvfu3bthw4aNGzdu3LjxkHnnARGDweDl5dWlS1zjxq5t2kjdunLbNTZGoyQmSuXKOQ+vXJGjR2XgQFFKYmKkXDmrPA0AAAAAAICHllUD9z///PPZZ5/NysoaMmTIL7/88p+F2i9cuLBs2bJZs2atWLEi4381hrVS74GBgW3btrW7pTL7iRMnWrRocfHixffff//DDz+0yNPIt08++WTs2LElSpTYsmVLzZo1bz3AXJx9+/bt2g/I3t6+devWAQEB/fv3r1Wr1t3Pr5R64403JkyYYG9vP2nSpBdeeMEiT6NQiIuLmzx58h9//FG+fPeEhFnFi8vAgfLSS9K48b2eITtbxoyR8eNFRIKD5fvvxdHRYsO9M6a3P+KUUn/88cf//d//mVfAiIiHh0eLFi3atm3bpk2bNm3alCxZ8gHOnJYmXbvKhg3SoIGsWycPdA4AAAAAAIBHhfUC94kTJ44aNcpkMoWEhEREROSZmj1//vxSpUq1bdvW3t7+1u9NS0tbtWrVrFmzFi5cmJKSojU+9thj3bt3DwgI6Nmzp7u7u4jcuHHDx8cnLi6uW7duS5Ysue2pCgKl1JNPPjlr1iwvL6/NmzcXLVpU/ldUZ9asWXPnzj2tFXQQcXNz69y5c2BgYO/evYsXL35fvYwfP3706NEGg+Hzzz9/8803dX8WD7WkpKTffvvt559/3rdvn4gYDIZOnTqNGLGwd283Z+cHOeFvv8nw4ZKeLj4+MmuWtUu6G41Sv74cPCjTpslzz1m1axQQ33zzzQ8//HDo0KFy5cr5+Ph4e3s3a9asZcuWTnfdPPfiRdm4UTZulIQEmTPnjodduiTt28u+fdK6taxcKe7u+o8fAAAAAACgcLBS4G4Ofz/77LPQ0NBbD6hWrdrx48dLlizZpUsXf3//fv36abXd8zCXep83b15CQoLWqKXSAQEBq1ev/uuvv2rVqrVly5b7jaet7Nq1a61bt967d6+/v39QUNCiRYuio6OvXLmifbVMmTJ+fn6BgYHdunVzvucAeN68eQsWLJgyZYrj/6ZY//DDDyEhISaTKTQ0NDw83CLP5KFiMpk2bNjw22+//fbbb+np6SLi6en57LPPvvjiizVq1Mjnybdvl3795ORJqVBB5syRVq30GPG9OXNG+vWTS5eY3v7o6tSp09q1a3/66afhw4ff5TCTSe3da9iw4WbObnbypFSqdMdvTEwUHx85flx8fWXRInmw+1IAAAAAAACFnsUDd6XU22+//eWXX9rb20+cOPHFF1+89Zj09PT3339/wYIF5orDrq6uvr6+vXv37t27d5kyZW575ltLvbu5uRkMhs2bNxeojVLv5ODBgy1btszMzLxx44bWcvfi7HeXmpparVq1y5cv9+7d+6+//jIXx//999+ff/75rKysl1566fvvv7+1CM8j4vr16xMmTJg6deqxY8dExN7evmfPnsOGDevZs+d/lja6E6UkPFxeeknMN3fOnZPAQImNFRcXmThRPffc/f0Q70tMjBw8KMOG5Tz87Tdp0ECaNLFchyi4Ll265OnpaTAYLly4cOu9xmvXru3cuXP9+vWxsbGbNm3NyDh79WrOb6a7u7RoId7e0qaNdO4srq536+XwYfHxkfPn5amnZMYMeVRfSwAAAAAAAO7GsoG70WgcPnz4L7/84uTk9Ntvvw0cOPDuxx89enThwoWzZs3auHGjyWSSXNulBgQENGvW7LbfdfLkyejo6J9++unAgQN+fn6LFy/W/5lYRr9+/aKjo2vXrv3SSy/17t27atWq+Tnbtm3bevTokZSU1KFDh+joaK1SjYgsWrRo4MCB6enpTz31VGRkpKNNSozb2qxZs4KDg1NSUipWrPj000+/9NJLVapUyec5x4+X0aOlVi2ZN0/Mt3jMJd07dFhUp87C77777u41PR7Y2LHy6aeyYIH4+4uItG0rX3wh3t6W6AoFXWRk5HPPPde9e/elS5eaG3///feYmJgNGzbs3btXeznV+PmdLVXKs00badtWGjW6vyURu3ZJx46SkiL/93/yww86PgMAAAAAAIBCwoKBe0ZGxjPPPDN79mx3d/c5c+b4+fnd+/cmJSUtWbJk0aJFS5cuvXbtmtaobZcaEBDQsWPHW2clb9y4sW3btvXr14+Pj9ftOVhY06ZNd+zYsXbt2g4dOuhywv3793fr1u306dPNmjVbunTpY489prWvW7eud+/eqampvXr1ioqKcnNz06W7h4XRaPTw8MjIyFiwYEGvXr30muZ/+rT07y9bt4qHh0ybJgMG3PzS77+fGzas+o0b6e3atZs1a1bZsmV16TG3sWPl2DHZtEl27xY3NwL3R1r//v3nzZs3ceLEESNGmBubN28eFxcnIg4ODo8//rhW1b19+/b5vLG3dq306CE3bsgHH0hYWD4HDgAAAAAAUNhYKnC/fv16v379VqxYUaJEiUWLFrVt2/aBz7Ns2bLo6OjFixdfunRJayxTpkxAQEDv3r27detmrp2SkZFRvHjxjIyMpKSkkiVL6vM0LOn69evFixc3GAwpKSk6JuAnTpzo2rXroUOHvLy8li9fXrlyZa09Li6uR48eFy9ebNWq1ZIlSx6KvyK9HDlypGbNmpUqVTp58qS+Z75xQ/7v/2TaNDEY5O23Zdw4Me/Uu3379v79+584caJChQqzZ89u3bq1jv2mp8unn4q7u5w6JUWKSHg4gfujKz09/bHHHktLSzt58mTFihXN7b/88ktKSkqbNm2aNWt271tB3Iv582XAAHFwyPjxx1VDh/bU8cwAAAAAAAAPO4tU4b18+bKvr++KFSs8PT3Xrl37wGm7iLi7uz/xxBORkZHnz5+PiYkJDQ318vK6cOHCL7/80qdPn6NHj5qPdHZ2btasmVJq8+bNejwJi9u0aVN2dnbjxo31nW9epUqVmJiYxo0bHzhwoF27dgcPHtTamzVr9s8//1SuXHnz5s0dOnQ4c+aMjp0WcNr+unXq1NH9zC4uMnWqTJokDg4yfrz4+0tycs6XmjZtum3bts6dOycmJnbs2PHnn39+4F6SkyU2ViZPlldeka5dpXx56fm/kPOTT+S332Tv3nw/Ezy0VqxYcf369ZYtW+ZO20XkhRdeeOONN9q2batv2i4iffvKlCnG+vX9X3wx4I8//tD35AAAAAAAAA81/QP3s2fPduzYcdOmTdWqVYuJiWnUqJEup7W3t/fx8QkPD9+/f/+ePXvGjRvXv3//evXq5T7G29tbRDZs2KBLj5a2fv16+d+YRcRoNJp3T82nsmXLrlmzxsfH5+TJk23btjXfgfDy8oqJialTp058fLyPj8+RI0d06a7g0+46WCJw1wQHy/Ll8thjsmKFDBkSYS5qVLp06eXLl4eGhmZkZLz44ovDhw/PzMz8z7OdPXt27dr0b7+VESOkfXspVUpKlpR27WT4cPn2W1m5Us6elVOncg4uUULGjZPXX7fQM8NDYMGCBSLSp08fa3b6/PP2zz3X22QyPffcc0uWLLFm1wAAAAAAAAWZzoH70aNH27Vrt2fPnvr168fExNSsWVPf82saNGjw7rvvzpkzJ0+7NpVeC7ILPu3GgHn6/+bNm4sVKzZkyBBdTl68ePHly5f36NFDW22wcuVKrb1y5cobNmxo1arVsWPHtJ+ULt0VcFrgXrt2be3hkSNHXn/99aioKB276NRJtm6VQYP+XrTotTZt2syePVtrd3BwCA8PnzFjhqur6+TJkzt37nz27Nnc35icnBwbGzt58uRXXnmla9eunp6e5cuXf/fdi6+8IpMmSUyMXL4sxYpJs2YSFCTh4RIdLUeOyKFDN8/w7LOSlia7d+v4bPDQMBqNCxcuFJG+fftaueuXX345NDQ0KytrwIABMTExVu4dAAAAAACgYMq79Wh+xMfH+/n5nTlzpmXLlkuWLClVqpSOJ78X3t7eBoNhy5Yt2dnZt+6qWqCYTKZNmzaJSJs2bbSW9evXZ2Zm6lhexs3NLTo6etiwYZGRkf7+/n/88Uf//v1FpGTJkitXruzXr9/KlSs7dOiwePFi8xgKqzwlZbZv3z5hwoQ+ffoMHDhQx16qVJGff27v5PT8tGnTBg4c+Pbbb48bN87e3l5Enn766dq1az/xxBPr169v1qzZk08+ee3atb179+7bt+/KlSt5zlOiRAkvr6MNG1auV0+0/ypUuFu/BoNMnChNm+r4VPDQWL9+/cWLF2vWrFm3bl3r9/7ZZ59dvnx5ypQpAQEBa9asadKkifXHAAAAAAAAUKDolkrHxMQEBARcuXKlc+fO8+fPL1KkiF5nvnelS5euWbPmoUOHdu3a1axZM+sP4N7t3bv3ypUrVapUMZddzjPhXRcODg7Tpk0rUaJERETEwIEDJ0+ePHToUBHx8PBYtGjR4MGD586d27Vr17lz53br1k3HfguaPCVlLFdhxsXFZerUqa1btx41atT48eN37tz5xx9/aPvTtmjRYvv27YGBgRs3boyIiDB/S/HixWvUqFGvXr369etr/69WrZrBYPjPvt59V8xHNWgg//wj69ezaeojR6sno91Lsz6DwTBx4sSUlJRZs2Z17949JibGvI4EAAAAAADg0aRPSZnFixf7+flduXKlb9++S5YssUnartFKohf8qjJ5CriLiDbh3VvvxNRgMEyYMCE8PNxoNA4bNuzrr7/W2p2dnaOiooYOHXr9+vWAgABzCZTC5/r162fOnHF2dq5UqZLWYrk9VDXBwcGrVq0qW7bs8uXLW7Zsaa7bU7p06a+//jojI6NkyZLff//9qlWrzp8/n5ycvG3btunTp4eGhgYEBFSvXv1e0nYRcXUVF5ecP1+5Il26yNtvy65dFnpOyHH69Om5c+faehQ3afVkrFzAPTd7e/sZM2b4+flduHChR48eeSomAQAAAAAAPGp0CNz37dvXr1+/9PT0ESNGzJkzx9nZOf/nfGBadZSNGzfacAz3QhuhuZbLoUOHzp07V6ZMmRo1aliiu9DQ0O+++85gMLzxxhujR4/WGu3t7X/++eeQkJDMzMxBgwbtKqRh7cGDB5VStWrV0qq7yC0l3S2hXbt227Zta9my5cmTJy9fvmxu1zaqbdeu3ciRIzt37lymTBlduitWTIYPF5NJ3n9fl/Ph9lJSUnx8fJ588sno6Ghbj0VEZM+ePYcOHSpTpkzr1q1tOAwnJ6e5c+e2bdv26NGj3bp1y/0LDwAAAAAA8KjRIXDftm2bp6dn//79J06caGen8y6s90ubIV7wd/DLM8Ndqyej+/T23EaNGvXLL784ODiMHz9+7NixWqPBYPjmm2+eeuopT0/PuLg4y/VuQ7cWkLH0DHdNxYoV161bt3jx4g4dOuQZjCWy/nfflSJFJDpaNm3S/dzIUbx48SFDhmRnZz/55JPr1q2z9XBy6sn06dPH5i+8bm5uCxYs8PLyio+P10YFAAAAAADwaNIhpklMTDx16lS5cuXyf6r8q1evXsmSJbUh2Xosd3ThwoUjR464u7s3bNhQa7FEAfdbPffcc3Pnzi1TpkyeAhSenp4F/G8sP/LE6xcuXEhJSSlRosRjjz1m6a5dXFy6du16l8HoqHRpCQkRESa5W9ZHH3306quv3rhxo3fv3ja/R2UO3G07DE3p0qXDwsIMBsPKlSttPRYAAAAAAACb0SFw12JiLTI2S09PT05Ozv/J75fBYGjVqtWt4ylQtOntrVu3dnBwyN1i6cBdRAICAo4cOdK8efPcjdaJ+20lz6Ryy+2Yeu+DsVDvb74pJUvKihWyZo0lTo8cX3311aBBg1JTU3v06HHgwAFbDSMxMTEuLs7Dw6NLly42GcDBgwc/+OAD8xYFIrJ+/XqllIXqYgEAAAAAADwUdAjcW7Zs6eTktHv37tTUVK3l+++/L168+BdffJH/kz+A294AKFDyFJBJSUnZv3+/s7Nz06ZNrdC7h4dH7ofp6ek7duywt7dv2bKlFXq3vjwZtxUKuN/FoUOHLNd78eLy+usiIv+rGASLsLOzmz59eo8ePS5evNitW7eTJ0/aZBjz589XSnXv3t3FvHmudf31118ffvjhDz/8oD1UShWoGfcAAAAAAAA2oUPg7urq2rhxY6PRuGXLFq2lSpUqmZmZtoq8tSBbmzNeMOWZz75x40aTydS8eXObBGdbt27NzMxs2LBhsWLFrN+7FeTJuK1TwP22Lly4cPny5eLFi+u1V+qtXn1VypSR9etl6VIL9QAREUdHx9mzZ/v4+Jw6dapnz56XLl2y/hhsnm7nGcD27dtPnTpVoUIF69w4BAAAAAAAKJj02Wovz6Tytm3bGgyGLVu2ZGZm6nL++9KyZUsHB4ddu3Zdu3bN+r3/p4yMjO3bt9vZ2ZlnlNu2okvhridz5syZq1evPvbYYyVLltRabFhSxgpdu7tLaKiIyNixopTl+oG4ubktWrSocePGe/fu7dmzp5Vfba5cubJu3TpHR8devXpZs1+zxMTEHTt2eHh4dOrUSWvR8vd+/foZDAabDAkAAAAAAKAgsEjgXqpUqdq1a6enp+/atUuX898Xd3f3xx9/PDs7e+vWrdbv/T9t27YtIyOjfv36JUqU0FoI3C3n1ozbhiVlrDO5/qWXpEIFiYuTefNI3C2rWLFiixcvrlat2pYtW/r06ZORkWG1rhctWpSZmdm+fXvzy4iVzZ07VynVs2dP87qc+fPnC/VkAAAAAADAI0+fwF2r4rJx40aj0Zi7xVZ1XQpyGfc8AXd2drZWiqd169bWH4xSatOmTVLYA3dzvJ6dnX3s2DE7O7uaNWvafDAW4uoqH3yQ2bHjys8+62z+9wgLKV++/IoVKzw9PVevXj1o0CCr/YUXtHoyx48f37NnT7Fixdq3b2+rIQEAAAAAABQE+gTu5cuXr1KlSmpq6r59+7QW20beD1HgrpW+qVWrlqenp/UHk5CQcPHiRU9Pz2rVqlm/dyvIM6n82LFjmZmZlStXdnV1tf5grFbN5tlnDSdPDt+2be3MmTMt3Rdq1Kjx999/lyhRYv78+SNHjrRCjxkZGcuXLxeRgIAAK3R3q5SUlH/++cfR0bFHjx5ay9y5c0XE39/fycnJJkMCAAAAAAAoIPQJ3OWWKe1aoGyrGe7t2rUTkQ0bNphMJpsM4C60GeXaX5fYuqKL9gPy8fGxSe9WkCfjtmEBd7Hifq2Ojo5jx44VkQ8++CArK8vS3aFhw4ZLlixxd3efNGnSmDFjLN3dqlWrUlNTmzZtWrVqVUv3dYcBxLu4uHbo0MFc0MbmM+4BAAAAAAAKCN0C9zyTyr28vEqXLn3mzJkTJ07o1cW9q1ChQqVKlVJSUvbv32/93u/i0KFD586dK1OmTI0aNbQWCrhbVJ4qLjYs4J6dnX306FGrVbMJCgqqW7fu4cOHf/31Vyt0h9atW8+cOdPR0XHcuHFfffWVRfuyebr9118+GRkXBw2apj28dOnShg0bnJ2d/fz8bDUkAAAAAACAAsJSgbvBYNCKklPGPTdtPObp7WLryLtwB+6ZmZknTpywt7evXr261mK1Oea3snI1G3t7+w8++EBEPvzww/T0dCv0CH9//2nTptnZ2b311ltTp061UC/Z2dla4N63b9/c7adPn7bONtEZGbJsmWRlOXXrVlFrWb7c6OPzVmDgC0WLFrXCAAAAAAAAAAoy3QL3Ro0aFS1a9MiRI+fOndNa2rRpI5Rx/7c8AXdiYuLJkyeLFy9er1496w8mOTn54MGDLi4uTZo0sX7vVnD48OHs7Oxq1ao5OztrLTYsKWP9yfWBgYGNGzdOTEycMmWK1Tp9xD399NPffvutUio4OHjOnDl6nfbatWuxsbHjx48PCAgoU6aMyWQqVqyYeZWMiCQmJvr4+HTv3j0+Pl6vTu9k5Uq5elWaNZNKlXJaoqLKrF37abt2P1i6awAAAAAAgIJPt8Dd3t6+RYsWIrJx40atRZvHTeCeW57AvWTJkosWLZowYYKdnW4/iPsajMlkatGiRWHd5/DW+ewXLlwQG5WUsX7WbzAYPvroIxH55JNPrl27FhER8fPPP//zzz/aXwIsZOTIkWPHjjUajc8888y6dese+DwJCQmRkZEjRoxo1KhRsWLF2rVrN3r06EWLFiUnJ2dmZl65cuWJJ57IzMzUDvb09GzRosXly5f9/PyOHTum01O5vQULRETM9WzS02XFCrGzExtt4AoAAAAAAFCwOOh4Lm9v71WrVm3YsKFfv34i0rJlSycnp927d1+9erVIkSI6dnSrZcuW7d69++233za3NG7c2MPD49ChQxcuXChTpoxFe79HKSkp+/btc3Z2btq0qdbi6uraq1cvW43n1vo2hcytGfe+ffsuXrxYunRp6w/GJtVsAgIC2rRps3Hjxh9++OHTTz9NTU3V2osXL16jRo3q1atXr169Xr169evXr1OnjoeHhzXHVoh99NFHqamp33zzTe/evdesWWP+9353WVlZu3fvjo2NXb9+/bp163LfF3FwcGjSpIm3t3ezZs3at29vNBp9fHyWL18+aNCgWbNm2dvb29vb//7776mpqX///XfXrl1jY2M9PT0t8dRMJlm4UCRX4L58uaSlSZs2Uq6cJToEAAAAAAB4yOgZuGsTt81F211dXR9//PGtW7du2bKlS5cuOnaUx19//TVkyJDMzMwWLVp06tRJa3RwcKhYsWJCQsJrr70WERHx2GOPWW4A9+LSpUtvvPGGiFSsWNHFxcW2g9FoP6nCWsBd7lDFxVa/Cbbar/Wjjz7q2rVreHh4SEjIqVOnDhw4kJCQkJycHBcXFxcXZz7MYDCc6NGjUlaW1K4tXl5Sp47Uri2VK4vBYOUBFw5ff/31+fPnZ86c2b1793/++cfLy+u2h505cyYuLm79+vWxsbHbtm3LyMgwf8nT07N58+bNmjXz8fHx9vbOU/r/77//7tChw7x580aNGjVx4kQRcXJymj17dufOnbdt29atW7d169aVKFFC9+e1aZOcOydVq0rDhjkteSa8AwAAAAAAPOL0DNzbtGljb2+/ffv2GzduaJmyt7f31q1b169fb7nA/aeffho5cqTJZAoJCenYsaPWqJR69913Dxw44O7u/scff8yfPz84OPjNN9+sUKGChYZxF2fPnv3qq68mTZp07do1d3f3I0eOvP7661999ZXBplFmVlbW1q1bzXvbFkrapPJSpUrZeiAitisf7+vr26RJk927dzdr1uzjjz/WGpOTk48ePXr06NG9e/fu27fv6NGj+/btK3vggBw9KitW3PxmV1epXTvnvzp1pF07qVrVyuN/SNnZ2U2fPv3KlStLly7t1q1bbGxs5cqVRSQ7O/vgwYNawh4bG5u7/Iu9vX29evXMCXu9evXu8hLRsGHDxYsXd+3a9aeffipdurT2ky1SpMjSpUvbt2+/Z8+eXr16rVixwt3dXd/npcXr/fvnPDQaZdEiEQJ3AAAAAACA/zEopXQ8XaNGjfbs2RMbG6sVKpk1a9bAgQP9/PyWLVumYy9m48ePf+edd0Tk/fff/+CDD7RGo9H4f//3f5MnT3ZwcBg7dmx8fPzs2bOVUk5OTk8++eSYMWOsNsv45MmTX3311ZQpU9LT00XE29vbz8/v008/vXHjxjPPPDNt2jQHBz1veNyXrVu3tmzZsk6dOgcOHLDVGCwtNjbWz8+vSJEis2bNateunQ1HcvXq1aJFi7q6ul67ds3K9fq1vwRHR8ft27dXr179TodlZ2fbHz9uOHhQDh6UhARJSJCDB+XMmX8d9OOPMmyY/PijxMZKWpo0bSqvvioF435GwZSWlubn5xcbG1u9evVevXrt2LEjLi5OezXQlCxZsnXr1m3atGnbtm3Lli3vt6rPwoUL+/fvn52d/eWXX2oLaETk9OnTPj4+J06c8Pf3nzt3rqOjo47P6PhxmTdPOnYUbaPldeukY0epVUsSEnTsBAAAAAAA4GGmdDVixAgRGT9+vPYwMTFRRIoWLZqdna1vRyaT6a233hIRe3v7SZMmmdszMjIGDhwoIs7OznPnztUad+/eHRQUZG9vLyJ2dnaBgYF79+7Vdzx5HDlyJCQkxNnZWevR399/y5Yt2pdWr16tVbQPCAhIS0uz6DDuYsKECSIydOhQWw3ACi5dutS1a1cRcXBwCA8Pt+FItm7dKiKPP/64lfvdsGGD9svWr1+/w4cPG43G+/v+1FS1dav6/Xf1/vvqySfVli1qyBDVs6eKi1MHD6rXX1f166v0dMuMvZBISUlp3Lhx1VwrA6pXrx4UFBQREbFt27b7/oncYsaMGXZ2dgaD4ZdffjE3JiQklC1bVkSefvrp/HdxF6+9pkRUaKjlegAAAAAAAHjI6By4R0ZGikifPn3MLVWqVBGR3bt369hLdnb2sGHDRMTJyemvv/4yt1+/fr179+4iUqxYsX/++SfPd90lBNfRnj17goKCtKnrdwr3t2zZou3b2aFDhytXrug+hnsRGBgoIlOmTLFJ71aTnZ0dGhqqleZ4+umnrXOH49af+IwZM0Rk4MCBVujdLC4uTqviPXDgwJ49e2r/XqpXr+7v7x8aGjpp0qQVK1acPXv2Ps544oQqVkylpNxsadNG/fmn7iMvZM6ePbtr164xY8YsXrz48uXLup//+++/1249zpkzx9y4ZcsW7V7LyJEjde/RrHp1JaI2bLBcDwAAAAAAAA8ZnQP3w4cPi0jp0qVNJpPWMnjwYBGZOHGiXl1kZGQMGDBARNzc3JYuXWpuT05O1urYlC1bdvv27Xf69uPHj4eEhJh3IPT29l61apUuA9uxY0dgYKCW7To5OQUFBR08ePBOB+/du7dixYoi0qxZswsXLugygPui9b5v3z7rd219M2fO1IpZN2nS5Pjx4xbqJS0tLSoqytfXV0RiY2Nzf2ns2LEiMmbMGAt1favt27eXLFlSRAIDA7Oysp599lntJ36r0qVLe3t7r3vvPTV+vJo3T+3bpzIybn/SpUtV27b/annzTWXFJ4U7ee+990TE1dV13bp15sbVq1dre2l8/PHHluh01y4losqWVZacQw8AAAAAAPCQ0TlwV0p5enqKSEJCgvZw06ZNS5YsSck9KzYfrl271q1bNxEpXrx47kzz7Nmzjz/+uIhUqVLlLjG32fnz58PCwooVK2aO3aOjox94VDExMf7+/tqpnJ2dg4ODT5069Z/fdezYsVq1aomIl5fXyZMnH7j3u7t69eqsWbPOnz+fu/H48eMiUqJECYuWmyhQdu3apVUwL126tF63WMw2btw4bNgwcwHuEiVKzJgxI/cBTz75pIj89ttv+vZ7Jzt27NDS9ieeeCIrK8vcfuPGjfj4+KioqPDw8ODgYG9v76JFi2pj3teunRK5+V+5csrXVwUHq4gItWKFOnJEmUwqOlq1a/evnt55R739tnWeFO7ulVde0ep3xcXFmRvnz5+vrbaJiIjQvcdvv1Ui6sUXdT8xAAAAAADAQ0z/wL1fv34i8uuvv+p+5suXL7dp00ZEPD09d+7caW43J9d169a9r+Q6KSkpLCxMK7uhTX+Oiooyz82/FzExMV26dNG+3cPDIyQk5MyZM/f+7efOnWvcuPG93ye4dxcuXIiMjPT399dK6OQuc6+U+uOPP0SkV69eOvZY8F26dEm7W6NXSffk5ORJkyZpP0FNs2bNJk2adO3atTxHasdYooTRrXbu3FmqVCkR6d+/f2Zm5n8ef/r06dWrV1/69Vf1+uuqZ09Vs6ZycPhX+K79FxSk9u9XZcr8a/57z55q6lQLPhncM6PRqN3Xeeyxxw4cOGBuj4yMNBgMdnZ2f+pU/GfXLpWUdPPPS5boclYAAAAAAIBCQv/A/YsvvhCR4OBgfU975syZhg0bikjVqlXN0+eVUnv37q1QoYKING/e/MFqs6SmpkZERJQrV07LTBs2bBgZGXn3XV5NJlN0dHTLli21bylVqlRYWNilS5ceoHdzJZwyZcrcpRLOPdqzZ8+4ceNatmypVbbRKjv7+PiY94/VjBo1SkTGjRuXz+4eOrlLug8ePPj69esPdp5t27YFBwe7ublpf8menp4hISF79uy59cirV69OmTLF0dFRRHJXQLKQXbt2adsD9OzZ88aNGw94lsxMdeSIWrFCRUSo4GDl66uqV1dhYUop1a6deuMNpc2a/+svVaGCuuXuAmwlMzOzR48eIlKpUqXctx4/++wzEXF0dFyiRzpeoYJq315p9yX371e1a+f/lAAAAAAAAIWH/oH7hg0bRKR+/fo6nvPo0aM1atQQkXr16p0+fdrcbt59tGPHjvncffTGjRuTJk0y17muXr16RETErZGl0WiMioqqV6+edliZMmXCwsLyWTDn+vXrWkzm4eGxcuXK+/327OzsmJiY0NBQLy8v81RrV1dXX1/fiIiI2864b9KkiYisXbs2P8N+eC1YsEArpdKkSZNjx47d+zeePXs2PDy8Zs2a2l+ynZ2dr69vVFTUbSeSa6G8tnGlnZ2duXjR6tWrdXsm/7Znj+rU6ayra8mAgICMO9Vhf2DaLaiLF9Uzz6jatVWNGsrPT+3apXMvyJ/r16/7+Phor8C5bwG+9dZbIuLm5hYTE5PPLipUUK1bq+nTlSJwBwAAAAAAuIX+gfuNGzdcXFwMBsOsWbMefI5tLvHx8eXLlxeRFi1aXLx40dy+atUqLc3s3bt3enp6/jtSSmVkZERGRtauXVuLR6tUqRIREZGWlnbrlypXrmz+ki79auUgnJ2d88xGv5O0tLTo6Ojg4GCtaL55rn1QUFBUVFRqauqdOoqOjra3t3d0dHzg+d2FwP79+7X7E6VLl/7PmxxGo3HFihWBgYHaRHURqVChQmho6G3D+suXL3/zzTfaagwRMRgM7du3nzx58ieffFK8eHHLxe5796qyZZWIGjYsUZd/d3hIpaSkaBtatGzZ8urVq1qjyWR6/vnnReTzzz/P5/krVFDr16vy5dXFiwTuAAAAAAAAeekfuCulvvvuu2rVqmkTKv39/SdNmpRn0857t3HjRi2m7NatW+7S2PPmzXNxcRGRZ555Jve2kLrIysqKjIysW7euFo+WL19+0KBB5snvtWrVmjp16r1Ux74vRqNx+PDhWhGYqXeui33x4sXIyMjAwEDzFp3afPyQkJAVK1bc6a/i2rVr0dHRQUFB2l9mpUqVLLGJ4sPlypUrvXv3/s+S7suXL9dqFomIk5PTgAEDli1bdtvNZvPUmSlRokRwcPDu3bvNB6SmpoaHh1sidj94UJUvr0RUt25Kp3tPeIglJiZqr8BdunQx333Jzs5euHDhg50wI0Nt3Ki+/lrFx6sKFdS5c2r0aBUcTOAOAAAAAACQl0UCd6PRGBYWlnszSQcHhy5dunzzzTfHjx+/r1OdPn26atWqffv2zT2H/ddff3VwcBCRl19++bbRpy5SUlJCQ0O1Ke0NGjQQkapVq44aNSr3LHvdhYeHa9Oiv/7669seMGjQIHM9k2bNmoWFhW3btu1OZzt58uT333/ftWtX89RsEWnYsOGYMWPuXqT+EWEymcLDw7V6L0899dRtp/wfOXLEYDDUrl07PDz8tveN7qvOjLpd7L5mzZr8PIuEhJy0vWtXpdOKCzz0Dh8+rK196dev34P9Yz93TkVHq7Aw5eurXF1zts4ND88J3K9dU1WrqhkzCNwBAAAAAAD+xaCUEos5ceLE8uXLFy5c+Pfff2dmZmqN9erVCwgI8Pf39/b2Nu/teReJiYmenp729vbaw2+++ea1115TSoWGhmrxtIXs37+/Xr16Xl5eX375ZalSpc6fP//BBx/s3Llz+/btWg10C/n2229fffXVOz3BOXPm/Prrr3369AkICChbtuxtz7B3795FixYtXLhww4YN2s/X3t6+devWAQEBffv2rVOnjuUG/zBauHBhUFDQlStXGjduPHfuXG1qcG67du3SanTkZjKZVq9ePXny5Pnz52dlZYlIhQoVnnnmmeHDh996hlslJydPmDDhm2++SU1NFZERI9YNGdK+TZv7Hvzhw9KxoyQmSrt2snSpuLvf9xlQWO3evbtjx47JyckjRoyYOHHifx5vNJr27LHbsEE2bpQNG+To0ZtfsrMTLy9p00aeekqefVbi4qRsWZk3T157TZyd5eBBCz4LAAAAAACAh4tlA3ez5OTklStXLly4MDo6+sqVK1pjmTJl/Pz8AgMD/fz8nJyc/vMkSql33nln/Pjx2gTwV1991aJjNgfu+/fv11qaNGlihcBdRH777behQ4dmZ2ePHDny22+/NW+5eRdGo3Hjxo2LFi2aN29eQkKC1ujm5ta5c+eAgIA+ffrcKZ2HiBw8eLBv374HDhwoVarUzJkzfX1973Lw6dOnf//9959++un48eMiYm9v36lTp+Dg4H79+mkLL+7d1atXf/zxxx9+mHH16u6UFIO3t3zyiXTseK/ffuKEdOwox4+Lj48sXSq5igwBIiIbN27s2rXr9evXx44d+9FHH916wNWrVzdv3hwbGxsXF7dhw0alLiYn59wE9fCQxx8XHx/x9pa2baVUqZxvqVgxJ3AXkYAASUggcAcAAAAAALjJSoG7WXZ29qZNm2bNmjV37tzTp09rje7u7p06dQoMDOzdu7e51EYeRqPxpZdemjJlipOTU2RkpLmyiuXYMHAXkejo6CeffPLGjRtPP/30tGnTcteEyS0tLW3VqlWLFi2aP3/+hQsXtMbHHnuse/fuAQEBPXv2dGfO871JTU0dMmTIggUL7O3tx40bFxoamueAzMzMBQsWTJ8+fenSpUajUURq1649dOjQ559/vkyZMvnp+vLl7AkTHL79VlJTRUS6d5ewMGnd+j++6+RJ6dhRjh0Tb29Ztoy0Hbe3cOHC/v37Z2dnf/XVV6+//rpS6sCBAxs3btywYcPGjRv379+f+y2gV6/TJUtWaN1avL2lQQP537Kif1m0SHx9xcVFROTMGdm9W7p3t9aTAQAAAAAAKPCsHbjntnfv3lmzZi1atGj79u25K58EBgb279+/UqVK5iMzMzODgoKioqLc3Nxmz57do0cPKwzPtoG7iKxdu7ZPnz6pqan+/v5RUVGurq7mL128eHHp0qWzZs1asWJFRkaG1li9enV/f//AwMC2bdvey6R45KGU+vzzz999912TyTRo0KBffvlF2wH14MGD06ZNmzZtmnZLw8XFJSAgIDg4uEuXLvdSE+keXb4s334r33wjKSkiIt7eMm6cdOhw+4MvXpSWLZnbjnsyffr05557TkSaNm167Nixy5cvm7/k4uLSvHnzNm3atG3btk2bNqyDAQAAAAAAyCdbBu5mx48f//vvvxcuXLh8+XKtHLbkKvXeuHHjAQMGLF++vHjx4gsXLvTx8bHOqGweuIvItm3bevTokZSU1KFDh+jo6KSkpIULF86aNctcnN3Ozq5Jkyb+/v5PPvlk3bp1rTOqwm3RokXPPPPMlStXGjZsGBQUtGDBgvXr12tfatKkybBhwwYPHnyndRj5d6fY/ckn5fnnc6YS790rUVGSnCzbtsny5VKkiIXGgsLj+++/nzp16o4dO0SkXLlyzZo18/Hx8fb2bt68uYs2WR0AAAAAAAB6KBCBu9mlS5cWL14cHR29fPnya9euaY1FixZNTU319PRctmzZrXtXWk5BCNxFZO/evX5+fomJicWKFTOXv3d3d+/WrVvv3r39/f1Lly5ttcE8Ivbu3duvX7/Dhw8bDAaTyVS0aNFBgwYFBQVZ7WbP5cvy9dfy7bdy9aqIyLvvSni41KghcXFSpIisWSMffSSrV0t6uri5WWdEeOhlZWUtXLiwRYsWuRcPAQAAAAAAQF8FK3A3u3HjRmxs7MKFC+fMmVOzZk07O7vJkyfXrFnTmmMoIIG7iBw/fnzo0KH29vY7d+7s0aNHQEBAjx49PCgjYkkpKSkLFiw4cOCAl5dXYGCgmy2CbfNs9/nzxddX3nxTMjLk669zAvc1a6w/IgAAAAAAAAB3U0ADdzOTyXT58mWbTOIuOIG75tKlSyVKlKA4+6PmyhUpVkwcHeXyZWnQQObPl5QUAncAAAAAAACgICro6a2dnR0lUzSlSpUibX8EFSuW84ciRWT8ePm//5OCfY8MAAAAAAAAeHQR4AIPjUGDxMNDfv/d1uMAAAAAAAAAcDsOth5AweVmZ/e0l1fpXBsMdq1Ysf6NG+5MM4ftfP+9NGkirVrZehwAAAAAAAAAbkHgfkdVTKYZBw7kbvn89Gk5cEBMJlsNCY+satVy/lCnjrz7ruzbZ9PRAAAAAAAAALgdAnegoMvIkE8+uflw5EiJjbXdaAAAAAAAAADcAdVRgILuyhV58cWbD0+ckLfest1oAAAAAAAAANwBgTsAAAAAAAAAADqgpAzwEDCZ5MiRnD+fPm3ToQAAAAAAAAC4AwJ34CFw44aMHJnz56tXbToUAAAAAAAAAHdA4A48BNzcZNmynD/v3CmDBtl0NAAAAAAAAABuhxruAAAAAAAAAADogMAdAAAAAAAAAAAdELgDBV3JkrJq1c2HtWvLX3/ZbjQAAAAAAAAA7oDA/c4cHKRkSSle/GZL8eJSsqQ4UPgeVuXgIM2b33zo5iaPP2670QAAAAAAAAC4A4NSytZjKNiysmTzZjl2TKpWlVatxMnJ1gMCAAAAAAAAABREBO53dfGi+PpK5crSvLnExcnRo7JmjTz2mK2HBQAAAAAAAAAocAjc72rECDEYZOLEnIejRonBIN99Z9MxAQAAAAAAAAAKImq431VMjDz77M2HQ4fKsmW2Gw0AAAAAAAAAoOAicL+rc+ekTJmbD8uUkbNnbTcaAAAAAAAAAEDBReB+VxUqyJkzNx+eOSOVKtluNAAAAAAAAACAgovA/a5695YpU24+nDRJeve23WgAAAAAAAAAAAUXm6beVWqq+PmJm5u0aiVbt0pqqixfLsWL23pYAAAAAAAAAIACh8D9v5hMsnOnHD0q1atL48Zix5oAAAAAAAAAAMBtELgDAAAAAAAAAKAD5msDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHTw/65VmJ5kbvCXAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"AP\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "3647f5cc-768e-44c8-ab1f-3741a991f362", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.285784Z", + "iopub.status.busy": "2024-05-13T08:55:43.285608Z", + "iopub.status.idle": "2024-05-13T08:55:43.342995Z", + "shell.execute_reply": "2024-05-13T08:55:43.342474Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 AP fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACxHklEQVR4nOzdd1xTZxcH8JPBRmS4xS0O3OLeKGqtqB1iXeCoxQ2oKO6odaB1xC22DtS2CmorWhe4t4J7b0WRIUP2SHLePx7eiAkGAkluAuf78Y/23kvuQZM8ye8+9zw8RARCCCGEEEIIIYQQQgghhBQPn+sCCCGEEEIIIYQQQgghhJCSgAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBVpFIp1yUQQggxDEKuCyCEEEIIIYQQQgjRUxKJZNasWcnJyWFhYS4uLi4uLj179rS2tua6LkIIIXqKh4hc10AIIaQEev0aypYFG5svNsbEgFQKVapwVBMhhBBCCCHqkEgkw4cP37dvn6WlZWpqKtsoFArbtm3Lwve2bdsaGRlxWyQhhBC9QoE7IYQQrRAKYepUWLHii419+kB0NNy6xVFNhBBCCCGEFJpUKh05cuSePXvKli177NgxY2PjsLCwsLCw8+fPZ2dns2PMzc07dOjAwveWLVvyeDxuayaEEMI5CtwJIYRoBQXuhBBCCCHEcOVN20+cONG2bVv5rrS0tCtXrrDw/ebNm/JcpUKFCl27dnVxcendu3eNGjU4KpwQQgjHKHAnhBCiFRS4E0IIIYQQAyVP262srE6cONGuXbuvHRkbG3vu3LmwsLATJ068efNGvr127dps2nuPHj1sbW11UjUhhBC9QIE7IYQQraDAnRBCCCGEGCKpVDpq1Kjdu3cXmLYrePnyZdj/JSYmso0CgaB58+YsfO/UqZOpqanWCieEEKIXKHAnhBCO/fsvAMB3332xMSQEqlWDFi04qEdThELo0weGDPli44oVwONR4E7g0iWIioKePcHa+vPGK1cgJQV69eKsKlIcDx7Aw4fQqhXUqvV54+PHcO8e/Pgj8PncVVYkp09DfDy4uoKZ2eeNZ88Cjwddu8K//0LVqtC69Rc/cvUqxMVBv346rpQQUqIcPAgCAQwY8MXGQ4egRg1o3pybkkohedpuYWFx9OjRLl26FO1Bbt++zZL3CxcuZGVlse1mZmYdO3Zk4XuLFi34BjdAEkIIKQQK3AkhhGNly0JyMvz5Jwwd+nljxYowaBCsX89dWcUmFIKxMVhYfLHx0ydo1IgCdwL9+8PhwzB2LGzZ8nnjoEHw+DHcvctdWaQYFiyAhQuhdWu4cgUEgtyNy5bB7NmQnQ1GRpwWp7727eHqVZg7F3799fNGZ2fg8+HUKahYEVxdYdu2L35k+HA4fx7evtVxpYSQEsXCAtLTYd8+GDTo80Y7O/DwgDVruCurNJFKpaNHj961a5eFhcV///3XtWvX4j9menr65cuXWfh+69YtmUzGtpcrV87Z2dnFxaVnz5618l6vJoQQYuDoaiohhHDPwgKmToWkJK7r0LRJkyAu7os/PXpwXRPRGxYW8PvvcPky13UQzREK4e5dCAjgug4NsbCAFSvg0SOu6yCElDIWFuDjA58+cV1HqSSTyTSetgOAubm5i4uLv79/eHh4TExMUFCQp6dnrVq1Pn78GBwcPHbs2Nq1a9epU2fs2LHBwcHx8fEaOSkhhBAOUeBOCCHcGzkSsrNh1iyu6yBEh1q2hM6dYfx4yMnhuhSiISYmMH48zJkD0dFcl6IJLi5Qrx6MHw90OyghRJdGjYL0dJg7l+s6Sp+8afuRI0dUp+3u7u5Tp049evRoamqqWmcpV66cm5tbQEDAy5cvX7x4ERAQ4ObmZmdn9/Lly61btw4aNKhcuXLy8D0lJaV4vxMhhBBuUOBOCCHcs7WFBQtg61a4coXrUgjRoTVr4MEDEIu5roNozvz5YGQEU6dyXYcmCASwdi2cOweBgVyXQggpTezsYP582LQJrl7lupTSBBEnTJgQGBjI0vZu3bqpODgpKenvv/9es2ZN3759ra2tW7VqNXPmzLCwsOzsbLVOWrt2bU9Pz6CgoNjY2Bs3bvj7+7u4uJiamsrD986dO8tXXiWEEGJAKHAnhBC9MGECNGoEEyaARMJ1KYToSosWMGYMLFwIb95wXQrREBsbWLwY/v4bTp7kuhRN6N4dfvgBpk8H5fv7r14Fb+8v/oSHc1FiCSKVSgMDA69evRpOf5WkSE6fPn3z5s29e/eWgFXKJk+GBg1g4kSQSrkupXRAxPHjxwcEBJibmxeYtgOApaXlqVOn5s2b1759ex6PFxERsXz58p49e5YvX75///7r1q17+PChWgXw+fxWrVr5+fmFhoampKSEh4f7+/t37Njx9evXnTp1KvovRgghhCMUuBNCiF4QCmHjRrhzx7AXSiVEXUuXgrk5eHlxXQfRnDFjoE0bmDgRMjO5LkUTxGLIyAA/P8XtKSnw4sUXf9RsKkC+cObMGScnp5EjRw4aNKhNmzaDBg2KjIzkuihiMCIjIz08PHr06DFw4MAhQ4a0bdv2ioHfM2hkBBs2wK1bsHEj16WUAmxue+HTdgAQCoVdu3ZdtGjR5cuXk5KSQkND/fz8nJycUlJSDh8+7O3t3ahRo4oVKw4aNGjr1q1v1VxNWygUOjk5+fn5nT17FhEfPnxI74dEfzx9CjweVK78xfJjb98Cjwc7d3JVFCH6iAJ3QgjRF507g7s7iEQlpP3xmzcwZ47ixt274cQJLqoh+srWFvz9ISQEjh/nuhSiIXw+bN4Mr17BmjVcl6IJ1arBvHmwYwdcv/7F9p494ciRL/4UIqIh+Xj58uWPP/7YvXv3O3fu1KxZs02bNsbGxsHBwY0aNVq+fHlWVhbXBRK9lpqaOmvWLAcHh927d1taWrZq1apSpUo3btzo1KnTzz//HG3In6icnWHIEBCJ4ONHrksp0VjavmXLFpa2Ozs7q/sIFhYW8gVRP3z4wBZErV69emxsLFsQtUaNGvKe7Gr1hxEKhSz9P3XqlLpVEaJV0dEwbx7XRRCi3yhwJ4QQbqSmwj//KG787TcQCmHBgtz//fQJQkJ0W5bmzJ0Lbm7w8uUXG+fMgS1bOCqI6AGZDPbtU+ybNGoUdOwIvr6ft+/bB2o2QSVcCg1VvEzYsiWMGwfLlkFMTO6WI0fAIJrQ5uTA3r2Kq6ROnQoNGsC0abR6qoalpaUtWLCgUaNGBw8eNDc3F4lEjx492r9//4MHD9zc3FJSUmbOnOng4LBr1y6uKy2iUaOgVy/FcXDsWFi0iKOCShZEZBdm/P39s7Oz3dzcHjx4EBQU9Pz5c5FIZGxsvH379rp16y5YsCDTEG63SUmBQ4cUN65aBYifPxYmJcHhw7otq6RDxIkTJ7K0/fDhw0VI2xVUrFiRLYj65s0b+YKo1tbW8p7s5cuXlzd8L8wFxZ49ewJAaGhoMQsjRLO++47WmSCkIEgIIUS3ZDIMCsLq1ZHPx/BwtLLCefM+7924EYVCNDHBSZNw2jQEQGdnvHOHu3KLqn59BMDevb/Y2LQpDhzIUUGEa9euYfv2CIDr12O/fti58+ddd+6gUIjm5tikCYaEIADWrYtBQdzVSgrn2TN0c0MAHD0aRSK0sPi8KzERK1ZEc3MEwCdP0NQUbW1RLMacHO7KLUhYGDZpggC4dy+2a4c//PB515kzyOOhuTl2746IWKECjh6t+OPDhmG1arqr1qDJZLKgoKDq1asDAI/Hc3Nze/PmjcIxp06datq0KfvC4uzsfMcAB0IaB7Xn+vXrHTp0YE+PVq1aXbp0SeGAZ8+eubm5sQPq1q0bpMcjikyGgYFYqRIKBHjnDpqbo0j0ee+6dWhkhMbG6OODPj4IgN274927nFVbkshksvHjxwOAubn5qVOntHciiUTCerK7uLiYmJjIoxhzc3P51HipVJrvzz5+/BgAKlSoIJPJtFchIYX35AkC4IED2KIFOjmhRIKI+OYNAuCOHRzXRoheEeoy3Dcsly5dunv3ru7P6+HhYWFhofvzkgJ9+PDh33//1f15O3bsKP/CSUoAts4ea03Qrh0YGSkeMG4cBAbmHuDgALa2cOYMODnB2LGwcCHY2em64OJo0gROnoT9+2HgQK5LIZyKjIQZM2DfPkCEatWgalXFA5o2hUmTQCwGAChbFho2hEePYNAg6NUL1qwBR0edV0wKkpwMS5aAWAzZ2WBlBQ0bKnYwt7aGFStgxAgAAKkUOnSA06fBxwe2bQOxGLp356Tqr3r2DKZNy506yt54FXTrBkOHwp9/FvxQqakwcSKcOQOmpuDlBZMmab5aQxceHu7t7X358mUAaNWq1dq1a+XJaV7du3e/devWnj17fH19z5w506JFi2HDhq1atap8+fI6L7noaBzUuKioqIULF/7xxx8ymaxKlSoikWjMmDF8vuJ92yxkP336tI+Pz7179wYNGtS9e/c1a9bo24fqS5fAxyd3yeUOHUDp94AJE2DHDrh1CwCgXj2wtYXTp6FlSxg/HhYsyOfNihQSIk6aNGnz5s1sbnt3bQ5LAoHAycmJtWVPTU09f/58WFhYWFjY/fv32X8AQMWKFZ8/f25paanws/Xr169Zs+br16/v3r3brFkz7RVJDF0R8isLC4e0NBe1fqRsWWjVCgCAz4d166BLF9i4kZZiMmC7du1KS0vT8UkrVar0/fff6/ik3OA68ddTkyZNYndv6d6PP/54+fJlrv8CiKKgoCD5NBkdGzBgwMKFC7n+CyAa8P49enoin48AWKUKBgQgm8vStCmuXv3FkdeuYe3aufObEhLQzw+NjREAbWzQ3x+zsnRfe1HUr49jxqCbG1atip8+5W6kmX2lTXo6+vujpSUCoJkZ+vlhcjIi4pgx+NNPXxz56RO2aIF9+iAi5uRgQACWL48AKBSipyfGxnJQPMmXfDImAPJ46O6OHz4gIorF2KiR4pEDBmDt2rmz2kNCsE4dBEAAdHXF5885KF5ZaiqKRGhiggBoYYEiEWZmIiL+8AOOH//FkR8+YMOGOGwYImLz5ujrq/hQkydjmzZ49CjOnYtSKcbEoK0tvnqli9/CULx//97T05Nlo1WqVAkICPjapM68EhIS/Pz8jI2NAcDGxsbf3z/LQAZCGgc1KysrSywWlylTBgCMjY29vLyS2YiiUk5OTkBAALtOIxQKPT09Y/VjRHn3Dt3dkcdDAKxaFQMDkc1gbtQIxeIvjrxyBWvXxl9/RURMSEAvLxQKcz8W6vltQ3pLJpNNmDABAMzNzcPCwrgqIzY2ljV8r1mzZpMmTb522OjRowFgxYoVuqyNGJai5VcdOgxhn8oK/6dOndwZ7v/8g4jo4YFWVvjuHc1wNzwfP37s379/uXLlNBteFYajo+P3339vKJ/lioOH1I1Syblz57p162ZiYjJo0CAdTza/ceNGREREmzZtrly5ojxTg3AlPT29YcOGb9++7datW4MGDXR56o8fPx44cMDIyOj+/fsODg66PDXRoOxs2LwZ5s2DlBQwNoZx42DxYihTRo1HePIEpk6Fo0cBAOrXh9Wr4dtvtVSsxjRoAJ07w9y50LAh/PILrF0LANCsGdSrB8HBXBdnmCQSiVBoSLemHT4MXl7w+jUAgKsrrF8PNWuq8eMJCbBwIWzaBBIJ2NiASAQTJ4JB/QWUQNevg7d3bsvO1q1h7Vpo316NH8/JgU2bYP58SE4GIyMYPx5+/RWsrLRUbAFkMtizB2bMgJgY4PFg+HBYsQIqVdLkKVq2hI0b1fsrKqmys7M3b948b968lJQUY2PjcePGLV68uIw6A+GTJ0+mTp169OhRAKhfv/7q1au/1fuBkMZBDTp8+LC3t/erV68AwNXVdd26dbVq1Sr8jycmJi5YsGDTpk0SicTGxsbPz2/KlCnsKo7uZWTAunWwZAmkpICZGXh5wZw56n0sfPwYpk6FY8cAAOrXhzVroE8fLRVbAiHi5MmTN27caGZmdvjw4R49enBdEQBAQkKC7VduWNi7d++QIUN69ux58uRJHVdFDEKR86vy5dvExY1S61wVKsCwYVC/PvzzD3z3HcTGQoMG0KcPLFsGNWrAjh0wcqR6xROuTJo0aePGjbVq1erdu7cuz4uI//77b0xMzIoVK6ZPn67LU3OA48Bf/0ilUicnJwD4lc0i0K20tDTWznLnzp26Pzv5GpFIBAAtWrQozDwsjfv5558BoF+/fro/NdGIkBCsVevzpM4XL4r+UKGh6OiY+1AuLvjggeaq1AI2sw8RFy1CPh+vXUOkmX3FsGXLljlz5tSsWdPLy+vChQt63sozIgI7d859rrZogefOFf2hHj3CPn1yH6pBAzx6VHNVEnV8bTJmEURFfb7dp3JlDAjIbQCqS9euYbt2uc+rNm3wyhXNn+L1a6xUCVNTNf/IBufgwRM1/3+17ccff3z58mWRHyo0NLRhw4bsoVxcXB7o90BI46BG3Lp1q2vXruwfvWHDhsePHy/yQz1+/LjP/5Pp+vXr//fffxqss5AUPhYW49Wgp7cN6TmZTDZx4kQAMDMzCw0N5bqcQvn48SOfzzc1NU1PT+e6FqJ3dJ9f5Z3hjogbNyKPh3v30gx3Q/LgwQOhUCgQCO5ysSQI66NVpkyZqKgo3Z9dlyhwV7RlyxYAqFatWlpaGicF7Nq1CwAqVqz4SX7rKeFUZGQku1B8rjiJUTHExMSULVsWAI4dO8ZJAaTIHj7E3r1zvwg1bIjF+Ib4WXY2isVYtiwCoJERenlhUpIGHlaDsrPx/HnEPEFDZiY6OGDbtiiTUdBQRGfOnBEIBHmnt1evXt3Hx+fChQucXAhU4eNH9PJCgQAB0M4OxWLNZKkUK3BIuS9QSooGHjY8HDt2zP03dXLCCxc08JiFocErByp8+oTNmuHu3Zp/ZMPCxsH27d8UMipNKcRzKzs7WywWW1lZAYCRkZGXl1eSng2ENA5qSnx8vJeXl0AgAABbW1uxWCzRxIgSEhJSp04d+WWbhw8fFv8xC+PmTezSRTOXouXYx0Irq88fC+kbpAoymWzSpEkAYGJiwsnlliJr2bIlABjKFQKiS7rPrxQCd4kEW7XC2rUpcDckvXr1AoDJkydzVUC/fv0A4Oeff+aqAN2gwP0Lnz59qlSpEgBwuJC9TCbr1KkTAMyaNYurGkhegwcPBoDBgwdzWMOKFSvYN9Xs7GwOyyCFFx//OXO0tdVY5iinpUyzODIzMTQUvbywQgUEwMePPwcNiHjiBAJgYCAFDUWRkJDAbn6aP39+eHi4SCSqW7euPHkvV66cu7t7SEgI5+8P2r4aRLECJ0JCsGbNz5c6NNuRXCbDoCCsUSO3HbybG75+rcnHV5CWppUrB8pev8a2bXHTJq08uKGIjcWxY3PHqfLlcceOw6qj0sjISHd39+bNmxcyUY2Li5NHsXZ2dpqKYouDxkENYpdVrK2t2WUVT0/PuLg4FcenpKTMnz8/OjparcfPe9lGq1OdtP2xjd02xB6/XDm9+Fioh/Km7UeOHOG6HPX4+fkBwIwZM7guhOgXTvIrhcAdEW/cyH3/ocDdIBw8eBAAbGxsPn78yFUNz58/NzEx4fP5169f56oGHaDA/QtTpkwBgI4dO3J7q354eDifzzc2Nn769CmHZRBEvHz5Mo/HMzMze63VDKAgWVlZ9erVAwCxwiJKRP9kZ2evWSOzts7NBKdMwcREbZ3rxo0v5odeupSprTN9XVoaBgfjkCFYpszn5XSaNMGLF78IGhBx4EC0t0cHBwoa1DZgwAAA6NSpU9446f79+yKRqH79+vLk3dbWliXvmZkcPBOOHMl0cPgcy2pv+IqKwhEjcqcnV66MgYE5+jbHv8S4eTOrU6fcf9OWLXNn7GpDairOmYOmprnLlv76K2ZkaPg5LJPJ9u7NrlYtN9kfPBjfvtXsGT47cwbt7NDTE4OCMCioWG3EDFR2NgYEYLlyueOgpyeqTEoxNTV1zpw5pqamAGBhYXHz5s3CnysiIqJz587sPbBly5bntfc0/ToaBzUuNDS0UaNG8hno9+/fV3GwTCYLCgpil6XH5P3rLoS8l23KlSunjcs2WVlZK1dK2aVoY2OcNk2LNyZev47t2+c+A1u3xitXOPgwoLdkMtnkyZMNNG3H/3dgaNGiBdeFEP3CSX6lHLgj4tixFLgbhqysLLY04IYNG7ithDVwb9++vZ43Si0OCtw/e/bsmbGxMZ/PDw8P57oWHDFiBAB8//33XBdSqkml0tatWwOASCTiuhYMCQlh1yFVT/Ah3GJfETt3fsJ6rKv8hlhYGRkFHCCff9qsWRdXV9dXmp2A+hVpaRgSgu7uX+QLjo4oEqH8zmyFoCEyMndiKQUNalm/fj0AWFtbf+2yH0veWfdGxtra2s3NLTAwsDDNGYrv8ePH3377bceO7gBYrx5q5GtsgU97eTeSbt3CnJycLuisHUnp8PHjRy8vr3r1vhcKNTYZMzu7gAeJjMzt9NK27UF7e/vAwEBNff5mmWzXroe0feWAOXgQ/fw+/7l6Vbun0zehodio0ee1Ru7dU3Uwi0pr1KgBADwez83NrWjzG0JCQuQ94mkcNGhPnjxxdXVl/5QODg6HDx9WffyNGzc6duzIjm/VqtXFixeLcNKIiAh2ezG7bKPBASU0NNTR0bFTp52F+Vgok2HxL5fLbxvi8WRNm3Z2dXXlds6QnpCn7cbGxgU+qfRTZmamhYUFj8f78OED17UQfcFVfpWRgeHhilPKUlIwPFwzX36JVi1btgwAHB0dc3JyuK0kOTm5cuXKAPD3339zW4n28BARCAAA9O3b9+jRo56engEBAfkecPTo0du3b2v2pGPHjrWzs1PeHhMTU69eveTk5BMnTrD+SkT3tm3bNmbMGHt7+8ePH6u13reW9OnT5/jx4xMmTNi4cSPXtRBFT548mTJlyrFjxwCgXbsB8+b9++23GnjYjAxo0gR69IDFi6F8+a8elp4Omzc/nDevVUZGhrm5+YwZM6ZPn25ubq6BCr6UmAiHD8ORI3D0KKSl5W50dAQ3Nxg2DBwcvji4QQPo3Bl+//3zlt9+gxkzYOBACA7WeGkl04MHD1q3bp2RkbF3796ffvpJ9cEvX748fPhwcHDw5cuX2eBuZmbWo0cPNze37777jt04r1mJiYkLFizYtGmTRCKxtbVduvTp6NF2RkYaeOSBA+HTJ1izBho3/uoxiPD339L585u/eHGfx+MNHTp0+fLlVatW1cDpS7Hs7Oy1a9cuXrw4OTnZ2Nh44cJ7EybU08hzZ+lS2LMH1qyB3r1VHXbuHCxb9sOJE/8AQNeuXcVicfPmzYt80ujo6Dlz5uzcuVMmk9nb1168+JG7uzGfX+THI6o8ewZTp8KRIwAADg6wZAm4uak6Pjw83MfH59KlSwDg5OQkFovloWcRpKenr1+/fvHixampqebm5pMnT547d66lpWWRH/BraBzUkqSkJH9/f7FYnJWVZW1tPXPmTB8fHxMTk68dHxUVtXDhwj/++EMmk1WuXHnBggVjxozhF+Plffjw4cmTJ7958wYAXF1d169fL7+KUwSPHj2aMmXKiRMnAKBTp+5z555S/dYXHg7e3tC5M/j7F/mcn6WlwZYt9+fNa5ORkWFhYeHn5+fr62tmZqaBhzZAiOjj47Nu3TpjY+MDBw7Ir+gYnG+++ebEiRN//fXXkCFDuK6F6IUC8ysdmz8fli+HY8ege3euSyFfUZiYcdWqVVlZWRo8aYUKFcaMGZPvLn0L3DSP48Bfb5w8eRIArKysVFw0Hj16tMb//lWs0rNkyRLQj0tPpZP8gttff/3FdS25Hj58aGRkJBAI7ty5w3Ut5LPExEQ/Pz/2ndDa2trf31+DDT2OHPnc8XPjRlT9ZvDu3Tt3d3cejwcAVatW1eD80JiY7C1bsGdPNDLKncQnEKCzM65fj+/ff/Wntm7Fo0e/2JKdjStX4j//oFSK1AWkQBkZGU2bNgWAcePGqfWDr1+/FovFHTt2ZE8GADA1NXV1dQ0ICIiNjdVIbVKpNDAwsEKFCgDA5/Pd3d1jYmI08siI+OEDypsy+fgU0JQpLS1NJBKxHMHc3FwkEqWnp2uqktKGTcZkzxkXF5cHDx5o6pElEmzcOPfdY+DAAhrBs2dXxYoV5c+uwvdllmMNmtmS4/q5rmZJkpiIfn5oYoIAaGmJIlEBE3WjoqI8PT1ZNlq5cuWAgABNNYaicdAQqfuSz8rKkrdfNzY21mD79bS0NH9/f3adxtzc3M/Prwg3irGPhcbGxvKPhVlZWSqOf/cOhw/P7ZNWu7YGJrnLsXUR2MtBs7cNGRbW/dzY2DgkJITrWopl5cqVADBq1CiuC9E0iQQfPsTwcA2vElPSFSa/0rElS3Lv9KL4Sm+NHDkSAL777jsVx2h8skLjxo2/di69aimhDTTDHQBAIpE0b978wYMHq1atmjp16tcOO3jwYHh4uGZPPWXKlPJfmbaanZ3duHHjZ8+ebdy4ccKECZo9LynQjBkzfvvtt/bt21+6dEkeWjH79+9PSUkZMWJEcebRqHbq1Klbt275+voqbPf29l63bp2zs/Pp06e1dGpSeDKZbM+ePTNmzIiJieHz+cOGDfvtt9/YN0YNevwYpk6FY8cAABo0gNWroU8fVcdfv37d29v76tWrANCmTZu1a9e2a9euaKeOi4s7duxYcHDwq1fWDx7sBgCBANq1Azc3+OknqFSpaI8KMTEwciR07gyzZxfxEUqJsWPHbt261dHR8caNG0W7XyEyMvLYsWOHDx8+fvy4RCIBAIFA0K5dOzc3t59++qlSUf8Jz5w54+Pjc/fuXQBwdnYWi8XswoAGJSTAwoWwcSNIpWBrC/Pnw6RJIBB89fh3797Nnj17z549iGhvb79kyRJ5ykAK48mTJ1OnTj169CgA1KtXb/Xq1X379tXsKbKzYfNmmDcPUlLA2BjGjYPFi6FMma8en3e6q6Wl5bRp02bNmqViumteYWFh3t7eDx8+BAAXF5e1a9fKLyQQtTx8CLt2QatWMHDg541Pn8L27TBxIlSrBjIZ7NkDM2ZATAzw+TBsGPz2G6gYBjMzYcuWv+bNG5uammpqajplypTZs2dr/KuddsbBmAcPrgONg5p27tw5b2/vO3fuQOFuajl8+LCPj8/Lly8BwNXVde3atbVr19ZsSUUeUNjHwunTp8fGxrKPhStXrmRXpvOl7rti0Vy7ds3b2/vatWsA0LZt27Vr17Zt21bD59BjM2fOXL58ubGx8f79+/v168d1OcVy9+7dZs2aVa1a9d27d1zXoiEyGSxbBqtWQWJi7pa6dWH5cvjhB07LMgCq86u5c+d+//33ebtN6kZ2NjRuDM+ewcaNQPGVHrp582br1q2FQuH9+/cdFO7Iy2PhwoWaneFeqVIlLy+vr+29fPlyp06dTE1NHz16xHoMligcB/76YdWqVQBQt25dThaaU+HAgQMAYGtry+HywaWTikWT5TPf//33Xy2d/fXr10KhkL0VKuxKSEgoV64cABw4cEBLZyeFdPbsWfl3wq5du966dUurpwsJwTp1Pq9I+fy5qoPzThbj8Xju7u5qzX14+fIlu9qUd370sGHpO3diQkJxfxFEPHkS+XwUCvHKFQ08WknF3v9NTU1v375d/EeLi4sLDAx0dXU1+n/DF4FA0LFjR7FY/F7F5Ewlb9++dXd3Z49QrVq1wMDA4temwsOH2Lt37tO+YUM8fryA43X8qiwZEhIS1JqMWUzv36OnJ/L5CIBVqmBAQAGTfJ8+fZq3oXNQUJDqx2crCrDj69ev/99//2my+tLn338RAM3Mvlj69fhxBMCrV/HsWWzePPcV2rUrFviCCwnB2rWxTZtoAHB1dX2hzfVklSdNa2IcjKFxUIPUnX/98OHD3v9vy9KgQYNjx45ptbyrV6/Kg+m2bdteKeif6syZM82aNWPHd+vWrcCxm70c5J/rtLq6skZuGzJEM2fOhBIxt51h3ZNA5S3yBmb8eOTzcdYsfPECExLwxg10dUUeD/fs4boyfacivzp+/Dj7RJeamqr7wg4cQAC0tUWKr/SNTCZjjftmzpzJdS2KBg8eDACDBw/muhDNo8AdY2Njra2tAUA/v5WxzkpeXl5cF1K69O/fHwBGjx6tvIt9dGvXrp1W78qcOHEiAHTv3l15F2vgXqtWrYwCVxUk2sHVLbrZ2SgWo5VVbqsNLy9UfQt1amqqSCRiE0ItLCxEIpHqa4ovX75U6ENiZmbm6uoaGBioqZu15WbMQACsVk0zyUXJExkZaWtrCwAbN27M94CoqKjp06dfvXpV3edefHw8S97lM4X5fL6Tk5NIJHr27JmKH2RPJ1NTU/nTSWdvQWqlEqU2VigCrfYFUu3GDezQIffftFUrvHSpgOPZetTsGevi4qJ8NRq/vHJgY2Oj7SsHpQQL3MuXx2+//byRBe5HjqCxMQJgjRpY0HUQvHMHnZ1z/8WbNsVz5zRwHbEwaBzUT6wVGBtQCtMKLD4+3svLSyAQsHlIYrFYN/02CzmgqHspWt1ryZqSkpIifzlYWloW+HIwdC9evChTpoyJickRjSzmrh+GDx8OAGvXruW6EE0ID0cAnDfvi40SCXbujOXKIbUH/DoV+VVOTk7jxo0BYOXKlZzUhoi9eiEAUnylb3bv3g0AFStW1PjnmeKLjIxkDdzPnTvHdS0aRoE7enp6AkDPnj25LiR/Dx48YJOd7927x3UtpUVYWBgAlClTJioqSmHXixcvTE1NeTzetWvXtFpDQkICW01XeR69RCJh3RuWLl2q1RqIMn3oFh0VhSNG5Pb6rFwZ//wzRnXr22fPnrn9f926unXrKs8PvX//vr+/f8eOHeV3Ppmbm7N8oQitSwspJwfbtcvt5kwUSKXSbt26AUDfvn2/lqfLV062t7f39PQMCQlRN31IS0sLCQlxd3fP28zB0dFRJBI9fvw475EymSwoKKh69ershgk3N7c3b94U/dcrkowMXLwYLSwQAE1NceHCLNXTdrS6skLJcPr0aXkjIGdnZ90vDSKT4c6dWLkyAiCPhyNGyN6/V3VpJDs7OyAggN3jZWRk5OnpGRcXx3axUIw16NPxlYMSjwXu69YhAAYH526Uz3CfNw9//bWAVCQ+Hr28chcjsbVFsZiD1q5Pnz7V2TiYlYWFnElfOsdBNqCwe8bZgPL69WsVx+fk5Mhf+EKhMO8LX2dU5NTKVw5UX4qOi4sbP17CXg7ly+OWLSiR6OR3yCPvy6Ewtw0ZrrVr1wqFwhI2ZTIwMJDdIcR1IZrArjoqv6L370cAPHyYi5oMg4r8as2aNQBQp04dDj/3PniAQiEKhUjxlf5IT09nX+V27NjBdS35E4lEANCiRQtNLeqjJ0p74H779m2BQJBv7w79MX78eADo0aMH14WUCjk5OU2aNAGA5cuXK+/97rvvAGDkyJE6qGTdunUAULt2beXxkjVwt7S0VKsXBCkOdb8ialt4OHbqhHy+tFGjNk5OThcuXFB9fFhYGJvvwN5M7t69e//+fZFI1KBBA3m+YGNj4+7uHhISopuPaC9e5M7W37ZNB2czJPPnzweAqlWrqmgmdufOnSlTpuTtc1exYsVx48aFhoaqm7ynp6ez5J0tQJc3eQ8PD79x40aHDh3YxlatWl0qcCqyNsm7kXTteqhKlSoFLrT45MmTvN1IDtOXN0TUeV8g1dLSUCRCU1Ps2HF3YeIq5YmuYWFh3F45KNlY4P74Mfbrh5UrI1t3Vh64q5aTgwEBWK4cAqBQiJ6e+eQquqTVcTAjA0NC0NMTy5fHH34o7E/Jx8Ht29X+dQxReHi4/KpGYT66hIaG5v0n43bukUJOvW/fPrUuRcsvGXbpstHIiPuXg8JtQyVyXtd///0HAO3ateO6EE368OEDj8ezsLAoCbdw9e2Ldnb5bH/wAAFw2TKdF2QYVORX8fHxbMYe5594x49HAKT4Sn/MmzcPAFq2bKm3cXZ6ejr7YvvHH39wXYsmlfbAnc0inDJlCteFqCJ/6ywZ7ef03Nq1a792WfjUqVO6jLklEgmL/v39/ZX3fv/99wAwYsQIHVRCEDE4OJh9LWnduvXly5e5LgcRUSbD/ftfVq1alX3ZGzZsWGRkpIrjs7OzxWKxjY0Nm4eVN6gdO3bsyZMndXODdl779iEAWljgo0c6PrP+On/+vEAg4PP5p06dKszxGgyM0tPT//33X3d3d3abKsOSzapVq+7atUs3rZMKdOWKtGNHZ1Zeu3btCrzf6MiRI/Xr12fHKy/LUdpIJBL2cdbS0nLp0qV60prsxQscNWoi+zeqXbt2gYuU3Lp1q2vXrux41vqjdu3aBw8e1E21pYo8cH/2DE1Nc+8QL0zgHhaGjRvnNs3o0UNfprlpfBxMTcWgIPzpJ7S0zP1lAbB9eyz8m2XpGQc/fPjAOj5Vrlx5586dqgcUvZ2FfezYsbwDLgC0bdv2akFXn44ePSr/KTe34Xryb52dnb169Wo24leoUEFPhgMNSk1NNTExEQgECSWrbRO7UlISGi906YING+azPS4OAXDWLJ0XZBhU5Ffjxo1jl9B0XJLyjW7x8WhnhwBI8ZU+ePv2rbm5OY/HO3/+PNe1qPLXX3+x8SiJze8oEUp14B4UFMRmSMXHx3NdSwHEYvHXUmCiQfJGLocOHVLYJY+/l+nwejuL+FU3tynwUz4pvrS0NHt7ewsLix07dujbZWGFLjd+fn6q73+Pi4v79ttvy5QpY2FhUbRWJJrl4YEA2KQJlrgvekWRkJDAwtD58+er+7MseXdycpKnAEVuiSCRSC5cuODl5WVqamppafnLL79wsuySCup2ucnOzl68eLG5uXnTpk11VqR+mjFjho2NTefOnfXwBqnTp0+rteRgUFCQlZWVhYXFrFmz6NORlsgDd0QUiVAgwJs3Cw7c2Rs7ANarp49dAYo/DqalYUgIurt/kbM7OqJIhF925CoUd/dSMQ7269evTJkyo0aNUj0k6X+f8ezs7GXLlpmbm1taWha4io/eXjmQi42N7d27t7W19YQJE7iuRfPYpVnly7GpqamHDx9W7ttpEKZMmQIAc+fO5bqQYuvbF21t89l+/z4CYH4TzoiK/Or+/fu6b0QcGYn9++M33+SzSyxGAKxTB/XsLbw0YsPQsGHDuC6kYF26dAGA6dOnc12IxpTewD0jI6NmzZoAsGXLFq5rKZh8+YsVK1ZwXUtJpmKp0g0bNrA5dDqeAKJi+dZZs2aB9pdvJYiYkpICABYWFlwX8lVqreO6f/9+APih8De9a1NqKtavjwDo48N1KXqANa1q06ZNdnZ2kR9Eg4v+tWzZEgDCw8OLXIxWqdU8Ny4uDgDs8r15uTQZM2YMAGzdupXrQvKn7jqu7KILtw2+Sra8gXtmJtarhx064LFjBQTuGzaghQWKRPr7Nbto4+DHjx+3bds2eHCMiUluyM7nY6dOuGYNFmdhi5SU3HFQv2+4La42bdoAgIppIga05HViYiIAlC1bVsUx+n/lQG7v3r0AMGjQIK4L0bzFixcDwPjx4xW2sylNzZs356SqYjp69Ci7tYLrQorNz09VD3el5UCJ6vyqZ8+eAODt7a3LkuLj0dY2dx11BTk5uTe6UXzFrYsXL/J4PDMzM90vwVUEN2/e5PP5xsbGT5484boWzSi9gfuvv/4KAI0aNeJ2dmfhqVjJk2gEW59WIBDcvXtXYVdCQgJbr0n3d6w/f/7cxMSEz+crt01ISUmpUqUKAOzevVvHVZU2+h+4M2fPnm3evHmB9zjrVeCOiOHhaGyMPB4q3VhSurB1UK2trV+9eqWRB3z9+rVC8m5qaurq6hoQEFDIJSX1PHBnCtmRnAJ3Rs8Dd4atecu6T7A1b7/WrJYCd23LG7gj4tGjCIC//FJA4J6Tg3q+bK1a42BcXFxgYKCrq6uRkREAdOmyWSDAjh1RLEZN3SgiHwdL8N33qgP3q1evtm3btvBNWrilOnA3oCsHTAkO3K9du8buEVfYnpWVZWFhwePxPhRyjWN9kpaWxlrl6P89+l+QSHD8eMz7LTs8HAFwwYIvDpPJsHt3LF++hN/yUyQq8is2qNna2qpY/0lLVq9GAKxbN59L7GFhCIBlyiDFV1yRSqXs7udFixZxXUth/fzzzwDQr18/rgvRjFIauL97987S0hIAzpw5w3UtamCLv40ZM4brQkqmXr16AcDkyZOVd02ePPlrM991YMaMGQDQvn175TnLO3fuBICqVauq2zKCqMVQAndElEgkAQEB5cuXBwCBQLBA4VMsIupf4I6Iv/2GAFi+vMbCC4Nz//591hfo77//1viDR0ZGBgQEuLq6CoVCFmcIBIKOHTuKxWLVXzUNInBnTp06xbp+AUCvXr2UWz9R4M4YRODOPHjwgI3LANCwYcN8EysK3LVNIXBHxB9+QIGgUIum6rPCjINv374Vi8WdO3fm8/nseWhsbNynT5/du49pY7nLFStK+DioInDPyMioXLkyANSoUWPfvn26r01dKgL3pKQk+dSHLl263Lx5U+fVqa0EB+4SicTW1hYAXrx4obDrm2++AYA///yTk8KKiXXxLnC9Ez0ikeDQobkdRvKGxT//jAIB/vpr7kXaJ09w8GDk8ZAmkylRkV9lZmbWrVsXADZt2qT7wnJysFEjBMCVK/PZ6+qKAEjxFVcCAgLYhKS0tDSuaymsmJiYsmXLAsCxY8e4rkUDSmngPnz4cAAYOHAg14WoRz7ZmZZ907iDBw8CgI2NjfJl4YcPHxoZGQkEgjt37nBSW3JyMvse8tdffynskslk7AtMSWjkp8cMKHBn5Dcy5/tZXA8Dd5ks9wNZ164okXBdjc5lZGQ0bdoUADw9PbV6oujo6C1btvTs2TNv8u7s7Lxhw4Z8Z8QYUOCOebqR5Hs7LQXujAEF7kxoaKijo2OHDh3ybZNFgbu2KQfub9/mNi4vqYG7inuDYmNjtVeSTIZ9+yIAdutWMsdB1TPc9+zZs2jRonTlpff0kuoZ7n379i2wuZ9eKcGBOyIOHDgQAAICAhS2r1q1CgBGjhzJSVXFtGTJEgAYN24c14UUjkSSu1SFlRVeufLFrpwcnDULzc0/r4ZRpQpqYepJCaAiv2LPBw47N4SG5s5kV57G8/w5mpggn48UX+nep0+fKlWqBAAGcSU7r+XLl7PZNsVpsqonSmPgfuXKFR6PZ2pq+vLlS65rUZuvry8AfO2bJymarKwsBwcHANiwYYPyXjYDgtulhLZt2wYA9vb2yksXGvTz2VAYXODOfK0ziR4G7ogYE4OVKyMA6nBZYn0xbtw4AHB0dNTZ7IOEhITAwEA3Nzdzc3OWKN26dUv5MMMK3JmEhIR8l7anwJ0xuMAdEbOysr62xCsF7tp26RK6uGBk5BcbAwLQxQUfPeKoJk342jj48OFD+D9LS8tBgwbt27dPZzcRxsRgpUoldrHAAnu4GxDVgfuHDx8M5coBU7IDdzbBUzmmvHv3LrtLmJOqiun69esAULNmTa4LKQR52m5hgefO5X9MejpeuYKhoXjnDirdoUhQ5ff96OhoKysrADh58iQntTHffosAmO/EIV9fBMChQ69TfqVjU6dOBYCOHTsa3N98VlZWvXr1AGDt2rVc11JcpS5wN/QZwfLJztpoO1BqLVu2jKVdypeFDx06xGa+x2nj/uFCk0qlrVu3BgCRSKS810Dv2DAgXwvc379/X7ZsWUdHR06qKjL9DNwR8cQJ5PNRKMTLl7kuRYfY7TUmJib5Rt7a9unTpz///HPs2LH57jXEwP1rKHBnvha4jxgxomzZsv/++y8nVRUZBe46I5Hg8eMYFsZ1HRqiYhx0cnJyd3f/559/OMlMjx9HHg/NzbNv3FDsgGHoSk/grrdOnz5dtmzZ77//XmF7yQ7cX716xb7KSb68c0Qmk7Hv1A8ePOCqtiKTSqVsdTHlVjn6RSJBD48C0nZSENX5lYeHhz58rXv2LHcm+40biruSkrB37/GUX+nYs2fPWG+MG8r/JIZAT1K44uNDKRMYGHj9+vWqVav6+flxXUtRlClTZtGiRQAwffr0tLQ0rsspCWJiYljgvnr1anmbBSY7O3v69OkAsGDBAvaxhit8Pn/t2rU8Hm/FihWvX79W2Ovv729pabl///7Q0FAuqiu9ZDLZp0+fPn36xHUhJUSvXjB1KkgkMHw4lJK/1Hfv3v3yyy8AsHLlSnnXV12ysrIaOnToli1bdH9qolfS0tI+ffqUnZ3NdSFET2VkwDffwIABXNehfeHh4bt27fruu+/Yuho61rs3zJsXXbNmx59+6pmcnKz7AkgJlpOT8+nTp9TUVK4L0amaNWvWrVs3MTExIiIi73Yej+fi4gIAhvjtic/nOzs7g54XL5PB6NGwaxdYWMB//0GXLvkc8/GjzssyPCryq4iIiD179hgbG/v7+3NSm1zdujBxIshk4OMDiF/sKlsWBg5sCZRf6Za3t3dWVtaYMWNatWrFdS1F0b9//2+++SYxMVEkEnFdS7GUrsA9NTV1zpw58P+Akutyimj06NGtW7d+9+7dypUrua6lJJg5c2ZycvJ3333Xu3dvhV1isfjp06cNGzYcP348J7Xl1b59+8GDB2dkZMycOVNhl3wAnjJlikQi4aI6QjRj6VJo2xZevoRffuG6FO2TyWQeHh7x8fHffvvtxIkTuS6HEEII9+bOtStThv/y5Ut2PwohpJh69uwJ+WXTX9tuEPS9+Lxp+5Ej0LVrPseIxeDgADdu6Lw4Q6Iiv0JEb29vmUzm6+vLuuNySySCSpXg0iUIDlbcRfmVjoWFhR09etTKymrhwoVc11J0q1evNjIyCggIYB3ADFTpCtyXLl0aFRXVrl27YcOGcV1L0fH5fLFYzOPxli9f/ubNG67LMWw3b97ctWuXsbHxihUrFHbFxsYuXboU/v9S56I6RStWrLCwsNi3b9/58+cVdvn6+tasWfPBgwes2zshBsrICP78E6ysIDgYdu7kuhotW7Ro0ZkzZ6pWrRoYGChfnY8QQkhpZmRktGfPnjJlygQHB+8s8QMhIdqnInDn8Xhnz57Nysrioq5i6dWrFwCcOnVKKpVyXYsSRJgwAQIDc9P2bt3yOUYshilTIDkZ8qycQZSpyK/27Nlz6dKlihUr6knnBisrYOnu1q03MjIy8u6i/EqXJBKJj48PAIhEIrZoqoFq2LDhuHHjpFLplClTuK6l6EpR4P7y5cs1a9bweDz2aue6nGLp0KHDoEGDMjIyZs2axXUtBgwRfXx8ZDLZlClTlC8Lz549+9OnT/369WOLpuoDe3t71uLGx8dH4dOVqakpu2Ywe/bshIQEbuojRBPq1IH16wEAJk2Cx4+5rkZrLl68uHjxYj6fHxgYyG3HKkIIIXqlbt2669evB4BJkyY9LsEDISE64ezsLBQKr1y5otBOp1KlSo0aNUpLS7t27RpXtRVZjRo1HBwckpKSwsPDua7lS4gwfjwEBIC5+VfT9rVrYepU4PFg/XoYMULXFRoOFflVenr63LlzAWDFihVs0VR98PPPMHjw4tOn2yrPZKf8SmfWr1//4MGDunXrloD7pxcuXFiuXLnTp0//888/XNdSRKUocPf19c3MzPTw8Gjbti3XtWjAypUrLSws/v77b+XJzqSQ/vrrrwsXLlSsWFH5ff/WrVs7duwwNjbWt/ueZsyYUaNGDVaewi43N7du3bolJCQsXryYk9oI0RQPDxg+HNLSYNgwMMBZRwVLSkoaPny4VCqdPXt2jx49uC6HEEKIfhkxYsTw4cPT0tKGDRtmiNNvCdEf1tbWrVu3zs7OPnfunMIufW/MopI+Fs/mtqtO27duBTZfdcMGmDBBt/UZGBX51dKlS9++fevk5DR8+HBOasuXQACTJjkDwLJly96+fauwl/IrHZBnQWKx2MTEhOtyisvGxmbBggXw/9cC1+UURWkJ3NlVEUtLS9YkpASwt7f39fUFADZHm+tyDE9GRsbs2bMBYNmyZWXLllXYy/5Wvb2969Wrx0V1X2VmZsYWRZkzZ47yWp1isVggELCrmlxUR4jGbNoEderAzZswezbXpWjBuHHj3rx506ZNm/nz53NdCyGEEH20efPmevXq3bx5c3aJHAgJ0SHVbdxPnjzJQU3FpneBO0vbt2zJTdudnfM5ZutWGDcOgNL2gqnIr96+fSuf+c7n61eg17Fjx4EDB8qTlrwov9IB1u3AxcWlb9++XNeiGePGjWvatCm724PrWopCR6/PT9JPqTLOlkSX9/2ZPXt2lSpVuCpD4/z8/NhkZ+rwWATsumvLli1HKN3Ixq67VqhQgS1Rom8GDx7cpUuX2NhY5ZnszZo1GzNmjLxvFyGGq0wZ2LcPateG/v25LkXTtmzZsm/fvrJly+7du1dP1ocghBCibywtLf/8809jY+M1a9YcPnyY63IIMWBfy6a7du1qYmISERFhiA05u3fvbmRkdOXKleTkZK5rAZlMNnXChKQrV8DCAv77L/+0/fffc9P29espbVdNdX41derU9PT04cOHd+rUiYvqCrBq1Spzc3PWS0BhF+VXWsXW8xMKhWKxmOtaNEYgELCona1nwHU5atN84P4863lwYvCuhF0XUy9KMbfNdLen3TzfeGr8XIXEVratVauWQbfbV2ZmZrZs2TIAmDVrlvJkZ6JCZGTkqlWr8r0sLO8stnTpUuWZ73qCzWRft27d06dPFXYtXbrU1taWrUyty5LCw2HQIFBowHP3LgwaBM+ewdGj4OYGCk/Sd+/AzQ2UBmJCcjk5wZMn8P49DBoEISFf7Nq/H376iaOyiufhw4fTpk0DgM2bN9eqVYvrcgghhOivVq1aLVq0CBF//vnnDx8+cF0OIYaqXbt2VlZWDx8+fPfuXd7t5ubmHTp0kEqlZ86c4aq2IrOysmrVqlVOTg7nDToQcdy4cWu2bGkRFZVx9Gj+nWR+/x3GjgUAWL8e9KC19MvbF4KXj2V/jmyccfmfzenJenTRRUV+dfHixYMHD5qbm+ttF9lq1apNmzZNvlpe3l0GmV9FR8Mvv8DVq4rbZ8yA7dtz/zs7GwIDYcQI6NMHhg6F9euBi8tgU6ZMkUgkkyZNatSoke7Prj3du3f/7rvvUlNTdT8dNlsm83v5UuFPUGxs4R9Bk4F7TE7MN8+/cXjgMPz1cK9Ir85POzd+1Phexj0NnqIIEhMTRSIRAKxcudLU1JTbYjRu8ODBnTt3jo2NLTGtcnTD19c3PT19yJAhnTt3VtjF1s5u0aLFqFGjOKmtMFq0aDFy5Mjs7Gx2W1Zetra27J3I29tbl00/o6IgOBj8/L4YjKKjITgY4uPh2TPYvx8U+m4lJ8P+/UALlRMVhEK4fx+Cg8HTExITP29/8ACCg7krq6gyMzOHDh2anp4+ZsyYIUOGcF0OIYQQfTd9+vSePXvGxcUNHTqU7sEnpGiEQmHXrl0BICwsTGGX3jVm+VJOTs7KlSuzs7Pz3durVy/gunhEnDRp0u+//25ubr5t716zLl3yOUietq9bpw9pOwAkRr9+ePGwQGhkZlk2MzX5QtC6dZ4d4t+/4LouAJX5lVQqnTRpEiLOnj27evXqHBVYsFmzZlWvXv3mzZu7du1S2GV4+VViIvzxBzx7prj9r7/g7FkAgA8foHVr+OUX+PQJGjYEqRRmz4YGDeDOHV2WuX///tDQUFtbW7aabgmzatUqU1PTwMDA69ev6/K8EoBTiYkfsrIs+Hz5HxN1+jhpLHDPxuw+L/pcSL0QWDMwpXlKUrOkx46P7YR2J5M57om2YMGCjx8/Ojs7//DDD9xWog08Hm/t2rV8Pl8sFitPdib5unTpUnBwsJmZmfK7/Lt379gqqXrYEE0Bm4B/+PDh48ePK+zy8vJq1KjR8+fPN27cqOOqatWCSZNAKtXxaUkJZ2EBPF5JaOY+bdq0O3fuODg4rF69mutaCqVePa8OHTYKBOW5LoQQQjTJxKR6hw5D7e3zC4b0DJ/P37NnT6VKlc6ePbtS4UZCQkihqW7jfuLECQ5qKkhOTs6QIUOmT58+ZsyYfA9gxQcHB586dYqTFQVZ2r5p0yZzc/OQkJDu3bvnc9Aff+R2klm7FiZN0nGFqvUcOdd14oqBflsmbDgjzcm+dGAT1xUBqMyvfv/99zt37lSrVk3POzeYmZktWbIEAGbOnKnQ8qgE5lceHhAZCdevw7//wurVsG8fPHgAZmbw44+gq+mPmZmZM2bMAIAlS5bY2dnp5qS6VLt2bR8fH0T09vZGRB2f3cXGZn7NmvI/A8qVK/zPaixSDEoMupV+a439Gg9bD2OeMQDUN61/zuHctIrTNHWKInj06NHmzZsFAkFJamOkQD7Zefr06VzXYgBkMhl7rc6cObNGjRoKe6dPn56WlsaapHNSXuHJW8xPnTo1Jycn7y6hUMgaXS1cuDA6OlqXVS1eDLdvg85zflLCGRvDwoWwdWs+N/MZkP/++2/z5s0mJib79u0rU6YM1+UUytOnIy5fniCV6u8MGkIIKYKsrNaXL//57p0314UUSoUKFXbs2MHj8ebMmXPlyhWuyyHEILHJ4GFhYQphTcuWLcuXL//69esXL/RidrOcVCodMWLEgQMHypYtO+krOfXFixdNTEzi4+NdXFxsbW179uy5YMGCsLAwiUSigwoRcfLkyZs2bTIzMwsJCenRo0c+B23bBmPHAiKsXQuTJ+ugqqIpY1fJ0qZC8scoAHh999K5v1clfnh9eMP0fUtGJ8W81WUlKvKrpKSk+fPnA8Dq1avNzc11WVURDBs2rFOnTjExMayHTF4lKr+6dQvCwmDuXGje/PPG6tVh7Vp48QIOHNBNFStXrnz16lWjRo2+dnGuBJgzZ06VKlWuXr36559/cl2LGoSaeqD/Pv1nxDNyt3XPu1HAE+T9XwlKMmQZRXhwnpSHWUW5juHj45OTkzNhwoSmTZsW4ccNxbJlyw4cOBASEnL8+PFvvvmG63L02h9//BEeHl6tWjXlZiwymaxMmTIWFhbLly/npDZ1eXt7//7779WqVUtKSipf/ospqD179vz222+PHj06Z84cda828XgmiMZq/Yjw/28kzZvDzz/D3Lnw449Qtapaj0GIKmPGwO+/g6cnRESAIa4z+v79+xEjRiDiihUrWrRoobA3Ojo6OTm5Xr16nNRGCCFEz33zzTc+Pj5r1qwZPnz4rVu3rKysuK6IEANTv3796tWrv3379u7du82aNZNv5/P5zs7OQUFBoaGhderU4bDCvKRSqYeHx99//122bNmTJ0+2adNG+ZglS5bMnTtXIBB8++2379+/v337dlhYGOuZY2dn5+zs7OLi4uLioqVfiqXtGzduVJG2J+7aZfPLLwCg52k7ANw/fygpNrJtv9EAEPv26aWDm++c3l+5blPg8UzMrSTZmTKp2tcwpDKQyNSOsFTkVx8/fqxZs6ajo+PAgQPVfVjdYzPZW7duvXr16tGjRzs4OOTdW3Lyq3PnAACUn/89ewKPB+fOwU8/QXq6Wg+ZzeNlqTOJOyoqiuVXa9asEQo1FvDqG0tLyyVLlowaNWrmzJkuLi4WFhZq/bjA1BTU7WDB46l3fH409u/xPOu5vZG9Gd9MxTF7E/e6v3ZXccDXdEzoeKnnpSL8YJkyZSwtLRcuXFiEn9VD0dHRFhYWylMjK1So4OvrO3/+/CtXrhj2G5b2sZlBy5cvV74szOfzt27dumTJEoXwWm8ZGxtfunTpa9WuXr36xIkT+/fv3y5fzaNwunZdeO7cfLV+pG9f8Pz/oshLlsD+/eDjk0+L7RYtvniX08ncC1JC8PmwZg106QLr18PUqVxXo75z584lJSX16NFjstL3jdu3b/fu3btChQrXr183M1M1hhJCCCnZ4uLi4uLiHB0dlXctW7bs2LFjr1+/joiIcHZ21n1thBg6FxeX7du3h4aG5g3cAaBnz54scB/HOp9wjc1t/+uvv1Sk7StXrmRp+44dO9zd3QEgPj7+9OnTFy9evHTpUkRExP79+/fv3w8AlStX7tSpk4uLS9++fatqaD4UInp5ecnTdhcXF+Vjtm/f7ufl9aRlS1sPD71N27dN78cXCNOTE7LSU9r0G922/y9se05muuvE5bWb597yHjh74Ot7l9V98DTb5r/tOqbuT6nIr+rWrXv16tXEvKta6beWLVu6u7tfv35deX1Uw8uvZs8GhUmZMTEAAO/fAwAoNU4AExOoWBHev4czZ6BnT7VOdalr1+4sxy80IyOjnj179lTzRAbHw8Pjt99+e/XqVeXKldX92cGXLz8zVm9SqQmfH9qsGQBsjIraEhUl336yWTNLgeDrP/cFjQXuWZhVVlBW9TFGPCNLvmURHtyUZ2ppqfYPIiJrtZGRkf+0+qysrOjoaOW+Inpr/PjxV69e3bdvn3LDk9TUVERMSUnhpDADwpqIJX992WhDSdsZFdWyp4RUKlX3tWNiYqLuqy3vxYty5WDZMhg7Fk6cULwo6OcHeadkRUVBSVzSg2hLp04wYgSIRDB4MNelqC8jI0MqlaampkqlUoWpBw4ODnZ2dvfv3/f19dX9uguEEEL0BCKOGjXq9OnT+/bt69evn8LenJyczMzMnJycLF31hCWkhOnZsycL3BVudGYp1enTpyUSCefzQ1na/ueff5YtW/bEiRNfS9unT58uEAi2b9/O0nYAsLOzc3Nzc3NzA4APHz5cvHgxLCzsyJEjUVFRwcHBwcHBAFC7dm027b13795FvlGGpe0bNmwwMTEJDg7ON23/448/xo4di4h/eXhM8vIq2ol0oHXfUaYWVpLszHdPIm4c2WlpXb7zoNxWY5XrfJ5gbmRiZmyq3nRaAMgyNlb3a3iB+RWfzzesDt3r1q0zMzMzyu/2ZAPLr7p2BSenL7awiyIs7/jakuY8HgiFoG62YmKi1jNHIpFkZ2erWMXhzZs3FStWVFiAV28lJCRIpdJ8Yy6pVJqVlZWTk2NmZiYodOTNGAOYqznD3fT/x/e2seliba28vVBQQzo96VThToWv7W3+sPmQl0M0da7CGzRoEAAMHTpUedf9+/dr167dsmVLqVSq+8KK4NSpUwBgaWkZFRWlsOvly5empqY8Hu/q1auc1GZA9u3bBwDly5dPTEzkuhYtkslknTt3BoAZM2bo5oyHDiEAPnqEiCiVYtu22LAh/vcfAuCVKygWIwBGR3/xIw8eIADu3q2bAouFfRSwsLBQ2B4ZGQkAVatW5aSqImMTXn744QeuCymUWbPQxib3v2Nj0cYGPTxwwQLk8TgtS00JCQnVq1cHAJFIpLz33r17bG77P//8o+vKVGrZEgEwPJzrOjQhLi4OAOzs7LguhGOst+PWrVsVtrPbk4OCgjipqsjYy+r169dcF1LypaQgACoNg4Zq/34EQH0bBtkCPDY2Nm/evFHeO2LECABo3Lhxenq67msrPpYbloyvKmyGadmyZbkuRD1sXdCePXsqbN+7dy8ADBo0iJOqdCkuLo7P55uamiq/iFhbvytXrnBSmJxEIhk+fDh7dn3txcIWT+bz+YGBgYV5zBcvXgQEBLi5ueVN2IVCoZOTk5+fX2hoaHZ2duErlMlk7GZNExOTI0eO5HvMtm3b+Hw+APj7+xf+kXUs/NiuBa6Vkz9+kG85GjBnYX/7lPjoa4e3L3CtnJ6cyElhKvKrksSQ8quHDxEAd+1S3F61Krq745o1CIC3byvuzcxEHg/HjtVBgQkJCeXKlfvaF8ktW7aYmZktXbpUB5VoxNixY62trf/991/lXexjUp06dTIzM3VTTJpU6hQeHvjhQ8GHfoXGFk1tZtYsThL3IeeDph5QI1auXGlubv73339fuHBBYVft2rWlUunNmzd37NjBSW1qkUqlPj4+ADBnzhzlGyh8fX0zMzPd3d3btm3LQXEGZdCgQV27do2Li/v111+5rkWL2HO+QoUKs2fP1v3Z+XzYtAmePoWtW3V/clKSlS8PS5bA7t0QEcF1KWqysbHZs2ePQCD49ddfT58+rbC3cePGbEGh0aNHv3nzhosCCSGEcOnevXuzZs0CgB07drArSXkFBQUFBgZaWFgEBQVR8zFCiqZcuXLNmzfPzMy8dEmxVy2b5B4aGspFXbmkUunIkSP37NljZWV1/PjxfL/Xr1q1ytfXl8/nb9++3cPDozAPW7t2bU9Pz6CgoPj4+PDwcH9/fxcXFx6PFxERsXz58p49e7LVVpcvXx4REYEqO0cjore39/r1642Njffv39+3b1/lY3bs2PHLL7/IZLJly5b5+fkV8nfXB+XtHVAmTU/huGGLivyqJCk5+VXXrgAAZ84obj91ChBz92qZjY2NSCQCgGnTpinPc69Xr15GRsbSpUuj8jRF0Vt37tz5448/UlNT69atq7ArISFh8eLFACAWi01MTLiorig0FrgPtR2KgL9G61eIydbGZGOD7MsbPczMzFjAMXv2bOWuUvpmy5Yt9+7dq127Novd8zpz5szBgwctLS2VF4Am+RKLxQKBYP369U+ePOG6Fq3IyMhgOfuyZcvKli2g0ZOWtGwJ48fDoUOFPf7hQzh5EqKjtVkTKRHGjoVWreDwYa7rUF/nzp1nz54tk8lGjBgRHx+vsNfLy6t///6JiYnu7u5SqZSTCgkh5Gt4vMzmzac2aTKD60JKprS0tEGDBmVmZk6aNGnAgAEKe1++fPnLL78AwNq1axs2bMhFgYSUEF8L1jkP3KVS6ahRo1jafuLEiXbt2ikfs3r1annazm55UUveWe0JCQmhoaF+fn5OTk5paWlhYWEzZ85s1apV5cqVBw0atHXrVnYXb16I6OPjw9L2AwcOuLq6Kp9ix44dY8aMkclkS5cunTlzproVckiSnXn/wiFjUwu7qhwvnKsivyoxSlR+1aIFdOsGS5bA48efN8bGwrRpUKsW/PCDbqoYP358kyZNXr58KRaLFXY5Ozt///33qampnEzEVJePj49UKp08eXKjRo0Uds2ZMyc+Pt7FxSXfNx+9pbHAvYNFh7Hlxm6O2zzk1ZDQ5NA7GXf+Sfpn2Othp1MUp/Lp2MyZM2vUqHHr1q3AwECFXUOGDOnSpUtsbOySJUs4qa2QEhMTFyxYAACrVq1SaL0kn/k+a9asKlWqcFGd4WnevPno0aNzcnKmTZvGdS1a4e/v/+bNmxYtWowcOZLDMpYsgUKuZuHpCaNHw+HD0Lp1PpeHCcmLz4fNm0HNpm36Yv78+R07dnz37h2LTvLi8Xjbtm2rUqXKhQsX9HxIIoSUQoiS27fX3Lu3ietCSiYvL6/Hjx83atRoxYoVCrtYi4nk5OSBAwf+/PPPnJRHSInxtWC9e/fuRkZGV65cUbHQl/awtH337t0WFhaHDx/ON21fs2bNtGnTeDzepk2bipC2K7C0tHRxcfH39w8PD4+KigoKCvL09LS3t4+JiQkODh47dmz16tXr1KkzduzY4ODgpKQkVmRUVJSpqemhQ4fyDbx27twpT9vZ/Tr678hGv+DlY/9cMEz8c9v3T2/1GbtYIMyn27iOqcivSoASmF/t2gW2tuDkBCNHwtKlMH48NGoE8fEQHAy6mogtEAhY1L5kyZIPHxSbjqxcudLU1HTXrl3Xrl3TTT1FExwcfPbsWVtb27lKC/09ePDgjz/+EAqFrKuMIdFMbxtERJSiVBwjrn2/NkQARIDZLbNez3pdTb2KiG0et/F45aHBc6nlzz//BICKFSsmJSUp7Lp58yafzzc2Nn7y5AkntRUGa5TWvXt35V2bNm0CgFq1amVkZOi+MMMVExNjbW0NAEePHuW6Fg2LjIw0Nzfn8Xjnz5/X5Xlv30ZPT1Rob/Xff+jpiS9f4tmzOHkyJid/sTc6GidPxmvXcPt2ZM0DAwLwxx91V3PhUQ937dm3D1euRJnsqwccPIg+Poob16/XTU88zXv79q2trS0AbNq0SXnv2bNnBQIBn88/c+aMzkvLB/VwL3mohzspmq+NgwZKr3q4s8UMTU1N79y5o7yX9WSoVq1afHy87mvTIOrhzjnq4Y6ImZmZFhYWPB4vJiZGYVfHjh0BICQkRMclSSQS1hzGwsLi3Llz+R6zevVqAODxeFu2bNFqMfKG73lvkhYIBGxq/PHjxy9dupTvD+7cuZP1bV+yZIlWK9SU1/euHN4wnf058ceC60e2J8W+Y7te3bl4eMP07Iw0DstTkV8ZOsPLr6Ki0N0dlZ/53t4YEJD732lpKBZjv37YujX27o2//oofP+q4TERkd8iNGjVKeRe7BtauXTuZim/dnMrIyKhZsyYA5Psux66Vent767iqbJlsxdu31xRiLHVoMnCX+yT5FJOjOIZxSL6ApJ+fn/JeNlukX79+ui+sMB4+fGhkZCQQCJQ/hcuXRzhw4AAntRk0tuBMgwYN1FooRv/99NNPADBkCAdrFBffjh04eDDXReSHAnctefkSy5ZFADx0KJ+9Z85gjx747p3Oy9Iy9vf/tWyFfR6yt7fXh2yFAveShwJ3UjQUuGvJ27dvbWxsACBA/r09jzNnzggEAqFQ+LWQy4BQ4M45CtyZ3r17A8Bff/2lsJ3dUD558mRdFiOVSuVp+9mzZ/M9hs3o5PF4mzdv1llh2dnZ58+fZ7dmCoVCefhuaWnp6ur633//5T3477//FggEBpS26z/V+ZXhkudX+/fv57qWEujFixcmJiZ8Pv/atWsKu1JSUtj9BLt37+aktgItWrQIAJo1ayaRSBR2se/Otra2H7m4jFFMWgnc9VBERMTXZrLHxMSwS7jHjh3jpDbVvvnmGwCYMGGC8i5vb28AcHZ21n1VJUB2dnb9+vUBYPXq1VzXojGXLl3i8XhmZmaGmD6kp6OTE375+U1fUOCuDTk52L79VyOP2FisXBkBcMUKnVemfaylTKNGjdLT0xV2ZWdnt2vXjsfjTZnyJye15UWBe8lDgTspGgrctSEnJ6dDhw5fG5FjY2MrV64MAIsXL9Z9bRpHgTvnKHBn2KQr5UmgN2/enDBhwqlTp3RWiVQqZc1hLCwsvnZrIydpu4LU1FR5w3cejwcA33///ZEjR9jevXv3skS+ZLxT6Q8V+ZXhovxK29hdce3bt1eeyb5z504WXKSkpHBSmwrv3r2zsLAAAOV3wszMTLaAar53h+u/0hK4I+KoUaMAYMCAAcq7li9fDgANGzbUt8nOhw4dAgAbG5u4uDiFXfKZ77dv3+akthLgyJEjAGBlZRUdHc11LRoglUpbtWoFAAsWLOC6FrVlZ+MPP+TTOURPUOCuDbNmIQDa2+dzy51Mhv36IQB26YJKF7lLgrS0NLbwXb4XU1++fNmlywkAzG++o05R4F7yUOBOioYCd21gK5jle0uTTCbr168fAHTp0kV5tpchosCdcxS4M3fu3NGHT+9qpe36kzRFRUWNHj1a/j2C0natUpFfGSLKr3QgOTmZXarfs2ePwi6ZTMYG4rlz53JSmwrDhg0DADc3N+VdixcvZtPUcnJydF9Y8Wls0VT9t2zZsrJlyx46dIh92sjLx8enXr16jx492rx5Mye15Ss7G3bvLmtiYiUSiditN3lNnTo1JyfH09OzWbNmnJRXAvTt27dPnz7JycnsFkJDt23btvDwcHt7e19fX65rUc+HD+DiAo0bw+rVXJdCdOXcOVixAvh82LUL7OwU94rFcPgw2NjA7t2Guj6qaubm5kFBQWZmZps2bQoKClLYW6tWrcmTewGAtzfcvctFfYQQQrTs3Llzy5cv5/P5u3fvZmt75CUWiw8fPmxjY7N7925BiRwICeFIkyZNKleu/P79+0ePHnFVAyJOmDAhMDDQ3Nz8yJEj3bp1Uz5m7dq1U6dO5fF4GzZsGD9+vM5rzF/lypXnz58PAKdPnz579uywYcMkEsnSpUvnzJnDdWklkIr8yhBRfqUDZcqUWbJkCQD4+fmlpaXl3cXj8dauXcvj8VauXPnq1SuOCszH1atX//rrL1NTU+V142NiYtjGNWvW5O1tZUBKUeBesWJF1huXvdTz7jI2Nv7tt98AYMGCBR8/fuSmPiXr1sH+/V07dPgwYcIEhV1Hjhw5fvy4jY0Na3VEimz16tVGRkZbt26NiIjgupZiSUlJYZ9+Vq5cye7HMRSJieDkBC9ewKNH8NNPMHEi1wUR7fv4EYYOBakU5s8HZ2fFvffuwezZwOPBjh1QvToX9elE48aN/f39AWDcuHFv3rxR2DtwIIweDZmZMHQoZGRwUR8hhBCtSUxM9PDwkEqlIpFIOWu7d+/e7NmzeTzejh07qpfggZAQLvB4vB49egBAaGgoJwWwtD0gIEBF2h4QEDBlyhQA2LBhg3IUwK0aNWo4ODgkJSWZmJgMHTr0119/ZRkL0TgV+ZXBYfmVtbU15VfaNmLEiDZt2rx//145v27Xrt2wYcMyMzNnzJjBSW3KEJEtherr68sWTc1rxowZycnJP/zwA1s01RCVosAdAKZMmeLg4PDw4cOAgACFXf379//mm28SExNFIhEntSmIjYXFiwEAZswwNzIyyrsrOzubTWHOd+Y7UUuDBg0mTpwok8l8fHwQketyim7RokXR0dEdOnQYNGgQ17Wox8ICDh+GQ4fAzw/8/GDcOK4LIlqGCD//DFFR0LkzzJ2ruDctDQYNgsxMmDQJBgzgoj4dmjx58oABAxITE93d3aVSqcLedeugQQN48AD8/DipjhBCiFYg4qhRo96+fdu5c2flaaFpaWmDBg3KzMycNGnSgBI/EBLCBZbdcBK4s7R9y5YtLG13Vp54ArB161Y2pV0P03aG/QWGhYUFBgbOVf40TzRHRX5lQCi/0iU+ny8Wi3k83m+//fb69WuFvf7+/paWlvv37z979iwHxSkJDAy8fv161apV/ZS+8UZEROzZs8fY2JjNUTNQpStwNzY2Ztd55s+frzyTnU12DggIuKsH9/DPng2fPkG/fvDNN4q71q1b9+TJkwYNGujnAGxwRCJR+fLlL168ePDgQa5rKaIXL16sX79e/t7KdTnqMTYGJ6fPf5o04bogomXr1kFICFhb598uZvJkePwYGjeG5cu5KE63eDzeH3/8UbVqVcQ6y5dnK+y1sICgIDA1hQ0b4NAhTgokhBCieevXrz906NDX2sVMnjz58ePHjRs3Xl4aBkJCuNCrVy8ej3fmzJnsbMVPX1qFiBMnTiwwbR83bhwArF+/Xm+/7MuvWBjcF0+Dozq/MhTy/Goi3cyuE+3btx8yZEhGRoZyii2PtidNmiSRSLio7rPU1FQ27YBdBsi7i818l8lkvr6+Dg4OHBWoAaUrcAeA7777rnfv3omJiQsXLlTY1bBhw3HjxkmlUnYDF4du3YIdO8DYGFauVNwVGwthYQ2EQlN2eYCL6koa+Z1NU6dOTU9P57qcoli9+lXZsjajRo1q3bo117WULkZGRg0bNqxXrx7XhRiM+/eB3XW6ZQvUqKG4NzgYduwAU1P46y8wM9N9dRwoV67c33/funx5h0hkdvGi4t4mTWDpUkCEUaPg7VsOytu3D+7cAUdHDk5NdKxatWoNGza0srLiuhBCdKFnT7hzh5uVY+7fvz9z5kwA2L59ew2lgTA4OHjHjh2mpqZ//fWXWSkZCImuWFpaNmzYUPlZVwpVqlTJ0dExLS3t2rVrOjspS9s3b95sbm5++PDhfNP233//XZ6263M02aNHDyMjoytXriQnJ3NdS8mnIr8yCLGxsWzdS8qvdGnFihUWFhZBQUHnzp1T2MWatzx48GDbtm2c1Ca3ZMmSqKgo1uhGYdfu3bsvXbpUsWJF5WsGBoajxVq59ODBA7Y+8t27dxV2JSQksJtcDh48yEltTJcuCIDTp+ez65dfEADd3ZN1XlRJJpFI2NodhrjA+okTCIBVqiRHR8dzXUuJlZKSAgAWFhZcF6IZ+/fvB4AffvhBx+dNTU3t3r1fw4bh48fns/fNG7SxQQDculXHdXFv9mwEQHt7jFd6Ectk2K8fAmCXLiiR6KKY5GR0csLu3TE19fPGrCx0csLAQF0UoCVxcXEAYGdnx3UhHBszZgwAbC0pLzPW3vr169dcF1LylYxxcNkydHLCXbu+2Lh6NXbrpqMC0tLSGjZsCAATJkxQ3vvmzRsbG5uS9ArNq02bNgBw9epVrgvRgMTERAAoW7ZsvnufP38eFxen24qKZe/evQAwaNAgrgvRqbFjxwJAly5dzp8/n52dre3TyWQyNl3d3Nz81KlT+R6zdetWHo/H4/HWr1+v7XqKr0OHDgBw+PBhrgspFVTkV/qPffJ0dXXlupBSh12had68uUTpO2RQUBAA2Nraxit/+dSVFy9emJqa8ni8a9euKexKS0urVq0aAAQa9JdPREQsdTPcAcDR0dHT01Mqlfr4+CjssrGxWbBgAQD4+vpmZmbqvjYA+PtvOH8eKlQA5bW+b9+G7dvB2BjmzCnDRWkllkAgWLNmDQAsXbr0LSfzSItKIoFp0wAApkwpU7GiLdflEH3x/v17Dw+PAwcOcF3IF3x8fE6fPmxq6rlqleJ6CRIJDB4MiYnw44/wyy+cVMelhQuhQwd49y6f353Hg23boHJlOH8edNO/TiqFiAg4fRp+/fXzRpkMIiIgOloXBRRZenr6ggUL9GcVIFJ8Mpls165d33//PRryIiulxPDhw5cvX56VlcV1IapERkJEBPj4QGzs543v3sHt2zoqwNvb+9GjR40aNVqpdBOrRCIZPHhwYmLijz/++EvpGwjXrl3r4eERm/cfxmCNHj3awcFh+fLlOm5XQgovMTHx/PnzdnZ258+f79Kli7W1dc+ePZcvXx4REaGl4YbH41lZWZmbm4eEhHTv3l35gD/++IPNbV+3bt2kSZO0UYNmcdgHvxRSkV/pudu3b+/YscPIyEh51CPaNn369Jo1a96+fXv79u0Ku9zc3Lp165aQkMBuPuAES1w9PDzY9fi8li5dGhkZ6eTkNHz4cE5q0ySuE39uJCQk2NnZAcC///6rsEsikTRt2hQAli1bpvvC0tOxRg0EwD/+yGdv164IgNOm6bys0uHHH38EAHd3d64LUYNYjABYpw5mZnJdSolmQDP70tLSRCKRubk5ADg6OspkMuVjOJnhzk5qamp6584d5b2zZiEAVquWzxTvUuLt29wJ/gEB+ewNDUU+H9u3x5wcrVeSmIgA2Lo1GhmhfBpNRgYC4PLlWj970chksj179lStWhUAjIyM3r17p3wMzXBnDGiG+9mzZ5s3b84+rB47dizfY2iGu86oHgflbRkaNGhw9OhRHddWeBMmYKVKWK0aenh83jh1Klpb6+LsBY2DswCgWrVqHE430yoVM9wzMjLKly8PANbW1mvWrNHBdONiUjHDPSkpqVevXuzl0LBhw+PHj+u8OrWVthnuCQkJTk5OAFCzZs1ffvmlcePGebORihUrDh06dPv27W/fvtX4qZ88eZLv9t9//53P5/N4vHXr1mn8pFpy8eJF9p7PdSGlhYr8Sp917doVAKZRgMUR9vZeoUKFxMREhV23b98WCARCofD+/fu6L+zUqVMAYGlp+f79e4VdL1++ZDPfL1y4oPvCNK6UBu6IuG7dOgCoXbt2plJUqeKfX9tEIgTAFi1QKlXctXcvAmCFCqj0YiGaYXCv7fh4tLNDAAwJ4bqUks5QAveQkJCaNWuyLwyurq6vXr3K9zDdB+5v3761tbUFgM2bNyvvPXsWBQIUCvHiRZ1VpI+CgxEATU0xvygGjx5F3UQQLHDftAkbN8aOHXMHI30O3MPDwzt27Mie9k5OTl97A6fAnTGIwD0yMtLd3Z0txWZvbx8YGJjvtUOkwF2HChwHQ0NDGzVqxF6JLi4unHx/K9CECVizJu7ahTwenj6du1E3gXtB4+BZ9r33YskdCFW3lHny5Imrqyt7/tSrV0/P+1SobimDiKGhoY7/X//ExcXlwYMHOqxObaUqcE9MTGzVqhV7msm/6cfExAQFBXl6eio0uK9du7anp2dQUJBWL4P98ccfBpe2I2JOTk7ZsmUBQBtXJki+VORX+klF2kt0RsU1D09PTwDo2bOnjkuST3FeunSp8l5DnAWrQukN3CUSSZMmTQDA399fee93330HACNHjtRlSZGRaGGBAHjunOKu9HSsWbOUdjfWpdmzZ7PIRqp8xUP/jB+PANijB9d1lAL6H7hHRER07tyZfT1o2bLl+fPnVRzMAvcBAwbopracnByWh7K+EAri4pJq1MgCwEWLdFOOXhs9GgGwUSNMT+esBha4BwRgWNjnQUc/A/eoqChPT08+nw8AlStXDggIUPHWTYE7o+eBO7tHh60VaW5uLhKJ0lW+GChw15nCjIPZ2dlisdja2prda+Lp6alvnaxZ4C6TYbt22KBB7t2BOgjcCxoH46pUqQIAi0r0QFiYHu4GcdkGCxG44/9fDiyRNDIy8vLySkpK0lWB6ik9gXu+abuCFy9eBAQEuLm5sQUVGIFA4OTk5OfnFxoampGRocGS5Gn72rVrNfiwujFgwAAA2L59O9eFlBaq8yt9k56ezuaB6e1nzlLi1q1bAoHAyMjo8ePHCrtiY2PZZ7b//vtPlyVt2LCBXTpSfjs9ffo0+wrw5s0bXZakPaU3cMf/z2QvU6ZMVFSUwi4VLfy15+NHHDcOhw7NZ9eCBQiAzZvraNG8UislJYV959H/9Rnu30ehEIVCvHeP61JKgfT09FatWllaWopEIs1+zi6+jx8/enl5CQQCFiaKxWLldVHyev78edeuXcuVKycUCl1dXQMDAz99+qTVCufOncumqX78+FFhl0wmc3V1bdiw1cCBL+jNDRFTU7FBAwTASZM4q0EeuCOimxva2mJMjN4F7izIsLKykgcZqp/GqampM2fOtLKy0v0kDn2zZMmS6tWrN23aVN/W3ZLJZEFBQWx2IY/Hc3NzUx2j5+TkBAQElClTpmzZssOHD4+NjdVZqaVT4cfB+Ph4+ahka2tb4KikSyxwR8TwcBQIci/06iBwVz0O9u/fHwA6d+6sP39R2jBq1Khy5cr17t1b9bdo/c+pU1NTZ82aVaZMmcK8HNT9kKZ7z54969KlS9WqVWfPns11LdqVmJjYunVr1Wl7XhKJJDw83N/f38XFxdTUVB6+m5mZubi4+Pv7h4eHF3OG1rZt29ikAYPIT5Wx1GzIkCFcF1KKqMiv9I2KFTuJjrGFYfr27au8a9WqVQBQt25dnd02kZCQUK5cOQA4ePCgwi6JRNKsWTMAWLx4sW6K0YFSHbgjIvuMO3r0aOVdM2fOBIB27dp97UZmLVE+27t3uTPfz57VZSGlVGBgIABUrFhR2ylkMfXsiQDo7c11HaWGfAHS2rVrHzhwgOtyENX/UpqcnOzn52diYgIAlpaWrF0DAJiamvbv3z8wMDAhIUHjRZ47d04gEPD5/NPyu/fzEIvFAGBjY1NiLmIX3927aGqKAKj7Do3R0Xjq1BeBe2QklimDo0frV+AeEhJSp04d9ux1dXV9/vy5ioOlUunvv/9esWJFAODz+Tdu3NBZnfpJIpHUrl0bAIRC4eTJk/WkW3Qh+wLJnThxQt6ugaUVdnZ2GzduzNHBKgelmFrj4K1bt9hdzKBPnazlgTsiTpyIpqb46tXnwP3YMdTCMEjjYK4PHz6wm1fKlCmzbNky1d/t9TOnlkql27Ztq1SpErsuyJ7edevWLbClckRERKdOndjxPXv2U3kXou58+vRp+vTpxsbGAFCpUiV9m1CiWfK03cHBoQg9Y9PT00NDQ/38/JycnNigw5QrV87NzS0gIODFixfqPqahp+2I+OTJE/aXYBC3hpcYKvIr/fHu3TsLCwsAOEsBlh6IiYlhiYHyKjvZ2dn169cHgNWrV+umGC8vLwBwdnZW3rV582YAqFatWlpamm6K0YHSHrg/f/7cxMSEz+crz2RPSUmpXLkyAOzZs4eT2uSGDkUALAX3+ekFmUzGvvbr80SPAwcQAG1tUWmmFNGi06dPs3ZjbJC4ffs2h8Wo1R5UJpMFBgbKvyK6ubm9ffs2MjIyICDA1dVVKBTKb5jt2LGjWCz+8OGDRopMSEhgDR9EIpHy3nv37rHv3v/8849GTldirFmDAGhjg7qJXyIjMSAAXV1RKERra4yJ+WLt1pUrkc/HixdzA3fdXoBW9OjRoz59+rCna2HWZrx27Vq7du3Y8W3atLly5Ypu6tRzCQkJXl5e7IVvY2MjFos5zKmV+wKpjtWePXvm5uYmz7mCgoLUfVaQ4lB3HAwJCalVq5b88tjLly91U6cy9t6VN3BPTMSKFXHgwNzAPS4OhUIUCLBjRxSLUUPDII2DX3j79q27uzt7PlSrVq3A20lv3rzZpUsXdnzz5s3PKffc1KHr16+3b9+eFdO6devLly+fOnUq78sh37Vw82IL7XTo8CcAuroid68GxY+F7u7umvrgp5/ypu35Lquulri4ONbwXf7mJr8S6e7uHhAQUJhAX562L1u2rJj1cIv9Jdy8eZPrQkoRFfmV/hg6dCiUjkZVhuK3335jn5OVlyX/77//AMDKykoHA8HDhw+NjIwEAoHyiJmYmMiWTw8ODtZ2GbpU2gN3RJwxYwYAtG/fXnkm+/bt2wGgatWqqampnNSGiJcvI4+HZmb4leUPieaFh4fz+XwTE5Nnz55xXUs+srLQwQEBcONGrkspfaRSaWBgYIUKFdi0Snd395iYGB3X8Pjx42+//ZZ9uK9fv36BPdeUvyIqHPDx48fAwEBXV1c2y4n9aix5L+bXEtbbsVOnTsoJWmpqasOGDQFg4sSJxTlFiSSTYf/+CIBdumixjdiLF7hiBbZtizweAuSu1zpgAD558kXgnp2NjRtju3a5gXtgIHbvnv+yrlrFmlQUPiN+9+6dfNXNqlWrqlh1s9TKm1PXr19f9zl1EfoCiUQido+OhYWFSCTKO0NWrfseSHGoOw5mZWWJxeIyZcoAgLGxsZeXV3Jyss6qZa5fx/bt8ezZLwJ3RAwMRABs1w6trfHhQ+zZE4XC3PdDgQC7d8cNG1D9ubBfyMjI8PLyyrddTKkdBxUu2xQmp+b2so2KAYX1tmIZAXs5qG5vlZ6evmCBzNwcAdDMDEUi1P00vtJ2KTopKYmtH6CRtF2BvOG7nZ2dQvjOVlvN9+1u+/btJSNtx/8vDLNcT26BLDVU5Ff64PLlyzwez8zM7BUFWHojKyuLzWRfs2aN8l72jWDs2LHaLuObb74BgAkTJijv8vHxYbmBfj6ri4wCd0xOTmYz2f/880+FXVKplI3Q8+bN46Q2qRTbtEEAnD+fk/OXXmwCzo8//sh1IflYsgQB0NER6dZ5riQkJPj5+bF42tra2t/fPysrS8fntbGxKfC879+/l39FrFKlSoGZY0JCAkveWaTFvj06OTmJRKKnT58WoeCgoKCaNWvm24j5559/BoBGjRqpXhGx1IqNxSpVEAB//VXDj/ziBYrF2LHj55zdzAxdXTEwEFnambelDHPhQu7B/v7YpAkCoFCIkyahbpqR5I0zhEKhp6en6jgjLS3N39/f0tISAMzMzPz8/FJSUnRRqGHiKqdWty9QYSZjqpvgk+JQdxx8//69/FaGKlWqqF7iWIMiI3Ho0Nx3MFdXxcBdJkNnZwT43MM9IQEDA9HVFU1Mct8h+Xx0ckKRCIs0DObK9y+nNI+D6l62SU9P9/f3Z5dt2Bu7bi7bFPK86n48e/cO3d1zn5ZVq2JgoI7uHiuFl6LlaXvdunU1nrbnJZVKw8PDxWKxm5sbe8IwQqFQvtoqm1i6Y8cO9k64dOlS7dWjM//+e6Vr12tDhiRyXUjpoiK/4pw8QJtPAZaeOXz4MPvMpvxN6tmzZ8bGxnw+Pzw8XHsFHDp0iI2ScXFxCrsePXpkZGSk7QI4QYE7IuK2bdu+NpP90qVLPB7PxsaGk2/s27fnfhTjboZ9KfXhwwf2pf3kyZNc1/KF6Gi0skIAPHGC61JKvSdPnvTt25d9nq5Xr96RI0e0dy4dfzVNS0sLCQlxd3dnqSXj6OgoEokePXqkVuX5fucMDg4GAFNT0wLntZVmYWHI56NQiNeva+DR7t9HkQidnHIjJAA0N8/N2RUGN+XAHRE9PHJnuCckoJdX7iRQGxsUi7V75e/UqVNNmjRhz8Du3bsXuM4nu2FfHuPSzJrC0HFOre2+QMo9aqi3rPaoOw5ev369Q4cO7PjWrVtfunRJe7Wlp6O/P5Ypk3tZ0c8Pk5MVA3dEvH8fjYzyWTQ1LQ1DQtDdHS0tP79tOjqiSIRqDoP5o3EQtT+NoJjUnVmv/g2I2L597lOrdWtUuv9Qk9jHwtJ2KTopKalt27YAULNmTV1+HsjIyAgLC5s5c2arVq3YOgSMjY1N27Zt2fD022+/6awerfr4Efl8NDXl4F6NUk5FfsUtfWgRQb6GfQIfN26c8i42wXzYsGHaOzvr2ywWi9UqzNBR4I6IKJVKWWe3fBssrl+/npMv7cnJWLkyAqD+XbksFRYvXsxmHn2tcUFqauqIgowe/fOIEVjgn8J3jRgxAgHw++819muSYlKrl3rRcHjzdXp6OkveWRiXN3kv8vXnt2/f2traAsCWLVuKXFgpMXs2+vhgcRaNZzl7gwafAyNbW3R3x5CQrz5sVhYGBODDh19sjI3FgACUt2t+/Bj79Ml9wPr1saBUoSiUW3WrPj4iIqJz587s+JYtW57XkzXpDAfLqVk0UK5cOW0sUahu7/jiTMZUdxVWUhzqrikSFBRUrVo1+P+aItpYLDQkBGvVyn2Pytss+8IF/OsvxYP/+w937PjqQ6WmYnAwDh6cm92zP02b4sKF+PBhESdZ0ziYl8Yb5RVf3t7xLVq0UKt3fGhoKOsUVLiXAwYGYqVKCIA8Hrq7a2zxgLxK56Voedpeo0YNDn/llJQU+WqrACAQCOrXr79kyRKu6tGGVq1oKhgHVOdXctu2bSswr1BXVFTU106nz1PvCf5/IrlAIFBegycxMXHFihVaXT07KSlp6dKlyk3kjxw5Al+Zel8CUOCeSw9bTfn5IQC2b8/xInWlVmZmZt26dQFg8+bN+R7w8eNHKIiRkZH865mKP4XsRxIejnw+GhsX675monFsfihb+5vND01KStLIIxdneTF1vyKqlpGRERIS4unpyWbZM7Vq1fLy8rpw4ULhU7CcnBw2vfGHH37QVG0l3vr16OeH0dFfbNy8Gf/4I//jpVIMD0eRCOvW/fwmU65cbs6u9CGn6EJCsE6d3Md3cVHM6ItMdatuZR8/fvTy8mJJsZ2dnTaS4tIjPDy8U6dO8usWmsqpOekLxILdGjVqyIPdfNtbEY1QdxxkL3NTU1P5y1xT3/Fu3sQuXXLfl1q0QA2uspmRgSEh6OmJFSrkPn7z5s40DmpK8ZeC10gZGhlQlG8bUv1y+PQJp09HY2MEwCpVCvuloDDyXopu0aJF6bkUnSKReMydCwB16tTR1HOj+F6/fv3PP/+UvGm/s2YhAPr6cl1H6VOY/Gr06NEF5hXqevj1T/x+fn6gx83lCSJ6e3sDgLOzM9eF5MrOzmbN5VevXs11LVrBQ0SNvwgN1NChQ//++++ffvpp7969XNcCALBuHYhEcPIktG7NdSml1YEDBwYOHGhra/v06VOFxXAAICsr6++//1b9CHy+QCZzL/BEHh7A5xdcz9Wr8Msv4OoKy5YVfDDRsfj4+EWLFm3cuFEqldrZ2c2bN2/SpEl57yRVS1pa2m+//bZ8+fLMzEwLCwtfX9+ZM2eybEIHZ1dBKpVeuXIlODg4KCgoOjqabaxRo8aAAQPc3Nw6duzIpqN+zdy5c5csWWJvb3/79m3l1xTJV+vWEB4Ow4fD7t2fN3buDObmcOLE5y1SKVy5AsHBsH8/REXlbqxWDfr0AVdX6NMHhELN15aTA5s2wfz5kJwMRkYwfjz8+ivkuR1CPYi4e/duPz+/6OhoHo83fPjwFStWsEjlK2fP2bRpk0gk+vTpk5GR0fjx4xctWsQiP1JkiLh///7p06e/efMGAFxdXTds2MBi66I5ffq0j4/PvXv3AKB79+5isVjeJihfhw8f9vLyev36NTv7+vXr5XMziyAtLW3ZsmWrVq3KzMys7FB58tnJPpV8zPhmRX5AooK6I1FkZOScOXN2794NANWqVVu8eLGHh0cxzg6LFsHGjSCVgp0dzJsHkyaBFoZByMmB06chJCTzn39qf/jwgW2sVavWjz/++OOPP7Zt25bGwaJR9y1d3U9Kmj17gaKjo2fPns1uzXFy6jhhwsWRI1V92n/+HGbPhpYtYebMIp/zs5gYWLPm3m+/NZfJZBUrVly8ePHo0aP5hfmyYfhSpdJJz569zMgot2fPWh8fdj8N0Z4zZ6B7d2jWDG7f5rqU0qfA/Ory5ctPnz7V7Em///77fN8bX7586ejomJOTc+XKFdbGneihxMTEevXqffz4cf/+/T/++CPX5cCqVat8fX0bNGhw9+5dIyMjrsvRAo4Df30SGRlpYWEBAGfPntXleZOTMSgIFeYcpKVhUBBqoTsFUU/Pnj0BwMfHR8fnPXECg4MVmyOHheHZs6jNG31IcWlkjvnOnTvZ7Xg8Hk/1jXuozfn1qkml0gsXLnh5eVWtWlU+oNjb23t6eoaEhOTbKeLcuXMCgYDP558+fVoHFZYYrVrlLqAaFvZ5Y6dO2KsXIqJEghcuoJdX7j3p7E+NGujlhRcu6OgGqago9PREgSB3Kr1YrEabLLnLly+zG64BoGPHjgX2LFLrtn2irrxzzM3NzYs2x/zFixf9+/dn/0Z169Y9dOiQ6uO11xcoMjLS3d2966GuEAH2d+0D4wNlSHOvtEXdcTAsLKxx48bs+B49ehThtZydjWIxli2LAGhkhF5eqJNhkMZBrVB3jvmzZ88GDBjA/vLr1KkTEhJShJMqzK+/f/9+UctXxN7W2rb9FwBbtlT8uqes+KN23pdDu3b9dfaxUE+kSiQjHz1yCg/ve/fu++K05COFlpWFFhbI42mlIRJRjav8Kl/srXjUqFFcF0IKsGnTJgCoVauWVhvIFEZMTIy1tTUAFLikk+GiwP0LCxYsAIDmzZvr8ob0J08QAI2Nv7gf/80bBFDVU5Loxv3794VCoVAovHfvni7P27QpAqDCgjpt2qCrqy6rIEWk0C5T3S7qgwYNgsItKBcaGtqoUSNtfEUsPKlUGh4eLhKJHBwc5ImDnZ2du7t7SEiIfAG0hISE6tWrA8CCBQt0X6RBa9UKBw3Cnj2xXr3PjddZ4L56NVpbf87ZGzbEuXPx1i1u6oyIwE6dcitp2RLVbUbCPvwVplW3ug1/SZGxnJpN17W3t1d3icIrV67weLzCNAzRTV+gM8lnmj1sBhEAEdD1Sddb6bc0fgoip9Y4mHdhcHW/dIWGYqNGn3tbcTEM0jioeer2Qjl16hRb7WbatGlqnUjdhX+LQCaT/fUX2tvnNmofMgS11+MkJAQdHHJfDv364dOnpevKYrpU+svjx5S2694339Cyc5zhJL9SdurUKQAoU6aM6oliRB9IJJJmzZoBwOLFi7mt5JdffgGAvn37cluGVlHg/oX09HT29eD333/X2UlZ4G5mhs7On+c1UOCuP8aNG8fSTF2etGlTNDNDCwvMu5YYBe4GJD09XaEHcXJyYVdXe/369e7du1UHW0+ePHF1dZV/RTx8+LAmqi6u+/fvi0SiBg0ayBMHGxsbd3f3Q4cO9evXDwA6d+5M/bXVxQL3hw/RyAjlKQ0L3LdvRwB0dESRCIu6iq0myWS4Z8/nWMHXNywyMrKQPyuRSNauXZuWlqbimISEBD8/P2NjY/bU8vf3z9Jgs1vyFVevXmVLzwFA27Ztr169Wvif/f333z+onPOm43t0pCgNjA+seLciRAA/gu/+yj06O7rgHyNFou44GB8fv3HjxsI//qNHj8aNu8WyxQYN8NixYlesCTQOapBaq33m5ORs3ry58G8giYmJ8gHF2tpa2wNKWhr6+6OlZe6XPj8/VP+uIVUeP8Zvv/28mLkWLhzoO0rbObRqFQLgyJFc11EqcZJfKZBIJKxboL+/P1c1ELWcPn0aAMzNzTlc5eLWrVsCgcDIyOjx48dc1aADFLgrYg2wKlSooLP771jgPn068ni4a1fuRgrc9Ud8fLytrS0AaGPay9c0bYpublirFvbv/3kjBe4G5927d/L5oYWZulsYyl8RVS8pyYk7d+7Mnz9fPvueRWm2trb6s3SVAWGBOyL6+KCpae6aySxw//QJnz/ntrp8sFihceN0IyPzIncjUcAmwLJVN/l8vru7e4lcyF5vsb//ihUryv/+o6M1kFOrtUyiBiVKEv3e+ZncNIEIsLxlKYoSZcr07l20xNDqOGhpWblu3Rx/f9S/YZDGQc1QvmyjqQGF3VHB3tBiYmI0Um2B3r1Dd3fk8RAAq1bFwEAN9JBJSEA/v9w1V21s0N9fk8uuGop0qfSXJ09Y2v5OD98OSrq7d3OX/KWVMjmh+/xKwfr16wGgdu3aevidlHzNDz/8AAAeHh5cFdC1a1cAmDp1KlcF6AYF7vlgrSd9dbXYNgvc//kHBw/GcuUwLg6RAnc9s3r1agCoW7euzkaRpk1x+HDcvx8B8N9/czdS4G6grl+/3r59e/Z9u3Xr1pcvXy7a43D4FbHIHj9+vGTJkpYtW+7YsSM0NJTrcgySPHD/9AmrVMGePRHz9HDXW69fv3Vzc2NP+xo1auzbt6/IDyXvFQAAzs7Od+7c0WCdpPBSUlJEIpGJiQkAWFpaikSiIo+J+tAX6GnmU9fnrqzDjMN9h6CEIN3XUHpoahyUSCSbN28uV64cAAgEgrFjx8bFxWu2VI2jcbD4NHjZ5vTp0+xWegDo1q3b7du3NVtqYVy7hu3a5c5Gb9MGr1wp4uNIpRgYiBUqIADy+ejujnr/qVAr0qVST0rbOSWTYeXKCEDrz3FGx/lVXgkJCWxQ/ueff3R/dlJkL1++NDU15fF4F9RtA6oJ+/btA4Dy5csnJibq/uy6xENEIF+6efNm69at+Xx+jx491Frs3t5+yLt3P6l1rsqVYcoUqF8f/vkHnJygYUMYOhS2boW3b6FGDdixA0aOVK94og05OTlNmzZ9/Phxs2bN5De3FoZQaCSRBKt7ujVr4LvvoGlT2L0bXFzg6VN4+BAsLaFtW6hQAQ4fVvfxCPcQcffu3X5+ftHR0Tweb/jw4StWrKhUqVLhH+Hs2bM+Pj537twBgG7duonFYvk3RlKytW4NtWvDvn0AAHv3wpAh8O+/sHIlmJvDiRNcF1eQa9eueXt7X7t2DQDatm27du1aeXOSwnjx4sWsWbOCg4MBoFq1aosXL/bw8NBWraRwnj17NmfOHPaP4uDgsGTJEvmVlcJITExcvnz5mjVrsrOzbWxs/Pz8pkyZwm7Z4URYSphPpM+DzAcA4FLGZY39msZmjQvzgweTDtoKbLuV6abd+koQGgdJMV2/ft3b2/vq1asA0KZNG7FYLL+KUxiRkZFz5szZvXs36MGAIpPBnj0wYwbExACPB8OHw4oVoM6rAc6cAR8fuHsXAMDZGcRi+P+F6dIlQybzef48IiWlorHx1nr1qpqYcF1RKeXhAbt3g1gM3t5cl1IqFTm/Kr6HDx8+e/asR48eYWFhujwvKb45c+YsXbq0UqVKan07Kz5EvHDhQmJi4pYtW8aOHavLU3OA27xfb/3666/ff/+9un+ZHTpskC9eV8g/dep8nuGOiMuXI5+Ply7RDHe9c+LECdbMXS1GRkbqPiUA8Nat3BnuiPjoERobI1sCima4G7rU1FSRSMQ+BhVmIUHm7du37u7u7BlVhHULiaGTz3BnevTAevWwbVt9n+EuV7RuJEV7sRCdCQsLa9w4N5ju0aNHYdYV19u+QNmy7IC4gHJ3ykEEGN008nzjGZcTJ98blR3lH+0/+OXg7158N+3dtNvpufNhmzxsMuzVMI5KNmA0DpLikMlkgYGB7DoNj8dzd3dXvUoEk5aWJn/WmZub68+AkpqKIhGamCAAWligSJTbHMncHE1M8NGjLw62tUUfH0TEt2/R3T33K0O1ahgYyEHleiLj/3Pbv717N5LmtnNq1y4EwBK99qG+K1p+pRHjx4+/e/cu138BRG0pKSljx45ld8/rWLNmzSZMmFAalrShGe5fde/evRcvXqj1IyYmdbKymqj1I5aWUL167gz3774DiQRatgShEA4ehFq1aIa7fomPj79w4YJaP8Lj8RH7q3siZ2fo0iV3hjsAzJoFq1bBvXvg4UEz3EuC58+fz549m80PrVu37tKlS782PzQ9PX3FihXLly/PzMw0NzefPn36zJkzdTxtgXAu7wx3AHjyBJo2BYkEXFwMYIa7XGpq6sqVK9mqdJaWltOmTZs1a5ZJfjPR8MtpsAMHDly1alW1atV0XzNRTSKRbN++fc6cOR8/fhQKhaNHj16yZAm7rVjZmTNnfHx87t69CwDOzs5isbipns3GjJPEzY2auy1+mxSl5YXlt9XY1q9sv2PJx9xeugl4ApcyLmUFZa+nXX+c9XhTtU2e5TybPmra1Kzpnpp7uC7cINE4SIojLS3tt99+YwOKhYWFr6+vigFl//79vr6+b9++ZQPKypUrq1evrvuaVXj6FKZNgyNHAAAcHGD3bujeHdLToUcPyDth1M4OPDzAxgaWLoWsLLC0hDlzYMoUKLVTujNlMp/nz8NTUioaGwfUq2dfav8i9EN0NFSpAubmEB9fep+TnCtCfqURvXv3NjMz0/15iUacOHEiIyNDxye1tbVlfZBKPo4Df4JfzHBHxDNnkMfDhQtphnupJp/hjohpaVijBrq60gz3EuXUqVNsPXcA6N69u0JbaplMFhQUxL4T8ng8Nze3N2/ecFUq4ZbCDHdEnD0bAQxmhnteT58+lcdqDg4OQUGKXbM11eiZ6Ex8fLyXl5dAIAAAW1tbsVick5OT94A3b97I5yZXq1YtUL9nYz7MeNj7WW9+BP9G2o332e+tbls1edgkOjv3ngwZylZEr7iWeg1phrsm0DhIiuPZs2fyAaVu3brKA8qNGzc6dOjADmjVqtWlS5c4qbOQwsKwSRM0McFnz9DcHL/9Fnk83LPn8wFshrtIhDweurlhKX81ZEilY2luu55p3BgB8Nw5rusghBC9QYE79xQCd0QcPhwtLSlwL9XyBu6I+O+/CICWlhS4lyg5OTkBAQGswYJQKPT09GQNFm7cuNGxY0f2FdHJyenixYtcV0q4NHMmrl79xZa0NBw+HH/9laOCii3fbiTv37+Xr4lXpUoVahlhWB4+fNi7d2/2b9qgQYNjx46hIfcFupF2AxEXRS2CCLiUmn9IR4G7RtA4SIpJ4bINa2vw/v17T09PPp/PBpSAgACpVMp1pQXLzkZ2UcDcHEUiHDIEK1bEhITcvSxwT0vD69c5rFHXorOynqSnK/xJ+3/a3ofSdn0yZQoC4Ny5XNdBCCF6g1rKcO/p088tZZiYGGjQAJKSqKVM6dWs2eeWMky/fnDkCLi6UkuZkiY+Pl4kEgUEBEgkEhsbG0dHRzart0qVKsuWLZNHkISUJDk5ORs3bly4cGFSUpKRkVG7du1u3ryZlpZmZmbm6+vr5+dnYWHBdY1EbQcOHJg+ffqrV68AoF27dq9evYqJieHz+R4eHkuXLq1cuTLXBaqn9/Pe19KuJTVLyncvtZTRIBoHSXFIJJJNmzYtWLAgMTFRKBS2b9+eDSimpqZTp06dNWuWpaUl1zWqx8ICpk+HMWOgQQMYPhy2bAH4f0uZNWu4Lk635r9+fTQ+XmGjb7VqKyMjKxgbB9SrV43al+iNY8fg22+hTRu4do3rUgghRD/wuS6AgEAANjZgbPx5S8WKsGQJ2NhQB7TSy8oKFOKmtWuhYkUwtK8MpGB2dnYbNmy4f/9+nz59EhMTP378aGRk5OXl9ejRIw8PD0oZSIlkZGTk4+Pz4sULLy8vmUz26dOntLQ0V1fXBw8eLFq0iNJ2A/Xjjz8+fvxYLBZbWVm9f/8+JiamdevWFy9e3LFjh8Gl7QDwIedDDeMaXFdRKtA4SIpDKBR6eXmxAQUAkpKS5APKkiVLDC5tl7O3h3nz4Pff4coVrkvhVAVj42NNm+b981OFChOqVqW0Xd907Qrbt8OBA1zXQQgheoNmuBNCiL44efJktWrVTExMateuzXUthOjInTt3LC0to6KiOnfuzHUtRDPev38fHx//4cOHXr16GW5a2uRREx7w7ja8m+9emuGuJTQOkuK4d++eubn5u3fvunbtynUtRcdmuC9YANnZ0Lw5mJpCeDiUL19KZ7jfSkk5/P+uQURv7dwJf/4JHh7w/0VbAAD+/BN27oSTJ2HpUrh3D/bu/eJHjh8Hf3/Yswfs7XVcLCGE6IiQ6wIIIYTk6tWrF9clEKJrzZo1A4A6depwXQjRmKpVq1atWrVp06ZcF1IslYSVwtPDua6i1KFxkBQH6+deYgYUY2PYuBF69ICdO7kuhRCVXryAsDC4fh169IAqVXI3vnoFYWGACA8f5nOjRnQ0nDsH6ek6rpQQQnSHWsoQQgghhBDyhY6WHZOkSRHpEVwXQggpvZydYehQmDcPsrO5LoUjqVLptg8f5H/upKZyXRHJn7k52NnBtGlc10EIIXqDAndCCCGEEEK+8LPdzxZ8iwmREz5JP8k3psvSM2WZHFZFCCltVq2C9HQotTlzhkwWlpgo//M6k96B9ZRQCEuXwt69cPIk16UQQoh+oJYyhBBCCCGEfKGacbUdNXYMfz28/sP635f9voJRhRdZL/779N8q+1Wj7UZzXR0hpLSoWBEWLgRvb67r4Eh5I6O/HR25roIUyuDBsGULTJwI9+6BqSnX1RBCCNcocCeEEEIIIUSRm41bc/PmWz9uvZV+60Hmg5rGNZdXXT7IZhAAfGv1bXXj6lwXSAgpgY4cgRo1vtgycSI4OkJ1esshem/DBmjZEpYtg4ULv9j+9i2YmHyxRSbTZV2EEMIBCtwJIYQQQgjJh4OJw29Vf1Pe7l/VX/fFEEJKA2dnxS0CAbi4cFEKIWpq3BgmToTly8Hd/Yvt5cvD9u1fbDl1CsRiHVZGCCE6R4E7IYQQQgghhBBCCCmWhQth3z7w9YVWrT5vNDMDV9cvDvv4Ucd1EUKIrlHgTgghhBBCCCGEEEKKxcoKVq2CoUNL70q/hBDCUOBOCCGEEEIIIYQQPTK3enUJ1zWQIhgyBLZtg1OnCnVwVhacPAlpadCtG1SqpOXKCCFEh/hcF0AIIYQQQgghhBDymTGfb86nvMIgbd6suEpqvlJToWVL+PdfuHMHWraEFy+0XxkhhOgKzXAnhBBCCCGEEEIIIWrr1Qvs7L7Y4uAAf/0Fz54BjweDBkH79oo/0rIl/PorlC8P69dD9+4AAJ8+QVAQzJqlo5oJIUTbeIjIdQ2EEEIIIYQQQgghpDT65Rdo2hQmT+a6DkII0RAK3AkhhBBCCCGEEEIIBx4/hp49ITwcKlbkuhRCCNEQ6olGCCGEEEIIIYQQQnQtMhIGDIAtWyhtJ4SUKBS4E0IIIYQQQgghhBCdOn0aevWCjRuhb1+uSyGEEI2iljKEEEIIIYQQQgghRHcuXABnZ3BwAHt7AIAuXWDePK5rIoQQDaHAnRBCCCGEEEIIIYToTloaxMR8/l8LC+oqQwgpOShwJ4QQQgghhBBCCCGEEEI0gHq4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogFCrgvgzOPHj9PS0mxsbGrXri3fKJPJ7t+/X7t2bUtLy7wHf/jw4c6dO+bm5q1btzYzM8u7KzU1NTw8PCsrq0WLFhUqVNBR9UT/pKSk3LhxIy0trV69evXr18+7SyKRhIeH169f38bGRvkH7969m5OTU6FChWrVqsk3xsfHX716VSaTOTk5ValSRevVE32VkpISHh6empraoEEDBweHvLtevHhx//59c3PzDh06WFhYyLenp6dfv349OTm5Tp06jRo1yvsj0dHR9+/fz87OdnR0rFmzpm5+BaKHMjIybty4kZSU5ODg0LBhw7y7YmNj7927l5GR0bBhwzp16gBAZGRkbGyswiMIBILmzZuz/46Pj7927ZpUKqX3q1IuIyPj1q1bGRkZ9erVyzuiAcDTp09fvXpVoUIFR0dHExMT+fakpKR79+5JJBJHR8eKFSvm/ZFPnz5FRERIpdKWLVva2dnp6HcgeunNmzf37t2zsLBo2rSpwpMhISHh5cuXTZs2NTY2znv83bt3LSwsmjRpUr58+bzH371799WrV7a2ti1atFD4tE9KD4lEcuvWrcTExFq1ail8uJJKpWx8rFOnjsIuJisr6/79+wBQp04da2tr+XZEvHfvXlRUlI2NTfPmzfO+0ZHS4+nTp48fP7a2tm7evLmVlVXeXY8fP378+HGZMmU6dOiQN0/Izs6+fv16fHx8zZo1mzZtyuPx5LsyMzOvXLmSlJRUv359R0dH3f0aRP/k5OSEh4c7OjqWLVtWvlEqlV69ejU6OrpOnTrNmjXL++RJSUm5fPlyVlZWs2bNatSokfeh4uLi7t27l56eLv+oT0qzDx8+pKens2fChw8foqKilI9p0aIFn88HgHfv3t2/f9/S0rJNmzZ5P3cBQGxs7K1bt0xMTFq1akWfrz7DUunWrVtCoZDP57u5ubEtmZmZgYGBLHcQiUTyI2Uy2eTJk9nTCwCsra0PHjwo37tnz54yZcqwXQKBYNasWTr+RYie2LFjh7W1NZ/PZx+v+/Tpk5KSgogpKSkBAQH16tUDgHnz5in/4NGjR3k8Hp/Pnzx5snzj+vXrTUxMBAKBkZERn8+fO3eu7n4Tok82bdpkZWXF4/HY8+qbb75JTU1FxMzMzOHDh8s/VNnY2Bw5coT9yL59+8qVK8fj8UxNTQGgW7duCQkJbNeCBQuMjY1tbGwqVqzI4/FGjBghkUg4+90Id3bv3m1rawsA7EnSp08f+ZNkxYoVZmZm1tbWlStX5vF4gwYNys7OnjRpkvKHh7Jly7If2bBhQ973q9mzZ3P2ixFO/fHHH+x5BQA8Hs/DwyMjIwMRX79+3bFjR/kzp3bt2pcuXUJEmUy2cOFCc3Nztl0oFPr5+clkMvZoW7ZskecRRkZGS5cu5fJ3I9xJTk4eNGgQGwd5PJ6FhcWWLVvYrhcvXnh5ebHrzREREWxjRkbGyJEj+Xy+qakpj8czMzNbvnw52xUTE9O+fXuBQGBvb29ubm5nZ3fgwAFufivCqePHj9vb28vflHr16hUTE8N23bhxI+90hH79+rHPXXnNnj2bfTHM+5Xw3LlzedP5mjVrpqen6+5XInogNja2d+/e8g9Xtra2QUFBbFdmZub3338v32VnZ3fixAm26/jx42ymAhvyWrdu/f79e7br7Nmz7Do0+6m+ffumpaVx87sRTn369EksFrN5DCtWrJBvv3XrVt64vFOnTvHx8WzXrl275Iknj8fz8vKSf75atWqVmZlZ2bJlK1euDAADBw7Mysri4LcieuD27duenp7sHUYqlSLi4sWL8w2N09LSMjIyPDw85Llo5cqVz549K3+omTNnCgQCtqtMmTJ79uzh7tfSL6UxcJdIJK1aterSpUvDhg1Z4J6dnV21atU6depMnTpVIXBft24dAPj6+mZmZkZFRTk7O5uYmDx79gwR79y5IxQKu3btGhsbm56ePn36dADYsWMHR78W4cyFCxf4fP7atWszMzOlUunff/8tEAh8fX0lEkmVKlUcHR1nzZrF4/GUA/fU1NRatWq5u7vb2trKA/fz58/zeLwBAwYkJydnZGRMmTIFAPbu3avzX4tw7OTJkwAwZ86c1NTUnJycjRs3AgC7qufn5wcAa9euzcnJef78eYcOHSwtLaOiom7dusXn85cuXZqeni6TyQ4dOmRsbOzp6YmIZ86cYT/ORtOdO3cCwMaNGzn+JYnOXb9+nc/nT5o0KSkpSSqV/vnnnzweb9y4cYh448YNHo/n7e3NrsTs378fAJYvX56WlpaQR3x8fN26db///ntEvHDhAo/H69+/P3u/YmPoX3/9xfEvSXSOvV9Nnz49ISEhMzNzxYoV7NOURCJp0qSJo6PjjRs3ZDLZnTt3atasWalSpczMzC1btvD5/NWrV6empqakpLDrOrt27cL/j6p9+/ZNSEhISUkZN24cAPzzzz9c/5aEA6NGjbK1tT169KhMJktISOjTpw+Px7tz587FixdNTEx69OgxfPjwvIG7t7e3vb09u6iTkpIycuRIHo939epVRHR3d7e0tLx16xYipqam9unTx9zcXH65kZQSz549MzExGTx48Lt373JycoKDgwUCweDBgxExNTW1atWq9vb29+7dk0qle/bsEQqF7EOU3J07d4yMjCZMmJA3cH/w4IG5uXmnTp2uXbuWlZX18ePHK1eucPC7EU716dOnWrVqFy9eRMSoqKh27dqZmJiw9NzX15fH461bt04qlb57965169ZWVlYxMTGvXr0yNTWdMWNGcnIyIp45c8bS0pJ9vkpISLCzs3NwcHj58qVMJvvzzz8FAsGECRO4/R2J7mVkZNja2jZr1mzGjBl5A/f09HR7e/tatWrdvn07Kyvr4MGDFhYWgwYNQsQbN24IBIK+ffvGxMR8+vRp/vz5ALB161ZEjIiI4PF4kyZNysnJQcR//vkHAGhOQ+m0ZcsWU1PTb7/9tkePHvLAPSMjI+FLXbp0ad26NSJOmzaNx+OJxeLU1NT/tXfnUVEc+QPAv3MxDTIgl4jIoYjrBRqPiHJIUB4I4iK4rNGIt4kaBIkscdVVk6jRiEbRSBZ3RdfdGCLh0LgqHgFDAnEipwpyjTAj1wAzwIzDXPX7o37br98g7v4RYXanPn/RVd3zqPfqVVd/u6u+5eXlM2bMsLW1lUqlCKHz588DwJYtW5RKZXt7e3h4OJfLLS8vH+YWGgdTDLgfPXrUzMzs8ePHU6ZMob9wb25uRgjp9XpmwF2v1+O1XfS1dXV1LBZrx44dCKH169dzOJznz5/TJ3t4eHh5eQ1lWwhjoNVq7927xyyZOHHiggULEELt7e24hM1mDwy4x8XF2dratrW1MQPu0dHR5ubmcrkcH+p0OmdnZx8fn9fZAsIYvXjxIjc3l1kyefJkX19fhJC9vX1wcDBdXl5ejgOjOp3u7t27zEvmzJnzxhtvIIQ+++wzAKipqcHler2eoqg1a9a87lYQxkatVmdnZ9PfuSCEfH19J0+ejBA6e/YsADx8+JCusrOzW758ucEvXLt2DQBwPGv58uUURclkMlyFx6s333zztTeDMDK9vb1ff/01s8TT0zMgIAAhVFhY+PTpU7ocf8dQWlra0dGRl5dHl6tUKoqi1q1bhxCKiopi3gfxrmv+/v5D0RLCyIhEImbssrS0FABSU1M1Gg2Olefk5DAD7u3t7cxnvLKyMnw+QmjSpEm4T2KXLl0CgMLCwiFqCWEc1Gr15cuXmV90hoeHOzo6IoTOnTsHADk5OXTVqlWreDwe/VYGf7M1d+7cX375hRlwj46OtrCwaG1tHcJ2EEanurq6rKyMPrx+/ToAXLlyRalUWlpahoWF0VU//fQTABw+fBghdOfOHeaULCwsbOzYsQihkydPAsDt27fpqpiYGIqicGieMCk4ntDb28sMuON7H3PqFRcXx+Fw2tra3n//ffwHXTV16lT8PPjnP/8ZAB48eEBXjRo1Cr/jIUyNTCbDWzLs37+fDrgbqKysZLFYly9f1uv11tbWzHGsqKiInl95eXmNHz+eHspaWlo4HM7GjRuHpB3GzuSSpjY2Nh44cGDXrl0Gu9YylxbS2traRCIRXgKG4e2x8G2yuLh4/vz5eDEOALBYrMjIyMrKyr6+vtfZAsLocDicwMBA+rClpaW5uRl3MIOdQ5lKSkq++OKLI0eOGGz9X1JSEhQURO/6x2azIyIihEKhTqd7Lf89Yawoilq6dCmzxM7OrrOzU6PRSKXSCRMm0OXe3t4jR46sqqpis9lvvfUWXd7V1VVXVzdp0iQAcHV1BYC//e1vCCEAqK6uVqlU3t7eQ9QYwmjweLzIyEjmJo+4XwGjk+B3zyKRSCaTeXl5GfxCSkrKnDlz5s+fDwA///zzW2+9Re8myWazly5d+ssvv2i12qFpDmEkLC0tY2JimCX29vZSqRQA/P39mTst4FueVCq1t7ePiIigy/l8vrW1Nb6kuLh44cKF9H2Qy+VGRESUlJTgnkmYFDc3Nx8fH/oQb+De1dXF5XJfmhfHwcGBeWv7+eefAQDvfezq6lpaWlpRUYGrSktLKYrCm/4RpoPH4/3+979n7jzr4OCA92EoLi42NzdfvHgxXRUVFYX3TcaHJ06cKCsr+/LLL+k19QCg0Wi+++67ZcuWGWShIEzNb37zm+nTp9OH9GD1+PHjvr6+yMhIumru3LlOTk4lJSUAEBQURE/JlEplVVUVfoQsKSkZOXIk8wEzMjJSpVLhj2wIk/LSeEJLSwsAMJ8HFyxYoNPpqqurW1parKysmBGGgICAx48fI4QMpvpNTU2dnZ0Dp/qEKbC2tv63O60fO3bM1dU1Ojq6r69PLpfjqAI2b948iqIqKysVCkVlZSXz6XL06NG+vr44ZEqYVsAdIbR58+YxY8Z8+OGH/8n5YrEYAAyyTLi6ukokEgCQSCQGVfjwpXkGiP95Go3mq6++Onz4sJ+f3/Tp0w8cOPCKk9Vq9YYNG+bNm7dhwwZmuV6vb21tNehXLi4uWq12YNJCwqTgm9nMmTN5PN64ceOKiorodzDt7e3m5uZ4XAIAhNDly5ePHj3q6+vr5uaG93aIjIwMDg7+5JNPfHx8UlNTo6OjY2JiXro3N2FScChh5syZABASErJ06dITJ07Mnj371KlTy5YtCwsLw7ul0SoqKr7//nu8rFWv17e0tAwcr3Q6XVtb21C2gjA2CoXi8ePHdFpdJryp0cCnu2fPnrW3t8+YMQP3n4HzK7VajcPxhCkrLi4GADxkvUJDQ0NGRsb27dsTExOTkpKCgoIA4ODBg1wud+7cuWvXrj1y5Mi5c+cyMjJIkJR48OABTjYokUicnJyYsXjmk51IJNq/f//OnTuZQVUAaGhoUKlU7u7u+/btmzNnztixY6Ojo2tqaoa4FYSxwYPVG2+8gefnONCJsVgsFxcXet4OADk5OcePH/fz86Mo6vTp0wAgkUjGjh1L74kMAHgLb+ZVhCnDnzIUFhbSJT09PQAgFosnTpzY3d2NczsDgF6v7+vr6+/v7+joWLRoUWRk5KlTp2bNmnXy5Mlly5aFhobirUoJwsDz58+/+uqr+Ph4LpcrEAgcHR3xikNcK5VKLS0tJRLJq0OmBHe4/4Eh9de//vX27dv5+fk4M8C/1dXVBQDMTND4sLOzU6fT9fT0GCQfx2dKpVLyvYwJUqlUKSkp7e3tz58/Dw8Pf/ULw0OHDtXW1paWljK/MwWAnp4erVZLZ+LFcL/q7Oykl1MQJujYsWMKhQK/LNy9e/fGjRuDgoJCQ0Obmpq+/fZbuVyuUCjwmQihY8eOSaXS5ubm9evX42GKx+P5+fn98MMPZmZmODEA89tSwmSlpaW1tLR8/fXXAMDhcAICAm7evCkQCD744AOdTrdgwQKD848ePerm5oY/1MLZBQYbr5ydnYeoDYTxwTuzD3yEa25u/stf/rJhw4aBUc79+/cLBIJt27bJ5XKdTjfY/MpgTRhhUvr7+w8ePDhz5sywsLBXn1lRUXHixAmxWCwQCKZNm4YLnZycJk+e3NnZWVhYeOHCBXd3d4NuRpigzMzMR48eZWVlAUBXV9dgIw/+Zsve3n7Pnj0GvyCTyQDg6NGjwcHBq1at0mg0n3/+ub+/f0VFxejRo4eoGYSRkclkKSkpoaGhs2fPvnDhAgAYdC0rK6vGxkb6MDU1VSQSPXv2bPny5SNHjgSA7u7uweZXQ/D/E8YvMDDQ19c3OTn56dOnY8aMKSkpuXv3LgAolcotW7Z8+eWXwcHBGzZsQAjduHGjuroaABQKxahRowICAv75z39aWVnt3LlTp9P5+voahCMIAktNTaUoav369fgwOTk5MTExPDw8JCSksbHx8uXLPT09vb293d3d8LKQqVwu12q1XK5pBZwHMqEv3FtbW5OSklavXr1o0aL/8BJ7e3sAwH2I1t3d7ejoyOFwbGxs8ByLhgP05GMZ0yQQCIRCYVNTU1FR0YULFzZt2jTYmdXV1Z9++mlSUhJe48xkbW3N5/MNuhyeWpFZuynLy8v7+OOPP/zwQ/xZ6IYNG7KysiiKyszMlMvl165ds7KysrW1xSez2WyhUCgSiR4+fJidnb1q1SoAOH78+EcffXTr1q379+8/e/YsISHh2LFjGzduHM5WEcPt3r17SUlJW7Zs8fPzA4C0tLSkpKS8vLyCgoLm5uY//vGPZ86cwf0Hk0gkmZmZCQkJePIkEAgoiiLjFWHg+vXrH330UVJSksGmVT09PTiUcPDgQYNL0tLSMjIyUlJSHB0dR44cyePxyPyKMKDX6zdt2lRbW4vT7b765MjIyPLy8vb29m3btq1ZsyYnJ0en04WGhvb39z98+LC+vr6wsNDBwSEiIgJHKAjTVF5e/u6770ZFRUVFRQGAg4PDYCPP+fPn8/PzT58+PWLECIMfwYHUpKSk7777LiEhISkpKSsrq6Oj4+LFi0PUDMLI9Pf3r1y5UqFQpKamwr/2A8F9idbV1cWcKd25c6e+vr66uvqnn3767W9/i68i8yviFTgczo0bNxITEx88eHDz5k0vL6+0tDQAsLW1dXFxKS4uDgkJuXr16sOHDzdv3rxu3TpclZ6enpiYmJ2dXVBQIBaLd+/effbs2RUrVgx3awijo1Ao0tPTN2/eTEfSd+zYkZGR0dvbm5aWJpFIcnJyKIqytbUdLGRqZ2dHou0AYEJJU3EAdPbs2Yv+ZcSIEY6OjosWLVKr1fgcg6Spra2tALBnzx7m70ybNs3Pzw8h5OXlNW/ePGZVQkICi8VSKpVD0R7CiL3zzjsURTFz4DCTpoaHhwPA1KlTZ/0Ll8sdNWpUYGAgQmjcuHGLFi1i/tq6desMfo0wKZcuXTIzM9u6detgfQCPVH/4wx8GVm3duhUPSpMnTzZIORgbG8vhcFQq1Wv5pwmjl5eXZ2Fh8fbbb9NJcmbPno1TKtG2bt0KAHRO1J07d1pZWdGpLBFC48ePDwoKYl6yfv16Pp//0sQ7hCnIzMzk8/mbNm0yGK9aW1t9fHycnJxqa2sNLjl+/DiLxcLp4zAXF5fFixczz1m7dq25uTm5D5ospVK5cuVKPp9/69YtgyqDpKkGdDqdhYXF6tWrcXav8+fP01W9vb0URa1du/b1/duEMSsqKsIp6F+8eIFLNm/eTFEUfYgQyszMBIBbt27Z2Njw+Xz6EXLu3LkA4O3tvX//fhyj3717N32VRqNhsVjvvffeUDeJMAIymSw0NNTa2looFOISZupmTKvV2tvbx8TEDLx83759ACAWi2NjYy0tLZnZfc+fPw8AxcXFr7sJhHEySJo60CeffAIAzDT1tMDAQDc3N4TQ3Llzvb29mVVxcXEAgPNYEKbppUlTT548yeVynz17NthVTU1NALB3716FQsFiseLj45m18+fPnz59+uv5f//LmNAX7n5+fsnJyQsXLqSjnObm5jY2NrNmzRpsHY2jo6OnpyfOQY9Lampqqqqq/P398Q+WlJTgTYsAQK/XZ2dnz5kzx9zcfGhaRBiP2tpa5qFKpXrF4qzFixcnJycvWbKEnrhzuVwXFxe8e0NAQEBBQQG9Y3t/f39eXl5AQABZ7WWCNBpNfHx8bGzsrl27Tp8+PVgfOHPmDAAsX74cBu+KfD5fpVIxq8g7Z5Ol0+n27t0bGRn57rvvXrx4kf5WdLBOgl9F9/b2pqenv/fee8xl0QEBAYWFhfSO7Wq1Oi8vz9/f/99+f0r879FqtUlJSStWrPjggw/S0tKY49WPP/44a9YshUJx//59ZoIvhUKxcuXK5OTkM2fOMJPr+Pn53b17l/5YRq1WX7161d/fn9wHTVNjY6Ovr++dO3du3boVHBz86pNlMllHRwd9qFar8XsavDF3f38/XcXj8dC/PrUhTE1qampgYGBISEhubi690ai/v79Kpbp27Rp9WlZWlrm5+cyZMzdv3pyQkEA/QuIlqh4eHh4eHtbW1m5ubrdv36avevToEULIYENbwhRUVFTMnj27pqamoKBg1qxZuHDq1Kl2dnbffPMNfdr3338vlUrxc9/AeTsAIIQCAgL6+vpu3LhBV125csXa2vqlyVEIQqPRpKenT58+nZmmHquqqiooKIiOjobBp/p0sIsgAECn0506dSomJoaZfMLA2bNnASAqKsrCwmLmzJl4KSGukkgkxcXFAQEBQ/TvGrnhjPYPtylTpvzud7/Df3d3d9fX19fV1QHA9u3b6+vrnz9/jhBKT08HgK1bt3Z3dz99+nTevHmWlpbNzc0Ioerqaj6f7+Pj09DQIJVK8ZeAV65cGc4mEcMhKyuLx+OdOHGio6NDJpOdO3eOw+G88847CKGWlhahUCgUCtls9saNG4VC4UtfO9va2sbFxeG/KyoqzMzMfH19nz59KhKJ3n77bRaLdefOnSFtEmEEJBIJ3lZv7969QgaNRiOTyfLy8lpbW588efLZZ5+ZmZnh/pafn8/hcA4dOtTa2trT0/P3v/+dz+dHREQghHAw68iRIy9evNBqtfgJMzo6erhbSQw1qVQaEhICAAkJCcx+pVKpPv74YwDYt2+fQqHQ6XQ3btywtLQMCQnBFx47dozH4zU1NTF/DY9X8+fPr6mpEYlEK1euZLFYt2/fHo6WEcOptbU1MDCQw+EcOXKkngFP2Xk8no+PT3l5OV3e1dVVU1Mzbdo0CwuLjIwMulwkEiGEhEIhl8tduHBhc3NzW1tbbGwsi8XKz88f7lYSw+D69eu2trajRo3Kzs6mxys8lXry5IlQKExJSQGAS5cuCYXCtra2FStWuLu737lzR6lUikQivClWbm5uf3+/s7Ozi4sLTvklk8lw1vrr168PdxOJIdXX17dy5UoA2LZtG3OwUqlUL168GDduHM4L19fXhzcvSkxMHPgjpaWlAIA/yUII4ez0e/fubWpqKi0tnT59ukAgwE+LhOm4dOmShYXFuHHjbt68SQ9WjY2NCKHDhw8DQHJycmtra0lJycSJE8eMGdPb2/vw4UM2m52cnCwWi/v6+nJycgQCAV5Ar1Qq3dzcRo8eff/+/fb29iNHjrBYrAMHDgxzI4nhIBaLhUIhzo8aHx8vFArr6uoQQj/++GNpaWlHR0dRUVFYWBiXy6Vn4Hl5eQ0NDRKJJDc319PTc/To0e3t7QihQ4cOAcCePXv6+vp0Ot2tW7cEAoHB2nrCdDQ0NNTX18fHxwNAbW1tfX09XuOFV3eVlJQwT+7u7s7Pz+/t7a2vrz9+/LiZmVlsbCyuwsnA1qxZI5VKGxoagoKCKIp6adTLBJGA+/8H3HGggYmOMuzZs4fH4+FCJycnZighNzcXb1oEAHw+/xVrfIj/YTqd7k9/+pOFhQXuCWw2Ozo6Gu+6gO9qTC+9pTED7gihb7/9ls4LZ21tfe7cuaFrDGE0cGrTgTo7O7/55hv6gywLC4vExES85lSv13/66ad0kiUWixUeHo6TfalUqoSEBIqi2Gw2n89ns9lRUVHd3d3D3EhiyA282WG1tbUajSY5OdnCwoLFYlEUxWKxlixZ0tHRgRDSaDSurq74vY6B7OxseryysrJKT08f8jYRw2/79u0v7Vc4LDXQgQMHlixZMrDczs4O/+A//vEPnDgOAEaMGPHFF18MbwOJ4fLSDYvxFP3NN980KE9NTZVIJGFhYfRiCIFA8Pnnn+OfqqiowPkq8A105MiRaWlpw9o4YhjgRYED4Z06qqqq6ARLbDZ79erVzD09aAYBd61WGxcXx+Fw8IWurq737t0bykYRw47+tNMA3rRKp9Pt2LEDr7MBgClTppSVleEL09LS6CRMABAYGEi/qqmqqqJTofB4vPfff1+r1Q5bC4nhs2vXLoN+tWzZMoRQZGQkXeLp6Um/P+7q6qI/TGaxWEFBQXToU6PR7Nq1a8SIEfRUPywsDMfiCRNED0q0H374ASHk4+OzYMECg5MvXrxIr4/n8/nx8fHM++Phw4f5fD6udXBwuHr16lA2xJixkAmvHxGLxTweD+fgkslkBslMzM3NnZyc8N9dXV2PHz+mKGrGjBkG+zCo1eqysjKNRjNt2jSD5LyESVEqlZWVlWq1Gr9GxoWv7lc0kUhkaWlJv7wBAI1GU11drdPpJk2aRIdWCZPS2dkpl8sHlru7u7PZbPx6mcPheHp6GvQQlUpVWVn54sULDw8PZ2dnZhW+qre3l9lLCZPS3d1tkNYGc3Fxwa+WFQpFfX29XC738PAYM2YMrtVoNM3NzQ4ODvTrHCatVvvkyRMyXpmywcYrZ2dniUQysNzGxqa/v1+pVBqUczgceh8GlUpVVlam1+u9vb0tLS1/9f+Z+K/w7NmzgZEsPJWSSCTMLWIAwN7eHu95JZFIGhoa+Hy+t7e3waAkkUgaGxspivL29h74qEn8z+vp6ZFKpQPLnZ2dcbAAIfTo0aPOzk5PT0/6JmhArVaLxWJHR0dmDtWOjo7q6mqBQODl5UUH3wnT0dDQMLBQIBDgpKkAIJfLa2trraysJk6cyDxHo9FUVlb29va6u7sP3ImotrZWLpdPmDCBfglNmJquri6DfM44EyEAiMXilpYWOzu78ePHM0/Q6XR1dXU9PT3u7u50D6Thqb5MJpswYcJgoxxhCvASHGbJmDFj+Hx+Y2OjjY2NjY2NwflSqbSmpobD4Xh5eQ1MIS6Xy6uqqng83owZM8j8imbSAXeCIAiCIAiCIAiCIAiCIAiC+LWQtGYEQRAEQRAEQRAEQRAEQRAE8SsgAXeCIAiCIAiCIAiCIAiCIAiC+BWQgDtBEARBEARBEARBEARBEARB/ApIwJ0gCIIgCIIgCIIgCIIgCIIgfgX/B9BuCZd3shLpAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"AP\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a89692ad-0483-4cd4-b5e0-7914f0e09d39", + "metadata": { + "tags": [] + }, + "source": [ + "#### Front Pocket (FP)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "b0002a69-70aa-4838-a476-dc2d08616a20", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.345537Z", + "iopub.status.busy": "2024-05-13T08:55:43.345364Z", + "iopub.status.idle": "2024-05-13T08:55:43.630110Z", + "shell.execute_reply": "2024-05-13T08:55:43.629532Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "67 FP fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAV4CAIAAAB3itGEAAEAAElEQVR4nOzdd1hT5xcH8JOELSA4UFDce1fcYF1Yf1qqdWBdOKrFapW6cdOlpdaBWq3YqkVbZ9WKq+6Bi4rgQkQFFcGBsncgOb8/XkwpWsu4IUG+n8fHB0Ly3kNNk5tzz3uOjJkJAAAAAAAAAAAAAACKR67rAAAAAAAAAAAAAAAA3gZIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkYKDrAAAAAAAAKCw9fcvTp3KZjIgW1qplJJPpOiIAAAAAAIBCQ8IdAAAAAHTvRXZ2o3LlRlapoutAAAAAAAAAig4tZQAAAABAL0RkZJxMTAxOTdV1IAAAAAAAAEWEhDsAAAAA6AUmYmZi1nUgAAAAAAAARYSWMgAAAACgF+qZmvawttZ1FAAAAAAAAEWHCncAPXXixAldhwAAAFBC1MwKmcwQg1IBAAAAAKCUQ8IdQB+tWbPG2dnZw8NDc8vZs2d///13zbcPHjy4d++eLkIDAACQWFx2dv/Q0KdK5VAbG13HAgAAUCABAQERERHXrl3T6lGePXsWEhJy9OhRtVqt1QMBAICEkHAH0DsBAQHTpk2TyWQdO3bU3GhtbV21alXNt7/88suWLVs03y5evHjRokWab3ft2rV79+6SiRYAAKCYvouKisnKOpOYqOtAAAAA/lt0dPTIkSO7dOnSv3//1q1bjxw5MjY2VvKjZGdnr1y5smHDhi4uLr169Wrbtm1AQIDkRwEAAG1Awh1Avzx48GDgwIFKpXLOnDlDhw7V3N68eXMnJyfNtxUqVHB0dNR8GxYWZm9vr/n2zz//jI+PL5mAAQAAiuNYQsLJxMRyCsXcGjV0HQsAAMCbpKWlLVy4sEGDBlu2bDEzM7OyslIoFFu2bGnYsKGPj092drZUB9q/f3/Tpk2nTJmSlJRUvXp1Ozu74ODgLl26DB8+PDo6WqqjwNvswAH68EMaOZLc3CguTtfRAJQ5SLgD6JHU1NS+ffs+f/78f//731dfffWGe3p4eLz33nuabyMiIho3bqz5NiwsrEmTJloMFAAAQApJOTnfP3pERJ9Xr17FyEjX4QAAALweM+/atatp06Zff/11RkaGi4tLaGjo2bNnb9686eLikpiYOHXq1GbNmh04cKCYBwoPD3dxcenbt+/du3cbNGhw4MCBwMDAu3fvent7lytXbuvWrQ0bNpw9e3Zqaqokvxe8nRIT6fvvadcu2ryZRo0iLy9dBwRvP5VKdf36dT8/v8zMTF3HohdkzKzrGACAiIiZP/roo127djVq1OjSpUvly5cv1GOZWS7PvYRWoUKFu3fvVqxYUTuRAgAASGPB/fuH4+MdLCzWNWiAeakAAKCfrly5MmXKlHPnzhFR69atV65cmXfzMREdP358ypQpoaGhROTs7Ozj49O0adPCHiUhIeG7775bsWKFUqm0srKaPXv21KlTjfJcjX748OGsWbN27txJRDVr1lyxYnv//h2K+7vBWykggPbto6VLiYiYqVMnunhR1zHBW+jp06eXL1++cuXKlStXzp8/n5CQQETNmzcfPny4p6enrqPTMSTcAfTFwoULv/76a2tr68DAwPr16xd5HbVaferUqR49ekgYGwAAgOTOJyV9fu+eiVy+rUkTe2NjXYcDAACQ35MnT7744osNGzaoVCpbW9svvvhi7NixCoUiKioqIiKiW7dumntmZ2evXbvWy8srKSnJ0NBwwoQJX375pZWVVUGOolarf/3115kzZ8bGxsrl8uHDhy9dutQmzyDxhQsX9u7dW4z4CgwM/Pzzz0NCQu3s4mxsjFaupA7IukM+ly/T5s20ejURUXY2de9OGAAAUsjMzAwODg4MDAwMDLx48WJUVFTen9atW7datWrnzp1j5o0bN44ePVpHYeoFJNy1IjSU6tUjY2NipqtX6Z13dB0Q6L29e/cOHDhQLpfv37+/d+/eug4HAABAu5KSkqZERt5Qq6fZ2w/Lk1MAAADQByKBvnDhwuTkZJFA//rrry0tLdPT01evXv3NN9+YmZnduXMn377kuLi4r776as2aNSqVqkKFCgsXLpw0aZJCoXjDgU6dOjVlypTr168TUbdu3VasWNGyZcu8dzh79myXLl1kMtmwYcO8vb2rV6+uVqu3bQudNq15bCzJ5fTxx7RoEeG9FP6WlUXdu9OuXWRnR6tWUUYGlflyYyiyx48fnz9//ty5c6KSPW/HGAsLixYtWjg4ODg5OXXp0kVcJly3bt2ECRMUCsXOnTsHDBigu8B1rBQk3LOysqKjo3/55ZcqVarY29tXqVKlevXqVapUMTQ01HVo/2roUPr+e6penbKzqVcvOnlS1wGBfrt27Zqjo2NaWtqKFSumTJmi63AAoKx7/JgMDalyZSKiO3eoQYMSOu6tW1S/PhkaUmIiKZWUnk61ahERpaVRenpuPPDWcHd337x16+Rt27774APMFIKSlJOTc+PGjefPn3ft2tUIkwMA4HX2798/derUiIgIInJxcfHx8albty4zb9u2zdPTMzo6WiaTDRkyZOXKlZVfd4ISEhIyZcqUs2fPElGrVq1Wrlz57rvvvnq3R48ezZs3b8uWLURkb2//zTffjBw58tW7paenL1myZMmSJRkZGWZmZpMnT54/f765uXlqKi1dSt7elJVF5crRjBk0Zw5hwxjQ3buUlUWGhvT996RUUrNmNG0aGRjoOiwoTcLDw3fs2CEq2ePyDN1VKBRNmzbt0KFDhw4d2rdv36hRI01n47y8vLy++uorU1PTo0eP5mvAVXaUgoT7hAkTzp8/f+PGjXy3W1tb29ra2tnZvfp3jRo1DHT6aoKEOxRcXFxcu3btIiMj3dzcNm/erOtwQH+pVKrQ0NDz588HBgZ6enra29ubm5vrOih4Oy1cSCdOUEAAyeXUvXvJvYu1aEHDhtHs2bR3Lz16RLt25W5+FcF88UUJhQElQLQ+MzIyCg4OxpRvKAEpKSmBgYGiOOvcuXOJiYnVqlUzNDRcv359z549dR0dAOiR27dvT5s27fDhw0TUsGHDFStWiP3HwcHBn3/+uaaNu4+PT+fOnd+81P79+z///PP79+8TkYuLy6pVq2rXri1+lJaW9v3333/33XeZmZlmZmYzZ86cPXu2iYnJG1Z78ODBrFmzdu3aRUT9+l0fNqz54MFERHfu0LRpdPAgEVGDBvTll3T/Ps2eTTIZ7dxJvXpRYUaDwVthwgRat46WLqXp0+nkScrOJkdHwidHKLCrV69u3LhxtWhJRFS1atU2bdo4ODiISnZra+s3PDYuLs7S0tLQ0NDDw2P16tXly5c/c+ZMvl07ZYS+J9z/+OOP/v37GxkZjR07lpljYmKePHkSExMTGxurUqn+7VEGBgZVqlSpVq1a1apVR48e3b9//5KMmYiGDqXsbDIzI2aKiUHCHf5VdnZ2r169Tp061aFDh9OnTxujIAH+KSUl5dq1a2IDl2YICRFZWVm1adPmwIEDeM7Am8XFxf3555+v/ZGpadeMjGqv3i6T0e3bFB1NbdvShAklmnB/7z0yN6dly+jqVSTc32bp6ektWrSIiIhYvHjxnDlzdB0OvJ2YOSws7OLFixcuXLh48eLt27fzfuqpV6+esbFxaGiopaXlqVOnWrdurcNQAUBPJCQkfPHFF2vXrs3JybG2tvby8vrss88MDAxevHjx9ddfiy4xlSpVmj9//n92idHIyMhYtWrVokWLUlJSjIyMPv3006+//vrIkSMzZsyIioqSyWSDBg1aunRpjRo1ChjkmTNnli07dvDgN2o1vfsu+fjkNrA9cYKmTKGbN2niRNq5k5YupVGjaNQo+uYbsrcv8n8SKJ1atqTr1+ncOXJ0pG7d6PRp8venDz7QdVhQakycOPHHH3/s0KHD1KlTO3ToUPAXqIcPH/bq1at169a//vorEQ0ZMmTXrl12dnYXLlyoWbOmNkPWS6zHoqOjK1asSEQ+Pj6v/jQ+Pv7mzZvHjh3z8/Pz9vb28PBwdXV1dHSsU6dO3jc/8RQp4ciHDOFHj5iZlUru1q2EDw6lyaeffkpEtra20dHRuo4F9IJarQ4LC9u4ceO4ceOaNm2ab39WnTp1RowY8cUXX1SpUoWI+vXrl52dreuQQX8dPnz4DZNqnJzCifjVPzIZL1jA585xjx789GmJvov17MlhYdy/P+/ZwytXcsOG7ObGbm7csyd7eZVcGKBtHh4eRNSqVSulUqnrWOCtkpqaGhAQ4OPj4+rqWqlSpbyveIaGhg4ODh4eHjt37nz27Bkzq9XqUaNGEVGlSpXCwsJ0HTvoK7WaV65kNzceNoyPH9d1NKBF8fHx4nXDwMBg0qRJcXFxzKxUKn18fCwtLcXLiIeHR1JSUhEWf/To0bBhw2QyGRGJ1USmIjAwsAirqVTs58dVqjARy+Xs5sZPnzIzK5W8di1fvcrjx3P37hwXxyNHclRUEY4ApVlyMisUbGjI6emcnc3m5iyTcWysrsOCUkMMiCai4ODgwj42ODhYvMSJNGxWVpbYR1i/fn1x9lWm6G+Fu1qt7tmz58mTJ//3v/8dOnRIvDkVkFKpfPr0aXR0tNj2ZWJi8vDhw3yn3VqFljJlQXR09Jo1a8qXL9+4ceMmTZrku9JTEJs2bfr4449NTEzOnDnTrl07LcUJ+i8tLS0kJOTKlSvnz58/ffr08+fPNT8yMDBo2bKlo6Ojg4NDly5dNJeFb9682aVLl/j4+FGjRm3atKlQr5BQRiiVyhYtWoSHh7dp06bB67qw29l5PX78mtvlcqpdm/r0IbmcfvqJIiJKtML96FGaO5diY6lFC1S4669nz56dPXvW2trawsLC8iULC4uCPPbSpUtOTk4ymSwwMBBlxVB8UVFRZ8+eFZXsN27cyLsFtnr16p06derUqVOHDh1at2796vyn7OzsDz/88NChQ9WrVz9//nzBC7igDNm6la5fJ29vysggFxfatInwPHlLzZ07d8uWLXZ2dj///HPz5s3pn23cnZ2dV61a1bhx4+Ic4vLly6NHj05OTk5JSVmyZMm4ceNe2/u4gJKS6KuvaPVqys6m5ctp6tTc2+/coVWr6KOP6NdfKTMTFe5lz/Hj1LMntW9Ply5RcDA5OFD9+nTnjq7DglLjwoULjo6OtWrVioyMLEKe4fTp0717987MzPT29vb09ExOTu7atWtISEjbtm1PnjxZppri6u/YBG9v75MnT9rY2Ihc0uXLl9u2bVvAxxoZGdWoUaNGjRqdOnU6dOjQ4cOH161bN3/+fK0GnNe4cSQ+dSoUNH261g+nUqkKm+qFYlq3bt2MGTOUSmV2dra4xdDQ0N7evkmTJk2bNtX8bWpq+m8rnD9/XpS3r127Ftn2MiUnJ8fLy8vf379Dhw6JiYmRkZHXr1/PycnR3MHOzk6TIHBwcHjtPLdmzZodPHjQ2dnZz8/Pzs5u8eLFJfgbQOmwevXq8PDwRo0aXbhwobBjxhcuJCJq145++YVK/rr8/PnUvDm1aJH/9j17SKmkIUNKOh7I56effjp9+vTWrVtf/ZG1tXXe/LulpaWVlVX58uU135qami5YsEClUi1cuBDZdii+mzdvrlixYuPGjeJbAwODJk2aODk5iQvVTZs21dwzKyvrwoULly5dOn/+fLly5cTUHENDw99///299947d+5cz549AwICbGxsdPObgN46fDj3TdHUlAYNopMnadcusramihWpQoW8f8dVrmxYoYKmeBlKnUuXLkVHR/v5+Yls+7Jly2bMmEFETZs29fHxcXZ2Lv4h2rZtO3369LFjx7q5ubm7uxdztfLladkyGj+eli+nzz7L/9POnWnTJrp+vZgHgVLo4kUioo4diYguXCAi6tRJl/FAabN3714iGjBggEwmO3/+fEpKSvfu3Qs+ZL5r167bt28fOHDgnDlzKlWqNHbs2CNHjjg6Ol6+fLl///4HDx4sO/Pq9bTC/fLly46Ojjk5Ofv373///ff37dvXv3//sWPH/vTTT4Vd6sSJE87OzjY2Ng8fPnzzEBIJffYZxcXR9u0UH0/u7vT779o6UFxc3FdfffXo0aM9e/Zo6xjwinPnzvXo0UOpVI4aNapixYqhoaG3b99++PBhvrsZGBjUrVu3adOmjRo1En83btxYpOAfPnzYrl272NjYWbNmfffdd7r4JUBn/vrrr/bt2+e9RaFQNGzY8LUJgjc7duyYi4uLUqlcsmTJzJkztRAslFaxsbENGzZMTEw8dOiQmPR15syZu3fv5r2PmVmv9PR/lDw5OpKo3AoIoLp1yc6O4uNp505q0IC6d9d6zIcP05Mn9PHHRESXLpGhId29m5tej4qiu3epWjU6epR696b69bUeDPybqKioZs2apaSkODk5mZiYJCUlJb+UlpZWkBWqVq2qUCgiIiJKZgSFWk2NGtHhw1S3Lq1eTY0b0549tHYtEZGfH9na0nvvlUAUoC19+vQ5fPhw27ZtBw4c2KlTpzZt2uStdXj69Only5fFBrJz585lZmaK2y0tLePj4zXVKklJSV27dr169Wq7du1OnDhRpmqv4L8NH05ff0116hARrV9PmZn0+eevveP3HTrMunTJwMCgYsWKFSpUqFChgviiU6dOn3zySYnGDEXSvXv3U6dOnThxonv37kQUGxvbvn37KVOmiDbuUh1FbHEePXr0pk2bpFozH1Hh/sMPFBtLjRrRtWuocC9j+vShw4dpxw4aPJiGD6etW2ndOho/XtdhQalRr169iIiIgIAAJyenvn377t+/39fXt7DXCNetWzdhwgSFQrFz584BAwZEREQ4OTk9ffp02LBhW7ZsKc7mnlJEHyvcU1NThw8fnp2dPX369Pfffz8mJmbcuHHMXPAkFBElJyf//PPPo0aN6tGjxzvvvBMSErJ169aPxef4EqFW059/kvYKl5VK5apVq77++uvk5GRjY+OIiIi6detq62CQx8OHDwcOHKhUKvPlylNTU8PCwm7duhUWFia+uH//fnh4eHh4uOY+crm8Vq1aDRs2vHHjRmxsbO/evVGYXAYFBQXlu2XWrFlFeyb07Nlz06ZNbm5unp6eFSpUGDt2rBQBwttg/vz5iYmJ77//vsi2E9HPP/8sZtdoODmFnzv3j0etXZubcO/cOfeWxETy9CQDA7pzhypW1GLAUVE0cCCVK0f9+lHFitShAxGRg0PuT2vUoBo1iJk2bMCHRh0bP358SkrK4MGDd+zYke9HarU6KSkpMTFR5N9TUlLEFwkJCZpvHz16dPLkSQsLi7S0tBKb+WxsTDNn0p49lJBA6ekUE5N7e0ICIbNaqqWmpp46dUqhUBw6dEi0jlSpVKGhoSK9fuXKFdGZXXP/OnXqODo6isvbeT/plS9f/siRI507d/7rr7/69et36NAhDCSHv3XpQnv30vTppFbTgQO0eDEdPEjx8RQX9/ff8fEUF5dqYWFpaZmcnPzs2bNnz55pFggKCnr06NFXX32lw18CisDGxubevXta3Ue+f//+lStX9u3bV4w2kUrt2uTlRd98Q3I5hYVp9/wN9A4zBQYSvaxqz1vtDlAAV69ejYiIqFKlSseOHVNTU48dOyaXy/v27VvYdT799NMnT5589dVXI0aMOHr0qJOT05EjR7p06bJ161Zra+sffvhBG8HrG31MuE+YMOHu3butW7devHixGGf04sWLXr16ff4v1QSvNWbMmD179qSnp8+fP3/q1KkjR45cvnz5mDFjSqzT8Zw5NGUKvW6/tQSOHz8+ZcqU0NBQetlODtn2kpGRkTFw4MDY2Nj33nsvX4bU3Ny8bdu2eRsfZWdnP3r0KDQ09NatW+LvW7duRUZGRkZG1q5du1KlSlu3bkUvoDLo1YT7+++/X+TVhg0blpiY+Nlnn40fP758+fKDBg0qXnTwNrh69erGjRsNDQ2XLVumubFr1675UkhVqlDDhv94YJMm+ZeqU4c6dqQjR+iLL2j1am0FTEQzZ1JGBvXv/68fC9PSaN48GjhQBy1uQGPTpk1//vlnxYoVV61aJW559OhRXFycaB1jaWlpbW1tbW395kV69ep19OjR5cuXf/PNN9oPmYioWjVq2ZJ27sz99t49WrKEiOjcORo1qmRCAK04ePBgZmZm165dNYOa2rdvf+XKFc0dLC0t27dvL1q0dezYsXz58v+2lI2NzaFDhzp37nzy5MkhQ4b8/vvvOEODXB9/TLNn04gRlJFBgwdTs2bUrNlr7/gl0ZdE2dnZ8fHxcXFx4u979+7NmDEjJibmiy++KCMFfW8Tbb8OREdHnzhxor7UG/cMDcnamhYsIIWC5s6Vdm3Qd8/v3DGsUcOyYkV59er07Bndv08WFlSY0lXQT3fv3k1JSSmBfoyin0z//v0VCoU40ercuXPVqlWLsNSXX36ZkJCwevVqFxeXM2fOtGzZcs+ePb17916zZk3NmjXLxAZ93c5sfZXoqFiuXDlRkyJymjY2Nk+ePCnUOsePHxcPzMjIUCqV9vb2RHT48GHtRJ3fxIl85w7v3Mmff84DB/KIEezmxteuSbDynTt3XF1dxb9dgwYNDh48KMGiUDBqtfqjjz4iooYNGyYkJDDz8ePH1Wp1wVdQKpW3bt3atGmToaGhgYFBYZ/V8HbIt1mnVatWxV/Ty8uLiIyMjI4ePVr81YKDg0+fPl38dUBXunTpQkTTp0+XZLXQUDY0ZIWCr1+XZL3XOHeOZTI2NeUHD/71PgkJfOwYHzvGcXHaCgPe7MmTJyKZ/uuvv2puzHeubGZmVrVq1QYNGjg4ODg7Ow8YMGD06NEeHh7z5s0LDQ0VD7l48SIRmZubx8bGlkDYKhX36sUZGfzuuzxrFu/bx9268Y0bfOMGe3ry77+XQAigLUOHDiWiFStWaG4ZO3asra2tq6urj49PQECAUqks1ILXr18XT/JRo0YV6gQP3mZTp/LMmfz4cZEXEBPvr169KmFQoA3dunUjohMnTmj1KGLmxOjRo5l57dq1RPTpp59KfpTsbCZihULyhaG4fvzxx/79+2dmZmpp/Z9//pmIBg8ezMyhBw5EOjqmurpq6VhQYoKCguzs7DZv3lwCx2rWrBkRHTlyhJlF+mv58uVFXk2lUokEpp2d3YMHD5h57969CoVCJpNt2LBBsqD1lX4l3CMiIsScGfGf/vLly0ZGRjKZbP/+/UVY7Z133tEs5e3tTUTOzs4SR/wvRMKdmV1c+IMP2NiYiZiIe/TgAwdYpSrKmqmpqV5eXqI+0crKytvbW3sv0/BaX375JRFZWlqKrIGfnx8Rubm5FWGpDz/8kIiWLl0qdYyg79LS0vIVy2zcuFGSladMmSKen0FBQUVbITg4eM6cOfXq1ROBffPNN5IEBiVMNPqwsbER1wUlMWkSE3H37lKt9w8qFbdpw0T85ZdaWR+kMmDAACJ6//3389743XfftWzZsnbt2tbW1m8u3ty7d6/mUf/73/+IaM6cOSUQtki4M/OhQ1yxIu/bx3375v5oxQr+/Xd+/pyTk0sgEJCYUqm0srIiooiICM2N2dnZxVz24sWL5cqVI6K5c+cWcyl4GyQksJkZy2R8926R1xg5ciQRrVy5UsK4QBuQcAdti4uLq1ChAhH16tUrNTVVG4cQLUbFpWgx9XfhwoXaOBCUmJMnT1auXHnXrl0lcKw7d+6IfGNWVlZmZqZIz0ZGRhZnzaysrJ49exJR/fr1nz17xsw//vgjESkUij179kgUuJ7So4R7dnZ2x44diWjgwIHMnJKS0qBBAyKaNm1a0RYUxfJNmzYVTUXFcyUkJETKoF9x4AD378/bt/Pz58zM9+7xli0cGcmenmxllZt2r1ePfXy44C+warXaz89PbOKQy+Vubm5Pnz7V3q8Ar/XHH3/I5XK5XH7gwAFmvnLlipjKtW7duiKstm/fPvHklDpM0Hdnz57Nm4GqVKlSenq6JCur1erRo0eLNcUOoQLKl2fXaNu2rSSBQUlKT0+vVasWEa1fv17CZePjuVIlJuI8KVPJrF/PRFy9OqelSb84SGXbtm3ikt6jR4/ecLeUlJSYmJjbt2//9ddfx44d27Vr14YNG3x8fL766qs7ohKBmZmDgoJkMlm5cuXEabf2qNX89ClPmpT77aef8pkz7OmZ++2OHbx1K2/cyKNGMaqZS50jR44QUcuWLSVf+ejRo0ZGRkT0/fffS744lDLLljER9+5d2Mf99ddfffv29fT0ZOYNGzYQ0YABA7QQH0gJCXcoATdu3LCzsxMftZ6LnJGkmjRpQkSXLl1iZkdHRyrBNg+gJcuXLz979mzJHOvbb78lopEjRzKzv78/ETk4OBR/2aSkJFEP3bZt25SUFGaeP38+Edna2kqVDNFPepRwnzNnDhFVr149Li6OmUeMGEFEzZs3z8jIKNqC+TrJiBbw4qmjJZcucblyTMSvzcEmJvKyZVyrVm7avUIFXrz49+jo6Devefny5Y4vZ1y0bdv24sWLWgkd3ujWrVvigo2oSX/y5En16tWJaJLmQ3zB3LlzZ8GCBenp6dnZ2ba2tkQUGBionZBBTy1fvjxvUnv27NkSLq5UKvv06SNeSB+8oTcHMzPfvHnTy8urYb4e3nnIZLIff/xRwvCgBIiNOK1atcrJyZF25dWrmYjr1OGivie/XnIyV63KRLx9u5TLgrRevHhhY2NDRD/99JNUa4rZFbNmzZJqwdf6+We2suJt2/7jblOnajUK0IqJEydqr3Dvt99+k8vlMpns559/1sb68AZTprCmPqpr179v79KFfXyYmc+e5RKq11SruWFDJuJ9+wr70AsXLhBR48aNmfnevXtEVLFiRVXRtjlDSUHCHUpGZGSkKHVq3Ljxm+sYCishIUEulxsbG2dmZiqVSlNTU5lMFh8fL+EhQOfCwsKua63RZ7t27TTbUseMGUPS7XqPjY2tX7/+sGHDNO3+6tat26hRo+DgYEnW10/6knA/c+aMQqGQy+WnTp3ilzviNZ3ciyxvJ5n79+8bGBgYGhpK+6Kmce8e29gwEY8Y8aY6KZWK/f3Z2Zlr1cqSyw0UCoWLi8uFCxdevefjx4/d3d3FBm07Ozs/Pz90k9SJuLg48Y44YsQIZs7IyGjfvj0Rde7cOSsrq1BLiQf+9ttv/HKHlzZOsECfDRs2TJPRVigUxdyf9ar09PTOnTvn3bGVz5UrV2bPnl3AMcsKheKPP/6QNkLQnujoaNEJQRst+LOzuWlTrl49+4cfpPwgunjxsSpVVE5OqC/Wa6JTdrdu3SQ8D7ly5Yq2i9wfP2ZrayZ6U8Jdrea1a/nKFS2FUBaVzMmqWq0WpQ9XtPaPt2bNGvE++Ds6/ZesyZNZ8+nbyenv23v25L59OTq6BBPux4/n7sAq/DVspVJZrlw5mUwm9iWLIrCbN29qIUqQDBLuUGKePHnSsmVLIqpZs2Z4eLhUyx46dIiInJycmPnSpUtE1KRJE6kWB31w6dKlqlWrbtdOpVJ0dLRMJjMzM0tLS8vJyRET6W/duiXV+k+fPtVceE5OTjYxMVEoFNre7apbepFwj4+Pr1GjBhF5eXlxnk7uxS8qyddJRnTrl7akVIiN5fr1mYj79OECdo8MCooYMmSIoaGhSGw5OTnt3r1b1CQqlUofHx8RuZGRkYeHRzLaixbSlZSUE/HxJ+Ljw4vXpCA7O7t79+5E1Lp167S0NGb++OOPiahWrVpFmPYmmlX17NmTmUNDQ4mofPnyaWijUJbUr19fk87u37+/Ng6RmJjYqlUrImrbtq3mpaNQeXZNtp2kG8QKJUBczhFTkrTh9OloExMrCwuLx8WYHZdXeHi4kZGRpWW1kBCU3uivAwcOEJGZmdm9e/ekXfmDDz4gohkzZki7rMaHHzIRu7i86T6XLvHs2eztjY5G0rh161arVq0k/Gz2b/766y8iqlGjhlbz+wsXLsT7YMmbPJkHDmR3d3Z359at/769Z0++do2HDCnBhLura3EGjDg7OxOR6Lor3qDXrFkjaXwgMSTcoSQlJCQ4OTkRkY2NjVQXjxcsWEBEM2fO5Jf7qseNGyfJyqAPsrKyGjdufPDgQS2tv2rVKiIaNGgQMx8/fpyIGjRooKVjbd26lYi6dOmipfX1hF4k3Pv160dEjo6O2dnZmk7uUvW58/DwoJedZMTZubW1tWgbJJXkZG7dmom4bVsu7MJRUVGzZs2ytrYWGa7atWu7u7trmikPGDBA8gLYMuKT27dPJiScTEgIL15PqEmTJhFR1apVxcaI77//nojMzc2LtosnMTHRzMxMLpc/fPiQX27Y2bp1a3EihFIkISFBJpNpMtrHjx/X0oGePXsmZmC0b99+5syZBcyzGxgY1KxZ89133x05cuTChQuPHj1a/EGsUGIuXLggk8lMTU3v37+vvaOI9+sxY8ZIsppoKvLJJ59IshpoQ2JioqgjXrVqleSLBwcHiydtTEyM5Iv/+isTcfny/F+t+0BKw4cPF3nwqKgorR5o3rx5ROTh4aHVo/DLxjUODg7YZlpiJk/mCxc4LY3T0vJXuDPz1Km8YAEvXMiHDvHixVy8vdBv9OQJGxqygUGRX0S+/vpretl/0tfXV6tXxEESSLhDCUtLSxPtQM3NzSW5siuu84lBlKLYdMOGDcVfFvRHZmam9hYXr4GiH8Nnn31GRPPmzdPSscTz00e0int76T7hvm7dOiKysrISHYfFqUmNGjWkajWVr5OMGBwh4efGrCxVz55MxPXrc+ErnnNlZGT4+fk1btyYiMTGjYYNG2K6RXF8cvu25uukAm46eMWmTZuIyMTERLTOP3r0qEKhkMlkO3bsKHJgYmP+119/zf8seIeyQFwoFpo0aaLVT+/37t2rVKmS2CiTj5GRUb169Xr06PHxxx9/+eWXfn5+Z86cefDgQfYr/6eo1epRo0ZR4QexQglTqVTiAp6W2hlrREREGBsby+Xy4s+fOHbsGBFZWFg8efJEkthAG8Smro4dO2qp9fCHH35IRFOl7qH+/Hlul7+NG6VdGP5D3rZmopOGljRt2rQE8mLMrFKpKlWqVLduXa1ey4S88rWUef6cT57k7OzchHtyMterxwMGsIEBE3HdupyYqJUwbq1erapQgYtRAXb27Fkiat68OTPfvn1b1LHiyo0+Q8IdSl52drbolG1sbCw2xBTHsGHDrK2tp0+ffvLkSVEwUQJ7zkBXbty4IeEn9BcvXojEaXx8vKZxn5aq7jIyMiwsLGQymahDfYvpPuH+xx9/VKpUSeQfmfnZs2cuLi7SDuEdNGgQvewks2fPHlFILslAOZGNevddDxsb9Z07xV1NpVKJemonJ6dXM19QKJ/cvj0nMnJOZOTttLQPbtx4NyRkxK1bnhERvjExx+LjI9LTVf91vnv+/HljY2N62dooPDzcysqKiL4s6sZS4ejRo+IZqFar8xW8w1tPTP0WSmAeqYuLi8jsjx8/fvHixb/99tu5c+diYmIK9WFPqVT27t2biLx79WLtDMCA4hMf3qpVq5aamqrtY3l6eooMbHGyBtnZ2c2aNSOi77//XsLYQFonTpyQyWTGxsahoaFaOsSNGzfkcrmJicl/zpAvlMGDmYh79MBsAB1ITEx855136J9tzaQlRlBaWVlp5m5JKyQk5NChQ6KI7M6dO0RUsWJFnJmXmC1bWDP3/Ztv+I8/+PhxXrmSV6zIvXHqVJbLmSj3jzaqxnNycmrWrGllYhJ28mSRF8nMzBQTC58/f87MdnZ2RHQ7T0kQ6Bsk3EEn1Gr1tGnTiEihUBRtOv2DBw98fX1dXFxEv2KFQqFQKOrUqdO1a1fMan5bXb9+vUqVKmI3gyR+/vlnIurduzczX7x4kYiqV6+upYvEf/zxhzhR1MbiekX3CfeZM2cS0ZAhQ7R3iLydZFQqlWjYIskEJBG8hYVFSEjRG7/cu3cvKCgoISGBmb/44gutbtwoOzQV7tlqdc+rVx2CgvL96RQc7H7z5rBhwxYtWrR79+7bt2/n/SgVExMjTounTZvGzMnJyaKWqn///sV80VGpVGJiwZkzZ/ifBe/w1hs4cKDItltZWUnb2OpVSqVS9KqKiIgo5lJpaWm/jBjBxsbcpAm/eCFJeJDXgsjIGffuzYuM/LVIBaHJycm2traaDYDaJsnhVqxYQUR169bV6r7IsuzXp0/nRUbOj4z8rahVxqmpqXXq1CGi7777TtrY8hkwYAARff7551ItuH//mQYNMiws/s7ZQQnTtDXr1q1bRkaG5OuL/n5ubm6SryyIjR3ffvstM3t7exPRqFGjtHQsKIhTp3j37tyvk5NZJvs72y7+rF0r8RH3798v3qSKmavq2rUrEe3du5eZBw8eTES+vr7ShAhagIQ76JB4u5HJZAU/7woODl64cKEYvioYGxv37t177ty5omvCu+++m6ilTUCgaxkZGRcuXJBwQdHqc/369cy8adMmExMTCU/O8xF76BcvXqyl9fWH7hPu0dHRRkZGCoVCq83KO3XqpOkk88MPP0hyOWXNmjVEZGho+OeffxZnHdEdUsQ2fvx4Ivrhhx+KGRt88s/6kaScnFtpaQdevFgVHT3l7t2+N260CQoafOlSvj4bzZo1c3V1nTt3rmjv07Nnz+zsbJVKJSqFW7ZsKUn16Pz58zWnWXkL3ou/Mui5mjVriieb5P0TXiWeWi1atJBmucREbtUqd1QFZjhLbW5k5LOXdZpRmZl309Nf++fGzZvXX+eTTz4pfsl5oYjPira2toGBga8N6c0CAgIqVKhARPv37y+ZgMugvE+qohGtG9955x0tFRFr3Lx5UxS5P5JiD018fLytra2hodkvv2irKh8KIiIiQlyZ+2riRJZiU2leYsqcJKUzr8rJyalcubJmG76YLCVhBRkU1tmzvGnT39+q1bnNZPL+MTH5uwuNJETeofh7sLy8vIhoypQp/PKT47Bhw6QIELQCCXfQrbVr18rlciLy8PD4t7P6nJycgIAAT09PcWFbKFeunIuLi5+fnya9HhYWJor8mjVrpo1JOfA2UalUgYGBomuoptVnSkrKs2fPtHE4pVIpPgmWhY61uk+488sJS6KUWEsOHjw4e/ZssWE5LS2tYsWKRDRr1ix/f/8rV648fvy4sPULO3bskMvlMpnsl19+KWZsooGp6Nj1wQcf4LReEtf/KzOekpNz9dGjn3/+ecaMGb17965du3beaZbVqlWrWrWqGCTw+PHjBg0aVKpUSar2nZGRkTKZrFy5csnJyfkK3uEtFhsbK55dMpksPDxc24cTybIFCxZItuKzZ9ygARNx9+6MqmRJzY2MnBkRsSAy8q/k5KGhoa/uyBF/jMzM6HUsLS3lcvmlS5c0C2pj92jeNVUqVd26dcWpUtFYWFi0bNlS8iBBY25k5K7Y2CNxcY8yM5dERU27d2/B/fvfPXz4Q3T0L0+e7I6NPRwXdzYxMeD8+ZCQkIiIiLi4uLzbvC5cuCCXyw0MDIKlTWL9CzE3SYwWLCZRMtOpUyfsoda5a9eujezePcPEhD/5RMLmPs+ePVMoFMbGxlrqV3PmzBkiqlevHjM/ffpULpebmpqWQLcu+Dc//MDe3nzkyN+3nDvHVlb5c+716nFSkjRHfPjwoXiOxRZ5PNdLJ0+eFFcumfnmzZviWrUUMYJWvE0J95wcbtaMW7WSfGHQrj179oiutiNHjsx7Ypaenu7v7+/u7l6lShXN6XTlypXd3Nz8/f2zsrJeXSomJqZ58+ZEVLt27bt375bgLwElLSQk5N69e4V6SGJi4rFjx7y8vFxcXMRnuho1alSoUEGrA3gEURfYtGlTbR9IHxgU+dOyhGbNmrV169affvpp4cKF5cuX18Yh+vTpIwZAE5GZmZm9vb2pqemSJUuWLFmiuY+1tbWtra2dnV3ev+vUqWNra1ulShWFQqG555kzZ0aOHKlWq5csWSI+2hXH48ePiUg0MMn7NRRH83Ll3nwHc4WiZfXqLceO1dySlpZ2+/btsLCwQ4cObdu2zd7eXjwbbW1tL126dP/+/Vq1akkSW+3atTt37nz27Nnff/99zJgxI0eO/OabbzZt2vTuu+9Ksj7op8uXL4svevfunbckQRuY2d/fn4j69esn2aI2NnT4MDk50cmTNGQI7dpFBnrxDvJ2mFa9emVDQ7lMZm9iovqX+6gbN87Oynr19ujoaLVaffXq1fbt26vV6nXr1q1aterixYuip5BUJk+enJCQ8P3331erVi0hISEuLi4pKalevXomJiaFXSoxMTE6OvrevXt3796tX7++hEFCXkZyubFcLpfJglJSIjIyXnufm++9l5WWpvnWzMzM0tLSwsLixYsXarV6wYIFohm3tn3xxRe7d+/+6aefPD09xYymojlx4sTmzZtNTU1/+eUXUSMGOtSiRQu/RYvI2Zl++okqVqQ8U0yKY//+/SqVqnfv3hYWFpIsmM++ffuISHQ62rdvn1qt7tmzZ7n/OqsE7fnss/y3ODrS7dv04YeUd6vqvXv0wQd05owER1y/fr1KpRo6dKjY61AcHTt2NDExuXbtWmJiYpMmTWxsbJ48eRIREVG3bl0JAgUtY+bvv/9+3LhxxakweLOhQ4d269ZN2hM2InryhObPp+BgMjSkH36gDh0oNJRE0uLnn8nZmST6UAvS69+//6FDhz788MPNmzcnJib++OOPx48fP3DgwOHDh1NTU8V96tSp4+Li4urq2qlTpzec7djZ2Z0+fdrFxeXixYudO3f+888/8zafkUBSEoncnVpNKhUZGhIRZWWRkRHlKWSEEnDt2jUx4P0N91EqlSEhIYGBgYGBgZcuXYqMjMz705o1ayqVyvj4eBcXl5MnT2rpFEvYu3cvvTzRevvpOuOfS1xPXrp0aQkca/PmzURkamo6aNCgPn36tGjRIu91wtcyMjKqUaNGp06dBgwYMGLECHNzcyLy8PCQJB7x2VJUT4vtt1FRUZKsDEWjVqtF49pTp05p6RCbNm0ios6dO/M/C961dDjQB19++aV4PTl06JC2jyWS+9WqVZO+x8j162xtzUQ8ahTGEUqlmN0/du3aRUQVKlR48eIFM/fs2ZMk7YjNzDdv3jQwMDAwMLhx4wYzT5gwgYh69OhRtNXS0tJEZ0kHB4fXluRA8eV9Ul1NSTmZkLD/xYvtz55tePx4VXT0ogcP5kRGTrl718nJqUWLFrVr17a2ts77mc3a2trIyEhTLKNWq7U96O+jjz4iookTJxZ5haSkJLFjrGROJqGgjh1jY2Mm4iVLJFlPbAYt2li5ghBXAc+fP8/Molhnw4YNWjoWFEdWFo8bl6/OPXXduvXFXFapVIrKp3PnzolbwsLCxNTTohEdkEQLNZFfwDNKb+WrcP/ll1/EG6K3t7eEpyt5K9y1JDyc69Thb79lZh45kv39WdNK4LPPOCREe0cGaVy4cEFc5tGcm8nl8o4dO3733XeF3Sedmpr63nvvEZGVlZXmZa24Tp7k997jyZO5Z0++cIGPHuUvv8z90YgRLFFXACi+mJgYf39/T09PR0dHU1PTvBlOc3NzR0dHDw8PPz+/Bw8eMPPz588bNmxIRN27d9fekC2VSiVyniWziVbn9CXhfuDAASKqXr26tluFRkREWFpaEtHGjRvz3p6VlRUTExMUFOTv7+/r6+vl5eXu7u7i4uLg4GBrayv75zU6Ozu7pk2b5uTkMHNYWFj//v2L3BhLpVIZGhrKZLKMjIycnByFQiGXy7X9HwH+08KFC4lo5MiRWlo/NTVVXDYUKYwuXbrg/PutJ3IE9erVK4FGB2JOgCT9GV7j4kUuV44/+4zRsUEiu2Jjk4rX41gk2UWX2HzJcUnkTeKHhoYWf33xGktEs2fPlipIyGvRgwcvCn8ukZKS8vjx49u3b4vJJePHj2fmtLS0tm3blitXTkudHIXw8HCFQmFgYDB16tQVK1Zs2LBh586dx44dCwwMDAsLi4mJ+c9r0p9++ikRtWvXLkfqjuFQXFu3slzOMhn//HMxV0pJSTEzM8vbY1StVj+Qbjzu9evXiahKlSoqlSolJcXExEQul5fA9moosh9+YENDTcL9vImJydWrV4u2lFqtvnHjhhiZ26BBA3Hj8+fP69atW6dOndDQIo6FmDdvHhHNmDGDmVeuXKnVzxdQTCLh/vXXX4tvb9686ezsLE5XmjZteuzYseIfQqVSjR07lohatWqlvV5V4eE8cSK7uHBkZG7CvX9/PniQDx5kFxck3EuHEydOGBgYlCtXztHR0cfHpzh92LOyssTQZjMzM2kKvzp04LQ0Zub4eO7cGQl3vXL69OlFixb17ds3X1WxXC5v2rTpxx9/vH79+uvXr7/2bDkyMlJkw4cMGaKllMW5c+eIqFatWmVkhKG+JNzVanWTJk2IaOvWrdo7SnZ2docOHYho0KBBhXpgRkZGREREQEDAjh07RGdkCwsL8aonXrxGjBhRtJCePcvs2vXke+9tYuaYmNjKlZvZ2NgUbSmQ0P379+Vyebly5ZKk6gf5ijFjxhDRvHnz+GUBhZOTk5aOBfpAvHv5+PiUwLGaNWtGRJJ8MHi9O3eYmR89Ynd3HjGCp0/nxEQOCGDNCLsFCyTrpQoFoEmy37x5k19mHp2dnSVZfPfu3Xkr6EWZTDH3eD179kzUWcjl8uPHj0sSJ0jozp07BgYGhoaGYqC9uF4oEkYSWrVq1dmzZ8XXKpXK3t5eM1n6tWQymbW1da1atVq0aOHo6Ni7d++PPvrI3d191qxZY8eOlclkRkZGEl5nAimtWZM7v2/XrsI+NCUlJSAgwNvb28XFxcrKqlKlSra2tuKDYk5Ozrhx4ypWrFjkZGg+X331FRF98sknzLxz5056uRkR9NmpU2xufpNoB5EFETVs2DAlJaXgD4+IiPD19XV1dRVbr0RlVYUKFa5cucLMjx8/btOmjSgOPXr0aBHCO3r0aO3atUUO9+rVq0Rkb29fhHWgBNy5c8fGxkYUeF6/fl3ceOzYscaNG4vnhrOzsxinXDR//fWXmMMs2pba2dn5+vpKntVKSuLwcP7sM751iwcOzE24v/8+b9vG27bxe+8h4V46iA2s7733niSr5eTkuLu7E5GBgcGmvHOoC+v5c376lPNG5ejIhw5xy5bs5sZublynDhLuuiUSnkL58uWdnZ29vLz8/f3j4uIK8vDr16+LJlcTJkzQRnjTp08nounTp2tjcT2kLwl3Zl6/fj0ROTg4aO8Qnp6e4iyngM+2fyPGnI4aNYqZo6KizMzMZDKZ5kNjoQQHMxG3aMHMfPkyE7GDQ5m41KP/unbtSkQ/F7sa69+cPXu2RYsWfn5+nKfgvSxMai6bsrOzx40bZ2xsvHv3bm0f6969e+KTodabdXTrxmJX47Fj7ObGu3fz8uW5P+rXj1+80O7R4Z/Gjx+vSbLHxcWJ2eBiD3txZGVliQYLa9eu5VeS78XxySefiHPBatWqFWe3PmjJiBEjNJnH4OBgmUxmampanAKrfIKDg8VVIlGevGLFCvHUmjFjhoeHx5gxYwYOHOjs7NymTZsGDRrY2tr+ZxPtChUq9O3bV6rwQHpeXkz0d1+DN7t79+T27RMmTGjRokXeKUpEJPo6fvLJJ2q1OicnR/ToqFatmiST7R0cHIjowIEDzDx8+HBCh6JS4tGjR+LfTvjoo4/ecOecnJzLly8vW7bsgw8+yNc7u3r16oMHD27atCkRWVhYiGdCRkbGsGHDiEihUKxevbo4capUKvHuLOG2DJBQdna2r6+v6N1vYGDg7u4uBucqlUofHx+xS97Q0NDDw6OwJVkxMTFubm5i07ydnd3cuXM7deoknnVt2rQRPaykiJ99fblSJd6wgT/7jJnZ05Nr10ZLmVJp2rRpRPTFF19ItaBarfby8hLlC8uWLSvcgx88YF9fdnFhQ0P+7Td2dPz7R+3aocJdr/j4+Hh4ePz2228RERFFW+H06dNiRteiRYukjY2ZRetmybob6T09SrhnZmZWrVqViE6fPq2N9U+fPi0athS/MXdERISJiYlMJrt06RIzL1iwgIhat25dhAvUBw4wEf/vf8zMf/zBROziUszoQBp+fn5E5Jj37USb+vbtK5fL7ezsBg0atGDBgm3btoWEhGiveRaUvDlz5hCRpaVlUFCQVg+0dOlSIho+fLhWj8LPn//j1apDB969m0eM4F9/5V9/ZQcHJNxLWFxcnOj2KBIEIn1Zt27dYr6MLFq0iIiaNGmSnZ2tSb6vWbOm+AHfvn1b05iyT58+ZWRfYSly9+5dUeQuztfFBOZpBcyW/pfs7GyRHRML3r9/X2RR9+7d+4ZH5eTkxMfHR0REhISEnD179sCBA1u3bl23bp23t3ePHj1EIY+ElwRAegcOMDPHxvKCBTx+PO/c+fePlEoOCmIfH3Z1ZRsbJtrXpYt4fTAwMGjSpIm7u7ufn19kZOTFixfF1RfRkCo9PV3MnK9Xr14xe79ER0fLZDJzc/OMjAylUilSsXfEji7Qe6mpqYMGDdKkzvN1+c/JyQkKCvLx8XF1dc2XZLe1tXV1dfX19RVbxJg5MzPTzc1NZNi9vb35ZaJKZEvd3d2zs7OLFuTp06fLly/fvn17zbFAD8XHx3t4eBgYGBCRtbW1j4+P+Bd//vy5h4eHuARYqVIlHx+fgnQwS09P9/b2FpVVRkZGHh4eokOaWq3euXOnGD0ik8lcXV0fPnxYnLD//JMbN85tr+TmxmJPWmoqN27Mhw/zvHm5d5sxg1/W7oNeE5shjhw5Iu2yq1atEqffnp6e/33v4GBeuJBbtvx7VoaxMXt784gRvGcPZ2Xx5s08YQIS7m+fffv2GRgYyGSyYo7MEQ36NN+GhITQy8Z9xY6xdNCjhDszf/HFF0T0wQcfSL5yfHy8eD/7UvNaUDxz584lIgcHB5VKlZqaKgafbty4qbDrrF/PRPzxx8zMa9cyEbu7SxIgFFd6errY7lcCVecxMTFVqlQRFxLzUigU9erV69evn2ruXPbz48uX+dVNss+f8zff8JQprP1RnFAcarV69OjR4hxdq0+qzp07E9HOvIkMbXj6lPv1+/vb9u159252d+fDh/nwYe7YEQn3krd8+XKRdcrMzMzOzhadhYpTnvn06VNRzyVO9xcvXqxJvksSsGgULvz444+SrAkSGjVqFBGNHTuWma9fvy6Xy01MTKKjo4u/smjcUbt27ZSUFLVaLYYEFOcy4bNnzwwNDYnIBWULek6p5M6dOSiIU1N52jRev54XL+b27fP24WYirlLlwcSJS5YsCQgIyMjIyLfGsWPHjI2NiWjJkiXMnJSU1Lp1ayJq2bJlQkJCkUNbvXo1vWw7eezYMSJq1qxZMX5VKGlqtdrb21vkkkxMTIKCgoKCgkQzInFK/2qSXXTNevNS48aNE+O1tm3bJs7Ve/XqlZiYWKjYnj59KvZMENGAAQMk+G1By8LCwnr37i3+yRo2bKjpfH3lyhUxCFfU2715j7u/v3/t2rXFnV1cXF59vqWmpnp5eYnnlZmZmZeX16uveP/pzh12dc197axfn7X9CQBKQGZmphgiEh8fL/niW7ZsEadMEydOfDXvmZ2dffLkSQ8PjwvOzn+/KZcvz0OH8o4dLAbqZGTw0qU8ejSvWsVKJd++zYcP5z5+82YuXjMJ0BO+vr4iH/W7pmdswSQmJh47dszLy8vFxaVixYqfie02zPxyiNenn34qdbD6S78S7rGxsaampjKZrDjN0V5LVGY5OTlJNUorLS1NZPB/+eUXZt62bXvnzu6NGsUWtmux2F87fz4z84IFTMReXpIECBIYN24cEc2ZM0erR8nIyGjfvr14foaEhOzcudPLy8vV1dXBwUGcfjlUrfqPT6E1a3KvXjxtGv/0E0dHc+fOfPEix8byuHG8fbtWQ4ViUiqVffr0IaLq1atraTfxixcvDAwMjI2N/3PAYHGp1dypU25W/eZNHjAALWV0Ljs7W2yEFxtFRcLIwsJCM12wsEaOHKlJDeRLvkvi1KlTmvSHiYnJddRc6Zl79+4ZGBgoFIrw8HBmFr07xOzc4ggLCxPbBMWcCXFCX6lSpWIOZe3fv794Lu3Zs6eYEYIWBQayZqB3aip368ZDh+a2d2/ShN3c2NeXb97k/9rysnXrVrlcLpPJROu/2NjYhg0bElHXrl2LkK4SxHTELVu2MPOkSZOIaL44QYdSZd++faKaWFQoazRu3Hj8+PG//fZbwffB7Nq1y8zMjIicnZ3FtZzz58+LHt/NmjUrYBcjtVrt5+cnOsmYmpp6eXlpveMfSMff379u3bqajPm9e/eYWa1W//bbb6LeTi6XixvzCQ4OFptviKhVq1Znzpx5w1GioqLEpgoisre3Fx1HCyIlhb282NiYibhcOfbyYuyOfjtcuHBBqxd99+/fL2Yp9e/fX+yFTU9P9/f3d3d310za9OjShStXZjc39vdnvGqVSV9++aX4jPbmK4tKpTIwMHDVqlXDhw+vV69evhLSvKUwohpM8n0b+ky/Eu7MLIY5jB8/XsI1f/jhByKysrKSpL2jxq+//ipKJJKTU5j53XeZiAs7UczdnYlY7M4fO5aJ2NdXwhihWM6fP09EdnZ2Ul2nea2PP/6YiGrVqiW6BOaVlZV148aN83v38pdf8kcfcYsWuadUmj8//fR3T77nz7l3b+3FCZJIT08XFej169cvZnbptTZs2EBEffr0kXzl1wgJ4f792c2NhwzhR4/4zz95w4bcH33yCRejzBCKTCTZLS0tRZL9/fffp5dtuAsrKChILpcbGRmJjgqi2Ll///7SBpy3626LFi2KnCkDLRHzvUePHs3MN2/eLH6Ru0qlcnR01JS3xMTEWFlZkRSbcvbv36+pXS1OmTNo1/HjPHdu7tdqNXfowIGBfOwYF/4i8Zo1a0Tt1a5du5g5KipKlML07du3CLtwEhMTjYyMDA0NRTlhrVq1iOjy5cuFXQf0QWhoaL9+/Vq2bFmnTh3RjCgqKqpoS126dEm0PK1Xr97t27eZOSIiokmTJuIy4X9O8Lp27ZqmVff7778v7UdRKBn/1sA9NTV1wYIFr2YtXrx4oek8U7FixQJ2nmHmkydPtmjRQjxbunbtevXq1TfcWaVS+fn5tW7dydg4Uy5nNzcuXkst0C+iQai7NlsfnDlzRmz9ad269fvvvy/y70KTJk3mzJlz9fLl/7z4DW+9zz//nIjKly8f8s/hD0qlcvv27VOnTu3UqVO+Pg3m5uZdu3adPXv23r17Hz9+rHnInTt3qGTmzOkTvUu4h4eHi49zefswFifdefPmTfHysW3bNikC/JtarXZxce3UaZunp5qZg4NZoWAjI759uxCLhIXxnj0srov37s1EXOwRdyClRo0aEdEhrXVrWbJkiXhVKmhpZ04O37nDe/fy4sXs5sa7dvFXX+X+KDubS6rjPBRHYmLiO++8Q0Rt27aVvA69b9++ROSLC3dlmNhFIc7R7969a2xsLJfLC5s2UqvVIis6d+5cZr5y5Ure5LuEtm7dmvcUbcqUKdKuD8X04MEDIyMjhUIhMk2urq5ENHny5CIvKD5DVqtWTeTExQZESXoJ5uTk2NvbiydSmdqsWso8ecI9e+Z+fekSF+lyoIaY/2ZkZCSqpW7evClGWbi5uRV2LMSpU6dMTEy6d+/OzEFBQeJZitkSpZpUH+mjo6NFz6IKFSqISWDJycnieraxsbHYEvGqtLQ0Ly8vIyMjcRWw4DXLoJ8eP37s7u7+5gbuIjUvkpgiNV/Y1kMijS52Ucjlcjc3t9dW55w5c0Z8lCCijz/ecuVK0X8v0E8DBw4kok2bNmn1KDdu3LCzsxPpDrlc7uDg4OXlJXmrCSjVVCrV4MGDRRFq3mvG2dnZYqCOUKdOHTc3Nx8fn4CAgHxvvtHR0bt37545c2bDhg1lMpmbm1tJ/w46pXcJd37Z1DVvs/UtW7YYGxvb2to6ODi4uLi4u7t7eXn5+vr6+/sHBQW9YWNgRkZGy5YtiWjcuHHaCDU4mOVyNjLi8HBm5k8+YaK/P0cUlhhHgbdMvfLtt98SkaurqzYWP3LkiEKhkMlkRa/su3+f+/bN/frcOZ44UarYQKuePXvWoEEDIurevbuEJb1paWlmZmZyuTzvxWQoa/Il2adPn05EnTp1KlTmaPPmzURUpUqVpKQktVot2pWKEYXSys7OrlmzpuZ0TSaT+fv7S34UKA7RXW3kyJHMHBoaKpfLjY2NHz16VISlIiMjxdn5vn37+OXTzMrKSpK+8PxyNrX43BgQECDJmiC9dev4gw/Yw4Pff5+L/U8/depUIrKwsBADyQMDA8UA3iJcFkpNTRWtIRYsWEBEebuOQhmXkpIiChqMjIxECiw7O3vChAnibev8+fP57n/gwAGxSUIul7u7uycVtuUo6Kt8DdzzvtEcO3ZMtPUjImdn5+LMxU1ISPD09BRXa6ysrLy9vTUJrEePHrm5uYn5vdWqVfPz88N1wbdStWrViOh2oQo5i+T+/fvXr1/39fUtcv9JeOtlZWW999579Mp0+lmzZn311VdHjx7Nd2VRqVSKKeVubm5iQ5jG9OnTIyIiSvw30CV9TLiLpq42Njbp6eniFjEI7g3KlSvXqFGjLl267N69O+9SEydOFM8M7bUzFn1gRGOi2Fi2smIi/q/9ha9XuTITMV7r9EpMTIxCoTAyMnr+/Lm0K4eHh4t99F9pStSLZskSdnXlWbO4Vy8ucFdK0LmIiAhbW1si6tevn1QjKPfs2UNEHTt2lGQ1KL2mTZtGRI6Ojmq1OjExUZRKFfzCXmpqqjjRF0NKtmzZokm+ayPaZcuW5X1Dr1y5Mq4Y6ZWHDx+KIncx7fmjjz4ioomFv76rVqt79OhBRKNGjWLm2NjYypUrE5GEhZ8REREiDUFEDRs2RIci/ZWdzRINgss7kFzU5R0/flyMVPX29i7amqKrw9GjRyWJEN4OOTk5np6e4uXFw8NDTBpcuXJlvp4Pjx8/1jTjbtWqVWBgoI7iBS3y9/fX1Aq4uLicPHlS7HggogYNGuyXaLt6eHh43mV3797t7e0tLiiamZl5enqmpKRIciDQNw8ePCCiihUr4moK6Ink5GSx06tNmzavvvKo1erw8HA/P7+JEyc6ODjkG6BiZWXVq1evhQsXHjx4MK7sDdTVx4Q7M7dr146IfvrpJ80tGRkZMTExQUFB/v7+vr6+np6ebm5uzs7OTZo0yTt3fv369ZqHHDp0SCaTGRsbBwcHay/UZ89yk+yi6cimTbx9e6G7XYWH89WrHB3NFy7wyZPaCBOKTkyoX716tYRrJicni8t9/fv3l+CtND2dHzzgnTv/7qANpcGNGzfE5vdRo0ZJckYlumwXOcUAb42kpCTRc1Yk2Tds2DBp0qSCn+Ko1ept27YNGDBApVJpJoRrb1trcnKyuPqo8d577+Ezhl4R83WGDx/OzOHh4eI6dGGbEYuO21WrVhVPRbFdurfUo0c0Q+qIyAtj6MsGpVIp0lKageTbt28XI1XFVcNCuX//PhGVL1++TPUYhQL66aefDA0NiWjAgAFpaWl5f6RSqXx9fUWn73Llynl7e2t1BBTolmjgLvrWiiS4lZXVihUrlEqltAfy9/evX78+EYluNjKZbOjQoUWeSQClwrZt24jo/fff13UgAH/TTKfv3r17ZmZmcnJyQECAt7e3i4uLKKDRUCgUTZo0cXNz8/X1vXnzprg+XWbpacL9t99+IyJ7e/sDBw5cv379P0cLJiYmhoaGHj9+XLPHOSYmplKlSkS0fPlybUe7bBkTcb16RR8Lvnw5167NYitGt24ShgYS2LlzJxG1bt06742PHj0q8hmVSqUSfZNatmyZmpoqRYzMf/3FRGxjw1Kf54FWXbx4UTRYKH6zjoyMDJG+L4Hth6D/fH19xdtovoxAYc2fP1+8AGr1bGnGjBn0TyXw3g0F9/DhQ2NjY4VCISqIhw0bRoWcb//w4UMLCwsiEjsRd+3aRUSWlpYPHz6UNlQ/Pz/Ns8jIyKg4m/qhFHl1IPmPP/5Yq1atgo+dePLkyZ49e6ZPn96gQQO5XD506FBtxgul2PHjx62trcVpvCbvGRwcLMrFRMkz8qFlxIMHDxo1amRsbNy5c2fJN0MLN27cMDc3r1mz5rx58zp37mxqatoNyYK3nYeHBxF98803ug4E4B/u3bsnKroqVqyo2VEqVKtWbcCAAUuWLDlz5oxkCa63gp4m3JVKZbt27UTzO82npjf0cM9XCqdSqZydnUusSk6p5IYNmYiXLSviCsuX85w5LHpF4j1U32RlZYmLN3mHxdevX9/AwKBOnTouLi6enp6+vr4BAQEFfHGZOXOmeJ2SuINVixZMxPv2SbkmaN/Ro0fF5vclS5YU9rGJiYnHjh3z8vJydnY2MTGpVq1aq1attBEklDoqlcrBwYGK17QqKirKzMxMJpNpux12dHS06FWqoe3daVBYoluxyELevn27V69er7YtfgMxHHXQoEHM/OLFiypVqhDRunXrJI8zPT0974aJ9u3bl/HKmrLj1YHkbz4ry8nJuXnzpp+fn7u7e5MmTfJ+dJw0aVJhN3BAmXL37l1R6GdnZ3f27FlPT09RfVytWrV83U3hrff5558T0YoVK7S0/tWrV4moRYsWzHzp0iUiateunZaOBXqiTZs2RHTixAldBwKQ359//mlmZmZqampoaOjg4ODh4eHn54fqljfQ04S74Onp2bNnz6ZNm4o6gjcwNTWtV69e586dhwwZMmXKFLGxtCT7wB46xERcvjwnJBTo/kolBwbyqlU8YgS3bs3LlvHBgzxyJP/1FxLu+mjSpElENGXKFPFtTk6OKIDK9zyUy+V169Z1cXGZNWvWpk2b/vrrr1eHB/z6669EZGhoeFLy5kFLlzIRf/ihxMuC9m3dulVsfv/555/ffM+cnJxr166tXbvWzc2tXr16eZ9+MpmsZ8+eSC2Bxrlz52QymampaZGLiF1dXellIxFtGz58eL5X1J5FHkEOWhATE2NqaiqXy69fv16Eh4eFhbm4uIhRSyNGjCCirl27aqkkQjTA0VizZo02jgJ6SDOQvFu3bq/t4J+UlCSuUru4uOTrZGVubu7o6Ojp6env7//ixYuSDx5KlxcvXogGVuJqsaGhoaenZzG3lEFphIQ7SCs9PV0MzkGPftBDK1euJKL//e9/Uo2ge+vJmPnNuWw9kZWVFRcX9+TJk8ePH+f7OzIyMiEhIe+dDQwMqlSpsm7dOtG4o2R4eFC7djRkCBkYUFoaqVRkafmPOzx+TFeu0PnzdO4cBQdTRsbfP/L0pHffpdatacwYysykU6dKLGookODgYAcHh4oVK8bExIhiZCJSKpV37969detWZGRkaGjorVu3QkNDMzMz8z6wevXqjx490nwbEhLi5OSUnp7+448/fvrppxJHGRtL1asTMz16RFWrSrw4aNnatWs/++wzhUKxffv2QYMG5f1RSkrKtWvXzp8/f+7cufPnz+d9uStXrlyrVq0cHBycnJy6desmtmIAaAwePFhU2xXt4WZmZswcHh5evXp1aQN7VUhIiJjGo/Hpp5/++OOP2j4uFNykSZPWrFkzePDgHTt2FHmRQ4cOvf/++2ZmZteuXct31VAqf/31V/v27TXfWlpahoaGlsBzGPRBZGSkk5PTkydP+vXr9/vvvxsYGERGRp47d+7KlSvnz58PCQlRq9WaO9va2jo5OTk6Ojo4OLRv31705gYoIKVSOXHixLp16x48eHDdunXNmjXTdUSgA1OmTFm5cuWKFSumTJmijfWvXbvWqlWrFi1aXLt2LTAwsEOHDu3atQsMDNTGsUAfnD17tkuXLu+8805wcLCuYwHIr1u3bqdPn/7tt99Ee0n4Twb/fRf9YGxsbGdnZ2dnJ/bI55OamhodHf306VPxd2pqqqenpxhjUmJWraLmzenpU5oxg44coZgYGjOGrl7NTbKfPUvPnv3j/nXqkKMjOTiQgwNdukREVLUq9elDP/9cklFDgbRu3bply5bXrl3r06dPz549Gzdu3LRp09q1azdt2rRp06aau2VnZ4sUfFhYmPjb3t5e89OnT5/27ds3PT19woQJ0mfbicjGhnr3Jn9/2raNpk6Vfn3QpokTJ8bGxn755ZfDhw+3tLSsV69eQRIE7dq1y9eIAyCvZcuW9e3b183NrWgP79+//8cff1wymcp33nmnR48eJ06cICILC4u5c+dOxeuYnpk3b97GjRt37do1a9as156M/afk5GTx9rdo0SItZduJqF27di1atLh+/Xregx44cEBLhwO9UqdOnT///LNLly779u1r2LBhQkJC3qvUpqambdq06dSpU8eOHTt27GhjY6PDUKG0MzIy+vnnn4lozpw5uo4FAN4SFy9eJKKOHTvqOhCA/F68eHHu3DlDQ8M+ffroOpZSo9Qk3N/M3Ny8UaNGjRo10m0YtrZ07hwNHkxEFBFB5ctTniwZ2dhQ+/bUrh116EBt21L58n//qEYNMjMjIpo4kV5O3AH9snTp0l9//dXPz+/kyZPiFkNDQ3t7+yZNmjRt2lTzt/Dqw7OzswcPHhwdHe3k5OTj46OtKMeMIX9/2rgRCffS6IsvvoiLi/vhhx8GDhyYmpqqud3ExMTBwaFjx44iR1AV2xegwOzt7UeMGFHkGgSZTJZvJI5WLV269Ouvv7a0tFy8eLGtrW2JHRcKyNbW9pNPPlm3bp3oLmpiYmKdh6mp6ZtvqVix4owZMx49etS+ffvJkydrNdTRo0dPmzZN8+3Bgwd37949cOBArR4U9ESLFi0OHz7s7u4eGxubkJAgRkCJC9Vt27bV7FMEAADQN0i4g976448/cnJy+vTpk68pH7zBW5Jw1x+LFtH06TR0KNnZkYEB1atHTk65lexNmtC/JS5q1Mj9QqGgPNugQY84OztXq1bN0dFRU70eFRUVGRkZGRmpqZszMDCoV69ekyZNGjVq1LRp08aNGzdq1EjstJg4cWJAQEDNmjV3796txZLk998nGxu6eVMZHGz0z+YMUCqsXLnS3Nw8Li5u//79bdq0ETkCJycnExMTXYcGpdirAyf0U6tWrXbv3q3rKOBN5s+f36VLl48++ignJyczM/PJkydPnjwp+MNNTU2NjY03bdokBgxqz8iRI+fMmZOVlaW5ZdKkSd27d//PmUDwdujQocPVq1cvXrxYs2ZNdBMCAIDSQnTqR8Id9NDevXuJqH///roOpDRBwl1iTZtSrVp05Ag1a0apqYRukG+Txo0bN27cWPNtSkrK7du3NQ1kbt269eDBg9u3b9++fVtzH7lcXqtWLXNz8+vXr5crV27fvn3a3b9saBjq4fHF5s1VNm78AQn3Ukgul3/77bdKpXL9+vW6jgUAIL/KlSsPGDAgOzubiDIyMhL+KTMzM9+NeW+Ji4sbPXr0//73v7zvpFpSsWLFDz744Pfff9fc8vTp07lz52IqQNkhl8sdHR11HQUAAEBBRUREPHv2zMbGpm7durqOBeAfUlJSTp48qVAo+vbtq+tYShMk3KXn5UXNm1OzZsi2v+UsLCzatm3btm1bzS3Z2dl37tzJN0Y1MjKSiHr16jVmzJiWLVtqOyru1+/3+fMrvHixdOlSlEWXUmjLDgD6z9TU1NTU1M7OruAPycnJMTAooTPPsWPH5k24E1FaWlrJHBoAAMqI+qNHDxs40K5yZS2tX1eheNK2rapGDSJqrFA8ads2p04dLR0LdM7CwmLp0qWirAFAr/x5+s/MzMwuXbpg/k2hIOEupbFjiYjMzenXXwmpzjLI0NDw1TGq9+7du337doltvWnWrJmDg8OVK1f8/f0Hi3kCAAAAeqDEsu1E1LNnT3t7+0ePHolvnZ2dPT09S+zoAABQFmRWrBiuUuVUqKCl9c1VKvPLlykri4gsVSrLy5f/tUctlH42NjbTp0/XdRQAr7Gr2a5awbXcVG66DqSUKR19XUuLjz7K/UI0bQcwNDRs3LhxCTe6GjNmDBFt2rSpJA8KAACgPxQKxaJFi2xtbbt163b27Nljx47lvRwOAAAAAAD/KVOd+Wfynw/5Yc8WPXUdSymDhDvA22bo0KEmJiZHjx7VVPYBAACUNW5ubtHR0SdPnuzcubOuYwEAAAAAKH2OpBxJUaW0Lde2hlENXcdSyiDhDvC2qVChQt++fdVq9a+//qrrWAAAAHRGLseJLgAAAABAEe1N3EtE/cuXaNuGtwM+hwC8hTRdZZhZ17EAAAAAAAAAAEBpks3Z+5P2E9GHVh/qOpbSBwl3gLdQz549a9Wq1bhx46SkJF3HAgAAAAAAAAAApcnplNPxOfFNTZo2Mmmk61hKHwNdBwAA0lMoFLdv3zY2NtZ1IAAAAAAAAAAAUMrsTdpLRAOsB+g6kFIJCXeAtxOy7QAAAAAAAFrSytw8m7mBqam2DlC5Mk2dStWqERHZ2tLUqVSzpraOBQDwipsZN4now/If6jqQUkmGFs8AAAAAAAAAAAV0My3t+0eP7I2NiWiWvb2lgXZqGTMyaMYMSkmhtDQaNowGDtTKUQAA/knFqj2Je6Kzo2sb1W5s0tg/yX9mlZm6DqqUQYU7AAAAAAAAAEBB5TC3t7CYKMrPtWf5cmrfnkaOpJwc6t2b2ren6tW1e0QAAKIRD0Z0Mu/kWM7xQPKBmkY1n+U803VEpQ8S7gAAAAAAAAAAhXApOTlNra5saDi6alVtHSMggLZvJyIyMKCePSkwEAl3ANC25znPY3NiJ1eeTETtyrW7lnFN1xGVSki4AwAAAAAAAAAUQitz8zG2tgqZTIvHMDKi7Ozcr5VKwpguANC+5znP7QztdB1FqSfXdQAAAAAAAAAAAKWJiVxubWBgqVBo8Rh9+tD69URESUl05Ag5OmrxWAAARERUw6hGeGa4rqMo9VDhDgAAAAAAAABQUOUNDGqZmmr9MJ98QsuXk5sbEdGyZWRtrfUjAkCZZy43d7V2HXJ/SGfzzlHKqGEVhuk6olJJxsy6jgEAAAAAAAAAAAAAdC86OzpKGdXIuJGZ3CxeFY8mM4WFhDsAAAAAAAAAAAAAgATQwx0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAKCPtm7d+ttvv+k6CgAAAACAQjDQdQAAAAAAAAD5Xb58ecSIEUZGRjVq1OjcubOuwwEAAAAAKBBUuAMAAAAAgN5p27bt5MmTs7Ky+vfvf+fOHV2HAwAAAABQIDJm1nUMAAAAAAAA+anV6gEDBuzbt69u3boXL16sXLmyriMCAAAAAPgPSLgDAAAAAICeSk9P79q16+XLlzt37nzs2DFjY2NdRwQAAAAA8CZoKQMAAAAAAHrKzMzsjz/+sLe3DwgIGD16NKqFAAAAAEDPIeEOAAAAAAD6y87Obt++febm5jWePOHFi3UdDgAAAADAm6ClDAAAAAAA6LtHf/5p7+JCajVt3UpDhug6HAAAAACA10OFOwAAAAAA6Dv7//2Pli4lZhozhi5c0HU4AAAAAACvhwp3AAAAAAAoJSZPph9+oIoV6dIlqldP19EAAAAAAOSHhDsAAAAAAJQSKhX170/791OjRnThAllb6zogAAAAAIB/QMIdAAAAAABKj5QUcnKi69epRw86coQUCl0HBAAAAADwN/RwBwDQvdDQUF2HAAAAUEpYWNChQ1SzJvXsiWw7AAAAAOgbVLgDAOhYnz59Dh8+HBwc/M477+g6FgAAgFIiLY3KlaM9e2jrVjI1JUtLWrqUTE11HRYAAAAAlHWocAcA0LEmTZoQ0bJly3QdCAAAQOlRrhxFR9O6dbR9O23ZQm3a0IoVuo4JAAAAAAAV7gAAuhYdHV2nTh1mjoiIqFGjhq7DAQAAKCX27qW7d2nWLCKixEQaMoT+/FPXMQEAAABAWYcKdwAAHatevfrgwYNzcnJWrVql61gAAABKDyMjUipzv87OJiMjnUYDAAAAAECEhDsAgD6YNWuWTCZbv359YmKirmMBAAAoJTp2pCNHKDmZiMjXl95/X9cBAQAAAOiXsLDcL5KTKSZGp6GUJUi4FxFztq5DAIC3R4sWLbp3756SkvLTTz/pOhYAAIBSokIFWrqUJk4kNzcyNqZx43QdEAAAAIB+cXfP/SIoiNav12koZQkS7kXA9++73b8/7P794Wp1mq6DAYC3xIwZM4ho5cqVSs3ueIBSKDU19cSJE/fu3UtKStJ1LADwtouMpFGjqGVL2rKFZs4khULXAQEAAAAAkIGuA9CluLi469evv/ZH9vaGVaq8vobdyMg+Jye2fv0j2gwNAMqcXr16ubiMev78wx07DNzcdB0NQGE8fvz4ypUr58+fP3fu3OXLl5VKpbOzc3h4+O7du9u2bavr6ADg7bV1K4WH082buo4DAEBnMjMzo6Ki6tevL5PJdB0LAOij589JZBiePaOOHXUdTZlRdhPu169f3759+7fffvvan86e3WXQoDOv/VHDhmcUCuuIiA9tbCZbWPTQZowAUIbIZLKBA38ZM4bS02nECMIJM+iz7OzskJCQixcvnj9//sKFCzF5egEaGhq2bdv2/v37jx496tq16/r164cPH67DUAHgbbZ9OxHRsGG6jgMAQAeYecmSJZs2bXr27Jm5ufnw4cMnTpxYo0YNXccFAPqlcmXasoWI6ORJOvP6TCdIT8bMuo5BNz799FNfX99atWrVqlXr1Z8OGVKvW7d7r32gvf1KU9MWSmXUgwdj7O19TE2bazdQeFscOkQODlSlChHRxo308ce6Dgj0T3Y21alD0dF05Ai9917JHTckJMTQ0PDOnTv9+vVTYD8+/Ivk5OS//vrr3LlzIsmenp6u+ZGlpWW7du0cHR0dHBzefffd8uXLZ2VlTZ48WcwkcHd3/+GHHwwNDXUXOwC8jUJCqHVrsrGhmBgyKLtVRABQNiUlJY0cOdLf318ul1eqVCk2NpaIDAwMPvjgg3Hjxv3vf/+Ty9FAGACIiDp3poAAopcJ9y+/1OKx7t+/P3fuXCcnp2fPnnl6epYrV06LB9NvZTThrlarq1Wr9vTp0xs3bjRr1qyQj83IyYk1Mqrx4MHYSpVGm5u/q6Ug4S0zaRJ98gm1bEmU5/UOIB9vb5ozh3r2pKNHS+JwzLxq1apZs2bVrVs3LCysdu3a48eP/+STTypUqFAShwe9FxkZee7cOdEuJiQkRK1Wa35Up04dkWF3cnJ65513Xvuhbv369ZMnT1YqlZ07d961a1cVcckRAEASM2bQsmXk4UErV+o6FCidsrLI2FjXQQAURXh4+IABA27dulWhQoWtW7f27Nnz5MmT69ev/+OPP7Kzs4nIzs7Ozc3t008/fW19IQCUKdu300cfkUxGUVEUE6OtrjKpqanffvvt8uXLMzMzzczM0tPTq1ev7u3tPWzYsLLZ8KqMJtzPnDnTtWvX+vXr37lzp7CPzcl58fTpkpycp2Zm7SpXdpfJjLQRIbx9Jk2ivn2pcWMioqFD6dw5XQcEeik5mWrUoKQkCg6md97R7rHi4uJGjx594MABmUzWvXv3qKiou3fvEpGFhcXo0aMnT55cv3597UYA+u3w4cMjRoyIj48X3xoaGrZo0cLR0dHJyalr166VK1cuyCIXLlwYNGjQkydPqlevvnv37nbt2mkzZAAoM9RqqlmToqPp0iVq3167xzp7loKCqE4d6tuXUDH6drh1izw9qXJlevKEpk2jnj11HRBAIezfv9/NzS0pKally5Z79uypU6eO5kfPnj3bvn37Tz/9FBoaSkRyubx79+7u7u4ffvgh9hoClFktWpCHB40bR/v20f37NGWKxOsz8++//z5jxoyoqCiZTDZo0CA3N7dvv/324sWLRNS2bVsfH59OnTpJfFS9V0ZPGXfv3k1EgwYNIqLAwMDAwMCCX3gwMKhUvfoSO7tvEhJ23b5d5p4xUBy7dtG6dbRuHSmVug4F9JWlZW67oRUrtHugwMDANm3aHDhwoHz58jt27Dh+/Pjt27ePHTvm4uKSmpq6evXqRo0a9ezZc//+/WXzuqweCg4OHjVqlKhaKgGBgYF9+vQhokGDBi1fvvzSpUtpaWlBQUErV650dXUtYLadiDp16nTt2rWuXbtGR0e/++67Gzdu1GbUUIodO0bTp+d+PWOGTkOBUuHMGYqOprp1SduX8daupd27qXt3ioqi8eO1eywoMdOn048/0saNtGcPzZtHKlVJHjw6Onr06NHR0dEleVB4OzDzd9999+GHHyYlJQ0dOvT8+fN16tRJTU3V3KFKlSqff/75zZs3g4KC3N3dTUxMjh8/Pnjw4Bo1asyePTsiIkKHwQOArlSpQnv20PPnWlk8KCjIyclp8ODBUVFRbdq0CQgI2Llz5wcffHD+/PmdO3fa29tfvnxZ3OHRo0daiUBvcdmjVqvt7e2JKCgoiJl79epFRL/++mshF1GGhFgHBVFm5j3thAlvm88+46tXc792ctJpKKDfHj1iQ0M2NOSHD7Wyvlqt9vHxEUUu7dq1i4yMzHeH8PBwDw8PMzMz8TbRoEEDHx+ftLQ0rUQDBaNWqxs3bkxEy5cvL5kjfvDBB0Q0d+5cSVbLzs729PQUzyh3d3elUinJsvA28fPjJk344EFm5m7ddB0N6L2o2bPZxIQXLND6kdq35+zs3K+7dePERK0fEbRKqeTkZG7f/u9bBg3S1inXvxCzxIcNG1aSB4W3QFxcnMhdGBgYeHt7ixt9fX1tbGzu3r372ockJCT4+vq2aNFCnIPJ5XJnZ2c/P7/09PQSDBwAdKxnTw4M5NGj+Y8/eMUKDg1llUqCZWNiYtzd3UVnUTs7O19fX9Ur66ampnp5eZmYmBBRuXLlvLy8MjIyJDh2aVAWE+4XLlwgolq1aqnV6oSEBCMjI0NDw7i4uMKuExk5IiiInj5doo0g4e2DhDsU3NCh3KABX7wo/crPnj0TZ+oymczDwyNv3jM6Onr69On3798X3yYkJPj4+IjLk0RkZWXl4eERFRUlfUxQMAcOHCAiS0vLJ0+eaPtYV69elclkZmZmz549k3DZzZs3m5qaEpGTk1MJ/BZQuvj58fr13KULp6Vxt27s48O9e/OQIfzppzx7Nnt787p1vH07Hz7MFy8G3rp16/Hjx7gQWGZlZmZaW1vXLF/+eXi41g/Wtu3fXw8fzv+S1QJ9l5nJx46xhwfb2LCX1z8S7r16cUJCiQVy4cIFmUxmYmKiOeOCt09yMt97WZUn1avU1atXReuYSpUqHT9+nJnT09NHjhwpzupXrlz55oeLgnfN9EJra2t3d/cbN25IExwA6LeePZmZP/2UZ85kb282MeFKldjNjf39uWh1UFlZWT4+PpaWlkRkZGTk4eGRlJSU9w4qlapv375bt25Vq9XMHBUV5ebmJl5/7O3t/fz8JPit9F5ZTLhPnz6diKZPn87MmzZtIqJevXoVYZ2EhL1BQRQW1v6/7wrAfOECa05p9u7V5pFSU/noUT5+nFG5UGo9fcpDhuRW0f32G9+5I82yx44dq1q1KhHZ2NgcPnw430/nzp0rKl9cXFyOHTsmblQqlTt37tQ0XDM0NHR1dT1//rw0AUEh9e7dm4jGjx+v7QMNHjyYiKZMmSL5yleuXKlRowYRVatW7dKlS5KvD6WXnx9v2cJ79vD8+dytG48cyUSv+aNQ5OQdu2RkZFS5cuX69eu3bdu2xPZ/gM7t2bOHiBwcHEriYF265L4fq9XcsSNnZpbEQUEi6rR03r2bhw1jS8u/X0cGDuSpU3nTJlar+exZdnEpsXhUKpWYZbKgBDZngO6cPMlWVhwTw8zco4cElaRbt24Ve09bt24tLtVERUW1bduWiMzNzXfs2FHAdZKSknx9fd95OSfKzc0NBRAAZYFIuMfFcfXqPHMm163791tipUo8diwfPMhZWQVdzd/fXzM6wsXFJSIi4tX77Ny5U9zB0dHx8uXL4saTJ09qNtx069bt2rVr0vx6+qosJtzFM+PChQvM7OLiQkTr168vwjoqVUZIiEVQkCwrq0Q3IUIptWABN2/OYveMFjfLJyRwt268cSOvX8/dunFKitaOBFqUmsp16vCkSczMc+ZIUOqenZ3t5eUldnt179798ePHr94nJCRk5MiRRka5g6Bbt27t5+eX9fKNNygoyM3NzcDAQPzUwcHBz88vW7PLHkpEWFiYoaGhXC4XLdG05O7duwqFwtjYODo6Whvrx8bGduvWjYiMjY1/+uknbRwCSiORcGfmgQO5eXO+eZMPHOBff+U1a3jRIp41i93d2dWVP/ggpV27dg0bNqxSpYrYnapRp06dcePG6fr3gJIg5jAtW7ZMu4eJi2OVio8fZxcXXreOR4zgNWu0e0SQSFoa+/uzmxsPa3nz76RCkybs5cW3bjEzK5W8dCmPHMkLFnBSEt+9W8Qav0ISg0yqVauWmppaAocDXTl5kt3cWDQNKmbCPW9TvhEjRohWMKdPn7axsSGievXqXb9+vQjLimFOROTp6Vn04ABA7yUn88WLvGJF7rf+/nz8ODNzSAjPn89Nmvz9Jlm+PE+btnzv3r1vaDl169YtsV2eiBo1avRqDZ+GWq328/MT1X4ymUxzeU+lUvn5+Yl5YHK53M3NTdod1XqlzCXcr1y5QkRVq1ZVqVTJyckmJiYKhaLI/8AREa5BQfTsmY+0QYJOPHz4MEWb6ekFC3j2bPbyYtZGwl2tZtHrY8UK1mzP+fFH9vWV+khQElJT+cMPecwY/usvnjOHT53ioKCifxJ8+PChKFE3MDDw8vJ6tbFaXs+ePfP29q5WrZp4H7WxsfH09NQkXh88eDBz5kwrKyvx02bNmr15NZDc1KlTRaWA2J2nDaNGjdJ2HX2+lu5ZBS+ogLfX77/zH38wM9+7V4jGaxkZGU+ePLl9+/aOHTvES5b2/tcAPZGUlGRqaiqXy7V0UfBvAweyvT2fPcvx8XzuHGv7cFB4P//MH3yQ+/UHH3BcHP/yC3/wAZuY5KYPZDJO/WAIL13Kr0ys+duOHVyuHM+Zo+1oU1JSbG1tqfDDw6DUOXmSFy3iadP40CHu0YN//ZU7d+bx43n1aj5xgguee3j+/HmPHj1ebdouRjH17t07Pj6+yEFu376diAYMGFDkFQBA/7m5sYEBb9jwr3eIiGAfH3Z0ZHPzZFHLYmpq6uLi4ufnl7dLTFxcnIeHh0KhIKIKFSr4+PgUpPbu3xq4x8fHe3p6ilI/a2trb2/vt/LzYJlLuIueCZMmTWLm3377jYi6du1a5NXi47cHBdHt252lCxB0pmvXrra2tq+d8yCJBQv44kXu14/Dw6VOuF++zJ06cZ06nJHBU6awpt3HiRMl8OEBtEEk3J8+5R49eNYsXr2aidjAgJs0YTc39vHhgICC7vnas2ePtbW16JV27ty5AgaQlZW1c+fO9u3ba5o2uLq6ahqAZGRk+Pn51a1bt1atWpMnTy7a7whFk5SUVKVKFSLatWuXNtZ/+PCFkZGJgYHBa/cGSmvLli2ipbujo+Nrd11AmfLRR9yrF4eG/uPGsDD++GOeNo2/+opXrmQ/Pz54MOn06dMhISH379/Pl2ioXr06EaEj7VtPNITs3r27dg+TlMSmpiyX5+bZXV150SJGVbKeWbOGnZx42zZm5m7duEULTe8p7tqVV60q2FWSwEA2NGS5nF/209OS2bNnE1GHDh1wXfCtJxLuycncrRt37syTJ+dvj1apEnfrxhMn8vr1W0+fPv3ixYtXF7ly5UrNmjWJyM7OTuzOT0lJEU3/ZDKZp6dnMT+0ikrEZs2aFWcRANBnO3YwEZcrx2Fh/33nyMikJUuWtG/fXtO80dTU9MMPP9y0aZOPj0+lSpXExT93d/fnz58XKoy7d++6urqKNWvUqKFp4H779u0+ffqI2xs2bHjw4MEi/I76rMwl3Bs1akREp06dYuYBAwYQ0erVq4u8mkqVEhxsGhTU7MWLp5KFCLoQHx/foUMH8b96u3btxDmNVA4eZA+P3IT73bs8aBB368Zr1vCqVVzchhzR0ezmxjIZE7GdHd+4wcuXs6ZqZv16Xreu2OGDDoiEOzP/8APXqsVLl3KjRiyX/+NMvVw5dnLiL7/c9euvv4aHh7/64S0jI8PDw0M8qz/88MMijIZm5pMnT/br10/0ohGt1jTt3S9fvkxELVu2LNavCoX3448/iiso2pgYOWEC16uXOXPmH5Kv/Fp//fVX9erVZTLZzz//XDJHBP30/DkbG7OBQf7s2IED+ZMU77xziv7J2dlZ3FnMYvrPwXFQ2vXs2ZOItP6isWEDE7F4doWGMhFXqFCI/qZQItas4e3bc9vsd+vGX33F773Hvr6FqCDO9eWXTMRVqvBTbX2mi4iIMDExkclkgYGBWjoE6A+RcGfmHTtYoeBnz/j4cV65kt3d2dGRraxy39FMTVmhyO3lWKVKlR49ekyePNnX1zcgIGDdunX5ihLu3r3bvHlzIrKwsNi9e3fRAlOr1QsWLBg+fLharU5NTZXJZMbGxjk5ORL+7gCgJ+7dyx1fsnFj4R4YFRXl6+vr4uKiaScrStR79ep1S7RlK5ITJ068toH7vn376tWrR0Rt27ZNTk4u8vp6qGwl3G/cuEFElSpVys7OTktLK1eunEwmixKNOIpq4sThRPTjjz9KFSToilqt3rlzp6gjkMlkrq6uDx48KOaaYWHcu3fuGZWbW24nbi8vdnTMfe1r0oSPHi3S0llZ7OPDFhZMxEZG7OHBYr9PXBy/+y7//jvv2MFduvDb9YJVdsTH8/DhzMw5OezkxGLKSEoKBwSwjw+7uXGTJrnXWWxsct+0LCwsHB0dPTw8/Pz8bt68GRYW1rJlSyIyNjb28fEpZi1VRESEp6enqJTX9MyNjY0VG8qK+9tCIalUKgcHByL6+uuvpV35yZPcgs6SLBF++vSpuKKDkQBl2fffMxH37Zv/9keP+Kef+Pvved48njSJR4zgTz+90Llz5+bNm9eoUaN8+fLi7F/cWTRH7tevXwkHDyUmNTX18OHDCoXCyMioaFeRC6F7978/pM6ezUQ8YYJ2jwiFt2YN79nDx47xlCnF2z+qUuX+i/fuzdopP//www+JaPTo0dpYHPTNzz9zQEDu12vWvOY59egRHznCa9Ykjx07tn379paWlvmuJYuz7s8++0y0WTh06JC4pUGDBqH59oIVkmipLHIgdnZ2RCSmsALA20Sp5A4dmIhdXYu+yJMnT9auXWthYVHMSmWN7OxsX1/fvA3cY2NjmTkzM1OUus+cObP4R9EfZSvh/sUXX4h2scz8+++/E1GnTp2KuebmzZvzVldBaZeWlubl5SUKCszMzLy8vN4wMuINEhLY05ONjZmIrazY25tv3eLERGbmjAwOCuJjx/6eUOHsnH8T/Zsl//EH16qV++CBA3O7UqrVvHkzz5rFCQm8cyfv2oVse0lbs4b79+cRI3j0aC5G6XFCAlevzrNm/UfT9hcv+MiR7G+++aZfv36alusaFSpUEDuzQkJCihxJPklJST4+PgkJCeJbtVot/k/B4K+SFxAQIJPJzMzMHj6Ucmr3tGlMxIMGSbhkgYhugEi4l2WNGzMR799f6Aeq1WrN/JWHDx8SUfny5VGs99aIj48PCAjw8fFxc3Nr0qSJeK2oVauWra2tNrb4/O3xY1Yo2MSEExJYrc496dLkz0BviIQ7M48Ywa1aFW+t6GiuWJGJWAu7ZE6cOEFE5ubmMTExki8O/yY2NvbcuXMXRcVTCTp+nIm4XbvCPerBgweHDx9esmTJmDFjRIe0999/X/woPDxcvPoNGDCg+OWfnTt3JqLjx48zc9euXYnoyJEjxVwTJKdWqzEoC4pj5kwm4tq1c3NQxdGsWTMiKtp85tfSNHCXy+VBQUHixu+++w4J99JNbMIS7yhDhw7NW6pZZAkJCUZGRgYGBuLKDLwdHj165ObmJnpXVa9e3c/Pr+AFwioV+/lxlSpMxHI5u7n96+ZUpZJ9fLh8eSZiQ0P28PjvV0MxFXqYaC/SuDH/+WfuDy5d4vbtcw/5cm8OlKhbt3jgwNyvN27k774r8koi6VnY6RKPHz/29/f38vJycXEpX768hYVF06ZNtToHmJnF5q/w8HCtHgVea9CgQUQ0YsQIqRZ88YLNzZmIX572lBwk3Mu4M2eYiKtV4+LnycWL0l9//SVFXFDSsrOzr1+/vmXLlhkzZjg7O4sCqLwMDQ2bN28urigPGjRIi8mIZcv+vvwYEMBEXKOGlgqfoTj8/VmMp4mO5o8/LvZyf/zBMhkbG6uvXi32Wn/LyckRH0K//fZbCZeFvDIzM2/evLlz505vb293d3dnZ2dRx01E7du379ChQ2E7DheHqCp9OeK0KF4dZzp//vzFixdL0v1/7NixRLR27Vpmdnd3l6pwFaS1devWMWPG6DoKKK2OHlXK5WxoyJJccMybcI+JiXnw4IEkn9pu3ry5atUqzbdIuJdud+7cISIrK6usrKzMzEyxb0uSoXD/+9//iGjDG+b+Qul0+vTpVq1aac7VNBMj3+DUqVMDB0aJ0vMuXbggtcVPnvDHH+e2527R4tGGDRte+wEyNjbW3d1dpKUqV64cvXlzbmYiJobd3XMfb2vLvr6Mi+E68csvvHZt7tcxMdy/PzNzVBQXchTkvXtsbMxyebGSnmIHz4eiDbw2devWTVMjAyUsKirKzMxMJpMFSFR0OX8+E3GfPpIsVjhIuOuP7OzsS5cuLV68ODQ09MmTJyVz0BEjmIgXLJBgKZE78C5OngNKUFJSUkBAgK+vr4eHh6Ojo9g1lVf58uUdHR3d3d19fHwCAgLEpsNbt26J1gqzZ8/WVmQODkyUWzs9YQITYQq93rp4kdu2ZQ8PiZabODHC0dGxZUsJ28j+8MMPRFSnTp2MjAyp1izLsrKybt++vW/fvu+//97d3b1r166iL8qrrKys2rVrJ3763nvvlczmpz/+YCKuWrVYI5aDg4NJa+NMvb29iWjq1KnM/P333xORh2T//4AEwsLC3nvvvapVq549e1Z7R0lNTfXy8powYULHjh137typvQNByYuNja1du8677/pIdZE3b8JdlLbcuXNHmqXzQMK9dPv222+JaNSoUczs7+9PRA4ODpKs/NNPPxFRnz594uLisIv5LaNSqfz8/KpUqaJpMvX0X+rVNUXxNWp0q1NH7edXuEKoK1e4c2fu1GkYEbVu3Trv+6tSqfTx8bGyshK1XX9PhRZt3EUz+Lxt3EEndu5kzY6Zu3d5xAhWqbhLF65UifftK/gy/foxEY8dW6xYAgMDiahNmzbMnJKSsm3bts2bNxdrxX8hRhRu2rRJG4vDf5o3b554Lyt+mWdSEltb66xlAhLuOhcREeHr6+vq6irymETUoEGD+vXrl0D3g4QENjNjuZwlaSG7d++1d9454eKCrJa+S05OrlOnTr7smEwmq1u37sCBA7/66qt9+/a9YZTO6dOnjYyMSDtTlB6Eh0c6OqqrVePMTFYquVIlJmLpdlKDtA4fZiJ+OcqhuLIyMkQ1+thinoq9FB8fX6lSJSLaI67fQJGo1eqpU6f27t27bt26miF+eZmYmDRv3nzgwIGzZ8/esGHDuXPnNLvPHz9+bGtrq91LdC+pVNyyJROxKBk/f76Ib21aHWe6Z88eetmvZt++fUT0v//9T/KjQBE8f/58woQJ4qzY1tZWc7tarS5ak9vXUqlUGzduFFtAxLHEFalizgYAPaFWq0VBcI8ePaTaCIiEe5GVoYR7mzZtiMjf35+ZFy1aJJfLFy9eLMnKL168MDAwMDQ0HDRoUIUKFdzc3Pz9/cV4E3g7JCQkeHp6GhsbE5G5ubmXl1dmZqbmp6mpqfPmzRODm8uVK/f111+np2e+YbV/o1bz1q3b7O3txWfOIUOGREVFnTp1qmHDhuKNsHfv3mFhYeLOv//++6n+/XPbuA8YwFLs1YBiefGCnZw4Lo7Vap44kXfv5sRE7tWLiVgm4wkTuADnSadOMRGbmxe2LD6/x48fE1GVKlWY+dGjR/lO2iQ0d+5cIvrqq6+0sTj8p7S0tBo1ahDRL7/8UsylFi1iouJNnCsGJNx1Ijw8/Mcff3R1dc3XuKNBgwZjxoxp1KgRETVs2PBxMV+P/suqVVImy549Y5mMzcw4syjvw1BCnj59am1tbWFhYWho2KRJEzc3Nx8fn2PHjr148aIgDxeDQzZs2CAKEY4dOyZteAsXLiSiTz/5hJnj//yTDQ25eXNpDwESyptwf/KE//iDAwOLtWBoaKiZmRkRbd26tfjhTZ48mYi6d+9e/KXKONHWXLC1tXV2dnZ3d/f29vb394+IiHhzYvrcuXNGRkYymWzHjh1aDfK335iIa9bMvVpXrx4bGRWxpYOYz6SNcaY3b94kovr16zNzWFgYEdWtW1fyo0ChiEmS4uKcgYFBs2bNruZpbPXbb79JNRD+r7/+6tixo/j/qG3btmKTmTgPNDAwcHd3R5/k0m7p0qVEVKlSJQmLZpBwL7KyknAPDAyUyWTm5uaarXxPnjwp4Gl9QYi+CnXr1tWcB1hbW48aNcrf3x+bB98ad+7ccXV1Ff++9evX37lzp1qt3rlzZ82aNUWK3NXV9Q3VWAWUnp7u7e1tbm5ORKampqJNszicuMO1a9fE883S2DjN2ZlPnCj2bwYSCQnhMWPYzY03b86dWKtWs68vm5kxETdqxMHBb3y8aufO1Q0aZH3zTXEDUalU4nNFZmZmTk6OgYGBXC7XxlXAH3/8kV5OogadEIO7q1SpklS8DS5BQdyvH+uqORAS7iXmyZMnO3fudHd3F+9cGlWrVnV1dfX19dW8i8XHx7du3ZqIGjVq9G9buyTRqhUT8e+/S7Zgs2ZMxNrchw3FtXLlSlFTWdjiTbVa7eXl1bRp08TERGaeNWsWEVlaWt64cUPC8Bo0aEBEJ0+eZOahQ4fWr1Dhwpo1Eq4P0sqbcN+zh4m4+B31xOlN+fLlIyMji7POrVu3DA0NFQrFNQxYKrbt27f/8ccfYWFhRTuhXbFihSicunnzpuSxCTk53LAhE/HGjczM69YxETdowEU7uxEf97QxzjQzM1OhUBgYGCiVyqysLAMDA4VCkYnL1Lpz/PhxkdAUVcn5RlOmp6fXrFmz+A0kY2JiNDPq7Ozs8s6oi4uL8/DwEHtHrK2tfXx8cE6ue9nZfOvWa/88vH371uvExMRcuXJFJAH2FWaH/X9Cwr3I3vKEe1RUlI+Pj7Ozs0KhqFWrlrm5+ZkzZ7RxlAYNGtStWzcgIODGjRtffvllixYtNB9iLSwsrk6fzrt2cVqa5IeGknfw4EFNyblmGk+7du0uXLgg4VEePnz40UcfiXfEihUrPnz4kF++F4rMVIUKFfBeqL9SUrh+fXZ3z/2//upVbtKEidjUNPHWOubXNxt6/vznoCAKCWmUmSnB5i+RTRNjKsS2CW3UyOzfv1/svZB8ZSggtVrt5ORERHOK1F940iQeN46ZOSEhd+6ATiDhrlWxsbE7d+708PBwcHDIm2SvXLmyq6urj49P0L+MjIiNjRVn2C1atJCwRiGvS5eYiKtUYaVSsjU9PJiIv/hCsgVBcu3btyeiIjSNTUxMFHsvevfunZOTo1arhwwZQkS1a9d+9uyZJLFdunRJJCNycnJSU1PNzc1lMpk23kBBKtpIuDPzRx99JM7wlcV4eerVqxcRffbZZxIEBMU2evRoUcaUkJCgjfW3bAkzMFA2bMg5OZyRwfb2TMRFbo49fvx40to409q1axNReHg4v0yf3bp1SxsHgjfLW89Xr169174thoSETJs2TfOtWq0u7PudqOezsLAQ9Xyenp6vnVFx/fr17t27/13VhxldJSw5md3c2M2N+/XjDRv4wYPcZgav/On+zjv0OoMHDxZ5qs8//1za0JBwL7LXdEB7C0REROzevXv37t2XL19mZiIyNTVVq9Wpqak9evRYsGDBvHnzNP2qimnv3r3jxo0T7fkqV67csGHDZs2aLVy48MGDB/v27du1a9elixebbttGy5aRiQk5O5OrK/XrR+XLS3J0KHl9+vTp2bPnpk2bZsyYYWJiUrFixcWLF48bN04ul0t4lBo1amzfvn3atGmffvrps2fPNm/ebGNjM2/ePNG/yN3dfdGiRWLTGeijs2fp4UNav54uXqStW6llS7pyhTw901TX76V/ann391q1/AwN/zHfSaVKefx4ARHVrPmFsbEEzyV7e/uHDx8+evSoTp069vb2jx49io6OrlWrVvFXzncUIhJda0AnkpOT27dvf+HChWXLljk6OooOM/ko/s/efcdFdS1xAJ+lNxv2rtg7ih0UCxgLMRqDHUuMJBolRROM0RCNiUSNosZCEguxRLFjrNgBsSwKiopS7EpVell2d94fBzc8bJS7NH/fz/tjWfaee3hudu+dM2dGt6FKVfHl50UR1MePyd+fXiTWlIymTUNUKpbJyuc1SQlSqVRdunQRu5LFM5UqVbK1te3Xr1+/fv3atm0rlnVfp3r16idPnuzXr9+1a9fs7OxOnjxpbm4u7Qz//JOIaOJE0teXbMx+/WjVKjp1itzcJBsTJBQZGXnp0qUKFSo4ODgU9NhKlSodPny4e/fuR44cmTZt2h9//LFx48Z79+5duHDBwcHhzJkzohJIUWzfvp2IxowZo6uru2/fvtTU1N69e0v+7Qml3/r16y9cuHDp0qWvv/5adGMuqDNnzhw7dqxKlSo//vij1LODwlizZs3Vq1fVarOZM7O8vEjSWzfKzMz87jv7unWN3N1P6erWX7mSHj6k9u1pxIhCDtisWTMiCg8Pl3KWLzRv3vzu3bt37txp3rx58+bNIyIi7ty506pVK22cC14pLS1t6dKl7u7uWVlZpqams2fP/u6770QB2zwsLS0tLS01P27btm3Tpk0nT57M54kOHjz4xRdf3L17l4gcHBxWrVolllte1q5du5MnT+7bt6/y1q0me/fSiRM0fDgtXUq5qjiAFi1bRu+/T46OxEwODtSmDbVs+coXNqxbt2VGxsvP37x58/bt223bthXdK6FUKOmIv5QiIyM9PDysra01N5DGxsYODg5eXl5JSUnZ2dlubm4izt69e/ci7hBk5oyMDBcXF3Eue3t7c3NzHR0da2trd3f3iIgIzcue3r/Pv/3GPXuyjk7OqpShITs48KZNnJhYxDlACRIX3+7u7lo9y6VLl4hItPohovfeew8JCGXD9evcrh0TsZERu7uzSsXMic8PBAdXl8spOLhGYuLB3C9/9GiOXE63bvV4Xf57QY0ZM4aItm7dyi+ytCQpRZpHQkICEVWqVEnykSGfZs2aRUQWFhZviIR267b3lRkS5uY8YwafP899+3JsbMlmuDNRIfdcw5t1797d2NjYzs7Ozc3N19e3EKma0dHR4ia8Y8eOCQkJEs4tM5MrVWKZjG/flnBUTkxkXV02MODUVCmHBaksXLiQiCZOnMjMx44ds7GxKWiq+6VLl0Rg3cPDg5mfPn0qNnU5OjqqC9Sw/iVKpVJsXgwKCmLmQYMGEdH69euLMiZom7QZ7itXrnz27Jl4fPbsWZlMlqfLRYEYGBigz02pcvfu01q1FES8YIHEI//2229E1K5dO5VKlZycbG9/gIgPHSr8gD4+PqS1dqaitcBvv/3GzF9++SURLVmyRBsngpepVCovL6+aNWsSkUwmc3Jyevr0af4PnzFjRj431l+5cqV3797is8jS0rIAlR4UCvbw4IoVmYj19dnFhYtWuBLy5b33/gsPLl3Ku3YV6OjMzMw+ffoYGBhoev5JCBnuhVYesslu3Lixa9euXbt23bx5UzxTuXJle3t7BweHDz/8UNTCFn788UdbW1snJ6cLFy507NjR09NTxKEK4datW6NHj7527ZqhoeGvv/46atSoTz/99Pjx4wEBAQEBAd999123bt1GjBgxYsSIxo0b09df09dfU3w8HT5Mu3bRsWP077/077/UoQN17EgpKVShggT/R0DxMjY2JqJXLkRLSCTO16hRo3HjxnPnzh0yZIhWTweSaduWAgPpq6/ozz9pzhwOuqTavq5S5aFtzELv3ZuclHQ4IuL9qlWdGjRYr6NjolA8jI1dRSSrX9+D6E0Jp/mXO/dctJnSRh66ubm5mZlZUlJSSkpKBXyOFbuIiIjff/9dR0fnjz/+UKvVkydPNjExeflDqW7dSq9MYK9cmYjI3JycnGj1aq3PFkrEjh07ateubWBgUOgRatas6evr26dPn6tXrw4ZMuTYsWMVK75iw0SBhIZS9epUsybJ5bRjBzVvXsTx/k+lStSpE12+TAEBNGCAlCODJHbs2EFEY8eOJaKtW7f6+/sPHDiwQCN06dJl8+bNo0aN+vrrrxs1avTBBx8cPnzY2tp6165dLVq0+Omnnwo9t5MnT0ZHR7ds2bJTp05xcXEnTpzQ19cX3XTgXbBp06Yvvvjijz/+CAkJ0dXV9ff3Z2aVStW2ULvAoqOj4+Pjb9++Lfk8odAaNaq1ZQsNHEgLFlCnTlTwbTavlpqaKkJFixcv1tHRWblypa/v/JEjpw0evLbQY4pmEnfu3JFmiv8vd/q8VlPpIY9Lly598cUXonZZ165dV65c2b179wKNsDrXJTszh4eHN3/pKiohIWHhwoVr1qxRqVRVq1adP3/+jBkzClDgQV+fvviCRo6kH3+kDRto1SratYt+/JGmTCFdXVKrSSajN26RhMIwNqb09JxKGOnpZGBAV6++8oURuropKlWeJxUKRVhYmEKhuHTpUsvXpMZDCSjpiH/hhYaGurm5aappE5G5ubmTk5OPj8+bW6nExsZqopazZv1ciJ6mmzYdEMHWVq1a5e6Bk5ycvGPHDkdHR1NTU82s0gcM4J9/5twLTbGx/McfPGECX7rEAwbw55+zvT1aX5Y5X3zxBRGtWLFCq2eRy+VE1KlTJ62eBbRo3z6uWjV+ca/g4BqJif8yM7M6Ovq3oCBDuZyePFnAzNHRS+VyiooaL+FpV61aRUTTp09nZg8PDyKaOXOmhONriA9hbLwoEeK7bOrUqcx8584dAwMDQ0PDArWknzGDw8JYrWZ7e2S4w5uI+lRE1KNHj1eW/iyQceN4yBBm5qgo/vhjCaaXh6srE/HcudKPDEUUFBRERDVq1MjOzs7IyBCLN+Hh4YUYSgTWTUxMLl68yMxHjx4VDd+8vLwKPb2JEycSkUhJFkGN999/v9CjQfE4efKure2xadPOMPOhQ+G2tse++KIwTZPDw8NF6sCWLVuY+dKlS/r6+jo6OsePHy/cxKKiooyMjGQyWdG7HYK0fvmFibhCBZbq6lVs3LG2tmbm58+fV6lShYhOnz5dlDEVCoV4B2YUIlrxNkePHiWifv36MbOvry8R2draSn4WyO3Ro0eanqV169bN3bO00MLDw/N8SSkUCg8Pj0qVKhGRvr6+i4tLYhFrKly6xD16MBHLZBwUxJ9/zuPG8ejR/NVXrFZznz45L7t7lydNKtKJwMuLv/mG1WqOieGePfnGjYLWcBeLN6ampmFhYdJODRnuhVb2Au7Xrl374osvRPKmULt27enTp584cUKpVOZzELVa7enpaWJi2qVLdKtWnP++8YmJPGoU16r1yNy8qpOTU+prtiunp6fv3bt33Lhxn1hZ/fffhoUFu7hw7ksuW1sWu7NTU7lr1/xOAkoHBNwhn9Sxj2/f7ieXk1wue/DgS7U6k5nT0q5GRHyYkhIQF7chLU2enHwiK+uhhCfdt28fEQ0dOpSZ9+zZQ0TDJGki9hI7OzsiOnbsmDYGhzcQN0gVKlQQG1FFNeRPRAvUfPvnH46OZma+fp2XLOH0dG3M9O0QcC8T7t+/L+p+Wltbp6SkFGWoceN49mzetk1bAff9+3n3bs7O5sxMDgyUfnwoNFEFS7TzEqnuPXr0KPRoIj5eu3btBw8eMPNff/0lQgwnC57FEhUVtXfv3unTpzdv3tzKymrPnj2is+uOHTsKPT0oHkeOHCGi9957j5n37t1buAuezMzMjh07EtGECROYOTExUXzcubq6FmVuc+fOJSIrKyuVSlWUcUBaajWPHMlE3LKlBKUyNBH2U6dOMbOrq6vmDVlEIvf8xo0bRR8qj6ioKCKqV68eM9+/f198kEp+FhDS09Pd3NxEJTQTE5Mff/wxLS1NGyc6fPiwJht18ODBkkVd1WreupW//ZZ37mRNjSxXV/bxYRubnB+jotjJSZrTvbPUav7zT3Zy4ilT+MYNfvKELS1f+b9Phw+3fJW5c+eOGzdOfOm8OQW5oBBwL7SyF3DfuHGj+BCpX7++i4uLr69vdmHv0UNCYlq2ZCI2Nub8lGc8ezan23jlyrx/f/4qbWVm8r//8uTJXLXqf5H3Zs14zhxOTuaePf975aBBHB9fuD8ESgQC7lAQ6pgYj6AgA7mcbtxok54ewsypqZfCwwcnJR199qxgNdryQ7xzOnbsyMwXL14UX72Sn4WZJ02aRER//fWXNgaH18nOzm7Tpg0RLVu2jJlPnDghgu9Pnjwp3ICrV7OJCXt4SDrLfEPAvay4d++e6B5pY2NT0Jh7djafP8+LFvGCBTxuHD98yLa2fPWqVgLuzs7cuzerVBwTw6NGST8+FI5KpRIlzkRO+vvvv09Eq1evLvSACoWif//+RGRpaSnekF999ZXY8/rmQINCoQgNDfXy8nJ1dXVwcHhlF3oLC4tGjRppKSwCEpIk4C7KWDdp0iQpKYmZRcmjzp07FzFmkZKSUqdOnSJuvABtSEnhNm1yKv4XMc9YRNgHDBjAzE+fPjU1NZXJZBcuXCj6JMVGxn379hV9qDyUSqWfn19sbCwzq9VqEQtOQp1u7cjIyBDXTg4ODnfv3tXeiWbPnk1EzZs3P3jw4NtfXQizZvG5F/uHjh/nefPYxoadndnZmceMQcC9NEhJSRElhmbPni3hsAi4F1rZq+E+dOhQV1fXESNGdO7cWVa00lHt29e4coXmzKFVq+izz+joUdqwgV7Zdk6lop9+okWLSKWirl3pn3/IwqJWvs5haEhDhtCQIaRSUWAg7dpFu3ZReDht3Uq//EK5Sy+lpqKSO0D5JatR4wszM+u7d8dlZNwIC+vesuUFpTJGV9fczMxWR8dI8vPlrtueu5675LQ6OLzO77//fuPGjaZNm86YMUOpVIpIwQ8//KBpsFxQ9etTejotW0affUZa7kwBZVjDhg1FPXd/f//hw4f7+PiICntvEBVFJ07QiRPk60uJiURE5uY0cCAZGND8+fTTT1S5MqnVpKNT+FkdOkRVqlDPnv/3ZM+etH49ofh2qXLmzJlHjx41adKkS5cuz58/P3bsmJ6enqOjY6EH1NfX9/b27tmzZ3Bw8MiRIw8ePLhs2bK7d+/u379/8ODBFy5c0LS7jI2NDQkJCQ4ODgkJCQkJCQsLUyqVuYeqVatWhw4dLC0tO3ToULFiRScnp6ioKFdXVxGHgvLt6NGjK1eu1NfX37ZtW8WKFTds2LB9+3YzM7Nt27YVpQEGEZmZmS1evHjixInffvvtsGHDit4AA6RiZkZ791LXrhQXRykpVKB/GYVCERkZeefOnTt37ty8eXPHjh0ymWzRokVEFBISoqenN3z4cLFFpoiaN29+6NAhbZRx19XVtbGxEY9lMlnjxo1v3LgRHh5uZWUl+bnAyMjojz/+MDY21vx/riXz5s1r2LDhp59+qq+vr5UTmJlRWlrOY00bwhUriIju36fFi7VyUigI8c1lbW3922+/2draOkjVpwIKraQj/qXCnj1cpQoTcf36/HL35gcPuFevnLpVLi6sUBTtZCoVnz3Le/YwM0+bxlu2cHY2+/jwmDFFGxeKGzLcoRBUqvQHD1zu3HmPWc2sio5eHhbWMzp6qeQnUqvVonlmWlqaSqUyMDCQyWSZmZmSDJ67GuAff/xBRFOmTJFkZMiXuLjLAwfWNjMTCSyiRn+TJk2K8u+rVnP79kzEf/wh3TzzDRnuZcudO3dEzuaAAQNeWVv21q1ba9eudXHxq1bt/8pOtmzJ06fz7t08ZgzHxDAzjx7NkyezgwO7uRUmxzA6mp2cmIibN+fcE3F25ogI7t+fQ0KQ4V6KTJkyhYh++OEHZl6/fj0RDRo0qOjDRkZGisC6qFSTnp7etWtXImrXrt0333wzaNCgl1cidXV1W7duPWbMGHd396NHj4rCXLmdOXNGRFrXrVtX9BmCVhUxwz06OrpWrVpEtHTpUn6pknvRqdVqa2trIpqLthKlQ1wcr1yZ83jZMj53jseNY7Fla8sWjoj4vxerVHzvHh8/zmvW8OzZbgMHDmzSpEme5pO1atWSyWSbN28WhyQkJDx8KE2VyLVr11LBqwUW1KFDh0xMTD766KN79+5p9URQ5gUH85AhnJrKyck8YADfvo2SMqXT4sWLiahGjRqF3vqcBzLcCw0B9xx37+Z0g9DV5R9/5EOHcp5fvDgnFl+vHp85I/VZFQr28OBJk/jXX1kL7VBAq4on4H7v6lWPHj02jB6t1bNAsVGrlZGRjrGxa3M9p7p1q5tKJX3xbNHhUHwdip2MkZGRRRxTrVZ7eHhUqVJFs1v/8OHD9GIjLRSTzz5joswRI5g5ISGhatWqROTj41PEUf/5J6fbSHEGvlUqTk7mlSt5xQpOTWWF4r868unpnO/OLFDcwsLCRBDzvffeEys9T5488fb2dnZ2btiwoYhB9Or1CRHXrs2Ojuzpyffv/3f4hQsslodiY3nNGtbRYSIeN65gl0Le3iwC+iYm7O6e8265cYO3bmVnZ46K4kuX+IMPEHAvLbKysszNzelFPeLevXtLGNP08/MzNDSsVatWTEwMMz958qRatWpiWUioUKGClZWVk5OTh4eHn59ffgrFiCKW+vr6he6ZCcWjKAF3lUplb28vLmNUKpWmkvvEiRMlnKFcLtfR0TE0NCxcf2CQ1v37PHZszuNFi3j3bm7cmGfNYmb+5hs+eJA3bOA5c/jDD7ldOzYyyr1mPFZ8nujp6TVt2nTQoEFffvnl2rVrZ86cKZbxpPpA0xAFA3v37i3tsBpqtXrBggU6OjqSv+eh3Dp5kidP5ilTchoTLlqU83xcHHt6luC8ILc8X21FHzB3wH3UqFE9e/aUalkxd+tgBNzLuexsdnPjFi3Y1ZVbtMjJverbl8eO5Q8+QH11yKt4Au4slzMRI8O9vLh/f5pcTsHBVZXKZ8nJJ2JiVsfF/RkWZpOZGfHkycK3H18Qtra2RCR6x/Xq1YuIzhRt2TA6Olp8ectksjVr1ognN2/eTETW1tYSzBjyIzSU9fRYT4+vX2fmuLlzP23XTpIFD6WSmzdnIt66teiD5df9+2xkxGL5xtmZDx7k6dNzfjVrFktRARW05fr16yKtuFmzZk2aNMmd7lezZs3Ro0dv3rwrT6rg6xw6xBUrMhF37MgPHrz99eHh4ePHx4kIyMCBLAqiKhTs7s6GhmxoyCNHclQUM/NnnyHgXlqISKjoJvLgwQMdHR0TE5Midt/NzcfH536uVR2xzDxhwoTdu3dHRESoC1WkWZRmrlixorjJhNIpd8A9NjbW19c3JCQkn8fmSQMU1/aaSu4ScnJyIqIRI0ZIOywUwv373LcvHz7Mhw/zxIm8ezc7OvL48RwczN98w4sX/9/GLCKuU4f79GFnZ16//vSBAwfCwsJeruy/bNkyEXPftm2bhFN98OCByKDXPOPn59evX79//vmn6JtWk5OTP/zwQ3FV7+rqir6+AOVJns1bRZQ74C6VtLQ0d3f3Xr16aT58EHB/J2Rk8Pz5/PvvLFZ5+/ZF6jm8GgLuUFBPniySy+nKFaOUFD9mzsi4nZzsl5R0RKl8fv16Y7mcHj92k/B048ePpxd9unbs2LF27dqirEWfPHlSJLRWr1790KFDzKxUKhcsWKCrq6ujoxMQECDZvOHN7O2ZiL/8kpn52jXW02N9/aSbNyUZe8MGJuJWrbjYbrvu3+eBA/n991mtRsC97AkJCalTp06nTp2IyMzMzM7Ozt3dXS6XFyK4ee0aN26cE9q4ePG1L8vOzvbw8DA1NW3W7MOaNf/LpgoI4Natc6r/OTnx+fM5WyWSkhiR0lLio48+IqLffvuNmd3d3YlojNaqKZ4/f56I6tSpU8QQkkql+uijj3RksnMffpiTiQOljwi49+vXr6AHXr58WRTcE/XZDh8+LJPJ9PX1JWl3mcfTp09FAXdsmChx9++ztTVv28bbtvHIkTkB90eP+L33eNYs3r2bx4/nn37iHTv4yhXO/5rgjz/+KGLu//zzj1RTVavVpqamRKSp5Th58mSxsF2tWrWvvvrqZmEv/8LCwlq3bk1E5ubmR48elWrCAFB6HDlyRKovtVatWkkYcFer1du3bxcN52Qy2alTp8Tz4uIQAffyb/58DgzkadP49Gnu27ekZwOlFQLuUCAJCdvkcplcrvPs2W5mzswMDw6uHhHxgSgmk5joExSkJ5dTTIyHVGf87rvviGiRZq9fYWVnZ7u5uYkNp3379n38+DEzR0dHDxgwQHxNuri4KIra3QLyZ/duJmJz85xdVwMGMBG7uEg1vELBjRoxUU6fkWJw/z5PmcI//8xbtuQE3Js35/Hjefx4bt0aAfcyID09/eLFi5cvX1YWuQBQfDz37ctEbGTEXl6veMGlS5c6dOggYg0TJkyIj09m5sREdnHJKUrTtCmfPFnEWYBWJCUlGRsb6+joPHr0iJnbt29PRCLKqQ0zZsyQ6p4tPT09bPx4JuIePf6reAWlyaVLl6ysrGQymbW1tYeHRz5L1qakpDRv3pyIZs+ezczR0dE1a9YkomXLlmlpnqKpZps2bbLRsaREvVxSxtGRmfm339jCgi9fLvzI8+bNE3Wo9u/fL8FEmZm5ZcuWROTr6yt+TEpK8vT0zN3a1MrKytPTMzU1Nf9j+vj4VKpUiYg6dOhQ9GqTAFBqffnll0XZtvXgwQNPT08HBwcdHR1zc/N+/foVvdNDUFCQpntwp06dzp07J56/ePFis2bNWrRo4Vm+ahMh4P4KIuD+7Bnb2yPgDq+FgDvkn+r8yesB5nI5xcSsYubs7LjQ0OZyOYWHD1arc+674uP/fhGR3yHJSdesWUNEzs7ORRnkwYMH4ktRV1fXzc1NxNR8fX3FJrUaNWogL6b4ZGZy06ZMxKKJ3549/xd8l4inZ0qfPvN69+5XuAoMBSUC7pmZ3KcPjxmDDPd3XVYWT53KRNy+fdL338/PnZ68cuVK0afOwsJCkyJ64EBGnTpMxAYGPH8+S9QWGqQn6qH379+fmW/cuCHSKl8uyyCJ7OxsETkNDg6WZsS4OG7ShIn4o4+Kb/sPFMRff/2lr68vbuB1dXX79OmzevVqsbrzOqLfuJWVVVZWlkqlsrOzE3VptPfdl5mZKXrNoRNvyXr4kDVdSJcu5QMHeNIkZubsbO7Wja9eLdLg3377LRHVrFkjOrqol8dRUVHOzs46OjoNGjTQ19d3dHT08fHRrG2Hhoa6urqKxhii8pWzs/OVK1fePKZarXZ3dxc5NKNHjy5QmB4AyhxNY5IJEybk/6jIyMglS5Z069ZNJpOJTxhDQ0PRSd7U1HThwoXphco/iIuLc3FxERfz1apV8/DwEB9oDx48GD16tDiXKDxYniDg/goi4M7MmzZxnz4lPRsorRBwh/y6epUrVlS1ax5z+wdmVqnSbt3qIZfTzZudVar/26r69OliuZyCgvSTkop6me7n59e1a9eKFSuamZm5urq++bbzdfbv3y8u5evVqyfWn3Nnu/fv31+q1ueQL4sWMRG3acPZ2ZyVxc2aMRG/KKYvlYyMDNFp8MiRI9KOnEdCAo8YwSdO8JQpzMy+vmxoiIA7MDOvXauoXduSiD744IPk5GTxZHBwsJGRkYuLi6j6/fTpUycnpw4dXGQy7tGDQ0NLdMbwNiKauWHDBn6x+2ratGlaOpdo5d2qVSspB715kytXZiL+/nsphwXpPHv2zMvLy9HRUZTgEFq3bu3m5nb79u1XHrJ+/XrRWP6XX34ROQRPnz7V6iR37dolVpvi0Rys/Jo/f87u3S2vXDFKSjpWuBFu377t5OQkwlL6+vrt27cXj0Wm6i+//KK5/M7IyPD29hYfsLkT3jVfnbklJCS89957RKSnp+fu7l74vxAAyo7w8PAKFSpQPtrUR0ZGenh4WFtba+LsxsbGDg4OXl5eSUlJDx8+dHJyEr+qV6+el5dX/tenFQqFh4eHqKumr6/v4uIiMu7T09Pd3d3NzMzEuVxdXSVs7VNKIOD+CunpHBrKv//OJ07wq76tAJgRcId8eviQ69VjIh49mtVqtVoZEfGBXE7Xr1soFNGvevksuZyuXDFJTT1fiLNlZ2dv375dlFQWq9CadelJkyZdzXfeTmZmpouLi/hOHTp0qLgzvH//fs+ePcWVupubG9orFbctW7hmzZySGT//zETcujVrYWf60qVLiahHjx6Sj6wREsIWFkzE3brx7t05T65axaGh/1Wz8fHhXB0Q4d1y9uxZ0ZG1Xbt2UaL/KbOIhanV6nXr1ont8BUrVty06T4+ikq5p0+f6urqGhoaPn/+nJlDQkK+/vrri28o1V80on/Jzz//LPG4p0+zgQETcfna7Fz+pKWl+fj4ODk5iRBD7sj7KwteX7p0SVRy//fff4theqL5/JeiEQuUT+oHD2bK5XTlinFy8okCHRkZGens7KynpyfCUk5OTuHh4cz85MkTd3d3CwsLzTYOOzs7b29vTXmia9euubi4VKlSRbzggw8+yDNycHCwOLxatWonThRsVgBQpm3YsIGIzMzMXrn8HBoa6ubmlrtQlYmJiYizvxz+vnDhQrdu3cTLunXrlp/q8L6+vqIEPBHZ2dlpvoh9fHxEf3sicnBwuHv3bpH/0NIIAfdX27iRiXL2lwG8EgLu8Hbx8dyyJRNx376i2IH6qxn3t7UPDq6emXnnNceo7951ksvp6NGBYWFh+T9VSkqKh4dHw4YNxfdWjRo13Nzc4uPj5XK5k5OTuHYXmS9eXl5vrh96+/ZtsftMX1/f3d1dLF/v3btXXMc3aNDA398//xMDKYkdfNHRXLEiE/GxQiZPvVlqamq1atWI6MyZM9oYf8cONjVlIu7YkcvpxRVIICIiQrR0q1q16skXpdnDw8P79esnPs2GDBlyH2syZcHJkyerVKnSuXPnYjhXWlqamZmZTCbTrNNI6a+/mIj19RnhqrIgIyNDRN7F+pwm8u7q6urn5ydek5KS0qxZMyrGLm2hoaF6enp6enqh2JhTnqnv358uEmiSk0/l54CMjJu//PK5yGQ3MDD49NNPX66VrFKpfH19HR0dNQWU6tSp4+rqqglUZWRkbNmypXfv3nv+vxXP9u3bRQpOx44dy2tUCwDeYOzYsfSiipp4RsTZW7Roofl+NDc3d3Jy8vHxyXxjiUaVSuXl5SVq9+no6Dg5OUVHvyKJkJnDwsI0+2/atGmjKQgZFBTUq1cv8XzuMu7lEgLur4aAO7xVMQXcQ0K4Rg22t9fuWUAb0tPZxoaJuG1bfv6cmdnNjYnYvEpGzJsy+9RqxZEj03V0ZA0bNsxPKZjo6Gg3NzdNGcemTZt6eHjkqa0WFRXl6uqqyXxp3Lixu7v7s2fPXjngqVOndHR0GjVqFBgYyMwZGRkuLi7iwGHDhiUkJOT7/wKQSHY2L1zITk48ejT7+/ODB/z++zxsmPZOuGDBAiKyl/qTR6lkV1eWyZiIx41DA0J4i+Tk5KFDh4pdNStWrHB3dzc0NCSimjVrer2yrSqUSjExMVWqVNHT0zt8+LC2z/XPP/8QUc+ePbV1gtmzWV//1V19obTKzMw8ePDgpEmTNFdKRNS8efM5c+YMGjQoTwyiGHz66aci0a/YzgglQX3//mcvYu5vSl/IyLhx965TUJDu6dM9DAwMnJycIiIi3jx0dHS0h4dHmzZtxJtZR0dHJLwrFIo8r8zOznZ1dRUvGz9+fOEqLwNAWZeYmNi4cWMiGjt27JdfftmgQQPNt2GtWrWmTZt24sSJAjX0TklJcXNzE5flZmZmbm5uL4fpr1y5oqOjU6VKFXd3d/ElGx8frynjXrVqVU0Z93IMAfdXQ8Ad3qqYAu5nzvC33/LixRwby8y8fn3O8zdvcrleDCwPlEp2duZ69fjBA+YXmXG6urx371sPTU9PF61K27Rp84YA97Vr15ydnY2MjMT3pbW1tbe39xu+t5KTkz09PTW7uipUqODs7PzKHdY7d+4U9R9v3brVoUMHIjIyMvLw8MjP3w3SW7GCly9nZk5OZhubnC6p2mwQmZiYWLlyZSI6f74wpY1eKT6e7e2ZiPX0GLVDIZ+USuXs2bM1dwUymWzq1KmiMgmUIT/88IP40pGskelrvP/++0T0+++/a+sEKhWLtoT79vHHH/Onn3JIiLbOBVJTKpV+fn4uLi61a9cWHymVK1euUKGCqNpRbBISEkTov3iK2EDJUd+75yyX05Urpikpr7hrS08PjYwcJZfryOUUFGR4//7njx49LNAJ5HK5s7OziYmJJnDm6uqqidfHxcX179+fULQdAJgDAwP19fU1xdbq16/v4uLi6+tboDh7Hnfu3HF0dBQDNmvWzNvbO88Ltm7dKirTijLuYsOZKOOemJhYpL+njEDA/dUQcIe3Ko6A+7//8vjx/OgRBwSwtTVnZrKNTc6v9u/npUu1eGqQhFrNYo/VoUOsp8dEvHp1Pg9NTEwUke5u3bqlpqbm+a2fn5+Dg4Oosa6jo+Pg4JD/wKjYkZr7cDs7Ox8fn5c7n3h5eYktqC1atMh//XeQ3sCBrNmO8NNPfPBgMZxzzpw5IgUvLS2t6KNdvXp1+PBfiLhmTawVQoFt3rx53rx5vXv31lKZI9A2tVrt5OQkCiA8fFiwiFL+JSQkGBgY6OnpvW53s2QOH+aJEzkri6Oj2dqag4L499/Z11e7JwXpKJXKM2fOzJw5c+fOnZcvXy7+CaxYsYKIPvvss+I/NRQntVoZFTVOLqc7d+wViuj4+L+Tk0+r1Vnp6aEiq10up6Agg3v3nLOyCv/BGB8fv3z5ck0+jY6Ojr29/a+//irqTNapU0fC5AkAKLsCAwPXrVv37bffXrx4Mf8tT9/qxIkTbdu2FZ8//fv3v379ep4X+Pr6iiqR4tbyxo0bUp269EPA/dUQcIe3Ko6A+0cf/dc0cO5cPnaMu3bl8HAOD+f16xFwL70iI3nOHP7ySz57lpn52TOuVImJ+PvvCzTM48ePRS+RIUOGiMVnhULh7e3dtWtX8Y1lZmbm7Oz8yv4n+REWFubi4qLJi2nRooWHh4eIriYnJ4u+c0Tk5ORU/jqGlzEDBrAmC2DRIvbxKYZzxsTE1KxZs1atWrq6uq1bt3Z2dvby8ipcWeRt27aJt9n48Qe0FmoDgFItKyurT58+ol7ny6vIkli3bh0RDR48WBuD/5+PP2bN/eTvv/Pff2v9jFC+KBSKo0ePlvQsoDio1conTxZkZyfcutXt2bMdcXF/xsdvFlntV64YPXgwU6F4e/XIfBIJ7yJXRlx3WVtbP3nyRKrxAQBeKTs729PTU/QA09PTc3Z2jouLY+awsLDBgwdrQg2HDh0q6ZkWNxkzE7xk0yb6+GOaNIk2bSrpqUBpFRkZ+ejRo6ZNm9atW1db57Czo337SGz8+e03qleP5s8nEQYNC6NOnSjXRnsoLZ49o6FDaeNGMjenqVPp66+pVy86eJCOHKE1a0gmK9BgERERNjY2MTExI0eO7NGjx4oVKx48eEBENWrUmDZtmouLS+6CpIUTGxvr6em5bt26p0+fipGHDh16+vTpyMhIMzOztWvXirREKEnu7lSjBn38MSkUNGgQ/fMP1ahRDKfNzMzs06dPUFCQUqnUPNmgQQNra+sePXpYW1u3b99e04/3lVQq1ffff//rr78SkZOTk6enp7GxsdbnDQClUkJCQo8ePcLDw4cMGXLgwAFRxFNCvXv39vPz27p167hx46QdOa8xY+jnn8nCgoho0yZSKOjTT7V7RgAoy9TqjLCwLs2bn9LTq6FSJd240bJSpaF16vygry/9XWRiYuK2bdtUKpWRkdGkSZMMDAwkPwUAwMvi4+PnzZv3119/qVSqatWqWVpanjlzRqlUmpub//jjj9OmTXvzbWO5hID7qyHgDqXC11+TgwP160dENHo0/fgjTZ1Kfn5ERAcOUHg4Au6l0dat9OwZiS6jV67QH3/Q+vVFGe/SpUv9+/fPysrKzs4mojZt2nz99dfjxo0TXUqkolAoDhw4sGLFisDAQENDw+zs7FatWu3cuVPTkQlKUmYmzZlDcXGkUNCkSTRkSHGePC0t7erVqwEBAf7+/oGBgQkJCZpfmZqaWlpa2tjYWFtb9+zZs2rVqrkPTEhIGD169IkTJ/T09BYtWqRp2wUA76zIyMju3bvHx8fPnj176dKlEo788OHDRo0aGRkZxcTEmJmZSTjyK3h4UIUKNGUKEZGTE82aRZaW2j0jAJRxSUmHYmNX6evXatBgvUymI5NJeRkPAFBK3Lp166uvvjp27FiLFi3Cw8PHjRv322+/Va9evaTnVTIQcH+1rVuT589/OnRopZUra5X0XOAdFh1NEydS58507x41bUoLFlCvXgi4l3Zr15KZGU2YQER09y7NnUv//FPEIX19fVNSUtauXfv1118PGjRIVsA0+QLx8/MLCwurUaPGe++9p2nHCqARFRXl7+8v4u+3bt3KfRVhYWFhbW0t4u8KhWLEiBF3796tXr26t7e3KCUBAHDu3LkBAwZkZWWtWbNm+vTpUg3766+/zpkzZ8yYMdu3b5dqzNfKyKDPPiMiSkujLl0Iq4kAkD+PH39vatq1cuUPSnoiAABadPDgwcaNGxORprz7uwkB91fbtGnTxx9/PGnSpE1IcYcS9/AhVapEFSsSET1/TlWqEBFlZZFKRS+qb0Mpcv48bdlC69YREW3dStHRWBeB8io2Nvb8+fMBAQGBgYFyuTwrK0vzq4oVKyYnJ/fo0WP37t116tQpwUkCQGmzefPmyZMn6+rq7t+/38HBIf8HPnjwIOSF4ODgU6dO1a9fX/yqQ4cO165dO3jwYIEGLJLsbNLTK2ilOAB4BymVCXFx64yMWsTFrW3QYI2RUeuSnhEAAGjdO1dDB6DseXEzSUQ50XYikrScCEipZ0/at4+cnKhSJXr6lLy8SnpCANpSo0aNYcOGDRs2jIiUSmVISIi/v39QUNDZs2dHjx6dlpa2fPlyFA8FgDwmTZoUHh7+yy+/jB071t/fv3379q98mVKpvH379s2bN2/cuBEUFHTp0qXY2NjcLwgODhYB95s3b167ds3c3HzAgAHF8QcI+vrFdy4AKMv09KpWrvx+VtbdRo02GRg0KunpAABAcUDAHQBAakuXUkYGZWb+t0ACUN7p6elZWVlZWVmJH5VK5TvYGAcA8mnRokX379/ftm3b0KFDL168WLNmTc2vjh49+s8//4SEhNy8eVM0L9EQPbg6vNCqVSvx/NatW4lo1KhRWOEDgNLJ2LiDsXGHkp4FAAAUH9wMAwBogbExGRuX9CQASgyi7QDwBjKZ7K+//oqKigoMDHRwcDh79qzJiyp5N27c+Pvvv8Xj2rVrW73Qpk2bxo0b5+5ikpWVdeXKlatXr/75559ENHbs2OL/QwAAAAAAXob7YQAAAAAAKFZGRkY+Pj49evSQy+UTJkzw9vbW0dEhokGDBpmZmXXo0KFdu3ampqa5D0lMTAwNDQ0KCtLUmcnMzCSi6tWrz5o1y9raumT+EgAAAACA/4eAOwAAAAAAFLdq1ar5+PhYW1vv2bPn+++/X7x4MRG1bt26devWRKRWq+/cuRMcHBwcHCwapT5+/Dj34bq6ui1btrS0tLS0tPzmm29k6F8KAAAAAKUDAu4AAAAAAFACWrVqtW/fvgEDBri7u9etW7dv375BL4SEhKSmpuZ+cYUKFZo3b966dWtRZKZjx455UuABAAAAAEoDBNwBAAAAAKBk2NrarlmzZurUqXPnzk1JScn9q9q1a7dp00YTYW/VqpUoOwMAAAAAUJrJmLmk51AapaWlJSQkmJmZmZubl/RcAAAAAADKs02bNoWGhp46darDC5aWlrgOBwAAAICyCAF3AAAAAAAAAAAAAAAJYFcmAAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAUyY0bFB1NRJSZSTdu0JUrlJ1NRKRSUVAQEVFkZElODwAAAIoNAu4AAAAAAAAARbJ0KU2eTMwUF0dLltCCBZSSQkSUlkY//ECBgbRsGd24UdKzBAAAAO1DwB0AAAAAAACgqNq0oa1bX/2rJk2oVi2qW7d4JwQAAAAlQa+kJwAAAAAAAABQ5s2cSRMnUocOOT9On04GBjmFZWrUIBcXqly55CYHAAAAxQUBdwAAAAAAAICi0tcnNzdauJBMTYmI1q4lc3NKTqYxY4iIqlQp2dkBAABAMUFJGQAAAAAAAIBCysig27dzHvftS0ZGr3jN/v3022+UnFyc8wIAAICSIWPmkp4DAAAAAAAAQNmTlUUffEByOS1fTo6OZGxM8fEUFUXZ2dSlCxkYkFJJFy5Qo0Z0/jzVrEm2tiU9YwAAANAyZLgDAAAAAAAAFJhKRU5OdOwY6ehQ585kbExEVK0ade1K1tZkYEBEpKdHNjako0OBgVS9esnOFwAAAIoDAu4AAAAAAAAABSOi7bt2UeXKdOwYtW792lcy0/Hj1LAhPX5cjPMDAACAEoKSMgAAAAAAAAAFwEzOzvTXX1SxIp04QV26vOX1iYmUlEQNGxbL5AAAAKBEIeAOAAAAAAAAkF/M9PnntG4dmZjQkSPUu3dJTwgAAABKE5SUAQAAAAAAAMivn37avXkzGRvTv/8i2g4AAAB5IeAOAAAAAAAAkC/z5s1zc3Ns127O3r3Ut29JzwYAAABKHwTcAQAAAAAAAN5u0aJFP//8s66u7uzZVgMHlvRsAAAAoFRCDXcAAAAAAACAt1i5cuWXX36pq6v7999/jx07tqSnAwAAAKUUAu4AAAAAAAAAb7Jx48ZPPvmEiDw9PadOnVrS0wEAAIDSCyVlAAAAAAAAAF7Ly8tLBNl///13RNsBAADgzfRKegIAAAAAAAAApde5c+fUavXy5cunT59e0nMBAACA0g4lZQAAAAAAAABeLTY2tlatWoaGhomJiYaGhiU9HQAAACjtUFIGAAAAAAAA4NVq1KjRoUOHzMzMc+fOlfRcAAAAoAxAwB0AAAAAAADgtQYPHkxER44cKemJAAAAQBmAkjIA2nTtGsXFUceOZG5e0lMBAAAoS6Kiovz9/YOCgoKCguzs7OrXrz9lypSSnhQAvKP8/f179erVokWLsLCwkp4LAAAAlHYIuANozbRpVKUKtWhB27aRuzt16lTSE4Jya/r06cbGxrNmzapTp05JzwUAoJAeP3586dKlixcvXrp0SS6Xp6SkaH5lZmaWmprq6enp7OxcgjMEgHeWSqWqWbNmQkJCeHh406ZNS3o6AAAAUKoh4A6gHbdv048/0j//EBFFRNDcueTtXdJzgvIpIyOjWrVqmZmZT548qVmzZklPBwAgv1JTU4ODg0UOe0BAQFRUVO7f1q5d28rKysrKysbG5v79+1OnTtXR0fH29v7www9LasIA8C4bM2bMjh07Vq1aNXPmzJKeCwAAAJRqeiU9gRJy5Aht2UJE1KoVzZ1LurolPSEod+7epebNcx43bUoPHpTobKA8O3XqVHp6eteuXRFthxKkVCqvX78eFxfXp08fAwODkp4OlFJKpfL27duaCPvVq1fVarXmtxUrVmzXrp2IsPfu3TvPZ9qTJ09++OGH8ePHHz9+3MbGptjnDu8ElUr16NGjqKioqKiox48fz54928TEpKQnBUWyPTb2ZloaEbU1NR1do0ZRhho0aNCOHTuOHDmCgDsAlDMZGRmXLl06e/bsxIkTq1atamZmVtIzgrJEqaSsLDI1JSJKTSW8fYR3MuD+4AEtX07//kuGhrRoEW3cSFOnlvScoNypW/e/IPujR1SrVonOBsoz0b9r0KBBBT4yJIQWLSIjIyKixYupXj2ppwblXEpKysWLF0WVbX9//8TExLp16+rr6//xxx/29vYlPTsodRISEtq2bRsdHa15xtDQsGPHjl1faNas2RsOnz9/fnx8/KpVqxwcHM6dO9e+fXvtTxnKs6ysrMePH0f9v1u3bqWnp2tes3nz5vnz50+ePLkE5wlFFJya+l2DBlX0JLjtHTRokI6OzunTp9PT07ESA2+mUqlu3LgREBBw8eJFV1fX+vXrI4IJpU1aWlpgYKC/v39AQIC/v39mZiYRbdu2rV69ev/++6+xsXFJTxBKAjOpVFTAL80LF2jECLp1i8zNydGR9u8nQ0Mtza8seSdLymzbRs+ekUhMePiQZs1CrQ/Qio8+Int7atWKli+nr74iW9uSnhCUT02bNo2MjLx48WLXrl0LcBgz2diQjw9VrUohIbRgAe3dq7U5QjnBzLdu3QoMDDx//nxgYGBYWFjuq4imTZsaGhreuHGjYsWKp0+f7oTGFZBLenp6jRo1dHV1TUxMevXqZW1tbWVl1blzZyOx5vdGd+/eXb9+/eLFi4lo1KhRu3fvrlu37vnz5xs0aKD9iUOZx8y5A+uRkZHiQWxs7CtfX6dOHQsLCwsLi9TU1L179xoZGQUEBOADrez6NiqqT+XKZjo6LUxMahZ5A1a3bt0uXbr077//DhkyRJLpQXmSkpISEhIiYpcBAQHPnz8Xz1euXLlz587//vuvIUJQUNLi4+MDAgLOnj3r5+d39epVlUolntfV1W3Xrl2HDh0OHz4cFxc3ZMiQvXv3YtPqO2f+fLpzhwwMSF+f1q+n/L0BkpIoOJh++43q1KH162nQIATcc7yTGe65MZNMVtKTgPLI359++IHu3qXbt2nJkv/KywBI6tatW5GRkdWrV+/cuXPBjnz6lGrWpKpViYg6dKAnT7QxPSgH0tLSrl69KgqAnD59Oj4+XvMrfX399u3bW1tb29jY2Nra1qhRg5knT57s5eX13nvv+fn5tWzZsgRnDqXKkSNH0tLSunfvHhgYWKADVSrV4MGDw8LCFArFihUrtm3b9vz585MnTw4aNMjPz8/c3FxLE4byISIi4ttvv923b9/LvzIyMmrcuLGFhUWTJk0scsmd0zd16tS//vpr1KhRly9frly5cvHNGySVpVbrEamkyDMbNGjQpUuXjhw5goA7EBEz3759W5OIcOvWrdx10iwsLHr27Nm0adN169adOHFCLBjrSbHZAqBAoqOj/fz8xDpQ7mp+enp6VlZW4kq+f//+4prqzp07vXv3PnTo0OjRo729vfGOfYecO0cJCbRzJxHRqlW0aRMZGFBiIqWmUmoqJSZSSgqlpn5luNbvbr3k5JynU1JyXm5lRY8f0/nzJfs3lC7v5H88vXrR1Kn02Wekr087dlD//iU9ISh3MjKoVy8yMqKMDEpJofr1qVEjCg4uypDPnz+PiYlB9AryEPVkBg4cqKOjU7Aj9fVJqdTKnKDse/Dgwblz58QN5PXr1zXJL0RUr169nj179uzZs3v37p06ddLX1899oEwm+/PPP+Pi4g4fPmxvbx8QEIAcZBD27NlDRB999FFBD9TV1V2/fv3AgQM9PDzq1KnzzTff7N27t3fv3iEhIUOGDDl58iQKO8DrqNVqe3v7+Pj4SpUqNW3a1OL/NWrU6K1fnatXrxYrjhMmTDhw4IAMaTplU5/KlSUpKUNEgwYNWrBgweHDhyUZDcqi3IkIZ86ciYuL0/xKT0+vY8eOYguXra1tw4YNxfMjRoywtbU9cODAJ598smnTJnySQDF48uRJQEDAiRMn/P39b926pdmTamxs3KlTJxsbG2tr6969e1eqVCnPgc2bNz9+/Hjfvn337dv38ccfb968ucC3mVBGXb5MffrkPO7fn5Yvp4MHKddHnBDTckFQ2P+Voq1QgRQKIqJffqHRownvF413LOC+YgWdO0c//0zTp9PYsWRsTA0b0tdfl/S0oNxJSCCinNzh+HhKSqKkpKKM5+fnN2TIkLZt257HiiH8v8IXcK9enVJSKDKSmjShkyepVSvpJwdlU2ho6IoVKzZu3Ch+1NPTa926tbgut7KyatOmzRuOjY+Pr1at2u7duwcMGODv729vb+/n51ejaE3qoBzIyso6dOgQEQ0fPpyIMjIyClQY1NbWdseOHSNGjHB1da1evfqkSZMOHz7cs2fPCxcujB49eu/evUVMv0pUKqMVCiLSlcmaoWJpOXL48OF79+41adLkzp07hYgXXL9+vV27dnv27LGysjp48OCyZcu++eYbbcwTtMpA0uhmly5datSocffu3bCwMOTBvFNu3bq1du3a8+fPX7t2TZkrZ6VOnTqaRAQrK6tXluBo27btoUOH7OzsvLy86tSp88svvxTjxOGdo1arz50717dvX80zFStWtLGx6dWrV69evbp06fKGQjFpaWmPHj1q3769SJ3ZsmWLvr7+X3/9hVWid0KFCpSamvM4JYUqVKCpUyk9nUxNqUIFqlyZzMzIzOybio1nVRQPycyMxJKNvz+dPEnVqtHIkfTFFyX4N5Qy/O5IS+OaNZmIDx9mZo6PL+kJQfkVHMxE3L49M/Ply0zEnTsXZbzU1NTq1asT0alTp6SZIZQLqamphoaGurq68QX9QPP15d27+cYNnjKFnZz4iy84MVE7c4SyR6zfdOnSxd3d/dy5c+np6fk8UC6XV69efdmyZcycmJhoaWlJRF27dk1JSdHmfKEM8PHxISIrKytmvnv3rrGxsZOTU0EHWbt2LRHp6+sfOXKEmW/cuCH2Pjs7OxdxentiY+dFRW2Jjt4ZG1vEoaBUGTx4MBEtXbq0oAeq1eoJEybo6+v7+fkx87///qujo6Orq+vr66uFaYJ2Lbx3zys6OkOlkmpAJycnIvrtt9+kGhBKv+vXr0+dOlXET3R1dVu3bu3s7Ozl5RUaGvrWY0NDQ8PDw5n5+PHjItC5ZMkS7U8Z3l2XLl0iogoVKgwfPnzFihVBQUFKpTI/ByYlJVlbW9esWVN0aTp16pRotPPll19qecpQOjx6xLa2nJDAGRns6Mj+/vk/NDycDx5kZlapeMYMTkrS1hzLlncp4L50aU7cU63mhASuXJlHjODMzJKeFpRHJ04wEffrx8x85AgT8XvvFXHIn376iYj69+8vwfSgvBBFaa2trQt85IABTMRbtzIzHzvG+bhbgHdESkqKkZGRrq5uXFxcQY/9+++/ZTKZTCb7+++/mTkmJqZ58+ZE1K9fv0x8277bJk6cSES//PILMy9dupSIxo0bV4hxvvvuOyIyMTE5f/48M1+8eNHU1JSIFixYUJTp7YmNPZKQUJQRoBS6d++erq6uoaFhbGwsM6vV6gId/u233xJRrVq1Hj9+zMxz584lopo1a4ofoayIycqyksttr15VFfAN8Abbt28nIjs7O6kGhNJPfAL07NnzzJkzaWlp+T8wJCTE3Ny8cePG4qNj27ZtOjo6Mpnsr7/+0tpk4V33ww8/ENHnn39e0AOzsrLEQnW9evWioqKY+dixY6LTbxEvtKDMuHyZnZ158mQ+cqRwAyxcyAYG/Oef0k6rrHpnAu6pqVyjBhPlvG++/56JeMCAkp4WlFM7dzIROzoyM2/dykQ8dmwRh0xKShLdugICAiSYIZQLzs7ORLRo0aKCHZaaykZGrKPDMTHMzPXrMxFfvaqFCULZs2PHDiLq06dP4Q7//fffRfLXnj17mDkiIqJ27dpENGzYsHwm10D5o1AoRCq6SJjq3r07Ee3du7cQQ6nV6o8//piIqlWrJkY7ePCgqCezevXq/I+jUqvvpKfvi4v76d69Cbdu7YqJmRwWNjcqaqf4VATpxMbGXrhwYfv27YsWLfrss89iY2MLGvguNFdXVyKaOHEiM589e7ZZs2YFinAplUo7OzvxeZidna1SqQYMGEBEPXr0UCgU2po0SO1wQoKVXP5FeLiEYz579kxPT8/AwCA5OVnCYaE0a926NRGdPHmyoAempaVZW1sTUZs2bRISEph5zZo14kpp165dWpgpAFtZWRHRYVHXoYDS09NtbW2JqEmTJmKVSFO479dff5V6plDKZGdzvXo8dChnZBR6DC8vJuKePSWcVhn2zgTcf/2Vibh7d2bmhASuWJGJ2M+vpKcF5dTatUzEn33GzLxyJROxi0vRRxW5Fe+//37Rh4LyQbSjvHLlSsEOO3CAibhHD2bma9eYiGvV4uKKgEApN2bMGCJasWIFM1+9ejW24BU2vv/+eyIyNjY+e/YsM1+7dq1KlSoi7FVsgTZ4g7i4uEOHDrm5uYWGhhbi37cQjh49SkTt2rVj5kePHslkMhMTk9TU1MKNplQqhw0bRkSNGzd++vQpM//555+5l3le50lGhu+zZysePvwkLMzmyhUruVzzv7WPHiHD/dUmTsx5cPgw79jBoaE8Zgw7ObGzc97ajAoFh4fz0aO8dm3UL798+OGHlpaWFStWzFPKslq1aoUo8FIIWVlZonvEhQsXmHn06NFE9MMPPxRokOjo6Lp16xLRnDlzmDkmJkb8OHv2bK1MGrRg0b17VnK5V3S0tMOKEOq+ffukHRZKp/DwcCIyNzfPzs4uxOHPnz/v0KFD7iJ7bm5uRGRgYHD8+HGpJwvvuidPnshkMmNj47S0tOzs7MjIyIKOkJSU1KVLFyJq3rx5dHQ0M//9999iZ8a6deu0MGUoNc6fZyJu0aIoY6Snc+XKTMQ3b0o1rTKsLAXc1Wq1qlDV91SqlOwPbJmIjx5lZp47l4l44ECJ5wegsXAhE/G8eczMP/zARCzFJqz4+HgzMzOZTBYUFFT00aCsCwkJIaLatWsXOIj52WdMxAsXMjO7uzMRf/yxNmYIZY5CoRA7acTVeadOnXR1dUXtjgJxcXEhoooVK4oPq8DAQFH3Y+7cudJPGt5GoVCEhoZ6eno6OTm1bt1a0/aqefPm7dq1e/78ubYnIOre/vjjj8y8cuVKIvroo4+KMmB6enrPnj1FEF/Mf8GCBWKZxy9XLkVycrKfn5+Hh4ejo2OtWrXGHz2aO8g+7Pr176OitsfEhKSm7oyJQcD91Wxsch5s386rV3PPnjlbo86dYycn3ruXP/mE+/XjRo1YV5eJxP+S2rXTRNgrVarUqVOnjz766Ntvv/38889lMpment6ZM2e0PfGtW7cSUYcOHZg5NjZW9Du5d+9eQcc5f/68vr6+TCYTyzmBgYEGBgYymWz37t2Szxm0Yfj161ZyeWhhV/heZ9GiRZI0kIAyYcmSJUQ0YcIEZg4ICFixYsX9+/cLNMLjx48bN24sqoOKIntffvmluFKSy+VamTS8q/766y9Nit7p06eJaOjQoQUd5Pnz5x07diSi9u3bi50ZGzZsEHUjN2zYIP2koZRYsICJeMaMQhyqVPLhwyw+z5ydmYi//Vbi2ZVFZSngvmvXrjZt2nh5eRV0W/rTp+5yOcX4jGFmjo/nChWYiAMDtTJLAGbFN9+wvj4vX87MPH06E/Hvv0sysrg4GzlyZJFGuXmTFy/m5cv56VNm5r//znn+6VNGnkUxCggI+OOPPywsLJydnb29vZMK2Ftk8eLFRDRlypQCn7hhQybK+T60tWUixp7WEpWVxZoo0NOnrNmh/vw5372b8/j27eKYybFjxzQhqnv37slkMjMzs0KUX1epVKNGjSKi6tWri7ofmkZhxZPcWj5FRvLDhzmPRbwyMZH37+d//+U89WRVKr5xgzdt4mnTuFOn2jVr5k4xNjMzs7W1nTFjRqNGjYiob9++Wq2wr1QqRaKx6CzXu3dvIvrnn3+KOGx8fHzLli1zz3/mzJkieDFnzhwnJ6cWLVpolhaEMb/99kV4+B9PngQkJSX9f5ZiZHr6/SJsni3PmjZlDw/28OAJE3jhQh4z5r9fdevG33yjCbKzri43bMj9+vEnn2QsW7Zjx45Lly693NBbVOEvhkroIgH5jz/+YOaff/6ZiIYPH164oUTXgcqVK0dERDDzihUriKhChQq3bt2ScsagBXEKhZVc3uvKFaXU+6uuXLkiyhxj59a7QHyeiFW3KVOmENHPP/9c0EEiIiJq1aolPouUSqVarZ40aZLY91OUD5P09HQ/P7+tW7eKLV8Aw4cPJ6L169cz86xZs4jo20IFPmNjY1u1akVE3bt3F+WzxNefrq7uzp07JZ40lBI2NkzEBw4U4tAVK5iIR4xgZg4MZCKuWZNRga8sBdwHDRokbpnat2+/Z8+efF7fqFSpwcE15HJKSjrOzM8vuCt7tOdBg7Q8WXinOTk5EdH2v/9m5uXTp7t16RL0xn3u+ffkyRMjIyMdHR0RwyqMa9fY3p6vX2d/f+7Zk58//y9/TS7nL76QZJ7wVqdOnTIzM9PV1dUEg4yMjN577z0PD487d+7kZwQRtypokp3iyU1V66Y5NWSSklhfn/X0WPsprvAGkZE8YULO4x9/ZF/fnMd793KNGix6l/btWxwzmT59uqbqgshEHjVqVOGGUigU4lu7fv36Dx48YDQKK7o1a3j79pzHNjYcE8O2trxjB2/ezLa2HB/Pe/fynDnct29O3bwX/3u/W7fWrVs7OTl5eHj4+fllZWWJMR48eFC/fn0iGj16dOF2EObHqVOnRDY9M0dHR4smlgVdX3ylqKgo0SFg7dq1zKxUKgcNGiT2Ugj6+vpWVlYuLi5eXl6hoaGIixVGx44sl7Nczj//zD/9xLnX+7t35/Pnec0aPnqU79zhF++rN1OpVPb29kTUs2dP7VVCFzvAKlWqlJqaqlKpxNpSoUs3qNXqjz76SNyAiGaJI0eOFBssCtQ7EYrf0YQEK7l8Zv4uqwokPT3dzMysUqVKDRs2dHJy8vT0LGjKM5QVMTEx4psrOTlZpVKJoPmNGzcKMVRISIgosvfZZ58xs0Kh0DSoLND+mydPnvj4+Li6ulpbWxsZGRGRoaGhqanp3Llz8U33jsvKyqpQoQIRiXeUSE0QNR4L4eHDh2JnRr9+/dLT0/lFO1YDA4N///1XynlDaZCcnBMZSEwsxNFPn7KeHhsYsChX2bp1oUP35UpZCrgrFAovLy8LCwtxH9W2bVsvL6+33iI+fbpYLqdbt3owc3Z23NWrFeRyyoi9VCxThneUCDMdOnSImUXHLV9NCK3IRJ/MSZMmFfL4r75izZfu6tW8eTNbW3N0NEdH8/HjCLgXjyNHjhgbGxPR2LFjQ0JC3N3d7ezsRDsaQZP2Lko9viwpKUlfX19PT6+g5SCio5fI5fToxjRmzj5zgE1N2da2yH8QFMkbAu5TpuTU+ymGgLtara5Xrx4RiTow/fr1I6Ltmghvwb2hURiqMRRGnoD7L7+wt3fOj7//zmvXsp7ef3H2Ro145EhetozPnVO/PiZ4/fp1UURo+vTpWpr1559/TkTff/89M69bt65wW5tf5+rVq999953mUlDs+rewsFi3bt2VK1cKV2wX/k/ukjK//87W1jl7406fLnQtMk0l9G+++UaiWeb12WefEdHMmTOZ2cfHh4iaNGlSlFWl5ORkkeg3fvx4Zk5JSREdFMeOHSvZpEELfr5/30ou3yR15m9WVpaIk+Ze4SOiFi1aTJ06devWrY8ePZL2jFCCRJsQUaDDz8+PiJo2bVro0c6fPy/eNvPnz2fm9PT0Xr16EVGzZs1iXt+1W6FQXLx40cPDY9SoUWKlXENXV7dDhw6i4jYRTZgwAV2d32XHjx+nF3tVIyMjxdpzUd4SERERderUIaIBAwaIDYXffvstERkbG58+fVqiWUPpcPBgEbudOjgwEa9Ywcy8dCkT8bBhUk2urCpLAXchMzNzzZo1IihARJaWlqdOHWR+9VquSpUaHFxdLqekJF9mfvTIVS6n8PAhxTtleOeIi56LFy8ys6WlJRWireXrRUZG6unp6evr39UUm8g/hYInTPivgcXOnbxsGVtZ8ezZPHs2Ozkh4F4MDh48KLJRnJ2dc9//x8fHe3t7Ozs7i9wZwdjY2M7Ozt3dPc9uU29vbyLq06dPQc9++3YfuZyePfNm5rt3J18JNHwesrrofxQURWQkW1iwkxM7OXGHDv8XcF+zhj/9lM+eLY6A+6VLl4ioQYMGarU6ISFBfM4UscC3plFYt27dxOqRJjUGjcIKbM0a7tUr541SqxZPm8aawq9HjrCbG3/2Gc+fzwcP8utv2l92+vRpQ0NDIlqyZInkU1apVOI+TXwJihVoLy8vyU8kiAWeXaiRJaGpU3MeHDvGu3bxzZs8diyPH8/TpvGzZ4UeVauV0JOTk0Wz1uvXr/OLHIhly5YVcdjr16+bmJgQkdijExYWJrIIPT09JZg0vEpMVlZURkZURkZsYaNFo777buw//4S8VNqoKJRKpaZm2rVr1+RyuWgUIRYvNWrXru3o6Ojp6RkVFSXh2aH4OTg4aP7Dnz17dtEXC318fESSzW+//cbMiYmJ4m6xS5cuyZqqgsyJiYm+vr5ubm52dnbiw0ejQoUK1tbWrq6uPj4+z549Y2aVSjVgwADx2379+iUWKkEVJJednX3x4sVly5Zdv349WurWza/0xRdf0IueSWKv6ujRo4s45u3bt2vWrElEw4cPz87OVqvVYlXb1NQ0d+McKPNcXJiI3dwKPcCePUzEbdsyM0dHc716yn79/IvnnV9qlb2Au5CVleXp6SnC7ufOdb9xo92zZ94vh92fPv1FLqewsJ7MnJ0dL9LbU1MvlsSUJVDQ4vVQUsQ+DFHrU6QhSLvPdPz48QVOSLx6lZ2ceOhQ/vXX/3IkXV356FGUlClOO3bs0NfXJ6LPP//8dbs+VSqVXC53d3e3trbW0dHJk/bu4+OTmZk5efJkIvr1118LdHalMikoSD8oSE+pfM6sDgmpI5dTevp1Cf4wKII3ZLivWcPx8dy/P/furfVpfP/990Tk4uLCzH///bdIZin6sI8ePRL1HAYOHCgyjkXhGisrK2x8Lpg8Ge6//so7duT8uHIlb95c6IH37dunq6srk8k2bdpU1En+P39/fyJq1KiRWq2Oj48XqzjPihCofYOnT5/q6OgYGxunSt0dEbRh+fLlpJ1K6GInjViQjoyMFO+Kl6vJF8K2bduIyMjISDQ5/Oeff4jI0NDw8uXLRR8cXvZVePi6x483PHlyplBLvzExMTKZzMTEJCt/9Y7yQ6VSjRs3TiSN5ul1qVQqNcF3UTbk5eC7aGUBZUhqaqoo5ikqpDdv3pyI/P39izjsli1bRJE90X8yJiZGjNyjR4/Vq1dPmDChWbNmud9CMpmsZcuWkydP/vPPP0NDQ1+5XycmJkascBNRu3btHmqavkDxys7OFvdxDg4OmnW4tm3bNmvWrBjq7Ddt2pSIAgICmFmswWzZsqXow165ckX8LYsWLWJmtVo9fvx4Y2PjvXv3Fn1w0DSXjI7+r31XWhoHBOQ8Dg3lYug0lN2tGxNxERZRFAquUYMNDDgoKJGZhw//UJKMhzKtrAbchYyMjC1b1l+7Vk8uJ7mcbt60Skz0yR12T0sLCg93SE4+wcyPHn0rl1N4uEPJzbfw0tLSXF1dBwwYgPBE0WVlZSkUCq2uXlSqVImIRGaoSEmQ9v7/5s2bOjo6hoaG+eo5duYM29vnFBkwMeE7d3jgQF6wgL/+mp2cWK1GwL3YnPnnH1G0XVRXyI+nT59u3LgxT+ZUhQoVRI78yZMnCzSBZ892yeV0+7YtM6elBcnldO1avdftEIJikyfgfvAgr1vHJ07kBNyZ+a+/uHJlZubXVBiSRps2bTRvqhEjRhDRGnH6IgsPD69Vq5arq6v4UaVSVatWrUmTJoXZpvMuyxNwj49nW1veto03buT+/Tk9vShjr127loj09fWPHDkiwVRf+OqrrzTJgBs2bBDrLhKOn9vvv/9ORB9++KGWxgfJOTo6khYqobdr146IREs3sfO98FX4XvLpp5/m3l4mlg9FrQmQ3Ffh4SlFuFzfuXOnVCvHglqtFnUdK1asKLaxvo5Sqbx8+fKyZcvef//9PJnvDRo0mDBhwsGDB6WaFWjV7t27icjGxoaZQ0NDiahGjRqS3EWKRUd9fX2xFyciIqJatWq5l2pMTU2tra1dXFy8vb3jRD+ftzlz5oymQGXdunVDQkKKPk/Ij5QUPnaMFyxI7tWrl9g1qNGiRYsJEyY0adKEiDp06KClnAMhLCyMiMzNzZVKpWat6A2ligrk/PnzgwcP1mzC2L59OxHZojCpFDTBmD17ePnynMfh4WxklFMJeNIkLkiXh8J49OiRno7OZ507F7HP6c8/+1Wt2lIkhh44cICIWrZsKdEcy6SyHXAX1OqsuDjPkJC6Iux+40b73NnuSmUyMyuViVeumMnlsrQ06ZNQlEpldnZ2etHudd/A19dXpAfq6+sHBwdr6SzvgszMTE9Pz/r163/yySft27fX0lWIQqGQyWR6enpqtTo9PV0kQ0l+FhEOmz179pte5OfH/fvnhNrNzNjFhUWAXqnk27f/Wz/VFJrMzOT8Xc9BYaxfr9TXH92z548//liIo0XmlJubm5WVlUwmEwF3kfbu4uLi6+ubnwSue/c+lsvp6VN3Zn7y5Ce5nO7f/7QQkwFpJSX9l9V+8SKfP8/JyeziwnfvsmjKpVbzli385ZfcpQvn2m0spYiICCKqXLmyQqHIzMysUKGCTCaTMD0qVjTQYWbmO3fuEFHVqlVRYrtg7t1jzSLr+fPMzElJ7OPDR44UMdouzJkzh4hMTEzOi8GlIHptXbhwgZlFyeM///xTqsHz6Nu3LxFt27ZNS+OD5FJSUkRh9HHjxkk15rlz54ioVq1a4qOsRo0a9KLEnyQyMzO/+uorTfDr3r17urq69vb22ISqDV+Fh38TGfldVNTVlJQ1jx6te/z4YnJyRr5r8YvlkJ9//lmq+cyaNUt8SJ45c4aZb968OW7cuLfeAKpUqtDQUE9PT0dHx6pVq4qLNwcHB2SGlglOTk5EtHTpUmZetGgREX3yySdSDf79998vXLhQ86OoXdO5c+fVq1cHBQUV7hpJTFKoUqVKobtlvrOcnXMe3LnDmsRctZq7dmVxUfznn3zpEjNzcjL7+rKrK1tbs4FBzg13nTr16cWmZC8vrwcPHogRYmNjReePbt26JWvpUp552bJl9KLXyL59+8SeCS2da8KECaSdaoTvoNcF3MeN4379OCurOALumzZtIinaLImFyUqVKqWnp2dnZ9euXVtzI/BuKg8Bd0GlSo+J8QgJqS3C7rdudUlOPh0WZnPv3pTHj92YOTX14pMnC982TIGFh4fb2tpOmTKlRo0a7u7u0obdk5KSnJ2dZTIZEbVv3140soNCSEpKWrx4sbjvEh8BRGRsbLx8+fKiNNF6pejoaJH+wMwPHz4UKQbSnoKZr169KpPJTE1NX055UKlUu3fvVvTpk/PNX7UqL1hQlFqrIIHffmOZjGUylWgjUjTilq9x48ZmZma5r6pHjhy5efPm2NjXFkq7fr2ZXE7p6SHMHBbWUy6n58/3F30+ILmEBJ4///+eiYvjJk2YiPv358xM6c+4dOlSInJycmLmgwcPElGXLl2kPw0zM7u7uxPRxIkTtTQ+FI5arf7444+JqFq1amFhYUUfUHQFqFu3rlqtTk5ONjIy0tXVlSrTKo+4uDg9PT1DQ0MUri1brl+/LvoH/vHHH5IMOGbMGCKaN28eM2/ZsoWILC0tJRn5lRYuXEhEH330kfZO8S7TZLirmPsFB1vJ5VZyedegoPE3b6569OhsYmLyG9c5xLatolf/EMSSpIGBweHDh5k5PDxclO/I/55FZlapVCEhIWKfhPa+ZEEq2dnZYo3k9u3b/KJHl5Z2JygUCpHeHhkZWZRxVCrVwIEDNXcHhoaGOzTV5yAfNKHPq1d5xoycx2o1t2jBohb6woW8dCm3a8c6Ov81qtfT4+7d+Ztv+OjRK6/rfvTo0SNRddba2lpLte9E5sE///zDzJ988gm9qAAjOZVKJaq639R0hoMiqF8/p0OTre3/BdynTWMvL168uDgC7mPHjiWi1aslaO0mPiq3b9/OzN988w0Rffrpu5vhV34C7sKLbPc6wcFVY2PXRkcvf/sxhZWdnb148WKRZyq6M4kby1WrVmVIUWPp8OHDovy3vr6+q6urhPUH3ynx8fFubm7m5ubiH8jS0tLLyysxMVGzktGzZ8/w8HAJz3jjxg2xsn3q1ClRSFQ0Cpec6AP2ww8/aJ5RqVTe3t5i/fxknz5cowa7uTGiDyXO3Z2JWCbjVaskGa9Hjx5EdODAgezsbD8/P1dXVysrK8219enTPUNDWz965JqU5KtW/192jFqdmZx8glmtVD4LCtINCjJUqbRZowQKJTycJ07kwEDOU0IsMpJr12Yi/uADljw13MbGhohEA0OtXqPzizcwkvtKIaVS+cEHH4ivsKJXGnV1dSWiL774gpkVCsWhQ4cK2nYi//744w8iGjJkiJbGB+0R29INDQ3zVMQuhNjYWENDQ11d3Xv37jFzz549tbqpQqlUNmzYkApe3g3y6b+Au1p9NjFx+cOH42/e7BIUJCLvIvg+88aNOXPmHDlyJE/SaGxsrCjgninFGrVo962vr+/j48PMDx48ENt3bGxsChE4S09PNzEx0dHRecdbyZV+J0+eJKI2bdow8+PHj8U7StoSWBrHjx8XCXZFHyo2NlY0uhN0dHRWSXQD8i7o1o09PdnTk+fP/7+A+4AB7OrKBw/ywoW8enVOkN3Kil1d2ccnv3fb9+/fF98a9vb2knw05ZaUlGRgYKCrq5uQkKBWq+vWrUtEWqqOcOHCBZH7pY3B30Gvy3CfNo3Vah40iAcM4Hv3pL/701Cr1bVq1SIiSRJuRJlKe3t7Zg4LC5PJZBUrVtTSJ2fpV94C7oJKlZaaelGheBIW1uvevY8zMqRfebt+/bpYuiEiR0fHhIQEX1/fzp07i2eKmO2ekMDffLNeDNW9e3esHBZOTEyMm5ubSGYXi8k+Pj65i+AfPXpUfBWZmJh4eHhIVR//3Llz/fr1k8lkYuG3RYsWWuoUERgYKLL1nz9/npmZuX79erFsTkQNGzbc4ulZHM014K3c3JiIdXV540ZJxktISNDV1TU0NEz5/3rekZGRv//++5Ahg4OD64iNPnI5BQdXj4oan5CwPTs7npnT0oIiIoZGRY1PSjqemRnx/PkeSaYE0rp7l3192deXX95+c/06m5szEU+cmDccXxQxMTHiTZWcnKxSqcQll5Z6u0VHR6OzZWmWlpYmwpTt2rV7XZbWGzx//tzX19fNzc3BwcHMzEwmkxXPysp7771HRBsl+piFYjZt2jRx6VLE1qa//PILEX3wwQfMfO/ePT09vUqVKmnvo0Zs2G/atCkaLGnJqefPFS/9f5umUl1MSvJ8/HjanTvdg4LGnTwpLn11dXWtrKxEwetnz56J0tv9+/cv+jRErW1dXV2RKRwdHd2iRQsi6tGjR0phO6uIElubi9DsGoqBi4uLZhODSKLSXpuQzz//nIjm59neWFiBgYH6+vqUi4uLi+S7usulHj343Dk+d443bswbcE9N5d69ee5cPnaM/fwKud/0zp074jJ72LBh0lZW9Pb2JqLevXszc1BQEBHVqVNHS19P8+fPJ6IZmv+DoGhyB9yXLuX163ndupyAOzNfv876+rx1K7dsyVpqvB0cHExE9erVk2S0xMREsagssh9EotXff/8tyeBlTvkMuOeWlnbl5s2OSUlHb93qnpjoU/QBFQqFu7u76IbRqFGj48ePa36lVqv3799vaWkpvtjq1au3adOFgn4WHzzIdeuyuXl8/fqN3N3dURSyEO7du+fi4mJsbKwJtZ84ceKVr4yPjx81apR42ahRE588KdJ5jx8/bmtrK0YzMzMbOnSo2Idobm6+XdPpTlLidA4ODppEBgsLCw8PD8nXzKEw1Gr+6qucaLsUDeKFrVu30hubgKlU6YmJhx88mHH9uoUm8h4UpBsVNS48fEhW1n1mzpP5DmVIYCCbmjIRz5kj2Zh//fWX+CRhZj8/PyJq0qSJZKP/P09PT5KiRCBoT1xcnAgn9e3b963fJqmpqefOnVu2bNnIkSNF3lYelpaWSUlJWp3w8+fPDQwM9PT08tlWDkobhUIhlnmGDBlS0JBQenp6aGioj4/PihUrxEXX0aNHxa8ePnx46NAhLcw3x4ABA4hohRSV4qBw0pTKs9eufffddz179swdXtTV1RVlJMeNG1fEFoWrVq0SOcJbt27lXIWYLS0tCzpyfHz8hg0bRJ+J1atXE9GoUaOKMjfQNrGP4dKlS/ziv3cvLy9tnEitVot97UXf6KMhyvflNmLECEl24ZdveUrKZGdzSkpOwJ2Z9+zhWrW4iJuaQkJCxOb78ePHS7gKMnHiRCISWwlFuTNnTUF6qXXs2JGIjhw5oqXx3zWnT+c8ePSIr17l+Hh2d+fISNbUkz59mkW14IoVWRtFrZYsWUJEH3/8sfgxOTlZdJ4vtJ9++snT01OsSa9fv14Eqfbs2aPVpsGlUzkMuKtUGWq1kpmzsu5lZ8dmZyfcvNkxPHyIiDqFhfVMSjpW6MGDg4M7depERDKZzNnZ+XUtL3x9fa2srPT1TerXV9Svzx4e+Uo1jonhkSNzCoH17s0REaghU2CRkZEuLi5iOUQmkzk4OOSnU5a3t3e1atW6d99VuTJ7ehb4pGq12sfHp1u3buJqpkKFCi4uLmIzfkxMzLBhw8TzH330kbSxgOTk5GnTpslkMlEbp127dl5eXlihKW6a5CalMue/c7WaY2JYrWalkkeOZENDPnBAwhOOGzcu/3f4mZmRcXGe4eEOQUGGDx9+9eTJosjIESkp/syckXFbqUS5oTLp0CHW12ciXrtWmnp+77//Pr0ovCCSVmbNmiXJyC8TaX0bNmzQ0vggiaioKNHmaPTo0XnuBpVKZWhoqJeXl4uLi7W1tYGBQe77eTMzM2traxcXFy8vr6CgoJYtWxJRnz59tLoMvHnzZnqxdxXKqAcPHlSrVo3e2OLy2bNncrnc29vb3d3d2dnZzs7OwsJCR0dH8/arVq2akZFR8fTmioiIEJt1EhISiuF08FZpaWl+fn7u7u52dnai4KdoD6Cjo9O6dWtnZ2dvb++CXodv3LhRXGavX7+emZ8/fy5uA9u1a1eI3RgnTpygFzVDoqKiiKhKlSpoHl5qXblyhV7kCCcmJopiHVpa1r18+TK9aHki1ZhqtVrUiMutb9++6HTyZk5OOQ/CwnjhQl6yhGfM4MhI/vzznOcnT85pmloUFy5cqFChgghxSvKPrimqfuPGDWYWcYkDkt6Bajx58kR0ksP6jZakpfG33+bdypyRwRMm5BSpdXV9xTboorC3t6cX1f/5xb7DQYMG3b9/v4gjx8XF9erVS09PT1ytib1orq6uvr6+70iGaDkMuD95sjA0tEVSkm96evCDBy737k1JTT2vUqXGxHiEhNR60VK1R0Gz3TMyMtzc3ET2hIWFxVvLNarV6oMHr7dvnxNAb9CA16/nN5Rh9/bm6tWZiE1M2N1d4v+E3gXXrl1zcnLS1dUV19aOjo7i+yafoqMThwzJ+ccaOZLzeRWtVPL27Wxr+0hEHGrUqLF48eKXU/m8vb1FG5waNWrs27cv/7N6nbi4uO+//15TLUesYGNHc8nQJEKcPctz5/Lp0/zee/zll2xnx2fOsELB+VjyyT+VSiWStgpaYU2lSs3OjmXmtLSgqKixMTErb9/uExSke/Om1ePHbmlpcma8f8qSbdvY2nq7gYHBX3/9VcShUlJSxL4/sUyoUqn8/f2l7WyR+1xGRkYoXFsmXLt2rXLlykT0+eefP3782MfHRxSKEV9nGnp6eq1bt3ZycvLw8JDL5Xmi8w8fPhRZe6NGjdLeZnaxYiQiYlB2nThxQldXV0dH599//71169ahQ4dWr1795ZdfDh06tG3btiYmJvQqBgYGzZs3Hzhw4PTp03v37k1EDRo0KIa9DqJ7uSYdDEqVR48eyWQyPT09a2trkYUj6OjotG/ffubMmbt3746NjX3zIFu2bBEBAlEZMikpSVQTbd68eeFaXGRlZYkQmwhhiI1Efn5+hRgKioGbmxsRTZ8+nZmDg4ObNGnSp08fLZ1r3rx5pIUCHc+ePWvUqFGez8w2bdo8ePBA2hOVb3/8wVLUtc7L399fLAqKVjdFJIqqN2jQQPx448aNJUuWaKmi2pYt8ba2BydNWqCNweHJE/7wQz5wgF+5O9TDg3V1mYgdHVmSf97Q0FBXV9cqVarIZDJNR+iNGzeKW4CKFSuuX7++0FEmuVwu7gLq1Kkzffr0Pn365E7TMTMzGzJkiIeHR4GidmVOeQu4K5WJV69WkcspOfkMM6elXWH+7wZPpUp5+tQ9OLjai2x367i4fO0ICgwMbNWqlbhQc3Z2zv+Hl1rNPj7cqdN/YXcPD87M5NBQViiYmZ8949BQ/vDD/xLbtRPlKM+uXLni6OgosrwNDAycnJxEK/lC8PbmKlWYiGvW5P373/TKrCz+6y9u2jTnH27o0HkrV658Q9X++/fv9+/fX3y4ODo6Fno3jShMr2nSa21t/f333xNRvXr10Fa3ZOQJuPfokfPtl5zMPXpIfjZRuL/QPWpEJZmMjLDIyJF37tgHBelpas5cu1b/3j3n58/3o41qWSHKierq6u7ataugx6akpIhMQAcHh8qVK1evXr127drFsD9G1Jfs1auXtk8Ekjh58qShoaGenl6e2/UmTZqMGTNmxYoVAQEBb21Xc/36dRGjF2ELyWlWcYre5RVKnGhNKdKTX1a1atWuXbuOHj167ty5f/3116lTp+7fv597IUehUFhbWxORnZ2dVj/QMjMzq1evTkSXL1/W3lmg0ER5fREezc7OlsvlIvNdU21SsLCwcHZ29vLyejn+uGfPHvHRt3jxYmZOS0sTyzlNmjR5/PhxoSc2fPhwIvL09GTmr776iojmzp1bhD8UtKhDhw5EdOzYfzvjtZcb3rZtWyLy9fWVfOTz58/nKeZORPXr19dSn57yx8+Ptddq4fjx42JF0M3NrXAjJCcnHz169Pvvv2/SpIlMJhs2bJikE3y1Dz5gosJUBYD8SEvjyEiOjHxtk4AjR7hyZSbi9u05KqqQZ4mLi/Pw8Gjfvr34TBCRNB0dnRkzZog6ME+fPh0xYoT4rY2NTSGaqW7fvl2kSlhbW2su0dPS0nx9fV1dXa2srMRJhZo1azo6Onp6ej58+LCQf1JpVd4C7k+e/CiX0+3b/ZhZoXh65YpJaGhrler/4uO5s93HjrXp2bOn6Dj/Sunp6a6uriJvumnTpmfPni3ErFQq9vbmNm1ygrOtWnHr1uzuzszs7c0ff8xEXKkS//WXlE3w3hFff/21+K/UxMTkyy+/fPToUREHvHeP+/bN+ZdydOSXA+OZmezpyfXr57ymceP8lgxSq9Wenp5iKbtBgwavKyv/Onfv3s1dmN7Ozu78+fNi2Hbt2tGLchBQ3Fq3ZicndnLi997jb77hvn3/+5WtLRe2c/LriGDEzJkzC3icKinpqEqV/ujR3Kio8RERQ9PSLjOzUpn47Nmue/c+DgmprYm8b99uZWdnt3z5cknalINWifQrAwOD3DeErxMeHv73339Pmzatffv24kstd4oBEU2dOlXbG2VEQSQt9ZEGbdi1a9dvv/1WqVIla2trV1dXHx+fmJiYgg5y5swZEUJ1F5c+ktq+fTsR2draSj4yFD+VSuXp6dm7d+8mTZrY29t/+umnS5Ys2b1795UrV/IZ6nrw4IEIhS9cuFB78xRVjLp06aK9U0BRfPnll6+MYWmC7w4ODprkFU3w3cnJydPT8/79+0ePHhVRsAULFjBzZmbmwIEDRZgyqtDhDWZm/uOPP4hIBMWOHz9ORJaWlkUZELRErVbPmzfP1NRUq30ghIiICCKqXLmylnKnli1b9vL65ddff62Nc5UzCQk8dSq7u/OtW9o6xb59+8Tanqi9nh/JyckiZJmnrJ+pqampqWlAQIC25srMzJmZXKECy2Rc7uKiZUlYGLdowTo6qn79nE5rCsDng0ql8vX1dXJy0sSUqlSp4uzsfPnyZXd3d/F2atiwoea+0sfHp06dOkRkbGyc/+6SSqXS1dVVjO/s7Py6T7aYmBhvb29nZ2eRBZ9nLdzb21vbLaCKR7kKuOdJb3/w4Eu5nCIihr/mxcl37y4VTaKJqHfv3qdOncrzGn9/f7HdT09Pz9XVtYhlqkS2u6Ulf/UV29vz8OF89y57e/OaNfzLL1zkQPE76tChQ6Jm+pMiNjzNRaXiFSvY2JiJePhwbt8+J2o6fDh7eHDNmjmh9rZteds2LmgGVWRkZK9evehFG4CUlLdnE0dERDg7O4svYx0dHQcHhzwZVSLcYGFhgUKQJSB3hvt333H37v/9qls3ydfQOnfuTESHDx8u0FGpqZfkcgoNbc3MSmVyZubLt4vqtLSgJ08WhYX1/PzzvpovvMaNG4svvNf1q4ASJ1LkKlSo8HKjLYVCIZfLPTw8HB0dRSUiDVEGRGT2RUVFBQYGirXAORJ2Yn2JQqEQmc537tzR3llAcpKUgtm/f7+urq5MJtu4cWPRR8tNJOCsWrVK2mGh7NKUptF0T5WcKI8r+ZsZpGJpaUlEL9/Z5ZaVleXn57do0SJ7e3vxDaghFghdXV3FyxwcHIioZs2at4ocdXv8+LGofZyZmSkqzMhksqJnC4E2fPfdd0RUsWJFCRuZvpIIiI8bN05L46vV6qFDh+YJuOPjq/QQ1atkMtnatWtf95ro6GgfHx+RF5y7c4moiO3i4rJz504nJyciqlSpklbfsceOMRFjobDEJSby9OkbiUhfX//3339/6+vv3Lnj5ubWsGFD8c7R0dGxs7Pz9vbOHQ2/du2aqJxGRI6OjqJVyfPnz52dncWTlpaWV65cefOJEhISREV4PT29lStX5vPPuXbt2vLlywcNGpT769jIyKhfv35Xr17N5yClU7kKuD9+7CaX0+3b/flFertcLktPD37DISkpKR4eHqLFBBFZW1uLbPe0tDRXV1fxcda2bdtLRW+N8YJKxWlpbG/PN2/y8OE5AXcoNNHHRhsj37rFQ4bw/v1sY8Pz5jEz29vzF18wEXfowF5eBQ61ayiVSnd3d5E7Y2Fh8YZtEyEhIZrC9Pr6+k5OTjdv3nzlgM2bNyeibdu2FXJOUGh5Ssp88glv28ZpaezlxZ9+Ku2pYmJiRIu2tLS0Ah0oPhvv3/+cmePjveRyundv6uteHB8fv3379vHjx4skQcHY2Hjw4MESLmuBVNRq9aRJk4ioWrVqt27devLkibgit7a2zlOWoWbNmg4ODm5ubr6+NRzo3wABAABJREFUvi+XAfH19RUfSkuWLNHSVH19fcVXqpbGh1Ju3bp14rusoEuGglqtvnXrlpeXV+6mmmlpaaampjKZDBVpIbcFCxYQkbm5+d27dyUf/OrVq0RUuXLlgn4XQ/FITEzU1dU1NDR8a8ErDaVSqVmfNjMzq169ert27cSvEhISOnXqVKNGjVdegReC2MIv9rmKnpbYolo65bm+0t6JRCaWt7e39k6Ru5i7rq4uWp6UNhs2bBD9mXN3Znr8+LHI/23dunXu4hv6+vqi7aSPj0/uMIhSqRw9erR4x2qvZJCLCxPx999raXgoALVa7ebmJt4b48ePf+VXXkZGhre3t52dneYt1Lx5czc3t3v37r1yzOzsbA8PDxH1rlmzpqZs6eHDhxs0aCDefq6urq/rd3rt2jULCwvxJixQ6n3uCWiqwIlyWJGRkYUYp/QoRwH3Z8+S3N4LPm+SkuLHzA8efCGXU2TkiPwcmpycvGjRInNzc/Eu7NSpk9g6YWBg8OOPPypEtXVJ2dszM8+Zw5MmIeBeqp05wz/9xB9+yLdusb09P3jAUuVLXb9+vVOnTmKB0cXFJc/HVkBAgIODQ+7C9G/OCd2wYQMRtWrVSntd6eDVVq/OeRAZyYcOsULBq1axszP//jtLveFg06ZNRDRkyJCCHnjrVle5nBIT/2XmyMhRcjnFxKx+61EqlUp84VlbW+vo6FSsWBF9AkonhUIxaNAgkYeVO8Kuq6vboUOHadOm/f333/lpgrp9+3aRYlP0RqyvNGPGDCKaJxYwoSxIS0tbtGiRhAPOnTuXiExMTERJtLd6+vSppllr1apVNW9sTSudPXv2EFEPLTTMgBIxadIkSVZ2VSqV+FTs1q2b5N9cn3zyCRF99dVX0g4LUjlw4AAVoVlISEgIEdWoUUNzRf38+XMJW7rNmTOHiGbNmsXM69evJ6IPP/xQqsFBWgqFYvDgwURUr16918Wniig+Pl5PT8/Q0FDbe0kvXrxoYGBgYGCwc+dOrZ4ICsfDw0Nc4XzyySdjx46tV69e7kv6ChUqDBo06JdffvH393/Dl5pCodDsyNFSaVDRwS5/F3FQHHbu3ClKpffo0SP3FZRcLnd2dhadukXynKOjo6+vb37Kh0ZERPTtm7Pl3cHBQWzDSkpKcnFx0WQkX7x4Mc9RPj4+4la0Y8eOknxgJiQkvKH0d1lRjgLuP/zAROqPPuCc9Hbjt6a355GSkuLu7m5ubm5iYmJqatqhQ4egoCAtTVYE3FNTuXFjBNxLNRFwj4zk999ne3uJI6gKhcLd3V2s3bVp00a83/z8/MQ3JRGZmpq6uLjkZ6upQqEQW4T27dsn5RShNBk5ciQR5WfXWG7Z2bFyuc6VK0YqVZparQwONpfLKTOzYN2Zo6Oj37w1G0pWWlra5MmT33///QoVKmhqbReiOXNRGrG+lciuQo/BMiQ+Pt5T0q5YarV6ypQpIvPllbeCKSkpZ86cWbJkyUcffZSnpCMR1a9ff8SIEUuWLNFUdRw7diyhK0A5cuLECak6STx79qxx48ZUmK4nb5KYmCg2VaDNSakl2jvNnz+/0CNo9dvq7NmzIkWGmR8+fCiTySpUqICEhlIrPT1dZKA3a9asEC1M3kqkTA0ePFjykV+WnZ2tvb6vUHRubm66urqa4toVK1a0s7Nzd3f38/PL/0dEVlaWpueE5Hu8bt1iIq5WrfAb/UEbgoODxddWnTp1Dh06lLsbKhFZWVl5enrmp45xbqL7oIjXV65cWXM74OfnJ2pur169OveL3d3dRSx+zJgx2P+XW3kJuD9/ntOs99w5Zlb9OOf5D7b3bo0txEiJiYknTpy4fPmyVsth79iR8+D8eX5bHSQoSSLgzswLF3KlSpKnLDMzBwYGioIw+vr6TZo0EZ+MlStXnjdvXlxcXP7HWb16tVhR1HbbQygRSqVS7MKJiIgo0IGihkx4+CBmTknxk8spNLSFduYIJSwxMbHoe1wK1Ij1DdRqde5rO7lcTkR169bFB9Q7TqlUDhs2jIgaN26cJ5d58uTJedr5VqpUyc7Obu7cufv378/zYpVKdfXqVbHptazvNgUtuXTpkqiU9ffffxd6kDwtwlauXElEdnZ2RZ4daMsXV6+O37/fvwhVXz/77DPSWt/dPJdz7dq1I6KTJ09q41wgicTExI4dOxJRly5dJM9DF9XVpV3bhrLr+vXrixcvXrt2bWhoaKEvmNPS0sQqUdOmTaUtB7psGROxk5OEQ4I0YmJievfuLTZDiEvounXrfvfdd0Xsm/X48WNNB4iBAwfev3+fmdPS0lauXKm55UxOThYX9rq6uu7u7hL8MeVLeQm4z5vHRDxgADPzkydsbMwyGQcXIL29mGnKPh89mhPPhdIpJIS3bmVmzszkDz/U1nJuenq6q6ursbFx06ZNq1Wr5ubm9vz584IOkpGRUbt2bSLSXpcwKEG5U6IK5EnQp3I5xcSsYuZHj+bK5fTwITbCw5u8oRHrm6Wmpvr5+YkyuNWqVZs2bZrmV/Pnzyeizz//XOrJQtmTnp7es2dPImrXrl3uL7tvv/1WtPN1cnLy9PQMDQ3Ns4AkWhTkrjBTr169ypUro4B7OaClf8S1a9cSkZmZWX4K2mZmZkZGRvr6+np6erq6ujo6OlpZWZmYmCQkJGhe06ZNGyLas2ePNmYLRZeqVHYJCuoeFJRRhOVnUZRGe7Wqcm9YdHV1JaLZs2dr6VwgiZiYGJEd1a9fv4yMjMINIjqRHD9+XPNMWlqaiYmJjo4OmiSBtBITE62srMSFlmh9mU8KBQcG8pIl7ODAufPjk5NZpeIbN3j+fP73X8nnCxJQKBSurq7u7u4jRow4dOiQUrq4lbe3t7jqNjExcXd3z31xfufOndatWxORubm5r6+vVGcsT8pFwP3/09t55kwmYkfHkp7WmyDgXlacP8+7d+c8XriQtboP79GjRzdv3izKHpxff/1Vq3cIUIJyF/0sAKWSzc3VDetlx0Qwc1hwV7mckpKOv/U4eJflbhT21jZxkZGRW7Zs+fzzzy0tLfOkJ7/33nual4m9jbnvM6GUGzZsmKurq6Z4i7Ti4+NbtmxJRH369NG0MHn27FmedibJycmnT5/+9ddfP/zwwzz1TImoYcOGdevWJaL27dtjm3yZplaru3bt2rFjx4Juec6PiRMnElHz5s3zvJmDgoI2btw4b968sWPHdu/ePXef8DyuvsiVPn36NBHVrl1bG+2dQBL+iYlWcvmUohX8SU1NNTIy0tHR0UYJEf7/ljxnzpwhotatW2vjRCChyMhIkdj0wQcf5H8ffO5EBPEhU6VKFU3m8t69e3HjBloSFxcnVogtLS3fnMmXnp5++vTpZcse9u/PpqZMlPO/zZv/e03Xrrx8OTPzsWP8yy/anTmUQtHR0R999JG4KLK2thZ9pA8fPly5cmVxHY7Npq9TLgLuCxe+Ir09JKSkp/UmTZvy5Mk8eTIPGICAe6m2bx9rasN++CFr58JbMqmpqdWqVSOic2LxCcoREa88ceJEwQ7z92cibt6cmfnxYzY2VrxvrVa/urE4gIZCoRgyZAi9qlGYUqn09/dfunTp8OHDa9WqlTsspa+v36VLFxcXlx07duTOV717964oD4IytWVIUFCQm5ub9srrPXz4UFRpHzVqlCZZRqlUhoaGenl5ubi4WFlZ5VnCES0KXFxcvL29nz59ysyJiYnis9HW1rbQWYdQGqjV6pcbcEkiPT3d0tJSvNNyP6+5ddQwMDCwsLCws7NzdnZ2d3f39vaWy+W5K0iIxOQff/xRG/MESax89MhKLl/z+HERxxkwYAARbRW7XKUWExOjo6NjbGyclpaWnZ0tAhaIVpR+169fF+WAJk6c+IZyH/fu3du2bdvMmTOtrKz09PRyf8jUqVNnxIgRmsU/sRyIIgygJdHR0aLcds+ePfOsZ6empvr6+rq5udnZ2RkZGRGRre0KEWdv1Yo//ZS3bv2/uIe9PX/wAT94gID7O23Xrl01a9YkImNj48GDB4ui7Y6OjqmpqSU9tdKrXATcU1N56VIWl+mff85EPHJkSc/pLWxsWKFghYIPHULAvVTbt4+dnHjnTt65k7t1K+0Bd35Rfzl3YimUA48fP5bJZKampnnSP9/u+++ZiL/8kpn5zz+ZiD/4QAsThHLodY3CsrOzzczMNHePosq2m5ubr69vng06T58+3bt376xZs5o3b66jozNmzJhi/yOgVLt+/XqVKlWIaPDgwV9//bWNjY2JiUmeAGjXrl1nzJjx999/h4WFvTLA8ejRowYNGoisQwn3z0J5cufOnUqVKhHRqlWrNE+uXbt2/PjxP/zww+bNm8+dO/f4NSFapVJ57969U6dO/fbbb3p6enp6evlpZQ8lZcKtW1Zy+YUib81ZsWIFEY0bN06SWb2sc+fONWvWvHbtGjM7OjoS0Zo1a7R0LpBQYGCg6B0yZ86cPL/y8vIaMWJEnTp1cn+L6enpWVlZzZw5c/v27XnSFzIyMkT4Hh2YQXsePHgg2mna2dnlzkv46aefNO9SXV3djh07Lliwcc+evLGOx4/5n3/40CG2t+fr19nREQH3d93z58+dnZ1lMlnNmjVlMpmrqyu6c72ZjJmprDt7lh4+pG7dqEEDatqUnjyha9eoTZuSntab9OpFfn5ERMeO0eXLNG9eSU8IXmP/fjp4kIYNIyJyd6d9+6hGjRKe0ps9e/asUaNGKSkply5d6tKlS0lPB6Tx559/Ojs7Dxs2bN++fQU7slMnunqVjh2jAQNoxAjau5fWr6dPP9XONKG8SUpK6tu379WrV7t06XLy5ElNH56pU6fq6ur27Nmze/fuoqqpoFKpwsLCgoKCAgIC/P39xX5D8asZM2bMmjVLXPRDKZeSQmZmJJMVx7nOnDkzcODAWrVq3b9/XzxTu3ZtGxsba2trKysrKysrY2Pjtw5y48aNXr16PX/+/LPPPlu3bp2WpwwS++kn6tOHevXS7lkOHDgwfPhwPT2906dPW1tbv/I1WVlZjx8/jvp/t27dSk9PFy/o0aOHtbX10qVLtTtXKKx0tbpfcDARnba0NNbRKcpQd+7cadGihbm5eWxsbJ6tNpKIiYmpUaOGTCYjok2bNn388ccODg4HDx6U/EQgOV9f3/fffz8rK2vJkiXffPON5vlJkyZ5eXkRUcWKFbt27Sq+xXr16iV2MAhJSUmXL1/29/cXl0lVq1atXr361atXi/+vgHdHRERE7969nz59+sEHH+zatUtfX5+I/P39v/322169evXu3dvGxkasSQtPnlBAAJ04Qf7+dOsWMVP//qSjQ8eP0+zZRERVq9J335XUXwOlwpEjRxo1avTkyZP+/fuX9FxKu7IfcP/sM2rYkDp2pA0byMmJ+vWjEydy4qOl2K+/kqsrEdGNG3T3Ljk4lPSE4DX276fISJo1i4hoxAhat660B9yJ6NtvvxXVHkRlQCgHrly58vfff9vY2Ly8Bf5Nnj6lunXJxITi40lXl6pXp6QkunePGjbU2kyhvImNje3Vq9edO3f69u17+PBhse00t+Tk5EuXLvn7+wcFBfn7+ycmJmp+ZWZm1qFDBxE87dmzp+i3A6XfrFm0Zw+NGEEuLsXxaXHnzp3Lly9HRUV17dq1a9euIue9oPz8/AYMGJCZmfnril+//fJbyScJ2rN6Na1bRyYmdPEiaSGw+Z+vv/56xYoV9erVCwoKUigUmpB6ZGSkeBAbG/vKA+vUqWNhYSGqzTg5OWlxilA055OTXcLD25uabmzZsuijNWvWLCIi4vz58z169Cj6aG9w6NChUaNGOTs7L1++XKsnAqn8888/48ePZ+Y///xzypQp4slz585FRUX16NGjefPmshdL1iqV6saNGwEBAYGBgYGBgREREZpBZDKZnZ3d0aNHdYq2OATwVtevX+/bt29CQsJHH320Y8eOPIuIzHzr1q1z585duzbIx6fh48f//apiRbK2pgED6PBhOn6cUlLI0pI++QQBd4D8KuMB96dPaepU+vdfIqLkZBo6lM6cKeEpQfly7Bjdv0/OzkREzs60eDGV/pBRTExM48aNMzMzr1271rZt25KeDpScTZvo44/p/ffJx4dOnaL+/aldO7p2raSnBWVMVFSUjY2NSI3ZvXu3np5eVFSUiLAHBARcvXpVrVZrXpw7Pblbt24ijwbKnOvXac8eGjeOmjUr6ank28GDB2cunqm7Vndu/blTqk4p6elAATBTWBi1aqXds2RnZ/ft2zcgIEBPT0+pVL78AiMjo8aNG1tYWDRp0sQil/xss4DS4PfHjzdHR0+uVevzunWLPtoXX3yxatWq+fPnL1y4sOijvc6VK1f69++fmJj4yy+/fIcgVtmxdu3azz//XFdXd8eOHXmyYVJSUkJCQkQOe0BAwPPnzzW/MjU1tbS0tLKysrGx6du3r+i8BVAMgoOD+/btm5iYOGnSpI0bN6rV6rCwsICAgBMnTpw5cyYuLo6Ievded+7cZxUrUteuZGdH1tbUrRuJC/kNG0gsLZ0+TTIZ9elTkn8LQBlSxgPuQUG0cSOtWZPzY7dudPFiiU4IoFSYMWPGmjVrxo0bt3Xr1pKeC5QcpZICAsjQkLp3p2++oWXLyNWV3N1LelpQ9ly7ds3W1jYxMdHCwuL58+e57x6NjY07d+7cs2fPHj169OjRo0bp3wQE5dcfMX98+vhTPZnefov9QyoNKenpwFtkZtJLe2a06/Hjx7t37549e3aFChUsXtKoUSOkmpZRCuZYheKpQnE1JaVXpUqtTE2LPubRo0cHDRpkZWUll8uLPtorXb9+vV+/fvHx8R9++OHOnTvzNNiEUu7HH39csGCBgYHBwYMHmzZtmp9EhK5duxoYGJTgnOFd5ufnN3DgwPT0dNGcKTk5WfOrunXr2traDhgwuUsXu1atiqmoIMC7oIwH3OPiyMmJjh4lInr2jEaNIl/fkp4TQMl7+PBh06ZNVSrVrVu3mpWhBEWQ1v379NNPlJVF1auTszOdO0fdu1P79iU9LSiTLly44OzsHBsbGxMTU7t2bZGfZW1t3aVLF0NDw5KeHUgjOpqioqh7dyq7Uccfnv7w09OfjHWMTzQ70dO0Z0lPB16Lmdq0oXbtaNo0srUt1tv7jIwMJK2XMzfT05c9eNCtYkUiGlOjRkUpIteZmZlVq1bNyMh49OhRnk6YkggPD7e1tX369OnAgQP379+Pb9KyaObMmb///ruZmVlqaqrmSSMjIysrqx49eohchFq1apXgDAFyO3HixMyZM+Pi4hISEsRSkJ2dnbW1dZvS3f4QoOwq4wF3IvrmG9LToy5d6O+/aeZMQtl+ACIimjJlysWLF//8809tl56E0qtPH9q4kSwsyNeXtm2jzZtLekJQtqnV6sDAwIYNG9arV6+k5wJa4e9P06bRs2f04Yc0ZQpZWpb0hAplxsMZa+LWVNWr6t/cv6WRBKWcodAiIigtjTp0ICL691+ytycRVLx8mYioRQvaupWWLKGGDens2ZKcJ5R1N9PTjz179pXU303vv//+v//+u3HjxsmTJ0s78oMHD3r37n3//n07O7uDBw++3B8FygS1Wv39998nJCQcPHiwc+fOIhfBxsYG/6BQaqlUqvPnzzdp0kQb64gAkEfZD7gT0ZUr9OABde5MCAEAvJCSkmJqaorN0e+umBj69FPavz/nxx49KDCwJOcDAKXb7NlUuzbNmkV+fvT992RqSjt3UsWKlJJCs2eTp2dJzy/fVKwaeXfk3sS99fTrnW9xvr5B/ZKe0btr9256/Ji++IKIaOhQ8vIi0RN3/nzas4cuXKCKFalfP9q8mRo0KNmZQtl2Mz19/t27LUxMqunrfy3d/aCo0+3o6Ojt7S3VmET06NGj3r17371719ra+tixY6ZSFMCBEqRQKFAoBgAAXlYugnGdOtGwYYi2A+RWoUIFRNvfaSoV5e5BXw7WVgFAm+Li6OBBioqihg3JwoL09UmlIiJSqejJk5KeXEHoynS3NNrS07Tno+xHI6JGMOHTryQpFJSWRmlpOW8njYkTaf78nMeItkPR2VSq9EvjxhJG24nIwcGBiI4dO5adnS2eSU9Pt7W1nTdvnq+vb1paWiHGjI2NHTBgwN27d7t3737kyBFE28sBRNsBAOCV0JsFAKA8ql2boqPp2TMyN6eQEMQzAOCtFi6kWbNo5cqcHz08yNiYMjNLdE6FYqJj4tPEZ1DEoIV1FspIdivz1kPFQysTqyzOOp58fFLVSSU9wXfI/v0UGUlEdOPG/z3fpw/9/jtduVIikwLIlwYNGrRu3frmzZvnz5+3tbUlosDAwHPnzp07d+7nn3/W1dW1tLS0tra2sbGxt7evXLnyWweMj4/v16/frVu3OnTocOjQoQoVKmj9bwAAAIASgoA7AEB5JJPRmjXk7EwmJsRMHh4lPSEAKO2aNaO2bWnfvpwfBw7MKSkTFFSi0yqUqnpVL7a8KCPZwqcLHygeWJtZ//P4n1k1Zl1Jv4KAe3EaOfK/kjJ5/PorOTsX/4ygHKqpr29dqZI2Rh40aNDNmzePHDkiAu7dunU7ePDg2bNnz549e+XKlaCgoKCgoFWrVunp6VlZWfXu3dvW1rZXr14VK1Z8eaikpKSBAwfeuHGjXbt2J06cMDc318aEAQAAoJRAwB0AoJyytKTdu0t6EgBQlsydS716Udu2REQtW1KVKpSYSESUmUnx8WWsep+MZOnqdJ8kH3lLORFNrjo5LDOspCf1TgsMpDt3qFGjnB/r1KH+/engwZKcEpQPVfX1q+rra2PkwYMH//bbbxs2bKhXr16fPn3atGnj4OAgSs2kpKT4+fmdO3fu7Nmzcrn84sWLFy9eXLp0qa6ubseOHX/44Yf3339fM05aWpqDg0NQUFCzZs2OHTtWrVo1bcwWAAAASg8E3AEAAADedW3akKEhGRvTzz9TSAg9f04ifqWnR23a0ObNlJhIXbtSv34lPdGCeJL9xMLQoqRn8e6yt6cXta9p5UqqWpUGD6ZZs2jWLBLpyDNn0pAhJThBgLewsbFZvXr1F198MXPmTCKqWLFi165d7ezs7OzsOnbsOHjw4MGDBxNRWlpaYGCgv79/QECAn5+fXC7PPUh6erqDg4O/v3+DBg18fX1r165dMn8MAAAAFCMZo5MeAAAAALyRjw9VqkS2tiU9j4JIUaUMiBgQ2CJQ/BiWGbY2bu2q+qtKdlbvsgMHyNiYBgwo6XkA5FtycvLOnTvPnTt35syZR48eaZ43Nzfv1atXnz59bG1t27dvr/uiU316evr58+e7du0qCssoFIphw4YdOXKkXr16586da9y4ccn8GQAAAFC8EHAHAAAAgDe5cIFCQ+mTT0p6HgU34+GMKrpV7Cva38683cusFwLuJWjtWjp/nv7H3n1HR1V9bRzfk17ovUuRqiIYUekdlKIIRgWNFVERgwoaVDSiCEGKYEfQF1AEgigGEJBOQIpDDxBa6J0kpNeZ/f5xY8wPAVPuZAL5fhbLlUxmzt2RYebOc8/Zp08feeQRZ5cC5MuZM2c2bty4cuXKFStWHD16NPv2EiVK3HfffV26dGnduvU999zj4eFh3J6RkdGvX79FixZVqlRp7dq1jRs3dlLhAACgsBG4AwAA4JoyM+Wtt6RyZenQQe6919nV5N3qhNVRaVG3ed92m9dtB9MO3u1zt7MrAnDDyw7fN2zYsG/fvuzbfX19W7Zs2bp161atWn333XehoaEVKlRYs2bN7cbmGAAAoHggcAcAAAAAID/Onj27YcMGI3zfv39/9udrd3d3X1/f1atXN2/e3LkVAgCAQkbgDgAAAABAQZ0+fXrt2rXr169ft27dO++807Bhw3tvxJVBAACgYAjcAQAAAAAAAAAwgYuzCwAAAAAAAAAA4GZA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAUU3axJ9gSnF0FANw8CNzzLDlZMjJERFQlKUlSUkQ160dJSU6sCwAAAAAA4L9dyrz0+qnXHz/6+OQLk89knBlycoizKwKAmweBe54NHy7PPSciEhMjzzwjzz4rZ86IiGRkSO/ezi0NAAAAAADgPzxx7Il+ZfrNrTO3iVeTDHuGs8sBgJuKm7MLcKbo6Og9e/Zc9Udubs0yM8v8+3YPDxGR5GRZtUqaNXNgbQAAAAAAAKZLticn25PblGgjIt1KdTuTccbZFQG4wWVkyLffSmSk3H67PP+8uBXrwFmKc+C+fPny5cuXf/rpp1f9aYsWZ//66yq3V6wojzwi774rb7whP/2UdeNrr4m39z+NZQAAAAAAAIqmNE3zsHg4uwoAN5EXX5TOnWX0aPn5ZxkyRL75xtkFOVkxDdzT0tJeeeWVI0eONG7cuFKlSv++wy23ZPr4XOWBZcuKiJQqJS++KJMmZd04ebJUry4ZGdK9u+NKBgAAAAAAKKiyrmXjbfEXMy9WdKvo7FpuTrGxMmeODB4sIvL773LrrXLypHTuLCKyYoU0bSqVKzu3QMBUNptERsr334uIPP+8fPutqIrF4uyynKmYBu6ffvrpkSNHmjRpsmvXLrc8LnMwXjH795cffhBfX4eUBwAAAAAA4CCf1/z8qWNPVXCrYFPb+OrjfVyuNuUQ+RUdLSNHStmy0r+/zJ8vDz8sa9dmBe6LFkmFCgTuuLmkpEjOacteXpKeLp6ezivI+Ypj4H7+/PmxY8eKyKeffprXtF1EunXLmuc+ZYqsXSvR0VKihIiIq6s88ojJpQIAAAAAAJhlafzSCecnfFnzy6W3Ls2+8etaXzuxpJtSv34yfbo88EDWtykpcvFi1hfAzaZECUlOluRk8fGRhASx24t52i7FM3AfMWJEfHx8nz59unXrlpKS4uXlZcnLMoc+fbK+SEmRkSOlXDkZNkxExMUla/I7AAAAAABAUZNiT3nlxCtH04+uTFjZyKuRs8u5mbm7y8iRMnJk1rd//SUhISIi27Y5sSjAYT76SB5+WJo3lx075OOPnV2N87k4u4DCtn379lmzZnl4eHzyySciMmTIkLZt2+7bty8fQzVuLGXLSmSkfPml2VUCAAAAAACYavS50UfTj97lc9fLFV52di03v44dJT5eIiJERNq1k4kTZeJEadPG2WUBplu0SPbulc8+k8BAGT1a0tMlOtrZNTlZ8QrcVXXo0KF2u/2NN96oX7/+jh07ZsyY8ddff+WjsYyIuLvLhAkiIqNGZa0MAgrN7sTEVw4deu/o0feOHk21251dDgDgpnPxorz8sgQEyDPPyNGjzq4GAAAU1MG0gxPPT3QRly9rfulqcXV2OcXC+PFy+PCVN0ZGyqRJMnWqMwoCHGHGDBk6VCIipFo1GTVKunaVzZudXZOTFa+WMj/99NOGDRsqV6789ttvZ4fvr732WoMGDfI3YK9e8sADsnSpvP++fE3HMxSiJLvdr2TJ56pUcXYhAJArqrpp06b58+c/+eSTlSpVqlmzprMrwn955RUZPlzuuUeiouTZZ2XtWmcXBAAACuTlEy+nadpLFV66z/c+Z9dyk7vlFhk6VGbMkBo1ZP9+KVlSWrXK+tF774mnp5QqldWduIhIsNm+On3a+PrJypWrF/sG3MibpCQREV/ff772Ke77MBejwD0lJeWdd94RkbFjx5YqVeqnn34KDw+vVKmScWO+TZokK1fKtGny0kty550m1Yob2e+///7rr796eXl17Nixb9++jjvQ9oQEEans7t6zfHnHHQUACmjv3r3z58//8ccfjxw5IiI//viju7v7kiVLmjdv7uzScF2nTsk994iI1K0rvr4SEyPlyjm7JgC4me3bJ/Xri7u7XL4s6emSnCy1a4uIJCVJcrJUrOjk8nCjmx0ze3XC6vJu5UdXG+3sWm5+7u5y/rw8+6y0bSvr14v8HUWKZP1bXrNGWrZ0Wnn/lmKzxWZmjrzlFhHxcSlezTBgguRkkf8N3LOf8cVVMfpXNHbs2BMnTtx1111PP/10zvC9dOnSBRm2USMZPFhsNnn9dZMKxQ3rwIEDPXr06Nmz5/Tp07/44ot+/fp17tx59+7d5h4l1W6ff/GiitT28mpXunSzEiXMHR9FxIEDB6ZPn/7MM8/s3r378uXLzi4HyLPt27ePGDGibt26t99++6hRo44cOVK7du3AwMC6deuePXu2Xbt2S5cudXaNuC5VZ1cAAMXL44/LxIkiImvWyNy5EhCQdfvmzWwbdk2JiYmffPJJZmamswsp6i7HXf7owEciMrH6xPJuTNgqDHFxIiKlSl3lR0uWyNdfS0JCIVf0HxJstsMpKUdTU10sFmfXUnzF22zjT540/pxJT3d2ObmWc1a7Eb4zw93ZBRSSkydPTpw40WKxTJ482cXFJSQk5Pjx482bN3/mmWcKPnhwsMyeLRER9sWLI3r1alrwAXHDuXz5ckhIyOTJk9PS0sqUKRMUFFSpUqW333579erVzZs3f+KJJyZMmFCpUqWCH2h9XNyEEyfOpKc/UblyOXf3W729Cz4mio6oqKiVK1du2LBh3bp1J06cMG4MCwtr3LjxH3/84VvsLxHjhmDMZ587d+6BAweMW6pXr96vXz9/f//WrVtbLJb09PTnnntu9uzZDz744Jdffjlo0CDnFoxrql5ddu2SO++U06clMdH06e3h4eHZL3R51bt371JX/fyKG1dcnGzaJJ6e0qaNuLs7u5r8iI6W9HSpWlVEZP9+adBAXGmPXARER0cvW7Ysf4+tV6/effcVatuNKlVk61Z2zcibwYMH//DDD4sXL547d261atWcXU7RNfLdkZdCLz3z6TNP3fWUs2spLuLjRa4RuPfsKT17FnI5/y0hM/NgSoq7xXIHHzydJ9lmi8nIeLtWLRHxvYHOJP7dUqbYP4uKS+A+fPjw5OTkAQMGtG3b9uTJkxMmTLBYLFOmTHExY6VM2bIyceLhV1/tFBjo1qXLPi8vr4KPiRuF3W7/8ccf33rrrfPnz7u4uAQEBIwfP75y5coi0rdv35CQkE8//fSHH35YtGjRiBEjXn/9dQ8Pj/wdaH9y8oSTJ3clJopIYx+f2l5eblx2vvFlZmZu27YtPDx8/fr1GzZsiI2Nzf5RlSpV2rZte8cdd0yfPv3PP/988MEHlyxZwssLiqyjR4+GhobOnDlz//79xi3ly5fv0aPHU0891alTp5zvth4eHj/88MOtt946atSoF198MSoqauzYsRZe0Iqgzz+Xt98Wm01sNvn2W3PHHjx4cERERHh4eP4e/swzzzz33HNt27Y1tyo4zalT8tRTMnCgXLokn3wiYWE3Yua+Zo2cPi1Dh4qIBAXJzJlStqyzayr2li1bNm/evBkzZuTv4V27dr3ttts+/fRTU4v6D2PGyLBhWXPbL16Up54SETl37p/uz7jCq6++un79+vDw8GbNms2ePbtr167Orqgo2rZt2zfffGOxWF67/TWLcNJVSK4TuBdNtby8HqV3VRGQZLMdS0tzE2lyA2XWOWe152wvU4wVi8B948aN8+fP9/b2HjNmjPxv+G7WIZ54os7EiWV37949adKkAjaFxw1k3bp1r7322s6dO0Wkffv2kydPbtasWfZPy5QpExIS8txzz73xxhtLliwZMWLE999/P2nSpJ55vJYdl5k57ezZ0IsX7aql3dwGVq36WMWKLPK6cWVmZu7atcuYyR4eHh5nLDUUEZGqVau2adOmdevWbdq0ueuuu4wIcsCAAe3atVu9evVDDz0UFhbmyfY1KEqOHz++cOHC+fPnb9y40bilXLlyPXv29Pf3f+CBB9zc3EQkOTl51apVP/zwQ7169caOHSsiFovlgw8+qFmz5ksvvTRu3Ljz589/++237jdgvnYzW75cpk2T+++XgQNl0SJ591158MGs4KfAFixY8PXXX/v6+j766KPGkyRP9u7dO2PGjN27d//111+mzJyA8335pQQFSffuIiKXL8vixfLww86uCTe89PT011577cCBA3fffXeDBg3y8fDFixevWLGiR48ehZnhNmokjRrJkiXStKlUrCizZomIrFol+b1AefNr0aKF1Wp98sknly9f/sADD4wcOfL999/n3SEnu90+ZMgQm8325ptv3sm+c4XICNwL1sMYxdFlm21fUpKHxXIjBe5smvpverOz2Wx33323iIwaNUpVN27caLFYvL29jx07Zu6BVq9eLSIlSpQ4ffq0uSOjCDp58mRAQICRh9aoUWPmzJl2uz3nHfbt29e9e/fdu3cb365YsaJJkybGP7ouXbpERETk5ihpaWmzjx5tt2OHn9V637ZtU06eTMzMNP+XgeMlJSUtXbr0nXfeadOmzRWJeaNGjQYNGvTDDz8cP378Wg+PjIzMXjaRkZFRmJUD1zJ16tS77ror+5lcrly5gQMH/vHHH5l/v0wlJibOnTv34Ycfzl6ZUbt27SsGWb58ecmSJY0Xxri4uEL/JXBtX3yhIjp4sKrqhAkqom+8YcrAKSkpderUEZGvv/46fyMkJyffcsstIjJt2jRTSoLz9e+vhw9nfT1njn76qTOLya/587VFCw0I0IAArVFDY2KcXVCxN2HCBONEKz09PX8jhISEiEjjxo3zPUJede2qqpqUpHXr6pQp2qZN1u0rV2pwsC5YoHPmFE4hNx673R4SEmLk7D169IiOjjZx8A0b9MwZVdXLl3XHDhMHLiRffvmliNSsWTMhIcHZtRQv776rIvrRR86uI9cy7HZVPZOWNvrYsVW8jTnJ2bS096KinF1Fnl28997EJk3sycmqaqtUyV6qlBb78Ormn+H+3XffWa3WmjVrDh8+3G63Dx06VFWDgoKMj2om6tixY9++fX/55Ze3337722+/Tb/a5gauFovPtbYg8/UVrsPfCJKTkz/55JNPPvkkJSXFx8fnzTffDAoK8v5XL/UPPvhg+fLlq1atGjRo0IcfftilS5edO3d+9dVXwcHBK1eubN68+csvv/zhhx9eZ8/elStXDh06tFafPkl9+95TqtTwmjXr0k7kxpSYmPjzzz8/++yzxrcuLi5NmjQxZrJ37NixZs2a13nssWPHYmJi7rrrruXLl3fs2PGXX355/vnn/+///o9pO3CuX3/9dd68edu3by9Tpkzv3r39/f27d+9utMxKTU39/fff58+f/+uvvyYmJoqIi4tL69at/f39H3vssSvG6dat26pVq3r37r1y5co2bdosWbLk+v8icBOYMGHC0aNHb7vttoEDB+ZvBG9v75CQkP79+7/77rv+/v7XeSeFQ1mtVj8/vwL1g8rIyGodU6uWREVJvXoiIkeOSOPG5pRY6J54IqulzIMPOruUYu/ChQujR48WkUmTJhkrqM6dO7d48eLcPPbWW2/t0KGDiLz++uvff//9/v37v/nmm1dffdWR9YqILF0qjz8uIuLjI7Nni7u7ZO8AVb++iEj16vLHH3LoUNa3yMlisQQFBbVo0WLAgAG///57s2bNQkNDzWrBP368uLrKggVy4oT83//JlCmmjFpILly4MHLkSBGZPHlyiRIlnF1O8XKdTVOLJqNp7eb4+F8vXdqVmNihbFk+cyI3bDZbxS1bXFxcMr28kpOTfS9c8Pb2Tr6BGtA7iLMT/6v49dOhv01546dRT0VuXlbAoeLj46tUqSIi8+bNU9Vvv/1WRGrUqJGYmGhGpVeKiory8vKyWCz9+/e/6v/tB+rUUZGr/9m4UcPD9ZFHNCBAX3pJmehX9Njt9tDQUONSjcVi8ff3v846iZiYmKCgICN+Klu2bEhISFpamqpeunQpMDDQ1dVVRMqXLz958uTMf13327t3b7du3YznTJMmTTadP+/YXwwO9vPPPxt/3W+99dbixYsvX76cyweeOHGiZs2a5cuXN5ZKbNq0yThLfuWVVxxZL/DfOnXqJCLvvfdeamqqcUtqampYWFhAQEDOrSz9/PwmT578nwu/oqKiGjVqJCLVqlXbuXOn48tHLjhmhvupU6eM17E//vijgEO1a9dORIYPH17wqpAPS5YscXNze/rpp/M/8zcpSe+7T4ODVVWPHtUOHTQsTGfM0C5dtLBmE5tr/nydPDnr6969meHuZC+88IKI9OzZM/uWdevW5fID8oABA7IftXDhQuNk/uLFiw4t+Phx9fbWChX00qVr3sdu1+HDNSXFoYXc8E6ePNmqVSsRcXNzCwkJMWXMhx7St9/W0FDdvVsDA00ZMg/sdvv58+cHDRo0aNCg1157LSgoKCgoaMyYMSEhIePHj586derUqVNnzpwZGhoaGhq6dOnSFStWrFy50mq1Wq3W3bt3+/v7i0j37t0Lu26ovvJKUuXKtpkzb7AFyhl2+4N79vhZrctMXSmCXLKrptntqhqdnj7+xIlF13lXKDLi4+NFpESJEqp68eJFI/0o+LCpqanTp0//d2J2oyiKgfsP7/fPSEvNzEifPqxXUlz0+aP7dq/9JS05MSXh8lX/JMVfjrkGYyZCq1at7HZ7SkqKEb7PceRKPKOBe9WqVUtcTZ/bbtMSJa7+Z80abd1ajUVeCxfqa685rkjkg9Vqbd26dXaEFB4enptHRUZG9ujRw3hUgwYNFi9ebNy+fft2IykQkebNm69bt864/VoxPW5oxtz2fJzxZ2ZmGqfIlSpV2r9/v6quWrXK6M7xGi8RcB673V6uXDkROWOsr1YdN25c9ixji8Vy7733Tpo06eTJk7kfMyYmxnhVLFOmzJo1axxSN/LEMYF7QECAiPTr16/gQ23fvt3V1dXDwyMyMrLgoyGvFi9e7OvrKyLdunWLj4/P8+MzMrRnTxXRW29V4+EXLujcufrbb6aniZmZmVu2bCmEi3mHDulff2V9/dtvyhmcE+3YscPV1dXd3T3n68PBgwefz50r2lV17969EKY7PPqoimiOqP9KiYk6dKiuX6/JyQ4t5GaQkZERFBRkrL95+OGHcz/Z5Qpnzui0aTp1qj70kEZHa7t2unGjEwL3GTNm1C/AooZy5cp5eHgczm7bhULUp08fEVmwYIGzC8mz3y5e9LNaH96zJ/N/G+fmSdilS68dOjQyKuqTEydMrK34WBYd7We1PrBrV6rN5uxa/sPZs2dFpHLlyqp67NgxEalVq1bBh33//fdFJCAgoOBDOUURDdzXz5v88ycvbV3yfyf2bf0+qE/k5uXWZT980KvqVf98+kr3a727lCpVymKxbNu2zRh548aNgwcPthfgJeM/JSQklC9fvkaNGnnuEb9pkw4dmvW13a733Wd2acinM2fODBo0yOjgUbVq1alTp9ry+Hp3RQP3vXv3GreHhYUZfWxFpGfPnhMmTKhUqZKIuLi4BAQEnGdi+03BZrMZl/r27NmTj4enpaU98MADIlKjRo2oqChVXb58udEF/qMbqB1g8ZGaqtn/ci9cyIqNzpzRyEi9iZrvHz58WESqVKmSfctXX30lIk2aNAkODj548GD+hk1NTX388cdFxMPD48cffzSpWOSXAwL3TZs2WSwWT0/PQ4cOmVChqtGUplevXqaMhrzatWtX9erVReT2228/kdfP0q+8oiJavrweOKCqun69Omb5aVpaWsOGDY034i5dumzdutURRzGsXKlVqmhsrKpqx46OOw7+W/v27UVk2LBhpoy2b98+d3d3V1fX7M2ZTLdhg1os6u2t1/kEGRurK1boihXKlNNc+vXXX8uUKSMiDRs2zNPfXUSEhoRo69ZqsaiI1qypDz2kSUm6dKn27FnYgXtMTIzxCfH555+fOnXqpEmTQkJCQkJC3n777aCgoOHDhxsz35966il/f39/f//777+/S5cunTt39vPz8/Pzu/322729vS0Wy1/Z1wNRiIwloStWrHDcIbp1y/pi3jydPt20YW12+8MREX5W65ICvOL8cO7cOuNNEfliV+2/b5+f1Tq7yEdDR44cEZE6deqo6t69e0WkcePGBRwzMjLS09PTxcUll7Ndi6AiGrhfPHHw+N4tM97ud2zPn6t/GKeqO1eFhjzW8Kp/Pn+9T5lrMJYtr1y5stCKv3DhQsmSJUuUKLFt27YL/xJz8aJeuHD1P5s26ZAhWaPYbNqyZaHVjOvIzMycNGmSiHh6eo4YMSI/c7hUVTU9PX3y5MnGDFB3d/fAwEBjqkVycvIHH3zg4+MjIsbM5U6dOjnubB6Fb+vWrdkXeGNjY8PDw/O6JCopKcn43FivXj2jNceCBQvc3NxE5JNPPil4hQ69BlnsbN+ur76a9fXrr+vWrfrqq/rSSzp6tHburKdOObU408ybN++KlDM2NtaUCNVutwcHBxvT5IONRhNwEvu0b7RcWfubr6uq/YvJWq6sfeSIAg1o1969o+69t88777xjUo16/vx544116dKlZo2JPDl69Gjjxo1FpFq1ajtyv5Pgxx+riHp768aNqqobN6q3t95zjyMy92+++UZEypcvb5xrWSyWXr16OSJ237lTw8L0oYfUmAZN4O5ExptUpUqVYs0LeoYMGWKcpZs1YE42m959t4roqFGOGL5YO3DgQNOmTUXE29v7u+++u849ExMTf//98gsvaLVq//R89fXVhx7SadP0wQc1KUlVtW/fwg7cX3zxRRFp165dvs/Yg4KCRKR9+/am1oVcufvuu0Vky5YtjjtE9tbKP/6o+d2N/uoWXbrkZ7X2KcAk9x/OnXs3KurbM2fW53eVCdZdvuxntXbeuTOpaLdV2b17tzEDQ1X/+usvEfHz8yvIgDabrU2bNiLy8ssvm1SjExTRwD0jLdWWkf7ta/cf3bXRCNzzZ+zYscacu4zCmlpotAusW7fuVWfcX6+H++rV2qpV1oyFH3/Ud98tnIJxfZGRkSJStmxZU1bhXauB+4kTJypXriwi48bl/9mOoslIDwcPHqyqs2bNEpG+ffvmdZC4uLgWLVoYM3TOnTunqjNnznRxcbFYLN98800+qsrMzLRarZMnT/b3969YsWK+V9riSlcE7rNm6XPPZX27atVN0yvsrbfeEhHHBeJTpkwxFhU999xzhfb2jStcuPCF1SrHjw9W1XPnJlitcvJkgWa4z5qlIlqtmiYkmLkqdvz48cYkmvx3EkfBxMTEGFeFS5YsmZsrH5dP/2SvW0tdXfXXX1VVDx/WSpVURAcNMr229PR0YylhaGjohQsXgoODszeZ6NKly6ZNm0w8Vr9+Ony4jh2rzzyjW7YQuDtNcnJy7dq1ReTbb781cdiYmJgKFSqIyK/G89ZU336rIlqjRlakC3OlpKRk79EdEBCQ/L8deY4dOzZ16lR/f/8SJUq0b7/Q+Fx+yy06aJCGhmZ1e1XVnTvVCLsuXtQ5c3TgQC2c+Sp//fWXi4uLh4fHvn378j1IbGxs+fLlReT33383sTbkRoMGDUTEaA3qIDVq6NChOnSo3n+/yYG7zW7vGxHhZ7WG5b2H+Ja4uHEnTvxw7lzohQtRKSmXOEkrgGcjI/2s1ul/d/LMn3PnziUlJTnug9WmTZtE5N5771XVtWvXGpcJCzKgsX66atWqJl47L3xFMXBfOePjsM+H/zJxSOTmZReOR+5YOTffQ6WlpRn9zr744gsTK7yW7HaBr776aoWr8W/eXCtUuPqfrVt1+3YdMEADAvTNN2nOV0QYgXuDBg1MHHP79u1t27a9IiAw4lSHXv2GU/j5+YnIkiVLVPXRRx8Vkc8//zwf48TGxjZv3lxE7rzzzpiYGFX98ssvjQZEuWy+kZycvHbt2lGjRnXp0sVovJvNoesci5ft27VRIw0I0IAAbdxYP/xQP/ss60exsXqzbFfVuXNnEQkLC3PcIRYsWODt7S1sV+A85gbuCQlZcwZnzTKvRFVVTUtLMz7NTs7erRKFLiUlxXiDmz27c3T09d6S4uNXbdvmsXd1xczZ36qqXryo9euriPbs6Yi+W9OmTTNOt7KbAV68eDE4ODh7z4nWrVuvWrUq3+OvWqXZHcLnzdMWLXTsWD13Trt2VeaSOsuoUaNEpFmzZqbvsfb5558b06pSTN1mID5eq1RREZ2b/4+8+G8zZ840lrk0b9784MGDf/7559tvv21Mfje4uLj07h348ce6a9c/j8rIuHJTiZQUrVpVRf45v3Mcm812zz33iMi7776rqvv27ctHg0rjH8LEiRNF5I477rhx9x68QRkNzYw1yg5y330aHa3R0Tp1qsmBu6r+Hh3dbfv257/+OvfTGv6Kjx8YGelntfpZraOPHaOlTMFtT0jws1rb79gRl68zpUuXLgUFBXl7e/fs2bNp06YOSpxWrVolIh07dlTV33//XUTuv//+fI925swZoyHYjbj/QU5FMXA31y+//GLMUL7k+L19jQk+b5ixqxiKiJyBe3p6+rFjx84U7NKiwW63z5kzJ+fGgATuN6WzZ89aLBZvb2/jerLxtpHv1RLnz59v1KiRiNx3330JCQmq+umnn4qIq6traGjoVR+SmJi4YsWK4ODgLl26GD2LstWtWzcgIGDq1KlGa3iY44oZ7p9//s9ypf379Ybd7yWn7B1THfrhQVU3b95csmTJxx57LCF7ghkKkbmB+9tvq4j6+akj9nwKCwszzvQuXrxo/ujIHZvNtnDhx1arxWq1nD075qr3SUnZu2NHWatVTp4crqqalKgtWqiI3nOPI2b2pqenG0tO58yZc8WPLl26FBwcbLwpG7F7/vpPBgf/s7VBUpKWKKEjR6qqfvGFenrqiRP6ww8F+hWQV6dOnTKmFKxdu9b0wTMzM++44w4RCQkJMXHYMWNWVK5sa9OmkGZMF2fbt2+vV6+eiGT/2xeRUqVK+fv7z5gx48KFC9n3jI7W0FANCNAyZXTq1CvH+e03FVEvL42IcGzBn332mYjUqlUrMTHRbre3atXK3d0999MdEhMThw0b1qxZs4yMjLS0NON3/7//+z9HlowrGZd5Eh2zSYnBcS1lVNVmtze7+24RmZ6L9vA7ExJePnDAiNo77dw59fTp3y5e3MFpvBkGHzzoZ7V+nsf2pJcvX37//fdLliwpIhaLpWzZskZ08Prrr5v+nFy2bFnJkiUbNmw4bdq0Hj16iEi/fv3yPVrfvn1FpGfPniZW6BQ3f+Cuqt26dRORV7NDEMcw2gVWrFjxhl7ygCvkDNx37twpIk2bNnXEgQjcb0rTp0+Xv1tdr1mzRkSaNGlSkAFPnjxprI7v1KmTMcFq5MiRIuLh4WFMolfVuLi4FStWBAUFtW7d2sPDI+fMnSZNmgwaNGjmzJnX2t0umbU1BXRF4L5xo7ZrpytX6oED2qePhofryZM3+mZnxpY4xh70DnXu3DkRKV26NNsMOIWJgXtUlHp5qcWimzebWmIO999/v9zgTR5vDhcvTtu2zc1qlWPHnrPb/2c2XHr66d27a1mtcuSIv6rNbs88crBv8nPttE4dPXfOEcV8//33IlK/fv1rzeiMi4sLCQkxPn8asXtukqwlS5Zkv+Hu3681avxzGemdd9TIsjIz9bXX9PbbVUSDgwlSC8+AAQNE5NFHH3XQ+MYMvpIlS5oy/0ZVDxw44OHhUapU9R07YkwZENcXGxt72223lS5dumLFioMGDQoLC0tLS8v+aURExFdf7W/TRl1d/2n7auzKcIVnn1URvesudVyfjHPnzhkXBozXJWO9TpUqVXLfBzI9Pd1Y62/0n/zxxx9FpHr16km0LiosGRkZRr7p0FPZ997L+iI8XP/4w/zxf/rpJxG55ZZbcv5jucKuxMTXDh0yovaOO3dOPX06gbUUptqbmNhlx47Hv/wyl+8+qampU6dONfZbFpEuXbps27YtOTk5ODjYyAeqV6/+yy+/mFVeamrqlClTjCbJxj6aFSpUyF/nW1VdvHixcTX05MmTZlXoLMUicN+7d6+bm5tDd5bPbhc49d8XwXEjI3BHQTz88MMi8vXXX6vq8OHDReTNN98s4JiHDx+uVq2aiHTr1i01NVVVX3vtNRHx9vZ++OGHb7vtNovFkh2yu7u7t2rVKigoaPHixf95gp6enn7nnXcWwmKgm9n585o9TXLVKj17VmNjdfJk/fBD3bZN4+K0aVO99VY9eNCpVRZIaGio42YcrFq1asiQIcZUU+NkqyONkJ3ExMC9b18V0aeeMrW+/7Vv3z53d3dXV9edO3c68DDIhdjYhdu3+1itcvBgt8zMrK3m7fb0vXvvtFolMrKtzZaiqsePv2y1ys6dFTLOOeT1MDMz0+g19J9d1+Lj40NCQoyFO7mJ3efPn989R3+wL764suNEtu+/V3f3rCc/3WsLwZ9//mksKzx69KjjjvLQQw+JyLPPPmvKaD179hSRF154wZTRkBvPP/98zum6GRkZ4eHhQUFBDRs2FJFmzV4TUTc3bd1aQ0L+6Rl1hYQErVdPRfSDDxxVZ//+/UWkT58+qhodHV2xYkURmTdvXp4GmT9/vohUqlQpPj7ebrcbjS7NXaKB64iOjhYRHx+fnOsnTNe5sxod/n/+2SGBu81mMxb3XHVjjE2bNj3Yr1+n7dv9rNYOO3ZMO3MmkajdMR574gkReeWq1wBzSE9Pnzp1qhEXiEirVq1ytlVQ1V27dhm9qox5gafyOGv+CjabLTQ0NHsPy3vvvXfWrFldunQxvu3Ro8exY8fyNGBcXFyNGjWksLqCO1qxCNxVdfDgwSLSuXNnB43vuHaBcC4Cd+RbWlqasYDLeJtp3LixWWucIyIijJ27vvrqK1W12+39+/fPXh7r4+PTunXroKCgsLCwvO6GGh8fX/DycE1nzuidd6qIVqmif/3l7GryKSgoSETef/99RwxubMf6wQcf6N9vrMOHD3fEgfCfzArcV69WES1RQh3cgkiHDh3KFZoiIjFxy86dlaxW2bu3aXp61ge5S5dm7t3bNCMjWlXPnh1rtcr27V4JCRscVMPMmTNF5NZbb83l/mAJCQmTJ082JmeJSMuWLXPG7suWLRszJqtPTlJS0sKFC3NZxh9/aKlSKqKdOyvbkztUdrdrB709ZTty5Iinp6eLi0vBT9pXrFhhzJc/e/asKbUhN5588kkRmTVrlqpGRUUZkzENlStXfuGFlxcssOemB0Z4uLq6qpubOuLT29q1ay0Wi4+Pj9H40bhI0LVr13wM1apVKxEZNWqU/r3ctkyZMkyvKRw2m83oC1S2bFnHzcu86y7t1Uvtdv36a0dtBWH0cqhVq5Yx2cuwdetWo3OIiDw5bdrU06fjicIcKSIiwtgw8siRI1e9g5F933rrrcZfyh133HGtrrOZmZmTJk0yOrC1bt3ru+/ysxTPbreHhYVl74TRpEmT0NBQYzGH3W6fOXOmkVf4+PiEhITkPiZ95ZVXjOD+5khWi0vgHh0dbezN/dtvv5k+uEPbBcK5CNyRb3/88Uf2EyYqKkpESpcunfsNZ65v27Ztw4YNy94Fbvz48SLi5+e3cePG6yz3g/MlJGiPHiqivr7qyE1HHceYs+CIN1P9ezvWRYsWqeqDDz4oV2u+jMKRmLjp1KkRsbG/qWpCQvipUyMuX16Sj3HOnNGnn9YxV+/pbaaYmBjjzP5G317p5pCaenDPnlutVtmzp35mZmxMTGhs7G8ZGRdVNSZmrtXqYrW6xMT87KCjZ2ZmGpNVZ86cmacHxsfHjxkzxngi5XwunT179mB+Vybt2qXVq6uI3n67XqOdG0xgdBCqXr26Q3slG4wLzy1btixIm4iMjIzbb79dRMaPH29ibfhPxg7PxlRxu91eo0aNJk2aBAUFhYeH2/K4zcgbb6iINmqk5nZkTEtLM6bpGFPRt2zZ4uLi4unpGXmt+fbXtX79ehEpUaKEcV2ne/fuwp5zDpaz6cfRo0e7du2aPdvXES0yunbVTz7RGTMcGLjb7fY777xT/l63vXv3bn9/f2NRdYkSJYKCgqJv8IaZN4qAgAAReeaZZ/79oxUrVhh/RyLSuHHj7Oz7Oo4ePdq790P16u0V0Q4d9MCBPFSyZIl27Jjm61vJmNwwe/bsf79+njt3zijYmJr8Vy5mm23evNnV1dXNze2mWbFaXAJ3VZ0yZYqI1KtXL+d1OVM4ul0gnIjAHflmTLd855139O9djx577DEHHatjx44iMte8k6ydO3cOGDDAtIaDJ07owYNqXKY+e/afpfXFM3vIyNAXX1QRdXXVL780ceAIR+/epWq3242r1wVcfnitwY2uDsYHlerVq4tIvkMumOLkyTcOH34oKqp/ZmbeZud266bjxqmqbtmiQUEOqe3fvvrqKxGpU6dOyrV6fKAQZWRcioxsc+HCl0eOPHLhwjcxMXNTUiLt9tQ9e+parXL+/GTHHdpoVVyvXr1cTm+/QkJCgrE01qy2IVFR2qiRimjNmrp3L1v7XsV7UVHDDx9+Nyrqx3w19I+Pj69ataqIzJ492/TaHHQ4Y997R3wyxfX16dNHRH799Vfj24JszJ6aqnfcoSI6dKgppWUZPXq08fEzNTU1MzOzWbNmIhIcHJzvAY0ZDEYnil27drm4uHh4eBw+fNi0ipFDQkLCnXfeecX8p9DQUOP8uXTp0lOnTjXrE9bWrXrkiHbtqunp2r69hoTo3LkO2Z1eVX/++WcRqVSpUt++fY2o3dfXNzAw8JxjdmHBVR09etTDw8PV1XWf0UVIVVVXrFhhREnGKoSpU6fmaW54WFjWtAAvLw0O1v98R1q3Tlu3ztri4qGH1k6dOvX6EwqXLFlyyy23iIibm1tgYOB1XnIzMjKMawYjjQ3obwrFKHDPyMgwmk+NMz4CmsRoF+jl5eXQdoFwFgJ35JuxT9HGjRv17+kkxvJV08XFxRlvvWZNLrDZbHfffff8+fNNGMtu12ee0aFDNThYu3bV6GgNCNCoqKyftmljwiFuRHa7BgerxaIiacHBppx2r1692sPDIzAwMK/zs/LEWKvhoB1TDx8+LCJVqlTRv3dMLVWqlEN/neIjISFh9zWcPr03OXn3Vf+kp586cCCrQ4vNlnzV+xw9Gr97t17x58gR7dZN+/bVY8cKNXDPzMw0Vra+9tpr1/p9ry/nBxgUnN2eoaqRka2Sk/+ZqZSWduLcuYmOO6jNZjMmDn///ff5HsR41zbxI19MjLZvr23bRpYsWXLp0qVmDXvTeCcq6vzfn9hPpKYeSk6+6p89ERFX/Zf7wgsvFHzKeZ4YE+qrVq26ZcuWfLzUhIeHGxeYjRVdKEwPPPCAiGRvfVxA27erh4daLGrWP+vjx48bS+dXrVqlqpMmTTIuzBTkQnJkZKSbm5ubm5vxHvfUU0+JyBNPPGFOxVDdsmXLxYv/XEy96gvR2bNn+/bta6Si7dq1K+CEkt271d9fLRYdMECNVkNr1mjVqjptmjZsqI7oXrNr164yZcq4u7sbUfubb77p0Mb0uJaXX35ZRPz9/VV106ZNnTp1Mp5UFStWDAkJyd8V3NhYDQxUF5es1Xh//nn1uxnPOiNqL19eQ0Jyu7gnKSkpKCjI1dXVmBazbNmyq97to48+EpH69evfTPNmilHgrqorV64UU3eWz24X+F725tC4uRC4I3+MZ065cuUyMzMTExO9vLxcXFzOnz/viGMZm1i2b9/exDFN60vzxx+a3YN7/nwdNYrA/R8zZmipUi/dcccjjzySjxOL3bt3f/fdd9nfhoaGenp6ikjfvn2TzV3bnIOx+1aPHj0cMbjRILJXr16qumTJEhHp0KGDIw5UDC1fvlyuYdiw9larXPVPXNwfhw71PHr0mcTELUlJf131PkOHLjHOvHP+ue8+7dZN9+7Vvn0LNXA3flMXFxdvb+9r/b7XV65cucKrtdhITt595Ij/wYPd09LytnFW/syZM0dEbrnllny/kVmtVovFUqJEiZwBSsGlpOjjjz8pIh4eHv+5lWtx805U1JtHjrwXFbU1Pr7/3r1+VutV/3j4+Fz1X26pUqVcXFw2b96cPaAjLtbmHNNms9WrVy97r918KFWq1J133ml6kfhPRvO6ldlb3BfYRx+piNaqpXFxJozWu3dvEQkICFDVs2fPli5dWkQWL15cwGGNi1KPPPKIqp46dcrb29tisVitVhMqhuqQIUPeeuut3NwzNDTU2P82r42ts+3cqX36GJN2tEQJfffdfzalf+klfeaZrDOx3r3VrMWoe/fuffTRR11cXETExcWlRIkSJ4rnGuWi4cyZMz4+PhaLpU2bNsa7Sfny5ceNG5eUlFTAkdes0QYNVERdXDQwUN99N2tP+KVLdfXqrAs8xrMuKCg/29Ls2LHj7rvvNmr29/e/4oLNwYMHvby8LBaLiS/ORYFbvs8SbkSdO3fu3bv3okWL3nvvvenTpxd8wJkzZ27durV69epGLz8AMBhxYY8ePVxdXVeuXJmamtqyZctKlSo57lg9e/Y0cUwPD4/sryMjIyMjI40VuLkVHy8bN8q+feLhIc2aZd14112yYIG4u8uwYZJji6ri6+mnd9WsObtPn4Q9e6Kjo3/55ZfsnW+v6tKlS3/88YfRxExESpUqld1oWET8/f1r1Kjx4IMP/vLLLx07dgwLC3PE823btm0i4ufnZ/rIVwzu0AMVQyVLljTm/P5blSpVvb2v/iNX15K33ro4JWX3iRNDKlcedtW7lS1b6t8D16snFy9K48bSoIEsXlyw0vNo165ddrvdy8urXr16+Xj49f8NIveSk3ecPftR7dozXF1LeXvfUbduaFzcoosXvylfPsDLq5GIi4OOq6pjxowRkZEjR+Z8I8sTY9fNV199NedrbMF5eclPP81q2LDeqFGjAgICDh069MEHH5g4/o3ujRo1Krq7u1gsNb28bNe4j71x44y0tH/ffurUKbvdvnPnznvvvddut3/zzTefffbZpk2bypYta2KFr776amxs7Pjx46tXrx4bGxsdHR0XF3frrbd6eXnldajLly+fOnXq8OHDhw4dMhZEotCkp6fL/57oFtCIEbJqldx/v/j6FnSohQsXLlq0qFSpUuPGjRORwMDAuLi4Rx55pOAn+aNGjfrpp59+/vnnP//8s1WrVkOGDBk/fvzw4cONbVSRV/v27TPabxrfvv3227NmzcrNA/39/bt06TJixIhvv/12xIgRYWFh06dPN1r25+KgEhIis2eL3S4+PjJwoLz9tlSp8s8dvv5aRKRHD3n5ZVm0SNavl1Gj5NVXxSW/b7lRUVHjxo377rvvbDabh4fHM888s3Xr1p07d/7yyy9G61QUvrS0tPr16+/bt2/Dhg2+vr5DhgwZMWKEKaevHTrIrl0SEiIhIeLrK999J66uMmqUrF8vMTEyf754esrTT8uHH8rfG8znTbNmzTZt2vTll1+OHDly/vz5K1euDAkJeeGFFywWi6q+/PLLqampzz//vHFN9Obh5MC/0B0+fNjYWX7r1q3ZNy5fvrx+7nz88cfZj8ru38cslZsYM9yRP8byLmO/R2NSyejRox1xIJvNVrlyZRHZu3evI8bfsWNH1apVf/jhh/++a1ycrlihQUHaurW6u6uIWiw6bZpO/Lt1wMaNOnQoM9yvsGfPnpo1a4pIkyZNjh37n+mfaWlpOTsPxMbGlilT5vrNRg8dOmTsTV+3bt38ba51fca+TwsXLjR9ZP170llYWJiqPvTQQyLy008/OeJAyCW7PSMjI1pVT54cltcdU7t1U7tdExO1UaPCm+F+7tw5YzLgtRaronCkpR3btaua1SqnT7+nqmfOfBgTExoV9eTZsyE7dpQ5fLiPzVbQeVjXYiz5qlWrVr6nt2/bts1isfj6+jpusfy3337r5uYmIs8995xZW6nf6HK2lMkHY/VVuXLlLl26pH+/VQ01ta92RESE0ZRjz549+vei/s6dO+dvtKSkJONyjp+fH3vdFzJjeXrO9RAFZ7frlCnapo0arUQ6dszPIElJSbVr1xaRr776SlX/+OMPEfHx8bni5DDfRo4cKSJt27ZV1djYWKOlOG+X+XP48OEKFSrExMTke4QlS5bUqFFDRLy8vIKDg6//XrB3797AwFlGxw9vb339db1+4/SzZ7Vfv6yp7m3b5m0zTENUVNSgQYOMtyoPD49BgwYZuzeFhYWJSJUqVQo+nxp5deLEieeff974SzHa6P/222+OOFBEhEZHa58++sgjGhmpb7+tq1fr8OF6+rQ540dFRRmN+0Skffv2kZGRxmToChUqmLuysCgodoG7qr755pvyv23+jC0gciPnqZspO9SjiCNwRz5kN1U3PvjVqlVLRLZv3+6IY23evNkIFxwxuKp27dp1wYIF1/rpqVOnZs+ePfPtt7VJk6xlZsYfDw9t1UpHjNAjR7R1aw0P1/37tXt33bWLwP3fTp8+beyIVbVq1Xnz5mW/p6Snp1eoUCHnB62vv/76PxsTnT171livV65cufDwcHNLNQKCkydPmjus5tgx9fTp06pqfAg5kI+PCDBPRsalY8cGRUU9cfr0SNW89WeYPDkrd1i5UmfNUpM6+f2HZ599VkQeeuihwjgYriEzM27v3qZWqxw40MFuT1XVxMSNsbELk5N3JiSE79hR1mqVyMhWGRnmf6ay2+1GE/9vvvkm34MY/Rxy2Rwg3xYuXOjj4yMi3bp1i4+Pd+ixbgjzL1yIy3trhZyMkP21117Tf4XjpsgZ4u/du7fg47///vvGp8sRI0aYVSRywzjj2rFjh7nDTpmiPXqo0eqvY0c9f17PndOYGI2Jye0mlka24Ofnl5mZmZqa2rBhQxGZMGGCWRUmJCQYc3SMkG78+PHGB1s2y8mN1NTUvn375kyZn3322YLsZKuqly9fHjRokJGc3nnnnVft8GME30bz62bN4gcNykPoOXeuVqqkIurrq9Omrc/lX/TRo0ezo3Z3d/eAgIAjR47kvMO9994rIhMnOnAvFlzh4sWLQUFBxmoqNze3gIAAY4VB69atHXTExETt00ePHNFevXTECN20yfxDzJo1y/hc6eXlZWxcYUxVvMkUx8A9e2Z69tS5hISEA7mTPdvlyJEjxkx5EtKbG4E78sGYadWuXTvj20uXLs2dO9dBV+bee+89ERkyZIgjBtd/dUGNioqKjIwMDQ0dNGhQkyZNjM+KlXx91d1dfXy0dWsNCtKwsP9pY3n+vE6cqKNHa0SEqurixf90fWN50N8uX75srIpwcXH57LPPsm8fOHBgPs5oExMTe/XqZZzBzJs3z6wijx49KiIVK1bMvmXfvn2zZ882ZfAjR47I39uxXrhwQdgx1dkuXw47eLDr+fOfq2pMzM8HD3a9eDE/m3CtXq0VK+rDD5td379s377dxcXFw8OD6zROZLenHTjQ2WqVvXtvy8yMVdUzZz7Yvr1EXFzWYp3U1EN79txqtcqePXVTUkz+m1qwYIGI1KxZM3+bhqnqjh07LBaLj4+Pg/ZcyWnTpk0VKlQoV64cz1hTZIfsERERqvrSSy+JSJcuXUwZ3HhqZc+g79atm4gEBgYWZMzz588bu024uLjcZC1rizjj9NX0haFTpujChdqpk168qB076qOPXrm7iaurli2rNWvaqlatWrdu3bp16zZr1szPz69FixZdunRp06aNq6urq6vrX3/9papHjhy5/fbb77jjjoyMDBOL/Oyzz0SkYcOGGRkZaWlpdevWFZGZM2eaeIib2COPPJLznPz06dPHjx8v+LDr1q0z+kq5ubkFBQVlv38dPHgwICDAiNo9PT1feeWVU6fyPHkhJkYHDdIWLS4Y80SvvzP88ePHr4jaDx8+/O+7/f7778Zk5OsvuoUpYmNjR44cWaJECePNon///sZ2uwkJCUbv0N9//90RxzUCd1UdNUrvuMMhgbuqxsTEDBo0SERKlixZsmRJcxceFRHFMXBXVWPNQo0aNRITE/M3gtHO+JlnnjG3MBQ1BO7Ih8mTJ3t6ej777LOFcKy77rpLRHI2HnGcH3/80Tjty1a6dOmePXuGhIQkb96srIsvmLS0tCeffNJiseScn7t58+b8Xe3PzMw0Fry7urrmTPDzJz09fcmSJV26dLFYLLfddptxY3x8fO3atS0WS85ma/lmNILo2bOn/n0qb+4+wMirCxe+sFrl+PHBqnru3ASrVU6efCMf45w7p6VKqYguX252iTnY7fa2bdsWwsRkXI/dfmnFUKtVdu2qnpZ2UlWjo2dbrZZt21xjY3/Nvld6+tl9+/ysVtm5s3xCwgbzDm43dn348ssv8z2IcXo/bNgws6q6voMHD27cuLFwjlUcvPjii9khe3R0tNExY9GiRQUc1miYK383+rgifC8Io+WgiFSvXv3mW0dfZBmd9w4dOmTusFOm6KJFumGDvvSSduyoL72klStr2bJatuz/LAEtV+5aOxRIjRo1atWqlXOZoyl5bk5paWktWrQYP3680cjIaDt+6623Mr8hNyIiIipXruyIlDkpKSkoKMj4kHXbbbf9+uuv159jnleLF6+oXr26MRFnzJgx/76Kc+LEicDAQE9Pz+wjXv8fiLFd5yeffFKQqnB9KTbbT+fP99+xw93T03hru2K5/IQJExy3SCU7cE9N1YYNHRW4q6qxF52xJa+rq+vQoUNvsgs5xTRwt9lszZo1s1gs5cuXr5F3VapUcXd3L1GixJnCWSMN5yFwRz7s2rXLw8PD29t79erVDj3QmTNnLBaLt7d3cnKyQw+kqtu3b69YsaIxwblXr14hISHh4eE0nzWX3W6fN29ezZo1zVoPMXnyZOMMJjAwMB9nY5mZmeHh4YGBgdn7rxoNsl966aXMzExVnTZtmvF54Nlnny3gk8FYSW3sVfjRRx+JyBtv5CfehVnMCtxVdcwYFdEmTdTUiXr/Y/bs2SJSqVKly9kLaFD4goLU3T16ctfk5F2qGh+/ets2D6tVjHUSOdlsiYcO9dq2zfWddxaGhppz8G3btrm6upYsWfLs2bP5GyEiIsLFxcXLy+u0WW1KUbiio6ON1mSLFy9W1U8//VRE6tWrl+8VD4aPP/5YRJo0aWJMCjbC94Jc18kWGRnp8vduhj169KBJaeEwNs4xPcs2AndVHThQmze/yh0yMowOM7bTp08fOXLkyJEj27dvt1qtW7ZsWbFixaJFi4zT7J9//tncwq7j4MGDRntunnu59Pjjj//6668OGnzp0qXGmoNSpUoZwfcLL7xgVgf/y5cvBwYGGi84TZs2NRZSqOrJkycDAwONXiUuLi7+/v7GBOrrW758uYjc1rJlYsFageGq0u32eefPd9u1y89q9bNa35g5888///z33VJSUoxXs1CzTqRySEjQ7Knzmzfr0aOmH0FVNSkpqU6dOiIybty44OBgYy/ratWqXaef7Q2nmAbuqvrKK68Y6/jyp2TJknfddZezfwk4XM7A/dChQ61atXr66afNGjznyQ2B+83EbrcPHjxYRHx8fNavX++4A02bNk1EHnzwQccdItuAAQN++eUXR+zDiSu89tprsbGxZo0WGhpqnEb37ds3lxdmbDabkbNXqVIl+12vSZMmwcHBX3zxxRV9h7M7EXft2jUuZyuhPOrSpYv83VfUmGRqVrMa5I+JgXtamtavryJqRkJ1FcnJybfccouIfGd0z4VTfPutiqi7u7GWITk5YseOMlarnDp19f7UdnvGggXrjDYLX3yR/8OmpKRkf2102S5RokRQUFB0dHReh+rXr5/83QQcN6hJkyYZM3ZTU1MzMjJuv/12KVgX7HPnzhnh1/Lly1V1zJgx2eG7KQUb/d8MX3/9tSlj4vqMPubnrr/pZB6tXq2rVunu3aqqFy7oBx/kZ5Cvv/5aROrWrVto++j27NnTmDNROIe7CWQ6Ml822oS2adPmu+++a968eZUqVQqyH8lVrV+/vkGDBiLi5ub26quvDh8+PGfUnqdPeW+GhbXZvv37/F7hxlXZVFfExDy0Z48RtT+1f/+6684j+eabb4yoytzeU6p64oT275/19ccfq2P61ujrr78uInfffbfxL2vXrl3GDgEi0qtXL2Of3htd8Q3cjT4MM2bMOJF3u3btcnNzc3d3L8jO1Lgh5AzcTXTo0CF/f/8xY8Zk30LgfpOx2+0DBw40ZgRfdQ8cUxi55NSp+WmsjOJj9erVZcqUEZH77rsveyeSf8vO2Y1tTgx16tQJCgrK2fNx8+bNxoT3Fi1aGJ9Xt2zZYtzStGnTfO+naqx1NR5uzNfg6o5zmRi4q+qCBcZSei1wD4arMPYebN68OYvinWbxYnVzU4tF/+//VFVPnkwZ0mv7FveoqP6q15s4OXlyVrOFwMDc7itot9uz57AnJCTUrl07OwHZsGFDdnxZokSJwMDA3M9237t3rzG9/eb4gFdsZWRk3HbbbfL3hn4rVqwwpknle93DU089ZVyx1n+F76ZYs2ZN9huul5fXbiOyhSOVLVtWREz8FP/ddyqiL75Y0HEyMzON/vKmrJ/4Tz///LOIlC1bthC2rEBuGNtgTpo0Sf/ehcIRz4TExMShQ4ca73fZUfv+/fvzOs6W+Hg/q7XTzp1Mci+IXy9eHH748MioqCknT667fPnxvXuNqP2RiIgVMTH/ufAkPT391ltvrd64cZjZm1IUQuD+119/ubq6urm5bdu2LfvGzMzMTz/91OhZ37Rpi+nT9UZfflNMA/ejR49aLJaSJUvmnBeTJ507dxaRWbNmmVsYihojcK9fv75ZA8bFxb355pvZ62WypzDcfffdBO43mczMzMcee0xEKlSoYPrWTKqalpZWsmRJccCqWNx8IiIiatWqZcz7+/da0YiIiODgYGMdq6F27dqBgYHh4eFXHe3IkSPGBJk6deoY5+hHjhxp2LCh8cDr78h0Lenp6bt27VLVixcvGmEZ4alzmRu4q2q3blm5qrlOnjzp6+srIg5dToTr+esv9fVVEf3wQ1XVy5f1jjtUJH34U3b7f7fymDVLPTxURPv102stwomJ0exV9Zs2bbrjjjuyf/TvqaB//vlnr169LBaLiPj6+gYGBuamA+Sjjz4qIq+++up/3hNFnBGylypVygjZjTm8L7zwQj6GslqtxlbMxvvm008/LSIPm70HtLH3gKFp06b5/nCKXDKW5eV7I7cr7N6tPj4qknW1sYB++eUXEalYsWJBlgzmRlJSkrEyjFk7Rcezzz6bvVZvwIABIvLDDz846FgbN2788ccfAwMDC/IR9YUDB/ys1un0WC6AqWfObI2PV1Wb3f5IRISf1dpr9+4FFy/ach0zL9m9u8327b12704zNZk+cULr1NGAAA0I0ObNzQ/cMzIyjAnQV9176fjx4z179vTzWymibdpovj5ZFhXFNHAfP368iAwYMCDfI3z11VciknNrO9yUTpw40bp1a19f3+Dg4AK2gLTb7TNnzjRaNFgsloCAAOOTQEZGxtSpU0uUKFGhQoUOHTpERUWZVDucLz093ZhtV7169QJud/NvRvu8O++809xhcbM6c+aMcWZTvnx5Y5s+I2c3dg8z1KpVy8jZ/7Ob56VLl1q3bm3MjVq3bp2qRkdHG3solS1bdu3atfmuc+nSpSLSrl27fI8AU8RETTu0qM65XW+pavThzw8tqnN+z3sFGXD3bnV11apVbfv2mXmN0Liu2T97Hg4K35o1Wrq0Pv+8qmp6unbtmtWzP9cTSFeu1NKlVUSHDtUdO7JunDZNs1upf/utPvZY1td2u71Nmzb/uV/ljh07/P39c8bu1+nMvm/fPhcXF09Pz3yv0UGR0qNHDxEZNGiQqh46dMjT09PFxSW7Z3Eu2e12423unXfeUdVt27blDN9N9NNPP0kONDVyNGPvmewODCEhIaGhofnbDCk+Xhs1UhEdNMi08oxnnbGljeMMHz7cWKrI5Iaiw2hrNn/+fP272VRYWJizi7qeHQkJflZrhx074pnknl9Tz5wZe/z4j+fObYuPD798+ecLFzLymJvbVPvv3etntc41damKo2e4jxs3TkRuueWW61z7DAvT6tWzuhUGBWnBojinKaaB+3333SciBWnGf+7cOVdXVy8vL6OJLW5iX375pXEGXL9+/Xy/7W3ZssV41onIPffck73xxYoVK4ylryJiTHv39vYeOXKkWdMu4HTJyckdO3Y0osyC7Htz7ty5+fPnH82xZUlgYKCIvPvuuyZUieIhPj6+W7duxrr1GjVq5MzZhw0bltcVNikpKcacUE9Pzzlz5qhqamqqkX56enrmuwO70R7k9ddfz9/DYZovvlARHTxYVXXCBBXRAm9jGxy8s2TJ6t26dTOhPFVV3bhxo7FxtFm7iiGfDh3SjAy12/Wpp1REq1bVPP6N7N6tjz6qkybpLbdkBfU1a2bNmFfVmBgtU0bzcWa0a9eu7Njd09Nz0KBBV+0Y079/fxEZbDzbceO7ImQfNmyYiLRq1SpPO0POmjVLRCpXrhwXF2dc5hGRESOuvidBQWRkZBhzjQ0Wi6WIp2w3NJvNZrTRML6NiYnx9PQUER8fH39//7CwsNzvAG+3a79+KqJNm15zdU4+bN682WKx+Pr65mZpTv5ERES4u7u7urpu377dQYdAPhjbkBgdq9q1ayciBZm/UjheOnDAz2qdyiT3/Jp65sz8Cxf2JiaeK8DODWtiY/2s1i47dyaZd+XDoYH7sWPHjMWp/9mfLTZWAwPVxUVFtH59Xb3azDIKR3EM3E+dOmWxWHx8fAqYabZt21ZE5s2bZ1ZhKLJWrlx5xx13GOfBnTp1ylODxVOnTgUEBBgf9qpXrz5z5kzjdN9o426MWa9evdDQ0NOnTw8aNMjYPbxatWpTp05l0sHNISkpyXi5qF+/fp66iJ45cyY0NDQwMNDPz894Chl9/QzGxOSr7loOXEtGRsaLL75oBAcVKlQYNGhQbuazX0tmZuaQIUOMgCA4OFhV7Xb7W2+9lfOWXEpJSQkLCwsICPD09Kxfv76R4MOZHBC4R0dHly9f3qxJWzabzejG9kH+9qdDwa1bp6NG6bffZqVNU6aoiJYsqfkNcT7/XIOC9KWXVFXvuksbNfrnR0FBevhwPsvcvXt3QECAcX7l4eExaNCgnDPZDx486Orq6u7uzmWbm8kbb7whIq1bt7bb7ZcvXzY2GgkNDc3lwxMTE42dRWbMmKGqP/zwQ3b47ohqJ06cmHOSe8WKFR0XthZzKSkpxrQD49u4uLgpU6Zkb9Nn/C0HBgZu3rz5P4cy3hjLlMn/S9O1PPzwwyLykvFSaDa73d6hQwcRCTS9xRsKxngebtq0SVWbNWsmIkX/isiuhAQ/q7X9jh1xZm/aWUxkt5QpoGf27/ezWk3cwzYtTQ8cyPr65MncL1nMFWP6V0BAQC7vv3atNmyoIuriooMH6/vvq/H/LDxc9+zR77/Putu2bZqjG3xRURwD988++0xEHnnkkQKOM3nyZBF59NFHTakKRZzR+KVChQoi4ubmNmjQoOvsPWhITk4OCQkx9nzw9vYOCgpKSEhQ1cTExODgYGOjEqNZTc52jRs3bjQ2UBWRli1bbqWr+03h8uXLRo/OO+644/oL4SMjI6dNmxYQEJBzupOIlChRomvXrsYyQ1Xdv3+/iJQrVy6TRXzII7vdnpKS8ueff5p1SW/y5MlGkhUYGGiMOXHiROOW3/9rRkRKSsqvv/76+OOPGzMdjHlnX331lSmFoUAcELjr3+dO9erVK2CXNlWdNm2aiNSoUYM1Yc7x0086cKAeOKC//KLdu6vdrnFx+sADumxZvof8/HNduFCffVY3bdKOHbV2bY2IMK3ePXv2BAQEuLq6GrF7QEDA4cOHVfXJJ58UkRcLvuMhipK4uDiji6MRsn/33XdDhgyJjo7O5cPtdvucOXP69u1rs9mSkpKMTVD+z5Qu3VcTHx9v7G2erVu3bvm+Fo7riI+PL1GihKur6xUb1Rw/fnzy5MlGypm9+C8wMHBHdper/7VpU6y7u1osunCh+UUeOHDAmIHuiC2gvv/+exGpUqVKbGys6YOjIBo3biwixl+6sa/SYdMv5jjA4IMH/azWaVwjzJefL1yIMOMkdktcnNHep+hf+TBWj5UvXz5P2zWnp2tIiHp66lNP6S23qLEQ+tNPdcEC7dgx6z7fffdP+F50FM/A/ZkyZbx/+umnAo5z8uRJY6Z8UlKSKYWh6IuOjg4MDDR6/5UrV27y5MkZ13hR+/nnn42zc4vF8thjjxnbWl6rjfsV7HZ7aGio8fCJHTqov7+yK+aN7+LFi02aNBGRe+6554pWVJcuXfrss8/8/f0rV66c8+NW2bJle/fuPX78+M2bN+d8pmVkZBj9ZJ588slC/z2Aq/j555+9vb1FpE+fPsZ7Ymho6CuvvHKt+2dmZq5YsSIgIKB06dLZT/gmTZoEBwezj0VR4ZjAPSMj4/bbbxeR8ePHF2Sc+Pj4qlWrisjcuXMLXhXyo2NHTUjI+vrpp02Jxo3A/fx57dZNO3TQOXN0//6Cj/o/IiIismN3d3f3Pn36GNPbeeW5+UydOlVEatasWcBPaiNHjhSRu+66y6ELT42e2jnlXNQIE61bty77f/Ltt9/+8ccf52zYuG3btmHDhhnrGwzNmzefMGFCzo9sFy5cqFGjRrt2c0aMcNSsl5deekkcsENvdHS0sdqj4EkITFetWjURMRZgGZP8/nN6X1GwJzHx29OndycmHkxOPpicbO7Wncg9o73Pl9ferqYouHTpkvESNHPmzHw8PCJCL17Url316ad1+/aswL1lS42K0qgoHTeOwL0IyMg4v22b644dZZOTTVgSaCz8+fXXXws+FG4g+/fvv//++42TsEaNGl11Cue7775rnKKtX7/euGXr1q0tW7Y0HtWiRYv/7AQSHx8fEhycVrJk1gLtsWNv1K0i8LdTp04ZExZatWqVc0rmyZMns0/rK1eu3KtXr5CQEKvVmvOjXUZGhtVqDQkJ6dWrlzENqnXr1gXZiAIw159//ml8PLj33nuvNWchMzMzPDw8MDCwYsWKV+Tshw4dKuSC8R8cE7ir6sqVK0WkZMmSBemZYIRTeW3KDDPde+8/X7/1lprRatYI3FX1q6+0ceOCj3dNe/fuDQgIMOZPeHp6Dhw40IEHg5PYbDZjceGH2bsB5N2JEyd8fHwsFkvO2dCOcOrUKWMzp2yenp5Fv6HEDcpqtQYGBuac5uLn5zd58uRz584Zd7DZbFecrmT3GrbZbEY/hJYtW+a+4XtenT9/vmTJkiJi7hNv0KBBItK+fXveOougzNq102vXzoiLU9XTrVodbt06Pcci+KIsMinpucjIGWfPzjh7tujPsL5Z7U5M9LNa++zZk1mE/3U/9dRTItKhQ4eCvAR17apnzmjXrjppki5YoLVr63vv6Xvvae/eBO5FwIUL31itcuhQb1NG++STT5hkWmyFhYXVq1fPOAnr1avXFWu+EhISZsyYYQSm12rjnisnTmhAgIqoiNasqfm6GIii4/jx40avmK5du+bsqDB06NDp06cfyG6Wpqqq8fHxy5Yte+edd9q0aWPs6ZTtWld6ACc6dOiQsbVA3bp1cz6Zsz+45vxwa+TsVzznUYQ4LHBX1V69eolIvlPOw4cPGzsibt261aySkGePPvpPg8/771czOofu3p21oi8z0yGNGq4QGRk5cODAo0eP5mldM24gGzZsMPZVPp7fpaLGfktPPPGEuYVd1RNPPHHFJPeuXbsWwnGLLWMSwKBBg4xoW0RcXV1bt249derU7KWoqampCxcufP7557NbOBpbu1eqVOmqOzCbKDg42JjEYFY4vnXrVhcXFw8Pj3379pkyIMxks6nFoi4uarNpcrKKqKens2vKrcikpAknTji7CuiKmJiVsbGhFy6EXrjwlxmt4c21Zs0a4x25gLOsjDfGyZPVz4+WMkXPwYNdrVa5dGmGKaNFRUWJSOnSpdMKsK0wblzp6emTJ08uVaqUiLi7uwcGBl6xmZLRxt04jTPauMfn77Vv9Wpt2jQrdu/YUXftUlVNSdGoKDUuIyclafaM6YsXtQhf2MTBgweNtkJ9+vT5d0ui+Pj4FStWBAUFtW7dOudcJxcXlyZNmgwaNGjmzJknOKdBUXX27FljRmH58uXXrVtn5OxG64+cOft+0/tEwHR79uiXX+rq1XrkiG7dql9+qRs3mjX2gQMHPDw8fH19Lfnl4uLy/PPPm1UP8mPvXu3SRceN06ee0rFjTRnyww/171mk2qaNKUOiuPP393dxccn3S42vr6+Pj0/OXXYdZ/v27VcE7g7aNhNXMLZt9/f3zz7x9vLy6tWrV2ho6BWf8VeuXOnq6uri4vLHH384uqqEhATj88Ivv/yS8/Yjf4uJiYmJiUnIbu11XZmZmc2bNxeRkSNHOqZeFExsrIpoqVKqqufOqYhWrOjsmnIrMinp4YiIt6OiiN2dbsjBg3/Fx+9MSDhRxFojJCcnG7OyQkJCCjiUEbhnZmrz5lcG7p9+qmPH6rvvFvAIZipegXtmZuy2bR7btrlnZOR2z5z/ZGyusmTJErMGxA3nzJkzgwYNMnYIrFq16tSpU41JEGFhYbVr186eAl/Q9qA2m86cqRUrqoi+9ZbOmqUPPqjBwdq5s27dqrNna/Y2g927KzvIFW27d+8uX768sT7GZrOdO3cuLCwsKCjIz8/PeCJlT7Tx8/MLDAwMDQ3N/U5fgHMlJCT06NFDRHx8fHKuyXj//fcjTNwAEYVg/Xrt2lWDg7VHD/17x2azrFy58qGHHpL8mjdvXvbafzhNaqru3q3mNZklcIfpTpw48cMPP+T7pebJJ59cvXp1oVXbuXNn47glS5YcO3ZswTeXRp7ExsbOnDmzV69exjYPIlKmTJmAgICwsLDMzMwTJ04YrfNGjx5dOPV8+eWXItKgQYOcvWty9pfPycfHp2zZsmXLlq1du3bdunUbNmyYcyhjx/JatWqxzXgRdfx41nJ2VT14UEW0Xj1n15RbzHAvOoYcPHgpPT0+MzOjiM2/DAoKEpE77rij4J24shtSxsZqUpJeupT1bXKyJiWpzabvvqtFpxuTRVXzfQpyw4mOnnHs2LOlSnWvX3+ZWWOOHj36vffee+6557777juzxsSNaOvWrUOHDt28ebOI3HHHHe7u7sZElebNm0+ZMqVt27bmHCYmRsaNk2HD5KGH5M8/xWKR8+clIECeeUbi4uTll0VE7r9fFiwQX19zjgjH2Lp1a5cuXRISEipUqHDp0qXs2729ve+999527dq1a9fuvvvu8+XvETegzMzM119/vVSpUrNnz37ooYf8/f3btGnj7KKQdx06yG+/SenSkpkpLVvKli2S44pgwRlnovl7rIuplaCI+OgjWb9ejCUxmzfLwYPOLgg3C7vdnr8HGvPczS3mOnbu3PnRRx+VKlVqzJgxOReHoZCdPHly7ty5P/30086dO41bqlevbrFYTp069cADDyxevLhw3oMyMzObNm26f//+r7/+2thGVURatmx54cIFEYmNjRWR9PT0pKSkfz/W09MzNTXV+PrcuXONGze+fPlyWFhY7969C6Fy5FlEhNxxh9x2m0REyLZtcvfd0ry5/GvVS9F0IDl5cXT0sJo1nV0I5NVDh6p6eLhYLH0qVGiUY+aTc+3Zs8fPz89ms23YsCF7U0MHiYiQ9etl8GCHHiQPilfgfvhw77i4xbfc8m2FCi+YNeaBAwcaNWpUvnz5c+fOGZsvodhS1Z9//vnNN988c+aMm5ubj4/Pe++9N2TIkOxZEqY5eFBGj5ZZs7K+vfdeGTpUPvtMGjQQEVm1Sg4eJHAv+tatWzdp0iRj5lTLli1bt27dpk2bNm3aeHl5Obs0wAQ2m838Vz8Upvvuk82bs77u21c+/1yuMbEOMMVHH8m990q3biIibdtKeLizCwJQvO3fv3/evHk//fTToUOHmjVrlpCQsHnzZmOee+FYsGDBI488UqlSpcOHD2f3mr+qpKSk9PR0Ebl8+bKq2u12o4GDiAwYMGDOnDkPP/zwL7/8UhhFIx82bpQ2baRlS/nzT1mzRjp1kvbtZe1aZ5eVK7GZmUdTUu667vMThePVQ4cm1KvnWZRmpRhBx5YtWwIDA6dMmeLQY+3aJa+9JvffLy++KGXKOPRQuVWMAmKbLSEhYaXF4lqmTP6XMP9bw4YNmzRpsm/fvnXr1mUvA0TxZLFY/P39e/ToER4e7ubm1qJFi9KlSzvkSOXLy8WLWV/bbGJMvXn66X9muONG0L59+/bt2x86dKhu3brkkrj58Ky+4amKatZbTHS0lCvn7IIAACg8jRs3/uCDD4KDgzdv3uzt7d2oUaNCnhbTr1+/1q1bb9y48dVXX3366aeNncO8vLy8vb1FpFSpUkZP+dKlS/v6+hrrYsuWLZtzhHXr1s2dO9fHx2fSpEmFWTnyJj5eRKRUqSu/vhGUdXMrS9qOa7BYLJ988sno0aNHjx7t6GPdeaesWePog+RNsQrc48qU6We3J7i5VTJ35H79+u3bt2/BggUE7hARX1/f+x0deZcvLyVLyoIF0rq1fP219Ovn2MPBkerXr+/sEgDgarp3l/Hj5amnZOVKqVNHvL2dXRBucp06SbVqWV+/+KJTSwGAv1ksFke3QbiOsWPHPvTQQ7Nnz545c+b17+np6Wlsn1OyZEk3NzeLxVKmTJmjR4+qanBwcPbWYiiKbuTAHUXHmzVrehSl6e2Gdu3a/fHHH86uwjmKS0uZixe/iY9f5uparmbNSa6uZUwZ88KFC5UqVRKRXbt2NWvWrHLlyqdPn2ZCHwpJWpp8/70cOSItW0q/frJnj6Slyd13i4j8+KM89pi4uzu7RADAjUxV5s2Tv/6SRo3k2WeFvnkAABS6xMTEfv36paenJyQkiEhKSorRnz0+Pt5ms9lstngjor2aevXq9e/f//3333fns2FRduyYbNokVatKhw6yZYv8+KPce688+aSzywJQIMUicLfZ4g8f7tGwYbhqpsViwjtNXFzcyy+/vHXr1u3btxsLuxo2bHjw4MH169ebtjcmAAAAAADAf0lNTU1JSRGRhISEzMxMu90eFxfn5eV12223Obs05MK6dTJhgpQtK5cvy/jx0rChswsCUFDFYrKSq2tJuz313LlPypd/2t29SgFH27hx4xNPPHH8+PHSpUtHRES0atVKROrUqRMVFbV3714CdwAAAAAAUGi8vLyMFvNXtHHHDcBmk6AgWb1afHzk6FEZMkSWLHF2TQAKqsj193EMS8OG4Z6etQ8f7p2WdlQ1PX+j2O32KVOmdOzY8fjx4y1atNi2bVurVq1iY2P9/f2XL19esmTJRx991Ny6AQAAAAAAcHM6c0Zq1hQfHxGROnUkOtrZBQEwQTEJ3NXFxbNs2cfKlOmVmLguIqLhhQtT8jrEqVOnOnXq9Nprr2VmZgYGBm7cuLFevXpbtmy5++67f/7551KlSn3++eflypVzRPUAAAAAAAC42fj4SFKSs4sAYLJi0VImM/PiiROvWixuImqxeKWnHzt58rXExI233PJtLjdQ/e23355//vno6OjKlSvPnDmze/fuxmz3N998MyMjo0WLFnPmzKlXr56Dfw8AAAAAAADcLMqXF7tdtm0TPz+ZM0fuucfZBQEwQbHYNPUKsbELjh9/wWaL9fCoWafO7BIlrtd1PTU1NSgo6PPPP1fVbt26zZw5s0qVKqdOnXriiSfWr19vsVheffXVCRMmsOs3AAAAAAAA8iYmRsaOlbNn5bbb5I03xNPT2QUBKKjiGLiLSHr68aNHn0hM3GixuFapMrJq1fcsFtd/323//v39+/fftWuXp6fnuHHjAgMDLRbLv2e7F379AAAAAAAAAICippgG7iKimnHmTPC5c+NE7CVLtq9RY7aPT/Wcd5g+fXpgYGBKSkqjRo3mzJnTrFmzq852d1b9AAAAAAAAAIAipZhsmnoVFot79epjGjRY6e5ePTHxdOPGfvPmzct5h4SEhJSUlICAAKvV2qxZs/379993332fffaZh4fH5MmTly1bRtoOAAAAAAAAAMhWfGe4Z8vMvDhq1FujR88QkcGDB0+cONHLy0tEVHXt2rUdO3YUkVmzZg0ePDgpKSl7trtTSwYAAAAAAAAAFDkE7iIiqjpt2rTXX389OTm5SZMmc+bMadq0qfGjuLi4F1980Zj8HhAQ8PXXX/v6+jq1WAAAAAAAAABAUUTg/o+9e/f2799/z549Xl5eISEhQ4cO3bx584ABA44ePVqqVKlvvvmmf//+zq4RAAAAAAAAAFBEEbj/j6SkpKFDh3733Xci0qRJkwMHDthstlatWv3000+33HKLs6sDAAAAAAAAABRdxXfT1Kvy9fWdPn36ggULypYtm56ebrfbAwMD165dS9oOAAAAAAAAALg+Zrhf3bFjxzw8PM6cOXP33Xc7uxYAAAAAAAAAwA2AwB0AAAAAAAAAABPQUgYAAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAABFyAcffFCvXr0ffvjB2YUAAIA8I3AHAAAAAKAIOXv2bFRUVHJysrMLAQAAeUbgDgAAAABAEZKZmSki7u7uzi4EAADkGYE7AAAAAABFiBG4u7m5ObsQAACQZwTuAAAAAAAUIQTuAADcuAjcAQAAAAAoQjIyMoSWMgAA3JgI3AEAAAAAKEKY4Q4AwI2LwB0AAAAAgCKEwB0AgBsXgTsAAAAAAEWI0VKGwB0AgBsRgTsAAAAAAEWIMcOdHu4AANyICNwBAAAAAChCaCkDAMCNi8AdAAAAAIAihMAdAIAbF4E7AAAAAMAJbDbbiRMn/vzzz7S0NGfXUrQYPdxpKQPcAKKjZedOSUx0dh0AihAumANAITp0SJYtEy8v8feXMmWcXQ0AAIDTpKSk9OjRw8vLa9myZW5ubnfeeWfr1q3btGnToUOHihUrOrs6J2OGO3BjmD5dVqyQe++VESMkKEg6dnR2QQCKBIuqOrsGACgedu2St96S0aPlwgUJCZE//hBvb2fXdCWbzbZly5ZWrVo5uxAAAHAzy8jI6Nev36JFi8qWLVu1atXIyEi73Z7900aNGrVs2bJNmzatWrVq2LChxWJxYqlO0axZs127du3cufPOO+90di24saWmpq5bt27lypUDBw6sXr16iRIlnF3RTSQ9Xdq1k02bxGKRy5elTx9Zu9bZNQEoErhgbo7MzMw9e/ZcvHixQ4cOHh4ezi4HQJE0bZp8+KG0aCEisnu3/P679Ovn7Jr+cfHixfnz5+/cufP48ePLli0rhp9sAQBA4VDVF198cdGiRRUqVFi/fn3jxo0TExN37ty5cePGDRs2bNiwITIyMjIy8v/+7/9EpFSpUvfcc48x+b1169beRW++giMYLWWY4Y58O3r06IoVK1auXLls2bKEhAQRmTFjRu3atZcvX16uXDlnV3ezOHVK6tQR43NTmTKSkuLsghwuOTl5y5Yt69atW79+/bvvvnvrrbfecsstzi4KJktLSzt8+PDBgwcPHTp06NCht956q1q1ar6+vs6u6wbD+3f+JSQkbNmyZcOGDdu2bduwYcPly5erV6/u7u7+7bffdu3a1dnVASh6LlyQqlWzvq5WTc6fd2o1WeLi4n777bf58+cvX748IyOjSpUq+/btI20HAACOM2zYsP/7v/8rVarU0qVLGzduLCIlSpRo06ZNmzZtgoKCbDZbZGRkdvh+9OjRlStXrly5UkRydp5p3759pUqVnP2rOIrRUoYe7siT1FTZtOl0WNiEpUuXHjhwwLjRYrH4+fm1atUqLCzMarV26dLljz/+qFChgnNLvUlUrPjPZzqbTW7Sz1BJSUmbNm3asGGD8bKcmppq3L558+Zq1aqtX7++WrVqzq0Q+ZaZmXnixImov+3du3ffvn3Hjx+32WzZ91m6dGmbNm3mzp3rxDpvRLSUyQNV3b9//6ZNm/78889NmzZFRkbm/L936623enp67t27t1SpUmvWrLnrrrucWCqAoui99+S++6RnTxGRYcOkVy8n9vhLTk5evHjxnDlzli1bZpwzubu7u7u7T5069cknn3RWVQAA4Kb33nvvjR492tvbe+nSpe3bt09ISChZsuR17n/8+PGNGzf++eefGzZsiIiIyE4BSpQosX379vr16xdK1YWtXr16UVFRR44cqVu3rrNrQZGgKvHxUrq0iEhKiri7S/b6h6NHZcUKWblSli8XL69zFy9WU9USJUp06NChd+/ePXv2rF69uoicPHmyc+fOhw4daty48apVq6pmzwRCQTz/vNx3n7RrJ99/L9WqydChzi7IHDExsmGDrFsnJ09u+uWXttkvvK6urnfeeWe7du1atGgxceLE7du3N2jQYP369ZUrV3ZuwfhPdrv9xIkTh/5mTGA/duyYsaAqJ3d39zp16tSvX79BgwalS5eeOHFiQkLChAkThg0b5pTKb1AE7v8hKSlpx44d27Zt27hx45o1ay5dupT9I3d396ZNm+acXqGqzz777MyZMytUqBAeHt6oUSMnVg6gyDl/Xp54Qnr0kEuX5ORJmTWr8CdB2Gy2NWvWzJo1a+HChcbaUhcXl5YtW/r7+/fv37906dKenp7Zdw4KCgoICLj99tsLuUjkXlJS0rhx4+69996exoWcwmWz2dLS0nx8fAr/0LjppaSkuLu700sBuPl88cUXr776qqura2hoaN++fU+ePNm2bdshQ4YMHz48Nw+Pj4/fvHnzn3/+GR4evnXr1rS0tAsXLpS5GTeiv+WWW06cOHH8+PFatWo5uxYUCampUqKEbNwo994r770nnTtLRoYsXSq//y5/z2UXi0WaN5e+fT/r0MHvvvvuc3V1vWKQ8+fPd+3adc+ePQ0bNly1apURxKNAbDYJDZXDh+W++yQ1VRYtktdfl8aNnV3Wf9u+Xbp2lchIqVhR+vWT6dMlI0O2bJGNG2XlStmxQ4xtNXx9k2y2CrfddpuRfXXu3Dm7JdHly5c7deq0Y8eOpk2brlmzhlZFRVZ8fPyMGTPeeuuttLS0K37k6upaq1at+n9r0KBB/fr1a9eunfMkPCwsrE+fPi4uLr///nu3bt0Kt/YbmeJfjh8//sMPPwwePLhZs2ZXvEXVqFHj0UcfnTx58ubNm9PT0//92PT09B49ehj3PH78eOEXj6Lg66+1T5+sr3v3dmopKDpeeUWHDtUTJ/Svv3TfvkI+uM1mCw8PDwwMzLnyukmTJiEhIadPn77qQ8aMGXP77bdfvny5kEtFnnz99dciUr9+/bS0tEI+9I8//vjee+95eXn16tVr5syZPFVgojFjxgQGBpYtWzYgICAsLCw1NdXZFQEwx6xZs1xcXCwWy/fff6+qZ8+evfXWW0WkY8eOmZmZeR2tY8eOIvLTTz85oFIn27t3b+nSpUXkl19+cXYtKCpSUrRdO+3aVTMydORIHTZMRbL+lCihvXrp1Kl68uR1Hp4SHh6uqhcuXDB24q1du3ZUVFTh/QI3q+XL9amndPFiVdWnnlIRnTLF2TXlyrZt2r27Pvecqmrfvv/zjBJRLy9t317ff19XrNDExGueiV24cMFoC3bvvffGx8cXXvXIi2effdbIAcqWLevn5xcQEBASEhIaGmq1WhMTE3MzwjvvvCMi5cuX50Uj95jhfqWIiIhPP/30+++/N751c3Nr0KCBsT+Pn5/fbbfd9p8jpKSkdOvWbcOGDQ0aNAgPD7+JGwviWiZPloUL5ZVXxN9fOnWS1audXRCczm6X0qUlKUkuXZJy5aRmTalSRVatklKlHH3kvXv3/vDDD7NmzTp79qxxS5MmTfz9/Z944onrLMGOi4vr3r37L7/8Qj++Ii4zM7N58+YRERGffPLJm2++WWjHPXDggJ+fX1JSkouLi91uFxFPT89u3br17dv3wQcfZHoLCmLx4sUPPvigq6ur0b9YREqXLt27d+9+/fp17969mGyWCBNdvnx5586dTz75ZOnSpcuUKZPzv9mu+BELdxzkt99+e+SRRzIzMydNmvT666/HxcV17Nhxx44dLVq0WLVq1fW7ylzV5MmTX3/99ccff3zOnDmOKNgpVPXzzz8fMWJESkqKxWJxdXX96KOPgoKC2F8Hqany6KPy4IMSHy+xsXLnnTJ2rNx/vzzwgLRsKf+ay/4/MjIy+vTps3Llyjlz5vTt2/fy5cv333//li1batWqtWrVKuO6F/Jp7Fh55x15+WX56iv57jsZOFD69ZOff3Z2Wf9t+3YJDZW4OHn8cfnsM+neXd54Q5o1kzZtpEsXadNGvLyu9/C9e/cePXq0V69ep0+fbtu27dGjR1u3br18+XK21ixq4uLiqlevnpycvHPnzqZNm+ZvELvd3qtXr6VLlzZv3nzjxo2ckOeKsxP/IueBBx4QkRYtWoSEhKxfvz45OTkfg1y+fLlZs2Yics899yQkJJheJIq4Tz/VX37RDh00Lk47dnR2NSgK9u1TEa1dW1X1+HEV0QoVHHrAvXv3jhgxonbt2tmv9rfeeut77723d+/efIxmt9vj4uJMLxKmMDaRK1my5JkzZwrniKmpqc2bNxeRp5566tSpU59//nmHDh2yF4S5u7vff/8D336bef584ZSDm8q5c+eMHqATJ07cv3//6NGjjSebwdfXd+DAofPmKedWyL2PPvrIw8MjT5+PPDw8KlasWL9+/RYtWkyaNMnZv8FNYtWqVV5eXiLy4YcfqmpSUlLbtm1FpEGDBufz/oZx9OhR478iUrp06cJf5uUg586dy+4R9+STT7799tsuLi4i0rlz53Pnzjm7OjhZSor27q02m3brpgMH6oYNeXv4yJEjRcTV1XXmzJmqevny5VatWolIlSpVIiIiHFJxMbFxo4robbepqh48qCJasaLa7XkdZuDArC8OHdJx40yt8Bq2bdOgII2O1o4d9cEH9exZzcjI7WNPnTpVoUIFT0/PZcuWqerx48dvueUWEenatSsLE4uaL774wngfKeA4MTEx9erVE5GAgABTCrvpEbj/j4SEBC8vL1dX14sXLxZwqPPnzzdo0EBEOnXqxCtOcfPpp7p4sS5frsOGaceOmpCgV+s/ZJr09LMZGSRbRdvs2SqiDz+sqrpwoYpo9+6OO9rRo0dfeukl49Na9erVAwMDw8PD7Xk/7cv2/vvvDxgwwMQKYa7evXuLyPPPP184h3vttddEpF69ejkvw1y6dGnmzJm9evXy8PBo3ryTiLq4aOvWOnmynjpVOHXhhmez2bp06SIi3bt3z/mSdezYscmTJ7du3dpisbRv/7qxzNlYO3/hghPrxQ3AbrcbHw5/+umnPXv2hIeHL168+Mcff/zyyy8//vjjt956a9CgQf7+/t26dbvnnnsaNmxYuXLlnHuZiEjdunUHZqcgyK8tW7YYE9iHDBmiqunp6cYkp5o1a+ajCWeLFi0sFovxQGOnmRUrVphfdKFbsGBB+fLlRaRChQq//vqrcePKlSuNy5A1atQw+oEgN06dOjV9+vTVq1cfOHDAQYe4eFGzY2qrtTCuBBuBu6pu367e3nkO3FU1JCTEyNy/++47VU1MTOzcubOIVKpUadeuXWbXW2ykp6uPj1osalw7rFZNRfLRQbRNm6wvdu3SwYNNrfAajMBdVb//Xr29NSYmbw83Ftd6e3uvWbNGVQ8ePFilShUR6dOnT0buk3s4njF5Ze7cuQUfateuXcYqwKlTpxZ8tJsegfv/mDt3roh06NDBlNEOHz5sbPzdp0+ffDQlxI3o5El9/32dNCmrh9sTT+jdd+szz+gdd+jWrQ454pkzH0VF9T958vWEhHUOOQBMMXy4iuiHH6qqBgeriI4Y4bijjRgxQkTuvvvudevW2Wy2Ao6Wmpr66KOP5mP2GQrN4cOHPT09XVxctjrohSaHpUuXWiwWd3f3zZs3G7dMmDBh9+7d2XeIjo6eNy+yd2/18spqAWmxaMuWOmGCRkVpYKC++66q6vnzSoSFK4wZM8b42H/27FlVjYmJmTRp0rFjx7LvcOLEialTT7Ztqy4uWc8uDw+9/36dNk0vXtROnXTOHFXVVav000+d9DugiFm+fLmI1KlTJ0/vhikpKWfPno2MjJw3b57xnCzIRWtEREQYOXJAQIDNZrPZbI899piIVKxYMTIyMh8DPvLIIyLy+eefq+q7774rIq+++qrZVReq+PiEp59+2rjG88ADDxivgapqTNs6efJkmzZtRMTNzS04OLjgp3Y3q8zMTKvVGhwc7OfnZ3Tgady4sY+Pzx9//OGIw61dm3VKo6rPPacOC/b/kZGhn3+e9fX332uOt8c8GDdunIhYLJYpU6aoalJSkrEFYtmyZQvhNPKm1amTiuiCBaqqjz+uIvrNN3kd49579auv9Kuv9N13CylwP3ZMZ89WVbXbNShIk5Ly9nC73W7M8fL19TUuB+7atctoLPnkk0/ySlVEbN682biOa9Y84NmzZxtrmrkG/J8I3P9H//79ReRT8z6l7d69u2zZsiLy9NNPc6Z+0wsP18qVVURfflm3bVNVPXlSX31Vb71VRdTNTUeM0JQUkw8aGdk6I+OSyYPCdJ07q4guWqSq2ru3iui8eY47mnHevHDhQscdAkWNMcekZcuWDn2vOXfunDF1Zfz48cYt27dvNwKCOnXqXLGWIi5Of/pJ+/VTH5+sbNTVVQMCtGNH3bNHz57V/v0dVyluPFu3bvXw8LBYLIuNS9aq//d//2c8u5o0aRIcHLx///7sO589q19/rV26qJtb1rOrdm3t3Fm7ddPYWF22TMeOddKvgSLGSGY//vhj49vvv/++c+fO/fr1e+655954441Ro0ZNmTJl5syZCxcuXLt27Y4dO44ePRrzv3P8atSoISJ79uxxRvk3g+PHj9esWVNEHnzwwYyMDLvdPmjQIKMPzPbt2/M35qxZs4zGBaq6ZcsWEalVq1YhfNQKCtKPPlJVPX9eX3vNtGE3bdLbb0+qW7eRt7f35MmTs3+RzZs3V6tWbenSpaqakZHx5ptvWiyWcuXqDxiQfIlz/xxOnz49ffr0Rx55xNhm1lCiRImHHnqoQ4cOIuLl5bVkyRLTj1v4gbuq1qmj1app3peF/I8vv/zSYrFYLJaJEyeqalpaWp8+fUSkTJkymzZtMqfQ4uaDD1Qk63Xhq6/sDeumfDEsr2O0bKkbN+rGjTprViEF7jt2qKenFqQ7iN1uf/75542X9G3btmmO9UzPPvssCVhRYPwFvfnmmyaOGRgYKCJVq1Y9ffq0icPefAjc/5Genl6mTBkROXLkiInDbtq0ydg14p133jFxWBQ1U6eqh4eKaPv2V65wT07WoCB1dVURrVdPV68254jJyRFpaSdiY3/bv/+ekyeH22x0tC3CKlRQETXekGrUUBE9eNBxRzOWHudjjXZu/PjjjymmXzhCgcXHxxtrquYYU3wdwGbTp5+efEW7j4MHD7744ovGU87QqVO/N97QjRs1e15LUpIuWKADBuiDD+rAgRoervffr2fOELgXFenp6QcOHGjbtu2qVaucVcPly9q27XMiMnz48OwbN2zY8Pjjj+fcR/Hxxz8cNUpzdpq9dEm/+0579tS33tKuXXX1ah08mMAdWS5evOjp6enm5pb9gdBYAZYbs2bNMh4SEBAgIsZUUOTV+fPnGzZsKCKdOnUyTh7eeustowXB+vXr8z1sdHS0m5ubu7t7bGys3W6vXr26iOzYscO0uq/h+ee1Y0fdt0/PnFFTOu2lp+vbb2d9RujTZ2fOy4qqasx5d3Fxef/9943V0osXL+7Y8bSI1qypf/5pQgE3rn9PZjfUrVt30KBBYWFhxlxOu90+dOhQEfHw8Pj555/NrWHtWr3jDn3ySX3ySa1XrzAC9xMnVETLldOCTx2eOnWqsT3AqFGjVDU9Pd24POnr67varA+rxcra1bbb6ieNGqCqyckRVqvs2lU9r2MUfkuZ0aNVRF94oUCDZGZmPvroo8aiJWO3sI0bNxoJWGBgoDmFIr8SEhKME+l9ee9xdB0ZGRnt27cXkVatWt00e6g4AoH7P4w1p3feeafpI//xxx/GZk3ZUwJxM8nI0MDArBl2gwZdc6eRHTu0efOs7gqDBml8fD4Pl5kZd+nSzIMHu1itcvKkceXcfuHCN6dOvZ2RcVGVpVtFj7FLaqVKqqqXLqmIliplwpnyNZw6dUpEypcv74jBbTbbiBEjoqOjHTE4Cmj69OkiUqNGjcTEREeMHxKirq7aq9fqf+/bZrPZwsPDAwMDa9So0b79JOP1sEIFDQjQsLD/2cRi4EA9dkzHjdNx4wjciwpjqanh4YcfNnfaQS49/rj6+toHDPjp32ftKSkpYWFhgwYNqlSpUvPmq4xnV926Ghio4eH/sydZ166qqgEBOnYsgTtUVT/55BMReeihh7JvOX78+IoVK0JDQ6dNmzZ+/Ph33313yJAhTz75ZO/evdu2bdu0adNatWoZk2Szs7nvv//+ikGQS5cvX27WrJmI3HPPPfHx8ao6duxYEXF3dy/4dGNj5rJxjdmYMm/khg71/PMaHq4PPKCnT+uAAbpokW7frvnuG7p/v/r5qbHlSWCg/juysNvtISEhxp7k7du3N64bnTyprVtnrZ0NDnbc6WQRdf78+dDQ0ICAAGMRucHHx6dLly6TJ08+do0eK9mbhWZfSDNF4c9wnzHDuDZjzmizZ892c3MTkaCgIFXNzMw0rvE4rgnPTcxmS962zdNqdcnMjFW179xZyWqV1NS8nVA980zWFwcP6t/rshyrZUsV0YIvik5LSzN2e65evbpxGrlixQpjl+z33nvPhEKRX19//bWY1zQ7p3PnzhlLAF8zY8HXzboYgsD9H4MHDxaR999/3xGDz54928XFxWKxTJ8+3RHjw1kuXNAOHdTYwO3//u/q99m2TQ8fVlVNS9P331d3dxXRbt3OGTt655o9Pn51VNST27d7W61itcqOHWVOnx4ZH78yPf30+fOfnzoVtHfvHYcO9cjMvFzgXwtm2rB48Xdt2ux68UVV1eXLVUTbtnXc4RYtWiQiXbp0cdwhUDTZbLYWLVqISHBwsOmD//WXenioxZLVGOla7Hb7pk2pw4drnTpZlyFF9Ntv/7mDEbinp2vLlgTuRYURuNeqVatUqVJGFhYYGJhzR1xH++47FVFfX71+M+f09PRlyzJfeEErVvzn2ZWz36wRuJ85o7VqEbhDVbVx48Yisuj6L1tXY7fb0/++VHj8+HFjsTwbMuWVsSvDbbfddunSJVX99ttvLRaLq6vrPDO66k2aNElE+vfvr6qLFy8WET8/v4IPe33PP6/Hj+vYsTp+vA4YkPVa5OurrVtrUJCGheV2y0G7XadOVV9fFdFbbtF1192GadWqVUYzt/bt3zaWIWVkaHBw1lYWvXppcZgFYbVa33777WbNmuWczN6kSZNhw4atWLEiN42JszcL/f77782qqvAD92efVZGsTUo+/VQHDtT8tmXKMnfuXHd39+zlZTab7bnnnhMRT0/P3377zYSKi5PIyNZWq1y+vFhVDx9+2GqVS5fy9mSbMEH/+ktV9dAhLYT//dHR6uqqnp4aH6+Zmfr667pkieY79kxOTu7YsaNxPmlc+lq4cKHx7BozZoyZdSMv7rrrLhGZbbTqN9umTZuMfeZnzJhRkHHeeuutSZMmmVVVkXIDBO6Fc63Dbrcb12eMzlOO8OWXXxpv86YvZ0NejRgxYsyYMX/99VcBt/LYunVrq1YRxrpOq/Xq90lO1vr11dtbQ0KypsDs2qVt29pq/T979x3X5NXFAfwkYYMLJ25RUXGLG9zgRK0DtVXU1oqzaLUV9a1iW2txtOKW2qrUWdSquMVZxIkbt+AAFFSQPZOc94+LEXEBecLy9/34B4TkPheNT57n3HPPqdqBiJycnF58rArjo0ePHj2ad/16DRFnDwyU37nTJSpqk0qVxMwvX/4bFjY9MnJpfPzpK1fMAwMpKMg6JeWeNr8XSGv27NlENGPGDGZetGBB1+rVd8+Zo7vD/fjjjyR1mTYoLAICAmQymbGx8fuSvHInPp6trJiIM1X7+LiLF3nmTLa25le935iZf/uNRX78f//lUfIOfJQIuLds2fLJkycuLi5ij7mFhYWXl1ceRBjv3eNixZiIs593qFTy0aM8YQK3bPnGneG0aRlfrFvHOiutBIWGv39yx44zGjdurv3buFatWkSEdoI51b9/f7lcfvz4cfHtiRMnSpQo4eXlJcngwcHBYiEkNTU1JSWlWLFiMpksNDRUksHfRwTcU1O5dWseNIhHjODatV+v/4lWJY0b84QJvGnTGw0tQ0Jen5Q2buSePTOeP3Jktva8Pn36tE+fkRYWSoWC58zJyGr39WVzcxa3IQEBOvhtC5Lvvvsum8nsHyBi7jKZbOnSpZLM6ulT1rQMPH4899uXs09kM4jiSa1bMxHnLH3rXXx9fUXIbOzYsSqVSq1WizTEOnXqpL9v4za8S1jYzMBACgubxsyRkYsDA+nBgy9zNEKXLty9O6ens78/50Fe+IYNIguQmTkgIGP7oDYSExPbtWtHRLVr137y5Akzb9u2TezRWbRokRRThpy5cOGC2Piuu3qwK1euFGXichRH9fX19fDw0Hy7dOnSXr166agcbv4q6AH3mzdvNmnSRNp6Q+90/vx50n2/HRF3MzAwwC6tfJSamipqihFRsWLFHB0dvby8QkJCcjqOt7e3kZFRtWq1evSIjox879NiYtjZOeOqulWrjMqz6enpnp6eYhrly5f38fF5+4UpKSk+Pj6Ojo56enqHDrULDKRr1yqHhbl9YG9aSkrwjRsNAgPp8uXiMTG+Of2NQEd69+5NROJfefDgwdovAn+Y6Hq0efNm3R1CmDx58tChQ29/OCUV8tyQIUOIaMiQIRKOOXQoE7GNzTs2vOfCihVcvTqjxFrBoQm4i28DAwNtbW3Fp6SNjY2/JpygAykpGcXWBg2SZsAJE7h6ddZBbzzQSnp6+pkzZ+bNm3fjxo2nmZfgdGnYMCaSJmYhKpZkvjmE7Bg5ciQR/Zppv0nkB66Yc65+/fpEdOTIEWbu168fEa1cuVLC8TM7eJBHj+YFC1j8BidOsCZlMzKSd+7kqVO5bduMfk6aP5Uq8aBBvGQJ//03m5tn5K526sTTpnHJkpyjjEO1OqOwGxF37MhPnjAzP3zIrVoxEffty7VqcUwMM/PIkVz0WqqePXt2ypQp2Uxm/4Dly5eLZqGSZFNevcomJnzvHjPzoEFZm3hJLnMB9/h41tdnPT1povx79uwxMjJq3LixKP2kVqvr1KlTpkyZkx/efAFvio09EBhIt261ZubExIuBgXT9eg4C2HFx7ODAa9fyokV5FHAfMoSJWDQomTmTiVj7iusxMTE2NjZE1LBhQ5FWuGbNGvGf7p0RD9ApcfUyZcoUnR5FNGWtXr368+fP3/ec4ODgZcuWab7du3dvt27dNN/OmDFDJpM1b9686DWKK+gB96FDh4o4+OPHj3V6oP/9739509VBrBjb2NgU1SpFBV9KSsr27dvHjBljaWlJmdSqVWvcuHE7dux4+fLlh0dQKpVubm7iVS4uLtlpE7F/P1etykRsYMC//fZc7FO+f/++2HhFRI6OjmFhYeLJFy9enDBhgqY0obGx8eLFrnFxR7JTn12lig8OHhAYSBcvKp4+xZ1hgSB2z9y7d4+ZraysiOjq1au6O1y1atWIKEvfLV2oWrUqEd3Jgw20kBOhoaFiMU+q26R167JV7iP7fvmFiXjGDGlGA+1lCbgzs1qt9vHxEScTmUzm5OQk7Z4JjcmTM9qJS1XAxsmJiViKehUggeDgYC8vLycnJ80ljZWVVe3atTUtTHXn5Us2MWG5nB88kGC0LVu2EFHmm0PIjn///ZeI2rRpo6PxZ86cqbl9W7duHRF1795dFwcKCMgo/+Lt/ZFnpqdzYCB7erKT0xvFr+bO5Rkz2MGBlUru1IlTUzMi5jnl58flyzMRW1jwuXPMzKmpPG8enz7NdnY8cSIzs5MTvz/oAbx69erMzUK1cfUqOzmx6O+QBwH3zAXcDxxgIpbw/9aJEyeevfoFlEplyZIliahIJpzqjkoVf/Gi3sWLeipVvFqtvHy5xMWLirS0rH2PMgsOZm9vdnHh6tXZ3p4dHFit5q5deetWnQfclUouXZqJMlaMGjdmIj50SIKRnz17Zm1tTUSLRfEjZnd391KlSq17X/ld0I34+HhRK1J0stWd5ORkUdTUwcFBs6cwOTn533//1Tzn5s2btWvX1nx79+5dy0z7KS5duiR6Xjo7O+t0qnmvoAfck5KSNNtS3u7SJiGRInFUFMbTJZVKVaZMmZo1az6Q5A4AtKO5FTQ3N9dE3hUKhY2NjZub2zvTKF68eGFvby92KqxZsyb7x0pMZDc3NjbmWrX6NmjQ4Ny5c8ysUqmWL18uOkebm5sPHz68cePGmpm0aNFi5cqVH10AeIv66VOPwEB5YCCFhAxRqRJz+HKQ0vPnz4moePHiKpUqPj5eLpcbGhqmZW4iKano6GiZTGZqaqpluaSPevHiBRGZmZnp+kCQC+7u7kTUtGlT7Qsp3LvHZmbZijJkHwLuBc3bAXchMTHR3d3d2NhY7OJ3c3OLj4+X8Lj797NMxvr6LGGhDgTc892dO7xqFTs5cbduazOnNVhZWX355Zd169YVlQqe5C7cmG1LlzIRSxUhj4yMlMlkJiYmWmbXfmoSExNNTEzkcrmOtjWIc1e1atXUavWLFy/09PQMDQ0l7z9x7VpG5ZYRI3JW3Vit5lu3+K+/+Msveft2XrSIV67kpUu5Uyet5hMZyQ4ObG7+RsmaK1f4u+94xAg+fx4B94/buHFj5mahuRAaymvW8H//8dSp/NNPvHlzXgTcJ02Kl8kyCrhPn67DS6nAwECRi6aT0Yu0W7daXLyol5BwlpkTEs69q7OaKjHxsq9vaP/+b6zJiXYOohXNlStcv77OA+6nT78wN1fVqcPMHB7OMhmbmrJU6cXh4eG//fab5ltPT0961XID8swff/xBRO102TpO4+HDhyVLlqxVq5YmZpucnDxq1CjNE1JTUzOHztLT069fv555hKtXr4qMsVWrVuXBhPNMQQ+4M3NMTEzTpk1F8DFON6XR7t+/T0QlS5bUXRRM4+7du6KOEmqiFSgqlSowMNDDw8Pe3l6UsRNEoUAPD4/AwEC1Wn316tUaNWoQUdmyZU+cOJGLAwUEPKhduzYR6enpTZs2LSkpiZnDw8P79u1LRBYWFkRUqlQpFxeXS9o1wYmJ2Xv5comDByvZ23fQUWYiZMehQ4eIqH379szs7+9POm7qdfToUSJq27at7g4h+Pn5EZGdnZ2uDwS5kJSUJHKTtW/TnZzMrq6SlfsQEHAvaN4XcBdCQ0OdnZ1Fn7rKlSt7e3tLtUXv2TPu2ZMXLJBksAwIuEtl3bqMxjPx8W/8fc6axWLZ5b//+NYtDgnhsDB++pTXr+fhw7ly5dexg7ZtH1SoUMHJycnLy0tzHRIdHS36d9WtW1enmTRNmjARS9g1qUGDBkT033//STbip8HR0ZGIcpShkn0qlUpcOV+5coWZRZKWtFUL7t9nC4uMtGJtbt0OHOBFi1il4q5duXFjbWelVHKWfYwi4P70KTs48IABCLh/3JYtW0TMPftNj5RKDgxkd3e2sWGZjInYw4OnTuWUFO7YkXv10nnA3dLS0tzc6sqVR8zct2+cTCZBAfd3WrRoERF9/fXXOhm9SEtJuadSxaekBN+75xgS8vmzZ6uYWa1WJiYGRkZ6Bgc7iY5rc+duER+UFSqwkxN7enJgIKtUGQF3Zp48mWfN4oUL+dUGeOlNnz5doTCYPftPZl67NkEmy9iroQsODg5EtHHjRl0dAN5FZJ3/nf0WSdqpW7euTCY7pMUuic2bNxORvr5+UbrWKgQBd2aOjIysU6cOEXXq1EkXZX0WLlyYZ/sXRLeWESNG5MGxIHcSEhL27ds3efJkcXOlUb58eSMjIxGVCNPi0y8pKen7778X/UOsrKxEDy6VSiW2/KxcuTI7NWqyd6DrvXt3JqIKFSqcOnVKkjEhp3799VcimjRpEjMvXbqUiEaPHq27w4mz2YQJE3R3CGHBggVE9M033+j6QJA7ogBCuXLlYmLeTq75CNHEUpzkRo7khw9Z2saZCLgXNB8OuAsnTpxo0qSJ+DRs1arV2bNnc3es7dvZyopFlnCnTqxSsbSbZBBwl0qXLhn/TE+esJPT68crV+apU5mZFy3ijRt5+nR2d+clS17H2cuV48GD2cuL79179z/ts2fPxPVVo0aNPto3PnfOnmUiLl+eJUykmTRpEhG5u7tLNuKnQWTY9e7dW0fjjx49moh++uknfnUJNGzYMKkGDwvL6FFpb5/x3yHXLS1EwJ2ZAwPZyEiqCb4mAu7MvGwZFy+OgHu2aJqFjhs37gMLyU+eRP/5Jw8YwCVKvD7RFSvG/frxn39mnA8PHWKFgsPCWHc1zx8/fiz2Q4sts/r6+uXL14+P10myoOg+tWHDBl0M/ikIC5sRE5PRTObx44mXLpkGBpLmz/XrNc6fX7R2bUYtl/f5/Xcm4nr1dLWQIz6IRYGHvn37Vqhgs2HDBV0cKCEhwdDQUKFQfKDAN0ju6tWrIqU4MTEvqh2Ijpjad2cV11oVKlTIg9qDeUNOhUG5cuX2799vYWFx/PjxL78cq1JJPP7u3buJSKQY61peHgtyx9TUtGfPnosXL75+/XpkZKSPj4+Li0uVKlUiIyPNzMxat2594sSJSpUq5Xp8Y2PjBQsWBAYGNmvWLCQkRKRXXLp0KS4urnr16uPGjRMVrLRnbNxg/fptDg4OERERHTt2XLZsmSTDQo5cvnyZiBo2bKj5WmzZ0enhdHqIPD4Q5M6QIUPat2//7Nmz77777vq73Ljx4Pp1euefuDhq0YKmTXs9mkKRf78JFAwdOnQIDAz08vIqW7bsuXPnbG1tx4wZ899//73z3XXz5tP3vbvS06lGDVq0KGNYuZzkheNS9FP06BE9fEhhYW88WK8eRUbS1atERCVKUJ8+1K8f9e1LffqQpyddu0YREbR1K7m4UK1a7/6nLVu27NGjR+vXr3/t2jV7e/vo6GjJZ75mDRHRiBGkry/ZmKLpzvHjxyUb8dPQp08fuVx+5MiRxMREHY1PRL6+vkQkmsbv379fqVRqP3JUlLprV3rwgNq2pV27yNCQ5s6ldu3o119zM1rbtjRsGKnVlJ5O48ZpP7usDA2palUionHjyNFRynd+Eda7d+9///3XyMho1apVY8aMUavVmh+pVKqLFy/OmTOnefPmNWpUmzyZd+yg2FiytCQXF/L1pefP6d9/qU8f6tmTiKhrV1q1isaMoS5daOtWncz22LFjRNS+fXu5XH7q1Kn09HRLy+JmZtL/S6tUKrElt3379pIPXrSp1YlxcUdiY/cVL97lyZNZL16sVauTZTJ9tTrR0NCydGnnatW8GjQIadAgpEWLqV9+SbVqfWi0L7+kZs3o1i2ytyfJPydDQ0ODgoKKFy9uZ2eXmpp69OjRyMhLHTtWkPgwRETk5+eXmpraqlWrMmXK6GJ8eKfVq1cT0YgRI0xMTPLgcGvWrCGikSNHivzUXFu4cGH79u0jIiKmT9+Tni7R5PJXfkf8c+D69euVK9exsXkxfHjOKuh9WGRkpEKhMDQ01FG9mswiIiLkcrmxsXFCQoKujwWSmzt3LmWqoREWFvbrr7/mIntUIzU19fjx4+LrefPmEdGYMWO0n2cWWVq85kHdJNBITk7++eefGzVqVKpUqfHjx4t6RGfOnNHdEevVq0dEFy9e1N0hBLHr6PLly7o+EOTa+fPn5XK52DrztkaNJmYuHJn5z8KFPG4cT53K+/dnZLhLCxnuBU12Mtw14uPjf/jhBz09PVFk5p3at3/vu+u333jVKu7dm+/f17aQ8Tshw10qXbrwjBn8ww88efIbGe4ODhwWxl278sKFvGdP7sePiIgQH1hNmzaNiorSfsIaKSlcogTLZCxtS++YmBiFQmFgYIBr+Jxq1aoVEe3atUsXgyclJS1cuFDTv100CdBcXedaQkKCnV0HO7s7DRuyeHuuWMFErFCwNhVrVKqMlqeSd7DbsoVNTVnrJqCfouPHj5uZmRHRF1988fjx47/++mvgwIElSpTQfKKZmZmNG/d49Wr+aANRD4+MN8natdLP88svv6RXXSinT59ORDN0cyGFAu45olLFx8b6hYe7371rf/GiYWAg3bjRiJnT019ERPwWHDwoLS38w31TP+DZM7a2ZiJu1YqljVStXLmSiAYMGMDMBw8eJKImTZpIeYBMvv76ayKaO3eujsaHtyUlJYm+x1nqpOtIfHy8aEkoSXfWiIiIPn0OyeXs6qr9YPlPT4tYfV5r0KCBj891e3v9ixfJwoI8PKQZds+ePSqVqkePHuJdolO7d+9Wq9UODg6iIQAULpMnT16wYMGpU6du375dt27dkSNHHjlyxNzc3MXFJXcDGhgYdOzYUXwtKmKLAmfSUigUHh4ejRs3HjVq1B9//HHz5s3t27eXL19e8gOBhlKp9PPz27p1665du+Li4ohIJpOtXLlSLpe7uLhk7osrraSkpLt37xoYGIgu0LqTmJh47949AwMD0YMeCqarV6+q1Wq5XJ6lOpZQrVqZTLlcbxC3me7u1Ls3VayoyylCIXTw4MGNGzeKBNIaNWq883rGwqLiu950RERiB9fChfRqIRgKLnd3MjSkp09p0qQ3Hq9Uibp1o82bac6c3A9evnx5Pz+/jh07Xr58uVevXocOHXrf6mD2BQVR2bJUvjwFBtLWrWRlpeV4byhRokSzZs0uXLgQEBDQtWtXKYcu6vr06XPu3DlfX19dbPA1Njb+7rvvNN82atTo3r17Tk5OPXr0sLGxsbOza9as2QdWB98pJSWlT58+p06drF2793//XTM3N9y0ib75hmQyWr2anJxyP1u5nHr2pHXraPdukvYCautWSkwkc3Mpx/xENGvWbMiQIZs2bdq8efOWLVuYWTxubW3do0ePHj16tGvXLpubj8Xn2vTpNGoUJSTQN99IOc8TJ04QkbhzFF936NBBygO860DwTs+fPz916lTjxudSUw8nJ19jzii/IJPpmZq2MDProFbH6+mVLlt27MuXPvr6ub+SLluWDh+m9u3p3Dnq0YMOHSKpYkj79+8nop49e2q+7tWrlzRDv4mZDxw4oLvxPykvXtDbu+yiotLNzPYYGqqSkpJSU1PFgwEBATExMW3btn3nPaDkNm/eHB8f36FDB0kiA+XLl585s+uhQ7R0KTVtSiNHaj9kvsrviH+O+fmxoSETSdZlSxQp01EznyzESe2vv/7Kg2OBLogV2unTpzPzhg0biKh169baD5uYmChKm0mb5JXFuXPnKlasSHnVruATJPZgurq6Zl7PsLa2dnd3DwkJ8fT0lMvlRPT111/rqGfy6dOnSZcZChoBAQFE1KxZM10fCHItNja2QoUKRPRPznN9793jceOYmf/5h01MkOFe9GUzw/3mzZvdunUTZ7Z69eodzFWztu3bedUqZuaZM7lixVwM8BHIcJdK5hruAwfy0qU8cyY/eZLR0i09nRs31irDXQgNDbW0tCSiNm3aaL/TdOhQ7tWLmTkkhL/6Stu5vU3sFxQXgZB9QUFBRFSuXDmltP1A3nL69GkTExNRlVujTJkyffr0mT9/vr+/f3ZqyyqVyoEDBxJRxYoVQ0JCmPnQoRB9/YwNOtrbuZOJWIq7h9diY9nIiBUK1mUf4iJr7969RNSoUaM5c+YUL168Vq1a33333UMtLn2WL2eZjGUyXrxYskm+XcBdT09PR7vzUcD9nZ4+ferj4+Pq6mpjYyNu6E6dahUYSBcv6t28afP4sWt0tI9SGS2eHBW1MSRkWHDwwNhYP6UyNi7uhDaHfvSIq1VjInZwyPhc1lJycrKJiYlMJhNlsmvVqkVEp0+flmDot1y6dImILCwsPtAm4VMWEfF6w9PZs6wptx4U9PrxEyeYma9d41at3r15lOgmUdbU4XLlyn3++ed581s0b96cpG6Ku3o1E7GREQcGSjhqPih8AXdm3ryZ5XKWyVj7IHl8fLyJiYlcLn/69KkUU/vIsYyMjORyeQSuhgotEWesUKFCenq6ZquO9ntnxMJvNrfza+PJkyeDBw9GxxLJBQUFubu7i4oxmePsd97c0L5t2zZjY2Mi6tatW2xsrOTTWLFiBRF9+eWXko+chegHMGrUKF0fCHJtypQpRGRra5uLC9zISN60KePrWbP4/n2+fVvKuSHgXtB8NOAeFRXl6uoqen2bm5t7enrmOnB28WJGT7nERP7uO75/X+JuYAi4S0XTzVSl4uhojo7mX37hO3f4yZOMx6OjWZJGXI8ePRKfnra2tvHx8doMNXQof/cdb9okccD93qvGdocOHSKiFi1aSDb0J6N27dpEdOrUKd0d4tq1a+bm5kQ0fPjw69eve3l5OTs7Z74wIyI9PT0bGxtXV1cfH5/IyMi3B1Gr1V999RURlS5dWlzeBwQEmJqatmu37YcfpIkWJSayiQnL5SzhrefatRmdXSEXvv/+eyL64YcfmHn+/PlENHr0aC3HXL2a5XIm4p9+kmKKzOvXryeizz77jJmjo6PnzJkzfvx4aYZ+k1KpFLe3jz5aQOfTcPPmzS+//LLWm9XWTUxMOnfufPSoZ1zcMZUq6e1Xpac/f/lyp1qdplanXrpkEhgo18Tic+fWLS5Xjps0Of75587ap23t2bOHiGxsbJg5LS3txx9/dHBw0NGC6M8//yzJ/6mi6vDh16XAhg3jBw8yvnZ35/r1M66yOnXi48d5+HBWKN4XcGeiFpnfohYWFjKZTE9PTzTF1akrV66Qbrqzfv01E3G1aoW7DXihDLgz88qVGSXStm3L8Wvj4+P9/f09PDwcHR1LlixZtmxZCwsLXedcMLOPjw8RtWvXTtcHAp0SJUf37NnDzGPHjiWi77//XssxRWjsf//7nxQThLxz48YNd3d3q0y71qtWrerq6urv7/++l5w5c6Zs2bIilSY0NFTa+YgdGEuXLpV22LeJ29Hly5fr+kCQO/fu3TM0NJTL5RcuXNByqNu3uWpVtrJi7eJgb0DAvaD5QMA9LS3Ny8tL9LnS19d3cXGRcMn20CEuXpx79ZKyMQ8C7joSE8NLlrBuEuD44cOH1atXJyI7O7ucxtzT0/n0aZ47l3/8kYcO5dBQ7tCBL1+WJuCemJjo5uamUCh2797NmfYjRkdrFTr5BH377bdENG3aNB2Nf//+fQsLCxGRzBKNCg8PF3mptra2+m/2ErWwsHBycvL09AwMDFSpVPzqgtzExCQgIICZr1y5IoKP0gY3HR2ZSIK8MY1u3SQe8JPSokULIvLz82NmR0dHqfI0//yT5XJu1WrXjz/mPuiuVCoDAwPd3d0rVqwol8vHie2HuoQC7lmIBG0iMjU1tbe3d3d39/PzS/lYnnlQUN3AQEpIOMvMt2/bBQZSTIy2O8KuXUuuWLESEX3xxRfifJUj6enpgYGBIgJmYmJSokSJXmJHmI61adOGdNbDowj4QMB95syMe6VOnTgxkX/9lWvW/EDAvZ2BgUHnzp0XLVp069YtZv7f//4nsmTEVi3dEQGxyZMnSz5ySgq3bJmxnKz7YK2uFNaAOzPPmZOxy+Du3Y8/+d493rhxy7hx4xo1aiRStDREm5TRo0frep/L0KFDiWjRokU6PQromsh96N+/PzOfO3eOiMqXL69lJ9IhQzba2HQ7cUKHiT8goUePHnl6etra2mpOI6VLl3ZxcfH398/OaeTOnTsiUcLOzkXaRiY2Nja6ziATmjZtSkTidhQKIFEnUZJ0kpQUbtKEiVjCjRMIuBc07wu4+/n5aRpC2NvbS955KSyMy5RhIin33SPgrgtKJS9axG5uEm92yezevXuVKlUS77SkpHckDGYRHMxeXuzkxCVLZtxtmpvzF19wZCQfOcL9+/NXX3FqqlZT2rt3b9WqVUVatObqvXXr1ogd5MLx48eJqG7duroYPDw8XGSyd+nS5cOBsNjY2EOHDrm7u9vb24sbQA1zc3NxujMyMhIpgXfv3hUVAnMX3vqAP/5gIu7dW5rRnj9nPT3W13+9KwWyLy4uTk9PTzRD1iR3h4WFSTL4P/9EmJiYEJGbm1uOXhgaGrpmzZr+/ftn7myhr69vZGS0b98+Seb2PosWLSKir7/+WqdHKURUKpWnp+eFCxdylJ358OHowECKiFjAzOHh/wsMpNBQbfPzmPnSpUviLTpy5Mjs3HImJCQcPnx41qxZ7du3NzIyynzGUygUcrl83bp12s/qA6KiohQKhaGhoY7KHxUBhw9z48bs7MzOzmxp+UbAPSCA+/fnmze5Uydm5oQE7tHjHaF2Cwt2cLi4ffv2LLvnVSqVKGfdpEmT7FxW5U5CQoI4TQUFBeli/MePuWxZJuLCW5O7EAfcmfmbb3juXP7hBw4OZmY+fz5jnzIzp6VxYCB7erKTE5crx0Rcv35LcX7R09OztrZ2cXHx9vYOCQk5c+aMaPml05qMaWlppUqVIqK72VkfgAIsIiJCX1/fwMDg2bNnzNyoUSMtb70iIlgmY1NTaYqyga7169dP033L3Nx89OjRR48ezekWmefPn/fs+WXlyuklSrCfnzQTS09PF0WrdH1Nk5qaKrKntdz7DzoiOjAXK1ZMqlJpd++ymRkTsVSl+RBwL2jeDrjfvXvX6VVnwNq1a/v4+Ojo0Pv2sUzGhoZ86ZI0AyLgXnjdvXtXdJrp2rXrO2tt37p1a+XKla6u/mKdRvOnbl0eP563b+fPP2dRJmTIEHZ25saN2d09N/snIiOTBg8eLN7/LVq0uHz5MjOr1Wpvb29TU1M7OztNkRnIJqVSKTbK3JZ60ebly5eiF32rVq1ydFmiVCqDgoJE5RnR501fX7948eJr165l5sTExGrVqhGRo6Ojllk1b4uIYLmcjY05IUGC0cS2b0dHCYb6BIkC7nZ2dsx84cIF8ZEn4fi+vr6iqcC4ceM+HCHVJLPb2NhkbvNraWnp6up6+PDhiRMnEpGBgcGOHTsknGEWKOAuiaioDYGBdO+eIzPHxh4MDKRbt1pJMnJAQIBYLPzmm2/e+YT4+Hg/Pz+xrJiloYWlpaWIgD1+/HjJkiUi7C4aBeuI6HjXtWtX3R2isPtAhntAAIeE8GefZQTcmfl//8u47JHJuEUL/vlnvnjxQxc50dHRNWvWJF028Pvzzz81p1AdOXaMZ8zgy5czFpUTEvjWLb56NeMXT03lmzd1d3AJFO6Au9CiBQ8YwMy8ZQvPm8eTJ3OrViya22j+lC/Prq5rFyxY4O/v//YKj5+fnzgfLZCqE+tbRASkQYMGOhof8lKfPn2I6Pfff+dXiQB9+/bN9WgbNjAR9+wp2fRAp7799ltjY2NHR0cfH59ULdLnUlL4iy+YiPX0MloIakmpVHp4eMjl8lGjRkl+c5iZ2Fypozw10FJ6errI0ZN2N5VIxzMzy9aWsiyuXHnj28REPn2aFy9mf39pYg2gvcwB95cvX7q5uYmLIjMzM3d3949undbSxIlMxLVqcU7XCpVKvnbtjUfi4njvXl68mG/e5Gw0R4QC5/bt26IwSLdu3cQb78mTJz4+Pi4uLiL6SUTt2n0tUrqcnNjLizPXGT57NiN34dkznj8/o4by0KE5ezP4+HCZMtysmZuJiYmHh4dYUL9586adnZ2YQP/+/dH8LRecnZ2z3Gqlp6drWdIzMTGxbdu24g4rKipKm6FCQ0PFNkFvb2/xyKZNmzp06JCgmw+qQYPOt2//ja+vBDkXHTowESNAmjuZC7gvXLhQqt2Bme3bt08kF48ePfrtrRKRkZE+Pj7Ozs4ic1kwMTGxt7f39PTMUkhd1IhQKBR///23tJMUUMBdKqmpoYGBdPlyCbVaqVLFX7yof/GinlIpTUaUn5+feEdpqtE+e/bM19fXzc0tS+EshUIh0kx9fHxevLUF5qeffhILjb6+vpJM7G1DhgwhoiVLluho/CIgS8D90CFesoQPHMgIuDPzzz9z+/avn798Oc+bl4Oa5levXhX7bFavXi3pxDO0atUq8+em7gwYwEOGMDPfvMnjx3OnTiyiHWFhPHiwrg+ulaIQcHdw4J9/5n/+yQi4iwi7QsHW1uzszF5eHBT08fSWzZs3y+VymUz2559/6mKSYlFafJxDYbdz507N8klkZKToFP9E00csh0aMYCL+/XdJpwg68/z5c6lagqjV7O6eccpydeXc7VeeOXPmwYMHxdfbt28XTVl79Oihuzz3v/76S+yw1tH4oI3FixcTUa1atSQPkn7+ORNxixbZrdIQFMTu7mxlxUR88eLrx7/+mkeMYGZ++pQ//1zaOUIuaQLu3t7eooSCXC53dnbOmx7vmrJF2Sy6rVSyvz+7unKFCmxs/EZ3gRYt+LffmJkPHuRff9XJbEHXrl+/Ljqd1K5dW2RmaZQvX37IkCHr12+7fz9bQ+3bxyVKMBE3bcqPH3/8+XfvcqdOGR/KQ4fGPXjwgJnT0tI8PDzEElSFChXy4K6yqNq2bVuWPLjt27ebmZnZ2tq6ubn5+vrmtDJ+ampqt27diKhmzZq5vgjPbPny5UQ0QKRxMTOz7lZW5s2bR1J0uX/yhBUKNjLiN2sJQHbpqIB7FsePHxdZyV988YVYZ3pfMruLi4uvr+8HLuE8PDxEIFVsxZAWCrhL6Nq16oGBlJh4mZlv3WoZGEhx0YelGnzXrl0isN6mTRtra+vM7yJDQ0M7Oztxe/jRm8Hp06eLbRMHDhyQam4aSqWydOnSRIQ9YR/w4kVGrQ5mvnaNQ0M5KoqnTePgYI6JYWZOSWEtG3Jt2rRJrKx8oMlc7ly9epWISpQoIXm71LcNGMDffMN79yLgnh8cHDg5mdu35zVrePVqXrCA/fxynCfFzCtWrBAfYNty0Yn1Y0QzKO3710FBkJ6eXqFCBSI6f/48M/fr14+IFi5cmLvRKldmIpa6NC4UGn/9lbEjZ+BA/kCBtczh+E6dOmn6n9y9ezfzHuqzZ8+WK1eOiBo2bKij/BSxfJjrNzzoTlRUlLi03bt3r+SDv3zJ1aqJUjDvDUAolcrjx4/PmnVXnNbEn4oVeffu18/5+mseMICPH0fAvQARAXeRAkNE7du3FzU08syNG2xiwkS8det7313Jycm7du0aOzalVKk3aolk/vR0cOA+ffjxYwTcC7erV69WrFixWbNmYpuFvb29h4dHYGBgLqKf165xjRoZJ6Jz5977NKWS581jY2Mm4nLleNOmjMcDAgLEniGZTObs7Px2hiBkX3x8vCh8p1nJ+/nnnzMvqCgUiqZNm06cOHHz5s2PP7ZColQqRdmrihUrStURLiwsTCaTmZmZvbOikbSCgoKIqGzZslrm+P/+e8YFJORGbOyZzp2nt2iRmJgoeQH3LDQx95o1a5YoUULztjczM/vss89Wr16d/Yt2EXOXyWRLly7VZkpPnz5du3Zt5qLwKOAuoQcPRgQG0otHK5g5xXueukYVfpWQLont27eXLVtWlCw2MTERK5d+fn45rdY9depUMcJJTWlmifz3339EVKdOHWmHLfK2bWPJi25MmjRJJA2Eh4dLOOyECRPo/dWNpDVgAD95wu3b88WLGQH3oUN52DAeMAABd91zcGBmPnCA69ZlLbdKuLu7i1W+Q4cOSTI3QSwXV6pUCVtQiwzx4SSaxfv6+ub64+TGDSbiChVyU2MUioz9+7lYMSbi9u3fSB/W3PHFxbGl5esq/+PHj/9AwZDg4OC6deuKu9CLmVOLJSK6xR45ckTykUFLok28vb29jsY/d46trFLq1v3c783OA0ql0t/f39XVVdSC6NDhWyKuWpVdXdnPj9PTM56WmMjXr/PXX/OVK9yhAz96hIB7QXHz5s169eoRUeXKlb29vfPlWsXLi5s0ibay6pQldpaUlOTr6+vs7CyaMtnZ3SNia2t2d+fAwNdPEylCDg58/To7OSHgXuglJSWdO3cup33q3unFi4y8dUNDfl96ukrF7doxETs58bNnzMwxMTx+PNer97m4wJM8EvFp6t69OxFlbtMXERHh6+sryg1n6elnYWHh6Ojo4eHh7++fpYKfWq0eNWoUEZUsWfJKlrJl2hHLPLruSynUrl2bMjW6X7169ZgxY9xemTFjxooVNz082MODFy5kLy/28uI7d7IO0qoVE7EOUsU+DXv3MhHb2TFz8sWLAR07zu3RQ3dHO3/+fJUqVRo0aJDNZPYPWL58uUwmk8lkv+dwi7RIrvfw8LC1tRVp0Znra6OAu4TSDm9WV6yQUfjY1zfjNk9ScXFxO3bsCAgI0KaUqFqtHj16NBEVL14817mhKpXq8uXLS5YsEcmIgpubGxFNmTIl13P7BPn58T//cA67LH9cenp6hw4diKht27baVMTNLCkpSaz35E2OzoABHBvLO3bwkCHIcM9zIuDOzAMGaBtwZ+Zvv/2WiIoVKxaY+U5OO7NmzSKiCRMmSDUg5DuRmSJ20KSnp4sw05kzZ3I6jqcnE7HO+lhAoXHtGletytOns1yekYXn4sKZy6R36PA6TTgmJubDMYjo6GjxsWpmZiZtsrNKpRIZOs+zXz0O8kRQUJCenp6ent51Xe6XmTt3nljLEV2jmfn48ePiekuoVavWjz/+lvmKPTGRfX3Z2ZmLFeMaNfjrr/nhQ/77b54yBQH3AkStVv/xxx85TYySlpPTYCJq3bq15tZx9erVokyWYGNjs2zZwcyNBF68YG9vdnRkfX3u3z/jgnDqVJ4yBQF3eC09PaNVwAcKuN2+/bqH+c6dXKkSE3HDhvGzZs3Kg3znT8SqVatEWvc709jT0tICAwM9PT2dnJxEh1WNLBvhNSmZmmi1VObMmUNEY8aMkXbYd5oyZQoRTZs2TXzbt29felObNv9kbkj2dqH2kBCWybhYsQ/tj4QP+f57JmJR8XXhQiZiqQu4Z5GSknLx4sWHDx9qP9Tq1avlcjkR/fTTTx998tOnT9etWzdo0KDMF2ympqa9e/fWVNNFAXeJ3b3LRFy2LKvVHB3NcjkbGhbM/6tKpfLzzz8XS5iXst3CXizeiDO2ubm5eFN99913mieItaWjR4/qZtZF1tOnuSwz+2ERERGVK1cmokmTJkky4Lp164ioTZs2koz2USLgzsw9e74j4L5rF3t6FtDuTUUh4K5Z1X/wQNsKR8ysVqtHjhxJRGXKlLkpUcvbRo0aEdHhw5LV7YKCQPSI2LRpEzNPmzaNiFxcXHI6SK9eTMS66XwDhcyzZ6xUcsuW3K0bK5U8Zw6XLv26R+WqVZyjFIGUlJRhw4aJPdorVqyQapK3b98momrVqkk1IEjFwcGBiCZPnqzTo6hUqs6dOxNRjx49RB708+fP9fT0LC0tXV1dM8dEoqN5/Xru3ZuNjDIiBXI5t2nDzs788CGr1ezggIA7vOHly5ei/t7MmTPFI0ePHiUia2trd3f3u5kC7Y8f85Il3L59RldMIjYweB1wF1uCEHCHLLy8Mgq49eyZURr1bU+fsrNzxpuqWTPWwSaxT1p0dPTq1auzk8auVqtv3rz5559/jhw5sn79+pnXAn/88UexHVnTwEZCoi28hYVFHmz0OXHiBBHVrl1bfHvw4MFVq1Z5vDJv3rxff73u5sZubvzdd+ziwi4urEkeffaMExI4JYW3b8e5TgstWjBRxlKboyMTsQ4KuOvOxo0b9fT0iMjtXQmxmZPZRWhe0CTXZ15KDA0NFR1ZUcBdShUrMhGLgFLjxkzEJ07k95zeTalUDhw4kIjKlSt369at9z0tOTn5v//++/nnnx0cHEQClkaNGjWGDx++Z88e8czHjx+LrHmp8qlBe2fPnhUNaTLvM8s10bFcF80k3unw4YwyAI8fs78/HzqUUR8iMZFPnOC7d/nYsTdKmBYcRSHgrum+s3evNNccaWlpvXr1IqLKlStrvwT94MEDkQqN000RI+4ZRPWGW7du1apVa/HixTkdZN067tePpWj1BEWBSsXduvHKlbxsGf/4I/frxz///PpHOaVWq0WZLCJydXVVabdcfuPGDXd396pVq1asWHFwAd+79enZvn07EZmbm+dBieGwsDCRe+jp6SkeyZwM9ezZsz/++GPs2HUisCV6mHfsyEuXsiiLun07v3zJzHzrFm/erOvJQiFz7tw5fX19uVwuyhalp6dnLjcZHBy8YMGCL74Ilsky3l1GRty3L//9d8abStP2/tgxPn48z2cPBd7Jk1y2rEhd5yx1v9Vq9vZmc3MmYhMT9vBgrYvZwDt8II3d1NRU00A1KirqnS/XNNzy8fHR0QzFsl/mwgg6olQqxd/A7du3c/raESMyVqwfP+bhw6Wf2ychLo719NjAgBMSWKnkkiWZiHVTwF13tmzZImLu33//fZYfNW/eXPOfy8TExNHRccWKFZmLtr3du7Vt27a6aGX36RoyhIl41Spm5m++YSLOxnaE/JKamtqjRw8RActS3C86OnrWrFnt27fPUvirbt26o0eP3rBhQ5btSs+ePXNxcaE3e1BDQSD2mRkZGWlZdfbmzZsiwpmQkCDV3LQ0Zw5HRub3JN6lKATcbW05Pp7j46Vc5E9KSmrXrp3IO4jM1T/d06dP//3336lTp1pZWcnl8s+RyFfkxMbGmpiYyGSyYE1v6ZyoUCGj/uySJbx3L/frl/H42rX8zz/SzRIKFRFwV6nY3p4nTuTlyznnuyayWrt2rWhkP2DAgFzUiwgJCZk3b57YpiO0l7oEIWgpJSWlVq1aRLRKXNPr3r59+2QymaGhoWbn6bNnz7y9vR0dHcWbrUoVS4WCbW3Z0xMLipAzIn21fPnyms6KwcHBnp6emoKzrVsvNDZmR0f29s7YXgqQfXfvcr16TMQjR/Ls2RkPzp7NHTtmrOL06cOhofk6xU9JcHCwt7e3i4uLtbW1+A8uKBQKa2trZ2dnLy+voKAg8eSNGzfK5XKZTKYpgqELojP8D6LMiI4NGjSIiBo1avT555+7vDJhwgRRxn3evDs//MCijHvmSu4bN/KIETx8OB88iIC7FjIVcOcLF5iIX+02KFx8fX1F1uq4ceMy78yYOHHi+5LZ16xZ079/f9EZRShWrFi/fv1QvV1iK1YwEX/xBTPztm1MxDprsySJxMREUZK0Zs2amdMdEhMTDQwMMu+Q8Pb2zhJkf/r0qY+Pj6urq2b9xtHRcefOnXn9O8DHiA4o1apVy2l52JSUlKCgoH///Xf+/PmiXpBoZ5jv0tN5zBj28iqgF29FIeBeqxaPHctjx3LPnlLuqouJiWnatCkRtWjRIi4u7qPPVyqVQUFB77xqnDhx4oMHDySbGRQYomSHu7t7Ll7bokVG5ZD583nnTtZ0rFm9OmuJRvh0iIA7M58/z2ZmfOyYNMMeOXKkRIkSRNS6detsriC+ePHCy8tLE+EiolKlSjk7O/v6+qZrmmBCwTB37lwiql+/fl7+04jG9NWrV//ll1/atm2r2a1saGjo6Oi4bt26qChkh0JuaMoW2dnZzZo1y9raWnM1VaJEiaFDh+7atb9AFkGFQiMmht3decsWrlGDRVWSTp148mQuX/69XVUhD0RGRu7ateu7775r27atCCBqVKpUqX379iKTN6ddInPq8OHDRNSwYUOdHoWZY2Nj69atW65cOXqPZs38stRwF3+qV+cRI/j2bW7fnu/cQcA9t/K8gLvu7Nu3T6Qejx49WrOfNXMjzbeT2TXBU1dXVz8/v9z1boWPCApiIq5UiZn52TOeMoUPHMjvOX1EbGxsixYtiMjKykqT98DMnp6eu3fvzrL3KDg4eP369V9++WXNmjUzn7tMTEw6d+68f//+PJ8+fFxycrL4J7a3t39fT7j09PTg4GA/Pz8vLy83NzdHR0dLS0uFQpH5X3nq1Kma5fD8lZ7OgYEcGMiv+osVLDJmft/HfGHRrh35+xMR7dtH16/T9OmSjfzs2bN27drdvXu3U6dO+/fvz7KJhoji4uLOnz9/6tSpixcvnjp1KiYmRvMjMzOzxo0b29nZ2dratm3btnTp0pJNCwqMY8eOdenSpXLlyrt27UpKSkpISEhISIiJiRFfKJUmERFT4+MpIYESEyk2luLiKCGBEhJoyhQ6fZr696f0dEpOJisrmjyZ+vUjIrp+nUaOpGHD8vt3g/zATEuX0qRJRETLllHXrlSnjjQj37hxo1evXo8ePbK0tNy/f3+d94wbExPj6+u7bdu2gwcPKpVKIjI2Nu7Spcvw4cP79u2ryW6AgiMiIqJOnTpxcXGHDx8WZdzzRkpKSsuWLR8+fBgfH0+v3idOTk59+/YVqzsAuRYWFtakSROVSiUuq8zNzXv16uXk5NS1a9csYTiAXPPxoSdPaNcuOnCAevWiPXsoPZ1KlszvaQERESmVyqtXr546dSogIODEiRPPnz8noqZNm/bu3VtsgtGd9PT0cuXKxcTEhISE1KhRQ0dHSU5O7tmz54kTJ6pXrz5z5kxTU9OEhATNBMTXpqZDYmKqvXqYlEqKjyciKluWwsJo3jwKCKAjRyglhby9dTTNIq1lS7pwgfz8yN6eevemvXtp40YaOjS/p5VLJ06c6N27d0JCwhdffOHt7S1Wp549e3bw4MG9e/f6+flpwhQmJiZt27Z1dHTs169f1apV83PSRR4z/fQTtWpFcXF06BCVKEGurlS9en5P6yNiYmI6d+58+fLlxo0bHzt2TNMQVQgJCRFnZj8/P1E5WTAzM2vdurWtra2dnV27du1wtVaQhYaG2tjYPH/+/Icffvjxxx8fP35875W7d+/eu3fvwYMHIg6Qmb6+fo0aNWrXrm1lZVW7du2+fftWrFgxX+ZfuCDg/hEhISF2dnZPnz7t27fv9u3b9fT0xFnm4sWLAQEBly9fVqvVmidbWFiICLuNjU2rVq3Eznoowpi5Vq1aUVFRsbGxb/+0RIlqsbEP3/nCKVPo+nU6eJC6daMmTcjWlpYuJR8fIqK//6Zy5RBw/0TFxtKcObR4MRHRxo1UsSJ17izZ4E+fPu3du/fFixfNzc137tzZvn17zY+Sk5OPHDmyYcOG3bt3p6WlEZGhoaGDg4OTk1P//v2zdMWBAmXDhg1ffvll3759d+zYkceHvn//fnR0tKen54ABA3r06GFiYpLHE4Ai7PLly48fPz548OCAAQM6duwoYgcAEvLxodhYKlmSbtyg//6jY8fye0Lwfrdv3z5//ryTk5OxsXEeHG7IkCH//POPp6fnJJEBITWVSjVo0KB///23UqVKp06dqp7zANzIkTRvHlWsSD17UtmyCLjnysqVdOwY/f03GRpSmTIUE0NhYVSpUn5PK/f8/f179eoVHx/v4ODQpEmTw4cPX716VfPTBg0a9OjRo3v37nZ2dkigyVNbttDp07RoEYWGkrMzHTlCpqb5PaePeP78eYcOHW7dutWqVSs/P7/nz58fOXLk1KlTJ06cCA0N1TytWLFirVq1sre3t7W1ReyrcDl27Fi3bt2YWaFQiHv/zBQKRdWqVWu/IiLs1atXx9V4LhSFgHtwMIldLPHxlJxM79+Zl0vXrl3r0KFDTEyMpaXly5cvX758qfmRsbFx8+bN27Zt26ZNmzZt2nxgVyAUVS9evPDw8Dhy5IiZmZmZmVnx4sVLlChhampqZmZWvHipEiWmmpmR+FOyJBUrlvF18eLUtSsdPkyBgWRvT+vX06pVdOgQEZGXF5maIuD+iYqKolGjaNcuIqLFi6laNerfX8rxExMTP//88z179hgaGq5du3bAgAGHDx/etm3bzp07RTqVQqFo3bq1k5PT0KFDs3QzgwLr+vXrxYsXr1atWn5PBACg0BAB99Gj6bPP6P59CgrK7wlBgbF58+ahQ4d27tz56NGjkg/OzKNGjVq3bl2ZMmVOnjyZuWpW9u3bRx06kJkZhYTQrVvUq5fk0/wEvHxJu3dTWhrZ29PevXTrFq1ald9z0tbp06d79uxpZmYWHh5OmZLZP/vsM1wl5pvPPqPVq6lCBSKi2bOpbVvq3j2/5/RxYWFh7dq1e/jwoZGRUUpKiuZxCwuL9u3bt2vXrkOHDvXr189coQgKFy8vr5CQkAULFpQqVcrS0tLa2rp+/fqWlpaWlpb16tVDHpVUikLAPQ+cPXvWxcXl2bNnkZGRFhYWNjY2IpO9RYsW2C8DuTN3Lv3wAxHRwoXUsSMdOpTxrZ8fGRlRu3b5OzvIH1FR1KkTjR5NRHTiBA0dKnHAnYhUKpWrq+vKlStlMpmJiUliYiIRyeVyW1vbIUOGODk5lS1bVuJDAgAAFDC7dlFcHA0fTvfuUe/edPt2fk8ICozY2Nhy5cqp1eqIiAjJi4JOmTJl8eLFxYsXP3r0aPPmzaUdHLIrLo4cHWn6dDIxIXd3Wr+edFY+KI9duXIlNjZ27969PXr0QDJ7geDgQP/+S8WKEREtXEiWljRgQH7PKVtCQkJ++eWX48ePp6SkiNiXnZ1ds2bNEGQvMkQcwLTAb7ko1BBwzy61Wn3mzJlq1apVrlw5v+cCAEVTVBQNGEALFxIRbdlCdnbSB9yFJUuWHDhw4OjRo1ZWVk5OTsOHD7e0tNTJkQAAAAAKFXt7+6NHj27cuHGopEW9Z82aNXfuXCMjowMHDnTs2FHCkSFn1q6llBQaP56I6MABOn2afv45v+cERdSMGWRnl7EPpW9f8vQsXKs7sbGxaM4EkGuowpNdIgM0v2cBAEVcyZLUogUR0alTOjzKpEmTXF1dnzx5UqkwV6sEAAAAkFyfPn2OHj3q6+urCbhfunRpxYoVdnZ2bdq0qVu3bi7GXL58+dy5cxUKxcaNGxFtz2eRkaQp5lOpEj19mq+zgSLt++9p9Gjy9aXISLK3L1zRdiJCtB1AGwi4AwAUFHp6GR0piKh8eSpVSofHkslkiLYDAAAAZNG3b99Jkybt378/NTVVlA89fPjw2rVr165dS0TFixdv2bKlKLBga2ubnVauGzZsmDRpkkwmW7NmzYBCUlCiKKtdm27coL59iYiCgqhOnfyeEBRd5ua0YwclJ5OhIcnl+T0bAMhTKCkDAAAAAAAAkKFx48bXrl07dOhQ165diejOnTsHDx48ffp0QECA6EgpGBoa2tjYtG3b1tbWtm3btuXKlXt7qN27dw8cOFCpVP7+++/ffvtt3v0O8D5KJfXvT23akKkp7dlD27ZRyZL5PScAAChqEHAHAAAAAAAAyDB79uyff/65bdu28+fPb968uZGRkeZHjx49OnXq1JkzZ06dOhUUFKRSqTQ/srKy2rx5s42NjeaRY8eO9erVKyUl5aeffpo1a1ae/g7wASoVXb1K6enUpAkZGub3bAAAoAhCwB0AAAAAAAAgw40bN5YsWbJmzRoi0tPTa9y4sagh06FDh8xp7AkJCVeuXAkICDh16lRAQMDLly+fPHliYWEhfnr+/Hl7e/v4+PiJEycuW7Ysf34TAAAAyA8IuAMAAAAAAAC8duvWrRUrVrwzjV3UkLG1ta1bt65MJhOPq1SqmzdvNmzYUHx748aNDh06REVFOTs7r1+/Xo7yzQAAAJ8SBNwBAAAAAAAA3uHtNHbNj97XQPXx48d2dnahoaF9+vTZsWOHnp5ePs0dAAAA8gcC7gAAAAAAAAAfoVKprl69GhAQIBqohoaGan5kYGDQrFmztm3bNmzY8Jdffrl//37nzp337duXuf47AAAAfCIQcAcAAAAAAADImSdPnly8eFEkv1+4cCEtLU08bmxs3LBhw6NHj5qZmeXvDAEAACBfIOAOAAAAAAAAkHvx8fHnzp0LCAg4f/78zJkz69atW7p06fyeFAAAAOQPBNwBAAAAAAAAAAAAACSAbukAAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAYqUb76he/eIiAIC6MgR+umnjMevXKE9e/JxXgAAAAAAAAAAAEUfAu4ARcr58+TmRkT0+DGFhJCfX8bj4eF040Y+zgsAAAAAAAAAAKDo08vvCQCAlEqWpJYtafNmksmIiBIT6ehRIqKrV0mO9TUAAAAAAAAAAABdQgQOoKiZMoX++IPi4oiI0tMpNJRCQ+nFi/yeFgAAAAAAAAAAQFGHgDtAUWNgQD/8QL/9RkRUsiSNHEkjR1KXLvk9LQAAAAAAAAAAgKIOJWUAiiB7e2ralIjI0DDjEYWClEr65RcKD6dFi8jEJB9nBwB5JD09ff369SVLliQiExMTQ0NDhUJRvHhxIipWrJienp6BgYGpqSkRlSxZUiYKUQEAAEAuJCTQjh2UkEBdu1Lt2vk9GwAAAIk8eEAzZpChISUm0pw51KBBfk+ocJAxc37PAQCkwUxDhlDbtjR27OtQexaLFpGzM5Uvn7czA4A8d+nSpXnz5u3YsSP7LzE2NjYyMpLL5SVKlGjWrNnChQurV6+uswkCAAAUFWlp1K0bTZ5MFSrQ7Nk0bx7Z2OT3nAAAAKTQsyctW0Y1a1JEBDk5kb9/fk+ocEDAHaDoCAykFi2oUiUKDaV35qpeuEBXrtDo0Xk+MwDIW2q1uk2bNufPn2/cuLGVlRURJSYmpqWlKZXK+Ph4IoqLi1OpVKmpqUlJSUT08uXLLCOULl06MTHx7t27VapUyfv5AwAAFCZ791JgIM2ZQ0R06RKtWkVr1uTzlAAAALSnVpOdHZ0+nfFt9+60dSuVLJmfUyokUFLm3aKjo69du/b48eNWrVpZWVlhoz0UCiKTdcCAd0fbHzygX3+lVq0oPJwqVcrjqQFAnlq9evX58+erVKly6tQpMzOzbL4qKSkpNTVVpVLFxcVNnTp1165ds2fPXrdunU6nCgAAUOg9e0YVK2Z8XakSRUbm62wAAAAkIn+z92d6OhkY5NNUChkE3N/h/v37dnZ2ZcuWDQoKIqLixYs3bNjQzs7O1ta2bdu2pUuXzu8JArzbzp1ERAMGvPunNWrQv//m5XQAIH9ERkb+8MMPRLRkyRIRbY+JifHz8/toGXcTExMTExMiKlOmzOLFiw8cOPD3339PmjSpSZMm+fn7AAAAFHBWVuTjk/H19etUt26+zgYACptLl2juXDI1peRkmj+fatbM7wkBZFK1KgUEkK0tBQWRoSFaAmYTSspkFR4ebmdn9/Dhw8aNG1taWp47d+7Jkyean8rl8rp167Zq1ap169atW7euX7++QqHIx9kCaFy7Ro0bU/nyFB5OeFcCfMqGDRu2adOm7t27HzhwQDxy4cKFli1bZue1AwYM2L59u/h60qRJS5cu7dWr1969e3U1VwAAgKJh+HCqWpUqVKCdO+nvv7GfFAByoG1b2ruXzM0pOJhcXWnfvvyeUH579owWLKDnz6lZM5owgfSQK5xP1Gp69IhKlqQ5cyg6mkxNac4cqlAhv6dVOOBd+4bY2NhevXo9fPiwVatWR48eFUl/T548uXjx4sWLFwMCAgICAm7evHnz5k2xxd7U1LRJkyY2NjZ2dnbt27cvj06UkH9EPZl+/RBtL1iePycTEzI1JZWKoqJIqaTy5UmhIGYKD6fKlfN7flDknDx5cvPmzcbGxitWrNA8WLx4cScnp+yUcdfLdDk7a9as9evX79u379ixY507d87zXwUAAKAwGDmSkpLol18oLY0SEmjUKDI2zu85AUDh8eIFmZuTuTkRUc2aFB1NzO+uEvuJUKtp0CBatowaNKAVK2jOHJo7N7/n9Km6d4/q1qX69SkoiJ4/p127KCICAfdsQob7a8nJyd26dfP3969fv/5///1nLs53b0pPT798+fLZs2fPnTt39uzZkJCQzD+1tLRs3bp1+/btx4wZk1ezBshQvz7dvEl+fmRvn99TgUxGj6aXL2n7doqIoClTKDWVVq2icuUoKYn69aNDh/J7flC0pKWlNWnS5NatW/PmzZsxY0YuRlAqlZlj7nPnzp01a1bLli3Pnj2LdiYAUIgwM85akBdUKipThmJiKCyMKlWiNm2ocmXy8qJ33UsCALxDfDwNGECHD2d826YNnTmTrxPKb8HBNHs2bdpERMRMbdt+6n8h+cjHhwYPpt69ydeXfH2pb19ycHj9XoUPQoZ7BpVKNWzYMH9//8qVK+/fv9/c3PzOnTt16tTJ8jR9ff2WLVtqNubHxsZeuHDh1KlTIv89JCQkJCTkypUrCQkJU6dOzfNfAj5dt2+rb96Uly5NHTrk91TgLWZmtGcPtWiR3/OAT8D8+fNv3bplZWU1ZcqU3I2g9+aGzalTp3p5eZ0/f37Hjh0DBw6UYo4AADqUmprq7++/Z8+enTt3jh07tlWrVl26dMnvSUGRdukSxcSQlRVVqkShoXT2LJUsSSVK5Pe0AKDwKFaM5HK6do0aNaLDh+mtMNQnJynpdZVwmYyQJZyPrl4lImrcmIjo2rXXX0M2yD/+lE8AM7u4uPz7779lypTx8/OrWrXqoUOHGjZs+NH0wBIlStjb28+ZM2fPnj3Pnz+/evXqkiVL7t275+bm9vz587yZPAAR7djxa926X7i4BOrr5/dU4C1ubrRoESUmZnw7cSINH06jR+frnKAoevTokYeHh0wmW7VqlaGhoSRjGhsbi/6rM2fOTE9Pl2RMAADJxcfH//PPP4MHDy5btqyDg8PSpUtDQ0N/+OGHXr16bdu2Lb9nB0XaiRNERB07EhEdP05E1KEDKjwCQHZ5eNC2bfTnn7RmDQ0bRkeP0rJl+T2n/FarFt24QeLWIyiIatTI7wl9wjIH3MXXjRrl53wKFWS4ExG5ubmtXbvWxMTE19e3bt26Fy5cGDhwYE4jCwqFolGjRo0aNTp48OCBAwf27Nnz1Vdf6WjCAFls37799u0rdnbD8nsi8A4mJvTttzR/fsa3y5e/LikDIKEJEyYkJSWNGDFC2nrrX3/99dKlS2/evPnnn3+OGzdOwpGhUHv+/Pm2bdvs7e1NTEwqox8F5JPo6Oi9e/fu3bt3//79ia9Wtq2trZ2cnBwdHbdt27ZgwYLBgweHhYV9++23+TtVKLJOniSijE2mmYPvAAVKTAxFRpKlJSE/q0CJjqY5c0ippLAwWraMzp6lVq0+6ertROTnRy1a0P/+R599RuXLU1QULV2a33P6hL0dcEeGe7ahhjstX778m2++0dfX9/X17d69+7179+zs7J49e+bs7Ozt7Z2L4o9r1qxxcXFxdHTcs2ePLiYMkMWDBw8sLS1LlCjx7NkzAwOD/J4OvGH0aPrhB6pWjfr2JVPTrDXcf/yRrl8nZ2cyMsrviUIht23btkGDBpUqVer27dvlypWTdvB///13wIAB5cqVu3//frFixaQdHAqX2NjY3bt3b9u27dChQ+np6XXq1ImLi9uzZ4+NjU1+Tw0+IaGhoSK7RbwPiUgul7dp06Z37979+/evXbu25plLliz59ttvmdnNzc3DwyP/pgxFVJYC7paW9OABXb5MTZrk98wAMlm4kK5cobp16cQJWraMrK3ze0LwyqpVNH48de9OBw7QlSvUtCnZ2FBgYH5PK/+8fEkWFqSnR+HhVKLEG7VlIO9FR1Pp0mRqSnFxlJxMxYuTnh7FxxOCTtnzqWe4b9q0adKkSTKZ7M8//+zevXt4eLiDg8OzZ88cHR3Xrl2bo2j7pUuXjh49+v333/ft23fcuHF+fn5xcXHFixfX3eQBBLFXuk+fPoi2F0D9+1OpUkRECxfSwYNUpQqZmRERGRjQqFGkUFDDhrR9Ow3D5gTQQnx8vEje9PDwkDzaTkT9+/e3tbUNCAhYvHjx7NmzJR8fCr7k5OQ9e/Zs3br1wIEDKSkpRGRgYNCtW7cnT548ffq0U6dO//zzT48ePfJ7mlDEhYSE7NmzZ9u2badPnxY5QwqFwtbW1snJadCgQRYWFm+/ZNKkSebm5qNGjZo/f/6zZ8/++OOPLJ0qALSSpYD7gwdkbo7t9p+CqKiogwcP5u61NWvWbN26tbTz+ZCICDp6lMRsBw+m//2PUGjrY+Lj4/X19Y3yICVq40YiyrgV3LCBiKhNG50ftCDz8aHUVOrQgUqUoGvXqEsXGjOG5s7N72l9qkRKe8OGJJdTUBCp1VSvHqLtOcCfsL179+rr6xPR4sWLmTkmJqZRo0ZE1Lp164SEhBwNpVKpKlSoQETXrl1j5nbt2hHR1q1bdTFtgCxEF99du3bl90TgvR4+5OLFuUIFViqz/mjZMr51Kz/mBEXI5MmTiahFixYqlUpHh/D39yciMzOziIgIHR0CCiClUunn5+fs7KzZ2SCXy21tbT09PSMjI5k5NTV12LBhRKRQKJYvX57f84WiKSgoyN3dPfMuCmNjY0dHR29v75iYmPe9KjQ0dOjQoeIJe/bsMTExIaLPPvssOTlZspnt28eTJ/Ovv3J0NKvVvGpVxuOBgXzunGRHgZx78eLF5s2bZ8+effHixfT0dB0eacECJmIXF2bm9euZiD/7TIeHg4LhwIEDI0eOzHUExsHBYfLkyXk33ZMn+bvvXn/bsmXeHbqQUCqVwcHBvr6+7u7uTk5O1tbWcrl8xowZq1ev1u2B799nmYxNTTk+nlUqrlSJiT71jw87Oybiv/9mZv7uOybi8ePze06fruhVq9L09TM+47y8mIidnfN7UoXJp5vice7cucGDB6enp//www+TJ09OTk52dHS8du1agwYN9u/fb2pqmqPR5HJ5796916xZs3PnzoYNG/br18/f33/nzp2DBw/W0fwBhLCwsAsXLpiZmXXt2jW/5wLvVa0aVahAd+/S8eNkb//68d9+owoVqEKF/JsZFH7Xr19fsWKFQqHw8vKSy3XVC93Ozq5379579uyZO3fuMrRyKurUavXp06e3bdu2devWZ8+eiQetra2HDx/u7OxcsWJFzTMNDAz+/vvvmjVr/vTTTxMnTrx79+7ixYt19z6ET9Dt27d79+794MEDIipVqpS9vb2jo2P//v3NxH6x9xs1atThw4dv3Lhx4MABR0fHY8eO9erVa9euXT169Ni1a1eJEiW0ndnGjXT2LLm70+3b9NlndOQIbdlCY8cSEQUFUXo6tWyp7SEgh27cuLF3794jR46cPHkyPT1dJpPNnz+/a9eu27Ztk6qXeBaDAgLKNmo0uVu32kTs7y+jV8XcoehKS0ubPHnynTt3mjdvbmVllYuX792718/Pr2fPng4ODrqYYVZlytCrj3JKSECBDiJ69uzZtWvXrl+/fv369WvXrt28eTM5OTnzEwwMDObPny+Xy6tXr96tWzddzWPjRmKmAQPIzIwOHaLwcKpdm1q00NXhcujFixeav6WrV6/Onj27Vq1a9erV0+EhHz2igAAyNaV+/Uitpq1biYicnXV4RPig7y5c2CiTrW/e/HOiYxER3LRpSxsbVBfNgfyO+OePGzdumJubE5GLiwszp6Wl9ezZk4iqVKny+PHj3I25f/9+ImrSpAkzP3z4UCaTmZmZSZlEA/AuixcvJqLBgwfn90TgI2bPZiL+6qvXj6jV7OfHfn4cEpJ/04JCTqVStWnThohEkWKdunXrlp6enr6+/r1793R9LMgvQUFBbm5umUPq1tbW7u7ud+/e1Tzn2rVrM2fOnDJlSuYXrlu3TpQ169+/f2JiYp5PHIqsqlWryuXyYcOGHTlyJEepyg8fPqxbty4R1ahRQ7yBb9y4IRr8NmzYMDw8XNuZdenCsbEZX0+YwGfOcIsWfOsW37rFv/7Ka9ZoOz5kj0hmd3Z2zlxRzcjIqGvXrlOmTBF3fD179tTFTZlSqRQrN+Lt1MDKanyjRs+vXJH8QFCgLFq0iIjq1q2blpaWuxFEP4l69erleoTsuns3Y/9Njx68Zw8/esRjxvCmTbo9aMGTlpYWFBTk4+Pj7u7u6OhoaWn5dljMwsLC3t7e1dXV29s7MDAwJSVl1qxZRFSsWDFRw0AnrKyYiP38mJmHDWMi/uknXR3rYz76t2RiYmJpafns2TMdTuKnn5iIhw1jZj58mIm4Vi1Wq3V4RPigZs2aEdGpU6eY2c7Ojoj8xNsVsqfwNU2tX5+2bSNra/rzT6pZkzp1yvEIYWFhtra2jx8/7tOnz44dOxQKxahRo9atW1emTJlTp07VqVMndxNLT08vV65cTExMcHCwpaVls2bNLl++vHfv3l69euVuQID3SUpKunz58vnz58+fP3/gwIHY2NhVq1aNFUlVUFDdvk316lHJkhQRQbrJsoJP0erVq8eNG2dhYXHr1i0JEjY/ZtSoUWvXrh08ePBWkXICRcWtW7c2bNiwdetWkUdMRLVq1RoyZMiQIUPq168vHnn8+PHOnTs3bNhw8eJFIjIyMoqMjMzcq+bYsWMDBgyIiYlp1aqVr6+vVO0E0tPTRQFA+AQ9efKkUqVKJUuWjIqKysXOiejo6N69e58+fbp8+fL79+9v1qzZo0ePunXrdufOnRo1ahw6dChze9XsuneP/v2XLC3p99/p9GkSDZ9mzSI7Oxo7lr7+mojo8mXq3j3ja9CNLMns4sEaNWo4ODjY29t369ZNnJ2uXLni4ODw4sWLjh077tmz56MbI3Lk/PnzrVq1qlOnzu3bt0NDQ6tWrWpubv78+XPs8inCnj17VqdOnZiYmP3794vOJREREXv37s3Oa2vVqtWxY0ciSktLa9iw4d27d5cuXfrNN9/oaq5qNbVpQyEhtG8fNWhA69ZRRAR16kSdO+vqiAUMM1++fHnYsGH37t1TKpWZf1SiRIkGDRo0bNiwcePGDRs2bNCgwdtX0cw8dOjQLVu2VK9e/dy5c5I3SVKeO6fXujVVrEiPH1NKClWoQImJdP8+vWs9QBcePXqkyV6/fv363bt3s/wtFS9eXPwtNWrUyMrKaubMmRcuXLC1tT169KiO9gxR3bp05w4dOkRdu9KIEfT33zRnDrm76+RY8DFKpbJYsWKpqakxMTHFihUrVapUbGxsZGSkLhqGFVn5HPDPuSZN2NGR1WpeuJB9fXO83PXixQuxC6ZDhw4i02Hq1KlEVKxYsX3ukGUAAKdASURBVMDAQC3n9vnnnxPRokWLmPmnn34iolGjRmk5JgAzK5V848aTv/76a8yYMU2aNMnS70sul1tbW798+TK/pwkf0bQpE3FeFttPSEi4d++eGnkBRdTz589Lly5NRNu3b8+bI4aHh5uYmMhksjNnzuTNESEPPHjwYPz48eIDpVKlSq6urv7+/przRlhYmKenp62traaTfKlSpZydnX19fd9ONw4KCqpWrRoRWVpa3tKuPUVKSoqvr6/IWv3mm292796tzWhQSG3fvp2IunXrlusREhISRFDMzMzs0KFDzBwVFSU2BpUvX/7SpUvZHSgoiN3d2caGiZiIO3TgUaNYc+/Qowc/fszt22d8u349Mtx14cWLFz4+Pi4uLpl34ejp6dna2np4eLzvVu7mzZvi+e3atYuLi5NwPvPnzyeiMWPGMPP69euJ6DMUcC/qRo8eTUS9evXSPHLy5MlsBl6++OILzat27dolPk+fP3+uq7muXctEXKkSJySwWs2f3pXbvn37RM0fPT09S0tLR0dHd3d3Hx+foKCgbDY9SkpKEu1tbW1tU1JSpJ3e+PHjP69bN+jXX5mZ//6bidjOTtpDvO3atWvjxo2zs7N7e4FBoVDUrVt30KBBc+fO3bVrV0hISJZbyKdPn1apUoWIhg8frpPJnT3LRFy+PKenc2IiFyvGRHznjk6OVcjt3r174sSJffv2PXbsmO6OcuPGDXFJz8whISFEZGFhobvDFUmFL+Du4MCLFvHatbxwIf/+e8ZF79t/2rXbIM6tpd5kbGxMRE2aNBE9lH777TciMjQ0PHLkiPZz8/HxEadjZg4KCiKi0qVL67ZRz6dHrVZPmzbtzz//zO+JSObAAV60KOPrOXNePx4ezr6+7O7Ojo5cqhS3afM488ehtbW1s7Ozp6fnwYMHNc1+sYu/gBONtfKs/M/y5curVKlSqlSp5s2bHz9+XKfHkmBvPuRcdHR0165dq1evrnlErVbreu3Nzc2NiOrXr79x40YfH58dO3b4+fn5+fmdPXs2MDDw2rVrwcHBwcHBUVFR0dHRqKtWKMycOZOIbGxsTp48qbkFjY6O9vb2dnR01CzxGhsbOzk5+fr6pqamfmC0p0+fNm/eXMQRTpw4kdPJpKenHzx4cOTIkZpbQRHoVygUS5cuzeVvCIXW999/T0Tu7u7MfOTIkX///TcXwan09PQvv/ySiAwMDP755x9mTkhI6N69u4jCHz58+H0vVKlULwMCeMoUrlHj9T1GqVLs7My7dvGjR+zgwG5uPGAAL17MKhUC7jry9OnTn376qXXr1gqFQnMxXKNGjfHjx+/ZsychIeGjI9y+fVtUE7K1tf1Ao92cEiVJN2/ezMziPbZ48WKpBocC6PLlywqFQl9f//bt25oH7969Oyp71rx5WhCVwSdMmKCTucbHs4UFE/HGjcyvOvrq6FgF1ZAhQ4ho4sSJOY2VK5VKNze33377jXUWZU5LSytTpgwRXb16lZlXf/XVA1vbNB1/cJw4cUJkiGryJ2xtbV1dXb28vPz9/d+OJMTGxgYEBHh7e2seuXz5stgnNG/ePMmnt3T69GMdO8bOns3MvHEjE3HbtpIfpbBTKpXTp0/XJMHI5fJJkyYlJSXp4libN2/WLCTv3LlTywSIT1OhDLinpXHHjvy//7GnJ8tk7wu4e79vbVkmk2nC69euXatcubK4+NZefHy8sbGxXC5/8uQJM4vqNLm424QPOHTokFhK2bt3b37PRRrLlnHt2nzhAjNzp068ciX36cMVKmR9S7dpk/L555///vvvp06dynJKDQsLExmFffr0USqV+fNrQDY8fsxyOZuYcHy8zo/l7u4uTnelSpUSp76+fftqmXD6Tvfv33d1dTUyMhKZg5CXwsPDTU1NZTLZ6dOnmfnWrVstW7bUxZWQv7+/Jg775MkTMzOz8uXLv+9D9m1yuVyseVepUkUkPmczsQjyhog8/vvvv+Jbf3//nj17aqq4GBkZ9e/ff9u2bdm/mk9ISOjTp4+Ib27YsCGbrwoMDHR1da2QqYu0KB8fHBzs6ekpbi1cXV3xMfdJadeuHRHt37+fmR0dHYloy5YtuRhHrVZ/9913YuVm1apVzJyamiriDoaGhj4+PpmfrFQq/f39XV1dK1asuLB164zrsDJl2NmZfX05y4JTWBhr/mtoSrqnpLDUuZCfrJiYmHnz5olzwkeT2T/g/v371apVMzU1HTjwXHS0BBNLT08XVWtEzkGNGjWI6PLlyxIMDQVVhw4diGjq1KmSjHbz5k19fX2FQqGTEuHTpzMRt27NajXHx3PFikzE2f5ELgJiY2PFpswHDx7k9LUnTpyQyWQKhWLPnj2smyiz2OJQv359Zn7y5IlCoTAwMHjx4oVU47+T+NTr2bOnn59fZGRklp8qlcrg4GBfX193d3cnJydra2tRHUsmk2XO5tm3b59CoZDJZFu3bpVwbunp6eLmQpxFr4wdqzY355UrJTxEEfDs2TPRaVlPT2/WrFm//vqr6J9Us2ZNf39/yQ8nsqxE0sOcOXOIaNq0aZIfpWgrlAF3Zj55kkuX5o9GXNPS0qLfNHLkSCKaLdbNmJk5XtLQV+/evYlo9erV/OoNOmnSJAnHB2aePXs2ERkbG4vuDYXdsmX855/cpQsrldypE/fvn3FnV6IE29qymxv7+vJbH4iviTewpg+w2NYKBVa3bum2tve3bQvQ3SHUarWolKVQKP7666/ExEQPDw+RKyqXy52dncWKoPYuXLgwYMAAcSmmUCh0kekAHyVyk9u3b8/M0dHR4jwgbTebixcvKhQKW1tbsWFrxowZRFSxYsWhQ4c6OTn169fP3t7e3t6+ZcuWNjY2DRo0sLS0tLS0FBH2d1Z4NDAw2CjyraBgEDFuzR2pr6+v+E9ta2vr5eUVq4kh5oRSqXR1dRX3aeJK/X2CgoLc3d1r1qypeYfUqFHDzc0tc/4gM/v4+BgZGRHRZ599hu1cn4j09HSxpihiEKJmaC5CJxqalRs3Nzd+8+Ny9erViYmJ27dvHzp0aMmSJTXvxpb16/P333NAAGOZMJ/s3r2biKpVq+br65udZPYPePjwYc+eJ4i4SRPWvu3fuXPniKhOnTrM/PjxYyIyNzfHcnIR9s8//xBRuXLlJNxKOHHiRCLq3LmzVANmCA5mIyOWyfjcOeY3g++fjLVr1xJRx44dc/fyn3/+mYjMzMyuXLnCOogyDxw4kIgWLFjAr9rw9u/fX5KR3ycuLk6sQISEhIhHIiIiDh8+vGjRopEjRzZr1kxcZWVmZGTUrFmzkSNHZrl5FNW0jI2Nz4k3mBTExae1tTUzP336VE9Pr6SpaYKOVyAKF39/f1EerVy5cpkTiJs0aSJC8G5ubh/ehJpToiKfyMjp168fEW369Foua6nwBdy//z7jixkz+OzZHL/84MGDRNSwYUNpZ6UhzuwiwfDs2bNEVLlyZRRQlpy4OildurQuMnbz2LJlvGsXr1zJy5Zxp0585Ahv3sz372frtTt37ixdurQopnz27FlTU1Mi+in/mpvDR61YsYLerPwoLaVSOWrUKBHT3LZtm+bxyMjIcePGidIQZmZmHh6e2ty0+vv7Ozo6irCFgYGBs7NzltAY5Jm4uDgRhNq3bx8z//rrr0TUpEkTqe75VSqVKF753XffMfOdO3cMDQ3lcrnIqc8mpVIp1rwfPXq0YMECIqpevbrkpTAhd548eUJEpUqV0lyrpKamenl5SVJV1tPTU6zJjRw5Mi0tLfOPQkJCPDw8Mneqr1Kliigf/77RAgICxP7rFi1aREREaD894cGD1zl/mzfzrVsZe86Y+Z9/kKacnwIDAzUBzfv374ubTC3H9Pb2Fh+F48ePF+fJuXPnio+zzAuEjRo1cnd3F3EWyF9TpkzRZNhp7+lTrl+fibhuXdayGN7SpUtFjCwhIUHcAKKAexGWlJRUvXp1Ivrjjz8kHDY6Olp8ru3cuVPCYfmzz5iIR45kfiv4/sno1KkTEf3111/MvGDBggkTJtzJSTVwtVrt7OxMRJUqVQoLC2NJo8wxMTGiLkJoaCgzN27cWPr3wFvWrVtHRB06dNA8IlJFM7OwsLC3t3d1dfX29g4MDPzAtbqLi4t4vvgVtDdo0CAi8vDwYObff/8dZ9QsvLy8RDJ7+/bts6x/pKWlubu7i5JrDRs2lHCjlbhKX7FiRUhIiKWlJREFBQVJNfgnopAF3J894woVeOLE3I+QlpYmCizk6ISbfS9evNDT09PX14+Ojlar1aLg1wXNrRtIRKlU9u/fX6xnPH78OL+noxURcFepuFs3btUqZ68VOzbKly9///59Zt61a5dCobCyGrhuXdpHXwv54vnz5/r6+vr6+rpokZSamurk5EREJiYmBw8eZOaoqKjMgdc7d+44OTnJZLL27ZeXKcOenpyjHhMqFf/7L3/++XRxTVa8ePHvv/9eqnx5yDVxVdqwYUOlUpmcnCw+d3JXdeFtYomoSpUq8fHxarW6c+fORDRu3LhcD6hSqUQiBgrdFhB79+7VSXrdKzt37jQxMSGiLl26xMTEPH78WLRg1dzdlS5d2tnZ2c/PLzvZCffu3atdu7ZYs7l586YkMzx8mEuXZrFlrlMn9vHhJUsyfuToyOhHno+WL19ORCNGjGDmjRs3ElHfvn21H3b37t2ipZOmIZCbm1vJkiVFC3p3d/cikMxRlDRr1oyIJOwLFxnJjRoxEVtZce4iRfHx8b6+vi4uLqIAQr9+/cR5CZ9rRdiPP/4oEhokL2u2bNkyIrK0tJSq7c3l48dTq1fnYsVYXKL368dEPGKEJIMXFmFhYQqFwsjI6OXLl2q1WiyWnDx5MkeDpKamiiJCzZs3F1vrpIoy//HHH0Rkb2/Pr/pSlipVSteZKF26dCGizI0E5s2b165du/Hjx69evTogICBHOxrT0tLETUHTpk213HvEzLGxsWIFQgR2mjZtSkQ7duzQctiiIS4uTqxGyGQyV1fXzPkrX331lYeHhzgpnTlzRrQI1tfXd3d31/JMJTo52dvby2QyIyOjEiVKVK9e3crKKkv2DHxUIQu4r17NRKxlbuiwYcPo1f4dXRCnHrFfXiRiz5w5U0fH+pQlJSXZ2dkRUYMGDaIlqcWYT9as4f37mZnPn+fWrXP22rS0NLHTx9LS8unTp8y8fv3BEiXUenrs66uDuYIURLlkUXhKQomJiWLkkiVLimpL4eHh9evXfzs2eurUaTu7NFG5yNr647W5mDktjb292dqaibhOnctly5Z1d3ePioqS9leA3ElNTRXlONavX8/Mf/75JxHVqFFD+wv3iIgIsUQt9hKuX79erPBpecoVEd5SpUoV6lN3kSE2TUtVkfadzp07J8JSZcqU0XR5KlWq1FdffeXn55fTW4IXL16IT/9SpUpJEoM7fJhnzODOnTktLSPgPncuR0RwRAR37YqAe34S2YUrV65k5m+++Yakq5/733//jRo1SvPeE3mLX331lSSDg4RiYmIUCoWhoaG0HeGio7llSybiatWyu6lUrVZfvHhx7ty5tra2mXu3VqpUSawpOjg4iDRYKHrCwsLENmJd9GZTKpUNGzbU5PZqKT09vWHDhmYGBheWL2dmPnaMidjMTNsNHYWNh4cHEQ0aNIiZT5w4QUTVqlXLxe7P58+fi2tsJycntVotVZS5ffv2muv2adOmEdHYsWNzPVp2hIeHa1YgpBozKipKrDX2799fy5214uZFJH/cvHkzb1YgCoVbt25ZW1uLRLfMm9eZ+cKFC+JjqEOHDqJMUFJSkpubm9ha2rp161xkGCcmJm7ZssXR0VHTycnMzKxTp04iTaFLly64d8upQhZw79KFiXj9eq0G2bFjBxG1adNGokllJZapBwwYwMxHjx4lIisrKx0d6xMXExPTqFEjcZaRKikg7/35J48ezbne+hMfH9+iRQsisrGxiYtLYGZ3dyZiY2MuEiXuiyBvb+8sG/q0FxMTIyJQ5cqVE/vI7ty5U7VqVXFFGBcX9/ZLfH25Vi1NS14OeE9V+YQE9vTkKlUynlm9Oi9bxomJuAAqWDZs2CBu+5OSkpRKZf369Ylo6dKlWg47dOhQIurevTszR0dHi9o12e+B+QHidgWr0QWB2C6m66r6Dx48KFu2bJUqVYyMjBwdHX18fLS5j0pOTh4yZAgRGRgYeHt753qcs2d56lTeu5fnz+e1a3nBgoyAe+fO/N13/N13XLPmJxpw9/ZmTScIZ+fXj0+bxn/9xcz84AH/+isz89q1OpyGyNW6ePEiM4tLHQnTnDMT/wu0eS+BjogC7tJeMgkvX3KrVkzEVap8KBQZH8++vuziwrVqqQwNi4sAROberSIQX7p0aSLq0aOHtAsDUEB88cUXmuitLoiIQbFixbTfNpo5X16pVF4dPJjlcv7lF0nmWYiINQzR8lQU2/zf//6Xu6Fu3LghWmHNmTOHpYgyp6amduzY0djY+ODBg6mpqWJnasD77sQkItaVnZycpB329u3bIjVHy0v6jh07EtHatWuZefr06UTk4uIi0RwLsY0bN4qlvsaNG9+7d+/tJxw8eLBSpUpEZGJi4unpKbaKHj58WLypjI2NPTw8svMuValU/v7+Li4uohM4ESkUCnt7e29vb9Ev8PLly5UrVyaiWrVqoZBsjhSmgPvz56ynx/r6HBXFajX7+PC7gkgfl5iYKFowSVVwKovQ0FC5XN6pUydmViqVoi4bdqfqSFhYmIgq9u3bV/ItfnmjbVsm4jcXLHPm+fPnderUad/+ny5d1CKCMXEiE3Hp0izRhnuQUlxcXOayfdqLiopq2bIlEVWtWlUsZQcFBYmeKi1btvxAHnpqKi9ZwmXKMBHLZPzFFzxxIh8+zMwcFMTLl/OcORk/JeL69fnvvxnbyAomlUolNt0vXLiQX0UoypYtm7t2l8KJEydkMpmxsXFwcDC/2kXbvn17SbqSnD9/Xgxe2GuCFQE1atQgIqnKs3yA2NB96dIlSUZTq9Xu7u70qilrjt6WQUHs7s61a2ec3GbP5vnzWa3mHj24QQOUlGFm/v131uzktrN7/fjAgdy5Mz95wrdu8bhxvGkTDxnCEv2TZhUVFSWTyUxMTNLT05OTkw0MDBQKhTbntA8Q96s6qjYJ2pC2gHsWCQncuTM7OfGwYRlv46NHed8+Vqv54kX+5Re2tWWFIuNEQcTdu88fM2bMrl27RAAisxs3blhYWIi1gbd/CoXa6dOnxRWLNh2bP6pv375E9OWXX2ozSJaK8CtXriSiKZ07c6HNS8udS5cuicvgtLS05ORk0Qdbm9rTBw8e1NPTk8lkomNkTqPMqampQUFB3t7ebm5ujo6OIn9F3KaJIKalpaWue/6JFYjdu3dLPvKJEydEbfHMxWpyJDo62sTExNjY+OHDh5r6Px/o6PMpSElJcXV1Fe8TZ2dnUdHonV6+fCm2AxJRt27dxEarmJgYceMmdl99IOYQFBTk5uYmPr8EGxsbT0/Pt1slhYWFiZtNc3NzXez1KaoKU8Ddy4uJuGdPZuazZ5mIa9fO5VCfffYZEa1YsULC6WUWGRmp+VpU2R42bJiEDb4gs6CgIPGZp01Z4fzy9CnL5WxiwlqWPgsJeVmhAhPxsGGsVrNSyf37MxFXrswIZxU0p06dEj1qFi1apP1oT548adCggbhWE4HR8+fPi0yrTp06vTO3PYv4eHZ3Z2NjbtSIu3Thrl05MZFPneJx41guZyJu1oy9vblwrmd9QkRL8JIlS4olFpEqMnv27NyNlpqaWq9ePXpVwOH8+fNyudzAwEDCsKzoNzB69GipBoRcePnypYhp6mLFOiIiYuLEiVu3bmXm6OhoXRzojz/+EA0wBw8e/NGNbvfu8c8/Z/RLFH8qVeJvv+W1a3n+fGbm69fZ0DBrwH3XLv79d/7nHwlnXQj8/juPHMm//ca//caZd2kOHMgnT/IXX2QE3JlfJ8JLbt++fWKRj5lPnTolMrx0caBHjx6JG0hdxzsgFyQv4J5FYiIrldymDffowSoVb9rEM2eyuKIWfwwMuEsXXriQPxqsu3Xrlsh1sLOz09HKEOQ9lUolklpyfUGVTcHBwaIpvTYNOUXpLVGXQxN8/wQLYYuFum+++YaZfXx8iKh58+Zajrl48WIiMjIyOnPmDH8wyqxUKu/cubNt27ZZs2Z99tlnlpaWmmJ6GqVLl+7cubOILDdo0EBk4uvOlStXxMdcamqqLsYXBWH09fWPHz+e/VeFh4f7+vp6eHg4OzvXrVtXLpePGDFiwIABRFStWrVP+RP58ePHrVu3JiJDQ0NPT8/svMTHx0fc/pcsWfLvv/8WD+7du1dE0kuUKOHl5ZX5+Y8ePfLw8BA9UYXq1au7ubndvXv3A0eJi4vr1auXmJgkO54/BYUp4O7gwES8bh0z85QpTMTffpvLoURJB9GnQtecnJw0y5gWFhaOjo4eHh7+/v6FtwRKAXTy5EkjIyMi+lXscC48li1jIh4wgJn56VPWpijWtWtcsiQT8fffMzMnJbGdHRNxgwZaDQvSunbtWvHixStUqEBEVapU2bJly+3bt3Nd9i4kJEQUFqxfv354eDgzHz9+vFixYkTUp0+fHJ1kHj/mS5fYwYF37+YZM/jUKf7hB/7lF8YCdiFib29PRNOmTWPms2fPymQyU1PT3G1P/umnn4jIysoqJSUlPT1dNC/64YcfJJxtcHCwSFlFv/t8dOzYMdJZkT1fX1/NtZbYL9+2bVvJj3Lw4EGxAdbW1vadzahDQ0N/++03OzsHE5OMCFqZMjx2LJ84weLUm5T0Oo09NJQTEjgmJuPbJ08y8gJ1WeK+IPr9d160iC9d4kuX2Mbm9eMDB3JMDLu68vLlrOskh9mzZ2tOaIsWLSKiMWPG6OJA//zzDxH1FBk9UJDoqID72xwceOVKXrGCN21iT0/W0+Py5dnZmX18Xp8NsuPOnTsiX3XgwB8/zc0xRc/atWuJqFKlStq3hfwoNzc38Ymcu1DjzZs39fX1FQrF1atXmVmkx4o9958UlUolNi2JpQuR5LREs5CuhXHjxhFRhQoVHj16xJmizL6+vv7+/l5eXq6urra2tqIGSGb6+vrW1tZOTk7u7u6+vr4iQYqZX7x4UatWLSIaMGCAljXQP2zq1KlENGHCBN0dQrzfSpcu/c7KJ8z84sWLo0ePenp6fv311y1atBCtLzIzMDAQf3WdO3cWvVs+TUePHhXBw6pVq+Zo+S0iIqJPnz7iL9PJyenFixfMHBkZ2a9fP/HggAED7t69q2mFqln7cXFx8ff3z+ZpR6lUijNV+/YrXV1ZqrdtbGzsvXv3imSAtNAE3F+8eKOeTLVqTMSnT+dytJcvXxoYGOjr6+u66Z+4Q9DX17exsRFRMA0jI6O2bdt+++23//zzD/bUa2/37t0KhUImk63NbT1RpVJ5/fr1tWvXLlu2LM+6HnXsyES8eTMzs6sr6+tzbjdjMTMfO8aGhkzEv/3GzBwVxdbWXLp07gvEg7SePHkiKiD179//m2++EatE4grD2tra2dnZ09PT39//A7vGMrtx44bIpWrRooX4TPX19RVjDhs2LD09PRczdHBgZu7Xj//6iyUNrkJeuHLlilwuNzIyEncC4gIrF1t/Hj58aGJiIpPJjh49ysy//fabSDaR/G5z/PjxRPTZZ59JOyxkn/jHHT9+vC4G//HHH7METHV0s3f16lUR5Kpdu7YmNyc6Otrb29vR0VGkwBNR587Bw4fz/v05Lo21desnt/SYpaSMWs1iO7IIuMfEcIMGPG4cP3igw81PXbt2pVe5mWJDTK4v8D5M5EL++OOPuhgctKG7Au5ZODiwUsmdO7OnJ//xB7+KhuVGSEhIhw4Tzc3VNjb84oV0U4T8EBcXJ/JDRSGRAn64bt26aT5nswTfPylix2ft2rXVanVUVJSBgYGenp4klQbS0tJEaku3bt3EI5MmTRLZvllixxYWFvb29q6urt7e3oGBgR9oWnPr1i1R8WbWrFnaz/CdNCsQZ8+e1dEhmFmpVIq1jXr16r18+TItLS0oKMjHx8fd3d3R0fGdaf5Z/paSk5MPHTokSvd8mtnTarXaw8NDtDzt1atX7gKV3t7eIupYvnx5TQWhdevWiT4EmtWgYsWKDR8+/ODBg7nbeLpu3Sk9PSbiIUO0KlilVCr9/PycnZ3NzMxatGhhYWGxd+/e3A9XIBWagPvGjc+MjLh7d+ZX9WQqV2ZtNpqI06VO+yNt3LhRLpfLZDJxFKVSKap3ubq62tjYiP9Lmc84jo6O7u7ufn5+2Qy3QRarV68Wyxv79+/P5kvEVibxSWBubi7+LYoXL25iYvKX6AumS6ItgaEhx8ayWp3RlzIwUKsxN21iuZw1Xe4fPeJbt7hjx4xH/P1ZZ5/m8BFJSUmtWrUiIjs7u+Tk5ISEhJYtW9rY2IjthJnp6ek1bNhw+PDhv//++/Hjx9/ZTf7ChQtio6imbsymTZtEP/EJEybkOktCBNyDg7l2bQTcCyXRSVLUAL19+7aenp6enl5O68CI3YIjRoxg5idPnohLNF1sd42MjBQXhZ94ocZ8NGzYMNKi7OaHifJ9W7Zs4VcNeP/8809dHIiZw8LCmjRpIlJ1fvjhhx49emji7MbGxgMHDtyxY0fuEmdWr+ZRo7Tqs1IYbdnCmn3hLi68Ywdv3swLF/K0aSzKU2/bxtOmsYUF9+nDukg+VqvVolqgSIAQa9U3btyQ/kjMbdu2JaJDhw7pYnDQhk4LuGcmLn7OnePKlfmPP7Qd7fHjjBYR9eqx1i0wQQLXr1+/liujR48mLVLOc0Ek1FtYWJw7dy5HUz1z5kyrVq2KFy9+//59Zu7evbvuVtMLOHG98fPPPzPz8uXLSdINTNHR0U5OTppcycePH8vlclNT07Zt244dO3blypX+/v4xOdoXw6zrKPOhQ4eIqFatWrp+G8fGxooyp+bm5pprMI1ixYq1adPGxcVl+fLlJ0+ejH7PBvylS5cSkZGR0elcp9YWWjdu3BB7f3/55Rdt/rFCQkLat28v/tpHjx4t6gg9evTIxMSkRIkS9vb2mzdv1j7eePgwlyjBRNy6Ned0PUutVvv7+48bN06UwSEiuVwuUmf09PRWrVql5dwKlEITcO/WrVuxYpU2bz7LzNOmMRFPmqTVgCtWrCBdJtbt3btXBL8WL178zifExMQcOnToxx9/7NmzpybUqwm3NWvWbMKECX///fcLZEfkxP/+9z8iMjExed85OiYmxs/P75dffunbt2/m7hBCjRo1hgwZMnDgQCJSKBS7du3S6WxFW4LevZmZT59mIq5eXatlJOHtG1IHBx4wgB88QMA936hUKhF7srS0FD0ePDw8xDrz06dPY2Ji/P39PT09nZ2dbWxs3pkoIRbkfHx8goKCNHVjevfuLUJIK1euFGt4bm5u2sxz+PCMLxYsyNgnAYVLSEiIqAF65coVftXpdODAgdkfQRS7LFWqlHijilqKORohR0Tfy1atWn3KtRrzkbW1NREFarnS+x4iSHr79m1mFi0BLl68qIsDCaNGjRIltsQpVKFQ2Nraenl5oZiyJKZM4SyLbufOsbk5E3GHDjkru5EdN27cIKKqVasy85MnT4ioRIkSuthxn5aWZmxsLJPJ3nfzD/lI1wXcNTQXP1Om8NatEgwYEcENGzIR16nD2myaDQ4O9vT0tLe3Hzt2rIuLS3Ya88Db3o79ZVPx4sXlcnnmvGBdnIUyj6lSqWrWrJklMpAjbm5uc+bMERdy7yyzVrQlJCSYmZnJZDJRtkWkOomFf11YuHAhEQ0QxWG1IBYGjIyMTp+WPglddNTMm11c586dMzIyMjU1VSgUlpaWme9es/9/Z8KECURUpkwZsXr06fjf//4nk8kk6UqoVqu9vLxMTEy6desm7rCuXbtGRBUqVJDwhuv6da5ePSMTOpsFFW7c4EWLdmdON2zUqNH8+fMfP36sVqvd3d3FTggXF5fcbdYvgApHwP3Fixf6+vr6+vovXrxQq9X167dq23bpmTNaXXM8ffpULpcbGxvroiLb2bNnxX6N7Fe8DQ8P9/HxEZW/Mofbzp8/L/n0ijC1Wj1q1ChxjhY3+enp6WJjgYuLi7W1dZaNBcWLF7e1tXVzc/P19c2810wTuA8ICNDdbHv0UGvaEkydykS6qhLr4MC3bnG/fgi45xtNYbs7d+4ws4+Pj1wul8vl72xklJSUdP78eS8vr7Fjx7Zu3frtInci2j58+HDxUSRi9zKZbOHChVrO87//2MmJ82TjLOiKaJnl6OjIzOHh4d27d89RBcDZs2fL5XLRWkdsyy1WrNgHuttrKT4+XrQ00PUCJ7wtKSlJT09PX19fFzUTRZdUMzMzlUqVmJioUCgMDAw+sKtaS7GxsTKZzNjY2MfH58cffyxVqlTXrl2xiiOVuDhWKvm777I+fvNmxua8Bg20iiq+7a+//iKiQYMGMfOOHTuIqGvXrlIe4JVz584RkbW1tS4GB23kWQF3ZnZz4xEj+NYtKcd89owbN85IpgkJycELY2Jitm3bNmrUKFE2UBD3hvXq1RN3N5AjTZs2bZArotbH6tWrmVmlUq1YsaJOnTqSL86NHz/+888/F7t5Xrx4UbJkSZlMVqtWrVxMWISxzM3NzczMstlrsYj5+++/icjOzo6Z7927J5PJihUrprviAY0aNZLqCnbChAkNG461slJKG2QWKxBE9OFmmNpYs2ZNQECAuOIShQq7du2qzXlbqVSKvbbW1tY53S5QqG3fvp2IbF51zlm3bl23bt20WWe9cePG06dPxde//vorEX311VcSTDST58+5XTsm4mLF+APFYMLD2dOTbW2ZiBs1+o+IKleu7Orq+nYiztatW0WB3O7duxeNjJnCEXAXLSm6d+/OzOfPnyeiSpUqab/C3KZNG9JB5+4bN26IdWkXF5fcjZCQkHDy5Mn58+cPHDhQR72ki7D09HRxji5Tpkzz5s2zJAuL0vmTJk3atGnT+3p68LsC95KLiooqVapqu3YroqLUzGxpqVVbgg8TW2VnzGA3NwTc80HiqlVdqlUzNDQUdTPOnz8vYui/ZTuHPHPto9KlS5csWbJs2bLiHBgdHV2lShWFQiFJrYZ587TqRw0FwfPnz0UPyVxnBV65ckWlUiUlJVlaWhLR77//Lu0Ms1i2bBkR1alTp8jkMhQWZ8+eJaLGjRvrYvAjR44Qka2tLTOfOXOGiJo0aaKLAwknTpwgopYtW/KrC8WGDRvq7nCfmn37+Lff+MqVd/woPDwjk7d6db5zR7Ijit054lMyMTHxv//+01HhqSVLlujiFhS0l2cF3JkzeoNduybxsC9fcqtWTMRVq/L77zmYmdVqvnKFf/2Vhwz5JXM6duXKlb/++usdO3Zs2LBB5AwVK1Zs+/btEk8U3mPbtm0ifi12nDs4OBDRJC132b8pKChIVP+7fv06v2rL2aVLl9yNplKpWrRoQURTp05Ny2m7kiJB/BuJrBHReXvkyJE6OlZQUJB4e0iSTJCent6rl1osYEsYZtywYYPmYkwXXr58aWRkJJfLxYqRKO7377//ajlsTEyMtbV15cp2I0a81F2rmIImJSVFLPKJAnodOnQg6Spg29nZ6SLyycxJSTxoEBNx/fo8c2ZGSfeDB/nRI46N5XXr2N6eFQomYiIuVYrHjFGfPOn/gVhuQEBA2bJlxZW8aEtWqBWOgLvoASJqan///fdSfdQtWLCAiIYNG6Z5RKVSheQoCeEtoaGhYg91nz59EDvIL0lJSXZ2dqJMPxFZWlpq2lFm/xNRqVSKGiA1atR4ooMSjKJIn2i6Ehh4qXXrhT16PNRRf3IRcE9M5Dp1EHDPc7t3s0KhKl366LZtzBwSEiI6j48ePTp346WlpVWpUoWIfH19xSO3b9+W6uPTyYmJ+O+/JRkM8s1PP/0kgo/aZPiKjT4NGzbU9T1bWlpa7dq1SWeVxOF9Vq5cqbt7UXGJNXHiRH5VxE+0FtCRxYsXE9HYsWOZ2cvLS+wB0t3hILPoaG7blom4fHnWvmiQUqk8duyYKPqXB90dvvjiC010BgqUPCvgHhzMRFy6NOviIjwmhtu2ZT09XrAg43+HSvU6DTAhgX192cUlY6cIEXfseFKhUNjY2Li7uwcGBmb+EBf5iWJHo5ubW+463UFOiQDu5MmT+a3guITji8jGjRs3tB//9OnTYr/XgwcPpJpkYREeHi6204kFEnFtefToUR0dTkSlJCyUHxfHDRowEXfvzlKFkUQYTXdFsf/44w8isre351e14EqVKiXJCkRw8AMrq3Tt60gXLiLjU3TQFX+3kmzvi4qKEltadbRjQK3muXP5+nUuX57Fh/bMmfy//7GxccZHm5ERDxjAO3dyNt8a9+/fF7UoLSwsJCz4IfLJpBotmwpBwD06Olp0lxZlyESBzlOnTmk/8r1794ioRIkSmizyq1evikfs7e3d3d19fX1ztGvsxYsX4p3RoUMHXWzQhuxLT0+/e/fusWPHtNmKkpSUZGtrK0JO72xcqQ2Rhv/HH38w8/Tp04nI1dVV2kNo/PxzxhdHj/KrbtWQJy5eZFNTJuK5c5k5NiqqTp06RNSzZ09t7pR+//13ImrVqpV0E81Qq5ZOkrwgjyUkJIhw1dbcFqO9c+eOqAWfNz2Ltm7dSkQVK1ZEz/C8JNrBLVmyRBeDf/7555pUia+//pqIli5dqosDCcOHD9eETceOHUvv76ADupCQwN27MxF37bozd3trUlJS/Pz8XF1dRY0puVxuZGTUs2dPXd8aiX08V69e1elRIBeaNm2qzVat7PvrLyZirYswv1d8PB84wNOnc4MGnJDA6ens4MAeHtyhA+vpZQQjRA3cr79mX9+4D9y5iJ0fQvfu3aOionQ1aXhFE2QPCgriV58vIryoPVEvS5NB37VrV0nuB8Xn7+DBg6WYY2GSuaJ6enr6unXrBg0apIuy+8ysUqlEj0dpr5MfPOBy5ZiIJ0+WYLSIiAg9PT3NCoQuiOac69evZ2Y3NzdN6oMkTp1iQ0Mm4pUrpRqyoDt27BgRVatWTa1WR0dHi3uxMK1r9m3atEnCE9f7JCZy3748YADfucMzZ/KaNSyXs60te3pyLtpJREdHd+7cWRSo0L4NQ1BQkLu7e/Xq1efOnavlUDlVCALuooyjSAS+cOGCWOiQ6tTZsGFDIjp48KD49sCBAyL5VEOhUDRu3HjMmDHr1q27efPmB7IFExMT27ZtK4Kz6LxUZLx48aJu3bpE1LFjRwmLz8bFxRkZGSkUCtGWUARhT548KdX4manVXK0a167N4eG6GB7eLyyMK1dmIhZ5nWlp3KXL8Q4dGjRooOXyckJCQpkyZSR/z8TGslzOhob8SW5CLWqWLFki2s4QkZ6eXqlSpUqVKlWtWjVLS8t69erZ2NjY2NjY29vb29v37t3byclp8ODBLi4uLi4uU6ZMcXNzE2lBY8aMyZvZqtXq1q1bE9G8efNy8fKpU1mEyy5c4H37ePbsjMeDgviff6SbZZHTvHlzIvrvv/80j2T+Wkvio/PSpUvMbGNjo+ts5QYNGtCrtjctW7YkohMnTujucPC2tDT+/vtzRGRoaLht27ZsviouLu6ff/4ZPHiw6E0i1KlTZ/jw4aVKlSKidu3aSZ7xoBEZGUlEpqam2JNa0Lx8+TLPCrgPH85ErMsFQWbm6dP5l1/4++8zAu6NGjERKxRsY8Pu7hwYyNnZkJaWliYCEELVqlUvXLig23kD85gxYzSxqqioqNKlSxPRnixdpHMuNTVVXGutXLmS3wq+ayM0NFQ0k9PRrWWBNWHCBLlcLrLZdM3Pz4+IatasKXm3GAmjzKKier9+/aSY1zs8fPhQLpebmJjExcWpVCqxA1uSvFgNb28mYj099vOTcNSCS/PXKBZyRLkF7TNIxGY+XWeiiID7/fvcuzfPmMEBAdp290lPTxdVtmQyWe62uz148GDu3LnW1taaz81evXppNaecKwQB9+7duxORKE98/vz5Hj16TJkyRarB3d3d344p3L9/f+PGjd98802LFi309fUzx99LlizZvXt3d3f3a2+mgKalpfXo0YOILC0tdVF+BPJRaGioOPENHjxYqpWejRs3ElHnzp351b6K8uXL62hz6LlzGYkz6B6Xp2JjM26nOnbk1FRWq3noUPEvkSzF0oc4d/Xs2VP7oTT++4+JuHlzCYeEfDNt2jSRJUq5YmlpaWNjk2fZc5s3b+7ZsycRmZmZLVmyxMfHx8fH5+DBg35+fv/9919gYGBgYGBwcHpwMD99ytHRWatb2tpyr16sUvGuXbx4MdvZZTx+7BiKaL1Xenq6kZGRTCbTZFP+8ssvROTq6qr9J11CQoLY1p2ampqWlibqe2rT9+nDkpOT9fX19fT0kpKSlEqliYmJTCbTXZQW3ketVost9gqF4sMb2KOiory9vZ2cnERUSLC2thZlNMRzbt68KYo01q9fX0d9m319fYmoU6dOuhgctLFr1y4i6tixYx4cS0cF3LOYPp0DA9nJiS9fZgcH3rGDt2/PTaXmqKgoEaUVjIyM1q1bJ/10IZOoqCjRnm3v3r38qoJZzZo1tczEEp+51tbW6enpmuD7ihUrJJnznDlziKhp06afVOkhUVCuUaNG8fHxuj7WiBEjSGc1r9avZyLW1+dclMNJS0u7evXqxo0b3dzcRCFsTdcHtVr9+++/S1hUZO7cuUT0xRdfMPPRo0eJqHr16pKvQEyfzkRcvDgHBUk7cAElrqMmTJjAr9pINNfu5lytVnbu3Eomk92RsNPOu4iAOzPPmcONG0vWm9DT01Pcz3711VfZLHMaHR3t7e1tb2+vST4zNzd3cXHx9/eX/P35UYUg4D5s2DA9Pb1NmzbpYnCxjd3MzMzW1tbNzc3X1/f5mxse0tLSAgMDPT09nZ2dM6+NiF3SglqtFufcsmXL6vp9DPni+vXrItNKqjJt/fr101xUiY4uEm6/ymLaNMk2pkF2paWxgwMTsbU1i6DPrFkZDbwvX5bkCFFRUaLp/NvdvXNt6VIm4tzWlocC5MaNG/r6+nK5/MyZM8yclpYWHR0dHR394MGD4ODgGzduBAYGXrhwwc/Pz8/Pb/fu3T4+Plu2bPHy8vLy8lq0aJGHh0de3sC/fPlSFJFo0qRJs2bN3rcGUKaMSrP1XvOnWDH+4gt2cOBly3j16oyAe/PmfOgQHzrECxYg4P5eSqXSw8NDLpdrrl//+usvkWQwcOBALbNKAwICxK0+M1+5coWIrKyspJn3u2TukiqamNWsWVN3h4MP8/T0FHc4bm5uWX70+PFjLy8vR0dHTTqLXC4X5arv3r379lDh4eGNGjUS9/CSdLBPT09PSEjQfCs6VcyYMUP7kUFa3377re6CWZnptIB7ZiLg/ugR9+qV0Vop127fvi3uSjQmT56MXRo6JWo51qpVKyUlJT09XeypWrRoUa4HjIiIEP3tDx06xMzz5s3TBN8lmXBiYmLVqlVbtuzt7f0JbbuPjY2tX78+EfXo0UOnKw2JiYliV5buIj/Tp3OjRhwYyOJyLC3tvUU5QkP58OFrHh4eX3zxRaNGjTJni8pkMj09vcmvogAiF6dbt25Svc3E3/b+/fuZeeTIkUQ0W7PJVDpqNQ8ezERcowY/e5bLQcLDww8ePJjrSpt5SVw2m5ubp6amJicnizaq2lwCxcefCgykgADpS9FmoQm4p6SwlZVkAXdm3rFjh4mJCRHZ2dk9f395muTkZF9fXycnJwMDA/FfwNjY2MnJydfXNx+bSBeCgLunp6c4X3z77beaYuvaU6vVv/32m6GhYZZbeplMVqdOnREjRqxcufLy5ctZzkdhYWHbt2+fOnVqcHCw5kFxUVi8eHEJI19Q0Jw4ccLIyIiIFixYoOVQiYmJJiYmcrk8PDycmSdPnmxkZHT48GEppvkOoiq37huPQSbR0dymDVeowA//3959x1VZv38cvw4bUdx74565t6blqMQsFTdlWlialA01rcyyoqyvaJY/TDO0HGhDzTI1c+YCF+6BW9wDRPa5fn/ceCI1E7gPB/T1fPTocTyc87kvAc+5z/v+fK7PMVXVOXPUYlFnZ725zakpXn31VRHp06ePWQM+99yD1SbvfmW1Wtu1a2fiBUJ7GzJkiHEKlZKS8t1331WsWLFjx45+fn4dO3Zs3759q1atGjZs2KBBgzp1Unx8tHhxLVhQ8+X7O3P389MOHTQlRR95RKdP14kTtX59nT1bZ8/W0aMJ3O/mhx9+8PT0FJHHHnvMmH6+fPny/Pnzi0jz5s3PZ/pjjeqUKVNEZNCgQao6c+ZMEendu7dpdd/m7KxZf7ZtO+f111V11qxZxjUD+x0O/yk0NNTFxcV4FUpNTY2KigoODm7ZsqVtqpGzs3PLli2Dg4P/c1Xo5cuXjd10ChUqZFxBzATjM1hAQEDx4sU//PBD2/2PPvqoiPz888+ZGxb2069fPycnp2+++cbeB7J3A3cbI3BX1Y8/zmrgrqpr1qyxBQqG1q1bR0dHZ71O3FFycrKRLX7++ed6s51Ivnz5Mv09N/Yd6datm94Wvpvlhx8uGHtZ22eXxBwqKirKmNb9xhtv2O8oRkfs5s2b2+8QqakaF6c9e6ZNhDpwQI2ODImJunu3hobqyJHq65vW8L1t2zW2lwInJ6cqVap07979vffeGz9+vBF2/d///Z+qHjt2rHjx4iIybNiwrFdotHouVqxYcnJyfHy8cfZoyqXx212/rg0aaNGi97oxe2Ji4u7du0NDQ0eOHOnr62tM6xGRokWL2qM80xldr40lNQMHDszilYxTp0aFh8vJk8PNK/DOrl/Xm426dcuWtBTELDt27DB6TlSuXPmWX7PU1NR169YFBAQYL6S2k8yQkBD7La69d7kgcLdarcHBwcZZRYMGDe44BSajzp07Z6xeFxF/f/8jR44sXrx47Nix7du3Ny6e2Hh5ebVs2TIwMDA0NPSOm30by8Hc3NzsF5gih/j555+dnZ0tFkvm5n4eOXIkNDQ0MDCwbt267u7uVapUsX0pJibGTjNTtm9X42TrQVpQmDPcuKH79qmqrlmT1opvyhRzj3Dy5Ek3NzdnZ2dTXhVVtWfPaW3bbty0ye7LMGFXRr5ZvHjxXLGbyNatW52dnV1cXIxNC411lPf+GebaNb1+PS282LhRK1empUzGbNq0ydi6pnbt2sePH1fVXbt2GX08KlWqlOmpW8Z2rF988YWqBgYGisgnn3xiZt23GDxYRXTiRFWNHz36YoMGu7/4wo6Hwz1YtGiRcTnH2HHEdlLdo0eP77//PkNL2uPi4ox95r28vGy7Lt2Lq1evzpkzp0ePHukb1/Ts2dP4ampqqvHZjJgyB/rpp58sFkvRokW3m7Qu8N+89NI7LVpMnjHjyH8/NGs2bFCjNXdSkv7yiwkDGpucpVe6dOlMX5TCfzJCdm9vb+MVw3hReiFTy0LDw8OdnJzc3NyME3hjobw9Gm23aaMias/kOSdau3Zt+pTZHoxOwmb1/7mLnj21Xz9dv14PHNAXXtAqVdTJ6da1noUL64ABJ1555ZXp06dv2bIlLi4u/QjGhwJXV9eVK1eq6oYNG4xvzpQsfyx95ZVXRMSYPj937lwRadrUjnOoT53SI0e0d++0zZm2bNH0DclPn9bFizUoSP39tWZNbdXq/255eSxUqFDbtm2HDRvmwJnO9+7jjz+2TaozevVkZbeAPXvqhIdLTMxKU2u8g5Mn1Ta75qOPdOlSk8c/ffq0sRK6UKFCxkZNtq1QbT/omjVrBgUF5ajzulwQuBu2bt1auXJl42Lyd999l5Whfv/9d+MyV9GiRRffNuE0OTnZuCAWEBBQs2ZN22QcQ8mSJX19fYOCgtatW3fjxo1Zs2ZZLBYnJ6ewsLCslITc4quvvjLetH777bf/fPDp06eNCzm+vr5G7z+bvHnzWiyW2bNn27vgt99WEc0l81zvC9ev68KF+v33evasqur581qwoP3Odp977jkxqR9RYmKim5ubk5NTNvQ9hP1cunTJyE+z+EaZPVJTU439LUeNGqWqu3fvNjrhbNq0KUPj2D6lDhmiU6dqx45pf1y7VseO1fHjdfBgpaH3v4mKijI2OC1ZsqSxUM92Rlu4cOHMbaNqtBA9e/asqrZu3VpE7DspoUkTFVFjd7i2bVVE7+E9Gva2cePGevXq1ahRo2DBgn5+fqGhoZl+f0lJSRk0aJAxwWXu3Ll3f/DFixdDQ0N9fX3TL2M1GsTv2bPH9rC1a9eKSMWKFTNXEuwqMTHR2CyuQIECdg2Ry5cvLyK77N3BXfWFF3Tv3rTbtqvCWfT666/fEiq5u7sHBwebMzpuY0zXCwgIUNVDhw65u7s7OTlldN9aq9VqrNoZPXq0qkZERKQP3821bZs6Oambmz5oLW9vSZnNde7cORcXF1dX17u0tjBLz556+LC2a6e7d+vgwVq5srq6as2a6uenY8fq4sV65B6uFb7xxhtGRmnMopg/f77FYnF2dv4lC5f+kpOTjTzN2HbF+KeR9RD/P7Vvr489pleu6Nq1OmKEPv+8NmmiXl63XoRo1y7ioYce6t+//yeffPLbb7+dyuLendnu+PHj6XejLVOmjIhk7q0wMfFEeLhl27a8VmuW9py4F/YO3FU1NjbWuNjp5uZmvH0bqlSp8t5779njVTTrck3grqpXr17t2bOn8T0dOHDg9evxGR0hPj4+MDDQyNDbt29/+h62Lrxw4cIvv/zy9ttvt2/f3rZIweDq6urs7GzXy6fIgUaNGiUiefLkuf1VLyYmZt26dUbH/4oVK95yEmxcrRk7duyKFSuMRkn3GNxnRY0aKpKZHVeQGTduaLt2OneuLl2qDz+sxpqYkBDt1ctOzUH379/v5OTk7u5+L69md7dt2zYRqV69uimFwVGMmcUPP/xw9u8JkwmTJk0SkXLlyl2/ft1qtbZt21ZEXn75ZdMPNGWKyQsb7zOXL182vvl58+ZdsmSJqsbGxvr6+hrxzZw5czI9stVqNc6dstKg5j+kpGiePGqx6NWrarWmXePMSXNbHmRWq/Xo0aOmrOGzWq1G/1mLxWJ0dbjF8ePHjQbxRjcbEXFycmrZsmVQUNChQ4dsDzt//rwRx7u4uFSoUKFYsWJ22pEVWZSYmNi9e3fjdWnVqlX2OMSRI0eMK4tZ3yn6P9kjcE9NTe3atavcxt/fP4v7cOCObgnZjQseLVq0yNAZl9H3rHjx4teuXbNara1atbJNO7CHQYNURLt0sdPwOdctKbOJjF1zuxrNqu2sZ0+9fFmnT9chQ3TwYD15UjMxP9v2QlGtWjVj8auxf4m3t3dkZGTmClu6dKmI1KhRQ1XPnTvn6uqaPVcgOnTQ1at1yBBdu1bffjttDbmIliyp7dtrYKCGhmp4uMZnOCbMcdq0aSMis2bN0pu/zJn7fHT+/Ffh4XL4cDezC7yDkye1QgXt31/799f69e0SuKtqSkrKyJEj69at6+Li4sCtUO9dbgrcDaGhoV5eXvXqtatZM2XHjgw8cc8ebdkyuVSpZq6urmPHjs3cqZWtK0jDhg0tFkuxYsXatGmTiXGQe1mtVmNacZEiRfbu3Zt+PYSxgbKNt7e30Y8oLCzMmOiXni24/8vEHSX+ad++07VrxxQtqmyklE2++05tGygtW6bZsg9bt27d5E5702XUN998I6Z2hIcD/PXXkrZt83t52amFormuRkcbUayx1MxYHV+iRIkrZs9F37ZNuSz+nxITE/v37y8izs7OxhyllJSUoUOHGvlmprcuPHjwoIiULVvWzFpvERmpIlq5surNDRBLlrTj4eBQwcHBxrnW7e96Rs9T4ypR+/btg4OD068pPnjw4CeffNK0aVPb0lVXV1ej1a9ZO7LCdCkpKUar6zx58qxYscL08Y33ne7Z0MFd9YUX9Mkn05IIE/suxMbG1q9f//bMvXXr1qYdA+m89tprItKyZUur1Xr16lVjTeG9r3S/fv166dKlReTbb79V1dmzZ9vCdzsVfO6c5s//IK77uj1lNkvDhg1FZMGCBSaO+W+MwN1q1TZt0nq4Z05cXFyjRo1EpE2bNomJiVartU+fPiJSsWLFzM2HMJ5u7IlizCN88sknM1/fPTN6SD7zjAYH67vv6vff6+rVmhs6aGZYSEiIiHTq1ElVt2/fLiJFixbNRD+cQ4c6h4fLhQsz7FDjrbJhhrtNXFzc5s2bc8Vu4bkvcFfV3bt3t259VkQ9PXXq1P9+vNWqkyerh4eKqK/vuW3btplSxq+//ioilY3PeHiQJCUlGb3bbtmwyMPDo3nz5q+88sr333//n0tarFarsQlGkSJF7PRJ74MPPhCRIUNG2GNw3MGnn6rtnHv/fn3mmWw45pYtW4yrO3ePKRMTE48cObJixYqQkJCxY8cGBAS0b9/ex8fHNu9j2LBhYsaewHCY5GR96CEVuZ5uS8AcrVeviw0ajHvuOVW9dOmSkXz9Z7OIjIqO1oEDNSREc9tyUgewWq1jx4413s4CAwONeQm2fHPQoEEZOtHfs2fP2LFjy5cvX6pUKVvXbLuYNStt81xVXbhQRfSJJ+x4ODjarFmzXF1dRWTAgAHpP2t98sknPXv2nDdvXvo9soz+nkY+YvD09PT19Q0JCTl//vzly5eN6aWFChWy3+wHZEVKSopxtuzu7r5o0SJzBzfS/MmTJ5s77B3ZY4a74eTJk6VKlbolcHdycsqGafsPoGvXrhmdNIyQfcaMGS+//PKlS5fu8elWq3Xu3LndunVLTU2Ni4szdkzJ3N5g9+7TT1VEa9TIzOToXO2WlDlDz01KSoqMjJw7d+6oUaM+s82mUt27d6+I5M+fP3sWkXz/vRrH2b1bf/wxS0OdPn3auNgzcOBAVb1x40bTpk1FpFWrVgkJGWs2EhMTkydPHovFEhUVparGNzl7GiwbgXt0tPr4aBa2Ec0FLl++7O7u7uzsbEwdqF27togszWCGnZp6Y9u2POHhlqSkrC6FvxfZGbjnIrkycFfV+HgNDExbQvLUU3qXt7nz57VLl7RH+vvr9eum1ZCammq842Z6MQ5yr+vXr48ZM6Z58+Y+Pj7+/v7BwcHr1q2Lz+D6pZSUFOPau4+Pjz32dqhbt66I2LtrDf72ww/6wQdpt3/6Sd9/P3sO++ijj9pmGRgiIiKmTZs2evTovn37tmjRomTJkrfPfjL8+uuvxlOM0MEeM8iQTT77TEW0fHn953ZJOdTy5SqiefIYnZdefOEFEWnfvr2jy4LOnDnTSDO7detmfJ4MCwvz8PCQm41r7+7o0aMfffSR8e5jaGVutnS74cNVRD/6SFV1zBgV0TFj7HtEONqSJUvy5MkjIl27dr099UhNTQ0PDx87dmy1atVsv4cFChQw+sinj+NVNSEhwVgo5uXlxflSzmS1Wo05AW5ubj9mMXP6J6MDbPZ8jrNf4K6qW7duNf5F2Bg7GcIejJmnZcuWjcva6dbbb78tIg0aNLD3pZHERK1aVfv314xsVn2fuCVlvovLly8bjWEDAgJatmxpbPptqFu3ru1hb731lmR2s9xMeOopNcLws2d1wICsjhYeHm68UEycOFFVz5w5U7ZsWRF59tlnMzTO4cOH27dv365dO1U9cOCAMfEre65A2Palmz79nubd5mrGRibGthxffvnlyy+/vG/fvgyNkJAQtX9/q337mtinwFslJv79NnfixN0S2gdKbg3cDT/8kNars1w5Xb/+Dg9YsUJLlVIRLVBAzZ42p6r6/PPPi8i4cePMHxq5QdaXscTFxbVo0cJ4L79q6nmQsZC/QIECGb2kj8xLTtYnntDgYP3mG23XTs+dy57DrlixQkSKFStmO9d56aWXbgnWXV1dfXx8WrZs6efnN3LkyJCQkBUrVhw5ciQlJUXT9VnOhu57sIuTJzVvXhXRLOyAlH0SErRaNRVRY0XF+vWJFSq83bSp6X02kTkrV64sUKCAiDRt2vTcuXOqumnTpsqVK99lX8GLFy+GhIS0bNnS1q+jQIEC/v7+ixcvtvt6z4cf/nu1/BNPqIguXGjfIyIH2LRpU5EiRUSkbdu2xulTSkrKunXrAgMD08/2LVKkiPF7eJdzoZSUFON8/l52ZIVDWK3W4cOHi4iLi8vs2bNNGfPw4cOSXQ3cVXX9+r/jTnu8US9cuNDW2fKll17KyQ1tc7vU1FRj0cz7WZhYc+LECWOO8Lp160ys7d/Exqqfn65eraq6apXOnauDBqV9acsWDQnJhhIc5paU2SYlJeXrr78ODAxs165d4cKFb/nc5OTkVKlSpaeffvrdd9/9+eefjadYrdYKFSqISOb2k8+E9u3T2pGfOZO2kC+LFixYYLFYnJycjHaO27dv9/LyEpGgoKCMDmWc3Y0ePVpEnn/+eROKuwfvvJN24+hRnZEdXVIcacGCBSLSuHHjzD39+vW/jh4dcOLEKwkJR02tCxmTuwN3VT1yRJs0URF1ddWgII2ISLs/IkKHD1eLRUX0kUfstZbc2C+iXr16dhkdD4YLFy4Yk7DatWuX0SVdhvj4+L/++is4ONjYw8fw8ccfi8gz2dLVBH9LTta1a3X5cjNX09yDZs2aSbrd4efNmzdgwIBx48aFhoauXbv2xIkT//Z5Mi4ubvfu3dOmTRORMmXKZGPJMFW3bn931cj5xo5VEa1VS5OSbJ1wNLNdwmEPu3fvNuZ++vj4GBNq7pibX7lyxbb/pPEZ1ejXERYWln3XeidO1G7d1NgopWRJFdGoqGw6NBwqMjLSmLpYtWrVHj16GFeJDD4+Pq+//vr69evvMUu1Wq1vvvmmEbLMZhV0TvXuu++KiLOzs9H/Oit27Nhh7Mjao0cPU2rLCf73v/9Vr179xRdfJG23t/Xr11ssFk9Pz+PHj2duBD8/PxHp16+fuYXdRZs22qGDJibqjz/qpEl/L7NYufL+P/+ypcy3tKVKn7Pnz5+/ZcuWAQEBxrL12NjYWwaJi4ubOnWqiJQvXz7b/om1b6+vvqqvv64vvmjaOf64ceNEJF++fDt37lTVn376ycnJycnJyXZd4d5ZrdaKFSuKyGrjYo792X5vt2/XTO0hmpvEx8cbJzaZaz68d2+j5OTzycnnU1PZQ9uRLKoquVxKiowfLx98IGPGyMSJsnWrVK8ujz8u5crJN9/ImDHyzjvi7GyXQycmJhYrViwmJubIkSM+Pj52OQYeAEePHm3ZsmV0dHTv3r2///77WzZfvaOoqKj169dH3JSQkCAib7311kcffWQ8oHHjxuHh4YsWLXryySftWz1ygB9++KFHjx7lypU7fPiw0Q7iFklJSadOnYqKioqKijpz5kx0dLRx+9ixY1arVURq1Kjh5+dnnIQhl1m2TB5/XPLlk337pHRpR1fzXw4fljp1JDFRVq2Stm1lwgQZMUIqV5bISPHwcHRx+NvZs2e7dOkSHh5eqFChH3/88eGHH7Z9KT4+fuXKlbNnz160aFFSUpKIuLu7d+jQwc/Pr1u3bnnz5s3WQpOTZc4cOXFCWrQQi0V27ZJXXpGbE+1xfzt+/HinTp3i4+NPnDghIjVr1uzSpYuvr2/6xRb3bvLkyQt+/z3xvff8S5V6uXRpfodyoE8++WTUqFEWi2XKlClDhgzJ0HPj4uJWrVr1yy+//PbbbydPnhSRXr16DRkypE2bNvYpFveznj17/vDDD5kOUvLkyaOqBw4cKFOmjLmF/ZuOHeW55yQqSmrWlJMnZcYMGTxYROTAASlYUN57L3uqcJj3339/7Nix+fLlW79+va3r3fjx493c3OrWrVunTp3St50/nzlzJiIiYu/evXv27ImIiDhw4ICxuOHJJ580Lv5lgw4d5JtvxN1dzp+X99+XsDATxlTVZ5555rvvvitfvvzmzZuLFy8eFBT0zTff/PLLL1WrVs3QUGvWrGnbtm25cuWOHj16L/FF1jVvnva7GhUle/fKF19kwzEdadCgQd98802PHj06d+6clJSUlJQUFxcnIleuXBGR6tU927U7o5pstV4XkdTUKyKSmhqnmlSy5Lvnzk0oXNi/YME+zs75HPu3eMDdD4G7ITJSrl2TWbMkOloWL5YnnpC5cyUqSho0sO9x+/TpM2/evM8//9zYtRzInMjIyDZt2ly9enXo0KFTpky5/QGnT5/eclN4eHhMTIztS87OzrVq1WrSpEm3bt2M3VyPHTvm4+Pj5eV14cIFDzKsB4DVaq1Tp87evXtnzpzZqlWrY8eOHTt27OjRo7Yb0dHRd3yiu7t7hQoVKlSo0K5du5EjR2Zz2TBBfLzUri1RUTJxorz6qqOruQdPPCG//SYDB8qMGXLypNSsKdevy9Kl8sQTjq4Mt4qLi+vbt+/ixYvd3d1nzJjRo0eP5cuXL1iw4Keffrp+/bqIODs7N2vWzM/Pr1+/fkZ/Dwfo2VO6dpVGjeSrr6R6dbmtoRbubxcvXrx69eqPP/7YrVu3ypUrZ3G0pZcufXD8eIrq00WKvFWunBNXbnKeCRMmjBgxwmKxTJw48ZVXXvnPx+/cufO3335btmzZhg0bUlJSjDtLly79+OOP9+vXr23btvYtF/epkydPrlmzxt/fP3NP79+//8CBA9u1a2duVXfRsaP8/rv4+kqHDuLkJN99J5MmiYiEh8ulS/d/4H57ynzLAy5fvrxr167IyMjIyMidO3fu2bPHSDZtXF1da9So8eabb/bv3z/byu7QQZYsEQ8PiY6WV14xJ3AXkYSEhEceeWTjxo2NGjVas2ZNnjx54uLijN4yd3ft2rXIyEjbRYjw8HAXF5dXXnnlww8/NKey/9KsmQwbJiJy4oScOXP/B+5//vnnyy+/bGzVe7uePVuOGLHhjl8qV+7/ChXqdenSd5cufVuhwreenrXtWSbu5v4J3EVk/Xr54w9xd5fSpWXOHPn5Z3F3t/tBw8LCevXq9UTfJ5Z+v9TuB8N9bfXq1Y899lhiYuJnn332+uuv2+7fu3dvx44dT58+nf7B5cuXb9q0aZMmTRo3btywYcP075EJCQkjRoz44osv+vTpM2fOnOz7C8ChZs6cOXDgQIvlzq/qbm5uZcuWrVChQsWKFSvcVLFixZIlS2ZiGiByEKtVpk+XWbNk9Wq52dYj59q5Uxo3Fm9v2b9fihSRp56SRYukVy+ZN8/RleHOUlNTX3311SlTplgsFi8vLyNnt1gsLVu27N27t5+fX7FixRxZX3S0DB4sixeLiCQny8MPy19/ObIe5H5bYmLeiIq6kZrapkCBjytWdM+WWXvIkKlTpw4dOlREPvvssztOeLp9MruIODs716tXz9fXt0uXLg0aNODkB1lnLBLNBIvFks2/gR07yvLlsm+fdOwob74pCxbIunUiIn/8IevWyVtvSXKyZPP6tGyWPmX+448/Tp48aQuO9+7de/To0Vs+QBUsWLBmzZoNGzZs2LBhrVq1atWqlf2T2MaNk9GjxdVVrlyRGTPkjTdMG/nixYvNmjU7cuSIn5/f/Pnz7/jbmJycvH///sjISNulCNvLqc1XX33Vu3fvggULmlbZXbVunfZ7u2OHzJhx/wfuInLx4sUhQ4bkyZPH3d3d1dXVWEVaoEABi8VSo0bRFi1SLBZXJ6e8IuLsXEDE4uSUx8nJ3c2trItLMRG5fHlOcvK54sWHO/Zv8SDL8R/OM+611+TxxyUpKZsO90TnJxqEN1jutPxc8rnirrdeLAXuXdu2bUNDQ/v27fvmm28WKVLk2WefNe4vX778uXPnvL2969Sp07Bhw1atWrVp0+aWK/PpO8yEh4cnJiY2bdrU6A+IB0S/fv1KlSrVo0cPY3/UW5QvX97ZTq214BDHjsmIEeLhIbGxMmqUrFuXO3poPPSQRETIiRNSpIj89pssWiTe3vL5544uC//K2dn5iy++qFy58m+//fbnn3/WrFnTz8/P39+/UqVKji5NREQuXhRb4u/qKpnNPgCbJt7eU6tUeeXw4bVXrw47fPh/lSrl5d0zh3nppZdcXFxefPHF119/PTY2duzYscb9UVFRS5Ys+eWXX9auXZt086NgsWLFOnXq1KVLlw4dOqRv9A9kXfa00TBFlSoiIjVqyJAhUqyY2JYD5csnBQvKlCly8KCMHy9FizqwRvvy8PD46aefmjZtavTKS01NTf/VvHnz1qpVq27dukaHmbp162ZbiHwXN1/bpGBBM9N2ESlSpMjixYtbtGixYMGCOnXqvPPOOyJy5coV2xWIPXv2bNu2LT4+Pv2z3NzcKleubFyBqFmzZpMmTW5fK2BXefKk3XB2zo6ZtTlBkSJFwjK+tEE1JSqqt7Nz3sTEI+XLT7dHYbhH9+EM97FjZdUqad9e4uOz6d/hk0eeXHJtSUi5kIAiAdlxPNzXvvrqq6FDh7q6ui5ZsqRTp07GncePHy9Xrlz6i8+2DjObN2+OiIhI32HGxcWlVq1awcHBrJN9AFmt1lx09g8ROXDgwDvvvOPi4pIvXz4R8fb2dnZ2dnd3z5Mnz8vu7l7GqaWnp3h4iJOT5M8vIlK5srz6qnz6qVStKteuSadO8tdfkvN/7snJsnGjJCVJs2aSN680bCjbtsmkSRIY6OjK8N9U9cyZM7c3OXWw2Fh54om0+U5nz8pzz8lvvzm6JtwPjiYkvHzo0LmkpEqenl9UqVLsTpujwLHmzJnz7LPPpqSkdO/evUCBAr/99tuZM2eML7m6urZs2fKxxx57/PHHbf2aAdzFhAnyzDOSvfGpA0RGRi5btmzkyJElSpSwBccNGzasUaPGA/gBaunSpV27djUak546dery5cvpv+rk5OTj4/PQQw/VqVOndu3aDz30kI+PzwP4Xcq9rNYEJyd6CzvYfRW4nzkjZ8+mNW3/4Qfp2jWbltfPvDRz4PGBj3k/9ltlPubBBCNGjJgwYUK+fPlWr17d4OYuBNevX9+xY4cxh33Dhg1RUVHpn1KyZMmGN7Vu3ZopPEBusXr16n9r4plctqzLbYs3RUTGjJGVK2XTprQ/9ughEydK2bJ2q9EMSUny1FNpm7t++63MmycuLjJlih23NccD4ssvZcMGadhQVqyQDz6Qxo0dXRDuE2eTkoYdOnQ0IaFDwYIJVmteZ2cPJ6cx5cs7ui78LSwsrH///iVKlDAaHTCZHcicX3+VhATp1s3RdWSXhIQENjkzTJw4cdmyZcuXLxeRAgUKGM1zjIsQ9erVy3t/txkC7O++CtwXL5YDB+TNN0VE/Pzkiy+kRInsOO6llEslIktYxHKu7rmCzo5ffITcTlUHDhz47bffFi5c+OWXXz527NjWrVv379+fvlFgwYIFm6Tj4C66ADLr3Llza9euTU5ONrpjX7t2zWq1JiQkxMfHv+fu7nH2rIjIjRuSmCipqWKsZenbV6ZNk40b04bw9ZVvvxVHbVl5j8LCJCpKRo0SEVm0SHbs+HuhLJBFFy/K6dNSpcrfi40BM1xLSZl//nxhN7c8Tk6PFyrk6HJwB1u2bDlz5syBAweYzA5kTnS0TJ4sFStK586S05axIRskJCSsWbOmTp06pUqVcnQtwP3mPuzhnv0KuxRunbf1n7F//nrt136F+jm6HOR6Fotl2rRp0dHR4eHh48aNM+50dXWtXr16q1atWrZs+cAufAPuP8WLF8/MdgsbN8rSpdK5s+zdKwkJOT1tF5Fjx9IaiIpI1ary008OrQb3lyJFcsE/AeRC+V1cAkqV+vHixXXXrl1ISqrg6dnG6OuFHKNJkyaOLgHI3UqWlI8/dnQRcBwPDw9bG1sA5rrfAvf58yUyUkRk69ZsPe7TBZ7+M/bPn67+ROAOU7i6ui5cuPDUqVOffPJJ48aNmzRp8tBDD7nSQhSAYeJE+eADmTtX8ueX775zdDX3oGxZOXo07fbRo1KunEOrAYAMqOzp2dTbO1/2tKoEAABA7kdLGXOcTj5dNrKsp5PnhboX8jixohkAgHQSEuSJJ+SFF8TbWyZMkO++kzJlHF0TAPy3Hy9e9KSlDAAAADKClhTmKO1aurFXYy8nr0OJhxxdCwAAOYyHhyxZIq6uEhMjCxaQtgPILQq4uORnb2cAAABkxH01w33fPrlwQdq0ERGZM0eefFKyc1/l08mnTySeWBG7oqRryWcLP/vc8ee+r/B99h0eAAAAAAAAAOBQ99UM9xo10tJ2EenbN1vTdhHZl7Dvo3MfdSvQrbBL4Y1xG88nn8/WwwMAAAAAAAAAHOq+Ctwda+almR+X+ri2Z+1uBbo9nPdhR5cDAAAAAAAAAMhWBO6muZxyuZhrMUdXAQAAAAAAAABwDAJ301T3qB5xI8LRVQAAAAAAAAAAHMPF0QXcP14v/nq/o/02x22Os8Z1zd/V0eUAAAAAAAAAALKVRVUdXcP9I0VTjiQeyeOUp6xb2ejk6JKuJR1dEQAAAAAAAAAgmxC4AwAAAAAAAABgAnq4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7neSkCDR0Y4uAgAAAAAAAACQm7g4uoCc59NPZetWqVBBdu6UGTOkbFlHFwQAAAAAAAAAyAUI3P/p2DHZsEEWLRIR2bhRxo+XkBBH1wQAAAAAAAAAyAVoKfNPe/dKw4Zpt5s0kd27HVoNAAAAACDb/fqrBAXJkiWi6uhSAABALkPg/k8FC8rly2m3r1yRAgUcWQwAAAAAIJu9+65EREiXLrJ3r7z5pqOrAQAAuQwtZf6pcWMZNUo2bpRq1WT0aHnuOUcXBAAAgDtZtEi2bJEKFeTZZ8XNzdHVALiP/PabbN0qIlKrljRtKlarODFTDQAA3CvOG9K5cEEiIuSbb2TVKnn/fenWTXr0cHRNAAAAuM3nn8vWrfLSS+LtLX36OLoaAPeRpCTx9Pz7jwUKSEyM46oBAAC5DzPc01m+XPr3Fz8/CQuTVatk7lxJSJCnnnJ0WQAAAPinBQtkwwZxdpZeveS77+TcOSle3NE1AbgvuLlJcrIkJIiHhyQn02gUAABkFIF7OgcOiIhUqyYisn69TJ8uRYoQuEOSkiQ0VI4fl6ZNpUsXR1cDAABEVMXZOe12kSJy+TKBOwATXL4sBQvKqFHSq5e0by+rV8sbbzi6JgAAkMvQUiad9IF7+tt4wPXtKwULyuDB8tdf8r//OboaAMi5rFbrkiVLOnTo8Pnnn7/++utJSUmOrgj3r4IF5exZERFVOXBAKlRwcD0A7g/9+4uPj5QsKd9+K40by9dfS8+ejq4JAADkMhZVdXQNOUa9erJzp2zZIo0bS6NGEhEhf/0lzZs7uiw41Nmz8sILsmSJiEhqqrRqJRs3OromAMhxLl68OH369KlTp544cUJEvLy84uLimjZtOn/+/PLlyzu6OtxfNm+WGjXk4EEZPVratJGICOnaVQYMcHRZAHK/ixelVCkRkehoKVxYOnWSpk1l1CjJk8fRlQEAgNyEGe43qcrhwyIiVaqIiBw6JCJStaojS0JOcPmyFCmSdtvZWbhABQD/tH379sGDB5cvX/6tt946ceJE5cqVg4KCFi9e7OPjs3nz5oceemjhwoWOrhH3kaQk6dpVSpeWwoVl6VLx85PZs0nbAZjjhx8kOVk6dJDChWXLFlm+XKZPFw8PR5cFAAByGXq433TypMTFSYkSUqCAnDkjMTFSpIgULuzosuBoFSrIwYOiKhaLREdLwYKOLggAcoTU1NRff/118uTJK1euFBEnJ6f27dsHBAR069bN2dlZRLZt2/b8888vXLiwZ8+ew4YNmzBhgpubm6OrhvnOnj0bFRUVFRXVsWPHokWLWiwW+x7vhx/k3DmpW1cqVpQLFyQgQAYPlr597XtQ2MeqVauio6Mz99xu3bp5enqaWw8g8+eLiPTq9Y/bTjlrjlpiYmJkZGSxYsXKlSvn6FoAAMCdEbjfdHsD9+rVHVkPcog8eWTQIOneXRo0kLVr5eOPHV0QADjY+fPnZ86c+dVXXxndY7y9vXv37v3qq6/WqFFDROLi4ry8vEQkf/78YWFhkydPHjFixOTJkzdu3Dh//vyKFSs6uHpkVlJS0qlTp6L+6dChQzExMcYDHn/88fr163/44Yf2rWPqVBGRIUNERGbMkLVrpUABAvdcx2q1BgQE7Nq1a+vWrZkb4dlnn33llVfq169vbmF38fvvv69du/att97Kmzdvth30QZaUlHTo0KGImx599NGKFSsOsOtylrNnZe1a8fCQrl1FVX74QeRm+O5QycnJBw8ejEgnISGhW7duKSkpP/zwg4sLn+gBAMhxeHtOc+XEifxFijgZPWTYMRWGyEgZM0Y6dpTQUImKkldfFTt/xNqwQRo3Fjc3OXtWUlOldGm7Hg0AMiYiImLatGmzZ8+Oj48XkapVqw4ZMmTQoEFG/HTo0KEZM2aEhISsXLmyYcOGImKxWF555ZUWLVr06tVr69at9evXnzFjRvfu3R3818B/OX/+fNRtTp06dceNfwoXLuzj45M/f/7ly5cvW7asefPmvr6+9qps3z5Zv17y5ZM+fcRqlWnTREReesleh4PdhIaGzpgxI3/+/L1793bK+PThHTt2hIaGHj16dM2aNfYo73bJycmvvvrq/v37S5QoMWzYsOw56IMmJiZm+/bt2246cOBAamqq7as7d+6Mi4tzdnb29/e3VwVhYZKaKk8+Kfnzy/r1cvy4lCsnTZva63D/7vr16zt27IiIiDC+Ffv3709JSbF91dnZuXr16itWrIiNjR06dGhISEj2VwgAAO6OwD3N2J07v7h4cXKNGsNEfr94MV/btuUbNCDtfNCFh8uSJZIvn7z8suzZI40by0svyaRJ9jvg889L//4yZoz8+afExkpAwH8/JSkpKS4u7saNG4mJideuXatbt67RzAEwXL16dceOHf3798+fP3+BAgXS/9/mli/lYWcw/FNSUtKiRYsmTZq0YcMGudk9JjAw0NfX12KxWK3WxYsXf/HFF3/88YcRyK5atcoI3A2NGzfeunXrs88+u3TpUj8/v2HDhn322Weurq4O+/vgX8TGxoaFhQ0fPjw2Nvb2r7q6upYrV87nnypVqpQ/f37jAZ9++unIkSP9/f3Dw8MrVapklxK//FJU5ZlnxNtbli6Vo0fFx0c6drTLsWA3sbGxY8aMEZGvvvqqb6ZWJ8TExFSrVm3t2rVhYWE9e/Y0u8A7mDJlyv79+ytXrhxwLydnuDcxMTG7du2yzdrev3+/1Wq1fdXFxaVmzZoNb9qxY8ewYcMGDRpUokSJDh062KWg2/vJ9Okj9m6TJSIisbGxO3fuvMdvRf369b28vMLDw9u2bTtt2rQKFSq89dZb2VAkAAC4dwTuafbv3y8iPlWrikjwhg3LVq9eNHw4gfuDbs8eEZHatUVEdu+W5GR793AvW1a2b5cjR0RE4uLktdckLk7i4iQpSa5eleRkiY2V+HipXn3F2rV9U1JSrl69essIU6dO7dmzZ6FChexaJ3KRKVOmfPDBB0lJSadPn77Hp7i5udkS+T59+gwfPtyuFSIni4+P/+ijj77++utz586JSOHChQcNGjRkyJDy5cuLyLVr17799ttJkyYdPXpURDw8PPz8/N588806dercMk7hwoWXLFkyefLkN998k/YyOdaoUaMWLlwYGxvr4eFRqlQpHx+fmjVr1qpVy8jWy5Urd/fGBW+++eaWLVt++OGHbt26bdq0yfz+2tevy+zZIiKDB4vc7C3z4os5rb0y/tP48eOjo6ObN2/ep08f456lS5feYzP3Xr165cuXz9vbe9y4cYMHD37jjTd8fX3tfZ348uXL48ePF5Hg4GB3d3e7Huv+lpqaunLlStvEbeO9w8bDw6Nu3boNbqpTp076nT9atWp1/Pjxzz77rEePHuvWratbt665tZ05cSJVpEzhwhZfX7Fa5ccfRezeTyYmJuaFF16IiIiIiopKv4TIzc2tTp06DRs2tH0rPG7buLVRo0bz5s176qmnxowZU6ZMGTtO/AcAAJmgUFVVY8+ZQ4cOqaoRAezfv9/RRcHROnZUEV28WFW1SxcV0QUL7HrADh304EF98kmdM0c/+URF7vxf27arbf+EXV1dCxYsaCQjxjTDL7/80q5FIhexWq3GPNM5c+ZERkauW7ful19++e6777788ssPP/xwxIgRAQEBfn5+HTt2bNKkSbVq1YoXL35LlODj4/P88887+u8Bh1m0aFGZMmVEpF69eiEhIXFxccb9+/fvDwwMNHq1G78nQUFBly5d+s8Bt2zZUqFCBREpXLjw0qVL7Vw+MiA2Ntbb21tE1q9fn+lBYmJiqlevLiJ2ed2YOlVFtE0bVdXjx9XZWd3d9dw58w8Eezp8+LC7u7uTk9PmzZttd7Zp0+YeP7kcOXLEeEpqamqjRo1EZNy4cfauefDgwSLSvn17ex/ovvf9998XKFDA9tN0c3OrWbOmv79/cHDwunXrEhIS7v50q9Xar18/ESlduvTJkyfNre2zzz4TkWf79lXVK2vWqLu7Vqli7iFuceXKlY4dOxrXJl1dXdN/K+Lj49M/Mjk5edeuXd9++21gYGCrVq3S/9uZOnWq8Z1cuXKlXasFAAAZYtE7teN80MTHx+fNm9fFxSUuLi41NdXLy8tisdy4cYMF7w+60qXlzBmJipKKFcXHR44elX377LqbbseOsny5vPuuHDokrVpJQoLkyyeenuLhId7e4uoq+fOLu7t4eV3z8ko0ovb0T583b16fPn2aNm26adMm+xWJXGT58uWdOnWqWLHi4cOH771JbkJCwtWrV69du7Zz585evXoVK1bs7NmzlmxZUv2gOXhQ/vwzbbbu11/LCy84uqDblC1b9tSpU2FhYX5+fiJitVqXLl06efJko3uMxWJ59NFHAwICunXrdu/NrC5duvTMM8/8+uuvFouF9jI5x9SpU4cMGfLwww+vXr06K+NERkY2a9bsxo0bM2bMGDhwoEnViYj0feSRgaothwzx9POT0aPl44/F319mzTLxEMgGXbt2Xbx48cCBA2fMmGG7c8KECQeMLZT+S1BQUJEiRYzbGzZsaN26tYeHx/79+42pM/awc+fOhg0bWiyWHTt21KpVy05HeRDs2bOndu3aXl5ezz//vNEapVq1ahlthJiQkNChQ4f169fXqVNn3bp1tpZWWdeoUaOIiIiffvrpqaeeevHFF5fNm/fNO+888vrrZo1/u2+++WbQoEENGjT49ttva9SokX4JUUpKyoEDB2wdZrZv337jxg3bVydNmhQYGGj74/Dhw4ODg/Pnz79u3brbV5gBAADHcHTinyPs2LFDRGrUqKGqkZGRIlK1alVHFwVHu3xZRTRvXrVaNTZWLRZ1d9fkZLses0MHVdUbN7RSJQ0JyfDT4+PjjXlD+/btM7025EY9evQQkQ8//ND44zfffPPoo49279594MCBr7322rhx4yZNmhQaGvrzzz+vXr16+/btR48evXz5cvoRjNnNkZGRjij//rdsmRYpouvWqaq2a5d2p9WqEyfqtWsOrCtNUlKSs7Ozs7NzUlKScc/TTz9tnDx4e3sPGzbswIEDmRvZarUGBwcbOXuTJk2OHj1qWtHILKM/w7x587I+1MyZM93c8j766K7t27M+WBpj/4CiRYsmJCQkJiaebt9enZx0wwbTDoBssXLlShHJly/fmTNnTBnQuBbYr18/U0a7o7Zt24rI8OHD7XeIB8Tbb78tIoMHD87iOBcvXqxWrZqIPP7448kmnZkfOXLEYrF4e3vfuHEjOTm5aNGiIrJ7925TBv83HTt2FJEZM2YYfzx+/Pj//d//BQQENGzYMH0vHRGxWCyVKlXq2bNnUFDQ8uXLr1y5kn6c1NRUYzfyChUqREdH27VmAABwjwjcVVXnz58vIk899ZSqLly4UES6dOni6KLgaGvWqIg2baqqummTimi9evY+5mefpS2O37ZN9+7NwBPPnj1rLLJ+/vnnRWTMmDH2KRC5yYULF9zd3V1cXE6fPm3cM2rUqHu8Fjtr1izjKUZL0EmTJjnu73E/W7ZM335bH3lEk5L+Dty/+EJFtHJl3bbNocWpRkVFiUi5cuVs93z//fdVqlQJCgq65cJM5mzevNloL1OkSJFff/016wMi09atWyciJUqUSExMNGXAN9+8bPwa/zMXyrz+/fuLyOjRo1V1zpw5IvK8cY0auUdKSoox/faTTz4xa8wTJ07kyZPHYrGsXbvWrDHTW7gwtU2bKZUrVzPlRe8BV6VKFRFZtWpV1oeKiooqXry4iAwaNCjro6mq0aP/mWeeUdVff/1VRGrXrm3KyP/mwoULLi4urq6utm5sCxYsSH8mVrJkSV9f37Fjxy5evPjChQt3H+3GjRstWrQQkYYNG8bGxtq1cgAAcC9y+jZTiYmJhw4dsvdRjEWsxlyJ9LfxQNu9WyTdjqm22/Y0ebKULCn79kn9+lKjxr0+a/78+WXKlHnrrbdE5JlnnhGR0NBQq9VqvzqRK8ycOTMxMbFz586lSpUy7nnppZdWrFgRFhb29ddfT5gwYcyYMS+//HL//v27dOnSunXrunXrlitXzlidbduArl27diKyatUqR/0t7nv584u/v0yc+Pc9vr7SpIkcPizNm8ukSY6rTOT48eMiYuyPaujdu/eBAwdGjhxZ0IwdpJs0abJly5ZOnTpdvHjx+++/T05OzvqYyByjC/CgQYNumVaZaR98ULBhQzl8WPz9JevNCy9evLhw4UInJ6cXXnhBblbbqHv3rNeJ7PTVV19FRkb6+Pi88sorZo1ZtmzZ119/XVVfffVV0898EhLkzTed1q4d+sYbe0150XuQRUREHDp0qESJEvfer/8uKlas+Msvv3h5ec2YMePjjz/O+oDG7KtevXrdctt+FixYkJKS0qlTp0KFChn3NGnS5JlnngkODl67dm1MTMyZM2eWLFny3nvvdenSxdZG6d94enouXry4atWqERERvXr1SklJsWvxAADgvzk68b+bkJCQbt26OTk5tW/ffvHixVar1U4HGjZsmIj06tVr7969PXv2FJGvv/7aTsdCbvHdmDE/Pvzw0a+/VtXU119XEf34Y7secfduFdESJTSjv+mnTp1ydnb28PC4cuWKbZNMUyYQIVerUaOGiCxZsiSjT7RarbYWIkbkmj9//pSUFLMLhC5bphMmqNWqjz+utWrplSu6aZOqakKCBgambZL89NOmzRHOqJkzZ4pI//797XqU1NRUY9qj0Rce2e/ChQseHh7Ozs7m9vY5dkwLF1YRzfps5k8++UREfH19VXXPnj0WiyVfvnwxMTEmVInscvny5cKFC4vIzz//bO7IN27cMBq4f/PNN+aO/MEHKqK1atm7oeAD4c033xSRwMBAE8dcsmSJs7OzxWKxLcvLnH379olIwYIFExMTExISjJkHBw8eNKvOO3r44YdFZPbs2SaOeeTIkWLFionICy+8YOKwAAAgE3LuDPeUlJTx48f/+OOPrq6uK1eufPLJJ+vVq/fNN98kJCSYeBSr1bpy5cqzZ8+6urrOnz+/Y8eOK1as6NixY8OGDU08CnKjaevWdVuz5lD58iLy2K5drcuU2V6/vl2PuGyZiMhjj0lGN6csXbp0u3btEhISFixYYLFYjHX3s9hH7sG2fn1S8eLBDz3U6fHHH8/ocy0Wi20Ty3LlylWuXPnatWvbtm0zu0aksVhkwgSJipJBg6RVK3nvPXF1lUmTZO5cyZdPfvpJ2ra17twZmf2F3T7D3R6cnJySkpJExGgvg+w3ffr0hISEzp07m/sjKF9eQkPFyUlGj5YVKzI/jqpOnz5dRF566SUR+fLLL1X12WefzZcvn1mlIhu88847ly5deuSRR7p27WruyJ6enh999JGIvPXWWzExMWYNe/q0fPKJiMjEiZJuM0tkht7sl2LutHFfX98pU6ao6qBBg/74449MjzN37lwR6d69u5ub22+//Xbt2rWGDRsaV4LtJDo6ev369R4eHk8++aSJw/r4+CxZsiRPnjzGQkYTRwYAABmVcwP3hQsXnjx5smbNmmfPng0ODi5btuyuXbsGDRpUrly5UaNGnTp1KovjR0VFvf322+XKlevQoYMRU/r6+hYuXPjKlStr167duXOnKX8L5F579uwRkdq1a4tIZGTk+lOnClWvbtcjGoF7p04iIm+8IT16yL3/GhqdZIyQ/dlnn7VYLAsWLLh+/bp9KkXGpKSkbN68+eOPP967d+/Zs2ez56AhIW6rV3d88sllzs7OWRzqkUceEbrK2EebNvLCCyIitWrJ/v1SsaKkpsq4cfLUU3L5svTuLeHhUq+e5Mv3TbNmTSZle38Z+wXuqampHTt2NNqDpKSknD592snJydihF9nMarVOmzZNbsbZ5urcWUaNktRU8feX06czOciyZcsOHTpUvnz5Tp06Xb9+/bvvvhORwYMHm1ko7Gzv3r0hISHOzs7BwcH2GL9v376tWrU6d+6cKd1FDKNGyfXr0qOHdOhg1pAPro0bNx47dqxs2bLNmzc3d+QXX3zx1VdfTU5O7t69e2Rkhq9MJyQkbN261Wq11qlTZ+PGjX/++efs2bPF/v1k5s+fn5qa2rlzZ29vb3NHbtKkybx585ydnUeOHGm8WgIAAMdw7AT7u2jWrJmIhISEGH9MSkoKCwuznaW5ubn5+flt3Lgxo8MmJCSEhYX5+vraQqiqVasGBQWdPXtWVZOTk0eOHGncHxAQYNbWYch1Tp8+LSKFChVS1QsXLohIvnz57NfUSFWvX1d3d3V21osXVVXLlVMR3b793p9+PV++fBaL5fDhw6rasmVLMXuZKjLqyJEjISEhfn5+tsavVatWrVKlim0LU/u5ckXz5FEnJzWlP8RPP+2vX/+yr2+qCWPhXxw/rqmpqqqLF2uhQiqiZcvqhg2qqvHxKUYwLSJ9+/bNzs3QjGstv//+u+kjG1F+6dKlVfXYsWO228h+S5cuFREfH5/UVLv8G09J0UcfVRcXnTcvkyNMnTrV29vb2MzQ6N7epk0bM0uE/XXs2FFEhg0bZr9DREREODk5ubm5mdIJZONGtVjU3V0PHcr6YNB33z3y8MPD33knyB6Dp6amdu/eXUQqVKgQHR199wcnJSXt3r07NDQ0MDCwZcuW7u7u6T8Xu7i4lCtXrnjx4seOHbNHqTbG59ywsDA7jf/ZZ58Zn5fpMAkAgKPk0MB9y5YtRtx5/fr1W74UHh7u7+/vcnNtZ8OGDUNDQ5Pvobfivn37Ro4cWbRoUeOJHh4efn5+K1asuD1FnT17tqenp4i0bNnyP8/bcF/6/fffReThhx9W1T///FNEmjdvbtcjLlmiImocJDIyM83cn332WREZO3asqoaEhIhIhw4d7FIr7uLAAZ069bUBA2wvNbao/bnnnqtevbqIVKtW7cyZM3atYvJkFdFOncwZ7dw5tVg0Tx5NSDBnQNziyhWtWFHbtVPj9+LECW3RQkXUxUWDgtJeBxYuXGh0la1ateqOHTuypzBjQ4gDBw6YPvKaNWtEpEWLFrfcRvbz9fUVkU8//dR+hzh3Ttet0xkz1PjNPXlSf/31Dg+zWvXUKd2wYf/MmTPfeeedfv36NW/e3OhHbOjatWvlypVFZO7cufarFqb78ccfRaRgwYIXjTkFdjNgwAAReeqpp7I4jtWqTZuqiI4ZY0pdD7rUVC1dWkV061Z7HeLGjRstWrQwPhjeclk6JiZmzZo1EydO9Pf3r1Wr1i3L/lxcXGrXrm1sVfrjjz8aC6169uxp10k2x48ft1gsXl5et3/ONVFgYKDxaXr//v32OwoAAPg3OTRwN9bxjR49+t8ecPr06bFjx9p2da9YsWJQUNDly5dvf+SNGzfCwsLat29vO7WqWbNmUFDQpUuX7lLApk2bSpcuLSJlypSJiDhnwl9JVVVTUlKWL19+6dIl24aEyJk+//xzEXn55ZdV9YsvvhD77z40dKiK6HvvqapOmKAi+txzGRvBaF5ZoUIFq9V69epVT09PJyenEydO2KPaB8WZM7piRdrt33/Xs2f10iWdPFnHj9dt2/5+WHS0hoVpQICWL29sc/lZs2YiUqJECT8/v5CQENs8qcuXLzdo0EBEqlevbqyqsZN69VREFy40bcDatVVE1641bUCkFx6uxYqpiJYsqX/+qaqamKivvqoWi4ro0KFHjHe3ffv21alTR0Q8PT3tNy3OJjU11d3d3WKx3Lhxw/TBjf5Xffr0sd3u27ev6UfBfzp+/Lizs7O7u/u5c6ad6vybTp30scc0JUW3bNE339Tdu3XxYp04UYcN086dtUYN9fBQEW3bdrz8k4eHR40aNYxdoAsWLPjcc8+xADEXSUxMNHphG7227ers2bNGg45ly5ZlZRyrVWfP1saNNRsXFN3P/vxTRdTHJ2PzSDLq4sWLVatWFZGOHTsuX758woQJffr0qVatmpPTPxqourq61qtXb+DAgVOmTNm4cWNcXFz6QSIjIwsUKCAiY+x5scXYBdp4B7SflJQUY78EHx+fCxcu2PVYAADgdjkxcD916pSrq6urq+vJkyfv/sjY2NiQkBDjM5iI5MuXLyAgYN++fcZXw8PDAwIC8ubNa3w1f/78AQEBERER91jGhQsX2rVr16LFFHd3nT49S38jVT158mRQUJDRCbdevXqtWrVi7nxONnDgQBGZOnWqqr744osiEhwcbNcjdus2q3TpY5s2qao++qiK6Pz5GRvBarUa+92tXbtWVXv27CkiQUF2Wb37oNiyRYcPT7s9bJhu2qStW+uqVbp3rz75pK5bp8OGaZUqRsie9l+xYtqr19FZs/5tSfv58+eNjQHq1q1rp7l+mzapiBYvriZe1wsM/PuCEOzh3Dnt0EFF1NlZx45Nay+zaJHWrZvg7V22XLlyf/31l6rGx8cHBga6u7vf+3tZphl7pRQvXtweg3/wwQciMmrUKNvtt956yx4Hwt299dZbItK/f/9sOFanTjptmk6cqFu26Ouvq5PTP147ba+g/fqt6Nev3zvvvDNz5sw1a9acOnXKmGqampr62GOPiUizZs0I3HMRo6l6zZo172U1qmMPt3KlliuXFrK3a2d+bQ+sF1/MpuUCBw8eLFiwoJeX1y0Je82aNf39/YODg9etW/efl5BXrVrl5uYmN/dntgdj7sXPP/9sp/Ftbty4Ubly5caNGx8/ftzexwIAALfIiYG70UW9X79+9/j41NTUxYsXG61mRcTJyalFixa2FN5isbRt23b27NmZmKOXlJT0yivJxofAl1/OTHoVHx8/Z86cRx991GKxGPX4+PgULlxYRMqWLbvVfksrkTVNmjQRkT///FNVW7VqJSIrV6603+EOHTokIkWKFElNTY2Nvd6s2e9eXvF3XYNxZ6NHj7ZNxv/ll1+Mz5zml/vg2LJFBw/W6GiNjtZBgzQ4WMeNS/vS7t367LPaurWKaN682r69BgVpeLjeQxPkc+fO1apVy7j2dvelNpkzaJCK6IgRZo75888qorRNtquUFH377bQUsmNHPXcuWVWjoo42btxYRNzc3IKDg43k8VC2NBXesGGDiDRp0sQegz///PO2i5rG7f/7v/+zx4FwF4mJicWLFxeRDcZ2AXbWqZMmJ2uHDvrzzzpihLZtq489pkOH6uef608/6c6d/z2b+NKlS8Z15eG2S6HI2cyacn7vbBPqx4wZs+tO9uw5uWuX3vG/pUu1Uyd94w1VAnfzJCenLeHatSs7DtelSxeLxeLj4zN06NAZM2Zs3749E6uKZ8yYISLOzs6LFi0yvcLDhw+LiLe3d3x8vOmDq2p8fPy1a9dsf6xZs6aI/HrHNl4AAMCeclzgHhcXZ+TRmzdvzuhz9+/fHxgY6ObmZiwGLFGiRGBgYGRkZBZLmj1bPT1VRFu10nuflb5zZ+orr7xqa3rj5eU1YMCAdevWqer58+fbtWsnIu7u7jNmzMhieTBdSkrKqFGjqlSp4uPj07dv33z58omIXRuATJ482dZRYfHixSLSpk3bTIxz8OBBi8Xi7e0dFxeXnJxcokQJEeG6TuZt2aKNGukbb+gbb2iDBvree2qb7nT+vHburOvW6ebNmpKS0YHPnj1rXBSsX7++uZl7QoLmz68Wi5rbdvvqVXV2Vjc3tWe7Uaiq/vGHliihlSvHly9fY8WKFXpzN2/jqm3Xrl3v2DzNHubMmSMifn5+9hi8Q4cOIvLbb7+pqtHzzbiN7GT8iOvWrZs9h+vUSVNTdds2rV8/81cEN2/ebGxymA1dlZB1mzZtKl68uG2HhtTU1Dlz5tgjZ1y0aJGtacacOXOcnZ1vadVt06JF/9uXVhj//e9/+vHH2ru37txJ4G6aZctURKtXz45jJSYmGp+89u7dm8Wh3n77bRGpXdtv2zaT++C8//77IjJgwABzh7WZPXu2h4eHsaXTvn37jE5crAoCACD7Od3xZNSBvv3220uXLrVs2dKYYpwh1apVmzRpUqNGja5evfriiy+ePHly0qRJRveGrOjfX9avl/LlZf16adRINm++24NjY2XWLOnQQR56yGnt2sjLly83bNgwODj4xIkTM2fONOZKFy1adPny5SNHjkxMTBw0aNDgwYOTk5OzWCRMsWXLlpdffrl48eJBQUGHDh06duzYnDlzEhISXnvtNWMaoJ0Ye7Qai+WXLVsmIu3bP5KJcapUqdKkSZOYmJjFixe7uLj06dNHRGbPnm1qsQ+Y1q1lwgSZMEFatpRKlWTHjrT7t22T2rWlVStp0kT+5VP9XRQvXnzFihWVK1fevn17586dY2Jisl7p7t1y7py4u0t4uLz/vlStmvUh/5Y/vzRoIElJsmGDmcPido88IuHh8tBD7x0/vu/xxx//6KOPnJycgoKCfvrpp4IFCy5atKhevXqbNm3KhkqOHz8uIsaEYjsNbrRZS38b2Wnq1KkiMmTIkOw8aP360qpV5p/epEmTzz77TEQGDhxoZEnIyS5cuHDu3LnTp08nJiaKyMCBA/v27fu///3P3KMcPXq0V69e1apVu3jxoojs2bMnNTU1X758te+kdOmytWvLHf/z8BARmTBBRo0SVXNrfHDNny8i0qdPdhzr999/v3z5cr169WwLnTPt/fffHz58xqlT8319LSdOmFJdmvnz54uIsV2ZPcybNy8hIcGYc2O7cG40yQEAANnK0Yn/P1itVuMMacGCBZkbYdeuXRaLJV++fOkX05kiOlpbtVIR9fDQmTPVNif1zJm0G3/9pQMHat68adNkChbUsWO37tix4y5jzp4929PTU0RMb+l++vRpE0e77506dSo4OPihhx6y/bswdtY9c+bM2LFjjXsCAgLstNVtQkJC3rx5LRbLmTNnVLVSpUoismXLlsyN9uWXX4rIE088oarbt28XkcKFCzOxJZNu6eG+bZsOHapDhuiHH2qHDprlRQ8nT5708fERkebNm8fExGRxtH79tHNnVdWoKB04MIuD3cHIkSqi/76VNcyUkpIyduxYY6u3Rx55xHiDOHLkSKNGjUTE09Pz66+/tncNxvYV9tjn0Gq1Gu99169ft1qtHh4exm3TD4S72Lt3r53Ol+7o6lXt1UtXrVJVTU7WLG7E6+/vLyLVqlXL+isn7ColJaVu3boi8tFHH6nqqlWrRCRPnjzm7ujerVs3EXnmmWdUNSoqysPDw2KxGItKM2TlSv34Y1XVTz/VPHlMLPDBlZioBQuqiN7cYMu++vXrJyIfGz/FLEtK0vbtVURr1tQrV0wZUvfu3SsiRYoUsdNnisuXL7u5ubm4uBj7YBsfq//44w97HAsAANxdzgrcly5dKiLly5fP9MZKAwYMEJHXXnvN3MIMyck6cqS6uurIkVqtmiYkqKq2a6eTJ2vNmmk5u8Wibdvqd9/pPa6XjYiIKFeunIiULl06E110bpGQkBAWFta+fXsnJ6fsafKbq924cSMsLMzX19fFxcVI1QsVKhQQEBAeHp7+YXPnzjWyoQ4dOlwx64w7HWN6e8OGDVV1//79crOZe+ZGu3Tpkru7e6VKlRISElTV+KBrjx6UD4SEBLXta3rxohrXLU6e1H371KTN344fP16xYkURadmyZex/NjC+q3799I039Pvv7RW4//yzLlyoycmakKAbN5o/Pm73xx9/GJPUSpcubWyGnJCQ8PLLL7dt21bs317m8ccfF5ElS5aYPnJ0dLTxQqeqZ86cEZGiRYuafhTc3dChQ0Vk6NCh2XO4yZNVRB991JzRrl+/buyE0bt3b3NGhN388ccfIpI3b15jLkj6cNwURohvG7979+4i4u/vn4mh9u1To7VVUpK+8ko2ZcT3jVOn9OrVtNu7d+u5c3rqVNrtbNguVVXj4+ONDQMOHz5s1pjXrmnduiqibdumfe7LIqNTTUBAgAlj3cn06dNFpGPHjqoaEREhIiVKlEjJeOdDAACQdTkrcO/YsaOITJgwIXNPP3funIeHh7Oz85EjR8wtLL0DB3T6dO3TR997T1W1XTvt0kVFtEQJHTlSM5Fym9LSfdeuXYGBgelbxi9cuDBzQ933UlNT161bFxAQYDRnN77zvr6+YWFh/zbf5K+//jJaylSuXHmf2Z/AXnvtNREZM2aMqgYHB0tGdgy+o927dxs7K6rqp59+KiLdu3c3oVDYx7Fjx4yuHa1atcpo5p6crH/9pePH67hx2q+fnjypDz+s27fbJXAPCNA2bTQ1Vc+d0169zB8fd3Ty5EmjF1n6/MhoL2Ncn960aZOdDm3MjNtlh33ujJY4jRo1UtWNGzfabiM7zZs3r1ChQp9//nn2HK52bRVRE09MDhw4YIRrX331lWmDwj6efvppEXn22Wc1azPQb2ebQf/hhx9quhn0x48fz9qw2qWLurjonj1Zr/FB8cEHatsZt1UrnTRJq1TRuDjV7NqBdsGCBSLStGlTc4c9dUrLlFER7dNHrVlu5161alW7Tjk39kcxPk6OGDFCRF5++WU7HQsAANxdDgrcd+/ebbFY8uTJk+ktBI3uH926dTO3sNtNn65z5+qTT+rBg9qunf71l/78c5YmvBp74mWidUlMTExoaKix45zBaBlv7jaM9419+/aNHTvWmFCc/tt10TaL+d8dO3bM+FDXokVnE8+TU1NTq1SpIiLG9NWTJ09+9dVXf/75pymDX7t27bHHHvP09Fy6dKkpA8JODh06VLp0aRFp3779jXtotXDkiIaEqJ+fFiiQtramUCHt21fPndOVK7VbNx04UDO7RiLNL7/ohg3/uCcgQEeN0i+/JHDPbsnJyZ9++uktF2OOHTvWtGlT43phcHCwPY7r5eUlIldvTlk8ceLE6NGjTVkFb3SwNS4Ezps3T0R69OiR9WGRIUYDd29v7/3799v7WKtXq4iWLKnmNlEwfpFcXV033PJqhRzmyJEjRshuLOUcPXp08eKl+vX7Nevx5YwZMQ0ajKxYsWJ8fHxKSorRG3D8+PFZr/mll8xck/EguD1wf+klfest1ewK3Hv06CEi//vf/0wfOSIirWXo2LGZeXpSUtKOHTtmzJjRu3dvY3WXbcr53r17x40bZ1ad58+fd3FxcXV1vXTpktVqNSZzmHJlCwAAZEIOCtxfeOGFrFyHt+0PYwSXdmUE7gcParduZp5Ezpo1695buoeHhwcEBOTNm9cIjvPnzx8QELBt2zbTqrm/hISEpN+Gt1KlSu+9915GV0LExsY+88yLRYuedXXVqVOzWpKR/leoUKFw4cJubm4fffSRuUs+d+7cabSDL1KkyF9//WXiyLCHgwcPlipVylgIHH+njlT79u376quvAgOPFCmSFrIb/1WvrkOG6MKF2qePnjunqtq7tz73nPr66tixmZmNdfas+vuriFat+o/WWAEBeviwPvqo7txJ4J4jJCQkBAYGGq9pTz31lLkNr7Zs2WKksbZ7jD42zZo1O3bsWBYH/+STT2zN34zbr7/+ehbHRCYYndBr165t7wb6vXplPqu6O+OfQNmyZS9cuJDVsc6fT5uOq/p3a4ykpL/vRBaMGjXKeAGxWq2xsdcrV44V0VmzsjTm5ctqvCEuWnRJb15DKleuXJwZP7JLl7RwYRXRxYuzPtgD4YMP9NFHtX9/7d9fK1fWSZN08WLt3l337MmOwP369eteXl4WiyWLixv+zdKl6uKiRYvqvbzSJCbq1q3hISEhgwcPbty4sbu7u+0DSPHixd3c3IzT8hs3bhgnfp9++qkpRRrbOHXp0kVvrh4rU6ZMpntUAgCALMopgfulS5fy5MljsVgyPdPqm2++EZEGDRqYW9gdGYG7qr7zjlapYubI/9nS/cqVKyEhIem392zYsGFISIgpny7uY0bP0Pz58/v7+69YscKa2VlVVquOHasWi4poQEBmJutduHDhiy++aNy4se0nWLRoUYvFIiLNmzc3a6bhnDlzjNmp9evXj4qKMmVM2Nv+/ftLliwpIp06dTJa8J85cyYsLCwgIKB8+fLGb0vr1qHGRFE/Pw0J0fSfKzdtSmswev68fvmlOjmpiPbrd6/7SRjCwtLyizx5NChIjWtAe/bod99pQIBGRemWLdq1K4F7DvLjjz8WKFDAaC+T9Y1ArFbrihUr/Pz8nJ2dCxYs6OTk5O/vb7y/bN261VgelD9//kxvbG4YMmSIiEyaNMl2e/LkyVmsHJlw/fr1mjVrikifPn3sd5ToaHVzUxcXPXnS/MGTkpKMnkuPPvpo5i9aX76snTvr8OHat6+OGKGq2qpV2pdWrrTLhYIHT0xMTMmSJZs16zZvXoyqhoamNWPMypa9gYEqkhbmXrmijz8eni9f6Sy+OqUXHKwiWqmSOc2773u3z3BfvFiPHtWuXbMjcP/+++9FpHXr1vY7xJw5euiQPv542qnXvHm6ZUval5KSdPduDQ3VwEBt2VI9PLRMmQq283wnJ6eqVav27t37008/NabhFy5c+MCBA6q6YMECJycni8Xy3XffZb3CNm3aiIgx1KuvvsrFbAAAHCunBO7jx4+3XZPPnHr16onIrCzOlrk3W7bojh2qqjduaGYbzv+r8+fPGxMJ07d0T01NXbFihb+/vzEFXkRKlCgxcuRIdka9Rxs3bpw3b94dJw5nwty56umpItqhg97jnoWJifrLLwe6du3q5uZm/AQLFCgQEBCwfv16q9W6bNmysmXLioiHh0dQUFBWprqnb0/k7+9/L/1JkHNERkYWLVpURKpUqWIsUEg/K6p3797ffvvzPW4GtnSpenuriNavrydO/PfjDx061L//BWPW/GOP6dGjqqpJSRoUpO7u6u6uPXuqce3mxRcJ3HOWo0ePGit4stJe5urVq8HBwUaHKxHx9PRs06aNh4eHiDz00ENGNHD16lUjLLBYLIGBgYnGNsIZl5SUFBUVZbQ+e+KJJ4SNnR0nGzqhjx+vImq/bn8nT540XjbfM7bWyYR339Wff067/dxzunUrgbs9zJlzQURLl9br19Vq1aZNVSTz22nu3auurursrDt3qqoOH64i6utrZjSenJy294Dpp/r3pTsG7qo6frzWrq2qJjRAv4snn3xSRKZMmWLHY6iqavXq2rOnqmpQkH75pT77rNaurS4u/1h66Oys3boN9/f3nzhx4po1a66lu6yUkpLStWtXEfHx8Tl37pyqfvbZZyLi5ua2atWqrBR25swZZ2dnDw+Pa9eupaamGo0Kt9iuCQAAgGyXIwL3pKSkMmXKiMjKlSszN4KxS1KxYsUSsmUWypQp+uuvabc7dzZ//PSZab9+/d59912jDZ+IODs7d+nSZdGiRclZ6RmPLNu4UUuUUBGtXFnvvovq7t06cqQWK6Y+PgnGT7B9+/ahoaG3LEq4du1aQECAMdW9WbNmmdua9ezZpDZtHjZyt//7v//LxAhwuJ07d5YqVapBgwYikjdv3vbt2wcFBYWHh2diWcauXVqxoopoqVJ6l6nPycnJwcHBXl5eVap0K15cQ0LS7t+wQWvWVBG1WNTfX//6S43LN9euqR320USWpG8v8/TTT2eovczBgwdHjhxpTJMXkVKlSo0dO9Zo0LFnzx5jBnS+fPnmzJmjqlarNTg42Lhw2Lhx46wvoKlVq5aI7DAuYsMRjDb6duqEnpKS0rjxcRH9/XfTx/7bH3/84ezs7OTk9Ntvv/3HQ69c0YgIXbBAP/lEBw/WDh30xRf1qaf0zJm0B4SE6PTpWq2a+vurv7926EDgbharVZs0URF9+21V1Y0b1WJRDw/N3KvIY4+piL70kqrqvn3q6qpOThoebmbBqrpihYpovnx//4Lg32zf/vcqliVLNDJSjfZjCQkaFqZjx+rgwfY69JUrV9zd3Z2dnc+ePWuvY9zUoYOOHq0//6xBQfr552kJu4uL1qyp/v4aHKzr1unde3TFxcUZW7A0btzY+CxgvH0XKlQoK+tcJ06cKDc3R1m9erWR6Wd6RS8AAMi6HBG4nz9/vk2bNs7OzoGBgUeNeZUZZMxreP/9980u7c4mTPh7LpRtFpTppk2b5u7ubuvSXqZMmZEjR2a9eS7Mcvy4PvSQimjhwvrLL2mNO6Kj9fTptK9++KFWr/73hJd69fSrr+bf/cPA0qVLjTkpnp6eISFnMtR3cetWLVdOH374l9KlS2/cuDErfzU41o0bNzZv3rx169ast/W/eFHbtVMR9fDQ0NA7PGDLli22FlXPPPPMxYsxqnr1qgYGpjWlqVxZTdwlGHb1ww8/GLl5lSpVtm/ffvcHGwunfH19jet8ItKyZcuwsLBbrubGxMT06dPHtmjGSAe2bNliay+zcOHCTBecmJhoNL8ytwE9MmrYsGFiVif0f1q8eLGzs/OTTw6zd+zzwQcfGImVcRqZkpJy7NixP/744+uvv37rrbd69ep1oF8/LVToH9NQjf9q1dLnntPdu9MG+ugj/fFHZrjbiS1kN072+/fXrl01Ez23U1P1o4+0bNm0htqPP64i+uKL5habxtdXLRZ9662jdhn9wRAZqR4eKqKff26X8Y22ou3bt7fL6P/UoYPGxWmbNjp2rP70k06dqps3Z6x3n6pGR0cbU6m6dOmSkpKSmpr69NNPi0jFihUzfc2gWbNmIhIWFqaqL730koiMHj06c0MBAABT5IjAXW9upmTM/+3Ro8f69evv/blRUVHOzs7u7u7ZMK/BMGGCduumI0boiBFaubIdD/TXX3/98ssv/fr1W7lyJZMUcqDr1/Xpp/WDD7RaNX33XVXV2bN17Fh95JG0sNJot/366xmYEXz16tWAgICmTT8S0ebN9R4nu3z5pbq5qYg+8oj13DmTExPkaomJ+sILKqJ1614bM+ad9NtnTZo0ydnZ2ZgGtXz5cuPORYviS5VSEXVz03feoXdtLnPgwAGjwZqHh8e/tZcxuscYibnxSH9//113fZEKDQ3NkyePiNSvX99oZXbx4sXOnTvb2sskZXBHi+jo6KCgoDJlyuTLly8gICBDz4XpkpKSWrZsKVnshH4njz32mIh8bqeYLZ3U1FSjPVGJEiWqVKli695ms6JtWxVRLy+tU0e7dtXhw/WLL3TpUj1wQP/8U3v00PPndedObdlSr18ncLeffv1URP38VDUzG+GkZzz9l19URAsU0PPnTSjvdgcOpDZoEOjk5BQREWGXAzwYwsLUyUmdnDQLl2j/VadOnUTk66+/Nn/o23TooKr6889asqT+54qau9i7d2/BggXl5v7hN27caN68uYg0atQoE7tYHz9+3GKxeHl5Xb9+PSUlpVixYiKy02i3BAAAHCSnBO6qun379oCAAKNjrIg0aNAgJCTkXppuGwvxnn/++Wwo0jBhgs6cqWfO6Jkz2qxZth0WOVFqqlqt2qGD+vnp/v06e7Z+/HHaBC5fXw0Ly+TnyV9+STZCzzx5NDhY7zLVPT5eBw1KC/czt48rHgRffZVUsmQ9EenatWtMTIxx544dOzw8PAIDA2NjY1U1Ojra39//oYcCLRZt3vzvGZ/IXeLj423tZbp163b16lXbl/bt2xcYGGhMKheRSpUqBQUFGb3U/9O2bdsqV65stJeZO3eu3mwv4+rqmqH2MuvXr+/du7fxLKNBfOZWtsFctk7o48aNM2vMI0eOODk5eXp6Xrx40awx7+LSpUtdunSpW7eurTlSq1atnn322XHjxs2ePfvwpk0aHf2vT169WocP13fe0VOnVFWnTk27//BhXbEiG4p/cJw6pV5eKqKrV5swWlKSVqumIjpxogmj/ZvXX39dRFq0aMHcl6z45JO09XbmNq+6cOGCq6urq6tr9rzOPPNM2o2+fXXNmiwNtWbNGnd3d7m5hfiFCxeMN1lfX9+MXvj8/PPP5eb217///ruIVK9ePUvFAQCALMtBgbvh7NmzQUFBpUqVMj4vlShRwtZM9o5iYmKM/b6y8zJ+9rSUQS7SoYMeOaKdO+vs2Tp9uv78s6bbISmTrl7VgIC0JL1FCz1w4A6POXEirSOqp6d++21Wj4j725o1a4xArU6dOrZsNDo6WlWtVuvUqVPz588vIt7e3jNnHs9QOyPkQAsXLjR+oFWrVt22bdvixYvbt29vdI+xWCzt27cPCwvL6Ef6mJiY3r1729rLGHsyr1+/3tiFpUiRIsYWcHeUkJAQFhZmzOATEScnJ19f3xUrVhBg5RwZ6IR+b0aMGCEiAwYMMGW0exQeHr5nzx6z9kiHPbz/flqfvayvpvjsMxXR6tXtO9sgJiamRIkSIjJv3jw7HuYB8PLLaZ0Y73hOmzn/93//JyKd7bGn1m0SE/XLL9Nur12rW7dmdcB58+ZZLBYnJ6cffvhBVQ8dOmScpw3OYMP7pKSkpUuXhoeHq+rAgQMlK5tIAwAAk+S4wN2QkJAQGhpqm6bk7u7u7+8fGRl5+yONS/rZ07bP5qef/t6BcNSo7Dwycihjhem4cfr00zp9upkj//qrlimTFqkHBenJk2mfKm/c0CVLtHBhFdEqVfRO/ziAWx0+fNjYA7Nw4cJ/3GzNfujQoUceecR4se3cufPxTPTTRY60f//+OnXqGHtCGD9fb2/vwMDAA1mLOkJDQ40B07eXeeKJJ4YNG3bHx585c2bs2LFGiCAiRYsWZT+SHOv9999P3wk9KxISEoy2BpvvsmUzHkg3bmjFijpggN5cbZV5oaFatKguXWpGWXc1bdo0ESlTpkwm2n3AJiVFfX3Ttoe5cMGcC/vt2rUTkVmzZpky2t3Fxupjj6Xd/vJL/f57E8YcP3688Tb9119/qeratWuN1d7/+9//MjFaUlJSoUKFRGTPnj0mFAcAALIghwbuNuvWrfPz8zO6DItIy5YtFy9ebJsQl5KS4uPjIyJLlixxbJ14wBmBe3y8VqlicuCuqpcuaf/+KqKFCmmzZmntZP/8U4cN0/z5tXNnvXzZ5CPiPhYTE2PsMu3i4jJx4sSgoCBjRXPx4sVD77itKnKzGzduPP/88++++26VKlWCgoLM2ps0IiLCWPnu7e1tTPm0Wq23t3EPDw/39/d3cXFJ3ynOmBePnMlqtXbt2lVEmjRpkpC1DRxmz54tIvXq1TOrNtxPYmO1a1c19ndftkx//DEDz01K0qZN/+79k5FdnzIvNTW1UaNGTBzOurg4bdZMW7ee3rx5C2MX7qyIjo52dnb28PBI3zzNfmJjtWVL3bZNt23Tt94yJ3BX1SFDhhirxA4ePKjppr1vzfgU+iVLlvDCCwBADpHTA3fD4cOHAwMD8+bNa3xor1y5cnBw8PXr1xcuXCgiVapUSaX9ARxq0aK0G9u326vz9c8/68KF2qGD9umj+/frn3/qe+/pnj1KPwZkVEpKyhtvvGHbS9BisbzwwgtmRbHIgaxWq+mdW65du9arVy/jVyggICB9OBsfH59+jZqbm5ufn98KGmHnEpcvXzY21B06dGjmRoiOjt6wYUOtWrVEZLrpl6Bxv2jZUjt10uRknTNHQ0Iy8MTERK1ZU/v2VVV9911du9ZOBd5qw4YNFovF09OTBTpZdPZsbIUKFUSke/fuWfkEl5ycPGrUKBF5+umnTSzvLmJjtXp1/d//9H//0+7dTQvcU1JSjJkQlSpVOn/+vKp++umnH3zwQYZG2LNnz+zZs2vUqCEiH3/8sTmVAQCALLCoquQSV69e/frrr6dMmXLixAkRKVSokJeX18mTJ6dMmTJ06FBHV4cHWuvWsm6diMiiRXLokKQLM03WsaOEhMiwYfLGG7JmjYwda68D4b4XGhp6+PDhtWvXvv/++w8//LCjy0GuNG3atMDAwMTExAYNGoSFhVkslmnTpk2fPv3SpUsiUrx48QEDBgwdOrRs2bKOrhQZsGPHjhYtWhgXTp555pl/e1hSUtKpU6ei/unQoUMxMTEiUqxYsXLlyq1evdq2SS+QXseO0qePXL4spUrJwYMybty9PnHcONm8WWrWlLZtZfNmad9eWre2Z6Hp9O7de+HChdOmTTPaZCPT9u3b17JlyytXrrz22mtGd9B7kZKScuDAgYibtm/ffuPGjZo1a77zzju2/UXs6vp18fOT334TEfnqKylQQPr2NWfk2NjYhx9+ePv27a1atVqxYoXRVeYubvlW7NixIy4uzvjSa6+9NmzYMOOSBgAAcKDcFLgbrFbr0qVLJ0+evHLlSm9v7wIFCuzZs8c2+R1wiOwM3Jcvlw8+kLNnpVgxAncADhYeHt6zZ8+jR496enomJiZarVYRad68+bBhw7p37+7m5uboApEZISEhL774opeX1+bNm2vVqnXhwoUjR47ckq2fPn3a+HHfonDhwj4+PjVq1AgNDc3+ypFbdOwov/8ujz0mHTtKbGzGAvctW2TePOncWZo1E1/f7AvcT506denSpYceeiibjndfW7t2bceOHRMTEydNmhQYGHjHxyQmJu7atWvbTZGRkYmJibavWiwWHx+f6dOnt23bNntqtl/gLiLR0dHNmzc/fvy4n5/fvHnznJyc0n81KSkpMjLS9q3YtWtXQkJC+gdUrFixQYMGDRo0GDBgQKlSpUwrCwAAZFbuC9xttmzZcuHChccee8zW4R1wlAoV0j7vnTolnTvbPXBPTJQGDaRnTwJ3AI4XExPzwgsvuLi4LFy4sGvXrq+++mqLFi0cXRSy6plnnpk9e3bBggVTUlJiY2Nvf4CLi0v58uV9blOgQIFsLxa5j3E+s3OnPPGEjB0rzz9/r09MSZFu3eSXX2ThQhk6VBYuzL7AHeaaP39+nz59LBbLggULunXrJiLJyckHDx6MSOeWWLlkyZINb2revHmRIkWyueakJDGuI6emioiY+xl07969rVq1unLlyogRI8aPH3/v34qmTZsam1QDAICcIxcH7kDOkW0z3GfMkEGDREQ2bZK4OHn0UXsdCADunapardarV68WLlzY0bXAHDdu3Bg+fPi2bdvCw8M9PDxKlSpl5Ok1a9asVauWj49PuXLlbDviAhk1dKh8+aWIyLhxUreuPP30vT4xOVnefFOCg0VEBgyQV16R+vXtVCPs7qOPPhozZoyHh8cjjzxy/Pjx/fv3pxpJtoiIODs716hRo8FN9erVy5cvnwOrzQZ//PHHE088kZyc7OTkdMu3omrVqsb3oWHDhvXr1/f29nZgnQAA4D8RuAMmyLbA/fHH05ay7tgh8+fLxx/b60AAABw/fjxfvnyFChVydCEA7k9Dhw7dtGnTtm3bRMTFxaVq1aq2idv169d/ADeB+O67744cOfLBBx9Uq1bN+D7UqlWrYcOGBQsWdHRpAAAgAwjcARPYJp7v3y+XL4v9uinYkv2ICJk9O22GFwAAAJDrpKSkXL169ccff2zQoEGdOnXc3d0dXZHjJScnp6SkeHp6OroQAACQeQTuQG7SqJE8/LCIyPnzUrgwgTsAAAAAAACQg9B8E8hNPDxk1CgRkV27ZMkSR1cDAAAAAAAAIB0CdyA3sVikaFERkQIFHFwJAAAAAAAAgFs4OboAABlg9JMRkYIF5aGHHFoKAAAAAAAAgH+ihzsAAAAAAAAAACZghjsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABggv8HD13iPGcAhGIAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"FP\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "a1311af0-e963-47c7-ae8e-b84736c3f621", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.632096Z", + "iopub.status.busy": "2024-05-13T08:55:43.631884Z", + "iopub.status.idle": "2024-05-13T08:55:43.685469Z", + "shell.execute_reply": "2024-05-13T08:55:43.684925Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 FP fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACRv0lEQVR4nO3dd1yT1xoH8CcJW4aIssSJA3FLnbi11oFb6kRtHbW2xVqtaB24xVqVamtFaxVHVXDiqBZHFbfgAieCgy2C7Jnk3D9ObxoDKEqSN8jv+/FzP9eTcZ7c+/rmzfOe8zwixhgBAAAAAAAAAAAAAEDZiIUOAAAAAAAAAAAAAADgQ4CEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7AAAAAAAAAAAAAIAaIOEOAAAAAAAAAAAAAKAGSLgDAAAAAAAAAAAAAKgBEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAZIuAMAAAAAAAAAAAAAqAES7gAAAAAAAAAAAAAAaoCEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7AAAAAAAAAAAAAIAaIOEOAAAAAAAAAAAAAKAGSLgDAAAAAAAAAAAAAKgBEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAZIuAMAAAAAAAAAAAAAqAES7gAAAAAAAAAAAAAAaoCEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7QHlVWFgYGhpaUFAgdCAAAAAAAAAAAABARKQndAAA8A7i4+PDwsLCwsIuXrx46dKlnJyc0aNHN2vWbNasWUKHBgAAAAAAAAAAUNGJGGNCxwAAJcrOzg4NDb169eqVK1euXr0aHx+veEgkEtWsWfP58+dEtHXr1nHjxgkXJgAAAAAAgPq9ePEiJyendu3aQgcCAABQWki4A+ic6OjoCxcu8JXs169fVy4aY25u3rRp044dO7q6urZv375q1aobN2788ssvJRJJYGDg4MGDBQwbAAAAAABAjXbv3j1q1Kjhw4fv2bNH6FgAAABKCwl3AOFlZGRcu3aNJ9kvX76ckpKieEhPT69BgwYuLi48ye7s7CwSiVRevmDBgiVLlhgbG//9998dO3bUbuwAAAAAAAAacffu3SZNmtSpUyc6OlroWAAAAEoLCXcAAUil0ocPH/JS7BcuXLh//77yv0Q7OzsXFxeeZO/QoYOJiclb39DT03P9+vUWFhbnz59v1qyZJmMHAAAAAADQBrlcbmlpmZGRkZiYaGNjI3Q4AAAApVK+E+4FBQWHDx+2sbGpU6dOjRo1hA6nRJGRkampqU+fPh06dKieHhrVVlDK/U4vXryYm5ureKhSpUotWrTgSfZOnTrVqVPnXd9cJpONGDFi37591atXv3jxYq1atdQaOwDoFsZY0c0uAAAAAB+e7t27nz179siRI25ubkLH8qFgjM6fp/BwkkioTRtycRE6IACAD005Tv6eOnXK09Pz/v37VlZWOTk5np6e8+bNMzU1FTqu12RnZ69atcrHx6dy5cpJSUlOTk5r1qzp06eP0HGB9kRGRs6aNevq1asJCQmKQbFY3KhRo7Zt27Zr165du3aNGzcu450YiUSya9eutLS0U6dOffzxxxcuXLC2ti5z7ACgW548eRIQELBt2zYPD4/8/PyFCxci7Q4AoC4vXry4fPnypUuX5HK5m5tb586dcY4F0AVt27Y9e/bstWvXkHBXj9RUGjCAoqOpSxeSSmnOHOrRg/78kwwNhY4MACocb2/vW7duLV68uHnz5kLHomblcoX73bt3p0+fHhwcTEQNGzZ0cHA4c+YMY6xGjRo//vjj8OHDdeHiWC6X//HHH/PmzUtKShKLxR9//PHDhw+fPn1KRIMHD161apWjo6PQMYLG3b9/f/bs2UFBQURkbm7epk0bV1dXFxeXDh06WFlZlf39CwsL9fX1FX/NyMjo2rXrzZs327Rpc/r0aV27/wQA7+fZs2d79+7dvXv3rVu3+IiRkVFeXt7o0aO3bNliiF9HAADvRSaTPXjwoGiJPyMjo/z8/FmzZvn4+AgdIwDQwYMHhwwZ0qtXr5MnTwodywfBw4Pu36fgYLK0JCJ69ow6dKBJk2jhQoEDA4CKp2fPnqdPnw4ODu7Zs6fQsahZOUu4v3r1auXKlWvXri0oKLC0tPTy8po+fbqBgcG1a9emTZt25coVImrTpo2vr2/79u0FjFMlnp9//rldu3aFhYUbNmxYsGBBRkaGvr7+l19+uWTJEnNzcwHjBE1bsmTJggULevTo8dtvv9WvX1+9b3727NmJEyceP368YcOGisEXL1507NgxMjKyZ8+ex44dMzAwUO+kAKA1KSkpx44d27Fjx+nTp/mXdeXKlfv37+/u7q6npzdixIiMjIwOHTocOnSoWrVqQgcLAFA+pKWlXblyha9kv3r1amZmpuIhU1PTNm3adOjQwdjYePHixfn5+T/++OP3338vYLQAQEQJCQn29vaVK1dOTU3VhaV15VtWFlWpQvv20YAB/w2uXk1r11JsrHBhAUAFhYS78ORy+c6dO2fOnJmcnCwWi0ePHr169WrlFANjbMeOHV5eXomJiSKRaMyYMT/++KOtra2W44yLi5szZ87OnTsZY9WrV1++fLmHh4fyZUFCQsLChQt///13uVxuZ2e3cOHCCRMmSCQSLccJ2tGqVaubN28eO3asb9++an/zwYMHHzp0qE6dOhcvXrSzs1OMR0VFubq6JiUljRo1aseOHWKxWO1TA4DmpKWlBQUFBQYGnjx5srCwkIiMjY179Ojh7u4+bNgwRRfl8PDwfv36xcTE1KtX79ixYw0aNBA0ap0TnZt7KytL8VeRSDS4alUB4ym/EhISjh07prn3t7S0HDp0qObeH4CIoqOjL1y4wFey37x5Uy6XKx6ys7Pr2LEj34DYpk0bxUqF3bt3jxkzhjG2adOmiRMnChQ4qE1eXt7OnTs1OgWOE41ycHCIi4t7+PAhLnjK6sYNcnGhp09JuenXmTPUowelpZGFhXCRwb9wvoJt27ZJpVLNvf+IESN0pxzCB5xwJ1YenD59ulmzZjzgbt263b59u6RnZmVleXt78/31lSpV8vb2zs3N1U6Q2dnZPj4+/Kg1MTHx8vLKzMws6cmhoaEdO3bkn8jFxSUkJEQ7QYI2PXnyRCQSmZmZaeggzMnJcXV1JaImTZqkpqYqP3T79m0LCwsi+vrrrzUxNQCoXU5OTlBQkIeHhyKlbmho6Obm5u/vn5GRUexL4uLiWrVqRURWVlb4HlGx98WLbrduzY+O5n8WPHkidETlUkBAwMiRIzV6IVq7du1hw4ZlZWUJ/Vnhg5KVlRUSEuLr6+vu7q6yB0hPT8/FxcXT09Pf3//p06dveJMNGzYQkUQiCQwM1FrkoAk3b94cPny4Rk9lRDR8+PDo6GihP+sHa8iQIUS0fft2oQMp/27eZEQsKem1wUuXGBF78YK9/qMStA/nqwouNjbW3d1d04UKhg8ffunSJaE/67969OhBRMHBwUIHon66vsI9Kipqzpw5gYGBRFSjRo2lS5eOHTv2ra96/PjxDz/8wF9Vr1695cuXu7u7azTOI0eOeHp68hLtbm5u69evr1279ptfwhjbt2/f999//+zZM5FINGzYsFWrVtVSvs8M5dzq1atnzpw5cuTIP//8U0NTpKSkdOrU6f79+126dDlx4oSRkZHiobNnz/bp0yc/P3/VqlUzZ87UUACgU16+fJmYmJiQkJCQkMD/S2JiYnx8vIGBwaJFi9q3b49NuDpIJpOdPXt2+/bthw4d4pUNxGJx+/bt3d3dR40a9dZaMVlZWSNGjDh27JihoeG2bdtGjBihlajLgYDk5MMvX+5q1EjoQMqxnJwcJyenmJiYzp07q70qmsJff/0VHx8/f/78xYsXa2gKqCDi4+MV1divX79eUFCgeMjW1vajjz5ycXHp2LFjx44dla+X3mzRokULFy40MDA4cuRIr169NBM4aFzXrl3PnTvXtGnTNm3aaGiKkJCQR48eDRkyZP/+/RqaooJbuXLl7Nmzv/766/Xr1wsdSzmXkUEWFnT9On300X+Du3fTpEkUF0d2dlSnDrm708iRpFS2FLQG56sKzsPDY+fOnY6Ojl27dtXQFDdu3OBt/y5fvqwL5RCwwl0AGRlszhy5g0NrIjIzM/Px8cnLy3undzh9+nTTpk35x+zevfudO3c0EWdYWFinTp34LK1atTp//vw7vTw7O9vb29vY2JhKsS4eyhe+/DwgIECjs8TGxvL7NAMGDCgsLFR+aM+ePWKxWCQS/fHHHxqNAbQmNTU1IiIiODjY39/fx8fH09PT3d3d1dXV2dn5DZvC9PX1RSLRunXrhA4f/iOTyUJCQjw9PZVT6i4uLr6+vvHx8e/0VlKpdOrUqUQkEom8vb01E+87Kihgd++yu3dZfr5QIex98WLUvXtCzf5h8Pb2JqKWLVvKZDLNzXLp0iWRSGRsbPwEuxDgHRUWFoaGhvr6+np4eKisdJFIJM7OzpMnT/b394+IiCjLLNOnT+c/Rq5fv66uyEGb9u7dS0TVqlV79eqV5mZJTEzkrbn+/vtvzc1SkZ09e5aI2rRpI3QgH4TmzdnUqa+N9OzJhg1jFy4wExNG9O+fli3ZkiUMV1NahPNVBXf58mWRSGRkZKTRq+Ls7OyaNWsS0bZt2zQ3S+l9wCvcdTHhLpczf39ma8uIWKdOkePHjy82+5Cbm7t8+fJvv/32DW9VWFjo5+fH0xl6enqTJ09+8eKFuuJMTk729PTk5detrKx8fX2lUukbni+VSrdt26aSEuViYmIUpd4dHBz8/f3lcrm64gRBJCYmisViIyMj5VoQMTEx2dnZap/r7t27VapUIaJJkyapPMR3Q+vr6x87dkzt84LaZWdnP378OCQkJDAwcN26dT/88MP48eP79OnTrFkzGxubt65Pr1y5srOzc7du3caMGfPdd9+tXr16586dZ86c4UuBDA0N31CPC7QmNDTU09NTue+Cs7Ozt7d3ZGRkWd7W19eXr1CYOHFisV802vPjj8zcnFWrxqytmZkZW7qUCfGNtvfFi+63bi19+pT/OaPJ3y0fpJiYmEqVKhHRuXPnND3XqFGjiOjTTz/V9ETwwZDJZCtXruQ1JBWsrKzc3NyWLVv2zz//qLFIkVwuHz9+PBFVrVr1HhJP5U1OTg6/GePn56fpuZYuXUpEjRs3Fvhb+AOVmZkpkUgMDAzedREevIYfnGfPMiMjNm0aCwlhp06xESNYlSrs0SPGGMvJYUFBzMODWVj8l3mvW5d5erKQEEGu6CoOnK8qOLlczrc1zJs3T9Nzbd++nYhsbGzS09M1PddbIeGuPdeusfbt/z2xt27NSiordODAgbp16xKRWCx+/Pjxm98zNTXV09NTT0+PiCwtLX19fct4WikoKPD19eV3BfX19T09PdPS0t76ql9++YWIGjZsWFLq859//mnRogX/zdC2bdsrV66UJUgQFs90Dxw4UHlw2LBhxsbGQUFBap/u6tWrPDMyf/58lYfmzp1LRMbGxhcuXFD7vKAWz549c3Jy4qeUNxCLxXZ2di1atOjXr99nn302b9689evX79+//+LFi9HR0W9uFTBp0iR+UZWTk6O1zwXKIiIivL2969Wrp/g/tHbt2l5eXu+RvsnNzZ0wYcKzZ89Uxvft28f3S/Xq1Uuwi6fffmMWFkyxXubUKWZpyXx9tR/I3hcv+ty+vT0xkf+5gd1j74jXDx05cqQW5oqNjeVfYf/8848WpoMPwHfffefo6EhEdevW9fDw8PPzi4iIUNdqlefPn58+fVp5pKCgoF+/fnxZzJvLvoOuWbRoERG1aNHizeui1CIvL49/y2/YsEHTc1VMTZo0qVer1mPsNXlvW7awtm0ZXw0WGspGjGDOzqxpUzZpEouKUn1yXh47coR99hmrUuW/zLujI5s1i129itWBmoDzVQW3detWIqpevboWil7I5XLeVHLOnDmanuutkHDXhthY5uHBRCJGxOztmb9/8TdQ79+/37t3b56tcHJyOn78eCnf//79+3369HmPF6oIDg5u9P+asD179rx7924pX3j8+HFFqmXAgAHFLmaUyWT+/v42NjY8uebh4ZGYmPh+cYKwPv74Y3p9k05OTk6lSpVEIlHRNJlaHD16lN9V8n09tyWXy3kXcisrq9IfrqA1Z86cMTc352uTDQ0N7ezsXFxc3NzcPDw8vLy8fH19AwICQkJCoqKiynKnMDs728nJiYg8PT3VGDy81ZMnT3x8fBopVRJ3cHDw9PQMCQl5798qs2bNIiI7O7vQ0FCVhy5fvmxtbU1EzZo1e/78eZnDf3d16rAlS14bWbGCOThoPxCUlCmLixcv8jIvWsstavNHJnwA+LIbTfw2S0hIqFmzpomJiUozsZycHF5Dsn79+rg4Ly+0fzNv3759RFSlSpWXL19qZ8YKJXfKFEbEUCPx/cyfz4iYSMR27363F0qlLCSEeXoyOzuedr/h5FSjRo3JkycHBQVhfbS64HxVwWVmZtrb2xPRjh07tDNjaGioWCw2MDB4xHe3CAcJd83KyWE+PszMjBExY2Pm5cWUinD8JyUlRbFQvUqVKu+3UD0oKIiviCEiNze3t66OV/bgwYO+ffvy175hofob8KXxFhYWb14an5mZ6e3tzffJmpqaent7Y+tc+fLq1SsDAwN9ff2UlBTF4MGDB0nDlQd37twpEonEYvHevXuVx6VS6dChQ/n9UqzM0jX8RuC0adOUjxZNCAsLMzAwEIlER44c0ehEwCUnJ7u4uCjy7NWqVZs6der58+fLXg47IyOD33iuVKnS4cOHVR6Niopq2LAhEdnb29+4caOMc72bxERGxEJCXhu8do0RsVLsA1MvJNzfm0wm++ijj4ho4cKFRR9dt26dQZkVFBSovK1iG/WmTZu08imhHLt16xYR2djYaKK7gGKZgoWFxc2bN5UfSktLa9myJRG1bt06o9jfKqBj3lCu6tSpU2U/lakcIRxfczNt2jRNf7qKyM+PEbExY4SOo7yRStkXXzAiJpGwsnzJSqXs3Dnm6bl8wADF9a2Njc2UKVOCg4OReS8jnK8quNmzZxNRu3btii7JevjwYdkPgGIzAOPGjSOiwYMHa+UjlggJ9zIpLGShoUy5dnpyMlMstA0KYnXq/LtFyc2NRUcX/w6//PK7paUlEenp6X3zzTdlyUwVLQjz1q33qampXl5eBgYGRGRpaenj45NfhkZwL1++LE3x90ePHrm7u/Nvsvr162u69yao0bZt24jo448/Vh4cO3YsEa1YsUKjU69cuZKIDAwMTp48qTyem5vbuXNnInJ2dtZ0YhdK7/79+yKRyMTEJDk5WQvT/fjjjzzzm5CQoIXpKrjBgwdXqVLFwsLCw8MjKCioaIaxLAoLCydPnkxEEomkaDvclJQU/u/d1NRUq/0bnjxhROz+/WIGtbi9JrWwMCYvDwn397Z582a+FaPYKthr1qyhMiv2Ioo3CrO2ttZoozD4ACxcuJCIvvjiCw29v1Qq5Vfg1tbWDx8+VH4oKSmpQYMGRNStW7c3V3IDwfGGzCW1nvv777/LfioLCwsr+s4RERF6enp6enrh4eEa/5AVzc2bjIjVry90HOVKXh4bNowRMRMTpr41N7xSIl/hwVlaWvIrXqwUfA84X1VwUVFRRkZGIpHo6tWrRR+9f/9+2Q+AQ4cOFX1nRftcldyRliHhXiYvX/5bkF2RVf79d9asGbtxg3Xu/F8H7JKacp06xZo2ZV27nieiHj163LlzRy1RxcfHT548mWe97ezs/Pz8is16K7dd5TVe1NV2NSwsjG9NJaJWrVqdP3++2KcFBwc3adKEP61nz544FZYLAwcOpNcLohUUFPC+pg8ePND07DNmzCAiMzMzlXIT6enpvElAmzZt1NhMDMqC92H75ptvtDOdTCbj32e9e/dG7UWNevLkCRFZWVlpNCPj6+vLW+l6enqqrPTMy8vjK2X09PQ0XpwxOZn99hsbP57l5zOJhJ09+9qjFy8yIqatCgx5Mtln9+/3vHVrT1LSmpgY7Uz6IcnIyOAdfXeXsOVcKpXmlVlJs3fp0oWIZsyYobHPBx8Cvsz8vYtDlkZ+fv4nn3xCRI6OjvHx8coPRUVF8X8jAwcOxIpOnSWTyXjruaLNjTi5XF72U1lJl1JTpkzhP9w0+RErJKmUVarERCKGChillJrKOnViRMzSkmmmmxfPvDs7OyvyeiYmJm5ubv7+/tgJVEo4X8HgwYOJaNy4ccU+qpYDoKRNgcuWLSMiZ2dnAS9pkHAvE55wt7dnip/8POE+cSIjYtbWzM+PFVux89Ej1r//vxn5Jk1kR46o/8I6NDSU9wrgWe+Q1zfCnz59ulmzZvzRbt263b59W+0BBAUF8T3UROTm5lbsLc2CggI/P7+qVavy1MnkyZO1sxgW3k92draJiYlYLI6Li1MMnjx5koiaNGmihQDkcjlP41arVk0lvx8XF8ePt379+uFXouASExONjIwkEsk71bZ6J2fOnFm5cqXySGxsrJWVFRGtX79eQ5MCY2z//v1E1KdPH01PtHfvXiMjIyIaNGhQdna28kNyudzb25t/vxTNyKtBdjYLCGBubkxf/9+v6jt3WLNm7PvvX3vaDz+whg3VPHUJ5IzNjY52CQ3tf+fOS7VuKag4Zs6cSUQdOnQQ5J7czZs3JRKJvr6+Fm5OQzn17NkzkUhkamqq6QXm2dnZ7du3J6KmTZumpqYqPxQeHs5XUYwdOxZ3r3XTH3/8QUTVq1cXZIlJSkoKv9ZCET/14+njEyeEjqM8iItjzZoxIlarluruQw24d+/ekiVL+Ooubvz48Zqe9MOA81UFd/r0aSIyNTVVTh9pTX5+fv369Yno119/1f7sHBLuZcIT7ps3s8qVGS9jwBPuSUnMy6v4sq5ZWczbmxkaMiJWqRLz9maa25kkl8sDAgJq1aqlyHo/ffo0MjJSUc6lRo0a/v7+mpqesZycHB8fH1NTUyIyNjb28vIqtisxL2HPl+TzEvYVqrFYSEhIbGys0FGUSkBAABG5uroqD/JbxwsWLNBODAUFBbwyeN26dVVWZkVGRvKuvKNHj/6QfiWWx53dvFJbsaX61CI2NtbQ0FAsFp86dUp5nLcTMDQ01MRNRODmzZtHRD/88IMW5rpw4QK/I9u6deuirfy2bNmir69PRMOGDcvJyVHDfDk5LDCQDR3KjIz+zbPr67O+fdn27Swzk+3dy0xM2I4drKCAFRSwPXtYpUps1y7GWPGd0NXq55gYl9DQzjdvRqrlk1Y8jx8/5ieNa9euCRXDpEmT+F1hoQIAHffzzz8X/ercuXPnrVu31D5XcnIyb3ndrl07lTzIlStXeHc7Ly8vtc8LZaTYqbNz506hYli7di3fIZGH8hrqNWMGI2KLFgkdR6nk5OQU27BNG+7eZTVrMiLWuDF7/lybMz9+/HjlypVt27YttoQFqMD5qoKTSqV8je/y5cuFioEvFBOwfS4S7mXCE+4xMax/fzZqFGP/T7gXSyZj/v7MxubfHtoeHkw7pYazsrLmzZtnbGxMREZGRjw9YWZm5uPjo53zTmxsrIeHBy8OUL16dX9//2KTobdu3eratSu/E9CxY8cPKWH6BqdPnzYyMiq6wkg3jRw5koh++uknxYhMJuPfo8X2KtGQ7OzsDh068JVZKvVwr1+/zm/wzJo1S2vxaFR4eHiTJk22bNkidCDvICMjo3LlykR0+fJlxWBhYaF6K30vXryYn1JUvj55Sqtx48bqycBCEf369SOiwMBA7UwXGRnJ1ybUqVPnXpHC5cHBwbxZd/v27d+/KppUykJC2OTJzNz83zy7WMxcXZmvL0tKeu2Z/v6sZk1mYMAMDVmNGmzrVsYYy8lhXbqwEqqUqMXB5GSX0NC2YWFX39aXBUri5uZGRBMnThQwhqSkJH5u1GjBECi/unfvTkS7+G08xhhjmZmZfLtYksq5SB1iYmL4ohw3NzeVL+jg4GBDQ0Mi+vHHH9U+L5SFl5cX/8oT8IdSYWEhLwq6atUqoWL4MO3dy4iYzt+Uzc/PHzVq1MSJEyUSiaurq6+vb9ElERp05QqrWpURsXbtUH5Hx+F8VcH98ssvfJWksMsHe/XqxbdECzI7Eu5loki4R0UxY2MWHFxiwj0/n7Vu/e8P+Y4d2esFqLUhJiZm9OjRpqamJiYmHh4e2u8rePXq1Xbt2vF8eps2bZQzccqCgoJsbW1btmyp/HvjA5aWlta8efNiVxjpmry8PN53IioqSjEYEhJCRLVr19ZyMC9fvuQrs7p27apyBj99+jT/lah8Y6D84rsKKlWqVI6qEPDGg507d1Ye3LJlS82aNUsqnfweZDIZv0U3aNAg5fHs7GwnJycBv1Y/ePb29irnAU17+fKlq6srEVlaWp45c0bl0fDw8Jo1a/LVK+/0z0Qmk509ezb/m2+YldW/X89ErE0btmYNe/Ouo6Sk1+q2b9z4b45eM+eci+npbcLCPgoNPYIflu/r1KlTfKmByr4o7fvpp5+IyMnJSb03IOED8OrVK319fX19feUVGPwaoFOnThqa9NGjR3xr4KhRo1Rqc/35559isVgkEm3evFlDs8O7ioqK4jt1im09p03BwcH8pIpO9er09CkjYtWqCR3Hm6Snp/P8kYmJCd+ezgvD9uzZ87ffftP08XD88GFprVqMiA0ZwsrhDuAKBeerCi41NZVvUz5w4ICwkdy9e1fA9rlIuJeJIuHOGFu8mDVuzDZuLHGF+5QprHp15u+vha3nxcvOzualXYSZnjG5XO7v729ra0tEIpGopLz/ihUrqCI1FlMUH3dzc9Pl4uNHjx4lopYtWyoPfvfdd0Q0c+ZM7ccTExPDs2wDBgxQ+d9N8Svx6NGj2g9M7UaPHk1ELi4u+fn5QsfydoWFhXzFXFBQkGJQLpfzjkPqvZEWExPDS81u2rRJeTwsLMzAwEAkEqFgn9olJSURkbm5ufJalZUrV7q7u1/QTMcqLjc3d/jw4URkYGBQtBJafHy8i4sL3zBYUptuZbwLVp06dYgoytWVETFnZ+btzR4+fM/4fH2ZWMyI2MSJTK2n8cc5OV1u3nQJDfUTovThh0GnFjcVFBQ0bNiQiNauXSt0LKBbtm/fTkS9evVSHuQXABpdQHD9+nUzMzMimjp1qspDGzZsICKJRBIQEKC5AKD0Bg0apDvFo/l2t0mTJgkdyIeF74WPjhY6juIlJia2atWKiGxtbW/evPny5Ut/f383NzcDAwOeeReLxa6urj4+PpGRkWqffdOmTRKJZHjDhgWensV3yQNdgvNVBefp6UlE3bp1EzoQxhj78ssviahHjx7anxoJ9zJRTrjn5bH69Vnr1iUm3NPS2Otd37RN8IQ7l56ePnPmTP7FbG5uXvQiftWqVRUq4c4Yi4yMtLa2JiIPDw+draUzYcIEIlq8eLHyYN26dYno4sWLgoQUHh5uaWlJREWPohkzZtjY2Ozdu1eQwNQrMzOzXr16RDRnzhyhY3m7Xbt2EVHDhg2V18odOXKEiBwcHNS+qDMwMJCvsrn/esekH3/8kYiqVauGtQzq9ddff/GdJcqD3bp100KVDEWjVJFI5O3trXKqzMzM5DVDDA0N//zzz2LfITw8fO7cuY6OjvR/devWPbxyJVPLeod9+5ixMSNivXoxNRV+eVFQ0PfOHZfQ0DnR0Tr6xVAe+Pr66lT5Tn4+rFy58vsXQYIP0dChQ+n1vl4FBQX8IufRo0canfrMmTO8Q7XKNR5jbOHChfxO58mTJzUaA7yVsK3nioqMjOTLV69fvy50LB+Q/v0ZkUaL1L23qKgoXuLP0dFRJZ+emprq7+/v7u7O2z9wzs7O3t7e6tqh6+Pjw98WvSXKBZyvKrh79+7p6+tLJBIdaaumaJ+rvCJQO5BwLxPlhDtj7O+/GVGJCXfB6UjCneO9W8VicWiR8joVMOHOGLt27RovPq6dVoTvSiqVVqtWjYgiIiIUgzdu3CAiGxsblW3I2nThwgUfH5+i49OmTfuQrsmuXr2qr68vFotPnz4tdCxvwVe+qOxA79KlCxGtWbNGEzOOHTuWiFq1aqW8A0Amk/Gvt969e+vsTayiUlJYRAQ7dYpt385WrWLffstGjmSdOzMnJ6attsRvsXz5ciKaPn26YkQul/N9Btq5t7Fp0yY9PT0iGjt2rMqeD6lU+tVXXyky8orxZ8+e+fr68qI0nL29vaenZ0hIiJqPjcuXmbU1I2JNm5a9i1e2VDry7l2X0NBJDx7kl59jWNcIeIX9Brz195QpU4QOBHRFXl6emZmZSCR6rnTq4LvgmzRpooUADh06xE+tRfdeTJ8+nW/GR55CQFKptGnTpkS0YsUKoWP5z4wZM4ioQ4cO5ehCS9ctWcKImNJVlo64fv06XxzWunXrN9wtzs7ODgoK8vDw4PtmlDPvRX/yl5JUKuWrUyUSycaNG9/3E4D24HwFvXv3LnbnnICEWn+DhHuZpKQwS0umfN9u9GjWsaMWZn4fOpVw54p2wGMVNeHOGDt16hRf+K+hvGRZnDlzhojq16+vPDh//nwi+vLLL4WKqiRyuZxXm7ly5YrQsagNX9tbtEeoTuGFkq2trZUL61+/fp1vZ0lLS9PEpJmZmXzFjUqn3NjYWJ5oW79+vSbmfQ9SqTQuLi4sLOzIkSO///774sWLv/rqq0GDBrm7L6tVixka/ldIvOifMWOEjp4xxpi7uzsRbd++XTESHR3Nb7xpLYYTJ07wfhKurq7Jyckqj/r6+orFYiIaOXLkTz/91LZtW8VPPisrq8mTJ589e1aD9wijoljDhoyI2duzGzfe+21kcvm3kZEuoaFDIyLSsW+6DATcQ/oG9+/f5wt/bt26JXQsoBP4vofWrVsrD3799ddENG/ePO3E4O/vLxKJxGKxSrcVuVw+fvx4IqpatWqx1+2gBevXrycdaD2nIiMjg1cK3bNnj9CxfCj48j1XV6HjeM2pU6f4dVfPnj0zMjJK85Lc3Fyeeeed7RXbCt91uUNeXt6nn37K9y8GBgaW4UOA9uB8VcEdPnyYiCwtLYv+TBOQosKklrvBI+GuHrdusSNH/lvqrgu2bt3auHFj5bKPOphwL1aFTbgzxnbt2sWLjxctUiysb775pmhJk8aNGxPR33//LVRUJbl27RrPTX9Id7BlMhlfJz5kyBChYykRv5u9dOlS5UF+oazR3QbXrl3jOwBOnTqlPH7w4EF+jS7gdjaZTNavX78WLVrY2tryRHBRtWt/zLPq5uasUSPWpQsbPZpNn85++ont2MFOn2Z37/5bpGTOHLZv339vfv8+W7JEqx+H12NR7jmzf/9+Iurbt682w7h9+7aDgwO/C1i02EJAQIChoaFiX7OxsbG7u3tQUJCWuiCkpLDOnRkRMzVl79tGYvW9ey6hoR/fvh2nG1VQyilhuyS92bfffktEHTt2/JC+p3SNjuxkL42JEycW/fbkDX60ua6cF23Q19dXKRFWUFDAC+A6ODg8ffpUa/EAp2g9d/DgQaFjUbVp0yZ+YGQLWzj1g/HqFTMwYB06CB3Hf3bs2KGvr09EHh4e71EZUiqVhoSEeHp68v7MXK1atUqTeX/16lXnzp155i4kJKQMHwK0B+erCi4/P79BgwZE9PPPPwsdiyq+NNDMzCw+Pl5rkyLhrh7jxjEitnWrNud8C17CWLmbJRLu5cIvv/zCf+389ddfQsfyL7lcXqNGDSK6du2aYvDRo0dEVLlyZR3s5Dlnzhwi+uabb4QORM2eP3/Oy7lu2bJF6FiKER4eLhKJTExMlNfgP3nyRE9PT19fP0bDNyQXL15c7A6ASZMmEVHjxo1zcnI0GsAb8IorRCQSiWxtbZs1a9a3b9/x48fPnTt33bp1gYGBFy9effyYlSZAPT1mYvJfM60jR5gWV5az9PR0kUhkZGSk/Itr3rx5RDR37lztxcEYY+zZs2d8nYKtrW3RZcK8UY+jo2NgYKAA/9fn5bFRoxgRk0jYhg3v+urly5ebVa06LiQkIitLE9FVHL169SIiT09PoQMpxqtXr/gv0n3K99BAff755x9zc3Nd6JT7VjKZjC+7U74zFBoaKsjSge+//56ITExMVNJbOTk5nTp14rc5ExMTtRkS8FUv3bt3FzqQYshkso8++oiIFi1aJHQsH4qUFHb+PAsOZs+eCR3Kf7sGPT09SzoX7dix49ChQ2+91lJk3u3t7RWZdwcHh8mTJwcFBRUWaTgfHx/fvHlzIrK3t9eRMtBQGjhfVXA8CdmoUSO1d25TC97xa+LEiVqbEQl39UDCXY0qeMKd/f/XTjVLy4ywMKFjYYyxq1ev8ksi5SstXsp53LhxwsVVIicnJyI6c+aM0IGoX0BAABFVqlRJXT2I1GjcuHFFc1v8qksLHeplMlnXrl2JaNCgQcrj2dnZ/HgQMOl25syZ69evx8XFFf058a709FjHjqx//3//quWE+7lz54ioTZs2yoN82aMgScOMjIw+ffrUrVs3KSlJ5aExY8YQ0aZNm7Qf1b/kcjZ7NiOSm5v7LVlS+pRZQECAWCwWi8X79+/XaIAfPL73okqVKjpbhmvDhg1EVLNmTay00oQdO3bwLYPbtm0TOpa3uHDhAr9BqDzIq/Z99dVXWg5GLpfz5fYWFhY3b95UfigtLa1ly5ZE1Lp161KWlYCy07XWc0VduHBBJBIZGxtj94MabNjAzMxYvXqsTRtmbMz692evXgkSiFwunzVrFl8s8oY7l4pVWcbGxm5ubv7+/ulv6xsvk8lCQkK8vLzq1aunyLxbWVl5eHgoNiPeu3ePVwd1dnZ+XuamOKA1OF9VcElJSbyKlO6sHFXx+PFj3j5XeSGpRiHhrh5IuKsREu5yufybiROTWrdm1aqxhw+FDofNnj27aL6ydevWRHTo0CGhoipJREQEv24re3JTN40ePZqIXFxcdGpvQVxcnIGBgUQiefz4sWIwNTWVtwLWTp3imJgYvpZcJc0aFhZmYGAgEomOHDmihTA0Sk+PnTrFqlZlBw4wpvWE+9q1a4noiy++UB60s7MjoqioKO3FoaSgoCA2NrboOC94JXyLv02bZrduTUQjRowoTYuekJAQIyMj0slOHuVLfn4+b+3w66+/Ch1LiaRSKV++p1JIBNTl119/JSKJRKLj2wj4MgvlK3bGWLNmzUigqn1SqXTw4MF8YalKSiIhIcHBwaF27drPdGDtbQXxySefCHLr5Z3w4oGjRo0SOpBy7vhxpq/PFC2+4+JYy5Zs6FDtB5Kfnz9q1CgiMjAwUGnqoCI3N3fFihV81bCijt/AgQO3b9/+6m23CuRy+dWrV1Uy71WqVHFzc+M5u44dO6ampqrzg4GG4XxVwU2YMIGI+iuWhumkmTNnkhbb5yLhrh5IuKsREu6MMSaVssGDGRGrUYMJfWO/YcOGRHT27FnFSExMDC8eooPr8nhpkQkTJggdiKakp6fXqVOna4sWyQsXCh3Lf/gqmOHDhysPLl26lIj69OmjtTACAwP5Xvj79+8rj/PzYbVq1RISErQWTBkVFrLYWHb9OgsKYps2sYULWXIy09NjYWHs119ZjRosM1PbCfexY8cS0caNGxUjSUlJfCGkTtWhzsnJ4ZW7daFZU3BwMP/d2K5duxcvXrzhmY8fP65WrRoRTZ48WWvhfaiWLVvGV8bp+J1X3pDcxMQE6UsNWbBgAc8Z6WC/GQVe7VS5hMuTJ0/4qVWoO+v5+fm9evXq169f0cu8IUOGEFG5qNXzATh06BDpXuu5op4/f25iYiISic6fPy90LOVZ//5s7NjXRv75h4lETLvtKLKysnhPJlNT0xMnTpTyVc+ePfP19e3Zs6eenh5PnUskEldXV19f39Jce0dERHh7e7u4uPDXmpub9+7dW8BqkPAecL6q4G7cuCEWiw0MDB7qwILRN8jIyODLxd58N1FdkHBXDyTc1QgJ93/l5LCOHRkRa9KECXd7Pzw8nIiqVq2qnLbw9fUlInd3d6GiegO+3/no+/YqLBeeXbkiMzBgYjHTjbI5GRkZlStXJqIrV64oBvPy8viX2enTp7UZDE8Kt2rVSjlPIZPJ+Ldd7969dSc1nJ2d/fjx40uXMgMD2bp17Icf2PjxrE8f1qwZs7FhIhHjnVQVfy5f/jfhLpWyjz5iM2dqO+HetGlTIrp69api5Pjx40TUtWtX7QVRCleuXCGiZs2aCR3Iv8LDw/nOaEdHx5KKQb18+ZIn3fr27avjOWLdl5iYaG5uTkQnT54UOpa3Gzp0KBF5eHgIHcgHi/enNTc3Dw0NFTqWYty9e5eIrK2tpVKpYnDNmjWCr7/LzMwsWoBVKpXy3gM6/nP6w6BoPbdu3TqhY3k7fnOrZcuWMplM6FjKLUdHprSmgTHG8vO1fLX/8uXLdu3aEZGtrW3Ye5U2TU5O9vf3d3Nz461WlTPvxW5JVHH//n2+0ksHd1HDG+B8BbzF8ffffy90IG+3efNmInJwcMjSfLssJNzVAwl3NULC/T9paaxZM0bE2rVjAq0lX7RoERXpLNGlSxci+vPPPwUJ6Q2ePHkiEonMzMx0YWWrZi1cyIhY9epMB8oTr169umjWlX+TNW/eXMsJ7szMTF5KYtasWcrjsbGxVlZWRLR+/XqtBZOTkxMVFRUSEhIQEODr6+vl5eXh4eHm5ubi4mJnZycSiYioQ4fnKol1/kcsZnZ2rEUL1q8f++wzNn8+e/z434Q7Y+zqVWZkxNas0V7CPTc3l5dlVF7wyNcRT58+XUtBlM5vv/1GOtZhIj4+nq/bqlKlyrlz51Qezc3NdXV15TeKMjMzBYnwQ8L7SQwePFjoQEolOjrayMhIJBKp9KhUI5m0MDXhaWrC01eJzwrzP/QvxyLkcjk/JKpWraqy+UkX8LOoyrY8fpW1d+9eoaIqyenTp4mocePGQgcisD9e/hGeE/7255XNypUrSYdbz6nIycnht5b/+OMPLU/9PP/52qS1Wp5UIywt2Z49qoNmZkxbP7iio6N5zrRu3bqPHj0q47ulpKTwzLuBgQHPvIvFYhcXF29v7ze/+Zw5c4ho3rx5ZQwAtAnnq1L6cM5Xr9u9ezdfPZCWliZ0LG+naJ+7UPMFA5BwVw8k3NUICffXxMayWrUYEevfnwmx7LFFixZEdOzYMcVIcnKynp6eoaHhW7viaN9PP/1ERCNHjhQ6EM2TyViXLoyIDRkibCCFhYW1atUiIuUK6XK53NnZWai7MteuXdPX1xeLxadOnVIeP3jwIBEZGhqqq5NPYWFhXFxcaGjokSNHNm/evGjRoqlTpw4cOLB9+/YDBw40NDSkNzIyMqpVq9b48TcGDWJff80WL2ZbtrCjR9mNGyw+niktdvyPIuHOGPviC1atmvYS7teuXSOiJk2aKA8OGzaMiLZv366lIEpn8uTJROTr6yt0IK/JzMx0c3PjR+CuXbsU43K5nDdmqF69ekxMjIARfhhCQ0P5htayJwu05ocffiAiFxcXDa20Sk+OX+hmt/azj9aMd1kyuNauRR55WTr39a1RBQUFffv25auZdK1PWps2bYgoSFG1mbGXL1/q7FWWp6cnEf3www9CB6I90fnRnz39rH5E/ep3qrs9druRfYMx1uxeM/8Uf43Oq/ut54rauXMnEdnY2Gg04fJn6p+dH3aufqe6813nuXFzc2Q55zLPWdyy0NyM2tOiBVPp4JKWxojY6dNs8GDm6sp8fVliooYmv3Pnjr29PRF99NFHRXvRl8WrV68CAgI8PDx4YyfO2dnZ29u72Jug/HK9V69eaowBNArnq5J8yOcrJTk5OTwbsHnzZqFjKa2LFy9qp30uEu7qgYS7GiHhrurRI2ZtzYjY2LFMu4uFeRVRlQXjOTk5u3fvXr58uTYjKSW+SjQgIEDoQLTi+XNmacmI2JYtAkbBr1caNmyonCoKCgriqQ2hljnwUv7Vq1d/+foOgEmTJvHVeaWsC5mXl8dT6kFBQX5+ft7e3p6enu7u7q6urnXr1lXUqSyKr080MjKqW7euq6urm5vb5MmTvb29/fz8goKCQkND4+Li3iO5ppxwT03VasLdz8+PiMa+Xl3U0dGRiCIiIrQUROnwls46WJlRKpV+9dVXRCQSiby9vfkg739gbm6urvtAFZlcLu/YsSMRzZkzR+hY3kFmZiZPc/j7aySFxxPu6cnxjLGcjFe/ftnl1LZlmphIl+Xk5HTq1ImI6tevr95cUlnExcUV7YizdetW0m77k9KrU6cOvV5Y7MMWWxBrc8em56OewRnB17Ove8V6tX/QXsZkWki4f/7550Q0YMAAjc6iXnK5nP8r8/Ly0tAUq5NWG9ww8En0CcsOO55+vNX9VjtSdnw4CayJE5mr62sjv//OzMxYcjKrVOnf/Y96eqxnT7ZhA1NrU6LTp0/zUmw9evTQ3K2+zMzMvXv3fvrpp8qZd5ULS8ZYfHw8EVWuXBnlPsoLnK+K9YGfr5R4e3sTUcuWLaXFrhfTVcOHD9fCSk0k3NUDCXc1QsK9GFevMlNTRsTmztXmtPz/i/LSxTsxMVEikRgaGmZkZAgdi7YEBDAiVqkSK6EwtBa0atWKiH7//XflQV7Ebe3atQIFxWQyWdeuXYlo0KBByuPZ2dlOTk5E5OnpyUdevXp17969M2fO7Ny5c/Xq1d99993o0aO7devWqFEjXpj+DcRisa2tbfPmzfv27Tt+/Pi5c+euW7du3759Fy5cePLkiSZ6PU2ZwpR7KwYFMaVzvGZNmTJF5f/T9PR0vjRAp2qOFxYWGhsbi0Qind3S6OvrKxaLiejzzz/ntzH09fV1uaNjObJ9+3a+XkkHlwa/mb+/v+YiV064M8b2/fjl/lVTGWMnNi+IeRB6+OfpB9dOU/ukOig1NZU3onBt106mG7WbNmzYQERDXt+pNmjQIHq9PbWOuHHjBhHZ29vrTisUTZsWM61OeJ0C+X9LB6RyKdP8Cvfy0nquqLCwMM1FniXLMrtl9mPij4oR/n/Hh5PAevyYmZuzr75iT56w9HS2dy+rUoX5+DDG2MuXzN+fubkxA4P/Kg+6ujIfHxYZWcZp9+3bZ2RkRERjxozRzkKZ3NzcoKCgyZMnV6tWbY3Kon7GGGMODg5EVFLbG9ApOF8V68M/X/1fTExMpUqViKhozUwdp53IP+CEe4kLDwHKnzZt6OBB6tePli2jqlXp2281N1VhYeHt27evXLly9erVI0eO0P/X6uq+gwcPymSyfv36mZmZCR2Ltri70+jRtGsXjR5Nly7R/4skas2pU6du3LhhY2PDa2Jw169fP3/+vLm5OV/vIAixWLxt27YWLVqcOXPm8ePH9erV4+MmJia7du1q3779+vXrDxw4kJKSkpub+4b3MTQ0tLa2dnBwsLa2rl69uo2Njb29va2trZ2dnZ2dnbW19RsWuatXdjZlZNBvv7022L8/9e+vnfnp5s2bRMSbEitGGGNNmzbV2v8IpXH//v3c3Nz69evzza06aNq0adWrVx87duwff/zBl7Ju3Ljx448/Fjquci83N5cXfvXx8eEr9coRDw+PDRs2XL16tVu3brys5JuJxeJ+TUr7Tdd+4GQien7vmrFZ5RfPHkTd/OfTOb8T0eOws4+uBbcf9IWZlV1Zgi8vLC0tT5061bt7990ikXjgQDp+nN5W+EvTDh8+TEQDBw5UjOTm5gYHB4tEIl6BSqcoouUNSCqC0JzQEVVG6Iv0FSMSkUTx3xclLIovjC/lW9les00MTizlk0+cOCGXyz09PXlB7XKkVatWY8eO3bZtW79+/bp37/7W5+tX0i/8trA072ynbzfAYkCmLHNMlTGKQeX/Oz4Ejo50/jx5eVGjRpSXRw0b0rJlNGUKEZGVFY0dS2PHUloaBQXR0aN0/DhdvEgXL9Ls2eTsTO7uNGIEOTm965zr1q2bPn06P97Wrl3LFwRompGRUf/+/fv3779+/frCwmIOgLZt28bGxl67do03UIWyiI6O5gXWNQTnq6IqxPnq/+bMmZOdnf3pp5/y9XbliIODw4wZMxYvXjxy5EjNXXQ9ePCAiHx9fQMDAzU0xYQJE3h9Qi3Tod//AGrQsydt3kzjx9OMGdSgAfXtq8b3jo+PDwsLCwsLu3jx4sWLF5VTkGKxeP369Z9++ulbV/sKjpf8Gzx4sNCBaNfGjXTtGoWFkbc3rVih5cl50XxPT0++NIbjGyOmTp0qbM6rVq1ae/furVevXt26dZXHW7Vq1bx586dPn8bGxhKRkZGRpaWlvb29nZ1d0f+0tbXVzm8PIsrNpYQEio8v5j9fvaKEBHJxodBQ7cSiSiaThYeHi0Si5s2bKwZ5Cp5vcdAdRW8M6KBhw4YVFhaOGTPG2Ni4UqVKyLarhUQi6dGjx+HDh93d3Ys+WlhYqK+vX3RcEEWDEYlEAwcOfPjw4Y0bN/g64jcTi8W2fW1KOd1HfcYS0fXj28QSvfQXsRbVHIwq/Xs7qqP7Ny0/HvmO4Zdj1tbW1w4f1uvYkRITacwY2rOHJIL9AE5PTz979qxEIumrdEX3999/Z2dnt2vXrnr16kIFVpJDhw7R67cHPnjP8p/VsKxR0qMBrwLu5d0r5Vt1Ce1ybtO5Uj65cuXKJiYmn332WdGHdPxURkRjx44NDAyMjY3dtGnTW9+hUrVK2WOySzOXk5FTc+Pm+iJ9W33b94m1vGjenE6cICJijIq9s1W58r+Z98xMOnaMDhyg48fp3j1atIgWLfqsR4+6XboMGTKkcePGb52KMbZo0aJFixaJRKKVK1fyAndaZmBgYFDcaqE2bdrs37//2rVrHh4e2o/qA5OYmFiaf4zv7QM4X8XExOB89d46dOhw6NChMWPGFH1I9w+A8ePHr169uqCgQKP/RkxNTY8dO6a59+/cuTMS7gDqMHYsZWTQgQPUsWMZ3ykvK+tKaOjVq1f5SvaEhATFQyKRqFGjRm3btm3btm2TJk2mTp0aHh7ep0+f06dPm5iYlHFezUlLS/vnn3/09PR0cFGYZpma0q5d5OpKP/5IH39Mpbg/ry4RERF///13pUqVvvjiC8XgkydPDh48aGBg8M0332gtkpL06tWr6GBMTMytW7eI6J9//vnoo4/4VjLtePXqVXx8fEJCgsp/vnr1KiYmNj8/vaCgxNcaG2t/A8N/Hjx4kJOT4+joqHzjTTdT27oZlYq4uLhZs2bJ5XKJRPLixYsOHTocO3asWbNmQsdVvunp6d29ezc9PX3NmjXz589XjOfm5np7ex85cuTmzZvKtwaFcvDgQS8vr/Xr13/yySeKwby8vM2bN6elpY0aNao0S4REIpFLTeNSzmhgbEpEQ2duMK9qR0Rnd63as3T8t39cJyKJnq78ENIaPUdH+vtv6tKF9u2jCRNo69bis1qa99dffxUUFHTr1q1q1aqKwaJr3nXEs2fPbt++bWFh0a1bN6Fj0Z7KepXTZeklPbrQbmGqLLWUb1VpYKWRdUp7c8vf3//y5ctLlizZvXu38vjatWt/+umnq1ev8oIbwrp3797HH3+8ePHiCRMmKI/7+PhkZ2f37NmTt1V/M4mhRFZTVprpLCWWlSWVC1lhtjzbVGz69heUd289L5mZ0YgRNGIE5ebSiRO0f3/mgwfbTp+m06cXLFhQt25dNzc33nOo2C0pUql0ypQpW7ZsMTAw2Lp166hRozTyKd4XTx5dvXpV6EA+BI6Ojhs3btTc++N8VVSFOl89ffo0KytrxYoVbm5uymebHTt2zJkz58iRI7rwoywpKemjjz76+uuvZ82apRzkkiVLsrOznZ2dly5dqqGpfX19Hzx4MG3atEaNGmloirZt22rond9Cm/VrUMNdjVDD/S0U5ZJDQ9nUqaxXLzZ4MFu/nr21YHRUFPP3Z56ezNU1/PV/8Obm5q6url5eXkFBQcnJycovio2N5V2n+/fvr1OVmlXwArg9e/YUOhCBeHszIla9Onu9R6hGjR07loimTZumPPj1118T0Weffaa1MN7Vt99+S0QeHh7anFTlEqRYTk4Fzs6sWzc2Zgz77ju2Zg3buZOdPcvu3WOCVyPfsWMHEQ0bNkx5kFdDvnbtmlBRFYsnK0+cOCF0ICXKyMho0aIFEXXq1CkhIYE3GzA1NT169KjQoZV7Fy5c4H0Fnin1OpBKpfxmxrJlwncKzc/Pr1+/PhH9+uuvyuNLliwhosaNG2vie1alhnvUzXOLBjhICwt+mdLp9plAtU9XPly+/G8Twh9+ECqEESNGEJGvr69iRCqVVqtWjYju378vVFQlWbt2LWm+t5iuGRw1eEjUkKLjmq7hXlJhWb59Z/To0ZqbuvR69+5NRFOnTlUePHDgABFZWlq+1MDl6PP85xRGZzPOqox/eDWR349UKg0JCfH09LSx+W//U61atTw9PUNCQpQbkGZlZfGNNaampn/99ZeAMZckKytLT0/PwMAgLy9P6FjgLXC+KlbFOV9lZGTY2dkR0a5du5THZ8yYQUQdOnTQhb4v/EZL//79lQc1WsRf4QOu4a7VhPsXX8yoUqXB9u17tTnpmyHh/oHbs4cZGLCvv2YBAWzDBtagAWvbluXmvvac5GR29CibP599/DGzsPi3xw4RI5IZGnbu2PHrr7/esWPHo0eP3jzVo0ePrK2tiWjs2LG6cMYsFm8yppLCqEAKC5mrKyNiP/2knQljY2MNDAwkEsnjx48VgykpKaampiKRKCIiQjthvKu0tDRe6IbXH9cavm7C0tLS2dm5Z8+eHh4enp6ePj4+/v7+wcHBEREROt7j8bvvvlPJV+bm5urr6+vp6WmiN+x7k8vlvHR7YmKi0LEUTyqV9u/fn4gcHR1fvHjBGMvPz+fbMCUSScU9g6lPsT/wzpw5wzMLcXFxQgXGLV++nIicnZ2VE+uxsbGmpqZEpKHeuTzh/uLZg9zMtKSn9/3nuvv/4M4Yq9AJd8bY33//235w1SrtT15QUMA3DEVHRysGL126REQNGjTQfjxvxW8N7tmzR+hAtOpQ2iFxmPhI2hHFyIvCF0zzCXfGmLe3NxG1bNlSKpUqBp8/f25iYiISic6fP6/R2d+Kb8WwtLRUXqajuKH4yy+/aGje7o+6t33QNrnw30kzpBl58rwPL4FVRorMu729vSLzXq1aNQ8Pj6CgoKSkpA4dOhCRjY1NaGio0MGWiK/quHLlitCBwNvhfFWsinO+2rJlCxFVr149KytLMZiRkWFra6sLVw7F9vWVy+WdOnUiIi8vL43OjoS7eowbN46IturSEnck3D9k2dnM0vK1n4hpaaxaNbZyJXvyhK1bx0aPZvXqKWfYGRGrWZN9+ilbs4ZdvKiamn+bq1ev8nvX8+bNU/NnUYfs7GwTExOxWCx4MkVI0dFs06b//pqRwQoKNDfb999/T0QjRoxQHnzy5MnAgQP79eunuXnLiGe7evXqpeV5MzMzla9Byx2eajl+/Lhi5Nq1a0TUtGlTAaMq6vHjx/yCT+hASvTVV18RkZWVlfKdTrlczn+rEJGnp6fyMjR4V4ofeCEhIcrjQ4YM4beNhQqMMZaYmMhv+J08eVJ5nN9xUdlBokYZKYk+I5z4H9/P2xxY/U1GSiJjbPN3fSNCDmto0vJh1y4mFjORiP3+u5Zn/uuvv4ioRYsWKuN37949c+aMloN5q5SUFD09PX19/VevXgkdi7Z5x3sb3DD46P5Hg6MGN4hoMDhqMNNKwj0nJ4dvMP399YOT18tq1aqVgN8U+fn5vDvizz//rDy+YsWKojcU1SumIKbV/VZVblfpHdn7k8hPzG+Zn8o49UEmsNRCJpOFhIR8++23NWvWVGTe+f1dR0dH5RUzOoivSFU5xkA34XxVrIpzvpLJZLwM1IIFC5THeWF0BweH7OxsoWJj/9/9rJwXZYzt2rWL33dM0/BGciTc1QMJdzVCwv3tjh9nYjFTuoXIGGPffcc6dGABAf9l2CtVYq6uzNOT+fuzJ0/KOOfRo0d5o4m1a9eW8a3Ujjd97tChg9CB6IDCQjZvHrO2ZhIJk0hY164sLEwtb5yUlBQeHn7ixAl/f/+FCxfyGzDFLjzR2dJD+fn5fLGPhpaRfqjkcrmlpSURJSQkKAZ5OUhh05dFBQQEEJGbm5vQgRTPx8eHiIyMjC5evFj00a1bt/Jz7NChQ3Vq30C5M2/evKI/8KKjo42MjEQikYDL5fi14uDBg5UHL1++LBKJDA0NIyMjhQqsQvv1V0bEJBK2b582p508eTIReXt7a3PS97Zt2zYi6t27t9CBCCO2IDbwVeCulF1Xsq7ImIwxdinrUnxBvKbn5QWRra2tldMBOTk5PHkq4K9O/huzUaNGBUoLO0q6oah2Mia7mHVxe8r2oLSgmIIYxtgr6aszGTp3m0rXREREeHt7Ozo6VqtWzcrKSmc3Air4+fnpTkESeCucr4pVcc5Xly5d4kUdnyglnWQy2UcffUREixYtEiqwko5Mfovojz/+0HQASLirBxLuaoSE+9v5+TFbW9XBDRuYgwOLiWGffcY2bmS3bjF1r6jduXOnSCQSi8WC7wxSwVv9rBJiV7jOmTKF1a7Nzp5lBQUsMZFNncrMzFhU1NtfWFDAYmPZtWunjh718/NbuHDhlClTBgwY0LZtWwcHB4Mi/Tpr1Khhbm6uUvFfx/3xxx98UbbOVkbSTVFRUURkZ2enPMg75era7bc5c+YQ0fz584UOpBgBAQFisVgkEqmUOFR26tQpXmWiXbt2vOAMvIfs7Oxif+Dxw6Ndu3aCnAFCQ0P5hlaVzQ2809HcuXO1HxL8a8ECRsQMDJiG78XGxcUFBQV5eXm5uroaGxtLJJIjR468/WU6YPDgwUT022+/CR1IhcPX5X3//ffKg7yrio2NjSDF6JKSknjpNpXa3+PHjyeiQYMGaT8kKL2cnBx9fX2JRJKlsmxL99y6dYuI6tWrJ3QgUFo4X1VwI0eOJKLhw4crDyq6Kz19+lT7ISkS65s3b1YeX7BgAS+CpIW9F0i4qwcS7mqEhPvb7dnDqlRRHVy7ltWuremZ+XGlr6+vOz0JFYVQdXxrpDbExDCJhCnfq5fLmYsL++orxhjLzWVxcSw0lAUFMT8/5u3NJk9mbm7MxYXZ2TGJhG+MGNagARWnSpUqzs7OPXr0GDNmzIwZM5ydncvXlYpcLm/cuDER7dixQ+hYypl9+/YRUd++fZUHw8LC1qxZc/fuXaGiKhbviXTgwAGhA1F17do1ExOT0twXjIiI4JeGjo6ODx480E54H55if+BlZmbyPS7bt2/Xcjxyubxjx45ENGfOHOVxvnDY1tZWx7s4fPimTmVEzNyc3bmjxnfNz8+/dOnSmjVrhg0bplxMmYjEYjH/Z668c0g35eTkVKpUSSQSxcTECB1LhVNS5Vl+Ppk9e7b2Q3pz67m39oUCwbVq1YqIVKqu6SCpVMrPPJpoaAmagPNVBadon/vPP/8oj3/66adENGrUKO2HpAvdBZBwVw8k3NUICfe3Cw1lRCz+9d2sn3/O+vTRwuQzZ84kIjMzMx3ptHPs2DEqrhBqRbRnDzM0ZCqLNxctYh06sMBA1Zr+Kn8kEmZnx1q12jBx4ueffz5//vz169cfPHjw4sWLT58+zS1S9D8mJqZKlSpE5Ofnp70PWAb8OKlevXp+fr7QsZQzc+fOJV3t36CCN+cRZA3FG0RFRfG+0xMnTizN8+Pj4/nv4apVq954/lzT4X2QSvqBJ1SCW9duAIAquZyNG8e6dGFlPjDSExMPHDgwc+ZMV1dXIyMj5SS7lZWVm5vb0qVLz549++LFC963sEmTJikpKWr5EBrC2821bdtW6EAqKJ1KGOlgQg3e1ZQpU4jop59+Uh48fPjw7Nmzi17tC4u3NFRZmwy6DOerCm7hwoU8LaML7XMVNwDOnTunPK7lGwBIuKsHEu5qhIT720mlrF499sUX/6VWHz5kxsZs924tTC6Xyz/77DOeDNKFBZgTJ04kQUuD6ZCNG1mNGqqDfn7MwYGFhDBDQ2Znx1xcmJsbmzyZeXszX18WEMBCQlhUFHv3wut84bOJicn9+/fVE78mdevWregPDCiNvn37EtH+/fuFDuQt4uLiiMjS0lKnSgalpKXxZk19+/YtfXuDrKys/v37u/v5tQ8L+0u3k3E6q9gfeIKUcFGUuNm2bZvyuLAlbkBVfv5//eQfP2YLFrAxY9hXX7H9+9mbdxxLpSwigvn7s8mTmbNzZpMmykn2unXrenh4+Pr6hoaGquxcfvnyJd8r1q5dO10u7/D5558T0fLly4UOpILSqZIIOlgyAt4Vr6/46aefKg82a9aMiC5duiRUVMXia7wWLlwodCBQWjhfVXA5OTm1a9cmok2bNimPa7OEi4KOlLhBwl09kHBXIyTcS+XqVValCuvcmS1YwKZMYRYWbMIE1aXNGlNQUMBzcHXq1ImP13jbKMZYYWFhVHGFyKVSKV86Gh4eroUwdN3Ro8zYWPUwWLqUNWqkoQnHjh1LRK1atdLxZeOhoaFEZG5urulG5B+kPn36SCSSoKAgoQN5i6NHjxJRjx49hA7kPwVy+RcPH44OCmrarNm7HntSqdTn2TOX0NCPQkO36nzRCd1U7A887Tcp1dkmrlC8Y8eYkREbPpytW8fmzmXW1mzAANWmOKmp7NgxNm8e696dmZq+tl3MyqrfJ58sWLDg+PHjr169evNUsbGx/Kdpz5498/LyNPeZ3ptUKq1WrRoR3bt3T+hYKi5hm/4p6GxTRHgnd+/eJaLar5chnTRpEhH5+voKFVWxAgICqEhJQ9BxOF9VcHv27Cn2f3mtNSnldKeJKxLu6qGDCfdjx46NGTNmt9KSZyTcPzQvX7Jff2XTp7MFC5h2d+gwxnJyclxdXYmoadOmqampmpgiPj4+KCjI29vbzc2tcuXKlStXLroM8OzZs0RUv359TQRQ/kRHMyJ29eprgz17ss8+09CEmZmZfPWuyvIBXTNixAjdD1Jn8cUgpqamOt7fb8mSJSq3mYUlZ+yH6GiX0NC+d+68yM5+vzf5MympdWioS2jooqdPC7EO+h2V9ANvzJgxRDRs2DAtxKDYSKtSMHfIkCFENHbsWC3EAO8gJ4dVq8aUf4k9e8ZMTdnmzSwmhm3Zwj7/nDk7M5HotSR7vXrMw4Nt2PAe/eojIyNtbGyIaOTIkdpc+VVK586dI/QtFFp+fj6/1vr555+Vx1esWEFEzs7Opd8+9d4U6ZLff/9deXz+/PlFbyiCLpPJZPybMTExUTG4efNmbdZYKKWnT5/yYlzYB1aO4HwFfG+Byi+yXbt28b0FWlj9JpPJWrduTUTe3t7K45s2bSIiBweH7Pf9XfYekHBXj5IS7nK5fNeuXVo4rZSGriXc8/LydhdXAgUJ9/Li5cuXjRo1IqIuXbqopepfTk5OSEjITz/9NGzYsBo1atDrGjRooHxpyHl6eqIK22sGDmStW/9X33/DBqavz27d0tyE169f19fXF4vFOvtF8vTpUz09PX19/ecoh/1e8vPz+VYGiUSybt06ocMpEc9g7tq1S+hA/vVrbKxLaGinmzcf5uSU5X3OvHrleuOGS2jol48eZb5jLg+WL19e9AdebGysqakpEf3999+aDmDYsGFENGbMGOXBM2fO8JtYcXFxmg4A3s3x40wiYZmZrw1Onsw+/pht3fpfhl1fn7m4ME9PFhDAkpLKOOetW7d47/epU6eW8a3U7rvvviOiWbNmCR1IRccr6VtaWiYnJysG8/Pz69evT0S//PKLpgPQhdZzoC7du3cnIuWdi7dv3yYiR0dHAaMqlp2dHREVu8sZdBbOVxXcjRs3JBKJgYGBcvFhuVzOuzJ4eXlpOoAtW7bwxLpyvb6MjAze62vPnj2aDkAZEu7qUVLC3d/fn4gaNmx47NgxbcZTLJ1KuAcFBTk6OhJR0f9lkHAvR2JjY/nOrAEDBrzfjaW4uLiAgABPT09XV1dDQ0PlDLuZmZmrq6uXl1dQUNCLFy+KvlYul/PZr6qs6a7I0tLYkCHMwIA1bsysrZmdHTt0SNNz8pXF9vb2ytdVumPatGlYSVp2vr6+IpGIiDw9PXVzYQivzKAjdQ8OJye7hIa2DQu7rI4akRFZWR/fvu0SGvrp3bsJul2+SdeU9AOPn7UaN26s0SURikqRz549UwxKpVJeLXfZsmWamxre0/r1xbRCWb2aOTqyyEj26ads7Vp25QpT2imvFmfPnuUdVlVWYwmO//O5ePGi0IEA6927d9G7MgcOHOCJrZcvX2pu6pJaz7m7uxPR6NGjNTc1aALvIDJv3jzFiFQqNTU1FYlEunYlP2DAACL6888/hQ4E3g3OVxUc77Hn5uamPKjorqTcxlbtMjIy+I06lfPGjBkziKhDhw5a3jGDhLt6lJRwP3HiRL169Xj2cMCAAVpuzaxCRxLud+7c4YcdETVp0kRlkzVDwr28uXv3bpUqVYho8uTJpXl+RkZGSEiIj4+Pm5sbLwyqIJFInJ2dPTw8/Pz8IiIi3prUu3r1KhFVr14dOw1VJSSwkBB2+/a77m1/PzKZjLck1XIznNJITU3lS1lv3rwpdCzl3p49e3hKaNCgQdrci1car169EolEJiYmUh1YAx6akdEuLMwlNDSwuDuF7ycuL29YRIRLaOgnt2/f07H/8XVcsT/wcnNz69SpQ0S//fabhuaVyWQuLi5EtHjxYuXxX3/9lYjq1Kmjlp1hoGZbt7Lq1VUHf/yRab5y3eHDh/X09IhozZo1mp6rlO7cuUNE1tbWunmTtaK5d++evr6+RCK5ffu28nivXr2I6JtvvtHc1Lwu34gRI5QHi72hCOXCwYMHiahXr17Kg126dCGi48ePCxVVsZYuXUpE3377rdCBwLvB+aqCU7TPVTmlfPbZZ0Q0cOBAzU09a9YsImrfvr1ygigyMtLQ0FAsFl+/fl1zUxcLCXf14An3tWvXFn2ooKDA19eXH3D6+vqenp5Cde1LS0sjIkNDQ6Gum1NSUjw9PfnPCUtLS19f32JXls2ePRsJ9/LlypUr/E7yggULSnpOamrquHHjnJyc+CJZBXt7+yFDhvz444/nzp1T3vVTGvxQ8fT0LPMngLKKiYnh9138/PyEjuU1vKDEJ598InQgH4gLFy5UrVqViNq0aVO0xJOAeI2O9u3bCx0Ii8rN7Xrzpkto6K+xsep953SpdPLDhy6hoZ1u3DiP9r/votgfeIGBgURUpUqVlJQUTUy6ceNGIqpRo4by3anU1FT+L2j//v2amBTK6vx5JpGwjIzXBidMYH36aGHyP/74QyQSicXiwEDVxSiC4BtBJk2aJHQg8C9eR7Fbt27Kg3fv3tXT05NIJHfu3NHEpIrWc0+fPlUMlnRDEcqF+Ph4IqpcubJyTuD777/XwU02wcHBfFGq0IHAO8P5qoLji2idnJxU2ufyvOiJEyc0Menjx495Yl2l/kG/fv2Eup5Bwl09Tpw40aJFCyMjI29v72KXLL18+dLT01MikRCRlZWVr6+vllfhBQcHN27c2NjY2MDAoGXLlipbbDStsLDQz8+PL2fW09ObPHlysRVCsrKyvL29DQwMXF1dtRwhlNHRo0f5rZSSGtzzvYr8tpOLi4unp6e/v39ERMS7TsQXyPv6+rq7u/M3PHPmTJnDBzXYt28fEZmYmNy/f1/oWP6Vl5fH95R9kF9yQomMjORFBurUqaPN+i1SqTQkJMTT07NTp05FH/3pp5+K7l3VvuSCgn537riEhs6OitLEne0CuXx+dLRLaGjrsLC9L14UyuWxeXnKf/KxELU4/Aeenp6eyg+8rl27EtH06dPVPmN6ejqvFBkQEKA8zitcqfz+BB2Sl8dsbNjChf+NPH/OKlVi/v7amX/dunWurhtMTNjRo9qZ8E0++ugjIjqqC6EAY0zpjt2BAweUx6dOnUpEPXr0UPuMJbWe8/PzK3pDEcoRBwcHIlKusMxvQvfRys3F0ktLSxOLxUZGRvmop1fe4HxVwSna56pkh3x8fIjI2dm5QN3V+dj/i1B9/vnnyoP8vp2ZmVlCQoLaZ3wrJNzVo6CgYOjQoXzFbp06dfbt21fs08LCwnivACJq1aqVdjo2PHjwoG/fvnzSGjVq8PQTEX366afKt/4059SpU02bNuWTdu/evdj7mXK53N/f397enohEItHnn3+OIiHlzo4dO/jKrL179xb7hP3794eGhr7ruVUqld66dWvjxo2fffaZs7OzWCxWXiAfHBysI02JgTHGW2u2atVKRy6LecuUZs2a4XyiXsnJya6urnyv0tmzZzU6l1wuDwkJ+eqrr6ytrRX/8IvW/hs9ejQRbd68WaPBvFmuTDb2/n2X0NAJDx5oLvEtZ2xDXJxLaKhLaKhfXJxLaGjPW7c+/v+f8HfcJ1RxFPsDLyIigifi3+Pu75vxVpOurq7KJx/FDutbmmxkDWV1/DgzMmKjRrGNG9nChczWlg0ZwrR4K2v2bEbETEzYhQuanSgzM/P06dNLlizp27fvqlWrVB6NjY0ViUSmpqaofaRTfvnlFyKqW7eu8v8vKSkpVlZWRHT48GH1Tvf7779TkdZzihuKJV3wg+7jiYvt27crRp4/f853fenaNbOTkxMRhYaGCh0IvDOcryq4oKAgKrl97vr169U73enTp3liPT4+XjFYWFjYpEkTIip6naMdSLir09mzZ5s3b87TAV27di3pB1VQUBDv7UZEbm5uT5480VA8mZmZ3t7evBGlqampt7d3Xl5eTk6Oj4+PmZkZERkbG3t5eWWo7JxVn8jISN6egojq1aunss5L4fr16x06dOBP++ijj9CaqfzidywNDAxOnjxZlveJj48PCgry9vZ2c3OrXLmycoZdZYG8rl0UVnCZmZn8Vvb3338vdCxMLpc3btyYiHbu3Cl0LB+g3Nzc4cOH83/vyj/Y1CgiIsLb25u311bcz/by8ip2C4WzszMRhYWFaSKS0pDJ5d89fuwSGjowPDxV83cBg16+HBoRcTMryyU0NEsHytbrvpJ+4H3xxRdE1LNnTzXOVVKlSN5D7Msvv1TjXKARkZFs3jw2YgSbPJnt38+0e6Uhl7PJkxkRs7BgN26o+c2VO9UbGBgozq5F/wmsX7+eiIYNG6bmCKBsFF2Xly9frjz+888/E5Gjo2NeXp665iqp9VyxNxShfFm5ciURff3118qDfOlbZGSkUFEVi1fu3bBhg9CBwDvD+QqKvfTlbSRUEvFlJJVK+RpfHx8f5fG1a9eq/WB7J0i4q5lMJvP39+cL8cRisYeHR1JSUtGn8aw3L4jBs96ZmZlqD8PGxkYRhkqx3djYWA8PD15N297e3t/fX73nIF4chuf6K1WqxHP9RZ8WFxc3efJkvmbZ3t7ez88PfZnKO94A2szM7J0yXwUFBaGhob6+vh4eHjxxpszOzs7Nzc3HxyckJAQrrXTc9evX9fX1xWKx4N8rR48e5cscNLFhDRhjcrnc29ubiEQikbe3t7q+RKKjo318fBo2bKg4A9SoUcPT07Noh22F7OxsPT09fX19Ac8PPs+euYSG9rh167m2rucK5fKo3Fwk3Euv2B94KSkpvP+EGutm8G2FKo3Ei13mA1AsmYx9+ikjYtbWrMh+nneTm8suXGCrVrEhQ+S1ajVUvrjS19dv06bNtGnT9uzZ8/z5c5UX9uzZk4h27NhRpulBA/giPlNT07i4OMVgYWEhzzWsXLlSXRPxot6603oO1Ojs2bNE1Lp1a+XBQYMGEdGuXbuEiqpYvNP4+PHjhQ4E3gfOVxVcSZs7P/nkk6L3/Mpi3bp1RFS3bl2Vi3y+2ubIkSPqmuhdIeGuEa9evfLy8uIrRypXruzj41Nsulk56129enV1Zb3/+eefFi1a8Ivptm3bXrlypaRnXrt2rX379vyZrVu3vnTpUtln58Vh+M4dkUjk4eFRbLGk/Px8X19fvtDewMDA09NTcwvtQZvkcvn48eOJqFq1asqVAYtSXmbF780omJmZubq6enp6BgQEFHvLCnQZb7Nmb28vbF6JV2f+6aefBIyhIvDz8+P9G8aNG1eWUkLPnz/39fXllWo4KysrDw+P4ODgN38zymQyvmW1efPm7z37uzqcnNz3zh3Fn8Hh4UEvX3a+efO2Wu+dvxVPuB99+TI4NTU4NfUavkbfSPED78cff1QeX7Nmjamp6ZYtW9QyS05OTp8+fSwsLJS/vEoqZAlQkvx89sknjIjVrcuU9kaXSnw8CwpiXl7M1ZUZGTGif/80bTrFwsKiZ8+e3t7ewcHBb6hmm5aWZmBgoK+vn5qaWtZPAhowePBg/rWrPHjy5Ek9Pb0ffvhBXbN8+eWXenp6KomqYm8oQrmTlZWlp6dnYGCgnKNYvnw5EU2bNk24uIpx/fp1ImrUqJHQgcB7wvmqgiu2fVF4eLi+vv748ePVtWBryZIlBgYGBw8eVB6cMmVKsXv4tAkJdw16+PChm5sbTxw0aNCgpPsqV69ebdeuHX9amzZtLl++/N4zxsTEKDL4Dg4Opcngq+TH3d3diy5yKb1SfpagoKC6devyp7m5uUVFRb33jKCDCgoK+vTpw+8xKt9u4f1OfXx83NzceAddBYlE4uzs7OHh4evrGxoaio0O5ZpMJuvWrRsRDRo0SKgYQkNDicjc3DwtLU2oGCqOEydO8Lun3bt3f/Xq1Tu99uXLl35+fq6urvybi9+l9vDwCAoKeuvWhIiICC8vL74DunXr1hqqbFOsXUlJI+7ejc7N5X+e5uYyxtK03k+CJ9y/fPjwq0ePvnr0aHUZvr4riFOnTlGR8o4FBQXx75rRfJtnz54p/3XVqlVE5OTkhA03UHrZ2axDB0bEmjRhKSmlesm+faxmzf8y7ERMImFNm7IvvmD+/uzRo1elnHrnzp2C/0aFN4iKijIyMhKJRFevXlUeVznzlJ3KGwrbeg7Ui9+BVl6Zx78i27VrJ2BURRUUFBgbG4tEone9wgQdgfNVBadon7t//37lcU0fAIpGTeHh4eqd6J0g4a5xwcHBvI4wv3IttjFXKVeFv0F2dra3t7exsTERmZiYvGuNGl4BxsjIiP5fAeZdN+aXcrX+vXv3+P4Rfqf6xIkT7zQLlBfZ2dm8Lr+Tk9Pq1avHjRvn5OSkSKhx9vb2gwcPXrly5T///JOFRn8flpiYGF6lwc/PT+1vnpqaevfu3dOnT+/YsaOkfa+8vPisWbPUPjsU6/bt2w4ODkTk7OxcmsYkr1698vf3d3Nz09fX5ycEY2NjNze3gICAty6Tv3Pnzg8//KC4a0tEjo6Oy5YtU88nKZ1dSUljiyslr2UoKfMe+vfvT0QTJkzQ2oxJSUkWFhZEdPz4ca1NCh+Gly+ZszMjYm3bstJcKP39NyNiZmbM1ZV5ebGgoNJm6hUyMzNPnTrFq+6qvaEZqNHs2bN5blRrhYkLCwv5T1rsHfwwTJgwgYh+/vlnxUhGRoZYLDY0NBSq2LFcLn/58mXRcb4j/9SpU9oPCdQC56sKjheGqlOnjjaLf3788ce6sGUHCXdtKCgo8PX15T+39PX1PT09i110mZaWNnPmTF6IxtzcXKXhQ0nkcnlAQECtWrUUS9SfPn36fnE+fvxY0eO0Ro0a/v7+pXzhb7/9ZmJiwnP93t7exe5RTUlJ8fT0lEgkRFSlShVfX18pcgQftOTk5Dp16vDDnlPpdyp0gKBZ+/bt4+eEYltcvllqampERERwcLC/v7+vr6+Xl5eHh0fPnj2dnZ3Nzc2Vb9vUrl276MufPHnCK3qXZb8OvKvY2FhezczW1vbatWtveOb27dsVzfoMDQ0HDhy4e/fut951e/r0qa+vb6tWrRT/71evXp3Xdtd+H6RdSUmj791LLSzkf3IF2pSDhPt7ePz4MS/o+eajVI0mTpzI9/NpZzr4wMTGstq1GRHr2ZO9NQmWk8PCw9m7npCK7aT65Zdf4jtUl2VmZvINXlqrs79mzRoiqlevnlDZWFAvPz8/Iho9erTyIO+kJUjBa6lU+sUXXzg6Oqp0nmP/L0mh5aUVoEY4X1Vwiva5WvtXzBMRVapUKfYenjYh4a49L1++VGScraysSso4R0ZGuru7i0SiNzSIUwgNDe3YsSO/MnZxcSnNS97q9OnT/N8DEXXr1u327dtvfQlvBebm5lbswsaCggI/Pz++kURfX3/y5MnoGFZBjBkzhoiaN2/+yy+/hIaGYit9RTNu3DgiatWqVUlrlm/cuLF+/fr58+d//vnn/fr1a9mypZ2dHT9JvoGZmZmTk1Pnzp1Hjhzp5eVV9G09PT2pSK1A0IKMjAxeTqpSpUqHDh0q6Wn37t0Ti8Wurq6+vr4vXrx483vGxsby2u6KLTKWlpa85kyh1ku4KOxKSvooNLRdWBj/s0ndBUlKCQn391NsZy0NuXHjhkQiMTAweHNTE4A3iIxkNjaMiI0c+c7J9GLl5uZeuHBh1apVgwYNsrGxUf6GVXRSVfteb1C7rVu38nvP77St+f1oor80COvWrVtEVL9+feVB3ojrl19+0XIw2dnZfP9ZpUqV/vnnH5VHFy1aRERffPGFlqMCNcL5qoI7c+YMFWmfqyF5eXn16tUjog0bNmh6rrdCwl3bbty40blzZ35R26JFi3PnzhX7NJU2vkXFx8dPnjxZLBYTkZ2dnZ+fnxoXjMtkMn9/f15lWywWe3h4vDUnUlLAKhV1hK2gBNokk8ns7OyI6ObNm0LHAsLIzMzkfQK///77Yp/g7e1dbErd0tLS2dnZ1dXV3d3d09PTx8fH398/ODg4IiLirQUcU1NTTU1NceAJpbCw8IsvviAiiUSivE9ZxVtvu6ampvKaM7wjKxGZmJi4u7sHBQWVpTWruuhISZknubmuN25kI+H+jjIyMvjX0+7duzU9F7/kmzlzpqYngg9baCgzN2eNG7OYGJae/tpDr16x0tx8jI1lgYFsyZK/2rVrp1jGzllbWw8YMMDHx+f8+fM5OTka+gigdnK5vE2bNkQ0b948Tc/Fv9lR1v9DIpVKK1WqJBKJlFeA/vbbb0Q0duxYbUaSmprKVxBWqVLlwoULKo8eOXLExMTE0NAQF/blGs5XMGTIEO2cXpYtW0ZEjRs3FnBtlgIS7sIICgqqU6cOv8x1c3OLjo4u/Wt5gRpeV4EXqElXufRWk9TUVC8vL35Rbmlp6ePj805pjkePHikK1NSvXz8gIEATQYLOCgkJoRIqfkDFcf36dX19fbFYXOzXzF9//TVlypSFCxf6+fkFBQVdu3YtNja2jDsh+Fds7969y/ImUEa+vr78fvDkyZPf6VonOzs7ICDAzc1NkQ8yMjJyc3Pz9/fXqU4POpJwh/f2+++/E5GDg4NGj6s9e/bwbCa6N0PZXb7MUlLYyJFMT48pr3IxNmbFrt6RSllEBPPzYx4e/xaCJ2KdO4eTUqd6Pz+/iIgI7VflAnW5fPmySCQyMjIqTfeU96ZoPYeCkB+YTp06EdFff/2lGAkLCyOihg0bai2GuLg4vre+Vq1aRatQ+vv782Y/48eP14XcGZQFzlcVXHR0NG+fq9yrWe0SExN5pvTvv//W3Cyl9wEn3EWMsWLXTuqI3NzcdevWLVu2LDMz09jY2NPTc+7cuWZmZm9+1ZEjR6ZPnx4VFUVEbm5uvr6+jo6OGo3z4cOH33333fHjx4moYcOGa9as6du375tfkpaW5uPj4+vrm5+fb2pqOmPGjDlz5hgaGmo0TtA1M2bMWLNmzcyZM1etWiV0LCCkpUuXzp8/397e/vbt27y0lObk5+fXqVMnISEhODi4Z8+eGp0L3iwwMHDs2LF5eXm9e/cOCAh487dbXl5ecHBwYGDggQMHsrOziUgikbRr127s2LEjRoxQKdyvC/588eJkaqq/k5PQgcB7ksvlrVu3vnHjRs2aNa2srDQ0y5MnT9LS0jZt2jRp0iQNTQEVzahRdOIENWlC584Rr7NlYkInThDfPfvyJV2+TJcv06VLdP065eT890ILC2rfnnr0SGve/Hrbtm118LwK72fMmDG7du2ytrauXr26hqZ49uxZamrqtGnTfH19NTQFCOL777//6aefFi1atGDBAj5SWFhYuXLl3NzclJQUS0tLTQdw79693r17x8TENG7c+MSJEw4ODsqP/vzzz9OnT2eMeXl5rVixQlFaEMovnK8quB9++GHFihVVqlThHSg1IT4+PikpafDgwQcOHNDQFO+kZ8+ep0+f/jBTE0Jn/EslLi7Ow8ODf3/Y29v7+fnJSqjOeP/+fV4bl4icnJyOHz+uzTiDg4MbNWrEZ+/Zs+fdu3eLfRqvRcPLQfJaNEXbnkAFUbduXSK6ePGi0IGAwGQyWbdu3Yho0KBBan/zwsLCuLi40NDQI0eObN68eeDAgUTUrFkzrNfTBRcvXuS3WJo3bx4bG1v0CVKpNCQkZPLkyYrUj6K2u45/d2CF+wfg8uXLihSDhtSvX3/ZsmVoEQ9qNHIk8/RkNWqwLVv+HTE2ZsePs/HjWcOG/y5jV/xp2JCNH882bXqfTqpQXsTExCxdulSjpzIiWrlyZWpqqtCfFdQsICCAiPr166c86OrqSlpZHHr58mV+w7tLly4q+8DkcvmMGTOISCKR6EIVZlAXnK8quMzMzBUrVmh6Je6SJUuioqKE/qz/wgp3nXD9+vVp06ZdvnyZiFq3bu3r69uhQwfFo6mpqYsWLdqwYYNUKrW0tPT29v7qq68UZW21prCwcMOGDd7e3unp6fr6+l9++eXixYstLCwUTzh37ty3337LG7C0bdv2559/btu2rZaDBB1x48YNFxcXW1vbuLg4XlkCKrLY2NjmzZunpqb6+flNnjz5nV6bn5+fkpKSkJAQHx/P//PVq1eKvz5//lwqlSo/f9iwYSNGjBg6dKhaPwG8p8ePH/fr1+/Ro0fVq1c/duxY8+bNiUgul1+6dCkwMHDv3r1JSUn8mc7Ozu7u7uPGjVPUW9NlqYWF6TJZHSMjoQOBMsnKynr06JHm3t/Y2FixWAFALUaNolq1qEUL+uorevCAqlYlExM6fpwGDaL0dDIxoZYtycWFOnakrl2pWjWhwwWtkEqld+7c0egUrVq10uj7gyCePXtWu3ZtKyur5ORkxfrx7777bu3atUuWLJk3b57mpj58+PDIkSNzc3MHDRr0559/GhsbKx4qKCgYN27cnj17DA0Nt2/f/umnn2ouDNA+nK/g1q1bcrlcc+/fpEkTlV41AvqAV7iXp4Q7ETHGduzY4eXllZiYKBKJhg0btnr1ajs7uz/++GPevHnJycl6enqff/750qVLqwl6+ZySkrJ48eJff/1VJpNZWVnNnz//66+/TkhI+OGHH3bu3MkYc3BwWLZsmWLZPlRM8+fPX7p06dSpU3/99VehYwGdsH///mHDhpmYmISFhTm9XogjLS2Nb/6Ki4t78eJFbGzsixcv4uLikpKS4uPj09PT3/C2YrHY2traxsamevXq1tbWDg4Ow4cPb9KkiYY/DbyDlJSUQYMGXbhwwczMbNWqVQkJCdu3b3/y5Al/lOfZR40axfvrAgDAG/CE+4oV1KMH1apFf/zxb0mZlBSqUYNatCCtL8gBgHLM3t4+ISEhKiqKb00mouDg4EOHDg0dOrR79+4amnTr1q2TJ0+WSqVfffXVunXrlNdmZWVlDR069O+//65cufLhw4d543EAgHIKCXfdkpmZuWzZMkX188qVK8fGxhLRxx9/vHbt2saNGwsd4L9CQ0O//fbbixcvElGtWrWSkpLy8vIqVark5eU1c+ZM5XvUUDE1btz43r17H+SZBd7b+PHj/f39a9eu3adPn6SkpMTExISEhISEhLy8vDe8ytDQUJFPr169uo2Njb29va2trZ2dnZ2dnbW1tfa3+8C7ys3NHTNmzIEDBywsLPgdlJo1aw4aNMjd3b1jx45CRwcAUG4oEu6PHlGLFnT2LHXr9l8NdwCAdzJw4MCgoKDdu3ePGDFCOzOuXLly9uzZIpFowYIFCxcuVH4oMTGxb9++N2/etLOzO378eIsWLbQTEgCAhiDhrotiYmLmzp27e/duR0dHmUy2fPlyd3d3oYMqxpEjRzw9PS0tLW/fvj106NBVq1ZprvsBlCORkZENGjSoXLnyixcveGd5ACLKysrq0KGDSCRS2UhoZGRkaWlpb29vZ2dX9D9tbW1RlegDIJfLN2zYUFBQEBMTM2LECBQcAwB4D4qEOxH98AOdP09hYXTyJBLuAPA+li1bNm/evOnTp69Zs0bTc8lksq+//nrjxo28MrtKkcmoqKjevXs/fvy4UaNGJ06cqFmzpqbjAQDQtB07dkRHR48dO7ZcFE19J+U44c49fPjQ0NDQ3t5edyoQFZWTk5Oampqdnd2wYUOhYwFdsWLFih9++GHcuHHbtm0TOhbQLVKp9MSJE9HR0ba2tvb29nzpuomJidBxAQAAlAPKCfecHGrShJ48oXPnkHAHgPcRHBzcq1evDh068J3rmpOfnz9mzJh9+/YZGRnt3LlTpdnS9evX+/Xrl5yc3KZNm6NHjwpbQRcAAN6q3BcZKBcpbBMTEyTLQMXBgweJaPDgwUIHAjpHT0/Pzc1N6CgAAADKPRMTWrOGcLUFAO+tTZs2YrH4xo0bhYWFmtuX/OrVq4EDB4aEhFhaWgYFBamUEzx16tSQIUMyMzPd3Nz27t2L3AIAgO4r9yvcAcqj2NjYmjVrGhsbJycn44IJAAAAAABANzVq1OjBgwfHjx/v06ePJt4/Pj6+b9++t2/ftre3P3HiRNOmTZUf3bFjx4QJEwoLC8eOHfv777+jGCkAQLmAmr8AAjgmO9YlsMvY+WORbQcAAAAAANBZo0aNat68ed++fRs3brxw4cKHDx+q8c3v37/fvn3727dvOzs7X7lyRSXb/vPPP48fP76wsNDT03Pbtm3ItgMAlBdY4Q4ggK6Pup7LOvdnnT9HWo4UOhYAAAAAAAAokaen55YtW3JycvhfW7ZsOXTo0CFDhjRq1KgsbxseHt61a9fU1NTOnTsfPny4cuXKiocYY15eXqtWrRKJRKtWrZoxY0ZZJgIAAC1Dwh1A215KX9qF20lI8qLZC3OJudDhAAAAAAAAwJvk5uaeOnUqMDAwKCgoPT2dD9atW9fNzc3d3d3V1VUkEr3rexYUFPTt29fU1HT37t3GxsbK4+PHj9+9e7eBgcH27duHDx+uto8BAABagYQ7gLZtfrl58vPJ/Sz6HXU8KnQsAAAAAAAAUFr5+fkhISFHjhzZu3dvUlISH6xVq9bAgQPfI/OemZlpYmIikUgUI1lZWcOGDTt58qSpqen+/ft79eql5g8AAACah4Q7gLb1fdz3r4y/fq/1+wSrCULHAgAAAAAAAO9MJpNdvnw5MDAwMDAwISGBD9aoUaNPnz5ubm59+vTR09N71/dMSkrq27fvjRs3bG1tjx8/3rJlS3VHDQAA2oCEO4BWZcoyq92pJiVpQtOEanrVhA4HAAAAAAAA3p9cLr906dLRo0f37dsXFRXFB62srPr27evu7t67d+9SNjuNjo7u3bt3ZGSko6PjiRMn6tWrp8moAQBAg5BwB9CqP1P/HP10dFezrmfrnxU6FgAAAAAAAFCbu3fvBgYG7tmz5+HDh3zE0tKS13nv1auXoaFhSS8MDQ3t16/fixcvWrdufezYsWrVsDYLAKAcQ8IdQKvco933pe372eFnT2tPoWMBAAAAAAAA9eOZ98DAwHv37vERExOT7t27u7u7DxkyxNTUVPnJp0+fHjJkSEZGRs+ePQ8cOGBmZiZEyAAAoDZIuANoT648t9qdajnynKdNntY0qCl0OAAAAAAAAKBB0dHRR44cCQwMvHTpEk+/GBsb9+jRw93dfeDAgRYWFrt27frss88KCws9PDy2bNlSyvozAACgy5BwB9CeQ2mHBkcPblOpzdWGV4WOBQAAAAAAALQkKipq//79Bw4cuHbtGs/DGBkZNWzY8M6dO4yx2bNnL1++XCQSCR0mAACoARLuANoz7um47anbV9ivmG07W+hYAAAAAAAAQNtiYmL++uuvI0eOnDhxwszMzNDQcMaMGTNnzhQ6LgAAUBsk3AG0pJAV2obbpkpTHzg/aGjUUOhwAAAAAAAAQDBJSUn3799v1aqVubm50LEAAIA66QkdAEBFEZIVkipNbWzUGNl2AAAAAACACs7GxsbGxkboKAAAQP2wwh1ASxixq9lX02Xpn5h/ci7rXGxB7Ogqo4UOCgAAAAAAAAAAANRGLHQAAB+4HHnOnPg59e/Wt7pt9fmzzx/kPWDEQrJC9r7aK3RoAAAAAAAAAAAAoE4oKQOgQYzYkOghD/Ie/Fzj5yZGTe7k3pkbP/cT80+EjgsAAAAAAAAAAADUDwl3AA06l3nu74y/Q51CW5m0IiJHQ8dBlQeJSCR0XAAAAAAAAAAAAKB+KCkDoEE3c282MGrAs+0csu0AAAAAAAAAAAAfKiTcATToecFze317oaMAAAAAAAAAAAAAbUDCHUCDLCWWabI0oaMAAAAAAAAAAAAAbUDCHUCDGhg1eJj3MFWaKnQgAAAAAAAAAAAAoHFIuANoUD/zfuYS82mx0/JZPh95XvBc2JAAAAAAAAAAAABAQ/SEDgDgQ2YmMTtU99DwJ8NrRdRqatT0pfRlTGHM48aPhY4LAAAAAAAAAAAA1E/EGBM6BoAPXCErvJ5zPaEwwU7frqVxS2OxcWxhbJYsy8nISejQAAAAAAAAAAAAQG2QcAcAAAAAAAAAAAAAUAPUcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADfSEDkBgSUlJt2/fNjQ0bN26tYmJicqj0dHRjx49MjU1bdq0qYWFhWL85cuXN2/e1NPTc3FxMTc3127IUD7cv3//4cOHlStXbteunZGRkWI8PT09NDQ0NzfXycmpXr16inHG2M2bN2NiYuzs7Jo3b25oaChE1KDr+CnLwMCgTZs2KqesgoKC+/fvN2zYUPl4IyKZTHbr1q3k5ORq1ao1b95cT6+in/ZBRUJCQkREhFQqdXZ2rlWrlvJDUVFRERERJiYmHTp0qFSpUtHX3rt3Lzc3t0qVKnXq1NFWvFA+5OXl3bhxIzk52cHBoWXLlmLxfys8MjMzL126lJ+f37x5c5VD7v79+5GRkVWqVGnRooWpqanWowZdl5+ff+PGjRcvXtjb27dq1UoikfDxqKiotLQ05Wc2bdrUwMCA//fIyMgHDx5UqlSpefPmVlZWWo4ZdF9WVtbNmzdTU1Pr1KnTrFkzxTj/jlN+pouLi8prb9++LZVKbWxsHBwctBErlB84rkATcFyBJrzhuv3p06fh4eGVKlVq1qxZ1apVi7721q1bMpnM1ta2evXqWgy5nGAVlUwmmz59uiL3VLly5QMHDigejYqK6tSpk+J/pUqVKj18+JA/tGTJEn19fT5uYmKyefNmgT4B6Kj09PT+/fsrDh47O7uLFy/yhzZu3Ghubi6RSPiPwIEDB+bk5DDGIiIimjRpQkQ8Vero6Hj16lVBPwToHJlMNmPGDOVT1r59+/hD6enpvr6+NWrUIKLt27crv+rIkSPKV1QtW7aUyWRChA86at68eQYGBlWqVLG2thaLxRMmTOBHSF5e3pgxY0QiET9yqlSpcuzYMZXXXrx4USwWSySS0aNHCxE76K6zZ89Wr17d0NCwRo0aenp6TZs2ffz4MX/I399fkUkXiUTTpk2Ty+WMsfj4+K5duyq+B62trQ8fPizohwCdc+HChZo1a/LjSl9f39nZ+f79+/yhzp07q/zAycjIYIzl5uYOHDiQiOzt7c3NzStVqrR+/XpBPwTonP3791tZWRkbGzs4OEgkkvbt2yclJfGH+JWVQtWqVVVee/jwYZFIJBaLv/vuO60HDjoNxxVoAo4r0ITTp0/b29sbGRnx6/ZmzZpFR0czxrKzsz08PMRisZGRkUgkMjExWb16tcprAwICxGKxSCSaPXu2ELHruoqbcF+zZg0RzZ07NyMj49GjR926dTM0NIyKimKMZWRk1K5du3bt2idPnszIyMjOzj579ix/VWBgIBGNGzcuMzMzJSVl2LBhYrH48uXLQn4S0DHjxo3T09PbsWOHVCoNDw9v0qSJjY1NRkZGcHCwWCzeuHFjfn6+TCbbtm2bSCSaP39+bm5urVq12rZt++jRI8ZYeHi4g4NDzZo1kRgFZT///DMRzZ49Oz09/dGjRz169DAwMIiMjExISOA3nL/44guVhPv58+f19PT69u17+/btgoKChISE0NBQAT8C6Jq///6biBYsWMDPNps3byaiTZs2McZmzZolEonWrVtXWFj4+PHj9u3bm5qaxsfHK16bn5/fuHHj3r1716tXDwl3UCaTyaytrdu0aZOSksIYe/z4sa2tbbdu3Rhj169fl0gkbm5uSUlJaWlp8+fPJyK+cKFz585169a9du0aYywmJqZly5aVKlV6+fKlsJ8FdIdcLndwcGjRokVycjJj7OnTpw4ODu3bt+eP1q9ff8KECalK+PjChQvFYjG/X1hQUDBp0iSxWBweHi7UpwBd8+rVKxMTkz59+mRlZTHGbt68aWpqyr/U5HK5gYHB4sWLFQdVWlqa8mvT09MdHBw+//xzMzMzJLBAGY4r0AQcV6AJUqm0atWq7dq149dOkZGR1tbWH3/8MWNs6tSpNWvWvHLlCmMsIyODL8ZSziekpaXZ29t/+eWXBgYGSLgXq+Im3J2cnFq2bKn4a1RUlFgsnjNnDmNs+fLlRKRIsitr3769ra1tYWEh/+urV6+MjIxGjBihlZChHMjJyTEwMBgzZoxihKe0tm3bVlBQcO7cOeUn16hRo3fv3oyxkJCQ2NhYxTg/AhXrAQEYY40bN27WrBlfCsoYe/r0qUQimTVrFmMsJiaGMRYZGamScHd1da1WrRq/JgMoip9q+BIGxphMJtPT05s4cSJjzMrKqlevXopn3rp1i4h+/PFHxciCBQtMTEyioqKQcAcVT548IaIVK1YoRkaPHm1qasoY++qrryQSiWI1llwud3Z25hdj4eHhERERipfw9Q1//fWXdmMH3ZWQkEBE3t7eipEJEybo6+vzr0VTU9OlS5cWfVW/fv2qV6+u+Ovly5eJaOvWrRoPF8qJixcv8qt0xUj37t0bNGjAGEtKSiKiXbt2lfTaKVOmWFlZvXjxAgksUIHjCjQBxxVoAs8hKP/KGzFiROXKlRljiYmJymsUrl+/TkQbN25UjHz22Wc2NjapqalIuJek4jZNjYuLa9iwoeKvdevWrVWrVnh4OBEdOnTIycmJb21WJpPJrl+/PmDAAOWqDt27d+eX7wBElJqaWlBQoFycvVOnTiKRKCIiQl9fX3nLc0xMTGJiopOTExF17NhRueJVlSpV+FtpMXDQdfyUpSjxUatWrTp16vBTVrFl+F6+fHnp0iUPD49iS28DEFHNmjWJaPv27fyv4eHhUqm0WbNmBQUFKSkpyuex5s2bW1hYRERE8L8+ePBg5cqV3t7edevW1X7YoOOqVq1qbGx8+PBhXlNbLpffuXOnadOmRJSQkGBhYWFtbc2fKRKJOnfufO/ePcZYkyZNGjdurHgTfA+CCktLSzMzs6NHj/KjgjF269atJk2aiESijIyMrKwse3v7oq+qWbNmQkICX/pARDdv3iQifjQCEJGDg4NYLA4ICOC1j/Py8u7fv684XxFRsccVEV2+fHnTpk2rV6+uVq2aNgOGcgHHFWgCjivQBGtrayMjo0OHDqWnpxORTCZTXLfb2NjwusfctWvXiKhRo0b8r2fPnt22bZuvr6+lpaUQgZcPFTfh7ujoeP369YKCAv7XzMxMAwODuLg4Irp7966Tk5Ofn1+XLl0cHBy6det29uxZIkpMTJRKpSoNvmrWrBkfHy+Xy7X/EUAHWVtbW1hYXLhwQTGSlJRkbGzMDy0iysvL+/PPP5ctW9apU6f27dvzDfUqrl69amRk5OzsrKWgoTxwdHQMDQ1VnLKysrL09fUVx1VRPIdlb28/Y8aMli1b1qhRY8yYMbGxsdqKF8qBYcOGdevWbeHChe3bt//ll1+GDx8+atSoKVOmGBgY1K5d++LFi4qvNuXzmFwunzhxYoMGDaZPny5o+KCjTE1NfXx8rl275uzsPHfu3M8//zwnJ2fr1q1E1KBBg9TU1Lt37/JnyuXy7Ozs/Pz85ORklTe5cuUKEbVs2VLLwYPOMjQ0XLVq1a1bt5ydnWfPnj158uSUlJQdO3bQ/xMNfn5+NWrUsLCw6Ny586lTp/irvLy8HBwc+vTpM2TIkHXr1s2bN++nn34q2kcOKqyaNWvOnj37+PHjjRs3Xrp06fDhw21sbNatW0f/P64WLFhgZ2dnaWnZp0+fGzdu8Ffl5+dPmDChU6dOY8eOFTJ60FU4rkATcFyBJpibmy9fvvzy5cvOzs7z58//7LPPCgsL//jjD8UToqKitm3b9s0333h5ec2ZM4cvIc3JyZk0aVKvXr1GjBghXOzlgJ7QAQhm9uzZI0aM6NGjx9ChQ+Pi4gICApKSkmrUqCGVSrOzs48dOxYbGzto0CBLS8vff/+9V69e586dMzMzIyILCwvl97GwsCgsLMzMzFQZh4pJX19/1qxZc+fO7du3b6dOnaKiog4dOlRQUJCdnc2fkJWVtWbNmqSkpMTExKFDh5qYmKi8w/3793fv3j19+nQsTAZls2fPdnd37969+9ChQxMSEgICAhITE0tayEBEfG3pDz/8MGDAgAkTJqSnp69Zs+bSpUt37txRdCyECs7AwKBjx45Xr17V09ObNm2aWCweMmQIf2ju3LmTJk3q1q1b7969nz9/fuDAgfT0dH4eW79+/eXLl0NCQhT9wwFUNGvWrGrVqrVr1/7111/T09O7d+/Oj5apU6du2rSpZ8+eEydOlMvlJ06cePDgAREpviK55OTk9evXDx06VLGIBoCIGjdubG1tXbNmTT8/v7S0tM6dO/PjysbGZtasWbVr13Zycnrx4sVPP/3Up0+fM2fOdOrUqXLlyq1atZLJZJGRkQcPHrSysqpatarQnwN0S+vWrc3MzBwcHFasWJGTkzN48GCJREJEjRs3nj59erNmzWrVqvXs2bNly5Z16dLlxo0b9evXX7x4cVRU1P79+xX7DgFU4LgCTcBxBZrQrFkzKyurWrVqrVu3LiMjo2fPnoqSHkR08+bNtWvXxsTEmJubK3ajLliwID4+/uTJkwKFXH4IXNJGUIcOHerRo0eDBg369+9/8uRJJyenNm3aMMZMTEz69u0rlUr501JSUszMzD799FN+53DJkiXKbzJ58mQjIyNFYWUAxtjWrVu7devWsmXLcePG3bx5U09Pb/z48SrPCQkJMTExmTBhgvJgUlKSk5NTkyZNMjMztRgvlA9BQUGKU9Zff/3VuHFjFxcXxaMqNdz5vpx169YpnnDw4EF6vfAfVHDLly/X09O7dOkSYywmJubbb78ViUSff/45f3T//v29evVq0aLFyJEjr127VrVq1b59+z579szMzOzLL79UvAlquIOKe/fuGRsb8wqhOTk5/v7+1apVs7Oze/XqFWPs0aNH48aNa9asWe/evf38/KZOnUpEyq29cnJyunXrZmtr++zZM6E+Auigx48fV6pUaerUqYyx3NzcXbt22djYVKtWrWhn3dTUVAsLi8GDBzPG3NzcHBwceNuAW7du9e3bl4i2bNmi/fhBN4WEhEgkklWrVjHGMjIyfvnlFzMzs0aNGuXn56s8k19lfffdd7dv39bX11duJ4CayKACxxVoAo4r0ISIiAgjI6Pvv/+eMZaTk7Nt27aqVatWr149PT1d+WmFhYULFy4koqNHj/IE1/LlyxWPooZ7SSp0wl0Z73XJs5/16tXjrSwVWrRo0bp1a5lMpq+vr5Ih7dWrl6Ojo1ZjhXLl9u3bRLR69eqiDw0dOpT3o+CioqKcnZ3r168fHx+vxQChXMrNzTUyMlK+kaOScH/48CERrV+/XvEEXg9E+ZILKjhHR8fu3bsrj4wcOdLAwEDRGFyB32/28vLy8PAgIicnJ5f/MzQ0rFKliouLC248Azdv3jwiSkxMVIwEBQUR0d69e4s+uUuXLrVq1VL89eXLl926dbOyslLu0QTAGFu6dCkRPX36VDHCK7P7+/sXffJHH33UokULfuKaN2+eYlwmk9WpU6dTp07aiBjKgwkTJhgZGRUUFChG/Pz8iOj8+fNFn2xlZTV48OBevXoRUZMmTRTfgxKJxMbG5uOPP9Zi4KDTcFyBJuC4Ak2YM2cOESkvXzhw4AAR7du3T+WZhYWFhoaGn3/+eZcuXYioWbNmiuNKJBLZ2tr26dNHu7GXAxW3pIyKLVu2FBQU8N30zZo1O3PmTHZ2Nq/pkZ2dHR0d3atXL7FY3KFDh6CgoIKCAgMDAyJKSUn5559/Ro8eLXD0oMN++eUXiUTCD63IyMj69esrHsrLy1Ps7Tp27JiHh4ezs/O+fftsbW2FiRXKj61bt+bl5SkKgBRVu3Ztc3PzU6dOff3113yEd7xU6UIBFZmhoWFeXp7yiJ6eHmOs6DN//fVXIho2bFh4eLhKIaPo6GhbW9uePXtqNFQoR/gFkvKhxfelFu12Ex4efv78+e+++47/NSwsbOjQoYaGhiEhISgmAyqKHld8H71cLpfL5RkZGZUrV+bjOTk50dHRnTt3NjAwEIlE+fn5ipeIxWKxWIzGS6BgaGgok8kKCwsVRdIUx1V+fr5MJlPUfoyPj09NTa1du3adOnVU2kuEh4fXrFmTl7UFIBxXoBk4rkAT3nDdnpqayhizsrLi4wUFBXx91cCBA9u1a6f8Jrdu3apdu3anTp20GHg5IXDCXzj5+fnHjh1LS0t7/vz577//bmpq+vHHH/MD6MyZMyKR6NNPP3348GFUVNSgQYNEIlFwcDBj7NixY0T06aefJiUlPX/+vF+/fvr6+rdv3xb604AOiYuLO3ny5IsXL8LDwxcsWCAWi2fMmMEY27lzp6Gh4S+//PLy5ctXr15t2LBBLBZPmjRJJpPxp3Xo0OHSpUuh/8d3QANw+fn5R48eTUtLi4mJ+eOPP8zMzLp3785PWS9evIiKijpz5gwRrV69OioqKjk5mTE2Y8YMiUSyZs2auLi4S5cuOTo62traKpdugAqOJzpXr16dm5srlUoPHDhgaGg4YsQIxlhaWlpQUFBiYuL9+/d//PFHfX19Dw+PYt8EJWVAxdWrV0UiUZ8+fWJiYhhjDx8+bNmypaWlJb9qDwoKio6OjouLO3z4cP369e3s7Pj5avPmzUZGRg0aNDh9+rTiexBVZUDh1q1bYrG4R48e/Kh4/PhxmzZtzM3Nk5KS5s6dW7du3d27dyckJNy+fdvNzU0ikZw5c4Yx1rZtWzMzs+PHj0ul0tzcXG9vb3p97xdUcIcPHyaiUaNG8RPRzZs369atW6tWrfz8/FGjRrVo0eLo0aNJSUmXL19u27atiYnJgwcPir4JSjSAChxXoAk4rkATLl26JBKJ+vXrFxsbyxh78OBB8+bNq1SpkpaWNnTo0Lp16/7zzz85OTlPnjwZPnw4ER07dqzom6CkTEkqbsL9xIkThoaG/K4DL7GtXDV7w4YNipaVFhYWmzdvVjz0888/Gxsb84csLS0DAwOFCB9012+//aa47Wxubr5o0SKZTMYYk0qlXl5eRkZG/CGxWDxy5MisrKywsLBib4atXbtW6I8COuTUqVOKg0dPT2/s2LEZGRn8oc8++0zl4OFVbvPy8saMGaPYReHk5BQWFibohwDdkpub+8033xgaGorFYv6f7u7uvGBfQECA4ivSxMRkxowZyjtYlSHhDkXt3r27Zs2aRMSvl5ycnK5cucIYS0lJqVGjBj+uRCJR9+7dHz16xBjLyMgo9nvwq6++EvqjgA7Zt29f7dq1FcdV/fr1Q0JCGGPPnj0bMGAAX+hHRDVq1Ni/fz9/yfPnzwcMGCASiQwMDCQSibGx8fz581H/CpT9+uuv1tbWiuPqo48+unfvHmPszp07Xbp0UVxENWrUqNi6DQwJLCgOjivQBBxXoAk7d+7k1+f8uHJ2dr527RpjLCYm5pNPPlEcV+bm5iUtWUDCvSQiVtzm8QoiLS3twYMHcrnc2dlZsRFVITs7+/bt2xKJpFmzZooMO5eZmXnnzh09Pb3mzZsrUmAACq9evXr69Km+vn7Dhg0VyXcuOzs7PDxcKpU2aNCAf1/m5+fz4toqrKysLCwstBQxlAeKU1ajRo0sLS0V48nJyZmZmcrPNDc3r1q1Kv/vCQkJjx49srKyaty4MdrTQ1EZGRlRUVHZ2dn169e3sbFRHo+OjpZIJPXr13/DN11MTIyhoSE/mwEoSKXSJ0+exMfH29jYODk5KcZlMtnjx48zMjLq1KmjOE3J5fKnT58WfRPlUxkAKR1X1tbWTk5Oyl9qaWlpjx8/NjU1bdCggVgsVn4V3wcmEomaNm2qWE8DoFBQUBAVFfXixQsHBwdHR0flh168ePHs2TNLS8t69eqV9PKnT5+amZkpNt0DcDiuQBNwXIEmFBYWPnnyJCEhwdbWtmHDhsoPxcXFRUdHGxkZNW3atKSfhE+ePLGwsKhSpYpWgi1PKnTCHQAAAAAAAAAAAABAXcRvfwoAAAAAAAAAAAAAALwNEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAb/AxXQS3e3J/0iAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"FP\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "ee8295b0-8fbd-4695-800c-db885ee6651a", + "metadata": {}, + "source": [ + "#### Solvent Exposed Pocket (SE)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "f667cf28-1427-4531-9375-d199f15d08b0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.687492Z", + "iopub.status.busy": "2024-05-13T08:55:43.687323Z", + "iopub.status.idle": "2024-05-13T08:55:43.888810Z", + "shell.execute_reply": "2024-05-13T08:55:43.888252Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "41 SE fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAPoCAIAAAAJPPL9AAEAAElEQVR4nOzddVyUWRcH8DMMDYpgYkupIBaKAWJhY4u5tqKuva6LjS2+uoq92B3Y2GITFga2AjaCCiidM/f94+rsLBYwz8wQv+9n/2CG4d7LOszzPOc59xwRY4wAAAAAAAAAAAAAAEAxGupeAAAAAAAAAAAAAABAQYCAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAIVXdDTFxX35OiqKMjPVuhoAAAAAAAAAAIB8DgF3gMJrxgxq04akUiKi4cMpIkLdCwIAAAAAAAAAAMjPEHAHKNTKlqV//lH3IgAAAAAAAAAAAAoEBNwBCrWJE2nzZoqKUvc6AAAAAAAAAAAA8j8E3AEKNR0dmjeP/vpL3esAAAAAAAAAAADI/xBwByhcGMv6TLt2lJJC9+6pYzUAAAAAAAAAAAAFCALuAIWLiwu1a0dhYf95ctkyio1V04IAAAAAAAAAAAAKCk11LwAAVCcmhs6eJZGIihcnImrWjG7coMqVqUIFeveODAzUvT4AAAAAAAAAAID8DBnuAIXI0aOUmUnOzmRsTES0ejWNHUtXrhARpabS27fqXR0AAAAAAAAAAED+hoA7QCFy8CARUffuRERRUXT1KunpUbt2REQbN1LlyjR7thpXBwAAAAAAAAAAkL8h4A5QWMTF0blzJBZTp05ERAcPklRK7dp9qSRz4AAxRvXqqXeNAAAAAAAAAAAA+RgC7gCFxbFjlJ5OzZpRyZJE/812f/mS7tyhIkXI2VmdKwSAfODRI+rZk9q3p9696dkzda8GAAAAAAAAIG9B01SAwkI+wh4dTf7+pKNDHTp8+RZj1LEj6eqqc4UAkNclJ1Pv3nToEFlY0MOH1KMH3bxJOjrqXhYAAAAAAABAXoEMd4BCISkpKS5um51dTJcuRESHD1NmJrVqRUZGRP+NxQMA/NDVq9SwIVlYEBHZ2JCtLd26pe41AQAAAAAAAOQhCLgDFAonTpy4eHGQnl4XU1Oi/0bYIyLo2jXS16c2bdS5QgDIB2JjqVixfx+amFBsrNoWAwAAAAAAAJD3IOAOUCgcPHiQiLp3705Enz9LLl4kTU3q2JGI6NAhYozat//SPRUA4IesrOjBg38f3r9PVlbqWw0AAAAAAABAnoOAO0DBl5qaeurUKZFI1LVrVyLy9d1VunTToUMvFi9ORHTiRLeGDf/u0+e9mlcJAHlfrVpkaEjz5lFAAM2YQZUqIeAOAAAAAAAAIA8Bd4CC78yZMwkJCfXr169UqRIRHThw4M2bK3XqPCOi6Ojo8+eP3bkz3dlZT93LBIA8Ly6Odu0iGxsKCCB7e9q6Vd0LAgAAAAAAAMhbEHAHKPjk68kkJib6+flpaGh06tSJfyszM7N169ZFixZV8yoBIO+zsiJtbXJwoClTKDSUbG1p82Z1rwkAAAAAAAAgD0HAHaCAy8jIOH78OBF169aNiI4fP56amtqkSRNTU1P6byweAOAXEhOJiAwNiYjevKGHDyk+Xr0rAgAAAAAAAMhTNNW9AABQrlevXpUqVapixYoWFhaUtXvq58uXL2tpaXXk7VMBAH5CKqWUFNLQIH19ov8G3wEAAAAAAACAiBBwByjwLCwsnjx58unTJyJKSUnh3VO7dOlCREeOHElPT2/Tpo2JiYmaVwkAeV9iIjFGhoYkEhERJSURERkYqHdRAAAAAAAAAHkKSsoAFArGxsZEdPr06aSkpAYNGlSoUIFQTwYAciRLhB0Z7gAAAAAAAADfQMAdoBDJEmFv27ato6Nj586d1booAMgnskTYEXAHAAAAlZNIJGvXrnVzc2OMqXstAAAA3yfCUQp+ZutWOnmS9PRo4EBq0ULdqwGFpKent2vX7tq1a/fv3zczM1P3cgAgv7lzh+rWpdq16c4dIqL69Sk4mG7coPr11b0yAAAAKETKly8fERHx5MmTqlWrqnstAIXV9et04QIVKULdu5OpqbpXAwK4ePFiRESEr6+vo6Ojo6NjrVq1xGKxuheVj6GGO/yYlxc9fkybNlFCAvXuTdra5Oio7jVB7p07d+7ChQsNGjRAtB0AcgMZ7gAAAJAHNGrU6MCBA0FBQQi4A6jH7t20Zw/99RfFxFC7dnT8OJUvr+41gULOnTvn4uJiaGgYExOzf/9+IjIwMKhdu7ajo6ODg4OTk5ORkZG615jPIOAOP7ZpEwUGUpEiVKQIeXjQ5s35OuCelpY2a9asUqVKffr0aerUqQaFr9HfgQMHiKhjx47qXggA5E9ZIuxomgoAAADqwAPuV69eHTx4sLrXAlAoeXrSpUtkYkJEFBdHa9fSwoXqXhPk3vXr17t27ZqWltarV6+mTZv6+/sHBgaGhoYGBgYGBgYSkZaWVt26dR0cHJo0aeLg4FCyZEl1LzkfUGnA/f3796GhoXFxcR06dFDlvJBLiYlUtOiXr8uVo8hIta5GIfHx8V26dLl48aKWllZGRsbWrVs9PT379esnEonUvTQVyczMPHbsGKFFKgDk1oGkpMHa2n1NTLyJiGhY6dLFS5acaYgUdwAAAFCpRo0aEdHVq1fVvZDCJTExMTQ0tGLFisWLF1f3WkDdEhO/RNuJyNqaTpxQ62pAIffv32/fvn1iYuKAAQO2bNmioaExZMgQInr//v2NGzcCAwMDAgJu3rx5/fr169evL1u2jIjMzMwcHBx48ru1tXXhCazliLIC7p8+fXr+1cOHDx89ehQaGhofH09EJUuWNDMz27hxY40aNZQ0OwjDxIQ+fiR+5yosjCpVUveCcikqKqp9+/Z37twxNTVdunTpmjVrgoKC+vfvv2LFihUrVjRu3FjdC1SFS5cuRUdH29jYVKtWTd1rAYB8KTExMTE9PU1Liz/cHhKSkZExD/F2AAAAUK26devq6Og8evQoLi4OVQ6UIT09/e3bt7JgDg/svHz5UiqVDhkypHz58nPmzFH3GgupjIyMxMTEz58/p6SkWFtbq20dmpqUmUmamkRE799TqVJqWwkoJiwsrHXr1rGxsV27dt20aZOGhobsW6VLl+7YsSOvkZCUlHTnzh0efPf39+efCTt27CCiMmXK1KtXjwff7e3ttbW11fbL5DGKBtwZY2/fvg37RnJy8rcvLl68uIWFRWxs7PXr17t3737jxg0cHfO08eNp9Gj63/8oPp7mz6f169W9oNx4/vx5mzZtwsLCzM3Nz5w5Y25u3qdPnwMHDvz555/BwcGOjo49evRYunRpxYoV1b1S5Tp48CAhvR3UiO80fP6cbGxo5EjS1aX582nGjC/flf8a8qrExEQi4hntaWlpGRkZ2traOKMCgDzl8+fPoaGhZcqUqVChgrrXAgDKoqOjU6dOnWvXrt24caNVq1bqXk7+lpGR8eLFi9DQ0GfPnoV+9ebNG6lUmuWVurq6FSpU2LZtm1QqrVWrVrdu3dSy4ALjxYsXSUlJiYmJPICemJjIH/786/T0dP7jurq6U6dOHTNmjIks01w1GCORiLp0oaVLacoUSkqi5ctp3jyVrgEE8vbt21atWkVFRbVq1WrPnj2aml9CxKGhoZMnT+bVY+zs7LS0tAwMDHgnVXd398zMzNu3bwcGBvLKM1FRUcePHz9+/DgRFS9e/Pnz50VlpTIKNxFjLKc/s2nTpidPnshi66mpqd++plSpUhYWFhYWFpaWlubm5vxrY2NjIkpNTXVwcLh9+3bHjh2PHj2KrQd5Ubt2ZGNDM2bQ1at0/DgZGFC/flSrlrqXlWM3b950cXH58OGDvb398ePH5etMJSYmLliwYPny5WlpaYaGhrNn/z1mjJuOjhoXq0RSqbR8+fKRkZEhISE1a9ZU93Kg8MnMJEdHmjyZGjUiX1/y9aWTJ6laNXry5MsL5L+GvMrT03Pq1Knu7u6enp6xsbHFixc3NjaOjY1V97ogh+LiaOpUev2aJBIaNIh69VL3ggByKS0tLSIiQj77kiOiPn36FC1a9J9//lH3GgFAWf7444/ly5fPmTNn1qxZ6l5LfhIdHX379m0eVecR9pcvX2ZmZmZ5mZaWVpUqVSwtLa2srCy/qlChgoaGxvLly//44w9DQ8Nr167Z2Nio5bfI7zIzM/fv3z906NCUlJSc/qxYLC5atKiRkdHnz58/f/48aNCgLVu2KGOR3xcURCNH0sKF1KoVLVxIwcEkFtPgwdS1q+rWAAL5+PGjk5PTkydPGjVq5OfnJ9/mcMOGDW5ubvxrfX39OnXq8AR2R0dHHteV9/z584CAAB5/f/funVQqjYyMLIRNE7+Vs4A7Y2zKlCl79+59/fq17EljY2MzOdbW1ra2tj9PXX/16pWdnV1MTMyCBQumTZuW++WDMoSEUO3aVLw4vX1Lurr09ClVqUL5MIfx3Llz3bp1S0hIaNWq1cGDB4sUKUJEz58/P3r06JgxY7S0tIjozZs306dP37Fjh5PT/RcvasyfTwMGqHvdSnDlypWmTZtaWlo+e/ZM3WsBIqLnz5+fO3cuICDgypUrU6ZMsbS0bNmypboXpUx+frRnD23e/OVhixb0zz/UqRMC7vnLzJkz58+fP3fu3JkzZ75+/bpSpUoVKlSQPx+A/KF/f2rThn77jZKTqX17mjePgoKIiCZMoIJ62xnyv7S0tLCwsND/ioiI+PaVhoaGlStXDg0NTUtLW7Vq1ZgxY1S/WgBQgf379/fs2bNt27anTp1S91ryjQcPHuzbt2/+/PlZnjc1NbWxsZGP6tjY2Ojq6v5onEGDBm3bts3KygpFC3Jn69atgwcPNjIyKl++vIGBQdGiRYsWLWpoaMi/NjIyMjAw+NHXsn+X0NDQWrVqpaSknD59uk2bNipaesuWdOECzZpFc+Z8SXWH/CkuLq5Fixa3b9+uVavWxYsXs4TRIyMj/fz8eBj98ePHsrixWCyuVauW41empqZZhm3YsOH169cPHz7cpUsX1fwieVnOAu6XLl1q3rx5sWLFJk+ebGVlxfPWc9cvzc/Pr127doyxEydOtG3bNhcjFGwpKSl8A0HdunUrVqyo0n0AI0bQ+vX0xx/099/EGFlZUXw8+fuTlZXq1qCwHTt2DB06NCMjY8CAARs3btT6WnS4W7duhw8ftrS0XLBggaurK3/ywoWAP/5wCAkREVGLFuTlRba2alu5MowfP37lypVTpkxZtGiRutdSSGVkZNy6dYtH2AMDA+WTgjU1NXV1dc+ePcu7PxVMW7bQmzckyz8aNoz69KFevahhwy/PhITQmzfqWh1k08SJE728vP7+++8//vjj0aNHNjY21atXf/TokbrXBTnBGFlYUHj4l4c+PnTrFi1erPqFJCQkhISEzFCsllTz5s3Hjh2r6p3UoHwxMTHXr1+XL27w+vXrb4sb6OjoWFhYyGdfWlpali1blogOHz7cvXt3TU3Nc+fOOTk5qeOXgHwjMTHx/v37U6dOVWSQJk2aTJw4ER9HqvTu3bty5coVK1YsJiZGvugw/ESvXr18fHysrKyaNWvGPzOtrKzMzc1zWiEwJSXF0dHx9u3bnTp1OnLkCIoW5EhGRka1atWeP3++c+fOfv36KTLU4sWLp0yZUqlSpQcPHuQuLpcz/v7k5ETFitHz52RsTEeO0OLFtHgx4Tib3yQnJ7dt29bf39/KyurKlSulS5f+yYujo6ODgoJ49Zjg4OCMjAzZt8zNzR0dHdu0adOnTx/+zKJFi6ZNmzZkyJBNmzYp93fIF1hO9O7dm4g8PDxy9FPy7t27t3HjRv61h4cHEZmYmDx//jzXAxYAqamp4eHhfn5+Xl5ebm5uzs7OZmZmspOGrl27/vbbb6pbTUICK1qUEbGHDxljzM+PEbGKFVlmpurWoDAvLy/+P3DcuHFSqVT+W35+frKNb87Ozg8ePODPSyRs2zZWqhQjYhoarH9/9v69OpauBFKplFeov3nzprrXUrgkJSX5+/t7enq6uLhkSf0wNTV1dXX18vK6efPmsGHDiMjIyCg4OFjdS1aa06fZsGH/PmzVij1+zKpW/fcZ+a8hJ+7fvx8ZGfnixQsVzDV8+HAi8vb2Zoxdv36diOrXr6+CeUFIKSmsWrV/H549y4YPV8tCRo4cWb58eQVPYitUqFCmTJm4uDi1/AqgJE+fPp07d26Wf2tNTU0zMzNnZ2c3NzdPT09fX9/w8PDMn56d/vnnn0RUunTpt2/fqmzxkB+NHTu2XLlyin8clSpV6tOnT+r+bQoX3qrhIb9uhV/5+PGjjo6OWCx+9epVrgfZtWtXQkICY+zFixfFixcnogULFgi3xkKBlzuzsrL69iiWlpYWGxsbHh5+7969oKAgPz8/Hx+fzZs3r1q1ytPT093dffTo0X/++afs9RkZGXZ2dkQ0YcIEVSzdyYkRsfnzGWNMKmW1ajEitnq1KqYG4aSlpfGk5woVKuT00yA9PT04OJiHOGRJ8Z07d5a94P79+0RUqlQpiUQi8LrzoRxkuEdHR5cvXz4zMzM8PLxSpUq5OBGJjIy0srJKSUk5e/ZsixYtpFJpx44dT548Wbt27aCgID09vVyMmb8kJCRk6S4bGhoaGRn57St1dHSqVKlStmzZoKCg1NTU1atXjx49WhVL9PamkSOpWTO6eJGIyNWVDhyg+fNp+nRVzK4wxpi7u/uSJUtEItGSJUsmTZr07WsyMjJWrVo1b968z58/a2lpzZp1cMyYjsWKERF9+kSLF9Py5ZSeTsbG5O5O48fTo0dUpw6JRJSaShERZG6u4t9JUdevX2/YsCH/MEX2gbIlJCRcv35dVsIsLS1N9i0zMzNe9YzfVJM9L5FIfvvtt71795YoUeLy5cvq7DWvPOnp1LAhLV9OjRvTsWO0ejVduIAa7gp6+fLlokWLNm3aZG9vHxISMmvWrD///FMsFitvxr59++7Zs2fXrl19+/a9cOFCy5YtmzVrdpEfLCAfsbamoCDih70lS0hTkyZOVPESHj58WLt2bSLasGFD5cqVcz3O5MmTg4ODJ0+e/L///U+otYHajRw50tvb28zMrG3btrLs9SpVqsgaeWWTRCJp37792bNnGzZsePnyZXR4hu969OhR7dq1pVLp+vXr5U/PcmratGlXr16dMGHC8uXLBVwe/BzP1964cePQoUNVM2NKSsrLly9PnDhRQk6pUqXyRYfA//3vf+7u7p06dTp69GjuRpg3b96sWbNcXV337dsnEolkRQuOHz/erl07YVdbUKWnp1etWvXly5c+Pj6yDffe3t5Tp05NSkqSNUT9iRIlSnz8+FH28N69e/Xq1ZNIJFeuXHFwcFDWuonozBlq25aKF6cXL6hIEdq3j3r3pooV6dkz1CTMRyQSSZ8+ffbv31+qVKkrV65UrVpVkaHu3bsXEBBQpUoVFxcX2fNmZmYvXry4du1agwYNhFhyfpb92Dy/mOnUqZMiAX6+d7h48eI8HS82Ntbc3JyIhqspwUrZHjx4MH/+/EGDBjk4OPxom4aurq6NjU3nzp0nTZq0bt06Pz+/Fy9eyG4H7d27l4i0tLSuXLmiihXXrcuI2J49jDEWFcW0tJimJouIUMXUCktLS+M7WXR0dPbu3fvzF8fExIwbN05Pz6hy5XQTE+bl9W8S/8OHrHVrRsSIWJcuTCRi27czxtjTp6xbNyX/DkowefJkIpo4caK6F1JgRUVF+fr6uru729nZyW9oFYvF1tbWbm5uPj4+Hz58+MkI6enp/BBVrly58PBwla1cpaKi2MSJrFMnNmMGi49njLHJk//9rvzX8CsvX74cMmQIjz3p6OjUqFGDv+V45F1583bs2JGIRo4cGRAQwLfeu7i4KG86UJYdO5iLCzt7lm3axOrVY+pID2/WrJkgB6bbt29raGhoa2s/ffpUkIWB2iUmJvK4lWwPYi7s3LkzKiqKMRYdHV2lShUi+v3334VbIxQovPDxmDFjFBznwYMHmpqampqairx1Iaf47Y2hQ4eqZrr09PT27dv/qAiksbGxtbW1g4ODi4tL//793d3dvby8tm3b5uvr6+/vHx4enpqaqpp1fpdUKrWysiKiY8eO5XqQZ8+eFStWjIgWL17Mn5k9ezb/3QvsJYzQVq5cSUQ1atSQz/9dvXo1fxdpamoaGxtXrly5Ro0aDRo0cHZ27t69+8CBA3///Xd3d/dFixatXLly27ZtWcbkp+XVqlVLSUlR4tIbNGBE7H//Y4yxzExWvTojYuvXK3FGEJpUKuW3J4sVK3bnzh0lzTJ27Fgimj59upLGz0eyG3CXfUCfOHGCMRYeHl61atVVq1bldD6JRMJvftrb2/NDTkhIiL6+PhHJSs0UGKdOnRo4cKD8YVhbW1u2H9bLy8vPz++X+2EZYxMnTiSiMmXKRCg78H39OiNiJUowfjawYAEjyi8x5oSEBH7GbGhoePbs2Wz+VEjIx6ZNv8TWa9dmly79+y0/P2ZtzY4eZXZ2rEEDFhOTXwPu/J5WQECAuhdSAGVkZGRJ79XV1W3SpMn06dNPnToVz8PKP5WcnPzx40f+BY9AVaxY8eXLl8pfu8q1bs169mTY16+YDx8+uLu7815JWlpa/fv355c3J06c4JWjNDU13d3dlXG2LZFItm/fzve38bnq169/5MgRwScCVbh7l61YwbZvZ/HxzN9fxVXj9u/fT0QmJiYxMTGyJ3fkhPxV/ZAhQxRPB4G8Y8OGDUTUpEmTXI/AYxlOTk7p6emMsdu3b/NNtJs2bRJumVBAHDlyhMcK+ckYt2vXrux/HIWFhcl+cMSIEUTk7Oysjl+lkLp27RoRWVtbq2CuzMxMno9sYmIyfPjwgQMHdujQoUGDBubm5kWKFPluCP5bRYsWtbCwWLBggSJFXXLn/PnzRMQrFjDGvLy8Fi5c+POUoO/y9fXV0NDQ0NA4ffo0Y0wqlXbr1o2IatWqlZSUJPy6C5aUlBRewCrLKXR8fHx0dHSuT+BTU1OrV69OihV//gVfX0bEypRh/F952zZGxCpXZmlpypoRlICHFg0MDAIDA5U3y9mzZ4moZs2aypsiv8huwP3cuXNEVKFCBf4B7e7uTkSDBg3KxZSxsbF8v97IkSP5Mzt37uSBqhs3buRiwDyradOmRNSmTZsNGzZcvHjxzZs3uRsnIyODD9W4cWN+8aAsQ4YwIvbXX4wxJpUyc3NGxM6cUeKMAomMjKxbty6/LZGLO3U+PqxSpS9h9x49WHT0l+czMlhSEnNwYIcOseHD82XA/fbt2/x/C0poKcOlS5fEYrGenp6zs7OHh4efn1+OzpMSExOdnZ1r1qzJo06JiYmOjo5EZGlpyVPzCo7375mGBtPTYzgRz63o6Gh3d3d+f1pDQ8PV1fXZs2fyL0hKSnJ3d+clZczNzc+fPy/U1BKJZO/evbL9hjVq1HBzc+PXlsWKFVu/fn2WVhmQn4wZw4iYt7fKJkxJSeEZx+vWrZN/PpuhCm7r1q2yH3z//j1vknHq1CmV/RagPPb29kS0nW8tzJWoqCjeHmD8+PH8me3bt/MLDTSzAXlpaWk8n2zlypXyz+eoeNGGDRtkPxgTE8Obph4/flzlv00hlZ6erqenJxKJ5O/gKoNUKuWdbIyMjG7duvXd18TGxj548MDf39/X13fbtm2enp7jxo3r37+/i4uLg4ODmZmZrLBV5cqVK1WqpOIGJPLd+DIyMnh/6dwF3WbOnElyrfji4+N5tLdfv37CrrngWbJkCRHZ2dkJfvIcFBTE9/zdv39f2JEZY1KpVNKwISNiXl6MMZaZyaysGBH7JtcehPXPP0zWqEvx/GS+E0JPT+/ixYuKjvVT6enp/ORcNW3G8rLsBtz57dx58+YxxtLS0nh1lKtXr+Zu1rt372ZJNhk5ciQRVaxYUT6/IF97/PixSCQyNDQU5FAaFRXF74VOmjRJ8dG+6/Pnz8dbtcqoWJHxIM6pU4yIVanC8nygNjw83NLSkseYQkNDczdIWhrz8mJFijAzMya/248H3BljHTqwHTvyX8B9+vTpRDR69Gh1L6Rg4g3Z3N3dc/fj79+/50HMxo0b8+5Dnz9/5reOZFH4AmLTJkbEUH4kVxISEjw9PflZi0gkcnFxuXv37o9eHBQUxPtCi0Si/v37K/4u8vPz4+9Jfn3o7e3N77u/e/eOJzQRkaOj4+PHjxWcCNRj3z5GxEqWZKpq9Ddv3jwisrGxycjIkH++X074+/vL/+zixYuJqHr16spNSgDlCwkJ4XfyeJrk+vXr3d3dc7Hr69q1azo6OkS0ZcsW/gxPPa5YsWIu0jmhoPL09PzuR8fAgQOz/3GUJWyxbNkyIrKwsFBv8ZBChRetVvY9V16iU19fX8Eqr58/f378+DE/sxo2bJhQy/ul6OhoXV1dDQ0N/ol64MAB/ubP3Wi8QwYR1a5dOzk5mTH2+PFjXg0sy+0rkJeYmFiqVCnlvV1HjRpFRPb29r+soJBTBw4cqF269P2OHRnPLduwgRExS0v233M5EFzVqqxjxy9f16ih0FBeXl5EpKWlpUhRqezr0aMHEa0u9A11sxVwj4qK0tLS0tTUfPv2LWNs3759pPAGAVmySXBwMGMsPT2dHyxbtmwp+AeEWkyYMIHksvgVFxAQoKWlJRKJDh48LdSY8njhsFayXZDdujEitmiRMuYS0M2bN/lxq379+opfRL15w65f/88zsoB7WBizssp/AXeebnDhwgV1L6RgqlatGhEpcub95s0bnuzZokULnh3/4cMH/q/WsGFDHoUXTFgY272b+fkx1cek+OfJfxNa4ZcSExM9PT1l/d+dnZ35ETOL9PR0V1dXWdmo9PR0T09PHmwqU6bM/v37cze7v79/kyZN+NQVKlTw9vbO+Oas2tfXl98M1tXV9fDwSFPCrlKJROLn59erV6/Tp08rdfNj4cULq/3xhwqmevv2raGhIRFlv/JbdsjSVFesWCHgsKB6v//+OxGNGzeOP+RHQ19f31wMtW7duiwXGnwPWYsWLb79KINCKCoqit/J5mUxhJKRkcFvey9dulTAYeEnePrLrFmzlDfF3LlziUhbW/vkyZOCDPj48WOefcir9arA0qVLSa71Di/E6sWzlXNF1oqvf//+/JlDhw6JRCItLa3Lly8LsOKCaMGCBTzRSknjx8XFVahQgYiWL18u4LASiaRmzZr0dW9ielqalBdC2L1bwFngu+rUYePHs337GGOsRg32+DHz82N+fiwoiAUHs+Bg9ugRCw9n4eHs3TtpbGxsbGwsvweWxebNm0UikYaGxm5V/att27aNiNq0aaOa6WSePHmSp9IWsxVwX7hwIRF17dqVP2zRogURrV27VsG53dzciKhSpUo8q/3du3empqZUIIrrp6Sk8B2FP9pxljsrV65s3nyssXG6Mprx1K5dm4h4aCYiIqJ+uXIXW7ZkebuuxZkzZ/ile4cOHZRUM04WcGeMeXjks4D7w4cPiahEiRK4tlSG8PBwIjI2Nlbwf29YWBjf1NmmTRser/w2Ci+AXbtY69Zsxw42ezZr2lSl5fbS0liRIoyIFcja9MqRlpbm7e3Nj4lE5ODgcEm+xcR/8YLFGhoao0ePlu2pevbsGe8KwK+vclTTLCgoiB/oiahkyZKenp4/eR/GxMQMHjxYJBIRUffuKwWsDPfu3TtPT09+OcfTykxMTOSr5YIw7txhYjHT0mJPnih7qt9++42IevToIfjIR48epW8KMUP+kpyczO8v8k08Fy5cILlyw7kwbNgw+QuNyMhIfrTN9b40KEgGDx5MRJ07dxZ8ZD8/PyIqUqRIZGSk4IPDtw4ePEhErVq1UtL4a9asISKxWLyPB70EwiPgZcuWVU1syNramoiOHj3KGHv16pVYLNbV1VVw6pCQEAMDA/m4EL/5Ubp06bdo2vSNz58/8wCRgFUfv3Xy5El+zizgCfOuXbv4wZRfqK5Zs8apQoVnPXrk/UIIBUCdOuzTJ1anDouLYzVqsBEjvpRB/vY/Y+MY+i8dHR1jY2NjY+MSJUro6uqKRKL1KuxwGx0dLRaLdXR0stPWTijPnz8vV66cra3t+/fvVTbpz/064C6VSi0sLGT3/8PCwkQikYGBgeKVUtLT0xs3bsyz9vjJ9IULFzQ1NUUi0cGDBxUcXCKRvHz5Ul3J8jx/397eXvCRBw5kRMzKin3+LOSwgYGB/OjI91Ty2/g9e/YUcg4lOH78uI6OTu/evZW3i1wqZdu3s+nT2d27LDOTCZtwrGxz5sxR8XbFQmX58uVE1LdvX/5w4MCBK1asyF18/MmTJ7xOV/fu3fmnlnwUXphdyVZWTHa0c3dnX3fZq8LZs1+6EkM2pKenb9u2jd9x4Rsd/Pz8fvkjspR2U1NT2QFUKpV6e3vzHb5GRkZeXl6/7OUQEhLCK8gRUfHixT08PLJ5knT58uVatRpXqJChocHc3BT6qMzMzPTz83N1dZVV0S1fvry7u3uHDh2IqFq1ap+FPf4BY8zNjRExpUUruKtXr4pEIh0dnVwXf/u5tm3bEtHvv/+ujMFBBTZv3kxEjRo14g/79OlDivV/S01NrV+/vvyFRmBgoLa2tkgkEjZwBvnO7du3ebHjp0+fKmN8fsAaPny4MgaHLN69e0dERYsWVcaF/44dGTVqNBCJRBsVL5/8XxKJxMnJiYgGDBgg7MjfunTpEj9F5ElCvOKoLDNdEbt37yYiLS0tvt83MzOzdevW/PRVGbse8zUPDw9SrCV4NvGjZ/PmzQUpE5+Zmcm3dPNa0CkpKbxLiuLxOsiOOnUYY2z7dvbnn6xGDbZ0KXN2Zs7OrGFDZmfH7OxYtWrMzIyZmTFr6/c8vK6rq0vfMDQ0VN7Wih/hOwtV9laRVett3ry5YDmLCvt1wP306dNEVKVKFX6hPmnSJAFDeK9fvy5ZsiTJ7QLjhTiLFCmSo4KwERERfn5+3t7e7u7urq6udnZ2/Haru7u7shsCfBcvjyOrUC+g5GRWty4jYp06MQE7bQwYMICIpk6dyhiTSCSVKlVS9t1XQfAj+uLFi2XP3Lx58yfVjXOne3dGxBRo36U2fPMX+sgpibOzMxHt2rWLMfbkyRMeoMz1uf6dO3d4Zt/AgQP56ZEsCt+tW7fcJ9EnJrJz59jz56xevX+fPHCAKa0bxHeMH8+I2IwZqpsxf5JIJD4+PvwONxHVqFHDx8cn++fK9+/fb9iwoSylXZZbFBER0bVrV/58kyZNfnRsffjwoaurK09UNzQ0dHd3z2lcOzmZTZ7MNDW/tP/IRb/t0FC2cOFGWV6/jo5Or169/Pz8+OlHQkKCra0tEbVt27ZglJ7LQz58YMWKMSKmtL3tUqm0QYMGpMxdjI8ePdLS0hKLxSEhIUqaApSqUaNGRLR582b2TbnhXJNdaMz4egziNUwNDQ0fKGO7KOQHUqmUF0z766+/lDRFaGiojo6OhoYG+vSqQEhICL90FbxX5OHDTFOTGRrGr1vnI+zI3PPnz/lebWUHpPr160dEM2fOZHLtUhUsRi/D6+iWKVMmIiKCMRYdHc2zRtBCTN6nT5+KFStGRCqot/Px40decXeLEPlVW7ZsISILCwt+NcrbVNStW1fwpq/wXTzgLpWy1q1ZtWo5+9nU1FReZIZvGTQ1NVXxvxoP7Q4aNEgFc0VHR/N6bvb29qrMqf+lXwfc+YX6okWLGGNpaWn8tFXAs4fz58+LxWKRSHTo0CHGmFQq5el1tra2iYmJWV6ckZERGhp66tSpVatWjR8/vkOHDlWrVpX1+86CR69Uv6fp0aNHPJ3w2/UL4sULVrw4I2KensIM+OnTJ319fZFIxJPOjh07RkTm5uZ5/2OU75kqV64cz3Dnx4N27doJO0v58oxIBVvtBcYLnhQrVgz5BcqQkJCgo6MjFoujo6PZ122hCqaoBAUF8dPusWPH8mfu3r0ri8L/Mjf5X/HxzM+PeXgwZ2emo8OI2L59TL4t0ubNbO5cRZaaMxYWjIjltsl2IXHr1i2eP0JE1tbW+/fvz8UnsEQi8fb2LlKkCP/b9/b2lg3i6+vLr6++Lbb+4sULNzc3sVhMRPr6+uPGjVNkF97du6x+/S97G11dWXY6a6SmMh8f5uzMRCLm4LCDp7F7enp+25bjxYsX/CRk2rRpuV4hfN/ffzMiZmGhpHpTW7du5cdrgVtT/NfYsWOJqEWLFsqbApTk3r178ifPf//9NxF16NBB8ZFl22dlDS0GDRpERJaWlopvl3nz5s3Dhw8VXiOoFC+PUKpUKaXul/rjjz+IyMHBIe9fT+Vrnp6eIpHI3t6eiLy9vQUc+fx5pqvLiJgC22x+jVcFLFOmTHS0sgrLyO5fvnjxgjF2+PBhfqIl1DszIyOjadOmRNS4cWN+enn79m1eoV4Z2Yf51JQpU0iF9ax37tzJD6kKxsHS09PNzMyIaOfOnYyxxMREng12/PhxgVYKvyDrCPngAVMkcF25cmVho7jZweOiJUuWVHamVFxcHN/RaGtrm6cKuLNfBtwjIyO1tLS0tLTevXvHvp6g1Ba6MsCiRYt4dIAHfBMSEniVsU6dOp04cWLFihVjxoxp27athYWFlpbWt4F1kUhUoUKF5s2bDx8+fPHixQcPHgwJCUlKSpJIJLwfSMOGDVXZKd7DY5OWlpZSb+oeO8Y0NJiGBhOkzQ9P9mnbti1/6OLiQkRLliwRYGglk0ql/K3Cs4xjY2MNDAxEIpGAFz/v3jEiZmSUz2qUSSQSvhlFBbsUC6cDBw4QkZOTE3/YvHlzIlJ8i7qfnx/fBcaTUJhcFH7MmDE/+cGIiIgkHx82ejSztWUaGv+Wc9PUZPXqsSNHWJs2jBcBT01lzZqx7/XeVIaPT5+mmpmxkiUZUpJ/LD09fcaMGbq6upUqVfL29lbwpCQiIqJLly78+Ojk5PTk693CT58+ubm58Rz2mjVrXr9+/dWrV25ubrxyi7a2tpubGz/WKygjg3l5MQMDRsRMTJi3N0tNZbIuG8nJ/3btvXuXjR3LjI2/vFsNDdmIEclBQUE/GfzKlSu8IgT/2AfBpKVJra3vOTltWbVK8LETEhL4/Z7tSt4sFhsbW6JECSLiORyQj/CbJbKTZ352d+TIEUEGX7JkCREVKVKEnx8mJyfXrVuXiDp27Jj9m9mxsbHBwcE+Pj6enp79+/e3s7Pjdzdr167do0eP2NhYQZYKypacnMyzoZUdCoyLiytTpowgJ4fwXVKplOdWi8XiPn366OvrGxsbjxs3zs/PT/HmVdeuMUNDRsSUnaUtlUo7dOjYtKlnnz7KOk/mKcmyjLT27dsT0bJlywScIioqipcZkbW85vV1dXV1scmDMfbx40d+vLh27ZrKJu3UqRMp3DXnn3/+ISIrKyt+bcKjdvXr18d9RNXIzGTW1mz4cKZ4s8LRo0eTkptLf5elpSUR/fziTkHJycm8b5m5ubkgV7LC+kXAndfydnV15Q95oTHBa+1LpdIuXbqIRCJZp+yHDx/q6enxthLf5q07ODi4ubl5enr6+PgEBwf/JFsqJiZGxXuakpJYsWKsVKnIBw+U+489Y8aXWMaLF4oOxTdfHD58mDH25s0bsVisra2dd/oM/Nz69euJyM7Ojj/8/fffSdCaiYcPq6CwrTAiIyN9fX09PDxcXFyKFy9ORCYmJpNUWTmkMOG9tng5o8+fP/Mbk58+fVJ85CNHjvAAqOfXPSznzp3jUfgZ/63KEhER4ePj4+bmZm1tLRKJjtrb/xtkt7Nj7u7M15fJlvT2LevRg3XowFq0YFu38p9nSmt+IMNz/2eMGqXsifK1mJgYHgwSsB2Fj48PTwbX09Pz8PCQjXz27Fmeq6KhocHfaVpaWm5ubq9fvxZqai40lLVo8eUtOWQIq1DhS2H3WbPYzp1s2zbm7PzvjSE7O+btzbK5/2/16tX8Ku769evCrrmQO3/yJM9++HZvgYKmTp3Ksx9UcIXG3x5mZmZ5p3oj/FJycjI/5799+zZj7PLlyzzlU8CPxF69ehFR1apVeQ+qly9f8nsz8+bN+/bFnz59unHjxq5duzw8PPr06VOvXj0jI6NvL0mIqHTp0vyTtl27djnYiAbqM2vWLCKqU6eOCv69vL29iahChQpJigdL4L8yMzOHDBnC0wV8fHySk5N5KJArWbLk0KFDjx07lrsDwb17zMSEEbH+/VWRcfX8ubRIEUbEfJRSt+bLlT6/D/369WvexlDwA/3Vq1d5h0ZZwGv48OEikShf5PApG9/v0rFjR1VOGhERwY9cihQsqlevnuyuYUJCAj/e/bK5FAiF90GzsMjlj1+9enXixIn8zIrXCa/DK9SoEL8tyitXK0N6ejpvmlKuXLnnz58raRZF/CzgLqvlfe7cOcbY48ePRSKRoaGhMmrixMXF8a7ZsqnLlCkjEokaNWr0+++/L1u2zNfX9/Hjx7lIVL9z5w7f0yRIEatf2ryZETEVNCSQSFibNoyIKZjB/Pbt24oVK5YpU+bNmzfs62morA9k3peamsp3NvGCaM+ePdPQ0NDR0YmKihJk/KlT82716YSEhMuXLy9ZsqRHjx4VKlTIchHIj4ja2to4KAqOf0AREc+V27t3LxE1b95cqPF37typoaEhEonWrl3Lnzl69Cjf3zNhwoSVK1f27NlTVueaK1q06PpRo9jChczfn2Xnc/L5c1alCuvWjSmcBPRzfJOpj5KuIQqKV69e8WtyYYeNjY2VpbTXqlXrxo0b/Pnk5ORJkyYVKVLEwMDA1dX12bNnws4rz8eHOTiwNWtYixbszz8ZY2zWLDZt2pc4u5ERc3Njd+7keNgRI0YQkampqYpLxhV47dq1I6IRI0YIOGZ4eLiurq5IJFJNYldmZibvX7Jw4UIVTAeC2LZtGxHZ29vzh7/99tu395gVlJiYWKNGDSLq3Lkzv/Fz9uxZsVisoaGxatUqHx+fBQsWDBo0qHHjxvz06bsZP/b29v369Zs7d+6ePXuCg4N57F5WJl62NQ3yrNevX/MqmkJVr/45iUTCw1Vz5sxRwXSFR2pqKq95a2hoeOZrx5hjx46ZmJgMGDCAJ1RyhoaGPXr02LlzV/ZTYsLCmKkpI2KdOyv7HPlf//zDiFiJEkyg69d/XblyRf7+pVKv9H18fOSboh86dIiIWuWLtDVlevfuHf/Y4XFPVeIpCGXKlMmyByslJeXjx4/h4eF37twJCAg4ffq0j4/Pxo0bV6xYsWDBAnd391GjRvXv379bt27NmzevXLmyq6vrgwcP5syZQ0QODg4q/i0Ks8GDFapqNX78ePpahzM1NZVvs1CwNU5OnT9/nohq1KihjMElEknv3r154OvRo0fKmEJxPwu4Hz9+nIjMzc15CgD/BxspKyOkTCdOnJCfWkE8v0BXV/fWrVuKj/ZzDRowIrZtm7LnYYyx6Gg2fjx7+pTJOsSEhf26YK78llg3NzdnZ2czMzORSNSpU6fRo0eXK1eOVNLNQ0C85XeXLl34Q75/avbs2YIM3rIlI2K+voIMpqjMzMwHDx5s27Zt3LhxDg4OWboXFClSxMHBYdy4cdu2beNF+v7880/+vAre+YXKtWvXiKhKlSr8Yf/+/Ylo6dKlAk7xzz//iEQiDQ0NWc3ZXbt2aWhoyO/7KVWqlIuLi6enp7+/f47TAO/e/VLIY8AA5WXvCJv7X4A9fPiQiKrL19kXzunTp3nZPk1NTVlsPSoqip+dKGPGb3l7s7VrWcuWLCSEzZrFDhxgPXuyXbtYrlOQ09PT+ebBRo0aqbJkXIH3+PFjLS0tDQ2NYOGqTvGwyMCBA4Ua8Jf4yb2hoSFv4AZ5n6OjIxFt2LCBfW0sJCs3LKBnz54VK1asSJEiskJb8+bNI6Jv61Xq6OiYmZm5uLi4u7t7e3v7+fmFh4f/ZOTz58/zMvEHDhwQds0grJ49e6o4ryggIEAkEunp6b169UplkxZsnz594p8YJiYmV7/2B9q+fTv/Q3Z3d2eMhYeHe3l5OTg48JwDGxt7sZg5ODAvL/bmzc8GT05mZmaMiDk7Zyt9RShSKWvXjhGxTp0EHplfpPB25ZmZmRUrViSiixcvCjzN93Ts2JHySZVapRozZgwpXNoldyQSCf9jKVu2rI2NTaVKlYyNjXnTphwxMjISiUTyOY6gAqmprFgxRsRyXSz53LlzRGRra8sfduvWjYhk+XyqkZ6eztsFC55+LpVK3dzc+PtTwMsWwf0s4C7/KSnb7KmayB2Pmf7vf/8TasChQ4cSUaVKlXiHQyUJCWFErFgxAaosZd/atczYmPHNW9OnM7l9AuzjR3b1Ktuxg3l4sL59WYMGrF49p+9+jBoYGBQtWpSIHBwcWrRokb/Kcr1//563guE31S9evMhjkYpvJ5dKv3zMCZ5ukH0RERGyQjH800pGU1PT2tq6f//+3t7eDx48+PbulFQq5Z3BSpYs+fTpU7Wsv0CaOXMmfW1tKpFIeCP4J0L31fXy8qpWrdobuSuDChUqiESiDh06bNiw4fHjx4pOcPWqsutT7tmzh4hatmyppPELjOvXrxNR/fr1+cPatWsXLVr03r17Qo2flJTk7u4u39EhLCyMiMzMzISa4ud4wP3+fdasGZs5kwlSXjs6OprXxunfv78Aw8FXEydOJOEa/V24cEEtsW/exmCQIu2lQFWy7KBdvnw5yTUWEpafn598DlRAQAARFS1atEuXLpMnT16/fv3Fixdz915dvHgxyZWJhzwoMDCQx75VnN/n6upKRP369VPlpAVWRMSCTp34Rb3sxHvVqlUaGho82p7lyPX69etVq1a5ue3R1PyytU4kYvb2bOFCJvskWLGCfc2SZ7Nns127mKMjU2Z77+97+/ZLJszOnYKNye9fikSisLAwxtjRo0eJyMrKSgVX+vmuSq2SvHr1SkdHR0NDIyQkRDUzRkVFyf/7LlmyRF9fP0vkR0dHx8TExMzMrGbNmo0bN27VqpWrq+vgwYPHjh07ZcoUT0/P1atXb926df/+/X5+flevXh03bhz/o1uzZo1qfgtgjB06xIhY3bpfHg4YwLp0YTlK484S7N6yZQvJtXNQGV7Tb+XKlcIOO3nyZCLS19dXzZa1XPthwD3LpyTf7NmgQQMVrOnNmzeamprCfkCnpKTwPX2tWrVSXpPckSMZERs/XknDf9/atWzAANarF2OMTZ/OvL1Z796sXr0vkeIs/zVs2P27aTsSiSQwMFBLSyufpufwGyqyrpK8SfHGjRsVHPbhQ0bEKlVSdHm5c/DgQV63RJ6FhUXfvn29vLyCgoKyc0chPT29bdu2RGRubi5UmR3gzdZOnz7NGAsMDOT/e5UxkXzRz/DwcCIyMTFRvBPUv86fZ7q6jIhNmybYmHJ4WQBh+zIVSDwhV1aVyMLCgogEr/Qif/599+5dIqpZs6awU/wID7gzxv78k1lbCxNwZ4zdvXvXwMCAiP7++29hRgTG4uLieBKTbHtNrsmquyxYsECQtWWfrI4NCv3nfby+p2wHLS83rEjN2ewbOHAgCVRaVCqV8uxpWZl4yI1jx9jmzV++Pn36S3OPsWNZ+/asQwemwBWKrLqLUFtgs0/FdWwKstBQVqWK1Mjoz7ZtZfkonp6eRCQSiX6eqBcTw7ZvZ926fenozv+zsmJTp7K2bVnNmoz/1fKyB+pqx8Ar0xYr9os0/OxbsWIFEbVp04Y/dHFxIVWlnM+ePZuIevEIRSE2fPhwUuGuGqlUWq9evVq1avGLiMzMzGrVqhHR9OnT79+///z589jY2Fw0R8nIyKhTpw4R/fXXX0pYNXyfqysjYvzvNTGRGRgwkYjl9H4xPzPhwe4PHz7wFg7KqBAuTyqVymeC7ty5k4SuLsULHGlra588eVLAYZXhhwF3XqajT58+/GFgYGDHjh238lZ7Ssan7t27t7DDvnr1ivdHUtKZVkICK1qUEbEHD5Qx/A+tXcu8vVnfvuz06S8Bd9lpRLFirF491rs3mzGDbd3KAgJYVFTyT4ZasmQJT8/JsyWQfuTBgwcikUhfX5/vYNixYwcR2djYKHgDf8sWRsR69hRolTmxbt266tWr8z0yDg4O7u7uvr6+Oepvc/nyZf76pKSkRo0aEVG9evV+0mEYsikiIkIkEhkYGPAbHtOmTSOiiRMnKntenvQnfIbU0aNMS4sRMaHrHWdmZvKPXKWWCC8YeM6Ri4sLf8jvtCm1zTrP62ysgn4jjDG5gHtSEqtUSbCAO2Ps0KFDGhoaGhoax48fF2zQwi0lJYXn6ire6G/NmjVEVKVKFbX0L50yZQqpqlMr5FpqaiovgM530PKPJmHbpf7I58+feRhUvuiwIhISEvjdgl69euNNl0tbt/57NrJ7N5s9mw0YwHgXroQE1qQJy+0ttPXr1xNR+fLlExMThVlqTvCdkXXr1kVn3dy7f5+VLcuIWP36vIJqZmYmb+giFos3bdqUzWFSUpifHxs3jpUpw4iYkxNr25atWsXGjmXsa8Bdjbp2ZUSsdWsmyGdIrVq1iIjn0kkkEldXVwMDA8HbpX4rSyPAwszHx6dYsWLy78+QkJDNstuKQjt8+DARmZqa8vM3ntFsYWGheLbW7du3NTU1xWLxzZs3hVgp/EJ8PNPX/zfCvn37l8+rnOJhMVmwmweFDh8+LORavzFp0qTevXvLTuRiYmLEYrGmpuaECRN8fX0VrziyatUq/smfL7rEadIP8B3uvB4Fvyz39fX90YsFJJFI+EcDP4IKqGLFinv37m3Tps3cuXPr16/fvn17Ycffs4fi48nJiWxshB04W5YupY4dqUULKlmSduwgCwuysKASJb59od5PBpk0adLNmzd9fHy6du1648YNXmQmX7CxsWnduvWZM2c2btzo7u7eq1evadOmPXz48OzZs23atMn1sDduEBHZ2wu2zuw7cODA48eP//77b97WPKdOnTrVtWvXWrVqXbhwwcDAwNfX19HRMTg4uHPnzidPntTR0RF8wYUHj+u1bt1aV1eXPyQi3h1bqXhnC+En6tSJtm+n336jadPSixXTHjVKqIGvXr0aHR1dtWpV+e5V8F1JSUlEZGhoyB8mJibKP1QGFUwhr3dvIqIbNygqis6fp2+27uRe165dZ86cOWfOnL59+169etXa2lqwoQurZcuWeXp6VqxY8fXr13Xr1i1fvnzuxpFKpTdv3iSiJUuW8E9LFZs2bdrWrVuvXbtWp06dEt87H8qmDh068DI7oAwHDhz4+PGjnZ0d3zq2YcMGIhoyZMi3ddUFt3379uTk5FatWvFNRYozNDQ8fPhw69btQkOHLllCf/0lyKiFz4cP9OgREVFEBDFGAQG0bRsRkaEhjR5Nhw7R5s0UFvbdH71obr4gPPzb5xljso8jvi9Kxdzd3Tdv3nz79u06der8qCtvdrRt25b3Zyp0rlyhTp0oLo5atKAjR6hIEUpLmzpypPfWrfr6+vv27eO529mhq0vOzuTsTMuWUUAAMUaLF5OrKw0YQLduKfV3yJY1a+jyZTIyotRU0vvZVfv3paenh4eHP3v2LDQ0NCgoKCQkpESJErxUr4aGho+PT3x8vAou8E+dOvXq1SszM7PmzZsre648Ljw8/PPnz3Pnzu3Zs6ehoeHr16/r168vEokaNGgg+Ckr+7qxYNq0afr6+hkZGbxPiYeHh6bmD4N+2VSnTp3x48f//fffQ4cODQ4OVsExupA7coSSk8nJiSpVIiLas4eIqE+fHI/Tvn17TU3NS5cuxcXFGRkZdezY8erVq8eOHeOlF5Vh1qxZf//9t66u7r179+zs7Ijon3/+kUgkRYoU8fLy8vLyIiIzMzMHBwdHR0cHBwebHAZPt2/fPn78eJFI5O3tzSu25XU/isRPnz6diIYMGaKy2D/HE/2qVq2qpIwk/rljbGzMa5kJyM6OEbFdu4Qd9dd4hjtjzMuLlS79nxruuSCXnpPPtoCdPn2aiMqVK5eWlsYYW7RoEcntocudunUZEVP9BtDo6GhNTU0tLa0sLcWz78OHD1ZWVkTUsmVL/j8kPDycp8326dMH+TWK4KetvGDR69evRSJR0aJF+f9k5UlISNDR0RGLxcrqQrF1a0aFCs6VK/OedYqLjo7u3r07EU2aNEmQAQs2nnk3bNgwxphUKtXQ0BCJREr9Oz148CARde3aVXlTfIs3FQ8KEnhYqVTKiwNWrVoV7XkV9PbtW34bZtmyZbm73SuvdOnSenp68sl0fn5+Sq2evHPnTvls+iZNmigS2+KGDx+uvAVD06ZNieiff/7hD3///XcDA4OfdygVSu3atYlI8PQoX99MkYiJxczPT9iBC4etW5mTE5s8mU2ezFxc2IwZrFq1f7979iwbPpzVrv2doplEjOhU06Y/+kMuVaqUrq5uZGSkbLCLFy8q9Z22e/fu5OR/NxY3b95ckTt/XCHtS+Hry/T0GBHr2vVLs/XERNamTYqlZe1Klfz9/RUcvm1bFhXFHj9mzZoxGxsB1qug16/Zzp1MVo5xxYrvF5HIyGChoezkSbZy5erRo0e3bt26SpUqWfphlilTxsjI6O3bt6pcP2Osc+fOROTp6aniefOgjIwMHnOUbYYeOXIkETVo0EDwKsf79u0jogoVKqSmpjLG/vnnHyKysrISaqKkpCR+f1r1dQILod9/DylZUsL3B3/8yLS0mKYmy1297SZNmtDXQpH379/nB0QlXWbyMlZisVhWl5LvdhWLxVOnTp0xY0bTpk2zNBUoV65c7969V61adffu3V++Vw8fPszvHuWjaqI/vNnVq1ev5cuXb968uUGDBrz9q2p4e3sT0YgRI3hXccFNnz79zp07hw4d6tat29WrV79tIpFTr19T2bKkqUlbt9KqVdStmyDLzAEdHeLH1tGjad8+UvB2o6Gh4aFDh+zt7fft29ewYUNeWDNfaNOmTc2aNe/du7d///5+/fqNGDFiwYIFZ86cuXfvHq8hm1OpqXT/PonFVLeu4Iv9hSNHjmRmZrZv397Y2Dh3I5QsWfLUqVONGzc+f/784MGDd+7caWZmdvbsWScnpz179pQvX/5///ufsGsuJNLS0i5cuCASidq1a0dEx44dY4y1adNGW1tbqfOePn06LS3NycmpePHiSplg4MDtiYnnxoy5OHKkkZFR7m4XR0VF+fv7BwQEBAYG3rlzRyqV8s6faWlp2FTxc/L55klJSVKp1MDAgHcAU8GMKmNkREQUFyfwsCKRaMuWLWFhYbdu3erVq9fJkyezXHBC9k2dOjUxMbF79+4TJ06Mi4t78eLFy5cvx44dW6FChVyMNnv27MDAwFmzZq1bt46IvLy8Jk6c6Orq6uPjI/TCiYiOHz/+22+/LVu2LDg4WCQSXb16NSAgQEdHZ+fOnbwqfe7kOscfvistLS30q9u3b1+5ckVfX79v3778u2vWrPluhzfBXbt27e7du7LcTwF17CieMYPmzaNevSg4mKpUEXb4QqBtW5o6lYhozx569oyIKC7uy/EjJISqVaNhwyg+/rs/Wk1Lyy8j47vfmjdv3pUrV2bMmLFx40YiWrNmzZgxYzp37nzkyBFl/BJnz57t27evra3t3bt3NTQ0bt26dfnyZbFYvHXr1nLlyuV62LJlywq4yPxhxw4aMoQyM2nUKFq9mjQ0KDqa2renmzd1TU1vnj2rWaOGIPNUq0aNGlFeuDyqUIHu36fdu6lpU6pbl27coKZNqWhReviQHj2i58+//PfoEaWkEBGVK7crIuIq/1lNTU0LCwtLS0srKysLC4vdu3dfvXq1e/fuly9fVtmpeFRU1MmTJ7W0tAYMGKCaGfMyTU3NTZs21a9ff8WKFT169GjcuPHixYtPnDhx/fr11atXjx8/XqiJJBIJT2+fMWOGjo5Oeno6b28wf/58oc6K9fX1N2zY0KJFi7lz53bp0gWbSpUnOjp6w4Z6YrG2q2skUZEDB1hGhqh9eypVKjejdezY0d/f/9ixYz169KhRo4a5uXl4ePjNmzcbNGgg7LK3bds2YcIEkUi0YcOGHj16ENHOnTvHjh0rEonWrVvH+xkQUWZmZkhICI8YXLp0KSIiYu/evXv37iUiQ0PDhg0bypLf9f67zefcuXO9e/fOzMycP3++4llBqvOTYPyuXbuISEtLKzAwUDXh/9evX/NC/kotLhYfH8/bRwhSDblcObZ4MWOMSaXM1lbx8XLMw4MtWMCETXs9cuSISCTi20+EHFfJ+Dl03a+9nMeMGUNEQ4cOzd1ogYGMiNWqJdjyso8Hc3m5t6ioqN27d+euAVdwcHCRIkWIyN3dnT9z4cIFfr6Vj+4K5im8rku9evX4Q16ZSgXNLXh1r8X8s0Zp5s6dyz/z+Y2E7Hj69OnGjRsHDBhQ5b9BBT09vRo1avD7pk2aNFFWYn5Bwf/Pz5gxgzEWGRlJRKVKlVLqjDzdYNSoUUqdJQve/GfvXqUM/vLly1KlShHRn3/+qZQJCoGrV6+KRCIdHR1e0vrRo0daWlpisfju3bu5G/Dx48daWloaGhrBwcGMsbdv3/JiDso4tUhLS+P7ury8vBhjEonE3t6eiGbNmiX4XJBNGRkZ4eHhfn5+3t7e7u7uLi4uZmZmWa78S5curaur+0DF7Y8YGzJkCCmt/5tEwjp0YESsdm2mWB+EwufbGu7btrFOndiFC2zrVmZnxz5/zt3AYWFhOjo6GhoaN27cYIxFRUXxwhqnT58Wau0yGRkZNWrUICLexlMqlTo6OpJA7XkLl8+fWenSjIh5eHx5JiKC2doyIlalChOo+8KKFV86piYlsd9/F2RIRbm7s7VrmaMjy8xk/fqxxYu/s6NDQ4NVrsycndm0aduXLVt2/Pjxp0+fZul+ERMTY2ZmRkQjRoxQ2eJ5OQFXV1eVzZj38aYy1apV47nn/HJSX19fwE0227dvJ6LKlSvzXdcrV64koho1agieyDx82DBvB4f0Vq3U1ly4EFi7di0RtW/fnj90dnZp2PB/+/ZF5W60x48fE1Hx4sV5/vjYsWOJaPr06YItlzHG2MGDB/kJ3vLly/kzR44c4dnoP2/UHB4evm3bNjc3N2tra/mUa01NTTs7u3Hjxvn4+Hz8+DEoKIhfRIwfP17YlSvbzwLujLHRo0cTUYUKFVTQXoMxNmPGDCL67bfflD3RvXv3+D/YunXrFByqdm3WtCl7+VI9AfeEBFakCCNiDx8KPPJff/3FL4RUvw0t11JTU3nVFH4x//z5c37/Rn4DafYFBLDmzZnye2Fm9fnzZ21tbbFYzP/oeFyse/fuuRvt/PnzPMK+7OvWxD179vCCFdu2bRNs0YXG77//TkQeHh6MsdTUVD09PQ0NjaioXB7/skkikfA39kPB/86/4e7uzsPlFy5c+NFiHjx44O3t3b9//4oVK8rHTQwNDZ2dnT08PPz8/HhVh0mTJvFvmZubP3nyRNmLz7/4//ZFixYxxsLCwojIzMxMqTPyrpiTJ09W6ixZDBvGiL7UQFOGWbNm8RO1pUuXKmuOgksqlfJUF9kpeNu2bRW/K8P3yTk6OvI6gXPmzCGi2rVrC76Tmm/bql69Og83bNq0iYjKlSunlgaJhZBEInnx4sXZs2fXrFkzYcKE9u3bW1pafrfGq5aWlpWVlYuLyx9//LFu3TpeednS0lKV9aA+f/5sYGAgEomePn2qpCliY5mFBSNiyr+mKViePmW3b3/5OjSU8e58t26xv/9mmzfnOtrOTZ48mYgaNWrEP4548Ulra2vBO/TyGrXm5uY8uMYDYaVLl85d9kxhd+sWk12tP37MKlZkRKxGDRYRIew8v//OypdnCtenEYa7Oztzhs2cydasYf36sT17WNmyrFkzNnw4+9//2KFD7MEDlpqaraHu3r3L9wwJVTTy5yQSSeXKlYno7NmzKpguv0hNTa1evToRzZ49mz/Tu3dvImrRooUgVZQzMzOrVq0qSwJLSUnhO2mOHDmi+OBZSD99YqamjIitXi344MDxIjA7duxgjL1+/VpDQ0NfXz8hISHXA/KUlICAAMbY2bNniahmzZqCLZexs2fP8ogTv5hljJ07d443cJozZ072x4mIiNi3b9/YsWPr1Kkjn58hEol48NbNzU1JhceV5xcB9/T0dP7v3aJFC8GvjrLIyMjgG+UUr8WWHbt37+bn/fydl31paezxY3bsGFu2jF26xOrUYYGBrFMn9QTc161jRKx5c+FHzszMbN26NT8xVXZ9agHxvVSdO3fmD7t06VKqVKkfhQ5/5J9/2NdqosLvHvglfl7esmVL/pB3m9mlQHOA3bt38wj79u3b+TM8iK+lpaWMvJ6CjZ9Eyvqzv379WgXdsa9du0ZEVapUUfZEjDGpVDpq1CiediH7KM7IyAgODvby8nJ1dTUxMcmSnOji4uLp6env7//tJWtGRkbTrwVVTUxMLl++rIJfIT/i97ZXrVrFGLt7967gp0HfmjVrlvx5v2pMmsSI2P/+p5TBExISZNW6xWLx2rVr890JmXpt27aNiMqUKcNDQr6+vkRkbGz88eNHRYb99OkT/3fhxRyTk5P5p6i3oDde3r9/b2RkRESnTp1ijMXHx5uamip46ITsePXqVdeuXW1sbL5brEAsFlepUqV169ajR49esWLFyZMnQ0NDMzIy5EdISUnh9W1dXFxU1mCGnwW1aNFCqbPcu8cMDBgRW7NGqfNAdsk+GXbv3s0YS0tL403dVwsaNoqJieHV/3x9fRljSUlJPDtBBbshC5QHD9jhwywk5N9nbt5kJUsyIubkpOCtl+/67TdGxDZvFnzg3OAB9+RkVq8ea9eO5Xab2Rc7duwgIh0dHb69Q6lOnTrFr1nQMCyLy5cvi0QibW1tvqPr48eP/OxIkE8Gvsvf0tKSH2GXLFlCRHZ2dso6Ez52jBExAwP2/LlSxi/ceIRdV1eXn5DzhBIF2yvyAiy85kF6enqxYsWI6MWLF4IsODAwkEfDZbu4rl69ysuWjh07NtfDJiQk+Pv7e3p6uri4GBoali5dOp9+sPwi4M4Yi4yM5Gcnyt4Hx3u4Va9eXWUXyePGjSMiU1PTd+/effcFKSkpDx48OHJEunQpGzmSOTuzypWZWPzvZq5x41idOowxNmQIO3JEDQF33tVTSTv0o6Oj+YXxuHHjlDKBEnz48EFPT08kEj1+/JgxFhERId8/LZuGD2dmZoynPbVrx16/FnyZP8P7zKxdu5Yx9vHjR01NTR0dnc+KnVny466WltaZM2f4MzzNp0iRIrdu3RJg0YVDWFiYWCw2NjZWcSBv5syZqvwzlEqlQ4cO5W+P4cOHN2vWLEsBtSpVqgwYMGDjxo3ZyQ2MioqSlRzlxZRV8CvkOwMHDiSiLVu2MMYCAgKIqHHjxkqdkZ94qTgTfO5cRsSE3sL4xcKFC7ME+wSpGldIJCQk8L9Tfl82S3kWBfEC7hUqVEhKSmJfm3qVLFlSwIzmYcOG8Ygtf8i36MnyWEF5Pn78KPuLMzY2trOz69+/v6enp4+PT3BwcDa3F7x8+ZI3k8xRGpQi6tSpQ0R79uxR9kS7dzMipqPD3rxR9lSQLTwsVb58ef7mPHz4MH/rClj4jmctyPJmpk+fziNf+TFMoDbTp7Pevdnmzey339gffzDGWEwMMzJiRKxTJybXilZAc+YwIpZHqv7wgDtj7NgxpqGhaMCdfd2hq4KiBd26dSOihbLCUCAnS7tUnmNnYmKi4Fbp9PR0XtiT30pMTEzkJRZ5CoKy9OjBiFi7dkqcorDiEfaePXvyh/yMRcHNChcvXiQia2tr/pB3axPkZvOdO3d4+F62I/bevXs8P2/gwIFCnYe/fftWQ0NDT08vKR/W6ft1wJ0xFhgYqKWlJRKJZN1mlYHnU69cuVJ5U2SRlJTk5ORERM2bN09KSpIVmhw3bpyzs7Os0GSZMpnyFdM0NZmFBWvblo0Zw44e/RJw//iRNWig6oD79euMiJUokd09Zbma4jrPWspHeRm8IcPo0aNz+oOJiezxY3b3Lhs+nG3axFq3ZlKpqgPuCQkJvEpJREQEY2z9+vVE1KFDB8VH5sU9ZBF2qVTKy4KXLFlSeVuqCx6++V3YZKhf4gda2c0SFcjMzOzZsyePgHBmZmb9+/f39vbOxc3woKAgWVNZkUjkISvECV91796diPhuidOnTxNR69atlToj74X+j2wvj0qsWMGI2Jgxwo8cFxf3bT9hU1NT4WcqoCIWL25vZmZvb8/PjPk92mrVqglSaSEzM7NWrVpENH/+fP4M3/jyBw+jKOz27dtisVhbW5vXrQoPD+eVmq9fvy7I+PBzBw8evHPnjoKle/z8/MRisYaGxvHjx4Va2I/cuHGDiIoXL56qvLNnOTNmsMOH2d27jP8xSSTs8WP28SOT3W+KjmaxsYwx9oPkHxCSRCKpX78+fa0NyL5efiqShSfv4cOHmpqampqa9+/fZ4y9fv1aX19fJBKpZvd2AfHyJWvQ4N+HTk6M1yTctIkNHsz+u0VGQPz2WI8eSho+Zw4cYLLGFsuWCfDhICta0Lx58wyl/T+MjIzU0tLS1NSMELrgT8EQFxfHW9DLshk6duwoH1rNHb5ny8bGht/VW7BggQoSd1hkJDMxYUQMqVRC4xf+hw8fZl/LrxcrVkzBM5bMzEx+ofTs2TP29WZPmzZtFFzq06dP+d2dfv368bdfaGgoL4TbtWtXYT9qeGcmvnUsf8lWwJ0xtnTpUh6te/TokTLW8fz5c37XIpafdarEvHnzrK2tjY2NNTQ06Hu0tbWtrKyGDPk4fjxbtYqdOsVCQ1mWy08ecGeM/fOPqgPuQ4YwIqachk//4k0b9PT0bsuKKuZtT5484YWuvk1XyczMjIiIuHHjxokTH1etYtOns4EDWatWzNqaFS365YaKrS0bPpzdvMnGjmU7d6o64M5T/5o0acIftmnThog2C7G/USqV8izakiVL8o/a9PR0XqLX3Nxc2VXIC4wtW7aIRCLefVs1M0ZERPCyZbnYq6GItLS0V69eubu7Hz16VPHML34EkRk8eLDgJVPzNf6XePLkScbYgQMHiKhbt25KnbFv3770tTigymzdyohY//7Cj8y7zmaBSu7Z9fw509Vl2tqRN24wufIs/A0piAsXLhCRvr7+q1evGGN37twRi8VaWlqCtHbgmROyZrl8l9jgwYMVHxlUiccIihUrFipQI8Qf4WkZKu6uXLz4l1agycmsfn22eDHbtOnLt5YvZ//8w+Lj2cyZTLXH+UIqMDBQJBLp6em9fPmSfQ2Ri8Xie/fuKT44D9/LtiT26NGDVNKcrEA5efI/rUv//JMdOKCCaW/eZESsVi0VTPVrHh6saFEm7KVGZGQkr+utvE8//jGu7DPYfC1Lu9RXr14VKVKEiA4dOpS7AVNSUsqXL09EBw8eZIx9/vyZJxefP39eyHV/1+bNjIgVL87ev1f6XIVGlgg7b300ZMgQxUfu06cPfe1oGhMTw4soxMfH53rA8PBwvju2U6dOPLb+5s0bXh6jVatWguc08G7Mw4cPF3ZYFchuwJ0x1rNnTyKqWrWqMlq+8N7NgwYNEnzkH5H19PDy8lq5cqWmpma5cuWcnZ3d3Nz4ZtgHDx5k57aMrKWoRMJev2aLFrHFi5W7cu7zZ2ZgwEQi9uyZ0ucaMmQIEVlYWKiypZUi2rVrR0Surq6LFi0aO3Zsly5dGjRoUK5cOd4omYgcHHZ82+1dV5eZmzMXly8B98+fmZ0dc3JSacCd/5Xx+96fPn3S1tbW1NRUsISuTHp6Oo/gyyLsSUlJjRo1IiI7OztFGnEUKrztu1gs3qukWk7/5e3tze8Sq2Au5ZFKpfyyU6ZVq1YKFkoqSBwdHYnoypUrjLGtW7cS0YABA5Q6Iw9K8uwJlfH1Ta5UKXTwYIEPWp8/fzY2Ns4Sbe/du7ewsxRk3boxIvb1LXd2+nRtsViQnVXy+DaO/l/vt/Cgp+Kz7N27l4hKlSrFP0/Onz/Ps0N+VCoQ8izZYcLW1lZ5rW4TEhJ4dENJ+UM/Urs2a9aMPX/+/YD76tVs2zbWvTvLYVcpyCXerlB2mOBtVBSv6c+Lo5qYmPA0BX9/f5FIJLvRCNl15QqTDwiMGsVU0nEqLo4RMX19lhdKkdWsyYiY4FtbZVtOlXEJI5VKLSwsSNmVTPK/LO1SV61aRUSmpqa5yzpdvnw5P27y/GIPDw/51D2la92aEbG+fVU0XSHAm2zJbtMmJyfv379fkLTX69evnzhxQpbAx689+X2aXIiIiDAzM+PvZD7mhw8fqlWrRkSNGzdWxlkcb3Jmamqa78pF5iDgnpCQYGNjQ7mt2S+RSF69enX+/Hlvb+/Jkyc/kG2UYiw9PZ2Xib969WouRs6d48eP88ijRCKRSCTjx48nuf3OuXPtGtPQYGIx8/MTapk/tGoVI2LOzkqfiKmppZUizp49y3dsfatMmTJ16tQZPdpnxAg2Zw7btImdPMnu3/9PZ1QecGeM7dzJRCLVBdxTUlKKFCkiEon4qTlvYdeqVSsBp4iPj+f/lPXr1+e9cN+/f29ubi4SiVRQzLTA4HebtbS0VLD5vVOnTkS0ceNGZU+kbAkJCdbW1vJ/jDY2Njy/DGrXrk1E/HRq9erVJFcIT0latmxJRH4qOFbJ4WnOTZs2FXZYfm4qT6kBu4LmwoUvMQZ+qLt9m2loJNnYhAtdauzVq1fypRXev3/Paz4qkkcva8HKtxxlZmba2toSkaenp2DrBhWSHSaUd8Psn3/+Ucan0C/VqcOuXWMdOvwbcG/fnk2ZwqZMYc7OjBf3unBBxYsqvN68ecM7vPFe7rGxsXyv/dGjR3M9pqwF65o1axhjEomEn2/PmzdPsHUXEgkJzMaG8VLjMTGsRg2mqnyvUqUY0b+5dOry4gUjYkZGLC1N+MF52pCBgQGvepQLCQkJt2/f3rdv36pVq+SfP3PmDBFVrFiRFyiHH8nSLlUikfDQZy5SdxMTE0uXLk1Ex44dY4x9+vSJn1nxTzZVeP6cGRgwOzuGvD2BhIaGlitXrnTp0sqOi44dO5b/wc6fP//y5cvJOeyN8fDhQ1NT04YNG/KUzc+fP/NKOLVq1VJehi4/57/J43T5Rw4C7oyxp0+f8o3Gy5Yt+/krY2Nj/f39vb293d3dXV1d7ezs+JmNzCZZasfXMho1a9bMzW+QW7xm1v/+9z/GWHJyMt99o3gDyVmzGBEzMVF60+ZevR7o6zNlFtX/D1lLKwXvSaiGVCpNTU3t16/fn3/+6eXl5ePjExAQ8PLly7TsnbkcPPilvZVUyhYuZCdOMAcHpoJaR7x3k729PX/II62CF1n+8OFD1apVF8ttxFi3bp1IJFJ2gK+AcXd3JyI9Pb2LFy8qb5aUlBQDAwORSFQwiiE+efKkaNGiWW6A5bujpjLwnCBe62nx4sVENHnyZKXO2KBBAxXf5GaM3bp1i4hq164t4JiyqwsZY2NjZZekKDgyM7/k0S1Y8OUZJydGxJSz3zxL80BeaUqRSvGzZ8/m7yh+ec/TxMzMzFRTmxuU4cmTJ/xC4++//1bG+DwGqvr23bz+5PDhbNeuLwH3uXPZvXvs3j32119Mtd00gLGveaB16tThH0crVqzgaVi5/vTgxTSsra359mh+a0fWLBpyxt+ftWjBXFxY8+aqvBPl6MiImDLP67Pl77+VmzQ8ePBgIrK0tPxlXCwtLY23uPPy8nJzc+Mt7mSVeDU1NeUP33yLEu4wZUeWdqlPnjzR1dUViUQ5zYN5+PChlZVVg689D3jFCMULc+fMzZssI4P5+TEPD7ZqFROuAXXh9O7dO95oREdHR0lN4zIyMmbPnq2pqamvry+7etLU1LSzsxs3bpyPj082iyuEh4fzbRlJSUn8ppGVlZVSyxTz5s+zZs1S3hTKkLOAO2PsyJEjIpFIU1Pz0qVLWb41efLkDh06VK1aVdYfL4uyZcs6OTkNGTJk4cKF8pXyWrRoQURr165V9LfJtjdv3vAWW+/fv2dfU4llgU5FSCSsfXtGxGrXVlITdcYYCwwMJCJLy/qqLIMsa2klYF3XvE8iYXXqMCLWtKnSa2v+9ttvRMRD4bLuqcrYF5/lHiav5ox6xzkilUpHjRrFk0SU1wuLV/qrX7++ksZXPV7/QZ6+vr6CjdcLAN5ehv+xP3z40NvbW9n9Hvl+tVznN+VOWFgYEVWpUkXAMadNmyb/dlJN08WCY+1aRsSqVPlyeNu7lxGxUqWYcso9JSUl8c1n27ZtY4ylp6dXrVo1Ozkc3yXLUeWno7GxsTwtAJ8n+Z3sQiPX97NjY2OvX7++c+fOOXPmyG895vuRixcvruKeKOxrwD06mtWt+/0a7qBiycnJlSpVoq87CDMyMvj+mMW5KgwaFRXF8wl4f/u4uDh+WN+vssQoEMLgwYyIeXureRlNmjAi5uOjrPF/snP99evXy5YtGzVqlLOzc6VKlb7b5U5XV9fW1rZbt27u7u6yAtBRUVG8XepbtW8QyCeytEudN29emTJlclGNJyMjg/8///jxIy+Ydu3aNYHX+ktLlrCBA9mNG2zfPla7Nnv7lnl6Mk9Plh/qIuRBGRkZPLGPiLp27SpsCdbw8HAeHBeJRG5ubjt37hw7dmzt2rXFYrHsb1wkEtnY2IwYMWLHjh0vXrz4+YBpaWm8ZHHFihWVXT/t1KlT/E65UmcRXI4D7oyxv/76i4hKly6d5SOV5+hxxsbGdnZ2rq6uHh4ePj4+wcHBPyrJHxYWxlsCKqM0/I/wvIY+ffrwh40bN6b/Jt0rIjaWmZkxIqa8mv4DBgwgomnTpilrgh/glTQUr3KYv7x9yypWZESsUyemvE1y6enpvAwxz83cs2cPETk5OSlrvq9SU1N5Nhlv3gLZJ5VKhw4dSkRGRkaKb45JTEw8d+5clrQ7fiN39uzZCg6ep/AtbPLEYnEhLwFhaGhIRIo0rskpHmj45VmUsD5+/EhEJiYmQg0YHR3Nry5k5s6dK9TgBV9sLCtRghF96UeXnMwqV2ZEbP165c3J8xtKly7NT/l4cb+iRYvmIiOGd3+SFTkcM2ZMITw/KaimTp3KI+O//IxKTU0NDw/39fX19PSUJWDKfyZERkbKXjxixAgimjhxonJX/z2yy8MNG74TcF+yhM2cyYYMYWFhql9a4bV7926S6wBx7tw5ym0HCH5dJusVOXHiRCJycHDId6VmC7nVq89Vq9Zn6lR15mh//MjEYqajw5R6SijbuT5nzhz55y9fviz/+amlpWVmZiZrcefr6xseHv7dijGenp5E1KVLFyUuumDJ0i41PT09dzXcZf744w8i6tSpk0ALzAlzcybbG+TpyVasUMMaCpzDhw/zLbxWVlYhISGKDyiVSr29vfklZ8WKFS/8d/NQQkKCv7+/p6ens7Oznp6e/OeAqampi4uLp6env79/lj2pmZmZfGtL2bJlVRBKSk1N5eWX3/BiFPlEbgLumZmZvAl7w4YN5Wt0HDhw4PDhw/fv3/9l5sibN28uXry4YcMGd3d3Xlx/2LBhuVhJ7mRmZlasWJG+ZkU9evSIh8wELPl69y7T12dETBmFlz99+sQLoYap/MRcIpEsW7asEO6OfPiQmZgwIjZihLKmOHnyJMkVW+AfXiuUf8Q6duwYEdWtW1fZExVImZmZvM9tyZIlc9GBLT4+3s/Pz8PDw9nZWUdHh9+qlE824aXKgoODBV21mqWnp/Nb61m4ubllp091wSOVSjU0NEQikZKqXiYkJHh6ejo6Osq/tXi9WqEaMmdTeno6EWlqagoVg+C3/2U6duyYL7qM5BXjxzMi1rz5l4ezZ3/ZnafM6qtSqdTBwUE+Y6Bt27ZENGPGjByN8/TpUw0NDT09Pd4H4uHDh1paWmKxWH73JORfEomkXbt2RFSnTp0se/KioqL+97//DR8+vFmzZmXLlv32UMJjpnXr1u3Vq9eMGTM+8ErQjCUmJvIcZPkmUiojyymSSll8PEtPZ7LDHf86KopNn84eP1b90go1JycnkqvhxnNO3d3dczRIeHi4WCzW0dHh12WhoaHa2toaGhoF7OStMNi/fz8Rde7cWY1r2LiRETGh25Z/h2znuvy+wI8fP44ePXrFihWnTp0KCwv7+Wm5rJj7vHnzeG1ebDHMEQXbpcp79+4djw7duXNHiKXlREwMkw8jHD3Kxo1T9RoKqGfPntWqVYuIdHV11yuWDRMVFeXi4sLPkVxdXX/+lsvIyAgODvby8nJ1deX9BmQMDQ2dnZ09PDz8/PySkpKGDBlCRCVKlFDZmVW3bt2IaN26daqZThC5CbgzxqKjo3kkaNyv/qJiY2ODg4O3bdsmK+aeJR+NiKZPn67K098jR44QUdWqVfk1P8+KGjNmjLCzbNnCiJiuLrt1S+CyL15eXkTUtm1bYYeFn7t69ctNFCUVsee50rzyXXJyMq/c/Vr5DVsHDRpERAtkBXwhh9LS0tq3b09E5cuXf56N1g0RERF79uwZPXq0ra2t/FZNTU3NevXqTZw4UXbnLyQkhPJnM+5fioyM5I2ys2jTpo0qs7zziIyMjOnTp+vq6jZt2pSXcRdKUlLS4sWLeWydiM6dOyf7Fr/Bk9MOOYrjSROC3N7++PEjT9PgLC0thd10WfAFB7OmTdndu4wx9uYNMzBgROybaoFKmDZYQ0NDW1ubv9sfPXq0bNmyXJRxDwgI4L1SGWN8N6vgJ3KgRrGxsTxXfcCAAfLPP3v2TP6ooa2tzRMwx40b5+3t7efnFx4e/t2D5oYNG4jI0dFRVb9Bzrx7xxYsYOhpomK3b9/mH0dPnz5ljD179mzJkiXZbPgkLygoyPtrIRJ+r2iE8jJ0QGn4ibe1tbUa1+DiouydZv/ijQeKFSv2y843Py/mTkTFixefNm0a2qXmiCLtUrmEhISoqKiwsDC+569Hjx7CrjBbMjOZufm/D9evV1aspFBKTk7mTResrFyHD5fk7rrt6NEwfjFYokSJgwcP5uhnpVIpL3bav3//KlWqyJ+AaWpqElHRokVV2Y9ty5YtRNS+fXuVzai4XAbcGWPXr1/nV+y8w3JmZuaLFy/8/PzWrVs3adKkzp0729jY6OrqfhtSIaLSpUs7ODgMGjRo/vz5e/fuVWpx/W9FDhu2rFGjNV5ejLHk5GRex0MZ9wNHjmQODtusrKoKm0XIa+8ePnxYwDEhO3x9maYmE4mE37iQmZnJ7x/yLOlDhw4RUcOGDQWe5hsZGRl8R+FjZFUpIDk5uWnTpkRkbm7+3e6mERERPj4+bm5u1tbWIpFI/kBlZ2fn7u7u6+v7becifh6syt0/qnT+/Hn5anEyfyqnW2Med/78eZ4cZGBgsHz5csWvWNLS0ry9vWXpn40bN5bfOfjw4UMiEovFCs6SC7ysrSBNgPnmWc7Q0FAtWasFR58+jIh9Lc+ibFnKLyiIZ1EYGxureMcGKNvdu3d5Ry/5xK709PSJEyeuXbvWz8/v5cuXP9/UIivmPmvWLH6Xl/cPyGtev2be3mzKFKa0jjDwQzzfpWPHjoKMxlvvFC1aVL6WEeQXSUlJIpFIR0dHXYHjxMTEli3XlC37VjVvH6lUyndU29rayjIh0tPTnz59evz48ewUc69Ro0bXrl3/+uuvDRs2FLz0IBWQtUvdvn37rVu3Ll++fPLkSR8fH29v72XLls2bN8/d3d3Nza1fv36dO3d2dna2s7OrWrVq+fLlefxKpkiRIpqamooXOM2lAQO+VEn7+JHVq8d+df8GcmrLlq3VqqUSsZo12dOnOfjBuDjm5sZEImn9+h3atGmj+PVXZGSkr6+vu7u7g4ODtrb21KlTv+3rqVQfPnzgW8oSEhJUOa8ich9wZ4ytW7eOiHR0dCwtLXnw/VumpqayRqk+Pj63b99WcwLjq1dfSqN9+MAY27N1Kw9GKGOqtLSMBg0aEFHr1q2FOnJfuXKF/1/NRToYKO6ffxgR09dnp0/fEXBYXjiyatWq/GG/fv2IaMmSJQJO8V1nz54loho1aih7ogIvLi6OtxSvWrVqljuIWdLxihYt2q5duwULFvj7+6fKCt59Jb+HS09PT1tbm5f2K5AWLVqEgLvM+/fv+/fvz/8n1K5dO9db0SUSiY+Pj6yKsb29va+vr+y7r169cnNz09TU1NLS2rVrl0BrzwHeJDMX9ZeyiIyM5JE4IhKJRPv27RNkeYVFQgKbMIG1b89cXNiRI0wqZbNns+LF2cuXqplf1mDw7NmzCg6VlpZmZWVFRKtWrRJkbZCn7Ny5k4i0tLQCAgJ+/spfFnMXi8WzZ89W/baebHr7luWrkqQFx/v373kro1y0K8xCwUbQkBeUK1eOVN7hRobXtHFwcFDZjHFxcby6r42NTbt27SwsLHjWahZaWlpWVlYuLi5//PHHunXr+P1ORNgFMW/evO/+P88OfX39UqVKmZmZ8fzlv/76Sz2/Q2Ii++sv5uLCunZlly+rZw0F3aNHzMaGEbEiRdiePdn6kfPnWYUKjIgZGLCNGxME/4NVV8i7UaNGRHTkyBG1zJ4LCgXcGWNjx4797bff+N/8t41SVdkHNbumT2dErH//Lw8bNfpoZxe0d6+SZnv37h3PqZk+fbogA/JQ7MyZMwUZDXJh7tz0OnUm6evrBwUFCTXmqFGj5P9Z7927N3PmTBWc7fEGYh4eHsqeqDD49OlT7dq1ebQ0S2W0WrVqde/e3cvL69atW9/ee0tMTPTz85s1a1azZs2ydCk5evTot0H5AkMqlXbu3Fn+923Xrl2ejYaoxokTJ3iLEU1NTXd39182RJHHQ+08+MivnXx8fGRnV2/fvh01apS2tja/cBo5cqSK95ZxDRo00NTUrFWrlru7u5+fX67vHMu33p0yZYqwiyz4Bg36slErPp45OHwpY6Ha7izz58/n71IFOzfwRm3Vq1dHFkJBxQs/mpqaylpZpqamPnjw4NChQ4sXLx42bFjTpk1/Wcx9+vTp27ZtK8DHU1DE4sWLBfkY+fvvv4nIwsIC77T8q3nz5iTEzeDcUVnGlbwnT56Ym5vzk0/O1NRU1ijVx8fnwYMHhbPHkmqkp6ffvn3bzMysdu3ajo6Obdq0cXV1HTZs2Pjx46dPn+7p6blu3bodO3YcOnTIz8/vxo0bjx49evXqVWxsrHz89MaNG2KxWFNTU5XFPUDFEhK+7EclYm5u7CfHmZQU5u7ONDQYEWvQIGdJ8XnfwoULiWjo0KHqXkh2iRhjubifJu/du3cxMTEWFhZZQkV5UWYmVapE795RQAA5ONC9e1SrFhUrRhER9DVXTnAXL15s3bq1RCI5cOAAL/OfI4mJiWFhYeHh4WFhYY8fP969e7dUKg0PD69UqZIyVgvZMXbs2NWrVxcvXtzf37969eq5HufFixc3bty4cePGhg0bEhISgoOD7ezsBFznz0ml0nLlykVFRd27d8/W1lZl8xZgHz58aNq06ZMnTxo1anT27Fn5AtNZJCQkXL9+/dy5cwEBAcHBwWlpabJvmZmZOTg4ODo6tmrVKkuttILn8+fP9evXDwsLI6Lu3bvv3r2bR4QLs+Tk5Llz5y5dulQikZibm3t7e7ds2fKXP3Xu3LnJkyffvXuXiKpUqTJlypShQ4fyoj0xMTFLlixZuXJlSkqKhoZG9+7dFy5caGFhoexf5LsYY5UqVXrz5g1/WKxYsWbNmrVs2bJFixbW1tbZHOTdu3cWFhYpKSlE1LJlyzNnzny3PBF8H2Nkbk7h4cTLW+3dS3fvkqenileRmppqbW394sWLmjVr/iha+ksSiYRvFTpz5kzr1q2FXSHkERkZGS1atAgICKhSpYqFhUVoaOjr16+lUmmWl+nq6lpYWFjKsbKy+m6zEIAs0tPTbWxswsLCbG1teYJzLkgkksDAwOTk5OPHj3fo0EHYFYLKjBgxYv369atXrx49erSKp87IyChduvSnT5+ePn0qS55QDYlE4uvrq6GhUbVqVTMzM5yK50eTJk1atmxZzZo1g4ODtbS01L0cUJbt22nkSEpJobp1af9++u9ePiKi+/epf38KCSFNTZo0iebNowL2dnjw4IGtrW2pUqUiIyO/W+0qz1F3xF+1Dh5kRKx6dcZvCY4cyYjYhAnKnpanThQpUuTnlbJTUlK+3Q+b5W1Up06dzZs3K3vB8HOZmZn83kn58uVz1Nc0Li7O39+fFwwpXbq07J9VU1NTJBKNHTtWeWv+1qVLl4jI0tJSlZMWeK9fv+YNpZ2dnbOkJ0dGRvr4+IwbN87Ozk7+71osFltbW7u5ufn4+BTCGsQhISF9+/b9448/0GpJXlBQEG/XIRKJ+vfvHxMT86NX+vn51atXj7+XKlas6O3tLUtEio+P9/T05JvlRSKRi4tLSEiIqn6DH/r48aPsD0H+6FaqVClXV1dvb+9fbu7hW4KIqFKlSoXwT0ZRKSmsWrV/H549y3LbrUtBx44dUzyi4ezsPGPGDLWsH1QmKiqqZs2atWrV4v/oWlpavFEqT8D09fUNDw/HEQQUcerUKb6XQhHNmzefNm2aun8VUMiSJUuIaPz48aqfmtf5tLW1Vf3UUAAkJSXxZJqFCxeqey2gXDdvsipVGBEzMWFr1jBZyb29e9mCBUxb+0u8M7fVSfMBnpJ47do1dS8kWwTIcM9P2rShs2dp5UoaO5YSE6lcOYqPpwcPyMZGqdMyxnr16rV//35bW9urV68aGBh8+vRJlrceFhYWGhoaFhb24cOHb39WV1fX3Nzc0tLS3NzcwsLCxsamSZMmSl0tZEdKSkqbNm38/f1tbGz8/f2ztC6RSUtLu3Pnzo2vQkND5b9bunRpe3v7+vXr6+npzZw5MzU1deHChVOnTlXJb0Djxo1btWrV1KlT+cYcEEpYWJiTk1NkZGTnzp2XLFly9erVwMDAgICAR48eyV6jpaVVs2ZNZ2dnBweHJk2aFCtWTH3rhTwqIyNj2bJlHh4eaWlpZcqUWbVqFe9tJU8ikdja2j5+/LhUqVJ//PHHhAkTeD+VpKSk1atXL168+NOnT0Tk7Oy8ePHiunXrquHX+KnIyMiAgIBz586dOnVKlvZORDya5uDg4OzsnCX9+fXr11ZWVmlpabq6ugEBAarcFVRwVK9O169T0aJERMuWEWM0aZJaFvLx48fg4GBFRjA1NeW1vKBgk0qlFy9eTE9Pt7S0rFy5cq4r3gL8SExMzI0bNxQZoUyZMnXq1BFqPaAWR48e7dKlS40aNa5du2ZgYKDKqUePHr127dqZM2fOnTtXlfNCgXHp0qUWLVpoa2vfvn07+9tGIT+Kj6ehQ+ntW7KyoqtXKTiYihalVq2oUSOaP5+GD6dly0i1H2AqxaNY06dP5wUq87jCFHB//pwsLUlHhyIiyNiYNmwgNzdycqLLl1UweUJCgr29/ZMnT3i/05iYmG9fo6+vb/GN8uXLi/i+b8hj4uLinJyc7t275+TkdObMGV1dXf78u3fveID11q1bt27dSk1Nlf0ID7M6ODjY2dnZ2dlZW1vL/nF9fX27desmlUo3btw4ZMgQZS+efS3soOI6NoXE/fv3mzVr9vnzZ/lt70ZGRjy83qRJk/r162PDJmRHaGiom5sb34/i4uKybt268uXLy7/g2LFjYWFhI0eO5FXd0tPTt27d6uHhERUVRUQODg4LFy50cnJSx9pz5vnz5+e+4vcJOB58d3Z2bt26tZGRkZub24YNG4ho8+bNgwcPVt9687MtW+jYMZowgd68oWXL6Px5wj0/AAAo9GJiYpYuXerp6Vm2bNlFixb1799fNZfhjLGKFSu+ffv21q1beTA9AvKLYcOGbdq0qVGjRgEBAfmj2gbkFmMUH08TJlC5cpSYSF5e1KoVbdtGr19Tw4bqXpyS+fn5tW7dumbNmiEhIepey68VpoD7lCm0eDENGkRbthAR1atHt27Rrl3Ut69q5n/8+PGCBQsOHTqUkpKio6NTrlw5a2trGxsbs68qV66MT8b8JSIiwsHB4dWrVw4ODk2bNr158+aNGzfi4uJkL+DVQuzt7e3t7Rs0aGBjY/OTtCxvb++RI0eKxeIDBw506dJFqSu/evVq48aNK1eu/Pz5c9zRUYabN2/evn3bw8ODR9idnJxsbW1RaRpygTG2YcOGyZMnx8fHGxkZzZkzZ+zYsd8eLDIyMrZs2TJ37tyIiAgiatSo0bx587JT/z2vkUgkwcHBFy5cOH/+fFBQEK/VTkRaWlq1atW6c+eORCIZM2bMqlWr1LvO/O36dbp0iUxMqEcP+sEOLQAAgMImODh49OjRfLuDg4PDypUrVRABv3HjRoMGDSpWrPjy5Utcl0GuxcXF2djYRERErFmz5vfff1f3ckDpBg+mCRNo8mTy9CR3d9qxg8qUUfealC8jI6NkyZJxcXEvXrzgtXzzssIUcO/dm3x8KCiIGjak4GCqX5+KF6e3b+lrYrJq3Lp1q3z58vL1uyFfe/jwYZMmTYyNjZ8/f86fMTU1tfvK0dHxR9VmvmvmzJnz58/X09M7d+5c48aNlbNkIqI///zz77//njRp0tKlS5U3CwAIJTIycsyYMYcOHSIiR0fHDRs2VKtWjX9LKpUePHhw2rRpvP2sra3tzJkzXV1d1blcgWRmZoaEhPC09ytXrqSnp9eoUaNYsWIXLlxASygAAAAQHGPswIEDkyZNevPmjYaGRr9+/ZYsWaK8i/e4uLi+ffuePHly3LhxK1asUNIsUEgcO3asU6dORYoUefjwYYUKFdS9HFAuHnDX1qbffyexmHbuLBQBdyLq2bPn/v371dLgOqcKU8CdiMLDydyciGj4cNq4kf78k5YsUfeaIN979uxZeHh4QEAAz2Q3NTXN9VCMseHDh2/atKl48eIBAQGygJrgzM3Nnz9/HhQU1KhRIyVNAQCCO3bs2KhRoyIiInR1dd3d3adOnerr6ztz5synT58SkbW19ezZs3v06FEg06Pi4+MvX75cvXr1ChUq8FL1AAAAAMqQlJS0ZMkST0/PtLS0YsWKTZkyZeLEicIWhLx169b69et37dqVlJQ0ZMiQUaNG1atXT8DxoXDq0aPHwYMH27Vrd/LkSXWvBZSLB9xr1aKpU2nlSgoPLywB9+3btw8cOLBt27anTp1S91p+odAE3OPiaNkyCg0lc3P64w+6cIFWrKCNG8nKSt0rA/gPiUTSs2fPQ4cOlS9fPigoSBm3pm/fvm1nZ1emTJmIiAhUMQLIX2JjYydNmrRt2zbGmImJSWxsLBFZWlp6eHj06dMHf9EAAAAAgggNDf3jjz+OHz9ORFZWVsuXL2/fvr2CY757927btm1btmwJDQ0lIg0NjebNm8+aNStfdNyBvC8qKsra2vrTp0+7du3qq6riyaAWs2dTv35kaUlJSdSxI+3fT8WLq3tNKhETE3PmzJl27drlqJiEWhSOK3OplDp0oNq1af16qleP2ralLl3oyhVE2yEPEovFO3fudHR0fPv2bfv27eWbB+ZUZmbm3bt3vb29582bJ//8wYMHiahHjx6IzQHkOyYmJlu2bLl06ZKVlVW7du0qVKjg7e396NGjfv364S8aAAAAQCiWlpbHjh3z8/OztrZ+9uxZhw4dOnbsKKsjmiMSieTcuXM9e/asXLnytGnTQkNDy5Yt6+7u/uzZs3PnziHaDkIpU6YMrxk7bty4Dx8+qHs5oETFi5ORERGRgQG5ulJamroXpCrFixfv27dv3o+2U2HJcA8OpkWL6ODBLw/79KExY8jBQa1rAviZmJiYJk2aPH78uGnTpqdPn9bNdqeBd+/e3bp169atW4GBgUFBQcnJyUSkra0dHx8vK8JQvXr1J0+eXLx4sVmzZkpaPwAoW2pqKhFpaGgIu8EZAAAAAORlZGSsXbt21qxZ8fHx2traI0eOnD9/fpEiRbLzs8+ePdu9e/fmzZvfvHlDRNra2q1btx4wYEDXrl01NTWVvHAopNq0aXP27Nl+/frt3LlT3WsBZenYkZYtI0tLIqLu3WnuXLKxUfea4L8Kx0f8u3dUvvy/DytWpIgI9a0G4NeKFy/u5+fXuHHjy5cv9+7d++DBg2Kx+LuvjI2NvXnz5o2v5O9ji0QiKysrXlk+MzOTB9wfPHjw5MmTEiVKODo6quiXAQAlyP59OAAAAADINS0trfHjx/fs2XP27NkbN25cuXLlgQMHFi1a1L9//x81zklNTT127Nj69evPnz/PcxyrVas2aNCgwYMHlypVSrXLh0LH29vb1tZ2165dPXv27NSpk7qXA1BIFY4M99u3ae5cOnLky0NXV5o0iRo2VOeSALLh4cOHTZo0+fTp08iRI9etWyf/rdevX0+bNu3GjRu8/J9MqVKl7OV8u9Fm9uzZc+bMcXNz8/b2VvovAAAAAAAAUFAEBwePHz8+KCiIiOzt7VeuXNmgQQP5F9y6dWv79u07d+7kjXb09PRcXFzc3NxatmxZINvaQ960bNmySZMmlS1b9tGjR0a88ggULB07UlIS6esTEd26RefOIcM9zykcAXfGqHlz+v13at2aLlygZcvoyhVCrVvID65du9ayZcvk5OQFCxZMmzZN9nxsbGyJEiUYY1paWjVr1nRwcLCzs7Ozs7O2tv72TE6+zoy/v79UKj127FibNm1U+6sAAAAAAADkb4yxHTt2uLu7R0VFaWho9OvXb+nSpdra2j4+PuvWrbt79y5/mZ2dnZubW9++fQ0NDdW6XiiMpFJpkyZNgoKCRo8evXr1anUvB4SHkjJ5X+EIuBNRYiJ5edHTp2RpSRMmUNGi6l4QQHb5+vp2795dIpFs2LBh6NChsud37txpa2trY2Pzbfm/T58+3ZCTpc7MhQsXHB0dUTQQAAAAAAAgF+Lj4+fOnbty5cqMjAwDA4P09PSMjAwiKl269IABA4YMGVKtWjV1rxEKtfv379erVy8zM/PSpUtNmjRR93JAYAi4532FJuAOkJ+tX79+xIgRYrH4wIEDXbp0+fYFmZmZT58+DQwMDAgIuHXr1pMnT6RSqey7RkZG9evX51nwjRo1KlGihOqWDgAAAAAAUBCFhoZOnDhRJBKdOnWqefPmbm5uXbp00dLSUve6AIiIPDw85s6da2VlFRISgv5PBcyqVdSrF/GWEOvWUefOVLasutcE/4WAO0D+MGvWrHnz5unp6fn5+Tk4OBDRu3fvZBH2W7dupaamyl6cnTozAAAAAAAAoKDU1NTExERkNUFek5aWVrdu3UePHq1Zs+b3339X93IAChcE3AHyB8aYm5vbxo0bixYtWrt27Xv37n3+/Fn2XbFYXL16dXt7+wYNGtjb29eoUQMVYwAAAAAAAAAKratXr968eXPMmDEa6GIIoFoIuAPkGxKJpGfPnh8/fvT39yciU1NTu68cHR2NjY3VvUAAAAAAAAAAAIBCDQF3gPwkPT09Ojr6xo0b9vb2ZVGjCwAAAAAAAAAAIC9BwB0AAAAAAAAAAAAAQACo4gQAAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4P5VXBy9eEESibrXAQAAAAAAAAAAAAD5kqa6F5AHMEajRtHbt2RmRtev06pVZG+v7jUBAAAAAAAAAAAAQD6DgDvR0aMkkdDx40RE4eHUuzfdvKnuNQEAAAAAAAAAAABAPoOSMkRXr1Lbtl++Njen1FRKSlLrggAAAAAAAAAAAAAg/0GGO5FI9J/S7YypbykAAGoTmpJy8dMn/rWzsbGZnp561wMAAAAAAAAAkO8gw52ocWM6c+bL1+HhZGBABgZqXRAAgBqEpqTEZmY6GBk5GBmV0NJS93IAAAAAAAAAAPIfZLgTdexIJ09Sly5UuTJdu0arV6t7QQAA6lFKW9sGdxwBAAAAFPHiBU2YQBIJJSXRoEE0cKC6FwQAAAAqJWKFvIJKTAwdPEiVKpG9PX38SFpapK1NpUuTJm5FAEDhcjI2duO7d2V1dIhohYWFWCRS94oAAAAA8iEnJ1q6lOztKTWVWremlSupdm11rwkAAABUp9CHlZ89oxEjqEEDunaNjI2pZk26f5/u3qVatdS9MgAAVXMpUWJImTLqXgUAAABAvhUfTwkJZG9PRKSrS7/9RmfOIOAOAABQqBT6Gu5xcURERkbffwgAAAAAAACQTUlJpK//70MDA0pMVN9qAAAAQA0QcEfAHQCAiKikllZ5HR11rwIAAAAgPytThqKj/w2yX7+OzdMAAACFDQLuchF2xighgUQiKlJEvYuCQksqlcbHxx85ciQRiTCgcp8zM/e8f+8bHa3uhQAAAPzMzp07Fy5cqO5VAPyASESzZlGPHrRzJ82YQWFh1LWrutcEAAAAKoWAu1zAPSGBpFIyMEDHVFCL9PT0vn37NmrUqGvXriVLluzYseP27ds/f/6s7nVBYXE3MfF+UtKnzEx1LwQAAOBnnJ2dN2zYsGvXLnUvBOAbAQE0diyVLk1r1pCmJrVsSceOkVis7mUBQO6lpaU9e/bsxYsX6l4IgEBu3qR27ahTJ2rThgID1b2aAgsBd7mAO/+6WDE1LgcKrbi4uDZt2uzbt+/169d169ZNT08/fvz4wIEDS5cu3aFDh02bNsXExKh7jVDAPUhKIiIbAwN1LwQAAOBnypQpc+LEiT///DMoKEjdawH4r1OnaPVquniRzM2pUyfy8qK//1b3mgBAIfv3769ateqMGTPUvZB869EjOnaMnj5V9zqAiIiSkmjIENq4kXx9ads2GjHiSywUhIaAu1yQHQXcQU2ioqKaNWt26dIlU1NTf3//W7duvX//ftu2bS4uLoyxkydPDhs2rHTp0o6OjitWrHj37p261wsFUAZjocnJGkTV5dt8AQAA5BlHjx49deoU/9ra2nrLli3r1q1T75IAsrp2jYioQQMiops3ydeXfHzUuyIAUFCZMmWIKCoqSt0LyZ/++osWLKB372j6dJo9W92rAaLbt8nOjsqVIyIqU4acnL4cuUBoCLjLBdl57Q4E3EG1wsPDmzRpcvfu3erVq1+7dq127dpEVKJEiQEDBhw7diwqKopH3sVicWBg4IQJEypUqODo6Lh48eKwsDB1rx0KjmfJyemMVdHTM8CuZwBQzOLFdOTIl6/d3UkiUedioCApV67c4MGDQ0JC+MO2bdvu2LFDvUsC+A+plIKDib4G3HkIo2FDdS4JABSGgHvuPX1K16/Trl00YgTt308nT9KbN+peU6GXmEjym9oNDCghQX2rKcgKe8D9SpEix+zto01MiCglKelTsWIMAXdQoZs3bzZq1CgsLKxBgwZXrlypWLFilheYmJjwyPv79+99fHz69++vr68fGBg4ZcoUS0tLGxub2bNnP8XmLFDYQ9STAQCBBAbSjBkUG0tE5OdHjKl7QVBQ1KtXb+XKlZ07d/7w4YO610JSqZThzQ1ZPHhA8fFkZkalSxMRXb9O9DX4DgD5FgLuuXf//r+fgSIR1a9PDx6odUFAZG1Nd+78+zA4mGxt1beagqywB9xnPnjQ6caNB4aGRHQ4Jsbk8+e+CLiDqvj5+bVs2fLjx48dO3a8cOFCiRIl0tLSpk6d+t1GqcWKFXN1dd2+ffuHDx98fX379+9ftGjRR48ezZkzp1q1ajzy/ujRI5X/ElBAPEhOJqIaqCeTT0VG0q5dtHs34UoA8oYxY2jKFHUvAgqKoKAg2a6+nj17ent7m5iYqHE9SUlJixcvtrOza9eu3ezZs9PS0tS4GMhbsqS084A7MtwB8rnixYtra2t/+vQJH/g5ZmhISUn/PkxKIkND9a0GiIioUiVq3JiGDaP9+2nUKLK2pqpV1b2mgqmwB9zj4uKIyMjIKMvXAMq2ffv2Dh06JCQkDBo06NChQ/r6+vHx8e3bt/f09BwwYMBPflBPT69jx47bt2+Pioo6fPjwb7/9ZmRkxCPvNjY2Tk5OKvsVoCBBhns+dv8+delCRCSRUMeO+SVthDEWHR2t7lWAwKTSL/X5OnakyEhCP0sQxMOHD11cXGL5pgmiNm3aaGpqqmUlGRkZ69ats7CwmDJlyt27d8+cOTNnzpw6depcunRJLeuBPEc+4P7yJb17R8WLk4WFehcFAAoSiUSlSpVijL1//17da8lv7O3pypUvZ4fR0RQcTHXqqHlJhdz797R0KTk7k5sbJSfTwIG0Zo2611RgIeCOgDuowYoVKwYNGpSRkeHu7r5582ZNTc2oqKjmzZtfuHDB1NR07ty52RlET0+vS5cuO3bsiImJ8ff3HzduXIkSJV6/ft2zZ09lrx8KmASJ5E1qqraGhrmenrrXAjm3YAEtWUL9+lH//vS//9GiRepe0K9FRUVNnz59zJgx6l4ICCY+ntavJ1tbcnP78syKFeTuTlKpWpcFBcLw4f9n787DY766OICfyb7bl8QeRcW+L7GLPZYiSomlrShlaHmbVrVjKdLaoq0SpQRVEmvsDYqEoBNrbCFBZCFIyL7MzHn/uDHS2LL8Zkbk+3ne530yk+Teq8bM73fuueeMd3V19TN058k9e/Y0aNBg0qRJ9+/fb9269bFjx44fP+7k5HTt2rWuXbsOGzYMgRj4T8BdfN2uHclkhlwSvOuY2d/f//z589r+FqALoqpMXFycoRdSfBw9Sl98QSkptHQpDRpEAwaQmxv99hsy3A3s0iX63//oxx+pdWsaM4amT6cWLSgqytDLejcZJj3k7YGAO+gZM//vf/9bsmSJsbHxL7/8MnHiRCKKjIzs1avXrVu3ateufejQodq1axdoTGNj4w4dOnTo0OHbb7+tXLnyw4cPVSqVoZK/oDg6ffRo9NixfUaONEHGQXF0/To1bZrzdbNmdO2aIRfzWtHR0du3b/f39z979mzVqlVPi2AEFHOXLtGKFfTnnzknhrOyco6lOjpSz540Z45hVwfFWGRkZKVKlaytrYlo0aJFMsNFLUNCQr766qvg4GAiqlev3rx584YOHSrWc+HChd9++23WrFn+/v6BgYGzZ8+ePHmyMdqPl0xPntCNG2RhQU2aEKGAO+iDUqmcOnXqqVOnHB0d79y5M3LkyMWLF1esWNHQ63oHoYx7gS1YQEeOUOXK5OlJPXoQM3Yf3wqRkUREjo5ERMx0/jylp1OZMoZd1LuqRGe4M3NycjIR2dnZEQLu8F8XLpA2Uen0aWl6vmVlZY0YMWLJkiXm5uabN28W0XZt39TWrVuHhIQUNNqeW8WKFWvXrp2WlnblyhUJlgv6kphIN2/mfB0fT/ovs3HmzJm42NjSarW+JwZJlC5N2sYPT55Q6dIGXMtLxcfHr1ixomPHjtWrV582bdrJkyfVavWCBQu0N4QaZEEXQ2o17dlDPXpQ06a0ejWlppKzM/n50bVr1KcPifJUX31FkybRtm00daqhlws6dvHixY8//njq1Knbt2+XKtH7119/HTlypGhMaqho+7Vr14YNG9a+ffvg4OAKFSp4e3uHhYW5ublp12Nqajp16tSLFy/27dv3yZMn06ZNa9269b///muQ1YJhHfv338kNGx4dPpzMzIheqOcO77ynT2nhQvrsM/r5Z9J9pe+YmJjRo0e3bt361KlT9vb277//vrGx8caNG+vVq+ft7Z2dna3rBZQ0lStXLle2bMaz4mbwBhcv0tGjZGtLEyYQEW3aRL16odTgW+H2bSKiWrWIiOLiKD2dKlYkW1vJ58nOzo6NjfX09Fy1atXff/998+bNrKwsyWd52/HbJz4+PiUlRQ8TiWi7tbW1ePjRRx8R0caNG/UwNbz9+vXjnj1zvm7ShNXqog6YnJzcs2dPIipduvTx48fFk4GBgba2tkTUo0ePpKSkos7BPHLkSCJavXp10YcCvfH3Z2trvn2bmXnZMl6zRt8L6N+/PxH99ddf+p4YJLFsGf/vfzlff/kl//yzQVfz3JMnT3x9fV1dXU1NTcUlh4WFhaur6zfffHP48GHtj23btm3YsGEGXCcUVFxc3JIl6x0cmIiJ2M6O5XK+fv1VP8xWVkzEP/6o31WCHvn7+8tkstxp3Y6Oju7u7j4+PhEREYUeNisrKyAgQMJ1Fsi9e/c8PDzEH8rGxsbT01N7nZacnOzt7a1SqfL8SkBAQPXq1YnIyMjIw8Pj6dOnel81GNLs2bOJaPr06cyckZHRuVat5c7O6idPDL0u0IusLG7dmrdt4+ho/uUX7t9fd1NlZmZ6e3uLW0gzMzO5XC7ebW7cuOHq6irehOvWrbtnzx7draEkmjWLiXj2bEOvo5gYPpyJePr0nIdNmzIR//GHQdcEzMw8bBgT8Z9/MjMHBTERt2mji3m++OKLOnXq5Ik/lylTpkWLFm5ubp6enj4+PoGBgREREeqix9reVm9XwP3kyZOurq6VK1euXbu2h4dHcnKyTqeLjo4mIgcHB/GwX79+RIRPJhD69eORI3nzZmYpAu5xcXFNmzYlInt7+wsXLognN2zYIOJQo0ePzsrKKvTgK1euHDJkSFRUFDN7e3sT0aefflqk5YJ++fuzm1vOlblBAu729vZEVJSwCBhMejpnZfGsWdy7N/fuzd9/z9nZhl5RekBAgLu7u5WVlbi0MjY2dnFx8fX1fXFb8d9//y1fvvyZM2cMslQoKKVS6eHhYWFhIZPJHB2v1a3LXl6cmPj8B16IQDIzBwSwsTHLZDnX9vCOSUpKqlKliogzzp07t0ePHtb/7b9do0YNd3f31atXX7t2LZ8DajQaXS/7NRISEjw9PS0tLYnI1NTUw8Pj/v374ltZWVk+Pj6isMDatWtf/N3U1FSFQmFmZiYu+Xx9ffW7djCk3r17E5G/vz8znzp1iogaNmxo6EWBvhw4wLnvvzp1Yt1cVwcEBDiKWhBErq6uL169BwYGNmjQQPyAi4tLWFiYLpZREv3yCxPxxImGXkdxcPs2m5iwqSnfvcvMfOAAE7GDA2dmGnplwNyyJRPxqVPMzL6+TMQjRkg+ya5du2QymYmJyfjx4z/55JNu3brVrFnzVUWPLS0tGzRo4OrqKpfLly1btnv37kuXLuk6Gqwfb0vAPTg42MXFRfzntra2Fn8Tjo6OR48e1d2kYWFhRFS/fn3xsEOHDkR04sQJ3c0IxUi/fnztGjdrxomJ3KQJ797NPXvymDE8axavWMEBAaxUcmws5+eW8NatW++99554sd0VnzrM3t7eRkZGRCSXy4t4Yyn2ivz8/Jg5JCSEiBo3blyUAUHP/P15/nz28OBt2wwQcL9z5w4RVahQQa+zgiSys9nKit9/P+f6NSKCHz0y1FpUKlVgYKC7u7vtszOJRkZGzs7O3t7e8fHxr/qV+vXr7927V89LhYJKS0tbs2ZNs2c9HkxMTIYMGXLixH+Cp0FBzzcOX7RoEROxhQWfPKmPBYM+TZs2jYhatWqlTVBSqVRKpdLb29vNza1cuXK576kqVqzo6urq5eUVFBT0qlSDMWPGaFMT9CwzM9PHx6dChQpEJJPJ3Nzcbt68Kb6l0Wi2bt2qzdVq37796dOnXzXOxYsX27dvL36ya9eu+dxpgGJNo9GULVuWiO7du8fMS5cuJaLx48cbel2gL7//zj/88Pzh2LH8zz987ly+7hXz5+rVq7169RJvLPXr1z948KD2W3kO3GRlZXl7e4tKuaampnK5/AlOWhSdvz8T8QcfGHodxcGUKUzEo0fnPOzWDUcd3yLlyjERi0wChYKJ+NtvpZ3h5s2b4v3n5/8evM7Kyrp161ZgYKCPj8/XX3/94YcftmrVqnz58i+NwouLxpkzZ6anp0u7PH0yfMD91KlT2qNPtra2np6eCQkJly5datmypbjY9fDwkKTUxotu3LjRtWvX5s2b9+3bd/DgwaJ29vnz53UxFxQ7/fpxTAz/+SfL5dykCc+fn3N2Ps//TE25WjXu2fPDIUOGyOXyn376aePGjceOHbtx40Zqaioznz17Vty5tWnT5uHDh8ys0Wj+97//iZf34sWLi75UcYJ1xowZzJyRkWFubm5sbPxubAmWECLg/vgxN2vG8+fzmjUcF6e/2f38/IioX79++psSpHLxIhNxnTo5D/v1YyLevVufS1Cr1UFBQXK5XLzRCU5OTl5eXrGxsW/89dwlF65cufLFF1/ocrFQYNHR0QqFQnspXLFiRU9Pzzt37mh/ICmJV6xgJ6ecz0QLC37F9gpPnsxEXK4ch4frafGgB5cuXTI1NTU2Nj537tyrfiYiIsLHx8fd3b1GjRq576NsbGxcXFwUCkVgYGBGRob25w1yslitVvv5+dUSJU2JXFxclEql9rsnT550dnYW36pXr56fn98bUyU0Go2vr6/4t2NhYaFQKIr1HSO80bVr1yjXyekPP/yQiNbo/9AiGMq+ff/Jfe7WjY8eZSKuUIHd3TkgoCgHEB8/fiyXy0WFq7Jly+YuaXXjxo1+/frNnDnzxd969OiR9rfKlSv30kJYUACi+Ea7doZex9suO/tx1pCObGTEFy8yM1+4wDIZ29r+50QkGIg6/amqY1NNvdo5e4GjRzORtOl+6enpIkcn/yVD09PTIyIiRCDe09PTzc2tRYsWNjY2RFSzZs3OnTtLuDw9M2TAPXeoXdRGTEhI0H43Ozvby8vL3NxcXLvsljqCkJiY+P333+dpkTpixIgHDx5IOxEUUyLgzsw9e3L58nz3Lu/bx2vW8OzZPH489+vHjRtzhQo5MXcjo5efjilVqpRoyTtgwIC0tDRmzszMHD58OBGZm5tv2bJFkqUeOHCAiDp16iQeis0qbZl4eMslJ+cE3Jl57VquUoWXL+eyZdnVVUdHUfOaMWMGEc1GRcLiaP16JuIPP8x5aG/PRHp63TCHhITI5XJRWkFo3LjxwoULb4t2BAUUHx//3nvvofzC26bts3Z/bdq02bhxY+6o6PXr1+fMOWFnlxNqr1KF58593WahSsUDBjAR1679yqA8FC9qtbpdu3ZElP+tsvDw8LVr144ZM0Yb2hasrKwWLVqk09W+RmBgoKj7R0QNGjQQRwaFK1euuLm5iW85ODj4+PhkFyRq9vjxYw8PD9Fh9b333sudkQq6ExMTc/PmzdmzZ+uzjP66deuIaOjQoeKhqOZ/5coVvS0ACir3J5okw3HTphwUxNnZvG0bd+vG//zDNWs+z9KqWJE9PPjQIS5IHVFRxkps3ZmYmHh4eIj8LWZOSEiYOnWqKE9qb28v7jRfdO7cuU6dOok3saZNm+IOsfBu3mQirlXL0OvQreTk5EePHhUldS82dp5SSdGnPsp5/OGHTMQzZkizPiia1NTzSiVduZJT7uzBnpGPF3TMuiZlkY9x48YRUZ06dXJ/BG/evLlPnz6ff/754sWLd+zYcf78+Tceu9FoNOHh4SKYdunSJQlXqE+GCbiHhITkCbU/fvz4pT95+fLlVq1aiVzgTz755MkTCZJ2k5KSvLy8ypQpIxbg7Ox85MgRHx8fsYVSsWJFUXpPdw4cOPDTTz8tWbIkRgR0dU2t5l9+4YED2c2NUaE+37QB9xs32Nz8lTXcMzI4IiI7KCjor7/+Wrp06RdffDF8+PAOHTrUqlVLbBeVLVu2cePG2tszkdteunTpY8eOSbXUx48fy2QyKysrMcukSZOI6KeffpJqfNCdjRu5fHletCgn4K7RcPv2PHUqW1vn5Ip++y3ruoe0uAo/cOCAbqcBXZg6lYnYy4uZ+f59JuLSpSU8vPwa165d0xYYqVGjhlwuf01+a36EhYX9/Na0ewVBoVAQUYsWLf7991/tk2q1OjAw0NXVVSaTOTrWl8k0LVqwr2++AgjJyTlNszp2ZGkDHWAQq1atEoGewhUriI2N9fPzk8vlLVq0kMlkDRo02Lhxo+SLfCPxOhdZVJs2bdLm17+maWpBnThxQltS2dXVVZQcAd3p1q2bKG5WtmxZhUKho6PSeUyYMIGIxNHV2NhYkXbzDjeCK+6ysrL69OkzduzYAm2hvVJiImdkcEwMy+U8YADPmsXaV51Syd98w3XrPo+8ly2bMmXKnj173hjxDwwMbNiwoXjr6N69++XLl8XzarXa19e3YsWKRGRkZOTu7v7GlMGAgADtNqerq2tkZGSR/8wlT0pKzu3Zu+vQoUP29vZ9+vSxs7OTy+XR0dEFHUGtTr94sbJSSUlJR5k5M/N2ytSuXL4c44Pv7ZCYuF2ppJs3c0pAXrxYRamkzMzbUo2/evVqIrK0tMxTOOSLL754MTlV20BVLpd7eXn5+fkplUpRJUJrypQpRDRp0iSpVqhn+g645z/UrpWdne3t7W1lZeXoWL9GjfQdOwo/+0tD7drvRkZGdu/eXfs5pItoeFBQUJcuXYhIXL6XLl163bp1ks+S18KFPG0aZ2VxQkLOZju8yf37PGiQBP+pdu7cSUStW7fWPpOYmNirV6+L4oCVdESNeDHs+vXricjNzU3aKUByP/3EMhkT8YubIzEx7OHBRkY5DWZ8fIratvelLl++rFAoRP/D3DUioNjo2JGJ+NAhZub9+5mIu3TRz8ytW7cmohEjRuQOxUolMTHxpd0IQc8WLVpERF9++aV4+PDhQy8vr5o1a4orJWtr6wkTJly+nPr6QfKIieHq1XMOZhi0LyYU1aNHj0TSpSR5Kt988w0RfSt1FdE3Onv2bPv27a2trb28vLQlX17TNLXQsrKyFixYIFpJly5duugDwqscP35c3GZqs3orVKiQ++9XR5o0aUJEwcHBzLx9+3Yi6tmzp05nhKJQKpXi3+PAgQNflRueXxoN9+vHzZrxrVuv+7GwMPbyYmdnJlJ27ixO9ri6ur60pXx4eLj2bE2dOnVyH7s5evSoeLERUZcuXfLf8SItLc3Ly0vsRVlaWhZlE7HksrFhIn4XC+KnpaVNnDhRnMfSnl61sLDw8PC4fv16/seJj1+pVNLVqy3Fw6ioKUol3b35sW5WDQV2//4ipZKioqYys1qdrlQahYaaaDRS7DsyX7x4UVw7rV+/Ps+3bt++vXv3bm9vb7lc3r9//wYNGoh34BcZGxv36tVL+4tXr16VyWQ2Njb6PLImIf0F3AsRas/t2rVrbm4Xxa6wuzsX5FeZmRMTefZs7tJlhHaLOCgo6MUf02g0Pj4+4nOoTJkyPj4+BZvm1bShdiIqX7789OnT+/fvLx726tVL20hTJxo0eJ4ie+QIjxunw7neFd99x0Q8eHBRx0lOTjY2NjYzM5P40OILPvroIyJavXo1M1+9epWIqlevrtMZoSg0Gv7qKyZimYxfc4b+33+5ffucbJiWLTk4WJrZw8LCFApF/fr1xVuQaN7bsmVLFNQqZjQaLlXqedMb0WjiWWxUp7Kzs8U+jY56cH300UdyuVwXI0OB+Pr6EpG7u7t4+OOPP4o3jdq1a3t5eRXoKi63sLCcV+5330m3VtC70aNHi4tYSUZbuXIlEU2YMEGS0fJvz549RNS3b1/tM76+viI1x8jI6KOPPpI2DzQ6OrpHjx5VqlRBGTfdEWWOFixYwMxBQUHasHu1atUKWhEo/9LS0kxNTU1NTU+fPp2VlSXOs37//fe6mAukcubMmTx9tgpp2TIm4jJlOJ939Ddu7Fq+vEWLFtoAk5WV1ZAhQzZv3vz06dPk5GSFQiHOSdvY2CgUCu1dZFRUlLu7u/b1XLgqfDExMe7u7iKu6uDg4Ovr+8aOFPDce+8xERckAF0sXL58uXHjxmKPWaFQqNVqpVLp7u4ukkSNjIxcXV2D83Ujqr58uY5SSQkJW5k5O/vxuXM2SiWlpRmmETq86O7dSUolPXjgzczp6deVSrp8ubYkIycmJoqmmJ999lk+fyUhIUGpVPr5+Xl5eXl4eLi4uDg6OpqYmAwaNCj3j3Xt2pWIfv31V0nWqWf6CLgXMdSupdGwj0/OtmKlSpzPfJonT3j2bC5dmon4/ffPubi4vDTUntudO3d69OghFty3b98iHvzME2pXKBTazRk/Pz+RHGRnZ+ft7a2rU4e5C41ducK5birgpdLTuVIlJuI3vVLyRZwEPH36tARjvZq3tzcRjR8/npk1Gk3p0qWJKD8dC0H/MjP5o4+YiM3M+K+/3vDDGg2vX88ODjnReU/PwMIdvtFoNCEhITNmzMhdNrdixYoeHh6+vr516tQholq1aoWjm2ExIkpJVq2a83DoUCZivRRkuHTpkki50tH4cXFx6Ov1Nti/f3/uiOqjR48GDRp04MCBol+uHDzIJiZMxKtWFXmVYAgnTpyQyWSWlpa3Xp/RmW/+/v5ENGTIEElGy79t27blmTcgIICIXFxcQkNDdTHjwYMHkfusO3v37iWiChUq5E7d3b17t4glEdF7773n7x8n7S1XampqQEDA8OHDbWxs7OzsGjZs2KhRIyLat2+flNOADly9elU0c3ZycipkAtylS2xhwUS8a1dBf/X27duLFy9u166dyH0hInNzc9FhzsjIaPz48dpUmNTUVHEmVUTni96E+eTJk6LpV4GiY8AdOrCxMZ88qbcJ//zzz4MHD86bN6/QWQ6vp9FovL29xQZP/fr189SHvHHjhoeHh3jhEZGzs/P58/uZX/kGmpCwTamky5driYzp2Ng5SiXdvIno01vk5s0+SiU9eRLAzE+e7FcqKTzcpejDajSawYMHE1GTJk2KeGYoKysrd2tPfnaJWL9+/eK4O6jbgPuFCxfc3NzEDqqNjY1cLi/6CcrISO7WLSfl083tdX23kpPZy4vLlMn5YWdnzlU/5s38/PzKli1LRKVKlfLx8SnE325QUJDYjXkx1K51//79oUOHip/p2LGjlNGu+/f5yy9ZqeSWLZ93Mdu5kydP5pQURizj1VatykkolsQnn3xCRLquTXzq1Ckiaty4sXjo4uJCRJK3GoaiS07m3r2ZiG1scgqBML+59nFqKisU7OSUZmJiUaDrbLVaHRQUJJfLq1atqo2zV6hQwd3dPSAgIOvZxI8ePRIZYZUqVdJRiAGkt3UrE3H/nBp8XLs2E3FYmB5mFnWr8t96vtDUarUuStZAPimVSiJq1qyZLgb38WFTU/7jD12MDbqVmZnp5ORERPPmzZNqzH/++YeIOnfuLNWA+fTnn38S0UcffZT7yZCQEN3NuHv3biLqr33rBuloNBrRXGTZsmUvfisgIKBx48bvvTfQyIjr12c/v6JWtXr48OHatWtdXV210SgiEr1SZTLZ9OnT8xSihbdTbGys6Jlsb2+f//IsOVJS+P33mYgnTy7KGuLj4319fV1dXY2NjStXrtygQQNtqpZGo/Hz89O+rtzc3KQ6Ga/RaHx9fW1tbdu2bYtOqvn1zz+8Zg0fOKCHWMrTp09HjRolbtyIyNra2sPD48aNGxJOERcX17t3b/HS8vDweNVbVnx8vEKhKFeunKmp8blz1S9frv3ggbda/ZKgqgjmPnjwC/+nmPs/Eq4ZiigsrJ5SSWlpl5k5Pv5XpZLu3PEo+rDiFGyZMmUiIiKKPloe2dnZVapUISIJmyDqja4C7iqVSlsyxdbWdubMmY8ePZJqcJHqbmubc3hr5UpevZpF9OnpUz506CWh9sOHCzNRbGzsoEGDxJ+id+/e+f94yx1qL1eu3EtD7UlJSdocsYCAAAcHB7Fl7eXlVdTcsYcPWaFgOzsmYldX/usvHjCAL1/m4GBu2ZKvXWN3d27alP/bxwAEjYbr12einNTjR4/4t9+4KBfMoqXYqFGjpFrhS6Wnp5uZmRkbG4uW4jNnziRD1EKF17t/P715cyZie/vn//62beP69Tk/pxEiIu6IrWORjb5t27ZX/aRKpRJxdnt7+9w3gXK5PCgo6KXvMCkpKX369BGbo2igWiw8+eEHtrDIqcrx9CnLZGxpybo5LJ/H1KlTiWjhwoW6nujhw4cTJ07U9SzwKlFRUURUVXuKQmq3bvGWLVypEotElsWL+Y19bRITE69fvx4cHLxz585Vq1bNnTtXLpePGDFi3LhxaEShN/PnzxdnXCQslyfOzTRs2FCqAfPpjz/+IKJxOi63uGbNGk9PT5FV4+fnR0RDhw7V6Ywlk/hv6+Dg8Kr0OpVK9ddfD2rWzLlDbNGC9+8v8Cx37/Lq1RFdunQRxRaIyNjYuGPHjkuXLr19+zYzr1ixQiQsT5kyBU1Ti4XExERReqhMmTInTpwowG9+/DETcYMGXMQq8M+I6OfOnTvFw8zMTJEQQ0Rt2rTRxYFpUSn+rzceuQVmXriQhw/nHTv4+++5Tx+d9Nd6JiQkRFTnsLS0nDx5cu/evUUOq4mJyYgRI/LkoRfO9u3by5UrJ048BwQEvPHnk5OTDx78/dKlGkolKZV08WLluLgFKtV/MpHV6tT4+N/U6hRmjo//LXcxd3g7aC5cKKdUysTf0b1705VKiosr6g3dqVOnTE1NZTKZ9r1LcqK//Ycffqij8XVHVwF3X1/fRo0aWVlZSZLV/lK3b3OPHkzEo0ezuTmLKnk3b3K/fly+fM6FVNeuXPT92gIVfnkx1P6qErdDhgxp167dtWvXxMOEhAQPDw/xi+3bty9Qb4rncofaidjFhUVu4PHj/NVXPHs237jBjx9ztWpMxObmPH++fqIzxcjevTlFGkTur6iKXJT+o+fPnyeiunXrSrXCVxEHA0WGwq5du4ioR48eup4U8i8yMrJu3bodOvzh6Mg3b+Y8uXhxTt/UX37J7zj//PPPq3olaePslSpV0sbZa9asKeLsuY/pqNXq4ODgWbNm5X5Dy87OFgcyzMzM/vzzz6L/kV/0ODs7JjMzJjMzNjNTF+OXKL1797YwMTmyezczx508+aRJk2x9dUwV96UHDx7Uz3RgKOnp6eINQXdHOLds4U6dWOyqLF7Mv//OISEcEMB//MELFvAXX/CoUdyrFzdpwg4O3LHjr/QK1tbWpqamONelB3fv3rW2tiaiw4VLZnmF2NhYIqpcubKEY+aHqB2v64oKnTt31mZmbdy4kYhGjhyp0xlLIJVKJQ5evLEFV1YW+/hwlSo5d0vt2uXrDHREBHt7s7Mzy2RsZZVmbW1tbGzs7Ozs7e39YgnHHTt2iLT3kSNHZr3xGCO8BTIyMoYNG0ZE5ubmuTuUvo6/PxOxhQVfvCjVMgYOHJg74M7Mn376qYODg4+Pj442bz788EME3PMlKYnr13+e2D52bGH26/IhOztboVCI/bxWrVpp6x9cunQpT3WXgICAwl2epaamyuVyMU7Pnj0LWIRW/eRJwLVrrUXY/dw5m6goeWZmTlpqRkZkYuLO1NTzzBwR8aG2mDtI6OnTp8eOHWvQoEG/fv2mTJmydOnSXbt2Xbx4UaRd5kd2dnxWVmx29sPExO137nxaxCMIDx48EOnn33zzTVHGeb3Y2FjRKKVwxXUNSFcB9759+xLR5s2bdTS+oNHwunUcF8dt23LXrnz9Ot+8yYMG8UcfFT6r/aXu378/ZMgQ8a70qsIv+Q+1M3NcXJxIabe0tPzpp5+0xWr37t0rXq+WlpZeXl4FKGL7qlD7Sz19ynI5GxkxETduzKggkUv37kyU08cyM5Pt7ZmoSK8llUplbW0tk8kkPOTxUpMmTSKiRYsWMXNcXBwRlSpVCpk1RfH555/37dt39uzZ+/fvL+Jfn1KprFixIhG1b+/88KGamTUaVihyKrP/9FPBRlOr1b6+vmJA0dVt3bp1I0eOFGUfhYYNG37//fcX/3sPoK0wI95niOjkf6sQajQasYEsk8l+/PHHovyRX2pKePh3t28vvHv3x6goyQcvacS2ijh6tXTpUj3EjASNRiNeaTraTX+pzMxMvJsZhJ2dHRHpqDsuM2/ZwgsXcr9+fPo0L16c03nuVf/r3DnA1ta2Tp067du3Hzhw4Keffvrtt996e3tv2rRJfAJWqFAhTltDD3RDHGCVPF6clZUlk8lMTU31XKBTtMCZOnWqTmdp27YtEYlKNWvWrCGijz/+WKczlkCiyXPNmjUz87ejn5bGS5ZwhQo5by89evDvv3OrVpySwsz811/s68saDZ89y19/zfXqPX8jsrFhNzfevv3Ei8eXczt69Kh4/3RxccldUB7eWiqVSnyUGBsbr1y58vU//PD2bS5Xjon4TRs8BfJiwD0hISH/cbT8yMrK+vXXX1evXi0eIuCeX5cu8YABzx/+8gsvWSL5JJGRkc7OzuL+Ti6Xv/huFhcXp1AoRLc2ImrcuLGvr2+BdvXOnj0rendZWFh4e3sX+jP36dO/w8N7iLB7aKhpZOSoJ0/2X7/ePj7+t6ioqRpNJjMnJx/XaFDHWEoajWbIkCEmJiYvzT6pUKFCmzZtli37Mjp65sOHvyclHc7IiBT19HONoLp50zUycuStWwOfPg0s4nrUarVoftm5c2cd9STXEoW4586dq9NZJKergLt4pyjYmazCSk/ndu04NJR79MgJuBeticgr+fn5iRJaeQq/BAUFdevWLZ+hdq0nT554eHiIw0FNmzY9/6zARGJiojbVvW3btlevXn39OPHx8Z5ffRUnjkfKZDxgQH4D6CdOcJ06TMQmJuzpydKdCy6+Ll1imYxtbTkxkZl53Tom4kaNilrksUOHDkR0SFuxWzdEVWW3Z9n41apVI6JCHpUAZmZ2dHTM/Rlmb2/v6urq5eUVFBRUoGYgR44cyXPTlZ2dcwjVzIwLvS+ZmJjo6elpZmYm7g3EIp2cnBQKRZ73jaysrIMHD44fP168gwm1atWaMWPGS+usLV++XJyGlsvl0kY5p4SHxyG3XQrR0dHiE0c8dHd3z09anyRu3rxJRFWqVNHDXForV660tbWVsGA05JM40ay7dsoi4H7zJrdvzz/9xGvWcJs23K8fjx3LX33FS5bwhg28fz+HhvK9e6+7TtFoNKIo1oDc98MgtR07dhCRnZ2dLjKMxE5eorgC0xdRdfSrr77S6SyisLgoArBixQoiQrEsaWVlZYk3qw0bNhToF1NSnpchnTuXnZxYvBZ8fPjbb3OOBIv/lS/P48ZxQEABbjO1yRatW7d++PBhAf9MYBheXl7i9tzT0/NVP5Odnd2uXbsJjRolf/KJtLO/GHCXXHJyMhFZW1uLhwi459fdu5z7IOm8efzHH+zry1euSDWDr6+vjY0NEVWvXj1PVX2VSnU+VzXgpKQkb29vbYOuypUrKxSKN356qlQqLy8vU1NTkZh1UYqTGWlpF2/fdg8NNb1ypVFc3Pz795cWfUx4jcWLFxNR6dKl9+7du3PnzqVLl06ePLlfv37169fXnn743/+6iI2QZ9shJpcvO9640f3OnfFxcQtSUk7duNFVqvV88803RFSpUiU9JJ4fPXqUiBwcHIrXuTFdBdwbNmxIRJL8M34jEXBn5smTef58HjRIh3PlLvzi7Oz8559/FiLUntvBgwdFFxRTU1NPT0/tNuaBAwdEwFQ8/9JX1cOHDxUKhQjkfdm5M7u48NmzBfvzJCfz55/nlLRo3DimxFd19/Tc6eSUos1zatqUiXj9+qIO++WXX+phO+7q1aviE1o8FGcyfH19dTrpuy0mJiYgIEChULi6umpTCQQTExMnJyd3d3dvb2+lUvmaqPSmTZtETHzUqFHiH3JycvLgwSNq1gy3s5PgII5oNGdpablo0aLIyMjc38rIyAgMDJTL5eJ+Txtnf7HCzIu2bdsmPra1yy4iDXOKSjUlPPzHu3d/jY4++Phx0ccsyfbs2SO2cMRD8Zl7tqAfAYUiiuS6urrqYS6t8ePHE9Hy5cv1OSkws6geGxwcrKPxRcCdmRUKbtz4zTXcXyM6Olr0uv/9998lWh38R2pqas2aNYnot99+08X4gwf/4ey88dYtvfaZnDt3LhF9J5ph6IwodXLlyhV+diBp2rRpOp2xpBENk+rVq1e4DLuEBP7tN963j2fO5G7d+NIl9vHhZcu4dGmuVo09PDgg4M397V8qIiJC7ATUr18/Cmf7ion169eLoOTYsWNf+ooSvbKqVq36WOqrWQTc314aDbdpk9ODKzGRmzXj8+fZwoJlMnZx4XzUQH+NxMTE4cOHizs1Nze3hISEPD/g7+9PL5SRyczM9PX1bdCggfhFOzs7uVweHR390inu3LkjCkLKZDK5XC5hCxZmzsy8k5JyJiMjPCzMKTJyVEqKPu5HSqCQkBAzMzOZTLZ9+/aX/kBMTExwcPDly36xsXNu3x5z/XqnS5eqKpVGuePv6ek3rlxpdPfuRFH5Jy5uwb17Xzx48POTJ3vS06+8tBfuq+zdu9fIyMjExERvXZfFDe+r/vhvJ10F3EWwWD8NrLQB98RErlNHtwF3Yfv27ZUrVyYiKysrEWpfsGBBoU8LPn36VC6Xi3zSxo0bK5VK7fPaFPgmTZqE5spbj4+P/+qrr8QWqEwm69+/v/a3CiM4mOvVC2nY0Nzc3NPTU9r332IkLi7O3Nzc2Ng4MjKGmQMDmYgrVZLgwMSWLVuIqH///hKs8tU0Go0ICotCbCJpa/LkyTqdtORQqVRhYWG+vr5yudzZ2VnE0LVsbW2dnZ3lcrmvr2/uqLe3t3eeVPEHDx60aNGCiJo3by9Fwxvevn07EfXu3Vv7TFpaWkBAgLu7u9iNE0Tme4HeKLSJ+d27d3/9uenXUDNfTU31iYn54PLlbyMjp4SHBz95ci01Naakvs9IRQSJ/ve//zFzenq6qampiYlJuo6Od/2XyGX4XjRO0RfRo0I/x+YgN13f/GsD7hkZXLdukQLuzLxt2zYRR9BdSn5JNn36dCJq2bJlAQoeFkTr1kzEISG6GPuVvv32WyL64YcfdDqLODB369YtZl64cOHrk2ehoNLT08WNp7+/f1HG2bePv/2WL13iLl3Yx4d//pkjI4t6yJWZY2NjResdBweHS5cuFXU40IuAgABxmz9gwIA8p1qPHTtmbGxsZGT0zz//SD4vAu5vtYgIHjKE+/XjXr347785Lo4nTmRLy5xTMG3b8rZtheikevjwYVHq087O7lVndFasWGFrayvu6Zo0abJx40ZtOpRGowkMDHR1dRXfNTMzc3d3v/LfvHs/P78yZcoQUeXKlffrpvT8M5qkpGNhYe+npV26dq1dXJyXSqWrmoQljbZUekHP5Gk0Genp158+PRAf/9u9ezM0miyNJjMxcee1a20eP/7zypXGucPxSiVdvGh//bpzZOSoqKi569atO3bsWFRU1IvJhXfv3hVNd3VRhPZVfv7559wJZ8WCrgLuIkyjn2OhmZk8dmzO11u28PTpepiTHz9+LE7xfPLJJ5IU5jtx4oQop2ViYpI76n38+PH33ntPm+oeGxurUCi0lZpdXFykSWlMTV383XciMujk5KSLHuhvP3HTNXToUPHQ3X1Wp04XvLwkKH8RGRlJRBUrViz6UK+3aNEiHx8fccxCJD63atVK15OWTCkpKcePH1+0aJGbm1uNGjXov6pWrTp48GBR0czIyMjb21v8luibSkSOjo5SxYM8PT3zRD/Hjh2rXUnLli0XLlxY6LkuXbokPtpbtmz54MGD/P+iWqM5m5Tkdfdur4sXWyiV4n9uV66gpIxUPvjgA3rWKOXMmTNE1KhRI/1M3bt3b13fDeaRnZ1tYWEhk8kKvfEDhfbpp5+SzqoVhYTw/Pl8717Ow+hoLnqvkxEjRhBRu3btdBQULrEuX75sampqZGR05swZHU3Rty8T8d69Ohr+5WbMmEHP+t/ojvgkvXfvHjPPnj1b/3uW7zZxaKBx48ZFLIInAu7M/OWX3K0b//yzNMtj5sTERFFesmzZsnl658Bb68yZM6ISY9u2bbUVgRISEsTZ9Dlz5uhiUgTci5+HD9nLK6ftGxE7OrK3N6fm66hWVlaWQqEQEZi2bduKTdlXeWMZmdDQUHd3d1Fl1MjIyNXVNTAw8OnTp6NGjRK/MnjwYJ22lNPWCo+MHBUTM1NEby9cKBcTMys7uwB3kfAitVrds2dPcX0rVUGVp08P3rnz8ZMnAffv/3T37mfh4b0uX64TGmqWqxbNe9qQgpmZWd26dXv16jVx4sSffvrpr7/+atSoERG5urrqs/VOUlKSra2tTCYrRmWTdRJwV6vVRkZGMplMn3c7Hh7s4cH6vBkXBRmLlFr+X6mpqZ6enuI9t2HDhtpIelJS0qRJk0Squ7Y2k6ur67+vaYtaKCEhIfXr1xfv0R4eHimibVDJkJqaWr58eXrWQ/L69etGRkZWVlZSlVwUNT1u374tyWj5kZycbGxsbGZmpp+k1xIuMTExMDBQFJ8RLyQiql69urGxsbZ3dKGD168nejXvzRWiCAgIaN++/ZIlSyR5vRVokyAzM/PUo0fz7tzpfuGCNs4+4PLl5ffuXU5J0aCGu3TENs+1a9f42VH60aNH62dqccBLPyfYhIsXLxJRnTp19DYjaImD87qonq9ScbNmTMTLlkk5bGJiooiG6DpnuUTRaDSiOZNcLtfdLKNHS1PHr0CmTJlCRD9LGFt9GXFhEB8fz88OCc2fP1+nM5YcKSkpooX4vn37ijiUNuCelMRVqkgZcGfmjIyMwYMHi0DngQMHpBwadObq1aviA8XJyenu3bsajUYExDt27KijKAcC7sVVair/+is7Ooqwe1ifPnPnzn19dPvq1asimmRiYqJQKPL5inppGZl72swF5vDw8AkTJmhDRuL4u42Nzdq1a4v6Z3yFx4//fPRonUaTGR+/Kjy8Z3h4z4iIDzWajCdPAq5fd34WujW/fds9Pf0NvQnhVWbNmkUSlUpPT79y69bg6Oivr11r9fTp3y98X52ZeTcp6dijR39cubJo1KhR7du3t7e3pxeUK1fO3t7+xfJHujZhwgTSfa97Cekk4P7kyRMisrW11cXgr2JlxUSszxCxOB968+ZNaYc9efJkvXr16FmquzZaGhwcXLZs2fLly7dt21Z36UXp6ekKhULUrXN0dDx69KiOJnrb/Pbbb5QrH1zUC540aZJU4/fr14+Itm7dKtWAbxQTE1OuXLmKFSs6ODjI5fLAwEBdd44GQaPRXL9+fc2aNeLon/a8SPfu3YmoV69eycnJUs2lVqvFcSIJI/gvevTokajjXKlSpdCX9WROT08PCAjw8PCoUKHCyAMHtHH2RVFR55OTc+96P1WppOzBWlIlJCTIZDJra2uRzSeuPJZJG7Z8hZiYGCIqU6aMPtMZREfoYcOG6W1G0Fq2bJmOwqw//8xEXL269Fduhw8fFjUl9dPVoCR4+PBh06ZNbWxsdHrK5MsvmYgXL9bdDC8hOjPpuuO0uB4Q//VEX5/Fev5zvrvmz59PRK1bty76p9LKlaxNo7p4kaW+w2OVSiXODJmZmWmzMeAtFxsb27RpUyJycHD46quvxCWQ7nIOEHAv3lQq3rpV07p1l+rVicjc3Nzd3f3GjRt5fkqj0fj4+FhbWxNRrVq1CtEm541lZOLj4xUKha2tbbVq1WrVqqW7OnsaTdalS9WUSnry5OVbnqmpytu33UNDjZVKUiqNbt50TU7GKZ+CCQwMFGWs/v77xfh4AajV6XfvTnrwwFulSkhLu1CgYwdpaWlXrlzZs2fPzz//PG3atDZt2oidyNw/o5/gu0jDKlWqVHFJDtZJwP3u3btEVLVqVV0M/lJZWUzEJiYSFNrLP1G0SKSr7N+/f968eVJVYklNTf3yyy/FgaCVK1dqnxcHNy5cuCDJLK9x9uxZ0ZHAyMioJNwSaDQakdovAuLx8fGWlpYymUxkj0pizpw5RDRdPwWPmC9fvqwtBqfdh7S3t580adKRI0dw0F4/RLGX4cOHi4fx8fGvaoBcaGFhYeJaTcIxXyolJaVPnz4iRUKbmZWamurv7z98+HBtVUEiGvndd7/HxkbgXIUuXbt2rVGjRk5OTmvWrDl+/Hjr1q2JSD/9avbu3UtE3bt318NcWlOnTiWihaLUN+jXn3/+SUQjRoyQdtj797l0aSYqYpuxV5o2bRoR1a9fP0/tXSic9PR0BwcHIvLy8tLdLPPnMxF/843uZniJMWPGENF6HefVi74volzk559/TkS//PKLTmcsIZ48eSJaJR85cqSIQx0+zETcqJFu7yU1Go24OJTJZCXhDuvdkJiYqO02qetoOALu74agoCBXV1fxghHVXbRhogcPHvTv31/cNLm7uxcxDUuUkTExMRGvT1FGRvvdn376SdoMwhc9euSrVFJY2PvMamaOjZ13796MrKzYPD+WkXErKkp+7pylUkl//tnY2dnZz88PEYn8iIqKEofkin4flJ5+Tamky5dri4fh4T0uXCibnBxUiKEyMzPF2bKQkBBmTk1N7dmzZ9myZVPzV0ypiMSZy9WrV+thrqLTScD9QVjYlE6dZj6rha0HDx8yEZctq7cJmZlFGnjuq2dpT6SeOnVq5MiRubOSxaE2/ZQlycrK8vLysrKyKgkJYgEBAURUo0YN8V9blNccMGCAhFMcOHBAnECUcMxXCQkJEbtBXbp0SUxMPH369FdffSUOZAjly5f/9NNPA48dy9bnDlXJEx0dbWZmZmJicvfuXR1NsXbtWiL68MMPdTR+btnZ2R9//LFIo/j8888HDx4s2kmJK7xWrVp5eXlJfuIH8lCpVEFBQR4eHmIvzc7OTiaTOTk5tWnTRjRv0LV58+YR0YwZM/Qwl5a40T106JA+JwXh77//1sUWy6hRTMS5mj1LLCMjQ+Qo6LQESomyd+9eY2NjmUymu8xcHx8m4vHjdTT8yw0fPlzXwSaNRiOTyWQymUjBFjnOxeVG8S0nTtlL8gbVrh0TsX42dr29vUUFUU9PT30eF4NC279/v4mJiaWlZenSpXV6uYWA+7vk0qVLo0ePFiEj8U41f/58UZ2jdOnSEn6YRkREyOVycV9Wv3597bvKli1bKFeDOl24erWpUkmPHq1jZpUq6fz50kolpaS8vPt5VlZcdPQ3Q4d2Ef9B6tevv3btWm3nQnhRVlZW+/btiahfv35F/7B48mSfUknh4T3Ew8uXayuVlJ5eyARTUR/P3d1dPBTrXLNmTREXmR8iGahJkyZ6mKvodNM0NSiIibh9e50M/jK3bjER6z7L87nU1FQisrCwEA9FM4pX9ZWWiuiVqs9KSTqtU/H2EFWwlyxZwswqlUqkcUlbTufx48cymczKykrXdV127dplaWlJRB988EGezL6wsDCFQuHk5CQ+5IauWNHl/HnPiIi9jx6lFa3NFLzKyJEjdRqd/Oyzz7QvXT3QaDSiv5zodG9kZNSiRQuFQqG7g4ogqNXqY8eOffbZZ9oOAUTUqlUrbeS9W7du+ulSLkrQ/vnnn3qYS9BoNOKz7/79+3qbFLQuXLhAUrfkDQpimYwtLTkiQsJR8zp37pyZmZlMJtu/f78OpylJRK6cpaWlSGiS3PbtTMQffKCLsV9JNKDesWOH7qbIyMgQe9Xiobu7OxH5+vrqbsYS4uHDh+KA3alTp4o4VEAAE3GFCpyUJMnS3mzjxo0iDDd27FiUfHzLaf+yxDWYm5ub7uZCwP3dExcXp1AoRC11cSLHxcUlOjpa8okePHjw3Xff+fn5aZ85duwYEXXo0EHyuYQnT/YrlXTxooNGk8nM9+8vUirpxo0ur/+t5ORkb29vkUhKRJUqVVIoFI8fP9bRIos1kdRbvXp1Sbrdxsf/qlTS3bsTmFmjUYWGmimVMrW6kKfS7969a2xsbG5uLgKGGzduJKKmTZsWfZ1vpM2vL/qnvx7oJuC+dy8Tcd++Ohn8ZUJDmYibNdPbhBwbGyveIMRDUUJr9+7duptRo9HovxXtu0qlUoWFhfn6+srl8qZNm5YuXdrMzEwbzYmMjNTFoek6derQfysCxcbGnjhxQi1dsHvt2rXiTNnnn3/+mmHDwsLmzJkj//dfbVvLjufPfxMREZiQoI28b3/4cElU1JKoqGW52rBAQYWGhoo0ZB2lw4hmO0FBhTkLVjja6Oe8efOK3rYF3kjsk9WqVUsbZ3dyclIoFNqKkBcvXqxatap4Xg/nn2rWrElEV6/qr+vRzZs3iahKlSp6mxFyE1c7lStX1j5z+vTpZcuWnT17tnBBouxsbtKEiVgHfVjzWrBgARE5ODjgRk4qEydOFK8HXZQwPn6ciVgvRwGf69u3L0nRb/M1nj59SrlaWw0bNoyItmzZorsZS4jp06cTkauraxHH0WhyGjgvXy7JuvJrz549IkWmR48eW7dujYqK0uv0kD/a4whyufzmzZsiy+GPP/7Q0XQIuL+rEhMTxYGqFi1aSHjv/3rXr18novfee09H49+40VWppLi4HzmnmHv11xRzz0OtVgcEBLRq1Urc3djY2Mjlct0dCi+OxAEFc3Pzf//9V5IB792brlRSXJwXM2dm3lEq6eLFIt1eDRgwgJ4VG8zMzKxYsSI9KzIjuczMzNwPZ86cSUTt2rXbt2/f1atX09/iYra6Cbhv2sRELHXFz9c4coSJuMsbttOkdO3aNSKqW7eueNixY0ciOnbsmO5mNEgr2ndJZGTkX3/99cUXXzg7O4sLXC0RQHR2dtbp6QGR7Jy7MZeXlxcRlStXzt3dPSAgoIjVvcVoMplMoVDk81eiMjLWx8W5X7vW8lnkvf25czNu3dr/+PGU8HBlUtKd9PS7b/H7V7HQuXNn0k1Dy7S0NFNTUxMTE133DMl9VEJEP+3t7XU6I1y5ckWhUNStW1f7NlW9enW5XP7SzZXo6GjR0at8+fKF6LyUf4mJieKkjj73ff38/Iiof//+epsRcsvOzpbJZMbGxtr7wy+++EK8Jq2trZ2dnT09PQMCAvL/6bl8eToR16nDejhDrFarxTvw4MGDdT5ZyZCVldWjRw+xwyf5RvK9e/z117xunbSjvoHoZ3748GHdTREfHy/en8VDPQTUSoJz586Jfkvnzp0r4lBbtzIROziw/js+nD59ulKlStpGOPb29q6urgqFIjAwUD+VcOE1NBqN6JIqk8kWLVoknty6dav4+JOw0VduCLi/w44cOUJEXfQYsRLhI+3ftbRU18/fDHA8f95OpXrCzI8erVcqKSysvijmnn+5690Xm3ZNV6/yxYs5X1+/zuJjSKnk5ct50yYuWl1+4caNG2J7b9WqVUUfTbh16wOlkhIStjJzUtJRpZKuXy/S6QdRM7lGjRrixvDrr78motGjR0uz3FyysrI6dOggl8u14bI///xTFFbV3imXKVOmRYsWbm5unp6ePj4+gYGBERERb0Omsm4C7itWMBF/9plOBn+ZHTuYiAcO1NuEfPr0aSJq3bq1eNi4cWMiOn/+vO5m1H8r2uLu6dOnQUFBXl5erq6uYsMtN3t7ezc3N29v76CgoAsXLtSoUUPcQOpuZ3X58uVE9Omnn2qfWbly5XvvvaddUrly5T7++ON9+/bl2cF7I5VKNWHCBCIyNjYuXFXQ+5mZmx88mBge3jo0tIVSOfzKlSnh4XEFXAa81K5du4ioZs2akh8ZDg4OJqJmuj/a4+Tk5OjoGBkZyc+Kpg0aNEjXk5ZMd+/e9fb2Fq1ghPLly3t4eAQFBb2+cl9SUpLoamthYSGaP+vC0aNHRTaBjsZ/KVEi8Pvvv9fnpJCbOAGtPc26b9++Tz755P3338/9kWpsbNy8eXO5XL5169bXnH2Jjo4uV86+c+f9hw7pqWxxZGSkuGORoA7StWs8fjz3789z53JaGicl8bff5nwrLY09PYs6fjHx9OnThg0bElGvXr0k/Fw7eZKrV2dRyNDfn5culWrgN+jQoQPp+KDYvXv3KNcxnd69exMRKh0VTmRkpPiUNDIyqlq1qrm5uZeXV1FS21Qqrl+fidhQRfVF46hq1aqJd1otU1PTli1bTp48eePGjWiQo3+ZmZkfffQREZmZmeUJRouqUI0aNdJFTiUC7u+wK1euENH7778vHt64cWPfvn1xcXE6nVQUdi9ia9aXGz6cjYyyVuYcV7xypYlSSY8eFbIDeWho6OjRo/VZOblIfHxYW9B13TpeuJB//50HDeKDB9nHh1u2LGJ5spSUFFEEeISkGczi7yg19V9mfvhwjVJJt28XKTiu0WhEctjevXv5hSIzEpLL5SKyL14hUVFRFSpUIKI2bdr06NHjvffe03ZKyMPc3LxevXq9e/eeNGnSokWLtm/ffu7cOf20PdPSTcB9wQIm0ue9x7p1TMQ62E15pUOHDhFRjx45PQdEuFYEpHTk0qVLRNSgQQPdTVHcZWVlhYWF+fj4uLu7Ozk55d7yIqLSpUu7uLgoFIqAgICHDx/m+d3Y2FiRImpvb5+76ouEQkJCiKhevXp5ttpEyYgWLVpol2plZeXq6urr65ufT8eMjIyhQ4eK3xJvdkURn5XlFx+/7/HjKeHh469f/zw8fG1s3j7jUCBqtbpOnTrNmnXbvVviK6qlS5cS0YQJE6QdNo+kpCQjIyMLCwuxDzR16lQimj9/vk4nLWkePnzo4+Pj7OysfdcqU6aMOPiS/3hWVlbWuHHjiMjU1OL333XSfmPx4sVENGnSJF0M/ioiOIVsUAOqV68evayOUHx8/K5du6ZPn96uXbs8V7qOjo7u7u4+Pj63bt3K/SuimMaQIUP0uHxes2YNEZUqVapIG+rx8dyoEYeFcXY2r1rFw4bxw4fs7Jzz3adPuVUrSVZbLNy+fVvkMYyXrsPp8ePcsiWL5lt//sl6+5AR59nPnj2rfebQoUPSHoiOjo5u0qRJ586dxUPRN+jIkSMSTvHOCw0NnTVrVoMGDXJfKmsPgVWrVm316tWFOye6fj0Tcc2abKgkk7CwMLG5np2dHRMT4+fnJ5fLnZ2dzczMcr+plipVSnsXU2xiUsVWcnKyuPawsbF5sWF7cnKy+Fj84osvJJ8aAfd32OPHj8W/ZfFQ/JfXdVckUZRS+k27yEg2MWFTU46KYmZ10KH7K9peulBNFHN/970YcK9Th7UnzufP559/Lsrwo0ePFnE/aU+xJ3j1jF7TMjvrETPHxHyrVFJMjKKIYy5atIiI+vXrJx7279+fiH788cciDpubOFdkamp68uRJZs7KyhKpaS4uLtqomkqlunPnzj///LN27dpZs2Z99NFH7dq1E3XeX6ps2bItW7aUy+USrvNVdBNw9/RkIl6wQCeDv8yaNSe6dJkzd67+Ll7FX7y26bPog6HTIqFBQUFE1F6PrWiLkRkzZrRs2TLPDb+1tXXHjh2nT5/u5+eXn2KjiYmJnTp1EqGuEydOSLvCR48eff7552ZmZtbW1toaMnky2SMiIkTajjboZmlpKSLvT58+femwCQkJIjmrbNmy0paSQIa7hFavfqKLNtKiFODatWslHve/Dh8+TLmSmtu1a0c6Pn1fojx8+LBr166iPCgR2drajhw5cu/evYUuMDVv3rzOnS8Q8dSpLPkpOlEXS8KzjfkhrpZ0UTAa8uPx48dVqlSxtbUtX768OBamVCpfLD+alZWlVCq9vb3d3Nxy52l+88032p8RbyZWVlZ6aDaQh9iW7tSpU8EKp6an8717rFRyUBCvXPmfy9oGDfjOHW7XjtPSOC2NHzwoUQF3Zj579qzIm1suUd3r48d56lT+8EM+ckSvAXdxRPXis7PhSUlJVapUkclk7u7uLyZnSKJ9+/ZEJO4b4TVUKj52jGfN+lFkNWlvkkePHr1z505R7C4wMLB58+biWzVq1PDx8SnQ+fGsrKzBg5dbW6ds2KCzP0Y+iOhtnsKkKSkpQUFB3t7e7u7uuf8LEJGxsbGTk5O7u/ur3pChKO7fvy+yoCpXrvyqgkVKpVI05Q4ICJB2dgTc32Eajcbc3JyIRMEokcO0RBu31Q1x4yb9Ka7Jk5mIx4zJedi1KxNpfl0m8SxvLR8fdnLifv24Xz9u0oRnz+YmTZ5/d88enjyZR47knj35s8/4xx/Zz4+VSs5fqPDXX38Vu31XrlyRcs0PHzIRP9vvUcs9VM5Nso4WtZ1MQkKClZWVTCYLDw9n5v3791OuIjNFFx4eLg6qrlixQjwjst2rVauWn4u0jIyMiIiIwMBAHx8fT09PNze3Fi1aiAFFyF6SRb6ebgLun33GRPzsP4oezJkzh4i+++47vc24evVqIvrkk0+YWaPRGBsbE5FOu8zv3buXiPr06aO7KYovEXTOfQEaFBRU0MIszJyRkSHy78zNzf39/SVZW2Zm5qJFi0SZeFNTUwcHh9y3DePGjdu7d2/Gf2vZRkRE/PTTT23atMkdeT9w4ECekWNiYsSNYo0aNSSvJIiAu4RSU7lcOSZiaZuIODo6EtHly5elHPQF8+fPJ6KpU6cyc1ZWliiZmpiYqNNJSw6NRlOzZk1zc/P8H2p5I39/trDIKbMmbQ3Y/fv3V6lSpX379no7ixcTEyM2QV9fUQd0JCIiQpSOER9hWuXKlevfv/+PP/4YHByc8UItdrVaffHixV9//XXEiBFHjx4VT2ZmZtavX5+kTnvJp4cPH1auXJmIlj6rVJKdnR0bG3vp0qXAwMA///zT29t71+LF/OmnPHAgt2/PdeqwrS0T5fzP3p5nz/5PcXEXFz57lsuV46FDeehQHjSopAXcmdnPz08mkxkZGe3evbso4zx5wmvX8rFjPHUq37vHLVvy+vV6Crjfv39fpOprL7HS0tK+/fZbkVxcsWJFX19fyd98RCxPqVRKO+w7IyODAwNZLmd7eybizp3/R0QVKlR4aaoKM2s0moCAAHE9TET169f38/PL59/aqlWriMjZuathq7x6enpqL7ReJTIycvPmzXK5vE2bNnmS39u2bauvlb77IiMj69SpQ0SOjo6vTwr+6aefxCvzNVXUCkEPAfeUlBRra+tKlSqJhwi461P16tXpWVEE0df9q6++0umMH3zwARFJFdbI8fgxW1uzTMaiKsC//zIR29mxfit1GFKeDPf58zl3Z9r161mh4GrVnl9Gav9XujQ3a3Z06tQZM2asWLHiwIED169fz30hffbsWbErs3HjRonXfPYsE7G2FG3btkzEUuSYjh07VvtKzlNkpojS0tJECYoPP/xQPJMn273Q7t+/HxISkvt0o+7oJuA+YgQT8aZNOhn8Zb788ksiWrx4sd5mFKcnvvzyS2ZOSkoS21A6nVGUTpa2kNM7459//jl+/Lgkh25UKtXEiROJqGHDsb//XtS7rMDAQFGBS+yhhYWFMXNYWJiXl1fuMs2vqiETFRXl4+Pj6ur6YjGssLCwatWqEVHDhg3v3btXxHW+aF1c3BNdbiCVNN98w0Q8bJhkA4ombDY2NrpuBjJo0CB6duBRqVSKu1mdzljSKJVKyePXp05xhQpMxK1a8f37RRpq8eLFsc/qSoWFhYngVKNGjaKioiRY6JuInebu3bvrYS7I4/Tp09q/7sjISG3FNnE8WcvExKRFixZyudzPz09b5/1F4saybt26Lwbo9SMgIICIzMzM6tatW65cOXrBB23a5L0vMjPjKlW4aVN2deV163jWrJyxNBquW5ejo0tsSRktUX7axsamcLX4rl5luZxtbJiIly5lEW9cvJjbtOH583nCBN6xQ9r1PpeSkuLl5SWynCwtLU1NTeVyufYyMjw8XPSGJaKOHTuKizdJJCYmisQLXW+Wvw3WruVdu3K+3rCBcwd8hg/nLc/y6sR9dFISb93KH374n62uOnV4/vyI06dPvzGArlar/fz8tI2RGjVq5Ofn9/pfSU9Pr1q1KhFt27atcH9AqYjGYDVq1MjnPoH2RNGgQYNMTEysra0jIiJ0vciSQKlUikN1rVq1emMNYo1G069fPyLq0qWLhJfiLwbcDx48uHLlSt1d7SPgrk+tW7cmolOnTjHzH3/8QbrpMJmbCGv88ssvUg46Zw4Tcd++OQ+HDWMi1vHOwdvlxZIyw4ez6KGVnMzOznzxIl+9ynv38i+/8Bdf8KBB3Lix9uPtp7Ztc19/ipYknTp1GjFihLjwnjJlivRr3rKFiXjw4JyHlSoxEUdHF33g0NBQkYsj2lrkKTJTFGPGjBH3DqLYgzbb/ddffy364Hqjm4C7lxf37s16PCz58ccfE9Hvv/+utxlnzZpFRHPmzOEXuiHpyIoVK4joMz22oi3JfvzRp3x5NRHPnl3IEW7cuCGuw8TbxEt3+bStn95YQyZPucaQkBARL+jSpYue2z5A4cTEsJkZGxuzVPdEIhCph073IjQg0nzEu9AY7flBeIvdusV16+aUpi3QkcSQkJDcR6RXrlyZO8krMjJS5Cnb29vrIUNz7ty5RDRjxgxdTwR5bN++XRQM6dGjx4s1zbSFhlu0aKEtiCRoq7fnjlFGRUVZW1uToetWz5kzZ9SoUWKdxsbGlSpVatiwYdeuXUeMGDFlypT1S5bwqlW8cycHB/P163kTtVJSuFkz3r+f79zhWbN46tSSXMNdS6PRiP6BDg4O+d/7z8jgjRu5XbucoKpMxt268YoVOQH37Gxu0oTHjcv5rqsrS1uCKCsr69dffxX3tETUt2/fYcOGiZexo6Nj7l6mfn5+IvomwvFFPIGUmZnp4+Mj5p0/f760hVnfTgsXPj8WsmQJ+/g8/1bTpuzsnHO8vlEjnjqVzc2fx9mbN+d587gQ2xxZWVk+Pj5VqlQRf7lt27Z9TQU80QinefPmBj9BpdFoROg/NDQ0/78VHx8vEgm7du1qqI3Md8mRI0dEKMfFxSUpfw0PHzx4IM5OeXl5SbWMPAH3zMxMkXHfuHFj7YkxaSHgrk8DBgwgoh07dvCz4hs9e/bU6YxiX3yWNmOg6NTqnNxt8YL8bzH3kmL79ue5xQEBvG4dJybyhAns6sp9+z7fan7Rw4d85szR7dsXLFgwfvz47t27Ozo6mpiYaK+iO3fu3K5du0LUaXgz0WVT3FKlpLBMxubmLFFFMtEOx9fXl58VmTEyMipie8uVK1cSkbW1tbiheDHbvbjQQcB9714ePpyHDWNfX+kHf4UhQ4YQ0RtzGSQ0ZcoUIvL29mbmy5cvE5GTk5NOZxTZYZ56bEVbwq1fzyYmTMTjxnGBUr0TEnjevPOioHyZMmW8vb3fWI75zp07IvKujVxYWFi4urr6+Pi8mGGxa9cuS0tLIvrggw9ECUsoFkaPZiL+8ktpRlMoFHp4Q4iKiiKismXLittRcWRshR7LhUFRPHrEHTvmnF98zW1aUhI/K7PBzPz333+3bt36NcMmJCR06dJFXANJXr00D3ESVtcdpSAPb29v8WH0ySefvPHzKzExcd++fTNnzuzYsaP4bNKqUqXK8OHDf/75527dutHbcUQvOjr6ypUr8fHxhQmxPXjAc+fypEns68saDaemPq+dmJFRxAZZxVdmZqboAtq8efM3BpGjo1mhyDl/Iw6ge3iwSPVOTOTr13N+7M4djoxkX9+camyWlqxQcNEjihqNxs/PT0SviKhNmzbaqtlKpVLcLhKRq6urtr9uYmKiXC4XdSOrVq1auFRotVq9YcMGbRnubt26Fe5AQLGzcCHPncsXLvCFCzx9+n8C7s2a8a5dLHruNmrE33/PRkbs7MxeXhweXtR5xd6GiIQSkbOz8/Hjx/P8TEpKithNyb3FYkCff/55gYJiT58+bdasGRG1atVKkmJ0JdymTZtEoZ5Ro0YVqInOwYMHZTKZiYmJyFkuCo1Gc/r0afEGtXDhQu3zAQEBooakeHeS9jRDdna2eOtDwF0/PDw8iOi3335j5nPnzomtFJ3OKApnffrpp1IOGhfH2vYtn3/ORDx2rJTjlzDZ2dmRkZGHDx/+/fffz5w5o6si1ePHPy/6ffkyE3G9elKNLY5raOub5S4yUzgXLlwQ9xQbnrVYEWNqs92LEakD7gcOcO/e/Pgxp6Tw6NG8cqXE47+Ci4sLEb3YRlx3RO/gdevWMXNwcDDlaiqoI6LA3wI9tqKFgAC2ssophZyfyLZazb6+XLEim5lxrVo93d3d33ggMY979+6JGjLarU5jY2NnZ2dvb++4uDhmXrt2rfjW559/ji5JxculSyyTsa2tNAXuevfuTbo/B71t2zYi6t27t3goUpv//fdfnU4KEkpL4yFDmIgrV+YlS1gUGlWreeJE1qYdqNXs4MA3buQ8VKlUkyZNev0NZ2ZmpkhrNTY2lviY6n/VrFmTiK5evaq7KSA3lUol4j4ymUyhUBT017Ozs7WtUytUqKCNvJcqVcrOzk7aQrfw9nj06JEIEvXr1++ldQ/UanVgYKCbm1v79ju1Kcw+PvzGJO/799ndnWWynOoif/9d+EWePHlSW8qvXr16L5b5zs7O9vb2FimuVlZWCoVCm2IWGhoq6gCIgFeBejgHBgaKwKhIzdFnbpDBLVzIrq48cybPnMkuLnkD7szcrx+fOsWNGvGDBxwfL/HsompQmTJlxH98FxeX3PnjP/zwAxG1l7ydfWGJntL5TN7KzMwUJY/ee++9+0UsGwe59pjlcnkh7q2mT59ORI6OjoULA6nV6qCgIE9PT21BJPHp6erqqm0wnpmZqX13MjMzk8vlkoScjhw5IpoffPzxx/GS/wuEl/n++++JSFxfxcbGElHFihV1OuOuXbvEy0myEVNSeMcO3rCBIyJYpeL69Vkm4xJQJK3Yc3FhIhZ7zAEBTMTS9YZMS0sT1RfE6ec8RWYKKjExUewyfv755+IZsW+kzXYvXqQOuA8bxqdP53wdF6e3A7Zib/a0dmrdEwe+xIGgffv25Y5J6chnn32G3FL9O32ay5dnIm7bll9dnJaZ+cgRbtQoJ2mra1e+fLlIuVj3799ftWpVjx49ckfexQ2tTCbDvksx1a0bE3HR29FrNBrxqaaL8v25ffXVV9rrwqSkJCMjIwsLC50ccwOdUavZ05NPnODq1XO6CGRlccWKPGfO85+ZMoXnzi3YsBqNRqFQiHJYhbtHfaPExESZTGZlZaXrRgUgJCcnu7q6EpG5ufnmzZuLOJpGo7l69ervv/8+ZsyYn3/++UqBChtBcXP9+nUR2cyT0PTgwYMFCxaInTMiatWq1+jRXNCr9SNHuF69nOIzo0fzgwcFO51w5coVNzc3sQAHBwcfH5/XpI/FxMSI3USReKjNWlWr1T4+Pi8Nx7/Kv//+K852EFG1atV8fHxK2lvZa0rKiID7rVvcqRM3bKjDNSQlJXl5eYm2zzKZzNXV9eLFi0+ePClbtiwR6ahGRyFkZ2eXL1+eiK5rD3q8gkqlGjp0qHgx35a23FLJo9FoREKbTCb76aefCjdIVlZWmzZtiGhYQTo1ZWdnBwYGfvbZZ9qjGERUvXr1KVOmTJgwQaR2Wltbz507V3uaOSYmxsPDQ+wN2Nvb+/j4FPrS6+bNmyKUQUS1a9fes2dP4caBghLFOSdMmMDMKpXK2NjYyMioQIcqCkq0iGjZsqU0wyUkcKtW/PPPvGULd+7Me/Zwdja/unIXvEVGjOAqVXISrLy9mYgnTZJweLH1qD1LkbvITIFoNBpxvrlVq1aiWpo2270Qo70NpA64d+7Mz45hskbDtWpJPP4riBp2165d0890zCwO1ItqpJs3bybdlxMaMWIEEW3SYytaEK5e5erVmYidnF5enSwqit3dc0Lt1apJXEspISHB19dX9E21tra2trZetWqVlBOAHu3Zw0Q8dGhRx7l586a42s79pC4Kaos3OtGBQKRf6fooD+hOs2b8ySe8bx9nZXG9evz++8+/dfYsF24Xb/369eIU9gcffJCamirVUoWdO3fiJac3MTExzZs3FwkpJ06cMPRyoPg5fvy4ubk5Ea1cuZKZlUqlh4eHtspQ7dq1vby8Hj58WLjBs7LY25utrdncnJs0Gebt7Z2f4HVUVJSHh4coCGNjY+Pp6ZnP0sxHjhypV6+eCMO5u7trlx0dHa2N3Y999Qn6O3fuaONiZcuW9fLyKlySV3GXJ+C+ciUvX86zZ+c0RBBmz2YHB52vJD4+/osvvhCvRmNjY5HV6+LiovOJC0J0h3t9NXCNRvPpp5+KY0MlpDCR7mRnZ4smcGZmZkXcY75165bYjVu/fv3rf1KlUgUFBcnlclHRSKhZs6ZcLg8KCtIeu7l37567u7vIaahataqvr6/2W//++6/2sE6LFi2Cg4MLtNSUlBSFQmFhYSEC+gqFomS+OxnK9u3biWjgwIHioXgZ6PT83507d8SrSJrh5s9n7cHW2Njnb+VQLNy6xRs28O7dHBrKK1bws6p6Eo19y8jIyNLS8vHjx8y8e/fuX375pRBncUQZ7TJlyogS8Nps90mSbg/ok9QB99Gjn1eKjYjgjh1ZrWbdv4+Ls1exsbG6nkhLnA8VEa4dO3bUqVPnf//7n05n7Nu3LxFhC9og7t3jhg1zNgK1Nw///sunT7NCwRYWTMTW1qxQ6PDF/vTpU9EG6jIObRUfERGsjVzdvs1HjvCCBXzuXM4zf/zB+SwjnJmZeefOneDgYD8/P29vb9GPN3ebnd27dxsbG3/88ccS1n1Tq9Xi/kFURhKff1NFVzsohpo14wcPuHlzfvqUmzfn2rVZkrv1I0eOlC5dmojatGkjydn2tLQ0Pz8/V1dXU1PTpk2b5q5kCjpy6dKl6tWrE9F77713Q1tdCKCA1q5dS0QmJibaisPGxsYDBgw4cOCAJIdgbt3iiRNPiJHbtm17/vz5V/3k48ePPT09RVDJ1NTUw8OjoO9OaWlpCoVCbCGULVvWx8dHG/A6evRogwYNzmk/y3N59OiRp6en+C1R+SExMbFA875LLl58XpD98mU+e5bv3eMDB9jPj7dvz3k+PZ31lkr04MED8bdjbGxsY2MTEhKip4nzR1R+aNOmzWt+ZubMmURkaWkZFBSkt4W9q0JDQy0sLOzs7F7TWTf/1q9fL0LYLz2jkJ6eHhAQ4O7uLg5bCI6Ojnni7HmcPn1a5M6LF4b2FSvaUYhPbZlM5ubmlp86VxqNxtfXVyTUi61EUa0U9OnkyZO5/5mLJpAF6pZcUBkZGTKZzNTUVJqjqKNGce49HkfH/N7KgsHt3Mndu/PWrbxsGbduLU2J2//q1asXES3N3RmsgI4dO2ZiYiKTyXbt2sUvy3YvjqQOuJ89y+3b8/nzfOMG9+3LO3bw0qVcuzb/84/EEz1z4cIFNzc3S0tLPTeQFPcSt27d0tuMYjcbeWeGkpDAc+awnx/b2OQcnFq2jCdNen7GWQ/FaYcPH05Ea9as0flMIJGAANbuxB04wFOncr9+3Lw5i5PoTZr8pzf448d8+TLv389//MFz5vDkyemurq7NmjXLfdpUq0aNGra2ttrElp07d4rUrSFDhkiVqyLaQTs6OoqHgwYNIrSvLM5EGspvv/G333Lz5rxoEUu1gXvlyhVRMqJWrVqFPmqWnp6+bdu2oUOHalNiTUxMtMX7QHf+/vtvEQJo3759oROQAYSvv/66UaNGRFSpUiVPT09dlLwICAgQkSYTE5MXaxmLYsdiF1CEoopyrR4eHt6zZ0/xjtSxY0dt8dAXIxeiYrj4p2RkZOTm5oZyHy/17bds2P8wkZGRf/75Zz7POuhTWlqatbW1TCaLeulx2mfFKIyNjUVFUyi63bt3v3TnrHBGjRpFRM2bN9fWm0pLSxNxdltbW+0FvJOTk0KhyGeZNbVa7evrK/KgjYyM3N3dtXuHycnJM2fO1Oaq//DDD6+pc3X27Nl27dqJBbRq1aroLV6hcCIiIsRNnHgoOnLt27dPp5OKgm/SXOBNnszaRtMaDdeuLcGYoB+NGz9vlrJ4MS9aJPkMu3fvFrk7hd7dCQ0NrVWr1syZM8XDhQsX5s52L6akDrgz8/nz7OnJX37Jx46xWs2tWjERGxnxtGks6Xnzs2fPiqRvIrK1tX2xAb1OiQLKOr01ffLffaeGDRsS0aVLl3Q3I7yRvz9Pm8atW3NGBi9bxmvW8NSpfOaMnmZfunQpPav7BsXCSwPuM2fyDz8wMzdpwps3c8eO/N57bGmZU5Uo9/+srKy0kccqVaq0adNm0KBBU6ZMmTdvXocOHcQVtvYqLSQkRBQAbdeu3aPXNxzInzVr1hDR8OHDxUMHBwciunnzZtFHBoMQAXeVijt25ObNJR48Li5OVOsrU6bMPwXZYhfHqz08PMRxCnFLKTpFoxecHqxZs8bU1JSI3NzccK4cik6tVqenp+/fv1+n3T5SU1MVCoV46drb24uynmq12s/PT1svPk+TzKLw8/MTAS9TU1O5XJ6cnJz7u1lZWT4+Pvb29tp5L168KMm87xiVihcvZgT6XmPw4MFE9Ouvv774rc2bNxsZGclksj/++EP/C4P8SE5OFkVuJ0+e7Ofn5+7ubm1tnSfO/sYa/a8aWXvgxsbGRqFQaJM9o6KiRPGZBg0avPSQa3R0tLY6jYODQ+7qNKB/aWlpRGRubi7+FsaOHUtEa9eu1emk9evXJ6mOyB86xAMHsnilbdjAn3wiwZigB9nZXKfO84f//MPjxkk+iVqtFtdgfxehx31iYqKoGZgn27340kHAPY+sLPbyYjMzJuJatSRpqiCy2sUnh7W1tVwu1/9tuZOTk4WFRdG7ir3UlStX3N3dK1asmDv/omrVqkR0V1siHwzB35/nz8+pQSkC7voUHBxMRE2bNtXrrFAEAQFcuzb368f9+nHr1jkB96gobtuWIyK4SRNevvx5eN3Ojp2c2MWFR4/mmTP5l194z56/z549GxMT82KxWpVKNWHCBJHrtHr1avHklStXRN5fgwYNXpUhlX9ifHEu7N69e0RUtmxZXKYXX599lvPFv//yxInSj5+SkiJ6cJmZmW3cuPH1P6xWq18sYypuR4t1FkMxItreiv/ycrkc/7Sh2Dl//nzbtm3Fa7hNmzai6joRtWjRIjAwUNq5EhMT5XK5KAdfpUqVbdu2iecDAgJEQ3siat269TFJK6K+Y65e5e+/Zy8v/eWpFDsbN24kou7du+d5/vDhwyLYukgHOYkgoTNnzpiamoq/LJFA0KlTJ29v76JfkzNzeHi4todEnTp1/Pz8tN86evToiyWS0tLSvLy8RHK9paVl/ptYgE6J/JKEhARm/vrrr4lo/vz50k4RHR2d+2HXrl2JSLKPxRUruGdPdnXlTz7RRVkS0JXcxxF27uQvvtDFJPPnzxcRA1dX1ylTpixbtmzXrl2XLl3Kk6nwRvfv3xepft9++60u1qlPug+4CxcvcosWOdU3PDy4sG/3Fy9ezBNqN1T1MdHygoiGDh0qChxLIiwsbNiwYaLPkoWFRe7dIfF5+QTvawYlAu4qFbdrx9Om6TvgnpaWZmpqamxsnJKSoteJobBemuEeE8MnT/KgQdykSU5h96tXuXB/pV5eXkQkk8kUCoV4JiYmRnQDc3BwKOKBmNatWxORqBO6bds2Iurdu3dRBgTD+uab519//bVOplCpVHK5PM9rMo+wsDCFQlGrVq08cXaUDtenjIwM0YndxMQEjbih+Lp+/fq4ceNKlSpVsWJFIqpYseK0adPy00+1cE6fPi16OBFRly5dRJ9hIqpXr952bVVygMJ68uSJmZmZsbFx7iPUZ8+etbGxISJPT08Drg3yafv27YsWLXJxcVm5cqUuwhSHDx8Wp97F3syr0pYDAgK0F1qurq5IZXh7iGMQV69eZeZly5aJpAepBtdoNN7e3ubm5rnb/n300UdE9MZUGHjHjRrFW7cyM2dlcZ8+0nZM1YqPj1+9ejW9TJkyZVq0aOHm5ubp6enj4xMYGBgREfHSczkqlcrFxYWIunbtqrsrOr3RV8CdmbOyeM6cnFT3GjXitb1V8+ftCbULGo3Gx8dHBMFLly7t4+NTxAFFVrvInTEzM/Pw8Mi9OXn48GGZTCaTyaTpdwGFJQLuzHzqFFtZ6Tvgzs+69aJXUnHxqoA7M3/8MVtZcdH/Qa9du9bExISIJk+eLN4fEhISOnbsKD7YivJSyczMPHPmjKgy4enpSUSvCqFCsfD++8+/rldPhxN5e3uLz7KxY8dmZWWJJ69cuaJQKMRthlC9enXRLkyHS4GXefTokXiLsLW1PXDggKGXA1B44r5u5MiRZ8+e9ff3F7t9Oj2uoVarfXx87OzsRFXcChUqeHt7S9iuHEo40TNg/fr14mF4eLjYTBo1ahTOIYGQnZ3t4+MjykiamJh4eHjk3qE5d+5cp06dxIVWs2bN9Fx0F95I/O0cPXqUmf/66y8iGjFihCQj37t3r1u3bi9mvbi6uuJ8DPDjxzxmDLu6cs+e/OxwvC5kZGRcuHBh586dS5YsmTx5ct++fevXry+6TbzIxMTE0dGxe/fu48ePX7BgwZYtW86cOSOStypXrhwbG6u7deqNHgPuQlgYt24dV7Fi2TJl3NzcHj9+/MbfeNtC7bnFxMT0799fvFz69u177969QgzyYqg99zhBQUHdu3cXp9L27t0r3dqhME6cYG0Zoe+/Z/1HKj777DMiWrJkib4nhkIJDuYVK3K+Pn2aly/nqVNzGpY8fMjt2kkQcOdcHVM/+OADER/PyMgYOnSoOCijPfleFF26dCEivAUVa3oLuDPzrl27RAeCDh06fPfdd6KJomBvbz916tSQkBDEDgxFXFTUrFlT2wESoJj65ZdfiEh0V05PTycic3NzPcwbExNz4sSJjRs34sQhSGvlypVENHDgQGaOjo6uUaOGyFDGpg7k8fjxY22dq7Jly4rON9pnypUr5+3t/Q4kh757hg0bRkSiLnFqamqevt+Ftn37dtFisGLFitr09qSkJA8PDyJq2bJlYmKiJBMBFE5CQoJSqfTz8/Py8vLw8HBxcXF0dBTvV3mUKlXKxMTkxIkThl6yNPQecGfm7Oydv/4qdjmqVKnymgjO2xxqz83Pz69s2bLixeHj45P/IMLVq1fzE2oXn6MKhQL1ZAzuyBE+eDDn6+PHWf/hx7Vr1xLRhx9+qO+J4e0WEhIiLrO6dOki3ihUKpXYnjE2Ni7iERy1Wi0KDkpYPgv0z84up51Av35cq5bOpzt79mylSpXEOTBx3sLd3T0gIABRA4MLCwtzcXF5Oy+oAApk8eLFRDR9+nRmfvLkCRHZ2dkZelEAhXf//n0jIyNLS8uoqCgnJyciatu2LfZ14FUuXLggcmKISCQ6mJmZTZ8+HUGDt5bI3hUtsiShjaoTUa9evbRJwWfOnBEtRiwsLLy9vZHmAm+hjIyM69evHzhwYMWKFTNmzBg8eHCzZs2+/fbbd+kAriEC7szMfOvWrc6dO4u3Bjc3t9wnoZj50qVLxSLUrhUXFzdo0CDtO90bW5sWNNSOPcm3xMqVvGxZztdr1/KPP+p7ATfu3Bm5d+8noaH6nhjeemFhYdWqVSOihg0bat9PRJF3KkLpz7i4uO+++46IHB0dpVssGIA+M9yF27dvHz9+/OOPP967d29mZqY+pgSAkkS055o5cyYzP3jwgIgqVKhg6EUBFEn79u2J6P333xdXdPk5Dg4lnOjeLJJGcXbtLSc+tr788ktJRntpVF2lUnl5eZmamor3kCL29AKAojBYwJ2flUEXfWAqVaok6h68GGovRrV7/Pz8RD01Ozs7b2/vl9Zbz8zMHDFihGiLam5uPmnSpFeF2u3s7Dw9PRFqf6sYPOCuZu50/nwLpfLxs8rIAFoxMTGidkfNmjWvXbsmnly1apXY2ytQT5579+75+Pi4urqKAvGNGjV6l7aaSyb9B9wBAHTq+++/J6I5c+Ywc1RUFBFVrVrV0IsCKJJFixaJO8GaNWvGiLY/AG+iVqvR6a1Y2LlzZ7NmzSwsLORyee6OfQWVJ6p+8eJF8fydO3dEnx6ZTCaXyzMyMiRaOAAUhtGLRXP0RiaTeXh4nD9/vlOnTg8ePBg6dGjt2rWbNGni7+9vZWU1Y8aMyMjI5cuX29vbG3CRBeLm5hYWFjZkyJCkpKRp06Z16dLl5s2beX7GzMwsISHBxMTE3d396tWrK1asqFq1KhGdPHmyf//+HTt2PHLkiK2traen5927d728vEqXLm2APwm82u+/k6srubrS8uUGmN2IqL6VFRFdSUszwPTwdnNwcDh+/HiHDh3u3Lnj7Ox88uRJIpowYcKOHTusrKyaNm36xhEiIyMXLVrUrl276tWrT5gwYe/evSYmJgMHDvzqq6969+6t8z8A6NLw4S//GgCgmMrMzCQic3PzPF8DFF9ubm6zZs1q1arVoUOHHBwcDL0cKB6MjIxEPh+85QYNGtSjR4+MjIyff/65du3a48ePv3HjRkEHuXv3brdu3b7++muVSiWXy5VKZePGjYnI39+/WbNmQUFBlStX3r9///Lly/GZCGBgho74Mz9Ldbe1te3atauVlVXxymp/KT8/vwoVKhCRlZWVl5dXng3n8PDwqKgo7cPg4GDRPJqIRKgdWe1vLYNnuDPzz9HRLZTKVch5gVfIyMgYMmSIeP/RNsl4fZJUZGSkt7e3s7OzOF1ERJaWlq6urr6+vlI18wEAAJDWtGnTiGjZsmXMHBYWRkROTk6GXhQAAMDrhIaGassLy2QyV1fXwMDAfP6un59fmTJliKhy5cra88dPnz4dNWqUuIkbPHjwo0ePdLZ2ACiAt2IjVKS6X79+fcuWLbdv3y5eWe0v5ebmduPGDQ8Pj7S0tK+//rpTp065ty7r1KkjSi2LrPYOHTrs3btXhNqjoqKQ1Q6v18DamoiupKYaeiHwljI3N9+6deuECRPS0tIGDhz4+++/E9FLk6SuXLkye/bsli1bOjo6Tps27eTJk9o4e3x8/J49e0aPHi3apQIAALxtkOEOAADFTvPmzTds2BAeHi6Xyy0tLffu3dujR4+WLVtu2LBBrVa/5he/+eabYcOGJSYmDh069MqVK+L8cUhISLNmzTZt2mRra+vj47N9+/Zy5crp648CAK/zVgTcBQcHh4oVK1asWNHQC5FGmTJlfHx89u7dW6VKlZMnTzZr1uzHH3/UvoGeOnUKofbiqGFD0pblcHKi5s0NsQYrKyIKS0tjA0wOxYOxsfGqVavE8ZoJEybMnj0793dFnL1+/foNGzacM2dOaGhomTJl3N3dAwICEhISRJxddNcAAAB4a7WxsfmqefN6trZEZJ6d3bNmzRbFPGUHAABKCEdHx+XLl9+5c0ehUJQrVy40NHTMmDH16tVbvnx5enr6S3/Fzc2tdOnS3t7e/v7+ZcuWValUs2fP7tixY2RkZOvWrUNDQz08PPT8pwCA15AxI2qnW0+ePPH09Fy9ejURtW3bdsqUKX/99dfevXuJyNbWdtKkSZ6enuJYEEA+9b10KT47e0fDhtWRyQWv9ccff0yYMEGlUk2ePNnDw2P79u2bN2/W9pYoV65c37593dzcevXqZWZmZtilAgAAFMzIkbR5M23aRCNH0rFj1LUrde5Mx44ZelkAAAAFkJqa+ueffy5ZsiQ8PJyIKlasOHHiRLlcXrZs2Tw/mZKSIvKibt++PWrUqFOnThkbG8+YMWPevHmihyoAvD0QcNeTffv2TZgwISYmxsbGJiUlpXTp0tOmTZs2bVqpUqUMvTQofv4XEfHPkyfzatXq88JnMEAeO3bsGDlyZFZWlkajEc9UrVp18ODBgwcP7tChg6geCAAAUPwMHUrbt5O/Pw0dSocOUe/e1LMnHTpk6GUBAAAUmEaj2bdv3/z588+cOUNENjY2H3/88ZdfflmjRo08P7lhw4bPP/88JSWlRo0aGzZs6NSpkyHWCwBvgIC7/jx9+lShUNSvXz8uLm7atGmoHgOFtu7+/RUxMcMrVpxRrZqh1wLFwIkTJy5duvTLL78MGDBgyJAhbdq00TZHBQAAKK7696e9eykggPr3p4AAGjgw5wsAAIBiKzg4+Mcff9y3bx8zGxkZ9e3b97vvvmvdujURPXr0aPz48bt27SIiNzc3Hx8fFEsAeGsh4A5Q/FxLSzufkvKepWVpExMHMzMbJCkDAABASdOzJwUG0qFD1LMn+fvTsGE0dCj5+xt6WQAAAEV16dKlxYsXb9myJTs7m4icnZ179+69atWqmJgYOzu7FStWjBo1ytBrBIDXeYuapgJAPt3OyDj25MnZpKS/ExLuZ2UZejkAAAAAepeZSUQk+tnk/hoAAKCYa9y48YYNG+7evatQKEqXLn3y5Mlly5bFxMR06tTp8uXLiLYDvP1MDL0AACiMtnZ2H1eubOhVAAAAABgIAu4AAPBOs7e3nz179tSpU1euXFmnTp2YmJgpU6agCxdAsYCAO0CxFPTkycOsLCL6X7VqRqjHDQAAACUNAu4AAFAClClTZubMmYZeBQAUDALuAMVSExuboRUqEBGi7QAAAFASIeAOAAAAAG8lBNwBiiU7E5OquKsEAACAEqtKFcrMJGtrIiIjIzI2RsAdAAAAAN4GCLgDAAAAAEBxExhIjx6Rvz8lJFCnTqRSGXpBAAAAAABEREaGXgAAFFjvMmXGVKpk6FUAAAAAGE5CAvXsSeXKUZcu9PPP9Ntvhl4QAAAAAAARkYyZDb0GAAAAAACAgli0iMzMaOpUIqLUVGrWjMLDDb0mAAAAAABkuAMAAAAA0qL/3gABAABJREFUQLETGUnvv5/ztbU1mZlRWppBFwQAAAAAQISAOwAAAAAAFD/ly9PDhzlfM1N6OllaGnRBAAAAAABECLgDAAAAAEDxM2wY/fYbPX1KROTjQ927k0xm6DUBAAAAAKCGOwAAAAAAFEeHDtGKFaTRUIMGpFCQlZWhFwQAAAAAgIA7AAAAAAAAAAAAAIAUUFIGAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAF1RqejBg5yv1ernXwMAwDsJAXcAAAAAAAAAAF2JjqYxY3K+fvCARoww6GoAAEDHEHAHAAAAAAAAAAAAAJCAiaEXAAAAAAAAAADwLouMpPnziYiSkw29FAAA0DEE3AEAAAAAAAAAdKhsWerWjYjo0SM6e9bQqwEAAF1CwB0AAAAAAAAAQIdKl6Z27YiIYmMNvRQAANAx1HAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAALri4ECffUYaDRGRrS3Nm2foBQEAgC4h4A4AAAAAAACQ1+jRz6t/fPIJ3b1r0NVAcZaZSUOH0sqVRETR0bR8uaEXBAAAuoSAOwAAAAAAAEBe9++TSpXz9YMHlJ1t0NVAMdemDW3aRHFxhl4HAADoHgLuAADvKI2GUlIMvQgAAACAYkyppOBgCg6mxERDLwWKORMTmjuXvvjC0OsAAADdMzH0AgAAQAcWLqQDB8jBgWJj6eefqWlTQy8IAAAAoPj5918qVYqIKCHB0EuB4ik1lXx8aOBAIqIePWjNGvrnH0OvCd4NajVt3Uo3btB779GIEWSC+B7AWwT/IAEA3jnBwXTqFB0/TjIZhYfTRx+RUmnoNQEAAAAUPxMnUvXqRETBwYZeChQ3ycn0xx/k5UX371N0dM6TS5dSp07UooVBVwbvhmHDqHVr6t+fjh2jgQNp3z5DLwgAnkNJGQCAd86xYzR4MMlkRER165JMhqQsAAAAAAD9ePiQZs2iatVo2jS6f5/at6cuXcjWloioShWSy8namlatokOHDL1QKL6uXKGUFPL0pJYtacYMMjam0FBDrwkAnkOGOwDAO0etJmPj5w9NTNDkCwAAAKCgpk8nO7ucr6dMoUqVDLoaKA7i4+m332jZMkpKIiJydiZPT+rfn4howICcn5k6lf75h7p3J0tL2r+fOnc22GqhGIuMpHr1nj+sX58iInB0AuDtgQx3AIB3TosWdOJEztePH1NSEm4QAQAAAArK15c++yzn6/nzSa026Grg7Xbnzh2FYmv16jRnDiUnk6srhYRQcHBOtD2PLl1owgRKS6N+/VCtCAqlQgV6+PD5wwcPqGJFw60GAPJCwB3gHaRSqU6cODFz5sxmzZpt2LDh6NGjhl4R6ItGQ8nJ1K8fZWbSuHHk5UWDBtGSJYZeFgAAAECx9OABHTxo6EXA2y0yMnLChAl169b96aexZcrEurrS2bO0Zw+1bfvKX5HJ6Lff6JNPKDWVXF1RCwQKrmVLunGDzp8nIgoLowsXqF07Q68Jip9Hjx5t3749LS2NmQ29lncNSsoAvDtiY2MPHjx44MCBw4cPP3nyRDw5fvx4Y2PjHTt29O7d26CrA704cYL69qUJE2jjRrp1i+LiaOJEKlXK0MsCAAAAKJbmzqUvvkDRD3i5ixcvLliwYNu2bRqNxsTEZNiwYd98o3n//Xz9rkxGPj6UkkJbt1Lv3nTsGDVooOPlwjvj55+pQwfatYu++44SE6lUKdq5k8zNDb0sKB7S09NPnjx5+PDhw4cPnz9/XqPRtGrVqlmzZqtWrZKJPnAgBQTcAYo3tVp94cKFPXv27N2799y5c9ptSUdHRxcXl379+v39998rVqwYOHDgli1bPvjgA8OuFnRuyxZKTycbGyKi6tVp/nwaMIDw9w5vmfv371eqVAnXcwAA8ParUCHn0CBAbhcuXBChdmY2MzP78MMPv/vuuzp16hRoEGNj2riRUlNp717q3p2OH/9PUW6Al7tzh6ZNIxsbio8nX1+6f58qVSJcV8NraTSaCxcuBAYGHj58ODg4OCMjQzxvaWnZqFGjCxcu/Pvvv2ZmZj///DPu0aSCgPt/JCQkpKWlVa1a1dALAXiD+Pj448ePizh7YmKieNLKyqp9+/aurq6DBg2qUaOGeLJ///7m5uZLly51c3Nbv379qFGjDLdq0DGVinbuJCL68EMior//pvXr6cIFBNzfeSqVav369c2bN2/evLmh1/I60dHR27dv9/f3Dw0N7d69e58+fT7//HNDLwoAAOAlbtyg2Nicrz/7jLp0obg4SkujPXvI3d2gK4O3wKeffrp27VoisrKy8vDwmDFjRpUqVQo3lKkp+ftTv3509CgNHarety+2evVqki4W3jn+/sRM/fuThQURkYsLJSfT4cNUwP0eKAni4uKCg4MPHz68d+/e2GefakZGRi1atHBxcXFxcenQoYOFhcXff/89cODAX3/9NSsrC3nuUkHAnSIjI4ODg0NDQ0+ePHn+/HlXV1eVSrVlyxZbW1tDLw3gP16fzO7q6tqzZ0/zF86RyWSyJUuW2NjYzJ07d+zYsWq1esyYMXpfO+jF0aMUH0/vv08NGxIRbd1K9Cz4Du+0a9eujR8/vk6dOuHh4YZey0vEx8f7+/tv2bLl5MmT4o3L2tp63759+/bti4qKWrhwoZEROsoAAMBbZMMG+vxzMjWlTp2IiIyNadkyatOGPD1p0ybasYPWrKFy5Qy9SjCQU6dOXblyxdzcfMKECV9//bW9vX0RB7SwoIAAcnPLun17nIvLv8ePHy/6mPAu276diGjIECKiGzfoyhUqV45q1TLsouDtkZKScvr0aVExJjRXgwh7e/sOHTq4urr269ev3H8/w3r27Ll79+6BAweuXr2aiBBzl0RJDLinpKScPXv21KlTISEhISEh2uxgIrK0tAwODk5ISBg8ePDevXtfjF0C6F/+k9lfY86cOVZWVl9//fW4ceNSUlKQVaprDx48OHfuXLdu3fT6NiIi7CNGEBFlZNCePUREQ4fqbwFgIOfPnyeiZs2aGXoh//H06dPdu3f7+/sfOnQoOzubiCwsLFxcXNzc3IYOHern5+fh4fHTTz/dunVr06ZNlpaWhl5vCZKenn7jxo1p06YVZZBmzZp99913ZcuWlWhRBZaUlPTvv//OmzevKIP06dNn/PjxBvxTAMDbJimJJk2iP/8kInJzo2+/pZo1iYhatqRLl+jaNdq/n3btotBQ2rQpJxwPJU1cXNzp06f79OmzfPlyqca0tqYtWzK6dw9XKm927dr1+PHjlSpVkmpweKdER9PZs2RlRb16ERH5+RERDRpEJm9pcC82Njb0mdOnT//www8dO3Z0cnIy9LreNSqV6uLFiyLIfvz4cXHzRUQ2NjZt27YVyewtWrR4zQiIuUuPS4aYmBg/Pz+5XO7s7GxmZpb7v4C9vb2rq6uXl1dQUFBGRkZERITYTx44cGB2drahFw4l3b179+zs7LQvVycnp+nTpwcGBmZkZBRitEWLFhGRTCbz9vaWfKklXEJCQlBQkLe3t7u7u/YConfv3gsXLtTTCrKyuGxZJuKrV5mZd+xgIm7VSk+zg0GJyKn+XmyvlZ6eHhAQ4O7ubmVlJf4hGBsbu7i4+Pr6JiUl5f7Jw4cPly5dmojatGnz4MEDQy24BPruu+8qV65cxAtIe3v7UqVKxcbGGupP4e7uXvQagDVq1KhevXpqaqqh/hQA8FY5e5Zr12YitrXlDRte/jN373KHDkzExsbs6clZWfpdIrwFRKJDgwYNtM+oVKrMzMyij5yYmCjyJ5o0afL48eOiDwjvoGXLmIiHDct52KQJE/H+/QZd038kJib+/fff8+fPHzhwoIODQ55LL5lMVq1atXv37hl6me+UsLAwa2tr7X9kc3Pzrl27zp8//8yZMyqV6o2/fvr06Q3PPvMOHTpkYWFBRB4eHhqNRscLf8fJ+FlVineAWq02NjYWX4vtHVEr5sSJE3fv3tX+mImJSd26dTt06ODs7NyiRYsGL/QCDwsL69y5c0JCwpgxY9atW4ddHTAUlUpVtmxZtVrdrVu3fv369enTJz/J7K+3atWqzz//XKPR/PDDD99++60k6yyZYmJiQkNDz507J/5fWxBNsLOzq1mzZlhYGDNv2rTpo48+0vmC9u0jV1dq0oQuXCAiGj6ctm6lxYtp+nSdTw2G1qVLl+PHjx88eLCXSHUxBLVa/c8//2zYsGHXrl3JyclEZGRk1K5dOzc3t48++qhChQov/a0rV67069fv7t27jo6O+/bte//99/W76pLo3r1777//fnp6+vLlyxs1alTocebOnfvPP/+MHTt23bp1Ei4vn06fPt2+fXszM7N169YV+ty9RqOZNm3a5cuXFQrF7NmzJV0gAOjQ7Nmzq1WrNmjQoHLSVXVhpp9/pv/9j7KzqUUL+uuv1xVDVqnohx/ohx9IraY2beivv6Ss5aBWq4OCgrZv3z59+vSaIrse3jLJycl2dnaWlpapqakymeyrr75avnz5L7/84uHhUfTB4+Pju3Tpcu3atbZt2/7999+ocwt5dexIwcG0dSsNG0Y3b1LdulS6ND14QP/NK9Wn7Ozs8PDwkydPivjb9evXNRqN9ru2traNGzdu0aJFixYtWrdu7eHhERQU1KBBg6CgoDJlyhhqze+S8PBwZ2fn5OTkKlWqiEz2Xr165c7afL379++///77ycnJa9euHTt2LBGJeu4ZGRkeHh7Icy8SQ0f8JTNv3jxra+uuXbv26NGjefPmedLYK1SoMGDAgIULFx4/fjw/eUwhISFig+jrr7/Ww+IBXiokJISI6tevL+2wq1evFhWTPT09pR353RYTExMQEKBQKFxdXV+M79jZ2Tk7O8vlcl9f37CwMLVazcxLly4lIlNT08OHD+t8fe7uTMQLFjAzp6ayjQ3LZHznjs7nBUPTaDQiT/z+/fv6n13EBeRyee6QupOTk5eX12tyn1Uq1bZt28TXcXFxLVu2JKKyZcseO3ZMXwsvuYYOHUpEo0aNKuI4ERERFhYWMpnszJkzkiws/zQaTevWrYlo1qxZRRzq5MmTMpnM0tLyDt4tAYqJxMREcaNnbGzs7Ozs7e0dExNTxDFjY5O6dWMilsl4xgzOZ6byP/9wlSpMxGXL8u7dT4u4BpVKJT5PtReZixYtKuKYoDvly5cnIvHamzt3rrQ3Vvfu3atVqxYROTs7p6SkSDUsSOvWrVvbtm37559/xH2fnsTFsZERW1pycjIz84IFTMRjxuhvAc9ERET4+vqKGhIiIVrL1NTUycnJw8Mj932x1pMnTxo3bkxEnTp1Sk9P1//K3z2//vorEbm5uRV6hCVLlhCRTCZbtWqVeAZ57pJ4RzLcMzMz7ezssrKycj/p6Ojo7OwsMtmdnJwKui1z+PBhV1fXzMzMn3766X//+5+k64UiYeZvvvlm2LBhzZs31+lEq1aRvT0NHEhEtHYtlSql72rYXl5e33zzzcSJE3/77TdpR968efOYMWNUKpWnp6eXl5e0g78z4uPjxS69SGN/+PBh7u+WKVOmRYsWzZs3F9v1jo6OL32TmTZt2vLly+3s7IKDg4uSTPp6mZmZ+wYM6BkTY7N7N9WuTX5+9OGH1L49nTypoxnh7REZyT163Hj//Sv79g3R57ynT5/+66+//Pz87t+/L55p3LjxiBEjhg8f/saMPPHv4rPPPvvll19MTExSU1M/+uijgIAAc3PztWvXjhw5UuerL6lOnjzZsWNHCwuL69evV69eXTy5bdu2jIyMfI7QokWL+vXri6+//vrrH3/8sV27diJsrZMVv4yvr+/YsWOrVKly/fp1GxsbIlKr1X/99Vf+R+jUqZP2jz98+PCtW7eOGDFi8+bNOlku6JFSqczMzLx27dq4ceO0x17hHZOamrply5bt27cfOXJE3P0ZGRk5OzsPGTJk8ODB1apVK+iAgYGBo0ePrlHjXGSk/fr11LdvAX73yROaMIH27UutVKmls3OrlStX5j7Unx8ZGRmBgYHbt28PCAjQ9mqqV6/ekCFDRo4ciTLHb622bdueOXMmKCioQ4cOmzdvHjly5NChQ/39/aUaPyoqqlOnTnfv3m3Xrt3kyZMzMjJUKlVaWlpmZmZWVlZqaqparU5KSiIi8bJJSkpSq9XiBzIzM9PS0lQqVXJyMjN7enr26NHj9bWboUBSU1MXLVr0448/MnN2dvbAgQM3b96cJ+isI7xypWzSJBo0iHbuJCJq2ZJCQykggPr318PsRLRv375FixaFhoampKRonzQ2Nq5fv36rVq1at27dqlWrxo0bm5qavmaQmJiY9u3bR0VFDRgwYMeOHfi8LqJBgwbt3r37jz/+GDduXKEHWbp06fTp02Uy2cqVKydMmEDIc5eEYeP9Ujl79uyLf7SbN28WcdjNmzcbGRnJZLI1a9ZIsk6QxNq1a4modOnSISEhOp3ohx+eV2/86SfW/6ugd+/eRLRlyxZdDL5161bxQTh9+nRsWr7oxo0bs2bNyv2WUqpUqdw57C/9j5aeni4agmufUavVQ4YMIaKqVavqrlbdzp07iahly5bi4dPx45mI9V6pPy4u7rfffnNxcRk3btzs2bPXrVt35MiRmzdv5qflQHIy//EHiwSI+/f5xAk+cYK1tSuDg/nhQ10uvTjz92cidnXV66TXrl3T9mitUaOGXC4/d+5c/n99+/btoktqjx49nj59yswqlWrKlClEJJPJFAqFrtZdsqnVanG/PXfu3NzPizS9fMqdcZmUlCQyMTdt2qS3P0VycrKoB7ohV33l3Hd9+eHv76/93Xv37okA2fHjx/X2pwDJaTQab29vMzMzcYa6S5cuqA/7zktMTPTz83N3dxcbb4KTk5NCobh+/Xp+RsjIyJg6daoIIgwd6lG4c2IaDf/xR6CItTVo0ODSpUv5+a20tDTR7yRPryZPT8+goKDCrAP0S5SLXL9+PTOfPn2aiJo3by7tFOHh4XZ2doXYQ8rD0tKyZs2a6FYiCbVavWbNGtHP1sjIqE+fPtoPnSdPnuhhAX179JjZokW0OCd6+zbLZGxry/rKE9+4caOLi4t4XYlWiAqFIiAgICEhIZ8j3Lt3TyS8h4WFiXoyn332mS6X/O5TqVTirHNUVFQRh9JDnntSUlJAQMDvv/9eQo6WviMZ7itXrpw0aVLuZ957770bN26IuhlF8dtvv33++efGxsZbtmwZquf0ZngFtVo9duzYTZs2WVtbBwQEdOvWTUcTzZ9PajX16UNEtGkTNW5Mn3yio6leQhRwT0lJiY2NLXp3u5fau3evm5tbRkbGhAkTfvvtt6L/e3mXTJw4cdWqVfXq1Rs6dKjIZH9pAX1RsU7beF3k1tWvX//q1avan0lPT3dxcTl16lTz5s2PHz+e+7ZQKiNGjNiyZcuiRYtmzJiRnJxcqVKlTvb2u4KCLF5oU6M7zNykSZOYmJiEhIQ835LJZJUrV37vvQb29oHVq1O1alSzJlWvTtWrU9myOT8TFUV16tDy5fTZZ3TqFPn6UlISffUViaDumDE0aRK1aaO3P01x8u23tGABffcdzZ2rv0nbtGlz9uzZESNGfPnll6IgTEGdOXNmwIAB8fHxjRo12rt3r0g3Xr58+ZdffqnRaMaNG+fj4/P67BgoKB8fn88++6xatWrXr1/XtrQlokmTJoksufz46KOP+ubK/1y3bt3HH39cpUqVGzduFDSvs3Bmzpy5cOHCtm3bnjp1Sptrk5mZ+UlBPqGnTp3aqlUr7cPZs2fPmTOnWbNmSqUSH4XFUXx8/Lhx4/bv3y+TyT744IOQkJC4uLjSpUv7+PgMGzbM0KsDnUtPTz98+LC/v//u3bu172ZOTk5ubm7Dhg17VZL4jRs3RowYcf78eRMTk2+//fb7778vyj//q1evDh8+/PLlyxYWFl5eXnK5/KXJgGlpaUeOHPH399+5c6d2p1Asdfjw4WhkUox8//338+bN++677+bOnfvo0aMKFSrY2dk9ffpUwinu3btXp06drKysnj17Ojg4mJqaWlpaWlhYmJqa2tjYGBkZlSpViohKly4tk8lsbW1NTEzED5iZmVlbWxsbG9vZ2anV6p49e54/f/7rr79euHChhMsrgc6cOTNt2jSxv9K6dWtvb+927dpduXKld+/e0dHRDRs2PHjwYJUqVXS3gIcPHzo4OBgbGz948KBUqVIHVq6svmWLY716lqtX627S3Lp373706NEvv/zS09OzYsWKBf11pVLZr1+/wYMHr1y5kohOnDjRq1evjIyMhQsXfv311zpYb4kQEhLSvn37999//9q1a0Q0f/58S0vL0aNHFyifRksXee5qtfrChQuHDx8+fPjwiRMnsrKybGxs1Gr1zJkz8yQ4voMMHfGXhijtn5u3dKmdCoWCiMzMzA4dOiTVmDkSE/lpUev9lUwqlWrMmDFEZGVl9ffff+tolh9+4MGDefZsnj2be/bUd4a7jgq457F//36RZ/rJJ5/otfzc2y07O1tcQ1y+fDnPt1JSUoKDg5cvXz5mzJiGDRuamJjkfucxMTFp1KjRxx9/nGcH+NGjR3Xr1iWiPn36ZGdnS7va1NRUGxsbmUwmNoo3bdpERJ07d5Z2ljfat28fEdnb2+/du3f16tWzZs1yd3fv1KlTzZo1Rdi0Ro3uRJznfzY27OTEffrw5s3cpw+3acP37/PJk+zhwcOHszZnevRoPn1az3+gYqN3bybiHTv0N2N2drYo3l3EXJ6IiAgRXHBwcAgNDRVP7ty5U8SCXVxc9JMrVEI8ffpU7N36+flJOKxarRbl1L/77jsJh30VbeH405K+I6SlpYktVZxoLI4CAwPFSYsKFSrs2bOHmePj411dXcXnsru7O/I6S4709PSAgAAPD4/cbUUcHR3lcnlQUFDuazNfX1+RAFGzZk2pjsymp6fL5XIx6cCBAx89eqT9VkJCgq+vr5ubW+7NTpGMHx4eLsnsoGeiYfhHH30kHorYd+6/9KITIY4RI0YUcZyzZ88aGxubmJhcuHBBkoWVQPfu3XN3dxehxqpVq/r6+uZ+P7l9+3a9evWIqFatWjdu3NDdMkScun///uJhmzZtiGiHvu4BHj58aGJiYmZmlv989jyOHz8u0qUXLlwontm9e7exsbFMJvvjjz+kW2nJMmfOHCKaPHkyM6tUKnFu4Pbt24UeUKo892vXrv3yyy8DBgzIfZDLxMTE2dn5gw8+EDvc2lfCu+odCbg3bNgwd8zLxsZG2rv0L774gohsbW2VSqU0Iz56xL178/DhPHQoDxiAsHshaDQacazB3Nx8165dupjCsCVlRA7CxIkTdT3RsWPHxC3H8OHDJY8FF1OHDh0iovfff1/7zLlz59zd3Z2cnPLUmDMxMWnSpMnHH3/866+/hoSEpKWlvWrMiIgIEcT/5JNPpF2tn58fEbVv31487N+/PxH99ttv0s7yRp07dyaiJUuWvPgtlUoVHR0dEnJ182b28uJJk9jVlRs25FKlnkfeV63igQP5wAEeOfJ5wL1jR+7Xj/v146pVEXB/pcqVmYiLcFlVYJcuXSKiOnXqFH2ox48fi1eOjY3N3r17xZNnzpwRZ3UbNmxYQs4b6sH8+cdLly7TqVMnyUcWmeYWFhZFubjPpw8++ICIxuigOZgo4F6xYkVs8xRa/N3r678ZsuWHcf5eEx5F39LDjNnZ2QqFQtyzdevWLXfnTFFhxtzcXIQ181nlA94Z2gakuQ+JigJoBw8eFMVAxH6MKHItoR07dpQtW1ZE5QICAnx9fV1dXUWXV3pWbt7b2zs6OlraeUHPTpw4QURt27YVD0WdPQm7iF+7ds3ExMTU1DR3mdykpKSEhITo6OiIiIirV68qlcrTp08HBgb+/ffffn5+fn5+v//+u4+Pz5IlS7y8vHJfQU2cOJGIOnTogDqiBZWamqpQKES00crKytPT86VvGo8fP27fvj0RlStXTndlb0U5F1HI6N69ezKZzMrKSm+byj4+PkTkWrQqli9G2MUugqmp6YEDB6RYZonTsWNHItq9ezc/K29Vt27dIo5Z6Jh7fHy8n5+fh4dHntoAjo6OHh4efn5+iYmJ4if/+usvkbk4b968Iq72bfYuBNxTU1PzJJlKHqPUaDRih7l8+fJXr14t0lhRURwYyFOm8MaNOc/88gvPmlX0RZZAGo1m6tSpRGRmZrZ9+3bJxzdswF2nBdzzCAoKEhuPbm5uWVlZepjxLffxxx/Tf8sci6tqEWF3cnJyd3f39vYOCgoq0CXO2bNnRcmF+fPnS7haUSN++fLlzJyYmGhubi5OGko4xRuJRhqlSpUqaKzqyRO+dIn37OHQUB44kJl5yBD28kKGe36lpXH//tywIevzBmr9+vVENGzYMPHw1q1bRbl/y8jIGDVqFBEZGxuvWLFCPBkZGSk6c9rb20u21V2CXb/OZmZcvvzDCxcidDG+6HPr5uami8G1jh49KvZmcsdVJdSpUyci+t///qeLwUuC6Bvndi2bxsy3L53cMv/j7MyMjJSnTx/GZqXrJBZw+/bttm3bis9lhUIhTump1WqVSqX9mdDQUHG8zMrKat06fVxQwdtGG3l3eFZkT+So2tnZ6a75xJ07d0ToTWQaig84EWePi4vT0aSgZzExMURUoUIF8VDUnt28ebNU44sEGpG1KsTGxlJBHDx4UPu7T58+Ff8EcJAr/zQajZ+fn6h5KJPJ3NzcXp8Fkpyc3KtXLyIqXbr0P/88fs1PFs6jR4/EHszjx4+ZeenSpbmvxvWgZ8+eRLRu3Tpmfvz48bVr1wo3jjbCvn//fvGMp6en+KQ+9X/27jusyeuLA/hJ2ENxoSJO3LhAREXcYq0VVy1Wa7HWWmqtolUrtQ76a6tF2ypu0VqLWgd14hZHlTrBvQdOUAFlyIYk5/fHhZjiAvImEfh+Hp8+hHHvpcbkfc8995xjx6RabSmRmppqampqbGws7sF//PFHIho1apT2Ixc85p6enh4WFubn5+fi4qJZmc3W1tbLyysoKOjevXsvnaI0xNxLQsBdHQhT00UaS3Z2dq9evYioevXqWiXcHT3KLi7s5PQ8q/3+fdZ78YeSZMqUKeJCVrN/miQuXOCovNDE5cusdRfeQsjJYXf3fpaWlnq7Lj9+/LjotjFlyhT9zPjWys7OFqlJmrtrKSkpQUFBERERWVlZ2gy+fft2sasfHBys9UqZmZ89e2ZhYSGXy0WqlDjf2r17d0kGLzgR9P/uu++YWaVS/fPPP4Ud4d693ID7/ftcrRoC7m8QFMTqN7oVK/jMGX76lCUve/YqYqdTnAGMjY0V74zaDKhSqUT1NiLy9fUVgbOEhIQuXboQkWjXIc3SS6v33mMi9vHR1fjR0dFiN7EI//YLSKFQNG/enIhmzpypoynOnDkjl8tNTU11eh68BIu+fmbDzBFPom8dXj/38Pq59y6dWOrbPXT+hNi7VyXPqVTXA6lVq9bRo0fFJx8/ftyjR498XZfT09N9fX1NTEyaNj3ev//zXtxSuX79+syZM3W0CQQSUiqV4eHh48aNE9d40lcK/a+cnBxRUs/d3T04OLjIFRjgraVSqUSBINH7fdKkSRKGjY4fPy6TyaytrTXvBBMSEqytrcuXL1+tWjUHB4dGjRq5uLi0bt3aw8PDw8PDy8vLy8vrs88+8/HxGTdunJ+fX740wb/++ouIKlSoEBcXJ8kiS7ZTp065ubmJS1NXV1f1G83rZWdnf/zxx126BJmasnSbL7mWL19ORD179hQP3d3diWjDhg0ST/MKCQkJpqam6nD//PnziWjcuHFFG01UbFdH2EX3JiKqVKkSrsEKZfv27aRx0l2cG96yZYskg78m5v75559HREQEBAR4eHiIzwiWlpYeHh4BAQGRkZEFufYr8TH3khBwF5t7at26ddPRROnp6eK8Rv369QuXPerry+o645mZbGXFzZo9D7g/eMAdOki81lJGRGqMjIzEjqtUli7levVym35Pm8YSvXAVyPHjTMRNm+o12fzff/+1srLy9vYu5YcNxfuWk5OTjsZX7+qHhYVpP1q+iu3iYISes1eioqKMjIzMzMwePnzIef8D1eUFCygm5nk0MDCQv/uOx49n9Z2Cnx+fPy/lmou7L7/kAwdyPx47ljds4BkzeMgQlu4o8+uIRGCRObV7926SqGfAH3/8Icr9DxgwQFRnysrK8vb2Fi/vCxYs0H6K0mnfPibismVZpxu4ooKkk5OTZn6xhBYtWkREderUyRDvyrohjjf16dNHd1OUYNHXzywe3TXsz5/W/m/osS1L7106sX3hN8ysyM6aO9w1JMDn3IEQ7bPdnz17Js7EENEHH3ygPpu8bds20R+sevXqqamp+X5q8+ZrZcsyEdeqxQULm7zBpUuXAgICRLyDiPACVYyIf+bqe/vExMRVq1ZJkuCydu1ade+fx48fi0ujZBQOLbmaNGlCRGfPnuW8ahvDhg2TZGTx2pJv+1B7oue5VIssqaKjo9Xl2u3t7YOCggrV50ylYj8/JmKZjH/5RcqFad7lPXr0SC6XW1hYSF4U61VWrFhBRO+++654KMJi69atK9poL0bYs7OzxS/o4ODw+PFjydZd0oksKPFakZaWJk66S7jF+2LMfffu3aJ1szoAa2Rk1Lp16ylTphw6dKgIuYnBwcEiLz4gIECqZb89SkLAXV2GT5BqP+elkpKSRIE2V1fXZ8+everbMjMzDx8+/PzxtGn/KRrj5saens/Dt3/+yTi/rLWAgADxWiDhPc/Spdy+PYs+cHoOuP/8MxOx7uu3/0dYWJh4but11rePuJPXaQcP0RaibNmy57WOIg8dOpSI5syZo1Qq4+PjTUxMTExMpG3Z9Eaig/kXX3whHrZv356K2rlapeKRI9nVlTMzJV1iifPll7xrF6elcVoaf/UV797NMTF6KnulUqlEZzBxNTxz5kwi+vrrryUZfP/+/WLwtm3bio1tlUo1ffp0mUxmYWGBeu5FkJPDTZowEb+svYKU0tPTa9euTURBQUGSD56QkCBiqbooH6cpNjZWPANRSLQI1CVlVCrVnGEu9y6d2Ll4MjPfOf/v95524s/MD+r9PeuLy+GhRYu8R0RE1KtXj4gsLCzU7zKiU6UIjnTv3v1VkdO7d9ndnYnY2Jj9/bloG0ORkZGTJ08WZWqEChUqDBs2rIDJj/A2ED3e1XkVAwcOJKL58+drOWxKSoo4cSjevJYuXVqE5AMoXvr06UNEGzduZOb9+/cTUQcpsui2bt1KRLa2tpLv1ty8eVM0Hj+gztoADWlpaQEBAeL4lIWFhZ+f32sCPq8XGMhyOROxr680VR8TExNF5RBxQEEkmL///vsSDF0wYrdm+fLlzPzo0SMjIyNzc3NtnqIvRtjT0tJEpTgXFxe9bSQUd2LbLzw8nJl37dpFGo0lpDJr1iwi8vX1VX/ms88+MzY2rlix4siRIzdt2qR9fH/dunUmJqYdO14qeWnuJSHgrnnVW7NmTR2lVqnFxsaKGbt27fqqNKv09HQrK6vn7RN37eKuXZ9/+ZtvePZsbt+ex49nX1/u3Jnj43W65lLi119/lclkMpls7ty5kgy4dCkvWcIdO/LVq/oOuL/7LhOxXuq3Pzd16lQq9eVrMzIyRLTlpi5LCCmVSlHq0d7e/v79+0UY4dmzZ+Hh4YGBgR9//HHt2rWNjIy+//57X19fInrvvfckX/BrxMbGijtMcXD15MmTIgBR5OskR0cm4ogISVdZ4nz5JXfqxF5e7OXF9euziA3q52jKzZs3xVNXPPTy8iIiCSt6XbhwoUaNGkTk4eGh/uQnn3xiYWFRUg8b6tScOUzE9erpYxNrw4YNIkagTjqWinhx69Kli7TDvpS4r2jcuDE6mhRW9PUzq6cNunXmn3//Xrh6+mB1wJ2ZE2Pvn9i2fMU3fb7vXU1E3n96v/ba/w09dyAkI7VAt+uiCaroPOni4qI+cn716lUnJydxbkxdyf1VcnLY35+NjJiIO3XiBw8K9HsplXzsGE+YwG5uXdV3HJUrV/bx8dm7dy+eJ8VOdna2KK1+69YtZl63bp0k57TWr19PROrG1N27d6e83oZQUo0bN46IZs2axcx37tzRvDoqMoVCISJo2m8CvZQ4jtagQYNM5LZoEOXa1W0ePT09te8Dv3o1m5gwEQ8dytq/UVy7ds3Nzc3Z2fnQoUOpqamicshff/2l7bgFI8L96iZhCxcuJKJ+/fppOeyLEfb4+Hh1qE3LOq6lQUxMjEwmK1OmjLgUESl900S6qKTCwsI0SyCINzhpew1u2BAtLs90mfRoAMU+4J6UlKRZmF8/xxCioqLs7OyIqG/fvjk5OeKTGzduXLJkifp7PDw8Ll26pF4lv3jcJieHr1zh69dzc2wWLeIxY3S/9hJuyZIl4vlQ5LhMXByHhLC3N9evz0uW8NKlfPo0v/MOT52qv4B7Tg6XKcMymW6P/79IJCbv2LFDr7O+ZTZv3qyfNP+MjAxxXLRp06YFaTSalJR08ODBX375ZfDgwQ0aNNB83SMiUfvM0tKyf//+ISEhul68pu+++46IBgwYIB7269dPy3d6b28m4rxTa/By+UrK6DMZNyQkRNyKiId169YlIvUheknExMR07dr1+Xso8+eff055nYGh4J4+5QoVmIj19rou7gDHjx8v4ZhXrlwxMTExMjLS/khQQWRlZYmbPTzfCis1KT5y9+rI3auvHt+tyM5KSYi9dzl/laukuOjjW5f9Manv/3rbi8j7L2P6vffee7///vtrzmbFxsb27NlTHGT09fVV34QHBweL5gENGzY8o2768SYHD7K9PROxjQ2/pvitUsnh4ezrm/vNRNyp0ze2trbe3t6hoaGIsxdr4izj7NmzmTklJcXc3Fwul4uyeEUmtp/VHew1ix1DSbVgwQL1EU+FQmFqaiqTydLStCqcJQp31K5dW0cB8aysLNGU/qefftLF+MWUKFtHhSnXXhBhYVymDBOxpycX4Xmhzq/y9vZ2cHAQK3Rxcalataqpqak+K1YFBweTRulm0WNp9erV2o/8YoQ9KiqqSpUqRPTRRx+V8jq3byT+XtRHqZo1a0ZE/6m0oQMZGRki2U7ybhDr1rGxMRNxScqwKvYB9wMHDqhDTubm5vH6ShU/f/58mTJlGjRooL49uHr16qlTp4o43J07bGZW0p5cBrJ8+XIRi/Tz8yvgj+Tk8JEjPHkyOzuzTJZ7W0XEU6bkRv1Gj2YnJ/0F3EUB98aN9TSdoK75JXlmYvHy4YcfEtGvv/6qh7mePHnSsGHDV+3hJycnq6+xHB0d80XYTUxMHB0dvb29AwMDw8PD09PTRW0ZOzs7fZbdSE1NrVixIhGJjjfXrl2Ty+Xm5uba1EINDGQi/vxz6VZZEhkw4D558mQimj59OjMnJyfLZDJzc3Ndx55atWpFREeOHNHpLCXPF18wEWscFdC5s2fPGhkZmZiYXLt2TaoxxYnjUaNGSTXgG23bto2Iypcvr7erylIo5enjiJ1/Bk/xer97W/XOcbdu3RYvXpzvHSQsLEykudja2qpzApKTkwcPHix+0Nvbu7BnquLiuFcvJuL69bl6dVYXI2zWjLOzee9e9vHhypWfXxDWrs0TJvCJE2mFquQLb60tW7YQUZs2bcTD3r17E9FSLbb6xeFmmUx27949zutg36NHD2mWC28rUcBBfSCvfv36RHT58uUiD5iRkVGzZk1dZy7/888/olKfOOQB6enpbm5uJiYmK1eulPxF/sQJrlSJibhfP1afak5Le3kH74wMPn6c58/nMWPmNGzYUJRKUytXrlz37t0bNWoktmSkzS9+PVE9afHixcwcHx9vbGxsamoqVaHwFyPsERERorDPt99+K8kUJZXodCU2eh8/fiyTyaysrHR9eEWUz2rZsqUuBpc25p6ZmXngwIHJkyevWbNGguGKpNgH3EXlbmH48OH6nFp0jZNkZ4+ZeevW3CdXkQofg6a1a9eKhN9Jkya95tsePny4du0JLy8uV+75PZWVFffuzYsX8507vHRpbsA9OZnt7DgkhCdMePm7o7RmzmQi1mNsgRkF3JmZOS0tzdraWiaT6S1mffv2bXGF8dlnnyUlJWlG2PNdY+WLsL9Yzyo7O9vDw4OIHB0dJeyU8nqij4r6IPaIESOI6Evtmg+EhzMRu7hIsLwSbMsWVt8lhYZyXnEFfRDRT9Eu5fDhw0TUunVrnc6Yk5MjSo6i9VxhrVnDtWo9bz6sH+I4Qq9evSQZLTQ01CCx7x49ehDRV199pc9JS6enT58GBwd7enqKcjFEJJfL3d3dAwICrl696u/vL/abu3XrFhMTI37k5MmTItevbNmyRb6JUqk4MJAjIrh5c3Z3Z5Hc3KxZbp138adhQ548mSMjpfpd4W2RkZFRpkwZdXz8zz//JKLu3bsXeUBxPlJdOdfT05OIli1bJs1y4W117do1IqpTp454KC6QQkNDizzg7Nmziah58+a63tsThzzeeecdnc5SjIhiMppnKyV06xY7O3NICMvlfOIEM/Pu3c9b+EVFcXAw+/qyuzubm+e++3TosEZ99+fj4xMcHHzp0iXxrEhLS3NzcyM9Fjp/9uyZ5jEg0R9YfdRVEpGRkfki7Lt37xZtOXfu3CnhRCWJSqUS6QiirOvq1atJL6Vl/fz8CpXbWljax9yjoqKCgoK8vLzKlCkjLiwN+FpX7APuog6yEKHHor+pqaniJIUkTe1zBQezTMZy+Uvqz0AhhYSEiNfoUaNGaZ5FUigUkZGR/v7+Li4uMpmsfPm6olaUgwP7+HBo6H+q3MbFsfqgzN277OPDRNy8OcfG6nbxPXow0euOOesCCrhzXgHidu3a6XPSEydOiBcT+i9LS8t27dqNHj165cqV58+fV1eveo3k5OTmzZuLCLgeKjNmZ2eLNBxxJfT48WNzc3MjI6MbN25oM2xKCsvlbGqKvqmvM2cODx2a+7GfH+ul0kauqlWrEpHYlJo7dy5p9MvVkfPnzxNR/fr1dTpLiTFzJvv45H7s68tXr+p7AbGxseXKlSOiXbt2aTmUurpL0Zowa0PPdWyAmRMTE1etWtWvXz8LCwvxPig2nk1NTWfPni2u5UQld3GB5+rqKkm3FWdn3r+fP/yQmblZM/b3Z0dH9vPj8HDtx4a3l6gAI15b1N0Ii7yxN2TIECL65ZdfOC84pS52DCVYZmamkZGRkZGROKh69OjRQ4cOFaRQ5EslJiaKY6N79uyRdJkvER8fL1qRb9DzDefbSsSUVq5cqaPxlUq+eJG7dWN3d87J4d27+euvuXPn3IIz6j9GRtykCX/6Kf/5593IyMhXnR/Vc6Hzv/76SzO/6p133tHF/ysRYf/000/VoZsxY8ZUqVLFgLnJb7mLFy8SUbVq1cTDTz75hIjmzJmj63ldXFyIKCwsTHdTrF9f6Jj7vXu8YgUPG5YqchnVCRzOzs7ffPONAdtEF/uAu7q1hbu7uz7n3bhxIxG1b99e4nF//pmJ2MSEtb5NhR07dpibmxORj49PdHT0H3/84eXlJaIAgpWVVe/evVesSC5gT5THj7lp09yMp+hoXS1bXcD98WNdTfFSKODOzO+//z4Zom7voEGDLCwszMzM3N3dfXx8RA570a6foqOjq1evTkSDBg3Sddk7UTaucePGYiKx3T1w4EDtR27UiIn49GntRyqxpk3jRo1YJFENH85FrmdWWDExMSLdWPyli0JG2hzDLwiReyjJU6s0mDiRGzVicRk8aBDrJlvrDX799VciatSokZa1hkSun6H6l44ZM0bczep/6lIuJSVlw4YNAwcOLF++vEwm27p1q/j8w4cPRZMAuVw+efJkqZ4Vzs7MzB9+yGFh3KxZbmclKPFEj9MOHTqIh+JQS9FCSPm6sIrglH6aPIPBidQTSTb/xIW09v17C0jkKVetWrWUVxMVRL90nRavu3iRvb15xgyeMyc3w712bSZiOzv29GR/fw4N5YIfUdZnoXNxgyy6+CYkJOiuQcXp06c1fxdROE5sZMKL5syZQ0SffPKJeCgiANJ21XrRkydPRP3Y9PR0nU60ahUbGXGtWnz0aG4SnlKZe2ZXHbtLTeWwMPbzYxeX53WhGzRoUbVqVS8vr6CgoGjdxewKrHgH3OPj49XB03X6zQoX9ZJ08u//m2+YiC0tkVqjvV27dok8Kc3qHI0aNRo/fvy+ffuKkAIcG8stWjAR16nDt2/rYsn89Cl/9hnr/jDQf6CAOzM/e/ZMZJrr4aX5n3/+uXDhgvqhaF60b98+SQY/c+aMOD/1/fe/STLgS6lUqhYtWhBRcHAwMz979kzsZp0QRyW1M2QIEzGOYr/GtGm8ahW7uHBqql4D7jt27CCNpkmiOU/R+5cUzNixY4no5xLWtF5nJk7kv/7iVq04I8NgAfesrKx69eoRkaOjY7ei6ty5s3gH363HHgWaMdynT59WqFCBiA4ePKi3BYCmjz76iDS6qiQmJtaqVatKlSrSPiVEwD0mhtu142bNJBwY3mopKSniqk8USVi2bBkVtUjCzp07ichZPJPyglMLFy6UcrnwthLdI/fu3avlODExMZaWljKZ7Pjx45Is7I2USmW7du2IaMyYMfqZ8W126NAhImrVqpXuphAB98xMbtWK//iDv/mGIyO1SrB7sQyLLqSlpYkGFffv3+e8pr7vvvuu7mYUMjMzy5YtS0RRUVG6nquYeu+99yivwPWVK1fE/pmud19EPQAPvbSHCgnhO3fY1panTmVmzsjgVq346VOeNImjo/nHH3Oz4MWfcuW4f39etIhv3NBTZd0CKt4Bd9GohIjs7Oz0cJpGTaFQiANf13VRN1el4k8/ZaIl776r6x2q0mD//v3ff/99mTJlPDw8RD1QLQdMTOQ2bZiIa9ZkKbIZnluyhMeOzf34f/9jLTruFBoKuDPzmjVr9JZXIgq/iMNN586dIyJbW9uCFI0poN27dzdq9EG1ajmLFkk1ZH4i8Fq9enXx2isSUaVKBZ0zh4lYx3VKiqXsbN61ixcs4GnTePt2Xr6c/fz0GnD/8ccfiWjixInMnJGRIWpupKWl6XRS0TFF+7vZUmLiRN6/n+fN4++/12vAfcOGDZq1RPv37y9SPrVhZ2dnZWWleTx/165dIjqmI507dx4xYoQ6b8vFxaVevXraXzlA0WzatImI3Nzc1J85e/ZsnLrYn0TywqT822/ctKm0Y8NbrW/fvkS0ZMkSzmsDaGZmVoR6IMOHDyein376iTWCUw8ePJB+xfD2EWcjmjRp4ufnt3bt2kuXLhXtel60QfLy8pJ8ha9x8eJFExMTuVyutyj/WyslJUW0fH+xS5ZURMCdmcPC2MGBJSnjKsqwVKxou2yZrgpYhYSEkEYxCRHkXb58uY6mU9u6dauut0CKtaysLNF5TlwVz5s3j4i8xTNMl0SjplmzZul6IjVnZ+7ena9ezQ24nzzJQ4bw1q28ejUbG7OLC/v5cVgYG+IobIEU74D7//73P3FL9r///U+f8x44cEC8s+pqgpyc9b6+RFStWrXbOsqjLmUkDGUyc1ISt2vHRFy1qpRh8enT2cGB9+9n1m+NCGaeMmUKvanHbInXu3dvymu/rlNXr14lovLly4tQ9eTJk0kHZxh//11FxMbGrKNOM+Jc/2+//cbM2dnZNWrUkDAR9fBhJuLSvQH0H0olh4ezry9XqcJEbG7Okybx9u2sVHKnTtypk/5eLkTi3l9//cXMp06dIqKmOg5QqVQqGxsbInqs5zJbxZYIuCsU3K4du7vrKeB+/PhxmUxWp04d8bKmLoAeFBQUpoVWrVoR0YQJE8QsM2bMII3Ds5ITJSYqV64sDnuJi70yZcroNMQPr5EvsU5HZs/ms2eZmXNy9JrrAAa3atUqzUy9zp07q9/gCi4nJ0fUwhZt60TRUT13AwJDCQ4ONjIyEnl4aqLRpZeXl7+/f2hoaEHeQa5du2ZsbGxsbHxFz13Omb/55hsicnFxUZT6clpNmjQhiY7qvpQ64M7MAwdKE3Bn5jVr/q5d+4Zczn//Lc2A+Xz44YeUVxlctLswMjKSfOf7RaKeBI63vsrhw4eJqFneubzo6Ojly5cfPnxY1/PWqVOHiE7rsfCrszOfPcseHpyezmL/5ehRZub0dNZLz2BtFe+AuwiQmZiYxMTE6HNeX19fIvruu+90N0VWVpboR1G3bl0p+7KCRJ49406dmIjbtr0sVUPz6dP599/Z1ZUzM/UdcHd3d6fS3QQ8MTFRFNXRQ1DP39+fiD7//HPxUBRe0MUb5NSpueWpJL90FJFWGxsbkQj2xx9/EFHz5s2lOsUm+qaamb29m9V6c+oUf/0129s/PzHXpAn/+CN/8w1v387MfOFC7rbKu+9yAdtRaKN27drqsIKo/jlU3bxVN27evElE9vb2Op2lJBEBd2Y+dYrlcn0E3FUqVZs2bYhoypQp4jPvvvsuEX355Zdajnz27FmRcXbt2jVmjoqKMjc3l8lkJ0+e1HbRL0hPTxdP72XLljGzQqEQFZMCAgIknwsKbsCAAZRXOlYXUlLYwoLlcn03zoG3gbpXqggeLViwgIjef//9Qg0iDomq07BE0WGRjgAlW1BQkFwuF292mzZt8vf379+/f926dTULmapPa73zzjvffPPN6tWrz58//2L/if79+0vyplkEaWlpIoKm/xZWb5thw4bp9O0mKIgXLmSRQJ+VxRJWwBZNAE1NWfI2lhkZGWXKlJHJZHfv3uW89l16KCeibowhLv8gn2vXromzNXquByVuyipWrKhUKvU2qTiG6OvLK1ZwcTzwULwD7nZ2dkT00Ucf6Xle8baki/s9Tc+ePRO5Xc2aNUsoeAcN0Je0NB406HaVKna2trZnRXJUkZw/z7Nm8bhxPH06b9/OgYH8v//pNeCelpYmNquLcIq2xFi5ciURde/eXQ9zOTo6EtH+/fuZOSIiQlyI6yKvRKXiTz7J7cZz966UI4sIiNh0VKlUIiVE2ibyDRowEWvxD6t4u3Tp0qxZK+vWfR5nr1OHv/uO1ZX/IyL43r3cj0NDuX//3DM3ERE6XFViYqJMJrO0tBRP15EjRxLR3LlzdThl3lHW3r1763SWkuT48edtvTdu5KCg/zSBPH6cJT8tLbraVq1aNTk5mZlDQ0PFIZ74+HjtBxdnV3v16iUefvvtt0TUtm1byYtUfv/990Tk5OQknt7z588nIgcHhyK0ewEJrV27lnRZ7W39eibijh11NDy87cTu4IoVK5j50aNHcrnc0tIyNTW14COIt8Lp06czig6XJgsXLpTJZDKZTN1kQu3Zs2eRkZHBwcG+vr4eHh7iAIQmY2NjzRT4zZs3y2QyCwsLQ/X3Cw4OtrCwELWVSrNFixbprihHRkbuKdVDh3QxPI8dy0RctqzEt06bN28mojZt2oiHffr0obwyXDolGmM4OTnpeqJiJC4uLiQkxMfHp1atWuKVpGrVqi1atEjRY5r3kiVLiOjDDz/U24ycF3BPSuKWLRFw16/o6GjxVNNz0bEzZ86IYi+67kjAzPHx8aKbopubW6Eu/kA/srKy+vXrR0TlypUr1PNQtFT29eWaNXOjacbG7OfH27dzTg63a8fdu+sv4L5v3z4iat26tZ7meyuJO67ff/9d1xPlq9g+ceJEIhqrLt4vtexs7t6dibhx40I0vn+9W7duGRkZmZmZiUOy9+7dc3BwqFmz5osJO9oYPJiJWPd/IW+Xe/fuBQYGihMnxsbGtraPK1ViHx8OD+fXv+E8e8Y9ezIRW1nx1q26Wt7BgwdJo55y9+7dieiQjm4d8oiaSyKWAYXVpw8TsfrOaPp0lsl4xgwpp0hJSalWrRoRrVq1ipmzsrIaNGhARIGBgZKMHxsbKxoy79q1S3M6aXf4Hjx4YGVlRUT//PMPMyckJIgSAVt1988JCiYlJcXc3Fwul+vouKeXFxNxqc/sLL2WL19ORO+99554KHpIbty4sYA/rlQqRfrX+fPnOW+7EUWHS7yAgAAikslkBckKV6lUt2/f3rJlyw8//PDBBx/Ur19f5MXnI7rj6MeUKVO+++47daLVV199RUQDBw7U2wLeTiILqlGjRroYfNkyJuKWLXUxNjOzUpn7dlatmpRZVkOGDCGi2bNni4dr1qx577339FB9QTTG+PHHH3U90VsuLS1tz549EydObNGihebRmSpVqvTp08fW1paIOnfurLc4oUi500MFf03qRjtr1iDgrl9xcXH9+/e3sLC4rN+Ci6IchN7OfD148EDsYnl6ekpbiBwkkZWVJV56rK2tDx48+PpvvnQpcdYs7tyZTUyeJ65Wq8bDh/Pff/N33+XWiDh2jOVyPnmSN2/Wx6+AAu4JCQmmpqYmJiZPnjxRf/Lq1au6aMWsWbFdpVKJCgbHjh2TfCK15GRu3jw3g6/ImZpZWVmnT59etmzZyJEjRbn2AQMGqL+qUChu3LghzXLz/PorE7EhDtcaQExMTGBgoCjKIVSoUOHzzz8/cuRBwU/s5eTwF18wERsZ6Sp49Ouvv9J/+w3cvXtX1/m/YjNsy5YtOp2lpNq4kYm4QgUWr20HD+aWmVIfj9CeeE1Tp5z/8ssvRNS4cWMJd+DEE69Ro0ZiTHEgyd7eXsIbjLFjzzdo0EIdbhDRB6m6QIOWRAHJoKAgyUdOT2dra5bJpPwXAcXLkydPjI2NTUxMxGHi3377jYgGDx5cwB8/cuQIEdWrV088/OSTTwhFh0u66dOnE5GRkdEff/xRtBFSU1NPnDixbNmyr776qmPHjlZWVnK5fOTIkeKrOTk5gYGBmpfZ0rp7966ZmZlcLhfns2/fvi0OOktVIrX4ys7OFmXrRB8XCalU7OjIRFzIDhGFk5XFHh5MxI6OnNf6vYjS09OPHj3666+/WlhYENGtW7ckWmOB5GuMUdoolcrIyMiAgAAPDw9zc3P1vaGFhYWHh0dAQEBkZKS45L5z546IJLRv314Pee4KhaJChQpEpOcek5o74AXeDX+LFOOAO+c1l69Ro8Y9PV4pt2jRgoj27NmjtxmvXLkiXnTWrVunt0mh4BQKxdChQ4nI0tIy7IXaaampqWFhYb6+vjVr1mzefJQIshsZsYsL+/tzZOTzxNXwcFa/na1ezSNGMBF//fUbMlu1hwLuDx486NmzZ9WqVdPS0sRn9u/fX7Zs2SFDhkh+kEWzYvuxY8fEK5iuj8vcv8/VqrGREe/bV9AfyczMjoiIWLp0qY+Pj4uLi6mpqWYajpmZmY2NzVHRskQ3jh/nAQN41SrdzfBWiI+P79KlizrXqUyZMkOGDNmxY0eRg5WBgSyXMxH7+LC0W7TJycnt27cnoqVLl0o57ptUqVKFiO5KWxSpNBFnXMaNy304YAATsVQHpm/fvi3uTkWTsdjYWNHhVqr+yUJ2dnbDhg0pr36RUqls3bo1EU2bNk2S8Y8eZZmMra0V9+4lMfPly5dFx9cL6hJOYFCiZtE777wj+cibNzMR552Vh1Kqa9eu6kMz9+7d8/f3L3jkMTk5edWqVeJ8T3Z2tghGoOhwSaVSqcaNG0dEJiYmISEhUg174cIF8aYj+hDGx8eLI1Zr166VagpNoheluv24aIk5fPhwXcxV7IjcF1H2U0I7djAR29vrvDdVYiI3bcpE3L594bKsFArFpUuXRB0kd3d3MzMzdQKQkZHRKv3ej+3du5eImjZtqs9JDS4qKiooKMjLy0u8jwhyudzFxcXPzy8sLCzjZRUh9RlzP3nyJBHVr19fp7O8qGHDl39cXBTvgHt6enrHjh1FZoEeWh0y8927d2UymY2NjS5SX1/j5MmTs2bN0ueMUCgKhUIcfTIzMwsNDWXmCxcuzJo1q0uXLiYmJuoXzZo1HXx8lH//zQXZON+xg83NcwNnuutLIQq4Gxsbi9q7pVN2draIg7///vuiB8iFCxdE2Eja3sj5KraPHTuWiL6Rqkv9a509y9u3848/8uLFuZ/x9eW8/QVm5uxsvnSJg4PZ15fd3dnRMUMzwi6Xyxs1ajRkyJA5c+aEhYWJ5k6WlpaiyIMuDBjwfBNbv5Xi9EqccjAzM/P09AwODpbkUmnNGjYzYyLu2/c/f8VFk5GRERoa6u3tLQpu2NratmvXTm/9HmJiYoiofPnyeqjhVlJdusTGxmxszBcvMjPfvs3m5iyTcXi4BIO///77pNE4d8SIEeJAngRD/9f27duJqFy5cqK34bFjx2Qymbm5+R2tOwUrlezqykTs75/7mS++WGZiYvLVV19pOTJIRXS2NDExeaplzt4LhgxhIs47Kw+llCjc3L9/fy3H2bNnDxE1a9ZMklXB20ahUHz22WfiXk/yU3fjx48nolatWokbBFHpqEqVKpKnWl+4cEEul5uamoo2A+fOnZPL5ebm5vpMXnybjRkzhohmzpwp7bBduzIR//KLtKO+XEwM16rFkyZxWFhuC5+0ND5//iXfeecOb9jAEybwsGF/WVtba973GRkZNWvW7LPPPhOXeaampvsKnrSlNR8fHyLyV1+WlVzPnj0TeZkODg6a//8dHBx8fHxCQkIKctmjt5j7Tz/9RIbo7YyAu4ElJye3bNmSiFq0aCH5e9KL5s6dW6iThlB6XLly5YMPPhBZDyIlUzA2Nu7YsePMmTPPnj1b2JjR7t1sYcFEPGSIxMmqaijgLly5ckU0Q1ef6Ny9e7exsTERLVy4UKpZNCu2K5VKe3t7IoqMjJRq/DcaOJAbN2bRyqtdO46M5IUL+dNPuUULNjZ+XuZIdLp3dm7n7e0dGBh45MiRfO/fCoVCdDI0NTXV/uRNTs5LOhY0b85ubiziuiX77jUyMlLy+PXRo1ypEjdvnuTq2r5oPbiys7N37do1dOhQ0f9NbLq0atVK/DNp1qzZ/fv3pV3zS+3YsYOIunXrpoe5SrCRI5mIPTxyH373HRNx27as5TaGqOlvbW0dExPDzGfOnDEyMjI1NdVRdmfPnj01X6JFXVEvLy8th12xIjfvTNSn2bqVidjZ+arksV3QxjvvvENEK1eulHDM7GwuX56JWL9n5eGtI3qlWlhYaBmqENdF33//vVQLg7eH5mlmXUQe09LSRMhM3HSoVKrOnTvTf4v4SeK9994jovHjx4uHHh4eekv9KRZWrVolyfabpvPnWSbjMmUKlG8niaQkTk9nIyOeO5eZ+eZNFr9QUhKHh3NAAHt65nZwFX86djwnEsI8PT1FI98EjcZf4lRH2bJlz0rbj/UVFApF5cqVieiiyBMpuZ4+fWpkZKQOGVWsWNHLy2vZsmVFKNiio5h7vvPW4kVp06ZNUo1fQNbW7OmZ+6duXT1PLoFiH3Bn5ri4OHHWuEuXLi89aiEh8Txbv369TmeB4ujLL78koo4dO/bq1UucwPrggw+Cg4MTtGtVefgwlynDRDxokE5i7ijgrnb48GFxgE5ULWDm33//XWzyS9I3L1/F9sOHD4sdbH2m7g4cyGvXsugN1q4d//jj84stIyN2dGRvbw4M5PBwfmNtZJVKNWnSJCKSyWTq/2NFEBbGzZqxhQXni986O3NICIsc05IdcNeRq1dVTk5diah27doF73SiVCrDw8N9fX01dw0dHR39/f3F9d/t27dFK287Ozs97BX98MMPpN9OYiXS06dcsSIT5bYJSUnhjh0TmzYdERwcXOQxFQpF8+bNiWhGXg9WceJQd39ZV69eFYfuz507x8zR0dGabU6L5tkztrN7XlY1K4vr12ciXrBAqlWDNIKCgiQ/PLFzp9hckXBIKK5EwbQFCxbcKqrr16+L+p8lPkhULPz7778jRozYvHmzJLGnrKwskedbkH5dRbZ582YR1hR5EpcuXTIxMZHL5RL2eRK3HmXKlImNjWXmQ4cOiaNjmi2sSrmrV68Skb29vYRjfvxxbpFYfUpP5zZtuF07fvAgN+DeuvV/MquI2NaW33uP/f15794UcXzwpZRKpZeXFxFVq1ZNDwUeDxw4QEQNGjTQ9URvg5YtW4qKMeHh4UrtChpIFXNPSUkJCwvz8/NzcXHx8fFRfz4tLc3MzMzIyEj/+SjIcH8r3L9/X/Tx69Onj+46iz59+lT01dFDKj0UO40aNSKiEydOZGdni5MQUt0Z/vsvly3LRNy7d9GbXr4KCrhrWr9+vUwmk8vlG/OqmUydOlXks4gKxdrIV7F91KhRJHXJmjcaOJBv3OAvvuCQEG7Xjg8d4k8/5YUL+dixItYeCQwMFD3T/fz8CvuzZ89yt26513wNGnBExH++KoIgPXpwRAQC7kX05MkTEUQoU6bMG2tqX7p0yd/fv06dOvni7NevX8/3nQkJCWLv2crKSlTQkkpGRoYoYKomihf9pdMmU6XD3LlMxHXr5r6JBAcHE1GVKlWKXExMFGGoU6eOSHRYv349EVWuXFmn5YZEmlX79u3Fq+j//vc/InJychJn8Ivgzz+ZiNu1y+2VEhCQ221M11VWobDi4+ONjY3NzMwkLH83atRkd/clgYFFOQMEJczo0aMtLS1JO2XLlrW1tTX0rwLMzF9//bX4SzE2NnZ3dxdtBos2VFpaWo8ePYiofPnyx48fl3ad+fTp04eIBg0aJB76+fkRUfPmzaUKbri5uam3yVUqlYuLCxEFBARIMnjJoFKpypUrR0Ti6J72oqOjO3Zca26erXUBvMJJT8+90RswIDfg3qsXW1mxuzv7+nJwMF+6VIgucVlZWeIwRP369V8TmpeEuEGeOnWqTmd5S0ibdVfkmHtWVtY///wzderUtm3baibdOzk5qb9n9+7dRNTGEE1vEHB/W1y6dEl0GPD29tZRxqjo2vTuu+/qYnAo1mJjY2UymbW1tTh6I4ICEp4qPXGCy5UTtWUeZ0oXdL9+/bqJiUkpL+Cez4wZM4jI3NxcdARVqVSffPIJEdnZ2WlZLFhUbBfpnwqFQmQQn39pUT2dEQH3p0+5VStu2ZIl+WsPDg4WtXdGjx5dwM35hw+ffvppbm/PihV53rzn4a2YGPbx4eDg3ID7tWvctSuXsq45UsrMzBw0aJC45wwKCnrxGy5fvuzv79+gQQP11VXNmjV9fX3DX1vhOysrSzTdMjIyWqB1MrBCoRBp9ZUqVSpbtqzmSTVx4XjlyhUtp4DsbG7eXNm589HAwCBmVqlUYre1aHt+CQkJIpdTHCxNT08Xf1PLly+XeN3/lZiYKOYVe6LqeV/63C6g/ftZHJJ+/JhtbJiI9+yRaLkgKbHPJ1UXwZycHFtbW7y8ADPHx8dXq1ZNJpNVrVrVoajq1Kkjev/88ccfhv6FgC9fvjxjxgx3d3fN4FG9evV8fX337t1b8Dup1NTUbt26ie1kcbhKp+7duydKae/YsYOZ09LSRGVnbQ6Sqm3cuFHczqSmpjLzunXriKhatWpp2nf7KVnE37hUZfrFrsmwYV9IMlrBiYA7Mw8ZwosWcf/+HB/PRU1OYGZOTk52cnIiotatW6e+8Rx0USmVSjs7OyLST/makqdQMXd1m1bx5qXepFS3adUsKSP6TBhkI0QzhVUHXaJ0ruQE3Jn5xIkT4l3K19dXF+OLVLslS5boYnAo1sRVS8+ePcXDFi1akHbn3F909iw3aBBXt65j586dtTkoJGJb4qCQTCarW7eu5nEhYOavvvqKiCpWrCgqEWdnZ3fv3p2IGjduXOQCQeqK7REREcwcFhZGRA31vksrAu6cV7ZYqn2WrVu3mpubE9HHH3+c/drU0LS0tICAgDJlyri4PDExYR8fjo/P/VJqKk+fzpaWTMR16rB6T/2777hOHWnWWTqpVCp/f39xFeXr6ys2pO/duxcYGChCrkKlSpV8fHzCw8MLuGMthhXnG3x9fYtwEFKpVB45cmTUqFEi7CW4uLjcyiuonJiYKJPJLC0ti5y/DJr27AkjIhsbG3GWPDIyUi6Xm5mZ3bx5s7BD+fr6ElGXLl3Ew++//560yzQvuMWLF4ttIREj2LBhAxHZ2tpqf/Tw009zWw3D22nBggVENGDAAElGE+/CTZo0kWQ0KL5UKlXfvn2JqEOHDlq+gomXIysrq6tXr0q1PNDS06dPQ0JCfHx8qlatqr7SsLCw8PDwCAwMfH2n0MTERJESbmdnd+nSJf0seNasWURUt27d9PR0zssqLVOmzIMHD7QZVqFQiHqAS5cuZebs7Ox69erpYZu8OJo8eXKR0xHySU1NFfmg2p+TLix1wP3RI65XjyUpSh8TE1OrVi0i8vT01FFJCVH1qA5u/LTw+pj706dP//zzz48//ljzJVEmkzVv3nz8+PG7du16cTfl/v37f/zxh7hZkza69Ua//86DBvHhw/qcU3olKuDOzGFhYaIK86xZs6QdOT093crKSiaTafmGByXSyJEjKe9Q3tOnT0XDd8k7Cly8eFmkRXfp0qWwMff79+8HBQX169evTJky6pfXsmXLfvTRR9IusgRQKBTi7svBweHx48fMnJycLDZROnbsWLQTBvkqto8YMYIM0X5961YWWwYqFc+bJ2WFooMHD4qnVu/evcVNQj5KpXLFihXVqlUT7+tffPGruk+dUskhIVyzZm55GU9PvnWL1R1Z0tJYoozGUm3RokUiz8vNza1169bqF4EKFSp8/vnnBw8eLFrpwD///NPU1JSI+vfvX/AkKVG+RuRtCY0bN/b398/XbHPLli1iwUVYGLyUaDHy+eefi4fimEJhI5ixsbGijKM4oPPgwQPta6kXnEKhEK/GP/30k/iMqB3/888/azPs6dMsl7OpKb9QQgneFqKzpaWlpebd4KJFi+YXmGY3C3HZNn36dEP8KvAWmT9/PhGVK1dOktrE4kW1WbNmum4qBoWlVCojIyMDAgLc3d1FroDg4ODg6+ubL5eTmZ8+ferq6kpEtWrVuqXHxso5OTniPW7atGniM6J8/Pvvv6/NsKINRoMGDcSvuXDhQpH3o7tKvMWXKKbfvXt37YcKDAwUm3naD1VYGRnco0fuxwsX8scfSzPslStXxBaC+kqyyLKzsyMiIg4dOqT5SZHPUYQ6paDpNTH3I0eOqF/9qlSp4uXlFRQU9GJ4MzU1VV3JXbxgymSyefPmZWVl6fH34J49mYjXrNHnnNIraQF3Zt60aZORkZFMJlu2bJmEw27bto0MVLcI3n7qAu6c9z7dtWtXXUx07dq16tWrE5Grq+sbe1bkS2Z/8eJSzy+axUhaWlqbNm3E/2dxbx8dHS0aRXz44YdFCE0+e/ZszZo1q1evZubs7OyKFSsSUcFbWUrl/ff50aPcjwcN4tdm9hTaqVOnRLWHTp065StSdODAAXH/IF5F//33X/WX9u9nJ6fcULurKx85IuWSQNPevXvLli0rUpwsLCw8PT1DQkK0fxE4cOCAqHfZpk0bsUH1KleuXPH39xdNzoUaNWq8WL4mPT09JCTE09PTxMTEyclJy0AqaLp586aZmZlcLhdHbaKjo8uUKfPRRx+9/mDKi86cOTNv3jzx8eDBg8ULo/TLfYWDBw8SkaWlpUhOPHv27MKFC7WJGqhU3KEDEzFu8d5y7dq1o7yCQoIoaFZA6lxO9aF1PVd1g7fNxYsXLSwsiGj9+vWSDJiSkiLe477Wc4dEKIzY2Njg4OB8hRQqVKggYk8PHz589OhRs2bNREha/5l2J06ckMvlpqamouDVw4cPxTqL3DUnPT1d3Dz+/fffzJySkiKSWzdv3izlukuK6OhoIrKxsdGyRrFCoahbty5JV52mUFJS+O+/cz9OT2eJXuGYmU+cOCHSLP73v/8V9mdjYmJCQkJ8fX3d3d3Fa28zjT5dKpVK3GufOnVKsuWWVq+KuWdnZw8YMGD+/Pkv1tPLzs4+cuTI9OnT27Vrp3lxZWNj069fv4ULF+q5jWVWFltbs0zGDx/qc1rplcCAOzMvWbKEiIyMjEJCQqQac8iQIUQ0c+ZMqQaEEuPRo0eaBdxFqe4ivAkV0J07d0RmaMuWLV/aVv7x48cvXkdaWVkV5PgkqMXFxYnjlp6enuKU8cWLF8X/0m+//VabkXft2pXvCkNvunbl6Lz+cO++y7dvSzz+lStXxDW9i4uLKFshfPfddyK6GhwcrL5+vXz58vvv54hQe+3avH59Ibr3QNFcv379zJkzISEhLz2FUGSXL18WV3V16tR56VH6oKAg9Y4LEVWtWnXMmDHHjh3TvJnJyMjYuHHjBx98IC7BicjY2Pirr76ScJ3AzBMmTCCidu3aif/5j9RbcEVy7NgxmUxmYWGhZYuLwhowYAAReXt7SzJaTg7/8AM7OEhWZQt05LfffiOiwYMHqz8zduzY0QV27Ngx8VPizFm9evUM9HvAWyEjI0MEVb/88ksJh42MjDQ1NZXJZNI2FQddyMzM3Ldv37hx4+rXr6++RDEyMhI5vM2aNXt9GoHufP7550TUsWNH8U49d+5cIqpZs2bRaorOnDmTiFxdXTX7jbdu3VpHTe9KAHEed926dXfv3i1yYsrff/9NRA4ODgapi/jgAXfrlvtxbCxLm2QfGhoqArILFy58/XfGxMRs2bLlu+++8/Dw0IxLEJFMJmvYsOGwYcPUz8OjR4+Ku0U8MyVRwHru6kruIn1K/TKoruRuqATNf/5hIm7e3CCTS6lkBtw5773E1NR0T1G7XykUikuXLgUFBXl7ezs6OpqamlaoUEFvFdygGHlpAffDuiw3de/ePRELdnJyEr3CkcyuC+pzcyNHjhSfOXjwoCigoU2jSNGFVV0PQZ+6duW1a3nvXt67l11dpQ+4M/Pdu3dFB86GDRuqd3eePXs2Z84c9QnrJ0+e+Pr6Ghsbd+580Nqa/f0ZZ6+Lu0ePHonD1+XLl893PpTztiHLlSvn7e0dGhqqmYwsXrt8fHzKli0rXrXkcrm7u3tgYKChbnRLtmfPnonUtg0bNmg5lFKpFOWJ9F+X4/bt2+bm5jKZ7PXdfV/vyy9Z3ZTnww+5kFn+YAB37tyRyWRlypTRsl6HOLSu5d45FHcipuno6Ch508jZs2cTka2tbUxMjLQjg+6IqJOnp6eZmZmXl1enTp3eeJJYd54+fVq5cmUiCg4OZmaFQtGyZUsqUqmNhIQEcS+zf/9+Zo6PjxeXWwcPHpR+3SXF2LFjNfdgypcv7+jo6OHh4ePj4+/vHxQUFBoaGhkZ+fqEX9EAYNGiRfpa9X/oNODOzMuWLRNh2RfPSdy5c2fmzJn9+vUT3cs02dvb9+vXb8aMGWFhYUlJSfl+ULTlnDBhgsRrLcVeFXOPjY0VzS1q1qyp+Rfk4ODg4+MTEhLy4t+O/k2ZwkRcAp4OJTbgznn/aC0tLdUpLW8UHx8fGho6efLkTp06WVpaaj7/bGxsitBYDEqDq9OnB7q5/TF3LuuygHs+0dHRoo5NrVq1evbsma8y+/vvv798+XL0G9DekSNHRFuI3377TXxmxYoV2tyoZ2VllS9fnohuiO6l+tW1K//wA8+bx/PmcePGOgm4M/Pjx4+dnZ2JyM7O7sKFC5pfysjI+Pnnn8W1vrGx8bhx36mbpkJxl5qaKpofmJqaiupJalevXg0NDdXc9lMqleHh4b6+vqIvheDo6Ojv739bR89LyCNqudaoUUPLMJN4MbS3t3+xw5IeiHMzLi4uRWs/wMweHuziwvfvMzMb4sQRFIWLiwsRbdq0Kb2o0tLSxKF1UVgJSqeNGzcSkbm5+blz5yQfXKVSiYYZnTt3RtPvYic1NVXzjKahBAcHE1HFihXj4+OZOSIiwsjIyNjYuLDP2HXr1snl8h559bzFdmOvXr2kX3HJ8uOPP7q5udnb27++cJmNjU2TJk169OgxbNiw6dOnL126dPv27efOndu5cycRVahQwSAXSMz84AFXqsS9enGvXty9u/QBd2aeNm0aEVlYWBw9elTz8wcOHFD//ylTpoy7u7uvr29wcHBUVNRLx4mKilq3bt348eNFCny+0UBL6pi7m5vbxo0bv/7666ZNm2o+h+3s7Ly9vVetWvXwLSvdMnToqgYNzu/aVeyPO8iY+TUvIsUaM3/22WcrV66sVKnSkSNHROHaF92+ffvff/89evTov//+K87Cq79kZ2fXvn17d3f39u3bOzs7y+Vyfa0dipXGjenaNTpxgtq0ebhrV8hPP12pXHnZ1q26njYuLq579+5KpfLy5ctE5ODg4Onp2bt3744dO4osbJBESEiIOMC+Zs2ajz76iIhOnTql2XbyjR4+fHg6z8mTJxUKRZ06dU6fPq2zJb9St260ahWJhIOePWnxYqpTRycTJScn9+7dOzw8vEKFCjt37mzbti0zb9y40c/P786dO0Tk4eExd+7cfG/5UNwplcrx48fPnz9fJpNNnz79+++/f/F7Ll++/Pfff69atUo8E4jI0dHRy8vro48+EmcjQNeUSmWrVq3OnTvXqFEjcRVeBMx8/Phx0Z1C1NzTs9TU1IYNGz58+NDZ2Vlz20aTre36+Hibl37J1ZWOHydfX1q5kjZvpubN6cIFXS4XJPLzzz9Pnz5doVBoM4i5uXnlypXv3r2reSIQSo8HDx44OTklJCQsXrz4yy+/1MUUcXFxLVq0ePz4cUBAgJ+fny6mgBKvW7duBw8e/Pzzz0U28ejRo2NiYhYsWCCKNxbcxYsXTUxMGjVqdPfu3UaNGuXk5Jw+fdrJyUkniy6JEhMTRWX/27dva34QHR397NmzV/2UXC7/9ttvZ8yYoc+lqkVH07BhtH8/EVFcHH3wAWk0y5QGM3/++ecrVqyoWLHiv//+KxIBiejZs2dTp051dXVt3bp1gwYNXnyfTUpKioyM/Pfff0+fPn3q1Km4uDjxeSMjo+Dg4MGDByPmJq1bt2517tw5Pj4+OztbfMbS0rJdu3YeHh4eHh4tW7Z8C6+FkpKSKlWqZGRklJCQIHoGFGMGDPbrgUKhEK297e3t1d3nU1JSwsPDAwICPD09RetCNUtLS7ELFxISIip1ALzBo0csk7G1de5x9LFjmYh1VsA9n6dPn965c2f58uXR6srcoAM///wzEZmbm2t2+3yNe/fubdmyZerUqT179nwxEtS7d++XFt/XA13XcNeUmZnZv39/IrKyspo/f767u7v49R0dHXfu3KnDicHQAgMDjYyMiGjYsGHqbpyXL1/29/fXDKnXrFnzxY6poB/ieIGWF5CtW7eeMGGCAUttbty48fXBsoYN00WXiBf/vPsue3jw06c8dChv344M92IjISFh69at5toZOHCg+qYAShuFQtG5c2ci6tWrl05fvvbs2SOTyYyNjQt+0hpA0/Xr10XxNHH3oU1vcEHsjg8dOlSK1QEz85MnTy5cuLBjx45ly5b5+/sPHz783XffbdKkSbly5fbt22fAaJKuS8oICoWiX79+RFSjRo3XHKxPSUn5559/fvnlFy8vr1q1auW7VKtcubKnp+f//ve/Xbt2oQSujty8eTM0NNTd3X3atGmHDx/OfuurKG7atImIunTpYuiFSKAkZ7gLGRkZ77zzzr///luzZs2uXbuePn36ypUrSqVS/Q21atVq166dm5tbu3btWrRo8fpzQwD5rV9PgwdTz560axcRkZMTnT9Phw9Tx46GXhlIacyYMQsXLqxYseLRo0cbNmyY76uaOewRERGxsbGaX7WxsWnatKlLnsaNGxtq6/7ECXJyInNzIqKTJ6l5c8rrT6kTOTk5n3766V9//WVmZpaVlWVvb//TTz8NHToUmQsl3rZt2z766KP09PT27dt36dJl69atFy9eFF+ys7MbOHDgoEGD2rRp8xamVJQeycnJx44d02aEihUrFuqsjy48fvz47Nmzr/qqsXEnhcLypV+ytaXJk2nDBlIoqHdvSk6ma9d0tkoAeGtMnz79xx9/rF69+rlz5/LlXUlu4sSJv/32m4ODw9mzZ9V9SgAKTjxdmzRpcvbsWRMTE22GunDhgrOzs7Gx8dWrVx0cHKRaIbyd4uNpxgwKDCQiSkqiKVNo0SKdTJSRkeHh4XHs2LFmzZodOXJENN5UKBTXr19X3xqfOnUqJydH/SPW1tYtWrRQ3xc7OjridgDyGTVq1JIlS2bMmCEKSBZrJT/gTkTPnj3r3Llzenr69evXicjY2LhBgwaiVkyHDh3q6KikApQSI0dSUBAFBJCfHyUkkK0tmZpSYmJuUBNKCqVS+cEHH2zdurVOnTrHjx9XKpWalxHq03BCvgh7ab6SUKlUv/zyi62tbXR09IQJE4r9oTAosIiIiN69e6enp6ekpBBR+fLlPT09vby8evbsiY1teBt0704bNlCFCrR4MY0bR3kHbQGgxAoPDxcZc2FhYV27dtX1dDk5OR06dDh58uTAgQM3bNig6+mg5MnKymrRosX169dnzZo1adIkbYbq2bPnnj17xo8f/9tvv0m1PAAievr0afv27a9du9a8efMOHTqcOXPm7NmzmZmZ6m8wMTFp3rx569atXV1dXV1dGzduLA7CArxKgwYNbt68efLkSYNn9mivVATciejJkyfx8fE7d+50c3NzcXExRzAUpNKoEV2/TidPUuvWtHkzDRhA3brllkyDkiUtLa1z586RkZHm5uaalxFEVLlyZRcXl5YtW4oIe76W3wCl0927d+/fvx8cHPz+++93794dvSXgrbJzJ3l4kJkZKZW0ejUNG2boBQGALiUmJjo5Od2/f9/f3/+lLUZ0ISoqqmXLls+ePfvzzz8/+eQT/UwKJcm+fft69OhhYWHxyy+/VKpUKTk5mYiSk5NVKlVqampOTk5GRkZmZmZ2dnZaWppKpRLfkJSUxMwpKSkKhSI9PT0jIyM7O9vExCQqKqpSpUqG/p2gpLlz5467u7uNjc21vNOCdnZ2Li4uIsPVxcXFQqdHqqFkiY2NrVmzppWVVXx8fAnYmyktAXcAnXj0iKpVozJlKCGBjI1p7FiaP59++IGmTTP0ykAnYmNjZ86cuXPnzoSEBEdHR3UOe5MmTQy9NAAAAAB4uf79+2/durV9+/aHDh3S50Gr4ODgYcOGWVlZnT59+sWahABvNHjw4IiIiKioKG0GGTp06KeffioaGABI7sGDB1FRUceOHRNp7KK2DEDRpKWlXb9+vWXLloZeiAQQcAfQwrp19NFH9N57tHMnEVGLFnThAh05Qh06GHploEPJyck2NjaGXgUAAAAAvNmiRYtGjx5drly5s2fP1q5dW8+ze3t7r1mzpmXLlsePH8dhLyislJSU8+fPz58/n4jKly9PRGXLljUyMrKysjI1NTU3N7ewsDAxMbG2tpbJZCLQaWNjI5fLra2tTUxMxDeYmpqiriMAgJ4h4A6gBVHAfdYsmjQpt4C7mRklJpKZmaFXBgAAAABQ2l2+fNnV1TUjI2PdunWDBg3S/wJSU1NdXFxu3LgxYcKEX3/9Vf8LAAAAAP2TG3oBAMXZJ5/Q1KnUqxcR0T//kEpF7doh2g4AAAAAYHCZmZkfffRRRkbGF198YZBoOxFZW1v/9ddfpqamc+bM2bFjh0HWAAAAAHqGDHcALSgUtH073b9PzZtT1ar011/UoAENHWroZQEAAAAAlHYjR44MCgpydHSMiIiwtLQ04EpmzZr17bff2tranj9/3s7OzoArAQAAAD3QX8cYgJKGmfr0ofbtqVUrWr+ebGxo9mxDrwkAAAAAAIiIXFxcKlSosG7dOsNG24nom2++OXDggKWlJcq4AwAAlAbIcAcoqgMHKDiYVq0iImImJyc6cIAqVTL0sgAAAAAAgIgoNTXV2tra0KsgIkpNTbWyspLJZIZeCAAAAOgcargDFNWNG9S0ae7HMhk5OtKtWwZdEAAAAAAAPPeWRNuJyNraGtF2AACAUgIBd4CiqlCBEhOfP0xIoIoVDbcaAAAAAAAAAAAAMDAE3AGKysODdu2ix4+JiM6coaQkqlvX0GsCAAAAAAAAAAAAg0HTVICiqliRgoLIx4eYydqaQkJIjh0sAAAAAAAAAACA0gtNUwEAAAAAAAAAAAAAJICEXAAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0A4G0xatQoZ2fnQ4cOGXohULylpKSsWbNmxYoVhl4IAAAAAAAAQKljbOgFAABArkuXLp07d04mkxl6IVC83bhxw9vb297e/tNPP5XLsbMOAAAAAAAAoD+4DwcAeFtER0cTkb29vaEXAsWbi4uLg4NDTEzMyZMnDb0WAAAAAAAAgNIFAXcAgLcCMz969IiIqlWrZui1QLHXv39/Itq0aZOhFwIAAAAAAABQuiDgDgDwVnjy5ElmZmb58uWtrKwMvRYo9gYMGEBEmzZtYmZDrwUAAAAAAACgFEHAHQDgrSDqyVSvXt3QC4GSoG3btjVq1Lh79+6ZM2cMvRYAAAAAAJCAl5fXZ599Fh8fb+iFAMAbIOAOpd29e5SSkvvx/fuUnGzQ1UApFhMTQyjgDhKRyWT9+vUjVJUBAAAA0FpWVpahlwBAaWlpW7duXb16tbW1taHXAgBvgIA7lHazZlFERO7Hc+bQ8eMGXQ2UYiLgjgx3kIqoKrNx40ZDLwQAAACguGLm7777bsyYMXZ2dr179/7+++/379+fkZFh6HVBaXTy5EmFQuHk5GRhYWHotQDAGxgbegEAAECEDHeQWvv27StXrnzz5s2LF680a+Zo6OUAAAAAFD9ff/31vHnzrK2tU1NTd+zYsWPHDiIyMTFp2bJl27Zt27Vr5+bmVqNGDUMvE0qFEydOEJGbm5uhFwIAb4aAOwAtWkTbthERHTlC775r6NVAaSVquCPgDlIxMjIaOXL5hg01N21ybNbM0KsBAAAAKG5++umnefPmmZqabtq0qWnTpkePHv33339Pnz596tSpkydPnjx5ct68eURkZ2fn4uLSvn17d3f3Vq1amZubG3rhUDIdP36ciNq2bWvohQDAm8mY2dBrADCkUaPI3Z3Ee9ZPP9GHHyLmDobRo0ePffv27dq1q2fPnoZeC5QQ+/ZRjx7UtCldvGjopQAAALzCxo0b+/fvb2RkZOiFAPxHUFDQyJEjjYyM1q1b5+Xlpfml1NTUc+fOifj7iRMnnjx5ov6SsbFxixYt3N3dXVxcOnbsWLt2bX2vG0ooZq5SpUp8fPydO3fwvAJ4+6GGexGtXk1KZe7Ha9dSTo5BVwPasbOjunWpbl2ysTH0UqAUQ4Y7SK5LF6pQgS5domvXDL0UAIBS6/x5WrqUQkIoPd3QS3kb+fr6enl5+fv7G3ohAP+xdevWr776SiaTLV26NF+0nYisra3bt2/v5+e3ffv2uLi4K1eurFix4rPPPnN0dFSpVKdPn54/f/4nn3xSp06dOnXqDBkyZOHChch0BC1FRUXFx8dXqVIF0XaAYgEB9yL69VdSKHI/njuXMjMNuhoAKP5Qwx0kZ2JCffoQEW3ZYuilAEgkKyvr4cOHhl5FSaNSqeLi4gy9ihJq5UqaOpXs7Skujjp3ptRUQy/orTNgwABjY+OZM2duExUeAd4CBw8eHDRokFKp/Pnnn0eMGEFEV65ceVXEXCaTNW7cePjw4b///vvly5eTkpLCw8MDAgI8PT0rVKhw9+7dtWvX/vrrr3PnztXvLwEljagn065dO0MvBAAKBAF3KO0+/ZTMzHI/7tePXFwMuhoordLS0pKTk83NzStUqGDotUCJMmAAEdGmTYZeB4AUjh07Nnv2bHt7+3LlyrVq1Wro0KGzZs3avn377du3Db204m3ixImurq43btww9EJKooAAWreOevem0aOpTx8KDjb0gt46nTp1+vHHH5n5008/vXPnjqGXA0ARERF9+/bNysoaM2aMn58fER09etTV1fWzzz5Tqg+5v1qZMmXUye/x8fEXLlxYtGhRbGzsxIkT79+/r/vlQ4mFAu4AxUuJapp6/vz5Zs2ayeV62kXo35/EVDdv6mdC0IkdO2jZMrpwgWxtafVqGjmSbG0NvSYppKSk7Nu3LyUlZdiwYYZeC7zZgwcPiKh69eoymczQa4ESpXt3KluWTp+m27fJwcHQqwHQzoQJE06cOGFlZZWcnHz69OnTp0+rv1SpUqWmTZu2a/d39eqVHB2paVOqWDH/jw8eTD/+SPXqUXIyzZ9P06bpdfFvrfT09IiIiPv373fq1Gnfvn3N0GRZQs+ekbk5WVvnPnRyor17adgwevKEHByoTp3n/1V/T6nk5+d36tSpLVu2fPjhh+Hh4WbqXBgAvbt586anp2dqaurHH38sGqJeunSpT58+6enppqamhe00IJfLmzVr1qxZs3/++efvv//etm3bmDFjdLNwKPkuXvy5Zcv+7dvXN/RCAKBASk7A/ebNmx06dHB1dV29enW1atX0MOOWLbmZ0a6uepgNdOjDD2nixJKWcvTw4cMPPvigWrVqCLgXC6gnAzpiZka9etG6dbR1K40fb+jVAGghNDT0xIkTtra2UVFRCoXi8uXLV65cEf+9cOFCXFzcP//8c+FCxYSE3O+vWpWaNPnPn0OHaNw42rGDMjPpyBGD/jJvE0tLy717977//vt79+7t1KnTrl27kD0nGSur/9RtT0igChUoNJRezHKtXJnq1DncocM+U1MHB4c6deo4ODhUr17d2Ljk3Ky9hkwm++OPP86fPx8RETFhwoSFCxcaekVQSkVHR3fv3j0uLq53794rV66UyWS3b99+5513EhIS+vXrt2jRoiKP3LdvXwTcQRtpaXTihI1M1t3JydBLAYCCKTnXcI8ePbK0tDx48KCzs/PKlSvfe+89Q68Iig0PD/rzTzp0yNDrkFSDBg0qVar08OHDe/fu1apVy9DLgTcQAffq1asbeiFQAg0YQOvW0aZNBgi4K5XKjRs31q5du3z58g0aNND39FCCqFQq0VNx6tSpZcqUIaL27du3b99e/Q0xMTFXr964cEF25QpdukRXr9Ljx/T4MR04kPsNEydStWpUvz6tX09duhjid3iLWVpahoaGfvTRR5s2bfLw8Ni2bVu3bt0MvagSwciInJ1pyxbq35/S0+n332n+fPrgA4qKojt36Pbt5/+Ni6O4uAiZbOaJE+qfNjExqVmzpgi+9+zZs1+/fob7TXSuXLlymzdvdnNzW7RoUevWrYcOHWroFRleSkrKnTt37ty5c/v2bfV/p0yZ0qRJkxYtWhh6dSXQkydP3nnnnXv37rm5ua1fv97Y2Dg+Pv6999579OhR165d169fX9j0duHZs2dly5b19PQ0NTU9fPhwQkICCkhCEUREkEJBrVqRpaWhlwIQHEzr15OxMTk40IwZpfyU3muUnIB7x44dL168OGzYsF27dnl6eo4ZM2b27Nm6O5Do7Ezq0jUtWlCR3nzhLTJ3Lnl5UcOGhl6HdGQyWZs2bXbu3Hn8+HEE3N9+0dHRhAx30I2ePalsWbK2ppwcMjHR37yHDh0aN27chQsX7O3t4+Livvzyyx9++MHGxkZ/K4ASZP369efOnatZs+YXX3zx0m+wt7e3t7f38Hj+mXv3SATfxX9dXOjAAfr+e+rcmVq21NOyixFTU9MNGzaMGDHizz//7NWr14YNG/r27WvoRRV/OTm0dCl98w2tWEFKJfn6kkhNfLFuz8OHdPu2c0zM99euqUOrMTExUVFRUVFRRFSuXLmSHXAnohYtWsydO3fkyJGjRo1ycXFp0qSJoVekJwqFIi4u7tGjR7f/686dOy926fTx8bG1tT19+jSCttJKT0/v06fP1atXmzVrtnPnTktLy2fPnvXo0eP69euurq7btm0rQmDh0qVLAwYMqFKlypEjR2xsbDp16hQWFrZz505vb29d/ApQsh0/TkSEE2hgeAcOUEgIbd1KZma0eDF98w0tWWLoNb2tuGRRqVSBgYGmpqZE1KRJk4sXL+poot9+4wMHcj/+/nsdTQK6tXs3jxnD06fz9u3MzLNmsY0N79zJrVrx0aOGXpwUfvrpJyLy9fU19ELgzUaNGkVE8+bNM/RCoARSqXj4cH74kJn56VNesEDnM0ZFRfXv319cZtSuXbtHjx6ivUrlypWXL1+uVCp1vgKQQmJi4qlTp9asWTN9+vRBgwZduXIlJSXFICtRKBQNGzYkot9//52ZMzIyJk+e/OjRo8KO4+zMzLxmDXt7s4eH5MssCZRKpdjSMDU13bRpq6GXU8zNm8etWvGdO0UeIDMz89q1a7t27Vq0aNGxY8ekW9lb7ZNPPiGiBg0aJCcnG3ot0ktMTDxx4sTatWtnzJgxYsSIrl271qlT51WFg8zNzR0dHXv16jV69Og5c+Zs2bLl9OnTbm5uRNSrVy+8mUooKyurR48eRFS3bl3x5pKent6xY0ciql+/fmxsbNGGTUlJMTc3l8vlYkxRkWbAgAFSLh1KjT59mIj/+svQ6wAYNYp37cr9WKlkBweDruatVtIC7kJkZGT9+vWJyMLCIjAwUBdTdO3Kzs6cmsrM3LSpLmYAHcrJYT8/lsmYiD//PHfvJDubO3bkDz9kIjYx4Z9/5uJ+HXvgwAEicnV1NfRC4M1EIuHGjRsNvRAogZRKLl+eBw1iZr53j3v10uFcqamp/v7+5ubmRGRlZeXv75+RkcHMZ86cETeuROTs7Hz48GEdLgIKLysrKyoqKiwsLDAw0MfHx8PDw8HBIV8P50qVKg0cOFClUul/ecuWLRNRj5ycHGaeO3cuEbVr166w44iAu0rFXbsi4P5KKpVq4sSJFSpUatDg0ooVhl5N8XXiBJuaskzGmzYZeinFTHp6upOTExF9+OGHhl6LxM6dOzdhwoSXxtbLly/v4uLi5eXl5+cXFBQUFhYWFRX10pD6/fv3K1WqREQzZszQ/69QIikUCi8vLyKqVq3a7du3xWfef/99Iqpevfrdu3e1GdzT01O9WxwTEyOTySwtLdPS0qRZOpQmVaowEUdF6Wr86OjoHj169OvXT1cTQInx0Uf/SVCtU4cNcXdQLJTMgDszP3v2zMfHR1zBDBgwICEhQdrxu3bl+fN54kRmBNyLm/v32d2didjYmP3980fVMzPZz4/lciZiNzcdvqXpQWpqqrGxsYmJCa7q3n4uLi5EdOLECUMvBEogpZJdXPiTT3jPHh0G3FUqVUhISM2aNYlIJpN5eXndu3cv3/eEhobWqVNHvDV7enqK21rQM4VCcevWrd27dwcGBo4aNap79+61a9eWq8vkabCysnJ2dh44cOCUKVNmz55dtmxZIpo9e7aeF5yRkVGjRg0iWr9+PTOnpKRUqVKFiHbs2FHYodSHiK5c4eXLpV1mSfPLLzFELJPxwoWGXkpx9PQp167NRPz114ZeSrF048YN8YKzaNEiQ69FSp07d5bJZHXr1v3ggw+++eabJUuW7Nmz5/r161lZWYUaZ//+/UZGRnK5fN++fTpaaumhUqk+//xzIrKxsTl79qz4zPDhw8U285UrV7Qcf/ny5eKaRzxs3bo1EYWGhmo5LJQ2t24xEVeurMMp4uPjxeafDueAkuF//+OlS3M/fvw4N58FXqbEBtyFkJCQcuXKEVGtWrX+/fdf7QdUqfjkST5xgrt25adPuUsXPn8eAffiZNs2rlCBibhGDQ4Pf+W3hYWxvT0TsY0Nr1mjx/VJTaQIHTlyxNALgVdKT09ftmyZtbU1Ee1SH84CkI4IuD96xC1b8vXr3KsXHz3KkZFSThEREdGuXTsRpW3VqtXRF8pyKRQK8UF6enpAQIBoemlhYeHn5/fs2TMplwKvsGrVqr59+zZq1EiU3cvHxMSkYcOGvXv3njBhQlBQ0MGDB6Ojo/ONsG3bNrlcLpfLd+/erc+Vz5kzh4iaNWsmkj1//PFHImrdunXRcu1zcrhxY7a25rynJLzSwoW5ZwFRO7FwlEp+910m4rZtuZCBVFDbsGGDeGkqMbV0rly5IpPJypQpI0mpnGnTphFR5cqVX3ythkKZPHmyuCAJz7szFKcQLC0tJXnuxcbGGhkZmZmZiaudGTNmENHw4cO1H7lQoqOjIyMjx4wZ89dff93Ros4VGMrq1UzEffvqcAqVSiUuEcXhVIBXiotjFxcODuY9e7h7d96yhZk5Pd3Aq3orlfCAOzPfuXNHRAGMjY39/f0VRbrBUio5MpL9/blePSbi7t25a1dOSOALF7h7dwTci4fs7OdlZPr04adP3/D98fHcty8TMRF7eXFioj4WKbkvv/ySiGbNmmXohcBLPHr0aNq0aba2tiLgJZPJzMzM5s6dq6eKDRkZCDiVEiLgzszz5/MXX3CvXty+PRNxzZrs68vh4VqVz4qJifHx8RH50dWqVQsKCnrxCHxKSkq9evXU5WWYOTo62tvbW1Qssbe3Dw4ONkihktLj22+/Ve+IiPQld3d3Hx+fgICAkJCQyMjIAt5ciRBPhQoVovR1/is1NVXks2/fvp2ZExMTy5cvT0QHDx4s8pg1auj2UHZJsmoVGxszEfv5GXopxcj33zMRV6jA2lWigDFjxhBRzZo14+PjDb0WCYhuPaNHj5ZkNKVS+c477xCRm5tbdna2JGOWQgsWLBD7Ojt37hSfEQFxU1PTPXv2SDVL+/btiejvv/9m5suXLxNRxYoVRYU0/YiPj2/cuHH16tXVlwFVq1b19PT09/cPCwtLR5isOBg/non45591O4t4kmhZRglKhYQE/vNPXrCAL13i5GTu14+rV2e8Gb2g5AfcmTknJ8ff31+EA7p06VLwRACFgvfv51Gj2M4uN/AqMqMnTswNuDPz+PFsYaHDxYMkbt682alTAhGbmnJgYCFqTC1ZwpaWTMSeng+OHz8u4ZJycnLEuUWdWrVqFRGhFtvb5vz58z4+PhYWFuKq19nZecWKFaNHjxbxRw8PjyI0AyyEmBju2ZMHDODu3XnUKITdSzx1wF2h4FatuFcvHjs29xCP+GNvz6NH86FDhXsuZGVlBQYGilx1U1NTX1/fV+Wqr169WjzV69Spo9mo4NSpU6L5GxG5urqWmDTGt01SUpKVlZVMJluwYMH58+eLdmstdkSUSmWvXr2IqEWLFvopVpYvn/3bb78lonfeeUebMbt1YyLWb5p+MbZuHZuYMBF/+aUEvW1SU1NPnDghqgOVTAcOsJERy+UsXbSu1MrOznZ3dyei9957r7g3CE1JSRFFci5evCjVmLGxsfb29lVsba/99JNUY5Yqz549s7e3l8vla/KOM//+++8ymczIyEgEx6Xyyy+/ENHHH38sHooe4HprZpOWliZ23Bs0aDB16tTevXuLHgBqpqambdu2HTdu3IYNGx48eKCfVUHB7drF8fGsUvG1a6zrN09XV1cikjboASXWw4fPW6c2bcpEaFrzolIRcBcOHDhQrVo1UY7t9XXTsrKydu3aNWVKWKVKz+MRdevypEl88mRurPa331jcaT57xqNH8+PH/PChXn4NKLxNmzaVK1fO1dWzdm1VEd4+rl7lrl2zKlVyNDY2/uGHH4p2SEJISkoKCwvz9/f39PQUxY4GDRokuujoyM2bN8WBU91NAQWnUqnCwsI8PT1FYF0ul3t6eoaFham/Ydu2bRUrVhR/ZTos2jBoEOcl8vDYsYymeCXanTt87hyrb8YjI3nBAmZmlYqPHeMJE7hOnefvdJUr87Rpu/fu3fvGdLl81djfmO986NChFi1aiO/v3LnzuXPnxOdVKlVwcHDVqlXFIQ9vb2/d7jaVSosXLyaibt26FXmEiIgIZ2dncQg9MTGxXr16RDRkyBDJlvgK+fLZHz16ZGVlRUVqdzFzJn/yCYuEwi+/ZKLn9dzhjXbsYHNzJuKPP+bCJmUmJCSEh4cHBgZ6e3s7OjoaGRkRkZGRUbdu3a5evaqb9RpMfHS0qlo1JuL//c/Qaykh1A1Cf9IuppyUlHTmzBl1FrP+LVq0SCR+STvs6WPHYqpXZ5mMt26VduTS4MCBA9bW1k5OTurPREZGVq5cedmyZdJOdOvWLSIqV66cKNY/adIkIho/fry0s7xUVlZWjx49iKhu3boPNaIVMTExISEhvr6+7u7uJiYmmvF3Ozs7T0/PgICA8PBwlBZ5GzRsyN7euR83a6bbufr06UNEmzdv1u00UAJER7OJCZctyykpzMzz5zMRa5cQUyKVooA7M8fFxYnMLJlM5uPjky85KyMjIzQ01MfHR1R4aN68PRE7OOSeuH9NTvSJE1ylCnfpIkHiD0grPT1dtMEhIi8vr6SkIl40aB6SaNOmzc2bNwv4gwqF4ty5c4sXLx46dGj9+vXpv8QOkLGx8bZt24q2sIIQh/HRnNCwMjMzg4ODmzRpIv7qra2tfXx8rl279uJ3PnjwoFOnTuJlytfXt7B9tAqkbt3nHx89ynkZN1Dy5ORwu3Zsbs6vDzJcusT+/ty4MRNx48YuouSIt7d3SEhIampqvm++cuWKuHkjosaNGxf8zLVSqQwODq5cubLYbfL29o6NjRVfSk1N9ff3Nzc3JyIrKyvN4jOgvZYtW1Jex9Gi8fT0FGnmmZmZzHz16lWRqrlA7N7ojMhn7969u3g4evRoIurfv38RhqpZk4n41i1m5jlzmIglqutQWoSFsZUVd+3Ko0fnVuPJzHzJ2fbsbL5wgVev5okT+YsvTqprpqmZmJg0b968QYMGRf6rfGtlZ2e3a9dueJMmqYMG4ZZAQoVqEJqdnR0VFRUWFhYUFOTn5+fl5eXu7u7g4CCefnK5vGfPnuGvaeKkM82aNSOikJAQ6Yf+7Tcm4nLlcl/goMDyVVcXEnVTRbRp06ZEJJJsjh07RkS1a9fWxUSalErlwIEDRR7P9evXX/VtKSkp4eHhAQEBnp6e+ZLfTUxMXFxcfH19g4ODUWbEUJyd+ZNPWCRo6Trg7uPjQ0SLFy/W7TRQMnTowES8fDkzc1ISW1qyTMYFDpSVEqUr4M7MKpUqMDDQzMyMiJo0aXLhwoXU1NSQkJAPP/xQNC0UnJycfvzxp8uXC1R5JC4ut+YMzvO9Va5evdq8eXMiMjc3DwwM1H7AgwcPirpmZcuWDQoKetW3JScnq9PYRWqempWVlbu7u6+vb0hIiIg0iXq45ubmujtX2Lt3byL666+/dDQ+vN7jx4/9/f3V1692dnb+/v5PX9ZD4PHjx+qiDYGBgSLfxNXV9ZaEd1D37nFKCtep8/wzp07xwIGSjQ9vmSlTmIirV+cnTwr0/RcuKP39vxdxAaFs2bKDBw/euHFjWlra06dPfX19RYJqhQoVAgMDi3DiJzEx0c/PTzRlKleuXEBAgHpX6ebNm15eXmLeunXr6iQwUfpEREQQUcWKFUWs/KUvPm+UkJBQt25dIvLOS7LavHmzTCYzMTH5559/pFyuhri4OFGwSBxtvnv3rpmZmVwuVx+PKBQPDybKPfm6YweycIoiMpJTUrh6de7dm5k5JYXbtuXkZA4P56Ag9vVld3e2sHh+YqZVq3gisrGxEQ0DAgMDw8PDRUWj2NhY8Zf777//Gvi3ks7YsWOJqEaNGiWj4PhbZfr06fRCg9CHDx/++++/q1ev/uGHH4YNG9apU6eaNWuK5JgXWVlZNW3aVOz06P/v6PDhw+IKUCfF1lUq/uADJuLmzdGzrrA0q6vr1NSpUymvgr9SqbSzsyOi8+fP63RSX19f8SJ85syZAv6ISqW6fPnyihUrhg8f7ujoKI7kqh04cECfpedBcHbmhw/ZxYUzMnQecPf39yeiadOm6XYaKBnWrGEiVh8SGjaMifjbbw26prdOqQu4C6dPnxaXXGZmZiKljohkMlnr1q1nzZpVhPDWoUNsZMTGxnz0qC7WC4UWHBwsDp43bNhQwlLpSUlJgwcPFk8YLy+vBFHInzkqKio4ONjHx8fR0THftb6dnZ2Xl5e4z3xptrK4Qytbtuzp06elWqemmTNnknQ9mqDgzp496+Pjo36FcXFxCQ4OftV1akZGRvPmzbt27RoTEyM+c+LECVGyo2zZsmvXrtV2NadPs7c3m5hwYCC/8w6rL/F//ZVnz+bkZDQ5KXkOH86tJFyE7pLXr1+fOXOmi4uL+qXMwsJCvKiamJiMGzdOyxSw69eviwNnRNSgQYMdO3aov7Rv3z71WZCpU6dqMwtwXrLShAkTmFmpVNapU8fV1fVh4avgnT9/3tLSkoiWLl0qPjNx4kQiqlKlio5Kvop+ieoeJJ9++qlmxL+wRo1iIhab7zduMBHrPrmwZHJ2Zl9f3rAhN+AuOjCr/8hkXLcuDxjAP/zA27dnviYjUoRQ27ZtWzIaJm/dulVsQZWkLYS3h1Kp9PDwIKLatWv36tXL0dFRfXGVj7Gxce3atbt27frZZ5/99NNPa9euPX78+OPHj8U4OTk5HTp0IKKuXbtqUyKysIYO/ZSIpk+frqsJnj3jRo2YiEeM0NUUJdSvv/5KGtXVdScyMpKI7O3txSveF198QUT/02XtqSlTpoiLtyNHjhR5kGfPnqmT3y0tLY2MjApy0AQkcf06f/UVh4SwszMzc2Agz5ih84D7kiVLiOjzzz/X7TRQMmRmsq0tE3FkJDPz8eNMxLa2nJlp6JW9RUppwJ2Z09PTBw8ebGdnJ5PJXFxc/P39C14n5KX8/HJbqhYpewwko1lGxtvbO0VUlZLU77//Ls5DVK1atWPHjuJkvZqlpWWHDh0mTZq0detW9SX+ayiVyg8//JCIbG1tX1pjREuHDh0S0d6iD5GVxdOmcc+e3KtXbr3voCBWVx7/44/n7TKAWalUvr5Q+0udPXtWHL2vUqWKukZHUlKSeG6IJ/OLxT3eTKHgjRu5XbvcWIiJCU+axGfPcps2/PPPPGECd+3KKSncty+7uuIIWEmSkJBbQ+P777Ua5969e4GBge7u7jKZrHLlym5ubhI2fAsLC1PH1j08PC5duiQ+n5OTExQUZG1t3b59ez00ly7BUlNTxTvU5cuXmXnv3r1EVKdOnaK1H/zrr7/Ejou4e1coFKK4UNu2bTOlvra+d++eZj779evXjY2NTUxMinziZ+5cJuKvvmJmzslhExOWyxmFi4rA2ZkTE9nJiWNiuG1b/uYbdnXlzz/nRYv433/5FY2TXyIlJUU0b9iyZYsOl/taDx8+PHz48EcffTRlypQVK1YcPHjw7t27RYjD3rhxw8bGhnRfZKk0e/LkiY2Njb29vfp6u3z58i4uLl5eXn5+fkFBQWFhYZcuXXpjU+hHjx6J5GJ/f3+9LJwfPeKyZdM7dfrjwYPoN393kV24wJaWTMR//KHDWUqcfNXVdUelUtWsWZOIIiIimHnXrl1E1LJlSx1NFxio6tBhjYmJiWZCg5bEseyvxPso6IxKxXv38nvvsVzOROzqmhtwz8nh9u25USPdzr5161Yi8vT01O00UGJMmMBEnLdDo2rjkvBd22f3thh0TW+X0htwZ+awsDAi6tChgySj5eSwmxsT8QcfSDIeFNHdu3dtbGykKiPzKnfu3GnSpIm6OKlme5mCxx3++ecfkRiYnZ397rvvEpGDg0MREg9fLy0tzdjY2NjYuOh7D1Om8A8/MDNnZnLfvhwaytOnP++S/tNPvGqVNGst5jIyMoKDgxs3biyeFWXKlPH19RVtBgsiNjZWPA3yVW8PDg4WiaWNGjUqRPDx2TMOCuKGDXND7WXLsq8v37uX+9XUVD56lM+eZaWSY2JyQ7M2NqxFlefXSExMnDVr1h9//DF79mydnKeGF/Tty0TcoQNLlcPn6upKRJKXvs3Kyvrll19ErMrU1FSzWleXLl0or+ApFM3vv/+ueZ3zwQcfkHa9B8WRrKpVq4qzOE+fPhUHcb744gtpVpxn+PDhmlmHotbQyJEjizzgzp1MxHnV4LlBAybivC0eKARx5x8czKNGcdu2hftZpVK5atWqHj16iMNeCxcuJKKGDRsapEZBZmZmq1atRKlATSYmJg4ODh4eHj4+PgEBAcHBwWFhYa/pC52enu7s7ExEA1GfTZcOHjxIRBUrVty0adP58+efFXxv52VDiaLwOuxOr+GHH/R1eyhO95ubc4HrhwDnldfXw8WGOLYlju5lZmaK7XBdNNlavZplMpbL+e+/pWxMffr0ac0kfZBcZiYHB3PTprm3bmZm7O3NFy6wOvp99Ch36cJ37/KhQ7paw8mTJ7VN1INS5dYtlsnY2pqTk5k5PnZpZCRdv97V0Mt6iyDgTt26dZNqwKgoLluWifj336UaEgrtq6++0s/2+8cffyzyjosWIj9w4ICZmZmjo+OTJ0+YOS0trV27dkTUtGnTotXYfQ3RMa/olXYbNXp+MujIEf74Y54+nefO5evX+fp1/vprBNyZWalUbt68Wdyu16lTJyAgQF1xqOBEkwlR3trFxeXGjRvi81euXNFsSPD6K907d+4snT4998WIiOvX50WL+PXZ8UlJPGhQ7vd7e7N050KioqL8/PxEOFX8t3Xr1lJWpYeXWbAgt4OahA2u3N3ddRFwF548eeLr62tiYiIyv4Ru3boh4K6lNm3aENGqVauYOT4+3szMzNjYWLMIcmHl5OR07tyZiNzc3MSm4NmzZ8WO4HLRNEkK+fLZz58/L5fLzc3Ntaldc/Omql69i7165Z7H+uwzv0qVKm/evFmaFZcmIuCuUnHXroUOuOfk5Ig9abG1lp2dLfrJv6Yvju6Ikg729vaLFy/29/cfOnRo+/btq1Wrlq9msVq5cuWcnZ0HDBgwceLExYsX7969+/r165mZmcOGDSOiBg0aJCcn6/+3KD3EfuEPIv+jSG7fvv173h3aDz/8QEQVKlQoeFZE0SgUXKsWE/GBAzqdJ89nn7GNDetlI6HE0Fvi9v79+4moSZMm4qE4wyp5ftiOHWxiwkT822/SDszMLLbYT506Jf3QpdvDh+zvzxUr5t6KVa3K/v780k4TDx6wnR2XKaOrbbV79+6Jd0adjA4lUcrcYTePtYqLXcLMCsWzs2fLREbKMjJe2aX59S5dunTixAlJF2hgCLg/D7ivWrVq4cKF2mRMcF5uQYUKqqtXdVLSFN5oz549IhdYPHzw4MGMGTOCg4OlnSUnJ0e0wSxyEZjk5GSREuXq6ipyz588eeLo6CiO5xeleMiriU2In3/+uaA/8OgRb9nC33zD7dvzunX/qXR7+TK/9x5Pn869evHXX/PXX7O7OwLuzPzw4UMisrCw2Lhxo5aFQU+dOiX6E5YpU2b16tXikxkZGaL3ERH17dv3ycuaYEZGRnp7exsbGxNRcvPm7O7OISGFyHAODmYrKybihg1Z6zoe4eHhXl5eosEmEbm7u//2228v/l4guUuXcvsWSntcQTPgfvXq1YULFx6QOn5w//59zYcIuGvpwoULIkqYlpbGzLNnzxavHloOGxsbK5KC1a1BVq9eTURmZmYnT57UcnBh4MCBmlnzovW3KENfZAqFwtTUVC6Xi4oT48ePJ6KAgAAJllvKTJqU+8GlS/zdd4X+8b///puIKleuLK63Q0JCxDFBaS973mjt2rViD/vF9jkZGRlXrlzZuXPnggULxo8f369fvxYtWogWry+Sy+VGRkaWlpaXcFxClx4+fGhiYmJiYqLuc1NYiYmJlSpVksvle/fuZWaVStW3b18iatOmjU5riWzaxETcuDHrKSc4PZ1v3WKlkpcv588/5ylTWDc9NkqSfNXVdSc7O9ve3r5v377ibUi8CnXp0kXCKY4fz72Q11HPS3EnMmXKFJ2MXipFRrK3Nxsb54baXVw4OPh1fbVUKh46lInYzo51sV2YlZUlk8mMjY2LVnsQSqGEhPWRkXT5cnPx8O7dEZGR9ODBxEINkpmZGRIS4uHhIZPJ3NzcdLBMg0HA/XnAvVatWkSkfabD2LGJ9ev3b9GiheQlTaEgcnJyRKUXUWhYVCJzFhlZ0hFJCo6OjtoMEhsbK5r3du3aVTxboqOjxfOwV69eElbeWLNmDRH16dPnld+hUPClSxwUxN7e7OjIMtnzDmhffMFubs8TZdev56+/RkmZF0VERBCRk7pPt3aSk5M/+ugjcT+v2Ypg8+bNFSpUIKLq1asfPnxYfDInJ2fDhg0ilZWITE1Nvb29b5w7V5SJL17kJk1yjyQvWFCEG8Ts7OyQkJC2bdtqLubChQvq30vddlhHLRZKuYwMbt6ciViL2hsvpxlwX7lyJRF98sknEs/xXwi4a2n06NFENGbMGPFQZBZLUs71zJkzFhYWRLRCdPXI29a1s7Mr2pGvzMzMS5cubd68edasWR9++KFMJjM1NVXns9++fXvEiBHxL831KoyGDRuqrw1EW7DPPvtMyzFLoehorlOHvbyKPoI4z/fjjz8ys0qlcnNzUz/Uj4sXL4oW0IU6lpGQkBAZGRkSEhIQEODj4+Ph4eHg4GBkZGRtbd2xY0fdrRaY2d/fn4g+/PBD8bBo2VH5stoTEhJEuu7YsWOlW2l+Hh5MxPPn626Glxk9mqdP55gYPnCAmzblwh+4LG1q166tn8RtzYycpKQkU1NTIyOj48ePSzL4xYtcvnzurZuOHDhwQPv739Lpiy9YbBcmJnJgIGdlcUhIbjli0WPLy4uPHi3QUNnZ3L07E3G9ehwXJ/1SK1asSESxsbHSDw0lkUqVdf58lchISk09wcxpaRGRkXTuXEWlskCNkq5evfr111+LZx0RlS1bdtSoUSWpAi0C7tIH3FNTU8VNnU4v4OA1RNPU6dOnM3NmZqYoZKGuziEJUYZP7PBnZWUdP368aPvAUVFRondTv379xEXYjRs3qlSpQkRDhgyRam85KiqKiCpVqqSZuxEbG7tt27Zvv/22U6dO9zp1eh5hJ+IyZdjDg6dN4127OCGBd+7kbt34wAHevJlbtuQ7dxBwf9GWLVtI6iYzwcHBIijQoEGDM3lHB+/du9e+fXsiMjIy+vrrr3/77Tfx2kVENjY2vr6++dKECy0jg319mWiDm1ufPn1emkr/UklJSYGBgTVq1BCLqVy5sp+f30uT0dS/V8OGDc+g0qikfHyYiB0dOS1N4pERcC9e0tPTy5cvT0Si8YPonl29enUtz9+oBQcHiwRhUQUoOzu7Y8eO4izLG9NFY2JiwsLCgoKC/Pz8vLy8HB0d1UdhhGrVqpmamh6SukapyJTftGkT50UNpOriU6ocPsxErE360ZEjR4jI2tpaNJY/fPiw5kNdS0lJEZtPQ4YM0fy8r69vs2bN+vTpM27cuHnz5m3fvr0gHThv375tZGRkamqK2ITu5OTkiF6pojTilStXLCws1FuJBadUKnv27KmZ1X7q1CkzMzMiWrNmjfTrZr55k2UytrTUb8Q7M5Pr1XueMPHTT7xkiR6nL5Y0b+v0JikpqXLlyqKTatmyZT08PPz9/UNDQxMTE4swWlQU29kxEffrJ1nznhcpFAotT3iXWuXL86BBzMwxMdytG1erlnvPbWvLU6ZwYY/uJCezkxMTcZs20l/wN23alIjOFS1zC95WBw8e1N3g0dF+kZF0586n4uGVKy6RkfT06drX/EhWVpY6pV1c/Lu4uAQFBZW8bDwE3KUPuDNzZGSkqampTCbbunWr9qNBYe3bt0/E8sTDoUOHknZt4vJRN5oXqRCiiE13dS+2Qrpw4YIIi6jbwZ06dUocXpawnmDVqlWJaNeuXcHBwT4+Po6OjppVSkM6duQGDfiTT3jpUj5//iVXahcv8i+/8OLFLLIXT55k9QZGRATjqiuv+ZuogaBQKJYuXSpJJunVq1ednJyIyMTExN/fX+zB5OTkTJkyRS6Xm5iYiL/BRo0aLV26NE26a66szZtrVq8uInRvrP5/69YtX19fEUMX2wOBgYGvj1NcvnxZdKkyMzO7tmKFvs5al3Di6Lq5OeviIhkB9+JFBMTb5tXYFidm/P39JZzCx8eHiGrWrBkXF8fMjx8/FkGxcePGqb/n0aNH//zzz/LlyydNmtSvXz9HR0cR3srHxMSkfv36vXr1Gj9+/OLFi0WxZktLS2lj7hMmTKC86moPHjwgoipVqkg4finx559MxP8NVheap6cnaRy/yPdQp0QDnmbNmuV7x+zateuLz0wiKl++vIuLi5eXl5+fX1BQkGigqrlxJSqTFKJqHxSSqDvUuHFjkTUizu6MGjWqCEO9mNW+YMECsd9z5coVCdcsjB2r23Tjl7t3jzWPXKxdy5Mn63cFxU++6up6kJ6eLrJnbG1tReqVmrGxsbOz81dffbV+/bZXd2vOr02b3MbguqyQxJx3Wz1r1izdTlPiODvzJ5/wnj0cE8M9evC773LDhhwYWPRweUxMbn+IPn0k3mLx8PAgoj179kg5KBjUr7/+SkQ+Pj46KqGWmRkVGSk/c8ZCoUhg5vj4oMhIunHD4xXffPPBg2/27n1XvOKVKVPGx8fnxfp+JQYC7joJuDPzL7/8QkSVKlUqcrVBKDKFQlG5cmUiOn/+PDNv376diFq0aCHV+KJ4iLrYn+i79f333xd5wOPHj4tgpcjKZ+aDBw+KqMSMGTO0WWp8fPz27dunTJlSqVKlfH3ArK2tu3TpMmXKlO3bt2t/VB8mT55Mee28RCinatWqkoyckZEhyjUQkaenp/qM1axZs4iocuXKO3fu1EXdyfv373fo0IGIZDKZr6/vS892vVioPTQ0tICLEVXpv3ZyYrmcu3fnR4+k/g1KndOnuUEDXrRIJ4Mj4F68iDt5UfIlMTHRwsJCLpfflbCLLnN2draYpWvXrjk5Ocx87Ngx0fO5ffv2Li4uZcuWfWkEs0aNGl27dh05cuRvv/22Y8eO69ev53t5UalUIppvZWWlrp2lvaVLlxLR8OHDxRTW1tZElJSUJNX4pYS/PxPx1KlaDXL16lXRF1ecPlQ/vHnzpjSrfIV58+aJ65+rV6/m+1JiYuLp06c3btw4e/bsL7/8skePHg0aNBDP5xdpvvqJrIuaNWtKdXwE8unSpQsRLVq0iJlTUlLEuVV1qbrCejGr3dvbm4iaNm0qYdYCM6el5db30HcYITOT69d//vDnn3V1WVCCqFtzXb9exEZ/hZKdnd2rVy8iql69+r1795g5JiYmNDTUz8/P3d1dvS3t5jaQiKtUYU9P9vfnsDDWTGVZuZIXLMj9+Ndf+cgRfv991kNu6ObNmxs3dhk2TOLuaCWeszM/esQtW3JUFPfowUU6xpDf5cu5LzLSlpEUL4krV67UapSHD58/X1NSOCfnJR+DLs2ePVvdy33FihXm5uZE1LZt2we6aexx40b3yEiKjV3AzEplSmzs3Jycp5rfoFJlJySE3LjhERkpi4ykM2csevbssHTpUi07aL79EHDXVcBdpVKJhJ1OnTrhElz/RBB86tSpzJydnS3KXkuVvTJ16lTK6xenVCpFYoKWB6+2b98uel3OmTNHfGbLli1GRkYymSwoKKjg4ygUikuXLr00jd3Y2NjS0tLLyyswMDA8PFynTaJKIZHx8ccffzDziRMniKhVq1YSjr9169aKFSt++eWX6s+sWLGCiIYOHSrhLPkoFAp/f38RT2/Tpk1UXqaNOAXWunVr8dQyMzPz9vYuWsu4nK1buUIFJmJ7e9blYbeSytWVRQ5Kdjb36SP9wVI1BNyLkWvXrslkMmtra3EVGxgYSEQ9e/aUfKJHjx7Z29v7+fmpC6CNHz9ehC0Ezezg4ODgyMjIAl5YK5VKcctXtmxZqXqxiro66nLbLVq0ICJREgcKztubiTiven/RDR8+nIgGDhyo+VBdpFsXTp48KY6f/v333wX8EaVSef/+/cOHD69cuXL69Okff/yxu7u7nZ2d5mERlUol+vGEhobqZN2l25UrV8SrmQgciO4LnTp10mbMfFntKSkpjo6ORPTRRx9JsmYhJYVnzWJJhyyw4cN5zhzOyuJz57hZM0ZWTQGIy/jZs2freiKVSvXpp58SUaVKlV7c+WPmtLS0w4cP//zzz6NHh1au/J+SnyYm3Lo1jx3L69bxmDFcqxaLS+8BA1gvOwVieWxpyXI5F6ljS+kl2snNn89ffcU9ekg27OHDbGXFHTuu/fXXX6Uac9KkSUQ0c+bMIv78hQvs5saffcY9evDo0axSsbc3qy/kPvuMw8OlWipoysrKOnLkiPrhli1bNC+5z5w5Iw54VapUad++fZLPnpCw8fRps5iYKcycknLk8eNfExLWq1SZzJydHf3oUcCFCzUiIykyks6cMY+K8kpOLi33dwi46yrgzsyxsbEiFKtlkjIUgTgbWLduXfFw2LBh6uxj7YnSZiIMdOzYMSKqXbu29sOuWbNGLpfLZDL1lrJIx5PL5SEhIa/5wadPn+7cuXPatGndunUTtWjULC0tO3Xq9O233/78888kXUtPeJE4jb53715m3rhxIxH17dtX2ikePHigWadFtP/67rvvpJ3lRYcOHRKVImxsbIKCggICAqpXry6eYFWqVPH399f2hMT9+9yxIxOxTMa+vlyC2qToQaNG7ObG6emclcUuLjqcCAH3YmT8+PGUV+GK896zNm/erIu58gXQBw0aRET9+/c/fvz406dPX/VTBaFQKEQlHBsbG0nC4unp6Tdv3szJS63y8vIior/++kv7kUsVd3cmYu2L/cTExFhaWspksmPHjr34UHJPnz4VfRHHjx8v+eC//fabjva0QBTXVheQcXZ2JqL16jZCRZUvq/3atWvi+nnZsmVajnzuHFevnhuL3LWLpatnWRgZGfzLL9y/P3/5JUvawqoE27RpExG5u7vreiLxBl2mTJnIyMiCfH9MDIeEsK8vu7uzqWlu5L1cOfb15aAg7tKFVSq9BtyZuW9fJuLC5INBbsBdoeDWraUMuDPzpk3hcrlcLpdr/8IozJkzh4h8fX2L+PPu7qzOcRw2jLduRcBdp9Rp7CkpKRUqVHhNdY0nT5706NGDiIyMjPz9/aU9H69SZefkxDFzcnLYjRseycn7YmMXpKWdvnHj3chIuQi1X77cLC5uoUJRuo6WIuAufcBd/aRn5r1798rlcmNjY3d3925awA1hYSkUCtF6VPSL27lzJxE1a9ZM+5Fv3rxJROXKlRMZ4mIT+Ouvv9Z+ZM5LujExMdm5c6f4zI8//khEpqam+SqpRUVFBQcH+/r6uri4yOVyzSC7nZ2dp6dnQEBAeHh4Zmam+P709HRTU1MjI6OS14niLSFaJYssb3FovWgFRgtOHONYpJeTwvHx8aLfoLpQu5OT059//inZOQmFgv392ciIibh1ay540cpSr2VLXraMp0xBwB1yZWVl2draEpG4mT969CgRVa1a9aVVoaT15MkTc3NzuVwuzshrLycnZ8CAAURUsWLFc+eKWEHipTIzM8VdR+fOnUv8aVZpiVZvkvwNf/vtt5pnDvI9lJBSqXz33XeJqG3btro43peYmCh2C24guCmpfAVkwsPDxauZ9n+JL2a1r1u3TpzYK2AY9FUiI7lFi9zuiFu3alt8qSiePOGqVfnrr9Edp1DS0tIsLS3lcvlDXWZuq2/rRIJOYT17xgcO8I8/8rRpPHYsHznCEyfyihX6Drj/8QcT8Xvv6W/GEmDSpNwPTp2Sfh9OlDI2NTWV5JpZvBiqz5+9UlYWP3jAJ07wtm28ZAn7+/MXX/CxY+zo+Px7Nm3iiRPZ25vHj+fAQA4M5LZtEXCX0K5duzp37qx+uHHjxtf3n1epVAEBASJ21KdPH12UVYyLW/zgwQTxcVbWvdOnjU6fNitVKe35IOAuccBdlH1Q90pNS0uztbUV/Sq1IWHDz9Ljyy+/JKLJkyezRlWZy5cvazns7Nmziejjjz8WD0WYVcIis6IUuIWFRXjeu5FIhbC0tJwzZ8706dO7d++erzCuhYVFhw4dJk2atGXLlkevLoTdqlUrItJpi+rSTLMcsNiG0fXRFlH/UW+dmVUq1bx581asWNG7d+8DBw7oZI5//uHq1ZmIy5fn/ftzP6kZC9OMGCIRnpmZW7ZkpZLbt+cLFxBwB+a8OyV12xJxwGuyXprmiTzfXr16SThmdnZ23759Gzb8sEEDxcWLEgyYlZUVFBQkjumI6jcVK1YMCAh4fZ9nEDIyWCZjExNpWrQlJSVVrFiRiESSQb6HEvL39yeiypUr66h0KeeVxPnmm290NH7pJArIqPdgBg8eTETTpk2TZHB1Vru6cqO4cahVq9aTJ08KO9qTJxwRwRs28D//8IgR/PHHvGePgQLus2YxEffurfeJi70+ffpoPh8kJw4uGxkZvf7gcgGJgHtKCru4cPfueg24P3nCxsZsZsYaSYbwZufPc+vW7OWlk8HHjRtHRGXLltWyyC3n1d/r0KFDSkrK1atXDx8+vG7durlz506aNGno0KHdu3fPadOGbW3/U+1I/WfZMm7c+PlYmzfzhAns7c0LFvC+fbxvH/fsiYC7lubOnas+jJWdnV2tWrXCBri2b99erlw5ImrQoMFFSa6tmZlZpVJkZ0fn5Dy5ebP31attnj5dw8yJiZtEJ9VSCwF3KQPu0dHR4uYtMDBQfGbEiBHiqbxjx44wLUhY6Kb0EO8WDg4O4ryMuBfSprWpIKJOGzduZObLly+Le/Uc6bp/qFSqzz//nIgqVKggoudKpXLIkCEymUwzk/2laeyvJ47losCRLiQlJRGRlZWVeCjKIAQH67ahkJOTE5W8AsRJSTxwINvY8O3bHBzMbm48eDC7ueXG3xs2fP6dmh+XYi1bMjNHRvK77yLgDsx55a2WLFnCzElJSVZWVjKZTNe9KAWRMSr5LmBWVtbAgVmid5w2rVgyMjLmzZtXrVo18Tbq5OQ0Y8YM0RqaiOzt7ZcsWaKHcwDF2pUrTMT16kk2oDi63qxZM9HuKN9DSRw4cMDIyEgulxctpbSAzpw5Q0Tly5eXtvFmKadZQCYuLs7MzMzIyEjC5s/5stozMzNFboqnp+erztpnZGRcu/Zo505euJDHj+f+/dnJicuWfR5uWr6cR4zghw+5ZUvesEHvAXeViuvXZyLetUu/E5cEojfSe//N3N62bdvGjRtfU6WhgNStuZYvX67lUIIIuDPz33+zTKbXgDszd+rERLxhg14nLe7EG2iDBjoZXKlUfvDBB+Ji5v79+wX5EZVK9ejRo/Pnz+/atWvlypUzZszw9fX18vJycXEhIs0+cPlk1q3LRGxszNWqsYsLe3ryiBE8fTovXMjXr3Pr1nz7du4co0ZxSAhKymhvxowZ6leh/fv3N2/eXP2lv//+uwgX+Tdv3mzWrBkRWVtbb9D6X3J29sNHjwIuXKh97Vo79WeuXm2bknLk9T9YGiDgLlnAXalUirvcnj17iqs0UcfZ3Nz8/PnzUq0ZCk6pVIr7anEZvXv3biJq1KiRNmM+fvzYyMjIzMxMnED/6aefiGj48OHSrDiPQqEYOHBgQECA+jPiFK2Njc2ECRM2bdpUtNOOa9euFXcR0q0Ucl26dImIGuaFgDt16kRE+9U52rohqka85kxDcaVS8Y0bfOcOu7qyODb+5Ak3bsxpaQi4v0gE3Jl51KiXBNwVCsnOlCPgXixERUXJZDJLS8vExERmzszMXLVq1YQJE/Qwtbragy5i1llZ3KsXFznmLrLaRS8KEc8NCQlRB9TCwsJElE0ktwYFBaHX/avs2MFE/M47kg2YlZVVt25dIhLda/I91N6DBw/Ee6VUXXxeQzQS//PPP3U9USmRr4CMuOR+//33pZ0lX1b7vXv3xDGLWbNmJSQkREZGhoSEBAQE+Pj4eHh4ODg4yOXypk1HvJjWWbYsOzlx//68ahWPGMHMPG8eu7vrPeC+cycTsYMD5zWyhoJ78uSJsbGxmZmZZnnYNm3aFDnVSe3AgQNmZmZEpHlzp6XQUFYHLfz99d0Zd84cJuLBg/U6aXGXmMhEXKZM7sO9e3nqVD56VLLxMzIy2rdvT0RNmjRRXwTGxMRERkaGhoYGBwcHBASIkLq7u7uDg4OJicmrQuoiyc/S0rJevXrt27f38vLy9fWdMWPGypUrd+3alXbxIj969MobjBMnuG1bnjyZBw/mjz9mpRIBd+2NHDnyxx9/FB+LVu3aN7xJT08Xp2CJyMfHp0hX78qkpF23bvU9fdpYVGm/dKlhZmaUSqVg5tu3hyQn79ZykSUAAu6SBdxFA8MqVaqIwkn3798XNUxElhkYxOjRo4nIz8+PmXNycsRNl6iyXTRBQUFE1DvvnKarqysRhYaGSrNcDfkyaySpFH/nzh0iqlixorQtMoCZ9+7dS0Rdu3YVD+vVq0dE165d092MmZmZMpnM2Ni4xAaG1qxhzWPjH3zAkZFsb88rVuT+yWuJXMpt2pT7QWIib9rEf/3F0dG5n3nwgDt14l9+kWYiBNyLhV27dlWoUKFLly76n3ro0KFENGXKFB2Nn5nJPXsyEVevzrduFfSn0tJ40aJUO7vcrHYXF5dt27a9+CaoUqlCQ0NbtGghvq1x48aaEXlQW7CAiXjkSCnHXLNmDRF55R2z/+uvv0RsS/tKytnZ2SL64OHhoYf3SvHC2Lp1a11PVEqIw4KigIxCoRA9byV/R1Bntc+bN098Zvv27TKZTN2xJh8TE5NWrXp2785ffMEBAbxhA0dEsGYFmsjI3IC7QsHOznoPuIudSane+Eufjh07EpFmvueMGTPeeecd0UtATV3Mc+vWra+vmMzMp06dEmUnx4wZo4s1d+vGcjkXLKdZMnfuMBHb2LAOmmKUZBYWTMSin9rXX0v/j/Xp06eNGjUS9/vly5d/VTxdzdbWtmnTpu+8887QoUMnTZo0d+7ctWvXHj582NzcnIiK3uEmK4vPn39+QxIby+o9qrg4zsiQ4FctZc6fP1+jRg31lczmzZtPnTolychBQUGmpqZE1LFjx4Kn8WVnP3r0KODiRQcRZz992jSvSrsqMXHrzZvv3bjxzoMH45mVaWkR9+6NUipL7+E/BNylCbifPHnSxMRELpeLC8GcnBwRm+jfv7+EC4bCOnz4MBHVqVNH3DaLCj/+/v5FHvC9994johUrVjBzdHS0uCLXQ+FXqSrFi/y+63o+dlgK/PHHH0Q0dOhQ8dDCwkKry5QCiIqKIqKaNWvqbgoD+/NP1iwANXgwHz/ONWrwpk25fxBwf8HcuUzEXbrkZrbt3MkyGZuasiRlhxBwLxauXLliampqbm5+5swZfc6blJQkmkbeKngsvPDS0rhLFybiGjXe3Fk5LY0DA3M7fLq6/q9FixZvjKErlcqQkBCxY0p5ifBS/gLF3/jxTMSzZkk5plKp3LNnj/qvRqlUVqlSRWRImJubOzg4eHh4+Pj4BAQEhISEREZGFrxmy9ixY4moRo0a8XpJ/szMzBTLLmml3gwhXwGZrVu3ElG9evV0sQ12584ddT1cZlYqlba2ttbW1jY2Ni4uLl5eXn5+fkFBQWFhYVFRUW+sIZmQ8Pw99+ZNPnuWv/+eC18Tvkju3mUjIzYz47g4vcxXAomqVupWumpKpfLixYvLli0bNmxYo0aN8lXbqFu37scff7xw4cIXu0TcuHGjcuXKRPTxxx/raBPXy4uJeP58XYz9Oi1aMBHv2aPveYu1OnWYiEX9j9mzmYjHj9d2zO3bt4dr5IwHBwcbGRlZWloSkampqZ2dnaOjo4eHh7e3t5+fX2BgYEhISHh4eFRU1Gu6Tzs4OBAR2oC/VVq3br1jxw5djBweHm5nZ0dE9vb2r0+cV6lU+/btW73a9/RpExFqv3ix7qNHATk5sS98Z26+/LVr7SIj6cmTP3Sx8mIBAXcJAu6JiYki7ULdlGzq1KlEVL169SJ03QEJKZVKEWIWe4AiDblhUStRpKSkmJubGxkZxcXFMfOCBQuIaMCAAVKu+GUkrBT//vvvE84764A44CJeAZ48eUJENjY2Op3xyJEjROTm5qbTWQzp4kXOOzHA2dns6MhJSSgp83pxcWxnx0Ss7tQwbhwTcd26EjS2QsC9uBBdQGrVqqWfIKMg3hDfkbDUyCukpeWWjq1Zk191vZaayr/8wpUr55Z6aN2a9+xJLfgU2dn/b+/O46Ku9j+Of2bY3Rdc0tzQskjN3BXcB5fE5bqb4s1Ku/UrWg21FCsXuum9VLbQoqJmV0S9gpoB7qJmuGuZIoa74o7IPuf3x7GJ0Lwq3xkQXs/HfdwHfmfmfA86zfL+nvP5ZIWFhdlKvbdr127dunVGzL046NdPiSi7XoYICgoSkVKlSv3VEmOz2Vy7du2OHTuOGjXqvffeW7BgQXx8/M3Lsv773/+aTCYXF5d4A3fs/y9jx44VO1QaLIF0ARnbuqVu3bqJyL///W8HnDoqKkpHqLlGVGV58UUlop580iElXoKClIh6+mn7n6nY2rdvn4iUKVPGx8cnKCgoKirqlt/lr1y5EhsbGxwc7O/vn3cdcb447Pjx4zpe6N27t4HtvvJZsECJqN/zDMeZN0/NnasuX1ZKqStXVGbmHx81s7Lop3pr7dopkRslVebPVyLqpos7d+fKlSvVq1c3mUwbN25USmVmZuoV7kFBQecKcOFNf+Yv+FI/GCg6Onq13S5wnTt3ThfHdnZ2vmXlq4sXL4aFheleTRUqeOzaVfnQIcvFixG6esyfWZOT/2/3bs/s7BSl1Pnz4QkJ8ssvre0086KPwN2AwH3YsGEi0rJlS32dcMOGDbo709q1a42dMO5BYGCgiIwdO1YplZ2d7enp6ezsfG/7GBYtWqS32+g/WiwWEZk/f76Bs72lqVOnGvX97cMPPxSR559/vuBDIa/nn39eRGbNmqWU2rNnj4h4e3vb9Yy609cgO7W6LyImTFB/+5v64APVtav6+mulaJr6v61bp8xm5ex8oyhkRoZ64gklon7ffXHvCNzvF1lZWfofq2vXrg4rOaV7OC9evNgB57p6VbVpo0TUtGnK1j3x+HF1+bK6dk2Fht647CSimjZVERH32MYgLS0tNDRUr0wUEYvFovvBlHBNmigRZb+/iffff19EXFxcoqOjlVJnz57dtm3bwoULp06d+uyzz3bp0qVu3brOzs63DOI9PDwee+wxf3//wMDACRMmlC1bVkQ++eQTe831Vo4cOWI2mz08PC5cuODI8xYz+QrIJCYmms3mUqVKOeZvtWfPniIyc+ZMQ0Y7flxVqaJE1O/Vd+0mI+PGZUZbrWTcpYyMDB055V3AbjabGzVqNHr06Dlz5vzyyy83r1LPycnZvXv3Z599FhAQkPc6d0pKyqOPPqoXx9i1l/Lly8rVVTk7O2ojxe969lQBATd+btJErV2rbN8v4+PVqFEOncz9on//Py5ax8be2JZaEK+//rpeGaCfmf/85z9FpEGDBnfbZiAf3X9VN6xGCZGdna1XPIjI8OHD9auW1Wpdu3btkCFDdNkZEalbt+6UKVMuXrxd8ZnDh/0TEuTMmRlKqdzc67t3V0pIkLS0HQ76TYoYAvc/Andvb+/SpUsnJyff1SBffvmlvhKuN91cvHixdu3aUrC6JTCQ7rlUq1Yt/T60cePGe952oK+s/Otf/1JKXbp0ydXV1cXF5eLFi0ZO91YMrBS/efNmEcnb2BqG8Pf3F5Fly5YppVatWuWAlZ762smrr75q17MUvmPH1MaNf2yOztst8R46J5YMb711o+aGfnE6eFCVLq1E1HffFajQZt7AfcGCBaVLl7b3pTsC93t26tQpvTlUtzCxt23btomIp6dnAb/g3bnLl9WcOSo0VFWvfuN5PnasmjRJeXreiNrbtTNmn3tqampISIiu3msymfz9/ffs2WPAuPetUaNUixbKTrGn3ifh5OT03Xff3eZuWVlZR44c2bRpU75ulvmKPFSuXNlisdhlordlbFxbMuUrIKMTpdGjRzvg1DrcN/aSSVyccnJSZrP64QejhryFZQsX/rdjx9Qnn7TjOYq1nJycQYMGiUiNGjW2bdsWFRUVHBxssVh0MWubcuXKWSyW4ODgqKio23wHTEtLa9u2rf7O5YCvin5+SkTNm2fv8/xJz56qRw+1Zo1SBO537P/+T4ko3TBi/34loh555N5H+/nnn3VNY72V/8yZM/rjyqpVqwo4z5dffllEQkNDCzgO7jsLFy7U+wsbNWo0fvz4hx9+WL/0OTs79+3bd9WqVXey9+vy5WhdbUYpq1Lq2LFXExIkOdnQ/j/3DwL3PwL3e3Do0CHdBWXBggX6SN++fUXE19e32HYyvN9YrVZ9CWTbtm0FGScrK6tChQoicuTIEaXUvHnz9JI3g6b5l3Sl+FKlShmyOCI9Pd3V1dVsNl9hp5+h9OpOXbZVX4QbZedPmq+++qqIfEhfLNwkO/vG+t+BA28cmT1bder0a9WqdQvSvyFv4G4Px44de/XVV/MWlCRwL4j4+HhXV1eTyZS3+ZudPPvss7adZI4UGqoGDrzRwHPsWPXFF8psVu3aKcMbmZ8/fz4oKEg35zCbzYMGDbJrqfqiacQI9e23N34ePNj48efOnWs2m00mU95q2nflypUru3fvXrp06cyZM3XU1atXL9utmZmZjmlgY2xBkpKpe/fukqeAzNGjR4OCgnbv3u2AU7/55ptGbSrNKzhYiaiqVf9oImi4Nm3aiMjs2SW3Tm5BWK1WXY2tfPnyu3btyntTdnZ2QkJCaGhoQEBAvXr18obvTk5O3t7eAQEBYWFh+/fvty1+z8zM1M/h+vXr33kTwoL49FMlouxf5fRPevZUO3eqli1VRsaNwL1tWzVjhpoxQ738MoH7rU2ZokSULkJ84YKqWjW3WbO7KHmXT48ePUTkH7/3MQ8ICBCRvn37Fnyeenu9YxZtoKjZu3fvQw895OTkpNcx1KhRIygo6DfbltI7krt3b52EBLl6dY1SKj39l4QE086dZXJy7NjfrsgicL/3wD0jI0OnbLZkTa/NqVChwl0+I2FfOpp84403CjLI6tWrReTxxx/Xf9y6dWtAQMCcOXMKPr3bmzVrlhhaKb5Vq1YiEhcXZ9SAUErpPmmnTp1SSgUHB4vIxIkT7XpGvQxn4cKFdj0L7lNHjqhy5ZSI+uabG0eeeuopEWnRosVtWiTdnv0C97S0tMmTJ+v+TnmvIRG4F1BoaKjegbdv3z77nSU1NVXX7vjZ4ZtOQkPVnDmqVy+1dasaO1atWqX27rXj6U6cOPH888+7uLiIiKurq/0qaRZNLVqotm1vlCxo1OhPN2VlqY4dVWiouucW8kuWLNGFYmbMmFHQiSqllEpJSdFNd3QJwV9//bV69eoPPfSQnZoW5pWbm6tTuZL2DDFKbm7uyJEj3d3dHf9l6vr165UrVxY7tL3NzVXduysR1aaNutc34dvZtWuX/gZq19Ilxdi4ceNExMPD439+yElOTv7uu+8CAwNbtmyp3w5sqlat2rdv32nTpvn5+emUKikpyTHzP3lSmUyqVCnlyH//nj3V6dPqX/9SU6feCNx791Zr16q1a9UnnxC439q33/7UsuW7r74aqpSyWq16/8S9/We7dOlSEalYsaIuZLRlyxaTyeTm5mZIp9PZs2eL/UtHosi6fPlyZGSk3spzb8uIT516LyFBjhy5sUDj1187Jmw3X/0l3NBp3h9uXQaxhDh16pSIHD58OD4+vm3btmaz+a4ePnbs2N27dzdo0OCjjz4SkQMHDrz11lsi8sUXX+hy8CgiBg0aFBoaOm/evIceeijfjuO0tLSsrKy8R3Jzc69evZpvhGvXrq1bt05E9A4GEWnTpo1eS2Jvel9tv379jBqwbdu227dv37p1qw6zUHCZmZnnz593dnbW1X5zc3PLlClja7hnJydOnBCRBx980K5nwX3Ky0s++0xGjJCwsMs+PmcbNmz42Wefbd26NSEhYdKkSSEhIXc1mtVqjY+PP3r0qIgcPnzY19fXwKlGR0cHBgb+9ttvIuLv7z9gwAB9PDMz8+TJkwaeqAR65ZVXdu/ePXfu3P79+2/fvl1v0jLcwoULU1NTO3XqpIvVOt5HH8nIkaLfkBs3tuOJatas+cUXX4wfP37atGlRUVHt2rWz48mKpKAgeest+eab/MeXLpUNG2TDBgkJkddfl3/8Q8qWvYthY2JinnrqqZycnKlTp77xxhuGTNXT03PAgAHffvvt119/PWXKlAYNGnh4eBw+fDg2Nla337Qfs9k8ZsyY8ePHf/7553qVK+6K2Ww+f/58RkbG66+/HhkZme9zu10tWrTowoULrVu3btGihbEjm82ycKE0by7btsmECTJjhrHDi16d8+yzz+pL17grs2bNCgkJcXFxiYyM/J+fcGrXrl27du2hQ4eKSHZ29t69ezdv3hwfH79x48azZ88uX758+fLlDz74YMWKFVevXp1vRbz91KghLVvK9u2yZo307u2Yc97w8svSsaOcP39jGp07i4i4ucnOnQ6dxv2iQoVzP/0UXKlSd5FXTCZTtWrVkpOTz549e7dPlfT0dP12OWXKFE9PT6vV+sorryil3nrrrYceeqjg86xevbqInD59uuBD4X5Uvnz5AQMG2L6U3QNPz+dOn37/8uVl2dmnXVweqH0t0G1wkqnSR7JjpIHzvD8UduJfaCIiIsqXL29rLO7p6RkQEBAVFZWVlXUnD1+1apW+irhjxw6lVHp6epMmTSTPph4UHVar1dfXVxe0LYjKlSv36dPHAcujbOxRKf4///mPiDxJkUfjJCUliUitWrXyHrT380QXStIFjoBbCgr60dnZvWnTprqy9vbt23Wpx5iYmDt5eE5OzqZNmwIDA21XjypWrGg2mwMCAs6cOVPw6e3cubN9+/Z65CeeeGLDhg22m6KiourXry8ir7322qVLlwp+rhIrPT29efPmIuLv72+nAhc6mfrWVm3EgfQKd6VUcLCqVUsVuGbpXSiBZdlatFA5OapPH7Vpk2rUSKWnq/T0Gzfl5qrISNW8+Y0C+hUrqkmTVEpK+m3Hu2HNmjV6iZ/hLUni4+NFpEqVKvoFcNq0aSLSr18/Y89yS/nW1+Nu/fbbb5UqVRKHl8LXPZPmzp1rp/G3bFGurtZOnT5YunSpgcNeunSpdOnSJpPJMUWTipmjERFOZrPZbC74u1hiYuL8+fNffPHFlStX7rXrfqtbmT7d2rjxlQkTNjrgXMeOqcTEGyvclVKbNyuTiRrud2Tnzp2SZ8d869atRSQ+Pv5ux5k8ebKINGrUKDs7WykVFhYmIg8++OC1a/deoCYvvWmmcePGhoyGkinxcP8Tc5plRcxSSqnMzBsNxI3eQFb0lcTA/erVqyNGjNBf8nv16hUYGJj3omKVKlVGjx69evXq2yfv33zzjbu7u+6fqZQaM2aMiHh7e7OVr8h65513xtzk1VdfDfqz8ePHh9xk1qxZtvqt43XdNYeYP3++GF0pPjk5WQdnVBc1ysaNG0Wkbdu2Djtjbm6urs6cnn5HiQZKpmvXrjVs2DBvkqVrMtasWfM2z5zMzMyVK1c+88wzeme91qBBg9dee23UqFF6A3X58uVnzpx5h9enb3b+/PnAwEAnJyd9ITM0NNS2XXHfvn0Wi0WftFGjRuvWrbu3U8Dmt99+8/T0FPv0ct+zZ4/+RyyU1yJb4J6RoR5+2KGBewmkA/ejR5Wvr/L2VjNnqqpVVXCwyntFbNMm5e+vRFSVKrmVKz8YGBh4/Pjx24y5bds2XY/oxRdftMecmzVrJr/XXrOF4HYqVKI39dsMHz5cRN5++217nKskiI6ONplMzs7OGzc6IkBUvwdh9n41Cwtbpt9DDx8+bNSY//rXv0Ske/fuRg1YgkRFKWfnRF/fTz7+uLCnUlAHDhzQT2CdwNpPSop69FFVvbrasEHZSk0kJ6v09Bs1x5RSGRl//Iy8dH2FqlWr6j/qLeyRkZF3NcixY8d0W8v169crpS5evKhLm0ZERBg1zzNnzoiIp6enUQOiBLLG/qBElJeX0qHTm28qEfXcc4U9L0crcYH7Tz/9pDfaeHh45O28vH///uDgYG9vb1u+UKFChUGDBoWHh//VpcLDhw/rRaxLliwREXd3d8f080FhiY2NdXNzE+NqjP5PeiPPJ598Yuywug7JL7/8YuywJda2bdvatGlTpUoVh70C6C1+fAzC/5SQkKCvzSxfvlwplZubO2LECP0BPZ/09PSoqKiAgIDy5cvb3ge9vLwCAwM3bdpk27Fx6NAh3T9ARB566KG7/XCflZUVGhqqT+Hi4hIYGHj58mV908WLFwMDA3Ud54oVK4aGhtr7S2PJERcXp3sfLVmy5K4emJGRsX///oiIiJCQkDFjxvj4+PTo0SPvHV544QV7rE2+4+mpL79U33yjzp9XaWnqXi8A4Y7owF0pNWWK8vS8EayLqEqVVHDwn7KVzZvViy/G6kogbm5uY8aMuWWP2T179uhVzAEBAXZaAaAX/bVv317/0X4h+JEjRypVqjRu3DjbtcOAgIBq1arl3biDu6ULdVavXl03yLG3UaNGichbb71l7xPp99DGjRsbskjLarXqK+v6XR53YcsWVbq0ElF2uBpdKPQzwa4vO2lpql07JaIaN1bG7b4uQXJycpycnMxms16zoj9EzZo1664G0fnAsGHD9B9feuklEfH19TVwd3Vubq6zs7PJZLrnzk+AslpV/fpKRP3wg1JKJSYqk0mVLq1K2CbREhS4W63W0NBQV1dXEWnWrNlfbbs7cuRIaGio7g6nlSpVyt/fPzw8/OrVW/TVPX78uP7C8Omnn9r5N0DhW7hwodlsNplM39h6EdpNRkZG2bJlTSbTsWPHjB154MCBIjJ79mxjhy3J/P399WW8zz77zPDBL1y4MH369P/85z+2Iz/99JOING3a1PBzofj58MMP9eatkydP3nzr9evXdc5eNk/RZW9v7+Dg4AMHDvzVmLGxsY0aNdJ3tlgsd9iTMzY21nZV22Kx2MbPzs4OCwvTy3OcnZ3HjBlz7ty5e/tl8VemT58uImXLlv2r1qZZWVlHjhyJjY0NDQ0dM2aMxWLx8vK6uXpy5cqVbQ+5fv26rgu/f/9+R/0e+elP8n/9VIVhli5V+rt8RoaaN0+pPOvZRVTp0iowUOVdzr579+4hQ4bojSxOTk5PPfXU9Tw9VQ8dOqRLxPbr189+l9bS0tJ06cg9e/YopTZv3ix5iswYxVa4yVZ10PGrs4ul7OzsDh06iEjnzp3vrWnbnbt48WKpUqVMJpMh/QZvLzU1VXe8ePbZZws4VHZ2dnh4uIjUrl3b3n9Fxc3evapiRSWiXnihsKdiGH2N6vXXX7fT+JmZN3r/1q9/o5gM7oF+79Ofyd999927vQy8Zs0aHU8lJycrpfbv3+/s7Ozk5KTf5gyki/Hefpsa8D9MnapEVP/+N/7YpYsSUXZIS4qykhK4nz17tmfPniJiMpkCAwPv5KP20aNHdfJu+8Lp7u6uk3fbirzc3NxOnTqJSK9evRxZ2huF6NNPP9XfHu92qeDdioqKEpGWLVsaPvLMmTNFZPTo0YaPXGKlp6cHBgbqF4p+/fpduHDBkGETExMDAwP1tsGGDRva1gDqVrq9evUy5Cwo3qxWq74g1LFjR9sX8kuXLkVERAQEBOhnV96c/eDBg3cybFZWVlhYmK5VolPyfBUV8vrll19sjQofffTR1atX225as2ZN4987XXbp0sXxZU9LCKvVOnjwYP1Kkq/++KJFi+rVq6eD0Xw8PDwef/zxgQMHTpgwYc6cOVu2bMn7rzx79mwRadeuncN/mxuuX1dOTsrFRbEAqxBt2qR69lQmkxJRbm7q+edVUtIfG0OPHDkSGBjo7u7eunVr28Hk5OQ6deqIiJ+fn7HZ9830W7OtwVLeIjNGGT16tIg0aNBAfzsorPrjxdKZM2d06DNx4kS7nkhfmXZYf6N9+/bp7qZ3vnzn4sWLCQkJtv1G+pqo3hP24IMPTp061a4TLm4SE1X16kpEDR2qilGBzS1btohI3bp17TF4bq4aPFiJqKpVFc0CCqJp06YikpCQoJRKTEzcuHHj6Tu+fJGdna0/M0+bNk0f0UlUYGCg4fPUb5fbt283fGSUIKdPKxcX5eys9KqvRYuUiGrSpLCn5VAlInCPjY3VH9eqVKmyYsWKu334sWPHQkNDLRaL/lijw1YfH5/Q0FDdHrpmzZrnKVRWkkycOFEnEXbdtffss8+KyJQpUwwfWX8ga9SokeEjl3BLlizRi+lq1apVwOfGpk2bBg0aZIvAfHx8oqKibFf1PvnkExF53tacCLits2fP2jKL8PBwf39/vdlLRMxms4+PT0hIyC1rPvxPFy5csFVjr1SpUt5q7Hlt2rTJZDJVrFgxJCTEtjv18OHDtuo0DRo0MLD0JG4pNTX1scce0xcF8y4RWLZsmb5q4uXlZbFYxowZExISEhUVdeTIkdsX+tDNvuboMuqFYccOJaJ4KysK9uxRAQHKyUmVLq08PR/x9/ffsWOH7dZjx47ZrqWdOXNG1z1o166dUe3dbuOXX34xmUxlypTRaXi+IjMF9+233+oVOfr3vXm1Owpo3bp1zs7OZrN5ld26NFit1ocfflhE7uFL4j3L98yxuX79+v79+6Ojoz/66KNXX321T58+jRs3LlOmzM0XRPU7eK1ataKjo+194arQXb169e23316xYoUB37hPnlT16ikRZbGo4vX3lpubqz/sGb7YWSkVGKhEVPnyatcuw8cuWfQa0Ojo6Ht4rG7YUL9+fd1q4rvvvhORypUr2yOJ6tWrl1CrCgU3cKASUTrRysxUHTqof/9blaQtWcU8cM/KygoODjabzXrp3C031N+5kydPzpo1q0uXLrYUzM3NzcnJ6Zb1cFG8vfLKKyJSrly5nTt32mP83NxcvePMHlv1MzIy3NzczGazba8GjJKcnOzr66svywUHB9/tDt/MzMyIiAgdY+lXmICAgLz1Oq5evRoWFvbAAw9Ur169cePGXOrDHVq9erXJZNJdKHS6arFYPv/88zNnzhR88J9//rl79+63XMBu8+WXX9qerteuXQsODnZ3dxeR0qVLBwcH0/7XMQ4dOqSLwISEhNgOXrly5ddff719C9xLly7lXVzp4+NTtmzZihUrli9fvhB7xYeHKxE1ZEhhnR/5HTyoxo/fpVsrm0ymvn37/vjjj3nvkJKSoutKtWrV6pZ1Gu2hS5cu8ns7nHxFZgro5nXKzz33XN7V7jCEbvddsWLFpKQke4z//fffi0idOnUcXJVF742oWbPm2LFjhw8f3q5dO/3J/5YqVqzYrFmzgQMHjh079vPPP1+9evWvv/5acsorx8TE2P4qHnjggUGDBoWGhiYkJNx1+4esLNWkiRJRbdsq+1/wc7znn39eRN59911jh337bSWiPDwUVbIK7plnnhGR4cOH79q1665ec6xWq76gq8P6tLQ0vVfsq6++ssc89dtZWFiYPQZHCRIbq0TUww8rpVROjjp2rKTtSy3OgXtSUlKbNm10shAcHGxgR6aUlJSvvvqqR48eU6dOXbRokVHD4j6Sm5s7ZMgQvW3ir/oB3OE4+/bt+/LLL0eNGpW3VvuGDRv0dzYjJnsLb7/99r///W++ENpDdnZ2cHCwvizXpk2bO/x+ePny5dDQUN3PVkSqVq0aHByct3rD0aNHX3/99XLlyuk76EogBV9Kj5KjevXqpUuX7tSp0+zZs+1xqSYqKsrLy0s/P/39/Y8cOXLzfaxWa3h4uM4UTCZTQEDAnW+khSGio6PNZvNtloump6fv3bt3yZIlISEhzzzzjK+vb9WqVW8ZALVu3frs2bMOnn9eb72lRNR77xXiFHALp0+fDgoK0km0/L5DSyl15coVHRY4+GpxZGSkvhaol5zrIjMvFLhw882VuP9qzTIKyGq19uvXT1+nscdS7t69e+e7DOkYej+Eraia5uLiknezUUREREJCwsUS357y4MGDQUFBHTp0sL2waOXKlevXu7eaNEl9/726dOmOxlqwQDVtqgyq/VjUrFq1SkSeeOIJA8ecNWtWhw4vubnlOnAHSHG2du1aW5XF0qVL+/j4BAYGRkRE3MkHqoyMDFtJtAkTJohIs2bN7NR1/J133hGRyZMn22NwlCBWq/r0U5WSopYvV61bqxdeUD4+6uOPC3tajlNsA/fw8HC9/65u3brx8fGFPR0UQ1lZWT169BARLy+vU6dO3fkDr169umnTppCQEH9//8qVK9s+NeYtKvr666+LyFtvvWWHicMR1q5dW7NmTREpX7787S/LHT58ODAw0PYV4vHHHw8LC8vbXC4hISEgIMBW0srHxyciIiIpKUkvpTebzYGBgbdfnQrs3r1bRKpVq2bXFXyZmZmhoaG6/6qrq2tgYGDeRazbt29v27atfhq3bNlyy5Yt9psJbiM4OFhEKlWqdOTIkZMnT8bGxoaFhQUFBfn7+3t5ed2ymLubm5uXl5e/v39QUFBYWFhsbOxdvevZSa9eSkTZuZ0K7tHZs2fHjx9fvnx5/RRq1aqVDhYbNGjg4CdPdna2vpi9bt06lafITL5mBndLV8Rq3Lix3uRhW+1OR3p7uHjxYr169UTk5ZdfvoeH25pCf/nll+PGjcu7MDw5OdnJycnNza1QLh9euXJl48aNkyZNmjt37oYNG44fP26n7KzYyM7O3r9/f1hYWEBAgN4u07lp0xu9m0WUl5cKCFChoSoh4Y/i7CEhqmtX1bOnGjBA6RcfuzVqLnQZGRl6ac706dP3799f8KfT/PnzTSaTyWSKiGBxu2GWLl06YsSIBg0a5Pus1aBBgxEjRsyaNWvHjh23byeemJjo7u5uMpm2bt1qp0nqrnXUL4UxUlOVt7dKTVVKqZwc1bZtyekFUQwD96tXr44YMUK/bA0aNOjSHV7uBu5eWlpau3bt9Deu2yw/sVqtBw4c+Oabb5599llvb29d48imdu3aw4YN++ijj/IuhdYLRblWdF9LSUnRzSpFJCAg4JaFF8aPH6/bMpvN5l69esXFxdluys3NjYqK8vHx0SO4uroOGjQo7+eqvEvpW7dubaet1igedOcJx3xuPnny5JgxY/QLXY0aNcLCwo4dOxYQEKCf6jVr1gwPD6e6cSHKzc3VL023zNZdXFwaNmzYu3fvN95444svvli7du3x48cLe8q3VreuEik5n9jvS1evXg0NDdVlhWvUqFGnTp28m/kcZvLkySIyePBg/UddZGbWrFn3PKAupFu2bNlffvlF3Wq1Owy3a9cuDw8PEZk/f/5t7nab5qI2hw4dst1//Pjx+kOa/X8DGO/UqVMHVqxQb7yhfHyUu/sfybuIqlhR9e+vVq5UgwbdCN9XrFD9+xf2lO1u1qxZrVq10k/1smXL+vj4BAUFRUVFXbj7Rf3R0dG6RBgtoO3k8uXLsbGxwcHB/v7+utyZTalSpfTi9/Dw8N9++y3fA/WnuKefftp+c1uyZImI9O3b136nQAmyffufSkAGB6t58wpvNg5V3AL3n376SV8tLFu2LDWn4ADnz5/XKyzatGlzc/uvGTNm9OjRQ9fMtXF3d/fx8XnjjTeWLFlyy74CP/74o4hUq1aNdS73O6vVGhoaqgtne3t727rG2SxbtkwXaj9w4IDtoE4odGE+ESlfvnxgYOBfhRTr1q2zLaX/z3/+Y8dfBvcz/TIVExPjsDNu3brV9pVP92j18PCYNGlSIZb8hs2lS5dmzpxZvXr1ihUr+vj45K1dcL/U009NVSaTcnMrxksVi4+0tLSPPvro6NGjhXVh+NSpUy4uLs7OzidOnFBKLV68WPIUmblb27Ztc3V1NZlMkZGR+ohe7d6kSRNe3+zqs88+E5EyZcrk/ciklEpOTtbNRXW1vZuZzebatWt37Njx6aeffu+992ylzDIzM6tVqyYi9lslCsfJzlb796uwMBUQcKMtavv2KjBQ5a2EUr++KgHX++fMmTNkyJBatWrl+6+gcePGY8aMmTNnzsGDB//nq9/WrVv1f1ATJ050zLRLuJycnP3794eHh48ZM8bb21svUrF54IEH/P39Q0JCNm3atHLlSh122XW72JYtW0SkVatW9jsFSpDt29Xvix6UUio4WIWHF95sHKr4BO462NLf6ps3b5538QJgVydOnKhbt66I+Pv759v/5efnd/Pb5C3jjJMnT0ZFRQUFBfn4+Li6utaqVWv06NGO+g1gXzt27Hj44Yd14BgaGpr3ptzc3LxLTpKSkoKCgmxXaBo0aBAaGnrzhZx8UlJSdAVS+eul9CjJfv31VxGpUKGCgxusWa3WiIiIhx9+ePjw4f7+/mzCKGru61JUCQmHO3YM6d+fTe64IzoT170Es7Oz9YXqe4hZL1y4oC+Hv/nmm/qIbbX7wYMHDZ40bjJy5EgRadiwYd56ZadPn7bFUhUrVvT29s5XA/2vPhctWLBARJo2beqo6cOBjh1Te/ao555TeTaPqoceKlEXaU+dOmX7dqk71duUK1fOYrEEBwdHRUXdXA9g7969esE1FUUKy/nz51esWPHOO+907dpVl2q00dsTZ8yYYdcJHD16VERq1apl17OgpLh6VXl7K10y12pVvr6qxHxkKj6B++zZs0XEZDK98cYbJadpO4qIw4cP6zUyw4cPz7ss/fvvv4+IiLjlfvyMjIz4+PiZM2cOHDhQf/HL+z76zjvv3L52G+4v169f143aRKR///43FyC6ZaH2Oy+3bbVaw8LC9G5rb2/vPXv2GP0b4D42ZcoUsfPO09vIzc1lsw4Mpz/1DR8+vLAngvvD2rVr9eoHfZ1p2bJl99BGIjc3t3v37iLStm1b/V3j5tXusKtr16499thjIjJ06FDbQavVumTJkp07d95JHdFTp07Fx8cvWLDgvffe08X9v/rqKzvOGIXr44/VtGk3fj5xQrVoUaizKUzZ2dkJCQmhoaEBAQF6oVjeL57e3t4BAQFhYWH79+9PTEzUdcD69etn18Y/uEO2xe+BgYG60/KsWbPsvWYiPT3dZDIRuMMwixYpX181frzy81MffFDYs3Eck1JKioWcnJyhQ4eOHj1afxQGHCwhIaFLly6pqakvvfTSJ598csv7nD59OiEhIT4+fvPmzTt27MjIyLDdVK5cuVatWvn4+DRv3tzX1zdfHTcUD5GRkaNHj758+XLt2rUXLlzo4+OTm5u7atWq6dOnb926VURcXV2HDBny5ptvNmnS5B7GP3DgwNChQ/fv3+/u7h4SEvLKK68Y/RvgvtSsWbNdu3ZFR0fbmgoA97s333xz5syZ06ZN0yWYgf+pcePG+/fvj4yMHDBgwL2N8O67706ePLlq1aq7du2qUaPGxYsXmzVrlpyc/Oabb3744YfGzhZ/5dChQy1btrx69ernn3/+j3/846/ulpGRcerUqaQ/O3ToUGpqqu0+zs7Ob7zxxsSJE/+qFg3ue9evS8+eYrFIzZoyd65MnCi/bz4u4ZKTk7ds2bJt27atW7fu3r07OzvbdlOZMmWuXbvm5+e3YsUKXTwARUpmZqauVmpvOTk5+RpgAAVy/bocOSK1asmf6y0Xb8UncAcK3bp165588smMjAxbBJCTk/Prr7/aEvaff/457/29vLxsCfsTTzyRr5kqiqXExMRhw4YlJCS4uLj4+fnt3bv3xIkTIlKlSpUXXnjhxRdf1Fsl7ll6evq4ceM+/vhjEfnb3/729ddfV6pUyZip4/509OhRLy+vsmXLnjt3Lt+GYuD+1bNnz9WrVy9fvrxPnz6FPRfcH2bNmvXyyy937do1Li7u3kbYtWvX4MGDP/vsMz8/P6vV+uSTT/7www9t27bdsGGDbi0Ix1i0aNHQoUPd3Nw2b978+OOPHz9+PCkp6ejRo7pPgP4hJSXllo/19PSsV6+el5dXvXr16tWr9/e//90x0RUKTXa2bNokly9L27bywAOFPZuiKDs7e+/evZs3b46Pj9+wYUPTpk3r1q07c+bMMmXKFPbUAOD+RuAOGCkyMnLo0KFWq9XPz+/atWs7d+7Mu4y9QoUKbdq0adu2bZs2bdq0aVOuXLlCnCoKS05OzpQpU95///0GDRocOnTooYce+r//+7/Ro0eXKlXKqFPkXUr/7bff+vr6GjUy7jthe8K+nvP1o6mPzvtmXmHPBTBMrVq1Tpw4kZiYWL9+/cKeC+4PqampDz744NWrV/fv36/LktyD7Oxsna0HBwe/9957VatW3blzZ77CgHCAl1566dNPPy1fvnxaWlpOTs7Nd3B3d7el6nl/yFcNGUA+V69e5SsqABiCwB0wWHh4+BtvvJGWlqajdpax45Y2b97s5uZ26dIlPz+/fJ3oDZGcnPzUU09t2bLF2dn57bffnjhxou6xg5Km7a9tt6VtW+K1pH+F/oU9F8AYV69erVChgoeHR2pqKu+quHP/+Mc/5s6da7Vaa9Wq5fVnDRs2vPPlnGvWrOnevbtSavXq1X5UqCgMmZmZEydO3LRp07Zt2ypWrOh1k7p16/LiAAAAChGBO2C8S5cuLV26tGbNmm3atKlQkmpUoUixLaW3Wq2dO3eeP38+q/BKmpPZJ2vtq+Vh9jjX5FxpMzVqUUxs3bq1Xbt2zZs3T0hIKOy54H5y5syZyMjIl19++eabTCZTjRo19FLovP9fo0aNfBfFjx8/3qxZs/Pnz0+dOnXChAmOmjtuISUlpXz58pSZBgAARRCBOwAUZzExMSNHjjx79myVKlXCw8N79uxZ2DOC43yS8kng8cCBFQYu9lpc2HMBDPPVV1+NGTNm5MiR4eHhhT0X3H8uXLhgK/Zt+/9jx47lbRto4+7uXrduXVsEX7t27Q8++CAhIeHJJ5+Mjo5mDTUAAABuib7DAFCcdevWbd++fU8//fSqVasuXLhQ2NOBQy25tEREBlQcUNgTAYx04MABEbnnMtwo4SpXrly5cuUWLVrkO37p0qWkmxw9evTgwYMHDx603a169ep16tSZP38+aTsAAAD+CivcAaD4U0qtWrWqV69ehT0ROM7Z7LM199d0FudzTc6Vc6L/FYqPpUuXrly5ctSoUXSEhr2lpaXlWws/atSoRo0aPfzww4U9NQAAABRdBO4AABRDYefD/nHsH33K91lef3lhzwUAAAAAgJKCvZAAABRDSy5TTwYAAAAAAEdjhTsAAMXNpdxL1fdWV6LOND5TyblSYU8HAAAAAICSgqapAAAUN24mt/C64YmZides1w6lHWpTuk1hzwgAAAAAgBKBwB0AgOIjzZr2wrEXTmefVqI6lun4c8bPG69tJHAHAAAAAMAxCNwBACg+Zpyd4eXmNa/uPBFJzExMzEws7BkBAAAAAFCC0DQVAIDiY/219QGVAvTPDdwaFO5kAAAAAAAoaQjcAQAoPjKsGe5m98KeBQAAAAAAJRSBOwAAxUdjj8bx1+ILexYAAAAAAJRQ1HAHAKD4GF99/ICkAQczDpZ1Knvder15qeaFPSMAAAAAAEoQk1KqsOcAAAAMc916/afrP+WonFalWmWr7CvWK/Vc6xX2pAAAAAAAKBEI3AEAAAAAAAAAMAA13AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMIBzYU+gOPr6a4mIEBcXqVRJ/vUvqVKlsCcEAAAAAAAAALA7VrgbbdMmWbJEVqyQlSvlb3+TF14o7AkBAAAAAAAAAByBwN1o0dHy3HPi6ioi0r+/7N4tVmthzwkAAAAAAAAAYHcE7kZLTZUyZf74o6urZGUV3mwAAAAAAAAAAA5C4G40b2/ZufPGz+fPi7OzuLsX6oQAAAAAAAAAAI5A01SjPfOM+PmJu7vUri1hYTJ5cmFPCAAAAAAAAADgCCalVGHPobjIyZEBA6RdO3npJYmLk0uXxNdXGjQo7GkBAAAAAAAAAByBkjLG+ekniYqSOXOkdGnp21dSUiQmRi5eLOxpAQAAAAAAAAAcgZIyxlmzRkSka1cRkdxcCQmRixelZ0+pVKlw5wUAAAAAAAAAcABWuBsnb+C+c6dcvCj160u9eoU7KQAAAAAAAACAYxC4G+T6ddm6VZycpFMnkT+H7wAAAAAAAACAEoDA3SCbN0tmpjzxxI0CMgTuAAAAAAAAAFDCELgbRCfsFouISEaGxMeLySSdOxfupAAAAAAAAAAADlM8A3elVEpKikNPGRcn8vuS9i1bJD1dHn9cqlRx6BwAAAAAAAAAAIXHubAnYKSUlJT169fHxcWtWrWqevXqDzzwQGhoqJeXl73Pm3PhgvPeveLuLj4+ItSTAQAAAAAAAICS6L4P3NPT0zdt2hQbGxsTE7Nv3z6llD5++fLlhISE3bt3r1u3rn79+nadw/L16yeUK/dO374BHh4iBO4AAAAAAAAAUBLdr4F7UlJSXFxcXFzc6tWrU1NT9cFSpUq1a9fOYrFYLJaGDRv26dNn3bp1nTp1WrduXYMGDew3mbi4uEMXLx5v0EBErly50ufMmWc7dhzZvr39zggAAAAAAAAAKGrup8A9b8WYEydO2I57e3v37t3bYrG0b9/ezc3NdnzFihW9e/deu3Zt+/bt16xZ4+3tbaeJrVmzRkS6du0qIuvXr9+YnKxq1x5ZpoydTgcAAAAAAAAAKIKKeuCenp4eHx+vF7Pv3LnTVjGmWrVqHTp0sFgs/v7+NWrUyPuQ7OxsFxcXESlVqlR0dLTO3Lt06bJ27Vp7ZO7Hjh07fPhw+fLlmzdvLn8O3wEAAAAAAAAAJUfRDdx/+OGHmTNnbt68OT09XR8pXbp0x44du3Xr1q1bt0cffTTvnXNycrZt27ZixYq4uDhPT8/Vq1fr4zpz79u3b1xcXJcuXdasWfPYY48ZO0+dsHfq1MnZ2VlE4uLiRMRisRh7FgAAAAAAAABAEVdEA/eYmJgvv/wyNjZW/rpijIjs27cvJiYmNjZ248aNtly+cuXKOTk5Ov4WkVKlSkVFRfXp08eWuTdq1MjAqeZd0n7q1KmDBw+WKVOmVatWBp4CAAAAAAAAAFD0FdHA/bvvvlu6dOmIESP+/e9/e3p65r3JVsn9+++/P378uO24l5eXv79/7969fX19bWm75uHhsWLFioEDB65YsaJr165xcXGNGzc2aqrr16+X3wP3NWvWKKU6duyoa9oAAAAAAAAAAEqOIhq4r1u3TkTefPNNnbZnZWVt3LgxNjY2JiZmz549tkruNWvW9PPz69atm8ViqVKlym0GdHNzi4yMtGXua9asMSRzP3DgwMmTJ6tXr65L3FDAHQAAAAAAAABKrKIYuB86dCg5OdnT09OWiaekpPj5+emfPTw8fHx8LBaLxWJp1qyZyWS6w2Hd3NyWLFkycODA6Ohovc69SZMmBZzqmTNn6tSpU69evR9//LFBgwZr164VAncAAAAAAAAAKJGKYuBuWyduNpv1kZo1aw4cOLB+/frdunXz8fHJV8n9zrm6ukZGRg4aNCgqKqpTp04xMTEtWrS4t6EOHDige7SeOXMmOTn5pZdeSkxMNJvNVatWNbBeDQAAAAAAAADgflGkA/e8BxcvXmzI4K6urosXLx48ePDy5cu7dev2ww8/tGzZ8g4fe/z4cV3WZs2aNefPn9cHnZyc2rRpk5aWduXKlUqVKs2ePfvOF90DAAAAAAAAAIoNk60eehFhtVqrVat2/vz5I0eOeHl52eksWVlZQ4YM+e9//1uhQoWYmJjbZO7Xr1/fsmVLXFxcXFzczp07bX9d9erV8/Pzs1gsXbt2rVSpUnZ29tChQ5cuXVqhQoXVq1e3bt3aTjMHAAAAAAAAABRNRS5w37FjR4sWLerUqfPbb7/Z9UTZ2dlDhgxZtmxZhQoVfvjhh1atWuW91VYxZtOmTZmZmfpg6dKl27Ztq8vHN2/ePN+Aubm5I0eOXLhwYfny5X/44QcydwAAAAAAAAAoUYpcSZm4uDgRsbVItR8XF5fFixcHBAR89913urZM3bp1N27cGBcXt2LFilOnTum7OTk5NW/eXIfsHTp0cHV1/asBnZyc5s2bZzKZvv322+7du69evbpNmzb2/i0AAAAAAAAAAEVEkQvcb1nA3U6cnJzCw8Ozs7MjIyMtFsu1a9dsN9WrV69bt25+fn5du3atUKHCXQ1oMpkWLFhgsVhWrlzZsWNHu0wdAAAAAAAAAFDEFK2SMllZWZUqVbp+/frp06erVavmmJPm5OQ88sgj165du3r1qo+Pz19VjLlzubm5o0aNWrLk+yZNDk6fXrlTJ+PmCgAAAAAAAAAoqorWCvf4+Pi0tLQmTZo4LG0XEScnp6tXr6akpBw8eLBhw4aGDDhnzpzKlc+Hhlbu00dWrRJf34KPCgAAAAAAAAAo0syFPYE/0fVkLBaLvU80ZMiQ/v37JyYmisiePXtSUlJq165tSNquOTk5zZhR7e9/l9RU6dFD1q0zamAAAAAAAAAAQBFVFAN3exdwz8zMjI6O/u9//1u+fHn5vU2r4Sm/k5PMni1PPy1paeLvL2vXGjBmUlLSF1980b9//2XLlq1fv96AEQEAAAAAAAAABilCJWVSU1N37Njh7Ozsa+cKLPHx8enp6U2bNq1SpYrYM+U3m2X2bHF3ly++kN69JSpK7uEkaWlpW7dujYuLi4uL27Fjhz64fv36jIyM5cuX+/n5GTxpAAAAAAAAAMA9KUKB+7p167Kzs319fcuVK2fXE+VN2LOysjZv3mwymTp37myPc5lM8tlnYjLJ559Lnz6yfLncyUr63FzZvl3WrJm+evXKH3/8MScnRx+vVKmS7um6ZcuWuXPn9u7dOzIy0t/f3x4zBwAAAAAAAADclSIUuDumnky+E23btu3atWuNGjV64IEH7HQ6k0lmzZKcHPnqK5k+XapUkccfFxG5dk0uXpTatf+4Z1KSxMXd+N+lS/L446v37Il3cnJq3ry5ztk7duzo4uIiIs8991zZsmU/+eSTAQMGREZG9u7d206TBwAAAAAAAADcoRIXuF+5cmXHjh2urq7t27d32EnNZgkLk4cflu7d5fHHZfly6d1bdu2S//xHpk2TdeskJkZiYyUx8Y+HNGwo/fu//f77b3bu3LlMmTL5BjSZTB999JHJZPr4448HDhy4ePHiPn362PVXAAAAAAAAAADcXlEJ3M+ePfvzzz+XLl26VatWdj3R+vXrc3Jy2rdvr1Nshy2rN5nkzTfl6FHp2lXef1+6dBERyc2VGjXk+vUb96lUSbp2FT8/6dZN6tQRkW63HdAUGhqqk/dBgwZFRET07dvX3r8FAAAAAAAAAOCvFJXAPS4uTinVoUMHNzc3u54ob8Kempq6fft2Z2fnDh062PWkeZUrJ0OHynvvib+/ODlJmzZy5YpYLGKxSMeO4uJyF0PpzN3DwyMkJGTw4MGLFi3q16+fveYNAAAAAAAAALgtc2FP4IZVq1bJn1eaJyUlff7554afKG/gvnHjxuzs7JYtW5YvX97wE93GqFGybZscPCgiEhsrCQkSEiIWy92l7TbTp08fP358VlbWkCFDli1bZuxUJTtb1q+X6Gg5fVpE5MoV2b37xk2pqbJrl8GnAwAAAAAAAID7VmEG7unp6XFxcePGjWvRokVERESZMmVsxcrT09O7du364osvfvDBBwae8fTp07/88kuZMmVat24tDqwnk4/ZLB99JFOm3Pi54KZNm/b222/rzH3p0qUGjKilpUnXrrJhg5w+LYMGSUyMHD4sM2bcuPXoUQkJMexcAAAAAAAAAHCfc3RJGavVunv37tjY2JiYmPj4+MzMTH3c3d392rVrr732mpeXl5+fn4eHx7Rp0wICAsaNG5eVlTVx4kRDzr5mzRpduMbFxUUKL3AXkaZNpV8/yckxbMApU6aYTKYpU6YMHjx4/vz5w4YNM2DQr76SXr0kKEhEpFcv6d1bvvzSgGEBAAAAAAAAoDhyUOB+7ty5DRs2xMXFrVy58uTJk/qg2Wxu3ry5xWKxWCy+vr5jx46dNWtW7969Fy9e3Lt372HDhplMpoCAgEmTJimlJk2aVPBp5E3Yz507t2/fvlKlSrVt27bgI9+hcuXklVdu/Dx58h/VWQzx/vvvm0ym999/PyAgwGq1Dh8+/N7Hys6Wc+dk3z6xDVKzply7Jrm5Eh8vTz0lInL5spQta8C8AQAAAAAAAKBYsGPgnp6eHh8fHxcXFxcXt3PnTqWUPl69evX27dv7+/v7+/tXqlTJdv+PP/7YZDJ98sknAwcOjIyM7N2799ChQ00m04gRI4KDg5VSwcHBBZySDtwtFouIrF27Vinl6+tr7zateR09Kl9+KbpF6/Hj8vnn0rmzkeO/9957JpPpvffe+/vf/66UGjFixN09PilJ4uIkLk5iYqRlS/H2luvX/7g1N1ecnKRVK/niCxGRAwckNNTAyQMAAAAAAADAfc34wD0pKSk6OnrFihWbN2/OyMjQB0uVKtWuXTu9mL158+a3fKDJZProo49MJtPHH388cODAxYsX9+nTZ8iQISaTafjw4ZMnT05PTw8pQNHwX3/99fjx456eno0aNZJCrSdjV++++67JZHr33XeffvppEfnfmfvFixIXJ7GxEhMjx479cfzyZeneXebMkSefFLNZVqwQ/Q/n4iLlyomIlC5tp18BAAAAAAAAAO5HhgXuhw8fnjx5clxc3Llz5/QRJyenVq1a+fn5devWrW3btrps+u2ZTKbQ0FCz2RwaGjpo0KCIiIi+ffsOHjzYZDI99dRTH3zwgVLqntuobt68WUS6du1qNpvlz6vdHWn9evH3FxFJTZVq1exyismTJ3t4eIwbN+7pp5+2Wq0jR47Md4fs7OytW7fGxMR4Hj786pIlkpt744aqVcVikW7dxM9PatQQEdm3T7p1Ew8PcXeXWbPk9Ok/ysg4O1NSBgAAAAAAAABsTLZKLwWUnJxct25d+euKMXdlwoQJ06dPd3V1XbRoUb9+/UQkMjLyqaeeys7OHjt27D//+c97G/bgwYO5ubmPPfZYUlJS/fr1K1WqlJKSovN3x0hIkNBQWbBARGTvXpkyRSIi7HWuDz74YNy4cU5OTt98883f//53EUlKStIVfmJiYq5cuSIiFdzdL7m4yMMPi7+/9O4tTzwhDvzbAAAAAAAAAIDixLAV7nXq1JkzZ07btm0bNmxY8NGmTZtmMpmmTZs2ePDgRYsW/e1vfxs4cKDJZBo2bNiHH36olPrwww/vYdhHHnlE/xAXFycinTt3dmTa7mBBQUE5OTnvvPPOs88+Gx4enpSUlJycbER9bZEAAAYTSURBVLu1UaNGevNBdocOLqVKFeI8AQAAAAAAAKB4MLKGuy4abpSpU6eaTKapU6cOGjRo/vz5w4YNGzBgwLJlywYMGDBjxgyl1IwZM+558MIq4O7hITVr3vjZ3V0efNC+p3v77bfd3Nz++c9/btmyJTMz09PTs3PnzhaLpUePHrVr17bvuQEAAAAAAACghDGspIydTJw4ccqUKU5OTvPmzXvqqadEZOXKlQMGDMjMzHz99ddnzpx5twPm5ub+9NNPPXr0uHLlyqFDhx566CE7zLpouXDhQkxMzCOPPNK0aVOTyVTY0wEAAAAAAACA4qmoF1R5//33J02alJubO3LkyG+//VZEevXqFRER4erqmpiYmJOTc4fjnDlzZt68eYMHD65ataru4Praa6+VhLRdRCpXrjxs2LAnnniCtB0AAAAAAAAA7Keor3DXJk+e/O677zo5Oc2dO3fEiBEisnXr1ubNm7u6ut7mUampqevWrYuJiYmNjT106JDteIMGDbp16zZz5kx3d3e7Tx0AAAAAAAAAUDLcH4G7iHzwwQfjxo1zcnKaM2dOQEDAX93NarXu2rUrLi4uLi5u48aNWVlZ+niZMmXatGnj7+/fp0+fevXqOWrWAAAAAAAAAICSwsimqXYVFBQkIuPGjRs1apRSauTIkXlvPXPmTExMzIoVK9asWXPx4kV90MnJqXnz5haLxWKxdOzY0cXFpRDmDQAAAAAAAAAoGe6bwF1EgoKCTCZTUFDQM888o5QaOHDg1q1b9WL2HTt22O7m5eWlQ3Y/P78KFSoU3nwBAAAAAAAAACXIfVNSxmb69OkTJkwwm81ms9nWNLVChQpdu3b18/Pr1q0bFWMAAAAAAAAAAI53/wXuIvLBBx+cPXv2448/btq0KRVjAAAAAAAAAABFwX0ZuItITk7O9evXy5UrV9gTAQAAAAAAAABA5P4N3AEAAAAAAAAAKFLMhT0BAAAAAAAAAACKAwJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGOD/AQi94lsZS4pKAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"SE\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "2a0f93d9-bfc9-45d4-8435-4ba10c6c7a59", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.890795Z", + "iopub.status.busy": "2024-05-13T08:55:43.890586Z", + "iopub.status.idle": "2024-05-13T08:55:43.946858Z", + "shell.execute_reply": "2024-05-13T08:55:43.946305Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 SE fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACUyklEQVR4nO3dd1gUV/cH8LOFLgg2VKzYUbGgsWAXSxRNomJsqDG2WLDEiIkxJDFGEhsaTTSWiJpExYpGRbAFS1SwoqIIqKACCkgvW+7vj5vfvpuliLC7M+D38+R5nzd3FuasGXfnnrn3HAljjAAAAAAAAAAAAAAAoGykQgcAAAAAAAAAAAAAAFARIOEOAAAAAAAAAAAAAKAHSLgDAAAAAAAAAAAAAOgBEu4AAAAAAAAAAAAAAHqAhDsAAAAAAAAAAAAAgB4g4Q4AAAAAAAAAAAAAoAdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHiDhDgAAAAAAAAAAAACgB0i4AwAAAAAAAAAAAADoARLuAAAAAAAAAAAAAAB6gIQ7AAAAAAAAAAAAAIAeIOEOAAAAAAAAAAAAAKAHSLgDAAAAAAAAAAAAAOgBEu4AAAAAAAAAAAAAAHqAhDsAAAAAAAAAAAAAgB4g4Q4AAAAAAAAAAAAAoAdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHiDhDgAAAAAAAAAAAACgB0i4AwAAAAAAAAAAAADoARLuAAAAAAAAAAAAAAB6gIQ7AACAeN27dy8mJkboKAAAAAAAAACgRJBwBwAAEKkVK1Y4OTn5+fkJHQgAAAAAAAAAlAgS7gAAACLVpUsXIjpz5ozQgQAAAAAAAABAiUgYY0LHAAAAAIXIz8+vUqVKdnb28+fP7e3thQ4HAAAAAAAAAF4DK9wBAABEytTU1NXVlTF27tw5oWMBAAB4i1y8ePHkyZNTp04NCgpSKBRChwMAAADlCRLuAAAA4tW7d29CVRkAAAAjOnz4sJub29ixYzdv3jxw4MAaNWqMHDlyx44dWVlZQocGAAAA5QBKygAAAIjX5cuXO3fu3KxZs8jISKFjAQAAqPi2b98+ZcoUpVI5bNiwli1bHjx4MCIigh+ytrYeNGjQ8OHDBw0aZGVlJWycAAAAIFpIuAMAAIiXUqmsWrVqenp6fHy8g4OD0OEAAABUZD/88MOiRYuIyNvb29fXlw/GxsYGBgYGBARcvHiRT5/Nzc3d3Nw8PDyGDh1qa2srYMAAAAAgQki4AwAAiJq7u/tff/21a9eusWPHCh0LAABAxaRSqWbPnv3LL7/IZLINGzZMmzat4GuePHly8ODBgICAS5cuqdVqIpLJZJ07d/bw8Pjwww9r1qxp9KgBAABAjJBwBwAAELVVq1YtWLDg448/3rJli9CxAAAAVEB5eXnjx4/fu3evmZnZrl27RowYUfzrX758eezYsYCAAE1LVU3m3cPDo3bt2kaJGgAAAEQKCXcAAABRu3btmouLi6OjY3R0tNCxAAAAVDSvXr167733/v77bzs7u8DAwG7dupX8Z1NSUo4ePRoQEHDy5Mn8/Hwikkql7dq1c3d3HzduXOPGjQ0WNQAAAIgXEu4AAACiplara9SokZycHBsb26BBA6HDAQAAqDieP38+aNCgGzdu1K5d+/jx487OzqX7Pa9evQoODj5y5MiBAweysrL4oJOTk4eHx6hRo5o3b66/kAEAAEDskHAHAAAQuw8++ODQoUO//fbbxIkThY4FAACggrh3797AgQOfPHni5OR04sSJunXrlv135uTkhISEBAQEHDp0KCMjgw/yzPuQIUNcXFzKfgoAAAAQOanQAQAAAMBr9O7dm4jOnDkjdCAAAAAVxJUrV3r06PHkyZPOnTufO3dOJ9uuVquXLVuWkJDwpr/WwsJiyJAhO3bsSEpKCgwM9PT0tLW1vXv37jfffNOhQwdHR8c5c+acP38e694AAAAqMKxwBwAAELvbt287Ozs7t2x5MyJC6FgAAADKvSNHjowaNSo7O3vo0KG7d++2sLDQPpqfnz9x4sQ///yzc+fOFy9elEgkZTmXSqW6dOlSQEDA3r17NRn8+vXrv/feex4eHl27dpVKsQwOAACgQkHCHQAAQOwYYze7dnW+ckUaGUlNmggdDgAAQDnm7+8/ZcoUhUIxceLEzZs3y+Vy7aOZmZkeHh4nTpyoVKnS/v37+/fvr6/zqlSqs2fPHjhw4ODBg8+fP+eD33///aeffmpqaqqvswAACOJSevrzvDztkW6VK9fAhxu8rZBwBwAAKA9GjqSAAPr1V5oyRehQAAAAyqsffvjh888/Z4x5e3v7+vrqHE1MTBw8eHB4eHjNmjWPHTvWrl07Q8SgVquvX79+5MiRDRs25Obm+vr6zpw50xAnAgAwmvkPH0ZkZTXU2jA0p04dJ0tLAUMCEJD89S8BAAAAwfXuTQEBdOYMEu4AAAClwBhbsGDB6tWrZTLZ+vXrp0+frvOC2NjYAQMGREVFOTo6BgUFNW7c2ECRSKVSFxcXFxcXe3v7GTNmXLlyBQl3AKgAOtjYfN+wodBRAIgCEu4AAADlQe/eRESnThFjVLZisgAAAG+bvLy8CRMm7Nmzx8zMbOfOnR4eHjovCA8PHzx4cGJiYseOHY8ePVqjRg0jRNWpUyciunz5shHOBQAAAEaDhDsAAEB50Lw5OTjQ06cUGUktWggdzRs7ceJESkrK5s2bBwwYMGDAgLZt25axBx0AAEAJZWZmDhs2LDg42NbW9vDhwz169NB5wenTpz/44IP09HQ3N7cDBw5YW1sbJ7DWrVtbWlo+ePAgNTXVzs7OOCcFADCQdKXyblYW//+WMlkDc3Nh4wFtmZmZMpksPz+/cuXKQsfyVkA/dLFISko6duyYSqUSOhAAABCrnj2JiE6fFjqONxYYGPj+++9PnTr17Nmzn3/+efv27e3t7UeOHPnrr79qusYBAAAYQkJCQvfu3YODg2vVqnX27NmC2fb9+/cPHjw4PT193Lhxx44dM1q2nYhMTEzatWvHGAsLCzPaSQEADORKRsbUBw/4Pz/GxQkdDvyLMRYQENCyZcuxY8c6OjquXbsWuUcjQMJdMCqV6s6dOzt27Jg2bVrLli1r1qw5ePDgPn36rFmzRujQQP8YY3n/bdgNAPDGeFWZM2eEjuPNHDlyZOTIkXl5eWPGjDl58qSXl1f9+vVfvHgREBAwbdq0OnXqdOjQYdGiRSEhIQqFQuhgAQCgQomOju7evfuNGzdatGjxzz//tGnTRucF69atGzlyZG5urpeXl7+/v4mJiZEjfOeddwhVZd4CmA/C28DNzu58u3b8n5+bNBE6HCAi+ueffzp37jxy5MgnT55cvHgxJSVl7ty5HTp0+Pvvv4UOrYKTMMaEjuEtkpaWdun//fPPPxkZGZpDlSpVatCgwZ07dyQSyc6dO8eMGSNgnKAXWVlZ169fDw8Pv3DhwtmzZ8eNG2djY/P1118LHRcAlFsxMdSoEVWtSklJJC0fj8z37t07btw4hULx2Wef/fjjj5rxmJiYkJCQI0eOhISE5Obm8sFKlSr16tVryJAh7777bt26dQUKGQAAKoirV68OHjz4xYsXnTp1Onr0aLVq1bSPMsa++eabb775RiKR/PDDD5999pmh48nOzr5+/bq5ubmLi4tmcPfu3aNHjx4yZEhgYKChAwAjw3wQ3irzHz40l8nQNFU8nj179s0332zZskWtVteuXdvHx2fy5Ml//fXXnDlzYmNjicjd3X3dunUNy8V/suho2rGDHjwgmYycnemjj6h6daFjeg0k3A3u2bNnFy5cOH/+/IULF65fv65WqzWHatWq1a1bN1dXVxcXl3feecfU1PSnn37y8vIyMTE5ePDg4MGDBQwbSufRo0cXL168dOnSxYsXb926pVQqNYcsLS2zs7O//vprHx8fASMEgPKtQQN6/Jhu3KACa/REaPfu3Z6enkql0tvb29fXt9DX5OTkXLhwISQkJCQkJDw8XDPu6Ojo7u4+ZMiQ7t27m5mZGStkAACoIEJCQoYNG5aRkTFkyJDdu3dbWlpqH1UqldOnT9+6daupqen27dtHjx5thJC2b9/+0UcfjRw5cs+ePZrB2NhYR0fHGjVqJCYmGiEGMDTMB+GthYS7eOTn5//yyy9LlizJyMgwNTWdPn36d999pymYlpOTs27dumXLlhV6VIwOHKDRo6lTJ+rWjfLzKSiInj2jEyeoY0ehIysOEu76l52dfe3aNc1z7BcvXmgOyeXyNm3a8Ax7z54969evX/DHP//8c19fXwsLi6CgoO7duxsxcCgNpVJ58+bN8+fPh4eHh4aGPnr0SHNIJpM1a9ZM80wlOjp6+PDhSqVy9erV8+bNEy5kECOFQrF///6//vrLCOeys7NbtWqV8XdMg3589BFt305r1tDcuUKH8hpbt26dOnWqWq0u+cQyNjY2ODg4JCTk5MmTaWlpfNDS0rJr165ubm5Dhw5tUQ67xeqdQqH4888/g4ODjXAue3v75cuXV6SPC6VS+eDBg+XLlxvndEuXLq1bt65MJjPO6QyKMaZUKivSxaBQKBYvXmycNhJ9+/YdO3ZsRfrTE7+dO3d+/PHHCoViwoQJW7Zskcvl2kezsrI8PDyOHz9eqVKlgICAgQMHGiequ3fvtmzZsn79+tpTBiKyt7dPSkp69OhRodNDEDnMB4GIFArFrVu3/Pz8jHO6FStW2NvbSyQS45yuhJBwF4kjR45or2Ffu3ato6NjwZc9e/Zs0aJFu3btYoxp1r9LRbiLOjGRGjemiRPpp5/+HVEq6d13KSaG7t+n/36/iwsDfXj69GlgYKC3t7erq6vOQryaNWu6u7v7+PgEBwfn5OS89lep1eopU6YQUeXKla9du2aE4OFNPX/+PDAw0MfHx83Nzfy/fbdtbGzc3Nx8fHwCAwNfvXql84M7duyQSCQSieS3334TInAQKbVa7erq2rp1a+N87FeuXLl27dqRkZFCv28oFX9/RsSGDhU6jtf49ddf+e3a0qVLS/HjSqUyLCzMx8fHxcVFey7h6Og4derUvXv3pqWl6T3mckGlUnXo0KFly5bG+bioVq1a7dq1Y2JihH7fevPtt986OTkZ50+PiJo3b/7TTz8J/ab14ObNm66urj4+PkIHojePHj2qXbt2dWNtRm7ZsqWLi4tSqRT6fb8t/Pz8+HeHt7e3Wq3WOfry5csuXboQkb29fXh4uDEDU6vVtra2RPTs2TPtcb6zec+ePcYMBsoC80HQMX/+fKPN5oioSZMmO3fuFPpN6/o9IWFvUpLQUbzV7t69O2DAAH6RtGjR4sSJE6/9kStXrvDvRCLq2LHjhQsXjBDnm/HzY+bm7OXL/wxeucKIWFCQQDGVCFa4l1LJn2OXYlasUqlGjx4dEBBQo0aN0NDQpk2b6jN0eHMqlSoyMpKXBgoPD7937572XxxHR0dXV1f+X9zJyan458yoGgQF7dq1y9PTs0qVKsuXL7ewsDD06Xbu3BkcHNyvX7+TJ08a+lygf3FxVK8eVa5Myckk1mWzGzdunDFjBhGtXr16bplX4iclJZ07dy4kJCQwMDAhIYEPyuXyTp06DRkyxM3NrX379mJb4GM4v/7667Rp0+zt7ZctW2Zqamro023btu3s2bPDhw/ft2+foc9lBE+fPm3WrFlWVtYXX3zRvHlzQ58uPDx87dq1dnZ2Dx480KkcXe5cvHixW7du5ubm9+7dqxgrcEeOHBkQENCzZ8+PP/7Y0OdSKBRffvnl8+fPN27cOG3aNEOf7i3HGFu4cOHKlStlMtm6dev4l5G22NjYgQMHPnjwoGHDhkFBQU2M3tPPzc3t1KlTgYGBQ4YM0Qx+++23Pj4+n3766cqVK40cD5QQ5oNQjIcPH7Zq1UqhUPj4+BihHHZoaOjmzZsdHBwiIyMrVapk6NO9qZOpqfG5uf2rVKmDmpBGlJKS8s0332zYsEGlUlWpUuWrr76aNWtWCTdZMsb27dv36aefxsXFSSSSESNGrFy5sl69eoaOuaQ++oguX6a7d/8zqFSShQUtW0YLFwoUVgkImu4vZxISEjTPsXWSYtrPsVNTU8t+rry8PP5gytHRUWcFBBhHWlpacHCwj4+Pu7s7X4qiUalSJVdXV29v78DAwJc6z9lKYNGiRURkYWHx999/GyJyKF+ysrL4l5nR1rkkJSXxS/qvv/4yzhlBzxo3ZkTs6lWh4ygcTxZIJJK1a9cW9RqFQrFo0aLg4ODc3NyS/2aVShUWFubr6+vm5qZdmcHe3t7T03Pv3r0pKSn6eAfilZ6eXrNmTTLiKsjnz5/b2NgQ0cmTJ41zRoPiHelHjhxptDPye7lZs2YZ7YyGM2rUKCIaNWqU0IHowfnz5yUSiYWFxePHj41zxr179xJRlSpVkpOTjXPGt1NeXh6/UM3MzAr9nLx165aDgwMRubi4JCYmGj9Cxtjnn39ORF9++aX24IkTJ4ioe/fugoQERcF8EEpo0KBBRDR16lTjnE6tVr/zzjsFP0lEYnZUlEtY2PkC2zvAQPLz8/38/PhnlImJydSpU1+8eFGK35OZmenj48O37FhZWfn4+JSkRIcxeHiwbt0KGa9enYnyr4AGEu4l8ssvv+jUPJJKpS1btpw8efK2bdvu3btXcK9i2WVlZXXt2pWIWrVqhbtz44iOjvb39/fy8nJxcdGpXVWrVi0PDw8/P7/Q0ND8/PyynAVVg0Dbl19+SUTt27dXqVRGO+mqVauIqHHjxnl5eUY7KejNlCmMiP34o9BxFOKHH37g2fb169cX87LQ0FD+0WphYeHm5ubr6xsWFvZGJ3r58uWff/45ceJEnoDm5HJ59+7dly9fXrY3IV6ffvopEXXt2tUQdx1F+e6774ioZcuWCoXCaCc1hIsXL/Ica2xsrNFOeufOHRMTE5lMduvWLaOd1EDi4uKsrKyI6Ny5c0LHUiYqlcrFxYWIvv32W2Oet1evXkQ0b948Y570bRMVFWVnZ1e5cuWzZ88WPHr69OnKlSsTUZ8+fQSsS3bw4EEi6tevn/ZgcnKyRCKxtLQs75+0FQDmg/CmeFsdGxub58+fG+2kly5dkkgk5ubmxryrKSEk3I0pODhYU1TDzc0tIiLitT+Sm5t75cqVoo4+efLE09OT/8K6dev6+/vrNd4SUyrZmTNs1ix2/TqbMoU1bqz7grw8JpWy1auFCK6kkHB/ve+//75jx45lf45dPKVSGRUVpTP48uVLXmm0c+fOmZmZ+j0jcC9fvvz222/fffddOzs77TsqCwuL7t27e3t7Hz58WO9LYJRK5ciRI4moRo0a9+/f1+8vh3LkyZMnlpaWEokkNDTUmOfNz89v1qwZEa0W91cUFO76dXb8OMvIEDoOXb6+vkQkk8leu10jOjp60aJF7dq1095z3bhx45kzZx45cuRNv++io6P9/Pzc3Nx4D5VmzZqtW7eu9G9DrKKioszMzKRS6VXjbm7Izc1t3LgxEf3yyy/GPK9+qVQqvhZsyZIlRj71zJkzeYLPyOc1BN79uF27dsZ8Qqx3mzZt4nPIrKwsY573xo0bMplMLpeXZDIMpTN16lQiWrRoUcFDBw4c4GW4xo4dK+xqg2fPnvE0q87fI17c5vr16wLF9VbDfBBKTaFQ8HTnqlWrjHzqsWPHEpGHh4eRz/taSLgbx/37993d3fmHVZMmTfbu3VvCH1y+fLlEIvHw8Chmn9/p06ednZ35L+/du/fNmzf1FPXrKJUsNJR5ebFatRgRI2ILF7LNm5mJCXvy5D+vPHWKETERVpzXgoT76/Eqn1u2bDFcp6O8vDwPD4+qVaveuXNH51B8fHyDBg34Oog32noPJZGenv7FF19oFi/UqlXL3d3d19c3NDRUv3/aBS8eVA0CxpiHhwef+xn/1EePHjX+WgzQj1u32KRJrE0b5uTEhg5lBw4IHRBjjH311Vc82/5G6yCSkpL27t07derUWrVqaS9Ud3V15cve32gpd3p6+s6dO/l6n+zs7Dd/E6LGy7xOmTLF+KcOCAggoipVquh9tYHRbNu2jYgcHByMv3whJSWlatWqRHTo0CEjn1rvsrOzeQH3LVu2CB1LKaWlpRm5LpM2ng7WWdoMevTLL78QkaenZ8FDERERdnZ2Xl5eYnhcVLduXSLiRcA1xo0bR0QbN24UKqq3FuaDUBarV6/mq0aMn6uJj4/nO8/OnDlj5FMXDwl3Q0tNTfX29uYrjWxtbX19fd/o8lu2bBmvG1OpUqVly5YVVTdGpVL5+/vXqFGDiKRSqaenpwFLseXksMBANmECs7P7N89OxJo1Y59/zm7dYmlprEYNNmYM03yDZ2ayTp2Yiwsz4q7fUkDT1NeIiopq2rRp1apVExIS5HK5gc6iUqlGjhx54MABBweH8+fP8wy7xsOHD7t165aYmDh69Ohdu3bpbG2DstizZ8+oUaMaNmzo6+vbtWvXOnXqGOIsjx8/dnd3X7lypaZhNJednd2vX7+LFy+2atXq3LlzVapUMcTZQbQuXLjQvXt3c3PzyMhIQXqSDBo06Pjx49OmTdu4caPxzw6lFBxMQ4dS//40ZAjZ2ND587RxI332GS1bJmBQX3755bJly3i2nS+3eVNqtfr69eshISEhISHnzp1TKBR8vEaNGj179nR3dx8yZIjOurOitG/f/vr166dPn+7du3cpIhGnkJCQfv36WVtbP3jwQLuKjtH0798/ODh47ty5a9asMf7ZyygjI6NZs2bPnz/ftWtXodfnkiVLcnJyyn6iqlWr8urMOnh/PEdHx7t375qV8wZif/7555gxY2rUqPHgwQNenaN8+fTTT1evXu3q6hoaGlqwq+GxY8dOnz6tlxNNnTq1adOmOoMvXrxo2rTpq1ev/vrrL17wF/Tr+vXr7du3b9asWWRkZMGj8fHxBrrVf1MjRozYv3+/v7//+PHjNYP8g2LSpElbt24VMLa3EOaDUGopKSlNmjRJSUk5evRoof1vFyxYoJcTOTg4zJs3r+D40qVLv/rqqzZt2oSHh5ewPaYReD18eDEtbW3jxq7l8D5B5NRq9a5duxYuXJiYmCiVSseOHbtixQp7e/s3/T1xcXGLFy/euXMnEdWpU2fZsmWenp6FdntOTU394Ycf1qxZk5+fb2dn5+3tPW/ePL5jTA9ycigkhAICKDCQ0tL+HXRyoiFDyN2dunX73yvPnaP336eaNalHD8rNpdOnycSEgoLI6J3P34zQGX+x4xvkJ06caOgTZWdn9+jRg4gaN26ckJCgc/TGjRu8B8KMGTMMHclbZfTo0WT4qhpff/01EVWqVOny5cs6h1A16K0lVA1Zbffu3TMxMZFKpW9aPhsEk5/PHBzY8OH/Gfz5ZyaRMIEKgKrV6rlz5xKRqanp/v379fI7MzIyAgMDp06dytcAcjKZzMXFxdvbOzg4uPgSt/PnzychKocYjkKhaNWqFRGtXLlSqBgiIiLkcrlcLr99+7ZQMZSat7c3EXXp0qWoDRP6Shw3aNCg0N+vVCpbt25NRL6+voZ8o0bC71c/++wzoQN5Y6+ty7Rw4UK9XAlEFBQUVOgpND1UsG/VEBQKhZWVlUQiEXkPbd7vZObMmdqD//zzDxG1atVKqKjeWpgPQqlNmzaNiNzc3Ip6gb6+U9q0aVPo78/JyeGLNUW1OQYr3A3k7Nmzbdq04ZdEz549y16C7MyZM5pf2KtXrxs3bhT1ysjISM1CgWbNmv31119lOW9aWpr6zz/ZsGHM0vJ/69k7dGDLl7MHD4r8sRcv2Pr1bNYs5uXF/P2ZZjezCDauFQUr3F+ja9euly5dOnjw4Pvvv2/oc6Wnp/fu3fvatWtt2rQ5e/asTif0s2fPvvvuu7m5uV9//TWvoQllpFAo7O3tU1NTo6OjdZri6hdjjPfXrVq16t9//83vqDSePn3arVu3R48e9evX78iRI+V97RuU0K+//jpt2rS6detGRkZaWlpqxv/555/FixevXr1a8+WnF1lZWStWrMjJyeFzPI358+evWbOmqLV+IDqnTpGbG129Sh06/G9QoaC6dWnCBPrvf1wjYIx5eXmtX7/e1NR079697733nt5PERMTc+TIkaNHj4aGhubl5fHBqlWr9unTx83NbfDgwQ4ODjo/cvTo0SFDhnTr1k3TmrW88/PzmzdvXqNGje7cuSPgd8Qnn3yyceNGNzc33hysvIiJiXFyclIoFJcuXeJl3Atav359bm5u2c9VuXJl3gSvoNOnT/ft29fa2vr+/fvaBZTKo+vXr3fo0IE/fSm4iFvMBg8efOzYsalTp/Iy7gX9/fffV65c0cu5PDw8ePkdHQqFonXr1vfv31+9enWhyxWhjLp163bhwoWgoKD+/fsLHUuRzp0716tXrw4dOly9elUzmJeXV7lyZYVCkZqaamNjI2B4bxXMB6HU7ty507ZtWyK6ceOGpmuljpUrV+rlXDVq1NDeEKMtICBg5MiR1atXf/DggU4GSShY4a538fHxX3zxxa5duxhjxS9If1N8yfxnn32WlJTEl8yvXLmSl5EpKCQkZM6cOXfv3iUiNze3tWvX6nyUFS81NZVP644dO/a0UaPKt24RETk5kYcHjR1bmrXqubnk7U15eSTa/fqCpvvFLiEhQSqVWlhYGO1Rc1JSEu9k2KtXr4KllA4fPszL2qDPoV4EBQVR0Y+L9UupVA4bNoyIHBwcCnYSj4qK4vuARo8eLYbKkmBomhqyOr1N1Gp1p06diGjx4sX6PWNRq1PT0tL4tRcQEKDfM4JBrF/PiFjBRn89erAhQ4wci1qtnjFjBhGZmZkFBgYa+nQZGRmHDx+eMWOG9ny4adOmBV+Znp4ul8tNTU0rxjKx5ORkXgH8yJEjgkfCt7ofPXpU2EjeCF8wYYStiq81dOhQIpo0aZLQgejBpEmTiGjo0KFCB/IG+IMia2trwTuX/PXXX4QeKgbDNzktXbpU6ECKk5mZKZfLTUxMdNqN8IeCp0+fFiqwtxDmg1Bq/fr1I6K5c+cKHQjr2bMnEc2fP1/oQP6FFe56lJWV5ePjw0uuW1pa+vj4GKJPVcmLwufn5/v5+fG9oSYmJl5eXq9e9x86ISFh48aN/fr109TolslkRydPZuvXs6dPyxR3RAQzN2dEbN++Mv0eg0HCvTh8/ct7771nzJM+efKEV3MeOnRowV3zO3bskEgkEonkt99+M2ZUFRJPFX311VfGOR2qBoEGnw26urrq1DfYvn07EdWsWTMtLU3vJ/3kk0+IqG/fvjrjvMNY3bp1swqmcUFsVq1icnkh++YGD2b9+rG8PGaAK6dQSqVywoQJ/M4vODjYOCfVePDgwbp16wYNGuTt7V3oC3jOoqiSDuVLUX9zBSFgZ7DSOXXqFBFVqlTpaRlv6PXh4cOHvJ5JwXoC5U5iYiKfax0/flzoWEpEoVDw5YcC1mXS9u677xLRtGnThA6kAtq9ezcRubu7Cx3Iazg7OxPRpUuXtAdnz55NFaX2VHmB+SCUjqj6yV+/fl0mk8nl8oiICKFjYQwJdz1Rq9V79+7lu+UkEomHh8ejR48Mesb79++7u7trVjUVs9bn5cuXXl5evG1A1apV/fz8CjaFjouL27Rpk7u7u3ae3dXV1c/PT58LDvhyNFtbVuApphgg4V4cXqVo27Zt2oPnz5//4osvbt26ZbjzRkRE8EVknp6eBeuNrlu3jj9NKmPhpLecWq3mLXHCw8ONdtK0tLT27dvzZRSpqak6R8+cOcMfXX799ddGCwmMr6gashkZGbVr1yaiHTt2GOK8Ra2T1VSTF/lyMGCMsZ07GRF79kx33NmZeXqyo0eZTMZcXJi3NwsNNVw9O6VS6enpSURWVlanTp0y0FnKgtfsXrRokdCBlJXYKqeLLWtZPE3l9OXLlwsdy794ifBiqsmXI7xAWYsWLfLz84WO5fXE9qwoKirK1NQUPVQMITY2loiqV68udCCvMXnyZCLy8/PTHuT964YNGyZUVG8bzAeLpn7xYktkZI/btxvfu/dOfPwXjJX7ry09ys3Nbdy4MRH98ssvQsfyr6lTpxJRv379hA6EMSTc9SEsLMzV1ZXnqV1cXEJDQ4126uDgYE2JJDc3t2Ke4oSHh3fv3p2/sl27dn///Tdj7NGjR35+fq6urpqKN+bm5u7u7ps2bUpMTDRIxO+/z4hYt26s2C5fgkDCvUgZGRnm5uYymSwpKUl7nHfG+Oabbwx69suXL1eqVImIZs+eXfAoTyVYWFjwaxpKgdforFevns6k98iRI8nJyYY7L6oGAX+SN3XqVJ3xL774gn+hGm4bqZ+fHxE1atRIJ+PAC7hbWlo+fvzYQKcG/YiNZRIJ27z5P4PR0UwuZ5s3szVrmFz+v84z9vZs/Hj2xx/sxQs9hpCfnz98+HAiqly58sWLF/X4m/XoxIkTRNSpUyehAymr+AkTBjs6enl5CR3I/xw7dszKyn7AgH8MdM+sRz/99BMROTo6Fvy2FUp6ejov4P77778LHUtZ5eXlNW7cuEOHdzdt0ucnjCGIsxoSL+BecK8blB2vy1GwZIeo/Prrr0Q0ZswY7cH79+8TUe3atYWK6m2D+WBRkpLWh4ebPHv2XVra8Zcvt8XFlb8u2Qb13XffEVHLli0LFiQQSlJSEt8eIYZFmUi4l9HGjRt5trpWrVrbt283/n1CwboxBZ8Ocmq1+s8//6xbty5fhs9rdXBWVlYjRoz4888/09PTDRtuSgqrV48RMR8fw57ozSHhXqS9e/cSUY8ePbQHVSoVnyndvHnT0AGEhITwIkoFV2ap1Wrelaty5crXrl0zdCQV0uLFiws+z3j27JlUKrWxsTHoci1UDXqbnTx5kgqr3BoTE2Nubi6RSP755x/DnV2hULRq1YqIVqxYoXNoxIgRRDRu3DjDnR30Y9QoVqcOu3//339NT2cDB7L69RmvV56ZyYKDmZcXq1//f5l3qfTfZe/BwaxsH255eXm8Iratra1Br9UyysrKMjU1lcvlhqjOZDwHDjAiVrNmpiGn/aXw4Ye5RGzKFKHjKFZKSkq1atWI6ODBg0LH8h9bt24lIgcHhwrQY+DYsRdErEoVJoL99MXha2Xc3NyEDuQ/iurmAmXHd8Tv3r1b6ECKc/PmTb7rQntQrVbzzYjx8fFCBfZWwXywKJGR3WJjPQU5tfg9f/6ctzU+efKk0LH8x6pVq0SylwsJ97J48uSJu7u7mZmZl5eXsBMZ7boxVapUKbRuDJedne3r62thYVG1alULCwt3d3d/f/+MjAzjxfr330wmY1IpE9neayTcizR27FgiWrVqlfbgpUuXiKhBgwbGieHAgQMymUwikfz66686h5RKpYeHBxHVqFHjvibzAiXGt8mEhIRoD/Ji1h988IGhz46qQW8nTTUGnQ8WxhjvoTR+/HhDx6DpGvfsv2VJnjx5YmlpKZFIjLlhDUojLY25uzO5nLVty7p1Y9bWrGlTVmi9kbt32erVbMAAZmHxv+S7nR3z8GBbt75685LWubm5vOujnZ3dlStX9PBeDIlvwxTVgtY3k5fHGjdmROznn4UORVdUFDMzY1Ip+29ZLHGZNWsWEfXp00foQHSpVCreY8BoJYMNauBARsTEXG1YU5dJJJVttW3cuJHQQ8UAvv32WxJT/8BCKZXKSpUqSSSSF//dhTZgwAAiOnDggFCBvVUwHyxKZGTXu3c7qFRGzJeVH7ys4vDhw4UORFd+fj7fOSH4Xnkk3Mvi9u3bvGSf0IH869q1a7zzBI/qxIkTRb2SV6kVLJmwZAkjYnXqiGoZCBLuhcvPz7ezsyOiBw8eaI8vWrSIiObNm2e0SPhXvkwm27Nnj86hvLw8fk/m6Oj4rGBJXyjaw4cP+QpNnZULAwcOJKLt27cbIQZxVg16/vz5wYMHFyxY0L1791OnTumznQUUXUP29OnTZMS2fnzl1+TJk3XG+TIfg9a0Ab25cYNt3crWr2enTr1+0Xp2NgsOZt7ezMXl37S7qWmtSpUcHR2nTp0aGBhYkoUwWVlZ/fr14095jbDHq+y+/PJLIvr000+FDqS0li1jRMzJSYTlCBlj8+czIubqysRZDOPu3bsmJiYymcygHXdK7eLFixKJxMLCQuQlL0ri7l1mYsJkMibaTwX+wTV37lyhAykEeqgYSFBQEBF169ZN6EBeg6cwjh07pj24ZMkSqhA9SMQP88FipKTsDQ+X3bpV9+nTJbm5MUY+u5hdunRJIpGYmZlFRUUJHUsh/vrrr0L3UhsZEu5lwRPuLVu2FDqQ/9izZw9v30pERbVv5QtKBNsDrVAwV1dGxAYPFs/8BAn3wvFFoK1bt9YZb968ORGdPXvWmMEsXbqUiExNTQs+TcrKyuratSsP1aCV5iqYFStWFKyekZGRYWZmJpPJXui13nExNFWDfH19dQ4ZrWqQUqmMiIjw9/efOnWqk5OTprUFEZmZmTk7OxdVrgveVFE1ZJVKpbOzMxEtW7bMOJE8fPiw0K6tWVlZfHOrceYYIIzYWPbLL0nTpllbW2uX2HN3d1+/fv3Dhw8L/aGsrKy+ffsSkb29vUi6d77WqVOniKhdu3ZCB1IqCQnMxoYRsaAgoUMpXFoaq1mTEbECiwFEgS9HmDlzptCBFGn06NFE9OGHHwodiB7Mns2ImPj2EjDGWEBAAN8H/VJMy520oYeKIaSmpvJnWiLv6PvZZ59Rgd6YR44cIaLevXsLFdXbA/NBrRMps7KuJyVtiIkZd/due94fNTv7dlzcvJs3a4WFSVHDnVOr1Z06dSKixYsXCx1Lkd59910imjZtmoAxeK1e3XfOnNNi3ggpYuJMuLP/rxvDp5Bnzpwp+AKBE+6MsSdPWJUqotofjIR74fhO5CVLlmgPPnjwgIiqVq1q/OYYn376KRFZWlpeuHBB59CLFy+cnJyIqHPnzhWgHqhxdOvWjYgCAgK0B3fv3k1EvXr1MmYkglQNSklJ+euvv5YsWdK3b1++qkLD2tq6b9++S5Ys2b17N3+8hOtKX4qqIfvzzz8TUcOGDY3Z1o9/pHTt2lVnB+uOHTt4UrV8V76GElAqlWFhYT4+Pi4uLtpP2viy971792qugczMzN69exNRzZo179y5I2zYJZeTk2Nubi6VSkWbaCvO+PGMiA0bJnQcxdm0iRGxunWZ2IphHDp0iBc+Mlq6pBTi4uKsrKyMv4bDEFJSWLVqjIiJrQZGbm5u48aNieiXX34ROpbioIeKITRt2pSIRN7pij8QGjRokPZgUlISvyEvqlQu6MtbPh9UKtPT0oKfPvWJinK/ft0uLIw0/+Tk3NO8TK1WPn26JCyMsrLC9Hj2csrf31/8E6WoqChTU1OpVBoWJth/Mp70R3Xc0hFtwp2Li4tbt25doYeET7gzxvbtY0TM3JzduCFkGP8PCfdCqNVq3mZX50PK19eXiCZOnChISJMmTeLp/oL5jvj4+AYNGhBRv3798vLyjB9e+ZKYmCiTyczMzHTaJfPlZmvWrDFyPJqqQQW7ZumxalB0dLS/v7+Xl5eLi4tUKtVOsteqVcvDw8PPzy80NFR7KZD2dSV465Xyrqgaspq2fvv27TNmPOnp6bxXm05LMbVazacfn3/+uTHjAWE9f/58+/bto0aN4r3aNHtc3Nzcli5d2r59eyKqV6+eODfPFqNXr15UHivhhoUxqZSZmrL/FrUTG5Xq3xpF334rdCha8vLyeKKtqMmAeHz99ddE1LZt2wqQVlu/nhExR0dmxAfHr8d3iLZs2dL4C2XeCHqoGAIvsrxx40ahAynO48eP+eROZ/VDw4YNiUiEXQcqkrdzPpibG/3ypf+TJ15377qEhUm1k+w3b9aKjvZITPTLyAhVq/+zNUShSA4Lo5QUUXchNoKMjIzatWsTkb+/v9CxvMa8efOIyNXVtWBvAONAwr0sCk245+bm/vHHHyKf1Igi4c4YmzLl37KcIlgTZKiE+82bN3UeF5cjYWFhROTg4KDzCdWlSxciOnjwoCBRKZVK3lbRwcGhYNHPqKgoe3t7IhozZgzqLxdvy5YtROTu7q49mJ+fb2trS0TR0dHGD4k3d9Jv1aDMzMzQ0FA/Pz8PDw+e0tUwMTFxcXHx8vLy9/cvfguz5roaPXo0rquy4Im/gu0f5syZI9TG4V9//ZWI6tSpo7ODISwsTCqVmpqaPhB3sg8MQaVShYWF+fr6urm5mZiY8E8MGxubunXrlsdi09988w0VURdVvNTqf+sPfvGF0KG83vnzTCJhFhZMPMUwfvjhByJq0aKFyEtJMMays7P5U+3NmzcLHUtZKZXM2ZkRseXLhQ7l/8XHx/M9fCdPnhQ6ltfjPSfat2+Pey19+emnn4joo48+EjqQ1+D5O516bh9++CERbd26Vaio3gZvyXwwIyPj1KlTJ06sjYoapLOM/do1i8jIbnFxn6WmHsrPTyjwg+dUqn8nCElJG8LCJNnZEYypGHt7P6O++OILKifNrtLS0vjKKqEycki4l0WhCXe++alatWpCRVUSYkm4Z2UxJ6ewFi2+W7hQ4EgMlHCPj4+3tbU1MTHRaQJTXvBmNbNmzdIeTEhIkEqlFhYWApbXyM7O5t11GjdunJCg+71448YNfoswY8YMQcIrL4YMGVJwfsvbK7Vp00agoPRTNejp06d79+718vJydXU1NTXVWcbu7u7u6+sbGhr6RqVLcF2VnaaGrM4tsqat3w0hdjypVKoOHTpQgeKhjLHx48cT0TBxl7MAQ0tOTt6zZw8vLeXt7S10OKURGhpKRK1atRI6kDexYwcjYvb2TMS7lbV5eDAiNnas0HEwxhhLTEysXLkyERXMVogTr11Qo0aNV+W/sdipU4yIVarEjNL8+/X4Aufhw4cLHUiJoIeK3l2+fFnMW/I13nvvPSL6448/tAdXrVpFQpdgrvDeqvnggAGNNcvYo6Lcnz/3zcgIVamKmQ+q79xpfe2axZ07zrdvNw4Plz979o1arYiNnfD48Sf6eKPlT0xMjLm5eTnairRx40Yiqlu3bpYQi3yRcC8LJNzLLvX2bRsbGyLav3+/sJEYaoW7gD21y65169ZEFBwcrD24adMmInrvvfcECupfaWlpfHd/mzZtCnazPHXqlLm5ORF9K6oN3mKSlZVlaWkplUp1OnfPmDGDiL766iuhAitd1SCFQhEWFubn5+fp6alpG83J5XInJ6epU6f6+/uXcVPqmTNn+HVVMDMLr5WTk8O3BhesITtw4EAi+uQTwe5cL1y4wLuK6fQZT0hI4F9RQWJt2AhGs2fPHiLq37+/0IGURl5enpWVlUQiKfiIWqSysli9eoyIlZ+k25MnzNKSSSRMDDNQ/jU6dOhQoQN5A3whxYIFC4QORA/ef58RMSEqL+q6dOmSRCIxMzMrR4Ww0ENFv/Ly8nh/eJH/eS5btoyIvvnmG+3B8+fPU/lt+l0eVLD5YG5u7oULF1auXPnBBx/wdc3a25o7duw4f/7c5OTdeXlP3iiY7Oybqan7U1MP8h/Mygq7ds08LIyePXsb54PDhw8nIk9PT6EDKSmVSuXi4kJES5cuNf7ZkXAvCyTc9WLdunVEZGtrq5PoMDJDJdy1e2pfv37dQGcxhNjYWB62TjH0QYMGEdG2bduECkwjISGB94Dq06dPwQ1Nhw8fNjExWbx4cQUoCWoI+/fvJyJXV1ftQbVaXadOHSIKDw8XKjBW4qpBw4YNCwgImD9/fpcuXXhTe43q1asPGTJk+fLl586d0+/T7MOHD8vlciJavXq1Hn/t26CoGrJHjhzh3wHCtvUbOXIkEY0ZM0ZnnM8AnZycRF76FgwtMTFRIpFYWloW2shBqNKQJde/f38i2rNnj9CBlMzixYyIubgw0e9W1vbll4yItW8vcNTXrl3j5bD021bO0K5duyaTyUxNTSMjI4WOpayio5m5OZNI2OXLQoahVqs7depERIsXLxYyjjeEHip6xy+DU6dOCR1IcV6+fFmwQkh2draJiYlcLhdwX3XFVuHng0OHDjXEfDA19XB4uDwsjBIS3q754OnTp/nOg+JrsYpNaGgov4c3fthIuJcFEu56oVar+R6y7t27C5gaNWDTVMP11DYovolv7H93R2dkZJibm8tksqSkJKEC0/bkyZOGDRsW7GPOGHvw4AF/Ko40WaF4rYwff/xRe/DKlStEVK9ePcGTR8VXDbp69aqVlZW1tbX2TZWjo6Onp+emTZsiIiIMGv+OHTskEolEIvntt98Md5YKpqgasnl5ec2aNSMhmjLp0PRq09mNlJeX16RJEyLasGGDULGBSLRq1YqIdLbQHjt2zNnZ+dNPPxUqqhJavnw5EU2fPl3oQErg8WMRrRV/E5p1+QJ+OajV6u7duxPRQhGUa3xTkydPpgKlhMupRYsYEevcmQl4P7V9+3YiqlmzpsiXNheEHir65eXlRUTLxdNY4E20a9eu4Dcv6Avmg6X28uWOsDBJWJjk5cvfDHcWUVEqlW3atCGi7777TuhY3tiIESOIaNy4cUY+LxLuZYGEu76kpKTwen0C1mkwYMKd6bWnttHwrzed/uB79+4loh49eggVVUFFPa/29fUlooli2NArPkqlkrcP1VlHtnjxYiLy8vISKjBtr169atu2rb29/e3btwse5as1W7Vq5ePjc+LECSNPJvnGHBMTE3x9ltC4ceOIaMSIETrjK1asIKLmzZuLoa3fV199xXcu6+yY4ct/qlSp8vLlS6FiAzGYPXs2FahUxhf7iH/D+z///ENEzZo1EzqQEvjuOxFVQ39DO3cyIibg5fDHH39QuS2Grik9f/z4caFjKav0dFarFpNK2cWLwgSQkZHBu1Du2LFDmAjKZsKECUT0wQcfCB1IRbBr167y+4c5ffp0Ilq2bJnQgVRAFWw+GBQUZOT5YGLiurAwCg83efXqqDHPK5Sff/6ZP4kRpBh6GWlWVhn56R0S7mWBhLsenTt3TiaTSaXS06dPCxKAYRPu7L89tVNSUgx9ujJ6+fKlXC43MzPT+d4aO3YsEa1atUqowEquS5cuRHTw4EGhAxEjniFycnLSGW/ZsqWo9pwmJCQUWnU0Pz/fzs6OiKKjo40fFVeu2zMYWVE1ZDW5FZG0lc7OzuYNALZu3apzqF+/fkQ0Z84cIeICsThw4AAR9e7dW3swJyfHwsJCKpUKWxPptRQKBW9IEB8fL3QsJXD4MCsXcRagVrO1awXr81rMh1h5wZ/CtmjRQgxPYcvo2DF29apgZ//iiy+IyMXFpWDRxXIBPVT0iO/6rVWrltCBlMaHH35YvXp1qVTq6urq5+dXbjqRlAeYD5ZdfPyisDC6ds0iI6OCzwdTU1P545l9+/YJHUsp8SdJRv5aRMK9LJBw1y/+V6BOnTqCLCI0eMKdMfbixYsWLVpQCXpqC27btm1ENGjQIO1Bzbea+Dd4JiQkSKVSCwsLkf85C2XOnDkFi2M+fPiQiGxtbcU/yz158iQROTs7CxiDdnuGa9euCRiJyBVTQ1aE1QN+//33QheHRkREyOVyuVxe6Poa/bp74ajvqOb8n3VTugT+tCDzlagzuW+P5ORkqVRqZmaWnZ2tPd67d28iOnDggFCBldDgwYOJaNeuXUIH8l9paWz+fFa/PpNImI0Ne/ddduWK0DGVyZUrzM5Ot2FmvXrMCOuMfXx8Ct2mU47k5eU1bdqUiPz8/ISORQ+6dWMODv95eOTjw/r0Mfh5Y2JizM3Njb+UT7/QQ0Vf1Gp11apViSguLk7oWN6AUqnkN4oymUwmk/GCIXK5vG/fvj///LNOk08oBcwH9UH96NGUsDC6fr1yVlZFng/OnTuXiLp16yZ4oaFSy8rK4lU1tm/fbrSTGiHhHp6R0fXaNe1/Pn340HCnMyYk3PVLoVDwJeDDhg0z/tmlZHjVqlULDg6uX7/+P//888EHH+Tn5xvhpKVz+PBhIuLF9TXOnTuXmpraunVrXtFYzA4fPqxWq/v3729lZSV0LGIUGBhIBf77Hjx4kIiGDBliYmIiTFglxq/P999/X8AYJBLJL7/84uHhkZaWNnDgQL56CArasWPH5cuXa9asuXDhQu3xGzdu/PbbbyYmJitXrhQqtoJGjx7dvXv3pKQkXvBao2XLllOmTFEqlfx206BUSkVuZtr4pXvGL93Tb9JXj25dOLBylqFPCiVRpUqVNm3a5OXl8fIsGjzhfubMGYHiKikxxpmXR25udPgwLVtGt2/T/v1UuTJ1706hoUJHVnpKJaWm0q5dFBLyv8FXrygvz7DnjY+P5x+nfn5+UqkxbmsNwdTUlL+Lb7755uXLl0KHU1bp6ZSQQNrfGzk5lJFh8PMuWLAgNzfX09OTdx8tpxYsWNCkSZO7d+/++uuvQsdSvkkkko4dOxIRr81dLuTl5Y0aNWrLli2WlpaHDx9OSkry9/d3d3eXSqWnTp2aMWOGg4NDhw4dvv76a54ghlLAfFAfJPXq/WJnN1KlSouKGpibWzHng5GRkRs2bJDJZOvXr5dIJEKHU0qWlpbfffcdEXl7e6enpwsdjt6oGctTq9c0bvxbs2b8n3l16ggdFIiRXC7fvXt3lSpVDhw4sGnTJmOf3mip/QcPHvCe2mPGjBHnEqSsrCxLS0upVKpTbn7WrFlEtGTJEqECK7lBgwYR0bZt24QORIyuX79ORLVr19Z5QM1nZeLfJqZWq+vWrUtE4eHhQsdSLtszGFMxNWR79uxJRCJsNRkeHs57ten0uE5OTuYLxAIDAw0awO1zB792/9++7yt//fbte3VVivycjFcv4x8qFfnR18/FRYYZNAYoyvz58wt+D4aGhhJRq1athIqqhMLDw/mHldCBaFm3jllYsNjY/42o1ax7d9amjVARld3Fi4yIffwxa9KE5eT8O2hjwzZvNux5P/zwQyIaPXq0YU9jFAMHDiSiTz75ROhAysrZmY0fz0xMmGZx28KFrGNHw56Ul4moVKnS06dPDXsmw0MPFX3hXWq8vb2FDqREUlJSePPnKlWqnD9/XvtQamrq3r17PT09tddUOTk5+fj43Lt3T6iAyyPMB/UaTN6DBwPCwuj2bcf8/Ao4H+TLtKdPny50IGWlVqv5Fa6zscNwjLDC/Wp6uktY2EvRb0kpBaxwN4SAgAAiMjc3v3nzpjHPa7yEO2Ps6tWr1tbWNaysnvn4GPO8JcSfbHfp0kV7UPOtFhYm9kRPRkaGubm5TCZLSkoSOhYx4lvOdeaxiYmJMpnMzMwsPT1dqMBK6OrVq0Tk4OAgkh1tmvYMrVq1Sk5OFjoccfn888+JqHPnzjr/sWJiYqpXry7atn4fffSRVCr9+eefdcb9/PyIqFGjRrm5uYY7u07C/fDa+Ws+6sAYu3vh6JqPOvgv9lgxtvUf34w3XABQjCNHjhCRq6ur9mB+fr6VlZVEIhF5bVmVSsUfGsVqJ7iF1acPGzxYdzAggBGxmBghAtIDnnCPjma1ajHNXZ6hE+4XLlyQSCQWFhaPHj0y4GmM5e7duyYmJjKZzMiTAb1zdmZLl7K5c1n9+ozXODR0wl2pVDo7O1MFajLJmyKKpH9j+XX06FEi6tWrl9CBvN7Tp0/5NVy/fv1icujp6em7d+/28PDQzry3b9cu77vvWESEMQMupzAf1C+VKisysmtYGN2500qhqFDzQf7pYWtrWzFSK2FhYXxllXGKJCPhXhZIuBvIxx9/zP9gdaqkGpS8zEvk30CHDh0OHzrk8tlnNt98QzIZLVlizLO/VqH1ZMLDw+Pi4hwcHNq3by9QXCV1/Pjx3NzcHj16VK9eXehYxKjQ/75HjhxRqVTvvvuutbW1QHGVFI9/2LBhItnRZmlpGRgY2KNHj4iIiMGDB4eEhKCQEadQKPbt2yeRSNasWaPzH6thw4YPHjy4d+8eb5oqNsuXL581a1bBz7oZM2b89NNPjx8/rlKlilxe0m+NT0d0MM2ML+GL6zR3adt3JBEF/DBNrVKmPIvNyXw1avFv/Gjai6d9PBc59x5ewt8GetezZ0+5XH7lypWsrCzN33QTExNXV9eTJ0+eO3du5MiRwkZYDKlU2r1790OHDp09e3bixIlCh0NERNHRNHSo7iAvWxcTQw0bGj8ifbG2puXLado0GjOGmjb9d/CDD+j06ZL+hg4dYsPC2pbwxfwp4IIFC3jT1PKuRYsWU6ZM+fnnn/fu3ctTb+Wajw/9+SctW0bff//vyJEjNG7cG/wGa+sWGRnPSvJKlUqVl5dXp04dvh2nAlixYkVISMihQ4eWL19uaWkpdDjlVefOnSUSSVhYmEql0tRDF6G7d+++++67T548admy5YkTJ+oUXRjB2tr6ww8//PDDD3Nzc4ODgwMCAgIDA20YM/3yS/ryS3J0JHd38vAgV1cSx3xBbDAf1C+p1LJRo8P37/fIyYm4eXNsixb7K8zn1Z9//klES5YsqRipFRcXl5EjR+7evdvZ2dnU1NTQp8vOziYiDw+Pks8cux47ll3iZIKDqen8unWJaH50tPz//y4sqV+/gbn5mwcLb4u1a9eePXs2MjLy1KlT7u7uxjmpURPuRNS7Tx/y8aHhw+mrr8jamgxfF7iEVCoVf4ypUxCNf6t98MEHIvlWK0ahNxDAPX78+ObNm9bW1r169dIeL0d/aIcOHSKRhVq1atWTJ09269aNt2c4cuSImZmZ0EGJgq2trVQqtbGxKfRQly5djB9SSdjb2/PCXzrkcrm5ubmJiQm/eSqh/Jwsll3Skr35OVn8/9Ru5ExEVWo1jPj70Nk/V334xVY+3rrXByU/NeidtbV1+/btr1y5cv78eV5Oiuvdu/fJkyfPnDkj5oQ7EfXu3fvQoUNnzpwRS8JdraaCMxBeN1alMn44+jV+PG3dSjNnUnDwvyNZWVTyqqG5udI3qjEqkUiKSpHcuXOnZcuWJf9VxlRUbNbW1kV9fZQ7tra0YgVNnkzjx/87olC8wZVARGp1emZmSX/A0tLSzMys0PrLCQkJJiYmfKeL2Dx8+LBu3boFb5+sra3lcrk4H8+XI1WrVm3YsGFMTMzdu3dbt24tdDiF++eff4YMGfLy5cuePXseOnTI1ta2JD9lbm4+ZMiQIUOG5OfnJ5w7R7t30+HDFBND69bRunXUsCENH07Dh1OnTkVm3lNS6OJFSk+n6tXJ1ZUqSp60GJgPGoJcXq1Jk6ArVz6YMSPW3v69o0ePVoz5oJ2dHREV9SFcHm8wKlWqJJPJcnNzc3NzjRCGTCZ7o5ljplKZU+J74Cy1mv8fNzs7q/9/mFq5xMl9eDuZmppaWlryzIbxzmq0tfT/4e/PJBImkTAj9kou3tmzZ4moSZMmOuP85iw4OFiQqEouPz+ffysYZ5dQucNrYowaNUp7UFO1//nz50IFVkK8M5KtrW1eXp7QseiKioriWdrRo0eLsz2D8X3yySdE1LdvX6ED0Y/t27cTUc2aNePi4l6VWE5Wem5mWgn/yc/J0ikp8yox7ushtW+dPXD3wtGv3Wup1bi0BLZo0SIqUAmXt1Ft2rSpUFGV0K1bt4iodu3aQgfy/7p0YcOH6w4eO8aI2J07QgSkB7ykDN94fesWk8vZwYP/lpTJymKvXpX0n7S0/JJ/zuzevZuI7OzsXrx4oR2MWq0eMWKEVCq9evWqMH8cxQoJCZFIJB9//LHOeFxcHN9Bcu7cOUEC0xdeUoYxplaznj3Zu+/+W1JGoXiDK+HVK5aWllbCKyEpKalx48ZEtGHDBp1g9u/fb21tPWXKFAH+IF4nPz+/efPmjRo1Knj3PmzYMCIaPx6F1Mpq9OjRRLRly5ZCj+7evVvYXkSHDx+2sLAgovfff7+sm9yVShYayry8WO3ajOjff6pXZ56eLDCQKRT/efHy5czcnFWrxlxcmLU1q1aNib58edlhPmg4FW8+uHPnTiKyt7dPS0vTHlcqlQMGDDAxMRFn+4R9+/ZJpdL58+frjGtq1p0/f77kd1ml1q9fPyLau3dvyX8kU6HIUCpL+E+WSoWSMiIk8pIyfDJbt25dY9ZDFijhzhhbu5YR/aehkqDmzZtHRIsWLdIejI2NJaLKlSuL8FtNx8mTJ4modevWQgciUr179yaiP//8U3uQ96TSqUosTitXriSicePGCR1I4W7cuMHX48yYMUPoWETBaI1GjaCYBrD6pZNwV+Tlfvte3bDjO5FwF4mgoCAieuedd7QHlUol/7sfHx8vVGAloVar+TwwKipK6FgYY4wtWcKsrZlOO8Rx41i9eqzcTlO1E+6MsU8/ZU2bMisrgzdNLarR6MKFC4moS5cuIil0q6FUKvliDl9fX51DFaYBrCbhzhiLiGAmJqxdO4M3TS2q0WhUVJSZmZk4n76sXr2aiBo3bqzTIqUiNYAV3Jo1a4ho6tSpBQ/FxsZKJBKpVOri4uLj42P8L4jffvuN11uYNGmSQichXhYqFQsNZXPnsnr1/pd5r1GDTZ3KgoKYQsF++41JpWzXrn9fn5/PPvuMyeVMfH9H9AvzQYOqYPNBTaNRnQQRY2zatGlE5ObmJkhgxcjJyWnYsCERbdy4UeeQkbuyo4Z7WSDhbghnz56VyWRyuVynJ7mhCZdwZ4wtXMiImIUFCw0VMgzGGGOOjo5EdOnSJe1Bfos2ZswYoaIquZkzZxLRkiVLhA5EjJKTk+VyuYmJSWpqqvb4+PHjiejHH38UKK430L17dyIKCAgQOpAinTlzhu/N+frrr4WORRSM02jUCIpqAKt3POGek/EqJ+PVq8S4I+sXfjesQfKzWCTcRSIrK8vU1FQmk+l8kA4ePJiIdu7cKVBcJeXh4UFEmzZtEjoQxhhjiYmsRg02ZAjj6+ny89mmTUwmY7/9JnBgZaCTcE9PZw4OjMjgCfeiGo2mp6fXqlWLiH7//XfDRvCGfvrpJyJydHTMycnRHq9IDWC1E+6Msc8+Y0QGT7izohuN8sLurq6uonr6kpycXKVKFSI6evSo9njFawArrAsXLhBRmzZtCh66c+fO0KFDNVvLJRJJx44dfX19jZN59/X15efV2TqmZxERzMeHNW/+b9rdxIQlJ7MmTZiHx39eplSypk3ZyJEGjERomA8aQQWbD4aHhxfaaLSoT2/BLV26lCdqdR7gHTlypNDtgIaDhHtZIOGud0lJSXwF4VLt21OjEDThrlazyZMZEatcmV2/LmAgN2/e5DuGdDZA5ebmHj9+XIQrYnSo1eq6desSUVhYmNCxiJG/vz8RDRgwQHtQqVRWq1aNiO7fvy9UYCX04sULmUxmZmaWnp4udCzFOXz4MF+ns3r1aqFjEZ5CoWjVqhURrVixQuhYSi8mJsbc3FwikRjhi5Mn3Pk/3wyt8/PM3g+uBDPGkHAXD77S58iRI9qDfL3VpEmThIqqhH7++eeCG8mFdPs2a9+eEbHatZmpKbO1ZevXCx1Tmegk3Blje/YYI+HOGPPy8iKi3r1764xv3bqViBwcHDIzMw0eRMmkpKTwe4+DBw9qj6tUqo4dO1aYJIVOwj0ri9Wvb4yE+507d+RyuVwuv337tvZ4WlpazZo1iWjPnj0GD6LEilojyT+sGjZsqPNIBkonJyeHPy0u6nMgOzs7MDDQ09NTuxuEk5OTj4+PgSZWSqVy+vTpRCSTyQouRDWUGzfYkiXsk0/Ys2eMiBXctjh/PqtZ00jBCAHzQeOoYPPBCRMmENEHH3ygM17U/iQBxcfHV6pUiYhOnjypPZ6Xl9esWTMi8vPzM1owSLiXBRLu+qVWq4cOHUpEPXr0UCqVRj67oAl3xphSyTw8/t3mJtz33DfffENE06ZNEyqAMrp69SqfUopq5Y548DqYP//8s/Zgdnb2mjVrJkyYIFBQb4CnDAYPHix0IK+3Y8cOiUQikUh+K8/rNPUlODiYiKytrYUtD1oWxqwhq1Tk8+XtORmvlIp8nXEjBACvtWTJEiLSqQt57do1nhsSKqqCCi0eGhkZSUQ1atQQ1xdlVBQLCWGXLzM+YUtNZa/K69W+bx9LSmI6f7opKcwIU1FNFnv//v3a4yqVit/6f/XVVwYPomRmzZpFRH369NEZ37x5MxHVqVNHPM8GSu2ff9idO0wnV5yVxYyTIyqqh8qmTZt44c6srCxjxPE6ERER/NlARESE9rjmYt73FhTUNhoXFxci+vvvv4t/WU5ODs+8a7dJbNiwoZeXV2hoqL6+O3Jzc/mOKzMzM2GWKt+8yYjY6dO642vWMKlU90O8AsF80Ggq0nwwISGBtzEPCgrSHlcoFLwx6apVq4SKTce4ceOIaMSIETrjK1asIKLmzZvnGzE3bYSEu0KtTlUoKuQHFhLu+sXLltjZ2T1+/Nj4Zxc64c4Yy8tjAwYwItaoETNuWiorK+vcuXPLly+vXr06ER0+fNiYZ9ejL7/8kohmzZoldCBilJuba21tLZFI4uLihI6llPgTuV9//VXoQEpk3bp1RGRiYmLQr9jywt3dnYgmT54sdCClgRqyoINfEu3atdMeVKlUvGNBbGysQHH9j1qtnjNnzsiRIwtdv+Dg4EBEd0TblfToUVa9Ops9W+g4SuPoUUbEBCyBu2HDhkIXBV+8eJHXaRHD9ampfnPr1i3tcU31G53KwuVRbi5r3JhZWrLLl4UJoKgeKiqVimddv/32W2Ei+69evXoR0bx583TG58yZU+h2DSgLvplg5syZJezlqFQqQ0NDvby8ePMPrn79+jzzXpaGkKmpqT169OAz/1ChSqpGRjIiduiQ7vg33zBLSyECMgbMB42sIs0Hv//+e77rRadOC19ZZWNjI4Z2u5cuXZJIJGZmZjoVsRITE/kTxGPHjhkzHiMk3CswJNz16NatW7zO1aGC33pGIYKEO2MsK4t16cKIWOvWLCXFoKd6+vRpYGCgt7e3q6urmZmZ5i5KLpePGjWqnPbU5t23goODhQ5EjAIDA4moQ4cOQgdSSllZWZaWllKpVAzf5SXk7e1NRBYWFq9dTFThPXz4kPdqu3LlitCxvBnUkIWCcnJyLCwspFKpTgnIDz74gIi2bdsmVGCcWq3mm/TNzc2vXbtW8AXvvPOOlZWVeB+u37nD5HImk7H/ZmPFLy+PNWvGiNiaNYLFUMxH1ujRo4noww8/FCQwbQMGDOBZP53xBQsWEFHXrl3Ftf2iVJYvZ0TMyYkJuMm7qB4q58+f509fBFnipC0gIICIqlSpkpycrD2ueSRz48YNoWKreDIyMlxcXHjx1mrVqnl6egYGBpZwpacm885/nKtevTr/JW/a5vTZs2dt2rQhotq1a+v0nDCqvDxmbs4KNG1mI0eycjtdei3MB42vwswH8/LymjRpQkQbNmzQOTRo0CAqoiezManV6k6dOhHR4sWLdQ5NnjyZiNzd3Y0cEhLuZYGEu75kZmY2b95c2KXJ4ki4M8aSkv5t5/LffV5ll5+f/88//6xZs8bDw4OvbtNOsrdr127mzJnff/89f/RXHntqx8bGElHlypXz8vKEjkWMoqKiOnfu7OjoWE63aR84cIDPw4UO5A2o1eopU6bwy7LQtNdbpZxmUopaLgpvud69exPRgQMHtAf5OiZPT0+homKMqdXqGTNm8E36OitbueXLl/OCEqL+LpgxgxGxAtUwRG7lSkbEmjcXMsfKit6UExcXZ2VlRURnz54VKjbG2KFDh6iwlmXl97lsQQkJzMaGEbETJ4QMQ9NDpWAXRF7KY+zYsYIExuXk5DRs2JCIfvnlF51DAwcOJKJPPvlEkMAqpISEhPbt2xORra0t73fFVatWbfLkyceOHSvh7EmlUoWFhfn4+DRu3FjzS6pWrcoz7yX5JXfv3q1Xrx5fJ/vkyZMyv7OyGTOG1avHsrP/N/LwITMxYaIpjqF3mA8aX0WaD/I//ypVqrx8+VJ7PCoqin+DC9vzb/v27UTk4OCQkZGhPX7t2jWZTGZqahoZGWnkkJBwLwsk3PVl0qRJ/E8yW/v7zrhEk3BnjD15wtau1R1MSyvNr0pIYIcObV62rFu3bhYWFtpJ9ipVqgwePHjp0qWnT5/W/kgqvz21V61aJfjkQcySkpL4De7gwYONWblMX3irlh9++EHoQN6MUqnk09oaNWqIvw2RQWlqBezevVvoWEqqqILIAN9++y0Rzf5v2RN+X1i7dm2holIqlfyj0tLSstDNXr6+vkQkk8kEX4b/GsnJrGpVRsREuwy/gMREZmvLiJhxNysXrqi2E19//TURtW3b1vi9kri8vLymTZsS0bp163QOlevKYzomTmRE7P33hY6DsZCQECqsh8qTJ08sLS0lEolg1TwYW7p0KZ/+6ayPPnLkSKGPZKDUYmJi+LpUR0dHXmYhIiLCx8enRYsWmomhra2th4eHv7+/TqKqKGq1+sqVK97e3tqZ99e24758+TK/rercubMo/vvGxTEHB9ahA9u2jZ0+zdatY3Xrsq5dWcVdvIX5oCAq0nywf//+ROTl5aUzPn/+fCJydXUVamVVRkYG34Kzo0AnZF7AasGCBcaPCgn3skDCXS/4bkJzc3Mht5SJK+Gu7dYtNmgQMzNjRMzKio0cyWJiinu9UskiIpi/P5s6lTk5MYmEES3u1YvfBjk6Onp6evr5+YWFhRVTNKac9tTmn6R79+4VOhDxioqK4kUYx4wZU76qBimVSn6Dbvzn0mWXm5vbt29fIho2bJjQsQis3HXDQw1ZKEpoaCgRtWrVSntQrVbzz9gHDx4YPySlUunp6UlEVlZWpwt2gWPsq6++4tl2f39/44f3xtau/berjRGajerDlCmMiImki1tMTIy5ublEItG518/Ozm7QoAEJV/2WP/Jp0aKFTqKnqLxweRQezqRSZmrKhPgYKERRTzJ436P27dsLckMYHx9fqVIlIjp58qT2eF5eXrNmzYjIz8/P+FFVSGFhYfyLqWPHjomJiTpHIyIifH19XV1dNUlzCwsLd3d3f3//tBIv9uLpexcXl4J5Lm2BgYGWlpZE9N577wm4yE7Xs2fMy4s5ObGaNVn79uy775g4+gkbDuaDgqgw88E7d+7wTtc6XVjS0tJq1qwpYDbm888/5w/zdDL+u3fv5o86Xr16ZfyokHAvCyTcy+7Jkyd2dnZEtGnTJmEjEWXC/e5dZmPD3nuP/f03i4tjJ08yV1dWqxbTqVmWmsqOHWNLljA3N2ZtzYj+90+lSqxPn3s//vjXX3+lvElR+HLXU/vly5dyudzMzCw9PV3oWETtxo0btra2VN6qBp05c4ZP0YUOpJTS09NnzpyZmpoqdCACU6lUHTp0KC8baFBDFoqRn59vZWUlkUgSEhK0x0eOHCnIPU1+fv7w4cP5huWLFy8WfMHixYt5tn3Xrl1Gjq2UFArWujUjYuVhIdv160wmYyYmTDxJABHOPDUty078t9JKMZVPyh21mnXvzoiYt7fQofy/omr1ZGVl8YWugtzqjxs3johGjBihM75ixQoiat68eXlceytCp06dsrGxISI3N7fip0ixsbF+fn6urq4SiYRn3s3Nzd3d3Tdt2pSUlFTC0xWzsnX79u0mJiZE9NFHH71pzXfjefCAlfMq2yWE+aAgKsx8kJcu7Fug7t/GjRuJqG7dullGf2ol2nUGSLiXBRLuZaRQKLp27SqS53yiTLgPGcKaNmXa237T0liVKmzGDJaayrZtY5Mns5YtmVT6nyS7oyMbN45t2MCuX2dl2DJcvnpqb926lYgGDRokdCDlwOnTp3nVoG+++UboWEpq7ty5RPT5558LHQiU1YULF3ivtkePHgkdy2ughiwUj2+q3bNnj/bgL7/8UpJt9fqVl5f3/vvv85oABe/t1Go1/wg1NTUtZ8WRQkIYEbO2ZqJf9dyzJyNi8+cLHYcWEe6t5hUkhw4dqjNeVG/P8mjXLkbE7O2ZEAvpilRUD5WdO3cSkb29fcnXMuvFpUuXJBKJmZkZL2+ioXkkc0wMhZnKv3379pmZmRHRuHHjSv4A48mTJ35+fm5ubny7M39S6+rq6ufnV+o2lb6+vjyP7y2eJ1EF3bnDiFj9+kLHYSSYD0KpJScnV61alYh0egWpVCoXFxci+vbbb40ckmgr6SHhXhaFJtyzs7N9fX0LViYUFZEk3L/44gteXUCnNb0gxJdwz81lZmZsxQrdcS8vVqcOe/z4fxl2ExPm4sK8vJi/P9NrDqsc9dQeOnSoGDZKlBeaqkFr1qwROpYS4W21BP/MAr348MMPiWj06NFCB1KcwMBAQg1ZKBbvPjp9+nTtwcjISL582GglLHNzc/k3oJ2dXcFuk2q1evbs2TzbfujQIeOEpE9DhjAi9vHHQsdRnD17GBGrXp2JbdWaqLqHXbt2TSqVmpqa6pSvLWreXh5lZ7N69RgRE1uLBE0PlT///FN7XK1Wd+vWjYgWLVpktGDUanWnTp2IaPHixTqHJk+eTETu7u5GC6YC8/Pzk0qlROTl5VW6siEvXrzw9/d3d3fnK9OJSCqV8sx7fHx8CX+JUqnki2FlMlnB7rjiolb/24hD9I949QXzQSi1tWvXFvqk/Pz583xl1ePHj40WjJh7xSPhXhaFJtzFIyMjo6iVTGJIuJ89e1Ymk0ml0jNnzggYhob4Eu4xMYyIHTigO86rmubns48/ZqtXs0uXDNfXpbz01M7KyrK0tJRKpRWg9KfRaKoGbd++XehYXuP69et8BVb5qjMIRdHc/Yj2SZ6mrR9qyEIx/vnnHyJq2rSpzriDgwMR3blzxwgxZGVl9evXj4iqV69esBOOWq3mmQ4zM7Pyms18+JCZmTGplBV4liAS2dmsQQNGxET4xF88mU21Wt29e3ciWrhwoc6hTz75pNCd6eXRkiWMiLVvz0R4t1JUD5Xw8HD+IMRonSf4c6CaNWvqLKu/fv268Z8DVUhqtdrHx4eIJBKJXso0JScn88y7qampJvPu4uLi4+NT/GWTm5vL11iYmZmVjyZbffuWr2bdZYf5IJROMbXgRowYwTfWGCcSpVLp7OxMRMuWLdM5NHr0aCL68MMPjRNJoSZ99lnrAQOChetPXq6JNuGuVqv37t1br149qVR69erVgi8QPOGekpLCywaKZw+T+BLu0dGMiBVcj7Z+PSMyWvP0ctFT+8CBA0TUpUsXoQMpZ/ijafFXDeJ7wXSWkUK5xps3tmvXTpw3zaghCyWhVCp5CVSdtX5jx44lovXr1xs6gKysLN6Ay97eXqd1FQ9vwoQJRGRpaRkcHGzoYAzos88YEevShRlr08Ab+fZbRsTati1LDT8DEkntjt9//50KKxyv6b12+/ZtI4RhUE+eMEtLJpGItAR0MT1U+AfFBx98YIQwiql01LNnTyL69NNPjRBGBaZQKHjtJlNT0z/++EO/vzw1NXXv3r2enp684S3n5OTk4+Nz9+5dnRenp6fz58G2traiXWCh6/PPGREr8ISyYsN8EEqnqG7nT548sbS0lEgkoUbJMm/YsIGIGjZsmJOToz1+8eJFvtY+NjbWCGEUZXZUlEtY2HlRlZkrP8SZcL948WLHjh35N2Dnzp0LLnhiQifc1Wr1e++9R0Tdu3cXqphSQeJLuGdnMxMTtnat7viCBaxWLWMGkpeXN2DAACJydHQU5xJyPlXw9fUVOpDyZ+HCheKvGtSuXTsiOn78uNCBgN5kZ2fXr1+fiLZu3Sp0LLpQQxZKbvDgwUS0c+dO7cHw8PDTp0/r3PfrXWZmZu/evflC0YKr6ZVKpaenJxFZWVmdOnXKoJEYXHo6q1WLEbH/VsMQg/h4ZmXFiJhwm5VfT/DulMV84PNGCF5eXgYNwDhGjmREbMwYoeMoWlE9VBISEnhfzaCgIEPH8NpevhWgnaCQMjLujB9vXamSjY1NSEiI4c6TnZ0dGBjo6enJrxxN5t3b25un2J49e9a2bVsiqlWrVnnqPH/wICNi/foJHYexYT4IpTNkyBAi+rhA3b8vv/ySiNq3b2/olVUpKSnVqlUjIp3KHiqVimc8v/rqK4MG8FpIuJeF2BLuT58+nTp1Ki/XVrt27U2bNhV1hQubcOePUe3s7ETVM098CXfGWJ8+rHfv/4zk5bE6ddhHHxk5kKysLN7ftnXr1mKouK9NqVTyz1lsQS0F7apB169fFzqcQjx69EgikVSqVKkC9FIDbUUteBQcashCya1cuZKIJk2aZOTzvnr1qkuXLkRUt25dnZXLjLH8/Pzhw4fzD/YLFy4YOTaD2LKFEbG6dVlWltCh/MfEiSoiViCVLS7x8fF8OerJkye1x41WO4tXtyi4pWn//v1EVKVKlZcvXxo0ACMIDc2TSJilJXvyROhQilVUD5Xvv/+eJ0wVCoXhzh4TE2Nubi6RSHSmoNnZ2Q0aNCCiX3/91XBnr/gSE1mHDowouG/f8PBw45wzJyfn0KFDnp6efL8X16hRIz41c3JyeiLyvxI6nj1jRKxyZTGWhTIkzAehdB4+fGhmZiaVSnV6CGVlZfFyFoYuVTRnzhwi6q2TMWNs69atROTg4KBTRc34kHAvi+joaBcXF2traz8/P4Pen7xWXl6en5+ftbU130Dm5eWVnp5e6CvVarW/v7+NjU3lypXr1Knj5eUVGhpqtM5ejLHbt29bWFgQ0Z49e4x20pIQZcL9/Hkml7P58xnv2vf0KRs7llWqxArMro3gxYsXTk5OfFmK8T+5cnNzo6OjCz105swZvkTLyCFVGCKvGsQf0AlbfA0MoZiSvgISpJcglF/Xrl3j+1iNedLU1FRemLt+/foPHz7UOZqXl/fBBx/wXfyXLl0yZmAGpFLl9Ou30dX1mwLVMAR08eLFWrU69OwZI+hm5RJZunQpXyKkM10xQndoTdOOc+fOaY/n5eU1adKEiDZs2GCgUxuNSqVycenQvfu05cvFPqMW9j/HsGHDiGj8+PE647xSRNu2bcWz8bn8iYlhTZsyIuboyIxVjl+bUqkMDQ318vKqWbMmEfXq1atTp07lsu183bqMiN27J3Qcxob5IJTOggULiKhr1646KcWdO3fymoc67Tr06O7duyYmJjKZTGcbjaZP+O+//26gU5ccEu5ltHr1av4o19nZ+fTp04LEEBgYyDs28zV5MTExRb3y/PnzLi4u/JV8xzzXoEGD+fPnX7hwwdB7PrKyslq0aEFEM2bMMOiJSkGUCXfG2PHjrFEjRsRsbBgRa9OGXb4sVCzx8fF8BUq/fv3yDF9E/vnz54GBgT4+Pm5ubhYWFkWl1OfOnUtEixYtMnQ8FZimalCjRo3EVjWoT58+RKT3MpQgBteuXeO92sRzZ9+jRw8iWrBggdCBQPmgUqmqVq1KREYrEJmSksLrBjZo0KDgDV9ubu7QoUN5CvWKWLuMlk5R1TCEolar+XbRJUuWCB3L6+Xk5PCpwsaNG3UODRw4kIg++eQTA51a2CXVxvHrr7/y7SZZItuBUSihNhycPn2aiCpVqvT06VPt8fj4eP4M4KyYCzMVIS4ubu3atXFxcQLHcesWc3BgRKxDB5aYKGwsSqXy9OnTycnJ2dnZwkZSSsOHMyLm7y90HALAfBBKQZPd/vO/df/UanW3bt2I6PPPPzfQqYu6geElkrp06WLMZcVFQcK97AIDAx0dHTX57qKW4RrC9evXeXKAiFq0aHHixImiXhkfH+/p6SmRSPjWCn9/f81z6Dp16mgy79WrV/f09AwMDDRQOUe+U79ly5Yi/AoWa8Kde/CAXbnCRDDJjIqKsre3J6IxY8bo/fmMQqG4du3a+vXrx44dq3mIxEml0tatWxe6iYz/9as46/gEol01KCUlxTgnjY6O9vf39/LycnFxKXQDY3JyslwuNzExQU3Piuqjjz4iovfee0/oQBjTqiErtio3IGZ8Ofm2bduMcK7ExERnZ2ciatq0qU6nVsZYVlYW71BXvXr1Qhv4lHejRo0iolGjRgkdCGOM/fbbbyLZrVxCAQEBPJ2qUxiwqAVieiGGouGGlp6ezpf0im3rblEEKamvVCr5Z9eyZct0Do0ZM4aIRo4cqfeTGoFm5R1vHCrM6oHTp1nlyoyI9e3LDLaS9C3yww+MiM2cKXQcwsB8EEph8+bNRFSnTh2dO6KwsDC+suqBAbbdFLVFLzo6mle5uSzcKlVtSLjrBa/owm8deUUXw+2c4JKTk728vGQyGb959vPzK2oTXnZ2tq+vLy/eaGFh4e3tXbDaTEREhI+PDy/kyFWtWpVn3vW4jnnfvn1EZG5uLs5poLgT7mJy48YNXqdPL/sU0tLSgoODfXx83N3dtcv/8VUwrq6u3t7egYGBRS23uXHjBt+sZOjdGW+DFy9e8B0ohqsalJGRERoa6uvr6+7uzpeFahS6i3nHjh1E1L9/f0MEA2KQkJDA91sV88TYOFBDFkpn3bp1ROTp6WnoEyUkJLRq1YqImjdvrrNElDGWlZXVt29f/oV469YtQwcjiKKqYRhfRkZG7dq1qUC/XJHr1asXEc2bN09nvKgSqGWkUqk6dOhARF8XKATEe91/8MEH+j2jID799FMqbDe9mBXVQ+XOnTtyuVwul9++fVu/Z/z555+JqGHDhjrdpC9evMgfyRhtk5B+BQcHDx8+3NLSUnM3265du+++++6e0QqS7N/PzM0ZERs7lhm4+/Hb4uzZf/cKvK0wH4Q3pVKp+OZLo33dF9OE5r333iOij4ze8rAoSLjr0bNnzzQ9S2vVqlVMz9KyyM/P9/Pz45lJExMTLy+vYh71BQYG8gQCEbm7u7/2ZoZn3vlnLGdnZ+fp6bl3794yft4+efKkSpUqRPTLL7+U5fcYDhLub+DMmTPm5uaFfqqWhPZzbP4XRqNWrVoeHh5+fn6hoaEl2WfByz5OmzatFGFAQfHx8Xzdkx6rBj19+nTv3r1eXl6urq4mJiY6/7nd3d19fX1DQ0ML3b7A+/5VgAKvUAxfX18iatGiRVF/5V++fLlHT4ppI4YaslA6YWFhRGRtbf3dd9+FhYUZ6Onv8+fPeRsVJyen58+f6xzNzMzs3bs3EdWsWTMiIsIQAYhEUdUwjGzRokU8GVGOcqyMsRs3bshkMrlcrnORpKSkNGrUaNWqVfr9U83Ly1u6dGnz5s11Cq0YdMmbkUVFRfGVdFevXhU6ljdQTA+VTz75ZNiwYXov3HTu3DlnZ+d9+/ZpD6pUKl6X6auvvtLv6YwsOzs7MDDQ09NTu2Cro6OjwVulrVvHpFJGxLy83rYmnwaUmcnkcmZiwsS3H99oMB+EN1XUhranT582aNDg559/1u/psrOzv/jii7Zt2+pMHk+dOsXvycVTEwkJd727evWqq6sr//RwcXE5f/68Hn95cHBwy5Yt+S93c3MrZlYVHh7Ob6X4xORNFwNFRET4+vpq3ggRWVpauru7+/v7F9WOtRgKhYL/KjGvZUHC/c0cPnxYLpcT0Zo1a1774szMTM1zbN62XsPExMTFxcXLy2vv3r2Jb152sF27dkR07Nix0rwHKMyDBw/KWDUoPz8/LCzMz8/Pw8OD/yoNuVzu5OQ0depUf3//YtpNcLm5udbW1hKJRPjimGBImkUK69atK/QFFy5cID0pal+OZuVseawhCwLi68olEgmv2UdE1apV8/Dw2LRpU8FF6GWxbds2Imrfvn3B/V6vXr3q0qULEdWtWzdKiJ7qxqSphrFlyxahYoiOjjY3N5dIJCLZrfxGpk2bxqcQOuOGe9Co85uNUNTVmAYPHkxEU6ZMETqQN1ZUDxWjXQmMsa1bt1K5qsv0Wrm5uUeOHJk4cSJfZcY1atRo4cKFly9f1mfmXa1mPj6MiEkkzNdXb78WOGdnRsTe7mqlmA/CmyqqZYvRvlaUSmXr1q2JyFdMn4pIuBuCWq3eu3dvvXr1iEgikXh4eJR9ocD9+/fd3d35Z1TTpk2PHDlS1CtfvnypqTZTtWrVYqrNlERsbKyfn5+rq6tmLmlubs4z7yUvcvvll18SUZ06dQzUhkcvkHB/Yzt27OBZhu3btxfzsi1btvDLUaNOnTojR4708/O7fPlyqdsFJCYmbt68WSKRVKpUSWeDKpRRKaoGPXv2LDAw0Nvb29XVle9+0KhcubKbm5uPj09wcPAbdW84cuQIEXXs2LFUbwLKk0OHDlFhZfi4+/fve+hJwZK13OjRo4noww8/NPAbhQolMzOTd/GqUaPG2rVrp0+frt19RCqVdujQYfHixaGhoXppC7lz586CBVVTU1M7depERPXr13/48GHZzyJ+f/zxBwnaa+H9998nookTJwpy9jJKTk7mqcC//vpLkAB27txJRPb29oYuvmkEwcHBRGRtbV1w00m5MGnSJCIaOnSoIGfX9Nn7/fffBQnAoDSt0vh7JKImDRqwunXZ1KksMJCV8RtBqWSTJzMiJpezIu5qoEz4H2+BUhVvG8wH4Y0IXvfvp59+IiJHR8dC90kIBQl3w8nKyvLx8eEfNZaWlj4+PqXrFJqamurt7W1mZkZEtra2vr6+RV1CvNoM383Gq83ocTLy+PFjPz8/Nzc3Te5UJpO5urr6+fklJCQU84Pnzp2TyWRSqfT06dP6CsYQkHAvjbVr1/KrrZiZ299//639HLvUbYWVSmVERIS/v//UqVOdnJz4I6COHTsW7L8EZXf69Gn+4fXNN98U87KcnJxRo0bVrVtX+45KJpO1adPmk08+2bFjR6mXW6rVat4f77vvvivdb4DyZcCAAUQ0a9Ys45+6vNeQBUFkZGTwitg1a9a8c+eOZjw6OnrTpk0eHh7W1taaT0UrKyt3d/dNmzY9fvxYjzGkpKTwopkNGjR47RqxiqRHjx5E9Nlnnxn/1Hy3cqVKlfS7g8GYeJvHxo0bG39GmpWVxZcjFb9Qo1xQKBS8p8LKlSuFjqWUEhMTBeyh4u3tTURdunQpX3WZ3pRSqTx79uzs2bNXvvceI/r3n5o12SefsODgUmbeZ85kRKxSJVb+ew6L1K+/MqLs8vlUVb8wH4Q3ImDdv5SUFF5H4dChQ0Y+dfGQcDe0uLg4T09PnhusU6eOv7//G91XbNmypXr16vwja9q0aUlJSUW9Mjg4mJf3JCI3Nzft2Z9+vXjxwt/f393dXVN9S5N5L1grKSUlhd9a+/j4GCgefUHCvZT4HbOFhcXff/9d6AsUCkXpnjUxxl69enX8+PGvvvrKzc1NO3nBp7u9e/deu3ZtGWKH4pSwahC/u7K2ttZ0uC11U3teeojvPaxevbpMJqtbt67eO3eBON25c8fExEQmkxm532OFqSELxpSamtq5c2ciqlevXlHTyJycnODgYG9vbxcXF80mQb70ZurUqYGBgWXcm5WYmOjs7ExEzZo1i4+PL8uvKneKqoZhaEqlkv+Zf//998Y8r34pFApennLVqlVGPjXf8dq+ffsK0Oh+zZo1RNSoUSNRraR7U6/toWIg0dHRvPZ9eazLVHoREczHhzVt+r/Me5UqzNOTBQayQq+i5GT27besf3/WqRMbMYL9+ee/hdrj4ljbtuziRSOH//Z4cutW4/r1GzduLHQgooD5IJScpu5fUVuKDWfWrFlE1KdPHyOf97WQcDeOM2fOtGnThk+1evbsef369RL+IE9m9uzZ88aNG0W9JjIyctCgQfyXN23a9OjRo/oJ+nWSk5N55t3U1JSfXSqVurq6+vr6arY18y7B3bp1E38XOiTcS0mtVk+ZMoXvFCv5lV2MErZU1VcLFyiGv7//a6sGnTp1KiIiotST59jY2N9//33WrFnt27fn93MatWvXrgAd1aDkBLlVqng1ZMHQUlJS+EOa+vXrl3DP1vPnz/39/T08PPjubM7CwsLNzc3X1zcsLOxNY0hISOCra5s3b15+l1qXhSDVMNavX88fmZT3QnYnT54kIhsbG2PWQnny5ImlpaVEIgkNDTXaSQ0kOTm5atWqRFRMic9y4bU9VAyEzw8/+ugjY55URHjm3cnpf5l3S0vm7s78/VlGxr+vefyY1avHWrZky5axrVuZlxezsmJjxjC+cK9CbwsQnFKprFSpkkQiKbTO4VsI80Eoud9//52MXvdPqGVbJYGEu9GoVCp/f/8aNWrwxLSnp2fxlVi49PT0/fv3F3U0JSXF29ub57vt7Ox8fX0FSUKmpKT4+/sPHTpUU6pLIpF07tyZV7m0tbXVe697Q0DCvfSUSqWHhwf/bC3FcjOd59jaX7FyuZy3VPX39y8Xl1HFU5KqQW9EoVDwFjqenp4NGjTQ/s8tk8k0pYeKaQkNFZVmM+DBgweNc8aKXUMWDCEpKYkvoGjSpEkp+ncplcqwsDDelV77iXLDhg2nTp26d+/eksxPnj9/zrc0Ojk5ldPi0WWnqYZx/Phx45xR8wF14MAB45zRoPhSnalTpxrtjCNGjCCicePGGe2MhjN9+nQqrPdseVR8DxVD4HWZrK2tC+6MfuvcucO+/Za1afO/zLuVFfPwYDk5bMgQ1qQJ014KcPIkI2K7dwsX7luEFy47duyY0IGIBeaDUEJqtbp79+5EtHDhQqOdVMDCpK+FhLuRlbwge/EKpu8TExP1Hu2bys7ODgwM9PT05MU/TE1Nzc3N9+3bJ3RcJSJhjBGUVn5+/tChQ4OCghwdHc+fP6/pEVSUZ8+ehYeHX7hw4fz581evXs3Pz9ccqlmzZocOHVxcXLp169atWzedjitgfN7e3j/++KOFhcXJkye7detWit+QkJBw9epV/l/8woULOTk5mkM2NjbvvPOOq6uri4tLjx49eAIF3lrr16+fPXt23bp1t23bpilbZjhbtmzZtWtXly5dLly4oF30A6BQiYmJ/fr1u337drNmzU6dOuXg4FCW3/bixYuzZ8+GhIQcPXr02bNnfFAul7dp08bd3X3IkCHt27cveFk+efKkb9++Dx8+bNeu3cmTJ3kK+O30448/ent7N2rUaNOmTToL4gzh559/3rt3b58+fXi6sLx7+PBhq1atFArFxo0b+Rpng4qIiJg9e7aFhcW9e/d4rcny686dO23btiWi69ev840m5d3AgQODgoI8PDxmzpxp6HOp1erp06c/ePDA19eX7+MGIqJHj+jwYQoIoIsXqWVL+vtvqlaNNmyg6dP/87Lu3alyZTp6VKAo3yILFy5csWLF119/zWtSA2E+CCV2/fr1Dh06yOXyrVu36lT2N4QLFy4sXrzYzs7uwYMHIrwr3puU9DAn58MaNRpZWAgdy1vkwYMHn3766dGjR4moSZMmq1evdnd3L/mPnzlzZu7cubdu3SKi3r17+/n58ZKS4pGTk3PixIm4uLjhw4eXcUJqPEJn/Mu9rKysrl27ElHr1q0LVm3Dc+zyS61WT548md6kalChHW41HB0dPT09N23aFBERUbGbZcGb4sWFefk/I7C2trawsLhy5YrQ7xvKgefPn/PK1y1atNDvwkyVSsWXvbu5uWk/Z6pRo4aHh4e/v39ycjJ/5aNHjxwdHYnIxcXl5cuXeoyhPMrNzW3cuLHRPi5sbW0tLCxu3rwp9PvWm3nz5r12eYQe2dvbf/vtt0K/aT34+++/GzVq5OXlJXQgehMREWFhYWFnZ2ecK6F+/frlvfa9AT1+zC5dYufPMyJ2/rzu0ZkzWf36AkT19gkICCCiQYMGCR2IiGA+CCX30UcfGTMJWLVqVSMXRiuJv5KTN8THa//zBF98xhUcHMznbkTk5uZWkkzjkydPPD09+Y/UrVvX39/fCHG+JbDCXQ9evnzZo0ePe/fude7cOSQkJCMjA8+xKwaVSjV69OiAgIAaNWqEhoYWuhouPT39ypUr58+fDw8PP3/+/KtXrzSHKlWq1KZNm27durm6unbt2pVXPgUoVHJyckBAwJ9//mmEc1WrVu3XX3/FBQmvFRcX16dPn4cPH7Zt2zY4ONhwK2hSU1NDQkKCgoKCgoLi4+P5oEwme+eddzp27BgQEPD8+fOuXbseP37cxsbGQDGUI8nJyTt37jx48KARzuXg4PDTTz9VpI+LzMzMO3fuLFy40DinW79+fZMmTSrGtsW8vDyFQlGpUiWhA9Gb5OTkOXPmxMXFGeFc77///vjx4yvSXyX9O3WK3NwoIoL+P1Pwry+/pM2bKTFRoLDeIk+ePKlfv37VqlVfvHiBHZAamA9CCaWnp4eHh3/99dfGOd3mzZsdHR2NsNnxjcx/+PBhbm47rVuF8fb2WOduZAqF4ueff/76669fvXplYmLy0UcfLVu2rNB5XFZW1ooVK3744Yfc3FwrK6sFCxYsWrSoYty1igQS7voRFxfn6uoaFxdXuXLltLQ0zbhUKnVycurSpUvXrl27dOnSrFkzAYOEUtBUDWrUqFFoaChfFhcTE8PvqC5cuHD9+nW1Wq15fa1atfgdlYuLS6dOnYxQHgQAwCAePXo+Y4bTmTONW7UKCgqqUqWKcU4bExMTEhJy5MiR4ODgvLw8IqpWrVrz5s2PHTvGK/cBAEAFdPMmtW1LQUHUv/9/xidOpPBwun1boLDeLg4ODs+ePXv48GGjRo2EjkVEMB8EKKH5Dx+ay2TfN2wodCBAKSkp33zzzYYNG1QqVZUqVb766qtZs2bJZDJ+lDG2b9++Tz/9NC4uTiKRjBgxYuXKleW9/qEIIeGuN5GRkV999dWlS5devXqF59gVSUZGRp8+fcLCwurVq9e8efOrV6+mpqZqjlpYWHTo0KFr165du3bt3LkzbzEBAFC+RUdTnz705Enc6NHWP/9sa2tr/BCysrLOnDlz9uzZyZMn161b18rKyvgxAACAkSgUZG9PH39MK1b8bzA/n5o0oXffpY0bhYvsLfL+++8fPnz4999/HzNmjNCxiAvmgwAlgYS72Ny7d2/evHlBQUFE1KJFizVr1gwYMODq1atz5869ePEiEXXo0GHt2rW8SjboHRLuehYfH1+rVi3NgyOoGHjVoMqVK//zzz9EVKtWLd7e1tXVtWPHjrwfNABABfHgAfXpQ0+fkqsrHTtGqOICAABG4ONDq1fTmTPUoQMREWO0ZAmtWEHXr5OTk9DBvRW+//77xYsXz5kzx8/PT+hYRAfzQYDXmv/wYbpKNcbenv+rrVzevgJVoiu/AgICPvvss8ePHxNRkyZNHj58yBhzcHDw9fUdO3YsaogZDhLuACWSmZkZGxt77969rl271qlTR+hwAAAMIzKS+valZ8+oe3f66y9CFRcAADAOhYKmTKHffycXF6pdm27coORk2rKFPDyEjuxtcerUKTc3ty5duvCVj6AD80GA4s1/+DA8M7P6/5dRamFpuRSr3cUhPz//l19+WbJkiYuLy8WLF6dPn/7dd9+hXKehIeEOAAAARER07x717UvPn1PPnnT0KGFNCgAAGNmtW3TuHGVmUt269O67hOKcRpSRkWFra2tqapqWlmZqaip0OABQzqCkjMg9ffrUzMwsKyurfv36QsfyVhBXU2MAAIC30+3bt4OCggYMGNC6dWthIrhxg/r1o5cvaeBAOnCALCyECQMAAN5mzs7k7Cx0EG8pa2vrZs2a3bt379atWx14YR8AAKgoHBwciKhatWpCB/K2kAodAAAAAPxbXM/Z2blmzZojR47csWOHdj8ugwsPJzc3evmSBg+mgweRbQcAAHgLderUiYguX74sdCAAAADlGxLuAAAAwuvZs+ekSZNq166dmJgYEBAwYcKE6tWrd+vW7bvvvrt69aparTbgucPCqF8/Sk6mIUNo/34yNzfguQAAAECs3nnnHSK6cuWK0IEAAACUb6jhDgAAICIxMTFHjhw5evRoaGhoXl4eH6xWrVrv3r3d3NwGDx7MNwPqzfnzNGgQZWTQyJG0axf9f5sjAAAAeNvExMQcO3asZ8+eghW4A4By61hKiolE0s/OTuhAAEQBCXcAAAAxyszMPH369IkTJ4KCgmJiYvigVCpt37596KBB5m5u1KULycvWi+XiRerfn7KyyNOTfvuNZDI9xA0AAAAAAADwFkPCHQAAQOxiYmJCQkJCQkJOnDjR2MHhWmQkEZGVFXXpQu7u9P77VJJe869eUVISVapEtWv/b6RfP3J2ps2bSYoqcwAAAAAAAABlhYQ7AABAuZGbm/v00qVGR4/SiRN09+7/Djg50cCBNGAA9ehRSBH2qCiaOZNOnybGSK2mxo3phx9o2DAiovR0srYmicR47wEAAAAAAACg4kLCHQAAoHxKTKSgIDp6lEJCKDX130ELC3J1JTc3cnMjFxciohcvqE0bcnKiVauoZUt6/px++YV++IEOHKD33hMwfAAAAAAAAICKBwl3AACAck6ppEuX6MQJCgqi69dJrf53vGFD8ven48dp61Z6+JCsrf/3I4MGUUwM8dI0AAAAAAAAAKAnSLgDAABUIC9f0pkzFBJCR4/Ss2cUHU0jRpCTE+3a9Z+X7dtHHh4UG0sNGggTJwAAAAAAAEBFhA5pAAAAFUi1auThQZs2UVwc3bhBjo4UH0/16um+rGFDIqK4OOMHCAAAAAAAAFCBIeEOAABQEUml1KbNv/9HpdI9qlAQEclkxo4KAAAAAAAAoEJDwh0AAKBCa9iQHj3SHYyJ+fcQAAAAAAAAAOgPEu4AAAAVmrs7BQXRy5f/Gfz1V+rYkWrVEigmAAAAAAAAgIoJCXcAAIAKbfZsqlaNBg2iv/+m9HS6e5dmzKCLF2nlSqEjAwAAAAAAAKhokHAHAACo0Gxs6O+/qWFDGjCAKlemVq0oLIxOnqQePYSODAAAAAAAAKCikTDGhI4BAAAADC8vj168IFtbqlRJ6FAAAAAAAAAAKiYk3AEAAAAAAAAAAAAA9AAlZQAAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD2QCx2AYB49epScnKwzaGJi4uzsrPnX2NjY+/fvW1lZtW7d2tbWVvuVUVFR0dHR1tbWzs7O1tbWRggYyoXr16+r1WqdQXt7+zp16vD///Dhw4cPH9ra2nbo0EEu/89fwJcvX16/fl0ul7u4uNjY2BgpYihXkpOTw8LCcnNzmzRp4uTkpBl/9uxZeHi4XC7v1KlTlSpVtH/k0aNHd+/eNTExad26dc2aNY0eMpQDCoUiPDz81atXtWvXbt26tUQi4eM5OTlhYWFZWVlt27bVuXhiY2OjoqKqVKni5ORkaWkpRNQgdriuwBCePHly69YtiUTi7Oxct25dzXh8fPydO3eIqGXLlpqbrtceAuDi4uJu3brFGHN2dq5Xr572odjY2Dt37kil0jZt2jg4OGjGnzx5cufOHZlM1qpVq9q1axs9ZCgHcF2BIeC6AkNQKpXXrl1LSUmxt7dv06aNVColopiYmNTUVO2XtWzZ0tzcXPOvMTExDx48qFSpUuvWrStXrmzsoMWPva0mTpxY8E/DwcGBH42Nje3Zs6dm3NLS8s6dO/xQZGRkp06dNIesra0fPXok3PsAcSk0QTBv3jzGWFZW1tChQzWD9evXv3LliuYHv/32WxMTE831tnnzZuHeBIiRQqGYM2cOf0hjZmZGRF9//TVjTK1Wf/bZZzKZjF88FhYWW7Zs4T+iVConTJgglUrt7e2rVKliamrKfwRA22+//Va1alXNR5O7uzsf3717t52dHR+UyWTe3t5qtZoxlpSU9O6772peX7t27ePHjwv6DkCMcF2B3qWkpLz33ntEJJFITE1NpVLpgQMHGGNqtdrLy0smk1WrVq1atWpyuXzOnDn8ulKr1bNnz9Y+xG/JADRevXo1bNgw7esqICCAH9J8LkmlUhMTE6lUeuLECcaYSqWaNm2aVCqtXr161apVTUxMFi1aJOibANHBdQWGgOsKDGTv3r3ai2C6devGx/v376+T2kpMTOSHoqOju3Xrphm3srK6f/++cO9ApN7ehHtmZmaKlhcvXtSrV2/06NGMsYyMDEdHx3r16h0/fjw9PT0rK+v06dP8p5KTk2vXrt2kSZNTp05lZmZmZmaePXtW0PcB4pKamqp9XQUFBRHRwYMHGWP8q27jxo0qleru3bvNmjWrVatWZmYmY2zv3r1ENHHixMzMzOTk5OHDh0ul0kuXLgn8ZkBMeMpg9erVSUlJjLH79+/zb7uNGzcS0cKFC7Ozs589e/bBBx9IpdLr168zxn755Rci2r59O2NMpVJ98cUXRKT5NANgjO3du1cikYwfPz4yMlKpVD569Oj27duMsevXr5uYmPTr1+/x48dJSUkLFy4kom3btjHG+vTpU69evXPnzqlUqqioKGdn50qVKiUnJwv9VkBEcF2B3qlUqu7du1euXDkgICA9PV2tVl++fDkvL4/9/03UqlWr1Gq1Wq1euXIlEe3du5cx9ueffxLRmjVrGGNqtfrHH38kov379wv7XkA81Gp1nz59bGxs9uzZk5aWplarr1y5kpubyxhTKBQdO3asWrXqoUOHMjIyVCrVpUuXlEolY2z79u1E9Msvv/DfsHTpUiL666+/BH4zIBq4rsAQcF2BgRw/flwqlQ4fPjwiIkKhUMTHx/NkAmPM2dl57Nix2gkuPp6ent6gQYMGDRoEBQXxlOmZM2eEil/M3t6Eu459+/YR0eXLlxlj/Hb85MmTBV/25Zdfal4G8FojR45s0qSJSqVKSUkxMTEZNWqU5tCRI0eIiC9G7ty5c82aNRUKBT+UkpJiZmam/WJ4yz1+/FgqlU6aNKngoY4dOzZt2pQv5WOMJSUlmZmZTZ8+nTE2adIkExMTzaGYmBgi8vX1NVrYIHJqtbpBgwYtWrRQqVQ6h/hy0WfPnmle2bx5cxcXF8ZYeHi45iaM/X+qC4uRQQPXFRhCYGAgEa1bt67gIf7kJjU1lf9rWloaES1YsIAx9umnnxJRWloaP8S3RXt7exsrahC748ePE9Hq1asLHtq9e7fmRl3HzJkzJRIJf97DGHv+/DkR+fj4GDRUKEdwXYEh4LoCA+G1iTQXibaqVat++eWXBce///57IkKS/bXQNPVfq1at6tWr1zvvvENEhw8fbtSoUb9+/Qq+7NChQ+3bt+cvAyjeo0ePDhw4MG/ePKlUeu3aNYVCwbeAcQMGDLCysrp06ZJKpbp69erQoUM1Jd3t7Oz69Olz6dIlgQIH0Tl69KharZ42bVrBQ8+fP2/UqJGmOHL16tWdnJwiIiKIqF69egqF4o8//uCHbty4QUStW7c2UtAgejdv3nz06NHUqVN5kT5tT58+tbGxqVWrFv9XiUTSq1eviIgIxlj79u3btm2reWX16tWJ6OXLl8aKGsQO1xUYwpEjR2Qy2ccff1zwEK9gu2PHDv6v/MuO92Qq5hAAEQUGBkql0ilTphQ8dOTIEQsLi/Hjxxc8VK9ePcYYrisoCq4rMARcV2AIsbGxt27dmjRpkqmpqc6h/Pz8lJQUzX27tkOHDjVv3rxXr17GCLE8Q8KdiOjKlSuXLl3iq2CI6M6dOy1atNi8eXPPnj3r1KnTq1evkJAQIlKr1ZGRkc2aNfvpp5+6d+9ep06dfv36nT9/XtDYQbz8/PxsbGz4N198fDwR1a9fX3PUxMSkVq1aT58+ff78uUql0j5ERPXq1Xv27FnB/qvwdrp79y4RpaenDxkypE6dOo6OjkuWLMnLyyOiJk2aXLt2LTMzk7+SFyl6+vQpEc2aNcvJyWncuHHvvvvu+vXrZ8yYsWjRokGDBgn4RkBUeBdBOzu76dOnt2zZsmHDhp988klKSgoRNWrUKDU19d69e/yVjLG8vLy8vLwXL17o/JIrV64QkXaqFN5yuK7AEO7evVu/fv0TJ0706tXL3t6+devWmzZtYowR0YQJE9555505c+b07t17w4YN48ePnz59+tixY4noo48+6tix4+zZs/mhCRMmfPLJJ6NGjRL63YBY3L17t06dOqdOnerdu7e9vX2rVq144QV+qHHjxvv37+/Ro0eNGjXatm3722+/8Z+aOnVq27Ztp0yZ0q9fvw0bNkyePHnu3LkffPCBoG8FRATXFRgCriswBH7fXqNGDS8vL2dn5/r160+aNCkxMZGIEhISGGO///5706ZN7e3t+/Tpc+bMGc1PNW/efNOmTTxlqn0ItCHhTkT0ww8/NG3alOehGGPp6elBQUEbN27s37//4sWLMzMzBw4cGBoampmZqVQq9+3b98cffwwaNOjzzz9//vx53759r127JvQ7ANFJT0//7bffZsyYYWVlRUR8F7NO4+bKlSsnJycXdUihUGRkZBgxZBCvtLQ0iUQyduzYli1bLl++fPDgwd9///3MmTOJ6PPPP3/58qWrq+t33303d+7cVq1aPXjwICsri4isrKw6depUrVq1ly9fzp49OzMzs2bNmvy2DICIXr16RUSffPJJTk7OrFmzxo4du2PHjgEDBqhUqk8++aRy5coDBgz4/vvvly5d6urqyrdKaB7tcKmpqevWrRsyZEirVq0EeQsgQriuwBDS09MfP368aNGivn37rly5skmTJtOnT9+wYQMRWVhYdOnSxcbGJi8vb/bs2QkJCXXq1OE/pTmUm5s7e/bspKQkzSEAIkpPT3/69OmCBQt69+69cuXK5s2bz5gxY+3atfzQ3bt3ly5dOmDAgJUrV9apU2fSpEnbtm0jIktLy06dOtnZ2aWnp8+aNSs1NbV27dpCvxUQEVxXYAi4rsAQ+H37vHnzXr58OW3atEmTJu3fv7937965ubmVK1eeO3fuiBEj/Pz8fvzxx7S0tH79+p09e1apVGZlZf31119btmzp37//F198kZqa2r9//4sXLwr9bsRHgDI2IhMTEyOTyfgyGc7GxqZ///68ywRjLDU1tXLlysOGDVMoFDKZbNiwYZqypAkJCebm5hMnThQgbhA3X19fMzMzTaXanTt3EpFOH1RHR8fBgwc/e/aMiJYuXap9aMqUKebm5prq2/CWmzlzplQqff78uWZkwoQJcrmc9y05c+bM0KFDnZ2dhw8ffvz48XfeeadFixaMsY8//tjW1jY6OpoxFhkZOXr0aCL6/vvvhXoXIDZ8e+mBAwc0Iz/99BMRnTp1ijF2586dkSNHNmvWrHfv3n5+fvwBj6ZVDmMsNzd3wIAB1apV49cYAIfrCgzB1dW1UaNG2dnZ/F/VanXbtm0bN27MGFu4cKGFhcXNmzcZYzExMVOnTiWiTz/9lDG2YMECS0tL3rM3Ojp68uTJRPTZZ58J9z5AXHr27NmgQYOsrCz+r2q1ukOHDvXr12eMtWvXrlWrVrwhIWNMqVQ2a9asdevWjLFZs2ZZW1tHRkYyxqKioiZMmEBES5YsEeY9gPjgugJDwHUFhnD48GEi+u233zQjBe/kudTU1CpVqgwaNIgxZmlpOWjQIE3KNDk52draeuTIkcaKutzACndavXp1lSpVPD09NSMODg5qtVomk/F/tbW1bdKkSWxsrFwut7e3JyJNWVJ7e/t69erFxsYaP2wQM4VCsWHDhrFjx2oqXjk4OBDRo0ePNK/Jy8tLSEhwcHCoUaOGXC7XPsRf6eDgoCnMDW85/qHEtBant2vXTqlU8tIxvXr1Onz48M2bN/ft29e3b9/79++3bt1aoVDs2LFjxIgRjo6ORNSsWbM//vjjnXfe4a3qAej/P5e0P2c6duxIRPxLzcnJac+ePZGRkadPn54zZ05kZGSdOnXs7Oz4K9PS0t5///3Lly8HBQXxawyAw3UFhuDg4JCZmWlhYcH/VSKRtG3b9vHjx0S0devWd999l1ekbdiw4aZNm959913+Zbd169ZBgwbxrRKOjo6bN28eMGAAvgdBw8HBISMjw9LSkv+rRCJp165dXFycWq12cHDIzs42MzPjh2QyWZs2bR4/fswY27Zt2/vvv9+sWTMiaty48fbt23v27InrCjRwXYEh4LoCQyj+vl2bra1tixYtoqOjiah27draKdMqVao0atQIedGC3vaEe2pq6vbt22fMmKG5gyciZ2fny5cva6p55OTkREdH8xLbzs7OoaGhvHQyEaWlpcXFxelU3wb4888/4+Li5syZoxnp0KGDubn5/v37NSPHjx/Pzs7u3r27TCbr2rVrYGBgfn4+P5ScnHzu3LkePXoYO24QqzZt2hBRUFCQZuTGjRsmJiZ169bVeeWuXbvS0tJGjBghlUpNTEw0H1acXC5HYwDQaNmypVQq5U1KON5ut+CXWmRk5JkzZzRtn2/fvt2xY8f79++fPXu2ffv2RgsYygVcV2AIbdq0SUxM5N3eiIgxdvPmzQYNGhCRmZlZbm6u9os1X3bFHAIgojZt2iQnJ4eFhWlGbty4Ub9+falU2qZNm9jY2AcPHvBxtVp9+/bthg0bEpGZmVlOTo7275HJZLiuQAPXFRgCriswhKZNm5qZmRV1365d4jg/Pz8mJoa3o3d2dv7nn394GVsiysrKiomJQV60EIKurxfed999Z2Zmpl2ogTF27tw5iUQyfPjw+/fvx8TEjBgxQiKRnDhxgjF25MgRIvL09IyKioqKiho0aJBMJrtw4YJA4YNItW3bduDAgTqD8+bNk0gkq1atysjIuHLlSsOGDR0dHfnOr6NHjxLRyJEjk5KSHj9+PGjQIBMTE745GoAxlp+f37x585o1awYGBsbFxa1du1Ymk3300UeMMYVCERAQ8OzZs+jo6M2bN9vY2HTv3p2XvXrvvfdMTU3//PNPhUKRn5//008/SSSSxYsXC/1uQEQ+/PBDc3Pzbdu2JSQknDhxonr16i1atFAoFIyxkydPPn36NDU1NSgoqEWLFtWrV+fflbt27bKysmrZsuWVK1ei/9+LFy+EfisgIriuQO+ePXtmbW3dpk2bCxcuPHr0aPbs2US0du1axtikSZOkUummTZvy8/P57i6ZTDZ9+nTG2MSJE6VS6ebNm/khf39/mUw2Y8YMod8NiEVCQoKNjU3r1q1DQ0MfPXo0d+5cIlq1ahVjLDY21sLC4p133vnnn380pYo2b97MGBs1apRcLvf398/Pz8/Pz//1118lEgmvYgTAcF2BYeC6AgOZMmWKiYnJzz///OzZs7Nnz9apU6d+/frZ2dnLly9v1KjRvn37UlJSoqKiRo0aJZFIjhw5whg7deoUz1/dv38/Ojr6/fffl0gkISEhQr8V0XmrE+65ubm1atWaPHlywUObNm2qVKkSfyZhY2OzceNGzaHVq1drlsNXqVJl586dRgwZyoHg4GAiCg4O1hnPzc0dN26cph6Rk5PTnTt3NEfXrl2rua7s7OwCAgKMGzWI3YMHD1xcXPgVIpPJPD09MzMzGWMXL160sbHh46amphMmTEhLS+M/8vLlyzFjxvCl7nK53MTEZNasWTznBcClpqa+++67mmfw77zzzsOHDxljycnJmopYRNS1a9e7d+8yxnSaW2oggQXacF2BIZw5c4avqyIiS0vLr776ihdby8jImDx5somJiUwm4/87YcIEXu09PT39448/lsvl/EuQP6vOyckR+q2AiJw7d06zKM/CwmLx4sWaZl0nTpzQdBesVKnSsmXL+Hhqaur48eNlMhm/ruRy+dSpU/Py8oR7EyA6uK7AEHBdgSFkZmYOHz5cc/vt7OwcERHBGHv06NGgQYM0+atq1apt375d81MbNmywsrLihypXrrxlyxbh3oF4SZhWUeC3TX5+fnx8fI0aNTS5dW3Z2dk3b96USCTOzs6aUllcZmbmzZs3TUxMnJ2dzc3NjRUvlA8pKSmvXr1q2LBhoRXYnz17FhUVVbVq1ZYtW+q8ICMj49atW3K5vE2bNriuoFAxMTHJyckNGzasVq2aZpCXvVIoFI0bN7a2ttb5kZSUlIcPHyqVSicnJ1tbW6OGC+XE48ePY2Nja9eu3bRpU81gXl5eZGRkWlpa/fr1NTf3arVap+EEZ2Njo31NAhCuKzAAtVodGRmZm5vbpEkTne+7V69eRUdH5+bmNm/evGrVqiU8BEBEarX6/v37OTk5Ba8rlUoVGRmZn5/ftGlTTWaBS01NjY6OzsvLc3Jy0jSiANDAdQWGgOsKDCQ+Pv7hw4f29vYtWrTQHk9MTHzw4IGlpWWbNm3kcrn2oaysrJs3b8pkMmdnZ+0a3aDxVifcAQAAAAAAAAAAAAD05W1vmgoAAAAAAAAAAAAAoBdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHvwfprzQBbaKDgMAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"SE\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "ac97a23b-655d-4770-9cda-32aec185695d", + "metadata": {}, + "source": [ + "#### Gate Area Pocket (GA)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "da6de0e3-7599-4d81-a447-ff49069d8276", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:43.948844Z", + "iopub.status.busy": "2024-05-13T08:55:43.948649Z", + "iopub.status.idle": "2024-05-13T08:55:44.069134Z", + "shell.execute_reply": "2024-05-13T08:55:44.068489Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22 GA fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAJYCAIAAAC1geo8AAEAAElEQVR4nOzdd1xT1/sH8CdhD1EU9wYnbnHjNtZRtGqL1kGrtU0dLY6O2BlX29gldkf9tcU6KloHbsEJblBUVBw4QASUIbIhyfn9cfzGGBAZN7kBP+8Xr+/r6yXkPNSY3Pu55zxHwhgjAAAAAAAAAAAAAACoGKnYBQAAAAAAAAAAAAAAVAUI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQADWYhcAAAAApZWj1R7OyDA8IqtRw1aK2+cAAAAAAAAAFgGBOwAAQKWRotF8eevWUFdXqUTCjwyoXt1W3JoAAAAAAAAA4H8QuAMAAFQyC5s1s8OsdgAAAAAAAADLg8t1AAAAAAAAAAAAABBZRE7EocxDYldRUZjhDgAAUMl8dusWv2HepVq1iXXqiFwNAAAAAAAAQNmtTVsbmBp4p+BOA5sGb7m99UbNN7Y/3H6n4M6gaoPELq1CELgDAABUMoNr1LCWSIiovp2d2LUAAAAAAAAAlNnSpKXLkpZ93fDr3k69r+Vd+zLxy+6O3cUuShgI3AEAACqZIa6u6OEOAAAAAAAAldRD7cOvkr76o/Efb9Z6k4i6OXZ7vebr0qrS/LyK/BoAAAAAAAAAAAAAYPku513O1+VPcJ2gP1Jl0nZC4A4AAAAAAAAAAAAAZhNfEF/Tuqa91F7sQkwCgTsAAECl4WptPbdRI97AHQAAAAAAAKAycrN2y9BmaJhG7EJMAoE7AABApVHNympK3bpWEsma5OTJV64czcgQuyIAAAAAAACAsmlt31rLtMeyj4ldiEkgcAcAAKh80goLr+bkxObmil0IAAAAAAAAQNk0smk0rsa49+Lfu5Z/jYh0pDuUeUjsogRjLXYBAAAAUGZN7e2J6E5entiFAAAAAAAAAJTZX03/mh0/u8PlDrWsa2XpslrZtdrXYp/YRQlDwhgTuwYAAAAom7NZWfKrVzs4Of3Vpo3YtQAAAAAAAACUzaW8S41sGtlJ7O4V3qtrU9dJ6kREhayQEbOV2IpdXYWgpQwAAEDl08zOjohuY4Y7AAAAAADAi6d5c4qOfvLHgwepZ0/xqikXv9t+bhfcLuRecLdz52k7EdlIbCp72k4I3AEAACqjmjY2LlZWmVptmqZq7uoOAAAAAAAAz3L7NuXnP/ljTg7Fx4tXTdklFiZG5UTZSew6OnQUuxbhIXAHAAColJqgjTsAQKlptdq8vLzCwkKxCwEAAAAA2v1oNyM2pNoQe6m92LUID4E7AMALLTU1dfbs2atWrfrnn3/ErgXKBvumAgCUhk6n27RpU7t27WbNmtWmTZuDBw+KXREAAACAABIS6ObNx1/JyWJXU0Z7MvYQ0YjqI8QuxCSsxS4AAABEEx4ePmnSpPj4eGtra41Gs2fPnt9//7169epi1wWlgsAdAKBkOp1u48aNixcvjomJIaLk5OSHDx/KZLIZM2YsW7asWrVqYhcIAAAAUH6zZ5Pt/7qd5+SQRCJqNWVRyApDM0OJaIRL1QzcMcMdAOBFxBhbsWLF4MGD4+Pje/TosXz58ho1amzYsKFjx45Hjx4VuzoolWYI3AEAnoExtmPHDi8vr0mTJsXExDRt2lStVicmJqpUKltb299//71Nmzbbt28Xu0yomtLS0iIjI3U6ndiFAABAFbdtG8XGPv5atUrsasoiPCs8Q5vR3qF9U9umYtdiEgjcAQBeOPfv3x85cuTcuXM1Go2/v394ePh777137tw5b2/vuLi4wYMHL1iwAF1uLV8zOzsiuo3AHQDAAI/au3XrNnr06KioqCZNmqjV6hs3bsjlcnt7e4VCERkZ2bNnz3v37o0ZM2b8+PEpKSlilwxVR1ZW1uTJk7t3796nT58mTZosXLgQLzAAAICi9jzaQ0QjXUaKXYipIHAHAHixHDx4sHPnznv37q1du/auXbtWrFhhY2NDRM2aNTt8+LBSqSSiZcuW9e3b98aNG2IXCyVpZG8vlUgSCgoKGRO7FgAAixAaGtq9e/fRo0efPXu2cePGAQEB165dk8vl1tZPGmm2a9fu+PHjarXa2dl506ZN7du337x5s4g1Q5Vx8eLFbt26rV+/PikpqXbt2gkJCYsWLWratOk777xz/vx5sasDAACwILszdlPV7SdDCNwt3IULJJHQ558/OeLrSwsXilYPAFRqGo1m4cKFQ4cOTUxMHDRoUFRU1IgRT328WVtbL1y4MDw83N3d/fTp0127dl25cqVY1cJz2UokDWxtbSWSu5mZYtcCACCy0NDQHj16DB06NDIyslGjRjxqnzNnjp2dXdEHS6VSuVx+/vz5IUOGJCcn+/r6jho1KiEhwfxlQ5WxZs2a3r17X7161dPT8/Tp03FxcSEhIb6+vvn5+atXr+7cuXO3bt3WrFmDFYQAACCUmjXJYEYB2dqSq6t41ZRFfEH8pbxLLlYu3s7eYtdiKpU1cNdoNKdOnfr222/nzJlz7NgxjUYjdkWmYm1Nv/1Gly+LXQcAVHLx8fGDBg1atGiRVCpVKpUhISENGjQo9pG9evU6e/bs5MmTMzMz3333XV9f3/T0dDNXC6Xk/Msvx7p1O3/woNiFAACIJjQ0tGfPnkOHDj1z5kydOnVUKtX169fnzJljb29f8g+6u7uHhISo1WoXF5edO3e2b98et5mhHHJzc+Vy+Ztvvpmdne3n53fmzJl27dpJpVKZTBYUFBQTE6NQKGrWrBkZGfnmm282adJkwYIFd+/eFbtqAACo9A4fplq1nvzRy4v++0+8aspiZ8ZOInqp2ks2EhuxazGVyhS4a7XayMjIFStWjB8/vnbt2r169VIoFL/88svAgQOnTp1aVTelsbEhf3+aNYvQMAAAym379u2dO3cODw9v3LjxwYMHFy5caGVlZfiAgwcPMoN3merVq69du/bPP/90dnbevHlz165dT568Zvaq4fnqODoyne7q1atiFwIAIILw8PCBAwcOHTr09OnTtWvXVqlUt2/fVigURlF7YWHhpk2bWHEn0xKJRC6Xx8TEvPLKKw8fPnz33XdHjBgRFxdnrt8AKr2rV6/27Nlz1apVDg4Oq1atWrNmjaOjo+EDWrRooVKp7ty5o1arO3TokJSUtGzZMg8Pj/Hjx4eGhopVNgAAVAEjR1KfPpSV9fiPwcH0xhuiFlRqvIH7iOpVtp8MWX7gXlhYePz48a+//nrYsGE1atTo1q3b3LlzN23a9PDhw7Zt286YMWPRokX29vbr1q2bPn16Vc3cP/6Ybt6kwECx6wCASig/P3/OnDljx45NS0sbPXr0uXPn+vXrZ/SY3bt3y2Syl1566d69e4bHp02bdvHiRW9vb8Y8hg9vuWABYRm0pWndujURIXAHgBdNeHj44MGD+/Xrd+TIETc3N33U7uDgYPgwnU63adOmdu3ajR8/Pjg4+FnPVr9+/W3btgUFBbm5ue3du7dDhw4rVqyoqlcWIKC1a9d269bt4sWLbdq0OX369Ntvv/2sRzo7O8vl8gsXLoSFhfn6+vJX5tChQ728vFauXJmTk2POsgEAoMqQSCpf3+n8wvzIrEgJSYa7DBe7FlNilqewsDAiIkKlUvn4+FSvXt2wWnd3d7lcHhgYGBcXp3/8sWPHnJ2diei9994TsWxTOH+eOTgwxth//zE3N5aSwl57jSmVIlcFAJXF1atXu3TpQkQ2NjYqlUqn0xX7sF27drm5uRFRnTp1du7cafTdgoKCr79OtbJiRKx3b3bzpunrhlI7dOgQEfXp00fsQgAAzCQ8PHzIkCH80qBWrVpKpTIjI6PowzQazZo1a1q0aMEf2bZt23379j33yZOSkl577TX+I3379r169aoJfgOoCnJzc/39/flLxc/PLysrq0w/npCQoFQqa9euzZ+hRo0a/v7+t27dMk2xAFBpaLVaw7ALoGSNGrHVq5mzM4uKYoyxP/9k3buLXVMp7Nu3z9rOesynY8QuxLQsJXA3DNldXFyeG7IbCQ0N5UtH586da86yTU0fuDPGhg9ns2cjcAeA0tq0aRO/Z9msWbMTJ06U/OCkpKSRI0fqrxuzs7ONHnD8OHN3Z0SsWjWmVpusaCgjviihZs2aYhcCAGByx44d8/HxMYzaHz58WPRhWq02KCiILwAioubNm6vVao1GU/qBgoODGzZsSEQODg4qlapMPwsvgqtXr3bq1ImI7O3tAwICjL6bk5Nz+vTp0jxPXl5eUFBQnz59+GuVt30PDg5+1gwJAKiSNBpNREREQECAr69vzZo1GzRoMGbMmIsXL4pdF1QCjRqxgwfZp5+yXr2YVltpAve5c+cS0WeffSZ2IaYlZuCuD9llMpnR8k99yB4fH1/KZ9u3b5+dnR0RffnllyYt22xyc58K3K9fZ87OrEMHplSysDB26pSoxVm2K7lXCnQFYlcBIJqcnBz9rKtXX301PT29ND+l0+kCAgL4G2nbtm3PnTtn9ICHD9mkSYyIETFfX5aWJnjhUB41atQgogcPHohdSEliY1lQEMvNfXJk506WmCheQQBQqZw4cUIftVerVk2hUDwrag8ODuZJKL/frFarCwsLyzFienq6XC7nz9OrV69Lly5V+JeAUikoYEY3OHJzmUXlz1u2bOGfvK1atTp//rzRd3kWX6NGjdjY2NI/Z0REhFwu1+890KpVq4CAgMzMTEELB9PS6XSZJlPWJRRg+XJycg4dOrRo0aIhQ4Y4OTkZpmH8HaZevXrXrl0Tu0ywdDxwz85mTZsytbrSBO6tWrUiovDwcLELMS1zB+7PDdmDgoLKnRps3brV2tqaiL7++mthyzY/tZp5eLAjR54E7owxpZIRsQULWJMmzNqaKRQsL0+8Ei2DRqfZmLbx/bj3Z8bN/DPlT56zUyRdy8OHU3mcevRoXHS0/mvqlStiV1S5paSkREVFTZw48Ycffjhy5Ih5LpwuXbrUoUOHZ826eq6zZ8+2adOG//ivv/5V9BI3MJA5OzMi1qQJO3pUmJqhIrp372755ysrVzIiZnhDvEkTtnu3eAUBQCURFRXl6+trGLUXexdZp9MFBwfzLmpE1LRp03JH7Yb27NnTpEkT3plNoVDk5+dX8AnhuUaOZIsXP/mjVsuIWFQU69WL1a/P9PdZ9u1jDRqYu7a8vDz9hIZx48YVveuzYcOGatWqEVGbNm0uX75c1udPSkpSqVT8JUdELi4ucrkcN3sqhZSUlPXr15PJSKXSLVu24C2ossvKygoJCVEqlTKZzGhzb3d3dz8/P7VaffPmzfz8/BEjRhBRo0aNbqKbJ5SIB+6MsW3bWO3a7McfK0HgHhsbS0Surq4VP0+zcGYK3G/cuPHll1/279+fz53Uf2x07tx5zpw5W7duTUlJEWSgTZs2WVlZEdG3334ryBOa36NH7LXXGBGTSNi33zLDxry5uUwmY7/8whQKxvspt2vHIiLEq1VsBbqCwdcGN7zQ8LOEz75J/Kbz5c4Tb05kCNwr4FB6+ogLF2Jzc/nXHcP5qFBGOTk53t7eNWvWLHouFRAQEBYWVrRtS8UFBgY6OjoSUdu2bS9cuFC+J+ET5CUSSe/ed4YOZQkJxg+4dYv16cOImJUVUyhYAdaTiMrPz4+IVq9eLXYhJVm5krVowVxcWEzM4yMI3IExdv/+fbFLAMt14cKFl19+WZ88fvHFF2nPWFoVEhLStWtX/sgmTZoEBATkCTcnJSMjw9/fXyqVElGHDh3OnDkj1DNDsUoI3F1d2bx5j4+bP3C/fft2z549icjOzq7ohIbnZvGlp9FogoODZTIZfzaJRCKTyYKCgtDayJLNnj2biGxtbZ1Mw8bGplJHHC+yjIyMkJAQhULh7e1ta2urvyq0srLy9PR8Vl+H7Ozs/v37E5GHh0dC0YsxAMauX2fMIHBnjPn4sCZNWPfuLDaWzZvHTBA2CGPFihVENHHiRLELMTlzBO7Xr1//8MMP9SE7f1sJCgqqeMj+4MGDOXPm5D6dCf79999SqVQikfz2228VfH7zu3qVtWv3uEvy5s0lPfLECda6NSN6PNX9xbzb/fP9n6tHVU8seNyVIEebc6/gHkPgXgGH0tNHoVucELRa7auvvkpE9erVW7Zs2bvvvuvl5cXPlfWsra07d+789ttv//HHH5GRkQUVy60zMjJef/11/szl2LyrqF27ot3cGBGrU4ft2mX83cJCplQ+vvPXowe7fp0dOMCOHHnygORkFhxcwRKgVJYuXUpEH330kdiFlGTlSjZwIPv4YzZo0OPOAAjcX3Dh4eFz5syxtrb29PRUKpUx+lsxAIwxxjIyMr7++msicnJy8vf3T05OLvZhISEh3bp14599jRs3FjZqNxQWFsabwltbWysUilzMSDCZEgL3JUuYszM7e5Yxswfu27Ztc3V1JaKmTZueKtLZs+QsvtzOnTs3ffp0/aJwDw+PX3/9VagnBwFdunTJ2tra2tq63JNdnis0NJSIqlWrdu/ePRMNAQJKTEwMCgry9/f38vLi92v1V39eXl7+/v5BQUGpqaklP0lGRgZfxtq6deukpCTzVA6VhVrNbG3ZypVPBe537jAnJ9a9OxsyhBGxli2ZZS6BHj58OBGtWbNG7EJMzhyB+5IlS4ioY8eOwcHBpWwlXEr8zr+Pj4/R6qrVq1dLJBKJRLJq1SoBhzO1bdtY9eqMiLVpw0qzBjEnhykUTCplRKxjR1ak33LVNzZ27My4mUWPW3jgfu/evYyMDGH/LQiFz3C/mZvLvx5W9TU+psNnOVWvXt2wuWdhYWF0dHRgYKC/v7/RHAcisrGx8fT01M9/L9Oi0TNnznh4ePAT8XXr1gn1WyQlsREjHi+4kcuLuUl+6BBr3JgRse7dWZ8+zNaW6dc9h4ayevWEKgRKsmnTJiIaPXq02IWUhAfujx6xBg0YP7lC4P4iS09Pb9q0KQ+n9O+BnTt3Xrx4MZonAHfmzBmeoT+r1WRISAhPIoioTp06KpXK1CF4Tk6OQqHgS2lbtGhx6NAhkw73who5kvn5sd27H3/t2vUkcF+zhn35JevRg2m15gvcCwsLFQqFRCIhojFjxhQ9gddn8c2aNSuaxVfcw4cPAwICmjdvTkSDBw8+Yji7ASzDSy+9RET+/v4mHWX06NFE9NZbb5l0FCi3hISEoKAguVzu6enJ3zE4R0dHb29vhUIRHBxc1rUv6enpvFVap06dnrXGC140WVls8uTHV+iffMIUCmY4a2XNGvb11+ziRda1a0lX8SLKyclxcHCQSqXPmktRlZgjcOcbr2/btk3wZ46Jialbty4RjR071qj7T0BAAF+ns379esHHFVxhIVMomETCiNikSaxMM1OPHWMtWzIiZmPDlErjXYaqts6XO3+X9F3R4zxw352xO1drWfOP8vPzAwICXFxchg0bVrNmzYCAAEtbHHooPb1HZOQrFy/yr81Y7F8uKpWKryoNDQ0t4WEFBQXR0dFqtdrPz8/T09Nw+gPP3/kMiMDAwOjoaK1WW+yT8J1OeXbv5eV1nS8tE45OxwICmJ0dI2KensXc2EtNZRMnsogI1qcP69CB9e//eP4yAnezuXDhAp/8InYhJeGBO2NswwZWpw57+BCB+wtt4sSJRNS9e/eMjIzg4GC5XF67dm39u5+7u7u/v39YWJjOovZJBPM6cOAAEQ3kbxxPCwkJ4bOJ9VF7Tk6O2Qo7ceKEp6cnX7Y7Z84cE02of5GNHMlatmQjRjz5Mgzcc3JY8+bst98eB+4XL7JXXmELF7LgYFakJYMA7ty507t3b35WplKpjL773CxeQFqtdt68eUT0+uuvm24UKIctW7YQkaurq1A9cp/lxo0bdnZ2Uqn09OnTJh0ISi82NjYwMFAulzdr1szwOs7Z2VkmkymVypCQkAp+TCQnJ/PttXr16oWNlOHaNdahAyNizs5s48aSHllQwFQqZmPz+Crect42goODiahnz55iF2IOJg/c09LSrK2tbW1tHz16ZIrnj4qK4i2SfX19jbLLxYsX88w9KCjIFEML5f79xys+rK1ZkRO5UsnOfjLVvWdP9uLsc9krptfSxKVFj1Mk7crYZX3WutGFRoGpgTpmEVfsmzdv5pNTiKhRo0b8/3Tq1MlCZkhpdbqEvDy0lKm4DRs28K5W//zzT5l+8NGjR2FhYQEBATx/N5wZwaeue3t76/N3nkM9ePCA97eVSCT+/v6m20np4sXHH+329kylYsWG/336sD/+YM2bs7/+YgyBuxnl5uZaWVnZ2NhUsCuRiezYwf7880ngzhiTydgHHyBwf3GtXLmSX4teu/ZkLZpGowkLC/P3969Xr57+fa9p06ZI3l9YW7duJaJXXnnF6PhPP/3EXx5169Zdvny5OaN2vYKCApVKZWNj07Zt24s4axJaCS1l+AKpHTtYrVrs339ZgwaPd+TWf9Wowby9mb8/Cwxk0dHFn66UXnBwML/MbNKkyYkTJ4y+q8/ihW0jU4KwsDAeuplhLCil/Pz8li1bEtEvv/xihuE++ugjIurduzc+FkWXkZHB+1Dr1a5de+zYsQEBAZGRkRWcVGe0w018fLx+jQsamr3IgoNZjRqMiLVuzaKjS/Ujp06xtm0tqxP1zJkziWjhwoViF2IOJg/c+W7dMpnMdEOcPHmSbwc/depUo0mgn376KZ9nunPnTtMVUBHh4axBA0bEGjZkx45V6Kn273/c26GERKyKmXxrsu9N36LHKZK2pG/pdLkTRRJF0sBrA6Nyosxfnt7ly5d5myoiatOmzZ49exhjwcHB7u7u/KCPj09sbKyIFUY+ejTx8uXRFy+GpKUhcK+IQ4cO8Q4JP/74YwWfKjU1de/evUuXLh0zZoz+Do1erVq1BgwYwOeE1qpVK9j07dKzs5lczohYkyas2NWQffqwv/9mW7YwNzeWkoLA3XzOnz9fvXr1mjVrdurUSa1Wm+j2djmEhLAePRgRq16dBQQ8CdxjYli1aszZGYH7i+jatWvOzs5EtHbt2mIfoE/eGzRooH/Ha9y4sVwuDw4OLkSjsxdGYGAgEfn5+RkdT0lJad68uUqlMsXG42WiUCiIaPbs2eKWUfU8N3BnjL3yCuvYkTVowBIS2IYN7OOPmUzGatV6KnwnYi4urH9/NncuCwxkFy9eLv0bSGFhoVKp5EsPR48eXbSTQ8lZvInEx8cTUf369c0zHJQG32rC09Oz6KsrMDCwXcWEhIQYPeejR4/q169PRJViEX/VtmzZMjs7u+rVq0+aNOn333+/dOmSUHdBfvnllxo1akRERBgevHHjBj8vGjZsGFZWvYA0GqZUPp5i+8orxV+MP0tuLlMoHm+91qHD431QRMSXg7wgK3VMHrj7+fkR0Q8//GDSUY4dO8av39577z2jb3388cdE5ODgcFC/lYDF+O23PL7EY+BAVnQbjA0bWFn3Ic/IeJyIEbE+fdg1y21jLoydD3dan7U+nHlYf+SR5hH7X0sZLdMGpgbWvVCXIkkaKfW75ZdUYO7NRlJTU/39/Xm7T95DxvBsjHeY4beLbG1t/f39MzIyzFxhQn7+x7GxXhERXhERPhcu/Hv/PgL3crt48WKNGjWIaP78+cU+4PPPP1+yZMmePXue1ZG2BOnp6SEhIUql0sfHRz8DtE6dOq1bt75161ZFSy+1rVvZ0aPFf4sH7oyxkSPZO+8gcDeTDRs2ODo6EpG9vb1+Eev06dOPHz8uYlV79rCePR9/GNWrx378kf36KzPsDPHpp4yI7d7Nzp1juGp4ceTl5XXu3JmIpk2b9twHa7XaiIgIpVLZokULw3uNfn5+wcHBlrmeAwT0888/PyvOflaPNTP76quviOiTTz4Ru5CqpjSBO98XrmgP94QEFhzMlErm68s8PZ8k7zVr6qjIZjnPumcTHx/v7e1NRNbW1iqVyihEe24WbzpardbW1lYikYiysAOKSkpKcnFxIaJ9+/YV/e4PP/xAFbN58+aiT7t69WoiatSoUVaZutCC0Pr160dEmzZtEvZpdTqdr68vEdWuXdtoVxt9O+Vx48Zh/sEL5cEDNnTok5YY5buzc/w4a9XqcSdqhYKJdR4dHR3NQwwLOZczNdMG7lqtlr8pXDbYA/TixYum2Fw7NDSUxw1z5841PK7T6fiaBUdHR8vZZCYnJ2fq1Knt279tZ8f8/Y1f7gUFbM4cRsSkUmaw4WJp7dnDGjZkRMzRsepPdf/y3pd2Z+0GXxs8+dbkNpfazI+fz57eNDVdk664q7A7a0eRVCOqhipJlaczR7pTWFioVqvd3Nz4+bpcLn9WxpqQkCCXy/mJe4MGDdRqtXnefXK1WnVCQp+zZ70iIrzPnlUnJORptUcePnytlMuT4Gl3795t3LgxEY0fP77Yv0GdTsfjeK5+/fo+Pj5KpTI4OLgcPR/v3LnzxhtvENGECROEKF8A+sD9xg3m5MS++w6Bu2lpNBp969gpU6akpaUFBQXJZDJ9M6I2bdqoVCozb0cTFsYGDnwccLi5MZXq8S49UVHMcDJWdjZbtoxt2MCcnZmPj0UsbwQzeP/994moRYsWZV2HER0drVQqeQ9TztXVlSfvmOdVVVl+nM1nuH/99ddiF1LVfPAB+/PPJ3/U6VivXuz6dTZ1Ktu168nxFSvY8OHPearkZLZ3L/vmGzZ7dmKLFi2MmvVZW1t37NjxzTffDAgIOHLkCJ/1Ehoayq9eGzdufKzI6uOSs3hTMLq56OHhQUQxhhvkgXjefPNNIho7dmyx301JSblYMcXOxNJqtXy/aKVSadpfD56Nt022sbEp6yaopVFQUODj40NEdevWNfrHHhUVxbdofvPNN1+QvBLOnGFNmzIiVrs2O3CgQk+Vmclmzny8c+TIkTlXzNuK+vbt24GBgT169KDiGgZWVaYN3E+dOkVEzZs3Nzw4ZMgQiUSyy/CMSSD79u3jzRy+/PJLw+M6ne6dd94hIhcXF0tYuXD16tX27dsTUbVq1XbsuGT03eRkNngwI2J2dqzc/QDT059MdZfJ2J07Fa3Zkt3Jv7MxbeP6tPVnss/wdu17M/Zma5+atHI176rPDR/eYaZldMsdD3eYtKTQ0FD+V0xEQ4YMKU1/zzNnzvDthYmoW7du4eHhpitPx1hIWprPhQteERHdIiIUsbH3EHdVTEZGRseOHYmof//+z+qsV1BQsG7dunnz5vXr14+vyNGTSCStW7eePHny8uXLw8LCSjljJS4uTiKRODk5ib6sntMH7oyxhQtZzZoI3E0oNTX1pZde0l/zG37r6tWrCoWC5wVEZGtr6+PjExQUZOotmsPC2KBBT6J2pZI9d8XO+fPMzY0RsREjMM+96tu9e7dEIrGzs4uMjDQ8frYsS1t58u7l5aV//3R0dPTx8QkMDMROYlWM5cfZfEKPeRo3g1rNPviAVXA2+cOHDw8fPrx8+XI/P7/27dtbW1sbnYw1bNiQh/I+Pj6pqalGP15yFi84rVbbtGlTGxsbwx16hgwZQs+YTw1mFhkZKZVKbW1tr5l9Ufnx48clEomDg8Pt27fNPDRwvG3y4MGDTfT8+fn5w4YN4+82Rn/LJ06c4BeSaGj2IlCrma0tI2J9+7KEBGGeMySENW3KunX73N7eXqVSmfQKMSEhISgoSC6X893muZo1a9aqVcvMcb9YTBu4L1y4kIhmzZqlP5KZmWlnZ2dlZWWiXby3bNnCT56MTtA1Gs2kSZOIqEaNGkZXemYWHBzMZ7m2bt06ushU4rAwVr/+45buFe8HsHPn42dzcWFqNTt0iMnlzHB1wUcfscuXmVrNtm9/6gdnz2Zm7FFhPiGPQtpdasdjd9k1WXSu8FO5r127xleBEVHLli3LtGGvTqcLCgpq0qQJP+n39fW9Y4JbJZezs9+KieE9ZKZcvnwOCUWF5efn8+sfT0/PUq4s1mg00dHRgYGB/v7+3t7eDg4Ohpd8VlZWhkueS1g4zG8R//fff8L9NuVnGLjn5bHWrRG4m8r58+f5DhBubm4HnjHVQaPRhISE+Pr66gOFhg0bKhSKmzdvCl5PWNjj+8RErFatUkXtevrMfeRIZO5V2d27d/mSL6P9LTZu3EjPbsNVgtjY2ICAAG9vb/2UVQcHB568m785G5iCpcXZzZs3d3JyMuzhNnnyZCJao+9yAiaTkcFq12ZEbNs2IZ+2oKDA8GTM0dFRIpHUqFFj3rx5RlNHNRqNvo1MsVm8ifCLAsN9nt566y0iUqvV5ikAnkWn0/Xt25eIFixYIEoBr7/+OhG9/vrroowO/P3fpG2Ts7Ozedeali1bGvWHOHDgAG/tMG/ePNMVAOLKzWVvvfX48kouF7gDzMOHudOmTePnz/379xd2N8Fr166tWrVqypQpfPW/nqur6+jRo7/77ruBAwfyK9MbN24IOK5lMm3g3rNnTyLasePJbOKtW7cSkbe3t+kG3bRpE2+Z/e3THdA1Gs348eOpuH5Y5mF4rjZmzJii64/UasZbug8YwBIThRk0OZmNG/f4H6q/PyNihp/L9euzkBA2bhz79NOnfsramp08KUwBlqZAV/BD8g/Vo6pTJNmctZkfPz89N12QZ87MzFQqlXyNhZOTk1KpLHmde3R0dLGzY7Kzs5VKJf8QdXR0VCqVQu1F/qCg4Kvbt7tHRHhFRAw7f/6/Bw+02OC+wnQ63ZQpU4ioQYMG5Z5mUlBQcPbs2ZUrV77zzjtdunSxsbEx/HCysbHp2rWrXC4vGq1+9913lnO2vWYNu3DhyR9Pn2Y//yxeNVXXxo0bnZyciKhLly6lecklJCSoVCq+CJ2IpFKpTCYLCgrKF2Jdy6FDh95440991P7NN6wct/Cioh7vdDdunGj9BMGktFotvys5fPhwww4McXFxfNfB33//vdxPHhsb++233/bs2VOfvNvb2y9dulSIwkFMlhZn16pVi4gM2wOOGjWKiLYJmwFDcRYsYESsf3/TjlJYWNi1a1ciOnz4sOFxnU7Hp5paW1svW7bMDG1k9Pr3709Ehqd/ixYtIqJPja7cwOz++ecfIqpbt65Yt3jj4+P52aDltMx9cWg0Gj6H4OrVqyYd6OHDh3xJX4cOHYymq+7du5fHDjjhqZKuX2cdOzIi5uzM/v3XVKPs2bOnYcOGfM6KSqWqSJOi2NjYwMBAuVzetGlTwxyjWrVqMplMpVJFRETonz8nJ2fQoEF8AYc596IThQkD9wcPHkilUjs7O8NFvnK53AzvC3///bdUKpVIJL/99pvh8fz8/Jdffpl/Opp5CcODBw+GDh1Kz2j5l5mZ+eabBURMImEKBRN8Vce6deztt9mvv7KePVmdOky/DPEFDNy51MJU/3h/q7NWHmc96jaoGxAQUJGlNFqtNjAwkC8ylUqlfn5+SUX3wC1iwIABfJpMsZFZXFwc33CYvxMFBgaWuzzGWF5e3qrt2/udO+cVEdE7MvKnu3ezTdxc4sUxb948InJxcTl37pxQz2k05crW1pa/Er777jujR1pUV5kzZ1jjxmzJErHrqLp0Op1SqeSp4uTJk8u0Z5pWqw0LC5PL5XyHVT7LQC6Xny/HPiGMMcbCw8NlMhkREUl69sz46itWxqbcTzl3Dpl7VbZ06VIiqlOnTqLBbILCwkLeSG3cuHGCjBIfH69Wq318fKRSaffu3Xfv3i3I04JYLC3O5p/Fhrcq+YncoUOHxCvqhXD3LnN0ZBKJAGt/n4vf5vlbv17vf1avXt2wYcOwsDCTV/A0vlvPnwYt7QMDA4lo0qRJZq4EDGVnZ/PFB3/99ZeIZSiVSj79wtQ9A8FIeHg4Ebm7uxseHD169Lhx4wRfSPrgwQPei6Nz587p6emG3/rvv//4MtaiV4hQqe3YwVxdGRFr1YqVojNxhaSnp/OElohkMlmZ+ivExsaq1Wo/Pz+jmey1a9f28fExCtmN6BdwtGjRIkGoXjkWyYSBO7/xO2zYMMOD/MOpTP06y2f16tUSiUQikaxatcrweE5OzuDBg3mIaYqV9cWKiIho1qwZf/EVnaPKW7r36LHUxYUJvc31U379lQ0dytRq1qIF43OmX9jAnTubfXaKagp/X+jcubPRfJZSOnnyJF/JQUQ9evQ4ceJEaX6qsLDw888/541EnJycFi9eXGx2dujQoU6dOvEnHzhwYFRUVDkqDA4O5pNbx586Nff69Xh0bRDOr7/+ymeg79+/33SjZGZmHj169McffyzahIpZUleZTz9lROz998Wuo4rKyMgYPXo0Fde0nTFW+i0o09PT1Wp1ly5d9GdFXl5earW69P2vjx07xrdy4tMWFAqF0QVA+Zw7x2rWZETstddYYWHFnw8sxenTp21sbKRSqdH75GeffUZEjRo1ErzH4Ntvv01EAeXeBgcsA4+zDx48KHYhjDGWk5PDF08YHuRvpOJ2qnwR+PkxImaehJm/Ly1atKjot8q61bMgvvjiC3p6b8wjR46QiReLw3N9/vnnRNS1a1dxd63Mycnhk0mN4g4wtU8++YSI5syZoz/y8OFDGxsba2trQU6JjSQlJbVu3ZqI+vTpY7TRl36aqanbTCUlJQUHBysUCi8vL+zWK4i8PONdSdLTWV4eUyqZVMqI2CuvMBPsyFu8TZs21a5dm08iLPm1pA/ZGzVqZBiy16lTRx+yl3Id2MOHD7t160ZErVu3Ls101UrKhIE775lueMFz4cIFIqpXr5551uIFBAQQkZWV1fr16w2PZ2dn8wV6Hh4eZridolar+aSYvn37Fh1u8+bN1apVI6L27dtfv27ahoA8cNdoWLdu7IsvGDMI3GvVYq1bP/kieiECdy44OLh58+b8ncLHx6f0t2Hi4+P9/Pz4bNOGDRsGBgaW9YVt+AyNGjUq9hn49Pk6derop88nJyeX8vkvXLjAV/HzF9gh0+/v9EIJCgripzgVXH9QQZbTVaZtW0bELCMbqWpiYmLatGlDRG5ubqGhoUbfPXv2bLNmzcp6qh0REeHv788bevDo3M/PLyQkpIQfOX78uIBRe2oqM3ozO3sWmXtV8/DhQ/4Jq1AoDI8fOXLEyspKKpWaIk719/dH4F4FWFScnZSUxK8nDQ/y2QzXr18Xq6oXQVQUk0qZrS0zT6PXlStXEtFbb71ljsFKYfXq1UT05ptv6o/cvn2bX3eIV9SLLi4ujrf7N/+Kh6I2bNjA35qK9qoF0+nYsSMRGU4j4BvSDBgwwEQjxsXF8ZsrMpnMqNnsL7/8wlOCdevWCTvorVu3AgMDp0+f3qpVK8NodciQIcIO9GIKCGBEzHDKnJsbe+cdRsSsrdkPPzAzt/5NTk4eN24c/ysePnz43bt39d/iIbuvry/vpKRXt25dX1/fgICA0ofsRtLT0/nJXseOHc22OYqZmSpw12g0vNeh4bbdKpXKzCcxixcv5pm70d6VGRkZfFpoq1atEsvVLr2wsDAtLS05OTk2NvbKlSsRERHHjh0LCQnZsWNHUFBQYGCgWq0OCAgYMWIEfznOnTu34Ol18hqNRqFQ8LB14sSJRrcrTYEH7oyx06eZgwO7ceNJ4D5jBouJefL1gsxw18vPzw8ICOB3Pmxtbf39/UuexpKdna1Sqfj+4I6OjgqFovSTQ4synCPfs2fPYufIp6enKxQKfuemRo0aKpWq5P7Lqamp/v7+fJWZq6trQEBAIeIrQR05coT32V+2bJm4lVhIV5lr1x538cYLTXDBwcEuLi5E1Llz56J97gIDA/lLcfDgweU418nNzQ0KCpLJZPr+123btlWpVPfv3zd82IkTJ4yi9lLuD/wsaWmsWzfWpo3xhiWRkY8XUY4fj9dSVcDnXnTr1s3wMystLY2vd1y4cKEpBkXgXjVYVJx99epVImrRooXhQT4drPTTIKAcZDJGxD76yEzD7du3j3+emmm85wkNDTVK8TQaDV8zVPJOUWA6vr6+RDR58mSxC3mMzyP8yGz/SF548fHxEonE2dnZ8N8g7/5ktIOgsK5du1avXj0ieuWVV4yu63/88cdiI69y0Hfi1s9H5JycnLy9vRUKRUhIiFDby73gAgJYnTqsUaMnPTnd3NiePWzwYCbivgxr1qxxdXUlolq1ak2bNm306NH8j3qNGzeeMmXKqlWrDGPekhUWFp44cUKlUsXFxRX9bnJyMm+a1LNnT1FWkpmaqQL348ePU5HOVnxx6CaTtk0p4tNPP+Up6s6dOw2Pp6am8mYdLVu2XLx4sUql+vTTTxUKxYwZM+Ry+fjx4319fWUy2ZAhQ7y8vLp06eLu7t60aVNXV1cefJSSh4eHra3tv0V2Onjw4AHvfltscwAT0QfujLEZM9jYsS96SxkjCQkJcrmc72rboEEDtVpd7DrB4OBg/V4QPj4+guzzUMou8FevXuWbEPB7RYbbEesVFhaq1Wp+EWhtbS2Xy42CM6i4S5cu8c+ed999V+xaGLOMrjLffMOI2NSpIpZQBel0OpVKxd+UJk6caHRPpbCwUKFQ8DcEuVxewU1QY2JiFAoFX0xDRHZ2dr6+vsHBwYYNZJydnSsetXP377P27RkR69iRGexByBhjJ04wFxdGxD788AbaklZqfG6ms7Oz4a5iOp3ulVdeIaJ+/foJ8vc7ffr0Xr16Xbp0SX8EgXvVYFFx9pkzZ4ioa9euhgf5hnWIHkxn505GxFxdmdnmvfE7K0YXsCK6ceMGETVr1szwIO9TaiH3ol404eHhEonEwcGhTJ2OTers2bNSqdTW1tbUG3gC9/vvvxPR2LFj9Ue0Wi2/ir98+bJJh75w4QKf0vraa68ZnUHxdli2trZl3cBGq9VGR0cX24lbv91lWFhYBa8yoKiAADZyJHv5ZTZ37uMjbm6sXB2OBZaYmMi7mOrns9evX9/X11etVhfb3rZYhYWFERERKpXKx8enRo0a/Hn+7//+r9gH3717193dnYj69OlTkWmslslUgTtvOefv768/kpGRYbrOViXjuxo6ODgYrfy6f/9+48aNjdoPlZKVlZWrq2vt2rXd3d1bt27t5eXVu3dvmUw2cuRIX1/fKVOmyOXyd955x8rKytra+sHTccKZM2d4YlunTh1z9qY0DNxTU1mdOszaGoG7sdOnT/Nt3IioW7duxwzasERGRvbt25d/q2vXrkePHhV26MzMTKVSya/fnJ2dlUplsbNXQkJC2rVrx8uQyWSGb3yhoaEdOnTg3xo8ePCFCxeErRAYYwkJCfzf76hRoywkDbSErjI9ejAitn27iCVUNRkZGTyXtLKyKnpf9sGDB7xhlJ2d3cqVK4UaND8/f9OmTcOHD+cpPx+diFxcXD7//HNBona95GTWrh0jYp06MaMm3seOsSFDrltZ2b7xxhviNkiFcrt+/TpfN/bPP/8YHv/pp5+IqEaNGsVuGF4O/I7jSYOzFgTuVYNFxdkHDhwgooEDB+qP5Obm8nRDxKqqNo3m8X3Z5cvNN2heXp5EIrGxsbGQE7z8/HypVGptbW04oXXgwIFEVHILODAFrVbr5eVFRIsXLxa7lqdMnz6dX5iIXcgLgU9DWb16tf7IiRMniKh58+ZmGP3s2bM8vpw2bZrRwtYPP/yQiBwdHZ+7Lx0PQwMCAnx9ffW9Jbm6des+d7tLvUOHDllOA65KhwfuV68yR0fGN7i0kMCdMZaUlCSRSGxtbVetWlX60/W8vLyjR48uXrx4yJAhjo6Ohq+rNm3avPvuu8efvfX5nTt3+L3kok2TKjtTBe7802jPnj36I5s3byZTdrYqgU6nmzVrVufOnYtO9fX29iYiHx8fhUKxdOlSlUr122+/qdXqf//9NygoaP/+/SEhIREREZGRkbGxsTdv3kxLSytTizTeUubXX3/VH9FqtTwS7d+/f/m62ZSbYeDOGPvzT0aEwL0YOp0uKCiIL3iXSCS+vr7nzp3z9/fnwZObm1tAQIDpTsSvXbvG1yoSUcuWLYtdGlZQUBAQEFC9enUisrGx8ff3P3v2rP6nWrRoUfEFZVCsjIyMzp07E1GPHj3EbeFiSPSuMnfvMomEOToyi/lPUunFxMS0bduWiGrVqlX0ovrcuXP8pKRBgwal3Ki5rOLi4hYuXFi9enUrKys/Pz8TtdVLTmaenoyIde5cNHM/xuPaqVOnInOvdPLy8nhPRsPWw4yxixcv8t3Ci678KzcE7lVSXl6eRcXZW7duJaLRo0frjyQnJ/NzQhGrqtrUakbEmjdnZm6dUr9+fSIqduW7KPjMMMPIY+rUqUZ5H5jHH3/8QUSNGze2nEsALjk5mV8VGmYvYAq5ubm8g7/hznx8E93333/fPDUcO3bMycmJnp7byhjT6XRyuZzPkjl9+rTRTxUUFOhnHPNXi57h/OUydafMy8vDUpty44E7Y+zTT1mPHkyrtaDA/a+//iKil19++bmP1M9kl8lk/Axfz93dXS6XBwYGlvLz9Pr16/zzd9iwYVWpZ5pJAvfk5GSpVOrg4JCTk6M/yG+9mq19ihGtVlu0JZAZJt2vX7+eiHr16mV4MDo6WqFQmL+n9v377PBhpr9jpNOxiAiWkcGuXWNG/wpOnWJVbjFHmT169GjBggX6+eZ8JunHH3+ckZFhhtFDQ0Pbt2/P362GDBly8eLFoo9JTk5+++23+URU/gbn4uLy7bffYs2XiRQUFAwdOpTf0rC0Rj3idpX55RdGxF59VZTBq6AdO3bwU+HOnTsX3cZ5/fr1fNZAnz597t27Z9JK3nzzTSIScAZ9UUlJz8zcw8PDeeY+bdo0ZO6Vy5w5c4jIw8PD8BMzNzeXTziYOXOmgGMhcK+SLC3ODgwMJKIpU6boj1y/fp0sqfdIFZOZyerXZ0TM/BNIevfuTUSWsB8mxyeHGU5ZVSqVRPTFF1+IWNULKCMjg3fQtsxZTd9++y0RtW3b1mjTOBDWrl27iMjLy8vwIJ9hsHfvXrOVERISwjdw+vLLLw2Pa7VavndOjRo1zp49m5mZGRISolQqZTIZf7xhGOrn56dWqwXpjgvloA/cs7NZs2bsr78sKHAfP348Ef3yyy/Ffjc7OzssLIyH7EVfVzxkj4+PL8e4MTExvDvTuHHjqswGhCYJ3IveEtHpdA0bNiSi8+fPm2LE8uGT7vv372+6IXJycnhuEhMTY7pRSm/gQObkxCzmHLISiI2N7dChg4uLS7t27cx8C5d3Y+fNs3g3dqPeRFxkZGTjxo1dXFwGDx5cbOd3EIROp+PhY+3atS3wZr64XWWGDGFE7Om+EVAehk3bX3/9daMpVHyrbX5CU/Gm7aXx9ddfE9EHH3xg0lESEljLloyIdevG0tOfWjwUFhbG73e+9dZbJs3cU1JSjh079n//93+GbcSgfHbv3s17Mpx8eq3cO++8Q0Senp7Czg1E4F4lWVqc/fPPPxPR7Nmz9UciIyP5bVERq6rCli79duDAJQMGZJd9L/CKev3116lILywRTZ48mYj+/vtv/ZE///yTiPz8/ESs6gXEW9R6e3uXY4N6M8jPz2/VqhURrVixQuxaqrJZs2YRkVKp1B+5d+8eX2ds5j4Y27Zts7a2LjqftaCggHekdHFx4avzOSsrq65du86ZM2fLli2mmDcWFxeHBRZlog/cGWPbt7MGDZiLi0UE7hqNhjcaunHjhtG3vvjiC29vb1tbW/3rSiqVdu7cec6cOVu3bk0xmjlVLlFRUXz0KVOmVI3pViYJ3IveEjl37hwRNWrUyKI+ovik+2+++cako/B1f0a3H0WRkcFsbJi1NTN7F/3KbdGiRSJOJElNTdV3s6lZs2ZAQEDR2318Y3TDc3EQHA86q1WrFhkZKXYtxdB3lcnKyjLz0OnpzMaG2dgwQft7v4gePXo0ZswYekbT9pSUFP1W22a7mtqyZUspVxRWUGIia9OG9et3tVu3Hkbta/SZ+/Tp0wU58SosLIyNjQ0JCQkICJDL5TKZjG/Uw5ltRXBVlZSUxCenfP/994bH+RQHe3v7qKgoYUdE4F4lWVqc/dVXXxHRJ598oj9y6NAhU8/aeWHdu3ePN0wIDxfhDuiCBQuIaMmSJeYfuliffvopES1atEh/5ODBg0TUr18/Eat60Vy/ft3Ozk4qlUZERIhdyzMFBwcTkaura7EztEAQvKOjYcOWlStX0tMNx8xm7dq1UqnUysrKaGZnXl5ew4YNGzRoYGVl5eXl5e/vHxQUZKLmkNy9e/eaNWv2008/mW6IqscwcGeMjRrFiCwicD9y5AhfLlP0W127duUXqp6ennK5PCgoSJCQ3cjJkyf1S5wtKj0uH2sSmlarDQ0NJaLhw4frD+7evZuIRowYIZFIBB+xfBhje/fuJaKRI0eadKApU6b8/fffa9asWbhwobi/fkgIFRZS//70v42CoRKoWbPmihUr3nrrrXnz5h06dGju3LlpaWn8HgCYjVqtXrZsmY2NzaZNm/gnjaVp3Lhx9+7dT58+vW/fvnHjxplz6OBgKiykoUPJ1dWcw1Y1165dGzNmzJUrV2rVqrVhwwbevEjv/PnzY8eOvXXrVu3atYOCgviGaWbQunVrIrp69aqpB6pXj0JC8gYN8rlx4/rIkSP379/v4uLCv9W3b9/du3ePGDHi//7v/yQSycqVK8v0SZqSkhITExMTE3Pt2rWrV6/GxMTcunWrsLDQ6GEuLi6tWrVq3bo1byYA5aPT6aZMmZKcnDxs2LD58+frj8fHx/O+oj/++GOnTp3EKxAqjUePHhGR/n1AdLwefgVoeMSoEy4I4osvvsjOzn711Ve9vfuYf/SmTZsS0Z07d8w/dLGK1sMjP8up8EUwZ86c/Px8uVzOt6mzTKNGjRo+fPjevXuVSuWvv/4qdjlVUHR09O3bt+vUqWP4MuBNZl5++WXz1zN58uScnBwXFxd+uq5XWFiYkpKi0Whu3brVuHFjM1RSp06d1atXDxkyxAxjVRlNmlDnzk/+uGIF5eVZxNX0nj176BkZ6aJFiyQSSb9+/Ux6etazZ8+9e/cOGzbsr7/+cnZ2/umnn0w3lhkIH7gfP348LS2tTZs2Hh4e+oP8r43vIGohzp8/n5CQUL9+fd5R1HQGDRrUuHHj27dvHz9+nLfhE8uePURElvSXAKXVqVOngwcP/vfff0uXLp09e7bY5bxY9uzZM3v2bJ70DRs2TOxynsnX1/f06dObNm0yc+C+dSsR0dix5hyzqtm1a9fkyZMzMjI6deq0devW5s2bG37333//nT59ek5OTteuXbdu3cr3czaFhw8f7tu3r6CgwM/Pjx9p0aKFtbX1rVu38vPz+YYWptOokf3BgwcGDRp06tQpfsWoP5nr16/ftm3bRo8evXr1aolEolari83cCwsL4+Pjb968eenSpcuXL/P/k5iYWPSR9evXb9eunbu7u6enJ/8/zZs3t5wJAYJI1aReyL1ARF0du1a3qp6iSel/rX9EmwhHqaPpBl22bFloaGidOnX+/vtv/X9PjUYzceLEtLS0l19+ecaMGaYbHaoSywzcDeuxtAqrjCtXrgQGBtrY2HzzzTeiFGBpcTav5/bt2/ojjRo1srKySkhIKCwstLGxEaswM7l+nUJDaebMJ0d27yYbG+LzEsLCKDSUcnPJw4MmTDDRnLKQkJDdu3e7uLhY/oSnH3/88cCBA2q1+t133+3YsaPY5VQ1+myd934kovz8/IMHD0okElPP4HwW3qzPSEhISH5+vre3t3nSdiKysrIyTNt1Ol1OTg5fnwrPMnbsk8vn/Hzat49q1yZL+Fernypd9Fs+Pj7mqaFPnz5bt24dNWrUzz//bG1t/eOPP5pnXFOQCv6MRbP19PT0kydP2tjYDB48WPDhyo2/knx8fEx9jS2VSidOnEhE//zzj0kHKhljtHcvEZFIHwdVSkZGxvHjxy9fvmzmcV999dVz587VqVPHzOO+4DQajZub26xZs3h7KIs1YcIEiUSyY8eO7Oxssw2ak0MhISSR0KhRZhuzSmGMLVu2bPTo0RkZGRMmTDh27Jhh2q7VahcsWDBx4sScnBw/P7/w8HDTpe1ElJyc/Prrr/Pd2DhbW9tmzZpptdrY2FjTjavXuHHjQ4cOubu7nzhxYvjw4ZmZmfpvyWSy7du329vbr1q1asaMGYyx9PT0yMjINWvWLFiwYPz48d26dXNxcfHw8Bg6dOjcuXNXrlwZGhqamJhYvXp1Ly8vX19fhUIRGBgYERGRlZV17969kJAQtVo9Z84c3lKmiqXtXyZ+2Si60Zy7c+bfnd8kusnatLUaprmSd0XLtKYb9MyZM3wl359//sl3luMWL1587NixRo0aBQYGVrH/zmA6ljZ/HIG72cyfP1+j0cyaNatly5aiFFA04BZX0RsANjY2DRs21Gq18fHxopVlNtHRpFI9dWTzZtq+nYjo3XdpzBjKzKTq1WnjRmrblqKjBR9fo9Hw7u1KpdLwo80ytW3bdubMmVqtdu7cuWLXUgUVncx+5MiRzMzMTp06NWrUSLy6jIk46Z6INBrNm2+++cUXX5h74NxcCguj3bvpypUnB2/fJqO7p+fOUUaGmUt7LmtrWrSI1q+nM2eMv3XunFkruXv37sWLF52dnfv27WvWgYuQyWRbt261s7Nbvnz5kiVLxC2mQgRvUtO5c2ci2r9/v/7Iv//+S0SDBw8WfKyK4K+hLVu2mGGsS5cuEZGrq2teXp4ZhivWuXOMiDVqxCp/HyRzK9rDfd++fUQ0dOhQEasyhB7uJsXbAX/00UdiF/J8vJfxf//9Z7YRt2xhRKxXL7MNWNV8//33RGRlZfXdd98ZfSslJYU3lrG2ti7a0t0U+Fw5qVSak5OjP8jP183zWcnduXOH33Xo06fPo0ePDL+1Z88ee3t7Iip21oyVlZWHh8fIkSPnz5+vVqsPHTqUmJhotrItx9rUtfbn7A9nPm4DeTjz8P6M/YkFiRRJjzSPSv7ZcsvMzOTpmNFb5dGjR62srKRS6YEDB0w09IQJx7p123nmTLr+yMKFl7p127lq1S0TjQhmwPshzJw5U+xCHhs1ahQRbdu2TX+Ez79WKBQiVlX18O7kNWrUELEJdU5OjkQisbW1tZDt2nJzc/k21BrNk03F+/fvT0QHDx4UsTAz2bKFNWny1JFp09js2WzbNubgwGJjHx/U6dgbb7AePQQf/4cffiCiFi1aiHgVXyZpaWlubm5mvhx4EaSlpVlbW9vY2Dx8+FB/kF8kfvbZZyIWZkSn0zVs2JCIzp8/b/7RCwsLx40bN2LECMNLCXPYsoXVqsU6dGBDhjA3NzZoEOMfItOnM6MTiTp1mEVu7jpvHiNi/v5PHezdmxExoTc/KolarSaisWPHmm/IEv3333/Fbg5ciQjcUiYxMfH8+fNOTk78PICzwH4yZp507+np2blz56ioqN27d48VqfPC7t1ERCNGEKaXAZSJr6/vTz/9tGnTpmXLlhlOz3z48GFSUlKbNm1ErM2I+bvKoJ9MRWi12sOHDzs5OW3ZsuWll14y/NaFCxfGjBnDm7Zv3Lhx0KBBZqjH2tra3d396tWrN27c0Ddba9269a5du8zQxl2vSZMmhw8fHjhw4PHjx0eMGLF37159vD58+PCJEydu2LAhKyurRo0aHh4ehm1h2rZt6+hown4plUVgWuDUmlMHOA/gf+T/J6kwiYgKWWFcQVwpn0daINWl6Ur54A8//PD69eteXl5Lly7VH0xPT58yZYpWq1UqlaY73bp1q09EBGkN5u6npXlGRHhOmWKiAcEcLG3++LNmuBt2dYcK0ul0H374IRF98sknPDEUhYODQ506dZKTk5OSkho0aCBWGXr29vb16tVLTExMTEzUz6Lljd0tZxq+CHbupNdeI/2e5xIJLVhAnp50/z4VFJDu+R9eSRJJAWMlPyY1NXXx4sVEtGLFClM31hOKq6vrokWLZs+ePX/+/A4dOpiobCcnp1q1apnimS3W3r17NRrNkCFDDJde8ZYJYs0lL9bZs2cTEhIaN25s6rbJxbK2th49evTEiRNtbW3NN+rVqzRxIqnV9OabREQZGTRmDL31FgUHm6+GCpsyhZYvpw0b6PvvSd8qrEsXOnGC1q0js+1/ZGnJ7bhx4/7888+pU6d+8skn1apVmzVrltgVlZnAgfvu3bsZY0OGDNG/uTPG9u/fT5b010ZE+/fv12g0gwcPNttiVT8/v6ioqH/++UeswB0N3AHKh7fAu337dkRERPfu3fnBI0eOvPTSSz169AgLCxO3PEMTJkz4+OOPeVcZJycnUw9XWEi7dhERvfKKqYeqmqysrM6dO5ednW20cD4/P3/kyJEJCQk9evTYsmULn6hiHm3atOE7ixoG7mSWfVMNNWnSJCQkZODAgTExMXFxcZ6envx4VlbWzp078/LyNm7cOH78eHOWVIncyLvxuuvrxX7ret71Xtd6lfJ5ukd2PyMvsrT1GWrVqmVvb//vv/8aXmKlpKTwRamff/55KZ8HgLO0OLtoixtLuyVQGWVkZNy5c+fOnTu3bt2aNWvW2rVrz54926hRo/fff1/cwpo2bZqcnHz79m1LCNyJqGnTpomJibdv39YH7pbWaN607t8nw0kJly7R2LEUG0tGcxFatCCplG7coJEjS9My4sM2bdbFxDz3YU5OTr169RKrQ3f5yOXy7777Lj09vVWrViYaYsqUKeI2yzW/on1aYmJibty44ebmxlcYWwh9nWI18XuTp97/s23btrS0tLfeesuEQ65bR926kX7c6tXphx+oWzdKTjbhoELr2pXat6foaNq/n/SvsilT6LffaN06+uYbsrIyeQ0FBQUHDhwgIovatc7Pz0+j0UyfPv29996ztraWy+ViV1Q2AgfuRW+JREZGJiYmNm7cuF27dsKOVRHmv3UzefJkhUKxa9eu1NRU898QTk+nkyfJxoYsqYs+QOUgkUjGjh3LJ7nrA/du3brZ2NgcP348ISHBnHloyRo3bty9e/fTp0/v27fPDJPcjxyhtDRq145atzb1UFVW69atExISrl69ati63c7ObuXKlVu2bPn111/NPKOqaLzO13DElOKiVFgeHh6HDh3Kzs7Wp+1E9MMPPzx48MDb2xtpewlyWI69xL7Yb9lKbRvblnYHrVpOtUq53ZZOp0tPTy8oKLh9+3aLFi30x1u2bHnmzJlHjx7x1aAApWdpcTZ6uFdEbm5uYmLizafdu3fPcFPrYcOG8R1EVCqVg4ODeMUSETVr1uz06dO3b9/u06ePuJVwzZo1O3ny5O3bt/VNdV+sGe4uLvTRR0/++MMPRES2tlRY+NTDNBpijOzsqHFjKsU/zBp16jR+3qZHubm5qampqampGo3G8IOssLDw999/nzBhQt26dcvwi5jA5cuXIyIi/Pz8DNPV7OzszMzMrKysevXqmWhbXRHXoIhCq9XyjrKGgTuPtkeMGGFlhii01MRt4G7k33//nTNnzo4dO0w7zNWr5OX11JFOncjamq5fJyI6d+6pfSByckxbTAVMmkSffkpr1z4J3Hv3plat6No1OnSIZDKTF3D06FG+J4FJ9wwrh2nTpmVlZfn7+8+cOdPZ2XnSpEliV1QGQl4CaTSa0NBQejrIzsjIaNeuXb9+/QQcqIJEmXRft27dIUOG7Nu3b9OmTTNmzDDbuNz+/aTR0ODBZDG7TwFUJkW7yjg5OQ0bNmzLli3//fcf799nIczZVQb9ZCqudevWBw8evHr16vDhww2Pjxw5UpTpVEUDd37E/IE7ERlGt0T08OHDFStWEJFh0xIoqqlt01sFt4r9Vgu7FnHtS9tShtoTlfqEdunSpV988cWUKVOioqIMt5VzdHREnx8oB0uLsxG4l0pq6uMd6vj/3rpFd+40S0q6c/9+sQ93cnJq1qxZs2bNmjZtunr16ri4uM6dO0+cONHMVRdlafPHi9ZjaRWalr09DR365I8bNhARtWhBly499TD+Rw8PunixNM/6C9Evz3tMQUFBhw4drl279ttvvxme7c+ZM+f333+/ePHiqlWrSjOW6cydOzckJCQxMVGhUOgPLl68ODU11dvbOywsDHuVC+LkyZMpKSnu7u6GiwYsKtrm7t+/HxER4eDgYJ62ySVbtWrVwoULQ0NDTdLcJi+PTp+mo0dp+HDKySGj27RWVmRnR1lZREQFBU8teSlFvymxTJ5Mn39O27ZRRsaT1G7iRFq0iNauNUfgziclW+aCnvfff7+wsPCDDz544403rK2tK9HUK6mAzxUeHs7jdX7XnRsyZEh0dPTPP/8s4EAVJNakez8/PyISZfkV+skAVIRhVxn9QV9fXyLatGmTeHUVY8KECRKJhHeVMelAjD3ujIfAvSJEadhSgqL11K1b19XV9eHDh/efkZiYzbfffpuenv7SSy8NHDhQ3EosXH/n/n+n/p3P8s056KeffjpkyJDk5ORp06ax53XFBUsQEBAwfvz4tLQ0sQsp3rPi7EuXLq1du9YS6nkRA/eCgif/X6ejTZvo++/pvfdo1Chq356qVSM3N+rWjV59lT74gH76iXbsoAsX2jg62tvbu7u7y2QyuVyuUqmCgoLCwsJiY2MzMzOjo6N37ty5cOHClStXEtH3338vlQp5cVo+/ErWcuLsHj16vPrqq4ZJ34s1w71YEyZQcDCd+V/fs4ICWrSIRoygGjUEHMTW1va7774jooULF6akpOiPf/DBB3Z2dn/++eeZM6VtvGYK27ZtCwkJcXV1nT59uv7gjRs3fv31V6lUGhAQgLRdKDxbHz16tP7Io0ePwsPDra2tjTZhEtfu3bt1Ot2gQYMsYa5DYWHhkSNHDNP2pKSke/fulf8Zs7MpPJyWLaOhQ8nVlQYMoC++oOBgcncnozfD+/cpK4s8PIiIevakb7558vW/faEsUJMm1K8f5eU9ntPG+fmRREKbNz++fWBSfE8Ci+oEbmj+/Pmff/65Vqv18/Pbu3ev2OWUlpDnNCXcErGo1cS8TvPfjRw7dmy1atWOHz9+7do1c47LGPEXpEXerAKoBHhXGXo6Xh89erSTk9OxY8fi4+PFK80Y7yqTnZ3NVz6aTnY2jR5NffpQly4mHaeKE6thy7O0bduWiGJiYgwzU36RL+5dgZSUlF9++YWIFi1aJGIZlcIndT+RkKTP1T4rU1Zufrj5w4QPA1MDTT2oVCoNDAx0c3Pbu3cvX4gAliw7O3vp0qWbNm3q2LGjydd6l0uxcbZOp5PL5X5+fiNHjjTnJ69Go+nXr1/Pnj3t7Z80ayra1b3KKiykzz6jevXI0ZGcnGj8eEpIIKmU3n6bPvqIfv2Vdu6kS5coK4tq1KBOnWj0aPL3px9/pC1bKDLyv4iI3Nzc2NjYkJAQtVqtUCh8fX379u3r7u6uTwOlUmmXLl1q1arVq1dpN5kwKUuLs8eOHbt582Y+z4Nr0qSJVCq9e/euRqMRsTAx9etHCxfSoEE0YQK9/z517Uq3b5NaLfg4o0ePHj58eHp6Om95xHl4eLz//vs6nW7u3Lli3WMuKCj4+OOPiWjx4sWGDV7mzJmTn5//9ttvd+vWTZTCqqSik9n37dtXWFjo7e3t6uoqXl3GLGrS/axZswzXqsbFxQ0YMKDMpxxpaRQcTB98QD16UI0a1K8fLVhAoaFUUECdOtH779OQITRoEO3YQQY9ykitpubNn2yqXHn4+RERGc4r8PCgXr0oO9vkW8DeunUrJiamevXqFvJBXKwlS5a8//77tra2FjtfpCghA/cePXo0aNDA8n95sfbedXR05JndBr4UzlzOnj1bt27/MWNWGjTCBYCy0c9n159YOzo6Dhs2jDG21fA2tAUw3dT7hAQaP/7x572zM/36K02YQOZ9P6tqLG2Ge82aNWvVqpWZmZmUlKQ/aAlFfv3115mZmaNHj7bks0ALUdO65pk2Zya4Ttj/aP/m9M3OUucB1QY4Sh3fdnvbVmr7/J8vr4YNGwYGBkokkgULFpw7d850A0HFOTk5nTp1auDAgQkJCaNHjx4/fvyDBw/ELuopGRkZVCRwl0qlc+fOrVWr1p49e9q3b79ixQqdWdaGW1tbh4SEnDx50vDgCzTDffZs2rKFduyg/Hy6epU0GhoyhHJzado0mjuXAgJo2zaKiqL0dEpPp6go2r6dVqygefNo7Fjq2tWpFDtX2dra3rx5MzU1dcKECYVGjbnFwBu2WE7gXpStrW39+vU1Gk1CQoLYtZhYjx70669PHZk5k/gGjJ99RlFRNHgwNWtGKhWdPUv/21RWWD/++KONjY1arb5w4YL+4Jdfflm/fv3jx48HBQWZYtDnWr58+fXr1z09Pd999139wdDQ0N27d1erVg2zEwQUHx9/8eJFZ2dnwybJvJGyRTXfKCwstMCquFu3bg0ePHjGjBmGL9dnSUxM3LhxY9jixdSxI9WuTa+8Qj/++Hg5S69e9NFHtGMHpaZSVBT99BMNGECvvEIjRlCfPvTbb7R1K/n70zffkFptjm1GhebrSw4OdOgQGU4qmDKF6OkU3hT43Zrhw4ebaOMHofTo0SMrKysw0ORziQTDhHPo0CE+k33ZsmUCPq2wUlNTrays7OzsMjMzzT96SEgIEXl4eOh0OrMNyj9xZ86cabYRqxj+H/CLL77QH+Fzh4cOHSpiVYbeeOMNIvr777/FLqQq0+l0fP/A06dP6w/ym2d9+/YVsbCi4uLiJBKJk5NTVlaWsM985QojYvXrs/T0x0cmT2affCLsIC8WrVbLV31mZGSIXctj3t7eRHTw4EH9ka+++oqIPvzwQ7FKunfvnoODg0QiOXfunFg1QCm99957RNSiRYtHjx6ZZ8QePRgRO3nyyRF/f0bEAgLMM34lptPp1Gp1tWrViMjV1VWtVotdEWOMZWZmqlQqZ2fn6tWrv/vuu3l5eUYPSEpKeu211/hVTL9+/a5evSpKnXyzxMTERFFGN5+EBCaVsmPHnhzJymJ16jDhzjlzcnIuX768adMm/p903LhxGo1GqCcvn6ysLCKyt7c35/VaWfXo0YOINm/eLHYhL4T333+fiAYPHmx4kDdwb9SokeDn28+VlJTEl9fs3btXf7CwsJD3y/3+++/NXE/V9vvvv/O3JsODhYWFhw4dunv3rlhVFXXgwAEiat++vdiFGLt8+XLjxo1XrVpleNDo3TUhISEoKEgul3t6evLFT35t2zIiZmPDvLyYQsGCg9nDh88cQ6Nha9awSZPYyJFszhx26dLj4//8w9avf+qRH3305LsWydeXETHDPDUlhQ0adKljx3eSkpJMNy6/T2P5gdLkyZOJaPny5WIXUlpCBu6MsaCgIL5N83fffSfsMwtl3bp1IkalWq22UaNGRHT8+HGzDcrnAwYHB5ttxCoGgTtwc+bMIaKPPvpIfyQ7O9vJyUkikcTFxYlYWFH8Muy///4T9mmvXGFWVmziRDZjxuMjCNwrrmPHjkR05swZsQt57K233iKi33//XX/kv//+IyIfHx+xSpo5cyYRjR8/XqwCoPTy8vI6d+5MRG+99ZZ5Rty9mwUGsgcPnhxB4F4mt27dGvq/DQlffvnl+Ph4sSp59OjRkiVL9Mvz+SV3+/btDe9z6wUHBzdo0ICIHBwcVCqV+SNaBwcHIsrOzjbzuOa2fz9zdjY++OqrbP78sj6TUWMZPz8/mUzm7u7Om7a7u7tHRUXxv/2pU6eKnnTzHh0We0Nl+/btjo6OTZo0sbKy8vHxCQkJEbuiKi4tLY2/JLZs2aI/qNVqeduWhQsXmrmeadOmEdErr7xiePDHH3/kN7yL3qeEivDx8SGi//u//xO7kOeYP38+ESkUCrELMbZmzZr1T6feWq323XffXbJkyR9//DF58uRGT69NqVat2vDhw7/75hsWFsZevBfz9u2MiHl6PnXwlVdeMWnKnJOT4+joKJVKTZrpl1VgYODYsWMNP+C0Wm2dOnWISKzJFuUgcODOGPvrr7+kUqlEIjG8XLccU6ZMIaIff/xRrAI++ugjc843F3dGf9WAwB248PBwImrcuLHhdeC4ceOIaMWKFWJVdefOnaIH+RZP48aNSysiPj4+9mk3b6bGxrLr11lERPFfR4+ykBAWEsKio5mVFYuPZ87OjN80ROBecbwF0Nq1a8Uu5LFly5YREW9LykVHRxNRy5YtRann9u3btra2VlZWly9fFqUAKKtLly7xdRvr1q0TpQAE7uUQFBRUs2ZNIqpevbparTZz3JmVlRUQEMAnOBORt7f3gQMHjh07xne5kEqlcrm86BzS9PR0uVzOf6RXr16XzDhnraCggIisra3NNqJo1qxhzZoZH5w5k02c+Mwfychg58+z4GC2YgWbPz/l3Xe9vLwMe0wbsbOza9my5ciRIxljx48fd3JyIqIFCxaY8rd6Ph6knjRcO2MZ8vPz58yZw29HeXh46LdJ69y586pVq3JycsQusMriG8m4u7vn5ubqDx47dkwikTg4ONy+fdtslURGRkqlUltbW8PIKTU1lb+H79y502yVvCCGDRsmlUqjoqLELuQ5eAfIo0ePil3Ic6SmpjZt2tSob0mtWrVeeeWVH3/88cyZM6IvchJXQQHr2zetX7/Ac+fO6w/yVrFeXl4mGpT3k+nevbuJnr98+DbFq1ev1h85fvw4ETVv3lzEqspK+MCdMfbzzz/zmSmG/3Usgf6WCN8RThQ8uahZs6Z5bj6vXbuWiF566SUzjFVVIXAHzgK7ykRERDg7O/v7+2u1WsPjly5dkkgkpWzB1r//JiJWmq/Tp5mVFWOMLV7MOnRgBQUI3AXw+eefG73DiGvbtm1ENGLECP2R/Px8Kysra2vr/Px889fz1lvTicjPz8/8Q0O5qdVqHt3evHnT/KMjcC+fu3fvjho1in8uvPTSS3du3TLDoDxqr1evnj5qDw0N1X83NzdXqVTyzzJ3d/cDBw4UfYbdu3fzj2YbGxuFQmGGt6mbN29OmzbNxcXF2dk5ICDA6PO3qjl4kNnbM6MbMGPGsI8/Zrm57Nw5tnUrCwhgc+awMWNY587M1dXo1EHzv79cOzs7d3d3mUzm5+enUCjUanVISEhsbKxRtrJ//347OzsiUqlUZv1Nn/bqq68S0b///mt0PDk5efHixWLNAYyLi+vTpw+/2aNSqXQ6XWJiokql0s8PrV69ur+/vyhvvFWeRqPhSxK/+eYbw+MTJkwgookl3IISlE6n453EjSYy89bYMpnMPGW8UD755BMiat++fUpKiti1PFNsbCwRubq6FhYWil1LSfLz81999VVbW1siqlevno+Pj0qlioiIqOKfpGU0e/ZserqZZ25ubo0aNYgoOjraFCPyhpBKpdIUT14+eXl5zs7OEonEsHHTF198QUTvv/++iIWVlUkCd8bY8uXLicjKymrDhg0mGqIc+H5Hot8S6dSpExFt3bq1fD+elpaWmpoaGxt7/fr1iIiIU6dOhYSE7N27Nygo6Pr160YPrnRNjiwQAnfQs6iuMjdv3uTzASdNmmQ4G7GgoGD48OH8rKuohg0buj9t7Nj/3N2Zhwfz8ir+q29fJpMxmYxFRDwO3PPzWevW7KefELgL4J9//iFL6pdy5coVnm0ZHvTw8CAi888xv3qVtWiR36/fLzdu3DDz0FBBr732mqOjo5/f9oICcw+NwL0igoKCateu7WJnl9OuHVOpmMmugfPy8tRqdf369XlQ2Lt372c1P4yKiuratSufyiOXy4tuD5CRkeHv7887k3Ts2NF0HbquX7/+xhtv8OaZ+pnFQ4YMiY2NNdGI4nvwgNnYsP37nxx5+JDVqME2bmQREcXfnHd0ZJ6e7OWX2axZbNkyXVDQyZMny9Sb5b///rOyspJIJH/88Yfwv1HpfPDBB8WG/kuWLCEiW1tbX19fMzdy2bFjB5/C3KRJE6PepPn5+UFBQTKZjL8mpVKpTCYLDg4WvTNPFcN7ZDs7OyckJOgPxsfH82UZR44cMUMNfC5d3bp1Hxr0s46Ojra2tra2tjZRGPeCe/DgAW+O37lz57S0NLHLKV5AQIA5b/yUT3Z29vDhw0ePHr1nz56isRXonThxgogaNGhgeEP6nXfeIaJPP/3UFCPyCz2LWtTFA7cuXboYHuSLz3bv3i1WVeVgqsCdMbZw4UI+32T79u2mG6VMlEolEb333nvilqHv9mB0PDIycuLEib6+vsOHD5fJZD169PDy8mrRooW7u3vNmjX1TS1LYLRHiiXM6K8CELiDXrFdZfg0qADzpjspKSl85eCgQYMMJ/TpdDreg9vNzU3w7ma8hzu3fz+rWZONHInAvaLOnDnDQyKxC3msoKDAxsZGKpUaLprmG+mU+z5xuU2cyIiYXG7mYUEAaWlpffteJhLhLeL6dXbwIBOvFXmld//+/YgPPngcnvbtywRvlJmTs/H33/Wz2nv37r1v376Sf6KwsFClUvGJzw0aNCj2yuLo0aOtWrXiUbhCoRB2Ient27flcjkP2W1sbPz8/GJjY0XvI28mH3zAmjZl+/ezzEwWHc2GDmVeXqyggKWksPbtmY8Pe+899v33bNMmduYMu39fkDH/+usviUQilUrFmrn1008/UXEtQMPDw8eOHctvuhBRt27d/v77b8OPS1MoLCxUKpX8ltKoUaNSU1Of9cjTp0+/8cYb/F8KEbVu3frnX3/O0FjKruxVwJgxY4ho6tSphgd5wtClSxdTz9LNyclp0qQJEf3555+Gx/k+HIbNAEFYycnJvMVZ7969LbNPL38NWE6DymIdPnx4+vTpVfazUlD8Mn+/wd3uI0eO8Buugr/P8LlWbm5uFrXOYO7cuUT02Wef6Y8kJydLpVIHB4fKtX2OCQN39r8FOLa2trt27TLpQKXUvXt3IhK9mISEBCsrK1tbW6N1STt27HhupE5ENWrUcHV1dXd39/Dw8PLy6t69u0wme+mll3x9fY32SOQ3x0Sf0V/ZIXAHvWK7yvz7779E5O3tbbYycnJy+JriDh06PHx6x3a+0srBwcEUOzMbBu6MsfHjmVSKwL2iHj16xBuAWs5ZDg+tLl68qD8yb948MvsC/+hoJpUyW1tmls4WILxTp5iNDZNKmdmmgdarx3r0eDIne+VK1qePmYaugnbuZI0aMSJmb8+USibIUoX8fKZWs4YNr/btS0SdOnUKCgoq/U9HR0fzLcGJyNfXt+jq/pycHIVCwcPQFi1aHD58uOIl37lzx9/fnyeYPGo3nJeXlpam7yPfu3dvc/aRNx+tln37LWvVillbs/r1mVzOnh34Cuibb77h/81F6UkdHBxMT3dXM5SQkKBUKmvXrq2/NPP39zdRF+/4+Pi+ffvyO0lKpbI0pwrp6ekBAQFNmzYlop4LelaLqia/I7+Yc/G5PwjPFRsba29vL5FITp06pT+Yk5PD/2ubel/NL7/8smiyz5s716xZ05IbnlQBcXFxzZo1I6IhQ4aY+h5bWWVmZtrZ2VlZWT0w3EEeKjM+d/mNN97QH9HpdM2bNyciQc5tDP3www9ked07+dVoeHi4/shff/1FRC+//LKIVZWDaQN39r89Qh0cHA4ePGjqsUp2//59qVRqb29vCbdE+E1Io5WS8fHx69atCwoK2r17d0hIyMmTJyMiIq5duxYbG5uSkpKWllbWOIZ/Kos+o7+yQ+AOhkTvKqPRaMaOHUtEjRo1in96DueqVauIyMrKykQzkY0C93v3WPXqCNwFwOdI3rKYXJnvUbNp0yb9kT/++IOIpk2bZs4yxo5lRMzf35xjgsAWLWJErG5dZp6Ox/XqsWrV2MqVj/+IwL2iHj5kcjmTSBgR69SJRUaW/6ny89lvvz1O8Il0PXrsK1eKqtVq1Wo1b+BQt25dw7cpvRMnTnh6etL/WtCUezZiXFycv7+/vb09EUmlUl9f32vXrhX7SPP3kX9BKBQKfhVpnmYdejqdjm9IVrNmzX379j2rMUteXl5QUFDv3r157G6KRi4HDhzgzQMbNWpkmDuURmFh4ebNm/0i/CiSKJIkkRLZNdnW9K0aHaaXVsiCBQuIqFevXoZ/0evWrSOiOnXqGM2DEVBcXJyjo6NEIjHcFTMvL69FixZE9Pvvv5toXNC7fv06b4M2evToAvP3y3u2LVu2mHnuF5jajRs3JBKJk5OT4TnMp59+SkRvv/22sGPxdmTr168X9mkrotg9CcaPH09Ev/zyi4iFlYPJA3edTjdz5kwicnR0NM+myfHx8cWelgUGBpYwVcHM1qxZQ6bfaNFCZvRXdgjcwZDoXWX4riY1a9a8cuWK4fFdu3bx1e6m+xwqKGBGjWoTE1lKCvvpJ4ZZNRUxaNAgItq7d6/YhTzG75QvXbpUf+Tw4cN8/qbZaoiMZBIJc3BgBjvlQOWj1bLBgxkRGzHCeNtFU6hXjy1ZwmrWZMnJjCFwF8qRI6xlS0bErK2ZQsHK2qqloIAFBjIPj8c9atq3Z0FBFXw1xMbGDh48mKecPj4+hv2U/zdmgUql4tuyNW/evKy9tpOTkxUKhWHU/twWbWbrI/9C0el0fCtIFxeXiIgIM4xYUFAQGBjI+zXr+8a0aNFCpVKV0Ls5IiJCLpfzFwwRtWrVKiAgoIJ9JzQajb6NzJAhQyqyTWtMbox/vL/zOWeevDe40EB5T/mgsFQzYbO12VnarHIPXSVlZmbyeRL//POP/qB+L9OPP/7YROPysGnSpEmGB/mmAu3atbPwrTKrjIsXL9aqVYuIXn31Vcv5bz59+nQi+vrrr8UuBITEl7Mbtgm6cuWKg4PDO++8I+AoWVlZfHmERS2RWbFiBT29J0FhYSHfNrbSbetl8sCdMabT6d5++20iql69umEfBgHdu3cvKChILpfzKS116tQpOrng9ddfJ6KffvrJFAWUVVZWFt9113T7LPEZ/ZWuyZEFQuAOhsTtKrN06VIisre3DwsLMzx+5swZZ2dnIvryyy9NXYMRhYIRsVGjzJGmVVUzZswgohUrVohdyGOrV682WlqYmJjIb/OYrYaRIxkRM9l1K5jP3busVi1GxMzwAq9Xjx09yl57jfE1uAjcBZOdzRQKJpUyItauHTPopVASHrW3aPE4am/XjgUGCrULq06nU6vV1apV4w091Gp10cecPXu2S5cuRFSrVq1Spp/3799XKBQODg76qL1M2yCZtI/8i0mr1fIrODc3N5Nu3J2VlRUQEMAbZBNRkyZNvvrqq4ULF/JTPiKqVq3a7NmzS6ghKSlJpVLpH+/i4iKXy8vXZSg5OZkvhraysiplG5nnytBkqB+oPS958tjd7qyd703f41lPtR9MKkj648EfnyR88tP9nxILEhljCxIWTLtt1sVtlQLvbNCwYcOsrCd3I86ePSuVSm1tbQXfQokxFh4eztsPGnYuunv3Lj/5N2z0DKZ27tw5vrXem2++aQndIHU6Hb8DdP78ebFrASH99ttvRDR8+HDDg4bvOYLYunUrEfWxsNPl4cOHE9GaNWv0R3gL+7Zt24pYVfmYI3BnjGk0mokTJ/Jz4siKrEg1cPv27cDAwKlTp/JmRno1atQYNWqU0XoujUbD70ZazobIU6ZMIaLFixdX/Klyc3PT0tLu3bsXGxsbHR0dERFx9OjRjz/+2HJm9FdqCNzBSAldZe7cuWO6cdetW8f3ENu8ebPh8djYWL7iePLkyQIuZC6l+PjHaZp5d42tUpYvX05Es2bNEruQx8LCwoioR48ehgf5tIL7Am2IV7JjxxgRc3Z+PE8ZKrudO5lEwuzs2NmzphoiK4vl5j4O3OPimLMzO3QIgbvQwsJYq1aMiFlZsY8+Ynzfs+PH2SefMLmcffMNu3nz8SO1WhYU9HhePBHz9GSBgcwE+6QlJCTwFlj8jLdoY7eCgoKvvvpq3bp1z30qo6jdx8cnKiqqHCVlZWXNmTNHKpU61HAYcn6IUaAJ5VBQUPDyyy/zfNMUvdcyMjICAgL0u/i2aNEiICBAf7NEq9UGBwfLZDKJRMIf4O3tHRQU9KzJrRqNhj+eP1gikchksqCgoNLvE3jo0CHetqJOnTplXZzxXFqm3Z2xe+SNkdJIKU/e+8T0WZ+2vkBXcPDRwWpR1QZdG7QgYcGY2DE1ompczbuKwL1YOp2O7ydheHnIGHvrrbeIaPTo0cIOp9Vqu3XrRkSLFi0yPO7n58enWgs7HDzX8ePH+a0OS+jcGxERUXTtNVQBqampfO55YmKi6Ubh+9AsWbLEdEOUVU5OjoODg1QqTTa4DuS9vD744AMRCysfMwXujDGNRuPr60tEtWvXLveeQgkJCYYz2fWqVasmk8lUKlVYWFixHbV4F4hWrVpV7JcQEg9tGzduvH///qCgoKCgILVa/ccff6hUqq+//lqhUHz00UdyuXz69Om+vr5jx46VyWQDBgzw8vLq2LGju7t7o0aNXF1dHR0d6dnatWv322+/if2LVnoI3MGIKF1lDh48yFfHGw3x4MEDPp9u8ODBYvWN5WmajQ07eVKU8Su9PXv28L9BsQt57MGDB3x2nuFBfm1ptLTCRHgTErOv1gATmjWLEbGWLdmjR0I+bXY2Cw5mfn7M2ZmtX/84cGeMLVvGPD3Zb78hcBdabi5TKpmNDRs1ijHGFi5kzs5s/ny2YgWbMoU5OLCdO9mDB0+i9jZt2Pr1Qs1qf5agoCA+q8bFxSUgIKCsUw4fPHigVCr5ZHmJROLj43O2wreGjh8/7rvLlyLJ6qzVvPh52VosNq2QnJyc/v378zRcwOghMTFRqVRWr16dXzd17do1MDDwWcl4TEyMv78/T9mIqEGDBkqlsoQtCs+dOzd9+nR+C4dX/sMPP5SciOl0OpVKxVvZDBo0yKQhy428G4q7ilrna1EkVYuqllKY0vBCw/fj3tc/4Ez2GR3TIXB/luPHj0skEnt7e8ObQMnJyfzlJGyTwJUrV/LrDsNl6ydOnJBIJHZ2dpYzm/CFEhoayrtIffbZZ+JWwnfXnDFjhrhlgCmMGTOGiJYvX266IfiGz0WnROt0OrFu4ezYsaPoxK+OHTsSUWhoqCglVYT5AnfGWH5+Pp+hULdu3dKv0NSH7EYz2fUhe0RExHPPrT/77DMimjNnTkV/B+FcvHjR3t6er0iqIFtbW1dX13r16rm7u3t6enp5efXt21cmkx04cEDs37IqQOAORszfVebChQv8DN6oNWROTg7frcvLy6uC3UIr6P33GRHz8GAZGSJWUVndvHmTiBo2bCh2IU+cPHnSqF8tn0i1evVqUw999CgjYjVqsGf3y4XKJzeXderEiJggWz2lpLDVq9nIkczW9nGuK5Wyzz57ErgXFLB27ViPHgjcTePMGXbvHouMZFLpU+1lli1jtWuznBw2cCBr3pyp1cxcLW6TkpJee+01flbcr1+/UrZ0SElJUSqVLi4u/AdlMplQy3AZYwW6AlWSyvasLUVS84vNQx4JPFX5RZORkeHl5UVEHTp0KKGdeildv37d39/fzs6O/9V7e3sHBweXsgy1Wq2f+GVnZ+fr63v8+DPXMTx8+DAgIIBfw5Z8inj//v1hw4bxuz4KhaL0M+IrIkub9ceDP35I/uFM9hmKpORC42VlCNxLMHnyZCLy9fU1PLhs2TIiatu2rVCbaj569Igvv9i4caP+oE6n69mzpyWkvS+y7du329jYkOmbp8fGxv7111/Tpk37888/i36Xb9q3Y8cOk9YAoti8eTMRde3atRw/m52dnZaWlpCQoO+BER4eHhISsmPHjqCgoDVr1qjVaj5tvG7dukbZukajeeutt6ZPny5K5j5r1iwiUiqV+iPx8fESicTZ2bkyduoza+DOGMvJyeG7wzVu3LiEVYFJSUmrV6/28/PTN8Lj3Nzcxo4du2LFivPnz5dyAotWqz137py7uztZ0pZ0//zzD5+c3rFjR5lM9uqrr/r6+r7zzjtyuVyhUCxYsEClUi1btkytVq9atSooKOi///4LCQk5ePBgREREVFRUbGxsXFxcWlqa4F2coKiigfvVq1c//PDDVatWiViVIQTu5mfOrjLx8fGNGjUiotdff93wfU+j0fD73s2bNzfpNKjSyMtjXbsyIjZ+vLiFVEpardbe3l4ikTwSdvavoPj+AYaveRPp358Rsa++MvU4YG6XLjFHR0bE1q8v5zM8eMACA5mPD7OxeZyzW1kxb28WEMD4rpn6wJ0xdvQok0gQuJvS11+zvn2fOpKby2xtWVgYS0oyW9RuKDg4mLeydXBwUKlUJUSWqamphlObZTKZibY5PZ9zvtuVbhRJkkiJ3y2/1MJUU4zygnjw4EHbtm2JqFevXuWeZBAZGenn58dnkfPeQeX4q9dqtSEhIb6+vvqNVb28vNRqdW5u7rMev3379oMHDz7rCY8cOcJfurVr1963b19Z66m4oLSgmueL2aYFgXsJ7t696+TkRESHDh3SH8zPz+cLT4XaN+6DDz4goj59+hgmX3///TcR1atXLwPzXES1efNma2trIvr++++FfebY2NjAwEC5XN6sWTN9FObj42P0sOTkZGzaV4Xl5+fXrFmTiObNm/fZZ58pFIpZs2bJ5fJJkyb5+vqOGDFCJpP17t3by8urTZs27u7udevWdXV11d9LLo1mzZrVrl3bKEmIioriCzhEaeHi4eFBRKcM5nOo1WoiGjt2rPmLqThzB+6MsezsbP2qwAR+hVQEn0HM1a5d28fHp5Qz2TmtVhsdHa1Wq319ffkiU3t7e1tb2+HDhz9rRLMpLCxUKBT8V/Pz88Obo+UrGriLJSUlZdGiRUW7RiJwN79iu8rMmjXr/fffL9pDtiJSU1PbtGlDRAMHDjS6qTt79mwiqlWrVpm2dDOd69eZiwsjYqafA10FdejQgYgiIiLELuSZNm3aREQvvfSSSUfZtYsRMTc3gRuPgIX44w8mkbCyTsiLi2NqNfPxYdbWxjm70a3Gnj2ZwbojNnMme+01AcqG4r399uPdaQ15eDBRz0bS09N5Q1Ii6t27d9Emlo8ePVKpVHxTCh61Gy5WM4VCXaEqSWV31o4iqf6F+lvTt5p0uKotPj6ex08ymaysM93CwsJ8fHz437udnZ2fn1/FN7e8ceOGQqHggQgR1a1bV6FQlOk8UKfTBQQE8HmyAwYMEOtC9b/0/1yiXIoeR+BessWLFxNRp06dDG/vbd++vXHjxlu2bBFkCLVaXbt2bcPFN5mZmfz2jOGOgiCWv//+WyqVSiSSYvfuLj2NRhMZGbl8+fKxY8e6ubkZRqJ8yuny5cuL7izC9+8dOXJkRYYGS/bZZ5/x5Sxl5eDg4OrqWr9+fX0PjD59+shkspdfftnX13fKlClyuXzmzJn8I7VTp05GS8f27dvHg/svzdvi8/LlyzwBNgx++RTDlStXmrMSoYgQuDPGMjIy+OKXVq1aFTsxMysra/z48T///HN0dHQpFzJoNJozZ858//33Pj4++tNozt3d/aWXXuLTWNzc3IKCgoT+hUrr7t27vP+DnZ2d6Xo9g7AsIXAvLCzk51tE9PPPPxt9F4G7+el0uiZNmhjdfRVcbm5u3759iahdu3bp6emG3+Kn+A4ODuHh4aYroKw2bmREzN6enT8vdimVDW+GUJqd/cTy3Xff8d611atX9/Ly8vX1VSqVQUFB0dHRZe2YXIKTJ5m3N/vhB6GeDyzOqVPs8mW2adNTE6A3by6mg9Dt2ywggHl7M4nkcc5ub898fFhgIHv67RBE8t57bMIE44MNGjCDvgdi2b17N18ja2Njo1Ao+AYnmZmZKpVK38tRJpOdNOPGI9fzrg+4OoBvU+l70/dB4TN7f0PJrl+/zjtsjBkz5lk7lxriu57yPSeJyMXFxd/f/969ewKWlJubGxgYyDvM8ledr69vafY7ffDgwYgRI4hIIpH4+/uX5tcxkaicKIqkuHzjWwUI3EuWm5vL4yqjsPVZax3KPYrhHz/99FMi8vLyEvDsCyri559/JiKpVLq+jCv4CgsLIyIiAgICfH19jfoM16tXz9fXNyAgoOQpp/zy4ddff63wLwGWKzQ0VKFQLFmyRKVS/fLLL2q1eu3atUFBQbt27QoJCTl27FhERMTly5djY2Pv3buXlpZWpvef+/fv8yZpXbp0Mcrct27dyhdwmLppkqHvv/+eiN4wmM+Rn5/Pd9kRvIuAeYgTuDPG0tPTu3btSkQdOnRISUkp35NoNJpnvUnVr1/f19dXrVbfvHmTPzgxMXHUqFH8u76+viXscmMiR44c4SeIjRs3NucpPlSQ6IH7gQMH+OxXIho8ePCFCxeMHoDAXRS8q8yHH35ooufXarV8I9aGDRsazZZau3atRCKRSqX//fefiUYvt2nTGBFr145h9U6Z8I1GzDyJoJQKCwvnzp2rjyqKzqFwcnLy8vKaMmXK119/vXXr1mvXrpW++ey337KlS5/88epV9sEHLD+fzZrFDPOQc+ewh2rVsWQJI2KGW0DZ2TH97L3YWOOc3cHhcc6OpfOWZcUK1q7dU0eSk5lUyiq846ggMjIy/P39pVIpEbVv337mzJmGUfuxY8fMX5KWadUP1M7nnCmS6pyvE5gayI9nabN2PNyhfqDe+XBnni6PMTYvft7Hdz8u8cleaBcuXOB/m2+++WYJE7Py8vICAwN5fw8iqlu3rlKpTDfl/bqIiAg/Pz8+XZ3nF2q1+lmrmU+fPs2zWjc3t927d5uuqtLQMm3L6JbTbk/TssfRnkanYQjcS2Hjxo18PqZJX1p6N2/e5E0IzbOJPZQS77toY2Pz3N0gsrOzw8LCVCqVTCbTb6pslF9FR0eXZtCCggI+o7SERs0Az3X37l3exaV3795G7do2bdrEO6d999135ilmyJAhRLRhwwb9kZCQECLq1KmTeQoQnGiBOzO4ndK5c+fS735TQsju7u7u5+enVqtLeNMJDAzkd0jq1Kkj1FKv5zJcLTho0KDkZOMdacCS8cB99OjR5p9HcP36dV9fX/7ybtGiRbGLMwoKCnr06IHA3fyK7SojIB7ou7i4nH96uviBAwdsbW2JaMWKFaYYt4KyspinJyNi77wjdimVypo1a4hoQtHpomJLSUmRyWREZG1tzV9yaWlpERERgYGBCoXCx8fH3d1dIpEYRfBeXmnu7szHhykULDCQRUSwnJzin79fP0bE9Fs9HTrEatdm+fmMiBlebmzaxJo3N/XvCmayZAlr357VqMHi4x8fsbNjISHs889Z27aPQ3a+ca6fH9u27ZkvHhBZfDxzdHzSQEarZdOns44dmRhbbD3L0aNHed7KWy17e3sfOHBA3JJu5N0YdG0QRZLdWbu4/LiTWSfrXqjreclz0q1JHS93bBXd6l7BvVlxs+bEzxG3Tgt34sQJvujK39+/6HczMjICAgJ42w0i8vDwCAgIEHbScQnu3bunUqkaNmzIR69evbq/v79+Bhh7+sKwR48eFhKWnc4+Xed8na5Xur4f9/4bt96od6FeuiYdgXtpDBgwgIjmz59vhrHGjRtHT0//BAvxySefEJGtrW0J98/mzJmjvyFHRBKJpF27drNmzdqwYUPp20lptdqoqKiffvppyJAhUqm0ndGdb4Cyi4uL4zeAhwwZYvRZqW+a9Pvvv5u6jMzMTDs7OysrK8MJ2fPnzyeiTz75xNSjm4iYgTtjLCkpibcn7tWrVwmbxRmG7EXbxfCQ/fbt26Uc9Pbt24MHD+Y/7uvrW+759aX06NEjvtjHnJvOg4ASEhJ43tS1a1ezzSbIyspSKpW8c5aTk5NSqSy2VWVISEi7du2IyM/Pz9SvZDBi0q4y3333HRHZ2dkdPnzY8PiFCxf4XIYFCxYIPqhQLlxgDg6sR4/tGzduFruWSuP06dPPunsvygbx3Llz55o3b86nbhnuCWYkLS3t2LFjq1atmj9//rBhw5o2bermptXHpvzLxoa1acNefZV99hnbsIGdO8f46Vy/fszHhzVrxvgW4AjcXwRLlrAJE9g777Bx4x4fsbNj+/czqZQRsZo1mZ8fCw5m+fmiVgml8d9/rFo1NmgQe+st1qED8/Bgly+LXZOxrKysP/74Y/369SW8iZmZjunUD9TLk5fn6/KbXGzy9p23+WxiHdNtSt+k0WkQuJdGSEgIP0/+ymCX7aSkJKVSqb9a7NKlS2BgoCgXX/n5+UFBQd7e3rwSqVQqk8mCg4PT09P5+kXeRqagoMD8tT1Lhibj37R/lyUtC0wNvJl/kzF2NvvssSwRloNULufOnbOysrKxsTH1pkoHDx4kImdnZ9E3pYNi8R1uHR0djxw5UuwDFi9ebGVl5enpKZfLg4KCSt9xwTAN4zsUckOHDi3a2B2gHK5fv87vUr/00ktGudMvv/zCP7NWm3ijti1bthBR3759DQ/yuPjo0aMmHdp0RA7cGWNxcXH8er5v375Z/IKbMfa/nlYqlcrHx4cHTEVD9nL38dHpdGq1ms+MqFev3vbt2wX6bYzFxMTwWfwuLi5mm1APglu7di2fqCKRSCZPnhyvn5VnAjqdLjAwkHcfkkgkfn5+xe5zcOXKFd72kYhat269Z88e05UEz2K6rjKhoaHVq1f/559/DA/evHmTvzBef/11EUPY0lizJlwikbi4uNy4cUPsWiqHjIwMInJwcCi6kkYul8tksqCgoHzzBpAbNmxwdHQkIi8vr7J+2mZmstOn2d9/M4WCjRrFPDweZ6mGX1ZWbOFC1q8f+7//YwMHMoWCMQTuLwYeuN+/z1xdHy9u4C1lvv2WhYYyTEuoZFJT2caNTK1me/awMm5iCUczj1qdtSrazx2Beylt2bKFd5j98ccfb9y44e/vb29vz8+Nvb29n9vbwTxOnjw5ZcoUfm+AT3gnolq1au3cuVPs0kAwfK9mk+5dqdFo+D4BhneYwKLodDr+SnBxcTlz5kzRB6SlpZUwx9RITk7O4cOHFy1aJJPJ+CItvWbNmr3xxhurV6++fv26oL8BvNBiYmLq1q1LRGPHjjXaU2T58uVEZGVlZdjsRXDvvPOO0VvczZs3icjV1VXEPU4qSPzAnTF2+/btpk2bEpFMJjt+/PizQna5XB4YGFimnd9LdvPmTb4EjE91L31bm1LasGEDz/Q7deqE1Kmyy87OViqVvNWao6OjQqEwanEliFOnTvXq1Yu/Jnv06HH8+PGij0lPT1coFPzEvUaNGiqVqtjJ72AGvKuMk5OTt7e3v79/YGBgKZvulYbRkoWUlBR+g3fgwIGV4m980qRJPKutFNVagvr16xOR0WqtgoICNzc3/p5Qp06dDz/88MqVK6auRKPRKBQKPqifn1+OEB098vNZdDQLCmIqFfPzY15ezN6e/fHH48Cdr4q4ePGpwN3dnbVp8/irYUME7lUHD9wZY7//zpo1Yzk5T/VwB3hx/J3yd+OLjYseR+BeeqtWrZJIJHxjGx4HTJgw4axlbCRgKDk5WaVSNWnSZMaMGT179jTsMANVwP379/m6il9++SXKNPhmP82bNzdbcyQoB61WO3HiRCJyc3O7ePFiWX88KysrJCREqVTKZDL97UOjKad49wDTOX/+fM2aNXk6arQ4bOHChVS6jQrKjTcPOHfunP4I35HYAnuulp5FBO6MsStXrtStW9ewp5VhyG66CcV8qjufxNe0adPQ0FBBnrawsFCfVkyePPlZu+VApRMfH+/n58cbFjdq1CgwMFCoicZ3797VP3PDhg2LfWatVhsYGFinTh0ikkqlfn5+SUlJgowO5aPVavnqTkP169f38fFRKpXBwcFC/QXl5OTwVcnt27c3z6ZMFffo0SPeOXfu3Lli11I5DBw4kIj27dtndDw9PV2tVnfu3Fn/GvPy8lKr1aa458cYS0lJGTp0KBFZW1urVCpTDMHl57OcnMeBO2Ns/nzWv/9TgfuOHezKlcdfK1YgcK869IG7Vsu6d2dLlyJwhxfU6pTVzS42K3ocgXuZfPfdd9OmTbOzs/Pz8zN1T48KKiwszM3NtfBFilA+P/zwA59pZyISicTOzm7zZnRrtHQFBQWjRo0iojp16pRmlkxGRkZISIhCofD29ubbdHFSqZQ3nxF2yilAyU6ePMn3vJw6darRwuvSbFRQblFRUTxIMfyIHDlyJFXyrQoljDHTfTCUycWLF69cubJ06dKBAwcOGDCgf//+tWvXNs/QsbGxU6dODQ8Pl0gk77zzTgU/L+/fvz9x4sSDBw9aW1svXbpUn7xDlXHq1Kk5c+acOnWKiHr27LlixYqePXuW+9lyc3N/+umnpUuXZmVlOTg4+Pv7f/7550VfgYcPH547d+758+eJaMCAAQEBAYYBHIjo3r17kf9z8uTJlJQUw+/Wr1/f63969+6tn61cejqdztfXd8uWLQ0bNjxx4kTjxo2Fq920IiIivL29CwsLt27d+sorr4hdjqWbMWOGWq3+6aef3n///WIfEBkZuXLlyg0bNmRmZhKRi4vLK6+88sYbb/BNJgRx/vz5sWPH3rp1q3bt2kFBQfwegEn1709Tp9Jbb1FmJrVtS2PGUFAQ3b1LdnYUHU3t2j1+2ObN9PHHdPOmqcsBc1i6lKKj6d9/iYgiIkgmo6wsOn2aunYVuzIA8zqQeWDEjREPOz10lDoaHp8dP9tGYhPQKECkuiqlhw8fGm30BWBOBQUF165dmzx5some38rKavv27ZXoKuBFVlBQMGbMmD179jRq1CgsLIxvR2koKSnpzJkzx44dCw0NPXfunE6n48etra07derk7e3dt2/fIUOG8LnGAGZ2/PjxYcOGZWVlvffee3yOud5HH330/fffOzo67tq1S9jrRI1Gc/z48QcPHvBtTogoNzfXzc0tLy/v3r17vNdNpSR24m8pCgsLVSoVb9PRvHnzcm+sFBYWxtsCNGzYsNh+IFA18Mnm/F9+RSabBwcH6z+DfXx8bt26VfQxpptWD6aQkJAQHBysVCp9fHxcXV2N3nIN57+Xso2Vv78/EVWvXv38+fOmLl5w33//PRG5urqWfl/rF9by5cutra2bNGny119/Ge5oYiQ3NzcoKEgmk/H3BCJq27atSqUq/c5Lz/Lvv//yHpFdu3Yt9xYpZaWf4c4Y27iR2digh3vVp5/hzs2cyYgwwx1eRJnazBpRNb5O/NroOGa4AwBUatnZ2f379yeiFi1a3Lt3jzGWkJAQFBQkl8s9PT315/BEZGNj4+XlpVAogoODHz58KHbhAIwxFhISwpsaGS1V1+l07777LhE5OTmFhYWZtIZdu3YRUffu3U06iqkhcH9KdHS0l5cXEUkkErlcXkLkUSy1Ws274gwYMKDYjS6hisnMzFQqlfw+jbOzs1KpLH276sjIyH79+vEP2q5duxa78zJvHM/f7BwdHZVKpSDNlMGcYmNjAwMD/f39vb29efcqQ7wfX0BAQFhYWLG9p1QqFRHZ2toK1fDKzHQ63ejRo4moX79+lXe3E/PIycmZN28ef2G4uLi8++67p0+fLuHxMTExCoWC95giIjs7O19f3+DgYE3ZN53kTdv52f+UKVPM+T5jGLgzxkaMQOBe9R07xrZte/LHtDSmUjE0SIMX06b0TbZnbX1v+v6Y/OMnCZ90u9ItR5uDwB0AoLJ7+PAhT5bq1q3bsGFDwwtAFxeXESNGfPPNN+Hh4fn5+WJXClCMvXv38phr4cKFhse1Wu2UKVP4dMCIiAjTFfDee+8RkVKpNN0QZoDA3Rif6s77Z3l4eBQbgxaVmZk5YcIEntT7+/sXFBSYuk6wHNeuXfP19eUfny1btgwKCnrujxQUFPAlgXXr1l29erVReyzGmE6nCwoK4psJSyQSX19fTBCuAgoLC6Ojo/X5u9FmONbW1p6envr8PTc3d8OGDVKpVCqVluZFZbFSU1P5Fiiff/652LVYunLMXs/Pzw8ODvb19bW2tuY/0qhRI4VCUfp3jNTUVPM0bS9WTAwz/OVSUlhUFNPp2PHjzDD2T01llrcHHpTTypXs99+fOiKXM1OesQNYtGt5175K/Gp23OwliUtOZJ1gjO3J2LMvw3g/DwAAqFwePHjQtWvXYcOG8ZBdJpOpVKqwsDCERVApbNmyhV9gfvPNN4bHNRrN66+/TkRubm7RhjOkBOXh4UFEJ0+eNNHzmwcC9+KdP3+eN8i2srJSKBQlT1u+evVq+/btiahatWqbNm0yW5FgUUJCQvjLgIhkMtlz9yVfv379Rx99lJGRUfRbvPM1fyovL6/w8HDTlAwiy8vLO3Xq1K+//jpt2rQOHTpYWVkZ5u92dnZ8xczy5cvFrrSijhw5YmVlJZVK9+/fL3YtlUOxs9dDQkJKaCd1584dpVLJ723wDy8fH5+dO3eWPND58+fd3d35CdPBgweF/j0AijFjBnv77aeONGzIgoNFqgYAAADANLRa7bVr1y5duoSWsFAZ/fPPP1KplIi+//57w+Nl3Ry4rK5cucKvT4vOTK1cELg/U0FBgVKp5BFYu3btzpw5U+zDtm/fXr16dSJq06bNpUuXzFwkWJSCggK1Ws13xbS2tpbL5WXtqnzv3j25XM7f1OrXr69Wqyv7WwyUXkFBQUREREBAgJ+fn6enp1Qq9ff3/+yzz8SuSxgLFy7kSzrQbqv0yjF7XavVhoSE+Pn5OTg4EJGfn18Jz69v2t6lSxesoQGzQeAOAAAAAGD5/vzzT4lEIpFI/vjjD8Pjubm5MpmMh6XCZlb37t3jXWtKvpKtFCSMMYJnO3Xq1NSpU2NiYqytrT/44IPFixfzbjNEpNVqP/vss2+//ZYxNnHixFWrVvHkAl5waWlpixYt+vXXX7Vabc2aNb/88sv33nvPaPJyUQUFBb///vuXX3756NEjW1vbGTNmLFmyxMXFxTw1gwXKyMiQSqXVqlUTuxBhaLXaoUOHpqambtmyhS8Qg9JLSEhYu3atWq2+desWEUml0sGDB8vl8jFjxvBlEEU9ePDgn3/+6du3b48ePYp+1/Dza/LkyatWreIBPYAZzJxJGg2tWvXkSKNG9PvvNGqUeDUBAAAAAEARP//8s7+/v1QqXbNmzeTJk/XHc3JyJk2a9Nlnn3Xv3r2CQyQlJYWFhYWHhx87duzs2bOMsTFjxrz77rvDhw+v4DOLC4H78+Xl5S1cuPD777/XarUdOnQIDAzs0qXLgwcPJk2aFBoaam1tvXTpUoVCIXaZYFmuXLkyb968ffv2EVHbtm2XL1/O27cVa8eOHXPnzr158yYR+fj4rFixgjd5AKhKUlJSnJ2djTrXQ+npdLqDBw+uWbNm8+bNubm5RFSvXr3x48e/8847+n5WpZGWljZx4sT9+/fj8wtEMXMm/fUXGU5RePiQtm1D4A4AAAAAYHGWL18+f/58KyurdevW8d0rKy4uLu7IkSOHDx8+evTojRs39MednZ379u37wQcf8Bn0lRoC99I6fvz41KlTr1+/bmNjM2nSpEOHDsXFxTVo0CAoKEjfbhvAyHOT9JiYmHnz5u3du5eI2rRps3z58sp+Ew8ATC09PX3Tpk2//fbb+fPn+REvLy+5XD558uTnLrSKiYkZO3ZsTEyMm5vbxo0bBw8ebPp6AZ4ycybl5FBAwJMj7dvTH38gcAcAAAAAsERKpXLx4sU2NjZbtmzx8fEp35Pcu3fv2LFjoaGh4eHhly9f1h93dnbu1auXt7d33759+/fvr28rUtkhcC+DrKysjz/++I8//nBwcMjJyRkwYMC///5br149sesCi8Z7xXzxxReZmZm8V8zSpUurVavGO8/89ttvGo2Gd56ZPXu2vlMzAMBzRUZGrly5cv369VlZWUTk4uLy+uuv+/n59e3bt9jHBwcH+/n5PXr0qEuXLlu2bGnWrJlZywUgIrSUAQAAAACobBYsWLBs2TJbW9vt27eXfp6oPmQPCQnh/VE5HrLLZDJvb++ePXs+q1FqpYbAvcxCQ0Pz8vJu3rw5a9YsxKNQSgkJCQsWLFi3bh1jrGHDhoMHD965c2d6erqNjc3MmTMXLlzo6uoqdo0AUCnl5ubu3Llz5cqVoaGh/Iinp+cbb7wxffp0voczETHGvv32208++YQxNmnSpFWrVjk6OopXMrzQELgDAAAAAFQujLH33nvvt99+c3R03L1794ABA571yJs3b/KG7Pv27btz547+eLVq1Xr27Fm1Q3ZDCNwBzCciImLOnDnHjx9v2rTpnTt3hgwZsnz58g4dOohdFwBUBTExMX///feff/754MEDIrKzsxs9erRcLu/evfubb765fft2NG0HS4DAHQAAAACg0mGMzZgxY+XKlS4uLiEhIT169NB/6+bNm7xXzJEjR+Li4vTHa9eu3bNnz759+8pksi5dukilUjEKFwcCdwCzYoz9888/rVu3vn///iikCwAgtPz8/G3btq1evfrgwYM6nY6IqlevnpGRUbt27aCgoIEDB4pdILzoUlKIMapd+8mRO3eodm3CogsAAAAAAEum0+neeOONdevW1ahRY82aNYmJieHh4YcOHbp7967+MXXq1OnRo8eLGbIbQuAOAABQBd29e3fdunV//PHHoEGDYmJi1q9fj6btAAAAAAAAUG4ajWb8+PFbt261sbEpLCzkB+vWrdu/f3++8WnXrl0lEom4RVoCBO4AAABVllarzc3NdXZ2FrsQAAAAAAAAqPQKCgrWrl174MABqVQ6YMCAAQMGtGzZUuyiLA4CdwAAAAAAAAAAAAAAAbygnXQAAAAAAAAAAAAAAISFwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAA/p+9+45r6mrjAP4kYSMgbnDjQHECbnBjXai1ipu6qVbFWm2prRbX29JaLdW6WqulWq1UreIWrYMhCjhxi4oKiouNjJDz/nFsvARExJvcAL/vxz/0JNz7pA3Juc8953kAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAERQlhPuiYmUmfnqn3l59OABMSZdQAAAAAAAAAAAAABQdpXlhHv37rRz56t/3r1LtWtTaqp0AQEAAAAAAAAAAABA2VWWE+4AAAAAAAAAAAAAADqDhDsAAAAAAAAAAAAAgAgMpA5Au0JDSaV6+ffHjyUNBQAAAAAAAAAAAADKtDKecL98mV68ePn39HRJQwEAAAAAAACAMi0lJeXBgwcODg4ymUzqWAAAQBplPOH+0Uc0ZszLv8fG5uuhCgAAAAAAAAAgokOHDg0fPnzIkCHbt2+XOhYAAJAGargDAAAAAAAAAIjg5MmTROTk5CR1IAAAIBkk3AEAAAAAAAAARMAT7l26dJE6EAAAkExZTrj36EG1a7/6p7k5DRhAhobSBQQAAAAAAAAAZVRSUtLly5eNjY3btGkjdSwAACCZspxw79uXnj179U+5nAYPJjMz6QICAAAAAAAAgDIqNDRUpVK1b9/exMRE6lgAAEAyZTnh/tNPNHQoHTv28p+3b5O3t6QBAQAAAAAAAEAZFRISQqgnAwBQ7pXlhDsRtWtHM2ZQbq7UcQAAAAAAAABAmcYLuHfu3FnqQAAAQEplPOHu6UlmZrRsmdRxAAAAAAAAAEDZlZmZee7cOQMDg44dO0odCwAASKmMJ9xlMvL3pyVL6M4dqUMBAAAAAAAAgDIqPDw8JyfH0dHRwsJC6lgAAEBKZTzhTkSdOtGIETRzptRxAAAAAAAAAEAZxQu4o54MAAAYSB2ALvj5UZMmdPiw1HEAAAAAAAAAQFmEhDsAAHBlMOGemUmffUbjxr0aqVKFvv2WPv2UiCgjgxYsoPnzydJSovgAAAD00r///rtnzx5/f3/+T0tLS4VCQUQymaxixYp80MDAQL1L2sTExNTUlP+9QoUKhoaG/O9WVlZyuZyI5HK5lZUVHzQ0NOzataubm5tuXguUZydPnmzYsKGtra3UgQAAQDmSm5t7+vRpmUzm4uIidSwAACAxGWNM6hjEdO4cjR5NV69S8+ZkY0Pvv08ff0xEpFKRqytdukRjxtDatdSgAf31F7VpI3W4AAAA+uHx48dNmjR58eJFVlaWlk7h5uZWt27d9evXa+n4AMePH/f19Y2IiMjJybG2tnZwcHD+T9OmTfl9IACAt5KXl3fhwoXQ0NCwsLDGjRs7ODiMHDlS6qBAH4WHh7u4uDRr1iwmJkbqWAB0ZMPDhw+ys9X/dKtUqRMWtwIQUVla4c4YrVhBPj6UnU1Nm9KmTRQfT/Xrv3xULqeAAAoNpe7d6fx5ioigjh3pq6/o668JF18AAPkwRjt30u7d9OgR1a1Lo0ZR9+5SxwRa5+Pjk5SU1Lt374MHD/KRlJQUlUpFRCqVKiUlhQ/m5uamp6fzvwuz8+np6bm5ufzvycnJ/Ha+8AeTkpJWrlx55MiRkSNH9uzZU1cvC8qRy5cvv//++ykpKQ0bNnz27FlSUlJYWFhYWBh/1MrKqnXr1o7/adq0qYFB2ZkGA4C4MjMzz549GxYWxvPsSUlJfNzKyiolJSU2NnbevHnSRgh66OTJk0TUpUsXqQMB0J2TKSl1TEycKlTg/6z234ZXACgjK9wTE2nCBNq/n4jI05PWriUzs9c+OTeX5s+n778nxmjAANq4kSpX1lmkAAB6b+ZM2rqV5s6lhg3p3Dn67jvy86MZM6QOC7QoPDzc1dXVyMjo4sWLjRs31tJZlixZMn/+fEdHx6ioKKw1BnE9evSoQ4cOcXFxQ4cO3bZtm1wuT0hIiI6Ojo6OvnLlyuXLl69cuSJ8vqGhYaNGjdTr352cnMyKmDsCQDmQmJgYFhYWEhISHh5+9uxZpVKpfqhRo0YuLi6urq5ZWVmffPKJUqlctmzZp7xiKcB/+vfvv3///i1btmAPBJQf465dG1i58gdVq0odCIDeKQsJ90OHaNw4evSIqlal336jAQOK9VNBQTRhAj17RrVq0ZYthL4mAABERGfPUtu2dPYstWr1cmT7dhozhu7fJ0ykyqi8vLy2bdueO3fu66+/XrhwofZO9OLFiyZNmty7d2/z5s2jR4/W3omgvHnx4kX37t1Pnz7dtm3b48ePF5o6T05OjomJif7PtWvX+AYOTqFQ1K1bV12CpkOHDlXxiQdQDty+fZuvYQ8NDb169ar60lihUNjb27u6urq4uHTr1q1OnTrqH/njjz/GjRtHRL/++uvEiRMlCRv0kEqlqly5cnJy8r1792rXri11OFCm8BmLfq5WQcId4HVKd8I9K4t8fGjlSmKM3NwoIIDeqj/W/fs0ahSFhpJCQfPm0fz5pFBoLVYAgFLB35+2bqXTp1+NMEZVq9LGjcW9nwmlzcqVK729vevUqXPlyhVzc3Otnuv3338fP358rVq1rl+/jgXFIAqVSjVkyJBdu3bVr18/IiKiWrVqxfmptLS0Cxcu8MXvPAWv0b3AxsZGvf69WbNmdnZ22gkfAHRKqVSqC7IfP378yZMn6ofMzc1bt27Nk+ydO3dWdwsviH9vKhSKrVu3enh46CJu0Hvnz593dHSsX7/+7du3pY4Fyo7MzMzvv//+0KFDeXl5PXr0mDdvXoX/irfoiXHXrt188cJQJuP/PNa6tUzagKDUUqlUMTExJ06c6NSpk62trY2NjdQRvatSnHC/fJlGjqRLl8jYmBYupM8+K0k1dqWSliyhxYtJpaLu3Wnz5rdL2QO8Tl5eXmJioi3eT1DqzJxJDx9SYGC+QScnGjeOvL0ligm06PHjx/b29snJybt37x44cKDGo/3791epVBYWFvyfxsbG6iy5ubm5kZER/7uVlRVfdCOTydQZCkNDw9q1a7u5uQkPqFKp2rZte/bsWT8/Px8fH629LChHvL29V65cWalSpfDwcHt7+5IdJDs7+9KlS+f+c/HixczMTOETatSo4ejoOHLkSE9PTzGihhLC/ApKID09PSIigifZw8PDhb/dNWrUaNOmDU+yt2vXTv299ka+vr6LFi0yMjLavXt3nz59tBM4lCYrVqyYOXPm2LFjf//9d6ljgbKAMbZ58+YvvvgiISFBJnuZuKtbt+7SpUv15D5fHmMKmWzctWs9ra37/1emuRIa5MDbyMvLO3/+PP+C/vfff589e0ZELVu2fP78eUhISL169aQO8J2Uyl8Gjf6oW7ZQ69YlPJSBAS1YQC4u5OlJx46RkxP98Qd77z3ck4OS4Mvl1O2VbGxsHBwcli1bJtyFCqDvrKzo+nXNwdRUev06LyjVPv/88+Tk5N69exfMthMRX1BT4oO3a9dOI+Eul8t/+OGHHj16/O9//xs3blz16tVLfPAyY/fu3X/++eeqVatQw6QEfvzxx5UrVxoZGW3fvr1gtv369euZmZnNmjV7YxLN2Ni4TZs2bdq04f/My8uLi4tTL34/ffr0o0ePDhw4kJmZ+fDhw88//1wrLwZeA/MrKIGHDx9GRUXxt82ZM2fUbb2JyM7Ojhdkd3FxadasWcmOv3DhwoyMjGXLlg0ZMuTQoUOurq4iBQ6lVUhICBF1Lo2Vap88oexssrHBfn/9ERUV9cknn/DG723atPH39zcwMJg5c+bp06eHDRvWvn37n376qX379hJGeCY19YcHD2bUrElE5nI58uxQfFlZWadPnz558iRvmpKRkaF+qF69ep06dTp//vyDBw969ep18uTJUr3OvfStcH+r/qjF9+QJffghHTxILi5rnZ2vLl26tPgLHKDcYoxdv3791KlT4eHhp06dunr1qrAgrJWVVUpKir29fUhICNIoUGr8+Sd99hndvUvqz8BHj6hOHQoNpXbtJI0MxBcWFta5c+cieqUeOXIkNzc3PT2d/zMrK+vFixf87+np6er8RUpKCv/0U6lUKSkpfDA3N7dmzZqLFy8ueNh+/fodOHBgxowZK1asEP1FlTq8x9qaNWumTJkidSylzN69e99//32VShUQEFDowvOPPvrol19+MTAwaNy4sbo+TOvWrUuwHfvOnTs7duz47LPPqlWrFh8fb4ALS23C/AreRVZWlpeX16ZNm9Qj/I4az7C7uLhUqlRJlBMxxiZPnvzbb79ZWVkdO3bM0dFRlMNCKWVra/vw4cMbN240atRI6liK7fBhmjmT4uLI3Jzy8mjOHJo7l2RYfSilhISEhQsXrl+/XqVS2djYLFiwYNKkSXwjqUql2rx58+eff56YmCiXy0ePHr106VLdL16Jy8pa9uBBeEoKEXW2skpSKlHDHd4oIyPj1KlT6qYpwkKO6rvgvXr1ql+/PhGlpqa6ublFRkba29ufOHGiFK/QYqXKwYOsRg1GxKpWZUFBIh88L4+tWHGHX0F16tTp7t27Ip+gMElJScHBwd9+++3IkSMvXbr04sULHZwU3kV6enpISIi/v7+Hh0eVKlWEv02GhobOzs7e3t4BAQF3795NSUlxcnIiolatWiUlJUkdOEDxpKayGjWYjw9TqRhjLCuLDR/OnJ1f/hPKEKVS2bp1ayLy9fXV8amvXLliYGBgaGh4/fp1HZ9aD/GsUJcuXaQOpJSJjIzkLQf+97//ve45vr6+TZo0UeRfsieXy5s0aTJy5Mjvv/8+ODj46dOnxT9p06ZNiSg4OFiMVwD5YH4FYunXr1+NGjXMzMzc3Nx8fX2Dg4MzMzNFOfL69evnzZsnHFEqlby2Q7Vq1XjPVSifrl27RkQ1atSQOpC3cf48MzZmq1YxpZIxxkJDWfXqbOlSqcMqv7Kzs/39/S0tLYnIyMjI29s7JSWl4NPS0tJ8fX2NjY2JqEKFCr6+vllZWbqJMFWpXPHgQcfoaOeoqG7nzv3+8GG2SjX26tUdjx/rJgAoXVJTU4ODg318fFxcXIQLmuVyuYODg5eXV0BAwL179wr92aSkJH4bu1WrVs+fP9dx5GIpNQn3Fy+YtzeTyRgRc3Nj8fHaOtHp06f5TRUrK6u//vpL9OOnpaXxywlPT08HBwdhp+kKFSoMGTIkLy9P9JPCO4qPjw8KCir4SUFENjY27u7ufn5+ISEhBe+X8OLIRNStWzfcTYFSIzKSNWjA6tZlPXuyGjVYmzbszh2pYwLx/fTTT0RUt27djIwM3Z998uTJRPTBBx/o/tT6JjU11dTUVCaTxcXFSR1LqXHnzh2+2mXChAlvfHJ2dnZMTExAQIC3t7eLi4upqanG6hP+Ve7r6xsYGBgTE6N6/f1FX1/fYp4UigPzKxBdenq6iYmJXC5PSEgQ98i3b9/m79LvvvtOOJ6dnd23b18iql27tm4WbIEe+vXXX4nIw8ND6kDexsSJbODAfCNr17LSdc+gDAkKClK3Z3d3d4+NjS36+Tdu3FBXcm/UqFFgYKBWw8tjbO/Tp70uXHCOimobFTX/zp1nOTn8obisrOTcXK2eHUqRR48e8amds7OzMNtpYGDAF08EBgY+e/asOIdKTExs0qQJEXXo0CEtLU3bkWuDfiXc8/JYYCATLg64dIlFRLCYGNayJSNixsbMz49pOyOdnJys/vDy9PR8x0xEZmZmeHj4ihUrPvzwQ40MOxGZmpp27NjR29v722+/5Y3mpkyZItYLgRLLzc2Niori90U0GjUoFAr17biYmJg3HurevXu8xujAgQNz8VUEei4ykgUEsJs3mVLJIiPZoUPs0iWsbS/a3bt3xVo6p0uPHj3iXzp79uyRJIDExETei/XkyZOSBKBXhg4dSkTLli2TOpDSISUlpUWLFjzZmp2d/bY/npOTc+7cuQ0bNkyfPt3FxaVgeZmqVau+9957Pj4+O3fu1PjZq1evElHFihV1tpqsjMH8CrRt586dROTi4qKNg//5559yuVwmk61du1Y4npGRwSt3N2rU6NGjR9o4Nei5Dz/8kIhWrFghdSBvo0MH9sMP+UauXWNE7G02fsG7u3LlSu/evflXYZMmTQ4cOFD8nw0ODm7evDn/2Z49e166dEkbEUanpo68fNk5Kso5Kmry9evXpVipA/osPj4+MDDQy8vLwcFBJqhJxXco+vj4BAUFJScnl+DI9+/f59PFHj16lMYFFvqVcM/KYkSsUSOm/i/51Vfsgw+YuTkjYs2asQsXdBfMunXr+D6dZs2aFWfer5abmytcSMUPIryx4+Dg4Onp6e/vHxISIrxgO3HihImJCREtxU4uKTx8+DAoKMjX19fNzU1j+ZulpSXflFqyT4qYmBheLNLT07OIdXMA0pszhxGxb799NXLxIps3jx06JF1Meu3Bgwf169fv3LlzyeYQEuJXhgMGDJAwhgULFhBRu3bt8MG4Y8cOImrTpo3UgZQCOTk5PXv2JCIHBwexyonwdda+vr7u7u7CMpFOTk4Fn8wLMe3evVuUU5cHmF+BLo0fP56I/Pz8tHT8DRs2yGQyuVy+ZcsW4XhycjKvdNSyZcvSu/kdSoynhM6fPy91IG+jUSP222/5Rh4/ZkQMxZF05dmzZ97e3rzwXaVKlfz9/Yu+f3zt2rWCgzk5OevWreOl2AwMDLy8vJ48eSJWhInZ2fPv3GkTFeUcFdX34sW9T5/iuxbU1q9fP2rUqFq1amlM7fr27fvNN9+EhoaWYFlMQTdv3rS1tSWi3r17l7r1LvqYcG/RgqnLyX71FRs5ki1axD7+mOl+BWF0dDTveVKhQoVNmza97mlKpbKIrcp8wY46w170Qsht27bxdRN//PGHFl4QFGLv3r2jR4/mdYTU5HJ58+bNJ0+evHHjxkK/2IpQ6JaI06dP8zV0M2bMEClwAC0YNIgRse3bX42sWcOI2KRJ0sWk165du1a7dm2emEtMTJQ6nOIKDQ2VyWSmpqZv3K+qVZmZmXyKtnXrVgnD0AcvXrywsrIiohs3bkgdi15TqVT8XpGNjY32KvDcu3dv9+7dvr6+P//8c8FH/fz8iGjEiBFaOnuZIfr8qlCYX4FQXl4ev2d2+fJl7Z3lxx9/5Av3NLaIPX78mG9+79ixY3p6uvYC0PTiBfvpJ9a/P+venU2YwE6ffjm+cqVmOnXsWHbxou4CKzfu379PRFZWVkpeDL20cHNjixfnGzl3jslkDOuXtS83N/dts+S3b982MTHp0aPHxcJ+iwvm7t/x3Zienv7L7dsdz551jopyPXt2fUJCFkofg8C6descHByE6yd4GcB3T7IfPnxY40v82rVr/Mv9gw8+KF2bGvUx4b5vHzM3Z7yPGk+4Syg1NXX06NH8beTp6amuHCQsOsl7dgkJ606+bUWaH374gc/hDh8+rIUXBPls27Zt4MCB/P9ahQoVXFxc+IaXt2qhlpOTo94fXbdu3deVdj1y5Ajf7qC9RTcA78rBgREx4fKc2bMZEcOb9vXi4uIaN25MRPb29qWiBrdSqWzVqhURLViwQOpYXtY8rVevXqlbsCA6nkderHHpC/l9/fXXRGRmZnZanVHSubi4OJlMZmZmVkqrSeqGKPOrQqlUKo2DYH4FamFhYURkZ2en7RN98cUXRGRqanrs2DHhuHrzu5ubm46+13JzWY8erHlztnkzO3SIzZ3LTEwYL4c1dizTuBFVqRJDz2ct+PPPP4nI3d1d6kDe0pdfspYt85WO9PFhrVpJFk+5ceTIkRLUgdm/fz/f1GVgYDB9+vRCq2ALq9M0bdr04MGDJQhPpVIFBgbWrVvXfdGiNlFRPrGxCWKsU4ayJC0tzdjYWC6Xf//990V3P3pbISEhxsbGtra2t27dEo6fP3/e2tqaiMaOHVuK2l7qY8I9Lo55e7OePRnTg4Q799tvv5mZmRFRrVq1unTpwjtHCzVo0GD48OFLly49duxYob2k38onn3zCbxOVsl1ppVDbtm2JaOrUqRcuXHirm8Dx8fF///33rFmzOnTooNHmq1OnTq/7qZ07dyoUCplM9ssvv4gRPoCo8vKYqSmTyZgwizRwICNiO3ZIF1YpkJiYyKtM1KlTR5Q1m1rFl+Y1aNBAHwrh5eXl8Qb0P2hUES1/Dhw4QERNmjSROhD9tWXLFplMplAodu3aJW0knTp1ws6MopV4flU0pVI5adKkhg0bapTJxvwKOJ4HnzVrlnokNTX1vffeW7lypejnUl+vRUZGCsdv3rxZo0YNIho8eLAuFuIFBDBrayasr/Xdd8zWluXmIuGuM1OmTKEC3XT1lzpX9eQJq12bDRvGTp9mV66wb75hZmYoI6lV79jp9Pnz597e3gYGBkRkbW39uhI0b9t/Vej06dMdOnTgP9u+Q4dLItXugzJGe+1SsrOz+U2jgn3IT506xTc1Tps2TfTzaomeJtyTk1mNGmzrVn1JuDPGrl69Wrt27Zo1awrXsPOik48fP37bo8XHx+/evXv+/Pk//vhjwUdVKhVfVm9ra1sq1kuWUvHx8XyRWnF2IfDCQevWrfP09FTvneHUVYPWrVv3xvt7a9as4T+i7U7iAG8tLo4RMVvbfINNmzIinTbQKJ2SkpJcXV2JqFq1amfPnpU6nNeSvFdqQTzRXLFixXdf+lqq5ebmVqtWjYgu4NetMMePH+ermLWROHtbK1asIKKBAwdKHYieeqv51VtJSUnhG3TatGmTmpoqfAjzK2CMNWvWjIj+/fdf9UhgYCARde3aVfRzqVQqXi++SpUqGpvfL1y4oF6Ip/XuApMns3Hj8o3wMtw3biDhrjP82jA8PFzqQIpn3TrWrh3jvyYPHrCPPmL29qxuXTZgAAsJkTq4MistLc3X15fPZCpUqODr61viTTBXr17t27cvT0TY29vv37+/4HOys7P9/f0tLCyIyMjIyNvb+42rQhMSEry8vORyOU92rVu3rhStIwYdmzhxIhF988032ji4sA95QkKC8KGjR4/ytpfCO+v6TE8T7oyxzZtZ7dps1ix9Sbgzxtq1a0dEX3zxRQm6zycnJ4eEhPCqI8J0bYsWLQp9fnZ2tronGBrvaMmqVauI6IMPPnjdE1JSUoKDg3kXNV5dV83CwkK9P7rQ/VxFWLRoEf/mK9kmLwBtOXKEETHhRWleHjMxYTIZ02Up0lIrIyODT3+trKxC9PWKZcyYMUQ0aNAgqQPJ57333itFMyft4Uvk5s6dK3UgeufKlSs8ezV79mypY2GMscTERAMDAyMjo7edAJQTb5xfvYvHjx/b29sTUffu3TW26WB+Vc7Fxsbyr+CcnBz1oKenp/Y2USmVyiFDhvA1Urdv3xY+pF6Ip8XuAllZLDOT9erF5s/XfIivUx47lhkbM2vrV39kMiTcRffkyRPeF0eU9oBap1SyRo0YEdu2TepQyou8vLyAgABegVoul3t6epYgm1RQUFBQgwYN1MvYNepvcPHx8eocuq2t7ety6Dw7z6s4GBoaFic7D+WZSqXiC5G1t0goOTnZ2dmZ50s1lmQdPHiQ37hasmSJls4uIv1NuKtUrFs3VqmSviTc79+/z1frFLMHTnJy8tGjR7/77ruhQ4fyWn5CFStW7Nmz5xdffLGTl9h7zRFatmzJF2WguK028BRPQECAxviuXbvGjRvHL+eE7O3tx40bt27dukuXLr3j/d5PP/2UiMzMzMLCwt7lOABi4v1RJ058NXL3LiNiNWtKF1Mpk52dPXz4cP7bXeh6E2mFhITwa0KNvIDkLly4oFAojIyMynnL0BMnThBR3bp1tb4iUgyXL1/+4osvFi1atGfPngcPHmjvRI8fP27YsCG/ntSffnRubm5E9JtGQ0JgjL1+fiWWe/fu8W7VAwcO1NhNj/lVecYLpo0UXDoqlUrek/A6bw6mBdnZ2fwN36BBg/j4eOFDwcHBPCmwaNEi0c6XmsqCg5mvL3NzY6am7Lff2LBhbObMfM/JymIyGYuMZGPHso8+YklJr/5YWyPhLq74+PhRo0YRkZOTk9SxFM/mzYyINWzIhN+n588zZBu0IyIion379jyZ0L59+1OnTol48JycnOIkyiMjI3kpPL4/LDQ0VPioRv2ZQhP3AEJRUVFEVLt2ba1esDx58oSvVG7dunVS/tJGO3bs4IWVli5dqr0ARKG/CXfG2OXLzNBQXxLuy5YtI6Jhw4a97gnp6enCNez8RqIabxjl7e0dEBAQExNTzHTtgwcP+BXF8OHDsaNHXMnJyUZGRgqFomBDcG9vb/5/zczMjP9fCwwMLEHhoCKoVKoJEyYQUeXKlTV2oWpXXh77+282YQLz8GBffMGuXtXdqUH/FeyPGhzMiFi3btLFVPoolUovLy++yvKvv/6SOpxXcnNzeSkGMa/8xcM35nt4eEgdiJTy8vJ6u7h8261bdkSE1LG8wffff29oaMhzSeqVBCWY57xRZmYmryXapk2bYq540I3ffvuNiNzc3KQORO8UMb8SUUxMDO8d5+npKbzek2x+BXqgR48eRLRlyxb1CL+L2bBhQ62eNz09nSezmjVrprEQ759//uFJgWXLlpX8BHfvsk2b2JQprHlzJpczopd/5HI2bx7z9WUdOuR7/vHjzMCAJSejpIxWRUVFeXp6Ghoa8n0VxsbGEnbzLi6VijVvzojYhg2vBjMzWY0azNaW3b8vXWRl0P379z09PWUyGRHVqlUrICBAS9lJXgpGoVAQUZUqVfz9/QuuTuB9UOvUqUNEMpnMw8MjLi7u6tWrffr04bO4Jk2aHDhwQBvhQdmzcOFCIpoyZYp6JDMz8/Tp06JnLB89esRXwXbq1EnjKuD333+Xy+UymWzdunXinlRc+pVwVyqZnx8T3pb7+2+2e7d0AQnw672///5bY3z79u3jxo1r3rw5/4xTMzEx6dChw/Tp03///feYmJgSr8m6dOkSr7c7Z86cd34R8MqWLVuIqEePHgUfCgsLW7FiRWRkpFY7HSmVyg8++ICIataseefOHe2dKJ/Ro5mtLfv+e7Z5M/PyYiYmTP8W4YJkeH/U7dtfjaxezYjYpEnSxVQqqVSqzz//nO8b1Z9JwPLly0lveqUWFB8fb25uTkR6W41HRz79lBFpLlfUM3///Tef406bNu2zzz5zc3PjqU8hS0vLLl26zJw58/fff79w4YKwwkPx5eXlDR48mIjq168vyv5rESUlJRkbGysUCn0LTHKFzq+OHTsm+mbNiIgIXrLD29tbOC7N/Aqkxu/0GBgYCEtxzpkzRzfXUElJSbx3etu2bTW6CwQEBPAPzPXr1xfzaEqlMvniRbZyJRsxgtWs+SrDTsRMTVmXLuzLL9m+fSw5mTHGbt9mZmbs559f/nBiImvblo0dyxhDwl0bkpOTf/rppyZNmvAvO0NDw6FDhw4aNIiIatSoodHiT+/88w8jYrVrM2H1m59/ZkTM0ZGVht11pUV4eLipqSlfwLdw4cLMzExtnzEqKop3k+L7LQqdTqelpc2dO5eXwDYxMeErRCtXrrxq1SpddHiGsoKX2hb2AwsKCiKi3r17i36ue/fu1a1bl69x0biG/fnnn/nl9p9//in6ecWiXwl3DdOmsRo1mD5cyNy7d+919WSmT5/OP9cMDAx450x/f/+QkBARryuOHTvGF5EV2mEVSoaXffjpp58kjCEzM7NLly586Y0urtiDgpiJCbt379XI4sWsVi2G71fgHBw0+6Py3N9330kXUynm5+cnk8lkMpmvr6/UsbBHjx7xRhR79+6VOpbXmj9/Pt9vWyoKqmhLZCQjYjVqML2pnaLhzJkzZmZmRPRd/k+G+Pj4oKAgX19fDw8PBwcHvqRLzdDQUDhHKuZadb7hrFKlSteuXdPOq3knAwcOJP1o4qpXCs6vbt68SUR16tQR/VdbXbJD492o6/kV6IGtW7cSUffu3YWDfGXciRMndBBAYmLi67oLrFy5kt7U0TcjIyMkJMTPz8/d3b1SpUorOnV6lWS3tGRubszXlwUHs0JvmR88yGxtWb16rH17VqECGzaMpaUxhoS7yK5cueLt7c3v8/H0uo+PT1xcHGMsJyenV69eROTg4KBR+kC/dOzIiNiKFa9GcnJYvXqMiL2+zi2UwOjRoy0tLfv166fLezB8GTvPThKRu7t7oWe/d+/eiBEjrKysTE1Nvby8xN3HD2VeYmKiXC43MTHJyMhQD3700Ufa20V948YNGxsbIho0aJDGnSG+nqzor1dp6XXC3d2dEbFff9Ucv3+f6bi8ShH1ZEJCQn7++eeIiAitrhncunWrTCaTy+UFl9hDCeTk5PB9A5IXMk5JSXFyciKiVq1aaX1+NmsWGzIk38jz54yIxcRo97xQKhTaH3XAAEbEduyQLqzSbe3atXzxiLe3t7RJ5NGjRxPR+++/L2EMb5SWlsanU+X9m453Mzt6VOo4CnH79u1q1aoR0aQ3bXxJSkoqos6eQqGws7Nzd3f39fUNCgoq9GJv7dq1PFN/5MgR7byad8UTfJ06dZI6ED1S6Pxq6dKlROTp6amNM+7YsUOhUMhksl9++UU4rtP51X8eP35cOromlkW8jvby5cvVI/xOT6VKlXS2cjMuLo5XbBgwYIDGth5fX18iMjIyEvZ3SUxM3Llz56efftq+fXtemURtcPv27MMP2S+/sCtXirXuODeXnT3Ljh9nwjryjx+z/CVu2N27TPsrbcuY7OzswMBA3reDc3FxCQwM1PhfnJKS0qJFC77GU08XC/NCkdWqMUGajG3cyIhY06a6Tq+UdXx5uzAjqTMZGRm+vr7q9fU+Pj5p/A6cwMOHD4moWrVqug8PSruNGzcSUb9+/YSD/LsvOjpaSye9ePFi5cqViWjo0KEatUO+/PLLgl+v+kOvE+6//caIWP7/lWzYMCaTMR3vOH9dPRld+vbbb/k76aheXoSXLgcOHCAiR0dHqQNhjLHHjx/zFTHdunXT1m2bvDyWlcUGDWKzZ2s+ZG2tL2WbQFqF9kdt2pQRsYsXJYqpLNi6dSu/ih47dqxUF2B62yu1IJ5jtbOzK9etwufNY0Rs8mSp49D07Nkz/m3Vp0+ft30zp6WlRUVFBQQEeHt7u7i48O3MQjY2Nur8e2xs7N69e3kW9Y8//tDSy3l3GRkZFSpUkMlkqFuiVuj8im9y3y6sVyaqNWvWFLq+SRfzK8ZiY2MDAgK8vLz4xo5Zs2Zh04PuKZVKfiku7Lyt1Ts9r3P9+vXq1asT0ahRozSq2fL6Nqampl988cX48eP5m1PNwMCgTZs2M2fO/PvvvxMSEnQZM7zW7dvMx2dSr178/1HFihVnzpxZxI6rO3fu8P/7b7wnLY3u3RkR+/bbVyN5eaxZM0bE9PirtpSSMOHO3blzx8PDg79169atq9Fegifcq1evLlV4kE9uLrt3j2mz842Ihg4dSkSrVq1Sj5w/f57P5LW6vOzcuXN8Sce4ceM0TsS/Xs3MzHSzoe2t6HXC/elTZmDAjI3zVXWfM4cRsU8/1V0YRdST0bEZM2YQkZWV1UXkv97NlClTiGjBggVSB/LSvXv3eHfcgQMHipaSS0tjISHMz4+5u7NKldjq1WzMGDZ1ar7nqFTM2JgdOybOGaE0O/Pvv9+2bx88ceKroULXvMPb27dvHy/B8f777+s+j5ybm9uyZUsiWrx4sY5PXQJKpbJ58+aktRJqjx/nawmmVLLYWJaXx+Li8r3Ns7PZrVvaOH/xXL3KiJi1NdOnpbLZ2dm8IWHz5s2TeeHgdztaVFTUr7/++vHHH3fs2JGX7xfiI/r/ph0xYgQR+Ql7TZdvBedXiYmJCoXC2NhYo7C1uHj/LiMjo4MHDwrHtTG/SklJOXTo0IIFC3r37m1paSl835qamvINqZs3bxblXFBM//77LxE5ODgIB3lZId1vM4+MjORvjKn5Z90qlerDDz80NDRUV9wyNzd3cXHx8fEJCgrS6zok5U1eHgsOZh4eTKFgRKEtWjg6Ov7666/FSQVERkbyKZ/eVYKNiGBEzMqKCd9pf//NiFj9+qgvKjrJE+5cRERE+/btC+5wRcJdX+TlsfnzmaUlq1qVmZiwZs30PDOj3sgoXGuyZMkS3dxoDAsL4xcIM/JXS1OpVF5eXkRkaWl55swZbYfxVvQ64c4Y69qVEbG//no1EhbGiFi9erqLoYh6MjqWl5fH20DVqlXrnrASN7wNlUpVq1YtIjp37pzUsbwSExPDm855enqW/N7g9evs99/ZRx+xFi2YXJ6vydLMmWzRIta+fb7nX7zIiPJtPoXyiq8QFH5Txt29+0GjRiv69JEwqjLj5MmTvIR6z549C+7r1Cr+FdawYUP97JVa0N69e4nI2tr62bNnoh984kSmULCzZ1/+Mz6eEbHnz1nduvmKl164wIgkvfxs2ZIRMUEzImmpVCpPT08isrW1LXT6ceDAgWnTpq1fvz46OrpkJTXUJeDd3d0rV65cqVIlGxubdw5c63bv3k1ErVu3ljoQvVDo/Gr9+vVE5O7uru2zf/rpp3x9U1hYmHBclPlVfHx8YGCgt7e3s7OzRn0kvjnDz88vJCQkOzt7xYoVRGRoaKjPDTPKnlmzZhGRj4+PeuTZs2cGBgaGhoaSJLLDwsIsLCw0yhyx/7aAVK1a1d/fPyoqSk8Lj5RnSUnM35/Z2b28ejI2Zh4eb1v1PjAwUC6Xy+XyXbt2aSnMkuBVIufNyzfo7MyI2Jo1EsVUlulJwp0xplQqha2kOSTc9YWvL6tTh/FKLEol+/57ZmLCrl6VOqzXOnr0KF98Ixzs2LEjEf3zzz86CCA4OJhvk/3666+F43l5ebyyXMWKFc+qr/T0gL4n3P39GREbPvzVSF4es7FhROz8eR3FoA/1ZNQyMzNdXFz4uxxLIUomIiKCb63St758ERERvA+Pxi27ImRkZCSGhbFvv2UDB7KqVfNl2I2NWceO7NNP2fbtL1Pqt24xExMWEPDyh9PTWe/emjWboLziqQrhOs3Dhw/znfgSRlWWREdH8+LX7du310YquaDMzMz9+/fzdXb79u3TwRnFwiulzpkzR/QjT5zIbGxY+/YvS5Xqb8L9m28YERs9WroI8uHlES0sLF53o5p3N1UXRlD3Rw0ODi7Buz07O9va2pqIrly58q6ha1l2djZP5l6+fFnqWKRX6PxqwIABRPRrwY5MYlOpVOPHjyeiKlWqaLxzSjC/ysnJiYqK8vf39/Dw4B/dwne4s7Ozt7d3QEBAodWEvvjiC77a/eTJk+/+uqA4GjVqREShoaHqkU2bNhFRr169pAopMTGx4OC0adMKpglAR1QqFhrK1q9nmzaxgr+5UVHMy4uZmr68jKpZk/n6smI0k3z06JGHh8fDhw+Fg4sXL+b3//RlreWFC0wmY2Zm+V7R/v0vm7SjrL8WFEy4822CetKWBgl3vZCXx6ys2J9/5hvs0YN5e0sU0JvxjIHG7W0dbGQU2rVrl4GBARF9KyyQxZhSqeRllKpVq3ZVb25a6HvC/e5dJpOxChXytWT/6CNGxHx9dRGA/tSTUXv69Cmv+te9e/dyXeW2pObOnUtEM2fOlDqQQhw5csTY2Ljo/el8GaCPj4+Li4uxsfH3HTq8SrLXqMHc3ZmvLwsOLnzytH07s7Zmzs5s4EBmY8NcXNijR1p8PVB6DBw4kIh2CPqjrl69mogm618h6dLr2rVrvKVM8+bN47WwsyQ1NZW3qfTy8uKfD0RUp04djWUI+u/8+fNyudzQ0DAgICA4ODg8PDzqPzdv3oyNjY2Njb19+/bz/6SnF7fT18SJbPZs1qQJW72aMX1OuPPZj7m5PhR0+u2334hIoVAEBQW97jlRUVFLly4dNWpU06ZNFQqFMDspl8vt7e1HjBjx3XffHT58+EnxKlTyzKn+VH4rwoQJE4jIVzezUv1WcH6VkZFhZmYml8s1slFaolQq+U7QmjVraqTCSzC/Er6Nq1evznsMBAcHZ74pOaXe2mxlZaVXy6zKqitXrhBR5cqVhY3Uhg0bRkQrVqyQMLCC6tWrR0SRkZFSB1L+PH3KOnVideqw0aOZuzszN3+ZSnjxggUEMEfHl1dScjlzc2OBgSx/U74iDB8+nIjatWun8cnAPwRety1Mx36fOTO5VSv2ySf5Rjt3ZkRs6VKJgirjkHCHN4uLY0TswYN8gwsXMjc3iQJ6M56HFK4n+OOPP4jovffe02UYf//9N7/cWLZsmXA8Ozu7b9++vCKInrQu0/eEO2PMyYkRMeHivIMHGRFr2VIXZ9efejJCt2/frlGjBhGNHDlS35Zp67+mTZsS0b///it1IIXbuXMn7xSn3oiak5MTERHx448/Dhs2jG/WVlMoFCN79GDTprHNm1kxP1PS0tihQ+zvv9m5c0z95vnrL0krFoP0+O+FsD8E36D93XffSRhV2RMXF8dnKnZ2drGxse94tKdPnx4+fNjPz2/48OGNGjVSl4VVL8Ns2LAhb5eqcb2XlpY2f/58fc4Ede7cWWNVaRFq185V33Y0MWHW1i//1KrF7Oxe/mndmi1cyCZOZF98wQ4eZBUrsocP8yXcp05lv/zy8o+vr9QJd8YYv5m6bZukQbBjx44ZGRlR/uZIRcvOzo6JiVH3R+XXnEK8BIePj09AQEBMTEyh05hDhw4Rkb29vaivRiuCg4OJqGHDhlIHIr2C86vt27cTkYuLi85iyMzM5JW7GzZs+Cj/koKC86vc3NyYmJh169Z5enra2dlpzK/4Ro1169a97l1ahLy8PJ7wrVat2vXr10V7eVCY7777jojGjRunHlEXmdWT623u3LlzpP22clC4kSNZ585MXdMvMpIZG7N9+9gnn7ycPVStynx8Cln5/iZPnjxp2LAhEQ0ZMkTYJjcnJ4cnWB0dHXVcS1DDzZs3FQqFkZHRI2ETm/BwRsQqVWK6WpRa3iDhDq+lVLKzZ1lgIDt7lhExjc+Hn39mrVpJE9ibxMbGEpG1tbWwHhq/6fjTTz/pOJiNGzfKZDKZTKaxhzIjI6NTp04KhUL3HVwKVQoS7osXMyImLMGfk8OsrRkRe+dkxZvpVT0ZoaioKL499ssvv5Q6ltLk5s2bRFSpUiV9Lpu4atUqfrE3ePDgzp07a2QrrK2t+/Xrt3jx4qNHj4ozgdu5k8nlzM6OJSSIcDQoUnx8/JAhQ3Sz1q/48vLyTExMZDKZcCsPrwOwU7juF8SQmJjo6OjIr7ovXbr0Vj8bHx8fHBzs7+/v6enp4OCgkWE3NDRUl/IICQnhs3ze1HHs2LHC48ybN4+IevbsKeLrKpkTJ050795doxzH06dPeZkOJycnNze3jh07Ov+nYcOGdnZ2dnZ29erVs/6Pnd2rhHsRfyZPfplwZ4wNGcJGj86XcO/Vi02e/PLPkCF6kHDnNfUK9LnSpcuXL/Ok1Rf8v1qJ5OTknDt3bsOGDd7e3q6urhYWFhr598qVK/fp00eYp2CMKZXK6tWrk551WymUOtRoXoKzvCp0fsVL/3///fe6jCQlJcXJyYmIWrVqpVF9UZfzq+zs7N69exORnZ1dAuZX2uTq6kr5t+jx22AtdbM4q9gWLVpERF5eXlIHUv7k5DBDQ6aR6Bw3jo0ezWJiWKdObPNm9g67xq9evcrLoGl8Vz579qxx48ZE1K9fP2Wxl8yLbtKkSVRwx2q/frqrGFAuIeEO+eTmsqgo5u/PPDxYpUovy/8mJDAipnFX/osv2MCBEkX5Bv7+/kQ0cuRI9YhSqeSXbDdv3tR9PMuXLyeir776SmOcr/bo0qWL7kMqqBQk3GNiGBGrUiXf1q5RoxgRy7+BQHx6WE9G6OjRo3zdmb7tl9RnfBXMhx9+KHUgb/Dll1+amZmps2l2dnY8iRYVFaWRlRBBRgbr1IkRsebNmU5KS5dnQ4cOJSJbW1thpVHJ3blzh4hq1qwpHGzSpAkRvW1GGIojOTmZJwgqVaoUERFRxDOFnST5xiahChUqODs7qzPshRYZu3PnjrGxsVwuj4qKUg8mJSVVrlyZiKRt65ednc2XxGrU4Js8eTIRuZVoQ2VmJnv+/OWf+/dZbOzLP+fOsbi4Vwn3e/eYhQULDNTXkjKMsYcPmULBjI2ZRP1aEhISeAUkDw8Pcb93Cr6rmzVrVvBpvNjx559/LuKptWT69OlE9Nlnn0kdiJQKzq+USmWVKlWISPdLvB8+fMjXnA4aNEjjIT6/Ujc+1er8ii+zIqLmzZvrpnVHOfT06dOC1WN5V4mCF+HSatu2LRHt0Ztu2OXIzZuMiGlU1V+2jLVvL9YZjh8/zq/K165dKxyPjY2tWrUqEc2aNUusc72V+/fvGxkZKRSKGzduqAejo6P72tnd7NED133ag4Q7sMxMduwYW7iQ9ezJzMzyLQKys2Njx7LHj1mjRmzx4lc/olSyhg3ZN99IF3RRevXqRUSbN29Wjxw/fpyImjRpIlVIISEhBQf1ql1KKUi4M8bs7RkRE3Ye2rEjt337+LFjt2j1vPpZT0Zo8+bNMplMoVAIl3VAEfiVj/7/59q8eTMRNW7ceN++fbq4SHv6lDk4MCLWvr0+lAwuS3744QdhTvPJkye8IaSBgUERlWR1jK8FE/ZHzcvLMzY2lslkbyxWCyWTkZHBa8xVqFBBOPkW5iL5RZqQlZWVi4sLb9YXExNTzPTQ7NmzqUD/W74ooEmTJhJu9/Hz8yOiRo0aCW8VREZGyuVyIyMjbbS7USfcGWPff88aNNDjhDtjbOhQNmkS00K5/zfKyMho164dEbVr1054uagN9+/fL3RteEhICBHVrl1b/8svhIWF8VDFvyNeehScXx09epSIHBwcJInn3r17rVq1Cg8P1xjX8fzqyZMn/Laii4vLCy3/KpVPv//+OxH16dNHOFi/fn0iKvp+to4lJCTwCm/a/kSFQly5wojY06f5Bn/6iTk5iXgS3u/E0NAwODhYOB4SEsJ7Qvz8888inq6YZs6cqbEilf23+qec3yTWNiTcy6fU1NT9+/dnf/01c3FhRkavMuwyGXNwYFOmsD//ZMLiTrt2MTMz9sMP7PJlFh7OBgxgDRuylBTpXsFrpaWlGRsbKxQKYTemzz77jIhmz54tYWAF8XYpp0+fljoQxkpLwv3zzxkRE94YTktLMzU11XYXJr2tJyO0cOFCIjIzM9Pnarx6IjExUaFQmJqa6tWWhUL3GPIOyzrdu/DgAatXjxExN7d32VYJV69eFW4eP3fu3IP8vVCUSqWPjw/fvjBq1Ch9eDcW7I96+/ZtIqpVq5aEUZV5OTk5vOydiYnJoEGDOnbsaG5urpFht7Gx6d+//7x583bu3Hnn7UuLcoWuZ8/Ozm7UqBERrVu3TpzX85bu37/PC6MdOHBAPZiXl8fzvFqqliZMuOfmspYt9Tvhzhg7coTNm8c++4ytX69Z5FFrlErloEGD+OLfRI0lgTqkUqn4jDksLEyqGIpJHWqhC23Kg0LnV3yVsYSVDwu9/6H7+dWDBw/q1au3o0sX1qsX5leiGzJkCOVvMnHx4kUiqlatml7dAFu3bl2hWy5AF168YHI507gBM20aE3tRHc89WVpaamwP3bp1K18hp+P9DU+fPq1QoYJMJhO2aLp27ZpcLjc2No6X4nZ++YGEe/mRkpISHBzMO67znS5PnZ0ZEVMomIMD8/JiAQH5kuwajh5l/fuz+vWZgwObMePVXhw9+w3duXMnFejK4+DgQHrWHDEmJkav5gClI+EeEZHTpcvF995bIBzk9YXVjY9Ep+f1ZITc3d3r16+v/1ekkvvll1+IaMCAAVIHks+iRYscHBz++ecf9UhWVpalpSURlTi/VkI3b7Lq1RkRGzmS6ccnVGk0e/bs4tQ73r17t5WVFRG1atXqltQdaz/99FPK3x/18OHDRNS9e3cJoyoPVCrVRx99xMtkqzPs7u7uvr6+QUFBIpb9LXQ9e2BgIJ+RpEixkoKnvTT2kPF7P7Vr19bSN++aNezPP1/9MzSUeXiw9HT28cdMuAwiLo4NHSr1p2BeHhs5klWvzubMYYsWsU6dWJ06uuluzQukVK5cWfJmjzx5MX36dGnDKA4fHx8imjZtmtSBSKPQ+RVfZawnK4w4qeZXSTdusKpVGREbNUrqT5YyJSsri7eFuHv3rnrwf//7HxFNnDhRwsAKcnd3J6L169dLHUh55ebGhg9n6v1Sjx4xKyv2xx/inkSlUvHGOfXr19e4XT1//nwisrCwuHDhgrgnLcJXX31FRAPz14MeO3YsEU2dOlVnYZRPSLiXbQ8ePNiyZcvUqVObNWsmbKllaGjYqVOnyO++Y3v3suTkkp/Az49ZWbHISPFCflcTJ04kom8E5W7u3r3LbzHm5ORIGJgGvn9a2EddWqUj4a5SqWrVqkX5e2dt2LCBiPr27aulk/7www8FcwH6ie8LW758udSB6Lv+/fvr4WSXt0/cv3+/emTfvn1E5CTqPsfiunCBVazIiBjmYcU2b968v/76S/3P69evT5kypTg/eO3aNX5b2NLSUnjHRfcK9kflneXQ2ksHIiIieIr5yJEjz58/19JZXree3cXFhaQocnfkyBG+N0uYJXn69Cmv+Kyzql8ZGczXl733HtPHmiUBAczK6tXylrw89v77rFcvbZ+WT36MjIz0YblKdHQ0EVWtWlWf+5xz586dKy2hakPB+dXZs2eJyNbWVq8qAmF+VcYcPHiQiFq3bi0c5BuUd+3aJVVUBWVmZvLOAVrdmQ1FuX6d2diwXr3Y8uXM15fVqqWl++qZmZn8Heji4vLixQv1uEqlGjNmDBHVrFlTY+erlqSkpPD1HMI1effu3eMl3SVf61PmIeFeJh09enTcuHENGjQQbkc2MzPr3r27r6/v0aNHxSkalpfHhg172ccyJkaEA74zlUpla2tLRMJbhitXriQiDw8PCQMrqHPnzqRPRUpKR8KdMTZ16lSNpMDTp08NDAwMDQ2TtNNPrH379nr1v4q7cOGCxq9xRkaGubm5TCYTpi2goLS0NBMTE32b7MbFxclksgoVKgjnZF5eXkS0cOFCaWI6doyZmKBzfRFOnjwZGxur/mdgYKBGdeziS01N5TfMZDKZj4+PVFufCvZHnTVrFhF9//33ksRTrvBl5h988IFuTqSxnj0iIoJXlb137562A1BT90oVbqpg/y2d6KX9nLJaWhqrUYMRse3bdXbOYvPwYBoru0+dYnI502ZbhaCgIIVCIZPJNm3apL2zvBX+VtEoiSstlUpV6O4TfgP10KFDug9JWoXOr3x9ffVwESXmV2VMwcZoiYmJcrlc36pH7t69m4jai9eiE0ri+XO2YgWbMoV98gkLCtLenfaHDx/yluPDhg0T3nF88eIF73Xh7Oysg/fnN998Q0Q9evQQDvJfGWF3a9ASJNzLJN7ikYgqVKjg5ubm6+sbHBycpY1icTk5bMAARsSqVWPXrol//LcUFRVFBfoq9enTh4h+//13CQPT8Pz5c54iTn6X7QWiKjUJd17foEWLFsLBbt26EdGWLeK3TtXPejIqlapOnTrm5ubCPuM8h9KxY0cJAysV/v77byLq3Lmz1IHks2LFCo2NFHl5eTY2Nhr3D3Vt925mYMCIGLZN/EeYCp83b97MmTPV/8zJyalRo8bNmzdLdmSVSuXv729gYEBE/fr1094a59fJy8vjFR6fPn0aGhr6+PFj9t/eZ2nX3ZcT33//PRHNEnYp0ZpC17PzWz4TJkzQQQDct99+S0SNGzcutFfqNd1OK9esYUTMzk7/Sis7ObGffso38uwZI2IxMZqd30QSGRnJuwh8++232jh+yfC8rS7fn280d+7cypUrFyzXPnLkSAsLC7268NCNQudXrVq1IqKDBw9KFVVBmF+VPbx3QmT+Tfdnz579U1g7TA9MmjSJiJYsWSJ1IMDYunVs/HgmqGmuDZcvX+Z1I33z3117+vRpw4YN+TILrS6yefHiRY0aNTTSu48ePTI1NZXJZBol5kEbkHAvk65fv+7v7x8dHV1oEz6RZWezPn0YEatdm+m4znABvG2kcBN/ZmYm76n56NEjCQPTsGXLloI3GqVVahLuOTk51tbWRCSsKPrTTz9paRcD31I9fPhw0Y/8LsLDwwveWeJlcFFP5o34Pr4ffvhB6kDy6dmzJxEJLwz4/+V69epJGBVjjG3YwGSy1V276ttFiySmT5++YcMG9T/j4uIqV64snEK9++rg48ePV69enYjq1KkTqfN6bZcvX54yZUqVKlVMTExsbW09PT3d3NwMDQ0xI9cBvtrI399fB+c6depUwfXssbGxxsbGcrk8OjpaBzGoe6UKM3HqXqnz5s3TQQxCSiVr1owRMZ38H3gbHTowjS+sR48YEbtxg1lbs4oVmYsL8/ZmAQEsJubd98Xfvn2bfwTpW+Hja9euEVHFihW1soDo7f32229EpFAogoKChONnzpwxNTVVKBS6/wCXXMH51d27d2UymZWVVXZ2toSBadCX+dWmTUwmYzIZ27hR4khKOV7HycbGRq/KFhWk3ol/UctJXiiWIUMYEQsM1PZ5Dh48aGBgIJPJ/shfKf7q1as8p+Hj46O9s/MkSbt27YSDvNeIDrZUAkPCHUSRkcG6dGFErGFDJl5nrxLgl2nCts/6uXNr9OjRRLRs2TKpA3ml1CTc2X8T+qVLl6pH7t+/X7Achyh4PZnterbJnBd5+PTTT9UjqCdTTLm5uQVv2EguKSnJ0NDQ0NBQuKiZT4Z0s9y1aKfWriUiQ0PDffv2SR2Lrv3zzz8xgoppe/bs6dChg/AJffv2/UPsVkv379/nnzwmJibC/L72vHjx4o8//nB1dVUXobO3tzcxMSGiNm3axMbG6kl377KNbyYQVptdvXp148aNV6xYoY3TFbqe/ZNPPtHZcgAegMb9bN4zoE6dOpLsKtuzhxExa2v27JnuT/56Y8aw8ePzjQQHM0ND9uABq1yZEeX7Y2HBOndm3t5s40Z27hx7y+ZFycnJzZs3J6LevXvrYQny1q1bk35UZP7333+NjIyIaNWqVcLxO3fu8LWE4zX+l5UDhc6vfvzxRyIaMWKEhIEVpD/zK7ZiBSNihoZs716pQyl9YmNjAwICvLy8ateubWZm1rVrV6kjeoPTp08TUd26daUOBBhjjH30ESNiq1fr4FS8m7ShoaFGT5Tjx4/zr5I1a9Zo6dT9+vXT+N5MTk7mi+7PnDmjpZOCEBLuII6UFNamDSNizZtraYfrG6lrtQnfz7xG36JFiyQJqVBKpZI3A9PxbumilaaE+44dO4ioU6dOwkFnZ2fRi3vqbT2ZunXrEtGpU6fUg6gnU0y8QV/z5s2lDiSfTZs2FSxYbG9vT0THjx+XKiqhL774gohMTU1PnjwpdSw6tWTJEmG/0Ly8vLp16549e1Y9cvz4ceE9XrFkZWVNnjyZ5769vLy0tzbw+vXrPj4+/DuJiCwsLLy8vPgLvHDhAm8FU7ly5XJYjFj3eKJT2BKcp7+Fd5dFpF7PLnw/P3/+vFKlSjqo/xAcHMzrHgo7hj19+rRy5crSljByc2NE7LPPpDp/YfbsYSYmr3olZWaybt3YqFEv/xkXx3btYr6+bOBAVru2Zv7dyEjVrt1HkyevWrUqPDy86MlMTk4O32vVrFkzLTXFeUffffedPmRvY2JieAO6uXPnCsdTUlJatGhBRN26ddOrBd26Uej8ipd83Lp1q1RRFUqv5lfsiy8YETM1ZeVsflUCmZmZJ06cWLJkSb9+/XjGUI1/nWmjuKiI5s2bR0QzZsyQOhBgjDE2bx4jYrpKEs2cOZPPqDWWfG3YsIHn4kVMYqSmpsbGxkZEROzdu/f333/38vL68ssvV61axXNkvCJE7969xTodFA0JdxDNkycvd+O2bs10XnuWMbZx40Yi6tevn3CQd6oQXk5KLiwsjIjs7OykDiSf0pRwz8jI4B3ehb2qwsLCrl69Ku6JUE+m7JkxYwYRffXVV1IHkg9f6fnzzz+rR27cuMGnZXqyxlClUvG7l1ZWVnr1eaptDx8+tLa2FvaWXLBgwccff6ybswcEBPBZmouLS6Gt+UosKysrMDDQzc1NJpPxi1VnZ+d169alpaUJn5aSkjJ48GBeNsHX1xfr3LXKwsKCiISJTv4fX3stuwtdz7506VIicnBw0N6HT3Z2Nm/Pq9GMd8KECUT03nvvaem8xXHuHJPLmZERu3VLwigK+PxzZmHBRo5kH3/MGjdmbdqwx48Lf2ZyMgsJYf7+zNOTOTgwufxF48bCtJSNjY27u7uvr29QUFBiYqL651QqlaenJ39CXFycjl7XW1Ivg9D4pNKlhIQEfmnh4eEh/EjMyclxc3Pjvzv6ebtC2wrOr549e8Y7VunVfxB9m18xlYpNnsyIWMWKLD5e6mj0TkpKSnBwsK+vr5ubG994J/w08/Dw8Pf3j4qKWr58Oc9aamMNhFhatmxJRIcPH5Y6EGCMMfbjj4yICVoxaVVeXt6gQYOIqEGDBk+ePBE+9PnnnxORpaXlG+s3ZmZmxsfHx8TEhISEBAUFrVu3ztfX19vb29PT093d3cXFxc7OztjYmApjZ2dXo0aN69evV61aVY/uOJYDSLiDmBITmb09I2IdOzKdT4Z5zkq4uTMpKalv374NGjTQq5JuX375JRHN1NXHezGVpoQ7Y4x/Y61du1arZ0E9mbKHd1XSqz10WVlZFhYWMplMWEyZ9xIcN26chIFpyMvLGzZsGBFVq1ZNrwryaNsHH3ywbt069T8fPHjQsGFDnaWeo6Oj+Zu2atWqGhtRS4YvaeezbfWS9iJqdqtUKj8/P7lcTkQDBgzQq7xJWfLs2TN+uSUcdHR01OrnVaHr2bOzs/nOhvXr12vpvP/73/94XjJHUPDkzJkzkvRKLcjTkxG9WkGuL65cYatXs2XL2IEDrPgNmtLSnpw6tXLlygkTJjg6OhoaGmpcgderV2/w4MGLFi3itQ4rVKig57dUO3XqRERSrWPNyMjgxSvbtWsnvHhWqVRjx44loho1apTbmVjB+dXdu3dHjRqlb8tW9HB+xfLy2PDhLH9PxfIsPj4+MDDQ29vb2dlZvSyA3/t3cHDw8vIKCAi4U6BxnHov5rFjxyQI+k3i4uJkMpmlpWU53P6ipzZtYkRs9GidnTAjI6Nt27ZE1LlzZ2EzEpVKNWLECCKqW7fuzp07t23btmrVqoULF3p7e48aNap3796Ojo68blKhmfSCKlSoUL9+/Xbt2vXr18/T03PWrFlLlizp0KEDEbm6ug4aNMjV1VVnrxqQcAeR3b3L6tRhRDu9vHTZ1ignJ4fvLSv4/auLzrFvQz9vb5eyhPvvv/9OWt4MhXoyZU90dDQR1axZs+AtONGr/xff3r17iahNmzbCQT4rkrCuQqGys7N79+7NV0mIu+Banx08eLBVq1bCER1/qTx58qRXr15EZGBg4OfnV7KDFHNJ++vs27ePF+dt3LgxGqhqA/90atmypXCQZ8Mfv24tsxj4evYWLVoI39Vbt24lIltbW218/d27d8/c3JyIjh49qh7My8vjV6Hz588X/Yxv68EDZmbGZDIWHi51KGLLzc2NiYkJCAjw9vZ2cXHhTWu5atWqKRQK/W/UsXLlSiIaOHCg7k+tVCr5ag87Ozvh5gDG2IIFC3imLyIiQveB6YMi5lf6Rj/nV0z93y0nh/n7s65dmZMT69fvVUfHgACm8fE4dSrT+1/YYlIqlTExMevWrfP09OSXOWpmZmYuLi4+Pj5BQUHP37SDnm/bsrCw0KuFNRz/7Bo2bJjUgcB/DhxgREy3lVXu379fs2ZNIlqwYIFwPCMjo2nTpsIv5UKZmJjY2Ng4ODi4uLi4u7t7enr6+Pj4+/sHBAQEBQWFhITExsa+LgH3+PFj3hH9559/1pPe4+UEEu4gvhs3Vri7E9GgQYNy3rJdU8mkpaXxuo7NmjXTwenehbq7p7590JWyhLt6m+ob514lhnoyZc/XX39NhbUyi4uLs7e3F65i1iVeqnvx4sXqkUePHvF+FHp1s4fLyMjgCwybN2/+TL8aC2qLSqVq2LBhZGSkhDEolUpfX1+eKx85cuRbvTFu3LghXNJuYmLi6ekZFRX1tjHExcW1adOGL5wJVKcAQCQ7d+4kogEDBqhHUlNTeQpPqwmsQtezq1Qq/muucUEoig8++IC/jYWDPBMhVa/UgubOfblZU++Th+8kLy/v6tWrW7ZsmTZtGt9eoP9bWB4/fmxgYGBkZKT7L6Dp06dTYRV4t27dKpPJ5HK53uVwdeh18yt9o8/zK8YYU6nY4MGscWO2bRs7c4atWcMqVmT/+x9jjPn6MsEXBGOMOTmxX36RJExRpKenh4SE+Pn5ubu786YIatWrV3d3d/fz8wsJCXmrC2aVSjV+/Hj+eyrseK8P3nvvPSLatGmT1IHAfyIjGRFzdtbxaaOjo4cPH66x3iUnJ4f3lmjSpMnQoUOnTp06f/58f3//zZs3HzhwICoqKi4u7t0/tXbt2sVvYpWrncqSQ8IdtOHSpUu88dWQIUO0tBYwNTU1ODjYx8fHxcWFt3e2s7OrVauW9hKwolizZg0RDR48WOpANJWyhDv776Nq7ty5wfmFh4dHFSY6Ojr2NRISEp4XwFNLBevJqFQqYekPHSuinozeFl3VH9evX69Tp07jxo01cgq8/4NCodB9+aC8vLwaNWoQkXDV8Nq1a4no/fff13EwxfT06VMHBwciat++vZ5esort+PHj8XpQWXX37t18J1fLli1vvanCdHZ2tsaSdgcHBz8/v3f5jszIyOB1J2Qyma/vd3q2e6x04/Vnhb3ULl68SERNmzbV9qm3bNlScD17eHg4Xx0g7l6Ww4cP8+WHwl6piYmJfP/Erl27RDzXu0hNZdWrMyJWfjKovP74b7/9pjGekZGhm7UzxcdD1V7Jo0LxvSAmJiahoaHC8RMnTvCCuStWrNBlPPrmdfMrfaPn8ysWHMyMjZnwKiMoiBkZscTEspFwf/jwYVBQkPDqXc3Ozs7T03PdunUxMTHvcptZqVQOGTKEf6nFxsaKGPy7SEtLMzY2VigUGsW7QUp37jAiVreu1HEwxpifnx8RNWrUSNtbrj/88EMicnZ21rdv9jIMCXfQknPnzvELqLFjx4pV7TYhIWHbtm3Tp09v0aIFryjLGRgYtGnTplq1akTk6uqqzykgd3d33V8mFEfpS7iPGTOGb4zSEhMTEyMjI2GzRMZYdnb2mDFjqlateuPGDd2/ZNSTeUePHz/mywe6deumMaFZvHgxERkZGQlrGesA76HcoEED4WDfvn2JaOPGjbqM5K3cv3+fvxX79u2rL23Hyofr1683a9aMiCwtLXfu3Fnocwouaffw8AgODhYrhnXr1llYWDg4nOnShT18KNZRy7uZM2cS0Q8//KAe2bNnDxH16dNH26dWr2dfuHChcJy3bPXy8hLrRNnZ2fwTWPgyGWPjxo0jLdeIK4HVq3O7dv2pXbtO5eSidP369UTUq1cv4eD8+fPNzc3150YI99tvvxGRm5ubzs64fft2uVwuk8k2b94sHL969Sq/1Jk1a5bOgtFPRcyv9Iq+z68WL2Y9e+YbUamYlRXbv78MJNxzc3OFFTMMDQ07dOgwe/bsXbt2iVs5TVj/UB9WS7D/Lta6dOkidSAgkJbGiJi5udRxsLi4OP6rIeJc/XWSk5N53+8lS5Zo+1zAIeEO2hMeHs4/PaZPn17ig7yub4qBgYGzszMv6ZacnMwYu3fvHm/Y07NnT/2c7L148cLMzEwmk+nJt79QKUu4x8TE8M4hzs7Obvl17NjRuTCOjo52r2FjY2NdAL+BM2nSJOF5c3Jy+ByuQYMGGhU8dQD1ZN7dvXv3+Dxj4MCBGpni2bNnE5GZmVlYWJjO4uGN6WfPnq0eSUtLMzExUSgUWi3c/O5u3rxZvXp1Hx8f/S/YWsakpqbyFuEymczHx0d9Q/t1S9q1UXghPPyJjQ0jYrVrs9OnRT98eTR1anyXLjFBQa82+fIqK1OmTNHB2Qtdz37r1i0jIyOFQiFW1f4lS5ZQgV6pYWFhMpnM2NhY3zY45+bm8q08K1eulDoWXUhKSuILMB89eqQe5OUa9a22Hg9VLpfrZjJ95swZPuHUaKHx5MmThg0bEpG7u7u+dYuSRBHzKz1RCuZXkyezDz/UHHRwYGvWMF9fRsRksld/iEpXwp0xNnjw4L59+y5evPj48ePC9JPoMjIyXFxciKhZs2ZPnz7V3omKydPTk4iWLl0qdSCQn4kJI2KZmdJGMXDgQCpQak97jh49KpPJDAwMpK2WWX4g4Q5aFRwcbGJiQkTz5s0r/k/FxsYGBAR4eXnVr19fuObY3Nzczc3N19c3ODi40JT6zZs3bWxs+GRPD9ck7du3j6eIpQ6kEKUp4f7ixQveeXbChAnaO8uZM2d4YzeNRX+pqamOjo5E1K5dOx1vpuD1ZITJWdSTKYGYmBjeitDT01OYLFapVBMmTCCiypUrX758WTfB8BVhJ0+eVI9s27aNiLp27aqbAN6F7u85AadSqfz9/Q0MDPgmg6ioKB8fH36PUBtL2gv1+DHr0YMRMWNj5u+v1VOVC46OjIgJr33mzs2tXz97xQodJYbef//9guvZp0+f3rx589Ni3FR58eJF9erVZTLZsWPH1INKpZJ/n/r6+r77KUT3zz//EFGVKlX4so4yj1/zC28wqLvHF7O7ss7wUHVQxeX27dt8M+XEiROF45mZmR07duRzen3eV6tjr5tf6YlSML+aO5e5u2sO1qjBtm9/ucJdpXr1p7StcNexpKSk1q1bE1Hbtm1TU1MljESpVFapUoWIrl27JmEYUIhatRgRk65ULPuvrrqlpaUu12POmDGDL4DQzzWqZUzBhLu3t3enTp1K0E9LG5BwLwN2795taGhIRN98883rnpOXl6duTl67dm1hkt3CwsLNzY33TcnOzn7j6YTl4/VtgcXHH3+st9eVpSnhPmnSJCJq3LixtudPe/fu5Smt1atXC8cTEhJ4PQ13d3edvclUKhVfOhQREaEeRD2Zkjl9+jTffSOsmMwYUyqVvKFfzZo179y5o+0wrly5wvP7wnfRqFGjsGUBiiM4OJhfwikUCv592bp169WrV2sUwtKe3Fzm48OIGBHz9GTaXKxW9llbMyImXHbp4cGI2JYtOgrg+vXrhoaGGuvZ09PTRVy6++DBA43V4itWrCCiOnXqaHWp47tQd4uROhBd4NX8XVxchIN8legWnb0Ri2fr1q1E1KlTJ62e5dmzZ/ymeO/evYVf03l5eXyqUK9ePeGGAGCvn1/pg1Iwv9q0idWowYQpsOvXmUzGrl4tAyVldC8xMZH/Cnfv3l0HicXY2Ng9e/YUHD958iQRNWzYUNsBwFtr3ZoRsbNnpTp/RkYGX16q4710L1684AUqP/vsM12et3wqmHCXSkJCwqRJkzSaESLhXjZs376dJwSWLVumHszNzY2KivL39/fw8ODrIdTUzcmjoqJKUP9dG+XjRcEr3pw5c0bqQApRahLuPMVsYmJy/vx5HZzul19+4fksjRqmV65c4e9aEevbFg31ZMR15MgR3ujs22+/FY5nZmZ26dKFz4y1fSH9zTffaGzUyMnJ4R9e+tPoCfRZXFzcxIkTx4wZM2HCBOGtOF3asoWZmzMi5ujIbt+WJIRSLzWVETEzs3yD7doxIhYerrswpk+fTkT9+vXTzekSExMrVqxIREFBQbo5YwmcPXtWLpebmJjcvXtX6li0LiMjo0KFCjKZTHi/mZc2GqCR6ZNaoaGKKzs7m99uadasmcYWB77d0NLS8uLFi1o6e6n2uvmVtErH/CotjdWuzaZOZXyb9rNnrHt3xjt5IOFeInFxcXy50oABA0Tf/K5UKtULBvlFvqGhYcG02meffUZEc+bMEffs8O5+HjfOs2nTUOkqe/DKos7OzrqvSxYVFWVoaCiXy48fP67jU5c3+pBwf/HixTfffMNvh3t6egofQsK9zNi4caNMJpPJZHPmzFmwYEGPHj14RUQ1Ozu7sWPHbtiw4ebNm+9+OlHKx4vr0qVLRFStWjW9ugegVjoS7rdu3bKysiKidevW6eykX375JRGZmZkJW5UyxiIiIvibWDdXFKgnI7qdO3cqFAqZTPZL/iuWlJQUJycnImrZsmVSUpL2Amjfvj0R7d69Wz1y+PBhfl7tnRRAdFevsiZNGBGrXJkdOiR1NKXQxYuMiDk45BusVo0RMV12fHny5An/hj18+LAOTjd27FjSv16pBfFVsRrXJ2XViBEjiOi7775Tjzx+/NjAwMDQ0FAb3SDeBQ9Vo666WFQqFa+5bGtrq7EWbN26dTytpifVV/XT6+ZXEio186vLl1mbNqxCBebgwExM2Pvvs+fPGUPCveSuX7/OC0ONGjXq3S/C09PTjxw5smDBgl69ellYWAhzGdWqVXv//fcfPHig8SN8lf2JEyfe8dQgOv49ItUWrpiYGJ7y1sgw6Mz8+fM/atEiw8WFSVpzqcyTPOEeFBRkZ2fHP6bc3d1v3bolfBQJ97LE39+fl08QJtk9PT3XrVunjRUqR44c4eXjv/rqK9EPXgJ+fn5ENH78eKkDKVwpSLjn5OR06NCBiIYOHarL86pUqnHjxhFR1apVb9y4IXxo9+7d/Iri999/13YMqCejDWvWrOE7GLZt2yYcf/z4MZ8fd+vWTUu7UOPj43ltXOEX8LRp04jo66+/1sYZAbQnJYUNHsyImELBfH2ZXt5X1l9BQYyI9e37aiQzk8lkzMhI1/8lv/32WyJq1aqVtpcGhIaG6mev1ILu3LljYmIik8nKQ3sxXkzW0dFRONirVy8iWr9+vVRRFWr37t28jpY2Dv7VV18RkYWFxblz54Tj+/btMzAw0MGsrwx43fxKKqVsfvXgATt7lgnvcmVmMo1WCikpLCtLx3GVUufOneMbqsaPH1+C7gKPHj0KCgry8fFxcXExMjISJtltbGw8PDz8/f2joqIKPfLNmzeJqFKlSvpW6BbYfxv7dNAOpCCVStW9e3ci+vjjj3V/di43J4e1acOImK7265dPPOGu1TV8r3P16tU+ffrwD6smTZrs37+/4HPu3LnDP6P0c1EwvK3Dhw9///33n3zyyc6dO3XQIr445eN1pnPnzkS0fft2qQMpXClIuH/yySdEVKdOned8rYcO5eTk9O7dm4gaNGig0Shy9erVfK3TIW0u7AwLC0M9GS1ZvHgxERkZGR08eFA4fu/ePX6TY+DAgdqYJfNr0cGDB6tHVCoVb2ERHR0t+ukAtC0vjy1YwORyRsTGjGEzZjBhw5LQUDZnDnv8mA0cmC9psHcv8/HReax6ZuVKRsSmTn01cvUqI2K6r/j64sUL3qFEq/lEpVLJe9npZ0+bgnhBAL3utSiS7OxsXi5P2Dn8t99+I6KePXtKGFhBhYYqCpVK9eGHHxoYGGhcmkZHR/PNswsWLBD3jGXV6+ZXuof5FYSFhZmbmxPRJ598Upznx8bGBgQEeHl5OTg4yGQydYZdoVA4ODh4eXkFBAQUZ4fxDz/8QERjxox551cA4vP19ZVqKrJx40a+rFj3aY18rlxhpqaMiO3dK2UYZdrSpUvNzc0bNGgQGBios5M+eZI7depUXtS7cuXKq1atKjSbERQUVK9ePXNzc4VC4eTkdPLkSZ1FCGXG9u3bedvLH374QTdnLLTs8/Pnz/mWXI06kPpD3xPu+/btk8lkhoaG4bqsaCuQmprq6OhIRG3btk1PTxc+NHv2bL4S6qzWmq7wmw2oJ6Ml/P+gmZlZWFiYcDwmJoZvyRkzZkwJVsQUbebMmTKZbOPGjeqRyMhIIqpZs6bo5wLQmf37WaVKLCCANWzI5HKmrk2yZQtr2ZLdvcuI8i3aW7GCabnxYSkwZw4jYsLaGAcPMiLm5iZBMJs2bSKiGjVqXLp0KTY2NjY29u7du8//o/H1VzJ8w6OdnZ0OutiJIikpiTco1udy82KZMGGCRgIiJSXFxMRELpfH67LCkUBKSsrPP/9c8JuRhzp48OBLly6Je19cpVJpbGh48OBBrVq1iGjkyJH4ji6+182vdAzzK2CMHTp06I3dBS5cuDBo0CD+ga9mYWHRu3fvhQsX/vvvv2/1JXjt2rXmzZsTkZ7s8wANvEnJtGnTdHzeZ8+eVatWjYg2b96s41MXYulSRsRsbNjTp1KHUjZdunSpadOm/MPkvffeE32VgIbcXLZuHatShbVv/42BgYGXl9eTJ08KPu3cuXNdu3blUTVs2LBGjRpEJJPJRo0adf/+fa1GCGXP77//LpfLZTKZ9up+x8fHBwYGqu+CF7wk2bJlCxH16NFDSwG8O71OuN+/f59PfYRdd3UvISGBt8Rxd3cXXtqpa33a2Nhoo68a6slom0ql4tftlStX1vgWPH36NF/RNmPGDNHP++DBgzTBWt958+Zp6UQAusTz6Q0bsjFjWKNGjOdUkXAvwtChjIht3fpqZO1aRsQmTpQgmLy8PBsbG41e9oUyMzOz/k+dOnXs/uP8n3bt2rn9p3///h4eHh4eHoMGDeK7a/fs2SPByyspfpPA3t6+zJcF4KWu7e3thYODBg2Sat99Tk7Oe++9R0Tz5s3TeMjT07Nq1ar83WhoaOjg4ODp6env7x8SEiJusdSUlJSWLVsSUZcuXbJQxONtFDG/EldGRsbx48e/+eabQvd9Yn4F3I4dO/iSzx9//LHQJ1y+fJl/pNSoUcPd3d3Pzy8kJKT43VZzc3N5G1UPDw+eUTU0NLSwsPjtt99Eew0gnq1btxLR8OHDdXzeyZMn821zenELMC+PdevGiJhg1zWIKzc3d926dXzGwpPgWqr1cfAga9qUETEiNnJkaqFfu0+fPvX29uafhJUqVfL391cqlRkZGX5+fjzpYWZm5uPjk6ZRxAygSPz+pVwuF6srhkqlunz58tq1a0ePHs2XvAjvgh87dkzj+aNHj5Y8XVw0/U245+Yyd/dEZ+fe/fv3l/xr6ebNm/yz0it/sbPs7Gw3Nzciatq0qeiNxVBPRgeUSuUHH3zAF0Bp9JQ4cuTIG1fEiIKvgkEfNigbGjZk+/czV9eXhWWQcC9C27aMiAm3b82dy4jYokUSBLNkyRI+265Xrx5PoNetW1edWNfod18yvXr1krBoacnk5OQ0atSIiNasWSN1LNqlVCp5g0Hhpr2//vqLJLrHP3XqVCKqUqXKzZs3heO80I1CoejatWuDBg2ENR/4BW2LFi0+/PDDH3/88fjx4++yvTQnJ4dXsW/atKnEe/9LpyLmV+8oPj5eXVmbz9OIqEGDBgWfifkVqG3cuFEmk8lksg0bNhR8VKVS/fnnn2/1Rk1JSTlw4MD8+fO7deum8RVpY2PD66cZGhru27dPtNcAIgkODiadF0w7c+aMXC43MjK6cuWKLs9blDt3mKUlI2IS9Y8tJ549e+bt7c2Lb1hbW/v7+4u4huPGDebh8TLV3rAhK7R6TU5Ojr+/v5WVFf9Q8vb21qgsf//+fU9PTz6hqlWrVkBAgOTJNyhF+CWkoaFhiTcEK5VKftPa09NTI8luaWnp5ubG74JnZ2cX/EG+Plufe4Ppb8J93jxGxGrVUj15ohf32SIiIvh0SqMzQEpKSqtWrYioc+fO4m6Tv3z58sSJExcuXKgeQT0ZbcjMzOzSpQsRNWzYUKMy1M6dO3l3XO1tk7l16xYRVaxYseAnCEBpxBPuUVHM1JRduZIv4V6hwqs/xsZIuLOqVRkRS0h4NfLiBbt2Ld+IbqxatYqK3ecwIyNDXWrm7t27vP7MrVu3ov4TERER/J89e/YE/ke4W6sU2bFjh6en571796QOROt4H7nPPvtMPZKRkVGhQgWZTCZuwvSN/ve//xGRqampRjnBY8eO8daFP//8Mx9JTU0NCQnx9/f38vISpl+FmS93d3dfX9+goKCEt/nVmjJlChFVrVpVI+MPxVfE/OqtZGdnnzp1avny5UOHDq1Zs6bGLRYnJ6fp06f/+eefGgkCzK9AA9+xpFAoStxaLSEhQX2zh/eLU7Ozs/P09Fy3bl1MTAx/K/r4+PDPsePHj4v6OuBdnTt3johatmypMe7j4zN69Oi1a9devnxZ3ISjUqnkJWoL7tmS2K+/MiJWsSIrB5McaV29erVv37784+J1jUzfSloa8/VlxsaMiJmbM1/fwttpBwcHN2vWjJ/Xzc0tJibmdQeMiIho3749f2a7du1OnTr1jhFC+TF37lwiMjIyKv4bOzc3Nyoqyt/f38PDQ2ODtXqrWVRUVNFNfUNDQ/n3rxgvQlv0NOF+/DhTKJhczo4elToUgaCgIJ5+FRbgZozFx8er22wqlUrtBbBt2zYi6oQ0ldhSUlKcnJyIqFWrVhq3fNeuXUtEcrlcS3UY0VUJyhiecGeMffwx69kzX8L93j2Wlvbyzw8/lPeEe2Ymk8mYsTErciKhC3/++ScvwPfLL79IHApIik9bNfbVjRw5koj8hK0GtGzbtm1yuVwul+/YsUM4fvny5YoVKxKRz+sbLufk5MTExAQEBHh7e7u4uBTcmWFtbe3i4uLt7R0QEKDOixXE236amprigvMdFTG/KtqjR4+CgoJ8fX3d3Nx4NSqN5U78JkoRx8T8Cgr68ssveVLg0KFDxfwRYRtVjZs9zs7O3t7egYGBhdZKVqlUH330EX/HajSHAGndv3+fiGxtbTXGGzRooPE587pllW9r+fLlRFS3bl1ROuKIzN2dEbFevRgWNWtfUFCQ+m3m7u5+69atkh1HqWSNGzMiJpezSZNYoXe0r1+/7u7uzs/VuHHj4lR0zMvLCwgI4Psd5XK5p6fnu9wsh3JF3bznxIkTr3tOdnb2v//+u2DBgh49emhM0Rs0aDBu3LgNGza81S8FXxxTzKboUtHHhPvjx8zWlhExwdpufbFmzRoiMjQ0PHjwoHA8JibG2tqaiKZOnaq9sw8dOpReX38Q3sXjx4/t7e2JqFu3bho7FfiFt7GxcWhoqOjn7dy5MxH9/fffoh8ZQBLqhHtSEqtenY0Zg5IyhbtyhRGxRo0kDiMoKIgv0/v+++8lDgWkplKpeMca4ZddUFAQz5bqJoaQkBATExMqUDovISGhbt26RDR06NCiV7sIKZXK2NhYnrd1d3dXV34XplTU+feoqCieVfnrr79kMplcLt+5c6f4r7D8KWJ+JcQ3FKszmxrFgvjyYX9//zcud1LD/AoKNWvWLCIyNzd/XUdf4bK7ypUrC9+HFhYW/GZPcHBwZmbmG8+Vl5fH71lWqVJF2y0TofiysrL4fReNe66XLl1atWrViBEjbG1tNf6/9+nT53//+19ISEgJ+nkkJCTwah562sMmMZFVq8aIWFkvnacnsrKyvv32W142vW3bz774gqWmluQ4P/zA2rVjha4KSEpin3zCWrQYT0QVK1Zcvnx58TtSMMbS0tJ8fX35lkFzc3NfX1+0sYE3UqlUXl5eRd9jfvz4sXB2p94Z9lb7aGNjY3nxGb7i2cHBofh30CWhdwl3lerlfdauXZk2F4uX3Geffca/eoV1Thljx48f5x9MWqrZj3oy2nbv3j31TgWN2mqzZ8/u1q1bSkqKWOfKysoKDw9ftGiRXC43NjZOLdk3LYD+USfcGWMBAUwuLyrhnpfHjh1je/YUvguybHvxgkVGspMnpYwhLCzM3NyciL766isp4wC98fnnnxPRtGnT1CM5OTl8p6cOskW3bt0qtF9ORkYG3+bctm3bd2yLGhsbu3379q+++qpfv342NjYa+XczM7OWLVvyW1D+/v7v9mrglSLmV2p8di3McPXs2XP+/Pn79+9/q6XxmF9B0dQdfStWrHju3Dk+mJKSEhwczHdU8Ht+ajY2Nh4eHm91s0coJyeHLzKtWbPm7du3RX4xUFI83VnElV18fHxgYGDB+398Z4OPj0/RO2yE+IK5IUOGiBa96P7552Vdkhs3pA6lvEhISBg3bry9fSYRs7FhGze+9YZXpbKQPQlKJVuzhlWpwohYq1YpH330UYnbtN64cYP3DiSiRo0aBRZaHh5AQHiP+dKlS4U+Z8iQIZ988sk///xT6M6wQuXm5kZERCxdunTAgAF8ibNajRo1Tkp7LV0Mepdw9/NjRKxqVRYfL3Uor6FSqT788EM+A9O4G7Nlyxa+Kuqvv/4S/byoJ6MDMTExPLPg6ekpXPWgUqnefTvhw4cPC+6PbtGixfr169/xyAD6Q5hwV6lY9+5FJdw//5x9rS0dBgAAP5ZJREFU/TVbuZL16ydJsBI4dYoRMWErkH792HffSRDJ+fPneYEOrW7MgtLl7NmzRFS1alVhVnTixIlE9PXXX2v11E+fPm3cuDER9evXT3h2pVI5aNAgvhAmMTFR3JM+f/6cl4D39PR0cHCQy+VENGLEiI8++kjcE8Hr5ldqf//9d4MGDTw9PVetWnX+/Pm3qtCI+RW8ldzcXP6pUrVq1REjRmhkVBUKRevWradPn75169b79++/++kyMzO7detGRA0aNHirThKgPfXr1yei2NjY4jyZV7jy8fFxdnbmXxPqt4qDg4OXl9frygoxxg4dOsTv5t69e1fUVyC2UaOYrS3TwmZuKEJUFHN1fdny1NmZhYS809GOHWOtWr08Wrdu7Px5ESI8cuQIbz9ORD179nxdFhWAy8nJGTBgABFVq1bt6tWrJT4O32rm5+fn7u7OL1cLvQteKrr76lfC/fRpZmTEZDJW0g63OpKTk9OrVy8iatiwocZtw6VLl9aoUSMqKkr0k6KejG6cPn2ar3qYMWPGOx4qNzf37NmzP//88+jRo/nETk0ulzdv3nzy5Ml//vmnKGED6Il795hwBWpKCrt/nymV7N69fGs30tJYYuKrbUytW+s0SAmdOsWMjZm1NVMvdJMk4X7jxg1eonHUqFElWLIHZRivU3z48GH1yJEjR3iqSHsnffHiRadOnYjIyckpLS1N+NCMGTOIqFKlSteuXdNeAFxycvKxY8eeP39eKmbwpQ7mV6A/srOze/fu3bRpU/62MTMzc3Fx4cuWnwlXB4gkNTW1bdu2RNS8efOnT5+Kfnx4W23atCGirl27Llu27MyZM6/beVPQ8+fPg4KC5syZ06FDBwMDA/Unj0wmW7JkicaTs7Ky+I1kLW1/F1NS0st1MQ8fsk2b2Jo1LCiIvb4IGIhFpWKBgaxuXUbEZDLm4cFKcGvm3j3m6fky1V6rFgsIELMgf25u7rp166pUqcJ3eHh5eRV/bTKUQ9nZ2bw/cO3atd+qVkx6enpISIifn1/BrWbq4jPFvEuqV/Qo4Z6UxOrXZ0Tss8+kDqUYUlJSWrduTUTt27fX2OAs4kQqPj5eXXvUwsJCJpPdQw9x7Tty5AivDvTtt9++7c+qN6UWvB1XoUIF9Wwes20AtQsX2ODBUgehK6dOscqV2ezZrG/flyO6T7jfu3ePl8N+77333n3vDpQxCxYsIKLx48erR/Ly8nhBW20sJmCMqVSq0aNHE1HNmjU11pMuW7aMiIyMjP79919tnBp0DPMr0B9paWlxcXHLli2LiIh4qwLHJfP06dNmzZoRUbt27VDpSHLPnz+3s7NTf4aYm5vzz5BiVufnMjIyeHrI3d3d0tJy+/btGk+YP38+v8uigzeYOH7/nZmZsT592MSJrFUrVrcui4mROqZyISOD+foyU1NGxMzMmI8Py7/24A0/aGLy8gd9fbV1l+TZs2fe3t4KhYKvgfD39y/+bSoobzIyMrp06cJXJxe9rys1NTU4ONjHx8fFxcXIyEgjye7l5RUQEFDa8596lHAfPJgRsbZtWWm5/I+Pj+c5i4EDB77V1teij6nOsFerVk34njM2Nr5w4YIoZ4E32rlzp0KhkMlkv/zyyxufHBsbGxAQ4O3trbHTkAR7XkJCQkrNZAtAh2JjWdeu7MEDqePQFZ5wT05m1asz3sxPxwn3R4/YkCHfEVGXLl2Kf1UJ5ce1a9eIyNLSUtjfki8znzNnjjbOyAvHW1paakxy9uzZw7+IN23apI3zgiQwv4JyKz4+nid5u3fvXkQDYdANXqWdf7wUrNLu7e0dGBj4/PnzYh4tOztbo7HkjRs3TExMZDLZ69rz6p1r15ihIdux4+U/lUo2fjxr3pzdvs2GD2fDh7PPP5c0vrLv/n3m6clksnwL1W/cYOvWMeE78a+/2J07L5fG16nzTkvj39aVK1f69OnDf1OaNGly4MABrZ8SSqeUlBS+kajgvq4iinSpP3vL0uIJfUm4//wzI2IVK7LS1U7m8uXLvHL/lClTSnaE5ORkdf1QjV2xRFSxYkUXFxf+tkPVPx1bs2YN/83ftm2bxkPqDS/u7u58g5WaoaGh+pNC9GqzAGXMvn2sXTsWFsZiY/W0S7boeMKdMRYQwGrWZKmpOk24JyW9LO84evQvycnJOjorlDaOjo5EtGvXLvVIeHg4EdWuXVv0AkTr16/nX53CIjaMscjISN7R9xthxwMoEzC/gnIrNjaWbxgqooEw6F5iYiJPALm4uPC+2eoEEK/SHhAQ8LYF/d3c3Iho0qRJWopZfN98w9q3zzfy8CGTydjFixIFVE4dP85at35ZH6ZrV/bjj4yICTvLNGrE1q5l7du/fE67duzUKZ1GGBQUpN4g4u7uXhqrfIAOPHnyhDcAaN269ZUrVwptQ82ndnyHYlm9MpUxxkgPXLlCI0bQ3Lk0cqTUobylkydP9u7dOysra+nSpXPmzHnj81NTUy9evBj9H95MQP2opaVlixYtnP+j8Y4EHVuyZMn8+fONjIyCgoJatGgRFhYWGhoaHR0dGRmZk5OjfpqNjY2zs7Orq6uLi0vbtm35dmkAeCN/f3r06OXfv/qKLCwkjUYnIiLI3Z2ePiXGqEcPat+eLl2irl2pY0eysqKWLbV46sxM6tOHQkKoUSMKCaHq1bV4LijVli5d+vnnnw8fPvyvv/7iI4wxJycnJyenH3/80dLSUqwTHTx4cMCAAUqlcs2aNVOmTFGP3717t0OHDomJiRMmTPjtt9/EOh3oD8yvoNy6fPly165dnz17Nnr06D/++ENj6wZILj09PSIiIjQ0NCwsLCQkJDs7W/2QnZ2di4uLq6urm5ubsCJNQVu3bh01alTlypWvXbumce9Qf02cSESk8Z1brRqtXUsffCBJROWWSkWbN9Pnn5OREX39Nf3wAz15Qnv3UseORESNG9PChfTppyST0YIFNGkS6f5TJCcnZ82aNV9//XVqaqqRkdGUKVMWL14s4vwQyoaHDx927dr15s2bwkELCwsXF5fOnTt36dKlPEztRE64nzhBQUG0bNmrkWXLyNY2Xxr9yROaNo1GjHj10b12LZma0siRlL9uT6kRGBg4cuRIxlhAQICnp6fGo+np6efPn1dn2K9du6ZSqdSPVqhQoVWrVuoMe9OmTTHx0iuzZs3y9/c3NzfPyMhQDxoaGjo6Onbs2LFTp06dOnWqVauWhBECQCmiTrgTUUwMdexI9erRmDG0aRNdvkwuLuTjQwMGiH/e3FwaNIgOHKBatSg0lOrWFf8UUGbcv3+/bt26pqamiYmJvMulNsTExLi6uqakpMybN2/x4sXq8ZSUFFdX15iYmO7dux88eNColE4N4U0wv4JyKzIysmfPnmlpaVOnTl29erXU4cBrZWZmnj17lt8RDAkJSUlJUT9kY2PD7wW6uro6OTkJV8ilpqY2bdo0ISFhw4YN48ePlyLwEhk3jgwN6ddf8w3a2tJPP5GHh0QxlWvJyXT7NsXE0Nq1NGQIBQRQdDQZGlLjxvT992RrSw4OpLU5WrE8fPhwwYIF69evV6lUNjY2CxYsmDRpEnJZIHTv3r29e/cuX768efPmXbt27dy5s6OjI28GUE6InHAPCKAffqBLl16NDB1K9vb0v/+9GomLo3r1qGpVunqVKlcmIpo8mSwsaPlyEQPRteXLl8+ePdvQ0HDfvn3dunW7ceMGT6+HhYWdP38+Ly9P/UxDQ8NGjRqpF+w0adKkXL3hSh3G2Ny5c1NSUrZu3dq2bVs+r3JxcTE1NZU6NAAofYQJdyKaM4eWLaMlS+jpU1q/ntLTiYg6dCAfHxo4ULQVK3l5NHo0bdtGVavSyZPUpIk4h4UyzNXVNSws7M8//xw1apQ2jp+QkNChQ4f79+8PGzbsr7/+UqcqcnNz+/bte/To0WbNmoWGhmr0xoSyBPMrKM+OHTvWr1+/rKysL7/88n/C62TQV3l5eefPn+cr3//9999nz56pH6pWrVq7du34J1j79u1nzZq1atUqV1fXkydPlqat6osX09GjdPz4q5GUFLK2puhocnSULKpy748/aO1aOn6cWremiRNp9uyXCff335c6sv+cPn165syZp0+fNjIyunbtWsEiyQDlmWQJ95EjydT05aalMpBwJ8FSnezsbKVSqR43NDRs2bJlm/80b97cwMBAwjihBLKyskxMTKSOAgBKvUuX6JNP6OjRl/9MS6MBA2jCBPrwQ0pNpY0b6bvv6OFDIqIGDWjGDProI3rHzx7G6KOP6NdfycqK/v2XnJze9SVAebBq1arp06cPGDAgKChI9IOnpaV16dLl/PnznTt3Dg4OVm8mZYyNGzfujz/+sLGxiYiIqFOnjuinBn2D+RWUW4cPHx4wYEBOTo6fn5+Pj4/U4cBbUKlUly9fPnHiREhISEhIyEM+byMiogoVKmRmZioUirNnz/L6xaXG2bPUti2dOkXt2r0c+fpr2ryZbt4krA6UDk+4h4fTsWM0cCBdu0bdu+tXwp2IGGObNm16+PAhPsoANEiWcI+Lo5Yt6Z9/qHv3MpJwV6lU06dPz8rK+uOPP+zt7Z0FsFoHAACKIzubtm2jJUuI17urXp2mTKFZs8jKqoQH9PGh778nU1M6dIg6dxYxUijLnjx5YmtrK5PJHj58WJnvRhTPkCFDdu7caW9vHx4eXqlSJfW4r6/vokWLzMzMjh071k59wQ8AUEbt2LFj+PDhKpVqzZo1H330kdThQAklJCSEhYUdOXIkNDT06tWr48aNa9q06WeffSZ1XG9v4UL64QeaNInq1KHwcDp0iPbtw9xRWuqEOxGNHk0KBUVE6F3CHQBeR/yE+8SJ+fIC6ek0Z04hCffsbPL3pz/+oHPn6OOPy0LCnUtKSjI2NjYzM5M6EAAAKK1UKtq3jxYtoqgoIiJLSxo3jr74gmxs3u4433xDX31Fhoa0axf166eNSKHMeu+994KDg3/99ddJkyaJe+TIyMjx48f/888/jRo1Ug9u3bp19OjRcrl8x44dgwYNEveMAAD6aePGjRMnTpTJZJs3bx4pbHoGpVNCQoKxsbHoN6p158wZ2ruXnj6lBg1o5EiytZU6oPJOmHB/+JAcHCg3lzZvRsIdoHQQv6dB48Z08+arP336vPaZn35KcjmtWCF6CFKytrZGth0AAN6FXE4DBlBkJIWEkLs7pabSihVUvz59+CHduFHcg6xZQ199RXI5bdqEbDu8NZ76+eqrr2bNmvXHH39cunRJWC7vXbRt2/bixYvCbPuJEyfGjx/PGPP390e2HQDKj/Hjxy9fvlylUo0dO3bv3r1ShwPvytbWthRn24moXTtatIhWr6bZs5Ft1zc2NrRgAQkajQOAvhO/mLhCQYL9wWRo+PpzG9CKFTR4MHXtShYWogcCAABQurm6kqsrnT1L/v60ZQtt2kR//kn9+tHXX1PbtkX94KNHNGcOyWS0di0NH66rcKEM+eCDD7Kysj7++GN/f38+ou76zjk5OZV4hYFc0BH46tWrgwcPzs7OnjNnzvTp0989cgCAUuSTTz5JTEz08/MbNmzY/v37u3XrJnVEAKAvOnbMVz1i2jSqUIFat5YsHgB4Kzqq4T5/Ph07RtbW1KHDq5IyRkZERGPG0NatNHNmGSkpAwAAoA23btHKlfTLL5SVRUTk4kI+PjRgAGVlUbNmNHw4ffPNy2cuXUoPH9KAAXThAn3yiXQRQymXkZERGhp67ty5s2fPnjt3LjY2VjhpNDAwaNKkieN/WrduXbFixbc9xZMnTzp27BgbGztkyJDAwEBhIh4AoPyYNWuWv7+/paXlkSNH2hZ9Rx0AAABKAx0l3KOjacAAuniRGjSg4cPzJdwTE6lJExo/Hgl3AACAN7h/n378kX79ldLTiYg6dKD586l/fzIzo5AQcnIiIvryS7p3jzZvljZSKGvS0tIuXLhw5cqVy5cvR0dHR0VFZWdnC59gY2OjXv/erFkzOzu7og/44sWLHj16REREtG3b9vjx46jIBwDlFmNs4sSJGzdurFy58okTJ5o1ayZ1RAAAAPBORE64p6dTcjLVqvVqJDGRDA3JwoIMDenBA5oyhXbtonv3qH59kslePufRIzI0pFJd7gwAAEBnUlNp40b67jt6+JBWr6aPP6ZZsyg0lE6dIoUCCXfQhdzc3Bs3bkT/5/z58xn5C4taW1s7ODioU/BNmzYVLmBXqVRDhgzZtWtX/fr1T506Vb16dZ2/AgAAPZKXlzd8+PAdO3bY2tqGhIS88Z4lAAAA6DORE+5FW7eO0tJozhydnRAAAKDMysykTZto+HCytqbYWOrbl2bMoOnTkXAHCeTl5cXFxfHF79HR0adPn37y5InwCZaWli1atOCL3x0cHP76669Vq1ZVqlQpPDzc3t5eqrABAPRHVlZWv379jh071qNHj6NHj0odDgAAAJSc7hLuwcG0ciVt3/6ykgwAAAC8uxcvyMyM7t+nK1do2DC6epVWrkTCHaR3586dcwIJCQnCR01NTVUq1eHDh7t06SJVhAAA+iYtLe3jjz/+9ttvawn3jAMAAEBpo4uEO2O0fDkdOULLl1OFClS7trZPCAAAUF6oE+61apGHB5mZUc2aSLiD3klMTBTm36dNm1a3bt3BgwdLHRcAAAAAAIDIdJFwz8ykRYte/r1qVZo9W9snBAAAKC+ECfcHD6hZM2rfnqpVQ8IdAAAAAAAAQAIGOjiHmRn5+engPAAAAOVarVo0bx59/jmNHi11KAAAAAAAAADlklzqAAAAAEA0s2ZRy5ZSBwEAAAAAAABQXumuaSoAAACILjeXbt+mxo1JJns5kpRE6enomAIAAAAAAAAgAaxwBwAAKMXu3qUmTSg9/dXIxo3k6SldQAAAAAAAAADlGBLuAAAAAAAAAAAAAAAiQMIdAAAAAAAAAAAAAEAEBlIHAAAAAO9qwwYyNn7591OnJA0FAAAAAAAAoBxDwh0AAKDUi4khQ8OXf09IePV3AAAAAAAAANAlJNwBAABKveXLycLi1d+DgiSNBgAAAAAAAKC8Qg13AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACAClJQBAAAoxSwsaPjwfEXbmzSh9HTpAgIAAAAAAAAox2SMMaljAAAAAAAAAAAAAAAo9VBSBgAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHaB0U6lUMTExDx8+ZIxJHQsAAAAAAAAAAEC5ZiB1ANLLy8tLTEy0tbWVOhCA4kpPTz9//nxYWFhoaGh4ePjz589HjBiRnJy8a9cuY2NjqaMDAAAAAAAAAAAop2Tlc1VsWlrahQsXeL4yLCzMxsbGwcFh2bJlderUkTo0gMLduHEjIiIiPDw8PDz88uXLKpVK/VDt2rWTkpLS09NHjRq1adMmuRw7VwAAAAAAAAAAACRQXhLujLHr16+fOnUqPDz81KlTV69eFeYrraysUlJS7O3tQ0JCqlatKmGcAGq5ubkXL17k94ROnDjx+PFj9UMGBgatWrVycXFxdnbu0qVLvXr1Lly40K1bt+Tk5KlTp65evVrCsAEAAAAAAAAAAMqtspxwz8jIOHfuXHR0dFhY2LFjx54+fap+yNDQsGXLljxf2bVrV2tr6+7du589e7ZVq1bHjx+vWLGidFFDuZaQkMDfsaGhoVFRUdnZ2eqHqlev3rZtW2dnZ1dXVxcXF1NTU42fPX78eN++fbOysnx9fRcsWKDTuAEAAAAAAAAAAKDsJdyF+crIyMicnBz1QzY2NupkZZs2bUxMTIQ/+OTJk86dO1+/fr1bt24HDhzQeBRAS5RK5fXr1/k7NjQ09M6dO+qHFAqFvb29+k3r4OAgk8mKPlpQUNCQIUOUSuXy5ctnzZql5dgBAAAAAAAAAAAgn1KfcFcqlRcuXAgNDY2Ojg4JCbl79676IZ6v5MlKZ2fnZs2aFX2o+/fvu7q63rt3b+DAgTt27DAwQEdZ0IqUlJTIyEheKyYsLOzFixfqhywsLNq3b8/fsa6urtbW1m978E2bNo0dO5aINmzYMG7cOBHDBgAAAAAAAAAAgKKVyoT7o0ePIiMj+Up2jXylpaVlu3bt1LWtrays3urIly9f7tKly/Pnzz09PQMCAt64oBig+PLy8iZMmBAeHn7r1i31oEwma9KkSceOHV1cXDp27NikSZPiv+vi4uKqV69ecDfGypUrvb29DQ0N//nnn/79+4v2AgAAAAAAAAAAAKBIpSnhvm/fvq1bt4aHhwvLbsjlcgcHh44dO3bq1Kljx4729vbFP2BmZqaZmZnG4JkzZ3r27Jmenj5jxowVK1aIEzqUe4yxESNGnDhxIjEx0dzcvHXr1nwNe/fu3atUqVLMgwj3c/D6M//++2/37t0LPnPu3Ll+fn6mpqaHDh3q3LmzqC8FAAAAAAAAAAAACldqEu6BgYF//vlnUFAQEVWoUKFVq1a8VkynTp0qV65czIPk5uZevHiR5ytPnjzZs2fP3377reDTjh492r9//+zsbD8/Px8fHzFfBpRXERERHTt2rF69+sGDB1u0aKFQKIr5g48ePTp16lR4ePipU6eio6OzsrLUD1WuXPnnn38eMWJEwZ9ijE2ZMuWXX36xsrI6duyYo6OjOC8DAAAAAAAAAAAAXq/UlCn/4YcfIiMjp06dOmXKlGbNmhU/X5mQkBAeHs7zlWfPnhW2Ub127VqhP9KzZ8+tW7d6eHjMnTu3UqVKkydPFuEFQPm2e/duIho5cmTr1q2LfmZeXt61a9fUvX+vXr0qvCtmZ2enrvDu6Ogol8sLPYhMJluzZk1ycnJgYGCfPn1CQkIaN24s3qsBAAAAAAAAAACAQpSOFe4JCQm1atUyNTV98uRJwSIwGni+kicro6Ojr1y5on6It1HlyUoXFxcHB4ci6mWvXbt26tSpCoWCJ99FezFQLjk4OFy9evXYsWPdunUr+GhaWtrp06fVtWKSk5PVD5V4PwcR5eTkDBw48NChQ3Z2dqGhoTY2Nu/8OgAAAAAAAAAAAOC1SscK9127djHG+vTp87pse2pq6pkzZ3i+MiQkJCUlRf2QhYVFy5Yteb7SxcWlUqVKxTzplClTnjx58vXXX48ZM8bS0rJ3794ivBIol27evHn16tXKlSu7uroKx9PT02fOnHnq1Klr164Jb301bNiwY8eOvJPqW+3n0GBkZLRz585evXqFh4e/9957J06cKP77HwAAAAAAAAAAAN5W6Ui483IcgwYNKji+a9euU6dOXb9+XThub2/P85WdOnVycHB4XdmNN5o/f35ycvLy5cs/+OCD4ODgTp06lew4UM7t3LmTiNzd3Q0M8v3GmZubBwUFPX361NDQsGXLli4uLq6url27dq1WrZpYpzYzMwsKCurSpUtMTEy/fv2OHj1qbm4u1sEBAAAAAAAAAABAqBSUlElJSalWrVpeXt6jR4+qVKkifGjmzJkrVqwgIjMzM0dHR14rplu3blWrVhXr7IyxSZMmbdiwoXLlyidPnnRwcBDryG+gUtHOnXTgAKWlUYMGNHYsNWmio1OD2Dp16nTq1KmdO3cOHjxY46Fdu3bZ2to6OjoaGhpqL4D4+HhXV9e7d++6ubnt3bvX2NhYe+cCAAAAAAAAAAAot0pBwn3r1q2jRo3q0aPH0aNHNR4KDw+Pjo7u2LFj69atNdYOiygvL2/YsGE7d+6sWbNmaGhovXr1tHSifMaMoWPH6JNPyNaWTp6kP/6gnTupb19dnBpElZiYaGtra2xs/OTJEwlXl9+6dcvV1TUxMXHkyJGbN28u8bYPAAAAAAAAAAAAeJ1SUFLmdfVkiKhTp046KPOiUCg2b97cp0+fkydP9urVKzQ0tHr16to95Z49tGMH3bhBtWsTEY0eTbVrk5cX3blDWruvAFqye/dulUrVq1cvaWu5NGzY8NChQ926ddu6dWvFihVXr14tYTAAAAAAAAAAAABlkr6vcs3NzT106BARDRgwQMIwTE1N9+zZ4+TkdOvWrd69eycnJ2v3fMeOUf/+L7Pt3LRp9OAB5S9VD6VCEXeMdKxVq1b//POPiYnJmjVrFixYIHU4AAAAAAAAAAAAZY2+J9yPHj2anJzs6OhYv359aSOxtLQ8ePCgvb39hQsXBg8enJWVpZXTqFSUnU23b5NG4Rpra7K2pthYrZwUtCY9Pf3ff/9VKBTS3jFS69at27Zt2wwMDBYuXPjjjz9KHQ4AAAAAAAAAAECZou8Jd/1ZHUxEVatWDQ4Orl279vHjx4cPH65UKsU5bno6hYbSd9/RgAFUtSpt2EAWFpSZme85jFFmJllainNG0JUDBw5kZWW5uLiI2Mj3HQ0cOHDDhg0ymWz27Nm///671OEAAAAAAAAAAACUHXpdEJwxtnfvXtKbhDsR1a5d+8CBA126dAkKCpowYUJAQIBMJivJgW7coFOn6NQpCg+ny5dJpXr10PXr1Lgx7duX7/kxMZSdTY0bv1P0oHN6dcdIzdPTMzk52dvb28vLq2rVqv3795c6IgAAAAAAAAAAgLJAxhiTOobXOn36dIcOHerWrXvnzp0S5rW14/Tp025ubunp6TNmzFixYkVxfiQzMzP9/PlqJ0++zLM/efLqMWNjcnKijh2pUyfq2JFsbSk2lpo3p3Xr6MMPiYgyMmjIEFIoNLPw5VhKSsrVq1c7dOggdSBFyc3NrV69elJS0o0bNxo1aiR1OJrmzp3r5+dnamp66NChzp07Sx0OAAAAAAAAAABAqafXK9z56uD3339fr7LtRNS+fftdu3b1799/5cqVNWvW9PHxKfRpCQkJ0dHRYWFhoaGhUVFRix0dP4uIePlYjRrUpg05O5OrK7m4kKlpvp9s0IA2b6bJk2nFCqpZkyIjyc6OduzQ8ssqNZKTk7t37x4bG3v06NG2bdtKHc5rnThxIikpqUWLFnqYbSeib7755vnz57/88suAAQOOHTvm6OgodUQAAAAAAAAAAAClm14n3Hft2kX6V46D69mz59atWz08PObOnVupUqXJkycTUW5u7tmzZ0+dOnXq1Knw8PAHDx6on69QKM6ZmdG0aS9Xsr+xB+yQIdS7N4WHU2oqLVxIrVoRv+uwbRu1aUMNGmjxtek9KysrJyen8+fP9+3b9+TJkw4ODlJHVDj9rCejJpPJVq9e/ezZsx07dvTv3//s2bM1atSQOigAAAAAAAAAAIBSTH9Lyty6datRo0aVKlVKTEw0MNDTGwOrV6+eNm2aQqEYOHDg06dPo6KiXrx4oX7U2tq6Y8eOHTt27NSpU7t27SpUqPCu5/vnHxo6lOrVo9BQsrF516OVZnl5ecOGDdu5c2fNmjVDQ0Pr1asndUSaGGN169a9f/9+ZGRkmzZtpA7ntXJycpycnIyMjDZv3qy3ty4AAAAAAAAAAABKBT1NZBPRzp07icjd3V1vs+1E9PHHH8fHx/v7++/atYvfurCzs3NxcXF2dnZ1dXV0dJTL5WKer3dv6tCBwsPpvffoxAmqVEnMg5cqCoVi8+bNffr0OXnyZK9evUJDQ6tXry51UPmcPXv2/v37NWvWdHZ2ljqWohgZGZmbm585c+bWrVtIuAMAAAAAAAAAALwLUdPBotLzchxqDg4OmZmZjRo12rdv37Nnz2JjY//444+ZM2c6OzuLnG0nIjMzCgoiBweKiaF+/SgjQ+TjlyqmpqZ79uxxcnK6detW7969k5OTpY4oH/4GHjx4sF51IJg5c+b7779//vx59UhCQkJkZKSZmZmbm5t0cQEAAAAAAAAAAJQFeppwf/z48enTp01NTXv37i11LK/ExMR88MEHfOm9Gs+rTp8+vV+/fpV0sOS8cmU6fJjq1aPTp+n99yk7W+tn1GOWlpYHDx60t7e/cOHC4MGDs7KypI7oFT3sQKBSqQIDA3fv3i3cNRIUFMQY6927t5mZmYSxAQAAAAAAAAAAlAF6mnDfvXt3Xl6em5ububm51LG8snPnzn/++efw4cPqkezs7EOHDhHRgAEDdBdHzZoUHEzVq9ORIzR+PKlUuju1/qlatWpwcHCdOnWOHz8+fPhwpVIpdURERHfv3r106ZKVlVWXLl2kjuWVU6dOPXr0qEGDBs2bN1cPlpatJAAAAAAAAAAAAPpPfxPupH9JwIJRHT16NDU11cnJSddNOxs2pMOHqWJF2rqVpk/X6an1T+3atffv31+pUqWgoKAJEyboQx9gdQcCIyMjqWN5RV3lRj2SlpZ27NgxhULRv39/6eICAAAAAAAAAAAoI/Qx4Z6enn706FG5XK5XScD4+Phz585VqFChe/fu6kEpbwy0bEn//EMmJrRmDS1YIEEA+qRZs2b79u0zNzeP3L8/efFiqcMpNXeM9u/fn52d3blz5ypVqkgXFwAAAAAAAAAAQBmhjwn3gwcPZmVlubi41KhRQ+pYXtm5cydjrF+/fiYmJnxEpVLt2bOHiN5//31pYurWjbZtIwMDWriQfvxRmhj0RocOHYJ27jxfubK1ry/5+UkYybNnz8LDw42Njfv06SNhGBquXLly48aNatWqdezYUT2onzcGAAAAAAAAAAAASil9TLjrZxKwYFSnT59++PBhvXr1WrZsKVlYAwfSL7+QTBaze/eWLVskC0M/9HjvPWM/P1Io6Msv6ddfpQojKChIqVT27NnTwsJCqhgK4k1cBwwYoFAo+Ehubu6BAwdI/37XAAAAAAAAAAAASim9S7grlcp9+/aRjtuQvklycvLJkycNDQ379u2rHixYEVsa48dfXrOmxYkT48aN279/v8TBSG7wYPr5Z2KMpk6lwEBJQigtd4z+/fff5OTkVq1a1a9fX7q4AAAAAAAAAAAAyg69S7ifOHEiKSmp+f/bu/Poquszf+BPFlJZRFpErXGhFZcRB8UNcxMCFgGBIQpWHI+itqMFOtIeK6eCZ3S0LmnHwfYoylKXqlQ7qYCCR1mkIJIEacEjCoqgRawDskRQiCwm9/dH8rugrY6t3yzA6/UXeT7f+32e7zmXf973cz/3lFNOOOGEpp5lj2eeeWb37t09evT4+te/ninWbRluDrlq52HDRo8evXv37u9+97svvvhiU4/T1IYPj9tui5qaGDo0Zs1q5ObV1dVz5szJzs5uVp8YrVu3q7r6n9u0Ofi8887LFOsi+CY7EAkAAAAA9jvNLnBvnruDFy7836ys7L2nWrVq1cqVK9u3b19YWNiEg2XceeedP/jBDz7++OOBAwe+/PLLTT1OU/uP/4jrr49du2Lw4KioaMzOs2fPrq6u7tat2ze/+c3G7PvFnn4677XXHigp2dSyZcu6SjqdrvsFgub2fw0AAAAA9l3NLnBvhiHgzp3x+OM/PeKIXRdeODRTnDJlSkSUlJTk5uY23Wh7ZGVljR8/fsiQIVu3bj3//PPffPPNpp6oqd11V3z/+1FdHSUlsWJFo7X9gk+M1q9f32hjfMZTT0VE9O2bl6ksXbrtmGNuOPnkgtNOO62JhgIAAACA/U3zCtyXLl26Zs2a/Pz8M8888zNLO3bsaJKRIuL55+OjjyI/P+eoow7JFJcvzz/44PySkpKmmuqvZWdnP/bYY3379t2wYUO/fv3WrVvX1BM1qaysmDQpBg+OzZujT59Ys6ZBu61bt27q1KmjRo36/e9/H3/rFwh+8YtfnHTSSU3y5YOtW2PevMjJif799xSnTj24ouLa886ryMrKavyRAAAAAGC/1LwC97rdwX369PlMCLh27drTTjtt0qRJTTRVRMTeW5bXr4/HHx+ak/OX3r0HNMlInycvL2/q1KmpVOrtt9/u06dPVVVVU0/UpHJyYvLkKC6O996L3r3j/fcTvHdNTc3y5csnTZp0xRVXdO7cOT8//6KLLho7duyuXbuysrLuv//+vS+ura3905/+tHXr1v79+7/11lsJjvFlPPts7NoVxcVx6KF7inV73pvTN0kAAAAAYJ/XLI5Dybjssst+85vflJeXb9mypV27dpn6H/7wh5UrV/7whz9s3779RRdd1Jgj1dbGjBkRn44mn346amujZ89o3bpFYw7zZbRq1Wr69OnFxcWvvfZa//79586d27p166Yequm0bBnTp0fPnrFpU2zZEocf/lVuVlVVVVlZuWjRovLy8j/+8Y/btm3LLLVt27Zbt26pVKp169Y333zzfffdd+ihh95yyy11q9nZ2b/97W+3bds2c+bMc889t7y8/Oijj/4qk/xd/voTo9WrY8WKaNcuundvtCkAAAAAYP+XlU6nm3qGPTZu3Ni9e/eVK1f27NnzueeeO+iggzJLt99++0033ZSXlzd9+vS+ffs22kgVFVFYGB07xp//vKfYv38891w8/HBcdVWjDfL3+ctf/lJUVPTOO+/069dv+vTpzeSg+Sbz/vuxY0cce2xExEcfxaxZsW5dtG8fffp8atf3X0un4/XXo7IyKirSL710xJo1G7Zvzywef/zxBQUFBQUFqVSqc+fOOTk5dfUZM2YMHjz4k08+GTt27E9+8pPM9dXV1X369CkvLz/llFNeeOGFb3zjGw3xrJ+xe3ccdlhs2RJvvx3f+lZ98a674qc/jaFD49FHG2EEAAAAADhQNK/APSLefffdoqKitWvXlpSUTJkyZe+keNSoUWPHjm3VqtWcOXNSqVTjzHPDDfFf/xXXXx///d/1lW3bokOH2L071q2LDh0aZ4p/xOrVq4uKiq666qrS0lLndNerqIgLL4zjj49TT41Vq2LRonjkkRg8+FPXbN8eL78c5eWxcGEsWhSbNmVWRnfrVpGXl0qlUqnUOeecc9hhh31en8mTJ1955ZXpdPrBBx/83ve+l6lv3ry5uLh4xYoV3bp1e/7559u0adMAD/kpM2dGv37RtWssXbqnWFQU5eXx5JPRuF8XAQAAAID9XLML3CNi+fLlxcXFVVVVQ4cOfeSRRzJhcTqdvvrqqx966KH27dsvWLDg5JNPboRhTjopVq6MBQv2HL5RVhaXXBI9esT8+Y3Q/yvZsGHDF4TCB5ydO+O44+LKK+OOO+orEyfG9dfHqlWxY0eUl0dlZZSXx2uvRU3NnlcddVSkUpFKRUFBdO0aLb7sIULjxo0bOXJkixYtpk2bNmDAnrP+33vvvaKiojVr1px33nnPPPPM1772tcQe8G8ZMSImTIhbbon//M/6yoYNceSRkZsbGzfGwQc3aHMAAAAAOLA0x8A9IhYvXtyrV69t27aNHDnynnvuydRramqGDBkyderU/Pz8hQsXduzYsUHHeP31OPnkaN8+1q+PzFb7yy6Lxx+Pu++O665r0OYkbe7cuOCC2LAhWrWqr6TTcfzxccMNMX16PPNMfTE3N044IYqKorAwiori29/+hxveeOONpaWlLVu2nDVrVve9jktfvXp19+7d169fP3jw4LKyssxZNA2hvDz+539i2LDo3Lm+8sADcc018S//Uv/jBAAAAABAUppp4B4Rc+fOHTBgwM6dO0tLS0ePHp2pf/zxx+eff/6CBQs6deq0cOHCw7/az2B+sbffjrvvjoMPjtLS+sru3XH44fHBB/HWW18liaUpTJwY48bFq69+qlhSEv/0T3HMMTFnTv029jPPjJYtE2mYTqeHDx8+adKkQw45ZN68eV27ds0sLVu2rEePHlu2bBkxYsT999+fSLsvaeDAeOaZ+PWv4+qrG7MtAAAAAOz/mm/gHhHTpk27+OKLa2trJ06ceM0112TqH3744bnnnrt06dIuXbq88MIL7dq1a7SR5syJPn2iS5d45ZVG60lCxo+P8eNj2bJPFeuOdL/rrgbqWVtbe+mll5aVlXXo0OHFF1888cQTM0vz58/v16/fjh07br755ltvvbWBBviM7dujQ4fYuTPeey+OOKJxegIAAADAgSK7qQf4IoMGDRo3blw6nR4xYkRZWVmm3rZt25kzZ5544onLli0bNGjQjh07Gm2kp5+OiLjwwkZrSHKOOy7WrIlduz5VfPPNOO64huuZnZ392GOPnX/++Rs3buzfv/+6desySz179iwrK8vNzf3Zz3529913N9wMe5s5Mz7+OFIpaTsAAAAAJK9ZB+4RMXz48Ntuu62mpmbo0KGzZs3K1Dt06DBnzpxjjjlm/vz5l1xyySeffNIIw6TTMX16RMQFFzRCN5JWWBgtWsSECXsqM2bEW29Fv34N2jYvL2/KlCmpVOrtt9/u06dPVVVVZmngwIEPP/xwdnb2qFGjHn744QYdo07dJ0bewAAAAADQEJr1kTIZo0aNGjt2bKtWrebMmZNKpTL15cuX9+jRY/PmzZdffvmjjz6alZXVoGP86U9x1lmRnx/vvhsN3IqGMWNGXHJJDB4cp58eb74ZjzwSv/pVDBvWCJ03b95cXFy8YsWKbt26Pf/8823atMksjRs3buTIkTk5OWVlZYMHD27QMQoKYtGiWLkyTjihQfsAAAAAwIGoue9wr3PXXXd9//vfr66uLikpWbFiRabeuXPnZ599tk2bNpMnT/7xj3/c0GPMmxcRceGF0vZ91sCBsWJFdOkSf/5zHHVULFnSOGl7RLRv33727NkdO3Z86aWXBg0atHPnzszStddeO2bMmJqamssvv3zBggWJt16yJNavr/93ZWWUl0dubuJNAAAAAIB9ZId7RNTU1AwZMmTq1Kn5+fkLFy7s2LFjZmnu3LkDBgzYuXNnaWnp6NGjk+27cWPs2hX5+fV/LlsWVVVRXBzZ+8ZHFTQvq1evLioqev/99y+99NLJkydn//+3UTqdHj58+KRJk9q2bTt//vyuXbsm1TGdjuzsOOWUWLo0WrSIiPjZz2LZsnjyyaQ6AAAAAAD19pnYOCcnZ/LkycXFxe+9917v3r3ff//9zFKvXr2eeOKJnJycG2+8cdKkScn2HTMmOnaMV16p//PQQ+Pcc2Pr1mSbcKDo1KnT7Nmz27Vr98QTT1x77bWZelZW1vjx44cMGfLhhx/27dt35cqVyfatro5f/jLZWwIAAAAAn7XPBO4R0bJlyxkzZpx++umrV6/u27fvli1bMkuDBg2677770un0iBEjysrKku3bvn38+7/HPvJNAJq7Ll26TJs27aCDDho/fvwtt9ySqWdnZz/22GO9e/feuHFjSUnJ7t27E2x6551x++3xzjsJ3hIAAAAA+Kx9KXCPiLZt286cOfPEE0985ZVXBg0atGPHjszSsGHDbrvtttra2iuuuKK8vDzBppddFhs2xIMPJnhLDmg9e/YsKyvLzc299dZbf7nXzvO8vLynnnrqO9/5TmlpaYu6818ScsYZccklMXJkgrcEAAAAAD5rnznDfW/vvvtuUVHR2rVrS0pKpkyZkrvXT0COGjVqyZIlTz/9dNu2bRPpdfXV0aFDFBbGlVfGG2/E7t2Rnx9VVfH1rydyew5ckydPvuKKKyLioYceuuqqqxK884YNUVkZFRVRURFPPhlHHBGrVkW7dnHSSfHAA7FsmTPcAQAAAKBB7JOBe0QsX768uLi4qqpq6NChjzzySFZWVl09nU7v3r07Ly/vq9x8/fqorIzy8jj77Jg9Ozp0iNLSuOCC+MY34o47BO4k5t577/3Rj37UokWLadOmDRgw4B++T01NvPFGLFkS5eWxcGG8/vqeE5CmTYtBg2LVqujUKX796/jFL+Jf/zXeeEPgDgAAAADJ21cD94hYvHhxr169tm3bNnLkyHvuueer3Orz8srvfjcOOaQ+cF+zJk45JSZPjkGDBO4kZsyYMT//+c9btmw5a9as7t27f/kXbt0alZX1O9lfeik++mjPUps2cfbZkUpFQUEUFka7dvWBe21tFBbG2rVRUCBwBwAAAIDk5f7flzRXZ5999lNPPTVgwIB77733yCOPHD169N/18g8+2JNXLl4c27btWTr44OjWLVKp6NUrHn20vtixY9x4Y9xwQ3IPABF33nlnVVXVpEmTBg4cOG/evK5du37elel0+s0336ysrKyoqFiy5LXlyyt27tyz+q1v1SfsqVR06RI5OZlX7bkmOzsmTowzzmigRwEAAACAA90+vMO9zrRp0y6++OLa2tqJEydec801X3BlOp1+/fXXFy1aVF5e/sEHNz31VMe9H71TpygoqN8R3Lnznryy7gz30tKIiF274tRT44037HAnSbW1tZdeemlZWdlhhx324osvnnDCCZml6urqpUuXLlmypLy8fP78+Rs3bswsdenyUYsWbQoL44wzokePOPbYv33zdDqGD4/bbovDDquv3Hdf5ObGsGEN+EQAAAAAcGDa5wP3iJgwYcKIESNycnIef/zxIUOG7L20ffv2l19+uS6vnDdv3qZNm+rqPXpMqagY3KVLFBZGUVH06LEnjvyMsWOjXbv4t3+r/3P+/Ljjjpg2Ldq0acAn4kCza9eukpKSWbNmffvb3/7d7363evXqup3sr7zyyieffJK57MgjjywoKEilUgUFBWecccZX/K0CAAAAACBZ+0PgHhG33377TTfdlJeXN3369E6dOlVWVtblla+++mpNTU3msqOOOqourCws7H3aaZ1btGjCkeFTtm3b1qtXr8WLF+9dzM3NPfXUU1Op1DnnnFNYWHjs5+1jBwAAAACagf0kcI+I66677le/+lXr1q23b9+eKbZo0aJr164FBQV1+4KPPvroJpwQvtimTZuefPLJCRMmHH300XXv2LPOOqt169ZNPRcAAAAA8KXsP4F7Op0eM2bM1q1bn3jiibPOOquwsLCoqCiVSrVq1aqpRwMAAAAAYP+3/wTudXbs2HHQQQc19RQAAAAAABxw9rfAHQAAAAAAmkR2Uw8AAAAAAAD7A4E7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACTg/wHp8ritMYFYeAAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"GA\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "0b638a55-4846-4f47-822f-3f38b014cef6", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.071680Z", + "iopub.status.busy": "2024-05-13T08:55:44.071488Z", + "iopub.status.idle": "2024-05-13T08:55:44.129103Z", + "shell.execute_reply": "2024-05-13T08:55:44.128472Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 GA fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACuEUlEQVR4nOzdZ1xTZxcA8BP2EGW4UBzgQMAJ4sIFgqLirFitxVZbsVrFLdYFto44qjiqxWotbsEJbhBUhooMUUQEcYAMmbJXkuf98PjGGIYBktwEzv/nh/bmkntQyL333POcwyKEAEIIIYQQQgghhBBCCCGEGkaB6QAQQgghhBBCCCGEEEIIocYAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBgoMR0AQgghhBBCCCGEEEJIlmRlgZ8fvHsHampgYQG2tqCAZbsIiYRFCGE6BoQQQgghhBBCCCGEkGw4exbmzQNtbejbF/LyICoKzMzA1xf09ZmODCE5gAl3hBBCCCGEEEIIIYQQAAA8fQqWlrBoEezYAYqKAABv38KoUdCxIwQFMR0cQnIAE+4IIYQQQgghhBBCCCEAAJg3D/z94dUrUBLoRH35MkyZAhERYGHBXGQIyQfsvoQQQgghhBBCCCGEEAIAgNBQGDToi2w7AIwYAQAQEsJIRAjJF0y4I4QQQgghhBBCCCGEAAAgKwvatxfeqKMDzZpBVhYTASEkZzDhjhBCCCGEEEIIIYQQAgAAVVUoLBTeWFkJJSWgpgb378OOHfD0KRORISQfMOGOEEIIIYQQQgghhBACAIAePSAxUXjjq1fA44GJCZw4Aa6u0KcPtGkD06fD8eOQm8tElAjJLqWv74IQQgghhBBCCMmqkhLIyQEDA2CxPm/MyQFCoGVL5sJCCCE59c034OICcXFgavp5499/Q/PmMHo0aGgAIXDrFrx/Dz4+4OMDioowYADY28OYMWBpCQpY3YuaOhYhhOkYEEIIIYQQQgihejp+HH74AUpKQF3988YpU6CsDG7cYC4shBCSUxUVMGIEvH8PmzfDgAGQlwc+PrB3L/zzD/z00+fdXr+GgADw84OAACgr+7RRTw9sbMDWFsaNAwMDRsJHiHGYcEcIIYQQQgghJMcw4Y4QQmJACNy7ByNHAgAUFoKbG5w6BZmZwGKBhQWsWweTJ1f/hcXFEBQEN2/CrVvw6tWnjSwW9OkTNnNmxYABVlZWysrKUvkeEJIJmHBHCCGEEEIIIZFkZGQ8evTo0aNHDx8+HDx4cPfu3X/44Qemg0KYcEcIoQYjBBYvhr/+gv37YdGiz9uLi0FFBURPl9Oy94AAuHULCgocjIyuvX6toaExZMgQBweHSZMmde7cWQLRIyRbsIc7QgghhBBCCFWvsrIyISEhNDQ0JCQkMjLyxYsX/IqlqKio/Pz8jx8/LlmyhNkgEUIIoQbhZ9tVVaFjxy9e0tSs21sZGYGzMzg7Q3k5NzTU9ObN5Js3nz17FhAQEBAQsHTpUmNjY3t7e3t7+xEjRqgLPiZFqBHBCnck08rKynbv3p2UlHT06FGmY0EIISQpP/8MmZlw6hRoaX3a4u8PO3bA7dtfjL9DCCHpSEtLi4yM5CfZy/h9aQGaNWvWp08fCwuLoUOH5uTk/Prrr4SQY8eOYZ07s2iFu53dF4P6oqPB3Bwr3JGw1a9fl3G5X2zp2NFAVZWpeBBiHo8HP/8Mx46BhgZcvgx2dmI/QmZm5r179/z8/K5evZqXl0c3qqmpDR061NbW1tbW1tzcnIXX/agRwYQ7kmmEEF1d3Y8fP6amprZr147pcBBCCElEz57w/DksXw5//vlpC02d8HiYcEcISUNhYWFMTAxNst+7dy8zM5P/kqKiorGxsYWFBU2y9+vXT0Egp/vXX38tWrRIWVnZ19fX3t6eidgRwP/PGtu3g5LAEu5jx8DAABPuSNjwJ08smjXr26wZf8sEPT1d7C6NmiwuF376Cby8QEMDfH1h1CgJH4376NGjmzdv3rx5MzIyksfj0e2dOnWyt7ffsWNH8+bNJRoAQtKBCXck6+zs7AICAi5fvjxp0iSmY0EIISQRPXuCtjY8egSPH0PfvgCYcEcISRiXy42Pj4+MjKRJ9ujoaP49PwC0bdu2f//+/CS7jo5OLW/l6uq6Y8cODQ2NgICAwYMHSz52VA3s4Y5EN/zJk1/09b9r04bpQBCSAVwu/PgjnDwJmprg5wfW1tI8eE5OTmBgYEBAwLVr11JTU1u2bPnhwwfBp9oIyS/s4Y5k3cCBAwMCAsLDwzHhjhBCjZiNDejowC+/QFgY4GU2QkgSMjIyHj9+zE+y85e0A4CysnK/fv2srKxokt3U1FT0he1sNjs7O/vff/+dOHFicHBwjx49JBM+QgghJFYVFTBzJly8CC1awI0bIPVnxnp6eo6Ojo6OjoSQ6OjolJQUzLajRgMT7kjWDRgwAAAePXrEdCBNGI8H4eHw4gUQAj16wKBBmAxDSGaVl5cnJCRUVlb269dP7tog7t4NvXqBpycsWMB0KAihRqGysvLp06e0D3tkZGRcXJzgq/r6+rSA3crKqn///mpqavU7CovFOnz4cF5e3qVLl+zs7MLCwjp06CCO8FHTVVFRER8fz+Vy+/Tpg+knSXhWXHwxO5v+t4GKygB5a2ERGRmpp6enpaWlp6fHdCxIblVUwLffwuXLoK0NN2/CwIEMxsJisczNzc3NzRmMASHxwoQ7knWDBg0CgPDwcB6Ph5ebDHj9GqZNg2fPoHt3YLHg5UswNQUfH+jenenIEELC/Pz8li1blp+fX1hY2LNnTw8Pj6FDhzIdVB106wYrV8LatTB1KtOhIITkVklJycWLFx89evTw4cOYmJjKykr+Sy1atBgwYMCgQYMGDhw4cODAli1biuugioqKp06dGj16dEhIyLhx4+7fv197FxqEahEQELB06dKMjIySkhITExMPD49hw4YxHVRjE1NcnFJeTv97QPPmcpRwf//+/dq1a0+ePNm7d+93796tWbNm2bJlKioqTMeF5E15OTg6gp8f6OjArVtgacl0QAg1NtjDHcmBzp07v3v3Li4uzsTEhOlYmpjycujbFzQ1wdcX6NDatDSYPBlyc+HZsy96ZMon78zMxNJSwS12uroDtLSYigeheouNjV22bFlAQAAAdO7cubS09MOHDywWa9asWWw2u3379kwH+BU9e8LUqfD771BaCj17wsiRMGIE9nBHCNVZZWWlp6fn0qVLuVwufG3eaZ1wOJxnz549fPiQw+EsXry42n3y8/NHjBgRExMzaNCgO3fuaGho1P87QXWUnQ2vXsHAgV+cNRISgMcDOerxEx8fv2zZsps3bwJAp06dysvLMzIyWCzWt99+u2PHDlw5IS7V9nDnEqIo29ccxcXF27Zt+/PPP8vKyjQ0NDp37kxX7ZiYmOzZs2fMmDFMB4jkR0kJTJ4M/v7QujX4+0Pv3kwHhFAjhPXCSA5gVxnGXLgAL1/C8eOfsu0A0K4dnDgBr1/D2bOMRiYeoQUF4YWFSiwW/w9+JiK5k5eXt2TJkn79+gUEBOjo6LDZ7JcvX75+/drNzU1VVfXkyZPdu3d3d3cv/fLZkowoK4NDh4DL/bxFXR08POC//yA6+tOWf/+FnBxGokMIyZ+7d+8uXrxYW1ubzWbfvXs3Pz//+fPnx48fX7JkiYWFRV2z7WlpaX5+fu7u7nZ2di1atDA3N1+4cOG2bdtq2r9FixbXrl3r1KnTw4cPZ8yYweFwGvwNIVGlp8OGDbBr1xcbDxyA27cZCqiOPn78uGbNmj59+ty8eZP+ANOzOZvN1tTUPHv2rLGx8Zo1a4qKipiOtNFa8urVxrdvcwXWxMgOQoiPj4+ZmdmWLVvKy8sdHR3j4uKeP3/u7+9vamr64sULe3t7Ozu758+fMx0pqs3bt29jYmK2bdsWFRXFYOVrUVFR2IIF4O8P+vpw9y5m2xGSFIKQzNu5cycALFiwgOlAmp5584iBQTXbu3Qhs2dLPRrxc0lMXPnqFdNRIFRPtJCzVatWAKCkpOTs7JyZmSm4Q0pKipOTE+3kbmBg4OXlxePxmIq2Kl9fYmREAMihQ8TMjGzY8PmliROJqioBICEhhMUiOjqEzSbl5czFihCSE7/88gsAbNy4sX5fXlxcfP/+/Z07d06dOlVobRCLxTI2Np49e/Zff/3F4XBqeZOEhITWrVsDgJOTk0x96jZu9+4RAKKkRKKjP28cNIjI/g0El8v18vKiPzMKCgpOTk4fPnwQ3OH9+/f8s3n79u1l7Wwuj4ZFR5/KyBDcklhSMjAy0iIiYkR09ImMjApZ+huOiIiwsrKiH0QWFhbBwcGCr1ZUVHh4eLRo0QIAlJWVXVxcPn78yFSoqBYvX740MDDo3Lkz/ads1aqVo6Ojp6dnamqqNMPIz8+3srJSV1cPtLMjL19K89AINTXYUkZKPnz4kJCQkChg9uzZvXv3trOzYzo0ORAcHDx8+HBzc/PIyEimY2liJkyAnBwICxPePmoUKCiAvz8TMYnTklevVFisnV26MB0IQnUWGBi4dOnSZ8+eAYCNjc2ePXt611Cfcu/evSVLlsTExADAiBEjPDw8+vbtK81Qq4qJgaVL4e5dAIDevWH/fli48FNLGSo5GUxNobgY4uLAxQUCAgAAzMxgzx5oyqfNyrKSW0fd6X+raTZvadCt5/BJSir1HPOIGu5JUdH1L9dfdFZTE+pRgKSJx+MZGBikp6dHR0eL/kGXlpYWGhpKB6tGRESU/7+tMwA0b968V69edKrqoEGD6ANOUYSHh48aNaqoqGjdunWbN2+u6zeC6uH+fRgxAkaMgIoKCAkBuphh8GDo1w8OHmQ6uJrdvXt36dKl9Bw9cuRIDw+PPn36VLtneHj4kiVLHj58CAADBgzYu3cvnXSF6qHaljLJ5eUHU1MD8vIAoKOq6sL27W2ZnsSQnp7u7u5+5MgRHo+nr6/v7u7+888/V7tSJycn5/fff//rr7+4XK6ent6GDRsWLVqkqKgo/ZhRteLj40eNGpWWltanTx8LC4s7d+68e/eOvqSgoGBhYWFvb29vbz9w4ECJ/qvl5+fb29s/fPiwY8eOd+7c6dq1q+SOhRqB8vLymJiYXUJrxyRp165d7du3bzyfXUxn/Buh3NzciIgIb29vNpvt7OxsZWVFHzgLad68uYaGRrRgDQaqQXFxsZKSkrKycklJCdOxNDFTp5K+favZPnAgGT+elJfL+1Nxl8TEOfHxofn59M/jggKmI0Lo6xITEx0dHemppGvXrt7e3l/9Elo916ZNG/h/9VzGl4VdUpOTQ1xciKIiASC6usTDg9A6UXd3cuXKF3ueOEGcnQmtMPP3JyYmBIAAEFtb8vw5A5HLgpKCXHcH/RMbZ/odWHVpt8vOWb32OQ8pLcpnOq6m60JWVv+ICPa7d/w/Z76sS0VSFhwcDACdO3eufbf8/Pzg4GA2m+3g4CA0N1VRUdHU1NTJycnT0zM2NpbL5dY7GH9/fzrGcM+ePfV+EyQ6WuEeGkrU1Mjff3/aKMsV7snJyU5OTvQHr0OHDqLUrfN4PC8vr7Zt2wIAi8VycnJKT0+XTrSNzPZ37x7mV3/2fJSfP/35c4uICIuIiAUvX75i6PazvLzcw8OjefPmAKCiouLi4pJfQ8CCoqKihg8fTn+o+vXrd+/ePSmEir4qLi5OX18fAEaMGFFYWEg3JiUleXp6Ojo6agnMD2vWrJmDg4Onp+e7d+/EHkZeXh5t1dupU6ekpCSxvz9qfJYsWdJDulNQjIyMDh06xPT3LTZY4d4g5eXlqampz58/j4uLey2g6p46OjpGAkxNTY8cOeLl5dWpU6eIiAiha31UVb9+/Z48eRIaGjpkyBCmY2lKVq2CI0cgJwcEKykIgbZtYcYMGD0aHBzA1BQmTAAHBxg6lLlA62nJq1ePCwo0//8EVUdZ2dvUlNmQEKpFcXHxzp07t2/fXlZWpqmpuXLlyjVr1qipiVrg/PHjRzab7eHhUV5erq2tvWbNmqVLl6qqqko0Zr7KSjh2DNatg+xsUFKCuXNhyxYQ/exXWQkHD4KbG+Tng7IyLFgAv/8O1T3ObsxKC/N2fGc2Y/0x44FjAODjh+S98wZP+HWH+ZhZTIfWRF3MzmYnJ4ebmzMdCPpkxYoVu3fvXrlyJe1GKCg7O/vcuXOPHj169OhRQkKC4EsGBgYDBw4cPHjwwIEDzc3NxTjp9PTp005OToSQ//77b/bs2eJ6W1QtWuGelgaHDsGBA/DiBbRpI6MV7iUlJTt27KBncw0NjVWrVtXpbE4vBthsdnl5Ob0Y+O2336R2Nm8KuIRcyck5mJr6kcNRZLEm6ektbN9eW0lJagH4+fktXbqUZhUcHBz27t1rZGRUpy93cXF5+/Yt/fJ9+/YZGhpKKFT0VU+ePLGzs8vOzra3t7948aK6urrQDqWlpaGhoQEBAQEBAYIL+o2MjGxtbR0cHEaPHt3wX/CsrCw7O7uYmJhu3boFBgYaGBg08A1Ro/fixYs+ffrweLxt27Z16tRJCkd8+PDhnj17dHV1ExIS9PT0pHBEiWM64y83ysvLk5KS/P39PTw8nJ2dbW1tjYyMql3Ppaqqampq6ujo6Orq6unp6e/vn5aWVvUNy8rK6ANGW1vb2htBIkKIs7MzAOzevZvpQJqY+/cJgHDd6bVrBIDcuUOOHCE6Op+KTgFIt25kzRry+DFDsdYH9nBH8kKMRW0vX750cHCgJ6xu3br5+fmJN9Rq+fuTnj0/fVSMGkWePavn+2Rnfy6Q19P7XCDfRNAK9/iHN+n/VpaX/T6pQ8j5vwghfgdWJYT7X9qzZO+8wc9DpPFvigghF7KyLCMjmY4CfUZzUqGhoVVfevXqFf9aXVNT08rKysXFxcvL6/Xr1xINaf/+/QCgrKx88+ZNiR4I0Qr3tDRSUkIMDcn33xMiexXuPB7P29u7Y8eO9Gzu6OhY7zrWeix3Q3WSX1m5MznZMjLSIiLC+smT0x8+cCTf2J2OP6X/rD169Lhx40b93qekpITNZtPSaXV1dVdX1wJcyMuEyMhImjccN25caWnpV/dPT0/38vJydHTU1tbmn7M0NDRsbW3ZbPbz+q7x/PDhQ69evQDA2Nj4/fv39XsT1NTQzyIpT1KkPbeXLl0qzYNKDibcq1FZWUlz656enq6urg4ODkZGRtV2EVJRUaEPHl1cXGhuPSkpSfQhNsnJyXQ8ztq1ayX6HTUCR44cAYAZM2YwHUjTM20a0dUlp0+TzEySnU3OniUtW5LJkz+9yuGQ4GDi4kLatv2cee/Ykbi4EH9/UlnJaOhfV23C/VlRUZgIazZRg3A45Nw5MncumTqVzJlDzpxpWnnTOgoPDx88eDA971haWoaFhdW0Z1lZ2Zs3b0R5T39/fzMzM/qetra2sbGxYgv3SwkJxNHx81M5sSQEIiPJsGGf3tPcnNy/L4b3lAs04R526e+0xJg3MSHe2+btcuqTn5VKCDm0yGarY7dbRzc9CTiXkyrZBKIkZGVl5efnZ2VlMR1I3VzIyrKMiOD3JQvNzy/EjzLm0MLAtm3bVtsHhsfjLViw4NChQ9HR0ZXSvT5ZuXIlzZjU8umNGo6fcCeE3LhBWCxy//6nhPv588TGhvz1F6muCEp6Hj9+zF+q279//5CQEFG+KiEhoZbWRgEBATSPBgA2NjZPnz4VX7yIEEJel5YuTkigHWa+iY0Nldg9Qk5OjouLi5KSEgDo6up6eHiI8kmVlZVVy6kTx+0y6/Hjx7q6ugDg4OBQVlZWp6/lcDgRERFubm4WFhb0X5AyMjJydnb29vYWpcUQlZ6eTq/5TUxMqq0ERagqPz8/ANDR0ZHyxXlsbKySkpKSkpLkbk6lCRPun/F4vN9//71bt27KyspVc+vKysrdu3cfP378smXLDh486O/v//bt24afsQIDA5WUlFgslo+Pj1i+i8aKDgY0NDRkOpCmoayM/PoroRU3ZWVkxQrSvPmn5JaWFlm2jFR9Ps/lfsq8t2//OfPesiVxciK+vqSiQvrfhCiqJtzLeTzH2FiLiAjXpKSPMv/A4O3btz///POpU6d27NghTwtliovJyJFEU5PMmkU2biTffUc0NcmwYeT/PQ0RX53ulHx9fbt06WJmZiZiLqmiosLDw4NW0CgrKzs7O4v3iqqwkLi5EVVVAkCaNSNubqSO9xpf4etLOnf+9GHj4EBEe9Ag32jC/fOfCe0CvLZyOZWEkEOLbK7sXc50gPVRWVnp6enZsmXLsWPHamtr0yYJTAclqgtZWRYREaOePOH/eVFczHRQTdf69esBYOHChUwHIozH482ZMwcAWrZsGR8fz3Q4jZZgwp0QMnEisbQkAweSBQvIjBmfThYKCsTKiuzeTd6+lWpsqampzs7OdG10u3btPD09RRwPUFBQoK+v369fv/s1P1umn6J0oq+SkpKzs3NmZqb4YkeEEHInN3fCs2c07b7q1auUoiIxvjn/PMj/FxT9emzOnDlfPXWKXreBxCg4OJi24J8+fXpFw+6FMzMzvb29nZ2daSN4SklJycrKis1mR0RE1HJ3kJyc3K1bNwDo27cvfjIgEZWXlxsbGwOAh4eH9I8+f/58WhAm/UOLHSbcPxs/fjz9qQIAfX19W1tbZ2dnNpvt7e0dEREhygqg+qEzf5s1a1bvJUJNAYfDeTdyJEdfn+B5QtLy84m1NQEgQ4Z83lhZSRITSULC11PnXC4JDSXLl3/OhAGQli2D1627ceOGrKVRqibcuYRcyMoaGhVlERFhFxMTkJvLVGy1S05O/uWXX+g0NnoxZ2lpKTdlTStXkubNSVzc5y1xcURLizSWtWNiQdcCN2vWTJS1wM+ePbO1taXnLzMzs+TkZNEPRCuq6CouWlHV8Ic3HA7H09Nz3Dhvmt2YN49IaJBkcTHZuJGoq9Nhqk/c3d2LG3W6U7ClDLey4u2zsB2zel49uIYQcmiRza2jm/h75qa/TU+qb+MeKbp586aJiQn90eW3EzUxMZGX5hvYUkammJqaAoC/vz/TgVSDw+FMnjwZADp06FCnj2gkOqGE+5s3REODKCuTBQtIcTHx9SVOTqRZs88Xp6amxM2NvHgh2ajo6Eva2UP00Zd8kZGRHTp0AAAWizVjxoxafngE66N1dHRErI9Goqvg8U5/+DA8OnpoVFTnPn3q+k9Zk4CAgJ49e9LT36hRo+p0MV9ZWcnvP1P7qRPH7UrZvXv36G/9jBkzavlNLKrjkxsulxsREcFms21tbQWLRNu0aePo6Ojl5ZX75a3ru3fvunTpAgDm5ubZ2dn1/GZQ00MH4fTo0aOBz4rqJycnhy4NuXr1qvSPLl6YcP/k9evXCgoKampqDx48qOt6n4ajY5SMjY0/fvwo5UPLE5oFlv/fOpmWnk769SMARF+fREc39N1iY4mbGzExIQDWHTsCgLa2Nr0aKJSNWuaDqamHq1tY976s7JeXL2kZy9LExExZqtD/8OGDq6srnayloKDg6Oh44sSJrl270iJlV1dX6X+C1Q2HQ7S1ycqVwttXryZaWjK7GELKfH19O3fuTK+hHRwcamkxnJubK5Yb7Li4uDFjxogl3Xn37t2+ffsCgIKC0rff5kZF1fudPnFzI05OtaXs370jP/xQoa3dGQA6dux49uzZxrpiWqiHOyHk+t9r//yhH6mScD+9afamCe0v/rm4KE9Gn1InJCTwuw9369aNdh+WWqejBvpYWbkzOdkrPR0T7rLj5cuX9DKDkZtDUZSUlFhZWQFAz549c2X1cb5cE0q4E0I2byYAX/RwLyn5lHnnL93kZ94jIsQfkq+vL3/WpYODQ1JSUj3epOoD+Fquol+8eDF27Fh6xB49ely/fr0B4aNqZFZUbL1yhS49bNeuXUOatAieBxvShd/f358+bvzqqbOoqMjNzY3eRGhqarq5uUmuprApCwoKor+wc+fOrWUtS1FRkbq6uoWFhaurq7+/f10v4AsLC319fZ2dnekzOUpRUZG+YXBwcFJSEh2Wa2FhkZOT0+BvCzUVHz58aNGiBQAweAbZvXs3/WCU9czG12DC/ZPffvsNAH744QdGjl5SUtKvXz8AmDRpUmNNE4iBqysBIBs3Mh1H45WURLp2JQCkSxci1lGi5c+eubu781tM0iUd06dPP3funIxk3qviEXIhK2tYdLRFRMTI6OgLMtBZODMz09XVlY62p6l2/sr04uJiV1dXulS5Z8+ejx49YjbU2sTHEwBy6pTw9nPnCED9h2k2FlFRUcOGDaO/Jv369bt3715Ne0piCbmvry+9NP9qor9aKSkp/AY4BgYGYmkVmp9PtLQIANHVJfv21TYY4tGjR4MGDaLBDxgw4MGDBw08tAyqmnA/sWHG4WVjyZcJdx6Xc+uI+++TO7o76G/71jjs4iFOpQylIAsLC93c3FRVVfk3/IIX07TTEb3QV1ZWdnFxkalahAoe70RGxojoaDpD72xmJibcZcTWrVsB4Mcff2Q6kNpkZ2fTvNjw4cMxzyVeXC5JSCDOzkTwA6O8nCxeXM0VByGktJRcuUJmzyY6Op8z7z16kLVrSVSUGD4wxfgYm6pHizn+2fyVWK/qESHk8ePH9PkZzWaK2I6fjya+azoP1kOdTp2C43a7dOmC43bF6/r16/SRxrx582rvHBUcHEx/BqiWLVvOnDnzv//+q8fig5iYmO3bt9vY2NDVz/zbbQAYOnSoWJZioKbj559/pucOBmOorKykJTi7du1iMIyGw4Q7IYRUVla2a9cOAOp6sqwfT0/P8PBwoY1v3ryhA6y3bt0qhRjk0oULBICMGcN0HI3U48ekdWsCQAYMkFzfntevX3t4eFhZWfFnv6ipqTk4OHh6espmU7nMioplr17RUvfFiYkZDLXEycrKEky1Ozg4PHnypOpuoaGhPXr0oPs4OzvXdZWilDx8SADInTvC2+/fJwAkOJiJmGRCdnY2v7WLnp5e7a1d7ty5IzgkLSYmRlxhVF38XksrG77i4mI3Nzf6I6qhoVF7/V1dxceTceM+ZUOMjcm1azXu2ehXTNOE+6XdLiE+B+6f23vmjx/cJ7SLC71KqlS4E0JyUl97s51pt/d9zkOeB/syFPVnXC7Xy8urTZs29GPKyckpIyOj2j3r9OsgNY/y8x2fP6dnhAUJCUklJVjhLjssLS0B4MqVK0wH8hXv37/v1KkTAEycOBE7fohLZibp0aP6xPpXcTifhhC1bfvpRDNixINOnTq5uLgEBwfX47GxJBq18Qk9Wq6lGTfNwNKugzQDi0k38eLxeN7e3h07dqSXHI6Ojm9FmAxQ9TwoxguVul5J9u7dWxJXkk3Z1atXabb9l19+EeXTo7i42N/f39XVlb9GgTIyMnJxcfH3969rO1b+G3bt2rVly5Z6enoyW9yGZFN0dLSioqKKiorQyBkej7d69WoJNcG+f//+9u3bhTb6+/sDgJaWllzfzWHCnRBCzp8/T6sPpFBdfurUKQDo0KFD1fTirVu3FBUVFRQUcPVf9VJTP1U54iIAsfP3/1REamdHREiuNdy7d+88PDxsbW1pKwy6As7KysrDw0MGP1L9c3NtnjyxiIgYHh19+sMHkaZciUlWVpabmxu9X2KxWA4ODlG1dugoLS11c3OjTf2MjIwCAwOlFqqonj8nAOTsWeHt9IladQ8SGr161yU1ZAFy7UQf70ZvOGn+SPQbznrw9yempp+yIba2pJbrPbEXjsmOsuKC4+un0z+n3L+/dmjt+/hP2V6/A6sibhyv+iWvnwQf/NWapt291jl+eCvhdsU1e/jwYV2XIERFRQ0fPlyUBR+S9q60dEliIk21T4mNvf//39CQjx8XJSQwFRXiS0lJYbFYzZo1KykpYTqWr3v+/DltTjpv3jymY2kMeDwyfjwBICNHNugWgcMhgYHk11/JsGEu/LSXgYGBi4vL3bt3RUmaV1RU1Hv0pejq9Gg5LS2NfzbX19f39PSUhYeXjQktOKA5Vg0NjdqbtEhnKZ7op07BtZI0+y+b9U/ywsfHh96CrVixoh5ppaSkJE9PT0dHR3rfR2lqatra2np4eLx586ZO71ZeXq6hocFisSTxKYQasREjRtCfYaHt586do3eFYp/Jl5aWpqKioqioWDXLMW7cOABwdnYW7xGlCRPuhBBCV/xJZwJvRUUFbRdgbW1dtbDF3d0dAHR0dOrX46/xa9+eABC8uRWvEyeIsjIBILNnS7+Ddmpq6oEDB2xsbGg5BgAYGhpKOQZR5FRUrE5KotmWn+Pj30l+JXh2djY/1Q4Atra2kSLXUT558sTc3JzeiTk7O4tSoSwNGRkkJISUlxMNjWp6Q23aRNTUSGNJjIpOqPNmLYUD0u+8GR4ePmTIEBpb//79Q0NDhXaIiIgQXFIdLOEFChUVxMODtGhBAIiyMnFxIbX0GpHOkwm5wOVURtw4seM7M3cH/d8ndfA7sKo4X6qtPAV7DX21E0JVDex01EAFHM6+9+8HRUbS9mL/paeX41N/2ePh4QEAjo6OTAciqkePHmlqagLAhg0bmI5F7u3ZQwCIjg559048b0jHErq5uXXr1o2f9tLT03NycvL19a0p1+Dv7y84+vKZhFvk1enRckRExNChQ6V2sm6CkpOTa2+p18DzYD3UexoQm80We0KtKTh79iz9O1y9enUD36qysjI4ONjV1dXCwoK/KJyWUjk7O3t7e4t4Zzdq1CgA8PHxaWA8qOk4e/YsALRu3TovL09we0lJCf08OXz4sCSOu3z5cgCwsrIS+mBMTExUVVVVUFB4/PixJI4rBZhwJ+/evVNUVFRTU5PaKIn09PT27dtX++CIx+NNnToVAPr06VNcXCydeOTJlCkEgJw4wXQcjYiHB1FQIADExYXZpQNZWVn//POPvb39qlWrGAyjdvc+frSPibGIiBgSFfVfejpXMn9jOTk5bm5utN6ZJmHrcY6pqKhgs9n0Tqxdu3YMr7LPyiKurkRDg7RrR0pKyJw5RF+fCBZcZGeTdu0I7b174wZ5+ZKpSKUpPj6ePrcHgO7du9cyh53BTilVV0y/e/eOMFo0l55O5s799LnVqRPv2LFTtbTIDAgIEOy98/TpU+kEKYNKCvJueK7fNNHA3UF/+0yTh1f+4XIk3s6iuLiYP+uvIb2G6MxA2umIzgyUwnNELiFXs7PtnjyxiIiwjIjY8OZNTiNtAFJtjzL5QguyTp8+zXQgdXD16lWandmzZw/Tscixp0+JmhoBIJcvS+T9Y2Nj3dzcaL8+SkdHh2be+QnuakdAS4foj5althytKQsKCurTpw/95xgxYgT9aBXXebAe6nTqFLwoNTY2vlZL/z5UxenTp+nnuaurq3jfOSMjw9vb28nJSUdHh/8ppKamZmtry2azIyIianlys3nzZgBYuHCheENCjVUtWXVaFty3b18J3e7l5+fT+9xz584JvVRTLl5eYMKdrF+/HgC+//57oe3JycmSO2hYWBidaHG2Sl+FgoICExMTAJg1a5bkApBX27YRALJ4MdNx1FNRUdHq1avnzZvn4ODg5eXF8CA4Ho+sWkUACItF5HwYhTQVcDhb3r61iIiYFBk53MZGvI3MCgoK2Gy2trY2P9Vedd5DnTx79mzAgAH03RwdHbOzs8UVqqhoql1T89NP2pQpJCODZGaSbt2IkRFhs8mlS2T7dtKlC+nalXz4QNLTia4uUVMjbDZpvKueS0tLBYuJPDw8KmpeXBIeHj548GD6j2hpaVlLw1bJKSgoWLNmDX1+06xZs3HjxtFbR1VV1TVr1jCyhCIykgwbRkaOvA8A5ubm9+/fr2nPysrKvXv30hsVJSWlxYsXN+VZhVnJCSc2zqQdZg78MiwxQoJdp3x9fWlyh5bXibIamsfj1VL9IDgzsF27dhKtEIwoKJj5/3btzi9fvpSHRiX1s3LlSgUFBbmugMvKylJSUlJVVZW7FtUnT55ksVgKCgpV7zCRKIqKSI8eBIAsWiTxY8XExGzcuJFfww4AzZs3nzFjxrfffkubSLRo0WLXrl2MlAYLjXWp5dFyUVHR+vXr6cAVTU3NzZs3SzPOpoDD4Rw6dIi2FVJUVBwzZoyBgQF9yDFz5kyJphdqUqdxu5cuXeKP2500aVJqaqo0Q5VTR44coQUomzZt+vre9cXhcEJDQ9evX29paUkPR3Xq1Gn+/PlBQUFVvyQsLAwATExMJBcVakxqyqqnpKTQNXl3796V3NE9PT0BoEOHDkJlx7Xk4uVCU0+4V1ZW0mJzoe5mHz58UFFRsbKyktw4o/3799NrnapLDl+8eEH7SOzfv19CR5dXgYEEgAwcyHQc9ZGVlUXb9tGOEDRXNW7cuKNHj0o/DVpeXs6bNYsAEFVV0oQ7LdRb8MeP9vPn03/ELVu2NPyDorCwkM1m84sXrKys6nRK++eff2rqQ8Xlcj09Pelpsk2bNufPn29gqKLKySFubp/af9Cu24J1+nl5ZONGYmlJjIyIpSVZv57k5n7aPmcOYbEIALG0JI20Hvnhw4empqa0XeaHDx9q2q1O90hSQFdMAwC9e3RwcHj16hWD8fB45OzZCx06dKC3sjNmzKjlVpZOsVNSUjI2Nn748KE045RBcaFXPX4aSNPu57b+nPJOzHWOkZGR/PYFtT8OEXLmzBltbW02m11LbwRJP4JKLStb9f9Z2ROePbtDP5oar61btwKAiorKrVu3mI6lng4fPgwA48ePZzqQ+ti+fTv9+7958ybTscifuXMJADEzI9J8Ivb69WsPDw8rKyv+2bn2EdDSIdiMm7aPr6UZN7+9ibW1tYQm4DVxeXl5rq6uKioqNPNep/OghIh+6uSP223WrJlcP4uVDk9PT5r+lubjq+zsbG9vb2dnZ5rIAoC1a9dW3a2yspKub8AHJ+irasmqz5w5EwC+/fZbiQbA5XL79+9f7YOrmnLxcqGpJ9wvXbpEl00JZTHo5e/EiRMlevQ5c+YAQNeuXYV6JBFCLl68yGKxlJWVGRwRJosKCoiiIlFVlbtGz2/fvqXLUTt37vzgwQMvLy8HBwdaEQMC80KlczosLCy0t7c/MWwY0dIicnuDzbj8/HwXFxd6jdW7d+96dxajqXY6P42m2qstUqjFw4cPFRUV1dXV2Wx2Teu8kpKSbGxs+KWmkv1JKyggbDbR1v6caq9rnf7du6Rr10+Nul1d5e73/aumTZsGALtqXllCVwHTKnKpNdAQ0ezZswFg9uzZTAfyieBibfp3Vcti7T///BMAvvnmG2lGKJs4lRUPr/yzbXr3Pb+OUVFRcXFxEUt1cFZWlouLC53J0bJlSw8PjzotPv3555/px1SPHj1u3LhR024SarJEZ985rF1rERFhFRXlmZpaXnO3osZk2bJlAKClpSX6pBCZMnbsWAA4cuQI04HU04oVK+jff0REBNOxyBMfHwJA1NRITAwzAbx+/ZrOy5GdOnGhZtweHh61VITMmzcPANasWSPNCJsUmiTq169fLY3vpKlOp87Hjx8DQMeOHaUZodw5ePAgi8VisVhMdQbj8XiRkZFbt26Njo6udgd6fpSvfmuIETVl1cPCwlgslrq6el3H9tZDSEgIPda7L0ey8HPxv//+u6RjELt6JtzPnDlT15SQbKKtyv7880/BjTwer3v37gDg5+cn0aOXlpZaWFgAwOjRo6veka5cuZJWpL5//16iYcgZMzMCQB49YjqOOoiNjaUFoT179hT818zJyaGZd9pfCAAUFBSsrKzYbHZiYqKEgsnIyKC3B/r6+hmNtHxYmu7fv08/LpSUlFxdXWupyqyqqKjIw8OjTZs2/FT7nTt36hFDXl6es7MzfZNBgwbVVKzE4/E8PT1ppYOOjo6np2c9jvUVhYWEzSY6Op9T7fX+VS0uJq6unxp19+wpX7/yX0UT7jX1WhV9zhUj3NzcAMDNzY3pQL4g4moAHx8fTLgLKshOX7dqiViatPBr4gBAWVm53hl8f39/MzMz+vNva2sbGxtb055iHCNM0xDt2rWjaYjtT55kSn2EOIN4PN4PP/wAAK1atXopbyM0Pn78qKKioqioWEs9r4zj8Xjff/89APzwww9MxyI3kpM/XWtI4lpGdLNmzQKAEzI2XOrFixc0y0YfXl6/fr3a3ejqFky4S861a9cAYOzYsUwH8gURT51v377FhHvtdu7cSa8Z9u3bx3QsNdqxYwcAzJs3j+lAkEyrKavO5XJpc9qNGzdKJxI6laRqb+2acvGyrz4Jd3ryaN26NSNtyMQoJSVFUVFRRUVF6Bo9MDCQLpmXwgi4t2/f0rVmVZMXHA5n9OjRNINWpyxeI0eXj8pPs527d+/S6ZfW1tY1NW3Py8uj41BokSZlamrq5uYWHx8vxmBev37drVs3ADAyMpJcTr+pKSkpcXV1pRWdXbt2FaUVTHFxsYeHB60xAYAhQ4b4+/s3MIzr16/T3hrKysqurq41dRFNTU2dOHEiPe7YsWPF9jEulGq3siJieSgbGvqpP6uSEnFxIUVFYnhPGVBLwn3VqlX0X6dfv36ML0Culmwm3Kn79+/TB4oAMHTo0Li4OKEdMOFercePH1tZWdG/NwsLi5CQkLq+g7+/Px0/Q7PkVf/m64Tm7umpk+buaxl58urVK/7MwA4dOnh5edX1cI8fPx4yZAh9h/79+9fj228EKioq7O3t6eWB1GYyi8XJkyfpJRbTgTRIdna2kpKSkZERXvCLorKSDBlCAMjUqQxHIpsJd+rixYtGRkb0k+3vv/+uugMm3CVNNhPuVGJiIv92YOTIkVV3wIR77dhsNs22//XXX0zHUhu6UqFr165MB4JkVy1Z9aNHj9JKpiJp3YMnJydraGiwWKyqd8E15eJlXH0S7lwulz4279evX4k8T5GiWYOZM2cKbafrKaSWTQgICFBUVGSxWBcvXhR6KTs729DQEHC6tKC//yYAxMmJ6ThEcunSJTqYaMqUKaJU3pWUlPj6+jo5OdEiQcHMe8MXGkdERLRu3RoALC0ta2kbjeonLCzM1NQUABQUFJydnWtqalFWVubp6amvr0//cQcPHuzr6yuuGETvcuPt7a2npwcAzZs39/DwaMha18LCwm1bt1bStDgAsbEhwcH1frdqlJYSV1eiqEgAiJERCZTgjEepqSXhHhcX17Zt27o24pAmWU64E4EV0yoqKlVrdTHhXhMej+ft7d2xY0d6A+no6Pj2rUiN3ePj4+liQQAwNja+du2auELKzs7md6fR09Or/Zfizp07vXv3pmFYW1vHiNZjIjU11dnZmX5mtmvXztPTU0YW/jOiuLiYdvjt1atX1VaHMuubb74BAFkuMBTFqVOnakp7oarWriUAxMCA1DxiWUpkOeFO/v/wslOnTllZWVVfxYS7pMlywp2i43ZPnTpV9SVMuNeCZtsVFRWPHTvGdCxfweFw6IQwES/qUBNUU1a9oKCApiyq/YiQnA0bNgCAubm50DV5Lbl4WVbPljK5ubl0gLWTnOQ9q+JwOPTGMvDL9E12draampqCgoI0P5XoFY+WllbVorDo6GiasT169KjU4hG06tWr2S9eCP55xmyRaVQUASDduzMZg2gOHDhAb+MXLVpU13v40tJSX19fZ2dnOv6IMjIycnFxCQ4OrseS/zt37tAkvq2trew0g25kKioq2Gw2bRBkaGgYEBAg+Gp5ebmnpydtWQAAAwcOFGOqXZCIXW4yMjJongIAhg0bVo82ArQlDq3T9xk+nFhZkS+/ZXF68oSYmxMAwmIRZ2ci5z/DtbeUqZDtXhYynnCn8vPzr169WnU7JtxrR5uY05XmGhoabm5utdRVCDULZrPZNS2saYioqKjhw4fTT6q+ffvWMtiGy+V6eXnRkyadYVhLj5Hy8nIPDw/aYkuMLezlXVZWFp03M3LkyHr355GmkpISTU1NFoslL4tu379/X22ZGD0p7N27V/ohyZ27d4miIlFQEM86ugaS8YQ7VdNFBSbcJU32E+6EkMrKymrvKzHhXhOaDVRUVDx+/DjTsYiELmWox/o/1BTUklVfvXo1rQ6sd7fJ+ikpKaF52n///VfopZpy8bKs/kNTY2JiNDQ0AEAijYAlz9fXFwC6dOki9AO0a9cuABg/frw0g+HxeHSJRI8ePare8h0/fhwA1NTU6j2VsSEmPnu2ODHxQlYW/88HCdxR10FlJdHQIPr6RLZXV/AXmjUwLcXhcIKDg11cXPjtRwCgU6dOdcq8nzx5kmaBv//+exnP5TUCMTExdKwHnUeUm5tLU+38OfK9e/f29vaW6KlL9C43vr6+9BlA7TNXhRQXF+/atYsumACAoUOHBtWr+3zdlJcTNzeiokIAeF273m9wEx4G1Z5wlx3Tpk0zNjZ+9uyZ4Ea5SLjXBBPuokhOTuY3xDcwMKja2L2ystLT05OmtpWUlJydnSXdPtvX15cu+IOvDTbIzc11dXWlp7yaHgP4+vryOy04ODgkJSVJNHj5kpycTLuTTZo0SWbX2fBdvHiRPsBmOhBRfffdd+rq6hcuXBDcyH9sIHedSaUvKyvbzKwSgGzaxHQohJAaEu5Xr141NjZesWIFU1GJCBPuklZTwr1Hjx7GxsaMhCQ6TLhXa+3atfTKR8o1vw2xZ88eAPjxxx+ZDgTJopqy6klJSaqqqgoKCo+YmKNGuwW2adNGKDXKz8XL/uISvvon3Mn/1z8qKysHi7eBgFRMmDABAHbs2CG0nTaFuHz5spTjKSwspFPCpkyZUjUTN3/+fHrOk/5IqInPnh2QtamtGRmkpIRkZxOZ7HTJ4XDoBEtFRcXDhw+L8W1p5p2ft6WpEGdnZ19f38rKypq+0MPDgxbau7i4yNHDQLlWUVGxefNmVVVVAGjdujX/YYm5ubmvr6/UnhI/ePCAfqCxWKxautzk5ubyZ64OHjy4ppmrlFCd/qBBgyRUp1+jZ8/IgAGBI0cCgKOjY3Z2tlSPLibyknCnj47Cw8MFN2LCvYkICgrq06cP/U0fMWJEdHQ03U5XoNPtNjY2IjZvabiSkhI2m01r0tXV1V1dXWtZrVVTo5u4uLgxY8bQ7SYmJjdv3pRO8PLl2bNndAX6/PnzmY7lK5ycnACAzWYzHYhIKioqtLW1AeDVq1eC2y9dugQAAwYMYCowecHj8SZMmNCmTb/vv0+TkYdB1SbcT58+DQAzZsxgKioRYcJd0mpKuNNzkJSLRusKE+5CeDzekiVLAEBFRaVqH2BZ9uTJE/ynRNWqJas+adIkAJgzZw4jgfF4vKFDh1Z7hqopFy+zGpRwJ4S4uLgAgL6+fmpqqlgCko73798rKSmpqKgIdbK+d+8e/XYYqQJ++fIlHRG2a9cuoZcqKiroz5yNjU0tqVVJkLmEe0gIGTbsU0NnZWVib0++rL5kVllZGW3ToaGhUW1Dg5ycnAZ2GuVyuREREW5ubnT8KaWnp+fk5OTr6ytYysfj8WhqjMViVX22hCQtMTFxyJAhzZs3V1RU7Nmzp6Sr2qsl1OWmltGsX525KlSn36dPH8byxRyOx86dtNeWvr7+pUuXmAmjATDhzhRMuNcJh8M5dOgQHe2uqKg4c+ZMOsIHALp06SL90gRCSGpqKr/6/qtd1y9fvty1a1casL29/cyZM+m6n5YtWx46dEj2y7cZ9ODBA7qM1d3dnelYalRRUUEfDIh3vLzk0Oxb3759hbbPnj0bALZt28ZIVHJk7969dOWK7DQjxoQ7qgUm3BsNHo+3aNEimm2/cuUK0+HUDY/HoxdyuJ4PCakpq37nzh0A0NLSSktLYyQwQkhkZKSCgoKKikpCQoLg9lpy8bKpoQn3ysrKESNGAMCQIUMk0btTQjZt2gQA06dPF9r+/fffA8CGDRsYiYoQcuXKFRaLpaioeOvWLaGX0tPTaVWpq6urNEOa+OzZ/Jcv/0tPp39uMjufKDiYqKoSR0cSEkLevycBAcTGhjRvTl68YDKq/8vNzaW//7q6uiEhIVV3SE5OphXH+/fvF8sRY2Nj3dzcaMdVSkdHx8nJydvb++PHj3PnzqVXBqdPnxbL4VBdPXv2DAA6d+7M7FW1UJebnBp+i2uauUpT7QYGBvRnTAotcUSRlJRkbW1NQ3JwcJCvh76YcGcKJtzrIS8vz9XVVVVVlbZr19TUdHNzY7bBd3h4OB3vCQCWlpahoaE17UlnBtJqBhUVFdoAp9r5gUiIr6+vsrLynyNGEFltLH7z5k0A6NWrF9OBiOrnn38GgE1fNkOpqKjQ1dWVo8cGTHn27Bl90H7u3DmmY/kME+6oFphwbxy4XC69p9bQ0KiaopELtBzwyJEjTAeCZEhNWXUOh0NXsjK+fPDHH38EgMmTJwttrykXL5samnAnhGRkZNBEzNKlSxv+blLA5XI7deoEAELFnnl5eRoaGgoKCm/evGEoNEL+3xpMT0+vaovS0NBQFRUVFosliWvNAg4nrrjYPzf3v/T0LW/fzo2PHxEd/aa0dOKzZxOePl2QkED/7ElJEfuh68DCggwfTgQvUEpLSbduZNIkxkL6v9TU1N69ewNAp06dXlT3AOD58+e055SZmVmKuP8aY2Ji3Nzcevbsyc+8034mzZs3D5DcHEv0NQ8fPgTZWCdeWVnJZrPpLER9ff1a1kIKzlxdtWrV0aNH+c2OmarTrwmPx/P09KQtJnR0dORooAgm3JmCCfd6Cw0NBYBmzZqlp6czHQshhPB4PC8vL9qwi8ViOTo61jI2Mz09vVmzZgBQ7bNwVJO3J04QFosoKpIve47LCNpuUV4+izgcDh18IjQV49atW/T0ylRgcqG4uNjExAQAFi5cyHQsX8CEO6oFJtwbh4KCAnNzc3V19cDAQKZjqacDBw4AwKxZs5gOBMmKWrLq+/btAwAjI6Myprs3Z2RkNG/eHACqdoCsKRcvg8SQcCeEPHjwgGb3/vvvP7G8oUTRk5+RkZHQMmQ6UMLe3p6pwCgul0uXbPfr16+kylxQDw8PescbGxtb70OUcLkvi4v9c3OPpqe7v3kzJz5+1JMnFhERVf/c//hRhlrKpKQQAFJlWjH54w+iqkoYrbZ7/vw5bcfRs2fPapPpDx48oIu5Bg8eLNGu069fv/bw8LCystLS0lJXV3/48KHkjoW+6vbt2wBga2vLdCCfJCYm0jVJAODo6FhTmWdRUdGSJUtoqTu/qv3ixYuyeW+Qmpo6ceJEGufYsWNrSbrJDky4MwUT7vWWmZkJAC1btmQ6kC8UFRW5ubnRR4m1l97TEa9CjQTR1/3xBwEgKirk9m2mQ/kCl8vV19cHgCdPnjAdi0iCgoIAoFu3bkLbf/nlFwDYuHEjI1HJC7o4wMzMrOqdEbMw4Y5qgQn3xoH2jB46dCjTgdTf8+fPacUV04EgWbF///5qs+q5ubl6enrAxEjLam3btg0ATE1Nhbpq83Pxsr/o5HM+pSEGDRpEs9ULFiyIiooSy3tKzj///AMA8+bNE0wnAcCRI0fodmbC+j8FBYVTp0516dIlOjqaFu8IWrJkyY8//lhUVDRlypT8/Pyvvlt5eXlcXNzly5d37tzp7Ozs8vLluKdPh0VHf/fixZrXrw+mpvrl5DwtKvrI4WgoKBhraNjp6MzV19/UufOxHj3u9OkzrEULyXyX9fLqFQBAly7C27t0gfJySEmRfkTUw4cPhw8fnpKSMnLkyJCQEH7nDT5fX18bG5vs7OzJkyffuXOHfopJiKGh4ZIlS0JCQjp16kTzDpI7Fvoq+ktKzweyoGvXrkFBQZ6ens2aNfPx8TEzMzt+/HjV3TQ1NT08POhqfRUVFR8fn+jo6ClTptC+ybKmXbt2V65c8fb21tPTu3HjRs+ePffu3cvj8ZiOCyEkcZqamu7u7rGxsZMmTSouLt60aVOvXr2KioqYjqsRWb8eli6FigqYNg2io5mO5rOwsLD09PTOnTvzR/vKODoZla7r5+PxeFeuXAGAKVOmMBOWPLhw4cKRI0fU1NROnz5Nu8oghJDU2NjYAEBMTAyHw2E6lnoyMTFp27Ztenr6y5cvmY4FMS8vL4922N69ezctm+bbuHFjTk6OjY0Nbe/OuOXLl3fr1i0uLs7T01Nwe5s2bX777TcAWLZsmYz/Yoon4Q4ACxYsmDNnTmlp6aXffoO8PHG9rdhlZGRcu3ZNSUnphx9+ENweGhr6/Pnztm3bTpgwganY+HR0dC5evKihoXHixInDhw8LvXrw4EFzc/PExEQnJyfBpBKHw3n9+nVAQMDhw4fXrFkzffp0MzMzTU1NMzOzKVOmrF69+p9//nlfVJRZWanMYrVXVR3QvPmM1q3Xdup0sFu3Kz173u3X75SJyTYjo4Xt2o3X0+ulqdlCSUm63/fX0N8lNTXh7RoaAACVldKOBwAArly5YmNjk5OTM3ny5OvXr7eo8ojiv//+++abb0pLS+fOnevj4yO1W4VBgwYBwKNHj6RzOFStgoICkKWEOwCwWCxnZ+enT5/a2tpmZmb+8MMPEyZMSE1NrbqnsbExALRu3XratGlCjydlkKOj4/Pnz7/55puCgoKlS5eOHDkyISGB6aAQQtJAJ7gGBgb27t17yJAhtHsMEpvdu8HJCQoKYMwYkJnPVZq/pquFZB8h5PLly1Alsc5/bNC3b19GAquDuDi4fRvu3QMRyn3EKCUlxdnZGQD27NlDOzcihJA06evrGxsbFxYWRkZGMh1LPbFYrJEjRwIAXWuFpCE1Fao+3oiLg4yMz//7/j34+8OdO5CWJs3QNm7cmJ2dXTWrTvPaioqKtKmGLFBRUdm+fTsAbNiwIScnR/ClmnLxskacGdWDBw86lJdPPX8eZs2Cq1dBJhM0R48eraysnDZtGl2IykfL3ufOnausrMxQaF/o3bv3P//8M2vWrEWLFpmamtJRnJS6uvrFixf79+/v5+c3ZcqULl26JCQkJCYmvnnzprJK0llZWdnIyKhbt27du3fv1q2beatWHdu2bauiIov/Nl/Vti0AQEoKDBjwxfbkZGCxQF8fxo0DRUVwdISpU0Eq99vHjh1zdnbmcDi//vrrvn37qiYlt2/fvmbNGgBwdXVls9lSCIlvwIABR44cCQ8Pl+ZBkZBqE+4ZGRkrVqwwNDTcvHkzQ3GBoaHh7du3//nnn9WrV1+9evXnn3++ceOG0D4y+LSgdm3atDl//ry3t/fixYuDg4PNzc29vb3HjRvHdFwIIWmwtraOjIwsKSlhOpBGh8WCo0chMxNu3YJx4yAk5NP1GKOqzV/LrMePHycnJ7dv397S0lJwu3w8NoiKgh9+gNhYaNXqU7Z90SLYvh2UlODAAfD1FfFtilq2nJqdLfphd+/e3aNHj5kzZ+bm5k6ZMoX23kEIIemztrZ++fJlUFDQwIED+RsJIfPnzw8NDY2MjFSrWhEoY6ytrc+ePRsUFISfpVKyfTsEBkJs7BcbR4+GOXPgjz/gwwf48Ue4eROaNwceD4qKYNIk+Pdf0NWVdFy1ZNWXL19eWVm5aNEi2t5dRkyZMmX06NG3b9/etGkT7S9P0Vz81KlTN2zYMGPGDIn2kGgQMbeoSU4mrVoRALJhg5jfWRx4PF6XLl2gSq+fjx8/amhosFisxMREpmKr1uLFixUUFPbt21f1pZs3byorK9NpgXw6OjpWVlbOzs5sNtvb2zsiIqLhvQ7/S08Pzc9v4JuIB4dDWrcmVcclOTiQPn1ITg5RVCQABIBoapJp08iZM6SgQHLh0AQ6i8Wqtpcxh8Oh5zNFRcW///5bcmHUJCYmBgC6du0q/UMjPrpca/369YIbo6OjAaBPnz4MBfWFlJSUKVOmVDsTgs5IHDRokPSjaqDc3FxnZ2c9Pb2MjAymY6ke9nBnCvZwr7eaergvXrzYzs4uPj6ekahEhz3cG6qggFhYEADSuzfJy2M2Flpm2LZtW6FpTDKL1l64uLgIbaczyUNDQxmJSiTJyURHh4wdS+h8lIoKcvYs0dAg9HtZuPDThbcIf8q6dq3TLer9+/fXr18PAAYGBhKdftQQ2MMd1QJ7uDca586dA4DRo0cLbe/Xrx8AyMUw1cTERABo1aqVjP/gNR6LFxMzM+GN7duT9etJeTnp14/06EGiogghhMslYWGkUycyZAjhcCQd15gxYwBg0aJFQttpBYCOjk5NM94Y9Pz5cyUlJUVFxadPnwq9NHr0aABYvHgxI4GJQtw9Qzp0gLNnYcwY2LwZ+vSBLzsVMu727dtJSUmGhoa2traC248fP15SUmJnZ9e1jteCkvbnn386OjoOGzas6kscDqeysrJ58+ZsNrt79+7du3fv2rWrUA8msfhBBuqYPlFUhJUrYd06GDsWHBw+bTxyBK5ehbNnQVcXkpLg8mXw8YGwMDh/Hs6fB1VVGDYMHBxg5kxo3VpcgXC53EWLFv3999+KiooHDx6ka10FlZeXOzk5+fj4qKqqnjx5kpHaJTMzs2bNmiUlJWVnZ9N5rUj6CgsLoUqRuExVjhsYGFy8eLHal2QqzjrR0dHx9PTctGlTmzZtmI4FoUbu4cOHjx8/FmWoDJJvWlpw8yYMHQpPn8LUqXDjBkjgmlNE9LZw6tSpst/ujKIBC9XjR0dHv379uk2bNrQHoIz6809QVIRz54CW+Cgrw7ffQnIyrF0Lrq6weDGI3OaVp6R0qy6NVgsLC7dt26agoHD8+HHZrVxDCDUBI0eOZLFYISEh5eXlgvkWa2vr6OjooKAga2trBsMTRdeuXTt27JicnPz8+fOePXsyHU7TduECREfDkydAh9AoKMDgwXD8OIwYAdevgyQbXF+5cuXWrVs6Ojq0fIqvoqJi9erVAPD777/LYOLI1NR0/vz5f/3119KlS+/cuSP40p49e/r06XPw4MF58+bJVGE+nwSadNvYwNatsHo1zJkDJiZgair+Q9QX7Rvz008/CV2g//vvvyAD41KrUlZWrjbbDv//XlavXk1/N5qK5cvh/XuYNAm6dwcjI3jxAt6/hy1b4NtvAQA6dYIlS2DJEsjKghs3wMcHbt6EgAAICIAVK2DQIHB0hOnT4ctuQnXFT6arqamdPHnymypPlT5+/Dhp0qT79+/r6Oj4+voKtgOSqNLSUsEG8YqKiubm5vfv33/8+PHYsWOlEwMSUm3OWl4S2TTOqmMJ5EVb2XlYiBBCjUDLlnDjBlhZQVAQzJgB58+DoqKUQygvL4+Ojvby8oIa+snk5uZOnz7d3d1daldfXxUbG/vy5cuWLVsKhSQfjw38/WHUKPhyQS1MnQqrV0NgIHz/PfToIeI7qQOMFvmweXl5ffv25XK5bm5usp/JQgg1bq1btzYzM4uNjX38+LHgJ7m1tfXu3bvlpTH6yJEjjx8/HhgYiAl3ht2+DZ07g9DI9+HDoWVLuH0bRo+GggLR3yybxSL/XzdTu4qKilWrVkF1WfW0tDQNDQ0zMzOZ7Ti0adOmM2fOsFisoqIiwVlNpqamzs7OBw8eXLZsWUBAAIMR1kQyUzFXroSICPD2hqlTITwcZCOv9OHDB19fXyUlpTlz5ghuf/jw4ZMnT1q2bDlx4kSmYqur9PT069evq6io/Pjjj0zHIl2KirB3LyxaBHfuQH4+TJ0Ko0dDhw7Cu7VqBbNnw+zZkJkJly7BhQtw9y6EhkJoKKxYAcOGVU6f/mHCBAMDg7oePy8vb9KkScHBwTUl09PT08eOHRsTE9OuXbsbN25IZ74Tj8cbMGDAs2fPsrOzBbsMDRw48P79++Hh4ZhwZ0ojSLjLfpwIIYSkxNAQbt2CESPg8mVYtAgOHZLCMdPS0iIjI0NDQ0NCQiIjI8vKyrS0tDQ1NcvKyqruvH///jt37kRHR9+/f9/MzEwK4X0VTaxPnjxZSemL2y66vEzW29CnpHxeVMrXsSMoKkJysuQOGxkZmZmZ2bdv3w0bNkjuKAghJCJra+vY2NigoCDB2/8RI0YoKSmFh4cXFxdramoyGJ4orK2tjx8/HhQU5OLiwnQsTUNSEvTv/8WWzEwAgPfvoVOnavbv3BlSUuDcOfjhB9EPYqqhkSXy+KJmzZp16tSpala9c+fOkZGRaWlpQhcqskNPTy8yMrJz585VX/r999+PHz+ekpKSk5Mjg+vhJPMXSscrxcVBbCz88ANcvAgslkQOVBfHjh2rrKycMmVKu3btBLfzy94l0Y9FQo4cOVJZWeno6NhafG1S5Em3btCtm0h7tm4N8+fD/PmQlwd+fnD1Kly/Dnfvfigr67BwoampqaOj43fffde9e3dR3iwtLW3cuHE0mX7z5s2qi1ZevHhhb2+fnJxsamp68+bNDlWfBEiGgoKCoqJiRUVFZGQkHUFODRgwAABwbiqDMOGOEEKoUenVCy5dAnt7OHoUFiwACRQWFBQUhIeHP3z48NGjR+Hh4XR+AKWoqNizZ08lJaUnT57MnDkzMDBQaAzphg0bnj9/7uPjM2bMmNDQ0E7V3tNKV7X9ZBITE58/f66trT1ixAiG4hKNggJwucIbCQFCJLq+oaioqLy8vKCgoLS0VLCWDSGEGGFtbb1///6goCDBp4BaWlrm5ubh4eGhoaG0l7Qss7GxAYC7d+9yuVxFqS9Qa4r09GDx4i+2LFsGUMOJFQC4XFBUBDU1qEtTFz0NDSJawp3D4RQVFZWWlpaVlVU9sSoqKkoteVU/1WbbASA/P7+yspK2npduRCKR2BOMZs3g4kUYMAAuX4YdO8DVVVIHEg0hpNq+Mfn5+efOnWOxWD/99BNDodUZj8eT2R44sktH51PNe0EBXLv24MEDjadP4+LiNm3atGnTJnNz86lTp37zzTc9al4Y+9Vkenh4+Pjx47OzswcNGnT16lUpP14bMGBAeHj4o0ePqibcHz16RAhhycBDryaI9jXGhDtCCKHGY8QIOH0aVFXFlm3ncvNevDj/4AFNsr948YLH4/FfbNOmzcCBAwcOHDho0CBLS0stLS1CyE8//XTs2LFx48YFBwcLXrwpKCicPHny48eP/v7+dnZ2ISEhzNamvH379smTJ1paWjTTwXf+/HkAmDRpkoqKCkOhiaZjR3j3Tnjju3fA41VfoCcmY8eO7dOnz5MnT1xcXOhdD0IIMWjEiBEKCgphYWFCTVytra3Dw8ODgoJkP+HesWNHQ0PDN2/exMTEmJubMx1OE6CtLVyrvm4dAEDHjnDrlvDOhMC7dzBiBEyfDtOni36QFyLvSQgZNmxYaGjotm3btmzZIvohZNzKlSvLy8tnzJghg93nQYIJdwDo1g1OnIBJk2DtWujTB+ztJXisr7lz505iYmKHDh2EPgpPnTpVXFxsY2PTTcSKaRlw+/btt2/fGhoajho1iulY5FDz5jBzpuPMmQ7btwcEBPj4+Pj6+kZFRUVFRa1fv97IyMjBwcHR0dHKykowQ/3o0SMHB4dakul+fn4zZswoKSmZNGnSmTNnBE/D0lFtMXvHjh3btWuXlpb2+vXrLl26SDkkBLVWuGsJdUSVPfISJ0IIIWkTrNcOCYFt2yA8HIqLoUMHmD4d1qyBry6uz8iAx48hMhIiIyE0VFNb2/nNG/qKkpJSjx49hg4damVlZWFhYWpqKlQ0wGKx/vnnn7y8vMuXL9vZ2YWFhQmWQaioqJw/f37kyJHR0dEODg6BgYEMlkhfuHCBEOLg4KCmpia4vdqyd1lkbw9HjsDHj6Ct/Xmjjw+oqoKNDdy9CzExIr5TkZra0eq6ANXkwIED9vb2x44dGzVq1KxZs+oSNEIIiZmurm6fPn2io6MfPnwoOFjC2tp6+/bt8tLG3cbG5ujRo0FBQZhwZxI9sT5+DIJL9AIDITcXJNkHmMVi7d27d8CAAbt27ZozZ07Xrl0ldyypCQoKunTpUrNmzbZu3cp0LNWTcI8eBwdYvx5+/x1mzYKICDA0lOzhakb7xvz8889Cy2eOHDkC8lYqTr+XefPmyfSQJZmnrq4+YcKECRMmlJeXBwcH+/n5nT179vXr1/v27du3b1/nzp0nTpxIM+9Xr16tPZnu5eU1b968ysrKOXPmHD58mJHWVwMHDoTqusdYWlpeuXIlPDwcE+6MwJYyCCGEGrMrV2DaNJg2DTw9oVUriIqCbdsgIADu3gWhVo1lZRAVBY8ewaNH8PChUN20ip7e/B9+MDU3HzhwYL9+/b5a962oqHj69Gk7O7vQ0NBx48bRSfX8V5s3b37r1i0rK6vHjx9PmTLl2rVrTBWSV5tYf//+fUREhIaGhp2dHSNR1cGyZfDff+DoCIcPg6EhVFTA+fOweTMsXw6tW8OmTXDwoIjvpNy169JXr0Q/8v3793fv3u3s7PzLL78MGDBAjkqjEEKNkrW1dXR0dFBQkGDCfdiwYSoqKpGRkQUFBbJ/02RtbU0T7itWrGA6liZs0iQYOBC++w5OnQJLSyAEwsJgzhwYNQokfFVgYWExa9asEydOrFmzhq60k2tcLnfp0qUAsHbtWqG24bJD8plBNzeIjIRr12DqVAgNBQ0NiR+xiuzs7CtXrigqKgqNGC0sLGzbtm3r1q3loMDk/zIyMvz8/JSUlH6oyywFVAtVVVVbW1tbW9tdu3YFBQVduHDh8uXLb9++pZn31q1bZ2dn83i8X3755cCBA1X7nW3fvv23334jhLi6urLZbEa+BQDo1q2bnp7e+/fvU1NT27dvz98+YMAAmnCfOXMmU7E1ZZhwRwgh1GiVl4OzM8yYASdOfNoybBiMGgXm5vDXX7B8OaSl0QJ2CAmByEgQLHBu1gz69AELCxg6FEaMgNat/67jwdXV1a9cuTJ8+PDY2Nhx48bduXNHQ+Auo1WrVjdu3Bg6dGhAQMCcOXNOnDgh/TqVDx8+PHjwQE1Nzf7LZb607H38+PEaTNwW1Y2+Pty5A3PmgJERtGwJ+fmgqAgrV8KmTQAA1tYgcpVJRbNmLkVFoh+5ffv2w4YNCwoKOnPmzKxZs0JCQmS9/Q5CqFGztrbevXt3YGDg77//zt+ooaFhaWkZGhoaHBw8fvx4BsMTBW1udv/+/crKSmVlZabDaaqUlODaNfjpJxg0CJo1A0KgpASmTwdPTylMvtyxY8eVK1cuXLhAO+9J+nAS5enp+fTpU0NDw2W0Ob5MknzCXUEBTpwAS0t48gTc3WHHDokfsYpjx46Vl5dPnDixY8eOgtu1tLSuX79eVFQkR+NS//3338rKyqlTp8rsMxz5paysPHr06NGjRx86dCgsLMzHx+fixYupqam6urqTJ08+dOiQ0P5cLtfFxeXgwYOKiooHDhyoOu5ZmlgsloWFxe3bt8PDwwUfIPHbuDMXWpNWWFgImHBHCCHUKN29C5mZ4OLyxcaePcHODry9YcQI6N//83ZFRejdGwYOhEGDYOBAMDGBBmfA9fT0bt++bWVl9fDhwxkzZly8eFFwlWGXLl1u3bo1YsSI06dP6+rq7t+/v4GHq6uLFy/yeLwxY8YINWeTm34yVK9eEBEBr17B27egpgZ9+wK/RQ9d3CAaLYC9dT/4wYMHHzx48PjxY3d3d5ldMI4QagpGjBihpKQUHh5eXFysKdA2zdraOjQ0NCgoSPYT7vr6+sbGxi9fvoyKiqLr45GkbNwIq1YJbwwJAXpnracHly9DejrExwOLBaamIK15M23btl29evX69euXLVv25MkTRnoziEVeXp6bmxsA7Nq1S6hrn0yRSq2Hjg5cvAiTJsHq1dI4HEBFRUV8fPyVK1d27do1f/58Wndc01hUBhs71hUh5NixYyBvPXDkjoKCwtChQ/fu3ZucnDx+/PicnByathZy+fLlgwcPqqurnz9/ntlsO1VtVxlLS0sFBYXo6OiKigqG4mq6iouLORyOurq6UAWBvCSyaZwtWrRgOhCEEEIyKT4eAKBqrw9jY3jxAnr3BkNDmDQJtm2DoCD4+BFiYuDwYZg7F8zMGp5tp9q3b3/9+nVdXV0/P7+5c+cSQgRf7d2798WLF1VVVQ8cOLBz506xHFF01SbWs7OzQ0NDVVVVZT8184WuXcHWFoYOBeneN2lra587d05ZWXn79u0BAQHSPDRCCAnS0tIyNzevrKwMDQ0V3E47zMhLG3f5ilaOtWwJAtNlPuncGXR1P/+vvj5YW8PIkVLLtlMrV67s2rXr8+fPaatqOeXu7p6dnW1tbT116lSmY6mNtBZX9u4Nly8DnRsbFga//gr29jBhAmzcCO/fN/C909LSAgICDh8+vGbNmunTp5uZmWloaJiYmEyePHnVqlWHDx/Oz89XUFB48UL0Eb4yKiAg4NWrVx07dpT31R/ygsVi0Sm7VXujA8A333zz22+/3b59e/LkydKOrDrVFrO3aNHC2Ni4rKzs6dOnDMXVdNWUsJaXRLa8PBhACCHEjLIyUFCoJgPbogWUloKyMrx+DZcvw5o1MHKk5BK1pqamN27c0NTUPHHixIYNG4Retba2Pnv2rKKioqur67///iuhGKr6+PHjvXv3lJWVJ0yYILj90qVLHA7H1tYWT68iGjBgwIYNG3g83vfff//hwwemw0EINV20JYtQtnrIkCFqampPnjzJyclhKK46wIQ7UlVVpRXJ69evl4sf2qpevHhx6NAhRUVFDw8PpmP5CqlP3dyyBYYOheRkGDYMTE3h8mUwNYX790X6WkIgJQUCA8HTM2HbtkmTJpmYmKiqqrZv397Ozm7+/Pnbt2/38fGJi4tjsVhdu3YdO3bskiVLDhw4sHHjRgBYu3btrVu3JPvdSRh/XGrVTuJIQmpvybJ169ahQ4dKN6Ia0Qr3iIgILpcruJ1+C9U+M0ASVVPCWl4S2fISJ0IIIWa0agU8HqSnC29//17K5VoDBgw4d+6ckpLSli1bqt59TZ48ef/+/YQQZ2dnWnUuBVeuXKmoqBg5cqSuYDmb3PWTkQ3r1q2zsbH58OHDnDlzhBYxIISQ1NBsdWBgoOBGNTW1QYMG8Xi84OBghuKqg5EjR7JYrJCQkPLycqZjQYz55ptv7OzscnNzN2/ezHQs9bF8+fLKykpnZ+fevXszHctXSDfh/uABbNgA+/eDnx+sWwfbt0NUFAwbBjNnfjFGicrLg8hI8PEBd3eYPh3694fmzaFjRxg1Cn75pZWPj6+vb3x8fEVFhY6OjpWVlbOzM5vN9vb2joiIKCgoSExMvH79uoeHx6+//rpx48Z169bxeLzvvvvuzZs3Uv2WxSc7O9vX11dJSWnOnDlMx9KE9O3bV1VVNS4ujiYfZVmrVq0MDQ0LCwvj6RLv/6u21QySAky4I4QQaswGDwYAePDgi42EQFgYWFlJOZbx48f/999/LBZr+fLlx48fF3p1wYIF69ev53K5dPymFOKpNrFeWFgYGBioqKg4ceJEKcTQaCgoKBw/frxly5Y3btzYt28f0+EghJqooUOHqqioREZGfvz4UXC7DJaNx8TExMTEVN3eunVrMzOzkpKSx48fSz8qJDv27NmjpKR04MCB2NhYpmOpGz8/v5s3b+ro6AiOL5ZZ0k24HzkCnTvDwoWftygpAZsNaWlw7RqEhoKbG3z3HVhagrY26OpC//4wfTps2gQ+PhAZCUVF0KYNDBsGc+eqOTmdP3/+6dOnpaWlubm5ISEhnp6erq6ujo6OFhYW6urqQkd2d3cfN25cbm7u1KlTS0tLpfpdi8nRo0fLy8vHjx/fvn17pmNpQlRVVfv06cPj8aKiopiO5euqrcfHualMkeuEOyGksLCQxWIJjXpDCCGEPjExgdGjYd26L4rcd+2C+HhYskT64cyaNYvNZhNCfv7556qrWv/4449FixaVlpY6ODhIus9eSUmJv7+/goLCpEmTBLf7+fmVl5cPGzasVatWEg2g8Wnfvr2XlxeLxXJ1dY2OjmY6HIRQU6ShoTFgwAAulyv04FbWEu5RUVGjRo2ys7N79epV1VdHjBgBAIcOHSosLJR6aEhWmJmZ/fzzzxwOZ9myZUzHUgcVFRUrV64EADc3t5a0Y7lsk27CPSoKevcGFuuLjWZmoKICUVFw6xb8/jucOQMREZCfDzo6YGEBjo7g6gqenhAcDB8/QkYG3L8PR4+qL1v2zTff9OrVS8SJtAoKCidPnuzSpcuTJ0/mz58vke9OkgghR48eBRyXygQ5SlhX2z2md+/e6urqL1++FHoUjyQtPz8fqiTWuVxuSUmJgoKC4HR7GVRYWMjj8TQ1NbGBFUIIoRr99x9oaoKJCUyZAvPng4UFrF0LHh4wZAgj4axevXrFihWVlZVTp059IFR6D+Dh4TFt2rT8/Pxx48a9e/dOcmGoqandvn179+7d7dq1E9yO/WQaYty4cQsXLiwvL58+fTrmiRBCjKg2tz5w4EBNTc3Y2FhZmDMRGRlpZ2eXk5MzYMAAAwMDoVcrKiqePn3apk2b06dP6+jo9O/f393dPTIyErt1NUFbtmzR09MLCAi4du0a07GIat++fQkJCSYmJgsFy7hlmHQT7gUF1bR0VFCA1q3h40ews4P168HLCx48gOxsyM2FiAjw9gY2G5ydYehQaNiMQR0dnYsXL9KRSocOHWrIW0lfUFBQYmKigYGBvb0907E0OXLUkqXaUJWVlfv160cIiYiIYCiuJqraSvaCggJCSPPmzVlCjx5ljFyU4SNJs7a2njx5so6ODtOBIIRklb4+RETAP/+AoSEoKMD06RAXB4sXMxjRzp07f/zxx5KSkokTJ758+VLwJUVFxVOnTtna2qamptrZ2WVmZkooBgUFBSsrqyVflvmXlpbeuHGDxWJNnjxZQsdt9P78888+ffq8evVKlivyOnToMHnyZEtLS6YDQTJqypQpkydPlvEbAVSTahPuKioqQ4YMIYTcF3E2ocSEhYXZ2Njk5uZOmzbt0qVLQsWp5eXl33zzTXBwcElJiYWFBYvFioyM3LRpU//+/du3bz9nzpxz587J6RRNVA+6urrr168HgKVLl8pFT//MzEzadH737t3KyspMhyMS6SbcmzeHqpe2PB5kZUGLFjBsGPzxB8yeDYMGgZ6eJI7fu3dvOnd0yZIlcjHUgo+G/fPPP2O1qfTRsvGHDx8yHcjXmZubKysrP3v2rLi4WHC7HBXpNybV5qyrLXuXQZhwZ1B61QmEDNmxY8elS5e6du3KdCB1Jjt/hwg1fkpK4OgIu3fDoUPg6grdujEbDovFOnz48NixY7Ozs8eOHSv0aaCionLhwoV+/folJiZOmDBB6HpJom7dulVcXGxpadmxY0epHbSRUVVVPX36tIaGxtGjR0+fPs10ONUbOnTopUuXli9fznQgn+AJUdZcvHhRatObvyonJ6eiooLpKOTJ4MGD1dXVY2JisrOzBbfLQleZ4OBge3v7goKCb7/99syZM0IZyfLyckdHx6tXr+ro6AQGBkZERHz8+NHf39/FxaVTp07p6en//fffjBkzWrdu3b9//zVr1gQEBFRWVjL1vSDpWLRokZmZ2atXrw4cOMB0LF+3bt26/Px8BwcHOapClm7CvU8feP5ceGNCApSXQ79+0glh5syZS5curaysnD59elpamnQO2kA5OTmXLl1SUFDAcamM6Natm56eXlpaWmpqKtOxfIW6unrPnj05HI5Qd8tqW80gSaupwr3qRhkkL3E2PqGhoZ06dVqyZAn2gKqfoqIid3d3Q0PDe/fuMR0LQogZysrK58+fHzJkyJs3b0aPHp2Xlyf4avPmza9du2ZoaBgeHv7tt99KLaGA/WTEwtTUdPfu3QCwcOHCN2/eMB2OTEtPT58/f36XLl0SExOZjgXJHA6Hc/jw4R49euzfv5/pWOSJmpraoEGDeDyeUPkmTbgHBgYyFBfcu3dv3LhxhYWFM2fOPHnypJKSkuCrJSUlDg4Ofn5+rVu3vnfvXv/+/QFAU1PT1tZ27969b9++jY2N3bVrl52dHZ0Ku337djs7O319/RkzZgSdOQP43K6RUlJS8vDwAIBNmzZlZGQwHU5toqOjjx07pqKismvXLqZjqQPpJtx//BFevYKTJz9vIQQ2bYLWrWH8eKlFsXPnzhEjRmRkZDg6OsrFE91jx46Vl5ePGzcOK2IYwWKx6DlJLhLW1XaVoRvloki/MaENRjHhjuokJCSEy+Xu27fP2Nj48OHDXC6X6YjkBo/H++eff7p06bJp06bKykr8xEOoKdPQ0PD19TUxMYmNjZ0yZUpZWZngq/r6+v7+/m3atLl27dqcOXOk0Lu2srLy6tWrgAl3cZg/f/6MGTPy8/Ol+bxEvpSVlW3durV79+6HDx/GrpKoqtu3b/fp02f+/PnZ2dm4Brquqi1m79+/f/PmzV++fMlIid6tW7fGjh1bVFT0008/Vc22FxcXT5gwISAgoE2bNnfu3OnVq1fVdzAzM1uxYsXt27dzc3P9/f1dXV0tLCxycnLOnTunfPgwtGsHXbrAkiUQEADy0HsEic7W1nb8+PGFhYUbN25kOpbaLF26lMvluri4GBsbMx1LHUg34T5yJCxfDnPnwrx58O+/sG8f2NnB5cvg5QUaGlKLQklJ6dy5cwYGBmFhYatWrZLacevt33//BRyXyig5qhCvNlQjI6PWrVtnZmYmJyczFFdT1Agq3Fs0bHIGqgdXV9fIyMjhw4dnZmbOnz+/V69et27dYjooOfDo0aMhQ4Y4OztnZmYOHDgwLCzM1dWV6aAQQkzS09O7fft2x44d79279+2333I4HMFXu3TpcvXqVS0trVOnTq1bt07SwQQFBeXm5vbs2VO+bhRl1qFDhzp37vz48ePff/+d6Vhkjp+fn5mZ2bp164qKihwcHJ4/fz5z5kymg0Ky4tWrV9OnTx8zZkxcXFzXrl29vb29vb2ZDkrOVJtwV1JSGjp0KABIf4XljRs3Jk+eXFpa6uzsfPjwYQWFL1J89HMgMDBQX18/MDCwZ8+etb+burq6ra0tm82OiIhISkr666+/TLt0gWbN4PXrT+m7li1h8mQ4dAhqWWNECJw9CxMmQK9e0L8/ODtX0+gCyQwPDw9VVdWjR4/K7NPZc+fO3b9/v3Xr1rTpvByRbsIdAP78E7y9ITsb9uwBLy/o0gUiI0HqLXjatGlz/vx5VVXVffv2/ffff1I+ep3cu3fvxYsX+vr648aNYzqWpkuOeqDXFCot0peLb6HRaAQJd9mPU67V9PvYt2/fe/fu+fr6Ghoavnjxwt7efsKECTKycJ7D4dDneeHh4ULZK6a8f/9+9uzZgwcPfvTokYGBgZeX14MHD+iynqqw7B2hJsXAwOD69eu6urq+vr6//vqr0Kv9+/e/fPmynp4ezZ5I1IkTJwBg6tSpkj5QE6GtrX3ixAklJaWtW7feuXNH+gFUVFRcv36dnlMePnwohUUSooiPjx87duzEiRNfv37do0ePGzdu+Pn5GRkZVd2Ty+XiTYGk0b/hV69e0YtqxhUXF7u7u/fs2dPHx0dTU9PNzS02NtbR0bHanWNiYqQcnhwZMGCApqbm8+fPP3z4ILidkTbuV69epau4FixY8Pfffwtl2z9+/GhnZ3f37t2OHTsGBwebmprW6c2NjIwWLlyoe+QI5OVBRAS4uYGFBRQXw5UrsHAhGBlBly4wfz74+EBh4RdfOW8e/PgjdOgAy5eDkxMkJYGFBVy/3vDvF0lC165df/31Vx6Pt3TpUhk5nQkqLS1ds2YNAGzZskX+ygFJE/b3338DgJqaWkREBNOx1GjWrFkAsHHjRqYDadIyMzMBQEtLi8PhMB3LV3C5XJokzcjIENzu7u4OACtXrmQqsCZo/PjxAODr6yu40dPTEwB+/vlnpqIS0Z49ewBgyZIlTAfSOL17987Q0BAARo4c+eTJk5p2KykpYbPZWlpaAKCiouLi4lJQUCDNOIXcuXOnd+/eAKCnpwcAxsbG165dYzCe4uJiNpvdrFkzANDQ0HB1dS0sLKxp57i4ODpgp2PHjm/evJFimI0EPQ+2bNlSaLulpSUAPHr0iJGoRNeqVSsA+PDhA9OBIAY8fPhQU1OzpsvpWj43GqKgoCA4OJjNZjs4OLRq1UpRUbFdu3ZRUVGSOFaTRS9u27dvn5WVJZ0jlpaW+vr6Ojk5aWtr01vpli1bAsCAAQMePHggnRiqlZOT4+LiQvtI6Orqenh4VFZW1rRzUFBQnz59AGDQoEGZmZnSjLOJiI+Pp3cB9BJOT0/Pw8ODwbtILpfr5eXVtm1bAGCxWE5OTunp6TXtnJaW5uzsrKCgoKamdu/ePWnGKUdGjx4NAOfOnRPcGBkZCQBGRkZSC8Pb25tORq32Hj83N5eW4nXq1CkpKUlsR01NJUePkunTia4uAfj0R02NjB5N/vyTpKYSX18CQC5f/vwlPB6ZNo20akVKSsQWBhKr/Px8+hEh9FMtC+i5vm/fvrKfi6uqSSfcCSE///wz/QyS2oVanWRnZ6upqSkoKLx9+5bpWJo6mh2LjY1lOpCvs7GxqZrnvXHjBgAMHz6cqaiaoGHDhgHA3bt3BTfu3LkTAJYvX85UVCLatGkTAGzYsIHpQBoneufTunVrAFBQUHBycqolD5iamkrvfACgXbt2np6eXC5XmtESQhITE/k1UF26dNmwYYOJiQn9X1tb27i4OCnHw+PxvL29O3XqRGNwcHCo5SxJ0xCKioqipCFQTTDhjuSan58fzUV6eHhI6BCVlZXR0dGHDh368ccfTUxMWCyWYIWTvr5+fHy8hA7dZHG5XFpSOm7cOB6PJ7kDFRYWnjt3ztHRkT65ofr16/f777/v2LGjTZs2ouQxJaSystLT05Pm/ZWUlJydnWu5q01OTnZycqLx0zVhEv17a4Jyc3NdXV1VVFQAQFtb28XFhbYZoT8wjOSvHz16NGjQIBpD7U+GKioqPDw8aOWWsrKyi4tLfn6+NEOVI9u2bQOAX375RXAjl8vV0dHR1taWTmbpzJkz9Lzm6upa9dXMzEz6XK179+4pKSkSiYDDIRERhM0mtrZESelT5j0wkEybRvr0Ed752TMCQC5ckEgkSBxoXWCHDh2Ki4uZjuWzlJQUeuYVSqrIi6aecC8rK6PP/WxtbWXwgcnu3bsBYOzYsUwHgsi3334LAEePHmU6kK/77bffAGD9+vWCG3NyclgsloaGBmaapIZe5QiVs/39999GRkY7duxgKioRrVixAgBkP065lpeX5+rqqqqqSu/K2Gx2WVlZTTuHh4cPGTKE3i9ZWlqGhoZKJ8iioiI3Nzc1NTUAoAuQS0tLSXV3ZR8/fpROSBEREfzbV3Nz8+Dg4Jr2rFMaAtUOE+5I3p04cYLFYikoKIixeistLc3X19fNzc3BwYFf8kwpKytbWFi4uLh4eXnJRbmGnEpJSaGLrvbv3y/2N8/Ly/P29nZycqJLqShTU1M3NzfBxyf0REnP5vREWcvZXLwCAgL4HZlHjRr17NmzmvYsLi7mn801NDT4Z3MkLrXUUvj6+nbu3JlfIiC1ZXbv3793cnKiD//at29f+/MVX1/fLl268IN89eqVdIKUU7SdVPfu3YW2v3r1Sjo5pVOnTtWSbc/IyKCTUY2NjVNTU6UQD8nOJmfOkJ9+IuXlpHt3MnOm8A6VlURJibi5SSMYVC9cLpd2Id60aRPTsXxGZ5B8++23TAdST0094U4ISU5OpqfGdevWMR2LMDMzMwC4ePEi04Eg8ueffwLA/PnzmQ7k6y5dugQAo0ePFtretWtXAKilfwUSL7oqQk4vWOmU5r///pvpQBq/ly9fOjg40Duc7t27+/n51bQnLevu0KEDraRzdHR89+6d5ALj8XhfXYCclZXFLx6XwoppusyZHq5ly5a1H070NAQSRU0J99mzZ5ubm8t+PhET7ogQsnXrVgBQUVG5detW/d6hoqIiIiLCw8PDycmpajNcfX19R0dHDw+P4OBgqaVc0cWLFwFAVVU1OjpaLG+Yk5Pj5eXl4OBA65Rp/tTKyorNZicmJtb0VYJLwegsSrEEU5OEhAT+4bp161bL4ejFQ8eOHfkXD7hyWuwCAwNpzz0AsLa2jomJEdqBNgmkT27U1dVdXV0l2iRQsOcePVwtvbPouCAafI8ePa5fvy65wBqNyspKWnTy/v176R/9n3/+oStff//996qvpqen0ySSiYlJWlqa9MMj7duTRYuq2d6qFZH5Rd5NXEhICIvFUldXl+g9pujCwsJoPPLbDhQT7oQQEhgYqKSkxGKxfHx8mI7ls+DgYABo27ZtRUUF07EgEhISAgD9+vVjOpCvS0tLowWzQn0n6DyAw4cPMxVYU0NLruS0OSZd0nH69GmmA2kq/P396cUxANja2taSvqyp5Fy8wsPDBw8ezC+oDwsLq2XnyMhIwZLz+/fviz2eOi1zFj0NgURXU8JdpvB4vJp+HTDhjqjly5cDgJaWVmRkpIhfkpqa6u3t7eLiYmVlRauY+bS0tKysrFxdXX19feX0dN84/PLLL7T2vCEL4bOysmienfZEBgBFRUUrKysPDw/RS0SFnvU+ffq03vHUpLCwUPSC+sePH1tZWdF4LCwsQkJCxB5PEyfYpadDhw5eXl617FynkvN6E72gXrD1v46ODvbcqxPapv/kyZNSPi5/MuqWLVuqvpqcnExr7Pr27cvYss6ePck33whvLCsjCgpk82YmAkJ1QO+hZs2axXQghMvl0mYkcj3PEhPun9DGylpaWs+fP5fogfLy8sLDw0+dOuXm5jZz5kxLS8uaLtBnz54NMll33zSVlJQoKysrKSkVFRUxHcvXGRgYqKioCBWw7N27FwB++uknpqJqamhhlJzWuI0dOxYArl69ynQgTQjNKdPZ6zSnnJeXV9POdbrBq5N63w1KbsW06MucBdMQzZo1k+a6/kZP9hPukZGRw4YNE2qoyocJd0TxeLwffvgBAFq1alVTU/X8/HzBeaeCGXZFRUVTU1MnJycPD4+IiAjpT9RA1SotLaX1xc7OznX92uTkZA8PD1tbW5p2FMyzZ2Rk1COYqt3MxPUwhjYtoS3jadOSWiIUHACjr6/PyACYxq3eBRCPHj0SvaahTuh5UJQCCMn9lDYdu3btkv6d9V9//cVisVgsVrXzSN69e0cvmM3NzbOzs6UZ2Bd+/JF06UKEbh8ePCAApL7Ly5DUJCcna2hosFisWj5AHB0dLcVk1apVNR3l6NGj9G5ULvJvNcGE+2e0otPY2FhcjWjLysqSkpJ8fX3ZbLazs7Otra2RkZHQDCUAqLbWIC8vj/6gy2k/ikapX79+AFBLv2DZkZiYWDXNRJvN9erVi5GQmpqSkhIAUFNTYzqQ2rx586am0Um0HkouftobmezsbKEJn7V0TfnqEuY6oeudtbS0oL7rnQWXMGtoaNS+hFkUL168oM9+6Nm5lmXOdUpDoHqQ5YR7enr63Llz+YOFq/2pw4Q74quoqKD9E4yMjGinLA6HExsb6+Xl5ezsbGpqSn+W+PT19R0cHNzc3Hx9fWt5DoqYFRsbq66uDgBnzpwRZf83b954eHhYWVnxb83U1NQcHBy8vLzEcicoWDsslnndDx8+HDhwIA219tGX5eXl/DVhKioqOPpS7Kp26alr+wVRuvbVieDV41db/AUEBNAG3wBgY2MjiXUYTUFUVBQAGBoaSu2IO3bsoD8w1Y6sePPmDW1n2r9//5ycHKlFVY3QUMJikb/++rylrIyMHEm6dyeyNzQRVbVhwwb62Kamx7TGxsYgJpMmTar2EAUFBfr6+gBw6tQpCX6rkocJ98+KioroGsBJkybVdXlXWVlZXFzc5cuXd+7c6ezsbG1tbWBgUO2PVLNmzfr16zd9+vR169b9999/YWFh1T6xocXIVdtwIwbR9ap//vkn04HUU1lZmaqqqoKCAl52S0F2dnbbtm01NTWlNtyyTpKTk11cXFRVVbt161btHSC9EG9gAhfVW1RU1PDhw+lZo2/fvrWMZaeJZppMFBrSVSe+vr70Mh0AHBwcXr9+Xe/gU1JSGr5iOjc3V/RlzoJpiIEDB9aShkD1JpsJ96rrQmrKlGHCHQkqLCyk834NDAysrKw0NDQEr9U1NDSGDh26YsUKHx+flJQUpoNFovrrr78AQFtbu5YlVklJSUJ5dnV1dZpnl0RPbbF0x67TWdXX19fIyIh/Nk9KSmpA+KgaYQ/C6KcHAAwaNKghM8OrjtutR5NA0c+DROqTBho3LpdL24dKp7s0m82ml/pHjx6t+urLly/bt28PAFZWVjJxp795M2GxyPjxZMsWsmoVMTEhenokIoLpsJBISkpK6APFY8eOVbvD06dPH4lJQkJCtYdYvXo1AAwePFgSfbekCRPuX0hMTNTW1gaAbdu21bJbUVHR9evX9+7d++uvv44ePdrQ0JA+TxaiqqpqZmY2efLkVatWHT58OCgoSPQOgH369AEAmeopj/79918AmD59OtOB1B+9QAwKCmI6kCZh//799MJoyZIlsrMSKiUlZeHChbTdjaKi4uzZs6u9Lu/UqZPUriBRTURPgufk5CxevJhfSVenfzjB5H6/fv3u3bsnhtAJefTo0aBBg+jb1l6LV9Xbt291dXUBQElJadGiRbXU6QimIQwMDCTUDhWR/yfctbS0xLUKsOH8/f35UyttbW1raQmYn59Piz0x4Y74srKyWrVqRU92gPNOG4vp06fTk47QBKzY2Fg3NzfBObfa2tqOjo5eXl5SuEITSoLXaflyaGgordzX0NDYtGlTSUlJTXvGxcUJJvdv3LghjtjRZ6kVqc7vnEd6jwSAdu3aiatLT0OS4JWVlfyZARMnTqwpdUWqS+7jB13DTZkyBQCGDh166tQpifbkcXNzozdu//33X9VXX7x40a5dOwAYNmyYRIfx1k1YGPn1V2JvTyZOJJs3E+xZJFdOnjwJAG3atGHk+U1SUhKtE23IE00ZgQl3YX5+fgoKCgoKCrXUICQlJQnl1pWUlIyMjGxtbZ2dndlstq+vb1JSUi0ruWoXFhZGf75xXKpMiY2NBYDOnTszHUg98Xi8/v37t27d+tKlS0zH0iRUVFSw2Wya2jY0NPT392c2ng8fPri6utLbNgUFBUdHx5ra1xJCdHR0AIDhBYnoyzYvdGF4LVfS8fHx48aNs7GxEfHN67QAuR6qtnkRfcX0mDFjal/mLPb2Nah2tIaOxWJJ4kelruiPOr0AMzY2vnbtWk170h/Ctm3bslisP//8s7y8XJpxIllWUVFBz3SHDx/Gk12jkZubSx+i0BlrNM8uuPhdV1fXycnJ19dXyp8Ggm1evjr6W1BFRYWxsbEooy8Fm9Hh6EvxKuGW/JH+h2a0JkRCi+gWm3ZuEvtzmjt37tSvzctvv/0m4nkQxNS+BvG9ePHiu+++43+8mJqaurq6+vv7i/fjJTc3t3PnzkpKSmfPnq36alxcHO28MWLECBm9Es7MJKdOkcBApuNAdcDj8YYOHQoAa9askf7RJ02aBABz5syR/qHFDhPu1aCPEHV1dWtahcfhcMaMGbNgwYLdu3dfu3YtISFBvJnxOXPmMPXDjWrB5XLphbI8tgauqKigIxb19fWLi4uZDqcJefr0af/+/fnXuIzc1WdmZgqm2h0cHJ48eVLL/vn5+fS2DZ/5yQjB0WdfLaoSpbalTguQG6h+RVW1fBe0dyq/LtXBwUFoQDSSkGfPntGLb/jaNDbJyc3NdXV1pQ8ydXR02Gx2Lbe1wcHB5ubmNOChQ4dim1ok6ObNm4CDbRqje/fuKSoqKigo0Me9/BUMCxcuvHPnDrMPC9PS0uoxyLSWE2LV0ZdZWVliDRkR34++hs8MIRIgEhxeObwur3/PvdrRf03aAE30QaalpaW1PF9pyHJDJIrExEQPDw97e3t6n8VfQDNt2rQjR46IqynZ69evfX19q26Pioqiv/729va1LH9h2JEjBIBMncp0HKhuIiMjFRQUVFRUalk6Iwl37twBAC0trbS0NGkeV0Iw4V4NHo9H1wf16dNHmqnJioqK+Pj4s2fPqqurs1gsKf9kI1HY2NgAQLUnPFlWVFREiwE1NTVxhan0VVZWstlsNTU1en918eJFqR06KyvL1dWVdqdlsVgODg7R0dG17F9UVOTh4dGmTRt1dfUdO3ZIK0wkkvDw8CFDhtBLeUtLy3qPBxBqxBEbGyveOKuVkJAglrahERERgjlfnOsrfb6+vp07d+Y/7WhIu/86qdO4gvfv3zd8kABq3ObPnw8Abm5uTAeCxM/NzW3y5MkA0KFDBxcXF39/f5mq+I6IiKCj6QHAwsKi3ieygIAAfjuRUaNGPXv2TLxxouiS6OEvh9NUu8lzk5v5N6Vw0DrNsKkFngelrLS01N/f39XV1cLCgj8iAgCMjIycnZ19fX3r0aC/dhEREbSJ/Pjx48X+5uL0+jUBILq6RBwtmJA0/fjjjwAwefJkqR2Rw+HQtT5sNltqB5UoFiEEUBWFhYUDBgyIj4+fNWsWbWAkdmlpaXFxca//7/nz5wkJCRwOBwD69u3bt2/fY8eOSeK4qCHWrl27bdu29evX//HHH0zHIqrc3NwJEyaEhYW1adPm2rVrFhYWTEfURL169WrevHl3794FAEdHx7/++otmjiQkJydn//79e/bsKSgoYLFY48eP37RpE7/Ys6ri4uKDBw/u3LkzKysLAIYPH37kyJFu3bpJLkJUD4SQ8+fPr1ixIiUlhcViTZs2bdeuXXSsjSgSEhKWL19+7do1AOjevfvu3bvHjx8vyXiF3blzZ+nSpbQ916hRo/bs2cNfQP1V6enp7u7uR48e5XK5LVu2XL9+/aJFi6odoIIkrbS0dN++fVu2bCksLFRXV3dxcVm3bh1tfCQhQUFBS5cuffr0KQBYW1t7eHj07t272j1LSkr279+/efPmoqIiGtv69etp6yGE+Hg8noGBQXp6+pMnT+jYJNTIlJeX0yWGgpkv2UHP5qtWrXr37h09m+/cuZO/cuurEhMT161b5+PjAwDdunXbsmUL/5E2qpNsTnYpr7SDSgeh7TmcnN8zfv8r6y8u4eoq6W5su3FRq0WKLOldcsTHxy9fvvzGjRsAYGxsvGfPnrFjx4r4tXgeZFxGRsbt27evXr3q7+//8eNHulFdXd3KysrW1tbW1rbh9+MRERGjR4/Oy8ubMGGCj48PXUgquwwN4e1biI6Gvn2ZDgXVwYcPH7p3715QUODk5NSlSxcpHDE8PPz69etGRkZxcXGy/lMtIoYT/jLsxYsX9O7xwIEDDXyrlJSUwMBAT0/PlStXTpo0ycTEhK6GFqKoqGhkZDRmzJjdu3eL5VtAYnfp0iUAGD16NNOBiOrNmze0c6WhoeHLly+ZDqep4/F4np6e9JK3devWXl5ekjhKTk6Om5sb7RYCALa2thG1DoUvKyvz9PSk7f8AYPDgwXK3hqOpoU1a6JoJ2qTlq4UteXl5/EYc2tratTfikKiq69+/umKaNsCpR+tbJFHSqZ5LTk6m/dAAoEOHDrV/bApV3+PYZ1ST+/fv00sjpgNBTVpxcbGbmxt/Jqqbm9tXm0IUFhbyu7Q1a9YMR1+KroBTcDb37O9pv7Mz2PcLP7VEW/F+hcULC8HdKngVHh88WjxpAZGgHKXskuKSx8ljIFxCCCG+vr78JJeI43bxPChTOBxORESEm5ubhYUF7SVF0bJ3b2/v+l3QBgcH0zzV9OnT5aP/55w5BIBgjksObd++3dbWVhyJZ1GNHDmyMU0cxAr32ly8eHHatGlKSkoBAQHDhw8X5Uvy8vIEi9bj4uISEhIKCwur7qmjo2NkZGRqampmZmZkZGRkZGRiYkI7PyCZlZ6e3q5dO21t7ZycHMGzpmyKjY21t7dPTU3t1avXzZs36fhyxLg3b944OzsHBAQAwPjx4//++28DAwOxvHNhYeHBgwfZbDYtprC1td26daulpWVN+1dUVPz333+bNm1KS0sDgEGDBq1du3bChAliCQZJWkpKyrp1606cOAEAHTp02Lx58+zZs6vuxuPxTp48uWrVqszMTAUFhVmzZu3atat169ZSj/cLubm5mzZtOnjwIIfD0dXV3bhx46+//koXUAvx8/NbtmwZnVXu4ODg4eEhnQoLJKLHjx8vWbLkwYMHAGBpabl3797BgweL5Z2Li4t37ty5ffv2srIyTU3NlStXrlmzhj5nqioqKmrp0qXBwcEAYG5u7uHhMWzYMLGEgRql5cuX79mzZ9WqVTt27GA6FtTUvX//fu3atSdPniSEGBgYbNmyhf8sUxA9m69evfrDhw/0bL5z507BPvWoFveK7jm+diwjZf3U+ymyFEOLQie0mHDa8PTatLV3C+9G9IiguwUUBixNWfq87DkA2GrZenTwMFMzYzRwqKysPHjw4MaNGwsKCpSVlRcsWPDHH3/QEgQheB6UcVlZWXfv3g0ICPDz80tPT6cblZSUBg4cOGHCBFtbW3Nzc1FW5Ny/f3/8+PFFRUUzZ848fvx4tRfPMufECZg9GyZMAF9fpkNBdRYfH3/mzBmpHW7x4sW0MKuRYDrjL+tWrFgBAG3atHn//r3QS3l5eREREd7e3mw229nZ2dbWtqaLHh0dHQsLC0dHRzc3N29v74iICBkdIY1EQHOj8fHxTAfyFUFBQbTG2cbGBqtBZQ2Px/Py8tLV1QWAFi1aeHp6NrAytLCwkM1m6+jo0M8cW1vbR48e1bJ/eXm5p6dn+/bt6f69e/f29vbG3o7yKDAwkN9bw9raOiYmRuhVfreEkSNH1j4sV/pevHhhb29Pw+vRo4fQhIkXL17wF1AbGxtfv36dqThR7egHWtu2beH/06HT09PF+IaOjo7Jyck17Zydne3i4kKbC+np6Xl4eDA7FBHJBUNDQwAICwtjOhCEPrl7927f/zdbGDFihNDEnYcPHw4cOJC+OnDgQBx9WSeZlZm6MbojE0Z+5HyaD/+i9MXGtI0cHodf4f6y7KXDKwfarr17bHe/j36MhiyMjtulZ7qWLVsKnenwPChfuFxuREQEm822tbVVVlbmp4xat27t6Ojo5eWVm5tb09fevHmTron56aefRBm5LCtSUwkAadGC4E8mamIw4f4VHA5n9OjRAGBubn769OmtW7fOmTPHysqqpubLOjo6AwYMmDVr1qZNm06fPv348eOPHz8y/U0gcfrmm28A4Pjx49W+WlRUJOV4qnXx4kVaBvjNN9/I9BCVpi0tLY3OZwaAMWPGvH37th5vIpRqt7KyCgoKqmX/iooKLy8vIyMjun+vXr0w1S7v6DBJWrTOHyZZp0YczPL19eX/QNIV0+KaGIakqR6djqoVHh7Or5GvfTgw7TVEHy3TXkN4xYVEERkZCQBt27aVp2wFagLo2ZzWb9GzeUZGRkpKCr/g3cDAAEdf1sOujF2sSNazkmqGytKE+58f/lSOUoZI0H6ivfvD7gqejPboiIyMFJobj+dBeVdYWOjr6+vs7Nyhw+dBAoqKihYWFq6urkIDn69fv06vsubNmyd/569u3QgACQ9nOg6EpAoT7l/34cOHDh06VK1eV1VVNTIycnBwcHV19fT09Pf3T0pKYjpYJHHbt28HgEWLFlX76tixY42MjFxcXIKDg5m6IN6/fz9td+Pi4iJ/J+Omx9vbmz7A09DQYLPZov+TFRUVeXh48D+arKysAgMDa9mfptr57Th69uyJqfbGJCcnZ/HixTRJ3axZM36D1y1btsj+U7fS0tKtW7fS8Qaqqqr0P5SUlBYtWpSTk8N0dKgOEhMT+bP7unbt6u3tXacvX7p0KT+vdPLkyVo+oPz9/U1MTOiBbG1tnz9/3uDYUVOxfv16AFi4cCHTgSBUjby8vGXLltG6V01NTXo219DQ2LRp01c7vKNqTUuaZhRrVO1LNOEeUBCgEKng9MYpoyJDyrHVFe0sRNdbs1gsPT09eh6cOHFiYmIi09GhBklKSvL09HRwcBCcFamnp+fo6Ojp6enl5UW3//LLL3J5++bsTADI9u1Mx4GQVGHCXSTx8fGXLl2aPHnyqlWrDh8+HBQUVLXDDGoigoKCaNld1ZfKy8v5kycBoEuXLqtXr3748KHUToo8Hs/NzY1egbm5uUnnoKjhPnz4wC9GtrKyevHihShfFRUVRTNTVlZWAQEBtezJ5XK9vb27du1KD2FmZubl5YUPYxql+Pj4cePGde/evWXLlo6Oju/evWM6ojqgK6a1tbVNTExsbGyePn3KdESonu7cudOrVy/6gWNjYyPU6agW//77r7q6uqura0FBQU370B9y+ubGxsbXrl0TU9SoqTA1NQUAf39/pgNBqEYJCQmOjo6GhoZ6eno4+rKBrBOsh78cXu1L/JYyr8q+Po9UdhQXF7PZ7GbNmtnZ2eF5sPEpLi729/d3dXWlZyuKNu5fuXIl09HV15kzBIDY2zMdB0JShUNTEaqb4uJibW1tBQWFgoICwefPFJfLffDggY+Pj4+PD38cSocOHcaOHevg4DB27FjJDTbhcrkLFiz4559/lJSU/v77759++klCB0IScu3atV9++eX9+/dqamru7u4rV66k3Rhr4ebmNmLECBsbm5p24PF4Fy5cWL9+fUJCAgCYmJisWbNm1qxZX31nJNeys7MBQE4Hzsh18IiPw+H8+++/69evz8rKUlJSmjt37ubNm2tqx8fH4/FSU1MFF1YLysvL2759+549eyoqKnR0dFxdXZctW6aioiKB8FGjlZCQYGxsrK2tnZmZKdg8FyEZhCdEsbB/Zf+h8kO0SXTVl1amrhQcmipfsrOzlZWVNTU15WNsJqqXxMTEW7du3bx5c8iQIS1atPj111+Zjqi+MjOhbVtQV4e8PMArN9RkYMIdoTrr3bv3s2fPBOcXVcXj8cLCwq5evXr+/PmkpCS6UU9Pb9y4cY6OjmPGjBFvjqCkpGT69OnXrl3T1NT09vbmV/8h+ZKfn7969ep//vmHENK3b9+jR4+am5vX761oqn3Dhg0vX74EACMjI1dX159++glT7QghqcnLy3N3dz948CCHw2lIilwwfa+goDBr1qw///zzq+l7hKraunXrunXrfvzxx2PHjjEdC0JIGhalLDqZe/JD7w+qLOFKKblOuCMkZ8zMIC4OQkNhyBCmQ0FIShSYDgAh+TNgwAAAePToUS37KCgoDB06lM1mv3r1KjY21s3NzdjYOCcn58SJExMnTmzbtu3s2bP9/PzKy8sbHk9ubu7o0aOvXbumq6vr7++P2Xb51aJFC09Pzxs3bnTq1OnJkyeDBg1as2ZNXX9IeDyej4+PmZnZ9OnTX758aWho6Onp+fLlS2dnZ8y2I4SkSUdHZ+/evbGxsWPHjs3Ly1uzZk3v3r2vX79epzcJDAy0sLCYP39+VlaWtbV1dHT08ePHMduO6ufSpUsAwJ9YjhBq9Ca1mJTPzT+Wg8/YEGKUtTUAQGAg03EgJD2YcEeozmhh+/bt2/fu3ZuSkvLV/c3MzNzd3ePj42nm3dTUNC8vj2bedXV1J0yYcPz48aKiovoF8+7dOysrq9DQ0M6dO4eFhQ0ePLh+74Nkx5gxY+Li4lxdXblc7vbt2/v37x8eHi7KFxJC/Pz8LCwspk+fHh8f37lzZ09Pz4SEBGdnZ1xtihBiirGx8fXr1319fbt06fLy5cvx48fb2dm9ePHiq1/46tWr6dOnjxo16unTpx06dPDy8goMDOzdu7cUYkaNUmVKyjQlpQ4tW9rZ2TEdC0JISuya203Vnrrs/bJtGdseFT+KLY09lnNsU/ompuNCqImhCfegIKbjQEh6sKUMQnWWn59/6NCh3377jf6vqampo6PjzJkzjY2NRXyH169f+/n5+fj4hIWF0d9BdXX1UaNGOTo6Tp48mQ5FEcXz58/t7e3fv3/fs2fPmzdvtm/fvh7fDpJZYWFhP/30U3x8vJKS0sKFC7du3aqpqVntnoSQq1evuru7R0VFAUDHjh3XrVs3d+5czLMjhGRHZWXlwYMHN27cWFBQoKysvGDBgj/++KPaU15xcfHOnTu3b99eVlamqam5cuXKNWvWqKmpST9m1Kjs2wdLlpBvv2WdPct0KAgh6akgFdsyth3LOfau4p0KS8VQ1XCu3tzVbVa7pbuFFoUGdAtgOkCEmoCcHGjdGlRVebm5CnhFh5oGTLgjVB+lpaUBAQE+Pj5XrlwpKCigG2nmfcKECRYWFiK+T1JS0oULFy5cuPD48WP6y6impmZnZ/fTTz9NmjSp9q+9d+/e5MmTP378aG1tfenSpRYtWjTkO0KyqayszN3dfdeuXVwu18jI6MiRI9a0OkBAQEDAmjVrIiMjAaBDhw4rVqz45Zdfqk70RQghWZCdnf3HH3/89ddfXC63ZcuW69evX7RoEb/hFSHkxIkTrq6uGRkZLBbr+++/37FjR9u2bZmNGTUSI0bA/ftw5gzMmMF0KAghBpSTcmWWsgKu8keICSdmzNh99+6es2dHjhzJdCwISQMm3BFqkLKyMn9//6tXr166dCkrK4tuNDIycnBwcHR0tLKyYrFYorxPSkrKjRs3/Pz8bt68yeFw1qxZs23btlr2v3z58nfffVdaWjplypTTp09j3V/jFhMTM3fu3KioKBaLNW/evF27dmlpaQFAQEDA2rVrHz9+DAAGBgYrV66cP38+/jAghGRfVFTUkiVLQkJCAMDc3NzDw2PYsGGPHz9esmTJgwcPAMDS0nLv3r3YJw2JTXY2tG0LSkqQmQkiLyVECCGEkFgsX758z549Gzdu3LQJezqhJgET7giJB5fLffDggY+Pj7e3d0ZGBt3YqVOnSZMm1SnznpGRcfny5eHDh5uamta0z7///jt//nwOh7No0aK9e/cqKGCZRuNXWVm5e/duNze38vLydu3a/fLLL1evXqW93Vu3br18+fIlS5Zgqh0hJEcIIWfOnHF1dX3//j2LxerWrVtiYiIhxMDAYPv27TNnzhTxvImQSP75B5ydYfx4uHqV6VAQQgihJsfPz2/ixInDhg27f/8+07EgJA2YcEdIzPiZ9/Pnz6elpdGNBgYG48aNc3BwGDt2bAPbam/fvn3NmjUsFmvjxo3u7u5iiBjJj2fPnv3000+PHz9u1apVVlZWq1atVqxY4eLioq6uznRoCCFUHyUlJfv379+8ebOFhUV4eLiLi8u6devoIh6ExGncOLhxA44cgZ9+YjoUhBBCqMnJz8/X09NTVFTMzc2taTIZQo0JJtwRkhQejxcdHe3n53f69OnExES6UU9Pb9y4cY6OjmPGjFFRUanTG3K53IULFx4+fFhRUfHQoUPz5s2TQNRI1nG53H379nXp0uXVq1cLFizAVDtCqBF49+6dpqZmcXFxp06dmI4FNUb5+dC6NXC5kJ4OrVoxHQ1CCCHUFA0YMODx48e3b9+2s7NjOhaEJA4T7ghJw/Pnz318fM6dOxcfH0+36Ojo0D7vo0ePFmW+ZXl5+axZsy5cuKChoeHt7T1+/HgJh4wQQggh1CicOgXffw/W1hAYyHQoCCGEUBPl6uq6Y8eO3377bevWrUzHgpDEYcIdIamimferV69GRkbSLRoaGjY2No6OjlOnTm3WrFm1X5WXlzdx4sSQkBBdXV1fX18rKysphowQQgghJM+mTYMLF2DfPli8mOlQEEIIoSbq5s2bY8eOHTRo0IMHD5iOBSGJw4Q7Qsx48+aNr6+vj49PWFgY/TVUV1cfNWqUo6PjpEmTWrRowd8zLS1t7NixT58+7dSp082bN3v06MFc1AghhBBCcqW0FFq1gpISePcOOnRgOhqEEEKoiSoqKtLV1SWE5OTkNG/enOlwEJIsTLgjxLDk5ORLly75+Pg8ePCAx+MBgKqq6rBhwxwcHGbOnJmdnW1vb5+SkmJmZnbz5k0DAwOm40UIIYQQkh+XLsHUqTBwIDx8yHQoCCGEUJNmZWUVFhZ27dq1cePGMR0LQpKlwHQACDV1HTt2XLJkSUhISHJy8r59+0aOHMnhcAICApYuXWpgYGBpaZmSkjJy5MjQ0FDMtiOEEEII1c2lSwAAU6YwHQdCCCHU1FlbWwNAUFAQ04EgJHFY4Y6QzMnJybl27ZqPj8/t27fnzp374cOHU6dOqaurMx0XQgghhJBcqayENm0gLw/i48HYmOloEEIIoSbtzp07tra2FhYWERERTMeCkGRhwh0h2ZWXl6eqqqqhocF0IAghhBBCcujWLbC3h1694OlTpkNBCCGEmrqysjIdHZ2Kiors7GwdHR2mw0FIgrClDEKyS0dHB7PtCCGEEEL1dP8+APaTQQghhGSCmprawIEDeTzefXqCRqjxwoQ7QgghhBBCqDHasgWePQNnZ6bjQAghhBAAtnFHTQYm3BFCCCGEEEKNxYMHMGECtGwJqqrQtSscPw7Nmn166YcfYP78L3YuL4fOnT8NVkUIIYSQhNna2vbv39/IyIjpQBCSLCWmA0AIIYQQQgghcbh5EyZNggkT4PBhaNsWnjwBNhtu34bQUNDUhA8fQGgKPY8H795BURFD4SKEEEJNi5WV1ePHj5mOAiGJw4Q7QgghhBBCSP5xODB/Pjg4gI8PsFgAAEOGwOjR0Ls3/PknbNzIdHwIIYQQQqhJwJYyCCGEEEIIIfn36BEkJ8OiRZ+y7VTXrjBhAnh7MxcWQgghhBBqWrDCHSGEEEIIIST/4uMBALp1E97eowdcvAiEAAC8fAmbN39+icORVnAIIYQQQqipwIQ7QgghhBBCSP6VlQEANG8uvL15c+BwoLISAODjR4iM/PwSjyet4BBCCCGEUFOBCXeEEEIIIYSQ/GvVCgDg/XswNf1ie0oK6OiAigoAwMCBcOnS55dKS0FDQ4ohIoQQQgihxg97uCOEEEIIIYTk3+DBoKAADx4Ibw8JASsrJgJCCCGEEEJNESbcEUIIIYQQQvKvQweYMgXc3eHt288bDxyAqChYupSpoBBCCCGEUFODLWUQQgghhBBCjcLff8OECdCrF4wYAW3bQnQ0PH0K27fDqFFMR4YQQgghhJoKFiGE6RgQQgghhBBCSBx4PLh6FUJDobAQOnWCKVOge/dPL124AEpKMGnS5505HPDwgHHjhNu+I4QQQgghVF+YcEcIIYQQQgghhBBCCCGExAB7uCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgMlpgNgUmJiYkFBgeCW3r17Kysr0/9++fJlQkJCs2bN+vTpo6urK7hbampqVFSUoqLioEGDhF5C6O3btzk5OYJbTExMNDQ0BLe8evUqPz9fS0ure/fugtuzsrKePXvG4/FMTEzat28vjXCRnEhLSysrKxPcYmhoyGKxBLe8f/++oqKiefPmLVu2FPryzMzMoqIiVVVV/LlCQuLi4kpLSwW3WPyvvXsPaurKHwB+bh4EAQ0BMTzSiGjloQmKKFuLZUURhZFKu7hilbGziLjYpVPHurVbOqita51dtq0trY+1tgUdqlVA8UGVBVsqu20hpEFwyUMgTQQJDQQkyU3u74/z2/u7E8TObwbyWL6fv7znnOuc63y9j5NzvmfJEvrPRqOxp6cnKiqKzWYz28hkMp1OJxQKFy1a5BCHAAAAgMdRKBSjo6OBgYHh4eHMcqVS2dbWxuFwYmNjQ0ND6XKNRtPW1sblciUSSXBwsLO7CzxEe3v78PCwQCCIiIhglut0OoVCwWazFyxYMGvWLGZVT09PW1sbj8dbuHBhYGCgc/sLPINMJiNJMjg42OHLTqVS4SEsiUTC5/Pp8gcPHjQ3N7PZ7Pj4+BkzZji9v8AzQFxNPGoK+9WvfsX8pyAI4uHDhxRFDQ8Pp6enEwQRGho6Y8YMPz+/0tJS+qzXXnuNxWJxuVw2m83j8T788EPXXQFwR88++6zD/zKNRsNsoFKpfH19WSxWUlISXTg8PJyTk8Ni/e+iExaLVVZW5uyuAzcWHR3NDCpvb2+73c5scPv2bTabTRBEfn6+w7m9vb0zZ84kCGLp0qVO7DLwDA5vVEFBQbhcrVbv3btXIBAghGQyGd1eq9UuW7aMbr9o0SKHWxwAtOrqahwnH3/8MUVRfn5+Y19ECwsLmadcunQJlzNfvQBggrgCE+7rr79msVhsNnvr1q10oU6nS0lJwa/l+NPv5s2bFEWRJPniiy+yWCyhUBgQEODl5VVUVOS6vgP31dzczOFwWCxWVlYWXWgwGDIzM+nJClwu99q1a7hKr9evW7eOvo/xeLzGxkYX9R24rwsXLhAEQRDEvn376EKVSrVixQo6eHx8fNrb23HVgQMH6EmlPj4+x44dc1HHgVuDuJoMUzqljE6n27lzp4HB29sbIfTWW29dvXr12rVrWq22r6/vN7/5za5duzo6OhBCZWVlhw4dysvLGxoaMhgMzz33XEFBQWNjo6svBbgRvV7//PPPM+NKLBYzG+Tn50dERDj83pOdnf3FF18cP378/v37FouloaFh7MA9mMr0en1hYaHyP9rb25nTikmSzM/PX716tcMcGaywsNDHx4f5sAQAs9vtvb29Bw4coO9XnZ2dCKH6+vrIyMhvvvkGjzUwvfDCC3K5/PLlyxRFNTQ0dHd3b9y4kaIoV3QfuLWff/55x44d6enpdElVVVUtw/HjxxFCzF8TjUajwykAOIC4AhPOYrHk5eWlpqbOnj2bLrRarevWrZPJZNXV1YODg6Ojo7du3UpKSkIInTx58tSpUydPntTr9X19fXv27Nm/f/+NGzdcdwXAHZEkmZubu3z58sjISLrQbrevX7++rq7uzJkz/f39ZrP5+vXrycnJCCGr1bp27drvvvvuwoULAwMDo6OjNTU1CQkJrrsC4I4GBwdfeuml3NxcDuf/klUMDQ0lJyd3dXVdvXp1cHBweHj40qVLOPDOnz//xhtvbN68GY9fpaWl5efnf/vtt667AuCOIK4mi6tH/F3GbrfzeLx33nlnbFVKSkp4eDh9WF9fjxDC043j4+NFIpHNZsNVP//8s7e3929/+1vn9Bl4BJFItHv37vFqT506xWKxGhsbk5KS6BnuOMYOHDjgpC4CTzMyMoIQ+uijj8ZrUFxcPG3aNKVSKRQKHWa419TUIISqqqrS0tJghjtwoNfrEULl5eUO5aOjo729vRRFnTt3DjFmuH///fcIoTfffJNueeTIEYTQrVu3nNVl4DG2b98uFArlcjn6z0xkB4WFhQEBASaTiS7ZsWPHzJkzW1tbEcxEBuOAuAIT7o033vDx8VGpVBEREfQM99OnTyOEPv/887Ht8ZAE/T2oVqsRQm+//bbzegw8weHDh728vNra2mJiYugZ7l988cV4966///3vCKEzZ844t5vAw2zfvn3mzJl9fX1cLpeeiXzo0CGE0I0bN8a2X758uVAotFqt+BCPX+G5MgDQIK4mydSd4Y5/UmZm4qOJxeLu7u6bN2/iw+bmZoIgJBKJ1Wr94YcfMjIy6LwffD5/5cqVTU1Nzus3cG92u/3+/fshISGPrH3w4MGePXvy8/OfeuopZnllZSVCKD8/3xldBB7op59+Qgg98n6FEOro6Dh06FBRUZFDdkiE0PDwcEFBQVZW1vr16ye9l8ADjRdaPB4vKChobPvbt28jhJ577jm6BP8ZZjQAB/X19SdOnPjrX/+KsxKNNTg4eOrUqV27dvn6+uKShoaGY8eOlZSUjN2FAgAM4gpMOLlcfvjw4eLi4jlz5jDLq6qqZsyYsWnTprGniMVikiTLysrwYUtLC0JIKpVOfmeBx1Cr1fv373/ttdccckJWVlZ6e3tv27Zt7CkXL14MDAzMyspyUheBB8IPwbFPtMrKyvnz5+OlEkw2m+2f//xnRkYGPW2Zz+evWrUK3tsBE8TV5Jm6A+46nQ4hdPToUZFIxOfzf/3rX9fV1eGqffv2BQcHr1mzJisr69133y0uLv7b3/4mkUh0Op3dbndIDyIWi3/66ScKVtMDhBBC/f39Vqv13LlzUVFRs2bNSkpKun79Ol1bUFDA4XDeeusth7MUCsWsWbNkMllaWppYLI6Li8MLogHA8P3qxIkTcXFxMTExW7duvXv3Lq6y2+25ublz587dvXv32BP37t3b399fUlLi1O4Cz4FnuB88eDA8PDwkJGTDhg0KheIx7Xt6ehBCzEX3YrGYIAitVjvZXQUexGw25+fnJyUlZWdnj9emtLTUbDbv3LmTecozzzzzwgsvOKubwMNAXIEJZ7fb8/PzIyMjCwsLHara2tqefPLJ8vLyxMTEoKCguLg4eoT997///YIFC3JyctauXXv06NGdO3fu3bs3LS3N6d0HboqiqLy8vNDQ0D/+8Y8OVQqFYt68eTU1NWvWrBGJRAkJCWfPnqWrIiMjKyoqVq1aJRKJnn76aTwlCwDsMU80hUIRFRX18ccfJyUliUSilStX4smj9+/fJ0mS+d6OEBKLxTqdzmazOa/rwI1BXE0qzi83+S8VFha2Z8+euXPnzp8/X6/XHzlyJDU1tb6+/qmnnhIIBIsXL5bJZG1tbefOnQsKCsL7gw8MDCCEHLbfnTFjhsViMZlM06dPd82VAHcybdq0V155JSQkJDo6emBg4P3331+3bl1NTU1qaurly5crKirOnj3r7+/vcJbRaDQYDNu2bduyZcuGDRuuXLmC9wl45ZVXXHERwO2IRKLs7OyFCxdu2rSpq6vr/fffv3Tp0g8//DBnzpwPP/ywsbGxoaGB3rSE1tTUVFpa+u677zrsigkALTo6eufOnbGxsWKxWK1Wv/POO4mJic3NzeHh4Y9sbzAYCIJgPgc5HI6vr29/f7+Tegw8wZtvvqlWqy9evMjcaoLJarV+8MEHW7duDQ4OxiXFxcUqlerLL78c7xQAIK7AhHvvvfdu37799ddfj32JGhwcvHv37pEjR7Kzs/Py8srLy7ds2UIQxObNm/38/JYtW6bX6/v7+1966SU/Pz865ABACJ08efKrr76qra3F+8MxGY3G7u7uV199ddOmTc8///z58+ezs7NJktyyZYvRaOzq6jp48ODGjRuzsrLKy8szMzMvXryYkZHhkqsA7gY/BPHOlsxym81mMpmuXLmi1WozMzMFAsGJEyfWrFlTX1+Phx34fD6zPZ/PJ0lycHBwvLViYEqBuJpcrs5p4y4ePHjg6+uLsw6tWbMmPDy8r6+Poqjvv/8+NTUVIfTZZ5/hpfcHDx5knvi73/3O19fXNZ0Gbm9oaEgoFCYnJxuNRpFIlJqaSlcxc7inpKSEhoYajUZ8aLfbExISQkNDnd9h4BHwjqmFhYVarZbP5+fl5dFVdA53s9m8YMGC+Ph4kiRxFeRwB78IT29/9dVX6RKHHO5/+tOfEEIGg4FuYDabCYJ4zMYVYKppaWnhcrn0riR4VYRDvtrTp08TBKFQKPChTCbjcrnFxcX4EL9uQa5twARxBSacRqPx8/MrKCigS5g53KOjoxcvXmyxWPChxWKJiIjA71G5ubn+/v6dnZ0URbW3t+NZgQ5fiGDK0ul0AoGADiSKopg53GNjY2NiYkZGRvCh1Wp98sknFy1aRFHUnDlzli5dajabcdXDhw/DwsLor0UwxeGH4P79++kSZq5tX1/ftWvX0h99BoNh+vTpWVlZeCUr8yyKonbs2MHj8ex2u9M6D9wWxNVkm7oz3B0EBgbOnTtXrVb39PRcv359//79OIFRXFzc5cuXw8PDT506lZ2dzeFw8MY4NLVaDbNHwXj8/PwkEsm///3vw4cP9/T0BAQEpKSk4Cq8eVdKSkp5eXlYWNjt27fpSaMEQSxdurSpqclsNvN4PJf1HriryMjIsLCw9vb23bt3G41GtVq9ceNGXGU0Gmtra3NycqRSqUKhiI+Pp5feNzc3m83mjRs3lpSUwF0LPFJMTIy/v79SqRyvAY4cjUZDT164d+8eRVEQUYCWm5trt9sNBgNeSj80NIQQunDhAk7dgNuUlJSsW7cuJiYGH27fvt1msw0MDOBTTCYTQujixYsURdG5QcAUB3EFJtzrr79uMplu3LgRHx+PS7RabU1NTXx8/HfffRcWFqbVaumZ71wuVyKRfPvttyRJnj59OicnZ+7cuQihyMjIzz//XKlUfvLJJ6+//rrLLga4jaKiooGBgTt37tAffffu3evv709JSampqQkLC+vo6Jg2bRqu4nA4ixcvvnbtGkIoLCxseHjYy8sLV3l7e0skkscn+gNTx8svv2y1WmtraxsaGnAJSZLl5eUajaasrCwsLIyiKDabjasEAsG8efNUKlVQUJCXl5dGo2H+VRqNJjQ0FBZ+AQRxNfmm7oC73W4fGhqi10GYTCaNRpOamoofcmazmW7JYrEIgsChlpiYWFVVRQ+D9vb2NjQ0vPjiiy65BOCehoaG6PxCJEl2dnbitOx79+5lNuvo6EAILVmyxMvLSyqVfvLJJ01NTQkJCbhWLpeHhITAaDvAKIoiSZL+6jOZTH19faGhodHR0Q5JrgiC8PLy8vf3f+KJJ/Ly8phVHA6HJEmBQEA/NQHAc/foW41OpzMajU888cR47RMTExFC586dW7x4MS45f/48QmjFihWT31ngGYRC4cqVK+VyOT7EL1T37t2jd56ora1taWn5y1/+wjwlOTn5xx9/dDgFPygBQBBXYBIkJyeLRCJmiVKpDA4OXr16NUIoNja2rq5OrVbjzVRtNptcLp8zZw5+0WJ+KiKE2Gw2BRt6AYQQQomJiQEBAcySlpYWgUCwZMkSgiCkUunVq1eVSiX+wYaiKIVCgVMhS6XS48eP63S6kJAQhBBJknfu3HHIkgymrPXr19MDBdjNmzdDQkIkEglCSCqV1tbWmkwmPz8/hNDIyIhKpVq1ahWLxVq+fHl1dbXFYsHDXAaDoa6u7jFboYApBeJq0rlqar3L7dmzZ968eRUVFTqdrqWlZe3atRwO59atWxRFxcXF8fn8a9eu2Wy2kZGRffv2of+sWr1y5QpBEJmZmRqNpqOjY/Xq1Twer62tzdVXA9xFSUnJ7Nmzz54929/fr1Qqc3JyEEIVFRVjWzJTyvT29vL5fKlU2tTUpNfri4qKEEL0ImgAXn755RUrVjQ1Ndnt9u7u7oyMDDab/c0334xtSaeUGQtSyoCxtmzZkpCQ8NVXXxmNxubm5sTExGnTpuGHWk9Pj1Kp/OCDDxBCly9fViqVOO1VWloaj8erqKjAef34fH5ycrKrrwO4r7GpP1JTUyUSyWPWnELqD/CLIK7AZGCmlLl79y6Px1u+fHlTU5NSqdy2bRtC6LPPPqMoasOGDVwut7y83Gq1WiyWo0ePEgRBr8EHwAEzpUxnZyePx3v66adlMplWq921axd9X2ptbeVwOCkpKT/++GNXVxee0ldWVubSvgP3xUz9UVdXRxBEVlZWR0eHSqXKzMwkCOL69esURdXU1CCEsrKy7t+/39XVlZ6ezuVyW1paXNp34L4gribW1B1wV6lU6enp9EzP2bNnV1ZW4iq1Wp2eno4Q4vF4LBbLx8enuLiYfoMvLS2lp5QKhcKqqirXXQRwOz09PRkZGSwWC0dIQEDAsWPHHtmSOeBOUdQ//vEPepYNl8v9wx/+YLVandRp4PYaGxsXLFiAEMKrtAIDA8+cOfPIljDgDv5f/vWvfy1btoz+DT4iIuLGjRu4Ki4uzuEX+o8++oiiqL6+vlWrVtGFzzzzjF6vd+lFALfmMDAql8sJgvj0008fcwoMjIJfBHEFJgNzwJ2iqOrqano31OnTpx85cgSXP3jwYPPmzSwWi8vlcjgcLpdbUFBAZ3sHwAFzwJ2iqMrKyqCgIBxX3t7eRUVF9DjDmTNn6JR9Pj4+f/7zn13UZeABmAOjFEWVlpb6+vri4OHz+cwhiPfee8/HxwdXCQSCR84FBACDuJpYBDW1l78NDAwolUo/P7/IyEiHfEO9vb1KpRKv/KIjCXv48GFHRweHw4mKiuJwpm5aHjCevr6+jo4Ob29vqVRKZ+JzgD/8QkND6RKbzdba2moymWJiYgIDA53UV+A55HK5SqUKDAxcunTpeOmGWltb/f39xWLx2KrOzk6SJKOioia5m8Dz3Lt3T61WBwUFxcTE0I9CrVbrsGR+5syZ9O/NKpWqq6tLJBLNmzfP2d0FHuXhw4eXLl1asmRJREQEQqi9vV0ulz/77LPjPRwRQqOjo9XV1XFxcXjFPQBjQVyBydDd3c3j8WbNmkWX2Gy2O3fukCQ5f/58h+9Bg8GgVCqtVive/sTZfQWeo6enh8vlCoVCusRischkMovFsnDhQjrDLTY6OiqTyWw2m1QqxWkcAHgktVrN5/OZ+YtGRkZaWlpYLFZsbCy9TwBmMplaW1tZLNaiRYu8vb2d3lngMSCuJtZUH3AHAAAAAAAAAAAAAAAAACYEy9UdAAAAAAAAAAAAAAAAAAD+G8CAOwAAAAAAAAAAAAAAAAAwAWDAHQAAAAAAAAAAAAAAAACYADDgDgAAAAAAAAAAAAAAAABMgP8BtaQN0A6wAgAAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"GA\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2a8165e7-cdd4-452a-9481-665c9b4acb02", + "metadata": {}, + "source": [ + "#### Back Pocket 1 (B1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "27f4d1f4-c672-4d7d-ab15-a34b09f16053", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.131617Z", + "iopub.status.busy": "2024-05-13T08:55:44.131455Z", + "iopub.status.idle": "2024-05-13T08:55:44.185135Z", + "shell.execute_reply": "2024-05-13T08:55:44.184539Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 B1 fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAABDK0lEQVR4nO3dd3yN5//H8U9OdogQKogVgtpiVYqgVlWolWobof2q0RoJpWbFCGKU4IciVBRtjbRGS9Hao0bN2FtEkBDZ89y/P+70VFWt3OeciNfz4Y+c69y5rs+pI/l+3+e6P5eFoigCAAAAAAAAAAByRmfuAgAAAAAAAAAAyAsI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGrAydwEA8Oq5f1/Wr5eLF8XVVVq3Fjc3cxcEAAAAAAAADbDDHQBM69o1qVFD9uyRChXkxg2pU0d+/93cNQEAAAAAAEADFoqimLsGAHiV+PlJ4cISEpL9cNkymTxZzpwxZ0kAAAAAAADQAoE7AJhWxYryzTfSsGH2w9RUcXCQe/ekYEFzVgUAAAAAAIAco6UMAJjW7dtSpMjfD+3sxNFRoqPNVxAAAAAAAAC0QeAOAKZVsqRERf39MCFBEhKkVCnzFQQAAAAAAABtELgDgGk1bSqLF//9MDRU6teXfPnMVxAAAAAAAAC0QQ93ADCVO3ekaFGJjZW33hJXV/HykrNnZcsW2bxZatQwd3EAAAAAAADIKQJ3ADCJqChxc5MWLWTDBsnKkl275Nw5KVVKvLzEycncxQEAAAAAAEADVuYuAABeDYsXS3q65MsnOp3odNK8udSrJwUKmLssAAAAAAAAaIYe7gBgfHq9LFkiItK7d/ZIWppUqCCtWkl8vBnrAgAAAAAAgIYI3AHA+DZvlqtXpVw5eeut7JHwcLlzR27fZpM7AAAAAABAnkHgDgDGt2iRiEivXqL766fuwoUiIp9+araSAAAAAAAAoLXnPjR19s2bex88UL/WiXxXpYoRqgKAPOTWLSlTRkTk2jUpXlxE5NIlqVBBHBwkKood7gAAAAAAAHnGcx+aGp2e3qFIkbbOziIiFhbaVwQAeUxoqGRkiI9PdtouIl9/LYoiH3xA2g4AAAAAAJCXPHfgLiJ2Ol0Bqxf5RgB45RiOS+3VK3skPV2WLRN56ABVAAAAAAAA5AkvkptvvX//SkqKiNTMn795oUJalwQAecivv2Yfl9q8efbI2rVy547UqCH16pm1MgAAAAAAAGjsRQJ3VxubqvnyiUhxW1ut6wGAvEU9HJXjUgEAAAAAAF4BLxK4V8mXr7Xaw11ERPSKoqOZOwD8S1RU1LrY2A89PJw+/jh76NIl2blT8uWTDz80a2kAAAAAAADQnu7plzzR6aSkLhER55OTNakGAPKSxYsXf7Z7dy93d3FxyR7iuFQAAAAAAIC867kDd90/vyc0Ovp6Wlqv8+f3x8drWBYAvOz0ev2SJUtEpNdfx6WmpaV9feLEgxo1OC4VAAAAAAAgT3ruwD3Ize3dIkUMD4PLlXvH2TkpK8v/4sUf7tzRtDYAeIlt3rz56tWr5cqVa/7Xcanh4eGfbtniJcJxqTCq+vUlMDD76/R0KV9esrLMWhAAAAAAAK+MnLaUsbGwGOfm1rt4cUVRpt24MenatSxF0aQyAHipLVq0SER69eql++u41IULF4rIpxyXCiO7dk3mz5eTJ0VEFEUuXzZ3QQAAAAAAvDIsFI3y8S3374+9ejVdr/csUCC4XLl8lpaaTAsAL6Nbt26VKVNGRK5du1a8eHERuXTpUoUKFRwcHKKiogrQwB3G5OIiX3wh4eGye7dkZIidnWRmCr+WAQAAAAAwgZzucDdoVajQ1xUqOFtZ7Y+P73nuXHR6ulYzP1lGRkZcXJxp1gKAZxQaGpqRkdGhQwc1bReRr7/+WlGUDz74gLQdJvD++2JpKYsXm7sOERFRFGXVqlVz5841dyEAAAAAABidZjvcVTfT0gIuXrySmlrE2nqGu3sVBwcNJ3/EkSNHli1b9sMPPzRr1uzKlSs//PCDup8UAMxLr9eXL1/+6tWrW7dubdGihYikp6eXKlXqzp07Bw8erEcDdxiZi4scPSqxsdKihRw9Kq6u5tzhfvToUX9//927dzs4OJw7d65kyZLmqQMAAAAAAJPQbIe7ytXWdvHrr9d1dIzJyOhz7tzWw4e1nV9Ezp49O2bMmPLly9etW3f27Nm3b9/+9ddf//jjjwYNGhw8eFDz5QDgeRmOS33rrbfUkbVr1965c6dGjRqk7TCe1FSZOlXu3s1+WL26dOsmY8eKiCQnS1CQJCSYtJ7Y2Fh/f/969ert3r27cOHCkyZNMtzwAQAAAABAXmWl+YwFLC3nVqgw7caNk/v2tf7wwzFjxoxV/+9+zkRFRa1evXr16tV79+5VR1xdXTt37uzj41OzZs3333//l19+adKkyeLFiz/88MOcLwf825EjRxI0zasKFChQu3ZtDSdELqEejtq7d2+OS4XJbNggAQFy+bJcufL34NixUq2aiMj06TJ+vMyaJaNHS//+Rt/tnpGRMW/evMDAwAcPHlhbW/fr12/8+PFOTk7GXRUAAAAAgFxA45YyDwueMmXUyJF6vb5Xr15z5861trZ+gUni4+N/+umn1atXb968OTMzU0ScnJzat2/v4+PTpk0bK6vsDwwyMzMDAgLmzp1rYWGhVcQPGOj1+tGjR2/cuPHkyZMaTlurVq133nknKCjIwsJCw2lhXunp6R4eHhcvXrx+/bqLi4twXCqM7OxZGTRINm8WEXn9dZk5UwYOlF27pFgxEZHVq6VPH9myRQYNkj17RERq15ZZs6RRI2PVs23bNn9//9OnT4tIixYtQkJCqlataqzFAAAAAADIZYwYuItIeHi4n59fcnJy8+bN16xZU7BgwWf8xqysrO3bty9btiw8PDwpKUlEbG1tW7Zs6ePj06VLF4f/aA0/a9aswYMH6/X6jz76aMGCBTY2Nlq9ELzilixZ0rNnz4IFC9asWVPDaY8dO/bgwYOwsLDu3btrOC3MKzExcf/+/T/88MOxY8dGjBhRvnz55cuXf/XVV5988smiRYvMXR3ylHv3ZNw4mTdPMjPF2VnGjJF+/cTqv29d27BBBgyQa9dERLy95f/+T7Q9+uT8+fODBw/++eefRaRixYozZsxo27atlgsAAAAAAJDrGTdwF5Fjx461a9cuMjKyQoUKGzdurFix4pOvV49C/e677+7evSsiOp3O09PTx8fH19e3SJEiT11u06ZNXbt2TUhIaNiw4Y8//vjaa69p8zKexd27smaNnDsnJUpI27bChr68IiEhoVKlSrdu3fruu+/ef/99DWf+9ttvu3fv7uLicv78eTY+v9Ti4+N37dq1ffv2HTt2HDt2TK/Xq+PW1tbu7u4FCxbcv38/x6VCQ5mZsmSJjBolMTFiZSX/+59MnCjP8EtSkpNlzhwJCpLERHFwkAEDZPRoyZ8/p/XExcUFBwfPnDkzPT29YMGCw4cPHzRoEB97AwAAAABeQUYP3EXk5s2b7dq1O3r0aOHChcPDw728vP59zenTp1etWrV8+fJLly6pI1WqVPHx8enRo4ebm9uT509PT7e2tjY05Thx4oS3t/eNGzfc3d03btxYqVIlbV/O4129Kg0bSqdO0rSpXLokU6dKaKh06GCKpWFkQ4cOnT59+ptvvrlnzx5te78oitK4ceO9e/eOHDly4sSJGs4ME0hKStq/f/+ePXv27t27c+fOjIwMddzKyqpmzZotWrRo2rTpoEGDzp49O27cuJYtW3p6epq34CfIysq6efNmnz59Cj2Ro6OjuSuFiMhvv0lAgJw6JSLSvLmEhGQ3an92kZEycqQsXy6KIiVLysSJ4ucnL/bjTa/XL1++fOjQoXfu3NHpdL6+vtOnTy9atOiLzAUAAAAAwMvPFIG7iCQmJn744YcbNmywtbUNDQ3t1q2bOn7z5s01a9Y8fBRqqVKlOnbs+NFHH3l4eDzLzHq9vkuXLjY2NkuXLrWzs1MHo6Ki2rdvf+TIEWdn57Vr1zZt2tQIr+mfPvpInJxk1qzsh+vWZd+3T2/ul9ylS5eqVq2akZFx4MABY2xPPnLkSP369a2srE6dOlWhQgXN54e2kpOT9+3bp4bsu3btSk9PV8cNIXuLFi0aNmxob2+vju/atatp06Y2NjZHjx6tXLmy+Qp/iq+++mrChAkPHjx46pV2dnZPDuUNXFxcLI19NOer5/z586NHT926dVFcnEWFCvLVV9Ku3bN+b0qK/PXGzLZzpwQEyLFjYmsr77zj/+WXz/qb12D79u0BAQEnTpwQkaZNm4aEhGjbdwsAAAAAgJeOiQJ3EcnKyho8ePDs2bMtLCz8/f1r1aq1Zs2aTZs2ZWVliUihQoW8vb27d+/evHnz59pEfOrUKU9Pz8TERC8vr/Dw8MKFC6vjSUlJvr6+69ats7GxWbRokdF7ZFetKvPmSZMm2Q+zssTeXq5dk+LFjbsujKx9+/YbNmzo2bNnaGjow+NBQUE7dux4gQmbN28+YsSIh0d69OixbNmyTp06rV27NielwkhSUlKOHDmyd+/ebdu27d69Oy0tTR23tLSsVauWmrA3adLkv5oC9ezZc8mSJU2aNNm+fXvuPB333LlzHh4eKSkp48ePL1++/P379+Pi4u4/TkJCwrNPa2lpGRQU1LVr16fepYRn8eDBg6CgoNmzZ6enp7dsuapVK5+BA+XZW7akpEjVqtKokUyfLg/vPs/KksWLZf363T//7KXT6Xr27BkUFPQs+9Nv3LgxatSob7/9VkRKlSoVFBTEWRQAAAAAAIgpA3fVnDlz1L6uKSkpImJnZ9eiRYvu3bu/++67L9zs9eTJk97e3tevXy9fvvzGjRtff/11dTwrK2vUqFFTpkwRkYEDB86cOVOn02n1Qv6m14uFhRQrJlu2yMM7+1xcHh3By+a3335r0aKFo6PjuXPniv/zs5OuXbuuWrXqBeb88MMPV6xY8fDI7du3K1asGB8f/+uvv7Zq1SpHFUMjmZmZx48f37Zt27Zt2/bs2ZOamqqOqyF7w4YNGzVq1LJly2c5CPrevXuVK1e+c+fOkiVLPv74Y+PW/fz0en2TJk327Nnz70+VHislJeWxWfy/3b59O1++fDVr1ty9e7cJXkgepvZs+eKLL27fvq32bJk6dWqxYsWea5LNm6VdO8nMlEKFZOxY+eyzf5ytmpiYOH369ODg4LS0tPz583/++ecjRoywtbV97FRJSUnTpk2bMmVKamqqg4PD0KFDhw8fbrjDDAAAAACAV5ypA3cR6dWrV2hoqJub29ixYzt27KhJU+Bbt261b9/+8OHDhQoVWrt2bbNmzQxPhYaGfvbZZxkZGV26dFm2bJn9I3fU50REhKxeLd9+K99+K/7+MnastG2b/VRysjg6SkyMFCqk2XIwrczMTA8Pj1OnTk2dOnXo0KGPPHvq1Kno6OgXmLZ48eJV/3Wg7qRJk0aNGlWlSpXjx49bPRyDwbQiIiLCw8O3b9++f//+R0L2pk2bNmvWrHHjxi9wvO2KFSu6devm7Ox85syZ3NbbeurUqcOGDXN1dT158mQhTX9excfHu7u7371797fffnvrrbc0nPmVcvDgQX9//wMHDohI/fr1Z82a1aBBgxeb6tw5GTxYfvlFRKRiRZkx4+9fWaoLFy6MGjVq9erVIlKhQoWJEyf6+Pg8fIGiKGvWrBkyZMj169ctLCy6dOkyffr00qVLv1g9AAAAAADkTYrJ+fn5iciCBQu0nTYxMbFDhw4iYmVlNX/+/Ief2rJli5OTk4i88cYb0dHROV3p2jUlOFipXl0Ryf4zYoQyfLjSrp2SlZV9zYwZSr16OV0IZhUSEiIi5cuXT01NNfZaaWlp7u7uIjJv3jxjr4X/EhkZ2a9fP8PPxnLlyvXu3XvVqlWxsbE5n7xt27Yi0q1bt5xPpaEzZ87Y29tbWFj88ssvxph/woQJItK0aVNjTJ7n3bhxw8/PT21D5OrqGhYWptfrcz7tunWKu3v276527ZTz57MeuWDr1q3V/jqDtXnz5idPnlTHDx069Oabb6rjdevW3bt3b86LAQAAAAAg7zHDDveaNWueOHHiwIEDb7zxhrYzK4oybty4cePGyb96yERERHh7e1+9erVkyZIbNmyoVavWc88eFyfr18u338rvv4teLyJSqJB4e0v37tK8uSQlSZs2oijStKlcvCh798ovv0jVqtm37j/nvf8wu3v37lWsWDE2Nnb9+vXtnv1QwhxYu3Ztly5dnJ2dz58/bziKAKY0Z86cgQMH1qxZMzAwsEmTJs7OzhpOfu3atapVqyYlJW3ZsqVly5YazvzCsrKy3nzzzYMHD/bq1WvhwoUPP7Vp06ZOnTrl/HDU+Pj4smXL3r9/f+fOnV5eXiZ5WXlBcnLynDlzgoKCEhMTHRwcBgwYMHr06Pz582s1f0aGzJsngYESHy8eHv6NGsn48ePVj6VVmZmZS5YsGTVqVExMjJWV1fvvv6/T6ZYvX67X60uUKBEYGPjJJ58YpUUbAAAAAAB5gIkD/rS0NBsbG51Ol5CQYKQlQkNDra2tRaRz585JSUmG8bt37zZu3FhEHB0dN27c+IyzpaSkpIaHK+++q9jaZu8JdHBQPvhA2bBBSU//x6VZWcoffyhhYcq2bYq67pQpiohSurRy4oRmLw8m8emnn4pI8+bNTbmomsP6+/ubclEYqJ/VjRkzxkjzBwcHi4i7e8WkpAwjLfFcJk2aJCKurq73799/5KmVK1c++y8RnU5XuHBhd3f3evXqvf32249MFRgYKCItWrQw0avKEw4dOqQ2W/P29r5y5YqRVomOVkaMuKTm5i4uLqGhoVlZ/9jtHhsbO3DgQEtLS/UDFRsbm4EDB8bHxxupHgAAAAAA8gZT73A/fvx4rVq1KlaseO7cOXUkLi7uWQ4efC6//fZbly5d4uLi6tevv27dOsPhcmlpaT179lyxYoWlpWVISEj//v3/awa9Xr9v377Vq1evWLHi96pVa+zaJTqdeHpK9+7ywQfyjH3nY2OlUyfZtUvy55eVK8UkG6WRc6dPn65Zs6aIHD161NBawQQiIiLUey9MvC5UgwYNCgkJmTlzZkBAgDHmz8jI6NBhxI0bY9q2LTB5sjFWeA5nzpypXbt2Wlrapk2bWrdu/e8Lnv1w1Dt37mRlZanf5ezsHBsb+/A8Dx48KFu2bFxc3O7duxs1amSK1/byq1KlypkzZ5YvX+7r62vstf7888+AgAD1YFsPD4+QkJBH7kXYvXu3l5eXvb396dOny5Yta+x6AAAAAAB46Zk44A8LCxMRHx8fw4iXl5eTk9OBAwe0Xej8+fMVK1YUEVdX1z///NMwrtfrAwMD1a64AwcOzMzMfOQbjxw5Mnjw4BIlShj+E43t1EkJCVFerPl7aqri56eIKJaWyqxZOXlFMJlWrVqpbw/TL22WnfVQ9ejRQ0SWLl1qvCUOHlQsLRUrK+XoUeMt8nQZGRn16tUTkT59+uR8tqysrJiYmAsXLhw8eHDXrl3/vmD06NEi0qZNm5yv9YqoXLmyiERERJhsxfXr1xvCdG9v78uXLxueunfvnogULFjQZMUAAAAAAPBSM3UP1uPHj4uIun1YRBRFOXHihLoFUtuFKlSosG/fPi8vr5s3b3p5eW3cuFEdt7CwGDt27HfffWdnZzd79mxvb+/4+HgRuXHjxqxZszw8POrUqTNjxoyoqKgyZcoMGzbs7NmzgWvXir+/uLi8SB22thIWJsHBoteLv7/06SOZmRq+TGguPDx8y5Ytzs7OY8aMMf3qQUFBhQsX/u233wzvWJjM/fv3RaRQoULqw8uXLzdu3PjhY1Rzrl49+fRTycyUPn3kr03hZjBlypRDhw6VKVNm2rRpOZ/t4ZYyatuuRwwaNMjR0XHTpk0HDx7M+XIwhnbt2p0+fTo4ODh//vwbN248cOCAuSsCAAAAAOBlZebA/dq1a3FxcUWLFnV5sTj7iQoXLrxly5Zu3bolJiZ26NBhzpw5hqe6du3666+/Fi5cePPmzR4eHvXr1y9TpkxAQMCxY8dcXFwGDhx44MCBq1evBgcHV6pUKad1WFjIsGHy/fdiby8LF0rbtvLgQU7nfKLU1NQNGza89957EydOHDVqVCYR/zNLT08fPny4iEyYMMEsJ5c6Ozt/+eWXIhIQEJCWlmb6Al5ljwTut27d2rNnj/ojS0OTJknJknLwoCxYoO3Ez+rMmTNBQUEWFhYLFy50fMbuWDnj7Oysfm4RFBRkguXyHkVRMjIysoz8EY29vf2wYcNOnz49ZsyY999/36hrAQAAAACQh5k6cD958qQ8FLirYZbat9oYbG1tly1bFhwcrNfrBw4c2KdPH0P67OXl9ccff5QpUyYlJeXQoUN2dnY+Pj7r169Xt7q/8cYbGpfy3nvy229StKhs2SKNG8u1axrPL5KVlbVt27aPP/7YxcWlffv2q1evDg4OnjRpUtu2bR8YOeLPM6ZPn37hwoUqVar07t3bXDX069evWrVqly5devgjIpjAI4H7Iw+14ugos2eLiIwYITdvajv302VmZvbo0SM1NbVv375q6yTTGDJkSP78+Tds2HD48GGTLZpn/PjjjzY2Nj4+PiZYq1SpUuPGjVO7rgEAAAAAgBdg0sA9Kirqzp07zs7OpUqVUkce2fBuDBYWFsOGDVu2bJmtre3ChQvXr19veKp8+fLvvvvurVu3OnfuHBMTs2rVqnbt2llbWxurFE9P2b9fXn9dTp7c89FHhw4d0mriiIiIsWPHuru7t2zZcunSpfHx8VWqVAkODv7hhx9cXFy2bNnSsGHDq1evarVcXnX79u0pU6aIyMyZM62srMxVhpWV1cyZM0Vk/Pjxt27dMlcZryDTBO4i0rGjdOgg8fHi76/53E8xefLkQ4cOlS1bVn2rm0zhwoX79u0rIpMmTTLlugAAAAAAACZm0sBdjddr1KjxyIhRA3dVt27dtm3bNmzYsE6dOj08fu7cOfVZBwcHY9cgIlKunOzbd+299zqcONG0adO1a9fmZDJD3/lq1aqNGzfu6tWrat/5c+fORUREDBs27J133jl8+HCtWrUiIiLq1q27e/durV5HnjRs2LD4+PiOHTuacufvY7Vo0cLb2zshIcEsfeRfWSYL3EVk7lxxcpK1a2XdOmNM/3gnTpwwcTOZhw0ZMsTBweGnn37SvEsPAAAAAABA7mGGwP3heN1kgbuINGrUKDg4+KklGV2hQq4rVnR9//3k5GQfH5+xY8c+7wT3799ftmxZy5YtDX3nnZ2de/fuvXv37itXrgQHB1esWNFwccmSJXft2tW2bdvY2NiWLVuuWLFCy9eShxw5cuTbb7+1sbEx8c7f/xISEmJra7tkyRJacJhGenp6cnKyjY2N4bM3owbuJUrI+PEiIgMGSEKCMVZ4VGZmZs+ePdPT0/v169eyZUtTLPlPLi4uvXv3VhRl4sSJpl8dAAAAAADANMwZuCckJFy5csXW1laDg0lfyN27d6OjowsUKFC2bFlTrmtlZTV37tyQkBALC4tx48apKdhTv8twFGqxYsV69Oixbds2Q9/56OjoBQsWNGrU6LGNdx0dHdetW9e/f/+0tDQ/P7+xY8cqimKEl/USUxQlICBAr9d//vnnFSpUMHc5IiLly5fv37+/Xq/39/fn78sE/h2vGzVwF5H+/cXTU27cENPcxjBx4sTDhw+7ublNnjzZFOs9zrBhw+zt7desWaMe5gEAAAAAAJD3mDNwP3nypF6vr1q1qhHbpj/RsWPHRKRGjRpmOSDO399/zZo1Dg4OS5Ysad68eUxMzGMv0+v1e/bs6dOnT9GiRdWjULOyslq0aBEWFnbnzp1n7DtvaWk5Z86ckJAQnU43bty4Dz/8MDU11QivySjSlfQ0JU39Oiw27FjKMc2XWL58+Z49e1xcXIYPH6755C8sMDCwWLFi+/btW7VqlblryftMH7jrdDJvntjbiwnaWR0/fnzSpEk6ne6bb77Jnz+/0df7D8WKFevZs6eiKGYM/QEAAAAAAIzKdIF7SkrKhQsXrKysqlSpoo6YoZ3LP5m9gI4dO+7bt69UqVJ79uzx9PRUG8obREREDB8+3NXVtXHjxgsXLkxISKhTp05ISMjNmze3bt3avXv35w3O/P39w8PD8+fP//333x/p319iYzV9Ndr7Nf7X6meqlz9V3vWkq89ln/is+PUP1p9LPff073weycnJo0ePFpEpU6YUKFBA28lzwtHRcfz48SIyZMiQpKQkc5eTx5k+cBeRWrXk2jXJyJCNG7NH9Hrp00eysrRcxdBMpn///k2aNNFy6uc3bNgwW1vbVatWnT171ryVAAAAAAAAGIPpAveIiIjMzMxKlSrZ2dmpI2bPu81egLr6gQMHateuffHixTfffHPnzp3Xrl2bMmVKpUqVqlWrNmXKlOjo6MqVKwcGBl64cOHw4cP+/v4uLi4vvFz79u137dr1bdu2DZcsEU9PuXBBw9eirctplztf7jyh+IQb1W/cqXHHy9ErXXl6450XMGnSpOvXr9epU8fPz88Y8+dEz54969atGxkZOX36dHPXkseZJXAXkddek+XLpVev7M+/9HpZuFD0ei2XmDBhwpEjR9zc3HJD8/SSJUt+/PHHWVlZkyZNMnctAAAAAAAA2rMy2UrmPTH1GUsyixIlSuzYseODDz74+eefW7VqZejnXqJEiffff9/X17d27doaLufh4eGxcKG8+64cPiwNGsiaNdKsmYbza2Vt3Npmjs06FOwgIjrRDXhtgOGpFfdWZMnT9wDbHrJNu5325Gvu3bs3Y8YMCwsLtd9OzkrWnk6nmzVrlnrer6OjY5EiRTScvEOHDrlqR795mStwV3l7y7BhEhqq/czHjh2bPHmy2ZvJPGzEiBFLlixZuXLl6NGjHz7hGQAAAAAAIA8wW+Cu1+tPnTolItWrVzdZDQ9LT08/d+6cTqerWrWqWQp4mHqu6eDBg9VcrH379j4+Pm3atLGyMs5fUIkSsmOH+PrKunXy9tuycKH06GGUhXLgUtql6vaPf2/879r/nmW3e9WlVSO+j3jqZSVLlnRxcWnUqNFzl2gSb775Zo0aNWJjYz///HNtZz579iyBu4F5A/ehQ6VVK9mzRxo0EBGJjpbt26VQoew/BQtKoUIv0uo9IyOjZ8+eGRkZAQEBZm8mY1C6dGk/P7/FixcHBwcvWbLE3OUAAAAAAABoyWyB+8WLFxMTE0uVKlW4cGGT1fCw06dPp6enV6pUKV++fGYp4BGWlpazZs3S6/WTJ082dN0xonz55McfZdw4GTdOPvpI/vxTZs6U3LTF28bCJkPJeOxT3Zy7/ddTD3Ou41zb+ik3B9y9e3fz5s3379+PjIwsWbKkOnj58uUhQ4Z4eXkFBAQ8Z9U5NX369AMHDkyfPr1s2bLqyLVr186fP5+amvrOO+9o+4/FyclJw9leduYN3B0cZMYM+fRTOXRIROT48cd8BGZr+3cEX6iQVKp0LCNjSaH/4ODgICLjx4//888/y5UrN2HCBBO8imc3cuTIsLCw5cuXjx49uly5cuYuBwAAAAAAQDMmCtwVRTl58qQ8FLibvZ2L2Qt4LJ1OZ4q0XWVhIWPHSsmS8tlnMnu23Lwpy5a9yDZa46hkV+n7+98/9qnFZRY/0xRDnumq9957b/Xq1cOHD1++fLk6cvr06R9//HH79u2+vr6vvfbaM82ihTt37gQFBT148OCTTz4xBO5Dhw5NSUnx9fU1lAdjeCReT0tLS0lJsbW1tbe3N00BnTpJaKjMny8iUqSIdO8u9+//409KikRHS3R09vVxcSf37p3zX7PZ2toWKFAgPj5ep9OFhYXlkmYyBuXKlfP19Q0LCwsODl64cKG5ywEAAAAAANCMiQL369ev379//7XXXitWrJg6Yva82+wF5BaffCJly4qPj6xdK5GRsm6d5OBQVg11LdR1/K3xE6Mn9nutn42FzbaEbd5O3sZY6Kuvvvr5559XrlzZp0+fxo0bi4i3t3ebNm02bdo0ZsyY+WoCahIjR4588OBBu3bt3n77bXVk7969a9assbe354RJY3skcDfl9naD2bPFy0tEpE4dCQt79NnU1OzkPS5Ozd/rdO06+/5/SE5Ovnv3bpEiRSwtLT09PU35Kp7R6NGjV6xYsXTp0pEjRxo+XgIAAAAAAHjZmaiFiJpu16pV65ERAvdcoUUL2bNH3Nzkjz/kgw/+Hk9I+MdlivKkh1orYlVkZ8WdESkR9c/Wr3u27tr7axOzEsvalC1oWVDbhUqVKvX5558rihIQEKDX69XBGTNmWFtbL1q0SH2fmMDRo0e/+eYbGxub6dOnqyN6vT4gIEBRlBEjRpQuXdo0ZbyyzBK4//V2y+buLr17/+fFdnZSvLhUqSJvvilt20qXLlUGDBgwZsyYmTNnLl26dN26dbt27Tp58mRkZGRSUlJqampkZGSBAgVu3769atUqwySXL1/u0aPHxIkTjfaanpW7u3vXrl0zMjKmTZtm7loAAAAAAAA0Y9LA/eF02+x594kTJ8xbQO5StaocOCBt2sjcuaIoEhQkZcqIp6eULi3du0tioohIxYpy+PDf31KnjmzfbtSiXrd7faXbyvNVz5+ucjqsbFgBywJflfyqdYHWmi+kJtp//vnnsmXLspd+/fV+/fplZWWZrI27Gvf7+/tXrFhRHQkNDT18+LD6eYBpaniVmT5w1+ulY0cZPly++04MjYuGD5etWyXnhyXb2tq6urqOGDFCRCZMmGD4JOnWrVvLli2bPn16XFxcTtfIsVGjRul0usWLF0dGRpq7FgAAAAAAAG2YJ3BPTEx88OCBg4ND+fLlTVPAI27evBkTE+Ps7Gw4JxNStKj88otUriyLFsl338n+/XLqlJw7J4mJ0q+fuYszLnt7e3XP7/Dhw+Pj49XBwMDAIkWK7NixY+3atcYu4Pvvv9+1a1fRokVHjRqljsTHxwcGBorI9OnTHXJNY/08zPSB+7Bhsn69hIZKhQpia5s9aGcnLVqIhYU2S/To0cPNze3MmTOG93DDhg2bNGkSFxc3b948bdZ4ZjExMep/VYPKlSt7eno6Oztfv37dxMUAAAAAAAAYiXlayuTPnz8uLu78+fOWlpamKeCx9bC9/fHCwmT0aClRQkTE3l5mzpSVKyU93dxlGZevr2+jRo1u3749efJkdaRgwYLjx48XkcGDBycnJxtv6ZSUlOHDh4vIxIkTnZyc1MFx48ZFR0c3bNjQx8fHeEvDwMSBe1iYTJ8u1tayenX2PzVjsLa2/uKLL0Rk3Lhxhk3uX375pYjMmDEj4ZGeUUbWp0+fatWq7du3zzASFRUVERERHR2t05noNxEAAAAAAICxmSLmSEpKunz5so2NjaFXhohYWFi4urqaYPXHInB/kosXpWrVvx+WKSMODnLliojIkCHSoUP2n8uXzVWgMVhYWMyaNUun082YMePChQvqYO/evWvWrHn9+vWZM2cab+kpU6Zcu3bNw8Pj448/VkcuXrw4d+5cnU4XEhJiodVuZzzRIwl7tWrVRo8e3b59e2OstXev9OkjIjJnjjRrZowV/tazZ88yZcpERESsW7dOHWnevHnjxo1jY2NNeSDwypUrw8PDExMTH76pqFevXnFxcW3btm3QoIHJKgEAAAAAADAqUwTuZ8+eVRSlaNGiVjnvTKwRAvcnsbOTtLS/HyqKpKeLvb2ISK9eMmZM9p/ixc1VoJHUrl27e/fu6enp6qZgEbG0tFSj9kmTJhmp60VkZKR6SmpISIjhho+AgIC0tLSePXvWrVvXGIviEenp6UlJSdbW1vny5VNHatWqNWHCBGPcXnD1qnTqJGlpMmhQduxuVNbW1kOGDBGR8ePHK38ddKx2Lpo2bVqiejyDkd29e1c9C2HmzJmG43+/+eabX375pWDBgl9//bUJagAAAAAAADANUwTuderU8fHxiYyM9PHxMWprjmdH4P4klSvLH3/8/fDoUbGxEXVfaqVKUrt29h81gs9bgoODCxQo8NNPP23ZskUdadasWefOnZOTk0ePHm2MFYcOHZqUlPT+++97eXmpI9u2bfv5558dHR3VhjYwAfUEUaN2bFclJEj79nLnjrRuLVOnGnu1bL169XJ1dT127NjGjRvVkdatWzds2DAmJmbhwoUmKKBv3753795t2bKl4R6OqKgo9Sjg//u//zPjrU4vi4YNG/7yyy9qLyAAAAAAAJDLmahz7oABA4oUKRIeHt6wYcPIyEjTLPpfUlJSLly4YGVlVblyZfNWkksNHiwTJ8rvv0tmppw5I336yOefy6vRZNnFxWXEiBEiMmjQoMzMTHVw2rRpdnZ2y5cv37Nnj7bL7d+//4cffrC3tw8ODlZHMjMz1b3AgYGBxYoV03Y5/JdTp06JiF6vv3r1qvFW0evF11dOnpTXX5fvvxeT3fBja2urbnIfO3asYZO7+j6fNm1aSkqKUVdfvnx5eHi4k5PT4sWLDf2RPvnkk/v377dr187X19eoq+cNLi4ubdq08fDwMG8Z33///axZszIyMsxbBgAAAAAAuZyJUtRGjRrt37+/UqVKx44da9CgwZ9//mmadR/r1KlTWVlZlStXtrOzM2MZuVerVrJokUydKhUrSu/e0q2bqDsrq1WTvxpuiIhUqSKOjuaq0XgGDx5coUKF06dPL1iwQB1xc3MbPHiwoigBAQGGkydzTq/X+/v7K4ryxRdflClTRh2cM2dORESEu7t7//79tVoIT5CZmTlr1qx3333XyckpJiamfPnyLVu2XL16tTFSxS++kA0bxNlZNmyQggU1n/5J+vbtW6JEiT///HPz5s3qSNu2bevVqxcdHb1o0SLjrXvr1i1/f38RCQkJKVWqlDoYGhq6adOmwoULm2Z/PTShKMqgQYMCAgJq1qz566+/mrscAAAAAAByMcWEYmNjmzRpIiL58+dfv369KZd+mJrydOvWzVwFIJcLDw8XkUKFCsXExKgjCQkJJUqUEJGwsDCtVgkNDRWRkiVLJiYmqiOxsbHOzs4isnHjRq1WwRMcPHiwVq1a6k/CNm3avPfee4YP4UqUKDF69OgrV65otdbSpYqIYm2t/P67VlM+n2nTpolIgwYNDCM//fSTiBQvXjw5OdlIi3bs2FFE2rZtaxiJjIwsWLCgiKxcudJIi+YB6t1Xf/zxh7kLURRFuXXrlogULFhw69atVf86T7tFixanTp0yd2kAAAAAAORGJg3cFUVJTU318/MTEUtLy+DgYOMtlJmZuXXrVj8/v1atWj3yVL9+/URk2rRpxlsdL7tWrVqJyIABAwwjYWFhIuLi4vLgwYOczx8fH1+8ePFHYse+ffuqSVbO58eTJSUlDRs2TD2l1s3NbdOmTep4XFzcggULatSooaaKOp2uRYsWq1atSk9Pz8lye/YotraKiPL111pU/0ISExOLFi0qIlu2bFFH9Hp9nTp1RGTu3LnGWFH9J+Pk5HTjxg3Dim+//baItG/f3hgr5hlhYWFFixZ1dnYOCQnJzMw0YyXr1693c3PLnz//rFmzFEVJT08PCQlxcnISEWtr64EDB8bFxZmxPAAAAAAAciFTB+6Kouj1+uDgYJ1OJyK9e/fOyMjQdvJ9+/b169fvtddeM0RmkZGRD1/TqFGjh1Mn4N8iIiKsrKwsLS1PnDihjuj1+jfeeENERo4cmfP5hw4dKiKenp56vV4dOXXqlJWVlZWV1cmTJ3M+P55gw4YNpUuXFhErK6uBAwcmJCT8+5pdu3Z169btkQ3vV6+mvsByV64oRYsqIsqgQTkuPWcmT54sIm+++aZhZM2aNSJSqlSptLQ0bdeKiopSb9d4+KYQtU1TkSJFoqOjtV0uj4mMjGzYsKH63qtTp86ePXtMX8OxY8eaNm2q1lCzZs0zZ84YnoqJiRk4cKD6eVXhwoXN/qkAAAAAAAC5ihkCd9WqVavs7e1FpFWrVppskTtz5kxgYGCFChUM3XKqVKkSGBh48eLFhy/T6/VqQwMSHzyZeifEW2+9ZRg5fPiwTqeztbW9cOFCTma+ePGira2tTqc7ePCgYbBly5YiEhAQkJOZ8WRRUVHqHTYi4uHhcejQoSdf//CG93LlXtfp9C1aKKtWKc++3z0+XqleXRFRWrdWNP1s8UUkJiaqn0T+/ldfG71er766BQsWaLtWhw4dRMTb29swYmgm88MPP2i7Vl61fv36smXLqm9Xb29vDRscPVlsbKwhT3d2du7Xr1/t2rV37979yGVHjhxp3Lix4V/TYXN8KgAAAAAAQC5ktsBdUZT9+/erLQ6qVat29erVF5skJiZmwYIFhs2AIuLq6jpw4MB/pwOqCxcuiEixYsVyUDheCffu3StcuLCIrFu3zjCoxrXqGaovbODAgSLy8ccfG0bUjcbOzs6GrvHQll6vX7BgQYECBUQkX758wcHBz7Und9euXV98scnOThFRRJQSJZTRo5VnyT+nTFFElCpVFC0aEWlgwoQJItKsWTPDyPfffy8ipUuX1nCT+zfffKN2/X64mUzr1q1F5N1339VqlVdBUlJScHBw/vz5RcTe3n7YsGGPvSFDK+np6QsWLChSpIjaMaZ37953795V/+IsLCx8fX0Nf6EGas8ZnYVFXI0aire3cvmy8coDAAAAAOClYM7AXVGUy5cvV6lSRU3AH97t+1TJycmrVq3y9va2srJSc3YnJyc/P7/169f/V4+aU6dODRs2rEiRIm5ubg9nncB/mTVrloiUL18+NTW7l0hkZOS8efNy2D8hIyNj7ty5t27dUh+mpqa6u7uLyPz583NaMR7nxIkTnp6ehp3C165de7F54uKUBQuUGjWyY3edTnlkw/u+fcqPP/59/ZYtyrlzysSJyqVLOX0JWnnw4EGhQoVEZOfOnepIVlZWtWrVRGTx4sWaLHHz5k11iW+//dYwOH/+fJrJvLDIyEg/Pz8LCwv1E+WwsDBDKyoNbd26VX0nqCdJGHpbJSUlBQYGqnekOTg4/Dv0T05O3jJzpuLgoIgo9vbKl18qSUmalwcAAAAAwMvCzIG7oijx8fHvvPOOiNjZ2T18gORjGY5CzZcvn5oL2Nraent7h4WFJf3H/8M/d+7cI61mGjVqZITXgTwoIyOjevXqIjJlyhTjrRIUFCQiVatW1fY8AyiKkpycHBgYaGNjIyLFixd/uJ94Thw+rPTunR0wiijFiinDhimXLimDBik6nbJ3b/ZlXbooGi2opcDAQBFp2bKlYWT58uXqB0uavAPVn+ft2rUzjFy9etXR0VFEVq1alfP5X1m7du2qXbu2+lvM1/f/jhzRbOazZ5W+fdeoM1esWHHjxo3/vubGjRuG0L9kyZKPCf0jIxU/P8XCIvsekLAwxQifCgAAAAAAkPuZP3BXFCUjI+Ozzz5Tb1oPDAz8r8u+++479RQ+EdHpdE2bNg0NDb1///5jLza0mlEDAvXYwye0mgEea9u2bSLi6OgYFRVljPlv3bql9jnhFF/N7dixo1KlSuoPlt69ez/QuqtLbKwyc6ZSuXJ27O7srPj7K23aKNWrZ+95z52Be1xcnNpL3fDDMDMzU/0PlfMPJBYvXqw2kzEcVa3X61u1aiUiXbt2zeHkyMrKCgsLc3Ut4+6eYmGh+Pkpf90n84ISEpTAQMXWVnnttazixSsFBgYa7uZ5rB07dtSqVUv9lfrGG28cOHDg0SsOHlQ8PbP/SdSrp+zbl6P6AAAAAAB4CeWKwF0VEhKi0+nU3taP7Sa8b98+w1Gol/+jUayh1Yy1tfUztpoBnqx9+/Yi8r///c8Yk6tN4Tt37myMyV9ZsbGxvXv3Vj9sq1Gjxv79+4263K5dSrduypAhyqBBytSpyrvvKlOnKkpuDdwVRRk1apSItGnTxjCydOlSFxeXpUuX5mTayMhItZnMihUrDINz585Vm8ncvn07J5PDIC4ufcgQxcZGEVEKFFCmTVNeoP1+ZqayYIFStGh2c6RevZTbt5/pLODMzMwFCxaop+9aWlpOHTxYeeRvVq9XwsKUYsUUEcXCQvHxUa5ff+76AAAAAAB4aVkoiiK5xo8//ujn55eUlNSwYcOffvpJPbrNQFGUM2fOqD3fH5GVlbV9+/Zly5b9+OOPiYmJImJra9uyZUsfH5/OnTsb+s8AL+DSpUtqv5cDBw7Uq1dPw5mPHDlSv359a2vrU6dOqW3ckUOKonz77beff/55TEyMvb39F198MXLkSLWljAkMHizFi0uXLlK/vhw+LEOGSLt20r27aRZ/DrGxsW5ubgkJCX/88Uf9+vVFJDMzMz093cHBISfT9urVKzQ0tEOHDj/++KM6cvXq1Ro1aiQkJKxevbpLly4alI6/XLwoI0fK6tUiIu7uMmmS+Pg86/fu3CkBAXLsmIjIG2/IrFnyxhvPt3piYuL06dODg4PP165d+uRJ+fxzGTFCbG3/viIhQYKCZNYsSUsTR0fZuVM8PJ5vDQAAAAAAXk65K3AXkePHj7dr1+7GjRvu7u4bN25UGx08wZEjR5YtW/b999/fuXNHRHQ6naenp4+Pz4cffqhuwQNy7osvvpg2bVr58uU/+ugjQ5OiHFIUZdmyZRcuXBg5cuTEiRM1mfMVd+nSpb59+6pdgJo2bbpgwYKKFSuasgA1cB86VCZOlOPHRVFyaeAuIsOHD58yZUq7du3Wr1+v1ZxJSUnjxo0bPHhwsWLFRERRlNatW2/duvWDDz5YuXKlVqvgYb/9JoMGycmTIiLNm8vMmVK9+pOuj4yUkSNl+XJRFClZUiZOFD8/eeEfaVfPny87eLD8/LOISKVK8tVX0rbtP664dElGjJDTp+XYMfnrhHMAAAAAAPK2XBe4i0hUVFT79u2PHDni7OwcHh7epEmTf19z5syZH374YcWKFRcvXlRHqlSp4uPj071793Llypm2XuR98fHxzZs3j42NvXLliobTli9f3tnZ+ffff8+fP7+G076CMjIyZsyYMXbs2NTUVGdn58mTJ/fu3dv0ZRgC97Q0qVlT0tJk3LhcGrjHxMS4ubklJiYeOnSobt26xlji//7v/wYMGPDaa6+dOnWqaNGixlgCIpKZKUuWyKhREhMjVlbyv/9JUJCMHCleXuLnJyKSkSG+vrJkiUyfLlOnSkqKODjIgAEyerRo84Nn2zYZNEhOnRIRad5cQkKkWrV/XBAfLykp8vXXcuKEFCyYXZlOp8XaAAAAAADkOrkxcBeRxMREX1/f9evX29jYLFq0qPtfkVVUVNTq1atXr169d+9edaRkyZKdOnXq3r17nTp1zFcvXgnz58+PjIzUcMLSpUv36dNHwwlfTXv27Onbt29ERISFhUW3bt1mzJjxSDcqkzEE7iKybZu0bClhYbk0cBeRIUOGfPXVVx07dgwPD9d88itXrtSoUSMxMXHNmjWdO3fWfH48IiZGxoyRhQslK0s6dpS9e0Wvl6NHpWRJSUsTOzv59FOZP18sLOTDDyU4WEqW1HT5jAz55pt/pP4TJ4rhn2FsrNStK126yHvvyb178uWXUq+ezJ2raQUAAAAAAOQWuTRwF5GsrKxRo0ZNmTJFRPr27dugQYM1a9Zs3rw5MzNTRAoWLNiuXTsfH5933nnH0tLS3MUCMA9FUTw8PI4fP/76669//fXXj70hxmT27xcHB6lZM/vhqlXi4SEVKpixoie5fft2uXLlUlJSDhw4oHZy14per3/rrbd27tzp6+u7fPlyDWfGk6nd1KdNk1atpEcPuXRJ1q7NDtyvXJGPPpLJk8XT02jL37sn48bJ3LmSlSXOzjJmjPTvL5aWEhQkR47IX5395dYtcXeX06elTBmjlQIAAAAAgNnk3sBdNW/ePH9/f2tr65SUFHnoKNQuXbrk8Hw/AHnD/v37f/311xEjRtg+fGajOXz5pXh4SKdO2Q8nT5aSJbPbeuROAQEBCxcuVH+62tnZFXo2xYsXf/JJBrNnz/b39y9WrFhERISzs7OpXg3+5uIiBw9KmzYydaq0bCl2dpKZKSb6bPr4cQkIkB07RES++koGD5b33pMmTaRfv7+vqV9fxowRb2+TFAQAAAAAgEnl9kPMPvvss1OnTs2fP79MmTKBgYGdOnVycnIyd1EAchFPT09PI+7afQ4XL4qr698Pr1wxVcT5or788ksvLy8/P7/k5OTU1NRbt27dunXrqd9lY2PzhDg+PT195MiRIjJ37lzSdjOytpa5c+V//5OjR027cM2asn27rFkjM2ZIr14iIvHxj3aLL1BAHjwwbVkAAAAAAJhIbg/cRSQtLU1Ehg4d+vHHH5u7FgDIOwoXLtypU6dOnTqJSEpKyv1nEx0dffv27du3b//XtCVKlOjYsWMnw1Z/mEmzZvLmm/LVV+ZYu0sX6dIl++uyZeXy5b+fUhS5dEnc3MxRFgAAAAAARvcSBO7Hjx8XkZqGvsgAkFv9+qvExWV/ffy4uLubs5jnYm9vb29vX6JEiademZaWFhcX94RE/ssvv6yQa1vXv2KmT5fatc1dRIcO0rOnfPqpFCsmIrJ8uej1UreuucsCAAAAAMAocnvgnpWVdfr0aQsLi+rVq5u7FgB4Cnt7KVAg+2tra7OWYjS2trYuLi4uLi7mLgRPV7y4DB8uAQFmLeLtt6VPH6ldW7y8JDZWzp+X1avFxsasNQEAAAAAYCy5PXA/d+5cSkqKm5sbrdsB5H5eXtK3b/bXx46ZsxK8yjZskKJFs7/u318aNJAnHnNrfGPGSECARESIk5NUrChWuf1/ewAAAAAA8MJ05i7gKegnAwDAs9Pr5Y03JCUl+6GlpTRvLs9wGq6RFSggnp5SpQppOwAAAAAgbyNwBwAAAAAAAABAA7l9o5kauNeqVcvchQDAUyxf/o/GHfPnm7uPBwAAAAAAAEzr5Qjc2eEOIPeztHzSQ8CUmjcX3V/3sBnaywAAAAAAAGOzUBTF3DX8p7t37xYtWrRAgQJxcXEW7BQFAOBp9HqxtJTz5yVfvuyRChXk/HlxdTVrWQAAAAAAvBpy9Q73Y8eOiUiNGjVI2wEAeHbFiomjY/bX/AoFAAAAAMBkcnXgfqdq1U6HDzfJyDB3IQAAAAAAAAAAPIXu6ZeYz7m0tGsipdzdzV0IAAAvBwsLadNGrB76PL11a7GzM19BAAAAAAC8SnL1DvfzKSkiUtHe3tyFAADwcrCwkF9++cfI2rVmKgUAAAAAgFdP7t3hnqEo11JTdSLlCNwBAAAAAAAAALle7g3cr6SkZChKKTs7e13uLRIAAAAAAAAAAFXuzbLpJwMAAAAAAAAAeInk9sC9goODuQsBAAAAAAAAAODpcm/gfiE5WdjhDgAAAAAAAAB4SeTiwJ2WMgAAAAAAAACAl0cuDdzvZGTEZWYWsLIqamNj7loAAAAAAAAAAHi6XBq4008GAAAAAAAAAPBysTJ3AY9Xytb20xIl2N4OAAAAAAAAAHhZ5LrAfWFU1I64OMPDNs7OVhYW5isHAAAAAAAAAIBnkusC9+j09JbOzh2LFFEfkrYDAAAAAAAAAF4KuS5wFxF7na6gVW4sDAAAAAAAAACA/5Ibc+2dcXHR6ekiUsXBoZWzs7nLAQAAAAAAAADg6XJj4F7UxqaSg4OIFLO1NXctAAAAAAAAAAA8k9wYuFd2cGjDxnYAAAAAAAAAwEtFZ+4CAAAAAAAAAADIC3Jf4G5hYWHuEgAAAAAAAAAAeF4WiqKYuwYAAAAAAAAAAF56uW+HOwAAAAAAAAAALyECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQwP8D+ICLsaJ2wPkAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"B1\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "d13bf3b9-fecb-4a44-a14c-bbf86203646d", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.187611Z", + "iopub.status.busy": "2024-05-13T08:55:44.187438Z", + "iopub.status.idle": "2024-05-13T08:55:44.240720Z", + "shell.execute_reply": "2024-05-13T08:55:44.240061Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9 B1 fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAAB9N0lEQVR4nO3dd1wU1xYH8LOFDtLEhhUbgpoodjRGRZ9RotGISVTUJIqJGqwJxoY1YixBjTU27AFbsIua2NuCDTuIIlKUotLL7n1/jEGywErZnZnF3/fD531eZpadg165s2fuPUfCGCMAAAAAAAAAAAAAACgfqdABAAAAAAAAAAAAAABUBEi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBbIhQ7gHfIYO5WSonbQ0cystpGRIPEAAAAAb+Jzcm6mpakd7GhlZSrFigEAAAAAAAAQI7En3LNUqqlRUWYymVGBj9Zja9RAwh0AAKDCu5GWNi0qyloul0gk+QebmZubGhoKGBUAAAAAAJSBSqWSYukMvAfEnnDnjLO3729nJ3QUAAAAIIBtTZpURYYdAAAAAEBvpaamjh49um7dunPnzhU6FgCdw2MlAAAAAAAAAAAA0IkrV660aNFi27ZtK1asSEpKEjocAJ1Dwh0AAAAAAAAAAAC0jDG2bNmyTp06RUZGuri4XLlyxdbWVuigAHROP0rKbE5ICP73CZidgcGi+vWFjQcAQFsYYzt37pTL5aGhoT/99BNuPgAKmxgZafBvDfdu1taeVasKGw8A6JHkZIqKolq1qEqVtwefPaPERPrgA4qMJKmU6tX7z7dERZFKRfjAAYWpVKro6Ggiqlu3rtCxAPAhKyvL2NhY6ChAjz1//nz48OFHjhyRSCTe3t6LFi0yRKFIeD/oR8K9oYmJs6kp9//N5foRMwDAO4WFhY0bN+7cuXMWFhapqal//PGHj4/PhAkTcBcCUFBbCwtzmYz7/w1MTIQNBgD0y7FjNGgQtWpFly7Rv79IaNUqWruWEhNp2DCqVIkOH/7Pt4weTampdO4c/8GCuKSkpDx69Oj27dt37tx59OjRo0eP7t27l56e3qdPH2tr6/Xr18vxyRQqqMzMzBMnTgQFBR06dKh///49evTw8PAQOijQPydOnBg6dGhcXJydnd2mTZt69+4tdEQA/NGPWwTXSpXQNBUAKpK4uLhZs2Zt2LBBqVRWrlzZy8vr2rVrR44cmTJlyqZNm5YsWYLbEYB8X1SpgqapAFAeN2/SmjU0ZozQcYBYJSYmPnz48MGDBw8ePHj4r/T09MKvtLe3/+eff16/fm1nZ7do0SL+QwXQnezs7GPHju3cufPAgQPc+JdKpevXr9+4cWNUVNRPP/0kdICgN3Jzc+fPnz937lyVStWtW7ctW7bUqFFD6KAAeKUfCXcAgAojNzd31apVM2fOfP36tYGBwZgxY+bOnVupUiUiOnHixLhx4+7cuePu7u7m5rZs2TInJyeh4wUAANB7o0bRtGnUvz9Vry50KCC0rKysyMjI/EXrjx49Cg8Pj4+PL/xKa2trh385OTk5Ozs3atTIwsLi4sWLH3/88eLFi1u1avXFF1/w/yMAaJdKpbpw4UJQUNDOnTtfvHjBHXRxcfH09Bw4cGBgYODEiRN9fHwePHiwevVqAwMDYaMF8bt///5XX3117do1uVw+Y8aMmTNnSqXoHwnvHSTcAQD4c+DAgQkTJkRGRhKRm5vb8uXLmzRpkn/Wzc3t+vXrq1at8vX1PXHixIcffvj999/PmTPH0tJSuJABAAD0no8PBQfTxIm0c6fQoQCPcnJyYmJi1MrCREVFMcbUXmllZVW/fn2HApo2bVqtWrUi37Z9+/aLFy/29vb+9ttvnZ2dmzZtqvsfBUAnQkNDt2zZEhQUFBcXxx1xcnLy8PAYMmRIgwYNuCPjxo2rVauWp6fnhg0boqOjg4KC8NkENNiyZcuYMWPS0tLq1q27Y8eO9u3bCx0RgDAkhe82RCVNqfz4+vWptWvrUUkZxlh8fPzQoUN5vu6oUaO6d++OyY9/r169+vXXX69cucLnRR0dHefNm4e/bj1y7969iRMnHjlyhIgaN268dOnSXr16FffipKSkOXPmrFy5UqlU2trazpgxY+zYsbL80rNQ4bx+/frSpUv870xfs2ZNnTp1xFyC9lhy8rSoqEPNmqGkjJhhHoQyKMOwkUrlKtWRUl2lQwdydKRBgygp6U0x96NH6X//o2nT3tRw79iRYmOpf///fNfevVSjBmq465nc3NynT59yKfX89Prjx49VKpXaKw0NDWvWrMmtWM9Pr9erV0/yb3fuEvrmm282bdrUsGHDK1euWFlZae0nAdFIVSp737qldnBCzZr9KlcWJB4tun37dlBQ0Pbt2yMiIrgjdevW/eKLL4YPH+7o6Fjkt1y+fLlPnz7Pnz9v1qzZwYMHa9euzWO8oB9ev349evTo7du3E5GHh8e6devwuxHeZ2JPuOeoVCuePetuY9PczEzoWEpqx44d3t7eSUlJPF+Xu1kMCQnh+brvuaSkJEdHR2Nj45iYGD6vW7Vq1czMzFu3buFeR/xSUlJmzZq1atWqvLw8a2trX1/fMWPGlCTFGRYWNn78+LNnzxJRixYtli1b1qlTJ93HCwL48ssvr1y5EhUVxfN1q1atOm3atB9++IHn65bcvYyMQ0lJXjVqWOCBk1hhHoQyKNuwkUoNVKqcUl2oTx/68ss3CXcbG+rWjZ48ofBwmjv3bcI9IoLUlt9dvEgNGiDhrh+USuW6deuWLFny+PFjpVKpdtbQ0NDBwaFx48YNC6hZs6ZWLp2VldWxY8fQ0FB3d/e//voLBRMqntdKZdfr1wfa2bWrVCn/YANT0xp6uwjg8ePHf/755+bNm+/du8cdqVmzZv/+/T08PFxdXd/5zOnRo0e9e/e+d+9ejRo1Dhw40LJlS92HDHrj6tWrgwYNioiIsLCwWLlypaenp9ARAQhM7An3fH8lJibl5X1WubKNiBfiEVFmZqajo2N0dPSkSZP+97//8XbdtLS0ESNGJCcn79u377PPPuPtujBmzJhVq1a1adNm3rx5fF530aJFISEhX3755U5sjRaxvLy8jRs3Tp8+/cWLF3K5/Jtvvpk3b55dKffrHDhwwNvb+/Hjx0Tk7u6+YsWKunXr6iJaLVIoFDKZrFmzZmJeOi0e58+f79Spk5GR0R9//FG1alXernvhwoVZs2ZZW1s/ePCgsrjXamWoVLuePzeTSr+oUkXoWEAd5kEog7ING4lEwphbqS5UpQrdufM24f7gATVvTr6+lJb2NuFeqRIdPvyf7/rkE0pNRcJdP4wYMeLcuXP3798nourVqxdctO7k5OTo6KjTDYJPnjxp1apVYmLirFmzfH19dXchEASXcJ9ap05/cd8mvVNMTMyePXuCgoLOnz/PHbGxsendu/fQoUO7detWqr0dKSkp/fr1O336tLm5+a5du3r37q2bkEFdXl7egQMHOnXqJMKbdsbY8uXLf/rpp5ycnFatWu3YsaNhw4ZCBwUgAkxPfHn7totCcT8jQ+hA3mHGjBlE1LJlS6VSyfOlV6xYQUQODg5ZWVk8X/q9dfv2bblcLpfLb968yfOlnz59amZmRkSnT5/m+dJQQidPnmzWrBn3m7Zr1643btwo81tlZGT4+fmZm5sTkYmJiY+PT2pqqhZD1QqlUqlQKHx9fbkbrFatWjk6OiYnJwsdl9gplcpWrVoR0ezZs/m/OvdgeMyYMfxfulQScnJcFIqe5fhHBDqCeRDKgOdhs2MHI2JJSW/+8+efmYUF++YbZmvLGGOuruyTT9S/pWdP5urKQ2hQXi9fvjQzM5NIJMeOHcvOzhYkhhMnTshkMqlUevDgQUEC0F95KlWGUqn2pRI6qoJe5eW5KBR7XrwQOpAySkpKCggIcHNzy0+pW1paenp6BgcH5+TklPlts7KyhgwZQkQymWzlypVaDBiKExgY2LhxY4lEIpVKXV1d/f39Y2JihA7qjfj4+J49exKRRCLx9vYW6lcxgAgh4a5N0dHRpqamEonkzJkz/F89Ly+Py+75+fnxf/X3U48ePYjI29tbkKtz62hatGjB/9Md0Ozhw4ceHh7cfW2DBg0CAwNL+I2a0+gxMTGenp7cHbO9vX1AQIBKJfynkry8vFOnTo0ZM6ZGjRr5j3Lt7e2rV69ORF9++aXQAYrdunXriKhmzZrp6en8X/3OnTsGBgYymYz/bGmpIOEuWpgHoQx4HjZqCff0dFanDjM0RMK9Ili5ciW3rEHYMObPn09EVlZWDx8+FDYS/fJXYqKLQqH2lVCORLDWcQn3mVFR+1+84L5C9GEpycuXLwMCAtzd3Q0MDLg7c2NjY3d394CAAG3dbapUqvwtHd7e3piFdSoyMrJSpUpE1Lx5cyMjI+6Pncu8L1269PHjxwLGdvz4ca65dJUqVQ4dOiRgJAAihIS7Ng0cOJCIBg0aJFQAJ0+eJCILC4vY2FihYnh/7N27l4isra0TExMFCSAjI6NOnTpEtH79ekECgMLS0tJ8fX2NjY2JyMzMzNfXNzMzs4TfGx8fb2tr6+3t/fLlSw0vu3z5crt27bg7rdatW1+4cEEbgZdaXl7e2bNnvb29uXssTp06dby9vc+ePatSqSIiIrhbw40bNwoSoV54/fo19we4a9cuoWIYO3asGLIVmiHhLk6YB6EM+B82agl3xti+fYwICfeKoEWLFkS0c+dO3q54+vTpwuktlUo1YMAAImrWrFlaWhpvweg7LuF++dWr2+np+V+5IlhNko9LuHe5fr33zZvc14h794QOqliZmZnBwcGenp6mpqbcnblMJnNzcwsICHj9+nWZ3zY7O/vZs2dFntq4cSOX0//8888zxJ2o0V+5ubnt27fn/pAZY+np6dzfMrf1mePk5OTr63v37l0+A8vKyvLx8eF6V7i5uSEBBVAYEu5ac+7cOYlEYmJiIuwzxr59+xLR119/LWAM74Ps7Gyubsbvv/8uYBg7duzgnidrTtECD1QqVUBAAJc8lUgknp6ecXFxpXqHDRs2cLcs1apV27hxo4alIuW/Vplxt/JeXl5VCpTSrlevXn6eveCL//zzT+7BA8/3f3pk0qRJRNShQwcBNyskJydztSD37dsnVAzvhIS7CGEehDIQZNicOsXc3JhaumnsWNa/P2OMTZzIpk9X/5Zp09jEiTyFB2V25coVIrK1teWtnOZff/0ll8tbtmxZOLeYmprq5OSEvX2lwiXck3NzhQ6kWHpRUiYvLy8kJMTT09PCwqLg2md/f//nz5+X881VKtWwYcOqV6+uUCiKfMGJEycsLS2JqF27dgkJCeW8HBQ2ZcoUIqpVq1ZSwefGjGVkZHCZ90oFOvpymffi/rK06N69e9zzTrlc7uvriy0OAEVCwl073lmEV6lUZmpVcWXXIiMjjYyMpFLp5cuXdfkTv+9++eUXbkrLLeYeMSsrS7t/48VF8tFHHxHRjz/+qLOfFd7typUr3NKDcq46Dw0N7dSpE/c+LVu21FyciltNz+0rLO1q+tIq8y0d156+WbNmuotNfz18+JD7dX316tUiX5Cbm6vdXyPF3Q3ntwAR7V8TEu4i9M55kDeYB/WIeIYNY2zPHrZkidBBQDmMHDmSiCZPnszbFVNSUho0aEBEQ4YMKXz2/v37XOZxCQZWySDhXh5KpZLbbGpnZ1fw5tzPz0+La43T0tI6d+5MRObm5sUVDAkPD+d2mzk4ONwT8Q4AffTPP//IZDK5XH7u3LniXpNZmuVQWhEQEMCtr69Xr97Fixe1/v4AFQYS7trBFeGtVatWcWXRDh8+TFo1YMCA4oLx8fEhovbt24uhvnOFFB8fz6Udjx07VtxruBtuLSruo2lYWJhUKjU0NLx//77OfmIoli7qqgcHB9etW5f7e3d3d4+KitLw4jLXiy+J8m9aTE1Nbdy4MRFNmDBBi4FVDL179yaikSNHFveCUaNGaffXyNatW4u8kPhbgCDhLjYlmQd5g3lQX4hq2Ny5w6RSZmjIHjwQOhQok9TUVG497507d/i87s2bN7l2zUX2ity/f79EIpHJZMePH+czKj3FJdx/j4lZHxvLfV1+9UrooP5DtAn3oKCggkUdP/jggwULFmj+yFBm2dnZ3AIamUxW3Oak2NhYFxcXIrKxsUEnc215/vw51yJr7ty5JXn9Owt+lj+kV69eDRo0iHtnT09Pze3HAAAJdy3IL8L7559/FveaY8eOGWmVhkrxr1+/5toVbt++XTc/8ftu2LBhRNSvXz8Nr6latap2/8bz8vKKu9a3335LRJ9++qkOflYoVkZGhp+fH/dhz8TExMfHpzzlEdWkp6f7+flxaW5TU1MfHx/NNzQnT57kEqZE1LVr13I2wExOTuZaLRkVaMvj4uLi6+v7oPSZCYVCYWhoKJFIgoODyxNVBRMSEkJEFhYWGsoBjR07Vru/Rnbs2FHctUTeAgQJd7HRMA/evn1bp5e+e/du4b0amAf1goDDpkjffMOIWJ8+/F8ZtGDNmjVE1LlzZ/4vvXPnTiIyMDAocifizz//TES2trY6yn5WJFzC3fPOneF373Jfu8RUkyQpN1ecCffTp0//73//y8+lhoWF6fqKXItUboFRcS1S09LSPv30UyIyMjJCFqL8VCpVnz59iOijjz7SkAcoUv7uB3t7+/zMe82aNb28vIKDg8u8w+zy5cv169fnPi8Ut4gHAApCwl0LxFCEV82GDRuIyN7eHn17tC40NJRbSVeGzKOOJCQkcAvqjxw5InQs7wu1ReiPHj3SxVWePn1a8uXzubm5a9eu5XaVyuVyLy+v0tZtTExM5PLsXPsjbiULVwIyJiamPD/Ir7/+SkR2dnbF9Vx63+Tm5jZt2pSIFi1aJHQsb4m5BQgS7qKiYR7kVneOGzdOR5eeNWuWTCYr3IoZ86D4CThsipOQwCwtGRHDqNFH3HLabdu2qR1funTplClTnj59qtOrT5w4kYiqVatW+AZJqVR+8sknRNSiRQu0kdRMzCVlNsbFdb1+/fyrVx3Cwv4SWcJ99uzZRDR06FCer7tp0yZDQ0Mi6t+/f5Hb+vPy8saOHUtEEonE19eX5/AqmN9++42IrK2tnzx5UuY3USqVCoXC19eX657CsbW19fT0DA4Ozs7OLuH7qFQqf39/7hNiq1atHj58WOaQAN4rSLiX1zuL8ApCqVS2adOGiGbOnCl0LBWKSqXq2LEjEU2ZMkXoWP5j4cKFRNSkSZPiivuDtoSFhXH1grmPUjzsmrx8+XK7du24K7Zp00Zzpbzk5GRvb2+5XM7dovn7+79zFcPTp0/Xrl3r7u7OfVfBPLu2erGqVCqufMrHH39c2jUaFRJ3D12/fn3e+ryVhJhbgCDhLh4a5sH8fpgrVqzQ0dW3b99OxbRIxTwoZsIOGw0WLmRErEkThlGjX65fv86ljdRaj+Tm5nIrOnV9e5aXl9e9e3ciat++feGkVXJysoODgyApUf0i2oR7SHJya4WitUJxMiVF6FiK8NlnnxGRhm2LunPy5EkrKysiatu2bXEtUv39/aVSKRF98803mJHL5ubNm8bGxkS0f//+Il+gUCiKK2VcnPDwcF9fX0dHx/zMu7W1NZd51/x5JD4+nttRIZFIvL29S56mBwAk3MvrnUV4hXLhwgWJRGJiYoL9jFq0detWIqpateorkVUYzM7ObtSoEREtW7ZM6FgqrMTERG9vb5lMxn3G8/f35y13rFQqAwICqlatylV38fT01JwKv3v3Lre6iogcHR0PHz5c+DWPHz/29/d3dXXlVtATkbGxsbu7+9q1a0u7NL6gBw8e9OvXLzk5We14QkICV3pLtFXCeZOUlGRra0tEBw4cEDoWdaJtAYKEu3homAf9/PyIyMnJSXcfsFUqFddZ+qefflI7hXlQzIQdNhpkZ7NGjRgRw6jRL9999x0V1R5m//79RNS4cWMeZrHExERus+PYsWMLn71+/bqpqSkRrVu3TteR6K/iEu5/JSY+Ey6pdy01tX1YmItCsS0+XqgYNOM6lArVnjS/RWq9evWKa+m0d+9ebvy7ubkVfkAOmqWlpXFp8SJ/tzDGcnJybGxsTExM3N3dAwICSpuXCA8P9/Pzc3V1zc+8m5qacm9VuITpsWPHuE+gVapUKfITJQBogIR7uZSkCK+AuI4WAwcOFDqQCiI9Pb127dpEtGnTJqFjKcJff/3FPal+IbJtjxVATk6Ov78/V6/AwMDA29tbkHvHtLQ0X19frq66mZmZr6+v5vUIwcHBXKE9ru5NREQEYywyMlItz17m27UicQu+Pv/888Knjh49KpFI5HL5hQsXyn8h/cWlCdzc3IQOpAiibQGChLtIaJgH4+PjuV+SR48e1WkMGlqkYh4UJzEMGw3++osRMWtrhlGjL9LS0rjuu+Hh4WqnuIVQS5Ys4SeSsLAwExMTIipc54oxtm3bNu6+8dy5c/zEo3eKTLifffmytULR/caN20JURo3JynK7ft1FoZj3+DH/Vy+J5ORkiURiZmZWZCF1fsTFxbVq1YqbcP/5558iX3P58mUuUdu0adPyFEV5D33zzTdE5OzsXFxNqidPnrRr167gkqlPP/108+bNhRc8afbo0SMNnwozMzO9vb25U927dxdnkycAkUPCvezyi/AuXrxY6FiKFhMTY2ZmRkTFTYRQKtOnTyeili1bCnh/o1nPnj2JaPTo0UIHUqFkZ2c7OTnlp60Lp3h49uDBAw8PDy6eBg0aBAYGanhxVlbWggULuM6uhoaGXMqDY2lpOXjw4L1792q3wGh0dLS1tTURrV27tvBZruOFg4OD2PaI8ObmTdalyzRzc3NBOgSWxMaNG0l8LUCQcBcJDfPg119/TUR9+/blIQwN18I8KEIiGTYa/O9/jIiNGSNsFFBSf/zxBxF17NhR7fjTp09lMpmhoWF5NuqVVkBAAJfwUigUhc9y9ayrV6+OXFWRTiYn971169V/E+7pSuUPDx+6KBTtw8KOlzKBWE4vc3P7hYe7KBQ/PHyYJ7KtfvlOnDhBRB06dBA2jLS0NK6lp6GhYXH9Mx89etSkSRPun0CR/0CgsKCgIO5Xyo133fQ+f/6ca75V/qKgjx49WrRoUfv27Qsm8WvUqEFERkZGv/32m9h2vgLoCyTcy06cRXjVzJo1i4g+/PBD1E0up+joaFNTU4lEcvbsWaFjKdadO3cMDAxkMtk7Z2gouVWrVjk6OtauXfvgwYNCx/LWiRMnuAd+RNStW7ebN29qeHFsbKyXl5epqamJiUkJq/WVh4Y7xZycnLZt277PO2+6dmVE7KefUoQOpFjibAGChLsYaJgH8/th8vNIUsOyaMyDYiOeYaPBnTvMwIDJZAyjRi9wk1RAQIDacV9fXyL66quveI5n5MiRRFSnTp3Ce2tycnK4xj+urq6iKGadmsoiI8W/myNPpfrlyRMXhaKVQrH22TN+LpqtVH5z756LQjH4zp10sS6uYowtWrRIQ7ERPuXl5Xl7e5PGFqnJyckff/wxEZmbm4uwlKLYaF63VJzExEQu8861tCUiqVTKZd4Ld3XWLD+JL5PJateuXaNGjbCwsFL+EADwFhLuZSTmIrwFZWRkcOUFUUCwnLg1xYMHDxY6kHf44YcfiKhr165CB1JxcKWZCn+uE1xubu7atWsrV65MRHK53MvLS/OSLq6WYgov3Z807IWMiIjgdoJv3ryZh0hEZfduRsRsbFhiotChaCTCFiBIuItBcfNgfl11Hx8f3oLhCn8X2SIV86CoiGrYaPDDD4yIYdSI340bN4jIyspKrWGgUqnk6kqfOnWK55BycnK4asjdunUrvMIpPj6e6+M6ceJEngP7j/Pnmasrk0oZESNijRqxLVuEjKcEdiQktFYoXBSK+Y8f63q9uYqx6Y8euSgUn9y4kSDunpDcB5MNGzaoHZ8zZ87q1asL1+DWNX9/f67B1fDhw4t8qpSdne3p6cmtv/799995Dk+P5ObmdujQgYj69+9ftndITk4OCAjw8PDgihxwnJycfH19Hzx4UKq3mjZtGhFNmjSpbJEAAAcJ9zIScxFeNbt27SKiKlWq8JNoq5DOnTvHpZ/EX4EuOTmZy8Du3btX6FgqCO6+dtu2bUIHUrSkpCRvb29uL6GNjY2/v39uod5THO7ei58bcc3dfjZv3kxEZmZmQrV7EkRWFmvQgBGxVauEDqUExNYCBAl3wWmYB7dv305EVatW5bO5RX6L1BUrVqidwjwoHmIbNhokJ7PKlRkRw6gRudGjRxORt7e32vEDBw5wO48FKX0QGxvLdUD5+eefC5+9ePEit/JUsKUGZ84wIyPWtSs7fJg9ecLCwtiIEYyI8VXsvsxOJCdz/UvHPniQrsvt2stjYlwUik7Xrokn21AcrkiL2rrj7OxsIyMjqVTKf8KdMbZv3z5uWU+3bt2K/JWuUql8fX25ciXe3t6irc4qrKlTpxJRzZo1k5KSyvlW6enpwcHBnp6eXFnRgpn3O3fulOQdFixYIJ4n4gD6S28S7hOOHh184MA9cfQKDw8Pl8vlcrn81q1bQsdSIp07d8YjyjJTKpUuLi5ENGfOHKFjKZHff/+dK5OdmZkpdCwVgcgT7pwbN2506dKFu52aP39+ka/hM+HOGLt586axsTER7d+/v/DZIUOGcCV9s8W9jEiL5s9nRMzZmRXzQERcxNYCJOH168EHDow6dEjoQN5TGubBjIwMblVpkT0DdWr//v1UTItUzINiIM5ho8HvvzMi5uDAMGpEKyMjg6u3cP36dbVTXDnphQsXChIYY+zcuXMGBgYSiaTI5jorV64kIhMTk9DQUP5jY02bsg8/ZGqrj7/+mhkZMXF8uNbgRloa18X0y9u3dbT2fP+LFy4KRdvQ0Iui7zCUnp7ONSpQqwwZFhZGRI6OjkIFduXKFa5FqrOz8+Ni+s1u2rSJe/LUv39/tR0q8M8//8hkMqlU+vfff2vxbTMyMrjMO1eILz/z7uPjo7lMLhLuAFqhNwn35s2bF3l3JYju3bsT0bhx44QOpKSuXbvGzc3v1XpSbVmzZg0R1apVS1/uDPLy8rh/L7/88ovQsVQEepFw5+zZs6d169bFdajnOeHO/m10YW1tXXhtY2pqKrc69T15EBgfzypVYkTs+HGhQymx2bNni6cFSExMDBHVqFFD6EDeUxrmwZkzZxJRixYtBFmw9r///a/InTSYB8VAtMOmOHl5rFkzRsQWLBA6FCgG19a7cLvI2NhYuVxuaGiYkJAgSGCcpUuXcrWqw8PDC5/lqu3VrVs3kee6crdvMyK2erX68Rs3GBErTalooTzNyuJ6mX5y48Z9bX8cu/DqVZvQUBeFYjePvXbL7MKFC9wvT7XjGzZsEKSBQUFRUVFOTk5EVL169atXrxb5mpMnT1pZWRFR27Zthf3XKirJycm1a9cmotmzZ+voEpmZmcHBwcOGDbOxscnPvDdq1Ojnn38u8ikgEu4AWoGEe6nt3r2bK93A991S+YwYMYKI3N3dhQ5Ez7x69apatWpEVORyFdE6efIkd8f/jK9GQxWYHiXcNeM/4a5SqbgVZx999FHhpO3Vq1cNDQ0lEonIO2FoxdChjIiVtSSjMETVAgQJdwFpmAfz+2GeOXNGkNhu377NtUgt3Dga86CwxDxsNAgJYUTM3l4ZGyv2rpLvp/bt2xPRpk2b1I7PmTNHJGXQhg0bxqWxChfWyMzMbNWqFRF1796d1yfZQUGMiJ08qX48K4tJpUxPFpC9zM0dce8eV/XlvPbqUEVmZHS+ds1FoVipJzMFt1Xim2++UTs+duxYIvr1118FiSpfSkoKt+PWzMwsODi4yNeEh4dzO5wcHBzu3r3Lc4QipFKp+vbtS0SdOnXi4TdDXl7e2bNnvb29uSpYRNSmTZvCL0PCHUArkHAvnaysrAYNGhDRKr2owltAQkICt5Po8OHDQseiTyZMmEBErq6uglSELI9+/foR0bBhw4QORO8Vl3D/4IMPHBwcBCmVWDb8J9wZY8+fP69RowYRzZ07t/BZru2hnZ1dbGwsn1HxTKFgUikzNGSl7FckPPG0AEHCXUAa5sGBAwcS0aBBgwQJjMNlGYpskYp5UEAiHzYa/PDDbRubRsOHDxc6EFB38+ZNIrK0tExLSyt4XKlUco+HQ0JChIotX0ZGRsuWLYmoT58+hQf/kydP7OzsiGjmzJm6iiAri4WHs7172cKFbMQItmYN27yZEbEiP0RXqsRGjNBVJNqWrVJNffTIRaFoExq6Rxur0RPS0z+5edNFoZj66JG+fMzjltAVbl7Cte09ceKEIFEVlJ2dPXToUCKSyWTLly8v8jWxsbFcwbGRI0fyHJ4ILVu2jNsQXFwpHh3Jy8v7+++/x44dW+TCGiTcAbQCCffSmTdvHlebrLi2hGK2aNEirrhbkQ3EobCHDx9y/WcUCoXQsZRaZGSksbGxRCK5fPmy0LHot+IS7lwXmleir/aYT5CEO/u3KKFcLj937pzaKaVSyVXo6tGjh6gKC2iRSsVcXRkRmzpV6FDKRCQtQJBwF4qGefD8+fNcP0yePyKqSU5OtrW1LbJdBOZBoYh/2GiAYSNaP/zwAxGNGTNG7fjhw4eJqF69eiK5kYiKiuJ+KRXZU+fEiRNyuVwikezZs6e8V8rNZZGRLCSErV3LfHyYuztzcGAyGSN6+9W3L9u/nxGxI0fUvz01lRGxH38sbxg8UjG29tkzF4XCRaFYFB1dnr/v169ft2jZ8qvt20fcu5etP8uquMc5anfUSqWS+1RSuKOJIFQqlZ+fn+YWqWlpaZUqVbKysoqJieE/QvG4deuWiYkJEe3bt0/oWP4DCXcArUDCvRTi4+MrVapERMf1qApvAdnZ2Y0bNyYif39/oWPRD7169SIiLy8voQMpoylTphBRu3bt9G55vqgg4V5+3FCsVatWUlKS2qmEhASu7IDg22B1ZMsWRsSqVmX6M1L+g2sBYmBgIGwLECTchVLcPKhUKrnaCLNmzRIksIKWL1/ObU5XayLHMA8KRC+GjQYYNiKU3y41LCxM7RS3l0VUDRuOHz/O9T8scmMxt73PwsLizp07JXxDpVIZFRUVEhISGRDAxo9nvXqxhg2ZgcF/cuvcl4EBa9SI9e7NJkxgq1axCxfYkyeMiC1apP6m588zIrZzZzl/WP7tfv68TWjogKtXh48cWfjXfknk5uZyv6YaN26crD/3Zzk5OcbGxlKpVO1m/t69e0RUp04dgeIqWkBAgKGhoUwmu3DhQuGziYmJRFSpUiWRPCcTRHp6epMmTYho9OjRQseiDgl3AK1Awr0UuO1R/fWrCu9/HThwgNuyJJIH4GJ2/Phx7j4gLi5O6FjKKDU1lavmsXXrVqFj0WNIuJdfbm4uV3f1888/L3z2yJEjEonEwMDg4sWL/MemU+nprHZtRsQ2bxY6lHIQQwsQJNwFoWEeXLduHRHVrFlTrbaDIPLy8po1a0ZEfn5+aqcwD/JPX4aNBqmpqVxx2wrQvqXCCAgI4Botqh2Pi4szMDCQy+Vi69bANR63traOiIhQO6VSqbjCSo6OjkXeRiYnJysUisDAQF9fXw8PDxcXF+4WjoiCPvroP+l1a2vm6sq8vJifHwsMZAoFy8wsIpqPP2Z167KCpc+VStarF7O1ZeL+x1icc0lJDs2bE1Hnzp0LL+Z4pzFjxhBR5cqVH+hVsb9r165xDwnUju/cuZOIPvvsM0Gi0uDUqVNr1qwp8hQ3U3Tq1InnkESFu8F2dnbOyMgQOhZ1SLgDaAUS7iWlUCikUqmhoaF+TcyF9ezZk4i+//57oQMRtdzcXGdnZyJasmSJ0LGUy6ZNm4jI3t5ej0qNiw0S7loRGRnJtZH4448/Cp/lqv3Wr19fj/48S2LaNEbEXFyYXi/fEUMLECTc+adhHnz9+jW3MWXXrl2CxFYY1yLVwsKicEMIzIN80q9ho8HGjRu5YSPyZwPvj44dOxLR+vXr1Y7Pnz+/uMf5wlKpVP379yei5s2bp6enq51NTU3l/qW4u7tfuHAhICBg2rRpAwcObNGihbm5ORXF3t7+448/3jplCvv1V7ZvH7t9m5V8cfedO8zWljVpwgIC2JUrbP9+1qMHk8tZ+cvaCOfmzZu1atUiogYNGty/f7/k37hw4UIiMjY2Pn/+vO7C0wXu99KXX36pdvynn34iotmzZwsSVdlw+zy8vb2FDkQwu3fv5sbhjRs3hI6lCEi4A2gFEu4lolKpuFYkU/W0Cm8Bd+7cMTAwkMlkghfEF7OlS5dyN3Bl26goHiqVqk2bNkQ0ffp0oWPRV0i4a0tgYCARmZqaFt5DnZOTww3UgQMHChKbLjx5wkxNmUTCzp4VOpRyE7wFCBLu/NMwD06aNImIOnToIKqCG3379iWir7/+Wu045kE+6d2wKY5SqeSGzYwZM4SOBdjdu3clEom5ufnr168LHlepVA0aNCCio0ePChWbBi9fvmzUqBERLVu2rPDZe/fumZmZcdVK1VhbW7u4uHh4ePj4+AQEBCgUCrUfvCwiI9mQIczGhhExExPWo0cFuDt59uxZixYtiMjW1vZsyX6coKAgqVQqkUh27Nih6/C0jmtjsHDhQrXjbm5uRBQcHCxIVGXzxRdfENGmTZuEDkQY0dHRNjY2RLR69WqhYykaEu4AWoGEe4ls2bKFiKpWrapHyTUNxo0bR0RdunQROhCRSkpK4qbAQ4cOCR2LFly8eFEikRgbG0dFRQkdi15Cwl2Lhg8fTkRNmzYtvHfy4cOH3B/pli1bBIlN67y9GREbPFjoOLRB8BYgSLjzTMM8GBERwfXDvHr1qiCxFScyMpILrHCvS8yD/NDHYaPBhQsXMGxEYvz48UT03XffqR0/duwYEdWuXTsvL0+QwN4pPDx8wYIFxT1kcnJykslkjRs3/uqrr2bOnLlt27bLly8nJyfrNqbc3P/8p0rFAgKYWP8A3yk1NbV3795EZGRktPNd9eivXLliampKRIsXL+YnPO3i9nmEhISoHa9cuTIRPX36VJCoyoZ7FiXOxd26lpubyy3l7Nevn9CxFAsJdwCtQML93dLT02vXrk1EAQEB/F9dF5KTk7mJeY8+byTUnVGjRhGRm5ub0IFozeDBg4nIw8ND6ED0EhLuWpSWlubo6FjcHlJuq6y5ubmw/Tm1JSeH+fuzmBih49ASYVuAIOHOMw3zoLu7OxGNGDGC/6jeidtW3759+8LpLcyDPNDTYaMBho0YZGVlcR9bQkND1U4NGDCAiObOnStIYOV048YNIrKysipccIZX337LiNhPPwkZQ/nk5eWNHj2aiCQSia+vb3Eve/ToUZUqVYho5MiRPEanNSqVitsPoXYbFh0dTUSVK1cWKrAySE1NlUqlRkZGQu2bFNb06dOJqGbNmomJiULHUiwk3AG0Ql5kkbjibIqPP5yUVPBIJbl8Q+PGpXoTvfPLL79ER0e7uLgMGTJE6Fi0w9raevbs2WPGjJk8eXKvXr2MjY2FjuitX6Kjr6WmFjziaGo6t1493gK4cePG+vXr5XK5v78/bxfVtYULF+7fvz8oKOiff/75+OOPhQ4H3l9mZmaBgYFt2rRZsWJF165duRIQ+b7++uuTJ09u37598ODBFy5cMDQ0FCrO0vrqK7p6lYKCqEWLtwfbtiVPT7K3Fy4srXJ3d+/Zs+fRo0dnzpy5atUqocPRrfEREc+yswse6WRl5c3X36WY58ETJ04cPHjQwsJizpw5vMVTctOnT9+6devFixd37tzJPSvNJ9g8GB9Pv/1GJ07Qy5dkYUEffUSTJlGdOkREz57RgAE0bx516/b29Skp1KsX/fwz9enDX5DaoL/DRoP8YXP69OnOnTtfvHhRqVSW/NubyeWWeXmluF6NGuTgQEQUH09Ll9KJE/Tqlfqwef/s3r07MTGxVatWLVu2LHg8MTHxwIEDcrn866+/Fiq28uB6CHt6enJrrgXzzTe0dSstWkQuLjRwoJCRlJVMJlu5cmWjRo0mTpw4e/bsZ8+erV69Wi7/T5YjOTn5k08+ef78+SeffKKn9zAPHz58/fp1rVq1uOdP+cLCwohI7V+HyF2/fl2lUjVt2tTAwIDXC2dm0urVtH8/PXtGhobUsiX98AO1a0dE9OoV3bpVqjc7L5Ewxkr++qZNm1pZWZ05c2bBggVSqXTLli22traluiIA6J9SpecXRUd3vnYt6Pnz/K9gvp7LCbXC/cmTJ6amphKJpISF4fRFXl4e90c6f/58oWP5jx8ePOh361bBMfZ3SgqfAXCfwydMmMDnRXnAfcr94IMPRLvrVrSwwl3rlixZQkTW1tZPnjxRO5WamtqwYUMi+vHHHwWJrWw++ogRsdat/7Mn29qaVbDavwK2AOF5hXv/8PCv794tOBNdLn/93BIT7TyYm5vbtGlTIlq0aBGf8ZTKhg0bqJhelwLMg/fusWrVWK1a7Oef2bZtzM+PNWjArKwYV/QmIoIRMbUOogkJjIitW8dThNqj18NGg9mzZxPRhx9+mJeXZ2JiUqoPWXFt2jCiUnyNGcPYu4bN+6dz585EtHbtWrXjXNPFvn37ChFUeWVkZFhbWxPRtWvXhI6FMX9/RsTMzVl4uNChlMvu3bu5f6Q9evQoeH+enZ3dpUsXImrRooUYboPLZteuXUUOeF9fX9K3lcjLly8n/rcapKWxNm2YuTkbM4atX89WrmSdOjGplG3YwBhjJ0+W7tc1kYFUWqoZ4ejRo8nJyVzhBA1bMUQCK9wBtKJ0K9yJyFgqHWBnV9rv0l8TJ07MyMjw9PTkiqZVGDKZzN/fv2vXrgsWLBg+fHiNGjWEjuityoaGQo0xbu2bjY0Nt9WrIvnxxx83btzILUDjNn0DCGXChAn//PPPgQMHhg4devLkSZlMln/K3Nx8+/btHTt2XLx4cefOnbm6nHqhbVu6fp3WrqXRo4UORWeaNGkyevToZcuWTZgw4dSpU0KHo1t1jY0FvNsR5zy4cuXK8PDw+vXrc33bxGn48OFr1669cuXKr7/+yqVK8wkwD379NZmY0JUrlL8g8fvvydWVPD3pzh0+AuCLvg8bDX788cdNmzZdv359w4YNHTp0yMrKKvn35tWrR6Vav1m/PtG7hk2BGfN9cP/+/TNnzpibm3/55ZcFj7N/n66NHDlSoNDKZdeuXSkpKe3bt//www+FjoVo3Di6fp02b6Z+/ejqVbK0FDqgMvr888/t7e379Olz/PjxTp06HTx4sFatWoyxb7/99u+//65Ro0ZwcLC5ubnQYZbRtWvXiKhFwa2UGo+LmTAx+/rSjRt0/jy5uLw58t13NGQIjRlDbm5kZUWurqV6P1eZLLc0e56sra2//vrr6Ojojh07zpgxo1TX4l+lSj07dbKysdGncQUgRqVKzy+Kjv6fQK0tBFnh/vfffxORqalp4WWYFUP//v2JaOjQoUIH8tYPDx6MvH9fkEtnZmbWrVuXiNasWSNIALoWGBhIRHZ2din8LpbUd1jhrgvPnz+vXr06FbPJ5pdffiGiKlWqxMXF8R9bGXz0EfviCzZ5MrOyYvkhV7wV7ky4FiD8r3CfLVybRHHOg4mJidx6zODgYEFiK7lz585JJBITE5PCN2+8zoPh4YyIrV6tfnz3bkbETp6sMCvcK8aw0eDPP//kb9jculX0sAkKejNs3jOTJk2iolbCnjx5kohq1qyppxs327dvT0QbN24UOpB/ZWSwli0ZEfv0U6ZUCh1NuURERHBt3mvUqBEWFjZ16lQisrCwEKQVnBb16NGDiP766y+147Vq1SKiBw8eCBJV2XDPmS5evMjfJZVKZm3NCic9YmKYRMJ46QOxYsUKIrKysnr8+DEPlyunBQsYEcMCd4ByKvUK9xzGLr5+nf+fDU1MzGSy48nJpX2flEOHlKUpa5icnExE+/btUygUpb1W2ahUKm6v4tSpU7m9PxXP4sWLDx8+vHXr1tGjR7dt21bocN5IzcsrOMaamZllqlQXXr0q1ZtI8/KeHzpUqm85ePDg48ePnZ2dv/3221J9o77w8PDo3Lnz6dOnv/rqK67NFG+aNWvWpk0bPq8IImdnZxcQENCzZ09fX9/u3bu3bt264FkfH59Tp06dOHFi+PDhR44ckUgkQsVZKjNm0LZtNHEi7dghdCg6Y21tPWfOnNGjR48dO/b58+e8Fd9MSUkhooyMDG5JY8nZffopK+We3y5WVkT0PDe34EzUysLCgMdxKMJ50MrKav78+WfPnv30009L9Z78c3V19fLyatCgQbVq1dROlXke/NTEpEpmZimCcHKi+/eJiAovX+Uq7SoUb0pyJyRQRMTbs6W/oxbc4sWLK8Cw0WDgwIGrVq06ffr0vHnzFi9erNuLXb1KVNSw4ZZkKhTUtatuAxCTnJycLVu2UFHL2P/44w8iGjFihEwPl/zfvXv34sWLlpaWA8VTM93EhPbupVat6MAB+uUX0uedvvXr1z937txnn312/vx5V1fXzMxMAwOD3bt3f/DBB0KHVi5FrgpPSkp6+vSpubl5fW5/jD7Iycm5c+eOTCZr1qwZf1eNiKCUlCJ+tdrbU7VqpPv80u3bt7m+7mvWrKnzvjbkAHgPlTrh/jovb1yBDwaz69ZtYW4+98mT0r7PnR9+yPxvT7B3MjExUdsdrGs1a9a0tLScMGECnxflU7169dzc3O7evSuqvqkPMzMLjrFNjRunK5WlHWOVZbJjI0aU9tIWFhY+Pj5qbXb0Tlpa2u+//+7t7V24C9P06dOvXr166tSpo0eP8hnSpEmTkHAHNd27d588eXJcXJyTk5PaKalUunHjxkaNGtnZ2THG9CXhXqkS/forDR1Kw4dTjx5CR6MzXl5evr6+BgYG33//PZ/XNTAwePny5YhS/mJ3DQvLUqlK9S2OpqZEdPn16ysF7lKONW9uzePUIMJ5UCaTff/99zz/pZfZmjVrijtVtnkwrk0bunKlFBGMGfOmPEjhXrvckfzE+rhxNG5cKd5ZfGrWrFkxho0GU6dOVSgUfKy/SUkhKsGweT/s3bv3xYsXzZs3V3sqn5SUtG/fPqlUqqftUrlfUIMHD+a2HopFnTq0Ywd98gn5+lLLltSrl9ABlV3lypVPnjzZu3fvf/75RyaTDRgwoIee35bFxMS8ePHC1taWW8+ej+uY+uGHH0pLubZAQOHh4Tk5OU5OTryOf+5Xa5FFdO3tefjVampqWqVKlVq1an3xxRe6vhYAiEepPz1WNjA42rx5wSOv8/L6/LdZdkm4DB6cl5NT8tfv378/OTn5s88+s7GxKe21yiYvL2///v2vX7/et2/f4MGD1c6qVKrNmzc3btzYtZTVvviXm5s7e/Zsb2/vKlWqqJ169erVlStXnj9/HhERIZ7H/i0tLNY1alTwSFRWVmnHmHFurv0335TqW86fP3///v2goCBPT8/CZ69du3b27Flvb+9Svacg/Pz85s+ff/ny5X379qmd2r59e0ZGhoODA9fcjDfi2T8BouLn51dcMv3XX3/NysoKCwtjjPEcVXkMGUKbNtGYMRQeLnQo5XPz5s0zZ8589913hTNoISEhL168MDExGTx4sJGRET/xZGRk7Nq1y9TUVK2M7zvVt7bOK+UDG0u5nIg+tbWdWbduqb5Ri8Q5D1YMZZsH8+zsqGnTUlymQwfiHtikpNB/8yNvPvbnPxFfu5b69Hl7NimpdBcSgYsXL6amplbsYbNjx4709HQ+7gO5gfHOYfN+4Jaxf/fdd2rHJRLJzz//HBsbq49bkDMzM7dt20ZEpX1+zIfu3WnWLJoxg4YMoatXSX8WTRd2//79q1evKpVKItq5c2e9evXmzZunLws4CuOWt7fkNkiV4LiYCVPAnWt5zf0iVZOSQra2ur5+RETEkydPEhISbty4IZ6sCwDoXKkK0LxvNdw3btxIRPb29mlpaWqnVq9eTUQffvih+EsH/vbbb0TUunXrwqcmTpxIRK6uriqViv/AiiRg7dqEhARLS0siOnLkiNqp+Ph4IyMjmUx2Q6DxX3KPHj0yNjaWSCRnz55VO6VQKKRSqaGhoX6V+RMcarjz79ChQxKJxMjIiEu4ix9Xw50THs4MDNhvv+l3DfcuXboQ0bx589SO5+bmOjs7E9HixYv5jAc13PmhYR6sGHidB//+mxGxvXvVj589y4hYYGCFqeGOYaNNp069Y9i8NyIiIiQSiampaQXrPBQQEEBEbdq0ETqQYqhU7PPPGRFr3pwV+vyrL/Ifxnh4eKxfv54rfzdgwICMjAyhQyujWbNmEdFPP/2kdpxbhbBp0yYhgiqjMWPG8H8bydLTmVzOJk9WP56ZyQwN2fjxPITAbfZq2LChXnwWQw13AK3Q79IZujZs2LA1a9ZcuXJl4cKFc+bMKXhq+PDhCxcuvH79+oYNG7y8vISK8J2Sk5Pnzp1LRNw8XVBERMTKlSulUqm/v7/+PvDXoipVqkybNu2nn36aOHFit27dCtYmrlq16nfffbds2bLx48efOnVKwCDf6ccff8zKyvL09OzYsWPB44yx8ePHq1SqSZMmNWzYUKjwAN7p2bNnw4YNY4wtXLiQ7/Uv2uDsTOPH09y5lJ0tdChltXv37r///tvGxqZwIYjff//99u3bDRo0GDt2rCCxgU5pmAcrAL7nwQ4dqGpV2riR+vX7z/ENG8jcnHr0oMREncfAiwo/bMaNG6dSqSZPnrxly5ac0mzP9baysn/5shQX69CBPvmEqlalTZvUh8369W+GTcUVHx//4MGDh/+6dOkSEf3vf/+zsrISOjRt4pbtF65KLxYSCW3aRHfv0s2bNHKkPjalSUtL6927d3R0dMeOHbds2WJsbFynTp0BAwbs3r372bNnf/31l52dndAxllpxq8KFWS1ePlwZHL5jNjWlHj3ozz9p1iwqWMpmyxbKyaH+/SkyktatK9VbTpVKlaUpWjh69OgLFy7cuHFj4sSJ60p5LQDQV6VKz79vK9wZYxcuXJBIJCYmJlGFFrv9+eefRGRnZyfmlRejRo0iIjc3t8KnevfuTUQjR47kPyoNBFzZxxjLzs5u1KgRES1btkztVHJycuXKlYlo9+7dgsRWEtzDAFNT0ydPnqid2rp1KxFVrVpVj1ZkiwRWuPNJqVR27dqViD755BPx7Lx5p4Ir3Blj6emsbl1GpJcr3DMzM+vVq0dEq1evVjuVlJRka2tLRAcPHuQ5Kqxw542GeVDfCTAPBgQwIvb99yw+njHGkpLYlCmMiC1dyhirMCvcWYUeNlzTTm7YmHBFCUosrk0bRlSKrzFjGHvXsOFXnkr1xe3bal/BiYnlfNvk5GSFQhEYGOjn5+fl5eXq6lqpUqXCf4AmJia1a9dOSkrSys8iBnfv3pVIJObm5q9fvxY6Fo3u3WOVKjEi9ttvQodSOnl5eX379iUiBweH58+f5x+/desWt+a9fv369+7dEzDCsuGCv//fe4PU1FRu8012drZQgZWWUqk0NzeXSCQC/Lu+eZOZmLAuXdjt24wxlpnJNm5kpqZswADGGDt5snS/rokMSlk3/+jRo+Hh4VyLtR07dvD945cSVrgDaAVWuL9D+/btv/rqqx07dvj4+HAZ9nwDBw5ctWrV6dOn586du2TJEqEi1OD27dsbNmyQy+X+/v5qp06cOHHo0CELCwu1lfvvOUNDw0WLFvXt23fWrFmDBg2qXKBgrrW19Zw5c0aPHv3jjz/27t1bVG1mOUqlkmvwO3XqVLWilhkZGdOmTSMiPz+/Ij/SAIjE/PnzT506VbVq1U2bNunvzhtTU1q8mAYMEDqOMlm8eHFUVJSzs3Ph8rLTpk1LSkpyc3PjntdChaRhHtRrwsyDQ4cSEf30E61eTRYWlJpKNja0YgVVuA0iFXjYTJ8+nYgWLlxYqVKlefPm5ebmluL7LSyof/9SvN7FhYho6FBijHx8xDBsVEQRmZldraxcLCzyDzYszYOHDKUyOjs7Ojv74ZEjl48e5dawJxfVorBy5coNGzZs1KhRw4YNGzZsWKdOnTFjxoSGhn7xxRdHjx6VyWRa+HmEtm7dOsbYkCFDLAr8eYpR48a0YQMNHHjpwIHsFi06d+4sdEAlNX78+L/++svW1vbIkSMFV7I3bdr00qVL7u7uYWFhHTp02L9/f6dOnQSMs1SSkpKio6PNzc0bNGhQ8PiNGzdUKlWzZs0MDQ2Fiq207t+/n5aWVrduXd7a8r3VrBmdOEGjRpGzM5maUlYWyeXk5UWLFxMRNWhAfn6ler/5EomqNI2mGjVqVK9evcWLF48ePXr06NHt27evK1yvIADgSanS81lKZapAJcuFWuHOGIuJieFWhv7zzz9qp65duyaTyQwMDMT5qJxrCDZhwgS140IV4S2JdKUyXakUNoaePXsS0ejRo9WO5+XlcU1O5s+fL0hgmnF9BWrXrp2enq52ivu42LJlS6XQf7b6CCvceXP58mUDAwOpVBoSEiJ0LKXz+nURlU6Tk9mZM8VWQH3xgomwA0hMTIy5uTkRHT9+XO1UeHi4XC6Xy+W3bt0SJDDicYV7Wl5epnC/LcU8D+ovIefBvDwWFsZCQtiVKywn5+3x3Fz26JH67wilkj16xES++rUYFW/YcA9pXFxcRDRs+JWjUrkoFNsTEkr44pisrMuvXu1ISJj/+PH3Dx70uXWrlULholC4KBR95s/P//hpZGTk5OTk4eHh4+Ozdu3akJCQ2NjYwm8YHR1dpUoVIpo2bZq2fzIBZGVlcSng0NBQoWMpkQMLFhBR1apVY2JihI6lRBYtWkRExsbG586dK/IFqamp7u7u3AgU/xLjfCEhIUTk6uqqdnz58uVENGLECEGiKpvt27cTUb9+/YQM4sEDFhLCzp4Vaqr94osviKhNmzY5wv1ufyescAfQitIl3AUkYMKdMTZ79mwqpkUqV8C9e/fuggSmQVBQEBHZ2NgU3rHFtVFt0KBBVlaWILGJ3J07dwwMDIpskZpfsyU6OlqQ2IqTkpLC3cQXrngTHR1tampaZBtVKAkk3PmRkpLCLfT4+eefhY5FO+bNYxJJ0VVlNm1iVlZs7VreY3oXT09PIvr8888Ln+revTsRjeelr1RhPCfcQcM8qI8wD/IDw6biKS7hnqtSPcnMPPPy5bb4+F+ePPn+/v3eN2/m59YLfnUIC/vy9u0fIyPXnD69YcOGM2fOxHOlckrm1KlTcrlcIpEEBQVp9ScTwLZt24jogw8+EDqQklIqldxTtLZt24r/M+Pu3bulUqlEIil8x15QXl4e17RTIpH4+vryFV25/Prrr0T0ww8/qB3/+uuviWjlypWCRFU2kydPJqI5c+YIHYiQUlJS6tSpQ0QzRFx6Egl3AK1Awr1EMjIyuEzQukJVNZ8/f8418zl8+LAgsRVJnEV49Yi3tzcRdenSpfCp/v37E9HQoUP5j0qD8ePHE1HHjh0Ll7328PAgosGDBwsSWAWAhDs/vvrqKyJq3bq1HlWi1OzCBSaRMBMTVrgYeGAgI2J2dkxUHUAuXrwokUiMjIwePnyodmr37t3cE9zEcpfuLRsk3PmnYR7UOwMGDCCiIUOGCB1IxYdhU8FwCXe/J08uv37NfV1LTWWM/fzoUeHcetvQ0D63bn3/4MH8x493JCRcfvUqJiur/FsDuGXLFhYWt7nKy3qLK8yyZs0aoQMphaSkJAcHByIaNWqU0LFocuXKFa40tp+fX0le7+/vL5VKiejbb78V8ypjDneHvHHjRrXjn3zyCRGdP39ekKjKplu3bshCMMbOnDkjk8mkUunJkyeFjqVoSLgDaAUS7iW1a9cuIqpSpUrhFqlcAfcGDRqIJ080d+5cInJ2ds7NzVU79d1331ExbVQhX36L1L1796qdevTokbGxsahWPN2/n2hsbCaTyQr/Azl37hzX9bdwG1UoISTcebBu3ToiMjc3f/DggdCxaNOgQYyIDRxYxKnOnRkRmziR95iKoVKp2rZtW+TO/aysLK5s6KpVqwSJjSHhLgQN86B+4ebBItuJg9ZVmGFz9uxZDBv2b8K94Ff3GzcYY+tiY/vcujX2wYOF0dG7EhLOv3r1NCsrT2etzrkKDI0bN3758qWOLqFr9+/f59ql6tF9I+f69etcLvuPP/4QOpaiPXr0qGrVqlz2vOTfFRgYyHXk+uSTTzLEXcXL0dGRiK5du1b41IsXL8STfygJboJ49uyZ0IEIz9fXl4js7e1fvHghdCxFQMIdQCuQcC8FbmHCpEmT1I7n5OQ0btyYiJYuXSpIYGpEW4RXv6xcuZKIHBwcMjMz1U5NnTpVsJqeRfnkE9aoUcbPP6tnhJVKpYuLCzbulRMS7rr24MED7leW5l3A+igmhpmZMSJWqAMIu3aNyWRMLmfh4UJEVsjmzZuJqFq1aoWH9Lx584p7gssbJNwFoWEe1Bf58+DcuXOFjuV9gWFTkZSqhrvupKWlNW3alIj69u1beCunXuAqaYwcOVLoQMpi69atXN3zy5cvCx2LuqSkJO5j+P/+97/S3qVcunSpSpUqv7Vvz5o3Z2J9tJaWliaVSg0NDfUrsV6kx48fc+sXhQ5EFJRKZZcuXYioV69eIvy1hoQ7gFYg4V4KGlqkHjx4kIgqVaoUFxcnSGwFDRkyhIgGDBhQ+JSwRXj1S15eHjfqfvnlF7VTqampNWrUIKItW7YIEltBBw8yImZlxZ4/Vz+1du1aIqpVq1bhNqpQcki461RWVtaHH35IRF9//bXQsejE7NmMiH34YREtUr28GBETQwcQDb/T4uLiKlWqVOQTXD4h4S4IDfOgvlizZg3mQZ5VgGHDdaHHsGGiSbgzxh4+fMjV8FywYIHQsZRadnY21/31ypUrQsdSRqNHj+b+USSIYDDky8nJ6dq1K7cmoGy7H6IiIlRNmzIiVrMmE2XzifPnzxNRy5YthQ5EC/bt20dEPXv2FDoQsXj69ClX6ff3338XOhZ1SLgDaAUS7qUzcuRIIurdu3fhU1wZNcEr3Im5CK/eOXnyJFfmovDGt4CAgOJWg/IpJ4c1bsyI2G+/qZ969epVtWrViCgwMFCAyCoQJNx1at++2UTUqFEjsQWmLRkZrG5dRsQKdQBhz58zKytGxA4dEiKyAjTs2tHQRpVPSLgLRcM8KH6YB4Wi78OGK09RAbp0lp94Eu6MsWPHjnFVj0XVN6skdu7cSUTNmzcXOpCyy8nJ6dSpE9ehQcDtbgWpGJvz8GGnESPs7e2fPn1a9jdKSnpT5s/cnImstvidO3e4DMOnn34qdCxaMHPmTCL6+eefhQ5ERPbs2UNEH3448uZNcS1yR8IdQCuQcC+dhIQES0vLIluk3r1718DAQCqVKhQKQWJjJSvCW7iNKmjQr18/Iho2bJjacQ1/1HxavJgRMUdHVrjfz/z5RyQSaadOnUS4SU2/IOGuOy9fBisUkn/+6RQaGip0LDq0axcjYlWqFNEidckSRsQaNGBZWQIExsnvS3Hp0iW1UwqFgtvIXPgJLs+QcBdQcfOg+E2YMIGIXF1dMQ/yD8OmYhBVwp39W/XYxsYmMjJS6FhKgVuFvXLlSqEDKZe4uDh7e/siy6sKYtWzZy4KRdfr18PLf4uSlcUGD2ZETCZjIvhrio6O9vf3d3V1JSKuBouhoWEFqLv46aef4hF4YTNnnjMwYE5OTFRbqi5fZosWsTNnhI4DQM8h4V5qixYtIiJHR8fCPc0Fv0cXeRFefRQZGcmlogpXLdSwmYAfCQlvlscWXuhz/z4zNGTNmr2+dk0c9aH1WXEJ94SEhLi4OD36QC62hHtOTsz165UVCoqPF0X3C53i1k4V/oiav0llyRIhwmKMMda/f38iGjp0qNpxlUrFfdibOnWqIIEVhIS7gDTMg2L28OFDQ0NDYZdBvM/0dNiIYfWMqIgt4a5SqbhnOR988IG+FPyJiIiQSCQmJiYphZ+665sLFy4YGhoS0a5du4SN5K/ERBeFonVo6Glt/amqVMzXlxExIubtzYRo0xUXF7d8+fIOHTpIJBIu1W5tbf3NN98MGDCAiCQSia+vL/9RaRH3wEbwNRxik5nJmjdnREzoQgmMMbZlC/PyUq+utGABW7tWoIAA9BwS7qWWnZ3N9Wb5rVAVD2F3oYq/CK+emjJlChG1a9eucGpV2GILI0cyIlZUfSPWqxcjYl5evMdUERWXcBehqKio8ePHF34WyBFZwl15/343hYIePOjJmN48tCgzrkWqgQEr1AGEHT/OiFilSkyQDiCnTp3SXDiratWqYtjGgYS7sDTMg6LVq1cvIvLCRCgcfRw2IqkPKSrJublZQiQfi/P69WtHR0ciGjx4sNCxlMhPP/1ERN98843QgWjHihUriMjMzOzWrVtCxaB4/bpdaKiLQvFn4QZW5bRxIzMwYETs889ZRoaW37wYKSkpAQEB7u7ucrmcy7ObmJi4u7sHBgbmN0r19/eXSqVcx6Pi7vNF7sWLF1zHu8LVCyE8nJmYMCK2c6fAkXDphdat/9N6ql075uEhXEwA+kxvEu7fLl3ay9f3TlSU0IEwxtiBAweIyMrK6sWLF2qnBOyz9PPPP4szL6zv8p9kbN26Ve1UTEyMubm5IE8yNOTvQkKEzN9VPHqRcE9LS5s+fbqJiQkRLVu2rMjXiCrhHhs7T6Gg69er5OS8L8N0xAhGxNzdizjVqxdr3z564sRfeQ4pv7fh/Pnz1U6lp6fXqlWLiAICAniOqkjxSUm9fH2/1MNeeRWDhnlQnI4fPy6eVvbvLb0bNocOHcKw0Qt3797lFhKtWLFC6FjeIScnp3r16kR08eJFoWPRmqFDhxJRw4YNy9antJwiMzM/vnbNRaFYFhOjkwucOMEsLRkRa9eO6XJvR0ZGRnBwsIeHB7dpgIiMjIzc3d0DAgKKvFfft2+fqakpEbm5uQnyJ19Ox44dI6KPPvpI6EBE6vffGRGzsmLCprtGjmTVqzNjY7Zq1duDSLgDlJneJNy/vH3bRaG4z9ej5nfq2bMnEX3//fdqx5VKpYuLCxHNnTuXz3j0ogiv/tq0aRMR2dvbF74BEqpWD1ehYuJE9eO5uczZWeAKFRWMyBPuKpUqMDCwTp063G5TDw+Px48fF/lK8STc09KuhIYaKBTSV6/eoz03CQlvPsEVVQMqysDAQCaTXbt2jc+QVq1aRUT16tXLzMxUOzVt2rTi2qgKIiEnx0Wh6Km2xxV4pGEeFJvc3FxnZ2ciWoKJUGh6NGxycnK4DaxLl1b8KmcVwN69eyUSiYGBwenTp4WORZPAwEAiatasmdCBaFNmZqaLi4uXlxf/S61f5OS437zpolD8FBmpw7uTW7dYnTqMiDk4FLGyqZyyslR//eU5aBCXPScimUzWvXv3jRs3vrPo0OXLl7nN9E2bNn3y5ImWA9OxBQsWENG4ceOEDkS8PvuMEbGOHZmABYBHjmQffsh8fJiV1dule0i4A5QZEu5ldOfOHS4/UrjKzdmzZyUSiampKZ8ToV4U4dVfKpWqTZs2RDR9+nS1U4J0o/3zT0bE7OyK6MG4dKnwPRgrGDEn3BUKRX5LJRcXl7Nnz2p4sUgS7nl5L2/dqqdQUEyMj7CR8G/RomK7HPPfAiQ5Obly5cpEtHv3brVTT548MTU1lUgkmkcUn5BwF5yGeVBslixZQkQNGjTIwkQoNAwb0J1JkyZxdc9idLTSWRu6d+9ORMuXLxc6EC0TpIB+llI57O5dF4XC8+7dTF2vBoiNZS4ujIjZ2DCtPNRRKtnZs8zbm1WuzIgmtWjB3br7+/uXakvNo0ePmjRpQkTVq1fXr1YTAwcOJKLNmzcLHYh4JSez2rUZEROwVj+XcH/9mlWvzgYNenMQCXeAMkPCvezGjRtHRF26dCl8iuttMmTIEH4i0ZcivHqNa5FqbGwcVWijV1BQEBHZ2NgkJibyE8zff7MmTdiaNerHk5KYjQ0jYgcP8hPIe2H8+PG2traurq6iWksSGxvr5eXF1XOsXr362rVrNaxEViqVAQEBZmZmhoaG7du39/f3j4+P5zPagh49GqRQ0J07rVSqbKFiEEp29psWqYU6gLBXr15Vq1aNiAIDA/kJRsMU9vnnnxORp6cnP5GUBBLuYqBhHhSP58+fW1lZEdGhQ4eEjgUYw7ABncnLy+vRowdXTjO/1LWoPHr0SCqVmpiYJCcnCx2L3lMyNikiwkWh+PTWrSR+FgCnprLevRkRMzZmZW7PplKxc+fY2LGsatU3HVmJWIsWkatWlfljRXJy8scff8xV0g8ODi5jYDrw5MmTAwcOFHe2YcOGRHTz5k0+Q9I7Z84wmYxJpezkSWEC4BLujLEtWxgRCwlhDAl3gHJAwr3sNCwPjI6O5m15oB4V4dV3gwcPJiKPoiYcbgHL+PHjeQsmJ+c/zUw4o0YxIubmxlsU74Xs7GwuE2pubr5gwQLB175lZ2f7+/tz1UsNDAy8vb01P047ffp0ixYtuFXwXIKeiORyuZub2+rVq3muVPvixXqFgsLCzDMz7/N5XfE4cIC1a/eiZcsvC7cAWbNmDW8tQDRs0uKe4PK8SeudkHAXCQ3zoEiMGjWKK3ErdCDwlviHjZeXFxF1795d6ECgdBITE+vVq0dEY8aMESoGDSUlufZaw4YN4zGcCuvX6GgXhaLL9euPCxXB06G8PDZ2LDMwYPnNuh4/ZnPnskGD2JdfsmnTmIb0cXg48/Vl9eu/zbPXrct8fNjdu+WPKzs7m+vQJpPJBO9kkJSUFBAQ4ObmJpFIzMzM0tLSCr8mNTVVKpUaGRnpacdXPs2YwYhYzZqMr4V8jDGmUrELF9iLF28T7ioV69yZNWrEsrORcAcoOyTcy0UMBXA1xDB16lRRFeHVdzExMVxRjr///lvtVHh4uFwul8vl4eHhQoTGxcDkciaXM+FCqLCio6O5+1ouHyrgE6zg4GAHBwcuEnd394iICA0vfvr0qaenp0QiIaKaNWsGBAQkJiYGBAS4u7vnN2iSSqWurq5+fn489HjIynp47ZqFQkFJSfrRQE9HxNACpLgY8vLyPvjgAyKaN2+ermMoFSTcRULDPCgG169fl8lkws7FUBiGDehOWFgY1zF+w4YNur5WcnKyQqEIDAz08/Pz8vJydXW1tLRct25dkS/Ozc3lmgafO3dO14FVeNvj410UinahoVdfvxbg8vm/GXbuZEZGrG5dNmgQGzuWNWvGpFL2yy//eXFUFPPzY46Ob/PsNWsyb2+m7UV4KpXK19eXu8n39vbm/8N+SkrKxo0be/ToIZPJuM8UpqamX3zxRZElns6cOUNErVq14jlIfZSby1xdGRHr3ZvpusxkfqGjmjUZEVu+/G3CnTEWHs4MDNiSJUi4A5QdEu7lonl1ee3atXVdqix/lf2ePXvUTuW3URVPEd4KYM6cOUT0wQcf5BVaXi74qrqPP2ZEbMIEoa5f8Z06dYr7984V4rjBb+7v7t27XJKUiBwdHQ8X7rxZQHp6up+fn7m5OXf76+Pjo1a6PSUlJTAw0NPTk3sNx8nJydfX957W20MxxhhTqbLu3GmhUFBU1DBdvL8e0bC6/Ny5czy0ADlw4AARWVlZFV5lv3r1at5W2ZcKEu7ioWEeFBy3y34CJkLxwbAB3dmyZQsRGRsbX716VVvvmZqaGhYW9ueff86bN2/o0KHt2rWztbWlokybNq3Id9izZw8RNWnShLfWLBXVmZcvW4eGtlIoDvG54rewu3eZkREbPPhtHx6Vivn4MCJ29ChLSWELF7IPP3ybZ69alY0dy86d02nSdPPmzdwamn79+vFz55aZmRkcHOzp6Vmw6aubm1tAQMDr4h+HLFu2jIi8vLx4iLACiI5+UyR21SqdvH9ODjt2jHl5sSpV/rMBY82a/yTcGWM//sisrVmjRm8S7i9f6iQegAoMCffy0lA/nbv/02n9dP0qwlsBZGZm1q1bl4jWFCqgnpSUZGNjQ0QHhSigHhT0pq9PUhL/F3+PcMXQq1Spwq0N9/T0TEhI0PVFk5KSvL295XI5EdnY2Pj7+2vYv8wYCw4OrlOnTv4q+MePH2t4cUZGBnffzNWoKZh5v337thZ/iujocQoF3bpVPy8P/SSEbAGSnZ3duHFjIvqtUCH5lJQUOzs7Igoqc61SnUHCXTw0zIPCCgwM5H5JJmEiFB8MG9ApbtVL7dq1nz9/Xtrvzc7OjoyMDAkJ8ff39/LycnNzc3BwyC/BV5CRkZGTk5OHh4ePj8/atWtDQkJiY2OLe1tukYS/v3/5frL33e309I5hYS4KxQZ+SyAWYexYZmbG1D7U5+UxBwfWowdLTmZGRoyIWVkxT08WHMz4qp1y8uRJrgVF27ZtddeiKS8vLyQkxNPT08LCouAeWX9//5L8oxs+fDgRrV69WkfhVTy7d79pH1BocU7ZZWWxkBDm7f2fPHu9em82YHAPhtQS7unprE4dRsQ8PNjevczKiv35p9biAXgfIOGuBf379yeioUOHqh1XqVTt2rWTSCTbt2/XxXVTU1Pt7Oz0qAhvxcB9NrOzs0tJSVE7tXTpUiLq06cPzyFlZrJ69RhREW1UQReSk5N9fHy4FSVWVlZ+fn466taVm5u7du1abheLXC738vLSfFMbGhrasWNH7j64ZcuWpdrdkpGRsW/fviFDhlhaWuZ/tjxzpv+zZzMyMsp7r/fy5WGFQhIaapCWdqmcb1UxCNgC5OjRo1Kp1NHRsXAZzfHjxxNRx44dRbgcDwl3UdEwDwpFtPlcyIdhA7qTk5PD3f9069ZN86KE5OTkQ4cO/fbbb6NHj+7evXvdunWLzK0bGxs3a9asf//+Pj4+69evP336dKl63jx58kQmkxkbG+NBTskdTUr6/sEDta/A589bKxRzNK4d4Unz5szVtYjjw4czU1OmUrFFi9j+/UyIVk+3b9/mfpXVq1fvrjZqxOdTKpVnz5719vbmFmTkr8vx8/PT8LSpMG6L8KVL+BRQCiNHMiLWsmV590hkZLDgYObpySwt3+bZnZyYj08RhY7UEu7s31V9Hh5syBBGxCQSNnYs47OTAoBekzDGCt9kiNBXd+48zMzc4eTUyMRE6FjURUVFOTk5ZWdnX7x4sW3btgVPXb9+PTU1tVOnTjq6dGJiYkhIyFdffVXwIFcI+MaNG/PmzeNKyYN2ffzxx6dPn544ceKSJUsKHs/NzQ0ICBg2bJiBgQGf8cybRzNmkLMzXb9OcjmfV36v3b9/f+LEiYcPHyaiRo0aLV26tHfv3lp8/5MnT06YMOHWrVtE1K1bt99++61Zs2bFvTguLm7WrFkbNmxQKpWVK1eePn362LFj84sqlopSqbx48WJQUNDx48E7drxQqdKJyNCwrpVVH2trD3NzVyJJad8zIyM0KmpQ5cojq1adXIaQKqTVq1ePHj26Xr16d+7cMTY2Lnhq+vTp8+fPHz169MqVK3Vx6dDQ0Ozs7A4dOhQ8eO/evebNmyuVyitXrnCl5EXleW5ur5s37QwMjvxb1gmEVdw8WFDfvn3T0tK0eNGQkJAiU2NENG/evBkzZjg7O1+/fl2OiVCsMGxAd+Li4lq1ahUbG+vj4+Pn51fcy/7++++uXbsWPGJgYFCrVi2Hfzk5OTk7O9epU6dsN1GcGTNmzJs3b8iQIVu3bi3zm7xvNsbFrY6N/bp69YIHR9eocTU1tYW5uVxS6ptPLatWjbp0oZ071Y/PmkWzZ9PLl1RgwQr/4uPj+/Tpc/XqVWtr671793KVssrj9u3bW7du3bJlS1xcHHeE294xZMiQBg0alPBNXr58GRwcHBQUdPr0aWNj48ePH+cXooF3ysigQYNo5kxq2bKM337yJAUF0f79lJr65qCTE3l40BdfUJMmRX9XaCglJ1P37v85GBxMdnbUrh398QeNH0+ZmeTkRDt3Em7JAd5N6Ix/SYl5hTv7tw29SNqTirYIb4Vx7do18fTXiolh5uaMiB0/LnQo76WQkBAnJyfu16mbm5tWyrA8fPjQw8ODe88GDRoEBgZqeHFOTo6/vz9XEMbAwMDb21tbNayUytzXr088efL9jRvVFArivm7erB0dPT419Sxjxf6uUyoznj9f9eTJd1FRQ+PifsnMvM0YUyrTGBPdumkBaWgBkpaWFhQUxPMy808++YSIRo0axedFSw4r3MWmJPOgpbazD8UtXI2JieHaURzHRChuJRk2BeubaUVxVePzh404W7lCGZw/f97Q0FAikfxZfNWD2NjYHj16jBkzxt/f//Dhww8fPtS8Ir4McnNz7e3tiej06dPafeeKbUNsbOvQUKGjKJ69PevXr4jjP/3EiJgIchRpaWl9+/YlIkNDw61bt5btTcLDw319fQum1OvUqePt7R0WFlaqSHbs2NGnTx8jIyPuTYyMjKKiosoW0nvu3j3m4cHUPiuEhDAPj6KXmScns4AA5uHBzMz+s57d15fdv6+FeMLDWdOmb8rdoGIWwDthhbt2pKWlNW7cODY2dsuWLZ6engJG8vLly0aNGr148SIoKIirBQy6MGrUqHXr1nXv3v348ePCRvLqFc2dS8+eFbHkAviRm5u7atUqX1/fV69eGRgYfP/993PmzClbpik9PX3RokVcjRozM7PJkyf//PPP+XerhR04cGDChAmRkZFE5Obmtnz58ibFrVgoF1Va2oVXrw6mpOzJzo7gDsnllS0tP7G29qhUqadE8nZLh0qVdvdu65ycGEvLXlKpSWbmLWNjp3r1sMKrCNw6O3Nz8/v379eoUUPASA4dOuTu7l6pUqX79+9Xq1ZNwEiKgxXuIvTOefDMmTO5ublavGLXrl0lRS1y9PT03LZt24ABA4KCgrR4OdCFdw6b06dP5+XlafGK3bp1K/I4hk2F5O/vP2HCBHNz80uXLjk7O/MfQHp6+h9//DFhwoTGjRvfvXu3yF9ZUKSNcXFr4uKulG01Lw86dqSMDAoLUz/+xRd0+jTFxwsRkzqlUjlx4sTly5dLJJKZM2fOmjWrhN/45MmT/fv3BwQEXLt2jTtib2//+eefe3h4uLq6lnAYZ2dnHz9+PCgoaP/+/ampqUQklUrbt2/v4eExaNCggkVpoOQuXCBXV5JI6ORJ6tLlzcG1a+m77yg1lczN3xxJSqJDhygoiI4fp5wcIiKplNq3Jw8PGjCA7O21GVJmJk2ZQsuXExH160fr15ONjTbfH6BCETrjX1IiX+HOGNu8eTMRVatWTXctUktCzEV4K5Lnz59zDWoOHTrE20Xv3GF+fkxtJdbp02zZsvIWd4PyS0xM9Pb25jYg29ra+vv7F7eqrjgHDx6sWrUqEUml0m+//VZz46O7d+9yS5KJqHHjxocPHy5f+CWVkRH+7JlveHjj/DXv16/bREV5vnwZrFJlMcYSEpYrFJSRcTP/W1QqnRS4rxiKawHCp5ycHK6N6tKlSwUMQzOscBchQebBwi5evCiRSIyNjR89eiRgGFBCGDaga8OGDSOiRo0avXz5UqcXysnJ4bqtrl271tvbu2C31caNGy9ZskSnV694uBXuERkZ+V8vtb35oFzmzmUyGYuM/M/BV6+YtTUbNkyYkIrh7+/PfR4ZPnx44YY9hXl5eeWnhuzs7EaPHn3mzJmS79ovss67i4uLv79/qeq8Q5HOn2dEzNmZOTu/bcS7Zg0jYqmp7PlzFhDA3N2ZgcGbxewyGXN1Zf7+TNd/9rt3M2trRsRq1WJnzuj2WgD6Cwl3rVGpVFwB92nTpgkVw927dw0MDKRSqUKhECqG9wdXgbRBgwY6aphZ2M6djIjZ2rIXL94enDqV2dryc314t9DQ0PyeDS1atCjVbmJur32bNm0uXryo4WXJycne3t5ctVlra2t/f3+t74YuifT0a8+eTQ8Pd8rPvF+7ZpWS8ld09LjQUAMk2Uvo0aNHxsbGEolEwEZSixcv5vlXWRkg4S5O/M+DalQqVZs2bYho+vTpggQAZYBhAzqVkZHRsmVLIvr000+1VeozNzf34cOHhw8f9vf3HzNmTI8ePerVq1dkkXcjIyNnZ+cjR46IocqoftkQG+uiUBT82qpx6QnfXrxgVauy1q3Z06dvjqSksE8/ZSYm7N49QSMrwpEjRywsLIioW7du7+xTvWrVKktLS09Pz+Dg4JIk6PMpFApvb++COyOdnJx8fX0jIiLKFT0UwCXc9+xhxsZswYI3B7mE+/79TCp9k2c3Nmaffso2b2Z89ml+8oR17Pgmy+/ry0q50gzgvYCEuzZx62WMjIwePnwoSADcitfvvvtOkKu/b/hfFsol3KtXZ99++/YgEu4iFBwcXLduXe7W093dveRVCy9fvqxhb0pubu7atWu59SNyudzLy+v58+faibgcsrIiExL8791zVSgkmZn3XrxYr1BQZOQX2dnRQoemH6ZOnUrCtQDJX23K2yaJskHCXZwE3x7BbS60t7dPTU0VJAAoAwwb0LXHjx9XrlyZiObOnVuGb09OTj579uzatWt9fHw8PDxcXFxMiqpoKpfLHRwc3NzcvLy8/Pz8goODIyMjS7u7EfJxK9yTcnLyvzLF9tDi2jVWvz4zMGBt2jBXV2ZqyqpWZceOCR1W0a5fv871EnB2dn78+LGGV2ZkZGQWWQ68GFyd9/r16+f/W6hbt66Pj8/du3fLHTWo4xLuYWFs+nRmasq4TVlcwj0hgdnaMnd3FhDAdLyfp1i5uczXl8lkjIi1a8ewZwxADRLuWjZkyBAiGjBgAP+XPnjwIBFVqlRJcyUK0KL8P/O4uDgeLscl3NeuZRIJO3v2zUEk3MUpIyPDz8+Pa8hmYmLi4+NTzg/2J0+ebNasGXdf27Vr15s3b777e/iVnf2YMaZS5T5+/E1oqEyhkD544JacHIReqZqlpqZyBdy3bNnC/9W5fcS9evXi/9KlgoS7aPE8DxYk7L8dKA8xDJsyNxUEvXD8+HGZTCaVSjUXL0pOTlYoFIGBgb6+vlxu3Ty/KPJ/WVtbu7q6crn1wMBAhUKRIfqPpfpF7E1TOdnZ7PBhtngx8/Nje/eytDShA9IkJibmgw8+IKJq1apdvXq1nO8WFRXl5+fn6OiY/4+iZs2a3t7eZ/M/lIIO5CfcMzJYvXqsZ0/GCpSUEUnVpVOnmL09I2KWlmzXLqGjARATvWma+uvTp8+ys31q1apRfP9AMXj27Jmjo2NaWtqBAwe6du3K23Vzc3PbtGnz4MGDpUuXTpgwgbfrQq9evY4cOTJixIhly5aV/LskEgljpWv/K5fT3r301VeUlESff04vXtC1a2RgQNOm0dq1lJhYyriBF8+ePfv555+3bdvGGLO3t//ll188PT1L20ErIiJi6tSpXFe3Bg0a/PLLLx4eHrqJV2tyc2OTk3cmJQVkZt6qWnVSzZqLhY5I1AICAoYPH16tWrXr169zW4D5cfPmzY4dO0ql0lu3bnELTkXrVV7ezMePreTy2f/uHQHxKNs8WH6zZ8/+9ddf27Vrd+HCBXQm1DsYNqBr8+bNmzFjhrW19dWrV+vXr5+SkvKogNu3b9+6dev169eFv9Ha2trBwcHBwcHJycnZ2dnBwcHR0dHMzIz/H+G9IvamqfopNTV14MCBR48eNTMz27FjR58+fUr7DjExMXv27AkKCjp//jx3xMbGpnfv3kOHDu3WrRt+i+oa1zQ1LIxatKD9+6lfP9q/n+Lj1ZumCi4xkb75hg4cIGvr5OHDF8+fP6PIjUEA7xuxJ9yVjP398qXawcamprVEnHafN2/ezJkz+f+DNTMzq1mz5q1btwwMDHi+9Pvs3r17zZs3NzExKfKWvThSqYFKlVOqC/XpQ1999Sbh/uwZtWxJ8+aRjw8S7nrgypUr48aNu3TpEhG1bt162bJl7du3L8k3pqenL1q0aOHChVlZWWZmZpMnT54yZYqxsbGO49UaxvKioga9fLn/gw8SZbJKQocjXoyxdu3a3bp1KzMzk+dLy2Qyb2/vpUuX8nzdkkvIybmVnq520NXS0kQqFSQeKKxs82D5WVhYpKWlXbx4keugA/oFwwZ0jTHWr1+/v/76q3LlyiqVKjk5ufBrbG1tGzZs2KhRo0aNGjX8V3GL3EGnkHDXkby8vDFjxqxbt04mk/32228//PBDSb4rOTn54MGDW7duPXnyJJfWsLS07NOnj4eHR8+ePZFt4E3BhDsRubvT/fvk7U3e3uJKuBMRY7RiBQUFfXXu3K6mTZvu2rXL2dlZ6KAABCb2hHuaUvnx9eumMplRgcenY+3t+1auLGBUmmVlZV24cMHd3Z3n6/r6+vbq1Su/6ATw5vz584sWLTp+/HjJv0UmM1AqX5XqKu7u1L//m4S7jQ1NmkRr1tC9e7RmDRLueoAxtnXrVh8fn/j4eIlEMmTIkF9//bVgl6Fyvl60XrxYHR09ulmzJ4aGtYWORdTu379/8uTJyZMn83zdPXv2tG/fnivjLk7HkpOnRUVZyuUF8+tbmjSpbmgoWExQSBnmwfJr1arV/Pnz8/tUg97BsAFde/Xq1ffff//gwYPQ0FAjI6P69etzK9Y5zs7O1atXFzpGeAMJd51atmzZhAkTGGPe3t6//fabtJhVC69evfrrr7+CgoKOHTuWm5tLRMbGxm5ubh4eHgMGDDA1NeU3alBPuD96RE2bkoMD3b4tuoQ75/bt21999dWtW7eMjY39/PzGjRsndEQAQtKPhPvU2rX729kJHQuAwHbteptwT02lJk3oo4+oXj0k3PUGt2Ldz88vOztbw4r1K1eujB8//uLFi1TKFfFikJ5+VS63NjJqQERKZWpERK+srHsffPCcCHtOoSy4hPuhZs2qIsMOAACl9+DBA0tLy6pVqwodCGiSkpeXnJtbH2UodCYwMHDYsGFZWVmfffbZ9u3bC2bPs7KyQkJCgoKC9uzZk5GRQUQymaxLly6enp79+vXjs9ohqFFLuBPRnDnk60tEIk24E1FmZuaUKVOWL19ORJ999tn69ettbW2FDgpAGNiRDaCXLCxo6VLatYsuXRI6FCgxMzOzWbNmhYeHe3h4pKenz549u1mzZlxxds6zZ8+GDh3arl27ixcv2tvbBwQEXL58WY+y7UT04sXv4eENw8Mb3rvX/tatWpmZN2rXXo1sOwAAAAiiUaNGyLaLn7Vcjmy7Tg0cOPDEiROVK1fev39/ly5dEhISlErliRMnhg4dWqVKlT59+mzdujUrK8vV1dXf3z8uLi4kJGTo0KHItouNjw+Ju+8SmZiYLFu2bM+ePTY2Nvv372/RosWZM2eEDgpAGFjhDqA3Cq5w5/TqRUeOkK0tVrjrn1OnTo0fP/7WrVtE1LVr14ULF548eXLevHlpaWkmJibe3t7Tpk3T03vczMwbGRnXc3MTDA3tK1X6n1wu3gpgIH5Y4Q4AAACgFXfv3u3du3dUVJStra1SqXz58iURSSSSdu3affnllwMHDtTHCpYVWFoa3b9PTZpQwXI+z55RfDy1aEEi72cUHR09ePDgc+fOyWSyyZMnz507F9X/4X2jHwl3eyMjW7mcO1LZ0PBXBwdhowIQROGE+8OH1KwZmZsj4a6X8vLyVq1aNWvWrJSUFCMjo+zsbIlEMnDgwF9//bV2bVQ8ByD6N+HexNTU4N9WLl2trYdgrSIAAABA6SUlJfXt29fKyurQoUNOTk4eHh5Dhgxp0KCB0HFBEc6coSVLaP16Krj69OpVmjePli+nOnWEi6xk8vLy5s2bN2/ePKVS2bZt2x07djgglQfvE/1IuH9kZeX070O9SjLZwCpVhI0KQBCRkXTyJA0bRkZGbw8eO0YJCTR0qHBhQfkkJSXNnDmzUqVKZ8+eXbBgATq5ARTEJdw9q1Y1k8m4I05mZh0qVRI2KgAAAAA9lZWVlZWVFRcX16RJE6FjAU22b6chQ+jx4//k1g8coD596OZNatZMuMhK459//vH09IyJibG0tFyzZs2XX34pdEQAPJELHUCJdKxUCSVlAOrXp/r11Q/+739ChALaY2tru3LlSqGjABC1L6tUQUkZAAAAgPIzNjY2Nja2srISOhB4L3z88ce3bt0aNWpUYGDgV199dfjw4dWrV5uZmQkdF4DOibvsEwAAAAAAAAAAAOghKyurXbt2/f7778bGxlu3bm3btm1SUpLQQQHoHBLuAAAAAAAAAAAA4pKWRq9fv/3KzBQ6oDKRSCRjxowJDQ1t3rx5o0aNbG1thY4IQOf0o6QMAAAAAAAAAADA+6NpU6Ej0B4nJ6eLFy/m5OQIHQgAH8SecDeUSAZWqVLfxEToQAAAAIBvtY2NB1apYvpvx1QAAAAAgPfHsWNUvfrb/zx9mn74Qbhoys3U1NTU1FToKAD4IPqEu1T6U61aQkcBAAAAAmhiatoEN+UAAAAA8F5q3Jjq1Hn7n48fCxYJAJQKargDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBZIGGNCxwAAAAAAAAAAAABERElJFBFBLVqQoeHbgy9f0v371Lw5mZgIFxkAlAAS7gAAAAAAAAAAAAAAWoCSMgAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWyIUOQHRSU1Pv3LnTvHlzExOT/IO5ublhYWHx8fHVq1dv0aKFgYGBgBGCPsK4Al1gjOXm5hoaGgodCFQ0r169srS0VDuYmJiYnJxcp04dIyMjQaICfYdxBbqAcQX8iImJuX37NhE5OzvXrFlT6HCggsC4AgCoqLDC/a34+PhZs2bVrVu3Xbt2p0+fzj8eGhrq6Oj40Ucf/fDDD506dXJycrpx44aAcYJ+wbgCXcjMzFy3bp2Tk5OZmdndu3cLv2D27NkSiUQikZw9e5b/8EB/nTp1yt3d3dra+scff8w/eOPGjQ4dOtjZ2TVu3NjMzGzUqFHp6ekCBgl6B+MKdAHjCvjBGPP29q5bt+6QIUOGDBlSr169CRMmCB0U6D2MK9C1Pn36cJ8HhQ4E4D2FhPsbd+/erVu37qlTpz7//HO1U0OGDDEwMHjy5El0dHRUVBRjzNPTU5AgQe9gXIEuXLp0qU6dOjNmzLCxscnLy8vLy1N7wb179/z8/D777DMhogN9xRhzdXV1d3eXSqWGhoZKpZI7Hh8f//HHHxsYGJw9e/bBgwd+fn7r1q2bPHmysNGCvsC4Al3AuAI+BQYGrlixYtGiRc+fP3/+/PmCBQv8/f13794tdFyg3zCuQKe2bdt26NChnj17Ch0IwPsLCfc3HB0dnz59eubMma+//rrg8dTU1Hv37vXu3btatWpEVKNGjU8//TQ8PDwzM1OgSEGfYFyBLjRp0mTfvn1xcXFFLoRRqVQjRoxo1qzZd999x39soL8kEslvv/324sWL4ODggkUYjIyMpkyZcvDgwY4dOzZs2HDy5Mldu3Y9dOiQgKGCHsG4Al3AuAI+KRQKIvrmm2+4taIjR44koitXrggdF+g3jCvQnaSkpEmTJo0ePbpt27ZCxwLw/kLC/Q2JRGJnZ1f4uJmZma2t7dGjRxMSErgj165da9CgQcFK3ADFwbgCXbC0tHR1dZVKi/4FvnLlykuXLq1du1Ymk/EcGOi7Nm3amJmZqR20trb28fGxsLDIP1KvXr3Y2FjGGL/Rgb7CuAJdwLgC3tSuXZuItmzZwv3n9evXiah58+YChgQVAMYV6I63t7dUKp07d67QgQC815BwfwepVOrv7//w4UNnZ+dJkyZ5e3tHRETs3LlT6LhAv2FcgY5ER0dPmzZt/PjxLVq0EDoWqLDCw8MbNWqEipCgXRhXoAsYV1B+X3/9devWrb29vbt06bJy5cqhQ4d+9913gwYNEjou0G8YV6AjR44c2bFjx/Lly62srISOBeC9Jhc6AD3g6OhYo0YNOzu7gICApKSktm3bFty7ClA2GFegC2PHjrW2tp41a5bQgUCF9c8//1y+fHnt2rVCBwIVCsYV6ALGFWiFsbFxhw4d7t+/n5WV9cMPPxgaGtaqVUvooEDvYVyBLqSnp48ZM6Znz54eHh5CxwLwvsMK93eIjY11c3Pr3LnzlStXYmNjg4KCYmNjO3XqFBsbK3RooMcwrkAXtm3bduDAgRUrVpibmwsdC1RMT58+9fT07NChw7fffit0LFBxYFyBLmBcgbZMnTp13bp1586du3jxYmRk5NChQ6dNm+bj4yN0XKDfMK5AF6ZMmZKQkLBy5UqhAwEAJNzfZffu3a9evfrxxx8lEomhoeGAAQP+/PPPly9f7tu3T+jQQI9hXIHWpaWlTZgwwcLC4tChQ6NGjRo1apS/vz8RLV68eNu2bUJHBxVBREREly5dbG1tDxw4gA4BoC0YV6ALGFegRRs2bOjVq1ezZs2IqF69euvWrevZs+fmzZuFjgv0G8YVaF1oaOiqVascHBzWrVs3ZcqUKVOmnDhxgoimTJly7do1oaMDeO8g4f4OhoaGRJSVlZV/RC6XE5FKpRIsJtB/GFegdZmZmV26dOnZs2fKv1JTU4koNTU1IyND6OhA7x04cKB169b29vYhISE2NjZChwMVBMYV6ALGFWiXkZFRwZt2IpLL5bhph3LCuAKte/nyZdeuXatVqxb6r7i4OCIKDQ1NTk4WOjqA9w4S7m9FRESEhobev38////HxsZ269bNwMBg/PjxkZGRRBQdHT158mQTE5O+ffsKHS/oB4wr4IednV3gf82YMYOIZs+e7eXlJXR0oMcYYwsXLvzss88GDhwYEhJiZ2cndERQEWBcgS5gXIEu9OzZ88iRI3/88Udubm5eXt7WrVuPHDnyxRdfCB0X6DeMK9C6bt26hfyXp6cnEYWEhHTr1k3o6ADePwz+5e7urvaH4+vryxg7ePBgw4YNicjExISI6tatGxISInSwoDcwrkAXWrRooTau1q5dq/aakJAQIjpz5owgEYI+Wr58udq4atu27fr164u8f7h06ZLQ8YJ+wLgCXcC4At68fv3622+/NTAwkMlk3P8OHz48IyND6LhAv2FcAQ98fX0JST8AgUgYY0XemL6H4uPj1QovWFtbW1tbE5FSqXz8+HFMTEzlypWdnJwkEolAMYL+wbgCXQgJCXn58mXBIy4uLg4ODgWPJCQknDlzpkuXLpUrV+Y1ONBbT58+5bbj5LO0tKxevfq9e/cKv7h169aWlpZ8hQZ6DOMKdAHjCnj28uXLyMjIrKwsR0dHW1tbocOBCgLjCnTq9u3bd+7c8fDwEDoQgPcREu4AAAAAAAAAAAAAAFqAGu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaMH/AXLCU3cmyV3QAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"B1\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6e6a3a24-f4c7-46d0-bfd6-b1c2f6bd37bd", + "metadata": {}, + "source": [ + "#### Back Pocket 2 (B2)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "5a0787b4-d199-4522-a0f2-4f6d61ecc004", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.243199Z", + "iopub.status.busy": "2024-05-13T08:55:44.243033Z", + "iopub.status.idle": "2024-05-13T08:55:44.337908Z", + "shell.execute_reply": "2024-05-13T08:55:44.337368Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18 B2 fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAGQCAIAAAB50mx4AAD060lEQVR4nOzdd3hM2RsH8HfSK6K3kKJFJ6tGF21F3Y0eq4ZVovwQPexasmp00YO1Eixi1WCXqKsTIogWJUiR3iZzfn+cuBlJEHLv3El8P4/HkzmZ3HNGxsyd977nfRWMMQIAAAAAAAAAAAAAgLzRkXsBAAAAAAAAAAAAAAAFAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAACgWcnJdOpU5s3UVDpxIuPriAgKCKDDh+n5c1mWBnmBgDsAAAAAAAAAAACAZr19Sz16ZN589466dCEi2r6datQgX186eJAaN6ZffpFrgfB1FIwxudcAAAAAAAAAAAAA8C0JC6OaNSkmJuPmmzdUsSKFhlLlynThAtWuTUQUHk7Vq9OhQ9SkiYwrhS+CDHcAAAAAAAAAAAAALXD2LDVqlBFtJ6LSpalXr8xSM5Af6Mm9AAAAAAAAAAAAAIBvT1wcVayY8bVKRUQUFkblyn1wn/Ll6elT8vCgc+fI2ppsbMjaOuOLEiU0vWDIBQTcAQAAAAAAAAAAADTO3JyePs34mpeUKVWKIiM/uE9EBJUqRZcu0cmTWX/czEyIv6dVqXLM0tLGxsba2trY2FgTi4ePQA13AAD4jLj09BilUrhZ2sBAT6GQcT2Q3ZvU1NT3b+gGCkVJAwN51wMAAAAAAACfkWMN9+vXqUEDevyYihcnIkpLo6pVacUKqlGD7t+nR4/o8ePMv9+9Ew6WVKWKyf37/GsLCwubbCpWrKirq5uamnrnzp169epp+LF+U/JbwP3kSTp6lF69Ijs7+uknKl9e7gUBABR8W8PD/d68KW9kxG/Os7JCPFfbDAgOVhGZ6eoSkaWh4SxhTyJAAfXsGenpUdmyGTefPyeFIuvWW4DcSEtL09PTU+BCMgAAAGhejgH3pCT63//o+HGaOJGMjGj9eipcmPbtoxxPV6Kjhfj785iYYVeuPH78+MmTJ6mpqdnvq6+v36NHj8DAwKZNm+7Zs0fKB/aty1clZdavp/nz6bffqEsXOnaMGjSgCxfIykruZQEAFHytLCymWFrKvQr4lEmWlvXNzOReBYCGLF1KRYvS7NkZN1euJH19mjdP1jVBfpOWlvbnn3/OmzevR48eCQkJK1euRNgdAAAANKpwYZo5M/OmmRl5eBARLVlCAQF09iylpNDYsdStW87RdiKysCALC6pfn4jKEx19PxwdHf1Ize3bt2/dupWQkEBEp06dqlatmpSPCvJRwF2ppKlT6fBhatyYiKhFC4qOpoULac0auVcG3zqlUklEenr5538TAAAAwDcsLS1t27Ztv/322+PHj4lo2bJlaWlpjLFVq1Yh5g4AAACaU6gQTZ6cedPEhKZOzfi6XTtq1+6rD2xhYWFvb29vb89vPnnyJCAgoGfPnoULF0b8SgPyzz/x06ekUmVE27lOnWj+fPkWJKbExER/f/+IiAg7O7vWrVvr6OjIvSLIFcbY9u3bZ86c2axZs7dv33p5edWoUUPuRQFI4mBExL/R0URUy8zsdxsbuZcDOXAPDdVXKIjo53LluhQrJvdyoGCKj48/cOBAQkKCtbW1o6MjQpOQe+np6b///nvhwoVv3LgxbNiwRo0aybIMIav9wYMHRGRnZzd16tTSpUt37959zZo1aWlp3t7eeGID5OzFCzp1isLDqUoV6tiRDA3lXhAA5GD7dlIqafDgjJt//knx8TR8uKxrAi1gZWU1HM8DDco/Afd378jc/IORwoXVOwPkR+np6f/888+2bdv2798fFxdnbGycnJzcvXv3HTt2mJiYyL06+IyzZ8+OHz/+6tWrRLRv377k5OT69eu7ubnNnDmzcOHCcq8OQGRdihefZGlJRAhCaK3fbWzqmpsTEa7ZguhSUlKOHz++e/fuffv2xcfHm5ubx8XFOTs7b9u2zeh9dwfNW7qUNm3K+PrdOxo7Vq6FwOdFRUX17dv3+PHjhQoVio2N3bhxY61atYYNGzZgwICiRYtqZg1ZQu02Njbu7u5Dhw7V1dUlogMHDnTt2nXDhg0mJiZeXl6aWRJAfnLqFPXqRYMHk5UVbdlCM2bQmTOkqf+/Gvb8+fOnT58eOXJk5MiR5dE3DvKbkBBSr9394AFFRcm3GtBuSqUS2e4SyT+fyq2sKDycEhMzR0JDydpavgV9vfT09JMnTw4bNqxEiRLt2rXbvn17fHx8kyZNhg4dWqhQoX379rVu3fr169dyLxM+6sWLFwMHDmzRosXVq1fLlSvn4+MTFhbm5uaWnp6+ePFiW1vb5cuXp6eny7W8xo1p2LDMm6VKUXy8XGuBAkWHSAcBd22mUOjkp/d1yAeUSuWxY8cGDRpUqlSprl27bt++PTExsXnz5oMGDSpUqNDu3bvbtm379u1buZY3cSI9fZrxZ+RIuVYBn3fr1q0GDRocP368ePHiq1at8vDwsLS0vH379rhx48qWLdurV68TJ04wxqRbgEql2r17d40aNX766acHDx7Y2Nh4e3vfv3/f1dWVR9uJqF27dgcOHDAyMlq+fPmECROkWwxAvsQYDR9Oa9bQokU0ejTt30/VqxeY7eZZhIaGNm/evF27dr/99putre24cePe5fM8P9AeBw8ezLGPJYCGxcfHe3t716lTZ8OGDXKvpcBSSHp2K7Jmzah9+4z2WPHx1KIFTZ5MffvKvawvcOfOne3bt2/btu3Vq1d8pHr16s7OzgMGDKhUqRIR3b17t3Pnzk+ePLG2tj506JCdnZ2s64WskpKSVqxYMW/evPj4eGNjY57Pbva+S+H169fHjx9/5swZIqpXr56Xl1eLFi00v8jq1SkyknbtotatiYgMDCgyMuv+ENAMlUq1du3au3fvinjMmjVrjhgxQsOFp7aGh79JS0PTVG02IDh4onxNU1Uq1bVr17Zs2SLuYRcuXGhqairuMSE3VCrV+fPnd+/e7evrK2QA8DOWgQMH2tjYENHt27c7d+4cFhZWqVKlQ4cOValSRcOLHD/+g6ap7u5omqqlfH19hw4dmpCQUK9evX379lWsWJHe7/Jcv379vn37eC8cS0vLfv36jRo1qkKFCiLOrlKp9u7dO2PGDPWs9iFDhnwsmevo0aPdu3dPSUmZOHHikiVLRFxJAaZSqV68eOHp6SnuYSdNmlSxYkVtrrSpUqmmTZsWL2pii5OTU4cOHbTxUYeHU8WKlJREwtr8/cnTk86fl3VZ4rt3756jo+OLFy/q1KlTp06dHTt2qFSqokWLTpkyZdy4cTJu6oICwNXVdcOGDYsWLZo0aZKkE82cSZcvU8+eGTcPHSIbG8LeLRAsWLBgyZIlrVq1GjVqVOvWrVFJTyosHwkNZdWrMwcH1r8/s7JiI0YwlUruNeVKUFCQh4cHD6lzFStWdHd3v3v3bvY7v3371sHBgYgsLCz++ecfjS8WPsrf39/Kyor/Bp2cnB4/fvyxu1m/33vh5OT06NEjzS6T2dmxVatYtWosOZkxxvT1WWyshpcAjDGWkJBQs2bNqlWrivuiXa1atVq1aiUmJmrysQS+e3coMlKTM8KX8n7x4mlSklyzT5gwQYpyzDVq1Dh+/LhcD+rbxM9YbNT6NNjZ2Xl4eNy7dy/7nV+8eFG/fn0iKlasWGBgoIaXOm4cmzs38+aUKWzGDA0vAT5DqVS6u7vzT3H9+/fP8Z2LB2qFp5yOjo6jo6Ofnx9vYZoX6enpfn5+wqUgntWem8MePnzY0NCQiCZNmpTHNXwj1q1bx18KxPXdd98tX75c7gf3USEhIZUrVzYT+zp3gwYNunfvLveDy8n166xMmQ9GLlxgVlYyrUYq165dK1GiBBG1bNkyNjaWMXb58uU2bdrw346lpaW3t7dSqZR7mZBfHT9+nIjMzc1fvnwp6UQzZrAWLdj8+Rl/HB3ZuHGSTgj5zNmzZ58/fy73Kj7q1atXZ8+e7dOnz7Rp0zZs2HDixInQ0NC8nxlqXj7JcA8MpD//pC5dqEMHevSIXr2i6tVJ6zvCPXnyxNfX18fHJzg4mI+UL1++Z8+ezs7ODg4On7iIlJyc/NNPP/n5+RkYGGzcuNHFxUVTS4acXbt2bfz48YGBgURUr1695cuXN2/e/BP354nwv/32Gy/N7+bmNmPGDHNNJZlXr067d9Mvv1DNmjRrFjLcZTNnzpy5c+fa2NhMmDBBrIvGjLHly5c/fPjwl19+mTVrlijHzKU3qam/h4WVMjBAnrvWCoiOPhoV1d7CooNmC6reu3evdu3a6enpkyZNEjE1NSAg4MCBA3Z2djdv3tTX1xfrsJCj4OBgX1/fXbt2hYSE8BFLS8sePXo4Ozs3a9bsEz8YHx/fp0+fQ4cOGRoabt26tU+fPhpZLxHRgQNkYkLt2mXcPHSIdHSoUyeNzQ+fERUV1adPn4CAAD09vXnz5rm7u3/iziqV6tSpU9u2bduzZ09SUhIRlSlTZuDAgcOHD7e1tf3SqXlW+8yZM+/fv09E1tbWU6dO/URWe3b79u3r3bt3Wlqah4fHnDlzvnQB35R3795VqVLl7du3Q4cOrVevnliHvX37tre3t4WFxf3794sXLy7WYUXUuXPnw4cPt2jRolevXmIdMy4u7rfffouPjz9y5EjHjh3FOqw43r6lsmUpMZGEd+S//iIvLzpzRtZlieny5csdO3aMior6/vvv9+zZY2xsLHzrxIkTU6ZMuX79OhFVr159zpw5zs7OGl7epUuXdu7cWahQIWNj44kTJyLXPp/q1q2bv7//Tz/9tHXrVulmmTmTUlNp4cKMm7/8QlFRyHCH/CE1NbVly5bPnj17+fJllm9ZWFjYZGNtba29GfpyR/xzx8ODEbGpUzNHRo9my5ez1FT51vRRYWFhXl5e6iH1okWLuri4BAQEpKen5/IgKpXKw8ODiBQKhYeHhyqf5PIXPBEREW5ubry+Z7Fixby8vD6W1BAWFpbl1/T8+XMXFxf+NOCl3qX7PSqV7N9/mZsbO3+e2dmxoCAWFsZKlGCPHiHDXR5hYWG8FMbp06fFPfLZs2cVCoWxsfHTp0/FPfKnPUpKsr9y5YegIE1OCl9k/cuX9leurH3xQsPzdurUiYhGjhwp7mFTUlJ4aurKlSvFPTIInj17xs9YhNPCYsWKubq6BgYG5v4NS6lUjho1SjhjkXK9H9i3jw0ezFJSMm6uXcuOHNHY5PAZN27c4EnrxYsXP3nyZPY7vHjxIjWn0/ioqChvb+/atWvzJ6SOjo6Dg4O3t3cu93VlyWq3trbOZVZ7dnv27NHXN2jZ8pr6RgrIbvz48UTUrFkz0c9yecR51KhR4h5WFDxNtVChQq9evRL3yAsXLiQiOzu7HP+DyKx6dbZ5c8bXKhVzcmKzZ8u6IDH9+++/PDuqW7duyXyb8If4y4uwHadp06Znz57VwMKePHni6ekpvKzxywAODg5v3rzRwOwgutDQUCMjI4VCIenWwBkz2OTJmTfnzkWGO+QbY8eOJaKyZcuuXr167ty5gwYNatGihaWl5ceKrZmZmdWqVatbt27jx49fsWLFwYMHg4KCNFwP4GPyScC9a1dGxHx9M26GhTEiVqyYrGvKKjIy0sfHx9HRUXgeFC5c2MXFxd/fP5cnTHfu3PH391cf8fb25sk4gwYNShE+U4JGpKamenl5FS5cmIj09fXd3NzevXv3sTvzwJC9vX32N87//vuvSZMm/CnRoEGD8+fPi7hIpZIFBjI3N1amDCNiRGz06IyAO2Ns8WLm7IyAuzx4mmefPn2kOPiPP/5IRAMGDJDi4B+DgLv2kyXg/vfffxNRkSJFpPjgt3//fiKysLB4+/at6Af/lkVERHh7e6tnBhQpUoSfsXz1bk0vLy9+/jNs2DDNbPlcsIAZGrJ58zJuDhvGcGlGS/z555/8knP9+vWfPHmS4306dOhgYWHh6up669atHO9w5coVV1dXoYtDkSJFXF1db9y48bFJRQy1C/bte6ary4jYb7/l5TAFWXBwsL6+vo6OzpUrV0Q/+N27d/X19XV1dW/evCn6wfMiLS2tRo0aRLRkyRLRDy5cbPby8hL94F/p119ZWBhjjF24wEqUYCNHst9/Z46OrHFjFhcn9+LE8ffff/NAdv/+/T/9upGSkuLt7V2yZEl+mdnZ2fnBgwdSLCn7O3XZsmXd3Nx8fHx4Jwxra+sc69OC9psxYwZ/i8x9OuaXT4GAO+RKenr6wYMHe/funeOFRs3z9fXl8bfscbOUlJSQkJCjR4+uWbNm8uTJP/74Y/369S0sLD6WXF66dOmmTZv2799/1qxZmzdvPnPmjOYfTj4JuJcvz4jY/fsZN/39GRFzdJR1TRnevXvn4+Pj5OQkbHg3MjJycnLy8fFJSEjI/XGioqKsrKx0dXVXrFihPn7kyBF+sb1NmzbR0dEirx4+IiAgoHr16vwX6ujoeOfOnU/fPygoqFy5cvzEa8CAAVnqYalUKh8fn9KlS/M7uLi45DEdJjmZHTzIBg9mRYtmxNmJWOXKbOpUduNGZsA9NZXVqsUUCgTcNe3cuXM8CT1LoOHdu3cvv0pMTIz6cZ49e2ZiYiJ1ZkQWCLhrP80H3FNTU3mXgqVLl6qPp6SkfN1TPTw8PMsUHTp0IKIxY8Zo7EEVYNHR0fyMRSisYWxs7OTk5OfnJ8pFfWEDfvv27bO8aklhwQI2eDArW5Y9fMgYAu7aQb1o+4ABAz6WXpSUlFS3bl3+JFQoFC1atNi2bVuOd46JieEhJ+Hjk729vbe3d5xamE+KULvA15fp6SHm/lF8h9OIESMkOj5Pc2vTpo1Ex/86S5cuJaJKlSpJFJ7w9/fXoovNvr6MiFlZMb7HNzKS7d3LVq1ip06xglLKfNeuXfyD/MiRI3MZAI2Li/Pw8OBvefr6+q6urmLtdUhMTPTz81N/pxZy+ISXtVevXjVo0ICIzM3NDx8+LMq8oEkJCQn8qsmGDRskmuLNG6Z+JejlSyb2bhwoCN6+fWtlZdWoUSMfHx9t2FYVEhJSqFAhIlqzZk3ufyoxMTE0NDQgIMDb29vd3d3Z2dne3l7I2BCUL19+48aN0i0+R/kh4B4RwYhYoUJMeP+bO5cRsSlTZF0WY4xdvXpVqJ5mYGDg5OS0Y8eOuK+91O/l5cU/ori5uanXLblx40b58uWJqEaNGh9LFAKx3Lt37/vvv+e/06pVqx46dCiXP5iQkCCceJmYmHh4eGT56BgfH+/h4cGfMKamph4eHklf2OEwISFxzx7Wrx8rVCgzzl6zJvPwYOqpP+3aZV6cOn2a2diw+PgvmgfyJD09nZ8EZy+tMGzYsI9dgP207MU6Zs6cSRJnRmSBgLv203zAffHixURUrVq1LKdop0+f/rqnuqmpaZYp7ty5wzMcP5YGC7l09uxZAwMD/u9saGjYrVu3Xbt2fVFmQG5cuHCB5/3Vrl372bNn4h48iwUL2OTJbMUK1qEDYwi4a4GIiIh27doRkZ6enqen52fvf+XKFTc3NyE1qXDhwq6urlevXs3xzkFBQe7u7sXeN3AyNzd3cXE5fvy4dKF2wa5djOe5L1gg7oHzPb7DSYqyKoKoqChewP2vv/6SaIovFRkZWbRoUSLK/WeEr6At5XQSE5mVFSNi69fLvBLJbN++nYe23d3dv/Rnnz9/7urqykuPmpqauru7f/XFZqVSGRAQ4OLiIgSJDA0NeQ5ffE4f5JKSkvr27ctfb78oMgVa4s8//ySiYsWKRURESHH8lSuZjg47dy7j5vjxeAuDnAVpzaf7xMTEOnXqkEhFAtLT0589e3b69OktW7bMnj17wIABvMn5pUuX8n7w3MsPAfdjxxgRa948c6R7d0bE/vxTvjUxxtjz588rVqxobGzs4ODg5eX1+vXrvB/Tz8+PB2S7d++u/jH4+fPnPBWodOnSly9fzvtEkF1UVJS7uzuPR1hYWHh6en5Fxl9YWJhQt718+fLZ67Y/ePBA6LFja2vr5+f32WMmJCT4+/u7uLiYm5tbW6fwOHv16szDg+VmH6FSyTw82LBhX/pQ4Ctt3LiR//aznx9PmjSp9FfJ/hkgISGBd6fcsmWLZh4XAu7aT8MB99evXxcpUoSIsmdXXbx48eue6ra2ttknGjNmDGlfhmP+EhISYm1tbWhoyM9YJM2aDA0N5fseypYte+3aNSmmePKEnTmTEXBPS2N16zI/PwTcZXbjxg1ra2siKlGixKlTp3L/g0lJSX5+fo6OjkLZhOrVq3t6ekZGRma/c0JCwtatW4VGvsKPVK5c2cfH52NddvJuyxamo8OIWC6uI3wrctzhtHLlymPHjuXxyCdPnly2bJlwc9WqVURkY2PzpXkqEhkxYgQROUq801pbyunMmcOIWN26mcnsd+4wBwd28aKcqxLPmjVreDG0r4i2C+7evSt8uCtevPgXfYRMT08PDAx0c3MrUaIEPwJvXJGbd2qh5RsRubm5aSwFB8TSqlUrIhonTamXlStZ7dqsdm3Gr0Ej4A7a76effiKiqlWrxmarz9C3b19XV9cFCxb4+vr+999/X/dBxt3dnYh++uknEdaaa/kh4O7pyYiYm1vmSMWKjIjduyffmhh7v91P9BDAuXPneCpHgwYN1DfXx8bG8mQHU1PTAwcOiDvpNy49Pd3Hx4ef6Ojo6Li4uOTx8sm///7Lr84RUcuWLa9fv57lDidPnhQagrVu3TrHk+moqKitW7d26dJF2EWhUCgGDTq3eDF79OgLFnP/PjMxYURs5848PCTIndjY2DJlyhDRn9JfEdy+fTsRlSpVSgOlGxgC7vmBhgPuw4cPJ6LOnTtLPZGQ4bh//36p5yqoeCJVly5dNDNdZGRkixYtiMjMzEzEJNCICObtzRwcmELBbG3Z/PkZ9UnPn2dWVqx/fwTcZbNz504TExMiql+//lc39A4ODnZ3dxeiTkZGRs7OzgEBATm24gwODp44cSKvrrZp0ybpQu2CzZuZjg5TKNiHpR+/XUuWLCGiSpUqCbHFhw8fGhoa6ujo3MvDZ7RHjx7p6urq6+sHBwfzEaVSyc+ZF2hBuOjGjRu6urp6enoaSAl0c3PjHxOknuijnj9npqaMiP37b+Zg+/aMiI0dK9uqxOPp6ck/XmUpi/d1Lly40Lx5c/7yVaVKFT8/v0+3EQ4KCvLw8BBasPJrjR4eHo8+8jEvKioqNDQ0+/imTZt4PZwePXqIvmsNJBUUFKSnp6enpyfFdbWVK9moUaxHD7ZoEWPaEXBPSEg4ceKEzIsAbbV27Voe6sxezDk5OTl7u1QjIyMbGxtHR0dXV1dPT08/P78rV658utbI06dPdXV1DQ0NNdlxOj8E3Hv3ZkRMyOKMimIKBTMzY3JfxZ07dy4RTZGgss2DBw8qV65MRFZWVupPuLS0NJ5Voauru3z5ctHn/TadOnXqs7Hvr8CD+KVKlRKC+FlqE6elpXl7e6tH+fn//IiICF5jV9j7L2Q6ZCkNn3vr1jEiZmaWWWoGJDJ58mQiatKkyadPskWhUql4lt+0adOknosh4J4faDLgfv36dR4TyUtgJfdWrlzJMxy1pJ9PvjNlyhQimjt3rsZmTE5O7tevnyi73aOi2MaNzNExo6wHETM1ZX37sjlzMhuCDR3KjI3ZypXs4UOGHvOaxIu289MVFxeXjxVtz73k5GRev5hXaeC5Tp6enjlmQtja2hKRxtoGbtyYEXNftUozE2qvN2/eZN/h1K1bNyIaPHhwHg+ePYX85MmT/ALeC812Bc+OZ6ROmDBBA3MJF5v37t2rgely0K8fI2K9emWO/PUXI2IWFkyaIhiaxHPDdXV1xS3pGxAQULNmTf7a1bBhw3/++SfLHcLCwry8vOzt7YWwkaWlpZub28c2hCUnJ/ONziYmJl27ds3xPoGBgfypUrdu3TDe3hbyidGjR0uRwcneB9wfP2YlSrCnT+UPuPv7+1tZWRkYGNz/xuMRISFsyRI2YQJbu5ZpMOybG9euXfuiHYoiunHjBq/MvG3btuzfTU1NPXz48KpVq/73v//17Nmzbt26hQsXpo8oW7asg4ODi4vL7Nmzt27dmiUE7+TkREQLFy7U1CPLFwH3KlUYUWaN6hMnGBFzcJB1TYwx1r17d+nyWCMiIngozdzc/MiRI+rfUi/1jr1jecT3rfA4jhTVIaOjo93d3Q0NDYmoSJEinp6eWaJFkZGRo0eP5qUDixQpUq9ePeETpr6+fvv27b29vUWpVtSnDyNiDRogEiGhBw/SqlatraOjo7G6T1euXNHR0dHMuQsC7tpPkwH3li1bEtHEiRM1MBdjTKlU1qpVi4hyUxgasuOVtf39/TU5aR53uycmMn9/5uzMDAwy4uyGhszJifn4ZHQC5yVluMhIVrw4+/VXVr48a9OGoce8ZkRERDg6OlKui7Z/kdDQ0OnTp5ctW5Y/hQwMDJydnbPE1nnTHU3ufVm9mikUTKFgIsboEhISrl+/7uvr++uvvw4YMECi8gLicnV1JaJ27doJI0JM/OXLl3k8eI5F0vnHrkGDBuXx4Hnh7/+4aNHixYsXj9bUS8zq1auJqFOnwTJU0zl/nikUzNiYPX6cMZKSwipXZkT5/YqTSqUaP348f+HKMbiTRzynim945ZeObt68yZuWq9fOsrCwcHFx+dgmHqVSeeLEicGDBwtxJV1dXScnp48l9Dx48IB3syhXrpxExdyyi4iIyF75Ab6IcF1t9+7d4h6ZB9wZY/PmMWfnjIC7LKGjoKCgNm3a8KdxvXr1ZC6TJa/jx1nx4mz+fLZ7Nxs7lpUpw3LatiKLFStWVKxYcfPmzZqfOjo6mu/1GT16dO5/Kioq6sqVK/7+/uqNUvluS3VZis8cOnSIh/40FkfV+oB7XBzT0WGGhkxoyLZwISNiY8bIuizGGOMFlKVL7ktOTu7Tpw8/G/D29lb/lq+vb46l3uGLnDx5slWrVkZGRl/Rv/SLhISE8ItpRFS5cuXsddt5p1YjIyNDQ0NDQ0NHR0exugIIoqMzmh5pJBn6G9W1K9PXT5027agmJ+UXjXr06CH1RAi4az+NBdx9fX2JqESJEhoLOrD30Rxzc/O8R3O+QfzjnCyJb8Ju9x9//DE36c/Jycn79+//3/+CeCUDIqary9q1Y5s2ZQ2jJyUx9ePFxbFLl1iZMhltToQYEUjk+vXrQtH27FmcYklPTw8ICHB2dubPoiwB9wkTJhDR77//LtHsOfL2Zubm7I8/mKsrE3YenjvHNmz4/M+mp6seP3587NixFStWjB49ul27dhUqVBACcJy1tbWk68+77DuchGuiYlV9Wbp0KRFVqlRJyFMJDQ01MjJSKBQabncmSEpi1tasSJEoH5+zGptUqVT++OMRIjZ/vsbmZIwxlp7OGjZkRGz27MzBBQsyXl7F7kusSUqlcsiQIURkaGgoaSfeuLi4uXPnmpubE5GOjg5/BSMiExOTvn37Hjx4MEu3eQEvNWNlZSW8JvC2Fp89+YmIiBCKuUl6fT0pKcnf39/Z2dnAwGAlSrnl2bp164jI0tIyx+64XyolhXl5sYEDMwPuycmsalXWoAFbsIB168ZcXJhkXa6z4qmHfNd+0aJFvby8NFD/TatVq8Z27cq8OX48c3GRbzUfiIuLk+W3o1KpevToQUQNGjTI+z5mpVL59OnTf/75Z/PmzTNnzsy+5U6lUvFSIpK2PVen9QH3wEBGxL77LnOkb19GxDZtkm9NjDEWFRWlUCjMzMyEayMrV67s0KGDuL+5LNlh6te0P1bqHXLvt99+I6KxmqpCGBAQUKNGDSHZIXvxR57nLm4vO/XrCGfPMj09pqPDAgJEnAEy8L035uZMw8HA8PDwQoUKEVHe25R9GgLu2k8zAffExET+OTDLlWANEKtewbfm2bNnRFS8eHG5FhAQEMBz9Jo0afKxsolZGsfVrj2KiNnbMy+vL/tk+Pw5q1uXEbHSpdl//4mz/tz43//Y6tWZN/v3Z/HxrGvXD96Ff/iBFZhcQKFou729/VcXbf8iL168yN4knFf8HDJkiAYWoC48nJ05w/T12Q8/ZIxs3sz69s16t+hoduUK8/Njnp7MxYXZ27PChZmBgVmW9CsDAwM7O7sePXq4u7tv2rTp/PnzGn44Xyr7Dieh6pdY+StpaWn8nHnJkiXC4NSpU4mocePGGqjal92vvzIiVqOGpqPNp05llIXUaDWdzZsZEStXjgkRwPBwVqgQI2ISn21KKjU1tVevXjzqffz4cQ3MGBER4erqamxszJuWe3t7fywl/OnTp56entWqVRNeGSpWrOju7v5FuX3JyckDBgwgacrPKpXKo0ePuri48KsIPClw0qRJ4s7yDUpPT2/QoAERzVa/vvVV9u1j1tYZyQpTp2YE3BljAQGMiE2enLFl0NyczZ/PJN03o1KpshTX1WTVbC3FM4nV/93PnGHVqsm3IK2wYMECvuPnY+0rRLdw4UIicnJy0sx02h5wD9y06ULLlq/U+4ZXq8aImKa2Sn3MiRMniMhBrbJNz549ieiPP/4Qfa4NGzbwUGyvXr3UT2TVS71rrH5lQcID7pqpf82lpqYuWbKEV70sVKhQll6XPPch933tPysggJUvz86dyxyZO5cRsVKlGK7RiCstjdWqxYiYBguCZZo/fz7Pf0mT8lPgo3fvel28OFqTESz4Qj737vW6eHHT+0ZzEvnll1+IqG7duprPgwgNDeUd+eTKcMyn9u/fT0Tt27eXcQ23b9/m+wJtbW3Vwwcqlers2bNjxozhn8q4unXrLly46KujuLGxrFOnjFLvGqs1UqsWK1SICW13jI1ZVBQj+iDCrq9fAOoes7S0NHGLtufFqVOniKhZs2aan/rMGdakCatXj/FMGx5wP3WK/f47GzqUNW/OSpTIiHpk+dOw4YDWrVuPHDly6dKlhw8ffvjwYf7K+PPz88uyw0koibBv3z4RJzp+/Dg/W371/ppbXFwcLzG0Y8cOESfKjefPmZkZI2IaCdJm1aMHI2I//aSh6RJjY5mlJSNi6v/OgwYxIta9u4YWIYHk5GRemKhw4cJnz2pumwL/L9OpU6ccvxsZGent7e3g4CDsdClatKirq2tgYODXXVhSqVSenp78aK6urqJ8NAgKCnJ3dy9dunSWpPtXGsuULujOnTunUCiMjIy+OuYYEsK+/z7jXaZaNXbsGDt1iqnHpTw92ZEj7P595uyccbfy5ZmPD5Pi8uXly5ebNGnCnyotWrS4ceOG+HPkR48fMxOTD0bu3GHFism0Gq3w77//6unpKRQKTdYGjIqKMjEx0dHR0UyIX9sD7oMHDyYiod1WfHz8qdatXzVpwuRum8YvjIxRq2zD99VKFPg+duwYT2J1cHBQz4AWSr1bWFjI1eIg/9J8wJ178+aNq6tr9ovYogfcJ01iRMzSkkVFZYykp7M2bRgR69RJkvfXb9by5YyI2drK88qUkpLCr72tVk+wFNvdu3eJqNo3fx1em/FW3rNmzZJuiufPn5uamhLRv//+K90sn8Cbf2qmL3GBwbfKuavnLsjh5cuXvE1c0aJFz5w5w3fN86aXnJWVlbu7e7AYV4zS0tjIkRnlaDRT9r9WLTZlCmvRIuO9tQAH3HlRaQMDA83vccnu+fPnPPir+anPnGEODuzMGWZtzRISMgLuXbp8EFs3NGTVqzNnZ+buzry9WWAg+zDRIv9JSkrKvsNpzJgxJE3TP16j39XVVRjZsmULEZUrV06U2gu5N2AAI2I//qjJOTOFhjIjI6ZQMM1ca3Z3d+9ia/uyb9/MjwpXrzIdHWZgwPJtt8P4+Hjey6Ro0aIavmY/Y8YMIpoxY4b6YGJiIu8OLZSaMTY2dnZ29vf3/1ipmS/i6+vLOxB26NAh5mtfd548eeLp6clLw3PVqlXz8PD41pteSoNvTfiKGqHx8czDgxkaZvQz9vL6/C6cU6cy9gISsYYNmYiXn169euXq6qqjo0NEZcuW9fHxwel6ppQUpqv7wYng4cOsfn35FpSzly9fSprDJwgPD+cX0WfOnKmB6dTxkrya+WSk7QH3unXrEtGFCxf4zXPnzhFRvXr15F0VY6xv375EtOl9ZZvo6GiFQmFiYiJdlsrNmzctLS2JqFKlSurvcwkJCbzsUaFChSIjIyWavUDKHnBfsWKF6Pvvck/0gHtqKmvUKOsnhLAwVqwYI2KrV+fzj31aIzIy45/0wAHZ1rB3717+KSJCsnAOAu7aTwMB9/79+xORs7OzdFN8WmxsLG9EJsV+soKqa9euRLRLvWqkTGJjYzt16kREvA8NV6FChcmTJ0vR5M3Li+noMCLm6ip5FYhatdj168zBgfGqJ0LAfdUqtmFDxp8sn7PyI5VK5eDgYGBgIF3R9i+iUql4cQPNnwDzgDtjzMWFTZuWEXDfuJGNH8/WrmUnTzI5OiZIju9wqlOnjvB55+7du/r6+rq6urdu3RJ9ugcPHvBdTUIv+vT09IYNG0r9TpfFhQtMoWCGhuzBA43NmdXUqYyINW4sebpMDjvJVCrWrFlGiYr8KTo6umnTpkRUunRpKZ6on8b7eGXp4MWzB/jFyy5duuzatUv03ULnz58vWbIkEdWqVeuLCn9FRERkSbovW7asm5tbYGCguCsEda9eveLplUeOHMnlj6hUzMeHlS7NiJiODnNxYblvAJeenvmzCgVzds5r55vU1FQvLy9eP1BfX9/NzQ0NdXPg6MjmzMn4Oj2dOTmx6dNlXVAOGjZseP36dalnUSqVjo6ORNS6dWvN7/O7dOkSERUvXlzSPo6cVgfcU1JSDAwMdHV1hSyGVatWEdHQoUPlXRhjjFdYEz4f8j2tTZo0kXTSp0+f1qxZk4hKlSp19epVYTw9Pb1ly5bly5eXotN6AZY94M5PLDTWszgL0QPujLGHDzMqLqp3Pdi3jzVvvq5w4SIaeDH9FowaxYhY27YyL6N9+/ZE5ObmJtHxEXDXflIH3M+fP893vD6WtR/lpk2bZMlwzL/41XotSUlLS0tr2LBhyZIlzczMXFxcAgICJM1+8vNjRkaMiHXsKEn9dKWSBQSwp09ZrVrsxg124wYrXZpFRmYG3GfOZL/8kvGnAATc2fsTYM0HrT6mfv366qk5GiME3MPDWalSbObMHGq4FzDCDif1yy0dOnQgotGjR0s06cSJE/kGX+GFQsPvRCpVRvLKhwnKmhYXx8qWZURs+3ZpJ8reK+XO3r0qc3NWunQ+7UERGRnJC2RXrFjxgRzXTPhbcEhIiPrgjRs3mjdvvnbtWukSZRhjoaGhdnZ2RFSmTBnhqtXHCEn3vJItr73j4uLi7++vmXRX8PT0JCI7O7vc7HK4fDmtceOMLHUHB6YWGfoCsbFs2rSM0yQTE/b779Ffd2p98uRJ9U51omxVLJgePmS2tszJiU2cyBo2ZG3bZvTJkLtctjrNbErgxQlLly792XbQEvnuu++ISAPhU60OuF+9epXXCBNGhg4dSkSrVq2ScVWMsYSEBF1dXQMDAyE2umTJEiIaJXSmkExcXNz3339fvHjxLGcMvAOMj4+P1AsoSL6FgDtjzMcno5St+nvf6NGj+W4JXHzOozt3mJ4e09Njsgcf7ty5o6enp6enJ1EcBAF37SdpwF2WvMJPryTv3aW+BREREUSk3uNddp07d86e7iedc+dY8eLM1jbZwaHz8+fPxTrslSvMzY2VKcOI2OzZGQF3xtj48czNrSCXlOHxuN27d8u9kAx8y6nmT4CFgDtjbOVKZm5e8APu2Xc48f4QFhYW6uUuxRUTE8MrR6u/Ymhyr9XWrRlNmGUvB7RlS0Yf07g4qaY4efIkf78QIiDx8fHly5evWaJE2J9/SjWrxPjHvapVqz579kzzs0dGRhKRqampXG/BUVFRbdq04WvIscuCUqkMCAhwcXHhl9OIyNDQ0MnJycfHB2kNGpaSklK1alX6sFl0dpGRkW5ubnXrjlEoWJkyItRhDwtjLi5MoWD29tPKli3r7e2d+4zjZ8+eubi48GdO5cqV//777zwt5VuQnMwuXmS7d7ObNzN+c82bMyL2LVW6P3jwoEKh0NPTO3PmjFxr4PlbUidMMy0PuG/cuJGI+vfvL4zwNJZz6l0g5ZC9sg2vurVhwwYNzJ6ampo9T41XcNaehKN84RsJuLP3pSdr1cpsi52cnFynTh0t2S+Sr7Vvz4jY2LFyr4MxxtioUaOIqK00yfYIuGs/SQPuclXOzRHPcDQ2NpY31z5f4I0HZekq+TG8YmNoaKjGZgwOZk2a9CEiKyurO0Jj069y/TqbMoVVrJhZp7tKFbZmTWbAPSaGVazIdHU/GnAPC2P5us/95MmTiWjevHnCyKxZs3r06JGQkCDLeniLguka35StHnBPT2cNGxbwgPuFCxey5JWnpKTw4s4rVqyQdGpvb28isrS0FJ5jGusmIuSVa8MWYpWKNWyYsW9GCkqlslatWkS0YMECYXDWrFlEVL9+fe25ZPuleFKaXNcI+Sb4xo0byzI7l5aWNnLkSCJSKBQeHh58MD09PTAw0M3NrUSJEjxaqqOj4+Dg4OXlJd31M/gsfs5mbm6eY9pvWlqal5dXkSJFeDGi+fOfiZg4d/FiHE9nIaLvvvvus5HQhIQEDw8PXiHQ1NTUw8MjWe4mi/nJixeZX48bx4jYiBHyrUajnjx5UqxYMSJatGiRjMtITEwsWrQoEV25ckXSibQ64M6TcBcvXsxvpqSk8KJycdJd2c8dXtlmyJAhwgjfRCP1b+tjYmJidHR0DA0NRemy8u34dgLucXGsenWlo6PnpEmThcE7d+6YmJgQ0c6dO0Wf8Rvx118ZDWq0JGkxMjKSv4H5+/uLfnAE3LWfdAH3uLg4HiTdsWOH6Af/OjyttXfv3nIvRNv9/vvvkhab+lKvX78mokKFCmm4j5bQZN7c3Dz3BVIFjx8zT09WrVpmnL18eebmxgIDM/KThIA7Y2znTkaUc8B91y7m6sp++YVpvF+7aHg2zMCBA4URXmTm5s2bsqxn586dRPTDDz9oeN4tWz7YAh4d/QXFc/MdlUrFAzHqnc34a0suqx/kRXp6Ou+3/MsvvwiDvJp83bp1Ja39On06I2L29kxLos28mryRUV6rLedo5cqVRGRjYyPUtH327JmJiYlCoZAxCTHv+Mc9iZJRPmvZsmVENEILQmleXl68leUPP/wwefJkXuiGq1u37qJFi8IKZN+JfIgX/R80aFCW8X/++YdfEuPP5zxmD+RIpVL5+fnxzthE5OTk9PDhwxzv6e/vz++mUCicnZ1l2T6SXymVrF07ZmDAXr3KGHnwgCkUzMSERUXJurJMSqXyzZs3np6efn5+ly9fFrHyVXJyMn9D79Kli+wNdXnNumHDhkk6i1YH3Hl7k5MnT/Kb169f15JwD69ss3LlSn4zMTGRV3LQQNH9HJ05c4aIGjRoIMvs+de3E3BnjF2+fMvAwEChUBw6dEgYXLduHREVLlz40aNHUkxa4F27xhwcmNw1rj7g5eVFRLa2tqJnGSDgrv2kC7hPnTqVp2jJfm4kCAsL00yGY37Xp08fItrCW3lqgSNHjhBRq1atND91cnIy/9fQ09Pz9vbOzY88e/Zs0aJFrVunCHH2kiXZ6NGZcXZBTAxTj/tFRTGVKuu12MjIjLBdWhrr0CGvD0cugYGBRNSoUSNhhBeZ0ViNoCx4/clatWppctL795meHitUiEVHa3Ja2Qg7nIScp9evX/PmeEePHtXAAs6ePct3NQm9HxMTE3m4J5f/l7+Ovz+rVIlpvEHApwwYwPr3Z6LXvI2KiipevDgRqVcdcXZ2zrLXPD+KiYnhGcGybJEfNGgQEa1Zs0bzU2e3e/duIyMj/q/Bd424ublJ0bEc8uLhw4dGRkYKhULoTfL8+XOhbIutra3U77YJCQmenp68ITlvf/ru3Tvhu8HBwbx1B6/3gFa6X+PHHxkRU7uEzBwdGRGTeLtY7k2fPr1u3bqkxsjIyMbGxtHR0dXVlQfir1y58hVp0K6urkRUqVIl9SeVXB4+fKijo2NsbBwZGSndLNobcE9PTzczMyMi4fFv3ryZiPpqwY7NLJVtLl68SER16tSRaz3Lly8nIldXV7kWkE99UwF3xtjChQuJqESJEi/UNjH17t2biBo2bIjtEblx7Bjr1IkJr8lbtrDNm7Ul74lLS0vjrZUXLlwo7pHFDbinpKePvX9f+LP7zRtRDptfPE5KUn/450QqDStRwD00NJSf+l+6dEncI+fRnDlzNJDhmN/xmg83tKY05Pz584lowoQJssyuUql4BRKe9f+xC0iRkZE+Pj6Ojo78rKBFi9uFCzMXF+bvz0R5q9y8mb3P2ch/+B6FIkWKCCNTpkyhD4vMaFJ8fDwvdaLJ14F+/RgRGz5cYxPKSdjhtF2tX+eQIUOIqGvXrhpbRvbgr6+vLz+tjRbvuseKFWzQoMzzuqlTmbZFk5RKNnnyBx1c+/dneU9NHjNmDBG1adNGGMl+kSP/mjFjhoafroJ69eoR0fnz5zU/dY541mD9+vXPnj2rPSkUkMW0adOIyN7ePj4+3tPTk8fETExMPDw8NJbf+eLFC1dXV11dXSIqVqwYrzXk5ubGe+oWLVrUy8sLp99f6eRJRsTKls08p9y7lxExO7u81uMXw6FDh3R0dHR1dXv16tWjR486deoUKlSIcqJQKMqVK9esWbOBAwd6eHj4+PicOXPm+fPnH3tt4VsSjYyMrn5dk18J8KtHy5Ytk24K7Q24BwcHE5GVlZUwMnbsWCmiSF8qNTU1S2WbtWvXUk4bfzSGXzxfu3atXAvIp761gLtKpeKt6lq1aiW8QUZHR1esWJE+3CYMH7NlCzM2zvyMPXOmVJU08+LEiRP08fJ/X03cgHtCerr9lSsPEhP5n7ff2PWem/HxPYKChIcfI9IJq0QB9+7du8v7HvcxQoajZhqo5EdxcXE6OjrqPd5lx6Nm22StiLxhwwb+ibFXr17qn13fvXu3ZcuW9u3b8+/yz7e9e/f+++8LIm4Z2rGDTZqkDR+pvh6vevn6fQkVXmTGxcVFrvWUK1eOiDTW0SEoiOnoMAMDScp6aKHsO5yuXbvGX1hCQkI0towcy5u0bNmSiCZOnCjWLKNHM2Njtn59xs0OHdj+/WIdWzRt2zITEyZs7qpYkd27l6cD3r17V19fX1dXV2gGlp6e/t133xHR3Llz87ZYrRAREWFmZqZQKDTc7SwtLc3Q0FChUMTI3nL3va5duxLRrl275F4IfEpCQkKFChWIiO87USgUffv2laXmz+XLl5s3b87PiHjcX09Pb+zYsVFaU/wkv6pRgxGxv/7KuKlUZnQHel/bQy5Pnz7lzzpPT0/18aioqCtXrvj5+Xl6erq5uTk7O9vb2xsbG+cYiDcwMMieDn/+/Hm+NXnjxo1yPbrseO/3SpUqSRcA1N6AO78A0qNHD2HEwcGBiAICAmRcFXtf2aZq1arCCN8ZsXz5crmWVLt2bSK6ePGiXAvIp761gDtj7PXr16VLl87yGhoYGKirq6ujo3PixAnppi4YtmxhvXuzSpUY39+inQF39r78n7glyaQIuItyqPzoZnx8HwlqL0oRcD958iQ/yVbfGaM9du3aRUQlS5bUhp2JWujs2bM8SUruhWSytbUlotu3b8u7jGPHjvGEHQcHh+fPn/v7+7u4uPC+JkSkq6vr6Ojo4+MTK2I/MsYYY5s3sxo1mLs7mz9f3ANrVKNGjYhI2EievciMhrVu3Zo0VduEMdajByNiWtMWQVo57nBq06YNEU2aNEnDi5k5cyYRNW3aVBi5fv26rq6uvr7+vTyGnN8bPZpNmMDKlMmoyK+1AfepU1n16ox/Ysh7wP3EiRPlypUbNWqUMJK9UW1+N27cONL4Rvlbt27xUI4mJ1X36NGjLBsUeJZVcHCwXEuC3AgJCalbty4vBluzZs3Tp0/LtZITJ044OjoOHDjQ1tbW1dW1ZcuWrVq1sre3Fzep61u0YgUjYo6OmSO//MKI2I8/yrcmlpqa2qRJEyJycnLK5Q4Y9UC8q6uro6OjjY0NbxeRI23L31IqlTx56/jx4xJNofexfwvZlSlT5ocffihWrNiwYcP69etXtWpV/qaVpZyQ5vGAO98gxl27di3LiCalpKQEBwfr6uoKbTQAPqZkyZJbt27t1KnTzJkzW7RowV9SmzVrNmvWrDlz5kyfPv3SpUtyr1HbGRrS4sU0ciRdvSr3Uj5uyZIlx44d27p165kzZ4RUzTxKSUkhosePH/Me0Z9Qf/fuFMY+fZ9JFSsS0dbwcH6zW/HiFiKtM7+IUiqFhz+odOmhISFxSuWnf8Rg797rvr6fuMPbt2+JaN26dXv37hVrna9evSKi6dOn85IC2qZXr17Lly+/cOHCjh07eKN1UCfv+Ul2sbGxjx49MjIy4m02ZaSvr+/u7r5ixYpz585VqlQpOTmZiHR1ddu0adO3b9+ePXvyJG7RDR5MgwdLcWCNqlq16qVLl0JCQngf2qpVqxJRSEiIjOv5559/QkJChMKy0rl6lfbvJ1NTmjZN6qm0wurVq5OTkwcMGMCbpnLr1q2bN2/erFmzNLyYqVOnPnv2bJraP33dunUHDx68cePGpk2b8oSSjylTxvbVK/9PH79pUzI0JGtrGjKEJk2ibdvEWbYUWremhw9p8WKaPp2IKCyMevb8zI/Y2r4JDW39se+am5ufOnVq+vTprq6uxYoV46W3Fi9eLFyGzO8mTZq0du1aPz+/uXPnVq5cWTOT3rx5k4jq1Kmjmemy8/Dw2L59+8aNG3klmXfv3j179szY2Fhj/wLwpWJiYubOnbtq1aq0tDR9fX3GWNu2bVu0aCHXesLDw0+cONG/f/979+4pFApdXV0bG5vHjx/zsyb4eoMG0YwZdPIkhYRQ1apERMOH07x5tH8/vXhB5crJsqjx48dfuHChYsWKW7du5Xmon2VhYWFvb8/7oAoSExMfPXr0+PFj9b8fP36ckJDAqxlrD11d3eHDh8+YMWPt2rXt2rWTYgptDHCkp6dfuHDhzz//DAgIiI2NJaKdO3cWK1asTZs2ycnJfI+DjLIE3JVKZVBQkEKh4Gnmmnf79u20tLQaNWoUmFMikFSHDh0mTpy4bdu2hIQEYbBp06YKhQKnX7nUrRtt2EDLl8u9jvdu3LhRrFgxS0tLYaR8+fLm5uY6Ojr3798XcSJ9ff2UlBSe6v4JRVNSklSqT98nOT2diAzfXwD/6HXwgktH7eET0ZPk5JjPBdyLREd/9h/f2Nj47du3PPIuCl5CLctVltTU1H/++UcDsa0skpOTAwMD1c+HFAqFlZVVUFAQ33sLWWRPEZDX9evXGWO1a9cW60LgV1u7du3u3buXLVsWGBiYmpr68OHDGjVqjBo1iqfuwqfxxgBChL1EiRJFixaNiop68+ZNyZIl5VqPuO93HzNzJjFGY8fSJ6O7BUflypUNDQ0rVaqUZdDHx0fzizE1Nc0+b+XKlfX19aOioqKioj7xs8nJ7NGjzxy/bNmMuMf06VSjBp0+nafVSm3pUrK3p379iIhSU+lzZwdkaKj32VOIzZs3b9y4sXfv3uHh4U2bNuUVwAqG8uXLDxw4cOPGjYsWLVq/fr1mJpU94H7jxg0iEnLybt68yRirVasWL8wNWoUxtn379ilTprx+/VpHR8fFxWX48OFt2rRZvXr10KFD5Uqs5KnKKpVKOG0TRmRZT8Fhbk79+pG3N61bR8uWERGVLk09epCvL23YQHPmaH5Fvr6+a9asMTQ03Lt3b7FixfJyKBMTk5o1a/KucoJff/119uzZmzZt6tixozB4+vTpkJAQXi9ELsOHD//ll1/8/f2fPn3K9wCJS4sC7iqV6uzZs7t27dq9e3dERAQf/O6777p16/b3339funTp3bt3fn5+8i6S3n985X1TiSg4ODg5Obly5cqFCxeWcT3a83EatN/8+fMnTZokpAJFRETw3T08SQ1yY8UKatqUunUjOWILH1AqlS4uLo8ePTp27BhPNiQiT0/PqKioWrVqnTp16hO7ur7Io0ePunbtam1tffDgwU/f09jamj53Vbywvj4R9ZX9n08+RfT01B/+5qpV0z+3LSBt/HjlsGGfuMPatWtXr149cuRI3v1MFD4+PosWLXJ3d+/UqRMve5WWlmZvb3/37t3Lly8Lb4WasXTp0hkzZkyYMGHp0qV8JDg4eM+ePSqVSoozpAJA284QtGc9PPff0dFx/PjxaWlp/ALSmzdvEHDPDX62oB7grly5Ms95lyXgrrEU+3Pn6OhRKlyYJk2SeiptUb58+ZSUFC8vr1GjRpUoUULu5WQVHR29aNGitLQ0Ly8vR0fHT9xTR8foswEiMzNatIiIyMSEli+n8eNJ7iyvT7G0pMmTafJkIqIKFSgo6DP319ExUqk+c6fhw4dfuHDh9evX9evXX7lyZS4zHPOLqVOnbt26devWrTNnztTMRXoe75Zrd35KSsq9e/d0dXWFsJfsFwDgY65everm5nb+/Hkiatiw4cqVK/mmIldX1zVr1owfP54XeNS87OF1BNxFM2oUeXvT1q00bx6ZmmaM+PrShg2qGTN09PU1uZb79+8LVbKzpKuLZfjw4fPmzdu/f/+LFy+E1jtt2rQxMjJydna2sLCQYtLcKFGixA8//LBz586NGzf++uuv4k8gUamaLxIUFOTh4WFjYyOsqnr16h4eHkI9vuTk5H79+hGRnp6evK1B09PTzc3Niejt27d8ZOvWrUTUq1cvuZb0888/E9GSJUvkWkD+9Q3WcM9OpVLx/jnNmzdHq/HP2rKFDRyY8fXcuczQUP4a7itXriQiGxub5PdN/XJsLJZ3qOEuonxUwz0lJYUHs7y8vITBSZMmEVHTpk1zWeBPFM+fP+f9mtSr7PEs+9GjR2tsGflISkqKgYGBrq5ufHy83GvJMHDgQCJat26dvMuIiYlRKBRGRkap79s1e3p6EtG4ceNkXVe+wWs8qr8d8N+sXO2LHz58SEQVKlSQeqJWrRgRmzNH6nm0S6dOnYho5MiRci8kB25ubkTUunVrsQ44ejRbsSLj6y5dmKGhltZwP3aMMcZSU1mNGszQMK813AU3btzQ1dXV09MLCgoS54hapm/fvkS0fPZszUzHL0BmqaKuMfy6svoL9ZAhQ4ho1apVsqwHchQREeHm5saj2GXLlvXx8VE/tY6KiuLVHfbs2SPL8ni2q7OzszDCPxSI1TbjW+fgwIgy+3QzdqdXr+6VKvn5+WlyFfHx8dWrVyfpu1zwejIeHh7CCM92X7p0qaTzfhbvRVS6dGkpAnFy7uO/e5dmz6a2bYNq1qw5d+7cR48eWVtbT5s27ebNm3fu3JkzZ46Qb2toaLhjxw4PDw+lUvnzzz+PGzdOrqtqDx8+jIuLs7S0FCrbyJ6ulSXjHuCLrFixwt/f38LCYseOHdhg+EXc3cnKSuY1REdH8xjrkiVLDA0N+eCkSZMSExP79u0rtJUH+GoGBgaLFy8morlz5wqbz2bPnl2mTJnz58/7frKmvLimTZsWHx//ww8/CCVl/P39jx07ZmFhMUeOrZfaLygoKDU1tUqVKqY8cUYLaMkZi1DZRv99ApHs53L5S6VKlXR0dEJDQ9PS0vhI9px3TbKysjI0NAwLC1OvlSe648fp33+pWDGaMEG6SbTR0qVL9fX1N2zYwNNjtUdwcPDatWt1dXW9vLykOP6qVSR37avP0NentWspNVW0A9apU2fo0KFKpXJCAX2Wz5k27Vzt2m6LF5N4lfc+5tWrV2/evClSpIh6yUdNyp7Pjgx3raJUKpcvX25ra7tixQpdXV03N7fg4OCBAweq7yyxsLD45ZdfiGjChAmSvsF9DDLcpTVqFBHR6tXCwL8tW+5/+HDt2rWaXMXcubeCg+/VqFFjw4YNkk7EE4XXr18vnD3ykTVr1sj7jGrWrFn9+vXDw8P/+usv8Y8uegj/s549Y15eGZdz+J/Gjdu6ublduHDhs7lymzZt4p+Ofvzxx8TERM0sWN2uXbuIqFu3bsII72Jx9OhRzS+GMaZUKk1NTRUKRVRUlCwLyNeQ4X779m1jY2Mi2rdvn8YmzddSUph6qmhMDFu8mJ0//8F9nj9nO3dqaD28ckibNm2EkbNnzyoUCmNj4ydPnog7l7gZ7oyxBJn+o2mDdMaSJHj4UmS4czwB4eeffxZG+DlZ+fLlNZM9feHCBYVCYWho+ODBAz6SkpLCCzcvX75cAwvIjzZu3EhE/fv3l3shGZKSkvT19XV1dRMSEuRdybJly4hoxIgRwghvYcLr20Ju8CJO9+/f5zd3795NRF27dpVrPTw568aNGxIdX6VS9eu3rUKF1N9/l2gGrTZu3DgSNZFcFNnfmPIuIYG93y7IGGPPn7MpU9ibNyLOkFc+PszXl73fnMMYY9HRTMQdqjxGTESHDh0S7aBapUsXRsRmzJB6nsOHDxNRq1atpJ7oY8aPH09E8+fP5zfT0tKMjIwUCsW7d+/kWhIITp06JZT6cXR0vHv37sfumZ6e/t1339GHecEaw+OPPXr0EEZ4V6eCuglG05KTn7Vr51anzvn30YS4uLhChQoR0e3btzWzhDVrGBFr0eJFcHCwBqbj3QiEFP709HQrKysiOsb3bcln3bp1RNSiRQvRj/xlAfdNm5j6btFt29iaNR/cYdo0NmlS5s2BA9njxxlfR0Qwb2/m4MAUiow4e5EizMWF+fuztLQvWMPx48d5tfQmTZq80fgZkLu7OxHNUdtNyk9KwsPDNbwS7s6dO0RkbW0ty+z53TcecI+Pj7ezsyNUY8iDpUsZEfvuOyY8ZSIjWaFCTF+faeA9686dOzx6devWLT4inJPNnTtX9OlED7iD6KQLuN+9e5c/2YR4Vnp6eoMGDTTzAUClUjVq1IiIZqh9Qv7999+JyM7OLlU98ABqRo8eTUSLFy+WeyEZ/vvvPyKqWbOm3AvJWtkmLi5OR0fH0NAQz6Xca9++PREdPHiQ3+RFZqpWrSrXerp3705Evr6+Eh3/wIEDRFS+vHVCwrdYfE/2sgbZ+fv7E5GFhYVQ5FMKffsyIqZ2bU5mr1+zwoUZUdZUD3EtWbKEiCpVqpSsfvGhwLh4kRGxQoVYdLSk8yxYsIBkrVTWqlUrIjp8+DC/GRQUREQ2NjZyrQe4sLAwFxcXHmqvVKmS8Db6CUI21aNHjzSwQnX79+/PkmzKA6bCZ0/Io+nTpxPRgAEDhJFRo0YR0ZgxYzQw+3//MUNDRsS2b9fAbIwxtnr16izX7+fPn09E3bt319AKGGOMnT59Oku+clxcnJmZmYGBQVhYmLhzfVlJmdBQevgw8+ajR5Rl8+j167R2LR07lnHz/Hl69Yo2bqS2balUKRoxgs6dI1NT6t+fDh6k169p2zbq0uXL9uu1a9fu33//LVeu3IULF5o3b/7o0asvegh5lH3T8ZMnTwIDA0uVKqXJZWRZj+y7syE/GjduXHBwcI0aNRbxFlHw5UaOpAoV6MoV8vHJGClalPr2pbQ0GjtW8tknTpyYlpb2888/C53rN27ceOXKFUtLy0nfTkM30Ag7O7tRo0alp6cL28x1dHS8vLwUCsXChQufPn0q6ezbt2+/dOlS6dKlp0yZwkfevHnDz894rQNJZ8+/tK1MivacsWRZyY0bN1QqVa1atfBcyr0sNWQqV66sq6v76NEjYZuwLOuRqG8qY2z27NlE5O4+0cTkWyy+J5Q1mDx5cnJystzLodTUVH6e4+HhUVzKxqazZ5O+Pm3YQFevSjfJF5g5k2JiqHNnatJEwlnGjh1btWrVhw8frlYrdFBwNGpEbdpQbCxJXLRB9vott2/fVl+A7OuBpKSk33//3c7Obvv27SYmJh4eHkFBQU5OTp/9QQcHh759+yYlJU3mXZI1CCVlpDZixAhdXV0/P783b97wkTFjxigUCh8fn9jYWEmnjo6m3r0pJYXc3GjAAEmnyjRw4MBChQr9888/Qe87fQ8fPtzIyOjgwYNSf5wU3L9/v0uXLvb29sK/ORHdvXs3JSWlYcOGvPeGiMSv4T5+PI0ZQ0lJGTdv36bhw+nUKdLTIycn8vGhV69oxw5yciIDg6+com7duv/991/9+vWNjTs5OJQODBRr7Z+X/eNr4cKFmzVrprkVfG49ALmxZ8+eTZs2GRkZ7dy5k1eVga9gbEzz5xMRTZtGMTEZg/PnU9GidOIEHTok4dQHDhzg1as9PDz4SFxcHP968eLFJiYmEs4N3yQe1/jnn3+E8nZNmzbt1atXUlLStGnTpJs3Pj6eH3/hwoV8lyURTZs2LSYmpmvXrrykAGSnUql40nHdunXlXksGLTljSU5Ovnfvnp6enrCbm3eWk31h+Qsv6CQEuI2MjCwtLdPS0p48eaKB2bPPImkReV9f35s3b1aoUGH48OFSHD9fcHV1rVOnzuPHj5cuXSr3WmjFihX379/nV4IlnahaNRo9mlQqGj+eGJN0qs+7cYM2byZ9fVqyRNqJ9PX1V65cSURz584NDw+XdjJZTJ9ORLR0KUlZFFveAHdYWFhkZGSxYsXKli2rDeuBgwcPVq9eferUqfHx8U5OTsHBwXPmzBH6b33WkiVLChUqtHfv3mNCZqtGIOAutQoVKnTu3Dk1NXXz5s18xM7OrkWLFnFxcTt37pRuXsZo8GB6/JgaNiRN5l6amZkNGDCAiLy9vflI8eLFf/jhh/T0dKkryHNJSUl9+vSJjY1Vj61HR0f36dMnLS3tu+++M/jqIPVHfHHA/coV8vLK+HPxYg53aNKEGjfOCEIRUaNG5OxMW7bQ69d08CANHEhmZnlbMhERlS1b9t9//7WxWRgerujQgfbuFeGYn/bkyZPp06e/ffvWzMysXLlyks+XO/iUCF/hyRNaseIuEXl5edWuXVvu5eRv/fpR8+b0+jUtWJAxUrQozZxJRDR+PKWkSDJpamoqT/WdO3eukNvFPxc1bdrU2dlZklnh2yZkOE6aNEnIcFy8eLGpqemff/555swZieZdsGDBy5cv7e3t+/fvz0euX7++detWAwMD7M75hIcPH8bHxxcvXtzCwkLutWTQkjOW27dvp6Wl2dnZCRebteRKQP6SPcCdJQQvHV9f35o1ay75MOgo3ezp6em8Wtfs2bNzHxwpeHR1dXnzg99++y0sLEzGlbx582bevHmkqR1OHh5UogSdPauJD5ufNn48paeTmxtVrSr5XO3atevUqVNsbGzB7Eneti01bUoREbRpk0QzJCUlPXjwQE9Pj7eX0LwbN27Qh+9rCLjLJSQkpGPHjl27dn3y5EndunXPnDlz8ODBChUqfNFBSpcuPXXqVCKaMGGCJneSIeCuAfzK8dq1a9PT0/kIbyW6atUqJtmV3vnz6cABKlqUfH2/Pg3664wePTpLCj//F1i/fn2KRKETNaNGjbp+/XqVKlXWr1/PR1QqVf/+/R8/ftyoUSNesFRkX1SAZvp01rYtW7o040/Hjmz8+A/u0LEj+/tv9uoVK1mShYSwSpWYpOX+lUo2ahQjYgoFk6iKbEREhLe3t4ODA6/ubWpqSkTdu3eXveUXY0ylUhUtWpSIXr58Kfda8qXsNdybN2/u4ODw2ea9EtFMDfe0NNakCdPRYePGXZJ0om/H1atMR4cZGLCQkIyRtDRWowYjYkuWSDKjp6cnfVi9+sGDB4aGhjo6OpcvX5ZkStRwzw+kq+HOKZVKfonut99+Ewb5vop69epJ0f3i0aNHvMdXYGCgMMh7lU+ePFn06QoYno3bt29fbajDq1QqTUxMFApFtMRlcz+L59QMHDhQGOEBiIsXL8q4qnyH7/wtU6aMMDJ27FiSuGeAUqmcMmUKPyEfOnSo+rdCQ0OJSF9ff9CgQQsXLjx06NCjR49EOZ3jSWeVK1dO+6KWUwVUz549s/z30bxhw4YRkZOTk8ZmXLuWETFLSybjhz9fX0bESpaUuvB4pgcPHhgYGOjo6Fy5ckVDU2rSgQOMiJUvz6T52CV7z5Jff/2ViP73v/8JI7z+7WOhvR5ILzo62t3dnSfMFi1a1MvLS5mHBscpKSn80vKyZcvEW+NnBJ08ubRJk23DhgkjO/r33968+bMC+bIgE5VKxX+zQkH/1NRUnuB75swZKWb85x+mq8t0dNj7Fg+a1rJlSyJau3atMMLLPO7cuVPSeflHAFNTU/WuvzyfrGjRohK9PH5xwN3dPfPmnDk5B9wZYytXMicnyQPunJcX09FhRGzYMCZWv6uoqKiNGze2bdtWVzejVqOpqWm/fv0WLlzI80kbNGggV6NUwePHj4moVKlS8i4j/8oecNeYgICAgICALIOaCbhPn55xhhkRIek835bBgxkRU+sowwICMnoyvXol8lzh4eG8cfTRo0eFwc6dOxPR8OHDRZ5MDQLu2k/qgDtj7NSpU0RkZmb24sULPpKYmFixYkUi2rhxo+jTZQ/u8P2VJUuWfPfunejTFTABAQEyNpnPgtdqtLW1lXcZjDH/WbO62NqueP95NSUlxcDAQFdXVxsSKfIRlUrFa5fFxMTwkVWrVhGRq6urRDNGRkbyTq16enqenp7q37p7926VKlUUCgXPvBMYGBhUr17d2dnZw8PDz88vKCjoS4MdqampNjY2RPTHH3+I+mjyqxwvgmrStWvXdHV1DQwM7t27p7FJlUpWpw4jYvPmaWzODyQmMisrRsTWr9fovLxri4ypSBJSqVitWoyISXDqwhjjtRH69+8vxcFz48cffySibdu28ZuvX78mokKFChXAX6VWUqlUPj4+/CKHjo6Oi4uLKKdhBw8e5L9HzWVbHj/OiFi7dpkjjRoxIoYcBVEtXryYiDp16iSM8M4xffv2FX2u8HBWpgwjYrNni37s3Nq1axcR1ahRQxjhofDmzZtLN+nNmzf53lYfHx9h8NSpU7q6ujo6OkeOHJFoXhEC7gkJ7MwZxoPPQsBdqWT16zMDA00E3Blje/YwY2NGxNq3Z+/P/L9GYmKiv7+/s7OzULvH0NDQycnJx8cnLi6O3+fBgweVK1cmIisrqzt37ojzAL7K3r17s/zPhC8iS8D96dOnvDW5tbV1UlKS+rc0EHD/99+M65mnTkk3ybcoPJwVLsyImFoMnHXpomrR4va4cXPEnWvw4MH0Yb/4gIAAIjI3N38lenRfzcOXL3suWzbc21u6KSCPNhw71nPZsnXqz0IJaCwIzoP7JiYmz5494yOSBvcLpNu3b/Nty7a2tpqMT2W3bds2Ivrxxx9lXEOGhg0ZEfv3X37rxfXrLnZ2jerUkXVN+RLf7yJsqzp+/DgRtWzZUoq5bt68yQPfxYsXP3nypPq3Dh48yC8s1a5de9euXevWrRs7dmzbtm3LlCmTfV+vsbFx/fr1BwwYsGDBgv379z948ODTIXh+FaFGjRpS7ODJp6ZPn05E9vb2svyb8B1OkyZN0vC8p04xImZiwp4+1fDMjDE2dy4jYnXrsjxkx36NmJiY0qVLE5Gfn59GJ9aMP/5gRMzWlkmweWXMmDFEtHDhwizjGvtfw4MVN2/e5Dd54W9Jg1kgePv27XfffcffdFq0aCH8FkTBU6yGDBki4jE/5cQJRsTats0cadKEEbHz5zW0gG9DdHQ03wZ6//59PvLixQt9fX19fX0hw0kUaWmsRQtGxFq31vQbirrU1FTeXkK4eJ+QkMBrYIr7/0UQHR1ta2tLRD///LMw+OrVK36u6CFRsRTGmCgB9z59mI8Pa9eOvXqVGXBnjP33H9PR0VDAnTF24QIrWZIRsVq12PvP5rmVnMz272e9ezNHx4zOb7q6uu3bt9+8eXOOe58jIiJ4o1Rzc3PpLoZ81syZM4lo+vTpci0gv9NwwD02Ntbd3Z0XADU3N1+wYEGW2LrUAfeoKFahAiOSqv7SN87TkxExO7vMfTb37t3X19fX1dW9fv26WLNcu3ZNR0fHwMAg5H39mrS0tBo1aki9kZ8x9igpyf7KlR/UdmCBtln/8qX9lStrRT0zy07IcFQvwdG8eXMimjJlilizKJVKXuhDY+VrCipeAZ9vlpRoa2pu8ExJ9d+mPJRKZmLCFIrMugwbNjAiNmCAnKvKn3i/kB07dvCbb968WbFixenTp0WfaNeuXbyiY7169Z48eSKMq1QqT09PntXep0+f+Pj4LD8YHR195coVHx8fd3d3JycnGxsbXo5Gnb6+vnoW/JUrV4QSTElJSeXLlyeiffv2IS1UEBcXxz8nC8mzGsNz4uTa4fTDD4yIubhoet7nz5mpqfpVQo1at24dEVlaWhbAPUBKJatUiRGxD6/hiYKfFB07dkx9MDAwsGbNmkJATTrx8fH8w4LwoZIXJh47dqzUUwNjTKVStWjRomzZsj4+PqK/dzx8+JAXEdVQHTx+sbF168wRBwdGxM6e1cTs35IhQ4aQWsHM48eP9+jRY+TIkeLuZkhNZW5urHx59vq1iEf9GrNmzcqSwu/m5kZEI0eOFH0ulUrF08Xq1KmTmJjIB9PS0vgLdZs2bfJS6+mzvizgrlR+cCVE/easWfL/vwsNZdWqMSJWtiy7du3z91cq2bFjbPBgVqQII2JErGrVm82aNVu1atXrzz0Hk5OT+/Tpw3e2ekuc8pmQkLBr1669e/dmGedXOHfv3i3p7AXYqlWrSpYsWbly5dsSXxfi28p4kohCoXB2dn724UWh9PR0Hx8fExMTAwODzp07e3t7i779X6Vi3boxItasmZzXMwuw5GRma8uI2Jo1mZdMJk6cKOJuXJVKlT2syZuY2draSl2mGQF37aeZgDtjbNq0aUTUuHFj4Ymd/VJQHq1ZsybLTqCwsDAedJMiolewxcXFOTk58U17UpdH/JhWrVoR0WG5qkUKbt/OSGkU8F5AEjXcKNB42sdsKfckK5VKd3d3HiUfMGCA8DGJMRYTE9O9e3eeIpOlwswnREdHnzt3bsOGDRMmTGjfvr2lpWX2LHhDQ8M6der06dOnQ4cO/OPZ6NGje/ToIc1DzJd8fHyIqHTp0jF52Vb8hRITE62srIhow4YNGptU3aNHzMiIKRTs0iWNdsUYNCiRiMm1Oyg9PZ1fsv3111/lWYGkAgIYL0UdHs7ycBatUqlevHgRGBjo4+Pj4eHh4uLCk6iefrghonXr1vyK0XmJs4PPnz9PRHXr1hVG+vXrh92BmvT06dPs14DF4u7urrltRv/+y4iY+t615s0ZEZMvgaOgunbtGhFZWFgcPXqUJzRwFhYW9vb2zs7O7u7u3t7eAQEBoaGhuf/Vjx//QS2yPn1YfDzr1u2DQty9ejG10ysN4Sn8BgYGQpnu+/fvKxQKMzMz0a+p8yuOFhYWoaGhwiCP0pQvX17qqptfFnD/mMhI1qlTXt6nRBMRwZo1Y0Tsp5+Yo2Nmun1wMFOvKnnlCnNzY6VLZ8TZiVj16szDgz18+AVzqVQqnm1HRG5ubqJfwFQqlQEBAS4uLubm5kRUq1atLHfgCSbqzxv4Ujx8qa+vP2HCBIk6uf33339NmjThz5MGDRpkP8c6ffq00EReyL0yMDDo2LHjhg0b3r59K8oyli9nRKxIEaaWHAYiO3BA2arV0dKlK0ZGRvIRYTeur69v3o//xx9/ZMntioyMLFasGKl1WZEOAu7aT2MB9xwzHHlqRteuXfN+/KioKN4uZc+ePcIgv8jdp0+fvB//G6RUKkePHs3fZSTdOJkjlUrFN4pKWvYqV7ZtY1liV40bMyLUWfsKvExQ7969JTp+REREu3btKKei7ffu3bOzsyOiYsWKHT9+PC+zxMTECFnwzs7O1atXVy8EX6VKFV9fX34ejra6ApVK1ahRIyKaMWOGxiadM2cOjyFKmon2ab/+Gte06crGjZtobMfD+fPnixcv2abNZhlbXQYGBioUChMTk6ey1NOR2qpVzNKSNWjAbG1Zy5afrxkUH89u3bp26NDSpUvHjh3buXNnOzs7IyOjLNftdHV1FQpFkyZN1HP41C9+b9++XbrHtHbtWiL66aefhBG+F1aoAAb5WlxcHO+ouWXLFsknO3OGETH1YkQtW8q246aga9asWbdu3Xjp/0qVKllZWenp6WVPCyAiY2PjTp36OjmxsWPZ0qVs/3528yZ7XwD7A9WqscKF2YMHGTf19FhUFCP6IMJOxGRpjMWzzuepdUdp27YtEa1cuVLEWc6fP6+vr69QKPbt2ycMHjhwQKFQ6Ovrn5U+Z1yEgPuzZ6x37y8LVUsqKYn9+it7+ZIZGDBb24xn3sWLrE4dduMGmzw5o6oG/1OtGpszh+WlrumGDRv4/4RevXplKcn9dZRK5YkTJ4YOHco/nfKPx02aNFm+fLn6KSaan4giMjLSzc2Nt8bNe/fwLJ4/f+7i4sJj6DluKwsLCxPuUL58eR8fn7dv3/r4+Dg5OfHMCH7G5uDg4OXllZcCXrdvZzQ52LUrz48KPoknxI0ZM0YY4T1A8r4bV6hevWnTJmFw5MiRROTo6JiXI+cSAu7aT2MBd8bY1q1bs2Q4vn79Ons7368zbtw4ImqttoP13LlzCoXC2Nj4Ca4Z5oGXlxcPJg4dOjRVrC7zuRAaGkpEZcqU0diMHzVhAiNiQmUbpZKZmjKFgr2/Sgq5d+nSpSxJlCK6ceOGtbU1EZUoUeLUh5dD/P39+UtNnTp1Hj16JPrUsbGxhw4d+vnnn6dNm8bPCadOnUpE33//vehz5V8XLlxQKBSGhoYPhM/xUhJ2OP0ra5QnISGB74pQb7kmnfT09IYNG5LEvdBzg3fgHFDwSm8dP87Kls2IYqhUbOpU1rBh5nejotiVK8zPj3l6MldX5ujIbGyYQsGIDrZqlSX+VbJkyUaNGvXt23fGjBmbNm3asmULP2m3trZWb/mmVCrHjh0rXPyW6FM8/3SwdOlSfjM5OZmXuCyAdYG+VTt27CDN1Nc6e5YRMQeHzJHWrZGmIJGUlBRHR0ciatWqFT/9SE1NDQ0NDQwM9PPz8/T0dHV1dXR05PXxmjbtK4Q0hT8lSrCGDVmfPmzaNLZ+Pbt9m1WrxiZOZO3bZ0yhVQF33oXO0tIy7X0jjT179hCRnZ2dWK+N4eHhPEVMvQr3gwcP+Gmkl5eXKLN8Wl4D7vHxrEoV9uOPzNVVu3onREQwCws2bhybOJGx9wH3QYMynovlyzM3N/a+Rn9eHT16tFChQkTk4OCQl3zkoKAgd3d39S5P1atX9/DwyPFc9siRI/x/Yx4WDhnu3r3L46T8f3jeo0WJiYmenp48JcrY2Njd3T02Nlb9DgkJCZ6enmZmZkRkYmLi7u4e9+FFyYiIiE2bNn3//fe85jsR6ejoNGvWbMOG/740vyQhgdnZMSKm1iICpHLnzh1+Unvr1i0+IuzG/eWXX/Jy5OzVq4OCgvT09PT09KSuicQh4K79NBlwzzHDkW/Zs7Ozy0swNzg4mP8nunHjBh9JT09v0KABSdzT5huxd+9eY2NjImrXrp3GykHwE+jOnTtrZrpPadWKETGh+87du4yIWVvLuqb86t27dzxV89SpU+KGjf78808TExMiql+//seKtvft21ei4NGbN29MTEyMjIzCwsL4SEREBJLcs3NxcSGiH374QQNz9e3bl6TcTpF7vJxOqVKlNPD6uXnzZiIqV66cdLUpcunZs2e8oV+gWB+etcTgwUy9VE5SEitUiF27xqpUYQYGWUNZ/I+hIatWLejnn8eMGbN06dJ9+/bdvHkzLqfM0rdv3wot3w4dOqT+LW9vb56u17t3b1HS9bLgW6uF/tJXr17l52aiTwRy4WXiiWgiD3VJ5/x5RsSaNMkcaduWEbETJ6Sd95vEr+6XKlXqs3XbY2Njb90K37ePLV3KxoxhnTszOztmZJT15Wr2bFatGrt1i9nbZ6RdCgH3TZvYtm0Zf+QKuKtUqmrVqhGRkHuelpbGe+ecEuOKTnp6Ot8o2apVKyGmn5SUVL9+fSLq1q2bZhKXxSkpo4V4wD0qipUpw65fzwi4nz7NxoxhZ88y0f9tb968yVMeKlWq9KW9UIKCgjw8PCpVqiTE2StWrOjm5nbtI3XolUrl8ePHefPr8ePHi7F8YIwxf39/Gxsb/itwcnL66lo9/v7+PC2LHydL+pVKpfLz8+NZD/wOn07YTEhI8Pf3d3Fx4dH5unWjhQpIwcG5Ws/Tp6xuXVajhgzFub5NY8aMIaI2bdoII//++y8RmZmZRUVFffVhDxw4YGtrq/5Rh7+FjBs3Li+rzT0E3LWfJgPuLKcMx+Tk5Jo1a86YMSMvHyCfPHnSvXv3ESNGCCMbN27k24BkDzoUDBcvXixZsiQR1apVS+oSAWlpaYcPH+b9bzVZfSJnKhWzsGBETKhss2MHI2I9e8q6rHxs+/btvJZCpUqVPDw88v504kXb+QlS9qLt3bp1oy8s2v51evfunWWzGm9c0alTJ0nnzV+eP3/OT02zV/WJj493+1rZCzyeP3+e73B6LGNdlfdUKpWDg0OWdDkpxMbG8hwsoS+xvGbMmEEaKxutMS1bMj+/D0bq1mVHjzJzc0bELCyYvT1zdmbu7szbmwUEsNDQL2qElZyczIun6+nprVq1Sv1bQrpe06ZNRa8gPHjw4CpVqghZgJs2baIPmxNCAXDt2jVdXV3J864uXmRErFGjzJF27RgRy1sxN8ju4MGDCoVCT08vL62qXrxgZ8+y7dvZ3Lls0CB25AirVo0FBbFLl1i5ciwmJjPg7u7OZszI+CNXwJ0x5uXlRUTthQx8xubOnUtEzs7OeT84P3MrVaqUeqEIXgG1cuXKGuu+XsAD7oyxLVtYkybswgVWp460M7548aJu3bpEVKxYsdwUA3ry5ImXl5dQvJunMLi5uQUGBn7sYsuVK1fc3Nx4SWgiGjJkCDbXiyslJcXLy4vnMRkYGLi5uWXJTP+0a9eu8avNPBM5+8vllStXeLIDz9v6ojyR+Ph4P7/dffuqzMwyr1vWqcN++YWpbVVkjLElSzK7FzDGpk9n7959viYhiCUqKorXVd+/f78wOHv27HPnzuXxyMK1WfY+Y7Ro0aIRERF5PGwuIeCu/TQccGeMDRgwgIh+VKuIrf4szQvhOELQQa5unwVSaGgoTyopW7bs1atXRT9+enp6YGCgm5sbr0RJRKNGjRLyhWUTGsqImHplm//9jxGxAtkMUCOioqLmzJlToUIF/lvW19fv3r3733///XXV+SIiIvhm6hyLtvNnbLFixQICAkRa/kfduXNHR0fH0NAQSe6f9uuvvxJRjRo1srzyv3nzhr7Ws2fP1A8llFWRtD3vF7ly5QpvEv6lKVZfhF95atJEc/XiPy0hIYH/T9+6davcaxHP99+zLA+ncmV29ix78ECsNKUsLd/UL1fcunWL/5Pa2toG5zKL6qu4ubkRkdTXKUHzRowYQURt27aVcI7//mNErEGDzJEOHRgRy3M9AFD35MkTHj1YtGiRuEfmAXfG2IgRzN1du0rKMMbevXtnamqqUChCQkL4yMuXLwcOHJj3c62///5bR0cnywUMXovJyMjoY5nNUij4AXeVijVrxsaOlTzgzhiLi4v7/vvv+W9x18erZfv6+vISE1yJEiV+/vnnM2fOfCxl4Nq1a5MnTxY+zxBR1apVPTw8hOcliOvFixeurq58z3LZsmW9vb0/m83x9u3b4cOH8x8pWbLk+vXrs/zIy5cvXV1debH44sWL56VYfFIS8/dnrq6sRInMyLuNTUaVJJWK2dmxYsXY+4bPTF+ffclVAxDBihUriMjGxiZZml7SycnJfE/MmjVrpDh+jhBw136aD7h/IsNRLJMnT9aqoEOBERkZ2bJlSyIyMzP7W/0ibd78999/EydO5O28uBo1avz6669a0eB9zx5GxNQr27Rpw4iYeA//25Senh4QEODs7GxgYMB/6WXKlHF3d/+iX3pMTIyVlRURlS5dOkvayoEDB3gqaN26daUo2p6j7Enu06dPJyS5f0g4G1m7dq36eGJiotfXylKdgyfnakNZFXUDBw4kop6SbY4JDQ01NDTU0dG5dOmSRFN8Bd4nWTPldDRkyhQ2dGjmzadPmbGxFC09tmzZwl8ee/TooV4L6+XLl3zPuoWFhSglFHLE3+uPCLXUoKCIjIzkUdq//vpLqjkuX2ZEzN4+c6RjR0bEDh+WasZvT3JyMo8NdunSRfQPO0LAPTKSWVoyhUK7Au6MseHDhxPRhAkTRDzm06dP+X+N33//XRi8desWL1eoiW7Dagp+wJ0xdusWMzbWRMCdMZaWlsYblfBeKDneZ9WqVURUuHBhFxcXf3//j9W6ffz4saenJ8/o4cqXL89T4CV8APDe5cuXmzZtyv/lv/vuu0+nJz9//tzU1FRfX9/NzS3L/pTU1FQvLy/+WZHfQazz1JQUduQIGzaMFS+eGXkfNozZ2bGffmL9+2fcDQF3zVMqlbVq1ZIunWTevHmUU06ZpBBw136aD7izj2c4iuLhw4c86PDff/+JfnBITk7mexR0dXVXr16dl0PduXPHw8OjSpUqwhlLhQoVtO6Mhe+bnTkzc6RoUUbEPlcrE3IpKirK29ubv/0RkY6OjqOjo4+PT2LuckXd3d3t7e3V69Lwou28t7x0Rdtz9Ikk99xsY/127N69myTbbyfscPrjjz9EP3hehIeH8xN7iS428+pJgwcPluLgX02lUvF9utOmTZN7LSJ5+pSVLMlWrGDPn7Nr15iDA5OsTuPZs2eLFy9ORHXq1FHfxhEfH9+9e3ci0tPTy3LhSiwWFhZE9Nmq0JAf8bBShQoVpHp/vHqVEbH69TNHvv+eEbEP2xJAXvCdChUrVoyU4GqfEHBnjG3axIi0LuB+48YNIipSpIiIl9Xbt29PRF27dhUuYMTGxvKw6vDhw8WaJZe+iYA7Y2ziRA0F3DkvLy+e7Dx8+PDsMYi3b9/+9ddfHytxGxYW5uXlxesDckWLFnVxcQkICEB+n4bxeut8b4FCoXB2dv5EfdJdu3Zl33Pg7+9va2vLf49OTk4PHz6UYp1KJQsMZG5urGxZtm0bs7NjV6+ySpUy2pkg4C6LkydPEpG5ubnoJ7hSf8z7GATctZ8sAfekpCTetWLdunWiH7xLly5ENFQ9AQ1E9Ynd7rnx9OnTLGcsxYoVc3V1/URxPDmNHMn09NiePRk3Hz9mRKxkSVnXVDBduXLF1dXV1NSUPyuKFCni6up68+bNT/+UUqlU3xYWExPTtWtXyqnCjGbwJPfRo0cLIzzJvWPHjppfjDbjHWWkaCs1ZcoUrd3h9Ntvv0l0sZmfQJqZmWlhhFQz5XQ0KiSEjRjBmjZlXbqwVauYlBXqHzx4ULVqVcpWzC2Pb8Sf9uTJEyIqUaKEiMcE7aFUKnmbnJUrV0o0AYuKYjExLDKSXbzInj9ncXHoCyeinTt3EpGRkZEUBR4ZY8+esZSUjK9VKhYaytLTWZZPii9fit/h8ovwPs8bN24U64BPnjxxdnYWmuepVKoffviBiGrXrp3LFBARFdiAe2IiU6/Mk5TEpHkOf9Tu3buNjY2JqEOHDrmpAx4ZGenj4+Po6MgTeXKTAg+aER8f7+HhwduCmZiYeHh45KYfYHBwcKdOnfivsmrVqoc1svEqPZ2lpjI7OxYUxA4fZlWqsJQUBNxlwyMFAwYMeCOqvn37SrqR+WMQcNd+sgTcmVqGY0hIiIhP9b1790p01Qqy2Lx5s76+PhH98MMPuTkTjYiI8Pb2dnBwEM5YLCws+BmLJrfdfI3ERCaEdE+dYkZGDMFTycTExHh7e9evX1+4HmNvb+/t7Z2lZkiOgoODeS5S8eLFT/D0AY27e/cujy0KDZMiIiL4Be//LlyQZUnaKSgoSE9PT09PLzAwUMS3gMuXL2thWRWBUE5n0aJFIj7qV69e1ahRg4gWLFgg90PMmdTldAo29WJu/v7+6t/auHGj8EYsSrby06dPPT09raysypYt26NHj7wfELRTYGDgypUrJTz7Sk5mvXszGxvm7Mxq1WJNm2YWroW8uXfvHt85t2HDBrnXIqft27cTUd26dSU6/uLFi3nyh0TJr59WYAPuQUGsfPnMm/fvy5DDdP78+RIlSvBrKR/rFfbu3TsfHx8nJyf+FssvcDk5Ofn4+Ghy5yx81rNnz1xcXPjvyNLS0sfH52P3jIqKcnNz09PT4zEILy8vDQcgeMCdMdazJ1u4EAF32Tx48MDQ0LBIkSIkqiJFihgZGWm4IPLz5OSz7979Gx19Ojr67Lt3SVJmAMHXuREXF/ju3b/R0YHR0ddzEc8SV8uWLXkxd3Hp6uqqV98D6Zw4caJw4cJE1Lhx49evX+d4n6ioKH7Gwt/giMjY2NjJycnPzy9FyJ/RZtHRbNo01rYta92aTZ7M3r5laWnszRu5l1XwBQUFubu7Fy1alD9tChUqxLdBfOz+vr6+PDu+Xr16jx8/1uBKs+rTpw99mOS++bffQh0cVKjk/qERI0YYGhqK/hZgZGQ0aNAguR/cR/GrwqI/8MKFC0vXBCjvXrx4YWZmVqdOndzkk0F2KSkp/KKFrq5ulr07AQEB/FNDo0aNwr82pvn69esVK1Y0btxYeEbVV68HAvClPDxY27aMpxuqVGzECIbrbWKIi4urXr06EfXr10/utcgsOTmZR01dXFzWrVt37Nix+/fvi/XJ4sKFCwYGBgqFYu/evaIc8EspGGPiniVoiTt3qGNHCgvLuPngATVrRq9fa3oZoaGh33///f3798uVK/f333/XrVuXjycnJwcEBOzevXvv3r2JiYlEpKur27p1axcXlx49evArXaCF/vnnn/Hjx9+6dYuIWrduvWzZMr6Ni1MqlZs3b545c+bbt2/19PSGDBkyb948/vKhSdWr0+7dVKMGhYVRkyb06hW9e0d4Tsni2rVrCxcu5LuDxeLo6Dh58mT1nEEN2Boefjgqqu77+gAjy5Ur+j7iBlpiQHBwSQOD4np6RFTKwGBomTKanP3x48dnzpyZNGmSuIf19/evX7++FHEcyC4oKMjJyenp06c2NjaHDx/mO9+JKCkp6cSJE9u3bz9w4EBqaioRGRoatmvXztnZuWfPnlJcaJGEUklNm1LdujRlCuno0LJldP48Xb5MOjpyr+xbkZycfPDgwfXr1588eZJ/+qhevfrAgQOHDRvGe1sRUXp6+owZMxYuXMgY69+///r163mHK7kEBwfXrFlTT0/v/v37FStWJCKKiiJra4qNpcBAatZMxrVplYiIiCtXrgiJKWLZsmVLw4YNS5YsKe5hRXT16tV+/fpFRUWJeMyJEyd269aNB2K0040bN2rVqqWrqyv3QvIrxtjChQunT5+uUqlcXV1Xr14tXMa+c+dOly5dHj9+3K9fvz/++CP3x0xKSvr777+3bdt27NixtLQ0en9F3MXFpWPHjkJiH8AXq1eP5s+n9xv36cULsrGhxETCK0DeuLi47Nixo1atWhcvXpT3VEcbbN682d/f/8CBA+qDFhYWNtlYWVnp5PrU/c2bN/Xr13/x4sWUKVN+//13CRaeC7KE+TVAGzLcuYiIiObNmxORubn533//HRAQ4OLiIoTUdXR0HBwcvLy83iDHKp9IT0/38fHhZ/86OjouLi48GfDkyZNCo7A2bdrcunVLrhUKGe6MMU9PRoQMd8irLa9e/a7W4gm0UP+7d69qPLEdCpiXL1/a29sTUdGiRU+cOOHv7+/i4iKE1HV1dfkZy9u3b+Ve6ZfjddaUyoybKhWrXZv99Zesa/pG3bt3z93dXYiiGhoaOjs7BwQERERE8D5XchVtz1Hfvn3bWVk9mD07c4h33+3QQb5FAUC+5+fnx8vPtm/f/p1ay8LXr1/369cvl12IlUoljy2ov1PzbtW5Kd4F8HkWFuzu3cybKhUzMmIfb2sHubF8+XIiMjMzCw4Olnst2uLs2bPz5s0bOnRo69atraysPnZN19jYuEaNGk5OTm5ubsuWLdu/f/+tW7dyfLlLT0/nZ5VNmjSRsUZ3Qc5wr1OHypXLuKlUklIpQ4Y7l5SUNHDgwD179piYmPB8doVC0bhx4z59+vTq1at06dLyLAvyICoqas6cOWvXrlUqlUWKFLGxsbl27RoRVapUafHixd26dZNxbRcuUO3axHOR09Lo9Glq3RoXoSFPtoaHv0pNHV++PBHpEhkgJ1T7DAgOHlOuXB0zMyIyUCh03xfXBvgi8fHxffr0OXTokKmpaUJCAr3PDOjTp4+zs7Pm92yJZvFiCgqirVszR0aPphIlaM4cuVb0jUtNTT1w4MDGjRtPnDihUqmIqHDhwjExMSVLlvTz8+NljrVBTEhI4dq1SaGgBw/I0pKI6N07sramd++Q5A4AeXHx4sVu3bq9efOmZs2af//9d8Y2mty5evXqtm3bdu3a9ebNGz5ib2/v4uLSt29fbd4UAvmPrS3t3EmNGmXcTEoiU1OKjaX8ssFR+/z333/NmzdPTU3dvXv3jz/+KPdytFRaWtqzZ88eP3786NEj4e/Hjx9HRETkeP+SJUtaW1tbW1vb2Njwv/fv379y5cqSJUteu3atnBAX1riCHHDXhpIyApVKNXPmTFNT0507dzo7Ow8YMIB32oF8LSQk5H//+9+hQ4eqVasWFhY2adKkqVOn8vaqMipRgq5dy/hUSETlytHp04SnG+TF1vDwreHhFnp6RFTD1HSetbXcK4KsBgQHRymVhgoFEQ0vW/b79+WSAb5Uenq6u7u7ubm5n5+fs7PzwIEDbWxs5F5Uns2bR8+e0fr1mSMTJ5KBAXl6yrcmICJ68eLFjh071q1b16ZNm7t37+7ateuLok6a0K8f/fknjRpFq1dnjMyaRfPmUYcOdPSorCsDgPzt8ePHnTt3Dg4OLlOmzIEDBxo0aPDp+wcHB/v6+v7xxx8PHz7kI9WrV3d2dnZxcbG1tZV+vfDt+fFHql2bZs/OuLlvH3l40K1bsq4pH4uKirK3t3/y5MmECROWLl0q93Lyn+Tk5JcvXz76UEhISHx8fJZ7Fi1aNCYmJiAgoHXr1rIslUPAXaMYYwpkHRY4Z86cKV26dKFChbRks4KFBd28SRUqZNwsVYrOnqXKlWVdE+RzW8PD36SlTREu44D2GRAcPNHSsj7yTUAkBe2M5c8/ac0aCgzMHOnYkX78kYYNk29NkCk9PT05Odn0facQ7XL/PlWvTrq6FBJCVlZESHIHANHExcX17t37yJEjRkZGW7Zs4b2as3jx4sWePXt279597tw5PlK+fPmePXs6Ozs3w0sQSOrWLXJ0pKlTqVkzCg6madNo06bMku7wJVQqlZOT05EjRxo1anTmzBkDAwO5V1Rw8Cg8z4LnXzRt2rR9+/byRtuJCF3vNKpAfXaF91q0aCH3EgAAAMRU0M5YOnYkNzf66y/q2ZOI6OhR+u8/2r5d7mVBBl1dXS2NthNRlSrUqxf9+SctXEhr1hARFSlCY8bQvHk0bx6S3AEgL8zNzf39/d3c3NauXduvX7979+7NeV/rLCYm5sCBA7t37z569KhSqSSiIkWKdOnSZeDAgW3atMl950CAr1e7Np09S1u30sKFVKEC7dlDTZvKvab8at68eUeOHClatKivry+i7eIqW7Zs2bJltfACZIHNcH/9mjZsoJkzM25GRNDq1eThIeuaADTCwoIaNSJj44ybR47Q7dvIcIc8QYa79kOGO8BnXLhAI0YQY6SjQ0olrVlDWlMoHLTdgwdkZ0c6OnT/ftYk9zNnqHlzmZcHAPnf8uXLJ06cqFKpfvrpp+7du//111979+7l7d+MjIwcHR0HDhzYrVs3xOkA8qN//vmnXbt2jLHDhw936NBB7uWAhhTYgDvAN8vCgv74g4TyNu3a0cWLCLhDntxKSEhMT29cqJDcC4GP8o+MbGRuXgofwwA+LTaWVCoqUkTudUB+078/7dxJI0fS2rUZI7ySe/v2dOyYrCsDgAJi7969AwcOTE1N5fnsurq6bdq06d+/f48ePQrhJBwg3woPD69Xr154ePjcuXNnCwXx4RuAgDtAQYMa7gAAAABievCAqlcnhSIzyT06mqytKSaGLl+m776TeXkAUCBcvnz57t27mzdv7tGjR+/evcuUKSP3igAgT5RKZevWrc+ePdu2bdtjx47p6urKvSLQHATcAQoaBNwBAAAARDZgAP3xxwdJ7hs3UokS1LUrFbCeBwAAACCGiRMnLlu2zNLS8tq1a8WLF5d7OaBRCLgDFDTt29P27VSqVMbN77+n9eupfHlZ1wQAAACQr2VPcgcAAAD4iCNHjnTu3FlPT+/MmTONGzeWezmgaQi4AwAAAAAAfM6AAXTnDm3aRPXr0969dOAAvXpFlSuTqyvVrSv34gAAAECLJCcnjx07tlatWm5ubnKvBWSAgDsAAAAAAMDnxMWRmRkpFLRyJa1cSStWkK0t/fMPTZ9OgYFkZyf3+gAAAABAKyDgDgAAAAAAkDuMUYkS5O9PTZtmjMydSyEhtHOnrMsCAAAAAG2hI/cCAAAAAAAA8omXLyk+npo0yRxp3Zpu3JBtPQAAAACgZRBwBwAAAAAAyJ2EBDI0JIUic8TEhBIS5FsQAAAAAGgXBNwBAAAAAAByp2JFSkig8PDMkXv3yNZWvgUBAAAAgHZBwB0AAAAAACB3DA2pRw+aOZPS04mIoqJo0SJydZV7WQAAAACgLdA0FQAAAAAAINciI6l/f3r4kKyt6e5dGjCAPD0/KDIDAAAAAN8wBNwBAAAAAAC+UHw8vXpFVlakry/3UgAAAABAiyDgDgAAAAAAAAAAAAAgAtRwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAi0JN7AQCgIcnJyQkJCTExMbGxsQkJCfzruLi44sWLd+3aVe7VAQAAAAAAAAAA5HsKxpjcawCALxATExMZGRkTE5OQkBAfHx8XF8e/TkhIiI2NjY2NjY+PF77m9+Ffp6en53jAWrVqlSpV6q+//jI3N9fwYwEAAAAAAAAAAChIEHAHyE+OHTu2efNmPz+/r/hZAwMDMzOzIkWKmJmZmZqampqaWlhYmJqanjhx4vnz525ubsuXLxd9wQAAAAAAAAAAAN8OBNwBsoqIiChevLjcq8jB27dvbWxsUlNTy5QpI8TNCxcubG5uzgPoRYoUUf/azMyM34d/ra+vn+Nhb9269d1336Wnp58+fbpZs2YaflAAAAAAAAAAAAAFBgLuAJmSk5Pnzp27c+fOe/fuGRsby72crCZNmrRkyRInJ6eDBw+Ke+SZM2f+9ttvVatWvXHjhpGRkbgHBwAAAAAAAAAA+EboyL0AAG1x7ty5evXqBQUFnT9/Xguj7a9evVq7dq1CoZg9e7boB581a1b16tVDQkLmz58v+sEBAAAAAAAAAAC+EQi4AxARTZw4sU+fPp6engcPHixXrpzcy8nB/PnzExMTe/bs2aBBA9EPbmhouGnTJh0dnQULFly/fl304wOAlrh582bnzp2nTJmyZs0audcCAAAAAAAAUAChpAwAEdGxY8caN25cuHBhuReSs7CwsMqVK6elpV2/fr127dpiHfbp06evX79u2LAhvzlmzJjVq1c3aNDgwoULurq6Ys0CANqAMebl5TVt2rSUlBQ+8sMPP2zcuLFIkSKyrgsAAAAAAACgQEGGOwARUYcOHbJE2+Pi4l6/fi3XerKYN29eSkpKnz59hGj7vXv30tPT83LMq1ev1qxZs3fv3gkJCXzk999/t7a2vnz58vLly/O6YgDQJm/evOnSpcvEiRNTUlJcXFx27txpYWGxd+/eOnXqnDt3Tu7VAQAAAAAAABQcCLgD5ODw4cM1a9bcs2eP3AshInry5MnWrVt1dXVnzZrFRxISElq1alWzZs3w8PCvPmydOnWqVq365MmTmTNn8hFTU9PVq1cT0axZs0JDQ/O+cgDQBseOHatbt+6hQ4dKlChx4MCBbdu29e3b98aNG02bNn327FmrVq3mzJmjUqnkXiYAfPPCwujtW7kXAQAAAACQVwi4A3wgOjp6xIgRY8eO3bRp0+jRo+VeDhHRnDlzUlNTXVxcqlWrxkdWrVr1+vVrMzOzUqVKffVh9fT0Nm/erK+vv2LFCiHFtVOnTv37909MTBw+fDjqTQHkd8nJyePGjevUqdOrV68cHR1v3LjRtWtX/q0KFSqcPn3aw8NDpVLNnTu3ffv2ebmABwCQJ7t3U4UK1Ls3depEVaoQdt4AAAAAQH6GGu4AHzh37tz+/fvnzp1rYmIi91qIiB48eFC9enWFQnHv3j0bGxsiio+Pt7Gxefv27fHjx9u1a5fH40+fPn3BggXVqlW7ceOGoaEhEUVGRlavXv3NmzebNm0aMmSICI8BAORw586dfv363bp1S19ff/r06bNnz9bRyeEq+4kTJ1xcXMLDw0uWLLlt27YOHTpofqkA8E0LCaEGDejff6l+fSKi3btp1Ch69IjMzeVeGQAAAADA10CGO8AHHBwcFi1apCXRdiLy8PBQKpVDhgzh0XYiWrZs2du3bx0cHPIebefHt7Ozu3fvnqenJx8pVqzYsmXLiGjixIkvXrzI+xQAoGGMsfXr1zds2PDWrVvVqlW7dOnSnDlzhGh7luoxPPO9Xbt2b9686dSp07hx49LS0uRYNQB8q/bvp27dMqLtROTsTFZWdOqUrGsipVKZnp6OzCQAAAAA+AoIuH+Knx+5uGTe3L+fevWSbzUgkwsXLsg19Z07d3x9fQ0MDKZOncpH3r17x6Ph8+bNE2UKQ0PDTZs26ejozJ8/PygoiA/269evW7duMTEx48aNE2UWAE178YK2b6dFi+jAAUpJkXs1GsX7o44YMSIxMdHFxeXKlSv16tUTvrtt27ZGjRolJiaq/0ipUqWOHj3q6empo6OzYsUKR0dHXGwDAM15/JgqV/5gpGpVevRIptUQEZ04caJOnTqjR49u0KABOksD5FMqler169eDBw+ePXv26tWr/f39//vvvxcvXiiVSrmXBgAABZ+e3AvQaikpFBf30ZtQ4D1//nzUqFFPnjw5f/68mZmZ5hcwe/ZslUo1YsQIKysrPrJ48eLo6GhHR8dWrVqJNUuTJk1cXV3XrVs3dOjQ8+fP6+rqEtGaNWtOnz69d+/ev/76q2fPnmLNBaAJp05Rr140eDBZWdGWLTRjBp05Q0WLyr0sTTh+/PigQYNevXpVvHjxTZs2CRXbiejt27dDhw49ePAgEe3bt69///7qP6ijo+Pu7t64ceP+/fufOXOmbt26W7ZscXJy0vQDAIBvUKFCFB//wUhsLBUuLMtagoODJ0yYcOzYMSIKCwuLi4tr3rz5gAEDPD09y5YtK8uSAODrLFq0aPny5a9evcr+LQsLizJlypQtWzb73xUrVuSfhgAAAPICNdw/Zft22ruX9u/PuOnrS1u30pEjci4JNCY9Pb127dq9e/eeOnWqgYGB5hdw7dq17777ztDQ8OHDh+XKlSOiyMhIa2vruLi4M2fONG/eXMS5YmNja9asGRYW5uXlJWS1r1mzZvTo0aVLl757966FhYWI0wFIiDGqVIkWLMjckdSrF1WoQIsXy7osySUnJ7u7u69cuZIx1rZt223btqnHhk6cOPHTTz+9fPmycOHCa9eu7du378eOExERMWjQoEOHDikUirFjxy5atEiWF0AA+CYcO0YmJvTkCa1cSf/9lzGYmEjW1nToED1/TpaWZG+vmbW8e/fO09Nz2bJlqampRYoUmTp16ogRI7y8vH7//ffk5GQTE5PJkydPnTrVyMhIM+sBImKM+fr6btu2rXfv3j/99JPcy4H85OrVq02bNk1LSxs1alSJEiVevvfq1avXr19nKa+nTl9fv2TJkuXLly9durSlpWWpUqX41/zv4sWLa/JRAABA/oWA+6ds304zZlCbNhk3nzwhY2ME3L8hycnJMn6scnJyOnTo0KRJkxYtWsRHpkyZsmjRou+///7QoUOiT3f48OHOnTubmJjcvn2b14tXqVStWrUKDAwcOnToxo0bRZ9R81Qq1YsXL4Rq9WKZNGlSxYoVc2xHqSVUKtW0adPis+QP5o2Tk1OHDh208VGHh1PFipSURMLa/P3J05POn5d1WdL6RH/UlJQUDw+PRYsWqVSq1q1bb9u2rXz58p8+GmNsxYoVU6ZMSU1Ntbe337VrV6VKlaRbfEJCwu3btxs3bizdFJDfxcXFPXjv/v37VatWdXJyqlOnjtzrgjx48IBmzKDdu8nOji5eJAcHatWKfv6ZkpNp7lwioq1bqXJlioqiAQNo4UIqXVq6tahUqh07dkyePPnNmzc6Ojr9+/dfvHhxyZIl+XfDwsJmzJixfft2Iipfvvxvv/3m4uKiUCikWw9wV69eHTduHC/po6en9+jRI0tLS7kXlZVKpfL29haqMoqiRo0aI0eO1MZTrPwjISGhfv369+/fHz9+PK/GqU6pVL5+/frFixfh4eHPnz/P8vfbt28/cWRDQ8MDBw44ODjIsvsZAADyEwYft20bc3Bg//yT8Wf2bNaxo9xrgm/D5cuXFQqFqanp69ev+cirV69MTEwUCsWlS5ckmrRPnz5E1KZNG5VKxUdCQkKMjIwUCsXx48clmlST1q1bV1/oySae7777bvny5XI/uI8KCQmpXLmy6J8KGjRo0L17d7kfXE6uX2dlynwwcuECs7KSaTWS4x/1eZ/natWqXbt2Tf27wcHBvIC7np4e78Cc+yNfvnzZ1taWiAoVKrRz504R15yamhoUFOTj4+Pm5ubg4MAz6Hv27Ll7924RZ4F8KiUlJTQ0NCAgwMvLy9XV1dHR0cbGJktws2TJknp6eidPnpR7sfBV3r1jkyYxAwNGxAoVYgsXstRUFhnJZs1iHTuybt3Y4sUsOZnFxrLJkz+4W0qKFMs5deqUcPGmVatWN27cyPFu//zzT27uBqJ4/fr1kCFDskScp0+fLve6skpMTKxVq1a1atXEPcWqWrVqzZo1ExMT5X58+djAgQOJqGbNmklJSV/6sykpKS9evLhy5Yq/v7+3t7eHh4erq6uTk5O9vX2ZMmUUCoWRkdGiRYukWDYAABQkyHD/FJSUAcHDhw8TEhI0lk/Xvn37gICAGTNmCM1Rx40bt2LFih49evz1118STRoREVGjRo03b95s3bpV2Lc7f/78GTNmWFlZ3b59O1+ncrx7965KlSq8jLV6D8k8un37tre3t4WFxf3797Vzk2nnzp0PHz7cokWLXuI1fY6Li/vtt9/i4+OPHDnSsWNHsQ4rjrdvqWxZSkwkff2Mkb/+Ii8vOnNG1mVJ4s2bN0OGDOFbXlxcXNauXWtqaip8d9u2baNGjUpISLC2tt6xY0fTpk2/9PixsbEjRozYtWsXP/66det4ZP9LpaWlBQUFXXnv9u3baWlpwnf19fXLli379OlTIyOjgICAZs2afcUUkB+lpaU9fvyYJ60LCezPnj3LfmpqbGxcWc3Zs2e3bNlSrFixy5cvW1v/v737Dovq6OIAfHaXLmAXEbAgNuxii2hsGDXBWCKJjahR0ZgEu9ixJWJBsQdj9CMaE7FFNCYRu1GjgthAUMAGKCogve7O98fougIiwr17F/y9T548Miwzs7psOffMOfUk2TyUhEpFO3fSzJkUH08yWbFS1yMjac4c2rOHiMjOjn74gVxchNqOZuq6jY3N0qVLeZDuzdsvKhEeBLRw4cJF/KCDhurVqz98+NDQ0FCSLRVq8eLFnp6etra2kydPFiohnTG2du3ayMjIhQsXenp6CjLn+2bPnj2ff/65iYlJUFBQkyZNhJ38wIEDgwYNsra2jo6O1le/1QQAAChI4oC/bvvlF9a//6svf/8dGe7vqd27d1erVm3nzp3aWe7s2bNEVLFixYSEBD4SGxtrbGwsk8nEzqjiHzurVKny+PFjPpKbm8uzwqdNmybq0mKbPHkyEXXu3Fmdvy8UHnGeOHGisNMKIjAwkIjMzc0fPXok7MwrVqwgoiZNmuTk5Ag7swDs7dm2bS/+rFIxZ2e2YIGkGxLFP//8Y2lpSUTVqlU7ePCg5reePn2qbpfq6uqamppamoX8/Px4nL1JkybXr18vzo/k5eVp5rDnC9MrFAp7e3tXV1cfH5+zZ8/yJL7vvvuOP+8Vcwkoc2JjYwMDA319fT08PFxcXBwcHAot2qavr29ra+vk5OTm5ubl5RUQEBAVFaVUKjWnUiqVH3/8MRG1atUKSaBlxsWLrGNHRsSIWPv27MKFd/jZ48dZ8+YvfrZHD1bqZ4m0tDRPT0/+CDQxMfH09HxTGuzjx4+zX8+sT0pK8vDw4EdzKlWq5OXllZWVVcr9QD69e/cu9HOrn5+f1Ft7JSYmhl/kPnXqlLAznzt3TiaTGRsb37t3T9iZ3wfR0dEVK1Ykoi1btuT71pYtW/r16zd+/PiFCxf+9NNPhw8fDgkJefTo0Tt9NFCpVPb29kT066+/CrpxAAAobxBwL8rBg+zbb199eeQIc3OTbjcgnejo6OjoaK0t161bNyJatGiRemTChAlENGTIEC2s3q9fPyL6/PPP1SMhISH6+vpyufz8+fNa2IAYbt26xe9CUFCQ4JOHhYXp6+srFIpr164JPnlp5ObmNm3alIi8vb0Fnzw7O7thw4ZE5OPjI/jkJbRkCXv4kDHGLlxg1auzCRPY8uXMyYl17MhKF3HWNZmZme7u7rzIRs+ePWNiYjS/e+zYMd4utWLFikKVggkNDW3WrBkRGRsbv+lfPDY2NiAgwNPT09nZuWCbZUtLS2dnZ09Pz4CAgMTExII/npeXN2jQICKytrZ+yP8doVx4/vz52rVrC01KVSgUtra2vXv3/vbbb9etW/fXX39FRkbm5uYWZ9rExERe8sjV1VXsuwCldf8+++ILJpMxIla7Nvv9d1aCK9+5uWzdOlalCiNienrsu+/Yy6SEd6JSqfz9/WvXrk1EMpnMxcXl/v37Rdy+d+/ednZ2/v7++cYjIiKcnZ35I7lhw4aHDh0qwWbgTdLS0vgV5XzatGkj9dZeGT58OBG5uLiIMTk/lThs2DAxJi/HcnNz+Xm+QYMGFfzuuHHjCr2QQ0SVK1d2cHBwdnZ2c3Pz9PT09fUNCAgICgqKjY3Nd8WXMbZlyxZdezSWFbqYpgMAIBoE3IsSE8O2bGHqlJfQUCZ0BgNAfjwluVKlSklJSXzk3r17BgYGCoUiLCxMCxu4f/++mZkZEe3fv189OGPGDCJq3rx5GX2f1LdvXyIaP368SPPz5NwePXqINH/JrF69mojs7OxESr4LCAjgH1GePn0qxvzvZvduRsTq1mW8THlCAtu3j23YwE6cYO9SuFz3hYaG8tpW+vr6np6emp8Dc3JyPD09+an2Dz74QNjLhBkZGe7u7vxz6WeffZaUlKQZYS9YT0kzwl7MR0hGRgb/nNy8eXP1EyCUdaNHj65evbo6nOHq6url5eXv7x8UFJSenl6ama9du8YPT/z4449C7RaElZ6e7uXlNa9TJ0bETEyYh0dpL38mJjJ3d6anxwwMBrds6ePjU8wrNNzly5fVxbXatm177ty5om//7NkzdT2Kjz76KDQ0NN8NAgMD+YVtInJycrp58+Y73yN4g5s3bxZ6oe6///6TemuMMXb+/Hley/vu3btizP/gwQPeuunMmTNizF9ezZ07l1+5f/bsWcHvhoeH//HHHxs2bJg3b96oUaP69OnTrFmztxaENDIyytc/ICsrq2bNmkR08uRJLd2xsu/Bgweurq4jRoyQeiMAANqDgHtRjh5lRK9KEWzaxEaPlnRD8B744IMPiGjZsmXqkdGjRxPRl19+qbU9rFu3jsfL1ImoGRkZdnZ2RLRkyRKtbUMohw8fJnHKqqglJiby9+uaVymklZCQUKVKFSI6fPiweKvoSjmdjAxWty4jYgWOD5c/P//8MwndH7X4fvnlF97LoWrVqvk+kVpZWfXv33/JkiV//fVXia/BPHv2rFGjRkTUvXt3VGkoB54/f16hQgWZTFayA0CJiYkXL17cuXPn/PnzhwwZEhgYmO8Gv/76K7/4dPbsWSH2C4JRqVS7du2ysbEhIplMdn/yZPbggWCzX79+4WWmarNmzY4dO/bWn4iNjXVzc+PXI2vVquXr61swa7VQubm5vr6+/KKRnp6em5vbkydPNG+Qk5Pj4+PDS1jo6+u7u7s/f/68hPcLXrdt27aC0U9dCNgplcr27dsT0fz588VbZcGCBUTUunXrYj5W4cyZMwqFQi6Xv2tL7bd2SV28eHG+H1m4cCEROTs7C7f9cis1NXX27Nn8+pm5ubm6bCkAQLmHgHtRjh5l7doxGxsWHs4YAu7AWFZW1qZNm8R748tDw9WqVUtJSeEjd+7c0dPTUygUERERIi1akFKp5ClgmmmDp06dkslkhoaGBTO8dFlOTg6P361evVo9uH79+n/++aeUMx8/fnzNmjXqLzds2EBEtra2b6oDq2Xjx4/nCXfqkZMnT65du/adkgHfSlfK6SxcyIhYq1avktlDQ5mjI9ONPDgB5eXl8Us7+f7C/fz8eCXZunXrvjVns5RCQ0MNDQ2rVKlibm7u6Ojo7u7u5+cXFRVVmjk1A1jR0dE8cWzo0KGCd1wALdu4cSMR9ezZ8623zMrKioqKCggI8PLycnNzc3JysrW1zRdoKxjyYIxNmjSJiGrWrBkbGyvCPYCSCA4O7tKlC/9Xa9OmjUgpugEBAbysEA97RUZGFnqz7OxsHx8ffnTPwMDA3d1d/Rar+BISEtzd3fX09IiocuXKBTPrnz175u7urlAo+PVIHx8fka56vm9GjRqV73nAwMBA8oAdvxJgZWWVlpbGRx49ejRjxoxSns16/vz5zJkz4+Li+JcZGRl16tQhop9//rmUG34fJCUl8VJRgl8FSU9PT05Ozjf45MkT3l5LO+ePSyY1NfXkyZPqR6n25Svh5erqKl7yEwCADtLdgPvdu3clz247epT17Mm2bGE9ejCVSlcC7uE8/A9SyMzMnDRpUgk+qhWHSqVq165dvtAwLxA5btw4MVYsQlhYWMFk7a5duzZp0uT27dta3kxpeHt7E5GdnZ266VlkZKShoaFcLi/Nr1J0dLRCodDX17916xYfycvLa9GiRb7TCVK5efOmnp6enp6e+nh7bm5u8+bNiWjjxo3CrsXLjHTv3l3Yad9BTAyrUIERvVbz66OPGBH77jvJdiUaV1dXIlq+fLl6JCsri//jjh49upT9UYvj+PHj/HdKqAm3bt1qZmammaEcFBTE8+jzHeKGMoefuvj99981B7Oysm7evLl///7ly5ePHTu2a9euvOtAQWZmZm3atPniiy/mzZvn5+d3586dgkvk5uZ27dqViDp16pSvuSVo39OnT7UZd+bZ5ebm5urs8nxxsYCAgHr16qmD8qW8NHjr1i1+rouIGjdufOTIkXw3uHLlyocffshv0KpVq9OnT5dmOWCMpaen8w4ib732pjWpqam8vvzOnTvVg/w0ailbSowcOZKIRo4cqR7hh3hq1KiBYxNv9cUXXxBR+/bttVb90s3NjYjcdLXDm6+vr6WlpZGRkbm5ubu7e9HNKsQQHBzs6OjIf2eLU8ILAKD80dGAu1KpdHBwsLGxkbYZPQ+4K5WsXTu2Y4f0Afc7d+64uLiI1PgRJLdv3z4isrS0VJe1jY+PNzY2NjQ0vHfvnrR7Y4xlZGTwtNODBw9KvZfievLkSaVKlYhI81Nx//79eWiylJMXTCHngUhTU1PJEy179epFRJMnT1aPiJeAry6ns2/fPmFnLq5hwxgR02jzy/bvZ0SscmVWWAXPsm7//v1E1LFjR83BGzduFOzpJ4gdO3Z06dLlwIED6hHew3nu3LlCLcE/slatWlXzGtiRI0d4Mum6deuEWgi07OLFi0RUrVq1fPkTX331VcHYuoGBga2trZOTk7u7u6+vb2BgYFRUVDGPODx+/Nja2pqIJk2aJMo9gWIoGPvWWogwLi7Ozc2NR/mrVavGo/xhYWG9e/fmj64mTZr8/fffQi331sz6fFF+YdtpvIfCwsL4JVg1ExOjvDzJWgrNmjWLvwqrn6CCg4PlcrmBgUEpU1KioqKMjIxkMtnFixf5iEql4odFPDw8Srvvcu3HH38koooVK2rz1y0iIkIulxsaGkp+5KKgAwcOKBQKmUzWoEED/lujr68/dOjQS5cuaWF1zRM/lpaWxS/hBQBQzuhowP3hw4fqdIaePXveuHFD+3uIj38RcGeMXb7MrK3ZihVs9GiWlMS0n0GVkpIyc+ZMXvvMzMxs9+7d2t4BlIJSqUxMTLx//35YWNilS5cCAwP379+/Y8eOH3/80cvLa968eVOmTBk3blyNGjWIaMOGDZo/e+/evV9//VWqnWtauXIlETk4OJShIg88kNerVy/1iDomrj6xW2LqIul//vmnenDAgAFENGrUqFJOXhp79uwhoipVqqgbRqlj4pphUwHxqhF9+46WoJrO+fNMJmPGxkzdtSw7mzVowIjY679K5UZ6ejoviv3w4UMtLPfJJ5+QRnWpvLw8CwsLIrp69apQS+Tl5Q0cOJCI6tatq3nWeMeOHTKZTKFQSHYtB0pn7NixRDR9+vR8497e3g0bNvzkk0+mTJmyadOmwMDAe/fulfKV5cKFC/w90vbt20szD5TMgwcPeKMXIvr0008LPYsgtkuXLvEuOERkZWXFYz3Vq1f/8ccfBc+yf2tmfUZGxqJFi3hTX2NjY81UaCiBHTt2aAbc69WjxERRrjG/ldgx8SKi+dqsLVm2hIaG8t817X9icnZ2JqKFCxdqed2i/ffff/wvhHfeCg4OdnV11dfX578+Dg4Ofn5+wlaYVCvY06JgNR4AgPeHjgbcGWNKpdLPz483KZLL5a6urvHx8dpZ+uFD5urKqlRhe/cydd3Rr79mtWuz0aPZ8OGsQQMmTiphIVQqlZ+fH88sfi9qn2VlsQMH2LJlbOtWpgNp3UUICQnx8/PbuHGjl5fX7Nmz3d3dx4wZ4+Li0rt3786dO7dq1crW1rZatWrGxsYFU/kKVbFiRQMDg/90sup0Wloavx7w119/Sb2X4goJCeFVX9Rps3l5ebzyhlBVX1avXk1EdnZ26vzNgp/EtCwzM5Mn1m3evFk9+N133xFRjx49RFo0Ly9v8OC/iNgPP4i0whsolax9+9d6WzPGli1jRMzenonzWUIX8Os6mzZtEnuhpKQkQ0NDhUKhfv3ll6waNmwo7EIZGRm8b0Tz5s01s2J5UzJjY2OcRC5zUlNTedVsrdW33bx5MxEZGRkFBwdrZ0VQW7VqlaWlZf369TWvQGsfrxdcq1YtGxsbhULh5uZW4gbOxcEz63kjVp7FmS+yHxsb6+rqqlAoRo0apYM5sGXLuJdtcmvXpk2bKDz8Q0m2UTCvYufOnURkYWEhyJGO1NRUXmJrx44d6kFer6Z///6ln7/8ycrKatWqlVTJLidPnuQX9jIyMrS/eqFCQ0N5PlC+WjePHj3y9PRUd7yvV6+el5dXYmKigEsHBgY2bdqUz+/k5KTL1e0BALRDdwPuXGJiooeHh4GBARFVrlzZy8tL1AKdaWls7lxmZMSIWIUKbNmyVwH3xERWowZzdWVNmjAiRsT69GEvqzeLRTNbp127dufPnxd3PcklJ7OWLVn//mzjRjZ7NqtShR0+LPWeCrdu3brPPvusmJF0/ui1sbFp3Lixg4ODk5NT//79hw0b5ubmNnPmzMWLF3t7e/v6+vbr14+IWrZsqbXig8W3dOlSIurUqZPUG3kHvKrv1KlT1SPr168nQcuq5Obm8neW3t7e6sGC2UnatGTJEiJq2rSpOnVFO31NT5xgRMzUlGm1ms62bYyIWVkxdT+ox4+ZuTkjYqVuiqvL/Pz86PWjGyL53//+R693vBS8noza06dPeX/jHj16aL7QT5w4kQoUnAFNd+/e1cFe1jz83a1bN20uOmbMGCKqU6eOqGFWKIgfSw0JCZF6I4y9LHvdp08f7SwXFBSkrlPs4OCg2Y6Ca9iwIRFJclq3PMnIyFi40GbWLLpwgYKCKCiIMjK03a29YOXAjIwM3hBy27ZtQq2yfft2IrKyslI3ZXn8+DFPGRawMlK5wTsJ1a9fX6QOW2/Vvn17ItqyZYskq+cTGxvLG+06OzsXmsOemZnp5+dnb2/Pn7LMzMzc3NxK//7q9u3bLi4ufM6GDRse1tXP7wAAWqbrAXcuPDz8448/5k/ijRo1EiN9RqVi/v6sTh1GxGQy5uLC7t1jMTGvxXvPn2enTrHcXObry6pVY0RMT4+5uTExPtbFxMS4urrKZDL+lsvPz68M1fEouXnz2IABr74MCGBWVkzMdlslExcXxxvT9+vXb8KECR4eHkuXLl2zZs2WLVv8/f3/+uuvM2fOBAcHR0VFxcfHF781fHp6Oq8K6uXlJer+39Xz5895rsSJEyek3ktx+fv785STpKQkPiJSWZWjR48Skbm5ufroiTo7SftHyGNiYnid06NHj6oHeRHbb775RuzVBw5kREyj15e4MlJSmI0NI2Kaf8+jRjGi155GyqOkpCR9fX19fX1hU5MK0kI9GU1RUVF8/uHDh6tf8vLy8njfhXr16pXzA14lEhISUrVqVTs7O/VznY5o06YNaf2Af2ZmJu897uTkJGqvTsiHB9yvX78u9UYYY2zv3r1ENGjQIK2tqFKpduzYYWVlRURyufzW6/k4/MI8Au6ll5kZERJixqPtQUF07944ba5e6CnJ+fPnE1GbNm0ELFGtUql4DHfevHnqQS8vLyJq0qSJDiblSOivv/6SyWT6+voSng/mV/gaNWokeZny5ORknuzfoUOHoj9+KpXKwMBAZ2dnHmqQy+XOzs6BgYElWDQtLc3T05OXdKtUqZKXl1e+ri0AAO+zshFw5wIDA9XXY52cnATM5woKYo6OL/LWHRxYgdyUQiQkMHd3plAwIlalCvPxESwsnJGR4eXlxQ9iGxsbe3h4SHXFXgI9e7LffnttxNycRUVJtJs3+vbbb4lo8ODBgs98/PhxmUxmaGioU6fwFixYQERdunSReiPFlZmZWbduXSLy9fVVD/J/NTHKqvDLgZonN9XZScW/3CIIV1dXIvrss8/UIwcPHuQHLLSQ7xkVxYyMmEzGtFNNx8PDo1/9+nFDhzL1xcjgYCaXMwMDVrquZWVCz5496fUj54LTWj0ZTZcvX+YXjebPn68eTE9P54e9HBwc1Bl/wGVmZrZt25aIPvroI90JMV+9epWfSxC8S/NbPXjwgFcj1IxVgdje84A7l5aWNm/evC+//DLfOALuAkpM3K0OuF+5Ypybm6C1pQs2n3/w4IGJiYlMJjtz5oywa124cEEmkxkZGd192Z8mOzubd79cv369sGuVXfHx8bzm6ooVKyTcRm5uLj/lIG1ad3Z2tpOTE78qk5Dw2u/FlStXPDw8Cm38c/XqVTc3N3X509atW/v5+RXzoo5m2Vte/heFswAA8ilLAXdWWCOOUtbLi4tjbm5MLmdEzNKS+fqyd7o4HRbGevd+Ealv0oSVvrp1QEAAr7/Mz4Jps9O6TmjWjB079tpI/frs338l2k3h7t+/b2hoKJfLRSrQMWrUKCLq2rWrjpxpSEpKqlSpEhGdPn1a6r0U1+LFi3lxHnX4SV1WRYxwwJ07d/hD4vLly3xEqVTy7CTNoKHY+MczQ0NDdbe67OxsfpJ93bp12tnDrFmMiHXsyMR+8EZFRfG/81e18lUq1rkzI2KzZom7tm7gn/xFjShps56Mpj///FNPT49e7yD99OlT/mDu27evSJ2+yq779+/z4zuenp5S7+WF8ePH56vopU0nTpzQ09OTyWR79+6VZAPvIR0PuO/YsWPt2rViHwl6EwTchXX//kR1zP3x41XaWVR9SnL//v3qwc8//5yIhg0bJsaKw4cPJyIXFxf1yIEDB7SWQqH7VCoVP4TXrVs3yVPLV65cSUTdu3eXagNKpZJXdKlVq9a9Ai3QRowYoU5jL7QjTnx8vJeXFz+eS0Q1a9b09PR89uxZEStevnyZt94honbt2l24cEHI+wMAUF6UsYA79+zZM3d3d4VCwfOnfHx8SpDVlZmZuWFDqKkpI2KGhmzWLFbitLk9e1jdui/C7mPH3itZlPzKlSsffvih+vJyGQpuCqlPH/bLL6++VCqZiQm7f1+6DRWCd20S6e01Y+z58+f8HY+6jIO0eEVyrdVCLb2YmJgKFSoQ0cmTJ9WDYpdVmTp1KhE5OjqqL5OcP38+X3aSqFQqVYcOHfIFQ5cvX67lA8ipqaxWLUbExEy8ZowxXmNk9OjR6pHQfftUZmasZk32fhwJiomJkclkJiYm6enpIi2h5XoymrZu3UpECoVCswBUZGQk38CIESN05Hqk7jh27JhCoZDJZPv27ZN6Lyw1NdXc3JyIJKwsv2LFCiIyMzPTwer25ZKOB9wbN25MWuzfmw8C7sJSqbLCwhx4wP369boqlTZO9hRsPv/vv//KZDJjY+OC8U1BFPFu9ttvvxVjxbKFx7irVasWq9XeQYVLTk7m6YBSteyePJl17eplbm5eaCONS5cuDR06VF9fn8cZHB0d9+zZUzB4kpWV5efnx+smEZGhoaGrq2vB11DNZtG1atV6X8reAgCUSJkMuHPBwcFdunThLwlt2rR5p9N8AQEBtra2pqaWFhZKZ2cWGVnazWRnMx8fZm7O2rfvZ2Bg4O7unpycXMyfFeT6QTnB29Sq8xR27mQNG4qeK/su7t69a2BgoFAobonZMJfXHzc3Ny/09J82PX36lFc3krA24rsqmBP0xx9/iJ0TlJyczM9U+vv7F7ET8fBk5Jo1a6qfeeLj4/m7/79Kf/TmXWzf/qKPqXiVP9Rdy+Li4vhIWlqatbV1s+rVH+arSVWu9es3qWvXI4cPF/e15p1IUk9GE69kZWxsrNkt/NKlSzwAoTup3Lpj2bJlPMQseUWyLVu2SF6FTKVSffHFF0TUqFGj4r8fK76kpKTI0r93LEcQcC8CAu6Cy86+d/VqFR5zf/78kNjLFWw+r1QqeS2vRYsWibduwfOaoaGh4p3XLEOCg4MNDAxkMtnBgwel3ssLU6ZMIaLhw4drf+kVK16kD549W1Sfm0ePHnl6elatWpUHT2rVquXp6VnouZ+zZ8+6uLjw0IRMJnNycgoICFCpVLzSAL+gzsMd71HZWwCAEinDAXcuICCAF2vmNVjemkx6/fr1Hj168Ns3b9789Gkh33zHxuaoO53WqlXrl19+KfqSr+AVcsq8zEzWrRvr0oV9/z2bMIFVr/6insyzZ2z0aKYDn1VGjhyZL69WJAMHDiSiTz75ROyFisbfPn766afSbqP4Cq16qZ2yKr6+vkRkY2OjzjhWZyedOnVK1KXVbVp/0Tgg8tVXX0nyb6dSsfbtGRETqX6y1rqW6b5ly0TsUitVPRk1lUrFH8PVqlWLiIhQjx8+fJgXnNm4caN2dlJWqFQqfqK8cePGYoSYi4+3LdV8OpJEWloajwL379+/NPl3WVlZUVFRAQEBXl5ebm5uTk5Otra2MpmsWbNmAu62rEPAvQgIuIvh+fOAoCBZUBDdvt1b7LUKnpIs+JZPDOqORJpnXsXrSFRWpKWlNWrUiIi+++47qffyysOHD3k3+/vaPZm9axeTy5lMxor5kpuZmenn56fuimdmZubm5lZoGtmtW7fGjx9vYmLCb9mwYUMbGxv+50GDBr13ZW8BAEqkzAfc2csuo7zNGu8yWmhTtYSEBHd3d/5BvUqVKj4+PiLVgdUsata2bdt/31CCPDAwkL8FJyInJ6ebN2+KsZmyR6lkZ86wH39kBw4wdfG46dMZEevQQbDWtCVy+/ZtPT09fX39KPH7uMbFxVWuXJmIdu/eLfZaReyBN4Mq9HyiDlKpVLxyumavPK2VVVEqlQ4ODkS0ePFi9SDPTmrVqpWox1bmzJlDRA4ODupw85UrV+RyuYGBgWakUmsuXGAyGTMyYmJU01m/fj1pq2uZjrt9+0XXbjFeyiSsJ6OWl5fHawfZ2tpqduLiCdQKheKPP/7Q2mbKhNTUVP6+YuDAgVId8b527RoRVapUSdQ4VDHdvn2b9yDx8vIqzu2zsrLCwsL++OOPlStXurm5de/e3dramgpjamraqVMnsfdfhiDgXgQE3EXy4MGkoCAKCpJlZoaLt0rB5vMpKSn8UKMW3qLzM6/Vq1dPSkriI4mJiTxJ+b19BRw9ejQRNW3aNCMjQ+q9vIYfq5oxY4bWVjxxghkaMiK2evW7/aBKpQoMDHR2duZpgry8e2BgYMFbPn/+3MfHx8bGRi6XV6xYsWHDhlo+OAsAUKaVh4A7FxMTo84ut7Ky0iwolpub6+vry3vd6Onpubm5PXnyRNTNqFQqf39/3rJcJpO5uLhoXu6OiIjgsQx+uVjanuZlQ0oKs7EpyRsKQQ0ZMoSIxo8fr53leFCpWrVqYj9c32TixImkrYoogti+fTv/9VdfclOXVfn777+1sAF1QU/173tGRgbPTvL19RVp0ejoaCMjI5lMdvbsWfUgbwihzTf9+YwYwYYPZy8rvghG3bVMs7Q3z+qV5Biv5Jo0YUTs+HGBp5W8noxaenp6x44d+dVrzUvpc+fOJSITExPNgjPAGLt16xY/7u29Sku9BPPhLxyTJk2SZPWCDh06JJfL5XJ5wRhBbGxsYGCgr6+vh4eHi4uLvb09P0Gfj4GBga2trZOTk5ubm4+PT2BgYFRU1Ht1mKY4EHAvAgLuIlGpsm/d6nDrVsesrNsiLaE+Jbl27Vr14LRp04ioU6dO2rmu2bVrV3q9B/W6dev4peisrCwtbECnqFQqT09PY2PjoKAgqfeS3+XLl4nI3NxcOwfWr19nFSsyIlaaN/vh4eHu7u7Gxsb89a5169a+vr7qjBa1pKQk/mqotaZQAADlQ/kJuHMXL17kH86JqH379ufPnz927Ji6+0fPnj21+WEgPT3d09PTyMiIxwU8PT0fPXrk4eFhYGDA87+8vLyys7O1tp+yRKVivr5s/vxXI0eOMCJmYiJAxf0SuXnzplwuNzQ0fPDggXZWVKlUTk5ORPTll19qZ0VN9+/fNzQ0lMvlOvL5+a3UZVV2aPTr1H5ZlYLB3927d+fLThLWoEGD8j1Idu3aRUQ1atSQsERVXh6bMYNpVh8ZPpyVviVBwZPUBS9yvFfmzGFETPD2aW+qJzNPpDpBRXry5EmDBg2I6OOPP1afS1OpVLzAV+vWrdGtK5+DBw/WsbK63KwZ++cfLS+dkZHBM8p1KrbI+wFUqlRpyZIlU6dO7devX6NGjfg7sXz09PTs7Oz69u07adKkjRs3Hj169O7du4itFwcC7kVAwF08eXkpjKmysqIfPJgcFTX44cPp2dlCtjAteEryzp07/O3x5cuXBVyoCCEhIQqFQk9PT30YWl1br5hnd8qZli1bUoGqZTk5OVo4f/xWvL3cmjVrxF4oOprVrMmI2JAhrPSvUY8fP/b09KxRowZ/KaxVq9YPP/zwTH3QnLE7d+4QUb169Uq7EgDAe6a8BdwZY0qlcuvWrfzwO094J6IGDRoEBARIsp/o6GgeEeNnkIlIoVBMmDBBvP6N5UFYGNPTYwoF0+zVOWwYI2Ldu0vSRnXs2OedOq1zd5+szUWjo6N5EXDtJGhrGjt2LBGNGDFCy+uW2KxZs4ioY8eO6uibJGVVCi1vUjA7SSgnTpzgTyyxsbF8JCMjo06dOkS0detWwZd7Jz17MhMTpi5fX6cOCy/dmW911zJ1TEc7Xct02eXLL1rUCvukWLCeDP8Ypu4Xp2URERHVqlVzdnbWPD+ek5NTuXLlDh06qB/8oJY1fz4jYtWrM21dIeZ+/vlnnvipzUXfSqlUOjo68iptmipXruzo6Ojm5ubl5eXv7x8UFKRrBQrKEATci4CAu6hUqtzr1+s8erQsLe3is2e/ZGffFWrmQpvP89fHcePGCbVKcbi5uRFRr1691CP82JmZmVmc4GcJdd62bduIqHnz5uo3/KGhodbW1s2aNZP8Avwff/xBRHXq1BGpbi339Clr1OjFZ2IBDzlkZ2f7+fm1aNGCv0SePHlS/a3Tp08TkaOjo2CLAQC8H8phwJ1LS0ubNWuWubl5hQoVPD09JTxzd+rUqXbt2g0ZMqRly5bu7u7dunXr3bt3u3bt0GzkLWbNYkSsceNXbyWePWM1ajAitn27lvcSHMxkMmZiwuLitP1ObsWKFfytW6GdCUQSGRnJI5vhpQyRaktUVBQvq3Lx4kX1IG+PPH36dC1vZt68eflCTjw7SV9fX9i/z7y8PJ7m8/3336sHly1bRrrRPrRnTzZrFrO3Z/wYT+kD7seOHbOyspo4caJ6RDtdy3SZSsVq12ZE7NIlwebUnXoymiIiIvJ9fL169So/OyLqx9qySqlkffsyIta6NdNiEJkfMdyu9dfofA4dOhT5+mE4nvfg4ODg5eW1b9++69evFzwyD6WBgHsREHAXVVZWVHCwvkol/Ae9MWPGEFG/fv3UIzzLoWLFipptRbRAHfo/duyYevDTTz8loq+++kqbO9EFWVlZlpaWmn8bOTk5vJ+n9vOT8lGpVPzZRrz6/hkZrFMnRsSaN2fiHJ1lgYGB375+dvK3336jMlVlFABAR+gVPFFbPlSoUGH69OleXl5VqlRZuHChhDtJTEy8fPmylZXVlStXiEgulzdt2jQsLCwjI0PCXZUBCxfSwYN06xZ5eZGnJxFR1aq0ejWNGEGTJ1OvXmRlpbW9LFhAjNHEiWRpKdPaotzUqVN55t28efN8fHy0s+iiRYtyc3O/+uqrRo0aaWfFUtq4cWNWVtaIESN401Tuxx9/XLp06fz587W8mVmzZj148GD27NnqkVatWo0ePXrr1q2dOnXijbYEkZaW9uDBg9q1a0+dOlU9OHHixKSkpH79+snlcqEWKrHu3SkyklatojlziIgePqSXp33eqH79J1FR3d/0XTMzsxMnTsyZM8fNza1q1aqenp5EtGrVKhMTEyH3XXbIZNS/P61fTwcOULt2wsx58ODB7Ozsnj17qg8X79mzh4g+//xzYRYoEV5FVxPf1eDBg3kvdHiNXE6//krt2lFICI0fT7/8ooU1b9y48d9//1WsWFHah0pWVtbIkSOfP38eHh7OixE9e/bszz//VCgU+/fv5811AKDcMDCwNjSsHxnZz8Jiqrn5R0TymJipycn/FP1T+/c3//33G0XcIC8vLzo6Wl9ff9WqVerBDz/8cNOmTXK5nB+k1poaNWqsWLEiLy+Pn5jkvL29//777127di1dupQHoN8ThoaG33zzzbx587y9vXv27ElE+vr633zzzaxZs7y9vXv37i3h3mQymbu7+8SJE1euXCnSS2FcHMXEUL169M8/VKmSGCuQk5MTL2qqsWgcEfHSnQAAUHz4mKo9uhD/KksMDennn6lzZ/rhBxo8mJo2JSIaPpz8/SkggCZPpj17tLORy5fpyBEyNaUZM7Sz4GsUCsXPP//ctm3b9evXu7i4ODo6ir3i7du3f/vtN319fd6WsExo0KCBoaGhnZ1dvkE/Pz/tb6ZChQoF123QoIG+vn5iYmJiYqKAa1WsWLFmzZq8UQRnbm7OS47qiNWrycGBhg0jIsrJobCwt9ze0FAv7G032rZt29atW7/44ovHjx936tSJ181/bw0cSOvX07599MMPwkzIA9nqv1WlUrl//37NER2xb98+0r1d6ZDKlWn/fvrgA9qxgxwdafx4sRfkjb5dXV2lvQC2d+/exMTEtm3b8mg7EW3fvj07O7tfv36ItgOUPzKZQaNG5xISfo6JmcnYlAYN/snJeZiV9ZY3Eo8fV3/rm41q1aqpVCpra2v1iEKh+PrrrwXY9LvjVWU01apVy8zMzNra+j38gPn1118vW7bs77//Dg0N5SdIxo8fv3Tp0sDAwKtXr7Zq1UprO4mNjbWwsNC88D9y5Mg5c+aEhIS0adOmbt261tbWNWvWtLKysrS05P+vUqVK8ec/fZq6daNDh8jZmYjo55/p5Em6cIHS00mbF1l4wP29uq4DACAIBNxBh33wAbm50Y8/0pgxdO4cKRRERJs20enTtHcvHThAAwdqYRdz5hBjNGkSvUz31LYWLVrMmDHjhx9+GDt2bEhIiGZ09V2pVKrk5OTU1NS0tLT09HR9ff2C70oXLFiQl5f39ddf29ralmrfWmRtbZ2dne3j4zNx4sTq1atLvZ38kpKSVq5cmZub6+Pjky9npJTTOjs7X7p06ciRIx9//LFQ0wrLxoZmzHhxsap2bbp58y23l8uNVKq33GjcuHEXLlyIj49v06bN+vXr1b063k8ffkjVqtHt2xQeTo0bl3a258+fHzt2TKFQDHz57Hr69OknT540bNhQXdZTF1y9ejU8PLx69eq8QRkUrkUL+uknGj6cvvuOmjalzp3FWyozM/PXX38lIl6EQUI//fQTEY0bN049sn379nwjAFCe6OlVsbCYYWExPTp6aHy8t7X1GkvLhUX/yJw5iokTlUXcgLfmDgkJWb58+aJFi4TcrkBWrFiRkJBQu3ZtHXzfK7YqVaqMHDly06ZNa9as2bp1KxFVqlTpq6++WrdunY+PD2/8rgWZmZl9+vSpUKHC/v371dnfsbGx2dnZ5ubmISEhISEhBX/KyMioVq1atWrVcnD4lai2lRVZWpKVFdWsSTY2ZGqa//a1atHUqdSzJxkbvxrRMmS4AwCUDALuoNuWL6c//6SLF2nDBpo0iYjIyoqWLqWZM//cvt2xe/dKIp2me+nff+nYMapYkTSKdkhgwYIFf/zxR1hYmJeXV8ESSRERERcvXkxPT09JSUlOTk5PT+d/TklJSU9PT0tLU/85MzNT8wd79OjBqzOr3bx5c8+ePUZGRnN4EZAywtnZuW/fvn/99deCBQs2b94s9XbyW7hw4bNnz7p37z6JP4aFs2DBgmnTpk2aNMnJycnAwEDYyYUyeTK1bk2PH5O+PhWjRpEJUdOib7F582YHB4cDBw5cvXqVZza9zxQKcnam//2PDhwgjTpGJefp6RkTE6NT9WQKQj2Z4ho2jC5epHXryMWFgoPF+5ju7++flJTUoUMHbaYWFhQREXH27FlTU9MhQ4bwkZMnT966dcva2lpnr0oCQIkwIn65XcVYrkxmSCTT06smkykMDKyJrIv+YSurt1em3Lhxo6Oj48qVK0ePHl23bl1BNi2UmJgYXuvGx8fnPcxwJ6Jp06b5+vru3Llz6dKlvFrjlClTNm3axGvsaJ5LEM/06dNv3rxpZ2dnZmbGR3Jzc11dXTMzM3v27Onh4REXF/fo0aPY2NjHjx/HxsbyP6ekpERHR0dHRz9/XrlgGkqFCmRjQxYWZG1NNWtSt25Uvz41bkxLl9L332vhPhUOAXcAgBKSuoi8iJ49e0ZEVapUkXYb/DD+gAED1CP29vZEdPPmTQl3VZb8+ScjYiYmLCrqxYhSOWXAACIaN26c2It368aI2KJFYq/zdufPn5fL5QYGBgX7bq1bt674v/KVK1e2sbFp3Lixg4NDvpY4jLEBAwYQ0aRJk7R0r4Rz69Yt3uj16tWrUu/lNWFhYXxj165dE3zynJwcXmd/9erVgk9eSj17sn/+efHnM2eYTFbapqma+NnqXr16CTZjWXb2LFu1it29K/zMeXl5PPIuxqO3NHhTshMnTki9kbIgN5d17cqIWKdOL1oYi4CXO9u6datI8xcTb2jh5uamHhk6dCgReXp6Srep9wKaphYBTVMFl5199+bNRomJuxljGRk3r1+vfedOv4iIHjdu1M/KihZwIf4E8sUXXwg4pyD4NcUhQ4ZIvREp8c8s8+fPV48MHjyYiGbPnq2F1f/880+ZTGZoaHjlyhX14IwZM4jIxsYmMTHxTT+Ynp4eERFx+vTp3bszvL3ZlCls6FDWpQtr0ICZmDCi1/47dIh16cKePGEWFiw0lG3dyoYP18Kdy4+XaJPqKRQAoOxCwF10CLgLYMgQRsR69GAqFR8IDw83MjKSyWSBgYHiLXv0KCNiVauy5GTxFnkHvHBk+/bt8/LyNMdPnDgxYsSICRMmeHh4LF26dM2aNVu2bPH39z9y5MiZM2eCg4OjoqLi4+PT0tKKnj8oKEgmkxkbG8fGxop5P8TC88e7d+8u9UZe06dPHyL6+uuvRZr/8OHDRGRubv7o0SORligBPz+2ezfLyXk1kpTEXn/YlsqTJ0/46ZY///xTsEnLrB492GefvfqyXj32+LEwMx87doyIGjZsKMx0AuFntKtXr56bmyv1XsqIR4+YlRWrUIFdviz43E+fPt21a5dMJjMzM0tJSdH8lkqlytF8FhBZdnY2L61w+eXdfPbsmZGRkVwuv3fvnta28X5CwL0ICLgLLipqcFAQRUeP4F8qlekZGVczMq6qVAI/4Tx8+LBChQpEdOrUKWFnLo1z587xt+vv+TPb2bNn+Sd99QecS5cu8dSi1NRUUZeOiYmpVq1avnyXkydPyuVyPT29c+fOlXjm589ZaCg7doz5+bHly9mpU6xLF8YY27yZde8uWcDd1NSUiJJ15PMwAEDZgYC76BBwF0B8PKtW7VH79gd27lSPLV26lIjq1av31jhyiXXsyIiYl5dI07+z5ORkGxsbIlqzZo0Y8/ft25eIZs6cKcbkWpCYmMjf/u7du1fqvbwQEBDA3/o/ffpUvFX4P9z48ePFW+KdxMezihUZETt/XsRVvL29icjOzi4rK0vEZcqCdu2YhQXbv//Fl5Urs7g4YWYeP348Ec2bN0+Y6QTCC16JdxGrfLp4kfFjCrm57No1FhjIHjx41zkyMzNv3rzp7+/v5eXl5ubm5OTED/ITUZ06dZo1a6Z549TUVBcXF1dXV6HuwVvt2XOciFq3bq0e4c8Sn3zyidb28N5CwL0ICLgLKzX136Ag2ZUrJtnZ9/mIUpmRkyPQdeYCeCHHVq1a5QmYNVAKSqWyXbt2OLjDdezYkYg2b96sHunUqRMRrV+/XrxFlUplz549iah3796ql6lgT58+5T1FlyxZIuBa6oC7UsnatWPOzhIE3JOTM+zsmlpaWml7YQCAsg8Bd9Eh4C6IC/7+RFS1atXHL1M3c3NzW7duTUQzZswQY8VDhxgRq16dvZ6xJ7EjR44QkYmJSWRkpLAznz9/nohMTU3j4+OFnVmbNm3axC/DZGZmSr0Xlp2d3bBhQyLy8fERdSFeTkculwcFBYm6UDGNG8eImNgxLnU5HW9vb3FX0nnt2rGNG1mdOi+erIQKuKOeTDkUFsZsbVmvXmzMGNagARsyhL0pAz0jg127xvbuZcuWZX/9defOnWu8oW94xYoVW7RowXtIaEY9rl27ZmJiQkS+vr7auXPduzNb22w/vxD1CH+79ccff2hnA+8zBNyLgIC7oJRhYQ5BQRQX9yqsGRe3OCTEPCFhZxE/VmIZGRm8gPuWLVvEmP9d8b7Q1tbW4uUblSG7d+8mogYNGiiVSj6yb98+/kFAvAsky5Yt48fs1EdLVSrVp59+SkRdunQRdl11wJ0xdvkyUygkCLiHhTEipmNnHQEAygZ0G4OyoaOLS79+/Q4dOuTu7s7fXenp6W3btq1du3arV6/+/PPP27ZtK+yKzZvTV19Rq1b0shGOTujbt+/QoUN/++03Nze3Y8eOyWSygrfJzMxMSkrKysrifyjmn58/fy6Tydzc3N4UVSkT3NzcfH19r127tnr1asn7vq5bt+727dtNmjSZOHGiqAs1btz422+/XbNmzaRJk86ePVvoo0Jrrl6lbdtIX5+8vcVdSF9ff/369R999NGiRYuGDRumzrR9P7VpQ717k6cnrV5NRBQSUkh3TFNT0td/9WWrVn9evepKRDKZrNDu01lZWU+ePKldu3aLFi3E2ve7u3r1anh4ePXq1bt06SL1XsqgESNo4kSaNo2IKDOTunenDRvo22/p4UOKjqboaAoNpbAwio6me/dIpeI/ZCCT3TExeZKebmBgYG1tbW9v37RpU9uX6tWrJ5PJfvvtt2HDhrm7uzdt2pT/07Ro0eKnn34aPnz4t99+a29v37lzZ1HvWVQUnTpFJiYGAwa04iPnz9+8dSu8Vq1an3zyiahLA4DWPH36U0ZGsIGBjYXFVD6Smxv7+PFylSpdX1+UPpnGxsZeXl5DhgyZN2/e559/XrFiRTFWKabU1NQFCxYQ0cqVK3mtm/fcZ599Zmtre+fOncOHD/OQ94ABA+zs7CIjIw8ePDho0CDBVwwODvb09JTJZNu2bVO/89ywYUNAQEClSpV27NihUCgEXM7MjBo1evHntm1p1iySyYgx0uY7/bg4IhKv5zoAQLkmdcRfRMhwL2fu37/Pu8AfOHBAPTh9+nQiatGihSCFYjt0YD/99OLPcXGsVy927x7r2/fVDWJimJNT6dcplSdPnvDCKR06dHBycurYsWPz5s1tbW0rV66srxlOe3cymczFxUXiu1dqJ06cICITE5MH714wQUDx8fH8U9lff/2lheWSk5MtLCyIaM+ePVpYrgi8O+O0aVpaTtfK6UiiXTt24QJLSGA1a7Lr11nlyi8O6BT9X8eOe9/6nFCzZk0DA4MzZ85IfRdfQT2Zknv8mOnrv9Y3dccO1qsXW7iwkMeHgQFr3Jj178+mT2e+vkGnTj18+LDo6SdPnswfM5pdQNzd3YnI0tJS7NYgM2YwIjZmzKsRV1dWt262t/dFUdcFDhnuRUCGu1Dy8pKvXasZFESJif7qwejoYUFBFBX1uahLf/jhh0Q0ffp0UVd5K96T84MPPlBXMoE1a9YQ0YcffqgeWb9+PRF16tRJ8LVSU1P50dUpU6aoB2/evGlsbExEv//+u+Ar5vPoERs5knl4iL3Oa375hRGxYcO0uigAQPmAgLvobv7557bOnQ989516ZJeLy7bOnR/duiXhrsqodevW8Y/u6ubvGRkZdnZ2RLR06dLSz6+vz6ytGQ8L3LvHLCzYrVusVq1XN4iKYtWqlX6d0tq1a9eIESPeFCMzMjKytLS0tbW1t7d3dHR0dnbmhXTd3d09PT29vLx8fHz8/PwCAgICAwPPnj178+bN2NjYa9eu8ZY4Bw8elPr+lRZPafnyyy8l3MPYsWOJyNnZWWsrbt68mYhsbGzS09O1tmg+u3czIlajBktK0tKKd+7cMTAw0J1yOpLgAXfG2M8/MyenN5aUSUlhiYma/2UnJiYmJiYmJCREvcG4ceOIqGLFirpTVQb1ZEru0iVmY/PayJkzrGFDtns3q1+f9enDvvuOrV/P/v6bRUWVoMdxbm5ut27deDAo+2VYPzc3t2vXrjz2ka0Z6xdUdjarUYMRsf/+ezGSlMRMTJhMxoSuvgaF0/GA+/Dhwx0dHaXqMImAu1AePpwaFETh4Y6MvQg3p6WdDwqSXblilJ19V9Slr1y5olAoDAwMwsPDRV2oCJGRkYaGhnK5/NKlS1LtQQelpKTwU3r/vXwBSE9Pr1q1KhGdF7qVkKurKxE1a9ZMXbgyMzOTnwJ0c3MTdq1CXbnC5HJmYMAiIrSw2gteXoyISX2xCQCgTELAXXz79zMippHhzuztGRFDhvu7UyqV/Fi65tuakydPymQyQ0PD0NDQUs6vr89++IHxJG9dDrgzxhISEvz9/Y8ePXru3LmrV69GRUUlJCSUsnvk6tWriahWrVpJWguXiiM6OtrIyEgmk509e1aSDUjywUypVDo4OJDQ/ZqKLyOD1a3LiJiWy5xOmTKFiBwdHd/bhC91wF2lYp06MZlMsKapSqWSX76ysrKS9sgIFxISQkTVq1fPzc2Vei9l0N27rEKF10YOHGCdOwu4Qnx8vLW1NRG5u7urBx8/fswHJ0+eLOBamvilvhYtXo34+DAi1qePSAtCfjoecNeakJCQ3377Ld8gAu7CiIiI39z9akiV9PQrL4eUt261Dwqi2Nj5Wlhf+4kU+fTr14+Ixmge5AHG2MvE/yFDhqhHZs+eTUSDBw8WcBV/f39+glbzrMyECROIqEGDBqmpqQKuVYQxYxgR0+bDcNIkRsTe+35JAAAlgYC7+BBwF1R4eDiPpR47dkw9OHbsWIVCsWnTpoK3T05OjouLu3MnJSiInTjBDh1iv//OfH3ZqlVs0SI2YwZzc2NDh7JPP2UXLjB9fZaSwho3ZkeOvAq4m5mxhQtf/Ddpkq4E3MWgVCo7depERBMnTpR6L6XF6044ODio2yhpk1RHj3kBdxMTk/v372t5acbYokWMiLVqVYLU2FJJTk7mZTT9/f3ffuvyhV9iGDCAhYS8GLl6ldWvzwTsfJyRkeHo6MhTuiS/FId6MqWSl8dq1GCahwNGj2Ya5+IF8d9//xkaGhLR9u3b1YMXLlzgg//73/+EXY5zcmJEbMOGVyPNmjEitm+fGKtBIRBwf/bsmbu7u0KhMDU1zVdACQF3YXzyCSNSTn31BvXZs+1BQXTtmpVSqY32oepSgUeOHNHCcvkcO3aMiMzMzOKEuqJejsTExBgYGCgUiujoaD7y+PFjIyMjhUIRKdApp+joaP6v/5O69ihjhw8f5ilfV65cKeJnhRUfzypVYkRMaw9DFxdGxApcSQQAgLdDwF18CLgLbfHixTybICMjgzF27NixUaNGOTk5OTs7d+vWzcHBwc7OztLS0tzcXF1l5cMPQ95a0fj335m+PsvKYseOsfr1WXj4i4B7pUrs559f/Ld8eXkOuDPGwsLC+HlVnaraXAKpqam1atUiol9++UXLS//+++9EVKNGjefPn2t5acbY4MGDiWjEiBFaXjcmhlWowIjYqVNaXpkxxn788UfJy+lIwtub9e/PEhLEXeXZs2e8kEu3bt1KeYymlFBPprR27GCWlszXl/39N5s8mdWuzR49EnwR/vtoZGSkWehp06ZNRGRsbBwcHCzsclFRTC5nxsbsZak59u+/jIhZWDAhertAsbzPAfecnBxvb28ejNPX158yZUq+V38E3AUQGMiImLm5+ilLmZty7ZplUBAlJOzQ2i5WrlxJRI0bNxakcVTx5ebm8l+xFStWaHPdMmT48OFENHXqVPXIyJEj8x23KrHc3NwPPvgg37NKTEwML1zj4+NT+iXeyapVjIjZ2THR6rS9xtGREbHTp7WxFgBAOYOAu/gQcBdabm5u69aticjDw2PKlCm8yMybmJqa1qxZc9Cgsw4OrGtX9vHHzMWFubmxqVPZ/PnMy4v5+rKdO9mBAyw29kXAnTE2ZAibMEGnS8qIZ8GCBUTUsGFDdYHCMsrPz4+IatasmZycrLVFMzIy6tatmy8FRpsePHhgYmKi/XI6o0ZlEDFBD+++A8nL6Uji0iVmYMBkMvbnn6KvFR0dzY8RDBkyRKrSPagnI4z//mPz57Nx49iaNezpU5EW4bUX6tSp81RjiTFjxhQcLL3nz9maNczT89XIyJGMiM2eLeAi8BYfffSRqampq6trSkqKtDtJSEjo37+/ubm5hYWFFl4HAwMDeTydiJycnG4WeG8fEBBQqVIla2vrCG0WXS5ncnNZ06b5q1rMnp04p2PUdWd1PXctyM7O5j0ztRxjXbt2LRHVr19f2mveuuzatWsymczMzEx9uevGjRsymaxChQrPnj0r5eRz584lImtra/VUSqWyZ8+eRNSnTx/tvynKyWGNGjEitnq1NparV48RsTt3tLEWAEA5g4C7+BBwF8HFixcVCkX79u15Ovb8+fN37doVEBBw/PjxoKCgiIiImJiYElQ/UAfcY2NZlSrvacA9Ozubf3qcO3eu1HspFZVK1aFDBy3fkYULFxJRq1at8rRcV0UD/2CgzXI658+fr1atRo8e2+7e1c6ChZC2nI72paayhg0ZEROtLHZ+wcHBvK/yrFmztLTk61BPpgzJyspq3749D0GqnwwzMzPbtWtHRL169RLvGfL58xftUhEd0KZ79+4pFAre72Hnzp2SXJbLyclZvXo1b5/ISxjJZLJhw4Y9fPhQjOUiIiKcnZ15qL1hw4aHDh3Kd4MbN244OTnxG6xcuVKMPbwvVq9+kdCrDjdHRTEjIyaTsYsXtbyXgIAAIqpcubKwFw6LkJCQwDOpDx48qJ0Vy6ju3bsT0apVq9QjgwcPnjFjRkLpjgGeOXNGoVDI5XLN03Xff/89P8z6SIRTYsVx9Gi+Ix9iUamYkREjYmnaqNsEAFDeIOAuPgTcxXHmzBmeLjd8+HCh5lQH3Blja9YwCwsWEcFsbV/d4O5dZm0t1Gq667///lMoFHp6eoKf/deyCxcu8OqKd7QSenn48GGFChWI6JQkdVVeSk9Pr127tnjlkvNRKpU8sjZ/vja6lhVBqnI6khg2jBExBwemzXS348ePGxgYENHatWu1t+pLqCdTtjx48KBGjRpENGfOHM3B6tWrE9G8efNEWnf9ekbEnJxEmh7e6NKlS7wNDBG1bdv23Llz2lw9X6Z5UFCQl5cXv0ZoYmLi4eEhYEvDpKQkDw8PHtOvVKmSl5dXvrzjxMREd3d3PT09Hpn18fHBuZySS0hgVaowInb48KvBAQMYERs1SpId9enTR5tXfydOnEhEPXv21M5yZdfhw4d5HrqABX8SExP5O+oFCxaoBy9fvqyvry+TyQ5rPia17pNPGBEbO1bcVZ4+ZUSsUiVxVwEAKK8QcBcfAu7iuHv3Lu+QEx4eLvVeyiF3d3ciGv3RR6yMf0p0dXUlos8++0wLaw0dOpSIvvjiCy2sVbRffvmFiCwsLLRQTmfbtm08qzFN6uwXqcrpaJ+vLyNipqZM+09+O3fulMlkcrl8n3b7UaKeTFl04sQJPT09mUy2Z88e9eDx48f54N69e8VYtFUrRsR27xZjbngLlUrl7+9vY2PDs8tdXFy0cORIM9O8QYMGmt2zHz586OrqKpPJeBjOz8+vlKn3SqXSz8+PX0mSy+Wurq7xr7eozs3N9fX15VeV9PT03Nzcnjx5UpoVgY0fn/8a2vHjL14CX29OqzVhYWH6+voKheLatWtirxUaGqqnp6enp6cjDRJ0mUqlsre3J6Jdu3YJNef169fr1q3bqVMn9XuP1NRUXlZo2rRpQq1SMpGRzNCQyeXs0iURV7l2jRExe3sRlwAAKMdkjLEi6l+XaQkJCdWqVatSpUpCQoKU+zhwgAYNogED6MCBFyNNm1JYGN28SS+TcaAERo4c+csvv3z11Vc///yz1Hsph9LS0v4cPvzzkydl8+fTjBlSb6fkYmNjGzdunJaWdvTo0V69eml+Kz09nRepKIFFixbxc+tqFy5ccHR0NDIyCgsL42XcJcQY69Kly7lz5+bMmcPPvYokNTW1UaNGjx492rlzJ+9YJa158+Z9//33Dg4Oly5dksvlUm9HFKGh1L49ZWTQzp0kyV/5kiVLFixYYGxsHBgY6OjoKOzkSqUyPDy8UqVKVlZWmuNz58794Ycfvv76a957E8oKb2/v6dOnm5qaXrx4kYdCiGjlypUzZ840MzP777//1IOCuHiROnakatUoJoYMDQWcGN5Benr6ypUrly9fnpWVVaFChenTp8+aNcvIyEjwhZ4/f+7l5eXj45OdnV2pUqVZs2ZNnjzZsMA//MWLFydNmnTx4kUi6tChw9q1a3m5uXd16tSpyZMnX7t2jYi6du26du3ali1bat7gxIkTkydPvnHjBhH16NFjzZo1LVq0KOF9Ay43lz78kIKD6do1atKEiEippDZt6Pp1WraMZs2Sal+TJk1at25d9+7dT5w4ke9b/v7+586dK8GcnTp1+uKLL/IN9u7d++jRo9999926detKuNf3yU8//eTm5ubg4BAUFCTUnMnJyWlpaer3JK6urjt37mzTps2FCxf4mT8JzZxJK1eSq+tJP79u/MriO0lJoevX6dw5+vdfioyksDDSnCM9nWQyksvp5k3KyaHmzcnYmPT0hNw/AED5J3XEX0TIcC/HIiIi9PT09PX1o6KipN5L+XX8OJPJmLFxWS+Fu2TJEiJq2rRpvtzYJ0+elPiZ88GDB5pTqcuqaJ45lVZQUJBcLjcwMLh9+7Z4q3h4eBDRBx98IFUjzXy0XE5H+9LSXryAiH2IuGjffPMNEVWtWvXWrVulny02NjYgIMDT09PZ2bly5cpE9P333+e7DerJlF1ffvklETVq1Ejdy06lUn3++ed8UNhTODdusM8/Z2W8/0g5ERkZOWDAAP6KaWtre1vY2gt5ef/6+fFEcoVC8dZEcp6ZbmFhQS8z0x8/flz81R48eFB0pvydO3dcXFz4nbWzs9PMsofSUipfK9S+YQMjYra2LDNTuj2xxMTEatWqEVHBw17jx48v2RvLcePG5Ztq//79RFS5cuXSt/18T2RlZfEG7yKVduTnRytUqCDIm5/SS05mTk6uRPTrr78W5/Y5OTlXrtzfsIG5urJGjZhMxohe/RcZ+dqNhw5lNjZM3Qa7XTt25ozQdwAAoLxDhrv4kOEugiFDhuzevXvChAmbN2+Wei/l2siR9Msv1LUrnTxJ7546oSOys7ObNWsWGRm5efPmCRMmqMczMzO3bNlSsjnHjBnDi8Ny27ZtGzNmjJWVVUREBC/jrgv4KZBBgwbt27dPjPmjo6Pt7e1zc3MvXLjArzfogh07dnz55ZcWFha3b982NzeXejsC++or2r6d7O3p8mUyMZFsG0qlcvDgwX/88Ue9evXOnz/PP98W371794I0JCcna363Xr1633zzzbRp09QjV69ebd26tYWFRWxsLG/MCGVIZmamo6NjSEhI//79Dxw4wKOWaWlpHTt2DA0NdXFx8ff3L838//5LGzbQxo1UtSoR0d69lJVFI0YIsncorZMnT06ePNnw6dNLKSnUvj35+FDpk75Pn6bJk5Xx8bVSUpq0bevj49OqVavi/FxaWtqqVau8vLyys7NNTU2nTZs2e/bsghnxmjIyMr7//vvVq1fzbP3Zs2dPmzZNM1tfa+n8QESUlEQNG9KzZ7R/Pw0cKO1eNm3a9M0339SrVy8sLEzzX/zkyZPXr18vwYTNmzfv0aOH+sucnJxmzZrduXNnw4YN/CI3FMeiRYsWLlzYrl27RYsWWVtb16xZk1+ZK73o6OjWrVunpKT8/PPPX331lSBzlt7//ve/0aNHW1lZhYeHa34wUYuLiwsODg4ODj537tz58+erVm378OFp/i19fWrRghwdycGBHBzyhyWGDaOgIHJ2ptWriYjatydvb+rSRfR7BABQrkgd8RcRMtzLq5s3b8rlckNDw3xZxiC8hARmYcGI2JYtUm+lVPbs2cOfDcTIEkpJSbG0tKRiJ5hozePHj3nE+Z9//hFj/v79+xPR6NGjxZi8xFQqVefOnYlo9uzZUu9FYHv3PiRiJiY68eqRkZHxwQcfEFGbNm3e2o1QM4edJ5lqsrS0dHZ29vT0DAgIyFcQmeOlnyZOnCjOXQHR3b17t2rVqkT0ww8/qAdv375tY2NT+kruv/7KjIzYmDEvvly0iM2cWcopQUi5ubkPt21jVasyIqanxyZOZCV+Ib57lw0e/CIbs27dqIMHSzDH7du31dno+Wq+F5SRkVGnTh1ej/7evXua31KpVH5+fvxyo0wmc3V1ffToUQn2A4XLy2MLFrDGjVnduqxZM8Y7dcfGsoEDWY8eUm+OMcby8vJ4yaCCR7IE8cMPPxART2sQY/7y6smTJ61bt9bMtzAwMLC0tHRwcHB2dnZzc/P09PT19Q0ICAgKCoqNjS3mAc3c3Fz+nkc7TaGKT6VS8RpZc18/23XlypX+/fvny4eQyWRNmjQZNy5n0yZ25cpbunQNHco2bWLW1iwkhDFkuAMAlAgC7uJTqVhODsvJYZGR7NQp9vAhy81lwvVPfw8NHDiQiCZNmiT1Rt4Pv//OiJi5OXv4UOqtlAov4D558mTBZ545cybpUlkVTbyAuxgf2I4fP05EpqamcXFxws5cetopp6Nlt2/fNjMz69Jl/M8/68pn76dPn/LWYT169MjOzi54g1OnTn366ae1atXKF2GvXr16375958+fHxAQUJzHT6NGjYjo5MmTwt8H0JZ//vlHoVDI5fIjR46oBwt92LyrX39lAweyBg0Yb5aMgLuOSkxkHh7MwIARscqVmZcXe6d//fR05unJjI0Zv+ro6ckyMkqzncDAwGbNmvFnpJ49e964ceNNtzx69OiFCxfyDV66dIlH34ioXbt258+fL81moBDz5zNHR8Yr/0RGskaNmLoTZun+6QXEC7ibmprGCt2+VeyEiXJv1KhRTk5O9vb2+fotFWRiYtKgQYMuXboMHTp0ypQp3t7ev/766+nTpyMiItLT09UTzp49m4isra0TEhIkvF+F4m96DQ0NNd/08lbzRFSxYkUnJyee0/D06dO3zpaXx65eZTdusKFD2Y4d7JdfWIcOTKlEwB0AoCRQUkYrHj2ifv1IT48aN6ZLl6h+fdq9W8pyAGXZlStX2rZta2RkFBkZWTCOA6IYOJD++IOcnenQIam3UnKhoaH81PnJkyd5/E4Q9+/f79y5s66VVVHLyclp2rRpZGTkypUrR44cKdS0SqXSyckpNDR02bJls6TrWlYEscvpaFl2dnanTp2uXLlS+vobwoqOju7UqVN8fPzw4cN37NiRr2fXoUOHPv30UyIyNzdv3ry5w0v29vZv7e6Vl5cXGhoaFBQUGBi4e/du1JMpB/hJ/8qVKwcFBdna2pZ+wqQkio2l69cpIIBGjKDZs+nKFVq2jNLTafny0k8PIoiIoKlT6cgRIqKGDWn1avrkk7f8CGO0dy/NmEH375NMRoMH08qVVKdO6feSl5e3bdu2uXPnPnv2TE9P76uvvvr+++95Ye4ixMbGzp49e+fOnYyxWrVqLVu2TF3eHYRkYUGHDpH6bdWePbRyJV26JOmeCjFo0KADBw4MGzbMx8dHwGknT568a9euAQMGHFDXI4WSyszMjI2NffToUWxs7OPHj2NiYjT/n56eXsTPmpubW1lZmZqa8qD2qVOn+BlKXcPf9A4cOJDX/SeivLw8f3//Dh061K9f/60//ugRBQVRcDAFB9O//9Lz5zRsGDFGH39Mw4dTz540bBht2YKSMgAA707qiL+IdCXDnTHWvz9zd3/x55wc1qcPmzVL0g2VYR9//DERzZgxQ+qNvE/i4lilSoyIlfE+YOPHjy+6WmvJGBkZjRo1Suo790Y84iz4Ha9YsaKtrW1WVpbU969wsbGxpqamLVu2TFH3eyrLvvvuOyKqX7++uu2k7rh8+TIvGzp//vx830pISNi1a9ft27eLefgjNjbW39/f3d3d0dHRROOadI8ePTTToqGMUqlUgwYNIqKWLVtqZg4WR1YWi4piAQHMy4u5uTEnJ2Zr+yJV+tdf2RdfMMZYv35s+XJkuJcFgYEviisSMScnFhr6YvzJE3bsGDtzhqlb6QYFMUfHF7d0cHhxikFQCQkJ7u7u/GJelSpVfHx88vLyCr1lRkaGl5eXmZkZERkbG3t4eJSP1xddlJTEZLLX2qLeucPMzKTb0BtFRUUZGRm9NY36XVWqVMnQ0DAyXxdLEEFGRkZUVNTZs2f9/f19fHw8PDxcXV15drxmXZrhw4cvXbpU6s2+kfpIxN9//12c26enszNn2MqV7LPPmLX1a61TiZidHZsx40WGO2Ps5k1mbc0aN0aGOwDAO0OGu/hUKjIxochIsrZ+MRIYSNOmUYk66rznLl++3KFDhwoVKkRFRdWoUUPq7bxPfH1pwgSqVo1u3aK35X/prGfPngUFBbm6ugo77fbt29u3b6/LD8jg4OBhw4YlJiYKOOfUqVP79+9vb28v4JzCunr1avPmzctBTvSff/7Zr18/PT29M2fOdOzYUertFOLIkSP9+/fPy8t7195ukZGR6tapV65cSU1NVX9LJpPVr1+/Xbt2bdu2dXR05CVKoaxLTU3t0KHDrVu3hg8fvnPnzkJvk52dHRkZefv27cjIyAcP3G/eNLx9m+LiCrmlmRk1aEDffkv//EO//0737lHHjvTZZ2Rqigx3nZeTQ2vX0tKllJJCVavSw4e0bh2tXUt9+1JmJh07RuvXU8eOVL8+KZVkaUnLlpGrK8nlIm3n1q1bU6ZM+eeff4ioSZMmq1ev7tOnj+YNDh06NGnSpLt37xKRs7PzunXr6tWrJ9JmgNLSyNycUlJI3QQyIoI6dqSkJEm3VbgrV66sXLny2LFjAs7p5OQ0Y8aMNm3aCDgnlEBiYiJPjW/evDlv16Szli9fPmvWLHt7+6tXr+rr6+f7LmMsPDz80qVLFy9evHr1TnBwYE7Oq+9WqkQdOlCHDtS+PXXo8OJz3rBh9PHHLzqQz5hBq1bRmTPIcAcAeDflOeCelpY2ceJEMzOzjRs3SrmPuDiqU4dyckh94DQyktq0oZQUKXdVNjk5OR0/fnzevHlLliyRei/vGcaoe3c6fZrGjKGtW6XeDcD7IiYmplWrVgkJCWvWrJk8ebLU23mjrVu3jhs3TqFQ7N27d8CAAW+6WVxcXPBLFy9efPr0qeZ3eVsz7oMPPnhrbQcoi8LDwzt06JCSkrJu3bqvv/76wYMH0S+FhoaGhYXdv39fqVTyGzdtmhoaakpEBgZkbU22tmRvT02bkq0t2dpSvXokk9GuXRQQQL//TkT0/fe0dCm5uyPgXkbEx9PcudSoEX34IfXtSzdvEi8VeOkS9ehBUVG0eDGZm9Pcua8Cr2I6dOjQ5MmTo6OjicjZ2Xnt2rW2trYhISGTJ08+c+YMEbVu3drHx+fDDz/Uwmbed9bWtGsXqf+qd+6kzZvp3DlJ9wSgu3Jycpo3b3779u1169bxY5HJycmXL1/+999/g4ODL1y4oJmA2LBhpp6ekYMDde5Mjo7UpEkhVzPXrqU2bV5E2NPSaMIEmjuXmjTR3j0CACgHynPAXVdkZVGFCpSUROqDaZcu0ZAhFB0t6bbKnn///bdLly4VK1aMjo6uUqWK1Nt5/9y5Q998Q+vXk3AF0AGgCHl5ed26dTt37tzHH398+PBhHS8TvGDBgiVLlhgbGx8/flzdTjApKSk4OJh/3rt8+XJ8fLzmj2hG2Nu3b29hYSHFxkHb/P39hwwZYmhoqFQqc3Nz831XX1+/Xr16DRo0aNiwYcuWU6ysbBo0IBubNyY3awbcc3KoZUv69FME3MuaJUsoJoZ8fV+NdO1K335LLi5a3khWVpa3t/eyZcvS09ONjIyaN28eHBysUqlq1KixdOnSMWPGyEXLsofXrFhBv/9Oe/eSrS1du0YDBtDy5fT551JvC0B3BQQE9O/f39TUtHfv3levXo2KitL8ro2NTYcOHTp27NihQ4c2bdqZmAhfYxMAAPJBwF0rmjWjefNoyJAXX3p6UlQUveEwNbxJt27dTp8+vXjx4vnz50u9l/fY48e0aBFdvkyMUbt25OlJun3EEqDsmjNnzrJly6ytrUNCQnQ/3ZsxNnbs2G3btlWuXHnkyJH37t0LCgqKiYnRvE3VqlV5lRjOyspKqt2CtLy9ve/du7dhwwZLS8umTZvaamjatKmRkVHxp8rJodxcqlDhxZeZmURExsYibBrE4+ZGtWvTvHmvRlxdqVUrmjZNku3ExcUtWrRo69atrVq1unHjxtdff7148eKKFStKspn3FGO0Zg399hs9e0Y1a9LEiSR0PUCA8ueTTz559OhRSEgIEVWoUKFVq1Y8p6FLly6oggUAoH0IuGvFkSM0ejQtWkT29nT2LK1fT//+S3Z2Um+rLDl69Gjv3r2rVq0aHR2t2cQGtCori9q0oX79aMYMksloxQr66y8KCaGyXyYbQNecPHmyV69ejLHAwMAePXpIvZ1iUSqVgwYNCgoKintZctvMzKxFixbqNHZ7e3sdz9MHrUlNTTUwMBCjkTWUPXPnUmYmrV79auTjj2noUGljrJcuXbKwsMjKymqEg30AUBYolcpr164FBwd36NChadOm5aCPEQBAmYaAu7aEhNDevfTwITVoQK6uVLeu1BsqYz744IP//vtv+fLlM2fOlHov77H9+2nxYgoJedGQgDFq3ZoWLKBBg6TeGUB5M2zYsN9++23JkiXzNLM+dV5aWlp8fPyGDRvatm3brl27Bg0aIMIOAG9x4ADNmkVhYS+u3yckkJ0dXb6M3BQAAAAAKKMQcIcy4PDhw/369atevXp0dLSpVhpnQeG+/54ePHityurXX5OlJS1YIN2eAMonlUq1c+fOESNGoGQwAJRzKhX17UtyOY0bR9nZtHIl9ehBq1ZJvS0AAAAAgBLSk3oDAG/BGFu8eDERzZkzB9F2ieXl5a8eo6dHBVreAUDpyeXyL7/8UupdAACITy6nw4dp9246c4YMDWnxYvrkE6n3BAAAAABQcgi4g67bv3//5cuXLS0tx48fL/Ve3nt2dnT8+Gsj16/T2LES7QYAAADKBX19GjGCRoyQeh8AAAAAAALAQXXQaSqViqe3z58/39jYWOrtvPc++YQiIujXX198uWsXhYfTp59KuicAAAAAAAAAAABdgRruoNN27do1fPjwOnXqREREGBoaSr0dILpyhb77juLjSSaj6tVpwwZq00bqPQEAAAAAAAAAAOgElJQB3aVUKpcsWUJECxYsQLRdJwQEkLExnTv3om67vr7UGwIAAAAAAAAAANAhyHAH3fW///1v9OjRdnZ2t27d0tPDxSGpZWdTgwb08CEdPUq9ekm9GwAAAAAAAAAAAJ2DGu6gu548eWJkZOTp6Ylou07w9aWHD6l5c+rZU+qtAAAAAAAAAAAA6CJkuINOi4uLs7CwUCgUUm/kvZeZSQ0aUGwsHTyILqkAAAAAAAAAAACFQuIw6LRatWpJvQUgIqINGyg2lhwcqF8/qbcCAAAAAAAAAACgo5DhDgBvk5ZG9evTkyf099/Uu7fUuwEAAAAAAAAAANBRqOEOAG/j40NPnpCjI6LtAAAAAAAAAAAARUCGOwAUKTmZbG0pMZFOnKDu3aXeDQAAAAAAAAAAgO5ChjsAFMnbmxITqUcPRNsBAAAAAAAAAACKhgx3AHizhASytaWUFDp9mj78UOrdAAAAAAAAAAAA6DQ9qTcAALpr44YN3Vq1alKxohzRdgAAAAAAAAAAgLdBhjsAFC4+Pr5+/foZGRmXL11yaNtW6u0AAAAAAAAAAADoOtRwB4DCLVu2LD09vX///oi2AwAAAAAAAAAAFAcy3AGgEI8ePapfv35WVlZISEjLli2l3g4AAAAAAAAAAEAZgAx3ACjEkiVLMjMzXVxcEG0HAAAAAAAAAAAoJmS4A0B+9+/fb9SoUV5e3o0bN5o0aSL1dgAAAAAAAAAAAMoGZLgDQH6LFy/Ozs4eNmwYou0AAAAAAAAAAADFhwx3AHhNZGRkkyZNGGOhoaGNGjWSejsAAAAAAAAAAABlBjLcAeA1ixYtysvLGzVqFKLtAAAAAAAAAAAA7wQZ7gDwyu3bt5s2bSqTySIiIurVqyf1dgAAAAAAAAAAAMoSPak3AAA6xMbGZsWKFYmJiYi2AwAAAAAAAAAAvCtkuAMAAAAAAAAAAAAACAA13AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQwP8B4bWrGwFREmgAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"none\",\n", + " subpocket=\"B2\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "ef0cbdad-5684-4d5e-ab0c-5a67a45a5f4c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.340227Z", + "iopub.status.busy": "2024-05-13T08:55:44.339971Z", + "iopub.status.idle": "2024-05-13T08:55:44.360524Z", + "shell.execute_reply": "2024-05-13T08:55:44.359921Z" + }, + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 B2 fragments with the most retrosynthetic routes found\n" + ] + } + ], + "source": [ + "filters.plots.retro_routes_fragments(\n", + " fragment_library,\n", + " evaluate=\"max\",\n", + " subpocket=\"B2\",\n", + " molsPerRow=10,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "35480ac5-3c7f-4a3e-876a-594a5126a4f9", + "metadata": {}, + "source": [ + "### 4.4 Save custom filtered fragment library" + ] + }, + { + "cell_type": "markdown", + "id": "3fd20c5f-3f06-4807-a9c4-9457420efcef", + "metadata": {}, + "source": [ + "#### 4.4.1. Add results from pairwise retrosynthesizability to the filtering results" + ] + }, + { + "cell_type": "markdown", + "id": "b6bc28ef-2434-4053-95b5-7fe8cfcd7f52", + "metadata": {}, + "source": [ + "Load previous filtering results and values from [/data/filters/fragment_library_custom_filtered/custom_filter_results.csv](https://github.com/sonjaleo/KinFragLib/blob/fragment_pairs/data/fragment_library_custom_filtered/custom_filter_results.csv) file and add retro results to this file." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b1113ffc-909a-42af-a8ea-c165a7aadcb1", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.362755Z", + "iopub.status.busy": "2024-05-13T08:55:44.362540Z", + "iopub.status.idle": "2024-05-13T08:55:44.385363Z", + "shell.execute_reply": "2024-05-13T08:55:44.384796Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "saved_filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "4dca157d-bc38-4721-9d51-c24b6167c8f1", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.387843Z", + "iopub.status.busy": "2024-05-13T08:55:44.387641Z", + "iopub.status.idle": "2024-05-13T08:55:44.420140Z", + "shell.execute_reply": "2024-05-13T08:55:44.419454Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasyba
subpocketsmiles
APNc1c[nH]c2ncccc1211110.5659001130.950959
N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc110110.7471850117.682659
CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C110010.656515010.611823
Nc1ncnn2cccc1211110.5638031128.754427
Cc1cc(N)[nH]n111100.4888541115.727015
..............................
B2c1cnoc111100.4472611111.831072
c1ccoc111100.446031115.852398
CNC11100.3986711110.078885
c1ccc(N2CCOCC2)nc111110.6167810148.630055
Cc1cn(-c2ccccc2)cn111110.6216141132.821614
\n", + "

3505 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " bool_pains bool_brenk \\\n", + "subpocket smiles \n", + "AP Nc1c[nH]c2ncccc12 1 1 \n", + " N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 1 0 \n", + " CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 1 0 \n", + " Nc1ncnn2cccc12 1 1 \n", + " Cc1cc(N)[nH]n1 1 1 \n", + "... ... ... \n", + "B2 c1cnoc1 1 1 \n", + " c1ccoc1 1 1 \n", + " CNC 1 1 \n", + " c1ccc(N2CCOCC2)nc1 1 1 \n", + " Cc1cn(-c2ccccc2)cn1 1 1 \n", + "\n", + " bool_ro3 bool_qed qed \\\n", + "subpocket smiles \n", + "AP Nc1c[nH]c2ncccc12 1 1 0.565900 \n", + " N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 1 1 0.747185 \n", + " CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 0 1 0.656515 \n", + " Nc1ncnn2cccc12 1 1 0.563803 \n", + " Cc1cc(N)[nH]n1 1 0 0.488854 \n", + "... ... ... ... \n", + "B2 c1cnoc1 1 0 0.447261 \n", + " c1ccoc1 1 0 0.446031 \n", + " CNC 1 0 0.398671 \n", + " c1ccc(N2CCOCC2)nc1 1 1 0.616781 \n", + " Cc1cn(-c2ccccc2)cn1 1 1 0.621614 \n", + "\n", + " bool_bb bool_syba syba \n", + "subpocket smiles \n", + "AP Nc1c[nH]c2ncccc12 1 1 30.950959 \n", + " N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 0 1 17.682659 \n", + " CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 0 1 0.611823 \n", + " Nc1ncnn2cccc12 1 1 28.754427 \n", + " Cc1cc(N)[nH]n1 1 1 15.727015 \n", + "... ... ... ... \n", + "B2 c1cnoc1 1 1 11.831072 \n", + " c1ccoc1 1 1 5.852398 \n", + " CNC 1 1 10.078885 \n", + " c1ccc(N2CCOCC2)nc1 0 1 48.630055 \n", + " Cc1cn(-c2ccccc2)cn1 1 1 32.821614 \n", + "\n", + "[3505 rows x 8 columns]" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "saved_filter_results.set_index([\"subpocket\", \"smiles\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "a76c8868-1d6d-4405-9f97-81b4875bb190", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.422459Z", + "iopub.status.busy": "2024-05-13T08:55:44.422165Z", + "iopub.status.idle": "2024-05-13T08:55:44.450344Z", + "shell.execute_reply": "2024-05-13T08:55:44.449805Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retro_countbool_retro
subpocketsmiles
APNc1c[nH]c2ncccc127041
Nc1ncnn2cccc121881
CNc1ncnc2[nH]ccc1221
c1cnc2ccnn2c128701
Nc1cc(C2CC2)[nH]n14541
............
B2Cn1ccc2ccccc2100
COc1ccc(C)nc100
c1ccc2c(c1)OCCO200
C[S@](=O)c1ccccc100
Cc1cn(-c2ccccc2)cn100
\n", + "

778 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " retro_count bool_retro\n", + "subpocket smiles \n", + "AP Nc1c[nH]c2ncccc12 704 1\n", + " Nc1ncnn2cccc12 188 1\n", + " CNc1ncnc2[nH]ccc12 2 1\n", + " c1cnc2ccnn2c1 2870 1\n", + " Nc1cc(C2CC2)[nH]n1 454 1\n", + "... ... ...\n", + "B2 Cn1ccc2ccccc21 0 0\n", + " COc1ccc(C)nc1 0 0\n", + " c1ccc2c(c1)OCCO2 0 0\n", + " C[S@](=O)c1ccccc1 0 0\n", + " Cc1cn(-c2ccccc2)cn1 0 0\n", + "\n", + "[778 rows x 2 columns]" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_concat = pd.concat(fragment_library)\n", + "retro_results_df = pd.DataFrame()\n", + "retro_results_df[\"subpocket\"] = fragment_library_concat[\"subpocket\"]\n", + "retro_results_df[\"smiles\"] = fragment_library_concat[\"smiles\"]\n", + "retro_results_df[\"retro_count\"] = fragment_library_concat[\"retro_count\"]\n", + "retro_results_df[\"bool_retro\"] = fragment_library_concat[\"bool_retro\"]\n", + "retro_results_df.set_index([\"subpocket\", \"smiles\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "3cf3aa42-5df2-459e-836c-82386ee12de8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.452354Z", + "iopub.status.busy": "2024-05-13T08:55:44.452130Z", + "iopub.status.idle": "2024-05-13T08:55:44.485827Z", + "shell.execute_reply": "2024-05-13T08:55:44.485258Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "all_results_df = saved_filter_results.merge(\n", + " retro_results_df,\n", + " left_on=['subpocket', 'smiles'],\n", + " right_on=['subpocket', 'smiles'],\n", + " how=\"outer\",\n", + ")\n", + "all_results_df.to_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "id": "e52b50c1-893a-4d80-9f32-624cef38867c", + "metadata": {}, + "source": [ + "#### 4.4.2. Save fragment_library_custom_filtered to data" + ] + }, + { + "cell_type": "markdown", + "id": "308082f4-2807-4203-a887-b355e0827b3e", + "metadata": {}, + "source": [ + "Save custom filtered fragment library as .sdf files to [/data/filters/fragment_library_custom_filtered/](https://github.com/sonjaleo/KinFragLib/blob/fragment_pairs/data/fragment_library_custom_filtered/)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "be565a33-a752-4bcd-96bc-0379e23f04cb", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.488175Z", + "iopub.status.busy": "2024-05-13T08:55:44.488004Z", + "iopub.status.idle": "2024-05-13T08:55:44.508659Z", + "shell.execute_reply": "2024-05-13T08:55:44.508078Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "for subpocket in fragment_library.keys():\n", + " fragment_library[subpocket].drop(\n", + " fragment_library[subpocket].loc[fragment_library[subpocket][\"bool_retro\"] == 0].index,\n", + " inplace=True,\n", + " )\n", + " fragment_library[subpocket] = fragment_library[subpocket].reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "369c413b-62ec-4e09-91e4-deb5c3025584", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.510775Z", + "iopub.status.busy": "2024-05-13T08:55:44.510601Z", + "iopub.status.idle": "2024-05-13T08:55:44.589017Z", + "shell.execute_reply": "2024-05-13T08:55:44.588489Z" + }, + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybaboolretro_countbool_retro
AP0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]11110.5659001130.95095917041
1APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11110.5638031128.75442711881
2APCNc1ncnc2[nH]ccc12\"Mol\"/\"Mol\"/\"Mol\"/ACKAckTK4ewhT77BAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na ...[26*]c1[nH]c2ncnc(NC[54*])c2c1[37*]11[FP, SE, FP][AP=FP, AP=SE, AP=FP]11110.6339121138.386371121
3APc1cnc2ccnn2c1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3q4tTAKABAP AP AP AP AP AP AP AP AP AP AP AP SE GA16 16 16 16 16 16 16 16 16 16 16 16 na na[33*]c1cnc2c([46*])cnn2c111[SE, GA][AP=SE, AP=GA]11110.5113761139.622898128701
4APNc1cc(C2CC2)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3socGVDAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5...[17*]Nc1cc(C2CC2)[nH]n15[SE][AP=SE]11110.5817561118.52486114541
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_concat = pd.concat(fragment_library)\n", + "HTML(fragment_library_concat.head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "b277ca0c-e6e7-46da-9dd3-7b3cc8971922", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-13T08:55:44.591053Z", + "iopub.status.busy": "2024-05-13T08:55:44.590854Z", + "iopub.status.idle": "2024-05-13T08:55:44.657524Z", + "shell.execute_reply": "2024-05-13T08:55:44.656960Z" + }, + "metadata": {} + }, + "outputs": [], + "source": [ + "filters.retro.save_fragment_library_to_sdfs(\n", + " PATH_DATA_CUSTOM,\n", + " fragment_library_concat,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.undefined" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/2_1_custom_filters_pipeline.ipynb b/notebooks/custom_kinfraglib/2_1_custom_filters_pipeline.ipynb new file mode 100644 index 00000000..0f9f8a7b --- /dev/null +++ b/notebooks/custom_kinfraglib/2_1_custom_filters_pipeline.ipynb @@ -0,0 +1,2638 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "505b19b3-393c-4f04-a14d-b4bfaa5577fd", + "metadata": {}, + "source": [ + "# Custom Filters Pipeline" + ] + }, + { + "cell_type": "markdown", + "id": "315d6840-93ec-4159-8748-eb19dedc0d5e", + "metadata": {}, + "source": [ + "This notebook aims to reduce the fragment library size by applying different filtering steps which can be (de-)activated and the parameters can be modified. The fragment library can be filtered for unwanted substructures, drug-likeness, synthesizability and pairwise retrosynthesizability.\n", + "The pipeline includes the following custom filters to the fragment library:\n", + "* Pre-filters (not optional)\n", + "* PAINS filter\n", + "* Brenk filter\n", + "* Rule of Three (Ro3) filter\n", + "* Quantitative Estimate of Druglikeness (QED) filter\n", + "* Buyable building block filter\n", + "* SYnthetic Bayesian Accessibility (SYBA) filter\n", + "* Pairwise retrosynthesizability\n", + "\n", + "All filtering steps (except the pre-filtering) can be (de-)activated and modified by the user." + ] + }, + { + "cell_type": "markdown", + "id": "444ffb47-dcf8-4c7d-b52a-1ab45ec2a6eb", + "metadata": {}, + "source": [ + "## Table of Contents\n", + "1. Load fragment library\n", + "2. Apply pre-filters\n", + "3. Define custom filters parameters\n", + "\n", + " 3.1. General parameters\n", + "\n", + " 3.2. PAINS parameters\n", + " \n", + " 3.3. Brenk parameters\n", + " \n", + " 3.4. Rule of Three parameters\n", + " \n", + " 3.5. QED parameters\n", + " \n", + " 3.6. Buyable building blocks parameters\n", + " \n", + " 3.7. SYBA parameters\n", + " \n", + " 3.8. Pairwise retrosynthesizability parameters\n", + " \n", + "4. Apply filters with chosen parameters\n", + "5. Inspect results" + ] + }, + { + "cell_type": "markdown", + "id": "ba61af29-6728-4ca3-8cd3-371d90c2d6c4", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "83f121b7-4eb0-44a9-917d-848c3260e78f", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit.Chem import PandasTools\n", + "from IPython.core.display import HTML\n", + "\n", + "from kinfraglib import utils, filters" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "61331f5a-9c09-46d5-953b-8664759d339e", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f9019a43-e297-4994-9e81-afcf9b5c0801", + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "b356fdbb-415f-4453-9ec4-fb8aa2775482", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2009cd65-2f9d-4e10-9b9b-50951135b17f", + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data/\"\n", + "PATH_DATA_CUSTOM = PATH_DATA / \"fragment_library_custom_filtered\"\n", + "PATH_DATA_RETRO = PATH_DATA / \"filters/retrosynthesizability\"" + ] + }, + { + "cell_type": "markdown", + "id": "aa20f857-e5e0-4494-bd29-de7e2967ee1b", + "metadata": {}, + "source": [ + "## 1. Load fragment library" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "55c418ee-1661-4691-ae47-df3ccb8c3d79", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_original = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "886c9531-dc1b-4931-ba2e-527ffa2fa2a1", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2', 'X'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_original.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5fbd4b60-4b27-4fbb-b841-d283e1e6dcad", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(9505, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat(fragment_library_original).reset_index(drop=True).shape" + ] + }, + { + "cell_type": "markdown", + "id": "13ce90a0-5419-400a-aeca-9edd607a0af8", + "metadata": {}, + "source": [ + "## 2. Apply pre-filters\n", + "Pre-filters are\n", + "- removing fragments in pool X\n", + "- removing duplicates\n", + "- removing fragments without dummy atoms (unfragmented ligands)\n", + "- removing fragments only connecting to pool X" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "430b6d23-d8bf-4e7e-bfff-ce61763d4634", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.prefilters.pre_filters(fragment_library_original)" + ] + }, + { + "cell_type": "markdown", + "id": "8adbcb0e-b3da-449f-bc79-da309aa10ede", + "metadata": {}, + "source": [ + "## 3. Define custom filters parameters" + ] + }, + { + "cell_type": "markdown", + "id": "7f793500-db38-4c69-974b-7b756c731da4", + "metadata": {}, + "source": [ + "The following cells define the parameters for the custom filters. You can modify them according to your needs.\n", + "If you want to have a closer look at the functionality of the single filters, please take a look at the following notebooks:\n", + "* PAINS and Brenk: `/notebools/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb`\n", + "* Rule of Three (Ro3) and QED: `/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb`\n", + "* Buyable building blocks and SYBA: `/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb`\n", + "* Pairwise retrosynthesizability: `/notebooks/custom_kinfraglib/1_4_custom_filters_pairwise_retrosynthesizability.ipynb`" + ] + }, + { + "cell_type": "markdown", + "id": "363133ac-1299-4b15-b8b3-0e0a45b19c2f", + "metadata": {}, + "source": [ + "### 3.1. Global parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "dee58765-3bbb-4d5b-a311-d9ada68f9314", + "metadata": {}, + "outputs": [], + "source": [ + "global_parameters = {\n", + " # define if a dataframe per filter with the number of accepted/rejected fragments is printed\n", + " \"show_stats\": True,\n", + " # define the path where the custom filtered library and filtering results data is stored\n", + " \"custom_path\": PATH_DATA_CUSTOM,\n", + " # define the number of filters that the fragments need to pass to be used for\n", + " # pairwise retrosynthesizability (max. value 6)\n", + " \"num_passing\": 6,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "32d4d038-de30-48e8-a6fa-0f685bc3bd12", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.2. PAINS parameters\n", + "##### (De-)activate the PAINS filter and define parameters\n", + "\n", + "Pan Assay INterference compounds (PAINS) ([ J. Med. Chem. 2010, 53, 7, 2719–2740](https://pubs.acs.org/doi/abs/10.1021/jm901137j)) are substructural features which help to detect compounds that appear as false positive hits in high throughput screenings used as starting points for drug development.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check [/notebools/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb](https://github.com/sonjaleo/KinFragLib/blob/custom-base/notebooks/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8a436f9c-f845-46c5-bacc-e75d4a63fb50", + "metadata": {}, + "outputs": [], + "source": [ + "pains_parameters = {\n", + " # define if the fragments should be filtered for PAINS structures\n", + " \"pains_filter\": True,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "5d7c2bfc-84a9-428f-a3a2-69a2afc438ae", + "metadata": {}, + "source": [ + "### 3.3. Brenk et al. parameters\n", + "##### (De-)activate the Brenk filter and define parameters\n", + "\n", + "Brenk et al. ([ChemMedChem, 2008, 3(3),435--444](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.200700139)) defined a list of substructures which can be used as selection criteria to enrich the libraries for lead-like compounds. \n", + "\n", + "Brenk et al. suggest avoiding using structures containing \n", + "* potentially mutagenic groups (e.g. nitro groups), \n", + "* groups with unfavorable pharmacokinetic properties (e.g. sulfates, phosphates), \n", + "* reactive groups (e.g. 2-halopyridines, thiols) \n", + "* and compounds typically interfering with HTS assays.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebools/custom_kinfraglib/1_1_custom_filters_unwanted_substructures.ipynb`\n", + "\n", + "\n", + "**Note:** If you want to use other structures instead, this is possible if you provide an \"unwanted_substructures.csv\" file with the same structure as the provided one (name and SMARTS columns separated by a space). If you do so, please specify the path where your \"unwanted_substructure.csv\" file is stored." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "533b9d7f-fa1c-49d6-b60b-30a5c624c30b", + "metadata": {}, + "outputs": [], + "source": [ + "brenk_parameters = {\n", + " # define if the fragments should be filtered for Brenk et al. unwanted substructures\n", + " \"brenk_filter\": True,\n", + " # define where the unwanted substructures file is stored\n", + " \"substructure_file_path\": HERE / \"../../data/filters/Brenk\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "7f6af586-10df-47f1-becc-c43d4ab6bf00", + "metadata": {}, + "source": [ + "### 3.4. Rule of Three parameters\n", + "##### (De-)activate the Ro3 filter and define parameters\n", + "\n", + "The Rule of Three (Ro3) ([Drug Discovery Today, 2003, 8(19):876-877](https://www.sciencedirect.com/science/article/abs/pii/S1359644603028319?via%3Dihub)) is adapted from the Rule of Five (Ro5) ([\n", + "J Pharmacol Toxicol Methods, 2000, 44(1): 235-249](https://www.sciencedirect.com/science/article/abs/pii/S1056871900001076?via%3Dihub)) to check if small molecules make good lead compounds.\n", + "It is looking at the molecular properties, namely\n", + "- molecular weight (MW) <= 300\n", + "- octanol-water partition coefficient (LogP) <=3\n", + "- number of hydrogen bond acceptor (HBA) <= 3\n", + "- number of hydrogen bond donor (HBD) <= 3\n", + "- number of rotatable bonds (NROT) <= 3\n", + "- polar surface area (PSA) <= 60\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ad36d741-3311-420d-a02a-ddc8f1325716", + "metadata": {}, + "outputs": [], + "source": [ + "ro3_parameters = {\n", + " # define if the fragments should be filtered by the Rule of Three\n", + " \"ro3_filter\": True,\n", + " # define how many parameters of the rule of three should be fulfilled\n", + " \"num_fulfilled\": 6,\n", + " # define if the number of fulfilled parameters should be >=, > than num_fulfilled\n", + " \"cutoff_crit\": \">=\"\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "d635b632-f17a-4dfc-b26d-e2eb5ec0a632", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.5. QED parameters\n", + "##### (De-)activate the QED filter and define parameters\n", + "Quantitative Estimate of Druglikeness (QED) ([Nat Chem. 2012 Jan 24; 4(2): 90–98](https://www.nature.com/articles/nchem.1243)) reflects the distribution of the molecular properties, namely\n", + "\n", + "* molecular weight\n", + "* octanol-water-partition-coefficient\n", + "* number of hydrogen bond donor and acceptor, \n", + "* polar surface area, \n", + "* number of rotatable bonds, \n", + "* number of aromatic rings \n", + "* and number of structural alerts. \n", + "\n", + "For each property, a desirability function is used and the QED is calculated as the geometric mean of the individual function and shown in a barplot, if plots are activated.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebooks/custom_kinfraglib/1_2_custom_filters_drug_likeness.ipynb`\n", + "\n", + "\n", + "The cutoff value defines whether the fragment gets accepted or not by this filter. The default cutoff-value of 0.492 is the mean value calculated by the authors of QED for approved drugs. A higher value would yield for more \"attractive\" compounds and a more negative value for more \"unattractive\" compounds.\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TargetsMean QED (SD)
approved drugs0.492 (NaN)
approved oral drugs0.539(0.231)
Chemical attractiveness
attractive compound0.67 (0.16)
unattractive compounds0.49 (0.23)
unattractive too complext0.34(0.24)
\n", + "\n", + "For more information, please check: [Nat Chem. 2012 Jan 24; 4(2): 90–98](https://www.nature.com/articles/nchem.1243)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "60c3946b-8882-41c7-85b4-7fd69c1c7b2f", + "metadata": {}, + "outputs": [], + "source": [ + "qed_parameters = {\n", + " # define whether the fragments should be filtered by the QED\n", + " \"qed_filter\": True,\n", + " # define a cutoff value between 0 and 1. For orientation, check the original QED publication\n", + " \"cutoff_value\": 0.492,\n", + " # define whether the QED should be \">\", \"<\", \">=\", \"<=\" or \"==\" compared to the cutoff value\n", + " \"cutoff_crit\": \">\",\n", + " # define whether plots should be displayed\n", + " \"do_plot\": True,\n", + " # define whether statistics are shown inside the plots\n", + " \"plot_stats\": True,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "3f169e41-7cfa-4544-850b-ee49e585a60c", + "metadata": {}, + "source": [ + "### 3.6. Buyable building blocks parameters\n", + "##### (De-)activate the buyable building blocks filter and define parameters\n", + "The [Enamine REAL Space](https://enamine.net/compound-collections/real-compounds/real-space-navigator) contains over 19 billion building blocks that can be used to create compounds which can be synthesized on demand. \n", + "\n", + "Find more information about the construction and content of the building block file at `/data/filters/Enemaine/README.md`\n", + "\n", + "In this filter it is checked if the fragments are substructures of the buyable building blocks.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb`" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b8752297-0a8b-4386-a155-369c71550203", + "metadata": {}, + "outputs": [], + "source": [ + "bb_parameters = {\n", + " # define whether the fragments should be filtered by comparison with building blocks\n", + " \"bb_filter\": True,\n", + " # path to file containing building blocks.\n", + " # for creating or changing the building block file, check the description above.\n", + " \"bb_file\": str(str(PATH_DATA) + \"/filters/Enamine/Enamine_Building_Blocks.sdf\"),\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "163436bc-5275-4f31-a884-a5cbb1dfae9c", + "metadata": {}, + "source": [ + "### 3.7. SYBA parameters\n", + "##### (De-)activate the SYBA filter and define parameters\n", + "The SYnthtetic Bayesian Accessibility Score (SYBA) [(J Cheminform 12, 35 (2020))](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00439-2) is a Bayesian probabilistic modeling method ([SYBA github repo](https://github.com/lich-uct/syba)) for calculating a fragment-based score using the frequency of fragments in easy- and hard-to-synthesizable molecules. \n", + "\n", + "A more negative score indicates a molecule which is more likely hard to synthesize, and a more positive score indicates a molecule which is more likely easy to synthesize.\n", + "The SYBA values are shown in a barplot, if plots are activated.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebooks/custom_kinfraglib/1_3_custom_filters_synthesizability.ipynb`" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a31bbffa-972f-4e0a-9e18-56913642ef06", + "metadata": {}, + "outputs": [], + "source": [ + "syba_parameters = {\n", + " # define if the fragment library should be filtered by the SYBA score\n", + " \"syba_filter\": True,\n", + " # defining the cutoff value for the SYBA score\n", + " \"cutoff_value\": 0,\n", + " # defining how the SYBA score should be compared to the cutoff to be accepted\n", + " \"cutoff_crit\": \">\",\n", + " # defining is the SYBA score is calculated for the molecule (\"mol\")\n", + " # or the smiles string (\"smiles\") of the fragment\n", + " \"query_type\": \"mol\",\n", + " # define whether plots should be displayed\n", + " \"do_plot\": True,\n", + " # define whether statistics are shown inside the plots\n", + " \"plot_stats\": True,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "43b36c70-2650-42c2-b8aa-9bda2042c21b", + "metadata": {}, + "source": [ + "### 3.8. Pairwise retrosynthesizability parameters\n", + "##### (De-)activate the pairwise retrosynthesizability filter and define parameters\n", + "ASKCOS is used to check if for the fragment pairs a retrosynthetic route can be found. Fragment pairs are created using the fragments passing the activated filters defined before and combined if the fragments which have adjacent subpockets, the same bond type and matching BRICS [(J. Chem. Inf. Model. 2017, 57, 4, 627–631)](https://doi.org/10.1021/acs.jcim.6b00596) environment types. We will exclude all fragments without at least one retrosynthetic route found.\n", + "\n", + "For each fragment pair, we will start an ASKCOS query, requesting if ASKCOS can find a one step retrosynthetic route building this fragment pair. For all routes found, we will retrieve the children building the requested fragment pair and also the plausibility of this reaction.\n", + "Afterwards, we will compare the children retrieved from ASKCOS with the fragments building the pair. If the fragments are substructures of the children their `retro_count` is increased by one and the fragments, pair, children and plausibility are stored in the `mol_df` dataframe. If they are no substructures, we will store the information in the `diff_df` dataframe.\n", + "If plots are activated a barplot with the number of rejected and accepted fragments grouped by the number of retrosynthetic routes found and the molecules of the rejected fragments and the <=10 fragments with the most retrosynthetic routes found.\n", + "\n", + "For a closer look at the functionality of this filtering step, please check `/notebooks/custom_kinfraglib/1_4_custom_filters_pairwise_retrosynthesizability.ipynb`\n", + "\n", + "**Note**: Make sure that ASKCOS is running if the input is changed (using `make start` within the `askcos2_core` directory which is obtained following the [installation](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html))." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c67efbfa-ecf8-45c6-af8d-1fbcb3b4c2ee", + "metadata": {}, + "outputs": [], + "source": [ + "retro_parameters = {\n", + " # define whether the pairwise retrosynthesizability filter should be applied or not\n", + " \"retro_filter\": True,\n", + " # define in how many retrosynthetic routes a fragment needs to participate to get accepted\n", + " \"cutoff_value\": 0,\n", + " # define if the number of participations needs to be\n", + " # \">\", \"<\", \"==\", \">=\" or \"<=\" compared to the cutoff value\n", + " \"cutoff_crit\": \">\",\n", + " # define Path where retro data is stored\n", + " \"retro_path\": PATH_DATA_RETRO,\n", + " # define whether plots should be displayed\n", + " \"do_plot\": True,\n", + " # define if the structures of the molecules without and\n", + " # with most retrosynthetic routes should be displayed or not\n", + " \"show_mols\": True,\n", + " # define whether statistics are shown inside the plots\n", + " \"plot_stats\": True,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "ab520f0b-7eae-4b62-b58f-1c287725b80a", + "metadata": {}, + "source": [ + "## 4. Apply filters with chosen parameters" + ] + }, + { + "cell_type": "markdown", + "id": "0f3c12d7-9a66-42b5-9f46-2483bb8e78b4", + "metadata": {}, + "source": [ + "##### Start the pipeline with the defined parameters." + ] + }, + { + "cell_type": "markdown", + "id": "0f3218c3-cc62-461e-af42-609a7d52eb6d", + "metadata": {}, + "source": [ + "The generated data will be stored in the `/data/fragment_library_custom_filtered/`directory in a folder named in the following format\n", + "`YYYY-MM-DD_HH-MM-SS` according to the datetime starting the pipeline.\n", + "The following files will be saved:\n", + "- `custom_filterin_parameters.log`: Paramaters chosen to create this custom filtered library\n", + "- `custom_filter_results.csv`: Filtering results for all fragments in the pre-filtered fragment library\n", + "- A .sdf file for every subpocket containing the fragments passing the filters applied" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "2f3f866f-5c7d-4d73-adcf-78fab5d9f3d2", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your custom kinfraglib, the chosen parameters log file and the filtering results will be stored in data/fragment_library_custom_filtered/2024-05-27_10-36-49\n", + "Apply PAINS filter..\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_painsrejected_pains
AP1201118813
FP1100107822
SE7437358
GA3553478
B147470
B259590
Total3505345451
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_pains rejected_pains\n", + "AP 1201 1188 13\n", + "FP 1100 1078 22\n", + "SE 743 735 8\n", + "GA 355 347 8\n", + "B1 47 47 0\n", + "B2 59 59 0\n", + "Total 3505 3454 51" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply Brenk filter..\n", + "Number of unwanted substructures in Brenk et al. collection: 104\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_brenkrejected_brenk
AP1201943258
FP1100898202
SE743610133
GA355236119
B1473413
B259536
Total35052774731
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_brenk rejected_brenk\n", + "AP 1201 943 258\n", + "FP 1100 898 202\n", + "SE 743 610 133\n", + "GA 355 236 119\n", + "B1 47 34 13\n", + "B2 59 53 6\n", + "Total 3505 2774 731" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply Ro3 filter..\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_ro3rejected_ro3
AP1201606595
FP1100840260
SE743613130
GA35531243
B147443
B259554
Total350524701035
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_ro3 rejected_ro3\n", + "AP 1201 606 595\n", + "FP 1100 840 260\n", + "SE 743 613 130\n", + "GA 355 312 43\n", + "B1 47 44 3\n", + "B2 59 55 4\n", + "Total 3505 2470 1035" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply QED filter..\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_qedrejected_qed
AP12011064137
FP1100759341
SE743550193
GA355234121
B1472522
B2593326
Total35052665840
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_qed rejected_qed\n", + "AP 1201 1064 137\n", + "FP 1100 759 341\n", + "SE 743 550 193\n", + "GA 355 234 121\n", + "B1 47 25 22\n", + "B2 59 33 26\n", + "Total 3505 2665 840" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAVjCAYAAABKZ0mAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5hVdb0/8PfmNlwE5KIzzBGFFC+Jt6RU9BeQCOEttaKTHVMzs1QUwSwyFTsFQaUmmh2LxEtGnbyU9fOCpnhMTcE4XjJLA1ODQxgNwiDX/fvDw/4xAspsZ9jgvF7Ps59n9lrfvfZnY+eZ95n3XmsVisViMQAAAAAAADRKq0oPAAAAAAAAsC1SsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAW9yjjz6aj3/84+nVq1fatWuXXr16ZeTIkXn88ccbrJs2bVoKhcImHw888EBpbZ8+fUrbW7Vqla5du2avvfbKpz/96dxzzz1b+BMCAAAtQZtKDwAAALQsU6ZMyejRo/OBD3wgkydPzi677JK//vWvufrqq3PwwQfnmmuuyec+97kGr7nuuuuy5557bnCs9773vQ2eH3roofn2t7+dJFm6dGmee+65TJ8+PcOHD89HP/rR/OQnP0nbtm2b78MBAAAtSqFYLBYrPQQAANAy/Pa3v80HP/jBHHnkkbntttvSps3//97X6tWrc/zxx+fOO+/MI488kve///2ZNm1aTj311Dz++OMZMGDAWx67T58+6d+/f371q19tsG/8+PG59NJLc8EFF2TSpElN/rkAAICWyeXCAACALWbixIkpFAq55pprGhQsSdKmTZt873vfK61rSuPHj8/ee++dq666Kq+//nqTHhsAAGi5lCwAAMAWsWbNmtx///0ZMGBAdtppp42u6d27dw488MDce++9Wbt2bYPXrl69usFjzZo1jXr/Y445JvX19Zk1a9Y7+hwAAADrKFkAAIAtYtGiRamvr0/fvn3fcl3fvn3z2muv5R//+Edp28EHH5y2bds2eFRVVTXq/XfZZZckyd/+9rfGDw8AALARbnwPAABsVdbdNrJQKJS23XDDDdlrr70arFt/f2OOCwAA0FSULAAAwBbRs2fPdOzYMXPnzn3LdfPmzUuHDh3So0eP0ra99trrbW98/3ZefPHFJEltbe07Og4AAMA6LhcGAABsEa1bt86HPvShzJo1Ky+//PJG17z88suZPXt2PvShDzXpexeLxdxxxx3p1KnTOy5rAAAA1lGyAAAAW8yXv/zlFIvFnHnmmRvcuH7NmjX5whe+kDVr1uTcc89t0ve99NJL84c//CHnnntu2rdv36THBgAAWi6XCwMAALaYQw89NFdccUXOPffcHHbYYTn77LOz8847569//WuuvvrqPPLIIxk/fnyOOOKIBq97+umns3r16g2Ot+uuu2aHHXYoPf/nP/+ZRx99NEmybNmyPPfcc5k+fXr+67/+KyNHjsyll17avB8QAABoUQpFd38EAAC2sEceeSTf+c538tBDD+Xvf/971q5dm/bt2+eWW27JkUceWVo3bdq0nHrqqZs8zg9+8IN89rOfTZL06dOndN+VQqGQTp065V/+5V/ygQ98IP/2b/+WYcOGNe+HAgAAWhwlCwAAUHE33HBDTj755FxwwQWZNGlSpccBAADYLC4XBgAAVNynP/3pzJ8/P1/+8pfTqVOnXHzxxZUeCQAA4G05kwUAAAAAAKAMrSo9AAAAAAAAwLZIyQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCAAAAAABQBiULAAAAAABAGZQsAAAAAAAAZVCyAAAAAAAAlEHJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJRByQIAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlULIAAAAAAACUQckCVMSVV16ZQqGQ/v37b3R/oVBo8OjatWsGDx6cX//611t4UgDg3WbatGkbZI11j/PPPz9J0qdPnwbbt9tuuxx00EG54YYbKjw9ALCt+93vfpfjjz8+O++8c6qqqlJdXZ1DDjkkY8eOLa0ZPHjwJvNKnz59Kjc8sIE2lR4AaJl+9KMfJUmeeeaZ/O53v8tBBx20wZqPfexjGTt2bNauXZu//OUv+frXv55jjjkmd9xxR4466qgtPTIA8C5z3XXXZc8992ywrba2tvTzoYcemm9/+9tJkpdffjnf/va3c/LJJ2fZsmX5whe+sEVnBQDeHX7961/n2GOPzeDBgzN58uT06tUr8+fPz6xZszJ9+vR85zvfKa19z3vekx//+McbHKOqqmpLjgy8jUKxWCxWegigZZk1a1be//7356ijjsqvf/3rnH766bn22msbrCkUCjnrrLNy1VVXlba98MIL2W233TJ06NDMmDFjS48NALxLTJs2Laeeemoef/zxDBgwYKNr+vTpk/79++dXv/pVads///nP7LLLLtlxxx3z5z//eUuNCwC8iwwaNCivvPJK/vjHP6ZNm4bff1+7dm1atXrjwkODBw/OokWL8vTTT1diTKARXC4M2OKmTp2aJPnmN7+ZgQMHZvr06amvr3/b1+26667ZYYcd8uKLLzb3iAAAG9h+++2zxx57yCIAQNleffXV9OzZc4OCJUmpYAG2Lf4vF9iili9fnp/85Cd5//vfn/79++czn/lMXnvttfznf/7n27528eLFefXVV7PDDjtsgUkBgHe7NWvWZPXq1Q0eb2XVqlV58cUXZREAoGyHHHJIfve73+Wcc87J7373u6xateot1785q6xevTpr167dQtMCm0PJAmxRP//5z1NXV5fTTjstSfKJT3wi2223XenslvUVi8WsXr06q1atyh//+Md86lOfytq1a/OpT31qS48NALwLHXzwwWnbtm2Dx/pFy7ossnr16sybNy+nn356Fi5cKIsAAGX75je/mcMOOyxTpkzJwQcfnE6dOuXQQw/NN7/5zSxdurTB2meeeWaDrNK2bdt87nOfq9D0wMa4JwuwRQ0ePDiPPfZY5s+fn65duyZJPvOZz+S6667Ln/70p/Tr1y/JG/dkebOuXbtm7Nixueiii7bozADAu8u6e7LccMMN2WuvvRrsW3ePlj59+mxwWbAOHTrks5/9bL797W+nXbt2W2xeAODdZ9asWbnvvvsya9asPPDAA1m0aFH69OmTxx9/PD179szgwYPz8ssvZ/r06Ru8docddsguu+xSgamBjdnw4n8AzeT555/Pgw8+mI9+9KMpFov55z//mST52Mc+luuuuy4/+tGPMnHixNL6kSNH5otf/GIKhUI6d+6cXXfdNa1bt67Q9ADAu81ee+21yRvfJ8lhhx2Wyy+/PIVCIR07dsyuu+6qXAEAmsSAAQNKOWTVqlX50pe+lMsvvzyTJ0/O5MmTkyTt27d/y6wCbB1cLgzYYn70ox+lWCzm5z//ebp161Z6HHXUUUmS66+/PmvWrCmt32GHHTJgwIAceOCB2X333RUsAMAW1bVr11IW2WuvvRQsAECzaNu2bS655JIkydNPP13haYDGciYLsEWsWbMm119/fXbdddf88Ic/3GD/r371q3znO9/JnXfemaOPProCEwIAAAA0r/nz56dXr14bbH/22WeTJLW1tVt6JOAdUrIAW8Sdd96Zv/3tb5k0aVIGDx68wf7+/fvnqquuytSpU5UsAAAAwLvS8OHDs9NOO+WYY47JnnvumbVr12bOnDn5zne+k+222y7nnntuae3y5cvz6KOPbvQ4Bx988JYaGXgbShZgi5g6dWratWuXU089daP7e/bsmeOPPz4///nP8z//8z9beDoAAACA5vfVr341v/jFL3L55Zdn/vz5WbFiRXr16pWhQ4dm3Lhx2WuvvUpr//KXv+SQQw7Z6HFWrVqVNm38aRe2BoVisVis9BAAAAAAAADbGje+BwAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMbSo9wNZg7dq1+dvf/pbOnTunUChUehwA2CoUi8W89tprqa2tTatWvpfRnGQRANiQLLLlyCIAsKHNzSJKliR/+9vf0rt370qPAQBbpZdeeik77bRTpcd4V5NFAGDTZJHmJ4sAwKa9XRZRsiTp3Llzkjf+sbp06VLhaWhxli1Lamvf+Plvf0s6darsPAD/a8mSJendu3fp9yTNRxaB9chGwP+SRbYcWYQWT/4ANmJzs4iSJSmdCtulSxdhgi2vdev//3OXLn6RA1sdl4xofrIIrEc2At5EFml+sggtnvwBvIW3yyIuagoAAAAAAFAGJQsAAAAAAEAZlCwAAAAAAABlcE8WgBauWCxm9erVWbNmTaVHYQtr3bp12rRp4zrnAFTcmjVrsmrVqkqPwRYmiwCwtZBFWqamyiJKFoAWbOXKlZk/f37q6+srPQoV0rFjx/Tq1Svt2rWr9CgAtFBLly7Nyy+/nGKxWOlRqABZBIBKk0VatqbIIkoWgBZq7dq1mTt3blq3bp3a2tq0a9fOtwhbkGKxmJUrV+bvf/975s6dm379+qVVK1cRBWDLWrNmTV5++eV07NgxO+ywgyzSgsgiAGwNZJGWqymziJIFoIVauXJl1q5dm969e6djx46VHocK6NChQ9q2bZsXX3wxK1euTPv27Ss9EgAtzKpVq1IsFrPDDjukQ4cOlR6HLUwWAaDSZJGWramyiK+JALRwvjHYsvnvD8DWwLdGWy5ZBICtgSzScjVFFpFmAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgCogKeeeiqDBg1Khw4d8i//8i/52te+lmKx+Lav+/Wvf52DDjooHTp0SM+ePXPCCSc02H/uuefmwAMPTFVVVfbff/9mmh4A2NaVk0X69OmTQqHQ4PHlL3+5wZrHH388hx9+eLbffvt069Ytw4YNy5w5c5rxkwAA26LmyiL33XdfBg4cmM6dO6dXr1750pe+lNWrVzfnR0mbZj06ALCBJUuW5IgjjsiQIUPy+OOP509/+lNOOeWUdOrUKWPHjt3k62655ZacfvrpmTBhQj70oQ+lWCzmqaeearCmWCzmM5/5TH73u9/lySefbO6PAgBsg8rNIknyta99Laeffnrp+XbbbVf6+bXXXsvw4cPzkY98JN/73veyevXqXHLJJRk+fHhefvnltG3bttk+EwCw7WiuLPLkk0/myCOPzIUXXpgbbrghr7zySj7/+c9nzZo1+fa3v91sn8eZLABscwYPHpxRo0Zl9OjR6datW6qrq3Pttddm2bJlOfXUU9O5c+fsuuuuufPOOxu87g9/+EOOPPLIbLfddqmurs5JJ52URYsWlfbfddddOeyww7L99tunR48eOfroo/PCCy+U9s+bNy+FQiG33nprhgwZko4dO2a//fbLI4880qj5f/zjH+f111/PtGnT0r9//5xwwgn5yle+kssuu2yT39pYvXp1zj333HzrW9/K5z//+ey+++7ZY4898rGPfazBuiuvvDJnnXVW3vOe9zRqJgBg87XELLJO586dU1NTU3qs/4eN5557LosXL87Xvva17LHHHtl7771zySWXZOHChfnrX//aqBkBgE2TRTaeRaZPn5599903F198cXbbbbcMGjQoEydOzNVXX53XXnutUTM2hpIFgG3S9ddfn549e+axxx7LqFGj8oUvfCEf//jHM3DgwDzxxBMZPnx4TjrppNTX1ydJ5s+fn0GDBmX//ffPrFmzctddd+V//ud/MnLkyNIxly1bljFjxuTxxx/Pfffdl1atWuX444/P2rVrG7z3hRdemPPPPz9z5szJ7rvvnk9+8pMNTj0tFAqZNm3aJmd/5JFHMmjQoFRVVZW2DR8+PH/7298yb968jb7miSeeyCuvvJJWrVrlgAMOSK9evTJixIg888wzZfzrAQDvVEvLIutMmjQpPXr0yP77759vfOMbWblyZWnfHnvskZ49e2bq1KlZuXJlli9fnqlTp2bvvffOLrvssjn/rADAZpJFNswiK1asSPv27Rus79ChQ15//fXMnj37LY/7jhQp1tXVFZMU6+rqKj0KLdHSpcVi8sZj6dJKT0MLsnz58uIf/vCH4vLlyys9SqMNGjSoeNhhh5Wer169utipU6fiSSedVNo2f/78YpLiI488UiwWi8WLLrqoOGzYsAbHeemll4pJis8999xG32fhwoXFJMWnnnqqWCwWi3Pnzi0mKf7whz8srXnmmWeKSYrPPvtsadsee+xRvPXWWzc5/xFHHFE8/fTTG2x75ZVXikmKDz/88EZf85Of/KSYpLjzzjsXf/7znxdnzZpV/OQnP1ns0aNH8dVXX91g/SWXXFLcb7/9NjnDOm/1vwO/H7cc/9awHtmoRdlW80hLzCLFYrF42WWXFR944IHif//3fxd/8IMfFHv27Fk87bTTGqx5+umni7vuumuxVatWxVatWhX33HPP4osvvrjJY8oiWwf/1rR48keLJYu8u7LI3XffXWzVqlXx5ptvLq5evbr48ssvFw877LBikuLNN9+80WM2RRZxJgsA26R999239HPr1q3To0eP7LPPPqVt1dXVSZKFCxcmSWbPnp37778/2223Xemx5557Jknp1NcXXnghJ554Yt7znvekS5cu6du3b5JscHmL9d+7V69eDd4nSf74xz/m+OOPf8v5C4VCg+fF/z0d9s3b11n3rZELL7wwH/3oR3PggQfmuuuuS6FQyH/+53++5XsBAE2vpWWRJDnvvPMyaNCg7LvvvvnsZz+b73//+5k6dWpeffXVJMny5cvzmc98JoceemgeffTR/Pa3v83ee++dI488MsuXL3/LeQCAxpFFNswiw4YNK11mvaqqKrvvvnuOOuqo0r9Rc3HjewC2SW++cWqhUGiwbd0v5XXlxNq1a3PMMcdk0qRJGxxrXSA45phj0rt37/zgBz9IbW1t1q5dm/79+zc49fTN7/3m99kcNTU1WbBgQYNt68LIuhC0qRnf+973lrZVVVXlPe95j2ucA0AFtLQssjEHH3xwkuT5559Pjx49cvPNN2fevHl55JFH0qrVG9/pvPnmm9OtW7f84he/yL/+679u9rEBgLcmi2yYRZJkzJgxOe+88zJ//vx069Yt8+bNy7hx40qFUXNQsgDQIrzvfe/LLbfckj59+qRNmw1//b366qt59tln8x//8R/5P//n/yRJHnrooWaZ5ZBDDslXvvKVrFy5Mu3atUuS3HPPPamtrU2fPn02+poDDzwwVVVVee6553LYYYclSVatWpV58+a5xjkAbAO29SyyMb///e+T/P8/zNTX16dVq1YNvoG67nlj/vACADS9lpBF1ikUCqmtrU2S/OQnP0nv3r3zvve9r2mG3wglC7DVqaurK92Ua2vVsWPHdO3atdJj0AhnnXVWfvCDH+STn/xkvvjFL6Znz555/vnnM3369PzgBz9It27d0qNHj1x77bXp1atX/vrXv+bLX/5yWe+15557ZuLEiZs8NfbEE0/MpZdemlNOOSVf+cpX8uc//zkTJkzIxRdfXPqjxGOPPZZPf/rTue+++/Iv//Iv6dKlSz7/+c/nkksuSe/evbPLLrvkW9/6VpLk4x//eOnYzz//fJYuXZoFCxZk+fLlmTNnTpI3zoBZF1wAKmVzfscX6utT878/L1iwIMWOHZt/sDfxe57msK1nkUceeSSPPvpohgwZkq5du+bxxx/Peeedl2OPPTY777xzkuSII47IF7/4xZx11lkZNWpU1q5dm29+85tp06ZNhgwZUt4/HEAT21ge2Rryx/pWr1690T+Cb03kpW1PS8giSfKtb30rH/7wh9OqVavceuut+eY3v5mf/exnLhcGtBx1dXW58uqrsnbV6kqP8pZatW2Tc846W6DYhtTW1ua3v/1tvvSlL2X48OFZsWJFdtlll9Iv3kKhkOnTp+ecc85J//79s8cee+TKK6/M4MGDG/1ezz33XOrq6ja5v2vXrpkxY0bOOuusDBgwIN26dcuYMWMyZsyY0pr6+vo899xzWbVqVWnbt771rbRp0yYnnXRSli9fnoMOOii/+c1v0q1bt9Kaz372s5k5c2bp+QEHHJAkmTt3bqO+DQLQ1Db3d3zblSvzlf/9+Uc/+lFWVaAg9nue5rCtZ5Gqqqr89Kc/zaWXXlqa/fTTT88FF1xQes2ee+6ZO+64I5deemkOOeSQtGrVKgcccEDuuuuuDb5hClAJm8ojW0P+WN/aQtKqWNER3pa8tO1pCVkkSe6888584xvfyIoVK7LffvvlF7/4RUaMGNHoz9AYheK6O8q0YEuWLEnXrl1TV1eXLl26VHocWpply5Lttnvj56VLk06dKjtPhc2fPz/XXnttbj+4TxZ1aV/pcTaq55LXc9yj8/K5z31um/5/Fl9//fXMnTs3ffv2Tfv2W+e/Nc3vrf534PfjluPfmpZgc3/Hd1j+ev50+ClJkt3vm5blHbbs76h3y+/5bYU8giyydfBvTUuxqTxS6fyxvl3n12XIU/P9XWQLkUVoiiziTBZgq7SoS/ss6F7Z03MBgKb3dr/jO9a3Kv38P906pr6j/2cXAGhab84jW1P+6LHk9ST+LgLbklZvvwQAAACApvbggw/mmGOOSW1tbQqFQm6//fZNrj3jjDNSKBRyxRVXNNi+YsWKjBo1Kj179kynTp1y7LHH5uWXX27ewQGAEiULAAAAQAUsW7Ys++23X6666qq3XHf77bfnd7/7XWprazfYN3r06Nx2222ZPn16HnrooSxdujRHH3101qxZ01xjAwDrcbkwAAAAgAoYMWLE296M95VXXsnZZ5+du+++O0cddVSDfXV1dZk6dWpuvPHGDB06NEly0003pXfv3rn33nszfPjwZpsdAHhDRc9kueaaa7LvvvumS5cu6dKlSw455JDceeedpf3FYjHjx49PbW1tOnTokMGDB+eZZ55pcAynxQIAAADvRmvXrs1JJ52UL37xi9l777032D979uysWrUqw4YNK22rra1N//798/DDD2/yuCtWrMiSJUsaPACA8lS0ZNlpp53yzW9+M7NmzcqsWbPyoQ99KB/5yEdKRcrkyZNz2WWX5aqrrsrjjz+empqaHHHEEXnttddKx3BaLAAAAPBuNGnSpLRp0ybnnHPORvcvWLAg7dq1S7du3Rpsr66uzoIFCzZ53IkTJ6Zr166lR+/evZt0bgBoSSpashxzzDE58sgjs/vuu2f33XfPN77xjWy33XZ59NFHUywWc8UVV+TCCy/MCSeckP79++f6669PfX19br755iT//7TY73znOxk6dGgOOOCA3HTTTXnqqady7733VvKjAQAAAJRt9uzZ+e53v5tp06alUCg06rXFYvEtXzNu3LjU1dWVHi+99NI7HRcAWqyt5p4sa9asyX/+539m2bJlOeSQQzJ37twsWLCgwSmvVVVVGTRoUB5++OGcccYZb3ta7KauPbpixYqsWLGi9NxpsbQUdXV1qa+vr/QYb2nRokWVHgEAAKDi/uu//isLFy7MzjvvXNq2Zs2ajB07NldccUXmzZuXmpqarFy5MosXL25wNsvChQszcODATR67qqoqVVVVzTo/ALQUFS9ZnnrqqRxyyCF5/fXXs9122+W2227Le9/73tK1Q6urqxusr66uzosvvpjknZ0We+mllzbxJ4GtW11dXa68+qqsXbW60qNARTzwwAMZMmRIFi9enO23377S4wAALYwsQmOddNJJpZvZrzN8+PCcdNJJOfXUU5MkBx54YNq2bZsZM2Zk5MiRSZL58+fn6aefzuTJk7f4zABsvWSR5lPxkmWPPfbInDlz8s9//jO33HJLTj755MycObO0/82nt77dKa+bs2bcuHEZM2ZM6fmSJUtcf5R3vfr6+qxdtTq3H9wni7q0r/Q4m7Tr/LoMeWp+pcfgXWjgwIGZP39+unbt2uTHvuWWW3LRRRflhRdeyK677ppvfOMbOf7445v8fQCAbZcswsYsXbo0zz//fOn53LlzM2fOnHTv3j0777xzevTo0WB927ZtU1NTkz322CNJ0rVr15x22mkZO3ZsevToke7du+f888/PPvvss0FBA0DLJos0n4qXLO3atctuu+2WJBkwYEAef/zxfPe7382XvvSlJG+crdKrV6/S+oULF5bObnFaLDTeoi7ts6B7x0qPsUk9lrxe6RF4l2rXrl1qamqa/LiPPPJIPvGJT+Tf//3fc/zxx+e2227LyJEj89BDD+Wggw5q8vcDALZNsggbM2vWrAwZMqT0fN0XQk8++eRMmzZts45x+eWXp02bNhk5cmSWL1+eww8/PNOmTUvr1q2bY2QAtlGySPOp6I3vN6ZYLGbFihXp27dvampqMmPGjNK+lStXZubMmaUCZf3TYtdZd1rsW5UsAGzbBg8enFGjRmX06NHp1q1bqqurc+2112bZsmU59dRT07lz5+y666658847S6954IEHUigU8s9//jNJMm3atGy//fa5++67s9dee2W77bbLhz/84cyf37gzqa644oocccQRGTduXPbcc8+MGzcuhx9+eK644oom/MQAwNZEFqGpDB48OMVicYPHpgqWefPmZfTo0Q22tW/fPlOmTMmrr76a+vr63HHHHa7WAfAuJ4tsXSpasnzlK1/Jf/3Xf2XevHl56qmncuGFF+aBBx7Ipz71qRQKhYwePToTJkzIbbfdlqeffjqnnHJKOnbsmBNPPDFJw9Ni77vvvvz+97/Pv/3bvzktFqAFuP7669OzZ8889thjGTVqVL7whS/k4x//eAYOHJgnnniidL3q+vr6TR6jvr4+3/72t3PjjTfmwQcfzF//+tecf/75pf3rAsi8efM2eYxHHnkkw4YNa7Bt+PDhpXuLAQDvTrIIAFBJssjWo6Ily//8z//kpJNOyh577JHDDz88v/vd73LXXXfliCOOSJJccMEFGT16dM4888wMGDAgr7zySu6555507ty5dIzLL788xx13XEaOHJlDDz00HTt2zB133OG0WIB3uf322y9f/epX069fv4wbNy4dOnRIz549c/rpp6dfv365+OKL8+qrr+bJJ5/c5DFWrVqV73//+xkwYEDe97735eyzz859991X2t+xY8fsscceadu27SaPsWDBgtJlLNeprq7OggUL3vmHBAC2WrIIAFBJssjWo6L3ZJk6depb7i8UChk/fnzGjx+/yTXrToudMmVKE08HwNZs3333Lf3cunXr9OjRI/vss09p27pf8AsXLtzkMTp27Jhdd9219LxXr14N1n/gAx/IH//4x7edpVAoNHheLBY32AYAvLvIIgBAJckiW4+t7p4sALA53vwtikKh0GDbul/ma9eubdQxisVio+aoqanZ4NsZCxcu3OBbHADAu4ssAgBUkiyy9VCyAMA7cMghh2TGjBkNtt1zzz0ZOHBghSYCAFoSWQQAqCRZRMkCAJv02GOPZc8998wrr7yyyTXnnntu7rnnnkyaNCl//OMfM2nSpNx7770ZPXr0lhsUAHhXkkUAgEqSRTaPkgUANqG+vj7PPfdcVq1atck1AwcOzPTp03Pddddl3333zbRp0/LTn/40Bx100BacFAB4N5JFAIBKkkU2T0VvfA8A5XjggQc22DZv3rwNtq1/HdHBgwc3eH7KKafklFNOabD+uOOOe8vXbMrHPvaxfOxjH3v7wQGAdwVZBACoJFlk6+JMFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAoQ5tKDwAAAAAAwLZl0aJFlR7hbXXs2DFdu3at9Bi8yylZAAAA3mRr/6OBPxgAAJXSafmqrE1y6623VnqUt9WqbZucc9bZchPNSskCAADwv7aVPxr4gwEAUCntV61JqyS3H9wni7q0r/Q4m9Rzyes57tF5qa+vl5loVkoWAGhCr7/+ej7/+c9n9uzZefbZZ3P00Ufn9ttvr/RYAGymbeGPBv5gwFuRRQDYUhZ1aZ8F3TtWegy2Mi0xiyhZAKAJrVmzJh06dMg555yTW265pdLjAFAmfzRgWyWLAACV1BKzSKtKDwAAjTV48OCMGjUqo0ePTrdu3VJdXZ1rr702y5Yty6mnnprOnTtn1113zZ133ll6zZo1a3Laaaelb9++6dChQ/bYY49897vfLe1//fXXs/fee+dzn/tcadvcuXPTtWvX/OAHP9js2Tp16pRrrrkmp59+empqaprmAwMAWxVZBACoJFlk66JkAWCbdP3116dnz5557LHHMmrUqHzhC1/Ixz/+8QwcODBPPPFEhg8fnpNOOin19fVJkrVr12annXbKz372s/zhD3/IxRdfnK985Sv52c9+liRp3759fvzjH+f666/P7bffnjVr1uSkk07KkCFDcvrpp5fet1AoZNq0aZX4yADAVkQWAQAqSRbZeihZANgm7bfffvnqV7+afv36Zdy4cenQoUN69uyZ008/Pf369cvFF1+cV199NU8++WSSpG3btrn00kvz/ve/P3379s2nPvWpnHLKKaUwkST7779/vv71r+f000/PeeedlxdeeCE//OEPG7zvHnvs4fr3AIAsAgBUlCyy9XBPFgC2Sfvuu2/p59atW6dHjx7ZZ599Stuqq6uTJAsXLixt+/73v58f/vCHefHFF7N8+fKsXLky+++/f4Pjjh07Nr/4xS8yZcqU3HnnnenZs2eD/X/84x+b4dMAANsaWQQAqCRZZOvhTBYAtklt27Zt8LxQKDTYVigUkrxxOmyS/OxnP8t5552Xz3zmM7nnnnsyZ86cnHrqqVm5cmWD4yxcuDDPPfdcWrdunT//+c/N/CkAgG2VLAIAVJIssvVwJgsALcJ//dd/ZeDAgTnzzDNL21544YUN1n3mM59J//79c/rpp+e0007L4Ycfnve+971bclQA4F1IFgEAKkkWaT7OZAGgRdhtt90ya9as3H333fnTn/6Uiy66KI8//niDNVdffXUeeeSR3HDDDTnxxBPzsY99LJ/61KcafKtjzz33zG233faW7/WHP/whc+bMyT/+8Y/U1dVlzpw5mTNnTnN8LABgGyGLAACVJIs0H2eyANAifP7zn8+cOXPyiU98IoVCIZ/85Cdz5pln5s4770zyxjVFv/jFL2bq1Knp3bt3kjfCxX777ZeLLrookyZNSpI899xzqaure8v3OvLII/Piiy+Wnh9wwAFJkmKx2BwfDQDYBsgiAEAlySLNR8kCwDbngQce2GDbvHnzNti2/i/vqqqqXHfddbnuuusarJk4cWKSN76JUV9f32Bfly5dMnfu3E0ec1M2NgsA8O4hiwAAlSSLbF2ULAAAAADAO1JXV7fBH2i3NosWLar0CMC7kJIFAAAAAChbXV1drrz6qqxdtbrSowBscUoWAAAAAKBs9fX1WbtqdW4/uE8WdWlf6XE2adf5dRny1PxKjwG8yyhZAAAAAIB3bFGX9lnQvWOlx9ikHkter/QIwLtQq0oPAAAAAAAAsC1SsgC0cMVisdIjUEH++wOwNfD7qOXy3x6ArYHfRy1XU/y3V7IAtFBt27ZN8sa1c2m51v33X/e/BwDYklq3bp0kWblyZYUnoVJkEQAqSRahKbKIe7IAtFCtW7fO9ttvn4ULFyZJOnbsmEKhUOGp2FKKxWLq6+uzcOHCbL/99qVgCQBbUps2bdKxY8f8/e9/T9u2bdOqle8BthSyCABbA1mk5WrKLKJkAWjBampqkqRUtNDybL/99qX/HQDAllYoFNKrV6/MnTs3L774YqXHoQJkEQAqSRahKbKIkgWgBVsXJnbcccesWrWq0uOwhbVt29a3RgGouHbt2qVfv34u09ECySIAbA1kkZarqbKIkgWAtG7d2v+DCwBUTKtWrdK+fftKjwEAtFCyCO+Ei8wBAAAAAACUwZksAADwLlBXV5f6+vpKj7FJixYtqvQIAAAATU7JAgAA27i6urpcefVVWbtqdaVHAQAAaFGULAAAsI2rr6/P2lWrc/vBfbKoy9Z5Leld59dlyFPzKz0GAABAk1KyAAAt1sSJE3Prrbfmj3/8Yzp06JCBAwdm0qRJ2WOPPUprisViLr300lx77bVZvHhxDjrooFx99dXZe++9S2tWrFiR888/Pz/5yU+yfPnyHH744fne976XnXbaqRIfixZsUZf2WdC9Y6XH2KgeS16v9AgAAABNzo3vAYAWa+bMmTnrrLPy6KOPZsaMGVm9enWGDRuWZcuWldZMnjw5l112Wa666qo8/vjjqampyRFHHJHXXnuttGb06NG57bbbMn369Dz00ENZunRpjj766KxZs6YSHwsAAADYQpzJAgC0WHfddVeD59ddd1123HHHzJ49Ox/84AdTLBZzxRVX5MILL8wJJ5yQJLn++utTXV2dm2++OWeccUbq6uoyderU3HjjjRk6dGiS5Kabbkrv3r1z7733Zvjw4Vv8cwEAAABbhjNZAAD+V11dXZKke/fuSZK5c+dmwYIFGTZsWGlNVVVVBg0alIcffjhJMnv27KxatarBmtra2vTv37+05s1WrFiRJUuWNHgAAAAA2x4lCwBA3rj3ypgxY3LYYYelf//+SZIFCxYkSaqrqxusra6uLu1bsGBB2rVrl27dum1yzZtNnDgxXbt2LT169+7d1B8HAAAA2AKULAAASc4+++w8+eST+clPfrLBvkKh0OB5sVjcYNubvdWacePGpa6urvR46aWXyh8cAAAAqBglCwDQ4o0aNSq//OUvc//992ennXYqba+pqUmSDc5IWbhwYenslpqamqxcuTKLFy/e5Jo3q6qqSpcuXRo8AAAAgG2PkgUAaLGKxWLOPvvs3HrrrfnNb36Tvn37Ntjft2/f1NTUZMaMGaVtK1euzMyZMzNw4MAkyYEHHpi2bds2WDN//vw8/fTTpTUAAADAu1ObSg8AAFApZ511Vm6++eb84he/SOfOnUtnrHTt2jUdOnRIoVDI6NGjM2HChPTr1y/9+vXLhAkT0rFjx5x44omltaeddlrGjh2bHj16pHv37jn//POzzz77ZOjQoZX8eAAAAEAzU7IAAC3WNddckyQZPHhwg+3XXXddTjnllCTJBRdckOXLl+fMM8/M4sWLc9BBB+Wee+5J586dS+svv/zytGnTJiNHjszy5ctz+OGHZ9q0aWnduvWW+igAAABABShZAIAWq1gsvu2aQqGQ8ePHZ/z48Ztc0759+0yZMiVTpkxpwukAAACArZ17sgAAAAAAAJRByQIAAABQAQ8++GCOOeaY1NbWplAo5Pbbby/tW7VqVb70pS9ln332SadOnVJbW5tPf/rT+dvf/tbgGCtWrMioUaPSs2fPdOrUKccee2xefvnlLfxJAKDlUrIAAAAAVMCyZcuy33775aqrrtpgX319fZ544olcdNFFeeKJJ3LrrbfmT3/6U4499tgG60aPHp3bbrst06dPz0MPPZSlS5fm6KOPzpo1a7bUxwCAFs09WQAAAAAqYMSIERkxYsRG93Xt2jUzZsxosG3KlCn5wAc+kL/+9a/ZeeedU1dXl6lTp+bGG2/M0KFDkyQ33XRTevfunXvvvTfDhw9v9s8AAC2dM1kAAAAAtgF1dXUpFArZfvvtkySzZ8/OqlWrMmzYsNKa2tra9O/fPw8//PAmj7NixYosWbKkwQMAKI+SBQAAAGAr9/rrr+fLX/5yTjzxxHTp0iVJsmDBgrRr1y7dunVrsLa6ujoLFizY5LEmTpyYrl27lh69e/du1tkB4N1MyQIAAACwFVu1alX+9V//NWvXrs33vve9t11fLBZTKBQ2uX/cuHGpq6srPV566aWmHBcAWhQlCwAAAMBWatWqVRk5cmTmzp2bGTNmlM5iSZKampqsXLkyixcvbvCahQsXprq6epPHrKqqSpcuXRo8AIDyKFkAAAAAtkLrCpY///nPuffee9OjR48G+w888MC0bds2M2bMKG2bP39+nn766QwcOHBLjwsALVKbSg8AAAAA0BItXbo0zz//fOn53LlzM2fOnHTv3j21tbX52Mc+lieeeCK/+tWvsmbNmtJ9Vrp375527dqla9euOe200zJ27Nj06NEj3bt3z/nnn5999tknQ4cOrdTHAoAWRckCAAAAUAGzZs3KkCFDSs/HjBmTJDn55JMzfvz4/PKXv0yS7L///g1ed//992fw4MFJkssvvzxt2rTJyJEjs3z58hx++OGZNm1aWrduvUU+AwC0dEoWAAAAgAoYPHhwisXiJve/1b512rdvnylTpmTKlClNORoAsJnckwUAAAAAAKAMShYAAAAAAIAyVLRkmThxYt7//venc+fO2XHHHXPcccflueeea7DmlFNOSaFQaPA4+OCDG6xZsWJFRo0alZ49e6ZTp0459thj8/LLL2/JjwIAAAAAALQwFS1ZZs6cmbPOOiuPPvpoZsyYkdWrV2fYsGFZtmxZg3Uf/vCHM3/+/NLj//7f/9tg/+jRo3Pbbbdl+vTpeeihh7J06dIcffTRWbNmzZb8OAAAAAAAQAtS0Rvf33XXXQ2eX3fdddlxxx0ze/bsfPCDHyxtr6qqSk1NzUaPUVdXl6lTp+bGG2/M0KFDkyQ33XRTevfunXvvvTfDhw9vvg8AAAAAAAC0WFvVPVnq6uqSJN27d2+w/YEHHsiOO+6Y3XffPaeffnoWLlxY2jd79uysWrUqw4YNK22rra1N//798/DDD2/0fVasWJElS5Y0eAAAAAAAADTGVlOyFIvFjBkzJocddlj69+9f2j5ixIj8+Mc/zm9+85t85zvfyeOPP54PfehDWbFiRZJkwYIFadeuXbp169bgeNXV1VmwYMFG32vixInp2rVr6dG7d+/m+2AAAAAAAMC7UkUvF7a+s88+O08++WQeeuihBts/8YlPlH7u379/BgwYkF122SW//vWvc8IJJ2zyeMViMYVCYaP7xo0blzFjxpSeL1myRNECAAAAAAA0ylZxJsuoUaPyy1/+Mvfff3922mmnt1zbq1ev7LLLLvnzn/+cJKmpqcnKlSuzePHiBusWLlyY6urqjR6jqqoqXbp0afAAAAAAAABojIqWLMViMWeffXZuvfXW/OY3v0nfvn3f9jWvvvpqXnrppfTq1StJcuCBB6Zt27aZMWNGac38+fPz9NNPZ+DAgc02OwAAAAAA0LJV9HJhZ511Vm6++eb84he/SOfOnUv3UOnatWs6dOiQpUuXZvz48fnoRz+aXr16Zd68efnKV76Snj175vjjjy+tPe200zJ27Nj06NEj3bt3z/nnn5999tknQ4cOreTHAwAAAAAA3sUqWrJcc801SZLBgwc32H7dddfllFNOSevWrfPUU0/lhhtuyD//+c/06tUrQ4YMyU9/+tN07ty5tP7yyy9PmzZtMnLkyCxfvjyHH354pk2bltatW2/JjwMAAAAAALQgFS1ZisXiW+7v0KFD7r777rc9Tvv27TNlypRMmTKlqUYDAAAAAAB4S1vFje8BAAAAAAC2NUoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAACogAcffDDHHHNMamtrUygUcvvttzfYXywWM378+NTW1qZDhw4ZPHhwnnnmmQZrVqxYkVGjRqVnz57p1KlTjj322Lz88stb8FMAQMumZAEAAACogGXLlmW//fbLVVddtdH9kydPzmWXXZarrroqjz/+eGpqanLEEUfktddeK60ZPXp0brvttkyfPj0PPfRQli5dmqOPPjpr1qzZUh8DAFq0NpUeAAAAAKAlGjFiREaMGLHRfcViMVdccUUuvPDCnHDCCUmS66+/PtXV1bn55ptzxhlnpK6uLlOnTs2NN96YoUOHJkluuumm9O7dO/fee2+GDx++xT4LALRUzmQBAAAA2MrMnTs3CxYsyLBhw0rbqqqqMmjQoDz88MNJktmzZ2fVqlUN1tTW1qZ///6lNRuzYsWKLFmypMEDACiPkgUAAABgK7NgwYIkSXV1dYPt1dXVpX0LFixIu3bt0q1bt02u2ZiJEyema9eupUfv3r2beHoAaDmULAAAAABbqUKh0OB5sVjcYNubvd2acePGpa6urvR46aWXmmRWAGiJ3JMFAAAAYCtTU1OT5I2zVXr16lXavnDhwtLZLTU1NVm5cmUWL17c4GyWhQsXZuDAgZs8dlVVVaqqqpppcoCty6JFiyo9wlvq2LFjunbtWukxeAeULAAAAABbmb59+6ampiYzZszIAQcckCRZuXJlZs6cmUmTJiVJDjzwwLRt2zYzZszIyJEjkyTz58/P008/ncmTJ1dsdoCtQaflq7I2ya233lrpUd5Sq7Ztcs5ZZytatmFKFgAAAIAKWLp0aZ5//vnS87lz52bOnDnp3r17dt5554wePToTJkxIv3790q9fv0yYMCEdO3bMiSeemCTp2rVrTjvttIwdOzY9evRI9+7dc/7552efffbJ0KFDK/WxALYK7VetSasktx/cJ4u6tK/0OBvVc8nrOe7Reamvr1eybMOULAAAAAAVMGvWrAwZMqT0fMyYMUmSk08+OdOmTcsFF1yQ5cuX58wzz8zixYtz0EEH5Z577knnzp1Lr7n88svTpk2bjBw5MsuXL8/hhx+eadOmpXXr1lv88wBsjRZ1aZ8F3TtWegzexZQsAAAAABUwePDgFIvFTe4vFAoZP358xo8fv8k17du3z5QpUzJlypRmmBAAeDutKj0AAAAAAADAtkjJAgAAAAAAUAYlCwAAAAAAQBmULAAAAAAAAGVQsgAAAAAAAJSh0SXL9ddfn1//+tel5xdccEG23377DBw4MC+++GKTDgcA8GayCABQSbIIALC+RpcsEyZMSIcOHZIkjzzySK666qpMnjw5PXv2zHnnndfkAwIArE8WAQAqSRYBANbXprEveOmll7LbbrslSW6//fZ87GMfy+c+97kceuihGTx4cFPPBwDQgCwCAFSSLAIArK/RZ7Jst912efXVV5Mk99xzT4YOHZokad++fZYvX9600wEAvIksAgBUkiwCAKyv0WeyHHHEEfnsZz+bAw44IH/6059y1FFHJUmeeeaZ9OnTp6nnAwBoQBYBACpJFgEA1tfoM1muvvrqHHLIIfn73/+eW265JT169EiSzJ49O5/85CebfEAAgPXJIgBAJckiAMD6Gn0my5IlS3LllVemVauG/cz48ePz0ksvNdlgAAAbI4sAAJUkiwAA62v0mSx9+/bNokWLNtj+j3/8I3379m2SoQAANkUWAQAqSRYBANbX6JKlWCxudPvSpUvTvn37Rh1r4sSJef/735/OnTtnxx13zHHHHZfnnntug/cbP358amtr06FDhwwePDjPPPNMgzUrVqzIqFGj0rNnz3Tq1CnHHntsXn755cZ9MABgm9CUWeTBBx/MMccck9ra2hQKhdx+++0N9p9yyikpFAoNHgcffHCDNXIIALQsTZlFAIBt32ZfLmzMmDFJkkKhkIsvvjgdO3Ys7VuzZk1+97vfZf/992/Um8+cOTNnnXVW3v/+92f16tW58MILM2zYsPzhD39Ip06dkiSTJ0/OZZddlmnTpmX33XfP17/+9RxxxBF57rnn0rlz5yTJ6NGjc8cdd2T69Onp0aNHxo4dm6OPPjqzZ89O69atGzUTALB1ao4ssmzZsuy333459dRT89GPfnSjaz784Q/nuuuuKz1v165dg/1yCAC0DM2RRQCAbd9mlyy///3vk7zxjY2nnnqqwR8Y2rVrl/322y/nn39+o978rrvuavD8uuuuy4477pjZs2fngx/8YIrFYq644opceOGFOeGEE5Ik119/faqrq3PzzTfnjDPOSF1dXaZOnZobb7wxQ4cOTZLcdNNN6d27d+69994MHz68UTMBAFun5sgiI0aMyIgRI95yTVVVVWpqaja6Tw4BgJajObIIALDt2+yS5f7770+SnHrqqfnud7+bLl26NPkwdXV1SZLu3bsnSebOnZsFCxZk2LBhpTVVVVUZNGhQHn744ZxxxhmZPXt2Vq1a1WBNbW1t+vfvn4cffnijf9xYsWJFVqxYUXq+ZMmSJv8sAEDT2hJZZGMeeOCB7Ljjjtl+++0zaNCgfOMb38iOO+6YJGXlkEQWAZrGxu4JsbXp2LFjunbtWukxoElUKosAAFu3zS5Z1ln/chlNqVgsZsyYMTnssMPSv3//JMmCBQuSJNXV1Q3WVldX58UXXyytadeuXbp167bBmnWvf7OJEyfm0ksvbeqPAABsAc2VRTZmxIgR+fjHP55ddtklc+fOzUUXXZQPfehDmT17dqqqqsrKIYksArwznZavytokt956a6VHeVut2rbJOWedrWjhXWVLZhEAYOvX6JJl2bJl+eY3v5n77rsvCxcuzNq1axvs/8tf/lLWIGeffXaefPLJPPTQQxvsKxQKDZ4Xi8UNtr3ZW60ZN25c6VqqyRvfHu3du3cZUwMAW1pzZZGN+cQnPlH6uX///hkwYEB22WWX/PrXvy5dynRj3i6ryCLAO9F+1Zq0SnL7wX2yqMvWe5Ptnktez3GPzkt9fb2ShXeVLZlFAICtX6NLls9+9rOZOXNmTjrppPTq1etty47NMWrUqPzyl7/Mgw8+mJ122qm0fd31zxcsWJBevXqVti9cuLB0dktNTU1WrlyZxYsXN/gW6cKFCzNw4MCNvl9VVVWqqqre8dwAwJbXHFlkc/Xq1Su77LJL/vznPycpL4cksgjQNBZ1aZ8F3Tu+/UKgSVUyiwAAW59Glyx33nlnfv3rX+fQQw99x29eLBYzatSo3HbbbXnggQfSt2/fBvv79u2bmpqazJgxIwcccECSZOXKlZk5c2YmTZqUJDnwwAPTtm3bzJgxIyNHjkySzJ8/P08//XQmT578jmcEALYuTZlFGuvVV1/NSy+9VPryhxwCAC1PJbMIALD1aXTJ0q1bt9KN6d+ps846KzfffHN+8YtfpHPnzqVrl3ft2jUdOnRIoVDI6NGjM2HChPTr1y/9+vXLhAkT0rFjx5x44omltaeddlrGjh2bHj16pHv37jn//POzzz77ZOjQoU0yJwCw9WjKLLJ06dI8//zzpedz587NnDlz0r1793Tv3j3jx4/PRz/60fTq1Svz5s3LV77ylfTs2TPHH398EjkEAFqipswiAMC2r1VjX/Dv//7vufjii1NfX/+O3/yaa65JXV1dBg8enF69epUeP/3pT0trLrjggowePTpnnnlmBgwYkFdeeSX33HNPOnfuXFpz+eWX57jjjsvIkSNz6KGHpmPHjrnjjjvSunXrdzwjALB1acosMmvWrBxwwAGlM2bHjBmTAw44IBdffHFat26dp556Kh/5yEey++675+STT87uu++eRx55RA4BgBasKbMIALDta/SZLN/5znfywgsvpLq6On369Enbtm0b7H/iiSc2+1jFYvFt1xQKhYwfPz7jx4/f5Jr27dtnypQpmTJlyma/NwCwbWrKLDJ48OC3zCN333332x5DDgGAlqUpswgAsO1rdMly3HHHNcMYAACbRxYBACpJFgEA1tfokuWSSy5pjjkAADaLLAIAVJIsAgCsr9H3ZEmSf/7zn/nhD3+YcePG5R//+EeSN06HfeWVV5p0OACAjZFFAIBKkkUAgHUafSbLk08+maFDh6Zr166ZN29eTj/99HTv3j233XZbXnzxxdxwww3NMScAQBJZBACoLFkEAFhfo89kGTNmTE455ZT8+c9/Tvv27UvbR4wYkQcffLBJhwMAeDNZBACoJFkEAFhfo0uWxx9/PGecccYG2//lX/4lCxYsaJKhAAA2RRYBACpJFgEA1tfokqV9+/ZZsmTJBtufe+657LDDDk0yFADApsgiAEAlySIAwPoaXbJ85CMfyde+9rWsWrUqSVIoFPLXv/41X/7yl/PRj360yQcEAFifLAIAVJIsAgCsr9Ely7e//e38/e9/z4477pjly5dn0KBB2W233dK5c+d84xvfaI4ZAQBKZBEAoJJkEQBgfW0a+4IuXbrkoYceym9+85s88cQTWbt2bd73vvdl6NChzTEfwFZr0aJFlR7hbXXs2DFdu3at9BjQpGQRAKCSZBEAYH2NLlnW+dCHPpQPfehDTTkLwDah0/JVWZvk1ltvrfQob6tV2zY556yzFS28K8kiAEAlySIAQFJmyfLYY4/lgQceyMKFC7N27doG+y677LImGQxga9V+1Zq0SnL7wX2yqEv7So+zST2XvJ7jHp2X+vp6JQvvOrIIAFBJsggAsE6jS5YJEybkq1/9avbYY49UV1enUCiU9q3/M8C73aIu7bOge8dKjwEtjiwCAFSSLAIArK/RJct3v/vd/OhHP8opp5zSDOMAALw1WQQAqCRZBABYX6tGv6BVqxx66KHNMQsAwNuSRQCASpJFAID1NfpMlvPOOy9XX311rrjiimYYB7ZddXV1qa+vb/TrCvX1qfnfnxcsWJBix+a5/NSiRYua5bgAW5osAgBUkiwCAKyv0SXL+eefn6OOOiq77rpr3vve96Zt27YN9t96661NNhxsK+rq6nLl1Vdl7arVjX5t25Ur85X//flHP/pRVrVr17TDAbzLyCIAQCXJIgDA+hpdsowaNSr3339/hgwZkh49eripGySpr6/P2lWrc/vBfbKoS/tGvbbD8tfzlQlv/Dzt8N2zvEPjXr+5dp1flyFPzW+WYwNsSbIIAFBJsggAsL5Glyw33HBDbrnllhx11FHNMQ9s0xZ1aZ8F3Rt3ua+O9f//1kj/061j6js2T8nSY8nrzXJcgC1NFgEAKkkWAQDW1+gb33fv3j277rprc8wCAPC2ZBEAoJJkEQBgfY0uWcaPH59LLrmkrBt8AwC8U7IIAFBJsggAsL5GXy7syiuvzAsvvJDq6ur06dNngxu8PfHEE002HADAm8kiAEAlySIAwPoaXbIcd9xxzTAGAMDmkUUAgEqSRQCA9TW6ZLnkkkuaYw4AgM0iiwAAlSSLAADra/Q9WQAAAAAAACjjTJZu3bqlUChssL1QKKR9+/bZbbfdcsopp+TUU09tkgEBANYniwAAlSSLAADra3TJcvHFF+cb3/hGRowYkQ984AMpFot5/PHHc9ddd+Wss87K3Llz84UvfCGrV6/O6aef3hwzAwAtmCwCAFSSLAIArK/RJctDDz2Ur3/96/n85z/fYPt//Md/5J577sktt9ySfffdN1deeaUwAQA0OVkEAKgkWQQAWF+j78ly9913Z+jQoRtsP/zww3P33XcnSY488sj85S9/eefTAQC8iSwCAFSSLAIArK/RJUv37t1zxx13bLD9jjvuSPfu3ZMky5YtS+fOnd/5dAAAbyKLAACVJIsAAOtr9OXCLrroonzhC1/I/fffnw984AMpFAp57LHH8n//7//N97///STJjBkzMmjQoCYfFgBAFgEAKkkWAQDW1+gzWU4//fTMnDkznTp1yq233pqf//zn6dixY2bOnJnTTjstSTJ27Nj89Kc/bfJhAQBkEQCgkrZ0Flm9enW++tWvpm/fvunQoUPe85735Gtf+1rWrl1bWlMsFjN+/PjU1tamQ4cOGTx4cJ555pkmeX8A4K01+kyWJDn00ENz6KGHNvUsAACbRRYBACppS2aRSZMm5fvf/36uv/767L333pk1a1ZOPfXUdO3aNeeee26SZPLkybnssssybdq07L777vn617+eI444Is8995zLlgFAMyurZFln+fLlWbVqVYNtXbp0eUcDAQBsLlkEAKikLZFFHnnkkXzkIx/JUUcdlSTp06dPfvKTn2TWrFlJ3jiL5YorrsiFF16YE044IUly/fXXp7q6OjfffHPOOOOMJp0HAGio0ZcLq6+vz9lnn50dd9wx2223Xbp169bgAQDQnGQRAKCStnQWOeyww3LfffflT3/6U5Lkv//7v/PQQw/lyCOPTJLMnTs3CxYsyLBhw0qvqaqqyqBBg/Lwww83+TwAQEONLlm++MUv5je/+U2+973vpaqqKj/84Q9z6aWXpra2NjfccENzzAgAUCKLAACVtKWzyJe+9KV88pOfzJ577pm2bdvmgAMOyOjRo/PJT34ySbJgwYIkSXV1dYPXVVdXl/a92YoVK7JkyZIGDwCgPI2+XNgdd9yRG264IYMHD85nPvOZ/J//83+y2267ZZdddsmPf/zjfOpTn2qOOQEAksgiAEBlbeks8tOf/jQ33XRTbr755uy9996ZM2dORo8endra2px88smldYVCocHrisXiBtvWmThxYi699NImnRMAWqpGn8nyj3/8I3379k3yxnVG//GPfyR54/TVBx98sGmnAwB4E1kEAKikLZ1FvvjFL+bLX/5y/vVf/zX77LNPTjrppJx33nmZOHFikqSmpiZJNjhrZeHChRuc3bLOuHHjUldXV3q89NJLTT43ALQUjS5Z3vOe92TevHlJkve+97352c9+luSNb3Jsv/32TTkbAMAGZBEAoJK2dBapr69Pq1YN/3zTunXrrF27NknSt2/f1NTUZMaMGaX9K1euzMyZMzNw4MCNHrOqqipdunRp8AAAytPoy4Wdeuqp+e///u8MGjQo48aNy1FHHZUpU6Zk9erVueyyy5pjRgCAElkEAKikLZ1FjjnmmHzjG9/IzjvvnL333ju///3vc9lll+Uzn/lMkjcuEzZ69OhMmDAh/fr1S79+/TJhwoR07NgxJ554YpPPAwA01OiS5bzzziv9PGTIkPzxj3/MrFmzsuuuu2a//fZr0uEAAN5MFgEAKmlLZ5EpU6bkoosuyplnnpmFCxemtrY2Z5xxRi6++OLSmgsuuCDLly/PmWeemcWLF+eggw7KPffck86dOzf5PABAQ40qWVatWpVhw4blP/7jP7L77rsnSXbeeefsvPPOzTIcAMD6ZBEAoJIqkUU6d+6cK664IldcccUm1xQKhYwfPz7jx49vtjkAgI1r1D1Z2rZtm6effjqFQqG55gEA2CRZBACoJFkEAHizRt/4/tOf/nSmTp3aHLMAALwtWQQAqCRZBABYX6PvybJy5cr88Ic/zIwZMzJgwIB06tSpwX43nAUAmpMsAgBUkiwCAKyv0SXL008/nfe9731Jkj/96U8N9jldFgBobrIIAFBJsggAsL7NKlmefPLJ9O/fP61atcr999/f3DMBADQgiwAAlSSLAACbsln3ZDnggAOyaNGiJMl73vOevPrqq806FADA+mQRAKCSZBEAYFM2q2TZfvvtM3fu3CTJvHnzsnbt2mYdCgBgfbIIAFBJsggAsCmbdbmwj370oxk0aFB69eqVQqGQAQMGpHXr1htd+5e//KVJBwQAkEUAgEqSRQCATdmskuXaa6/NCSeckOeffz7nnHNOTj/99HTu3Lm5ZwMASCKLAGzL1l1iaWvVsWPHdO3atdJjsJWTRQCATdmskiVJPvzhDydJZs+enXPPPVeYAAC2KFkEYNvSafmqrE1y6623VnqUt9SqbZucc9bZihbeliwCAGzMZpcs61x33XXNMQcAwGaRRQC2De1XrUmrJLcf3CeLurSv9Dgb1XPJ6znu0Xmpr69XsrDZZBEAYH2NLlkAAABgcy3q0j4Lunes9BgAANAsWlV6AAAAAAAAgG2RkgUAAAAAAKAMm1WyvO9978vixYuTJF/72tdSX1/frEMBAKxPFgEAKkkWAQA2ZbNKlmeffTbLli1Lklx66aVZunRpsw4FALA+WQQAqCRZBADYlM268f3++++fU089NYcddliKxWK+/e1vZ7vtttvo2osvvrhJBwQAkEUAgEqSRQCATdmskmXatGm55JJL8qtf/SqFQiF33nln2rTZ8KWFQkGYAACanCwCAFSSLAIAbMpmlSx77LFHpk+fniRp1apV7rvvvuy4447NOhgAwDqyCABQSbIIALApm1WyrG/t2rXNMQcAwGaRRQCASpJFAID1NbpkSZIXXnghV1xxRZ599tkUCoXstddeOffcc7Prrrs29XwAABuQRQCASpJFAIB1WjX2BXfffXfe+9735rHHHsu+++6b/v3753e/+1323nvvzJgxozlmBAAokUUAgEqSRQCA9TX6TJYvf/nLOe+88/LNb35zg+1f+tKXcsQRRzTZcAAAbyaLAACVJIsAAOtr9Jkszz77bE477bQNtn/mM5/JH/7whyYZCgBgU2QRAKCSZBEAYH2NLll22GGHzJkzZ4Ptc+bMyY477tioYz344IM55phjUltbm0KhkNtvv73B/lNOOSWFQqHB4+CDD26wZsWKFRk1alR69uyZTp065dhjj83LL7/c2I8FAGwjmjKLAAA0liwCAKyv0ZcLO/300/O5z30uf/nLXzJw4MAUCoU89NBDmTRpUsaOHduoYy1btiz77bdfTj311Hz0ox/d6JoPf/jDue6660rP27Vr12D/6NGjc8cdd2T69Onp0aNHxo4dm6OPPjqzZ89O69atG/vxAICtXFNmEQCAxpJFAID1Nbpkueiii9K5c+d85zvfybhx45IktbW1GT9+fM4555xGHWvEiBEZMWLEW66pqqpKTU3NRvfV1dVl6tSpufHGGzN06NAkyU033ZTevXvn3nvvzfDhwxs1DwCw9WvKLAIA0FiyCACwvkaXLIVCIeedd17OO++8vPbaa0mSzp07N/lg6zzwwAPZcccds/3222fQoEH5xje+UTr9dvbs2Vm1alWGDRtWWl9bW5v+/fvn4Ycf3mTJsmLFiqxYsaL0fMmSJc02PwDQtLZ0FgEAWJ8sAgCsr9H3ZFlf586dmzVIjBgxIj/+8Y/zm9/8Jt/5znfy+OOP50Mf+lCpIFmwYEHatWuXbt26NXhddXV1FixYsMnjTpw4MV27di09evfu3WyfAQBoPs2dRQAA3oosAgA0+kyWLekTn/hE6ef+/ftnwIAB2WWXXfLrX/86J5xwwiZfVywWUygUNrl/3LhxGTNmTOn5kiVLFC0AAAAAAECjvKMzWba0Xr16ZZdddsmf//znJElNTU1WrlyZxYsXN1i3cOHCVFdXb/I4VVVV6dKlS4MHAAAAAABAY2xTJcurr76al156Kb169UqSHHjggWnbtm1mzJhRWjN//vw8/fTTGThwYKXGBAAAAAAAWoBGlSyrVq3KkCFD8qc//alJ3nzp0qWZM2dO5syZkySZO3du5syZk7/+9a9ZunRpzj///DzyyCOZN29eHnjggRxzzDHp2bNnjj/++CRJ165dc9ppp2Xs2LG577778vvf/z7/9m//ln322SdDhw5tkhkBgK1HU2cRAIDGkEUAgDdr1D1Z2rZtm6effvot73fSGLNmzcqQIUNKz9fdJ+Xkk0/ONddck6eeeio33HBD/vnPf6ZXr14ZMmRIfvrTnza4qdzll1+eNm3aZOTIkVm+fHkOP/zwTJs2La1bt26SGQGArUdTZxEAgMaQRQCAN2v05cI+/elPZ+rUqU3y5oMHD06xWNzgMW3atHTo0CF33313Fi5cmJUrV+bFF1/MtGnTNrhBffv27TNlypS8+uqrqa+vzx133OEm9gDwLtaUWQQAoLFkEQBgfY06kyVJVq5cmR/+8IeZMWNGBgwYkE6dOjXYf9lllzXZcAAAbyaLAACVJIsAAOtrdMny9NNP533ve1+SbHANUqfLAgDNTRYBACpJFgEA1tfokuX+++9vjjkAADaLLAIAVJIsAgCsr9H3ZFnn+eefz913353ly5cnSYrFYpMNBQDwdmQRAKCSZBEAICmjZHn11Vdz+OGHZ/fdd8+RRx6Z+fPnJ0k++9nPZuzYsU0+IADA+mQRAKCSZBEAYH2NLlnOO++8tG3bNn/961/TsWPH0vZPfOITueuuu5p0OACAN5NFAIBKkkUAgPU1+p4s99xzT+6+++7stNNODbb369cvL774YpMNBgCwMbIIAFBJsggAsL5Gn8mybNmyBt/UWGfRokWpqqpqkqEAADZFFgEAKkkWAQDW1+iS5YMf/GBuuOGG0vNCoZC1a9fmW9/6VoYMGdKkwwEAvJksAgBUkiwCAKyv0ZcL+9a3vpXBgwdn1qxZWblyZS644II888wz+cc//pHf/va3zTEjAECJLAIAVJIsAgCsr9Fnsrz3ve/Nk08+mQ984AM54ogjsmzZspxwwgn5/e9/n1133bU5ZgQAKJFFAIBKkkUAgPU1+kyWJKmpqcmll17a1LMAAGwWWQQAqCRZBABYp6ySZfHixZk6dWqeffbZFAqF7LXXXjn11FPTvXv3pp4PAGADsggAUEmyCACwTqMvFzZz5sz07ds3V155ZRYvXpx//OMfufLKK9O3b9/MnDmzOWYEACiRRQCASpJFAID1NfpMlrPOOisjR47MNddck9atWydJ1qxZkzPPPDNnnXVWnn766SYfEgBgHVkEAKgkWQQAWF+jz2R54YUXMnbs2FKQSJLWrVtnzJgxeeGFF5p0OACAN2vKLPLggw/mmGOOSW1tbQqFQm6//fYG+4vFYsaPH5/a2tp06NAhgwcPzjPPPNNgzYoVKzJq1Kj07NkznTp1yrHHHpuXX3657M8HAGzd/F0EAFhfo0uW973vfXn22Wc32P7ss89m//33b4qZAAA2qSmzyLJly7Lffvvlqquu2uj+yZMn57LLLstVV12Vxx9/PDU1NTniiCPy2muvldaMHj06t912W6ZPn56HHnooS5cuzdFHH501a9Y0ahYAYNvg7yIAwPo263JhTz75ZOnnc845J+eee26ef/75HHzwwUmSRx99NFdffXW++c1vNs+UAECL1lxZZMSIERkxYsRG9xWLxVxxxRW58MILc8IJJyRJrr/++lRXV+fmm2/OGWeckbq6ukydOjU33nhjhg4dmiS56aab0rt379x7770ZPnx4OR8XANjK+LsIALApm1Wy7L///ikUCikWi6VtF1xwwQbrTjzxxHziE59ouukAAFKZLDJ37twsWLAgw4YNK22rqqrKoEGD8vDDD+eMM87I7Nmzs2rVqgZramtr079//zz88MNKFgB4l/B3EQBgUzarZJk7d25zzwEAsEmVyCILFixIklRXVzfYXl1dnRdffLG0pl27dunWrdsGa9a9fmNWrFiRFStWlJ4vWbKkqcYGAJqBv4sAAJuyWSXLLrvs0txzAABsUiWzSKFQaPC8WCxusO3N3m7NxIkTc+mllzbJfABA8/N3EQBgUzarZHmzV155Jb/97W+zcOHCrF27tsG+c845p0kGAwDYlC2RRWpqapK8cbZKr169StsXLlxYOrulpqYmK1euzOLFixuczbJw4cIMHDhwk8ceN25cxowZU3q+ZMmS9O7du0nmBgCa35b+u8grr7ySL33pS7nzzjuzfPny7L777pk6dWoOPPDAJG98wePSSy/Ntddem8WLF+eggw7K1Vdfnb333rvJZwEAGmp0yXLdddfl85//fNq1a5cePXo0+JZmoVBQsgAAzWpLZZG+ffumpqYmM2bMyAEHHJAkWblyZWbOnJlJkyYlSQ488MC0bds2M2bMyMiRI5Mk8+fPz9NPP53Jkydv8thVVVWpqqpqkjkBgC1rS/9dZPHixTn00EMzZMiQ3Hnnndlxxx3zwgsvZPvtty+tmTx5ci677LJMmzYtu+++e77+9a/niCOOyHPPPZfOnTs36TwAQEONLlkuvvjiXHzxxRk3blxatWrVHDMBAGxSU2aRpUuX5vnnny89nzt3bubMmZPu3btn5513zujRozNhwoT069cv/fr1y4QJE9KxY8eceOKJSZKuXbvmtNNOy9ixY9OjR4907949559/fvbZZ58MHTr0Hc0GAGydtvTfRSZNmpTevXvnuuuuK23r06dP6edisZgrrrgiF154YU444YQkyfXXX5/q6urcfPPNOeOMM5p9RgBoyRqdBurr6/Ov//qvChYAoCKaMovMmjUrBxxwQOlMlTFjxuSAAw7IxRdfnCS54IILMnr06Jx55pkZMGBAXnnlldxzzz0NvhF6+eWX57jjjsvIkSNz6KGHpmPHjrnjjjvSunXrdzwfALD12dJ/F/nlL3+ZAQMG5OMf/3h23HHHHHDAAfnBD35Q2j937twsWLAgw4YNK22rqqrKoEGD8vDDD2/0mCtWrMiSJUsaPACA8jQ6EZx22mn5z//8z+aYBQDgbTVlFhk8eHCKxeIGj2nTpiV545If48ePz/z58/P6669n5syZ6d+/f4NjtG/fPlOmTMmrr76a+vr63HHHHe6vAgDvYlv67yJ/+ctfcs0116Rfv365++678/nPfz7nnHNObrjhhiRv3D8uSemecetUV1eX9r3ZxIkT07Vr19JDdgGA8jX6cmETJ07M0Ucfnbvuuiv77LNP2rZt22D/ZZdd1mTDAQC8mSwCAFTSls4ia9euzYABAzJhwoQkyQEHHJBnnnkm11xzTT796U+X1q1/b5jkjcuIvXnbOuPGjcuYMWNKz5csWaJoAYAyNbpkmTBhQu6+++7sscceSbLBDd4AAJqTLAIAVNKWziK9evXKe9/73gbb9tprr9xyyy1JkpqamiRvnNHSq1ev0pqFCxducHbLOlVVVamqqmryWQGgJWp0yXLZZZflRz/6UU455ZRmGAcA4K3JIgBAJW3pLHLooYfmueeea7DtT3/6U3bZZZckSd++fVNTU5MZM2aU7jO3cuXKzJw5M5MmTdoiMwJAS9bokqWqqiqHHnpoc8wCAPC2ZBEAoJK2dBY577zzMnDgwEyYMCEjR47MY489lmuvvTbXXnttkjfOnhk9enQmTJiQfv36pV+/fpkwYUI6duyYE088cYvNCQAtVaNvfH/uuedmypQpzTELAMDbkkUAgEra0lnk/e9/f2677bb85Cc/Sf/+/fPv//7vueKKK/KpT32qtOaCCy7I6NGjc+aZZ2bAgAF55ZVXcs8996Rz585bbE4AaKkafSbLY489lt/85jf51a9+lb333nuDG7zdeuutTTYcAMCbySIAQCVVIoscffTROfrooze5v1AoZPz48Rk/fnyTvzcA8NYaXbJsv/32OeGEE5pjFgCAtyWLAACVJIsAAOtrdMly3XXXNcccAACbRRYBACpJFgEA1tfoe7IAAAAAAABQxpksffv2TaFQ2OT+v/zlL+9oIACAtyKLAACVJIsAAOtrdMkyevToBs9XrVqV3//+97nrrrvyxS9+sanmAgDYKFkEAKgkWQQAWF+jS5Zzzz13o9uvvvrqzJo16x0PBADwVmQRAKCSZBEAYH1Ndk+WESNG5JZbbmmqwwEANIosAgBUkiwCAC1Tk5UsP//5z9O9e/emOhwAQKPIIgBAJckiANAyNfpyYQcccECDG7wVi8UsWLAgf//73/O9732vSYcDAHgzWQQAqCRZBABYX6NLluOOO67B81atWmWHHXbI4MGDs+eeezbVXAAAGyWLAACVJIsAAOtrdMlyySWXNMccAACbRRYBACpJFgEA1tdk92QBAAAAAABoSTb7TJZWrVo1uOboxhQKhaxevfodDwUA8GayCABQSbIIALAxm12y3HbbbZvc9/DDD2fKlCkpFotNMhQAwJvJIgBAJckiAMDGbHbJ8pGPfGSDbX/84x8zbty43HHHHfnUpz6Vf//3f2/S4QAA1pFFAIBKkkUAgI0p654sf/vb33L66adn3333zerVqzNnzpxcf/312XnnnZt6PgCADcgiAEAlySIAwDqNKlnq6urypS99KbvttlueeeaZ3HfffbnjjjvSv3//5poPAKBEFgEAKkkWAQDebLMvFzZ58uRMmjQpNTU1+clPfrLR02QBAJqLLAIAVJIsAgBszGaXLF/+8pfToUOH7Lbbbrn++utz/fXXb3Tdrbfe2mTDAQCsI4sAAJUkiwAAG7PZJcunP/3pFAqF5pwFAGCTZBEAoJJkEQBgYza7ZJk2bVozjgEA8NZkEQCgkmQRAGBjGnXjewAAAAAAAN6gZAEAAAAAACiDkgUAAAAAAKAMShYAAAAAAIAyKFkAAAAAAADKoGQBAAAAAAAog5IFAAAAAACgDEoWAAAAAACAMihZAAAAAAAAyqBkAQAAAAAAKIOSBQAAAAAAoAxKFgAAAAAAgDIoWQAAAAAAAMqgZAEAAAAAAChDRUuWBx98MMccc0xqa2tTKBRy++23N9hfLBYzfvz41NbWpkOHDhk8eHCeeeaZBmtWrFiRUaNGpWfPnunUqVOOPfbYvPzyy1vwUwAAAAAAAC1RRUuWZcuWZb/99stVV1210f2TJ0/OZZddlquuuiqPP/54ampqcsQRR+S1114rrRk9enRuu+22TJ8+PQ899FCWLl2ao48+OmvWrNlSHwMAAAAAAGiB2lTyzUeMGJERI0ZsdF+xWMwVV1yRCy+8MCeccEKS5Prrr091dXVuvvnmnHHGGamrq8vUqVNz4403ZujQoUmSm266Kb179869996b4cOHb7HPAgAAAAAAtCxb7T1Z5s6dmwULFmTYsGGlbVVVVRk0aFAefvjhJMns2bOzatWqBmtqa2vTv3//0pqNWbFiRZYsWdLgAQAAAAAA0BhbbcmyYMGCJEl1dXWD7dXV1aV9CxYsSLt27dKtW7dNrtmYiRMnpmvXrqVH7969m3h6AAAAAADg3W6rLVnWKRQKDZ4Xi8UNtr3Z260ZN25c6urqSo+XXnqpSWYFAAAAAABajq22ZKmpqUmSDc5IWbhwYenslpqamqxcuTKLFy/e5JqNqaqqSpcuXRo8AAAAAAAAGqOiN75/K3379k1NTU1mzJiRAw44IEmycuXKzJw5M5MmTUqSHHjggWnbtm1mzJiRkSNHJknmz5+fp59+OpMnT67Y7AAAAAAAsDkWLVpU6RHeVseOHdO1a9dKj7FVqmjJsnTp0jz//POl53Pnzs2cOXPSvXv37Lzzzhk9enQmTJiQfv36pV+/fpkwYUI6duyYE088MUnStWvXnHbaaRk7dmx69OiR7t275/zzz88+++yToUOHVupjAQAAAADAW+q0fFXWJrn11lsrPcrbatW2Tc4562xFy0ZUtGSZNWtWhgwZUno+ZsyYJMnJJ5+cadOm5YILLsjy5ctz5plnZvHixTnooINyzz33pHPnzqXXXH755WnTpk1GjhyZ5cuX5/DDD8+0adPSunXrLf55ALZGW/u3IXwTAgAAAGiJ2q9ak1ZJbj+4TxZ1aV/pcTap55LXc9yj81JfX+9vOBtR0ZJl8ODBKRaLm9xfKBQyfvz4jB8/fpNr2rdvnylTpmTKlCnNMCHAtmtb+TaEb0IAAAAALdmiLu2zoHvHSo9Bmbbae7IA8M5sC9+G8E0IYFtRV1eX+vr6So+xSVv7WYsAAADvVkoWgHc534YAeGfq6upy5dVXZe2q1ZUeBQAAgK2MkgUAAN5CfX191q5avVWfGbjr/LoMeWp+pceAbda2cDaY+9gBAGydlCwAALAZtuYzA/8fe/ceZlVB74//vbkNjAECKgOJSob3a5kX8BwwRTO1zMpSMzUjDW9IZeIV/CqkFZGilmWIJVknL6dTqXDKMNMSb6VoXsFQmS+hBOog1/37w6/zc+Qis5mZPbPn9Xqe9Tzstdbe+71mwHk7n73W6rPkzXJHgDaprdzDLnEfOwCA1sqQBQAAgHapLdzDLnEfOwCA1syQBQAAgHatNZ+pBgBA69ah3AEAAAAAAADaIkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAABtwIQJE1IoFDJq1Kj6dcViMWPHjk3//v3TrVu3DBs2LLNnzy5fSABoZwxZAAAAAFq5WbNm5brrrstuu+3WYP0VV1yRiRMnZvLkyZk1a1ZqamoyfPjwvPbaa2VKCgDtiyELAAAAQCv2+uuv57jjjsuPfvSj9OrVq359sVjMpEmTcv755+eoo47KLrvskqlTp6auri7Tpk0rY2IAaD8MWQAAAABasdNOOy2HHXZYDjrooAbr58yZk9ra2hx88MH166qqqjJ06NDcd99963y9ZcuWZcmSJQ0WAKA0ncodAAAAAIC1u/nmm/Pwww9n1qxZa2yrra1NkvTt27fB+r59++aFF15Y52tOmDAh48aNa9qgANBOOZMFAAAAoBWaN29ezjrrrPzsZz9L165d17lfoVBo8LhYLK6x7p3GjBmTxYsX1y/z5s1rsswA0N44kwUAAACgFXrooYeyYMGCfPjDH65ft2rVqtxzzz2ZPHlynnrqqSRvndHSr1+/+n0WLFiwxtkt71RVVZWqqqrmCw4A7YghCwAAAEArdOCBB+axxx5rsO6kk07KDjvskG9+85v5wAc+kJqamsyYMSN77rlnkmT58uWZOXNmLr/88nJEppksXrw4dXV15Y6xTgsXLix3BICyMWQBAAAAaIW6d++eXXbZpcG6TTbZJH369KlfP2rUqIwfPz6DBg3KoEGDMn78+FRXV+fYY48tR2SaweLFi3Pl1ZOzesXKckcBYC0MWQAAAADaqHPOOSdLly7NyJEjs2jRouyzzz6ZPn16unfvXu5oNJG6urqsXrEyt++7TRb2WPe9ecpp2/mLc8Bj88sdA6AsDFkAAAAA2og//vGPDR4XCoWMHTs2Y8eOLUseWs7CHl1T27u63DHWqs+SN8sdAaBsOpQ7AAAAAAAAQFtkyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAGA9xo4dm0Kh0GCpqamp314sFjN27Nj0798/3bp1y7BhwzJ79uwyJgYAAABaiiELAMB72HnnnTN//vz65bHHHqvfdsUVV2TixImZPHlyZs2alZqamgwfPjyvvfZaGRMDAAAALcGQBQDgPXTq1Ck1NTX1y+abb57krbNYJk2alPPPPz9HHXVUdtlll0ydOjV1dXWZNm1amVMDAAAAzc2QBQDgPTzzzDPp379/Bg4cmM9//vN5/vnnkyRz5sxJbW1tDj744Pp9q6qqMnTo0Nx3333rfL1ly5ZlyZIlDRYAAACg7TFkAQBYj3322Sc33nhj7rrrrvzoRz9KbW1tBg8enFdeeSW1tbVJkr59+zZ4Tt++feu3rc2ECRPSs2fP+mXAgAHNegwAAABA8zBkAQBYj0MPPTSf/vSns+uuu+aggw7Kb3/72yTJ1KlT6/cpFAoNnlMsFtdY905jxozJ4sWL65d58+Y1T3gAAACgWRmyAAA0wiabbJJdd901zzzzTGpqapJkjbNWFixYsMbZLe9UVVWVHj16NFgAAACAtseQBQCgEZYtW5Ynn3wy/fr1y8CBA1NTU5MZM2bUb1++fHlmzpyZwYMHlzElAAAA0BI6lTsAAEBr9vWvfz1HHHFEttpqqyxYsCCXXnpplixZkhNOOCGFQiGjRo3K+PHjM2jQoAwaNCjjx49PdXV1jj322HJHBwAAAJqZIQsAwHq8+OKLOeaYY7Jw4cJsvvnm2XffffOXv/wlW2+9dZLknHPOydKlSzNy5MgsWrQo++yzT6ZPn57u3buXOTkAAADQ3AxZAADW4+abb17v9kKhkLFjx2bs2LEtEwgAAABoNdyTBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACXoVO4AsCEWL16curq6csdYp4ULF5Y7AgAAAAAALcyQhVZv8eLFufLqyVm9YmW5owAAAAAAQD1DFlq9urq6rF6xMrfvu00W9uha7jhrte38xTngsfnljgEAAAAAQAsyZKHNWNija2p7V5c7xlr1WfJmuSMAAAAAANDCWvWN78eOHZtCodBgqampqd9eLBYzduzY9O/fP926dcuwYcMye/bsMiYGAAAAAADai1Y9ZEmSnXfeOfPnz69fHnvssfptV1xxRSZOnJjJkydn1qxZqampyfDhw/Paa6+VMTEAAAAAANAetPohS6dOnVJTU1O/bL755kneOotl0qRJOf/883PUUUdll112ydSpU1NXV5dp06aVOTUAAAAAAFDpWv2Q5Zlnnkn//v0zcODAfP7zn8/zzz+fJJkzZ05qa2tz8MEH1+9bVVWVoUOH5r777lvvay5btixLlixpsAAAAAAAADRGqx6y7LPPPrnxxhtz11135Uc/+lFqa2szePDgvPLKK6mtrU2S9O3bt8Fz+vbtW79tXSZMmJCePXvWLwMGDGi2YwAAAAAAACpTqx6yHHroofn0pz+dXXfdNQcddFB++9vfJkmmTp1av0+hUGjwnGKxuMa6dxszZkwWL15cv8ybN6/pwwMAAAAAABWtVQ9Z3m2TTTbJrrvummeeeSY1NTVJssZZKwsWLFjj7JZ3q6qqSo8ePRosAAAAAAAAjdGmhizLli3Lk08+mX79+mXgwIGpqanJjBkz6rcvX748M2fOzODBg8uYEgAAAAAAaA86lTvA+nz961/PEUccka222ioLFizIpZdemiVLluSEE05IoVDIqFGjMn78+AwaNCiDBg3K+PHjU11dnWOPPbbc0QEAAAAAgArXqocsL774Yo455pgsXLgwm2++efbdd9/85S9/ydZbb50kOeecc7J06dKMHDkyixYtyj777JPp06ene/fuZU4OAAAAAABUulY9ZLn55pvXu71QKGTs2LEZO3ZsywQCAAAAAAD4f9rUPVkAAAAA2pMJEybkIx/5SLp3754tttgiRx55ZJ566qkG+xSLxYwdOzb9+/dPt27dMmzYsMyePbtMiQGgfTFkAQAAAGilZs6cmdNOOy1/+ctfMmPGjKxcuTIHH3xw3njjjfp9rrjiikycODGTJ0/OrFmzUlNTk+HDh+e1114rY3IAaB9a9eXCAAAAANqzO++8s8HjKVOmZIsttshDDz2U//zP/0yxWMykSZNy/vnn56ijjkqSTJ06NX379s20adNyyimnlCM2ALQbzmQBAAAAaCMWL16cJOndu3eSZM6cOamtrc3BBx9cv09VVVWGDh2a++67b62vsWzZsixZsqTBAgCUxpksAAAA0AYsXLiw3BHWq7q6Oj179ix3jIpWLBYzevTo7L///tlll12SJLW1tUmSvn37Nti3b9++eeGFF9b6OhMmTMi4ceOaNywAtBOGLAAAANCKbbJ0RVYnufXWW8sdZb06dO6UM0873aClGZ1++un5+9//nnvvvXeNbYVCocHjYrG4xrq3jRkzJqNHj65/vGTJkgwYMKBpwwJAO2HIAgAAAK1Y1xWr0iHJ7ftuk4U9upY7zlpttuTNHPmXuamrqzNkaSZnnHFGfv3rX+eee+7JlltuWb++pqYmyVtntPTr169+/YIFC9Y4u+VtVVVVqaqqat7AANBOGLIAAABAG7CwR9fU9q4udwxaWLFYzBlnnJHbbrstf/zjHzNw4MAG2wcOHJiamprMmDEje+65Z5Jk+fLlmTlzZi6//PJyRAaAdsWQBQAAAKCVOu200zJt2rT893//d7p3715/D5aePXumW7duKRQKGTVqVMaPH59BgwZl0KBBGT9+fKqrq3PssceWOT0AVD5DFgAAAIBW6tprr02SDBs2rMH6KVOm5MQTT0ySnHPOOVm6dGlGjhyZRYsWZZ999sn06dPTvXv3Fk4LAO2PIQsAAABAK1UsFt9zn0KhkLFjx2bs2LHNHwgAaKBDuQMAAAAAAAC0RYYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBJ3KHQAAFi5cWO4I76m6ujo9e/YsdwwAAAAAWhFDFgDKZpOlK7I6ya233lruKO+pQ+dOOfO00w1aAAAAAKhnyAJA2XRdsSodkty+7zZZ2KNrueOs02ZL3syRf5mburo6QxYAAAAA6hmyAFB2C3t0TW3v6nLHAAAAAIBGceN7AAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACXoVO4AAAAAAABA67Zw4cJyR1iv6urq9OzZs8Xf15AFAAAAAABYq02WrsjqJLfeemu5o6xXh86dcuZpp7f4oMWQBQAAAAAAWKuuK1alQ5Lb990mC3t0LXectdpsyZs58i9zU1dXZ8gCAAAAAAC0Lgt7dE1t7+pyx2h13PgeAAAAAACgBIYsAAAAAAAAJXC5sHZu8eLFqaurK3eM9Vq4cGG5IwAAAAAAwBoMWdqxxYsX58qrJ2f1ipXljgLQJrT2oW91dXWL39wNAAAAoD0zZGnH6urqsnrFyty+7zZZ2KNrueOs07bzF+eAx+aXOwbQjm2ydEVWJ7n11lvLHWW9OnTulDNPO92gBQAAAKCFGLKQhT26prZ3dbljrFOfJW+WOwLQznVdsSodklY9lN5syZs58i9zU1dXZ8gCAAAA0EIMWQBgA7X2oTQAAAAALatDuQMAAAAAAAC0RYYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAErQqdwBAABovxYvXpy6urpyx1ivhQsXljsCAAAArZQhCwAAZbF48eJcefXkrF6xstxRAAAAoCSGLAAAlEVdXV1Wr1iZ2/fdJgt7dC13nHXadv7iHPDY/HLHAAAAoBUyZAEAoKwW9uia2t7V5Y6xTn2WvFnuCADQJrWFy4KuXLkynTq17l+PuXQpQOvWun+KAAAAANDmtJXLgq4uJB2K5U4BQFtmyNKMWvsnNnwSAgAAAGgObeGyoG9fErQ1Z0xcuhSgtTNkaSZt5RMbAEDl8oEPAKDcWvNlQd++JGhrzpi4dClAa1cxQ5Zrrrkm3/72tzN//vzsvPPOmTRpUv7jP/6jbHna0ic2AICN19q6iA98AED70tq6CAC0FxUxZPnFL36RUaNG5ZprrsmQIUPywx/+MIceemieeOKJbLXVVmXN1po/DeGTEADQNFpjF/GBDwBoP1pjFwGA9qIihiwTJ07MySefnC9/+ctJkkmTJuWuu+7KtddemwkTJpQ5HQBQ6VpzF/GBDwCofK25iwBApWvzQ5bly5fnoYceyrnnnttg/cEHH5z77rtvrc9ZtmxZli1bVv948eLFSZIlS5Y0Wa7XXnstb775ZnrNX5TVb7TOa6G/719LWn3GpG3k3JiMXZcuy9t/8zZ78ZW82a2q6QOmbXwdk7aRsy1kTNpGzraQMWkbOXstWZY333wzr732WjbZZJMmec23fy4Wi8Umeb1KpYuUri3820raRs5KythS3WhdKulrWW5tIWdbyJi0jZy6SPnoIqVrC/+2kraRsy1kTNads9z9453awteyLWRM2kbOtpAxaRs5y9pFim3cSy+9VExS/POf/9xg/WWXXVbcbrvt1vqciy++uJjEYrFYLBbLBizz5s1riR/pbZYuYrFYLBZL8y66yPrpIhaLxWKxNO/yXl2kzZ/J8rZCodDgcbFYXGPd28aMGZPRo0fXP169enVeffXV9OnTZ53PKYclS5ZkwIABmTdvXnr06FHuOC3O8Tt+x99+jz/xNWgNx18sFvPaa6+lf//+ZXn/tkYXaTsq9bgSx9YWVepxJY6trWpNx6aLNE6ldZHW9HexKTmutqMSjympzOOqxGNKKvO42toxbWgXafNDls022ywdO3ZMbW1tg/ULFixI37591/qcqqqqVFU1PO1v0003ba6IG61Hjx5t4i9dc3H8jt/xt9/jT3wNyn38PXv2LNt7txW6SNtVqceVOLa2qFKPK3FsbVVrOTZd5L1VehdpLX8Xm5rjajsq8ZiSyjyuSjympDKPqy0d04Z0kQ4tkKNZdenSJR/+8IczY8aMButnzJiRwYMHlykVANBe6CIAQDnpIgBQXm3+TJYkGT16dI4//vjstdde2W+//XLdddfln//8Z0499dRyRwMA2gFdBAAoJ10EAMqnIoYsn/vc5/LKK6/kkksuyfz587PLLrvkd7/7XbbeeutyR9soVVVVufjii9c4hbe9cPyO3/G33+NPfA3a+/G3NbpI21Kpx5U4traoUo8rcWxtVSUfWyWrxC5SqX8XHVfbUYnHlFTmcVXiMSWVeVyVeExJUigWi8VyhwAAAAAAAGhr2vw9WQAAAAAAAMrBkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSFLmV1zzTUZOHBgunbtmg9/+MP505/+tM5977333gwZMiR9+vRJt27dssMOO+R73/teC6Zteo05/nf685//nE6dOmWPPfZo3oDNrDHH/8c//jGFQmGN5R//+EcLJm5ajf3+L1u2LOeff3623nrrVFVVZdttt81PfvKTFkrb9Bpz/CeeeOJav/8777xzCyZuWo39/t90003ZfffdU11dnX79+uWkk07KK6+80kJpm0djvwZXX311dtxxx3Tr1i3bb799brzxxhZKSqVqzN/BW2+9NcOHD8/mm2+eHj16ZL/99stdd93Vgmkbp5I7ViX3p0rtRpXceSq5z1RqV9E/aE0qtYtUYg+p1P5Rid2jUntHpXaOSuwb7bJrFCmbm2++udi5c+fij370o+ITTzxRPOuss4qbbLJJ8YUXXljr/g8//HBx2rRpxccff7w4Z86c4k9/+tNidXV18Yc//GELJ28ajT3+t/373/8ufuADHygefPDBxd13371lwjaDxh7/3XffXUxSfOqpp4rz58+vX1auXNnCyZtGKd//T3ziE8V99tmnOGPGjOKcOXOKf/3rX4t//vOfWzB102ns8f/73/9u8H2fN29esXfv3sWLL764ZYM3kcYe/5/+9Kdihw4dit///veLzz//fPFPf/pTceeddy4eeeSRLZy86TT2a3DNNdcUu3fvXrz55puLzz33XPHnP/958X3ve1/x17/+dQsnp1I09u/gWWedVbz88suLDzzwQPHpp58ujhkzpti5c+fiww8/3MLJ31sld6xK7k+V2o0qufNUcp+p1K6if9CaVGoXqcQeUqn9oxK7R6X2jkrtHJXYN9pr1zBkKaO99967eOqppzZYt8MOOxTPPffcDX6NT33qU8UvfOELTR2tRZR6/J/73OeKF1xwQfHiiy9ulT+kN1Rjj//tH+aLFi1qgXTNr7HHf8cddxR79uxZfOWVV1oiXrPb2H//t912W7FQKBTnzp3bHPGaXWOP/9vf/nbxAx/4QIN1V155ZXHLLbdstozNrbFfg/3226/49a9/vcG6s846qzhkyJBmy0hla4oestNOOxXHjRvX1NE2WiV3rEruT5XajSq581Ryn6nUrqJ/0JpUahepxB5Sqf2jErtHpfaOSu0cldg32mvXcLmwMlm+fHkeeuihHHzwwQ3WH3zwwbnvvvs26DUeeeSR3HfffRk6dGhzRGxWpR7/lClT8txzz+Xiiy9u7ojNamO+/3vuuWf69euXAw88MHfffXdzxmw2pRz/r3/96+y111654oor8v73vz/bbbddvv71r2fp0qUtEblJNcW//+uvvz4HHXRQtt566+aI2KxKOf7BgwfnxRdfzO9+97sUi8X83//7f/OrX/0qhx12WEtEbnKlfA2WLVuWrl27NljXrVu3PPDAA1mxYkWzZaUyNcV/h1avXp3XXnstvXv3bo6IJavkjlXJ/alSu1Eld55K7jOV2lX0D1qTSu0ildhDKrV/VGL3qNTeUamdoxL7RnvuGoYsZbJw4cKsWrUqffv2bbC+b9++qa2tXe9zt9xyy1RVVWWvvfbKaaedli9/+cvNGbVZlHL8zzzzTM4999zcdNNN6dSpU0vEbDalHH+/fv1y3XXX5ZZbbsmtt96a7bffPgceeGDuueeelojcpEo5/ueffz733ntvHn/88dx2222ZNGlSfvWrX+W0005richNamP+/SfJ/Pnzc8cdd7TJf/tJacc/ePDg3HTTTfnc5z6XLl26pKamJptuummuuuqqlojc5Er5GhxyyCH58Y9/nIceeijFYjEPPvhgfvKTn2TFihVZuHBhS8Smgmzsf4eS5Lvf/W7eeOONHH300c0RsWSV3LEquT9Vajeq5M5TyX2mUruK/kFrUqldpBJ7SKX2j0rsHpXaOyq1c1Ri32jPXaN1/peuHSkUCg0eF4vFNda925/+9Ke8/vrr+ctf/pJzzz03H/zgB3PMMcc0Z8xms6HHv2rVqhx77LEZN25ctttuu5aK1+wa8/3ffvvts/3229c/3m+//TJv3rx85zvfyX/+5382a87m0pjjX716dQqFQm666ab07NkzSTJx4sR85jOfydVXX51u3bo1e96mVsq//yS54YYbsummm+bII49spmQtozHH/8QTT+TMM8/MRRddlEMOOSTz58/PN77xjZx66qm5/vrrWyJus2jM1+DCCy9MbW1t9t133xSLxfTt2zcnnnhirrjiinTs2LEl4lKBSv3v0M9//vOMHTs2//3f/50tttiiueJtlEruWJXcnyq1G1Vy56nkPlOpXUX/oDWp1C5SiT2kUvtHJXaPSu0dldo5KrFvtMeu4UyWMtlss83SsWPHNaZ4CxYsWGPa924DBw7MrrvumhEjRuTss8/O2LFjmzFp82js8b/22mt58MEHc/rpp6dTp07p1KlTLrnkkvztb39Lp06d8oc//KGlojeJjfn+v9O+++6bZ555pqnjNbtSjr9fv355//vfX/9DP0l23HHHFIvFvPjii82at6ltzPe/WCzmJz/5SY4//vh06dKlOWM2m1KOf8KECRkyZEi+8Y1vZLfddsshhxySa665Jj/5yU8yf/78lojdpEr5GnTr1i0/+clPUldXl7lz5+af//xnttlmm3Tv3j2bbbZZS8SmgmzMf4d+8Ytf5OSTT84vf/nLHHTQQc0ZsySV3LEquT9Vajeq5M5TyX2mUruK/kFrUqldpBJ7SKX2j0rsHpXaOyq1c1Ri32jPXcOQpUy6dOmSD3/4w5kxY0aD9TNmzMjgwYM3+HWKxWKWLVvW1PGaXWOPv0ePHnnsscfy6KOP1i+nnnpqtt9++zz66KPZZ599Wip6k2iq7/8jjzySfv36NXW8ZlfK8Q8ZMiQvv/xyXn/99fp1Tz/9dDp06JAtt9yyWfM2tY35/s+cOTPPPvtsTj755OaM2KxKOf66urp06NDwR9bbn2goFovNE7QZbczfgc6dO2fLLbdMx44dc/PNN+fwww9f42sD76XUv4M///nPc+KJJ2batGmt5rq/71bJHauS+1OldqNK7jyV3GcqtavoH7QmldpFKrGHVGr/qMTuUam9o1I7RyX2jXbdNYqUzc0331zs3Llz8frrry8+8cQTxVGjRhU32WST4ty5c4vFYrF47rnnFo8//vj6/SdPnlz89a9/XXz66aeLTz/9dPEnP/lJsUePHsXzzz+/XIewURp7/O928cUXF3ffffcWStv0Gnv83/ve94q33XZb8emnny4+/vjjxXPPPbeYpHjLLbeU6xA2SmOP/7XXXituueWWxc985jPF2bNnF2fOnFkcNGhQ8ctf/nK5DmGjlPr3/wtf+EJxn332aem4Ta6xxz9lypRip06ditdcc03xueeeK957773Fvfbaq7j33nuX6xA2WmO/Bk899VTxpz/9afHpp58u/vWvfy1+7nOfK/bu3bs4Z86cMh0BbV1j/w5Omzat2KlTp+LVV19dnD9/fv3y73//u1yHsE6V3LEquT9Vajeq5M5TyX2mUruK/kFrUqldpBJ7SKX2j0rsHpXaOyq1c1Ri32ivXcOQpcyuvvrq4tZbb13s0qVL8UMf+lBx5syZ9dtOOOGE4tChQ+sfX3nllcWdd965WF1dXezRo0dxzz33LF5zzTXFVatWlSF502jM8b9ba/0h3RiNOf7LL7+8uO222xa7du1a7NWrV3H//fcv/va3vy1D6qbT2O//k08+WTzooIOK3bp1K2655ZbF0aNHF+vq6lo4ddNp7PH/+9//Lnbr1q143XXXtXDS5tHY47/yyiuLO+20U7Fbt27Ffv36FY877rjiiy++2MKpm1ZjvgZPPPFEcY899ih269at2KNHj+InP/nJ4j/+8Y8ypKaSNObv4NChQ4tJ1lhOOOGElg++ASq5Y1Vyf6rUblTJnaeS+0yldhX9g9akUrtIJfaQSu0fldg9KrV3VGrnqMS+0R67RqFYbAXnEgEAAAAAALQxbejCZgAAAAAAAK2HIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQvQrObNm5eTTz45/fv3T5cuXbL11lvnrLPOyiuvvFK/z7Bhw1IoFNZYTj311Pp93rl+k002yaBBg3LiiSfmoYceKsdhAQBthC4CAJSbPgKVzZAFaDbPP/989tprrzz99NP5+c9/nmeffTY/+MEP8vvf/z777bdfXn311fp9R4wYkfnz5zdYrrjiigavN2XKlMyfPz+zZ8/O1Vdfnddffz377LNPbrzxxpY+NACgDdBFAIBy00eg8nUqdwCgcp122mnp0qVLpk+fnm7duiVJttpqq+y5557Zdtttc/755+faa69NklRXV6empma9r7fpppvW77PNNtvk4IMPzgknnJDTTz89RxxxRHr16tW8BwQAtCm6CABQbvoIVD5nsgDN4tVXX81dd92VkSNH1peIt9XU1OS4447LL37xixSLxY16n7PPPjuvvfZaZsyYsVGvAwBUFl0EACg3fQTaB0MWoFk888wzKRaL2XHHHde6fccdd8yiRYvyr3/9K0lyzTXX5H3ve1+DZerUqe/5PjvssEOSZO7cuU2WHQBo+3QRAKDc9BFoH1wuDCiLtz+l0aVLlyTJcccdl/PPP7/BPltsscUGv06hUGjihABAJdNFAIBy00egMhiyAM3igx/8YAqFQp544okceeSRa2z/xz/+kc033zybbrppkqRnz5754Ac/2Oj3efLJJ5MkAwcO3Ji4AECF0UUAgHLTR6B9cLkwoFn06dMnw4cPzzXXXJOlS5c22FZbW5ubbropJ5544ka/z6RJk9KjR48cdNBBG/1aAEDl0EUAgHLTR6B9MGQBms3kyZOzbNmyHHLIIbnnnnsyb9683HnnnRk+fHi22267XHTRRfX71tXVpba2tsGyaNGiBq/373//O7W1tXnhhRcyY8aMfOYzn8m0adNy7bXX1n/qAwDgbboIAFBu+ghUvkLx7Yv2ATSDuXPnZuzYsbnzzjuzYMGCFIvFHHXUUfnpT3+a6urqJMmwYcMyc+bMNZ57yCGH5M4770zS8LqiXbt2zfvf//7sv//+OfPMM/OhD32oZQ4GAGhzdBEAoNz0EahshixAi7r44oszceLETJ8+Pfvtt1+54wAA7YwuAgCUmz4ClcWQBWhxU6ZMyeLFi3PmmWemQwdXLQQAWpYuAgCUmz4ClcOQBQAAAAAAoATGpAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCtLi///3vOfnkk7PtttumW7du6datWwYNGpRTTjklDz744FqfM3r06BQKhRx++OEtnBYAqCQ33HBDCoVCg2XzzTfPsGHD8pvf/KbBvjfeeGM+//nPZ/vtt0+HDh2yzTbblCc0AFAxNrSLzJ8/PxdccEH222+/bLbZZunRo0c+/OEP57rrrsuqVavKeATAuxmyAC3qhz/8YT784Q/nr3/9a84666z85je/yW9/+9uMGjUqs2fPzkc+8pE899xzDZ6zYsWK/OxnP0uS3HnnnXnppZfKER0AqCBTpkzJ/fffn/vuuy/XXXddOnbsmCOOOCL/8z//U7/PT3/608yePTt77713tt122zKmBQAqzXt1kYceeig33nhjDjzwwNx444255ZZbMnTo0Hz1q1/NiBEjypweeKdO5Q4AtB9//vOfM3LkyBx22GH51a9+lS5dutRv++hHP5rTTjst//Vf/5Vu3bo1eN5///d/51//+lcOO+yw/Pa3v83UqVNz3nnntXR8AKCC7LLLLtlrr73qH3/sYx9Lr1698vOf/zxHHHFEkuSuu+5Khw5vfS7t8MMPz+OPP16WrABA5XmvLjJkyJA899xz6dy5c/0+w4cPz/Lly3P11Vdn3LhxGTBgQDmiA+/iTBagxYwfPz4dO3bMD3/4wwYDlnf67Gc/m/79+zdYd/3116dLly6ZMmVKBgwYkClTpqRYLLZEZACgnejatWu6dOnS4BcZbw9YAACa27u7SK9evRr0krftvffeSZIXX3yxRfMB6+b/GoAWsWrVqtx9993Za6+90q9fvw1+3osvvpjp06fnk5/8ZDbffPOccMIJefbZZ3PPPfc0Y1oAoNKtWrUqK1euzIoVK/Liiy9m1KhReeONN3LssceWOxoA0A6U2kX+8Ic/pFOnTtluu+1aKCnwXlwuDGgRCxcuzNKlS7P11luvsW3VqlUNzkzp2LFjCoVCkreuUbp69eqcfPLJSZIvfelLueyyy3L99ddn6NChLRMeAKg4++67b4PHVVVVmTx5cg455JAyJQIA2pNSusj06dPz05/+NGeddVb69OnT3BGBDeRMFqDsPvzhD6dz5871y3e/+90kSbFYrL9E2PDhw5MkAwcOzLBhw3LLLbdkyZIl5YwNALRhN954Y2bNmpVZs2bljjvuyAknnJDTTjstkydPLnc0AKAdaGwXefjhh3P00Udn3333zYQJE1o4LbA+zmQBWsRmm22Wbt265YUXXlhj27Rp01JXV5f58+fnE5/4RP36P/zhD5kzZ05Gjx7dYKBy9NFH5+67787Pf/7znHLKKS2SHwCoLDvuuOMaN5t94YUXcs455+QLX/hCNt100/KFAwAqXmO6yCOPPJLhw4dn0KBB+d3vfpeqqqoyJAbWxZksQIvo2LFjPvrRj+bBBx/M/PnzG2zbaaedstdee2XXXXdtsP76669PkkycODG9evWqX7761a822A4A0BR22223LF26NE8//XS5owAA7dDausgjjzySgw46KFtvvXWmT5+enj17ljEhsDaGLECLGTNmTFatWpVTTz01K1asWO++ixYtym233ZYhQ4bk7rvvXmM57rjjMmvWrDz++OMtlB4AqHSPPvpokmTzzTcvbxAAoF16dxd59NFHc9BBB2XLLbfMjBkz0qtXrzKmA9bF5cKAFjNkyJBcffXVOeOMM/KhD30oX/nKV7LzzjunQ4cOmT9/fm655ZYkSY8ePXLTTTflzTffzJlnnplhw4at8Vp9+vTJTTfdlOuvvz7f+973WvhIAIC27vHHH8/KlSuTJK+88kpuvfXWzJgxI5/61KcycODAJMkTTzyRJ554IklSW1uburq6/OpXv0ry1pm4O+20U3nCAwBt3nt1kaeeeioHHXRQkuSyyy7LM888k2eeeab++dtuu60PhkArUSgWi8VyhwDal7/97W/5/ve/nz/+8Y95+eWXUygUsuWWW2bw4ME54YQT8tGPfjR77rlnXn755cybNy9dunRZ6+vst99+efbZZ/PSSy+tcx8AgHe64YYbctJJJzVY17NnzwwcODBf/OIXM3LkyPrrnI8dOzbjxo1b6+tcfPHFGTt2bHPHBQAqzIZ2kbXt905TpkzJiSee2MxpgQ1hyAIAAAAAAFAC92QBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBJ0KneA1mD16tV5+eWX07179xQKhXLHAYBWoVgs5rXXXkv//v3ToYPPZTQnXQQA1qSLtBxdBADWtKFdxJAlycsvv5wBAwaUOwYAtErz5s3LlltuWe4YFU0XAYB100Wany4CAOv2Xl3EkCVJ9+7dk7z1xerRo0eZ00Ab9sYbSf/+b/355ZeTTTYpbx5goyxZsiQDBgyo/zlJ89FF2Ch+/gIVShdpOboIbZ4+BDSDDe0ihixJ/amwPXr0UCZgY3Ts+P//uUcPpQYqhEtGND9dhI3i5y9Q4XSR5qeL0ObpQ0Azeq8u4qKmAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAnckwWArFq1KitWrCh3DFpY586d0/Gd1y4GgDJZvXp1li9fXu4YtDBdBIDWQhdpn5qqixiyALRjxWIxtbW1+fe//13uKJTJpptumpqaGjeUBaBsli9fnjlz5mT16tXljkIZ6CIAlJsu0r41RRcxZAFox94esGyxxRaprq72P7ftSLFYTF1dXRYsWJAk6devX5kTAdAeFYvFzJ8/Px07dsyAAQPSoYMrWrcXuggArYEu0n41ZRcxZAFop1atWlU/YOnTp0+541AG3bp1S5IsWLAgW2yxhct1ANDiVq5cmbq6uvTv3z/V1dXljkML00UAKDddpH1rqi5S1tHcPffckyOOOCL9+/dPoVDI7bff3mB7sVjM2LFj079//3Tr1i3Dhg3L7NmzG+yzbNmynHHGGdlss82yySab5BOf+ERefPHFFjwKgLbp7XuwKBHt29vff/fkAaAcVq1alSTp0qVLmZNQLroIAOWki9AUXaSsQ5Y33ngju+++eyZPnrzW7VdccUUmTpyYyZMnZ9asWampqcnw4cPz2muv1e8zatSo3Hbbbbn55ptz77335vXXX8/hhx9e/w8EgPVzibD2zfcfgNbAz6P2y/cegNbAz6P2qym+92W9XNihhx6aQw89dK3bisViJk2alPPPPz9HHXVUkmTq1Knp27dvpk2bllNOOSWLFy/O9ddfn5/+9Kc56KCDkiQ/+9nPMmDAgPzv//5vDjnkkBY7FgAAAAAAoH1ptXfymTNnTmpra3PwwQfXr6uqqsrQoUNz3333JUkeeuihrFixosE+/fv3zy677FK/DwAAAAAAQHNotUOW2traJEnfvn0brO/bt2/9ttra2nTp0iW9evVa5z5rs2zZsixZsqTBAgAt6bHHHsvQoUPTrVu3vP/9788ll1ySYrG43udss802KRQKDZZzzz23fvsrr7ySj33sY+nfv3+qqqoyYMCAnH766X7OAQBraI4u8re//S3HHHNMBgwYkG7dumXHHXfM97///eY+FACgDWqOLvJOr7zySrbccssUCoX8+9//boYj+P+V9XJhG+Ld10QrFovveZ2099pnwoQJGTduXJPkA4DGWrJkSYYPH54DDjggs2bNytNPP50TTzwxm2yySb72ta+t97mXXHJJRowYUf/4fe97X/2fO3TokE9+8pO59NJLs/nmm+fZZ5/NaaedlldffTXTpk1rtuMBANqW5uoiDz30UDbffPP6y3jfd999+cpXvpKOHTvm9NNPb7bjAQDalubqIu908sknZ7fddstLL73UpNnXptWeyVJTU5Mka5yRsmDBgvqzW2pqarJ8+fIsWrRonfuszZgxY7J48eL6Zd68eU2cHoDmNGzYsJxxxhkZNWpUevXqlb59++a6667LG2+8kZNOOindu3fPtttumzvuuKPB85544ol8/OMfz/ve97707ds3xx9/fBYuXFi//c4778z++++fTTfdNH369Mnhhx+e5557rn773LlzUygUcuutt+aAAw5IdXV1dt9999x///2Nyn/TTTflzTffzA033JBddtklRx11VM4777xMnDjxPT+10b1799TU1NQv7ywTvXr1yle/+tXstdde2XrrrXPggQdm5MiR+dOf/tSofADA+ukia+8iX/rSl3LllVdm6NCh+cAHPpAvfOELOemkk3Lrrbc2Kh8AsH66yNq7yNuuvfba/Pvf/87Xv/71RuUqVasdsgwcODA1NTWZMWNG/brly5dn5syZGTx4cJLkwx/+cDp37txgn/nz5+fxxx+v32dtqqqq0qNHjwYLAG3L1KlTs9lmm+WBBx7IGWecka9+9av57Gc/m8GDB+fhhx/OIYcckuOPPz51dXVJ3vr5MHTo0Oyxxx558MEHc+edd+b//t//m6OPPrr+Nd94442MHj06s2bNyu9///t06NAhn/rUp7J69eoG733++efn61//eh599NFst912OeaYY7Jy5cr67YVCITfccMM6s99///0ZOnRoqqqq6tcdcsghefnllzN37tz1Hvfll1+ePn36ZI899shll12W5cuXr3Pfl19+ObfeemuGDh263tcEABpPF3nvLpIkixcvTu/evde7DwDQeLrI2rvIE088kUsuuSQ33nhjOnRoofFHsYxee+214iOPPFJ85JFHikmKEydOLD7yyCPFF154oVgsFovf+ta3ij179izeeuutxccee6x4zDHHFPv161dcsmRJ/WuceuqpxS233LL4v//7v8WHH364+NGPfrS4++67F1euXLnBORYvXlxMUly8eHGTHyO0K6+/Xiwmby2vv17uNLyHpUuXFp944oni0qVLyx2l0YYOHVrcf//96x+vXLmyuMkmmxSPP/74+nXz588vJinef//9xWKxWLzwwguLBx98cIPXmTdvXjFJ8amnnlrr+yxYsKCYpPjYY48Vi8Vicc6cOcUkxR//+Mf1+8yePbuYpPjkk0/Wr9t+++2Lt9566zrzDx8+vDhixIgG61566aVikuJ99923zudNnDix+Mc//rH4t7/9rfijH/2ouNlmmxVPPvnkNfb7/Oc/X+zWrVsxSfGII45Y7/d4fX8P/HxsOb7WbBQ/f2nD2mof0UXW30Xedt999xU7d+5cnD59+jr30UVaB19r2jx9iBLpIpXVRd58883ibrvtVvzpT39aLBaLxbvvvruYpLho0aJ1vmZTdJGy3pPlwQcfzAEHHFD/ePTo0UmSE044ITfccEPOOeecLF26NCNHjsyiRYuyzz77ZPr06enevXv9c773ve+lU6dOOfroo7N06dIceOCBueGGG9KxY8cWPx4AWs5uu+1W/+eOHTumT58+2XXXXevXvX3ZyAULFiR56xrhd99991pPI33uueey3Xbb5bnnnsuFF16Yv/zlL1m4cGH9JzX++c9/Zpdddlnre/fr16/+fXbYYYckyT/+8Y/3zL+2e46tbf07nX322Q0y9OrVK5/5zGfqP8Xxtu9973u5+OKL89RTT+W8887L6NGjc80117xnJgBgw+ki6+4iSTJ79ux88pOfzEUXXZThw4e/Zx4AoHF0kTW7yJgxY7LjjjvmC1/4wnu+f1Mq65Bl2LBh673GWqFQyNixYzN27Nh17tO1a9dcddVVueqqq5ohIQCtVefOnRs8LhQKDda9/UP57UKwevXqHHHEEbn88svXeK23C8ERRxyRAQMG5Ec/+lH69++f1atXZ5dddlnj1NP1vc+GqKmpWes9x5Ks955i77bvvvsmSZ599tkGv9h4+7qkO+ywQ/r06ZP/+I//yIUXXlh/nDTOPffck29/+9t56KGHMn/+/Nx222058sgjkyQrVqzIBRdckN/97nd5/vnn07Nnzxx00EH51re+lf79+5c3OADNShdZdxd54okn8tGPfjQjRozIBRdcsMGvBwBsOF1kzS7yhz/8IY899lh+9atfJfn/BzebbbZZzj///IwbN26DX7sxyjpkAYCW8qEPfSi33HJLttlmm3TqtOaPv1deeSVPPvlkfvjDH+Y//uM/kiT33ntvs2TZb7/9ct5552X58uXp0qVLkmT69Onp379/ttlmmw1+nUceeSRJ1js8ebtQLFu2rPTA7dwbb7yR3XffPSeddFI+/elPN9hWV1eXhx9+OBdeeGF23333LFq0KKNGjconPvGJPPjgg2VKDEBr1F66yOzZs/PRj340J5xwQi677LImzQ0AlK49dJFbbrklS5curd8+a9asfOlLX8qf/vSnbLvttk13AO/Sam98DwBN6bTTTsurr76aY445Jg888ECef/75TJ8+PV/60peyatWq9OrVK3369Ml1112XZ599Nn/4wx/qL2PZWDvssENuu+22dW4/9thjU1VVlRNPPDGPP/54brvttowfPz6jR4+u/wTIAw88kB122CEvvfRSkrduCve9730vjz76aObMmZNf/vKXOeWUU/KJT3wiW221VZLkd7/7XaZMmZLHH388c+fOze9+97t89atfzZAhQxpVUmjo0EMPzaWXXpqjjjpqjW09e/bMjBkzcvTRR2f77bfPvvvum6uuuioPPfRQ/vnPf5YhLQCtVXvoIrNnz84BBxyQ4cOHZ/To0amtrU1tbW3+9a9/lXQcAEDTaQ9dZNttt80uu+xSvwwcODBJsuOOO2aLLbYo6Vg2hDNZgFZn8eLFqaurK3eM9aqurk7Pnj3LHYNG6N+/f/785z/nm9/8Zg455JAsW7YsW2+9dT72sY+lQ4cOKRQKufnmm3PmmWdml112yfbbb58rr7wyw4YNa/R7PfXUU1m8ePE6t7/9i/nTTjste+21V3r16pXRo0c3KC91dXV56qmnsmLFiiRJVVVVfvGLX2TcuHH12UeMGJFzzjmn/jndunXLj370o5x99tlZtmxZBgwYkKOOOirnnntuo4+B0i1evDiFQiGbbrrpOvdZtmxZg7OLlixZ0gLJ2Bit+WdToa4uNeUOAbyn9tBF/uu//iv/+te/ctNNN+Wmm26qX7/11ltn7ty5jT4OoG0pZ196Zx+qra1Nsbp6nfv6/3naq/bQRcqlUFzfTVHaiSVLlqRnz55ZvHhxevToUe440Ha98Uby9s2zXn892WSTRr/E4sWLc+XVk7N6xcomDte0OnTulDNPO71NF7M333wzc+bMycCBA9O1a9dyx6FM1vf3wM/HNRUKhQb3ZHm3N998M/vvv3922GGH/OxnP1vn64wdO3at14L1tW6dWvvPps7Ll+e88eOTJItfeik93Q+INkQfQRdpHXyt2Vjl7kvv7EPjzzsvK/7f5YfWphL+f56mo4vQFF3EmSxAq1JXV5fVK1bm9n23ycIerfOH22ZL3syRf5mburo6pQyot2LFinz+85/P6tWrc80116x33zFjxjT4hM6SJUsyYMCA5o5IiVr7z6ZuS9/MeW/9TiFLly6Nn0wAQEsrd196Zx+64cDtsrTb2jP4/3mgORiyAK3Swh5dU9t73af3ArQmK1asyNFHH505c+bkD3/4w3t+ArSqqipVVVUtlI6m0lp/NlXXuc0iANA6lKsvvbMP/d9e1amrbn0fjAEqlyELAMBGeHvA8swzz+Tuu+9Onz59yh0JAAAAaCGGLAAA6/H666/n2WefrX88Z86cPProo+ndu3f69++fz3zmM3n44Yfzm9/8JqtWrUptbW2SpHfv3umynmtBAwAAAG2fIQsAwHo8+OCDOeCAA+ofv30vlRNOOCFjx47Nr3/96yTJHnvs0eB5d999d4YNG9ZSMQEAAIAyMGQBAFiPYcOGpVgsrnP7+rYBAAAAlc1dMgEAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIA0C788Y9/TKFQyL///e9yRwEA2iFdBAAoJ12k+RiyANAuDB48OPPnz0/Pnj2b/LVvueWW7LTTTqmqqspOO+2U2267rcnfAwBo23QRAKCcdJHmY8gCQLvQpUuX1NTUpFAoNOnr3n///fnc5z6X448/Pn/7299y/PHH5+ijj85f//rXJn0fAKBt00UAgHLSRZqPIQsAbc6wYcNyxhlnZNSoUenVq1f69u2b6667Lm+88UZOOumkdO/ePdtuu23uuOOO+ue8+7TYG264IZtuumnuuuuu7Ljjjnnf+96Xj33sY5k/f36jskyaNCnDhw/PmDFjssMOO2TMmDE58MADM2nSpCY8YgCgNdFFAIBy0kVaF0MWANqkqVOnZrPNNssDDzyQM844I1/96lfz2c9+NoMHD87DDz+cQw45JMcff3zq6urW+Rp1dXX5zne+k5/+9Ke555578s9//jNf//rX67e/XUDmzp27zte4//77c/DBBzdYd8ghh+S+++7b6GMEAFovXQQAKCddpPUwZAGgTdp9991zwQUXZNCgQRkzZky6deuWzTbbLCNGjMigQYNy0UUX5ZVXXsnf//73db7GihUr8oMf/CB77bVXPvShD+X000/P73//+/rt1dXV2X777dO5c+d1vkZtbW369u3bYF3fvn1TW1u78QcJALRauggAUE66SOvRqdwBAKAUu+22W/2fO3bsmD59+mTXXXetX/f2D/gFCxas8zWqq6uz7bbb1j/u169fg/333nvv/OMf/3jPLO++nmmxWGzya5wCAK2LLgIAlJMu0no4kwWANundn6IoFAoN1r39w3z16tWNeo1isdioHDU1NWt8OmPBggVrfIoDAKgsuggAUE66SOthyAIAG2G//fbLjBkzGqybPn16Bg8eXKZEAEB7oosAAOWkixiyAMA6PfDAA9lhhx3y0ksvrXOfs846K9OnT8/ll1+ef/zjH7n88svzv//7vxk1alTLBQUAKpIuAgCUky6yYQxZAGAd6urq8tRTT2XFihXr3Gfw4MG5+eabM2XKlOy222654YYb8otf/CL77LNPCyYFACqRLgIAlJMusmHc+B6ANuePf/zjGuvmzp27xrp3Xkd02LBhDR6feOKJOfHEExvsf+SRR673Oevymc98Jp/5zGfeOzgAUBF0EQCgnHSR1sWZLAAAAAAAACUwZAEAAAAAACiBIQsAAAAAAEAJDFkAAAAAAABKYMgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBQAAAAAAoASGLAAAAAAAACUwZAEAAAAAACiBIQsANKE333wzJ554Ynbdddd06tQpRx55ZLkjAQDtiC4CAJRTe+wihiwA0IRWrVqVbt265cwzz8xBBx1U7jgAQDuji1See+65J0cccUT69++fQqGQ22+/vX7bihUr8s1vfjO77rprNtlkk/Tv3z9f/OIX8/LLL5cvMADtWnvsIoYsALQ5w4YNyxlnnJFRo0alV69e6du3b6677rq88cYbOemkk9K9e/dsu+22ueOOO+qfs2rVqpx88skZOHBgunXrlu233z7f//7367e/+eab2XnnnfOVr3ylft2cOXPSs2fP/OhHP9rgbJtsskmuvfbajBgxIjU1NU1zwABAq6KL0JLeeOON7L777pk8efIa2+rq6vLwww/nwgsvzMMPP5xbb701Tz/9dD7xiU+UISkALUUXaV0MWQBok6ZOnZrNNtssDzzwQM4444x89atfzWc/+9kMHjw4Dz/8cA455JAcf/zxqaurS5KsXr06W265ZX75y1/miSeeyEUXXZTzzjsvv/zlL5MkXbt2zU033ZSpU6fm9ttvz6pVq3L88cfngAMOyIgRI+rft1Ao5IYbbijHIQMArYguQks59NBDc+mll+aoo45aY1vPnj0zY8aMHH300dl+++2z77775qqrrspDDz2Uf/7zn2VIC0BL0UVaD0MWANqk3XffPRdccEEGDRqUMWPGpFu3btlss80yYsSIDBo0KBdddFFeeeWV/P3vf0+SdO7cOePGjctHPvKRDBw4MMcdd1xOPPHE+jKRJHvssUcuvfTSjBgxImeffXaee+65/PjHP27wvttvv3169uzZoscKALQ+ugit1eLFi1MoFLLpppuuc59ly5ZlyZIlDRYA2hZdpPXoVO4AAFCK3Xbbrf7PHTt2TJ8+fbLrrrvWr+vbt2+SZMGCBfXrfvCDH+THP/5xXnjhhSxdujTLly/PHnvs0eB1v/a1r+W///u/c9VVV+WOO+7IZptt1mD7P/7xj2Y4GgCgrdFFaI3efPPNnHvuuTn22GPTo0ePde43YcKEjBs3rgWTAdDUdJHWw5AF2pHFixfXnyLYHAp1dXn7Sou1tbUpVlc3+jUWLlzYtKGoWJ07d27wuFAoNFhXKBSSvHU6bJL88pe/zNlnn53vfve72W+//dK9e/d8+9vfzl//+tcGr7NgwYI89dRT6dixY5555pl87GMfa+YjAQDaIl2E1mbFihX5/Oc/n9WrV+eaa65Z775jxozJ6NGj6x8vWbIkAwYMaO6IADQhXaT1MGSBdmLx4sW58urJWb1iZbO9R+fly3Pe//vzT37yk6zo0qXZ3gsa609/+lMGDx6ckSNH1q977rnn1tjvS1/6UnbZZZeMGDEiJ598cg488MDstNNOLRkVAKhAugjNacWKFTn66KMzZ86c/OEPf1jvWSxJUlVVlaqqqhZKB0BroIs0H0MWaCfq6uqyesXK3L7vNlnYo2uzvEe3pW/mvPFv/fmGA7fL0m6Nf59t5y/OAY/Nb+JkkHzwgx/MjTfemLvuuisDBw7MT3/608yaNSsDBw6s3+fqq6/O/fffn7///e8ZMGBA7rjjjhx33HH561//mi7/b2i4ww47ZMKECfnUpz61zvd64oknsnz58rz66qt57bXX8uijjybJGqfgAgDthy5Cc3l7wPLMM8/k7rvvTp8+fcodCYBWSBdpPoYs0M4s7NE1tb0bfxmvDVFd16H+z/+3V3Xqqhs/ZOmz5M2mjAT1Tj311Dz66KP53Oc+l0KhkGOOOSYjR47MHXfckeSta4p+4xvfyPXXX19/qYSrr746u+++ey688MJcfvnlSZKnnnoqixcvXu97ffzjH88LL7xQ/3jPPfdMkhSLxeY4NACgDdBFKNXrr7+eZ599tv7xnDlz8uijj6Z3797p379/PvOZz+Thhx/Ob37zm6xatSq1tbVJkt69e9f/QgwAdJHmY8gCQJvzxz/+cY11c+fOXWPdO394V1VVZcqUKZkyZUqDfSZMmJDkrU9ivPueRT169MicOXPW+ZrrsrYsAEDl0EVoSQ8++GAOOOCA+sdv30vlhBNOyNixY/PrX/86yZqfDr777rszbNiwlooJQAvSRVoXQxYAAACAVmrYsGHr/YVWpX4qGADaig7vvQsAAAAAAADvZsgCAAAAAABQAkMWAAAAAACAEhiyAAAAAAAAlMCQBaCdW716dbkjUEa+/wC0Bm7c3X7pIgC0BrpI+9UUXaRTE+QAoA3q0qVLOnTokJdffjmbb755unTpkkKhUO5YtJBisZjly5fnX//6Vzp06JAuXbqUOxIA7VDnzp1TKBTyr3/9K5tvvrku0o7oIgC0BrpI+9WUXcSQBaCd6tChQwYOHJj58+fn5ZdfLnccyqS6ujpbbbVVOnRwcisALa9jx47Zcsst8+KLL2bu3LnljkMZ6CIAlJMuQlN0EUMWgHasS5cu2WqrrbJy5cqsWrWq3HFoYR07dkynTp18UgeAsnrf+96XQYMGZcWKFeWOQgvTRQBoDXSR9qupuoghC0A7VygU0rlz53Tu3LncUQCAdqpjx47p2LFjuWMAAO2ULsLGcD4uAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAOtxzz335Igjjkj//v1TKBRy++23N9heLBYzduzY9O/fP926dcuwYcMye/bs8oQFAAAAWpQhCwDAerzxxhvZfffdM3ny5LVuv+KKKzJx4sRMnjw5s2bNSk1NTYYPH57XXnuthZMCAAAALa1TuQMAALRmhx56aA499NC1bisWi5k0aVLOP//8HHXUUUmSqVOnpm/fvpk2bVpOOeWUlowKAAAAtDBnsgAAlGjOnDmpra3NwQcfXL+uqqoqQ4cOzX333bfO5y1btixLlixpsAAAAABtjyELAECJamtrkyR9+/ZtsL5v377129ZmwoQJ6dmzZ/0yYMCAZs0JAAAANA9DFgCAjVQoFBo8LhaLa6x7pzFjxmTx4sX1y7x585o7IgAAANAM3JMFAKBENTU1Sd46o6Vfv3716xcsWLDG2S3vVFVVlaqqqmbPBwAAADQvZ7IAAJRo4MCBqampyYwZM+rXLV++PDNnzszgwYPLmAwAAABoCa16yLJy5cpccMEFGThwYLp165YPfOADueSSS7J69er6fYrFYsaOHZv+/funW7duGTZsWGbPnl3G1ABAJXn99dfz6KOP5tFHH03y1s3uH3300fzzn/9MoVDIqFGjMn78+Nx22215/PHHc+KJJ6a6ujrHHntseYMDAAAAza5VXy7s8ssvzw9+8INMnTo1O++8cx588MGcdNJJ6dmzZ84666wkyRVXXJGJEyfmhhtuyHbbbZdLL700w4cPz1NPPZXu3buX+QgAgLbuwQcfzAEHHFD/ePTo0UmSE044ITfccEPOOeecLF26NCNHjsyiRYuyzz77ZPr06XoIAAAAtAOteshy//3355Of/GQOO+ywJMk222yTn//853nwwQeTvHUWy6RJk3L++efnqKOOSpJMnTo1ffv2zbRp03LKKaeULTsAUBmGDRuWYrG4zu2FQiFjx47N2LFjWy4UAAAA0Cq06suF7b///vn973+fp59+Oknyt7/9Lffee28+/vGPJ3nrch21tbU5+OCD659TVVWVoUOH5r777lvn6y5btixLlixpsAAAAAAAADRGqz6T5Zvf/GYWL16cHXbYIR07dsyqVaty2WWX5ZhjjkmS1NbWJkn69u3b4Hl9+/bNCy+8sM7XnTBhQsaNG9d8wQEAAAAAgIrXqs9k+cUvfpGf/exnmTZtWh5++OFMnTo13/nOdzJ16tQG+xUKhQaPi8XiGuveacyYMVm8eHH9Mm/evGbJDwAAAAAAVK5WfSbLN77xjZx77rn5/Oc/nyTZdddd88ILL2TChAk54YQTUlNTk+StM1r69etX/7wFCxascXbLO1VVVaWqqqp5wwMAAAAAABWtVZ/JUldXlw4dGkbs2LFjVq9enSQZOHBgampqMmPGjPrty5cvz8yZMzN48OAWzQoAAAAAALQvrfpMliOOOCKXXXZZttpqq+y888555JFHMnHixHzpS19K8tZlwkaNGpXx48dn0KBBGTRoUMaPH5/q6uoce+yxZU4PAAAAAABUslY9ZLnqqqty4YUXZuTIkVmwYEH69++fU045JRdddFH9Puecc06WLl2akSNHZtGiRdlnn30yffr0dO/evYzJAQAAAACASteqhyzdu3fPpEmTMmnSpHXuUygUMnbs2IwdO7bFcgEAAAAAALTqe7IAAAAAAAC0VoYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAAAAAEpgyAIAAAAAAFACQxYAAAAAAIASGLIAAAAAAACUwJAFAAAAAACgBIYsAAAAAAAAJTBkAQAAAAAAKIEhCwAAAAAAQAkMWQAAAABaqXvuuSdHHHFE+vfvn0KhkNtvv73B9mKxmLFjx6Z///7p1q1bhg0bltmzZ5cnLAC0Q4YsAAAAAK3UG2+8kd133z2TJ09e6/YrrrgiEydOzOTJkzNr1qzU1NRk+PDhee2111o4KQC0T53KHQAAAACAtTv00ENz6KGHrnVbsVjMpEmTcv755+eoo45KkkydOjV9+/bNtGnTcsopp7RkVABolwxZAAAAANqgOXPmpLa2NgcffHD9uqqqqgwdOjT33XffOocsy5Yty7Jly+ofL1mypNmzsnEWL16curq6csdYp4ULF5Y7AkDZGLIAAAAAtEG1tbVJkr59+zZY37dv37zwwgvrfN6ECRMybty4Zs1G01m8eHGuvHpyVq9YWe4oAKyFIQsAAABAG1YoFBo8LhaLa6x7pzFjxmT06NH1j5csWZIBAwY0Wz42Tl1dXVavWJnb990mC3t0LXectdp2/uIc8Nj8cscAKAtDFgAAAIA2qKamJslbZ7T069evfv2CBQvWOLvlnaqqqlJVVdXs+WhaC3t0TW3v6nLHWKs+S94sdwSAsulQ7gAAAAAANN7AgQNTU1OTGTNm1K9bvnx5Zs6cmcGDB5cxGQC0H85kAQAAAGilXn/99Tz77LP1j+fMmZNHH300vXv3zlZbbZVRo0Zl/PjxGTRoUAYNGpTx48enuro6xx57bBlTA0D7YcgCAAAA0Eo9+OCDOeCAA+ofv30vlRNOOCE33HBDzjnnnCxdujQjR47MokWLss8++2T69Onp3r17uSIDQLtiyAIAAADQSg0bNizFYnGd2wuFQsaOHZuxY8e2XCgAoJ57sgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAogSELAAAAAABACQxZAAAAAAAASmDIAgAAAAAAUAJDFgAAAAAAgBIYsgAAAAAAAJTAkAUAAAAAAKAEhiwAAAAAAAAlMGQBAAAAAAAoQaOHLFOnTs1vf/vb+sfnnHNONt100wwePDgvvPBCk4YDACiFvgIAlJMuAgDtR6OHLOPHj0+3bt2SJPfff38mT56cK664IptttlnOPvvsJg8IANBYLdlXVq5cmQsuuCADBw5Mt27d8oEPfCCXXHJJVq9e3aTvAwC0HX53AgDtR6fGPmHevHn54Ac/mCS5/fbb85nPfCZf+cpXMmTIkAwbNqyp8wEANFpL9pXLL788P/jBDzJ16tTsvPPOefDBB3PSSSelZ8+eOeuss5r0vQCAtsHvTgCg/Wj0mSzve9/78sorryRJpk+fnoMOOihJ0rVr1yxdurRp0wEAlKAl+8r999+fT37ykznssMOyzTbb5DOf+UwOPvjgPPjgg036PgBA2+F3JwDQfjT6TJbhw4fny1/+cvbcc888/fTTOeyww5Iks2fPzjbbbNPU+QAAGq0l+8r++++fH/zgB3n66aez3Xbb5W9/+1vuvffeTJo0aZ3PWbZsWZYtW1b/eMmSJU2aifZr4cKFKVZXlzvGOlVXV6dnz57ljgHQ7PzuBADaj0YPWa6++upccMEFmTdvXm655Zb06dMnSfLQQw/lmGOOafKAAACN1ZJ95Zvf/GYWL16cHXbYIR07dsyqVaty2WWXrfd9JkyYkHHjxjVpDkiSX//611nRpUu5Y6xTh86dcuZppxu0ABXP704AoP1o9JBlyZIlufLKK9OhQ8MrjY0dOzbz5s1rsmAAAKVqyb7yi1/8Ij/72c8ybdq07Lzzznn00UczatSo9O/fPyeccMJanzNmzJiMHj26Qd4BAwY0aS7ap//Ze+u8uEXrHGBstuTNHPmXuamrqzNkASqe350AQPvR6CHLwIEDM3/+/GyxxRYN1r/66qsZOHBgVq1a1WThAABK0ZJ95Rvf+EbOPffcfP7zn0+S7LrrrnnhhRcyYcKEdQ5ZqqqqUlVV1WQZ4G2vdK9Kbe/We7kwgPbC704AoP1o9I3vi8XiWte//vrr6dq160YHAgDYWC3ZV+rq6tb4lGrHjh2zevXqJn0fAKDt8LsTAGg/NvhMlrcvaVEoFHLRRRel+h031Fy1alX++te/Zo899mjygAAAG6ocfeWII47IZZddlq222io777xzHnnkkUycODFf+tKXmvR9AIDWz+9OAKD92eAhyyOPPJLkrU9jPPbYY+nyjhtqdunSJbvvvnu+/vWvN31CAIANVI6+ctVVV+XCCy/MyJEjs2DBgvTv3z+nnHJKLrrooiZ9HwCg9fO7EwBofzZ4yHL33XcnSU466aR8//vfT48ePZotFABAKcrRV7p3755JkyZl0qRJzf5eAEDr5ncnAND+NPrG91OmTGmOHAAATUZfAQDKSRcBgPaj0UOWN954I9/61rfy+9//PgsWLFjjpq7PP/98k4UDACiFvgIAlJMuAgDtR6OHLF/+8pczc+bMHH/88enXr18KhUJz5AIAKJm+AgCUky4CAO1Ho4csd9xxR377299myJAhzZEHAGCj6SsAQDnpIgDQfnRo7BN69eqV3r17N0cWAIAmoa8AAOWkiwBA+9HoIcv/+T//JxdddFHq6uqaIw8AwEbTVwCActJFAKD9aPTlwr773e/mueeeS9++fbPNNtukc+fODbY//PDDTRYOAKAU+goAUE66CAC0H40eshx55JHNEAMAoOnoKwBAOekiANB+NHrIcvHFFzdHDgCAJqOvAADlpIsAQPvR6HuyJMm///3v/PjHP86YMWPy6quvJnnrVNeXXnqpScMBAJRKXwEAykkXAYD2odFnsvz973/PQQcdlJ49e2bu3LkZMWJEevfundtuuy0vvPBCbrzxxubICQCwwfQVAKCcdBEAaD8afSbL6NGjc+KJJ+aZZ55J165d69cfeuihueeee5o0HABAKfQVAKCcdBEAaD8aPWSZNWtWTjnllDXWv//9709tbW2ThAIA2Bj6CgBQTroIALQfjR6ydO3aNUuWLFlj/VNPPZXNN9+8SUIBAGwMfQUAKCddBADaj0YPWT75yU/mkksuyYoVK5IkhUIh//znP3Puuefm05/+dJMHBABoLH0FACinluwiK1euzAUXXJCBAwemW7du+cAHPpBLLrkkq1evbtL3AQDWrtFDlu985zv517/+lS222CJLly7N0KFD88EPfjDdu3fPZZdd1uQBX3rppXzhC19Inz59Ul1dnT322CMPPfRQ/fZisZixY8emf//+6datW4YNG5bZs2c3eQ4AoO1o6b4CAPBOLdlFLr/88vzgBz/I5MmT8+STT+aKK67It7/97Vx11VVN+j4AwNp1auwTevTokXvvvTd/+MMf8vDDD2f16tX50Ic+lIMOOqjJwy1atChDhgzJAQcckDvuuCNbbLFFnnvuuWy66ab1+1xxxRWZOHFibrjhhmy33Xa59NJLM3z48Dz11FPp3r17k2cCAFq/luwrAADv1pJd5P77788nP/nJHHbYYUmSbbbZJj//+c/z4IMPNvl7AQBravSQ5W0f/ehH89GPfrQps6zh8ssvz4ABAzJlypT6ddtss039n4vFYiZNmpTzzz8/Rx11VJJk6tSp6du3b6ZNm7bWm8wBAO1HS/QVAIB1aYkusv/+++cHP/hBnn766Wy33Xb529/+lnvvvTeTJk1a53OWLVuWZcuW1T9e2/1joJItXLiw3BHWa+XKlenUqeRf27aI6urq9OzZs9wxoFUo6V/rAw88kD/+8Y9ZsGDBGtf4nDhxYpMES5Jf//rXOeSQQ/LZz342M2fOzPvf//6MHDkyI0aMSJLMmTMntbW1Ofjgg+ufU1VVlaFDh+a+++5b55BFmQCAytdSfQUAYG1aqot885vfzOLFi7PDDjukY8eOWbVqVS677LIcc8wx63zOhAkTMm7cuCbLAG3FJktXZHWSW2+9tdxR1mt1IelQLHeK9evQuVPOPO10gxZICUOW8ePH54ILLsj222+fvn37plAo1G9755+bwvPPP59rr702o0ePznnnnZcHHnggZ555ZqqqqvLFL34xtbW1SZK+ffs2eF7fvn3zwgsvrPN1lQkAqGwt2VcAAN6tJbvIL37xi/zsZz/LtGnTsvPOO+fRRx/NqFGj0r9//5xwwglrfc6YMWMyevTo+sdLlizJgAEDmjQXtEZdV6xKhyS377tNFvboWu44a7Xt/MU54LH5rTrjZkvezJF/mZu6ujpDFkgJQ5bvf//7+clPfpITTzyxGeI0tHr16uy1114ZP358kmTPPffM7Nmzc+211+aLX/xi/X7vLijFYnG9pUWZAIDK1pJ9BQDg3Vqyi3zjG9/Iueeem89//vNJkl133TUvvPBCJkyYsM4hS1VVVaqqqpo9G7RWC3t0TW3v6nLHWKs+S95M0rozAg11aPQTOnTIkCFDmiPLGvr165eddtqpwbodd9wx//znP5MkNTU1SVJ/RsvbFixYsMbZLe9UVVWVHj16NFgAgMrRkn0FAODdWrKL1NXVpUOHhr/e6dix4xqXKAMAmkejhyxnn312rr766ubIsoYhQ4bkqaeearDu6aefztZbb50kGThwYGpqajJjxoz67cuXL8/MmTMzePDgFskIALQ+LdlXAADerSW7yBFHHJHLLrssv/3tbzN37tzcdtttmThxYj71qU+1yPsDQHvX6MuFff3rX89hhx2WbbfdNjvttFM6d+7cYHtT3jjq7LPPzuDBgzN+/PgcffTReeCBB3LdddfluuuuS/LWZcJGjRqV8ePHZ9CgQRk0aFDGjx+f6urqHHvssU2WAwBoW1qyrwAAvFtLdpGrrroqF154YUaOHJkFCxakf//+OeWUU3LRRRc12XsAAOvW6CHLGWeckbvvvjsHHHBA+vTp06w3j/3IRz6S2267LWPGjMkll1ySgQMHZtKkSTnuuOPq9znnnHOydOnSjBw5MosWLco+++yT6dOnp3v37s2WCwBo3VqyrwAAvFtLdpHu3btn0qRJmTRpUrO9BwCwbo0estx444255ZZbcthhhzVHnjUcfvjhOfzww9e5vVAoZOzYsRk7dmyL5AEAWr+W7isAAO+kiwBA+9Hoe7L07t072267bXNkAQBoEvoKAFBOuggAtB+NHrKMHTs2F198cerq6pojDwDARtNXAIBy0kUAoP1o9OXCrrzyyjz33HPp27dvttlmmzVu3vbwww83WTiA1mzhwoXljvCeqqur07Nnz3LHgBanrwAA5aSLAED70eghy5FHHtkMMQDajk2WrsjqJLfeemu5o7ynDp075czTTjdood3RVwCActJFAKD9aPSQ5eKLL26OHABtRtcVq9Ihye37bpOFPbqWO846bbbkzRz5l7mpq6szZKHd0VcAgHLSRQCg/Wj0kAWAtyzs0TW1vavLHQMAAAAAKJNGD1l69eqVQqGwxvpCoZCuXbvmgx/8YE488cScdNJJTRIQAKCx9BVovdzTDGgPdBEAaD8aPWS56KKLctlll+XQQw/N3nvvnWKxmFmzZuXOO+/Maaedljlz5uSrX/1qVq5cmREjRjRHZgCA9dJXoPVxTzOgPdFFAKD9aPSQ5d57782ll16aU089tcH6H/7wh5k+fXpuueWW7LbbbrnyyisVBQCgLPQVaH3c0wxoT3QRAGg/Gj1kueuuu3L55Zevsf7AAw/M1772tSTJxz/+8Zx77rkbnw4AoAT6CrRe7mkGtAe6CAC0Hx0a+4TevXvnf/7nf9ZY/z//8z/p3bt3kuSNN95I9+7dNz4dAEAJ9BUAoJx0EQBoPxp9JsuFF16Yr371q7n77ruz9957p1Ao5IEHHsjvfve7/OAHP0iSzJgxI0OHDm3ysAAAG0JfAQDKSRcBgPaj0UOWESNGZKeddsrkyZNz6623plgsZocddsjMmTMzePDgJKk/9RUAoBz0FQCgnHQRAGg/Gj1kSZIhQ4ZkyJAhTZ0FAKDJ6CsAQDnpIgDQPpQ0ZHnb0qVLs2LFigbrevTosVGBAACakr4CAJSTLgIAla3RN76vq6vL6aefni222CLve9/70qtXrwYLAEC56SsAQDnpIgDQfjR6yPKNb3wjf/jDH3LNNdekqqoqP/7xjzNu3Lj0798/N954Y3NkBABoFH0FACgnXQQA2o9GXy7sf/7nf3LjjTdm2LBh+dKXvpT/+I//yAc/+MFsvfXWuemmm3Lcccc1R04AgA2mrwAA5aSLAED70egzWV599dUMHDgwyVvXEH311VeTJPvvv3/uueeepk0HAFACfQUAKCddBADaj0YPWT7wgQ9k7ty5SZKddtopv/zlL5O89SmNTTfdtCmzAQCURF8BAMpJFwGA9qPRQ5aTTjopf/vb35IkY8aMqb++6Nlnn51vfOMbTR4QAKCx9BUAoJx0EQBoPxp9T5azzz67/s8HHHBA/vGPf+TBBx/Mtttum913371JwwEAlEJfAQDKSRcBgPajUWeyrFixIgcccECefvrp+nVbbbVVjjrqKCUBAGgV9BUAoJx0EQBoXxo1ZOncuXMef/zxFAqF5soDALBR9BUAoJx0EQBoXxp9T5YvfvGLuf7665sjCwBAk9BXAIBy0kUAoP1o9D1Zli9fnh//+MeZMWNG9tprr2yyySYNtk+cOLHJwgEAlEJfAQDKSRcBgPaj0UOWxx9/PB/60IeSpMH1RZM4FRYAaBX0FQCgnHQRAGg/NmjI8ve//z277LJLOnTokLvvvru5MwEANJq+AgCUky4CAO3TBt2TZc8998zChQuTJB/4wAfyyiuvNGsoAIDG0lcAgHLSRQCgfdqgIcumm26aOXPmJEnmzp2b1atXN2soAIDG0lcAgHLSRQCgfdqgy4V9+tOfztChQ9OvX78UCoXstdde6dix41r3ff7555s0IADAhtBXAIBy0kUAoH3aoCHLddddl6OOOirPPvtszjzzzIwYMSLdu3dv7mwAABtMXwEAykkXAYD2aYOGLEnysY99LEny0EMP5ayzzlIUAIBWR18BAMpJFwGA9meDhyxvmzJlSnPkAABoMvoKAFBOuggAtB8bdON7AAAAAAAAGjJkAQAAAAAAKIEhCwAAAAAAQAk2aMjyoQ99KIsWLUqSXHLJJamrq2vWUAAAjaWvAADlpIsAQPu0QUOWJ598Mm+88UaSZNy4cXn99debNRQAQGPpKwBAOekiANA+ddqQnfbYY4+cdNJJ2X///VMsFvOd73wn73vf+9a670UXXdSkAQEANoS+AgCUky4CAO3TBg1Zbrjhhlx88cX5zW9+k0KhkDvuuCOdOq351EKhoCgAAGWhrwAA5aSLAED7tEFDlu233z4333xzkqRDhw75/e9/ny222KJZgwEANIa+AgCUky4CAO3TBt2T5Z1Wr16tJAAArVpL95WXXnopX/jCF9KnT59UV1dnjz32yEMPPdRi7w8AtC5+dwIA7ccGncnybs8991wmTZqUJ598MoVCITvuuGPOOuusbLvttk2dDwCgJC3VVxYtWpQhQ4bkgAMOyB133JEtttgizz33XDbddNMmfR8AoG3xuxMAaB8afSbLXXfdlZ122ikPPPBAdtttt+yyyy7561//mp133jkzZsxojowAAI3Skn3l8ssvz4ABAzJlypTsvffe2WabbXLggQf6BQoAtGN+dwIA7Uejz2Q599xzc/bZZ+db3/rWGuu/+c1vZvjw4U0WDgCgFC3ZV37961/nkEMOyWc/+9nMnDkz73//+zNy5MiMGDFinc9ZtmxZli1bVv94yZIlTZanrVm8eHHq6urKHWO9Fi5cWO4IALQxfncCAO1Ho4csTz75ZH75y1+usf5LX/pSJk2a1BSZAAA2Skv2leeffz7XXnttRo8enfPOOy8PPPBAzjzzzFRVVeWLX/ziWp8zYcKEjBs3rklztEWLFy/OlVdPzuoVK8sdBQCalN+dAED70eghy+abb55HH300gwYNarD+0UcfdVM3AKBVaMm+snr16uy1114ZP358kmTPPffM7Nmzc+21165zyDJmzJiMHj26/vGSJUsyYMCAJs3VFtTV1WX1ipW5fd9tsrBH13LHWadt5y/OAY/NL3cMANoQvzsBgPaj0UOWESNG5Ctf+Uqef/75DB48OIVCIffee28uv/zyfO1rX2uOjAAAjdKSfaVfv37ZaaedGqzbcccdc8stt6zzOVVVVamqqmrSHG3Zwh5dU9u7utwx1qnPkjfLHQGANsbvTgCg/Wj0kOXCCy9M9+7d893vfjdjxoxJkvTv3z9jx47NmWee2eQBAQAaqyX7ypAhQ/LUU081WPf0009n6623btL3AQDaDr87AYD2o9FDlkKhkLPPPjtnn312XnvttSRJ9+7dmzwYAECpWrKvnH322Rk8eHDGjx+fo48+Og888ECuu+66XHfddc3yfgBA6+d3JwDQfjR6yPJOCgIA0No1d1/5yEc+kttuuy1jxozJJZdckoEDB2bSpEk57rjjmvV9AYC2we9OAKCybdSQBQCA5PDDD8/hhx9e7hgAAABAC+tQ7gAAAAAAAABtkSELAAAAAABACRo1ZFmxYkUOOOCAPP30082VBwBgo+grAEA56SIA0L40asjSuXPnPP744ykUCs2VBwBgo+grAEA56SIA0L40+nJhX/ziF3P99dc3RxYAgCahrwAA5aSLAED70amxT1i+fHl+/OMfZ8aMGdlrr72yySabNNg+ceLEJgsHAFAKfQUAKCddBADaj0YPWR5//PF86EMfSpI1ri/qVFgAoDXQVwCActJFAKD9aPSQ5e67726OHAAATUZfAQDKSRcBgPaj0fdkeduzzz6bu+66K0uXLk2SFIvFJgsFANAU9BUAoJxaqou89NJL+cIXvpA+ffqkuro6e+yxRx566KFmeS8AoKFGD1leeeWVHHjggdluu+3y8Y9/PPPnz0+SfPnLX87Xvva1Jg8IANBY+goAUE4t2UUWLVqUIUOGpHPnzrnjjjvyxBNP5Lvf/W423XTTJn0fAGDtGj1kOfvss9O5c+f885//THV1df36z33uc7nzzjubNBwAQCn0FQCgnFqyi1x++eUZMGBApkyZkr333jvbbLNNDjzwwGy77bZN+j4AwNo1+p4s06dPz1133ZUtt9yywfpBgwblhRdeaLJgAACl0lcAgHJqyS7y61//Ooccckg++9nPZubMmXn/+9+fkSNHZsSIEet8zrJly7Js2bL6x0uWLGnSTED7sHDhwnJHeE/V1dXp2bNnuWNQ4Ro9ZHnjjTcafArjbQsXLkxVVVWThAIA2Bj6CgBQTi3ZRZ5//vlce+21GT16dM4777w88MADOfPMM1NVVZUvfvGLa33OhAkTMm7cuCbNAbQfmyxdkdVJbr311nJHeU8dOnfKmaedbtBCs2r0kOU///M/c+ONN+b//J//kyQpFApZvXp1vv3tb+eAAw5o8oAAAI2lrwAA5dSSXWT16tXZa6+9Mn78+CTJnnvumdmzZ+faa69d55BlzJgxGT16dP3jJUuWZMCAAU2aC6hcXVesSockt++7TRb26FruOOu02ZI3c+Rf5qaurs6QhWbV6CHLt7/97QwbNiwPPvhgli9fnnPOOSezZ8/Oq6++mj//+c/NkREAoFH0FQCgnFqyi/Tr1y877bRTg3U77rhjbrnllnU+p6qqytm9wEZb2KNranuvedYetDeNvvH9TjvtlL///e/Ze++9M3z48Lzxxhs56qij8sgjj7ipGgDQKugrAEA5tWQXGTJkSJ566qkG655++ulsvfXWTfo+AMDaNfpMliSpqalx7U4AoFXTVwCAcmqpLnL22Wdn8ODBGT9+fI4++ug88MADue6663Ldddc1+3sDACUOWRYtWpTrr78+Tz75ZAqFQnbcccecdNJJ6d27d1PnAwAoib4CAJRTS3WRj3zkI7ntttsyZsyYXHLJJRk4cGAmTZqU4447rknfBwBYu0ZfLmzmzJkZOHBgrrzyyixatCivvvpqrrzyygwcODAzZ85sjowAAI2irwAA5dTSXeTwww/PY489ljfffDNPPvlkRowY0eTvAQCsXaPPZDnttNNy9NFH59prr03Hjh2TJKtWrcrIkSNz2mmn5fHHH2/ykAAAjaGvAADlpIsAQPvR6DNZnnvuuXzta1+rLwlJ0rFjx4wePTrPPfdck4YDACiFvgIAlJMuAgDtR6OHLB/60Ify5JNPrrH+ySefzB577NEUmQAANoq+AgCUky4CAO3HBl0u7O9//3v9n88888ycddZZefbZZ7PvvvsmSf7yl7/k6quvzre+9a3mSQkA8B70FQCgnHQRAGifNmjIsscee6RQKKRYLNavO+ecc9bY79hjj83nPve5pksHALCB9BUAoJx0EQBonzZoyDJnzpzmzgEAsFH0FQCgnHQRAGifNmjIsvXWWzd3DgCAjaKvAADlpIsAQPu0QUOWd3vppZfy5z//OQsWLMjq1asbbDvzzDObJBgAwMbQVwCActJFAKB9aPSQZcqUKTn11FPTpUuX9OnTJ4VCoX5boVBQFACAstNXAIBy0kUAoP1o9JDloosuykUXXZQxY8akQ4cOzZEJAGCj6CsAQDnpIgDQfjT6J31dXV0+//nPKwkAQKulrwAA5aSLAED70eif9ieffHL+67/+qzmyAAA0CX0FACgnXQQA2o9GXy5swoQJOfzww3PnnXdm1113TefOnRtsnzhxYpOFAwAohb4CAJSTLgIA7Uejhyzjx4/PXXfdle233z5J1rh5GwBAuekrAEA56SIA0H40esgyceLE/OQnP8mJJ57YDHHWb8KECTnvvPNy1llnZdKkSUmSYrGYcePG5brrrsuiRYuyzz775Oqrr87OO+/c4vkAgNahnH0FAEAXAYD2o9H3ZKmqqsqQIUOaI8t6zZo1K9ddd1122223BuuvuOKKTJw4MZMnT86sWbNSU1OT4cOH57XXXmvxjABA61CuvgIAkOgiANCeNHrIctZZZ+Wqq65qjizr9Prrr+e4447Lj370o/Tq1at+fbFYzKRJk3L++efnqKOOyi677JKpU6emrq4u06ZNa9GMAEDrUY6+AgDwNl0EANqPRl8u7IEHHsgf/vCH/OY3v8nOO++8xs3bbr311iYL97bTTjsthx12WA466KBceuml9evnzJmT2traHHzwwfXrqqqqMnTo0Nx333055ZRT1vp6y5Yty7Jly+ofL1mypMkzAwDlU46+AgDwNl0EANqPRg9ZNt100xx11FHNkWWtbr755jz88MOZNWvWGttqa2uTJH379m2wvm/fvnnhhRfW+ZoTJkzIuHHjmjYoANBqtHRfAQB4J10EANqPRg9ZpkyZ0hw51mrevHk566yzMn369HTt2nWd+xUKhQaPi8XiGuveacyYMRk9enT94yVLlmTAgAEbHxgAaBVasq8AALybLgIA7Uejhywt6aGHHsqCBQvy4Q9/uH7dqlWrcs8992Ty5Ml56qmnkrx1Rku/fv3q91mwYMEaZ7e8U1VVVaqqqpovOAAAAAAAUPEaPWQZOHDges8Sef755zcq0DsdeOCBeeyxxxqsO+mkk7LDDjvkm9/8Zj7wgQ+kpqYmM2bMyJ577pkkWb58eWbOnJnLL7+8yXIAAG1LS/YVAIB300UAoP1o9JBl1KhRDR6vWLEijzzySO6888584xvfaKpcSZLu3btnl112abBuk002SZ8+ferXjxo1KuPHj8+gQYMyaNCgjB8/PtXV1Tn22GObNAsA0Ha0ZF8BAHg3XQQA2o9GD1nOOuusta6/+uqr8+CDD250oMY655xzsnTp0oz8/9q7/yAry/N+/NcuK/uDsqugKBFU4g9QiVbRgGjUVMVmbFOacWIbYtXRTB3BH2WaCkMnQGsl2tYYBGxxFK0VdRJBzTQhMGkAlZpa1GpExagk2OwGV/Es5sjKss/3j3zdjyuw7j6cc549Z1+vmeeP8+zZs+/7vs/uc3FfnHOuuSa2b98eEydOjNWrV8fQoUNLngUA6B/6W70CAAwsahEAGDiqC/VAX/rSl+KRRx4p1MPt09q1a+P222/vul1VVRXz5s2L5ubm2LlzZ6xbt26PV78AAESUrl4BANgbtQgAVJ6CNVm+//3vx7Bhwwr1cAAABadeAQCypBYBgMrT57cLO+WUU7p9eFuSJNHS0hJvv/12LFmypKDhAADSUK8AAFlSiwDAwNHnJsvUqVO73a6uro5DDjkkzj333Bg3blyhcgEApKZeAQCypBYBgIGjz02WuXPnFiMHAEDBqFcAgCypRQBg4CjYZ7IAAAAAAAAMJL1+JUt1dXW39xPdm6qqqujo6NjvUAAAaahXAIAsqUUAYODpdZNl5cqV+/zahg0b4o477ogkSQoSCgAgDfUKAJAltQgADDy9brL8yZ/8yR7nXnnllZg9e3b84Ac/iGnTpsXf//3fFzQcAEBfqFcAgCypRQBg4En1mSy//vWv4xvf+EacdNJJ0dHREc8//3zcd999ccQRRxQ6HwBAKuoVACBLahEAGBj61GTJ5XJx4403xjHHHBMvvfRS/OQnP4kf/OAHMX78+GLlAwDoE/UKAJAltQgADCy9fruwW2+9NW655ZY47LDD4sEHH9zrS2ABALKkXgEAsqQWAYCBp9dNllmzZkV9fX0cc8wxcd9998V999231/utWLGiYOEAAPpCvQIAZEktAgADT6+bLH/xF38RVVVVxcwCALBf1CsAQJbUIgAw8PS6yXLvvfcWMQYAwP5TrwAAWVKLAMDA06cPvgcAAAAAAOB3NFkAAAAAAABS6PXbhQE9y+Vykc/ns46xT62trVlHAAAAAACoKJosUAC5XC4WLl4Unbs6so4CAAAAAECJaLJAAeTz+ejc1RGPTjoqWhvrso6zV0c35+KLLzZnHQMAAAAAoGJoskABtTbWRcuwhqxj7NXwtp1ZRwAAAAAAqCg++B4AAAAAACAFTRYAAAAAAIAUNFkAAAAAAABS0GQBAAAAAABIQZMFAKCAFixYEFVVVXHDDTdkHQUAAAAoMk0WAIACeeaZZ2Lp0qVx0kknZR0FAAAAKAFNFgCAAnj//fdj2rRpcdddd8VBBx2UdRwAAACgBDRZAAAKYPr06XHRRRfF+eefn3UUAAAAoERqsg4AAFDuHnrooXj22WfjmWee6dX929vbo729vet2W1tbUXLlcrnI5/NFeexCaG1tzToCAAAA7BdNFgCA/bB169a4/vrrY/Xq1VFXV9er71mwYEHMnz+/qLlyuVwsXLwoOnd1FPXnAAAAwECmyQIAsB82btwY27ZtiwkTJnSd2717d6xfvz4WLVoU7e3tMWjQoG7fM3v27Jg5c2bX7ba2thg9enRBc+Xz+ejc1RGPTjoqWht71/wptaObc/HFF5uzjgEAAACpabIAAOyH8847L1588cVu56644ooYN25c3HjjjXs0WCIiamtro7a2tiT5WhvromVYQ0l+Vl8Nb9uZdQQAAADYL5osAAD7YejQoTF+/Phu54YMGRLDhw/f4zwAAABQWaqzDgAAAAAAAFCOvJIFAKDA1q5dm3UEAAAAoAS8kgUAAAAAACAFTRYAAAAAAIAUNFkAAAAAKsSCBQuiqqoqbrjhhqyjAMCAoMkCAAAAUAGeeeaZWLp0aZx00klZRwGAAUOTBQAAAKDMvf/++zFt2rS466674qCDDso6DgAMGDVZBwAAAABg/0yfPj0uuuiiOP/88+Omm27q8b7t7e3R3t7edbutra3Y8QAy09ramnWEHjU0NERTU1PWMT5VLpeLfD6fdYweZTWXmiwAAAAAZeyhhx6KZ599Np555ple3X/BggUxf/78IqcCyNaQD3ZFZ0SsWLEi6yg9qj6gJq6bPqNfN1pyuVwsXLwoOnd1ZB2lR1nNpSYLAAAAQJnaunVrXH/99bF69eqoq6vr1ffMnj07Zs6c2XW7ra0tRo8eXayIAJmo27U7qiPi0UlHRWtj7/4+ltrBbTtj6tNbIp/P9+smSz6fj85dHeZyHzRZAAAAAMrUxo0bY9u2bTFhwoSuc7t3747169fHokWLor29PQYNGtTte2pra6O2trbUUQEy0dpYFy3DGrKOURHM5d5psgAAAACUqfPOOy9efPHFbueuuOKKGDduXNx44417NFgAgMLSZAEAAAAoU0OHDo3x48d3OzdkyJAYPnz4HucBgMKrzjoAAAAAAABAOfJKFgAAAIAKsnbt2qwjAMCA4ZUsAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJBCTdYBACiu1tbWrCP0qKGhIZqamrKOAQAAAAB9pskCUKGGfLArOiNixYoVWUfpUfUBNXHd9BkaLQAAAACUHU0WgApVt2t3VEfEo5OOitbGuqzj7NXBbTtj6tNbIp/Pa7IAAAAAUHY0WQAqXGtjXbQMa8g6BgAAAABUHB98DwAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkUJN1AAAAACpTLpeLfD6fdYweNTQ0RFNTU9YxAAAoU5osAAAAFFwul4uFixdF566OrKP0qPqAmrhu+gyNFgAAUtFkAQAAoODy+Xx07uqIRycdFa2NdVnH2auD23bG1Ke3RD6f12QBACAVTRYAAACKprWxLlqGNWQdAwAAisIH3wMAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkUJN1AAAAAADIQi6Xi3w+n3WMHrW2tmYdAYAeaLIAAAAAMODkcrlYuHhRdO7qyDoKAGVMkwUAAACAASefz0fnro54dNJR0dpYl3WcfTq6ORdffLE56xgA7IMmCwAAAAADVmtjXbQMa8g6xj4Nb9uZdQQAeuCD7wEAAAAAAFLQZAEAAAAAAEhBkwUAAAAAACAFTRYAAAAAAIAUfPA9ZSGXy0U+n886xj61trZmHQEAAAAAgBLTZKHfy+VysXDxoujc1ZF1FAAAAAAA6NKvmywLFiyIFStWxCuvvBL19fUxefLkuOWWW2Ls2LFd90mSJObPnx9Lly6N7du3x8SJE2Px4sVx4oknZpicQsrn89G5qyMenXRUtDbWZR1nr45uzsUXX2zOOgYAAAAAACXUr5ss69ati+nTp8fpp58eHR0dMWfOnJgyZUps2rQphgwZEhERt956a9x2221x7733xnHHHRc33XRTXHDBBfHqq6/G0KFDMx4BhdTaWBctwxqyjrFXw9t2Zh0BAAAAAIAS69dNllWrVnW7vWzZshgxYkRs3Lgxzj777EiSJG6//faYM2dOfOUrX4mIiPvuuy8OPfTQWL58efzlX/5lFrEBAAAAAIABoDrrAH2Ry+UiImLYsGEREfHmm29GS0tLTJkypes+tbW1cc4558SGDRv2+Tjt7e3R1tbW7QAAAAAAAOiLsmmyJEkSM2fOjLPOOivGjx8fEREtLS0REXHooYd2u++hhx7a9bW9WbBgQTQ1NXUdo0ePLl5wAAAAAACgIpVNk2XGjBnxwgsvxIMPPrjH16qqqrrdTpJkj3MfN3v27Mjlcl3H1q1bC54XAAAAAACobP36M1k+cu2118bjjz8e69evj1GjRnWdP+ywwyLid69oGTlyZNf5bdu27fHqlo+rra2N2tra4gUGAAAAAAAqXr9+JUuSJDFjxoxYsWJF/Od//meMGTOm29fHjBkThx12WKxZs6br3Icffhjr1q2LyZMnlzouAAAAAAAwgPTrV7JMnz49li9fHo899lgMHTq063NWmpqaor6+PqqqquKGG26Im2++OY499tg49thj4+abb46Ghob42te+lnF6AAAAAACgkvXrJsudd94ZERHnnntut/PLli2Lyy+/PCIi/uZv/iY++OCDuOaaa2L79u0xceLEWL16dQwdOrTEaQEAAAAAgIGkXzdZkiT51PtUVVXFvHnzYt68ecUPBAAAAAAA8P/r15/JAgAAAAAA0F9psgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAMB+WLBgQZx++ukxdOjQGDFiREydOjVeffXVrGMBAAAAJaDJAgCwH9atWxfTp0+Pp59+OtasWRMdHR0xZcqU+O1vf5t1NAAAAKDIarIOAABQzlatWtXt9rJly2LEiBGxcePGOPvsszNKBQAAAJSCJgsAQAHlcrmIiBg2bNg+79Pe3h7t7e1dt9va2oqeC+ib1tbWrCP0qKOjI2pq+vc/5/r7HJabXC4X+Xw+6xg9amhoiKampqxjAACUVP+uygEYEMphE8amAb2RJEnMnDkzzjrrrBg/fvw+77dgwYKYP39+CZMBvTXkg13RGRErVqzIOkqPOqsiqpOsU1AquVwuFi5eFJ27OrKO0qPqA2riuukz1EwAwICiyQJAZsplIyvCpgG9M2PGjHjhhRfiySef7PF+s2fPjpkzZ3bdbmtri9GjRxc7HtALdbt2R3VEPDrpqGhtrMs6zl4d3ZyLL77Y3K8zRvy/nOy/fD4fnbs6+vWaH9y2M6Y+vSXy+bx6CQAYUDRZAMhMOWxkRdg0oHeuvfbaePzxx2P9+vUxatSoHu9bW1sbtbW1JUoGpNHaWBctwxqyjrFXw9t2RkT/zhjx/3JSOP19zcnGggULYsWKFfHKK69EfX19TJ48OW655ZYYO3Zs1tEAYEDQZAEgczYMKGdJksS1114bK1eujLVr18aYMWOyjgQADCDr1q2L6dOnx+mnnx4dHR0xZ86cmDJlSmzatCmGDBmSdTwAqHiaLAAA+2H69OmxfPnyeOyxx2Lo0KHR0tISERFNTU1RX1+fcToAoNKtWrWq2+1ly5bFiBEjYuPGjXH22WdnlAoABg5NFgCA/XDnnXdGRMS5557b7fyyZcvi8ssvL30gAGBAy+VyERExbNiwfd6nvb092tvbu263tbUVPRcA+9ba2pp1hB7193xZ02QBANgPSZJkHQEAICJ+V5fMnDkzzjrrrBg/fvw+77dgwYKYP39+CZMBsDdDPtgVnRGxYsWKrKOwHzRZAAAAACrAjBkz4oUXXognn3yyx/vNnj07Zs6c2XW7ra0tRo8eXex4AHxC3a7dUR0Rj046Klob67KOs09HN+fiiy82Zx2j39JkAQAAAChz1157bTz++OOxfv36GDVqVI/3ra2tjdra2hIlA+DTtDbWRcuwhqxj7NPwtp1ZR+jXNFkAAAAAylSSJHHttdfGypUrY+3atTFmzJisIwHAgKLJAgAAAFCmpk+fHsuXL4/HHnsshg4dGi0tLRER0dTUFPX19RmnA4DKV511AAAAAADSufPOOyOXy8W5554bI0eO7DoefvjhrKMBwIDglSwAAAAAZSpJkqwjAMCA5pUsAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKWiyAAAAAAAApKDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKmiwAAAAAAAApaLIAAAAAAACkoMkCAAAAAACQgiYLAAAAAABACposAAAAAAAAKdRkHQAAAACy1NramnWEHvX3fAAAA5kmCwAAAAPSkA92RWdErFixIusoAACUKU0WAAAABqS6XbujOiIenXRUtDbWZR1nn45uzsUXX2zOOgYAAHuhyQIAAMCA1tpYFy3DGrKOsU/D23ZmHQFSyeVykc/ns46xT96KD4BC0GQBAAAAoKByuVwsXLwoOnd1ZB0FAIpKkwUAAACAgsrn89G5q6Nfvx2ft+IDoBA0WQAAAAAoiv78dnzeig+AQqjOOgAAAAAAAEA50mQBAAAAAABIQZMFAAAAAAAgBU0WAAAAAACAFDRZAAAAAAAAUtBkAQAAAAAASEGTBQAAAAAAIAVNFgAAAAAAgBQ0WQAAAAAAAFKoyToAAJSL1tbWrCP0qKGhIZqamrKOAQAAADBgaLIAwKcY8sGu6IyIFStWZB2lR9UH1MR102dotAAAAACUiCYLAHyKul27ozoiHp10VLQ21mUdZ68ObtsZU5/eEvl8XpMFAAAAoEQ0WQCgl1ob66JlWEPWMQAAAADoJ3zwPQAAAAAAQAqaLAAAAAAAAClosgAAAAAAAKSgyQIAAAAAAJCCJgsAAAAAAEAKNVkHqGS5XC7y+XzWMXrU0NAQTU1NWccAAAAAAICyo8lSJLlcLhYuXhSduzqyjtKj6gNq4rrpMzRaAAAAAACgjzRZiiSfz0fnro54dNJR0dpYl3WcvTq4bWdMfXpL5PN5TRYAAAAAAOgjTZYia22si5ZhDVnHAAAAAAAACswH3wMAAAAAAKTglSxEa2tr1hF61N/zAQAAAAAwMGmyDGBDPtgVnRGxYsWKrKMAAAAAAEDZ0WQZwOp27Y7qiHh00lHR2liXdZx9Oro5F198sTnrGAAAAAAA0I0mC9HaWBctwxqyjrFPw9t2Zh0BAAAAAAD24IPvAQAAAAAAUtBkAQAAAAAASEGTBQAAAAAAIIWKabIsWbIkxowZE3V1dTFhwoR44oknso4EAAwgahEAIEtqEQDIRkU0WR5++OG44YYbYs6cOfHcc8/FF77whfjSl74Uv/rVr7KOBgAMAGoRACBLahEAyE5FNFluu+22uPLKK+Oqq66K448/Pm6//fYYPXp03HnnnVlHAwAGALUIAJAltQgAZKcm6wD768MPP4yNGzfGrFmzup2fMmVKbNiwYa/f097eHu3t7V23c7lcRES0tbUVLNeOHTti586dcVDz9uj8bb5gj1tIv/d2W7/PGFEeOWX8nboP2uOj36KD33ondtbX9vkxzGXhlEPOcsgYUR45D2prj507d8aOHTtiyJAhBXnMj66LSZIU5PEqlVokvXL43Yro/zk/fv1t+s17MaKzM9M8+9Lf5/Ej5ZCzHDJGlEfOcsgYUR451SLZUYukVw6/WxHlkTPrjL3dj8g6Z2/IWDjlkLMcMkaUR85Ma5GkzP3f//1fEhHJU0891e38P/zDPyTHHXfcXr9n7ty5SUQ4HA6Hw+HoxbF169ZSXNLLllrE4XA4HI7iHmqRnqlFHA6Hw+Eo7vFptUjZv5LlI1VVVd1uJ0myx7mPzJ49O2bOnNl1u7OzM959990YPnz4Pr/nk9ra2mL06NGxdevWaGxsTB+8gpiT7sxHd+ajO/PRnfnorr/MR5IksWPHjvjMZz6TWYZyUupaJAv95blZLMZX/ip9jJU+vojKH2Oljy+isGNUi/RNOdQiA+F3oFjMXXrmLj1zl565S6e/zVtva5Gyb7IcfPDBMWjQoGhpael2ftu2bXHooYfu9Xtqa2ujtrb7ywYPPPDAVD+/sbGxXyx4f2JOujMf3ZmP7sxHd+aju/4wH01NTZn+/HKQdS2Shf7w3Cwm4yt/lT7GSh9fROWPsdLHF1G4MapFPl051iID4XegWMxdeuYuPXOXnrlLpz/NW29qkbL/4PvBgwfHhAkTYs2aNd3Or1mzJiZPnpxRKgBgoFCLAABZUosAQLbK/pUsEREzZ86MSy+9NE477bQ444wzYunSpfGrX/0qrr766qyjAQADgFoEAMiSWgQAslMRTZZLLrkk3nnnnfi7v/u7aG5ujvHjx8cPf/jDOPLII4v2M2tra2Pu3Ll7vLx2IDMn3ZmP7sxHd+ajO/PRnfkoP1nUIlmo9Oem8ZW/Sh9jpY8vovLHWOnjixgYY+yPyqUW8fxIz9ylZ+7SM3fpmbt0ynXeqpIkSbIOAQAAAAAAUG7K/jNZAAAAAAAAsqDJAgAAAAAAkIImCwAAAAAAQAqaLAAAAAAAAClosvRgyZIlMWbMmKirq4sJEybEE088sc/7rlixIi644II45JBDorGxMc4444z48Y9/XMK0xdeX+XjyySfjzDPPjOHDh0d9fX2MGzcuvvOd75QwbfH1ZT4+7qmnnoqampr4/d///eIGLLG+zMfatWujqqpqj+OVV14pYeLi6+tzpL29PebMmRNHHnlk1NbWxtFHHx333HNPidIWX1/m4/LLL9/rc+TEE08sYeLi6uvz44EHHoiTTz45GhoaYuTIkXHFFVfEO++8U6K0VKpiXMseeeSROOGEE6K2tjZOOOGEWLlyZYFT916hx3fvvffu9W/Tzp07i5C+d4px/S3XNezN+Mp9DSN6Vy+U6xpGfPr4yn0Ne1vjlOsa9mZ8/XENKSx7B+nZZ0jPnkR69i7SsceRXkXuhyTs1UMPPZQccMAByV133ZVs2rQpuf7665MhQ4Ykv/zlL/d6/+uvvz655ZZbkv/+7/9ONm/enMyePTs54IADkmeffbbEyYujr/Px7LPPJsuXL09+/vOfJ2+++WZy//33Jw0NDcm//uu/ljh5cfR1Pj7y3nvvJZ/97GeTKVOmJCeffHJpwpZAX+fjpz/9aRIRyauvvpo0Nzd3HR0dHSVOXjxpniNf/vKXk4kTJyZr1qxJ3nzzzeRnP/tZ8tRTT5UwdfH0dT7ee++9bs+NrVu3JsOGDUvmzp1b2uBF0tf5eOKJJ5Lq6urku9/9bvLGG28kTzzxRHLiiScmU6dOLXFyKkkxrmUbNmxIBg0alNx8883Jyy+/nNx8881JTU1N8vTTTxdxJHtXjPEtW7YsaWxs7Pb3qbm5uYij6Fkxrr/lvIa9GV+5r2GSfHq9UM5rmCSfPr5yX8Pe1DjlvIa9GV9/W0MKy95BevYZ0rMnkZ69i3TscaRXqfshmiz78PnPfz65+uqru50bN25cMmvWrF4/xgknnJDMnz+/0NEyUYj5+NM//dPk61//eqGjZSLtfFxyySXJ3/7t3yZz586tqOKnr/PxUUGzffv2EqTLRl/n5Ec/+lHS1NSUvPPOO6WIV3L7+zdk5cqVSVVVVbJly5ZixCu5vs7HP/7jPyaf/exnu51buHBhMmrUqKJlpPIV41r21a9+NfnDP/zDbucuvPDC5M/+7M8KkrkvijG+ZcuWJU1NTQVOml4xrr/lvIa9GV+5r2Fv6oVyXsPejK/c1/CT9lbjlPMaftLextff1pDCsneQnn2G9OxJpGfvIh17HOlV6n6Itwvbiw8//DA2btwYU6ZM6XZ+ypQpsWHDhl49RmdnZ+zYsSOGDRtWjIglVYj5eO6552LDhg1xzjnnFCNiSaWdj2XLlsXrr78ec+fOLXbEktqf58cpp5wSI0eOjPPOOy9++tOfFjNmSaWZk8cffzxOO+20uPXWW+Pwww+P4447Lv76r/86Pvjgg1JELqpC/A25++674/zzz48jjzyyGBFLKs18TJ48Od5666344Q9/GEmSxG9+85v4/ve/HxdddFEpIlOBinUt+6//+q89HvPCCy/s9e96oRTzWv3+++/HkUceGaNGjYo/+qM/iueee65gufuiWNffcl/DiE+vL8p5DXtTL5TzGva2HirnNfykvdU45byGn7SvGq6/rCGFZe8gPfsM6dmTSM/eRTr2ONKr5P2QmqwD9Eetra2xe/fuOPTQQ7udP/TQQ6OlpaVXj/HP//zP8dvf/ja++tWvFiNiSe3PfIwaNSrefvvt6OjoiHnz5sVVV11VzKglkWY+XnvttZg1a1Y88cQTUVNTWb92aeZj5MiRsXTp0pgwYUK0t7fH/fffH+edd16sXbs2zj777FLELqo0c/LGG2/Ek08+GXV1dbFy5cpobW2Na665Jt59992yf2/T/f2b2tzcHD/60Y9i+fLlxYpYUmnmY/LkyfHAAw/EJZdcEjt37oyOjo748pe/HHfccUcpIlOBinUta2lp2a/6qVCKNb5x48bFvffeG5/73Oeira0tvvvd78aZZ54Z//u//xvHHntswcfRk2Jdf8t5DXszvnJfw97UC+W8hr0ZX7mv4cftq8Yp5zX8uH2Nrz+tIYVl7yA9+wzp2ZNIz95FOvY40qvk/ZCB+1e4F6qqqrrdTpJkj3N78+CDD8a8efPiscceixEjRhQrXsmlmY8nnngi3n///Xj66adj1qxZccwxx8Sf//mfFzNmyfR2Pnbv3h1f+9rXYv78+XHccceVKl7J9eX5MXbs2Bg7dmzX7TPOOCO2bt0a//RP/1RRBU1f5qSzszOqqqrigQceiKampoiIuO222+Liiy+OxYsXR319fdHzFlvav6n33ntvHHjggTF16tQiJctGX+Zj06ZNcd1118W3vvWtuPDCC6O5uTm++c1vxtVXXx133313KeJSoYpxLUv7u14MhR7fpEmTYtKkSV23zzzzzDj11FPjjjvuiIULFxYueB8U4/pbjmsY0bvxlfsa9rZeKNc17M34yn0NP66nGqdc1/Dj9jW+/riGFJa9g/TsM6RnTyI9exfp2ONIrxL3QzRZ9uLggw+OQYMG7dFB27Zt2x6dtk96+OGH48orr4zvfe97cf755xczZsnsz3yMGTMmIiI+97nPxW9+85uYN29e2RdKfZ2PHTt2xP/8z//Ec889FzNmzIiI312UkiSJmpqaWL16dfzBH/xBSbIXw/48Pz5u0qRJ8e///u+FjpeJNHMycuTIOPzww7uKlIiI448/PpIkibfeequs/1ff/jxHkiSJe+65Jy699NIYPHhwMWOWTJr5WLBgQZx55pnxzW9+MyIiTjrppBgyZEh84QtfiJtuuilGjhxZ9NxUlmJdyw477LD9vh4UQqmu1dXV1XH66afHa6+9VpyB9KBY199yXcN9+bT6otzWsDf1QjmvYZp6qNzW8CM91TjlvIYf6UsNl+UaUlj2DtKzz5CePYn07F2kY48jvUreD/GZLHsxePDgmDBhQqxZs6bb+TVr1sTkyZP3+X0PPvhgXH755bF8+fJ+975w+yPtfHxSkiTR3t5e6Hgl19f5aGxsjBdffDGef/75ruPqq6+OsWPHxvPPPx8TJ04sVfSiKNTz47nnnus3fxj3V5o5OfPMM+PXv/51vP/++13nNm/eHNXV1TFq1Kii5i22/XmOrFu3Ln7xi1/ElVdeWcyIJZVmPvL5fFRXd79kDxo0KCJ+97cV+qpY17Izzjhjj8dcvXp1n64HhVCqa3WSJPH8889ncv0q1vW3XNdwXz6tvii3NexNvVDOa5imHiq3NfxITzVOOa/hR/pSw2W5hhSWvYP07DOkZ08iPXsX6djjSK+i90MS9uqhhx5KDjjggOTuu+9ONm3alNxwww3JkCFDki1btiRJkiSzZs1KLr300q77L1++PKmpqUkWL16cNDc3dx3vvfdeVkMoqL7Ox6JFi5LHH3882bx5c7J58+bknnvuSRobG5M5c+ZkNYSC6ut8fNLcuXOTk08+uURpi6+v8/Gd73wnWblyZbJ58+bk5z//eTJr1qwkIpJHHnkkqyEUXF/nZMeOHcmoUaOSiy++OHnppZeSdevWJccee2xy1VVXZTWEgkr7O/P1r389mThxYqnjFl1f52PZsmVJTU1NsmTJkuT1119PnnzyyeS0005LPv/5z2c1BCpAMa5lTz31VDJo0KDk29/+dvLyyy8n3/72t5Oamprk6aefLuZQ9qoY45s3b16yatWq5PXXX0+ee+655IorrkhqamqSn/3sZ8Ucyj4V4/pbzmvYm/GV+xr2pl4o5zXszfjKfQ0/0lONU85r+JGextff1pDCsneQnn2G9OxJpGfvIh17HOlV6n6IJksPFi9enBx55JHJ4MGDk1NPPTVZt25d19cuu+yy5Jxzzum6fc455yQRscdx2WWXlT54kfRlPhYuXJiceOKJSUNDQ9LY2JiccsopyZIlS5Ldu3dnkLw4+jIfn1SJxU9f5uOWW25Jjj766KSuri456KCDkrPOOiv5j//4jwxSF1dfnyMvv/xycv755yf19fXJqFGjkpkzZyb5fL7EqYunr/Px3nvvJfX19cnSpUtLnLQ0+jofCxcuTE444YSkvr4+GTlyZDJt2rTkrbfeKnFqKk0xrmXf+973krFjxyYHHHBAMm7cuEz/sVro8d1www3JEUcckQwePDg55JBDkilTpiQbNmwoUvreKcb1t1zXsDfjK/c1TJLe1QvluoZJ8unjq4Q17E2NU85r+Gnj649rSGHZO0jPPkN69iTSs3eRjj2O9CpxP6QqSfrT62oAAAAAAADKg89kAQAAAAAASEGTBQAAAAAAIAVNFgAAAAAAgBQ0WQAAAAAAAFLQZAEAAAAAAEhBkwUAAAAAACAFTRYAAAAAAIAUNFkAAAAAAABS0GQBAAAAAABIQZMFKKqtW7fGlVdeGZ/5zGdi8ODBceSRR8b1118f77zzTtd9zj333KiqqtrjuPrqq7vu8/HzQ4YMiWOPPTYuv/zy2LhxYxbDAgDKhFoEAMiaegQqmyYLUDRvvPFGnHbaabF58+Z48MEH4xe/+EX8y7/8S/zkJz+JM844I959992u+37jG9+I5ubmbsett97a7fGWLVsWzc3N8dJLL8XixYvj/fffj4kTJ8a//du/lXpoAEAZUIsAAFlTj0Dlq8k6AFC5pk+fHoMHD47V6xg2GgAAAwpJREFUq1dHfX19REQcccQRccopp8TRRx8dc+bMiTvvvDMiIhoaGuKwww7r8fEOPPDArvscddRRMWXKlLjssstixowZ8cd//Mdx0EEHFXdAAEBZUYsAAFlTj0Dl80oWoCjefffd+PGPfxzXXHNNVxHxkcMOOyymTZsWDz/8cCRJsl8/56/+6q9ix44dsWbNmv16HACgsqhFAICsqUdgYNBkAYritddeiyRJ4vjjj9/r148//vjYvn17vP322xERsWTJkvi93/u9bsd99933qT9n3LhxERGxZcuWgmUHAMqfWgQAyJp6BAYGbxcGZOKj/6UxePDgiIiYNm1azJkzp9t9RowY0evHqaqqKnBCAKCSqUUAgKypR6AyaLIARXHMMcdEVVVVbNq0KaZOnbrH11955ZU45JBD4sADD4yIiKampjjmmGP6/HNefvnliIgYM2bM/sQFACqMWgQAyJp6BAYGbxcGFMXw4cPjggsuiCVLlsQHH3zQ7WstLS3xwAMPxOWXX77fP+f222+PxsbGOP/88/f7sQCAyqEWAQCyph6BgUGTBSiaRYsWRXt7e1x44YWxfv362Lp1a6xatSouuOCCOO644+Jb3/pW133z+Xy0tLR0O7Zv397t8d57771oaWmJX/7yl7FmzZq4+OKLY/ny5XHnnXd2/a8PAICPqEUAgKypR6DyVSUfvWkfQBFs2bIl5s2bF6tWrYpt27ZFkiTxla98Je6///5oaGiIiIhzzz031q1bt8f3XnjhhbFq1aqI6P6+onV1dXH44YfHWWedFdddd12ceuqppRkMAFB21CIAQNbUI1DZNFmAkpo7d27cdtttsXr16jjjjDOyjgMADDBqEQAga+oRqCyaLEDJLVu2LHK5XFx33XVRXe1dCwGA0lKLAABZU49A5dBkAQAAAAAASEGbFAAAAAAAIAVNFgAAAAAAgBQ0WQAAAAAAAFLQZAEAAAAAAEhBkwUAAAAAACAFTRYAAAAAAIAUNFkAAAAAAABS0GQBAAAAAABIQZMFAAAAAAAghf8PMOxSt/02gyMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply BB filter..\n", + "Number of building blocks: 1562\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_enaminerejected_enamine
AP1201520681
FP1100527573
SE743399344
GA35528669
B147425
B2594613
Total350518201685
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_enamine rejected_enamine\n", + "AP 1201 520 681\n", + "FP 1100 527 573\n", + "SE 743 399 344\n", + "GA 355 286 69\n", + "B1 47 42 5\n", + "B2 59 46 13\n", + "Total 3505 1820 1685" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply SYBA filter..\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filteredaccepted_sybarejected_syba
AP12011070131
FP1100858242
SE74366479
GA35532827
B1473710
B259536
Total35053010495
\n", + "
" + ], + "text/plain": [ + " pre_filtered accepted_syba rejected_syba\n", + "AP 1201 1070 131\n", + "FP 1100 858 242\n", + "SE 743 664 79\n", + "GA 355 328 27\n", + "B1 47 37 10\n", + "B2 59 53 6\n", + "Total 3505 3010 495" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAAVjCAYAAABKZ0mAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebyUdd0//tewLwKyCBySFBfcwJVKwW9CouaCa2HqraKEmSuKS5QLdpeouWOaFgquqKWmmfuauWOkuC9oahBpCLLIOr8//Dk3RxY50zkMy/P5eFyPzlzXZ655X6eD877mNZ/rKhSLxWIAAAAAAACokXqVLgAAAAAAAGBlJGQBAAAAAAAog5AFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMogZAEAAOrMM888k3322Sdf//rX07hx43To0CHbbbddhgwZkgkTJqRFixbZb7/9FvvcG2+8MYVCIVdeeWWSZMCAASkUCqWlfv36WXvttdO/f/+MHz9+iTXceeedKRQKadu2bWbPnl0nxwkAAKyehCwAAECduPvuu9OzZ89MmzYt5513Xu6///5ccskl6dWrV26++eZ06dIlF154YW677bbceOON1Z47adKkHHvssdlll13yox/9qLS+adOmeeqpp/LUU0/lscceyy9+8Yu88MIL6dmzZz788MPF1jFy5MgkyX/+85/ccccddXa8AADA6qdQLBaLlS4CAABY9eywww758MMP89prr6VBgwbVti1YsCD16n3+na/ddtstzzzzTMaPH5+qqqokyV577ZW//OUveemll/K1r30tyeczWX7/+99n+vTp1fb18MMPZ8cdd8yVV16ZI444otq2SZMmpXPnzvn2t7+dJ598Mv/v//2/3H///XV1yAAAwGrGTBYAAKBOfPzxx2nXrt0iAUuSUsCS/N9Mky8Ckuuuuy533nlnLrvsslLAsjStWrVKkjRs2HCRbaNHj868efNywgknZN99981DDz2U9957r6zjAQAA+DIhCwAAUCe22267PPPMMznuuOPyzDPPZO7cuYsdV1VVlV//+tf505/+lOHDh+f444/PfvvtlwMPPHCx4+fNm5d58+bls88+y/jx43PyySendevW2X333RcZe/XVV6eqqiq77rprDj/88CxYsCCjRo2qzcMEAABWYy4XBgAA1ImPP/44e++9d5544okkn880+cY3vpF+/frlmGOOyRprrFFt/P77759bbrklHTp0yPjx49OuXbtq2wcMGJDRo0cv8jpVVVW59dZb06tXr2rr//KXv+Tb3/52fvKTn2T48OEpFotZf/31s2DBgkyYMCGFQqGWjxgAAFjdmMkCAADUibZt2+Yvf/lLnnvuuZxzzjnZa6+98sYbb2To0KHp3r17Pvroo2rjf/7znydJjjvuuEUCli80bdo0zz33XJ577rk888wzue2229K1a9fstttueeqpp6qN/eIyZIcffniSpFAoZMCAAXnvvffy0EMP1fbhAgAAqyEhCwAAUKd69OiRU089Nbfeemv++c9/5oQTTsi7776b8847r9q4xo0bJ0kaNWq0xH3Vq1cvPXr0SI8ePfLNb34z++yzT/785z+nQYMGOfHEE0vjPv3009x666355je/mbXWWiuffPJJPvnkk+yzzz4pFAqlAAYAAOC/IWQBAACWm4YNG+bMM89MkowfP75W9tmsWbOsv/76+fvf/15ad9NNN2XmzJl59tln07p169Ky+eabp1gs5vbbb8+UKVNq5fUBAIDVV4NKFwAAAKyaJk6cmKqqqkXWv/rqq0mSTp061crrTJ8+PW+99Vbat29fWjdy5Mi0aNEid9xxR+rVq/7dsueffz4nn3xybrjhhhxzzDG1UgMAALB6ErIAAAB1Ypdddsnaa6+dfv36ZeONN86CBQsybty4XHDBBVljjTVy/PHH13ifCxYsyNNPP136+cMPP8yll16aKVOmZNiwYUk+nyHz7LPP5sc//nG+853vLLKPXr165YILLsjIkSOFLAAAwH9FyAIAANSJ0047LX/84x9z0UUXZeLEiZk9e3aqqqrSt2/fDB06NJtsskmN9zlr1qxst912pcft27fPJptskttvvz177713kv+74f2PfvSjxe6jYcOGGTBgQM4555y88MIL2XrrrWt+cAAAAEkKxWKxWOkiAAAAAAAAVjZufA8AAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyABVx6aWXplAopFu3bovdXigUqi2tWrVK7969c/fddy/nSgGAVc2oUaMW6TW+WE466aQkybrrrltt/RprrJFvfetbufbaaytcPQCwsnvmmWeyzz775Otf/3oaN26cDh06ZLvttsuQIUNKY3r37r3EfmXdddetXPHAIhpUugBg9XT11VcnSV5++eU888wz+da3vrXImO9973sZMmRIFixYkHfeeSe/+MUv0q9fv9x1113Zfffdl3fJAMAq5pprrsnGG29cbV2nTp1KP/fq1Svnn39+kuSDDz7I+eefn0MPPTQzZszIj3/84+VaKwCwarj77ruz5557pnfv3jnvvPNSVVWViRMn5vnnn8+YMWNywQUXlMaut956ueGGGxbZR+PGjZdnycBXKBSLxWKliwBWL88//3y+8Y1vZPfdd8/dd9+dQYMG5aqrrqo2plAo5Oijj85ll11WWvf2229ngw02SN++ffPAAw8s77IBgFXEqFGjcthhh+W5555Ljx49Fjtm3XXXTbdu3fKnP/2ptO6TTz7JOuusk/bt2+fNN99cXuUCAKuQHXbYIR9++GFee+21NGhQ/fvvCxYsSL16n194qHfv3vnoo48yfvz4SpQJ1IDLhQHL3ciRI5Mk55xzTnr27JkxY8Zk5syZX/m89ddfP2uttVbee++9ui4RAGARa665ZjbaaCO9CABQto8//jjt2rVbJGBJUgpYgJWLf7nAcjVr1qzcdNNN+cY3vpFu3brl8MMPz6effppbb731K587ZcqUfPzxx1lrrbWWQ6UAwKpu/vz5mTdvXrVlaebOnZv33ntPLwIAlG277bbLM888k+OOOy7PPPNM5s6du9TxX+5V5s2blwULFiynaoFlIWQBlqvf//73mTp1agYOHJgk2X///bPGGmuUZrcsrFgsZt68eZk7d25ee+21HHTQQVmwYEEOOuig5V02ALAK2nbbbdOwYcNqy8JByxe9yLx58/Luu+9m0KBBmTx5sl4EACjbOeeck+233z4jRozItttum+bNm6dXr14555xzMn369GpjX3755UV6lYYNG+aII46oUPXA4rgnC7Bc9e7dO88++2wmTpyYVq1aJUkOP/zwXHPNNXnjjTey4YYbJvn8nixf1qpVqwwZMiSnn376cq0ZAFi1fHFPlmuvvTabbLJJtW1f3KNl3XXXXeSyYE2bNs0Pf/jDnH/++WnUqNFyqxcAWPU8//zzeeihh/L888/n0UcfzUcffZR11103zz33XNq1a5fevXvngw8+yJgxYxZ57lprrZV11lmnAlUDi7Poxf8A6shbb72Vxx9/PPvtt1+KxWI++eSTJMn3vve9XHPNNbn66qszfPjw0vj+/fvn5JNPTqFQSIsWLbL++uunfv36FaoeAFjVbLLJJku88X2SbL/99rnoootSKBTSrFmzrL/++sIVAKBW9OjRo9SHzJ07N6eeemouuuiinHfeeTnvvPOSJE2aNFlqrwKsGFwuDFhurr766hSLxfz+979P69atS8vuu++eJBk9enTmz59fGr/WWmulR48e2WabbdK1a1cBCwCwXLVq1arUi2yyySYCFgCgTjRs2DBnnnlmkmT8+PEVrgaoKTNZgOVi/vz5GT16dNZff/387ne/W2T7n/70p1xwwQW55557sscee1SgQgAAAIC6NXHixFRVVS2y/tVXX02SdOrUaXmXBPyXhCzAcnHPPffkn//8Z84999z07t17ke3dunXLZZddlpEjRwpZAAAAgFXSLrvskrXXXjv9+vXLxhtvnAULFmTcuHG54IILssYaa+T4448vjZ01a1aefvrpxe5n2223XV4lA19ByAIsFyNHjkyjRo1y2GGHLXZ7u3btss8+++T3v/99/vWvfy3n6gAAAADq3mmnnZY//vGPueiiizJx4sTMnj07VVVV6du3b4YOHZpNNtmkNPadd97Jdtttt9j9zJ07Nw0a+GgXVgSFYrFYrHQRAAAAAAAAKxs3vgcAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAAAAog5AFAAAAAACgDA0qXcCKYMGCBfnnP/+ZFi1apFAoVLocAFghFIvFfPrpp+nUqVPq1fO9jLqkFwGARelFlh+9CAAsall7ESFLkn/+85/p3LlzpcsAgBXS+++/n7XXXrvSZazS9CIAsGR6kbqnFwGAJfuqXkTIkqRFixZJPv9ltWzZssLVwGpsxoykU6fPf/7nP5PmzStbD6zmpk2bls6dO5feJ6k7ehFWOd7TgVqgF1l+9CIswns5wDL3IkKWpDQVtmXLlpoJqKT69f/v55YtNXGwgnDJiLqnF2GV4z0dqEV6kbqnF2ER3ssBSr6qF3FRUwAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDe7Iso2KxmHnz5mX+/PmVLoUVTP369dOgQQPXCQYAgMWYP39+5s6dW+kyWAE5lwJgRaFfWT3VVi8iZFkGc+bMycSJEzNz5sxKl8IKqlmzZqmqqkqjRo0qXQoAAKwwpk+fng8++CDFYrHSpbCCci4FQKXpV1ZvtdGLCFm+woIFCzJhwoTUr18/nTp1SqNGjXzLhpJisZg5c+bk3//+dyZMmJANN9ww9eq5Ch8AAMyfPz8ffPBBmjVrlrXWWst5FNU4lwJgRaBfWX3VZi8iZPkKc+bMyYIFC9K5c+c0a9as0uWwAmratGkaNmyY9957L3PmzEmTJk0qXRIAAFTc3LlzUywWs9Zaa6Vp06aVLocVkHMpACpNv7J6q61exNdElpFv1LA0/j4AAGDxfCOUpXEuBcCKQL+y+qqNXkQ3AwAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsrBCevTRR7PXXnulqqoqzZs3z5ZbbpkbbrhhieP/+te/pkGDBtlyyy2/ct8PPfRQevbsmRYtWqSqqiqnnnpq5s2bV9r++uuvp0+fPunQoUOaNGmS9dZbL6eddlrmzp1bG4cGAABQZ5blXOq2227LTjvtlLXWWistW7bMdtttl/vuu2+p+x01alQKhcJil8mTJydxLgUALJua9gzL+tnv3//+9xxwwAHp3LlzmjZtmk022SSXXHJJHRxBdQ3q/BWgDE8++WQ233zznHrqqenQoUPuvvvuHHLIIWnZsmX69etXbezUqVNzyCGHZMcdd8y//vWvpe73xRdfzG677Zaf/exnufbaa/Phhx/myCOPzPz583P++ecnSRo2bJhDDjkkW2+9ddZcc838/e9/z6BBg7JgwYKcffbZdXbMAAAA/61lOZd6/PHHs9NOO+Xss8/OmmuumWuuuSb9+vXLM888k6222mqx+91///3z3e9+t9q6AQMG5LPPPkv79u2TOJcCAJZNTXqGmnz2O3bs2Ky11lq5/vrr07lz5zz55JM54ogjUr9+/RxzzDF1d0BFilOnTi0mKU6dOnWRbbNmzSq+8sorxVmzZlWgsvLtsMMOxWOOOaZ4/PHHF9dcc81i+/bti1deeWVx+vTpxQEDBhTXWGON4nrrrVf885//XO15L7/8cnHXXXctNm/evNi+ffvi//zP/xT//e9/l7bfc889xV69ehVbtWpVbNOmTXH33XcvvvXWW6XtEyZMKCYp/uEPfyj27t272LRp0+Lmm29efPLJJ//rY9ptt92Khx122CLr999//+Jpp51WPPPMM4tbbLHFUvcxdOjQYo8ePaqtu/3224tNmjQpTps2bYnPO+GEE4rbb7/9ErevrH8nK5zp04vF5PNl+vRKVwOrvaW9P1K7/K5Z5XhPp7jy9sir07nUwjbddNPiWWedtcz7nDx5crFhw4bFa6+9dqnj/ptzKe+Py4/fNYvwXs5qQr+y4vQrS+oZavLZ7+IcddRRxT59+ixxe230Ii4XtgobPXp02rVrl2effTbHHntsfvzjH+f73/9+evbsmRdeeCG77LJLDj744MycOTNJMnHixOywww7Zcsst8/zzz+fee+/Nv/71r/Tv37+0zxkzZuTEE0/Mc889l4ceeij16tXLPvvskwULFlR77Z/97Gc56aSTMm7cuHTt2jUHHHBAtUtyFQqFjBo1qkbHM3Xq1LRp06baumuuuSZvv/12zjzzzGXax+zZs9OkSZNq65o2bZrPPvssY8eOXexz3nrrrdx7773ZYYcdalQvAACwclodzqUWtmDBgnz66adLHfNl1157bZo1a5bvfe97SxzjXAoA6s6q1K8sqWeo6We/i/NVfVCtqHH0swpaVWeyLJz8zZs3r9i8efPiwQcfXFo3ceLEYpLiU089VSwWi8XTTz+9uPPOO1fbz/vvv19MUnz99dcX+zqTJ08uJim+9NJLxWLx/9LM3/3ud6UxL7/8cjFJ8dVXXy2t22ijjYq33XbbMh/PrbfeWmzUqFFx/PjxpXVvvPFGsX379qXaliXNvO+++4r16tUr3njjjcV58+YVP/jgg+L2229fTFK88cYbq43dbrvtio0bNy4mKR5xxBHF+fPnL3G/K+vfyQrHN2VgheIbjcuP3zWrHO/pFFfeHnl1OJf6svPOO6/Ypk2b4r/+9a9l3u+mm25a/PGPf7zYbbV1LuX9cfnxu2YR3stZTehXKtuvLK1nKOez3y978skniw0bNizef//9SxxjJgtLtfnmm5d+rl+/ftq2bZvu3buX1nXo0CFJSjcpHDt2bB555JGsscYapWXjjTdOkrz99tul/z3wwAOz3nrrpWXLlunSpUuS5B//+McSX7uqqqra6yTJa6+9ln322WeZjuPRRx/NgAED8tvf/jabbbZZkmT+/Pk58MADc9ZZZ6Vr167LtJ8k2XnnnfOrX/0qRx55ZBo3bpyuXbtm9913T/L572hhN998c1544YXceOONufvuu0v3bAEAAFZtq/K51JfddNNNGTZsWG6++ebSvVW+ylNPPZVXXnklAwcOXOx251IAUPdWhX5lST1DuZ/9Luzll1/OXnvtlTPOOCM77bRTWftYVm58vwpr2LBhtceFQqHaukKhkCSl6V4LFixIv379cu655y6yry/+sfTr1y+dO3fOb3/723Tq1CkLFixIt27dMmfOnCW+9pdfpyYee+yx9OvXLxdeeGEOOeSQ0vpPP/00zz//fP72t7+Vblq0YMGCFIvFNGjQIPfff3++853vLHafJ554Yk444YRMnDgxrVu3zrvvvpuhQ4eW/qPxhc6dOydJNt1008yfPz9HHHFEhgwZskgYAwAArFpW5XOphd18880ZOHBgbr311vTt23eZ9/273/0uW265ZbbZZpvFbncuBQB1b1XoV5bUM/w3n/0mySuvvJLvfOc7GTRoUE477bQa11VTQhZKtt566/zhD3/IuuuumwYNFv3T+Pjjj/Pqq6/myiuvzP/7f/8vSfLEE0/UWT2PPvpo9thjj5x77rk54ogjqm1r2bJlXnrppWrrLr/88jz88MP5/e9/v0hg8mWFQiGdOnVK8vk3tzp37pytt956ieOLxWLmzp2bYrFY5tEAAACrqpXpXOoLN910Uw4//PDcdNNNpdn9y2L69Om55ZZbMnz48GUa71wKAFYMK1q/8mUL9wz/zWe/L7/8cr7zne/k0EMPzS9/+cu6LjuJkIWFHH300fntb3+bAw44ICeffHLatWuXt956K2PGjMlvf/vbtG7dOm3bts1VV12Vqqqq/OMf/8hPfvKTsl5r4403zvDhw5c4bezRRx/N7rvvnuOPPz777bdfJk2alCRp1KhR2rRpk3r16qVbt27VntO+ffs0adKk2vrbb789Q4cOzWuvvVZa96tf/Srf/e53U69evdx2220555xzcsstt5S+VXXDDTekYcOG6d69exo3bpyxY8dm6NCh2X///Rf7HyBWT1OnTi3dOGxF1qxZs7Rq1arSZQDASmVleJ/3Hr9iWZnOpZLPA5ZDDjkkl1xySbbddtvSmKZNm5b+rhZ3LpV8Pvtl3rx5OeiggxZ5bedSwMrA+zyrqxWpX1mWnqGcz35ffvnl9OnTJzvvvHNOPPHEUo9Tv379rLXWWmUdy7LQ5VDSqVOn/PWvf82pp56aXXbZJbNnz84666xTCiQKhULGjBmT4447Lt26dctGG22USy+9NL17967xa73++uuZOnXqErePGjUqM2fOzPDhw6t9Q2qHHXbIo48+usyvM3Xq1Lz++uvV1t1zzz355S9/mdmzZ2eLLbbIH//4x+y6666l7Q0aNMi5556bN954I8ViMeuss06OPvronHDCCct+gKzSpk6dmkt/fVkWzJ1X6VK+Ur2GDXLc0cdozgBgGa0s7/Pe41csK9u51JVXXpl58+bl6KOPztFHH10ac+ihh2bUqFFJFn8ulSQjR47Mvvvum9atWy+yzbkUsKLzPs/qbEXqV2qrZ/hyv3Lrrbfm3//+d2644YbccMMNpfXrrLNO3n333Rofx7IqFM3ZzbRp09KqVatMnTo1LVu2rLbts88+y4QJE9KlS5c0adKkQhWyovN3UktmzEjWWOPzn6dPT5o3r2w9SzBx4sRcddVVuWPbdfNRyxX3/+920z7L3k+/myOOOKJ0bU2oiaW9P1K7/K5Z5awk7+mLszK8z68s7/F6ZJbF0v5OVof3x+HDh+e2227La6+9lqZNm6Znz54599xzs9FGG5XGFIvFnHXWWbnqqqsyZcqUfOtb38qvf/3rbLbZZqUxs2fPzkknnZSbbrops2bNyo477pjLL788a6+99jLVsTr8rqmhlfi9fGm8z/Nl+hVqoxcxkwWgTB+1bJJJbZpVugwAoA54nweWh8ceeyxHH310vvGNb2TevHn52c9+lp133jmvvPJKmv//H2qfd955ufDCCzNq1Kh07do1v/jFL7LTTjvl9ddfT4sWLZIkgwcPzl133ZUxY8akbdu2GTJkSPbYY4+MHTu2dGls4P94nwdqk5AFAAAAoALuvffeao+vueaatG/fPmPHjs23v/3tFIvFXHzxxfnZz36WfffdN0kyevTodOjQITfeeGN+9KMfZerUqRk5cmSuu+669O3bN0ly/fXXp3PnznnwwQezyy67LPfjAoDVSb1KFwAAAABAStevb9OmTZJkwoQJmTRpUnbeeefSmMaNG2eHHXbIk08+mSQZO3Zs5s6dW21Mp06d0q1bt9KYL5s9e3amTZtWbQEAyiNkAQAAAKiwYrGYE088Mdtvv326deuWJJk0aVKSpEOHDtXGdujQobRt0qRJadSoUVq3br3EMV82fPjwtGrVqrR07ty5tg8HAFYbQhYAAACACjvmmGPy4osv5qabblpkW6FQqPa4WCwusu7LljZm6NChmTp1aml5//33yy8cAFZzQhYAAACACjr22GNz55135pFHHsnaa69dWt+xY8ckWWRGyuTJk0uzWzp27Jg5c+ZkypQpSxzzZY0bN07Lli2rLQBAeYQsAAAAABVQLBZzzDHH5LbbbsvDDz+cLl26VNvepUuXdOzYMQ888EBp3Zw5c/LYY4+lZ8+eSZJtttkmDRs2rDZm4sSJGT9+fGkMAFB3GlS6AAAAAIDV0dFHH50bb7wxf/zjH9OiRYvSjJVWrVqladOmKRQKGTx4cM4+++xsuOGG2XDDDXP22WenWbNmOfDAA0tjBw4cmCFDhqRt27Zp06ZNTjrppHTv3j19+/at5OEBwGrBTBZKHn300RQKhXzyySeVLgUAAGCl4VyKcl1xxRWZOnVqevfunaqqqtJy8803l8accsopGTx4cI466qj06NEjH374Ye6///60aNGiNOaiiy7K3nvvnf79+6dXr15p1qxZ7rrrrtSvX78ShwXACki/UneELJT07NkzEydOTKtWrer8tT799NMMHjw466yzTpo2bZqePXvmueeeqzZm+vTpOeaYY7L22munadOm2WSTTXLFFVfUeW0AAAA1sTzPpebNm5fTTjstXbp0SdOmTbPeeuvl5z//eRYsWJAkmTt3bk499dR07949zZs3T6dOnXLIIYfkn//8Z53XRs0Vi8XFLgMGDCiNKRQKGTZsWCZOnJjPPvssjz32WLp161ZtP02aNMmIESPy8ccfZ+bMmbnrrrvSuXPn5Xw0AKzIlme/srDhw4eXZmYurFAoLHb51a9+tVzrqw0uF0ZJo0aNSjfVq2s//OEPM378+Fx33XXp1KlTrr/++vTt2zevvPJKvva1ryVJTjjhhDzyyCO5/vrrs+666+b+++/PUUcdlU6dOmWvvfZaLnUCAAB8leV5LnXuuefmN7/5TUaPHp3NNtsszz//fA477LC0atUqxx9/fGbOnJkXXnghp59+erbYYotMmTIlgwcPzp577pnnn39+udQIAKx4lme/8oXnnnsuV111VTbffPNFtk2cOLHa43vuuScDBw7Mfvvtt7zKqzVmsqyievfunWOPPTaDBw9O69at06FDh1x11VWZMWNGDjvssLRo0SLrr79+7rnnntJzvjxlbNSoUVlzzTVz3333ZZNNNskaa6yR7373u4v8A6ipWbNm5Q9/+EPOO++8fPvb384GG2yQYcOGpUuXLtVmqjz11FM59NBD07t376y77ro54ogjssUWWzgxAAAA6syKfC6VfH6etNdee2X33XfPuuuum+9973vZeeedS+dJrVq1ygMPPJD+/ftno402yrbbbpsRI0Zk7Nix+cc//vFfvz4AUHkrer+SfH6VooMOOii//e1v07p160W2d+zYsdryxz/+MX369Ml6661XK6+/PAlZVmGjR49Ou3bt8uyzz+bYY4/Nj3/843z/+99Pz54988ILL2SXXXbJwQcfnJkzZy5xHzNnzsz555+f6667Lo8//nj+8Y9/5KSTTipt/+If57vvvrvMdc2bNy/z589PkyZNqq1v2rRpnnjiidLj7bffPnfeeWc+/PDDFIvFPPLII3njjTeyyy67LPsvAQAAoIZW1HOp5PPzpIceeihvvPFGkuTvf/97nnjiiey2225LfM7UqVNTKBSy5ppr1ui1AIAV14rcryTJ0Ucfnd133z19+/b9yrH/+te/cvfdd2fgwIE1fp0VgZBlFbbFFlvktNNOy4YbbpihQ4emadOmadeuXQYNGpQNN9wwZ5xxRj7++OO8+OKLS9zH3Llz85vf/CY9evTI1ltvnWOOOSYPPfRQaXuzZs2y0UYbpWHDhstcV4sWLbLddtvlf//3f/PPf/4z8+fPz/XXX59nnnmmWlJ66aWXZtNNN83aa6+dRo0a5bvf/W4uv/zybL/99uX9QgAAAJbBinoulSSnnnpqDjjggGy88cZp2LBhttpqqwwePDgHHHDAYsd/9tln+clPfpIDDzwwLVu2rNFrAQArrhW5XxkzZkxeeOGFDB8+fJnGjx49Oi1atMi+++5bo9dZUVQ0ZBk2bNgiN7ZZ+LpwxWIxw4YNS6dOndK0adP07t07L7/8crV9zJ49O8cee2zatWuX5s2bZ88998wHH3ywvA9lhbTwte7q16+ftm3bpnv37qV1HTp0SJJMnjx5ifto1qxZ1l9//dLjqqqqauO/+c1v5rXXXivdR+XL/vKXv2SNNdYoLTfccEOS5LrrrkuxWMzXvva1NG7cOJdeemkOPPDA1K9fv/TcSy+9NE8//XTuvPPOjB07NhdccEGOOuqoPPjggzX8TQAAACy7Fflc6uabb87111+fG2+8MS+88EJGjx6d888/P6NHj15kH3Pnzs0PfvCDLFiwIJdffvkyHj0AsDJYUfuV999/P8cff3yuv/76Ra5ktCRXX311DjrooGUev6Kp+EyWzTbbLBMnTiwtL730UmnbeeedlwsvvDCXXXZZnnvuuXTs2DE77bRTPv3009KYwYMH5/bbb8+YMWPyxBNPZPr06dljjz0yf/78ShzOCuXLCWOhUKi2rlAoJEkWLFhQo30Ui8VlrqFHjx4ZN25cadlzzz2TJOuvv34ee+yxTJ8+Pe+//36effbZzJ07N126dEny+X1bfvrTn+bCCy9Mv379svnmm+eYY47J/vvvn/PPP3+ZXx8AluaKK67I5ptvnpYtW6Zly5bZbrvtql2z1hc+AFZPK/K51Mknn5yf/OQn+cEPfpDu3bvn4IMPzgknnLDIN0Xnzp2b/v37Z8KECXnggQfMYgGAVcyK2q+MHTs2kydPzjbbbJMGDRqkQYMGeeyxx3LppZemQYMGi3xu/5e//CWvv/56fvjDHy7z665oGlS8gAYNqs1e+UKxWMzFF1+cn/3sZ6VpQqNHj06HDh1y44035kc/+lGmTp2akSNH5rrrritd2+36669P586d8+CDD7p3xwqgadOm2WCDDZa4vXnz5mnevHmmTJmS++67L+edd16Sz08I5s6dm3r1queA9evXX+p/GACgJtZee+2cc845pfeq0aNHZ6+99srf/va3bLbZZqUvfIwaNSpdu3bNL37xi+y00055/fXX06JFiySff+HjrrvuypgxY9K2bdsMGTIke+yxR8aOHVtthiYA1MSSzqVmzpz5ledJXwQsb775Zh555JG0bdu2zusFAFY/i+tXdtxxx2oTKZLksMMOy8Ybb5xTTz11kfPkkSNHZptttskWW2xR5/XWlYrPZHnzzTfTqVOndOnSJT/4wQ/yzjvvJEkmTJiQSZMmZeeddy6Nbdy4cXbYYYc8+eSTSZKxY8dm7ty51cZ06tQp3bp1K41ZnNmzZ2fatGnVFsrz7LPPZuONN86HH35Yo+fdd999uffee0vfqurTp0822mijHHbYYUmSli1bZocddsjJJ5+cRx99NBMmTMioUaNy7bXXZp999qmLQwFgNdSvX7/stttu6dq1a7p27Zpf/vKXWWONNfL0008v8oWPbt26ZfTo0Zk5c2ZuvPHGJCl94eOCCy5I3759s9VWW+X666/PSy+95PKWACxVuedS/fr1yy9/+cvcfffdeffdd3P77bfnwgsvLJ0nzZs3L9/73vfy/PPP54Ybbsj8+fMzadKkTJo0KXPmzKmLQwEAVlHl9CstWrRIt27dqi3NmzdP27Zt061bt2pjp02blltvvXWlnsWSVDhk+da3vpVrr7029913X377299m0qRJ6dmzZz7++ONMmjQpyf9dO+4LHTp0KG2bNGlSGjVqlNatWy9xzOIMHz48rVq1Ki2dO3eu5SNbfcycOTOvv/565s6dW6PnTZ06NUcffXQ23njjHHLIIdl+++1z//33V5uiNmbMmHzjG9/IQQcdlE033TTnnHNOfvnLX+bII4+s7cMAgMyfPz9jxozJjBkzst122/nCBwB1qtxzqREjRuR73/tejjrqqGyyySY56aST8qMf/Sj/+7//myT54IMPcuedd+aDDz7IlltumaqqqtKytPcmAIAvK7dfWVZjxoxJsVjMAQccUCf7X14qermwXXfdtfRz9+7ds91222X99dfP6NGjs+222yb5v2vHfaFYLC6y7su+aszQoUNz4oknlh5PmzZtlQtaHn300UXWvfvuu4usW/gae7179672eMCAARkwYEC18XvvvfdSn7Os+vfvn/79+y91TMeOHXPNNdfUeN8AUBMvvfRStttuu3z22WdZY401cvvtt2fTTTctfRC1uC98vPfee0n+uy98nHXWWbV8JADUhhX9XKpFixa5+OKLc/HFFy92+7rrrlvWfgGAlceK3q8sS71JcsQRR+SII474r/dfaRW/XNjCmjdvnu7du+fNN98s3aflyx9QTJ48ufRhR8eOHTNnzpxMmTJliWMWp3HjxqUb3H6xAACrp4022ijjxo3L008/nR//+Mc59NBD88orr5S219UXPqZOnVpa3n///f/uIAAAAICKWKFCltmzZ+fVV19NVVVVunTpko4dO+aBBx4obZ8zZ04ee+yx9OzZM0myzTbbpGHDhtXGTJw4MePHjy+NAQBYmkaNGmWDDTZIjx49Mnz48GyxxRa55JJLfOEDAAAA+EoVvVzYSSedlH79+uXrX/96Jk+enF/84heZNm1aDj300BQKhQwePDhnn312Ntxww2y44YY5++yz06xZsxx44IFJklatWmXgwIEZMmRI2rZtmzZt2uSkk05K9+7d07dv30oeGgCwkioWi5k9e3a1L3xstdVWSf7vCx/nnntukupf+PjiMphffOHjvPPOq9gxwIpq6tSpmTlzZqXLWKqPPvqo0iUAAAArkYqGLB988EEOOOCAfPTRR1lrrbWy7bbb5umnn84666yTJDnllFMya9asHHXUUZkyZUq+9a1v5f7770+LFi1K+7jooovSoEGD9O/fP7NmzcqOO+6YUaNGpX79+pU6LABgJfHTn/40u+66azp37pxPP/00Y8aMyaOPPpp7773XFz6glk2dOjWX/vqyLJg7r9KlAAAA1JqKhixjxoxZ6vZCoZBhw4Zl2LBhSxzTpEmTjBgxIiNGjKjl6gCAVd2//vWvHHzwwZk4cWJatWqVzTffPPfee2922mmnJL7wAbVp5syZWTB3Xu7Ydt181LJJpctZovUnTk2flyZWugwAAGAlUdGQBQCgkkaOHLnU7b7wAbXvo5ZNMqlNs0qXsURtp31W6RIAAICVyAp143sAAAAAAICVhZAFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkoSJuueWWbLnllmnWrFnWWWed/OpXv1pkzA033JAtttgizZo1S1VVVQ477LB8/PHHFagWAACg8j777LMMGDAg3bt3T4MGDbL33nsvMua2227LTjvtlLXWWistW7bMdtttl/vuu2+RcRdffHE22mijNG3aNJ07d84JJ5yQzz77bDkcBQCwKqutfmXUqFEpFAqLLCtivyJkYbm75557ctBBB+XII4/M+PHjc/nll+fCCy/MZZddVhrzxBNP5JBDDsnAgQPz8ssv59Zbb81zzz2XH/7whxWsHAAAoHLmz5+fpk2b5rjjjkvfvn0XO+bxxx/PTjvtlD//+c8ZO3Zs+vTpk379+uVvf/tbacwNN9yQn/zkJznzzDPz6quvZuTIkbn55pszdOjQ5XUoAMAqqrb6lSRp2bJlJk6cWG1p0qTJ8jiMGhGyrKJ69+6dY489NoMHD07r1q3ToUOHXHXVVZkxY0YOO+ywtGjRIuuvv37uueee0nPmz5+fgQMHpkuXLmnatGk22mijXHLJJaXtn332WTbbbLMcccQRpXUTJkxIq1at8tvf/naZa7vuuuuy995758gjj8x6662X3XffPaeeemrOPffcFIvFJMnTTz+dddddN8cdd1y6dOmS7bffPj/60Y/y/PPP18JvBwAAYPFW5HOp5s2b54orrsigQYPSsWPHxY65+OKLc8opp+Qb3/hGNtxww5x99tnZcMMNc9ddd5XGPPXUU+nVq1cOPPDArLvuutl5551zwAEHON8CgJXE6tCvJEmhUEjHjh2rLSsiIcsqbPTo0WnXrl2effbZHHvssfnxj3+c73//++nZs2deeOGF7LLLLjn44IMzc+bMJMmCBQuy9tpr55Zbbskrr7ySM844Iz/96U9zyy23JEmaNGmSG264IaNHj84dd9yR+fPn5+CDD06fPn0yaNCg0usWCoWMGjVqiXXNnj17kcSxadOm+eCDD/Lee+8lSXr27JkPPvggf/7zn1MsFvOvf/0rv//977P77rvX8m8JAACguhX1XKocCxYsyKeffpo2bdqU1m2//fYZO3Zsnn322STJO++8kz//+c/OtwBgJbKq9ytJMn369KyzzjpZe+21s8ceeywy02VFIWRZhW2xxRY57bTTsuGGG2bo0KFp2rRp2rVrl0GDBmXDDTfMGWeckY8//jgvvvhikqRhw4Y566yz8o1vfCNdunTJQQcdlAEDBpT+oSXJlltumV/84hcZNGhQTjjhhLz99tv53e9+V+11N9poo7Rq1WqJde2yyy657bbb8tBDD2XBggV54403cvHFFydJJk6cmOTzkOWGG27I/vvvn0aNGqVjx45Zc801M2LEiFr+LQEAAFS3op5LleOCCy7IjBkz0r9//9K6H/zgB/nf//3fbL/99mnYsGHWX3/99OnTJz/5yU9q9bUBgLqzqvcrG2+8cUaNGpU777wzN910U5o0aZJevXrlzTffrNXXrg0NKl0AdWfzzTcv/Vy/fv20bds23bt3L63r0KFDkmTy5Mmldb/5zW/yu9/9Lu+9915mzZqVOXPmZMstt6y23yFDhuSPf/xjRowYkXvuuSft2rWrtv21115bal2DBg3K22+/nT322CNz585Ny5Ytc/zxx2fYsGGpX79+kuSVV17JcccdlzPOOCO77LJLJk6cmJNPPjlHHnlkRo4cWdbvAwAAYFmsqOdSNXXTTTdl2LBh+eMf/5j27duX1j/66KP55S9/mcsvvzzf+ta38tZbb+X4449PVVVVTj/99FqtAQCoG6t6v7Lttttm2223LT3u1atXtt5664wYMSKXXnpprdbw3zKTZRXWsGHDao8LhUK1dYVCIcnn07GS5JZbbskJJ5yQww8/PPfff3/GjRuXww47LHPmzKm2n8mTJ+f1119P/fr1y0oOC4VCzj333EyfPj3vvfdeJk2alG9+85tJknXXXTdJMnz48PTq1Ssnn3xyNt988+yyyy65/PLLc/XVV5dmuwAAANSFFfVcqiZuvvnmDBw4MLfccssiN509/fTTc/DBB+eHP/xhunfvnn322Sdnn312hg8fXjomAGDFtqr3K19Wr169fOMb3zCThRXbX/7yl/Ts2TNHHXVUad3bb7+9yLjDDz883bp1y6BBgzJw4MDsuOOO2XTTTWv8evXr18/Xvva1JJ8nltttt10prZw5c2YaNGiwyPgkKRaLNX4tAACAurK8z6W+yk033ZTDDz88N91002LvszJz5szUq1f9O5f169dPsVh0vgUAq6iVrV/5smKxmHHjxlWbrbOiMJOFkg022CDPP/987rvvvrzxxhs5/fTT89xzz1Ub8+tf/zpPPfVUrr322hx44IH53ve+l4MOOqha4rnxxhvn9ttvX+LrfPTRR/nNb36T1157LePGjcvxxx+fW2+9tXRfliTp169fbrvttlxxxRV555138te//jXHHXdcvvnNb6ZTp061fuwAAADlWl7nUsnnl1YeN25c/vOf/2Tq1KkZN25cxo0bV9p+00035ZBDDskFF1yQbbfdNpMmTcqkSZMyderU0ph+/frliiuuyJgxYzJhwoQ88MADOf3007PnnnuWvtwGAKxaVrZ+5ayzzsp9992Xd955J+PGjcvAgQMzbty4HHnkkbXzC6lFQhZKjjzyyOy7777Zf//9861vfSsff/xxtWTztddey8knn5zLL788nTt3TvL5P7xPPvmk2nV7X3/99Wr/IBZn9OjR6dGjR3r16pWXX345jz76aOmSYUkyYMCAXHjhhbnsssvSrVu3fP/7389GG22U2267rZaPGgAA4L+zPM+ldtttt2y11Va566678uijj2arrbbKVlttVdp+5ZVXZt68eTn66KNTVVVVWo4//vjSmNNOOy1DhgzJaaedlk033TQDBw7MLrvskiuvvLK2fiUAwApmZetXPvnkkxxxxBHZZJNNsvPOO+fDDz/M448/Xu0z5BVFoWgucKZNm5ZWrVpl6tSpadmyZbVtn332WSZMmJAuXbqkSZMmFaqQFZ2/k1oyY0ayxhqf/zx9etK8eWXrWYKJEyfmqquuyu923jiT2jSrdDlL1PE/M/PD+1/LEUcckaqqqkqXw0poae+P1C6/a1Y5i3lPX1nePzd79z/Z5+l3V+g6V5b3eD0yy2JpfyfeH5cfv2sWsZKcn9fUytCPrCzv86sK/Qq10YuYyQIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiHLMioWi5UugRWYvw8AAFg8vTJL4+8DgBWB96PVV238fy9k+QoNGzZMksycObPClbAi++Lv44u/FwAAWN3Vr18/STJnzpwKV8KKzLkUAJWkX6E2epEGtVXMqqp+/fpZc801M3ny5CRJs2bNUigUKlwVK4pisZiZM2dm8uTJWXPNNUv/YQYAgNVdgwYN0qxZs/z73/9Ow4YNU6+e7/jxf5xLAbAi0K+svmqzFxGyLIOOHTsmSSlogS9bc801S38nAABAUigUUlVVlQkTJuS9996rdDmsoJxLAVBJ+hVqoxcRsiyDL/6xtW/fPnPnzq10OaxgGjZs6FtXAACwGI0aNcqGG27oEhwslnMpAFYE+pXVV231IkKWGqhfv74GEAAAoAbq1auXJk2aVLoMAIAl0q/w33CROQAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAqIDHH388/fr1S6dOnVIoFHLHHXdU214oFBa7/OpXvyqN6d279yLbf/CDHyznIwGA1ZeQBQAAAKACZsyYkS222CKXXXbZYrdPnDix2nL11VenUChkv/32qzZu0KBB1cZdeeWVy6N8ACBJg0oXAAAAALA62nXXXbPrrrsucXvHjh2rPf7jH/+YPn36ZL311qu2vlmzZouMBQCWDzNZAAAAAFZw//rXv3L33Xdn4MCBi2y74YYb0q5du2y22WY56aST8umnny51X7Nnz860adOqLQBAecxkAQAAAFjBjR49Oi1atMi+++5bbf1BBx2ULl26pGPHjhk/fnyGDh2av//973nggQeWuK/hw4fnrLPOquuSAWC1IGQBAAAAWMFdffXVOeigg9KkSZNq6wcNGlT6uVu3btlwww3To0ePvPDCC9l6660Xu6+hQ4fmxBNPLD2eNm1aOnfuXDeFA8AqTsgCAAAAsAL7y1/+ktdffz0333zzV47deuut07Bhw7z55ptLDFkaN26cxo0b13aZALBack8WAAAAgBXYyJEjs80222SLLbb4yrEvv/xy5s6dm6qqquVQGQBgJgsAAABABUyfPj1vvfVW6fGECRMybty4tGnTJl//+teTfH4pr1tvvTUXXHDBIs9/++23c8MNN2S33XZLu3bt8sorr2TIkCHZaqut0qtXr+V2HACwOhOyAAAAAFTA888/nz59+pQef3GflEMPPTSjRo1KkowZMybFYjEHHHDAIs9v1KhRHnrooVxyySWZPn16OnfunN133z1nnnlm6tevv1yOAQBWd0IWAAAAgAro3bt3isXiUsccccQROeKIIxa7rXPnznnsscfqojQAYBm5JwsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAAAAAAJRByAIAAAAAAFAGIQsAAAAAAEAZhCwAAAAAAABlELIAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGYQsAAAAAAAAZRCyAAAAAAAAlEHIAgAAAAAAUAYhCwAAAAAAQBmELAAAAAAAAGUQsgAAq63hw4fnG9/4Rlq0aJH27dtn7733zuuvv15tzIABA1IoFKot2267bbUxs2fPzrHHHpt27dqlefPm2XPPPfPBBx8sz0MBAAAAKkDIAgCsth577LEcffTRefrpp/PAAw9k3rx52XnnnTNjxoxq47773e9m4sSJpeXPf/5zte2DBw/O7bffnjFjxuSJJ57I9OnTs8cee2T+/PnL83AAAACA5axBpQsAAKiUe++9t9rja665Ju3bt8/YsWPz7W9/u7S+cePG6dix42L3MXXq1IwcOTLXXXdd+vbtmyS5/vrr07lz5zz44IPZZZdd6u4AAAAAgIoykwUA4P83derUJEmbNm2qrX/00UfTvn37dO3aNYMGDcrkyZNL28aOHZu5c+dm5513Lq3r1KlTunXrlieffHKxrzN79uxMmzat2gIAAACsfIQsAABJisViTjzxxGy//fbp1q1baf2uu+6aG264IQ8//HAuuOCCPPfcc/nOd76T2bNnJ0kmTZqURo0apXXr1tX216FDh0yaNGmxrzV8+PC0atWqtHTu3LnuDgwAAACoMy4XBgCQ5JhjjsmLL76YJ554otr6/fffv/Rzt27d0qNHj6yzzjq5++67s++++y5xf8ViMYVCYbHbhg4dmhNPPLH0eNq0aYIWAAAAWAmZyQIArPaOPfbY3HnnnXnkkUey9tprL3VsVVVV1llnnbz55ptJko4dO2bOnDmZMmVKtXGTJ09Ohw4dFruPxo0bp2XLltUWAAAAYOUjZAEAVlvFYjHHHHNMbrvttjz88MPp0qXLVz7n448/zvvvv5+qqqokyTbbbJOGDRvmgQceKI2ZOHFixo8fn549e9ZZ7QAAAEDluVwYALDaOvroo3PjjTfmj3/8Y1q0aFG6h0qrVq3StGnTTJ8+PcOGDct+++2XqqqqvPvuu/npT3+adu3aZZ999imNHThwYIYMGZK2bdumTZs2Oemkk9K9e/f07du3kocHAAAA1DEhCwCw2rriiiuSJL179662/pprrsmAAQNSv379vPTSS7n22mvzySefpKqqKn369MnNN9+cFi1alMZfdNFFadCgQfr3759Zs2Zlxx13zKhRo1K/fv3leTgAAADAciZkAQBWW8VicanbmzZtmvvuu+8r99OkSZOMGDEiI0aMqK3SAAAAgJWAe7IAAAAAAACUQcgCAAAAAABQBiELAAAAAABAGVaYkGX48OEpFAoZPHhwaV2xWMywYcPSqVOnNG3aNL17987LL79c7XmzZ8/Osccem3bt2qV58+bZc88988EHHyzn6gEAAAAAgNXNChGyPPfcc7nqqquy+eabV1t/3nnn5cILL8xll12W5557Lh07dsxOO+2UTz/9tDRm8ODBuf322zNmzJg88cQTmT59evbYY4/Mnz9/eR8GAAAAAACwGql4yDJ9+vQcdNBB+e1vf5vWrVuX1heLxVx88cX52c9+ln333TfdunXL6NGjM3PmzNx4441JkqlTp2bkyJG54IIL0rdv32y11Va5/vrr89JLL+XBBx+s1CEBAAAAAACrgYqHLEcffXR233339O3bt9r6CRMmZNKkSdl5551L6xo3bpwddtghTz75ZJJk7NixmTt3brUxnTp1Srdu3UpjFmf27NmZNm1atQUAAAAAAKAmGlTyxceMGZMXXnghzz333CLbJk2alCTp0KFDtfUdOnTIe++9VxrTqFGjajNgvhjzxfMXZ/jw4TnrrLP+2/IBAAAAAIDVWMVClvfffz/HH3987r///jRp0mSJ4wqFQrXHxWJxkXVf9lVjhg4dmhNPPLH0eNq0aencufMyVg4AAAAALGzq1KmZOXNmpctYqo8++qjSJQCroIqFLGPHjs3kyZOzzTbblNbNnz8/jz/+eC677LK8/vrrST6frVJVVVUaM3ny5NLslo4dO2bOnDmZMmVKtdkskydPTs+ePZf42o0bN07jxo1r+5AAAAAAYLUzderUXPrry7Jg7rxKlwKw3FUsZNlxxx3z0ksvVVt32GGHZeONN86pp56a9dZbLx07dswDDzyQrbbaKkkyZ86cPPbYYzn33HOTJNtss00aNmyYBx54IP3790+STJw4MePHj8955523fA8IAAAAAFZDM2fOzIK583LHtuvmo5ZLvmJNpa0/cWr6vDSx0mUAq5iKhSwtWrRIt27dqq1r3rx52rZtW1o/ePDgnH322dlwww2z4YYb5uyzz06zZs1y4IEHJklatWqVgQMHZsiQIWnbtm3atGmTk046Kd27d0/fvn2X+zEBAAAAwOrqo5ZNMqlNs0qXsURtp31W6RKAVVBFb3z/VU455ZTMmjUrRx11VKZMmZJvfetbuf/++9OiRYvSmIsuuigNGjRI//79M2vWrOy4444ZNWpU6tevX8HKAQAAAACAVd0KFbI8+uij1R4XCoUMGzYsw4YNW+JzmjRpkhEjRmTEiBF1WxwAAAAAAMBC6lW6AAAAAIDV0eOPP55+/fqlU6dOKRQKueOOO6ptHzBgQAqFQrVl2223rTZm9uzZOfbYY9OuXbs0b948e+65Zz744IPleBQAsHoTsgAAAABUwIwZM7LFFlvksssuW+KY7373u5k4cWJp+fOf/1xt++DBg3P77bdnzJgxeeKJJzJ9+vTssccemT9/fl2XDwBkBbtcGAAAAMDqYtddd82uu+661DGNGzdOx44dF7tt6tSpGTlyZK677rr07ds3SXL99denc+fOefDBB7PLLrvUes0AQHVmsgAAAACsoB599NG0b98+Xbt2zaBBgzJ58uTStrFjx2bu3LnZeeedS+s6deqUbt265cknn1ziPmfPnp1p06ZVWwCA8ghZAAAAAFZAu+66a2644YY8/PDDueCCC/Lcc8/lO9/5TmbPnp0kmTRpUho1apTWrVtXe16HDh0yadKkJe53+PDhadWqVWnp3LlznR4HAKzKXC4MAAAAYAW0//77l37u1q1bevTokXXWWSd333139t133yU+r1gsplAoLHH70KFDc+KJJ5YeT5s2TdACAGUykwUAAABgJVBVVZV11lknb775ZpKkY8eOmTNnTqZMmVJt3OTJk9OhQ4cl7qdx48Zp2bJltQUAKI+QBQAAAGAl8PHHH+f9999PVVVVkmSbbbZJw4YN88ADD5TGTJw4MePHj0/Pnj0rVSYArFZcLgwAAACgAqZPn5633nqr9HjChAkZN25c2rRpkzZt2mTYsGHZb7/9UlVVlXfffTc//elP065du+yzzz5JklatWmXgwIEZMmRI2rZtmzZt2uSkk05K9+7d07dv30odFgCsVoQsAAAAABXw/PPPp0+fPqXHX9wn5dBDD80VV1yRl156Kddee20++eSTVFVVpU+fPrn55pvTokWL0nMuuuiiNGjQIP3798+sWbOy4447ZtSoUalfv/5yPx4AWB0JWQAAAAAqoHfv3ikWi0vcft99933lPpo0aZIRI0ZkxIgRtVkaALCM3JMFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMogZAEAAAAAACiDkAUAAAAAAKAMQhYAAAAAAIAyCFkAAAAAAADKIGQBAAAAAAAog5AFAAAAAACgDEIWAAAAAACAMghZAAAAAAAAyiBkAQAAAAAAKEODShcAAAAAAMD/+eijjypdwlI1a9YsrVq1qnQZsEIQsgAAAAAArACaz5qbBUluu+22SpeyVPUaNshxRx8jaIEIWQAAAAAAVghN5s5PvSR3bLtuPmrZpNLlLFa7aZ9l76ffzcyZM4UsECELAAAAAMAK5aOWTTKpTbNKlwEsAze+BwAAAAAAKIOQBQAAAAAAoAxCFgAAAAAAgDIIWQAAAAAAAMpQ4xvfjx49Ou3atcvuu++eJDnllFNy1VVXZdNNN81NN92UddZZp9aLBAD4gl4EFm/q1KmZOXNmpctIkhRmzkzH///nSZMmpdisWT766KOK1gRQW/QiAMDCahyynH322bniiiuSJE899VQuu+yyXHzxxfnTn/6UE044IbfddlutFwkA8AW9CCxq6tSpufTXl2XB3HmVLiVJ0nDOnPz0///56quvztxGjSpaD0Bt0osAAAurccjy/vvvZ4MNNkiS3HHHHfne976XI444Ir169Urv3r1ruz4AgGr0IrComTNnZsHceblj23XzUcsmlS4nTWd9lp+e/fnPo3bsmllNm2T9iVPT56WJlS0MoBboRQCAhdU4ZFljjTXy8ccf5+tf/3ruv//+nHDCCUmSJk2aZNasWbVeIADAwvQisGQftWySSW2aVbqMNJv5f7d+/FfrZpnZrEnaTvusghUB1B69CACwsBqHLDvttFN++MMfZquttsobb7xRugbpyy+/nHXXXbe26wMAqEYvAgBUkl4EAFhYva8eUt2vf/3rbLfddvn3v/+dP/zhD2nbtm2SZOzYsTnggANqvUAAgIXpRQCAStKLAAALq/FMlmnTpuXSSy9NvXrV85lhw4bl/fffr7XCAAAWRy8CAFSSXgQAWFiNZ7J06dIlH3300SLr//Of/6RLly61UhQAwJLoRQCAStKLAAALq3HIUiwWF7t++vTpadKkyX9dEADA0uhFAIBK0osAAAtb5suFnXjiiUmSQqGQM844I82aNSttmz9/fp555plsueWWtV4gAECiFwEAKksvAgAszjKHLH/729+SfP6NjZdeeimNGjUqbWvUqFG22GKLnHTSSbVfIQBA9CIAQGXpRQCAxVnmkOWRRx5Jkhx22GG55JJL0rJlyzorCgDgy/QiAEAl6UUAgMVZ5pDlC9dcc01d1AEAsEz0IgBAJelFAICF1ThkmTFjRs4555w89NBDmTx5chYsWFBt+zvvvFNrxQEAfJleBACoJL0IALCwGocsP/zhD/PYY4/l4IMPTlVVVQqFQl3UBQCwWHoRAKCS9CIAwMJqHLLcc889ufvuu9OrV6+6qAcAYKlqsxcZPnx4brvttrz22mtp2rRpevbsmXPPPTcbbbRRaUyxWMxZZ52Vq666KlOmTMm3vvWt/PrXv85mm21WGjN79uycdNJJuemmmzJr1qzsuOOOufzyy7P22mv/1zUCACsWn4sAAAurV9MntG7dOm3atKmLWgAAvlJt9iKPPfZYjj766Dz99NN54IEHMm/evOy8886ZMWNGacx5552XCy+8MJdddlmee+65dOzYMTvttFM+/fTT0pjBgwfn9ttvz5gxY/LEE09k+vTp2WOPPTJ//vxaqRMAWHH4XAQAWFiNQ5b//d//zRlnnJGZM2fWRT0AAEtVm73IvffemwEDBmSzzTbLFltskWuuuSb/+Mc/Mnbs2CSfz2K5+OKL87Of/Sz77rtvunXrltGjR2fmzJm58cYbkyRTp07NyJEjc8EFF6Rv377Zaqutcv311+ell17Kgw8++F/XCACsWHwuAgAsrMaXC7vgggvy9ttvp0OHDll33XXTsGHDattfeOGFWisOAODL6rIXmTp1apKUvp06YcKETJo0KTvvvHNpTOPGjbPDDjvkySefzI9+9KOMHTs2c+fOrTamU6dO6datW5588snssssuZdcDAKx4fC4CACysxiHL3nvvXQdlAAAsm7rqRYrFYk488cRsv/326datW5Jk0qRJSZIOHTpUG9uhQ4e89957pTGNGjVK69atFxnzxfO/bPbs2Zk9e3bp8bRp02rtOACAuuVzEQBgYTUOWc4888y6qAMAYJnUVS9yzDHH5MUXX8wTTzyxyLZCoVDtcbFYXGTdly1tzPDhw3PWWWeVXywAUDE+FwEAFlbje7IkySeffJLf/e53GTp0aP7zn/8k+Xw67IcfflirxQEALE5t9yLHHnts7rzzzjzyyCNZe+21S+s7duyYJIvMSJk8eXJpdkvHjh0zZ86cTJkyZYljvmzo0KGZOnVqaXn//ffLqhsAqAyfiwAAX6hxyPLiiy+ma9euOffcc3P++efnk08+SZLcfvvtGTp0aG3XBwBQTW32IsViMcccc0xuu+22PPzww+nSpUu17V26dEnHjh3zwAMPlNbNmTMnjz32WHr27Jkk2WabbdKwYcNqYyZOnJjx48eXxnxZ48aN07Jly2oLALBy8LkIALCwGocsJ554YgYMGJA333wzTZo0Ka3fdddd8/jjj9dqcQAAX1abvcjRRx+d66+/PjfeeGNatGiRSZMmZdKkSZk1a1aSzy8TNnjw4Jx99tm5/fbbM378+AwYMCDNmjXLgQcemCRp1apVBg4cmCFDhuShhx7K3/72t/zP//xPunfvnr59+9begQMAKwSfiwAAC6txyPLcc8/lRz/60SLrv/a1ry3x5q4AALWlNnuRK664IlOnTk3v3r1TVVVVWm6++ebSmFNOOSWDBw/OUUcdlR49euTDDz/M/fffnxYtWpTGXHTRRdl7773Tv3//9OrVK82aNctdd92V+vXrl3+gAMAKqTZ7kccffzz9+vVLp06dUigUcscdd5S2zZ07N6eeemq6d++e5s2bp1OnTjnkkEPyz3/+s9o+evfunUKhUG35wQ9+UNaxAQA1V+Mb3zdp0iTTpk1bZP3rr7+etdZaq1aKAgBYktrsRYrF4leOKRQKGTZsWIYNG7bUmkaMGJERI0bU6PUBgJVPbfYiM2bMyBZbbJHDDjss++23X7VtM2fOzAsvvJDTTz89W2yxRaZMmZLBgwdnzz33zPPPP19t7KBBg/Lzn/+89Lhp06Y1qgMAKF+NQ5a99torP//5z3PLLbck+fyDh3/84x/5yU9+skhDAABQ2/QiAEAl1WYvsuuuu2bXXXdd7LZWrVpVu+dbkowYMSLf/OY3849//CNf//rXS+ubNWuWjh071vBIAIDaUOPLhZ1//vn597//nfbt22fWrFnZYYcdssEGG6RFixb55S9/WRc1AgCU6EUAgEqqZC8yderUFAqFrLnmmtXW33DDDWnXrl0222yznHTSSfn000+Xup/Zs2dn2rRp1RYAoDw1nsnSsmXLPPHEE3n44YfzwgsvZMGCBdl6663d2BUAWC70IgBAJVWqF/nss8/yk5/8JAceeGBatmxZWn/QQQelS5cu6dixY8aPH5+hQ4fm73//+yKzYBY2fPjwnHXWWXVaLwCsLmocsnzhO9/5Tr7zne/UZi0AAMtMLwIAVNLy7EXmzp2bH/zgB1mwYEEuv/zyatsGDRpU+rlbt27ZcMMN06NHj7zwwgvZeuutF7u/oUOH5sQTTyw9njZtWjp37lw3xQPAKq6skOXZZ5/No48+msmTJ2fBggXVtl144YW1UhgAwJLoRQCASlqevcjcuXPTv3//TJgwIQ8//HC1WSyLs/XWW6dhw4Z58803lxiyNG7cOI0bN67VOgFgdVXjkOXss8/Oaaedlo022igdOnRIoVAobVv4ZwCAuqAXAQAqaXn2Il8ELG+++WYeeeSRtG3b9iuf8/LLL2fu3Lmpqqqq1VoAgMWrcchyySWX5Oqrr86AAQPqoBwAgKXTiwAAlVSbvcj06dPz1ltvlR5PmDAh48aNS5s2bdKpU6d873vfywsvvJA//elPmT9/fiZNmpQkadOmTRo1apS33347N9xwQ3bbbbe0a9cur7zySoYMGZKtttoqvXr1+q/rAwC+Wo1Dlnr16nmjBgAqRi8CAFRSbfYizz//fPr06VN6/MV9Ug499NAMGzYsd955Z5Jkyy23rPa8Rx55JL17906jRo3y0EMP5ZJLLsn06dPTuXPn7L777jnzzDNTv379WqkRAFi6GocsJ5xwQn7961/n4osvroNyAACWTi8CAFRSbfYivXv3TrFYXOL2pW1Lks6dO+exxx77r+sAAMpX45DlpJNOyu677571118/m266aRo2bFht+2233VZrxQEAfJleBACoJL0IALCwGocsxx57bB555JH06dMnbdu2dYNZAGC50osAAJWkFwEAFlbjkOXaa6/NH/7wh+y+++51UQ8AwFLpRQCAStKLAAALq1fTJ7Rp0ybrr79+XdQCAPCV9CIAQCXpRQCAhdU4ZBk2bFjOPPPMzJw5sy7qAQBYKr0IAFBJehEAYGE1vlzYpZdemrfffjsdOnTIuuuuu8gN3l544YVaKw4A4Mv0IgBAJelFAICF1Thk2XvvveugDACAZaMXAQAqSS8CACysxiHLmWeeWRd1AAAsE70IAFBJehEAYGE1vicLAAAAAAAAZcxkad26dQqFwiLrC4VCmjRpkg022CADBgzIYYcdVisFAgAsTC8CAFSSXgQAWFiNZ7KcccYZqVevXnbfffecddZZGTZsWHbffffUq1cvRx99dLp27Zof//jH+e1vf/uV+7riiiuy+eabp2XLlmnZsmW222673HPPPaXtxWIxw4YNS6dOndK0adP07t07L7/8crV9zJ49O8cee2zatWuX5s2bZ88998wHH3xQ08MCAFYStdmLAADUlF4EAFhYjWeyPPHEE/nFL36RI488str6K6+8Mvfff3/+8Ic/ZPPNN8+ll16aQYMGLXVfa6+9ds4555xssMEGSZLRo0dnr732yt/+9rdsttlmOe+883LhhRdm1KhR6dq1a37xi19kp512yuuvv54WLVokSQYPHpy77rorY8aMSdu2bTNkyJDsscceGTt2bOrXr1/TwwMAVnC12YsAANSUXgQAWFiNZ7Lcd9996du37yLrd9xxx9x3331Jkt122y3vvPPOV+6rX79+2W233dK1a9d07do1v/zlL7PGGmvk6aefTrFYzMUXX5yf/exn2XfffdOtW7eMHj06M2fOzI033pgkmTp1akaOHJkLLrggffv2zVZbbZXrr78+L730Uh588MGaHhoAsBKozV4EAKCm9CIAwMJqHLK0adMmd9111yLr77rrrrRp0yZJMmPGjNJMk2U1f/78jBkzJjNmzMh2222XCRMmZNKkSdl5551LYxo3bpwddtghTz75ZJJk7NixmTt3brUxnTp1Srdu3UpjFmf27NmZNm1atQUAWDnUVS8CALAs9CIAwMJqfLmw008/PT/+8Y/zyCOP5Jvf/GYKhUKeffbZ/PnPf85vfvObJMkDDzyQHXbYYZn299JLL2W77bbLZ599ljXWWCO33357Nt1001JI0qFDh2rjO3TokPfeey9JMmnSpDRq1CitW7deZMykSZOW+JrDhw/PWWedtczHDACsOGq7FwEAqAm9CACwsBqHLIMGDcqmm26ayy67LLfddluKxWI23njjPPbYY+nZs2eSZMiQIcu8v4022ijjxo3LJ598kj/84Q859NBD89hjj5W2FwqFauOLxeIi677sq8YMHTo0J554YunxtGnT0rlz52WuGQConNruRQAAakIvAgAsrMYhS5L06tUrvXr1qpUCGjVqVLrxfY8ePfLcc8/lkksuyamnnprk89kqVVVVpfGTJ08uzW7p2LFj5syZkylTplSbzTJ58uRSY7M4jRs3TuPGjWulfgBg+avNXgQAoKb0IgDAF2p8T5aFzZo1q9bvbVIsFjN79ux06dIlHTt2zAMPPFDaNmfOnGrfDNlmm23SsGHDamMmTpyY8ePHLzVkAQBWDXXRiwAALCu9CABQ45ksM2fOzCmnnJJbbrklH3/88SLb58+fv8z7+ulPf5pdd901nTt3zqeffpoxY8bk0Ucfzb333ptCoZDBgwfn7LPPzoYbbpgNN9wwZ599dpo1a5YDDzwwSdKqVasMHDgwQ4YMSdu2bdOmTZucdNJJ6d69e/r27VvTQwMAVgK12YsAANSUXgQAWFiNZ7KcfPLJefjhh3P55ZencePG+d3vfpezzjornTp1yrXXXlujff3rX//KwQcfnI022ig77rhjnnnmmdx7773ZaaedkiSnnHJKBg8enKOOOio9evTIhx9+mPvvvz8tWrQo7eOiiy7K3nvvnf79+6dXr15p1qxZ7rrrrtSvX7+mhwYArARqsxcBAKgpvQgAsLAaz2S56667cu2116Z37945/PDD8//+3//LBhtskHXWWSc33HBDDjrooGXe18iRI5e6vVAoZNiwYRk2bNgSxzRp0iQjRozIiBEjlvl1AYCVV232IgAANaUXAQAWVuOZLP/5z3/SpUuXJEnLli3zn//8J0my/fbb5/HHH6/d6gAAvkQvAgBUkl4EAFhYjUOW9dZbL++++26SZNNNN80tt9yS5PNvcqy55pq1WRsAwCL0IgBAJelFAICF1ThkOeyww/L3v/89STJ06NDSNUhPOOGEnHzyybVeIADAwvQiAEAl6UUAgIXV+J4sJ5xwQunnPn365LXXXsvzzz+f9ddfP1tssUWtFgcA8GV6EQCgkvQiAMDCajSTZe7cuenTp0/eeOON0rqvf/3r2XfffTUSAECd04sAAJWkFwEAvqxGIUvDhg0zfvz4FAqFuqoHAGCJ9CIAQCXpRQCAL6vxPVkOOeSQjBw5si5qAQD4SnoRAKCS9CIAwMJqfE+WOXPm5He/+10eeOCB9OjRI82bN6+2/cILL6y14gAAvkwvAgBUkl4EAFhYjUOW8ePHZ+utt06SatcgTWK6LABQ5/QiAEAl6UUAgIUtU8jy4osvplu3bqlXr14eeeSRuq4JAKAavQgAUEl6EQBgSZbpnixbbbVVPvrooyTJeuutl48//rhOiwIAWJheBACoJL0IALAkyxSyrLnmmpkwYUKS5N13382CBQvqtCgAgIXpRQCAStKLAABLskyXC9tvv/2yww47pKqqKoVCIT169Ej9+vUXO/add96p1QIBAPQiAEAl6UUAgCVZppDlqquuyr777pu33norxx13XAYNGpQWLVrUdW0AAEn0IgBAZelFAIAlWaaQJUm++93vJknGjh2b448/XjMBACxXehEAoJL0IgDA4ixzyPKFa665pi7qAABYJnoRAKCS9CIAwMKW6cb3AAAAAAAAVCdkAQAAAAAAKIOQBQAAAAAAoAzLFLJsvfXWmTJlSpLk5z//eWbOnFmnRQEALEwvAgBUkl4EAFiSZQpZXn311cyYMSNJctZZZ2X69Ol1WhQAwML0IgBAJelFAIAlabAsg7bccsscdthh2X777VMsFnP++ednjTXWWOzYM844o1YLBADQiwAAlaQXAQCWZJlCllGjRuXMM8/Mn/70pxQKhdxzzz1p0GDRpxYKBc0EAFDr9CIAQCXpRQCAJVmmkGWjjTbKmDFjkiT16tXLQw89lPbt29dpYcDqbdKkSSk2a1bpMhbro48+qnQJsNrRiwAAlaQXAQCWZJlCloUtWLCgLuoAqObqq6/O3EaNKl0GsALSiwAAlaQXAQAWVuOQJUnefvvtXHzxxXn11VdTKBSyySab5Pjjj8/6669f2/UBq6m7vrlOPmjfqtJlLNb6E6emz0sTK10GrNb0IgBAJelFAIAv1Dhkue+++7Lnnntmyy23TK9evVIsFvPkk09ms802y1133ZWddtqpLuoEVjMft2icSW1WzMuFtZ32WaVLgNWaXgQAqCS9CACwsHo1fcJPfvKTnHDCCXnmmWdy4YUX5qKLLsozzzyTwYMH59RTT62LGgEASvQiAEAl1WYv8vjjj6dfv37p1KlTCoVC7rjjjmrbi8Vihg0blk6dOqVp06bp3bt3Xn755WpjZs+enWOPPTbt2rVL8+bNs+eee+aDDz74bw8TAFhGNQ5ZXn311QwcOHCR9YcffnheeeWVWikKAGBJ9CIAQCXVZi8yY8aMbLHFFrnssssWu/28887LhRdemMsuuyzPPfdcOnbsmJ122imffvppaczgwYNz++23Z8yYMXniiScyffr07LHHHpk/f37NDgwAKEuNQ5a11lor48aNW2T9uHHj0r59+9qoCQBgifQiAEAl1WYvsuuuu+YXv/hF9t1330W2FYvFXHzxxfnZz36WfffdN926dcvo0aMzc+bM3HjjjUmSqVOnZuTIkbngggvSt2/fbLXVVrn++uvz0ksv5cEHHyzr+ACAmqnxPVkGDRqUI444Iu+880569uyZQqGQJ554Iueee26GDBlSFzUCAJToRQCASlpevciECRMyadKk7LzzzqV1jRs3zg477JAnn3wyP/rRjzJ27NjMnTu32phOnTqlW7duefLJJ7PLLrssdt+zZ8/O7NmzS4+nTZtWa3UDwOqmxiHL6aefnhYtWuSCCy7I0KFDk3z+Bj5s2LAcd9xxtV4gAMDC9CIAQCUtr15k0qRJSZIOHTpUW9+hQ4e89957pTGNGjVK69atFxnzxfMXZ/jw4TnrrLNqrVYAWJ3VOGQpFAo54YQTcsIJJ5SuAdqiRYtaLwwAYHH0IgBAJS3vXqRQKFR7XCwWF1n3ZV81ZujQoTnxxBNLj6dNm5bOnTv/d4UCwGqqxiHLwnygAQBUkl4EAKikuuxFOnbsmOTz2SpVVVWl9ZMnTy7NbunYsWPmzJmTKVOmVJvNMnny5PTs2XOJ+27cuHEaN25cR5UDwOqlxje+BwAAAKBudenSJR07dswDDzxQWjdnzpw89thjpQBlm222ScOGDauNmThxYsaPH7/UkAUAqD1CFgBgtfX444+nX79+6dSpUwqFQu64445q2wcMGJBCoVBt2XbbbauNmT17do499ti0a9cuzZs3z5577pkPPvhgOR4FALCymj59esaNG5dx48Yl+fxm9+PGjcs//vGPFAqFDB48OGeffXZuv/32jB8/PgMGDEizZs1y4IEHJklatWqVgQMHZsiQIXnooYfyt7/9Lf/zP/+T7t27p2/fvhU8MgBYffxXlwsDAFiZzZgxI1tssUUOO+yw7Lfffosd893vfjfXXHNN6XGjRo2qbR88eHDuuuuujBkzJm3bts2QIUOyxx57ZOzYsalfv36d1g8ArNyef/759OnTp/T4i/ukHHrooRk1alROOeWUzJo1K0cddVSmTJmSb33rW7n//vurXabsoosuSoMGDdK/f//MmjUrO+64Y0aNGqUPAYDlpEYhy9y5c7PzzjvnyiuvTNeuXeuqJgCAxartXmTXXXfNrrvuutQxjRs3Ll0T/cumTp2akSNH5rrrrit9W/T6669P586d8+CDD2aXXXb5r2sEAFYctd2L9O7dO8VicYnbC4VChg0blmHDhi1xTJMmTTJixIiMGDHiv64HAKi5GoUsDRs2zPjx41MoFOqqHgBq2UcffVTpEpaqWbNmadWqVaXLYCVRiV7k0UcfTfv27bPmmmtmhx12yC9/+cu0b98+STJ27NjShy1f6NSpU7p165Ynn3xyiSHL7NmzM3v27NLjadOm1e1BAAC1wuciAMCX1fhyYYccckhGjhyZc845py7qAaCWNJ81NwuS3HbbbZUuZanqNWyQ444+RtDCMluevciuu+6a73//+1lnnXUyYcKEnH766fnOd76TsWPHpnHjxpk0aVIaNWqU1q1bV3tehw4dMmnSpCXud/jw4TnrrLPqunwAoA74XAQAWFiNQ5Y5c+bkd7/7XR544IH06NEjzZs3r7b9wgsvrLXiAChfk7nzUy/JHduum49aNql0OYvVbtpn2fvpdzNz5kwhC8tsefYi+++/f+nnbt26pUePHllnnXVy9913Z999913i84rF4lK/4Tp06NDSNdeTz2eydO7cuXaKBlYbK/ps1cSMVVZNPhcBABZW45Bl/Pjx2XrrrZMkb7zxRrVtpssCrHg+atkkk9o0q3QZUGsq2YtUVVVlnXXWyZtvvpkk6dixY+bMmZMpU6ZUm80yefLk9OzZc4n7ady4cRo3blyntQKrrpVltmpixiqrJp+LAAALq3HI8sgjj9RFHQAAy6SSvcjHH3+c999/P1VVVUmSbbbZJg0bNswDDzyQ/v37J0kmTpyY8ePH57zzzqtYncCqbWWYrZqYscqqy+ciAMDCahyyfOGtt97K22+/nW9/+9tp2rTpV14WAwCgNtVGLzJ9+vS89dZbpccTJkzIuHHj0qZNm7Rp0ybDhg3Lfvvtl6qqqrz77rv56U9/mnbt2mWfffZJkrRq1SoDBw7MkCFD0rZt27Rp0yYnnXRSunfvnr59+9bq8QJ8mdmqUFk+FwEAkqReTZ/w8ccfZ8cdd0zXrl2z2267ZeLEiUmSH/7whxkyZEitFwgAsLDa7EWef/75bLXVVtlqq62SJCeeeGK22mqrnHHGGalfv35eeuml7LXXXunatWsOPfTQdO3aNU899VRatGhR2sdFF12UvffeO/3790+vXr3SrFmz3HXXXalfv37tHTQAsMLwuQgAsLAahywnnHBCGjZsmH/84x9p1uz/vjW1//775957763V4gAAvqw2e5HevXunWCwusowaNSpNmzbNfffdl8mTJ2fOnDl57733MmrUqEVuUN+kSZOMGDEiH3/8cWbOnJm77rrLTewBYBXmcxEAYGE1vlzY/fffn/vuuy9rr712tfUbbrhh3nvvvVorDABgcfQiAEAl6UUAgIXVeCbLjBkzqn1T4wsfffRRGjduXCtFAQAsiV4EAKgkvQgAsLAahyzf/va3c+2115YeFwqFLFiwIL/61a/Sp0+fWi0OAODL9CIAQCXpRQCAhdX4cmG/+tWv0rt37zz//POZM2dOTjnllLz88sv5z3/+k7/+9a91USMAQIleBACoJL0IALCwGs9k2XTTTfPiiy/mm9/8ZnbaaafMmDEj++67b/72t79l/fXXr4saAQBK9CIAQCXpRQCAhdV4JkuSdOzYMWeddVZt1wIAsEz0IgBAJelFAIAvlBWyTJkyJSNHjsyrr76aQqGQTTbZJIcddljatGlT2/UBACxCLwIAVJJeBAD4Qo0vF/bYY4+lS5cuufTSSzNlypT85z//yaWXXpouXbrkscceq4saAQBK9CIAQCXpRQCAhdV4JsvRRx+d/v3754orrkj9+vWTJPPnz89RRx2Vo48+OuPHj6/1IgEAvqAXAQAqSS8CACysxjNZ3n777QwZMqTUSCRJ/fr1c+KJJ+btt9+u1eIAAL5MLwIAVJJeBABYWI1Dlq233jqvvvrqIutfffXVbLnllrVREwDAEulFAIBK0osAAAtbpsuFvfjii6WfjzvuuBx//PF56623su222yZJnn766fz617/OOeecUzdVAgCrNb0IAFBJehEAYEmWKWTZcsstUygUUiwWS+tOOeWURcYdeOCB2X///WuvOgCA6EUAgMrSiwAAS7JMIcuECRPqug4AgCXSiwAAlaQXAQCWZJlClnXWWaeu6wAAWCK9CABQSXoRAGBJlilk+bIPP/wwf/3rXzN58uQsWLCg2rbjjjuuVgoDAFgSvQgAUEl6EQDgCzUOWa655poceeSRadSoUdq2bZtCoVDaVigUNBMAQJ3SiwAAlaQXAQAWVuOQ5YwzzsgZZ5yRoUOHpl69enVREwDAEulFAIBK0osAAAurcTcwc+bM/OAHP/j/2Lv7sCrq/P/jr8M9KKBAcmBFJRd1A1PT8qYbMe8ytRtLU/uVmpnlTbnmVnazYVuy+m3NVu3GMtDUdHe9WdvKpBLNVUtUypvyptA0IRbXDioICPP7o6/n64kb4QjMOYfn47rmupyZz5nzHkad9zkvZoZGAgAAmIJeBAAAmIleBAAAXKzGV7KMHTtWf//73/XUU0/VRT0AAABVohcBAABmohcBgF/k5eWZXcIlBQUFKTQ01Owy4OFqHLIkJydr0KBBWr9+vdq3by9fX1+H9XPmzKm14gAAAH6NXgQAAJiJXgRAQ9eosERlklavXm12KZfk5eujRydOImhBnapxyDJz5kx9/PHHatu2rSSVe8AbAABAXaIXAQAAZqIXAdDQBZSUykvS2m6tlBcSYHY5lYrIP6c7th9RQUEBIQvqVI1Dljlz5uidd97R6NGj66AcAACAqtGLAAAAM9GLAMAv8kIClBMWZHYZgOlq/JQ2f39/XX/99XVRCwAAwCXRiwAAADPRiwAAgIvVOGR57LHHNG/evLqoBQAA4JLoRQAAgJnoRQAAwMVqfLuwL7/8Up999pn+9a9/KT4+vtwD3tzhgUcAAMB90YsAAAAz0YsAAICL1ThkadKkiYYMGVIXtQAAAFwSvQgAADATvQgAALhYjUOWlJSUuqgDAACgWuhFAACAmehFAADAxWr8TBYAAAAAAAAAAAA4cSVLbGysLBZLpeu///77yyoIAACgKvQiAADATPQiAADgYjUOWaZMmeIwX1JSot27d2v9+vX6wx/+UFt1AQAAVIheBAAAmIleBAAAXKzGIctjjz1W4fIFCxYoIyPjsgsCAACoCr0IAAAwE70IAAC4WK09k2XAgAFatWpVbW0OAACgRuhFAACAmehFAABomGotZPnHP/6hsLCw2tocAABAjdCLAAAAM9GLAADQMNX4dmGdOnVyeMCbYRjKycnRf/7zH7322ms12lZycrJWr16tb7/9VoGBgerRo4dmzZqltm3bOmx/xowZWrhwoU6dOqWuXbtqwYIFio+Pt48pKirStGnT9N5776mwsFC9e/fWa6+9pubNm9d09wAAgIurzV4EAACgpuhFAADAxWocstxxxx0O815eXrriiiuUmJiodu3a1WhbmzZt0sSJE3Xttdfq/PnzeuaZZ9SvXz/t379fjRo1kiTNnj1bc+bMUWpqqtq0aaMXX3xRffv21YEDBxQcHCzpl4fOvf/++1qxYoXCw8P1+OOPa9CgQdq5c6e8vb1ruosAAMCF1WYvAgAAUFP0IgAA4GI1Dlmef/75Wnvz9evXO8ynpKSoWbNm2rlzp2666SYZhqG5c+fqmWee0ZAhQyRJixcvVmRkpJYvX67x48fLZrNp0aJFevfdd9WnTx9J0tKlSxUTE6NPPvlE/fv3r7V6AQCA+WqzFwEAAKgpehEAAHCxWnsmS22w2WySZL+HaVZWlnJyctSvXz/7GH9/f/Xs2VNbt26VJO3cuVMlJSUOY6Kjo5WQkGAf82tFRUXKz893mAAAAAAAAAAAAGqi2leyeHl5OdxztCIWi0Xnz593qhDDMDR16lTdcMMNSkhIkCTl5ORIkiIjIx3GRkZG6ujRo/Yxfn5+atq0abkxF17/a8nJyZoxY4ZTdQIAAHPUdS8CAABQFXoRAABQkWqHLGvWrKl03datWzVv3jwZhuF0IZMmTdLXX3+tLVu2lFv36ybGMIxLNjZVjZk+fbqmTp1qn8/Pz1dMTIwTVQMAgPpS170IAABAVehFAABARaodstx+++3lln377beaPn263n//fd17773605/+5FQRkydP1rp167R582Y1b97cvtxqtUr65WqVqKgo+/Lc3Fz71S1Wq1XFxcU6deqUw9Usubm56tGjR4Xv5+/vL39/f6dqBQAA5qjLXgQAAOBSzOpFWrVqZb+bx8UmTJigBQsWaPTo0Vq8eLHDuq5du2r79u21XgvMY7PZVFBQUG/vZykokPV//5yTkyMjKKjK8Xl5eXVfFAC4qBo/+F6STpw4oeeff16LFy9W//79lZmZab/FV00YhqHJkydrzZo1Sk9PV2xsrMP62NhYWa1WpaWlqVOnTpKk4uJibdq0SbNmzZIkde7cWb6+vkpLS9OwYcMkSdnZ2dq7d69mz57tzO4BAAAXV1u9CAAAgDPqsxfZsWOHSktL7fN79+5V3759NXToUPuyW265RSkpKfZ5Pz+/OqkF5rDZbPrrgvkqK6m/W9H5Fhfr6f/98zvvvKMS/k4BQKVqFLLYbDbNnDlT8+bNU8eOHfXpp5/qxhtvdPrNJ06cqOXLl+uf//yngoOD7c9QCQ0NVWBgoCwWi6ZMmaKZM2cqLi5OcXFxmjlzpoKCgjRy5Ej72LFjx+rxxx9XeHi4wsLCNG3aNLVv3159+vRxujYAAOB6arsXAQAAqAkzepErrrjCYf7Pf/6zWrdurZ49e9qX+fv72+8GAs9TUFCgspLzWtutlfJCAurlPQMLz+npmb/8ObV3GxUGVv2+rbNt6rUnux4qAwDXU+2QZfbs2Zo1a5asVqvee++9Ci+TranXX39dkpSYmOiwPCUlRaNHj5YkPfHEEyosLNSECRN06tQpde3aVRs2bFBwcLB9/CuvvCIfHx8NGzZMhYWF6t27t1JTU+Xt7X3ZNQIAANdQF70IAABAdblCL1JcXKylS5dq6tSpDs+hTU9PV7NmzdSkSRP17NlTL730kpo1a1bpdoqKilRUVGSfz8/Pr9O6UTvyQgKUE1b1bbtqS1CBl/3PPzUNUkFQ1SFLeP65ui4JAFxWtUOWp556SoGBgfrtb3+rxYsXl7vf5wWrV6+u9ptX54FwFotFSUlJSkpKqnRMQECA5s2bp3nz5lX7vQEAgHupi14EAACgulyhF1m7dq1+/vln+y+mStKAAQM0dOhQtWzZUllZWXruued08803a+fOnZU+jzY5OVkzZsyoszoBAGhIqh2y3H///Q6/JQEAAFCf6EUAAICZXKEXWbRokQYMGKDo6Gj7snvuucf+54SEBHXp0kUtW7bUBx98oCFDhlS4nenTp2vq1Kn2+fz8fMXExNRd4QAAeLBqhyypqal1WAYAAEDV6EUAAICZzO5Fjh49qk8++eSSV8pERUWpZcuWOnToUKVj/P39K73KBQAA1IzXpYcAAAAAAADATCkpKWrWrJkGDhxY5biTJ0/q2LFjioqKqqfKAABo2AhZAAAAAAAAXFhZWZlSUlI0atQo+fj8301Jzpw5o2nTpmnbtm06cuSI0tPTNXjwYEVEROjOO+80sWIAABqOat8uDAAAAAAAAPXvk08+0Q8//KAHHnjAYbm3t7f27NmjJUuW6Oeff1ZUVJR69eqllStXKjg42KRqAQBoWAhZAAAAAAAAXFi/fv1kGEa55YGBgfr4449NqAgAAFzA7cIAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAA3W5s2bNXjwYEVHR8tisWjt2rUO6w3DUFJSkqKjoxUYGKjExETt27fPYUxRUZEmT56siIgINWrUSLfddpuOHz9ej3sBAAAAAADMQsgCAAAarLNnz6pDhw6aP39+hetnz56tOXPmaP78+dqxY4esVqv69u2r06dP28dMmTJFa9as0YoVK7RlyxadOXNGgwYNUmlpaX3tBgAAAAAAMImP2QUAAACYZcCAARowYECF6wzD0Ny5c/XMM89oyJAhkqTFixcrMjJSy5cv1/jx42Wz2bRo0SK9++676tOnjyRp6dKliomJ0SeffKL+/fvX274AAAAAAID6x5UsAAAAFcjKylJOTo769etnX+bv76+ePXtq69atkqSdO3eqpKTEYUx0dLQSEhLsYypSVFSk/Px8hwkAAAAAALgfQhYAAIAK5OTkSJIiIyMdlkdGRtrX5eTkyM/PT02bNq10TEWSk5MVGhpqn2JiYmq5egAAAAAAUB8IWQAAAKpgsVgc5g3DKLfs1y41Zvr06bLZbPbp2LFjtVIrAAAAAACoX4QsAAAAFbBarZJU7oqU3Nxc+9UtVqtVxcXFOnXqVKVjKuLv76+QkBCHCQAAAAAAuB9CFgAAgArExsbKarUqLS3Nvqy4uFibNm1Sjx49JEmdO3eWr6+vw5js7Gzt3bvXPgYAAAAAAHguH7MLAAAAMMuZM2d0+PBh+3xWVpYyMzMVFhamFi1aaMqUKZo5c6bi4uIUFxenmTNnKigoSCNHjpQkhYaGauzYsXr88ccVHh6usLAwTZs2Te3bt1efPn3M2i0AAAAAAFBPCFkAAECDlZGRoV69etnnp06dKkkaNWqUUlNT9cQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcH217zyyivy8fHRsGHDVFhYqN69eys1NVXe3t71vj8AAAAAAKB+EbIAAIAGKzExUYZhVLreYrEoKSlJSUlJlY4JCAjQvHnzNG/evDqoEAAAAAAAuDKeyQIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAgItKSkqSxWJxmKxWq329YRhKSkpSdHS0AgMDlZiYqH379plYMQAADQshCwAAAAAAgAuLj49Xdna2fdqzZ4993ezZszVnzhzNnz9fO3bskNVqVd++fXX69GkTKwYAoOEgZAEAAAAAAHBhPj4+slqt9umKK66Q9MtVLHPnztUzzzyjIUOGKCEhQYsXL1ZBQYGWL19uctUAADQMhCwAAAAAAAAu7NChQ4qOjlZsbKyGDx+u77//XpKUlZWlnJwc9evXzz7W399fPXv21NatWyvdXlFRkfLz8x0mAADgHEIWAAAAAAAAF9W1a1ctWbJEH3/8sd566y3l5OSoR48eOnnypHJyciRJkZGRDq+JjIy0r6tIcnKyQkND7VNMTEyd7gMAAJ6MkAUAAAAAAMBFDRgwQHfddZfat2+vPn366IMPPpAkLV682D7GYrE4vMYwjHLLLjZ9+nTZbDb7dOzYsbopHgCABoCQBQAAAAAAwE00atRI7du316FDh2S1WiWp3FUrubm55a5uuZi/v79CQkIcJgAA4BxCFgAAAAAAADdRVFSkb775RlFRUYqNjZXValVaWpp9fXFxsTZt2qQePXqYWCUAAA2Hj9kFAAAAAAAAoGLTpk3T4MGD1aJFC+Xm5urFF19Ufn6+Ro0aJYvFoilTpmjmzJmKi4tTXFycZs6cqaCgII0cOdLs0gEAaBAIWQAAAAAAAFzU8ePHNWLECOXl5emKK65Qt27dtH37drVs2VKS9MQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcEmVw4AQMNAyAIAAAAAAOCiVqxYUeV6i8WipKQkJSUl1U9BAADAAc9kAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcIKP2QUAAAAAAAAAAFAX8vLyzC6hSkFBQQoNDTW7DFwGQhYAAAAAAAAAgEdpVFiiMkmrV682u5Qqefn66NGJkwha3BghCwAAAAAAAADAowSUlMpL0tpurZQXEmB2ORWKyD+nO7YfUUFBASGLGyNkAQAAAAAAAAB4pLyQAOWEBZldBjwYD74HAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnGBqyLJ582YNHjxY0dHRslgsWrt2rcN6wzCUlJSk6OhoBQYGKjExUfv27XMYU1RUpMmTJysiIkKNGjXSbbfdpuPHj9fjXgAAAAAAAAAAgIbI1JDl7Nmz6tChg+bPn1/h+tmzZ2vOnDmaP3++duzYIavVqr59++r06dP2MVOmTNGaNWu0YsUKbdmyRWfOnNGgQYNUWlpaX7sBAAAAAAAAAAAaIB8z33zAgAEaMGBAhesMw9DcuXP1zDPPaMiQIZKkxYsXKzIyUsuXL9f48eNls9m0aNEivfvuu+rTp48kaenSpYqJidEnn3yi/v3719u+AAAAAAAAAACAhsVln8mSlZWlnJwc9evXz77M399fPXv21NatWyVJO3fuVElJicOY6OhoJSQk2MdUpKioSPn5+Q4TAAAAAAAAAABATbhsyJKTkyNJioyMdFgeGRlpX5eTkyM/Pz81bdq00jEVSU5OVmhoqH2KiYmp5eoBAAAAAAAAAICnc9mQ5QKLxeIwbxhGuWW/dqkx06dPl81ms0/Hjh2rlVoBAAAAAAAAAEDD4bIhi9VqlaRyV6Tk5ubar26xWq0qLi7WqVOnKh1TEX9/f4WEhDhMAAAAAAAAAAAANeGyIUtsbKysVqvS0tLsy4qLi7Vp0yb16NFDktS5c2f5+vo6jMnOztbevXvtYwAAAAAAAAAAAOqCj5lvfubMGR0+fNg+n5WVpczMTIWFhalFixaaMmWKZs6cqbi4OMXFxWnmzJkKCgrSyJEjJUmhoaEaO3asHn/8cYWHhyssLEzTpk1T+/bt1adPH7N2CwAAAAAAAAAANACmhiwZGRnq1auXfX7q1KmSpFGjRik1NVVPPPGECgsLNWHCBJ06dUpdu3bVhg0bFBwcbH/NK6+8Ih8fHw0bNkyFhYXq3bu3UlNT5e3tXe/7AwAAAAAAAAAAGg5TQ5bExEQZhlHpeovFoqSkJCUlJVU6JiAgQPPmzdO8efPqoEIAAAAAAAAAAICKuewzWQAAAAAAAAAAAFwZIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAACAKiQlJclisThMVqvVvt4wDCUlJSk6OlqBgYFKTEzUvn37TKwYAAAAAADUF0IWAACAS4iPj1d2drZ92rNnj33d7NmzNWfOHM2fP187duyQ1WpV3759dfr0aRMrBgAAAAAA9cHH7AIAAABcnY+Pj8PVKxcYhqG5c+fqmWee0ZAhQyRJixcvVmRkpJYvX67x48fXd6kA4HLy8vLMLqFKQUFBCg0NNbsMAAAAuClCFgAAgEs4dOiQoqOj5e/vr65du2rmzJm68sorlZWVpZycHPXr188+1t/fXz179tTWrVsrDVmKiopUVFRkn8/Pz6/zfcDlsdlsKigoMLuMSrn6l9homBoVlqhM0urVq80upUpevj56dOIkghYAAAA4hZAFAACgCl27dtWSJUvUpk0b/fTTT3rxxRfVo0cP7du3Tzk5OZKkyMhIh9dERkbq6NGjlW4zOTlZM2bMqNO6UXtsNpv+umC+ykrOm10K4FYCSkrlJWltt1bKCwkwu5wKReSf0x3bj6igoICQBQAAAE4hZAEAAKjCgAED7H9u3769unfvrtatW2vx4sXq1q2bJMlisTi8xjCMcssuNn36dE2dOtU+n5+fr5iYmFquHLWloKBAZSXnXfqL4tbZNvXak212GUCF8kIClBMWZHYZAAAAQJ0gZAEAAKiBRo0aqX379jp06JDuuOMOSVJOTo6ioqLsY3Jzc8td3XIxf39/+fv713WpqGWu/EVxeP45s0sAAAAAgAaJkAVoQFz9fvKWggKVf6w0ALiWoqIiffPNN7rxxhsVGxsrq9WqtLQ0derUSZJUXFysTZs2adasWSZXCgAAAAAA6hohC9BAuMP95H2Li/W02UUAwK9MmzZNgwcPVosWLZSbm6sXX3xR+fn5GjVqlCwWi6ZMmaKZM2cqLi5OcXFxmjlzpoKCgjRy5EizSwcAAAAAAHWMkAVoINzhfvKBhef09EyzqwAAR8ePH9eIESOUl5enK664Qt26ddP27dvVsmVLSdITTzyhwsJCTZgwQadOnVLXrl21YcMGBQcHm1w5AAAAAACoa4QsQAPjyveTDyrwMrsEAChnxYoVVa63WCxKSkpSUlJS/RQEAAAAAABcBt9oAgAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAADgopKTk3XttdcqODhYzZo10x133KEDBw44jBk9erQsFovD1K1bN5MqBgCgYSFkAQAAAAAAcFGbNm3SxIkTtX37dqWlpen8+fPq16+fzp496zDulltuUXZ2tn368MMPTaoYAICGxcfsAgAAAAAAAFCx9evXO8ynpKSoWbNm2rlzp2666Sb7cn9/f1mt1vouDwCABo8rWQAAAAAAANyEzWaTJIWFhTksT09PV7NmzdSmTRuNGzdOubm5lW6jqKhI+fn5DhMAAHAOIQsAAAAAAIAbMAxDU6dO1Q033KCEhAT78gEDBmjZsmX67LPP9Je//EU7duzQzTffrKKiogq3k5ycrNDQUPsUExNTX7sAAIDH4XZhAAAAAAAAbmDSpEn6+uuvtWXLFofl99xzj/3PCQkJ6tKli1q2bKkPPvhAQ4YMKbed6dOna+rUqfb5/Px8ghYAAJxEyAIAAAAAAODiJk+erHXr1mnz5s1q3rx5lWOjoqLUsmVLHTp0qML1/v7+8vf3r4syAQBocAhZAAAAAAAAXJRhGJo8ebLWrFmj9PR0xcbGXvI1J0+e1LFjxxQVFVUPFQIA0LDxTBYAAAAAAAAXNXHiRC1dulTLly9XcHCwcnJylJOTo8LCQknSmTNnNG3aNG3btk1HjhxRenq6Bg8erIiICN15550mVw8AgOfjShYAAAAAAAAX9frrr0uSEhMTHZanpKRo9OjR8vb21p49e7RkyRL9/PPPioqKUq9evbRy5UoFBwebUDEAAA0LIQsAAAAAAICLMgyjyvWBgYH6+OOP66kaAEBdyMvLM7uESwoKClJoaKjZZbgkQhYAAAAAAAAAAOpZo8ISlUlavXq12aVckpevjx6dOImgpQKELAAAAAAAAAAA1LOAklJ5SVrbrZXyQgLMLqdSEfnndMf2IyooKCBkqQAhCwAAAAAAAAAAJskLCVBOWJDZZcBJXmYXAAAAAAAAAAAA4I4IWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJzgY3YBgKew2WwqKCgwu4xK5eXlmV0CAAAAAAAuxdU/y0t8ngcAV0fIAtQCm82mvy6Yr7KS82aXAgAAAAAAqoHP8gCA2kDIAtSCgoIClZWc19purZQXEmB2ORVqnW1Trz3ZZpcBAAAAAIBLcIfP8hKf5wHA1RGyALUoLyRAOWFBZpdRofD8c2aXAAAAAACAy3Hlz/ISn+cBwNXx4HsAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEH7MLAAAgLy/P7BIuKSgoSKGhoWaXAQAA6gC9CAAAAJxFyAIAME2jwhKVSVq9erXZpVySl6+PHp04iS83AADwIPQiAAAAuFyELAAA0wSUlMpL0tpurZQXEmB2OZWKyD+nO7YfUUFBAV9sAADgQehFAAAAcLkIWQAApssLCVBOWJDZZQAAgAaKXgQAAADO4sH3AAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsAAAAAAAAAAAATiBkAQAAAAAAAAAAcAIhCwAAAAAAAAAAgBMIWQAAAAAAAAAAAJxAyAIAAAAAAAAAAOAEQhYAAAAAAAAAAAAn+JhdAAAAAAAAuLS8vDyzS6hSUFCQQkNDzS4DAACgXhGywC3YbDYVFBSYXUalXP3DDgAAAAD31aiwRGWSVq9ebXYpVfLy9dGjEycRtAAA4KFc/TtQs37hg5AFLs9ms+mvC+arrOS82aUAaOBoJgAAgBkCSkrlJWltt1bKCwkwu5wKReSf0x3bj6igoIB+BAAAD8MvfFSNkAUur6CgQGUl5136A0XrbJt67ck2uwwAdYRmAqg7rn61quT6ASuAhiMvJEA5YUFmlwFUm6uf5znHA0D18AsfVSNkgdtw5Q8U4fnnzC4BQB2imQDqBlerAgDguTjPA4DnceXvZ83kMSHLa6+9pv/5n/9Rdna24uPjNXfuXN14441mlwUA8CA0E6gKvUjNucPVqhJXrAIA3IOr9SLucJ7nHA8AqA0eEbKsXLlSU6ZM0Wuvvabrr79eb775pgYMGKD9+/erRYsWptXl6pfFSty/HwCA2kAv4pwLt+hw9QCTK1YBAK7OVXsRybXP85zjAQC1wSNCljlz5mjs2LF68MEHJUlz587Vxx9/rNdff13Jycmm1OQul8Vy/34AAC4fvQgAADCTK/YiAAA0FG4fshQXF2vnzp166qmnHJb369dPW7durfA1RUVFKioqss/bbDZJUn5+fq3V9dNPP6ng9Bltaxep/EZ+tbbd2hRytljdv/1J+/fvV3h4uNnlVOrkyZM6d+6cmmafUtlZ1/xt3Mb/yafGWhBQWKQL/wpDf/pZzcrKTK2nMu7ws5Tco053qFFyjzqb5hfp3LlzOn36tBo1alQr27xwXjQMo1a256noRZxnPXlWHY7816X/bUnu8X+Aq9V48Tk94vhJnQv0d7kaK+MOdbpDjZJ71OkONUruUSe9iHlctRc5ffq0y/+9dYd/W5I5dVZ0Lq8KP8vaQ421xx3qdIcaJfeo09RexHBzP/74oyHJ+Pe//+2w/KWXXjLatGlT4Wuef/55QxITExMTExNTNaZjx47VxyndbdGLMDExMTEx1e1EL1I1ehEmJiYmJqa6nS7Vi7j9lSwXWCwWh3nDMMotu2D69OmaOnWqfb6srEz//e9/FR4eXulrLiU/P18xMTE6duyYQkJCnNqGq2Gf3IOn7ZOn7Y/EPrkLT9un2tgfwzB0+vRpRUdH13J1nsnsXgT/x9P+PbsrjoPr4Fi4Do5FzdCL1IwZvUhD+zvN/no29tezsb+era72t7q9iNuHLBEREfL29lZOTo7D8tzcXEVGRlb4Gn9/f/n7O17m2KRJk1qpJyQkxOP+4rJP7sHT9snT9kdin9yFp+3T5e4Pz+y6NFfrRfB/PO3fs7viOLgOjoXr4FhUH73IpblCL9LQ/k6zv56N/fVs7K9nq4v9rU4v4lWr72gCPz8/de7cWWlpaQ7L09LS1KNHD5OqAgAADQW9CAAAMBO9CAAA5nL7K1kkaerUqbrvvvvUpUsXde/eXQsXLtQPP/yghx9+2OzSAABAA0AvAgAAzEQvAgCAeTwiZLnnnnt08uRJvfDCC8rOzlZCQoI+/PBDtWzZst5q8Pf31/PPP1/uclt3xj65B0/bJ0/bH4l9cheetk+etj+uzhV6Efwf/v67Bo6D6+BYuA6OBeqKWb1IQ/s7zf56NvbXs7G/ns3s/bUYhmGY8s4AAAAAAAAAAABuzO2fyQIAAAAAAAAAAGAGQhYAAAAAAAAAAAAnELIAAAAAAAAAAAA4gZAFAAAAAAAAAADACYQsTnjppZfUo0cPBQUFqUmTJhWO+eGHHzR48GA1atRIERERevTRR1VcXOwwZs+ePerZs6cCAwP1m9/8Ri+88IIMw6iHPahaenq6LBZLhdOOHTvs4ypa/8Ybb5hYedVatWpVrt6nnnrKYUx1jpsrOHLkiMaOHavY2FgFBgaqdevWev7558vV6m7HSJJee+01xcbGKiAgQJ07d9bnn39udknVkpycrGuvvVbBwcFq1qyZ7rjjDh04cMBhzOjRo8sdj27duplU8aUlJSWVq9dqtdrXG4ahpKQkRUdHKzAwUImJidq3b5+JFV9aRf8PWCwWTZw4UZJ7HKPNmzdr8ODBio6OlsVi0dq1ax3WV+e4FBUVafLkyYqIiFCjRo1022236fjx4/W4F0Dd8KRzvSdw13O6O/PEc7c74NyMhqohnXc9+TN4VTz1XO6Jn9+r0tD6A0/43F+VhtZ3VLW/JSUlevLJJ9W+fXs1atRI0dHRuv/++3XixAmHbSQmJpY75sOHD6/VOglZnFBcXKyhQ4fqkUceqXB9aWmpBg4cqLNnz2rLli1asWKFVq1apccff9w+Jj8/X3379lV0dLR27NihefPm6eWXX9acOXPqazcq1aNHD2VnZztMDz74oFq1aqUuXbo4jE1JSXEYN2rUKJOqrp4XXnjBod5nn33Wvq46x81VfPvttyorK9Obb76pffv26ZVXXtEbb7yhp59+utxYdzpGK1eu1JQpU/TMM89o9+7duvHGGzVgwAD98MMPZpd2SZs2bdLEiRO1fft2paWl6fz58+rXr5/Onj3rMO6WW25xOB4ffvihSRVXT3x8vEO9e/bssa+bPXu25syZo/nz52vHjh2yWq3q27evTp8+bWLFVduxY4fD/qSlpUmShg4dah/j6sfo7Nmz6tChg+bPn1/h+uoclylTpmjNmjVasWKFtmzZojNnzmjQoEEqLS2tr90A6oynnOvdnTuf092dp5273QHnZjRkDeW866mfwaviyedyT/38XpWG1B94wuf+qjS0vqOq/S0oKNCuXbv03HPPadeuXVq9erUOHjyo2267rdzYcePGORzzN998s3YLNeC0lJQUIzQ0tNzyDz/80PDy8jJ+/PFH+7L33nvP8Pf3N2w2m2EYhvHaa68ZoaGhxrlz5+xjkpOTjejoaKOsrKzOa6+J4uJio1mzZsYLL7zgsFySsWbNGnOKckLLli2NV155pdL11Tlurmz27NlGbGyswzJ3O0bXXXed8fDDDzssa9eunfHUU0+ZVJHzcnNzDUnGpk2b7MtGjRpl3H777eYVVUPPP/+80aFDhwrXlZWVGVar1fjzn/9sX3bu3DkjNDTUeOONN+qpwsv32GOPGa1bt7b/v+tux+jX/8arc1x+/vlnw9fX11ixYoV9zI8//mh4eXkZ69evr7fagbrg6ed6d+JJ53R30hDO3a6OczMakoZ+3vWEz+BVaUjnck/4/F6Vht4fuPvn/qo0tL6jOv/Hfvnll4Yk4+jRo/ZlPXv2NB577LE6rY0rWerAtm3blJCQoOjoaPuy/v37q6ioSDt37rSP6dmzp/z9/R3GnDhxQkeOHKnvkqu0bt065eXlafTo0eXWTZo0SREREbr22mv1xhtvqKysrP4LrIFZs2YpPDxcHTt21EsvveRwaW91jpsrs9lsCgsLK7fcXY5RcXGxdu7cqX79+jks79evn7Zu3WpSVc6z2WySVO6YpKenq1mzZmrTpo3GjRun3NxcM8qrtkOHDik6OlqxsbEaPny4vv/+e0lSVlaWcnJyHI6Xv7+/evbs6TbHq7i4WEuXLtUDDzwgi8ViX+5ux+hi1TkuO3fuVElJicOY6OhoJSQkuM2xA6riyed6d+Fp53R348nnbnfEuRmeriGfd939M3hVGtq53FM+v1elofYHnvi5vyr0Hb/8e7ZYLOUe8bFs2TJFREQoPj5e06ZNq/UrtXxqdWuQJOXk5CgyMtJhWdOmTeXn56ecnBz7mFatWjmMufCanJwcxcbG1kut1bFo0SL1799fMTExDsv/9Kc/qXfv3goMDNSnn36qxx9/XHl5eQ6XB7uSxx57TNdcc42aNm2qL7/8UtOnT1dWVpbefvttSdU7bq7qu+++07x58/SXv/zFYbk7HaO8vDyVlpaWOwaRkZEu//P/NcMwNHXqVN1www1KSEiwLx8wYICGDh2qli1bKisrS88995xuvvlm7dy50yFwdRVdu3bVkiVL1KZNG/3000968cUX1aNHD+3bt89+TCo6XkePHjWj3Bpbu3atfv75Z4cA2d2O0a9V57jk5OTIz89PTZs2LTfG3f6tAb/myed6d+JJ53R34+nnbnfEuRmerCGfdz3hM3hVGtK53FM+v1elIfcHnvi5vyoNve84d+6cnnrqKY0cOVIhISH25ffee69iY2NltVq1d+9eTZ8+XV999ZX9VnK1gZDlfyUlJWnGjBlVjtmxY0e5Z5JU5uJ09ALDMByW/3qM8b8Pva/otbXBmX08fvy4Pv74Y/3tb38rN/biJqFjx46Sfrkfa302DzXZp9///vf2ZVdffbWaNm2qu+++2/6bN1L1jltdcuYYnThxQrfccouGDh2qBx980GGsKxyjmqro30V9/fxry6RJk/T1119ry5YtDsvvuece+58TEhLUpUsXtWzZUh988IGGDBlS32Ve0oABA+x/bt++vbp3767WrVtr8eLF9ofCufPxWrRokQYMGODwm3Xudowq48xxcadjh4bF0871DYk7nyPclaefu90Z52a4i4Z23uUzeNUawjnDUz6/V6Uh9wee/Lm/Kg2x7ygpKdHw4cNVVlam1157zWHduHHj7H9OSEhQXFycunTpol27dumaa66plfcnZPlfkyZN0vDhw6sc8+srTypjtVr1xRdfOCw7deqUSkpK7Emi1Wotlw5euDTt12ljbXFmH1NSUhQeHl7hA4N+rVu3bsrPz9dPP/1UZ/vwa5dz3C6cSA4fPqzw8PBqHbe6VtP9OXHihHr16qXu3btr4cKFl9y+GceouiIiIuTt7V3hvwtXq7UqkydP1rp167R582Y1b968yrFRUVFq2bKlDh06VE/VXZ5GjRqpffv2OnTokO644w5Jv/wGRFRUlH2Muxyvo0eP6pNPPtHq1aurHOdux8hqtUqq+rhYrVYVFxfr1KlTDr+5kpubqx49etRvwUA1eNq5viHwlHO6J/Ckc7e74twMd9PQzrsN+TN4VRrKudyTP79XpaH0B576ub8qDbXvKCkp0bBhw5SVlaXPPvvM4SqWilxzzTXy9fXVoUOHCFlqW0REhCIiImplW927d9dLL72k7Oxs+1/oDRs2yN/fX507d7aPefrpp1VcXCw/Pz/7mOjo6GqHOTVV0300DEMpKSm6//775evre8nxu3fvVkBAQLl73tWlyzluu3fvliT7MarOcatrNdmfH3/8Ub169VLnzp2VkpIiL69LP2LJjGNUXX5+furcubPS0tJ055132penpaXp9ttvN7Gy6jEMQ5MnT9aaNWuUnp5erVv+nTx5UseOHXM48bmyoqIiffPNN7rxxhvtl1mmpaWpU6dOkn651+mmTZs0a9Yskyu9tJSUFDVr1kwDBw6scpy7HaPqHJfOnTvL19dXaWlpGjZsmCQpOztbe/fu1ezZs02rHaiMp53rGwJ3P6d7Ek86d7srzs1wNw3tvNuQP4NXxdPP5Q3h83tVGkp/4Kmf+6vSEPuOCwHLoUOHtHHjRvuVlFXZt2+fSkpKaveYG6ixo0ePGrt37zZmzJhhNG7c2Ni9e7exe/du4/Tp04ZhGMb58+eNhIQEo3fv3sauXbuMTz75xGjevLkxadIk+zZ+/vlnIzIy0hgxYoSxZ88eY/Xq1UZISIjx8ssvm7Vb5XzyySeGJGP//v3l1q1bt85YuHChsWfPHuPw4cPGW2+9ZYSEhBiPPvqoCZVe2tatW405c+YYu3fvNr7//ntj5cqVRnR0tHHbbbfZx1TnuLmKH3/80fjtb39r3Hzzzcbx48eN7Oxs+3SBux0jwzCMFStWGL6+vsaiRYuM/fv3G1OmTDEaNWpkHDlyxOzSLumRRx4xQkNDjfT0dIfjUVBQYBiGYZw+fdp4/PHHja1btxpZWVnGxo0bje7duxu/+c1vjPz8fJOrr9jjjz9upKenG99//72xfft2Y9CgQUZwcLD9ePz5z382QkNDjdWrVxt79uwxRowYYURFRbns/lxQWlpqtGjRwnjyyScdlrvLMTp9+rT9vCPJ/n/b0aNHDcOo3nF5+OGHjebNmxuffPKJsWvXLuPmm282OnToYJw/f96s3QIum6ed692dO5/T3ZmnnrtdHedmNEQN7bzrqZ/Bq+LJ53JP/PxelYbYH7j75/6qNLS+o6r9LSkpMW677TajefPmRmZmpsO/56KiIsMwDOPw4cPGjBkzjB07dhhZWVnGBx98YLRr187o1KlTre4vIYsTRo0aZUgqN23cuNE+5ujRo8bAgQONwMBAIywszJg0aZJx7tw5h+18/fXXxo033mj4+/sbVqvVSEpKMsrKyup5byo3YsQIo0ePHhWu++ijj4yOHTsajRs3NoKCgoyEhARj7ty5RklJST1XWT07d+40unbtaoSGhhoBAQFG27Ztjeeff944e/asw7jqHDdXkJKSUuHfwYtzU3c7RhcsWLDAaNmypeHn52dcc801xqZNm8wuqVoqOx4pKSmGYRhGQUGB0a9fP+OKK64wfH19jRYtWhijRo0yfvjhB3MLr8I999xjREVFGb6+vkZ0dLQxZMgQY9++ffb1ZWVlxvPPP29YrVbD39/fuOmmm4w9e/aYWHH1fPzxx4Yk48CBAw7L3eUYbdy4scK/a6NGjTIMo3rHpbCw0Jg0aZIRFhZmBAYGGoMGDXK5/QRqytPO9Z7AXc/p7sxTz92ujnMzGqKGdt715M/gVfHUc7knfn6vSkPsD9z9c39VGlrfUdX+ZmVlVfrv+cL39D/88INx0003GWFhYYafn5/RunVr49FHHzVOnjxZq3VaDON/n7YOAAAAAAAAAACAarv0DSQBAAAAAAAAAABQDiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELgFqXm5ur8ePHq0WLFvL395fValX//v31+eefy2q1aubMmeVeM2zYMF177bU6f/68kpKSZLFY7FNoaKhuvPFGbdq0qcL3mzlzpry9vfXnP/+5rncNAAC4AXoRAABgJnoRoGEhZAFQ6+666y599dVXWrx4sQ4ePKh169YpMTFR+fn5WrhwoWbMmKE9e/bYx//jH//Q+++/ryVLlsjHx0eSFB8fr+zsbGVnZ2vbtm2Ki4vToEGDZLPZyr1fSkqKnnjiCb3zzjv1to8AAMB10YsAAAAz0YsADYvFMAzD7CIAeI6ff/5ZTZs2VXp6unr27FnhmDFjxigzM1Nffvmlfv75Z8XHx+vpp5/WlClTJElJSUlau3atMjMz7a85duyYWrRooS+//FLXXnutffmmTZt07733KisrS61atdJ7772nm266qS53EQAAuDB6EQAAYCZ6EaDh4UoWALWqcePGaty4sdauXauioqIKx7z66qv673//qz/96U+aMGGCEhIS9Nhjj1W6zaKiIqWmpqpJkyZq27atw7pFixZpxIgR8vX11YgRI7Ro0aJa3R8AAOBe6EUAAICZ6EWAhocrWQDUulWrVmncuHEqLCzUNddco549e2r48OG6+uqr7WM+++wz9evXT40aNdLXX3+tli1b2tclJSXpT3/6kwIDAyVJBQUFCg4O1sqVK3XLLbfYx+Xn5ysqKkpbt25Vhw4dlJmZqeuvv17Z2dkKCQmpvx0GAAAuhV4EAACYiV4EaFi4kgVArbvrrrt04sQJrVu3Tv3791d6erquueYapaam2sfcfPPN6tatm+677z6HRuKCtm3bKjMzU5mZmdq5c6ceeeQRDR06VBkZGfYxy5cv15VXXqkOHTpIkjp27Kgrr7xSK1asqPN9BAAAroteBAAAmIleBGhYuJIFQL148MEHlZaWpqNHj9qXJSYmqmPHjpo7d67D2IruPSpJ7dq1U5cuXbR06VJJ0nXXXaeMjAx5ef1fXlxWVqZrr71WX3zxRZ3tCwAAcD/0IgAAwEz0IoDn8jG7AAANw1VXXaW1a9de1ja8vb1VWFgoSdqzZ48yMjKUnp6usLAw+5iff/5ZN910k/bu3auEhITLej8AAOA56EUAAICZ6EUAz0XIAqBWnTx5UkOHDtUDDzygq6++WsHBwcrIyNDs2bN1++23V3s758+fV05OjiTp9OnTWrlypfbv368nn3xS0i8Pdrvuuut00003lXtt9+7dtWjRIr3yyiu1s1MAAMBt0IsAAAAz0YsADQ8hC4Ba1bhxY3Xt2lWvvPKKvvvuO5WUlCgmJkbjxo3T008/Xe3t7Nu3T1FRUZKkoKAgtW7dWq+//rruv/9+FRcXa+nSpfbG4tfuuusuJScna9asWfLz86uV/QIAAO6BXgQAAJiJXgRoeHgmCwAAAAAAAAAAgBO8Lj0EAAAAAAAAAAAAv0bIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBAAAAAAAAAABwAiELAAAAAAAAAACAEwhZAAAAAAAAAAAAnEDIAgAAAAAAAAAA4ARCFgAAAAAAAAAAACcQsgAAAAAAAAAAADiBkAUAAAAAAAAAAMAJhCwAAAAAAAAAAABOIGQBUO++/vprjR07Vq1bt1ZgYKACAwMVFxen8ePHKyMjo8LXTJ06VRaLRYMGDarnagEAgCdJTU2VxWJxmK644golJibqX//6l8PYJUuWaPjw4Wrbtq28vLzUqlUrc4oGAAAeo7q9SHZ2tp599ll1795dERERCgkJUefOnbVw4UKVlpaauAcAfo2QBUC9evPNN9W5c2d98cUXeuyxx/Svf/1LH3zwgaZMmaJ9+/bp2muv1XfffefwmpKSEi1dulSStH79ev34449mlA4AADxISkqKtm3bpq1bt2rhwoXy9vbW4MGD9f7779vHvPvuu9q3b5+uu+46tW7d2sRqAQCAp7lUL7Jz504tWbJEvXv31pIlS7Rq1Sr17NlTjzzyiMaNG2dy9QAu5mN2AQAajn//+9+aMGGCBg4cqH/84x/y8/Ozr7v55ps1ceJE/f3vf1dgYKDD6/75z3/qP//5jwYOHKgPPvhAixcv1tNPP13f5QMAAA+SkJCgLl262OdvueUWNW3aVO+9954GDx4sSfr444/l5fXL76UNGjRIe/fuNaVWAADgeS7Vi1x//fX67rvv5Ovrax/Tt29fFRcXa8GCBZoxY4ZiYmLMKB3Ar3AlC4B6M3PmTHl7e+vNN990CFguNnToUEVHRzssW7Rokfz8/JSSkqKYmBilpKTIMIz6KBkAADQQAQEB8vPzc/gi40LAAgAAUNd+3Ys0bdrUoS+54LrrrpMkHT9+vF7rA1A5PjUAqBelpaXauHGjunTpoqioqGq/7vjx49qwYYNuv/12XXHFFRo1apQOHz6szZs312G1AADA05WWlur8+fMqKSnR8ePHNWXKFJ09e1YjR440uzQAANAAONuLfPbZZ/Lx8VGbNm3qqVIAl8LtwgDUi7y8PBUWFqply5bl1pWWljpcmeLt7S2LxSLpl3uUlpWVaezYsZKkBx54QC+99JIWLVqknj171k/xAADA43Tr1s1h3t/fX/Pnz1f//v1NqggAADQkzvQiGzZs0LvvvqvHHntM4eHhdV0igGriShYApuvcubN8fX3t01/+8hdJkmEY9luE9e3bV5IUGxurxMRErVq1Svn5+WaWDQAA3NiSJUu0Y8cO7dixQx999JFGjRqliRMnav78+WaXBgAAGoCa9iK7du3SsGHD1K1bNyUnJ9dztQCqwpUsAOpFRESEAgMDdfTo0XLrli9froKCAmVnZ+u2226zL//ss8+UlZWlqVOnOgQqw4YN08aNG/Xee+9p/Pjx9VI/AADwLL/73e/KPWz26NGjeuKJJ/T//t//U5MmTcwrDgAAeLya9CK7d+9W3759FRcXpw8//FD+/v4mVAygMlzJAqBeeHt76+abb1ZGRoays7Md1l111VXq0qWL2rdv77B80aJFkqQ5c+aoadOm9umRRx5xWA8AAFAbrr76ahUWFurgwYNmlwIAABqginqR3bt3q0+fPmrZsqU2bNig0NBQEysEUBFCFgD1Zvr06SotLdXDDz+skpKSKseeOnVKa9as0fXXX6+NGzeWm+69917t2LFDe/furafqAQCAp8vMzJQkXXHFFeYWAgAAGqRf9yKZmZnq06ePmjdvrrS0NDVt2tTE6gBUhtuFAag3119/vRYsWKDJkyfrmmuu0UMPPaT4+Hh5eXkpOztbq1atkiSFhIRo2bJlOnfunB599FElJiaW21Z4eLiWLVumRYsW6ZVXXqnnPQEAAO5u7969On/+vCTp5MmTWr16tdLS0nTnnXcqNjZWkrR//37t379fkpSTk6OCggL94x//kPTLlbhXXXWVOcUDAAC3d6le5MCBA+rTp48k6aWXXtKhQ4d06NAh++tbt27NL4YALsJiGIZhdhEAGpavvvpKr776qtLT03XixAlZLBY1b95cPXr00KhRo3TzzTerU6dOOnHihI4dOyY/P78Kt9O9e3cdPnxYP/74Y6VjAAAALpaamqoxY8Y4LAsNDVVsbKzuv/9+TZgwwX6f86SkJM2YMaPC7Tz//PNKSkqq63IBAICHqW4vUtG4i6WkpGj06NF1XC2A6iBkAQAAAAAAAAAAcALPZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJ/iYXYArKCsr04kTJxQcHCyLxWJ2OQAAuATDMHT69GlFR0fLy4vfy6hL9CIAAJRHL1J/6EUAACivur0IIYukEydOKCYmxuwyAABwSceOHVPz5s3NLsOj0YsAAFA5epG6Ry8CAEDlLtWLELJICg4OlvTLDyskJMTkauC2zp6VoqN/+fOJE1KjRubWAwCXKT8/XzExMfbzJOoOvQhcEr0NAJPRi9QfehEncJ4EAI9X3V6EkEWyXwobEhJCMwHneXv/359DQmiwAHgMbhlR9+hF4JLobQC4CHqRukcv4gTOkwDQYFyqF+GmpgAAAAAAAAAAAE4wNWTZvHmzBg8erOjoaFksFq1du9a+rqSkRE8++aTat2+vRo0aKTo6Wvfff79OnDjhsI2ioiJNnjxZERERatSokW677TYdP368nvcEAAAAAAAAAAA0NKaGLGfPnlWHDh00f/78cusKCgq0a9cuPffcc9q1a5dWr16tgwcP6rbbbnMYN2XKFK1Zs0YrVqzQli1bdObMGQ0aNEilpaX1tRsAAAAAAAAAAKABMvWZLAMGDNCAAQMqXBcaGqq0tDSHZfPmzdN1112nH374QS1atJDNZtOiRYv07rvvqk+fPpKkpUuXKiYmRp988on69+9f5/sAAK6urKxMxcXFZpcBF+Tr6yvvi+8lDQBAHaAXQWXoRQAA9YFeBJWprV7ErR58b7PZZLFY1KRJE0nSzp07VVJSon79+tnHREdHKyEhQVu3bq00ZCkqKlJRUZF9Pj8/v07rBgCzFBcXKysrS2VlZWaXAhfVpEkTWa1WHigLAKgT9CK4FHoRAEBdohfBpdRGL+I2Icu5c+f01FNPaeTIkQoJCZEk5eTkyM/PT02bNnUYGxkZqZycnEq3lZycrBkzZtRpvQBgNsMwlJ2dLW9vb8XExMjLy9Q7RMLFGIahgoIC5ebmSpKioqJMrggA4GnoRVAVehEAQF2jF0FVarMXcYuQpaSkRMOHD1dZWZlee+21S443DKPK5Gn69OmaOnWqfT4/P18xMTG1UisAuIrz58+roKBA0dHRCgoKMrscuKDAwEBJUm5urpo1a8btOgAAtYpeBJdCLwIAqEv0IriU2upFXD6+Kykp0bBhw5SVlaW0tDT7VSySZLVaVVxcrFOnTjm8Jjc3V5GRkZVu09/fXyEhIQ4TAHia0tJSSZKfn5/JlcCVXWg0S0pKTK4EAOBp6EVQHfQiAIC6Qi+C6qiNXsSlQ5YLAcuhQ4f0ySefKDw83GF9586d5evrq7S0NPuy7Oxs7d27Vz169KjvcgHAJXF/a1SFvx8AgLrGuQZV4e8HAKCuca5BVWrj74eptws7c+aMDh8+bJ/PyspSZmamwsLCFB0drbvvvlu7du3Sv/71L5WWltqfsxIWFiY/Pz+FhoZq7NixevzxxxUeHq6wsDBNmzZN7du3V58+fczaLQAAAAAAAAAA0ACYGrJkZGSoV69e9vkLz0kZNWqUkpKStG7dOklSx44dHV63ceNGJSYmSpJeeeUV+fj4aNiwYSosLFTv3r2VmprKvVwBAAAAAAAAAECdMvV2YYmJiTIMo9yUmpqqVq1aVbjOMAx7wCJJAQEBmjdvnk6ePKmCggK9//77PMQeAGCa9PR03X777YqKilKjRo3UsWNHLVu2rNLx//73v+Xj41PuFwoqsmPHDvXu3VtNmjRR06ZN1a9fP2VmZtrXHzhwQL169VJkZKQCAgJ05ZVX6tlnn+Ue5wAANCDnzp3T6NGj1b59e/n4+OiOO+4oNyY9PV0Wi6Xc9O2331a63ZMnT+qWW25RdHS0/P39FRMTo0mTJik/P98+JikpqcLtNmrUqC52FQAAuKDqfC8yevToCnuG+Pj4Srebmppa4WssFotyc3MlmdeLuPQzWQAAcDdbt27V1VdfrVWrVunrr7/WAw88oPvvv1/vv/9+ubE2m03333+/evfufcntnj59Wv3791eLFi30xRdfaMuWLQoJCVH//v3tIYqvr6/uv/9+bdiwQQcOHNDcuXP11ltv6fnnn6/1/QQAAK6ptLRUgYGBevTRRy95G+0DBw4oOzvbPsXFxVU61svLS7fffrvWrVungwcPKjU1VZ988okefvhh+5hp06Y5bC87O1tXXXWVhg4dWmv7BwAAXFt1vhd59dVXHfqFY8eOKSwsrMqe4Z577inXZ/Tv3189e/ZUs2bNJJnXixCyAABcSmJioiZPnqwpU6aoadOmioyM1MKFC3X27FmNGTNGwcHBat26tT766COH1+3fv1+33nqrGjdurMjISN13333Ky8uzr1+/fr1uuOEGNWnSROHh4Ro0aJC+++47+/ojR47IYrFo9erV6tWrl4KCgtShQwdt27atRvU//fTT+tOf/qQePXqodevWevTRR3XLLbdozZo15caOHz9eI0eOVPfu3S+53QMHDujUqVN64YUX1LZtW8XHx+v5559Xbm6ufvjhB0nSlVdeqTFjxqhDhw5q2bKlbrvtNt177736/PPPa7QPAAA0ZO7eizRq1Eivv/66xo0bJ6vVWuXYZs2ayWq12qeqbrvdtGlTPfLII+rSpYtatmyp3r17a8KECQ59RuPGjR2299NPP2n//v0aO3ZsjfYBAICGzN17kep8LxIaGurQM2RkZOjUqVMaM2ZMpdsNDAws17d89tlnDn2GWb0IIQsAwOUsXrxYERER+vLLLzV58mQ98sgjGjp0qHr06KFdu3apf//+uu+++1RQUCBJys7OVs+ePdWxY0dlZGRo/fr1+umnnzRs2DD7Ns+ePaupU6dqx44d+vTTT+Xl5aU777xTZWVlDu/9zDPPaNq0acrMzFSbNm00YsQInT9/3r7eYrEoNTW1Rvtjs9kUFhbmsCwlJUXfffddta8yadu2rSIiIrRo0SIVFxersLBQixYtUnx8vFq2bFnhaw4fPqz169erZ8+eNaoXAICGztN6kcp06tRJUVFR6t27tzZu3Fij1544cUKrV6+uss94++231aZNG914442XWyoAAA2Kp/UiFX0vcrFFixapT58+lX6/UZElS5YoKChId999d6Vj6q0XMWDYbDZDkmGz2cwuBe7szBnDkH6ZzpwxuxrAKCwsNPbv328UFhaaXUqN9OzZ07jhhhvs8+fPnzcaNWpk3HffffZl2dnZhiRj27ZthmEYxnPPPWf069fPYTvHjh0zJBkHDhyo8H1yc3MNScaePXsMwzCMrKwsQ5Lx9ttv28fs27fPkGR888039mVt27Y1Vq9eXe39+fvf/274+fkZe/futS87ePCg0axZM3ttzz//vNGhQ4dLbmvv3r1G69atDS8vL8PLy8to166dcfTo0XLjunfvbvj7+xuSjIceesgoLS2tdJtV/T3h/Fh/+FnDJdHb4DLRi5jfi4waNcq4/fbbyy3/9ttvjYULFxo7d+40tm7dajzyyCOGxWIxNm3adMltDh8+3AgMDDQkGYMHD670+J47d85o2rSpMWvWrCq3Ry/iGvhZO4HzJODy6EXM70UMo+LvRS524sQJw9vb21i5cmW1t2kYhnHVVVcZjzzySKXr67MX4UoWAIDLufrqq+1/9vb2Vnh4uNq3b29fFhkZKUn2B5vt3LlTGzduVOPGje1Tu3btJMl+6et3332nkSNH6sorr1RISIhiY2MlyX6rrYreOyoqyuF9JOnbb7/VnXfeWa39SE9P1+jRo/XWW2/ZH95WWlqqkSNHasaMGWrTpk21tiNJhYWFeuCBB3T99ddr+/bt+ve//634+HjdeuutKiwsdBi7cuVK7dq1S8uXL9cHH3ygl19+udrvAwAAPKcXqUzbtm01btw4XXPNNerevbtee+01DRw4sFo9wyuvvKJdu3Zp7dq1+u677zR16tQKx61evVqnT5/W/ffff1m1AgDQEHlKL1LR9yK/lpqaqiZNmuiOO+6o1jYladu2bZe8DVh99iI+df4OAADUkK+vr8O8xWJxWGaxWCTJfklrWVmZBg8erFmzZpXb1oWGYPDgwYqJidFbb72l6OholZWVKSEhQcXFxZW+96/fpyY2bdqkwYMHa86cOQ4n9NOnTysjI0O7d+/WpEmT7Ns3DEM+Pj7asGGDbr755nLbW758uY4cOaJt27bJy8vLvqxp06b65z//qeHDh9vHxsTESJKuuuoqlZaW6qGHHtLjjz9e5X3WAQDA//GEXqSmunXrpqVLl15y3IV7nLdr107h4eG68cYb9dxzz9n384K3335bgwYNuuRzYXBpmzdv1v/8z/9o586dys7O1po1a+xfRJWUlOjZZ5/Vhx9+qO+//16hoaHq06eP/vznPys6OtrcwgEATvOEXqSy70UuZhiG3nnnHd13333y8/Or9rbffvttdezYUZ07d65yTH31IoQsAAC3d80112jVqlVq1aqVfHzKn9pOnjypb775Rm+++ab9Ppxbtmyps3rS09M1aNAgzZo1Sw899JDDupCQEO3Zs8dh2WuvvabPPvtM//jHP+y/SfJrBQUF8vLysjc4kuzzVTU7hmGopKREhmFcxh4BAICquFov4ozdu3eXC0ou5UJ/UVRU5LA8KytLGzdu1Lp162qtvobs7Nmz6tChg8aMGaO77rrLYV1BQYF27dql5557Th06dNCpU6c0ZcoU3XbbbcrIyDCpYgBAfXO1XqSq70UutmnTJh0+fLhGD6Y/c+aM/va3vyk5ObnSMfXdi3C7MACA25s4caL++9//asSIEfryyy/1/fffa8OGDXrggQdUWlqqpk2bKjw8XAsXLtThw4f12WefVXpri0tp166d1qxZU+n69PR0DRw4UI8++qjuuusu5eTkKCcnR//9738l/RKMJCQkOEzNmjVTQECAEhIS1KhRI0nSmjVr7Jf2SlLfvn116tQpTZw4Ud9884327dunMWPGyMfHR7169ZIkLVu2TH/729/0zTff6Pvvv9ff//53TZ8+Xffcc0+FTRYAAKgdrtSLSNL+/fuVmZmp//73v7LZbMrMzFRmZqZ9/dy5c7V27VodOnRI+/bt0/Tp07Vq1Sr7VbZS+V7kww8/VEpKivbu3asjR47oww8/1COPPKLrr79erVq1cnj/d955R1FRURowYIBT+whHAwYM0IsvvqghQ4aUWxcaGqq0tDQNGzZMbdu2Vbdu3TRv3jzt3Lmz3O1fAACey5V6kUt9L3KxRYsWqWvXrkpISCi37te9yAUrV67U+fPnde+991ZaQ333InzjAsDl2Gw2FRQUmF1GlYKCghQaGmp2Gfhf0dHR+ve//60nn3xS/fv3V1FRkVq2bKlbbrnFfrXHihUr9OijjyohIUFt27bVX//6VyUmJtb4vQ4cOCCbzVbp+tTUVBUUFCg5Odnhtyp69uyp9PT0ar+PzWbTgQMH7PPt2rXT+++/rxkzZqh79+7y8vJSp06dtH79evtvnfr4+GjWrFk6ePCgDMNQy5YtNXHiRP3+97+v8X4CQENGL4KacqVeRJJuvfVWHT161D7fqVMnSf935UlxcbGmTZumH3/8UYGBgYqPj9cHH3ygW2+91f6aX/cigYGBeuutt/T73/9eRUVFiomJ0ZAhQ/TUU085vHdZWZlSU1M1evRoblVqEpvNJovFoiZNmlQ6pqioyOEKpPz8/HqoDHANnOfhiVypF6nu9yI2m02rVq3Sq6++WuF2ft2LXLBo0SINGTJETZs2rfB1ZvQiFoP7hyg/P1+hoaGy2WwKCQkxuxy4q7NnpcaNf/nzmTPS//42OmrGZrPprwvmq6zkvNmlVMnL10ePTpzk0k3PuXPnlJWVpdjYWAUEBJhdDlxUVX9POD/WH37WcEkNtLehF6k99CKoDnqRmrFYLA7PZPm1c+fO6YYbblC7du2qfMZOUlKSZsyYUW45P+saaKDnSXfHeb5hoRdBddRGL8KVLABcSkFBgcpKzmttt1bKC3HNE2BE/jndsf2ICgoKaHgAAPAw9CIA3FVJSYmGDx+usrIyvfbaa1WOnT59usNtYvLz8xUTE1PXJQKm4zwPoC4QsgBwSXkhAcoJCzK7DAAA0EDRiwBwJyUlJRo2bJiysrL02WefXfJqFH9/f/n7+9dTdYDr4TwPoDYRsgAAAAAAALipCwHLoUOHtHHjRoWHh5tdEgAADQohCwAAAAAAgIs6c+aMDh8+bJ/PyspSZmamwsLCFB0drbvvvlu7du3Sv/71L5WWlionJ0eSFBYWJj8/P7PKBgCgwSBkAQAAAAAAcFEZGRnq1auXff7Cs1RGjRqlpKQkrVu3TpLUsWNHh9dt3LhRiYmJ9VUmAAANFiELAAAAAACAi0pMTJRhGJWur2odAACoe15mFwAAAAAAAAAAAOCOCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAIDbS09Pl8Vi0c8//2x2KQAAoAGiFwEAAGaiFzEXIQsAwO316NFD2dnZCg0NrfP3ev3113X11VcrJCREISEh6t69uz766COHMaNHj5bFYnGYunXrVue1AQAAc9RnL5KcnKxrr71WwcHBatasme644w4dOHDAYQy9CAAADUt99iKbN2/W4MGDFR0dLYvForVr11Y5fvz48bJYLJo7d26d12YWQhYAgNvz8/OT1WqVxWKp8/dq3ry5/vznPysjI0MZGRm6+eabdfvtt2vfvn0O42655RZlZ2fbpw8//LDOawMAAOaoz15k06ZNmjhxorZv3660tDSdP39e/fr109mzZx3G0YsAANBw1GcvcvbsWXXo0EHz58+/5Ni1a9fqiy++UHR0dJ3XZSZCFgCAS0lMTNTkyZM1ZcoUNW3aVJGRkVq4cKHOnj2rMWPGKDg4WK1bt3a4euTXl8WmpqaqSZMm+vjjj/W73/1OjRs3tn/RcLkGDx6sW2+9VW3atFGbNm300ksvqXHjxtq+fbvDOH9/f1mtVvsUFhZ22e8NAADqnqv3IuvXr9fo0aMVHx+vDh06KCUlRT/88IN27tzpMI5eBAAA9+TqvciAAQP04osvasiQIVWO+/HHHzVp0iQtW7ZMvr6+l/2+royQBQDgchYvXqyIiAh9+eWXmjx5sh555BENHTpUPXr00K5du9S/f3/dd999KigoqHQbBQUFevnll/Xuu+9q8+bN+uGHHzRt2jT7+gsNyJEjR5yus7S0VCtWrNDZs2fVvXt3h3Xp6elq1qyZ2rRpo3Hjxik3N9fp9wEAAPXLXXoRSbLZbJJULkShFwEAwH25Uy9SkbKyMt133336wx/+oPj4+FrfvqshZAEAuJwOHTro2WefVVxcnKZPn67AwEBFRERo3LhxiouL0x//+EedPHlSX3/9daXbKCkp0RtvvKEuXbrommuu0aRJk/Tpp5/a1wcFBalt27ZO/TbFnj171LhxY/n7++vhhx/WmjVrdNVVV9nXDxgwQMuWLdNnn32mv/zlL9qxY4duvvlmFRUV1fi9AABA/XP1XuQCwzA0depU3XDDDUpISLAvpxcBAMC9uUsvUplZs2bJx8dHjz76aK1v2xURsgAAXM7VV19t/7O3t7fCw8PVvn17+7LIyEhJqvI3MoOCgtS6dWv7fFRUlMP46667Tt9++61+85vfVPj6zz//XI0bN7ZPy5Yts69r27atMjMztX37dj3yyCMaNWqU9u/fb19/zz33aODAgUpISNDgwYP10Ucf6eDBg/rggw9q8FMAAABmcfVe5IJJkybp66+/1nvvveewnF4EAAD35i69SEV27typV199VampqfXyjBhX4GN2AQAA/Nqvf4vCYrE4LLtwki4rK6vRNgzDqHYNXbp0UWZmpn3+QgMj/fJAud/+9rf2cTt27NCrr76qN998s8JtRUVFqWXLljp06FC13x8AAJjH1XsRSZo8ebLWrVunzZs3q3nz5lVui14EAAD34g69SGU+//xz5ebmqkWLFvZlpaWlevzxxzV37tw6uT2Z2QhZAACoQGBgoD1IuRTDMKq8/cbJkyd17NgxRUVF1VZ5AADAw1XWixiGocmTJ2vNmjVKT09XbGzsJbdFLwIAAGqqJt+LXOy+++5Tnz59HJZdeIbMmDFjaqs8l8LtwgAADdKXX36pdu3a6ccff6zR655++ml9/vnnOnLkiPbs2aNnnnlG6enpuvfeeyVJZ86c0bRp07Rt2zYdOXJE6enpGjx4sCIiInTnnXfWxa4AAAA35GwvMnHiRC1dulTLly9XcHCwcnJylJOTo8LCQkn0IgAAoHqc7UXOnDmjzMxM+1UuWVlZyszM1A8//CBJCg8PV0JCgsPk6+srq9Wqtm3b1vZuuASuZAEANEgFBQU6cOCASkpKavS6n376Sffdd5+ys7MVGhqqq6++WuvXr1ffvn0l/XKv1D179mjJkiX6+eefFRUVpV69emnlypUKDg6ui10BAABuyNle5PXXX5ckJSYmOixPSUnR6NGj6UUAAEC1ONuLZGRkqFevXvb5qVOnSpJGjRql1NTU2izRbRCyAABcSnp6erllFd2v8+L7iCYmJjrMjx49WqNHj3YYf8cdd1T5mupatGhRlesDAwP18ccf13i7AADANbh6L3Kp19CLAADg3ly9F3HmdZ74HJaLcbswAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQCAakpKSpLFYik3NWrUyGHcggUL9Lvf/U6BgYFq27atlixZYlLFAADAUx0+fFjBwcFq0qSJw/L09PQK+5Vvv/3WnEIBAIBH+fjjj9WtWzcFBwfriiuu0F133aWsrCyHMUVFRXrmmWfUsmVL+fv7q3Xr1nrnnXdMqrju+ZhdAAAA7mLatGl6+OGHHZb17t1b1157rX3+9ddf1/Tp0/XWW2/p2muv1Zdffqlx48apadOmGjx4cH2XDAAAPFBJSYlGjBihG2+8UVu3bq1wzIEDBxQSEmKfv+KKK+qrPAAA4KG+//573X777Zo6daqWLVsmm82m3//+9xoyZIh2795tHzds2DD99NNPWrRokX77298qNzdX58+fN7HyusWVLAAAl5KYmKjJkydrypQpatq0qSIjI7Vw4UKdPXtWY8aMUXBwsFq3bq2PPvrI/prS0lKNHTtWsbGx9qtHXn31Vfv6c+fOKT4+Xg899JB9WVZWlkJDQ/XWW29Vu7bGjRvLarXap59++kn79+/X2LFj7WPeffddjR8/Xvfcc4+uvPJKDR8+XGPHjtWsWbMu8ycDAADqgyv3Ihc8++yzateunYYNG1bpmGbNmjn0Ld7e3jV+HwAAUP9cuRfZtWuXSktL9eKLL6p169a65pprNG3aNH311VcqKSmRJK1fv16bNm3Shx9+qD59+qhVq1a67rrr1KNHj1r46bgmQhYAgMtZvHixIiIi9OWXX2ry5Ml65JFHNHToUPXo0UO7du1S//79dd9996mgoECSVFZWpubNm+tvf/ub9u/frz/+8Y96+umn9be//U2SFBAQoGXLlmnx4sVau3atSktLdd9996lXr14aN26c/X0tFotSU1OrXefbb7+tNm3a6MYbb7QvKyoqUkBAgMO4wMBAffnll/aGAwAAuDZX7kU+++wz/f3vf9eCBQuqHNepUydFRUWpd+/e2rhx4+X9QAAAQL1y1V6kS5cu8vb2VkpKikpLS2Wz2fTuu++qX79+8vX1lSStW7dOXbp00ezZs/Wb3/xGbdq00bRp01RYWFh3PzCTEbIAAFxOhw4d9OyzzyouLk7Tp09XYGCgIiIiNG7cOMXFxemPf/yjTp48qa+//lqS5OvrqxkzZujaa69VbGys7r33Xo0ePdreTEhSx44d9eKLL2rcuHH6/e9/r++++05vv/22w/u2bdtWoaGh1aqxqKhIy5Ytc7iKRZL69++vt99+Wzt37pRhGMrIyNA777yjkpIS5eXlXeZPBgAA1AdX7UVOnjyp0aNHKzU11eFWYBeLiorSwoULtWrVKq1evVpt27ZV7969tXnz5lr4yQAAgPrgqr1Iq1attGHDBj399NPy9/dXkyZNdPz4ca1YscI+5vvvv9eWLVu0d+9erVmzRnPnztU//vEPTZw4sZZ/Sq6DZ7IAAFzO1Vdfbf+zt7e3wsPD1b59e/uyyMhISVJubq592RtvvKG3335bR48eVWFhoYqLi9WxY0eH7T7++OP65z//qXnz5umjjz5SRESEw/qaPBB29erVOn36tO6//36H5c8995xycnLUrVs3GYahyMhIjR49WrNnz+Y2HQAAuAlX7UXGjRunkSNH6qabbqp0TNu2bdW2bVv7fPfu3XXs2DG9/PLLVb4OAAC4DlftRXJycvTggw9q1KhRGjFihE6fPq0//vGPuvvuu5WWliaLxaKysjJZLBYtW7bMHtjMmTNHd999txYsWKDAwECnfiaujCtZAAAu58IlphdYLBaHZRaLRdIvl8NK0t/+9jf9/ve/1wMPPKANGzYoMzNTY8aMUXFxscN2cnNzdeDAAXl7e+vQoUOXVePbb7+tQYMGyWq1OiwPDAzUO++8o4KCAh05ckQ//PCDWrVqpeDg4HLNCwAAcE2u2ot89tlnevnll+Xj4yMfHx+NHTtWNptNPj4+eueddyp9Xbdu3S679wEAAPXHVXuRBQsWKCQkRLNnz1anTp100003aenSpfr000/1xRdfSPrlqtrf/OY3DlfE/O53v5NhGDp+/HiN39MdcCULAMDtff755+rRo4cmTJhgX/bdd9+VG/fAAw8oISFB48aN09ixY9W7d29dddVVNX6/rKwsbdy4UevWrat0jK+vr5o3by5JWrFihQYNGiQvL363AQAAT1Rfvci2bdtUWlpqn//nP/+pWbNmaevWrfrNb35T6et2796tqKioar8PADjDZrPZnw/hqriFMzxVffUiBQUF5e7ScWH+QuBz/fXX6+9//7vOnDmjxo0bS5IOHjwoLy8v+/cknoaQBQDg9n77299qyZIl+vjjjxUbG6t3331XO3bsUGxsrH3MggULtG3bNn399deKiYnRRx99pHvvvVdffPGF/Pz8JEnt2rVTcnKy7rzzzirf75133lFUVJQGDBhQbt3Bgwf15ZdfqmvXrjp16pTmzJmjvXv3avHixbW70wAAwGXUVy/yu9/9zmE+IyNDXl5eSkhIsC+bO3euWrVqpfj4eBUXF2vp0qVatWqVVq1aVQd7DgC/sNls+uuC+SorOW92KUCDVF+9yMCBA/XKK6/ohRdesN8u7Omnn1bLli3VqVMnSdLIkSP1pz/9SWPGjNGMGTOUl5enP/zhD3rggQc88lZhEiELAMADPPzww8rMzNQ999wji8WiESNGaMKECfroo48k/XJP0T/84Q9atGiRYmJiJP3SXHTo0EHPPfecZs2aJUk6cOCAbDZble9VVlam1NRUjR49usJnrJSWluovf/mLDhw4IF9fX/Xq1Utbt25Vq1atanenAQCAy6jPXuRSiouLNW3aNP34448KDAxUfHy8PvjgA916662Xt5MAUIWCggKVlZzX2m6tlBcSYHY5lWqdbVOvPdlmlwHUuvrqRW6++WYtX75cs2fP1uzZsxUUFKTu3btr/fr19gClcePGSktL0+TJk9WlSxeFh4dr2LBhevHFF+v4p2Aei2EYhtlFmC0/P1+hoaGy2WwKCQkxuxy4q7Nnpf+9BE5nzkiNGplbj5vKzs7WwoUL9Xa/dsoJCzK7nApZ/1ugBzd8q4ceesilb7tw7tw5ZWVlKTY2VgEBrtvkwlxV/T3h/Fh/+FnDJTXQ3oZepPbQi6A66EVcAz9rJzTQ82Rl3OH8KUnxR/6rO7cfcek63eU87w7oRVAdtdGLcHN4AAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAeDjDMMwuAS6srKzM7BIAAB6OXgRVoRcBANQ1ehFUpTZ6EZ9aqAMA4IJ8fX1lsVj0n//8R1dccYUsFovZJcGFGIah4uJi/ec//5GXl5f8/PzMLsltnT9/XklJSVq2bJlycnIUFRWl0aNH69lnn5WXF7/PAqDhohdBVehFAAB1jV4EVanNXoSQBQA8lLe3t5o3b67jx4/ryJEjZpcDFxUUFKQWLVoQBlyGWbNm6Y033tDixYsVHx+vjIwMjRkzRqGhoXrsscfMLg8ATEMvguqgFwEA1BV6EVRHbfQihCwA4MEaN26suLg4lZSUmF0KXJC3t7d8fHz4bZ7LtG3bNt1+++0aOHCgJKlVq1Z67733lJGRYXJlAGA+ehFUhV4EAFDX6EVQldrqRQhZAMDDeXt7y9vb2+wyAI91ww036I033tDBgwfVpk0bffXVV9qyZYvmzp1b6WuKiopUVFRkn8/Pz6+HSgGg/tlsNhUUFJhdRpWCgoIUGhpqdhkAAKCO8L0I6hohCwAAwGV48sknZbPZ1K5dO3l7e6u0tFQvvfSSRowYUelrkpOTNWPGjHqsEgDqn81m018XzFdZyXmzS6mSl6+PHp04iaAFAAAATiFkAQAAuAwrV67U0qVLtXz5csXHxyszM1NTpkxRdHS0Ro0aVeFrpk+frqlTp9rn8/PzFRMTU18lA0C9KCgoUFnJea3t1kp5IQFml1OhiPxzumP7ERUUFBCyAAAAwCmELAAAAJfhD3/4g5566ikNHz5cktS+fXsdPXpUycnJlYYs/v7+8vf3r88yAcA0eSEBygkLMrsMAAAAoE54mV0AAACAOysoKJCXl2NL5e3trbKyMpMqAgAAAAAA9YUrWQAAAC7D4MGD9dJLL6lFixaKj4/X7t27NWfOHD3wwANmlwYAAAAAAOoYIQsAAMBlmDdvnp577jlNmDBBubm5io6O1vjx4/XHP/7R7NIAAAAAAEAdI2QBAAC4DMHBwZo7d67mzp1rdikAAAAAAKCe8UwWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOMHUkGXz5s0aPHiwoqOjZbFYtHbtWof1hmEoKSlJ0dHRCgwMVGJiovbt2+cwpqioSJMnT1ZERIQaNWqk2267TcePH6/HvQAAAAAAAAAAAA2RqSHL2bNn1aFDB82fP7/C9bNnz9acOXM0f/587dixQ1arVX379tXp06ftY6ZMmaI1a9ZoxYoV2rJli86cOaNBgwaptLS0vnYDAAAAAAAAAAA0QKY++H7AgAEaMGBAhesMw9DcuXP1zDPPaMiQIZKkxYsXKzIyUsuXL9f48eNls9m0aNEivfvuu+rTp48kaenSpYqJidEnn3yi/v3719u+AAAAAAAAAACAhsVln8mSlZWlnJwc9evXz77M399fPXv21NatWyVJO3fuVElJicOY6OhoJSQk2MdUpKioSPn5+Q4TAAAAAAAAAABATbhsyJKTkyNJioyMdFgeGRlpX5eTkyM/Pz81bdq00jEVSU5OVmhoqH2KiYmp5eoBAAAAAAAAAICnc9mQ5QKLxeIwbxhGuWW/dqkx06dPl81ms0/Hjh2rlVoBAAAAAAAAAEDD4bIhi9VqlaRyV6Tk5ubar26xWq0qLi7WqVOnKh1TEX9/f4WEhDhMAAAAAAAAAAAANeGyIUtsbKysVqvS0tLsy4qLi7Vp0yb16NFDktS5c2f5+vo6jMnOztbevXvtYwAAAAAAAAAAAOqCj5lvfubMGR0+fNg+n5WVpczMTIWFhalFixaaMmWKZs6cqbi4OMXFxWnmzJkKCgrSyJEjJUmhoaEaO3asHn/8cYWHhyssLEzTpk1T+/bt1adPH7N2CwAAAAAAAAAANACmhiwZGRnq1auXfX7q1KmSpFGjRik1NVVPPPGECgsLNWHCBJ06dUpdu3bVhg0bFBwcbH/NK6+8Ih8fHw0bNkyFhYXq3bu3UlNT5e3tXe/7AwAAAAAAAAAAGg5TQ5bExEQZhlHpeovFoqSkJCUlJVU6JiAgQPPmzdO8efPqoEIAAAAAAAAAAICKuewzWQAAAAAAAAAAAFwZIQsAAAAAAAAAAIATCFkAAAAAAABc1ObNmzV48GBFR0fLYrFo7dq1DusNw1BSUpKio6MVGBioxMRE7du3z5xiAQBogAhZAAAAAAAAXNTZs2fVoUMHzZ8/v8L1s2fP1pw5czR//nzt2LFDVqtVffv21enTp+u5UgAAGiZTH3wPAAAAAACAyg0YMEADBgyocJ1hGJo7d66eeeYZDRkyRJK0ePFiRUZGavny5Ro/fnx9lgoAQINEyAIAAAAAAOCGsrKylJOTo379+tmX+fv7q2fPntq6dWulIUtRUZGKiors8/n5+XVeKy6PzWZTQUGB2WVUKi8vz+wSAMA0hCwAAAAAAABuKCcnR5IUGRnpsDwyMlJHjx6t9HXJycmaMWNGndaG2mOz2fTXBfNVVnLe7FIAABUgZAEAAAAAAHBjFovFYd4wjHLLLjZ9+nRNnTrVPp+fn6+YmJg6qw+Xp6CgQGUl57W2WyvlhQSYXU6FWmfb1GtPttllAIApCFkAAAAAAADckNVqlfTLFS1RUVH25bm5ueWubrmYv7+//P3967w+1K68kADlhAWZXUaFwvPPmV0CAJjGy+wCAAAAAAAAUHOxsbGyWq1KS0uzLysuLtamTZvUo0cPEysDAKDh4EoWAAAAAAAAF3XmzBkdPnzYPp+VlaXMzEyFhYWpRYsWmjJlimbOnKm4uDjFxcVp5syZCgoK0siRI02sGgCAhoOQBQAAAAAAwEVlZGSoV69e9vkLz1IZNWqUUlNT9cQTT6iwsFATJkzQqVOn1LVrV23YsEHBwcFmlQwAQINCyAIAAAAAAOCiEhMTZRhGpestFouSkpKUlJRUf0UBAAA7nskCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOMHH7AIAAAAAADBTXl6e2SVcUlBQkEJDQ80uAwAAAL9CyAIAAAAAaJAaFZaoTNLq1avNLuWSvHx99OjESQQtAAAALoaQBQAAAADQIAWUlMpL0tpurZQXEmB2OZWKyD+nO7YfUUFBASELAACAiyFkAQAAAAA0aHkhAcoJCzK7DAAAALghHnwPAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJxCyAAAAAAAAAAAAOIGQBQAAAAAAAAAAwAmELAAAAAAAAAAAAE4gZAEAAAAAAAAAAHACIQsAAAAAAAAAAIATCFkAAAAAAAAAAACcQMgCAAAAAAAAAADgBEIWAAAAAAAAAAAAJ7h0yHL+/Hk9++yzio2NVWBgoK688kq98MILKisrs48xDENJSUmKjo5WYGCgEhMTtW/fPhOrBgAAAAAAAAAADYFLhyyzZs3SG2+8ofnz5+ubb77R7Nmz9T//8z+aN2+efczs2bM1Z84czZ8/Xzt27JDValXfvn11+vRpEysHAAAAAAAAAACezqVDlm3btun222/XwIED1apVK919993q16+fMjIyJP1yFcvcuXP1zDPPaMiQIUpISNDixYtVUFCg5cuXm1w9AAAAAAAAAADwZC4dstxwww369NNPdfDgQUnSV199pS1btujWW2+VJGVlZSknJ0f9+vWzv8bf3189e/bU1q1bK91uUVGR8vPzHSYAAAAAAAAAAICa8DG7gKo8+eSTstlsateunby9vVVaWqqXXnpJI0aMkCTl5ORIkiIjIx1eFxkZqaNHj1a63eTkZM2YMaPuCgcAAAAAAAAAAB7Ppa9kWblypZYuXarly5dr165dWrx4sV5++WUtXrzYYZzFYnGYNwyj3LKLTZ8+XTabzT4dO3asTuoHAAAAAAAAAACey6WvZPnDH/6gp556SsOHD5cktW/fXkePHlVycrJGjRolq9Uq6ZcrWqKiouyvy83NLXd1y8X8/f3l7+9ft8UDAAAAAAAAAACP5tJXshQUFMjLy7FEb29vlZWVSZJiY2NltVqVlpZmX19cXKxNmzapR48e9VorAAAAAAAAAABoWFz6SpbBgwfrpZdeUosWLRQfH6/du3drzpw5euCBByT9cpuwKVOmaObMmYqLi1NcXJxmzpypoKAgjRw50uTqAQAAAAAAAACAJ3PpkGXevHl67rnnNGHCBOXm5io6Olrjx4/XH//4R/uYJ554QoWFhZowYYJOnTqlrl27asOGDQoODjaxcgAAAAAAAAAA4OlqfLuwxYsX64MPPrDPP/HEE2rSpIl69Oiho0eP1mpxwcHBmjt3ro4eParCwkJ99913evHFF+Xn52cfY7FYlJSUpOzsbJ07d06bNm1SQkJCrdYBAAA8T332NAAAoGGhzwAAoOGoccgyc+ZMBQYGSpK2bdum+fPna/bs2YqIiNDvf//7Wi8QAACgLtRmT/Pjjz/q//2//6fw8HAFBQWpY8eO2rlzZ12UDQAA3EB9fndy/vx5Pfvss4qNjVVgYKCuvPJKvfDCC/bn2QIAgLpV49uFHTt2TL/97W8lSWvXrtXdd9+thx56SNdff70SExNruz4AAIA6UVs9zalTp3T99derV69e+uijj9SsWTN99913atKkSd0UDgAAXF59fncya9YsvfHGG1q8eLHi4+OVkZGhMWPGKDQ0VI899litvhcAACivxleyNG7cWCdPnpQkbdiwQX369JEkBQQEqLCwsHarAwAAqCO11dPMmjVLMTExSklJ0XXXXadWrVqpd+/eat26dZ3UDQAAXF99fneybds23X777Ro4cKBatWqlu+++W/369VNGRkatvg8AAKhYjUOWvn376sEHH9SDDz6ogwcPauDAgZKkffv2qVWrVrVdHwAAQJ2orZ5m3bp16tKli4YOHapmzZqpU6dOeuutt6p8TVFRkfLz8x0mAADgOerzu5MbbrhBn376qQ4ePChJ+uqrr7Rlyxbdeuutlb6GXgQAgNpT45BlwYIF6t69u/7zn/9o1apVCg8PlyTt3LlTI0aMqPUCAQAA6kJt9TTff/+9Xn/9dcXFxenjjz/Www8/rEcffVRLliyp9DXJyckKDQ21TzExMZe9PwAAwHXU53cnTz75pEaMGKF27drJ19dXnTp10pQpU6p8H3oRAABqT42fyZKfn6+//vWv8vJyzGeSkpJ07NixWisMAACgLtVWT1NWVqYuXbpo5syZkqROnTpp3759ev3113X//fdX+Jrp06dr6tSpDrXw5QYAAJ6jPr87WblypZYuXarly5crPj5emZmZmvL/27v38KjqO3/gn+GWEIQIWG4tCqL1Ri0qWhUrWBVrtb/66GNvtN5aflpBQLpV0a2CVVC3Zali2cUL6s+1urui1a43thWodS2IUNG6uCqia8nSVJugAyGQ8/vDmjUCQoY5mSTn9XqeeZ7MmTOT9/kmZN7OxzMzaVIMGDAgzj777G3eRxcBgOJp9pBl8ODBsXbt2ujTp0+T7W+//XYMHjw4tmzZUrRwAABpKVan6d+/fxx44IFNth1wwAFx//33b/c+ZWVlUVZW1vzQAECb0JKvnfzgBz+Iyy67LL7+9a9HRMRnPvOZWLNmTcyYMWO7QxZdBACKp9lvF5YkyTa3v/vuu1FeXr7LgQAAWkKxOs2IESNi1apVTba9/PLLsddee+1SPgCg7WrJ107y+fxWZ8x07NgxGhoaivp9AIBt2+kzWT44jTSXy8WVV14ZFRUVjbdt2bIlfve738WwYcOKHhAAoJiK3WkuvvjiOProo2P69Onx1a9+NZYsWRJz586NuXPnFjs6ANDKleK1ky9/+ctx7bXXxp577hkHHXRQLF++PGbOnBnnnXdeUb8PALBtOz1kWb58eUS8/39jrFy5Mrp06dJ4W5cuXeKzn/1s/M3f/E3xEwIAFFGxO83hhx8eDzzwQEyZMiWuvvrqGDx4cMyaNSvGjBlT9OwAQOtWitdObrrppvjhD38YF154Yaxbty4GDBgQ559/flx55ZVF/T4AwLbt9JDlySefjIiIc889N376059Gjx49UgsFAJCWNDrNqaeeGqeeeuouPw4A0LaV4rWT7t27x6xZs2LWrFmpfy8AYGvN/uD7efPmpZEDAKBF6TQAQFr0DADIjmYPWd5777247rrr4le/+lWsW7duqw9Se+2114oWDgAgLToNAJAWPQMAsqPZQ5bvfve7sWjRovj2t78d/fv3j1wul0YuAIBU6TQAQFr0DADIjmYPWR599NH4t3/7txgxYkQaeQAAWoROAwCkRc8AgOzo0Nw79OzZM3r16pVGFgCAFqPTAABp0TMAIDuaPWT50Y9+FFdeeWXk8/k08gAAtAidBgBIi54BANnR7LcL+8lPfhKvvvpq9O3bNwYNGhSdO3ducvtzzz1XtHAAAGnRaQCAtOgZAJAdzR6ynHbaaSnEAABoWToNAJAWPQMAsqPZQ5arrroqjRwAAC1KpwEA0qJnAEB2NPszWSIi/vKXv8Stt94aU6ZMibfffjsi3j/V9a233ipqOACANOk0AEBa9AwAyIZmn8ny/PPPxwknnBCVlZXx+uuvx9ixY6NXr17xwAMPxJo1a+Kuu+5KIycAQFHpNABAWvQMAMiOZp/JMnny5DjnnHPiv/7rv6K8vLxx+8knnxyLFy8uajgAgLToNABAWvQMAMiOZg9Zli5dGueff/5W2z/5yU9GVVVVUUIBAKRNpwEA0qJnAEB2NHvIUl5eHrW1tVttX7VqVXziE58oSigAgLTpNABAWvQMAMiOZg9ZvvKVr8TVV18d9fX1ERGRy+XijTfeiMsuuyzOOOOMogcEAEiDTgMApEXPAIDsaPaQ5cc//nH86U9/ij59+sSGDRti5MiRsc8++0T37t3j2muvTSMjAEDR6TQAQFr0DADIjk7NvUOPHj3iqaeeil//+tfx3HPPRUNDQxx66KFxwgknpJEPACAVOg0AkBY9AwCyo9lDlg984QtfiC984QvFzAIA0OJ0GgAgLXoGALR/BQ1ZlixZEgsXLox169ZFQ0NDk9tmzpxZlGAAAGnTaQCAtOgZAJANzR6yTJ8+Pf72b/829ttvv+jbt2/kcrnG2z78NQBAa6bTAABp0TMAIDuaPWT56U9/Grfffnucc845KcQBAGgZOg0AkBY9AwCyo0Oz79ChQ4wYMSKNLAAALUanAQDSomcAQHY0+0yWiy++OG6++eaYNWtWCnGANNXU1EQ+ny91jI9VXV1d6ghARug0AEBa9AwAyI5mD1n+5m/+Jk455ZQYMmRIHHjggdG5c+cmt8+fP79o4YDiqampiRtvnh0N9ZtLHQWgVdBpAIC06BkAkB3NHrJcdNFF8eSTT8Zxxx0XvXv39oFt0Ebk8/loqN8cDx45KKp7lJc6znYNWVsTx61cW+oYQAboNABAWvQMAMiOZg9Z7rrrrrj//vvjlFNOSSMPkLLqHuVR1aui1DG2q3ftxlJHADJCpwEA0qJnAEB2NPuD73v16hVDhgxJIwsAQIvRaQCAtOgZAJAdzR6yTJ06Na666qpW/+HZAAAfR6cBANKiZwBAdjT77cJuvPHGePXVV6Nv374xaNCgrT687bnnnitaOACAtOg0AEBa9AwAyI5mD1lOO+20FGIAALQsnQYASIueAQDZ0ewhy1VXXZVGDgCAFqXTAABp0TMAIDua/ZksAAAAAAAAFHAmS8+ePSOXy221PZfLRXl5eeyzzz5xzjnnxLnnnluUgAAAadBpAIC06BkAkB3NHrJceeWVce2118bJJ58cRxxxRCRJEkuXLo3HHnssxo0bF6tXr47vfe97sXnz5hg7dmwamQEAdplOAwCkRc8AgOxo9pDlqaeeimuuuSYuuOCCJtv/8R//MZ544om4//774+CDD44bb7xRUQAAWi2dBgBIi54BANnR7M9kefzxx+OEE07Yavvxxx8fjz/+eEREfOlLX4rXXntt19MBAKREpwEA0qJnAEB2NHvI0qtXr3j44Ye32v7www9Hr169IiLivffei+7du+96OgCAlOg0AEBa9AwAyI5mv13YD3/4w/je974XTz75ZBxxxBGRy+ViyZIl8cgjj8Q//MM/RETEggULYuTIkUUPCwBQLDoNAJAWPQMAsqPZQ5axY8fGgQceGLNnz4758+dHkiSx//77x6JFi+Loo4+OiIjvf//7RQ8KAFBMOg0AkBY9AwCyo9lDloiIESNGxIgRI4qdBQCgRek0AEBa9AwAyIaChiwf2LBhQ9TX1zfZ1qNHj10KBADQ0nQaACAtegYAtG/N/uD7fD4f48ePjz59+sRuu+0WPXv2bHIBAGgLdBoAIC16BgBkR7OHLD/4wQ/i17/+dfzsZz+LsrKyuPXWW2PatGkxYMCAuOuuu9LICABQdDoNAJAWPQMAsqPZbxf28MMPx1133RWjRo2K8847Lz7/+c/HPvvsE3vttVf80z/9U4wZMyaNnAAARaXTAABp0TMAIDuafSbL22+/HYMHD46I999D9O23346IiGOOOSYWL15c3HQAACnRaQCAtOgZAJAdzR6y7L333vH6669HRMSBBx4Y//zP/xwR7/9fGrvvvnsxswEApEanAQDSomcAQHY0e8hy7rnnxu9///uIiJgyZUrj+4tefPHF8YMf/KDoAQEA0qDTAABp0TMAIDua/ZksF198cePXxx13XPznf/5nPPvsszFkyJD47Gc/W9RwAABp0WkAgLToGQCQHc06k6W+vj6OO+64ePnllxu37bnnnnH66acrCQBAm6HTAABp0TMAIFuaNWTp3LlzvPDCC5HL5dLKAwCQOp0GAEiLngEA2dLsz2Q566yz4rbbbksjCwBAi9FpAIC06BkAkB3N/kyWTZs2xa233hoLFiyI4cOHR7du3ZrcPnPmzKKFAwBIi04DAKRFzwCA7Gj2kOWFF16IQw89NCKiyfuLRoRTYQGANkOnAQDSomcAQHbs1JDl+eefj6FDh0aHDh3iySefTDsTAEAqdBoAIC16BgBk0059JsshhxwS1dXVERGx9957x5///OdUQwEApEGnAQDSomcAQDbt1JBl9913j9WrV0dExOuvvx4NDQ2phgIASINOAwCkRc8AgGzaqbcLO+OMM2LkyJHRv3//yOVyMXz48OjYseM2933ttdeKGhAAoFh0GgAgLXoGAGTTTg1Z5s6dG6effnq88sorMWHChBg7dmx079497WwAAEWl0wAAadEzACCbdmrIEhHxxS9+MSIili1bFhMnTlQUAIA2SacBANKiZwBA9uz0kOUD8+bNSyMHAECL0mkAgLToGQCQHTv1wfel9NZbb8W3vvWt6N27d1RUVMSwYcNi2bJljbcnSRJTp06NAQMGRNeuXWPUqFHx4osvljAxAAAAAACQBa16yPLOO+/EiBEjonPnzvHoo4/GH/7wh/jJT34Su+++e+M+N9xwQ8ycOTNmz54dS5cujX79+sWJJ54Y69evL11wAAAAAACg3Wv224W1pOuvvz4GDhzY5DTbQYMGNX6dJEnMmjUrrrjiijj99NMjIuLOO++Mvn37xj333BPnn39+S0cGAAAAAAAyYqfOZDn00EPjnXfeiYiIq6++OvL5fKqhPvDQQw/F8OHD48wzz4w+ffrEIYccErfcckvj7atXr46qqqoYPXp047aysrIYOXJkPP3009t93Lq6uqitrW1yAQDav1J1GgCg/dMzACCbdmrI8tJLL8V7770XERHTpk2Ld999N9VQH3jttddizpw5se+++8bjjz8eF1xwQUyYMCHuuuuuiIioqqqKiIi+ffs2uV/fvn0bb9uWGTNmRGVlZeNl4MCB6R0EANBqlKrTAADtn54BANm0U28XNmzYsDj33HPjmGOOiSRJ4sc//nHstttu29z3yiuvLFq4hoaGGD58eEyfPj0iIg455JB48cUXY86cOXHWWWc17pfL5ZrcL0mSrbZ92JQpU2Ly5MmN12traw1aACADStVpAID2T88AgGzaqSHLHXfcEVdddVX88pe/jFwuF48++mh06rT1XXO5XFGLQv/+/ePAAw9ssu2AAw6I+++/PyIi+vXrFxHvn9HSv3//xn3WrVu31dktH1ZWVhZlZWVFywkAtA2l6jQAQPunZwBANu3UkGW//faLe++9NyIiOnToEL/61a+iT58+qQaLiBgxYkSsWrWqybaXX3459tprr4iIGDx4cPTr1y8WLFgQhxxySEREbNq0KRYtWhTXX3996vkAgLalVJ0GAGj/9AwAyKad+kyWD2toaGixknDxxRfHM888E9OnT49XXnkl7rnnnpg7d26MGzcuIt7/vz8mTZoU06dPjwceeCBeeOGFOOecc6KioiK++c1vtkhGAKBtaslOAwBkS0v3jLfeeiu+9a1vRe/evaOioiKGDRsWy5Yta7HvDwBZtlNnsnzUq6++GrNmzYqXXnopcrlcHHDAATFx4sQYMmRIUcMdfvjh8cADD8SUKVPi6quvjsGDB8esWbNizJgxjftccsklsWHDhrjwwgvjnXfeic997nPxxBNPRPfu3YuaBQBof1qq0wAA2dNSPeOdd96JESNGxHHHHRePPvpo9OnTJ1599dXYfffdi/p9AIBta/aQ5fHHH4//83/+TwwbNixGjBgRSZLE008/HQcddFA8/PDDceKJJxY14Kmnnhqnnnrqdm/P5XIxderUmDp1alG/LwDQvrV0pwEAsqMle8b1118fAwcOjHnz5jVuGzRoUNEeHwD4eM0eslx22WVx8cUXx3XXXbfV9ksvvdQLEgBAm6DTAABpacme8dBDD8VJJ50UZ555ZixatCg++clPxoUXXhhjx47d7n3q6uqirq6u8XptbW3R8nxYTU1N5PP5VB67WCoqKqKysrLUMQBow5o9ZHnppZfin//5n7faft5558WsWbOKkQkAIHU6DQCQlpbsGa+99lrMmTMnJk+eHJdffnksWbIkJkyYEGVlZXHWWWdt8z4zZsyIadOmFTXHR9XU1MSNN8+OhvrNqX6fXdWhc6eYMG68QQsABWv2kOUTn/hErFixIvbdd98m21esWOHDYwGANkOnAQDS0pI9o6GhIYYPHx7Tp0+PiIhDDjkkXnzxxZgzZ852hyxTpkyJyZMnN16vra2NgQMHFjVXPp+PhvrN8eCRg6K6R3lRH7tY9qjdGKc983rk83lDFgAK1uwhy9ixY+P//t//G6+99locffTRkcvl4qmnnorrr78+vv/976eREQCg6HQaACAtLdkz+vfvHwceeGCTbQcccEDcf//9271PWVlZlJWVFTXH9lT3KI+qXhUt8r0AoBSaPWT54Q9/GN27d4+f/OQnMWXKlIiIGDBgQEydOjUmTJhQ9IAAAGnQaQCAtLRkzxgxYkSsWrWqybaXX3459tprr6J+HwBg25o9ZMnlcnHxxRfHxRdfHOvXr4+IiO7duxc9GABAmnQaACAtLdkzLr744jj66KNj+vTp8dWvfjWWLFkSc+fOjblz56by/QCAppo9ZPkwL0QAAO2BTgMApCXtnnH44YfHAw88EFOmTImrr746Bg8eHLNmzYoxY8ak+n0BgPft0pAFAAAAgNI69dRT49RTTy11DADIpA6lDgAAAAAAANAWOZMFoEDV1dWljrBDFRUVUVlZWeoYAAAAANAuNWvIUl9fH6NHj45//Md/jE9/+tNpZQJo1bptqI+GiJg/f36po+xQh86dYsK48QYt8BE6DQCQFj0DALKlWUOWzp07xwsvvBC5XC6tPACtXnn9lugQEQ8eOSiqe5SXOs527VG7MU575vXI5/OGLPAROg0AkBY9AwCypdlvF3bWWWfFbbfdFtddd10aeQDajOoe5VHVq6LUMYAC6TQAQFr0DADIjmYPWTZt2hS33nprLFiwIIYPHx7dunVrcvvMmTOLFg4AIC06DQCQFj0DALKj2UOWF154IQ499NCIiHj55Zeb3OZUWACgrdBpAIC06BkAkB3NHrI8+eSTaeQAAGhROg0AkBY9AwCyo0Ohd3zllVfi8ccfjw0bNkRERJIkRQsFANBSdBoAIC16BgC0f80esvz5z3+O448/Pj796U/Hl770pVi7dm1ERHz3u9+N73//+0UPCACQBp0GAEiLngEA2dHsIcvFF18cnTt3jjfeeCMqKioat3/ta1+Lxx57rKjhAADSotMAAGnRMwAgO5r9mSxPPPFEPP744/GpT32qyfZ999031qxZU7RgAABp0mkAgLToGQCQHc0+k+W9995r8n9hfKC6ujrKysqKEgoAIG06DQCQFj0DALKj2UOWY489Nu66667G67lcLhoaGuLv/u7v4rjjjitqOACAtOg0AEBa9AwAyI5mv13Y3/3d38WoUaPi2WefjU2bNsUll1wSL774Yrz99tvx29/+No2MAABFp9MAAGnRMwAgO5p9JsuBBx4Yzz//fBxxxBFx4oknxnvvvRenn356LF++PIYMGZJGRgCAotNpAIC06BkAkB3NPpMlIqJfv34xbdq0YmcBAGhRaXSaGTNmxOWXXx4TJ06MWbNmFfWxAYC2w2snAJANBQ1Z3nnnnbjtttvipZdeilwuFwcccECce+650atXr2LnAwBITbE7zdKlS2Pu3Llx8MEHFzkpANDWeO0EALKh2W8XtmjRohg8eHDceOON8c4778Tbb78dN954YwwePDgWLVqURkYAgKIrdqd59913Y8yYMXHLLbdEz549U0gMALQVXjsBgOxo9pks48aNi69+9asxZ86c6NixY0REbNmyJS688MIYN25cvPDCC0UPCQBQbMXuNOPGjYtTTjklTjjhhLjmmms+dt+6urqoq6trvF5bW9v8A2gnampqIp/PlzrGDm3evDk6dSroJPAWU1FREZWVlaWOQQuqrq4udYSP1drztUWtfU39HfpfXjsBgOxo9n8pvvrqq3H//fc3loSIiI4dO8bkyZPjrrvuKmo4AIC0FLPT3HvvvfHcc8/F0qVLd2r/GTNmeI/2eH/AcuPNs6OhfnOpo+xQQy6iQ1LqFB+vQ+dOMWHceC9wZkC3DfXREBHz588vdRRaSFv5mfs79L+8dgIA2dHsIcuhhx4aL730Uuy3335Ntr/00ksxbNiwYuUCAEhVsTrNm2++GRMnTownnngiysvLd+o+U6ZMicmTJzder62tjYEDB+7092wv8vl8NNRvjgePHBTVPXZu7UphyNqaOG7l2ladc4/ajXHaM69HPp/34mYGlNdviQ4Rrfp3MuJ//+2w69rCz9zfoaa8dgIA2bFTQ5bnn3++8esJEybExIkT45VXXokjjzwyIiKeeeaZuPnmm+O6665LJyUAQBGk0WmWLVsW69ati8MOO6xx25YtW2Lx4sUxe/bsqKura/J/sUZElJWVRVlZ2S4eTftR3aM8qnpVlDrGdvWu3RgRrT8n2dPafyc/+LdD8bT2n3nWee0EALJpp4Ysw4YNi1wuF0nyv++RcMkll2y13ze/+c342te+Vrx0AABFlEanOf7442PlypVNtp177rmx//77x6WXXrrVgAUAaJ+8dgIA2bRTQ5bVq1ennQMAIHVpdJru3bvH0KFDm2zr1q1b9O7de6vtAED75bUTAMimnRqy7LXXXmnnAABInU4DAKRFzwCAbGr2B99HRLz11lvx29/+NtatWxcNDQ1NbpswYUJRggEApC2tTrNw4cJdTAYAtHVeOwGAbGj2kGXevHlxwQUXRJcuXaJ3796Ry+Uab8vlcooCANAm6DQAQFr0DADIjmYPWa688sq48sorY8qUKdGhQ4c0MgEApE6nAQDSomcAQHY0+5k+n8/H17/+dSUBAGjTdBoAIC16BgBkR7Of7b/zne/Ev/zLv6SRBQCgxeg0AEBa9AwAyI5mv13YjBkz4tRTT43HHnssPvOZz0Tnzp2b3D5z5syihQMASItOAwCkRc8AgOxo9pBl+vTp8fjjj8d+++0XEbHVh7cBALQFOg0AkBY9A2jvampqIp/PlzrGDlVUVERlZWWpY9DONXvIMnPmzLj99tvjnHPOSSEOAEDL0GkAgLToGUB7VlNTEzfePDsa6jeXOsoOdejcKSaMG2/QQqqaPWQpKyuLESNGpJEFAKDF6DQAQFr0DKA9y+fz0VC/OR48clBU9ygvdZzt2qN2Y5z2zOuRz+cNWUhVs4csEydOjJtuuiluvPHGNPIAALQInQYASIueAWRBdY/yqOpVUeoYUHLNHrIsWbIkfv3rX8cvf/nLOOigg7b68Lb58+cXLRwAQFp0GgAgLXoGAGRHs4csu+++e5x++ulpZAEAaDE6DQCQFj0DALKj2UOWefPmpZEDAKBF6TQAQFr0DADIjg6lDgAAAAAAANAWNftMlsGDB0cul9vu7a+99touBQIAaAk6DQCQFj0DALKj2UOWSZMmNbleX18fy5cvj8ceeyx+8IMfFCsXAECqdBoAIC16BgBkR7OHLBMnTtzm9ptvvjmeffbZXQ4EbVVNTU1U/vXrqqqqSCoqSprno6qrq0sdAaBV0WkAgLToGQCQHc0esmzPySefHFOmTPHhbmRSTU1NzJn7j3HZX6/ffvvtUd+lS0kzAVAYnQYASIueAQDtT9GGLP/6r/8avXr1KtbDQZuSz+ejoX5z4/U7jv90bOhaXsJEWxuytiaOW7m21DEAWj2dBgBIi54BAO1Ps4cshxxySJMPb0uSJKqqquJPf/pT/OxnPytqOGir/qdnReQrWteQpXftxlJHAGhVdBoAIC16BgBkR7OHLKeddlqT6x06dIhPfOITMWrUqNh///2LlQsAIFU6DQCQFj0DALKj2UOWq666Ko0cAAAtSqcBANKiZwBAdnQodQAAAAAAAIC2aKfPZOnQoUOT9xPdllwuF5s3b/7YfQAASkmnAQDSomcAQPbs9JDlgQce2O5tTz/9dNx0002RJElRQgEApEWnAQDSomcAQPbs9JDlK1/5ylbb/vM//zOmTJkSDz/8cIwZMyZ+9KMfFTUcAECx6TQAQFr0DADInoI+k+WPf/xjjB07Ng4++ODYvHlzrFixIu68887Yc889i50PACA1Og0AkBY9AwCyoVlDlpqamrj00ktjn332iRdffDF+9atfxcMPPxxDhw5NKx8AQNHpNABAWvQMAMiWnX67sBtuuCGuv/766NevX/z85z/f5imwAACtnU4DAKRFzwCA7NnpIctll10WXbt2jX322SfuvPPOuPPOO7e53/z584sWDgCg2HQaACAtegYAZM9OD1nOOuusyOVyaWYBAEidTgMApEXPAIDs2ekhyx133JFiDACAlqHTAABp0TMAIHua9cH3AAAAAAAAvM+QBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEAB2tSQZcaMGZHL5WLSpEmN25IkialTp8aAAQOia9euMWrUqHjxxRdLFxIAAAAAAMiENjNkWbp0acydOzcOPvjgJttvuOGGmDlzZsyePTuWLl0a/fr1ixNPPDHWr19foqQAAAAAAEAWtIkhy7vvvhtjxoyJW265JXr27Nm4PUmSmDVrVlxxxRVx+umnx9ChQ+POO++MfD4f99xzTwkTAwAAAAAA7V2bGLKMGzcuTjnllDjhhBOabF+9enVUVVXF6NGjG7eVlZXFyJEj4+mnn97u49XV1UVtbW2TCwAAAAAAQHN0KnWAHbn33nvjueeei6VLl251W1VVVURE9O3bt8n2vn37xpo1a7b7mDNmzIhp06YVNygAAAAAAJAprfpMljfffDMmTpwYd999d5SXl293v1wu1+R6kiRbbfuwKVOmRE1NTePlzTffLFpmAAAAgFKZMWNG5HK5mDRpUqmjAEAmtOozWZYtWxbr1q2Lww47rHHbli1bYvHixTF79uxYtWpVRLx/Rkv//v0b91m3bt1WZ7d8WFlZWZSVlaUXHAAAAKCFLV26NObOnRsHH3xwqaMAQGa06jNZjj/++Fi5cmWsWLGi8TJ8+PAYM2ZMs10RUQAAJD1JREFUrFixIvbee+/o169fLFiwoPE+mzZtikWLFsXRRx9dwuQAAAAALefdd9+NMWPGxC233BI9e/YsdRwAyIxWfSZL9+7dY+jQoU22devWLXr37t24fdKkSTF9+vTYd999Y999943p06dHRUVFfPOb3yxFZAAAAIAWN27cuDjllFPihBNOiGuuuabUcQAgM1r1kGVnXHLJJbFhw4a48MIL45133onPfe5z8cQTT0T37t1LHQ0AAPiQmpqayOfzpY7xsaqrq0sdAaDZ7r333njuuedi6dKlO7V/XV1d1NXVNV6vra1NK1qbUMjf/lw+H/3++nVVVVUkFRXFDfUhnpugfWsLHTkioqKiIiorK0sdo1Vqc0OWhQsXNrmey+Vi6tSpMXXq1JLkAQAAdqympiZuvHl2NNRvLnUUgHblzTffjIkTJ8YTTzwR5eXlO3WfGTNmxLRp01JO1vp121AfDRExf/78Zt+386ZNcflfv7799tujvkuXomYDsqEtdeQOnTvFhHHjDVq2oc0NWQAAgLYnn89HQ/3mePDIQVHdY+deBCyFIWtr4riVa0sdA2CnLVu2LNatWxeHHXZY47YtW7bE4sWLY/bs2VFXVxcdO3Zscp8pU6bE5MmTG6/X1tbGwIEDWyxza1FevyU6RBT03NR1w8a4fPr7X99x/KdjQ9f0nts8N0H71VY68h61G+O0Z16PfD5vyLINhiwAAECLqe5RHlW90ntLlV3Vu3ZjqSMANMvxxx8fK1eubLLt3HPPjf333z8uvfTSrQYsERFlZWVRVlbWUhFbvUKemyryHRq//p+eFZGvSO/FUc9N0P619o7MxzNkAQAAAGijunfvHkOHDm2yrVu3btG7d++ttgMAxddhx7sAAAAAAADwUc5kAQAAAGhHFi5cWOoIAJAZzmQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUIBOpQ4AQLqqq6tLHeFjVVRURGVlZaljAAAAAECzGbIAtFPdNtRHQ0TMnz+/1FE+VofOnWLCuPEGLQAAAAC0OYYsAO1Uef2W6BARDx45KKp7lJc6zjbtUbsxTnvm9cjn84YsAAAAALQ5hiwA7Vx1j/Ko6lVR6hgAAAAA0O744HsAAAAAAIACGLIAAAAAAAAUwJAFAAAAAACgAIYsAAAAAAAABTBkAQAAAAAAKIAhCwAAAAAAQAEMWQAAAAAAAApgyAIAAAAAAFCATqUOAAAAAADA/6quri51hO1qzdmgFAxZAAAAAABagW4b6qMhIubPn1/qKMBOMmQBAAAAAGgFyuu3RIeIePDIQVHdo7zUcbZpyNqaOG7l2lLHgFbDkAUAAAAAoBWp7lEeVb0qSh1jm3rXbix1BGhVfPA9AAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAALtgxowZcfjhh0f37t2jT58+cdppp8WqVatKHQsAAABoAYYsAAC7YNGiRTFu3Lh45plnYsGCBbF58+YYPXp0vPfee6WOBgAAAKSsU6kDAAC0ZY899liT6/PmzYs+ffrEsmXL4thjjy1RKgAAAKAlGLIAABRRTU1NRET06tVru/vU1dVFXV1d4/Xa2trUsuTz+VQeuxiqq6tLHaHdKeaa5vL56PfXr6uqqiKpqNilx/PzBgAA2iNDFgCAIkmSJCZPnhzHHHNMDB06dLv7zZgxI6ZNm5Zqlpqamrjx5tnRUL851e9D69BtQ300RMT8+fOL9pidN22Ky//69e233x71XboU7bEBAADaC0MWAIAiGT9+fDz//PPx1FNPfex+U6ZMicmTJzder62tjYEDBxY1Sz6fj4b6zfHgkYOiukd5UR+7WIasrYnjVq4tdYx2obx+S3SIKOrPu+uGjXH59Pe/vuP4T8eGrrv2uH7eAABAe2TIAgBQBBdddFE89NBDsXjx4vjUpz71sfuWlZVFWVlZi+Sq7lEeVb127W2e0tK7dmOpI7Q7xfx5V+Q7NH79Pz0rIl+xa0MWP28AAKA9MmQBANgFSZLERRddFA888EAsXLgwBg8eXOpIAAAAQAsxZAEA2AXjxo2Le+65J37xi19E9+7do6qqKiIiKisro2vXriVOBwAAAKSpw453AQBge+bMmRM1NTUxatSo6N+/f+PlvvvuK3U0AAAAIGXOZAEA2AVJkpQ6AgAAAFAizmQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAIYsgAAAAAAABTAkAUAAAAAAKAAhiwAAAAAAAAFMGQBAAAAAAAogCELAAAAAABAAQxZAAAAAAAACmDIAgAAAAAAUABDFgAAAAAAgAK06iHLjBkz4vDDD4/u3btHnz594rTTTotVq1Y12SdJkpg6dWoMGDAgunbtGqNGjYoXX3yxRIkBAAAAAICsaNVDlkWLFsW4cePimWeeiQULFsTmzZtj9OjR8d577zXuc8MNN8TMmTNj9uzZsXTp0ujXr1+ceOKJsX79+hImBwAAAAAA2rtOpQ7wcR577LEm1+fNmxd9+vSJZcuWxbHHHhtJksSsWbPiiiuuiNNPPz0iIu68887o27dv3HPPPXH++eeXIjYAAAAAAJABrfpMlo+qqamJiIhevXpFRMTq1aujqqoqRo8e3bhPWVlZjBw5Mp5++untPk5dXV3U1tY2uQAAAAC0NTvzVusAQHrazJAlSZKYPHlyHHPMMTF06NCIiKiqqoqIiL59+zbZt2/fvo23bcuMGTOisrKy8TJw4MD0ggMAAACkZGfeah0ASE+rfruwDxs/fnw8//zz8dRTT211Wy6Xa3I9SZKttn3YlClTYvLkyY3Xa2trDVoAAACANmdHb7UOAKSrTQxZLrroonjooYdi8eLF8alPfapxe79+/SLi/TNa+vfv37h93bp1W53d8mFlZWVRVlaWXmAAAACAEvjoW61vS11dXdTV1TVe9zbqQHtWXV1d6gjb1ZqzbUtrz1tRURGVlZUt/n1b9ZAlSZK46KKL4oEHHoiFCxfG4MGDm9w+ePDg6NevXyxYsCAOOeSQiIjYtGlTLFq0KK6//vpSRAYAAAAoiW291fq2zJgxI6ZNm9aCyQBaXrcN9dEQEfPnzy91lDavraxlh86dYsK48S0+aGnVQ5Zx48bFPffcE7/4xS+ie/fujZ+zUllZGV27do1cLheTJk2K6dOnx7777hv77rtvTJ8+PSoqKuKb3/xmidMDAAAAtJyPe6v1D/M26kAWlNdviQ4R8eCRg6K6R3mp42zTkLU1cdzKtaWOsUNtYS33qN0Ypz3zeuTzeUOWD5szZ05ERIwaNarJ9nnz5sU555wTERGXXHJJbNiwIS688MJ455134nOf+1w88cQT0b179xZOCwAAAFAa23ur9W3xNupAllT3KI+qXhWljrFNvWs3ljpCs7TmtSylVj1kSZJkh/vkcrmYOnVqTJ06Nf1AAAAAAK3Ijt5qHQBIV6sesgAAAACwfTt6q3UAIF0dSh0AAAAAgMLMmTMnampqYtSoUdG/f//Gy3333VfqaACQCc5kAQAAAGijduat1gGA9DiTBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAXoVOoAsDNqamoin8+XOsZ2VVdXlzoCAAAAAAAtzJCFVq+mpiZuvHl2NNRvLnWUj9W51AEAAAAAAGhRhiy0evl8PhrqN8eDRw6K6h7lpY6zTUPW1sToZWtKHQMAAAAAgBZkyEKbUd2jPKp6VZQ6xjb1rt1Y6ggAAAAAALQwH3wPAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACdSh0AAKqrq0sdYYcqKiqisrKy1DEAAAAAaEUMWQAomW4b6qMhIubPn1/qKDvUoXOnmDBuvEELAAAAAI0MWQAomfL6LdEhIh48clBU9ygvdZzt2qN2Y5z2zOuRz+cNWQAAAABoZMgCQMlV9yiPql4VpY4BAAAAAM3ig+8BAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMAH32dcTU1N5PP5Usf4WNXV1aWOAAAAAAAAWzFkybCampq48ebZ0VC/udRRAAAAAACgzTFkybB8Ph8N9ZvjwSMHRXWP8lLH2a4ha2viuJVrSx0DAAAAAACaMGQhqnuUR1WvilLH2K7etRtLHQEAAAAAALbig+8BAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABOpU6QHtWU1MT+Xy+1DG2q7q6utQRAAAAAACgzTJkSUlNTU3cePPsaKjfXOooAAAAAABACgxZUpLP56OhfnM8eOSgqO5RXuo42zRkbU0ct3JtqWMAAAAAAECbZMiSsuoe5VHVq6LUMbapd+3GUkcAAAAAAIA2ywffAwAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABOpU6AAC0FdXV1aWO8LEqKiqisrKy1DEAAAAAMsOQBQB2oNuG+miIiPnz55c6ysfq0LlTTBg33qAFAAAAoIUYsgDADpTXb4kOEfHgkYOiukd5qeNs0x61G+O0Z16PfD5vyAIAAADQQgxZAGAnVfcoj6peFaWOAQAAAEAr4YPvAQAAAAAACtBuhiw/+9nPYvDgwVFeXh6HHXZY/OY3vyl1JAAgQ3QRAKCUdBEAKI12MWS57777YtKkSXHFFVfE8uXL4/Of/3ycfPLJ8cYbb5Q6GgCQAboIAFBKuggAlE67GLLMnDkzvvOd78R3v/vdOOCAA2LWrFkxcODAmDNnTqmjAQAZoIsAAKWkiwBA6bT5D77ftGlTLFu2LC677LIm20ePHh1PP/30Nu9TV1cXdXV1jddramoiIqK2trZoudavXx8bN26MnmvfiYb38kV73GLa7U+1rT5jRNvIudufamNjXV188Bu0x3//OTZ2LStppo9qC+sY0TZytoWMEW0jZ1vIGNE2cvasrYuNGzfG+vXro1u3bkV5zA+eF5MkKcrjtVe6SOHawr+tiLaRM42M5RuK223awjpGtI2cbSFjRNvI2RYyRrSNnLpI6egihduVf1vFfp78OG3hb0BbyBjRNnLKWDxtIWdbyBjRNnKWtIskbdxbb72VRETy29/+tsn2a6+9Nvn0pz+9zftcddVVSUS4uLi4uLi47MTlzTffbImn9DZLF3FxcXFxcUn3oot8PF3ExcXFxcUl3cuOukibP5PlA7lcrsn1JEm22vaBKVOmxOTJkxuvNzQ0xJo1a2LYsGHx5ptvRo8ePVLN2lbV1tbGwIEDrdHHsEY7Zo12zBrtmDXasWKsUZIksX79+hgwYECR07VPu9pF3n777ejdu/d279OaZenfZJaONSJbx5ulY43I1vFm6Vgj2tfx6iLNk+UuUirt6d9bqVnL4rGWxWMti6Mtr+POdpE2P2TZY489omPHjlFVVdVk+7p166Jv377bvE9ZWVmUlTU9jbNDh/c/nqZHjx5t7ofd0qzRjlmjHbNGO2aNdswa7diurlFlZWUR07RPxeoiu+++e1oRW0yW/k1m6VgjsnW8WTrWiGwdb5aONaL9HK8usmO6SOm1l39vrYG1LB5rWTzWsjja6jruTBdp8x9836VLlzjssMNiwYIFTbYvWLAgjj766BKlAgCyQhcBAEpJFwGA0mrzZ7JEREyePDm+/e1vx/Dhw+Ooo46KuXPnxhtvvBEXXHBBqaMBABmgiwAApaSLAEDptIshy9e+9rX485//HFdffXWsXbs2hg4dGo888kjstddeO/0YZWVlcdVVV211uiz/yxrtmDXaMWu0Y9Zox6zRjlmjllWMLtKWZen3LUvHGpGt483SsUZk63izdKwR2Tte3pf1LlIq/r0Vj7UsHmtZPNayOLKwjrkkSZJShwAAAAAAAGhr2vxnsgAAAAAAAJSCIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEOWD6mrq4thw4ZFLpeLFStWNLntjTfeiC9/+cvRrVu32GOPPWLChAmxadOm0gRtYa+//np85zvficGDB0fXrl1jyJAhcdVVV211/Fleow/87Gc/i8GDB0d5eXkcdthh8Zvf/KbUkUpixowZcfjhh0f37t2jT58+cdppp8WqVaua7JMkSUydOjUGDBgQXbt2jVGjRsWLL75YosSlN2PGjMjlcjFp0qTGbdYo4q233opvfetb0bt376ioqIhhw4bFsmXLGm/P+hpt3rw5/vZv/7bx7/Pee+8dV199dTQ0NDTuk/U1Ij1Z7AfXXnttHH300VFRURG77777NvdpT8fbXnvN4sWL48tf/nIMGDAgcrlcPPjgg01ub09/N7PWyebMmRMHH3xw9OjRI3r06BFHHXVUPProo423t6dj/ShdElpee32eTFPWnpdakueBXeO1h12X+dcnEhpNmDAhOfnkk5OISJYvX964ffPmzcnQoUOT4447LnnuueeSBQsWJAMGDEjGjx9furAt6NFHH03OOeec5PHHH09effXV5Be/+EXSp0+f5Pvf/37jPllfoyRJknvvvTfp3LlzcssttyR/+MMfkokTJybdunVL1qxZU+poLe6kk05K5s2bl7zwwgvJihUrklNOOSXZc889k3fffbdxn+uuuy7p3r17cv/99ycrV65Mvva1ryX9+/dPamtrS5i8NJYsWZIMGjQoOfjgg5OJEyc2bs/6Gr399tvJXnvtlZxzzjnJ7373u2T16tXJv//7vyevvPJK4z5ZX6Nrrrkm6d27d/LLX/4yWb16dfIv//IvyW677ZbMmjWrcZ+srxHpyWI/uPLKK5OZM2cmkydPTiorK7e6vT0db3vuNY888khyxRVXJPfff38SEckDDzzQ5Pb29Hcza53soYceSv7t3/4tWbVqVbJq1ark8ssvTzp37py88MILSZK0r2P9MF0SWl57fp5MU9ael1qK54Fd47WH4sj66xOGLH/1yCOPJPvvv3/y4osvbjVkeeSRR5IOHTokb731VuO2n//850lZWVlSU1NTgrSld8MNNySDBw9uvG6NkuSII45ILrjggibb9t9//+Syyy4rUaLWY926dUlEJIsWLUqSJEkaGhqSfv36Jdddd13jPhs3bkwqKyuTf/iHfyhVzJJYv359su+++yYLFixIRo4c2ViIrFGSXHrppckxxxyz3dutUZKccsopyXnnnddk2+mnn55861vfSpLEGtHystIP5s2bt80hS3s63qz0mo8OWdr7380sdrKePXsmt956a7s9Vl0SSiMrz5Npy+LzUrF5Hth1Xnsojqy/PuHtwiLif/7nf2Ls2LHx//7f/4uKioqtbv+P//iPGDp0aAwYMKBx20knnRR1dXVNTh3LkpqamujVq1fj9ayv0aZNm2LZsmUxevToJttHjx4dTz/9dIlStR41NTUREY2/M6tXr46qqqom61VWVhYjR47M3HqNGzcuTjnllDjhhBOabLdGEQ899FAMHz48zjzzzOjTp08ccsghccsttzTebo0ijjnmmPjVr34VL7/8ckRE/P73v4+nnnoqvvSlL0WENaLlZb0ftJfjzXKvae9/N7PUybZs2RL33ntvvPfee3HUUUe122PVJaHlZfl5stiy9LyUFs8Du85rD8WR9dcnOpU6QKklSRLnnHNOXHDBBTF8+PB4/fXXt9qnqqoq+vbt22Rbz549o0uXLlFVVdVCSVuPV199NW666ab4yU9+0rgt62tUXV0dW7Zs2WoN+vbtm4nj/zhJksTkyZPjmGOOiaFDh0ZENK7JttZrzZo1LZ6xVO6999547rnnYunSpVvdZo0iXnvttZgzZ05Mnjw5Lr/88liyZElMmDAhysrK4qyzzrJGEXHppZdGTU1N7L///tGxY8fYsmVLXHvttfGNb3wjIvwe0bL0g/ZzvFnuNe3572ZWOtnKlSvjqKOOio0bN8Zuu+0WDzzwQBx44IGN//Heno5Vl4TSyPLzZDFl5XkpTZ4HisNrD8WR9dcn2u2ZLFOnTo1cLvexl2effTZuuummqK2tjSlTpnzs4+Vyua22JUmyze1txc6u0Yf98Y9/jC9+8Ytx5plnxne/+90mt7XHNWqujx5r1o5/W8aPHx/PP/98/PznP9/qtiyv15tvvhkTJ06Mu+++O8rLy7e7X5bXqKGhIQ499NCYPn16HHLIIXH++efH2LFjY86cOU32y/Ia3XfffXH33XfHPffcE88991zceeed8eMf/zjuvPPOJvtleY1ovqz1g0KO9+O09uNtjiz/7WiPx56VTrbffvvFihUr4plnnonvfe97cfbZZ8cf/vCHxtvby7HqklB6/n3tmqw8L6XF80DxeO2hOLL++kS7PZNl/Pjx8fWvf/1j9xk0aFBcc8018cwzz0RZWVmT24YPHx5jxoyJO++8M/r16xe/+93vmtz+zjvvRH19/VbTt7ZkZ9foA3/84x/juOOOi6OOOirmzp3bZL/2ukY7a4899oiOHTtu9X+trFu3LhPHvz0XXXRRPPTQQ7F48eL41Kc+1bi9X79+EfH+FLt///6N27O0XsuWLYt169bFYYcd1rhty5YtsXjx4pg9e3asWrUqIrK9Rv37948DDzywybYDDjgg7r///ojwexQR8YMf/CAuu+yyxr/ln/nMZ2LNmjUxY8aMOPvss60RBclaP2ju8X6ctnC8OyPLvaa9/t3MUifr0qVL7LPPPhHx/n/TLV26NH7605/GpZdeGhHt51h1SSidLD9PFkuWnpfS4nmgeLz2UBxZf32i3Z7Jsscee8T+++//sZfy8vK48cYb4/e//32sWLEiVqxYEY888khEvD99u/baayMi4qijjooXXngh1q5d2/j4TzzxRJSVlTX5Y9bW7OwaRUS89dZbMWrUqDj00ENj3rx50aFD01+d9rpGO6tLly5x2GGHxYIFC5psX7BgQRx99NElSlU6SZLE+PHjY/78+fHrX/86Bg8e3OT2wYMHR79+/Zqs16ZNm2LRokWZWa/jjz8+Vq5c2fi3Z8WKFY3D3RUrVsTee++d+TUaMWJEYzH8wMsvvxx77bVXRPg9iojI5/Nb/T3u2LFjNDQ0RIQ1ojBZ6wfNOd4daQvHuzOy3Gva299Nnez9Nairq2t3x6pLQulk+XlyV3leKh7PA8XjtYfiyPzrEwlNrF69OomIZPny5Y3bNm/enAwdOjQ5/vjjk+eeey7593//9+RTn/pUMn78+NIFbUFvvfVWss8++yRf+MIXkv/+7/9O1q5d23j5QNbXKEmS5N577006d+6c3Hbbbckf/vCHZNKkSUm3bt2S119/vdTRWtz3vve9pLKyMlm4cGGT35d8Pt+4z3XXXZdUVlYm8+fPT1auXJl84xvfSPr375/U1taWMHlpjRw5Mpk4cWLj9ayv0ZIlS5JOnTol1157bfJf//VfyT/90z8lFRUVyd133924T9bX6Oyzz04++clPJr/85S+T1atXJ/Pnz0/22GOP5JJLLmncJ+trRHqy2A/WrFmTLF++PJk2bVqy2267JcuXL0+WL1+erF+/PkmS9nW87bnXrF+/vvFnFxHJzJkzk+XLlydr1qxJkqR9/d3MWiebMmVKsnjx4mT16tXJ888/n1x++eVJhw4dkieeeCJJkvZ1rNuiS0LLac/Pk2nK2vNSS/M8UBivPRRH1l+fMGT5iG0NWZLk/f+oPuWUU5KuXbsmvXr1SsaPH59s3LixNCFb2Lx585KI2Oblw7K8Rh+4+eabk7322ivp0qVLcuihhyaLFi0qdaSS2N7vy7x58xr3aWhoSK666qqkX79+SVlZWXLssccmK1euLF3oVuCjhcgaJcnDDz+cDB06NCkrK0v233//ZO7cuU1uz/oa1dbWJhMnTkz23HPPpLy8PNl7772TK664Iqmrq2vcJ+trRHqy2A/OPvvsbR7vk08+2bhPezre9tprnnzyyW3+HM8+++wkSdrX382sdbLzzjuv8Xf2E5/4RHL88cc3DliSpH0d67boktCy2uvzZJqy9rzU0jwPFM5rD7su669P5JIkSVI6SQYAAAAAAKDdarefyQIAAAAAAJAmQxYAAAAAAIACGLIAAAAAAAAUwJAFAAAAAACgAIYsAAAAAAAABTBkAQAAAAAAKIAhCwAAAAAAQAEMWQAAAAAAAApgyAIU3bp16+L888+PPffcM8rKyqJfv35x0kknxW9+85vo169fTJ8+fav7fPWrX43DDz88Nm/eHFOnTo1cLtd4qaysjM9//vOxaNGibX6/6dOnR8eOHeO6665L+9AAgDZAFwEASkkXgWwxZAGK7owzzojf//73ceedd8bLL78cDz30UIwaNSpqa2tj7ty5MW3atFi5cmXj/v/6r/8aDz/8cNx1113RqVOniIg46KCDYu3atbF27dr4j//4j9h3333j1FNPjZqamq2+37x58+KSSy6J22+/vcWOEQBovXQRAKCUdBHIllySJEmpQwDtx1/+8pfo2bNnLFy4MEaOHLnNfc4999xYsWJFLFmyJP7yl7/EQQcdFJdffnlMmjQpIiKmTp0aDz74YKxYsaLxPm+++WbsueeesWTJkjj88MMbty9atCjGjBkTq1evjkGDBsXPf/7zOPbYY9M8RACgFdNFAIBS0kUge5zJAhTVbrvtFrvttls8+OCDUVdXt819fvrTn8bbb78dP/rRj+LCCy+MoUOHxsSJE7f7mHV1dXHHHXfE7rvvHvvtt1+T22677bb4xje+EZ07d45vfOMbcdtttxX1eACAtkUXAQBKSReB7HEmC1B0999/f4wdOzY2bNgQhx56aIwcOTK+/vWvx8EHH9y4z69//esYPXp0dOvWLZ5//vnYa6+9Gm+bOnVq/OhHP4quXbtGREQ+n4/u3bvHfffdF1/84hcb96utrY3+/fvH008/HZ/97GdjxYoVMWLEiFi7dm306NGj5Q4YAGhVdBEAoJR0EcgWZ7IARXfGGWfEH//4x3jooYfipJNOioULF8ahhx4ad9xxR+M+X/jCF+LII4+Mb3/7202KxAf222+/WLFiRaxYsSKWLVsW3/ve9+LMM8+MZ599tnGfe+65J/bee+/47Gc/GxERw4YNi7333jvuvffe1I8RAGi9dBEAoJR0EcgWZ7IALeK73/1uLFiwINasWdO4bdSoUTFs2LCYNWtWk3239d6jERH7779/DB8+PO6+++6IiDjiiCPi2WefjQ4d/nde3NDQEIcffnj87ne/S+1YAIC2RxcBAEpJF4H2q1OpAwDZcOCBB8aDDz64S4/RsWPH2LBhQ0RErFy5Mp599tlYuHBh9OrVq3Gfv/zlL3HsscfGCy+8EEOHDt2l7wcAtB+6CABQSroItF+GLEBR/fnPf44zzzwzzjvvvDj44IOje/fu8eyzz8YNN9wQX/nKV3b6cTZv3hxVVVUREbF+/fq477774g9/+ENceumlEfH+B7sdccQRceyxx25136OOOipuu+22+Pu///viHBQA0GboIgBAKekikD2GLEBR7bbbbvG5z30u/v7v/z5effXVqK+vj4EDB8bYsWPj8ssv3+nHefHFF6N///4REVFRURFDhgyJOXPmxFlnnRWbNm2Ku+++u7FYfNQZZ5wRM2bMiOuvvz66dOlSlOMCANoGXQQAKCVdBLLHZ7IAAAAAAAAUoMOOdwEAAAAAAOCjDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAhiyAAAAAAAAFMCQBQAAAAAAoACGLAAAAAAAAAUwZAEAAAAAACiAIQsAAAAAAEABDFkAAAAAAAAKYMgCAAAAAABQAEMWAAAAAACAAvx/xiL/Ulv8BDAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre_filterednumber of fragments used for pairwise retrosynthesizability
AP1201248
FP1100206
SE743179
GA355114
B14713
B25918
Total3505778
\n", + "
" + ], + "text/plain": [ + " pre_filtered \\\n", + "AP 1201 \n", + "FP 1100 \n", + "SE 743 \n", + "GA 355 \n", + "B1 47 \n", + "B2 59 \n", + "Total 3505 \n", + "\n", + " number of fragments used for pairwise retrosynthesizability \n", + "AP 248 \n", + "FP 206 \n", + "SE 179 \n", + "GA 114 \n", + "B1 13 \n", + "B2 18 \n", + "Total 778 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Apply pairwise retrosynthesizability filter..\n", + "Number of fragments: 778\n", + "Number of unique pairs: 46415\n", + "ASKCOS query started for 0 fragments.\n", + "ASKCOS query finished.\n", + "Comparing ASKCOS children with fragments..\n", + "Checking if all fragment pairs were requested..\n", + "All fragment pairs were requested.\n", + "Done.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
custom_filteredaccepted_pairwise_retosynthesizabilityrejected_pairwise_retosynthesizability
subpocket
AP248145103
FP20613967
SE17913841
GA1149222
B11394
B218018
Total778523255
\n", + "
" + ], + "text/plain": [ + " custom_filtered accepted_pairwise_retosynthesizability \\\n", + "subpocket \n", + "AP 248 145 \n", + "FP 206 139 \n", + "SE 179 138 \n", + "GA 114 92 \n", + "B1 13 9 \n", + "B2 18 0 \n", + "Total 778 523 \n", + "\n", + " rejected_pairwise_retosynthesizability \n", + "subpocket \n", + "AP 103 \n", + "FP 67 \n", + "SE 41 \n", + "GA 22 \n", + "B1 4 \n", + "B2 18 \n", + "Total 255 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB90AAAYzCAYAAABZYS1RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e5yVZb0//r8WpxGUgydmIBFQAUVCScwA22AKRurHsrSE7TlLMRUPaXgKS0HMCI8UHhB3GR2UskyESnCbmoiyU1Q84SFlpBRBAQFh/f7w5/o2ocaMM8wMPJ+Px/2Idd3XWuu9WD7s5f1e13UXisViMQAAAAAAAABAtTWp7wIAAAAAAAAAoLHSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHAAAAAAAAgBrSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHAAAAAAAAgBrSdAcAAAAAAACAGtJ0BwAAAAAAAIAa0nQHqCNXXXVVCoVCevXq9YHnC4VClaNt27YZNGhQ7rzzzo1cKQAAm5Obb755vSz6/nH22WcnSbp06VJlfKuttso+++yTW265pZ6rBwBgU/fXv/41X/rSl7LjjjumrKws5eXl6devX84666zSnEGDBn1opu3SpUv9FQ9stprVdwEAm6qbbropSTJ//vz89a9/zT777LPenK985Ss566yzsm7dujz//PO55JJLcsghh+R3v/tdDjrooI1dMgAAm5HJkydn1113rTLWsWPH0p8HDBiQK664Ikny97//PVdccUWOOeaYLF++PCeffPJGrRUAgM3DnXfemf/3//5fBg0alMsvvzwdOnTIokWL8vDDD2fq1Kn54Q9/WJq700475Wc/+9l6r1FWVrYxSwZIkhSKxWKxvosA2NQ8/PDD2XvvvXPQQQflzjvvzIknnphJkyZVmVMoFHLKKafkmmuuKY0999xz2WWXXXLAAQdk5syZG7tsAAA2AzfffHOOO+64zJkzJ3379v3AOV26dEmvXr3y+9//vjT25ptvpnPnzmnfvn2eeeaZjVUuAACbkYEDB+aVV17JU089lWbNqq4bXbduXZo0eW8D50GDBuWf//xnHn/88fooE2A9tpcHqAM33nhjkuSyyy5L//79M3Xq1KxYseI/Pm/nnXfO9ttvnxdffLGuSwQAgGpp165devToIasCAFBnXn/99Wy33XbrNdyTlBruAA2Rf0MB1LKVK1fm5z//efbee+/06tUrxx9/fN5666386le/+o/PXbJkSV5//fVsv/32G6FSAAA2Z2vXrs27775b5fgoa9asyYsvviirAgBQZ/r165e//vWvOe200/LXv/41a9as+cj5/55n33333axbt24jVQvw/9F0B6hlv/71r7N06dKccMIJSZKvfvWr2WqrrUqr3/9VsVjMu+++mzVr1uSpp57K8OHDs27dugwfPnxjlw0AwGbmM5/5TJo3b17l+NfG+/tZ9d13380LL7yQE088MYsXL5ZVAQCoM5dddln23XffXH311fnMZz6TLbfcMgMGDMhll12Wt99+u8rc+fPnr5dnmzdvnm984xv1VD2wOXNPd4BaNmjQoDz00ENZtGhR2rZtmyQ5/vjjM3ny5Dz99NPp1q1bkvfu6f7v2rZtm7POOisXXnjhRq0ZAIDNx/v3dL/llluy2267VTn3/j3eu3Tpst428i1btszXv/71XHHFFWnRosVGqxcAgM3Pww8/nD/96U95+OGHM2vWrPzzn/9Mly5dMmfOnGy33XYZNGhQ/v73v2fq1KnrPXf77bdP586d66FqYHO2/k0xAKixZ599Nvfee2++/OUvp1gs5s0330ySfOUrX8nkyZNz0003ZezYsaX5RxxxRL797W+nUCikdevW2XnnndO0adN6qh4AgM3JbrvtVmqyf5B99903P/rRj1IoFNKqVavsvPPOmu0AAGwUffv2LWXVNWvW5Nxzz82PfvSjXH755bn88suTJFtsscVH5lmAjcn28gC16KabbkqxWMyvf/3rbL311qXjoIMOSpJMmTIla9euLc3ffvvt07dv3+y1117p3r27hjsAAA1G27ZtS1l1t91203AHAKBeNG/ePN/97neTJI8//ng9VwPwwax0B6gla9euzZQpU7LzzjvnhhtuWO/873//+/zwhz/MXXfdlYMPPrgeKgQAAAAAaLgWLVqUDh06rDf+5JNPJkk6duy4sUsC2CCa7gC15K677sqrr76acePGZdCgQeud79WrV6655prceOONmu4AAAAAAP/mwAMPzA477JBDDjkku+66a9atW5d58+blhz/8YbbaaqucfvrppbkrV67Mgw8++IGv85nPfGZjlQyQRNMdoNbceOONadGiRY477rgPPL/ddtvlS1/6Un7961/ntdde28jVAQAAAAA0bBdccEF++9vf5kc/+lEWLVqUVatWpUOHDjnggAMyatSo7LbbbqW5zz//fPr16/eBr7NmzZo0a6YFBmw8hWKxWKzvIgAAAAAAAACgMWpS3wUAAAAAAAAAQGOl6Q4AAAAAAAAANaTpDgAAAAAAAAA1pOkOAAAAAAAAADWk6Q4AAAAAAAAANaTpDgAAAAAAAAA11Ky+C2gI1q1bl1dffTWtW7dOoVCo73IAAGpNsVjMW2+9lY4dO6ZJE7+3rG1dunTJiy++uN74iBEjcu2116ZYLObiiy/OpEmTsmTJkuyzzz659tprs/vuu1frfeRVAGBTJa9uGuRVAGBTVJ2squme5NVXX02nTp3quwwAgDrz8ssvZ4cddqjvMjY5c+bMydq1a0uPH3/88QwePDiHH354kuTyyy/P+PHjc/PNN6d79+655JJLMnjw4CxYsCCtW7fe4PeRVwGATZ282rjJqwDApmxDsmqhWCwWN1I9DdbSpUvTrl27vPzyy2nTpk19lwMAUGuWLVuWTp065c0330zbtm3ru5xN3siRI/P73/8+zzzzTJKkY8eOGTlyZM4999wkyapVq1JeXp5x48blm9/85ga/rrwKAGyq5NVNg7wKAGyKqpNVrXRPSlsetWnTRigEADZJtnise6tXr85Pf/rTnHnmmSkUCnn++edTWVmZIUOGlOaUlZVl4MCBuf/++z+y6b5q1aqsWrWq9Pitt95KIq8CAJsuebVxc30VANiUbUhWdaMkAACoBb/5zW/y5ptv5thjj02SVFZWJknKy8urzCsvLy+d+zBjx45N27ZtS4etOgEAAACg4dJ0BwCAWnDjjTdm6NCh6dixY5Xxf/8lbLFY/I+/jh01alSWLl1aOl5++eVarxcAAAAAqB22lwcAgI/pxRdfzB//+MfcfvvtpbGKiook761479ChQ2l88eLF661+/3dlZWUpKyurm2IBAAAAgFql6Q4Am7C1a9dmzZo19V0Gdah58+Zp2rRpfZex2Zs8eXLat2+fgw46qDTWtWvXVFRUZObMmenTp0+S9+77Pnv27IwbN66+SgWABmPdunVZvXp1fZdBHZNXAYDGyrXVzUOLFi3SpMnH3xxe0x0ANkHFYjGVlZV5880367sUNoJ27dqloqLiP25ZTt1Yt25dJk+enGOOOSbNmv1/8bpQKGTkyJEZM2ZMunXrlm7dumXMmDFp1apVhg0bVo8VA0D9W716dRYuXJh169bVdylsBPIqANCYuLa6eWnSpEm6du2aFi1afKzX0XQHgE3Q+6Gwffv2adWqlYtbm6hisZgVK1Zk8eLFSVJlC3M2nj/+8Y956aWXcvzxx6937pxzzsnKlSszYsSILFmyJPvss09mzJiR1q1b10OlANAwFIvFLFq0KE2bNk2nTp1qZVUJDZO8CgA0Rq6tbj7WrVuXV199NYsWLcqOO+74sb5rTXcA2MSsXbu2FAq33Xbb+i6HOtayZcsk790nvH379rburAdDhgxJsVj8wHOFQiGjR4/O6NGjN25RANCAvfvuu1mxYkU6duyYVq1a1Xc51DF5FQBoTFxb3fxsv/32efXVV/Puu++mefPmNX4dPyUGgE3M+/cZcgFz8/H+d+0eUwBAY7B27dok+djbN9J4yKsAQGPh2urm5/3/Lnn/v1NqStMdADZRtj3afPiuAYDGSIbZfPiuAYDGRn7ZfNTWd63pDgAAAAAAAAA1pOkOAAAAAAAAADWk6Q4AUMueffbZtG7dOu3atasyvmjRogwbNiw9evRIkyZNMnLkyPWeO3/+/Hz5y19Oly5dUigUMmHChI1SMwAAm7ZZs2bl0EMPTYcOHbLllltmzz33zM9+9rMqczYkrybJhAkT0qNHj7Rs2TKdOnXKGWeckXfeeWcjfAoAADZVG5JXk2T27NnZa6+9ssUWW2SnnXbKj3/84/XmvPnmmznllFPSoUOHbLHFFtltt93yhz/8oU7r13QHAKhFa9asyZFHHpnPfvaz651btWpVtt9++5x//vnZY489PvD5K1asyE477ZTLLrssFRUVdV0uAACbifvvvz+9e/fObbfdlr/97W85/vjjc/TRR+d3v/tdac6G5NWf/exn+c53vpPvfve7efLJJ3PjjTfmF7/4RUaNGrWxPgoAAJugDcmrCxcuzBe+8IV89rOfzaOPPprzzjsvp512Wm677bbSnNWrV2fw4MF54YUX8utf/zoLFizI9ddfn0984hN1Wr+mOwDQIAwaNCinnnpqRo4cma233jrl5eWZNGlSli9fnuOOOy6tW7fOzjvvnLvuuqvK85544ol84QtfyFZbbZXy8vIcddRR+ec//1k6P3369Oy7775p165dtt122xx88MF57rnnSudfeOGFFAqF3H777dlvv/3SqlWr7LHHHnnggQdq9DkuuOCC7LrrrjniiCPWO9elS5dceeWVOfroo9O2bdsPfP7ee++dH/zgB/na176WsrKyGtUAAEDta+x59bzzzsv3v//99O/fPzvvvHNOO+20fP7zn8+0adNKczYkrz7wwAMZMGBAhg0bli5dumTIkCE58sgj8/DDD1erHgAAatfmkFd//OMfZ8cdd8yECROy22675etf/3qOP/74XHHFFaU5N910U95444385je/yYABA9K5c+fsu+++H/qj0tqi6Q4ANBhTpkzJdtttl4ceeiinnnpqTj755Bx++OHp379/HnnkkRx44IE56qijsmLFiiTvbX85cODA7Lnnnnn44Yczffr0vPbaa1Ua3suXL8+ZZ56ZOXPm5E9/+lOaNGmSL33pS1m3bl2V9z7//PNz9tlnZ968eenevXuOPPLIvPvuu6XzhUIhN99880fW/+c//zm/+tWvcu2119beXwoAAA1GY8+r/27p0qXZZpttqvWcfffdN3Pnzs1DDz2UJHn++efzhz/8IQcddFC1XgcAgNq3qefVBx54IEOGDKky58ADD8zDDz+cNWvWJEnuuOOO9OvXL6ecckrKy8vTq1evjBkzJmvXrq3We1dbkeLSpUuLSYpLly6t71IA4GNbuXJl8YknniiuXLmyvkuploEDBxb33Xff0uN33323uOWWWxaPOuqo0tiiRYuKSYoPPPBAsVgsFi+88MLikCFDqrzOyy+/XExSXLBgwQe+z+LFi4tJio899lixWCwWFy5cWExSvOGGG0pz5s+fX0xSfPLJJ0tjPXr0KN5+++0fWv8///nPYqdOnYqzZ88uFovF4uTJk4tt27b9yM97+umnf+j5YrFY7Ny5c/FHP/rRR84pFj/6O5dzNg2+RwA2JfJq/eTVf/erX/2q2KJFi+Ljjz/+oZ/3w/LqVVddVWzevHmxWbNmxSTFk08++SPfS17d9PkeAdhUNNasWixuHnm1W7duxUsvvbTKvL/85S/FJMVXX3219D5lZWXF448/vvjwww8Xf/7znxe32Wab4sUXX/yB71NbWdVK90bi3nvvzSGHHJKOHTumUCjkN7/5TZXzxWIxo0ePTseOHdOyZcsMGjQo8+fPrzLnm9/8Znbeeee0bNky22+/fQ499NA89dRTG/FTAMBH6927d+nPTZs2zbbbbptPfvKTpbHy8vIkyeLFi5Mkc+fOzT333JOtttqqdOy6665JUtri6LnnnsuwYcOy0047pU2bNunatWuS5KWXXvrQ9+7QoUOV90mSp556Kl/60pc+tPYTTzwxw4YNy3/9139V/4PDJuiVV17Jf//3f2fbbbdNq1atsueee2bu3Lml84VC4QOPH/zgB/VYNQB8tMacV//VrFmzcuyxx+b666/P7rvvvmEf/l+ee+mll+a6667LI488kttvvz2///3v8/3vf79arwP1bezYsSkUChk5cmRp7Pbbb8+BBx6Y7bbbLoVCIfPmzau3+gCgJjaHvFooFKo8LhaLVcbXrVuX9u3bZ9KkSdlrr73yta99Leeff34mTpy4Qe9dU83q9NWpNcuXL88ee+yR4447Ll/+8pfXO3/55Zdn/Pjxufnmm9O9e/dccsklGTx4cBYsWJDWrVsnSfbaa68MHz48O+64Y954442MHj06Q4YMycKFC9O0adON/ZEAYD3Nmzev8rhQKFQZ+9fg9P7/HnLIIRk3btx6r/V+sDvkkEPSqVOnXH/99enYsWPWrVuXXr16ZfXq1R/63v/+Phviz3/+c+64447S/YOKxWLWrVuXZs2aZdKkSTn++OM3+LWgsVuyZEkGDBiQ/fbbL3fddVfat2+f5557Lu3atSvNWbRoUZXn3HXXXTnhhBM+MOsCQEPRmPPq+2bPnp1DDjkk48ePz9FHH13t51944YU56qij8vWvfz1J8slPfjLLly/PN77xjZx//vlp0sQaHxq+OXPmZNKkSVWaA8l712AHDBiQww8/PCeeeGI9VQcANbep59WKiopUVlZWGVu8eHGaNWuWbbfdtlR38+bNq/Q+d9ttt1RWVmb16tVp0aJFtWvaEJrujcTQoUMzdOjQDzxXLBYzYcKEnH/++TnssMOSvHfPhvLy8tx666355je/mST5xje+UXpOly5dcskll2SPPfbICy+8kJ133rnuPwQA1LJPfepTue2229KlS5c0a7Z+rHn99dfz5JNP5ic/+Uk++9nPJknuu+++OqnlgQceqHJfoN/+9rcZN25c7r///nziE5+ok/eEhmrcuHHp1KlTJk+eXBrr0qVLlTkVFRVVHv/2t7/Nfvvtl5122mljlAgAG0VDyqvJeyuGDj744IwbN67KdaLqWLFixXqN9aZNm6ZYLJZWGUFD9vbbb2f48OG5/vrrc8kll1Q5d9RRRyVJXnjhhXqoDAA2vsaWV/v165ff/e53VcZmzJiRvn37lpr+AwYMyK233pp169aVcuvTTz+dDh061FnDPUn89HQTsHDhwlRWVmbIkCGlsbKysgwcODD333//Bz5n+fLlmTx5crp27ZpOnTptrFIBoFadcsopeeONN3LkkUfmoYceyvPPP58ZM2bk+OOPz9q1a7P11ltn2223zaRJk/Lss8/mz3/+c84888wavdeuu+6aadOmfej53XbbLb169Sodn/jEJ9KkSZP06tUrW2+9dWnevHnzMm/evLz99tv5xz/+kXnz5uWJJ54onV+9enVpzurVq/PKK69k3rx5efbZZ2tUN9SHO+64I3379s3hhx+e9u3bp0+fPrn++us/dP5rr72WO++8MyeccMJGrBIA6l5DyquzZs3KQQcdlNNOOy1f/vKXU1lZmcrKyrzxxhtV5v2nvHrIIYdk4sSJmTp1ahYuXJiZM2fmwgsvzP/7f//PToo0CqecckoOOuigHHDAAfVdCgDUu8aWV0866aS8+OKLOfPMM/Pkk0/mpptuyo033pizzz67NOfkk0/O66+/ntNPPz1PP/107rzzzowZMyannHJKjereUJrum4D3t1F4/z4M7ysvL19vi4XrrruudE+G6dOnZ+bMmXX6qw4AqEsdO3bMX/7yl6xduzYHHnhgevXqldNPPz1t27ZNkyZN0qRJk0ydOjVz585Nr169csYZZ9T4ftELFizI0qVLP3bNffr0SZ8+fTJ37tzceuut6dOnT77whS+Uzr/66qulOYsWLcoVV1yRPn36lLbvhMbg+eefz8SJE9OtW7fcfffdOemkk3Laaafllltu+cD5U6ZMSevWrUu7NgHApqIh5dWbb745K1asyNixY9OhQ4fS8e////uf8uoFF1yQs846KxdccEF69uyZE044IQceeGB+8pOf1Khu2JimTp2aRx55JGPHjq3vUgCgQWhsebVr1675wx/+kFmzZmXPPffM97///Vx11VVVblfYqVOnzJgxI3PmzEnv3r1z2mmn5fTTT893vvOdGtW9oQpF+z5l2bJladu2bZYuXZo2bdrUdzn/UaFQyLRp0/LFL34xSXL//fdnwIABefXVV0v3V0iSE088MS+//HKmT59eGlu6dGkWL15cuoj/yiuv5C9/+Uu22GKLjf0xAKgj77zzThYuXJiuXbv69/tm4qO+88aWc/hgje17bNGiRfr27Vtl16XTTjstc+bMyQMPPLDe/F133TWDBw/O1VdfvTHLBKCeyKubH3l109cYvseXX345ffv2zYwZM7LHHnskSQYNGpQ999wzEyZMqDL3hRdeSNeuXfPoo49mzz333PjFAlBvZNXNT21lVSvdNwHv3w/z31e1L168eL3V723btk23bt3yX//1X/n1r3+dp5566iO3cgAAgOrq0KFDevbsWWVst912y0svvbTe3P/93//NggUL7OYAAECdmjt3bhYvXpy99torzZo1S7NmzTJ79uxcddVVadasWdauXVvfJQIAjZim+yaga9euqaioyMyZM0tjq1evzuzZs9O/f/+PfG6xWMyqVavqukQAADYjAwYMyIIFC6qMPf300+ncufN6c2+88cbstddepdVGAABQF/bff/889thjmTdvXuno27dvhg8fnnnz5qVp06b1XSIA0Ig1q+8C2DBvv/12nn322dLjhQsXZt68edlmm22y4447ZuTIkRkzZky6deuWbt26ZcyYMWnVqlWGDRuW5L37av7iF7/IkCFDsv322+eVV17JuHHj0rJlyyr35QIAgI/rjDPOSP/+/TNmzJgcccQReeihhzJp0qRMmjSpyrxly5blV7/6VX74wx/WU6UAAGwuWrdunV69elUZ23LLLbPtttuWxt9444289NJLefXVV5Ok9EPSioqK0m6jAAAfRNO9kXj44Yez3377lR6feeaZSZJjjjkmN998c84555ysXLkyI0aMyJIlS7LPPvtkxowZad26dZJkiy22yP/+7/9mwoQJWbJkScrLy/Nf//Vfuf/++9O+fft6+UwAAGya9t5770ybNi2jRo3K9773vXTt2jUTJkzI8OHDq8ybOnVqisVijjzyyHqqFAAA/j933HFHjjvuuNLjr33ta0mS7373uxk9enQ9VQUANAaFYrFYrO8i6tuyZcvStm3bLF26NG3atKnvcgDgY3nnnXeycOHCdO3aNVtssUV9l8NG8FHfuZyzafA9ArApkVc3P/Lqps/3CMCmQlbd/NRWVnVPdwAAAAAAAACoIdvLb2yFQn1XUHM2RQAA2PTJqwAANFSNKavKpgCwWbHSHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AaLRmzZqVQqGQN998s75LAQCA9cirQF0ZO3ZsCoVCRo4cWRorFosZPXp0OnbsmJYtW2bQoEGZP39+/RUJQIMnr9YeTXcAoNHq379/Fi1alLZt29b6a992223p2bNnysrK0rNnz0ybNq3W3wMAgE2bvArUhTlz5mTSpEnp3bt3lfHLL78848ePzzXXXJM5c+akoqIigwcPzltvvVVPlQLQ0MmrtUfTHQBotFq0aJGKiooUCoVafd0HHnggX/3qV3PUUUfl//7v/3LUUUfliCOOyF//+tdafR8AADZt8ipQ295+++0MHz48119/fbbeeuvSeLFYzIQJE3L++efnsMMOS69evTJlypSsWLEit956az1WDEBDJq/WHk13AKBBGDRoUE499dSMHDkyW2+9dcrLyzNp0qQsX748xx13XFq3bp2dd945d911V+k5/7790c0335x27drl7rvvzm677Zatttoqn//857No0aJq1TJhwoQMHjw4o0aNyq677ppRo0Zl//33z4QJE2rxEwMA0JjIq0BDcMopp+Sggw7KAQccUGV84cKFqayszJAhQ0pjZWVlGThwYO6///6NXSYA9UBerV+a7gBAgzFlypRst912eeihh3Lqqafm5JNPzuGHH57+/fvnkUceyYEHHpijjjoqK1as+NDXWLFiRa644or8z//8T+6999689NJLOfvss0vn3w+SL7zwwoe+xgMPPFDlQkWSHHjggS5UAABs5uRVoD5NnTo1jzzySMaOHbveucrKyiRJeXl5lfHy8vLSOQA2ffJq/dF0BwAajD322CMXXHBBunXrllGjRqVly5bZbrvtcuKJJ6Zbt2656KKL8vrrr+dvf/vbh77GmjVr8uMf/zh9+/bNpz71qXzrW9/Kn/70p9L5Vq1apUePHmnevPmHvkZlZaULFQAArEdeBerLyy+/nNNPPz0//elPs8UWW3zovH/fHrhYLNb6lsEANFzyav1pVt8FAAC8r3fv3qU/N23aNNtuu20++clPlsbeD2qLFy/+0Ndo1apVdt5559LjDh06VJn/6U9/Ok899dR/rMWFCgAA/p28CtSXuXPnZvHixdlrr71KY2vXrs29996ba665JgsWLEjyXpOjQ4cOpTmLFy9er+kBwKZLXq0/VroDAA3Gv/86slAoVBl7P5StW7euWq9RLBarVUdFRcV6v7p0oQIAAHkVqC/7779/HnvsscybN6909O3bN8OHD8+8efOy0047paKiIjNnziw9Z/Xq1Zk9e3b69+9fj5UDsDHJq/VH0x0A4N/069evyoWKJJkxY4YLFQAANAjyKjU1duzYFAqFjBw5sjRWLBYzevTodOzYMS1btsygQYMyf/78+iuSD9S6dev06tWryrHllltm2223Ta9evUrf65gxYzJt2rQ8/vjjOfbYY9OqVasMGzasvssHYDOzOeZVTXcAYLPy0EMPZdddd80rr7zyoXNOP/30zJgxI+PGjctTTz2VcePG5Y9//GOVC1MAAFAX5FXqypw5czJp0qQq284myeWXX57x48fnmmuuyZw5c1JRUZHBgwfnrbfeqqdKqalzzjknI0eOzIgRI9K3b9+88sormTFjRlq3bl3fpQGwCZFXP5imOwCwWVmxYkUWLFiQNWvWfOic/v37Z+rUqZk8eXJ69+6dm2++Ob/4xS+yzz77bMRKAQDYHMmr1IW33347w4cPz/XXX5+tt966NF4sFjNhwoScf/75Oeyww9KrV69MmTIlK1asyK233lqPFbMhZs2alQkTJpQeFwqFjB49OosWLco777yT2bNnp1evXvVXIACbJHn1gxWK1d2Evxbde++9+cEPfpC5c+dm0aJFmTZtWr74xS+WzheLxVx88cWZNGlSlixZkn322SfXXnttdt9999KcVatW5eyzz87Pf/7zrFy5Mvvvv3+uu+667LDDDhtcx7Jly9K2bdssXbo0bdq0qc2PuL7//70SGqX6+0cFgGp45513snDhwnTt2jVbbLFFfZfDRvBR3/lGzTnUGXl1A8mrAI2CvLr5kVfr3zHHHJNtttkmP/rRjzJo0KDsueeemTBhQp5//vnsvPPOeeSRR9KnT5/S/EMPPTTt2rXLlClTPvD1Vq1alVWrVpUeL1u2LJ06dar777ExZVXZFKBRklU3P7WVVZvVZZH/yfLly7PHHnvkuOOOy5e//OX1zr+/tdHNN9+c7t2755JLLsngwYOzYMGC0pY4I0eOzO9+97tMnTo12267bc4666wcfPDBmTt3bpo2bbqxPxIAAAAAQIMxderUPPLII5kzZ8565yorK5Mk5eXlVcbLy8vz4osvfuhrjh07NhdffHHtFroZ6PKdO+u7hA32wmUH1XcJANCo1GvTfejQoRk6dOgHnvv3rY2SZMqUKSkvL8+tt96ab37zm1m6dGluvPHG/M///E8OOOCAJMlPf/rTdOrUKX/84x9z4IEHbrTPAgAAAADQkLz88sule6p+1Gq9wr+tIC8Wi+uN/atRo0blzDPPLD1+f6U7AMDmqsHe033hwoWprKzMkCFDSmNlZWUZOHBg7r///iTJ3Llzs2bNmipzOnbsmF69epXmfJBVq1Zl2bJlVQ4AAAAAgE3J3Llzs3jx4uy1115p1qxZmjVrltmzZ+eqq65Ks2bNSivc31/x/r7Fixevt/r9X5WVlaVNmzZVDgCAzVmDbbp/1NZG75+rrKxMixYtsvXWW3/onA8yduzYtG3btnT4FSYAAAAAsKnZf//989hjj2XevHmlo2/fvhk+fHjmzZuXnXbaKRUVFZk5c2bpOatXr87s2bPTv3//eqwcAKBxqdft5TdEdbc22pA5tj8CAAAAADZ1rVu3Tq9evaqMbbnlltl2221L4yNHjsyYMWPSrVu3dOvWLWPGjEmrVq0ybNiw+igZAKBRarBN94qKiiTvrWbv0KFDafxftzaqqKjI6tWrs2TJkiqr3RcvXvyRv8QsKytLWVlZHVUOAAAAANA4nHPOOVm5cmVGjBiRJUuWZJ999smMGTPSunXr+i4NAKDRaLDby3ft2vU/bm201157pXnz5lXmLFq0KI8//rjtjwAAAAAA/s2sWbMyYcKE0uNCoZDRo0dn0aJFeeeddzJ79uz1VscDAPDR6nWl+9tvv51nn3229HjhwoWZN29ettlmm+y4447/cWujtm3b5oQTTshZZ52VbbfdNttss03OPvvsfPKTn8wBBxxQXx8LAAAAAAAAgM1EvTbdH3744ey3336lx+/fZ/2YY47JzTffvEFbG/3oRz9Ks2bNcsQRR2TlypXZf//9c/PNN6dp06Yb/fMAAAAAAAAAsHmp16b7oEGDUiwWP/T8+1sbjR49+kPnbLHFFrn66qtz9dVX10GFAAAAAAAAAPDhGuw93QEAGqJnn302rVu3Trt27aqML1q0KMOGDUuPHj3SpEmTjBw58gOff9ttt6Vnz54pKytLz549M23atPXmXHfddenatWu22GKL7LXXXvnf//3fOvgkAABsSn75y19mzz33TKtWrdK5c+f84Ac/WG/OqlWrcv7556dz584pKyvLzjvvnJtuuqnKnA3JqwAAUB2jR49OoVBY79hyyy2rzNuQvPrmm2/mlFNOSYcOHbLFFltkt912yx/+8IeN+XE+UL2udAcAaEzWrFmTI488Mp/97Gdz//33Vzm3atWqbL/99jn//PPzox/96AOf/8ADD+SrX/1qvv/97+dLX/pSpk2bliOOOCL33Xdf9tlnnyTJL37xi4wcOTLXXXddBgwYkJ/85CcZOnRonnjiiey44451/hkBAGh87rrrrgwfPjxXX311hgwZkieffDJf//rX07Jly3zrW98qzTviiCPy2muv5cYbb8wuu+ySxYsX59133y2d35C8CgAA1XX22WfnpJNOqjK2//77Z++9964y9p/y6urVqzN48OC0b98+v/71r7PDDjvk5ZdfrnJr8vpipTsA0CAMGjQop556akaOHJmtt9465eXlmTRpUpYvX57jjjsurVu3zs4775y77rqr9Jy1a9fmhBNOSNeuXdOyZcv06NEjV155Zen8O++8k9133z3f+MY3SmMLFy5M27Ztc/3111e7xgsuuCC77rprjjjiiPXOdenSJVdeeWWOPvrotG3b9gOfP2HChAwePDijRo3KrrvumlGjRmX//ffPhAkTSnPGjx+fE044IV//+tez2267ZcKECenUqVMmTpxY7XoBAKg9DTmv/s///E+++MUv5qSTTspOO+2Ugw46KOeee27GjRtXurXj9OnTM3v27PzhD3/IAQcckC5duuTTn/50+vfvX3qdDcmrAAA0TA05r2611VapqKgoHa+99lqeeOKJnHDCCaU5G5JXb7rpprzxxhv5zW9+kwEDBqRz587Zd999s8cee9T0r63WaLoDAA3GlClTst122+Whhx7KqaeempNPPjmHH354+vfvn0ceeSQHHnhgjjrqqKxYsSJJsm7duuywww755S9/mSeeeCIXXXRRzjvvvPzyl79MkmyxxRb52c9+lilTpuQ3v/lN1q5dm6OOOir77bdfTjzxxNL7FgqF3HzzzR9Z25///Of86le/yrXXXlvjz/fAAw9kyJAhVcYOPPDA0qr51atXZ+7cuevNGTJkyHor6wEA2Pgaal5dtWpVtthiiypjLVu2zN///ve8+OKLSZI77rgjffv2zeWXX55PfOIT6d69e84+++ysXLmy9Jz/lFcBAGjYGmpe/Xc33HBDunfvns9+9rOlsQ3Jq3fccUf69euXU045JeXl5enVq1fGjBmTtWvXfsy/uY9P0x0AaDD22GOPXHDBBenWrVtGjRqVli1bZrvttsuJJ56Ybt265aKLLsrrr7+ev/3tb0mS5s2b5+KLL87ee++drl27Zvjw4Tn22GNLoTBJ9txzz1xyySU58cQTc8YZZ+S5557LDTfcUOV9e/To8aGr05Pk9ddfz7HHHpubb745bdq0qfHnq6ysTHl5eZWx8vLyVFZWJkn++c9/Zu3atR85BwCA+tNQ8+qBBx6Y22+/PX/605+ybt26PP3006XV6YsWLUqSPP/887nvvvvy+OOPZ9q0aZkwYUJ+/etf55RTTim9zn/KqwAANGwNNa/+q1WrVuVnP/tZlVXuyYbl1eeffz6//vWvs3bt2vzhD3/IBRdckB/+8Ie59NJLa/pXVmvc0x0AaDB69+5d+nPTpk2z7bbb5pOf/GRp7P0LgIsXLy6N/fjHP84NN9yQF198MStXrszq1auz5557Vnnds846K7/97W9z9dVX56677sp2221X5fxTTz31kXWdeOKJGTZsWP7rv/6rph+tpFAoVHlcLBbXG9uQOQAAbHwNOa8+99xzOfjgg7NmzZq0adMmp59+ekaPHp2mTZsmeW8VU6FQyM9+9rPSBdHx48fnK1/5Sq699tq0bNkyiSwKANCYNdS8+q9uv/32vPXWWzn66KOrjG9IXl23bl3at2+fSZMmpWnTptlrr73y6quv5gc/+EEuuuiiDa6hLljpDgA0GM2bN6/yuFAoVBl7/2LfunXrkiS//OUvc8YZZ+T444/PjBkzMm/evBx33HFZvXp1lddZvHhxFixYkKZNm+aZZ56pdl1//vOfc8UVV6RZs2Zp1qxZTjjhhCxdujTNmjXLTTfdtMGvU1FRsd4qocWLF5fC7nbbbZemTZt+5BwAAOpPQ82rhUIh48aNy9tvv50XX3wxlZWV+fSnP50k6dKlS5KkQ4cO+cQnPlFlBdJuu+2WYrGYv//970n+c14FAKBha6h59V/dcMMNOfjgg1NRUVFlfEPyaocOHdK9e/fSD0vfn1NZWblezRubpjsA0Gj97//+b/r3758RI0akT58+2WWXXfLcc8+tN+/4449Pr169csstt+Scc87JE088Ua33eeCBBzJv3rzS8b3vfS+tW7fOvHnz8qUvfWmDX6dfv36ZOXNmlbEZM2akf//+SZIWLVpkr732Wm/OzJkzS3MAAGg8NlZefV/Tpk3ziU98Ii1atMjPf/7z9OvXL+3bt0+SDBgwIK+++mrefvvt0vynn346TZo0yQ477JDkP+dVAAA2LRs7ry5cuDD33HPPelvLJxuWVwcMGJBnn3229KOB9+d06NAhLVq0qFFNtUXTHQBotHbZZZc8/PDDufvuu/P000/nwgsvzJw5c6rMufbaa/PAAw/klltuybBhw/KVr3wlw4cPr/LLx1133TXTpk370PfZbbfd0qtXr9LxiU98Ik2aNEmvXr2y9dZbl+a935R/++23849//CPz5s2rEkBPP/30zJgxI+PGjctTTz2VcePG5Y9//GNGjhxZmnPmmWfmhhtuyE033ZQnn3wyZ5xxRl566aWcdNJJtfA3BgDAxrSx8uo///nP/PjHP85TTz2VefPm5fTTT8+vfvWr0n3dk2TYsGHZdtttc9xxx+WJJ57Ivffem29/+9s5/vjjS1vLb0heBQBg07Gx8ur7brrppnTo0CFDhw5d79yG5NWTTz45r7/+ek4//fQ8/fTTufPOOzNmzJgq932vL5ruAECjddJJJ+Wwww7LV7/61eyzzz55/fXXM2LEiNL5p556Kt/+9rdz3XXXpVOnTkneC4lvvvlmLrzwwtK8BQsWZOnSpR+7nj59+qRPnz6ZO3dubr311vTp0ydf+MIXSuf79++fqVOnZvLkyendu3duvvnm/OIXv8g+++xTmvPVr341EyZMyPe+973sueeeuffee/OHP/whnTt3/tj1AQCwcW3MvDplypT07ds3AwYMyPz58zNr1qzSFvNJstVWW2XmzJl5880307dv3wwfPjyHHHJIrrrqqtKcDcmrAABsOjZmXl23bl1uvvnmHHvssVW2h3/fhuTVTp06ZcaMGZkzZ0569+6d0047Laeffnq+853vfNy/io+tUCwWi/VdRH1btmxZ2rZtm6VLl6ZNmzZ1+2b//3slNEr+UQFoFN55550sXLgwXbt2zRZbbFHf5bARfNR3vlFzDnVGXt1A8ipAoyCvbn7k1U3fRvseG1NW/YBs2uU7d9ZDITXzwmUH1XcJAPVCVt381FZWtdIdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0ANlHFYrG+S2Aj8V0DAI2RDLP58F0DAI2N/LL5qK3vWtMdADYxzZs3T5KsWLGinithY3n/u37/uwcAaMiaNm2aJFm9enU9V8LGIq8CAI2Fa6ubn/f/u+T9/06pqWa1UQwA0HA0bdo07dq1y+LFi5MkrVq1SqFQqOeqqAvFYjErVqzI4sWL065du48dDAEANoZmzZqlVatW+cc//pHmzZunSRNrQjZV8ioA0Ni4trp5WbduXf7xj3+kVatWadbs47XNNd0BYBNUUVGRJKVwyKatXbt2pe8cAKChKxQK6dChQxYuXJgXX3yxvsthI5BXAYDGxLXVzUuTJk2y4447fuwfV2i6A8Am6P0Lme3bt8+aNWvquxzqUPPmza0YAgAanRYtWqRbt262mN8MyKsAQGPj2urmpUWLFrWy+5amOwBswpo2beoCFwAADVKTJk2yxRZb1HcZAADwgVxbpTrcNAsAAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAD6GV155Jf/93/+dbbfdNq1atcqee+6ZuXPnls4Xi8WMHj06HTt2TMuWLTNo0KDMnz+/HisGAAAAAGqTpjsAANTQkiVLMmDAgDRv3jx33XVXnnjiifzwhz9Mu3btSnMuv/zyjB8/Ptdcc03mzJmTioqKDB48OG+99Vb9FQ4AAAAA1Jpm9V0AAAA0VuPGjUunTp0yefLk0liXLl1Kfy4Wi5kwYULOP//8HHbYYUmSKVOmpLy8PLfeemu++c1vbuySAQAAAIBaZqU7AADU0B133JG+ffvm8MMPT/v27dOnT59cf/31pfMLFy5MZWVlhgwZUhorKyvLwIEDc//999dHyQAAAABALdN0BwCAGnr++eczceLEdOvWLXfffXdOOumknHbaabnllluSJJWVlUmS8vLyKs8rLy8vnfsgq1atyrJly6ocAAAAAEDDZHt5AACooXXr1qVv374ZM2ZMkqRPnz6ZP39+Jk6cmKOPPro0r1AoVHlesVhcb+xfjR07NhdffHHdFA0AAAAA1Cor3QEAoIY6dOiQnj17Vhnbbbfd8tJLLyVJKioqkmS9Ve2LFy9eb/X7vxo1alSWLl1aOl5++eVarhwAAAAAqC2a7gAAUEMDBgzIggULqow9/fTT6dy5c5Kka9euqaioyMyZM0vnV69endmzZ6d///4f+rplZWVp06ZNlQMAAAAAaJhsLw8AADV0xhlnpH///hkzZkyOOOKIPPTQQ5k0aVImTZqU5L1t5UeOHJkxY8akW7du6datW8aMGZNWrVpl2LBh9Vw9AAAAAFAbNN0BAKCG9t5770ybNi2jRo3K9773vXTt2jUTJkzI8OHDS3POOeecrFy5MiNGjMiSJUuyzz77ZMaMGWndunU9Vg4AAAAA1BZNdwAA+BgOPvjgHHzwwR96vlAoZPTo0Rk9evTGKwoAAAAA2Gjc0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAAAAAABqSNMdAAAAAAAAAGpI0x0AAAAAAAAAakjTHQAAAABgEzRx4sT07t07bdq0SZs2bdKvX7/cddddpfPHHntsCoVCleMzn/lMPVYMANA4NavvAgAAAAAAqH077LBDLrvssuyyyy5JkilTpuTQQw/No48+mt133z1J8vnPfz6TJ08uPadFixb1UisAQGOm6Q4AAAAAsAk65JBDqjy+9NJLM3HixDz44IOlpntZWVkqKirqozwAgE2G7eUBAAAAADZxa9euzdSpU7N8+fL069evND5r1qy0b98+3bt3z4knnpjFixf/x9datWpVli1bVuUAANicaboDAAAAAGyiHnvssWy11VYpKyvLSSedlGnTpqVnz55JkqFDh+ZnP/tZ/vznP+eHP/xh5syZk8997nNZtWrVR77m2LFj07Zt29LRqVOnjfFRAAAaLNvLAwAAAABsonr06JF58+blzTffzG233ZZjjjkms2fPTs+ePfPVr361NK9Xr17p27dvOnfunDvvvDOHHXbYh77mqFGjcuaZZ5YeL1u2TOMdANisaboDAAAAAGyiWrRokV122SVJ0rdv38yZMydXXnllfvKTn6w3t0OHDuncuXOeeeaZj3zNsrKylJWV1Um9AACNke3lAQAAAAA2E8Vi8UO3j3/99dfz8ssvp0OHDhu5KgCAxs1KdwAAAACATdB5552XoUOHplOnTnnrrbcyderUzJo1K9OnT8/bb7+d0aNH58tf/nI6dOiQF154Ieedd1622267fOlLX6rv0gEAGhVNdwAAAACATdBrr72Wo446KosWLUrbtm3Tu3fvTJ8+PYMHD87KlSvz2GOP5ZZbbsmbb76ZDh06ZL/99ssvfvGLtG7dur5LBwBoVDTdAQAAAAA2QTfeeOOHnmvZsmXuvvvujVgNAMCmyz3dAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGGnTT/d13380FF1yQrl27pmXLltlpp53yve99L+vWrSvNKRaLGT16dDp27JiWLVtm0KBBmT9/fj1WDQAAAAAAAMDmokE33ceNG5cf//jHueaaa/Lkk0/m8ssvzw9+8INcffXVpTmXX355xo8fn2uuuSZz5sxJRUVFBg8enLfeeqseKwcAAAAAAABgc9Cgm+4PPPBADj300Bx00EHp0qVLvvKVr2TIkCF5+OGHk7y3yn3ChAk5//zzc9hhh6VXr16ZMmVKVqxYkVtvvbWeqwcAAAAAAABgU9egm+777rtv/vSnP+Xpp59Okvzf//1f7rvvvnzhC19IkixcuDCVlZUZMmRI6TllZWUZOHBg7r///g993VWrVmXZsmVVDgAAAAAAAACorgbddD/33HNz5JFHZtddd03z5s3Tp0+fjBw5MkceeWSSpLKyMklSXl5e5Xnl5eWlcx9k7Nixadu2beno1KlT3X0IAAAAAADYjE2cODG9e/dOmzZt0qZNm/Tr1y933XVX6fztt9+eAw88MNttt10KhULmzZtXf8UCQA006Kb7L37xi/z0pz/NrbfemkceeSRTpkzJFVdckSlTplSZVygUqjwuFovrjf2rUaNGZenSpaXj5ZdfrpP6AQAAAABgc7fDDjvksssuy8MPP5yHH344n/vc53LooYdm/vz5SZLly5dnwIABueyyy+q5UgComWb1XcBH+fa3v53vfOc7+drXvpYk+eQnP5kXX3wxY8eOzTHHHJOKiook761479ChQ+l5ixcvXm/1+78qKytLWVlZ3RYPAAAAAADkkEMOqfL40ksvzcSJE/Pggw9m9913z1FHHZUkeeGFF+qhOgD4+Br0SvcVK1akSZOqJTZt2jTr1q1LknTt2jUVFRWZOXNm6fzq1asze/bs9O/ff6PWCgAAAAAAfLS1a9dm6tSpWb58efr161ff5QBArWjQK90POeSQXHrppdlxxx2z++6759FHH8348eNz/PHHJ3lvW/mRI0dmzJgx6datW7p165YxY8akVatWGTZsWD1XDwAAAAAAJMljjz2Wfv365Z133slWW22VadOmpWfPnvVdFgDUigbddL/66qtz4YUXZsSIEVm8eHE6duyYb37zm7noootKc84555ysXLkyI0aMyJIlS7LPPvtkxowZad26dT1WDgAAAAAAvK9Hjx6ZN29e3nzzzdx222055phjMnv2bI13ADYJDbrp3rp160yYMCETJkz40DmFQiGjR4/O6NGjN1pdAAAAAADAhmvRokV22WWXJEnfvn0zZ86cXHnllfnJT35Sz5UBwMfXoO/pDgAAAAAAbHqKxWJWrVpV32UAQK1o0CvdAQAAAACAxu28887L0KFD06lTp7z11luZOnVqZs2alenTpydJ3njjjbz00kt59dVXkyQLFixIklRUVKSioqLe6gaADWWlOwAAAAAAUGdee+21HHXUUenRo0f233///PWvf8306dMzePDgJMkdd9yRPn365KCDDkqSfO1rX0ufPn3y4x//uD7LBoANZqU7AAAAAABQZ2688caPPH/sscfm2GOP3TjFAEAdsNIdAAAAAAAAAGpI0x0AAAAAAAAAasj28gAAAAAAwEfq8p0767uEDfLCZQfVdwkAbIasdAcAAAAAAACAGtJ0BwCAGho9enQKhUKVo6KionS+WCxm9OjR6dixY1q2bJlBgwZl/vz59VgxAAAAAFDbNN0BAOBj2H333bNo0aLS8dhjj5XOXX755Rk/fnyuueaazJkzJxUVFRk8eHDeeuuteqwYAAAAAKhNmu4AAPAxNGvWLBUVFaVj++23T/LeKvcJEybk/PPPz2GHHZZevXplypQpWbFiRW699dZ6rhoAAAAAqC2a7gAA8DE888wz6dixY7p27Zqvfe1ref7555MkCxcuTGVlZYYMGVKaW1ZWloEDB+b+++//yNdctWpVli1bVuUAAAAAABomTXcAAKihffbZJ7fcckvuvvvuXH/99amsrEz//v3z+uuvp7KyMklSXl5e5Tnl5eWlcx9m7Nixadu2beno1KlTnX0GAAAAAODj0XQHAIAaGjp0aL785S/nk5/8ZA444IDceeedSZIpU6aU5hQKhSrPKRaL6439u1GjRmXp0qWl4+WXX6794gEAAACAWqHpDgAAtWTLLbfMJz/5yTzzzDOpqKhIkvVWtS9evHi91e//rqysLG3atKlyAAAAAAANk6Y7AADUklWrVuXJJ59Mhw4d0rVr11RUVGTmzJml86tXr87s2bPTv3//eqwSAAAAAKhNzeq7AAAAaKzOPvvsHHLIIdlxxx2zePHiXHLJJVm2bFmOOeaYFAqFjBw5MmPGjEm3bt3SrVu3jBkzJq1atcqwYcPqu3QAAAAAoJZY6Q4AADX097//PUceeWR69OiRww47LC1atMiDDz6Yzp07J0nOOeecjBw5MiNGjEjfvn3zyiuvZMaMGWndunU9Vw4AwOZg4sSJ6d27d+mWRf369ctdd91VOl8sFjN69Oh07NgxLVu2zKBBgzJ//vx6rBgAoHGy0h0AAGpo6tSpH3m+UChk9OjRGT169MYpCAAA/sUOO+yQyy67LLvsskuSZMqUKTn00EPz6KOPZvfdd8/ll1+e8ePH5+abb0737t1zySWXZPDgwVmwYIEfigIAVIOV7gAAAAAAm6BDDjkkX/jCF9K9e/d07949l156abbaaqs8+OCDKRaLmTBhQs4///wcdthh6dWrV6ZMmZIVK1bk1ltvre/SAQAaFU13AAAAAIBN3Nq1azN16tQsX748/fr1y8KFC1NZWZkhQ4aU5pSVlWXgwIG5//77P/K1Vq1alWXLllU5AAA2Z5ruAAAAAACbqMceeyxbbbVVysrKctJJJ2XatGnp2bNnKisrkyTl5eVV5peXl5fOfZixY8embdu2paNTp051Vj8AQGOg6Q4AAAAAsInq0aNH5s2blwcffDAnn3xyjjnmmDzxxBOl84VCocr8YrG43ti/GzVqVJYuXVo6Xn755TqpHQCgsWhW3wUAAAAAAFA3WrRokV122SVJ0rdv38yZMydXXnllzj333CRJZWVlOnToUJq/ePHi9Va//7uysrKUlZXVXdEAAI2Mle4AAAAAAJuJYrGYVatWpWvXrqmoqMjMmTNL51avXp3Zs2enf//+9VghAEDjY6U7AAAAAMAm6LzzzsvQoUPTqVOnvPXWW5k6dWpmzZqV6dOnp1AoZOTIkRkzZky6deuWbt26ZcyYMWnVqlWGDRtW36UDADQqmu4AAAAAAJug1157LUcddVQWLVqUtm3bpnfv3pk+fXoGDx6cJDnnnHOycuXKjBgxIkuWLMk+++yTGTNmpHXr1vVcOQBA46LpDgAAAACwCbrxxhs/8nyhUMjo0aMzevTojVMQAMAmyj3dAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN0BAAAAAAAAoIY03QEAAAAAAACghjTdAQAAAAAAAKCGNN1pMF555ZX893//d7bddtu0atUqe+65Z+bOnVs6//bbb+db3/pWdthhh7Rs2TK77bZbJk6cWI8VAwAAAAAAAJu7ZvVdACTJkiVLMmDAgOy3336566670r59+zz33HNp165dac4ZZ5yRe+65Jz/96U/TpUuXzJgxIyNGjEjHjh1z6KGH1l/xAAAAAAAAwGZL050GYdy4cenUqVMmT55cGuvSpUuVOQ888ECOOeaYDBo0KEnyjW98Iz/5yU/y8MMPa7oDAAAAAAAA9cL28jQId9xxR/r27ZvDDz887du3T58+fXL99ddXmbPvvvvmjjvuyCuvvJJisZh77rknTz/9dA488MB6qhoAAAAAAADY3Gm60yA8//zzmThxYrp165a77747J510Uk477bTccsstpTlXXXVVevbsmR122CEtWrTI5z//+Vx33XXZd99967FyAAAAAAAAYHNme3kahHXr1qVv374ZM2ZMkqRPnz6ZP39+Jk6cmKOPPjrJe033Bx98MHfccUc6d+6ce++9NyNGjEiHDh1ywAEH1Gf5AAAAAAAAwGZK050GoUOHDunZs2eVsd122y233XZbkmTlypU577zzMm3atBx00EFJkt69e2fevHm54oorNN0BAAAAAACAemF7eRqEAQMGZMGCBVXGnn766XTu3DlJsmbNmqxZsyZNmlT9R7Zp06ZZt27dRqsTAAAAAAAA4F9Z6U6DcMYZZ6R///4ZM2ZMjjjiiDz00EOZNGlSJk2alCRp06ZNBg4cmG9/+9tp2bJlOnfunNmzZ+eWW27J+PHj67l6AAAAAAAAYHOl6U6DsPfee2fatGkZNWpUvve976Vr166ZMGFChg8fXpozderUjBo1KsOHD88bb7yRzp0759JLL81JJ51Uj5UDAAAAAAAAmzNNdxqMgw8+OAcffPCHnq+oqMjkyZM3YkUAAAAAAAAAH8093QEAAAAAAACghjTdAQAAAAAAAKCGbC/Px9LlO3fWdwk19sJlB9V3CQAAAAAAAEAjZ6U7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1JCmOwAAAAAAAADUkKY7AAAAAAAAANSQpjsAAAAAAAAA1FC1m+5TpkzJnXfeWXp8zjnnpF27dunfv39efPHFWi0OAADqgkwLAEBDJq8CADQu1W66jxkzJi1btkySPPDAA7nmmmty+eWXZ7vttssZZ5xR6wUCAEBtk2kBAGjI5FUAgMalWXWf8PLLL2eXXXZJkvzmN7/JV77ylXzjG9/IgAEDMmjQoNquDwAAap1MCwBAQyavAgA0LtVe6b7VVlvl9ddfT5LMmDEjBxxwQJJkiy22yMqVK2u3OgAAqAMyLQAADZm8CgDQuFR7pfvgwYPz9a9/PX369MnTTz+dgw46KEkyf/78dOnSpbbrAwCAWifTAgDQkMmrAACNS7VXul977bXp169f/vGPf+S2227LtttumySZO3dujjzyyFovEAAAaptMCwBAQyavAgA0LtVe6b5s2bJcddVVadKkar9+9OjRefnll2utMAAAqCsyLQAADZm8CgDQuFR7pXvXrl3zz3/+c73xN954I127dq2VogAAoC7JtAAANGTyKgBA41LtpnuxWPzA8bfffjtbbLHFxy4IAADqmkwLAEBDJq8CADQuG7y9/JlnnpkkKRQKueiii9KqVavSubVr1+avf/1r9txzz1ovEAAAaotMCwBAQyavAgA0ThvcdH/00UeTvPcry8ceeywtWrQonWvRokX22GOPnH322bVfIQAA1BKZFgCAhkxeBQBonDa46X7PPfckSY477rhceeWVadOmTZ0VBQAAdUGmBQCgIZNXAQAapw1uur9v8uTJdVEHAABsNDItAAANmbwKANC4VLvpvnz58lx22WX505/+lMWLF2fdunVVzj///PO1VhwAANQFmRYAgIZMXgUAaFyq3XT/+te/ntmzZ+eoo45Khw4dUigU6qIuAACoMzItAAANmbwKANC4VLvpftddd+XOO+/MgAED6qIeAACoczItAAANWW3l1bFjx+b222/PU089lZYtW6Z///4ZN25cevToUZpz7LHHZsqUKVWet88+++TBBx/8WO8NALA5aVLdJ2y99dbZZptt6qIWAADYKGRaAAAastrKq7Nnz84pp5ySBx98MDNnzsy7776bIUOGZPny5VXmff7zn8+iRYtKxx/+8IeP/d4AAJuTajfdv//97+eiiy7KihUr6qIeAACoczItAAANWW3l1enTp+fYY4/N7rvvnj322COTJ0/OSy+9lLlz51aZV1ZWloqKitLhB6oAANVT7e3lf/jDH+a5555LeXl5unTpkubNm1c5/8gjj9RacQAAUBdkWgAAGrK6yqtLly5NkvWa6rNmzUr79u3Trl27DBw4MJdeemnat2//oa+zatWqrFq1qvR42bJlNaoHAGBTUe2m+xe/+MU6KAMAADYemRYAgIasLvJqsVjMmWeemX333Te9evUqjQ8dOjSHH354OnfunIULF+bCCy/M5z73ucydOzdlZWUf+Fpjx47NxRdfXOs1AgA0VtVuun/3u9+tizoAAGCjkWkBAGjI6iKvfutb38rf/va33HfffVXGv/rVr5b+3KtXr/Tt2zedO3fOnXfemcMOO+wDX2vUqFE588wzS4+XLVuWTp061XrNAACNRbXv6Z4kb775Zm644YaMGjUqb7zxRpL3tjR65ZVXarU4AACoKzItAAANWW3m1VNPPTV33HFH7rnnnuywww4fObdDhw7p3LlznnnmmQ+dU1ZWljZt2lQ5AAA2Z9Ve6f63v/0tBxxwQNq2bZsXXnghJ554YrbZZptMmzYtL774Ym655Za6qBMAAGqNTAsAQENWW3m1WCzm1FNPzbRp0zJr1qx07dr1Pz7n9ddfz8svv5wOHTp83I8BALDZqPZK9zPPPDPHHntsnnnmmWyxxRal8aFDh+bee++t1eIAAKAu1FWmHTt2bAqFQkaOHFkaKxaLGT16dDp27JiWLVtm0KBBmT9//scpHwCATVxt5dVTTjklP/3pT3PrrbemdevWqaysTGVlZVauXJkkefvtt3P22WfngQceyAsvvJBZs2blkEMOyXbbbZcvfelLtf65AAA2VdVuus+ZMyff/OY31xv/xCc+kcrKylopCgAA6lJdZNo5c+Zk0qRJ6d27d5Xxyy+/POPHj88111yTOXPmpKKiIoMHD85bb71Vo/ehfkycODG9e/cubZ/ar1+/3HXXXaXzr732Wo499th07NgxrVq1yuc///mP3JIVAOCj1FZenThxYpYuXZpBgwalQ4cOpeMXv/hFkqRp06Z57LHHcuihh6Z79+455phj0r179zzwwANp3bp1rX0eAIBNXbW3l99iiy2ybNmy9cYXLFiQ7bffvlaKAgCAulTbmfbtt9/O8OHDc/311+eSSy4pjReLxUyYMCHnn39+DjvssCTJlClTUl5enltvvfUDL6TSMO2www657LLLsssuuyR573s89NBD8+ijj6Znz5754he/mObNm+e3v/1t2rRpk/Hjx+eAAw7IE088kS233LKeqwcAGpvayqvFYvEjz7ds2TJ33313tesDAKCqaq90P/TQQ/O9730va9asSZIUCoW89NJL+c53vpMvf/nLtV4gAADUttrOtKecckoOOuigHHDAAVXGFy5cmMrKygwZMqQ0VlZWloEDB+b+++//0NdbtWpVli1bVuWgfh1yyCH5whe+kO7du6d79+659NJLs9VWW+XBBx/MM888kwcffDATJ07M3nvvnR49euS6667L22+/nZ///Of1XToA0Ai5BgsA0LhUu+l+xRVX5B//+Efat2+flStXZuDAgdlll13SunXrXHrppXVRIwAA1KrazLRTp07NI488krFjx6537v2tP8vLy6uMl5eXf+S2oGPHjk3btm1LR6dOnapVE3Vr7dq1mTp1apYvX55+/fpl1apVSVLlfqtNmzZNixYtct9999VXmQBAI+YaLABA41Lt7eXbtGmT++67L3/+85/zyCOPZN26dfnUpz613qoeAABoqGor07788ss5/fTTM2PGjCoN139XKBSqPC4Wi+uN/atRo0blzDPPLD1etmyZxnsD8Nhjj6Vfv3555513stVWW2XatGnp2bNn1qxZk86dO2fUqFH5yU9+ki233DLjx49PZWVlFi1aVN9lAwCNkGuwAACNS7Wb7u/73Oc+l8997nO1WQsAAGxUHzfTzp07N4sXL85ee+1VGlu7dm3uvffeXHPNNVmwYEGS91a8d+jQoTRn8eLF661+/1dlZWUpKyurcV3UjR49emTevHl58803c9ttt+WYY47J7Nmz07Nnz9x222054YQTss0226Rp06Y54IADMnTo0PouGQBo5FyDBQBoHGrUdH/ooYcya9asLF68OOvWratybvz48bVSGAAA1KXayLT7779/HnvssSpjxx13XHbdddece+652WmnnVJRUZGZM2emT58+SZLVq1dn9uzZGTduXO18EDaaFi1aZJdddkmS9O3bN3PmzMmVV16Zn/zkJ9lrr70yb968LF26NKtXr87222+fffbZJ3379q3nqgGAxso1WACAxqPaTfcxY8bkggsuSI8ePVJeXl5lW8yP2iITAAAaitrKtK1bt06vXr2qjG255ZbZdtttS+MjR47MmDFj0q1bt3Tr1i1jxoxJq1atMmzYsNr5MNSbYrFYup/7+9q2bZskeeaZZ/Lwww/n+9//fn2UBgA0cq7BAgA0LtVuul955ZW56aabcuyxx9ZBOet75ZVXcu655+auu+7KypUr071799x4442lLTyLxWIuvvjiTJo0KUuWLMk+++yTa6+9NrvvvvtGqQ8AgMZnY2bac845JytXrsyIESNKeXXGjBlp3bp1nb83tee8887L0KFD06lTp7z11luZOnVqZs2alenTpydJfvWrX2X77bfPjjvumMceeyynn356vvjFL2bIkCH1XDkA0Bht7GuwAAB8PNVuujdp0iQDBgyoi1rWs2TJkgwYMCD77bdf7rrrrrRv3z7PPfdc2rVrV5pz+eWXZ/z48bn55pvTvXv3XHLJJRk8eHAWLFjgQiYAAB+oLjPtrFmzqjwuFAoZPXp0Ro8eXSfvx8bx2muv5aijjsqiRYvStm3b9O7dO9OnT8/gwYOTJIsWLcqZZ56Z1157LR06dMjRRx+dCy+8sJ6rBgAaq415DRYAgI+v2k33M844I9dee20mTJhQB+VUNW7cuHTq1CmTJ08ujXXp0qX052KxmAkTJuT888/PYYcdliSZMmVKysvLc+utt+ab3/xmndcIAEDjszEzLZuGG2+88SPPn3baaTnttNM2UjUAwKZOXgUAaFyq3XQ/++yzc9BBB2XnnXdOz54907x58yrnb7/99lor7o477siBBx6Yww8/PLNnz84nPvGJjBgxIieeeGKSZOHChamsrKyyZWNZWVkGDhyY+++//0Ob7qtWrapy78Vly5bVWs0AADR8GzPTAgBAdcmrAACNS5PqPuHUU0/NPffck+7du2fbbbdN27Ztqxy16fnnn8/EiRPTrVu33H333TnppJNy2mmn5ZZbbkmSVFZWJknKy8urPK+8vLx07oOMHTu2Ss2dOnWq1boBAGjYNmamBQCA6pJXAQAal2qvdL/lllty22235aCDDqqLeqpYt25d+vbtmzFjxiRJ+vTpk/nz52fixIk5+uijS/MKhUKV5xWLxfXG/tWoUaNy5plnlh4vW7ZM4x0AYDOyMTMt9avLd+6s7xJq7IXL/PMJAJsreRUAoHGp9kr3bbbZJjvvvHNd1LKeDh06pGfPnlXGdtttt7z00ktJkoqKiiRZb1X74sWL11v9/q/KysrSpk2bKgcAAJuPjZlpAQCguuRVAIDGpdpN99GjR+e73/1uVqxYURf1VDFgwIAsWLCgytjTTz+dzp07J0m6du2aioqKzJw5s3R+9erVmT17dvr371/n9QEA0DhtzEwLAADVJa8CADQu1d5e/qqrrspzzz2X8vLydOnSJc2bN69y/pFHHqm14s4444z0798/Y8aMyRFHHJGHHnookyZNyqRJk5K8t638yJEjM2bMmHTr1i3dunXLmDFj0qpVqwwbNqzW6gAAYNOyMTMtAABUl7wKANC4VLvp/sUvfrEOyvhge++9d6ZNm5ZRo0ble9/7Xrp27ZoJEyZk+PDhpTnnnHNOVq5cmREjRmTJkiXZZ599MmPGjLRu3Xqj1QkAQOOyMTMtAABUl7wKANC4VLvp/t3vfrcu6vhQBx98cA4++OAPPV8oFDJ69OiMHj164xUFAECjtrEzLQAAVIe8CgDQuFT7nu4AAAAAAAAAwHuqvdJ96623TqFQWG+8UChkiy22yC677JJjjz02xx13XK0UCAAAtU2mBQCgIZNXAQAal2o33S+66KJceumlGTp0aD796U+nWCxmzpw5mT59ek455ZQsXLgwJ598ct59992ceOKJdVEzAAB8LDItAAANmbwKANC4VLvpft999+WSSy7JSSedVGX8Jz/5SWbMmJHbbrstvXv3zlVXXSXwAQDQIMm0AAA0ZPIqAEDjUu17ut9999054IAD1hvff//9c/fddydJvvCFL+T555//+NUBAEAdkGkBAGjI5FUAgMal2k33bbbZJr/73e/WG//d736XbbbZJkmyfPnytG7d+uNXBwAAdUCmBQCgIZNXAQAal2pvL3/hhRfm5JNPzj333JNPf/rTKRQKeeihh/KHP/whP/7xj5MkM2fOzMCBA2u9WAAAqA0yLQAADZm8CgDQuFS76X7iiSemZ8+eueaaa3L77benWCxm1113zezZs9O/f/8kyVlnnVXrhQIAQG2RaQEAaMjkVQCAxqXaTfckGTBgQAYMGFDbtQAAwEYj0wIA0JDJqwAAjUeNmu7vW7lyZdasWVNlrE2bNh+rIAAA2JhkWgAAGjJ5FQCg4WtS3SesWLEi3/rWt9K+fftstdVW2XrrrascAADQ0Mm0AAA0ZPIqAEDjUu2m+7e//e38+c9/znXXXZeysrLccMMNufjii9OxY8fccsstdVEjAADUKpkWAICGTF4FAGhcqr29/O9+97vccsstGTRoUI4//vh89rOfzS677JLOnTvnZz/7WYYPH14XdQIAQK2RaQEAaMjkVQCAxqXaK93feOONdO3aNcl79w564403kiT77rtv7r333tqtDgAA6oBMCwBAQyavAgA0LtVuuu+000554YUXkiQ9e/bML3/5yyTv/fqyXbt2tVkbAADUCZkWAICGTF4FAGhcqt10P+644/J///d/SZJRo0aV7it0xhln5Nvf/natFwgAALVNpgUAoCGTVwEAGpdq39P9jDPOKP15v/32y1NPPZWHH344O++8c/bYY49aLQ4AAOqCTAsAQEMmrwIANC7VWum+Zs2a7Lfffnn66adLYzvuuGMOO+wwYQ8AgEZBpgUAoCGTVwEAGp9qNd2bN2+exx9/PIVCoa7qAQCAOiXTAgDQkMmrAACNT7Xv6X700UfnxhtvrItaAABgo5BpAQBoyORVAIDGpdr3dF+9enVuuOGGzJw5M3379s2WW25Z5fz48eNrrTgAAKgLMi0AAA2ZvAoA0LhUu+n++OOP51Of+lSSVLmvUBJbHgEA0CjItAAANGTyKgBA47JBTfe//e1v6dWrV5o0aZJ77rmnrmsCAIBaJ9MCANCQyasAAI3XBt3TvU+fPvnnP/+ZJNlpp53y+uuv12lRAABQ22RaAAAaMnkVAKDx2qCme7t27bJw4cIkyQsvvJB169bVaVEAAFDbZFoAABoyeRUAoPHaoO3lv/zlL2fgwIHp0KFDCoVC+vbtm6ZNm37g3Oeff75WCwQAgNog0wIA0JDJqwAAjdcGNd0nTZqUww47LM8++2xOO+20nHjiiWndunVd1wYAALVGpgUAoCGTVwEAGq8Naronyec///kkydy5c3P66acLfAAANDoyLQAADZm8CgDQOG1w0/19kydPros6AABgo5FpAQBoyORVAIDGpUl9FwAAAAAAAAAAjZWmOwAAAAAAAADUkKY7AAAAAAAAANTQBjXdP/WpT2XJkiVJku9973tZsWJFnRYFAAC1TaYFAKAhk1cBABqvDWq6P/nkk1m+fHmS5OKLL87bb79dp0UBAEBtk2kBAGjI5FUAgMar2YZM2nPPPXPcccdl3333TbFYzBVXXJGtttrqA+dedNFFtVogAADUBpkWAICGTF4FAGi8NqjpfvPNN+e73/1ufv/736dQKOSuu+5Ks2brP7VQKAh8AAA0SDItAAANmbwKANB4bVDTvUePHpk6dWqSpEmTJvnTn/6U9u3b12lhAABQm2RaAAAaMnkVAKDx2qCm+79at25dXdQBAAAbjUwLAEBDJq8CADQu1W66J8lzzz2XCRMm5Mknn0yhUMhuu+2W008/PTvvvHNt1wcAAHVCpgUAoCGTVwEAGo8m1X3C3XffnZ49e+ahhx5K796906tXr/z1r3/N7rvvnpkzZ9ZFjQAAUKtkWgAAGjJ5FQCgcan2SvfvfOc7OeOMM3LZZZetN37uuedm8ODBtVYcAADUBZkWAICGTF4FAGhcqr3S/cknn8wJJ5yw3vjxxx+fJ554olaKAgCAuiTTAgDQkMmrAACNS7Wb7ttvv33mzZu33vi8efPSvn372qgJAADqlEwLAEBDJq8CADQu1d5e/sQTT8w3vvGNPP/88+nfv38KhULuu+++jBs3LmeddVZd1AgAALVKpgUAoCGTVwEAGpdqN90vvPDCtG7dOj/84Q8zatSoJEnHjh0zevTonHbaabVeIAAA1DaZFgCAhkxeBQBoXKrddC8UCjnjjDNyxhln5K233kqStG7dutYLAwCAuiLTAgDQkMmrAACNS7Wb7v9K0AMAoLGTaQEAaMjkVQCAhq9JfRcAAAAAAAAAAI2VpjsAAAAAwCZo7Nix2XvvvdO6deu0b98+X/ziF7NgwYIqc4rFYkaPHp2OHTumZcuWGTRoUObPn19PFQMANE6a7gAAAAAAm6DZs2fnlFNOyYMPPpiZM2fm3XffzZAhQ7J8+fLSnMsvvzzjx4/PNddckzlz5qSioiKDBw8u3UseAID/rFpN9zVr1mS//fbL008/XVf1AABAnZJpAQBoyGozr06fPj3HHntsdt999+yxxx6ZPHlyXnrppcydOzfJe6vcJ0yYkPPPPz+HHXZYevXqlSlTpmTFihW59dZbP/b7AwBsLqrVdG/evHkef/zxFAqFuqoHAADqlEwLAEBDVpd5denSpUmSbbbZJkmycOHCVFZWZsiQIaU5ZWVlGThwYO6///5af38AgE1VtbeXP/roo3PjjTfWRS0AALBRyLQAADRkdZFXi8VizjzzzOy7777p1atXkqSysjJJUl5eXmVueXl56dwHWbVqVZYtW1blAADYnDWr7hNWr16dG264ITNnzkzfvn2z5ZZbVjk/fvz4WisOAADqgkwLAEBDVhd59Vvf+lb+9re/5b777lvv3L+vqi8Wix+50n7s2LG5+OKLq10DAMCmqtpN98cffzyf+tSnkmS9+wrZohMAgMZApgUAoCGr7bx66qmn5o477si9996bHXbYoTReUVGR5L0V7x06dCiNL168eL3V7/9q1KhROfPMM0uPly1blk6dOlW7LgCATUW1m+733HNPXdQBAAAbjUwLAEBDVlt5tVgs5tRTT820adMya9asdO3atcr5rl27pqKiIjNnzkyfPn2SvLfKfvbs2Rk3btyHvm5ZWVnKyspqpUYAgE1Bte/p/r5nn302d999d1auXJnkvQAHAACNiUwLAEBD9nHz6imnnJKf/vSnufXWW9O6detUVlamsrKy9HqFQiEjR47MmDFjMm3atDz++OM59thj06pVqwwbNqzWPw8AwKaq2k33119/Pfvvv3+6d++eL3zhC1m0aFGS5Otf/3rOOuusWi8QAABqm0wLAEBDVlt5deLEiVm6dGkGDRqUDh06lI5f/OIXpTnnnHNORo4cmREjRqRv37555ZVXMmPGjLRu3brWPxcAwKaq2k33M844I82bN89LL72UVq1alca/+tWvZvr06bVaHAAA1AWZFgCAhqy28mqxWPzA49hjjy3NKRQKGT16dBYtWpR33nkns2fPTq9evWrz4wAAbPKqfU/3GTNm5O67784OO+xQZbxbt2558cUXa60wAACoKzItAAANmbwKANC4VHul+/Lly6v8uvJ9//znP1NWVlYrRQEAQF2SaQEAaMjkVQCAxqXaTff/+q//yi233FJ6XCgUsm7duvzgBz/IfvvtV6vFAQBAXZBpAQBoyORVAIDGpdrby//gBz/IoEGD8vDDD2f16tU555xzMn/+/Lzxxhv5y1/+Uhc1AgBArZJpAQBoyORVAIDGpdor3Xv27Jm//e1v+fSnP53Bgwdn+fLlOeyww/Loo49m5513rosaAQCgVsm0AAA0ZPIqAEDjUu2V7klSUVGRiy++uLZrAQCAjUamBQCgIZNXAQAajxo13ZcsWZIbb7wxTz75ZAqFQnbbbbccd9xx2WabbWq7PgAAqBMyLQAADZm8CgDQeFR7e/nZs2ena9euueqqq7JkyZK88cYbueqqq9K1a9fMnj27LmoEAIBaJdMCANCQyasAAI1LtVe6n3LKKTniiCMyceLENG3aNEmydu3ajBgxIqecckoef/zxWi8SAABqk0wLAEBDJq8CADQu1V7p/txzz+Wss84qhb0kadq0ac4888w899xztVocAADUBZkWAICGTF4FAGhcqt10/9SnPpUnn3xyvfEnn3wye+65Z23UBAAAdUqmBQCgIZNXAQAalw3aXv5vf/tb6c+nnXZaTj/99Dz77LP5zGc+kyR58MEHc+211+ayyy6rmyoBAOBjkmkBAGjI5FUAgMarUCwWi/9pUpMmTVIoFPKfphYKhaxdu7bWittYli1blrZt22bp0qVp06ZN3b5ZoVC3r1+XPuD77/KdO+uhkNrxwmUH1XcJAFDnNmrOaeAac6aVVzeQvAoAjY68+v+RVzdAY8qqjTybflAWbSz1y9EA1JbqZJwNWum+cOHCWikMAADqi0wLAEBDJq8CADReG9R079y5c13XAQAAdUqmBQCgIZNXAQAarw1quv+7V155JX/5y1+yePHirFu3rsq50047rVYKAwCAulQbmXbixImZOHFiXnjhhSTJ7rvvnosuuihDhw5NkhSLxVx88cWZNGlSlixZkn322SfXXnttdt9991r9LAAAbHpcgwUAaDyq3XSfPHlyTjrppLRo0SLbbrttCv9yH51CoSDwAQDQ4NVWpt1hhx1y2WWXZZdddkmSTJkyJYceemgeffTR7L777rn88sszfvz43HzzzenevXsuueSSDB48OAsWLEjr1q3r5LMBAND4uQYLANC4VLvpftFFF+Wiiy7KqFGj0qRJk7qoCQAA6lRtZdpDDjmkyuNLL700EydOzIMPPpiePXtmwoQJOf/883PYYYclea8pX15enltvvTXf/OY3P9ZnAABg0+UaLABA41LtxLZixYp87WtfE/YAAGi06iLTrl27NlOnTs3y5cvTr1+/LFy4MJWVlRkyZEhpTllZWQYOHJj777//I19r1apVWbZsWZUDAIDNh2uwAACNS7VT2wknnJBf/epXdVELAABsFLWZaR977LFstdVWKSsry0knnZRp06alZ8+eqaysTJKUl5dXmV9eXl4692HGjh2btm3blo5OnTrVSq0AADQOrsECADQu1d5efuzYsTn44IMzffr0fPKTn0zz5s2rnB8/fnytFQcAAHWhNjNtjx49Mm/evLz55pu57bbbcswxx2T27Nml8/96/80kKRaL6439u1GjRuXMM88sPV62bJnGOwDAZsQ1WACAxqXaTfcxY8bk7rvvTo8ePZJUvYj4ny4eAgBAQ1CbmbZFixbZZZddkiR9+/bNnDlzcuWVV+bcc89NklRWVqZDhw6l+YsXL15v9fu/KysrS1lZWbXqAABg0+EaLABA41Ltpvv48eNz00035dhjj62DcgAAoO7VZaYtFotZtWpVunbtmoqKisycOTN9+vRJkqxevTqzZ8/OuHHjav19AQDYdLgGCwDQuFS76V5WVpYBAwbURS0AALBR1FamPe+88zJ06NB06tQpb731VqZOnZpZs2Zl+vTpKRQKGTlyZMaMGZNu3bqlW7duGTNmTFq1apVhw4bVwqcAAGBT5RosAEDj0qS6Tzj99NNz9dVX10UtAACwUdRWpn3ttddy1FFHpUePHtl///3z17/+NdOnT8/gwYOTJOecc05GjhyZESNGpG/fvnnllVcyY8aMtG7d+mO/NwAAmy7XYAEAGpdqr3R/6KGH8uc//zm///3vs/vuu6d58+ZVzt9+++21VhwAANSF2sq0N95440eeLxQKGT16dEaPHl3TUgEA2Ay5BgsA0LhUu+nerl27HHbYYXVRCwAAbBQyLQAADZm8CgDQuFS76T558uS6qAMAADYamRYAgIZMXgUAaFyqfU93AAAAAAAAAOA91V7p3rVr1xQKhQ89//zzz3+sggAAoK7JtAAANGTyKgBA41LtpvvIkSOrPF6zZk0effTRTJ8+Pd/+9rdrqy4AAKgzMi0AAA2ZvAoA0LhUu+l++umnf+D4tddem4cffvhjFwQAAHVNpgUAoCGTVwEAGpdau6f70KFDc9ttt9XWywEAwEYn0wIA0JDJqwAADVOtNd1//etfZ5tttqmtlwMAgI1OpgUAoCGTVwEAGqZqby/fp0+fFAqF0uNisZjKysr84x//yHXXXVerxQEAQF2QaQEAaMjkVQCAxqXaTfcvfvGLVR43adIk22+/fQYNGpRdd921tuoCAIA6I9MCANCQyasAAI1LtZvu3/3ud+uiDgAA2GhkWgAAGjJ5FQCgcam1e7oDAAAAAAAAwOZmg1e6N2nSpMp9hD5IoVDIu++++7GLAgCAuiDTAgDQkMmrAACN0wY33adNm/ah5+6///5cffXVKRaLtVIUAADUBZkWAICGTF4FAGicNrjpfuihh6439tRTT2XUqFH53e9+l+HDh+f73/9+rRYHAAC1SaYFAKAhk1cBABqnGt3T/dVXX82JJ56Y3r1759133828efMyZcqU7LjjjrVdHwAA1AmZFgCAhkxeBQBoPKrVdF+6dGnOPffc7LLLLpk/f37+9Kc/5Xe/+1169epVV/UBAECtkmkBAGjI5FUAgMZng7eXv/zyyzNu3LhUVFTk5z//+QdudQQAAA2ZTAsAQEMmrwIANE4b3HT/zne+k5YtW2aXXXbJlClTMmXKlA+cd/vtt9dacQAAUJtkWgAAGjJ5FQCgcdrgpvvRRx+dQqFQl7UA8P9j787joiz3/4+/B1QExQ1kc0E095XUzC1xw5BMS22xTCtL0xbU9GSeihaX6mRWnOxYSnbK9NdxybIUK9dMUwxzXxJxxX0DFVSu3x8d5ytHMEDlnnt4PR+P+5H3fQ32vmZk5jPzmeu+AQA3FTUtAAAAXBn1KgAAgD3luen+6aef3sQYAAAAwM1HTQsAAABXRr0KAABgTx5WBwAAAAAAAAAAAAAAwK5ougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFBBNdwAAAAAAAAAAAAAACshWTfdx48bJ4XAoJibGecwYo9jYWIWEhMjb21sRERHatGmTdSEBAAAAAAAAAAAAAEWGbZrua9as0eTJk9WoUaNsx9966y1NmDBBcXFxWrNmjYKCgtS5c2edOXPGoqQAAAAAgMI0btw4NW/eXL6+vgoICFCPHj20bdu2bLfp37+/HA5Htu3222+3KDEAAAAAAHAntmi6p6Wl6aGHHtLHH3+s8uXLO48bYzRx4kSNHj1a9957rxo0aKBp06bp7Nmzmj59uoWJAQAAAACFZenSpRoyZIhWrVqlRYsW6eLFi4qMjFR6enq229155506ePCgc/vuu+8sSgwAAAAAANxJMasD5MWQIUMUHR2tTp066Y033nAeT05OVmpqqiIjI53HvLy81K5dO61cuVIDBw7M8e/LyMhQRkaGc//06dM3LzwAAAAA4KZasGBBtv34+HgFBAQoMTFRd9xxh/O4l5eXgoKCCjseAAAAAABwcy6/0n3GjBlat26dxo0bd9VYamqqJCkwMDDb8cDAQOdYTsaNG6eyZcs6typVqtzY0AAAAAAAy5w6dUqSVKFChWzHlyxZooCAANWqVUtPPPGEDh8+bEU8AAAAAADgZly66b53714999xz+vzzz1WyZMlcb+dwOLLtG2OuOnalUaNG6dSpU85t7969NywzAAAAAMA6xhgNGzZMbdq0UYMGDZzHo6Ki9MUXX+inn37SO++8ozVr1qhDhw7ZzoIGAAAAAABQEC59evnExEQdPnxYTZs2dR67dOmSli1bpri4OG3btk3Snyveg4ODnbc5fPjwVavfr+Tl5SUvL6+bFxwAAAAAYImnn35av//+u1asWJHt+P333+/8c4MGDdSsWTOFhoZq/vz5uvfeews7JgAAAAAAcCMuvdK9Y8eO2rBhg5KSkpxbs2bN9NBDDykpKUnVq1dXUFCQFi1a5PyZzMxMLV26VK1atbIwOQAAAACgsD3zzDOaN2+eFi9erMqVK1/ztsHBwQoNDdWOHTsKKR0AAAAAAHBXLr3S3dfXN9vpACWpVKlS8vPzcx6PiYnR2LFjVbNmTdWsWVNjx46Vj4+P+vTpY0VkAAAAAEAhM8bomWee0Zw5c7RkyRKFhYX95c8cO3ZMe/fuzXbWNAAAAAAAgIJw6aZ7XowcOVLnzp3T4MGDdeLECbVo0UIJCQny9fW1OhoAAAAAoBAMGTJE06dP19dffy1fX1+lpqZKksqWLStvb2+lpaUpNjZWPXv2VHBwsHbv3q0XX3xR/v7+uueeeyxODwAAAAAA7M6lTy+fkyVLlmjixInOfYfDodjYWB08eFDnz5/X0qVLr1odDwAAAAD4P+PGjVPz5s3l6+urgIAA9ejRQ9u2bcv19gMHDpTD4cj2XsyVTJo0SadOnVJERISCg4Od28yZMyVJnp6e2rBhg7p3765atWqpX79+qlWrln755Re+sA0AAAAAAK6b7Ve6AwAAAADyZ+nSpRoyZIiaN2+uixcvavTo0YqMjNTmzZtVqlSpbLedO3euVq9erZCQEIvS/jVjzDXHvb29tXDhwkJKAwAAAAAAihqa7gAAAABQxCxYsCDbfnx8vAICApSYmKg77rjDeXz//v16+umntXDhQkVHRxd2TAAAAAAAAFug6Q4AAAAARdypU6ckSRUqVHAey8rKUt++fTVixAjVr1//pv2/q70w/6b93Tfb7vF8EQEAAAAAANjwmu4AAAAAgBvHGKNhw4apTZs2atCggfP4m2++qWLFiunZZ5+1MB0AALhey5YtU7du3RQSEiKHw6G5c+dmG+/fv78cDke27fbbb7cmLAAAgE2x0h0AAAAAirCnn35av//+u1asWOE8lpiYqPfee0/r1q2Tw+GwMB0AALhe6enpaty4sR599FH17Nkzx9vceeedio+Pd+6XKFGisOIBAAC4BZruAAAAAFBEPfPMM5o3b56WLVumypUrO48vX75chw8fVtWqVZ3HLl26pOHDh2vixInavXu3BWkBAEBBREVFKSoq6pq38fLyUlBQUCElAgAAcD803QEAAACgiDHG6JlnntGcOXO0ZMkShYWFZRvv27evOnXqlO1Yly5d1LdvXz366KOFGRUAABSCJUuWKCAgQOXKlVO7du00ZswYBQQE5Hr7jIwMZWRkOPdPnz5dGDEBAABcFk13AAAAAChihgwZounTp+vrr7+Wr6+vUlNTJUlly5aVt7e3/Pz85Ofnl+1nihcvrqCgINWuXduKyAAA4CaJiopS7969FRoaquTkZL300kvq0KGDEhMT5eXllePPjBs3Tq+++mohJwUAAHBdHlYHAAAAAAAUrkmTJunUqVOKiIhQcHCwc5s5c6bV0QAAQCG7//77FR0drQYNGqhbt276/vvvtX37ds2fPz/Xnxk1apROnTrl3Pbu3VuIiQEAAFwPK90BAAAAoIgxxuT7Z7iOOwAARUNwcLBCQ0O1Y8eOXG/j5eWV6yp4AACAooiV7gAAAAAAAAAASdKxY8e0d+9eBQcHWx0FAGChZcuWqVu3bgoJCZHD4dDcuXNzve3AgQPlcDg0ceLEQssHuBqa7gAAAAAAAADgptLS0pSUlKSkpCRJUnJyspKSkrRnzx6lpaXp+eef1y+//KLdu3dryZIl6tatm/z9/XXPPfdYGxwAYKn09HQ1btxYcXFx17zd3LlztXr1aoWEhBRSMsA1cXp5AAAAALCJai/kfm1VV7d7fLTVEQAAKJLWrl2r9u3bO/eHDRsmSerXr58mTZqkDRs26LPPPtPJkycVHBys9u3ba+bMmfL19bUqMgDABURFRSkqKuqat9m/f7+efvppLVy4UNHRvOdD0UbTHQAAAAAAAADcVEREhIwxuY4vXLiwENMAANxFVlaW+vbtqxEjRqh+/fpWxwEsx+nlAQAAAAAAAAAAAOTZm2++qWLFiunZZ5+1OgrgEljpDgAAAAAAAAAAACBPEhMT9d5772ndunVyOBxWxwFcAivdAQAAAAAAAAAAAOTJ8uXLdfjwYVWtWlXFihVTsWLFlJKSouHDh6tatWpWxwMswUp3AAAAAAAAAAAAAHnSt29fderUKduxLl26qG/fvnr00UctSgVYi6Y7AAAAAAAAAAAAAKe0tDTt3LnTuZ+cnKykpCRVqFBBVatWlZ+fX7bbFy9eXEFBQapdu3ZhRwVcAk13AAAAAAAAAAAAAE5r165V+/btnfvDhg2TJPXr10+ffvqpRakA10XTHQAAAAAAAAAAAIBTRESEjDF5vv3u3btvXhjABjysDgAAAAAAAAAAAAAAgF2x0h0AAAAAAAAAAABwI9VemG91hDzbPT7a6gjAdWOlOwAAAAAAAAAAAAAABUTTHQAAAAAAAAAAAACAAqLpDgAAAAAAAAAAAMBtLFu2TN26dVNISIgcDofmzp2bbTw2NlZ16tRRqVKlVL58eXXq1EmrV6+2JizcAk13AAAAAAAAAAAAAG4jPT1djRs3VlxcXI7jtWrVUlxcnDZs2KAVK1aoWrVqioyM1JEjRwo5KdxFMasDAAAAAAAAAAAAAMCNEhUVpaioqFzH+/Tpk21/woQJmjJlin7//Xd17NjxZseDG2KlOwAAAAAAAAAAAIAiKTMzU5MnT1bZsmXVuHFjq+PApljpDgAAAAAAAAAAAKBI+fbbb/XAAw/o7NmzCg4O1qJFi+Tv7291LNgUK90BAAAAAAAAAAAAFCnt27dXUlKSVq5cqTvvvFP33XefDh8+bHUs2BRNdwAAAAAAAAAAAABFSqlSpXTLLbfo9ttv15QpU1SsWDFNmTLF6liwKZruAAAAAAAAAAAAAIo0Y4wyMjKsjgGb4pruAAAAAAAAAAAAANxGWlqadu7c6dxPTk5WUlKSKlSoID8/P40ZM0Z33323goODdezYMX344Yfat2+fevfubWFq2BlNdwAAAAAAAAAAAABuY+3atWrfvr1zf9iwYZKkfv366aOPPtLWrVs1bdo0HT16VH5+fmrevLmWL1+u+vXrWxUZNkfTHQAAAAAAAAAAAIDbiIiIkDEm1/HZs2cXYhoUBVzTHQAAAAAAAAAAAACAAmKlOwAAAAAAAAAAAACXUe2F+VZHyJPd46OtjgAXwUp3AAAAAAAAAAAAAAAKiKY7AAAAAAAAAAAAAAAFRNMdAAAAAAAAAAAAAIACoukOIE8mTZqkRo0aqUyZMipTpoxatmyp77//3jlujFFsbKxCQkLk7e2tiIgIbdq0ycLEAAAAAAAAAAAAwM1H0x1AnlSuXFnjx4/X2rVrtXbtWnXo0EHdu3d3NtbfeustTZgwQXFxcVqzZo2CgoLUuXNnnTlzxuLkAAAAAAAAAAAAwM1D0x1AnnTr1k1du3ZVrVq1VKtWLY0ZM0alS5fWqlWrZIzRxIkTNXr0aN17771q0KCBpk2bprNnz2r69OlWRwcAAAAAAAAAAABuGpruAPLt0qVLmjFjhtLT09WyZUslJycrNTVVkZGRztt4eXmpXbt2WrlypYVJAQAAAAAAAAAAgJuLpjuAPNuwYYNKly4tLy8vDRo0SHPmzFG9evWUmpoqSQoMDMx2+8DAQOcYAADuaNy4cWrevLl8fX0VEBCgHj16aNu2bdluY4xRbGysQkJC5O3trYiICOflWQAAAAAAAADYH013AHlWu3ZtJSUladWqVXrqqafUr18/bd682TnucDiy3d4Yc9UxAADcydKlSzVkyBCtWrVKixYt0sWLFxUZGan09HTnbd566y1NmDBBcXFxWrNmjYKCgtS5c2edOXPGwuQAAAAAAAAAbhSa7sBNkpeVb4cOHVL//v0VEhIiHx8f3XnnndqxY4dFif9aiRIldMstt6hZs2YaN26cGjdurPfee09BQUGSdNWq9sOHD1+1+h0AAHeyYMEC9e/fX/Xr11fjxo0VHx+vPXv2KDExUdKfX0CbOHGiRo8erXvvvVcNGjTQtGnTdPbsWU2fPt3i9AAAAAAAAABuBJruwE3yVyvfjDHq0aOHdu3apa+//lq//fabQkND1alTp2yr41yZMUYZGRkKCwtTUFCQFi1a5BzLzMzU0qVL1apVKwsTAgBQuE6dOiVJqlChgiQpOTlZqampioyMdN7Gy8tL7dq108qVK3P9ezIyMnT69OlsGwAAAAAAAADXVMzqAIC7WrBgQbb9+Ph4BQQEKDExUXfccYd27NihVatWaePGjapfv74k6cMPP1RAQIC+/PJLDRgwwIrYuXrxxRcVFRWlKlWq6MyZM5oxY4aWLFmiBQsWyOFwKCYmRmPHjlXNmjVVs2ZNjR07Vj4+PurTp4/V0QEAKBTGGA0bNkxt2rRRgwYNJP3fWWD+98wvgYGBSklJyfXvGjdunF599dWbFxYAAAAAAADADUPTHSgk/7vyLSMjQ5JUsmRJ5208PT1VokQJrVixwuWa7ocOHVLfvn118OBBlS1bVo0aNdKCBQvUuXNnSdLIkSN17tw5DR48WCdOnFCLFi2UkJAgX19fi5MDAFA4nn76af3+++9asWLFVWMOhyPbvjHmqmNXGjVqlIYNG+bcP336tKpUqXLjwgIAAAAAAAC4YWi6A4Ugp5VvderUUWhoqEaNGqV//etfKlWqlCZMmKDU1FQdPHjQ4sRXmzJlyjXHHQ6HYmNjFRsbWziBAABwIc8884zmzZunZcuWqXLlys7jQUFBkv5c8R4cHOw8fvjw4atWv1/Jy8tLXl5eNy8wAAAAAAAAgBuGa7oDheDyyrcvv/zSeax48eKaNWuWtm/frgoVKsjHx0dLlixRVFSUPD09LUwLAADyyhijp59+WrNnz9ZPP/2ksLCwbONhYWEKCgrSokWLnMcyMzO1dOlStWrVqrDjAgAAAAAAALgJWOkO3GS5rXyTpKZNmyopKUmnTp1SZmamKlasqBYtWqhZs2YWpQUAAPkxZMgQTZ8+XV9//bV8fX2d13AvW7asvL295XA4FBMTo7Fjx6pmzZqqWbOmxo4dKx8fH/Xp08fi9AAAAAAAAABuBJruwE1ijNEzzzyjOXPmaMmSJVetfLtS2bJlJUk7duzQ2rVr9frrr9+wHNVemH/D/q7Ctnt8tNURAAC4pkmTJkmSIiIish2Pj49X//79JUkjR47UuXPnNHjwYJ04cUItWrRQQkKCfH19CzktAAAAAAAAgJuBpjtwk/zVyjdJ+uqrr1SxYkVVrVpVGzZs0HPPPacePXooMjLSyugAACCPjDF/eRuHw6HY2FjFxsbe/EAAAAAAAAAACh1Nd+AmycvKt4MHD2rYsGE6dOiQgoOD9cgjj+ill14q5KQAAAAAAAAAAAAACoqmO3CT5GXl27PPPqtnn322ENIAAAAAAAAAAAAAuBk8rA4AAAAAAAAAAAAAAIBd0XQHAAAAAAAAAAAAAKCAOL08cIVqL8y3OsJ12T0+2uoIAAAAAAAAAAAAQJHCSncAAAAAAAAAAAAAAAqIpjsAAAAAAAAAAAAAAAVE0x0AAAAAAAAAAAAAgAKi6Q4AAAAAAAAAAAAAQAHRdAcAAAAAAAAAAAAAoIBougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFBBNdwAAAAAAAAAAAAAACoimOwAAAAAAAAAAAAAABUTTHQAAAAAAAAAAwA0tW7ZM3bp1U0hIiBwOh+bOnZtt3Bij2NhYhYSEyNvbWxEREdq0aZM1YQHAxmi6AwAAAAAAAAAAuKH09HQ1btxYcXFxOY6/9dZbmjBhguLi4rRmzRoFBQWpc+fOOnPmTCEnBQB7K2Z1AAAAAAAAAAAAANx4UVFRioqKynHMGKOJEydq9OjRuvfeeyVJ06ZNU2BgoKZPn66BAwcWZlQAsDVWugMAAAAAAAAAABQxycnJSk1NVWRkpPOYl5eX2rVrp5UrV1qYDADsh6Y7AAAAAAAAAABAEZOamipJCgwMzHY8MDDQOQYAyBua7gAAAAAAAAAAAEWUw+HItm+MueoYAODaaLoDAAAAAAAAAAAUMUFBQZJ01ar2w4cPX7X6HQBwbTTdAQAAAAAAAAAAipiwsDAFBQVp0aJFzmOZmZlaunSpWrVqZWEyALAfmu4AAAAAAAAA4KaWLVumbt26KSQkRA6HQ3Pnzs02boxRbGysQkJC5O3trYiICG3atMmasABuuLS0NCUlJSkpKUmSlJycrKSkJO3Zs0cOh0MxMTEaO3as5syZo40bN6p///7y8fFRnz59rA0OADZD0x0AAAAAAAAA3FR6eroaN26suLi4HMffeustTZgwQXFxcVqzZo2CgoLUuXNnnTlzppCTArgZ1q5dq/DwcIWHh0uShg0bpvDwcL388suSpJEjRyomJkaDBw9Ws2bNtH//fiUkJMjX19fK2ABgO8WsDgAAAAAAAAAAuDmioqIUFRWV45gxRhMnTtTo0aN17733SpKmTZumwMBATZ8+XQMHDizMqABugoiICBljch13OByKjY1VbGxs4YUCADfESncAAAAAAAAAKIKSk5OVmpqqyMhI5zEvLy+1a9dOK1euzPXnMjIydPr06WwbAABAUcZKdwAAAAAAAAAoglJTUyVJgYGB2Y4HBgYqJSUl158bN26cXn311ZuaDcD/qfbCfKsj5Mnu8dFWRwAAy7DSHQAAAAAAAACKMIfDkW3fGHPVsSuNGjVKp06dcm579+692REBAABcGivdAQAAAAAAAKAICgoKkvTnivfg4GDn8cOHD1+1+v1KXl5e8vLyuun5AAAA7IKV7gAAAAAAAABQBIWFhSkoKEiLFi1yHsvMzNTSpUvVqlUrC5MBgHs6c+aMYmJiFBoaKm9vb7Vq1Upr1qyxOhaAG4CV7gAAAAAAAADgptLS0rRz507nfnJyspKSklShQgVVrVpVMTExGjt2rGrWrKmaNWtq7Nix8vHxUZ8+fSxMDQDuacCAAdq4caP+/e9/KyQkRJ9//rk6deqkzZs3q1KlSlbHA3AdaLoDAAAAAAAAgJtau3at2rdv79wfNmyYJKlfv3769NNPNXLkSJ07d06DBw/WiRMn1KJFCyUkJMjX19eqyADgls6dO6dZs2bp66+/1h133CFJio2N1dy5czVp0iS98cYbFicEcD1ougMAAAAAAACAm4qIiJAxJtdxh8Oh2NhYxcbGFl4oACiCLl68qEuXLqlkyZLZjnt7e2vFihUWpQJwo3BNdwAAAAAAAAAAAOAm8vX1VcuWLfX666/rwIEDunTpkj7//HOtXr1aBw8etDoegOtE0x0AAAAAAAAAAAC4yf7973/LGKNKlSrJy8tL77//vvr06SNPT0+rowG4TjTdAQAAAAAAAAAAgJusRo0aWrp0qdLS0rR37179+uuvunDhgsLCwqyOBuA60XQHAAAAAAAAAAAACkmpUqUUHBysEydOaOHCherevbvVkQBcp2JWBwAAAAAAAAAAAADc3cKFC2WMUe3atbVz506NGDFCtWvX1qOPPmp1NADXiZXuAAAAAAAAAAAAwE126tQpDRkyRHXq1NEjjzyiNm3aKCEhQcWLF7c6GoDrxEp3AAAAAAAAAAAA4Ca77777dN9991kdA8BNwEp3AAAAAAAAAAAAAAAKiJXuAAAAAAAAAAAAwP+o9sJ8qyPkye7x0VZHAIo8VroDAAAAAAAAAAAAAFBANN0BAAAAAAAAAAAAACggmu4AAAAAAAAAAABweRcvXtTf//53hYWFydvbW9WrV9drr72mrKwsq6MBKOJougMAAAAAAMDtLFu2TN26dVNISIgcDofmzp2bbTw2NlZ16tRRqVKlVL58eXXq1EmrV6+2JiwAAMiTN998Ux999JHi4uK0ZcsWvfXWW3r77bf1wQcfWB0NQBFH0x0AAAAAAABuJz09XY0bN1ZcXFyO47Vq1VJcXJw2bNigFStWqFq1aoqMjNSRI0cKOSkAAMirX375Rd27d1d0dLSqVaumXr16KTIyUmvXrrU6GoAirpjVAQAAAAAAAIAbLSoqSlFRUbmO9+nTJ9v+hAkTNGXKFP3+++/q2LHjzY4HAAAKoE2bNvroo4+0fft21apVS+vXr9eKFSs0ceJEq6MBKOJougMAAAAAAKBIy8zM1OTJk1W2bFk1btzY6jgAACAXf/vb33Tq1CnVqVNHnp6eunTpksaMGaMHH3zQ6mgAijia7gAAAAAAACiSvv32Wz3wwAM6e/asgoODtWjRIvn7+1sdCwAA5GLmzJn6/PPPNX36dNWvX19JSUmKiYlRSEiI+vXrZ3U8AEUYTXcAAAAAAAAUSe3bt1dSUpKOHj2qjz/+WPfdd59Wr16tgIAAq6MBAIAcjBgxQi+88IIeeOABSVLDhg2VkpKicePG0XQHYCkPqwMAAAAAAAAAVihVqpRuueUW3X777ZoyZYqKFSumKVOmWB0LAADk4uzZs/LwyN7a8vT0VFZWlkWJAOBPrHQHAAAAAAAAJBljlJGRYXUMAACQi27dumnMmDGqWrWq6tevr99++00TJkzQY489ZnU0AEWcS690HzdunJo3by5fX18FBASoR48e2rZtW7bbGGMUGxurkJAQeXt7KyIiQps2bbIoMQAAAAAAAFxBWlqakpKSlJSUJElKTk5WUlKS9uzZo/T0dL344otatWqVUlJStG7dOg0YMED79u1T7969rQ0OAABy9cEHH6hXr14aPHiw6tatq+eff14DBw7U66+/bnU0AEWcSzfdly5dqiFDhmjVqlVatGiRLl68qMjISKWnpztv89Zbb2nChAmKi4vTmjVrFBQUpM6dO+vMmTMWJgcAAAAAAICV1q5dq/DwcIWHh0uShg0bpvDwcL388svy9PTU1q1b1bNnT9WqVUt33XWXjhw5ouXLl6t+/foWJwcAALnx9fXVxIkTlZKSonPnzumPP/7QG2+8oRIlSlgdDUAR59Knl1+wYEG2/fj4eAUEBCgxMVF33HGHjDGaOHGiRo8erXvvvVeSNG3aNAUGBmr69OkaOHCgFbEBAAAAAABgsYiICBljch2fPXt2IaYBAAAA4M5ceqX7/zp16pQkqUKFCpL+PC1YamqqIiMjnbfx8vJSu3bttHLlylz/noyMDJ0+fTrbBgAAAAAAAAAAAABAfrn0SvcrGWM0bNgwtWnTRg0aNJAkpaamSpICAwOz3TYwMFApKSm5/l3jxo3Tq6++evPCAgAAAAAAIN+qvTDf6ggFtnt8tNURAABwOXZ6bee1HMD1sM1K96efflq///67vvzyy6vGHA5Htn1jzFXHrjRq1CidOnXKue3du/eG5wUAAAAAAAAAAAAAuD9bNN2feeYZzZs3T4sXL1blypWdx4OCgiT934r3yw4fPnzV6vcreXl5qUyZMtk2AAAAAAAAAACAv1KtWjU5HI6rtiFDhlgdDQBgEZduuhtj9PTTT2v27Nn66aefFBYWlm08LCxMQUFBWrRokfNYZmamli5dqlatWhV2XAAAAAAAAAAA4ObWrFmjgwcPOrfLPYrevXtbnAwAYBWXvqb7kCFDNH36dH399dfy9fV1rmgvW7asvL295XA4FBMTo7Fjx6pmzZqqWbOmxo4dKx8fH/Xp08fi9AAAAAAAAAAAwN1UrFgx2/748eNVo0YNtWvXzqJEAACruXTTfdKkSZKkiIiIbMfj4+PVv39/SdLIkSN17tw5DR48WCdOnFCLFi2UkJAgX1/fQk4LAAAAAAAAAACKkszMTH3++ecaNmyYHA6H1XEAABZx+dPL57RdbrhLksPhUGxsrA4ePKjz589r6dKlatCggXWhAQAAAAC4TsuWLVO3bt0UEhIih8OhuXPnZhufPXu2unTpIn9/fzkcDiUlJVmSEwAAoKibO3euTp48ma1vAQAoely66Q4AAAAAQFGUnp6uxo0bKy4uLtfx1q1ba/z48YWcDAAAAFeaMmWKoqKiFBISYnUUAICFXPr08gAAAAAAFEVRUVGKiorKdbxv376SpN27dxdSIgAAAPyvlJQU/fDDD5o9e7bVUQAAFmOlOwAAAAAAAAAAQD7Fx8crICBA0dHRVkcBAFiMpjsAAAAAAAAAAEA+ZGVlKT4+Xv369VOxYpxUGACKOpruAAAAAAAAAAAA+fDDDz9oz549euyxx6yOAgBwAXz9CgAAAAAAAAAAIB8iIyNljLE6BgDARbDSHQAAAAAAAAAAAACAAmKlOwAAAAAALiYtLU07d+507icnJyspKUkVKlRQ1apVdfz4ce3Zs0cHDhyQJG3btk2SFBQUpKCgIEsyAwAAAABQVNF0BwAAAADAxaxdu1bt27d37g8bNkyS1K9fP3366aeaN2+eHn30Uef4Aw88IEl65ZVXFBsbW6hZAQAAXF21F+ZbHSHPdo+PtjoCAKAAOL08AAAAAAAuJiIiQsaYq7ZPP/1UktS/f/8cx2m4o6CWLVumbt26KSQkRA6HQ3Pnzs02fvnfV0hIiLy9vRUREaFNmzZZExYAAAAAXAxNdwAAAAAAgCIuPT1djRs3VlxcXI7jb731liZMmKC4uDitWbNGQUFB6ty5s86cOVPISQEAAADA9XB6eQAAAAAAgCIuKipKUVFROY4ZYzRx4kSNHj1a9957ryRp2rRpCgwM1PTp0zVw4MDCjAoAAAAALoemOwAAAAAAN4idrhf6v7h+KHKTnJys1NRURUZGOo95eXmpXbt2WrlyJU13AAAAAEUep5cHAAAAAABArlJTUyVJgYGB2Y4HBgY6xwAAAACgKKPpDgAAAAAAgL/kcDiy7RtjrjoGAAAAAEURTXcAAAAAAADkKigoSJKuWtV++PDhq1a/AwAAAEBRRNMdAAAAAAAAuQoLC1NQUJAWLVrkPJaZmamlS5eqVatWFiYDAAAAANdA0x0AAAC4DsuWLVO3bt0UEhIih8OhuXPnZhs3xig2NlYhISHy9vZWRESENm3aZE1YAABykZaWpqSkJCUlJUmSkpOTlZSUpD179sjhcCgmJkZjx47VnDlztHHjRvXv318+Pj7q06ePtcEBAAAAwAXQdAcAAACuQ3p6uho3bqy4uLgcx9966y1NmDBBcXFxWrNmjYKCgtS5c2edOXOmkJMCAJC7tWvXKjw8XOHh4ZKkYcOGKTw8XC+//LIkaeTIkYqJidHgwYPVrFkz7d+/XwkJCfL19bUyNgAAAAC4hGJWBwAAAADsLCoqSlFRUTmOGWM0ceJEjR49Wvfee68kadq0aQoMDNT06dM1cODAwowKAECuIiIiZIzJddzhcCg2NlaxsbGFFwoAAAAAbIKV7gAAAMBNkpycrNTUVEVGRjqPeXl5qV27dlq5cmWuP5eRkaHTp09n2wAAAAAAAAC4Jla6AwAAADdJamqqJCkwMDDb8cDAQKWkpOT6c+PGjdOrr756U7MBANxDtRfmWx2hwHaPj7Y6AgAAAADcEKx0BwAAAG4yh8ORbd8Yc9WxK40aNUqnTp1ybnv37r3ZEQEAAAAAAAAUECvdAQAAgJskKChI0p8r3oODg53HDx8+fNXq9yt5eXnJy8vrpucDAAAAAAAAcP1Y6Q4AAADcJGFhYQoKCtKiRYucxzIzM7V06VK1atXKwmQAAAAAAAAAbhRWugMAAADXIS0tTTt37nTuJycnKykpSRUqVFDVqlUVExOjsWPHqmbNmqpZs6bGjh0rHx8f9enTx8LUAAAAAAAAAG4UVroDAAAA12Ht2rUKDw9XeHi4JGnYsGEKDw/Xyy+/LEkaOXKkYmJiNHjwYDVr1kz79+9XQkKCfH19rYwNAAAAAAAAG4iNjZXD4ci2Xb6kIVwHK90BAACA6xARESFjTK7jDodDsbGxio2NLbxQAAAAAAAAcBv169fXDz/84Nz39PS0MA1yQtMdAAAAAAAAAAAAAFxUsWLFWN3u4ji9PAAAAAAAAAAAAAC4qB07digkJERhYWF64IEHtGvXLqsj4X/QdAcAAAAAAAAAAAAAF9SiRQt99tlnWrhwoT7++GOlpqaqVatWOnbsmNXRcAVOLw8AAAAAAAAAAAAALigqKsr554YNG6ply5aqUaOGpk2bpmHDhlmYDFdipTsAAAAAAAAAAAAA2ECpUqXUsGFD7dixw+oouAJNdwAAAAAAAAAAAACwgYyMDG3ZskXBwcFWR8EVaLoDAAAAAAAAQBEVGxsrh8ORbQsKCrI6FgAA+K/nn39eS5cuVXJyslavXq1evXrp9OnT6tevn9XRcAWu6Q4AAAAAAAAARVj9+vX1ww8/OPc9PT0tTAMAAK60b98+Pfjggzp69KgqVqyo22+/XatWrVJoaKjV0XAFmu4AAAAAAAAAUIQVK1aM1e0AALioGTNmWB0BecDp5QEAAAAAAK5TtWrVrjo9s8Ph0JAhQ6yOBgB/aceOHQoJCVFYWJgeeOAB7dq165q3z8jI0OnTp7NtAAAARRkr3QEAAAAAAK7TmjVrdOnSJef+xo0b1blzZ/Xu3dvCVADw11q0aKHPPvtMtWrV0qFDh/TGG2+oVatW2rRpk/z8/HL8mXHjxunVV18t5KQAANhDtRfmWx0hz3aPj7Y6gttgpTsAAAAAAMB1qlixooKCgpzbt99+qxo1aqhdu3ZWRwOAa4qKilLPnj3VsGFDderUSfPn/9komDZtWq4/M2rUKJ06dcq57d27t7DiAgAAuCRWugMAAAAAANxAmZmZ+vzzzzVs2DA5HA6r4wBAvpQqVUoNGzbUjh07cr2Nl5eXvLy8CjEVAACAa2OlOwAAAAAAwA00d+5cnTx5Uv3797c6CgDkW0ZGhrZs2aLg4GCrowAAANgGTXcAAAAAAIAbaMqUKYqKilJISIjVUQDgLz3//PNaunSpkpOTtXr1avXq1UunT59Wv379rI4GAABgG5xeHgAAAAAA4AZJSUnRDz/8oNmzZ1sdBQDyZN++fXrwwQd19OhRVaxYUbfffrtWrVql0NBQq6MBAADYBk13AAAAAACAGyQ+Pl4BAQGKjo62OgoA5MmMGTOsjgAAAGB7nF4eAAAAAADgBsjKylJ8fLz69eunYsVY5wAAAAAARQVNdwAAAAAAgBvghx9+0J49e/TYY49ZHQVFxP79+/Xwww/Lz89PPj4+atKkiRITE62OBQAAABQ5NN0B4ApnzpxRTEyMQkND5e3trVatWmnNmjVWxwIAAABgA5GRkTLGqFatWlZHQRFw4sQJtW7dWsWLF9f333+vzZs365133lG5cuWsjgYAAAAUOZzrDACuMGDAAG3cuFH//ve/FRISos8//1ydOnXS5s2bValSJavjAQAAAAAgSXrzzTdVpUoVxcfHO49Vq1bNukAAAABAEUbTHQD+69y5c5o1a5a+/vpr3XHHHZKk2NhYzZ07V5MmTdIbb7xhcUIAAAAA16vaC/OtjlBgu8dHWx0BLmTevHnq0qWLevfuraVLl6pSpUoaPHiwnnjiCaujAQAAAEUOp5cHgP+6ePGiLl26pJIlS2Y77u3trRUrVliUCgAAAACAq+3atUuTJk1SzZo1tXDhQg0aNEjPPvusPvvsM6ujAQAAAEUOK90B4L98fX3VsmVLvf7666pbt64CAwP15ZdfavXq1apZs6bV8QAAAAAAcMrKylKzZs00duxYSVJ4eLg2bdqkSZMm6ZFHHrE4HQAAAFC0sNIdAK7w73//W8YYVapUSV5eXnr//ffVp08feXp6Wh0NAAAAAACn4OBg1atXL9uxunXras+ePRYlAgAAAIoumu4AcIUaNWpo6dKlSktL0969e/Xrr7/qwoULCgsLszoaAAAAAABOrVu31rZt27Id2759u0JDQy1KBAAAABRdNN0BIAelSpVScHCwTpw4oYULF6p79+5WRwIAAAAAwGno0KFatWqVxo4dq507d2r69OmaPHmyhgwZYnU0AAAAoMjhmu4AcIWFCxfKGKPatWtr586dGjFihGrXrq1HH33U6mgAAAAAADg1b95cc+bM0ahRo/Taa68pLCxMEydO1EMPPWR1NAAAAKDIoekOAFc4deqURo0apX379qlChQrq2bOnxowZo+LFi1sdDQAAAACAbO666y7dddddVscAAAAAijya7gBwhfvuu0/33Xef1TEAAAAAAAAAAABgE1zTHQAAAAAAAAAAAACAAmKlOwAAAAAAAHCTVHthvtURCmz3+GirIwAAAAC2QNMdgK3wYQUAAAAAAAAAAABcCaeXBwAAAAAAAAAAAACggGi6AwAAAAAAAAAAAABQQDTdAQAAAAAAAAAAAAAoIJruAAAAAAAAAAAAAAAUEE13AAAAAABgqXHjxsnhcCgmJsbqKAAAAAAA5BtNdwAAAAAAYJk1a9Zo8uTJatSokdVRAAAAAAAoEJruAAAAAADAEmlpaXrooYf08ccfq3z58lbHAQAAAACgQGi6AwAAAAAASwwZMkTR0dHq1KmT1VEAAAAAACiwYlYHAAAAAAAARc+MGTO0bt06rVmzxuooAAAAAABcF5ruAAAAAACgUO3du1fPPfecEhISVLJkSavjAAAAAABwXWi6AwAAAACAQpWYmKjDhw+radOmzmOXLl3SsmXLFBcXp4yMDHl6elqYEAAAAACAvOOa7gDgpmJjY+VwOLJtQUFBVscCAAAA1LFjR23YsEFJSUnOrVmzZnrooYeUlJREwx0AAAAAYCusdAcAN1a/fn398MMPzn0+vAQAAIAr8PX1VYMGDbIdK1WqlPz8/K46DgAAAACAq6PpDgBurFixYqxuBwAAAAAAAAAAuIlougOAG9uxY4dCQkLk5eWlFi1aaOzYsapevbrVsQAAAICrLFmyxOoIAAAAAAAUCNd0BwA31aJFC3322WdauHChPv74Y6WmpqpVq1Y6duyY1dEAAAAAAAAAAADcBivdAcBNRUVFOf/csGFDtWzZUjVq1NC0adM0bNgwC5MBAADALqq9MN/qCAW2e3y01REAAAAAAEUEK90BoIgoVaqUGjZsqB07dlgdBQAAAAAAAAAAwG3QdAeAIiIjI0NbtmxRcHCw1VEAAAAAAAAAAADcBk13AHBTzz//vJYuXark5GStXr1avXr10unTp9WvXz+rowEAAAAAAAAAALgNrukOAG5q3759evDBB3X06FFVrFhRt99+u1atWqXQ0FCrowEAAAAAAAAAALgNmu4A4KZmzJhhdQQAAAAAAAAAAAC3x+nlAQAAAAAAAAAAAAAoIFa6A4CFqr0w3+oI12X3+GirI9japEmTNGnSJO3evVuSVL9+fb388suKioqyNhgAAAAAAAAAAMgzVroDAGCRypUra/z48Vq7dq3Wrl2rDh06qHv37tq0aZPV0QAAAAAAAAAAQB6x0h0AAIt069Yt2/6YMWM0adIkrVq1SvXr17coFQAAAAAAAAAAyA9WugMA4AIuXbqkGTNmKD09XS1btrQ6DgAAAAAAAAAA123ZsmXq1q2bQkJC5HA4NHfuXKsj3RQ03QEAsNCGDRtUunRpeXl5adCgQZozZ47q1atndSwAAAAAAAAAAK5benq6GjdurLi4OKuj3FScXh4AAAvVrl1bSUlJOnnypGbNmqV+/fpp6dKlNN4BAAAAAAAAALYXFRWlqKgoq2PcdDTdAQCwUIkSJXTLLbdIkpo1a6Y1a9bovffe07/+9S+LkwEAAAAAAAAAgLzg9PIAALgQY4wyMjKsjgEAAAAAAAAAAPKIle4AAFjkxRdfVFRUlKpUqaIzZ85oxowZWrJkiRYsWGB1NAAAAAAAAAAAkEc03QEAsMihQ4fUt29fHTx4UGXLllWjRo20YMECde7c2epoAAAAAAAAAAAgj2i6AwBgkSlTplgdAQAAAAAAAAAAXCea7gAAAAAAAAAAAACAGy4tLU07d+507icnJyspKUkVKlRQ1apVLUx2Y3lYHQAAAMBVLVu2TN26dVNISIgcDofmzp1rdSQAAAAAAAAAsI21a9cqPDxc4eHhkqRhw4YpPDxcL7/8ssXJbixWugMAcA3VXphvdYQC2z0+2uoItpeenq7GjRvr0UcfVc+ePa2OAwAAAAAAAAC2EhERIWOM1TFuOpruAAAAuYiKilJUVJTVMQAAAAAAAAAALoymOwAAAAAAAAAAAADAVmd/daWzvXJNdwAAAAAAAAAAAAAACoimOwAAAAAAAAAAAAAABUTTHQBgKx9++KHCwsJUsmRJNW3aVMuXL7c6Ev4HjxEAAAAAAAAAoCih6Q4AsI2ZM2cqJiZGo0eP1m+//aa2bdsqKipKe/bssToa/ovHCAAAAAAAAABQ1NB0BwDYxoQJE/T4449rwIABqlu3riZOnKgqVapo0qRJVkfDf7nbY5SWlqakpCQlJSVJkpKTk5WUlMSXCAAAAAAAAAAATjTdAQC2kJmZqcTEREVGRmY7HhkZqZUrV1qUCldyx8do7dq1Cg8PV3h4uCRp2LBhCg8P18svv2xxMgAAAAAAAACAqyhmdQAAAPLi6NGjunTpkgIDA7MdDwwMVGpqqkWpcCV3fIwiIiJkjLE6BgAAAAAAAADAhbHSHQBgKw6HI9u+MeaqY7AWjxEAAAAAAAAAoCih6Q4AsAV/f395enpetWL68OHDV62shjV4jAAAAAAAAAAARRGnlwcA2EKJEiXUtGlTLVq0SPfcc4/z+KJFi9S9e3cLk+Eyqx6jai/Mv2l/9822e3y01REAAAAAAAAAANeJpjsAwDaGDRumvn37qlmzZmrZsqUmT56sPXv2aNCgQVZHw3/xGAEAAAAAAAAAihq3Ob38hx9+qLCwMJUsWVJNmzbV8uXLrY4EALjB7r//fk2cOFGvvfaamjRpomXLlum7775TaGio1dHwXzxGQO6oVwEAAODKqFcBAAAKzi2a7jNnzlRMTIxGjx6t3377TW3btlVUVJT27NljdTQAwA02ePBg7d69WxkZGUpMTNQdd9xhdST8Dx4j4GrUqwAAAHBl1KsAAADXxy2a7hMmTNDjjz+uAQMGqG7dupo4caKqVKmiSZMmWR0NAAAAoF4FAACAS6NeBQAAuD62v6Z7ZmamEhMT9cILL2Q7HhkZqZUrV+b4MxkZGcrIyHDunzp1SpJ0+vTpmxfUHeRw/2RlnLUgyI2R0+Nt5/lI7jcn5uP6isLzpp0fo6Lw+Eg8Rnn9fxhjbvr/CzmjXi1EbvZa6261Q27/ft1tTszHdfBvzvUVhflI7jmnm/H/oF61DvXqTWLz5zg7P0fbObtk7/x2zi7ZO7+ds0v2zm/n7JJ75r8Zf3+ealVjc/v37zeSzM8//5zt+JgxY0ytWrVy/JlXXnnFSGJjY2NjY2NjKzLb3r17C6M0Qw6oV9nY2NjY2NjY/nqjXrUO9SobGxsbGxsb27W3vNSqtl/pfpnD4ci2b4y56thlo0aN0rBhw5z7WVlZOn78uPz8/HL9GVd3+vRpValSRXv37lWZMmWsjnNDuNucmI/rc7c5MR/X525zYj6uyRijM2fOKCQkxOooRR71qnv8Tl3J3ebEfFybu81Hcr85udt8JPebE/NxTdSrrqOo1qt2/12yc36yW8fO+e2cXbJ3fjtnl+yd387ZJXvnz0+tavumu7+/vzw9PZWamprt+OHDhxUYGJjjz3h5ecnLyyvbsXLlyt2siIWqTJkytvsH+1fcbU7Mx/W525yYj+tztzkxH9dTtmxZqyMUadSr2bnD79T/crc5MR/X5m7zkdxvTu42H8n95sR8XA/1qrWoV/9k998lO+cnu3XsnN/O2SV757dzdsne+e2cXbJv/rzWqh43OcdNV6JECTVt2lSLFi3KdnzRokVq1aqVRakAAACAP1GvAgAAwJVRrwIAAFw/2690l6Rhw4apb9++atasmVq2bKnJkydrz549GjRokNXRAAAAAOpVAAAAuDTqVQAAgOvjFk33+++/X8eOHdNrr72mgwcPqkGDBvruu+8UGhpqdbRC4+XlpVdeeeWq0zrZmbvNifm4PnebE/Nxfe42J+YD5I561T1/p9xtTszHtbnbfCT3m5O7zUdyvzkxHyB3Rbletfvvkp3zk906ds5v5+ySvfPbObtk7/x2zi7ZP39eOYwxxuoQAAAAAAAAAAAAAADYke2v6Q4AAAAAAAAAAAAAgFVougMAAAAAAAAAAAAAUEA03QEAAAAAAAAAAAAAKCCa7gAAAAAAAAAAAAAAFFAxqwMAgFUyMjL066+/avfu3Tp79qwqVqyo8PBwhYWFWR2tQJiP63O3OTEfAAAAAACsk5GRIS8vL6tjAAAA0XSHi9i2bZu+/PJLLV++/KpmR5cuXdSzZ09bFZDGGC1dujTH+XTq1ElVqlSxOmK+7d69O8f5tGzZUiVLlrQ6Xr6sXLlSH3zwgebOnavMzEyVK1dO3t7eOn78uDIyMlS9enU9+eSTGjRokHx9fa2O+5eYj+tztzkxHwBFEfWq63OnObnTXC5ztzm523wk95uTu81Hcs85AcifhQsXOmvSPXv2KCsrSz4+Prr11lsVGRmpRx99VCEhIVbHzNGpU6c0Z86cXOvpVq1aWR0xV3Z//rVzfjtnl+yd387ZJXvnt3P2y9xhDgXB6eVhqd9++02dO3dW48aNtWzZMjVv3lwxMTF6/fXX9fDDD8sYo9GjRyskJERvvvmmMjIyrI58TefOndPYsWNVpUoVRUVFaf78+Tp58qQ8PT21c+dOvfLKKwoLC1PXrl21atUqq+PmyfTp03X77berevXqGjFihObOnavly5frk08+0Z133qnAwEANHjxYKSkpVkfNk+7du6tXr16qVKmSFi5cqDNnzujYsWPat2+fzp49qx07dujvf/+7fvzxR9WqVUuLFi2yOvI1MR/Xno/kfnNiPq49HwA3HvWq63OnObnTXC5ztzm523wk95uTu81Hcs85AcifuXPnqnbt2urXr588PDw0YsQIzZ49WwsXLtSUKVPUrl07/fDDD6pevboGDRqkI0eOWB3Z6eDBg3riiScUHBys1157Tenp6WrSpIk6duyoypUra/HixercubPq1aunmTNnWh03G7s//9o5v52zS/bOb+fskr3z2zn7Ze4wh+tiYDv33HNPvrdDhw5ZHTtHVatWNR988IE5duzYNW+3cuVK07t3bzNmzJhCSlYwlStXNj179jTffPONyczMzPE2u3fvNmPHjjVVq1Y1kydPLuSE+RMeHm6aNm1qPvjgA5OSknLV+Pnz583ixYvNwIEDjb+/v/l//+//WZAyf+Li4kxGRkaebrtx40aTkJBwkxNdH+bj2vMxxv3mxHxcez6Aq6BedV3uVq8a415zcqe5XOZuc3K3+RjjfnNyt/kY455zAqxi1zq1efPmZt68eebSpUvXvN2+ffvMiBEjzD/+8Y9CSvbXKlasaIYPH242bNiQ623Onj1rpk+fbm677Tbz9ttvF2K6a7P786+d89s5uzH2zm/n7MbYO7+ds1/mDnO4Hg5jjLG68Y/88fDw0H333Sdvb+883X769OnasmWLqlevfpOT5V9mZqZKlChx025f2DZu3KgGDRrk6baZmZlKSUlRzZo1b3Kqgps/f76io6PzdNujR48qOTlZzZs3v8mpAACAq6NepV4tTO40J3eay2XuNid3m4/kfnNyt/lI7jknwCruVKfaxZEjR1SxYsWbdvubye7Pv3bOb+fskr3z2zm7ZO/8ds5+mTvM4XrQdLchDw8PpaamKiAgIE+39/X11fr16ykOgb/w6aef6p577lHZsmWtjlJgKSkpSk1NlcPhUGBgoEJDQ62OdEPs2LFDe/bsUWhoqG655Rar4+C/Ll26JE9PT+f+r7/+qqysLIWHh9vqusa5cYfnBMAq1KsAAABwRdSpAADgZilmdQDk3+LFi1WhQoU83/77779XpUqVbmKi67Nv3z6VLFlS/v7+kqTly5fro48+cjbYhgwZopYtW1qcsmi7dOmS8/Hw8PBQRkaGvv76a2VlZal9+/YKDAy0OuIN8eSTT6pFixa2bLC9++67mjBhgg4cOKDL36VyOBwKCQnR8OHDFRMTY23AfBg/frxuu+02dejQQSdOnFDv3r31008/SfpzTpGRkfryyy9Vrlw5a4Pm0/z58zVnzhxVqFBBjz32mOrUqeMcO3HihHr27Omcp6vbvXu3evbsqfXr16tLly768ssv1bNnT/3444+SpLCwMH3//feqVauWxUmvj52fEwCruVu9+s4776hXr15u82W23Dz66KMaM2aMQkJCrI5yw6WnpysxMVF33HGH1VHy5PDhw9q0aZOaNm2qMmXK6NChQ5o2bZqysrIUHR2thg0bWh3xup04cUI7d+5UcHCwKleubHUc/NeuXbu0YsUKHTx4UJ6engoLC1Pnzp1VpkwZq6Ndl5MnT+qrr75yvq/t3bu3bWu8//3i6+rVq5WRkaGWLVuqePHiFiYD7MGd6tQTJ05o2rRp2rFjh4KDg9WvXz9VqVLF6li5Msbohx9+0MqVK7MtGGndurU6duwoh8NhdcQ8s2Mds2PHjqvu+1atWtluhSn3vXW4761jx/tecp/7P1+sPLc9YIwxLVu2NN99950xxpi5c+caDw8Pc/fdd5u//e1v5p577jHFixc333zzjcUp8y4zM9OMGDHC1KhRwzRv3txMnTo123hqaqrx8PCwKF3+JSUlmaCgIOPh4WEaNWpk9u7daxo0aGBKlSplSpcubcqXL29+/fVXq2PmS/ny5XPcHA6HKVu2rHPfLl577TVTpkwZM378ePPbb7+ZAwcOmP3795vffvvNjB8/3pQtW9a8/vrrVsfMs6pVq5r169cbY4wZMGCACQ8PN+vWrTPnzp0zSUlJ5vbbbzePP/64xSnz54svvjCenp4mOjratGnTxpQsWdJ8/vnnznG7PS/07NnTtGvXznzzzTfmvvvuM61btzYRERFm37595sCBA6ZLly6mR48eVsfMM3d7TgBw4zkcDuPp6Wk6depkZsyYYTIyMqyOdF3Wr1+f41a8eHEzZ84c5747SUpKss1r7eLFi02pUqWMw+EwwcHBZv369aZy5cqmZs2apnbt2sbLy8ssXLjQ6pj5MmrUKJOenm6M+fP90hNPPGE8PDyMw+EwHh4e5p577jHnzp2zOGXeudt7PmOMSUtLM7169TIOh8P5uAQFBRlPT09TunRpExcXZ3XEfOnZs6eZNWuWMcaYTZs2GX9/f1OxYkXTokULExgYaIKCgszmzZstTpk/Bw4cMK1btzaenp7mjjvuMMePHzfR0dHOx6xWrVrmwIEDVscEcBMFBwebo0ePGmOM2bVrlwkKCjJBQUGmc+fOpnLlyqZs2bJmy5YtFqfM2b59+0yTJk2Mp6enady4sYmMjDSdO3c2jRs3Np6enubWW281+/btszpmjuxex5w8edLcfffdxuFwmHLlyplatWqZmjVrmnLlyhkPDw/TvXt3c+rUKatj5oj73jrc99ax+31vjL3v/+tF093mzpw5Y5YsWWJmzJhhZs6caZYsWWLOnDljdax88fX1NcnJycYYY1q0aGHGjx+fbfyDDz4w4eHhFiQrmFdeecUEBgaat99+24wePdqULVvWPPnkk87x1NRU43A4LEyYP5GRkaZXr15mw4YN5rnnnjP16tUzvXv3NpmZmebChQvm4YcfNp06dbI6Zr6ULl3aREdHm08//dS5xcfHG09PTzNmzBjnMbuoXLmymTNnTq7js2fPNiEhIYUX6Dp5eXmZ3bt3G2OMqVatmlm6dGm28bVr15rg4GArohVYeHi4ef/99537X331lSldurT55JNPjDH2+2C2YsWK5rfffjPG/FlEORwOs3z5cud4YmKiCQwMtChd/rnbcwLgatyhXnU4HCY+Pt50797dFC9e3Pj5+ZnnnnvObNiwwepoBXL5zfrlRs2V25Vv5t2JnZrurVu3NkOGDDFnzpwxb7/9tqlcubIZMmSIc/z55583rVq1sjBh/nl4eJhDhw4ZY4wZM2aMqVixopk1a5bZv3+/+eabb0ylSpXMa6+9ZnHKvHO393zGGPPkk0+a1q1bm6SkJLN161bTs2dPM3LkSJOenm6mTJlifHx8zBdffGF1zDzz9/c327dvN8YYExUVZfr06eP8wlRmZqZ5/PHHTWRkpJUR861v376mVatWZt68eeb+++83rVq1Mm3btjX79u0ze/bsMW3bts32XAHgr9mtTnU4HM7X0wceeMBEREQ4GzPnz583d911l+nVq5eVEXN19913mw4dOuT45aADBw6YDh06mO7duxd+sDywex3Tt29f07BhQ7Nq1aqrxlatWmUaNWpkHnnkEQuS/TXue+tw31vH7ve9Mfa+/68XTXebunDhgnn22WeNt7e3cTgcxsvLy5QoUcI4HA7j7e1tnnvuOZOZmWl1zDwpW7ascyVNQEDAVatqdu7caXx8fKyIViC33HJLtpX5O3fuNDVr1jT9+/c3WVlZtmuulS9f3rkC4OzZs8bT09OsXr3aOb5x40bj5+dnVbwC2bFjh2nevLl55JFHsr2ZKlasmNm0aZOFyQrG29v7mqs0Nm7caLy9vQsx0fWpVauW+fbbb40xxoSFhZmff/452/hvv/1mypQpY0W0AitVqpTZtWtXtmOLFy82vr6+ZtKkSbZ7XvD19XXO59KlS6ZYsWImKSnJOb5jxw7j6+trVbx8c7fnBMBVuFO9euUHnIcOHTJvvvmmqVOnjvHw8DDNmzc3kydPNqdPn7Y4Zd41btzYREdHmy1btpjdu3eb3bt3m+TkZFOsWDGzaNEi5zE7ye2sJZe3MmXK2Oa1tkyZMmbnzp3GmD9/j4oVK+b8spsxxmzfvt2ULVvWmnAFdOXvUJMmTcyUKVOyjc+cOdPUrVvXimgF4m7v+Yz5s0m9du1a5/7x48dNyZIlnc2cuLg406RJE6vi5Zu3t7fz9yg4ONisW7cu2/i2bdts93sUHBxsfvnlF2OMMceOHTMOh8P88MMPzvGffvrJVK9e3ap4gK3YtU698vU0LCzM/Pjjj9nGV61aZSpXrmxFtL9UqlSpbJ8b/K9169aZUqVKFWKivLN7HVO2bNkcG1+X/fLLLy77msh9bx3ue+vY/b43xt73//XysPr09iiY4cOHa9asWYqPj9fx48d1/vx5ZWRk6Pjx44qPj9fs2bM1YsQIq2PmSbt27fTll19KksLDw7VkyZJs44sXL3bZayflZP/+/WrQoIFzv0aNGlqyZIl++eUX9e3bV5cuXbIwXf4ZY1SsWDFJuuq/kuTp6amsrCxLshXULbfcopUrVyooKEhNmjTRzz//bHWk63LbbbdpzJgxunjx4lVjFy9e1NixY3XbbbdZkKxgnnjiCY0YMUI7d+7U008/reeff15//PGHJCk5OVlDhw5VZGSkxSnz5/K1WK8UERGhb775RiNGjNAHH3xgUbKCqV+/vqZOnSpJmjZtmvz8/DRjxgzn+Jdffmmr67m723MC4CrcqV69UkBAgEaOHKktW7ZoyZIlqlevnoYOHarg4GCro+XZr7/+qltuuUU9e/bU8ePHFRoaqmrVqkmSQkJCFBoaarvr12dkZOixxx7Tu+++m+M2fPhwqyPmWYkSJXT+/HlJUmZmprKyspz7knTu3DlbXrf58nVa9+7de1VtettttyklJcWKWAXibu/5pD/fN1x53fbSpUvr4sWLSk9PlyRFRkZq69atVsXLt0aNGumnn36SJAUFBV317yslJUXe3t5WRCuwEydOOD8bqVChgnx8fLI9V9eoUUMHDx60Kh5gK3auUy+/nmZkZCgwMDDbWGBgoI4cOWJFrL/k7e2t48eP5zp+4sQJl35etnsdczl/fsdcAfe9dbjvrWP3+16y9/1/Xazu+qNg/P39r/o245V++OEH4+/vX4iJCm7z5s3Gz8/PPPLII+b11183pUuXNg8//LAZM2aMeeSRR4yXl5eJj4+3OmaehYWFZfu2+WX79+83tWrVMp06dbLVqoeOHTuaxx9/3Ozbt8+8+uqr5pZbbjGPPvqoc3zw4MGmbdu2Fia8Pj/++KOpWrWqGTVqlClevLgtV7X+/vvvJigoyJQvX9706NHDDBw40AwaNMj06NHDVKhQwQQHB5uNGzdaHTNfnnnmGVO8eHFTp04dU7JkSePh4WFKlChhPDw8TLNmzczBgwetjpgv3bt3Ny+//HKOY5ev22qn54UFCxaYkiVLmhIlShhvb2+zbNkyU6tWLdO8eXNz++23G09PTzNz5kyrYxaIOzwnAK7CnerVK0/vlpNTp06ZyZMnF2KiG+O7774zlStXNmPHjnWeucSuz3utWrUyEydOzHXcTqeX7969u7nrrrvMihUrzJNPPmmaNWtmoqOjTVpamklPTze9evUyd955p9Ux88XhcJgxY8aY9957z4SEhJhly5ZlG09KSjLly5e3KF3+udt7PmOM6dy5c7ZTk7/99tvZLum0bt062zxnG2PMt99+aypUqGDi4+NNfHy8qVatmvnkk0/Mzz//bKZOnWqqVKliRowYYXXMfKlatWq2s8797W9/M8eOHXPuJyUl2eoxAqxk1zrV4XCYhg0bmvDwcFO6dGkze/bsbONLly41lSpVsijdtT399NOmSpUq5quvvjInT550Hj958qT56quvTNWqVc2zzz5rYcLc2b2Oefjhh02jRo3MmjVrrhpbs2aNadKkienbt68Fyf4a9711uO+tY/f73hh73//Xq9hft+Xhis6dOyd/f/9cx/38/HTu3LlCTFRwdevW1erVq/X3v/9db731ltLT0/XFF1+oWLFiat68uWbMmKEePXpYHTPPOnTooOnTp6tjx47ZjoeEhOinn35SRESENcEKaNy4cbrzzjsVHx8vf39/LV68WI899piCg4Pl4eGhEydO6JtvvrE6ZoF16NBB69at0xNPPKFSpUrJ09PT6kj51rBhQ23fvl2ff/65Vq1apeTkZEl/rugYM2aM+vTpk23Vih28//77euqpp/Ttt99q165dysrKUnBwsFq3bq1OnTrZ7ttwQ4cO1cqVK3Mci4iI0Lfffqtp06YVcqqC69KlizZv3qx169apWbNmCg0N1bJlyxQXF6dz585p7Nixat++vdUxC8QdnhMAV+FO9aox5prjZcqU0RNPPFFIaW6cqKgorV27Vo8++qi+++47q+Ncl+joaJ08eTLX8QoVKuiRRx4pvEDX4e2331bXrl3Vtm1b1atXTwkJCXrqqadUrlw5SVL58uW1YMECa0PmU9WqVfXxxx9L+nMl/7p169S2bVvn+OLFi1W7dm2r4uWbu73nk6Tx48erc+fOmjVrlkqUKKHU1NRs9enKlSvVtWtXCxPmT3R0tCZPnqyYmBgdOHBAxhjn87SXl5cGDRqkcePGWZwyf5o0aaJffvnFudpp/Pjx2cZXrFihRo0aWRENsB271qmvvPJKtn0fH59s+998802211dX8s477+jixYt66KGHdPHiRZUoUULSn2f1KVasmB5//HG9/fbbFqfMmd3rmA8++EAPPvigbrvtNpUrV04BAQFyOBw6dOiQTp06pS5duuj999+3OmaOuO+tw31vHbvf95K97//r5TB/9QkSXFK3bt107tw5ffHFF1edSujQoUPq27evSpYsqXnz5lmUsGCMMTp8+LCysrLk7+9vy9MmpqSkaOvWrerSpUuO4wcPHlRCQoL69etXyMkKLi0tTdu2bVPt2rVVunRpnT9/Xl988YXOnTunzp07u/yTPAAAKHzuWq+6q/fff1+LFy/WBx98oMqVK1sdB5KOHTsmPz8/5/6PP/6oc+fOqWXLltmOu4NVq1bJy8tL4eHhVkfJE3d8zyf9mfvbb79VRkaGOnTooHr16lkd6bpdunRJ69aty/ZF3qZNm8rX19fqaDfcmjVr5O3tne3SBwByRp1qndOnTysxMVGpqamS/lww0rRpU9stFrmSXeqYrVu36pdffsl237ds2VJ16tSxOFnBcd9bxy73/ZYtW7Rq1Srue4u447/9v0LT3ab27t2rrl27auvWrWrQoIECAwPlcDiUmpqqjRs3ql69epo/fz4fmAFFxKVLl7Rnzx6FhobKw8NDGRkZ+vrrr5WVlaX27dtf9SbSjg4dOqSMjAxVrVrV6igFlp6ersTERB08eFCenp4KCwvTrbfearuV+7l59dVXNWTIkGuuGHBlaWlpzjf/DodDQUFBuvXWW1W6dGmrowG2RL0KAAAAV+SOdaoxxm0+WwAAwK5outtYVlaWFi5cmOM3dSIjI+Xh4WFxwoI5ceKEpk2bph07dig4OFj9+vVTlSpVrI51w1w+HbtdTm/5v06ePKmvvvpKe/bsUbVq1dSrVy+VLVvW6lj59uGHH2r27NmqUKGCBg0apA4dOjjHjh49qttuu027du2yMGHerV+/XnfeeacOHz6sBg0aaP78+YqKilJycrIcDoeKFy+uhQsXqnnz5lZHzZMzZ87oqaee0vLlyxUREaGPP/5YQ4cO1aRJk+RwONSmTRt98803tvoW9KVLlzRq1Cj985//1Pnz5yX936mKq1atqg8++EDdunWzMmK+nD59+qpjxhhVrFhRK1ascH5b0S6P0cWLFzV8+HB9/PHHOn/+vEqUKCFjjC5cuKCSJUvqySef1Ntvv23Ls68AVnOnenXfvn2aNGmSVq5c6fxyTmBgoFq1aqVBgwZRr7qIrKysHP9dZWVlad++fbb68p47zUX6s1bYvXu3qlSpomLFiikzM1Nz5sxRRkaGunbtatsv7V2pQ4cOio+PV2hoqNVRbhh3mlNSUpLzc4bWrVvbrjmVkZEhDw8PZ036xx9/aOrUqc4vXz/++OMKCwuzOCVgH3asUzMyMvTiiy9q7dq1uuuuuzRixAi98cYbGj9+vIwx6t69uz766COXfC/+zjvvqFevXm7xeiLZ/zVFstdrvLvVxZfZ4X3XTz/9pBUrVmRbQHT33XerZs2aVkf7S+vXr9e6desUERGhsLAwbdq0Sf/85z+VlZWle+65J9ezVlnNXWs+d3jezBMLriOP67R+/Xpz6dKlPN9+48aN5sKFCzcx0fUJDg42R48eNcYYs2vXLhMUFGSCgoJM586dTeXKlU3ZsmXNli1bLE554yQlJRkPDw+rY+RZz549zaxZs4wxxmzatMn4+/ubihUrmhYtWpjAwEATFBRkNm/ebHHK/HnvvfeMj4+PGTJkiHn44YeNl5eXGTt2rHM8NTXVVo9RZGSk6dWrl9mwYYN57rnnTL169Uzv3r1NZmamuXDhgnn44YdNp06drI6ZZ08//bSpU6eOef/9901ERITp3r27adCggVmxYoVZtmyZadCggXnxxRetjpkvf/vb30zdunXN3LlzzYIFC0zbtm3Nm2++abZs2WJeeukl4+XlZRYuXGh1zDzz8PDIcXM4HNn+axfPPvusqVSpkpkxY4Y5ceKE8/iJEyfMjBkzTJUqVcxzzz1nWT7AjtytXl2+fLkpXbq0qVu3rnnuuefM2LFjzZgxY5yvu76+vmbFihVWx7xh7FavGmPMqVOnTO/evU3JkiVNQECAefnll83Fixed43aq79xpLpdt3brVhIaGGg8PD3PLLbeYXbt2maZNm5pSpUoZHx8f4+/vb7Zv3251zDz7+uuvc9w8PT1NXFycc99O3G1ODz74oDl9+rQxxpgzZ86YyMhI43A4TIkSJYzD4TDNmjXLVvfZQfv27Z3vzVesWGG8vLxMo0aNzP3332/Cw8ONj4+PWblypcUpAddn5zp16NChJiQkxAwfPtzUrVvXDBkyxFStWtV8/vnnZvr06eaWW24xzzzzjNUxc+RwOIynp6fp1KmTmTFjhsnIyLA6Up7Z/TXFzq/x7lgXX8mV33cdOnTI3Hbbbc7fXQ8PD9O0aVMTFBRkPD09zYgRI6yOeE3/+c9/jKenp/Hz8zO+vr7mhx9+MOXKlTOdOnUyXbp0MZ6enuaLL76wOmaO3KHms/vz5vWg6W5DHh4e5vDhw3m+va+vr/njjz9uYqLr43A4zKFDh4wxxjzwwAMmIiLCpKenG2OMOX/+vLnrrrtMr169rIyYL6dOnbrmtnz5cpd9Mc3JlR+ARUVFmT59+jgL48zMTPP444+byMhIKyPmW7169bK9qK5cudIEBASYl156yRhjv4KtfPnyzi8+nD171nh6eprVq1c7xzdu3Gj8/PysipdvVapUMT/99JMxxpj9+/cbh8Nh5s2b5xyfP3++qV27tlXxCiQkJMQsW7bMub9v3z5TunRpc/78eWOMMa+99ppp2bKlVfHyrVKlSiY6Otr89NNPZsmSJWbJkiVm8eLFxtPT08THxzuP2YW/v7/58ccfcx3/4YcfjL+/fyEmAuzP3erVZs2amZiYmFzHY2JiTLNmzQox0fVxt3rVmD+/QFWrVi3z1VdfmY8//tiEhoaa6OhoZ92amppqHA6HxSnzxp3mcln37t3N3XffbX7//XcTExNj6tWrZ7p3724yMzNNRkaG6d69u3n44YetjplnV37RMLfNbr9D7jYnDw8P5+cMzz//vAkLCzOJiYnGGGM2bNhg6tata4YOHWplxHwrV66c2blzpzHGmHbt2l2V/+9//7tp3bq1FdEAW7FznVqlShWzaNEiY4wxf/zxh/Hw8DBz5851jickJJjQ0FCL0l2bw+Ew8fHxpnv37qZ48eLGz8/PPPfcc2bDhg1WR/tLdn9NsfNrvN3rYju/77r//vtNjx49zIkTJ8zZs2fNkCFDzCOPPGKMMebHH380fn5+ZuLEiRanzN2tt95q3njjDWOMMV9++aUpV66cee2115zj//jHP0yTJk2sindN7lDz2f1583pwenkb8vDw0JNPPikfH5883f7DDz/U5s2bVb169ZucrGA8PDyUmpqqgIAAVa9eXZ988km2U32vXr1avXr10t69ey1MmXceHh7XPDWG+e81li5dulSIqQrOx8dHGzZsUI0aNRQSEqL58+crPDzcOb59+3bddtttOnnypHUh88nHx0ebN29WtWrVnMc2bdqkjh076tFHH1VMTIxCQkJs8xiVL19ev/76q2rWrKkLFy7I29tbv/76q2699VZJ0tatW9WqVSsdP37c4qR5U7JkSe3YscN5mt5SpUrpt99+U61atSRJKSkpqlevntLT062MmS9lypRRUlKS83k4KytLXl5e2rt3r4KCgrR582Y1b97cNnM6fvy4Hn/8cZ06dUr//ve/ValSJUlS8eLFtX79etWrV8/ihPlTunRprVy5Uo0aNcpxPCkpSW3atFFaWlohJwPsy93qVW9vbyUlJal27do5jm/dulXh4eE6d+5cIScrGHerVyUpNDRU06ZNU0REhCTp2LFjio6OVtmyZTVv3jydPHnSNvWdO83lsoCAACUkJKhJkyZKT0+Xr6+vli1bpjZt2kiSfvnlFz3wwANKSUmxOGneREVFydPTU1OnTlVAQIDzuF1rIcn95nTl5wwNGjTQyy+/rPvuu885/t133ykmJkbbt2+3MGX+lC5dWmvXrlWdOnUUFBSkhQsXqnHjxs7xP/74Q02aNNGZM2csTAm4PjvXqT4+Ptq6davzVNolSpTQb7/9pvr160uSdu/erfr167vkZwtXPi8fPnxYn376qeLj47V9+3Y1bdpUTzzxhB544AH5+vpaHfUqdn9NsfNrvN3rYju/7ypbtqxWrlzpfH5JT09X+fLldfToUZUpU0aff/653njjDW3dutXipDkrXbq0Nm7cqGrVqskYIy8vLyUmJqphw4aSpF27dqlx48YuWTe5Q81n9+fN61HM6gDIvzvuuEPbtm3L8+1btmwpb2/vm5jo+l1+8cnIyFBgYGC2scDAQB05csSKWAXi6+ur0aNHq0WLFjmO79ixQwMHDizkVAXXqFEj/fTTT6pRo4aCgoKUkpKSremekpLi8v++/pe/v7/27t2brelev359/fTTT+rQoYP2799vXbgCaNq0qd588029+uqrmjJlisLCwhQXF6epU6dKkj744AM1aNDA4pR55+fnpyNHjjib7t27d1e5cuWc42lpafLy8rIoXcE0bNhQX375pUaPHi1J+n//7/+pdOnSCgoKkvR/TXi7qFChgubMmaNJkybptttu0z/+8Q89+OCDVscqsPbt22vYsGH64osvrnoNOnTokEaOHJnty2AA/pq71avBwcFauXJlrk33X375RcHBwYWcquDcrV6VpKNHj2a7HqWfn58WLVqkLl26qGvXrvrkk08sTJc/7jSXy9LS0lShQgVJf36hslSpUtl+ZypXrqxDhw5ZFS/fvv/+e7377rtq3ry5/vnPf+quu+6yOtJ1c8c5Xf6c4dChQ1e9H6pfv75tvth/WYsWLfTNN9+oTp06qlGjhtavX5/tA9ikpCTn7xmA3Nm5Tq1atap++eUXVa1aVWvWrJHD4dCvv/7qbIqtXr3a+aV4VxYQEKCRI0dq5MiRWr58uaZMmaKhQ4dq6NChLvtldzu/ptj5Nd7udbGd33d5eXll+8KAh4eHLl26pIsXL0qSWrVqpd27d1uU7q/5+vrq2LFjqlatmk6ePKmLFy/q2LFjzvFjx46pdOnSFibMnbvUfHZ+3rweNN1taMmSJVZHuOE6duyoYsWK6fTp09q+fbuzWJSkPXv2yN/f38J0+XN5dXG7du1yHC9XrpzsdIKJl156SY888oiKFy+uZ599VkOHDtWxY8dUt25dbdu2Ta+88or69u1rdcx8adOmjWbNmqW2bdtmO16vXj39+OOPat++vUXJCmbcuHG68847FR8fL39/fy1evFiPPfaYgoOD5eHhoRMnTuibb76xOmaeNWrUSGvWrHH+Lk2fPj3b+Jo1a1S3bl0rohXYa6+9pujoaM2bN08lS5bUypUr9fbbbzvHFyxYkO3LLHbx1FNPqV27durTp4+t/o39rw8//FBdu3ZV5cqV1aBBAwUGBsrhcCg1NVUbN25UvXr1NH/+fKtjArbibvXq888/r0GDBikxMVGdO3fO9jyxaNEiffLJJ5o4caLVMfPM3epVSapSpYq2bNmisLAw5zFfX18lJCQoMjJS99xzj4Xp8sed5nJZSEiI9uzZ41yZ99Zbb2VbaXXkyBGVL1/eqngFMnToUHXo0MFZB7377rtWR7pu7janl156ST4+Ps6VNleu5Dt69KjLftCamzfeeENRUVFKT0/Xgw8+qOHDh2vHjh3O9+bvv/++Ro0aZXVMwOXZuU4dNGiQ+vfvr08++USJiYl655139OKLL2rr1q3y8PDQpEmTNHz4cKtj5ii31b5t27ZV27Zt9f7772vmzJmFnCrv7P6aYtfXeLvXxXZ+39WmTRu9/PLLmjZtmkqUKKEXX3xR1atXdzZ7Xb1+79Spk4YMGaJnnnlGM2fOVJcuXTRq1CjFx8fL4XBoxIgRzrNuuRp3qfns/rxZUDTdYblXXnkl2/7/nt7pm2++uao56sr69OlzzVOLBgUFXTVnVxYdHa3JkycrJiZGBw4ckDFGTzzxhKQ/v/E2aNAgjRs3zuKU+fPCCy8oMTExx7H69etr8eLF+s9//lPIqQquefPmSklJ0bZt21S7dm2VLl1aS5Ys0RdffKFz586pc+fOua7Mc0VffPGFPDw8ch0PDAzUmDFjCjHR9evYsaN+/fVXzZw5UxkZGfr73/+uzp07O8eff/55Pf/88xYmLLh69erp119/1QsvvKAGDRq4zAqA/KhSpYrWr1+vhQsXatWqVUpNTZUk3XbbbRo3bpwiIyOv+W8SgPsbPHiw/Pz89O677+pf//qX8/R/np6eatq0qT777LNsp0pzde5Wr0pSZGSk4uPj1bVr12zHS5curYULF2Z73XV17jSXyzp16qStW7c6P9h66qmnso0nJCQ4P5S0k8aNG2vt2rUaOnSomjRp4rIfmuaHu8zpypWs9erVU3Jycrbx7777LtuX/e2gZcuW+v777zVs2DCtXr1akpzvi0JCQhQbG6vnnnvOyogAbrKYmBhVrFhRq1at0oABA3T//fc7T9t79uxZDR061HmGPVfzV68nZcqUcX7e6Grc5TXFjq/xdq+L7fy+6x//+IciIyNVrlw5ORwOlSpVSl999ZVzfMuWLerfv791Af/CP/7xDz388MMaNGiQ2rZtq5kzZ2r06NGqV6+eHA6HatSooSlTplgdM0fuUPO5y/NmQXBNdwB5cunSJa1bt067du1SVlaWgoOD1bRpU5e81hIAAMDNcuHCBR09elTSn5esKV68uMWJIEknTpzQgQMHcn3jnpaWpsTExFxXmbgSd5pLXiUnJ6tkyZK2ukzD/5o3b54WL16sUaNGZVvFb2fuOKfLdu3apRIlSqhy5cpWRymQI0eOZHtvfuWl0wAAhcuOryl2eY0vinWxKzl79qx+/vlnZWRk6Pbbb7fV2Yhz88cff+jcuXOqU6eOihVz/TXJ7lrz2fF5M69ousNlJScnq0qVKrZ48oP9HD58WJs2bVLTpk1VpkwZHTp0SNOmTVNWVpaio6PVsGFDqyMWWYmJiWratKnVMQpVenq6EhMTdccdd1gdpUBOnjypr776Snv27FFoaKh69+6tsmXLWh3rhrH74wMAAAAAAAAAuLk4VypcVu3atbVjxw6rYxTIuXPnNHXqVD322GOKiorSXXfdpWeeeUY//vij1dEKxBij5ORkXbx4UZKUmZmpmTNn6rPPPnOu9LKTJUuWqHr16urYsaPq1Kmj33//Xc2aNdMnn3yiTz/9VM2bN1dCQoLVMfPswoULGjlypG655Rbddtttio+PzzZ+6NAheXp6WpQu/5o3b64aNWpo7Nix2r9/v9VxCsXOnTvVvn17q2PkWa9evTR79mxJ0ubNm1WzZk2NHj1aixYt0t///nfVqVNHW7ZssTjljWO3xwdA4fvjjz/UoUMHq2Pk2759+5SWlnbV8QsXLmjZsmUWJLo+x44d0+LFi3X8+HFJf14n7s0339Rrr73mFq9L1atXt+37o/914cIFzZ07V2+//bY+//xzpaenWx0pX/bt25ftfdDy5cv10EMPqW3btnr44Yf1yy+/WJiuYN555x2lpKRYHeOG+uabb/TKK684H4+ffvpJXbt21Z133qnJkydbnK5g3O2zBgC4bO/evXrsscesjnFNdq6d3a1OtmtdbOca2G7Z7Vyvu0td7o61eF6w0h2Wu/fee3M8/vXXX6tDhw7O05dfbvC4up07d6pTp05KS0tTiRIllJqaqq5du+ro0aNau3at7r33Xk2fPt02K/i3bdumLl26aO/evapevboSEhLUu3dvbd26VcYY+fj4aOXKlapZs6bVUfOsTZs2atKkicaPH6+PPvpI7733nrp37664uDhJ0ogRI7Ry5Ur9/PPPFifNm9jYWH300Ud6/vnndfLkScXFxen+++/Xv/71L0l/Nt2Dg4OVlZVlcdK88fDw0IABAzRv3jwdO3ZMXbp00YABA9StWzdbfXkgP9avX69bb73VeY1gV1exYkXn733Xrl1Vvnx5xcfHq0SJErpw4YKeeuop7d27VwsXLrQ66g1ht8cHQOGz2/PEwYMH1b17dyUmJsrhcOihhx7SP//5T5UuXVrSn7VDSEiIbeYjSb/++qsiIyN1+vRplStXTosWLVLv3r1VrFgxGWO0f/9+rVixwhbXDX///fdzPD5s2DCNHDlSQUFBkqRnn322MGNdl1atWum7775TuXLldOTIEXXs2FHbtm1TaGio9u7dq4CAAK1cuVKVKlWyOmqetGrVSi+99JKioqL09ddf695779Vdd92lunXravv27fr22281e/Zs3XXXXVZHzTMPDw95eHioffv2GjBggO655x6VKFHC6lgF9tFHH+mZZ55R48aNtWPHDn344Yd66qmndP/998vT01OfffaZxo0b5/LXw7ySu33WAABXcuV62u61s53rZLvXxXaugf83e4cOHbR9+3ZbZJfsXa+7Q13ujrV4XtF0h+U8PDx0xx13KCwsLNvxzz77THfffbfKlSsnSVet3nVVXbt2VdWqVfXhhx/Kw8ND48eP17Jly/Tdd99px44dioyMVL9+/RQbG2t11Dzp0aOHjDF64403NHXqVCUkJKhmzZr66quvZIzRfffdJ19fX/373/+2OmqelS1bVuvWrVONGjV08eJFeXt7a82aNWrSpIkkaceOHWrevLlOnjxpac68qlmzpt59911nkfDHH38oKipKrVu31tSpU3X48GGXLv7/l4eHh1JTU1WhQgV9/fXXmjp1qhYuXCh/f3/169dPjz32mGrXrm11zHypUKHCNccvXbqktLQ02zxGPj4+2rBhg2rUqKGQkBDNnz9f4eHhzvHt27frtttus83vkLs9PgBuvNw+7Lls//79+sc//mGb54l+/fpp+/bt+uCDD3Ty5EmNGjVKxhgtWrRI5cuXt90X9iSpc+fOqlatmiZMmKB//etfeu+993TnnXfq448/liQNGDBAx44d05w5cyxO+tc8PDxUqVKlqxpnKSkpCgkJUfHixeVwOLRr1y6LEubf5fouICBATz75pNasWaPvv/9eQUFBOnbsmO6++27VqVNHU6ZMsTpqnpQpU0a///67qlWrpttvv1333HOP/va3vznH4+LiNHXqVK1bt87ClPnj4eGhqVOnau7cufruu+9UpkwZPfzwwxowYIAaNGhgdbx8q1evnoYOHaonnnhCixcvVteuXfXOO+9o8ODBkqRPP/1Ub731ljZv3mxx0rxzt88aABQt8+bNu+b4rl27NHz4cJesp+1eO9u5TrZ7XWznGtjO2SV71+vuUJe7Yy2eZwaw2JdffmkqV65spk6dmu14sWLFzKZNmyxKVXA+Pj5m+/btzv2MjAxTvHhxc/ToUWOMMXPnzjXVqlWzKl6+VaxY0fz222/GGGPS0tKMw+Ewy5cvd46vXLnSVK1a1aJ0BePv7282btxojDEmPT3deHh4mF9++cU5vn79euPv729VvHzz9vY2ycnJ2Y7t37/f1K5d2zz00ENm//79xsPDw5pwBeBwOMyhQ4eyHdu3b5957bXXTPXq1Y2Hh4dp27atRekKxsfHxwwfPtx8+umnOW6vvvqqrR6jFi1amMmTJxtjjAkPDzdz5szJNp6QkGCCgoIsSFYw7vb4ALjxHA6HCQkJMdWqVctxCwkJsdXzREhIiFm9erVz//z586Z79+6mSZMm5tixYyY1NdVW8zHGmPLly5vNmzcbY4zJzMw0Hh4e2ea4bt06U6lSJavi5cuTTz5pmjRp4pzPZXZ9f2RM9vquVq1a5ttvv802vnjxYlu9RypbtqxZv369McaYgIAA558v27lzp/Hx8bEiWoFd+RgdOnTIvPnmm6ZOnTrGw8PDNG/e3EyePNmcPn3a4pR55+3tbVJSUpz7xYsXNxs2bHDuJycn2+4xcrfPGgAULQ6Hw3h4eBiHw5Hr5qr1p91rZzvXyXavi+1cA9s5uzH2rtfdoS53x1o8r7imOyz3wAMPaMWKFZo6dap69uypEydOWB3pupQrV05nzpxx7p89e1YXL150ngKkUaNGOnjwoFXx8i0tLc25CrRUqVIqVaqUgoODneOVK1fWoUOHrIpXIK1bt9YLL7ygn3/+WUOHDtWtt96qN954Q+np6Tp79qxef/11NWvWzOqYeRYUFKQ//vgj27GQkBD99NNPWrNmjfr162dRsoJxOBxXHatUqZJeeukl/fHHH0pISFCVKlUsSFZwTZo0UZUqVdSvX78ct+7du1sdMV9eeuklvfDCC/r000/17LPPaujQoZoyZYpWrlyp+Ph4Pf744+rbt6/VMfPM3R4fADdeaGio3n33XSUnJ+e4zZ8/3+qI+XLq1CmVL1/eue/l5aX//Oc/qlatmtq3b6/Dhw9bmK5gMjMz5e3tLUkqXry4fHx85O/v7xz38/PTsWPHrIqXL//617/0yiuvqEuXLs7LH7mDyzXeyZMnrzrLWVhYmK3eI7Vr105ffvmlJCk8PFxLlizJNr548WKXPdVmXgQEBGjkyJHasmWLlixZ4lypcuX7QFfn5+fnvBbmgQMHdPHiRe3Zs8c5npKS8pdnO3I17vZZA4Cb47PPPrvqMyJXEBwcrFmzZikrKyvHzRVXm15m99rZznWyO9TFdq6B7ZzdXep1u9bl7liL5xUXeoJLCA0N1dKlS/Xqq6+qcePG+vjjj3NsvNlB586dNWzYMH300Ufy8vLSqFGj1KRJE+e16ffs2aOAgACLU+ZdSEiI9uzZo6pVq0qS3nrrrWz5jxw5kq3wtIO3335bXbt2Vdu2bVWvXj0lJCToqaeecl7KoHz58lqwYIG1IfOhQ4cOmj59ujp27Jjt+OXGe0REhDXBCsj8xVVPOnbseNVcXV10dPQ1T7VeoUIFPfLII4UX6DpFR0dr8uTJiomJ0YEDB2SM0RNPPCHpzzefgwYN0rhx4yxOmXfu9vgAuPGaNm2qxMRE3XfffTmOOxyOv3z9ciXVq1fX77//rpo1azqPFStWTF999ZV69+7tkte1+ytVqlTRrl27VK1aNUnSjBkzsn0QcfDgwWwfLrq6Hj16qHnz5nrkkUc0f/5821xq61r69+8vLy8vXbhwQSkpKapXr55z7ODBg85a3A7Gjx+vtm3b6sCBA2rTpo1Gjx6tNWvWqG7dutq2bZtmzpypjz76yOqY+ZLb+++2bduqbdu2ev/99zVz5sxCTlVw3bt31+OPP65+/fpp3rx5euSRRzR8+HB5eHjI4XBoxIgRioyMtDpmvrjbZw0Abo7+/furePHievLJJ/XBBx9YHcepadOmWrdunXr06JHjuCvX03avne1eJ9u9LrZzDWzn7Hau192hLnfHWjyvuKY7XM7PP/+svn37KiUlRRs2bMj2ZG4Hhw8fVvfu3bV69Wo5HA5VrVpVs2fPdl7v+D//+Y8OHjyoZ555xuKkeTNo0CA1a9ZMAwYMyHF8/PjxWr58ue1WeEnSsWPH5Ofn59z/8ccfde7cObVs2TLbcVeXkpKirVu3qkuXLjmOHzx4UAkJCbZZ8b506VK1bt36qus1wfVcunRJ69at065du5SVlaXg4GA1bdrU+cEfALiLzZs36+zZs7meCefChQs6cOCAQkNDCzlZwfztb39TUlKSFi5ceNXYxYsX1bNnT3377bcueU3N3Lz66quqXbu2HnjggRzHR48era1bt2rWrFmFnOz6GGM0fvx4vf/++zpy5Ih+//13270/kqRHH300237Xrl3Vu3dv5/6IESO0YcMGW33x9Y8//tDf//53zZ8/X2lpaZL+/AC+efPmGjFiRK5NBVd15XU73UF6erpiYmK0atUqtWnTRu+//77ee+89jR49WhcuXFC7du00c+ZMW83X3T5rAHDz7N69WwsXLtTAgQOtjuK0fPlypaen684778xxPD09XWvXrlW7du0KOdlfs3vt7C51sh3rYjvXwHbOfpld63V3qMvdsRbPK5rucElpaWn6448/VLduXeep0uxmx44dysjIUJ06ddy6eZicnKySJUu6/ClNAAAA8KeLFy/q7NmzKlOmTI7jly5d0r59+2zzJYK8OHv2rDw9PeXl5WV1lAJJTEzUihUr9Mgjj9juLFN5kZ6eLk9PT5UsWdLqKPlmjNHhw4eVlZUlf39/FS9e3OpIuIbz58/rwoULtv6SaFH5rAEAXIW71852q5PdqS62cw1sp+zU667DHWrxv0LTHQD+x4kTJ/TNN9/Y7nTSWVlZ8vDwyPH4vn37nJcIsAt3m48xRrt371aVKlVUrFgxZWZmas6cOcrIyFDXrl1d+lReOXG3+eSkQ4cOio+Pt+0bZwAAAACA+0lLS1NiYqJSU1PlcDgUGBiopk2bqnTp0lZHAwCgSKPpDuC6HDp0SP/617/08ssvWx3lhlm/fr1uvfVWlz0t1P86ffq0BgwYoG+++UZlypTRoEGD9PLLL8vT01PSn49RSEgI87HQtm3b1KVLF+3du1fVq1dXQkKCevfura1bt8oYIx8fH61cuTLb9cFcmbvNZ968eTkev/fee/Xee++pSpUqkqS77767MGMBAAAAAOB08eJFDR8+XB9//LHOnz+vEiVKyBijCxcuqGTJknryySf19ttvs4oTAACL0HQHcF3s1qCW/mzqXsvvv/+udu3a2WZOzz33nBYsWKAxY8bo5MmTeuONN9SgQQPNnj1bJUqU0KFDhxQcHKysrCyro+aJu81Hknr06CFjjN544w1NnTpVCQkJqlmzpr766isZY3TffffJ19dX//73v62OmifuNh8PDw85HA5dqyRyOBy2eU4AAAAAALif5557TrNmzdI777yjLl26qFy5cpKkkydPauHChRoxYoTuvfdeTZw40dKcAAAUVTTdAVzT77//fs3xrVu36sEHH7RVM+pygy03xhhbNdhCQ0M1bdo0RURESJKOHTum6OholS1bVvPmzdPJkydttTLc3eYjSQEBAUpISFCTJk2Unp4uX19fLVu2TG3atJEk/fLLL3rggQeUkpJicdK8cbf5REVFydPTU1OnTlVAQIDzePHixbV+/XrVq1fPwnQAAAAAAEgVK1bUzJkz1aFDhxzHf/zxRz3wwAM6cuRIIScDAACSVMzqAABcW5MmTXJdAXr5+LUa2K7I19dXo0ePVosWLXIc37FjhwYOHFjIqQru6NGj2a457efnp0WLFqlLly7q2rWrPvnkEwvT5Z+7zUf683prFSpUkCSVKlVKpUqVUnBwsHO8cuXKOnTokFXx8s3d5vP999/r3XffVfPmzfXPf/5Td911l9WRAAAAAADI5ty5c/L398913M/PT+fOnSvERAAA4EoeVgcA8uKzzz7TH3/8YXWMG2bPnj22WaXr5+enjz/+WMnJyVdtu3bt0rfffmt1xHy79dZbJUnt2rXLcWvevPk1TzPtaqpUqaItW7ZkO+br66uEhASdO3dO99xzj0XJCsbd5iNJISEh2rNnj3P/rbfeyrai+siRIypfvrwV0QrE3eYjSUOHDtW8efP0t7/9TQMHDtTZs2etjgTAZqhXXZ87zcmd5nKZu83J3eYjud+c3G0+knvOCcD/ad++vYYNG5bjl9wPHTqkkSNH5roK3g6WLVumU6dOWR2jQOz+/Gvn/HbOLtk7v52zS/bOb+fsl7nDHHJC0x220L9/f9WrV0/PPPOM1VFuiGrVqqlevXqaPXu21VH+UtOmTXXgwAGFhobmuFWqVMlWDWpJ6tOnj0qWLJnreFBQkF555ZVCTHR9IiMjFR8ff9Xx0qVLa+HChdecqytyt/lIUqdOnbR161bn/lNPPSVfX1/nfkJCgvPLIHbgbvO5rHHjxlq7dq0cDoeaNGliu+c2ANaiXnV97jQnd5rLZe42J3ebj+R+c3K3+UjuOScA/+fDDz/UoUOHVLlyZYWHh+vOO+9UVFSUwsPDnWec+/DDD62OWWARERGqXr263nnnHauj5Jvdn3/tnN/O2SV757dzdsne+e2c/TJ3mENOuKY7bGP37t1auHChrU77nZulS5cqOTlZCQkJmj59utVxrmnOnDlKT0/Xww8/nOP4iRMnNG/ePPXr16+Qk+GyEydO6MCBA6pfv36O42lpaUpMTFS7du0KOVnBuNt88iI5OVklS5bMdop2O3OH+cybN0+LFy/WqFGjsq3iB4BroV51be40J3eay2XuNid3m4/kfnNyt/lI7jknANllZWVp4cKFWrVqlVJTUyX9uXikZcuWioyMlIeHfdfYpaSkKDk5WQsXLtS4ceOsjpMvdn/+tXN+O2eX7J3fztkle+e3c/bL3GEOOaHpDgAAAAAAAAAAAABAARWzOgBw2eXVq6mpqXI4HAoMDFTTpk1VunRpq6Ndt4yMDO3bt0+VK1eWl5eX1XEAAABQAO5cr7qrJUuWqEWLFvL29rY6CnJw6NAhGWMUFBRkdRS4sUuXLuno0aPy9PSUv7+/1XFuKD5rAIqOPXv2qGrVqnm+/f79+1WpUqWbmKhouvya4nA45OfnJ09PT6sjFRnc99bhvrcO97392Pd8M3AbFy9e1HPPPaeAgAC1b99e/fr1U9++fdW+fXsFBAQoJiZGFy5csDpmnn366adatWqVJOn8+fMaMGCASpUqpVq1aql06dIaNGiQMjIyLE4JAACAvHK3erVhw4Z6/fXXtXfvXquj3HSRkZHavXu31TFuqC1btqh69epWx8iX48ePq2fPngoNDdWQIUN06dIlDRgwQMHBwapUqZJatWqlgwcPWh0zz7Zv364rTxq4YsUK9ejRQ/Xr11enTp309ddfW5iu4NavX6833nhDH374oY4ePZpt7PTp03rssccsSlYw8+fP1x133KFSpUopJCREgYGBKleunPr27as9e/ZYHS/f+KwBKNqaN2+uJ554Qr/++muutzl16pQ+/vhjNWjQwOWukZuQkKCLFy8696dPn64mTZqoVKlSuuWWW/T+++9bmO6vzZkzR61bt5aPj49CQkIUHBwsHx8ftW7dWnPnzrU63jXZvW7hvrcO97117HzfS/a//68HTXdYbvjw4Zo1a5bi4+N1/PhxnT9/XhkZGTp+/Lji4+M1e/ZsjRgxwuqYeTZmzBgVK/bnSSReeukl/fjjj/rqq6+0adMm/ec//9HixYv10ksvWZwSAAAAeeVu9eqmTZv03nvvKSwsTHfeeadmzZqV7UNQO7r11ltz3C5evKiePXs6991BZmamUlJSrI6RL88//7y2/3/27js8iup/+/i9CWlAEmqaQAg9BIFIKAlIb4IIVgREuqKhSfuJjaJIUFRQEaUFFAMoTekgJKCi9KJ0EQQkAUEI0gJJzvMHD/t1aSYhZLPL+3Vde8nMmZ29z05MPjtn58y+fRo0aJB27typJ554Qhs3btT333+vH374QampqXr55ZftHTPDQkND9ddff0m6OptCvXr1lJ6erg4dOqhAgQJ67LHHtHz5cjunzJwVK1aoRo0amjVrlkaPHq3Q0FDFx8db2y9evKjp06fbMWHmfPHFF2rXrp2qVauml156SUWLFtXgwYMVExOjI0eOqFq1atq/f7+9Y2YK5xqAe9vu3bvl6+ur5s2by9/fXy1btlSPHj3Uu3dvPfPMM3rggQfk5+enadOm6d1331Xv3r3tHdnGQw89pL///luSNHfuXD377LOqW7euJk2apDZt2mjw4MGaOXOmnVPe3Geffaann35alStX1uzZs/XDDz/o+++/1+zZs1W5cmU9/fTTmjRpkr1j3pIj1y289/bDe28/jv7eS479/t8p7ukOuytatKhmz56thg0b3rR91apVevrpp63/k+Z2np6e2rdvn0qUKKHy5ctr3Lhxat68ubV97dq16tixo8OdKAMAALhXOVu96uLioqNHj2rDhg2aOnWqli5dqoIFC+rZZ59Vt27dFBoaau+Imebm5qbGjRurVq1a1nXGGL355pvq2bOn/Pz8JElDhw61V8QM69+//23b//rrL8XFxSktLS2HEt25oKAgzZkzR1FRUTp+/LgCAwO1fPlyNWnSRJL0448/qm3btjp69Kidk2aMi4uLkpKS5Ofnp8aNG6t8+fIaP368tX3IkCFat26d1qxZY8eUmRMVFaUGDRpo5MiRMsZozJgxGjFihL7++ms1b95cx48fV1BQkMP83IWGhmrYsGFq27atJGnTpk169NFHdfjwYVksFj399NO6fPlyrrsS9HY41wBAujrTxZIlS/T999/r0KFDunjxoooUKaLw8HA1a9ZMlSpVsnfEm/r33846deqoUaNGGj58uLV9zJgx+uqrr257Jb+9lClTRkOGDFG3bt1u2j516lSNHDlSBw4cyOFkGePIdQvvvf3w3tuPo7/3kmO//3eKe7rD7q4Vh7dSuHBhXbx4MQcT3ZmAgAAdOHBAJUqU0Pnz52/oW9GiRXXq1Ck7pQMAAEBmOVu9Kkl58uRRmzZt1KZNGyUlJSk2NlaxsbH64IMPVLNmTXXv3t2hppJOSEhQp06dVKNGDQ0dOlQuLlcndRs5cqSio6NVsWJFOyfMuHHjxqlq1ary8fG5afu5c+dyONGdS05Ott5X1t/fX3ny5FFgYKC1PSgoSGfOnLFTujuza9cujRw50mZdx44dc/3VJ9fbuXOnvvjiC0mSxWLRoEGDVKxYMT3xxBOaOXOmatSoYeeEmfPHH3+oZs2a1uWIiAglJSUpMTFRQUFB6t+/v5o1a2bHhJnHuQYA0tUv4Dz22GN67LHH7B0ly/bv33/DdPKPPPKI3nrrLTslur0///xTderUuWV7VFSUjh07loOJss7R6hbee/vhvbcfZ3rvJcd7/+8U08vD7ho0aKD+/fvr+PHjN7QdP35cgwcPvuVVRblRhw4d9Oqrr+rMmTPq2LGjRowYYT0xduHCBQ0bNky1a9e2c8rsdfjwYYe54iGjXFxc1LBhQ23evNneUbIF/cn9nK1P9AeAM3G2etVisdgsBwQEaMiQIdq3b59WrVql0qVLq0+fPnZKlzW1a9fWli1btG/fPkVGRubqb/3/l7Jly+qll15SfHz8TR+OeHKibNmyWrRokSRp6dKl8vT01IoVK6zty5cvV0hIiL3iZck///yjs2fPysvLSx4eHjZt7u7uDvdFHA8Pjxu++NCuXTtNmTJFTz/9tObPn2+fYFlUsmRJbdq0ybq8ZcsWubi4yN/fX5JUqFAhXblyxV7xsuRePNcAwLns2rVLO3bskJeXl9LT023a0tPTc+25xbCwME2cOPGW7ZMmTVJYWFgOJso8R61beO/th/fefpzhvZcc9/2/U1zpDrv75JNP1KJFCxUrVkyVKlWSv7+/LBaLkpKS9Ouvv6pixYpavHixvWNm2NChQ/Xrr7+qVKlSioiI0Pfffy9/f3/dd999OnbsmAoXLqyVK1faO2a2KlmypMqWLatRo0Y59Ddt/23q1Kn6448/1KdPH/3444/2jnPH6E/u52x9oj8AnImz1au3u8NY/fr1Vb9+fZ09ezYHE2UPHx8fzZw5U7GxsapTp46GDx9+wxcMHEG1atW0efNmPfPMMzdtt1gstz2GudGgQYPUqVMnjR07VkePHtWMGTPUp08frV+/Xi4uLpo3b57ef/99e8fMlHLlykm6+v/T5s2bVbVqVWvbzp07rVf2O4qqVasqPj5e1apVs1nftm1bpaenq1OnTnZKljXR0dHq3r27Nm7cKE9PT02ePFkdO3aUq6urJGn9+vXWY+go7sVzDQCcS6NGjaw1zI8//qiIiAhr29atW1WiRAl7Rbut9957Ty1bttSyZcvUtGlTm88CK1eu1B9//KElS5bYO+ZtOWrdwntvP7z39uMM773kuO//neKe7sgV0tPTtXz5cv38889KSkqSdPWKm8jISDVt2tQ6PaQjWbZsmRYuXKjff/9d6enpCgwMVO3atdW+fXvly5fP3vGy1Zo1a3Tw4EGtWLFCcXFx9o4DAACQ7ZypXu3SpYs+/PBDeXt72zvKXbN//3516NBBmzZtsn4xwlEkJSUpJSVFwcHB9o6SrX744QetX79eUVFRioyM1K5duxQTE6MLFy6oVatWDjWoe/29BwMDA20GcMeNG6fLly9r0KBBOR0ty+bPn6+1a9fqgw8+uGn7zJkzNXHiRMXHx+dwsqybMGGCZsyYoZSUFDVr1kyvv/66PD09JV39HZGWlqYKFSrYOWXm3UvnGgA4jz/++MNmOX/+/CpcuLB1+fPPP5ckPfvsszmaK6MOHTqkCRMm3PSzQM+ePVWyZEn7BrwNR69beO/th/fefhz5vZcc//2/Ewy6A8C/GGMc8oqomzl48KCKFy+uPHmY1CS3Sk1N5fjkcs70OwEA7jXp6en6559/5OPjw+9yAAAAAABwVznO5RhwSocPH87U9n/++eddSoJ7SUpKigYMGKB69erp3XfflSS99dZbyp8/v/Lnz6/27ds75JSq1ytfvrz2799v7xhZsnHjRnXo0EEhISHy8vJS3rx5FRISYr1izdEsW7ZMv/zyi6SrAwBvvfWW7rvvPnl4eKhYsWKKiYlxuGliExMTNWPGDC1ZskSXL1+2aTt//rxGjBhhp2SZd6/8TgCQNc5er/7xxx9av369NmzYcMMVSI7OxcVFvr6+DLgjxxhjbrhHraObNm2akpOT7R0j2zhbfwDAkaSlpengwYPWv5UpKSn66quvNGvWLB0/ftzO6eBI+HuOzDh8+LDWr1+vTZs26eTJk/aOk2FpaWk2yxs2bNDPP/+slJQUOyW6M/v379eqVav022+/2TvKXcWgO+yqevXq6tGjhzZs2HDLbZKTkzVp0iRVqlRJ8+bNy8F0WbNixQqlpqZal+Pi4lS1alXly5dPZcqU0YcffmjHdFmzfft2vfXWW/rkk09u+MN09uxZde3a1U7JsmbIkCGaNWuWqlevrtjYWPXq1UuTJk3SZ599psmTJ2vjxo167bXX7B0zwx577LGbPtLS0tSnTx/rsqNYsGCBateurb///lt9+/bV1KlTNXnyZPXt21enT59W7dq19c0339g7ZqYMGDBA//zzjyRp9OjRGjt2rAYOHKjFixdr0KBBGjt2rN555x07p8y4jRs3qmLFioqOjtYTTzyhSpUqaefOndb2c+fOafjw4XZMmDnO9jsBQPZyxnpVkj744AMVL15cpUqVUmRkpGrVqqVSpUqpePHiGjt2rL3jZbvt27db7+XsCBYvXqzu3btr8ODB2rNnj03b6dOn1bBhQzslyzpn6lNqaqpee+011atXT0OHDpUkvfvuu8qfP7+8vLzUqVOnG76U6Kiee+45HTt2zN4xso0j98cZzzUAuHds375dxYoVU5kyZRQeHq6jR48qIiJCXbt2VY8ePRQaGnrbetuevL291a1bN61bt87eUbLEGf9+ONLfc2eqgf/NET5fffLJJwoODlZISIiioqJUs2ZN+fv7q06dOtq8ebO9493SoUOHVK1aNXl4eKhly5Y6e/asmjRpolq1aikqKkoVK1bUvn377B3ztmJiYrR69WpJV3/OGzdurPLly6tJkyYqX768HnroIZ05c8a+Ie8WA9jRqVOnzIABA0zBggWNn5+fadGihenevbvp1auX6dChgwkPDzfu7u4mKirKLFmyxN5xM8TFxcUcP37cGGPMnDlzjKurq+ndu7f58ssvzYABA4yHh4eJi4uzc8qMW758uXF3dzdhYWGmRIkSpkiRImb16tXW9qSkJOPi4mLHhJlXvHhxs3LlSmOMMQcOHDAuLi5mwYIF1vYVK1aY4OBgO6XLPIvFYurVq2c6d+5s83BxcTFt2rSxLjuKsLAwM2rUqFu2x8TEmIoVK+Zgojvn6elpDh8+bIwxplKlSmb27Nk27YsWLTJlypSxR7Qsady4senatatJS0szZ8+eNS+++KIpXLiw2bJlizHG8X4vONvvBADZyxnr1REjRhgfHx8TExNjtm7dao4dO2b+/PNPs3XrVhMTE2N8fX3Nm2++ae+Y2Wrbtm3GYrHYO0aGfPnll8bV1dW0bNnS1KlTx3h6epoZM2ZY2x3t76wxzten1157zfj7+5v+/fubihUrmp49e5rixYubGTNmmM8//9wUK1bMjB492t4xM6VgwYI3fVgsFuPr62tddhTO1h9jnO9cA4B7S9OmTc0TTzxhfvnlF9O3b19TsWJF8+STT5rLly+bK1eumGeeecY0btzY3jFvymKxmLCwMGOxWEyFChXMmDFjrL+PHYEj//1w9L/nzlYD/1tu/3z17rvvmsDAQDN27Fjz6aefmtDQUDNixAizdOlS07FjR5M3b16zceNGe8e8qccff9zUq1fPLFy40Dz11FOmdu3apn79+ubo0aPm2LFjplmzZqZNmzb2jnlbJUqUMNu3bzfGGNO9e3cTHh5utmzZYi5evGi2bdtmatWqZbp162bnlHcH93RHrnDp0iUtWbJE33//vQ4dOqSLFy+qSJEiCg8PV7NmzVSpUiV7R8wwFxcXJSUlyc/PT3Xq1FGjRo1srvgcM2aMvvrqq1z77c3rRUVFqUGDBho5cqSMMRozZoxGjBihr7/+Ws2bN9fx48cVFBR0w3QnuVnevHm1Z88elShRQpLk7u6urVu3KiwsTNLVb5OFhYXp/Pnz9oyZYbNmzdKgQYM0YsQIdenSxbrezc1N27dvV8WKFe2YLvM8PT21Y8cOlStX7qbte/fuVZUqVXTp0qUcTpZ1QUFBmjdvnmrVqqWAgAAtXbpU4eHh1vb9+/erSpUqunDhgh1TZlyhQoX0888/2xyjd955RzExMVq+fLlKlCjhUL8XnO13AoC7w5nq1eLFi+ujjz5SmzZtbto+f/589erVy6Gmyv+vWX2Sk5OVkJDgEH+bHnjgAXXp0kW9e/eWJM2ZM0ddunTR2LFj1a1bN4esv52tT6VLl9a4ceP08MMP67ffflP58uUVFxentm3bSpK+/vprjRgxwnp7IUfg7e2tevXq6cknn7SuM8aoe/fuGjFihO677z5JUqdOnewVMVOcrT+S851rAHBvKVSokH788UeFhobq4sWL8vb21rp161SjRg1J0s6dO1WvXr1cOfXztd+/iYmJmjx5suLi4nTu3Dk9/PDD6t69u5o3b56rb2fkyH8/HP3vuSPXwI7++SokJESffPKJHnroIUnSvn37FBUVpaSkJOXJk0d9+/bV7t27tWLFCjsnvZGfn59WrFihqlWrKjk5WQULFtTatWtVp04dSdKWLVvUokULJSUl2TnprXl6emrv3r3WmQamT5+uunXrWts3b96sVq1aOcyMFZmRx94BAOnq/4SONgV2Ruzfv/+GKXoeeeQRvfXWW3ZKlHk7d+7UF198IUmyWCwaNGiQihUrpieeeEIzZ860FseOpESJEvrpp59UokQJbdy4URaLRRs2bLAOsK1fv95atDmCp59+WpGRkXrmmWe0aNEiTZ48WQULFrR3rCwrXbq0FixYoMGDB9+0/ZtvvlGpUqVyONWdefTRRzVy5EgtWLBArVu31ieffKKJEydaP5R9/PHHqlq1qn1DZtL1X3oYPHiwXFxc1LRpU02dOtVOqbLG2X4nALg7nKlePXXqlMqXL3/L9nLlyun06dM5mOjOLVy4UE2aNJG/v/9N23PryaCb2bdvnx5++GHr8hNPPKEiRYrokUce0ZUrV/Too4/aMV3WOFufjh07pipVqkiSypQpI3d3d+uyJEVEROiPP/6wV7ws2bp1q9q3b6/Vq1dr/Pjxyp8/vySpR48eatOmjcN9kdfZ+nM9ZzjXAODeYoxRnjxXhyKu/68kubq6Wu/1nltVqVJFH330kd577z3NnTtXU6ZM0cMPP6ygoCB16dJFI0aMsHfE/+Rofz8c/e+5I9fAjv756sSJEwoNDbUuly1bVsnJyfrrr78UGBiorl27Wgexc5tLly7J19dX0tUvnri6usrb29va7uPjk+sv3AoODtavv/6q4OBgWSwWm9/30tXf+c56cROD7sBdsGvXLiUlJcnLy+uGgjE9PT3X/1H6Nw8Pjxvur9GuXTu5uLjo6aef1nvvvWefYHegZ8+e6ty5syZPnqzNmzfrvffe0yuvvKI9e/bIxcVFEyZM0IABA+wdM1OCg4O1Zs0aDR8+XFWqVNGkSZNy9bdsb2fEiBF6+umntWbNGjVt2lT+/v6yWCxKSkrSypUrtWLFCs2aNcveMTPl7bffVuPGjVWhQgVFRkbq66+/1sqVK1WuXDn99ttvOnXqVK78ZuWtVKpUSevWrVPlypVt1g8cOFDGGLVr185OybLGGX8nAMDt1KhRQyNHjtS0adNu+PCbmpqqt99+2+G+WBkaGqrHH39c3bp1u2n7tm3btGjRohxOlTU+Pj46fvy4QkJCrOvq16+vhQsX6uGHH9bRo0ftmC5rnK1Pvr6+OnPmjIoXLy7p6lVM/z4RlpKS4nC1eJkyZbRu3Tq9+uqrqlq1qqZPn67atWvbO1aWOVt/rnGmcw0A7i3VqlXT6NGjNXz4cE2ZMkUhISH6+OOPrV/a/+ijj3LtzFHX/013d3dXu3bt1K5dOx06dEhTpkzRtGnTcvWgu6P+/XD0v+eOXAM7+uercuXKaeXKlerRo4ckKT4+Xu7u7goICJB09Uv1ubVeDwsL09SpU/Xmm29q+vTpKly4sGbNmmX9ku/MmTNvOUNsbtGjRw8NGjRI5cuXV69evTRw4EB98cUXKl26tA4ePKiXXnpJTZs2tXfMu8N+M9sDzslisRgXFxdjsViMxWIxY8eOtWmPi4tzqPtRN2nSxLz77rs3bYuLizNubm4Oee+ZGTNmmF69eplZs2YZY4yJj483Dz74oKlWrZoZNmyYSUtLs3PCrPvhhx9MSEiIcXFxMTt37rR3nCxZt26dadu2rSlRooRxd3c37u7upkSJEqZt27Zm3bp19o6XJZcvXzYTJkwwLVq0MBUqVDDlypUz9erVM6+88oo5cuSIveNlyqRJk8wzzzxzy/bRo0ebkiVL5mCiO+fMvxMA4Ho7duwwAQEBpmDBgqZNmzbm+eefNz179jRt2rQxhQoVMoGBgebXX3+1d8xM6dy5s3nxxRdv2b5r1y6H+dvUunVr88Ybb9y0LT4+3uTLl8/h6m9n61ODBg3MtGnTbtn+1VdfmWrVquVgouy1atUqU6JECTNkyBDj5ubmsJ8prnGW/jjbuQYA95YNGzaYQoUKGRcXF+Pn52d27txpatasaQICAkxQUJDx8vIy3333nb1j3pTFYvnPe7inp6fnUJrMc5a/H47499yRa2BH/3w1e/Zs4+bmZp566inz7LPPmvz585uXX37Z2v7pp5+ayMhIOya8tWXLlhlPT0/j7u5uvLy8zNq1a025cuVM9erVTa1atYyrq6uZPXu2vWP+p969exs3NzdToUIF4+npaVxcXIy7u7txcXExERERJjEx0d4R7wru6Q5ks+unEcyfP78KFy5sXf78888lSc8++2yO5sqq+fPna+3atfrggw9u2j5z5kxNnDhR8fHxOZwMt3Pu3DkdOHBAoaGhcnd3t3ccAACQy/zzzz+aMWOGfv75Z+u94AICAhQZGan27dvLx8fHzgkzJyUlRWlpacqbN6+9o9yxNWvWaN26dRoyZMhN2xMSEjR9+nTFxsbmcLKsc7Y+7du3T25ubjZXLf1bXFyc8uTJo6eeeiqHk2WfU6dOqUePHoqPj9fPP/9821tSOAJn6I+znWsAfxNZvAABAABJREFUcO85d+6c9u7dq/Llyyt//vy6dOmSvvzyS128eFFNmjTJtb+bhw8frkGDBjlsnelMfz8c7e+5I9fAzvD5aunSpZoxY4ZSUlLUrFkz61Xv0tWfJUk2/y/kJgcPHtSWLVsUERGh4OBgHT9+XOPHj9eFCxfUsmVLNWjQwN4RM2T37t1atGiRfv/9d6WnpyswMFC1a9dW48aNc+1MA3eKQXcA0NVC4ujRoypWrJg8PDzsHQc3cfz4cRljrNMAIXdIS0vTyZMn5erqqiJFitg7TrZKSEhQzZo15eXlZe8oAAAAAAAAAIBczMXeAYB7xfDhw3Xy5El7x4CkadOm6eeff5YkXbp0Sd27d1e+fPlUrlw55c+fXz179lRKSoqdU2bO9u3b9dZbb+mTTz654efs7Nmz6tq1q52SZd7ff/+txx9/XMHBwYqOjlZaWpq6d++uwMBA3XfffYqKilJiYqK9Y2ba5MmT1alTJ+u3V2fPnq3Q0FCVKlVKQ4cOtXO6zFu8eLHq1q2rfPnyKSgoSP7+/ipQoIA6duyow4cP2ztetmjatKkOHTpk7xgAkOOuXLniNL/Lncnx48ed7rg422ekv/76S1euXLF3jGyRmpqqlStXasqUKVq1alWuvdfrrTjTz9W/paWl6eDBg9b78aakpOirr77SrFmzdPz4cTunA4Cb27Fjxw33Eb+dnTt3KjU19S4myl6pqalOV6Pldo5eFztyDezo9a4j5nfEutxRf76zA4PuQDY7e/bsDY/k5GSNHDlSv//+u3Wds9i+fbtcXV3tHSNTRo4cqTx58kiSXn/9da1atUpff/21du7cqTlz5ig+Pl6vv/66nVNm3IoVK1SjRg3NmjVLo0ePVmhoqM10/xcvXtT06dPtmDBzBg4cqH379mnQoEHauXOnnnjiCW3cuFHff/+9fvjhB6Wmpurll1+2d8xMGTt2rPr166dz587p1Vdf1ciRIxUdHa1nnnlGXbp00bhx4zRx4kR7x8ywL774Qu3atVO1atX00ksvqWjRoho8eLBiYmJ05MgRVatWTfv377d3zAx74IEHbvpITU3V448/bl0GgHvFrl27bjltdm72ySefqHHjxnrqqae0evVqm7aTJ0+qVKlSdkqWOf/884+eeeYZBQcHq1OnTrp8+bKio6MVGBiokJAQ1atXz+E+TzjbZ6SJEydav6RrjNHbb7+tggULKiAgQAUKFFD//v0zNbiQG/Tp00eLFy+WJB09elT333+/HnroIb366qtq1qyZwsPD9eeff9o5Zcb5+/urUaNGiouLc7gvVN/K9u3bVaxYMZUpU0bh4eE6evSoIiIi1LVrV/Xo0UOhoaHasGGDvWMCwA3Cw8OtUzlnRGRkpEMNqO7cuTPX186OWic7el3syDWwo9e7jpzfGepyZ6zFM4rp5YFsdqsBaGOMLBaL9b+O8I2kjNi+fbvCw8Nz7R+pm/H09NS+fftUokQJlS9fXuPGjVPz5s2t7WvXrlXHjh1vuOdRbhUVFaUGDRpo5MiRMsZozJgxGjFihL7++ms1b95cx48fV1BQkMP8zAUFBWnOnDmKiorS8ePHFRgYqOXLl6tJkyaSpB9//FFt27bV0aNH7Zw040JDQ/X666+rffv22rp1q2rUqKFPP/1U3bp1kyTFxsZq/Pjx2rRpk52TZkxoaKiGDRumtm3bSpI2bdqkRx99VIcPH5bFYtHTTz+ty5cva968eXZOmjFubm5q3LixatWqZV1njNGbb76pnj17ys/PT5IcckYCAMiK7du364EHHnCY2kGSPvzwQw0ZMkRdunRRcnKyvv76aw0dOtR6/0RHqod69+6t7777Ti+++KLmzZsnX19fHThwQJ9++qnS09P14osv6pFHHtHIkSPtHTXDnO0zkqurqxITE+Xn56fPPvtMAwYM0IgRI1SrVi1t2bJFr732mt566y316tXL3lEzLCgoSKtWrVJoaKjatm2rv//+WzNnzlSRIkX0999/q1OnTvL09NTXX39t76gZ4uLiombNmmn16tXKly+fOnTooG7duqlq1ar2jpZlzZo1k4+Pj4YOHarJkydr5cqVCgsL05dffimLxaIuXbooKSlJK1eutHdUALDh4uKi5557LsP3hv7kk0+0a9euXDsQfL3cXjs7cp3s6HWxI9fAjl7vOnJ+Z6jLnbEWzygG3YFsVqxYMVWtWlUDBgyQi8vVySSMMWrcuLEmT55s/eZjvXr17Bkzwx577LHbticnJyshISFXFge3UrJkScXGxqpBgwYqVqyYFixYoIiICGv77t27Vb16dZ07d86OKTPO19dXW7ZsUenSpa3rZs6cqR49emjmzJmqUaNGri2ebyZfvnzatWuXgoODJUnu7u7asmWLKlWqJEk6ePCg7r//foc5PpKUN29e7dmzRyVKlJB09YsfmzdvVlhYmCTpt99+U/Xq1XX69Gl7xsywvHnzateuXSpZsqR1nZubm/744w8FBQVpw4YNatasmcP058cff1SnTp3UoUMHDR061Pq7283NTdu3b1fFihXtnBAAstd/zd5x8eJF7du3z2FqB0kKCwvTq6++qvbt20uSfvrpJ7Vp00bPP/+8RowYkatPJl6vRIkSmj59uho0aKBjx46pWLFi+uabb9SqVStJ0pIlS9S/f3/t2bPHzkkzztk+I7m4uCgpKUl+fn6qUaOG2rVrp5deesnaPnnyZH300Ufavn27HVNmjpeXl3WWi+LFi2vu3LmqUaOGtf3XX39VgwYN9Ndff9kxZcZdO0YuLi6aPn26YmNjtXv3blWtWlXdu3dX+/bt5evra++YmVKoUCH9+OOPCg0N1cWLF+Xt7a1169ZZj9POnTtVr169e3o6TwC5U/369WWxWDL1nLi4OAUGBt6lRJnj6LWzI9fJjl4XO3IN7Oj1riPnd4a63Blr8YzKY+8AgLPZsWOHunXrpjfffFNffPGF7rvvPkmSxWJRjRo1HG7wZuHChWrSpIn8/f1v2p4bC7L/0qFDB7366qtasmSJOnbsqBEjRiguLk758+fXhQsXNGzYMNWuXdveMTPMw8NDZ86csVnXrl07ubi46Omnn9Z7771nn2BZVLZsWS1atEjR0dFaunSpPD09tWLFCuug+/Lly3P9tF3Xy5s3r86fP29dLlq0qPLnz2+zjSPdr6xkyZLatGmTddB9y5YtcnFxsf6eKFSokEPdH6l27drasmWLnn/+eUVGRiouLs7mSywA4Gx27dqlp59++pZ/TxMTE7Vv374cTnVnDh48qKioKOtyZGSkVq9erUaNGunKlSvq16+f/cJl0okTJ1SmTBlJV69y8PLyUvny5a3tYWFhOnLkiL3iZYmzfUaSZB08OHjwoBo1amTT1rBhQ5uTeo6gXLly2rBhg0JCQuTt7X3DVKf//POPQ81udk2RIkU0YMAADRgwQD/99JMmT56s//u//9PAgQP1+OOP6/PPP7d3xAwzxlhvk3b9f6WrV3Q54jEC4PwSEhLsHeGOOHrt7Mh1sqPXxY5eAzt6veuo+Z2pLnemWjyjGHQHslmhQoU0f/58TZgwQTVq1NCYMWPUrl07e8fKstDQUD3++OPWabCvt23bNi1atCiHU92ZoUOH6tdff1WpUqUUERGh77//Xv7+/rrvvvt07NgxFS5c2KGm5Ktatari4+NVrVo1m/Vt27ZVenq6OnXqZKdkWTNo0CB16tRJY8eO1dGjRzVjxgz16dNH69evl4uLi+bNm6f333/f3jEzpUKFCtqxY4dCQ0Ml6YYPBHv27LG5ajy3i46OVvfu3bVx40Z5enpq8uTJ6tixo3XarPXr16tcuXJ2Tpk5Pj4+mjlzpmJjY1WnTh0NHz4809/EBwBHUalSJdWsWVMvvPDCTdu3bdumSZMm5XCqO1OkSBEdOXLE5u9pWFiYVq9erYYNG+b6e979W+HChfXXX3+pePHikqTWrVurQIEC1vZz587Jw8PDTumyxtk+I0nSsmXL5OvrKy8vL128eNGm7eLFi9armRzFSy+9pIEDB8rf319DhgxRnz599NFHHyk0NFR79+5V3759/3MWtNzkZnVcZGSkIiMj9eGHH2rWrFmaOnWqHZJlXbVq1TR69GgNHz5cU6ZMUUhIiD7++GNrPz766CPrF5UBANnH0WtnR66THb0udvQa2NHrXUfN7wx1uTPW4hnFoDtwl7zwwguqV6+e2rdvr4ULF9o7TpZVq1ZNW7ZsueWgu4eHh3XKbEfh7u6ub775RsuWLdPChQutVwQEBgaqdu3aat++vfLly2fvmBn2wgsvaO3atTdtu1bITZw4MScj3ZEOHTooODhY69evV1RUlCIjIxUaGqqYmBhduHBBEydOdLgvEowePfq2P1OHDx/W888/n4OJ7kx0dLRcXFw0Y8YMpaSkqHPnznr99det7TVq1FBcXJwdE2Zdly5dVKdOHXXo0MGhZh8AgMyoU6eO9u7de8t2b29v1a1bNwcT3bk6depo7ty5evDBB23WV6xYUatWrVKDBg3slCzzKleurI0bN1qnMr3+b+rGjRutX+RzNM7yGUmSTT26atUq1axZ07r8008/OdysOZ07d9bff/+tli1byhijtLQ0NW3a1Nr+yCOP6IMPPrBjwsy53Z0U8+XLp27dut3yM25uNWrUKDVv3lyxsbEqUqSI4uPj1bVrVwUGBsrFxUWnT592+P+vACA3cvTa2ZHrZGepix21Bnb0etdR8ztDXe6MtXhGcU934C67fPmyXn75ZcXHx2vevHkONy12SkqK0tLSlDdvXntHAYAck56ern/++Uc+Pj5c8Q4ADmDHjh3avHmzunTpctP2nTt3as6cORo6dGgOJ8u8v//+Wy4uLjZX8fzb0qVL5eXlpfr16+doruzk6J+R/suiRYvk5uamZs2a2TtKpp05c0YrV67U77//bvPF5LJly9o7WqZMnz5dTz/9dK6++i0rzp07p71796p8+fLKnz+/Ll26pC+//FIXL15UkyZNbKbcBQBAcuw62dnqYmeqgR253pUcI78j1+XOWotnBIPuAPD/GWNkjMm1U8v8l7S0NOv03pK0YcMGpaenKzw8/J78Awfcif379+vw4cMKDg623j8MAAAAAAAAAICbccyRJSCX2rFjh9LT0zO8/c6dOx1m+uLz589r7dq1mj17tubMmaPNmzffdpqQ3Cw1NVWvvfaa6tWrZ/0W57vvvqv8+fPLy8tLnTp10uXLl+2cMuMOHTqkBx54QB4eHmrZsqXOnj2rJk2aqFatWoqKilJoaKj27dtn75iZsnjxYnXv3l2DBw/Wnj17bNpOnz6thg0b2ilZ1nh7e6tbt25at26dvaPkiO3bt9t8ASS3i4mJ0erVqyVd/flq3Lixypcvb71a6KGHHtKZM2fsGxIAsokz1qvO1Cdn6ss1ztYnZ+uP5Hx9crb+SM7ZJwBwBI7++9eR8ztydsmx8ztydsmx8zty9mucoQ93gkF3IBuFh4fr1KlTGd4+MjJShw8fvouJ7lx6eroGDx4sPz8/NWjQQO3bt9dTTz2l6tWrKyQkxKHuQ3PN8OHDNXnyZEVERGjOnDl64YUX9NFHH2nixImaPHmyVq9erbFjx9o7ZoYNHDhQPj4+WrBggfLnz68WLVooNTVVR44c0Z9//qly5crp//7v/+wdM8Pi4uLUunVrJSUl6aefflJ4eLi+/PJLa/vly5e1Zs0aOybMvPPnz2v9+vWqU6eOQkND9d577+nEiRP2jnVXOdKXciZMmKAiRYpIkgYPHqy///5bmzdv1oULF7RlyxadOXNGAwcOtHNKAMgezlivOlOfnKkv1zhbn5ytP5Lz9cnZ+iM5Z58AwBE4+u9fR87vyNklx87vyNklx87vyNmvcYY+3Ik89g4AOBNjjF5//fUM3//cEa6mfuWVV7Ro0SLFxcXJ09NTI0eO1MMPP6xHHnlEcXFxevLJJ/Xtt9+qadOm9o6aYXFxcZo8ebIefvhhvfDCCypfvrzi4uLUtm1bSZKnp6dGjBihwYMH2zlpxqxdu1YrVqxQ1apV9eCDD6pgwYJau3at7rvvPknS22+/rRYtWtg5ZcaNGTNGH3zwgXr37i1JmjNnjrp06aJLly6pW7dudk6XdatXr1ZiYqImT56st99+W6+88ooefvhhde/eXc2bN3eo+4Y/9thjt21PTk52qP4cP35cvr6+kqTvvvtO06dPV3h4uCSpSpUq+vjjj9WqVSt7RgSAbOOM9aoz9cmZ+nKNs/XJ2fojOV+fnK0/knP2CQAcgaP//nXk/I6cXXLs/I6cXXLs/I6c/Rpn6MOdYNAdyEZ169bV3r17M7x9ZGSkvLy87mKiO/fFF19o1qxZevDBByVJlSpVUoUKFdS3b1+NGDFCbm5uGjZsmEMNuh87dkxVqlSRJJUpU0bu7u7WZUmKiIjQH3/8Ya94mXbp0iXrgKG3t7dcXV3l7e1tbffx8dGFCxfsFS/T9u3bp4cffti6/MQTT6hIkSJ65JFHdOXKFT366KN2THdnqlSpoo8++kjvvfee5s6dqylTpujhhx9WUFCQunTpohEjRtg7YoYsXLhQTZo0kb+//03b09LScjjRnQkODtavv/6q4OBgWSwW5cljWx65urrq/PnzdkoHANnLGetVZ+qTM/XlGmfrk7P1R3K+PjlbfyTn7BMAOAJH//3ryPkdObvk2PkdObvk2PkdOfs1ztCHO2ExjjT/K4Ac5+Pjo23btqlUqVKSrk437+HhoSNHjiggIEC7du1S9erVHWpAKiAgQCtXrtT9998vSapdu7a++uor65Xhe/bsUc2aNZWcnGzPmBkWGRmpxo0b680331RsbKyGDBmiLl26aNSoUZKkN998U9988402bdpk56QZExQUpHnz5qlWrVo269esWaOHH35Yffv21ahRoxxqYNfV1VWJiYny8/O7oe3QoUOaMmWKpk+f7jBT6VSuXFl9+/a95cwD27ZtU7Vq1RzmGI0ZM0ZTp07Vt99+q2+//VZz5szRF198odKlS+vgwYPq2rWrihQpoq+//treUQEAAAAAAAAAuRD3dAdwW/fff79mzpxpXf7qq6+UP39+BQQESPrfILwjqVixorZs2WJd/vHHH60D7pL0yy+/qGzZsvaIliXDhg3TmDFj5OHhoejoaH399deaN2+eatSoocjISA0fPtxhpsqXpBo1amjp0qU3rK9Xr54WLlyosWPH5nyoO3S777eVLFlSb775pkPNrlCtWjWb/4eu5+HhoRIlSuRgojszcOBANW7cWBUrVtSkSZO0detWlStXTh4eHipTpozOnTunjz76yN4xAQAAAAAAAAC5FFe6A7itVatWqWXLlqpSpYo8PT21bt06vfvuu+rXr5+kq1eILl26VKtWrbJv0EzYt2+f3NzcFBISctP2uLg45cmTR0899VQOJ8u6gwcPasuWLYqIiFBwcLCOHz+u8ePH68KFC2rZsqUaNGhg74gZtmbNGq1bt05Dhgy5aXtCQoKmT5+u2NjYHE6WdcOHD9egQYMyfC+b3C4lJUVpaWlO059rdu/erUWLFun3339Xenq6AgMDVbt2bTVu3Nih7lEPAAAAAAAAAMhZDLoD+E87duzQ7NmzlZKSombNmqlJkyb2jgQAAAAAAAAAAADkCgy6A8B1UlNTdezYMYeaHvt2nK0/yL2OHz+ulJQUp/lZc7b+AAAAAAAAAADuDu7pDuCWduzYofT09Axvv3PnTqWmpt7FRDlj586dt5x63hE5Yn8++eQTNW7cWE899ZRWr15t03by5EmVKlXKTsmyzpn69M8//+iZZ55RcHCwOnXqpMuXLys6OlqBgYEKCQlRvXr1dPbsWXvHzDBn6w8A4H8OHToki8Wibdu22TuK1Z49e1SrVi15enqqatWq9o6T63Tu3Flt2rS5K/suWbKkxo4de1f2DQAAkBXUq46HehXArTDoDuCWwsPDderUqQxvHxkZqcOHD9/FRLgXfPjhhxo0aJAqVKggDw8PtWjRQqNGjbK2p6Wl6Y8//rBjwsxztj698sor2rx5swYOHKjDhw/rqaee0tq1a/X9998rISFBf//9t0aPHm3vmBnmbP0BgNykc+fOslgsiomJsVm/YMECWSwWO6Wyr6FDhypfvnzau3evVq1ala37rl+/vvr165et+7xb7uYJ5mnTpqlAgQI3rN+4caOee+65bH+9O5WQkCCLxaIzZ87YOwoAAPcc6tUbUa9eRb36P9SrQMbksXcAALmXMUavv/668ubNm6HtL1++fJcTZY8HHnjgtu0XL17MoSTZw9n689lnn2nSpElq3769JOnFF19UmzZtdPHiRY0YMcLO6bLG2fr0zTffaPr06WrQoIEef/xxFStWTN98841q164tSRo9erT69++vkSNH2jlpxjhbfwAgt/H09NTo0aP1/PPPq2DBgvaOky0uX74sd3f3LD33wIEDatmypYKDg3Pk9a5njFFaWpry5Ln3TgcULVo0W/d35coVubm5Zes+AQBAzqNetUW9aj/Uq4Bj40p3ALdUt25d7d27V1u3bs3QIzIyUl5eXvaO/Z927dqlypUrq3Xr1jd91KtXz94RM8XZ+nPw4EFFRUVZlyMjI7V69WpNnDhRQ4YMsWOyrHO2Pp04cUJlypSRJAUFBcnLy0vly5e3toeFhenIkSP2ipdpztYfAMhtGjdurICAAJtZXq43bNiwG6auHDt2rEqWLGldvjaN49tvvy1/f38VKFBAw4cPV2pqqgYNGqRChQqpWLFimjp16g3737Nnj6KiouTp6amwsDAlJCTYtO/atUstWrRQ/vz55e/vr44dO+rkyZPW9vr166tXr17q37+/ihQpoiZNmty0H+np6RoxYoSKFSsmDw8PVa1aVcuWLbO2WywWbd68WSNGjJDFYtGwYcNuup9bvd7tcnbu3Flr1qzRuHHjZLFYZLFYdOjQIetVKcuXL1dERIQ8PDz0/fffKyUlRX369JGfn588PT1Vp04dbdy40Zrh9OnT6tChg4oWLSovLy+VLVtWsbGxkqSGDRuqV69eNplPnTolDw8P6210SpYsqbfffltdu3aVt7e3SpQooYkTJ1q3v3b7o/DwcFksFtWvX99mf2PGjFFgYKAKFy6s6OhoXblyxdp2+fJlDR48WPfdd5/y5cunmjVrWo9pQkKCunTpouTkZOv7cO19vn66zjNnzui5556Tv7+/PD09ValSJS1atOimx+Ta8fv000/VunVr5cuXT2+99ZYkacKECSpdurTc3d1Vvnx5ffHFF9bn3OwKqTNnzshisSghIUGHDh1SgwYNJEkFCxaUxWJR586dJV094fzOO++oVKlS8vLyUpUqVTRnzpwMHSMAAJBx1KvUq9Sr1KtAtjAAcI+pVq2a+eSTT27ZvnXrVuPi4pKDie6Ms/WnePHiZu3atTes37lzp/H39zcdO3Z0qP4Y43x9CgoKMps3b7Yut2vXzhw/fty6/Ouvv5qCBQvaI1qWOFt/ACA36dSpk2ndurWZN2+e8fT0NEeOHDHGGDN//nzz74+jQ4cONVWqVLF57gcffGCCg4Nt9uXt7W2io6PNnj17zJQpU4wk06xZMzNy5Eizb98+8+abbxo3Nzdz+PBhY4wxBw8eNJJMsWLFzJw5c8yuXbtM9+7djbe3tzl58qQxxphjx46ZIkWKmCFDhpjdu3ebLVu2mCZNmpgGDRpYX7tevXomf/78ZtCgQWbPnj1m9+7dN+3v+++/b3x8fMzMmTPNnj17zODBg42bm5vZt2+fMcaYxMREExYWZgYMGGASExPNP//8c9P93Oz1/ivnmTNnTGRkpOnRo4dJTEw0iYmJJjU11cTHxxtJpnLlymbFihXmt99+MydPnjR9+vQxQUFBZsmSJWbnzp2mU6dOpmDBgubUqVPGGGOio6NN1apVzcaNG83BgwfNypUrzbfffmuMMebLL780BQsWNJcuXbJmHjdunClZsqRJT083xhgTHBxsChUqZMaPH2/2799vRo0aZVxcXKzv3YYNG4wk891335nExETr63bq1Mn4+PiYnj17mt27d5uFCxeavHnzmokTJ1pfq3379iYqKsqsXbvW/Pbbb+bdd981Hh4eZt++fSYlJcWMHTvW+Pj4WN+Ha+9zcHCw+eCDD4wxxqSlpZlatWqZsLAws2LFCnPgwAGzcOFCs2TJkpseE2OMkWT8/PzMlClTzIEDB8yhQ4fMvHnzjJubmxk/frzZu3evee+994yrq6tZvXq1zc/g1q1brfs5ffq0kWTi4+NNamqqmTt3rpFk9u7daxITE82ZM2eMMca88sorpkKFCmbZsmXmwIEDJjY21nh4eJiEhIT/PEYAACBjqFepV6lXqVeB7MKgO4B7Tt++fU3fvn1v2f7bb7+Z+vXr51ygO+Rs/WnXrt0t+/Prr7+aokWLOtQAtTHO16fmzZubTz/99JbtsbGxJioqKgcT3Rln6w8A5CbXTmIaY0ytWrVM165djTFZP4kZHBxs0tLSrOvKly9vHnzwQetyamqqyZcvn5k5c6Yx5n8nkGJiYqzbXLlyxRQrVsyMHj3aGGPM66+/bpo2bWrz2keOHLGeVDLm6knFqlWr/md/g4KCzMiRI23WVa9e3bz44ovW5SpVqpihQ4fedj83e72M5ry+5rh2EnPBggXWdefOnTNubm7myy+/tK67fPmyCQoKMu+8844xxphWrVqZLl263DTfpUuXTKFChczs2bOt66pWrWqGDRtmXQ4ODjbPPPOMdTk9Pd34+fmZCRMmGGNufnLPmP8d59TUVOu6J5980rRt29YYc7W2tVgs5s8//7R5XqNGjcyQIUOMMVf/dvv6+t6Q+98nMZcvX25cXFys711GSDL9+vWzWRcVFWV69Ohhs+7JJ580LVq0uGU//30S05j/HaPTp09btzl37pzx9PQ069ats9l3t27dTLt27Ywxtz9GAAAgY6hXqVevoV79Xz+pV4GsufduigHgnvfvKXpupnTp0oqPj8+ZMNnA2frz8ssva/PmzTdtCwsLU3x8vM00RY7A2fr05ZdfysXl1neo8ff3d6j7nztbfwAgtxo9erQaNmyoAQMGZHkfYWFhNr+z/f39ValSJeuyq6urChcurBMnTtg8LzIy0vrvPHnyKCIiQrt375Ykbd68WfHx8cqfP/8Nr3fgwAGVK1dOkhQREXHbbGfPntWxY8dUu3Ztm/W1a9fW9u3bM9jD/7n+9TKaMyP7O3DggK5cuWKT1c3NTTVq1LC+Ly+88IIef/xxbdmyRU2bNlWbNm2st8vx8PDQM888o6lTp+qpp57Stm3btH37di1YsMDmNStXrmz9t8ViUUBAwA3H5mbCwsLk6upqXQ4MDNQvv/wiSdqyZYuMMTf0NyUlRYULF/7PfV+zbds2FStW7D/ft+tdf1x2796t5557zmZd7dq1NW7cuEzt93q7du3SpUuXbpga9vLlywoPD5d0+2MEAAAyj3o1c6hXqVepVwFbDLoDAHKVypUr2xS81wsLC1NYWFgOJrpzztanQoUK3bb9oYceyqEk2cPZ+gMAuVXdunXVrFkzvfLKK9Z7AF7j4uIiY4zNun/fE/EaNzc3m2WLxXLTdenp6f+Zx2KxSLp6X8tWrVpp9OjRN2wTGBho/Xe+fPn+c5//3u81xpgb1mXE9a+X0ZwZ2d+19/p2WR966CH98ccfWrx4sb777js1atRI0dHRGjNmjCSpe/fuqlq1qo4ePaqpU6eqUaNGCg4OttlfVo/N7Z6Xnp4uV1dXbd682eZEp6SbnuC9FS8vrwxv+283+zm43ft47aT7v3++b/azfb1r/V28eLHuu+8+mzYPDw9J/32MAABA5lCvZg716s2fR71KvYp7160v6wIAJ7Rjx44MFU7X7Ny5U6mpqXcx0Z2hP7m7P5Lz9Yn+5O7+AEBuFxMTo4ULF2rdunU264sWLaqkpCSbEz3btm3Lttf9+eefrf9OTU3V5s2bVaFCBUnSAw88oJ07d6pkyZIqU6aMzSOjJy4lycfHR0FBQfrhhx9s1q9bt06hoaF33IeM5HR3d1daWtp/7qtMmTJyd3e3yXrlyhVt2rTJJmvRokXVuXNnzZgxQ2PHjtXEiROtbffff78iIiI0adIkxcXFqWvXrpnqj7u7uyRlKO+/hYeHKy0tTSdOnLjhfQgICLDu+7/2W7lyZR09elT79u3L1OtfLzQ09LbHvGjRopKkxMREa/v1P9s3ey8qVqwoDw8PHT58+IZ+Fi9e3Lrd7Y4RAADIPOrVrKNevYp6lXoV9y4G3QHcU8LDw3Xq1KkMbx8ZGanDhw/fxUR3hv7k7v5Iztcn+pO7+wMAud3999+vDh066KOPPrJZX79+ff3111965513dODAAY0fP15Lly7NttcdP3685s+frz179ig6OlqnT5+2nnSLjo7W33//rXbt2mnDhg36/ffftWLFCnXt2jXTJ9gGDRqk0aNHa/bs2dq7d69efvllbdu2TX379r3jPmQkZ8mSJbV+/XodOnRIJ0+evOUXy/Lly6cXXnhBgwYN0rJly7Rr1y716NFDFy5cULdu3SRJb7zxhr755hv99ttv2rlzpxYtWnTDydju3bsrJiZGaWlpevTRRzPVHz8/P3l5eWnZsmU6fvy4kpOTM/S8cuXKqUOHDnr22Wc1b948HTx4UBs3btTo0aO1ZMkS6/tw7tw5rVq1SidPntSFCxdu2E+9evVUt25dPf7441q5cqUOHjyopUuXatmyZZnqx6BBgzRt2jR9+umn2r9/v95//33NmzdPAwcOlHT1CqVatWopJiZGu3bt0tq1a/Xaa6/Z7CM4OFgWi0WLFi3SX3/9pXPnzsnb21sDBw7USy+9pOnTp+vAgQPaunWrxo8fr+nTp0vK2DECAACZQ72addSrV1GvUq/i3sX08gDuKcYYvf7668qbN2+Gtr98+fJdTnRn6E/u7o/kfH2iP7m7PwDgCN5880199dVXNutCQ0P1ySef6O2339abb76pxx9/XAMHDsy2qyBiYmI0evRobd26VaVLl9Y333yjIkWKSJKCgoL0448/6v/+7//UrFkzpaSkKDg4WM2bN7e5H2dG9OnTR2fPntWAAQN04sQJVaxYUd9++63Kli17x33ISM6BAweqU6dOqlixoi5evKiDBw/ecn8xMTFKT09Xx44d9c8//ygiIkLLly9XwYIFJV29mmXIkCE6dOiQvLy89OCDD2rWrFk2+2jXrp369eun9u3by9PTM1P9yZMnjz788EONGDFCb7zxhh588EElJCRk6LmxsbF66623NGDAAP35558qXLiwIiMj1aJFC0lSVFSUevbsqbZt2+rUqVMaOnSohg0bdsN+5s6dq4EDB6pdu3Y6f/68ypQpo5iYmEz1o02bNho3bpzeffdd9enTRyEhIYqNjVX9+vWt20ydOlVdu3ZVRESEypcvr3feeUdNmza1tt93330aPny4Xn75ZXXp0kXPPvuspk2bpjfffFN+fn4aNWqUfv/9dxUoUEAPPPCAXnnlFUkZO0YAACDzqFezhnr1f6hXqVdxb7KY629EAgBOrH79+pm+R1FcXFyG7jtkD/Qnd/dHcr4+0Z/c3R8AAHLSkSNHVLJkSW3cuFEPPPCAveMAAAAANqhXAeQkBt0BAAAAAECGXblyRYmJiXr55Zf1xx9/6Mcff7R3JAAAAMCKehWAPXBPdwAAAAAAkGE//vijgoODtXnzZn366af2jgMAAADYoF4FYA9c6Q4AAAAAAAAAAAAAQBZxpTsAAAAAAAAAAAAAAFnEoDsAAAAAAAAAAAAAAFnEoDsAAAAAAAAAAAAAAFnEoDuALDt06JAsFou2bdtm7yhWe/bsUa1ateTp6amqVavaO06u07lzZ7Vp0+au7LtkyZIaO3bsXdk3AAAAAAAAAABAbsWgO+DAOnfuLIvFopiYGJv1CxYskMVisVMq+xo6dKjy5cunvXv3atWqVdm67/r166tfv37Zus+75W5+IWLatGkqUKDADes3btyo5557Lttf704lJCTIYrHozJkz9o4CAAAAAAAAAACcEIPugIPz9PTU6NGjdfr0aXtHyTaXL1/O8nMPHDigOnXqKDg4WIULF77rr3c9Y4xSU1OzbX+OpGjRosqbN2+27e/KlSvZti8AAAAAAAAAAIC7hUF3wME1btxYAQEBGjVq1C23GTZs2A1TrY8dO1YlS5a0Ll+bdvztt9+Wv7+/ChQooOHDhys1NVWDBg1SoUKFVKxYMU2dOvWG/e/Zs0dRUVHy9PRUWFiYEhISbNp37dqlFi1aKH/+/PL391fHjh118uRJa3v9+vXVq1cv9e/fX0WKFFGTJk1u2o/09HSNGDFCxYoVk4eHh6pWraply5ZZ2y0WizZv3qwRI0bIYrFo2LBhN93PrV7vdjk7d+6sNWvWaNy4cbJYLLJYLDp06JD1Kurly5crIiJCHh4e+v7775WSkqI+ffrIz89Pnp6eqlOnjjZu3GjNcPr0aXXo0EFFixaVl5eXypYtq9jYWElSw4YN1atXL5vMp06dkoeHh1avXi3p6lTub7/9trp27Spvb2+VKFFCEydOtG4fEhIiSQoPD5fFYlH9+vVt9jdmzBgFBgaqcOHCio6Othngvnz5sgYPHqz77rtP+fLlU82aNa3HNCEhQV26dFFycrL1fbj2Pl8/vfyZM2f03HPPyd/fX56enqpUqZIWLVp002Ny7fh9+umnat26tfLly6e33npLkjRhwgSVLl1a7u7uKl++vL744gvrc252Rf+ZM2dksViUkJCgQ4cOqUGDBpKkggULymKxqHPnzpKufkHinXfeUalSpeTl5aUqVapozpw5GTpGAAAAAAAAAAAA1zDoDjg4V1dXvf322/roo4909OjRO9rX6tWrdezYMa1du1bvv/++hg0bpocfflgFCxbU+vXr1bNnT/Xs2VNHjhyxed6gQYM0YMAAbd26VVFRUXrkkUd06tQpSVJiYqLq1aunqlWratOmTVq2bJmOHz+up556ymYf06dPV548efTjjz/qs88+u2m+cePG6b333tOYMWO0Y8cONWvWTI888oj2799vfa2wsDANGDBAiYmJGjhw4C37ev3r/VfOcePGKTIyUj169FBiYqISExNVvHhx6/4GDx6sUaNGaffu3apcubIGDx6suXPnavr06dqyZYvKlCmjZs2a6e+//5Ykvf7669q1a5eWLl2q3bt3a8KECSpSpIgkqXv37oqLi1NKSop1/19++aWCgoKsA8iS9N577ykiIkJbt27Viy++qBdeeEF79uyRJG3YsEGS9N133ykxMVHz5s2zPi8+Pl4HDhxQfHy8pk+frmnTpmnatGnW9i5duujHH3/UrFmztGPHDj355JNq3ry59u/fr6ioKI0dO1Y+Pj7W9+Fm73N6eroeeughrVu3TjNmzNCuXbsUExMjV1fXWx4T6ertAVq3bq1ffvlFXbt21fz589W3b18NGDBAv/76q55//nl16dJF8fHxt93PNcWLF9fcuXMlSXv37lViYqLGjRsnSXrttdcUGxurCRMmaOfOnXrppZf0zDPPaM2aNf95jAAAAAAAAAAAAKwMAIfVqVMn07p1a2OMMbVq1TJdu3Y1xhgzf/588+//vYcOHWqqVKli89wPPvjABAcH2+wrODjYpKWlWdeVL1/ePPjgg9bl1NRUky9fPjNz5kxjjDEHDx40kkxMTIx1mytXrphixYqZ0aNHG2OMef31103Tpk1tXvvIkSNGktm7d68xxph69eqZqlWr/md/g4KCzMiRI23WVa9e3bz44ovW5SpVqpihQ4fedj83e72M5uzbt6/NNvHx8UaSWbBggXXduXPnTJ48eUy9evVMqVKljKenp/H09DSurq6mZs2aZuPGjaZVq1amS5cuNvt66aWXjCTz0EMPmUKFCpnZs2db26pWrWqGDRtmXQ4ODjbPPPOMdTk9Pd34+fmZCRMmGGP+d2y2bt1q8xrXjnNqaqp13ZNPPmnatm1rjDHmt99+MxaLxfz55582z2vUqJEZMmSIMcaY2NhY4+vra64XHBxsPvjgA2OMMcuXLzcuLi7W9y4jJJl+/frZrIuKijI9evSwWffkk0+aFi1a3LKfp0+fNpJMfHy8MeZ/x+j06dPWbc6dO2c8PT3NunXrbPbdrVs3065dO2OMuekxAgAAcHSxsbFGks2jSJEipl69embhwoU2206fPt20bdvWlCtXzlgsFpvPDwAAAAAA4H/y2GGcH8BdMHr0aDVs2FADBgzI8j7CwsLk4vK/CTD8/f1VqVIl67Krq6sKFy6sEydO2DwvMjLS+u88efIoIiJCu3fvliRt3rxZ8fHxyp8//w2vd+DAAZUrV06SFBERcdtsZ8+e1bFjx1S7dm2b9bVr19b27dsz2MP/uf71MpozI/uLiYlRamqqEhMT1bdvX4WFhcliseill17SwYMHVb16dU2ZMkW9evXSli1b1LRpUz388MOaMWOGJGnFihXq1KmTpk6dqqeeekrbtm3T9u3btWDBApvXrFy5svXfFotFAQEBNxybmwkLC7O54jwwMFC//PKLJGnLli0yxtzQ35SUFBUuXPg/933Ntm3bVKxYsf983653/XHZvXu3nnvuOZt1tWvXtl6tnlW7du3SpUuXbriVweXLlxUeHi5JeuGFF/T4449bj1GbNm0UFRV1R68LAACQW8TGxqpChQoyxigpKUkff/yxWrVqpW+//VatWrWSJH3xxRdKSkpSjRo1lJ6ebnNLIgAAAAAA8D8MugNOom7dumrWrJleeeUV6z2rr3FxcZExxmbdzU6Yubm52SxbLJabrktPT//PPBaLRdLVacZbtWql0aNH37BNYGCg9d/58uX7z33+e7/XGGNuWJcR179eRnP+1/5+/PFHvf3225KkxYsXq0yZMtZtQkJCFBERoebNm6t27dr6448/tHjxYn333Xdq3Lixrly5opYtW2rx4sXKly+fVq5cqaNHj2rq1Klq1KiRgoODbV4zq8fmds9LT0+Xq6urNm/efMNU8Df7QsKteHl5ZXjbf7vZz8Htjvm1L4n8++c7IyeDr/V38eLFuu+++2zaPDw8JEkPPfSQzTFq1KiRoqOjNWbMmEz0CAAAIHeqVKmSzRcemzdvroIFC2rmzJnWQffly5db662HH35Yv/76q12yAgAAAACQ23FPd8CJxMTEaOHChVq3bp3N+qJFiyopKclmYHLbtm3Z9ro///yz9d+pqanavHmzKlSoIEl64IEHtHPnTpUsWVJlypSxeWR0oF2SfHx8FBQUpB9++MFm/bp16xQaGnrHfchITnd3d6Wlpd12P2+//bZcXV3l5uZmva+6dHUgeNOmTQoNDdWTTz6poKAgFS1aVJ07d9aMGTOsV4THxsaqePHiWrp0qapVq6ZJkyYpLi5OXbt2zVR/3N3dJek/814vPDxcaWlpOnHixA3vQ0BAgHXf/7XfypUr6+jRo9q3b1+mXv96oaGhtz3mRYsWlSQlJiZa26//2b7Ze1GxYkV5eHjo8OHDN/SzePHi1u3+fYzGjh2riRMn3lF/AAAAcitPT0+5u7vbfEHz37NgAQAAAACAW+MTNOBE7r//fnXo0EEfffSRzfr69evrr7/+0jvvvKMDBw5o/PjxWrp0aba97vjx4zV//nzt2bNH0dHROn36tHWQODo6Wn///bfatWunDRs26Pfff9eKFSvUtWvXTA8IDxo0SKNHj9bs2bO1d+9evfzyy9q2bZv69u17x33ISM6SJUtq/fr1OnTokE6ePHnDVeVpaWmKj49XRESEXnzxRQ0aNEjLli3Trl271KNHD124cEHdunWTJL3xxhv65ptv9Ntvv2nVqlXauXOnChUqpKJFi6pTp0767bffVLduXcXExCgtLU2PPvpopvrj5+cnLy8vLVu2TMePH1dycnKGnleuXDl16NBBzz77rObNm6eDBw9q48aNGj16tJYsWWJ9H86dO6dVq1bp5MmTunDhwg37qVevnurWravHH39cK1eu1MGDB7V06VItW7YsU/0YNGiQpk2bpk8//VT79+/X+++/r3nz5mngwIGSrl5RX6tWLcXExGjXrl1au3atXnvtNZt9BAcHy2KxaNGiRfrrr7907tw5eXt7a+DAgXrppZc0ffp0HThwQFu3btX48eM1ffp0SbbHaOfOnVq0aFG2fMEDAAAgN0hLS1NqaqquXLmio0ePql+/fjp//rzat29v72gAAAAAADgcBt0BJ/Pmm2/eMJV8aGioPvnkE40fP15VqlTRhg0brIOW2SEmJkajR49WlSpV9P333+ubb75RkSJFJElBQUH68ccflZaWpmbNmqlSpUrq27evfH19M33lTJ8+fTRgwAANGDBA999/v5YtW6Zvv/1WZcuWveM+ZCTnwIED5erqqooVK6po0aI6fPiwzT5OnjypixcvKjg4WDExMXr88cfVsWNHPfDAA9q/f78WL14sb29vpaamys3NTUOGDFHlypWt03e+//77kqSuXbvKYrHo2LFjypMnj9q3by9PT89M9SdPnjz68MMP9dlnnykoKEitW7fO8HNjY2P17LPPasCAASpfvrweeeQRrV+/3noFeFRUlHr27Km2bduqaNGieuedd266n7lz56p69epq166dKlasqMGDB2f6ixZt2rTRuHHj9O677yosLEyfffaZYmNjVb9+fes2U6dO1ZUrVxQREaG+ffvqrbfestnHfffdp+HDh+vll1+Wv7+/evXqJenq/ytvvPGGRo0apdDQUDVr1kwLFy5USEiIpKtXyF87RnXr1pWrq6tmzZqVqfwAAAC5Va1ateTm5iZ3d3cVL15cn332mT7++GM1a9bM3tEAAAAAAHA4FnP96BwAIEuOHz+ugIAAPf3005o5c6ZNW9WqVbV9+3br8rvvvquBAwfKGKPSpUsrNTVVhw4dsg7wN2zYUD///LMuXbqkTZs26YEHHsjRvgAAAMA5TZs2TV26dNHnn39uncXn5MmTmj9/viZNmqQPP/zQ+iXFf7t2T/dDhw7lcGIAAAAAAHK/PPYOAADOokiRIvLy8tIff/xxQ1tcXJwuXLigxMREPfLII9b1q1ev1sGDB9W/f3+dPXtW0tX7vzdu3Fjx8fEqVaoUA+4AAADIdqGhoYqIiLAuN2/eXH/88YcGDx6sZ555RgUKFLBfOAAAAAAAHAzTywNANnF1dVXDhg21adMmJSYm2rRVrFhRERERuv/++23WT5kyRdLVqeULFiyoggULys/PT6+++qokKW/evDkTHgAAAPe8ypUr6+LFi9q3b5+9owAAAAAA4FAYdAeAbDRkyBClpaWpZ8+eunLlym23PX36tObPn6/atWsrPj7+hkeHDh3066+/6tdff82h9AAAALiXbdu2TZJUtGhR+wYBAAAAAMDBML08AGSj2rVra/z48erdu7ceeOABPffccwoLC5OLi4sSExM1d+5cSZKPj4++/PJLXbp0SX369FH9+vVv2FfhwoX15ZdfasqUKfrggw9yuCcAAABwZr/++qtSU1MlSadOndK8efO0cuVKPfroowoJCZEk7dq1S7t27ZIkJSUl6cKFC5ozZ46kqzM5VaxY0T7hAQAAAADIZSzGGGPvEADgbLZv365x48YpISFBx44dk8ViUbFixRQVFaVOnTqpYcOGCg8P17Fjx3TkyBG5u7vfdD+RkZH67bff9Oeff95yGwAAACCjpk2bpi5dutis8/X1VUhIiJ599lm9+OKL8vDwkCQNGzZMw4cPv+l+hg4dqmHDht3tuAAAAAAAOAQG3QEAAAAAAAAAAAAAyCLu6Q4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBYx6A4AAAAAAAAAAAAAQBblsXeA3CA9PV3Hjh2Tt7e3LBaLveMAAABkG2OM/vnnHwUFBcnFhe9bOirqVQAA4KyoVwEAAOAMGHSXdOzYMRUvXtzeMQAAAO6aI0eOqFixYvaOgSyiXgUAAM6OehUAAACOjEF3Sd7e3pKuFvc+Pj52TgMAAJB9zp49q+LFi1vrHTgm6lUAAOCsqFcBAADgDBh0l6xTdPr4+HASEwAAOCWmJHds1KsAAMDZUa8CAADAkXGjJAAAAAAAAAAAAAAAsohBdwAAAAAAAAAAAAAAsohBdwAAAAAAAAAAAAAAsoh7ugMA4MTS0tJ05coVe8fAXeTm5iZXV1d7xwAAALAbat7cjXoVAAAA9wIG3QEAcELGGCUlJenMmTP2joIcUKBAAQUEBMhisdg7CgAAQI6h5nUc1KsAAABwdgy6AwDghK6dfPTz81PevHk5ueWkjDG6cOGCTpw4IUkKDAy0cyIAAICcQ82b+1GvAgAA4F7BoDsAAE4mLS3NevKxcOHC9o6Du8zLy0uSdOLECfn5+TF1JwAAuCdQ8zoO6lUAAADcC1zsHQAAAGSva/ezzJs3r52TIKdcO9bcyxQAANwrqHkdC/UqAAAAnB2D7gAAOCmm17x3cKwBAMC9ijrIMXCcAAAA4OwYdAcAAAAAAAAAAAAAIIsYdAcAAAAAAAAAAAAAIIsYdAcAAMgGly5dUufOnXX//fcrT548atOmzQ3bdO7cWRaL5YZHWFiYdZsrV65oxIgRKl26tDw9PVWlShUtW7YsB3sCAAAA3N7y5ctVq1YteXt7q2jRonr88cd18OBBe8cCAAAA7IZBdwAAgGyQlpYmLy8v9enTR40bN77pNuPGjVNiYqL1ceTIERUqVEhPPvmkdZvXXntNn332mT766CPt2rVLPXv21KOPPqqtW7fmVFcAAACAW/r999/VunVrNWzYUNu2bdPy5ct18uRJPfbYY/aOBgAAANgNg+4AACBXqF+/vnr37q1+/fqpYMGC8vf318SJE3X+/Hl16dJF3t7eKl26tJYuXWrzvF27dqlFixbKnz+//P391bFjR508edLavmzZMtWpU0cFChRQ4cKF9fDDD+vAgQPW9kOHDslisWjevHlq0KCB8ubNqypVquinn37KVP58+fJpwoQJ6tGjhwICAm66ja+vrwICAqyPTZs26fTp0+rSpYt1my+++EKvvPKKWrRooVKlSumFF15Qs2bN9N5772UqDwAAAHInR697t2zZorS0NL311lsqXbq0HnjgAQ0cOFDbt2/XlStX7uzNAQAAABwUg+4AACDXmD59uooUKaINGzaod+/eeuGFF/Tkk08qKipKW7ZsUbNmzdSxY0dduHBBkpSYmKh69eqpatWq2rRpk5YtW6bjx4/rqaeesu7z/Pnz6t+/vzZu3KhVq1bJxcVFjz76qNLT021e+9VXX9XAgQO1bds2lStXTu3atVNqaqq13WKxaNq0adna3ylTpqhx48YKDg62rktJSZGnp6fNdl5eXvrhhx+y9bUBAABgP45c90ZERMjV1VWxsbFKS0tTcnKyvvjiCzVt2lRubm7Z+0YBAAAADsJijDH2DmFvZ8+ela+vr5KTk+Xj42PvOAAA3JFLly7p4MGDCgkJuWHwNjerX7++0tLS9P3330u6Ol27r6+vHnvsMX3++eeSpKSkJAUGBuqnn35SrVq19MYbb2j9+vVavny5dT9Hjx5V8eLFtXfvXpUrV+6G1/nrr7/k5+enX375RZUqVdKhQ4cUEhKiyZMnq1u3bpKuXkUUFham3bt3q0KFCpKkChUqaNSoUXr00Uf/sy+dO3fWmTNntGDBgltuk5iYqOLFiysuLs7mZGn79u21fft2LViwQKVLl9aqVavUunVrpaWlKSUl5ab7ut0xp85xDhxHAABsOWrNKzlH3bt27Vo9+eSTOnXqlNLS0hQZGaklS5aoQIECN92eehUAAADOjivdkWNGjRql6tWry9vbW35+fmrTpo327t17w3a7d+/WI488Il9fX3l7e6tWrVo6fPiwHRIDAHJa5cqVrf92dXVV4cKFdf/991vX+fv7S5JOnDghSdq8ebPi4+OVP39+6+PaycJrU2keOHBA7du3V6lSpeTj46OQkBBJuuFvy79fOzAw0OZ1JGnPnj0ZGnDPqGnTpqlAgQJq06aNzfpx48apbNmyqlChgtzd3dWrVy916dJFrq6u2fbawO2MGjVKFotF/fr1s3cUAACcliPXvUlJSerevbs6deqkjRs3as2aNXJ3d9cTTzwhru0BAADAvSqPvQPg3rFmzRpFR0erevXqSk1N1auvvqqmTZtq165dypcvn6SrHxDr1Kmjbt26afjw4fL19dXu3bsd7lvrAICsuX46SovFYrPOYrFIknWKzPT0dLVq1UqjR4++YV/XTiC2atVKxYsX16RJkxQUFKT09HRVqlRJly9fvuVrX/862c0Yo6lTp6pjx45yd3e3aStatKgWLFigS5cu6dSpUwoKCtLLL79sPWkK3E0bN27UxIkTbU7GAwCA7OfIde/48ePl4+Ojd955x7puxowZKl68uNavX69atWpleF8AAACAs2DQHTlm2bJlNsuxsbHy8/PT5s2bVbduXUlX7yvWokULmw9upUqVytGcAADH8cADD2ju3LkqWbKk8uS5saw5deqUdu/erc8++0wPPvigJOWKe6OvWbNGv/32m3Vaz5vx9PTUfffdpytXrmju3Lk2U9ADd8O5c+fUoUMHTZo0SW+99Za94wAAgH/JTXXvhQsXbpiF6dry3frSKgAAAJDbMb087CY5OVmSVKhQIUlXP5gtXrxY5cqVU7NmzeTn56eaNWve9n64AIB7W3R0tP7++2+1a9dOGzZs0O+//64VK1aoa9euSktLU8GCBVW4cGFNnDhRv/32m1avXq3+/ftn6bUqVKig+fPn33abXbt2adu2bfr777+VnJysbdu2adu2bTdsN2XKFNWsWVOVKlW6oW39+vWaN2+efv/9d33//fdq3ry50tPTNXjw4CzlBjIqOjpaLVu2VOPGje0dBQAAXCc31b0tW7bUxo0bNWLECO3fv19btmxRly5dFBwcrPDw8Kx2EQAAAHBoDLrDLowx6t+/v+rUqWMdcDhx4oTOnTunmJgYNW/eXCtWrNCjjz6qxx57TGvWrLFzYgBAbhQUFKQff/xRaWlpatasmSpVqqS+ffvK19dXLi4ucnFx0axZs7R582ZVqlRJL730kt59990svdbevXutXxi7lRYtWig8PFwLFy5UQkKCwsPDbzjxmJycrLlz597yKvdLly7ptddeU8WKFfXoo4/qvvvu0w8//KACBQpkKTeQEbNmzdKWLVs0atQoe0cBAAA3kZvq3oYNGyouLk4LFixQeHi4mjdvLg8PDy1btkxeXl5Z7SIAAADg0CzGGGPvEPZ29uxZ+fr6Kjk5WT4+PvaOc0+Ijo7W4sWL9cMPP6hYsWKSpGPHjum+++5Tu3btFBcXZ932kUceUb58+TRz5kx7xQUAh3Lp0iUdPHhQISEh8vT0tHcc5IDbHXPqHOdwN4/jkSNHFBERoRUrVqhKlSqSpPr166tq1aoaO3Zstr4WAADZhZrXsVCvAgAAwNlxpTtyXO/evfXtt98qPj7eOuAuSUWKFFGePHlUsWJFm+1DQ0N1+PDhnI4JAABwT9i8ebNOnDihatWqKU+ePMqTJ4/WrFmjDz/8UHny5FFaWpq9IwIAAAAAAAC5Wh57B8C9wxij3r17a/78+UpISFBISIhNu7u7u6pXr669e/farN+3b5+Cg4NzMioAAMA9o1GjRvrll19s1nXp0kUVKlTQ//3f/8nV1dVOyQAAAAAAAADHwJXuyDHR0dGaMWOG4uLi5O3traSkJCUlJenixYvWbQYNGqTZs2dr0qRJ+u233/Txxx9r4cKFevHFF+2YHAAA4OZGjRoli8Wifv363Xa7NWvWqFq1avL09FSpUqX06aef5kzADPD29lalSpVsHvny5VPhwoVVqVIle8cDAAAAAAAAcj0G3ZFjJkyYoOTkZNWvX1+BgYHWx+zZs63bPProo/r000/1zjvv6P7779fkyZM1d+5c1alTx47JAQAAbrRx40ZNnDhRlStXvu12Bw8eVIsWLfTggw9q69ateuWVV9SnTx/NnTs3h5ICAAAAAAAAuJuYXh45xhiToe26du2qrl273uU0AAAAWXfu3Dl16NBBkyZN0ltvvXXbbT/99FOVKFFCY8eOlSSFhoZq06ZNGjNmjB5//PEcSJt5CQkJ9o4AAAAAAAAAOAyudAcAAAAyKTo6Wi1btlTjxo3/c9uffvpJTZs2tVnXrFkzbdq0SVeuXLnpc1JSUnT27FmbBwAAAAAAAIDciSvdkWElX15s7wgZdiimpb0jAAAAJzVr1ixt2bJFGzduzND2SUlJ8vf3t1nn7++v1NRUnTx5UoGBgTc8Z9SoURo+fHi25M00i8U+r5udMjjDEgAAAAAAAJAduNIdAAAAyKAjR46ob9++mjFjhjw9PTP8PMt1A9nXbrtz/fprhgwZouTkZOvjyJEjWQ8NAAAAAAAA4K7iSncAAAAggzZv3qwTJ06oWrVq1nVpaWlau3atPv74Y6WkpMjV1dXmOQEBAUpKSrJZd+LECeXJk0eFCxe+6et4eHjIw8Mj+zsAAAAAAAAAINtxpTsAAHBYCQkJslgsOnPmjL2j4B7RqFEj/fLLL9q2bZv1ERERoQ4dOmjbtm03DLhLUmRkpFauXGmzbsWKFYqIiJCbm1tORQcAAA6MuhcAAADI3Rh0BwAADisqKkqJiYny9fXN9n3PnTtXFStWlIeHhypWrKj58+dn+2vA8Xh7e6tSpUo2j3z58qlw4cKqVKmSpKtTwz/77LPW5/Ts2VN//PGH+vfvr927d2vq1KmaMmWKBg4caK9uAAAAB0PdCwAAAORuDLoDAACH5e7uroCAgFveFzurfvrpJ7Vt21YdO3bU9u3b1bFjRz311FNav359tr4OnFNiYqIOHz5sXQ4JCdGSJUuUkJCgqlWr6s0339SHH36oxx9/3I4pAQCAI6HuBQAAAHI3Bt0BAECuUL9+ffXu3Vv9+vVTwYIF5e/vr4kTJ+r8+fPq0qWLvL29Vbp0aS1dutT6nOun2Zw2bZoKFCig5cuXKzQ0VPnz51fz5s2VmJiYqSxjx45VkyZNNGTIEFWoUEFDhgxRo0aNNHbs2GzsMZxFQkKCzc/GtGnTlJCQYLNNvXr1tGXLFqWkpOjgwYPq2bNnzoYEAAC5BnUvAAAA4HwYdAcAALnG9OnTVaRIEW3YsEG9e/fWCy+8oCeffFJRUVHasmWLmjVrpo4dO+rChQu33MeFCxc0ZswYffHFF1q7dq0OHz5sM433tROWhw4duuU+fvrpJzVt2tRmXbNmzbRu3bo77iMAAABA3QsAAAA4FwbdAQBArlGlShW99tprKlu2rIYMGSIvLy8VKVJEPXr0UNmyZfXGG2/o1KlT2rFjxy33ceXKFX366aeKiIjQAw88oF69emnVqlXW9rx586p8+fJyc3O75T6SkpLk7+9vs87f319JSUl33kkAAADc86h7AQAAAOeSx94BAAAArqlcubL1366uripcuLDuv/9+67prJwRPnDhxy33kzZtXpUuXti4HBgbabF+jRg3t2bPnP7Ncf79MY0y230MTAAAA9ybqXgAAAMC5cKU7AADINa6/Csdisdisu3byLz09PVP7MMZkKkdAQMANV/ecOHHihquAAAAAgKyg7gUAAACcC4PuAAAA14mMjNTKlStt1q1YsUJRUVF2SgQAAABkP+peAAAAIHsw6A4AAO4pGzZsUIUKFfTnn3/ecpu+fftqxYoVGj16tPbs2aPRo0fru+++U79+/XIuKAAAAHAHqHsBAACAnMOgOwAAuKdcuHBBe/fu1ZUrV265TVRUlGbNmqXY2FhVrlxZ06ZN0+zZs1WzZs0cTAoAAABkHXUvAAAAkHMsJrM3e3JCZ8+ela+vr5KTk+Xj42PvOLlWyZcX2ztChh2KaWnvCABgN5cuXdLBgwcVEhIiT09Pe8dBDrjdMafOcQ45ehz//z1kHRofcQDA6VHzOhbqVQAAADg7rnQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLGHQHAAAAAAAAAAAAACCLcvWg+6hRo1S9enV5e3vLz89Pbdq00d69e2226dy5sywWi82jVq1adkoMAAAAAAAAAAAAALiX5OpB9zVr1ig6Olo///yzVq5cqdTUVDVt2lTnz5+32a558+ZKTEy0PpYsWWKnxAAAAAAAAAAAAACAe0keewe4nWXLltksx8bGys/PT5s3b1bdunWt6z08PBQQEJDT8QAAAAAAAAAAAAAA97hcfaX79ZKTkyVJhQoVslmfkJAgPz8/lStXTj169NCJEyduu5+UlBSdPXvW5gEAAAAAAAAAAAAAQGY5zKC7MUb9+/dXnTp1VKlSJev6hx56SF9++aVWr16t9957Txs3blTDhg2VkpJyy32NGjVKvr6+1kfx4sVzogsAAAAAAAAAAAAAACfjMIPuvXr10o4dOzRz5kyb9W3btlXLli1VqVIltWrVSkuXLtW+ffu0ePHiW+5ryJAhSk5Otj6OHDlyt+MDAAAHdujQIVkslhse198K58svv1SVKlWUN29eBQYGqkuXLjp16pTNNnPnzlXFihXl4eGhihUrav78+TnZFQAAAOCWLl26pM6dO+v+++9Xnjx51KZNm5tul5G6FwAAALiXOMSge+/evfXtt98qPj5exYoVu+22gYGBCg4O1v79+2+5jYeHh3x8fGweAAAA/+W7775TYmKi9dGwYUNr2w8//KBnn31W3bp1086dO/X1119r48aN6t69u3Wbn376SW3btlXHjh21fft2dezYUU899ZTWr19vj+4AAAAANtLS0uTl5aU+ffqocePGN90mI3UvAAAAcK/J1YPuxhj16tVL8+bN0+rVqxUSEvKfzzl16pSOHDmiwMDAHEgIAACyS/369dW7d2/169dPBQsWlL+/vyZOnKjz58+rS5cu8vb2VunSpbV06VLrc9LS0tStWzeFhITIy8tL5cuX17hx46ztly5dUlhYmJ577jnruoMHD8rX11eTJk3KdMbChQsrICDA+nB3d7e2/fzzzypZsqT69OmjkJAQ1alTR88//7w2bdpk3Wbs2LFq0qSJhgwZogoVKmjIkCFq1KiRxo4dm+ksAAAAcEy5ue7Nly+fJkyYoB49eiggIOCm22Sk7gUAAADuNbl60D06OlozZsxQXFycvL29lZSUpKSkJF28eFGSdO7cOQ0cOFA//fSTDh06pISEBLVq1UpFihTRo48+auf0AAAgs6ZPn64iRYpow4YN6t27t1544QU9+eSTioqK0pYtW9SsWTN17NhRFy5ckCSlp6erWLFi+uqrr7Rr1y698cYbeuWVV/TVV19Jkjw9PfXll19q+vTpWrBggdLS0tSxY0c1aNBAPXr0sL6uxWLRtGnT/jPfI488Ij8/P9WuXVtz5syxaYuKitLRo0e1ZMkSGWN0/PhxzZkzRy1btrRu89NPP6lp06Y2z2vWrJnWrVuX1bcMAAAADii31723k5G6FwAAALjX5OpB9wkTJig5OVn169dXYGCg9TF79mxJkqurq3755Re1bt1a5cqVU6dOnVSuXDn99NNP8vb2tnN6AACQWVWqVNFrr72msmXLasiQIfLy8lKRIkXUo0cPlS1bVm+88YZOnTqlHTt2SJLc3Nw0fPhwVa9eXSEhIerQoYM6d+5sPfkoSVWrVtVbb72lHj166KWXXtKBAwc0efJkm9ctX768fH19b5krf/78ev/99zVnzhwtWbJEjRo1Utu2bTVjxgzrNlFRUfryyy/Vtm1bubu7KyAgQAUKFNBHH31k3SYpKUn+/v42+/b391dSUtIdvW8AAABwLLm17s2IjNS9AAAAwL0mj70D3I4x5rbtXl5eWr58eQ6lAQAAd1vlypWt/3Z1dVXhwoV1//33W9ddG7A+ceKEdd2nn36qyZMn648//tDFixd1+fJlVa1a1Wa/AwYM0DfffKOPPvpIS5cuVZEiRWza9+zZc9tcRYoU0UsvvWRdjoiI0OnTp/XOO+/omWeekSTt2rVLffr00RtvvKFmzZopMTFRgwYNUs+ePTVlyhTrcy0Wi82+jTE3rAMAAIBzy611b0ZktO4FAAAA7iW5+kp3AABwb3Fzc7NZtlgsNuuuDU6np6dLkr766iu99NJL6tq1q1asWKFt27apS5cuunz5ss1+Tpw4ob1798rV1VX79+/Plqy1atWy2deoUaNUu3ZtDRo0SJUrV1azZs30ySefaOrUqUpMTJQkBQQE3HBV+4kTJ264+h0AAADOzZHq3utlpO4FAAAA7jUMugMAAIf1/fffKyoqSi+++KLCw8NVpkwZHThw4IbtunbtqkqVKunzzz/X4MGDtWvXrjt+7a1btyowMNC6fOHCBbm42JZWrq6ukv43e09kZKRWrlxps82KFSsUFRV1x3kAAADgvOxZ914vI3UvAAAAcK/J1dPLAwAA3E6ZMmX0+eefa/ny5QoJCdEXX3yhjRs3KiQkxLrN+PHj9dNPP2nHjh0qXry4li5dqg4dOmj9+vVyd3eXJFWoUEGjRo3So48+etPXmT59utzc3BQeHi4XFxctXLhQH374oUaPHm3dplWrVurRo4cmTJhgnWazX79+qlGjhoKCgiRJffv2Vd26dTV69Gi1bt1a33zzjb777jv98MMPd/FdAgAAgKPLqbpXujp9/OXLl/X333/rn3/+0bZt2yTJOpV9RupeAAAA4F7Dle4AAMBh9ezZU4899pjatm2rmjVr6tSpU3rxxRet7Xv27NGgQYP0ySefqHjx4pKunow8c+aMXn/9det2e/fuVXJy8m1f66233lJERISqV6+uWbNmaerUqTb3ee/cubPef/99ffzxx6pUqZKefPJJlS9fXvPmzbNuExUVpVmzZik2NlaVK1fWtGnTNHv2bNWsWTO73hIAAAA4oZyse1u0aKHw8HAtXLhQCQkJCg8PV3h4uLU9I3UvAAAAcK+xGOZ90tmzZ+Xr66vk5GT5+PjYO06uVfLlxfaOkGGHYlraOwIA2M2lS5d08OBBhYSEyNPT095xkANud8ypc5xDjh7H/38PWYfGRxwAcHrUvI6FehUAAADOjivdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQAAAAAAAAAAAADIIgbdAQBwUsYYe0dADuFYAwCAexV1kGPgOAEAAMDZMegOAICTcXNzkyRduHDBzkmQU64d62vHHgAAwNlR8zoW6lUAAAA4uzz2DgAAALKXq6urChQooBMnTkiS8ubNK4vFYudUuBuMMbpw4YJOnDihAgUKyNXV1d6RAAAAcgQ1r2OgXgUAAMC9gkF3AACcUEBAgCRZT0LCuRUoUMB6zAEAAO4V1LyOg3oVAAAAzo5BdwAAnJDFYlFgYKD8/Px05coVe8fBXeTm5sYVQwAA4J5EzesYqFcBAABwL2DQHQAAJ+bq6soJLgAAADg1al4AAAAA9uZi7wAAAAAAAAAAAAAAADgqBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAAAAAAAAAAAAAMgiBt0BAACADJowYYIqV64sHx8f+fj4KDIyUkuXLr3l9gkJCbJYLDc89uzZk4OpAQAAAAAAANxNeewdAAAAAHAUxYoVU0xMjMqUKSNJmj59ulq3bq2tW7cqLCzsls/bu3evfHx8rMtFixa961kBAAAAAAAA5AwG3QEAAIAMatWqlc3yyJEjNWHCBP3888+3HXT38/NTgQIF7nI6AAAAAAAAAPbA9PIAAABAFqSlpWnWrFk6f/68IiMjb7tteHi4AgMD1ahRI8XHx+dQQgAAAAAAAAA5gSvdAQAAgEz45ZdfFBkZqUuXLil//vyaP3++KlaseNNtAwMDNXHiRFWrVk0pKSn64osv1KhRIyUkJKhu3bq3fI2UlBSlpKRYl8+ePZvt/QAAAAAAAACQPRh0BwAAADKhfPny2rZtm86cOaO5c+eqU6dOWrNmzU0H3suXL6/y5ctblyMjI3XkyBGNGTPmtoPuo0aN0vDhw+9KfgAAAAAAAADZi+nlAQAAgExwd3dXmTJlFBERoVGjRqlKlSoaN25chp9fq1Yt7d+//7bbDBkyRMnJydbHkSNH7jQ2AAAAAAAAgLuEK90BAACAO2CMsZkK/r9s3bpVgYGBt93Gw8NDHh4edxoNAAAAAAAAQA5g0B0AAADIoFdeeUUPPfSQihcvrn/++UezZs1SQkKCli1bJunqFep//vmnPv/8c0nS2LFjVbJkSYWFheny5cuaMWOG5s6dq7lz59qzGwAAAAAAAACyEYPuAAAAQAYdP35cHTt2VGJionx9fVW5cmUtW7ZMTZo0kSQlJibq8OHD1u0vX76sgQMH6s8//5SXl5fCwsK0ePFitWjRwl5dAAAAAAAAAJDNLMYYY+8Q9nb27Fn5+voqOTlZPj4+9o5zS6NGjdK8efO0Z88eeXl5KSoqSqNHj1b58uUlSVeuXNFrr72mJUuW6Pfff5evr68aN26smJgYBQUF3fHrl3x58R3vI6ccimlp7wgAAOQKjlLn4PZy9DhaLHd3/zmBjzgAADgM6lUAAAA4Axd7B0DGrVmzRtHR0fr555+1cuVKpaamqmnTpjp//rwk6cKFC9qyZYtef/11bdmyRfPmzdO+ffv0yCOP2Dk5AAAAAAAAAAAAADgnppd3INfuFXpNbGys/Pz8tHnzZtWtW1e+vr5auXKlzTYfffSRatSoocOHD6tEiRI5GRcAAAAAAAAAAAAAnB5Xujuw5ORkSVKhQoVuu43FYlGBAgVyKBUAAAAAAAAAAAAA3DsYdHdQxhj1799fderUUaVKlW66zaVLl/Tyyy+rffv23BMLAAAAAAAAAAAAAO4Cppd3UL169dKOHTv0ww8/3LT9ypUrevrpp5Wenq5PPvkkh9MBAAAAAAAAAAAAwL2BQXcH1Lt3b3377bdau3atihUrdkP7lStX9NRTT+ngwYNavXo1V7kDAAAAAAAAAAAAwF3CoLsDMcaod+/emj9/vhISEhQSEnLDNtcG3Pfv36/4+HgVLlzYDkkBAAAAAAAAAAAA4N7AoLsDiY6OVlxcnL755ht5e3srKSlJkuTr6ysvLy+lpqbqiSee0JYtW7Ro0SKlpaVZtylUqJDc3d3tGR8AAAAAAAAAAAAAnA6D7g5kwoQJkqT69evbrI+NjVXnzp119OhRffvtt5KkqlWr2mwTHx9/w/MAAAAAAAAAAAAAAHeGQXcHYoy5bXvJkiX/cxsAAAAAAAAAAAAAQPZxsXcAAAAAAAAAAAAAAAAcFYPuAAAAAAAAAAAAAABkEdPL5zSLxd4JMo6p6gEAAAAAAAAAAADgtrjSHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALGLQHQAAAAAAAAAAAACALMrVg+6jRo1S9erV5e3tLT8/P7Vp00Z79+612cYYo2HDhikoKEheXl6qX7++du7caafEAAAAAAAAAAAAAIB7Sa4edF+zZo2io6P1888/a+XKlUpNTVXTpk11/vx56zbvvPOO3n//fX388cfauHGjAgIC1KRJE/3zzz92TA4AAAAAAAAAAAAAuBfksXeA21m2bJnNcmxsrPz8/LR582bVrVtXxhiNHTtWr776qh577DFJ0vTp0+Xv76+4uDg9//zz9ogNAAAAAAAAAAAAALhH5Oor3a+XnJwsSSpUqJAk6eDBg0pKSlLTpk2t23h4eKhevXpat27dLfeTkpKis2fP2jwAAAAAAAAcwYQJE1S5cmX5+PjIx8dHkZGRWrp0qb1jAQAAAMA9y2EG3Y0x6t+/v+rUqaNKlSpJkpKSkiRJ/v7+Ntv6+/tb225m1KhR8vX1tT6KFy9+94IDAAAAAABko2LFiikmJkabNm3Spk2b1LBhQ7Vu3Vo7d+60dzQAAAAAuCc5zKB7r169tGPHDs2cOfOGNovFYrNsjLlh3b8NGTJEycnJ1seRI0eyPS8AAAAAAMDd0KpVK7Vo0ULlypVTuXLlNHLkSOXPn18///yzvaMBAAAAwD0pV9/T/ZrevXvr22+/1dq1a1WsWDHr+oCAAElXr3gPDAy0rj9x4sQNV7//m4eHhzw8PO5eYAAAAAAAgByQlpamr7/+WufPn1dkZKS94wAAAADAPSlXX+lujFGvXr00b948rV69WiEhITbtISEhCggI0MqVK63rLl++rDVr1igqKiqn4wIAAAAAAOSIX375Rfnz55eHh4d69uyp+fPnq2LFivaOBQAAAAD3pFx9pXt0dLTi4uL0zTffyNvb23qfdl9fX3l5eclisahfv356++23VbZsWZUtW1Zvv/228ubNq/bt29s5PQAAAAAAwN1Rvnx5bdu2TWfOnNHcuXPVqVMnrVmzhoF3AAAAALCDXD3oPmHCBElS/fr1bdbHxsaqc+fOkqTBgwfr4sWLevHFF3X69GnVrFlTK1askLe3dw6nBQAAAAAAyBnu7u4qU6aMJCkiIkIbN27UuHHj9Nlnn9k5GQAAAADce3L1oLsx5j+3sVgsGjZsmIYNG3b3AwEA/h979x0mVX32j/+epSxEKYICi9KMihQFhKgQFbCgizVgSTSIGvVRsbEqEY1YoqLG3qNRlMdEfRLAaFB0EykasdBEDRakSlgRVBA01PP7Iz/3mw0Lwrizs7O8Xtc1l5wy57w/zp7lZu/9nAMAAFRBSZLE6tWrsx0DAABgm1Slm+4AAAAAlHXFFVdEYWFhtGjRIr766qt46qmnYsKECTFu3LhsRwMAANgm5WU7AAAA5IoHHngg9t5776hfv37Ur18/unfvHi+88MJm3zNx4sTo2rVr1KlTJ3bdddd48MEHKyktANXVp59+GgMGDIi2bdvGIYccEm+88UaMGzcuDjvssGxHAwAA2CaZ6Q4AAFtol112iZtuuqn0GbqPP/54HHvssTF9+vTo0KHDRvvPnTs3+vbtG2eddVY88cQT8fe//z3OO++82GmnnaJ///6VHR+AauKRRx7JdgQAAAD+g6Y7AABsoaOPPrrM8g033BAPPPBAvP766+U23R988MFo2bJl3HnnnRER0a5du5gyZUrceuutmu4AAAAAUE24vTwAAKRh/fr18dRTT8WqVauie/fu5e4zefLk6NOnT5l1hx9+eEyZMiXWrl27yWOvXr06VqxYUeYFAAAAAFRNZroDAMBWeOedd6J79+7xr3/9K7bffvsYM2ZMtG/fvtx9S0pKomnTpmXWNW3aNNatWxdLly6NgoKCct83fPjwuPbaays8OwDVT+vLx2Y7Qtrm3XRktiMAAABUCDPdAQBgK7Rt2zZmzJgRr7/+epx77rkxcODA+Mc//rHJ/VOpVJnlJEnKXf+fhg4dGsuXLy99LVy4sGLCAwAAAAAVzkx3AADYCrVr147ddtstIiK6desWb731Vtx1113x29/+dqN9mzVrFiUlJWXWLVmyJGrWrBmNGzfe5Dny8/MjPz+/YoMDAAAAABlhpjsAAHwPSZLE6tWry93WvXv3KC4uLrPupZdeim7dukWtWrUqIx4AAAAAkGGa7gAAsIWuuOKKeOWVV2LevHnxzjvvxJVXXhkTJkyIU045JSL+fVv4U089tXT/c845J+bPnx9FRUUxa9asePTRR+ORRx6JSy+9NFtDAAAAAAAqmNvLAwDAFvr0009jwIABsXjx4mjQoEHsvffeMW7cuDjssMMiImLx4sWxYMGC0v3btGkTzz//fAwePDjuu+++aN68edx9993Rv3//bA0BAAAAAKhgmu4AALCFHnnkkc1uf+yxxzZa17Nnz5g2bVqGEgEAAAAA2eb28gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnKSNP98ccfj7Fjx5YuDxkyJBo2bBg9evSI+fPnZ+KUAABQLrUpAAAAAJBJGWm633jjjVG3bt2IiJg8eXLce++9ccstt8SOO+4YgwcPzsQpAQCgXGpTAAAAACCTambioAsXLozddtstIiKeeeaZOP744+Pss8+OH//4x9GrV69MnBIAAMqlNgUAAAAAMikjM9233377WLZsWUREvPTSS3HooYdGRESdOnXim2++ycQpAQCgXGpTAAAAACCTMjLT/bDDDoszzzwzunTpEh9++GEceeSRERHx3nvvRevWrTNxSgAAKJfaFAAAAADIpIzMdL/vvvuie/fu8dlnn8WoUaOicePGERExderU+NnPfpaJUwIAQLnUpgAAAABAJmVkpvuKFSvi7rvvjry8sj39a665JhYuXJiJUwIAQLkqsjYdPnx4jB49Ot5///2oW7du9OjRI26++eZo27btJt8zYcKE6N2790brZ82aFXvuuedWnR8AAAAAqHoyMtO9TZs2sXTp0o3Wf/7559GmTZtMnBIAAMpVkbXpxIkTY9CgQfH6669HcXFxrFu3Lvr06ROrVq36zvd+8MEHsXjx4tLX7rvvvlXnBgAAAACqpozMdE+SpNz1K1eujDp16mTilAAAUK6KrE3HjRtXZnnEiBHRpEmTmDp1ahx00EGbfW+TJk2iYcOGW3U+AAAAAKDqq9Cme1FRUUREpFKpGDZsWPzgBz8o3bZ+/fp44403onPnzhV5SgAAKFdl1KbLly+PiIhGjRp9575dunSJf/3rX9G+ffv41a9+Ve4t57+1evXqWL16denyihUrvldOAAAAACBzKrTpPn369Ij492yid955J2rXrl26rXbt2tGpU6e49NJLK/KUAABQrkzXpkmSRFFRURxwwAHRsWPHTe5XUFAQDz30UHTt2jVWr14d//u//xuHHHJITJgwYZOz44cPHx7XXntt2tkAAAAAgMpToU338ePHR0TE6aefHnfddVfUr1+/Ig8PAABbLNO16fnnnx8zZ86MV199dbP7tW3bNtq2bVu63L1791i4cGHceuutm2y6Dx06tHSmfsS/Z7q3aNGiYoIDAAAAABUqI890HzFiRCYOCwAAWy0TtekFF1wQzz77bEyaNCl22WWXrX7//vvvH0888cQmt+fn50d+fv73iQgAAAAAVJKMNN1XrVoVN910U/ztb3+LJUuWxIYNG8psnzNnTiZOCwAAG6nI2jRJkrjgggtizJgxMWHChGjTpk1amaZPnx4FBQVpvRcAAAAAqFoy0nQ/88wzY+LEiTFgwIAoKCiIVCqVidMAAMB3qsjadNCgQfGHP/wh/vznP0e9evWipKQkIiIaNGgQdevWjYh/3xp+0aJFMXLkyIiIuPPOO6N169bRoUOHWLNmTTzxxBMxatSoGDVq1PcfHAAAAACQdRlpur/wwgsxduzY+PGPf5yJwwMAwBaryNr0gQceiIiIXr16lVk/YsSIOO200yIiYvHixbFgwYLSbWvWrIlLL700Fi1aFHXr1o0OHTrE2LFjo2/fvt87DwAAAACQfRlpuu+www7RqFGjTBwaAAC2SkXWpkmSfOc+jz32WJnlIUOGxJAhQyrk/AAAAABA1ZOXiYP++te/jmHDhsXXX3+dicMDAMAWU5sCAAAAAJmUkZnut912W3z88cfRtGnTaN26ddSqVavM9mnTpmXitAAAsBG1KQAAAACQSRlpuh933HGZOCwAAGw1tSkAAAAAkEkZabpfffXVmTgsAABsNbUpAAAAAJBJGXmme0TEl19+Gb/73e9i6NCh8fnnn0fEv2/duWjRokydEgAAyqU2BQAAAAAyJSMz3WfOnBmHHnpoNGjQIObNmxdnnXVWNGrUKMaMGRPz58+PkSNHZuK0AACwEbUpAAAAAJBJGZnpXlRUFKeddlp89NFHUadOndL1hYWFMWnSpEycEgAAyqU2BQAAAAAyKSNN97feeiv+53/+Z6P1O++8c5SUlGTilAAAUC61KQAAAACQSRlputepUydWrFix0foPPvggdtppp0ycEgAAyqU2BQAAAAAyKSNN92OPPTauu+66WLt2bUREpFKpWLBgQVx++eXRv3//TJwSAADKpTYFAAAAADIpI033W2+9NT777LNo0qRJfPPNN9GzZ8/Ybbfdol69enHDDTdk4pQAZMCkSZPi6KOPjubNm0cqlYpnnnmmzPbTTjstUqlUmdf++++fnbAAm6A2BQAAAAAyqWYmDlq/fv149dVX4+WXX45p06bFhg0bYp999olDDz00E6cDIENWrVoVnTp1itNPP32Ts0GPOOKIGDFiROly7dq1KysewBZRmwIAAAAAmZSRpvu3Dj744Dj44IMzeQoAMqiwsDAKCws3u09+fn40a9askhIBpE9tCgAAAABkQsaa7m+++WZMmDAhlixZEhs2bCiz7fbbb8/UaQGoZBMmTIgmTZpEw4YNo2fPnnHDDTdEkyZNsh0LoAy1KQAAAACQKRlput94443xq1/9Ktq2bRtNmzaNVCpVuu0//wxAbissLIwTTjghWrVqFXPnzo2rrroqDj744Jg6dWrk5+dnOx5ARKhNAQAAAIDMykjT/a677opHH300TjvttEwcHoAq4qSTTir9c8eOHaNbt27RqlWrGDt2bPTr1y+LyQD+H7UpAAAAAJBJeRk5aF5e/PjHP87EoQGowgoKCqJVq1bx0UcfZTsKQCm1KQAAAACQSRlpug8ePDjuu+++TBwagCps2bJlsXDhwigoKMh2FIBSalMAAAAAIJMycnv5Sy+9NI488sj44Q9/GO3bt49atWqV2T569OhMnBaACrZy5cqYPXt26fLcuXNjxowZ0ahRo2jUqFFcc8010b9//ygoKIh58+bFFVdcETvuuGP85Cc/yWJqgLLUpgAAAABAJmVkpvsFF1wQ48ePjz322CMaN24cDRo0KPPaGpMmTYqjjz46mjdvHqlUKp555pky20877bRIpVJlXvvvv38FjgZg2zVlypTo0qVLdOnSJSIiioqKokuXLjFs2LCoUaNGvPPOO3HsscfGHnvsEQMHDow99tgjJk+eHPXq1ctycoD/pyJrUwAAAACA/5aRme4jR46MUaNGxZFHHvm9j7Vq1aro1KlTnH766dG/f/9y9zniiCNixIgRpcu1a9f+3ucFIKJXr16RJMkmt7/44ouVmAYgPRVZmwIAAAAA/LeMNN0bNWoUP/zhDyvkWIWFhVFYWLjZffLz86NZs2YVcj4AAKqXiqxNAQAAAAD+W0ZuL3/NNdfE1VdfHV9//XUmDr+RCRMmRJMmTWKPPfaIs846K5YsWbLZ/VevXh0rVqwo8wIAoHqq7NoUAAAAANi2ZGSm+9133x0ff/xxNG3aNFq3bh21atUqs33atGkVdq7CwsI44YQTolWrVjF37ty46qqr4uCDD46pU6dGfn5+ue8ZPnx4XHvttRWWAaCqan352GxH2GLzbnLbZyAzKrM2BQAAAAC2PRlpuh933HGZOGy5TjrppNI/d+zYMbp16xatWrWKsWPHRr9+/cp9z9ChQ6OoqKh0ecWKFdGiRYuMZwUAoPJVZm0KAAAAAGx7MtJ0v/rqqzNx2C1SUFAQrVq1io8++miT++Tn529yFjwAANVLNmtTAAAAAKD6y8gz3bNp2bJlsXDhwigoKMh2FAAAAAAAAACquYzMdN9hhx0ilUpttD6VSkWdOnVit912i9NOOy1OP/307zzWypUrY/bs2aXLc+fOjRkzZkSjRo2iUaNGcc0110T//v2joKAg5s2bF1dccUXsuOOO8ZOf/KRCxwQAQG6qyNoUAAAAAOC/ZaTpPmzYsLjhhhuisLAw9t1330iSJN56660YN25cDBo0KObOnRvnnnturFu3Ls4666zNHmvKlCnRu3fv0uVvn8U+cODAeOCBB+Kdd96JkSNHxpdffhkFBQXRu3fvePrpp6NevXqZGBoAADmmImtTAAAAAID/lpGm+6uvvhrXX399nHPOOWXW//a3v42XXnopRo0aFXvvvXfcfffd3/mDzV69ekWSJJvc/uKLL1ZIZgAAqqeKrE0BAAAAAP5bRp7p/uKLL8ahhx660fpDDjmktEnet2/fmDNnTiZODwAApdSmAAAAAEAmZaTp3qhRo3juuec2Wv/cc89Fo0aNIiJi1apVbgEPAEDGqU0BAAAAgEzKyO3lr7rqqjj33HNj/Pjxse+++0YqlYo333wznn/++XjwwQcjIqK4uDh69uyZidMDAEAptSkAAAAAkEkZabqfddZZ0b59+7j33ntj9OjRkSRJ7LnnnjFx4sTo0aNHRERccsklmTg1AACUoTYFAAAAADIpI033iIgf//jH8eMf/zhTh4dKN2nSpPjNb34TU6dOjcWLF8eYMWPiuOOOK3ff//mf/4mHHnoo7rjjjrj44osrNScAsDG1KQAAAACQKRlrun/rm2++ibVr15ZZV79+/UyfFircqlWrolOnTnH66adH//79N7nfM888E2+88UY0b968EtMBAFtCbQoAAAAAVLSMNN2//vrrGDJkSPzf//1fLFu2bKPt69evz8RpIaMKCwujsLBws/ssWrQozj///HjxxRfjyCOPrKRkAMDmqE0BAAAAgEzKy8RBL7vssnj55Zfj/vvvj/z8/Pjd734X1157bTRv3jxGjhyZiVNC1m3YsCEGDBgQl112WXTo0CHbcQCA/5/aFAAAAADIpIzMdH/uuedi5MiR0atXrzjjjDPiwAMPjN122y1atWoVv//97+OUU07JxGkhq26++eaoWbNmXHjhhdmOAgD8B7UpAAAAAJBJGZnp/vnnn0ebNm0i4t/PyPz8888jIuKAAw6ISZMmZeKUkFVTp06Nu+66Kx577LFIpVLZjgMA/Ae1KQAAAACQSRlpuu+6664xb968iIho3759/N///V9E/HuWUcOGDTNxSsiqV155JZYsWRItW7aMmjVrRs2aNWP+/PlxySWXROvWrbMdDwC2aWpTAAAAACCTMnJ7+dNPPz3efvvt6NmzZwwdOjSOPPLIuOeee2LdunVx++23Z+KUkFUDBgyIQw89tMy6ww8/PAYMGBCnn356llIBABFqUwAAAAAgszLSdB88eHDpn3v37h3vv/9+TJkyJX74wx9Gp06dMnFKyLiVK1fG7NmzS5fnzp0bM2bMiEaNGkXLli2jcePGZfavVatWNGvWLNq2bVvZUQGA/6A2BQAAAAAyqcJvL7927dro3bt3fPjhh6XrWrZsGf369fNDTXLalClTokuXLtGlS5eIiCgqKoouXbrEsGHDspwMANgUtSkAAAAAkGkVPtO9Vq1a8e6770YqlaroQ0NW9erVK5Ik2eL9v312LACQPWpTAAAAACDTKnyme0TEqaeeGo888kgmDg0AAFtFbQoAAAAAZFJGnum+Zs2a+N3vfhfFxcXRrVu32G677cpsv/322zNxWgAA2IjaFAAAAADIpIw03d99993YZ599IiLKPD8zItzak6xpffnYbEfYYvNuOjLbEQCg2lCbAgAAAACZVGFN95kzZ0bHjh0jLy8vxo8fX1GHBQCAraY2BQAAAAAqS4U9071Lly6xdOnSiIjYddddY9myZRV1aAAA2CpqUwAAAACgslRY071hw4Yxd+7ciIiYN29ebNiwoaIODQAAW0VtCgAAAABUlgq7vXz//v2jZ8+eUVBQEKlUKrp16xY1atQod985c+ZU1GkBAGAjalMAAAAAoLJUWNP9oYcein79+sXs2bPjwgsvjLPOOivq1atXUYcHAIAtpjYFAAAAACpLhTXdIyKOOOKIiIiYOnVqXHTRRX6wCQBA1qhNAQAAAIDKUKFN92+NGDEiE4cFAICtpjYFAAAAADIpL9sBAAAAAAAAACBXaboDAAAAAAAAQJo03QEAAAAAAAAgTRXWdN9nn33iiy++iIiI6667Lr7++uuKOjQAAGwVtSlA+oYPHx4/+tGPol69etGkSZM47rjj4oMPPsh2LMgZriEAANj2VFjTfdasWbFq1aqIiLj22mtj5cqVFXVoAADYKmpTgPRNnDgxBg0aFK+//noUFxfHunXrok+fPqXfV4HNcw0BAMC2p2ZFHahz585x+umnxwEHHBBJksStt94a22+/fbn7Dhs2rKJOCwAAG1GbAqRv3LhxZZZHjBgRTZo0ialTp8ZBBx2UpVSQO1xDAACw7amwpvtjjz0WV199dfzlL3+JVCoVL7zwQtSsufHhU6mUH2wCAJBRalOAirN8+fKIiGjUqFGWk0Bucg0BAED1V2FN97Zt28ZTTz0VERF5eXnxt7/9LZo0aVJRhwcAgC2mNgWoGEmSRFFRURxwwAHRsWPHbMeBnOMaAgCAbUOFNd3/04YNGzJxWAAA2GpqU4D0nX/++TFz5sx49dVXsx0FcpJrCAAAtg0ZabpHRHz88cdx5513xqxZsyKVSkW7du3ioosuih/+8IeZOiUAAJRLbQqw9S644IJ49tlnY9KkSbHLLrtkOw7kHNcQAABsO/IycdAXX3wx2rdvH2+++Wbsvffe0bFjx3jjjTeiQ4cOUVxcnIlTAgBAudSmAFsnSZI4//zzY/To0fHyyy9HmzZtsh0JcoprCAAAtj0Zmel++eWXx+DBg+Omm27aaP0vf/nLOOywwzJxWgAA2IjaFGDrDBo0KP7whz/En//856hXr16UlJRERESDBg2ibt26WU4HVZ9rCAAAtj0Zmek+a9as+MUvfrHR+jPOOCP+8Y9/ZOKUAABQroqsTYcPHx4/+tGPol69etGkSZM47rjj4oMPPvjO902cODG6du0aderUiV133TUefPDBrTovQGV64IEHYvny5dGrV68oKCgofT399NPZjgY5wTUEAADbnow03XfaaaeYMWPGRutnzJgRTZo0ycQpAQCgXBVZm06cODEGDRoUr7/+ehQXF8e6deuiT58+sWrVqk2+Z+7cudG3b9848MADY/r06XHFFVfEhRdeGKNGjdraoQBUiiRJyn2ddtpp2Y4GOcE1BAAA256M3F7+rLPOirPPPjvmzJkTPXr0iFQqFa+++mrcfPPNcckll2TilAAAUK6KrE3HjRtXZnnEiBHRpEmTmDp1ahx00EHlvufBBx+Mli1bxp133hkREe3atYspU6bErbfeGv37909rTAAAAABA1ZGRpvtVV10V9erVi9tuuy2GDh0aERHNmzePa665Ji688MJMnBIAAMqVydp0+fLlERHRqFGjTe4zefLk6NOnT5l1hx9+eDzyyCOxdu3aqFWr1kbvWb16daxevbp0ecWKFd8rJwAAAACQORlpuqdSqRg8eHAMHjw4vvrqq4iIqFevXiZOBQAAm5Wp2jRJkigqKooDDjggOnbsuMn9SkpKomnTpmXWNW3aNNatWxdLly6NgoKCjd4zfPjwuPbaa793RoDvq/XlY7MdIW3zbjoy2xEgIlxHAACwLcjIM93/U7169TTcAQCoEiqyNj3//PNj5syZ8eSTT37nvqlUqsxykiTlrv/W0KFDY/ny5aWvhQsXfv/AAAAAAEBGZGSmOwAAVGcXXHBBPPvsszFp0qTYZZddNrtvs2bNoqSkpMy6JUuWRM2aNaNx48blvic/Pz/y8/MrLC8AAAAAkDkZn+kOAADVRZIkcf7558fo0aPj5ZdfjjZt2nzne7p37x7FxcVl1r300kvRrVu3cp/nDgAAAADkFk13AADYQoMGDYonnngi/vCHP0S9evWipKQkSkpK4ptvvindZ+jQoXHqqaeWLp9zzjkxf/78KCoqilmzZsWjjz4ajzzySFx66aXZGAIAAAAAUMEqvOm+du3a6N27d3z44YcVfWgAANgqFV2bPvDAA7F8+fLo1atXFBQUlL6efvrp0n0WL14cCxYsKF1u06ZNPP/88zFhwoTo3Llz/PrXv4677747+vfvXyGZAAAAAIDsqvBnuteqVSvefffdSKVSFX1oAADYKhVdmyZJ8p37PPbYYxut69mzZ0ybNq1CMgAAAAAAVUtGbi9/6qmnxiOPPJKJQwMAwFZRmwIAAAAAmVThM90jItasWRO/+93vori4OLp16xbbbbddme233357Jk4LAAAbUZsCAAAAAJmUkab7u+++G/vss09ExEbPz3TbeQAAKpPaFAAAAADIpIw03cePH5+JwwIAwFZTmwIAAAAAmZSRZ7p/a/bs2fHiiy/GN998ExERSZJk8nQAALBJalMAAAAAIBMy0nRftmxZHHLIIbHHHntE3759Y/HixRERceaZZ8Yll1ySiVMCQBmTJk2Ko48+Opo3bx6pVCqeeeaZ0m1r166NX/7yl7HXXnvFdtttF82bN49TTz01/vnPf2YvMJAxalMAAAAAIJMy0nQfPHhw1KpVKxYsWBA/+MEPStefdNJJMW7cuEycEgDKWLVqVXTq1CnuvffejbZ9/fXXMW3atLjqqqti2rRpMXr06Pjwww/jmGOOyUJSINPUpgAAAABAJmXkme4vvfRSvPjii7HLLruUWb/77rvH/PnzM3FKACijsLAwCgsLy93WoEGDKC4uLrPunnvuiX333TcWLFgQLVu2rIyIQCVRmwIAAAAAmZSRme6rVq0qM4voW0uXLo38/PxMnBIAvpfly5dHKpWKhg0bZjsKUMHUpgAAAABAJmWk6X7QQQfFyJEjS5dTqVRs2LAhfvOb30Tv3r0zcUoASNu//vWvuPzyy+Pkk0+O+vXrZzsOUMHUpgAAAABAJmXk9vK/+c1volevXjFlypRYs2ZNDBkyJN577734/PPP4+9//3smTgkAaVm7dm389Kc/jQ0bNsT999+f7ThABqhNAQAAAIBMyshM9/bt28fMmTNj3333jcMOOyxWrVoV/fr1i+nTp8cPf/jDTJwSALba2rVr48QTT4y5c+dGcXGxWe5QTalNAQAAAIBMyshM94iIZs2axbXXXpupwwPA9/Jtw/2jjz6K8ePHR+PGjbMdCcggtSkAAAAAkCkZa7p/8cUX8cgjj8SsWbMilUpFu3bt4vTTT49GjRpl6pQAUGrlypUxe/bs0uW5c+fGjBkzolGjRtG8efM4/vjjY9q0afGXv/wl1q9fHyUlJRER0ahRo6hdu3a2YgMZojYFAAAAADIlI7eXnzhxYrRp0ybuvvvu+OKLL+Lzzz+Pu+++O9q0aRMTJ07MxCkBoIwpU6ZEly5dokuXLhERUVRUFF26dIlhw4bFJ598Es8++2x88skn0blz5ygoKCh9vfbaa1lODlQ0tSkAAAAAkEkZmek+aNCgOPHEE+OBBx6IGjVqRETE+vXr47zzzotBgwbFu+++m4nTAkCpXr16RZIkm9y+uW1A9aI2BQAAAAAyKSMz3T/++OO45JJLSn+oGRFRo0aNKCoqio8//jgTpwQAgHKpTQEAAACATMrITPd99tknZs2aFW3bti2zftasWdG5c+dMnBKAaqb15WOzHWGLzbvpyGxHADZDbQoAAAAAZFKFNd1nzpxZ+ucLL7wwLrroopg9e3bsv//+ERHx+uuvx3333Rc33XRTRZ0SAADKpTYFAAAAACpLhTXdO3fuHKlUqswzcocMGbLRfieffHKcdNJJFXVaAADYiNoUAAAAAKgsFdZ0nzt3bkUdCgAAvhe1KQAAAABQWSqs6d6qVauKOhQAAHwvalMAAAAAoLJUWNP9vy1atCj+/ve/x5IlS2LDhg1ltl144YWZOi0AAGxEbQoAAAAAZEpGmu4jRoyIc845J2rXrh2NGzeOVCpVui2VSvnBJgAAlUZtCgAAAABkUkaa7sOGDYthw4bF0KFDIy8vLxOnAACALaI2BQAAAAAyKSM/dfz666/jpz/9qR9qAgCQdWpTAAAAACCTMvKTx1/84hfxxz/+MROHBgCAraI2BQAAAAAyKSO3lx8+fHgcddRRMW7cuNhrr72iVq1aZbbffvvtmTgtAABsRG0KAAAAAGRSRpruN954Y7z44ovRtm3biIhIpVKl2/7zzwAAkGlqUwAAAAAgkzLSdL/99tvj0UcfjdNOOy0ThwcAgC2mNgUAAAAAMikjz3TPz8+PH//4x5k4NAAAbBW1KQAAAACQSRlpul900UVxzz33ZOLQAACwVdSmAAAAAEAmZeT28m+++Wa8/PLL8Ze//CU6dOgQtWrVKrN99OjRmTgtAABsRG0KAAAAAGRSRpruDRs2jH79+mXi0AAAsFXUpgAAAABAJmWk6T5ixIhMHBYAALaa2hQAAAAAyKSMPNMdAAAAAAAAALYFGZnp3qZNm0ilUpvcPmfOnEycFgAANqI2BQAAAAAyKSNN94svvrjM8tq1a2P69Okxbty4uOyyyzJxSgAAKJfaFAAAAADIpIw03S+66KJy1993330xZcqUTJwSAADKpTYFAAAAADKpUp/pXlhYGKNGjarMUwIAQLnUpgAAAABARajUpvuf/vSnaNSoUWWeEgAAyqU2BQAAAAAqQkZuL9+lS5dIpVKly0mSRElJSXz22Wdx//33Z+KUAABQLrUpAAAAAJBJGWm6H3fccWWW8/LyYqeddopevXrFnnvumYlTAgBAudSmAAAAAEAmZaTpfvXVV2fisAAAsNXUpgAAAABAJlXqM90BAAAAAAAAoDqp0JnueXl5ZZ6XWZ5UKhXr1q2ryNMCAMBG1KYAAAAAQGWo0Kb7mDFjNrnttddei3vuuSeSJKnIUwIAQLnUpgAAAABAZajQpvuxxx670br3338/hg4dGs8991yccsop8etf/7oiTwkAAOVSmwIAAAAAlSFjz3T/5z//GWeddVbsvffesW7dupgxY0Y8/vjj0bJly0ydEgAAyqU2BQAAAAAypcKb7suXL49f/vKXsdtuu8V7770Xf/vb3+K5556Ljh07VvSpAABgs9SmAAAAAECmVejt5W+55Za4+eabo1mzZvHkk0+We0tPAACoDGpTAAAAAKAyVGjT/fLLL4+6devGbrvtFo8//ng8/vjj5e43evToijwtAABsRG0KAAAAAFSGCm26n3rqqZFKpSrykAAAkBa1KQAAAABQGSq06f7YY49V5OEAACBtalMAAAAAoDLkZTsAAAAAAAAAAOQqTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJqqfNN90qRJcfTRR0fz5s0jlUrFM888U2Z7kiRxzTXXRPPmzaNu3brRq1eveO+997ITFgAAAAAAAIBtSpVvuq9atSo6deoU9957b7nbb7nllrj99tvj3nvvjbfeeiuaNWsWhx12WHz11VeVnBQAAAAAAACAbU3NbAf4LoWFhVFYWFjutiRJ4s4774wrr7wy+vXrFxERjz/+eDRt2jT+8Ic/xP/8z/9UZlQAAAAAAAAAtjFVfqb75sydOzdKSkqiT58+pevy8/OjZ8+e8dprr23yfatXr44VK1aUeQEAAAAAAADA1srppntJSUlERDRt2rTM+qZNm5ZuK8/w4cOjQYMGpa8WLVpkNCcAAAAAAAAA1VNON92/lUqlyiwnSbLRuv80dOjQWL58eelr4cKFmY4IAAAAAAAAQDWU0033Zs2aRURsNKt9yZIlG81+/0/5+flRv379Mi8AAPgukyZNiqOPPjqaN28eqVQqnnnmmc3uP2HChEilUhu93n///coJDAAAAABkXE433du0aRPNmjWL4uLi0nVr1qyJiRMnRo8ePbKYDACA6mjVqlXRqVOnuPfee7fqfR988EEsXry49LX77rtnKCEAAAAAUNlqZjvAd1m5cmXMnj27dHnu3LkxY8aMaNSoUbRs2TIuvvjiuPHGG2P33XeP3XffPW688cb4wQ9+ECeffHIWUwMAUB0VFhZGYWHhVr+vSZMm0bBhw4oPBAAAAABkXZVvuk+ZMiV69+5dulxUVBQREQMHDozHHnsshgwZEt98802cd9558cUXX8R+++0XL730UtSrVy9bkQEAoIwuXbrEv/71r2jfvn386le/KlPflmf16tWxevXq0uUVK1ZkOiIAAAAAkKYq33Tv1atXJEmyye2pVCquueaauOaaayovFAAAbIGCgoJ46KGHomvXrrF69er43//93zjkkENiwoQJcdBBB23yfcOHD49rr722EpMCAAAAAOmq8k13AADIVW3bto22bduWLnfv3j0WLlwYt95662ab7kOHDi29w1PEv2e6t2jRIqNZAQAAAID05GU7AAAAbEv233//+Oijjza7T35+ftSvX7/MCwAAAAComjTdAQCgEk2fPj0KCgqyHQMAAAAAqCBuLw8AAFto5cqVMXv27NLluXPnxowZM6JRo0bRsmXLGDp0aCxatChGjhwZERF33nlntG7dOjp06BBr1qyJJ554IkaNGhWjRo3K1hAAAAAAgAqm6Q4AAFtoypQp0bt379Llb5+7PnDgwHjsscdi8eLFsWDBgtLta9asiUsvvTQWLVoUdevWjQ4dOsTYsWOjb9++lZ4dAAAAAMgMTXcAANhCvXr1iiRJNrn9scceK7M8ZMiQGDJkSIZTAQAAAADZ5JnuAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03WEb1Lp160ilUhu9Bg0alO1owCa4bgEAAAAAoGqqme0AQOV76623Yv369aXL7777bhx22GFxwgknZDEVsDmuWwAAAAAAqJo03WEbtNNOO5VZvummm+KHP/xh9OzZM0uJgO/iugUAAAAAgKrJ7eVhG7dmzZp44okn4owzzohUKpXtOMAWcN0CAAAAAEDVoekO27hnnnkmvvzyyzjttNOyHQXYQq5bAAAAAACoOjTdYRv3yCOPRGFhYTRv3jzbUYAt5LoFAAAAAICqwzPdYRs2f/78+Otf/xqjR4/OdhRgC7luAQAAAACgajHTHbZhI0aMiCZNmsSRRx6Z7SjAFnLdAgAAAABA1aLpDtuoDRs2xIgRI2LgwIFRs6abXkAucN0CAAAAAEDVo+kO26i//vWvsWDBgjjjjDOyHQXYQq5bAAAAAACoekyTg21Unz59IkmSbMcAtoLrFgAAAAAAqh4z3QEAAAAAAAAgTWa6Qw5offnYbEfYYvNuOjLbEaBKcN0CwKZNmjQpfvOb38TUqVNj8eLFMWbMmDjuuOOyHQvIEt8TAACAXGemOwAAAJVq1apV0alTp7j33nuzHQWoAnxPAAAAcp2Z7gAAAFSqwsLCKCwszHYMoIrwPQEAAMh1ZroDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAC20KRJk+Loo4+O5s2bRyqVimeeeeY73zNx4sTo2rVr1KlTJ3bdddd48MEHMx8UqriVK1fGjBkzYsaMGRERMXfu3JgxY0YsWLAgu8GArPA9AQAAyHWa7gAAsIVWrVoVnTp1invvvXeL9p87d2707ds3DjzwwJg+fXpcccUVceGFF8aoUaMynBSqtilTpkSXLl2iS5cuERFRVFQUXbp0iWHDhmU5GZANvicAAAC5rma2AwAAQK4oLCyMwsLCLd7/wQcfjJYtW8add94ZERHt2rWLKVOmxK233hr9+/fPUEqo+nr16hVJkmQ7BlBF+J4AAADkOjPdAQAgQyZPnhx9+vQps+7www+PKVOmxNq1azf5vtWrV8eKFSvKvAAAAACAqslMdwAAyJCSkpJo2rRpmXVNmzaNdevWxdKlS6OgoKDc9w0fPjyuvfbayogIWdf68rHZjpC2eTcdme0IUO34ngAAAOQiM90BACCDUqlUmeVvb5/73+v/09ChQ2P58uWlr4ULF2Y0IwAAAACQPjPdAQAgQ5o1axYlJSVl1i1ZsiRq1qwZjRs33uT78vPzIz8/P9PxAAAAAIAKYKY7AABkSPfu3aO4uLjMupdeeim6desWtWrVylIqAAAAAKAiaboDAMAWWrlyZcyYMSNmzJgRERFz586NGTNmxIIFCyLi37eFP/XUU0v3P+ecc2L+/PlRVFQUs2bNikcffTQeeeSRuPTSS7MRHwAAAADIALeXBwCALTRlypTo3bt36XJRUVFERAwcODAee+yxWLx4cWkDPiKiTZs28fzzz8fgwYPjvvvui+bNm8fdd98d/fv3r/TsAAAAAEBmaLoDAMAW6tWrVyRJssntjz322EbrevbsGdOmTctgKgAAAAAgm9xeHgAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSlPNN92uuuSZSqVSZV7NmzbIdCwAAAAAAAIBtQM1sB6gIHTp0iL/+9a+lyzVq1MhiGgAAAAAAAAC2FdWi6V6zZk2z2wEAAAAAAACodDl/e/mIiI8++iiaN28ebdq0iZ/+9KcxZ86cbEcCAAAAAAAAYBuQ8zPd99tvvxg5cmTsscce8emnn8b1118fPXr0iPfeey8aN25c7ntWr14dq1evLl1esWJFZcUFAAAAAAAAoBrJ+ZnuhYWF0b9//9hrr73i0EMPjbFjx0ZExOOPP77J9wwfPjwaNGhQ+mrRokVlxQUAAAAAAACgGsn5pvt/22677WKvvfaKjz76aJP7DB06NJYvX176WrhwYSUmBAAAAAAAAKC6yPnby/+31atXx6xZs+LAAw/c5D75+fmRn59fiakAAAAAAAAAqI5yfqb7pZdeGhMnToy5c+fGG2+8Eccff3ysWLEiBg4cmO1oAAAAAAAAAFRzOT/T/ZNPPomf/exnsXTp0thpp51i//33j9dffz1atWqV7WgAAAAAAAAAVHM533R/6qmnsh0BAAAAAAAAgG1Uzt9eHgAAAAAAAACyRdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03YGcNnz48EilUnHxxRdnO0pacj0/AAAAAADAtk7THchZb731Vjz00EOx9957ZztKWnI9PwAAAAAAAJruQI5auXJlnHLKKfHwww/HDjvskO04Wy3X8wMAAAAAAPBvmu5ATho0aFAceeSRceihh2Y7SlpyPT8AAAAAAAD/VjPbAQC21lNPPRXTpk2Lt956K9tR0pLr+QEAAAAAAPh/NN2BnLJw4cK46KKL4qWXXoo6depkO85Wy/X8AAAAAAAAlKXpDuSUqVOnxpIlS6Jr166l69avXx+TJk2Ke++9N1avXh01atTIYsLNy/X8AAAAAAAAlKXpDuSUQw45JN55550y604//fTYc88945e//GWVb1jnen4AAAAAAADK0nQHckq9evWiY8eOZdZtt9120bhx443WV0W5nh8AAAAAAICy8rIdAAAAAAAAAABylZnuQM6bMGFCtiN8L7meHwAAAAAAYFtmpjsAAAAAAAAApEnTHQAAAAAAAADS5PbyQMa1vnxstiNssXk3HVlmOZezAwAAAAAAkHlmugMAAAAAAABAmjTdAQAAAAAAACBNmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKRJ0x0AAAAAAAAA0qTpDgAAAAAAAABp0nQHAAAAAAAAgDRpugMAAAAAAABAmjTdAQAAAAAAACBNmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKRJ0x0AALbS/fffH23atIk6depE165d45VXXtnkvhMmTIhUKrXR6/3336/ExAAAAABApmi6AwDAVnj66afj4osvjiuvvDKmT58eBx54YBQWFsaCBQs2+74PPvggFi9eXPrafffdKykxAAAAAJBJmu4AALAVbr/99vjFL34RZ555ZrRr1y7uvPPOaNGiRTzwwAObfV+TJk2iWbNmpa8aNWpUUmIAAAAAIJM03QEAYAutWbMmpk6dGn369Cmzvk+fPvHaa69t9r1dunSJgoKCOOSQQ2L8+PGb3Xf16tWxYsWKMi8AAAAAoGrSdAcAgC20dOnSWL9+fTRt2rTM+qZNm0ZJSUm57ykoKIiHHnooRo0aFaNHj462bdvGIYccEpMmTdrkeYYPHx4NGjQofbVo0aJCxwEAAAAAVJya2Q4AAAC5JpVKlVlOkmSjdd9q27ZttG3btnS5e/fusXDhwrj11lvjoIMOKvc9Q4cOjaKiotLlFStWaLwDAAAAQBVlpjsAAGyhHXfcMWrUqLHRrPYlS5ZsNPt9c/bff//46KOPNrk9Pz8/6tevX+YFAAAAAFRNmu4AALCFateuHV27do3i4uIy64uLi6NHjx5bfJzp06dHQUFBRccDAAAAALLA7eUBAGArFBUVxYABA6Jbt27RvXv3eOihh2LBggVxzjnnRMS/bw2/aNGiGDlyZERE3HnnndG6devo0KFDrFmzJp544okYNWpUjBo1KpvDAAAAAAAqiKY7AABshZNOOimWLVsW1113XSxevDg6duwYzz//fLRq1SoiIhYvXhwLFiwo3X/NmjVx6aWXxqJFi6Ju3brRoUOHGDt2bPTt2zdbQwAAAAAAKpCmOwAAbKXzzjsvzjvvvHK3PfbYY2WWhwwZEkOGDKmEVAAAAABANnimOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AAAAAAAAAadJ0BwAAAAAAAIA0aboDAAAAAAAAQJo03QEAAAAAAAAgTZruAAAAAAAAAJAmTXcAAAAAAAAASJOmOwAAAAAAAACkSdMdAAAAAAAAANKk6Q4AZNTw4cPjRz/6UdSrVy+aNGkSxx13XHzwwQfZjgUAAAAAABVC0x0AyKiJEyfGoEGD4vXXX4/i4uJYt25d9OnTJ1atWpXtaAAAAAAA8L3VzHYAAKB6GzduXJnlESNGRJMmTWLq1Klx0EEHZSkVAAAAAABUDDPdAYBKtXz58oiIaNSoUZaTAAAAAADA96fpDgBUmiRJoqioKA444IDo2LFjtuMAAAAAAMD35vbyAEClOf/882PmzJnx6quvZjsKAAAAAABUCE13AKBSXHDBBfHss8/GpEmTYpdddsl2HAAAAAAAqBCa7gBARiVJEhdccEGMGTMmJkyYEG3atMl2JAAAAAAAqDCa7gBARg0aNCj+8Ic/xJ///OeoV69elJSUREREgwYNom7dullOBwAAAAAA309etgMAANXbAw88EMuXL49evXpFQUFB6evpp5/OdjQAAAAAAPjezHQHADIqSZJsRwAAAAAAgIwx0x0AAAAAAAAA0qTpDgAAAAAAAABpcnt5AGAjrS8fm+0IW2TeTUdmOwIAAAAAANs4M90BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AIDNmDRpUhx99NHRvHnzSKVS8cwzz2Q7EgAAAAAAVYimOwDAZqxatSo6deoU9957b7ajAAAAAABQBdXMdgAAgKqssLAwCgsLsx0DAAAAAIAqykx3AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANNXMdgAAgKps5cqVMXv27NLluXPnxowZM6JRo0bRsmXLLCYDAAAAAKAq0HQHANiMKVOmRO/evUuXi4qKIiJi4MCB8dhjj2UpFQAAAAAAVYWmOwDAZvTq1SuSJMl2DAAAAAAAqijPdAcAAAAAAACANGm6AwAAAAAAAECa3F4eAKhWWl8+NtsRtti8m47MdgQAAAAAAL4nM90BAAAAAAAAIE2a7gAAAAAAAACQJk13AAAAAAAAAEiTpjsAAAAAAAAApEnTHQAAAAAAAADSpOkOAAAAAAAAAGnSdAcAAAAAAACANGm6AwAAAAAAAECaNN0BAAAAAAAAIE2a7gAAAAAAAACQJk13AACgWrv//vujTZs2UadOnejatWu88sor2Y6UluoyjurK51P1+YwAAADIFE13AACg2nr66afj4osvjiuvvDKmT58eBx54YBQWFsaCBQuyHW2rVJdxVFc+n6rPZwQAAEAmaboDAADV1u233x6/+MUv4swzz4x27drFnXfeGS1atIgHHngg29G2SnUZR3Xl86n6fEYAAABkkqY7AABQLa1ZsyamTp0affr0KbO+T58+8dprr2Up1darLuOornw+VZ/PCAAAgEzTdAcAAKqlpUuXxvr166Np06Zl1jdt2jRKSkqylGrrVZdxVFc+n6rPZwQAAECmaboDAADVWiqVKrOcJMlG63JBdRlHdeXzqfp8RgAAAGSKpjsAAFAt7bjjjlGjRo2NZrIuWbJkoxmvVVl1GUd15fOp+nxGAAAAZJqmOwAAUC3Vrl07unbtGsXFxWXWFxcXR48ePbKUautVl3FUVz6fqs9nBAAAQKbVzHYAAACATCkqKooBAwZEt27donv37vHQQw/FggUL4pxzzsl2tK1SXcZRXfl8qj6fEQAAAJlUbWa633///dGmTZuoU6dOdO3aNV555ZVsRwIAoJra2tpz4sSJ0bVr16hTp07suuuu8eCDD1ZSUk466aS4884747rrrovOnTvHpEmT4vnnn49WrVplO9pWqS7jqK58PlWfzwgAAIBMqhZN96effjouvvjiuPLKK2P69Olx4IEHRmFhYSxYsCDb0QAAqGa2tvacO3du9O3bNw488MCYPn16XHHFFXHhhRfGqFGjKjn5tuu8886LefPmxerVq2Pq1Klx0EEHZTtSWqrLOKorn0/V5zMCAAAgU6pF0/3222+PX/ziF3HmmWdGu3bt4s4774wWLVrEAw88kO1oAABUM1tbez744IPRsmXLuPPOO6Ndu3Zx5plnxhlnnBG33nprJScHAAAAADIh55/pvmbNmpg6dWpcfvnlZdb36dMnXnvttXLfs3r16li9enXp8vLlyyMiYsWKFZkLmov+6//HhtVfZynI1ivvs8zl/LmcPSK38+dy9ojczp/L2SPkryy5nD2icmqPb8+RJEnGz7UtSKf2nDx5cvTp06fMusMPPzweeeSRWLt2bdSqVWuj96hXvyf/n3JKLn3f/m/bwjXp86n6qttnVN3GE1E9x5SJc6hXAQDIZTnfdF+6dGmsX78+mjZtWmZ906ZNo6SkpNz3DB8+PK699tqN1rdo0SIjGXNWgwbZTpC2BndmO8H3k8v5czl7RG7nz+XsEbmdP5ezR+R2/lzOHlG5+b/66qtokMN/t1cV6dSeJSUl5e6/bt26WLp0aRQUFGz0HvXq9+RrnUqS638PVXc+n6qvun1G1W08EepVAADYUjnfdP9WKpUqs5wkyUbrvjV06NAoKioqXd6wYUN8/vnn0bhx402+p6pasWJFtGjRIhYuXBj169fPdpytlsv5czl7RG7nz+XsEbmdP5ezR+R2/lzOHpHb+XM5e8S/a6Kvvvoqmjdvnu0o1crW1J6b2r+89d+qTvXqt3L9Wvpv1W08EdVvTMZT9VW3MRlP1VfdxlRdxqNeBQCgOsj5pvuOO+4YNWrU2Ghm0ZIlSzaaUfSt/Pz8yM/PL7OuYcOGmYpYKerXr5/T/8DK5fy5nD0it/PncvaI3M6fy9kjcjt/LmePyO38uZzdjKGKk07t2axZs3L3r1mzZjRu3Ljc91THevVbuXwtlae6jSei+o3JeKq+6jYm46n6qtuYqsN41KsAAOS6vGwH+L5q164dXbt2jeLi4jLri4uLo0ePHllKBQBAdZRO7dm9e/eN9n/ppZeiW7du5T7PHQAAAADILTnfdI+IKCoqit/97nfx6KOPxqxZs2Lw4MGxYMGCOOecc7IdDQCAaua7as+hQ4fGqaeeWrr/OeecE/Pnz4+ioqKYNWtWPProo/HII4/EpZdemq0hAAAAAAAVKOdvLx8RcdJJJ8WyZcviuuuui8WLF0fHjh3j+eefj1atWmU7Wsbl5+fH1VdfvdHtR3NFLufP5ewRuZ0/l7NH5Hb+XM4ekdv5czl7RG7nz+XsZMZ31Z6LFy+OBQsWlO7fpk2beP7552Pw4MFx3333RfPmzePuu++O/v37Z2sIWVHdrqXqNp6I6jcm46n6qtuYjKfqq25jqm7jAQCAXJZKkiTJdggAAAAAAAAAyEXV4vbyAAAAAAAAAJANmu4AAAAAAAAAkCZNdwAAAAAAAABIk6Y7AAAAAAAAAKSpZrYDsO1avXp15OfnZzsGAABskbVr10ZJSUl8/fXXsdNOO0WjRo2yHel7q25jqm7jiaieY4rw70EAAACqF013Ks2LL74YTz75ZLzyyiuxYMGC2LBhQ/zgBz+IffbZJ/r06ROnn356NG/ePNsxy7V8+fIYM2ZMvPLKKzFv3rzSH3h16dIlDj/88OjRo0e2I25WkiQxceLEcvMfeuih0aJFi2xH3KRczh6R2/lzOXuE/NmUy9kjcj8/ULFWrlwZv//97+PJJ5+MN998M1avXl26bZdddok+ffrE2WefHT/60Y+ymHLrVLcxVbfxRFTPMeXyvwfL88EHH5SOp7x/I/bv3z/nfqmguo3JeAAAgMqUSpIkyXYIqrdnnnkmfvnLX8by5cujb9++se+++8bOO+8cdevWjc8//zzefffdeOWVV2Ly5Mlx2mmnxa9//evYaaedsh07IiIWL14cw4YNi9///vfRrFmzcrNPnTo1WrVqFVdffXWcdNJJ2Y5cxjfffBN33HFH3H///bFs2bLo1KnTRvn/+c9/Rp8+fWLYsGGx//77ZztyqVzOHpHb+XM5e4T82ZTL2SNyPz9Q8e6444644YYbonXr1nHMMcdsso4dM2ZM7L///nHPPffE7rvvnu3Ym1XdxlTdxhNR/caUy/8eLM/06dNjyJAh8corr0SPHj02OZ4VK1bEkCFD4uKLL67yjdDqNibjqdrjAQCA6krTPYf069dvq9/z4IMPRpMmTTKQZsvtu+++cdVVV8WRRx4ZeXl5m9xv0aJFcdddd0XTpk3jkksuqcSEm9akSZM49dRT47TTTouOHTuWu88333wTzzzzTNx5551xwgknxKWXXlrJKTetRYsWsd9++8Vpp50Whx9+eNSqVWujfebPnx9/+MMf4sEHH4xf/epXcdZZZ2Uh6cZyOXtEbufP5ewR8mdTLmePyP38UFXkas1anhNOOCGGDRsWe+2112b3W716dTzyyCNRu3btOPPMMyspXXqq25iq23giqt+Ycvnfg+Vp1apVXHbZZXHyySdv9lb/kydPjjvuuCM6d+4cV1xxRSUm3HrVbUzGU7XHAwAA1ZWmew7Jy8uLE088MerWrbtF+//hD3+IWbNmxa677prhZNXXZ599tlWzLLZ2/0x79913N/nLAv9tzZo1MX/+/CozSyaXs0fkdv5czh4hfzblcvaI3M8PVYWaFajO1qxZE7Vr187Y/tlQ3cZkPFV7PAAAUF1puueQvLy8KCkp2eJZQPXq1Yu33367Sv8AM0mSSKVS2Y4BAEAFqY4167Zi7ty50aJFi6hZs2a2o1SIdevWVZux/Cf/hgIAAICqZ9P3dqPKGT9+/GZvJfbfXnjhhdh5550zmOj7y8/Pj1mzZmU7xnd6++23Y8SIETF37tyIiHjvvffivPPOi3POOSdefPHFLKfbdnz55Zfx8MMPx1VXXRW/+93vYvny5dmOtEU++uijePzxx+Pmm2+OW265JR5//PH46KOPsh0rLaeffnr885//zHaMLbJkyZIYP358rFixIiIiPv3007jlllvipptuinfeeSfL6bYdrlvY9lTHmnXx4sXxxBNPxPPPPx9r1qwps23VqlVx3XXXZSlZxWrbtm1Ofq8bN25c6d/tGzZsiOuvvz523nnnyM/Pj1122SVuuummyLXfNV+9enVccskl0bNnz/jNb34TERHXX399bL/99rH99tvHySefXFrj5IpPPvkkrrzyyujdu3e0a9cu2rdvH717944rr7wyFi5cmO14afnkk09i5cqVG61fu3ZtTJo0KQuJKt6uu+6ak98XPvnkk1i6dGnp8iuvvBKnnHJKHHjggfHzn/88Jk+enMV06Xnuuefi6quvLs3+8ssvR9++feOII46Ihx56KMvpAAAAM92pFEVFReWuv+uuu+LnP/95NG7cOCIibr/99sqMtUVGjRoVJ510UjRs2DDWrFkTY8aMieOPPz66desWNWrUiL/+9a8xcuTIOPnkk7MdtVxr166NK6+8MkaPHh2NGjWKc889N04//fTS7Z9++mk0b9481q9fn8WU5Tv++OPj5JNPjn79+sU//vGP6NmzZ6RSqdh1111j3rx5kUql4uWXX4527dplO2q5li9fHqeeemo899xz0aBBg2jSpEkkSRKfffZZrFixIo4++ugYOXJk1K9fP9tRNzJz5sxy13fr1i3+7//+r3Q24t57712ZsbbYhAkT4qijjoqvv/46mjVrFuPGjYsjjzwy6tatG3l5eTFv3rx49tlno0+fPtmOWi7Xbfbk8nULZMZbb70Vffr0iQ0bNsTatWtjl112iTFjxkSHDh0iomp/T96Ufv36lbv+z3/+cxx88MFRr169iIgYPXp0ZcZKW4cOHeLhhx+OHj16xPDhw+O2226LK6+8Mtq1axcffPBBDB8+PAYPHhy//OUvsx11ixUVFcXTTz8dP/vZz+L555+Pgw8+OJ577rm48cYbIy8vL4YNGxaFhYVx9913ZzvqFnn11VejsLAwWrRoEX369ImmTZtGkiSxZMmSKC4ujoULF8YLL7wQP/7xj7MddYssXrw4jj322Jg6dWqkUqk45ZRT4r777ovtt98+InLz+8KmvpaKiopiyJAh0axZs4iIuPDCCyszVtp69OgRV111VRQWFsaf//zn6NevXxx11FHRrl27+PDDD+Mvf/lLjB49Oo466qhsR90iDz74YFxwwQXRqVOn+Oijj+L++++Pc889N0466aSoUaNGjBw5MoYPHx4XXXRRtqMCAMA2S9M9R61cuTKmTp0aJSUlkUqlomnTptG1a9fSf+RXNXl5edGpU6do2LBhmfUTJ06Mbt26xXbbbVfaiKlqunbtGv369Ysrr7wynnrqqTj33HOjqKgorrrqqoiIuO222+KJJ56I6dOnZzlp+a655pp48MEH49JLL40vv/wy7r333jjppJPit7/9bUT8+wdCBQUFsWHDhiwn3dhOO+0Ur732Wuy+++7Rt2/f2GGHHWLEiBFRu3btWLt2bZx77rmxcOHCKnu3gVNPPTVmzJgRDz/8cOy3335ltr3xxhtx9tlnR+fOnePxxx/PUsJNy8vLi1QqVe6ssG/Xp1KpKvuDxAMOOCA6d+4cN910Uzz44INx1113xbHHHhv33ntvRERcdtll8dprr8Xf//73LCctn+s2e3L5uoWqKNdq1vIcdthh0bJly3j44Ydj1apVcfnll8fTTz8dxcXF0aVLl5xsruXl5cVBBx0Ubdq0KbN+5MiRccwxx5TW7CNGjMhCuq1Xt27d+PDDD6NFixax1157xVVXXRUnnnhi6faxY8fGxRdfnFOzdVu2bBmPPvpoHHrooTFnzpzYfffdY/To0XHsscdGRERxcXGcddZZMW/evOwG3UI/+tGP4oADDog77rij3O2DBw+OV199Nd56661KTpaegQMHxocffhj33HNPfPnllzF06NBIkiSKi4tjhx12qNK12qbk5eXFzjvvvNEjGebPnx/NmzePWrVqRSqVijlz5mQp4dapX79+zJw5M1q3bh37779//OQnPynzizf33ntvPProozFt2rQsptxy7du3j8GDB8dZZ50V48ePj759+8Ztt90W5513XkREPPbYY3HLLbfEP/7xjywnBQCAbVhCTlm7dm1y4YUXJnXr1k1SqVSSn5+f1K5dO0mlUkndunWTiy66KFmzZk22Y27kxhtvTNq0aZP87W9/K7O+Zs2ayXvvvZelVFtmu+22S+bOnZskSZJs2LAhqVWrVjJz5szS7R9//HGy/fbbZyndd9ttt92S5557rnR59uzZye67756cdtppyYYNG5KSkpIkLy8viwk3rW7dusns2bOTJEmSgoKCZNq0aWW2f/DBB0mDBg2ykGzLNGjQIHn99dc3uX3y5MlVNn+nTp2SI488Mpk1a1Yyb968ZN68ecncuXOTmjVrJsXFxaXrqqr69euXfu2sXbs2qVmzZjJ9+vTS7R9++GGV/X+fJK7bbMrl6xaqklytWcuzww47JB988EGZdTfffHOyww47JG+++WaV/p68KU8++WSyyy67JI8++miZ9blQm5enoKAgmTx5cpIkSdK0adON/u758MMPk7p162YjWtrq1q2bzJ8/v3S5Vq1aybvvvlu6PHfu3OQHP/hBNqKlpU6dOsn777+/ye2zZs1K6tSpU4mJvp/mzZsnb7zxRunyv/71r+TYY49NOnfunCxbtiwnvy+cffbZSefOnZN//OMfZdbn6veFBg0aJG+//XaSJEnSpEmT0j9/a/bs2Tl1DZX3PeGdd94pXc617wkAAFAdeaZ7jrnkkkti1KhRMWLEiPj888/jX//6V6xevTo+//zzGDFiRIwePTouu+yybMfcyNChQ+Ppp5+Oc889Ny699NJYu3ZttiNtsXr16sWyZcsi4t/PJl63bl3pckTEsmXLqvRsrUWLFkXHjh1Ll3/4wx/GhAkTYvLkyTFgwIAqPStr7733Lr37QbNmzWL+/Pllts+fPz/q1q2bjWhbLJVKpbUt2958883Ybbfdon///vH5559Hq1atonXr1hER0bx582jVqlW0atUquyE3o3bt2vGvf/0rIiLWrFkTGzZsKF2OiPjmm2+iVq1a2Yr3nVy32ZWr1y1UJblas27Kf/4dEhExZMiQuOKKK6JPnz7x2muvZSlV+n7605/Gq6++Go8++mj0798/vvjii2xH+l5+8pOfxA033BDr16+PY489Nu6///4yd+u59957o3PnztkLmIaWLVuWPrf5rbfeilQqFW+++Wbp9jfeeCN23nnnbMXbagUFBZu9ViZPnhwFBQWVmOj7Wb58eeywww6ly/n5+fGnP/0pWrduHb17944lS5ZkMV16fvvb38bVV18dhx9+eOndoXJZz54948knn4yIiC5dusSECRPKbB8/fnxOXUONGzcurav/+c9/xrp162LBggWl2+fPnx+NGjXKVjwAACDCTPdcs+OOO240W/w//fWvf0123HHHSky0db766qvk1FNPTfbee+9k5syZSa1atar8b83//Oc/T/bbb7/kiSeeSI4++ujkiCOOSPbff/9k1qxZyfvvv5/07NkzOf7447Mdc5PatGmT/PWvf91o/aJFi5I99tgjOfTQQ6vsLIy//OUvSaNGjZIRI0YkI0aMSFq3bp387ne/S/7+978njz76aNKiRYvksssuy3bMTfr5z3+e7L333slbb7210ba33nor6dy5czJgwIAsJNtyzz//fLLLLrskN954Y7J+/fqcmely7LHHJkcddVTy6quvJmeffXbSrVu35Mgjj0xWrlyZrFq1Kjn++OOTI444ItsxN8l1mz3V4bqFqiDXa9b/dOCBByYPPPBAudtuueWWJD8/v8p+T/4u69evT4YNG5a0aNEiGTduXE7U5uX58ssvk27duiW77bZbMmDAgKROnTpJq1atksMOOyxp06ZNUr9+/c3exaQquuOOO5I6deokhx56aLLDDjsk99xzT9KsWbNkyJAhyeWXX540aNAgue6667Idc4vdd999Se3atZNBgwYlzzzzTDJ58uTk9ddfT5555plk0KBBSX5+/iavs6por732Sv70pz9ttH7t2rXJcccdl7Rs2TJnvy988sknycEHH5wcccQRyeLFi3Om/v9v//jHP5LGjRsnp556avLrX/862X777ZOf//znyQ033JCceuqpSX5+fjJixIhsx9xigwYNSnbffffk+uuvT/bdd99k4MCByZ577pm88MILybhx45K99torOeOMM7IdEwAAtmma7jlmu+222+i2aP9p+vTpyXbbbVeJidLz5JNPJk2bNk3y8vKq/D/gS0pKkkMPPTTZfvvtk8LCwmT58uXJ+eefn6RSqSQvLy/ZfffdS2+lXBX94he/2OQ/vj/55JNkt912q9I/EPrTn/6U7LLLLkleXl6SSqVKX3Xq1EkuvvjiZN26ddmOuElffPFFcsQRRySpVCrZYYcdkrZt2yZ77rlnssMOOyR5eXlJYWFh8sUXX2Q75ncqKSlJCgsLkwMOOCBnfuj24YcfJrvttluSSqWSDh06JIsWLUqOOeaYpGbNmknNmjWTnXbaKZk6dWq2Y26S6zZ7qst1C9lWXWrWJEmShx9+OPn5z3++ye0333xz0rp160pMVPFeffXVpE2bNjlRm2/KmjVrkgceeCDp27dvsueeeyZ77LFH0rNnz+SKK65IFi5cmO14aXniiSeS888/P3nqqaeSJEmS8ePHJwceeGDStWvX5JprrknWr1+f5YRb56mnnkr222+/pGbNmqW1Qc2aNZP99tsvefrpp7Mdb6sMGTIk6dOnT7nb1q5dmxxzzDFVulb7Lhs2bEhuvPHGpFmzZkmNGjVy9vvC7Nmzk5/+9KdJvXr1Sr/matWqlfTo0SMZM2ZMtuNtlZUrVyZnnnlm0rFjx+Scc85J1qxZk/zmN78pfXRLr169kk8//TTbMQEAYJuWSpL/uO8eVd7RRx8d33zzTfz+97+Ppk2bltn26aefxoABA6JOnTrx7LPPZinhllu4cGFMmzYtDjnkkCp9e/ZNmTNnTnz99dex5557Rs2aNbMdZ5Pmz58f77//fhx++OHlbl+8eHG89NJLMXDgwEpOtuXWr18f06ZNizlz5sSGDRuioKAgunbtGvXq1ct2tC3y/vvvx+TJk6OkpCQi/n3L7e7du8eee+6Z5WRb5+67747x48fHPffcE7vssku242yRZcuWRePGjUuX//a3v8U333wT3bt3L7O+qnHdZl91uW4hW6pTzbqtWLlyZXz88cfRrl27qF27drbjUI2tXbs2li5dGhERO+64Y5V+5M+mrFu3Lr7++uuoX79+udvXr18fn3zySZV+HNOWmDp1arz66qtx6qmnlrmdfq5JkiSWLFkSGzZsyNmvuU3517/+FWvXrs2ZGhsAAKozTfccs3Dhwujbt2+8//770bFjx2jatGmkUqkoKSmJd999N9q3bx9jx47NmYbYunXrqnTDGgCArVfdalYAAAAA2Jy8bAdg67Ro0SLefvvtePbZZ+OYY46JVq1aRcuWLeOYY46J5557LqZPn14lf3g5bty4eOeddyIiYsOGDXH99dfHzjvvHPn5+bHLLrvETTfdFFX99z8++eSTWLly5Ubr165dG5MmTcpCoq3z8ssvx3XXXRfnnntunH/++XHbbbfFRx99lO1YW23GjBnxxz/+MV599dUq/zXzrQ0bNmxy/YIFCyo5zZZ7++23Y8SIETF37tyIiHjvvffivPPOi3POOSdefPHFLKdLz8EHHxzz58/Pdozv7YsvvoiRI0dmO0a5Ro0aFV9//XW2Y1S46vK1A5UlV2tWIDs+/vjjOPjgg7Mdo8IsXLgwzjjjjGzHqFDVbUzGAwAAVDQz3XPIzJkzo2PHjpGXt2W/K/Hee+9F27Ztq8RM8g4dOsTDDz8cPXr0iOHDh8dtt90WV155ZbRr1y4++OCDGD58eAwePDh++ctfZjvqRhYvXhzHHntsTJ06NVKpVJxyyilx3333ld4S/9NPP43mzZvH+vXrs5y0fEuWLImjjz463nrrrcjLy4skSaJLly6xaNGi+Oyzz6KoqChuueWWbMcs18knnxy//e1vo169erFy5cro379/FBcXR61atWLt2rXRtWvXKC4ujoYNG2Y7arlWrFgRZ555Zjz33HNRv379OOecc2LYsGFRo0aNiKjaXzujRo2Kk046KRo2bBhr1qyJMWPGxPHHHx/dunWLGjVqxF//+tcYOXJknHzyydmOWq5N3a64X79+cdddd0WLFi0iIuKYY46pzFgV5u2334599tmnSn7t5OXlxfbbbx8//elP4xe/+EXst99+2Y60Var71w5UhlyuWYHsqMq1TTqq23giqt+YjAcAAKhomu45pEaNGlFSUhI77bTTFu1fv379mDFjRuy6664ZTvbd6tatGx9++GG0aNEi9tprr7jqqqvixBNPLN0+duzYuPjii6vkzOuBAwfGhx9+GPfcc098+eWXMXTo0EiSJIqLi2OHHXaITz/9NAoKCjY5mznbfvrTn8bq1atjxIgRkZ+fH5dddll89dVX8fjjj8fLL78cJ554Ylx11VVx0UUXZTvqRmrUqBGLFy+OJk2axGWXXRajRo2KP/3pT7HPPvvEu+++GyeeeGIcccQRcfvtt2c7arkuuuiiGDduXNxwww3x5ZdfxvXXXx8dO3aM0aNHR+3atav0107Xrl2jX79+ceWVV8ZTTz0V5557bhQVFcVVV10VERG33XZbPPHEEzF9+vQsJy1fXl5epFKpzd4NIZVKVdkfSq1YsWKz22fOnBk9e/askvnz8vLi2muvjTFjxsSMGTOiffv2ceaZZ8aAAQOicePG2Y73nXL9aweqglyuWYHMuPvuuze7fdGiRXHrrbfmzN+vm/olvW/NmTMnLrnkkpwZT0T1G5PxAAAAlU3TPYfk5eXF2WefHT/4wQ+2aP/7778//vGPf1SJH2A2b948Ro8eHfvvv380a9YsXnjhhejSpUvp9o8++ig6depUJW9JvPPOO8eYMWNi3333jYiI1atXx0knnRTz58+Pv/3tb7F27doqO1s5IqJBgwbx2muvRYcOHSIiYtWqVbHDDjvE0qVLo379+vHEE0/E9ddfH++//36Wk24sLy8vSkpKokmTJtGxY8cYNmxYmV/WeP755+Piiy+ODz/8MIspN61Vq1bx+OOPR69evSIiYtmyZXHkkUdGgwYN4tlnn40vv/yyyn7tbL/99vHuu+9G69atI0mSyM/Pj6lTp8Zee+0VEf/+oU6nTp3iq6++ynLS8hUWFkaNGjXi0UcfjSZNmpSur1WrVrz99tvRvn37LKb7bt82fjclSZIq2/j9z+t26tSp8cgjj8STTz4Z33zzTRxzzDFx1llnxWGHHZbtmJuU6187UBXkcs0KZEZeXl4UFBRE7dq1y92+Zs2aKCkpqZK1TXmq4y/pVbcxGQ8AAFDZPNM9hxx00EHxwQcfxPTp07fo1b1796hbt262Y0dExE9+8pO44YYbYv369XHsscfG/fffX+Yfi/fee2907tw5ewE3Y/ny5bHDDjuULufn58ef/vSnaN26dfTu3TuWLFmSxXTfLT8/v0zzLi8vL9avXx/r1q2LiIgePXrEvHnzspTuu32b/dNPP42OHTuW2dahQ4dYuHBhNmJtkaVLl0arVq1Klxs3bhzFxcXx1VdfRd++favkL5l8q169erFs2bKIiPjyyy9j3bp1pcsR//4Fgm8fsVAVvfDCC3HIIYfEj370o/jLX/6S7ThbrV69ejF8+PB4+eWXy3099NBD2Y64Rbp27Rr3339/LF68OB5++OH47LPP4ogjjojWrVtnO9om5frXDlQFuVyzpmvkyJHx8ccfZztGhapuY6pu44nIrTG1atUq7rjjjpg7d265r7Fjx2Y74lYpKCiIUaNGxYYNG8p9TZs2LdsRt1p1G5PxAAAAlc2DE3PIhAkTsh0hbTfeeGMceuihseeee0b37t3jj3/8YxQXF8cee+wRs2fPjmXLlsVLL72U7Zjl2nXXXWPmzJmx++67l66rWbNm/PGPf4wTTjghjjrqqCym+24HHHBADBs2LB5//PGoXbt2XHHFFbHrrrtGo0aNIiLis88+K/NLBVXNVVddFT/4wQ9KZ8/+5yzTpUuXVunGb4sWLWLWrFnRpk2b0nX16tWLl156Kfr06RM/+clPsphu8w499NAYNGhQXHDBBfH000/H4YcfHkOHDo0RI0ZEKpWKyy67LA444IBsx9yswYMHx8EHHxwnn3xyPPfcc3HHHXdkO9IW22effSIiomfPnuVub9iw4WZnuWRTeTP069SpEwMGDIgBAwbE7NmzY8SIEVlItuVy+WsHqoJcrlnTddppp0WtWrXi7LPPjnvuuSfbcSpEdRtTdRtPRG6NqWvXrjF16tQyd636T981g7eq6dq1a0ybNi2OO+64crfn2ngiqt+YjAcAAKhsZrpTKb69xfkll1wSy5Yti9atW0d+fn6sWbMmfvazn8V7770X++23X7ZjlquwsLDcWaXfNt6r6gz9b916660xY8aMaNiwYWy33Xbx2GOPxQMPPFC6fdasWXHaaadlL+Bm/OdMufbt28fcuXPLbH/++edLb5tfFfXp06fc5uL2228fL774YtSpUycLqbbMrbfeGvXq1Ytzzjkn1q1bF08//XR069Yt2rdvH+3bt49//vOfcdNNN2U75nfq1KlTTJkyJVKpVHTu3DlnfhB18sknb/bro1mzZnH11VdXYqIt913/j3fbbbe44YYbKilN+nL1awfIjg0bNsQHH3yw0V15cll1G1N1G09Ebo3puuuuixNOOGGT28ur9auyyy67LHr06LHJ7bvttluMHz++EhN9f9VtTMYDAABUNs90h++wbt26+Prrr6N+/frlbl+/fn188sknZW4jXtV8/fXX8fe//z1Wr14d+++/f+y4447ZjlQh5syZE7Vr145ddtkl21HK9cUXX8Q///nPTf5iwMqVK2Pq1KmbnM1cFc2ZMye+/vrr2HPPPaNmzdy6Wcqzzz4b48ePj6FDh5Z5VjcVa/78+dGyZcvNPpM+1/jaAQAAAABgczTdAQAAvsO3vyxXUlISqVQqmjZtGl27dq3Sj7rZ1l177bUxaNCgavELp+vWrYvx48fHggULolWrVtG7d++oUaNGtmMBAAAA/z+3l4fvaeHChXHGGWdkO0baPv3007juuuuyHWOzPvnkk1i5cuVG69euXRuTJk3KQqItt2zZshg/fnx8/vnnEfHv59DffPPNcd1118WsWbOynG7zcjn7puy6667x0UcfZTvGVlu7dm0888wz8Zvf/CaeeOKJWLVqVbYjbbFcy/7JJ5/E0qVLS5dfeeWVOOWUU+LAAw+Mn//85zF58uQspgOyYd26dXHRRRdFkyZNonfv3jFw4MAYMGBA9O7dO5o0aRIXX3xxrF27Ntsxt9r9998fhx56aJx44onx8ssvl9m2dOnS2HXXXbOUbOutWLFio9fy5cvjhhtuiDlz5pSuyyUXXnhhjB07NiL+/XfTXnvtFYWFhXHllVfGEUccEV26dIlFixZlOSUAAADwLTPd4Xt6++23Y5999on169dnO0paqnL+xYsXx7HHHhtTp06NVCoVp5xyStx3332lM8o+/fTTaN68eZXMHhHx5ptvRp8+fWLFihXRsGHDKC4ujhNOOCFq1qwZSZLEokWL4tVXX4199tkn21E3ksvZIyLuvvvuctcXFRXFkCFDolmzZhHx7x9oV0U9evSI559/Pho2bBifffZZHHLIIfHBBx9Eq1atYuHChdGkSZN47bXXYuedd8521I3kcvaIf+e/6qqrorCwMP785z9Hv3794qijjop27drFhx9+GH/5y19i9OjRcdRRR2U7KlBJLrroohg1alTcdtttcfjhh0fDhg0jIuLLL7+MF198MS677LLo169f3HnnnVnNuTXuvvvuGDp0aJx++umxfPny+OMf/xhXX311DB06NCKqfo313zY14ztJkkilUqX/zZXxREQ0b948/va3v0W7du3ipJNOis8//zyefPLJ2HHHHePzzz+PgQMHRp06deKPf/xjtqMCAAAAoekO3+nZZ5/d7PY5c+bEJZdcUmV/iDdz5szNbn///ffjZz/7WZXMP3DgwPjwww/jnnvuiS+//DKGDh0aSZJEcXFx7LDDDvHpp59GQUFBbNiwIdtRy3XYYYdF69at4/bbb4/f/va3cdddd8URRxwRDz/8cEREnHnmmbFs2bIYM2ZMlpNuLJezR0Tk5eXFzjvvvNFz5+fPnx/NmzePWrVqRSqVijlz5mQp4ebl5eVFSUlJNGnSJM4+++x466234oUXXohmzZrFsmXL4phjjok999wzHnnkkWxH3UguZ4+IqF+/fsycOfP/a+/O42rOGj+Af26LbsrWqkRFaVqoiFEZlS27jDEma0WW4WdrGQyTZVAe63jsRnqG8DzCPBiyFabGMhGjyIis2RMGbff7+8Or+7jabqHvvc3n/Xr1mu4533vu59zv947qfM85sLKyQrt27dCvXz9888038vp//vOf2LhxI86ePStiSiKqTsbGxti+fTs6duxYav2RI0fw1Vdf4eHDh9WcrOocHR3x7bffYtCgQQCA3377DX5+fhg9ejTmzJmjdoPuFhYWcHFxQUhICDQ03izmJggCOnfujA0bNsDa2hoA4OXlJWbMStHV1UV6ejqsra3RuHFjxMXFoW3btvL6ixcvwsfHR62uOyIiIiIiIqKajIPuRBXQ0NCQz5ApiyrPnCkvv6rP/GnUqBF27dol/wNjXl4eBg4ciBs3buDIkSMoKChQ6T8IGxgYICkpCfb29igoKIBUKsVvv/0m78+5c+fQu3dv3L59W+SkJalzdgAYPXo0Tp8+jdjYWNjb28vLtbW1cf78eTg4OIiYrmJvD1zb2dlhyZIl6Nmzp7w+MTERgYGBuH79uogpS6fO2QGgfv36OH78OFq2bAlTU1McOnQILVu2lNdnZmaiZcuWKr9MPhF9OPr6+khOTlb4f8HbUlNT0b59+1K3wlFVtWvXRnp6OqysrORlaWlp6NSpEwIDAzFp0iSV/hnrXU+ePMGIESOQm5uLn376Sb6airr8u18aZ2dnTJ8+HQMHDoSDgwN++OEHdO7cWV7/22+/oVevXnj8+LGIKYmIiIiIiIioGPd0J5Xxr3/9C5mZmWLHKMHMzAxxcXGQyWSlfqn6bEdDQ0OsX78e169fL/F17do17N27V+yIZcrNzUWDBg3kj3V0dLBjxw5YWVnBx8cHDx48EDFdxfLz86GrqwvgzR99a9euDSMjI3m9oaGhyv6hVJ2zA8DatWsREREBX19f/POf/xQ7TpVIJBIAb5YvLp6hV8za2hrZ2dlixFKKOmf38vLC1q1bAQCurq5ITExUqE9ISFDZpfGJ6OPw8fHBlClTcP/+/RJ19+/fR3h4eJmz4FWVkZERbt26pVDm6OiIo0ePIjo6GmFhYSIlqxoDAwPs2rULAwYMQNu2beX/H1dnkydPRmhoKBITEzFt2jRMmDABR44cwd27d5GQkIDRo0fj888/FzvmB6Wqvw9W1fHjx5Gbmyt2jA+qpvWJ/SEiIiIiog9Jq+JDiKpHQEAAtLW1MWrUKKxYsULsOHKtW7fG2bNn4efnV2p9RbPgxda6dWvcvXsXlpaWpdY/ffpUZfM3bdoUFy5cgK2trbxMS0sL//nPfzBgwACV31O5cePGuHbtmnwW2bZt22BmZiavz87OVhjIViXqnL2Yn58f2rRpg2HDhmHfvn2Ijo4WO1KlBAQEQEdHBwUFBbhx44bCLL3s7Gz5nsKqSJ2zR0ZG4rPPPsPdu3fRvn17fPvttzhz5gzs7e2RkZGB7du3Y82aNWLHJKJqtGrVKvTo0QMWFhZwcnKCqakpJBIJ7t27h4sXL8LBwQH79u0TO2altG/fHnFxcfjss88Uyh0cHHDkyBH4+PiIlOz9jB07Fl5eXhg0aBD27Nkjdpz3EhAQgCdPnqBnz54QBAFFRUXo2rWrvL5Pnz5YunSpiAk/PFX9fbCqvL290aBBA0yfPh0hISFix/kgalqf2B8iIiIiIvqQOOhOKkMmkyErKwvx8fFiR1EQFhZW7jLCNjY2SEhIqMZElTN69Ohy8zdp0kRlByO7d++OdevWoX///grlxQPv/fv3V9nlzQHgq6++UpiN//YS2wDw3//+V2FvTlWiztnf1qhRIxw+fBiRkZFwdXVV2RtM3jV8+HD593379i2xZHFcXBxcXFyqOZVy1Dk7ANjb2+PUqVOYMWMGFi5ciL/++gtbtmyBlpYW2rRpg23btpV5ExYR1UyNGzfG+fPnER8fj5MnT+LevXsAgLZt22LBggXo2rWrfB9xdTF16lSkpKSUWufo6IiEhATs2LGjmlN9GA4ODjh9+jSmTp0KJycn+co96mjKlCkICgrCoUOHcO3aNchkMpiZmcHT01PhptSaQlV/H6yq4tXFakp/gJrXJ/aHiIiIiIg+JO7pTkQqq7CwEC9fvkTdunVLrS8qKsLt27fLnMWv6l6+fAlNTU3o6OiIHaXS1DF7SkoKfv31VwwbNkxh2wJ19Ndff0FTUxNSqVTsKJWmTtkFQcCDBw8gk8lgZGQEbW1tsSMRERERERERERERkQrioDtVqxcvXiAlJQX37t2DRCKBqakpWrduDX19fbGjEREREREpuHnzJpo0aaL08Xfu3EGjRo0+YqL3d+HCBTg5OSk9Oz8tLQ12dnbQ0lLNRdJqWn+Amtkn4M0Nszdv3oSlpSU0NDSQl5eHn3/+GTKZDD4+PjA1NRU7YpXcuHFD4fdbdb0h+O9i06ZN6NevH+rVqyd2lPf2559/yj9TNjY2YschIiIiIvrbU691EEltFRYWYuLEiTAxMYGPjw+GDx+OoUOHwsfHByYmJpg0aRIKCgrEjklEREREJNemTRsEBwfj9OnTZR6Tm5uL9evXw8nJCTt37qzGdFXj6uqKx48fK328u7s7bt68+RETvZ+a1h+gZvbp/PnzsLCwgI2NDVxdXXH79m24ubkhKCgIwcHBsLe3x5kzZ8SOWSlLly5F48aN0bRpU7i7u6Ndu3Zo2rQpGjdujGXLlokdr0r27duHkSNHIjw8HJcvX1aoy8nJQceOHUVK9uGMGjUKd+/eFTtGpUVGRuLo0aMA3pyLzp07w87ODl26dIGdnR26d++Op0+fihuSiIiIiOhvTrVvhacaIyQkBHFxcYiOjoavry/q168PAHj69Cni4+MRFhYGAGr7xwkiIiIiqnkuXbqE+fPno1u3btDW1oabmxvMzc0hlUqRk5OD9PR0pKWlwc3NDf/4xz/QvXt3sSNXSBAEzJw5E7Vr11bq+Pz8/I+c6P3UtP4ANbNP4eHhaN++PSIiIrBhwwb4+vrC0dERZ8+ehUQiQWBgIKZPn45Dhw6JHVUpc+fOxaJFizB9+nT4+vrC1NRUvi1NfHw8Zs2ahRcvXmDGjBliR1VabGwshg0bhm7duiEjIwMrVqzAhg0bMHjwYABvrrNjx46JnFJ5BgYGpZYXFhbC3d1dvpLEkydPqjNWla1evRo9evQA8Obz9OTJE6SkpMDe3h4ZGRkYM2YMQkNDsWHDBpGTEhERERH9fXF5eaoWxsbG2L59e5l3xh85cgRfffUVHj58WM3JiIiIiIjK9/r1a/zyyy84ceIEsrKy8OrVKxgZGcHV1RW+vr5wcnISO6LSvL29IZFIKvWc2NhYmJmZfaRE76em9QeomX0yMDBAUlIS7O3t8erVK9SpUwfJyclo27YtgDdL5Ht5eeHRo0ciJ1VO48aNsWLFCvj5+ZVav2vXLowfPx537typ3mDvoVWrVggMDMT//d//AQB27NiBwMBALFu2DCNGjMD9+/dhbm6OoqIikZMqp06dOvDy8sKAAQPkZYIgYOTIkZgzZ458K5Dhw4eLFbFSpFIpMjIyYGlpCWtra8TExKBDhw7y+pSUFPTu3VstZ/ETEREREdUUnOlO1aL4D5NlMTQ0xKtXr6oxERERERGRcqRSKT7//HN8/vnnYkd5b4mJiWJH+KBqWn+AmtknQRDke86/+18A0NTUhEwmEyVbVTx+/Bh2dnZl1jdv3hw5OTnVmOj9XblyBb169ZI//uKLL2BkZIQ+ffqgoKAA/fr1EzFd5Z07dw6DBg3C0aNHsXLlSujr6wMAgoOD4efnBwcHB5ETVo6lpSUuXrwIS0tLSCQShc8P8OYz9Ndff4mUjoiIiIiIAO7pTtXEx8cHU6ZMwf3790vU3b9/H+Hh4Wq9P9zx48eRm5srdowqu3nzptrMWHiXOmcH1Du/OmcHmF9M6pwdUP/8RERE1a1169aIiorCnTt3sGDBAlhbW+Of//ynvH7FihVqtWJE27ZtMW/ePBQWFpaoKywsxPz58+Wz+NVF3bp1S/y+7u3tjT179iAsLAwrVqwQKVnV2NjYIDk5GQ0bNoSLiwuSkpLEjvRegoODERYWhqtXr2L8+PEIDQ1FZmYmAOD69euYPHkyunbtKnJKIiIiIqK/Ny4vT9Xi1q1b6NGjBy5fvgwnJyeYmppCIpHg3r17uHjxIhwcHLBv3z5YWFiIHbVKNDQ00KBBA0yfPh0hISFix6k0DQ0N2NraYsGCBWo3g0udswPqnV+dswPMLyZ1zg6of34iIqLqdubMGXTr1g1Pnz6FkZEREhISEBQUhBs3bkBDQwM5OTnYs2cPOnXqJHZUpfzxxx/o2rUr8vLy4OXlpfD77fHjx6Gjo4NDhw7B0dFR7KhK8/Pzg7OzM2bPnl2iLjExEb169cKrV6/U8sbDo0ePIjAwEIMHD8aiRYuQmpqqdjPdAWDChAlYs2YNmjVrhqysLOTn50NLSwuFhYVo1aoV9uzZg4YNG4odk4iIiIjob4uD7lRtZDIZ4uPjcfLkSdy7dw8A0LBhQ7i7u6Nr167Q0FDfhRdu3LiB69evIz4+HgsWLBA7TqUdO3YM169fx8GDBxEbGyt2nEpR5+yAeudX5+wA84tJnbMD6p+fiIhIDC9evEBGRgbs7Oygr6+P169fY8uWLXj16hW6dOlS7nLtquj58+fYvHlzqb/fDho0CHXr1hU5YeUcO3YMycnJmDZtWqn1iYmJiImJQXR0dDUn+zAeP36M4OBgJCQk4OTJk2p3vRW7dOkS9u7di2vXrkEmk8HMzAyenp7o3LkzJBKJ2PGIiIiIiP7WOOhORERERERERERERERERERUReo7tZjUxs2bNyt1/J07dz5Skg9r06ZNar2P+/379+UzMqj65OXlITMzE3l5eWJHUVpRURHu37+PBw8eqOVykm9LTEzEq1evxI5RZfzcikMdP7dERESq4sKFC5DJZEofn5aWVupe6eqkoKCg0r8Hq7rCwsIa1aea1p+aeM0REREREakbDrrTR9emTRsEBwfj9OnTZR6Tm5uL9evXw8nJCTt37qzGdFU3atQo3L17V+wYFXry5An69+8PS0tLjBs3DkVFRRg5ciTMzMzQqFEjeHh4IDs7W+yYZTp//jy+//57rFq1Co8ePVKoe/bsGYKCgkRKVrFNmzbh5MmTAIDXr19j5MiR0NPTQ/PmzaGvr48xY8ao9CDerl274Onpidq1a8Pc3BxmZmaoXbs2PD09sXv3brHjVUnXrl2RlZUldowK8XMrHnX/3BIREakaV1dXPH78WOnj3d3d1X7wMD09HdbW1mLH+KDS0tJqVJ9qWn9q4jVHRERERKRuuLw8fXRPnjzB/PnzsXHjRmhra8PNzQ3m5uaQSqXIyclBeno60tLS4ObmhhkzZqB79+5iR1ZgYGBQavnTp09Rt25d+V70T548qc5YSgsKCsKZM2cwevRo7NixAw0aNMC1a9ewatUqaGhoYOLEibC3t0dMTIzYUUs4ePAgevfuDVtbWzx//hwvX77Ev//9b/j4+AB4M+vX3NxcZWdf29raYuvWrXBzc0NYWBh27NiBJUuWwN7eHhkZGQgPD0ffvn2xcOFCsaOWsHbtWkyYMAFBQUHw9fWFqakpBEHAgwcPEB8fj+joaKxYsQLBwcFiRy1Vq1atSi1PTU3FJ598AqlUCgA4e/ZsdcZSGj+34lHnzy0REZEq0tDQwKhRo1C7dm2ljl+1ahXS09PRtGnTj5zs4zl//jxatWqlsj/vVEVN6xP7Q0REREREHxoH3anavH79Gr/88gtOnDiBrKwsvHr1CkZGRnB1dYWvry+cnJzEjliqOnXqwMvLCwMGDJCXCYKAkSNHYs6cOWjUqBEAYPjw4WJFLJe5uTl27NgBDw8P3L9/H2ZmZoiPj0eXLl0AAElJSRg4cCBu374tctKSPDw84OPjg3nz5kEQBCxatAhz5szBf/7zH3Tr1k3lB++kUimuXLmCJk2awM7ODsuXL0e3bt3k9cePH8fQoUNx48YNEVOWzsbGBtOmTcOIESNKrd+4cSPmzZuHzMzMak6mHG1tbXTu3Bnt2rWTlwmCgLlz52LMmDEwMTEBAERERIgVsVz83IpHnT+3REREqsjb2xsSiaRSz4mNjYWZmdlHSvT+yrrBs9irV69w5coVlf15pzQ1rU/sDxERERERVTctsQPQ34dUKsXnn3+Ozz//XOwolXLu3DkMGjQIR48excqVK6Gvrw8ACA4Ohp+fHxwcHEROWL7c3Fz5jQGmpqbQ0tJS+AOWubk5nj59KlK68qWlpeGnn34CAEgkEoSFhcHCwgJffPEFtm7dirZt24qcsHwNGzZEZmYmmjRpgr/++gtGRkYK9cbGxpVaarM63blzB+3bty+z3sPDQ6W3V0hMTMTw4cPRtm1bREREyFekmDdvHsaNG8fP7UfEzy0RERG9LTExUewIH1x6ejq++uqrMpfzzs7OxpUrV6o51fupaX1if4iIiIiIqLpx0J2oAjY2NkhOTsa3334LFxcXxMTEwNPTU+xYSrO1tcXevXsxbtw47N+/H1KpFAcPHpSvLBAfH6+ye7/p6OiUGFj09/eHhoYGvvrqKyxevFicYEoaPHgwvv32W/zyyy8YOnQo5syZg9jYWOjr6+Ply5eYNWuWyl5Ljo6OWLduXZnv8fr16+Ho6FjNqZTn6emJs2fPYvTo0XB3d0dsbCyaNWsmdiyl8XMrHnX+3BIREVH1cHJywqeffoqxY8eWWp+amor169dXc6r3U9P6xP4QEREREVF146A7kRK0tLQQFRUFX19fDBo0CIMHD670EoliCQsLw/Dhw7Fs2TLcvn0bmzdvxoQJE3Dq1CloaGhg586dWLJkidgxS+Xi4oKEhAS0bt1aoXzgwIGQyWQqu6R/sYiICFy8eBFNmzaFm5sbTpw4AVNTUzRq1Ah3796FoaEhDh06JHbMUi1evBg9e/bEgQMH0LVrV5iamkIikeDevXs4dOgQbty4gV9++UXsmOWqW7cutm7diujoaLRv3x6zZ8/m57Ya8HNLRERENV379u2RkZFRZn2dOnXQoUOHakz0/mpan9gfIiIiIiKqbtzTnaiSHj9+jODgYCQkJODkyZOws7MTO1KFfv31V5w6dQoeHh5wd3dHeno6IiMj8fLlS/Tu3VtlB8F27dqF48ePY+nSpaXWb926FevWrUNCQkI1J6ucAwcOYM+ePbh27RpkMhnMzMzg6emJQYMGQU9PT+x4ZcrKysLq1atx8uRJ3Lt3D8Cbpbfd3d0xZswYWFlZiRuwEv78808MHjwYv//+Oy5evKjyy8sD/NyKTV0/t0RERERERERERERU/TjoTkREfwsymQzPnz9H3bp11WbGOxERERERERERERERqT4NsQMQqZvCwkIcOnQIP/74I44cOYKioiKxI/0t3Lx5E6dOncLvv/+OR48eiR2H1MTbn08NDQ1kZGTg1KlTyMvLEzFV1W3atAm5ublixyAiIiL627pw4QJkMpnSx6elpaGwsPAjJnp/Na1P7I9q94eIiIiIqKbioDtRBSZMmIB9+/YBAG7fvo0WLVqge/fu+Pbbb+Hr6wtXV1fcuXNH5JTl27dvH0aOHInw8HBcvnxZoS4nJwcdO3YUKVnFVq1aBUtLS1hbW8PDwwOffvopTE1N0b59e6SkpIgdr1wHDx5U+GNHbGwsXFxcoKenBxsbG/zwww8ipqvY29fNpUuXFOpU/brJyspC69atoaOjg549e+LZs2fo0qUL2rVrBw8PDzg4OODKlStix6y0UaNG4e7du2LHeC/nz5+Hpqam2DHKVKdOHYwYMQLJycliRyEiIiIV5OrqisePHyt9vLu7O27evPkRE72/mtYn9ke1+0NEREREVFNpiR2ASNXt2LEDY8eOBQCEhITAwsICJ06cgJGREZ48eYLhw4dj0qRJ+M9//iNy0tLFxsZi2LBh6NatGzIyMrBixQps2LABgwcPBgDk5+fj2LFjIqcs3aJFi7BkyRJ88803kEqlWL58Ofz9/dGmTRvExsaiQ4cOOHbsGNzc3MSOWqru3bsjOzsbJiYmiIuLw7Bhw/D1118jPDwcZ8+eRXh4OIyNjeHv7y921BLU+boBgNDQUNSpUwe7d+/GTz/9hB49ekBbWxu3bt2ChoYGAgMD8c0332DXrl1iRy2VgYFBqeWFhYVwd3eHhsabe+aePHlSnbE+GFXe2eavv/7CqVOnEB0dDTs7O4wcORJDhw6FiYmJ2NGIiIhIBQiCgJkzZ6J27dpKHZ+fn/+RE72/mtYn9ke1+0NEREREVFNxT3eiCujq6iI9PR3W1tZo3Lgx4uLi0LZtW3n9xYsX4ePjg4cPH4qYsmytWrVCYGAg/u///g/Am5sIAgMDsWzZMowYMQL379+Hubm5Si6Tb21tjVWrVqF79+4AgCtXrsDDwwP37t2DlpYWJk6ciEuXLuHgwYMiJy2dhoYG7t27BxMTE7Rv3x6dOnXC7Nmz5fWLFi3Cv//9b5w+fVrElKVT5+sGAExMTHDw4EG4uLggNzcXDRo0wPHjx9G+fXsAwNmzZ9GjRw/cu3dP5KSlq1OnDry8vDBgwAB5mSAIGDlyJObMmYNGjRoBAIYPHy5WxDJ9/vnn5dbn5uYiMTFRZa+d4s9tdnY2NmzYgNjYWLx48QK9evXCyJEj0a1bN0gkErFjEhERkUi8vb0r/bNAbGwszMzMPlKi91fT+sT+qHZ/iIiIiIhqKs50J6pA8+bNcfr0aVhbW6NOnTp49uyZQv3z588rtb9adbty5Qp69eolf/zFF1/AyMgIffr0QUFBAfr16ydiuvI9ePAA9vb28se2trbIzc3Fw4cPYWZmhqCgIPkgqqr7888/Sywn36dPH3z//fciJSqfOl83APD69WvUq1cPwJsBbE1NTdSpU0deX7duXbx8+VKseBU6d+4cBg0ahKNHj2LlypXQ19cHAAQHB8PPzw8ODg4iJyzbnj170KVLF5iampZar6qD7e9ydnbGihUrsHjxYsTFxeHHH39Er169YG5ujsDAQMyZM0fsiERERCSCxMREsSN8cDWtT+wPERERERGJgYPuRBWYPHkyQkNDYWpqimnTpmHChAlYsWIF7O3tkZGRgYkTJ1Y4s1NMdevWxf3792FtbS0v8/b2xp49e9CrVy/cvn1bxHTla968OQ4dOoTg4GAAQEJCAmrVqoWGDRsCAKRSqcrPOE1PT8e9e/egq6tb4uYMmUymsgOQ6nzdAICjoyM2btyIuXPnIiYmBoaGhti2bRucnZ0BAFu3bkXz5s1FTlk2GxsbJCcn49tvv4WLiwtiYmLg6ekpdiyl2Nvbo3///hgxYkSp9ampqdi7d281p1Leu/9PqVWrFvz9/eHv74+srCz8+OOP2LRpEwfdiYiIiIiIiIiIiEiOg+5EFQgICMCTJ0/Qs2dPCIKAoqIidO3aVV7fp08fLF26VMSE5Wvbti3279+Pdu3aKZR7eXnJB1BV1bRp0zBkyBAcPnwYUqkUO3fuxIQJE+SDYomJiXBychI5Zfk6deok3786KSlJYf/5c+fOoUmTJmJFK5c6XzcAMGvWLPj5+WHhwoXQ1NREfHw8Ro4ciSNHjkBTUxNnzpxBbGys2DHLpaWlhaioKPj6+mLQoEEYPHiwyt9kAgCtW7fG2bNnyxx019HRUdnrHih/v3krKyvMnTuXA+5EREREREREREREpIB7uhMp6enTpzh06BCuXbsGmUwGMzMzeHp6wtbWVuxo5Tp27BiSk5Mxbdq0UusTExMRExOD6Ojoak6mnP3792Pz5s3Iy8uDr6+vfNY7ADx+/BgAYGhoKFa8ct24cUPhsb6+vkLWf/3rXwCAYcOGVWsuZaj7dQMA169fx9mzZ+Hm5gZLS0vcv38fK1euxMuXL9GzZ0/4+PiIHVFpjx8/RnBwMBISEnDy5EnY2dmJHalMeXl5KCoqQu3atcWOUiWzZ89GWFiY2uYnIiIiIiIiIiIiourHQXciIiIiIiIiIiIiIiIiIqIq0hA7AJEqu3DhQol9uMuTlpaGwsLCj5jowyssLMTNmzfFjlEl6pxdXd2/f1+t33N1zz979mw8evRI7BhV8vDhQxQUFIgdo8rUPT8RERERERERERERfTwcdCcqh6urq3wJc2W4u7ur3YBeWloarK2txY5RJeqQfdWqVejcuTO+/PJLHD16VKHu0aNHaNq0qUjJyvf8+XMMGTIElpaWGD58OPLz8zFu3DiYmZnB2toaXl5eePbsmdgxy6Tu+Z89e1biKzc3F/PmzcO1a9fkZapo3bp1yMvLA/Bmf/T58+ejQYMGaNiwIerXr48pU6ZU6mam6qbu+YmISFFWVhYkEglSU1PFjiJ3+fJltGvXDlKpFC4uLmLHUTkBAQHw8/P7KG1bWVlh2bJlH6VtIiIiIiIi+nvTEjsAkSoTBAEzZ85Uem/f/Pz8j5yI1MkPP/yAadOmITAwELm5uejRowciIiLk+6QXFRWV2PddVUyfPh0pKSkIDQ3Fzp078eWXXyIzMxMnTpyATCbD119/jaioKMybN0/sqKVS9/wNGjQotVwQBLi7u0MQBEgkEhQVFVVzsoqNHTsWfn5+MDExwbp16zB//nzMmTMH7dq1w9mzZzFjxgw0bdoU48ePFztqqdQ9PxGRqgkICEBMTAwWLFiAqVOnyst3796Nfv364e+421lERAT09PSQkZEBfX39D9q2t7c3XFxc1GJgOSsrC9bW1jh37twHv/lg06ZNmDRpEp4+fapQfubMGejp6X3Q1/oQEhMT4ePjg5ycHNSvX1/sOERERERERFQFHHQnKkeHDh2QkZGh9PHu7u7Q1dX9iIkqr1WrVuXWv3r1qpqSVJ46ZweAtWvXYv369Rg0aBAA4Ouvv4afnx9evXqFOXPmiJyufD///DNiYmLg4+OD/v37w8LCAj///DM8PT0BAFFRUZgyZYrKDlqre34zMzO4uLggJCQEGhpvFqURBAGdO3fGhg0bVHqFh7cHT3788UfMnTsXkydPBgB4eHhAKpVixYoVKjtore75iYhUkVQqRVRUFEaPHl3mjWXqJj8/H7Vq1arSczMzM9GzZ09YWlpWy+u9SxAEFBUVQUvr7/fnAGNj4w/aXkFBAbS1tT9om0RERERERKSeuLw8UTkSExORkJBQqS8zMzOxYytIT09Hy5Yt0bdv31K/vLy8xI5YJnXODgDXr1+Hh4eH/LG7uzuOHj2KdevWyWe7q6oHDx7AxsYGAGBubg5dXV3Y2dnJ6x0dHXHr1i2x4lVI3fNfuHAB2tramDt3LmxsbODl5QVvb29IJBK0bdsWXl5eKn39SyQSAG8+A506dVKo69ixI65duyZGLKWpe34iIlXTuXNnNGzYEAsWLCjzmFmzZpWY7bxs2TJYWVnJHxcvOz5//nyYmpqifv36mD17NgoLCxEWFgYDAwNYWFhg48aNJdq/fPmy/OYpR0dHJCYmKtSnp6ejR48e0NfXh6mpKYYOHYpHjx7J6729vTF+/HhMmTIFRkZG6NKlS6n9kMlkmDNnDiwsLKCjowMXFxccOHBAXi+RSJCSkoI5c+ZAIpFg1qxZpbZT1uuVlzMgIADHjh3D8uXLIZFIIJFIkJWVhcTEREgkEsTHx8PNzQ06Ojo4ceIE8vLyMGHCBJiYmEAqlaJ9+/Y4c+aMPENOTg4GDx4MY2Nj6OrqwtbWFtHR0QDe/Hv47g1ojx8/ho6OjnxLJSsrK8yfPx9BQUGoU6cOmjRpgnXr1smPL76J0NXVFRKJBN7e3grtLVq0CGZmZjA0NMS4ceNQUFAgr8vPz0d4eDgaNWoEPT09fPrpp/JzmpiYKF9pqvh9KH6f311e/unTpxg1ahRMTU0hlUrh5OSEvXv3lnpOis/fmjVr0LdvX+jp6eH7778HAKxevRrNmjVDrVq1YGdnh59++kn+nNK2OHj69CkkEgkSExORlZUFHx8fAG9WO5JIJAgICADw5gaJhQsXomnTptDV1YWzszN27Nih1DkiIiIiIiKi6vX3u7Wd6G/GyckJn376KcaOHVtqfWpqKtavX1/NqZSjztkBwMjICLdu3VL4Y7GjoyOOHj2Kjh074s6dO+KFq4ChoSEePnyIxo0bAwD69u2rsNTlixcvoKOjI1K6iql7fgMDA+zatQurV69G27ZtsWjRIvj7+4sdS2kHDhxAvXr1oKurW2JFilevXsln76sqdc9PRKRqNDU1MX/+fAwaNAgTJkyAhYVFlds6evQoLCwscPz4cSQlJWHEiBH47bff0KFDB5w6dQrbt2/HmDFj0KVLF/nPAQAQFhaGZcuWwcHBAUuWLEGfPn1w/fp1GBoaIjs7G15eXggODsaSJUvw6tUrfPPNN/jyyy/lA8gAEBMTg7FjxyIpKanMZfGXL1+OxYsXY+3atXB1dcXGjRvRp08fpKWlwdbWFtnZ2ejcuTO6deuG0NDQcpeXf/f1Ksq5fPlyXLlyBU5OTvJVlYyNjZGVlQUACA8Px6JFi9C0aVPUr18f4eHhiIuLQ0xMDCwtLbFw4UL4+vri6tWrMDAwwMyZM5Geno79+/fDyMgIV69elf+7OHLkSIwfPx6LFy+W/0y1ZcsWmJubyweQAWDx4sWYO3cupk+fjh07dmDs2LHo0KEDPvnkE5w+fRpt27bF4cOH4ejoqDCTv/hm5oSEBFy9ehUDBw6Ei4sLgoODAQCBgYHIysrCtm3bYG5ujl27dqFbt274448/4OHhgWXLluG7776Tr1pW2vssk8nQvXt3PH/+HJs3b0azZs2Qnp4OTU3Nsi9AvNkeYMGCBVi6dCk0NTWxa9cuTJw4EcuWLUPnzp2xd+9eBAYGwsLCQuG9KEvjxo0RFxeH/v37IyMjA3Xr1pWvnjZjxgzs3LkTq1evhq2tLY4fP44hQ4bA2NgYXl5e5Z4jIiIiIiIiqmYCEdVoEydOFCZOnFhm/dWrVwVvb+/qC1QJ6pxdEATB39+/zPwXL14UjI2NBQ0NjeoNpaRu3boJa9asKbM+Ojpa8PDwqMZElaPu+d+WlpYmODs7C/7+/oKWlpaQlpYmdqRySSQSha958+Yp1K9fv15wdXUVKV3F1D0/EZGqGT58uNC3b19BEAShXbt2QlBQkCAIgrBr1y7h7V9HIyIiBGdnZ4XnLl26VLC0tFRoy9LSUigqKpKX2dnZCZ999pn8cWFhoaCnpyds3bpVEARBuH79ugBAiIyMlB9TUFAgWFhYCFFRUYIgCMLMmTOFrl27Krz2rVu3BABCRkaGIAiC4OXlJbi4uFTYX3Nz8xL/drRp00b4+uuv5Y+dnZ2FiIiIctsp7fWUzfnuz58JCQkCAGH37t3yshcvXgja2trCli1b5GX5+fmCubm5sHDhQkEQBKF3795CYGBgqflev34tGBgYCNu3b5eXubi4CLNmzZI/trS0FIYMGSJ/LJPJBBMTE2H16tWCIPzv3Jw7d06h7eLzXFhYKC8bMGCAMHDgQEEQ3vwOIJFIhDt37ig8r1OnTsK0adMEQXjzs169evVK5La0tBSWLl0qCIIgxMfHCxoaGvL3ThkAhEmTJimUeXh4CMHBwQplAwYMEHr06FFmP3NycgQAQkJCgiAI/ztHOTk58mNevHghSKVSITk5WaHtESNGCP7+/oIglH+OiIiIiIiIqHpxpjtRDff28omladasGRISEqonTCWpc3YAmDp1KlJSUkqtc3R0REJCgsLykKpky5Yt5c7mNTU1Vdn90AH1z/82BwcHnD59GlOnToWTk5N85pOqkslk5dZXtLyw2NQ9PxGRKouKikLHjh0REhJS5TYcHR0V/o03NTWFk5OT/LGmpiYMDQ3x4MEDhee5u7vLv9fS0oKbmxsuXboEAEhJSUFCQkKps6EzMzPRvHlzAICbm1u52Z49e4a7d+/C09NTodzT0xPnz59Xsof/8+7rKZtTmfYyMzNRUFCgkFVbWxtt27aVvy9jx45F//79cfbsWXTt2hV+fn7yrZN0dHQwZMgQbNy4EV9++SVSU1Nx/vx57N69W+E1W7ZsKf9eIpGgYcOGJc5NaRwdHRVmnJuZmeGPP/4AAJw9exaCIJTob15eHgwNDStsu1hqaiosLCwqfN/e9e55uXTpEkaNGqVQ5unpieXLl1eq3Xelp6fj9evXJbYyyM/Ph6urK4DyzxERERERERFVLw66ExF9JC1btlT4Q+O7HB0d4ejoWI2JlGdgYFBufffu3aspSdWoe/531apVC0uWLBE7xgfRq1cvsSO8F3XPT0Qkpg4dOsDX1xfTp0+X71ldTENDo8SS7W/v4V1MW1tb4bFEIim1rKKbqIqPA97ccNW7d29ERUWVOMbMzEz+vZ6eXoVtvt1uMUEQSpQp493XUzanMu0Vv9flZe3evTtu3LiBffv24fDhw+jUqRPGjRuHRYsWAXizxLyLiwtu376NjRs3olOnTrC0tFRor6rnprznyWQyaGpqIiUlpcRS8OUt1/+uqt7IWNp1UN77WHyTyNvXd2nX9ruK+7tv3z40atRIoa54Sf+KzhERERERERFVH25KSlSDXbhwQak/ahVLS0tDYWHhR0ykPHXODqh3fnXODjC/mNQ5O6D++YmI1EFkZCT27NmD5ORkhXJjY2Pcu3dPYWAyNTX1g73uyZMn5d8XFhYiJSUFn3zyCQCgVatWSEtLg5WVFWxsbBS+lB1oB4C6devC3Nwcv/76q0J5cnIy7O3t37sPyuSsVasWioqKKmzLxsYGtWrVUshaUFCA33//XSGrsbExAgICsHnzZixbtgzr1q2T17Vo0QJubm5Yv349YmNjERQUVKn+FO/hrkzet7m6uqKoqAgPHjwo8T40bNhQ3nZF7bZs2RK3b9/GlStXKvX677K3ty/3nBsbGwMAsrOz5fXvXtulvRcODg7Q0dHBzZs3S/SzcePG8uPKO0dERERERERUfTjoTlSDubq64vHjx0of7+7ujps3b37ERMpT5+yAeudX5+wA84tJnbMD6p+fiEgdtGjRAoMHD8aKFSsUyr29vfHw4UMsXLgQmZmZWLlyJfbv3//BXnflypXYtWsXLl++jHHjxiEnJ0c+SDxu3Dg8efIE/v7+OH36NK5du4aDBw8iKCio0gPCYWFhiIqKwvbt25GRkYGpU6ciNTUVEydOfO8+KJPTysoKp06dQlZWFh49elTmzWR6enoYO3YswsLCcODAAaSnpyM4OBgvX77EiBEjAADfffcdfv75Z1y9ehVpaWnYu3dviZsHRo4cicjISBQVFaFfv36V6o+JiQl0dXVx4MAB3L9/H7m5uUo9r3nz5hg8eDCGDRuGnTt34vr16zhz5gyioqLwyy+/yN+HFy9e4MiRI3j06BFevnxZoh0vLy906NAB/fv3x6FDh3D9+nXs378fBw4cqFQ/wsLCsGnTJqxZswZ//vknlixZgp07dyI0NBTAmxn17dq1Q2RkJNLT03H8+HHMmDFDoQ1LS0tIJBLs3bsXDx8+xIsXL1CnTh2EhoZi8uTJiImJQWZmJs6dO4eVK1ciJiYGgHLniIiIiIiIiKoHl5cnqsEEQcDMmTNRu3ZtpY7Pz8//yImUp87ZAfXOr87ZAeYXkzpnB9Q/PxGRupg7dy7+/e9/K5TZ29tj1apVmD9/PubOnYv+/fsjNDT0g83ajYyMRFRUFM6dO4dmzZrh559/hpGREQDA3NwcSUlJ+Oabb+Dr64u8vDxYWlqiW7duCvvHK2PChAl49uwZQkJC8ODBAzg4OOC///0vbG1t37sPyuQMDQ3F8OHD4eDggFevXuH69etlthcZGQmZTIahQ4fi+fPncHNzQ3x8PBo0aADgzezradOmISsrC7q6uvjss8+wbds2hTb8/f0xadIkDBo0CFKptFL90dLSwg8//IA5c+bgu+++w2effYbExESlnhsdHY3vv/8eISEhuHPnDgwNDeHu7o4ePXoAADw8PDBmzBgMHDgQjx8/RkREBGbNmlWinbi4OISGhsLf3x9//fUXbGxsEBkZWal++Pn5Yfny5fjHP/6BCRMmwNraGtHR0fD29pYfs3HjRgQFBcHNzQ12dnZYuHAhunbtKq9v1KgRZs+ejalTpyIwMBDDhg3Dpk2bMHfuXJiYmGDBggW4du0a6tevj1atWmH69OkAlDtHREREREREVD0kwrsb5xFRjeHt7V3p/SNjY2OV2hPyY1Pn7IB651fn7ADzi0mdswPqn5+IiKi63bp1C1ZWVjhz5gxatWoldhwiIiIiIiIi0XDQnYiIiIiIiIiUVlBQgOzsbEydOhU3btxAUlKS2JGIiIiIiIiIRMU93YmIiIiIiIhIaUlJSbC0tERKSgrWrFkjdhwiIiIiIiIi0XGmOxERERERERERERERERERURVxpjsREREREREREREREREREVEVcdCdiIiIiIiIiIiIiIiIiIioijjoTkRVlpWVBYlEgtTUVLGjyF2+fBnt2rWDVCqFi4uL2HFUTkBAAPz8/D5K21ZWVli2bNlHaZuIiIiIiIiIiIiIiEhVcdCdSI0FBARAIpEgMjJSoXz37t2QSCQipRJXREQE9PT0kJGRgSNHjnzQtr29vTFp0qQP2ubH8jFviNi0aRPq169fovzMmTMYNWrUB3+995WYmAiJRIKnT5+KHYWIiIiIiIiIiIiIiGogDroTqTmpVIqoqCjk5OSIHeWDyc/Pr/JzMzMz0b59e1haWsLQ0PCjv967BEFAYWHhB2tPnRgbG6N27dofrL2CgoIP1hYREREREREREREREdHHwkF3IjXXuXNnNGzYEAsWLCjzmFmzZpVYan3ZsmWwsrKSPy5ednz+/PkwNTVF/fr1MXv2bBQWFiIsLAwGBgawsLDAxo0bS7R/+fJleHh4QCqVwtHREYmJiQr16enp6NGjB/T19WFqaoqhQ4fi0aNH8npvb2+MHz8eU6ZMgZGREbp06VJqP2QyGebMmQMLCwvo6OjAxcUFBw4ckNdLJBKkpKRgzpw5kEgkmDVrVqntlPV65eUMCAjAsWPHsHz5ckgkEkgkEmRlZclnUcfHx8PNzQ06Ojo4ceIE8vLyMGHCBJiYmEAqlaJ9+/Y4c+aMPENOTg4GDx4MY2Nj6OrqwtbWFtHR0QCAjh07Yvz48QqZHz9+DB0dHRw9ehTAm6Xc58+fj6CgINSpUwdNmjTBunXr5MdbW1sDAFxdXSGRSODt7a3Q3qJFi2BmZgZDQ0OMGzdOYYA7Pz8f4eHhaNSoEfT09PDpp5/Kz2liYiICAwORm5srfx+K3+d3l5d/+vQpRo0aBVNTU0ilUjg5OWHv3r2lnpPi87dmzRr07dsXenp6+P777wEAq1evRrNmzVCrVi3Y2dnhp59+kj+ntBn9T58+hUQiQWJiIrKysuDj4wMAaNCgASQSCQICAgC8uUFi4cKFaNq0KXR1deHs7IwdO3YodY6IiIiIiIiIiIiIiIiKcdCdSM1pampi/vz5WLFiBW7fvv1ebR09ehR3797F8ePHsWTJEsyaNQu9evVCgwYNcOrUKYwZMwZjxozBrVu3FJ4XFhaGkJAQnDt3Dh4eHujTpw8eP34MAMjOzoaXlxdcXFzw+++/48CBA7h//z6+/PJLhTZiYmKgpaWFpKQkrF27ttR8y5cvx+LFi7Fo0SJcuHABvr6+6NOnD/7880/5azk6OiIkJATZ2dkIDQ0ts6/vvl5FOZcvXw53d3cEBwcjOzsb2dnZaNy4sby98PBwLFiwAJcuXULLli0RHh6OuLg4xMTE4OzZs7CxsYGvry+ePHkCAJg5cybS09Oxf/9+XLp0CatXr4aRkREAYOTIkYiNjUVeXp68/S1btsDc3Fw+gAwAixcvhpubG86dO4evv/4aY8eOxeXLlwEAp0+fBgAcPnwY2dnZ2Llzp/x5CQkJyMzMREJCAmJiYrBp0yZs2rRJXh8YGIikpCRs27YNFy5cwIABA9CtWzf8+eef8PDwwLJly1C3bl35+1Da+yyTydC9e3ckJydj8+bNSE9PR2RkJDQ1Ncs8J8Cb7QH69u2LP/74A0FBQdi1axcmTpyIkJAQXLx4EaNHj0ZgYCASEhLKbadY48aNERcXBwDIyMhAdnY2li9fDgCYMWMGoqOjsXr1aqSlpWHy5MkYMmQIjh07VuE5IiIiIiIiIiIiIiIikhOISG0NHz5c6Nu3ryAIgtCuXTshKChIEARB2LVrl/D2xzsiIkJwdnZWeO7SpUsFS0tLhbYsLS2FoqIieZmdnZ3w2WefyR8XFhYKenp6wtatW3/++0MAAAjiSURBVAVBEITr168LAITIyEj5MQUFBYKFhYUQFRUlCIIgzJw5U+jatavCa9+6dUsAIGRkZAiCIAheXl6Ci4tLhf01NzcX5s2bp1DWpk0b4euvv5Y/dnZ2FiIiIsptp7TXUzbnxIkTFY5JSEgQAAi7d++Wl7148ULQ1tYWtmzZIi/Lz88XzM3NhYULFwqCIAi9e/cWAgMDS833+vVrwcDAQNi+fbu8zMXFRZg1a5b8saWlpTBkyBD5Y5lMJpiYmAirV68WBOF/5+bcuXMKbRef58LCQnnZgAEDhIEDBwqCIAhXr14VJBKJcOfOHYXnderUSZg2bZogCIIQHR0t1KtXr0RuS0tLYenSpYIgCEJ8fLygoaEhf++UAUCYNGmSQpmHh4cQHBysUDZgwAChR48eZfYzJydHACAkJCQIgvC/c5STkyM/5sWLF4JUKhWSk5MV2h4xYoTg7+8vCEL554iIiIiIiIiIiIiIiKgYZ7oT1RBRUVGIiYlBenp6ldtwdHSEhsb//rdgamqKFi1ayB9ramrC0NAQDx48UHieu7u7/HstLS24ubnh0qVLAICUlBQkJCRAX19f/vXJJ58AeLP/ejE3N7dysz179gx3796Fp6enQrmnp6f8tSrj3ddTNqcy7WVmZqKgoEAhq7a2Ntq2bSvPOnbsWGzbtg0uLi4IDw9HcnKy/FgdHR0MGTJEvpR/amoqzp8/L18WvVjLli3l30skEjRs2LDEuSmNo6OjwoxzMzMz+fPOnj0LQRDQvHlzhffi2LFjSr0PxVJTU2FhYYHmzZsr/Ryg5Hm5dOnSBzvnb0tPT8fr16/RpUsXhX7+61//kvezvHNERERERERERERERERUTEvsAET0YXTo0AG+vr6YPn16icFZDQ0NCIKgUPb2Ht7FtLW1FR5LJJJSy2QyWYV5JBIJgDfLjPfu3RtRUVEljjEzM5N/r6enV2Gbb7dbTBCEEmXKePf1lM2pTHvF73V5Wbt3744bN25g3759OHz4MDp16oRx48Zh0aJFAN4sMe/i4oLbt29j48aN6NSpEywtLRXaq+q5Ke95MpkMmpqaSElJKbEUvL6+foVtF9PV1VX62LeVdh2U9z4W3yTy9vVd2rX9ruL+7tu3D40aNVKo09HRAVDxOSIiIiIiIiIiIiIiIgK4pztRjRIZGYk9e/aUmJFrbGyMe/fuKQxMpqamfrDXPXnypPz7wsJCpKSkyGeJt2rVCmlpabCysoKNjY3Cl7ID7QBQt25dmJub49dff1UoT05Ohr29/Xv3QZmctWrVQlFRUYVt2djYoFatWgpZCwoK8PvvvytkNTY2RkBAADZv3oxly5Zh3bp18roWLVrAzc0N69evR2xsLIKCgirVn1q1agGAUnnf5urqiqKiIjx48KDE+9CwYUN52xW127JlS9y+fRtXrlyp1Ou/y97evtxzbmxsDADIzs6W1797bZf2Xjg4OEBHRwc3b94s0c/GjRvLjyvvHBEREREREREREREREQGc6U5Uo7Ro0QKDBw/GihUrFMq9vb3x8OFDLFy4EF988QUOHDiA/fv3o27duh/kdVeuXAlbW1vY29tj6dKlyMnJkQ8Sjxs3DuvXr4e/vz/CwsJgZGSEq1evYtu2bVi/fn2J2dTlCQsLQ0REBJo1awYXFxdER0cjNTUVW7Zsee8+KJPTysoKp06dQlZWFvT19WFgYFBqW3p6ehg7dizCwsJgYGCAJk2aYOHChXj58iVGjBgBAPjuu+/QunVrODo6Ii8vD3v37i1x88DIkSMxfvx41K5dG/369atUf0xMTKCrq4sDBw7AwsICUqkU9erVq/B5zZs3x+DBgzFs2DAsXrwYrq6uePToEY4ePYoWLVqgR48esLKywosXL3DkyBE4Ozujdu3aqF27tkI7Xl5e6NChA/r3748lS5bAxsYGly9fhkQiQbdu3ZTuR1hYGL788ku0atUKnTp1wp49e7Bz504cPnwYwJsZ9e3atUNkZCSsrKzw6NEjzJgxQ6ENS0tLSCQS7N27Fz169ICuri7q1KmD0NBQTJ48GTKZDO3bt8ezZ8+QnJwMfX19DB8+XKlzRERERERERERERERExJnuRDXM3LlzSywlb29vj1WrVmHlypVwdnbG6dOnERoa+sFeMzIyElFRUXB2dsaJEyfw888/w8jICABgbm6OpKQkFBUVwdfXF05OTpg4cSLq1aunsH+8MiZMmICQkBCEhISgRYsWOHDgAP773//C1tb2vfugTM7Q0FBoamrCwcEBxsbGuHnzZpntRUZGon///hg6dChatWqFq1evIj4+Hg0aNADwZvb1tGnT0LJlS3To0AGamprYtm2bQhv+/v7Q0tLCoEGDIJVKK9UfLS0t/PDDD1i7di3Mzc3Rt29fpZ8bHR2NYcOGISQkBHZ2dujTpw9OnTolnwHu4eGBMWPGYODAgTA2NsbChQtLbScuLg5t2rSBv78/HBwcEB4eXumZ935+fli+fDn+8Y9/wNHREWvXrkV0dDS8vb3lx2zcuBEFBQVwc3PDxIkT8f333yu00ahRI8yePRtTp06Fqakpxo8fD+DNZ+W7777DggULYG9vD19fX+zZswfW1tYAlDtHREREREREREREREREEuHd0TkiIlIJt27dgpWVFc6cOYNWrVqJHYeIiIiIiIiIiIiIiIhKwUF3IiIVU1BQgOzsbEydOhU3btxAUlKS2JGIiIiIiIiIiIiIiIioDFxenohIxSQlJcHS0hIpKSlYs2aN2HGIiIiIiIiIiIiIiIioHJzpTkREREREREREREREREREVEWc6U5ERERERERERERERERERFRFHHQnIiIiIiIiIiIiIiIiIiKqIg66ExERERERERERERERERERVREH3YmIiIiIiIiIiIiIiIiIiKqIg+5ERERERERERERERERERERVxEF3IiIiIiIiIiIiIiIiIiKiKuKgOxERERERERERERERERERURVx0J2IiIiIiIiIiIiIiIiIiKiKOOhORERERERERERERERERERURf8PYfVhxyVCNSAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "103 AP fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAiYCAIAAAAAGavGAAEAAElEQVR4nOzdd1hUVxMH4N/SQUEULKhYsGOJClawY8eCirFhTFRioiEaC/FLIYkmIcYY7KLGiF2wYotiR6xYUKzYu0hVOuzO98dZlxUVEXb3UuZ9ePK4l+WeQ1x375k7Z0ZGRGCMMcYYY4wxxhhjjDHGWMHoST0BxhhjjDHGGGOMMcYYY6w44IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcYYY4wxxhhjjDHGmAZwwJ0xxhhjjDHGGGOMMcYY0wAOuDPGGGOMMcYYY4wxxhhjGsABd8YYY4wxxhhjjDHGGGNMAzjgzhhjjDHGGGOMMcYYY4xpAAfcGWOMMcYYY4wxxhhjjDEN4IA7Y4wxxhhjjDHGGGOMMaYBHHBnjDHGGGOMMcYYY4wxxjSAA+6MMcZY8fHyJR48yH4YHY2XL6WbDWOMMcYYY6zoePIEoaHZDy9fxuPHuHQJMTHZB8+exYsXup8aY0UJB9wZY4yx4mPTJtSogRMnlA+nTMGWLZJOiDHGGGOMMVZE7N+P9u2xY4fy4ezZ+O8/fPstjh7Nfs6YMbhyRZLZMVZkcMCdMcYYK1YaNsSXXyIrS+p5MMYYY4wxxoqaNm3wzTdISZF6HowVZRxwZ4wxxoqV1q1Rrx7mzcs+kpYm3WwYY4wxxhhjRUf9+ujRA7/88trBrCykpyu/iCSaGWNFh4HUEyienjx58vTp0+3bt7dq1apVq1blypWTekaMMcZKkNmz0aIF3N2VD6tUQWoqypWDlRWsrGBtDWtr5Z/FwQoVXlhaPrO2ti5btqykE2eMMcYYY4xJ7Jdf0LgxRozIPjJlSnYI/tYtSSbFWFHCAXfNi42N7dy5c1ZW1s2bN8URGxsbZ2dnJycnBwcHR0dHExMTaWfIGGPv9fQpAgIwZgysrADg1CmkpKBTJ6mnxfKmalV88w2mToWREYiQno7UVDx6hEeP3v58Z+fnx47VBaCvr29lZWVlZVWuXDmrV6ytra2trfv162dtba3TX4MxxhhjjDGmc2XL4tdf8fXXsLVVHvHzw4AByj83aybVvBgrMjjgrmEpKSl9+/a9du1arVq1JkyYEBERcfbs2SdPngQFBQUFBQEwMTFp3rx5q1atWrZs2aZNm+rVq0s9ZcYYe4uHD/G//+HGDfzzDwAcOYKYGA64FyUTJ6J5c2RmoksXJCUhNRWxscqv58+Vf4iLU/7B2jrh6dPaMTExCQkJ0dHR0dHRb57w5s2b48aN448txhhjjDHGir2RI/HPPzhwAO3bSz0VxoogDrhrUmZm5qBBg44fP16zZs3Q0FAbGxsAcrn82rVrZ8+ePXv2bFhY2Pnz548fP378+HHxI5aWlo6OjiL53cnJiYvPMMYKj+bNcfo0jh2Ds7PUU2EfztAQixdnXx+bmqJqVVSt+q6nOwBRALKysuLi4mJfFxMTs3nzZl9f32rVqn3xxRe6mT8rlsqVw7Rp+PZbAAgNxZ9/IjhY6jkxxhhjjLE3yGRYvPidyezR0RgxAkZGaNcOn36q25kxVhRwwF1jiMjT03PPnj3W1tZ79uwR0XYA+vr6DRs2bNiw4ciRIwG8fPlSpL2HhYUdOXIkOjp6//79+/fvF0+2s7MTwXcHB4eWLVsaGRlJ9vswxko8AwPMmYNx43D+vNRTYXlWp46yChAAZ2f8+y8cHD7gxw0MDCpUqFChQoUcx2vWrPnFF1+EhoZywJ0VRGIili+Huztq1UJmJpKSpJ4QY4wxxhhT0749jI2Vf27YEPv2oXp11KuHmjWznzN7Nuzs4OSEcuXg4sIBd8beQkbcXVhDpkyZ8tdff5mZme3fv79NmzZ5/KnHjx+L4PuxY8fOnTuXmpqq+lapUqWaNm0qgu/t2rWrqf72xhgr1p48eWJoaGhiYlK6dGmp5hAejq++wokTGDwYjo4AEBODWbOkmg7Lq6+/xtq1WLo0u8aiRly5cqVhw4Y2NjaPHz/W5HlZCWNoiKVLsXEj/vsPBw9i5kwcPCj1nBhjjDHG2Cv37qFmTTRujAsXIJO958mXL2P+fCxZopOZscIkMzNzw4YNBw8eBNCxY8f27dtz0DIHDrhrxp9//jlt2jRDQ8MdO3Z07949fyfJysq6fv26CL6fPXv26tWrqr+d+vXrBwUFNWrUSHNTZowVRpmZmYsWLfruu+9atmx56dKlKVOmTJw40ViVY6Arly8jNVUZcH/4EC1bYsgQGBjAyQlWVlxhpvBKSUHVqoiPx7lzGu5lRESVKlWKjo6OioqqXbu2Jk/NSoaMDOjrw8QE6elo2xaTJqF8eQ64M8YYY4wVLn//jW++wccfY8OG9zzz5k34+mLOHFhY6GRmrNCQy+XDhw/fuHGjoaFhZmamOGhjY+Ps7Ozi4uLk5GRvby977+2a4k5P6gkUB+vWrfv2229lMtny5ctV0fbz588vXLjwg85jYGDQsGFDT0/PVatWXb58+dmzZzt37vzhhx86dep09+7ddu3aZWRkaGH6jLHC4tChQ02aNJk4cWJKSkpUVFRMTMy3337buHHjoKAgnd0cvXMHvXujaVNERSmPVK2KyZPh74+MDIwbh3bt0LUrLl7UzXTYh1m3DvHxcHLSTLQ9NjZ29+7d4s8ymczZ2RnA0aNHNXBqVmLcuYOlSzF4MCpUgOhfo6eHRYswbRqSk6WeHGOMMcYYe93WrQDg5vaep504gS5dUK0aVqzQwaRYIUJE48aN27hxY5kyZVasWPH333/369evXLlyT548CQoK+vzzzxs1amRraztixIilS5dev/5A6vlKhjPcC2r//v29e/fOyMiYM2fOpEmTxMFbt245Ozs/ffp0w4YNH3/8ccFH+eijjy5evLh79+6ePXsW/GyMscImLi5u+vTpy5YtI6I6deosXLiwa9eu+/fvnzx58sWLFwG0aNHC19e3c+fO2ptDRgZmz8bMmUhNRdmy+P57BAXhxAkAyMqCoyM6dULZsvjzTyQlQV8fo0bh559RpYr2ZsQ+mKMjzp7FmjUYPrygpyKi8uXLx8bG3r17t3r16gDmzp07ceLETz75ZOXKlQWfKivGUlNx+DD++w///YcbN5QHZTLMmYOpUyGSYL76ChERMDAovBnu0dFo0wZz5qBfPwDYvh2HD6NpU9y9Cx8f5XNmz0apUuC+BowxxhgrHqKjUbkyDAwQHf2evPUXLxATAwB6eqhRQyeTY4UAEY0fP37x4sWlSpXas2dPu3btVN+6ffv2/v37jx07dujQoYcPH4qD7dtfvH69cYsWcHaGiwuaN39LnaKDB1GxIho2BAC5HNu3a7g4qmSIFcDp06dFheXp06erDkZHR9etWxdA586d09LSNDLQTz/9BGDs2LEaORtjrPBQKBQBAQFWVlYATE1NfXx81N835HJ5QEBA5cqVxTu2i4vL+fPntTGNI0eoYUMCCCB3d3r6lLKy6MWL7CekpFBKChFRTAx5e5OxMQFkZEReXhQfr40ZsQ926hQBZG1NqanKI+p/g/nQp08fAKtWrRIPz58/D6BmzZoFmyYrtm7dIn9/cnen0qWVbyYAlS5Nrq7k70/37xMRGRgon5yYSDY21KmThPN9j8ePqXRpql2bXr4kIlqzhoYNozlz6Isvsp8zdSr98otUE2SMMcYY07ClSwkgV1ep58EKq2nTponAxaFDh971HIVCERkZuWDBgsGDB7dqlaxaFwBUoQK5u9P8+XTpEikUyue3aUPVqlFSEhFRSgqZmOjiF9EBLimTfzdv3nR1dU1KShoxYsSvv/4qDr58+bJHjx43btxwdHTcvn27piovDxgwAMDWrVuzsrI0ckLGWGEQERHRtm3bTz75JDY2tnfv3pcvX/7pp5/U3zf09PRGjhwZFRXl6+traWm5f/9+BweHwYMH37lzR1NziIvD55+jY0dcvow6dbBvHwIDUbEi9PVhbp79NFNTmJoCgJUVfH1x/To8PZGVhXnzUKsW/vgDaWmamhHLp8WLAeCzz2BiojzSpg06dMCr9IIP1r59ewChoaHiYZMmTSwtLe/cuXP//v0CT5YVE8nJyfv37//6669r1rRr21b++ecICkJKChwc4O2NkBDExWHHDnh6wtYWAMaMUf6ghQWWL4erqzI3qnAqWxZubtn57IwxxhhjxVse68mwkun777+fNWuWkZHRpk2bOnbs+K6nyWSyhg0bjh8/fuPGjSdPml25giVLMHQobGwQHY2gIHz1FRo3RoUKGDgQ69cDQJ06mDFDZ7+HjhSrkjKPHuH2bag2NFy6hAoVULGiVsZ6/Pixk5PT3bt3e/fuvW3bNgMDAwAZGRl9+vTZt29frVq1wsLCKmp07Pr161+/fv3w4cMdOnTQ4GkZY5JITk6eMWPG7Nmz5XJ55cqVf//995EjR+b+I3FxcbNmzZo7d25aWpqRkdGoUaNmzpxZvnz5fM+BCKtXY/JkxMTA1BTTpmH6dHzQXcIzZ+DtjUOHAKB6dfzxR4y7ezk9Pb6VK4GEBFSpgtRUXL+OOnUA4PBhdOoEGxvcuwdDw/yc8/Tp061atapbt+7169fFkT59+uzcuXP16tUjRozQ3NxZEUNEFy5c2Lt373///Xf8+HFVo6RevSKtrRv26IGuXWFtnadT+fpi5kwcOoQWLbQ44fx58gStWiEyEo0aITgYly9j9244OsLfH61bK59z9iwGD8YPP0g60cJMocCaNTh2DGlpaN4cY8eiVCmp58RKlpiYmMmTJycnJ1erVq169erVqlWztbW1tbXV7DKNMcaKh8REVKgAuRxPnqAAq0xWPM2cOfOHH34wNDTctGlT375983eS27dx7BjCwrBvH+7eBYDx43HuHGbMwKefYvdu1KqFcuWQmqrBiUtH6hR7TVqyhADauVP58OOPaf16rQyUkJDw0UcfAWjVqlWS2PZAJJfLBw8eDKBChQo3btwo4BByuXz27Nk9evTIyMgQR7y9vQF4eXkV8MysKBoyhE6fzn7YpQvduSPZZFjBBQcH29raAjAwMPDy8nrxjsIf+/fvDwoKUqi2WhER0b179zw9PfX19QGULVvW19c3RZR6+UDnzp3r1ClTbOzq1Ytu3crrD0ZF5TwSEkLNmhFAzZu72NvbBwYG5mM+rIDmzCGAunfPPjJ4MAHk45P/c2ZmZpqbmwN49OiRODJr1ixwfbOSKiYmJjAw0NPTs2rVqqrLSH19fQcHB29v79DQULlc/q6fff1tLNuUKQRQgwbZdZAKj8ePydaWiGjdOmrbllavVpaUcXOjY8eUX8OGcUmZXI0bRx060P79FBZGHh7UocM7XwqMacGNGzeMjIzeuuHY2NjYzs7OycnJ3d3d29vb398/ODg4PDz8XZdkjEmO14PFwKlT9OWX9CqARKtWUWiopBN6w9q1BFDHjlLPgxU+c+fOFVf+69atUx28d+9eu3bt8h3/vHmT/vmHTp6kNm3o9GlatYqcnSk5ufiUlCluAff27alOHWWhYS0F3FNSUkRbAHt7+9jYWNXxiRMnArCwsDh37pxGBmrYsCGAffv2iYenTp0CUKVKFQWvVUqe1q1JvUBW9ep07Zpkk2EFcfPmzR49eojFnoODw5kzZ971zKysLPEm0KJFi4MHD+b4bmRkpLu7uzhP1apV/f39s7Ky8jiHpKQkb29vfX399u2DKlemgIAPmP/mzaSnR+7uOS/x5XJav/5ptWrVxJS6dOmSy6/GNE6hoHr1CKBt25RHnjwhIyMyMKAHDwp05u7duwPYuHGjeHjy5EkA9erVK9h8WdGTlJSkHrSqVq2ap6fn5s2bExMT3/UjKSkUEkLe3uTgQO+6DZeWRvb2BJBaK5zCQhVwJ6LOncnVlWu4f6B796hMGVJdKsvl1Lgx7d4t6ZxYyeLp6Qmgb9++GzZs+PPPP7/66qu+ffs2a9ZMNM55lwoVKjg6Orq5uX399ddz5swJCgo6derU48ePpf5tWEnH68FiYO1aMjamKVOUD8eMoaVLJZ3QGwYNIoDmzpV6HqyQ+eeff2QymUwmW7ZsmerggwcPatasCWDIkCEFPL8IuCsU1KEDLVvGAfdCackSGj+exo2j//2PSDsB96ysLFFOvUqVKnfv3lUdnzFjBgAjI6OQkBBNjfXDDz8AGDdunHioUChEMOvUqVOaGoIVFXyBVQxkZGT4+vqamJiIzHQ/P79cskGJKCsra8mSJTY2NmL517t370uXLuV4TkhISPPmzcUTGjRokJfU8o0bN4oWrAYGBlOmeItmgHnn60uGhgSQmRlNn04JCa99Nz093d/fv0KFCgBkMpm7u3vUm/nwTAsOHMgEqGpVysxUHpk5kwBycyvomWfOnAlg/Pjx4qEq551DDyVNgwYNjIyMWrZs6evrGx4ensu9/8hImj2bunYlE5Ps/khffvnOM584Qfr6ZGBAhe3qRj3gfuUKGRm9M+B+/DjNmEFHj0oyzUJs1y5q1+61I199RTNmSDQbjbl///6ff/753XffrVy5MrUQbs1grzx79szU1FQmk125cuXN7yYnJ1++fPm///5btmzZDz/8MHLkyI4dO9aqVSuX/lvGxsa1a9dWfSCyYk+hoFu3KC1N+TA5mZ48kXI+vB4sBtaupUGDqGZNioggKnwB99RUMjcnmYzu3ZN6KqwwCQgI0NPTk8lkixYtUh189uxZgwYNALRu3brgm8NEwJ2IIiPJ1pYD7oWSCLjHxFDlynTlijLgPm0a+fnRiRPZH5b5plAoxowZA6BMmTIR4j2SiIhWrVolk8n09PSCgoIKOoaa8+fPA6hYsaIqcdXLywuAt7e3BkdhRULr1tSjB40apfwqXZovsIqYw4cPiw8kmUzm4eHx7NmzPP5gcnKyr69vmTJlAOjp6bm7u9++fVv9CQqFIjAwsFatWmI12KZNm6PviPrcvHmzZ8+eeUmuz93du+ThQTIZAVSuHPn65qwF8fLlSx8fH1NTUwCGhoaenp5PpF2glADu7oObNZvs53dfPJTLqUYNAujVFqn8Ex1TGzVqpDrSrVs3AFw4qKQR70Lx8fFv/W5CQsKmTZvGjh3br1+oKsiur0+tW9NPP9HJk5T7DhxRWKZ+/UJUWObFC4qNpaFDs4/89Rf99htt3kzz5mUfXLaMVq6kP/6g58+pU6fsTeKMiCgoiFxcXjsybVph3MuQN7GxsQEBAS4uLqJPiaGhIQAnJ6fnz59LPTX2dt999x2A/v37f+gPxsXFhYeHBwcH+/v7e3t7u7u7Ozk52dnZib/6qlWrDhs2TBsTZoVNaioBNGmS8uGuXdSzp5Tz4fVgMbB2LY0cSRs2UNu2JJcXuoD7rl2HO3TYOmAAf66xbJs2bRIdK2fNmqU6+Pz580aNGgFo2rRpXFxcwUdRBdyJaMoUDrgXSiLgTkTLl1O3bvTxx7RiBenrKxd+BgZkb0+enhQQQJGR+akh+f333wMwNTUNVSu1FRwcLF5/89RXYBoigmiq4Q4fPgygdu3aGh+IFXKtW9O8eRQaqvyqVIkvsIqMJ0+eeHh4yGQyAHXr1s3fJpiYmBhvb2+RHW9kZOTp6RkdHa3+hIyMDH9/f1UHMBcXF/V0+A9Nrs+LU6eoY0flu2vdumnr1m3Mcc6HDx96enqKt8dSpUp5e3vnUnqCFcTjx48NDQ0NDAwePnwojuzYIQeodm0NVEtOT083MzOTyWSqoJLY0TVhwoSCnpoVKSK8mJ6ern4wMjLS19fXxcXFyMhIvPk0bPhZ+fLk7k7+/h+QCZiWRg0bEkDffqv5mefD9etkZUW+vh/2U337csD9defPk60tqX80uLrSihXSTSg/EhIS/v333+7du4uPM7EQGDx48Ny5c8XGUzs7u2t8TVb4JCUliboxYWFhqoMFLMuZkpISFhYGwMLCouDXUazwS00lU1OqX59EvdjCEHDn9WBRJwLuRNSlCy1bVugC7qNGjQLw22+/ST0RVlhs27ZNLAF+/fVX1cGEhARHR0cAjRs3jomJ0chAp0+TKlRw6xZt2KCRs0qveAbcFQpq25ZsbOjff2n5cho9mho3zo68iy9ra+rdm37+mQ4cePKujC11ixcvBqCvr79lyxbVwRMnTpQqVQrATz/9pI3faMqUKQC++eYb8VAul1eqVAnAxYsXtTEce1NmZmZh2C/MWwiLIrlcHhAQINZ7pqamPj4+aQXbaCPapYoEq7e2S3358qWvr6+o+GFgYODp6fn48eN8J9fnRUgINW1KHTr8BaBhw4ZvZj1HRkb26dNHBCnU74ozDfr5558BDBo0SHWkT5/+rVr9tmjRU42cv2PHjgC2bt0qHh49elRcYGnk5KxIyMzMFO8qqiPh4eGqO3wi27djx46///77+fMX8hfROnmS9PVJX1/6wjIvXyqj/25uH3DLav16+vNPbU6riHJyoj/+UP55926ysaEi0pEyJSV148aNbm5u4l61uNvt6uq6Zs2al69qsT1+/NjBwQFAuXLljhw5Iu2EWQ5///03AGdnZ/WDv/32m4mJiZ2dnYuLi6enp4+Pj7+/f0hIyK1btzJVFdneR3SNvn79uhZmzQqX1FQqXZq2bqUWLSgrq1AE3Hk9WNSpAu5Xr1LVquTuTkuXvmcXoM5kZWVZW1sDuHr1qtRzYYXCvn37xFXQDz/8oDqYlJQkWlrWqVNHGyVGFy0imSy3WpRFS/EJuMfFZQfciejiRTIweK2G+8uXFBpKfn7k4aHcay++nJwWA7CxsXF3d/fz8wsNDX0zKLZ161Z9fX2ZTPbPP/+oDkZGRpYrVw7A559/rqVf6vjx4wBq1KihysgYO3as9uL7TF1mZqa3t3f79u1tbGx8fX3z3pFSG/gCq8g5d+5cq1atxCrd1dX1To4eowVw6dIlV1dXcea3tkt99OjR2LFjRS6eqhRpw4YNtRQOkMtp9epA9Xap4eHhOZ5z9OhRcQHHLSg0Lisrq3r16gAOHDggjty7d09fX9/Y2DjHNoh88/HxATDp1Z7qtLQ0ExMTmUymqYwGVvglJCSIpE7VkcTERENDw0qVKnl4eAQGBuYlceG9pk6VvrCMQkHu7spp5HFPjkJBvr7k60txcZTnkF2Jcfcude9OdepQgwbUujWdOCH1hN4jK4tCQsjDg+rWvSe2punp6Tk5Ofn5+b31dnVSUpK4qWxsbLxmzRrdT5i9VWZmpvhk3L59u/rxCRMm4B0MDAyqV6/u7Ow8YsSI6dOnL1q0aOfOnZcuXXpzc16/fv0ArFu3Toe/EJOGCLgTUY8etHAhB9xZgQQEUJcutGqVMuBORNOnk6EhLVlC7dqRtzdlZEg6P6L9+/cDaNCggcTzYIXDsWPHRG7x119/rTqYkpIiMrGqVaum3tJSg06dIoBq1tTGuSVQTALuP/5I1avTkSOkfjfu9Gl6+u70vnv3aONG+uYb6t//a1FrWMXMzMzZ2Xny5MmBgYH3798/dOiQCFr5qu0ufvDggQgw9e3bV3uhWIVCIdIoVAGsPXv2AGjSpImWRmTC06dPO3ToIPY0iFdFu3btJGz/+NVXdOFC9sPhw+nBA6nmwt5v6tSp4pVTrVq1bdu2aWOI97ZLvXbtWt++fcuVK2dmZlbw5Pr3em+7VGdnZwDvqi/P8m3r1q0Aateurbov++233wIYqbqcL7ADBw4AcHBwUB0Rb49aem2zQujx48cAKlWqpH7wnqY7ahWGwjK//UYAmZvT25osvt2zZ+Ttrfy6f1+bkytaZs+mNm1o82YiIrmcXi9GVNhkZdGBAzR2LJUrp0zHkclo0KBxfn5+783eysrKEmFcmUzm4+Ojk/my91izZg2AevXqvVn4JTo6+uzZs9u2bZs7d+7kyZMHDx7cunXrypUri/srb1WmTBn1tIlffvkFwOTJk3X6KzEpqALuN2+SjQ0FBEgccOf1YBH14gUNG6b8cJk8mcaNUx5PTiZ7e5o6lfT0CCBnZ9JOADOvxo8fD+C7776TchKscDhx4oTYNP/ZZ5+p1pjp6em9evUSOX85usppkFxOFSsS8AGX4oVZcQi4L1qkLNEeHJzPM2RkZISHhy9cuHDkyJH16tXLcclVunTpHDd2YmJiRImGDh06aLveSI43voyMjLJly4J3MmpTeHi4yIupUqXK8ePH9+zZI257mJqa+vr6SlK0MSCA1q7Nfvjjj4WosxzL4eLFiz179tTX1/fy8ip4w+5cvNkuVb29BBE9efIEQIUKFbQ3hxzi4uKmTZsmbmHa2NhkqKVqdOnSBUD+StizXHTv3h3A33//LR6mp6eLQh/Hjx/X1BApKSlGRkb6+vqqLOYff/wRauXOWLF38+ZNALVq1dL2QNIWltm/n/T1SSYjtdqBLL/c3AjIvnY5eZI++ogk2qB56BBZWSmrMBPRzz/TnDnKP0dGkrc32dhk73y1tycfH7px48OG8PPzEwXfPvvsswzJ0xRLvGbNmgFYvnx53n8kIyPj0aNH4eHhgYGBvr6+Xl5e7u7uDg4OZcqUkclkycnJqmfu3r1brAE1P29WmNy7lx1wJyIfH6pfn3r2pP37ae5ckqSGP68Hi6KzZ6lOHQKodGlatertzzl4kKpWJYAsLGj1at3O7xWFQmFra6ue6MkKM4UiIynp+IsXBzIzNb/h+Pz58yLk+Mknn6hiXxkZGX379hWxhStajoWPHEkAzZ6t1UF0pMgH3LdtU66OPuSa6j0SExNDQ0N9fX1dXV3LlStnZWVlY2OjHma9efNmzZo1P/roo4SEBI2N+g5ia0/dunVVR0aMGAHgD1VNTKZR/v7+ovlbu3btnrzq+JaQkODp6SnCmm3bttX93Y7+/cnUNPsun4UFaf+lx/Jp/vz5AIYOHaqb4dLS0ubMmSMqxRsbGz9V29cTFxcHwNLSUjczUXnw4MGnn36ao4+0uB++c+dOHU+meLt165aenp6pqWlsbKw4sm7dOm3sgmrbti2AXbt2iYfig8nR0VGzo7BCKyIiAroq3C9VYZl798jamgDiHGXNENUbVRcu8+cTQKNHSzKXffuoUiVq2VIZI5s+nXx8aPp0qlkzO85euzZ9/z1FRub1nIGBgV9++aX6JtctW7aYmZkBcHFx0cECgb3LwYM3jI0tbGxsNLW3Ly4uTv1hdHQ0uG9qcefvT0ZGtHx5dsA9LY3q1qXu3al6dQKofXu6eVPXs+L1YNGiUJCfHxkbE0ANG77n8yUhgYYMUX4eubuTJgr1fZiTJ0+KzOUCNpdmOpCVFX/5csObN/vdvTv6+vXOmj35xYsXRWBh4MCBqu4mWVlZQ4YMAWBtbX3p0iXNjkhEFy/Sr79m5zqsX08Ademi8XEkULQD7ocOkYkJAaTWMlfDUlJSSpUqJZPJcmydfvz4sTZaBLwpKyurfPnyAC5fviyObN68GUDr1q11MHqJkpaWNmbMGBFV9/T0fDNBaffu3VWqVJEk1b1/f/r0U+rQQdnAjS+wCrOlS5cCGDNmjC4HTUhImD59+rRp09QPJicni5erLmfyLm5ubgA2i/ICTEOmTp0K4NNPP1UdEU1slixZotmBRJkab29v8TA5OVnkvHNQqYQ4ceIEgFatWulgLFVhmVcvN11ITSVHRwKoW7fC0rusaIuPJ5mMzMyy/29+9hkBtGCBJNPZt4969iQ3N1q4kIho+nSaOZOqVCGAqlQhLy8KDf2ABrlElJCQYGlpCaBXr16qHqpEdOrUKbHHqFGjRhqvucTyyMWFKlaUL1x4VntDcN/UYiw1lT79VBn3/Pbb7N0wRHT6NAUG0u7dyncPU1Py9dVpqjuvB4uQ58/J1VX5QvLwoJSUPP1UQACVLk0A1ahBx45peYqv8/b2zlHUgRVaMTEBN2700MaZb9y4YWNjA6Bfv36qaJhCoRBRsjJlymhpA8SoUQTQrFnKh3FxZGBAhobF4S2uCAfcL14kS0sC6IsvtDvQoEGDAMydO1e7w7zbZ599BmDGjBniYXJysrgHcJ9rhWrOgwcPWrZsCcDExOTff/9919Pi4+NVqe5OTk46u9Tu35927KCOHWnlSiK+wCrcAgICAHh4eEg9EcrKygKgp6cn9USIiMRdcW4ypkFpaWmiaP7p06fFkStXrshkMnNz8zebvBWQ2EHfpk0b1ZE2bdoA2L17t2YHKghpW1sXb6KOf6dOnXQznCgso6enu9WmiAbXqEHcCVgzDhwggNTeMahZMwIoLEyS6YiA++3bZGNDT57Q9On0668UGEiHD+c/WHbixAnxDty4cWP1C/Lbt2+LspM2Nja8MV/3LlwgmYzMzbWbH8p9U4urBw+oZUsCyMSE3r0cpPh48vRUxlKdnEhnd154PVhUHD6svCtTpgy90WbrPa5do+bNlQWTfXx0lwRQr149AIcPH9bReKwAEhKCL1wo//KlsjWaQpH5/Ln/8+f/xMUFxsdvSUwMefHiUHJyeHLy+bS0W+npd7Oy4jIz3782vHfvnqir3LVrV1XdbIVCMW7cOAClSpXKUb1WgzZuJIDU1xnOzgQUhxqPeu/qD1PI3bmD7t2RkICPP8aCBcqDKSlISdH8WAMGDACwZcsWzZ86b0RmqOiMB8DMzKxHjx5EtG3bNqmmVMwcOLC/WbNmp0+frl279qlTp0aNGqX+3YsXLz5//lz82dLS0t/ff9euXVWqVAkLC2vatOkff/yhUCi0N7eYGDx8qPzzggX43/8QH6+90ZgGiB7L6enpqiPTpk37/PPP5XK5jmeir6+vr6+vUChE5F1ab/5vYQWRkpLyzTffREdHN27cuEWLFuJgjRo1/vnnn59//tnCwkKzwzk7OxsYGISHh4ttEwDat28PIDQ0VLMD5U9mZuYff/zRtGnTXr16rV+/XurpFEMpKSkARLkMHWjVCpMno3x5vHq5adeiRYtv3/7R3FwRHAwrK12MWPydPw8AzZopH2Zk4MoV6OmhSRMJJ1WzJr74AtOmKR+6u6NDB+jldyXUunXrEydO1K9f/9KlS61btz4vfmWgZs2aYWFhHTt2fPLkSYcOHXbu3KmJubO88vUFETw9YWmpxVEcHBwAnD17VotjMJ07fBiOjjh9GrVr4/RpvL4cfI2lJfz9sWsXqlRBWBiaNsUff0Cby0FeDxYZcrn8778fdumCR4/g7IxLl+DurvyWQoHZs7P/Ht+lXj2cPAkfHygU+PlntGuHO3e0PWtERkZev37d2trayclJ64OxAitTpo+Nzfd37466fNk+IWGbQpF0797n9+6Nvn178K1bA6Kiut640enqVcerV5tFRta6dKnGhQvlLlxoJ5PJ9PX1RcXsWrVq1a5d29HR0dHRsWvXrl27dh04cGDLli3v3bvXqVOn7du3m5iYiLG8vb2XLFliZma2c+dOZ2dnLf1G3bvD0BDHjiExUXmkZ08A2LNHSwPqkNQR//x4/pzq1VPeA1FV58vKIjc3atmSoqM1PNyLFy9MTEz09PRUFb11LC0tTURPbt26JY6sWbMGOsw1K9YUz575nTjR0tBQv1evXjmqNBJRcnJy7dq1y5Ytu+r1Lic5Ut1vfGh3rfdJT6fgYHJ3JyMjGj1amdFARFOnkpcXZzQUauLeWL9+/VRHRBNR9Y5bOiMCZElJSbofOgfx70XjpU5KGrlcHhoa6unpKRrH29jYVKpU6erVqzoY2tHR0dTU9MyZM+Lhrl27ALRt21YHQ+fuwIEDIitHNDyXyWS//fab1JMqbjZu3Ahg8ODBOhsxNZUiIsjFhc6fVx4JDqZXvYE1KSwsTDRu2bRpv+bPXmINH04ALVumfHjunLIwv0REhjsRpaVRvXrUubPGalHGxsaKu4+lS5dWb1KSnp7u4eEBQF9ff4FEhXRKoDt3lJvQtV3Oh/umFjOi1raBAQHUqxe9sRx8pxyp7ppeDvJ6sIh5+vRpt27dypSpXq1appcXqZenffKEXFwIoI4d83q2/fuz0+S1tJ0mKipqzZo1EyZMqFmzpp6ensjpZEWHIjHxv3PnTFNSLt+963nnzqe3brnfvNn/xg2X69c7XLnicPnyR5cu2V28WO38+bInT7Z9b2TY1ta2SpUqL168UA1w6NAhACYmJvv27dP2L9O+PQG0aZPy4fnzBJCNzYdV/CuEil7A/eXLl87OWQA1b06qF4NCoaz7Y22tlV1dvXv3BrB06VLNnzpvhg4dCmD2q069CQkJon5utMZvL5QkWVkvbt4cEB6O8HC90FC/t9Zkf/r0qYuLi3gPGjx4cI7/4Tt37qxcuTIAMzMzTVV1P3mSvvySypVTXr0ZGNDQodkXWC9fUq1aZGhI8fHE7ScLJ7EMU79kEZVe37ydowOiw7iqo6aEvvrqK0ham6uoCw8PnzRpkiirJ8LKLVq0sLOzA1CuXLlDhw5pewJ3795NT09XPUxMTNTX1zc0NJTkTpIQGxvr6ekp4ux16tQJCQnx8/PT09MDMGTIkFQd99ws1lasWAFg1KhRuhz0+nUyM6NWrZRFPxYtos8/1/AQT58+Fa1ZJk+erOFTl3D29gTQ2VdFtP/5hwAaNkyq6agC7uLPmm3+lJaWNnz4cBFbX7Rokeq4QqHw8fERb1BeXl7cYFMHvvqKAPrkE60PJPqmmpub819rMfDiBQ0aRADJZOTt/VqZqTwGerZsoYoVCSBzc/rnn50a6TnJ68EiZ+fOndbW1iIb5uDBU+rf2r+fbGwIoPLl6YNqMT5/Tn37ZheCV+sYkk8vX74MDQ318/Nzd3cXVdFUzMzMzMzMTp48WdAxmG5dulQrKSmvf2tZWVlxcXExMTG3bt2KiooKDw8/c+ZMSEhISEjIggULAJQtW1bVKFX4+++/g4ODtTDxnH7/nQAaPVr5UKFQ3nC6cEEHg2tREQu4Z2RkdO/e3d7+EweHDPV0c29vAsjMTFvFIZcvX54jgqZjgYGBIpNadaRnz54Ali9fLtWUirrU1OuXLzcMD8f58xbx8VtzeaZCofD39xf5pBUqVAgKClL/rnqqu7Ozc1RUVP7m8/Ah+fnRRx8pP1MBsrcnX18Sr3PVBRYRbdpEAE2fTgCNGUNqETBWKLxZ7Fi0UJNki4yIz+qmw3PupkyZAmCWqhkKy5v79+/7+fk1bdpUdUFcvXp1b29vsasmKSmpf//+AAwMDBYvXqzjuTVr1gzA9u3bdTwuESkUioCAALGwMTU19fHxSXu132337t1iT5iTkxPfk9YUcRX+5Zdf6nLQ69fJ3p4GDiQRw9R4wD0jI0PkJjs5Ob3ZJp3lX3KyMs1YddNrwgQC6M8/pZpRRMRrEfbvv9dwVVARWxdv0Tli6//++6/YQuHm5ibh7cmSIDZW2WxQN4tz7ptaPFy5ctXRMQGgsmVzRq5Xr6a2bfPa61Kkurdvf5HXgyVQZmamj4+PSPhwcXFRX/FlZpKPD+npKWszPHqUn/MHBJCZGQFUrx6dPUvJyaT+YZKQkFszErmcLl+mlSvTxo4d27hxY319ffUge8WKFfv16/f7778fPHjwk08+AWBlZXXlypX8zJLp0PPnS+/cGfX06V+3b4+4fLmJQpH2/p/Jg/r16wM4evSoRs72oSIicqa0f/NNYocOZ+fNK9o3FTUfcL93756W4kpyuVwkeleqVElVXIWIFi4kgAwNP+yG4QeJiYkxMDAwNDSUJEeViJKTk83MzPT09B69ep9etmwZgF69ekkyn6IuISH4/Pky4eG4fLlJWtrNvPzI3bt3Vanu7u7uz58/V/9uvlPdX758uXHjzc6dlZ/E4l1m8mS6eDHH017blRYXRxs3Kj96nZ01X0bpXbKyyN2dVM1Uzp+nGTPo2DGaPz/7OTt30urVOppP4XTs2DG8XmqjWrVqAO7evav7ydSoUQPAnTt3dD90Dt999x3Umj+z3MXHxwcEBLi4uIjsSJHG7unpGRoamiNzKpdAj1YdPHjQ2tra1tbWyMjI3d39mM66WxJFRES0bavcF9mpU6dr1669+QTxj65WrVq8bNCIWbNmAZgyZYouBxUBd1WjSxFwP3mSwsI086kntt3Y2NgUhluSxcqJEwTQRx9lH3FyIoD2S1m0Z/9+6t1b2WlQS/755x9DQ0MAgwYNSlGL0h04cEBsdGvVqtWzZ8+0OIOS7eeflfVAdEPc7V67dq2OxmNaEBwcXKZMmZYt+zRtKr+pthxMS6PPP1euyz7ob3jLlu0ia9jc3Hzx4sV5T3UvWutBpu7u3btt2rQRuS8+Pj7q1+F37mS1bq3coPDrr/nv0U1EkZHUuDEBZGREAwZQtWqkKhdasyapBcaIiBITKTSUfH3J1ZWsrJSvqEqVqohJ2tvbe3p6BgQEREZGqr9Es7KyBg4cCKBKlSqSLFpZ3mVkPElM3BcdvSAuLlAu19iO3m+++QbA9OnTNXXCD2VrS6amdOGCcivH5s2bAbRr106q+WiE5gPuY8aMEQsYV1dXHx+fkJAQTSV0TJo0CYCFhcVZ1R5VovXrSU+PZLLcOolrROfOnQGsli6U2K9fPwCqzarPnz8X9wDi4+OlmlJRpFBkPXrkEx6uFx6O27eHyuUfUNs6R6r7JlWJKSIiiouLU6W6t2vXLvfUBlUh5tKlS9eo0Q0gExNydaXAQMp7mt3582RrSwDVqkWXL+f998i/jAzS1yd7e2XW2p491K0brVpF7u7Zz/njD/Ly0sVkCq0zZ84AcHBwUB2pU6eOVGlQorb1mxFJ3fvrr4TatdNmzsxbplBJlZaWFhwc7O7uLjIiRfq2u7t7cHBw7hm4y5cvF4GeAQMGaDuJ8tGjR4MHDxbTs7GxUd0SaNGixT///KPV0ZOTk318fMT/HBsbm4CAgFwm6ejoKLZGHjhwQHtTKiF++uknAD/++KMuBxUBdyL65RcaMUIZcO/eXbl0tLQkBwdydydvb/L3p5AQ+qBkj7Vr1wIwNDTU5b2iEiJ52bLX6nrI5crE49czFXTsp58IIG9v7Y4SEhJSpkwZAK1bt1bfYRMZGVm9enUANWvW1E3XjZImNZUqVSKAtF9fTWnGjBkAvvnmGx2NxzQqKyvr22+/FRcww4YNS07Ozg99+JDatCGxNMvHTvKSsB5kKps2bRL3U6tVqxb2eqWFrVu31qnjVLGi3NaWQkM1MFZqKnl708CBNHo01a5N06Ypj9esSTdu0NmztHAheXhQ3brZ2yPEV7VqNHgw+ftvDwsLy73cYkpKitj5V6dOHb49XGhlZsaeO2dy/XpnhSLz/c/+ECEhIQA+Uk+Y0K3p09eYmpabOXOmePjixQtRRrswVMfNN80H3MeNGyeuNVUMDQ0dHBy+/PLLgICAa9eu5a+u2a+//grAyMhIvWD/vn0hDg7xAL2qba5F8+fPF7EMrY/0DmFhYbt27VLtmieijh07cm7FB8nMjLlxo1t4OM6eNXjyxDd/J7lz506XLl3eleq+Y8cOUcTDzMzMz8/vzVf75cuXv/32W7ERFYBMJmvXrl1AwMv8Nb159IhatFAWDdRBca2MDDI1pS+/JB8fIg64v8PFixcBNGrUSHWkUaNGAC7mSFPRiSZNmgCIiIjQ/dA5/PEHATR1qtTzKJTEisvLy8vKykq8M+jr6zs5Ofn7+6s3rsnd/v37xUV/06ZN79+/r6V5+vv7i4ItZmZmPj4+6enpUVFR3t7eorqLuCnu6empjVd7cHCwiFjp6el5enomJiaqfzc8PDz99Q3V6vV2Fi5cqPH5lCjTpk0D4Oubz8/N/FEF3NPSqG5dGjmSPv+cJk+mFi3I0jLnelJ8WVtT3753Pvnkk5kzZ27cuPHcuXMv31bxNCIiQjSU9vf31+VvVEJ4enqWtbTc9Or/bcb161n6+lStmrSz6tePANqwQesDXbp0SbXDRv1u95MnT1R3AQ+rtgoyDRHbnR0ddTci900tumJiYrp16yYuD3J8rh09qrxzY2tLp0/nf4jivR5kRJSamurl5SX++tzc3NSrIKSkpHzxxRfiW19++Y9m6yNkZdHo0bRgAVWvTpcuERHVrElLl752LWRmRk5O5OVFAQF0+/aHnT8xMVFUjGzZsuVbr6CY5KKjF4eH48aN7ho/c3p6ukgtvaftzuPvsHXrVrxeRlskPW/QwdWb1mirhvutW7cCAgK8vLycnJxUmXqCubm5k5OTt7d3cHBwHuurrl69WiaT6enpBQYGqg6eOXOmdOnSpqblfv31gZZ+C3UPHz6UyWRmZmZJSR+QE61V8+bNAzBw4ECpJ1J4paZeffx4xqNH38fHb01OPnfpUs3wcFy4UP7FiwIlPIpU99KlS4tU982bN6t/Nzo62t3dXbzau3btKt6w4uLi/P39nZycVP8QqlWr5u3tne8afyqpqTR8OAGkr0/aDoaIgHtMDFWuTNevZwfcmzenBQuUX/37l/SA+/Xr10VqgOqIg4MDgDNnzuh+Mi1atABwuiCLBg3x8yOgpL823hQZGenj41OzZk3VO4O9vb2vr2/+KrNdvXq1Vq1aAGxtbSMiCvreksO5c+datWolJunq6ppjt2laWlpgYKCq7hYABweHgIAAjZTGfvjw4aBBg8RpmzVrdurUa62oEhISvLy89PX13yxYJJfLp06dCqBJky+9vRXc3C7fJkyYAGDevHm6HFQVcCeivXtJT++1Gu5xcRQeToGB5OtLHh7k4EAWFgRQy5Y78LrKlSt36NBhzJgxf/zxx5YtW8LCwkS3YQ8PD13+OiWHCCuHvsroW79+vZmZ2bQxY6SdVbVqBJBudpo9fvxYfO6XK1fuyJEjquNJSUl9+/YFYGxsvHHjRl1MpcQYPJgAUlsmah33TS2izp07Jy66ypcvn2MD3IIF8QYGBFC3bhQTU9CB4uLiPDw8iuV6kIhiYmIWLFig49vwhcqqVasAmJqa5rhzf/Xq1Y8++ki8z7/1XkvBjR5NK1fSmjXk5EQKBdWsSWfOUN265OFBCxfSuXOU+eF5z+rzfPbsmdic7eLiks7NAQqfa9ecwsMRG6uVwhsiV2np0qXaOPl7JSUlGRsb6+vrx7x6C/7zzz8BfKKDZuhao4umqUlJSaIbsoeHh729fY6FkCg+4+vrGxoa+tZNLjt27DAwMADg5+enOnjz5k3Rh3DYsGE6u9Bp3bo1gByFRCQ0bdo0CwuLdevWST2RQio19VpERMVnz+bHxq59/PiXxMS9Z8/qX7nimJ6umVt2d+7cEffc8LZU940bN4qUT3Nz81atWqluO1laWnp6eh47dkyDH8AKBfn6Kqv+aaltTno6bdtGL1+SqSkRkb8/de2aHXBv2pT+/lv51adPSQ+q3r17V1xAq46IetOSFC5wdnZWD3xIaPFiAjTc87DoevjwoZ+fX/PmzXOsuApe/Cc2NrZDhw4NGowoX16xbZtGJpsd0Raxy8BcQxpXrlzx8vIS9yMBVKxY0dvbO99dBDIzM/38/ES2RZkyZfz8/LKystSfsG7dukqVKgEwNDT0EVtv3vDvvxsqVpQD5OZGheaOeRHz2WefQbd92uVyun2bunVTnwN99917furxYzp27P6yZcumTZvm5ubWqFEjExMTvMHQ0LBp06a5b6xm+ZOZmWliYiKTyVR7UMRNr59//lnCWcXEEEClS2eX0N24kdat00BM7V2SkpJcXV1FzEV9K2pWVpZ4O/3tt98y8xEUKanCwki9vMGBA5SYSNu2kSoJLz6e/vqLXv980DpbW1sUjqp9LI9Wr14ttjc5Ojqqp3CmpKR88skndes2KVUq2dtbky+kjRs3li9fvtisB7OyskJCQjw8PExNTQFYWFiU2F7QIsUkR1woICCgVKlSAOrVq3f+/HktDS0C7kTUuTMFBLylhvuHSk5O7t2799y5c1VHJAm1sbxIT78THi47d66UXK6V/Qf+/v4A3NzctHHyvBD/slQRzsuXL4v7o0X3daiLgHsOjx8/Dg4O9vHxcXV1FfvfVd5s43Dy5EnxtqW+kH78+LG4Na3j226iadjw4cN1NmIuli9fLpPJ9PX1t27dKvVcCqno6CU3b/ZVP5KQsFOh0OQLRj3VvWLFilu2bFH/7rNnzwYOHGhgYGBubq6vr+/i4hIQEKC9HRIbNpCpKQHk7n4zRnOLyMhI8vamChUIoI0blQF3uZxataIvvuCSMm/x5MkT8XpQHenUqRMASQpJi/JH+yVtVSesWEEAjRol9Tyk9vLlyw4dOujp6YlPPWtr6/Hjxx8/flyDK660tLRx41JEltOcOQU92+bNR8S2aAMDgylTpuTxHezFixf+/v4ixweAnp6ei4tLYGBg1oesYsPDw0WWKABXV9ccdXJu3rzZvXt38V1nZ+dLYmPtO4SGkrW1so+jdsrtFHNDhgwBsH79et0Md/8+2dtrpsWmXC6/e/duSEjIokWLJk2a5OrqWq5cOQCTJk3SwNnZGyIiIvD6Hi+xdgqWtMxBSAgBpLZHmZo0IYBOntTioJmZmePGjRPXA+rFwWJiYgCULl266K4eda9jR9qzJ/th3boUEUHlypGzM4kPz3PnSPdVZ7lvahGSlpamKgDi6empHkCIiopq3LixCB/v2nUql5Pkj2o9aGFhUXTXg6dPn54wYYKqfqC+vn6vXr3Wr19fYjOgxdv7d2qJAL/99pv4n/PJJ59otRiLKuB++TLVqEGVKhU04L5161YRVlK/fxARESEidePHjy/YfJkmPX78c3g47tzR1h7NBw8eyGSy0qVLqxey1qW//voLr29CFdtSC8N+/fyRIOCuLjMz88KFC0uWLPn000/t7e1VMQihfPnyItru6emp+hEJC0vdvn1bJNlJ/tGiyvpXvxXJckhKOn3+vPnjxz+np2u36NDNmzdFgxHx7pCgVn7v2LFjInf16dOnWp2DcP48NWoUV6NGXTs7u8jIyIKc6sED+v13atAgux5ckya0ebMy4E5EZ8+SsfE7A+4xMRQcXEIDW3FxcSJ1RXWkR48eAHbv3q37yfTq1QvArl27dD90DmvXEkBDh0o9D6mNHTu2YsWKJiYmrq6ugYGB2vs08fPLznLKX1mXW7eoZ0+qXTvN0NDMwcEhfzWRwsPDPT09RSYUgKpVq/r4+Ly3mlx8fLyXl5e4JLCzs9ujHmghysjI8PX1FZnLZcuW9fPzy0vcKiqK6tUjgCpXpvDwfPwqJVqfPn0AbN++XQdjpaaSoyMB5OqqlfMfOHBAvBQ/6PYPy6OVK1cC+Pjjj1VHRIDm4cOHEs5q1iwC6KuvlA/T0sjQkPT1SQepmbNnzz5+/Lj6kX379onbhFofuxh5V8DdxUXZ1lKSgDv3TS1CJk+eDMDExGSlCFW+smvXrrJly4qU5MtaazladNeDYkdm06ZNVfGZglQ+LE7EtUTdunVVRx48eFCjRo3Vq7VS6EOdKuBORNOmEVDQgDu9uluQo13iwYMHjY2NofMWPiwXkZH1wsORmLhXe0OIDnBSpetdvXpVZKSpFndffvklgJ9++kmS+RScxAH3HF6+fCmKz7i7u4ttLNWqVatbt65qUZSVldWhQwcA9evXz1HBQzdEvp4kgTOVt2b9s7dKTg6/e3f0hQtWDx5o92pYlepevXp19Tym77//HsDEiRO1Orq6hw8fi/KpZcqUyccLNTWVAgPJ1ZVEEUOAypUjT09ld/WMDLKxyX7ypEk0YABt2PBa2vLcufTttzR2LO3cSR07Unx8gX+loiY5ORmAqerWBFG/fv0ASLIZxc3NDUCOvReS2LSJAJKu7XShkJiYKJPJjI2N4zTbQekdgoLIzIwAcnH5sH+J6ek0Y4YyQ6pcOVq9+lIBMzHj4+P9/PxEhoK4oHd3dw8JCXlrXn9gYGCFChUAGBoaenl55cgCO3z4cIMGDQDIZDIPD488doIRYmOpY0cCqFQp4r1hH0TslQkJCdHBWKNHE0DVq5OWrvIUCoUoTrpz506tDFCyff311+qL83v37omFk7SzGjqUAFqxQvkwPJwAathQmsn88ccfAL5Shf9ZHnTsSBs20LNnyq9atZQB93PnqHJlev5cmoA7900tKjIyMvr162doaKhe3VGhUPj6+opb+3379k3IX7vSt0lMTLx69ar6kSK4HkwNDAx0dXUVGX4AypUr5+npWRhqVBYSWVlZ4mI1IiJCdVA3SZlBQdmJI0lJNH06xcZq4LTffPON2Odx9uxZ1cGtW7fq6+vLZDJdFhVk75KUdDI8HBERFRUKLZak+/bbbwFMnjxZe0PkTjQkO/lqE+KOHTsAtGrVSqr5FFDhCrjnsHfvXgBWVlbqVQ7/+eefatWq5WjXpjM///wzgDHStX6KjIwUu6HVs/5Z7jIzn50/b5GSklvBAY2Iioo6ceKE+hFxrfPff/9pe2h1qampI0aMENv98nhHWi6XHzhw4OuvY0uXVsbZTUzo449p58789F1R+fxzunkz/z9eRGVlZYkaGqojgwcPhkT9tXVcCCIXO3YQQL17Sz0PSYWGhgJwdHTU2YgnT1KlSgRQnTp57RZ45AjZ2yvfB9zdXyubW0ByuTwkJMTd3V21fqtfv76vr6/q9sONGze6du0qvtW+ffscuWZPnz718PCQyWSiYEX+gr/p6TRqFAEkkxHfs867Nm3aAAgLC1Mdefr06YQJEzS+wVM0ezAxIbXlnub5+voC6NevnxbHKKnEhr+9e5W5V9u2bQPQTb0YvxTq1yeAVAV1ly4lgEaMkGYy4nN5hSr8z/KgY0eyt6e2bZVfJibKgHtiIn3/PX36qTQB90LVNzU5OTkoKEjqWRReok/pqlWrVEdE1qS+vv4ff/yh2c6Wa9asyVESoQitB0NDQz09PUXvHADGxsZiR2ZG/jZLFmuff/45gO+//17H4+7YQVWq0OzZGj6tQqH45JNPRJEJ9dYUixcvFq+izZs3a3hI9oHu358QHg5tJ5IeOXIEQIMGDbQ6Si78/Px+/fXXBw+UNSpSUlJMTU319PSeaXBRqkOFOuBORPXr1wdw8OBB9YMSdue4dOmSSNWRpNPRgwcPqlWrJu7Dc6ul95LLk4gURCSXp1y4UCE19YqOJ/D8+XM9PT1TU9OUlBQdD62etTF69Ohc7rdfu3bNx8dHZJ526LANIAcH8vPTQGrh9evkoa3yYoWdaC+p+kfq4eEBICAgQPczEVdOOfbPSmLfPmWqdUm2YMECAJ999pkuB334kJo1I4CsrOjw4dyeGRtLnp4kkxFAtWuT2qZSDbt79+7//vc/0exURCvGjh07btw40UysQoUKAQEB6qtfhUIREBBgZWUl9o74+PgUsLCgqt7O6NH5rLdT0ojtfeodwESNRXHXxMfHJ999cdWdOEHGxgTQv/8W/GS5ef78ubGxsYGBgbR1ToofhUJRpkwZAKqyCT4+PgC+/fZbCWeVlER6emRklN1C8IsvCKC//pJmPvXq1QNw4cIFaYYvmt5VUiYxkVJSqFYtWrxYRwH3HJHZQtI39dKlS40bN5bJZIWhhGDhJDoBdu3aVXXk6tWrNWvW3KeFax0R5vbz8xMPi9x6UHBwcPDz85OkokBRsX///hxVZXTj008JoJkzNX/mjIyMnj17ArCzs3v8+LHquPgoNzU1PXr0qOZHZXmjUGRGRFQMD0dy8jmtDpSZmSnK998qeK0iDWnbti2KbMeUwh5wnz59OoAJEyZIPZFs4kL50KFDOh43JiZG7KPv0KFDamqqjkcvip4/X37pUp2oqN6XLtW6d0+Cdh+rV68G0LNnT90PLQQFBZmZmQFwcnLKcUswNjZ2wYIFrVq1Ul1X2dnZ/fbbIk0lpB8/Tl99RSX2dSr+t6tKYYwZMwbA0qVLdT8TT09PAP7+/rofOocjRwigdu2knoekxF+Hag326NGjZcuWqe9F1ZIXL6hnTwLI2JhWr6a4OFJl46WnU1ISKRQUEKBsK2piQj4+pINOOenp6YGBgS4uLiJpvUyZMqJKTI7VXUREhEivBtC5c2dNxTVEvR2ZjH74gfr1yy7l/P33FBZG48eT+l/L0KH0QLutQAo7UYPlxo0bqiNXrlyZNGmSqP4n9vR07dp19erV+U6JePqUqlYlgLSx516hUISEhMyYMUN1xN3dHcAvv/yi+cFKsKioKABVq1ZVHenbty+AjRs3SjirsDACqHnz7COtWxNAOr+QJyJ6+fKlnp6ekZGR5O2gipZcAu5EtGMHVayo9YB7TEyMt7f36NGj1Q9K3jdVLpf7+vqK29WNGjXSwRVFEZWQkCByJNUbsGsja1sul4tKI6rLlcK8HoyPj/f393dychJXYgBsbW29vb3VP+7Zu6iqyly8eFGHgyov169oJ5MwOTlZBDcbN26sXgBT9BwuU6aMeu4F06WEhB3h4YiMtNfBWOIieeHChToY671EPe3GjRsnio/8oqawB9zPnDkDoEqVKprd6lUQoqqRjmsvpqSkiK1wjRo10k3x3+JBLk9OTb2SmRmTlnb75ctj7/8BjRo+fDikbmx7/vx5sStCtM3JysoKCQnx8PBQ9TC0sLDw8PB4VzHl/ElKol69aPRo8vSkS1ov5FMYif5Lsa8q6o0fPx7A/PnzdT+Tr776CsC8efN0P3QOJ08SQC1bSj0PSYlbXKr7tevXr9dZXYusLPL2JoB+/ZUAUr0trVhBw4ZR27bKGjLdu0tQBurKlSsigXrcuHHqx5OTk318fEQcwcbGRuN7RE6fpr/+or//ptKlSZWA26cPbdtGrVq9thugWrW8FuQpripXroy39b1UfaaIxbxIgMqlQP+7ZGZShw4EUNu2pI04ZEJCgpmZmUwmi4qKEkdE40pbW1tunapBgYGBAPr06aM6IvJ/pY3dLF78b8OGn02frqxyk5VFpUqRTEaSXE2L3onN1cP/LA9yD7gTUb9+9NFHFBxMgwZpPtsjLS3tjz/+ELs3jIyMHqjdgJW2b+r9+/c7duwIQCaTeXp6SrgFvEgQBR5///13rY5y+vRpADVq1FAdKbHrwZJAZNL88MMPOhvxwAECSKtZ9W/N8pTL5eJfUOXKlTWyqVElISFh7969P//8c69evf7V9g7HoszL69M5c9pdv66LeMKKFSsAuLq66mCs3EVERIh62u7u7kX0ir2wB9yJqGbNmgBylMaWkPgc1eU9gIyMjF69eomVofpteZZHL18eCw+XRUbqtBCVKsHhutRxmuPHj4vSgaampiIQDEBfX79nz57r16/X/fbGkkDUylDtxRNdaGZrvNheHkyZMgXAn3/+qfuhc4iLo8BAOqbr216FiFwuL126NICYmBhxRGzh+vHHH3U2h7AwunuXKlSg6tVJxE5XrKBRo6hXL6pUiaQoeqS0bt06AL169VI/KN649PX1v/76a+0lNfz9N40bRzVqUGQkEQfc3yYwMNDS0tLExKRVq1b+/v4vX7588zkJCQkBAQGq/QoizTnvWXJff00AVapEjx5pevavjBw5EsD//vc/8VChUNSuXRtAPrrJsXdZsWJFpUqVvvrqqzVr1ty5c+f58+cASpcuLW2F69GjRwNYsGCBeHjlytW6dQf17btGksnMnz8fkvaCKqLCw+nVJycRUVgYvXxJhw9n9xmKjqZDh5Q9S1xc6G3vUvkUHBysqrPh4uKSI5V1165doviG7l/kQUFBIgxRoUKFHTt26Hj0omjnzp3QfmHiX375BcAXX3whHvJ6sHgLCQkBUK9ePZ2NOGECATR9unZHefDgQfXq1fF6HeP09PRu3boBqF27tqpwXD5kZWVFRkYGBAR4eXk5ODiIkkfCsGHDNPQbFDeJiYlv7tHRnmfPnklVCEvdtWvXxFZaNze3oltPuwgE3CdOnAhg6tSpUk9ESaFQiFvEqs65QkZGhoeHx9y5c0+ePKnBjaIKheLTTz8FYG1tLXmJwCJKociMiKgUHo7k5DM6G1TcmKlZs6bORnyrjIwMIyMjU1PToUOHdurUCUCtWrWmTZv2SHtRDUYkrlFU9/9FXPXXX3/V/Uy+++47ADO1UefvQ1hYkGpT0JkzVDJz+27cuJGj2ELv3r0BbNq0SZfTuHuXatUiPz9ydyd6FXB/9IgSEnQ5i5weP34sEqzUkxfWrl3brFmzU6dOaXXov/+mKVNozRpq144UiuyA+/DhNH268svCooQG3J88edKvXz+xClK1urWwsPjss8+OHDny1rSDe/fu+fr61qpVS7V8em8d2HXrNrRuHWRkRMePa/F3ES2LK1WqpKoh8Ntvv4mLeC2OWpLExMSoShPo6+uXL1/excWlZs2azs7O0k6sWbNmUGv5K/oZDhw4UJLJfPbZZ4Vnm3bxExlJVaoQQI6OFB1d0LOdPn26Xbt24n2sQYMGb5ZHP3jwYOPGjc3MzIyMjOzs7Pz8/HSTY56YmCjyagF07979yZMnOhi0GMjMzBQJMWfOaHE9KMpxbN++XTzk9WDxpqoqEymyNrRMoSBbWwJI0x3r3+Ly5cvilt7IkSNV13svXrxwcHAA4Ojo+OLFi7yf7dmzZ8HBwd99913nzp1VLXkFExOTtm3bTpo0aePGjQ9KeAHHd/vnn38AdOrUSWcjir/oPeqby3QrKipK7K/t1q1bAXt3SasIBNyPHj1aGD6o1H399dcAvL291Q+Gh4er3jgMDAzs7e09PT0DAgIiIyMLkgs/depUAGZmZse1uhIt7h48+CY8HPfv664Q0M8//wzgyy+/1NmIbyXa/NapU0ehUKSnp1+6dKlz586c06dtdevWhVr1xp9++kk3iczRb6wvRaKNLrc6vpWFBdWpQ2KBU2ID7kFBQQB69+6tOlK1alXovNiCCLhnZlKjRrR7tzLgXhiIEG14eLj6QR3kDIqAu0JBHTrQypXZAfeffqLAQOWXtbVkAXcJU4MDAwOtra0BlClTxt/fPy4uLkcOey6VXuVy+aFDh0aNGqVaVpmYmAwePPjNMEdERIQo9rJqldY3MjZs2BDA5s2bxcOnT58aGhoaGBhwxKEgYmNjly1b1rlzZ9EtXKS0d+3aVWzocXJyUm+8pnvp6enGxsZ6enqqnRmTJ0+W8D5006ZNAfAlvfbcvk21axNADRpQvhMBHzx44OHhId7rrK2t/fz8cuxkv3btmuhPIG7jiU9zkWw+Y8YMVUVBbbh34oTY/F2qVKnC0KGnaJk0aRK0WRg2Li7OwMDAyMhIFYvk9WCxN3bsWAA+Pj46GOvUKQKoShXSTZ2FU6dOlSpVCsB3332nOhgdHS06Gnbq1CmXMGhmZmZkZKS/v7+Hh4e9vb3q0lGwsbFxdXX19fUNDQ3l3oR5Ie6T/fPPPzob8YcffgDg5eWlsxHV3b9/v0aNGgC6dOlS1F8hRSDgLpfLbWxsAFy4cEHquSgdPnwYQO3atdUPRkdH+/v7f/bZZw0bNlTfGgOgfPnyrq6uv/zyy969exM+JI1wwYIFAAwNDSW8uVQ8JCefDw/HhQtWCoWOulSJBIfg4GDdDPcuoki0egafuA/PtYm0qnHjxgBUrauePXt269YtrS7A5HK5v7+/hYVFjt50f/zxB4Bp06Zpb+i8sLCgwEBycKCsrJIbcBcXLtNf7QKNjY0VC2YdR1RFwJ2IQkOpdm1avLiwBNzFXq45c+boeFwRcCeiyEiqVo06dSpEJWViYmJq1Kjh4+PzQVcOBff06dMBAwao0idzfF7cvXvX19dXVWMBr3LYY9QrPrySmpoaGBjo6uoqEuRzfCbGxcWJGy0eHh7a/ZWIiOjvv/8G0KNHD9WRgQMHShh7LdJSUlKCg4Pd3d1FlwUAxsbGrq6uAQEBIrR96dIlsdnLzs5Owg2a586dA1C/fn3VERFmejNbWQfS09ONjIzUo/9MG548oY8+IoCqV6cPfeklJSX5+PiYmJgAMDU19fb2zlHQLDY21tvb29jYWHyC+/j4pKSkyOXy4ODg1q1bi38LpUqV8vT01Pzd9MxM8vWVGxt3btbM0dGR9z3nw/nz5wFYWVlpqWvxxo0bAXTu3Fl1hNeDxd7evXtzfMpoz7ffEkC6DIGGhISIT3n16/Pbt2+L6Fz//v3Vb0Y+evQoODjYx8fHxcVF1R5A9a7o5OTk5eUVGBhYkHI0JdPDhw/19fVNTEzi4+N1Nujx48fFJZzORlR5+PChWB20adOmGFwvFYGAOxF9/vnnuskPzSO5XC62pL2rJ/XLly9DQ0P9/Pzc3d3FM3Pc03N3d/fz8wsNDc3lxuC6dev09PRkMtnKlSu19quUIJcvfxQejvj4bToYS5XgIPl7xPfffw+1BGdRULVMmTLcEkerRJHE0zrY70dERCdPnhRb5qFWNVLw8/MD8PXXX+tmJu9iYUFJSdSnD/n5ldyAuyjNsWHDBvHw0KFDAFq3bq3jaagC7kQ0ciQ1aVJYAu7//vuvuHbX8biqgDsRTZ1KMlkhCriLm+4iOjBz5kztFbJXlyOx/V0fFnK5PDQ01NPTU5XDLuKtgYGBqpot6h48eDB79mz1b8nlctGfpmnTprqpERkfH29mZqanp6eq9/Xff/8BqFmzprRFxouQtLS04OBgDw8PkcAOQF9f38nJ6a1Vgx4/fiy2JJcrV+7IkSOSTFjswh46dKh4qFAoxB55SfLuRfRf2yWkGRHFx5OzMwFUrhy9XgH0neRyeUBAgCgXK5PJ3N3dczQGzMjI8Pf3F2+Penp6Hh4eb9ZyCQ0NdXV1Fbmcenp6rq6uGquKFhVFrVoRQPr6z3/++a1vsywvmjRpAmDbNq2sB0XNqFmzZomHvB4sCTIzM8uXLw/g8uXL2h6rfn0C6NAhbY/zmrVr174Zkrp06ZLoBDBw4MA///xzwIABVapUUY93yWSyBg0ajBo1asmSJREREUW03WUh8fvvvwP4+OOPdTmoVP0noqOj7e3tATRr1ixOku72mlY0Au579+61tKw5ePB6qSeSTdTO++STT/LyCXr37t0NGzZMmjSpbdu2OW73mZmZHVZf1r+yf/9+kT3x119/aWH6JdHTp7PDw3Hz5gAdjLVhwwYAXbp00cFYuevfv796jO/AgQMAnJycpJ1Vsefk5AQgNDRU2wPFx8d7eXmJjfxVq1bNUQ08MzNT5G82aNBA2qJ4IuB+7x5VqkQ7dlDz5pSRQdrJLiq8unaNbd/+wtWryuIV4l6Ip6enjqehHnB/9ozKli0sAffbt2+LwJyOQ5/r1tHffyv//PIldexIhw/T0KGkXvvExYXu3tXlpLKFhoZ26dJFXDCYm5t7e3tr7+oz98T2d8mRwy6yCry8vM6ePZv7D4o9H+XKlbt9+7Ympp8nI0aMAPD999+LhwqFQiTR/PfffzqbQ1GUlZUVGhrq5eUloo2C2NmQe/3opKSkPn36iPsxa9eu1dmEVSZMmKAe/7pz5w6AChUq6H4mRLR8+XJwUzhdSU6mnj0JoNKlad++9zw5JCRExGHFjXBVxX+V4OBgVWsKFxcX1RbGt4qIiPDw8DA0NBTPvzN69PtnkLuAADI3J4CqVaO3LRtZ3s2d69++/XhPzysaP7NCoRAxR1VCHq8HSwjRmvunn37S6iiXLxNAVlak++aRs2fPBmBkZKReD+3IkSNGRkYiJitYWFg4OTl5e3sHBwfn0rmHfahGjRoB0H1z7OHDhwP4W7VMekV7dxDj4+ObN28OoEmTJlqtDaBLRSPgnpGRVaECAYWoa9lXX31lZWUlUnvs7e09PDz8/PzCw8Pfe/tOFLQKCAjw9PS0t7fX09N7s3jo6dOnRerQt99+q7XfoMTJyHh69qzB2bNGmZla/wAQtRH+/PNPbQ/0XmJ5oGrkMnfuXACff/65tLMq3hQKhSgpo+3amoGBgSIVy9DQ0MvLK8eH37Fjx8TqUeSfip3RutyJRkT379PgwXTjhjLgTkQzZ1KLFtS8Oc2dS9Wqkb8/lZCMh8REksnI1DT7KnnixBdt2jxYseLt26S0Jz6eXoWeiIh27KDAQB1P4Z1EQ/JLly7pctBFi2jqVLp3T5djfjCRNakedtf4Zagqsd3CwiKXxPZcPHz40M/P76OPPlItvezt7X19fd+6dzg4OFhPT09PT0/Hke4jR47g9dapM2fOhHQtNAu/8PBwLy8v9c2a9vb2Pj4+N2/ezOMZsrKyRNRbJpPppsqtOnH/e//+/eLhli1bAPTs2VPH0xDGjx9fSC4OS4iMDBo6VOS5K4KDD731OVevXlW9u1arVi0gICDHu9+ZM2fat28vnlC/fv28hzyePHni4+MzqEkT0tMjgD76iAICPjhUlpCg/B0AGjSIiksAQkJPn5KBARkZkcbjgRcuXABQpUoV1UuI14MlhNgt17BhQ62OMm9eWPPmsaNHS7Mhb9q0af3798+xH9HW1haAm5vbypUrr169yhsmtEHsjStfvrzuNzaJJvPdunXLcbxz586iYoe/v38B21WqS0xMbNGiBYC6desWp2bgRSPgTkQjRxJAv/8u9TyIiGj9+vViZ03dunVV+QuqlXDnzp3/97//bdu2LS8vlDfjX1FRUSKINmLECH7b0qyoqJ7h4YiOXqjVURQKhWiprOOw0ZuSk5P19PSMjIxUlQpFX5f58+dLOzHtkby5+bVr10R92PLly4stybdu3dL4KDdu3Ojatat4z2nfvr3qAlqIi4vz8vISnSTs7OzE7T3xsFy5cr6+vjroPZKZSX/+SaVLE0BubtkB9/R0ql+fmjenTp2U68fmzQua+FUkhIYSQI6O2UccHQkg7e+CeItbt6hiRRoxQoKhcycyKRYsWKCzEeVyqlmTACoS+c3Hjh1TBYZKly7t5eWlkTqYz549E1th8CGJ7bkQIVqxw1rkJbi4uAQEBCQnJ4sn3Lhxw9LSEsAff/xR4Ol/MLFTdevWreLhkydPuHXqmyIjI318fFQpvQBq1qzp7e2d77LRs2fPFh9Dnp6f6yw7Ty6Xi/wVVapdQEBApUqVVL00dExUcz5w4IAko5dMcjl5eckdHP5nYGCwYsWKN58gbsmULVt2zpw5Oep6P3jwQHX5ZGVl5efnl/nhr11FfDz99htVqqS86KlRg+bOVV4SvdeBA1S1KgFkYUHcH1VzxNaHhZpeDvr6+gIYPXq0eMjrwZIjIyNDJGJqtaqMKNEmVT8AhUKRI6/04sWLAKytrblcjFa9tdXzL7/8ooOi07Gxsfr6+sbGxupZfXK5XNxoUalSpcqwYcP8/f0L0lkkOTlZ3NuuXbt2MbsgLzIB961bCaAWLaSeB9GBAwdEsRdxvzojI+O9LZh9fHxCQkJUS81cPHr0SDTk7d27dz6u6ljuYmPXhYfj6lXtFk0WDXmqVq0q+f2S06dPA2jSpInqSJs2bQAc0nHtN12Jj4+3srJycXEJDw/X/ehJSUlTp04Vd+AqVarUp08f8UZhbGw8efJkTaWjpqSk+Pj4iDOXK1cuRyKqQqEICAgQcS5DQ0Nvb29VbP3MmTOqwhRVq1b19/fX3uXRsWPUuLFyaenqSvfv048/ZheQOXGC5s0juZwCA5WxToBcXOh99SeKtgULCKDPPlM+zMoiMzOSyUi3Ww6UNm8mgCRK8cyNv78/gMGDB+tsxJ07CSA7OypCFbzDwsJUYfdSpUp5eXkVJA2k4Int75Kenp6jqaalpaWHh0dwcLDYG9u/f39JPiX/+usvAL169VIdcXNzA/B7IcnpkNTt27d9fX3r1aunuo61tbX18vLSSIW0LVu2mJmZdewY6uJCumkDfO3aNQDVq1fPcVySC2xV9L/Y7JIuQkQkVCaTvXmTLyws7Ouvv87xlyJap4oqoEZGRl5eXgXtXJ2eTgEBZG+vvOixsCAvL8oRU0hLI9U91PR0mjJFmRrv5ESvV5NnBbR+PQHUqpWGT9uxY0cAQUFB4iGvB0sUUb7/559/1tL57969K5PJSpcurYOsqTz6+eefAYwZM0bqiRRnWVlZYouhejuQCxcuiJDj559/nks/SI0Q7xXbt2/PcfzWrVsi/lm1alX14GfFihVdXV19fX3Dw8Pz/taXkpLSqVMncc15p9h93hWZgHtqKpmbk0wm8b7vM2fOiPoMEyZMeOsTEhISQkJCfHx8XF1dxa1OFQMDA1F8Rmy+eLNMbWJiYtOmTQG0bNkyKY+5D+xDyOUp58+XOXfO9PlzLRYnEn0tCsPHz4oVK6BWLVShUJQpUwZAdHS0tBPTksOHD4v+LTKZbNiwYbqsCxwcHFy9enW86qMlVm7379/39PQUBdZLly7t4+NTwMaABw4cEHEQmUzm4eGRozre9evXVSH1Dh06XLnylvKUISEhqvaq9vb2gZouJhIXR15eyhVirVq0e/d7np+eTv7+VL48ASSTkbs75blKQRHj6UkA+fkpH165okx0k4SPDwFUCCuWXb16Vdyv0tmIvXsT8FqNnaLi/Pnz7u7u4oJbhN0/tAmkxhPb3yU6OtrPz0/UZFRp0KDBixcvtDRi7mJiYkxMTPT09O6+Ksy/e/duAHZ2diW8derSpUtVf0GVKlX66quvwsLCNBsqOnPmtigR2aQJaXtD2rlz58StKd33pn4r8f72ZvSf6cbChQtFrrqXl1cur2rROlUEOMQ+RU1eTMrltHUrtW2rDLubmtK4cXT3Lj15Ql26UL161KYNVa9Oy5eTXE4dOpCBAXl7E/dH1bTUVLK0JICuXtXYOV+8eGFkZKSvr6+6ecPrwRJlz549ABo1aqSl8//999/QedvM3Imw1a5du6SeSHH24sWLkSNHGhsb5yjAuHr1ajMzMwDNmzfXasTjl19+ATBu3LhcnqMKvufIfC9fvrwq+J7LBXZ6enrv3r1FsL4gOfKFVpEJuBORu/trAQvdu3nzpij2MmzYsDyuym7duhUQEODl5eXk5KRK8hLU20pER0enpqaKbRR16tThzz/tCQz8X6VK5v/73/+0N0SHDh0A5GhfKYnJkycD+PXXX8XDu3fv6jiYpXtxcXHe3t4iKcnQ0NDT01MjJRdy8fDhw0GDBol/1M2aNTt58mSOJ0RGRrq7u4snVKlSxd/fPx+5dY8ePfLw8BAn+eijj9Rb1hBRcnKyj4+PeIepVKnSmxVI1SkUisDAQDs7O3G2tm3baiR1UaGggABl6NzQkLy9Ke8ZGHFx5O1NpqbKn/X0JC3/pUmgdWsC6OBB5cMNGwigfv2kmYybGwG0bp00o+fOxsYGwHWdNGy5d4/09cnYmJ4908FoWnHhwgVV2N3Y2NjT0/Phw4d5+UHtJbbn4tKlS1OmTLG2tjYwMJgxY4YORnyXYcOGAfjxxx/FQ7lcLjYXhoSESDgryd27d69s2bJiF4L2SoXevk0NGhBANjakjd1od+7c8fX1rV+/vviMs7KykslkqgshCa1btw6Am5ub1BMpudatWye2IY4cOfKtV2L79+9XdaFo2bLlsWPHtDWV8HDy8CB9fQIoLIy6diVvbxLvw1FRVKECHT9Ot2/TG5eUTFPGjCGANLgc3Lp1KwBnZ2fVEV4PligZGRnlypUD8NaEp9x/MO5tcsSaRJhI1fZWcqIDubm5eeHJuC+uxo0bB0BfX3/GjBnql+vnz58Xdf+srKy01w8pKCgIQJkyZcaMGbN69er3Fu+9cuXKkiVLhg4dKgpqqVhbWy9fvvzN52dlZQ0ePFhE57VakUlCRSngvm4dAdShgzSjP3v2rE6dOgC6dOmSo8ZfHiUlJR05cmTWrFkDBgwQTczViczcqlWrai/LjNGrhmlVq1bVUj2NFy9eiGqwOu5O+VZzRo2qU66cahPQzp07Abi4uEg7Kx0QZTdVqeXe3t7aSKXMzMz08/MTO8TLlCnj5+eXy4tq//79ovQegPr16+c9tVyMIjbWlCpVytfXN8cqMTg4WISKRHJ9TExMXk6bnp7u7++v6izv6up648aNPE7pTdevU5cuyoStDh3oAy81le7do08+UWbHt2x56tdff81LGa4iQS5XlrNX7Un43/8IoB9+kGY+dnYE0OuV/wsLcXdq2bJlOhhr+nQCCmMt+w8VERGhCrsbGRl5enrmckGsntjerVu3ezrfNhgQECCCWToeV92hQ4cA2NjYqN5ORQqPLssZFU66qbUSF0cdOxJApUpRnjtQvse9e/dmzZql2sIlUqUmTJgwceJEkdc8atQo3TccUzd16lQAv/zyi4RzYPv37xeXbf369VOPE127dk2VG2Fra5t74oLGXL1Kv/5K8fFkbEzqFzzTp9M332h99JLt6FECqEoV0tRy8PPPPwcwc+ZM8ZDXgyWQ6JGb401+zJgxyBf1bYvPnz8XpbQTExN1/mu93ezZswEMHTpU6okUfwqFwtfXV4Q1evfuHRcXp/pWYmKiKIook8m8vb01u00zKytr1qxZJiYmOV6Z6u1Scz+DyDz29PSsWbMmgM2bN+d4glwuFxkwlpaWZ4tvbdmiFHB/8YJMTEhPj3TftDYxMVFcxLdo0UK9aUBBPHr0KDg4WBSfsbS0NDU1NTU1PXz4sEZOzt5FoVCI3F4tNa3asmULgHbt2mnj5B+sShUCFK+adh5btOjThg1/mjpV2knpzJUrV1TLp/Lly+ev29W7HDlCvXuPFCcfOnRoXmooi9Ty2rVri59q3br10aNHc/8RuVzesmVL8fxBgwblyF19b3L9e718+dLX11dE88WGgA8tBi2S67t0+R6gSpUoIIAKuESNiKCePal5887a+FuTyo0bBFDVqtlHRCWTV3U+derFC5LJyNi4kG5SnzdvHgAPDw9tD5SeThUrKpMLi4dLly55eHiIK3IjIyMPD483OzZLktieQ0pKisgCO3funO5HV2nQoAHUqlI+fvzY0NDQyMjoWdHd71CkpKeThwcBpK9PBWmTHBsbGxAQ4OLiomqhpGoVoAqvb926Vey87tKlS0ErcReAi4sLgB2ausPA8uvUqVOi5mfHjh0TExNjYmK8vLwMDAzwqvqfrhM2z5/PWWBuxQrq31+ncyh5FAqqVYsA0tRyUESUVE2keD1YAonydOq18ulVFD4XhoaGZd9GPeAuCr717t1b57/TO4l20xqvTcre5eDBgyJPrlq1aqdPn1YdzyUcXxC3b98We3QAjBgx4tSpU/7+/u7u7uICPn/B9xwVsxUKhaenp1iSqP9GxU9RCrjTqyDF0qU6HTQ9Pb1r164AateuraWVWGZmprgQX7x4sTbOz9T9+OOPAEaNGqV+MDU1NTw8PCQkZPfu3YGBgQEBAf7+/n/++edvv/3m7e09ceJET0/PYcOGubu7d+3atWPHjg4ODvb29nZ2dt999536ecQbR2HYvExxccr8MdXdTrG6fdt2nmLs0KFDImYtk8l69Tq9ZUtBTxgbqyxTXqfOxXr16n/oHq6MjAx/f39RnAqAi4vLxYsXc3m+j4+PnZ3d7teroWdkZOQ9uf69Hj586OnpKVabpUqV8vb2zmMCxbZt26pVqwbA2NjY2/upBuMYYWFhzs7O4n9RvXr1AgMDJW85VRCbNhFAaj0aycmJANJJ3ZScwsIIoGbNJBg6LyIiIgDY2tpqeyDRM+31ZVFxEBkZmSPsHhUVRYUgsV2dl5cXgPHjx0s4hz///BOAq6ur6ki/fv0AvNlTkWmJQkE+PiSTEUBeXh/WuDg+ngICyNWVOnf2Fa9qExMTV1fXgICAt26NOn36tPjYbdiwoap2v46Je115LPrEtOrixYuifFm1atVUOQfjx4/P0RpHR+7coXLlXjvy9980erQEMylhRD+bTz7RwKmePXtWtWrVChUqqDJMeT1YAqmqylxVaw6gkZ1VPXv2BPDWihySePr0qci4l6oZT8l0//79Vq1aiQueHFuB3xWOzweFQuHv7y+CDJUqVcrRLjUrKysyMlIE33O0q6xUqZK7u7ufn19e2qUqFIovv/wSgJmZ2ZEjRwoy4cKviAXc//mHAOrRQ3cjyuVykSRbuXJlrfbMXblyJYCuXbtqbwgm3Lx5UyaTlSpVSn2zQlRUVO73n99l7Nix6icXnTMLxaaYI0cIoFatso80bUpACawIKVLL+/f/RtQ8aduW8le0XKGgZcuoXDkCyMSEfv6ZUlPzuXUrKSnJ19fXwsICgIGBgaen57saHqalpeVotXr06NFGjRqJl5+rq+t7i6nl0dWrV1VVKaytrX19fXPpe17w5Pq8CA4OFoW8ALRq1arobgD68UcCaPr01w7Gx39YgElTFi0igF6/4ViIKBQKcQGn7Sb17dsTQEuWaHUQyVy+fHno0KGikoaRkVG3bt3E/1ULC4tly5ZJfvvqypUr4mahhP3hY2JijI2N1Vunil32tWrVkvz/T4myciUZGRFAbm703ipiSUm0fj3160fGxsoiZjVr3unTp8+6deve+1q6c+eO2NZgY2Nz5swZjf0Cbzh37tzUqVM7dOig/kK6d+8egAoVKmhvXPZB7ty5U61aNRF2d3FxuXTpkmRTycqiKlXo1KnsI926kU7qqpVwt2+TTEalSpGG9q7To0ePVH/m9WDJNGrUKKhVFtKIFy9emJiY6OvrF54deEuWLAHQp08fqSdS4qSlpYmcFQAeHh7qIYJcwvF5d/fu3c6dO4vzu7u7v7dQrWiX6u7uLlIKVCpWrJh78N3b2xuAsbHxnj178jfVIqSIBdxjYsjAgAwNSUO7Jd5PvKbLlClz/vx5rQ4UHx9vZGRkaGioam7OtEdsg1q1apXqSHR0tIODQ+fOnbt37+7u7u7h4eHp6Tl58uRvv/3W19f3r7/+8vf3X716dWBg4N69ew8ePBgeHh4ZGXnr1i317cmXL18W9/cKxXJ94UICsnNksrLI1JRkMiqp96IzMsjfn2xslKt0FxeKiPiAH4+IoLZtlT/bqROp5S7k3/Pnz729vUWzUzMzM29v79x3u8fGxnp5eYkgWu3atbXRIOXEiROiLQ+A6tWrv1nG9IMq1xec2BBQqVIlMSUXF5eID/prKxz69yeA1q+Xeh5ERDRuHAE0Z47U83i3vn37AggICNDeEFeukExG5uZUaIphasWtW7fE5hXxL0jyxHZ1bdu2BbBixQoJ5zBkyBB9ff01a9aIh3K5XIRItFRxjr3L/v1kaUk2NjR+PHXpQqoqYh07krgbkpZGwcHk4UHm5spPYT09cnIiPz+Kjv6AgeLi4jp16gSgVKlSwcHBmv0trl696uPjU69ePdWC85RaCFU0VOzevbtmB2UFMWXKFAAjR46UeiJE69ZR9eoUEEB799KYMdSsWSEt+lbsODuTvb3mW9rwerDEEnfuP/roIw2eUzTc7iBVG8O36d69u+SXcCXZqlWrRKG85s2b3759W3U8l3B8XgQGBoqmkhUqVHiz3vp7ieC7h4dH1apV1YPvFSpUcHV19fX1VQXff/jhB5EPVEKK7BWxgDsR+fnR/v2km6K+Pj4+4jbRe0sta4QoXLNy5UodjFXC+fv7Qwv7Cf766y8An2hkd2LBffnla3G1q1dFMpikc5JeUhL5+pKFhXLF7u5O782jTU4mHx9lCp6NDWk8DHj9+nVVarmVldVbU8sVCkVAQIC4e2xiYqLtGqMhISGNGzcWH5MtWrQ4ePCgOK6l5Pr3evnypY+Pj4jyGxgYTJkyRTfjasq1a7RmDallPklJ3Dfav1/qebybaMQ0Wpsb6idMIIC+/FJ7IxQiN27cOHLkyIEDBwrFyv+Vf//9F0CbNm0knENUVFSONvXiqm/IkCFSTanEioyks2dp7FiqUCH7sqVWLdq9mz77jMqWVcbZZTJq25bmzct/M6f09PSRI0cC0NfXX7EiX5vdXnf3Ls2Zs+jNZq3Hjh1T/xcnihl+++23BR+RaYqoraybHt3vd/w4/fgjjR9P/v4k3dafYmzXLlLvG7JxI924QQsX0qsrXEpL01guAq8HS6yMjAwRshw8eLDn60aNGuWeKzc3N5e3EfXQZs2aJfUvp5SQkGBkZKSvry9NDS5GRETnz58XXQmtrKxyZOC9KxyfiydPnohsJwCDBg2K/qBchjcoFIrLly8vWrTo448/VuXMCeXLl2/atKlYzm8peJ3fIqJQB9xlMkpPV/75yROysqILFwgg1d/OnDk0caK2RhcxWX19/U2bNmlrjNctXrwYQN++fXUzXEmWkJBgamqqp6eXY7FdQOKWybp16zR4zvwTFRP27VM+DAoigHjzFxERPX9O3t7KPelmZuTtTfHxFBFBc+aQKl17xw6KjKTgYKpWTRmd9/TUYj7sqVOnOnbsKD6NqlWr5u/vryoEGRERIbJBAXTq1OmqRrLr3yczM9Pf31/sthap5f379xd3BerWrRsSEqKDOeQgNgQYGxsXnovO3P30E1lYZMfZO3SgQ4eknA8RyeUKEboq2KWUdp0+fRpAnTp1tHT+5GRl/C7X7glMu1JSUsSiVNvbBz/IpUuXDA0NC0XGa4k0diz9/jtVqULiZm6tWrR6tTLUbm9PPj4UFaWZgfz8/D76aIKx8QfXjleJjaWAAHJxIZmM2rUbjbc1a1XXp08fABs3bizo1JnmdOnSBcDevXulngjThU8/pUWLsh/26EFbt5KDA5UvTyJsmJBA5uaaGYvXgyXZ33//reo2qSmlS5fu3LmzRsrBF9yaNWsAdO7cWeqJlHSJiYlubm4AZDKZt7e3XO1qJpdw/JsCAwNF2UlLS0t/f3+Nz/PWrVsBAQGenp5iF6mxsXHp0qULT0MCHTDQ7NuBZhGBKPvPCgUA2Nhg6lS4uMDcXItDBwcHjx8/HoCfn5+qz5i2ubm5TZgwYe/evS9fvjTX6q9X4pUpU6ZPnz6BgYFr16799ttv3/qchISEzMzMly9fpqampqWlvXjxIjMzMzExMT09PSUlJTk5OSMjQ/05ycnJhw4d0tPTE/1vpXf5MgC8ykdGZORrD0s2a2v4+mLMGHz3HYKC8McfWL4cEyZgxgwYGWH8eADYuBFVquCPPwCgZUssWQK1DDbNa9my5aFDh/bv3z9lypSIiIjPP/98/vz5P//888WLF3///feMjAwbGxtfX1+RmqcDorJ87969582bt2TJkv3795cqVcrQ0NDNzc3Dw0OSF7moLD969OgcW9UKs/LlMWUK1q2Teh6v3Lt3Ny3N0dl5RPnyc6Weyzs1a9bMwsIiKirq8ePHlStXFgfv3bsXHR1tbW1tbW1dwM/HtWsRHw9nZ7zaxcEkYGpqOnz48AULFqxYsWLevHlSTwcA5HL5lClTMjMzFeJyk0mhYkV88w28vLBlCwC0bInff0f//qhfX5OjfP3111ZW8tGjMW8eHj7EmjUwNc3TDyYkYOtWrF+PgwchlwOAmRmaNfOaPLlPjx49jI2NczxfoVAcP348KCjoyJEjRkZGIrGLFRL3798HIHq/sxKrWzdMm4YVK975hPh4ZGYiKQkpKUhPR2IiiI7HxT0S68GkpKTMzMz4+PisrCxeDzIAEydOdHBwuHr1ao7jRkZGpUqVyuUH9fX1RXOvHB4/fjx16tSDBw+OGjVq9erVorKohESFNBHqZRKysLDYvHnzrFmzvvvuuz/++CMyMnL16tUil6Vp06Znzpzx8PDYvXt37969N2/e3K9fvzfPEB0d/cUXX2zZsgVAjx49li9fXqVKFY3P087Ozs7OTkQwoqKi+vfvf+XKlRwNV4s5qSP+uQFIVVnh8WMqW5YuXCAHB5oyhSZNItJahvvhw4dNTEwAzJgxQ/Nnz5WzszM4BUYnRJE1CwsLFxeXli1bNmvWzM7OrkqVKmXLljU0NMzfv6Y6deoUlnJmjx4RQOXKZR8ZNIgAelWslqmcOUOdO1PNmuTvT/36UdWqJNqXjhhBq1bRwIG0aJFOm1tmZWUtX75cxJT19fXFf7/++utEKapNT58+HcB33303b968HTt27Nq1C0DDhg11P5Oi6KefyMeHmjRR5hUVhgx31UWVxPN4nx49egBYr1b2XhRkEAwNDStVqtSwYcP27dt/9dXmMWNo+nSaPZv+/ZeCgyksjK5do/j4d57cwYEAWrtWB78Hy01ERAQAS0vL5OR39mfWJfF2Z2Vlpe2Gvexdxo6lFSsoM5MaN6Y9e6hWLY2ltL/VsWNkbU0AtWxJT5++//nbtmU3azUyor59ad26txf/EHF2Ly8v9c3UR44cKVRlnUo4hUJhamoKQMLWzUyXPv2UJk6kgweVXy1bKjPcT52iunXpyBFlhvvGjWRnR5UrU9myZGCg/Pee46tBA4fc14N169bl9SDToDNnzohck/Hjx0s7k5SUlFKlSslkMs0WCWAFcfDgwQoVKgCoVq3a6dOnVccVCoWvr6+9vf2LtzVsCAoKKl++vIiGaSOx/V1mzpwJwNPTU2cjSq5QZ7gD6NQJMhkAZGZmH/zhBzRqBA8P5cNTp2BigoYNYaCJ3yYyMtLNzS0tLW3cuHHff/+9Bs74Idzc3I4dO7Z169bBgwfreOiSpnv37j4+PvPnz9+/f/9bn1CmTBlDQ0MLCwsTExNTU1Nzc3MDAwMRji9durSZmZmxsXGO51SsWFHVcFJiIn9BPYGTMxrewdERBw7g2TPs2oWKFfHVV5g0CRs2KL+7aZOu56Ovrz969Ohhw4bNnTs3MTHx1q1b06dPb6bV7Pp3E/l6+vr6X331FYCoqCgA6enpkkymKNLXx7x5GDsWFy9KPRUAwMWLFwF89NFHUk/kPdq3b//ff/+FhoYOGTJEHKlQoYKjo2NMTExsbOzLly+fPn369OlTAMCko0ffcgZXV+zY8Zbjp07h7FlYW2PAAK3NnuVNkyZNRo7cfvx496Ag408+kXgy27dv9/X11dfXX79+fY0aNSSeTclmYICFCzFuHLKytDuQkxNOnECvXjh9Gm3aYNcuNGiQ2/NbtoRCAScnuLtj2DCUL/+W51y+fDkoKGjt2rU3b94UR6pXr96vX79Ro0ZJ9TnO3io6Ojo1NdXa2jr3nFNWnJw5g6Qk5Z8fP1b+wcgI8+bhiy9w5AgApKXh9u3XfsrSEoaGMDeHqSlMTGBuDlvb9o0a2YmE5VKlShkZGfF6kGmVo6Pj9u3be/bsuXDhQltbW29vb6lmsnfv3uTk5JYtW9ra2ko1B5ZDp06dwsPD3d3dT5061b59+/nz548ZMwavSs1MnDgxx/a7hIQEb2/vpUuXAnBxcfnnn390udOrV69e33///e7du4lI1Kot9gp7wD0wEEZGABAdDdUnl4UF/vgD48dj0CAAmDYNR4+iVCk0bQoHBzg4wNkZdnb5Ge7Bgwe9evWKj4/v37//ggULNPRLfIABAwZMmTJl586daWlpIsueaYmBgcFPP/0kthSYm5sbGhpaWlqqB9OlnmDB5LicSk/HzZswMNDwruxipGJF5R8mTkTTpti3T9LZAKampu8qdqRL4h+CKsKe4yHLiw4d0Lo1Zs+Weh4AXgXcmzRpIvVE3kOsVI+I5S8AYPz48aLOG4CMjIzYV5KSqg0fjpgYxMZmf8XFoXr1t5958WIAGD0a/AFbGHTo0HfVKixbBmkD7jdu3BDd7WbNmiVq7zJptWuHFi0QEKD1gWrXxvHj6N8fYWFwcsKWLXjVS+UtbGzw7BnKln3Lt6Ki0tavn7VhwwZVGQFbW9vBgwcPGTLE0dFRK1NnBcP1ZEqg4cPxxRfKP/fsmX28e3fY22PRIgDo2xe3bsHYGGZmKFVKGYV4wxxtT1VjeD1YXHTq1GnDhg2DBg2aPn26tbX16NGjJZkG15MpnGxtbY8cOTJt2rR58+aNHTv26NGj/v7+YhdXjqDWf//9N2bMmEePHpmamvr4+EydOlXHRYqaNm1apUqVhw8fXrp0qfAvSDWisAfcy5eHeJGIUokqQ4fin38QFITWrdGgAZ48QVQUwsIQFqZ8QtWqaNkSbdqgZUs4OCAv6QsxMTFdu3Z98OBBx44dN2zYIIo56FiNGjWaN29+9uzZkJAQ0WGJaVVhqa+ncaamsLeHqlro1avIykKDBijqNxK0z8gICxdiwgSUjI+A9+CAu0b8+SccHVG6tNTzAEQRj8J/fdOiRQszM7MrV65ER0eLbZLqjIyMbGxsVB19P8i4cZDLMXasJmbJCmzIEEyejLAwREZKlm+XlJTk5uaWmJg4YMCASZMmSTMJBgBwcEDNmso/z5qF1FRdvG1aW2P/fowahY0b0b07li/P3kH7phzR9ocPsXkzgoJw/Lhx1aorHzy4U65cud69e7u7u/fq1UuSdQTLIw64M3V//40WLQDA0hKWlhJPRpN4PViMiHzQL7744vPPPy9btuwAnW/VzMrK2r17NzjgXigZGxvPnTvX0dFx3Lhxq1evvnz58qZNm2qqLqqAFy9eTJ06ddmyZUTUpk2blStX1q1bV/fzlMlkPXr0+Oeff3bv3l34F6QaIXHXhYJYvBjnzwPAkiW4cQOJiQgNha8vXF1hbY2HD7FlC6ZORYcO6NHjXsOGDUeOHDl37tyzZ8++tR1WSkpK3759r1+/3rhx461bt0qY4CzewsT9Q8by6YsvcPkyxoyBKjbapw84cS9vOnVC06bYuVPqeRQCHHDXiIoV4e2Na9eQmgoXF6jlbetUcnLynTt3jI2N69WrJ80M8szIyKhVq1ZEtGnTpsTExAKe7csvUb06kpMBoHVrnDmDjAwNTJIVnJkZhg4FgOXLpZkAEX322WdXrlypX7/+ypUrS8jm1kLL2Bjlyin/XKECnJyQlqaLcU1MsHYtvv4aGRn45BP89htu384uaJOUhOjo157//DkWLUL79qheHRMnIiwMFhay4cNn/ffff8+ePVu1alWfPn042l7IccCdqataFd98I/UktIHXg8XLuHHjfvzxR7lcPmLEiKNvraioTYcPH46JibG3ty/864gSy8PDIywszM7O7ty5cy1atNi7d684vn///saNGy9dutTY2NjX1zc0NFSSaLvQs2dPAHv27JFqAjpWqDPcv/gCquvVUqUwejSsrKC6o1anDhYuhLm58qGFBZyd4ewMb28Q4fp1nD6NU6dw6hQMDE5fuXLlypUrq1evBmBubt6kSRMHBwdnZ+f27dtXrFgxMzNz4MCBJ06csLOz27dvn6Wkt7bd3d2///774ODgrKwsA42UpWcl0PPn8PTEpUswNoaBAWbORHCw1HMqSubMwe7dUk+iEOCAe0E4O0MVvvviC8TG4sABHDiAY8ewbFluSZQFl5CQsHnz5t69e6u37Lt48aJCobC3t893X2hd6tSpU1RUlKgkY2BgYGVlVa5cOSs15cuXt7KyqlRpoLl5GSsriK93fWbKZJg5E7//rtvfgeXBuHFYvBgBAfjtN5iZ6Xp0X1/foKAgc3PzrVu3mqsuKJlEtmxBqVLZ28tWrYKDA3RTUV9fH35+sLfHhAmwtEStWvj1V/zvfwCwbRv++w9r1iAxEdu3IygIe/cqO0uZmMDFBe7uGDgQpUoN0sVEmYY8ePAAAJchLjnmzIH6tc+aNShVCi1aZDdjmDQJ7u6STE2beD1Y7Pz888/R0dFLliwZNeqz4OBrjRrpLlgk8kF1n1nPPkjTpk3Pnz8/atSorVu39uzZ85tvvtHX1589e7ZCoWjZsmVAQEB9qStKde3a1cjI6Pjx4wkJCdLGXXVEyo6tupKSkhIaGvrXX3+5u7u/mctgZ2dXu3ZtAOXLl//ll1927dol9XypQYMGAPbv3y/1RFiR5eJC33xDcjkR0enTZG1Nd+9KPafC7v59un49++Hly/TwoXSzKRzETcrhw4eLh3K5HIBMJpN2VkVXVhZ5exNAAHl5Kf+BalBaWlpwcLCHh4eZmRmAOXPmqH938eLFAESt6iJh7dq1tWrVsrCwyOUapl69FPH/U3yVKUO1alGrVtSzJ40YQV9/TUuX0hdf0OzZVK0aRUYSEdWrR1euSP27MTUtWhBAq1fretz9+/fr6+vLZLItW7boemz2Nn36UGBg9kMHBzp2TNdzuH2bHj2i8uWpZk26dYuIaPVqGj6chg0jExPl+4yREbm60po19PKlrqfHNGXgwIEANm7cKPVEGNMmXg8WR1lZWZ9+Or5WrcuVK9OdO9oaJSEhQf2hQqGoWrUqgLNnz2prSKY5crn8p59+0tPTE3s3jYyMfv3118zMTKnnpdSpU6eS8xFcIhKoTU1NnZ2dRXtMAE+fPj1z5szZs2fPnj0bFhZ2+/bt2rVr169f/+OPP/7xxx+7d+/eq1cvaSc8cODAmTNnbtmypUuXLtLOhBVJT5/i5EkEB0M0wWjRAu7uCAjAjz9KPbNCbc0aPH+OOa86IS1ZAltbTJ0q6ZykliOlXU9Pz9DQMDMzMzMzs0hkSRc2+vrw9UWtWhg/HvPm4fFjBARoIKuXiI4dO7ZmzZqgoKD4+HgA+vr6Li4uOXYLFpWOqSrDhg0bNmwYgKysrNg3xMTExMbGZmTIypfPbpeamIjERNy6lX2STp1Qvz7MzfHrrxg3DjrfgMveb+xYnDmDZcswYoTuBr1///6QIUPkcrmPjw9XIy08Tp/O3tuakCDBBGrWxOPHMDXFd9/hyy/x33/K45mZyMiAkxPc3TF0KN5oLcGKGC4pw4o/Xg8WU/r6+kuWLOjTB/v2oWtXHDuGihU1cNqXL19GRESEhYUdO3bs1KlTrVq12rFjh+q7p06devjwYfXq1Zs1a6aBwZiW6enp+fj4tGrV6uzZs1euXPH29i5UC8CePXseOnRoz549gwcPlnouWlciAu45VKpUqU+fPn369Nm8efOjR4/GjRvXo0cPJyenhISEX3/99eDBg/Hx8WVz9EXSLTc3NxFwnz9/vo4bB7Pi4PZtVKsGU9PsIw0a4MwZ6SbEiqo3a8gYGxtnZmamp6dzwD3fxo5FjRoYPBibNuHBA2zbBrW6Lx/m6tWrGzduXLNmza1XMWZ7e3t3d/dRo0bVeKMQQ5ELuKsYGBhUrFixYh7WEwkJiInJjr/HxqJSJWWQfcQIrFiB1au1Plv2oYYOxZQpOHoUV67A3l4XI6alpQ0cODAmJqZbt24//PCDLoZkeRMVBdVlr+i7IJVPP8XSpQgKUj787TfMnYt8tWpmhREH3Fnxx+vB4svICJs2oVMnnD0LV1ccPIh8VMWTy3HlCiIiHh069OPJkyevXbum3unw3r176k8W9WTc3Ny4200R0qNHjx49ekg9i7fo1avXtGnTrp84AYUCxT3aWRID7ippaWnnz5+3tLT87bffAFhZWXXo0OHAgQM7d+700Gp53fdp3ry5nZ3d7du3T5482bZtWwlnwookc/Oc69SkJORaloGxtzIxMcEbAfekpKT09PTSpUtLN68ir2tXnD6N3r1x6hQcHbFjBz4oX+Tx48dBQUFBQUFhYWHiSNWqVQcMGDBq1Ki3Jp7cvHlz3bp158+fR9EMuOedpSUsLVG79msHVVntCxagd2/I5bqfF8tN6dIYMgRLl+Kff/DXX7oY8csvvwwPD69Ro8a6deu4uWWhMnx4dhnlAweknImeHhYtwoABykruOd5VWJGWnp4eHR1tZGRUKd+3uxkr/Hg9WKyZm2PPHrRrh/Bw9OuHPXtgbPz+n0pMxJkzOHYMZ8/i+HHExaF69Qr37q0AYGho2KxZMycnJwcHBwcHh4YNG6r/4LZt2wDwjkCmEQ0bNoxxcbE6dAjnzsHRUerpaFcxv5+QO1dXVyMjo6NHjz5//lwcEV0gtmzZIum8AKB///4oHDNhRU+tWoiLQ1RU9pGDB4v9e5lG/Psv6tRRfq1aJfVsCgFjY2Mjff0yaneeu9SsOaJBA0VamoSzKh7q1MGJE2jfHo8eoX17qO3afKfU1NSgoKA+ffpUr1594sSJYWFhlpaWHh4eISEh9+/fnzt3bo5oe3x8/NKlS52dnevWrevj45OSknLw4MEKJbgUgr093N3x4IHU82BvGDsWAAIC8K63lvR0HDmCJ080MNaCBQv+/fdfU1PTLVu2WFlZaeCMrJhycICrK+bOlXoeTNPu379PRFWrVuVtxKw44/VgcVe+PPbsgY0NDh3CkCHvSSi5fRu1a8PSEl274uefsXMn4uJQsyacnAznz1988uTJpKSk8PDwuXPnjhw5Mke0/dKlSzdu3LC2tnZyctLur8RKDKs6dSCXY/duqSeidSX6OqNMmTJdunSRy+XBrxp2DxgwQE9Pb+/evcnSbmR9FfrfvHkzEUk7E1b0mJlh+nQMGoTdu3HmDCZORHQ0hg+XelpFwKefIipK+TVypNSzKQQ6GBuny+WBapV0N8bGrr56tXxGhnSTKj6srLB3L4YNQ1ISfv/9yfz589/1zPDw8CFDhlhZWQ0ePHjnzp0GBgYDBw7cunXr06dPV61a5eLior7BMy0tbceOHYMHD65YseLnn38eFhZmYmLi7u4eHBzcrl07nfxmhYuzMxo0UP75xx/x5ZewtJRyPuxNjo4YNQq+vnjXTuUbN9CxIypXhoUFmjfHxx/j++8REIATJxQxMTF5H+jEiROTJ08GsGTJEq5Dyt7r99+lKSXPtIrrybASgdeDJUDNmti3D2XLYts2fPVVbs+0tcXjxyhVCk5O8PJCYCCePsXt21i7FhMmjGvVqpWRkdGbP/Xo0aPNmzePGzcOgJubG28KZBrTsycA7Nkj9Ty0rkSXlAEwYMCAPXv2bNmyZfTo0QAqVarUunXr48eP79mzZ9CgQRJOrE2bNjY2Nnfv3r1w4QKvCdkHmz4dDRti504kJKBZMxw5Aq64zfJB7E5UKynzliOsAExMsGYNmjR5MWNG0xMnoq9fv+7n52dgkPOj+fHjxxs3btTT03NycnJ3dx8+fLi1tXWO5ygUiuPHj69evXr9+vUvX77Eq9apHh4eAwYMKMklgIYNy/5z6dJYuFC6qbB3e/oU168r32BiY9Gjx2uVZjMy0KYNoqIQE4Pz53H+vPK4re29Bw/sLC0ta9WqZaemcePGbxb9f/bsmbu7e0ZGxuTJk0fyPdXCZ9MmqL/5hYVJc+ViYYFvv83+8/r1ePFCgmkw7eGAOyspeD1YAjRqhF274OKCxYthY4N3NaYxNMTFi6hZE7nHzDMzMy9evHjs2LGzZ8+Kfpvi+BdffPHZZ59peu6sBOvcGSYmOH0a0dHFuxN9SQ+49+/f/4svvggJCUlISLC0tATg5uZ2/PjxrVu3Shtw19PT69+//+LFi7du3coBd5Yfffuib1+pJ8GKOA64a59MBm9vCzu7BZ988snChQtv3LgRFBRUpkwZ9ef07Nlz9uzZgwcPtrW1ffMMly9fXr169apVq568qrjh4ODg4eExZMiQvDQaZawwePgQ585h0CC0agW5HK8364KDA44fB4D4eOUmpBs3EBWFrKynL19aJiQkiJWh6vlWVlY5Mt8zMzMHDx786NEjJyen33//XRe/EvtAObLr8lKOVhtKl8YXX2Q/7NBBmmkw7eGAOytBeD1YArRpg7VrMWgQZs7EsGGoVevtT3tXM5Lbt1NPnNhy8uTJU6dOXbhwITMzU/WtsmXLtmrVqlWrVoMHD7bXTV97VkKUKoUOHbB3L/btw4gRUs9Gi0p6wN3a2trZ2fnw4cO7d+8eNmwYgEGDBk2bNm3Hjh1paWmiYaBU3NzcFi9evHnz5l9++UXCaTBWQnTtipSU7IcDB6IE5wS/wgF3XXF3d7e1te3fv39ISIiTk9POnTtr1Kih+q6hoaGog6HuwYMHW7ZsWbly5YULF8SR6tWrDxkyZPTo0XXq1NHVxBnTmO+/x7hxryW2v6lsWbRsiZYtVQfaAPHPnz+/ceNGlJo3t4B88803R48etbGxCQoKMuQUP8ZKsAcPHgB46w1sxhgrivr3x7JlqFIFK1ciLQ1//qk87uqKTZuQI6aVlIQLF3D2LMLCcOQIUlNNUlI+k8szAOjr69vb2zs4ODg7Ozs5OTVo0IB7XTBt6dkTe/dizx4OuBdzbm5uhw8f3rp1qwi416hRo2nTpufPnz9w4EDv3r0lnFinTp2sra2vXLly7dq1+vXrSzgTxkqCHG2EOKkN4IC7TrVu3To8PLxPnz4XLlxwdHTcunXrW0uuJyQkBAcHr169+sCBA6LJR7ly5QYNGuTh4eHk5CR7Vw1sxgq9rl1x6BDmz1fWmL16FQcPKrtYV6uW2ybo8uXLly9fPpdeXmvXrl2wYIGhoWFQUJCNjY0W5s4YKzI4w50xVvx8+ikAzJ+Po0fRpQt69ACAQ4cgl0OhwNWrOHUKJ07g5Elcvfpah9WKFWUDB3rXq2fWunVrR0fHklyFkulUnz6YOBH//Qe5/D2ljooyDrhj4MCBEydO3L17d0pKipmZGQA3N7fz58+f3LNH2oC7gYGBq6vrypUrt2zZ8r///U/CmTDGSigOuOtW1apVjx49OmzYsJ07d3bt2nX58uUjXt3zT09P37dv3+rVq7dv356RkQHA1NTU1dXVw8OjR48enLHLigc/P7Rqhc6dAeDgQUyYoDxuaAhbW9jZwc4O9vZo2BB2dqhRA3nJu4qIiPD09ASwcOHCXILyjLESggPujLFibNo0eHkhIgKmpgCwdSvGj3+tGYmRERwd0bo1WrVCmzaoUQMAF1RgOmdnhzp1EBWFU6fQtq3Us9EWDrijSpUqLVq0OH369L59+/r37w9g7KBBU9atM924EX5+eKN5nS65ubmtXLly69atHHBnjEmAA+46Z25uvm3btkmTJs2fP3/kyJGXLl1ydXXdtGnT2rVrY2NjAejr6zs5OY0cOXLo0KHm5uZSz5cxTapWDV9/je+/BwB7e3h6IioKN2/iwQPcvo3bt197spkZ2rTpY2lpXKdOnTp16tStW7dOnTo5+hbEx8cPGDAgJSVl5MiRY8eO1eGvwhgrpLikDGOsGHNwwN27+PVXzJwJADY2ePECNjZwcICzM5yc4OCgjMUzJrFevTB3Lvbs4YB7MTdw4MC6L1/anjyJ/v0BVGrQAABiYhAaik6dJJxYt27dqlev3qhRo8zMTE5gZIzpGgfcpaCvrz9v3rzatWt/8803s2fPnjVrljjesmXL4cOHf/zxx9wKlRVj33yDVasAoFOn7EuwjAw8fIjbt3H5Mq5cUQbfHz7MPHp0r3p3LwAWFhZ11Cxfvvz27dvNmjVbsmSJzn8Vxlih8/z585SUlHLlyvEda8ZYceXri8aNMXIkADg44PFjcDk9Vhj17Im5c7F7N2bMkHoq2sIBdwCY6uYm8/bGkyf45RcYGQGAmxt+/x1btkgbcDcxMblz5w7X5GWMScPICDIZMjJABPFGxAF3XfHy8qpVq1ZUVNTSpUvd3d2HDx9et25dqSfFmLa0bo1SpQDAyAiLF2P+/Ne+a2SkrCfj4pJ98MULvaioE6JLqqppalxc3NmzZ8+ePSueU6VKlQoVKmzfvt2Us7kYY1xPhjFWAlhZ4ZdfMGUKABgawtJS4vkw9nYdO6JpU3ToAIUiT2UiiyCZaLnG0KQJLl3Cf/+he3cACA9HixaoUgUPHoDj3YyxEsvYGBkZSE9X3oz89FOsXIl//8WoURJPjDHG3hAbG6segndzc2vSpEkDsXORMVbibd26dcCAAX379t2+fbvUc2GMMQ3r0wfjx6NHDygUcHLCqVN4+VKZ0MBYYRQRga1b8egR6tTB8OGoUgX372PDBkybpnxCZCSOHcO4cZLOMv+K522E/BgwAAC2bFE+dHREzZp49AinTkk4KcYYk1iOlHZzc5QtC75TyxgrlKysrFq3bu3h4TFjxowNGzZ8/PHHHG1njKlwhjtjrBirXRtlygCAnh4WLULz5sU1b5gVCyEh6NEDlSph+HCkpKBFCzx+jGfPsGZN9nNu3cK2bZLNsMA4w/2Vixfx0UeoUAGPH0NfHwAmTYKfH6ZOxav6uYwxVuI8eIDSpaFQ4NIllC6Nhg25zw5jjDHGiqKXL1/evHnT3Ny8du3aUs+FMcYYK8FatsQ332DIEOXDKVOQkQEPD4wejYsXlQe3b8fixfjvP6nmWEB8w+uVJk1Qty6ioxEWpjwict43bZJwUowxJjFbWyxfjqZNsXYtZs1CrVo4elTqOTHGGGOMfTBzc/NmzZpxtJ0xxhiTksjn69o1+0i3bjhzBgASE7F+vfIrNFSqCWoEN01V078/Zs3Cli1o3x4AnJxgY4M7dxARgY8+knpyjDEmhStXMHs2Ll5ExYoAsGsXPvsMV64oS7ozxhhjjDHGGGOM5ZHoEmdmln2kdGm8eAEAaWm4elV58OFDCeamOZzhrkaktG/erCxPrKeHvn0BtcLujDFW0uzYgQEDlNF2AL17QybDpUuSzokxxhhjjDHGGGNFkIkJKlfGjRvZR65dg9h/VrEifvlF+TV0qFQT1AgOuKtp2RK2tnj4EOHhyiM5OqkyxlhJ8/AhKld+7UiVKnjwQKLZMMYYY4wxxhhjrCgbMgQ//oi0NACIjsZff8HTU+o5aRgH3NXIZOjfH1CLsHfqhE6dMHQo5HLppsUYY9KxscHz568diY7OGYJnjDHGGGOMMcYYy4uZM2FtDXt7tGmDVq0wYgR695Z6ThomI1E+hQmHD6NTJ9Svn10ziDHGSrIjRzBiBG7cgKkpAISHo18/3LypfMgYY4wxxhhjjDH2oRQKxMXB2jr7CBFksnc+LFI44P46uRwrVqBPH+jp4bvvcPo0FAo4OmLmTFSpIvXkGGNMCl9+ibAwjBiBly+xbBkWLMDAgVLPiTHGGGOMMcYYY6ww4oD728jlaNECPXvif/+DTIa//sK6dYiIgJGR1DNjjDEpnDuHM2dgbg5nZ1SrJvVsGGOMMcYYY4wxxgopDri/TWgoRo/GtWvQe1XjvmlT/PYbevWSdFqMMcYYY4wx9n/27jwsqvKLA/iZYV9UcN9wAdwwNcUyxTWxMjHNxCXF3JpKE9t0XCps0abUQisLMxPNX4pLhpraaO477rgi4obiBsi+zvn98U6XEVwQ7swd8Pt5eHq61+G+78Awc++55z0HAAAAAKwXmqbez7lz1KpVQbSdiNq0obNnlZsQAAAAAAAAAAAAAFg7BNzvx8aG8vLu2ZOXR3Z2Cs0GAAAAAAAAAAAAAMoABNzv56mn6PDhgpi7wUAHDlCLForOCQAAAAAAAAAAAACsGgLu99O2Lfn40PjxlJBAt27RxIlUvTp16aL0tAAAAAAAAAAAAADAeiHg/gDLl5OrK/XvT6+8QkS0Zo3C8wEAAAAAAAAAAAAA66ZiZqXnAAAAAAAAAAAAAABQ5iHDHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAAAAAAAAAAADIAAF3AAAAAAAAAAAAAAAZIOAOAAAAAAAAAAAAACADW6UnAAAAAAAAAABgTS5epL17KTWV2rShtm2JiE6coKwseuYZ4wMOHCBnZ3rqKQXnCAAA1gkZ7gAAAAAAAAAA/4mIoOeeo5MnKTmZRo+mt94iIlq/nv73v4LHLF1Kf/+t1AQBAMCaIcMdAAAAAAAAAICIiDIyaPx42rCBWrcmIho3jpo1o927lZ4WAACUGQi4AwAAAAAAAAAQEVF0NLm7G6PtROTkRK++Slu2kL09JSXRmTPG/UlJVKeOUnMEAABrhoA7AAAAAAAAAAAREd24QVWq3LOnalW6do08PGjHDrpzx7jz5EkUcAcAgPtCDXcAAIAnSEZGxnfffWcwGJSeCAAAAIBVqlePrl69Z8+VK1SvHhFRnz60dq3xq3dvRWYHAADWDwF3AACAJ8grr7zywQcffPbZZ0pPBAAAAMAq+fhQXh6tXWvcTEig1aupb18lpwQAAGUKAu4AAOXB5s20fHnB5qpVtHGjcrMBKzZ58mRbW9svvvhi5cqVSs8FAAAAwPrY2dEff9A779CAAfTmm/TMMzRlCjVpovS0AACgzFAxs9JzAACA0po9m+Li6IcfjJsffkhVqtCUKYrOCazVrFmzJkyY4Orqum/fvubNmys9HQD5eXhQ9+60aBER0dmz1Ls3nTun8JQAAKCMycigY8coO5tatSJ3dyKiGzcoN5fq1jU+4OpVsrOjGjUUnCMAAFgnZLgDAAA8WT766KNBgwalpaX169cvOTlZ6enAk+WHH+j99ws2P/6Yvv6axo6lZ56hnBzjzpYt6cqV0g60axdt21bagwAAwJPrxg3q0IFGjTJG24moRo2CaDsR1a2LaDsAANwXAu4AAOXEmTMUHm78OnVK6dmAdVu4cKGvr++5c+eGDRuGBqpgSbm5lJ1dsJmTQzk5lJFBCQk0a5Zx5927VLJXpcFASUmUlUVE9NVXNGZMQRAfAADg8aSkEBG5uio9DwAAKHtslZ4AAADIIy2tICc0NVXRqYDVc3JyWrVqVdu2bdeuXfv5559PmzZN6RnBk+6jj2jmTBo0iDw9iYgSE+nAAbp7l3JyKDWVMjMpK4vu3qXcXEpJMW6mpFBODqWkUFYWZWZSSgrl5xMRffIJEVGnTtS6NX3zDQUGKvm8AACgrBIB9woVlJ4HAACUPQi4AwCUE23b0scfG/8/KUnRqUBZUL9+/WXLlr300kuff/75U0891b9/f6VnBE+KyEg6e9b4/+fP0+jRRGRsO/Huu/T330REly/TgAGPfWSVitzcSOpP9O239PTT9OyzsswarNrIkdS9Ow0ZYtx8+WX68EPq3l3ROQFAWScSWCpWVHoeAABQ9iDgDgAA8ITq3r37jBkzJk6cOHLkyGbNmqGBKljG88/Tl18a//+rrwr2v/UWLVxIa9YQEVWrRoGBVLEi2dlRpUrk6EhOTlShAtnbU6VK5OBAzs5UoQLZ2ZGbm3HT1ZXs7IyHEu1Sa9SgyZNp6lTLPTVQSmYm5eYWbGZkUF6ecrMBgPIBGe4AAFBSCLgDAJQHajXZ2BRs2tiQGk06oBgmTJhw+PDhZcuW9evX78CBA5UqVVJ6RlD+ubpSvXrG/zeNY9jY0Lx5FBREublUpw5FRMgw1tixxuA7AADA40GGOwAAlBQC7gAA5cHgwXTuXMHm8OHk5qbYZKBsWbhw4blz5w4fPhwUFLRmzRo17tWAcp59lrp1o7Cw0h5nzBhycSEisrGhX3+lf/4p/dTA2s2aRf/7n/H/jx9XdCoAUD4gwx0AAEoKF9UAAOXB5s3UpQv99Zdxc/Zs2rBB0QlB2eHk5LR69eqqVauKBqpKTwfKuaeeog4dCjafeYaefpq6dKFGjYx7Zsygt94iV9dSjTJ5sjFCcvkyabW0enWpjgZlwvDhFBZm/GrcWOnZAEA5gAx3AAAoKQTcAQDKifbt6cMPKT1d6XlAGSQaqNra2n7++eerVq1SejpQnvXoQUOHFmwGBlLv3tSjBw0bRlOmEBFVrkw//0xVqsgzXPXqFBVFBw5QdLQ8BwSrVbUqNWxo/HJ0VHo2AFAOiIA7MtwBAODxIeAOAFBONGlCAQE0bZrS84CyqXv37tOnT2fmESNGnDx5UunpwJNl40Y6d47OnJH/yI6ONGAAEdHvv8t/cAAAKM9QUgYAyqaVKyktrWBz8WLKz1duNk8qBNwBAMqPadNo2TLUroUSmjBhwqBBg1JTU/v163f37l2lpwNPkE2biIhefNEsBx82jIhoyRJcaZRnnTuTt3fB5ksvUZ06ys0GAMoHlJQBgLJp/Hi6ebNgc/hwyslRbjZPKgTcAQDKDzc3mjGDxo8nZqWnAmWQSqVauHBhmzZtzp07FxQUZDAYlJ4RPBHy82nLFiKiF16Q87BSXk+HDtSkCV27ZhwFyqUqVe75/ebkUKVKys0GAMqFXqmpFVxc/kHAHQAAHh8C7gAAZdvFizR/fsHm0KHETP/8Q0T0668UG6vUvKBMMm2g+sUXX8h78AsX6PLlgs1jxygvj44eLdiTm4tC20+iffsoMZGaNaOGDeU5YGoq9ehB3t6Um2vcM2QIEdHixfIcH6zQ3r00YwZJHShWraI7dxSdEACUfSkpKWnp6U4oKQMAZdDFi3TunPELFIGAOzzR5s2jH38s2Bw/nrKylJsNwOOLiKCnn6Z33iGp5rZKRfPm0c2bFBNDb71FbdrQ0qWKThHKmvr16//xxx82NjafffaZvA1UJ02idu0oOdm42b073blDrVtTXp5xz40b1K2bjANC2bBxIxHRSy/JdsAKFejmTbpxg/7+27hn2DBSq2n1akKppHLszTfpo4+MFSAAAEovJSWFiCog4A4AZdCXX9L77xu/sPxdEQi4y2zwYDp4sGDT358uXlRsMvBI//xDEyYU/Mp++60MV7aKi4s7ePDglClTNm3alGbaIAPKqcxMGj+eBg6ku3fplVdo0CAaM8b4Tz4+pNfTkCE0aBClpNDQoTRgQEGUE+CR/P39pQaqp06dkvHIHh706acyHg/KAxFwl7eAe1AQkUlKe/361LkzZWbS6tVyjgJWpWlTevVV+uQTpecBAOVFamoqEVVESRkAKIMWLKD1641fKpXSs3kiIeAus4sXKT29YPP8ecrOVm42UAxvvUVvv13mG6ldvny5W7dugYGBX3311UsvveTm5ta2bdvx48evWLEiGXHW8ujkSWrXjubOJUdHCg2lP/+kVq3omWcKHtClC7VoQb//TuHh5OpKK1ZQ69a0d69yM4ayZuLEiQMHDixlA9WUFLpxgy5coMOH6cIFIqL336f162n/fjmnCmXa7dt0+DA5OVHnznIeNiiIbG1p3Tq6fdu4R7RORVWZcub0aZo5k7780rg5bRqtXn1PoSoAgBITGe4IuAMAQAnYKj0BAIX5+1NcHP34IwUHKz2Vkrp69Wq3bt0uXbrUsmXL999/f+/evVFRUYcOHTp06NDcuXNtbW19fX27dOnSpUuXTp06YVFkWcdMv/xC771HmZnUrBktW0YtWz7s8cOGUbt2NHgwHTlCnTvT1Kn06aekNv/N1sxMys8nV1fjZkoKubiQjY3ZxwW5qFSq3377LSYm5vDhw4GBgZ9//nlaWlpaWlpmZmZqampKSkpmZmZ6enpycnJmZmZGRkZ6+vK7d9UZGZSSQmlplJFBhVbaDB5MROToSDNn0tix98TcmzY1/k9Zv/cJJbBxIxkM1LUrOTnJedgaNcjfnzZupIgI4+qfwEAKDqbt2+nCBfL0lHMssLCsLNq1izZvpr/+ojNniIgqVaI33iAiqliRvvmG3ntP0fkBQHkhMtxx9QQAACWAgLv8vv6awsON/49+TWVCaCi1b0+BgUrPo0Ru3rz5wgsvXLhwoV27dnq9XpwRpqen7927d9euXbt37965c+f+/fv379//zTff2NjYPP30035+fh07dvT393d3d1d6+vB4bt+mkSNp7VoioqAg+vlncnZ+9Hc1aUJ791JICM2cSZ99Rrt20ZIlVKuWeaf66af0yy90+rRxoG7dKCyM2rY176AgLycnp4iIiDZt2hw9erR9+/YPf3DlypSYWHinqys5O5OrK1WsSLVrGzum9utHCxbQggUFDztzhmxtiYiuXqXWreV8CmD9Nm0ikruejDBsGG3cSIsXGwPurq40bFj6qVPH/vwz7sMPh8g/HpjZ1au0fj39/Tdt3kwZGcad1apRz57Uqxft3m3cM2gQLVhAp08rNU0AKCeysrJycnLs7e0dHByUngsAwONZsYKqVjX+PzNt2UKOjopO6ImEgLv8Xn65IF4gypKCFcrKopQU4/83aEDjxtGUKYpOqERu377dvXv306dPt2rV6u+//5byL1xcXPz9/f39/YkoIyPj8OHDu3fv3rx5886dO6XMdxsbmyZNmojIe/fu3StXrqzoU4FH27o1f+hQm2vXqHJlWrCAXn31Mb7XwYF0OurUiUaMoC1bqHVrWrIkr0cP834E1KlDEyfSkiVmHQTMy8vLq2nTpgcOHPDy8mrYsKGzs7Ozs3PFihVdXV2dnZ1dXV0rVqwodlaunOfoaO/kRG5u5OxMzs5UdAX2gAHG//n+e3r+eZRcAzIYDHFxqWp1JRk7pkpefZXc3Gj/fjpzxriKok+f3fPmvXj1qvcHH7yuQjFLpeXlUWoqSbf+s7KIufBCB4OBjhyhtWtp3To6fLig5ZePD/XuTf7+1LWr8Xbd0aMFV5I//ECdO2NNFZRnERGUkkKjRxs3v/qKxowhnY6mTSMRHM7IoBkzCqotQQmggDsAlF3jxlHVqsa8lrt36dVX0dFNASouL91q8/Ly8vLyHJW+a9O+PX31FXXtatxs0IA2baImTZScEhR17Bi98QZVrkwVK9Kbb1KvXpSdTa1b07lzdOECffEFff01WX/8+e7du927dz906FCTJk22b99eo0aNR36LafB9165dWVlZYr9p8P3555+vUqWKmedermRmZl68eLFJkyZqsxVqycvL+/LLL1etunL27K++vvS//1HDhiU81M2b9MYb9M8/hqeffrFjR5+ZM2fa29vLOlmjCROoZk1avJi+/Za6dydfX2S4l0np6elVqlTJy8u7efNm6W/LDRhAgwcb7xVNm0affUYJCVSzJuXm3pPhfutWqecNZcShQ4fatm379NP+R47ozXH8SZMSdu2K7N49+bPPJhKRwWBo0KDBlStXdu/e3aFDB3OMCMW3ezd17EirVlG/fkREn39Oubn0xRdERImJtGULbd5MkZGUkGB8vLMzdehAAQH02mtUt+4jDp6fT7NmkVpNEyaY8zkAKOSNN+iPP2jHDnruOSIiDw/as4e8vOjOHRLpN3fuUP36hWu7wWOJjY319vZu2LDhBdGFBgCg7PD1pZQU+uILGjSIkpOpQQME3BVQHpqm5uXlTZo0qXv37p6enl9//XU+SsDCg+Xk0McfU9u2dOwY3bhBNjZkZ0dE5OBAc+dSxYo0cSItWEBt29Lhw0rP9aHS09MDAgIOHTrUqFGjrVu3Foq2r1+/fsuWLRnSiuv/ODs7d+zYUavV6vX6O3fubN68+ZNPPunUqZOtre2pU6fmz58/YMCA6tWrt2nT5v333//3338t+ITKqhkzZowcOdLHx8fNza1jx47jx49fvHjxxYsXZRwiLi6uU6dOn3322Zkzi2fNOrJrV8mj7URUvTqtX0/ff7/vxIntc+fO9fPzO3/+vHyTpRs3aO1aY9EbGxsKDaWxY5HIXIZt27YtOzu7bdu2siyC0WgKVoBNmkTTp1PFirRgQUEiauXKNGdO6ceBB0pLS7OqTIsNGzYQUfv2jcx0/F69YnbvfuvXX+eKk0O1Wv36668T0WL0TrUOnp40YQKlpho3DQb6+mvq3JmqV6cBA2j+fEpIIG9vGj+e/vmHEhNJr6fx4x8dbSeigwdp8mT6+GM0UIVya/hweucdystTeh7lFzqmwhPl2rVrKVIFACgXvvySJk6ku3eVnsf9JCUlKT0Fi+AyLiEhoUuXLkRk89/1eqdOnWJiYpSaz7hxfPRoweaQIXzlilJzgcJOnOA2bZiI1WrWaDg9/T6PuXqV27dnInZw4PnzLT7F4klPTxcv+3r16l28eLHoA1q0aEFEol2qVquNjIxMTk5+yAFzcnKioqJ0Op2/v7+0TKRXr15///232Z5EefDbb7+pVCq1Wl2zZs1Cb60eHh79+/f/5ptvtm3blpqaWuIhVq5cKUrte3h47NixQ8bJHzhwwNvbm4gqVKgQFhZW4uPk5HBUFIeGclAQ+/iwSsVE3LYtf/QRf/cdM/Prr/NXX3GbNnzwoFxzB8sZP348EX366afyHtZg4E6dWK3muDh5Dwz3l5+fv3PnTo1G4+rqOmbMGI1Gk5OTo/SkmJk7duxIRGvWrDHT8Q0Gg5eXFxFt3rxZ7Dl16hQRVapUKSMjw0yDQjHt2sVduvCECfzee8zMn33GH3/MXl5MxDY27OfHOh1HRZX8+MHBTMQ+PpyZKdeUAazFsGG8dCm/9hrPns3MXLcuX77Mdna8dCmvWsWrVnF4OLu4KD3Lsiw7O/uDDz4QZ+BJSUlKTwdATvHx8Xq9PiwsTKvVBgYG+vr6isq0H3744c8//6z07EAebdrwsWP84Yc8ZgwnJXGlSmwwKD0n5ujoaJ1O5+fnV69evbFjx16/fl3pGZlX2Q64R0VF1a9fn4jq1KmzZ8+eDRs21K1bl4icnJx0Ol1+fr7lpxQezkuXFmx++inO8q1Cbi7rdGxvz0TcsCFv2/awB2dlGS/SiDgoiK3tkjw7O7tnz55EVLdu3QsXLhR9gMFgmDBhQtu2bW1Mypfa2dl16NBh8uTJGzdufHj8NzMzc9u2bUFBQUT09NNPm+15lHnr16+3tbUlojlz5jDz9evXIyMjQ0JCAgICCtXksbGx8fHxCQoKCg0N3blzZ3Z2dnGOn5GRERwcLI7w6quv3rlzR/ankJKSMnToUDFEYGBgMS8n8vLyTpzI/vVX1mi4VSu2tTX+sYivihX5+ec5JKQg4H7tGtety/XrI+BeJjVt2pSIdu7cKTbT09MNMp2svf46E/Fnn8lyMHig06dPT5482cPDQ/ylq1QqOzs7InrxxRcVjyDcvXvXzs7Ozs7u7t275hslJCSEiIYNGybtadu2LREtX77cfINCcYiAe0oK16vHhw4ZA+5Ll/LKlSzLKyIzk5s3ZyKeNEmGowFYFRFwv3SJa9bkq1cLAu7vvccTJ/LEiRwcjIB7CeXk5ISHh4ubtc7OzkRUu3Zt890YBjCfzMzMkydP/vXXX99+++3YsWNfeuklb29vcR5YlLu7uzhL3LVrl9ITBxmIgHtKCnt4sF7PlSrxli3coAEHB/POnZYOvh86dGjKlClNTGpti2bUL7zwgiJhW4spwwH3sLAwUXq4U6dO0o2R5ORkjUYjfoUdOnQ4e/ashWfVty87OfGpU8bNihX5oYnFYAknT/IzzzARq1Ss0XAxs41//52dnZmIW7fm+4W1lZGTkxMQEEBE1atXP3369MMfnJaWptfrQ0JC/P39Tet029jY+Pr6BgcHR0REPCjgkp2d7erqqlKprl69Kv/TKPsOHDjg6upKRJ988sl9HxAfHx8REREcHOzn51eot4SLi4ufn19wcHB4eHh0dPR9w5fR0dFPPfUUETk6OoaGhpr1uYSHh4vn0qBBg927dz/o6Ui3E9zd3Tt1OiVF2G1t2ceHg4I4NJSjolj6xJQC7swcGspECLiXPVeuXCGiihUrStnQ48ePr1Wr1qpVq0p/8H/+YSJu0MAqsi3Kn6SkpLCwMD8/P6k1qIeHh1arjYmJ2bNnj6hC1qhRo0d+jpjVihUriKhbt25mHSUuLk6lUrm4uKSkpIg9c+fOFau4zDouPJIIuDPzH39w+/Y8bRp//LHMQ0RFsZ0dq9Us6woxACUZDJydbQy4M7NOx0OHFgTc/3uf49u3EXB/bPn5+REREY0aGauc+fj4fPPNN2JVMREFBATEx8crNbEzZ84oNbrpPHjOHH7xRfb15aAgPnZM4fmAiczMzNjY2MjISJ1Op9Fo/P39PT09bR7QPdzd3d3X1zcwMFCr1YaHh0dFRYmYwIQJE4ioZs2ayr/YoNREwJ2ZIyLY15crVeKPPipIkqtfn99/n3ftYrOGu6Ojo0NCQho3biy99qpUqRIUFBQZGXn16lVRJOCbb74x4wyUViYD7llZWaP/a8p+32XRf//9d506dUiJVPe+fXnECO7SxRhBQMBdWfn5HBZmjJvXr89btjzetx89alzaXKUKb9xonik+jry8vIEDBxJRtWrVoqOjH+t7ixN8T0xMNP2WV155hYgWLFgg65MoD2JiYqpXr05EQUFBxcn2zcnJiY6ODgsLCwoK8vHxkeJfgpubm7+/f0hISGRk5K1btwwGQ2hoqLjl6+Pjc/z4cQs8owsXLjz33HNEZGtrGxISkp+ff/fu3c2bN0+fPr1Pnz61atUqdJbWp8/iwYP5u+949+4HLgH599+CCHteHs+ezfv38zPP3FN0C6zcL7/8QkSvvvqqtKdQwntp5OdzvXpM9IglR/BY8vLy9Hp9UFCQk5OT+GutWLFiUFCQXq83fbO6cuVKmzZtiKhy5cpSrRXLE+dyOp3O3AN16tSJiBYtWiQ2b9++7eDgYGtrW+7XsVo5KeDOzP7+3KKF/AF3Zp46lYnY07O4+RagoNTU1KysLKVnYdWuX+fevXnMmIKAe04ON2/ODg4PDLifPcuxsYpNuKwQoXYp+7JZs2bh4eF5eXnMbDAYwsLCRMENd3f30pRhLBm9Xt+mTZtKlSrVqlWrV69ely9ftvAECkyfzh078smTnJzM4eFcrRonJCg2GWC+fPnykCFDnnvuuWrVqt03sG5nZ+ft7f3SSy+NHTv222+//euvv06ePJn54AoMeXl5PXr0IKIOHTpYSe1BKDEp4M7MPXtypUqcn887d7JWa4xxia+qVTkoiCMjWa5fuKhjGRwcXNek5U61atVEnN30dbVhwwaxqGLv3r3yjG19yl7A/cqVK88++6xI/Pztt98e9LCkpCQp1d3Pz89iqe59+/Latdy1K4vLOgTcFRQby507F1SGkU5AH27TJjYt3XH3Lr/6qjE7Xqs17w3Ah8vPzx8yZAgRVapUKao0NU3vDb6LwK7w5Zdfmj7sp59+IqLXXnutdBMvb65du9agQQMi6tWrV25uruk/JScnF6cwwp07dzZs2PDZZ5/16tWr0OmRSqUSmacqlWrs2LEPOR+SXVZW1vvvvy9uBtSsWVOtvqeldpUqVXr27BkSErJ+/fpbt26VbAiNhomMSVhQJgQGBhLRvHnzxGbRhPdS+vhjJuLhw2U52JMuOjpaq9VKDbTVarW/v394eLjoklpUampq3759xW02URfL8urVq0dER81/F07cOnr++eelPeK5zxbFj0EhpgH3c+fYwcEsAffcXG7blol47Fj5Dw4yWrlyZc2aNWfNmqX0RKzX0qXs7s5EXK0aDxxYUMV0xw5Wqe4fcP/5Z/78c9ZoeNkypWZt7QwGQ2RkZKtWrcSnZ4MGDcLCwkSo3VRcXNwLL7wgHtOzZ89Lly5ZYG5r164Vd8eJqHr16mJBqpub2y+//CJXfb/HkJvLFSrw+fMFe955xyzv2lA8Bw8e7N69u3SxZm9v7+np6e/vr9FodDpdREREdHR0oWvV4rhx44ZIXf3www/NMW2wgLQ0vnqV585lKbEkJoZDQgoeYDDwvn08YQJ7et4TeX///dQNGzYUs/5tIXl5eSLObpqrV69eveDg4J07dz4oB/r9998nIi8vL7OWl1RQGQu4b9u2TVxMent7F038PHbs2M2bN033rF+/3mKp7rdu8ZUrxoB7dDTXrs2JiQi4K8Ng4LAwdnFhIq5ZkyMji/uNR4+yszN7ePD+/fccTadjGxtu0+Z27959C6WBW4bBYBA3kCpWrLjfdHKllpaW9s8//0ydOtXPz6/QrcXLly/LG1wrB+7evdu6dWsievbZZ4uGsb777jsi8vT0lMq1FydRS6rW4u/v7+zs7O7ubmdnt2TJEvM8g0f4+++/7e3tK1eubGdn5+Pjo9FoHlL35nFlZ7O/v7GFnRkq0oPM8vLyKleuTETn/7u4KprwXkoXLrBKxS4uxb0hCkVdu3YtNDRUvC8JPj4+ISEh9+2nXYjBYAgJCRG32SzfRvXEiRPi9p7p20tsbOwVM/SaT05ObtOmzddffy3tWb16NRE99dRTso8FxXf16j19j1avNlfhl5Mn2dGRVSresMEsxwdZbNiwQWQQm6NpTVmXlMRDhxpjIi+9xPHxnJbGpiGRpCTOzy/cOUzajIriiRMtN9syRCSPi0/P+vXrh4WFPTxAGRERIRo1VaxYMTQ01HyxBb1eL1IMRahdp9NlZmZeu3atX79+YmenTp0sXTv3wgWuUuWePb/9xn37WnQOYGLUqFHi9s/27dvlrQG7d+9ee3t7lUoVEREh42HBYkaO5CpVuJhLWKOjOSSEfXyYiLt0OSDu6gUGBj4ka8dUVlaWXq8PDg4WBQCEhg0bijj7I2MIOTk54r1uwIABxZpuWVNmAu6izIJoUfjyyy8XDXqmp6d7e3u7u7svXrzYdH+hVPdz587JO7HsbI6M5MBAtrfnUaOMAXdmnjCBg4MRcFdAXBx362Y8JQ0MfLy43pUr/NxzTMSOjvzLL/f806ZN+Z6ebcXNnmOWrVhnMBjGjBlDRM7OztssW3yhefPmRLR161ZLDmq1srOzxSK7Ro0aFbq3J3z66aeFyrU7OTl16NDhvffe+9///nfeNCXkAXJzc0U3v5UrV5rhGTza2rVriahFixZmCr3dvctPP81E3K4dF+MTHJS0b98+8Y4n7SmU8C6Ljh2ZiB+8XA3uLzMzMyIiIiAgQJwXiSiVRqMpTrWfQqvRly1bJurPdOrU6b7vbGYyc+ZMIhoxYoS0Jz8/v2PHjpUqVQoLCzN37l5sbKy9vX21atW6du0aERGB+8oKCg3lZs3Y3EUavvqKidjDg5OSHjvdDyxGZGtOsu4ut4mJiQsWLDglNewyvw0buHZtY1/6kv2lvP02Hz4s97TKOL1eL065icjDwyM0NLRQlkx2dnbG/comJiQk9O/fX4otyN4KZefOnV27dhXHr1atmk6nKzSNiIgIsUBWJBQWTcY3l9hYrlz5nj2LFiHgrpTk5GQXFxeVSiXjfRfTQJnoduPq6nry5Em5jg+WsWKFMZz1uCGrkyd59uyV0nIf8QIYOHBgRERE0ch7RkZGZGRkUFBQpUqVTJN+tFptcS5GDh06JN2wjImJETW7CgVyy4eyEXBPTU0VH2wqlUqr1d73ZnJCQoK/v7/4TQ8YMKDQReO6detq164tQpZypbrv28djxnDlygWdAwcPLgi4p6aylxfb2XFSEq9bV/rRnnRz57Jp+vXnn/OpU/zxxyyFJe/cYa2Wf/6ZXV0fO7HdVFYWBwcXFKIxPcO5fPlyu3btiMjR0fHXX38txbN5PFqtlogcHBw2WDw166OPPiKiiciKYc7P58GDszt0eL127doPSR3Nzc2Njo4ODw/XaDQ+Pj6FCrNUqlTJz89Pq9VGRkY+KLA1e/ZsIho8eLDZnkqBnTt39unTZ614z2Jm5uHDhxPRjBkzzDdofDw3aMBEHBDAj7/MESzns88+I6IxY8aIzaIJ77JYsEDkU8h4yHIuKioqODhYZNiJj4aAgIDih4zj4uKqVas2atQo0+Wie/fuFW2LvL29LRNFys3NFX0jlpmUObh7926fPn3E83r55ZfN17L733//FWk40i3SWrVqTZky5YL1dEh/kkyaxERszo8dZua8PH7hhdyuXRcOGzbMvCNBKRw8eFClUjk6OipZpfqhfvjhh+rVq4uzO7GcKC4uznzD3b1rLMdHxH5+XIKP3+xs1mofu4tV+Xbf5HHTB4h67t7e3p9//vmDDhIZGWm6jF6WqPfu3bulCiFVq1bV6XTp6en3fWRiYqKUUPjcc889bmevx3bwII8Zw9nZ7OzMpi/4ceN4yhTOy8MJveWJgHiPHj1kOVp2dvagQYMqVKhgegNp2LBhRNSkSZPyWuujXLp82Vh57OefS36QuLi40NBQPz8/qfOco6NjQEBAeHj49evXRZxdhMilOHtISEjxryC+++47Gxsb02rGCxcuFPH9M2fOlHzeVqkMBNzPnj0r0mwrVqz4559/PuSRpi1NqlevvmLFCtN/NU1179ixY0xMTMnmc/Uqh4Zyq1YF1Y58fFinMxZIkgLuzLxyJRPx5MlMxKNHc4lKIYFRv373rDtu357//Ze9vbl6db52jZn50iX28OARI4yJ7SWtMm20ZImx1WqbNmx6AZ6VlSW9ijQaTcnqWz2WqVOnEpG9vb1pVNRitmzZIvKdLT+0tRk3jonY3d0QHf0Y5Q6Sk5P1ev2XX375yiuviHiWKW9v79dff33OnDmmuZxxcXEqlapChQoWKOD+7rvvEtGUKVPEZk5Ojoioyp6tw8ym6aoxMVy9OhPxm2/KPg7IpmPHjkS0Zs0asVk04V0Wqans6soqVUniCE+Uy5cv63Q6b29v6Q3E19c3NDT0cXPS169f7+zsTESdO3c27cdw9epVketXoUIFs37cSLXmHR0dHR0d+/TpU6h8RERERNWqVcUdSnOkuoeFhdnZ2RFR165dY2JiwsLCWrZsKX6kovA9Et4t7P33mYi//dbsA8XGxooKyIUuEMCqDBw4kIhGjx6t9ETuY//+/aL1Uffu3d3c3MT7ho2NTY8ePRYtWiR7TGrXLmNfO0dH1ulK2Edq+nQODGStlhUqVWhdHpk8npeXFx4e7uXlJR7j5+f3kM8gEVsQAalWrVodOnSoxBPbu3dvQECAGLRy5cohISHFeTmtX7/ew8ODiOzs7LRarVkuS0+c4MBAVqmYiJct4/ff5xde4OvXOS+PIyO5enWOj2edjlu25IMH5R8dHuypp54iWZdEFw2vZ2RkPP3000Q0cOBAuUYxq/x8vnTpie7jm5vLHTowEffrJ88BL1269N1333Xs2FFKIhTtl8Q5c/v27WfNmlWCu85bt261sbGxtbXdvXu3tFN0K/T19bVAhM2SrD3gHhkZKRYptGzZsphZdRcvXpRS3QMDAwv19ytxqntqaury5eeff57VamOcvVYt/vBDLlRJPjX1nva+iYm8fLkxdNuxI1tsrXZeHgcGslR95MgR/uIL3rWLv/++4DHr1pWlc68HBdw//JDFR4AIuCcn8+rV8ox4+LCxicRLL536559/TP8pPDxcBCx8fX3Nmtgya9YscSq/fPly843yEDk5OeIP0DKtgazW9OlMxPb2xS2F9iBSufaAgADpUs3Ly6vQw3x9fYnI3LdYDAaDOE2XrhA2bdpE5ilqnJjIXbqw6Tnh/v3GLgum/VvAety9e9fOzs7W1jb5v7JohRLeZTRsGBPxp5/KfuDy49atW+7u7tKZ7tSpU0uTAHL06FFxuuzh4XHYpMpAWlqaKA5rY2Oj0+nkmHiBa9euzZo1q0WLFtINg/r164sE87p16/7999+mD05ISJDK1L700kty5bqmpqaKWJ5YLmmakBgVFaXRaFxcXMSgNWrU0Gq18i7mgAcZM4aJ+McfjZs3b3JEBP/7r1nG+uGHH4ioatWqCU/yFbl1u3Dhgr29vY2NjdmTdh/TnTt3GjRoQETvv/8+M2dlZYksP3FFQP8lAEZERJQ+WJCRkfH++xPr1csVJfjKXcKfAnbt2vX888+L39R9k8dFVnuTJk3EYxo2bHjf1qlFbdiwoX79+kRka2ur1WqL073J1LFjx0S9PnHDW6vVJiUlPejBFy5c+Ouvv0z33L17Nzg4WMTCnnrqKTkbfZ08yUFBxsCHiwsHB3NCAufm8pdf8jPPcJMm3Ls379/PubnG2s92djx1Kj/m04eS2bFjBxHVrFlTyg9IKXU3pLS0NBHENw2vnzt3ToQCvvvuu1IeX145ORwby3o9h4WxVsuBgezra7y0/OQTpSennClTmIjr1uXbt2U+8rVr1+bNm+fl5aVWqxs0aPD999+Xch2qKOHg4eEhpd2kpqY2atSIiCZMmCDHlK2F9Qbc8/LyQkJCxOfH4MGDi1OwX1Io1b3QrT/TRVidOnV6eKp7fn7+zp07NRqNq6trgwYviCyDgACOiODi5z8dOcIeHkzEXl5smSpYOTlsY8M+PsZuORs28Asv8OLFHBhY8Jivv+bgYEtMRhb9+vGIEfzjj8avhg2NAfeYGH7qKd6wwRhwl1diIo8YccfR0c3Gxmb69OmmOQ6HDx9u2LChOGkrFI6Xy5w5c0TgY6nprQaLe/XVV4kozNzVVa3YkiWsUrFazfKmxOXl5R07duyXX36ZP39+oX+aMWMGEQ0fPlzO8YrYs2cPETVo0EB6YYs3xhAzhMDnzWMidnJi05Jua9eyra1Y8mbeYs1QAqKlZKdOnaQ9hRLeZbRtW1qXLu+3bv2sWRubl2leXl5OTk79+/ffsmWLLD+la9euiQX1rq6upr9Tg8Gg0+lEvt6bb75Z+kRvEZMKDAwUSeV0b6352NjYLl26SBkSRVPdReUckepeypnExMSIcH+FChUelBGWnJwcFhYmFa9UqVR+fn5hYWH3LeMLchk5kol4wQLj5pYtTMTPP2+WsQwGw0svvUREffr0McsAIIexY8da2+8oPz9fvHKee+65QvH05OTk8PDwQh01goKC9Hp9yRbo7Nu3T4R9fX0/+PJL1OoorT179kjJ41WqVCmaPG4wGCIjI0UmrzgxfmTr1ELS09O1Wq2IWjRv3nyvaRXUBzt+/HhgYKD4wHV1ddVqtUV71BWa5wsvvCA+Lm/cuGH6Tzt37hSvGVtb2+Dg4McKm9zH6dMcFMQ2NkzEDg6s0RiXkz9IejprtcbHe3tzOWr9lZmZaZ05ZyIX+JP/Qsv5+fne3t7dunUr5b1kKbweGhoq7fzrr79UKpWtre327dtLNemSSk9PP378+OrVq2fOnPn222/36NHj5Ze/FS+3ol81a/K0aZyXx1FRnJpqPEJS0hOxjnbbNraxYbXaXCkLzPzFF18Q0dSpU0t/qNzc3Pbt2xNR//79pZ0HDhwQ3XrXlaOS3FYacL99+7b4RLG1tS1xmlVcXJxUB61oqvvatWtr1aolUt1DQ0OLnhKdPHly0qRJdevWla67OnXqFB6eWrImqPHx/MwzTMQVKpSwtvhjyclhJyceM8aYPVo+Au5Dh/K33xq/GjQwBtzj4nj7dvb25nPn5A+483/RB3EK1atXL9Mzodu3b7/44osiJv7uu+9GRESsW7dOr9fv2bMnKirqzJkzsbGxN27cSExMfKyTNuHXX39VqVQqlapoNNbC5s+fT0R9n9SWOOvWGYPCc+ZYbtBz584RkZubm1lXVH344YdE9OGHH4rN/Px8UfTmeKFlOzIZP56JuFIlPnq0YOeSJezubmjdOlipJrEWMHUqmy4yHjPmnipV589zYCBLPYr++staFh698847RPTFF1+IzaIJ7zIyGAyenp5EtAVVZu8nPT1drVY7ODiU4KPkIbKysoKCgsTpTaHbbMuXLxc5mx07dixxG9VCtebt7e3vm/uZn58fFhYmUstr1apVKHcvISFB3PQVqe5XrjxGRS9T69evF0sEGjduXJy02UIJ7+ImgbXl25YbQ4YwUcFb3/r1TMQ9e5pruKtXr4oXQ7nszVU+3Lx5U2RNFafxmmV88sknIovrITl9V69eFUVv6T8eHh7BwcGHi92uNDc3V6fTiduTzZs3L02JEmDmo0ePFkoeL3oOo9fr27RpIx5Tv379xw21m9q9e3fTpk2JSK1WazSaVCnaV0R0dLQUandxcQkODi5OnDQ/P3/OnDnig6lq1aq///676b9mZGRotVobGxsi8vT03FyyNblxcazRGK987O1Zo+H4+OJ+7549xlR3lYo1Gi51wrWFZWZmxsbGRkZG6nQ6jUbj7+/v6elpY2PTqFGjd9999yHLDizv9u3bjo6OarVaaiq2ceNGIqpXr17pewncN7w+ceJEIqpRo0Z88V8PpZORkTF8+PBOnTqJeF0hnp4vE7G7O/v6clAQ63QcEcFRUSzdSktJYSJ+6y3j5po1/Morlpm4Ym7dMvbWnjbNjKPIGHBn5tjY2IoVKxKRaXNEkXdYvXr166Jgd9lnjQF3KXe4WrVqpbz8FqnuomJj9erVV61aZfqvN2/elD6Ge/ToIW5gJiYmhoWFmZ4t1atXT6vVlrjmuyQz03hRYWPDcq/VLkwE3G/f5tq1+ezZgoB7mzb8ww/Gr759y1jA/b4lZURBl6AgHjPGLAF3QWqw5u3tfcyk37OUDCgWmT5cxYoV3d3d69ev7+np2bp1a19f3+7du/v7+wcGBgYGBmo0mrfeekur1U6ePHnQoEFqtVqlUv3000/mekrFFh8fr1KpXFxcHneNZDlw4IBxbZrli12INX2bNm0y3xAixLlnzx6xuW3bNiJq1KiRmYbLz+fAQCbi2rXZtOnszJkLicjJycl6rqvl1a0bm1bLaNqUjxwp2Dx4kJ2d2d/fuPn112wlq+hEAVNpbXLRhHd5hYSEEFFQUJCZjl+mHThwgIhatmwp+5FN7ygPHjzYNI/78OHDouSUl5fXYwWaRa15sSZU8PHx0el0hdLxCjl//nznzp3F4+VNdTd9jr17936sO0Z3794NCwuT0h6JyNfXFwnvsuvfn4kK1pCtXs1E/OqrZhwxPDxcvJysM3UR+L8PhXbt2snexaEE9Hq9jY2NWq0utKT1QfnIJ0+eDAkJEWdZ0tvgI9urRkdHi8ivWq0ODg5+As+65fXHH39I11+ffvpp0YCpXq8XnUuIyMPDIzQ0tPQ/88zMzJCQEHHLpGHDhnq9vtADTp06FRQUJMLizs7OwcHBjxtUiouLE1mJRNSzZ89Cb2JHjhwRryKVSqXRaIrfV+DChQvjNRqDaLZob89jxnAJ7nDn5LBOx/b2TMQNGrA5r2JK48aNG3v27FmyZElISMiQIUOee+65atWq3ffi3c7OTmR89+7d2xrei4RvvvlGTEnaI1ITZsjUfHzChAl0b3g9Ly+vR48eRNShQwfL1Nc2GAxStS57e/smTZr06tUrODh47ty569evP3v23MNnkZLCFStyixYsKoSX+4C7wcB9+jARd+rEcvRvfiB5A+7MvHz5ciJycXGRGsjl5+eL8uAvvvii9fzRlYbVBdyXLFki/rratm0r13lwXFycVLWtaKr78uXLRXuuChUqtGvXzt7eXjzSzc1No9Hs2rVLxt+0wcA6nbEYmpnaqGZn85o1nJrKTk7MzGFh3KNHQcD96af5u++MX717l5+Ae0ICV6tmxoA7M1++fFkswHd0dDS9C3f16lW1Wm1ra9u3b9+XX37Z39//ueee8/X1bdy4saenZ7Vq1dzd3cV51WOpUKHCNLPeoHwcoqFcCXMlyiypsacijbvEpaZGozHT8aOiooioTp06UnmKcePGEdHkyZPNNCIzZ2ezv7+x0bRpPG38+PEi9nHUNPu9vHhkwP2559jf3/j+ZiUB95iYGCJyd3eXMmXefvttMkl4l11cXJxarXZycrKqHCIrsXDhQiJ6/fXXzXT8devWiQST9u3bmybZxcfHP/PMM+LzKPJRS/Pu3r0bHh7u7+8vUvbE20twcHDx/6jNkep+9+7dvn37EpGNjU1ISEiJq/GIhHeRvSGdH544caJkR4NCevdmooLVn3/8wUQ8aJB5B+3fvz8Rde/evXxczpU/qampYtWdOeqYPZZLly6J68RCwazMzMxKlSqJ5tX3vaEoqpIGBwdLsTy1Wu3n5xcaGnr73vK6+fn5oaGhoh1rw4YNlarbUJ5cuXKldevWrq6uwcHBRX87er1eXNMRUfXq1XU6XaaowSqTo0ePim5MKpUqKChI3EK+cOGCRqMRl4T29vYajaY0ycLSfeiKFSuGhoaafrrl5OTodDrxcqpVq9aff/758ENdvnw5ODhYPH7b88/zm2/ekxdTAkePsq+vMdV9xIi7995Bt7DExMSoqKiIiIiQkJDAwEBfX18RQC/K3t7e09PT399fo9HodLqIiIjo6Ojc3FzpHeDLL79U8IlIDAZD48aNiWj9+vViz7Vr1+zs7Ozs7K49vPJPsZmG16XSgjdu3BCFHz744ANZRnmkiIiIzZs3X7x4sQQnbykp7O7OmzZxy5acm1v+A+5z5jARu7mV9m+3qNatWzs6OkrRcNkD7vxft94WLVpI78MJCQk1atQgolmzZsk4kFKsKOCelZUVHBws3vI0Go28d89MU91r1Kix+t7Gmjdu3HjttddsbW0rVKhgY2Pj7+8fHh5e2vJnD7ZsGTs5MREHBp6/LV9Hg+ho1mqNIcLly40B9/x8bteO33mnzJeUCQq6p4J2jx68Ywe3acPSTZmffmIz9Hq8R1ZWlihyPXbsWGmnTqcjogEDBjzy25OTkxMTEy9cuBAbG3vo0KGoqCi9Xv/PP/9EREQsX748LCzsp59+0ul006dPF+3sIiIizPlsHsOkSZPIpPbIkyA+nhs0YCIOCFCmeuaJEyeIqGrVqvIWkZBMnjyZiMaNGyc2pQaqUVFR5hhOkpzMLVuKYEqClCWan58vFhvVrl37ouxnCkrr1o3feIOnTzd+Vat2n4B7dDTXrctJSdYScP/xxx/p3qZJIlPvwIED5hu0a9euRPTLL7+Yb4gySlR/mj59uti8dOmSt7f3aFnvBB47dkz0fKtbt67pm0BmZubQoUPpwW1UpT43UvUVR0fHwMDAyMjIkr13yZjqfvr0abG6v0qVKrKsFhIJ71LxAfov4b1Q5z14XD16MFFBKuRvvzERv/GGeQe9deuWuJz7UerWClbm+++/J6ImTZqY6USoOLKyssR9x4CAgEJBn3379knve/b29q+88sry5cvvu/xFaq9q+j4pldi6cOGCeNMTKckPqUMCxXf06FERwSm0f+fOneJkg4iqVaum0+nMtGIpJyfniy++EFHsmjVr9ujRQ5T4d3BwGDt2bCmbDQoJCQnixiER+fn5SRExITo6ul27dtKH6X2rw924cUOr1Yru5Wq1OjAw8JxU4rCUcnM5NJRdXH7386tRo4aFL2nnzZsXEBDQrFkz8fMvys3NrW3btgMHDpwyZcqvv/66ffv2h/9GpDUuGzZssNizeJBNmzbRvdVjpk2bVuikvfSk8Lrp5f/evXtFZury5ctlHKuUsrL49Gleu5a/+47ffZd79uTGjXnnTnZ3Z2bu149nziznAfcTJ4yhxWXL5D94s2bNiOjkf10ozRFwT0tLEy0o3nvvPWnn33//rVKp7Ozs9u3bJ+NYirCigLu4pHR0dFy0aJGZhjC9kAsKCjJdWbxr1y7x5lXKXhPFdOQIP/VUYoMGjT09PUtZFfTKFf7qK27WrKBZRMuWvGqVMeDOzIcOsYPDAwPut29zZCRfvlyaKSgvNpZnz+b/amOY18qVK03vBokmbGvXrpVxiK+//pqIRowYYbrz7NmzSpWy2r59OxE1a9ZMkdEtIDeXo6JYipkkJvKRI9ylC7drx2a77/ZoIlS0bds2Cxy8aANV84mP5169Ljo5VX7llVekk8Xs7GyxfMzHx+eOorkwsuvWjd9/nxcuNH7VqnWfgDszf/ghjx1rLQH3Pn36ENGC/5oYFk14N4dFixaJi0bzDVFGiWYhUsb3unXriMhfqkMkk1u3bokTJFdXV9OkBNOSLKNGjZI+/k6dOhUSEiKVUxOZm2FhYSmlLtsqUt3FYsdatWoVSq6Pj4+X2t8FBAQ86GPxjz/+ELGtp59++oJp2wQ57N+/f/To0VLCe5UqVT744IPyd7PQYjp3ZiKWknp//vme0qtyiY+PL5T9JyplOTk5ScX9Ro8erdFo3nvvPa1WO3XqVJ1Op9Ppfvrpp7CwsCVLlkRERKxevVqv1+v1+oMHD0ZFRZ06dSo2Nvby5cuJiYmJiYlIlpdXTk6Ot7e36YeR5b311ltEVL9+/fsmSGVkZERERAQEBEhNoZ2cnB5yxzEpKenXX3/t1q2beEcV9w5FTNDDw6NQvRoojR07dhQ9o1i6dKkUap81a5YF7pXGxMSI+H7FihXt7OyCgoJiY2PlHSIyMrJOnTritafT6UzP08SHqVRZNzw8XPqnmzdvarVaJycnKdR+9uxZeSfGzHz27Ku9eomf+WuvvWaxy9hRo0ZJsXV3d3dfX9/AwECtVhsWFqbX60v2KxBB7cqVK8t+RvG4+vXrRyZJGHl5eSJh4l+5G2WK8LpKpTK9XyLug7q6ukoRWEtKSUk5fPjwX38d0en4zTe5WzeuV89YOqLQ12+/GQPuly5xzZr888/lNuCelmYMA77zjlmOb4GAOzNHRUWJF5vp8laxAt7Ly6v4pbGsk7UE3HNycvr06WNnZ7dr1y6zDiSlutevX9/0svDjjz8udF/F3K5evSYqx1WqVOlv04oDxZOZyRERHBBg7GtCxJUrs0bDogxyTg7XqlXw4Pff5379eNkyHj68YOecOTxpEr/5Jq9bx127cplex//552Z8o3mIw4cPi/M2ab2VLI4fPy4SIqSLN61Wa/rhamG5ublubm5EJPtpopW4fZuJePx44+by5dy/P2dm8gOKc1pIoSR0GRVNny/UQNXcYmJiRFME0yzdu3fvilrJ7dq1M98CI8srTkkZZk5J4fr1edgw5QPuubm5Yr2tVNWtaMK7OaSlpYkueYWytEBcS0tvv2JZlTlOV7Kyst544w36r42qafRwxYoVIgLerl27L7/8UiyWFxo3bvzFF1/IXgu7UKp7oVrJItW9YsWKl4vkC+Tm5opPTCIaOnSo+UIqKSkpYWFh0o/i22+/RWpqybRrx0Qs5TCJldHyLsHMyclp3759zZo1TRdwXL582dnZWfx9yWjNmjUPKu0Nj0uU4a5du7Yi60hEfNbR0fGRi//u3LkjGoBJNbVq164dHBz8oOY0UntVlUpVrVq1V155pZylGihu/fr1RNTz3ubLmZmZLVq0CAkJsWT4Jj8/XxQkMV+IIykpSaPRiNdeq1atCvXavXDhgshoIaJevXodPXpUq9WKD3SVShUQEGDWco4i8CLO7tzc3MLCwixwY3Lfvn2rVq06evSojB/K+fn5L7/8MhE9++yzCvZXkKrHSPWI1qxZQ0RNmjQxxw927ty5VCS8Lk4UmzRpYta/I6kWkGkPW/Eif+qp0aaxdVtb9vLiF17gMWN49mxes4ZPnOBbt4wBd2b++muuV6/cBtxHjTIWazXTh6RlAu7MPHPmTCKqVq2a9NrOyspq3bo1Eb1h7jWPZmYtAXdmFn1KFy9ebLozMzPTHOdYMTExe/fuNd0jYt8bN26UfayHeORi7aLy8/O3bNkyfvwdV1fju4yjIw8cyOvWlarwxVtv8fnzJf92xR08yETmreF+X++//z6ZJyQqblZL50wiD6tjx46yD1RMouLHvHnzlJqAWd2+zVWqcLNmLH7eIuCuuKJl1uUi0jRMC8QXaqBqAfv37xf5p5+adKSNj48XCbMBAQEKLiGX130D7rt28f/+x+npBQF3Zo6IYLWaJ0zg339nufNUHoPIC/Px8ZH2iIR3094VZjJy5EgimjJlirkHKkMSExOJyMXFRXofCAoKInPW3gkNDRXZlwMHDjRdax8VFVW7dm2xKJ6IKlWqFBQUpNfrzXfx/MhU96KFYm7dutW9e3cisrW1LeZpVekdPHiwdu3aFn4LLU/69fumfftvjx413rP56adDXbr8rdPtl3EI0aTEw8NDauOUk5Mjrjs6d+68fv36iIiIiIiI+fPnh4WFffvttzqd7osvvtBqtVqt9q233tJoNEOGDAkMDOzbt6+/v7+/v7+vr6+vr2/Tpk09PT3r1q3r7u7u7u4u/jRsbGw++ugjGSf/JDMYDKIsxldffWXhoU+cOCHefB4rv/7ixYs6nU5UWBaaNWsWEhISExNz38eLtw4075WduFVTtOCnIstQRBKDuVvUbNiwQVw82traarVa06CwiHqLaYiEd5VK9dprr1msE0l8fLw4kySiF198sYwuCEtMTBSXS2+//bZSc/jss88KvbB79uxJRN9++62ZRhT1tU3D6xkZGSIM2rdv39L/QRkMhsuXL2/duvWXX36ZNGlSYGBg7969RWOhohwdHZs3bz548JgPPuAff+SNGzkmhu+b9ChquAu5udyiRfkMuF++zBUqsJMTm+9P2WIBd4PBIBawdunSRVqpExMTI27XLVmyRPYRLcaKAu5hYWFE1KNHD2nPvHnzKlWqFBoaau6hb926Jdq1mamO20M8aLF2UWfOnJFa3nfpsoaIfX05NJTvbQFbEmfPclBQaQ+iLIOBa9ViIi5deZ7Hk5eXJxo6maOusSgWL7VnSU1NdXBwsLGxUSoFRnTtM+2HXp7cvs01avCaNdy2LeflWUvAnc0WBxd1kKRY1aFDh4ioZs2askf2H27dunUieDd37lxp5+nTp0WNZvM1jLWwwYN569aCze7dOSKCv/yS163j11/n48e5X7+Cfx0wgN97jx0c2NaWf/jB4nNl5iLrvaSE96KpxKV0/fr14OBg0089EeuvU6eOWWvXlC3iZ/Lss89Ke8R1TqGkAXn99ddf4pq8UEvJyMhIIqpateqKFSssluH18FR3U1FRUSLcULt27d27d1tmesLgwYOJyHTBPhSfKHF26tQpsfn5558T0SeffCLX8ZcvX05EdnZ2pq+KMWPGEFG9evVulf402sTRo0fVarWjoyNCqHLZunWryI2VsevVI6Wmpooow9ChQ0t2hOjoaK1WKy4ThPu2VxWr/SxTzvSJIqIK8jY7KRmDwSAapVogjyQ9PV2r1YqoQvPmzQudJ1y9etXb29vNza1NmzZHTNdaWkpERIRI9nd2dtbpdBa+6JDF0aNHxX24hQsXWn50qXrMli1bxJ5Lly7Z2Ng4OTmZLz6QkZEh1h+bRvnPnTsnLg0eK9Cfk5MTGxur1+vDwsK0Wq3oYSt1tpCIe+GOjo4+Pj6FagEV/zUjGqVKzp5lMxfRsJD9+9m0C/Kff/LevbxypRlHtFjAnZlv3LhRq1atQrfYFyxYIO4UmqXslUVYUcA9OTnZyclJrVZLV/UrV64kojZt2ph76CVLllCRdWeWJC3W9vPzK3QqdufOnR9++EFqe0JEnp6eM2bMkyshfc8eHjeOZe3Nrow33mAinjnTciNu2LCBiBo1amSOg//55590b/HB559/npTrUnL9+nWVSuXi4pJZDl4rRYiAOzP37Mk//GBFAXdzVHo5d+6cuHaVAp1TpkwhonfffVfGUYppyZIlKpVKrVavNDlZOHDggKOj4/jx4+VtnW1tsrL45Zfvs99g4JAQVqmYiN98ky3/M3j22WeJSCp0Jur7mya8y2Lfvn2ikoNpPrvBYBAVe9E6VfLTTz8R0ciRI8VmXl6ek5OTSqUy94r448ePN2zYcNm9DZjmz59PRMOGDTPr0EU9PNVdCA8PF+VoO3bsWKhUtwWEhIQQ0ccff2zhccuHhg0bEpFUGHfq1KmmCQeldPbsWZErZ7pET2S/Ojg4HDx4UJZRTL3++utENNy0hiOUzgsvvEBEFls3YDAYRC/Kli1blnKZdW5u7t9//z1kyBApqNSlSxfTB4iglWlTMZDFrFmziOiDDz5QeiKcmpoqQsyme8x6MbVjxw6xxsLGxqZQd3GxsL5QOQFLMm302rFjx7JYfevXX38lorp12xw7Jmc52eL466+/iMjb21vKhBDVR81dcEMKr3/33Xemk1GpVLa2ttulBiwm0tPTjx8//ueff86aNevtt9/u0aOHp6entESykBo1anTo0GHYsGGfffbZ0qVLDx48WLIb4RkZfOIE//knz5rFEyeW+OlatUmTWK1mKXng2WfZnOk3zJYNuDPzpk2b1Gq1ra2tabqhOK1q27ZtGY0MWFHAnZkHDBhgek8jOztbpDoeP37crOMOGTKEiCyQSv8QR44cqVevnoinR0dH5+Xl6fX6oKAgcQFJRBUrVpR9+XZaGr/8Mo8axRqNGZeiWMayZUzEzz9vuRHFH79c14SFpKWliZR2KaNHVLZS8BJOpFUWXcJfDkgB9/PnuVYtnjfPWgLu5uhlOmPGjEIvJJFduNU0DduCvvzySxsbG9MAa1xcnEqlqlChQrm8uyMJCeH7hQ2Nli9nZ2cmYj8/tmTqW2Jioo2Njb29vWkZ/XPnzj2oEG3JLF68WIqNmjbRunPnTuPGjUV2Q40aNQIDA8PCwiwfPLUqEyZ8Y2vrOHv2bLF55swZ8Z5ggaGL/gGK/kVff/21BUYvKiYmplOnTuKMyDTVPSsra/To0WK/RqNR5HT8999/J/P3OSivxJ+8VLXzo48+IqKZciRQpKWl+fj4ENHgwYOlnWfOnBErlAuFouQSFxfn4OCgVqsVySEtl44dO2bJdQMiVuvm5nZevmqbaWlpv//+e8+ePQvdTnZ0dCSi8n22owhxEzQkJETpifC1a9eIqGbNmtIekUGl1+vNN2hmZmZISEilSpUK1TJ65ZVXiOhP0xRZJaxdu7Zu3bpdu3Yto42mJ078tWbNPC8vSzfAE0XkpRPC7OzsGjVqkJmXPAr3Da+LfjnVq1dfv379H3/88eWXX44YMaJTp06iUlZRarW6fv363bt312g0X3/99cqVK0tcZz8xMfHgwYMrVmRNn84jRnDnzlynzj1NU1Uqc9U0V9akSdy3L7dsaSykU/4C7vzfSaCnp6d0Kzo5OVlkZmi1WvONaz7WFXBft24dETVr1kza88477xDRRHPepcrPzxcL+hRfp7Bnzx5RSt7Jycm0FmTPnj3/+OMPy5e7KVsSE9nWlu3s2DJpImlpaa6uriqVynzNykUh2j/++ENsRkdHi081pZbgiaQzSzYWthgp4M7M06Zx/frWEnA3GAweHh5kUs2/9ESLv7Vr14rNog1ULa9Qv6bZs2cXio+UM7m5PHkyP7IY3ZEjXL8+E3Hduvyohm2yEf1RnzfbrUvThpYajca03fSxY8dEDaWKFStWq1bN9AT92Wef/fjjj3fs2FFuKvsXX9eu7ODAer3xBCAy8oCHR+eAAGWqe4lPpfXr1ysyOjPn5eXpdDoRoqpdu/batWuvXLkilgA6OjoqssRb2L9/PxG1bt1aqQmUaZUrVyYiKb3g3XffpXtLjZWYaHjQpEmTlJQUsSc1NVWE4F9//fXSH/9BgoODiSggIMB8QzxpRGqUBTqn7dmzx97eXqVSrVq1ytxjMbPoAVgWa2tYOdFka9asWUpPxHib3HQ99DPPPENE+/fL2abivoqWGenWrRuZFCRRUGJi4pUrV5SeRQllZXHbtkzEAQFssb9dUT3GwcHh5s2bYo9YqtWyZUvLTGDixIl07xrHvLy8jh072tnZFY2t29nZeXp6+vv7azQanU4XERERFRVVsgVD9+2eKkZp2TLFNMhub8+NG3PPnjxuHIeGskniUPkxaRLPnMmDBvE33zCX04B7dna2iIiOHz9e2rl3715bW1u1Wi1vBphlWFfAPTc3V1S7k9Z47t27V1xWma+i64EDB4ioYcOGZjp+MeXk5Njb2zs5OQ0ePFh8HHp5eU2cOFFK+YFH6tiRiXj1akuMtWjRIiLq3Lmz+YYQKTamH2yin2SUxWJv99q1axcRNW7cWJHRzco04J6VxY0bW0vAnf8LPcjVRrJo8njRBqqK69ChAxGtNGtFOkVt2MAjRrBWy1988YhH3rzJnTszEbu4mLdCX1ZWVkREREBAgI2NTZ06dWrXrm2O1hQ3b97s2rUrETk4OBRqwbps2TKx4r5169ZxcXHMHBsbGxYWFhAQIKKrgouLi7+/v06nU+pt0PKqVWMivnrVuPnZZ0zEkyYpkxQmcqkUL0598uRJUfhIFDoTiTDKZhOL3raurq5lNF9PWeKXKK2qefPNN0mO9PO5c+eKX4pUHZ7/W0rbokWLUpYKebhbt26JOjb/Ktj/unyxzLqBhIQEUets0qRJ5htFkp2dTUT29vYWGOtJI5Y9zZ8/X+mJ8MGDB4nI19dX2tOkSRMy6VphSSLnxhwneE+aS5e4alUmYvMsdL8PUf/TNCwgzqh/+ukny0wgNzd3wYIFhe4OimTkatWq9evXb+LEiWFhYZs3b46Li5MrcCcWVhbl4uLSsmXLcePOTZjAP//Mej3HxfGT0P5JBNyvXuWaNfnSpfIZcGfmmJiYESNGFCq25uvrW79+fcWvQUrAugLu/N8d6XHjxkl7RLmDjRs3mmlE0e55zJgxZjp+MYk800aNGhkMhuzs7BMnTogVZ1IhXXik6dONVY8tQCT6mbXQ8KlTp8RnmPTZ9vbbbxPR559/br5BHyIvL0+UeCq0PrEcyM6+p7jH3r38zz/KzeZeol2YXPc5iiaPF2qgqrjr16+r1WpnZ+e0cpmZ8PiysnjECOPqSK1W/lSaPXv2aDQaUZxRpAmL7HJbW9spU6bI2BgzKipKlE2rW7euaWJXXl6eVqsVWX5DhgwpupYrIyNDr9drtVpfX1/xMMHT01Oj0URERJTFGqDFdP06E7G7e8GeAQOY6NHLI8zh1q1bRFShQgVriCnn5ubqdDoHB4datWp16NBBqXbipkQvONMSSVBMhToKDhs2jErdgXb//v329vZEFBERIe387rvvxGv49OnTpZpxMYjWr88++6w1/L2UDyLy0qtXLzMdPy8vr0ePHkTUtWtXy6ymSklJES9IC4z1pBG31qRVwgrasmWLeFFJe0TBjavSjXQLErXdz5w5Y/mhy5/Nm9nGhtVq3rDB7GPl5OSIl43U+vv06dMqlcrV1dXcHX0eIjc3V9yh3LZtm5mG+O6779zd3X19fUvcPbWcEQF3Zp41iwcOLLcB96IiIiKIyNnZWZFblaVkdQH3I0eOEFGVKlWkKpzi9zpkyBAzjdi5cyci+uuvv8x0/GISy4JeffVVaY8odCO1kIVHOnKEibhWLTb31U18fLyNjY2jo2OSmYu3iTVTUiaCaJbSvn17sw4qKfphNmjQIJJpobfVmjGD7ez4v/p4ysvLyxNvBSfkaLMgKiCvWLFCbBZtoKq477//nohee+01pSdiXWbPZhsbtrfPfuedEFluRcTHx4eGhrZs2VKKX/v6+oaGht66dSsjI0Or1YoQmLe39327IT0uqWh7p06dEkxq0t+5c0d0w7O1tdXpdI88TkJCQkREhEajEUWfBRsbG19fX61Wq9frTWvUlAN6PRNxp04Fe3x8mIgVSeYWN/8s9gFUHKL/248//qj0RJiZ27dvT0Sy/L08UfLy8sRfsbRn4MCBRFSoYe9juXPnjlgR+P7770s79+7dK0qFWGb5VFpamnibskxlkieBtG7ATAUxRMGEmjVrWmxt8c2bN4moatWqlhnuidKzZ09StACaZM2aNUT0yiuvSHtcXV2JSJE4qSgk8IS3xpGRWHRYuTKbrb6s0fLly+ne6jHvvfceEb399tvmHfihVq9eTURNmzY1331l3LEuRAq45+Rwixbs5vZEBNxjY2NFZphZU13Nx+oC7swsQgBr1qwRmxcvXlSr1U5OTubo4Z6Xl7hnT4X58zuUrGODjD7++GMi+uSTT8SmSCWrVKkS3miKz2Awdsy4tyK0/L7++msiCgwMNO8wzGPGjCGiadOmic2inVTNJyEhoU2bNoWuasLDw4moZ8+e5h5dQStXMhF36FCw5+xZnjrVvAU9Hk6j0Zi+DErjzp07CxculCK2ooGqBYqiFp9YIPm///1P6YlYnY0b+YUX3iOiVq1aXbx4sWQHycrKioyMDAwMtLW1FdHqWrVqBQcHF12kv3fvXnGOpVarNRpNiaP8xSnaXrVq1ccNoOTn50dFRel0On9/f5HHKri6ugYEBISFhZX4R2RVQkOZiN95x7iZnc12dmxjw4q0dBE3w960zCKy4hGfxaZBVQWJvOwFCxYoPZEyJi0tTWQtSXuOHTum1+tv3LhRsgPm5+e/+OKLRPTcc89J95Jv3LghEvEmTJggw6SLZ968eWKBWjm7EaggcalvjnUDkZGRoiXgjh075D3yQ1y5coWI6tSpY7ERnxx+fn5EZMnf5oMsXrzYNHEwPz9fpVKpVCpFUnSdnZ2JSPGgR7lhMHDfvkzEzz7L8q0IvQ9R9kBKL8jIyBC9T2Rs8VUC4qM2NDRUwTk8aaSAOzPv3Mkq1f0D7iapTaWleMA9NzdXZLSU3Ww8awy4z5w5k4j69esn7RE1zc3RDisxcVlUFJ092132Iz+uvn37mmb0iAVofn5+ys6qzJk6dW/Tpq9/9dWjMyVLQ1ThsMCqiLVr1xJRu3btpD1iuevSpUvNOm5CQoIo5WS6BJKZP/roowoVKpRyobeVS09nFxdWqVhaW7JoERPxCy8oNqVNmzYRUYsWLWQ/sijmGGlaT0dRt27dsrW1dXBwUHCBpDWLiYkR7f6qVKnyuKWBo6OjtVqtqHpBRPb29gEBAREREQ+JBGVmZoaEhIhuSJ6eniUoRiwVbXd0dHxI0fZSBsdTUlLWrFkzZswYb29vMtG0adPg4GBp+W1Z9OabTMQ//GDcPHaMibhJE2UmI2qaWdWV1Z9//klW05pSXIRotVqlJ1LG3Llzh4gqV64s1wE/+eQTIqpevbpUsSE/P1+spGnfvr0lY9+5ubniSvXnn3+22KDlW0ZGRt26dYnom2++iYqKiomJiY2NvXbtWmJiotQXtwRiYmLc3NyIaLZllzeeP3+eiLy8vCw56BNCZO8dNXcGVjGIXvTv/HfnPDk5mRSqI5SXl6dSqdRqNZL5ZJSYyJ6eTMTmyzWPiYkpVD3mt99+EzeVzTVkMcTGxoqMWGuo6ffkuHr1nmD68eN84gR///09jwkJYScnlutejOIB90mTJhGRh4dH2X2lWWPAPSEhwdbW1t7e/tatW2LPwoULi8b+ZBEXNyIqihISZj76oWbm5eVFRNHR0WJzzpw5RPTWW28pO6syZ+XKlWTmXqai6lHlypUtUIUjIyPDyclJrVZLqV7ffvstEQ0dOtR8gyYlJbVp00asXDNNpRe5hLa2ttLqk/KqXz8mKvj0Skpie3u2s2Ol3udzcnJEIoO8VReLNlBVXFhYmPWEz6xTSkrKK6+8Iv4Svy90hnU/169fDw0Nffrpp6UwtI+Pj06nu3nzZjFHPHr0aOvWrYlIpVJpNJriJ0aVuGh7aYhWq4GBge7u7uL5fvbZZzIe38Lat2cilmpjLl3KRKxUhkfHjh2JaPPmzcoMfz/R0dFkNa28ly1bVihZBIrj0qVLROTu7i5LjT69Xm9jY6NWq/8x6cQyefJkIqpRo4bFSoVIRNXRWrVqoSuJXH766SfRT+hBKlWq5O7uXrt2bU9Pz8aNG/v6+vr6+j7//PP+/v6vvPJKYGDg4MGDNRqNRqOZMGGCVqv95JNPxFqr1157zTQQKUsdv4c7ffp2ly66AQPmmHugJ5AoKhUbG6v0RPirr74iookTJ4pNBZc1JCUliT8Qyw9dvh0+zI6OTMRmahnwwQcfEJFGo5H2HDt2bPjw4eZOv3s4sXp1xIgRCs4B7t7lKlVYpWLT6lnBwUzE3t5citvQBZQNuG/bts3GxsbW1nbXrl2WGdEcrDHgzv9VXpMWzqSmprq6uqpUqgsyl8gyHDtWOyqKMjLMflL1cOnp6Wq12t7eXorhvvnmm0RUnHgKmLp7966dnZ2tra35qqt/+OGHRDR27FgzHb8QsVxryX898s6cOUNEVatWNdNSxOTk5GeeeYaImjRpYtr8TRQTUKvVSxTp1mdZIqpleoPvhReYiH/7TbEpvfHGG0T01VdfyXjMog1UFSeSEH9T8AddFoiAtYgsFCrSIsnOzhalY0R+urhHqNFoDh8+XIIRc3JydDqdqNzSoEEDvV7/yG8JDw93dHSkUhdtL7Hc3Nxdu3Z98sknx48fN98oZmUwcKVKTMTSzZEpU5iIQ0KUmY+47Zcg4zrVUsvKyrKxsbGzs7OGkh2HDx8m8yxFKsdOnjzZpk0bNzc3lUrl4OAQEBAQHh6enp5esqNdunRJLOKZMWOGtHPt2rVqtdrW1tZ8Xd0ewmAwiKXQX375peVHL5dyc3NPnTolwuheXl6enp41a9Z0d3cXdbFLpkmTJi4uLlKaFzOPGzdOpVL9/fffZn0uhw4xEbdubdZBnlDirozp71QpU6ZMIaIvvvhCbJ48eZKImjZtavmZiLubdevWtfzQ5d6SJdyzp2yJWRkZGcePH//zzz9nzZql0WhEIaCoqCh5ji6H7Oxs0WBs3759Ss/lSff110zE1aqx1JohK4tbt2YiHj5chuMrGHC/efOm6BUsvX+WUbYlPjsxq6CgoA0bNixevFjUsHZ1de3Tp8/SpUuXLl0qap3LIjPzeG7uNXv7uk5OzeU6ZsmcPHnSYDA0bdpUqkUr8raeeuopRedV9lSsWNHPz2/btm16vT4wMFD24xsMBpHFFhQUJPvB76tnz56bNm3asGGD6A7XpEkTLy+v2NjYgwcPtmvXTt6xMjIyevfuffDgQW9v73///Ve01iGi3377bfz48SqVat68eWIa5Vvv3uToSDt30s2bVL06EdFrr9E//9CqVTR8uCUmsGXLlrZt24r2IMJrr70WHh6+aNGi5s1le7MSK4dee+01uQ5YSsnJydu2bbOzsxMZ3PAgNjY2Op2uVatWo0aNmj9//unTp1etWlWtWjXxrydPnlyyZMlvv/0murHZ2Nj4+/trNJq+fftKwffHZWdnp9VqX3755ZEjR0ZFRb3wwgtDhw6dM2eOlEVuymAwvPPOO/Pnzyei8ePHz5o1S6oXf/z48VdfffXChQtVq1Zdvny5KElpJra2tn5+fqKKaxl1+TLdvUs1a9J/v1vq2JHefpu6dFFgMvHx8YmJiVWrVq1Ro4YCwz+Ag4ND3bp1L126dOnSpUIFhSyvUaNGKpXq/PnzBoNBrVYrOxnrZzAYvvvuu48//jgrK6tOnTrNmjU7cODAunXr1q1b99577/Xv33/IkCGdOnUq/k8yOzu7f//+t2/fDggIEAuQiejSpUvDhw83GAw6na6LEn85KpVKDP3111+/+eabIkIBpWFra9usWbOoqKgHPUB0/MrIyMjOzs7NzRVNAsTO9PT0nJycQjuTkpIWLlyYnp7+888/S9eY9evXZ+ZRo0ZFR0eLe43mkJ1NROToaKbDP9FSU1OJSHTZtaqZKDgx6/mZlAOrVtG2bfT998bNlBRq355++ok2bKAtW8jBgYgoIIC++YZ8fB52nKQkunAhOiYmOvY/58+fv3btmulj3N3ds7Kyrl+/bqbnUgKrVq26efNmq1atZI9FwOOaMIF27KD16+n112nLFlKrycGBli8nX19atIj8/WnIEKWnWCLMPHr06GvXrnXu3FmsUyzDlIz2P1hmZqaopnf69GmxR1Qx9vb2lrHu2PXrX0VF0cWLo+U6YImJyNfrr78uNg0Gg4i1FX/VP0hE5ZNCS5wuXry4YsUKvV6/ZcuWqKioI0eOxMbGXrx48XHLPprjdfhw586dI6LKlSvn5eWJPe+++y4Rhcid5ZiRkSGaJXh4eMTFxUn7Fy9eLK54Z82aJe+I1iwggIl4/nzj5q1bbGvLDg5sgdLi//77r4ODQ8uWLU1rd8TExLi4uFSoUEHGN38XFxcXF5ei3TKVsmjRIiJ6QcFi+WXNoUOHPDw8iMjLy2v37t1hYWGiGJQgSseUuPHgfeXm5up0OgcHByKqVavWg6pLvf32246OjoXarshYtP0JsW4dE7G/v9LzYGbmjRs3knkq+5WSv78/EZk7EbWYxF3qy1IDEHiAuLg40d2BiIKCgsRpWHx8fGhoqOlNsjp16gQHBxczrW/Hjh2Ojo6enp6JiYliT2ZmpuhT0rt3b2VrFr/88stkNd19oaidO3eKZRAHDx4Ue/Lz88UdGrOuAvz338LrKUEWmZmZROTg4KD0RJj/W6IqnRH9888/RNS9uwLd4/bs2UP3NgaDElu0iAcOLNicMYPff58/+ICrV2epkGGrVmy6rDQxkaOiOCKCdTrWaNjf31j8/ZlnphW6QLO3t2/SpMnLL788bty4OXPmjBw5kojc3NzOnz9v0Sf5YOLtEe1JrMSNG1yzJhPx118X7PzlFyZiV1c+e7ZUB1cqw33HjgX29vZVqlS5cuWKuccyNyvNcHd0dOzfv/+CBQuWLFkyffp0IvL3969bt+758+f37dsnlmeWXkrKJiKqWPElWY5WGmJ9mZS7evny5bt379asWVNKWoTi69mzp1ar3bBhAzOLMsFEpNfrRZWeB7Gzs3N1dRX/tbe3d3FxcXBwcHZ2njp1qnRZSERLliwhomHDhklHNrdGjRp5e3ufP3/+wIED4pXfs2fPH374YcOGDdOmTZNrlJycnP79+2/durVOnTpbt24VpQ+JaPXq1SNHjjQYDF999ZWopfOEeO01WreOVq0i8aqpWpU6dqRt22j9eho82Izjnjhxol+/ftnZ2R07dpTWR4uUvfT09MaNG8uYoxcTE3P27Nn+/fvv3r3bGrJWV61aRdaUcW/9HBwcxowZs2TJklOnTr344osiZa9q1aqvv/76iBEjTOu2y8XW1lar1QYEBIwcOfLAgQN9+/YNDAwsWlF3zpw5Y8eOlVZo5efnT5069ZtvvmHmoUOHzp8/38nJSfa5lT+JiVSpEsm3pqVUrHbVXaNGjTZv3hwTEyNKESqrcePGCQkJMTEx4k4Y3NfixYvffffd1NTUGjVq/PLLL7179xb7a9euPX78+PHjx58+fXr58uVLly49f/783Llz586d6+PjExgYOGzYMFFr+746deq0e/dutVotrbx59913Dx065O3tvWTJEouds92XTqfbuHHjjz/+OHbsWNGxCaxKx44dRWDrjTfeOHTokKOjo1qt/u2331q1avXHH3/07dt3wIAB5hhXZLiLZFiQUUpKChHJm6RSYshwf6KMHUsLFtDgwdSoERHR5cv0xRcUG0uxsZSefp/Hu7qSt/czHh79vLy8vL29vby8vLy8PDw8bGxspMcwc0pKysqVK/v167d3715RYUZBZ86c2bFjh6ur62CzXhJDsVWvTosWUc+eNHUqde5Mzz1HRDR6NOn1FBFBY8bkbdjAJV7l7OvrW6VKFZEyZTEZGUddXMYuXepdoYJOdEov2xQO+D/Y9u3biahOnTpSYu/EiRPJpM13KeXlpRw6ZH/okG1eXpIsByyNb4cPb1S58l9//SU2161bR0T+VpLYVgbVr1+fiEyrFW/YsKFfv37+/v7dunXz9fVt1aqVp6enh4fHI8s+/vnnn9JB0tLSRC8BCzfhCQ4OJqJPPvlEbGZkZDg7O6vVarlq6ebk5IgiHtWrV5duYDLzhg0bRCprme46WDJFG6V+/z27uRmCg0t3m/ihLl++LD5UBg0aJNXoT09P79ChAxG1aNFC3s4E5jtyCaSkpIhLXNPOAfBwogq/RqMZN27cxx9/3KtXrxdffPGHH36wwND5+flhYWHi9KtmzZqrVq160CPv3LnTo0cPMn/R9nIjKYnDwjg52bh56BDv3KnohJiZecSIEUT0008/KT2RwkQj8XfffVfpiTAzjxo1yjp/SlYiISFBCq8HXBk9VgABAABJREFUBgaadmW/r6ioqODgYKkMi1qt9vPzCw0NLU5dZpEe4ejoeOjQIZmmXyrDhg0jM3e8h9LIzMwUaU9Sc0v+r5F7lSpVzHRmsmYNE3GfPuY49hPt/PnzROTp6an0RJj/W4YltXH+7bffiGjYsGGWn8mKFSsInb1lsmgR16vHAwcav1q2NGa4z5nD8+dzjx7MzK1a8dq1TGT8cndnX18ODGStlsPCWK/n2Fgu5uKrlJQUkWg8ZMgQsz6v4hg/fryMETmQywcfMBF7ehYsx09K4h49btWp00Gr1co1igUy3PPz06Kjm0ZF0eXLVnFuX3rWG3A3GAwiDWTLli1ij0gDF3WsSn/8pKTVUVF05kyn0h9KBnXqMJHhvzDurnnzRjRvPm3CBGUnVXZpNBp6zBZV2dnZiYmJ169fj42NPXXqVFRU1K5du/R6vel13eLFi4moY8eOZpjyw2zYsIGIfH19pT09e/asU6fOnj17Sn/wvLy8QYMGEZGbm5vpLQq9Xi96Hj6xi6B79GAiXrTIuBkfn2hv7+Ls7Fzifm4Pd+vWraZNmxJRt27dpLe4nJwckbbp6elpjuu9+w6qiP/9739klQUrrJmI7kkR9iNHjpBlO3GdP39eWgAUGBhYNAp27NgxkZFatWrVf//912ITK9NOnWIiHjPGuPn99wX/ryDRTHunNcT+7yUSFF588UWlJ8LMrNPpiOiDDz5QeiLW6H//+5+ohV21atWIiIjif2NeXp5erw8KCpISrB7ZXvXYsWMiB7BQYSsFXbx40cHBQa1WW8kNACjq0KFDdnZ2arV6+/btYo/BYBDnYAMGmKX66LJlTMQDBpjj2E800cK6VatWSk+EmVkUud67d6/YnDt3rlI3iUUB2+GyNFJ84i1axC+8wFFRxq933y0IuOfnc7t2HBHBrVpxVBQvW8ZRUVz6vKbTp0+LRRthYWEyPIGSysjIEB/lpkEDsAY5OdyuXeHPlP3794vPNb1eL8soFgi4X7w4MiqKTp5snp+fYb5RLMl62zqpVCrRnlFEOYnIx8fH19c3KSlp7dq1pT++qCdTqZLy9WQoKYni48nFRfVfHQ+/vXsXnjwZ0qSJotMqw8T5sYhTF5O9vb27u3vNmjU9PT2bNWvm6+vr5+fn7+9ftWpV6TEiYcpi7VIlXbt2dXZ2Pnz4sNQvZenSpVeuXCl9bSVmfuutt5YtW1apUiW9Xt+6dWuxf/fu3X379s3Kyho3bpzIH3wCDR6c0bnzid27fxSbtWu7+/q2zMjIeKzXVTFlZGT06dPnzJkzLVq0WL16tVhYIH47GzZsqFq16t9//y31sJVR1apV//nnn7p1627dulV0lpN9iGJCPZkSOHXqFBH5/NePqdCmBXh5ef37779hYWGurq4rVqxo3ry59HlNRMuWLevQocOFCxfatGkTFRUlWkRAcTRtSlu30oEDSs/jPwaDwfKvrmJq1KgREYlmJ4oTk4mJiVF6ItYlOZmCguinnwyJiYkvvfTS0aNHH6unvej8vHjx4lu3bkVERAQEBOTn569bt+6NN96oXbv2sGHD1q5dm5+fLz0+NTV1wIABGRkZGo1GrMywBvXr1x87dqzBYJg6darSc4H7a9OmjVarNRgMw4cPF8U3VCrVggULunadsX37zwsXyj8imqaaiVXVThH1baTJKFjuptBMoJTc3cnX1/hVu3bBfrWa5s2jyZMpK4vUaho4kHx9yc2ttMM1bdp0/vz5RBQcHHzw4MHSHq6kli1blpiY2L59eyloAFbCzo6WLCFXV4qIoN9/N54UPfvss59++qnBYBg6dOiNGzdKP4qIFZgvYpCUtPL27YVqtWPDhv9Tq8tLAVKlI/4Pc+HCBZVK5eLiIjUPnDt3bocOHUR57lK6fDn4yBG39PRi9WIyr+3bmYhNe5g8/TQT8b59ys2pbEtLS3NwcLCxsTl16lRiYmJ2dnbpjxkfH29jY2Nvb//IRdDm0KtXLyL67bffZDymwWB4++23icjFxWXHjh3S/r1794oTQVG9XcYRy5Zbt27Z2to6ODjc/W9p1qxZs8gMHbTy8vL69OlDRdLYtVotETk7O8uylOEhjh8/LppUj1EokzY9Pd3FxUWlUqHZ4GMRpYql0lIff/wxEX388ceWn8mFCxe6d+8uTioCAgIuX76s1WpF0eShQ4dmZJSTDAXLOHWKW7Tgdeu4dWvOzbWKDPfY2Fgiqlu3rsLzuJ+cnByRvKPsGh3h+PHjZNlVJtYvMtLYy6tWLcOiRX/IcsyHtFc1GAz9+vUjolatWlnbO09iYqJIDNy8ebPSc4H7y83Nbdu2Ld1bLWHpUmPrOdkbFs6fz0T85psyHxZEZt7LL7+s9ESYmUWtSOn8Vpzbz5gxw/Iz+fzzz8ki3Q6fBA9qmjpnjnHPu+8yEcueBf7uu+8SkYeHR3FKq5mDWLGxSFoADlbmt9+4Xbtrdeu2OnPmjNiTn5///PPPE1HPnj1LHNjJysrS6/XBwcEVK1asWrWqs7NzYGBgeHh4WlqafHPn7OzLR464R0XRrVtKLuOQnVUH3JlZnE8vXrxYbMoS/svOvnTjxvcJCbNTUv5ltoJ44o8/MhGPGmXczMtjJydWqTglRdFplW3du3eXGmcJLi4u7u7uHh4enp6erVq18vX17datm7+/f79+/QIDA0ePHq3RaCZOnKjVar/66iudThcWFjZ//vyIiIiVK1fq9fq33nqLiF577TVFns4PP/xARANkXXf60UcfEZGTk9PWrVulnUeOHBE/t6CgIKmM+BNLdCj94w9jjCAuLk6lUlWoUCEzM1OuIQwGg0jBq1q1qvTRyMzz5s0jIjs7O1nuLz7S1q1bRVq96GxpYSK9vX379pYfuuy6evUqEVWpUkXaI8JM//vf/xSZj8FgmDdvnrhXJ6pR2dnZ/fjjj4pMpkwTAXdmfuUV/u47qwi4//XXX2Q1ZVuK8vb2JqJTp04pPRHOyMhQq9X29va5ublKz0V5d++yRmOsXevnxzEx8g9x6tSpqVOnNmzYUDrTq127NhG5u7tfuHBB/vFKbcaMGUTUtm3bJzmbwcqdOHHCwcFBpVJt3lyQ9jRgABNxx44s73nx3LlMxNbRgaJcEVUKBw0aZLrzwIEDFy9etPxkREZ58n+NWcaMGUMmxQAtacKECUSEbjqy2LKFTS+YVqzgBQs4PJz//tu4JymJBw9m2T+IsrOzxQL3F154wfLX6UePHiUiNzc3M5VXBVm8/vrrROTr6yulnF69elXUbAgNDX2sQ6Wnp69ater11183XRkjqtEKFSpUGDRo0IoVK0ofeTcYcs+c6RAVRefPl7c+E9YecBf9anqI3hNyyMqKOXasxrVrX9y48f2VKx/JddhSGTOGifjbb42bp08zETdsqOicyrz09PRJkybVqFHD3d29xH2ZC3F0dAwKClLk6Vy4cEFcQ8p1GT958mQisre3X79+vbTz+PHjVapUIaJ+/fohXsD/VVrs37+/tMfX15eI1q5dK9cQ901jX7ZsmVqtVqlU8q5peLg///zTxsbGwoMK4sxg1qxZFh63TPvnn3+IqFOngjYkTZo0IaKjR48qOKv4+Pjnn3++Tp06bm5uKNpeMlLAPS6Oa9XiTz9VPuA+ffp0Ivrwww8VnscDiCJyUtt5ZXl4eBCRhTurW6Fdu9jbm4nY0ZF1OpnDlEVJ7VXt7Oy6dOli2u7eqmRkZIhXyLJly5SeCzzQrFlzu3Q5WK9eQdnlW7eMCzUeM1jxCDNnMhF/ZB0Xo+XJzz//TEQajUbak56e7uXl5ezsrNPpLBmmNBgM4nw+Ly9P7BH1csPDwy02B4lY1jxv3jzLDw0yun79uodHwy5d9lp+RavIPnxiu7uVFampqaLCoel5+5o1a1QqlYODQ3FWk6enp0dGRgYFBZkWv/Lx8QkJCRHZLXFxcWKhoVjNLKJkormOdHPxcV29OiUqio4fr5ube6dkR7Ba1h5wT05OdnJyUqvVcpUauHnzh9jY/o9+nCV17sxE/F/7cl6xgom4d29F51QOpaSkJCYmXrp0KTY29siRI1FRUVu2bNHr9StXroyIiJg/f35YWJhOp/vqq6+0Wu3EiRM1Gs3o0aMDAwP79evn7+/fpk0b8Z4yaNAgqcaRJdWpU4eIhg8fvmXLllIulD558qS9vb29vb1p4PjcuXO1atUiopdeeska1uZbg6tXr6pUKmdnZ+m2rUhPk6vj0H3T2KVk85kzZ8oySinnY25ZWVnitjlCVI8lNDSUiN5++22xmZ2dbWtra2Njo3gVhX379hFR27ZtlZ1G2SUF3Jl5+nR2d+cxY/jyZb6j3PmnuCVmPf0nCwkODraeO3Zi3e7GjRuVnohiMjNZq2W1mon42Wf59GnLDZ2dnb1v3z4rTx4XRXgbNmwoS7VDMIf8fOOV2dChBTsjI403kKKjZRvo77952DBWaFlaefbNN98UCjbduXNHah3RsWNH0xWlZiWqybu4uEh7fvjhh8DAQEU6kIuP8iVLllh+aJDXtm1ZtrasVrN8CWCPlpqaKq7XTp48ablRoUQOHDhgb2+vUqlMQz2TJ09evnz5Q74rKSkpPDw8MDBQ6lEvxdnPnj1732+5ePHit99+6+fnp1YbO4M6ODgMG9b/9u2FjxU3T0nZduiQTVSUOiVla/G/q6yw9oA7Mw8YMICIvvrqqwc9IDEx8caNG5cuXcjIOJGeHpWS8u/du5sSEyPu3Fly61ZYQsLs69d1V69OunLlw5s356WkbD1ypOLNmz/k5SVZ8Ek8VJUqTMTXrhk3Q0KYiCdPVnROcB+RkZGi1HWTJk2iZTzjfpSkpCTRqVUkRhGRra2tr6+vVquNjIws2Y3EyMjIFStWSJsXL16sX78+EfXo0UPGeinlgFi4t2rVKrF59uxZIqpSpYqUq1Jiy5cvL5rGLpVTHzt2bCmPXzKTJk0qmnEvl2vXru3fv7/QTlFq09fXV/bhyjeNRkNEc/6rFimKRzdq1EjZWTFzdHQ0ETVr1kzpiZRVpgH37Gxu2pTffJNbtmQvL7ZA0ZTU1NSit75atmxJRAcOHDD78CXy/fffE9Fbb72l9ESY/0sh/P7775WeiAzOnmWTriJ84sQ9d32ys1mvZyn9ICGBjx/n/fu5aVMmYltb1mo5J8eiEy4T8vLyRPNhRWpKQDFduMAVKjARR0QU7BwxwngbqdQngLxyJY8ezdJS0mnT+MQJHjuWTd99Bw/mxMTSDvRkmjVrVoUKFZ555hmpCZOwdu1aUVHd0dExJCTEAje94uPjiahWrVrmHqg4evfubT2rwaCUvv6aidjNTf7eEg8isrK6detmofGgdESOYLVq1a5JMcYHuHPnTnh4eEBAgL29vQg0qdVqPz+/0NDQK1euFHO4W7duiYPY2dlNm9YhKooOHbI5c8bvxo3QnJxHTICZExMjDh92vXbts2IOV7aUgYD7unXriKhixYr+/v7PPvts69atPT0969SpU6hUSP36daOi6OFfMTE9mTklZfP5832PHHG7fl2BjiWFxcczEVeuXLCnf38m4t9/V25O8EDnzp1r0aIFEVWoUCHC9DTcbNasWVOjRg0x4ocffvjhhx+2bdvWxsZGeuXb2dn5+flNmTJl06ZNJaufdfnyZVEC1c/PT97eF+WAaJT6+uuvS3vCw8OvXr1aysPeN439woULYpHBoEGDlCqgbzAYRo4cSUVqypdMWlrazp07Q0NDg4KCRIih6FXH8OHDSaH+UWVax44diUiv14vNZcuWEVGfPn0UnRQz88WLF4moXr16Sk+krMrMZNPkofh4PnCAW7c2Xllt2mSWQfPz83fu3KnRaCpUqFCoiF9ubq6Dg4NarbbaT4dNmzYR0fPPP6/0RJiZZ8+eTUTBwcFKT0QGb7zBP/9csPnCC2waqLlxg4lYeqJ//MH9+nGlSkzELVrI3ymuPPnzzz87duy4b9++Rz8UlDNvHhNx1aoFt53u3uWWLTlMjl5un3/Ozs4snQB268abN7OPDx86VPAYd3d+VJwE7i8/P1+cc3p4eJhWzmTmpKSkkSNHiiXLbdq0OXZMngX0D3L69Gkiaty4sVlHKSbRmArl/soHg8EYMWrZkmUvqJ6bm1v0lK9169aoh1aG5Ofn9+jRgx5c7t80RC5iSjY2NiLO/sgY/UPcvHnz7Nkl5869eOiQnQjAHjpkc/Zslxs35mRn3xO+T03dHRf3RkxMr6tXJ+fnZ2ZnxxkMpb6bbZXKQMA9Nzc3JCSkcuXK9ABubm7VqlVr27Z1dLTPqVO+Z892PXeuR2xs4IULQy5e1Fy+/N7Vq9rr12ckJMxMTi5YVZGVdeHwYaesLDN0cXosmzYxEXfpUrBHZAcpWocXHiI1NXXQoEFEpFKpgoODc8yWwZWcnCySWEUoPMak41hqaqper9dqtX5+ftLdSPFG6evrGxwcHBERkSTVnnyohIQE0fviueeeS0Gf3iLM0Sj1vmnst27dEjW4u3XrpmxJn7y8vL59+xJRw4YNr5vmNxZDbm7u0aNH58+fP2rUqBYtWpjeGSKiSpUq+fv7m57D5eTkiPf205asO1AuiHYL8fHxYjMkJISIJlvB0qjbt28TUWXTu8hQapmZ/PrrTMQ2Nixvw7PTp09PmTJFWj6lUqm6dOli+rl26tQpIvLy8pJzVFmJHid169ZVeiLMzJGRkUT00ksvKT0RGTwy4F6tGjdrxlFRzMx//MEDB/K8eTxxIqMoHZQDBgP37MlE/Mor9+yUxeef87vvct26fOkSMwLuZnDixIl27dqJz7XAwMBbt26Z/uv27dsbNWrUoEG3ihUNWi2bb2WvaDnetGlTcw1wP2lpaaGhod27dy8UZWvTpg0RRYm3bCj7UlK4WTMm4iFDSn6Q7Ozs2NhYvV4fFham1WoDAwN9fX0dHR2nTp1q+rA9e/aIdGlUnS1DEhISatasSUTfmHT4vXTpkii/bloExt/fPzQ09MaNGzKOnpeXlJgYERcXdPiwi5T9HB3tEx8fkpl5Njv7ytGj1ZKS1mRmnrpz53dmqy4GWEplIOAu6PV6vV6/b9++Q4cOxcbGXrlyJTExsQRrwQyGnP/+J+vo0eqZmUpHeWbPZiKW4m5ZWWxry7a2uF6xcmFhYSLS3blz58cNShbHxo0bxbJHJyenh3f4SUtL0+v1ISEh/v7+jxt8v3nzZvPmzYno6aefTsTK1QcQZ6hyNUq9bxp7enq6qF3TsmXLEjcbkVFGRkaHDh2IqEWLFo+8cxMfHx8ZGSlegaZF34jI1tbWx8cnKCgoLCwsOjq66MtYpKY+9dRT5nom5VRuQsK/XbvONlnX2b9/f7KO0pxZWVlEZG9vr/REyhuDgXU6VqmYiEeP5lIuhReFGv39/aV+Rx4eHlqt1vTOrhAREUFEr5jGnKxMfn6+g4ODSqWyhhz8qKgoK78/UXxvvMHz5nFOjvGrR4/CAffatfmvv7htW87LMwbcAcqT+HiuXJmJeNEimY/8+ec8bRrPmcNiWZoUcB87lr/80vjl5ISAe6nk5+eHhYW5uroSUfXq1Qv1KU1LS/v00+ui20TTprxrl8yjX7lyJTg42MHBoVq1akQUEBBQ+tWxj5SRkTF79uzq1auLj/V/pP5wzMzs7e1NRA+qxQxl0enTxuJXpnfHHyQzk6OjOSKCdTrWaNjfnz09uVu3v4sms6rV6nfeecf0e9944w0rSeuBx7JhwwaVSmVnZ7d69WrZ25wWU15eSmListjYQCnyfuiQQ3LymhMnlK+DahllJuAulxs35p461ebChaEnT7aIi3tD+dsp8+axjw//8otx88gRJmJUvy0Ldu7cWbt2bSKqU6fO7t275Trs3bt3NRqNeDds3779Y50YmQbfRcWSosF3KbCelJQkQsktWrS4ffu2XPMvf6ZPn07yNUr95JNPiMjf31+6X5iTk9OzZ08i8vT0NMfNm5K5ffu2WPrwoIz7devW9e7dW9Q7MtWoUaMhQ4bMmTNn7969j8yDEGs4QkJCzPIcyrEtW5iI/fykHZdefXV7164XjhxRbk4FxOJEtAQ0h4gIdnZmIu7YkUuQiZKXl6fX64OCgpydncUfbMWKFYOCgvR6/X1bTZ47d65z585ENGXKFBlmbzbNmjUjomPHjik7jXPnzjVv3tze3t60RUrZ9cYbXLMmN21q/HJxuU/AnZlffpm//x4BdyiflixhIq5UyZiKXhp5ebx7N0+ZwlOmGAPuubn89NMcGVkQcA8J4YULjV8uLgi4y+DChQvdu3cXn3e9evUqVJJ4zx728WEiVqlYo2FZFvrGx8ePGzdOXIWJEg0i6O/u7r5I9ls3/8nOzg4LCxOXpUT03HPPRUZGFnqMOGO3ngsNkMUffzAR29nxw0MRH3zARPf56tLlXKNGjV566aV33333u+++W7t27alTpwpdviUlJTk7O6vV6gsXLpj3yYAZvPfee6bX6RUqVBg0aNCKFSvSZS9F9Cj5+RlJSasvXBhy4cLgvLzEEyc8z53rkZT0p5QPXV49cQF3Zs7JSUhL25OVZWVvGeKt7cgR7t2by0X1zyfBzZs3xWmcra2tTo51/jt37hQJCI6OjjqdrjSdOVNTUzdu3Dh58uQOHTqYdjuwsbF55plngoODRX3Dxo0b49zr4c6cOSM+n3r37v3FF1/8888/xSzXc18Gg+GHH36QqvcYDIYRI0YQUdWqVa0t6+TKlSui0MTAgQOLJqfPnz9fvKJEoZiQkJDIyMibN28+8rDJycl6vX769Ol9+vQR/e4VD5OVPXPnMhG/+aZxMyeH7e1ZrWYryPBlZlExCYtmzOTIEfbwYCL29OTid++Ojo7WarXSHTK1Wu3v7x8eHn7frPDk5GTT/PdRo0ZZ27tTIa+88goRrVy5UsE5rF27VmqrfsoC/W3N75ElZUTAPTaWa9Xi779HwB3Kp8BAJuLnny9hPZnERI6IYI2Ga9UyRrgqVeKQEJ42jZl5925u0oT9/FBSxowMBkN4eLgoYFipUqWwsDDTG8w5OazTsb09E3GDBqVqlHLr1i2tVuvk5CQ+ZAMDA0UzpPj4+D59+ogP3xdffPHixYulf1KSnJyc8PBw0YuLiFq2bFm0x1hKSopOp3N1dfX09LSGpWAgr3HjmIg9PPghF2GzZ7ODA3t6sr8/azSs03FkJMfGFrRufohvv/2WiHr27CnjnMFisrKyFixY0LNnzzfeeCMyMlLGGrmllJd399atX06ffu7UqdZ5eXcf/Q1l1pMYcLcuN29y377s5cU+PtyyJRe5HQ1WLjc3V6vViqjE66+/XuLzmIyMDK1WK8ppPfvss/Jerqenp+/cuVOn05lmvjds2NDLy0uqAQ0PsXfv3kLlyGvVqhUYGBgaGrpz587SfHRNnDiRiJydnffu3SvjhOVy4sQJd3d3IhozZkyhf7p8+fIff/xRnGSH3Nzc6Ojo8PBwjUbj4+Mj1YwjIpVKtW3bNvPMvVx75x0m4m+/NW6ePGmMv1oHUQ7r8mXz9iJ7kl29ym3bGgM3ev3D3sPj4+NDQ0NFqyvBx8cnJCTkvhf8ubm5a9euDQwMdHR0lBJhRowYYf3dHT/88EMi+uqrrxQZ3WAw6HQ68c7Wp0+fu3fLyWVDMQPuzPzZZ+zhgYA7lE83b3L16qxS8WM1mzxxgnU67tSJbWwKkkm9vTk4mDdt4mnTjAF3Zh41itVqBNzN7sqVKwEBAeKjbcSIS7Gx9/zrkSPcpg0Tce/eJTn47du3Q0JCRBKJSqUKCAg4UmTFYURERNWqVcU5fylzqgQRavfy8hJP6qmnnoqIiCi0WO3u3bvTpk0TN4OJSK/Xl3JQsELZ2dyhA7u68pYtD3tMiY6cfebMGfEaW7NmTYlnCPBghlOnfBMTlys9DTNCwF1p/v78wQcsskcPHOCqVVnW+95gGWvWrKlUqRIRNWvWrASx8j179jRu3JiI7OzstFqt+RqxMnN6erper//444+PHDlSaGUlPIRppXKpGoMgKpVrNJrw8PD7Vip/kB9//FH80jdu3GjWyZfGtm3bRPTt66+/Lv53iR+X6Osrkn0kdnZ2pj+u+xaygEfo0oWJWHrZRESU/DLRDEQxovKR5Gu1MjN56FBu2/amvb3Tg9ZXZWZmipXsRFS9evXx48cfPnz4vo8U+e+it5JIzfPz8wsLC0tNTTXnk5DNzz//TEQjR460/NB37tx56aWXxOoxnU5Xnt7Qigbcly7lN97g0aP5u+/uCbhnZXGTJgi4Q7n199+8di3HxrIUI717l+9tw8nMnJHBej1rtdykSUGQ3caG/fxYp2PTXpXff89z5hj//9Ytfuop3r2be/S4Z9FSq1YPy1eFklm6dOlLL4UTsYsLf/cdm56w5+byN9/w4xZav3OHP//8R/FRq1Kp+vbt+5BVmzdu3AgKChKfsx06dCjxaVJ+fn5ERESjRo3EoZo3bx4eHl7o6iMtLU2n04m8fiLy8/NDgks5dvUqnzzJ69ez6Uq/H3/k4icAZGVlSd1Tg4OD/f39PT09RbZZvXr1mjdvnlucZHiA4snNvZWTc5WZ8/LunjjhlZKyVekZmREC7oq6fp1dXTkjo2DPO+/wZ58pNyEouTNnzogGpBUrViz+wvbMzEytVis+z1q0aPGgaAhYFSllOzg42NfX1zRlW7wA/Pz8RMX8hISEBx1k2bJlarVapVKZr6SjXNasWWNjY6NSqRYuXPigxyQnJ4tVFAEBAaJDlClPT8+goKDSLwgAo2rVmIilG2bTpjERa7WKzqlA27ZtiejAgQNKT6ScMxj4yy9ni/VVI0eOvG/R/BEjRvTv3z8yMvK+93Hv3LkTFhYmmnkITZs2DQkJiYuLM/vsZfXvv/8SUadOnSw87tGjRz09PYmoatWqhdrTlQMHDrBpEuj27XzuHItFcV27clYWm7YSP3WKrXKZFoA8Tp9mIp41y7j5ww8s9RRMSODwcA4MNHYvFF9Vq3JgIIeHcylqEIJZJCayRmP8NT33HJ88WcLjpKSwTsdubtyly1Ei8vf3P3jwYHG+ce3atWIhoKOjY0hIyGM1vBGh9iZNmoiP7GbNmoWHhxdKlk9PTw8NDZXuoPv5+f37WKszoMwaPpzt7fnECeOmh8f90zhv3eJ9+3jpUv78cx42jPv2/aBoRy4ppczT03P48OHlKZkArEFq6u5Tp9qcOOF9/LjH1atW3Saq9BBwV9Tu3ezjc8+euXM5KEih2UBppaamBgYGihwHrVb7yNWC+/fvF6mgtra2Wq0WPQbLqNTU1J07d4aGhgYFBYngi6latWoFBASEhITo9XqpP8nWrVtFbZ9Z0tWbdfvpp59Ecvrff/8t9uTk5ERHR4eFhQUFBfn4+EhNzws968jISLTkldmtW0zEFSsWFJQdOJCJODxc0WkV6NKlCxFt3bpV6Yk8EVasWCHW3HTo0OEhd/hMZWVlRUZGBgYGSu093N3dNRrNzp07zT1bM7ly5QoR1ahRw5KDLl26VPzkW7duXeZuUZTG1atIZocnzunTXK8e169v7J76ww/81lus1XKLFgVBdrWa27blkBA+cICLvdYRlLF+vbEbip0da7WPV3AjJYW/+ILd3Y2/99698/ft2/9YoycnJ2s0GnHm3LJly+JE6g0GQ2RkZKtWrcSndsOGDcPCwgpdaYrWqbVq1ZKS6FFD5okyfDgPGMAdOxqvDzw8+ORJ3raNf/2VJ0/mAQPY15fd3Ar3TX3mmc+JyN7e3tPT09/fX6PR6HS6iIiIqKioDNOsUAAoEQTcFXX8ONevf8+eGTN47FhlJgMyCQsLE1GMrl27Pij8kZOTo9PpxMOaN29ezJwIKBOuXr26evVqrVbbtWvXChUqFMoUaN26dWBgoFh8+sEHHyg92ccwefJkInJ2du7fv7+vr69pJ14icnV17dKly4QJE1auXIni3ea1dasxL0vy1FNMxFbzNtKrVy8iWmua/grmdPTo0Xr16hFR3bp1H75MKioqKjg4WJSRJSIbGxt/f/+IiIiyfrvXYDBUqlTJxcWlX79+Fogv5OTwp5+eFkvTRo0a9USt2omP55EjuXh3dgDKj9On+amn+IcfuG9f5v8y3L28mIidnTkggMPCHrsaCSgrOZmDg1mtZiJu0YL3FyNmnpbGoaFco4YxUunn93iV/QvZvn27KAsj8q4e8lGSk5MjrUXz9PT87bffCtX3EKH2OnXqiMc899xzkWgL9+QZPpyXLOEePXjBAmZmDw9eurRweF1k7LRuzYGBPGkS//IL79x58fLly8hhBzATBNwVlZ7OFSrwuXMFe/z9+bffFJsPyGT79u0iv6Bu3bpFm2EeP35ctLBTq9XBwcFZWVmKTBIsIzY2VhSf8fPzkzrWPvXUU4MGDSp+tXdrYDAYRo4cKdZkiFCdj4+PVCimrAfsypIff2QilspV5+aygwOrVGw15bYHDhxIRH/88YfSE3mCXLt2rV27duLWV9HGVpcvX9bpdFK9VyLy8fHR6XQ3btxQZLbmcPnyZam6V6tWrX788cfk5GRzDHT9OnfqxETcvfvMn01rnD8BTp7k+vV56lTW6bjUDf8AyhIRcM/L46ef5r/+MgbcV6/mzZtL2I0QrMSOHcaa+7a2HBzMaWm8ZUtB9fzkZBbl8bKyOCyMa9Uyhiw7dODNm2UYPT09Xaos6uXl9ZClgaNGjfLw8AgNDS102Shap0rra1u2bFm0dSo8IUTA/fRprlWLb99mDw/eu5fbt+ehQ3naNF6yhPfuRWcIAEtDwF1pM2Zwy5a8fj0fOMDjx3PLlmzOhplgMfHx8R06dCAiBweH0NBQsTM3N1en09nb24sMhe3btys7SbCw9PT0nTt3zp49+8aNG2UxQp2bm3vr1q1Zs2bt2LEjLS1N6ek8qd59l4l45kzjpqgs26CBonO6x6hRo4jol19+UXoiT5asrKxhw4aJmmYhISHMfPfu3fDwcH9/f6niU+3atYODg48ePar0ZM3i3LlzWq22evXq4sk6OjoGBgbKm/B+8CDXq8dEXKfOk1iyPDWVY2ONX4jnwBNFBNyZec8e9vLi2bMLarhDWZeezh98wDY2TMSvvcaOjvzSS8Z/2r2b27fn778vCLW3b8+yL6Pas2ePj4+P+PjWaDQpKSlFH5OYmFjowkGE2r28vKRUHoTan3Ai4M7MkyfzmDEPrOEOAJaEgLsV+OsvfucdHjyYv/kGvXXKk9zcXK1WK06Dhg4dGhUVJXoJitMpxCsBoCSef56JeP164+aqVUzEL7+s6JzuERwcTETfffed0hN54hgMhunTp4tE7yZNmjg5OYkPIBcXl6CgIL1eX7ZW1ZRMdnZ2RESE6W2Gpk2b6nS60jeTCAtje3sm4k6d+Pp1WSYLAGWDFHBn5tGj2dsbAffy5sgRfuYZjopiR0fu0oVXrmT+L+AeGMhE3LIlR0SYa3RRa1SkZDVo0GDTpk0PebBonSqtWvPx8QkPD38SPt/h4aSAe3o6e3uzszMC7gDKUxMo7pVXaN48+t//aMIEcnNTejYgG1tbW51O9/vvvzs7O//+++/t2rWLiory9PTctm1bWFiYi4uL0hMEgDJo2DB6+216+mnj5smTRETNmys3ocJEi4L09HSlJ/LEUalUU6ZMiYyMdHNzc3V1zc7O9vPzCwsLu379+uLFi/39/aWiK+WYvb29SGw/d+7cxIkTq1evfubMmUmTJjVu/PTo0fl79pTkmFlZNHo0vfUW5eSQRkNbtlDNmnLPGwDKiK+/puRkpScBcnv6adq/n3x9iYhmz6YPP6TUVOM/ffEFRUbS0aMUGGiu0e3s7LRabVRU1DPPPHPx4sUXX3xxwIABd+7cKfQwg8GwYsUKHx+fAQMGxMTENG3aNDw8/Pjx48OGDXsSPt+hmJydadYsyshQeh4AQKRiZqXnAFDOnThx4q233mratKmdnd3s2bNFNAoAoIQSEujwYSKiNm0oMZF27KCnn6bnnlN6WkYzZsyYOnXq5MmTZ8yYofRcnlCJiYnXr193dXWtX7++0nNRWE5OzqZNm5YsWXLjxss7dgwnoqZNafhwGjWK/usd+whXrlD//nTgADk60s8/0xtvmHW+AGCNkpNp82bq39+4uXs3MVPHjorOCczDyYlSU+mDD8jGhgID6aOPqGR3aksmLy/vxx9/nDp1anp6eo0aNb7//vvAwEAiYuZ169Z9+umnR48eJaIGDRpMnjx55MiRtra2lpscWLdbt8jJiaQwQ1wceXgQXiAAykLAHcBCmFla4Q4AUELz59Nnn9FrrxERrVpFn31Go0crPad7zJ07d/z48ePGjZs7d67ScwEwio3NX7DAZtEiSkggInJyov79SaN5RMhs2zYaOJBu3iRvb1q9mlq0sMxkAQBAGSLgnp5OTz1FISG0cKFFA+5CbGzsm2++uXXrViIKCAgYMmTIzJkzDx8+TET169efMmUKQu0AAGUCAu4AAABlxJUr5ONDx49Tw4ZEROfPU7t2dPKkVVW4WLhw4ahRo0aMGLFw4UKl5wJwj/x82rqV5s+n1aspP5+IqEkTGjHCmPBeowYNGEDff09EdOIEDRpEzHT6NPXqRb//jpp/AADlnwi429rS0qWk1VK9egoE3InIYDD89NNPkydPTk1NtbOzy83NrVev3scffzx8+HA7OzsFJgQAAI8P1b4AAADKiD17qFMnY7SdiLy9qV072r5d0TkVJqpmpaWlKT0RgMJsbMjfnyIiKCaGpkyhWrXo7FmaNIk8PGj6dCKi9evp4EHjg1UqWrnSWL0X0XYAgCfKkCHUpIlio6vV6rFjx0ZHR48bN27atGk//vhjTEzMm2++iWg7AEAZgrVIAAAAZcS1a1Sjxj17atak+HiFZnN/oiM0Au5gzRo2pOnT6fPPjQnvf/5JdesSEX3xBb39Nh04YHyYjw/5+Cg4TQAAsKilS8nGxvj/ixZRTIySk6lXrx6q8wEAlF3IcAcAACgj6tQxlqCWXL9ujBRaDZHhnp6ervREAB7BNOF9wAAiop49qU4d+vFHpWcGAABK6NePpJZbHh70/POKzgYAAMoyBNwBAADKiA4daNcuunjRuBkXRwcPUpcuSk6pCJSUgTKnQQNycjL+/5w59NVXdPOmohMCAAAAAICyDCVlAAAAyoi6dWnmTOrUiQYNIiJatox0usJFZpSGgDuUaQ0b0rvv0qefKj0PAAAAAAAos1TMrPQcAAAAoNiuXaP9+4mI2rWj2rWVnk1h8fHxdevWrV27dryVFZcHeLgaNej0aapcmXJyqFUrsrGh6Gil5wQAAAAAAGUQMtwBAADKlNq16dVXlZ7EA4mmqajhDmVOUBA5OBAR2dvTL7/Qli1KTwgAAAAAAMom1HAHAAAA2VSqVOnmzZtIb4eyhZkSEsjR0bjZvHnh/sQAAAAAAADFhJIyAAAAAPBEMxjIxoZycsjOjogoPp5ataLbt5WeFgAAAAAAlEHIcAcAAAAAAAAAAAAAkAFquAMAAAAA0E8/kVpNRHT3rtJTAQAAAACAMgsBdwAAAAAAysszBtzz8pSeCgAAAAAAlFmo4Q4AAAAATzTUcAcAAAAAALmghjsAAAAAAAAAAAAAgAwQcAcAAACAJ5pKRW5upFIZN9VqcnNTcj4AAAAAAFB2oaQMAAAAAAAAAAAAAIAMkOEOAAAAAAAAAAAAACADBNwBAAAAAAAAAAAAAGSAgDsAAAAAAAAAAAAAgAwQcAcAAAAAAAAAAAAAkAEC7gAAAAAAAAAAAAAAMkDAHQAAAAAAAAAAAABABgi4AwAAwP/Zu/O4qKo+juO/YRNR3DdccssNl1TccRfXSC2zxcSylGwjW6l8CnMpKivKMs0W0bQi0yK1FFMTNRdwxSVNXHEXZVNkmfP8cWgccUO4M4Pweb98Pa/mOs4583gd7nzvOb8fAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADEDgDgAAAAAAAACAAQjcAQAAAAAAAAAwAIE7AAAAAAAAAAAGIHAHAAAAAAAAAMAABO4AAAAAAAAAABiAwB0AAAAAAAAAAAMQuAMAAAAAAAAAYAACdwAAAAAAAAAADODi6AkAAAAAAAAAAApEKTV37tylS5eeOHGiZcuWd91111133dWkSRMXFxJguzIppRw9ByC/EhNl2zbp0SPn4fHjcvCgdOwoIrJ1q+zaJZUrS/v2UqaMA+cIAMVNdLRkZ0v37jkPf/9dKleWNm0cOSUAAAAAKPLefPPNSZMmeXh4XLhwwXLQ1dW1QYMGPj4+TZs29fb27tChQ+XKlR04yeKAwB23s7//lmeekc2bcx4uWCBffy2RkTJ0qBw9Kv37y9GjsmSJREZK27YOnSgAFCPjx8ulS/LuuzkPn3xSmjaVoCCHzgkAAAAAirQffvhh2LBhTk5O33zzTfXq1Xfu3BkbGxsbG7tnzx6z2Wz9TC8vL0v+7uPj06RJEycnqo4biQ0FKHJmzZKEBFm3TvR+mVmzZNQo2bbN0dMCAAAAAAAAjBcdHf3YY48ppT799NMRI0aIiJ+fn/6tlJSUvXv3WvL3rVu3Hj9+fNGiRYsWLdJP8PT0bNiwoQ7ffXx8Wrdu7eHh4bB3UiSwwh23s7//lieflKVLcx7+/rv8/LNUriw+PvLcczkHs7PFw0NOnpRy5Rw0SwAoXsaPl717ZdSonIcffyy9e7PCHQAAAABsYv/+/R07djx9+vRLL700ZcqUGz85Ozt7796927Zt27p169atW7dt23bixAnrJ7i4uDRq1EjXf2/VqlWrVq0qVapky+kXQaxwx23uwAF58MGc/z57VurUkRMnpEqVy09wdpaKFeXYMQJ3ALCb3bvlxx9z/nv/fund26GzAQAAAG4oOzs7JSXlp59+6tKlS+PGjR09HeAWnD17dsCAAadPn7777rvfe++9mz7f2dm5SZMmTZo0eeihh/SRc+fOWda/79q1Ky4ubufOnTt37pw3b56IjBo16vnnn2/WrJlt30bRQuCO21yDBrJ6dc5/6xruNWrIsWOXn5CRIWfOSK1aDpkdABRP/fpdUcMdMNzFixIZefmee2KirFkjAwc6dE4AAOD2pJQaM2bM2rVrd+/eLSJVqlRp165d586d/fz8WrVqRW1rFGYZGRlDhw7du3dv69atf/zxR2dnZxExm823dN6WL1++c+fOnTt31g8vXry4c+dOvfh91apV33777d69e//66y+bvIEiisAdRU7PnjJlijz9tJQoISLyzTfSubN4ejp6WrmdOHEiJCQkMTGxdOnSnp6epUuXLlu2bNmyZS0Py5UrV6ZMGctDR88XAIBC5Nw5efrpy4H7gQPyxhsE7gAA4JYppZ555pmvvvrKw8Ojd+/eO3bsOHHihKW8dYUKFTp37ty9e/cuXbq0atVKp5lAIaGUGjVq1MqVK6tXr/7rr7+WKlVKH3/22Wezs7M///xzF5f8BL8lS5Zs06ZNmzZtRCQtLa1q1arR0dEHDx6sU6eOgZMv2gjcUeQ8/LAsXSpt20r//nLkiKxdK0uWOHpOuW3YsKF79+4eHh6JiYl5/CPly5f39PTU4bunp2f58uUtWXyZMmXKlStXqVKlIUOG2HTaAAAAAAAUJa+99toXX3xRsmTJRYsW9ejRQ0Ti4+PXrFmzdu3aqKioAwcOREZGRkZGikipUqU6duzo6+vbuXPnLl26lNCL/ADHefvtt+fMmePp6blkyZKaNWvqgx988IE+pceOHdukSZMCDlGqVKl77rnnhx9+iIiIePXVVws85eKCpqm4nSUnyz//SNu2OQ9Pn5bjx6VFCxGRvXslLk6qVBEfH/n3X2nYUArNz8KMjAwfH5+4uLhHHnlk0KBBKSkpKSkpqampKSkp586d0/+RmpqanJx8/vx5/fDChQs3fdnq1asPHjz4o48+4qc+AMc6flzOnxfLpd2//0qZMlc018Dt6PRpEZHKlXMeHj4s1atLvlbMGOPYMWnaVDZsyHm4c6e8+abExTlsPgAA4HYUEhIyYcIENze3BQsW3H333Vc/4dixY2vXrl2+fPmaNWt2795tydA8PDxatWqly874+vqWLFnSvhMHJCIi4qGHHnJyclqwYMHA/3Z6Llq0aPDgwWazee7cuQ8//LAhA/32228DBw686667tm7dasgLFgcE7ijq/vc/efdd+eQTefZZR08lh/6J3rBhw61bt+bxp7LZbE5KSkpKSrLE8efPn09OTrY8PHfu3C+//HLq1KnPPvvsmWeesfVbAIAbmD5dnnlG1q2T9u1FRB54QIYMuVz6A7epkSPl999l924pX15EpHZtWb1aatd22HyOHZM6dS73401OlnPnCNwBAMAtCAsLe+GFF5ydnefNm/fAAw/c9PknTpyIjo7Wi983b95sydNcXFzuuusunbx36dKlXLlytp03ILJmzRo/P79Lly5NnTr12f/yrtjY2G7duqWlpb333nsGrkbPzMysXr36mTNnduzYQevUPCJwR1H3yy9y773i5SX790shuOe8Y8eONm3aZGVlrVy5smvXrga+8sKFC++77z4vL6/9+/dzdx2AA02fLtOni6urrF8vzs4E7kXEyJGyZYt07ChffCFSOAL35s3l7Nmch7Gx8uijBO4AACCvPv/882effdbJySk8PHz48OG3+sdPnToVHR29evXqv/76a8eOHWazWR93cXFp06ZN165du3btes0l89DS09NjY2NdXV1bt26dvzrjxdmBAwc6dOhw6tSpoKCgTz75RB9MSEho3759QkLC448//vXXXxfk9S9dujR79uzo6OjZs2frI0899dT06dPfeOONyZMnF3T2BklJEVdXcXfPeXjunJQtK+fOScWKOUeysiQlJWe1kP3RahlF3eDB0ratHD8uM2Y4eiqSnZ39xBNPZGRkjBkzxjptz8rK2r1799GjR8+fP5/vFx88eHDbtm2PHz/+5ZdfGjBXOFp6enp6enpKSoqjJwLkR5cucscdMm2ao+cBQwUFycqV8vffjp4HAACOkJmZGRsby/V50RAeHh4UFGQymT7//HNL2n7s2DHdKDUvqlSpMmTIkE8++WTr1q3nz5+PiooKDg729fV1cnJav379+++/HxQUpCu/42rbtm1r0KDBU0891b59+3LlynXu3Pm1115bvnx5enq6o6d2G0hMTOzfv/+pU6f69+//4Ycf6oMpKSkDBgxISEjo1q3bF3qBTAG4urqOHz9+zpw5sbGx+siwYcNEZO7cuYVn3Xb//tK1q+hbXZcuSbVqkpAg1iXrN2+W7t0dNDmaphorK+us2Zzm6lrDZKJvdWHy1ltyzz3y3nsSGCgeHg6cyEcffbRp06YaNWq888471sdPnjzp7e1teVimTBndENXT07NcuXI36JVav379unXr6j9lMpnefPPNgQMHhoaGjh492sOh7xQF9Ntvv40dO7ZNmzZ//vnnm2+++eyzzzo786mC28yHH0rHjkIv56LEzU3ef1+eflo2bXL0VIDC5sgRWbBADh6UunVlyBCpUcPRE0KRwHlVCBw7diw2NjY2Nnbt2rXr1q27cOHC448/3q1btxEjRjh6asi/n3/+edSoUWaz+f333x8zZow+ePr0aT8/v3379i1cuNDf3/+WXtDT09PPz8/Pz09EUlJS1q1bt2zZsrCwsAceeOD06dOenp7Gv4d8OXhQvvlGJkzIebh1q6xYIS++aO9p7Ny508/P78yZM6VKlWrUqNE///yzdu3atWvXvvfeeyVLlmzfvn23bt26du3aoUMHYo2rZWZmPvDAA//880+zZs2+//57vTkgOzt72LBh27dvb9KkycKFC93c3Ao4ipOT09ChQz/55JN58+b5+PiISOfOnevUqXPw4MF169b5+voa8E6MkJoqX34p//0jLmQUjGA2Z+7fPyQurvE//3TbubOZUtmOnhGu1KGDElEffODAKcTHx5cqVUpEfv3111y/dfDgwUaNGlWvXr1MmTK39O/3ySefzPVS7du3F5EpU6bY623BYNu2bevZs6f++61UqZL+j1atWq1evdrRU0PhlZiosrJy/jsjQ6WkOHIyFy6oL75Qzz6rlFKTJqnhw9XQoeqHH9SFC46cFQrCbFYXLqjHHlNz5iil1D33qKlT1R13qIMHHfnXmpGhVq26fOafP682bnTYZFDcbd+uqlVTb7+tfvtNvfWWqlZN7dzp6Dnh9sd55SDJyckrV6589913Bw8e7OXlZf3ly2Qy1axZU0QqV6587tw5R88U+fT777/rOHLy5MmWg+fPn9epYvPmzc+cOWPIQJ06dRKRhQsXGvJqhti4UTVvfvnhr7+qPn3sPYd9+/ZVr15dRPr06ZOenq6UOnHiRGRkZHBwsI+Pj5PT5TocLi4uPj4+QUFBERERiYmJ9p5oYRUYGCgiXl5ehw8fthzUnfwqVaq0b98+owbasGGDHijrvwvu4OBgEXn66aeNGqKAfH3V/PnKy0slJKj0dOXmpg4fVpUrX37Chg2qRQuHTY/A3Rjnzy/atau1ztnN5qybPh/29scfSkRVqqSSkx0yvtls7tWrl4iMGDHipk8+d+7ckSNHdu3atXHjxqioqPnz58+aNWvq1KnvvPNOcHDwU089NXz48MGDB/fq1SssLCzXn/3999/152yyg94p8u3s2bNBQUH6BnWFChXCwsIyMzMjIyMtmxj8/f3j4+MdPU0UOpcuKRH11ls5D3//3QHXzVpCggoIUK1aqc8/zwncL11SjRurBg3Ud9+pRo1UQIA6ccIxc0O+xcaqLl1UYODlwD0+XtWqpSpWVKtXqwoVVEiIunjRARPLylIiaty4nIfLlik/PwdMA1BKqcGDr1jVMXGiGjrUcbNBUcF5ZS9ZWVlxcXG6wIivr6+rq6t1yF6mTBlfX9/g4ODIyMjTp08rpXr37i0izz//vKMnjvyIiopyd3cXkRdffNFyMDU1tXPnziLSoEGD48ePGzXWpEmTRGT06NFGvWDBOTxwP3z4cJ06dUSkZ8+eF691BZmcnGwpzmP9j9HZ2dnb2zswMDAiIsKoOyK3o4kTJ4qIh4fHhg0bLAc/+ugjEXF3d1+7dq2xwzVs2FBEli9frh9u27ZNx00ZGRnGDpQ/vr5q/Xo1caIaNuxy4O7srOrXz/lVs6YjA/fi3jT1p59+Sk5OvsETnJ2d/P3NN34RF5fKJpPLoUNPNGq0tkSJeoZOEMbp1k1Wr5Z33pHXX7f/4NOnT3/qqacqVaq0a9euypUr23Ssrl27RkdHv/vuu6+99ppNB4JRsrKyvvnmm3Hjxp05c8bFxeXxxx+fPHmyZXn7xYsXP/3008mTJ6ekpJQsWTIoKGjcuHGFZ1siHC4jQzw95Y47ZNEiadRI/vhDPv5Yli616xwuXpQpU+S99yQtTUqWlLFjJSVFpk4VEVm+XHr3ljfflPfek4wMKVtW3nxTnntOCrzNETZ34oSMGyezZonZLNWrS48e0q+f6BqnkybJm2/KuHGieybVrSsffGDv8kHZ2VKypNSpI7/+Kk2aSFSUvP++REXZdQ5AjjvukN9/l6ZNcx5u3iwPPCD//uvQOeH2x3llSydOnNi0aZOuFbNu3brExETLb7m4uDRs2LBz586+vr4+Pj7e3t4mk8n6z+7cubNly5Yisnnz5ubNm9t55nm3d+/ecuXKValSxdETKUTWrVvXt2/f1NTUZ599dqq+VBW5ePHigAEDVq1adccdd6xevbq2cR3ht27d2qpVKy8vr4SEhFxnkaNs2iT33itvvpnzcPt2+fdf+31xOHXqVLdu3fbs2dOxY8dly5aVLl36xs9PTU1dv379mjVr1q5dGx0dfenSJctv1atXz8/Pz9fXt0ePHrVq1bLxxAuLn3766aGHHhKRBQsWDBo0SB9csmTJwIEDzWbznDlzHnnkEWNHHD9+/Ntvv23dgrVFixY7duxYvHjxgAEDjB0rHzp3lg8/lFat5K675JNP5J575N9/xcdHTp3KecLGjTJ6tGzb5qD5OSzqdzSz2RwcHJxrj9jV3N3dY2Lkxr927WpjNmcdPfrqli1l9+7tl5KyxtFvDteyfLkSUeXKKbvv/ktISChXrpyIRERE2GG4qKgoEalYsWJSUpIdhkMBLV++vFmzZvoDp1evXjt27Ljm044ePRoQEKAv1KpXrx4eHm42m+08VfbxFU6XLqmSJdWcOapHD2U2O2CFe2SkqltXiSgR5e+v4uPVli1q2bLLT/j6a7V7t9q7Vw0dmvO0Bg2UXT4OkU8ZGSosTJUtq0SUq6sKClLnz6vFi1VcXM4T0tPV+++rpCS1cqW6666cv9bu3dXWrfabZFaWKlFCzZununVTZjMr3IuyrKyswn5JU7asOnjw8sN9+1TFio6bDfKE86q4ycjIiImJCQsLCwgIsO6epXl5efn7+4eGhkZHR1/IQ7m0p59+Wl+622Hm+XDq1KmxY8dWrFhRRNzc3Ly8vHx8fPz9/QMDA0NCQmbMmBEZGRkTE5OQkGD/LxQOtHnzZv2t/LHHHsvOzikCfOnSJZ0b1qhRY//+/YYMpMukKKXMZrOuQbRlyxZDXrngNm5UXl7qgw9yfo0cab8vDqdPn27atKmItGzZ8urvlVu2bMnMzLzBH09NTV22bNmbb77ZpUuXEiVKWP/79fb2HjNmzNy5c/UelKJq48aNuqL9xx9/bDm4efNmfd/Cuj6Sgfbt2yciZcqUsXww6n6Ew4YNs8Vwt0qvcFdKLVummjenpEyhsWnTJhHx9PR8/IbGjAk8ePDxG/86dmyifs3s7LTTp2du2eJ56dIBh745XEf37kpETZhg52H1vUd/f3+7jdi9e3cRmThxot1GRD7s3bt36NCh+iqhQYMGebkfs2bNmjZt2ug/MmTIuE2b7DBNderUqfDwcH9/fzc3t+DgYKrJFzY6cDebVZcuavbsnMDdPt+eNm9WXbvmhK0tW6q//rr5H1m+XDVrlvNHevVS17nBBEeKilJNmuT8Hfn53bxicHa2Cg9XVaooEeXkpAIC1MmT9pinDtzNZtWtm/r2WwL3IigrKys6OjooKMjLyysgIOCll15y9Iyur2VL9eeflx/+/rtq29Zxs8GNcF4VT9csFOPn5zdu3LjIyMiTefi5derUKessLzExUe9G/eWXX2w58fwwm8333HOPiJQrV65ChQo3Xl9YsmTJO++8s0uXLg899NDYsWOnTJny3XffrVq1as+ePampqY5+K0bavn27vgNx//33WwpSZ2Vl6a9jlStX3rVrV8FHOXv2bOfOnWvUqGG5kzF69GgRmTRpUsFf3BCOKilz/vx5/TX2miXyT548aTKZSpUqpcs3RUVFXbPajEVmZmZMTExoaKi/v3/ZsmUt53NoaGhCQoIt34fDHDhwoGrVqiIyatQoy8GEhAR9R+exxx6z3dD6L+7nn3/WDw8dOmQymTw8PFIc2zdMKWUVuCulHnjguoH7ypUqMFA995yy83324hu462obQUFBhr/yrl0+SUl/GP6yMMBff2XWrPm1n589W9zMmTNHRMqWLXv06FG7DRodHa0HZUly4ZSSkhISEqLvzJcqVSokJMSyDkLbtWvXmjXX3itjNpvDw8OrVavm43PGZFIBAcq4MoNXOHDgwJQpUzp27GjZ/6i/qNSqVevs2bM2GRL5ogN3pVRcnKpRQ/3wg+rTR02erLy9VUiI2rPHJoOeOaOCgpSzsxJRFSuqsLDLvStvKjNTzZihKlVSIsrFRQUGqiK9GOV2smePGjAgJ2pv1EgtXnwLf/bcORUcrEqUyNlLFhqqrvxUM0xcnAoJUQ0aqNhYVaJEzpEaNdRPPxG4FxEXL16MjIx89NFHy5cvb/kKrX9iTps2zdGzu46JE1Xv3jlNhNPSVPfu6osvHD0nXIHzqjh78MEHK1SooAtABwQEhIWFxcTEWBY4X09mZmZcXNyMGTP0iniTyTThymVbn332mYjUq1fvxsmg/X366ac6bT948KBS6uLFi/v374+Ojv7xxx/DwsJefvnl4cOHd+/evXHjxjct6OHp6dmkSZMePXoMHz78888/d/Q7y7+9e/dWq1ZNRAYPHmxZRp2dnT1s2DD9/9XmzZuNGktXpImJidEPFy5cKCKdOnUy6vULyCGBe1paWpcuXfQis2PHjl39hE2bNjVq1CjXraDu3buHhIT8+eefaWlpN3jxjIyMdevWhYaG3nHHHSLy3nvv2ex9OExSUpLeE9+3b1/LCZySkqJrW3Xt2jXdRpfdSqn/CsQPGTLEckQ3PJg7d67tBr2pzz9X0dFqzhxlucOSkKA++EAlJakpUy4/LSFBzZihli9XWVlq9mz15Zd2nWTxDdz1v+e/8rIeLw/On1987Nj48+cjjx9/d9u2apmZxbeHQyF3d9++IvLmm2/aZ7jTp0/rqnlff/21fUa00D1aQ0JC7Dwubiw7Ozs8PFzfnXZycgoICDhxZRPJc+fOBQcHu7m51atX7wY/OJOSLrz6ak625elpZLYVHx8fFhbm6+trydlLlizp7+8fHh5+5syZTp06ici9995rzGAwgiVwV0q9+KLy8VF9+qjOnXNiUxHVqpWaOFEZsWpHD3dpxow1lmIjL76YzzJdp0+rMWNyIvtKldSsWSuy8p7Zw2hnz54dP36Pi4sSURUqqE8/VTfc1Htdu3apfv1yTrwWLbL/+CPKkOllZakVK9Qzz6jq1S+f2BMn5gTuSqlXXlE+PgTut7cLFy5ERkYGBARYL1Xz9vYODg6Ojo6eP3++iLi7u2+1Z92im3riCRUcrFJS1KVLatQoVbu26tNH1a6tnn46n/+EYDTLeVWmTBnOq2JLx8rXjPly2b9//9y5c4OCgjp06JCrZkXp0qVfe+016ydnZWW1aNFCRN555x2bzf2WxcXFlSxZUkR++OGHvDzfEsdHRESEhYUFBwcHBAT4+fl5e3tb/6sRkZYtWz744IO2nr8tHDp0SIfgvXv3ti72EhgYKCJlypTZuHGjgcM9+eSTImK5PZOamlqiRAlnZ+dCUu0kNla1b3/54eLFatAg24544cKFHj166GVbB63LZF3l5MmTkZGRwcHBPj4+Tk5OlnPPxcXFx8cnKCgoIiLiBgsKf/zxRxHp1q2b8e/B0e69914Rad68uaUSWnZ2tq6jUL9+fVufWseOHXN2dnZ3d7esW502bZqI3H333TYd9wYWLFBOTqpkSXVLi1onTVL/NX+1k2IauG/fvl1EqlatatTX+8zMU6dPzzh8eOyxY5MuXTqoVDEqhXZ7Wbdunb5gOnXqlB2Ge/DBB0WkZ8+e9q+Ot3btWn0BwWLkwmP9+vXt27fX1w3t2rX7+++/rX83Kyvriy++0LtTnZ2dx4wZk5ycfOMX3LfvclHsO+5Q4eH5n9v27ertt7Nat/axXNmUKVNm2LBh8+fPt15TcPjwYb019QvWWBUa1oF7crKqUUP16aMuXlSRkSogQJUrdzmgrFdPBQWp6Oj8F5yJiopq2rSpk5OLt3eqn9/lit75tmuX6ttXtWqVKCKNGzf+/fffC/qKuEX6LmDlypUrVmxcrpw5IEDd0o/HN95QkZG5D0ZFqaZNVffua0TEz88vLr8nSlaWio5WQUGqWrXLp3Ht2jmncUbG5cA9LU3Vrk3gfntKSlJz554eM0aXJdV8fHzefffdf/75x/qJele+t7f3jVe62c+6dcpkUiVLqgMHco5kZKj4eJWR4chZQSmlVFZW0tmzc8ePH219XrVp0+bdd9/du3ev9TM5r4q8pKQkEfHw8Ljm7yYnJ0dHR4eFhQ0dOvTq5qL16tXTK+J1t8ar//iKFSv0ix86dMjG7yNPLl68qO8BjB492pAXTExMjIuLW7Zs2cyZM3X+vm7dOkNe2W6OHj1ar149EfH19bUukvPSSy/pvzujlmBaREZGikh7q1S7d+/eIvLdd98ZO1D+XLyooqKUpRZIQoIB1/M3cOnSpbvvvltEatSo8e+//+b9DyYnJ0dFRQUHB+eqB6W3qgQGBkZEROQqTXP+/HlXV1cXFxd71jOwg/T09CeffNLT0zM+Pt5yMDExsX379pUqVdq3b58d5uDn52e9ivTs2bNubm4uLi55qcdluNhYVaqUElG3tJkhKkq9+qrN5nQdxTRwDwkJEZEnn3xSPzSbzUbFr8nJK/bs6Xz06BuGvBpsoX///iLy+uuv23qgRYsW6Z/it/SjxUB9+/YVkTfe4Gx0vCNHjlhantasWfPqlqcrV66866679GVE9+7db2ml1Z9/qhYtcqKoHj3Utm23MDFdnMFSr7lNm/7ly5cPCAiIiIi4Xt3Gn376SS8H23ZLI8E2jhxRKSnqf/+7fGTFCvXVV5cfXrqkFi9WTzyRU8JF/6pfX7377sENGzbk/V7g7t27+/Xrp0/Rxo0bL1u2/uZ/Js9++WVF3bp19YsPGTLE+moSNhUVFWXdtHnnziO39Mc3blQmkxJRffrkLvV+6ZIKC5uhlyq7urq++OKL58+fz+PLXrx48ddffx0zJr18+csnbePG6o03VGzs5adlZ6tx4y4/XLlSzZypDhxQ14pEUPgkJqrwcDV0aM53JienllWrent7h4SE5MpDLS5evNi8eXMReeqpp+w82WvIzlbt2ikRZb1p8vBhx00ISimVlZV45kz4/v1DN2/2iImRefO6Ozk5+fj4cF4VZ7t37xaRBg0aWB+cOXPmY4895u3tbb2KVi/IGzhw4OTJk5cvX57Hnrr333+/m5vbK698b5vp35qnnnpKv9lctZVjY2O//PLL3377bfPmzcePH8/fUrA33nhDriwrUfidOnWqSZMmOv62Xsmkywu7ubktWbLE8EEvXLhQsmRJJycnyz7msLAwEXn44YcNHysfDh9WIspSWfnbb9WIEbYaKysr64EHHhCRypUr77xpU6DrS0pKWrx4cXBwcMeOHa3Ddycnp1xfSLt16yYieWmNdntp2LChiCy/cnn2hQsXdtirHdY333wjV7aJ9vf3FxH7V5o6elTVrKlE1MiRt/CnPv1U3X23iopS17kWsJViGrjr5sjLli3TD2NiYpydnQ1ps5ucvComRnbsaHDzp8JBYmJidEcOm96OO3/+vO5f8cknn9hulBuzzzvFjaWlpYWGhuqtrB4eHsHBwbmugA8fPhwQEKAvGmrVqhWer2Xquih25cqXmxZu3678/JRlDcqiReqjj3L+OztbrV2rXnxR1alzOcyqUkUFBqoVK45lXGcJlfV+oCeeeEJEmjZtamlWDodIT1etWytvb7V//82fbFksrItydOjwgT7lAgMDIyMjM6+/S91S5khEypUrFxoaaosqgZcuXQoLC9OLp9zc3IKCgvL4RRf58++//1qaNhfwk8e6HH+u1QtnzpwJCgpydnYWkQoVKoSFhd1gZ2Guyg+dO+8VyWlF8F8d1Jv45RdVpox6+eV8vBUYKitLhYWpQYNUt24qKEhZL/w8cUJNn65691a6gJGIcnZWPXqoqVPT8lDtYceOHbdUKsGGvvlGiagaNZTl5nRMjHJxUU8/7dBpFXHp6f8ePBi4d2/vgwdHp6df/smXmXny1Knpe/f2jo11iYmRmBiJjXX+558eBw7MzEv3PM6rou3PP/+Uq6pMtGrVSv8EdHV11atlw8PD4+Li8pFEHzhwuHHjPSaTWrvWsDnnz+LFi00mU4kSJa4uR66XG1orX768t7e3n59fYGBgSEjIjBkzIiMjY2JiEhISrlfd/sSJE+7u7s7Ozo5aTHarzp07p/+iW7RoYb3n++2339Z/9ZFX79EziF6kYrm42r9/v/7//AbX23Zz+LCqWVM1aZJzcWW7wD07O/uRRx4RkbJly8Zar5gomLS0tOjo6NDQUD8/v8qVK+f6v/T9998XkUcffdSo4QoJ/U/48ccfd9QEkpKS9G0kS2PCefPm6Y0j9pxGcrK66y4lorp1u7UVNuvWqagoAne7+Oeff/TnnWVfmKENVLO3bfOKiZELF7Yb8WqwCd23/WVbfikfNWqUvpfu2KrE+sbjq/bfPAOllFKRkZG6YqCI+Pv7H7DsDlZKKZWWlhYSEuLu7q6z+JCQkAL2XDp7Vj3zTE6IERysSpdWd92VswV5+nQ1erRauVI9+6yqUeNyzl6jhnruObVq1U06XkZERDRt2tRSHi41NVWvFnmab4AO9cILOcvVbymazs5W0dHqlVfG685CWrVq1Z566qnly5dbX7bqYiN6h7VuOWDru3fHjh0LDAzUy828vLxmzJhx055muFWpqamWTx7dtLngnzxBQTmfPOXLq7Cw3EWGN2/e3LVrV32mtWzZctWqVda/e/78+e++++7ee+/VgZeImEymtm3bfvbZ0lvdI7txo3JzUyaTWrSoIG8IBfbKK6pXL7V9uzpyRL33nqpTR6WlqWnTVNeuOX0bdAuIvn3Vl1/etIZRdnZ2jNUtl1zNAB0jOVl5eSkRZakPYDarLl1yfvrCZuLiGp48+Ul6+r/nzy/OyDiemXnqzJnwffv8rXP2PXt8T54My8i4SUN5zqviY86cOVcvLv7222+nTp26cePG6y00uSVvvqlEVOvWyoHXLEePHtV1KT/++OOrf/fXX38dOXJk//79mzdvXrlyZbmhEiVK1KlTx9fX9/7778/15eWxxx4Tkeeee84+b6ogkpKS2rZtKyINGza07pj1ySefiIizs/P339twU4L+SLEued+gQQMRWbNmje0GzaPDh1XduioyUrVpo7KybBW4m83mMWPG6EvN6Oho4wdQSl25IEzbuXOnXlBfxL5B7Nu3T0TKlCnjwOVuQ4YMEZEPP/xQP0xLSytdurTJZLLb1uSsLHXPPTnbXq9fyb9wKY6B++TJk0VkpNUOBGMbqB469GRMjCQkhBjyarCF7du3Ozk5ubu752XZSz6sWLFCry/Id+Fao8TGxupF7rk6c8LWYmNjdfNuEWndunWu6wyz2RwREaHjTpPJNHToUAMrP+7YoR57TO3cqRo3ViNGqPffV+q/wL1x48sF33UR5LxcimRnZ+u28gMHDrQs/LEsB/vxxx+Nmjluye+/K5NJubqqK3sBXOGRR9Sbb6obFCiKi4sLCQnRPwS1ChUqBAQEREZGLlu2LN9ljgpo06ZNvr6+emgfH5/C8OWkaDCbzeHh4dWqVdOfPAEBAceP3ySTyrvt21XPnkpEmUzqnnvGL7+qJ1FkZKSlcJC/v/+WLVvCw8P9/f0tXeluWvkhL955J2fLjnHvDLcoMVF5eirrq46BA9W0aapvXyWi3N2Vv7+aMUPl7e5dRkZG7969rXtams1m3SWsS5cuDlvTEBysRFTHjpcbYsydm3Pm5bl0Em5VdnZqTIxkZFw+tXbsqKtz9s2b3f/9d+CZM7OysvL0FZzzqlh57733ROSll16y3RAXLqjatZWI+q++sb1lZ2f36tVLRPr27ZuXRfqXLl1KSEiIiYmJjIycMWNGSEhIYGCgv7+/j4+Pl5eXroGp5boFtWPHDpPJ5OHhkat2diG0d+/eqlWr1q5d2/r7/pdffmkymZycnGbNmmXT0ePj4/XKbssdnbFjx4pdqtrelA7clVJ3362mTs0J3H/7TYWHqytvrxTIK6+8IiIlS5ZcuXKlYS+aN7pk/4YNG+w8rq21adNGRH7++WdHTWDBggX6q5nliN7BYLeu0c88o0RUpUrKLlXrjVEcA/fWrVuLyKL/lj8Z3kA1KWlZTIzs3NnMkFeDjdx3330i8vzzzxv+ymlpafXr1xeRSZMmGf7i+TB48GAReeGFFxw9kWIkMzNT50rVqlX75ptvct1g37RpU6dOnfRVbJs2bdbaZgPqvn2qcWOVkKCqVVMHD+YE7lOn5i6CnEdHjhypWLGiiEydOtVyUK8QqVix0tGjN2nuCsOdPJnTRlLfULmmw4dz6muLqDp1btIudevWrW+++aa3t7flK5ZuNFe3bt358+fb6F3cgNlsnj17dvXq1UWkVq1a1+xUhlul64yJSKdOnTZu3GiLIX7+WQ0evEufQvfee+/+K6sdXbhwYcKECaVKlRIRvRBPrzLr2bPn559/fiwPFUVuKjtb+fkpEdW3b/6bA6NA1q9XTZpcceTdd9VTT6nly9UPP6ibNQO/2tNPPy0iDRo0sJTfTUxM1Hesx48fb8iUb83+/apECeXkpCxf5h0ethUb//57b1xcw5MnP9XBekLC//bvv//s2e+zsjivcF066JwyZYpNR/n+e0feHHnnnXdEpEqVKobcR79w4cK+fftWr149b968qy/A+vTpIyLvvvtuwQeyKV3DIDAw0Prgpk2bKlasOG3aNDtMoHHjxtZrOqOiokSkRYsWdhj6xiyB+/79qnp1NWWKGjEi59pJRHl5qaFDVViYionJ/3WULvfv5ua2ePFiA2eeR/rjPSQkxP5D29RHH30kDm2icOnSpQoVKoiIpRz/4sWLRaRJrqs+2/joo5xlGw4v3nVLil3gfuDAAZPJ5OnpadlAnauBasGZzZlbt1aKiZGLF3cb9ZowXFxcnF7kfuTIrfWIu6kXXnhB/zQ1ZItiwe3YsUO/U0u9Ldjak08+6ezs3L9//+Qrk4WEhARLuYzq1avbtFyGDtyVUh99pAYPzgncC0Lf0y5RosSWLVv0EbPZ/NBDz7Zte7Jr15tUpIGxsrNV7945nSpvcAZlZqqoKDVmTE40b9nc8PLLWdHR0dc793bt2jVx4sSyZcs6OTmNGDGigMVGCiglJWXgwIHOzs6PPfaYA6dRZFSrVs3JyWnGjBn565aWRxkZGZZy/K6urleX4z9y5EijRo2cnJyaNm06c+ZMS60qo5w4oapWVSLKxukKrmPtWuXtfcWR998vyE+gixcv6t02o0aNshz866+/nJ2dnZycVqxYke9XzqfBg5WIsv5QeustJaJatXJkOYniwWzOOn9+cXz8w1u3VrpwoUCd2zmvig/ds3HevHm2HqhbNyWibLmS/to2bdrk5uZmMpkW2aWe2tKlS/UXmUK+GGLlypUi4p3r55FShl91XM9LL70kIsH/1YO6dOmSp6eniBi4rTl/LIG7Uurtt5WXlxoxQk2bpgYOVBUqXP7KIKKqVVMPPKA++0zt2HEL4fuHH36ol1M4qnOpToHbtGnjkNFt59ixY87Ozu7u7ufOnXPUHHQjt7feeks/zMzMrFq1qojYeid0ZOSSZs1STCbl8E4rt6rYBe4ffPCBiFj3R23WrJlYNVA1xIEDI2Ni5PjxyQa+Jgyn+8XVr1//4YcfDgwMDA4OnjhxYlhY2Ndffx0REbFs2bK///57x44dBw8eTExMzGM8sX79emdnZxcXl02bNtl6/nmn3+ltUW6vaNA/imbOnGl98P3339frOt3d3d94441crVMNZwncMzNVixbqgQcKGrgrpXQlPm9v77S0NH0kMVHdcYcSUW+/XdAXR96FhioRVbmyyuOCYF20PThY3XmnElFt257U64t16Zhr3hq8++67ReS3334zeOq3bvbs2SIyfPhwR0+kKND7VOzzVfPqcvzW+wj14qPPPvvMRqMvWZJTcGn9ehuNgOs7dUqVLn3FIs9hwy637c6XnTt36j031pHZuHHjRKRmzZp2rWzw559KRJUurSw1Co4cUR4eymRSq1fbbxrF3uHDYw8fLuhlLedVMaFrPOZqH2ILW7YoZ2fl6qr27LH1UJelpKQ0bNhQRF588UW7DapvVuWv3brdZGZmlitXTkQc1eJVd+tt1uxy2QO973zGjBkOmY+2evUVgXt6umrU6HIN9+xstX27mjpVDR2as3bB8qtnz8WDBg36+OOPY2Njb1AZQhevd3Jymjt3ru3fzbVduHDBw8PDZDLZqHqwA/n5+YnI147b9rRixQoRueuuuyxHnnnmGbFxy8DY2NhSpUqVLFnhk08MXilrB8UucO/QoYN15SPdQLVcuXLG3qE9f35RTIzs2tXawNeE4YKCgkqXLi15VqpUqWrVqt15550+Pj49e/YcNGjQI488MmbMmODg4MmTJ3/66aczZ87UJcNee+01R7+5K+zcudPJycnNze2AgYXZcH3XDNx1JTt/f/9cNRZsxBK4K6XWrFFOTgYE7hcuXGjatKmIBAaOsRxctUo5OysnJ2X3An3F1KZNOW0h8xGGm81qwwb17rvLddkrrVKlSk888cSSJUusfw4SuBdJ9gzctQ0bNujrrtKlS1tXjLF14K6Uev75/LQUhjEee0yNGKHS0pTZrBYuVFWrqgKvxvriiy9EpGzZspYrmczMTF2f7b777ivgi+dRZmbmjw88kF2hgrIuV/rgg0pEXdmPEbaRnZYWq5QymzP//Xfw8eMGFI3lvCoO9LezgnQHybvAQCWieve2w1A5hg8fLiLNmze355bEb7/9Vg9q0w1zBafXnNn0YuMGMjIyypYtKyKWj5eZM2eKyMCBAx0yH6XUlClKRL32mrLujrR/v7pe17n9+1V4uAoMVHXrqq5dn7V8dyhdurSfn19ISEhUVFR6errl+d9++63JZDKZTI69qaD++yLzzTffOHYahvvmm29EpFevXo6aQHZ2dkREhGXtnVJq7dq1IlKrVi0bbdxPSEioVauWiDz66KO2eH1bK16B+9GjR3WXj9TUVH1EN1A1fK+62Zy+ZUvZmBhJT3fMDVXc1O7du93d3U0m09tvv/3dd9998cUXoaGhb7zxxnPPPffYY4/df//9fn5+7dq18/b2rlWrVvny5fMYytesWbNy5coObB59PcOGDRORMWPG3PypKLBrBu5JSUn2bBpz+LCyrvD28stq4kQDXjYuLu7OO3s1b570/feXD77xhhJRNWuqs2cNGAI3kJKiGjY0ZsPyli1b/ve//zVp0sTy8fXGG29YfpfAvUiyf+CulDKbzXPmzMlVL9UOgXt6umrVSomo2/P6/DaXmqqefVY1baoaNFD9++enc8i1PPjggyLSrl07y76cw4cP63Ki06dPN2SIG/v8889FpEfLlsqSL6xdq0wmVbKkurKvIGwhM/PU3r19duxosH17nfj4h7OzUw15Wc6rIq9kyZIiYuutpdrZs6piRSWi7FLcRf344496Tdju3XatZHvp0iUvLy8RiYqKsue4t2rWrFki0r9/f0dNYMiQISJiuQQ6duyYyWQqVaqUQwo2fv21MpmUyaS++io/fzw+/tCsWbNGjhxpvWpHn35+fn4TJkyYMGGCs7Oz2L5fQl7oz9X777/f0RMxWFJSUsmSJZ2cnApPrWCz2Vy9enWTyeTn5zd58uRFixYZOLeUlJSWLVuKSJcuXaxv7dxGilfgrne4WP/D0w1UbZEpxMcPi4mREyc+MPyVUXDZ2dm+vr5yi7X7k5OTExIS/vnnn5iYmKioqIULF86ePfvzzz8PDQ197bXXnnnmmSFDhjg5Obm6usbHx9tu8vmzd+9eFxcXI+e2bp0aOFA1aaI6dFATJ6rMTGNetki4ZuDuEPv2qddfV8be3Z82zSyiypW7/DUwM1N16qRElL1WgxVfzz03tU6dSz4+ysBNWTt37pw4cWLLli03WBq1OTRwHzRokLu7+9KlS/VDAncD5QrcX3rpJXd3988//9z+M7FD4K6U2r1blSql2rc/Pm+eAxr/Qi1apGbPVomJRr3euXPnateuLSJvvvmm5eBPP/0kIu7u7tu2Faii900lJibqTr8LFy7MOZSdrVq3ViLKIT02i6vk5OWJiT9lZZ0z6gU5r4q2s2fP6k0MdhsxLEyJqKZNbd64e//+/bpdylf5C1ALRi9b7Nevn/2HzrtTp07pTmbWC3Lt6euvvxYRf39/y5FWrVqJyB9//GHnmcyerZyclMmkDOkXe/z48YiIiKCgIB8fH5PJpJN3XcAnNDTUgAEK7NChQyJSpkyZQt5pIB/0XZyPClapz0Br1651c3PTXzEsypUr5+vrGxQUNGPGjOjo6PzdYcrOzh40aJCI1K9f386rhQxUvAL3bt26icj3/63MvLqBqoHOnl2wYcNds2aNuPlTYXe6xXP16tUN7zjx6KOPisgTTzxh7MsaYsSIESLSvn37adOmzZkzZ+HChcuXL4+Jifnnn3+OHTt2a+s+Dh9WlSuryEiVmamOHFG9eqn//c9mE7/9FJ7AfdkyJaL8/Ax+Wd3Zq107Zan+ffiwKl9eiShH7yAsyvQ6napV6+/da/N1MQ4M3Pv16yciS5Ys0Q8J3A2UK3B/7rnnROSTTz6x/0zsE7grpebN26y/cTmqhGux1rKlElGbNxv4kqtXr9Y9Lf/880/LQf0zt2nTpjbdX6j/vfTs2dNy5Kuvvhrftm1ap07KQVFO8bRrV8uYGElL47xCnuzYsUNEmjRpYrcRMzLUU0/ZvIx7ZmZmx44dRWSI9YZWO0pMTNSlWW19U6qA2rZtKyL2aSd7tePHj5tMppIlS1oSf90lIigoyJ7T+Pln5eKiRNR77xn/4idPnvzpp59GjRql720UnmXIug6qAzpg29jPP/8shaYlbHx8fJUqVURk6NChs2bNeuGFF3r27Km3iFlzc3Nr3br1yJEjw8LCVq1alccITv98rFixon0KgtlIMQrcT58+7eLiUqJEiaT/ynlOmTJFrmygaqALFy6UKlXKZDIdPnzYFq+PfDtw4IC+Pvjll1+sjyclJe3fvz8xMTGzAIu1Dxw44Obm5uzsvMee7XKu5aeffkpOTrY+8ttvv3l6elruQl9T+fLlF/Xvr7y9Vfv2ys9PDR2qRo5UQUFq3DgVGqqmT1dz56pNm9Srr6oXXrj80gcOqFKlWORuUeQD98REVbu2ElH/tShXSqmfflIiyt1dbd9u8HBQSu3bt8/T01NEvv32WzsMR+BeJBXDwF39V1GtTZs2RW+VU2Fng8BdKRUSEiIiNWrUsJzJqampujrWM888Y+xYFrt27XJ1dXV2drZES8nJydWqVRORH374wUaD4ppsEbgrzqui648//hC7lzw+cUKJKMtP13nz1EMPGTzE66+/LiI1a9Y867h6jrpZ4uOPP+6oCeTF+PHjReSpp55y1AR8fHysL2vXrVsnIvXq1bPbBP74Q5UooUTUhAm2HUiX/rBsUdVu0F7V1l599VURefnllx01ARu5dOmSTrQdHjclJSU1a9ZM73TJFaAlJCRERUWFhYUFBAR4e3s7OTnlCp28vLz8/f2Dg4PDw8Pj4uKurv/+5Zdf6qT+dr9lUowC9+nTp4vIPffcYzmibwtbGqga7v777xeRTz/91Eavj3wwm829e/e+5o0WfYZo7u7ulStXrlevXuvWrbt163b33Xc/9NBDgYGBr7766oQJEz7++OOZM2dGREQsXbp07dq1iVdulx41apSIjBjhyM0N69atc3JyqlevnmX3RkZGhm4o37Zt2yeffHLYsGEDBw7s0aOHj4/PnXfeWbVqVQ8PD/3eo/Q+1hv8euYZdc89avbsK4asWFGxfvA/RT5wV0qtXp3TK9VqNZgaOVKJqGbNVOHrYnB7y8jIaN++vV4+YJ8RCdyLpOIZuJ8/f75u3boiEhwcbIfhcJltAvfs7OwePXqIyIABAyz9+nbs2KHLNF+uy2Govn375gpeX375ZRHp1KlTIe8ZWPTYKHDnvCqqdI/BgIAAew564oQqV07VqaN0KWPDA/e//vpL78mwZ3eoq8XHxzs7O5coUcK6KXphs3HjRhGpVauWoybw1ltvWf8zz87O1iuC7ZOW/vmncndXImrsWJuP9cYbb4jI888/bzny1FNPVahQYd++fTYf+1pWrVol9t3dYjc6aggJCXHgHDIyMvz8/ESkadOm58+fv/GTk5OTY2JiwsPDg4KCfH19S5UqlSt/9/T09PHxCQgICAsLi46O/uWXX1xcXEwm07ffflsImyPekmIUuOuYddasWfrh0aNHnZycrBuoGu77778XkW7dutno9ZEP+l5ZpUqVTp48meu3vvrqqzp16pQvX/7qW3A3liuTOnTokF7kbuf2NRbp6ene3t4iMm7cOMvBCRMmiEjdunVvUDomOzs7MTHx0sGDascOtW6dWrpURUSor75SH3+sJk5Ur76qAgPVQw+p2bPVvfeqXMtsy5ZVhw7Z7D3dZopD4K6UeuutnF6plltOqamqUSNVrpzatMkmIxZbL774ol4Oc9MLGqMQuBdJxTNwV0pt3LjR1dXVyclp2bJl9hkRStkqcFdKHTlyRJ/M1qdQWFiYiJQvX/6Q0Vcjv/zyi35ly7+df//9t0SJEk5OThs3bjR2LNyUjQJ3xXlVRE2aNMn+N1xPnFA1aqiwMKU7xxkbuCcmJt5xxx0Oj9u0e++9V0T+V4gri2ZnZ+tdI3FxcQ6ZwPr160XE29vbcmT48OEi8uGHH9p66HXrVOnSOYvl7GDt2rVy5eL9hx56yFHXmUqpzMxMXVa+6BUV/PPPP0Wkfv36Drw1O2bMGBGpVq1aPn44ZmVl7dq16/vvvw8ODu7bt6/+F2pNJ/L33HNPxYoVb/fly8UlcD937pybm5urq6tl15VuoGrTqmcpKSnu7u5OTk6F+a5vsXLs2LHy5cuLyLx58278zLS0tBMnTvz7778xMTErVqyIjIycO3fujBkzQkNDx40bFxQU9Pjjjw8dOtTPz69Dhw4xMTG5/rj+AHr44Ydt9lZuRNeGa9SokWV5++7du93d3U0mk2Gt5N94Q1lvzdu9W5Urp67aClRsFZPAPTtb+fmpkBBlvVkwLk4dPKi++uryhofjx9WV1Ztwa/744w+TyeTi4rJu3Tq7DUrgXiQV28Bd/Ze5VKlS5fjx43YbtLizWeCu/qthWqJEia1bt+ojZrN54MCBItKlSxcD97BfunSpYcOGcuWOVX9/fxEZNWqUUaMg72wXuCvOq6JIlz0JCwuz56A6cM/IUM2aqcWLcwL3ceNUly7qoYfU2LFqyhT13Xdq1Sq1Z4+61bV/gwcPFhFfX9+CFEE1ypo1a0SkQoUKtlvCWHCPPfaYiLxni/rleZCdnf37779br9KdN2+e2L7M0aZNm3x9z4ioxx+3ef9eLSsrS19n/vPPP/rInDlzRKRPnz72GP5aHnjgARGZOnWqoyZgI9nZ2TVq1BCRDRs2OGQC7777roiULFly/fr1hrzgiRMnli5d+t577w0YMKBRo0bDhw8PCwvTy5c7duxoyBCOUlwC92+//VZE+vbtazmiG6jeNHgtIH2JNn36dJuOgjzSN+HvvvtuWw+UkJBQsmRJJycn+7eR2bZtm17HFx0drY9kZ2f7+vqKSGBgoGHDxMerKlXU3LkqLU3t2aM6dbJJE5bbVjEJ3JW67k2WEiWUr2/O765Zozp1stUEiryTJ0/q2/7vvvuuPcclcC+SinPgnp2d3atXLxHp168ftRrsxJaBu1LqySef1MsGLc3oTp8+Xb16dRGZOHGiUaO89957ItKkSZOM/7qER0VFiYinpyfraRzCpoG74rwqcvS3v4iICHsOqgN3pVR0tKpfX337rXroITVgwHWrdXp6qiZNVP/+KcOHD3/llVfCwsJ+/PHH6Ojo/fv3W5ZPadOmTRORsmXLHjhwwJ7v6AY6dOggItOmTXP0RK7rp59+EpGuXbs6eiI5EhMTXVxcXFxclixZkuvv1yjbt2+vWLFiyZIVgoKO2LOIuu6a8/HHH+uHZ8+e1UWHbrDD3qZmzZolIv3793fI6Daldz9bF/Cxm/nz5zs5OTk5OS1YsMDYV37ppZdE5P3339cPL168WLZsWRGhaeptQC8Z+PLLL/XDqxuo2kh4eLiI9O7d26ajIC/0LbIyZcocOXLEDsPpIMNuBZe1zMxM3ZjFuvX5Rx99JCJeXl557AedV9u2qeHDVYsWqndv9dlndrp1fpt44YWE+vXjwsPPOXoiNg/cr6dECTV4sNKfuATu+WY2m3Xw3b17dzs3HSJwL5KKc+CulDp69GilSpWsvwrCtmwcuF+8eLFFixYi8uSTT1oOrlq1ytnZ2cXFZc2aNQUfIjs7u3Xr1mLVBS4zM1O3CPvggw8K/vrIB1sH7pxXRYxugWPIX1zeWQJ3pdSjj6o2bdRDD6kDB9TKlWrOHPXBB2rsWPXgg6pzZ1W/vipZMid2r1dvt1xLhQoVmjZt2qdPn8GDB5coUUIKWU/diIgIEWnQoMHVbQ8LiaSkJFdXVxcXF4O/C+fXtm3bSpUqpVcou7i4+Pj4BAcHR0ZGGlU3cu/evV5eXiIycOBAyy09+5g7d66I+Fl989T3Y3799Vd7TsPi1KlTTk5O7u7ulhuoRUZMTIzeuGnnnS6bNm3Snf+mTJli+IvrSmstW7a0HBkxYoSxd7vtz+WaH+tFTEpKyvLly52dnQcNGqSPLFiwICsrq3///mXKlLHp0AMHDnRzc1u5cuWZM2f01zw4xNmzZ8eOHSsiU6ZMqVmzph1GfP3117/++uv58+dv3bpV9+y2gylTpsTGxtauXVvvnReRgwcP6lYt06ZN01XMDNOihcyZk/PfO3bI/ffL+PHSvLmRQ9y2kpOr799fPSPD0fNwqA8+kG7d5L8PXeTHtGnTFi9eXLly5Xnz5jk7O1uOm83mW201ARRP1v9YatSo8c033wwaNOjVV19dt26dgT8TAwMD27RpY9SrIY/c3d2/++679u3bz5gx45FHHunSpYuIdOvW7dVXX3333XcHDx48cOBA60/O/GnZsmX58uXnz5/v4+NTsWLFzz77LC4urn79+vp+FYoezqsi5tixYyKi9yg4xPvvS+PGcuedUqeO1Klz7eecOyfHjsnJk5WPHg1PSEg4fvx4QkLCiRMnjh49euLEicTExMTExJ07d4pInTp1Kleu/OCDD9rzLdzYfffdV79+/X379v3222+DCuV1f5kyZXx9fVetWrVs2TJdY8SBdu/e3bt377S0tFq1arVo0SIuLi42NjY2NlZEXF1d27Rp07Vr165du3bu3Dl/OdXhw4d79+59/PhxPz+/H3/80dXV1eh3cCP9+vVzcXFZvXp1SkqKp6eniNx9993r169fvHixLvxgZ5UrV27Tps3GjRtXrFihF+AWGT4+Pt7e3rt27VqxYkWfPn3sM+jBgwf9/f0vXLjwxBNP6NXoxurfv3/FihW3bt26c+fOpk2bisiwYcNmz549d+7c//3vf4YPZyeOTvztQdfJ6t69u+XIO++8U6pUqW9zdX00wurVq3PdwdMN6G0xFvLukUce0eeAPTeSv/DCCyIyePBg+wz3zz//lCxZUkT++OMPfcRsNuvPX5tXkx87Vomo++6z7Si3jyeeUCKqEFSUceQK96wsNX68GjGCFe75t379+rJly1ovslNKRUVFeXt7Hzx40KZDs8K9SCpuK9znz5/frl0762ZZZrO5Xr16hicv33//vU3fyO3KxivctS+//PKzzz6zvro7deqUh4dHrVq1jP1bbtq06bfffqv/ETnksxGarVe4a9c7r3SzSs6r20V2drarq6vJZLJR4Y6rJSaqQYPUjh1q8uTLBxctUgWpYnvy5Mlt27YtXrz4tddek6sKpusS4Y4tlaZ7C3fp0sWBc7ixDz74QERGjBjh2GkcOnRIf4b07t07PT1dKZWcnBwVFRUcHOzr6+vm5mb5ZHB2dvb29g4MDIyIiLBctt3U0aNH69WrJyKdOnVyVBUXXcnWUmxk8+bNIlK9enVHnaJvv/22iIwZM8Yho9uUfmuPPvqofYZLTk5u3ry5iPTp08d2y+oDAwNFZNy4cfphVlZW1apVRWSzjS8mbadYrHDXDXCGDBliOfL666/r9c4Gys7OnjRp0sSJEz09Pbdv32650B8yZMjSpUt//vln3a8D9vf777/PnTvXw8Nj5syZJpPJbuO+8cYbM2fO/OWXXzZt2tS2bVubjmU2m0eNGnXx4sWRI0fqezwi8vXXXy9btqxixYr6MsiGgoPlyy9l4ULZtEls/E5xGwkOlhYtpEULR8/jtnXmzJnk5ORZs2Y9+eSTrVq10gc///zzXbt2BQQErFy5suCL7ICi6uDBg6NGjTp//vyff/5Zv359ffCjjz6Kj48vX778e++9Z+AKd1v/iMcNjB49OteRoKCgCxcu1KpVa9q0aUZ9SK5evXru3LlvvPFGw4YNPT09i9hCOVzteudVyZIlOa9uI6dPn87MzKxUqZK7u7s+opT6+eef77nnHl2bxVjp6TJokERHS2qqLF9++fjddxfoZatUqVKlSpUWLVoMGDBg1apV69evnz179lNPPaV/t0ePHqtXr166dKndVrlebdSoURMmTIiOjt6wYYOu4VPYDBgw4JVXXtF3Jhy1SfTo0aPdu3c/fPiwr6/vwoUL9Rno6enp5+fn5+cnImlpaX///feaNWvWrl0bHR29a9euXbt2ffnllyJSr149Pz8/X1/f7t27X++23+nTp/v06RMfH9+uXbs//vijdOnS9nx3FgMGDFi7du2SJUt0+4SWLVvWqFEjISFh+/btd911l0PmExISsnjxYvsPbWuPPPLI+PHjFyxY8MUXX+hll9rff/89duzYli1b3nXXXS1btmzevLnebVAQ2dnZw4YN27FjR5MmTX788UcXF1vFyMOGDfvyyy+/++67iRMnmkwmZ2fnBx54YOrUqfPmzbN8F77NODrxtyGz2fz333+/9NJL+gyztJu3hcOHD3ft2lVETCZTUFCQdbWsPXv2mEymUqVKPf/882vWrCm01c2KqqSkJH3z48MPP7T/6K+++qqI+Pv723qgzz77TESqVat29uxZfeTYsWPly5cX23cGzvHyy0pE3XOPPcYq9ArPCveVK4/5+n47evRSO4+rV7grpZYsUeXLs8I9//RC4AYNGiQnJ+sjiYmJ+lJ7/PjxthuXFe5FUvFZ4Z6ZmanXWN17772Wg7GxsW5ubiaTyVG1RIubhCFDTrZpk2Lf7vHTp08XkbJly8bHxxv4sllZWTopmDhxolFldpE/Gzbc9/ffPmfPcl7h5vTq2hYtWliOLF26VESqVKkSHByckJBg4FjZ2er++5WIqlFDHTpk4Atf4eqC6e+++66I9OnTx1ZD5o3+zvvggw86dho3oG+9b9iwwSGjnzx5skmTJiLSoUMHyyX9DaSlpUVHR4eGhvr5+VlnqSJSr169gICAGTNmWH8cnT9/XneGaNGihSUNcIitW7eKiJeXl2VJ+xNPPCEi77zzjkPmYzab9b7GHTt2OGQCNqXvb+VqCv3JJ5/kiny9vLz8/f1DQkIiIiLi4uLysdtAX7dXqlTJetuoLZjN5jp16ojIunXr9JG///5bRKpXr27nfmZGKYKBe3Z2dnR0dHBwsGVBk74DU61atWXLltlixIULF1aoUEFEqlataqnmoa1cuVI3xLDcRa9UqVJAQEBkZKSdW1gUW2PGjBGRdu3aOeSf6JkzZ/T9nr///tt2oxw6dEiP8vPPP1sO6rvKAwYMsN24Vzh9Wnl6KhG1fr2dRizECk/gvmzZMrmyd419WAJ3pdS99xK459/Fixf1t/FRo0ZZDv7111/Ozs5OTk4rVqyw0bgE7kVS8QncdanHmjVrnjlzRh9JTU1t1KiRiDz//PM2GhS56AY29twFvHPnTt3La+7cuYa/eHR0tMlk8vDwOGS7LA15wHmFvFu0aJGI9OvXz3Jk+fLllt5a7u7uo0ePjouLM2SsoCAlosqWVbZc46eysrJ0xPHLL7/oI4mJiXots00XF97U0aNH3dzcnJ2d9+/f78Bp3MAzzzwjIm+99Zb9hz537pxenHvXXXflIw1PT0+Pjo6eNGlSnz59cq1br1u37qOPPvrFF1+0a9dO34nZvXu3Ld7CLdELgyyf0gsWLBARX19fOwy9Z8+ewYMH5+qOq+tMhIaG2mECdqaz9VwVjJOSklauXBkWFjZy5MhWrVpZlyrSKlSo0LNnzxdeeCE8PHzr1q03jSV1RSZ3d3dLCG5T+u7ds88+aznSoEEDEVm5cqUdRjdc0Qncs7KyoqOjg4KCdFNm7Y477ggKCvr11191kQ29/PzSpUtGDXrx4sWgoCA91sCBAy3f65RSmZmZISEhesthhw4dli5dGhIS0rBhQ+sTXSfvBs4HuaxatcpkMrm5uTnwlua4ceNEpG/fvrYb4p577hGR+++/33Lkhx9+EJEyZcocPnzYduPm9vrrSkT172+/EQur4hy4L1qkli1TsbHKcu/83Dm1Z4/dxi+CLF/1rXer6A8W6zzRWATuRVIxCdyveUfq0UcfFZFmzZpduHDBFoPianYORtPT0/XtySeeeMJGQ+jqlAEBATZ6feQF5xXyTpfjePzxx3MdX7FixcCBA3VpEZPJ1KdPnz//3F6QEtOTJysR5eamli8v0ITz4uqC6fqn+WOPPWbzsf+TlJS0aNGiXAd79OhRvnz5XKsPC48lS5aIiI+Pj53HTUpK0m3VGzVqdOLEiQK+WlZWVkxMTFhY2NChQ/WKT61s2bJ169Zt1qyZh4eHw69zdEmuiRMn6ocpKSklSpRwdna20XcWi/j4+Jo1a4rI2LFjLQfNZvOAAQNq1679559/2nR0hzh58qSLi4ubm9sN/r/NyMjYtm3b7NmzX3rppV69eunvAtbc3Nxatmz56KOPHj169Oo/vmjRImdnZ5PJZKeqCf9tkqhcubLlTsCbb74pIqNHj7bPBIx12wfulpxdV9PX6tSpExQUFB0dbdkuYTabw8LC9O2dNm3a7N27t+BD79q1q0WLFvpuT1hYmPXWjEOHDnXu3FlEnJ2dg4ODre8axcbGjhs3rnHjxpbZli9ffsSIEb///o+9urkUFxcuXNB3w2xaeOGmzp07pwvF/vXXX7Z4/VmzZolIuXLlLPsiz5w5o/85zJgxwxYjXte5c6pcOSWiVq+267iFT7EN3I8cURUrKicntWaNfQYsLr744gu5cjN7ZmZmp06dROQ+2zQrJnAvkopD4G6puRQSEmI5+OOPP4pIqVKldu3aZfiIuB47B6N69eKdd96Zl936+XPo0CEPDw+TyRQdHW2jIXBTnFfIo/j4+FatWpUqVapmzZoRERFX73Xev39/cHBw2bJlTSZTvXq7GjRQYWEqLe2WB/ruO2UyKScn9dNPxsz8xpKTk/VXy/X/7SqOj493dnZ2c3M7duyYPWag1PDhw0Xkgw8+sBw5fPhwuXLlXFxcNm3aZJ853KqLFy/qf2jGlhK6sbS0NF12+M477zR83KSkpMmTJ99zzz333nvv6tWrDxw4oJP9xYsXGzvQrfrll19EpGPHjpYjvXr1EhvXubVuGGvdVVivjvXw8HDsFhDb0c0bxo4de/LkyTz+kYSEhKioqLCwsICAAG9vb8utx8TExFzPjI2NLVWqlNh9f0CzZs2svwzu3r37006djnfrptLT7TkNQ9yugfvFixcjIyMDAgLKli1rSa69vb2Dg4NvcLGycePGO++8U0Q8PT1nz55dkAmEh4frJYeNGzfesmWL9W/9/PPPunZ2rVq1bpCx7t+/PywsTNcYFZG6dfd4eCh/fxUermx2RVe8vPLKKyLSpEmTdEf/ywwJCRGRnj17Gv7Kp0+frly5sojMmjXLclBfA3Xr1s0B3cDfekuJKLsXMClsimfgnp2tevbM2eTgoEb0RdmDDz4oIu3atbPcwT18+LBe2zJ9+nTDhyNwL5KKQ+A+aNAgEencubMlW9m/f3+ZMmVE5KuvvjJ8ONyAPYPRxYsXm0ymEiVK2Ho4vbvIx8eHnkyOwnmFm0pNTR03bpxulGrpj924cePp06enXRWonzt37rPPfqhVS4koEVWpkho3TuU9uF6+XLm5KREVFmbwu7iBqwum630Sb7zxhh1Gt9zDtlQvyc7O7tmzp4j079/fAV8/80xf3H7zzTe5jj/99NOffvrptm3bjP0HeOnSJX1NW6tWrQMHDhj4ytqpU6ecnJzc3d0tZ/Vbb70lIs8884zhY92S1NRUd3d3JycnSwT80UcficgjjzxioxFPnTrl7e0tIu3bt7e+Ofr666/rFdyWrxVFz/fff69X+uqFvL6+vkFBQeHh4XFxcXmsqJySkrJu3TrrNElLSEjQOwZGjhxpg4nfyOTJk3N/+2vdWomohQvtPJOCu80C97S0NJ2zW3fa9fb2DgkJyeOqpaSkpEceeUT/waFDh+Yq8JQX58+f18GHiAQEBFjfQLtw4YKlwszgwYPzWKJr3759H388o00bZTLl/KQvWVLdd5/67jtl3T7nwAH13nvKskNo1Sq1bp36/XdlnfbPn6+MWLtfFGzevNnV1dXJyWnt2rWOnos6f/68zsUMrzx1//33i0ivXr0sFzd6u5yHh8e+ffuMHStPzp9X5csrEbVqlQNGLzSKZ+D+9ttKRFWtqgq8XRLXcO7cudq1a4vI//73P8vBn376Se+y2mZ0W0IC9yKpyAfuU6dO1fHKwYMH9ZHMzMyOHTvKlVXXYB92C0aPHj1aqVIlEQmzfeKVlpamt1Bc/dUU9sF5hRuLjIzU10smk2no0KE7d+4MCwvTR0SkbNmyQUFBV5fczMxUP/yg2rfP+TLu5qYCAtSVa+quYdMmVbq0ElGvv26jd3NtVxdM37hxo47bUlJSbDr0Ne9hT5gwQUSqVq1a8JIpNjVt2jQRGTJkiPXBY8eOWWIlT09PPz+/0NDQ6OjoAlb9zcjI8Pf3F5EqVarssVltTV263XK5vmHDBhG54447bDRc3ull13PmzNEP//nnHxGpUKGCLZrqnTt37poNYydNmiQirq6uv/76q+GDFiorVqzo3Lmz/odpzcPDo127doGBgdOmTVu7du0tfTgkJyfrcmpdu3a1fwXsQ/HxW7t1y6pdW1my1ilTlIgaOtTOMym42yNwP3fuXEREREBAgN7RYJ2z//PPP/l4wfDwcN1xok6dOrdU+//vv/+uW7euiJQpUybXppi4uLjmzZvLfxVm8jGrw4dVWJjy81MuLjk/7J2dla+vCgtTJ06oZcuUyXT5x/lrr6nJk9Xjj6vPP7/8Cv37qwUL8jFyUZOZmak7k7z88suOnkuOiRMnitHdQiIjI/X6AsvFVlJSUq1atURkypQpBg50ayZMUCJp997rsAkUAsUwcN+wQbm6KicnFRVl66GKr+joaF2ZerlVidAnnnhCRJo2bWpsxUYC9yKpaAfucXFxJUuWFJEffvjBcjA4OFgvLstHmzIUkH2CUfuvrNQfSlWrVk1KSrLDcMjl6vPq6l3wBZeVpUaNmmkyme6++27Oq9tFbGysZaWnj4/PGqv6htnZ2ZGRkX5+fvp3XV1dhw4des0QICZGBQTkfBl/+ukbDbd/v6paVYmoYcMcsLNTb2h+4YUXLEf03WXbdSNXVvewrTPrjRs36lVuy5Yts93Qhjh8+LCOcawDxPPnz8+cOTMgIEDf9LIO3/v37//uu++uXbv2pl0lc8nKynrooYdEpFKlSkZ15b2mt99+W0TGjBmjH2ZnZ+u6sjt37rTdoHmhOw08/PDDliO6zoThSyGTkpL0XYeGDRseP37ccvzTTz8VEWdnZ7tVHi8MEhISIiMjQ0JChg4d6u3tbTKZckXwXl5e/v7+ISEhERERcXFx1/vplpWVpXsENm7c2BY/YfOkUyclor7/PudhQoJydlbu7lcsSb4dFOrA/ezZs+Hh4f7+/pbWuk5OTr6+vmFhYUeOHCngi+/Zs0dnsi4uLiEhITfdQJSVlWVpgtquXTvrBtxms3nGjBm6woy3t3fBVxomJKjPP1c9eypn55zk3cVFTZ2qunVTdesq/flJ4H4D+mdP3bp1rfcfOFZKSkqVKlVEJMq4PPKvv/6qX7/+1KlTLUeeeuopEWnbtq0t7h7nVVLSj/36ebi6LrdD26DCavNmtWCB+m+FpSNdM3APCAjw8/MLCwvLe623Gzt3TtWpo0SUXXayFmu6PlWNGjUsmWlqamqTJk3E6A2kDgzcX3755c6dO1sqkxK4GyhX4B4WFta5c+f58+fbfyaGB+4XL17UbXUsXzuVUitXrnR2dnZxcSkMe92KoauD0U2bNtWtWzdXm6UCsv/KSrPZ3KFDhxYtnnnnHe7iOMDV51Xbtm0NP68mTlQiqnfvZadOnTLkBW+K86ogzpw5ExQUpL+nV6tWbcaMGdf7av/3338/+OCDLi4uOlvo2rXrokUHrn7uwYPqpZfUDdYlnz6tGjZUIqpnT2X31Z9KKbVt2zaTyeTp6WnZrz9//nz9/dd2XwN1gY6aNWta7mGfP39eL0Z89dVXbTSosZo2bSoi1j3VrSUkJERERAQGBuYKKz08PHx9fYODg6Oiom66wMVsNuvVMGXLlo2JibHBm7hs06ZNelWB5YhuEf/+++/bdNyb2r9/v4iUL18+MzNTH9F1IMaNG2fgKGlpad26dROR+vXrW5fI/+abb0wmk8lk+vLLLw0c7raTlJQUHR09Y8aMoKAgX19fvSrFWtmyZXUJmhkzZkRHR1/8r6Xks88+KyIVK1Z0TMkE7bPPlIi6557LR3r0UCLqdtsHVngD9yeeeEL/1NSZeO/evadPn27sxXRGRkZISIjuEtCrV68bNLI4fPhwly5dRMRkMgUFBVnf5Dx9+rS+/yMiAQEBVxeGK4izZ1V4uPL3V1WqqCVLVP/+6rvvVNeuymy+HLi/8IL666+cXx06ELir3bt3u7u7m0wmA6NtQ4SGhsqV/UMKLi0tzXJBuWrVKpPJ5OLiYrdGUtfzzjvviEinTp0cOw2HmDRJlSmjLJ8lvXo5eMX31YF7RkaGpZylq6tr7969Z8yYUcDk/aGHlIhq21bd4voP3LLs7OwePXqIyIABAyyxwo4dO/Ql1ELjCttdM3DfunXrjBkz7Hw/j8DdQLkCd/tITEwMCQnJ1UzF8MA9MDBQL3qwXIadOnXKy8tLRCZNmmTUKLglVwej+pahVqdOnZdeemnt2rUFqZm7YcMGvbLSzpd8MTHnnZyUu7uyWn4DO8l1XiUlJekVndbn1bp16wp2Xjlm0x7nVT5kZKipU8N1Uzc3N7dXXnklL1sEjh07FhISUqFChYoVK5cseaFuXRUaqvJeaDYtTXXsqESUj4+ycQWXG9GbeyydS7OysurXry8iC2wTB/z11196n6V1idRhw4aJiI+Pj/2LTuSPLn/fr1+/f//998bPTEhI+P7775966qlc4XuJEiU6d+48bty4+Pj4q/+U2WzWC+A8PDxWr15tmzdxxXDVq1cXkR07dugjusJ+9+7dbT30TTVs2FBELO0Vly5dKiItW7Y06vUvXbrUv39/fQfI+u9izpw5Ot/78MMPjRqraMjIyNi2bVt4ePiLL77Yq1cv/aXAmpubW6tWrTp06CAi7u7uDl6tcuqUcnVVrq7K8rVl5kwlovr0ceSsbl3hDdzHjRtXokQJvQzTpotWli1bVq1aNRGpXLny9Xo69+7dW/9jXnVlZeoVK1bUqFFD3x2y3sJsuPR0tWxZTivCbt3Ut99eDtw7dlQjR+b8qlmTwF1t2rSpevXq/v7+jp5IbqmpqforgS26dqSnp+tVriEhIYa/+K1KTU3Vy/n/+OMPR8/F3iZNUnXrqoceynlYCAN3ZfTmoRkzlIgqW1Zd67ITxjty5Ii+QrLe3aJ3bpYvX/7QoUOGjHLNwF2vImnSpIk9/2kTuBvIzoF7dnZ2eHi4/nHw7rvvWv+WsYH7zz//rL8bbN26VR8xm816MUTXrl0dueWreLs6cM/Ozo6Ojg4KCtJtuLTKlSsHBARERkbe6p79c+fO1alTR0Ret3P5ZKWUUiNGKBF13332H7m4u/q8ysrKWrly5XPPPae/lP2XvDccOzZ75Up1qx8Alk17jjitOK9uzfLlqmlT1bnzXn2te6tlNFJSUr75Zv2dd+ZsKC9bVr30krppb8uMDNW/vxJR9eo5uGvR4sWLRaRGjRqWD09dRsPYEqZaYmKirrhi/U3z22+/FZFSpUrZrka54TZu3KiLvYhItWrVhg4dGhYWFhMTc+PNMUlJSVFRUcHBwb6+vq6urvqPx8bGXv1MHeiXLFnyeovoDTdy5EgRCQ0N1Q/Pnz/v6urq4uKSj1aFxho7dqz1D+j09PRSpUqZTCZDkr2MjIyBAweKSJUqVaxbOS5cuFDvX8l12YlrSkhIiIqKCgsLCwgI8Pb21jcqnJycypYta/0102EGDFAi6osvch6eP6/c3ZWzs7KqHVT4Fd7A/cyZM3arYXfy5El9f0wvYL/6Du2+ffuGDRt25swZy5HMzExLhZkOHTpc8w6nsXTgrpSKi1O1aqmnn6akzLXpdiitW7e2/sGZkpIyY8YMh7dNnzJlil4FYPhMXnnlFR2E5VpF6CgffPCBiLRp08bh/5/b2aRJatw4ddddaulSpa4TuK9bp/z81Pbt9piPDtx79Ohxzd9NTEwMDw8fOnRovttj7N6d4eFxRYE12MGCBQv0Epst//XzMpvN+rqzS5cuhsSLffv2vTpwj4yM1BuHRcTf33+/XdbgEbgbyJ6B+4oVK3S3Jb3SyhKFa3r916efflrwgY4cOaLbkn9udT300UcfGXsLCvlw4xrucXFxISEhegWcVrFiRZ2853Gl5MMPPywibdu2dcjKyhMnVJkySiTnxz3sJo/nVdu2ITpFrVhRBQSoyMi81v14+OGcTXsOWbDLeZVHe/cqf/+coLxJE/XHH/lfSpydraKilL+/MpmUiHJyUv7+V1y9nzt3eQdnVpbatk15eanKlZUDay1oZrPZ29tbRObOnauPpKWl6R/0f//9t7FjDR48WEf5lgoh//77r27SeNt1+o2Jibn33nsrV65svba3SpUqQ4YM+eSTT7Zu3Xrj/THnzp377bffXnvttauvt9988029THjRokW2fAdX+Omnn/TyAssRvT4mIiLCbnO4pqioKBFp0aKF5cgff/xx9OjRgr9yVlaWvgAoV66c9c+CpUuXlihRopAsQLwdpaSkrF27tm3btlJI9gd8950SUV26XD5y771KRNm+k7mBCm/gbmdmszksLEyv9/Tx8dm7d+8Nnnzw4EFfX18RcXZ2DgkJsc/iKUvgrpR65RXl6XndwP3iRXX4sAOatxQSFy9e1CtcrBtS66tzA+st5FGue8uWuY0aNerrr7+OiIiIior6+++/4+LiDh48mJiYmL94esuWLXpLdeEpU3vx4kW9wc0hNaAdaNIkFRKi/vpLNWigLl68duDeu3dOY4agIGXTNiRHjhwZMGBApUqVnJ2db1y0PS0tLTIyMiAgwNPTM1fybr1qIJf09PTWrX26dQsZNYoFpPY2ZswYubKAxunTp/U/ugkTJuT7ZS0tyl1dXStVqtS2bdtcJ8ClS5fCwsL0eeLm5hYUFJScnFygd3JDe/bsadu27R133PH222/bbpTio3///mXLln3sscdsmrkfPnw4ICBAf4zUqlUrPDw81xOWL1/u5eVVuXJlT0/PWwpYr5adnd29e3cRsW5suH37dl1Z7pdffinQO0HBPProo+XKlatZs+aNi2vrhFTv0tPKly8fEBAQERFxg048X375pYiULl36xlfsNjV5shJR3t7qvwAK9pDH82rLlqTXX1eNGuVksiKqfHn16KPqxqtOv/xSiajSpZXjTivOq5tITVUhIapECSWiSpVSISHKqLVGW7aowEDl7p5zwrRurcLDVUaGqlRJPfpoznO2blXNm6sDB9S1Fjc7wMyZM/U6M8uR1157TUSGDh1q4Ch6NVvZsmUP/Lf+PyMjo3379iJy//33GziQne3fv3/GjBkBAQG1a9e2Dt89PT39/PxCQ0Ojo6Pzfn3y8ccf63Toxx9/tOm0c0lKSnJzc3N2drYU1n/vvfdE5LHHHrPnNK526dIl/X3hoKFtzcxm8+jRo0WkTJkymzZtshyPjo7WC8ief/55A4crhvS6Lh8fH0dPRKnUVFW6tDKZLu88+uknJaLatXPkrG4RgfsVNm3apBsoe3p6zpgx45rPmT9/fvny5fXXSDtU5rKwDtzT0lTt2tcO3GfOVIMHq0mT1MiRdptaoaP30zVv3txyg3rq1Kki0qxZs4KUdLxVly5datas2f3332/5+aeUGjRokC5hdD2lS5euVq1agwYNfHx8evbsOWjQoOHDh48ZMyY4OPidd9759NNPv/32259++ikqKmrDhg27du2Kj4/Xqwhfeuklu721vNCXHbm2GhR5OnBXSgUEqAkTcgL3XP8HnD2rgoKUi4sSURUqqLAw479Tpaamjhs3zt3dXURKlixp6Yfh6urap0+fGxRtT0tL+/nnn4cNG6YXrWjNmjULCQm5+o8888wzItKwYcPC0524+LC0iAwMDLQcXLVqlW4RuWbNmlt6tdOnT8+cObNfv37WVYb0ZWuJEiWCg4NzpeoJCQmBgYF642H16tVv0J0s386ePfvcc8/pbaG1atW6XWqDFnKbNm3SnwaVKlX64osvDF8ukJaWFhISoj95PDw8QkJCLP2XtL1791ra3ugC61qFChUee+yx33777VY3ab311lsiUqNGDcsexNTU1MaNG4vIc889Z9gbQ75cunTJunTMTYu279ixY/z48c2bN7f8kTJlyjz88MNLr1rru3fv3tKlS4vId999Z/v3cV2XLqkGDZSImjbNgbModm71vIqLU6Ghytc3J0UNDr7uK+/dq0qXViLKoacV59V1mc0qIkLVqqVElMmkAgJsUtHl2DE1bpyqVCnnhBk5UlWqpBo3zrlVowP3wiM9PV1/r7TUVU9ISNDx601rlOfRzp07PTw8RGTevHmWg7pwSq1atRJtunTIjqzbpVp/MS9VqpSfn19ISEhUVFSuSxprn332mb54dshPJd3eyVLfeGdc3PAmTaLvvlvZMfe4pnvvvVdEpk+fbuBrvvjii/oi86+//rIc/Pvvv3W4//jjjxer5MEWLl26pHeO3mqRLpvQm84sBYIuXlRlyyoRlbe9+IUBgXtuycnJw4cP15+wQ4cOtV6hfOHCBd1eWUTuvfde6xTVDi5cuKJa0enT6tw5lZh4RauW06fVhQs5xQp79bLn7AqX9PT0WrVqicj8+fP1kUuXLulCnz/99JPdpqGDgIYNG1q6me/Zs0cvuxs8ePBjjz12//33+/n5tWvXrkmTJrVq1bK0srxVpUuXrl+/vrENewvu4sWL+huR/TcWOJAlcD9xQtWooby91e+/q3btVGho7r3Ju3erfv1yruYbN1ZGFfY3m80RERF6pYbJZBo6dOjBgwfPnDlzvaLt19vZl56eHhUVFRQUpOsvOzk5Hb+yXNrixYtNJlOJEiWuWcEQdhAXF6d7pX5vVdDn9ddfb9y4ca7yHddz+vRpfWJY6lE6OzvrEyMhIeHYsWOBgYGWfDYsLCxXPrtx48ZOnTrpP9imTRujdthYF/52cnIKCAgoYFNfWNu1a5euFySGluPXnzy6wKv+5MlVyyU1NTUkJERv9S1VqpRuoxoXFxcaGqq3DGoeHh7+/v7h4eF53Dkxe/bssmXLWvfX0cVMmzVrZvnJCwfKX9H2+Pj4sLAwX19f3afu1Vdftf7d9PR0vW1xZCFYWvLzzzn3zq2qTsLm8nde7d2r3n33ugX90tNVy5Y5AavDFe3zKj1dWedviYlq9uwrnrBhg/rvC5xSSi1cqE6cUDExqlOnnMvmtm3VunU2n2R4uGrWTK1apSpVUosXq0aNVHp6oQvclVJvv/22iFh3LxsxYoQYtM43PT1dr+t6/PHHLQctyzsKz9ZqYx07diwiIiIoKMjHx8e6Xaqrq6uPj09wcHBkZKR16eNZs2Y5OTmZTCZjk+W800VrR1svadedKDZudMh8LPQOjIEDBxr1gnoDh5ub2++//245uHXrVr0cdsSIEfZcW1mEPfHEEyLy1ltvOXoiSv32W86eLwvduHLZMsfN6dYQuF9beHi4XjtTu3Zt/bMkLi6uWbNmIuLu7h5W6MsGbdigivnSLr33rWnTppaP3enTp4uIt7e3fT6It2/f7ubm5uTkZLn7mp2d3aVLl1yXLFdLTk5OSEjYs2dPTExMVFTUggULZs+e/fnnn4eGhgYHBz/zzDMjRoy47777/Pz82rRp07hx4xo1anz22Wd5zNfsTN/tt/PGAseyBO5Kqc8+UyLqjTesS0zmfn5kpKpXT4mozp33+vv7F3A1SkxMjCW68vHxuXqZcz6KtmdkZCxbtuz999+3Pnj06NFKlSqJyEcffVSQCaOAPv/8cxEpV66c9Sbfm957O3z4cFhYmJ+fn14/bp2zX93IKDY2tnPnzvpprVu3jo6Otv7dm8ast2rFihV65b6I9OjRY9u2bQV5NVxPZGRkvXr19P/PBS/Hv2nTphvcejGbzeHh4XoJnslkCggIOH5Vs6NcAauIlCxZUifv58+fv/Ho1k+IiIjQ12nb7dMlA7ciH0XbDxw48OGHH+b623zuuedE5M4777RpPau802Xi2MLuEGazed26dS+99JKlv4iIVKlS5X//27V0qbqlLrzPPadE1J13qsJxWhXl8yoxUZUsefnhzp2qXr0rnvD668rJSVlupLZvr0JCcgqs16ih5syxX91UPVClSurcOfXII2rChMIYuJ89e1b3orTUANy+fbvJZCpVqlTBVwc+++yzuT5vDSlgeBs5duzYDz/88PTTTzdt2tQ6fHdzc/P19X3jjTfGjRunL6c/+OADR00yYffus61amatXv7yk/emnlcjlL6UOcuzYMZPJVLJkyfXr1xd8V+X8+fPlqhL5e/bsqVq1qojcd999mdThMsiff/4pIvXr13f8doHMTFWlihK5fLf8/HmHb924JQTu1xUfH9+hQwcRcXFx6devn16W5e3tXfi/xUVHqxdfvLWrzKInIyNDX3xb1n5mZGTofMF6Q5yNZGdnd+zYUUSefvppy0Fd6KZatWpFZvPdTVk2Fji8bYvdrFhx+YZrVpYaP17t26eiopS3d07s7uen4uKu+CMXL6p33zXXrdtJREqUKPHaa6+lWO9byRu9GFmX+PDy8rppiY/8FW3XsrOze/bsKSL9+vVz/I/hYu+BBx4QkXbt2l1vTZ/FgQMHcmWa7u7ueck0rbdN6Hw2VzVGvXhZFxLRi5dvsOv2em5a+BvGurocfz461d+0uNCGDRv0pZQ+S2/axu3QoUP6LNWvqT8Vb9yCwvrP6iVOX3755a2+EdhT/oq2a0uWLDGZTK6urhs2bLDPbG8qLk65uCgXF7Vjh6OnUrxZzisnJ5eqVbN10faAABURofJS9+6XX1S1aqrQnFZF+bzKS+A+ZIjy9s7ZG9q+vVq6VFWvroKC1K3/mDKADtxPnFDVqqlffy10gbtS6sknn5Qrawz6+fmVKFFi8eLFBXlZy+ft+vXr9RGz2Txw4EAR6dKli32a2BUqSUlJUVFRwcHBvr6+lr2hZcuWFZF33nnHwZOrX1+JqP/+ptSiRTmbQRwtMDCwfv36IlK6dGlLcZ5brR+oZWVlBQYGWpcr2Ldvn77907dv3/y9Jq4pOztbbyArFNdaL76ohg5VO3ao5GQ1a5YaN0599pkq2FIheyJwv5GMjIyQkBAnJye9tz0gIKCwVe242oYN6o471OjRKjAwdwmL4kZvYmrYsKHlbudXX30lIg0aNLD1/c/3339fRGrUqGEpSXTo0CGda/z88882HbqwmTFjRrVq1exwk6OQy8hQYWE5NcdcXVVQkMqVcF6dmOfxQlanZrrkej5Ss4sXL+rkXV8vWpL34ODgXGuZLSZMmCAiVatWvXqZKuwvMTFRR+HX2/e3f/9+nWBa/n4ta4dvaX1oWlpaaGio3vvl4eERHByc685QvhNzQ/J65E++y/HftH3u0aNHAwIC9N2dGjVqhIeH39L9uVOnTl2v3tGxY8eufn5mZqa+zz1kyJC8jwLHutWaQidOnNAL2Qrb5qqnnlIi6uWXHT0PKKWUiouLHz9eNW9+uV2qp6d6+GE1f76yfI3bvl35+V3ujDp7tpo1SxW2nzxF9bxKTFQlSqhNm3J+RURcI3B//30VEKAmTVJKqfbt1bp1jvzb0YG7UurTT1WLFoUxcP/nn3+cnJxKlChh2ae4e/fuAl6lWz5vp0yZYjmom6KVK1fO2DaYt6Pz588vWrTo+eefd3JycnFxcfyOq2efVSLqzTdzHl64oDw8lJOTKgRf1saMGWPZVamVKlWqd+/eEydOXL16db6D8sOHD+uFfb169eKLg+FeeuklKVQdaJOSVIMGKjBQ/fCDmjRJVa5s88piBiFwv7nff/999+7d1ltXcFvIysrSO5fnzJljOdKoUSMRmZ2rWKCh4uPjdb2OX3/91XKwX79+YnTL+NtCXgpcFB9nzqigIOXsrERUxYoqLEzlCtWtV4O2bdv2pqtBDawLkatou1a3bt2goKDo6GhLUrZhwwZXV1cnJ6dlt0/ptCJv9erVzs7OTk5Of/75p+WgXutn3fqpXLlyQ4cODQ8PL0iT2yNHjlhS1Jo1a16doi5fvtzS87Bnz543vgLWa+d1yw1DKtIgf3LVhLlp092tW7fqLzk64I6Pj7f+3QsXLljuzZQsWfLqezO3JI8tKF5//XV9p8fO/XVgiKtrCl29/yY7O7tXr15SKDdXnT6tZsxQ1hWw4uPVmTNq1y5lvadx27Y8LbWGUf75R737rvLxuZy8e3ioIUPU3Lnqjz+Up6fq3TvnmePHq8JQqzaXonpeJSYqZ2f14IM5v/r3v3bgfvy4qlZN7d+fE7g7kCVwz8pSrVoVxsBdKaUbko8fP96oF3zmmWdEpE+fPpbb8NdsHQR9z3jBggUOnseSJUpEtW59+ciAAUpEffutw6Z0petVxndxcbFUxr9pFUGLEydO6FSnY8eOBbnIxPXExsaKSJUqVQpLoZ6QkCtarMyZozp1ctxsbgGBO4qyWbNmicidd95p+aQIDw8Xkfr169vos8NsVoMHX+zQ4f3hw4dbDn777bciUqFChavrI6MYio1VXbrkfPdr1UqtXbvb+nety3fcYH/i7t279V0cEWncuLF165gCysrK0r3IvLy8LBdDd9xxR1BQ0O+//65Tttdee82o4WCIkJAQvY54zZo1ISEh+hpUq1Chwo2rJOfD+vXr27dvr1+/ffv2lr3GmqXr6f3333+DF7Huudq2bdui2nrrdnFL5fiTk5O9vLyu2XM1MjLSksX7+/tbugsU3A1aUMyZM8fZ2dnZ2XnlypVGDQeHuEFNIX1PpUqVKoVzc9XXXysRFRWV83D4cBUernr3VpGRl5/TrJnatMkhsyvuDh1SYWHK11c5OeVcfU2frnr0UD17qrlzlSqsgbsqoudVXkrK6M5Bn36q7rvP8YH7hAnK0oR7yxb18ceOnMz1rFq1SkQqV65sVMPw9PT0119/3fJ5e/HiRd1iZ/To0Ya8fpExefJkERk1apSD53HxovLwUCaTSkjIOaKbid3wUtxRTp48GRkZGRwc7OPjY/lxbwnfg4KCIiIiblCD9/Tp002bNhWRli1bFp9Svfanl20tXbrU0RNRSinl56esb2slJysXl9uioAeBO4qyrKysxo0bi8g333yT68jXX39tixGnT1ciqkoVdeZMzr//48ePV6hQQWy8rB63nchIVbeuatUqUcdSuZaIpqamhoaGXnN18NmzZ4OCgnR/ngoVKoSFhdno7lFWVtaqVauee+65GjVqWK6ETCZTXsqFw86ysrI6d+5svWCkevXqzzzzzJ9//mmjIps6VdfbjZ2cnAICAnLdUDx79uw1S3+oApQxga2lpaVZyvt4eHjcoLzPnj17cp1asbGxujG4iLRu3Xr16tU2mmRSUtK8efOGDBni4eFhWfMuIm+//baNRoT9HT16dOrUqd27d3d2drYk74V5c9XXX6v27VXjxjmFL4pGMFr0JCSoqVPV0KHqr79Ujx5qxw5Vs6Y6d65QB+5F77y6XuB+7lzO27QE7llZqnVrVbbs7VI5wMHatWsnNuti8tRTT+lFbKwmzmXr1q0i4uXl5fitV/7+SkRZIo5Dh5SIKlOmkHf2S05OtlTGt+xlFBFnZ2dvb+/AwMCIiIjTp09bnn/+/HkfHx8Rad68+ZkzZxw48yJvwoQJ1apUmVtIltn5+Kjlyy8/zM5WLi7qdjgBCNxRxH333XciUrt2bcvqzrlz5+Y6YpSEBFWunBJR1i1ChwwZIiL9+/c3diwUARcuqA8+mKczo5IlS7711ls3Lr+TmZk5Y8aMSpUq6SUAgYGBp06dssM8zWbzunXrXnrppcaNG//888///vuvHQbFrTp06ND8+fObNGnywgsvrFmzxj4RdkpKSkhIiG4qXrp06ZCQkBuXYtTFRm5Q+BuFwa2W4z9z5kxQUJAORitWrBgWFmafXmppaWnz589/+OGHH3jggZkzZxbDBm7FwalTp2bMmNGnT5+QkJC5ejVyofT11yowUI0apUJClCoqwWgRtnq16tFDKaVefFE980yhDtyL3nl1zcD9ww/V88+rQYPUxo2XA3el1MaNysmJwD1P5s2bJyINGjQwvHvk4sWLTSZTiRIlNm/ebOwrFw16d6Dj/8/54gslou677/IRb28lom6fzX/JyclLlix57bXXOnXqZGnho9d7NWvW7Nlnn509e7YuvtqgQYPrLeuBUVL3789ycVGensqgfTMFMmSIsr6beOCAKlPGcbO5BQTuKOKys7N1QWHLDf/s7Gy9J27GjBnGjjVokBJR/v6Xj/z6q/LxOd2ggV+u9cuARR5bCy5fvrxZs2b6sqNXr17bt2+3/1SBa9q7d+/QoUP1ydmgQYMI61uOViIjI+vWrWspNsKnYiG3cuXKu+66S/99de/efevWrVc/JyMjIywsTLdcdnV1DQoKynv9TaAo0cHoqVPKy0v988/lYNTLS915Z84vN7fbLBgtwiyBe3Kyql1bPfBAoQ7ci9h5lZ19uV2tUurSJRUfr3RE/Pvv6oMP1NmzOTXTtUOHCl0/28IpMzPzjjvuqFixooiUL1/e29vbz88vICAgODg4LCwsIiIiOjp6//79t7ov9ujRo3qtz8eFs5hOITB69GgRmaSb/DrQ4cPKZFKlSyvLHZdXXrl9Oy+npaVFR0eHhob6+fnp5gFaqVKl6tate+TIEUdPsHho316JqB9/dPQ8lJozRzVvrvS3DLNZjRqlnnvO0XPKEwJ3FH0//vijiNxxxx2WG/4RERF64Z6BSwC++06JqLJllaWLW2KiqlZNiajPPnP0FjMUehs3buzYsaO+kmjbtu06q8U8+/bts6SZd9555/XSTMCxoqKirO8J7dixw/JbW7Zs6dq1q/6taxb+RuFkKcdvKRx08uRJy+9GRUVZuvL6+fnt3LnTgVMFHEsHo0qp6dPV3XcXkZXIRZglcFdK/fijMpkKdeCuis15NWqUsrp2wC07cuTIiBEjLJW4rsnFxaVGjRrt2rUbOHDg008/PWHChG+++WbJkiXbt2+/euOspVt13759HV8ypbD65ZdfRKRjx46OnohSzZsrkcuVN1atUiKqSROHzskA6enp0dHRkyZN6tOnz59//rl//35Hz6jY+OQTJaIGDXL0PJQym9Wrr6o77lCDBqmmTVW/flfcmC3ECNxR9JnNZr1M7/PPP8915LPPPjNkiNOnVZUqV5RNU0o99pgSUR07KqoTIy/MZnN4eHi1atX01rmAgID9+/db6nWUKlXqpvU6AMfKyMjIVfXon3/+sRQb0S0HqPtx2zl37lxwcLAurFmuXLnQ0NAdO3YMGDBAf3Vv1KjR4sWLHT1HwMEswWh2tmrbVtWuXcSD0dvd5s3qyScvPxwxQn3xheNmc33F57zKylJvvaX4YWKIrKyshISETZs2RUZGTps27a233nr88ccHDBjQokUL3XrnBkqUKFG7du1OnToNGTIkKCiob9++Uoi7VRcSqampJUqUcHZ2ti417hjBwUpEvfhizsPMTDVtmjKufT2KnZMnlYuLcnMrLNXSL11ScXG3S9SumZRSN/7YBYqABQsWDBkyxMvLa//+/XpT0sKFC++77z7rIwWxapXcd5+0bi1RUaLbFq5YIX5+4uYmW7ZIkyYFfwcoLpKTkydPnhwWFpaRkVGqVKm0tDQnJ6eRI0dOnjz5plfJQGFw+vTpN99886uvvsrOzi5dunRqaqqrq+uzzz771ltvlStXztGzQz7t3r37hRdeWLp0qYi4urpmZmaWL19+/PjxTz/9tO7hDBRn33wjGzbIjBkiIrGx0r69fPONfPedPPec3HNPznOaN5f335fvvxcXF+ndWx5+2IHzxe2h+JxXTz8t8fHSsqV06CCDBzt6NkVaRkbGmTNnjh8/fuzYsav/98SJE9bpkIuLyx133PHJJ5/4+/s7cM6FX58+faKior777rtHHnnEkfOIjpaAAAkMlDfekBMnZOdOKV9emjUTq2akwK3p10+WLpUvv5TRox09ldsSgTuKBaVU+/btN23a9MknnwQFBVkfCQsLe/755ws+xIkTkpkptWqJiKSlSYsWEh8voaESHFzw10ax8++//7700kstWrT466+/wsLCWrdu7egZAbdm27ZtY8eO7dKlS2xs7EcffdSoUSNHzwgG+O2338aPH687Vk2YMEHXigVw4IAkJoqPT87DP/+UO++U/fulUSOpUSPn4OLF0rChlCsnFSpI376yfLmjJovbBucV7OzixYs6fE9ISDh+/HhKSsorr7zi7u7u6HkVdp988snYsWMffvhh3brWYZTKWfr38suycKH4+cnJk7Jli/z2m7Ro4ciJ4fY1e7Y8+qh07y4rVzp6KrclAncUF7/99tvAgQOrVau2f/9+Dw8PEVm0aNE999xjfcQozz0nn30mLVvKxo1i1WEbAAAAxdquXTJ1qnzxhaPngaKF8wpwlAP//jtz9OjB6ent1qyRG9bQt4cVK2TMGImNFU9PEZGvvpKvv5a//3bwrHCbSkmRatUkPV0OHsxZW4pb4eToCQB2cs8997Rv3/7EiRNf/Hcp6u/vP2DAgOeff96kbwUbZP16mTZNXFzk669J2wEAAJAjPl4++khCQx09DxQtnFeAA9W98853EhLarV8v69c7ei4iv/wiI0bkpO0iMnKkxMXJiRMOnRNuW56e4u8vZrP88IOjp3JbInBHMRISEiIioaGhKSkp+sjixYtfe+21gtdwt7h0SZ54Qsxmee01oQoIAAAAtPXrpW9fuesu+fVXR08FRQjnFeB4d98tIrJ4saPnIXL0qFSvfvmhs7NUqyZHjjhuQrjNDRsmIuLYckm3LQJ3FCP9+/fv0qXLmTNnpk2bZqMhJkyQXbukSRP53/9sNAIAAABuP02ayNKlcvfd0q2bo6eCIoTzCnC8whO4e3nJ6dOXHyolp05dEcEDt6R/f6lQQbZulX37HD2V2w813FG8LF++vHfv3hUrVoyPjy9Tpozhrx8XJ6NHywcfSOfOhr82AAAAAAAoTDIypFIlSUmRgweldm1HzuSXX2TCBNm0Kaea/G+/yRtvyPbtYmgRXRQvv/4qDRrIHXeIi4vQRflWsMIdxYufn1+3bt3Onj376aefGvKCTz4pQUE5/202y8iR8vffpO0AAAAAABQDbm7Sq5eIyB9/OHgmgwdLvXrStat8+KG88oqMHi3TppG2o0DKl5eHHpLOnaVNG2nbVrZvd/SEbhuscEexs2bNmi5dupQuXXrixIleXl6enp6enp6lS5cuW7Zs2bJlS5cuXaJEiby/Wo8esn27fP+99OkjZrO4uIjZbLu5AwAAAACAwuSrr2T0aBk4sFC0U1i3TrZvl4oVpVs3qVLF0bPB7SwlRRo1ktmzxc9PRCQ8XEJDZccOcXFx9MxuAwTuKI6GDBly+PDhmJiYa/6um5tb6dKly5UrV7Hibnd3t9KlpXRpKV9ePD2ldGnx9BRPTylXTjw9pXZteeYZuecemTFDtm0TNzcCdwAAAAAAipPjx6VGDfHwkDNnKLuBomPePJk9+4qtG82by9Sp0r27w6Z0++CmBIqjn3/+ee7cuatXrz537lxKSkpqampKSkpKSsq5c+dSU1MzMjISExNTU1Pj491u/DpPPiki0q6d7Nwp77wj48fbYe4AAAAAAKDQ8PKSli1lyxb56y/p29fRswEMEh8vd955xZGGDSU+nsA9LwjcUUw98sgjjzzyyDV/Kz09PTU1NTk59fx5SU2VlBRJTZWkJElKuvzw/HlJSZGWLeWff0REQkPlrrtk+HC7vgUAAAAAAOB4d98tW7bIkiUE7ig6ypaVffuuOJKcLOXKOWYytxsCdyA3d3d3d3f3SpUq5eXJP/4oIlK5soSEyCuv2HZiAAAAAACg0BkwQCZNylmRBxQNrVrJlCmSkSFubiIi587Jli3i4+Poad0enBw9AaCIGD1aTpxw9CQAAAAAAICdtWsnu3bJO+/I0qVy5EjOwTNnZOfOy885diz3emGgMPP1FR8fufdeWbpUfvtN/P1l5EipXdvR07o9ELgDBeLjk7OfxslJvvgip3UzAAAAAAAoLvbulf79ZcIE+e038fOTwEARkVWr5LXXLj9n/nyZMsVREwRuzbFjYjJJRIQ8/LBERsqff8pLL8n77zt6WrcNk1LK0XMAAAAAAAAAbk89e8r998vTT4uIXLgg7dvL5MmSkSHh4fLbbznP+fRT2blTZsxw4DSBPPngA5k4UX78Ufr3d/RUblescAcAAAAAAADyJTlZ1qyR0aNzHnp4yOOPy6+/iogoJZmZOb/MZgfOEcirxYvl9dclNVXOn3f0VG5jNE0FAAAAAAAA8iUhQSpWFFfXy0dq1JA//hAR+esvueuunIOJiTJokAOmB+Td5s3y4IOSnS2hofLww46ezW2MwB0AAAAAAADIFy8vOXtWsrPF2TnnyIkTUr26iEj37rlLygCFVkKCDBokaWkycqQEBzt6Nrc3SsoAAAAAAAAA+VKunDRqJBEROQ+zs2XePOnb16FzAm5RSorcfbccPSrdusn06Y6ezW2PFe4AAAAAAABAfn35pdx7r6xfLzVrSmSkVK0qDz4oP//s6GkBeZOdLY88Itu2SePGsnChuLk5ekK3PZNSytFzAAAAAAAAAG5biYmyerWcOiXNm0uHDmIyydGjcvCgdO6c84R//5WkJPHxcegsgWt59ln5/HOpVEn+/lvuvNPRsykKCNwBAAAAAAAAoNjZNXOmd2CguLvLihXSsaOjp1NEUMMdAAAAAAAAAIqXyMjIFk899XXnzurbb0nbDUTgDgAAAAAAAADFyJYtWx555JHs7OwT/fqZHnrI0dMpUigpAwAAAAAAAADFxbFjxzp06HDkyJFHH3101qxZjp5OUUPgDgAAAAAAAADFQmpqapcuXbZu3dqlS5eoqKgSJUo4ekZFDSVlAAAAAAAAAKDoM5vNw4cP37p1a/369RcsWEDabgsE7gAAAAAAAABQ9I0dO/bXX3+tWLHi77//XqlSJUdPp2gicAcAAAAAAACAIm7mzJlTp051c3P76aefGjRo4OjpFFnUcAcAAAAAAACAouzChQve3t6HDx+eM2fOI4884ujpFGUE7gAAAAAAAABQxB07dmzJkiWjRo1y9ESKOAJ3AAAAAAAAAAAMQA13AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAKqS+++OJ///vfxYsXHT0RAAAAAADyhMAdAAAUUqGhoZMnTz558qSjJwLAkWbOFD8/uXAh52FgoMTGOnRCAAA42sKF8vnnlx9OmSKnTztuNgCuROAOAAAKqSpVqojIqVOnHD0RAI507Jhs2SKTJuU83LtXUlIcOiEAABxt2TJ54QX588+ch19+KYmJDp0QACsE7gAAoJCqXLmyiJxmuQ5Q7I0aJfPmya5djp4HAACFxsiR8uyzcumSo+cB4CoE7gAA3B7Wr1+/c+fO1NRUR0/EfljhXqzEx8fv2rXrxx9/pGo/rla6tEyYIE89JUo5eioAABQObdtKhw4SGuroeQC4ioujJwAAAG7ixIkTo0eP3rVrV3x8vIiUL1++Xr16Xl5e1atXr/efBg0alClT5qYvtWePDB8uM2dKq1YiIt99J2fOyNixNn4D+aUDd1a4Fwdr164dPHhwtWrV4uLiSpYs6e/vHxAQ0K9fP1dXV0dP7f/s3XdYFFcXB+CzS1cRQUWwgxoVey/YxQ527GBLiMaIRo2YLxo00YjGgsao2LEDYgGs2LErYgEVC4oFbHSk797vj4vrCqgIszuL/N7HJw87LHPvhmF35sy554CYzp8nxR03BwfauJG2bxd1QgCF9ujRozt37syZM6fJe40bNzY0NBR7XgBQZKSnU1xc9teLFlGjRjRypKgTAoBcEHAHAADQaDKZbMSIEadOnapYsWKdOnWePHkSFxcXnFfHwM6dh757t7t6dcrxz8Dgw3NSUujhQ5owgS5eJKmUXr6kly/V91q+FkrKFBObNm2aMGFCZmZm9erVW7VqdfnyZR8fHx8fHzMzsyFDhowcObJly5ZizxHU6uVL8vKiTZvo1i2qVInGjyeplCQS+u8/srWl8uXFnh9AQcXGxvbp0+fx48cZGRk3b97csmUL325ubt7svRYtWpiZmYk6zeJHLqft2+ncOUpLo6ZN6YcfqGRJsecEkIcHD2jjRtq8mdq3z/40NDWlP/6gGTPEnhkAfAwBdwAAAI02d+7cU6dOVahQ4erVqxUrViSiuLi4iPeioqKio6MjIiLCw8NlsrJXrtCVKzn3YGb2IfjeoQPVrk2VK9OaNTRpkggv56vwgDtKynzDGGPz5s2bN28eETk7Oy9fvlwqlT59+nTXrl1btmy5d+/eypUrV65cWa1atWHDho0dO7Z27dpiTxlUKCuLDh+mTZvo4EHKzCQiqliRHB0pK4u0tYmI6tcne3tasoQyMqhfP/rtN2rdWtwpA3yFjIwMe3v78PBwKyurlStXPnjwICQk5Pr166GhodHR0QEBAQEBAfyZlSpVaqKkevXqok68GJg0ie7epTlzyMCA1q6lPn3o1CmSSMSeFkC29HTau5fWraMzZ7JLqz19SmXLZn/XyYk2baKnT0kmo9mzafp0MjYWcbIAQEQkYaiDCAAAoKlOnDjRo0cPxtjRo0dtbGw+80zG2KtXaRERBk+ekPK/yEjKyPjwtH37aOFC2r2b2ral69dpxw56+ZKWLFH5CymYQ4cO9enTp2fPnocPHxZ7LiC8tLS0cePG7dq1S1tbe8WKFT/99FOOJ4SFhfn4+Hh6ej558oRvsbKycnR0dHR0NDc3V/d0QZUePKAdO2jLFoqMJCLS0qLOncnJifr3Jx0d2raNpNLs9fLJyTRiBFla0ooVpKdHq1fTuHHizh0gXxhjo0eP3rZtW8WKFS9dulSlShXFt7KyssLDw4ODg+/cuRMWFnbp0qW3b98q/6yRkVH9+vUVKfB16tTR0tJS+yv4dj19Sg0bUkQEmZgQEcnl1LgxLVpEvXqJPTMAun+fNm2iTZuIL/jU1yc7O3JyIhsbmjiRmjWj778nIgoOplat6IcfaO1aqlGD9u6lhg3FnThAcafagPuFC/T0KQ0blv3wyBGSy6l37w9PWLyYGjem7t2JiOLiyMODZs1S3XTgG4HjCgCKiefPnzdt2vTNmzfz58///fffC7YTuZyio+nx4+z4u40NTZlCly/T/Pl07x41bqzRAferV6+2bNmyWbNm165dE3suILC3b98OGDDg3LlzhoaGXl5evT4d15DL5RcuXPDx8dmxY0dMTAwRSaXSNm3aODo6Dhs2LD+tC0BjpaSkHDhwfu3abkFB2Sl7derQuHHk6EgVKnzuB7OyaPZsWrSIiMjJif79l3R11TFhyKeMjIyjR48ePHhw5MiR7du3F3s6GmH27NkLFiwwNDQ8e/Zs48aNP//kqKioYCXR0dHK39XV1a1Zs2YzJQbKxePgax06RG5udPbshy3OzmRqSrNnizcnATx79szLyys+Pr5WrVpDhw7V19cXe0bwFdLTydeX1q2js2ezPx+bNCEnJxoxgj5z4vP8OQ0eTJcvk74+rVlDY8aoa7oAkItqA+5r19Lly7R5c/ZDV1fKzKS///7whBo1KDWVQkPJxISePKFOneh9AhPAJ+G4gqIlPp5KliTe9k8mo3fvPneSBKCQlZXVuXPnc+fOde3a9ejRo4pcNsbY7Nmzq1atWv09PT29/O/2+nWaOJEuX6b0dGrUiBo0oGrVNDfgHhkZWb169SpVqjx9+lTsuYCQQkND7ezsnjx5YmFhERAQYGVlpfzd1NRULS0t3VwB1PT09GPHjvn4+Pj6+qakpBCRvr6+jY2No6Njv379cj8fNFlwcPDWrVu3b98eFxdfrVray5c6PGWva9evqOKwYwf98AOlplK7drRnzxdi9KAGMpns1KlTu3fv3rt3b1xcHBFJJJLXr1+XK1dO7KmJbNOmTePHj9fS0tq3b5+dnd3X/nhUVFSIksePHyt/V0dH5+LFi02aNJFKpcJNuTjZs4c8PCgw8MMWFxfS0vroCrPoiI2NDQgI2LZt28mTJ+VyuY6OTmZmprW19f79+/GXWCTcv39/06ZNBw5cfvToVGbmRynt+ZGeTpMn0/r1REROTrRqFamt/TxjTIJCTAAKTJXWrGFjxnx4+Mcf7LffPnqCpSWbMIH98ANjjD1+zKpVU+l04BuB4wqKlrJlmZNT9tchIaxhQ1FnA0XH9OnTiahy5cpv3rxR3h4VFaX8OS6RSCpWrNi2bdsRI0bMmZOybh07dozdv8/S0/PebXAwa9ky++tjx5hEwqZPV/ErKQRFUFXsiYCQjh07ZmRkREStW7d++fJl7if8999/ZcqUcXBw8PPzy8rKyv2EuLg4T09PW1tbxY0o/vzAwECZTKb6VwAF9+bNm+XLl9evX1/xJta2bdudO0MTE/N4cmQki47+wg6vX2dVqzIiVrkyu3JFFVP+SEZGxv79+0eNGnXgwIH79++rfLyiZsKECbmvN/fv3y/2vER26tQpfkfwv//+U2yUy+UF3mFCQkJQUJC7u7uDg0OzZs10dXX19PROnTolwFyLp5AQVqUKU/74sLVlmzaJN6GCiI+P37x5c48ePbS1sxv1GRgYDBkyZMWKFVWrViUiS0vLe/fuiT1N+KTU1NRt27Z16NBB8eY5bNijtWtZnp+PX+TpyQwMGBFr145FRQk911zu37/v4uJiaWk5ffr0PXv2qHw8gKJA5RnuXl6kOO/y8aHvvsuZiXz4MPXpQ56eVLGihmYiv3nz5uDBg+vWrRNwn//880+DBg2wCLpgcFx9Co4rzVSuHJmY0JYt1LYt3bhBo0fTzZtiz+kTUlJS7t+/n7uMcmEMGzZs2LBhpqamAu6zOAgICOjbt6+Wltbp06etra2VvxUTE7N69eonT548efIkMjLy6dOnmZmZRFSyZKl375IUT5NKydycLCyoenVatYqMjLK337tHCxeSp2f2w59/ppo1aepUtbyqAjE0NExOTk5ISMCb27dh/fr1kyZNyszMHDx48NatW/MsgzB27NgtW7bwr6tWrTp8+PCRI0c2aNAg9zNfvHixZ88eHx+f8+fP8y2VK1ceOHCgo6Njs2bNVPYi4KvJ5fKTJ09u3bp1z549qampRGRsbGxvb//TTz81atQox5MzMujoUdq2jfbto19//XKO6Zs3NGQInT6t2hX09+/f37lz5+bNm/mCGz09PQMDg507d36mGlIxVLNmzUePHuXYOH369CUau5BK9e7cuWNtbR0fH+/i4uLm5sY3PnnyZMCAARs2bBDknWrWrFmLFi368ccf165dW/i9FVPt2lHfvjRzJhHR4cM0fjyFh5OhodjT+rK0tLTAwEDltV9aWlqdO3d2cHAYMGCAoaEhEUVHR9vZ2QUHB5uYmOzbt085pAuaIDw8fPPmzRs3buTNGwwNDfv37+/o6Pj57k1fdP06DRxIkZFUsSL5+FDbtgJNV0l6erqvr++6devOnj2rCC1KJJKZM2cuWLAArSY0yps3b/bv379ZUSlCCMuWLatfv36pUqUE3Oc3RaXh/DVrWMOG7Pffs/+1b59HJnJkJAsIYA0asIcPNTETWSaTtWjRQrmnjSAqVKjw008/if3iiiocVziuipayZZmvL2vQgGVkaHqG+5w5cwRfalqlSpXvvvsu/VPp1pCXiAh5w4YtiWjp0qVffHJWVtbTp0/Pnj27Y8e+efPY2LGsc2dmYcG0tRkRI2JaWiwjI++fffOG/f47mzxZ4PkLy8LCgogePnwo9kSgsLKyslxcXPg7g7Oz8+dT0e/cuePq6lqzZk3Fm4mVlZWrq+unjoTQ0NDffvutevXqiue3atWqMAmkICA3NzfFOY+Wlpatre3evXsz8npjunmTTZnCypbNfvvS12dTp+ZriMxM5uyc/VNOTp980yuApKSkTZs2Kd/4tLKy+vvvv3lVEIlE4uLigiNNYcGCBbnPBFoq1lUVP1FRUdWqVSMie3t7xZtebGxs3bp1iWjAgAGCjHLnzh0iMjExwelWwT15wnr0YLVqsbp1WevW7OJFsSf0BVlZWYGBgQ4ODobv7wpIpVJra2t3d/dXr17lfn5ycjJ/19LT09u+fbv6Jwy5paWleXt729jYKMqwNGvWzMPDI7FgOe2MMcauXWPx8R8evnnDbGwYEdPWZm5uAsxZITw83MXFpXz58nzm+vr69vb2gYGBHh4efEFPx44d81zFCKLIyspq3LixKgJQU/N5olYsiV/D/dQpqlqVBgygWrXI21vjMpE3b948btw4MzOz7du3C9WL5smTJ2PGjJHL5devX2+I1tFfD8dVnnBcaSbGqHx5evSIvv+eWrakbt00N8P92bNnderUSU1N/e+//3LnGxaMTCb7/vvv79+/v2TJEl4gBb4oPZ3ataPw8ERHxw3//vtLgSshZmXR8+f05Am9ekVDh+b9nKgo4vHJx4+pUqUCTljVWrduffny5QsXLrRp00bsuUDBvXv3buTIkQcOHNDV1V2/fr2jo2M+f5BX+t69e/fr16/5lmbNmjk4OAwfPjzPpTP8+Tt27DA0NOzQoYOnYjUHiGTfvn1Lly49f/58lSpVRowYMXHiRB5/VJaQkLBv3/X//uus6I7cpAmNG0cjR5Kx8VeMtW4dTZ5MtWtfMDWdu2vXDkUgoGCCg4PXrVu3a9eupKQkUko57Nq1q0QiYYwtXrz4f//7n1wuHzJkyKZNm0qWLFmY4b4NCQkJ1apVS0hIUN6ora0dFxdXDDPgUlJSOnfufOXKlZYtW546dapEiRJElJmZ2atXrxMnTlhZWZ0/f75MmTKCjNWgQYPQ0NCDBw/27t1bkB0WI0uXkq8vzZhBAweSXE5ZWZrcglnRRVz5Y9HKysrR0dHBwaFixYqf+VmZTDZ16tRVq1ZJJJI//vhj7ty56pgxfFqHDh2CgoKIqHTp0sOHD3dycmratGlhdvj0KTVvTmXK0N69pKjclpVFLi60bBnVrBnaqdOqlSuXFyb+kJ6e7ufnt27duhMnTvBYIj/8nJycjN9/YJ87d27IkCHR0dGVK1fes2dPq1atCvOiQBAeHh4TJkyoWLHitm3bhOqf/Pjx4zFjxhDRjRs36tWrJ8g+vzUqDefnWWs7OZlduJB9241nIjPGnjxhJiYal4mcmJhobm5ORILfBJ48eTIRdenSRdjdFhM4rj4Fx5XmCA1lrq6sbl129CgrW5bFx7Nnz5ipKfPz09wMd3t7eyIaOXKksLsNDAwkIkNDw+gvFuIFxhhjkyYxIlatGouJUcdwgwczIjZ3rjrGKhiekHXgwAGxJ/KtCQ9nP/7I3r7NfnjgAPPzU9VYL1684GUTTExMClZlWJHKp4jZaWlp2djYeHp6JiUl5X5+dHQ0f+dBSXfRde3alYgWLVqUZxr4tWvXnJycSpYsqa2tX6GCzMiIOTmxoKCCDxcUJLeyakhENWrUuH37dgH2EBsb6+HhoXzjmacc5nmkHTp0iAdMGzZsGBERUfB5f0PyvL/OQzPFSlZWVr9+/YjI0tJSkXEsl8tHjx5NRObm5pH8ckUg8+fPJyIHBwcB91lcDBjAiNiOHdkPL11ijRpp4IlRaGioi4sLv4rk+MKvr20m4e7uzpvrjhs3Ls+VRqAe48ePNzU1rVWr1qc+XwogIoI1asSIWKlSzNv7o2/t2iWvW7cxETVt2vTx48cF2Pm9e/dcXFwUi6ENDAx4SnueT37x4kXbtm2JSE9Pb/369QUYDgSUkJBgZmZGRN45DotC+/HHH4nIxsZG2N1+M9QdcJ81iw0fzjw9WadOLDX1Q2CUMfb33xoXGOULn9u0aSP4QtHY2Fj+VrVv3z5h91wc4Lj6FBxX4pLJ2PnzbPp0Vr169qp2ouyl8fxW0OLFrGlTDQ24nzt3TiKRGBgYCHv5x/Xp04eIfuCNjOGzvLwYEdPTY9euqWnEU6cYETM3F7ICg7DGjRtHRDhZF9zp00xHh40bl/3wjz+Yq6tKBrp58yZfwVqjRo3Ct2tLSUnx9va2tbXV0dFRvuTz8/PLETjgiX4oRiS6SpUqEVGOYPTz588XLFigKBkklUq7du3q6/soNVWAEZ8/f96yZUsiKlWqlI+PTz5/SiaTBQYG2tvb675PbjUzM3N2dr5169bnf/D+/ftWVlZEVLZs2U+FHoqV58+f6+ZKEJ6reeFLVeN5MGXLllV+33N1dSWiEiVKXL58uZD7f/v27dq1a3ndZMbYo0ePJBKJoaFhSkpKIfdc7PAT9zt3sh/++y8jYuPHizqnD0JDQ11dXWvVqqX4a6pWrZqzs3NwcHA+9+Dt7f3TTz8pdyDfu3cvX29hY2MTr1x/BNSodevWRKT4ExZKaiobNy7vAmt3797lxazKli175MiRfO6wwHVvMjMzFYUEnZycUPBKRL/88gsRWVtbCx6AiomJMTExIaKAgABh9/xtUG1JGcaIMZJKsx/K5USU/XD0aPr775wL2AMD6cIFcnVV3Yy+QkREhJWVVWZm5sWLF/lZOxccHHzx4sUC7HDAgAGVlF7wf//99/PPP1taWoaFhQm1pqOYwHGlDMeV6ORyunCBfHzI15devMjeWL489exJ9vbUsyeZm9OjR2RkRFlZxDtjaVpJGblc3rJly+Dg4D///HPOnDmK7TExMbt27SrADps2bdpWqS/Pw4cP69evn5mZefny5ebNmwsw42/UgwfUvDklJtJ//5GgnWu/oGFDun2bdu/+ZOUZcf32229ubm4LFiz43//+J/ZcvilnzpCrK719S2vWUPv25OpKEgkJvr78yJEjQ4cOTUxMtLa23rdvXyFLfCh7/fq1l5fXzp07L126xLf4+voOHDhQ8YQ+ffocOnRoz549gwYNEmpQ+FpJSUlGRkZ6enrJycmK5mm//fbbP//8I5PJiKhKlSpjx44dM2YM79YglPT09IkTJ27evJm3bvv777+lihPHXJ49e7Zz5841a9ZERkbS+36DTk5O/fv3V9zXUbhx44aVlVWOgHJSUpKjo+P+/fu1tLQWLFigCDEUW2PGjMlRzalr167Hjx8Xaz7qt3Tp0hkzZujq6h45cqRz5858465du0aOHCmVSn19fXnye+GHsLe39/b25ltatWp15coVHx+fwYMHF3LnxUh8PJmYkIEBJSYSf48aP542baJVq2jSJBHnFRERsXPnzt27d4eFhfEtlStXHjJkyLBhw1q0aJH//SQkJFSvXj0+Pr53795eXl6KVWJXrlzp27fvq1ev6tevf/DgwapVqwr/GuCzypUrFxMTEx0dzVOPhcULrGVkUIcO5O1NFSpkb09MTBwzZsy+ffvy8+GYu5Urr3vz+VbPSUlJhkrdhnfs2OHk5JSSktKsWTNfX9/cNeVA1RRX4leuXFH+3V29evXy5csF2OGgQYOUl9osX7582rRpNWvWDA0N1dPTE2DG3xJRwvwPH7Jhw3JujIpienpMKmWFvt8vjP79+xPRGOVUasYYY38rFwv/GidPnlTeT1ZWVoMGDYho4cKFanxZ3zIcVwzHlRplZGQcOXJk2rSE8uU/5LNbWLDp09mFC0z55vG8eUyRsnflClu+nJ0/zwRaOCgMDw8PIqpSpcq7d++Ut9+4caNgh+WMGTNyDDFt2jRSzX31b0ZqKmvShBGxIUPUPfTq1YyItW+v7nHzaenSpUSEhjyCO32ade3Kjh1j9eqxjIzsDPfr19m9eywtTZgh3N3deYx1zJgxqstsevDgwbx581q2bJn6cXb0b7/9RkRz5sxR0biQH1euXCGiRo0aKW/cuHGjrq6ura2tt7d3Zmam6kb38PDgEfNevXrFxcXl+G5qamqOrL3vvvvO1dU1z5Ve8fHxHh4evHXq3r17cz9BLpe7ubnxyMXw4cNzfJ4WN3fv3s0RxClRokTxSW/08/PT0tKSSCTbtm1TbDxz5gyPRPz777+CjPLixQupVKqvr5+QkMC3LFu2jIgGDRokyP6LixMnGBFr0+bDFn42dv68eHNiz549mzBhAv/bMTY2dnBw8PPzK/C75cWLF3nLkwYNGjx9+lSxPSIiguc7m5ubX1PbykpgjDEWGxtLRKVKlVLdldHZs8zMjBGxnj0Dr1y5otiu/Glla2ub+8PxUynt+al78+rVqypVqri4uCgX9AsJCeH31MuVK3f8+HGBXh/kF2/s4eTklGP7vHnzCnalH/Rx4b/MzExewH3p0qVqfFlFg2oz3PMUEkLLl9PKlZS7Q8xvv5GbG7VuTRcuUEG7xAnj5MmTXbt2LVWqVHh4eI7eI4GBgQcOHCjAPqdMmaK8Fuzzo8DXwnGVn1Gg8NLT04OCgvz9/Xmroo4dL54509rCguzsyN6erK2/fIxt2EATJtDIkaQhnfwSExNr16798uVLLy+vIUOGKH/rxYsXCxcuLMA+bWxs+L2l/IwCHE+oqlWLrl2j0qXVOnRyMlWuTAkJdPMmaWDH5e3btzs4OIwcOXL79u1iz+WbcuYM/fUXHT9OQ4ZQs2aUkkISCfn5UUgIEZGxMVla5vxXvTp9OhHqI5rQmc3Ly2vYsGF9+/Yt2McrCGLbtm2Ojo5Dhw7dvXu3YmNqauq7d+8UdWBV6uzZs/b29q9fv65Vq9b+/ft57ZewsLBt27Zt2LAhJiaGiPT19e3s7JycnHg3VOUfZ4ydOnVq06ZNvr6+aWlpRGRiYuLm5vbDDz/kOZy/v/+oUaMSExObNGmyb9++4pzKZ2dnFxAQoLzl8uXLyos7v1XXrl3r1KnTu3fvFi5cOGvWLL7x7t271tbWcXFx06dPX7JkiVBj8Y6L27ZtGzVqFBFFR0dXqVJFR0fn5cuXRkZGQo3yjVu6lGbMoJ9+ov/+IyLKyKDSpSkzkxISSLw2v3xtX+PGjf/+++9u3bppa2sXcocRERF9+vS5d+9exYoVAwICmjRpwrfHxcUNHDjw9OnTJUuW3L17t62tbaHnDvly5cqVVq1aNW3aNDg4mG+5fft2pUqVeHUOoURF0U8/PTlzpmlaWuqqVavGjx+v+Nbhw4dHjhwZFxf33Xff7d27lwdM7927t2XLlhwp7T/++GP+W7l6e3uPGDFCJpP17t17+/btijaqMTExI0eOPHr0qLa29vz587EOTG0CAwO7d+9eunTp8PDwHGspjhw5kuNjOp+mTZtmaWmZz1GKOzUH+OPiWPv2bNo05uLCcjcWSkpiFSsyIqaUDSACdeYIfyrfGb4KjqsccFwJ7t27dz4+PsOGDVNeItewYcMlS7xCQ79uVw8eMEND8Q9IBbXlnn8qjx4YYzt2MCKmr89CQsSZgLNzdqlHDXTkyBEi6tatm9gT+dbwDHfG2PPnrGJF5uTEXF3ZwIHM0pJpa39YuKP8r0QJZmd3pW/fvlOnTl2xYoW/v39YWFhqrqrbiYmJvHODnp7eDkUbOrW7e/cuEVXTtEYuxczvv/9ORK4q6g+QP0+fPuVrqA0NDcePH99Q6b5i69at161bl2ch2hcvXri5udWoUYM/UyqVWltbe3h4fPEj7NatW/xCtFy5cjmWIRYrZ8+ezXHVuWTJErEnxRhjMpns9u3bTk5Oc+fOPXDggHLCb+FFRERUqFCBiMYrVQB//fo1b1dga2urXEe78FavXk1Effr0UWzp1KkTEXl6ego4yjdu5EhGxBR9Yq5fZ0SsTh1R58S6d+9OQreLj4mJ6dChAxGVKlVKudpyenq6g4MDEWlpaa1atUrAEeEzeBLJ0KFDFVv4NWZsbKywAykXUndwcFDu8fDgwQP+gViqVKlJkyYplwNt2bLlhg0bkpOTCzDimTNn+Ntg1apVr169qtiunFk/bNiwgu0cvoo6c88/lUdfzIlTUuYzNm9mRKxSJTHrLfz7779EZGlpmfsaUnCPHj3S19eXSCSF75wDn4HjCgrm3bt3fn5+Dg4OpZSSXKysrFxdXe/evZvnj2RlsZMn2c8/sz/++ORuN2zIbh8fHq6qmefTgwcP9PT0pFKp8vmQishkMl7A/c8//1T1WEVLWBgrUYIRsU2bRJvD/ftMKmUlSrCYGNHm8CnXr18nosaNG4s9kW+NIuDOGFuyhOnpfdQ0NTaWXbvGvL2ZmxtzcmI2NszSkpce2pg7e6NixYrW1tYODg6urq5Lly7lS9QrVKhw8eJFMV5ZtqysrBIlSkgkEsEvXyH/eFX9nTt3ijuN1NRUHlEqXbo0ERkbGzs5Od24cSP3M9PT0/38/Ozt7RUppZUqVXJxcXn06FH+h4uJienWrRsRaWtru7m5Cfc6ihjl8A0R9evXT+wZMcbY1KlT+UmyYmJlypSxtrZ2dnb29PQMDQ1VroTwVeLj4+vXr09EnTt3VtTPSUlJ4a0RmzdvLniA6c2bN9ra2jo6Om/fvuVb1q5dS0S9evUSdqBvmZUVI2KKBqQbNzIiNmKEqHNivN+JsHeDGGNpaWkjR47ksfXVq1crtsvlcldXV/5H4ezsXOA/Acg/3j959uzZ/GFUVBS/Taui4bZv387b5DZt2vTx48eK7ampqWPGjCGismXL8o9IJyen69evF3K4Z8+etWrVioj09fU3fXx54+/vX6ZMGSKqU6fOp66mQSi8zljNmjXThCoW+WnqjCoUIRoXcJfLWcuWjIi9f/NRt9jYWL7Edd++feoZkd9ybNOmDUobqw6OKyiYYcOGKae2LV269MmTJ3k+MyuLBQUxZ+fsYnlErEIF9pk0phEjGBFr3pyJW9FUzfeiz507J5FIDAwM8qyQW2ylpLDx40W/uGPduzMitmyZyNPI7dmzZzykK/ZEvjXKAffMTNaoEftiFnJ8PLtx4/mePXsWL148ceLEHj161KpVK0f3SCIyNDSsU6eO8hWdWHj9itOnT4s9keKLl3Ap/NV74cnlcp4/uGHDhjyLid+9e9fFxYVXOiYiPT09e3t7Pz+/gqUkZ2VlKZIKnZycik/5cmX79u1TfmcwMTERPZDHF9vp6OjMnj3bxcWlW7duuUsbGRoatmvXbvLkyZs2bQoJCcnIyMjPnjMyMrp27UpE9erVU9RElslkAwYMICILC4uXL1+q4hX16NGDiDw8PPjDmJgYXV1dbW3tV69eqWK4b827d0xbm+nofOi29PPPjIj984+Ik+KnPWXLllXFznlsnR/qOWLrmzdv5h/oAwYMwGpUVRs+fDgpLUY5c+YMv3JX3YghISGK1VeBgYHK3+Itc11dXQW8KZiWlqaovZbjQzA8PJynXZcuXTrPniggiNevmbV1TO3aQ5VXtKgUerblpnEBd8bYxYtMImH6+kyUK7Wff/6ZiLp06aK2ERMTE3mT3+3bt6tt0GIIxxV8rb/++ktLS8vCwmLVqlUvXrzI8zmpqamHDl1wdGTGxh+qLtSqxWbNYp+/uRsfzywsGBFzcVHJ5PMjMDCQn+tER0erbVB7e3siGjlypNpG1EDduzN39+yvIyLY4MGMMabKxoH54ucnb9UqunfvBaIHRHJIT0+XSCQ6Ojo4exPWmjXMx4cV/redlZX15MmTU6dObdy48ffff+elG0XPaOb4xd6KFSvEnkgxlZmZqaenJ5FI8tNpTdVevnzJc5lzbE9ISPD09LSxsVHEW62srNzc3F6/fl34QXft2sWTCtu2bRsVFVX4HRYtcrmc33FRCAsLE3E+Bw8e1NbWlkgkOSquvHjxws/Pz83NzcHBwcrKKkcdf21tbSsrKwcHB3d396CgoDwDUnK5nC+hMDc3V04pmDJlChEZGRndvn1bRS9qy5YtRNS5c2fFFp5LsWbNGhWN+E25eJERMeWuztbWjIiJ2tfRz8+PPq6kd/r0aWHvoGzcuJE3lB48eLByjZETJ07w7ONWrVrhno1K8VW/Fy5c4A83bNhARI6Ojiod9O3bt7xa0WB+7cEYY0wulxsYGBBRntXVCsnT05PvvF27dsofgklJSfySUCKR5OiwCkKZMIERsV691Hf1lJCQwK8CvL291TaohtPEgDt7X0vN3l7d4965c0dHR0dLS+vWrVvqHHfTpk1EVKlSJZSyUikcV/BVeJe/P/IqDZOSksJLzRgZGUml2qamWUTMyoq5uLCPu3Z/zpUrTEeHSaXs2DEhp51PYvUTf/r0KS/ycPbsWXWOq1HMzFjFiuzhQ8YYCwtjdeuKPSHGGGMymczCwoKIDh8+LPZccuLN31AYREBxcax06Y+W0SuTy9n8+Wz7dnb+PPva+3G//vorEc2bN0+QeRbSqlWriGjcuHFiT6SYCg8PJ40po3/69Gkiat26tfLGI0eO8IA4j8VPnDjx2rVrwo4bEhJSvXp1IqpYseKlS5eE3bnmW79+vXLweu3atWLNJDg4mJcH/OK7U3x8fFBQkLu7O4+/a2lp5UiBNzc3t7W1dXV19fPz40HJOXPmEFGpUqWUF3Pw6i46OjrHVRm9TUhIMDAwkEqlz58/51u2bt1KRB07dlTdoN+Md+vXMyI2enT2Y5mMlSrFiNibNyLOil+AzJw5kz9MSkqSSqV6enr5XGyRT4GBgfzkqnXr1sr3F0NDQ3m3ZwsLC1T8UB3eTfTN+yONr4j666+/VD1uVlbWP//8k5CQoNjy9OlTIjIzM1PRiMHBwYoPwfPnzyu2y+Vyd3d3Xr2td+/eOMkX1o0bTEuLaWuzr+02V0jo2ZaDhgbcnz9nJUsyInbqlFrH5YvyJk2apNZRGZPJZHzV85w5c9Q8dLGC4wq+Su6Ae0JCws6dOwcNGqS4Piei5s2br1r14N69ggwxfz4jYqamXx3SKjx11nTLgV+XNm3atNimM5iZsSVLWI8ejGlSwJ0x5ubmRkS2trZiTySnWrVqEVG46E0PviF//smIWPfueX83Ojpnr9T69VnfvmzKFLZq1dpP9UrleB+wgQMHqnD2+RYUFEREzZo1E3sixdSBAweIqAd/sxMbj37m6Cf/9u1bPT29Zs2aeXh4qC474c2bN126dCEiPT29jRs3qmgUzZSWllaxYkXFKZNY69ueP39euXJlIho+fPjXLpZKSko6d+7cqlWrxo8f37Rp09xFtHhCn7a29sGDBxU/FRAQoKWllTubXhV41Zrly5fzh4mJiTwE/+zZM1UPXdQ5OTkZlymz531Bnozw8CwtLVa1qriz6tevHxHt2rWLP+T9h5s3by74QLdv3+a1RGrUqHFP6UomOjqa518bGxujJpsqvH79mj5eccX7nezevVv9kzlx4gQRtW/fXnVDvHnzhi8jy93X5PTp07zDas2aNdWcm/ht69SJEbFfflH3uDKZjLepR882TkMD7uz9peDAgVHCNnP/jP379/PPlTdi3NO+cOECL22sCTVPv2E4riD/cgfc+b0TIpJKpW3btl26dGkh/8fKZKxrV0bEevZk6qyWERMTY2JiQkRqq+mmLCUlhZ/fb968Wf2jawIzM/b6NWvdmnl5aVbAPTY2lq8/uH//vthz+SAzM5MXnZwzZ06m6JV3vgnJyax8eUbEPnUd/fIlmzWLDRnCWrRgZct+iLyXLJmsXGxBuVeqIlh5+/ZtfvWuvtfzaQkJCRKJRPDEQMinRYsWEdGUKVPEnghjjP3yyy9EtHDhwhzb1XN6lpmZqVzSvVgdkPxWLldVjFBmQkJCw4YNedJ34ZMMMjMzQ0NDPT09nZ2dbWxs+NlU+fLlR3zciWXbtm26urrqiTh4e3sTUatWrRRbBg8eTGpfwlgU8bBy0PvVqbwG1Mzvvxd3VvwkWZFksGLFClJZv6WoqCgeHTMxMTlz5oxie3Jyct++ffltQi8vL1UMXZydP3+eiFq0aKHY0qBBAyIKznPVoYrxu9Hjx49X6Si8rwk/hxw5cqRy+vOzZ894jqC+vn6xvTYUlo8PI2ImJiwmRoTR0bNNmeYG3FNSmK3tOlJqAqNS6enp3333HRGtXLlSDcPlacSIEUQ0ZMgQsSZQHOC4gvzLHXD38PDo1KnTv//+q1i3W3jPn7Ny5RgRe5+ZpA4//vgjEdnY2KhvyI9t27aNiCpUqKC8pLH4MDNjb96w4GBWpQq7fFmDAu6MsTFjxhDRjBkzxJ5ItoiIiHbt2hERX/hcrVo1d3d3rFIspKVLGRH7uLTG58THs+vX2Z49bOXKN3n2StXS0lK0w8rMzNTX15dIJBry183v1oSqeUktMMYYGzduHBGtXr1a7IkwxlivXr1Ijb3r87Rt2zZezbZ9+/bFpz5yQkICfwPn1HwFnpGR0a1bNyKqW7euomSBTCabOHHi1c8328kfmUzG7yh06tQpx7dCQ0PV03okNTW1dOnSRPTgwQO+Zc+ePTnCeZBb7k8rTSiJ9vbtWyIqVaqUYhkoPzFTXVH+5ORkW1tbHlvfsWOHYntWVpazs7OWltbff/+NdAdh8dYLihU/crm8ZMmSRCTKidP06dOJKEfiuYrs3r2bv9LGjRtHREQotqempvLjnIiWLFmihpl8w1JTsxvFiVfCDT3bPtDcgDt7f7u+fPnyilbvqsNzcOrWrStiysnz58/5GxCWbqkUjivIp8/UcBfWoUNMImF6ekyp8qcKhYaGamtra2trixiBksvlPIo6a9YsseYgIh5wZ4z9/DMbMECzAu7Xr1/nq1w1Iajt6enJS+5WrVp15syZderU4efipqam8+fPV8N7+DcpLY1VqsSIWCHXtyj3Sl28eLHyt5o2bUpE586dK9QAAuHFFpSDCKA2bdu2JaKTJ0+KPRHGGOM9KkQvSXzhwgVzc3OJRLJ3715xZ6JOPI7Jbd++XZ1D8wyD8uXLP+SNUxhjjM2YMYOv0flUaayvoijhImA2xtcaOXIkES1YsIA/TE1N5Tc5NGq9mqa5efMmEdWqVUuxhVe98PPzE3FWgYGBRGRtba3YwtdnqLQDRGZm5oQJE3gqjHLnzNzRfxDE77//TkRz587lD589e0aqrKL+eXwpg6+vr3qGu3v3bt26dYmobNmyR48eVf6Wh4eHvr7+hAkT0H+uMP76ixGxevWYiLfJFD3bgvLf3e4bpdEBd8ZYx44diWjatGkqHeXVq1f8pOTIkSMqHeiL5s2bx+/4qa3gSfGE4wryQ20Bd8bYzz8zIlazJlNBf/iceKrX1KlTVT7SZwUHB0ulUl1d3WJ4NagIuMfFMTMzzQq4M8Zat25NRBs2bBBxDq9eveIXAERkb28fExPDGJPJZH5+fnx6/ArQ2dkZNWq/1tq1jIg1aqTCMlZjx44lov/++09VA3yNHN3nQJ3Kli1LRNHq71KSS2pqqpaWlo6OjibUcrl8+TIRVa5cWeyJqE90dLS+vj5/6/7xxx/VNu6ff/5JRAYGBhcvXlRs5H1cdXR0jgnXs37QoEFEtGzZMqF2+LUCAgKIqEGDBootjo6OpJYejEUXzzIeOnSoYku5cuWISMQbJ4yxxYsXE9HkyZP5w7S0NB0dHS0tLTWkQSxZsuTChQvKW44dO0ZE7dq1U/XQxc2QIUOUUwHUUEX9M3g6izrrp8fFxfFFFQYGBspnCGlpaVpaWtra2prwSV1EPX+e3fhZuM+3Apo9ezYV755tnKYH3ENCQvj58b2CdSTMH77itW/fvqobIp9SUlJ4E+d169aJPZdvGY4ryA91BtzT0ljjxoyIjRun2oF8fHyIyMTE5O3bt6odKR9Gjx5NRAMGDBB7IurWvTtTJGd7ebHBg8WcTG684E/jxo3FmoCvry+/6C1TpkyeuZBBQUG2tra8EKSurq6Dg4PoWatFRVYWq1WLETGVVmR1d3cnlRWc/Vr79u0jjenbWay8evWKPm4KJ6IbN24QUZ06dcSeCGOMHTlyhIg6d+4s9kTUip8VE5GVlZV6Rty9e7dEIpFKpcqLCQ4dOqStrU1EawVdbM9Prlq2bCngPr9KRkYGv791+/ZtvuXQoUOac8xrpilTpihX0oiMjCSicuXKiTur4cOHE9GmTZv4w6tXrxJRvXr1RJkMX6utiP6DUBo3bkxEV65c4Q95FfVxqr4IzItMJtPT05NIJGpOKpfL5fPmzctRKOnOnTtEVLNmTXXO5BszahQj0ohLy3fv3hXznm2cpgfcGWNOTk5E1K1bNxXt//r16zzLUtGZRFy7d+/m6+WxWF6lcFzBF6kz4M4Yu3OHlSjBatdmqvsVpaam8jX1qisE+VVevnzJq47mWFFYfMhk7L//WPv2TIhF7YJJT0+vUKECEZ0/f17NQyckJPA3Z/7+/Pkssxs3bjg4OGhpaRGRVCq1tbW9fPmy2qZaRG3fzohYjRpMpeudTp06RR938BPR48eP+cef2BMpds6cOUNErfPfK0CV+FlQ//79RRk9R90Sfkdq4sSJokxGLPfu3ZNKpUQkkUhev36t6uHOnj2rp6dHRCtWrFBsvH37Nl97KvipnSaUcPnhhx+IaPbs2fxhZmamqampmhNXi5YOHToon4Lu37+fiLp37y7urHi6cUhICH+4bt06Iho1apQokxk2bJhy9B+EYmhoSESKrhK8inrunt5qEBERoTkrrg4cOEBEvXr1EnsiRdW7d6xRI6avz5TK44upmPds46Sk8ebPn1+mTJnAwEB+o15YjLEpU6bI5fKpU6fy5paiGzp0aMeOHV+/fj1//nyh9pmaFB98ZHvwke1hQX4Jr58LtdsiDceVII7Hxe1/+5b/u5aUJOCei6G6denQITp2jLy9KTk5e+PNm3TpkmBDLFmy5PHjx/Xq1fv+++8F22khVKhQYdasWUT0yy+/ZGVliT0dEUiltGULBQXR7t0fNu7eTS1a0M2bos1KV1eXHyGLFy+Wy+VqG/fChVuNGjVat25diRIlVq1adfTo0UqVKn3m+Y0aNdq6dev9+/ednZ11dXUDAgJatWrVrl07f39/tc25aGGM3NyIiH7/nbS0VDhQ48aNJRLJ7du3ZTKZCofJn2rVqpUpU+b169c84RrU5t69e0SkaL0gLhEnk5GRYWRkVKNGDcXHXHh4OBHVrl1b/ZMRUe3ate3s7IiIMXbx4kWVjnXv3r3+/funp6dPnTrV2dmZb4yKiurdu3dCQsKwYcN4RoWA9PX1eRk03ilKFDwzeteuXYwxItLW1h44cCDfItaUNBl7X8O9UaNGfEtISAgR8R4kYnn37t39+/d1dXWtrKyUZ9WkSRNR5qMJ/0++PdHR0UlJSeXKlTM2NuZbHjx4QES1atVS/2REHDo3jZpMUeHvT4pPVH19mjiRzpwhCwtR5/TeyJEj27Vr9+rVq4ULFwq538REOnKENm2is2eJX2i8fUvHjn14wrNnFBQk5IiFUAQC7uXLl58zZw4RTZkyJSMjQ9id7969OygoyNTU9H//+5+wey4Md3d3LS2tlStX8jPywkuKiT65fVFacsLLx2Ebf7V7GHxSkN0WaTiuBLH6xYuI1NTYrKzYrKx3GhBYKeo6dqQ3b+jHH0lxJXj0KPn6CrPzFy9e8JWhy5cv5+upNcH06dNr1ap1584dnsJTDE2aRES0cuWHLZcu0bVrtHq1miaQlZXVv3//w4cPK2/s2bNniRIlTp8+XbVq1SlTpvDul6qbQ2YmzZ1L/fpVTE1Nb9GiRXBw8KRJk3jFmC+ytLRcsWLFkydPXF1djYyMzp8/37dv36ZNm27dulUTor0axc8vwMhonbX1u1GjVDtQmTJlOnXq37y546NHqaodKR8kEkmDBg2I6KaId7GKJY0KK4s4mYcPH2ZkZEgkEsUnr0bdilCn3377jX8RpMor4bdv39rZ2cXGxvbp02fJkiV8Y1JSUu/evZ89e9a+ffstW7bk8/Plq/Bc4B07dgi+53zq2LFjpUqVHj16dO3aNeUp7dy5U6Wf4EXUo0ePEhISKleuzJf0kdihbe7mzZtyubx+/fq6urrKsxIl5J2cnPzgwQNdXV3e4hKEkjusjIA7p1GTKSqWLKF+/SgmhohILqdJk6hlS7Hn9J5EIlmxYoVUKl22bBn/5Qrg/n2ysiJvb3r9mubPp/btKS2N7t2j33//8JxLl+iff4QZrtCKQMCdMdaiRYvatWs/fPjwv//+E3DPqamp/Mxv4cKFfBmghmjcuPHYsWMzMzNnzJgh1D5LGBpbD57U1fG3Vn1/uHM+IDM99WnY5bfPH946tad4noThuBJK//Llx5mZjTMz61imjIC7Lc4aN6YDB4RPcP7tt9+Sk5MHDRrEm6ZqCF1dXX4bYM6cOTH8ZKGYGTaMTE0pJIQuX87e8vPPJJXS9u0UG6uOCcyaNevAgQMTJ05MT0/nW9LS0qZMmZKSkiKXy1+8eLFy5cr27dvXrVt37ty5PE4krNu3qUULmjeP4uPL/frryQsXLhQgDlWhQoW5c+c+ffrU3d3d3Nw8JCRk9OjRderUWbFiheJ1waJFf58//+PQoZt0dFQ+VqlSe8+eXXPjRimVj5QPvFgqr+INaqNRYWURJ5N7aI36P6NOfBESqTLgnpqa2rdv34cPHzZr1szLy4vXHMvKyrK3t79582adOnX279/PS80Irnv37qampnfv3g0NDVXF/r9IKpX+9ddfXl5e9evX51vat29fuXLlyMjIK1euiDIlTZY7vK4JAffr168rz0Emk926dUsikSjS8NUpd/S/SEtMTHR2dk5ISBB7IjnDynK5/PHjxxKJpEaNGqJPRlwaNZkixNqaXFzEnsQnNG3a1MHBISMjw0WoKU6fTjNm0KZNNGsWHT1K5cuToKE8wWlKkuNneHl5DR8+vEePHuHh4bNnz75x44ZQ50nXr1+PjIxs2rTpmDFjBNmhgBYsWODj4xMQENCnT5/Pr6lvW79qWekXPjkadOgvk2XFvYx8F//23qXDLXqPTkmM9Vr4fVWrlhWqW6kiy0Pz4bj6/HFV3dqader0+b11LlOGiB6kpCTLZERkqa9fSqVFCooNPT36/XeaMIHOn8/e4uZGERGf+5HSpV8kJs77zBPevHlz4MABfX39fzTmfq/CgAEDunTpcvLkyfnz5y9fvlzs6aibnh6NG0dubvTff9SqFRFRzZpkY0PHjtGWLTRtmmpHDwgIWLZsmba29o4dOxTvgb/88sv169dr1KgRHBz8/Pnzbdu2bd26NTw8fN68efPmzbOysrK3t3dwcCj8hQFjtH49/fILpaSQhQVt3Urt2hUqAlW6dOkpU6ZMmDDBy8vrr7/+evjw4dSpU5ctWzZt2rTvv/++ZMmShZxwkRYYGHjx4kVTU9Px48erYbhGjcjfn27epCFD1DDaFyfTiJDhrnaaE1ZmjPHLeFEy3HP8f0hISIiOji5RokSVKlXUPxnR/frrr+fOnbt27dq6devatGlTt25dAZfcyeXyUaNGXbx4sXr16gEBAYr3fGdn56NHj5YrV87f39/ExESo4XLQ1tYeMGCAh4fHrl27FixYoKJRPm/s2LHKD6VS6eDBg93d3Xft2tWKn2HAe8nJyWZmZtWrV9+xY4e1tXWpUqWePXtWqlQpUYKeCjmC/uHh4SkpKZaWloraI+qfzDdTT2bKlClbtmw5evTo3r1769WrJ+JMcoSVnz59mpaWVrlyZVFOU/lkNKQErkZNpghxdqYff6Rz56h1a7GnkpeFCxfu3bt33759dnZ25ubmn3qaiZ6e2xdzpH79lY4fpy1bsh9KJOTgQOvXU6tWlJFBT55kb3/zRoB5C0TTA+6pqam8wq+9vX21atUePHiwdetWAfdvbGxsa2vLe/goREVFVaxYUcBR8iPHoKampk2aNHnw4MEXK4zrDutePvn2559Tu4XNu/i3xz3/TktOSE2KL2NahYgkEumQ39ZLJEVglYPgcFx98bjqSfTmfYLMp5jr6RHRwdjYUlIpEY03Ny9lYFDoKQMR0eDBtG4drV+f/XDfPvp8clKtWjEPHqz/3DOIqlSpUq5cOYuPi7q9fPmyfPnyWuq9U5L7b8He3j44OLjYXg1OnEj//ENeXvTPP8RXNk+aRMeO0erVNHUqSVX2Jh0ZGTlmzBjG2KJFi6ytrflGLy+vtWvX6uvre3t7GxkZGRkZubm5LViw4OTJk7t27dq3b9+dO3fmzZv3559/Wltbjxmzp2/fCuXLF2T0p09pzBg6dYqIyMGBVq+mUgIlQ+vp6Tk6Og4fPnzXrl2LFy8OCwubOnXq/PnzJ02a5OzsrLpoi4bj9RN/+eWXEiVKqGE4no2nISFuBNzVLy0tLTIyUkdHR9zoFff06VMeXBMlaJWjmg2Pv9euXVuqujd3DWZnZ+fo6Hjy5Mkff/yRiHR0dGrVqtXsvSZNmhQm5PTrr7/u3bu3dOnSfn5+ZmZmfOPff/+9Zs0aAwMDPz+/mjVrCvMyPmHYsGEeHh67d++eP3++huQzRUdHm5qa9u/fX+yJaJaYmJjMzMwaNWqsWrVq9erVJiYmjRo1srCwqFSpkrh/mDkC7ppQwF3clH8B/fnnn2FhYVevXm3duvXGjRuHiJcOkCOsLG5at+Yklaempr548UJXV7dq1apiz6WI0dOjFStowgS6elXsqRAxxqKjo5Wv9M3NzRs1avTkyZOAgIDP/GBNY2O3uLgv7H3gQMrIIOVzufLl6eVLIqInT+iHH7I3vn5N1aoVbP6C0/SA+6JFiyIjI5s0aTJ27Njx48efPXu2fv36iYmJbdq0Kfx5zPnz57du3bpx48aZM2fy0zuZTDZ27FgfH5+wsDBLS0shXkG++Pr6Ojg4/Pnnn4paH3fv3j1//rxcLp8zZ07lypU/87M1K5Yx0v5CCfISpU1KlzWzd/EgosjQS3uXTR7rtk9LW6d4RtsJx1U+jiuT776Tful9qn6JEgFv306tXNlSX1+wScN7q1ZRly7k6EhE9Ntv9Pr1556sp1c5Pd3jM0+Ii4ubO3fu8+fPz507xxd0E9G6deumT5++bNmyHxSfT6r36tWrunXrdu3adefOnfr6+kSUlZW1atWqhISEFy9eqG0aGqVqVbK1pQMHaONG4n0fbG3JwoIePaKjR6lXL5UMmp6ePmjQoJiYGDs7u19++YVvvH//vpOTExGtWLFCOadJS0urW7du3bp1W7NmzbFjx3x8fPbt2xcREenkVP7HH6l1a3J0pKFDKf81tHx86McfKS6OTE1pwwaysxP65RHp6Og4OjqOGjXK39/fzc3t0qVL8+bNW7p06YwZM1xdXYUfT7Ndvnz51KlTRkZGEyZMUM+IjRsTEWlIEZd69eppa2uHh4enpaXp4wNLLcLDw2UyWa1atXTUUMDoS8TNtc8x+t27d0WcjOgkEomnp+eyZcsuX74cEhLy8OHDO3fu3LlzZ9u2bUSkra1du3btJkrK5Ltc4fr165ctW6ajo+Pr68vbNhCRj4/PnDlzpFLp9u3b27Rpo6IXpdChQ4dKlSpFRERcvXq1pQaU0f3nn3+8vLwMDAwMkBBDRESxsbF79+7dtWvXmTNneJeXUqVKtWnT5uLFi8ePH7e2thax5y0RZWRk3LlzRyqVNmzYkG8RN+Sdo75NUVelSpWzZ89OmjRp06ZNQ4cOPXHixKpVq0T5hMoR4xYx5J2VlfXkyROpVGqhAU02Hz58KJfLLS0t1ZwH9m3o1Ys2bKA1a8SeB5GXl9f48eMXLFgwdepUviUsLOzSpUuMMVdX18+kn5bU1qb3veU/qUkTKlGCXr4kxX6ePyd+h+a77ygwMHujjw9t21a41yEcpsGePXvG45VnzpzhW1JTU3m8krd/KSSZTMZPhv744w/FxtGjRxPRgAEDCr//fEpNTeXvcWvWrFFs7NGjBxFNmjRJkCFePb6zakJ7/vWT2xdXfN86/vXzZWOaCbLzIgfHlVDHFWNswO3bj1JThdqbppk7d26O36MaXLvGWrXK/vr335mxMZsxQ5g9z549m4iaNm0qk8n4lt27dxORqalpXFycMGPkw7hx44iob9++ii28jEzNmjXT0tLUNg1Nc+wYI2JVqrDMzOwtixYxItanj6pG/Omnn4ioWrVqMTExfEtKSgpPBB42bNgXfzwpKcnX97qtLdPVZUSMiOnrs4EDmY8PS0n58LSbN9mpUx8eHjvGHj9mI0dm/8jAgezNG2Ff1icFBQXZ2tpKJJL//e9/ahpSk9ja2hLR7LN8vYkAAQAASURBVNmz1TaiTMZKlWJE6vsVK7x7927Pnj05NlpZWRHRtWvX1D2b4op/vvTv3z/H9rCwMPVPxt3dnYgmTJig/qEZY7ydz+vXr/lDvsJy7ty5okxG0yQmJgYFBXl4eDg7O1tbW+e+H2Zubm5ra+vq6urn5/fo0aNP7efQoUPa2toSiWTLli2KjUFBQXyHS5cuVcurYYwxfgN76tSpahvxU3x8fKRSqUQiEeTqpkhLSUnx8/Ozt7dX1CLX09OztbX19PRMSkpijN2+fbtatWpEZGlpee/ePbHmyQPcderUUWzp3LkzER08eFD9k0lPT9fV1ZVKpfx/0bfEw8ODHwkdOnR4+fKlmkeXy+X8BlhiYiLfcvfu3VWrVp04cULNM2GM3b9/n4iqV6+u/qFz8/X1JSI7OzuxJ1LEdOjAzp9njLHISFa5MtPSEnMyKSkp/L10w4YNio28e5xgH4ujRrHff8/+OjOTdezINm5kQUGsefMPz/H2ZhpzIGl0wH3o0KFENHz4cMWW+fPnE1G9evUyFTGJwrlw4YJEIjEwMHj8+DHf8vLly9KlSxPR0aNHBRnii/76668cL+rAgQNEZGxs/Eag69RXj+/8bV/L281p11+jl41peud8QHEOuOO4Euq4Ygi4q4BywD0lhVlYCBZwf/fuHV+jp3w52rFjRyKaPn26MGN8yfXr16VSqa6ubnh4ON8SExNTtmxZIgoICFDPHDSTXM7q1GFEzNc3e8vbt6xdu6imTWc8fPhQ8OG8vLz4Bady/JG3nfjuu+8U1wD5ERfHPD2ZrS3T1s4OoxsYMHt75ufH0tPZjBlMW5tdv5795CZN2LRpjIiVLs2UDkP1uX79uiLsVXzcvHlTIpGUKFFCza+9TRtGxNR8CRkVFdW8eXOJROLt7a28fdiwYUS0ZMkStc6mGOMfoLNmzVLe6OvrK5VKXVxcFPd91WPixIlE5O7urs5BOb5yy8TERLGFF/fYvXu3+iej+TIyMkJDQz09PXn8PXd5GWNjY2tra2dnZ09Pz9DQUH4gBQcHlypViohcXV0Vu3r48GH58uWJyMnJSZ0v4fLly/w+QVZWljrHzeHKlSu8elixftNLS2P79rEhQ+zeFzbW1tbu0aPH5s2b4+Pjczw3KiqqWbNm/K9VkZKlZhs3biSiESNG8IdyuZwXwYuOjlb/ZHj0v27duuofWg3OnTvHa0lXrlz54sWL6hz66dOnRGRmZqbOQT/l4MGDRNStWzexJ8IYY25ubkQ0bdo0sSdSxCgC7owxNzeRA+58DXGTJk0Up3l79uzh76tv374VZoznz1m9eqx3bzZ1KmvShA0ezLKyEHAviPPnz/OQ5ZMnT/iW6OhoHrI8duyYgAMNHz6ciIYOHarY8vfffxORlZWVUOHXz3j+/Dk/R1S8qPT0dF7Sa8WKFUKNkpmeGvXgZtSDm68j72WmpzLGsjIzXj2+I9T+ixAcVwIeV4yxx6mp6XK5gDvUKOoPuP/3H7t5k929+2HLs2fs2TPB9s+XbFeoUCEhIYFvCQkJ0dLS0tHRUUNGj1wub9++PRHNnDlTsZEXuLCxsVH16Jpv5UpGxLp0+bCFdz8T/HbI/fv3+Zve6tWrFRs3bNhARAYGBjdu3CjYbl+8YMuXs5Yts8PuRKxSJTZtGuvZk7Vuzfh5V5Mm7MoVNnUqe38vEtSBx5p/+eUXNY87cSIjYsuWqW9E5SzFO3c+nOTExsbWrVu3atWqEonE2tra3d29GN53UZuUlJRt27bxxuw5jrqVK1fypeJ9+/ZVfAypAc8SPXLkiNpGVDhx4gQRWVtbK7bwYjIFfqctVrKyssLCwrZv3z59+vQuXbrkLsFvZGTUtm1bXnbGwcFB/v6M9O3bt/ykt3fv3mo4686Bl4Y4pby8S70ePXpkampKRD/88INYcxATD744O7Ny5fjpyNZ27dq1a/fff/+9evXqMz+XnJxsZ2fH0xF27Nihtvkq/Pzzz0T0zz//8IcRERH8pF39M2HvTwsV0f9vT1RUFG9fpK+vv23zZrWNyxPglD8URMSXf/30009iT4QxxsaPH08fL82H/Lh3jylWoWRksMBAppRcnu3gQaaGW8C5y0ikpaXx1ikC/1qzstj168zPjymS0hIT2c2bH57w9i27oymhTg0NuMtkshYtWuRIVXBwcCCiQYMGCTuW4sg4ffo035Kens5Plf777z9hx8pt1KhRRDR48GDFlkWLFvH7yRkZGaoevbjBcYXj6quoOeB+9CiTSpmxMVNdfRe5XM4LuP/222+KjbyAex/V1S55b+fOnURkamqqSCwKDQ3V1tbW1ta+ffu2qkfXfAkJrFmzxHbtPBQlF3h6UZkyZZKTk4UaJTU1lZfjHDJkiGLj7du3eSrcFiHSziMjmbs7a9qUDRjAZsxgy5ezPn0YP9Fq0oShpIeaPXz4UFtbW0dHJzIyUrFRLpcHBQWpeui1axkRGz1a1eNkO3r0KK/d0aZNG+WoyoMHD3i/SiMjI0UhYz09vf79++/Zsyf1212kpX5Xr16dOHGioui2vr6+VCpduHChXOnG/JkzZ3go8LvvvrujrsshnsmoyLRQp//++4+Ixo8fzx9mZGTo6OhIpdJ3796pfzLfgBcvXvj5+bm6utrb2/M6UfwGm4WFhXJVukOHDunp6TVt2lSUahi///67+jPrFWJiYvg7Xq9evdR/s0FIz58z5cpLd+5k37+NiWFLlrAxY9j06SzHXbRr15izMzMz+3Dn38qKubqyfK8UzMrK4lFviUSifLWoHjz+e/z4cf6QV9jo3bu3mqfBTZo0STn6/03KzMx0cXHR0tI60qwZc3D4qCSiCly7ds3JycnAwKB69erGxsZXrlxR6XD5wX/Ly5cvF3sijDHWoUMH5eMfCuDdO2ZqyiQSprxsY9QoRsTWrVP56GooI1EUaWjAff369XyNjyLKcO3aNV6I4MGDB4IPx8NqjRs3Vqz+27t3r8BrH/Jy8eJFiUSip6eneFGvXr3il4uHDx9W3bjFFo4rHFdfRZ0B99evmbk5I2J//63agRTH/P379/kWxeFx6NAh1Y2rqOm2ceNGxUaBa7oVfbyuunKXhdatWxPR+vXrhRqC19CvVauWIr00KSmpbt26RPT9998LNQqXnJwdcH/wgJmbs1evEHAXAb+jluOXO2XKFKlUquq7vxcvMiLWqJFKB8nm4eGhra3N7ySlKF0zX7hwgYd3GzRoEBkZmZKS4u3tbWtrq+iTZmRk5ODg4OfnV5wvBgopLi7Ow8NDuc1ys2bNli9f/scff0ilUiKyt7dXvmv49OlTXrrB0NBw//79qp5eQkICEZUoUULNdWw4Z2dn5aAV75hqYWGh/pl8k169erVixQrKq4TL2bNno6KiRJnVnTt3iMjY2Dg9PV3NQ6enp/P1HE2aNCnypbdv3mTffffh4ZEjrGNHlprK6tZlU6eys2eZjw+rWZN5eLDISDZjBqtS5UOcvW5dNm8ee1+98GstWbKEv3c5Of2otk8GmUzGVycrKn+mpKRcunTp8uXLaprBx9q2bUtEohQWV7Mwb29mYMCIWKtWQi4rfi82NnbFihX16tXjn49SqbRChQr8U2nbtm2CD/dVunfvTiI1CciN3xpXzg6BAvj9d0bEmjVjilMeLy9GxMqXV2FKH1NjGYkiRxMD7skJCfxtSNHjRS6X81u+Kup1lpKSUr16dSJap3Trh78BOTs7q2JExphcLm/VqhUR/a6o+p9XO0EQCo4rHFdfS20Bd7mc2doyItaxozoWfOVu4fvPP/8QUZ06dVS3AEIdNd2Kvjt37kgkklKlSikWAfAqQI0Eilnu2LGDp52GhIQoNvIFMQ0aNFBFxiUPuDPGXF3Z998j4C6CCxculCxZskuXLsqp3KtWrZJIJEQ0b9481Q2dnMykUqary1QadMrKynJxceEJiS4uLsrJ1Lt37+YtE3v06JGjgMnbt289PDysra35/wciqlixorOzsxoS/78ZMpksKCjIycmJr4/hEUYnJyflt5dDhw7xhPeGDRtGREQoticnJw8ePDjP35rgLl26xD99VDfEZ/CzPn9/f/5w3759PPVYlMl8q0Qv4ZJb/fr11R/GksuZg8MYIqpSpcqLFy/UObRK5BlwX7WKKV/O3LzJypdnt29nx9mrVGHOzkyIt/G9e/eWKFGiU6cgGxuWq967Sty7d4+IqlWrpo7BvkQR/Y+JiRF7Lmpx4waztGRErFw5Fhgo1F55SruiF0WFChVcXFwePnyYlpbG78XypTBquzOXe0mfhYUFESlysESUnJwskUj09fVFuTX+LXn3jlWtyog+6pXVsSMjYqpr2abOMhJFjiYG3Nmvv75q0WLmwIGK829PT0/6uO6w4Hbv3k1Epqamce9v/YSFhfFaB7du3VLFiFu2bCEiMzMzxYvK3U4QhITjCsfVV1JbwH3JkuxzPPVcH+Vu4Zuens4XIKtoUaH6aroVfTw37d9//+UP09PT+Z3Cc+fOFXLPiroxmzZtUmxctWoVEZUqVequcusA4SgC7qmprFYtZmKCgLu6Xb58mRc+7tWrl3Lq97p163gGn4uLi+pG/+EH9r//sa/pwvt1kpKSFCV3t27dqtgul8tdXV15MN3Jyekz2etPnjxxc3Pj5Z65OnXquLq6asL1p8Z6/vy5m5ubpaWlIl/PxsbG09MzJa/1+Pfv3+elP8qWLRuoFMiQy+Vubm55psALi58XKa9xVifeq1yx4nDhwoUkRkOFb5u4JVzytGDBAiIaNWqUOgedNYvVq3fZwqLmN9Ih4OZNZmbGtmzJ/jdjBuvYkY0Zw3I0ozI1Zffvs/nz2fnzTNBbd1evRpiaMiLWsKEq8p4/cv36dVtbWyJq3bq1akfKH74WR0Oi/2oSE8N69mRETEuLubkV5ljKiI11d3dX1LySSqXdu3ffs2dPjqwmT09PXubO2tpapctx+No+GxubMWPGKG9PT0/X0tLS1tbWhHqzISEhRFSvXj2xJ/It2LqVEbEKFZgixBUSwrS0mI4OU1HLtk+VkVCuuFBsaV7A/eFDpqfHpFL2vqxVUlJSxYoVicjT01OlI3fs2JE+bk/HV/d37dpV8LEUL0r5+pAXrvr1118FHw5wXOG4KoDcAXe5XN6wYUMHBwdvb2+hogPBwUxXl0kk7MABQfaXL7lb+Pr7+xNRmTJlVNFLEDXd8o8n/teqVUtxa5CHEgoZLVLUjRk3bpxi440bN3j+7/bt2ws16U9TBNwZY0eOMCIE3EUQGhrKF+q2b99e+Qbzrl27eGWVn376SRUpRaNGMUXRmuhoNnKkwPt/8eIFL2NiYmKiaJfCGEtLS+PrNrS0tFauXJnPvYWGhrq4uJiZmSki71ZWVm5ubtHR0QLPu8hKS0vjBXl441N+ceXi4vL4S02QExMT+/fvz38jbm5uyt9SToF/9OiRKqb922+/EdFc5WLQjDHG1NC1lafs6erqKj7pxowZQ0QeHh6qHrpYEbGEy6c8evRIIpEYGhrmeRdKFdatY0RMR4cdPfqtnFbdvMnKlmV//pn9z9GRdezI7O1zliK2sGDXr6toChERrG5dRsTMzVVy9vL48WM3NzfeSJnflZRIJAsWLBB+pK/Euy4pr4UtFuRy5ubGpFJGxPr1YwX4jLh2jTk5sZIlu1WvzhPgXFxcPvPRFhwczFfDly9f/uTJk4WafN7Tuebk5GRoaKj4yFaOrfN3zpo1awo+bgF4e3sXx0NONeRy1q4dI2JKLdvYDz8wIqaKlm2JiYn8KmPXrl3vJ5BHxYViS/MC7nZ2jIi9by7EGDv1zz/aUmnLli1VuuCUMRYSEqKlpaWrq3vv/a2fmJiYsmXLEpGfn5+wY/Gz/2bNmikucXO3EwQh4bjCcfX1cgfc+e13ztDQcPjw4T4+PoUpxJGczGrXZkRsyhQBJpx/ebbw7dWrFxFNmDBB2LFQ0+2rZGVl8WL3ilTQp0+f2tjYHCjcDRm+rK9+/fqKwzUuLo4nqE6ePLmwk/60+/dZZCR7/ZrFxrLMTHbmTEGuX6Dw7t27V7lyZf4BoVzEyd/fn990GTVqlOB3vywsmKlpdrO6iAhWvbqQO79x40aVKlX4teI9pYydt2/f8tvMpUqVUtTxyD9FmRT+HsVjxNbW1h4eHomqS9TXeGFhYS4uLuXLl+f/T/T09Ozt7QMDA/N/BqWczz58+HDlz01FCryJiYkqPhQGDBhARLt371be+O+//1aqVEnVxZGDg4P5G69iC2/LoVjsBUIRpYTL57Vs2ZKIfHx8lDe6ubmZm5vb2tq6urr6+fm9fPlSkLGOHGHa2oyIrV4tyP40Q54lZWbNYtOmfdiYmMj09FR6YhEbyzp1YkSsZEn29R8peYuMjFy8eDHvYM9VqFDh559/njp1Kn+THDNmjLhJx7/++isR/fnnnyLOQTT+/qxMGUbE6tRh+ezsHRPDli/PvjlDxKTS4AkTfH198/NLfPPmjY2NDRFpa2vnuCFdYImJiR4eHrxXCtesWTMPD48cV6wHDhwgjSlxxlcFzZw5U+yJfCOuXcsu6qhYrvnqVfZxLXjLthkzZhBR27Zt1VlGogjRsID78eOMiBkaMsWymsePmb7+uzp1bqmlYcj3339PRLa2tootvBVPjRo10tLShBolIiJCX19fIpFcunSJb1G0E9ywYYNQo8AHOK5wXBVIniVlHj9+7O7urlz5V19f39bW1tPTswB3NUaPZkSsfn2mrhSoD3x9fenjEup3797V0dHR0tIScDGyoqabcnYharp9Hk//79+/v1A7XLt2Lb9FpIhLyuVyHoRq0aKFgO9Cn9K6NSNiFy+qehz4nCdPnvA6TlZWVsrlfU+dOsVLtQ4dOlTYK3wLCzZ/PuvRgzGhA+68ui4RWVtbK/rLMcbu37/Pi8NUqlTpeuFyHlNTU/38/Ozt7XV1dZXf6r29vTUni1bVEhISeKX7HFn/yv/Pv4qfnx+/k9GkSRPFLVjGWGJiIn9Hyp0CXxgymezw4cM8xUF5DYRMJuvUqRMRGRgYqLRnHW+bMXjwYMUWXt/p1atXqhu0eOKfm2ou4fJ5y5cvJ6KBAwcqbxwxYgR9rGrVqv369Vu+/OyBA+zp04IMFBqaHUZRTUcq8eQZcA8JYeXKsdBQxhiTydjPPzPV/9LT05mDQ3atkVWrCr6fmJgYT09PGxsbxRVEmTJleNduxYfvvn37+Kdb165dRUyW4iHgAty0/kbcu8esrBgRMzVlvPnw69fszBkWGspypCbwlPYSJbJD7WZmzMWFfeVqLd6Khh8VI0eOLEwiF09p5yd1/ABzcnLKs4xtbGxsv379iGjYsGEFHk5AfPnX+vXrxZ7It8PRkREx5Y+gpUtZmzbPOnZ0FPBs/+HDh3p6elKp9Iray0gUFZoUcM/MZA0aMCK2ePGHjYMGMSLm4KCeKbx69crIyIiIDr2/9ZOZmcmTJhYrz6pwBg4cSESOjo6KLbnbCYJgcFzhuCooHnCfPXt2nt+NjIzkkXeejcKT/mxsbNzd3fN5Lb1rVxZPmVFN9ewvy93Cd8qUKUTUuXNnoYb4VE03XV1d1HT7lNevX+vr62tpaX2xUEM+3b17t379+spxJd4mt0yZMsptDFWnWTMUk9EI0dHRDRo0IKLatWs/VQrtBAUF8Q+pPn36CFgAwcKCRUay1q2Zl5eQAXd3d3f+rjt27Fjl2Pfx48d5cZLGjRs/E67g7tu3b9esWdOuXTtFiKRcuXKTJk36tsPuOVq9GRkZOTk5BQcHF37Pt27d4mtrypUrp7yC/jMp8AXw7NkzNzc33g6OZw5aWFjcvHlT8YTMzEzea5eInJycVJRM+scffyifRURHR/M3XlWMVcypv4TLF0VFRWlpaenr6yuHTTMzM0NDQz09PZ2dnW1sbExMTPhB2L59GI/XlSnDrK2ZszPz9GShoeyL5+9RUdn98eztv/zkIubWLVa37oeHR4+yLl0YY8zLi9Wpwxo1YjVqsIEDmVq6esrlzNWVSSSMiDk7f93/6rg45unJbG1Zly7nc2Tq5PlGd+XKFd68p169eso3JtWpXLlyRPT8+XNRRtcISUlsyBC2di1jjE2bxiws2LhxrFcvZmnJ7t5lMTFs2TJWp44ipZ317Mn27s0Zjv8a+/fv52dijRs3/toCa/zuOC+yx+WZ0s7xz3d+X8fMzExXV3ddjjJNYuC39pVvjUMhvXzJSpdmROx9yzaWnp7Os1IE7NnGGymNVyoj8b///Y8+rrhQzGlSwH3FCkbEatRgimy7kycZEStRgkVGqm0WPAxRp04dxcn38ePHeW6gIO0sTp48SUSlSpVS5JflbicIQsJxheOqoDZu3GhpaVmiRInPF21/8+aNp6enra0tr4ZM70sQuLu7f+aX++jRo0qVrNq2fSLi8oPcLXxjY2P5SfaePXsKv/88a7rxM6r/fWuJWALjFah/U669VzjKwcFLly7p6upKJJK9e/cKtf/P4zc9lYJdIJqYmBhe6KBatWrKN72Cg4P5336nTp2Eqp1iYcGePmXBwaxKFXbrFqtenYWHs5UrWYGzezMzMydNmkREEonE1dVV+VsbN27k78ADBw4sZKz2U549e+bu7s4vaBs3bqyKITTB33//XaNGDf5Zxruh7ty5MzU1VcAhYmJiunXrRnmtoPf39+cp8I0bNy5ApCk1NXXnzp1du3ZV3AivWbOmi4sL/62VLFnS29tb+fkeHh58BUOHDh1UkXU+ZMgQIlLc7Dx16hQRtW3bVvCBgH2ihIu4+EKKLVu2fOoJMpksPDx89+7df/31tls3Vq5cdvhO8e+ffz63/6Qk1qQJI2Lt2jFB/0aLgqQklpWl5jG3bGG6uoyIDRjAvvg5k5zMdu1i/foxPb3s36aFRYadnd3OnTu/2AUqIiKC990xNze/pspshevXr8+cOTMoKEh5Y2RkJBGZmpqqbtyi5NgxVrv2h+bvK1eyTp1YYOBHKe0CJa/cu3eP/95NTEyOHDmSnx/Jf0p7TEzM8uXLc7Ry5dFSfuNZDQteP4PXrFNefwmFt2ABI2Lt22dkvX+3DAgIIOF6tuUOZykqLuR4VynONCbgHhPDypZlRB/6BmZlsUaNGBGbP1+dE0lPT69du3aOOz+5b90UTFZWVsOGDYlIuR3KsGHDSGOW83xrcFzhuCocJycnRbLAF4u2v379et26dT169FCOvHfs2HHlypU5iiNnZGTwK8MhQ4ao5XV8Uu4WvqtXryYiCwuLwkdYUNOtwC5evMjPh06fPi3IPTmFmJgYXmlKnY2UeQ6QWCs5IIe4uLi2bdvyzCblq7I7d+5UqlSJiFq0aBFTiJzBBw/YkCHs4sXsgDtj7Oef2fDhrHp15uKSvSrf2pp5eLCvDexPnDiRiAwMDJRjanK5nC/nIiJnZ2c1JNTcvHnzG07C6tKlCxFVqlTp863eComvoFdc5yvfEbx16xaP+Hfv3j3/O+RV5vlNI55AqlxlPi0tbdy4cfxWjYuLi/JBcv78eX5juEqVKoIHtrZt2/b999/feV8FeM2aNfRx52oQUJ4lXMTl4eFBRM2bNw8NDc3KX3T46VN24ACbO5f168eqVmWfaWqQlcX69s3OKVJBt3vI2/HjrEwZZm7OJk1iXbt+SGju1InxW4RpaczPjzk4MEPDD9nP1tbM3f3rfk2xsbGdO3fmdwoFb/qVo1nrmDFjlL+7b98+IurB68HBhAls0aIPDzMymJ4ee/uWjRvH9u0rTEp7nhITE/ma9dyfVjmsXr26UaNG/DcokUg6d+68a9euPIPmyintlKuV644dO/i3mjZtKtTK2s+7cuWKcusdxlh8fDw/1FXdWq+4SU1l/ftfL126ymql/h5C9WzLs2BD7ooLoDEB959+YkRMKejD1qxhRKxKlS/fQRaav78/j3QoilTmLk5UMLkjWbnbCYKQcFzhuCq0AhRtj4uL8/T0tLe354sMatWqleMJM2fO5Jf3hYlqCSJ3C9+srCx+Aqd8/6YAUNOtkDp37szv0hGRrq6upaWljY2Nk5OTq6urh4dHYGDgo0ePvja2KJPJevbsSUStW7dWZ0GMGjUYUXbzTNAEycnJPMXY2NhYuW9kREQEL/fRtGnTAiS/vHrFJk1iOjqMiHXv/iHgHh/PzM1Z9ers4EHWt292hiBfaTZ8OPP3Z/ms5/H48WMrKyvlrJnU1FR+d1lbW3v1N9UuUDRBQUFHjhxRz0LgXbt28ev8tm3bKt9ZjImJGTp0aH6u/OPj4/OsMq/cGVjBw8OD3w7v1atXXFycYvuLFy9atWqVZwq8sKZOnUpEi5RjNyCcPEu4iMvPz8/Q0FBPT4+IdHR0rKysHBwc3N3dg4KCCr8QZ/JkRsTKlWOoz6dmoaEsOJj98AMzNWXLlmVvrFGDHTrExo1jxsbZH3ASCWvblq1cyaKjCzhQenq6o6MjT99ZuXJl4Weeu1mrqanppEmTFN2/OF4La9asWYUf8Vtga8tytPqoWpUJ1+wqN15gTUtLi4hsbW2VP62U8bvjxsbGTk5Ot2/fzv2EuLg4Dw8PnpNH75eseXt75y6hduPGDUWpt8DAQMFfEadc92b06NHK37p69SoRNWrUSEVDF2eq69mWuyUhr7hQokSJpwVrSPKN0oyAe1gY09ZmWlpMkWkVF8fKl2dETKSFgTwkMXHiRMUWnqrZvn37Au8zPj4+R60GRTvBHCujQRg4rnBcCaoARdsTExN37dq1Y8cO5Y2nTp2SSqXa2trnzp1Ty8S/IPfn5YkTJ4ioVKlS0QW+SmCMt+JRTuVDTbevNXv27BYtWvBVlnkyMDCwsrLq3bv3Tz/9tHjxYm9v7ytXrnwmTvrXX3/xsy4134qrUoURqbOIF3xZWlpa//79icjIyEj5vSgyMpJXeKxTp07+67cmJzM3t+xikVIps7dnjx8zOzv28mX2E7y8mKJxOC9oa2OTXQ+XiBkbMwcHFhjIvpjbpJz9FBUVxT/sjI2NT5w4kd9XDpokJCSkevXqRFSxYsUcQZ/PkMlkQUFByil7fB39Fzvlnj17lhdHrlmzZijvu8gY+2wKvIB69OhBRAcUay5BaLyEi4bc1A8NDeVdJaysrHgwS5mOjk7Dhg1Hjx7t7u5+7lz4F1f9PX36USPGsDB24gSrXJlpxolkcfTDD2zhQlapEuMdQ2rUYNu2ZX+iWVkxV1dhboTw2CvP+CnwEq7czVqNjIxyNGtVxldge3l5FXr634Tx4z/cV2GMyeWsRImCl8bLt8OHD/MeD7Vq1coznn7q1Kndu3fnmT3z+ZT2PMXExPAwBW9dLmym+eXLl8ePH6/oClOuXLkcDdJ27txJHzcYBwHxDJspU6YotvDb/+3atSvwLzo2NpYfn4pTGqEy9r49mhFwv3SJWVmxn3/+sGXq1OyKdCKtK7lz506OOz8JCQm2trb5vxjIk5eXl4NSo84NGzbQx+0EQUg4rnBcqUbBirZzr1+/5qvX//rrL/XM9ovyXBE2ceLEzZs3FybocPPmTTs7O0XIHjXdCiMtLe3Ro0eBgYEeHh4uLi729vbW1taWlpaKa6cc9PT0FBnxbm5u3t7eQUFBO3fu1NLSkkql+awLKSAzM0ZU8CQvUJHMzEwHBweejXJU0VOJsZcvX/KUqOrVqz/80sKEjAzm4cHMzbMDDTY2X1GsPzKSLVyYXeKf/+vbN/x///ufciT0U27dusWLI1laWipKdkBR9ObNG56pp6ent3Hjxs8/+cWLF25ubjmqzH+q92Cenj171rx5cyIyNDTM0cfiUynwQuFHbHh4uOB7Bo6XcOnZs6fYE2HR0dH81z148GB+KpWQkBAUFOTu7u7k5GRtbc3T3rmOHa8TMXNzZmvLXF2Zn18eH5eTJ7PSpZmivnG9euzWLaYxDWKLox9+YJs2saVL2YABjDFWowYLD2cLF6qket7u3bv19fWJaMCAAfl/r4uPj89xtfL5Zq38Rqazs3Pp0qV1dXXxTpVt927WuvWHPrl79zJ1NXGJjIzkWQWlSpXKz+orntLeoEED5c/HPFPa86Tcurxfv36FL/7JU9qVV1TwVq65W1vPmzePBO1cBcpCQ0N5zzbFnRves83AwKDA589yuXznzp3K1agErEn7jdGMgDtjLDOTKYKDd+8yHR0mlTJVNgn5oilTphBR586dVbR/RTvBnTt3qmgIwHEFKsVzRmxtbXnXNX5ywyPveWaGyuVynjbSoUOHfFbzVA9hW/jmadCgQUSkfGcICi81NTVHIL5Zs2b8HSA3fsWVI6lEPXgrjbxqPIDIsrKyxo8fT0S6urrKwce3b9/yy7y+fft+5sf9/FitWtmx8pYtWYELm4eGMldXZmnJGjVy5oerlZWVq6vrpxKyjh49amRkRERt2rRRRa9LULPMzEzlku65owPp6el+fn729vba2tr8abzKfESBWtWlpqbyQg2589k/lQJfeOfOnZNIJLq6uplC1/wFhdjYWF1dXW1tbXHfFlJSUlq3bk1ELVq0+FR4NCUl5fLly2vXrnVycho8+LW+fs52qZUqMVtbNmcO27uXPX7MJk9mTZsyRWMmHnAHEfGAe2Yma9CAHT7MatRQbW2fc+fO8QXNLVu2fKlYO5aX1NRUPz8/BwcHRYKzlpYWvzGZZ0d0uVx+4cIFZ2dnMzMzxRnjmTNnUE07m1zO+vRhnTszd3c2cyarUEGd60pSU1PHjh3LP62cnZ0/FTrPkdJubm5e4M9Hf39/vjSnTp06BY7G5tnKNc88fV4XztTU1NDQcNOmTQUbDr6I90BS7tl29OhRAUv28wg+KVVcAAUNCLinp7Nbt9jNm0yxIsbWlhExJydRp6Xy4+bXX3/l14r4PFMJHFc4rtQoNjZWuWi7csBIOUNk6dKlRGRsbBypecU1hGrhmydFTTcNfOHfpPj4+Bs3buzfv9/d3X3KlCn9+vVr1KgRL00jykI/XmkEjXI1k1wu52tLtbS0lEsxJCQkjBs37lMVik6fPt21awYPDNWuzXx9BZiJTMbOnDnr5OTEl6nyW5idOnVav359bGys4mkeHh486jpkyJDceVJQdG3bts3AwICI2rdvrwiY3r1718XFxdTUlB8Senp69vb2fn5+hb9p7e7uriiSq1z1+zMp8AXAUw551dqyZcuuW7eukDuEz+vduzcRrVmzRqwJyGQyXq3LwsLi84FRZZmZLDSUeXszV1dma8vKlfso+F63Lps8mf37L2vUiB08yBgC7hqAB9wZY2fPMisrVq2ayovpP3jwoFatWvzQ+lQk9MCBA4orES0tra5du27YsEH5A1RZaGioq6trzZo1FVcu1apVc3Z2/mJtrmJHLmenT7OVK9nu3Szff9QC8vDw4KldHTt2VH5X4Z8vfJkyfX1K+6fcv3+f79PQ0ND3a07v8p/Szhg7c+bMyJEj+dINIpozZ45G5aJ9Y3L3bBOWqjNKizSxA+7797OKFdmAAWzAAGZuzvbtY4yxW7dY//5qqI31RapbGSFUt0zIG44rHFcieffuHc8rMTQ0zBF537Nnj56enkQi2b9/v9jTzIPqDh5FTbf58+cLu2f4KoGBgRKJREdH5+rVq2oemufuYYmhJnN1deXX5+vXr//8M+/cuWNvb09EHTsGlC/P3N2Z4Am7WVlZgYGBDg4OisCBnp6era3t5s2bp02bpkhMxn3lb8+FCxf4Gp3KlSv/73//471MuUaNGq1cuVLYTuNHjhwxNjYmotq1a99VqgTxmRT4fJLJZMeOHRs2bJiicki5cuWmTp2aZ4YpCGjbtm1E1KFDB7Em4OzsTEQmJib37t0r8E7kcvbwIfP2Zr/9xnr2ZD//zCZPZqtXs7NnWc2aLCUFAXfxKQLujLHRoxmROrrXvnnzhveINjY2PnXqVO4nREZGSiQS3jv6U4tWnzx54u7urhwVrVSpkrOzc1BQED5VNda5c+cUH46XLl3iKeT8FnUhU9rzlJSUNGTIkPx/CPL5KM7ZeCvXPFeJFbLuDRSYu7s7fdyzTSi5ayaDMlED7q9fs9KlP9T3uHKFlS/PPnEPVhSqq/2v0mTS4g7HFY4rDfDu3TtfX98RI0aULl2alPys3FRAw6hoecSaNWuIqGrVqvmvOwkqMnnyZH4HSM15wVpajIghc0XDubm58YurZcr9wZQ8e/Zs7NixPCm4dOnSf/+9VNWNQhISErZs2dK9e3c+KBHp6Ojo6enl6EQN35Lnz5/zODtP6DMyMnJyclJd848HDx7wVD4TExPlTga8mi0/8ObNm5f/HT5//tzNzU3RJFNRZR6rMdQjMTHRwMBAIpGouTc4t3z5cn7oCt7GmQfcGWOOjuyvvxBwF9/atUwR8X71ig0ZoqZGNampqUOHDuWH2datW3M/4VNx9ufPn7u7u1tbWyva/5iYmPDWqcgsLhJevHjRtm1bIlJkhWtpadna2qruN6jc1+RT6yTevXvHu/7wE8iuXbt6eXnlp5Wr4DcJ4PMUPdv++ecfYffM2+1OnDhR2N1+MySMMRLL3r20ejUdP/5hS7du9OOPNHiwaFPK5dSpU126dClRooSLiwsvGFp49+/fX716taGhYXh4+KeK7ULB4bjCcaVJ0tPTAwMDfX19o6Kihg4dOmLECMV5kqZJSkqqXbt2dHS0o6MjX/9eeKmpqYsWLYqPj9+zZw8v4w4iSktLa9GiRWho6LRp03iBIzWQy+Vly9aUSCSxsY/UMyIU2Jo1a37++We5XO7i4sLj71xSUtLSpUsXL16cmpqqo6MzduzYP//8k5e6Vo+XL196eXn5+Ph8//33tWrV4il+8K1KT0/fv3//06dPzc3NBw0apEjiU5Hk5OTRo0fv3btXS0trwYIFM2fOVASkjh496uLicuzYMUVNm8/M2c/Pb+vWrUeOHMnKyiKiypUrjxw5csKECdWrV1fp/CEHe3v7PXv2LFmyZPr06eoc9+DBg/369ZPL5Z6enrwftYCcnaluXZo4kV6/pubNKTOTjh2j90miIIItW6hpU3ofaaSVK6lvX1LP3zpjbN68efPmzZNIJH/88Yerq6viLSu32NjYgIAAHx+fw4cPy2QyIjIyMurbt6+9vX3Pnj0V/VShSMjIyJg2bZqhoeHWrVsdHBzU8Ply9uzZIUOGvHr1qmrVqr6+vrzeWg5du3YNCQmxt7d3dnauV69eju/Gx8d7e3uvWrXq9u3bRCSVSrt06eLk5NS/f38cfmp24sQJGxubEiVKzJo1K0dGYIGFhYWtX7++TJkyDx484GWTIScxo/3u7mz06I+2jBvHli4VZzKfNmTIEOU1rYJo3br1okWLxH5l3ygcVwAFtWHDBt4pUUDNmzfv3r272K8MsgUHB+vq6kqlUsHz7z4lLS2NiPT09NQzHBTStm3beIX0mTNnMsbS09N5Pysikkgk9vb2D9SwbB5AvXg+u1QqJaJhw4Ypr8f64lL6sLAwFxcX3iSDBK0yDwXj6+vLzz3UOei1a9d4OQUVVc9TZLgzxlatYkTIcBeZnR3z9v7wsFkzdbbSZEypncno0aNzJxTHx8d7enra2toqYpr6+vq2traenp7Jql6bBioml8vV+fny7NkzHrLQ19fPs6/ps2fPPpPSrrq6N1AAAwYMEDwA1apVq+XLl4v9yjSXqBnuu3bRzp3k7/9hS9++NHQojRwp2pTywhgLDAw8ePCggPv86aefvvvuu8/cjoaCw3GF4woKijH24sWLf/75R8B9du7cuV+/fjgsNcdff/31xx9/VKpU6fbt27x+sUolJycbGhqWKlUqKSlJ1WOBILy9vUeNGpWZmdmlS5dHjx5FRkYSUZcuXRYtWpRnchPAt+HgwYMjR45MSEho1KjR/v37P585mJiYuHv37q1bt54/f55vsbKycnR0HD9+PJK8xJWWlmZmZpaQkBAeHv7dd9+pYcQnT560bt361atXY8eO3bRpkyqGOH+ejI3JyoqISCYjT0/q35/et5cGEfTtSw4OZG+f/bB5c1qxgtS8+Oro0aP29vZJSUldunTx9fUtU6ZMWlpaYGCgj4/P3r173717R0RaWlqdO3d2cHDo37+/UDmtUNykp6dPnjx5/fr1ROTk5PTvv//ymm95iouL8/Hx+ffff0NDQ0kppX3AgAH8FhGIiDF25MiRI0eOCLhPZ2dnS0tLXOl/iqgB98hIatqU7t0jnhXy5g3VqUPXr1O1aqJNCb4BOK4AAD4tKyurQ4cOFy9eHDVqFO8vp1JxcXEmJibGxsaxsbGqHguEEhAQYG9vb2Rk9OrVKysrq7lz59or4goA36779+/379//7t27ZcuW9fLy6tq1a+7nBAcHr1u3bseOHTyeZWRkNHTo0B9//FGoUmxQeKNHj966deuff/45Z84c5e0LFy5MTExs2rRpkyZNatSoIUiAIDExsV27drdv3+7UqdPRo0c/E4eCb0nfvlS7NrVpk/1w5kzy9FR3wJ2Irl27Zmdn9/Llyxo1ajRs2DAwMDA5OZmIpFJpx44dhw8fPmjQIBPcmQEhbN26dcKECampqe3atfP29s5dwJZ/OG7bti01NZWIzM3NHR0dUVcNijlRA+5EtGABbdtGEycSEa1ZQw4O9PvvYs4Hvg04rgAAPi0iIqJx48ZJSUm7d+/m3bdU5/Xr1xUqVDA1NX316pVKBwJhXbp0qUSJEjdv3hw5ciQvtQFQHCQmJvJGgtra2vPnz3dxceHbo6Kitm3btmHDhocPHxKRVCpt06aNo6PjqFGjFF3gQEMcOXKkV69ederUuXv3rvL2WrVq8V8fERkaGjZs2LBevXpWVlbNmjVr0aKFnp7e1w6UmZnZu3fv48ePW1lZnT9/vkyZMoLMHzRf374klVLt2tkPt26lPXtECLgT0YsXL2xtbV+9ehUdHU3vl9o4ODhUrFhRhNnAN+369esDBw6MjIysWLGij48Pb+LKU9pXrlwZFhZGSGkH+JjYAXciCg6mixeJMbK2JuSGgFBwXAEAfJqHh8fMmQtatz65eXNNlV6UPX/+vEqVKpUqVXr+/LkKhwEAEAhjbN68eX/++SdjbMSIESNGjPD09Ny3bx/vhlqpUqVRo0Y5OTlZWlqKPVPIW1ZWVqVKlV6/fn3z5s2Gir6WRH5+fsHBwSEhISEhITk+kvT09Bo0aMCT35s0adKgQYMv3kdhjI0dO9bT09Pc3PzixYvVsJS2ONGEkjIKCQkJb9++3bt37+DBgy0sLMSZBBQPb9++HT58+PHjx7W1tceOHZuQkLB///6MjAwiqlKlyvjx48ePH1+5cmWxpwmgKTQg4A4AAADqxRgbNSp1584SPXrQ4cMkSOU9mUx28eJFf3//mJiYDRs28I2PHz+2tLS0sLCIiIgQYAwAALXw8vIaN25camoqv1bS09Pr16/fuHHjunXrhjUfmm/ixIlr16797bff/v777zyf8ObNGx55v379ekhIyKNHj+RyueK7WlpaderU4cH3du3atWzZMvce5s6dO2/evBIlSpw8eVLwNnSg4TQq4A6gTllZWS4uLsuWLTMzM3v58iVS2gE+AwF3AACA4ujNG2rQgF69on//pZ9/Lvh+UlJSTpw4ERAQ4O/vz1c0a2trv379mndkvX//fu3atb/77rvw8HChZg4AoAY3bty4cOHC/v37+/TpM2rUqLJly4o9I8ivs2fPduzYsVKlSnfv3jU0NPzi85OSkm7evHnnzp2wsLDg4ODg4OC0tDT+LQcHh61bt+Z4/u7du0eMGCGVSn19ffv16yf8CwDNhoA7FHP79u3T19e/du3auHHjKlWqJPZ0ADQUAu4AAADF1IED1L8/6evTtWtUr97X/ezTp3TwYNaBA3anT59KT0/nG2vVqtW3b19bW9t27drxPJewsLD69evXq1cvNDRU8PkDAADkJpfL69Wrl5iYGBUVZW5u3uy9li1bVqhQ4Ys/np6eHhoaylPgO3TokKPZydmzZ7t3756enr5y5crJkyer7EWA5srIIG1tUqx1SU8nHR3C0hcAAFCGgDsAAEDxNW4cbd5MTZvSpUuko/Pl54eFUUAA+fvThQvEGNWv3+bOnStNmjSxtbW1s7Nr1qxZjuffuHGjSZMmjRs3DgkJUckLAAAAyEUul9vZ2R0/fpzXF1aoUqVKEyVVq1b9qt3evXvX2to6Li5u2rRpS5cuFXTKAAAA8O1AwB0AAKD4Sk6mJk3o4UP64w+aN++TTztxgry8KCCAoqOztxgaUs+eZG8f2qWL+acqLdy7d2/16tX//vtvixYtrly5ooLpAwAAfFJWVlZ4eHhwcDAvF3Px4sWYmBjlJxgZGdWvX1+RAl+nTh0tLa1P7e3t27dt2rR5+PChra3t/v37P/NMAAAAKOYQcAcAACjWzp+njh1JIqGgIGrdOu/nODnR+vVERNWqUY8eZGtL3buTnl4ez+StU3lJ9zt37hCRubn5yZMn69Spo7qXAAAAkB9RUVHB7127du3ly5fK3y1VqlTt2rWtrKwUIXgDAwP+rdTU1C5duly6dKl58+anT58uWbKkGNMHAACAogEBdwAAgOJu1ixatIgsLenGDcqzvdy5c3TmDNnaUqNGee8hISHhyJEjfn5+hw8fjouL4xvLlSvXu3dvOzu7gQMHSlHcFAAANMzz589DlERGRip/V1dXt169erww2oEDB06cOFG9evVLly7lpxA8AAAAFGcIuAMAABR3GRnUqhXduEETJ9Lq1V/xgxERdPLk6d275589ezYzM5NvrFu3rp2dnZ2dXZs2bbDiHgAAioqEhITbt28rUuDDw8NlMhn/VuXKld+9e3f+/Pm6deuKO0kAAADQfAi4AwAAAN25Q0OGkIcHWVt/4ZlyOYWEkL8/BQRQcDA1bXr8+vVuWlparVu3trOz69u3L4IRAADwDXj37t2tW7d48nufPn1q1KjRoEEDsScFAAAARQAC7gAAAEBExBj98AOlptKOHdlb6tWja9eIF7B9946OHSN/fzp4kF6/zn5CmTJka5vRu7dvz549jY2NxZk3AAAAAAAAgMbQFnsCAAAAoBEkEnr5ki5dIl9fGjSIiOjxY4qOpmPHyM+PTp2itLTsZ9aoQXZ2ZGdH7duTjo4u0XARpw0AAAAAAACgORBwBwAAgA/+9z+aMYO6d8/unnrwIDk7ExFJpdSsGdnakp0dNWsm7hwBAAAAAAAANBQC7gAAAPBBvXrUrx/NmUPu7kREvXrRwIFka0u2tlS+vMhzAwAAAAAAANBwCLgDAADAR/78k+rVo3HjiIgqViRfX7EnBAAAAAAAAFBESMWeAAAAAGiW0qVp0SKaNk3seQAAAAAAAAAUNQi4AwAAQE4jRpBcTqmpYs8DAAAAAAAAoEhBwB0AAACyNW5MZctmf/3ff2RjQ1paok4IAAAAAAAAoEiRMMbEngMAAAAAAAAAAAAAQJGHDHcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAokp4+pXv3Pjx8+JAePxZvNgAAAAAAACCEly8pOvrDw2fP6O1b8WYDAF8PAXcAgCJp715aseLDw/Xrads28WYDAAAAAAAAQli9mlat+vDwzz9p927xZgMAXw8BdwAAAAAAAAAAAAAAAWiLPQEAACigrCxKTs7+OjNT1KkAAAAAAAAAAAAC7gAARdf+/XTtWvbXUVE0aZKoswEAAAAAAAAhrFlD3t7ZX79+TY0aiTobAPhKKCkDAFBUDR5MISHZ/8aMEXs2AAAAAAAAIISJE+nBg+x/Q4aIPRsA+EoIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAAaCGOwBAkdS374eOqUQ0ejRp4x0dAAAAAACgiBswgBj78HDMGDIxEW82APD1kOEOAFAk3bhB3brR/fvZD9etowsXRJ0QFEFyuVzsKQAAAAAAwEfCwmj0aHr7Nvvhzp305ImY8wGAr4WAOwBAkZSRQdra9NNP2Q9TUig9XdQJQdERExOzdevWIUOGWFlZzZgxIywsTOwZAQAAAABAtoQEevmSfv01++GrV/TunagTAoCvhIA7gPgePKDNm0mRaXr6NIWHizohKCK6dCHGaPt2secBRUR4ePjixYutra1NTU1Hjx7t4+Nz//79pUuXduzY8fLly2LPDr4pcrn8/PnzAQEBqampYs/ly44fp5iY7K9jYyk4mF6/ptDQD094/vzDciIAABBdenr6jh07xJ4FgGoNGUJXrtCZM2LPAwAKBAF3APFdvEjjx9P69dkPPT1RGwTya+VKmjWL4uLEngdoKrlcHhwcPHfu3ObNm9epU8fFxeXChQu6uro2Njbu7u6PHj0aNGhQTExM165djx07JvZkociTyWTnzp2bMmVKlSpV2rVrN27cOEtLy1u3bok9ry/o1u3DaqEbN+jXX+nkSZoz58MTfHzI3V2MmQEAQC6MsZ49e44aNWrTpk1izwVAhXR0yN2dfvqJMjLEngoAfD202APQCD170oIFNGAAmZqKPRUoUurVo+HDPwoMARBRWlrauXPn/P399+zZExUVxTcaGxvb2NjY2tr279+/dOnSfKOXl5eTk9OmTZvs7Oy2b99ub28v3qyhqEpJSTly5Mi+ffsCAgLi4+P5RktLy5IlS96+fXvEiBFXr141MDAQdY6fo61Nz57RkSPUs6fYUwEAgC+RSCROTk6nT5+eNGlS48aNmzZtKvaMAFSlWzeqX5+WLxd7HgDw9RBwB9AI5ubUrh1Nn07btok9FdB4797RpUsfHrq6UoMGVLkyNWtGSUlkaCjezEBssbGxJ06c8Pf3379/f1JSEt9YrVq1Hj162Nra9uzZU0dHJ8ePaGlpbdiwwdjYeOnSpcOHD4+Pj//hhx/UPnEokuLi4o4fP+7v779v377k5GS+0crKys7OztbW1traOiUlpXnz5mFhYbNmzVqxYoW4s/285ctp1ChSzsWXyyktLfvrrCxRJgUAAHkbPnz46dOn161bN3To0GvXrhkZGYk9IwDByOX07NmHh8uWUatWZGlJRBQbSyYmYs0LAL7ON1hS5uZNMjGho0ezH/77L/3xh6gTAsif6dPpyhU6dSr74YMHJJOJOiHI0+7dNHYs2dnRrFn0/Ln6x790iZo2pT59PpyHlSpFixfTuXOUnk5t2pCjIxWFmskgpMePH69YsaJbt25mZmZDhgzZtm1bUlKSlZWVq6vrtWvXHj9+7OHhYWdnlzvazkkkkiVLlri5uclksh9//HHx4sVqnj8ULW/fvt26daudnZ3ieEtOTubH2927d8PCwtzc3Nq1ayeRSEqWLLljxw5dXd1///3X399f7Il/TqtW1KEDLVjwYcvp09SiRfY/ZJYBAGialStXNmvW7OHDhw4ODowxsafzbdq1iwIDs79mjBYtEnU2xcOzZ9S1K7VrRykp2VsqVaJffqGgIHr3jpo2JUfHD98CAE2mQRnujDGJRFL4/WRlkZ4eTZlCISFkYEBpaYg9QdGgp0f//ktTplCjRsQYde5MaWk0aBA5OJC1NQnxxwGFtnAheXvTsmVkZkb79lHbthQaSu9Lc6haRga5utI//5BMRo0bU6VKpK+f/S17e5o+nTIy6NEjCguju3fJx4eqV1fPvEA0YWFhPj4+AQEBwcHBfIuWlpa1tbW9vf2gQYMqV66c50+Fhob6+fkZGxtPnDhRebuLi0vp0qV//vlnFxeX2NjYhQsXCvKhDN+MJ0+eHDhwwMfH5+LFi3K5nJSOt8GDB1eqVCnPn2ratOmCBQt+/fXX8ePH37x509zcXL2z/gqLFlGjRlStWvbDLl1o377sr5cvpwcPxJoXAADkQU9Pz9fXt1mzZv7+/suWLZs+fbrYM/oGrVtHN2/SnTtkZkaM0axZ5OIi9py+ab6+5OREsbFkbk7a2vTdd9nbp0yhq1fp1St69Yq2baObN8nLi+rUEXWuAPAlEg25G5yYmHj06NEhQ4YQUZkyZSQSiZGRkVQq5f8tXbq0lpaWoaFh9er94uNH6+hQqVKko0MlS5KuLpUoQXp62f81MKAyZWjGDGrWjIyNaf58+ucfev2a/vlH7FcIkBe5nB4/pvPn6cwZ2riRiGjIEDp2jGbPpg0bKDw8+2m1atGIETRixIcPXRBBVhaZmNCVKx/ObkaOpIYNycWFFi+m+/dp5Ejq2JGkKlk5FBZGDg4UEkJaWjRjBs2bR3p6eTztxg0aPJgePaLSpWnzZho4UBVzAZGdPHnS29vbz88vOjqabylTpkyvXr369+/fs2fP0nndAZLJZDdu3PD39/fy8rp37x4R1apV6/79+7mfuWvXrtGjR2dmZo4ePXrDhg3a2hp0Yx5EERYWFhAQ4O/vf/78eb5FX1/fxsbGzs6uf//+pnk1HklLS0tJSTF5v+aZMWZra3vo0KHu3bsfOXJEA2/k6OhQZiYR0bp19NdfVKsWOTmRl1fOgPvq1SLOEQAA8hAQENC3b18tLa2TJ0+2b99e7Ol8azp3JjMzIqJdu0guJy0t0ozo0TcoNZVmzaKVK4mIevSgLVuy/8/nEBZGw4ZRaCgZGNDChTRlipqnCQBfg2mGyZMn52e2HTvOImKf/7d/P2vVir19yypWZHfusMWL2YwZYr88gLykprLhw1nZsmzxYjZuXPbGqChWujTbtIkxxkJDmasrq179w+FtZcXc3FhUlIizLsYePmTly3+0Zc0aNnw4k8tZjRrZv6FKldj06ez6dQGHlcmYuzvT02NEzMKCnTnzhecnJLDBgxkRk0iYszPLyBBwLiC+8+fP9+rVi38mVq1a1cnJyc/PLz09Pc8nJycn+/r6jh49uly5copP0vLly48bN27//v1yuTzPnwoICChRogQR9e/fPzU1VZWvBjSUTCa7du2aq6tr7dq1FUdOyZIlbW1tPT09ExMT8/ypd+/e+fn5OTg4lC5desqUKcrfevnyZYUKFYho2bJl6ngBX0lbO/sLmYy1bs06d2a7drH+/T88YdkyNnEic3FhEyawceNYZqYo0wQAgDzMnDmTiMzMzKJwjSSc+HgWE8M6dWKnTrH69dnRo0wmYxoTPfrWXL3KvvuOETF9febuzj5xhp4tJYX98EP2pefgwSw+Xl2zBICvpBEZ7teuXWvdurVEIrl27VqjRo3i4uKIKD4+njHG/5uQkCCXyxMTE7W1a799Wy8ri5KSKCuLkpMpM5PevaOMjOz/pqTQ1Kk0ezZdukQbN9KuXdSjh+ZmuO/Zsyc5OblkyZI6OjqlSpXi/9XW1jY0NNTS0ipdujTP8Rd7mqASL19Sv3505QqVKUO7d1PTplS+/IdvlSz5ofWlTEanTtHOnbR3LyUkEBFpaVHXrjR69BFb27Z5ZrOCSty5Q9260YsXH7Zs3kz+/rR3Lz15Ql5etGkTKVKG69alIUNo5EiqVaswYz55QqNH09mzJJHQDz/Q0qVUqtSXf4oxWrmSfv2VMjOpY0fatYs0uIoDfJ3OnTufPn162LBhM2fObNKkSZ7Pefv27aFDhwICAg4fPqxoZWlhYWFnZ2dnZ9epU6cv5q1fvny5d+/esbGxXbp02b9/vyFa8RYnv/766/bt21++fMkfmpmZ9evXb8CAAZ07d9bV1c39/Ddv3vj5+e3bt+/48ePp6el8Y79+/fbv36/8tMOHD/fp00dXV/fSpUuNGzdW7WvIt7NnqXJlun6dBg/O3vL4MT19SjVq0PPn1Lp19saHDykpiYyMyNKSpkyh77+nBg3EmjIAAHxEJpP17Nnz+PHjnTt3DgwM1NLSEntGRUlmJj17RhER2f+ioig6OvvrX3+lq1fpr79IJqMffqCbN6lECWS4C4xftc2cSRkZVK8e7dxJDRvm6we3bqVJkyg5mb77jnbvpk9cEwCAmMQPuMtkspYtW16/fn3WrFkLFy4s/A6Dg2nSJLp0ieRyateOdHSoZUuNC7jHx8cPHz783r17T548+eKTJRIJL7NTpkwZIjI2NqaPC+/wkjvm5uZz585V7bxBIKGhZGtLkZFkYUEBAWRlla+fSk+nY8fIx4d8fcnYOCsqSk9PT9fGxsbR0bFfv355xkFASKmpVKYMvXhBimThX34hAwP6++8Pz7l8mXbuJC8vevWKiEgiodatacSIxCFDSudVeOEzGGMbNmRNm6aTnEyVKtGmTdS9+9fN9+xZGjaMoqPJ1JR27qSuXb/ux0EDZWZmlilTJjU19dWrV+UV9+jei4iI8Pf3DwgIOH36dFZWFhFJpdImTZrY2tra2dk1a9bsq8YKDQ3t0aNHVFRUixYtDh06pJwjL6DExMQjR44cPnzYycnJwsLCLM/Vs6BGBw4c+OOPP27dulWtWrV+/fp95g7Ns2fPDh8+7O/vf/To0czMTCKSSqVt2rSxs7MbOHBgrbzuNU6aNGn16tV169a9du0aX0UhrqgoatyYMjLo4kWqWzdfP5KVRf36kbc3lSyp4skBAEC+vXr1qmnTplFRUbNnz/7rr7/Eno6Gio6Ofvz48ePHjyMiIp48efL48fpHj6QvXpBMlseTS5SgH3+kkBD66y9q144cHalOHfr9dwTchfTyJY0ZQ0ePZmdWubuTgcFX/Hh4OA0bRjdukJ4eLVpEzs7o+gagYUTNr2eMsWXLlhFRtWrVkpOTBdnhtWusVavsr2/dYtramlhShreqq1at2ujRo+3t7fv162djY9OhQ4dmzZo1bNjQ0tKyatWqxsbGX5W8bGJi0qRJk+joaLFfHHzB0aPMyIgRsdat2atXBdlDbCzbseNep06dpO/LhZuYmPz4449nzpyRyWRCzxeUODiwESNYWhpjjF26xMqXZ0+e5PE0mYwFBTEnJ1a6NCOSlStXUk/P2traw8PjU6UYcnj58qWdnV27duuJmL09e/u2gPONjmYdOzIipq3N1q4N/lQJESgqrly5QkS1a9dW3hgREfHrr79+p9ThQV9fv0+fPuvWrSvkJ0JERESNGjWIyMrK6vnz54Wb+0dev37t6elpa2ur974XgaGhYY0aNSIiIgQcBQrA3t6eiBYvXvypJzx69Mjd3d3a2lpRip23TnV3d//iWv7U1NSGDRsS0YQJE4Se+FeTyVjXroyI9ejB8vnJmZ7OfvmFnT+v4pkBAMDXO336tLa2tkQi2b9/v9hzEd+zZ8/279+/fPnyyZMn29raWllZGeQK5ZqbP+VlSYyNWbNmzN6eubgwDw8WGMgePcr+ZOzUiQUFMcbYy5esShWUlBHSnj17evVaRcTMzNiRIwXcSWoqmzgxu7zMlCkXY2NjBZ0jABSKyBnuUVFRVlZWCQkJ/v7+tra2guzz6VPauZNmzcp+uGYNGRnRiBGC7FsYV69ebd26tba2dkhIiFU+cpvlcjkvqpOQkMAYi4+PJyLlwjv8u2vXrg0JCZk4ceJqdPXSYOvX06RJlJlJ9vbk6fl1N7Fze/HixZ49e3x8fBS97CpXrjxw4EBHR8evzWaFfHn3jqZNo9OnSSajsmXpzz9JS4u2bKERI6h7d8qdBJqaSn5+N8+da7luXUZGBhGVKFGiX79+I0aM6NGjh46OTp6D7N69e9KkSbGxsWXLlt248X6/fiaFmbJMRn/9RXv3Xg4P79CzZ88tW7bwVTJQFK1YsWLq1Kljx47dtGmTYuPVq1dbtmxJRCYmJl27drW1te3fv79Qxaaio6N79Ohx+/bt6tWrHzt2LM+05fy7ffu2n5/fgQMHrl27xk8/tLS02rZta2Njc+DAgevXr5uZmR05cqRRo0aCTB4KYPDgwb6+vnv27Bk0aJDy9rCwMB8fHx8fnzt37vAtBgYGXbt25UkD+S9/FxYW1qJFi9TUVG9vbx7cF8u8eTR3LlWoQDdu5N2XLIeMDOrUiWrVIisrGjiwkNXCvk1yuTw2NlZFq2EKiTH27NmzYcOGCbjPdu3azZgxI8++wVCEvH79+ueff37+/LlQOzQ1NV23bh0ODFEsXLjwf//7n7GxcXBwsIWFhdjTEc2FCxe8vLxW8v6bSsqVK2dhYWFpaWlhYWFhYVGrln3VqsZVq9InrkiIiDp3zs5wJ6JVq2jyZGS4C+Ddu3dTp07dsGGDjo6Og8MtN7c6uZatfp09e2jlyrcXLlSqWLHCrl27rK2tBZrpR9LS0m7evHnt2rVRo0YZGhoqMv+gqMPnoAqJGu5n/fv3JyJ7e3vFlid5posWwvbtrGJF5ucn7F4LLjMzk1fd/f3334Xd871797S1tXV0dO7fvy/snkEQWVnMxSW7laWLy0f5dJ/od/gVQkND//e//1WvXl3xp92qVSukM6vDyJHZSQUmJszBgQUG5tnmJi4ujufzKspKGhsbOzg4BAYGKv+a4uLiHBwc+BN69OghYE6xv/9hXpOqZs2aN27cEGq3CtHR0UeOHFm0aNH333//8OHDrKwswYcAxtiQIUOIaP369cob5XL57NmzT506paL/7bGxsW3atCEiMzOzAhw8WVlZQUFBLi4uyu03DQwMbG1tPTw8FDnRycnJ3bp1438a55FCLJ6BAwcSka+vr2LLoUOHqlatqvjdlS1bdsyYMX5+fgVuqLtixQr+i46MjBRo1l/t7FmmpcWkUnbsWH5/RCZjjx5l/3v3TpWTK5rC/8/encfVlP5xAP/edi0IoSLKnl327LJnnzAIYwnDhNkyv2HCmJEZRmPGEsPILnt22bMrRJKlaNFKpX279/n98eS4iiY6956Wz/vlNa+5p9t5njvu3HPu9/k+3++jRzY2Nj169JB6Iu/n6ekpes8bMzMzY2Pj+Ph4qV8cfLo7d+7o6emJ2zHLyMhIV1f3xo0bUr+48kihUPDwQrt27TL5htRyicdb27RpM3v27JUrVx48ePDu3btF3GWbz4sXTLja5+aykBDm58d++UXM2ZY3fn5+fFuqnp6eu7u7WF/Yw8LC+N+7lpaWq6urKLvec3JyAgMDPT09nZ2dbW1t9fT0+Kdcq1atZs6cWfzzQ0mA66BKSZnhfuLEiYEDB1asWDEoKMjc3JyIXr582bhx4/bt23t5eRkWpTNgEfz5J82dS82a0d27VBIaqKxYseK7776rW7duYGCggdgVQKdMmbJ58+bRo0fv3r1b3DNDMaWmpo8dW+HIEZmuLv3zD40fn3ecMfrtN9q/ny5cIFHq2fr7+2/dunXHjh1GRkbdunXz9PQU4aRQiIgIOnCAtm6l27fzjtSuTcOH06RJ721eEx4evnv37h07dty7d48fqVOnzuLFiydOnHj69OkpU6ZERkbq6+v/+uuvzs7OMlHr8IWHhzs4ONy8eVNPT+/PP/90cnL65FPJ5fKwsLAHDx74vxEdHS381MjIaNKkSQXTaqD4ateuHRkZGRQU1KSIBadFkpaWNmLEiNOnT1euXPno0aNFSZzJyMg4c+bM0aNHDx8+HMtbGhBVrVp14MCBgwcPHjBgQMGrfFZW1vjx4/ft22dgYLBv377+/fuL/0rgvwwfPvzQoUMHDx7kMQsiunfvXsuWLU1MTPr37+/g4NC/f/8P7c4pIsbY0KFDjxw50r1797Nnz6q/u11iIrVuTWFhtGABodKvWJKSkho2bBgfH793797PhBa0JUNqamqjRo2ioqIWLlwo4gfL/PnzfX19sbW0VOvRo8fFixfHjx/Pq32KYuPGjVu2bOnYsePVq1fFvZGDokhMTGzbtm1oaOisWbP+/vtvqacjgYCAgFatWlWuXDkyMlL0aENiItWtS8nJtGcPjRol7rnLPsbY6tWrv//+++zs7KZNm+7cubNFERukFk1ubu7SpUt//vlnhULRq1ev7du3m5qaftQZ5HJ5cHCwn5+fn5/frVu3AgICMjMzhZ9qamo2adKkdu3aZ8+ezc7OXrFixTfffCPi/EESuA6qllSR/rS0NL7P66+//hIOTpw4kYj69u0r4kBZWczKihGxLVtEPOsnCgsL4yGGo0eP5vtR1apV69SpY2Vl1apVK54iZGdnN2zYMAcHhy+++MLJyWnevHkuLi5Llixxc3NbvXq1h4fH1q1bL168qHwSHqqTyWR8tz4U4tEjNn3629LYhw+rcBvEixcvbGxsevT4qUoVduHC2+OZmXnp0Zqa7PhxMUfk0U8jIyOUdFefgAD2/fd51Q35n1at2O+/Z34gS/3Bgweurq7169cnon/++UcIr3fq1El1m1QyMzOdnZ35h7+jo2NakbM0k5KSLl269Ndff02dOrVt27ZCgoOgUqVK3bp1++qrr+bPn89/unr1ahW9inKLN9k2NjaW5P/rrKwsHkTT19c/ceLEh54WHx/v6enp4OCg/B3PysrK2dnZx8cnJyen8FFyc3OnTJlCRDo6Onv27BH7RcB/Gzp0KBHlK4Dr5+cn7papuLg4/iXQzc1NxNMWhULBhg5lRKxDB5adrebBy7h169YRUe3atYt+cVGPH374gYg6duwo7ts4KChIW1tbU1NTFfvGQA327NlDRCYmJomJiSKeNiUlxczMjIi2bdsm4mmh6O7evcvrlW/dulXquUiAp9TMnTtXRef/+29GxAwNWVCQikYom2JiYviKr0wmc3JyUt2F8syZMzVr1iSi6tWrF3LHLnjx4oW3t7erq6u9vX3BuqOmpqb29vaurq7e3t5Cgfg9e/ZoaGjIZLLy+b9YWYLroKpJFnDnq2Ft27YVtsBfvHhRJpPp6uoGBweLO9bWrYyI1anDJN9YNmTIECL6/PPP8x3Pysr6tPWSgQMH5jvVt99+K/qiRZl04QLT1maTJ+c9/Okn5uqqkoH8/f35x02jRo2ePn3bGfjVq7xuloaGKon180GfPn0q/qmhELxdqrMzq16dh92HNmjA2wnGxcUVfLpCoVi1ahW/K+IbANVQjGXbtm08GNqqVasnT5689zn83svNzc3R0dHa2rpgkT5+++Xi4uLp6RkYGKgcAt6zZ49MJtPU1Dx8+LCqX0u5snPnTiIaNGiQVBPIzc2dOnUqj4bv3r1b+UdCI03hraKhoWFjY+Pq6vqxC8AKhYJfyDQ1NT08PER9BfDfBg8eTETeqq/Ed+rUKZlMpqWldf36dVWPpWzVqrwGcc+eqXPYckEul/P+MT///LPUc3krNDRUT09PJpOp4p02Z84cIurZs6foZwZVy8jI4JUYVXGh+ffff4nI3Nw8JSVF9JNDUfD1PwMDgwcPHkg9F7VKTk42MjKSyWSiR1SUOToyItasGUtN/e8nA2PswIEDVatW5UHwgpmXoouNje3bty8P7js7O2e/m1+gHGEv2HZFOcJeSM2033//nX8j8PHxUfXLARXBdVANpAm437t3j6eE+Pv78yNZWVl8g/zSpUtFH04uZ61aMSK2apXo5/4I+/fvJ6KKFSu+ePEi3494m6lnz56FhITcvn3bz8/v3LlzPj4+Bw4c8PLy2rRpk4eHx8qVK93c3BYsWODi4jJ79mwnJ6dx48b99ttv+U6VkJBQpUoVIjpz5oy6XlmpdOEC696dNW3KLl1iTGUB9+PHjxsZGRGRra2t8hXryRPWqBEjYubm7M3/BCIbOHAgEe3bt08lZ4f/lJXFDh9Omj69wpvGuLq6usOGDfPy8kpPT2eMRUVFrVixokePHsrbrEQs2l64hw8f8o7NRkZGXl5e2dnZvEKfi4uLvb29SYHGPdra2tbW1o6Ojm5uboXffnGLFi0iIkNDwzt37qjlBZULs2fPJqJfJC2cqVAovvvuOx4NX7dunZ+fn6urq3J9Gz09PTs7O3d394JXukJcvnx53rx5yss2bm5u/HuCq4rWQuEDeAf7I0eOqGGsuXPnElG9evU+rbDsJ/DzU+jqMpmMHTyongHLHV9fX5lMpq+vL2GB/nx4W4IJEyao4uRCk1jltgdQKixZsoSIWrZsqYpEB4VCwZuZL1iwQPSTQxHxrfONGjVS2yWmJOBdUvr06aPSUVJTmbU1I2IF0gjhPVxcXPhN8qBBg2JjY9UzqEKhcHd35zUA27Ztu2HDBl5UrWCE3dzcfOjQoT///POJEyc+qisJv4urWLEitnmVUrgOqoEEAXe5XM7br82bN084yP+yGzZsKFZ7k5AQNnv22xYfR48yIlatGnv9WpTTf7Tk5ORatWoR0bp161Q91q+//so/WNEzsxAXLrDevdnp06xpU5adnRdwv32bBQeLthPC3d2dJ3tOmjQpS6kv6rlz2cbGjIi1bcve9AsUH99AvXDhQlUNAEWTnp7u5eVlb28vVD3W19d3cHBo27YtFaCeIBf3+vVrXiFEU1OzYA3lGjVq9O3b9/vvv9+xY0dgYOB/VgLJR6FQ8O6vZmZmERERKnoJ5Q1vuH1BuS6VRPhVRkdHR3jDVKtWbdKkSQcOHEj9+GSn9PR0Xl3k888/V87BWbduHf8IdXZ2xuVMbfhi7bFjx9QwVmZmZqtWrYhosrDdTJVSUlLatOnRqVPYV1+pYbTya+TIkUTk6Ogo9UQYY+zcuXN89VdYAvzYy9l7KZ+EF3C3tLT85DbCoH5Cbevz58/zI7m5uaJcaIT3xrVr12QymZ6e3jPsppFIampq06ZNiWjMmDHinlmhUERGRqotcvpR+Es+cOAAfxgfHz9x4kRV7O8JDmZGRoyIYS9i4ZKSkqZOnaqlpSVif9Siu3jxopmZWb4vepUqVbK1tXV2dvb09AwNDf3kk8vlcv5d0szMrOSsskMR4TqoHhIE3NesWUNEpqamSUlJ/MiTJ0/4Zs+zZ8+KNUrbtoyI/fHH2yM9ezIiJlX4ke85bdeunRpq76anp/Pg/t69e1U9VunFA+6MMQcH5uaWF3Bv3Tqv+LaxMbOxYQ4OzMWFeXgwHx8WEsKK/leXm5s7a9as96Znbt68uV69xlWqxA8fzsQt3bZo0aLmzZtf4hn7jPHGuUOGDBFzDCiGmJiYP//8s0OHDgXj7IIlS5aoeVbDhw/X09PT0NCwsrIS9g+GhIQU8dejo6NPnjzp5uY2ceLEfFfo7Ozsnj17ElGbNm0+IQgL+aSksF69rnbo8FMJ+Y9pb2+vp6dXrVo1Xpw9u3jFsC9evFipUiUi6t27t/LGw127dvGVqgkTJogSJoP/NGDAACI6Lm5fkQ8LCgrS19cnol27dql6rHHjxhFR69atMzNVXrmrPAsLC+P9hHx9faWdSW5uLu9Hp7wx6PPPPx81alRx9pOdOnWqUaNGQtml944CJRz/NHBwcBCO/Pbbb507dy7Otrz79+93795d+Uau4CigZo8ePapYsSIRrV279tPOkJGRERIS4uPj4+Hh4eLi4uDgYGNjw1uyTZ48uaRlbp45c4aIatWqJdwyLVu2jIiGDh1a/JOnp7PJk9mff749smsXI2K6ugzN4wqRlJSko6Ojqan5UcnjItq+fTvPjJk/f/6+ffueP39enLPJ5XIPDw/hDZaVldWrVy8iatq0qVDhHUoFXAfVQ90B9+jo6MqVKxPRQaXdvH369BE9v+nYsbyU9jdRfXbjBpPJmIEBi44WcZwiCQgI0NLS0tLSun37tnpG5HXrGjZsWMwgSBkmBNwjI5mZGXNyYq6ubMQIZmXFtLTetr1U/qOvzwYPjh8yZMjcuXP//PPPI0eOPHjwoGBCU3Jy8qBBg4hIV1d3x44dwnG5XC5sKPvll42ir7zwDjnu7u784cOHD4moTp06Ig8DxRYWFubm5lawbAsRjRgxQs2T4Vu9lN+ohcjJyQkJCRGq/uVrfF8wTP/q1auGDRsS0aBBg9RQm75sO3OGEbF27aSexxv8wi1i0Sp/f//q1asTUYcOHV4K/awZO3PmDP9mO3ToUCSQqkG/fv2I6OTJk2obkScIV65cuZhfAgu3efNmIjIwMHj48KHqRgHuxx9/JCIbGxtpO7fzFB/l3POrV6/KZLIKFSoU583m7u5ORPXq1RN25RbMo4eSjL8NlHPuYmNj+aJvcT76Ll++zN9dQqZnwfxBUD/eElBbW/vq1auFPC0rK+vx48enTp1av379999/z7ei8jKt71W9enVdXV0qYX1Z+QYjoYuGXC63tLQU65p+9CiTyZiODrt27e3BL7/Ma5WndOMG+fE7q3///Vc48uTJk99//51XGRXXs2fPwsPDlY+MHz+eiJYtWybK+adPn84Dd0KiVVJSUvPmzYmoe/fuYhWrAFXDdVBt1B1wHz16NBENGDBAOMLX3KpWrfrejoLFwVPalReehwxhRGzWLHHH+Q9yubxjx45E9N1336lt0JycnMaNG5NqGiCUDULAnTG2YgXT1X2nhntCAvPzY15ezM2NOTkxOztmZcWIWNeujwrecpmZmdna2jo6Orq6uq5cuZL/l69Ro8Y1pfuRjIyMzz//nIi0tLTWrFmjilfEv1h+8cUX/GFubi5PMcNqc8kUHx+vXJGDs7S0VOccnj59KpPJKlas+KEbvsTExIsXL65evXrKlCk2NjZ6enr5Jly5cuVu3bp99dVX//zzz3vfaU+fPuVLC998842KX00Zt2QJI2Jz5kg9D8YYY3K5nN+Tidt1IDg42MLCgoiaNm2qHLe6ceMG7zTVs2fPclWJVRJTp27t1OmPs2cD1Tno0KFDiahLly4qWpl7/Pgx76fi6empivNDPmlpafz/5S1btkg1h4LV1eVyebt27YiomJ0hcnJymjVrRkS///67cFClleJBREJVWeWii5MnTyYxdoU6ODgQ0bhx44QjKq2QC0XEW+BYWFjwFOOEhAQ/Pz8vLy83NzcnJyc7OzsrK6uCxRU5XV1dKysrOzs7JycnNzc3Ly8vPz+/169fM8b++ecfItLT0ysh/YqioqK0tbW1tbWFO6gjR47w1UGx1j7nzWNErHZtJuRqZ2aydu0YEZs2LRbV/z5k/fr1+T5h+MXo8OHDoo81depUmUwmhIAyMzP5HfuTJ09EOf+tW7d4/FT5ShoREVG7dm0iGj16tLQL7VAUuA6qk1oD7qdOnSIifX19oVZUUlISz5FUxR15wZT2wECmqck6d458+rSoBROKj7cusbCwUHN/Xr6eb2pqmiZu4ZKyQjngnpPDWrb876apSUns7t2offv2/fbbbzNnzuzXr1+DBg0KxkwNDQ0bN26sXKkqOjqaX1aNjIxUt0//8uXLRNSmTRvhCP8kLQkVn+G9+B4rZWpeIOGtTYVFGu7evXuurq7Dhg3jSTH5pmdlZTV8+PBFixYdPHiwiFX/Ll26xJOAVLTUVE7078+I2J49Us+DMcbY3bt3VbQ+9OLFCx7JsrS0fPr0qXA8MDDQ3NyciNq1ayfVntxyws6OETEfH7UOmpCQwOOzQl6eiIRK8aKX8YVCbN26lYhq1KjxWqLuSbyWY8+ePYUjPDpWq1at4hfm8vHx4Td1UW9a8YSGhvLymKqolQwi+vfff4nI3NxceBvcvn1bQ0NDR0fn0aNHxTx5eHg4T3YRCjxmZGTUrVuXiNavX1/Mk8Mny8rK4hUdq1SpUqFChfcG1jU1NevWrduzZ88pU6YsXbp0x44d165di4mJKfzMX3zxBRE1aNBAqg86Za6urvmudLxG3IoVK8QaIieHdenCiFjv3kwInT17xvr399fS0nNzcxNroDImJiZGQ0NDT09PyBrhzZAmTZok7kDZ2dk8Q+XBgwf8yOHDh/PFB4rv6NGjWlpa+b7Z3b9/n9exUGeOKXwaXAfVSX0B9/T09Hr16uX70OdFMLp166aiFdGhQ/OntM+b9zcRjR07VhXDFRQVFcUXFVWxgFk4hULB7y1w8XuvdevY3r0fUZb9Q3Jzc58/f37+/PlNmzb9+OOPNWvWJKKdO3cKT3jw4AGPI1hZWQUFBRV3vA9LTk7W0NDQ1dUV6ghNmzaNiP5ULrYHJYmvr2/BO3517rdq1KgREfm8G1rju444bW1ta2trR0dHd3d3Hx+fTw50btmyhX+ZUWdX2LJEoWC803IJaUDL99OMHz9eFSd/9eoV3xZmamoaEBAgHA8NDa1fvz4RNWnSBJ14VadXL0bExGup835xcXH52s2dOXNGQ0NDX1+/c+fO48ePnz9//l9//XX48GF/f///DHkU7ssvvySi+vXrY3uEOikUii5duhDRDz/8oP7Rg4KCtLW1NTU17969y48kJyfzFB/lO7TisLe3J6KpU6cKR/73v/9RCSikA4VISUkxMzMjom3btvEjCoWia9euRPT999+LMsTChQt5eEt4G3h5eRGRiYlJYmKiKEPAJzh16pSuri5PkzI2NraxsXFwcHBxcfHw8PD29vbz8/u04h4ZGRm8of2oUaNEn/NHycnJ4XkJFy9e5EdCQkI0NDQqVKjwUtRqL9HRrGZNRsQWL3578NixYxoaGpqamj5qXq4vPTp37kxKlRgfPXpERFWrVhW3QdGJEyeIqGnTpsIRcevJCDZu3Mi/2R06dEg4eO7cOZ5iJVS4hRII10E1U1/And+GNm/eXIgG3rhxgy+kqC4KyVPatbXZ06d5f9mRkZEVKlSQyWT+/v4qGlQZr6Sm/rrM3Pnz54mocuXKr169kmQCJVZiIqtYkREx0d8F3333HREtVroHiY6OtrCw6Nixoxp62fM1rfv37/OHf//9N4ndHQHExWveKftDudezKt26dYvHNPNt7woNDXVxcdm5c+eDBw9E3PnFS/oaGRkph1ChiO7fZ0TMwkLqebzBN2cILcgePXpkYmKiHHgqppSUFF4j3tjY+MqVK8Lx6Oho3pywbt26jx8/Fms4UMbL8Z07p8Ih5HJ5v379TE1Nb9y4IRx8+vSpnp7ehwrm6ujomJqa8hCJs7Mz39fv6+sbEhJSeHBz//79RKSrq6u2Jjog8PPz4/f56v+/tX///kQ0c+ZM4Qi/PevUqZNYKT5Pnz7V1dXV0NC4efMmPyJ8iS1RNZ1B2fz584moY8eOwttgx44dRFS9evUkoetX8aSnp/M8m82bNwsHu3fvTkRff/21KEPAJ5gxYwYRTZgwQfSV1ydPnvDsOmkznPjWdmtra+G9zT/0VPE18PRppqHBNDTY2bNve8XxUE+NGjXQyuK9fv/9d3q3zgYvQntO1PstXhVk0aJF/KHo9WSULViwgIj09fWVuyPs3LlTJpNpaGjs3btX9BFBFLgOqpmaAu7BwcH8rlT4HzInJ4fv8FWuHKQKzs7Jtrbrxo59m4j39ddfE1H//v1VOi57s8ZoZGQkYS6enZ2diKtVZQavhty3r/hn5tnB+ZZYnj59qp5ef7yE6Pbt2/lDnkBtY2OjhqHh0/BFEWVqqwA7d+5cIpo3b556hlMoFDxKW6dOnWLmq5ZD69czIvb551LP4w1ebkhIHd20aRMRffbZZyIOkZmZyVesDQwMlLv3JCQk8CyhGjVqlJCqqWVM9+6MiKm0FJmbmxvPcxG+lmdnZ/NtDYMGDTp37pynp+fSpUtnzpxpb2/fqlUrXon7Q3R1devVq9etW7eCefHh4eE8gr969WoVvh74sAkTJqg/74SXLTY2NhZ2ZRUMjovi22+/JaLOnTsL31r5dq6aNWuWhPoSkE9ISAgv+yMs9aWnp9epU4eINm3aJOJA/LuAcj2lO3fuaGpqamlpBQaqtT0GcMnJyRUrViQiEf/7K5/q8OHDMplMW1v78uXLYp3/Y/Xo0UM5EyIzM5O3ULp165Yqhlu0iNnahtSq1VBoQC2Xy3mqRPfu3cXN2i4bQkNDiahSpUpZWVn8yA8//EBEX331lVhDqKeejEChUPCSStWqVVOuQ8Kr5ejp6fn6+qpiXCgOXAfVTx0Bd4VC0bNnTyL68ssvhYPLly8novr166s6EFkwpT0hIcHY2JiIzqpyy3RaWpqVlZXky91+fn68AXG+dtXlWWoqMzFRVUDh/v37RFSvXj3xT10EixcvJqXSaa9fv5bJZMpFZqCkSU5O5q38BM2bN1fDuHK5nO88VdGN+HtlZGTwUKmNjU3xS+iWKxMnMiJWQmKGMTExfC1Z2AAxdepUIlq5cqW4A+Xm5vJUHR0dHS8vL+F4ampqv379iKhy5cq4mxddt26MiL3Zki6+mzdv6ujoyGQy5VJ7PBPCwsLiQxvy0tPTHz9+zGPxv/zySxFj8bwJ3tChQ9HJTSoxMTE8znXq1Cn1jJiVlcWrpSlvaR8yZAipINMzOTmZFxLcvXs3PyKUc/zxxx/FHQuKb/jw4UQ0ceJE4Qived26dWtxqwAJ9ZTmz58vHORlVPv06SPiQFBEf/31FxH1Fpp3FY9CoZgyZYqWlpZQoZi9uYrVqlUrLi5OlFE+SlBQkEwmMzIyEmJbfPGvffv2KhpRLlfwO7HOnTsLXzNjY2P5lwvldz4I+LZm4Wp48+ZNIjI3NxfrFoXnejZr1kw4oqJ6MoLs7Gy+n6xevXrK2VRfffUVX124d++eioaGT4ProPqpI+DOmxTVrFlTKNkTFhZmaGhIRKdPn1bDBAqmtP/8889E1K5dO9V9B+PbuGxsbCTvxss7BYu42b+0W7mSEbGOHVVy8pycHL5sKEly06FDh4ior1LqPl/1KW8LiaULv/YItLS01LAfgjd8q1+/vqoHyic+Pp6X4R45ciSq3BZd/foqKYH1afbt25fvbqlJkyZEpIpWgQqF4ptvvuGR0w0bNgjHs7KyRo0aRUT6+vqq60RdPvF+aCpayEhMTOTbI7799lvh4PHjx2UymZaWlvKu5KLLzMx88eKFn5+fl5eXu7u7i4uLg4ODra2tlZWVlpaWTCYTgqEgiV9++YWIrK2t1ZPzyLftN27cWIgBnTlzht5tcCqiDRs20LuNWK9du8ZzHVSxhR8+2dmzZ4nI0NBQ2FgTERFhYGBASjWvReTv75+vnlJcXBzvKHjs2DHRh4PC8WbsQvns4uM1GWrUqCF8quTk5PAiyL1791b/d/9Zs2YR0SyltnXt27cnon///Vd1g7569Yo3QlTeLHv16lVtbW2ZTHbgwAHVDV1K/fTTT0Q0Y8YM/lChUNSuXVvE5CeepCIUtlVpPRlBWloaX2Zu166dcB2Uy+V8232tWrXQdankwHVQEioPuL98+ZLnHyl/4Rk8eDC9W8RKpQqmtKempvKclP3796tixPv372tra2toaKgiAPGxHj9+zDtHCduLyrPMTGZuzojY0aN5R16/ZuL2d2nTpg0RSbKp8Pnz50RkYmIiHOHLmDt27FD/ZKCI7t69my8rUw1Z55MmTaJ3mw2ozcOHD/kHMvJfiig+nslkzMCAlZAdunwN29XVlT9MSEjQ0NDQ09MTNsmKjlcgkclky5cvFw7m5ubyzHptbe1PC9TCe9naMiKmoivY559/TkRt27YV3i2RkZH8LvH3338XfTj+zilvqTQlTVZWVoMGDUip1oHqxMbG8viCsA6Xk5PDkwqVPz1EJJfL27ZtS0o1cxljjo6OfF1ZFSPCJ8jNzeX9P3799Vfh4OjRo4noc5UVa+M3WsOGDROOrFy5kuc6qO5yCQWdO3eOiMzMzIRFuPv376elpRXnnLm5ubxqa48ePYTwenR0NA8vKH8aqEFKSgrfSCRkE9++fZuIjI2Ni/ky/9ONGzd4H1rlgt181bNy5cohISEqHb3UuXPnDl+nEVKOZs+eTUT/+9//in9yNdeTURYXF8ezqQYNGiSsrKenp9va2hJR8+bNy2GfzBII10GpqDzgzqs3KqfcPnz4UFdX19jYWJ1lfJcuXZovpX3NmjVE1LBhQ9EzbuRyOS+b4OzsLO6ZP9n06dNx68/xUsgtWzJhb8OyZYyIKeUEFBcvZ7ZmzRrRzlhkCoWChzKjo6P5kUWLFhGK+Jd4PDVAoJzJqwoZGRk8JKFccU+dLly4wG/Q169fL8kESpeDBxkR69VL6nm8wd+uwga1o0ePElHXrl1VOujff/+toaFB7/Z9USgUjo6ONWvW9PT0VOno5UqnToyIqWIJY926dTyzRvjkkcvlvXv3JqL+/furYsfh69eveRgCvZqlxVvXVqlS5eXLlyodiC/C2dvbC0f+/PNPIqpXr15mZqaKBr1y5YpMJqtQoYJQyzgyMlKdG3nhP/EvfVZWVsIOwoJ/a6IT6ikJbUiys7N5vaM//vhDRYNCQXyrt5BiIpfL69WrZ2xsHBwcXJzTxsTE8CbJyvWjzp07p6mpqaGhodx7RtXWrl1LRN27dxeO8ExnocSoSvHPWENDw4cPH/IjCoWC9+Bp2bJlenq6GuZQivCt50KaCM84btKkSfHPrP56MsqePHlSvXp1Ipo2bZpw8OXLl/wTr2fPnqq7BEMR4TooFZUH3GfPnq2rq5svrPPo0aOjQoKxWqSnp/OaYkJKe3Z2Nl+L27hxo7hj8a+UpqamYvX5Lb6oqCi+W6ScpwHm5rIGDRgR27Mn70hGBjM1ZURiJrm7u7sTkZOTk2hn/BjdunVT/lA7ePAgEfXr10+SyUAR/fvvv8oBd+V2F6qwd+9eUmVhx6LgbTa1tbV9xN1gUhZFRrL165l4O6GLJT09XUdHR0NDQ7jA/e9//1PPfoWdO3fq6enl2xLOV9NFbDkFHTsyInbtmsinDQwMrFChQr4dV7xwZI0aNYRFYtHxQqLK3wBBEryZ3pw5c1Q3BO/Hpa2tLcTREhISeMafcsMAVSiYI8ZrVzZt2hTNAyWXkJDAt9EINS7euy9BFZYtW0bv1lPiS9QVK1ZU3YceKIuKitLW1tbS0oqMjORHjh07xqNOxS9seOHCBV647NChQ8LBJUuW8PXFZ8+eFfP8RcSzVve8+XKbmJior68vk8mEMg6qxkv82draCkeSk5OrVas2cODAlJQU9cyhtJg3b57yWkhubi7/dBKWKz6ZJPVklN24cYOHm5YuXSocDA0N5ds+Pv/8c3TTkRCugxJSbcBdLpfzbaSbN29W6UBFwVd1RowYIRzZtWsXvyJ+8803S5YscXNzW716tYeHx9atW728vI4cOeLj4+Pr6+vn53f//v2QkJCIiIiEhITCrxwxMTE8xVhFxWo+GW+E3a1bN6knIqXt2xkRq1ePCbX1Vq9mRKxdOzFHOX/+PBF16NBBzJMWmbOzs/LW6WfPnhFR9erVJZkMFFF6enqVKlWEgHunTp1UOtywYcNI6n7OjLHvv/+eX27v378v7UwkFxDAOnd++/D0aTZ8ONuxg9WsyYTva9Ons5JQifrSpUs8a0k40qNHDzXEs7iCJZgHDhxIRLt27VLD6OVE+/aMiN24IeY509LSrK2t8wW+L126xDMBVbHqJmTVPXnyRENDQ1dXNzY2VvRRoOgCAwO1tLS0tLRU94HfvXt3Ivrmm2+EI7yucS/V7w+KiIjgES6hiWJGRgZvV7Bu3TpVjw6F4zfGPXv2FI5s3LiR3q28ryJCPaW///5bODhgwAAimj59ukqHBo4v644aNUo4MmjQIBKviBmPJRkbG4eGhvIjcrmc/xV36NBBDTUT+F1ZzZo1hYI5vGLDgAEDVD20IDk5efjw4co7BuLi4nR1dbW0tFC/Ox/+96XcQ2vixInFz0OXsJ6MMm9vb01NTZlMphz68/Pz41u+RKmcA58G10EJqTzDffv27URkbm4u+Zai7OzsXbt2Ka9mJycnV6pUqVatWvTxtLW1jY2NTUxMrKysGjRoYGNj065dOzs7O3425d2sJURSUhL/IFbnHrcSRaFgzZoxIiZcArKzWZ06jIgp5SWIIDExkW/PkaRfLk8cHjt2LH+oUCh4bwp1VnCCTzB37lzh40VfX191b57ExERdXV1NTU3JV5UVCsWYMWOIyNLSspzHwvz9mbX124dHj7LevdnmzczMjAkXE0dHVhLqpvCi2DNnzuQPc3JyDA0NZTJZXFyc+iejUCj4SlVYWJj6Ry+rJkxgNjZM3E7bPPHK2tpaqCebkJBgYWFB79YIEoW/v3+7du3Gjx8vHOF9g5RTrkASM2fOJKLevXur4uS7d+/m6QVCrdgHDx5oaWlpamoKdY1VinfDa926tfBFg28mU0MhnVJm3z4m1BbIzWXCcumTJ2zXLrZrFxM1HzMoKIg3shLqSiUnJ5uamqptpfbAgQM8ICu8DR4+fMgbffn5+Yk1SkSwn9+Jbf6ndjy+dSYnC6Ub8uTk5PAN7hcuXOBHnj9/rqmpqaurK9ZNi0Kh4O2y2rVrJxTNSEhI4Ottc+fOFWWUQvAb6Z9++kmYT8OGDYnI29tb1UMXgm/xUU5zBE4ul/OMb2Ht+dChQ1TsbcfS1pNRtn79eh4oO3HihHDw+PHjWlpaRLRlyxY1z6dUiM2JvZd+L1uRzRjbn7jfK8FL3POXk+sgY4w9fcp27WI7dzJhf8+tW0y51MqlS0zt3xlVHnCXy+WtW7cmopUrV6p6rI/FO79ZWVn9+uuvCxYscHFxmT17tpOT0/jx4x0cHAYNGmRnZ2dra2tjY9O0aVMrKytzc3NjY2O+WaYQ+vr627dvzzdWSShcxXuYtGjRovh76EqjQ4eO2Np62NqmvskAYJs2MSLWpAkT/b8HjyMUszjgp/Hz8+NxDeFI165diejUqVPqnwwUXXBwsEwmEz5Gir+18EP4grZyXw0JpaWltWvXjog6d+4sVJQrhz4UcJ86lXXuzPh2qRIScB8yZAgRbdu2jT+8efMmETVq1EiSyTx48ICIzM3NJRm97NmyhSk32F64kIly57Jnzx4i0tPTu3v3Lj+iUCiGDh1KRF26dBG94EZERIS2tra2traQWHfmzBkiMjMzKz8NmkqmV69e8cyPI0eOiHvm9PT0unXr0rsdUPr27UtqrDeVnp5ep04dItq0aZNwkBfSUUPQrTSpVIkJKSDp6UwmY4wxd3dmYcF+/JEtWMAsLJh4pV379+9P71bq+/bbb/ldh9rqGxR8K/KyEra2tmLN4dSmxdtdx13e+/eBlbP/mt4lO0O1rTJLC77o1aRJE+G/s4uLCxFNmjRJxFESExN5YW7lt9mNGzd0dXWJyMtL5NiZsoKJ5CdPniQiCwsLSbK+uNzcXP5heObMGanmUJLxXiNLlizhD9PT0w0MDGQyWXh4+CefU/J6Msr4/2X5FtdXrVpVqVKlklD0okR5lPmo6YOmLYNa9nzcs+79ur4pvj9H/+wa5SruKOXkOsj++ovVrs1+/JEtXMjq1GG//cYYYzNmsFWr3j5n6FD1bxhXecCdMXb8+HG+ppGQkKCG4Yro3r17fKnH39//E349KysrISEhNjY2JCTk0aNHfn5+N27c8PHx4Z93LVu2FILar1+/njZtWpMmTYStXlJJT0+vUaOGvr6+epJ9SppOnToR0erVq/lDuZw1asSIWIHFERHwfDqhmp46ZWZm8pQuYU8Jr2ArFJmBEqtXr15CwH3nzp0qGoUXACk5TSajo6OrVKnSp0+fktP0Qv38/ZmhIRs0KO9Pu3Z5Afdp05i/P6tThyUnl4iAu0KhMDExIaKQkBB+hLes+OKLLySZz4YNG4ho9OjRkoxe9gwZwipUYG+2IzNDQ/b6dXHP+fTpU94uSTkS+scff/DbQhW1aeIt8hYsWCAcadmyJREVTIYAdQoICPjtt99IBS1MFy9eTEStWrUSYkwF06nUYMeOHTzLXricCYV0AsXdM1KqFQy4R0SwKlXYmxLbeQ+LEXsSeHt787dBfHw8P/L06VNdXV0NDY2bN28W//xFVHCzxevXr2vUqEFEe/fuFWWIU5sWX96bt1v/75ndwgKvx4U/SoqLfHzTJzxIfa+0pOnZsycp1THIzMzkfR1viFs0jbG7d+/yJiXKd9erV68mIkNDw6CgIHGHE/BE8pEjRwpH+GK2+vOalfH+YQ0aNEDN7vfiXQRat24tHBkxYgS9W3Djo5SQejIChULh7u4u7Gjkli9fTkpb8IHr+qjr4qi8ZZI76XdismNED7iXl+tgVNQ7dw4vXrAqVdjz5yUh4K5VeLK2KAYMGNCrV69z586tXLmS9zeTnEKhmD59ek5Ozrx589q0afMJZ9DR0dHR0SEifuUW2Nranj59OiAgYN++fbyFiIGBweXLlx8+fLhp06YZM2aIMv+iuHDhwr59+3755Re+wklEOTk5CoXCyMjoP5P0yx4fH59r165Vr159ypQp/MiRI9d1dZtYWVUaPVr84Vq1anXkyJGAgAD+HlAnXV3dhg0bBgUFBQUF2djYEBEPNAQEBKh5JvCxpk+ffu7cOf7vd+/e/fzzz0UfIioqytfXV09Pj9+RlwTVqlXT1NT08fEJDw9v3ry51NORTM2atHJl3r9fvEheXnn/3qYN2dvTzz9LNa93PHnyJD4+vkaNGjyZi4iuXr1KRJ07d5ZkPteuXSMivpgKohg7lr78ks6fJ6X9Np8uJydn3LhxycnJn3322bRp0/hBf3//+fPn8xKfPAlOdHPnzt27d+/69ev/97//8SDIV199NXXq1D/++GPcuHGqGBH+U0ZGxpAhQ3JycurVqxcSEtKjRw+xPvDT09P37dtHRO7u7pqamvygpaVl165dR40axcMQ6vH5559v2LChdevWwn61pk2bTpkyxcPDw8XFhXcJAyKiiAjKyCAiysoiIrp8mTp1InPzvJ/WqkWdO5OvLwUHU0xMIae5XLPm1g8/gb2JOrm6uvJmcUSkp6c3fPhwAwMDvrtOPaytradPnx4bGyt8I6tYseLixYtnzJgxffr0kydPamhoFPLrQ1pVYQp5IU8wrlmHiDJSE1+9CI0JDczJyjCxaHjz6Ob7Fw/Vb9OjbgtbEV9LKfLw4cMLFy4YGho6OjryI3v27ImLi2vdunX79u3FHatly5arVq2aMWPGl19+yXfGE9FXX3118+bN7du3jxo16saNG/r6+uIOKpfL//nnHyLi1bqIKDc3NzMzU09Pj+f/SWXt2rVENGvWLJkodxJlTu/evStWrHjnzp1nz57x0kPDhw8/cODAoUOHeN+Rj3X27NlXr141a9aMN8shIr63gycfqJ9MJpszZ06+g9JOqWSKyom6lX7rdP3T/GGrCq2EHy2KXhSVE1X4r2sxrdxfcgt/Ttm4Do6tWbNHoTcDVK0atWlD7dpR7dp5R8zMqFs3uniRiCghgZ4/zzuenl7sl/Lx1BPXv3HjBq9qLbQIlxZvoFq7du3k5GTRT+7h4UFEDRo0EFLa+UeMqampqpsSCDIzMxs3bkxEK1asEA7ybgnt27cvhyVleI6DsOCvUChatWpFRP/+K/K+Zo5/9xs4cKAqTv6fxo4dS0T//PMPf3jr1i0iatq0qSSTgaLLzs42MzPjn8x9+vRRxRA8u1C5eZSaZWRkODs7+/r6CkeOHDlC7xZBKoc+VFKGN5hMTGS1a7POnaXPcN+8eTO9m0vF25YIOTVqxguV3rp1S5LRy54hQ9ixY6xXL/bvv4yJkeHOt4taWVkJCb8pKSmNGjUiImdn5+JOt1AdOnQgoo0bN/KHGRkZ1atX19HRuXr1ceG/CCqyaNEiImrVqtXx48dHi53pUKdOHTMzs3zZlAqFQv23uwXLOFy5csXAwAC7DN+qVIl168bs7JidHevVi8lkbNUqNnHiO8/54gu2ciVr2JARFfLnaPfuhb8xTE1NDQ0NhbQ+gfqrbRQcMSkpycjIyFxYZviwJcMsFtmbFvJn4zeDTm1avHZ2rz2/TvGY22/Xz5MyU19f2Lni9Oaf1fwySxS+wVdoOcMY69ixIxGprqgF737ZsGHD12+unSkpKTwGKmJir0KhiIiIuHTpEv9eXzCRXNquXbxRub6+fokqbFDS8IvgqjeJt4mJiTo6Otra2q9evfqEs5WoejLv9ezZM5lMZmhoKHlPxxLleur1uvfr5jvIM9ytH1iTPxX+R++OXlFukMrAdXBft26F3wywOnXYX3+xcePeOfu0aWz5cjZjBmvYMO+Ww86OmZiUzQx3Imrfvv2wYcMOHjz4yy+/8GVPCcXExPz4449EtHr1aiMjI9HPP2XKFHd3d+WU9pEjR3bs2PH69eurV6/+4YcfRB+xoOXLlwcHBzdq1Gj27Nn8iL+//5o1a7S0tDw8PArPpCh7bty4cf78+UqVKgk7DI4fP3737t2aNWuOGWOnihGlTSrv3bt3Tk5O7TdLfE2bNtXS0nr06BHPepBkSlAU2traX3zxxS+//EJEt2/fVsUQO3fuJCIJczyPHTu2evXqa9eu8drfwpQmTJgg1ZRKvsqVaelSmjiRpk+nEyeoc2d6kxygbvny2cPDwyMjI42Njfn6rpq9fPnyyZMnFSpU4J+3IJa//yY7OxoyhIgoK4t27KDBg6lixY8+z4kTJ9zd3bW1tbdv3y7ks8ycOfPRo0fNmzfnm4tVx9nZedy4ce7u7lOmTJHJZHp6evPn73Jzs/7jj5p796p0ZHiPFy9e8DZC7u7u3bt379ChQ7du3Q4dOmRnZ8f7uhdHVlbWkiVLXr58uX37diGVlYhkMpn68yuFFHvB0qVL09LSnj17puaZlGheXlSjBhFRRgYZGFDt2nTs2DtPePGCBgygn3+mpKRCTmNhYOAxdmwhT/jrr7+io6OXLVu2UthBRkTv+2tStYIjLl++PCUlxdzcfP369YW/UdvWNWQKRSFPMDQ2CXtwo0X3EbafzSKiw3/Ou3Z4o0xGWjq6xZ95KZWamrp161ZSyv6+e/fu9evXK1euLPqCn2DdunUBAQF37951cnLibZwNDQ0PHDjQrl27nTt39ujRQ9jpVUSZmZlRUVGh7woODk5LS+NPsLCwqFWrVr73D6/SIJW1a9cqFIrx48cbGxtLOI0Sbvjw4Xv27Dl48ODcuXOJqHLlyt27d/fx8Tl27JjyVawocnJyeNtVIXn81KlTr1+/btOmTf369UWe96finQyGDBnCNx0CV1WraoI84b0/Wmy2OCH3/T8SaDANhUdhlwauDFwH6xkYUOGxCyMj0ten/fvfOfjiBfXsSc+e0cyZNHdu3sFhwz5h5sWlttB+cHAwr2OoumaARcQvtCrNPi6Y0n7hwgUiqlSpkhqqST558kRPT08mk507d44fkcvlPNvr+++/V/XoJZC9vT29W861S5cupMpGvgqFgletLbicKAmeXiFyG2hQgbCwMOFqJHRAEktQUBARGRsbS9jDefjw4aSU05GammpoaCiTyZ49eybVlEqCZ8/Yd9+9fXjnDvvlF3b+PFu/Pu+IQsG++ootX860tFibNiw2VpJp5n2SXLt2jT/kiyWDBg2SZDJ8j2SPHj0kGb1M4hnujDEXF+bszAwN2e7djIjp6jJ7e+bpyYreZyEzM5Pv1/n999+Fg3zzu4GBgRruA7Ozs3nKzNmzl/iR2Fimp8c0NVloqKoHh/z4xjvlzVVubm5E1KFDB1HOv2XLFiIyNzdPSUkR5YRi4Vu4KleuHBcXJ/VcSoyCNdxjYpiR0dv2EUFBrFo1JsbXpTt37mhqamprawcHBxf/bCIKCQnh39SuX78uygmVa7gfcp97YdfKCztXnNv+mygnL43Wr19PRN26dROO8Jqi33zzjUrHffz4Mf8CuGbNGuHgrl27iEhPT+9DX8SysrIeP3588uTJdevWff/995999pmNjU2VKlU+FL2pUaNGp06dBg4cyMvbqq7t08dKT0/n0/60DnnlR0pKip6enqamZuybG/pt27ZNmzbtE76qx8fHOzo62traCkfGjx9PUtfxz6dt27ZEdPDgQaknUrJkK7LN7pmdSz6nfFD0Gu7l5ToYF8eMjNj9+3kPHz1i1aqxuLiSUMNdfQF39uZSN2mSkzoHzYc379bX11dpfEehUPBta7/++qtwkDfn/fbbb1U3LmdnZ0dEkydPFo7wvnYWFhYl7auIGgQEBMhkMn19feHbzvnz54moatWqKv2vwZNAS0h/9jFjxtC79YWgxOLrQ0Tk7e0t7pn5zh4nJ8k+gV+/fq2np6ehoSHUFtu2bRsRde3aVaoplS7Pn+ftsLeyYm+6lqpPYmKihoaGrq6usGDD92svXbpU3VNhjDHm4uJCRP/73/8kGb0sSU9nzs5szZq3AffUVFavHtPSYt7erEcPpqmZt2VTiLwnJv73af38/GbOnClsdX/8+DHfU7h161YVvhglq1fva936jL392yMTJjAipvq7MHjH1atXeVVJ4cY7JiaGx6ROnjwpyhAKhYIXZVZOrZBcdnY2L6C0SvnLHhQMuDPGtm9nZmZs2jTm5MTMzJh4AUSeUyzVwvCH8OSDifkK6RQDLynj5ea0+fuh653t0pJelvOAe+vWrYlo95vASmJiooGBgUwme/TokaqH3rNnDxFpa2tfuXJFOMj3WNepUyckJMTPz8/Ly8vNzc3JycnOzs7KyupDqaa6urpWVlZ2dnZOTk5ubm5eXl5+fn6vlWq9rVu3ji9jS1XZL5+NGzcSUefOnaWeSCkwcOBAUioAKxbUkylddibsNAkwWR6zfGfCzrkRc6+nXhc94M7KzXWQ7drFTE3Z1KnMyYmZm7Nt2xhj5S7gHhERYWf3i4FBqlSrnunp6fXq1VNparOgYEr73bt3NTQ09PT0wsLCVDfu9u3beTRZiC9HRUXxT17R43elAo81z5s3TzjCVz6WLFmi0nH5HkY1vNP+U0JCQpMmTSwsLGQyma2trbu7OzKtSjKhr5pQjE8UCoWCN7q8ePGiiKf9KDy/Vbk8/YABA4hovZDIDf8lNpa1bs2ImKkpe9PmXU2OHTtGRF26dBGO8Jbj58+fV+s83ujatSsRHT16VJLRyww/P9aoESNiVaqwgQPzAu6Msf37GVFeDfeXL5mnJ7O3Z9raeZF3TU1ma8vc3Yu62SIjI4P3TZk0aZKqXkkBr14xAwMmkzEhn/72bUbEKlYsbm16KDq5XM5D4T/99JNwcNKkSUQ0bNgwEQe6du0arx0UWmK2MKxYsYKIGjduLLR0AsYYu36dCf9B5HImBCUTE9nZs+zs2SIt6BVZbGwsL1t0/PhxEU9bHOfOnSMiQ0PDFy9eiHXO1/FRUU8Cop4EJMVFKhRyxljKq5jkV1LW8paQr68vEdWsWTMrK4sf+eOPP4iof//+6pkAT0dQrtuemZnZunXrQmq6Ghsb29jYODg4uLi4eHh4+Pj4hISE5CvO/l68cHyjRo1U0ZfuY9nY2BDR9u3bpZ5IKcAXJ0SPgfLyMjY2NuKetjh4CUER2xiUMQHpAatiVy2MWrgzYWe6PP1q6tXLKZfFHaKcXAcZYywpiZ07x86cYUIPiZAQFhX19gkPHzK1159Qa8CdMfbtt4yI9e2r5mHz8PrpzZs3V8+9b8GUdl7NRjn3XFxJSUmmpqZE5KnUXG/EiBH0bpu78uPp06daWlra2trCIsft27dlMpmRkZGqe7nwzYwTJkxQ6Sj/6cmTJzzBqlKlSkLdNF1d3WHDhu3duzcjI0Pa6UFBcrm8bt26RDR8+HART3vlyhUiql27toQ9k3nv4n95Q0bG4uLitLW1tbW11VBoqyxJSWG9e+dFSN8Ud1EHvkPCxcWFP0xNTeVl4iTZOJWdna2vry+TyT6twRQwxhQK5u7OdHQYEbO2ZgEBLCWFKd8cJSSwfF/2Y2PZunWsd++3Oe+NGgUNGDBg8+bNhf9F8OS++vXrqzki4OTEiNisWW+P8MZLf/2lzlmUa7zTsrm5uVBi0d/fX0NDQ0dH5/FjkRvY8n30n332mbin/TQl8PttuVWiVj5yc3NbtGhBRL/88ovUcymzeA2rhQsX8ocKhYJ/FTp8+LB6JpCVleXu7p6Tk6N88Pvvv5fJZAYGBu3btx89evQPP/ywYcMGHlgvzjszPT2dd7IZM2ZMsSdeLNeuXSOiatWq4dtlUcTGxmpqaurq6r4WNQWAt+lyc3MT8ZzFhHoyJQGugxJSd8A9IYFVqcKImPorbQQGBuro6GhoaFy9elU9IxZMaQ8NDdXR0dHU1FTRzi++YaRbt27Ckvjx48eJyMjISPR60KUC/w8ydepU4ci1a9fat28vxIxUh992tGzZUtUDFeLq1avVq1fni0xhYWHp6eleXl729vba2to88l6pUiVHR0dvb+98N4UgLd43tXr16ocOHfLx8fHx8blx44afn19AQEBISEhISEhsbGxCQsJH3aLNmjWLJO3i8OLFC01NTT09vaQ3daD/+usvIho8eLBUUyq9MjPZ8OGMiBkastOn1TRojx49lL+vpqam/vvvv6reKvQh/APW2tpaktHLgJgYNmAAI2IyGXNyYmlpH/frcXHMw4PZ2bGePV351URTU5PvoIqJyZ9TuW/fPr7Qe/v2bdFeQNEEBzOZjOnrM2E5gGfu16/PpFt5LEeSk5N5FoiQ8KhQKPjeFFXchkVGRhoaGhLRabV9LH5YydzBXT4JtX3++OMPqefC1qxZQ0SWlpYISqpIXFycrq6upqbm8+fP+ZHTp08TkYWFRW5urlSzEpJpVPHp9OjRI16ka+3ataKfvOh4t88ffvhBwjmULvxquGfPHrFOiHoy8CG4DkpI3QF3xtivvzIi1rZt/swplVIoFDy5cpZyppPq8XomyintvNKIuLmr3PXr13nSUFBQED+SlpZmaWlJRKtXrxZ9uFLh6tWrBgYGvXr1yvf/s7DHUHVSU1P5X4caxnqv3bt36+npEVG/fv3yRWajo6Pd3d3btWsn7GQ0MzNbumhB1JMASaYK+dy8eVNXV1dXV/dDO0/zMTAwMDY2rlKlipWVlZWVVdOmTW1sbGxsbOzs7Ozs7AYNGvTZZ5/p6+sTUUDAO3/FT548Ud4No1J8ad3BwUE40qlTJ1KqsAkfJTeXffFFXlntfftUPlxOTg5vb1tCClKtXLky32IqFN3Jk6xmTUbETEzYkSPFOtWrV688PT3t7e1567aCkffw8HDeQu3vv/8WZ/YfqV8/RsR+e1PKODeX1avHiFi5rLGnbgv/9z8i6tSpk5AFwsse1qhRI6noHXg/xs8//0xETZs2lTaNoMT2KCu3eLG+ihUrFlwRVKeEhIRq1aoR0f79+yWcRtm2dOnSfF+0hw0bRu+2VVM/3ua9fv36KtpmKhSOV1taYT7x8fG8S1PJKepV8s2fP18mkyl/odPV1TX+gDp16li9T4MGDWzeaNCgARE1adJE6lf2FurJlBy4DkpFgoB7ejqrVYsRsb171Tcor5NVs2bNRFErA/4nIaU9MDCQH4mNjeV9w5RbqRRfTk4O31CmXCXz22+/JSIbGxsJl/SldePGDWNjYyIaMGCA+ldWGzZsSER3795VPhgWFrZhwwaVFrRRKBSurq78Eu7k5FTI187nz5+7ubnxebpMGrjI3tR9cnufLUtfvcDdkmQyMzN5DcT69esPGTKEB83btWtnY2PTvHlzfndlYmJibGzMP0mKqEaNGjo6OsqZNa9evapWrZqmpqZ6ujvwet/CjsLnz5/zrbVCnQH4WHI5mz2bETEtLbZ1q6o+5BUKxY0bN3jPczMzMxWN8rFGjhxJRJs3b5Z6IqVMRgZzdmYyGSNidnZMxMKJL1++/Oeff/r16yfsoNLS0rKzs+Nf/+zt7YtSi1YVjh9nRMzCgglXwj/+YESsd29JplOePH2aW7v2P1263Lhxgx9IT0+3sLBQ6f+5GRkZPI1U2tYg3bt3J6JvvvlGwjlAPrxnzIwZMyScg7OzMxH17NlTwjmUbbm5ufwTwMfHhx8JDw/X0tLS0dGRNsbUr18/UnFuKS8cb2FhIUmdRjc3NyIaMmSI+ocupTIyMpo2baqlpVX0r3JFYWpqamBgcE/NXZ4+DPVkShRcByUhQcCdMbZuHSNiDRsy9RQRevnyJV9IEXHPTtHxlHbl3lC8Em7Xrl1FHIVf5+rXry+kct+7d09bW1tDQ+P69esiDlTqBAYG8h3NXbt2FbdK2n9ycHCgd+vpszfpV7q6uvb29p6enqJHGzMzM3kZU01NzaLvbLh+/fqxf5f/Pr7FIntT/uefb+1veG9KTXqnrUR8xJOoJwHRIYHpyaqtgF+eTZ8+nYjq1KlT9OLUqampCQkJL1++5AVn7t+/7+fn5+fnx8vRHDlyxMvL6/PPPyeiihUrKt+E8Xejvr7+zZs3VfNq8jx8+JCIjI2NMzMz+RGeguTo6KjSccsDNzemr89atJj5+++/i3janJwcX19fZ2dnc3NzfhPP85SFoqjS4rNC9uhHCQgI6NAhke+KWLVKVbsMExISlHPeTU1Nq1SpouqmKYVQKFjjxoyIHTqUdyQ5mVWqxIjYu6vhILZhwxgRU2qTu3DhQiJq06aNSluJeHl58c8rqRo88FTT6tWrqznFBwr38OFD/rXIz89PkgkEBQVpa2tramrm22sIIuIdI+vXry8s8bq6upLUCbZPnz7V0NCoUKGCSj+UsrKyOnToYGBgMHPmWTUvcMvlcr6l/sSJE2oduDR7b2+bzMzMhA94/vx5yPs8fvzY741bt27xfBQzMzOhoLGEUE+mpMF1UBLSBNxzcvK+/3h4qGM4XlOsX79+6hisgIIp7UlJSVWrViXxOimFhYUZGBgor+fL5fLOnTsT0Zw5c0QZolQLDg6uVasWEdnY2Khz2Z+HFL/++mvlg97e3n379tXU1OQxrEqVKk2aNMnHx0eUXQgvX77s1q0bERkaGh75+EoBCoU87MGNI39/t2xUQx52Xzyk1qbvhvid2JaVnsIY2/j1QM//OXi5Of05tePFXdKXACt7du7cSUR6enr+/v7inlmhUPAuUnXr1lVO85kwYQK/MwsPDxd3RGULFiwgomnTpglHmjZtSkQnT55U3aDlh4fHcb6jZcGCBcU8VUJCwrZt2xwcHJT3T1hYWMyePft///sfT16eOXOmhK13GWOhoaFEVK1aNamSpksdhULh4eGhr6/fsePIJk3YnTvqGDQhIeHXX3+VyWT6+vrS9rb19maHDr1TtN3ZmRGxYv/vAh929mxel4k32yhywsK6WlrKZLLLly+renDecGLevHmqHqig9PR0nmC7YcMG9Y8OhZs7dy4RdenSRZJrR//+/fkFVP1Dlx99+/YlolWrVglHUlJSPDw8RL+p/ijffPMNqaUIXlhYWNu2gURMzeVzjhw5QkT16tWT9uawFFFdb5usrKzevXsTkbW1tYS5DhzqyZRAuA6qnzQBd8bYnj2MiJmZfXSrro914cIFmUxWoUKFp0+fqnakDyuY0s7LGTdv3lyUK9PgwYOJaNy4ccKRdevW8cwyFVXJLHWeP39ev359fvl5IeIu+kLx+4/e79u4/vLlSw8PD1tbW6F2W9WqVZ2cnHx9fT/54+/x48e8OIy5uXkxr985WRmBlw7vXDLh52EWPPL+y0ir05t/3vj1wPCgW4yxpLjIpSPqKuS5Ka9i5DnZ8RFPMlLwTiuu+/fv85Wzf/75RxXnz8jI4GXT27Ztm/bmkzc7O7tXr15E1Lp165SUFFWMyxjjZSXOnz/PH96+fZuITExM0K1XLNu3by9ONPz58+ceHh7Klbj5p6WLi4vyh5K3t3eFChWI6PPPP5ewzf22bdsIO5eLLCYmhu8h5dtI09LU+j8d30fv5uamzkH/05MnbO1a9ma/DXv5kj17JuV8yprcXNa8OSNiy5a9PThqFNPXv/Ltt2oY/+7du5qamlpaWkI5R7VZvHgxEbVq1arc1nIsyRITE01MTIhonxo6n7zL29ub7/OLj4//72fDJ0lLS2vSpImOjo60S7z5pKen8zQ79aSUnjnDNDWZhgZTZ+vogQMHEtGKFSvUN2RpFhYWxveMrlmzRhXnT0pKatGiBRF169ZN2FgsCdSTKYFwHVQ/yQLuCgXr0IERsUK+hXl7Mxsb1q4ds7NjffowBwc2ahRzcmIuLvEuLi4uLi7Lli1zc3Nbv369h4fH7t27jx49mu8MWVlZTZo0Iak7pSQnJ1evXp2Ijh07xo9kZGTwQpbbt28v5sn37t3LE6WjoqL4kZiYGF64vPz0IiiK6OjoZs2aEVGjRo1Umswr8PT05Mnmixcv/lC7cF5FnbeN5urWrevi4vL48eOPGuvMmTOVK1fmX/MiIiLEmD5jjGWkJN0967V1wahFg83ObVvOA+4KhSLQ9/Bf020ZY1sXjN62cMy2nz5/FqDynLWyLSUlhX9YKa+ciS4+Pp6vPH322WdCWPbVq1f8HThgwABVxAiuXbvGk+iFk/P2El999ZXoY5VnR44c+dhoeGBgoJubm/LKH+946ebm9qGPoAsXLlSsWJGIBg0alKbqBfMP+PLLL4lomXIsDz7g9OnTvKhatWrVDglFVdTo+PHjfBlYwhWagsLCGBETyiNt3swmTpRyPmXNX38xImZlxYR+9ZcvM5mMVajA1LXJ3cnJiYj69OmjnuG4yMhIvmp+4cIFdY4LRccTkiwsLNR5/crKyuIJMe7u7mobtHzi23yVM9wlt2nTJiLq2LGj2kZcuJARserVWWSkOoZ7/vy5pqZmhQoVJKkdX+rk5OTw5KcRI0aobpTIyMjatWsT0ahRo6TadoB6MiUWroNqJlnAnTF2+jTT0WE//vjBJ2zcyIje86dNm1f0PvXq1ct3hkWLFhFR06ZNs7KyVPti/svKlSvzpbRv3ryZR1eLs/b4+vVrXspWee8qL9Y8YMCA4k66zHn16lX79u2JqE6dOh+KgIvi5s2bPXv2zPf+tLa2dnNzi46Ofu+vBAYGuri48MhIUZ6vbNOmTTy5dcSIESr66EyKjUhNjNv49cCVE1qtmtzu5+F1bh33ZIxtXTD63nms64hg3Lhx/CNC1Re/oKAgvjbzww8/CAdDQkL4cvfcuXNFH3H27NlE9N133/GHcrmcl3gq5+0lVOHixYuVKlUiot69e39ov0Jubi4vzs7vxTl9fX3eVaIoRYf9/Pz4u6VDhw6S5JHxDuGXLl1S/9ClSGZmpouLi4aGBhH16tUrUj3fvAtQKBR8KXH37t2STOC9wsKYmRmzsmIPHzKGgLu4EhJYtWqMiAlJbXI5a9uWEbHFi9U2i7i4OH6lEzJd1IDXbRs1apTaRoSPlZuby68gS5cuVdugv/32GxE1adKkRK07lkne3t4ymUxLS8vX11fqueThSb5bt25V24hyOevblxGxTp3E6ZYnl8vDw8MvXrz477//FmwX9N133xHRF198IcJI5QBPOapdu7aq75/v37/PL4JSte9GPZkSC9dBNZMy4M4Y27+f/frr285dmzfnffnhEhKYnx+7cYP5+LBTp5iXF9u9m3l4ME/PODc3Nzc3N57n7uTk5OTkNGrUqHyhosePH+vp6clksnPnzqnxNb1fVlYWbycipLTn5uZaW1u3atXqWTF2MvNIVocOHYQ4/qlTp3j0JDQ0tPjTLnsSExM7duwok2kMGhT04IH453/+/LmjoyNPF61SpcqyZcvOnj3r5OTEc0KJSENDw9bW1sPDQ7lHiiA3N/fUqVMTJkwQCihraWkNGDDg6tWr7x1OoVDwdkBE5OzsrOpFbKGkTGpS/B+T2rx4fHfrgtFPbyOTq7jc3d2JyMjI6KHyJ6DKnD9/nlcOWb9+vXDQ19dXV1eXiP766y8Rx8rJyalRowYR3XlTN/rcuXN8fRQFuFXB39+fb6jq0KGDcrZRamqqt7e3o6Mjv//mqlev7ujo6O3t/bHrvg8fPuTx+mbNmqmuSJdcLr927VpsbKzyweTkZE1NTW1tbany60uFoKCgVq1a8SuIq6urtGVV165dS0SdOnWScA75hIUxKyu2bRvr1o0pFAi4i+qrrxgR69Xr7REPD0bEatdWeRHJd/FMl/r166tnT/3Vq1d5Bcvi3NWDGvCbEH19ffU0FYyNjeUL4egnqR48oFmzZs2iZCyp2o0bN4ioWrVqGcJ2H7WIjWXm5oyIff/9x/0ij73s3cv+/DNlxowZ/fr1a9iwoXKxQU1NTeV4WWZmJs/AuHnzpsivoSw6ceIEXxASGvup1Pnz5/k3O0n2fKCeTEmG66A6SRxwX7GCaWqyLVvyHg4cyD6+0eMH8ZYRamhRUkT//vtvvpT2yMjIYn4NvnjxYosWLe7evcsfZmZm8tIQBdefQZCSkjJ16h0iZmLCRGyi8/LlSxcXF35h09fXd3FxUc4VzcjI8Pb2dnBwEO5a9PT07O3tvby83rv9It/z37tolJGRMWbMGB5SWbt2rWiv5MOEgDtjbMPc/o9vnUHAvfiuX7+uo6Mjk8n27t2rtkH5Fldtbe0zZ84IB3fv3i2TyTQ1Nb29vcUa6MSJE3xBWzgydepUIlooVHMAsQUHB/OSZU2bNr1582ZRirN/grCwMH65sbS0FLdFSkZGho+Pj7OzM9+/9eeffyr/9PTp03w5QcQRyxhPT09e18LS0vJDi7XqlJaWxivYXrt2Teq55OEBd4WCde3Ktm5FwF08QUFMW5tparKAgLwjr1+zmjUZEduzR81zyc7O5p9RK1euVPVYcrmcb6D86aefVD0WFN/IkSOJyNHRUQ1jTZkyhYgGDx6shrGAMZaTk9O1a1e+tUvyVgoTJ04kIhcXF/UPfe0a09FhMhkrvL5sTAz79ls2ciRr04ZVrvy2nICBgYKUmJqadu7cedy4cQsXLlTeQLllyxYiat++vcpfT+kXExNTs2ZNIlq+fLnaBt21a5eGhoaGhoaXl5faBmWoJ1Ma4DqoNtIH3MeMYbVrM56HJ2LAfevWrURUtWrVklOVPzc3t2nTpkS0evVqEU+rHDHh3VmbN29eDjdrfJTMTDZsGCNilSqxy8WuPZ6amurm5sYX7jQ0NBwcHArJb0pMTPT09LSzs+M7/YnI2NjY0dHRx8fnvcGvV69ebdq0qeDCTFRUVLt27fivnz17trivoWg2fj3w6Nr5l/b86eXmtN7ZLicrAwH3Ynr16lXdunUl2fHHN4FWrFjx/v37wsGffvqJ59oLy3jFNH78eOU9a1lZWbxT0ANVbDABxhhjHh4eM2bM4HuqhM8ZLS2tnj17rlq1SsTNT69everQoQP/Jnbv3r1inu3ly5eenp4jR440NDQUvuPVqVMn32oirxQ3b968Yg5XVmVnZ/OsoilTpqSmpko9nTwuLi5ENGbMGKknkocH3Blj9+6xWrXYn38i4C6Sfv0YEZs16+2Rr79mRMzWlkmxpYmvz1WsWFHVua68SqS5uXnJ+Z8OChEaGsr3QKu68Mjt27c1NTV1dHQePXqk0oFAWXR0NC/R6erqKuE0EhIS9PX1NTQ0pNp0vnIlI2KVK7NCkiKio98p22tkxFq0YEOHsnnz2N9/bzh69OiDBw8KiZnym8B///1XFfMvS+RyOc8E7devn5o3Hbq5uRGRjo6OcoqVqqGeTMmH66DayBhjJJ2VKyk+nnR0KDqaNm6kQYNoxgw6epQqViRNTTIyIi0tMjQkbe28fxoYkI4OGRklaGk909fX19XVrVChgp6enp6eHm8WxyUkJDRp0iQuLm7r1q2Ojo4SvsB8Dh8+PGzYMBMTk6dPnwo1RsTy+PHjFi1a5OTk+Pr6du7cWdyTlz25uTR5Mm3bRvr6dPAg9e37KSfJyaHdu299//2QmJgYIhoyZMiyZcusra2L8ruRkZH79+/fu3fvlStX+JHatWsPHz584sSJbdq0Kfx379+/P3jw4LCwMCsrq6NHj/IKuWoQfP1kWtJLDU2tSibmdZt11NDSfnLrTA3LphWrmf73L0MBCoVi4MCBp06d6tix48WLF5VzkNUzuoODw4EDBywtLa9fv87rkDDGJkyYsH37dnNz8+vXr/Ni658sMzOzevXqqampT58+tbKyIqKDBw+OGDGiTZs2/v7+4rwMKKBr166XL1/euXPnvXv37t27l5OTU7t27S+//NLGxkb0sVJTU4cPH37mzBljY+Njx47xTlAf5fnz56dPnz5y5MipU6dycnL4QWtr68GDB9vb2ys3dOX69et3+vTpvXv3fvbZZ+K8hjLnyZMnAQEBJeq/z4sXLywtLRljoaGhys0DpBIeTj17UkgIEdE339DBg9StG23ZIvGsSr2sLPrqKzp4kIKDqWpVIqKnT6lZM8rJoRs3qG1bSSY1cODAEydOTJ8+ff369crHMzMzu3fv/gkn7N69Oy9FKkhJSWnUqFF0dPT27dt5OxYo+X788cdff/3Vxsbm5s2bwso05+DgEB4e/rEnNDU1PXToUL6D3bt3v3Tp0rfffvv7778XZ7bwsc6fP897Jh89enTAgAGSzOH333///vvv7e3tjxw5IskEGKPPPqMDB6hHDzp//oPPWb6c6tYlKyuytCQTk484/507d9q0aWNsbBwZGamvry/KnMuqxYsXL1q0qEaNGnfv3uV57uo0Z86c1atXV6pU6dKlSy1atBDrtDk5Offv3/fz8+vUqVPz5s2Vf9SuXTs/P7+DBw8OGzZMrOFAdLgOqom08f4VK5iLC0tPZ1ZW7MoVNnAg27fv/Y1Slf907373va9FT0/P2Ni4Zs2afPNy9+7dS2CNYFtbWyJatGiRuKdVKBS9evUiohkzZoh75jIsN5dNnsyImI4OO3Dgo3/dx4c1a8YMDFKqV6/Zvn378+fPf9o0AgMDXV1d69WrJ7yTra2tXV1dQ0JC3vv8U6dO8Wz6Tp065atuDKULTyevXr26VP0M09PTO3bsSES2trZCfcmsrKwePXoQUZs2bYqfrBccHOzh4SE85EFANWzwL7eys7MrVKggk8mEdkz8baa6LRSZmZkjRowgIgMDg1OnThXxt/jnno2NjRBP19TUtLW1dXNze/z4cSG/xYulSPW/DHwyXgBt/vz5Uk+EMaUMd8ZYcjIzN0eGu3iSkt7++6BBjIhNmybdbNiTJ090dHQ0NDT8/PyUj6empn7a96ahQ4fmG4Jv4OjUqVMJ/NIBH5KWlsYX/zw9PfP9qEGDBp/wxrCwsMh3nl27dvF7vCTl/ylAXZYuXUpEVapUkaStgkKh4G8kdfZtLigpiY0cWViG+0eRy+UREREXL17csmXLTz/9xF+gVD05S5GLFy9qampqaGj4+PhIMgG5XM5v1M3NzcPDwz/5PLm5uYGBgZ6ens7Ozra2tkK265IlS5SfhnoypQWug+pRIjLc3dzoyBFavJhMTGj6dIqLo9evSaGg5GSSy/P+mZJCubmUmko5OWRufiMwcFZaWlp2dnZ6enpWVlZGRkZmZqbymfX09KZPn85bEZYoly9f7tq1q6Ghob+/v6mpqdAbs5j+/fffyZMn16hR4+HDh8bGxqKcszxgjL7+mtzdSVOTNm+mCROK9FuXLpGLC12/TkTUqBGtWPF80KA6+dIwP4G/v//WrVt3794dFxdHRBoaGp06dXJwcBg7dqzJm5SDDRs2zJo1Kzc3d9SoUVu2bFHe2AGly9mzZ/v168cYO3HiRN9P22EhhpiYmA4dOoSHh48aNYrXcCeiV69ederU6cmTJ4MGDTp8+LCmpqYoYyUnJ9esWTMrKys8PJyX5wbRXb9+vVOnTtbW1g8ePOBH+vTpc+bMmf379/O7bVWQy+VOTk6bN2/W0dHZsWPHh3Krc3Nzr1+/vnfv3gMHDkRGRvKD+vr6vXr1cnBwGDJkiHJDV4FCobhz586RI0f27t0bFBRkYmLi6OjI2yFCKXL9+vURI75q1Wrdvn1tpc2Eu3CBGjQgX18aMybvyK1blJZGPXpIOauy4MULCg+nBg2oWjUiIh8f6tuXKlWiR4+oRg0J5/X111+vWrXK1tbW19dXuFVTKBS3bt36hLNVqVJF+YtoaGiotbV1Tk7OtWvXeBl3KC22bt06ceLEGjVqPH78WHnb8b179zIyMj72bLq6urxVNZeRkdGkSZOwsLCNGzfy1jWgZoyx4cOHHz58uH379r6+vmreRXrixImBAwfWqVMnJCRErLvoT3buHPXuTT4+ZGdHRLRgAenq0sKFhf1KUhKFhUU/fXr12bNnz549Cw0Nffbs2fPnz7OyspSf5uLiMm3aNOWkMcgnISGhdevW4eHhCxcuXLJkiVTTyMjI6NOnz5UrV5o1a+br6/ve++2CGGNPnjy5deuWn5+fn5/fnTt30tLShJ/KZLKGDRu2bdt29OjRgwcPFo7/9ttvLi4uY8eO3bFjh+gvBMSF66A6SBvv5xnu3JAhTF+/WDXc09PTExISoqKi+FqKkZFRycz/HTRokHKcXVNT09jYuFq1alZWVvXr17exsWnXrp2dnV2fPn0cHBwcHBycnJycnJxcXFxcXFyWLVvm5ua2bt06Dw+P3bt3e3l5nTx5cv/+/Typf+fOnVK/uFLJ1ZURMU1NtnHjfzwzKIg5OOTttKhWjbm5sfd1PC2W3NxcHx8fR0dHoZCxrq6uvb39v//++/XXXxORTCZzcXFBIlWpFh4eXq1aNVIqbi6hBw8e8D0Tyt3egoOD+dLdd999J9ZAvMptr169xDohFLRixQoimvYmpTQ3N5ffP0VFRal0XIVCwT+gNDU1N37gk1T5ZotXuTl16tR7u0YzxtLS0g4dOjR58mQTpR3O1apVmzRpUlpamipfCqiKra2CiK1fL+UcHj1ihoasbl0WFyflNMqahATWowdr04aNH88aNmSjR7OsLJaezpYsYX//LfXk2OvXr/kWflV0jRs6dCgRffHFF6KfGVRNoVDwbcf/+9//RD+5q6srEbVu3Vryvp3lWUJCAu9n4+zsrOah7e3tiei3335T87jvdfYsq1uXNW7M+F7WH39kQkZydjYLCWE+PszDg7m4MAcHZmvLrKwYEevaNbhg4KhmzZqdOnUaN27cggULNm/e/JJ34YMPUCgUQ4YMIaKuXbvm5ORIO5mXL182btyYiHr06JGZmfmhp7148cLb29vV1dXe3p7Hl5SZmpra29u7urp6e3t/6G+fdxI6ePCgql4JiAfXQTUoQQH3sDBmYCBa09T+/fsT0ddffy3O6UQVERGxefNmY2Nj5dZwxWRubt63b1+pX1kp9ssvjIjJZOxDX8ciI5mTE9PU5K3bmYsLe/1atVN6/fr1li1b+vbtK2RGaGtr6+rq7tixQ7UDg4plZ2fza9vAgQPV3DnnQ06ePKmlpSWTybZu3SocPHfuHN+JHxAQIMoodnZ2RLRp0yZRzgbvxZvOb968mT+8c+cOEVkJ5TNUjLdmkslk7/2SeeDAgZYtWy5cuNDPz+9DS4a8daqDg4PysrSlpaWzs7OPjw/6gZdqu3czItaoEZPqYy8zk7Vpw4jYqFHSTKDMmjaNTZ6c1xY1K4v17s1+/VXqOb2DF3CvXbu2uMt1Z8+eJSIjIyNVr2iCivj5+WloaOjo6Dx58kTE00ZERPDqZxcvXhTxtPAJbt68qaurS0Tbtm1T26BhYWGampq6urpxJWNp9+xZ1rcvc3JivIksD7gPGsRq12YaGu+v32tgwIYMiRsyZMicOXP+/PNPb2/vwMBApDt8LF602tjY+Pnz51LPhTHGQkND+fLzmDFjCt6H5+TkFKwvb25uPmzYsKVLl548ebIo6yshISGoJ1O64DqoahKXlMnMJMZIqIqRkkJ6eqStLcKZ792717p1ay0treDgYL64XWLl5OSkpqbm5uampKTI5fLk5GT+T4VC8fr1a8YYr3mUlJRERImJiUQkHGGMvX79WqFQzJkzp2PHjjxnFj7NunW0cSNNnEguLnT3LjVuTEQ0diz17k0REfTbb5SRQdra9MUXtHgxqbPfSUxMzJ49e/bu3Tt16tQGDRrwWC2o2qVLlzp16qQtyufRu7766qu///7bwsLC39+/5Pw/+88//0ybNk1bW/vUqVM9e/bkB7du3WpoaChKKZLw8HArKystLa2YmJgi7mSET2BmZhYdHf3o0aOGDRsS0Zo1a2bPnu3o6Lh161b1TGDt2rVfffWVQqFwcXHh8feiePbsmbe399GjRy9cuJCbm8sPWltbOzg4DB48WBXtXkH9cnOpXj0KD6cTJ6h/fwkm4OxMf/1F9erR7dskdt/68q12bTpxgpo1y3vo7U0rVtClS5LO6R0KhaJ9+/b+/v4DBw4Uq4abQqH4888/w8LC3NzceBl3KI0mTJiwbdu2tm3bjh8/Xqxz7tq168aNG6NHj969e7dY54RPtnbt2lmzZhkaGt64ccPa2loNI86fP3/58uUTJ07cUjKacZ87R8uX0/bt1LIlXbhAW7eSri7t20f37hERGRuTlVX+P5aWVOxSqeXdrVu3unTpkpOTc/DgQb4XqiS4fft29+7dU1NT58+fv2zZsnw/bd269fPnz5s2bWpjY9OlS5cuXbqYmpr+5zmjoqL837h06ZKOjk6fPn127typmlcA4sN1ULUkDfer1tixY4lo0qRJUk8ESo3sbLZhA7O0ZL175x35/HO2bBnT0GAyGXNwYKKu/EHJlZubq6enp7zhTugpWkx79uwhIm1t7atXr4pyQhHNmTOHiKpUqfLo0aPiny0xMdHX19fd3d3JycnW1lZHR6dmzZojRowo/pnhQ0JCQoioWrVqQt4Kvw6uW7dOndPYsWMHX6maMWNGIXs45HK5n58fb50q3JPo6ura2dm5u7ujLWqZtHw5I2L9+0sw9NGjTCZj2trs+nUJRi/LcnOZhgZLTHx75M4dVqeOVNP5kPPnzzdv3lzc71DW1tatW7cuZG8+lHwvXrxo3Lhx9erVRXxjVKlSpVGjRiUkpxUYYxMmTCCipk2bpqaminvmgnVCMjMz+dvpeom52PAMd8bYunXMzo79739syRIWEMBCQhj2DapIUlISz/icN2+e1HPJ7+zZs7ylwerVq/P9qIidLcPCwvbv3//DDz/06dOnYO/Ab7/9Njk5WQUTB1XBdVClJM5wV6lnz541btxYLpcHBAQ0bdpU6ulA6bBxI92+TY8e0ZQpNG4cjR1LgwZRTAx1705t20o9OVCX58+fd+/ePSwsTDjSr1+/uXPnDhgwoDinffz4cbt27ZKTk9euXTtz5sxiT1NkCoVixIgRhw8ftrKyun79unLt7KL87tOnT+/evRvwhtAVk9PQ0Pjmm28WLVqkL23DxDJt+/btjo6OQ4YMOXz4MD9iaWn5/PnzgICAFi1aqHMmx44dc3BwyMjIGD58+K5du/iGbi4zM/Py5ctHjhzZt29fVFQUP2hsbGxnZ2dvbz9s2LCKyD0uu5KSqHZtSkujBw+oSRP1jRsZSa1a0atXtGoVzZ2rvnHLi+rV6do1EvrmnTlDCxbkdZYvSTIzM8VNRW/WrNnUqVNlSAQt5RhjS5cuffnypVgnrFy58qJFi/DGKDnS0tLat28fFBT0+eeff3LibWJiYmgBBgYG93ii+Bvbtm2bMGFC69atb9++LcbcRcAz3E+dIoWCOnUihYKGDPmPpqlQTGPHjt21a5eNjc3Vq1fV3LC3KHbs2OHo6CiTyfbu3VuUfcyJiYn+/v6XL1/29/e/detWbGys8k9NTU1t3mjfvn0NSdukw6fBdVB1tKSegApZWlpOmzZtzZo1P/7446FDh6SeDpQaMhmtXk0DBtDAgXlHvvlG0gmB2oWGhuYrRRUaGmplZSU83LhxY05Ozpdffln0c6alpY0YMSI5OXnMmDElMNpORBoaGjt37uzZs+fNmzdHjhzp4+OjHCfNJzs7+8mTJ8IWwoCAgNTUVOUnGBoaNmrUyNramt+BtW7dmpdyA9W5evUqEXXu3Jk/jIqKev78ecWKFdW/5Dxo0KCTJ08OGTLk4MGDgwYNOnToUHZ29tmzZ48cOXL48OHk5GT+tDp16vTr18/e3r5fv34l8AsJiK5yZZowgdaupdWrad06NQ0ql9OECfTqFQ0YQHPmqGnQ8qVnT9q3j4RY9t691KuXpBN6Pz09vT///FPqWUCJI5PJFiL6WKYZGBgcPHiwXbt2u3bt6t69+/Tp0wt5cmJi4rNnz0JDQ5X/GRYWlp2dXfDJBdN7161bR0SzZ88Wcf5i0dCgtWupQwcaMkTqqZRp69ev37Vrl6Gh4c6dO0vmze24ceNCQ0N/+umn8ePH+/j4FCxX+/r16/v37wvf8oKCgpR/WqlSpWbNmglBdiS2lgG4DqpOWc5wJ6L4+Ph69eqlpKRcvnwZla+hKDZupDt3aO1a+vZbys6mly9p0CAaN07qaYF6/fPPP1evXt28eTN/KJfLDQ0Nk5KShAD0zJkzmzVrNmvWLP4wJCTE29t73rx5hZxz4sSJW7dubdSo0a1bt5QbQpY00dHRHTp0iIiIGDNmzM6dO4Wl6aioqKCgoAcPHvB7r+DgYIVCofyLpqamTZs2FSLsTZo00dDQkOIVlF+tWrUKCAi4dOlS165diWjfvn0ODg59+/Y9deqUJPO5ffv2gAED4uLiatasGR8fL5fLiUgmk7Vp02bo0KFDhgxp2bKlJBMDCT15Qo0bk54ehYdT1arqGHHhQlq6lMzN6e5dKjFdM8qWkBDq1o0++4xatqRLl+j6dbp2jQrEoQAAJLRnz54xY8bo6upeuXKlYG8YFxeXM2fOhIaG8q5pBZmamlpaWlpZWQn/tLS0rFWrlvK97t27d1u3bl25cuUXL16UnA2dISF04QJNmZL3cPNmqlu3ZK6KlgWBgYHt27fPyMjYvn37uJIdQZg9e/aaNWuqVq165coVMzOzgIAAIcL+8OFD5SChkZFRixYthAi7tbU1MpcBiqgsZ7gTkYmJydy5c3/++ef58+f7+vpKPR0oTVxdqUULqlKFBg2Seiqgds+ePVPOcI+IiDAxMVFO9w4NDR2ilB9y586dy5cvKwfcvby8PvvsM+EufO3atbwB6YEDB0pytJ2ITE1NDx8+3K1bt927d+fm5tauXTsgIODu3bsJCQnKT9PR0bG2tm75RqtWrapUqSLVnIGIKCXlVlJSeLduZm+qX+VLeFe/Nm3aXLt2bdiwYSYmJhcvXrS1tXVwcBgxYkTt2rWlmhJIrkED6t+fjh+nDRvohx9UPtzFi7RsGWlo0NatiLarTL16dP8+nTpFYWE0ZAitW0cVKkg9JwCAd4wePfrSpUtr164dOXKkv79/1XeXfJ89e8aLwOjq6pqbm1u9q2HDhkW5e1+zZg0RTZ48ueRE24moXr23Fb+IaPJk6aZS1qWlpY0aNSojI2PatGklPNpORO7u7mFhYUePHu3YsePr16+VI+wGBgatW7du+0bDhg0RYQf4NGU8w52IkpOTGzVq2qDBrz/8MHrAgJK4qQdKFCHDnYi8vGj0aNq+HRnu5Y5cLs/JydHT0+MPs7KygoODlbNxjx492qFDB6HK+fXr1yMiIhwcHITnjxo1SqijTW/S23ft2jVmzBh1vYhiOXLkyMiRI6tUqSLU6RP2D/I09rZt2wr/faBEOH2a+vWjjh3p2jV+IGb06OC4OOOffmrZs6eE81IoFBEREcbGxijODpyPD/XtS2Zm9Pw5aWu/5wmM0fHjVKcOmZsXK086Pj5+wIAZWVmen31m6Or66ecBAIAyICcnp0ePHlevXh00aNCRI0eUY4j37t3LzMy0tLT8qA5GgszMzHv37vXs2TMjIyM4OLhhw4bizRpKjSlTpmzevLlp06Y3b94sUYsuH5KWljZz5sy4uLhz5841aNBAuRR7ySyGA1DqlP2AOxH9/XfWV1/ptmhBd+4QKhxA4S5fpvBwGjs27+FPP5G9PbVvL+mcoEy4cOFCjx49pJ7FR3j+/Pnhw4fT0tJ4DnutWrWknhEUatEiWryYvv6aVq4kIsrIoMqVSS6nV6+oUiWpJwfwFmPUujU1bEhr1tB7Ixvx8VS9et6/6+uThQWZm1OtWmRhQRYWW0xNTSwsLMzNzQvfVcMYGzRo0IkTJ+zsBp48eUxTUwWvBAAASpWIiIg2bdq8fPly2bJl8+fP/4QzvLd76vPnzxUKRcOGDevVq3f8+HHRpw2lwoULF6ZOnXrgwIEWLVpIPZePEBcXZ2xsrP3eDAgAKJ5yEXDPzqYmTSg0lLZuJUdHqWcDJdv+/ZSe/vZ98s8/VLMm2dtLOicAgP/Uty/5+NC+fTRyJBHRpUvUvTu1akV37kg9M4D8du6kp0/pp5/yHi5ZQpMnk7CoFxFBTk4UEUGRkfT69dvf0tPLzMrSF25c9fX1eeS9Vq1a7u7ulStXVh7i999///7776tUqXLnzh0LCwuVvyQAACgNjh8/PnjwYJlMdvLkSTs7uw89jXdPFVqnCt1Ts7KyCj5ZR0fHwsJi4sSJP/zwgyYWeMsxuVyONwAACMp4DXdOR4d++okmTaKFC2nUKFKqwwyQ38OH73y9v3PnnbJ3AAAlkUJBN28SEXXsmHfk6lUiIukKuAMU4tYtWruWmjen4cOJiPbvp6FD3wbca9emEyfy/j01lcLDKTKSXryg2NiskJApL168CA8Pj4yMfP36dXBwcHBwsEwmW79+/bvnv7VgwQKZTPbvv/8i2g4AAIKBAwf+8MMPv/zyy/jx42/fvm1iYhIREZEvYz0qKio6Ovq9v25sbGxVgIWFhZZWuYirQOEQbQcAZeXlwuDoSKtWUUAArV9Pc+ZIPRsAAAAR3b9Pr1+TpSWZm+cdQcAdSrapU+mbb6hPHzI0LOxphoZkbU3W1vxRJaKNwo9SU1PDw8NfvHgRFxen3FIiJSVl3Lhx2dnZX3/9tXJ3awAAACJavHjxtWvXzp0716hRo/T0dIVCUfA5hoaGlpaWVlZWlpaWwr9YWVlVQFNoAAAomvIScNfQoJ9/piFDaOlS+uILQuc2KISfX14NZCK6excZ7gBQ4uULrzNG16+/cwSghGnShLS0yNU174Kbk0M7d+aVazc3p6I06zI0NLS2trZ+E4wXzJgx48mTJzY2NsuWLVPBxAEAoHTT1NTcuXPnqlWrNm7cmJqa+t6kdUtLS+WuqgAAAB+rvATciWjwYOrRgy5coD/+oEWLpJ4NlGDa2mRg8PbfAQBKunwB98ePKT6eatYkS0sJJwVQuCVLqFkzmjiRiCgmhsaNyzsuk1GNGlSrFpmbk4XF23+pXTvZ1FRXt9DKgBs2bNi5c6ehoeGOHTt0ihK2BwCA8qdGjRpubm7Ozs7Vq1dHNRgAAFCF8nV1cXOjTp1o5UqaOZNq1JB6NlBStWxJM2bk/fv9+5JOBQCgKK5cISKytX3nYZcuks0HoAgqVSI3N5o7N+/hmDEUEUERERQdTTExFBNDfn7vPL9btx8uXVprbGxsampqZmZmZWWl/C9169Z9/vz5vHnziGj9+vWNGjVS9+sBAIBSxczMTOopAABAmVW+Au4dOpC9PR05Qr/8QqtXSz0bAACA4ouNpWfPyMiImjXLO4IC7lBKjB1L//xDwcFUuzbt2pV3UKGgmBiKiKAXLygigiIj8/4YGGRpa2snJiYmJiYGBQUVPJuBgUF6evrkyZPHCdnyAAAAAAAAale+Au5E9OuvdPw4eXjQjz8iyR3ew9CQGHv7sGLFt+VlAABKovv3SUuLOnQgTc28Iwi4Qykhk9GaNdSq1TsHNTTIzIzel3f4D9E/iYmJUVFR0dHRoaGhyv/y/PnzmjVrTpw48euvv1bP5AEAAAAAAN5LxpSDi+XD8uXUsiX17UsaGkRE2dmUk0O6uqRQvG3SlZNDhPrdAABQKqSl0cuXVKcOEVFiIlWrRjo69Pp1kVpPApQJCoUiMTGxatWqUk8EAAAAAADKu/IYcI+OJjMzcnenOXOIiHbsoOPHqW1bevKE1q7Ne87335ORES1cKOE0AQAAimb/fjp3jtLSqGVLmjKFIiLo6VMaOlTqaQEAAAAAAACUOxpST0AaVaqQuzu9eCH1PAAAAIppwQJatowGDaKpU+nhQ+rdmxo3RrQdAAAAAAAAQBLlNOBuYEDz5uVluAMAAJRWiYn055906BANHEhdutCGDaSjQ3v3Sj0tAAAAAAAAgHKqnAbciejLL+nJEzp27O0RLy9q0SLvz5Ytkk0MAACgqB4+pLp1qVatt0d69SJ/f+kmBAAAAAAAAFCuld+Au5YWrV1Lc+ZQVlbekZEj6caNvD/jx0s6OQAAgKJITyc9vXeO6OtTWppEswEAAAAAAAAo78pvwJ2IbG2pa1dasybvoaYmVaiQ90dLS9KZAQAAFEW9ehQaStnZb488fEj160s3IQAAAAAAAIByrVwH3IloxQoKC/vgT//+m2bOpPXr1TghAACAorO0pCZNaOlSYoyI6OpVOnkSu7QAAAAAAAAApFIeE7kNDWnmzLx/r1qVPD0pJYVq1SJLy7fP6dmTNDVJoaDZs2nIEBo9moyNJZksAABAofbupWnTqFEj0tEhbW3auZOqV5d6TgAAAAAAAADllIzxnDj4AMZo4EDy9iZtbamnAgAA8CFyOeXk5K/nDgAAAAAAAADqVR4z3D/Kzz/TzJmItgMAQMmmqUmamlJPAgAAAAAAAKC8K+813AuRmUljxlBODunrU3Ky1LMBAAAAAAAAAAAAgJINGe4flJNDI0cSESUmUm6u1LMBAAAAAAAAAAAAgJINNdwBAAAAAAAAAAAAAESAkjIAAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAgAgTcAQAAAAAAAAAAAABEgIA7AAAAAAAAAAAAAIAIEHAHAAAAAAAAAAAAABABAu4AAAAAAAAAAAAAACJAwB0AAAAAAAAAAAAAQAQIuAMAAAAAAAAAAAAAiAABdwAAAAAAAAAAAAAAESDgDgAAAAAAAAAAAAAggrIScE9KooiItw/T0ykl5e3D1FRKS1P/pAAAAAAAAAAAAACg/Cj9AfdHj6h1a+rViyZOJAsL2r6diGjdOvrhh7fPWbSI3N0lmh8AAAAAAAAAAAAAlAtaUk+geBijSZNo6lSaNYuI6OFD6tqVbG2lnhYAAAAAqFFODh07RoGBZGJCvXpRgwZSTwgA4D1CQ0PPnDlz5syZ9u3bf/vtt1JPBwAAAFSilAfcHz+mZ89o5sy8h02a0MiRtGcPaWtLOi0AAAAAUJfcXOrRg6pXp2HD6MULsrUlT08aMEDqaQEAEBGlpqZev36dx9n9/f35wcjISATcAQAAyqpSHnB//pzq1iUNpcI49epRSAg1bEjbt9PJk3kHX70i3M0AAAAAlElbt1KFCnTwYN7Dtm1p1ix6/JhkMkmnBQDlV25ubkBAAA+yX7x4MScnhx83MjLq3r374MGD7ezspJ0hAEglMDDwwoULw4YNq1WrltRzAQBVKeUB9ypVKCnpnSOJiVStGhHR+PH09995BxFtBwAAACirLl2iYcPePuzbl2JjKSaGTE0lmxIAlE+hoXTmDJ05Ex0f3/bCBX5MS0vLxsbGzs7Ozs6uR48eWlql/Ds4ABTP4sWL9+3bp6+vP3nyZKnnAgCqUsov9k2aUFQUPXpEjRoRETFGx46Rmxs9fCj1zAAAAABALRISqFKld45Urkzx8Qi4A4A4QkJo2TK6e5cqV6Zevei7794pYRoRQWfOkI8PnT1LcXH8WK1Kldq1adOjd287O7uuXbtWqFBBmpkDQMnTuXPnffv2Xb16FQF3gDKslAfcDQ3pl19o4ED68UeqXJm2bKHatWngQATcAQAAAMqLOnXo+fO3DzMyKCaG6taVajoAUKa8fEndutGPP9KKFfTqFTk7U3Q0LV9OPj55cfZHj94+2cKC7OyoTx9Z7943TUykmzQAlFydO3cmoqtXr0o9EQBQIRljTOo5FNu1a3T2LCUnU9u2NHw4aWvTjRuUlET9+uU94exZ0tMjW1tJZwkAAAAAKnD6NDk5kZ9fXl3BpUvp1i06fFjqaQFAmfDnn+TrS/v25T18+ZIsLenSJWrTJu+IgQF16kR2dmRnRzY2Uk0TAEqLnJycypUrZ2RkxMXFVeO3LgBQ5pTyDHeuUyfq1In+/ptWrqSKFal/f+rQ4Z0n9O4t0cwAAAAAQGUYI5mM+valadOodWvq2JFevKDMTDp0SOqZAUBZERxM7dq9fVitGllYUGYmjR5NTZuSnR21b0+amtLNDwBKGW1tbRsbG19f3xs3bgwaNEjq6QCASmhIPQHxREbSzZvk6yv1PAAAAEqi7dupeXN6+TLv4axZdOKEpBMCKL6bN8ncnBYsoB9/pMeP6ccfycuLbt8mCwupZwYAZRpjtHs3LVxInToh2g4AH8vW1pZQVQagTCtDAffOnYmI8IEFAADwPq9fU0wMffdd3sPYWEpLk3RCAMV36hRFRVFSEhFRhQrUvDl5eNDZsxLPCgDKkiZN6Pbttw8TEig8nBo1km5CAFDq8TLuV65ckXoiAKAqZSvgLpPRjRuUnS31VAAAAEqiUaPo5k26eFHqeQCIxceHiKhPn7yHfn60dCnNnCnhjACgrJk0iXx9aft2ysmhhASaMYPGj6eqVaWeFgCUYp07d5bJZDdv3sxG/AqgjCpDAfdq1ahhQ8rIoIAAqacCAFCKXbx4MTw8PDk5WeqJgPi0tcndnb78EmvTUCakpNCNG6SlRT165B05fZqIqG9f6eYEAGVOxYp0+jQdPkwtW1LfvlS/Pq1aJfWcAKB0q1q1asOGDTMyMgIQvwIoo8pQwJ1QVQYAoFguX77cvXv3Hj16DBw4sHHjxgcPHpR6RiC+Pn2oWTPECqBMOHeOcnKoUyeqVCnvSL6EdwAAUYSFUbdudPIk+fnRr7+Snp7UEwKAUo9XlUEZd4CyCgF3AACgixcvduvWrWvXrpcuXTIxMcnOzo6Ojh4xYsTYsWPj4+Olnh0Ul0Lxzu6vP/6gv/6iuDgiooQEqSYFUGz5wuspKXT9+jsJ71CmZWZm7tu3LzAw8OnTp1LPBco6Dw9ydqbz56WeB5RW+LyCghBwByjbymLA/fJlqedBRHTnDl269PbhyZOE8gwAUAJdv3598ODBPXr08PX1rVq1qqur69OnT4ODgz08PAwNDXft2tWoUaMNGzZIPU34dBER1Ls32dpSbGzeEXNzmjePfH0pLY3atKEJEyg9XdIpAnyafAVkeMJ7x45vE96hLFIoFJcvX54zZ06tWrUcHBzGjRvXunXrY8eOST0vKLtyc/Oan/TuLfVUoJTB5xUUggfcL5eM+BUAiK5sBdybNKEqVSgqisLDpZ4KbdpEffpQUFDew3nzKDJS0gkBALzr/v37o0aN6tSp09GjR42MjFxcXEJCQhYtWlSxYkUNDQ0nJ6f79+/37ds3MTFx+vTpAwcODAsLk3rK8NH276dWrejCBapYkfT1qWHDvONz5tDo0RQbS7GxtG0bdepEwcGSThTgYz1/Tk+eUOXK1LZt3hHUkynr/P39v/7661q1anXt2nX16tWvXr1q166dnp5eamrqsGHD1q9fL/UEoYy6cYOSk8nammrVknoqUGrg8wr+U5MmTapUqRIVFRVeAuJXACC6shVwl8moUycioitXpJ4KEVGfPjRzJjEm9TwAAN714MGDUaNGtWzZcu/evYaGhi4uLmFhYW5ubpXeTQutW7fuqVOnvLy8qlWrduLECWtr6+XLl8vlcqmmDR8lI4PmzKHPPqOEBOrXj27fpvnz6csv836qpUW7d9P335OfHzVrRvfuUZs29Oefks4YSgmFQiH1FIiI6NQpIiI7O9LUzDvCA+7omFrmhIeHL1++vEmTJm3btl21alV0dHSdOnVcXFyCg4Nv3rx5/fp1V1dXuVw+c+bMOXPm4CIF4uOfLXZ2Us8DSgF8XkHRyWSyTp06EdGVkhG/AgBxla2AOxF17kyamin37kk9DyKiwYNJR4e2bJF6HgAAbwQHB0+YMIGH2itUqODs7Pz06VM3NzdjY+MP/YqDg0NgYKCjo2N6evr8+fO7dev28OFDdc4ZPoGfH7VqRatXk54eubvTiRNUs+b7n9m0Kd28SdOmUUYGzZ1LDg70+rV65wqlgVwu9/f3X758eZ8+fZo0afLTTz9Jv+UlXz57WBg9fkyVK1O7dhJOCkSUkJCwYcOGLl261K1bd/78+cHBwVWrVnVycvL19X327Jmbm1ujRo2ISCaTLVq0aNeuXXp6eqtXr7a3t09GGUcQ15kzRNg9A4XB5xV8Gh5wv3btmtQTyRMXF3flypXLly9jNQhABKxsuX/pkrmRUZs2baSeCJs1i61fz4KCmJkZe/mSNW7MHjxgJ06wtDSpZwblz8OHD11dXd3d3Tdt2iSXy6WeDkjj2bNnTk5OWlpaRKSjo+Pk5BQVFfWhJ6enpy9atCglJUX54JEjR2rVqkVE2traLi4uWVlZqp81fDSFgrm7Mx0dRsSaNmUBAUX9RU9PZmjIiFjDhuz2bVVOEUqPhw8f/v3338OGDatcubJw6yiTyYjI0tIyLCxMqonl5uaG2tkpjI1ZaGjeIQ8PRsRGjpRqSiCW9PR0Ly8ve3t7bW1t/parUKGCg4ODt7d3dnZ2Ib945coVExMTImrRooWEb04oa5KTmbY209Jir19LPRUocfB5BcV0/vx5IioJ8SvG2JkzZ4yMjKytrYmoatWqjo6OXl5eycnJUs8LoLQqawH39PR0bW1tTU3NfHEi9eMBd8bY/Pnsyy9Z48bsyBFGxPT0mJ0dc3dnH450AYgjPDzc3d3d1taW3/8ZGRkR0ciRI9PT06WeGqhVWFiYEGrX1tZ2cnKKjIws/Ffmz59PRHXq1Dlx4oTy8aSkJGdnZw0NDSJq3rz5jRs3VDlx+GjR0ax/f0bEZDLm5PTRS7zBwaxVK0bEdHWZuztTKFQzSyjZYmJivLy8nJyc6tSpo5yiYWVl5eTk5OnpGRwc3LFjR/4R8ezZM0kmyXPBmjRq9PaQgwMjyrv3glIoNzfXx8fH0dHR0NCQv+U0NTXt7Ow8PT3fe1efnZ1d8H7m6dOnjRs3JiIzMzM/Pz+1TBzKusOHGRHr0kXqeUAJgs8rEEvJiV/t3LmTrxu1adOmfv36wu1fhQoVhgwZsmnTptjYWGlnCFDqlLWAO2Osbdu2RHT27FlppyEE3FNTWb16rHJltnMn69CBaWgwIkbENDWZrS377Tf26JG0M4WyJiYm5q+//rK1teVJiERUuXLlyZMn//bbbzxFsX379jExMVJPE9QhNjbWxcVFT0+PiDQ0NBwcHJ4+fVqUX7x371779u35+8fBwSE+Pl75p5cuXeIbY3lvVclvEIE7cIBVrcqIWPXq7OjRIv3KhQts1CiWmPj2SEYGmzkz7zo1Z86ehIQE1UwWSpaUlBQfHx8XFxcbGxvh2kFEJiYmDg4OHh4eoUIiOWOMsaSkpA4dOkgYc1+8eDERzZ49mz/Mzc1tUqvW0vbtMyRaAIDi8PPzc3Z2rlGjhvDGs7GxcXd3/9B3e/786tWrr1q1quBPX7161aNHDyIyMDA4dOiQaqcO5cFXXzEitmiR1POAEgGfVyC6khC/WrduHU+ocnZ2VigUjLGQkBCeuseP8+99NjY2rq6uDx48kHCqAKVIGQy4z5kzh4iWLFki1QTc3Jiz89uAO2PswAFGxPjnUlwc8/RkDg7MwCAvokHErKyYszPz8WE5OVLNGj7OuhcvFj9/zv/sjYuTejqMMZaYmOjp6am8pVFPT8/e3t7T0zPtTZrrgwcP6taty0sBBAUFSTthUKn4+HgXF5cKFSoIofZHH7m4J5fLPTw8eOZO9erVPT09lX+anp7u4uKiqanJ8159fHxEnT58nPR05uycd0Hp27eoO6jkcmZtzYhY3brs2rV3frR3L+va9YKmpmbt2rUvX76sijkzxjIyMq5fv/73338nJSWh2pX65eTk+Pn5ubm52dnZCRcO/rXfzs7Ozc3Nz89P8eFtDklJSXxZrn79+v+5aUZ0Xbp0IaLDhw/zhzzhvUGDBmqeBhRHUFCQq6urchqdtbW1q6vrhxaGAwMD//e///HbGO7zzz9/7zOzsrImTpzIc07d3NxU+SJAJRYsWCB57tRbTZowInblitTzACnh8wpUx9nZmYh+/vlnqSbg5uZGRDKZ7L3vwPj4eE9PTwcHBwMDA+Vdj87Ozj4+PjkIYJVgCQkJ+IYlrTIYcN+9ezcRDRgwQP1DKxRs3ry87PWTJ5lyGPbOHZaR8c6T09KYtzdzcmI1auRFSQwMUszMzHmpLGSMlnAOgYEH4+NvJSffSk4OkbRCS3p6ure3t6Ojo76+fr4tje8tuBYdHd2uXTsiMjY2Pn/+vNrnWwZNnz59zJgxJWeT3cuXL11dXStWrMjvnOzt7e/evfvJZwsNDbWzs+NvrYEDB4aHhyv/9O7duzY2NnwgR0fHly9fFnv68NH8/FijRnklyz62DkxYGOvcmRExLS3m6sqUb8nCwsJ4QSotLS1XV1dRbtdycnICAwM9PT2dnZ1tbW353gsiatWq1cyZM4t/fvhPubm5QpBd+O/P/5ZtbGxcXFx8fHyK3p4hKSmJX1AaNGjw4sULlc5cWXJysra2tpaWVlJSEj/CE95nzZqltjlAMXXt2lV4+1lYWLi4uNy7d++9z4yMjFSuj0dEtWrVcnZ2/s8KDO7u7jwvb9q0aYUXU4YSZd++fUSkr69fEmLuishIRsQqVkRWVHmGzytQKUnjV4pvv/2WBxA2bNhQ+JPT0tK8vb2dnJyUd3hUq1YN8asS6MWLF506derVq1e9evXc3d0z8sUipaBQKO7du/e6nHVDKYMB98jISCKqXLmymhdzcnPZlCmMiOnosD17PuIXc3LYuXNs7lw2ePAh5fyyESNGbNmyBQGskskhMPCRpHH2zMxMHmfnldmJSENDw9bW1t3dPe6/Mu5TU1OHDh1KRDo6Otu2bVPPhMswU1NTIlJnsKkQixYt4m8JmUw2dOjQgKJ3zPwwhULh6elZtWpVIqpYsaK7u7vyp2tOTo6bmxuP3NWsWXPv3r3FHxEYY97eb8PfmZns5EmWmMi8vN6u3T56xG7fftsf1dqafdrCSk4Oc3XNK3fWuzeLjlb+UY6rqyv/BtirV69Cuux+SG5ubmBg4JYtW2bPnt2hQwflCC+/uW/WrNmAAQN0dHSIaMWKFZ/yAqAIMjMz//rrr3y9TzU0NFq3bv3tt9+eOHEiNTW1kF8PDg5es2bNiBEj8jV1YIwlJibymHvDhg3V9jF48OBBIuratatwhCe8Yz9+aTFlyhRLS8uKFSs6Ojp6e3vn5uYWfI6wb49vpeL39o6Ojj4+PkW/w9+7dy/f6dWnTx9heQZKOIVC8eWXX/KY+5kzZ6SdzJYtW/rUrXv8TfUqKIfweQWqJl38KnfKlCk8JrCnQAArLS3tQzH03NxcX19fFxcXXmKUq1Chgr29vYeHR7TydwmQwsuXL3nnWyEj09zcfMWKFVL1v01JSfHw8GjevLmWllbz5s1HjhxZfj7iymDAnTFmYWFBRPfv31fbiJmZ7LPPeJY6O3mysGcmJ7NCvpAGBga6ubkpV98WSmU9fPhQ9GmXGWsiIwfeuzf4/v3B9+9/rpZKKQ6BgasiIrbHxGyPiXlR5GTA4pPL5b6+vs7OzryvPcdLB35ULCw3N5dvXpPJZK6uriqbb7nAi66UhAbuV65c4Tk4dnZ2N2/eFPfk0dHRn332GX/L2dra5vtEevLkSc+ePflP7e3t1V9fouwhYpmZef8eFcWMjdndu4yILVyYd/CPP9jkyczQkMlkbM6c/JuoPtaxY6xaNUbEzMzYpUvv/PWdOXOmZs2aRFS9evWC8daCXrx44e3t7erqam9vb2xsTO8yNTW1t7d3dXX19vYWCsTv2bNHQ0NDJpNt3bq1WC8DPmDt2rWVKlXifwVC79PC4+OxsbEFW6fOfl/UKTExkZcfbdSo0SesynwCHowTigcWTHiHEo6v4D5//rzgj4R8AuFbIq+P5+XlVfS9F8quXbvGc/GaNWumun4DJ04wF5e3G4xWrWIPHrBly5jyS5w//52GGVCIkhNzHzduHBH99ddfEs4BpIXPK1ADHr8KDAxU24iZmZn8m52BgcHJ9wWwNm3apKura2dn5+7uXsg3O6HUO+JXJURycjJPhWnWrFl8fLy3tze/S+eZc87Ozuq5V+eCg4OdnZ35znsiMjEx4Z+WjRs3Vme0VkJlM+A+ZswYIvLw8FDPcKmprE8fRsSMjf+7vt+GDXmpiK6urJC9ZREREWvXru3bty/P++OaNWsmFOMGZcvDw7ertwuoQ2Dg6sjIXbGxu2Jjo9QScOctd3gyNcdLBz558qSIZ1i+fPmyZcuUj3h4eGhpaRHRpEmTsHvx08jlch4oLAn10aZNm0ZE33//veqG8Pb2Njc3598oXF1dlb9OKBQKDw8Pnl9fuXJlDw+PQqo/w396b8C9SRNmacn47esff7A5c9ju3ez4cXFGjIlhffowa+uburq6zs7Oyp8JsbGxffv25Ut0+X7E3o2wV6tWrZAIe77uu8p+//13nmKDfgCiCw0N5XGrjRs3vjdkIEhKSjp06NBXX33F82IE1atXHzNmTCG/npCQwKtLqSfm3qBBAyK6fv06f3jo0CF6N+EdSrLw8HAiqlq1qvJBIZ+Ax7bozb49Dw+P4u8+Dg0N5W/patWq+fr6FvNs7/Xrr0xbm23cmPewTx928iRr0YLduPH2OSYm7N2qbFCYkhBzVygU/MYbYaNyC59XoB5qjl+lpKT06dOHiIyNja98IIDl4uIitEuVyWTt27f/9ddfC1kSQPyqJMjKyuJf2erVq6d8Q+7r62tvb8//UnR1dR0dHT+2u9tHkcvlPj4+9vb2wjKMjY2Np6dndnb2o0ePWrZsyYMJ7u7uqptD4YIzgg8lHbqWek3BFKny1B6Pe6hooLIZcF+9ejURTZw4UQ1jvXrFOnZkRKxmTVaU4g1LlzJ9/bftUuvVY19/zS5cYO/bncbYm1JZjo6OlSpVMjEx6d69O2JYBUkScFdPSZmAgAAXFxflBMOGDRv+9NNPH3vr//jxYx5bnzZtmnJvkxMnTvAIae/evRORyfDxkpOTicjQ0FDqiTD25l5t586dKh0lMTHRycmJXz5btGhx69Yt5Z+GhYUNHDiQ38ChIlZxELEXL1h8PIuPZ4GBeQF3Gxu2dSvr0YMpFHkBd3Hl5rJly1bzDdHdunWLiIgQfqRQKNzd3XlrzbZt227YsGHhwoX9+/cvGGE3NzcfOnTozz//fOLEiUIi7AXNnTuXJ18Up+sAFLRu3ToiGjVq1Ht/+qHWqfr6+kLr1KIsKMbHxzdv3pwnrah0N/GzZ8/4qp6wr3/WrFmklPAOJdyRI0f4XYfywaNHjwrvvXbt2rm7u4v7LkpOTubXJj09PVVcJX/9lU2axGrVymvghACWKCSPuQcEBPCLmvqHhhICn1egHuqNX73q2LEjEdWsWbPw6qMvX77k7VL5fm7O0tKSt0v9ULoe4ldSyc3NHTlyJBGZmZmFhoYWfIK/v7+joyP/oqehoWFvb5/vi3zxJSUleXh4NG7cWDm4n++bXUZGBq+1QESOjo6Fl7UUXY4ix/6pfdMHTb8M/7LLoy5Dnw59nfva+K6xioYrmwF3Pz8/IrKyslL1QFFRrHlzRsQsLVmR84xZWho7dIhNnsxMTN5G3gcMcJ04ceL+/fs/9IbLzs6uXr06Eal0MaqUWh4ePvz+/RmPHs149Gj/f1UwLya5QsHUFXB/+vSpsBTJW+74+vp+8hXrwIEDfAuPnZ2d8r77u3fv8pzlpk2bFp78CAW9ePGCiExNTaWeCGOMDRo0iIiOHDmihrEuXrzYsGFDItLS0nJ2ds73wTVv3jwiGjx4sBpmUlYRsQ4dWMeOrGNHZmPzNuCuULCuXZmnp0oC7tyFCxf4Z0K1atXyvZ0uXrxoZmYmJLxwlSpVsrW1dXZ29vT0fO/tXSGys7OFN49cLuebW83MzMLCwkR7PeXeiBEjiGijkMzGGGPM39+fB9l5xVhOW1u7a9euixYt8vX1/YRtT3FxcWqIua9fv56IPvvsM+FIvoR3KOF+/vlnIvrmm2+UD2ZnZ3fs2NHV1VV1d7k5OTl8bUbEYnpZWezRI+bvz379lS1cyJYsYRMmMKYUwFqyhG3fnvenYkUEsD6atDH3lStXEtEXX3yh5nGh5MDnFaiHGuNXUfxWzdLSsugb5dPT0318fPLttq9SpYqDg4Onp+eHCqsifqVOCoXiiy++IKKqVas+ePCgkGc+efLE2dlZaKxla2vr7e1d/Ak8fPjQ2dnZwMCAn9bKysrNza2Q9Ltt27bxJ6u5vIxHvEf74PaZikzGmIIpQjJDEHD/aHfv3jU0NKxUqVLt2rWdnJy8vb0/rYxa4YKDg7t0SSViLVqwT/temZvLfH3Zd9+xhg1Z7dqW/K2pp6fHS2UVLK7KF6w2b94swuzLluXh4WsiI8MzM8MzM5OU0rdFl61QzHz0yOPFi/FBQU9UH3Dnsac+ffoUJ86u7MaNG0JlQOV4VmRkJN/aU7NmTdHXOcu24OBgImrQoIHUE2GMsW7duhHRhQsX+MPXr1/Hx8erril5amrq3Llz+SJ5z549lX+0fft2Iho7dqyKhi4P3ltSxsaGMcbu3WO1a7MlS1QVcGeMxcfH8/UbXkNG+RrK/3KrVas2f/78ffv2FWeVLiUlZcCAAQMGDBC23WRlZfXq1Yuv/wkV3qE4cnNzeSX9fNVg+X9n4Z7YycnJy8ur+DXQ4+LimjVrRkQtWrT4qP0NRcfvhYRt1zzh3djY+L2N7KAE4vc2UjVscHd350uGX3zxxUd9O0hIYH5+zMuLubkxJydmZ8esrJimJiNiTZvmBbAyMliDBuzChbcBrKlTmatr3h99fQSwPoWEMff+/fsT0Y4dO9Q5KJQo+LwC9VBP/CokJMTKyorfZn9awy25XO7n5+fq6tqkSRPhNhLxq5KAp7sZGBh8qEZQPtHR0a6urkKHpzZt2nh6en7CvXRubq63t7ednR3f/i6Tyezs7Ly8vIpyqocPH/LlnwoVKvzzzz8fO/SnGRYyzCP+ndpNCLh/nIsXL/L3jfLOF2Nj47Fjx+7Zs6f4hdU4f3//6tWrm5q2GzIkTZQ6HEFBQcuWLev4f/buO66ps4sD+EnYIChOcO+BG1wVnGBdOKqi9m2xahVXRdva4qiitVbUqnHUiloVt9SJ1AW4UHEEcaDiABVFRNl7JHnePx4aIygi3CSM3/fjH+Ym3OeJxJt7zz3POV26KDMHxWJx165dVVf0//HHH0Q0ceJEAcYrW/KXlIlWw1eUgrG5ERE2Umn/27eTNHJhz78RC75F+akiIiL4F6SlpaVUpY1AcnIyv64wMTE5evSogCOWbTwfwdraWtsTYYyx9u3bE5Hy18ozs77//nu1Dnrjxg1ra+sjR46obuQlLCZNmqTWocu2AgLujLEffmAWFmoMuDPGFArFihUreI2RFStWKLd//fXXRJSnIUTRPH78mPd/Hj9+vPKeYlxcHD9GOTj01WBH6jLr0qVLRNSsWbM82zdv3jxx4sR9+/a9FnpZWExMTMuWLYmobdu26qgrdeLEiWHDho0aNcrDw2P//v084d3JyUnwgUBN+IqEgpexq9Xx48d5MT1bW9v8t4UyMjLu3bvn6+u7du3a77//fsiQIUOHvjIxebsmVfWPri5r0IA5OuYGsBhjJ0+ydu1Y794o0SAkrcTcs7KyTExMRCKRWmtkQQmH4xVogCbjV0TUqVMnQU7P7t69mz9+NWfOHNXXIH6lGfPmzSMifX39U6dOfdIPJiUlSSQSCwsL/hts3LixRCIpZLpeTEyMh4cH7/dLRKampi4uLu+t8n/z5s2JEycGBATkfyo9PX3ChAl8D87Ozmqt+C9n8mxFduewzj6J72T0I+D+CXx9ffni6KFDh2ZmZoaGhrq7u/NGXpyOjo6tra1EIlENZH8q5THR3t4+JSVFwPkzxt68ecNLZZmYmFSuXFm13HZQUBARWVlZCTtiGZAn4L41OrrbjRsXip2pl8efL17YSKXdQkIeaKT1R2JiokgkMjIyyhE6Zz8+Pr5nz578S121XkROTo6Liwv/b7J27VphBy2rzp49S0Q9evTQ9kQY+++qQLlqb+HChUS0YMECdY+b/w728uXLiWjWrFnqHroMKzjgnpzMatVSb8Cdu3LlyrBhwzL/m0pmZib/+iv8KtSCXb9+nS8nVP2gPn/+vEmTtp06vRo1ipWAbsSlm7u7OxFNnz5dk4PGxMTwnm/t2rUT5KIuNTXVz8/Pzc3NxsZG2X+JZ+4PGjSoQYMGGuszBsWUmpoqFov19fXVkbtXeFKplK+Lb9KkyR9//LFw4cIxY8bY2dnVrFlT+QFT6t49lIiZmzMbG+bkxNzcmETCvL2ZVMqUax2VASzG2PDhzMAAASyBaT7mzk/w2rZtq4GxoGTC8Qo0oIzFr3bu3Kn6FOJXGrBmzRr+OTlw4EDR9pCZmenl5dW4cWP+kbOwsHB3dy9g2atUKnVxcVEWpWzatKmHh0f+doB5kt8LKDbr5eXFSx9bWVkJm2zKJcoSJTGSBncaeL7xHPJ4yOY375TZRMC9sHbv3s1z8SZPnpynwVdERIREIsnTEMzKysrd3V0qlX5SsY5jx47xz9YXX3yhjEGoQ0pKyrVr11S3ZGdnGxkZiUSiuLg49Y1bGh1980YZXlcw9ktEhI1U2ik4WMB67kffvLGRSjsGB58XOo7/IfxEv0uXLurYeVZWFk9T1dHRWb9+vepTEomEHxNdXV0L0yivnPPx8SEiR0dHbU+EMcb43WllR/JZs2YR0fLlyzU/k/nz5xPRwoULNT90mXHyJFN+NWVlsYAAlpLyzrWQjw/TfG/Ro0ePktBLOnx9fXlLZ9Vj0c2bOWZmjIj99JOAQ5VHXbt2JSJBijN+klevXilj7kU7acnKyjp37tz8+fO7du3KPyGciYlJv379VqxYsWLFCr79119/RT2Z0oJfe5eEIGZUVFTbtm35BZ4qPT29xo0bf/7555MnT162bNk///wTEvLio4tZVQNYz5+zChUQwBKehmPuPGEwT/FuKFdwvAJ1K3vxq/R3i+4ifqVu27dvF4lEIpGo+HV75HK5j4+P8maPmZmZq6urMrDAGMvMzPT29uZXFkQkFosdHBx8fHzyfxoLn/yudO/ePb5A1tTUdO/evcV8L0oh6SHfPv3WKMSIgomCadDjQeter+v2oJtM8fbCAQH3Qvnzzz/5YhY3N7cCDkBxcXHe3t7Ozs58cRZXv359Xirroy3CCjgmaoadnR0R/fvvv5ofuhRRMOYZFWUjldpIpSsiI4v/e5ImJ3cJDraRSr3V3JFV1apVq4hoypQp/GF2dvaZM2fy3zksMoVC4e7u/t7Y+v79+3kbjaFDh6p1XU8ZsHv3biL68ssvtT0RxhjjmcLKtIVJkyYR0V9//aX5mfAqcitXrtT80OWEkxMjYkXNYyg6AevJqNq8eTO//6dam+jMGWZgwIiYRCLsaOVIUlKSnp6enp6eUOuRP8mrV694daD27dsX/kIrPDzc09PTycnJzMxMNb3LxsbGzc3Nz89P9VrR29ubx9wXL16snjcBAuMFx7755httT4Qxxg4ePEhE1atXnzt37pYtW86cOfPkyZPi37yRy9mhQ2zdOkHmCO/QZMy9Q4cORHTy5Em1jgIlGY5XoFaIX0ExHT58mJ8Gr1q1Sqh9KhQKHx8fW1tb/kkzMDBwdna+fPmyu7s7LwRKRJUqVXJ1dc3THYorZPL7eyUnJ3/55Zf8B52dndOL0TFRppD5JPo4PHTgcXZRsMjhoYN3vLdMIctSZHV/0L1LWJeFLxe6Pned+GwiAu4f5+HhQUQikajwuZwZGRm81XLNmjWVRy5lq+X3XpquX79eeUwUdPqfwM3NjYjmzZunrQmUIj6xsZ2Dg22k0p8eP84sxrdLeEZGz5AQG6l0XZFaixSZs7MzEW3atIk/DAkJoffV4S2mbdu28e/gYcOGqR7ULl68WLVqVSLq1KnTq3fr44MqXj64JFSmk8vlIpFILBYrz6X+97//EdGuXbs0Pxlei0356QXBrVjBiNhXX2l0UMHryaj65ZdfiMjGZvK1a28vOfbsYSIRE4vZP/8IPmC5cOjQIdJqzavo6OjmzZsTkbW1dQExdx5kd3Z2Vj0lI5VurgWcqe/fv59fbPz2229qeQ8gqMmTJwt7ZVgcS5cuJaIZQhfnunOHiUTMxISpp21weafWmLuyepW1tbWZmZmBgUFYWJiwQ0ApguMVqE/5iV/9/PPPiF+pg5+fn4GBgfpOgAMDAx0dHXl2pjLUbmNjs3Xr1vxF3guf/P5RXl5ePF5vbW39+PHjT/3xV9mvPF551LlTh4fazW6auTxzuZvxTpkaOZMHpQZti93mk+iTJEvKUeT4Jvp+6kCFVOoD7gqF4scff+TZT5s3b87/gnXr1o0cOXL37t3x8fHv3YOy1bJqqSxlq2Vl++YiHBPV4ciRI0TUq1cvLc6hFLmanMxj5WPv348rUiX0N9nZA2/ftpFK3cLDNXxHmK+puX79On+4detWIho9erTgA/n7+1eqVImIOnfuHBMTo9z+6NEjXhO8QYMG9+7dE3zcsoG3gvnhhx+0PRGWlJRERKampsotgwYNIiKttMAdNWoUEQm4HAzyiIhgRKxiRabJsqLqqCejpFAofvppr4kJq16dqZ5c/f47I2KGhiwwUB3DlnFTpkzReiT6+fPnjRo14p8c1TOx169fe3t7u7i4NGjQQDXIbmlp6eTk5OnpWfhapfv27eMx9yVLlqjnTYBgPvvsMyJ6b+MsdYuPj9++ffudO3eUW0aPHk1ExV+FnZ+jIyNiv/wi+I6BMaFj7jk5ORcvXnR3d7e1tVWtXsUDGQ0aNHj27Jkg04ZSR4vHq/xwvCozEL+C4gsKCuItdtXdpenOnTtNmzYVi8WdO3e+fPly/he8fPmykMnvhXfjxg1eUN7MzGz//v2F/KnLly9/v+V7/Rv6PNTe8m7Lv978lSIXuGPBpyrdAXeZTDZ+/Hgi0tfX/+cD+W9dunThv3vebsLDw0PZUTC/sLCwZcuW2draqrZa7ty5c7du3YhIV1d327Zt6nozhfPmzRuRSGRiYvLR1UPAhaenO96+bSOVDr5z50nhGi4rZcjlY+7ft5FKx9y/n6HZFVgZGRm6urq6urrK+4fTp08nomXLlqljuNDQ0Hr16vF0wvv37yu3v3r1qlOnTkRkbm4eiHDX+/CGhO7u7tqeCHvx4gWPVSm38Na4WrlOGDBgABH5+qrrXjEwxlq3ZkTsE3vRF4ua6skoZWezfv0YEWvUiKmuq5k+Pffuwu3bahq5zOKR7quqZVm1ITIyks+kU6dO+/fvnzFjRqtWrVRbvVWtWtXJyWnjxo1FXjyxd+9eHR0dIvr999+FnTwISC6X8+vDN9rIpTx58iQRde/eXbmFlzwKDg4WfKwrV3KPWsIVAoR3FD/mrqxexZNOlFeLyupVb9684VeRdevWjYiIEPwtQAmn3eNVfjhelQ3lOX6VU6T0x9Jn40bWsydr2pR9/jlTtlB6+JAJVz3/9u3b5ubmRPTNN98UIYX8U/Xv35+Ijh07lmd7YGCgk5OT8kZ1+/btPT09hSpHnJSUxBP4iMjFxaWAztWqyfU6ejp1b9Z1eOjgk+ijYGr/lymMUhxwz8zMHDZsGBGZmJic+nDI4enTp56eno6Ojvr6+srTKSsrKzc3t8DAwA99QGNjY3mrZf5FW6dOHV1d3Q8dEzWsadOmqonP8FFvsrOd792zkUp73bwZnJxcyJ+SyWRu27d3CQ7+4s6dBI1/PVy9epWI2rRpo9zCy5/5+fmpacTo6GherdLc3PzcuXPK7RkZGSNGjDA0NNT6t3XJ9MMPPxDRH3/8oe2JsLCwMCJq2rSpcgv/hebpvawZ/CRP9YMEgluwgBGxyZM1NJxa68kopaWxzp0ZEevYkaWm5m6Uy9mwYYyI1a7NCp30DCwiIoIf0ktCQ9GnT5/WrVtXtfGXsbGxg4ODh4eHVCoVpKjotm3b+NWm+u4JQTE9evSIiGrVqqWV0ZctW6aaC5aenp4ns0FYvXoxIoYPo/oUIeauXFjDs0yUPlS9KikpCTH3cku7x6s88h+vjh49um/fvtcCdRfD8Uozym38ii+aDw6+pe2JqN+OHax1a3b3LpPLWWAgq1mTXb7MEhIYESNi5ubMxoY5OTFXV+bhwby9mVTKCh2e4h49emRhYUFEQ4cO1cw9DH6377ZK3lNWVlbbtm35J1NfX//LL798b/J78Xl6evL/BR06dAgPD8/z7NOnT2fPns3LIBNRtWrV5syZE/mqZLV7Lq0B95SUFAcHB34lWcjfbnx8PG83wUMGXN26dXm7iQ/dM0lLS1u/fj1PvxL0HRTd2LFjiWjNmjXankhpkiaXz3z0yEYqHb58eSHLXPCTeMcff3ymzl7eH5KnS49cLudtUtSaZJGamsqLkLRp00Y1/HH58mUiatu2rfqGLr0mTpxIRBs3btT2RNj169eJyMbGRrmlWbNmRKS6ZEFj2rdvr6Y0HFAKCWFErEYNppnlN2qtJ6Pq9WvWuDEjYgMHMuVpZFoa69KFEbH27RnWdxUS/x4ZOXKktieSixfgql69+vz588+dO1dArkqRbdmyRSwWd+26ViIpEVktkMc///xDRAMHDtTK6LyvyZYtW/jDa9euEVGrVq3UNJyfHyNi1asz9J5Xn8LE3NPS0nhZdhsbG9WFNdWrV+fVqwquGIOYe7ml3eNVHvmPVzwT6/Tp04LsH8crDSjP8auffnpWo4a8XISvWrZkql9G69axYcPY48esYUOmp5cbds//p0YN5yFDRo4c+fPPP//555++vr6hoaGpyswjFS9evKhfvz4ROTg4ZGoqSGViYkJEye/eGBg2bJiFhYWbm1vhK0AWjVQqbdiwIRFVrFjxwIEDfGOe5Hpra2sBk+uFVSoD7nFxcZ07dyYiS0vL25++wjwnJycwMNDV1bV27drKI5eJiYmjo6OXl1f+xlwKhYLXJCohp1mbNm0iolGjRml7IqWMXKFYFRioq6srEok+uuScxwX09fXPnDmjmenl4eLiQkQSiYQ/fPDgAb9Tre5xZTLZnDlz8tw/5FGbsWPHqnv00oi30t69e7e2J8LOnDlDRD179lRu4R11Xmi22S/Hy649fPhQ80OXKw0bMiKmnpSCvNRdT0bVo0esenVGxFS7EcfGMisr9tdf7MgRpgyPxMczgS42yyCeRfXe8qBawcOda9euVesoO3de0tNjIhFT8zhQFLw38ty5c7Uyep7WOJs3byair9TZe/qzzxgRPorq9d6Yu0wmk0qlHh4eDg4OvBR7/oU1hV+Gj5h7+aTd41UeeY5XCoXCzMyMiFSbbxUTjldqVe7jV4yIlf3wlUzG9PVZXNzbLZcvsxYt3j6Mj2dSKfP2Zh4ezMWFOToyGxtmYsKIzFWKmylVq1atQ4cOI0aM+PHHH0NCQt68ecOTzbt06ZKSoqHS5DExMURUuXLl/Ns1VuM6Pj5+8ODBRCQSifr162dlZcX/ffT19b/66qugoCDNTKNoSl/APSoqqlWrVkTUoEGDInStVaVQKK5evTp37ly+Q+Wv7fPPPz9//rzqK3na765du4o3d2GEhoZSiVngVupIJBK+5HzcuHEfOkb4+Pjo6OiIRKKdO3dqeHpKHTt2JCLl53Dfvn1ENGTIEK1Mhkf/sajivRwdHYnIR1mgTXt4AvKgQYOUW/iqiMTERM1PpkaNGkQUHR2t+aHLlR9+YETsp5/UPpBm6smounqVmZqy9evf2chTeczNWbdujIdKgoNZu3aamVEpI5PJeHnHYrYtKrK//vpr9OjRyuYfCoWCL4ANCwtT99BbtjCxmIlEbN06dQ8Fn4afThe+/5WAMjMzdXV1dXR00tPT+ZbvvvuOiNTaSu7IkdxaWJrsbl0OqcbcZ8yYMXz4cH7043R0dDp37jxv3rxPXVgTpxI0Qcy9HNLi8Sq/PMer8PBwerdvU/HheKU+iF/NoMj2AAEAAElEQVSFhjIiVvbDV3I5MzRkqoWeAgNZ69Yf+SmFgkVFXbx4cffu3b///ruLi0vfvn2bNWtmaGioGnzfs2cP75HbunVr1a8ndeOFjjWwxLlgCoVCIpHo6enVqlWLiDSTXC+IUhZwv3//ft26dYmoZcuWUVFRAu75yZMnvFQWLzCap6jW0qVLiWjq1KkCjlhkCoWicuXKRBQZWbLqE5UWhw8fNjY2JiIHB4f8scjr16/zVTNaLAKbk5NjZGQkEomU03NzcyOihQsXamU+vBT4hQsXtDJ6CdejRw8iOnv2rLYnwnbt2kVEX375JX+oUCjEYrFIJNJK+Wb+X+y9S+FAQIGBjIg1bqz2gTRWT0bVh9K2zM2ZgwPbupUxBNw/7NKlS0TUrFkzbU3A3t6eiLy9vfnDGzduEFHt2rU1M/rmzUwkYiJR3ns2oF38HF4DN13yk0qlRGRlZaXcwnuNFFBFt/gUitzu1n//rb5BgDHGFArFxIkTdXR0lAvMlWXZixaYuHnzZtWqVVVzTRBzL2+0eLzKL8/x6tChQ0TUr18/AYfA8UpNEL9ijCkUrHJlRsTKfviqbVvm6/v24cqV7L9r8yJ4+fJlUFDQvn37Fi9ezFdING7cWMMJbfv37yeiYcOGaXLQD+HtW6dOnaqx5PriE+dfuVBiBQcHd+/ePTIysnPnzufPn+fVEoRSv359FxeXY8eORUdHe3l59ezZU/VZW1tbIuKXr1onEon4CV8JmU+pM3To0LNnz9aoUcPf39/Ozi4yMlL51JMnTxwdHdPS0r799tvZs2dra4b379/PyMho1KiRsl5bSEgIEfG62Bomk8lCQ0NFIlGbNm00P3rJl5KSQkQ8l1y7UlNTVWeSnp6uUCiMjIx0dHQ0PBO5XJ6RkSEWi3nYHdSna1eysKDHjyk0VL0D8UqmTk5O6h3mXdWrf/Cp5ctp/nyKjdXgbEqb06dPE9Hnn3+uldHT09MvXryoo6PDw+7K+fATZQ2YMIE8PYmIpk+nDRvUMoRMJrt06dKvv/7Ka77BRyUmJj5//tzIyIjXHNOwW7duEZGyxxdj7M6dO6pb1EEkIn4u+fvvJJerbxwgkUg0ZcoUuVxuYmKyefPmJ0+ehIeHe3p6Ojk58SylTyWVSuPi4mbOnMlLIRORmZnZqVOnunTpEhkZ2bNnzydPngj6DqBk0e7xKo/8xyt+QGvXrp2Ao+B4pQ6IX3EiEXXuTER0+bK2p6JuP/xAP/5IwcGUmUmnT9Mff5CbG02ZQt2705gxtGABbd1KAQEUHk7Z2R/dmaWlZZcuXUaNGpWTk3P16tXatWv7+/vzBaMa8+zZMyLiheO1jgdenJyc+E2mUqHUBNzPnz/fu3fvN2/eDBgw4MyZM1WqVFHTQFWqVBkzZoxqS2gi6tChg76+/p07d5KSktQ07ifp2rUrEV0u+0csdenUqVNQUFCLFi1CQ0O7dOkSHBxMRElJSYMHD46JienVq9cGNV2gF07+8LoWA+7379/PzMxs3LixarcWUOLHfd4OviTMRBlw1+KdAJ7YbmJiotqdDNRBLKZvvnndo4fPiRNe6hslKyvr2LFjRDRixAj1jfJJGjemsWPJzU3b8yjB/Pz8iKhPnz5aGf38+fNZWVk2NjbKUJfm5zNxIm3cSET03Xf011+C7TYiImLTpk0jR46sVq2anZ2du7u7r6+vYHsv027evMkYa9OmjeZvA1O+gPvTp08TExMtLCx4ATT1GTWKundPs7TcduDAQbUOBAEBAUQ0YsSICRMmFD808O23327atEkkErm6uq5du5Zv1HTMfc8eateOGjemZs3o++8LE50BoWj3eJVH/uPVzZs3SQ33C3G8EhbiV6q6diUqDwH3MWNo4UJasIA6dCBPT9qzh9q2patXKTCQdu6kxYvp22/JwYEaNyYjI6pdm+zs6Ouvg1au3Lx58+nTpx8+fJiVlZV/r3p6ejo6Ou7u7vXq1dPwG+IBd82PS0RZWVk5OTmqW54+fUolJvpfSLrankCh+Pr6jhw5MiMj48svv/Ty8tL8DQ0jI6P27dtfvXr12rVr2rp8VYWAe/E1aNDg0qVLw4cPP3v2bI8ePXbt2rV+/frQ0NCWLVseOnQozzeWhuUJr7948eLNmzdVqlSpU6eO5ifD6wBoJdZfKuTJK9eiEhVw19bQ5VCPHsHLlg1JTm7/00/fqGmIU6dOJSUlWVtbl4Q8L6V586hVK+rUSdvzKJGSk5OvX7+up6fHa15pHg+vK/PrlQnvvXv31uQ0XFwoI4NmzqRp00gkosmTi7ifp0+fBgQEBAQEnDlzhjeP4lq0aGFvb89PyeCj8oS8NYzHp5QJoRqbjI4OffXV7kmTJqWktB05chjuQ6uPv78/ETk4OAi1wwkTJhDRpEmTZs6cSUSurq70X8y9b9++V65c6dmz57lz5xo0aCDUiO84c4Z+/pn8/KhFC0pJoZEj6bff6Ndf1TIW5KPd41Ue+SejpunheCUgxK/yKC8BdyIaPZpGj35ny6FD9OQJPX1Kz57Rkyf07Bk9e0YvXlBUFEVF0aVL/7x4sfr8ef5akUhkYWFRv379+vXr16tXr169evXr109PT5fL5atXrx47dqyycppm8Bi3VgLu27dvnzZt2syZM//44w8iysnJiY6O1tHRUW0dXPKVgoD77t27x40bl5OTM2XKlPXr1/OOl5rXtWvXq1evXr58uSQcsDp16qSrq3vr1q3U1NSSkFpbSpmbm588efLbb7/dtWsXr0tVs2bNEydOVHpfk2hN4gF3a2vr9z7UymQQcP+QklNSJk+uvRYnVnL+TcqD3r17m5mZhYSEPHnyRE2X/VqpJ/NRRkYkkZCLC2l2YWXpEBAQkJOT06NHDzMzM61MgBeQUZ4v8YT3Tp06qS+960NmzCC5nH78kaZNIzMz+t//CvuDsbF05gwFBNDVqza3bt1Qbq9Vq5a9vb29vb2Dg4Owa8PLPC0GsD5UkEEzkxk3btySJUtu3br177//8kbrILjs7OyLFy+KRCJh7+ppM+a+fTvNnEktWhARmZrS6tXUtSsC7hpTkgPuSUlJz549MzIyatKkieBj4XglCMSv8uvcmXR16eZNSk2lche+ql+f8idly2QUFcWj8J/FxSU2bPjs2bOnT58+f/48Ojo6Ojo6KChI+VpHR8dGjRrdu3dvx44d48eP1+TctZhU/vTpU7lcrgzNRUZGyuXyevXqafiWQzGV9JIyf/7555gxY3Jyctzc3DZs2KCtoxWVsKRyExOTtm3bymSy69eva3supZu+vv6OHTu6d++uq6srFot79OjBGx9rEWMsT2E+7eaYI+BeAIVCkZ6eLhKJeKNd7cqTV67FWjcIuGuSgYHBgAEDiIj3NRVcCawnozRoEDLc30+79WSioqLu3btnamr62Wefqc5HWwXlf/iBVq2iWrVIV5f+9z9SLq329CR//3demZ5O/v40ezZ16EA1atCoUbRpExkY1KpQoYKDg4OHh4dUKn3+/LmXl9eYMWMQbf9UWgxgRUZGJiQkVKtWTVn5VJOT0dPT4+Ha3377TQPDlU8XL15MS0tr165d9f+6fzx9+pQxVvw9T5gwwdPTUyQSzZw5U6O1ZcLDycrq7cOmTSktjd68EX4geJ+SHHC/desWY6xVq1bqiDrheFV8iF+9l4kJtW1LMhkhfJVLV5fq1aMePWjMGKfvv9+6dWtAQEB4eHhmZmZkZGRgYOCOHTsWL148YcIEBweHLl26LF68mIjmz5+flpamyWnyfodaCbjnKR9fGuvJUAnPcM/IyFi/fj1jbPXq1fzQr0V2dnZEdOXKFblcXhKqudna2gYHB1+6dKlXr17ankvp5uXlFRgYKBKJxGLx3r17c3JyduzYYWRkpK35REREJCYm1qxZU1mnT4sh7/zRf1CVlpamUCgqVKigxXMppTxhbi3WdUHAXcOGDh26b9++w4cPq35RJiUl8SxjkUj0oVU7BgYG+Rvb1qhRQ3WlXgmsJ7N6NWVlEf98bdlCERHanlDJkyfBXMP8/PwYY7169VIuoNbufIjo++/p22/p+HE6coQqVybeBDE4mIioZ0+6epUCAigggK5ceVsk2ciIbG3J3p4+/3xr27bmJeHEr1STyWT37t0TiUStW7fW/Oi8nozqeZSGo2mTJk1aunTp1atXz507l6evHQgiTz2ZrKysli1bVqxY8fHjx8Xv366hPPe0NAoKIn9/8venKVPIyIgyM98+K5ORXE7oRa8R2j1e5Zc/4E7qPHzheFUciF8VoGtXCg6my5cJ4asCiMXiOnXq1KlTh//6lBhj69atCwoKWrVq1fz58zUzmdjY2JSUlIoVK2qlmV+eajYlqn3rJ2Al2J49e0Qika2trbYnkoufSPEmKlq3d+9eIhowYIC2J1K6nTt3zsDAgIjWrVsXEBDAw1KdO3eOiYnR1pR49QZHR0fllrp16xLRgwcPND+ZR48eEVGtWrU0P3SpEBUVRUSWlpbanghjjA0cOJCIjh07xh9KpdJvv/125cqVmp/JkSNHiGjQoEGaH7p8SklJMTQ0FIvF0dHRyo08wFQEP/30k+rOv/76ayJaunSpxt/WB3XqxPT0WGCgtudRUkVERBCRubm5TCbTygT+97//8W9V/jAqKkokEpmammZnZ2tlPkp79zInJ9a0Kbt6lTHGJk5kq1YxU1NGlPtHR4d16sTmzGH+/iwjQ7uTLWt4RZdGjRrl2X7o0KGUlBR1j75o0SLVg1tSUpJIJDIwMMjJyVH30Eo8N61Pnz4aG7Fc6dChAxGdPn2aPzxz5gwRtWvXTsAhNm/eLBaLRSLRmjVrlBuTkpK6dOlCRHXr1o2IiPjknebksIsX2cKFzM6O6eq+PRh9/TWbNYvNmPH2lf7+rHlzAd4GFIJ2j1d55D9effvtt6pfsuqA41WRIX5VgL17mZ4emzlT2/Motc6fP09EFSpUePnypWZG5OU0hP0yLTxLS0siioyM5A8XLFhARAsWLNDKZIqsRGe4t27dmjH2/PlzbU8kV9euXZ88eXL58uWSsL6sW7duRHT58mWFQlESsmtLo/v373/xxRdZWVmzZs367rvviOjatWsDBw68evVqly5djh8/3rx5c83PKk8+e1xcXGRkZIUKFbSSXop6MgXIycn5+++/iSgjI+PFixdab9+RJ6/cxsZmy5YtWpkJmqZqWIUKFXr37n38+PF///2XX4YRUcWKFXnVdcZYYmLie38wKysrPT09z0bVT3IJrCfz9Cldv04mJmRjo+2plFSnTp0ioj59+uTJZtLM2QJjjKeaKgvI8BCYasK7FhkY0IoVNGUKXbtGRGRsTDVrUk4OOTiQgwPZ21PlytqeYhl17tw5IsqTLnr06NERI0a0adPm2LFjav0OzZMQevv2baa2ggwfMn369JUrV/r5+QUFBSmrLYEgEhISQkJCDA0NlfmA6iirJWCee2ZYmKGfH/n707lzlJycu1VXl+zscg9GnTtTbCxZW1PjxvT55xQeTtOn07JlAr4dKIB2j1d55D9eaWCBDo5XRYb41YdkZVFcHD14QPwY+eQJPX5MJaC2fGnSvXv3IUOGHD16dNGiRRs3btTAiFpMKs/KyoqJidHT01OWcNRi+9Zi0WKw/6MUCoW5uTkRPX/+nG9JTEw8dOjQP//8o5X5/Pnnn0T09ddfa2X0/OrUqUNEoaGh2p5IqRQdHc3/uw4fPlwulyu3v3nzxtbWlojMzc3PnTun+Yn179+fiA4dOsQf8msGbd0nnzNnDpXCG4nqJpPJvLy8GjVqREQ8hGRmZrZhwwaFQqHFWfH7IlKpVMPjZmZm5tny119/EdGkSZM0PJPybPPmzUQ0cOBAYXfLFyvY2NgIu9viWL6cEbEvv9T2PEqwYcOGEdHmzZtVN168eLFly5bh4eHqHj04OJiI6tWrp9ySJ+Fdi/buZfwMztGRrV3LJk5kGzey1FRtT6tMS0xM9PLycnR01NHRqVevXsOGDVVXEIaHh/PMBktLy+vXr6tvGvz7+s6dO/zh+vXriWj8+PHqG/G9Zs+eTURffPGFhsct87y9vYnI3t5euaVjx45EdOrUKcHHKnKe++vXr729vV1cXOrVq3ewR4+3yewNGzIXF+btzRIS8v7Mo0fshx9Y//5swgR28iRjjGVmsoULsQBHTUrI8SqPPMcrmUxmbGwsEokS8n9gBIXjVdEgfvUhcXGMiI0Ykfvwn3/Y8OFanVDpFBYWpqenp6Ojo5kY4B9//EFEM1SXW2nKgwcPiKhhw4bKLd27dyeigIAAzU+mOEp0wJ0x1q9fPyLav38/f3jx4kX6786h5vFsX9XfuibxoqiqRo0aRUSbNm3SynxKtfT0dH5m3LFjx7S0tDzPZmRkjBw5koj09fV37typ4bnxjl5PnjzhD5cvX05E06dP1/A0OP4f8PDhw1oZvQRSKBTe3t7NmjXjNyybN2++du1aZfKvra3t/fv3tTKx9PR0fvs3JCREY4NmZ2d7enrWqlXr7Nmzqtv5h3bWrFkamwm8efNGR0fHwMAgKSlJwN1+9dVXROTh4SHgPoupY0dGxP67Iwnv8ffff5ubm+cpDcTzzevXr88bCarP0qVLiWjixIn8oUKh4D0Mw8LC1DpuYSgD7hERrGZNNmwY27hR23MqozIzMw8fPjx8+HBDQ0P+/WhoaMir9jVq1Ej1izI+Pp73IjIxMVHTyUZycrJYLDYwMFAWNZo4cSIRqQZM1eTixYuqKR0xMTE8UqYM/YMgXFxcSKX0WXx8vI6Ojr6+fqp67qcVPuaelpZ24sSJH374oU2bNiKRSJnu9lXHjuzrr9n27ezFi08b+5tvGBHr2xcxdwFlZmYeOnSohByv8stzvLp79y4RNWjQQPCBcLwSCuJX7xUXx6pVY599xv79lzEE3Ith2rRp9G79YfWZPn06Ea1atUoDY+XB+z/17t1buYUny2ogeUhYJT3g/uuvv6reVMnMzOSVauPj4zU/GZlMZmZmRkQaq5rEKRSKH3/8kYh+++031e2rVq0iorFjx2pyMmWAXC4fOnQoP1l59erVe18jk8n4WlGRSHRa/ZdkSi9fvuTJ9cpc6aSkpPPnz2trHQOP/qs7QFNa+Pn5Kavr1KtXz9PTU1lO0cfHhy8vNTQ0dHd3z8rK0tissrKyeNRbJBKZmJjUrVv3JE+DUqfs7OzNmzcrl3S5uLioPssbuSxcuFDd0wBVvM6Y8vy++DIzM3mHnEePHgm1z2J68oSJRKxCBZaeru2plGAHDx7kpWNWrFih3JiamsoTQ+rWrau8oasOvXv3JiJvb2/+MH/CuxYpA+6MscWLmY4OAu4Ck8vlgYGBrq6u1apV498OYrHY1tZWIpG8efPm5cuXPO/Y3NxcNUEpJydn8uTJ/IzL3d1d8FnxYIe1tbVyS6dOnYhI3asYN2/erKOjM2XKFNXVb7yAobOzs1qHLm8aNmyousKPN0NSvUoXXMEx95o1a86aNatnz568TRRnYmLSv3//VatW3b59u+gLIsPCmKUlI2Kff44vwmJSHq+qVq1aco5X+eU5Xu3Zs4eIhg4dKuwoOF4JCPGr94qLY9WrsytXWKNGLC0NAfeii4mJqVatTo8e/545I//4q4tn0KBBpFJ6QZM2bdqkurgnJydHV1dXLBZrMswiiJIecOeVQDt27Kjc0rVrVyI6ceKEVubj4OBARAcPHtTYiDKZjBcN1NfX37dvn3J7Wlpat27datSokT/zHQrGI+mVK1f+aMKdp6fnuNatmYkJGzuWaaTb27///qvui4TC4x1BVaP/5Zafnx/vx0VEderUkUgk+euoJCQkuLi48AymNm3aXLt2Td2zys7O3rRpE++pS0StWrVSdh0YM2ZMbGysOgaVy+Xe3t5NmjThA1lZWXl7e+f5hPAb76rBPtCA2bNn56nQbWBgYP4BfK10fk2aNLH5D/8tt2jRQtvv7K1lyxgR+9//tD2PEm/btm38w6Da7TYpKalz5848/K2mmHtaWpqBgYGOjk5cXBzfkifhXbuOHWPff5/798xMZmvL9uzR6oTKkJCbIT/99JNqXWNra+uVK1e+eDeBNyMjY/To0USkq6u7YcMG1ackEgn/0E6YMEHY/rqenp6q6SnKggxqjX2sX7+enw+o3nuWyWQjRowwMjI6c+aM+oYub548eUJEVapUUSbnTpo0iYh+//13tY77oZi7tbW1iYkJ/1+go6NjY2Pj5ubm5+eX/7yxiBBzL7bwsDuzZs3Kf7yKiopSfZlWjld55D9eubm5EZGwsX4cr4SF+NV78YA7Y+zbb9ncuQi4F8vy5dlEzNqaydUccm/Tpg0R3bhxQ73DvM+8efOIaNGiRfxhREQEj8NofibFVNID7qmpqbq6urq6usqe4LNmzSKi+fPna2U+7u7uRPTjjz9qZrisrCxercLY2Fj1GB0fH88P3DVq1EAN90+y9+VLe1dXAwOD8+fPF+b18qNHmbExI2IODiwxUX0Tk8vlFy5c4FkMo0aNUt9Ahefr60vv1sQshwIDA3v06MFPx6tXr+7h4ZFR4DLe8+fPN23alJ+du7q6qmk5c56od8uWLXnUOycnRyKR8Cu96tWre3l5CTioQqHw8fHh37tE1KBBA09PT5lMpvqa1NRUDw8PExOT2rVrN2zYUCtfz+VTRkZGy5Yt8zTJLD5LS0sTExPesKsk6NCBETHUuCqMrVu38nCAakWgxMREHnNv3Ljxi08tZVAIx48fJ6LOnTsrt+RJeNe65cvZ338zQQsvlWuRWZGSGIn1fesOfXLvSdetW9fV1bWA4mYKhYKfSxORq6uragWDAwcOGBsbE5GDg4Ow5YmfPn2qvMl0//59UvOqCw8PDyISiUSrV69WbszMzBwyZAgRmZmZBQYGqm/08oY3jhs5cqRyCy/Zr4Eq2zwp+K+//lLduGzZMiJq1qzZwYMH1VVlGzH3Ikl6E3Xl6OaNrn2Wf9VaT1enxB6vVOU/XvFyJQImnOJ4JbhyHr/KzGS//87yZyErA+5v3rCaNdmyZQi4F11GBqtblxGxHTvUOxBf66xMo9EkXtd0+/bt/OHZs2eJqFu3bpqfSTGV9IA7Y8za2pqIlDWCDx06pMUg4KlTp4ioS5cuGhgrNTWVF12tVKnSxYsXldujo6N5m+l69eo9ePBAAzMpM84lJHSUSjsHBx+7cuUTfuzaNWZhwYhYy5ZMDcVVQkND3d3d+XpYIjI3N9fT09uh7sNnISxevJjKcSXuS5cu8VAREVWtWtXDwyO9cFc1aWlp33//PQ99nho8mAm6aJ2H2lWLyHt5eeWJeoeHh/NcBiIaOHBgZGRk8cctoJwOl5aW9scffyjLCPCvZ319fQ0X2Cm3+ALnxo0bJycnKzdmZmbGf8DTp0/D3+fhw4fS/1y/fn348OFEVLNmzWfPnmnx3XGoJ/Op/v77b56AuXbtWuXGxMREfme3SZMmgsfcv//+e9VLyvwJ79qVlcUqVGAiEdP2uupS42nW011xu/Jvj82J3fB6g+0DW1GwiIKJgqnPpj7ffffd5cuXC7kk7u+//+Ytx4cNG6baSufKlSs1atQgopYtW6ppHca+ffuIaPDgwerYOfuvqJqOjs7ff/+t3JiWlsZP6c3NzYOCgtQ0dPnEM5OUHa14wru5uXmeUyM1yb9YdvDgwaoxAvUNXJ5j7mlJcS8f3Xr56Fb8yycfPeakJcVd+3fb3z8NXjio5kJHy4WOliu+ar1q6cJSerxq3LgxET1+/FiQ/eN4pSblNn6VksLs7RkRe7faKGMqAXfG2KZNrHJlBNyLZft2RsRq1WL52hEKJj4+nohMTU3VNUCBbG1tSaWa1rZt26hktP/9VKUg4M7Lhy1ZsoQ/jImJISITE5M84R7NSEpK0tHR0dPTK2Torcji4+M/++wzIrKwsLh586Zy+5MnT5TL/AWJo5Uf99LS7G7csJFK/y7CpfaLF6xtW0bELCyYQCkzd+/enT9/vjJJmYjq168/e/bsqVOn0n+VAbVby2XYsGFEtHv3bi3OQSuuXLni6OjIfymVK1d2d3cvQiPKq1evzh85khExkYhNmiTA8giFIu3oUWWCeaNGjXbs2PGh60mFQuHl5VW5cmUe+5ZIJPKiLjn7aDkdXkSet2zl53M+Pj6pqalubm48wbZly5Y4X1erAwcOEJGBgYHgSwqysrLs7e2JyMrKSiulJ1WhnkwRbNmyhcfc161bp9yYmJjIS9M2adIkzwr6YmrZsiURXbhwgT/Mn/CuXWfOMCLWpo2251FSyRSyeVHzGoc2rnm7ZvO7zU8nnT6bfNb+4dsAQYY8wyfRxynCSf+GPo+zG4UYOT529I73zlZ8clEFf39/3pawXbt2z58/V25//vx5u3bt+K1u5WdJQHPmzFFTpqFCoZgxYwa/2ay6qiMxMZFfN9aoUePWrVuCj1ueyWQyfqqj7FPKKwiNGDFCK/PJycnhCQeqH2l1Kccx9+BTuyXjO3l7uGybPcxzxucZKe85x87Jynxw9bS3h8vioXV5nP23YQ28PVweXD0tzynFxyu5XP7w4cPiXyHieKVW5TV+xT77LDdeohK+Yk+esC5d2OXLbwPucjn77DME3ItFLmc2NoyIqRSPFNiNGzdIe/1+edUvZStBvlDjl19+0cpkiqMUBNx5b5CBAwcqt/ClgtoqVsADXmpdXfXy5cvWrVvzCKxqt7q7d+/WqlWLiDp06PD69Wv1TaDsicrK+vzWLRupdFGRExCSk1m/foyImZiwo0eLPJOXT58uXbqUr1HgLCwsXF1dVfMsNm3apKurS0TffPONFrOD69evT0T37t3T1gQ07/bt205OTryOYYUKFdzc3Iq1SjQ7m3l4MAMDRsQsLVlxauf5+fFqGsO7dPlQEfn8oqOjeYYyEdnZ2d2/f/+TxvxoOZ3s7GwvLy/l4ow2bdrkKRxx8eLFFi1aEJFYLHZxcVFNvgahPHv2jIcb/vzzT3XsPzExkX/rde/eXbAStEWCejJFs3nzZpFIJBKJ1q9fr9yYkJDAb6Q1bdpUqJj7ixcvRCKRqampsqAtT3gvOSfHc+YwIlZeV2193LrX66zvW0dnRzPGbqTd8I735gF3OZMHpgS6PHMxvWnK4+w6N3QcHjp4xXkly4p1VH/06BEvwlarVi3Vs/rk5OSBAwfy+4iC3/UfMGAAER04cEDY3cpksnHjxvE5H1Y5TsXHx/M6TnXr1n348KGwg8K1a9d4CoJyi5OTExF5enpqZT68Q6+VlZWGxrt7l9WowYiiR44suOBhGRN8aveR1TP533e5/y/Eb192RlpGSmJaYmxcVETErcBDK6f/PqIxj7P/OrTu7kXOt88dys4oViIojldQeOUyfsVat2ZErH59phK+Yrdv594ZHDr0nSh8TAwLD1ffdMqFs2cZETM1Za9eqWX/fGXGoEGD1LL3AmVlZYnFYl1dXeU9qrFjxxLR5s2bNT+ZYioFAfenT5/yNU3KDM0xY8YQkWq6libxlfvLli1T0/4jIiL4EdnKykp1ufe1a9d4F/WePXsWId+2PEuVyUbdvWsjlbo8eJBdnIyAnBzm4sKImI4OU1mhXyixsczTk9na+tnY8OhkpUqVnJ2dfXx83nuv++TJk6ampkTUu3dv9VUGLEBCQoJIJDI2NtbMmlytu3v3rjLUbmJi4ubmJlg+78OHrGdPRsSImKMj+9TY1unTrEuX3B+vVev1li2feg/Gx8eH36gzNDR0d3cvTHOnj5bT4ZVt+LJWUikin39XGRkZ7u7u+vr6/A7iqVOnPmnyULCcnBy+FmrYsGHqG+XFixd16tQhopEjRxZ5qUQxPXnypG3b6Q4OoeUsjU8YmzZt4jF31bsyyph7s2bNXgpRYyUxMXHz5s3Lly9XbuEJ74XsmKIBPBUIB6EPaXm35b+J/6pu4QH3Hg968Di7KFjUNazr+tfrX+cIlvMRGxvbvXt3fpP72LFjyu0ymYxnCPIFf4KMFRERsXjxYn5ylafudjEpWy6ZmJj4+fkpt7969Yon0DRo0CAcoQU1+P3334lo8uTJ/KFcLufXStr61+YpeK6urpobMizsedu2jevV+/zzz9WdvlpyKAPuKXGv1k2ye3LrYmjg0U0z+239eYjf9t+OrvmBh9o9Z/a9cnRzagKOV+/A8UoDylv8KjycNWrEiJiVFVOtVnjtGqtalRGxnj3RPkctBgxgRGz6dLXsfNWqVUQ0Pd/eNXAx+PjxYx46UG7p1asXEakeskqLUhBwZ/8tKFBm2vL2OF9++aVWJrNjxw4iGjJkiDp2fufOHV6ZoWPHjrGxscrtAQEB/Bt38ODB5SqFofhyFIopDx/aSKVOoaHJxY8dKxRs4UImEjEiVpj6jHFxbPNm1rs309HhMVNZxYou48b5+Ph8NGx669Yt/sm3srJSU2VA9l+z1qlTp+apBnjmzBki+uyzz9Q0bskRERHh4uLCS64bGBi4uLhER0cLPIZCwTw9makpI2KVKjFPT1aYGz+XLrHevXND7VWrMg+PIi8ZTkhIcHFx4bcT2rZtW3AnsYULF/IweuXKlZcuXZqn72ueIvItWrTIX0Q+v1u3bvESFkTk5OT05s2bor0RyIN3YapTp466a2TfuXOHL6bWWM+lPHgbuv+hoExReXp68pj7hg0blBvj4+NtbGwEjLmryp/wrl2xsUwsZoaG5a30wicwCjF6mvVOoxoecF8SvaTF3RbuL90fZqol4TEzM/Prr78mIh0dnbXvZjNIJBL+7Tx27NgiL/iLj4/38vJycHDgX4JK3bp1u3z5siDz590FK1WqdOnSJeX2Z8+eKYtAClu7CZT4Fbgy/1cqlea5RNcwXovDx8dHk4Peu3uXVxLv27dvOblIDD61+3enJmsmdPEY1Wzb7GFZGamhgUe3zR7GMz9ePLhxft/q+Gjh224xHK+g0MpP/Cok5FazZjIi1rUrU01XCwjIvfYdPJiVjyOTFty7x3R1ma4uU0dJAl516o8//lDdeP78eSsrK3XXm/L39yeiHj16KLc0aNCAiErjypvSEXDnywO3bNnCH96+fZvebditSfx+S9WqVQWvr33lyhVeGaB3796qtRcOHz5saGhIRM7Ozlqp/FV6KRhzf/LERirte+vWSwFrs+zfz+zsWGoqS0pirq6sfXtmZcVGjWLK1knp6czHhzk5MX393ICpgQFzdGReXuy/fuWF8eLFC14Z0MLC4tq1a4LNnzGWr1nr4sWLVZ/9448/iGjq1KnCDlqiPH361MXFhVfv0dfXd3FxUe8pZlQUGzIk9/PQt29uA16FgkVEsKtX3ynyHhTEHB1zX1m5MnN3FyQr4Ny5c/xkWldX19XVNU8kXen27dtmZmb5y+koFAofHx/+geQXtJ6enoVfAJGTkyORSExMTIioRo0aXl5exXw7cOLECZFIpKurq3rJpD5nz541MDAgotWrV2tguDx4LvZhFJQpBolEwvPvVHPlXr9+zTPamjdvLuy9xq1bt5I6W1N+qr17c2sdw4dUvlU5LOOdDpA84F6E+uyfSqFQeHh48ACTi4uL6rnukSNH+BfH+PHjP2mf6enpPj4+Tk5OvNshERkZGTk5OR0+fHjDhg0WFhZ8o4ODw+3bt4s889TUVN6lvHr16iEhIcrtDx484AuDbGxscI9ZTfK3ZV66dCkRTZo0SSvzSU5O1tPT09XV1fxC5LCwMEtLSyIqJ3nuygx3hUJ+3HPesfU/hwYe9V46UTOj43gFhVFO4lcXLlyoWLFiy5bjhg7NUb2yPHyYGRoyIubszBC+UquJExkR++ILIfepUCgePXrEs+X++ecf1af69etHRMbGxlu3bhVyyHdt2bKFiL755hv+UCaT6enpiUSi0nhTuXQE3FevXq361SWXyzXXkYaxlHwRUn5OI+wNFl9fX2NjYyIaOnSo6idp+/btPCA4ffp0ba3lL708o6JspFLbGzfufCC2WHT8dzFiBJswgSUmsqwstnEjq1OHpaayr75ixsa50VIdHfb552zrVlbUsjDJycn9+/fnx7UjR44Uf+L37t1bsGBBnmatbm5ud+/eVX3ZV199RaWzTlYhXbp0iZ/U6unpTZo0SXMtiL28WJUqjIht3MiePmWtWrFu3dj//sfq1WM//MAYY7zVKs+FX7RI2AV4aWlpbm5uPAGnUaNGAQEBH3pZni1+fn42/1VDqlu3rqenZ9Fu/oWHh/MmnEQ0cOBAdH4uslevXvELMPWtD81v7969YrFYLBbnKdavbk+ePBGJRBUqVCgPcQS14mdTIpFo48aNyo2qMfdXwpWB/PLLL0l7q6fzGz+eEbEVK7Q9jxKs58OeG99sVN2Sp2mquu3fv5/nl/Tt21c1ZHnr1q22bds+ePCgMDuRyWSBgYEuLi58YShPRHVwcPDy8lI9n09NTfXw8DAzM+M3oV1cXIqwyCMhIYEX9bKwsLhz545y+927d/lyVTs7OxSBVJ+TJ08SUadOnZRb+AlGnuiAxvj4+PBfulZGL1cxd9Ua7tITO/YtGa/JgDuH4xUUrJzEr4yMjN4Xv2K6urmlThC+UreXL1mFCkxXt1g18XNyckJDQ728vNzc3BwdHatUqcKPSNWrV//ss89Urw4yMjJcXV35s87Ozh9K4Cum+fPnE5GyQtezZ8+IqFatWuoYS91KR8Cdt8Rp1qyZckvfvn2JSAPX/Bs2bKhdu3ZERITqxmHDhgl7Gblnzx4e+/vmm29Uw1gSiYTfP3dzcxNqrLLtWWZmeHo6/3MxKamDVNoxOPhC4nua1wsgPJxVqfLOEqn+/dnff+f2VrWxYRIJEyJhMCcnh1deK05lwMjISIlEwte6clWqVHFxcQkMDHzvvW4rKysikkqlxZp6CSaTyaysrJycnFT7EmtITAxbtIgpFGzwYPbbb7kbExNZ8+bs+HE2ezYzMWFubkyoIvL53Lhxo3379vwT5eLiUvDptZ+fX6dOnfhnpnbt2hKJpJj3lhUKhZeXF1/NU7FiRYlEgluJn0oul/OwQt++fTX8r+fh4UFE+vr6/v7+GhsU9WQExAsyisXi7SpV0V6/ft2qVSsiatOmjSDZbVlZWbySciGDDhpQpw4jeqdhF+RxNvlstVvVtsVuu5tx92ji0dNJpzUccGeMXb58uXr16kTUunXrZ8+eKbcXJilPKpW6urry2hqcjY2NRCKJiYn50I+8efPGzc2NdxkxNjZ2c3NLLPQZY0xMTNu2bXnWguqJhFQq5R/+Xr165Q95gIB+/PFHIpo3bx5/mJGRYWRkJBaLtZWiO336dCJauHChVkZn5SnmHnxqt+fMvhf/WX966+KV37R/fOOc5gPuDMcrKFC5jV95eOQW30X4Sk2ePGGqqXGPHrFdu5ifH1OGvjMz36mk/17p6Uwqfb1x40YXF5eOHTvy24eqateu3atXL15QtE6dOnmWU+/cubNChQo8WUf1Bp5Qjhw5Mn78+JMnT/KH58+fJ6KuXbsKPpAGlI6Ae3Z2trGxsUgkev06t+3JokWLiGjmzJlqHXfx4sU8JrVp0yblRplMZmdnZ2lpKRKJbGxs3N3d79+/X5xRNmzYIBaLeVRd+Q2tUCh+/vlnPrpEIinW2yhPBt+5M+nBg5mPHs189GjXq1f/vH7t/VqwVjl5HT/ObG3f2TJvHps1i925w1TOuoQikUj45yTP6sWCxcbGenp62traKksBFtysNTMz08fH5+uvvzY1NTU0NCyNy3YKLzMzU5vDp6czHZ13vjBXrWJjx7LERKb+a8Xs7GwPDw9eIcTS0vLQoUP5X3Px4kVeHZWIqlWrlr91anFER0cPHz6c79zOzi4sLOzjPwP/4XX2a9SoIXy/gULgeQ0VK1YUtn5fdnZ2cHCwp6dn/uXSqCcjrJUrV/KY+44dO5QbX7161aJFCz09veJ0Ng4PD/f09HRycjIzM6tevbqZmdnTp2qpovup7t5lRKxGjUK1zyjPAlMCp0VOG/R40JTIKdI06b2Me0ujl2p4DuHh4c2bN+ffTQV3HOHu3bvn7u6uum7PysrK3d298HfTHzx4oOyaXqVKFQ8Pj4+eHrx8+ZL3BG7evLlquuKFCxd4Fqqjo2PZPoMqCXgA8ezZs/zhqVOniKhDhw7amk+LFi2ISDNF3j6knMTc3zx/JD2xU3pi571L/ybHRjPG4qOfhodooUE3jlfwIeUzfvX77/4iEROLmaCNfuEdtrZMNeupYUN29y4zNWWjRuVuuXaN5f8mTE5mgYFMImEuLszWlhkYsFatUlQj7JaWlo6Oju7u7j4+PsoLzOfPn9vZ2RGRrq6uu7u7appXWFgYXyBrZGSk7qIIXl5epTf1qnQE3BljPXr0IJUuNH5+fvTuKkJhKRQK3oxOR0dH9WiVlZXFC3IZGBgoi6wRUatWrebOnXv16tVPLYyVnp7evHlzkUi0QmWds0wmmzhxIs8i3Ldvn2DvqhwYfOfOU42dMZw6xTp3fmeLmxubO1d9A3p7e/Pbj/369VOt8p9fQkKCl5eXo6Mjr0fED4WOjo7e3t7vbeMjk8lOnz49fvx4fhuTx2JQ7kO9Hj5kVau+s+XAAda7tyanEBoa2qVLF/4bd3JyUp4RBgUFOTo68u1VqlRxd3cv+PNWZD4+PrVq1eKfT3d39xLSXLGEO3/+vI6Ojlgs1lajdrlcztNkatWqVZyjhEwm46sXXV1dbW1t+aJUIvr1119VX4Z6MurAu3To6Ojs3LlTuTE6OvrEiROfuiseZB85cmS1atVUT9zNzc2JqEmTJiWh/drq1bmFRKFUiI+P57d7TUxMPnSnLSoqKs+6vVq1arm6ugYGBhZt0KtXr/JrDfqvcloB64f4tUC7du1U01EDAgJ4wtfo0aPxdaZuMTExIpHI2NhYGW3kYabZs2drZT4vXrwgopLQJrqcxNxLDhyv4EPKavzqr7/+4jH9PPGrb7/9loh69/ZF+EqtPhRwt7Zm/CyeB9xfv2YnT7KlS5mTE2vcOHfZgfKPri7r2FH+zTffSCSS8+fPF7DePScnx93dnd9fGTRokLJpCmMsPT2dBy2JyNnZOX9NWqH8+uuvRDRXnXE29Sk1Afc5c+aonkWlpKTo6urq6emp4/eqPF7o6+vv379fuT01NZV3CahUqVJgYGBaWpqPj4+zs7MyRklE1apV4+nDhU+effbs2a5du5QPlcdEY2Pj48ePC/zeyjqNBtwjI1nFikw1ENmjB9uzR61jXrp0iQc12rZt+6EacGvXruXrDfk365AhQ/bt2/eh/yl8SaOyGw/9l2rx+PFjdb4PYCwxkenqMtWmoxs3Mo03r5fL5Z6envyc29zcfP78+fz4w68bP2m9atEkJCS4uLjwVJ22bdsWJj+oPIuLi6tbty4RzZ8/X4vTSE9P59eNrVq1Sih0gwqFQvHgwYNdu3bNnDnTzs6ONxZTEolEzZo1++qrr5RXJhzqyajJ8uXL88fcC+n169fe3t4uLi4NGjRQ/SVaWFg4OTl5enpGRkYmJibybkslIeb+xRcjbGw+9/a++/GXQsnwoWJ6iYmJefIJCl6396n8/PzatGnD99yhQ4cPdTqJi4sbP358vErlNx8fH54S4eLigjppGrB7924i6tevn+rGx48fa6Y+cn7btm2jEtMmmsfc7ezs1JQtAXngeAXvVVbjVy9evGjUqNF7Y/qIX2nAhwLugYGsQQOWmpobcOe9i5R/9PSYlRVzdmYSCQsMZJ/6GTx27BivB1unTp3Lly+rPuXl5cWv6aysrEJDQ4V4i3nxz7anp6c6dq5upSbgfuzYMSLq3r27cguvQXzu3DlhB8rMzOSFDkxMTJRlgxhj8fHxXbt2JaIaNWqo9vVm/zU8cXNzU10gZmxs7Ojo6Onp+UktyFJTU3l5r0qVKl28eFGoN1V+DL5zp9+tWwNv3x54+/YtDZSiGzWKOTmxZ89YfDxbupQ1b87UnyPw6NGjpk2bElGtWrVuvq8ebUBAgFgstrW1lUgkHypkGRoa6u7u3qhRI+UnlrdOLeb6Mvg0LVqwAwfePrS3Z//1stewiIiIPn36EBHvkVKhQgU3N7d4tRWRz+/cuXP8+Kmrq+vm5oaVre+lUCgGDx5MRN26dRPkUq04YmNj+TLqnj17FnCCHhUV5ePj4+7urtqBR0l19WJsbOx794B6MurDb2bo6Ojs3r37oy9OTU318/Nzc3OzsbHheS7KO3MODg4eHh75e34kJCTwX1/Tpk21GHPPysqqUKGCSCQqQpc50C5lMb1x48YdPnzY2dlZeaPOwMDA0dHRy8tL8MiFXC739vauX78+H8jBweHGjRsF/8ju3bt5QG3atGmfmioIRTNu3DgiWrlypbYnkuurr76iktQm+uHDh2rqZQcfguMV5FGG41eqV2qIX2mYrS2rVYs1bpz7R08vN+Cens7Gj2fz5uUG3P/+m3XvzmbOZF5e7PZtVvwLx8jISP5x0tXV9fDwUD163Lt3j9etMjU13SN0+unDhw8bNmxIRKqf7VKk1ATc4+PjxWKxkZGRsiDGtGnTiOj3338XcJTU1FQedTI3N1etwRcdHc0LBdarV6/g5s6hoaEeHh6qJbN1dHRsbW09PDw+WqS4gGMiFJJGM9wZY5mZbNEi1rMn69CBTZ3KNBVQiI2N5eW0TE1N81cAkMlkH2q58+TJEw8PDx4m42rXrl2cJY1QLGfPsurV2fz5bPNmNmgQ69ZNgC/DolIoFNu2bTt27Jibm9uHQp9qlZaW5ubmpqOjQ0SNGjU6c+aM5udQwq1YsYJ/PZWQutgRERF8cczo0aPzX7Pl5OSoLp3hatWqNXTo0N9+++3kyZOF+ZiFh4ejnoxaubu78xOV954f5+TkSKVSDw8PBwcH5cIpIjIyMuJB9sDAwILv/Shj7s2aNdNWvPvMmTNE1LZtW62MDsXk7e1tZGSkzA/V0dGxt7ffunWruldfpaWleXh48BxAkUjk5OQUHh7+3ldu3LhRWcpWrVMCVdu2batWrdqMGTO0PRHGGFMoFLyKC9JWyjkcr0AV4legDh/KcE9PZ69fM0tLtnfve2q4CyInJ8fNzY1/ToYMGaKanJeSkvK///2Pf36cnZ2Lf+Eml8v9/PycnJx4cGDx4sWazAUUUKkJuLP/etFcuXKFP9y9e7eJicmcOXOE2n9cXBwvZ2xhYaHaCy4iIqJx48ZE1KJFi8IvVHz27Jmnp6ejo6PqNaqVlZWbm1tgYGD+2ER0dDRfFFa/fv2Cj4lQAE0H3LUnMzNz9OjR/B7jxo0bC37x8+fP85QOrFy5srOzs5+fH1IbtOz5c7ZtG/PwYL6+Woy2lxyXL1+2srIiIrFYLGxPztLu2rVr+vr6IpHoyJEj2p7LW8HBwbwe0XvL5rZr165SpUq2traurq7e3t6FjLeqJsWbmZlVrVr1S42XWipXFixYwC+u9u7dy7coe59WrFhR+a2ho6NjY2Pj5ubm5+f3SWtQ4uPjbWxstBhz52u6f/rpJ80PDYK4cuXK1q1bbW1tV61apeGlEnFxcW5ubrz2gr6+vouLS56EhnXr1olEojylbEEDjh07xuOGJeFf/tatW/yOsrYnAtqH4xWoQvwKBFdAwJ0x5unJmjRRV8CdO3r0KG/UVK9ePeVnm/Py8jI2Niai9u3bF74XdB4JCQkrV67kH2Ce5fPtt9+W3vvZpSngzmv3rFq1ij/MzMwUcE39y5cveZvdBg0aqH44QkNDeU+/Dh06fKg6R8Hi4+O9vb2dnZ1VL1yrV6+uWipLeUy0srLSVvHBsqH8BNwZYwqFgicnEpGrq2v+b8G4uDgvLy8HBwfl/Wpl6UC0x4ESKzs728PDwxn9DVUkJibyYtnff/+9tueSV0BAAD8vX7t2bZ6nCpnS9ezZs4MHD86ZM6dPnz78BE7VrFmzUIVW3ebNm8dv33br1q1q1aqq//4tW7acMWOGj49PAf2UPurNmzf8FKt58+bR0dECzrwweLj/9OnTGh4XyozIyEgXFxeeY1WhQgV3d3eeuuXh4cHzSdesWaPtOZZHW7du5TH3JUuWaHcmK1euJKJx48ZpdxoADMerEgbxKxBcwQF3uZx16aLegDtj7NmzZ/xOj4GBgUQiUX3qxo0b/INhZmam2k6gMMLCwlxdXZXFuGrWrOnu7l60z3DJUZoC7n///TcRjRgxQvA9h4eH82LWLVu2fPHihXL71atXec3ZXr16Ff+CPzMz8+TJk5MnT+ZHQK5ixYr9+vXj17ddunRRbfsLRXAiLi5FtQtlObB582a+dHHkyJE86zAhIYG36FE2Ijc0NFRT6UAA0IAvv/ySiGxsbJSLUkuUXbt2iUQisVh88ODBwrw+Pj7ez8+P57DXqFEjT4RdtbD7JzVBgeKYN2+esquHau9Tofb/+vXrVq1aEVHbtm1fv1bXHd83b97kSYF58+aNWCw2NDREVSIoppCQkM8//5z/H6lduzYvWaujo7Nt2zZtT638KiEx9/79+xNRYZphAGgGjlclBOJXILhDh5jKL5zt2sXi49nWrW+Xyj94wA4dUvs0MjMzXV1d+Ufiiy++SEhIUD6VlJQ0YsQIImrYsGFhFsXK5XIfHx/VJFFbW1tvb2+tdywTRGkKuN+/f5/f6BB2t8HBwdWrVyeiTp06qZaUDQgIMDU1JaIhQ4YI3sGPt6y0sbHhn6oGDRoIckyE8snX15dXdWjbtu2AAQMMDAz4oUpfX3/w4MF79uxB3ySA0uuvv/7iaUoPHjzQ9lw+6NdffyUiIyOj97ZLSkxMDAwMlEgkzs7OvGSQqooVK/KyM15eXmrqbg+FkZycvHv3bvUtCn79+nXr1m3s7La3acMEzFZJS0tT7eZqb2+v+uyePXuI6PPPPxdsPCjf/P39+ZoJCwsLfX39Qt5lBPXResxd2ZZZ88t3AAqG45XWIX4FZduhQ4d494imTZvevHlT9al169ZJpdKCfzwmJsbDw6NevXr8ktDU1NTFxeXOnTvqnLKmlaaAu0Kh4HfSnjx5ItQ+z58/z1fK2Nvbp6SkKLcfOnSIRy3HjBmj1lsr4eHh69evf/nyZcnMW4TS4tatW3Xq1OE3usVisa2trUQief36tbbnBQDFcufOHSMjIyLatWuXtufyEbwTVJUqVcLCwpKTk1Uj7MqEBeXplGqEHZ0kyo9Xr7JbtGBErF07VpzezDk5LCgobtGiRd27d1etNGpoaDhw4EDVV44bN45KRpVnKDMUCsXu3btv3Lhx+fJlbc8FGNN2zP3s2bOEtsxQUuF4pV2IX0GZ9/Dhw3bt2vGT8DzlZQoglUpdXFz4RS4RNWnSxMPDo5S2RS1YaQq4M8YcHR11dXU7d+68adOm4q809/X15b/jL774gtei4v766y9+3vbeutgAJVNkZGRYWNjatWuRYgNQNqSmpvJuSxMnTtT2XD4uJyfH0dGRiCpVqpQnwm5iYmJnZzdz5sxdu3aFhYXhi7U8i4lhVlZFjLmHhzNPT+bkxCpVYlWrykUiMX2sm2udOnWICB2YAco2LcbceQ+MH3/8UcPjAkCpgPgVlHkZGRnK8jJff/216n2gPLKysry9vR0cHPiLxWKxg4ODj49PGf7QlrKAe1RUFC+Tx389NjY27u7uH12q8F6PHz/mFa4nT54sl8uV25UdRdzd3QWbNwAAwCcaP348L85YWrovpKamOjs79+3bV09Pz8rKytnZWSKRBAYGIgUGVL169Qkx96wstnkzGz2aVa/OiN7+adGCubmtOnz4sGrVyDzu3r3Ll9KX4fN4AODUHXNPS0s7ceLEtWvX8mzv1KkTEZ04cUIdgwJAaYf4FZQTu3bt4lWOmzVrdvv27TzPvnz50sPDQ9kMoGLFiq6urhEREVqZqiaJGGNUqsTGxh4/ftzX1/fEiROpqal8Y4MGDQYNGjRo0KCePXvyBpKFsXz58qSkpCVLlvCHjDE3N7cVK1bo6Ohs2LDBxcVFLW8AAACgEM6dOzdhwoRDhw61adNG23P5BK9fvzY3N1c2bQbILyaGevWi+/epfXvy96fKlT/4SsbI0pJiYoiIatSg7t3JwYH69aO6dT/4IykpKVevXvX39z948GBMTMzQoUN37Ngh/HsAgBJm27ZtEyZMUCgUS5YsmTt3bvF3qFAoQkJC/P39/f39+c1jZ2dn1eNJYmJi1apVdXR04uPjTUxMij8iAJQ9iF9BOfHgwYORI0fevn3byMhozZo1EydOJKLg4OA1a9bs27cvJyeHiNq1azdlypSvv/7a2NhY2/PVhNIXcFfKyMjw9/f39fX18fF59eoV31ilSpUBAwYMGjSoX79+vGVEIcnl8smTJ2/ZskVfX3/nzp0jR45Uz6wBAAAKSy6X6+joaHsWAMJ79Yp69aKwMLK2Jj+/gmLuq1eTvj45OFCzZh98TXp6+sWLFwMCAvz9/W/evKlQKPj28ePHr1q1ilc7BYAyT5CY++PHj3mQ/cyZMwkJCXyjjo5Ohw4dRo4c+cMPPyhfeejQoeHDh/fq1evMmTMCzB4AyjTEr6DMS09PnzZt2vbt24moR48ecXFxoaGhRKSnpzds2LDvvvvOzs5Oy1PUrFIccFfi2QfHjh3z9vbmnaCJyNDQ0M7OztHRceTIkZaWlgXvITs7+6uvvjpw4ICxsfHBgwf79eun/lkDAAAAlF8vXlDPnhQeTtbW5O9P5uaf9uMyGV2/fjUgwC8gICAoKCgrK4tvNzQ07Nq1q729vb29fYcOHXDLCqBcKVrMPS4u7syZM/7+/n5+fk+ePFFub9iwoYODg4ODg729feV8NwanTJmyceNGoRLqAaCcQPwKyrYdO3ZMnTq1Tp06YWFhNWrUGDt27LRp03hfpfKmLATcVUVERBw7duyff/4JCgri+U1isbh9+/b8yGVlZZX/R9LS0oYNG3b69OlKlSr5+vra2tpqfNYAAAAA5c7z59SzJ0VE0M8/05w5VKlS7vaMDBKJyNDwPT8SEUH+/rl/atVyCQ3dTP+d7Nna2trZ2X1qjhgAlDGFjLnLZLJbt275+/sfO3ZMeeVIRFWrVu3Vq5eDg0OfPn0aNGjwoR9//fp1hw4dnj9/fu3atY4dOwr/NgCgHED8Csqku3fvisXimzdvDh8+XF9fX9vT0ZqyFnBXevPmzYkTJ3x9fY8fP56WlsY3NmzY0NHRUbVUVkJCwsCBA4OCgiwsLE6ePNm2bVutzhoAAACgHHn2jJYtoyFDqF8/OnaMHB2JiH75hQwN6Zdfcl8TGUkBAbl//luETUTk5HSxWrW99vb2vXr1Mv/UDHkAKLs+GnP/9ddfPTw8MjIy+EOeW9qnTx8HB4d27drx/qv5ZWRkXLp0iRecCQkJqVSpUteuXY8cOYKVNABQTIhfAZQ9ZTbgrpSamnry5MmjR48eP348Pj6eb6xRo8bgwYPt7OxWrFgRGhraoEGD06dPN27cWLtTBQAAACiHAgJo0iQSi+nWLTIyol9+IX19srLKDbI/evT2lZaW5OBA9vZkb0+1a2tvxgBQshUcc//rr7+mTp2qrBhTwMoYhUJx48YNPz8/f3//S5cuKatXGRsbd+/e/cCBA2iXCgACQvwKoMwo+wF3JblcHhQU5Ovre+TIkQcPHvCNIpGodevWJ0+e/GidLAAAAABQh4AAWrGCGjWiSpVoyRL65RcyMKB16+jNGyKiChWoSxdycCAHB7K2JpFI29MFgNKggJh7UlJSTk5O1apVP/SzERERytapcXFxfCMv9cBj9HZ2dobvrXsFACAExK8ASrtyFHBXdfv2bR8fn7t37w4ZMqRv375YhgwAAACgLTzgvmcPtW5Nfn60Zw8ZGpJIRCIR2dtThw6Egg0AUASf1EM1JSXl6tWrvKr7vXv3lNsLbp0KAKBuiF8BlEblNOAOAAAAACUED7ifPEl//0179lCXLrmFZQAAiqngmLuydaq/v/+5c+dkMhnfXqVKld69e3+0dSoAAADAe+lqewIAAAAAAERE48fT1q10/DgNH67tqQBAmTBu3DgimjBhwrx584iIx9yVFWNOnjyZkpLCX6mrq2tjY8OT2ZUtCgEAAACKAKcRAAAAAFAiiETk6UnW1gi4A4Bgxo0bxxibOHHivHnzDh8+HBkZ+fr1a/6Ualn2bt26GRkZaXeqAAAAUDYg4A4AAAAA2lSvHo0cmfv3Vq1o82aqU0erEwKAsmX8+PEikWjevHkPHjxISUmxsLDo1q2bg4PDwIEDa9Wqpe3ZAQAAQFmDGu4AAAAAAABQxqWlpZ07d65JkyZNmzbV9lwAAACgLEPAHQAAAAAAAAAAAABAAGJtTwAAAAAAAAAAAAAAoCxAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIB7QRhjjDFtzwIAAAAAAAAAAAAASgEE3N8vLS1t2bJl3bt379q168KFC7OysrQ9IyihXr2i6Oi3D58/p9hY7c0GAAAAAAAAAAAAtEeEDO485HL5li1b3N3dY2JiRKLcfx8rK6t169b17t1b27ODEmfBApLLacmS3IcTJ1LbtvTdd1qdEwAAAAAAAAAAAGgDMtzf4e/vb21tPXny5JiYmM6dOwcGBgYEBFhZWd27d8/e3n7QoEHPnj3T9hwBAAAAAAAAAAAAoCRCwD3X/fv3Bw0a1KdPn9u3b9etW9fLyysoKMjW1rZ37943b96USCSmpqa+vr5WVlaoMAMAAAAAAAAAAAAA+SHgTrGxsTNmzGjdurWvr6+5ubmHh8fDhw/HjBkjEon4C/T09GbMmBEWFubs7Jyenr5o0aJWrVodP35cu9OGkuOvv6hJk9w/3t7ang0AAAAAAAAAAABoSbkOuKen05o14Q0aNFi7dq2Ojs7MmTMfP37s5uZmYGCQ/8U1a9bcsWPH2bNnW7Vq9fjx44EDBw4aNOjJkyeanzaUNFOm0KNHuX9GjtT2bAAAAAAAAAAAAEBLymnAnTH65x+ysqIff2xkafm5o6Pj3bt3V69eXbly5XyvZLdu3VI+7Nmz540bNyQSiZmZma+vb8uWLRcuXJiZmanZ6QMAAABAoSUl0bJlNGoUjR9P27eTQkFEtHQpqZzjkZsbRUZqa4IAAAAAAFBmlMeA+5kzZGNDI0fSs2dkbU3btu04duxY48aN3/viffv2tW/ffsyYMTExMXyLaoWZzMxMXmHG19dXg+8AAAAAAAonK4t69aLISHJzo2++ob//ptmziYj8/Skq6u3LfHwoPl5bcwQAAAAAgDKjfAXcHz6kkSPJ3p5CQqh2bfL0pCtXyNbWpIAfiYmJMTAw2LlzZ7NmzdauXSuTyfh2S0vLHTt2nDt3rk2bNuHh4bzhalhYmEbeB5QgX3xBw4e/fTh2LNnba282AAAAkMfhw2RgQH/+SdbW1KMHHTxImzbRf4kUAAAAAAAAwiovAff4eJo9m1q3pn/+IRMTcnenhw/JxYXEH/sHmDlzZmhoqKOjY1JSEu+t6ufnp3y2e/fuwcHBEomkYsWK/v7+bdu2nTFjRmpqqnrfDJQkd+/SN99QbGzuwz176OlTbc4HAAAA3nHnDvXo8fZh9erUuDHdvUtE5OtLf/6Z+ychQVsTBAAAAACAsqSsBdwDA6lKFQoKyn24ZAl5eNCaNdSoES1bRjIZOTvT48e0cCEZGRV2n40aNTp27Jifn1/z5s3DwsI+//zzQYMGPX/+nD+rq6s7Y8aM8PBwV1dXmUy2du3aFi1a7NixQw1vDkqipCR69Yp++in3YUwMpaVpdUIAAACgKjOT9PXf2WJkROnpRERyOeXk5P4BAAAoGRhj2p4CAAAUS1kLuOfkkKEhTZ1KvPRLZiYlJNCCBZSYSA4OFBJCO3aQhUVR9uzg4HDr1i2JRFKhQgVfX98WLVosXLgwOzubP1ulSpU1a9ZcuXKlU6dOL168+Oabb+zt7e/duyfcO4OSa+RIunaNzp/X9jwAAAC0SqFQxJfAMuiNG5PqKVlODj14QE2bEhENGUIzZ+b+MTfX1gQBAABiYmL++eefSZMmtWzZcsmSJWvWrNH2jAAAoOjKWsCdiFq1IisrUn49mZiQREJ+fuTnR23aFGvP+vr6M2bMuH//vrOzc1pa2qJFi1q3bn3q1CnlCzp27BgUFOTl5VW1atUzZ860a9duxowZKSkpxRoVSjw9PZJIaOpU+u/+CwAAQLkTERFha2s7cuTIEpeX98UXdO4c8ZKAjNGiRWRtnRtwBwAA0J7Xr197e3tPmTKlefPmFhYWI0eO3LRp0717937//feZM2euXLlS2xMEAIAiKoMBdyJavpz++IMiI3MfjhtHDg6C7bx27do7duwICAiwsrJ6+PBhv379Bg0a9OzZM/6sWCweM2bMvXv3vv32W7lcvnbt2pYtW4aEhAg2PJRIffpQq1a0erW25wEAAKAllSpVioiICAgIKHGF9SwsyMeHFiygFi2oSRO6f5+2byciqlCB9PTevszMjHR0tDRFAAAoL1JSUvz9/WfPnt2hQwdLS8tRo0Zt3LjxwYMHJiYmDg4OHh4egYGB69evF4vFs2bNWrFihbbnCwAARSEqcVlIxXPmDC1bRqdO0cqVdOUKNW9Oenq0YIFaxsrJydmwYcP8+fNTUlKMjY1/+umnOXPmGBgYKF8QHBw8derUe/fuzZ07d86cOWqZBGiPQkHPn5OvLz16RBIJRUVR587UsCG5ulLv3lS5srbnB2VCdjbduUMtW5KhIRFRXBylpFD9+lqeFQDAe+3atcvZ2blKlSr37t2rXr26tqfznz//pJYtqWdPkslIV1fbswEAgHInLS0tKCjI39/f398/JCREoVDw7cbGxl27drW1tbWzs+vevbu+SseRrVu3Tpw4kTG2fv36qVOnamniAABQRGU24J6TQzY2VLky9e6troA79/Lly9mzZ+/cuZOIGjduvGbNmgEDBiifjY+Pr1KlSqVKlRISEtQ4CdC4589pzBh6/JhcXSkqiiQSIqKVK2nWLNq+ndzdqXt32riRjI21PE8o7V68oDp1aPZsWrqUiGjHDvL3p5KWPAoAoNS3b9/Tp087OzuXlDz3yEhq2pRycujhQ2rUSNuzAQCA8iI9Pf3y5csXL168dOnShQsXlO3fdHV127Zt6+Dg4ODg0K1bN9WMvTy2bNni4uJCRH/99dekSZM0NG8AAG1484YYI2XGzvPnZGFBkZHUoAGJxUREjFF4ODVurMU5fpqyWVKGiPT0aMMGunBB7QPVrFlzx44d/v7+LVq0ePz48YgRI16/fq18lt+71kU6Vdly8CC1a0fnzpFcTrq6b8vAzphBo0ZRTAzFxNDOnfTZZxQWptWJQplgaUkHDlBoqLbn8emioqK0PQUA0LRNmzaZmJjs3Lnz9OnT2p4LEREtWkRZWfTll4i2AwCAuslksuDg4GXLlvXp06dy5cp9+vRZtGiRv7+/QqGwsbFxc3Pz8/NLTk6WSqUeHh4ODg4FRNuJaMKECatXr2aMTZ06lWf4AQCUVfPmkZUVxcbmPuzVi549o3btKD4+d0taGrVooa3ZFUVZCwRXr07duuX+3c6Ofv2VmjfXxLj29va3bt3incRV11DL5XIi0kFJ0LIiI4Nmz6a1a4mI+val7dvJwuLts7q6tG8fEdHAgTR6NN2+TdbWtHQpzZihndlC2WBgQL/9RlOmaOIOooDOnDkzYMCAX3/99eeff9b2XABAc+rVqzd//vzZs2dPmjQpNDTUxMREm7N5+JB27CBdXZo/X5vTAACAsm7//v2enp5BQUGZmZl8i46OTqdOnXr16tWrVy87O7sCvhBjY2PPnz9/9uzZlJQULy8v1admzJihUCh++OGHcePG6ejo/O9//1Pv2wAA0J7atWn2bNqyRdvzEEhZC7i3akWtWtGBA7RnDw0dSr/8ormh9fT0Zs2alWejTCYjZLiXFVIpffUVPXxIhobk4UGuriQSvf+VLVvStWs0YwZt3kwzZ9LFi7RlC1WsqNnpQqkll1NYGEmlJJXSlClERKNG0aZNtHXrO+39SrI3b944OztnZWVlZGRoey4AoGk//vjj/v37Q0JCFi9e7OHhoc2pzJ9PMhlNmkTNmmlzGlAkPGiVk5Njamqq7bkAaEFycjIRmZmZaXsi8HF79uzZuXPn2bNniahhw4YO/zE3N//Qj6Smpl65ciVPVXd9ff0NGzbkCc1///33crn8p59+GjNmjFgsHj16tLrfDgCUNyXkG2fqVFq1is6do549tTsRYZTNkjLh4XT4MN27p+15IOBeVjBGa9aQrS09fEgtW9LVqzRjxgej7ZyREW3aRF5eVKECHThAnTpRSIimpgul0MuXdOwYLVxIgwZRtWrUqhWNHUvr19OtW7kvWL+e3N0pKUmrsywcxti333778uXL7t27/6LJ254AUDLo6up6enrq6OisXLkyRItffrdv04EDZGhI8+ZpbQ5QVMeOHWvZsuU333zToEGDNWvW8DWjUNK4u5Nqm6rvvyfVX1RICM2fT1lZuQ8PHCCpVKPTK72ioqLGjBnTrl271q1bjxw5MjIyUtszgo/YtGnTyZMnf/7557i4uPDwcE9PTycnp/zR9tTU1BMnTvz8888dO3asVKlSnz59li1bFhwcbGBgYG9v/9tvv509e9bQ0DD//mfNmjV//ny5XD5mzBgfHx+NvCcAKBeeP38+ZsyYTp06NWnSZMyYMTExMVqcjJ4erV5N331HOTlvN3buTE2aUJMm1K6d1iZWRKwsWrKEEbG5c7U9D8bCw8OJqGHDhtqeCBRddDTr25cRMZGIubiw9PRP+/GwMNauHSNiBgZMImEKhXpmCaXN06dPfXyuzJ7NHBxYpUqM6J0/9euzESOYhwcLCmL16+f+yOzZrH595uys1XkXAk9orVat2osXL7Q9l7IsIYFlZ+f+XSZjSUlanQ1APjNmzCCijh07ymQy7cygf39GxGbN0s7oUFS3bt3q3bs3v06pWrUq/0v79u0vXLig7alBXhYW7MmTtw+JWGbm24c7djBdXfbrr7kPx41jf/+tydmVSmlpae7u7sbGxkRkYGCgr69PRBUqVFiyZElGRoa2Zwfvl5ycrKenp6urm5iYmP/Z9PT0wMDA/BXbdXV1lVXdC/nLnTt3LhHp6+sfO3ZM6DfxjoAAdvt27t9lMnbwoFpHg6J49erV4cOHZ8+e/eLFi2zlJQHAp0hOTnZzc+PHJSMjI54oXLFixT/++CMrK0vDk0lPZxMnsq1bGWNs2DC2ahVr1Ig9esQqVGBv3uS+JiWF6epqeF7FUjYD7osWMSK2YEHuw7Q05ufHLl3SwkwePHhARE2bNtXC2CCEAwcO9O9/jYhZWLCTJ4u4k4wMNmVKbiB1xoyg+Ph4QecIpcPLly99fHzc3d0dHR1r1KhBRHXrNlJG2C0tmaMjc3dnPj7s1au3P/X8+duAe1ra24C7XK6Ft1AYV69e1dfXF4lER48e1fZcyrgqVZiLS+7fQ0JYmzZanQ1APqmpqQ0aNCCiNWvWaGH4wEBGxCpUYDExWhgdiiQuLs7V1ZVf71WuXFkikeTk5Pj4+PAPEhE5OjpGRERoa3oJCQdDQ5veudMwNLR5evpNbU2jRPlowH3YMFa3Lnv0iLGSHXBPS5Peu9f+zp2Gd+40jI//R1vT8PHxqV+/vvLT/uTJk8jISGdnZ76ldu3aXl5eCiTvFOD+fTZ2LLOxYQ4OzMOD5eRoZthDhw4RUffu3VU3Pnr0aOHChd27d88TZP/ss8/mzp3r5+eXlpZWhLHc3Nx4zP3ff/8VaPrv0aULs7Rk/PZBWhozNFTfUFBYMpksNDTUy8vLxcXFyspK9N9y+zp16nz55ZfyEntxCCWSQqHw8vKysLAgIpFI5OTkFBkZ+fDhQycnJ/65atKkibe3t2Ymc+MG696djRv3NuAeGclq12bVq5f6gHvZLHXCFzMqO5VGRlKfPtS8Od2/r+mZoKRM6ZWWljZz5swtW7bo6RmPH//cw6NytWpF3JWhIW3YQL1709q1sevX9zh0qMbevXttbW0FnW+uzMzMW7duSaXSr7/+2tTUVCwum2WjSoX4+Phr165J/xMVFaX6bNWqVVu2bDp2bI61tV7HjlSz5vt3UqUK/fln7t+NjenYMUpNpalTSS4nT081v4FPl5iYOHr06Ozs7FmzZg0ePFjb0yn7zp6ly5epa1dtz+Nj0tPTHz58OHXqVAH3OXr06NGjR6t2KYeSxsTE5M8//xwwYMDcuXMHDx6sjCJpCO+SOmsW4UNSGshksq1bt86bNy82NlZXV9fFxWXJkiU8vX3QoEEODg5r165dsmSJr69vQECAq6vrvHnzNFzYnTHZkyffNG8eZGTUSi5PEYlKSU8V9fP1pQLOkCtWpPnzado0OnVKg3P6dJGR02vU+LFy5a8Yy1Eo0jU/gRs3bsycOTMwMJCIrK2tJRJJt27d+FM7duwYP378zJkzb9269c0332zbtk0ikbRt21bzkyzpoqOpVy9avJgkEnr9mqZNo8jIt6fR6nTq1Cki6tu3r+pGHnAnIrFYbGVlZWdn5+Dg0KdPn0qVKhVnrKVLl6alpa1fv37EiBH//vtvr169irO3ArRvTwsX0urVato9FEpCQsKVK1eCgoIuX7587dq1lJQU5VOmpqadOnVq1KjRvn379u7dW6lSpQ0bNmhxqlCKXL9+fcaMGUFBQUTUsWNHiUTS9b/rSW9v74CAgJkzZ4aGho4cOdLe3l4ikbRq1UpNM3n9mn75hf7+mxQKeviQlAfROnXou+9o9uz3/1RICK1fT0T0888lvkmTtiP+ajF3LiNiS5bkPrxzhxGxVq20MJPbt28TUevWrbUwNhSDVCpt2rQpERkaGkokEqFySZ49e8bj7Lq6uu7u7oLciM7JyeH3ul1dXW1tbZVV/9q1azdlypTi7x+K5sGDB999953qwdbU1NTW1tbV1dXLyys0NLTIH6qbN5mhISNiS5cKO2UB8CZOHTt21PwatHKoShV28CBr3ZplZ5f0DPf58+cr60IIpU6dOk2bNsUnreTjmTIDBgzQ5KBpp04xIla1KmotlQr+/v7Kazl7e/s7d+6892UvXrxwdnbmOX21atXScKqvXJ4aHKyTmnpVYyOWChYW7Lvv2Lx5uX/yZ7iPG8fkcta5M9u3r0RnuIeGNn/zxlMrQ8fGxrq6uuro6BBRlSpVJBLJe8twyeVyLy8vfptZLBY7OzvHYPlOHh4e7Kuv3j58+ZIZGbHkZA2M3LBhQyIKDg5W3ZicnDxjxoyjR48mJCQIO5xCoZgyZQoRGRsbnzt3Ttidc126sHPnWL167MYNZLhrWnh4OL+0t7GxyZM8Z2lp6eTkJJFIAgMDlefAyrr/7u7uWp04lAJRUVHKU6maNWt6enq+NySVk5Pj6enJL994GsQbZZK5QLKzmUTCKlZkRExPj7m6ssREduLE22JW2dlsxQoWH882bGDKmlvZ2WzdOhYSwtLTWUgIc3UVdlLCK5sB959/ZkTMwyP34c2bjIi1bauFmdy4cYOI2rdvr4WxoUgUCoVEIuEFE1u2bHnr1i1h95+Tk+Pu7s6/O3v37v3y5ctP3QNfTbZ9+/bvvvuuc+fOefrq6OjotGrVqn///vwt/PHHH8LOHwppyJAhIpGoRYsW33///e7dux88eFCYuMCrV+zYMebuzubMKehlR48yHR0mErHt2wWbcPGtX7+eiCpWrKjF9f7lh0LBqlRhiYlsxAi2fHmJDrhHRkYaGxuLRKINGzZcEsiFCxf4PVEc4kq+6Oho3jXun380VKVBoVBYW1u7d+wY/+efmhkRiqwIi5evXbv22Wef8R/p2LHj5cuXNTBPmSyRMfbq1R8hIWaPHw9JTvbXwKClwkdLyowbxxhjwcGsQQM2alTJDbgnJvrcvFklLKxbbOwOxhRyeZpCofaayNnZ2RKJpGLFikSkp6fn6ur63grgqhISEpT1ditVquTh4ZGp+i9ezo0dyySSd7Y0aMBu3FD3sPfv3yeiatWqabKmh0KhcHFxISITExMB+1vcu8f+/JNdusS6dGHXr7P9+1mnTiwlBQF39UpNTQ0MDJRIJE5OTnkyVPT09GxsbHjC1rNnzz60Bx8fH15TYeXKlZqcOZQi6enpHh4efHWgkZGRm5tb8sfuR/JCf/x+sLLQnyCT8fNjLVvmVtZ1cGChoUXZyZ49bONGQaajRmUz4P7jj4yIKS/DpVJGxGxstDCTa9eu8esBLYwNn+7Vq1f9+vUjIpFI5OLiUrTKeoXh7+/PC2ZVr179xIkTH319VFSUsvx3/n73lpaWjo6O7u7uPj4+ygLx+/fvF4vFIpFox44danoX8CHJycmGhoZisTgqKqrgV8bHp586xZYsYV98werUeds0tWLFj1Rp/+uv3LvBp04JOfMiu337tpGRERHt2bNH23Mpy0JDmbs7a9GCnTqVG3B//pxVr858fEpuwJ1H075STToTgp+fHxGZmppGR0cLu2cQ3MaNG4nIwsJCMy1M9u/fz9N21PclDsWXkpLi7u7O44YmJibu7u554ob37t27ePHie382T+FRZ2dnNR0HsrKexcRIwsJsb9yoIJenMsZkssQ3b7bcvFk9IQF9Shj7QMA9LIzxVQrKgDtj7LvvmIFByQ24M8YUisyEhEOhoVYvXy569WpFSIj5kyfO8fHe/FcvOD8/PysrK34m7+DgcPfuXdVnMzIydu7c+aGfffDggaOjI//Zpk2bqrt/Zqnx3oB7SIi6h129ejUROfMmSxokl8u//vprnuxy7dq1Iu8nPJx5eTEXl7dXIlOm5AbcGWN9+rD16xFwF15UVJS3tzdfoc7z5PJc2nt4eAQGBha+VfLOnTv5tf9WXgMbQEUh2+HI5fIdO3bkiarfu3ePh8iIqHnz5oUJXhXgwQPm6Jh7qGnalBX56+v6dTZlCiv53YLLZsB9xgxG9PYL9+pVRsQ6ddLCTHhdpC5dumhhbPhEhw4dqlKlCg+C+/r6qnu4mJiYzz//nF8rurq65uktrhphz1+KQTXCXsDqnhUrVhCRvr6+n5+fut8OqNq5cycR9ezZM/9TKSkpPIXB2dnZysqqVq26yiA7ETMzY716sZ9+Yvv3f7zP06xZjIiZmmogd+cjUlNTmzdvTkSTJ0/W8lTKIrmcXbrEfvyR1a//9qMyY0ZuwJ0xtnw5s7YuoQH3ixcvikQiIyOjArJyimzgwIFENHHiRMH3DMJSKBR2dnaaOUTIZLIWLVoQkaendqpDwEfxyhi8eTivjPFKtVf4fzm8+vr6DRs2LCB7NzU11d3dna/z4yH7wgcmCpaR8SA6+vd792ykUuJ/btwwTk29onzBixdzIyNL/DJmjcgfcN+1i82bx37+ma1f/07APSmJWVqW6IA7Fx//T1hYtydPnJW//ZAQ04iIL+Pj/5HLhbmHFxYWNmDAAH5K36xZs/ytL318fHiJkoL7z/v5+bVs2VIZsg8tWopgWbJsGRsz5u3DV6+YiYkGSsrwUNSuXbvUPVB+Mpnsyy+/5MsdpFJp4X/w2TO2fTsbM+addB8iZmnJ/vc/dvDg24D7gwesVi0E3IUUGxtraWmpemmvq6vbsWNHV1fXvXv3FueEed26dTwpXgOhDCgtbty40b17d/5Ja9++/fnz5wt4saen50e/mHjIPjw8/FNnkpCQsHjxPT09RsQqVWKrVxc9XL5vH+vQge3bxwIDi7gHjSmbAfdp0xgRW7cu9+GlS4yIde2qhZnw1jd2dnZaGBs+BW/4TkQDBw7UWElEXr5GT0+PiDp06LBp06b58+f369cvf4S9Vq1aQ4YMWbx48YkTJz6pftbMmTOJyMzM7ObNm+p7I5AH7xf6p0o1g/j4eGdn5+bNm+epxGdsbNy3b/yMGWznTnb//key2vNQKJizc+7J8dOnwr+LwhszZgwRtWrVKj09XZvzKFvkchYYyFxdWa1aby+EqlVjzs7Mx4dlZ78NuOfksDZtSmLAXS6X29jYENGvv/6quj02NnZdkVy6dEl1P48ePTIwMBCLxdf5RSGUYGFhYXzdT6CaT423bNlCRI0bN84u+Ukv5dKVK1c6d+7MvwE7deoUFBSk+qxMJvvrr7/4WZCOjs7kyZM/ut750aNHyqI0devW9fLyKvLc0tNDo6M9wsJsVePsjx45xsZ6yWTJMllydPSytLQbKSmX7t5tFReH5VyMMZan2LgyV+DJEzZhQt4XJySwH35gYWGamNinevXqj5SUS+npNx89Gvj8+U+MsczMCL6+QSoV/fd5MPzv8/CRwi8fEh8fz28mEZG5ubmHh0eeTiS3bt1S9sBs06bNhxZ5KOUvSiN4ufDSJD6eWViwfftYTg57/ZoNGcJmzlT3mBkZGcbGxmKxWFsl9WUy2ahRo4ioatWqt5XFj9/n5cuXu3fvnjBhQo8eKapB9mrVmJMT27CB3bv39sXKgDtjbN48ZmjI0tIYVrEW36tXr6pWrWpiYmJmZubg4ODu7u7n51fkBXkymWzRokWxsbHKLXPmzCEiIyOjguOqUB4UskGIqhMnTjRu3Jh/Bw0ePPjRo0eqz2ZlZUkkEjMzM57T6erqmlS4VknKHiSVKjWoUkXu7MyKebwMD2dSKZNK2bsTLInKZsB98mRGxP76K/fh+fOMiHXvroWZnD179kOJrlByJCYmTpgwQVdXV8D+qIV3/vz5mjVr8kOhUsWKFZUNNj+1InZ2dnZqau7qV7lcPmLECCKqWbOmOjJMIb/31pORyWQmJiY8hcHKysrZ2TlPu5uiycpiDg6MiLVoweLiij31Itm+fTvPLrynep4ORZWdnX3y5MkffnhRrdrba6EGDdiPP7LLl5nq8WnRorcNZK5dY6tXs6golpKilVm/H8+SqFOnTp4LiZs3b1KRzJo1K88QP/zwAxHZ2tpq/tANn8rd3Z2ImjVrpr6Kw1lZWXzBLGpblUDPnz9X9umqXbt2/panZ8+ebdu2Lf/P3rNnz09KFAgICGjTpg3/2V69en1SAx6pVHrs2PLQ0KbKOPvNm5WfPBmbmHhMoXj7WZXJkqKjl4WHO4WHj4iN3cYYS0+/nZGBL773++EHlj/aw5cga7aD8sclJBxSKLLevNkUEfHVo0eDoqOXyeXvLJXIynry6tXKsLCuUqmYf0KCgw3u3x+9devWuEKfe/FwQ7Vq1ei/hR2vX79WfUFxSuWqRlX4z340qlJm3bzJhg1jLVqwDh3YggUsM5Pdvs3UeVf+xIkTpO36sdnZ2TzXp1q1ankWOrx+/drHx8fNzc3GxoYffomoR4+bFSowBwfm4cGk0ven+1y79rbpeHo68/dnvXu/U7MXimbTpk1E1LdvX0H2Nnv2bH73OuW/CwBlcX8zM7MbWl8EDVpShAYhhf/Zly9furi48CRCS0vLD7VdVTpz5ozyDK1nz563b2s1T1DjymbAfd68Az16uO3enVvL7MKFpz16eEyYsFfzM/H39ycie3t7zQ8NhZeYmKivr6+joyN48+VC2rVrF09MmD179oEDB54WI105JSWlf//+/fv3V56mZ2Vl9e7dm4hatmypmfq55dyH6skcOnRIKpUKnnSZkMBatWJErFs3lpGhuWZN3MOHD3nrlW3btml46DImMzPTz8/P1dW1evXqRNSjhwePs7u6ssBAVphg8tmzrFq1d9ZSa1dSUhKvsLx///48T7148WJakRw+fLjwo0BJk5WVxYu9LFq0SE1D8EK6rVu31mTnOviotLQ0Dw+PChUqEJGxsbGbm1vKu/cGIyMjnZ2d+cVYnTp1ipalnpOT4+npWUBAM4/Q0FB3d/cmTZoQUYMGlYODdW/erPLkiXNioo9C8fF74cnJATduGN6920oux9Kud+TksHnz2Hura7x+zSpVYkTs+HGNT+sDEhIOSaUUFtaNsY8fNHJy3sTGej165BgcrHfiRDci0tHRsbW1lUgkL1++LOAHC74hxD+6fGGHrq6ui4tL0a5HQkJClHUDWrRocfLkySLspIxQprMcPJjbkk9t+GLi+fPnq2+IwsjKyuJ19mrUqHHlypUjR464urq2bt1aGWQnIlNT0wEDBqxYseLGjUdFuCOzfTsTixkRW75cDW+g3OC/pr8Fqq4VExPTtGlTIurdu7eyqJpcLh85ciS/ARNWMpcUgToJUm3so9nx169ft7W15aPY2Ni8dz1W/rO7cpggVTYD7mPHjiUiZb+I06dPE1GfPn00P5OTJ08KeA8T1Kdv3755goaPHj1asWKFOkpkPHnyJDIyUnUL73izdOnS4u/88ePH/Gpz/PjxyiNaXFwcD3M4OPQpXkY1fFz+ejLqFhXF6tZlPXoEDRkyVJM5TZmZme3btyeiUaNGaWzQMiYtLe2ff/4ZPXo0v2/BtWnT5o8/tn7q2dHDh8zUlBGxD3dZ0yiN5Z5/KI8eSqDz58+LRCIDAwN1LIhJTU3lZcF9fHwE3zkUmY+PT7169fjBzdHR8YlqwW/G0tLSlHXYjY2Ni1+HveCSHTKZ7MyZM9OmTatZs6bykFu7du3p06fHxAQqFJ/wBSqXp4aGNpdK6dmzqcWZcNmzdi0bOpS5ubH3tlH44w9GxBo3ZiXhdDQr6/nNm1WkUoqJWfNJP5iT8/rUqR19+/blZSF55L1Hjx5r1qx5/vy56isfP36sLHn03ptJ/v7+rVq14i+wt7e/w7vNFkMhO+OVWVu2MEtLtmxZ7sPYWCYWM2NjpraVVbyJ0UeL/2hAenq6vb09Eal24DQ2Nu7Tp8/vv/8eFBRU8JqJJ0/Y1q0faTH7999MLGYiEdPgVU6ZkpKSwpdB5+lcUhzh4eG8IvyQIUNU8+14a4E6derkCTtAGfbgwQN+R4cE6qcdHBzcrVs3vkNra+sLFy6oPqtQKLy9vevWrUtEIpHIyclJmTYq+Nld6VU2A+78RsqOHTv4w+PHjxNR//79NT8TX19fIho4cKDmh4ZPsnHjRiIaPHiwckvHjh3pY92KimbChAkikUjZzy0zM5Ov2XkkUA2q69ev8+olCxYsUG58/vx5kybNOnXyGTXq0wqFwyd5bz0ZDbh79wX/FM1Uf7VKpSlTphBR48aNC1m+DZTS0tJ8fHycnZ15yidnZWXl7u5+//79Iu9282ZGxCpUYA8eCDjZotBkdXW5XN6hQwfKVykeSqYJEyYQUffu3QW/E7N48WIi6tSpUzlMnymZgoODebNcfp2Wp3x//us0AQvf5WlKeezYscDAQFdXV74ghqtXr56rq2tgYGCR10Okp9++ccNQKqWEhMNCzbzMy85mzZoxIrZqlbanwuQPHvSSSunRo/6MFfGgkZCQ4O3t7ezszE+8Vb/Nb968WXBT34cPHypj8U2aNPH29hbiTTHGWHp6uoeHB7+Rz8vsfrQXQtmxdy8jYv36vd3SujUjYu/GiYQSGRlJRJUqVSp8/R+1iouL09PTq1ChQrdu3RYuXHjhwoWCa1dGRzNvb+biwqyscmsY/vTTR4bYvJmJREwkYhs3CjnzcuKff/4hom7dugm72zt37lSuXJmIvvnmG+UpUFpaGk9AbtWqVeGLX0Eppew2z49I+RuEFIePj0/9+vULmTmxYMGC3bt3q+nsrjQqmwF33q1bWcHz2LFj/MOh+ZkcPXo0TxgXSqZXr16JxWJDQ0PlKenvv/9ORGPHjhV2oOzs7CpVqhDR3bt3+Rb+IbG2thZwFF9fX11dXSJav369cuPNm9lmZoU6l4Ii+1A9GQ04d+6cgYEBEa1cuVIDwx04cICIDAwMUB+wCEaPHs3PWsRisa2t7cqVK4tTSErVl18yItahg5aTB3moy8XFRTPDXbx4USQSGRkZlfNTulIhMTGRJxdv3ry5+HtLSkp68+ZNeHh4UFBQpUqViOjMmTPF3y0UX05ODk+ztbCw2Lp1a56g9vXr17t27coPgx06dMjTD1koR44cadSoEREZGRkpg6HNmjWbO3ducHCwIEPExEikUgoJMc/KKl81SYvD15cRMTMzJlyKZ1FERblLpXTrVo3sbAHmkZycvHfvXicnJ2XknZ+SicXisWPH5ik4k5KS4u7uzl9QoUIFd3d3dXS2eP78+VdffcUriqxdu1bw/ZdQMTFMJGImJm9Pg3jrgIUL1TEaT9hycnJSx86L4NSpU0RkY2NTwGtevXq1d+/e+fNvNm3KVFunVq7MvviCFea+j0TCiJhYzP5LboTC4ova//ivEH5iYiK/OVf8PQcFBfGDz+zZs5UbExISeGeUzp07p5SoLk8gtF9++YX+6zavjiLJ/D4uTxQzMjLKXxswIiJi+PDh/OuPf+907tz5ypUrgs+k1CmbAXdetUpZ0fXw4cNENHToUM3P5ODBg0Q0bNgwzQ8Nn4pf+x04cIA/fPDgARFVqVJF2JwF3lqnZcuWyi0C1pNRtXnzZn7YPXLkiHLjmTPMwIARMYlE2NEgl+bryajat2+fWCwWiUQ71HwKHBkZyTMpVO/oQCEtXrxYR0enQYMG69evF3wlRGIia9CAETE3N2F3/An8/PyIyMzMLDo6WmOD8jzBr776SmMjQpHt3buXf0IuXLgglUrPnz/v5+fn7e29a9cuT0/PlStXLl261M3N7fvvv3dxcfnf//43YsQIBweHbt262djYNG3atH79+ubm5qohVK5q1aqtWrXS9puDXJMmTdLR0enfv3+e1NqoqChlr62aNWt+tNdWMWVmZk6YMEEsFpuami5atKholUwLpHj8eDAvAv5JFWnKuf79GRGbPFlrE0hJCQwO1pFKxcnJ/sLuOT09/dChQwMGDBCLxebm5teuXVN9lrdO5cWveKcBAStLvNfly5crVqyoq6v7QOtr3zSGZ2srb+MdOcKIWI8e6hjqiy++IKItW7aoY+dFwKv5zZs3L8/25ORkPz8/1dapHTu6EzETk4+0Tv2QVasYEdPRYbt3Czn/si07O9vc3JyIHj58yLfs3r2biHr37i3I/k+fPs1v4y1XqbL/4sULnpvs4OCgvpb1oF2BgYG6urrVqlX7pI7xRfDixQtnZ2d+DKlVq1b+muxnzpwxNjYWi8Xr1q3DelOubAbchw0bRkQHDx7kD/ninREjRmh+Jvv37yeikSNHan5o+FQrVqzIE6/hVfmETZcbP348ES38L89C8HoyqvitThubnteuvT3e7dnDRCImFrN//hF8wPJOW/VkVPGPsb6+vp+fn5qGyMnJ4XenHB0d8VVaBAsXLqR3Kz4VU0rKO6Vyr15lenpMLGanTws1wifIycnhjXo0s9JCKTIy0tjYWCQSXVDPsnEQlp2dnbGxMRVbhQoVKleu3LBhw4YNG4pEIhMTE6xyKCG+/fZbyreOYfny5TwFz9DQcO7cuZpJuOOdnBzU1jUxJ+fNrVs1pVJ6+VJd3YDLnvv3c7+npFItjC6TJdy+XU8qpaiovHFJoYSEhBBR27Zt82zknW+IqFu3bhpbIMh7Kpaj3onTpjEitnhx7sOEBKajw/T1mdCNXnJycvhFXMmpkc1PwFRPhK5du9auXTt+j5MzMTHp27fvH39suHqVFafx04oVuTH3vXsFmHl54O/vT0SqmQE8SXTNmk/rIVGAPXv28NQr1ZtAjx494uXUhg0bJmyvr5SUlICAgMWLFw8YMODw4cNXr14VcOdQeOfPnyc1lCr6kAsXLlhbW/PjiZ2dXZ4oFv+wFdxIvFzRLf7VTgkkl8uJiDfVJSKZTKb6UIszgZJs+PDhP/30k6+vb3Z2Ni+A9cUXXyxduvTw4cO9evUSZIicnBxeQEZZtPHUqVNJSUnW1taNGzcWZAhVv/76a1ZW9Q0bxjs6ii5fpkaNiIi+/JKePqW5c8nZmSws6L/yqiCAo0ePZmZm9uzZU7Ubm4bNmjUrKipKIpEMHz78woULfCGhsObOnXv58uU6deps376d3+IGLVIoqGdPCg4mfX0aO5aIqFMnWrCA5s+nr7+mW7dIpWSxJqxbt+7u3buNGzeeNm2aJsetU6fOjz/+uHjx4pkzZ16/fl312hJKILlcnp6ebmFhUatWLWNjYwMDg4oVK+rr65uamvKHlSpV0tfXr1ChgomJib6+vrm5ub6+vomJSYUKFfT19StVqmRgYJAnZD9q1Chvb+/Jkyfzzj1QAr158yYtLc3R0XHNmjUNGzbU9nSEoatbtUGDPY8e2b98uahChW6mpsKcMZZtzZvTtGkkkdDMmXThAmn4VOLZs8nZ2c9MTDpaWrprclxTU9N79+7Vrl17yZIlyiRBEF6vXvTnn3T2LP3yCxFRpUrUti3duEFBQWRvL+A4ly5dSkpKatWqVZ06dQTcbZG9ePHi7t27ZmZmXbp0UW6sUaPGzZs3dXV127dv7+DgwJeL8TzoYpo1i5KTafFi2rz5urFxNF/jCwXgQYChQ4fyh1lZWSdPniSiQYMGCTXEl19+mZCQMG3atEmTJlWsWHHEiBFE1Lhx41OnTvXo0ePQoUPTp0/fsGFDcYZ4+fLlpUuXLl68GBwcfP369ezsbL798uXLIpHo3Llzbdq0EeCdQAnWrVs3qVS6c+dONze3W7duqbYwgffQdsRfLXhzXl9fX/5w165dpKWV5jt27CAiZ2dnzQ8NRdC6dWsiOnXqFH947do1IqpVq5ZQaby8nozqnW011ZNRys5m/foxItao0Tu1MqdPZ0SsYkV2+7aaRi6PtFtPRkkul/MTrFq1agme7HnixAmxWKyrq3vx4kVh91x+CJ7h7uXF+LpgZb9VuZzZ2+e2DdPkIoS4uDhea0j5/atJ6enpvEXPtm3bND96CRQWFiZUbwBh8SKz5ubm8fHxAu42OjqaL9YWsPcgFNl7M9yTkpLOnj2r4ZmoO8Ode/FijlRKt2/XzsmJVetAZUZ8PKtalZmaKo4dK3qr8CJ4/XqDVEohIRUzMyPUN8p7M9wZY6dPn05PT1ffuO9V7jLc4+KYWMwMDZmyS+2sWYyI5Su0Ukxz5swholmzZgm72yLbtGkTEQ0fPjzP9osXL+Zp2CugZctuEZGBgcHx48fVNESZwUu7XL9+nT/kyQHt27cXfCB3d3ci0tfXV8Y0GGOXLl3iaQqfegGSkZFx8eLFFStWDB061OLdLB49Pb1OnTrNmDFjz549/LZB9erVy1H1qhIjf4b7jBkznJ2dhT3Nzu+9J3XIcM+jbGa485R23jSSiOzs7Ly9vevVq6fucaOioqpXr66np/ehmUAJ98UXX9y5c+fw4cOff/45EXXo0KFOnTrPnz8PDg7u0KFD8ffPqxsp09uzsrJ4R18eHlUHPT06eJB696arV2nQIDp7lvg9SImEoqLo0CEaMICCgqh2bTWNX46kpKScPn1aLBbzeo5aJBaLd+7c+erVq4sXL9rb20+fPp33DSciniL63p8yNTV975FKLBbzBbNEFB8fP3bsWIVC8fvvv/PG91B8jx8/bt26dZMmTW7fvl20PYwZQ35+tGsXffUVXb5MBgYkFpOXF7VrR69enf3zz4jvvvtW2Dl/yNy5c+Pj4x0cHPhtbw0zMjLiaYOzZ88eNmyYmZmZ5udQchw5cmT06NE9e/bk+VMlB2NswYIFRDR79mweHxeKhYWFh4fHpEmTXF1dHRwchN05CMLMzKxnz57qHmXy5MleXl6enp5jxoxR91hKNWsuSkk5Gxyc7un58/r1f2ts3NLL3JxWroycNWugq2uag8M95YmKWt29e/fEiX969zapV8/TwKCBBkbMo0+fPuoeIiQkpGvXrtbW1pcuXVL3WCVU5crUpg3dvElXrlDPnkSUM/rzxDqX0zqH1Bd0HP712rdvX0H3WnT8Znb++aj1jP3nn9vExf28fPnyoUOHHj58eMCAAeobq1QLDg5++vRprVq1bGxs+Bae8D5kyBDBx1q4cGFycvLq1atHjBhx9uxZPmLXrl337ds3bNiwX3/9tWLFirzc/4dER0dLpVJlJntmZqbyqYoVK3bs2NHW1tbOzq5r167KtYbDhw8fPHjwqVOn+vfvf/HiRUtLS8HfFxTegQMHoqKifv/9d7WeDGvmpK7U03bEXy0cHByISH0ljPNLS0vz8PAwNTWVvNuMkjeunDBhgsZmAsXBE1Jq1KihbOH13XffEdHcuXOLv/Ps7OwqVaoQ0d27d/kW/kVrbW1d/J0X7PVr1rgxI2IDBzJlC9i0NNalCyNi7duz7Gx1T6Hs27lzJxH17NlT2xPJlZiYWLt2bcFXuVasWNHOzk6tPe7KvDwZ7rw/c5MmTYqzz5QU1rQpI2I//PB248mTD3R0dAwMDIKDg4uz80IKDQ3V1dXV1dVVQ1vCwlIoFHZ2dkQ0e/Zsbc2hhHjz5k21atWIaHcJ62h24MABIrK0tEx7XzndlJSU2NjY8PDwu3fvSqXSM2fOnDx50tvbm8dPly9f/ttvv7m5uU2fPt3FxWXkyJF5VhQpFApeAm7SpEmaekPwfu/NcNeMcePGEdHff//NH2omw50xFh//hC/x8VTtqgEfJpPJeOG73377TQPDZWRk8JWsixbNUPdYH8pw1wCpVJrn4qLcZbgzJl/yS+Zou+QLub1kZLLk4GC94GBdmSy54B8svOjoaN44pIQ0oszJyalUqRIRaX5lm0Kh4FUEjYyMhO18VpbMnz+fiKZNm8YfKhSK2rVrE9HNmzfVMZxCoRg7diwRVa1a9f79t6uIdu7cyYu8b926VfX1MpksNDTU09PT2dnZyspK9dJPR0fHysrK2dnZ09MzNDS0gHX/aWlpvMtXq1at4uLi1PG+4L3yZ7jXqlWLiJ4/f675ySDDPY+ymXnNi0lppoSrXC7ftm3bggUL+PduWFiY6rPIcC9d2rVr17Bhw4iIiKtXr3722WdE9MUXX6xfv/7w4cNLliwp5s4DAgLi4uJatWql/BrLk/CuPtWq0YkTZGtL//5LU6fSpk1ERMbG5OtL3buTiwsdP07t21PdukRECQkklZL6U3DKGo39NgupYsWKRkZGjx49cnR0VNaUz8rKSk9Pf+/rU1JS+PEqD7lcnpyczP/+4sWLmP+zd+dxNWdvHMCfe9t3RSVb9n1L9kIIg2xjG0uYH7Jnn6yTXRiUZYjBhLFkmwljyV7Wki1CsiXaS/t27/n9cXLdCUl9772Vz/vlNS/3dPue03Td+/0+3+c8T1SUlZUVCmQXN/r6tG8ftW1L69eTnR3xapDdutWeOHHixo0bBw8eHBQUZGBgoNA1TJ8+PScnZ9q0abxnl0qIRCIPD48WLVqsW7fuf//7X61atVS1EpUrV67cqlWr/ve//02dOrVr167lypVT9YqIiCQSCU9vX7hwoXwF9tjYWEtLyy+9O+VDLBZPnDhR9lAkEm3ZsqVp06bbtm0bPny4LbqUgBIZG1f19PQcOHDg1KlTW7dujTq2X6WmprZ+/fpOnTqtWLHC0dGR1wRTnJkzZz548KBWrVrTpy9V6ESgcsmTWj57tkxfX1SHZhCRmpqBrq51auqN1NSrhoY/CDIFL9bRsWNHQeqhF93169cTExPr16+vhD39eYhEoo0bN0ql0i1btjg4OPz7778dOnRQ8hqKvzz57Ddv3nzz5o2lpaUium0RkUgk2rZtW3R09L///tulSxd/f3/+whg+fHhiYuKUKVPGjh2roaFRvnx5nsPu5+f3/v172bcbGBg0btzY1tbWxsbGxsaG30v+Kl1dXR8fn/bt2wcHB/fs2fPcuXOo7g1QCgPB169fv3//fvny5adMmbJ9+3Z+n01Bzp8/P2vWrLt37xJRixYt1q5d265dO/kn8BIBz58/Z4yhN06J0KdPn/Xr1x87dowH3Dt06MDvDD9+/Lhu3bpFObLy68nIq1mTjh8ne3uS/1gvW5bu3CFNTTIxoYYN6fJlEonoxQv65Re6c0cJiyo9ik89GZn79++HhoaWK1fu2LFjQt3zu3LlSocOHYpbhQrgrK1p2TL65RfavPlwixa2PL9gzZo1fn5+d+/enTp16s6dOxU3++HDh319fU1MTBbwHmWq06xZM0dHRy8vLxcXl6NHj6p2Mao1atSoffv2nTt3zsXFZceOYlHjYs+ePY8ePapatSpPf5bR1tbm0fb8W6QaGBhoamoaGRlpa2vr6OgYGhp+GqGrU6eOi4vL4sWLx4wZc/fuXeXUqQDgBgwY8L///W/nzp1Dhw4NCAjQ0dFR9YqKu44dO/bv3//IkSMLFizgja8U5OTJk1u2bNHS0jp48KCibz+DyunrtxeJ1FJTb0qlqWKxHhEZGHRMTb2RnHxRwIA7Fb96Mj/8IMxP961EItHmzZslEsm2bdt69ux56tSpPCGR79zLly/v379vZGQkuxXB4+8KvWzU0NA4fPhwt27d/Pz8eMzdzMyMiCZPnvzu3bsVK1ZMmDAhJSVF9nwLCwseYbe1tS10clXZsmXPnj1ra2t748aNvn37njhxopjckQJQGVWn2AvswIED/OJKX1+fiEQi0c8//xwVFSX4RCEhIbLIaeXKlb28vPLsr3n06BEvYmtubk5E7du3v3fvnuDLAMFduXKFiGrWrCkbGTlyJBW5r6kK68nI+9I/BWNjZm/P+N6y27dZ06bKXFRpUNzqyTDGeNxz/PjxAh4zJyeHn6vJXsZQCIooKcNJJMzJyYOIunTpIiv78/TpU/6BuHfv3qJP8Vnp6enVqlUjoi1btihoim8SGRnJC7jLd4v6Pj19+lRHR0ckEp07d07Va2FZWVnVq1cnot27d3/61eTkZKEmyszM5DvJFi9eLNQx4Vt9hyVluJSUFJ6fMXnyZOXMWNK9evVKV1dXJBL5+fkpaIo3b97wk3APDw8FTZEHSsqoXEhIi8BAev/+LH/4/v3ZwEAKCWkhyMElEgkv2hYaGirIAYuO1+lW7WmPRCIZPnw4ERkZGd26dUuFKylu1q1bR0RDhw6VjdSrV4+IlNBFPDEx0crKqmXLlrGxHxt65+Tk8J3QrVu3njt3ro+PT0xMjICThoaG8gjYkCFDUIZUCVBSpjgrVWUBPDw8hg4dmpGRMWbMmLdv37q6umppae3atatOnToeHh6frZZQCHFxcVOnTm3UqNGhQ4f09fVdXV2fPn06YsQIWQL7u3fvxowZ06hRo5MnT5qYmHTq1MnMzOzKlSvW1tbTp0+X360DxZCNjU358uWfPXsWHBzMR/jN52PHjhXlsCqsJyPPzOyLX1q9mhYupNhYJa6mFClu9WSIiBdKFnZJampqvAd9Ef85gIKIxbR06U/ly5f39fX97bff+GCtWrX4if748eNDQ0MVMe9vv/324sWLBg0ajBkzRhHH/1bm5uZz5syhD1VuVL0cVapVq9b8+fMZYxMmTJDveaUSnp6ez58/b9CgwdChQz/9Kr8tJAhNTc2tW7eKRKIVK1aEhIQIdViAgtDT0/P29tbW1t60aRNPrYD8ValSZfr06YyxadOmSaVSwY8vlUpHjBgRFxfXvXv3KVOmCH58KJ4MDDoSUXLyRf5QX99GJNJKSwuSSBKLfvDAwMCYmJhq1arVrFlTfjxWRddRMTExd+7c0dHRUW1euVgs3rVr18CBA9+/f//DDz88ePBAhYspVvLUkwkNDQ0JCSlbtqwSCt8ZGRmdOnXq4sWL/KYjFxAQ8P79e3Nz8+vXr69YsaJXr17CFh6sWbPmmTNnypQp0zk8nJydBTwyQIlTSgLuEolk8uTJ06ZNY4y5urpu377dwMBg0aJFvIBUYmLitGnTmjdv7u/vX5RZ0tPTV61aVaNGjQ0bNohEIicnp7CwsEWLFsk2LKelpa1atapu3bo7duwQi8VOTk6PHz/et2/fkydPnJ2dicjd3b1GjRoeHh6KOKEEQYjFYgcHB5ILKXbt2lVPTy8gICA8PLzQh1VtPZmCqFmTRo0iFxdVr6MEKp71ZB4/flyuXLn27dvzkZiYmKIckDHG/yLI/SdQHDMzsz///FMkEs2fP//GjRt8cOzYsUOGDElJSRk2bFh2drawM0ZERKxatYqI1q9fX3walsycObNWrVqPHj3axntWfMdcXFyaNGkSGhpa9E4kRZGenu7m5kZEy5YtU1NTU/R07dq1GzNmTGZmJt/lo+jpAOQ1atRo5cqVRPTzzz+/fv1a1cspAebNm1elSpXbt2/v3btX8IMvW7bswoUL5ubmu3btQnnP70eegLtYrKun15IxSUqKX1EOm5KScvr06ZkzZxKRnZ2d/Jfu3LlTt27dNWvWFOX4hXP69GneM1zlZazU1dX379/ftWtXLS2txMRE1S6mmIiLi7t69aqWlpas4A8veOjg4KCc02Zzc3P5rjmklII2TZo0uevjMzowULx5My1erLiJAIo7lebXCyMlJYUnXWppae3bt+/TJ/j4+PBdzETk4ODw+vXrb51CKpV6e3vzLfNEZG9v/+DBA/knSCQSb29vWZcSBweHT7eY3b17V3bbuUWLFjdv3vzWZYBynDx5koisrKxkIz/++CMRbdq0qXAHLCb1ZPJhbMySklhaGqtenW3dipIy34ZXHS3O9WSkUmn16tXr1KlTiHe/U6dONW/e3NXVlT/MyMjgxTp4awooBMWVlJGZPn06EdWoUeP9+/d8JCEhoWrVqkQ0b948ASdijDk6OhJR//79hT1s0fHrGRMTE/ldtN+nGzduiMVidXX1u3fvqmoNK1asIKLmzZvnqb+nOImJibxftEqqmsB3W1KGk0qlvXv3JqL27dvn5OQoc+qS6NGjR1u3biUic3Nz2ceWIG7evKmhoSEWi319fQU87FehpIzKSSTJt29r3L6tnpOT+4qKiPg1MJDCw6d/66HS0tL8/Pzc3Nzs7e1lBanNzMwsLS3lyybs3LlTJBLx3t2C/RgFM2zYMFJixaSvmjdvHhHxnSuwa9cuIurevbtshDeKO3r0qKqWxOueXbp0SeEz/fMPU1dnRGzdOoXP9R3z90+vUSPjxx8/1mZs3Tq1Ro2MN2+ylb8YlJTJo7gkoxVaXFxc7969r127ZmJicuzYMVk6p7xevXrZ29tv2LBh6dKlJ06cuHjx4qxZs+bNm6epqVmQKW7cuDFz5sxr164RUbNmzdauXZvnhvaFCxdmzZrFT62aN2++du3azy6jSZMmV65cOX78+KRJkwICAtq0aTNs2LB169YJu4UHiq5z586GhoZ37tx58eIFv8vSr1+/o0eP/v3335MmTSrEAYtJPZmv0tEhd3dycqLy5VW9lBKlGP4289STCQwMfP78uYWFBS/o9k3EYnFgYGBmZiYPE/MEDW9v7+PHjztjk2BxtWrVqqtXr966dWvs2LEHDx4kojJlyuzdu9fOzs7NzS04OJiXViy6mJiYf/75R1tbWyUpXfnr169fp06dLly4sGzZsvXr16t6OarUqlWr8ePH//777+PGjbt27VrhGmEVRWJiIq9x5ObmprQMUyMjo3Xr1v3000+zZs3q0aMHD74DKI5UKpX94xKJRH/88Qc/8/fw8JgxY4Zq11ac5eTkDBo0KCoqqmHDhsHBwXZ2ds2bNxfkyBKJxMfHJzs7e+7cufb29vJfkv9lQakkFuvr6bVISbmWkuJvZNSDiAwMOsbFeamplSnIt2dlZd28efPChQsXL168ceNGZmYmH1dXV2/dunWbNm3OnDnz6NGjTp06Xbp0iZ9T/fzzzxKJxMnJaeLEiSKRaNy4cQr74f5DKpX6+vqS6jqmvnv3zsjISD6Hmq+n+HSUVa089WSioqJu3rypo6PTtWtXlawnNDT08ePHZcuWtbGxUfhkvXvTzp00ciTNnEnGxjRqlMJn/C5JJNphYVShwsf+tOHhuhERhB2exYKqI/5FEhoaWqtWLSKqVq1aSEjIV58fHh7Oc/GIqE6dOl/tKxIREdG3b1/+/EqVKnl5eeVp+/D48WNZSKtSpUqenp4F6QuRkpLi6urKw/0mJibu7u7oJlHcDB48mIjWr1/PHyYkJGhqampoaMTFxRXiaP/73/9IrntbRkaGkZERFadOOzzDnevdGxnu3yApKUlbW1ssFhefG7n37t0jonLlymVn597Wnj17NhE5OzsX4mhZWVnGxsZE9OTJEz6yf/9+KmYZ/SWLEjLc+WH19fUtLS2jo6Nlg1ZWVmb5dHIolMqVK8vvB+LevXun/KTOiIiIPCNbtmwxMjLav3+/kldSDL1//75SpUpE9Pvvvyt/dp7s1r59e+VPzbOMf/rpJ+VP/Z373jLcIyMjGzZs6OPjIz84depUfX39CxcuKHTqkm7jxo1EVL169StXrgwaNEjYT6jq1avr6upGRkbKpktLS3N2dlZ07i0y3IuDiIj5gYEUEbGwgM+XSrNTUq69e7f8339HyoeP1dTUrK2tZ86ceeLEiaQP10vR0dENGzYkosaNG8tvpPPw8CAikUiktHe/W7duEVG1atWUM92nRo4cqa2tfejQIf4wJiZGLBZra2unpqaqaknFR1pamp6envx1oqenJxH17t1bVUvi9f1GjRqlvCk3bGBETEODnTypvEm/J5cvMyIm1zOVVazIiJgqeqYiwz2vEpzh7udHy5fnPHsW1rJly+PHjxckiFCpUqXdu3ePHDlyypQpISEh3bp1c3Bw2Lx5c5UqVT77fF1dXX9/fz09vcmTJy9YsEC+o1dcXNyaNWvWr1+flZWlr68/c+ZMFxeXAtZN09PTW7Ro0ZAhQ5ydnc+ePTtt2rQ9e/Zs2rSpdevWBfzZQdH69et38ODBY8eOTZs2jYjKlCnToUMHX1/fkydPyu7ZFFB2dvbff/9NcunGZ86cef/+fbNmzfJ02lGh9espM5MMDIiI/viDnj9X9YJKjr///jsjI6Njx44WFhaqXksunnE/YMAAWWVAXlujcDn4GhoaPXr0+Ouvv3x8fGbNmkVEPXv21NbW9vPzi4mJMTU1FW7hIKTatWv7+PhYWVmVKVOGj3h7e9+5c0dXV3fx4sXlBdrGkpCQsGjRojdv3vj7+8taP23btm3mzJnr1q0bO3asILMURFRUVL169Tp37rxv3z7eWCUnJ2fTpk3v37+PiIhQ2jKKLUNDQw8Pj/79+8+ZM6d3796F2OxSaDExMTygxq/xlGzjxo0XLlw4cODA0KFDeflBAMFJpdJhw4YFBwdv2bJF9jJ79OjR9u3b09LSIiMjVbu84iwhIWHx4sVEtHbt2nbt2jVr1qxTp05Hjx61s7OTb/FXOFKpdNOmTWlpaRMnTjxy5AgfDAkJ2bp1a3Z2dufOnXv27FnUHwCKsXLlxpuYDNfWrpuV9SYiYnZa2l11dZPy5efzhPcPpOnpIampV5OSziUl+fKWqmXK6EokkurVq9vb29vb23fu3NnExCTPwU1NTc+fP9+xY8f79+/b29ufP3+eP8fZ2VkikcyYMWP8+PE6Ojq82ItCnT59moi6d++u6Ik+izF29uzZjIyMBg0a8JEzZ85IpVI7O7s8dcO/T2fOnElNTW3durXsOjFPwrvyqWABU6ZQRAStWkUDBtCZM6TS1r4AyqbqiH8hHTjAtLQYEZsy5Xohbp9mZWW5u7vzALqurq6rq2tGRsZnn3n+/Pl3797Jj2RmZrq7u/MMZXV1dScnJ/m8iW/l4+PDw/0ikcjR0VE+FRFUKDk5WVtbW01NLSoqio/s2bNn7NixgYGB33qomJgYR0dHGxsb2cjw4cOJaOXKlYItt8hatmQaGszPT9XrKIH4pXWe+v7h4eHDhg2TZcEoGS/Md/78ef6QZ75YWFgUeicNL1DTtm1b2Qg/rd+5c6cAy/3+KCfDPY9nz57x4vuC/9Z4w4BmzZrJXmAHDhwgIjMzs4SEBGHnygffSCSfMcTLyNSsWfNLn+/fIb5pT8kF96dMmUJEffr0Ueak8tatW0dEVapUSU5O/vqzQSDfVYY7b1FgZmYmu2RIT09v0qQJEY0ZM0Zx85YCkydPJqJOnTrJRnin6zp16giy/ff169d8l56np6dscPXq1URkamr66b4ooSDDvVgJDe0VEfGrVJqZmfk6M/MlY9K0tHtRUe7PnvW+c6dMYCDJ/gQH13v1amJ8vHdiYoEuySMjI/lZd6tWreTbD/A6e2pqakrYY8cLg/zzzz+KnuizgoKCiKhy5cqyEZ6aJtsm/p0bNWqU/FU/jzCIxeKihI+KIjIyUiwW6+jopKSkKHViqZSNHcuImJERCwpS6tTfAWS4F2clMuDu7s7EYkbExo5l2UXoBPDmzRtZtnKtWrX+/fff/J/PW6fK+q/a29vfv3+/8NN/kJqa6urqynuwGBsbu7u7o71ScdCjRw8i+uOPP4Q9bDGsJ/PiBROJmL4+S0tT9VJKoH/++cfAwGD48OHygx07diSirl27ZmVlKXk9wtaT4VJTU3V1deW3Q/Lr4V69egmw4u+P8gPuWVlZfAfVwIEDBT94amoqv238559/ygY7dOhARDNnzhR8us8KCgoSi8WampqywkdxcXE8O/LEiRPKWUOJ8PbtW77j4dixY8qZ8eXLl1paWmKxWIX9WiUSCX/9z5gxQ1Vr+A59PwH3W7duaWpqikQi+XebiRMn8jd2Vd16LxEePXqkoaGhpqYmu556//49v1Y/ePCgULPwbX/a2tr37t3jI1KplOe229nZKeiaCwH3YuXhwwZxcR8D3y9e/CwfZH/woMbLl2Pi4v7KyipMhCg8PJwHB9q2bSv/7/3XX38lIg0Njb///luAn+ELEhIS1NXVNTU1VfVWw283jhs3jj+USqU8lbsgxX5LvZycHL4VWPZ/w9vbm4jayUdGlYsXtFFNDkRODuvfnxGxmjWLFMKDTyDgXpyVsIB7Tg6bNIkRMZGIuboKc8wLFy7I9kA5ODi8ePHis0+7ceOGrLNE/fr1Twpdgurp06eyVidWVlZXr14V9vjwrbZv305EPXv2FPawvLyMtbW1sIctitWrGREbMkTV6yiZbty4wbdMLl++XDb4/Plz/mEzdOhQqVSqzPXwdOPx48fLRmrUqEFEfkXbv8DrIG/dupU/jIqKUlNT09LSQiihEJQfcOc3XapVq5aYmKiI4+/Zs4eIzM3NZeldd+7cUVNT09DQUMIVvlQqbdeuHRH98ssvssHx48crOqe1hOLVXSwsLBT0YsiDhz7z3JJUvnv37vG4XiG2qUHhfCcB9+TkZN5Navbs2bLBEydOiEQiLS2tIOTx5Yv3VJw0aZJshHeXtbGxEfbciW+BatCgQdqH1JKoqCh+nubm5ibgRDIIuBcTGRmhUmlmbOzOoCD9Fy9GJCf7Mcaio7feu2cRFjYwJsYzM/NF0Wd59epVtWrViMjW1lZ+KxXvX6KpqZmnu4OA+P0k+T0iSsYTLI4ePcof8pdf1apVVbWeYuXSpUt5zvCDg4OnT5++a9cuVS2JJxSqbI9yRgYbMIDJh7mUnppWKiHgXpyVpIB7Sgrr1YsRMS0ttm+fkEfmFWYMDAzoQ4WZ9PR02VdfvXrl6OgoEomIqEKFCp6enorLQPfx8alatSp9qDAjq2fyqb179546dUpBywAmF1KU3yFYdLyWn4LO7wunRQtGxD6cKcE38/HxUVNTE4lE8udPgYGBvGjV/PnzlbkYwevJcLt27SKibt26yUZ4wW5ZiyQoOCUH3M+cOSMWi9XV1a9du6agKaRSKX89zJ07VzbIC7gLfs/yU/v27ePFHGQR5ODgYHV1dXV19QcPHih69hJHIpG0bduWiKZMmaLouZ48eaKurq6hofHs2TNFz/VVvAVF48aNlb/x6Pv0nQTc+UmdtbV1ZmYmH3nz5g3fXuPh4aGIGUsNnoBibGwcExPDR0JDQ/mGmICAAGHnSklJ4WdHkydPlg2ePn1aJBIp6MMRAXcVysp6Gx/v/fKl0/37VQMDKSnpImMsKysiMvK3e/csoqM3SaXCX8i/fPnS0tKSv9WkyW0ZdnFx4TF3wXP1uDFjxhDRqlWrFHHwr0pKStLQ0FBXV5edgC1btixP3s/3bPr06UTk4uKi6oXkkpXMVX0RY6mULV/OatVi9eqxmjXZnDksJ4fFxTETk4/PefiQ1a+vuiWWJJ8G3KtXZ5qa7M0bFSwGAfc8SkzA/d071rw5I2ImJuzyZYVMERERIQus16xZ88SJE/Hx8S4uLrzYi66urouLixLSOXmFGd7zrUyZMp+tMBMVFcV3hTs4ODx//lzRS/pu8axJAbe1op5MabVlyxa+b/T06dOywX///Ze3Ld24caNylnH37l0iMjU1FbCeDBcbG8sDZ/Hx8Xxk7dq1PIW/iEf+Dikz4B4dHc339q5YsUIRx5cJDAzkRV2ePn3KR6Kiovjb3VfLtRVFWloav8SVBdcYY126dCGiadOmKW7eEu3BgwcaGhpisVjRe+kGDBhARBMmTFDoLAWUmprKd/2vWbNG1Wv5LnwPAfedO3cSkb6+viyUKZFIOnXqRETdu3dX8v62kiUzM5NHgTds2CAb5GVexo4dq4gZ79+/z6+t5Ot7zJw5k4iqV68ubG4NQ8Bd6bKyIuLi9r58OfrBg+ry5WLu3jWNjz8ge1pCwtGQkBYKWsPTp08rVKhARF27dpWl7kmlUt6oQEdHR5YNIyBe009WLknJjh49SkTt27eXjfBrZ6WVrSvmlixZoq+vv3nzZlUvJBcvaCP/+1KZAwdYkyaMF7KPj2dt27JNm1hsLNPT+/icBw9YzZqqWmDJ8mnAXYUQcM+jZATcQ0NZrVqMiFWrxhRdEEy+wgyvFCEWi0ePHq24vjqfFRoays87+elannIQ2dnZ7u7uvAOejo5OnpR8EMqcOXPEYjHJ0dLSMv4CS0vL6p9Tq1Yt6w/4vuN69eqp+if7aNUqRsQQNS06Hto2MDCQ30L+xx9/EJGamtpRpewgmD9/fp68Eh5gKmI9GY4Xpv/rr7/4wxcvXhCRkZGRLK0PCkhpAXepVOrg4EBEHTp0UEJrkJEjRxJRv379ZCO8aVjdunUVl1Ps6upKRFZWVrI9HLzHr4mJSWxsrIImLQXmzp1LRI0aNVLcryYwMFAkEmlra4erZEfr55w+fZqf2oWFhal6LaVfqQ+4h4aG8q2xu3fvlg0uXryYiMzNzVXVEK+kWLdmDRHVr19flh/g6+vLT6JkjWcFxztpGxsbv3r1io9kZWW1atWKiAYNGiTsXAi4K0FUVFRg4D+vXk0IDq4rH2S/c8f42bM+UVHuaWn3GZMyxhITfbKzoySS1FevJr544ai4JT1+/JgHm3744QdZw3apVDphwgT+6XPp0iUBp3vw4AERlS9fXlW398aNG0dyRTXfv3+voaGhoaGhnJp1xR+/DDQyMiom5cX4lqy1a9eqeiGMdejADh/++PDCBdawIQLuhYaAe3Gm4oD7wYNM/nNn+3YWFMRWrWJ79+aOZGWxiRNZu3aMiLVqxb5cYUVIPJytqalZsWLFDh063LlzRxmzfs6xY8d4hZm6deuOHDkyzzno27dvZSn51atX9/b2VtU6S6X09PQGDRrwDGUBWVhY6OnpCdJuVxB84wgSEYpOKpWOGDGC/4rlW0HwgKCOjo4SGjMoqJ4Mt2HDBiIaMGCAbKRJkyZEJJ/UDwWhtIB7QMA2HR2NcuXKKeeGcWRkJL8NfObMGT6SmZlZp04dIlq/fr0iZgwPD9fT0yOiyx82vmVkZNSsWZOItmzZoogZS42MjAz+q1Hc1gdenVm+sH5xMHToUPpvdSxQkNIdcM/IyGjWrFmeQK2/v7+6urpYLPb19RVwrlIoMlJSpcrB9u3PfviwyM7ObtiwIRH99ttviptWKpXyhjTt27eX3YR+9uwZ/+SS7/tddAi4K0hycrKvr6+Li4u1tbVYLG7btgoPsgcF6T19av/unVtysp9UmvdGckTE/JCQVsHB9V68+Dk7Ozo7OzYh4Wh2tkKqaty/f79cuXJE1K9fP9ktbalU6uTkRER6enpXrlwRai6e1vDzzz8LdcBvxSvX3759mz88cuQIEdnZ2alqPcWNRCL56aefiMjU1FTlXWSzsrKMjY2JSLYVVZUqVWLyVR8jI5m2NouJYWIxa98+90/z5gi4FxAC7sWZigPu48cz+cvwPn3YgQOsbVtmaMh4oZT0dKapyV6+ZGPGsNRU5S0sKiqKfyhmq7qHclpa2q+//mptbc1vkK5fvz7Pkq5cudK4cWMezLW3t1f5u3mpwXvu1axZU76OUEZGRvwXvHz5Muxznj59GvhBQEBA//79iahChQqy/BoVQj0ZYWVlZfFaFjVr1pSvjjdx4kQiKlu2rEKvdr5UT2bq1KmCHP/NmzcikUhfX19Wm5IHjseNGyfI8b8feQLu4eHhtra2Q4RuW5yaevv2bc2AgAa+vgopG/pZK1asoP8mLR4/fpyIypQpo4h6kYMHDyYi+f91vHhogwYNVP7ZXfxdvHiR93VUxPuSn58fP2kpbvsMoqKiTExMiAg5CoqmwoD7ypUrbW1tZRWTFRFw55V5a9SoIStFkpCQwFNk5s2bJ+BEpdP//seIWO/esgGee16jRg1ZUrCCREdH86IfS5culQ3++eef/KJPwDdDFQbcnzx5YmtrO3r0aNlISQ+4JyUlnThxYubMmc2aNZPfeayrq9u1a9fw8NUpKdel0q986EskH3uZhob2Cgyk2Njd+Ty/KO7evcs/aAYMGCA7G5FIJMOHD+efjLdu3RJkIr739MCBA/KDr1+/Vk4K86NHj4jI3Nxcll/PbyqsXLlSCbOXFFlZWd27dyeiypUrq/ban+8iatSokQrX8FHduuzmzY8Pnz1jpqYsNpbp6rI3b3L/nD+PgHsBxcayo0eZcPfyigQB9zyKacB9wgTGG63xgLvy8ZJknTt3VsHcn/P69WtHR0d+elGnTh1Z/iCXnZ3t4eHBq7o3azZxwQKl3pwolXhRAi0tLcG3gGVmZnbu3JnHpGTlsFUF9WQE9/79+6ZNmxJRq1atUj/8O8zJyenTpw8RVatWTXHbzL9UT8bf31+oKZo3b05EPj4+/OG9e/f4qbYgGfTfjzwBd0WQSFKCg+sEBtLr11MVN8unMjMzeeEs+YKV/EpD8A5aV69eFYlEOjo6L1++5CPv3r3jiYpnz54Vdq7SilcBsrOzE3w3eocOHYhoyZIlwh5WEEOHDrW0tLx+/bqqF1LKfTbg/urVqzVr1ii5EJngAfdTp06JRCINDQ35VxFPY2zRogW68n5FUBATi5mmJnvyhA9IY2L6NW4sf3ahUJcuXVJTU1NXV5c/O+KR0GbNmgn14vxSwP23335TfnppyQ24e3p6tm7dWn63sba2tp2d3eLFi69cuVLwX9aTJ51v31bPysoNAEVGrgsMpBcvFJgYHhQUxLOJBw0aJNtOkZOTM2jQIDU1tT179hT6yNHR0d7e3s7OztbW1gYGBpqamrIEcybXHcHV1bWIP8JXrVu3johGjBghG+E9dYpJ+ZTiIzU11dbWlqeDqDALgfcSWLhwoaoW8B+DBjE3t48Pt21j3bujpEwhvH7NiJinZ+7DP/9kcv8iFe7u3bu///57nkEE3PNQfcDd0ZH99VfuH2vr3ID79eusZUt2+LDKAu48M7S4vCV94Ovry0tGEJGDg0Oe26SRkZE///y/+vVTiZilJVNKyejS6dWrVzwxQUFNThITE/mmhPbt2ys6lyd/qCejCBEREfyMs3fv3rKT7NTU1NatWxORtbV1cnJy/kcoHIXWk+GWL1+eZ+9qjRo1iEgJ1XJKEyUE3F+8GBkYSA8fNpRIlL17hW8oli+hHhISoqGhoaamdvfuXaFmkUgkLVq0IKJFixbJBvlt6f79+ws1S6kXGxtrZmZGRF5eXt/6vSkpKfHx8WFhYSEhIYGBgZcuXTp79qy3t/eePXsmTZpEROXKlVNCn/n8xcfHt27dWj6ZPTk52dzcnIiOHz+uwoV9Dz4bcB80aBDfBKbMHQbCBtyjoqL4xeTq1atlg56enjxx9Tnfnwv54HVC5YtNTZjAtLRuCH1TNh9z5szhCadxcXF8JDk5mYcpZ86cKcgUnw24+/v781s1zs7OyixyXXID7vw3paamZm1t7eLi4uvrm1aoPbmhod0DAykubh9/mJp6JzCQ7t+vIuhi87p+/Tpv8zBq1CjZqXhWVtbFixe/9VBxcXFHjx6dMmVKgwYNeC1ZTktLi4gsLS1lmQeMsSNHjvBbFMuWLRPqZ/ksXjhO1tvp4cOHpNKC8sVZYmIiz8dq2bKlgi4D8yeVSitXrkxEgYGByp/9M+7cYeXLs99/Z/fusV27mIUFu3ULAfdCeP2alS3LqlbNrbyttIB7XFycs7OzmpqamppanlLJCLjnofqAe9eubOHC3D916uQG3G/cYIGBrEoVFhOjmoC7jY0NEf37778qmDtfWVlZ7u7u+vr6fPOjq6trnohtQABr1YoRMSLWqRN7+FBVKy2psrOz27RpQ0Q//vij4mZ58+YN/9gbNGiQqrKDX7x40aTJFHv7YNSTEdzDhw95Yot8Vm9MTAxP/u3evbvg9S4UXU+G47tHy5YtK5tl5syZRDRr1iwBZyn1eMB9wYIFCjp+fPxBXs80Pf2RgqbIX9euXYnI2dlZNjJ16lQi6tixo1BTbN++nYgqVaqUkpLCRwIDA8VisaamZmhoqFCzfA92795NRGXKlPntt988PDzc3NzmzZs3a9YsJycnR0fHgQMHdu3a1c7Oztraul69etWrVzcxMeFnIPmrVKnSwIED88x169YtJV+H82CNfKR1yZIl/IoXEQFF+2zA/dy5c40aNeIvks6dOyunnw0PuAvy/iORSHjhuK5du8pO3h4+fKirqysfeIIv2rePETEzMyYLNwcHM3V1pq7+n3q+CiY71Ze/QRsQEKCpqSkSiQS5G/fZgHtsbCyPUPBTKXd3dyX0M2clOeD++PHjU6dOFT1AGRm5OjCQXr4c+2FAcvduucBAyshQ7B2yq1ev8k/M0aNHf+uHTkpKiny1etnHq66urr29vaurq6+vb0JCQvv27T+NuXt7e/OYu+Kqu6Slpeno6IjF4qgPHfbWrl1LRCNHjlTQjCVdREQEL3nfuXNn5efbBQQEEFHFihWL0cnPo0fMxYX168dmzWK8Y2JKCpsy5eMTIiKYwq6VSo3Xr1m1amzVKjZ8OGNKCbhnZWV5enryThXq6upOTk4xMTHyT0DAPQ/VB9w/W1Lmxg3GGJs4kc2cqYKAe0ZGhra2tkgkkiU+FDcvX7788ccf+eduvXr1zp27KP9ViYR5ebFy5RgR09Bgzs5M1UlmJcmsWbPypL0oyIMHD3gVIKGyab7VqlWriGgoCsooxuXLl7W1tYlozZo1ssFnz57xfFL52pqCUEI9GY7n0V/60O3a39+fiKpVqybsLKXbjh07qlevrqur6+jo6O3tLQsZCyIjI+zOHcPAQIqJ+UPAw36Thw8fqqurq6ury6Jp8fHx/Mzs8OHDRT9+UlKShYUFEe3fv5+PSKVSfpsc1ZMLoWvXrrxd4TfR1dU1NjauVq1anTp1rK2t27dvb29vP3DgwGHDhvGsN0NDwzdv3shmmTVrlkgk2rlzp9J+rqioKB7pkNX9iI+P57dCL1y4oLRlfLdWrlxpaWnZqFGjPFtbsrOz81yqKaLBg0x4eHiPHj3KlSunpqZmb2/v7u4uCw8VgpubGxGZmprKriQzMjJ43uL//vc/gZZceqWlMUtLRsT+kPt46tKFETFBkwMKIiwszMjIKM89oU9/v4UQHBzs6upao0YNQ0NDfX19d3f3PDkWt2/fbteuHX8jtbKyErCF5qf4PzcDA4MWLVoUh95RqpKaGhAYSA8e1JCNPHv2Y2AgxcTsUPTUfn5+vLv7FPlI4hekpqb6+vq6urra29tramrKPnDV1dVlOf55YrXv379v2bIlEdWqVSsiIkI2/ueff/IwvfxeHAH9+++//O61bIQnW+zbt08R05UOz54947HIvn37Kudmm8yCBQuIaPLkycqcFJSAB9wzM1mdOuz8eYUH3H19fWWXDJ07d37w3zvlssxgIyOjESNGKPTsrgQp1gH3hARWpYoKAu5Xr14looYNGyp74i+TSCQHDhzIkwp9/vz5+vXrE1H79vcdHJjcjW3GGIuLY87OTE2NEbEKFZiXFys+dzSLLV6XU11dXTklMi5evMg3A66X/2egLLwe9zEUlFGYgwcPisVikUi0e/fHvky3bt3iZ96LFy8WcK489WRu3rxJQteT4XjGqCxxXiKR8NCnchIVSw3eV4ozMDAYMmTI4cOHU4vcfEMqzQ4JaRMYSGFhAwRZZ6HxRsHyfVB+//13fm8mPT29iAfnt0Xbtm0ry9Px8vIiInNzc1kDQyi4tLS0U6dOOTk5TZkyxcXFZdmyZatXr/b09PTy8vL29j59+vSFCxcCAwMfPnwYFhYWGxtbkEIx/fr1o/9uFPvrr7+IyMTEpCjhzm/Cy5X269dPNvLLL78QUbdu3ZSzgO9cdnY2v++rpqY2YcKEPIVr+WZknoNpYmLyaVCy6FJSUubPn8/vfOvo6PC0YiLS0NDo2rWrp6fnt74UP5sBzV9mNWvWVHkBpRLA1ZURMSsrJjszOXyYETETE6aKusbe3t783uGjR7m7wT67g6EgJBLJtWvXZs6cyRvncjygT0SNGzf+9Cafj4+P7MkODg4vXrwQ6ueSOXPmDL9OJKKNGzcKfvwSRCrNuXPHODCQMjNzr5ajojYGBtLz58OVMPvZs2f5G9G0adM+/Wp2dnZgYKCbm5u9vT2/Kvw0yJ7/iVNiYiK/pqtdu7b8vaKdO3fyyxBFlEjlOxdl1RFlCe8IseXv/v37/Mb/uHHjlDkv31vm6+urzElBCXjAnTHm68vq1WPbt7MRIxQS9Hv69OnAgQP5u1OtWrU+LQz4zz//1KxZkz9BtpFr8+bNgp/dlTjFOuDOGPvzTxUE3NesWUNETk5Oyp74y3h1SCsrqzyB4MzMzPXr/zQyYkRMT4+tWMHybFG6eZO1aMGIWNmyLCFBmUsueSIjI/lt51WrVilt0v3794vFYrFYrMx6poyxFy9eiEQifX39whVDhALi+ys1NDTkuzieOHGCRxk+bTNSOJ/Wk/Hx8alUqZJ8TQ+h3Lhxg4iaNm0qG+GxY2HvH3wPXrx44e7ubmNjIyvHqa2t7eDg4OXlVejSrm/euAQG0v37lbOzVbw9Ky4urmzZsiTXBC8nJ6dJkyZEtHz58qIc+dmzZ1paWmKx+NatW3wkOTm5QoUKVKhC5KAgb9++5Vu45O/pOjg4ENGwYcOUsICXL1/y14ksvfrt27e6uroikeiG7BQTFCw+Pt7FxYXnaZYpU8bNzS1Pk8OQkJAffviBvwHWrVtXqEKOUqnU29ubN1MRiUQDBw58+fJlbGysl5eXg4ODLG9ULBbb2Ni4u7vLb8XIR3BwcIMGDWbMmCEbOXnypEgk0tLSQpPArwsPZ3p6jIhdvpw7kpHBatZkREygc6FCGDVqFE+xkp0Mv3v3rnz58i4uLgWJEUgkEj8/P2dn54oVK8ripKampo6Ojj4+PllZWT4+Pvy2E4+qh4WFyX97Wlqam5sb34ijo6Pj4uIiVHHn0NBQWWREyS0Tiq1nz3oHBlJs7J/8YVpacGAg3btXQTmznz59mgfT+bZm+SA7j8XLolTW1tbOzs7e3t7fdCqYkJDQrFkz/kYaGRkpG9++fbtIJBKJRFu3bhX2J6pTpw7J9XA6efIkEbVq1UrYWUqla9eu8dQrYWtL8hfVhg0bhg4dKv8aYIy9ePGC3wJUcsdyUAJZwJ0xNngwa9GCjRjBFixgAwfmTcYttOTkZFdXV/4Opq+v/2lF68ePH/fo0YO/idWpU+fkyZMhISHdu3cX/OyuhFJxwP2rXr1ic+ey+HilTsqrtezatUups+bLx8enSpUq/PJg9OjRee4eR0QwR0cmEjEiVrMmO3nyP98rkbBt21gR2qF/FyQSSefOnXnum5KLqvMdrJqamufOnVPapKgnozTTp08nIkNDQ/lt9Vu2bBGJREuXLhVkik/ryTDGpFKpsLVKZIe9cOGC/IXoqVOn8oTg4Zu8ePFi7dq1bdu2ldXo1NLSGjp0UGzsrm+KmyclXbx9W+32bfXk5GLRw9bDw4OIatSoITstO3/+PD9Xe/fuXaEP26dPH/pv9YZ58+YRkbW1tar6YcBnbdq0iYgsLCwSPtztf/nyJQ8tKaFh6ciRI4lohNzG2gkTJhB66qrCkydPevbsyd/cateufeLEiTxPyBOUfPbsWVGmCwwM5AWm+NvCp3XV4uPjvby8Bg4cyEMeXP369V1dXZ88eZL/wdPS0mQBizdv3vDCOCrZpFjy/PQTI2I//fRxZPlyRsQaNGCqS39LSUnhGwTlExS+GujMycnhcXa+w4+rUqWKs7Ozn59fnk+izMxMd3d3Q0NDfqrv7OycZyfWmzdvHB0d+a33ihUrenl5FaXIckpKiiwy8tleX9+tqKj1gYH04sXIDwPSe/fMAwMpPf0r/+qFcuzYMQ0NDR5+kn/zEYvFVlZWM2bMOH78eFF26UVHR/NSD02aNJHfUcRPxkQiUZ6OGkXBA7jGxsayywFnZ2cicnV1FWqK0u348eP8xfDbb78V5Tjv37/nNYgcHBx4lgOXZ/86T/9STroDKJl8wP3dO2ZkxIYOZcbGucm4S5awoqRWSiQSLy8vc3Nz/k7l6OiY516OfF6FsbFxnrwKHx+fGjVqCHV2V3IV94B79+6MiBXtveib8fOnp0+fKnXWr0lNTXV1deW3wcuUKfNpp51Ll1jDhrntUh0c2HPFtoEpbXgbQ3Nz86JEggqNn6YYGRndu3dPwMNmZWXdvn3b09Pz03IfqCejNFKpdNiwYURUoUIF+QKaRWwTHxER4ePjw8+xeAxLVfuFs7Ky+ALypG7Bt4qOjuYJmBoaGgMH2gQG0u3bao8f20RFuWdlfb2ebHz8gaAg/bdvlylhqQWRnZ3Nr/3k64dOmDBh165dRYmM37t3r1evXrI36ufPn/OeK35+fkVdMQhKIpHwuKd8zVC+g9DS0lKoRM7Pevz4sbq6uoaGhuzk/sWLF5qammpqag/RSl5FfH19ZdUt7O3t8/wi5IOSGhoanwYlC+Lt27dOTk78zqWFhYWnp2f+bzWpqak+Pj6Ojo4GBgZ5Iu+yGiNfIsvS+OGHH4pRD7piSyJh06YxQ0MmOwuKjGSGhoyIye3/U4n79+/zD5G///47/2dmZGT4+vo6OzvzZjxctWrVeJw9/5dBRERE/i/Omzdvtm7dmh+zZcuW165d+9YfRCqVenl58a26IpHI0dFRJVc0xVZa2j2+BVA28v7wzPQuNZjQqd/5OHLkSP369fk5c/Xq1Z2cnLy9vWOFq6cUFRXF32abNm0q34ps3bp1RKSmprZ3715BJjp69Ki6urp8a3Se8F6I1+13a+/evbzgz44d39BIQCKRBAcHb9u2bdSoUXXq1JHtkZXd0h45cuTWrVvzbNvinXWx06VUSkxk8qUZjh1jBw+y8PCPybiVKhWysvSNGzdatWrFX1qtWrXKsz2Ux+JNTU1lsfjPlunjVd2LeHZX0hX3gPuJE4yIWVoypTWWCAsLI6Jy5coVzxPo0NBQ2ZaNpk2b5gkxZGczd/fcM1gdHebqytLTWXIyk2+TEx3Nvr/X+VdcvnxZTU1NLBarqrSZRCLh+yoqVqz4+vXrQh8nJycnODjYy8vL2dnZxsZGR0eHv1SWLFki/zTUk1GyzMxMfmVev379+MJu2Hn37t3x48ddXV179Oghf7Eno6GhsWrVKiW/caWlpfHbRWPGjEGNNqFERUXdv7/76dOut29rBAYSj7w/eWIXFbUhK+s/59DJyX4vXowIDe355s08qTQjI+M5Y8Uoy/vcuXNEZGBgoLhW9f379yciR0dHBR0fiuLBgweamppisVi26zwnJ8fa2pqIZs+erbh5+efppEmTZCOOjo5ENGrUKMVNCl/Fr7t4YWt+3ZUnlfhbI+YyX00izl96ejqPvMuKbvPPaxcXly/dyVu6dKkKszRKKvlf94gRjIjJtXlQIR6ONDY2/mxb0bS0tG99eXxJQECAbPtF8+bN82y/KErEvOjx+u+A9Pm1jlGeHaQvPmRZbt3KiNjgwcpcRHZ29qVLlxTXyyQyMpJv2mjdurX82yC/262mpibrNl9EiYmJsn8vsoR3JTcCLen4RkA1NbUjR47k87Tk5GQ/Pz83NzcHBwderVFGV1fXxsaG1yD60osqNjZWXV1dS0sLjUa+NzdusFatcpNxW7ViBa+nGB4eLtt3ValSpU/3XV24cKFx48b8RdixY8evJoy+fft25MiRsrO7Az4+xehiVfGKe8BdKmW1azMi9rW0A8Hs3r2biPr06aOk+Qrl2LFjvNOOSCSaMyf4v3s72Nu3bNiw3Jta1auz5cuZSMQuXsz96tixzNNT6SsuxuLi4ni5noULF6pwGWlpafwsvGHDhgkFLrcvlUqfPHmyd+/eadOm2draym9R5C+POnXqDBs2TFZGmUM9GeVLTEzkn0zt27cv4PbexMREPz8/d3d3R0dHWWKgjJGRET/H8vLyunfvnqurK/8Y69y5s9Ku/wMDA3lKi46OzpYtW5Qz6XclJyc+NtYrLGxgUJAej7wHBlJwcP2ICNf09CeZma/u3jVNSPgnPf1hXJwwWUuC69WrFxGNHj1aEQe/cOECv974bJQEigNe8Kphw4ZZWVl85O7du+rq6urq6rdv31bEjIGBgSKRSEdHR5bhFRwcrKampqmpiV04xUFsbKyzs7Osodan+zXzhA6/mv6Zf5nsb1LAFOabN29qaGioMEuj5ImMZNeuMdnJSUAAE4mYlhYrHv8kpVIp/6jq0KGD7NVYlA0Q+c/l7e3Nrzt4g4E8n1/v37+fPXs236FvaGh48ODB/A8obEWaUm7AAEbEZJVVnjxhRMzMTCEdBlUnPDycvyW2bdtWPsa6cOFCfrPzq5s5vtXvv/9ORIMGDRL2sN+DBQsW8Muoy7LmFnJev37duHFjWcdvrkqVKj/99JOHh0dAQMBXU53i4uKmTZtGRD169FDMTwDFmkTCvLyYuTkjYmIxc3RkecKGn9qyZQtP2dTT01uyZEme7MzXr1/zFBYiqly58jd1zwoMDLS1tSWiIdeuDX/06I4it7oWK8U94M4YW7+eEbHOnZU0Ha/y6ebmpqT5CistLc3V1bVx45FqakxPj7m6sjxtMK5cYY0bM2NjtnUra9CANWzI+NUuAu7ypFJp7969iahdu3Yqz8+NjY3lWQl2dnb5xGTla4nkudHNbxs6ODi4urr6+Ph86TIV9WRU4s2bN5UrV+anpJ/N2ktKSpKPsOfZJ2hgYCCLsAcHB396QeXr68sTo8zMzE6fPq3Qn0Uqlbq7u/MLwgYNGghbCgk+lZOTFBe3PyxsQFCQLg+7BwVpJyQcCw6uq+qlfcWnPU6FIuvCumxZcamiA5/KyMjgn2vyzXJ5Z4vmzZsrIhuuS5cuROTi4iIb6du3LxFNmTJF8Lmg0IKCgvgmdyKysrLKE2uQdT1t27ZtPtHDPD1XT506JdTy8inSffr06WrVqhHR3LlzhZquNEtNZQ4OrGFDNnw4a9iQ9ejBUlJYZib77TdWtAbawoqOjua/6wULFnypxL+AtUbly4Tq6uq6urqmp6fLP4F3PRWLxQEBAV86iOJ6rpZamzczIiafb1SpEiNiwcGqW5NCvHr1imfm2drayr8qeM8bTU3NPJlYRcSb63xTaRSQmTp1Kr+79mkWQlZWlq6urrq6ev369Z2cnLy8vJ4XoGRwWFgY3+xubW3Nk7G6dOki1M4GKIkSE9mMGUxDgxExIyO2ZUtEPu1z+e5kBweHl/9tusobhPCPLd4gJM/HVkFIpdKjvr7d792zDgxsHhi44PnzqO+gkW8JCLgnJeXWSPmkDLVC8Av4K1euKGOyInv2TOLgkLtVpFEjdunSf76anc3u3WP79jFHR+boyFauZAwB9//iO+yMjY1fCtXIuWieP3/OY6Y//fTTpxeZ2dnZ/KvyKlas2Ldv32XLlp0+fbogdQDDwsJQT0ZVHjx4wHvazJw5kzGWlZUVHBzs6enJI+yynpmcpqamtbW1LMJekJ31kZGRXbt25WlTzs7OspRSYUVGRvIYh0gkcnJySk1NVcQs8FkSSWpCwpHnz4c+fz48Ozv2wYNqT592TUj4WypVyO9aELNnzyaiNm3aCJt2t2XLFh4CwyuwmLt06ZJIJNLS0goJCeEjqampPGS5bt06Yee6cuUKERkZGcnK1wYEBIhEIj09PZT+KIZ8fHx4VIhf3eUJJaSkpHzp3CwuLs7Z2VldXZ2ITExM3N3dFZQzkZOTc+nSpSlTplSsWFH26SwSiVq1aqWgT9jSxsWF/fhjbmHQnBz244+suLZVPHv2rFgs5u1GiUhNTc3Ozm7jxo15qiEL6Kupgvn0nMjzb+fFixcKWmSp8ugRI2IWFh9Hhg9nRExFPZAUKjQ0lL9r2dvby1/xubi48EuMkydPCjJRVlaWoaGhSCRS3L+U0k0ikfz0009EZGpq+vjx4zxfvX///lfDmklJSefOnVuyZEn37t2NjY3lryV1dHTatWunhE71UPw9fcoGDmSamqxq1S61atXKp6Z/no8engPBswY/uzHrW6VLJJ4REW2DgqwDA22Cgja8eZNahOZexZ+IMUbF3uTJtHkzjR9PW7YodqKkpCQTExOxWJyYmKirq6vYyYRz7hxNmUKPHxMROTjQ5s1UpcrHr+7fT6dO0apV1KwZXb9OK1ZQ8+bk5KSqxRYjAQEBtra22dnZx44d4zfni4OgoKAOHTqkpKTMmTNn5cqVeb5qZWX18uXLBg0aWFtb29ra2trayqdffcnbt29vf3DlyhVNTc0uXbrs27dPMT8B5OfcuXM9e/bMysqytLSMiIjIycmRfUlLS6tJkybNP6hfv36eXYQFIZVK16xZM3/+fIlE0r59+3379smHCYru2LFjY8eOjYuLMzMz27lzZ8+ePQU8OHwrieR9QsLB2NidjOXUrn1RTc3g69+jdMnJyXXq1Hn37t2IESOaNWsmyDHT09NXrVqVmJh4+PBhXsYdirOff/75zz//7NChw8WLF/nenVOnTvXo0UNXVzc4OJgH3wVhY2Nz7dq1pUuX8m3aRNSlS5dz587NnTt3xYoVQs0CAkpPT9+wYcOyZctSUlJ0dHScnZ3nz58vX8Qjj5ycnJ07d86fP5/Xpf3f//63bNky3rZLoRhjN27cOHLkyMmTJ5cvX960aVNZHRvIT5MmtHEjfdjNQFev0rhxFBys0jV90f79+588eXL9+vX+/fv37dv3s/1yBHfp0qVp06bdu3ePiOzs7Nzd3Xnu15cEBQVNmzbNz8+PiKysrDw8PNq1a6eEdZYSFSvS27cUEkJ16xIR7dxJo0fTjz/SkSOqXpnwQkND7ezs3r5927Vr13/++YenpjLGnJ2dN23apKur++DBgyK+jz169Gjbtm0eHh6NGzfmr2EohOzs7D59+pw6dapy5cr+/v5V5OM4X/D27durV6/6+/vfvn07ICAgKytL9iULCwseJbCxsWnRooXsJiIAEZ0//2ry5B8eP35MRD/88MP69ev5PtQvCQgImDZt2rVr14ioRYsW7u7ubdu2FWQl0VlZm96+PRUXx4jMNDUnVajQo2xZ0de/rwRSccC/YJ4+ZWIx09Vlcg23FeLMmTNE1Lp1a8VOowCZmczdnenrM6LcCjOykiQ8w50xtn4969cPGe65EhMT+UX+9OnTVb2WvM6fP8+LdWzYsCHPl/J0GPuSV69eHTlyZO7cuV26dMlzr5uIZs2ahcYpKrRnzx4eIuSbBB0dHd3d3f38/AqxM+tLLl68WKFCBSIqV67cqVOfKQtYCLL+qETUtWtXxbXBhG8nffSoaXz8YVUv44v++OOPFi1aCHv20rx5865du6r6J4MC4bfoiGjXrl2ywcGDBxNR9+7dhZrFx8eHiExNTWUfcJcvXyaiMmXKxCn69BGKpoB1qM+dO9ewYUP+DtC5c+f7ytn6CkVhbPyfQu2vXzN9fdWtppiSSCReXl78TVIsFjs6On62/+FX+x/A1w0ZwojY77/nPnz1ihExExNWSvMrHz9+zPdGd+/eXVatVCqVTpgwQb7w2jfhFUucnJx4xisRdevW7dChQ8Kt+nuUmprKy1s3aNDgsxvWs7KyAgMDed1RS0tL+fNh+Zoz6FUDX5Wdne3p6VmuXDn+4nFycoqJifn0aREREbI+9hUqVCh4H/tv8iAlZWRIiHVgoHVg4MiQkAcpKYwx1xcvFj5/zv+ci48XfFIlKxkZ7kT0ww905gz99hvNnKnAWRYtWrR48eIZM2asXbtWgdMozKtXNH06HTtGROTiQm5uRB8y3Hfvppwcat6csrJo2jRkuNPQoUP3799vbW197do1Ht0uVv766y9+8Xno0KEff/zxq89PSEi4ffu27EZ3VFSU/Ff5vW6uZcuW5ubmCls4FAhj7ObNm02aNOFtSRQhNjZ21KhRly4FlC//umdPrTVrqCgv8+BgmjAh6+nTFklJT93c3JydnfOUmAfly8mJYSxbQ6OCRPI+JMSqatXd+vq2ql7U5zHGIiIieAkvoXTs2LFPnz54HZYUe/fudXR0NDExCQkJ4XGlqKioevXqJSQkHDx4cNCgQUU8vlQqtba2vnv3rru7O6+ISkRt27a9fv368uXLeeFaKOYCAgKmTp16/fp1ImrRooWHh0ebNm34l549ezZv3rxDhw4RUc2aNVesWDFw4EBVrhUKqG5d2rOHZDdc79yhQYMoNFSlayqmEhMT3dzc1q9fn5WVVaZMmTlz5kyfPp1foWRnZ//++++urq7v37/X0NCYMGHCkiVLjIyMVL3kEmj7dnJyooEDyds7d6RaNXr5ku7coaZNVbkwhXnw4EGnTp1iY2N//PHHgwcP8kpcjLFvOn169erVpUuXLly4cPHixfDwcNm4hYVFx44dBwwY0K9fP+GX/p15//69nZ3d3bt3W7Zsef78eX19/Xfv3gUGBsoy2TMyMmRPNjIyatGihY2NDc9kV9zlJJRW8fHxixcv3rx5s0QiMTEx+fXXXydPnsxv6PKth8uXL09OTtbU1Bw/fvyyZcvy2XpYRFLG/o6L2xIRkZCTIyYaY2HxR2Tk77VqaYhERGSuqVm++EXqvo1Kw/3f4MQJRsQsLZlC7+Xz8scl/Sbt6dOsRQsmq1Yqy3BnjN28ycRiZLjnFv/V19d/8uSJqtfyRUuWLCEiHR0df3//T7+amJgo32Azz79rIyMj+Qabyl88FAdSqXTLlhe8R0qLFqxwSQ8SCVu9mmlqMiL2449vHjx4IPQyoZCSk/0ePbJ68KDm/fuVIyIWqno5AF/BK1ANHz5cNrJt2zYiKl++fHyRE1j++usvIqpSpYosie/vv/+m/ya8Q/EnlUq9vLx4SqZIJHJ0dAwLC3N1deWb4nmfrny6ykOxM348++WXjw/nzGFOTqpbTQnw5MkTWbG+2rVrHz9+3NfXV3aeb29vn09hd/i60FBGxExNmWwPjYsLGzpUSZ3iVOTu3bsmJiZENGDAgIK3u4iMjPT29nZycspzmWlqaurg4ODm5hYYGChsbx548+YN781QtWrVPIVl1NTUGjduPH78eC8vLwEbOMN37tGjR926deOvsXr16p06dcrHx0dW6fHT5jqKkyqReEZEtLl9+3x8fIvbtzNL0a6jEhNwl0hYnTrSNm3CT568rrApJDxZoJQ1/Xj0iMm3ytizh929q7rVFAMPHjzg94H37t2r6rV8xaRJk4iobNmyjx8/TkpKko+w50lMMDAwkI+w4wQIZAICWI0ajIgZGrJ9+77teyMjWffujIiJRMzJiaE5JQAU2suXL/X09IjozJkzfEQqlXbq1ImInIoWg8vOzq5Tpw4R7dixg49IJBJeB/nTymxQ/L1//3727Nk8t5e/ZsRi8ejRoyMjI1W9NPhGb9+yqlWZkxPbsYONG8eqVmUREapeUwlw/Pjx2rVry5/n169fX/bOCUVSuTIrV469fq3qdShVUFAQLzE6aNCgfCoRRUdH+/j4uLi4WFtby19p6uvr29vb8yC7IspKgMyzZ8/q1q3LOx7xq3sXFxcfHx9UxgPFOXTokKwLN9e0adNLly4pfyURmZmMsRa3b//x9u2ud+92vXuXVPIrp5WYkjJEtHHjNmfncZ07dz537pwijn///v0mTZpUq1bt+fPnijg+FAepqaktWrQICQkZO3Ysz60rznJycvr163fixIkyZcq8f/9e/l+rnp6elZWVrMFm7dq1UVoBviQpicaNowMHiIgcHWnLFtLT+/p3/f03jRlDcXFkZkY7dpCDg6KXCQCl3OrVq11cXCwtLR8+fMgDqU+fPm3SpElmZua5c+d48L0Qrl271qlTp6pVqwYHB/P98ryCjaWl5ZMnT9AxrIR69uzZzJkzGzdufPnyZXd3d6FaLoOyJSfTqVMUFkY1alD37qSwbemlTFZW1oYNG86dO8cbKk6cOJG/uUFRRURQhQoUFkbTp1NICBFRnTq0fj399w5H6XPjxo2uXbsmJyePGjVqx44dvDQzEaWkpNy4cePcuXPnzp27c+eOVCrl43p6em3atLG3t7exsWnVqpWGhobq1v59kUgkd+7c0dbWrl+/vuzXBKBQGRkZa9euvXXrVnx8vKOj4+jRo3l5GZVoGRQ0s1IlNZGIiLqbmOipbiWCKEkB9+Tk5EqVKiUlJd2/f79Ro0bf+u05OTkxMTHR0dFv376NiYmJiooqU6bM2LFjZU/YsmXLxIkThw0btnfvXkEXDsXI6NGjd+7c2aBBg1u3bunq6qp6OV+Xmpo6YcKE6OjoCxcu1KpVS74UezEsPQ/F2e7dNGECpaVRvXp08CDl8yaank5z5tCGDUREXbqQlxdZWChtmQBQauXk5LRq1SooKMjFxcWN95khWrJkyeLFi1esWOHi4lLoI79+/frdu3etWrUiouzs7Hr16oWFhe3cufPnn38WZukAAFA6ZGZS/fo0YwZNmkRE9PvvtHo1PX5M2tqqXpliXbt2rVu3bikpKSNHjhw2bNj58+f9/f1v3bqVnZ3Nn6Crq2tlZWVra2tvb9++fXtcaQKA8rUMCvJv2lSztNxtKkkBdyKaPHny5s2bx48fz2tw55GQkPD27duEhIR3797J/4X/NyYmJicnR/75VlZWQUFBsocjRozYs2fPpk2beB0PKJUuXbo0ZsyYo0ePNm7cWNVr+QbR0dHGxsZILoAievSIBg+m4GDS1iY3N/rQWfA/goNp6FB68IC0tWnRIpo9m0rL5x0AqF5gYGDr1q1FItGtW7esrKyIKCsr6969ey1kbRWLbOvWrRMmTKhdu/bDhw+REwoAAP9x9iz98gvdvftxpHlzWryYPlTPL8UuXLjg4OAgFotTU1P5iLq6epMmTezt7e3t7du1a4c9YQCgWgi4q1JoaGjdunW1tbXDw8N59w+uUaNGwcHB+X+vWCw2MzMzNTUtX758+fLlTU1N69Sp4+TkJHtCzZo1w8LCgoKC+BUglFYSiUSFe2QAVCs1lSZPpj//JCKaMYO8vOjixdxs93nzKDubNmygrCxq2JD276eGDVW6VgAojaZPn+7u7t6iRYvr168L/nGckZFRq1atN2/eHDp0aMCAAcIeHAAASrzff6erV+mvvz6OjBpFVlafz0Mpdc6dOxcZGbl169aOHTt27NixTZs2vLcZAEBx0OnevdONG2uWlmrJJSzxp1atWvb29mfPnt21a9fMmTNl47y+lbGxsYWFhbGxcYUKFT79S5UqVfJJdIqKigoLC9PX1y9EsRooWRBth++Znh7t2kU9e5KHB7VtS/v30/jx5OdHYjGlp1OlSmRrSzVr0vr1VBJKLgFAybN8+fJ//vknICBg06ZNU4UOcGzcuPHNmzfW1tb9+/cX9sgAAFAa6OpSevp/RtLTv5+zXnt7eyIaPny4qhcCAPAZF5o0UfUShFTCMtyJ6MSJE7169bK0tAwLC5NFThMTEw0NDYvSVuLo0aP9+/e3t7f39fUVaKUAAMUXY3TiBO3aRdnZ1Ls3jR1L06dT5co0eTKhZiMAKNSpU6d69Oihp6f34MGDatWqCXXY5OTkmjVrRkdHnz59ulu3bkIdFgAASo+7d8nBgZ4/zz3fzc6mmjXpyBFq3lzVKwMAgFKlhGW4E1HPnj1r16799OnTkydP9u7dmw+WKVPmmw7CGIuOjo6JiYmMjIyMjIyJidm/fz8RtW3bVvAFAwAUQ7J9WuvWUYcO1KdP7kNE2wFA0bp37z5o0CBvb+9Jkyb9+++/snGJRJKUlJSenp6RkfH+/fusrKzk5OS0tLTMzMzExMSsrKyUlJTU1NSsrKyEhISsrKzU1NSUlJSsrKzExMTMzEx+ate+fXtE2wEA4POaNqU2bWjkSJozh0QiWr2amjVDtB0AAARX8gLuIpFo/PjxM2bM2Lhxoyzg/qn09HT5jql5OqmGh4fL+nHLjB07to8s5gQA8H2oVYvGjKG5c8nQUNVLAYDvhoeHx9mzZ0+fPl2pUiXGWHp6elJSkkQiKeJhV61ahWg7AADkZ88e2ryZli4lxqhNG5o0SdULAgCAUqjklZQhouTk5EqVKiUlJXl6eurq6kZHR7979y46Ojo6Ovrt27cxMTHR0dFfvWYzNTU1MzMzMzOzsLAwMzMzNzcfMGBAzZo1lfMjAACo3PHjtGsXHT1K6enUuDFVrEi9e9OMGapeFgB8H44cOXLjxo3ffvtNNiIWi42MjLS1tXV0dAwNDTU1NQ0NDXV0dLS1tY2MjDQ1NQ0MDHR1dbW0tMqUKaOpqamvr6+np6epqWlsbKypqamnp2dubq6np6fCHwoAAAAAAKBEBtyJaNKkSYcOHYqJifnSE7S1tfO0TpV/WKlSJU3UTQCA75ss4E5Ep09T9+60di0C7gCgPPHx8YmJiVpaWrq6ugYGBvk0twcAAAAAACgpSmrAPTk5OTAwcNmyZRYWFqampuXLly9fvrypqamFhYW5ubmpqamGhoaq1wgAUKzdvk0XL9KsWbkP582jtm3JwUGlawIAAAAAAAAAKMlKaiaRgYFBx44dO3bsqOqFAACUVBkZZGb28WG7dpSZqbrVAAAAAAAAAACUfGJVLwAAAFTj0SM6d+7jw4AAun5ddasBAAAAAAAAACj5EHAHAAAAAAAAAAAAABBASS0pAwAARff8Oe3enfv3e/eoZk2VrgYAAAAAAAAAoIRDwB0A4PuVmkqvXuX+PTFRlSsBAAAAAAAAACgFEHAHAPh+NWpECxfm/p0xSk1V6WoAAAAAAAAAAEo41HAHAAAAAAAAAAAAABAAAu4AAN8psZjE4i8+BAAAAAAAAACAbyVijKl6DQAAAAAAAAAAAAAAJR6yGQEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AGUwd+ftm//+HDfPgoPV91qAAAAAAAAAAAAQAEQcAdQhnPnaPx48vHJfejpSc+fq3RBAAAAAAAAAAAAIDQE3AGUZPBgmj6dUlNVvQ4AAAAAAAAAAABQDATcAZSkfn3q2ZMWLVL1OgAAAAAAAAAAAEAxEHAHUJ4lS2j/fnrwQNXrAAAAAAAAAAAAAAVQV/UCAEqzlBTy9KSkJBKJiIjKlKGVK2naNBWvCgAAAAAAAIqV7OzsAwcOXLhwgYjs7Ow6dOhQtWpVVS8KAAAKQ8QYU/UaAEqhxETauJE8PCgujrS1afJkMjKiBQuIMerYkW7fphMnqEMHVa8SAAAAAAAAVE0ikQwbNuzgwYMaGhrZ2dl80MLCwtbW1t7e3sbGpn79+iKexgUAAMUeAu4AAouNpU2byMODEhOJiNq2pTlzKDCQNDRowQIioocPycqKzp6lhw9p1CjS01PpcgEAAEoRqVT68uXL6tWrq3ohAFC83Lt3Lzo62tzcvFy5cuXKldPU1Czccdq0oYYNaft2IqLoaLK1padPhVwnfJ8YY05OTn/88YeRkdGmTZtiY2MvXbrk5+cXHx8ve07FihV52nv79u3r1KmjwtUCAMBXIeAOIJioKFq/njZupLQ0IiIbG3JxoV69iIjS00kkIm3t3GcmJdGaNbRsGXXqRCdPfhwHAACAQkhNTb1w4cKJEydOnjyZnJzcsmXLSZMm9e3bV9XrAgDVY4yNGDEiNjb29OnTssEyZcqYmZmZmpqWK1fO1NTU3Nzc1NS0XDlnU1ORuTmVK0empvTZmHyDBvT+Pe3dS3Z2FBlJTZpQVJTyfhYolRhjkyZN2rJli56e3qlTp9q1ayf70vPnz8+dO3fu3LlLly7FxMTIxs3Nzdu3b29jY2Nra9usWTNkvgMAFDcIuAMI4NUrWreOtm+n9HQiInt7WrqUWrfO71vCwqh9e3r7lrp2JR8f0tJSzkoBFOnqVfr1V3r9mtTVyc6OVq8mAwNVrwkASrPg4OB///3333//vXr1ak5ODh80MTGJj4/X1NTct29f//79VbtCAFA5Dw+PadOmGRgYWFtbx8XFxcbGxsbGykp2yBgYVExOfiM/YmREsuB7uXJUvjx17EjOzjRzJv32G929S/HxCLiDAFxcXFavXq2jo/Pvv//a2dl96Wk8+O7v73/p0qXw8HDZuJmZWcuWLXnlGSsrK7FYrIxFAwBAvhBwByiSx48fr1y58tmzvteu9ROLacAAmjePmjQp0Pc+fUrt21NUFPXrR97epI4exlCiRUdTw4a0ezf98AOlp9P48UREXl6qXhYAlDZpaekXLpzncfZXr17xQXV1dVtb2x49evTo0aNBgwa//vrr0qVL1dTU/vjjj1GjRql0vVCSZGZSRARVrUo8YPX+PeXkUNmyql4WFEFISIi1tXV6evrhw4fl78DFx8dHR0fz4HtUVFRMTExqqtbr17Ojoyk6mmJiKDaWPonJk6srHTpEx47RkiVUty6NGYOAOxTVggULli9frqmpeezYsR49ehTwu54/f+7v73/16tUzZ87IPgqJyNDQsGXLlvb29gi+A0Dx8X2eXyHgDlBI9+7dW758+ZEjR6RSaYMGLZs3vzlnDtWt+5/nxMbS2bM0dOgXD3L/PnXsSPHxNHw4eXkRzoigBFuxgp4/pz/+yH34/j1VrEivXpX+D1IAUIoXL8jXl86do2fPUu/c0eeD5cqV69ixo4ODQ+/evcuUKSP//FWrVs2ZM0ckEm3YsGHy5MkqWDGUQHfuULNmtHUrjRtHRLR2LUVE0Lp1ql4WFFZOTk7btm0DAgLGjBmznZdd/xYJCR+D7zwQb2dH48bRsWNkaEhWVvT339S7NwLuUHjLli1buHChhobG4cOHe/fuXbiDPH369PLly1euXLl06dKbNx93aZiYmNja2v7222+1atUSaL0AAIXxfZ5fIaUW4JvduXNn5cqVhw8fZoxpamoOHjx44cKFeU5joqPp99/J3Z2SkqhxY2rY8POHatyY/v2XunShvXtJQ4N27CDU34OS6ulTsrL6+NDIiKpUoadPqU0b1a0JAIq7Q4coOJgWL859uHQpjRpFlSvnPszKIj8/OnWKTp6kx49zB9XU9Lp0GWpjU7tnz57NmjX7Uvqei4uLWCx2cXFxdnbOzs6ePn26on8WKB2qVaMVK6hvXzI3V/VSoMgWLVoUEBBQrVq1dYW6rDc2JmNj+mxzyvLlad48mjOnqCuE79mGDRsWLlyopqbm5eUli7a/fv16+PDhO3bsKHiUvHbt2rVr1x47diwRvX379urVq7zs+/Pnz318fLS0tFauXFmjRg1F/RgAAAXwHZ5fldqAe1JSkkgk0tfXR/8QEJC/v/+qVatOnDhBRHp6eqNHj549e3alSpXkn/PqFa1eTTt3UkYGiUTUvftX8tZbtaJTp6hbN9q1iwwMyMNDoT8BgMJoa1Nm5n9GMjJIR0dFqwGAkuHGDdq8merXp8GDiYiOHCEHB9LSotOn6cQJOnuW3r/PfaaeHnXsSL16kYMDVajw12ePlpycbCDXOmL27NkGBgaTJk2aMWNGUlKSq6urwn8eKIKkpCQ1NTUtLS11lVbZK1uWBg6kmTNp714VrgIEcP36dTc3N7FYvGvXLvl3hj/++OPixYu8V6qZmZmZmRn/u6lpRRMT/YIff+JE2rVLAeuG78POnTunTZsmEom2bt06ZMgQPvjmzRs7O7sXL178+uuv+/fvL8RhK1SoMHDgwIEDBxLRy5cvhw8ffujQIVtbW2dnZyFXDwAlB86vVKUUBtzT0tI2bty4cuXKFi1aJCYmuru729jYqHpRUOL5+/u7urpeuHCBiAwMDH7++ec5c+ZYWFjIPyc0NGflSvW9eyk7m8Ri6t+f5s//T8rvl9jY0LFj1Ls3bdhAhoa0dKmCfggARWrShM6c+fjw9WuKjyfsYIWiCA+no0fp5UuqVo3696eKFVW9IFCIsWPJxYV++IGMjIiIrl+nyZNJVvKwcWPq0YO6d6e2bb/Y7OT58+fHjx8/ceLElStXXrx4UaFCBdmXxo8fb2BgMGrUqEWLFqWnp7u5uSn6x4FCyM7O/v33311dXTt06PDkyZN169YVvJCxIkybRk2a0LlzKlwCFFVqauqoUaMkEsncuXM7dOgg/6Vr167t27fv02+xszt99Wq3cuWoXDkyMyMzs9xeqa1bU5cuH5/WrVtuS3g1NfL0JE9PkkpRFhK+ze7du3lC+ubNm8eMGcMHo6Oju3bt+uLFi9atW2/btq3os1StWnXcuHFXr149deoUAu5QaAcOUGoqjR6d+3D5cpoyhQwNVbomKBicX6kYK0WkUum+ffsqV65MRCKRyNDQkP9lxIgRERERKlxYfDzLycn9e1YWS05W4VqgMDIyMszNzYmobNmyrq6u8fHxeZ7w4MEDR0fH5s27ETGxmA0cyB4+/OZZjh1j6uqsZctIN7c1wqwbQJnS0lj16szNjb1+zW7fZra2bNEiVa8J8pWWpuoV5Ov+fVa+PFu8mB0/zn79lZUvX5g3Vij2ZsxgHh5s1iw2eTJjjDVpwvz8mJERs7dn7u7s1asvfmNKSso///wzbty4yrICNEQaGhonTpz49Mn79u3T0NAgomXLvKVShf0wUCgnTpyo86Fmh7GxMf9Lnz59nj17puSVpKWxoCDWvDljjF26xOrVY25ubPr04v5mCZ/l5ORERE2bNs3MzMzzpTt37uzdu3f9+vXz588fM2ZMnz59bGxsateu3a3bbSL26Z9x4744y9GjrG5d5u2t2J8FSpnDhw/zPNPVq1fLBmNiYho2bMhftJ9ebBZaTEyMWCzW1tZOTU0V6pjwvRk6lGlqshs3ch+WL89UGl2Dgjp58iTOr1Sr9ATcb9++3a5dO/4aatas2ZUrV1JTU11dXbW1tYlIV1fX1dU1PT1d+QvLyWFEbP783IdnzzJ7e+WvAopk+PDhRDRkyJDkT+6W3Lp1q0+fPrxykaam5qxZL4ry9nX4cLS2tgEReXh4FGnFAMp08iRbtYqFh7M3b9iMGaxjR9a/P9u2jSGsVWxt2MBq1WING7Jq1diYMcX0ZKdvX7ZG7u7j0qVs4EDVrQYUhQfck5JYlSosMJA1acKCglh29hefHxrK3N1Z166sZUsXWZzdwsJi9OjRhw8ffv/+/Ze+8dixY506/U9NTTJ2LJNIFPKzwLd68uSJg4MD/yXWrl37+PHjWVlZ7u7uPGlGQ0PD2dk5n9+pgFJTmasrMzVlZ8/mXhAyxn76idWpw6ZPZwMGsI4d2b17SlgICOP06dMikUhLS+v+/fvf9I2ZmSwigt27x86eZXv3Mnd3tmABO3bsi8///XdGxJo2xSkPFNTff//NbwAvX75cNpiYmNi8eXMiatSoUWxsbNFnkb/P1LJlSyL67N1ogIIYOpSNH8+aNs09PUPAvfjD+VUxURoC7rGxsc7OzmpqajwB2d3dPUeWT87Y69evHR0d+UutcuXKXl5eUuWeEOXkMA0NVqsWe/SIMQTcS6Z58+YRkaurq/ygn5+fg4MDD7VraWk5OTm9fv266HP9+eefYrGYl/Mr+tEAlOGHHxgRwyu2pDh/ntWokZs5nJbGevdm8+apek2fU7kyCw7++PD2bVajhupWA4rCA+6MMW9vZmvLGjdmQUF5n5Odzfz8mIsLs7b+mHNqZxfUunXrpUuX3r59u4CndhcuMH19RsSGDMkvpg9KkJCQ4OLioqWlRURlypRxc3PLyMiQfTUmJkZ2bl+uXLk85/bCkkrZ7t2sQgVGxEQi5ur68YLw3TtmZMTGjWNlyzIipq7OJk9mcXEKWggIJiYmpnz58kS0bt06Rc+VkcEsLBgRO3NG0VNBaXD27FmeDrhw4ULZYEpKCk8crFWr1tu3b4s4RXZ2drdu3QwNDVNSUvgI718yadKkIh4ZSpaoqKgtW7a0+ZouXbLbtGH5/Jkzhw0dyg4eZP37M/6eioB7cYbzq2KlZAfc+V0aIyMj2V2axMTEzz7z4sWLTZo04WF3Ozu7u3fvKm2ROTlMS4vt28c6dGBSKQLuJdKOHTuIyNHRUTYyf/58/nIyMDBwcXGJiooScLqNGzcSkVgs3rt3r4CHBVCImBimocE0NFhMTO7Izp2sWzd29qxKlwVfNmgQ27z548OQEFa2rOpW82VGRuzly48PQ0OL6TqhaGQBd8ZY165MQyNvwH3HDqan9zHObmLChgxhe/d+fMv5JleuMENDRsR69WJyFyCgPBKJxMvLy8zMjJ/qODo6fukk6vbt27a2tvK7VwVfTEAAs7HJfWk1b878/VlkJPvzz49POHWKnT/P4uOZszNTV2dEzNiYubmxT4qUQDHC20W2a9dOopTNLG5ujIh17KiEqaBk8/f319PTI6KpU6fKBtPS0uzs7IioSpUqL+VPe4qgdevWROTj48Mf3rx5k4iqVasmyMGhRMjOzm7YsKF8zb0vMTGRfraUluxP3765AfdXr1j58uzNGwTci6lPz68iIyM/+0ycXylNCQ64+/r61qtXj79K7O3tH36ttGvBz++FxQPuUinr0IHt2oWAe4l06dIlImrbtq1sJCgoyMjIyMXFJU4xd+LWrVtHRGpqagcPHlTE8QEEw3dT9+z5caRjR0b0n09UKFasrdm5cx8f5uQwdXUmXLVQwTRtys6f//jw1CnWooXqVgOKMn8+8/TM/fuTJ8zUNO/G0rNnGRGrXp05OzNfX5aVVdQZAwJyE2q6dy+m5ZRKsQsXWKdOPb4pA8bHx6dq1ar8WxwcHF68eCHISt6+ZU5OTCxmRMzCgnl6fr3Q0OPHrEeP3KvHOnXYyZOCLAQEtmvXLiIyMjISKnb5Ve/fszJlGBG7elU5E0KJdP36dQMDAyL63//+J9uVlZmZyRsYVqpU6fnz50LNtXjxYiKaMGECfyiRSHg3skd8xz18B3gCX5UqVS5evHg1X9ev51y9yvL58/hxbsCdMebmxhwdEXAvjuQzjDt06IDzq2KiRAbcHz9+LGutW6dOnZOf/EKOHDnypTAo32Ghqan52R0WAgoOZq6urFYtdvs209LKHalYkR06hIB7yfP69WsiMjc3lx9UdEuAhQsXEpGmpiYq7kGx1q4dI2Ky3Rhv3zI1Naatzb6w3whUIz2d+fiwkSPZuXPMzo79/ffHLyUnMzW14phOsHQp69IlNyCamsrs7NiWLapeEyjEunXs2DH2pQ/VzEz25o3AM965w0xNGRHr0IElJQl8cPis16+ZoyMjYjY2eypVqvRpjcezZ88OHz78synJqampbm5u+vr6RKSrq+vi4vJpT52Cy8xk7u65Gx00NZmzM/umKqa+vqxevdzLQnt7hvhVsRIeHs77wu3Zs0eZ886dy4hYnz7KnBNKkjt37vBX5siRI2XvcllZWb179yYiMzMzYUPhAQEBvJqubGTEiBFE9Ntvvwk4CxRb8fHx5cqVI6Jj+TSg+BaygHtWFmvQgGlqIuBejPAa2rzQ8WfPr2R8fX3z3IrG+ZWilbCAe3x8vCxcbmxs7Obmlqfv/KNHj3744QcimjJlSj7H+bSHgCDLy8lhFy6wSZNyCxXxP0uX5gbcGWOzZzNrawTcSx6JRMLL7SUp97r8l19+ISIdHZ0LFy4U8VDZ2dnx8fFxcXFhYWFhYWFvBI9egKIlJDBHR1azJqtRg7VsWVxqhb5+zcRipqvLZJ/N69YxIvbjjypdFnyQlsZ8fJijIzMyyv1M+vlnNm0ak/+I/PtvZm2tuiV+YvRo5uLCkpNZZiYbM4ZZWrKuXZmlJZs4EVW3S6WUFKahwdTVlR34DglhFSvy+C/uDypWSgqbP59pazMipqfHli2T5klZCA0N7dOnDz8t37dv35eOEx4eLrukrFixYuHaMh07drpWrdy3wx9/ZGFhhfmJMjKYmxszMGBETEuLubldVPL5IXyWRCLhpTn69eun5KmjopiODhOJ2IMHSp4ZSoD79++XLVuWiPr375/94UwmJyfnp59+4mWUHwj9upFKpRYWFkQU/KEXzv79+4moc+fOwk4ExdPkyZOJqFOnTkIdUBZwZ4xducJEIgTci4XU1FRXV1cep9LV1XV1dc0nJTQhIcHU1FRTU9PZ2TnPSQvOrxSnxATcs7OzPT09TU1NZQVhoqOj5Z8QExMzfvx4Wfn/bdu2ffWYvr6+DRo0kBWlCZZvzvYtcnKYnx9zdmbly3+Ms1taMmdn5ufHsrI+BtxTU5mlJQLuJVLdunWJ6J5yOyhLpdLx48cTkZ6enouLi6enp5ubm5ub2/z5811cXKZMmeLk5DRy5MiBAwf++OOP9vb29vb21tbW1tbWtWrVql69urm5ubGxsa6u7qfF2gYPHrxZvogzFH/DhjEnp9yAo58fK1uWhYerek2MrV7NiNigQR9HWrRgROzQIdWtCRh7/5799Rfr35/p6n78WGrenK1cyUJD2atXrGJFtmIFCwhgf/3FKlUqLvdvGGPXrjGRiOnoMNmuxqws9vy5AGVEoLjiFWNUUi7o+XNWvTojYs2aFbIiPORPKmXe3qxKldx+WQMHsjxFPlJSUmTXinp6evlfK3I3b97k5YmJqGXLltevXy/gYkJCQnhSTvv2wXXrslOn8i71wAG2fPk3/HQxMczZmZmbRxoYGCq68xgUxOrVq4nIwsIiNjZW+bNPmsSI2IgRyp8ZirWnT5/y2HefPn2yPpzMSKXSMWPG8NpHgYGBiph31KhRRLR69Wr+MD4+Xl1d3cDAIClJsVu0QeUePXqkoaGhpqZ2//592WBWVtbGL9iyJWvjRvbpn/8G2/JMwcaPRxqMKkmlUm9v7ypVqhCRSCQaOHDgV6uoRUdHDx06VJYIv3fv3jxRdQWdX+Xv1i02Y0bexJfSdH5VMgLu58+fb9y4Mf/dd+zYMU/Qk8fi+a4ZdXV1JyenmAJfNn3adjUhIaGA35uenv7PP/+MH59hbPwxoFG3Lps3j92+/fFpEgmbP//jw4sX2fbt7MWL4rh9H/LRs2dPIjp69KiS55VKpf369eMNdopCTU3N2NjY2Ni4evXqVatW1dLSEovFBX8bBRWLjf1PFjljbPx4tmiR6hb0gZUVI2Ky7YrPnjGRiBkYoC6ySsTFxd09cIA5ODAtrdzPJLGYtW3L1q5learyhYezRYvYkCFs1izG3weKsH9QMBIJa9mSEbGFCz8Ovn6tugWBMsyfz4jYrFmqmf3lS1azJjMzYx4e/3lPXbqUvXqlmiWVGoGBH/tlWVszf///fFUqlXp5eZUvX55fKzo6Or57966AR+ZtmXhJYp6Fk//3fpKU81eeC7fbt3Oro2losCdPvu3HvH37Sdu2bfm5VvPmza+ijLeKBAcHa2tri0SiT2uNKserV7kt5AWqggsqEBsbu2DBAjc3t7Vr13p6eu7YscPb2/vo0aO+vr4XLlwIDAy8c+dOWFjYixcv4uPjEwuwN+rVq1eWlpZE1KVLF9ndRPmEKj8/PwX9LAcPHuSRE9nI8OGX9fRSlH4tC8rWrVs3Ipo0aZL8YHJy8peiBF9qmhoQ8PnjS6W5dT82bFDGjwOfCggIsLGx4b8+a2tr/zwnWPm6detWmzZt+Pe2aNEiz0mL4OdXX2Vry4iYmRnz9GSfnJuVhvOr4h5wDw0N5Y3miahy5cpeXl55nnDu3LmGDRvyJ3Tu3LlwG7JiY2OdnZ35C8XExCT/WyhpaWk+Pj6Ojo6GhoZEZGv7lIjVr89cXVkB70///TczNFTZtSUUjrOzM6mo8l2XLl2IqGnTpk5OTr/88ouLi8vSpUvd3Nw8PDw8PT137drl7e19+PBhX19fX1/fgICAwMDAJ0+ehIWFvX37Nj4+PiUl5dNjzp07l4gaNWqUhbzREuHmTVa79n9GNm1iw4apaDUfPH7MiJih4cfSy0uXIr9L+WJjY728vBwcHDQ1NRvXrp0bZ7exYe7uBS19feYMK1+eHTmi4JV+zc6djIhVrMhk71qBgUxdnU2cqNJlgWLxQKePj8oWEBHB7t9nM2cyDY2P/wisrP6TPAH5WLCAzZz58aGDA3v+/Cv9sq5eZV26vNPXNyCitm3bBnzpsj5fPDteS0uLPmTHf9qW6atJObGxzNmZqakxIla2LHN3z3u9V0A+Pj48rEaCdh6DAsrIyODN4iaq9PNi+HBGxH75BTkHJdK1a9dkJWcLTiQSGRsbm5iYVK9evXr16nyrMd92/OOPP/K4VceOHdPkMlFmz55NRLq6uhcvXlTcj5OQkNCsWadOndbLaigvX86I2NixipsTVO/vv/8mImNj4zwfdpmZmZO+YMaMrEmT2Kd/8kk7+OcfRsSMjbE7UNkiIiKcnJzEYjERWVhYeHp6frbzTf54dnzlypXpQ3b8q//+sgU5vyqgoCDWvn3uPZ6mTdmlS3mfUNLPr4pvwP2rm0yfPn0qi8XXqlXL29u7iDMGBQW1b9+eH7Bp06aX/vvbTkxM3Lt3b79+/XR0dGSfry1atNi06Uxo6LdNdOsW09RkIhFDL8wSxMPDg+S6vSvNxYsXiahMmTJf6gNcOGlpadWrVyeitWvXCnjYUundu3deXl4qvjPx4AGTa3zEGGOrV7Nx41S0mg9cXRkR+9//Po40aMCIvm0jGRRWeHj4hg0bOnTowO8WE5GGhka3bt3SduzIbxfoZ23YwIhYmTJ5yz0oU1ISs7D4TwNeqTQ3FuviorJVgYKlpzNtbSYWM0E/4gpj5kw2fjyrWjW3lDwC7gXXqxczNPz4xq+nx6ZOZURMW5vNnZt380x4OBs6lIlEjIj17r31r7/+KkSdUHnylwM1a9aUvxzIPyknK4u5u+e2t9DQYM7ORS3lL2znMfgmPIJZo0YN1f4/Dw7OadPmN319w6ioKBUuAwpn3LhxRNSuXTsXF5fp06c7OTn9/PPPAwcO7Nu3r729vZ2dnbW1dZMmTapXr25paWlsbMxz7/JXuXLlihUrytcg5ld22traZ8+eVfRPxMNYhw/nPrxzJ/cmaNHedKH4yszMrF27NhFtUHzyebdujIj9N40eFCgzM9Pd3Z2/7fA67O+/qSHpJ74p3PpN51eF4OPDqlXLDbvzvA15Jfr8qjgG3L+6yTQ5OVl2y0VfX/+zt1wKzcfHp1q1arJbKHfu3OGZg3w6IhKLxdbW1q6urk+fPi30LCtW5G6dKPD2WVCxEydOaGhoDBo0SpmTSqXSVq1aEdGqVasEP/jp06f5e1aJu0+oZC4uLkRkaWnp7u6empqq7Olv32azZ7O0NKavz549+zjesyfbulXZi/mv8717Z6urM9kFw927jIiVK4dy2wr18uVLd3d3GxsbXoOPiLS0tOzt7d3d3Qt/hS+Vsj59GBFr166Q6Z1F5+LCiFibNh8vBP/6K/eTEh0tS6+LF3NTWlRu5kzm7s6mTWPTpjGGgPu36NWLLVvGatbMrSWmp8fevGEjR+btl5WW9rERlo4Oc3ERsk1unmu/EydO5J+Uc/z48V693GWXdt9aRiYfgnQeg2/i7++vpqamrq5+48YNVa+F9erVi4jmy5cThZIgMzOT9zWVL3tdEBKJJD4+PjY2Niws7NmzZ4GBgQEBAXzb8aZNm3iucfZ/a12vX7/eRym7ulauZERs9Ojch1Jpbqvwu3eVMDmogJubGxHVq1dPCYlijx4xDQ2mpsaU2+HuO+Xj48NzJXmIMqxwDUk/5/Xr146OjrIbhF8tKPLV86tCS0tjS5YwPT1GxDp0OLhgwYI8dRpK6PlVcQy4BwYG8v+Pbdu2vXXrlvyXPi0qFBkZKfgC0tLSlixZwqtm810SRKSmptapU6fNmze/ffu26FNIJMzenhGxbt1wk7lkCAnJVlPLqVFDqZMeOHCAiCpUqJAnzhsaGhoYGBgYGHju3DlfX9+jR496e3v/+eefnp6eGzdudHNzW758uYuLi4uLi5OTk5OT008//TRw4MB58+blOf6AAQOIqF+/fkr8mUqeAwcO1KtXj78PmJqaLl26ND4+XhkTv3zJhg/P3ZN//DhbvJhZW7PLl9nDh2zhQla7NhPuRmMh3L59m4ga1q37MT7LA6ZK3wXyXcnMzDQwMOCvRj09vQEDBuzfv1+Y7u3x8bmdDVXSGyAsjGlpMbGY3byZO5KWxiwtGRHbsUMF6wFlWbSIEbGpU1W9jg8B9/fvWaVK7M4dBNy/Qa9e7N9/2ZgxjJ9l6Ol9piVE/rlLguBtmYyNjYmIv08aGRmtWbMm879Nkx49esTr2xJRv36vTp8WfiWMscuXL1tZWRGRurp66LfuhIVvkZycXLNmTSJydXVV9VoYY+zGjRv8tVeQAt9QfBw5coSIrKyshD1s3bp1iejKlSvCHraA7t3Lm9I+ZgwjYitWqGQ5JdWaNWtKRGgvMjKSNyY8raAPtk9MmcKIWKdOypnt+/Xy5UtNTU0iaty48fnz5xUxxYULF/JpmVnA8ytBhIezESMyK1SoTF/o7Frizq+KY8C9fPnyYrHY09Mzz//cGzdu8Gxf+sa2uYUTHh5ep04dsVjcoEGD7du3F64mUT4iI5m5OSNiqqgKDt8sPZ2JxUxdXXnJu1lZWbVq1SKiP/74I8+XZHWNvomNjU2e47x9+5Z/MP/zzz9K+qlKJqlU6uPjI2swoq+v7+zsHB4erqj54uOZiwvT1mZETFOTOTsz3sx53z42ciTr3ZstXMh4LvOGDczJKW9xXKWYOXMmETk7O/OHUql0Sb9+QXXrssuXlb+Y70eLFi3EYnGPHj2OHDmSJnhn2suXmZoaE4vZhQsCH/mr+vZlRGyU3BaiX39lRMzKSiUvb1Ca+TBs6AABAABJREFUTp0YkerbB7APAXfG2F9/MTs7BNy/AQ+4x8YyCwv2+PFnAu7p6bnRdisrhX9ExMTEtGrVSiwWW1lZ5dn0Ex8f7+Liwq9ay5Qp4+bmpohrRRmJRLJs2TKxWFy/fn3FzQKjRo0iombNmhWfpkQdOnQgxWxOBcXp168fKaDS5owZM4ho7ty5wh624HgqRVBQ7sMjR3J3M0IB1a9fX2nRpyL6+eefiahPnz5KmzE+npUrx4jYsWNKm/N7ZGVlJRaLFyxYkE+byaLjmc2mpqayzOY8J1H5nF8J7tatW/m0Sy1Z51fFMeDO93PJB7jj4+MHDRrE/49XqVLl4MGDyrnHOHHiRCLatGmTUAeMi2O7dn18+O+/TCRiGhqsGOyAhK+rVIkR5d0irTibN28mojp16uTZh8gYs7Ky4j15OnXqZG9v37dv34EDB44YMcLJyWnSpEkuLi5z5851c3Nzc3PbunWrp6fnvn37vL29P5te4e7uzv9ZlaBKWCrk5+fn4ODAt+Boamo6OjqGhIQIOUFWFvP0ZGZmjIiJRGzgwPzyACMimK4uI2I//aTkKi4SiaRSpUpEJDv1vHr1KhFVrly5EJ1boOCaNm1KREGyKyfBzZ/PiFilSiw2VlFTfOr8eUbE9PVZRETuSHg409VlIhFTUVIYKEdmZu7vuTiUO5YF3BljnToxTU0E3AuKB9wZY9u3MweHz2e4nzjBtm1T0u2zpUuX0n9revDLSDMzsy9dRirIkydPiKhWrVpKmOv7xNsDamtrBwcHq3otH506dYqIzM3Nhb8vDooRHx+vpaUlFovffGg1//btW0Fu4fj6+hJRkyZNin6ownFyYkRs2bLch0lJTFOTqampvm9KSdGgQQMiqlChAn1oL/lShe2OviwoKEgsFmtqaj4RsERaAWzcyIhY9ersv9W/QUi8osu3VrsqnLi4uClTpqirqxORiYnJ9u3b5b/66fmV4uTf2bUEnV+VjIB7dnZ2w4YNlV8gX9iAe0YGq149b69U3leqRg1WtJ4HoAwdOjAi5uurjLlSUlJ4G4NjCr5lLJFI+MaR2bNnK3Si0uTu3buOjo68U6VYLHZwcLgpq4NRaFIp8/ZmNWrkbrnv3LlAwZ4rV3I7vvXsyZR4XXfp0iUisrS0lN37nDx5Ml5FSqDwgHt2NmvblhGxH39U1BR5J8w+OGiQxMTkPzucBw9mRGzIEOWs4XuQk5Nz/fr1BQsWjB079sCBA8UkDOTvz4hYgwaqXgdj7L8B9ydPmJYWAu4FJQu4SySsTRsmEn0m4K5Mn14QhoaG8sT2Tp063VNiudkSdEFYQp08edLExESF6cNfYm1tTURbVd1rBwpoy5YtRNStWzfZyA8//GBqaurn51fEI8sqAcqHipTp2DFGxOQ3OfONZQcOqGQ5JQ8PuAcEBMjaS+rq6rq6uhaT8yhOKpW2a9eOiH755RclT52Twxo1YkRs5Uolz/wdUWbAnXv8+HGPHj0+3fSjzIA7l5SUNGfOHN5Nc+nSpbLxEnR+JS5EYQrlU1dX9/LyevLkiaw7bUmkpUUTJhBj9PPP9PZt7uCqVWRlRWFh5Oys0sVBAdSoQUQUFqaMudatWxcZGdmyZcs+ffoodCKxWLxp0yY1NbWTJy8+eJCt0LlKjSZNmuzevfvp06fOzs6amponTpxo1aqVra3t8ePHC3dAvytXpB060KBBFBZGjRrRv//SuXPUrNnXv7NdO7pwgUxN6eRJ+uEHSkoq3AK+1f79+4lo6NChPNlfIpEcOnSIiIYMGaKcBYCiqKvTgQNkYkJHj5KnpxIm3LZt22Bvb/sqVWjGjNyha9fI25t0dGjlSiUsoHSLj48/dOjQuHHjKleu3KZNm2XLlu3YseOnn37q0aNHSkqKqldHN2/+aWPj2b//U1UvhIjot99IW5vOnKHMTKpdmzIyCvQeDERUowYZGRERicX0++/UrBmJi9nlRc2aNZcvX37kyJHz58/LqpRCKXD27Nn4+PhXr17JD6anp/v7+6tqSdwvv/xCRKtXr87JyVHtSqAg9u7dS0TDhw/nD6Ojo8+dO/f+/Xtegb0oNDU1O3fuTERnzpwp4qEKx96etLQoNJTS03NHuncnIjp1SiXLKam0tbUXLVoUGhrq6OiYnp6+ePHi2rVr7969mzGm6qUREe3fv9/Pz8/MzGzevHlKnlpNjdatIyLauzcjMjJKybODgtSpU+fkyZOnTp3iGXUqZGBgsHLlyocPH44dO5bXsy15VB3x/4xPM9yVxsLCQltbO4GXS1ZASRmplDk48Ma7HxsNhoQwPT3WqtXf+/YJ1uQXFGHZMkbElJDCGxMTY2hoSEQXlFVJefHi8+rq2W3bolryN4uMjHR1deWl8ImoWbNmXl5eBa+w9vjxY97p+6qdHatQgXl6skJUZwsJyS14ZG3NFP/OmZ2dzTfmy+6086uIOnXqKHpqyJPhvn79em1tbeGT+w4eZETP7OwUvUk/Pj6edyb/uJVHImHNmqmsd2tpcefOnRUrVtjY2PCNOFyNGjWcnZ3/+OOPihUrElHz5s3jVL2lnPeuPFA8Eu3S05m2NhOL2YdzQPg2Hh5s7lwWGanqdagiA0tm+fLl2trasiSsEpSBVUKFh4dramqqqanJOqfFx8ebm5vr6emp5EJSJicnh/dh2rdvnwqXAQXx4sULkUikp6cn20a/bt06Iurbt68gx/f09CSifv36CXK0QggO/s+1xcOHjIiZmuKir0B4hvuDBw9kIxcvXmzSpAk/s+rQocPdu3dVuDzGWFpamqWlJRHt2LFDVWtwdr6oqak/Sr4VEwgnT4b7mjVrtLW1Fy5cqPyVqPD8Ko8SdH5VzFJQVC09PT0jI4Mp7F6lSEQ7dpCFBV2+TGvW5A7WrUvbt1+7ebPv+PFjwpSTPg2ForQM92XLliUlJfXq1atjx44Kn4yIiKZN62Rurn7tGu3YoZwJSw9zc/NFixa9fv3a3d29fPnyQUFBI0eOrFu37rZt27Kz89sxEBkZOX78+IYNGx46dMjAwOBO9+4UGkpOTiQXICuounXJ359q1aLbt6l9e4qIKPzPUwBnz56Njo6uV69eo0aN+AhPeEd6u/JlZ2dnZGTk/0orjEGD/p03r+alS0OGDEmX5UQpgKura2xsbKdOnfr27ctHduzatVhNLa1tW5o9W3HzlkppaWnnzp2bOnVqlSpVrKys5s2bd/XqVZFIZGNj4+bmFhgY+OzZMw8Pj9GjR/v7+9eoUSMwMNDe3j4mJkZVC87Jybl27RoR8X3QyufuTkeOfEz6u36dMjKoSRMqU0Ylyynxtm+nlSspOlrV61ApRb0nwxdUqlRpyJAhEomER0iJyNjY2NraOjU1ddOmTSpcmJqa2uzZs4nIzc1NcdeVIAiep/zjjz/KttHnSXgvoh49eohEIl9f38zMTEEO+K0aNPjPtUX9+mRlRZ06KW1bbGljZ2cXFBTE+4Jcvny5WbNmI0aMiIpSWXK3m5vbq1evrKyseAdplZg6tYpIlL179+5bt26pag3fD5xplCwIuCubmRn9+SeJxbRwIV2/njs4ZEjboUOHJiUl/fTTT1lZWSpdIHwRD7g/f67YWV6+fLl161axWMxvISqHoSGtXUtE5OLyvV8tF46hoeHUqVNfvnzp6elZpUqVZ8+ejRs3rlatWh4eHmlpaXmenJaWtmrVqjp16vCcFycnp6dPn0765RfS1S38Ciwt6coVatyYQkLI1paePSvKj5M/Hl6XXYdkZmbyrmUIuJcmHebNq1ev3oMHD2YrLPAdEhKydetWNTW19evX85Hk5OQFCxYsCgg47uxcpH8O35Pnz59v27atV69eJiYmXbp02bBhQ3h4uJmZmaOjo7e3d2xsrL+/v4uLCy8ozFWtWtXPz69BgwZ37txp3759hIJv0X1JUFBQcnJy7dq1eS8yJcvIoLlzadAgkgVALl8mIurQQflrAYDCmzNnjlgs3rlz57t372QjRLRx48bk5GSlLSMtLS3P/ekRI0aYmpo+fvy4evXqNjY2ffr0GTNmzIIFC9zd3ffu3XvmzJl79+5FRESoKggLMvv27SO509qQkJCgoCAjIyNewrjoKlWq1KhRo5SUFJVXOuJu3aK2bWnnzty7y3v2UPFYV0kiFotHjBjx5MkTFxcXDQ2NPXv21K1bd9WqVcr/5/zmzZu1a9cSkYeHh1h11dyqV68+bdo0qVQ6bdo03GIEkIeAuwp07UozZlBODq1Zszvpw83l33//vVq1aoGBgb/++qtqlwdfwgPuioxkEhEtXLgwMzNzxIgRst1qyjF4MPXsSQkJNGuWMqctVbS0tJycnJ49e+bl5VW/fv1Xr15NmzbN0tJy0aJF8fHxRCSVSnfv3l2zZs05c+YkJSXZ29vfuXPH09OTN8gtqvLl6cIFatmSXr70mTHj0aNHAhzzExkZGT4+PkQ0aNAgPnLy5MnExERra+vatWsrYkZQCT09PW9vbx0dnc2bN/MbKoKbPn16dnb2+PHjZSWVlyxZEhkZ2bZtW9mrCz4rJyfH399/zpw5DRo0qFGjxrhx406cOJGdnW1tbe3i4uLn5xcZGbl79+6BAwfKql3lYWFhwYtZP378uF27di9evFDyj0BEly9fJqIOKopwf5rPfuUKEVH79ipZDgAUUt26dfv06ZOZmblhwwY+0q5dO1tb2/j4+O3btyttGbNnz27WrNndu3dlI+/evUtLS9PW1n758uW1a9d8fHx27NixfPny6dOnOzo6/vDDD02bNq1UqZK2traOjk6FChUaNGjQpUuXESNGTJ06ddGiRdu2bTt+/Li/v//Dhw+TkIqsMDdv3nzy5ImFhQWvtE5Ee/bsIaLBgwfr6OgINQuP3Z8qHnXTnz2jbdto2bLch1euUEiIShdUYpUpU8bNze3+/fsODg6JiYlz5sxp3LjxiRMnlLmGWbNmpaamDhkyRFWbBWXmz59vYWFx/fp1fgcLAHKptqLNZ6mwhnuZMmWIKD4+nj8UvIa7TGYmGzJkPhENGTJENnjr1i0NDQ2xWHz27FnBZwRBGBszIhYdrajj37t3TywWa2trq6SX/cuXTE+PEbFz55Q/eWkjkUiOHj3asmVL/k5rYGAwePBgWfOl1q1b+/v7K2TipKTLY8YQUbly5QIDAwU//JEjR4ioVatWspEBAwYQ0W+//Sb4XPCpPDXcV69eTUSzZs1S0HTu7u5EZGxsLPg7Eg/iGxsbyz7rnz17pqWlJRaLb926JexcpUZkZKSXl9fAgQN5kw+ubNmyAwcO9PT0fPfu3bceMD4+vlWrVkRUpUoVWQVkpXFwcCCiPXv2KHleztWVEbFp03IfZmYyXV0mEimhC0ap1bAhI2IfSoyqkgprjC5atIiIfv31V/6wBNUYLdF4EQNDQ0NZFy7exL5ixYqZmZlKWMCZM2dEIpGWlta9e/f4iEQi4XcTe/fu/fjxY39//2PHjm3btm3p0qVTp04dOnRoly5dGjduXKFCBU1NzYJcsBsYGNSqVatt27ZhYWES1N4WDm8JOHPmTP5QKpVWrVqViK5cuSLgLPwGc7169QQ8ZqH99Rfr359Vrcp4m54xY9i2bapeUzH2aQ33z/L19eXPJCJ7e3tF90DieOVAHR2dly9fKmG6r9q5cyd/401JSVH1WkqVPDXcV6xYQURz5sxR/kpQw70QkOGuGpqatHTpz4aGhvv37//zzz/5YIsWLVxdXaVS6fDhwyMjI4Wa69Ytkk9P/Ptvio6mgwfp/fuPg7t2EcpAFUT16mRgQG/fKur4Li4uUql00qRJVapUUdQcX2ZpSXPnEhFNmEAZGcqfv1QRi8X9+vW7efOmn5+fg4NDSkrK2bNnHz9+bGlp6eXlde3aNRsbG4VMbGDQatOmfv36xcbG2tnZnT9/XsBjp6SkmJmZTZ06tWzZsg4ODhcuXIiNjT158qRYLB48eLCAE0Ex4ezs3Lt374SEhOHDh0skEqEOm5WV9csvvxDR4sWLedNUIpo2bVpmZub//ve/Fi1aCDVRqTF//vzGjRuXL19+5MiRhw4dSk5Obtas2fz5869duxYVFeXt7e3k5FSIjTLGxsZnzpxp27bt69evO3ToEBLyWBGL/yypVMo317dXUUp5nnz2W7coLY0aNKAPr0cAKDFatGjRqVOnpKSkLVu28JGePXtaWVlFRETwbGWFSkhIGD16NGNs2bJlsg1ba9asuXz5coUKFXbu3FmnTh0bG5u+ffuOHTuWl5T566+/zp49Kyspk5aWFhERERgY6OPj4+Xl5e7u7uLi4ujo6ODgYGNjU716dU1NzeTk5NDQ0GvXrrVr105B286+Qzk5OYcOHSK5ejKXL19++fKlpaWlra2tgBO1bdu2TJkyISEhzxVdmbRg9PRo2TKaMIFQ/EMofNeyu7u7kZHRuXPnrKyspk6dmpiYqLgZpVLp1KlTGWMuLi68aarKjRw5smXLlhEREatWrRLqmAEBdPTox4f//EORkXToEMn/r/XyIpTmguJLxQH/z/keMtw5Ly8vItLT0wsJCeEjEomE72j74YcfpFKpILPMmcPEYnbtWu7Dli3ZjRvM0pI9fvzxOZqa7P17QWYrzQ4d+vg/LTqaXbwo8PF5+oORkVFsbKzAhy6wzExWvz4jYosXq2oJpdPZs2eJSFdXVznJVjk5OSNHjiQiLS2tY8eOFfo4CQkJfn5+7u7ujo6O9evXz1McUCwWd+3aVV9fv3379sKtHfKj5Ax3xlhMTAwvsb1kyRKhjslPxOvVq5eVlcVHfH19icjAwODt27dCzVKatGnThr+BODg4eHp6hoeHC3jwlJSULl26VKhQpUmTl3fuCHjg/AQFBRFRtWrVlDTff8ny2aOickeWLWNEbNIklSynlECGO0OGu+rwsywzM7O0tDQ+8tdffxFRjRo1cnJyFDo1r4Fma2srmyg4OFhbW1skEp08eVKoWRISEp48eTJ9+nQiatGihVCH/c7xGon169eXjYwePVpB7x4DBw4kos2bNwt+5G/1119sxAgmlbIOHdiuXchw/4oCZrjLxMbGOjs7q6mpEZGJiYm7u7uC3oJ4yaxKlSoVq3Tya9euiUQibW3tFy9eCHLABQuYWMxkG07atmX+/qxGDSa/hUBXl8XFCTJbMYUM90+VoPMrZLir0ogRI4YPH56amjps2DDeZEMsFnt5eZUrV+706dMeHh5CTdSrF40fTzk5Qh3vOzV4ME2enPv3hw9p0SKBj8+7PLm4uPB7TiqhqUlbt5JIRCtW0JMnqlpFKdSlSxcLCwuexKSE6dTU1Hbt2uXs7JyZmTl48GBvb+8CfuPz58+PHDmycOFCBweHSpUqGRsbt2vXbtq0aXv27Hn06JG6unqzZs1Gjx69cePGPXv2GBgYnD17dsqUKXwLIZRK5cqV27dvn5qa2pIlS65evVr0A0ql0oMHDxKRu7u7hoYGEeXk5PAgwq+//mphYVH0KUqfJUuWnD9/PiEh4fjx405OTpUqVRLw4Hp6ev/880/Hjv737ll26kS3bgl47C9SbQF3WT67mZlsPUTomApQYnXp0qV169bR0dG7du3iI4MHD65Zs2ZYWNixY8cUN+/u3bu9vb0NDQ337NnDQ2yZmZlDhw7NyMiYNGmSUF03iahMmTK1a9desWJF+fLlAwIChN2/+N3au3cvEY0YMYI/zMjI4IUThwwZIvhc3bt3p2JTxp2IRCLavJlcXUmJrYW/C2XLlvXw8AgICGjfvn18fPy0adOaN29+he+qE05ycjJv+/fbb7/p6ekJe/CiaNOmzZAhQzIyMlxcXIQ6Zq9eNHEiijFASaWu6gV877Zs2XLr1q2goKB58+bxHtMVK1bcuXNnnz59fvnll2vXrpWR9fP6HCOj1e/f5/cEvsHI1pa0tcnd/T/9MJ89+xiCx4ayghCLSV2d9u2joUOFP/jhw4evX79uYWHh7Ows/NG/Rbt2NHIk/fkn7dhBq1erdi2lStOmTd+9e3fnzp1q1aoRUVpa2tmzZ2NjY8eMGaOI6UQikbu7u7a29urVq4cOHfr+/fuxY8fmeU5OTs6TJ08ePXr08OHD27dv37hxIzY2Vv4JBgYGjRs3btCgQf369a2trZs3b66trS37arly5Xr16uXm5lanTp0avKcwlApSqVR+N0OHDh1++eWXlStX9u3bt3fv3jymUBRNmzY1NjY+fPiwtbV12bJlN23aFBwcXKNGjSlTphTxyKWVvb29Qo+vo6Ozc2flzEw6fJg6dSIfH+rUSaETfj7gHhMTc/bs2WHDhil2biJ/fymRWFZPJieHbtwgIhK0hAAAKNWsWbMGDBiwatWqsWPHamhoqKmpzZgxY+LEicuXL+/fv79IJBJ8xjdv3kybNo2INmzYwAt/E9GCBQvu379fo0aNlStXCj6jtrb2lClT5s+f7+bmJmvyCYWTlJR0/PhxsVg89MN13fHjxxMTE5s3by4rxi2gnj17isXi8+fPp6enC9iOtSgaNKDBg8nDg/BSEpyVldXly5e9vb1/+eWXu3fvdujQoVu3bgIWjL1169a7d+9sbW35DptiZdWqVf/884+3t3d6enr+1Q7LlFmVmGiczxMqVyYiat2a9PVp7VqaM+fjl8LCPv4dgSwozhBwVzF9ff29e/fa2tqePn166dKlurq6ROTg4FCtWrWMjAxeVy4fdeq455+G3KwZde1KRPTbb9SiBcmXWV6/nvT1c/8uXG3eUm7tWurWjYRLWMklkUj4bepFixYVh9vUa9ZQ27ZkZUXZ2aShQUQUFUVZWbkfe1A4VlZWp079n737jmvy6uIAfhL2VHAi4gAVxS3uPdCqgKMVN86Ko4pbbGuLtbbG8SraOnC0xS3WBYi1uHELTsQJylBAEGTP5L5/XBoi4oInCeP3/fCHuYTn3hSaPM95zj3nxO3bt7/88ksiyszMHDp0qKGh4aRJkwqVahGKSCRauXKlqanp4sWLp06dmpyc7Orq+uTJk+D/3Lx5MzMzU/FHTExMeGyda9KkyQfW1r9//82bN0+ZMmXKlCnm5ubKjgmCysyfP//169ebNm0y/O9DYu7cuevXr9fX1xdwN8Pp06cvX768YMGC5cuXE5GHh4eOjo5QB4fPpa1N+/fT5Mnk5UWOjnTkSP7Jg+Bu3759/PhxXv+hY8eO8vGcnJwvvvji9u3bsbGx8+fPV8rc/zl3zr5BA51+/X4hakpEwcGUmkrW1oT9FQBl19ChQ21sbEJDQw8cOMBLck+aNOnnn3++fft2QEBAP6Hf0WQy2fjx45OSkgYPHsyL+BHRxYsX161bp6mpuWfPHvkHqLBmzpy5atWqU6dOXb16VfEtFD7XwYMHMzMze/fubfHf5Q1PeJfXcxdW9erVW7duHRwcfP78+f79+ytjio968oS8vKhJk4KRpUvpY8EGKL7hw4fb2NiMHj363r174eHhJ0+eFPDglSpVGjp0aKFbiS9fvuR1IFWGMebg4NCvX7+ZM2fyjJzatWs3a9bsxYsXvHn1B9jYrAsN/dATWrSgQYOIiFatIltbGjmy4Fvr15ORUf6/c3JK8goAlAsBd/Vr166dj49Pt27deLSdiNauXRseHm5iYrJy5coPZ7jr6Eg/3COiWrX87eG1a9P8+bRoUcG3Nm4ka2v5cUrwAioSGxsaMYK++4747eSNG+nwYWrenFq0oJYtqWlTUkj//Qzbt29/8OBBo0aNJk6cKOyCi6dqVWrfnlq1olWraOFCIqK9eykigjw81LywMq1169ZEdOvWLf6wSpUqderUiYyMfPr0aaNGjZQ3r5ubm6Ghoaurq5ubG+/KK/+WWCxu2LBh6/+0atWqRo0an3Xwr7/++uHDh//73/+++uqrixcvNm/eXOjlg6odP358/fr1Wlpac+bMadOmDR90dXXNyMjQ09PbtGlTyTPcuQsXLuzZs+e7775r1KiRkZGRg4ODIIeFYtPQoD//JCMj+v13cnSk/ftp6FBhjpyRkXH58mVfX98jR45ERUURkVgsFolEc+bMOXz4MD/50dbWnjZt2vTp0xcsWBAfHy+RSISZ+x15eXmXL19KTU1t124TH7l+fX+3brndu3chslTSpACgbGKxeP78+ZMnT/71119Hjx4tFot1dHRcXV2//fZbiUQieMB93bp1Z86cqV69uqenJx9JSUnhDcaXLl3aoUMHYaeTMzY2njp16qpVq1avXs3rn0DxFAqvJyYm/vPPP5qamiMU09MENXDgwODg4BMnTqgl4P78OdnZUWQk/e9/5OWVP6ivT8+eqX4tFUJKSsry5cvXr1+fk5NjZGQ0cOBAGxsboQ5+9uzZ/fv3b9y48ZtvvuHZKrm5uWPHjvX393/48KG5ublQE33Uzp07/f3979y5M3nyZH6X8datWzdu3OC1KD98XamrK83K+tDBq1Sh27eJiGrVIje3/KAEt2EDyTeilIJkRYD3U3cR+SJUnKapRQoODtbW1haJRMeOHRPkgIsXs9WrGWMsJ4c1a8YqV35v09TsbJaVJcic5ZOmJmOMpaayunWZhwfr0YONHMmICr40NJilJXNwYO7uzNubhYSwT2l8m5GRwQvy/v3338p+CZ/u9m3WoAGrW5c9f84YY2vXstmz1byksu7p06dEZG5uLh8ZNGgQEe3fv18Fs3/xxRd6enoaGho2NjbOzs4eHh4BAQGvhWgxI5PJeLHLevXqxcbGlvyA8AHKbpoaGxvLt3+u5h8bjDHGtmzZQkSVKlUKDw8XaiLGWF5eXsuWLYno559/fvPmjYBHhpKQydjcufmfaDt3luhQjx49Wrt2rZ2dneLehVq1an399dcbNmzg9fq7deuWrNC0fe/evZqamkS0cOHCkr6S97h69SoRWVtby0d4neU9e/YoacYKYvjwR126PLl/P/njT1UyNE2tsHJycnjRBh8fHz6SnJzML+4uXbok4ET379/nVUF8fX3lgzzP3dbWVt4PXEliY2P19PREIlGIYt9A+BzR0dFisVhXV1d++vH7778T0cCBA5U36eXLl4nI0tJSeVO8T3Q0s7JiRKxTJ5aaqvr5y7DPbZrKGJPJZF5eXvx0WiQSOTs7x8TECLuqvLw8nuQkkUjkg8OGDSOisWPHCjvXB6SmpvKE+p0K54vdu3cX8CxuyRK2YgVjjOXmspYtmYnJe5umluNAFpqmvqsMnV+haWrpkp6ePnr06JycHFdXVx6ME5CWFm3eTMnJRX/39GmaOJEmT6ZPbq9YQRka0po1tHw5EdHatXT8OK1YQSNHUtOmJBJReDj5+dFPP9Hw4dSsGVlaJvXs2dPV1XX79u03btzIyMh494Dr1q2Ljo5u164drzRSehgb06JFNH26utdRXlhaWlaqVOnFixdxcXF8hOe83+b37oWTkZHRu3fv3bt3y5PZX79+fenSpaysrCtXrty/f3/nzp2zZ8+2s7MzNTUt+XQikWjHjh2dOnV6/vy5g4NDenp6yY8JaiGTyZydnWNjY/v16zdv3jw+GBoayv+9adMm3n5AKBoaGr///rtIJFqxYkXy+z6ZQOVEIlq7ltzdSSqliRPpc2sIZWXRv//SsmVPGzZsaG1tPW/evFOnTuXl5XXu3PmXX365efNmdHT0tm3bZs2ade7cOQsLi8DAwN69e79+/Zr/+KhRow4dOqSjo7N69erp06cr7sgRSqHy8VKplAdBunXrJvhcFUpo6FeXLjWUSiPUvRCouLS0tHgL7l9++YWPGBsbT58+nYhWr14t1Cy5ubnjx4/PzMycOnWqfG/WsWPHvLy89PX19+zZw/uBK0+NGjXGjx/PGOPdv6AYdu3aJZPJBg8eXKlSJT6i1HoyXIcOHapXrx4eHv748WPlzfKu+Hjq14/Cwqh1azp+nJRT6wjyXb9+vXPnzuPHj4+NjW3fvv2lS5d27tz54VLmxaChoeHh4UFEv/zyS0xMDB9cu3Ytfwu6ePGisNO9z6+//vry5cuOHTvK/8fZv3//hQsXqlev/v333ws7l6YmbdxIb94U/d3z52nCBPr6a9q7V9hpAUpM3RH/IlTkDHeeHNGsWbOMjAyhjhkdzRSzTu/eZWlp7P79t+4B3rnD0tKYVMpiYtjo0ULNXE6kp7Px41lYWH6GOzdwIOvRo/Azc3JYSAjz9mbu7szBgdWsyVq1Olvo/zgzMzMHBwd3d3dvb++QkJCEhAQTExMiOn36tApf08fdvs3atGF5eaxNG3bkCDLchcEDOidPnuQPjx49SkRffPGFsLP89ttvRNSuXTv5yA8//EBEDg4Owk6kKC4ujkdjv/nmT6lUefNUdErNcOcd3qpXr/7y5Us+kpWVxZPQJ0+eLMgU7/rqq6+IyNnZWUnHh2L7+WdGxMRiFhDAnj0rGL97t4gcothY5uXFnJyYsTEjYtWrS0UisampqZOTk6en5/tyu54/f96gQQMiatWq1atXr+Tjx48f59mjY8eOzc3NFfZ12dvbE9Hu3bv5w6CgICKysrISdpYKqFAGlhohw70iS09Pr1q1KhGdO3eOj8TFxfF88M/KUf2AxYsXE5GlpWVKSop8Cl45YePGjYJM8VHh4eGamppaWlrP+UZU+Ez8/crPz48/fPLkiUgkMjQ0TEtLU+q8vCv4unXrCo2nKi3tPCmJtWnDiFiLFiwhQUmTlGefnuEeHR3t7OzMi6qbm5t7eXnJPmWrewnw7MxJkybJR5YsWUJEbdq0kSr/YiwsLExXV1ckEl29epWPZGRk1K1bl4i2bdsm1CwvXjDFU8h791hqKgsNZZmZBYN377LUVCaVsvh4Nny4UDOXIshwf1cZOr9CwP0t6g24HzhwgIgMDAxCQ0NVM+O7fv+d7dqlrslLo5QU1r07I2IdO7Lg4ILx16/Zo0cf//GYmOR//vln5cqVY8aMad68+bs5L7q6ukTUt29fxZ/KyMh48uSJ0C/l8/CAO2Ps6lVmacl+/RUBdwG4uroS0cqVK/nD58+f8/imgFPk5OTUq1ePiA4fPsxH0tLS+JtqYGCggBO9KzQ09Isv9mtqsvnzlTpPhaa8gPuNGzd4NTPFDfLffPMNETVo0EAeVhBcRESEvr6+SCRS9t8nFMPatex//2OTJrEqVZj8pKxePcZrC+XmsgsX2OLFrEWLgtJqIhFr3Zp9/z27evVOXl7eR6eIiYnhV7ONGzeOjo6Wj587d87IyIiIRowYIWB9hry8PH6mFxER8d9rXEtEEydOFGqKCgsBd4aAe+nAfwv9+/eXj/ALunHjxpX84JcuXdLQ0BCLxRcuXJAP8jz3vn37Kju+pmj06NFEtGbJEpXNWG4EBwcTUbVq1eQfLu7u7kQ0YcIEZU/N8+j79etXaLx3795mZmb8FnVISIhQf0jJyaxdO0bEGjViQhc1qSg+JeCekZEhkUh4BXM9PT03Nzfl3UFR9PTpUx0dHbFYfO3aNT6Snp7Oy2r9+eefyp596NChRMR323D8/6PWrVt/yumfMmzZwpT/utUAAfd3laHzKwTc36LGgHtYWJixsTERbd++XQXTFWnPHqZQthdYUhLr2JERMTMzJkiZxNzc3JCQEG9vb3d3dwcHB0tLSyIyNDQcrbCt4NGjR1ZWVk2aNMnOzhZgyuKSB9wZY1OmsLp1EXAXwJ9//klEI0eOlI/wPKwXL14INYWXlxcRWVtby1Mb1qxZQ0TdunUTaooPOH+e6egwIqbazhcViJIC7qmpqbxzr+Khjh8/LhKJdHR05NMpCd92amtrq4J8HCiGSZNYmzZMvsmhXj3m48NGjGAmJgVxdiMjNnQo27aNFePNLC4ujm+kqFevXlhYmHw8MDCQb/Z3cHDIVMxlKgEeZ1EsoTt48GAi+uuvvwQ5fkWGgDtDwL10eP36Nb9dFxQUxEciIiK0tLS0tLSeKe7W+XxpaWkNGzYkoiUKYW7e5qRy5cqRkZElOfjnenT37vlWrZiBAVPHJXOZxusOzZo1Sz7i5eXVqlWrgIAAZU/9+vVrDQ0NHR0dxYCsVCq1sLBQzMcyNzcfPXq0p6fnQ8WWa58pPT0/aaxBg+J8NAP30YC7j48PT3XipyslfJP5XIsWLSKiTp06yW/S7Nq1i4hq1Kih2CBHcOfPxxoZmRsaGsqvYaOiogwMDIjo/Pnzypv3A/bvZwoF7csVBNzfVYbOr1DDvVTIy8sbO3ZsSkrKsGHDJk+erJY1rF9P331HT57QypVqmb/UefWKevWiq1epXj0KDCxohF0SmpqaTZs2dXJyWrp0qa+vb1hY2Llz57Kzs/fv33/t2jX+nHr16mlraz948EDAcpMlJJFQUcXn4bPxaOmtW7fkIy1atCDhyrgzxvifzeLFi8ViMRHl5uauX7+ejwgyxYd1705//UUiEc2eTT4+KpgQhDFt2rTHjx/b2trK696+ePGCJ62sXLmSNxtQnu+++65OnTrBwcH8IgFKoRkz6OJFOncu/2F2Nh04QElJZGlJLi7k40Px8XT4MH39NdWq9dkHr169+tmzZzt06PD8+fNevXo9efKEj3ft2vXMmTNVq1b18/MbOHBgWlpayV+IWCx2cnKSd0xhjPFSp/KS7gBQ1pmamk6ZMoUU6rbXqVNnxIgRhoaG9+/fL8mRZ8+e/eTJk9atW/NKfUQUHh6+cOFCItqyZUuhmKmyNWrevLu5OaWn02+/qXLesk4qle7bt4/eLtc+bty4W7du2dnZKXt2U1PT9u3bZ2dnnzlzRj4oFosjIyPDwsI8PT2dnZ1r16794sWLvXv3Tp06tXHjxjVr1nR0dFy5cmVwcDBj7BMnyswkR0e6cIEsLCggoDgfzfBRN2/e7N69+6BBg54/f966desLFy74+vrKg++qsWTJEjMzsytXrvC/aiIaM2ZM165d4+LieKFIZZBKadasGnp6kStW+Nf6729r4cKF6enpI0eO5E1TVWzjRlq0iMLDSWkvGqC41BruL1oFzHB/JpFYGBvXq1cvKSlJ2XPBp4iJYc2aMSJmbc2iopQ71/z584nI1tZWvv3q3LlzIpFIT0/v6dOnyp37P+9u/AoIYP/8U/AwOJjduqWatZRn2dnZfOufPLGF//aXL18uyPF5UfjatWvLt0ds27aNiFq0aKHKbc4//pif8Yq/GcEpI8Odb7wwMDCQJ1JJpdLevXsT0YABA1Tzl7Nz505Sfj4OFM+kSczLi504wZo2ZTk5rF499uQJ27iRCfsBlZqa2qtXL/5noJglff/+fX45161bN8H/PO7cuUNEFhYWwh62YkKGO0OGe6kRHR2tra2toaHx+PFjPhITE1PC2mjHjh0jIl1dXXmuq1Qq5b15xo4dW9IVF8+VK4yImZoypZV9K39SUlLGjRuno6Pzj+J1jgotW7aMiKZNm/aB58iD74Xu4lSrVs3BwUEikQQFBX1gU2B2dvaQIcM7dYquUYOVIEUeGHtPhntCQoKrq6uGhgYRValSxcPDQ11FVBhjO3bsICJzc3N5B4Lg4GCxWKytrS1/AxTWxo2MiNWvX1BI/fLlyzx2ga4SyoAM93eVofMrZLi/pVOnTl27dlV2c/nCTp2q9913YaamR/bt4xF/UK+ICOrWjUJCyMaGzp6l2rWVO92yZcvq1asXHBy8adMmPtKjR4+xY8dmZmbyWz7Kdu8eWVrSX38VjEREkKMjzZ1bkNjepg21aqWCtZRz2traNjY2Mpns7t27fOTdnPeSkIdftbW1iUgmk8kT3nkPH9VYupScnSk1leztKSpKZdNWRLVr1+7atSsvTlU8T58+5a0FNm3aZG1tzQd/+eWXM2fO1KhR488//1TNX87YsWM7duxYo0ajjRuTVDAdFEP//tS4Mf3+OxGRhgbNmEFWVkIe39DQ0M/Pr2/fvnFxcT179rx+/Toft7GxOXPmTO3atQMDA/v06fP69WsBJz1//jwR9ezZU8BjQkVWt27drl278q5xoEbm5ubOzs5SqVSe5F6zZk1eZ6bY9PT0zMzMJBIJj30Q0a+//hoYGGhubr5hw4aSrrh4Onakrl0pMZG2blXPAsogIyMjfX397Oxse3t7nu+i4gU0adKEiPbt2zdlypTdu3dHR0e/+xxLS0sXF5edO3dGRkaGhoZu2bJl1KhRtWrVio+P9/PzW7x4cdu2bWvUqMEjrYXk5eWNGjXq6FHviIjO589n/ndmB8LgW4etrKw2bNggFotdXV3DwsJmz57Ng+9qMWHChPbt27948YJfBhJRmzZtnJ2dc3Jy3NzcBJ8uKYnc3YmI1qwhXV0iIpmMNmyoYWbWfuHChfj4UwELC4uuXbvWr19f3QuBT6PuiH8RisxwP3To0MmTJ1W8ElVkuL96xczMGBETKMUVSujRI2ZhwYiYra3qmrkfOXKEiIyNjeUt4+Lj43l17wMHDih79oEDGdFbJdrHjWNEzNlZ2TNXRJMmTSKijRs38ochISFEZGVlVfIjnz17loiqVKkiT5/39vYmovr16+fm5pb8+J8lJ4f17s2IWLNm7M0bFU9enhXKcC+hnJycDh06ENHw4cPlg9euXdPS0hKLxSooZqooKOi1WCzT1WUKRbyhVOAZ7oyxyEhWuzarUiW/aaoyZGVlDRkyhIgqV658+fJl+fjz58+trKyIqHXr1q9evRJqumHDhhHRtm3bhDpgRVZkhntAQMDBgwdVvJIiM7BGjhzp6uqq4j00ZSgDq/x5+vQpL5YtYJucxMRE+a6vmzdvamtri8Xi06dPC3X84vDzY0SsZk0mUKOLikAmk0kkEh4htbe3l29tV7a8vLxVq1bp8iClAsV2qR8+QlhYmJeXl4uLC4+1HTp0qNATpFLpmDFj+GcoL0EDJaSY4R4QEGBjY8N/a3Z2dvfv31f36vLJE8zlFeRjY2N5d0DBA2iuroyI9epVMLJjByNiDRtK09MzhJ0LOLXsIExPT3d3d3dyclIcVFeG+5EjR06cOKE4UobOr8pGwD05OblmzZqqf2tTesBdJmOOjoyIde9eRFEPeIeXl5dSdyrdvx/Nb39068ZUXNiA921TDHt5enoSUc2aNZVaaOjCBUbEDA1ZbGz+yN27TCxm2toIeynFb7/9RkRff/01f5iXl6evry8Sid6UOCz9xRdfENFPP/0kH7G1tSWizZs3l/DIxfP6NbO2ZkRswACm8oB/uSVswH3evHlEZGlpKQ9CJSUl8eqT3377rSBTfBZ+q+/LL1U/M3yIPODOGFu5khEpMeDOGMvJyeFxcAMDg1OnTsnHX758ya97GzduLL85XWyPHz9et24db/D16NGjEh4NWFEXhNnZ2bwbc48ePW6psMTYuxeEDx484H1NzMzM/vrrL5XVWCtDF4TlkpOTEwnRV/xdmZmZ/A9+7ty5gh/8s7VuzYgYbhx+pjNnzlSvXp2I6tSpc/36dWVPFx4eLm8WMnbs2GvXrnl6ejo5OZmamhY7+C4vIcLJZDIXFxeewqWCV1RB8BMPX1/fgQMH8t+RtbX18ePH1b2uwkaNGkVEI0aMkI/wwiM2NjYC5l2FhjItLaahwe7cyR9JScnPHd27V6hJoDAVB9xlMtnu3btr165NRCKR6I78l62OgPuDBw8GDBhARBYWFunp6fLxMnR+VTYC7jk5OR4eHpUqVSIiLS0tV1fXkgenPsX06dOJaMOGDcqaYO1aRsRMTFhEhLKmKEeePn3KP+csLS1dXV0DAgLkhaoFERwcXLVq1R49DvXqxRRax6tIZGSkoaEhEfn5+fERqVTaq9fAHj3Ozp2rxJsxnTszIrZsWcGIvT0jYqXhCqJcCgwMJCJbW1v5SPv27anELd1v374tEokMDAzk75wnT54koho1amRkqC3d4OlTVq0aI2Lr1qlrCeWNgAH3f/75RyQSaWpqXrlyRT7Iz9fbtWsn7LvrJ4qNZcbGjIipfD8bfMi5c0xeBTQnh23bpvRywXl5eRMmTCAifX19xTK7MTExzZs3J6Jff/21GIfNzc0NDAx0c3OTZ6hpamruxTWiQN69IJRKpV5eXjVq1CAisVjs7OwcK7+3r0y8RPJ3332nOBgUFNSlSxf+e7e1tQ0MDFTBSsrQBWG5dOvWLZFIpK+vHxISIuyHGi/F1qRJEzWeYhXYu5cRMSsrJG99rsjISL7PT1dXV3lbnWQymaenJ7/Kq1mz5rFjxxS/m5eXFxISwoPvPAYiV7NmTScnJw8Pj6CgoE+5Tcj7Qunr65fwmgIUNW7cmIj4fggTE5P169erft/wp4iKiuI5BOfOneMj2dnZDRs2FDZ5tH9/RsSmTy8YWbiQEbFOnZgKm4VVOKoMuAcFBXXt2pW/BbVp06bQyVKR51dKkpiY6Orqqqmpyf/X8/DwUPxfrwydX5XGgPuAAQMqVao0YcKEQlVlVNye4tSpU2ZmZtWqVTMyMnJ2dvbx8RE4AHH3LtPVZSIRO3pUyMOWXyEhIV999RXfHsVVrlx5+PDhXl5ecXFxJTz4pUuX+B0dR0fHzMwcQRb8uXihybp168oTFu7elfHbyDduKGXGQ4cYEatevSB6whPejYxYif+LQtFSU1PFYrGOjk5OTv6f2dSpU4nIw8OjJIcdPnw4Ec2fP18+wqsSSySSEi23xC5fZl9/ze7cYV5eBadip06xp0/ZsWNv3Wrcu1d1RZzKrvHjx1euXLl27dqurq6BgYHFztOMi4vj+8ZWrlwpH9y6dSsRGRoaKqnJ0qf45RdGxGxssCuiFJk2jSmWF/ryS6aQ7KIsMpls1qxZRKStra24az4hIUEikXzWX35kZKSnp+fgwYP5tShXpUqVUaNG7d69WzFfBkpi7NixVapUGTp0aExMjOJ4UlKSm5ubjo4OP22TSCRZWVnKW8b169cbNGhQs2ZNCwuLQlEnmUy2c+dOc3NznrQ1duzY6GjBio28KyEhYeLEiaampooph6BizZo1kwcxdXV1zczMbG1tHRwcnJ2dXV1dJRKJl5eXj49PYGBgWFjYJ17onTp1it+uLi1JxHl5rGFDRsSUX4Wy/MnKyuK3T4jI2dlZ8Dsoz58/513oicjJySnhY2e6vF2qk5MTrywqV6NGjQ8H33m1bj09PTXXOCp3hg8frqmpye8ZlzzgoFS8a3erVq3kIbLDhw/zYOVH//A+hVTKVq5kdeoweYju6VOmo8PEYlZK3gvLq/edXwnr5cuYCRMm8O2ANWvW/OOPPwp1Zv7A+ZWwcnNzPT09q1WrxjNjXFxcChWTLFvnV6Ux4H7jxg0eVa9atermzZsLRdWDg4N5R3giat269YULFwRfwOPHjx0dHfkUZmZm8o86U1PTCRMm+Pr6CnCpkJbGGjdmRGzWLCGWXIHk5eXxDDVeLoMTi8W2trZubm6BgYEfaNr+PufOneOdlIYPHy4Pg6pebm5uixYtiOjHH1fIB/l9Y1tb4dNW8vKYjQ0jYv+VE2fsv4T3n38WeC5QxNMN5LepN2/eTEQTJkwo9gHDwsI0NDS0tLQi/gtgX7t2jYiMjY2VWo/o03l6MpGI7dqV/3DECLZ3L+vVi/n7FzzH2prdvq2W1ZUl2dnZtRX6ONerV2/+/PmXLl36rPc9mUxmb29PRD179pT/4OPHj3n61e7du5Wz9k+SnZ0fN9i0SY2rgLcMHMgU68S2asUUNkUokUwm41WPNDQ0vORFbT5NXl5eUFCQu7u7ra2tYuNfGxsbNze3gIAANX7Wl1fPnz/nUXVjY+OVK1cWOlV+9OiRg4MD/y00bNjQ19dX8AVER0ePGTOG/7r5SZ1IJBoxYkTE27tIeVlSXV1dsVjcunWQuzsTPEc5Jyfnf//7n3xj7pMnTwSeAD7NnTt3tLW1NTQ0qlevzrPkPqpSpUqNGjXq0qXL4MGDv/766++//97Dw2P37t0nT568ffv2ixcv4uLi6tSpQ0S//PKLul+fgs2bGRFr2RJZpsXzxx9/8NLq04cNE3Dfube3t4mJCRFVr1793XrrH8WD787OzoonfvxoDg4OEolEHnz/8ccfiUhbW1sZb63g6+ur4vLZxZORkcHLQm7dulU+2K9fPyKaJVzESfHsiZdGnjxZqGND0T58flVyOTnMw4O1aJGhpaXPq4kUanjziedXgjh9+jTfzEpEvXv3LvS/Xlk8vyqNAXfGWGhoKK9HTERNmjRR3FDM+fj48DcUInJwcJA3iCihtLQ0d3d3/gdtYGDg7u6elZUVEhIikUjkG1GJSF9f38HBwcvLK6XY26onTszvJ1gatiKWWeHh4TwLgMeJuGrVqjk5OXl5eX1iqNHf319PT4+IxowZo/Y9YpcvX+7Rw7tKFZm8VUF6OqtfnxGx9esFnmvPnid6eszKquCD892Ed1AGno0ujx9dvXqViFq2bFnsA06ZMoUU6sKz/1oCqKUMd5E8PZm9PatTh/HGVAi4l4RUKg0MDHR1dVW8AKtWrRrfifUpYcTc3Fw3N7eaNWvKEyWysrJ4sZqJEycqefkfx9+ITE2x46G0UFfAnZNIJDzmvmPHjo8+OSEhwdvb29nZmcc45OdsdnZ2Hh4ekZGRKlhwRfbkyRNeNZuIGjRo4O3tXegJAQEBvB4uEdnZ2X20SPEnys7O9vDw4BeB2trarq6ucXFxEomEnxzq6em5ubkVOmMPDw+fPduTiBGxevWYgI1dlfQa4XNlZWXxLJZvvvmGj7x+/frBgweBgYFHjhzZsmXLsmXLXF1dR48e3adPn+bNm5uZmWlpaX1KUF4sFnfu3Fmp26w/W2YmMzNjZmYoUlpsN2/e7GhrG12zJqtShb0Tefhs0dFB06fzP5hhw4aVsNe3TCa7f//+pk2bRowYwbcnKp7+8fM3TU3Nw4cPl3TZUMbt37+f35KRl1++f/++pqampqam4PcMTp3K3xb/8qWwB4YifPT8qtiOHGFWVoyfDs2a9e/Tp08Vv/u+8ys+UuT5VbGp6xxS2UppwJ3z8fGxtLSUR9XD3u7hmJGRUehkOrUEhbdlMpmXlxf/DBOJRM7Ozu9u2Xj06NGvv/6qmFitr68fNXMm27v38zps7t/PiJi+Pis1va3LuoyMjICAAFdX17p168p/OxoaGl26dOH3/9/3gz4+Pvz+ytSpU4uRGq8MLi75XVvlSSr+/vmfZyXuElcgIyPD3NzczKzd4cP5H5LyhHc1tdisQFasWEFEc+bM4Q8zMjI0NTW1tLQyMzOLcbSYmBieqSfv+8e7w+nq6r4sNWdAnp5sxgz2/ffMxYUxhYD7b7+xmzfzv+rVQ8D9s4WEhLi7u/O2hFyVKlU+sQaaYisUXrujQYMGQp0zlVDfvoyIzZ6t7nUAY4yxgQNZnz5s0qT8L1NTlQbc2X8xd5FI9L7SWzwxws7OTjGJ1dLS0sXFxcfHR6kFTOBdhbKT7rxdgYi3ZapcuTIRaWlpubi4FCog+bl8fHzq168vv1gIV2jpGx0d7ezszHOyzM3Nvby8CpViOHeOtWyZf53ZowcrYWNXxSz+Ro0aIdVUvRYsWEBEVlZWn3V5mJGR8eLFi6CgIB8fHy8vLw8PDzc3N2dnZwcHhy5dulhaWmpra//111+FQhKlwp07LCOD3b7Njh5lN2/mb4zNzmZnzxY8JyWFXb6spvWVBcnJbOhQRsREIubmxop9YejtzapUYWLxD926KaNNSFhYmJeXl4uLC7/s1dHRMTQ0/JR70lARdO/end5uFj1jxgwi6t+/v4Cz5Oay5s0ZEVOoTAlK9+Hs78/14AEbMCD/FMja+q00OK4k51ef5d2k50JRkTJ9flWqA+6sqJsq725wKPkv+9q1ax07duS/wvbt21/52KVkRESEh4dHly5dahkZMV1dRsR0dJidHfPw+KTS18+fs86dmcJmHxBQWFiYh4eHnZ2dtra2/MK7Xr16Li4u3t7eiqfde/fu5RfnCxcuLMl7hLDevMlv9v3nnwWDgwczIubkJNgsPObbsmVL+W2GrVsZEWvYkGGfvbKdOHGCiHr06CEfsbGx0dHRefDgQTGOxi8pnRT+OMaNG0dEM2bMKPlShcID7ny7xuXLBQH3bt2Yk1P+l5ERAu7FxyPvTZo0kb/pmZiYODs7e3t7y3tCvI+/v79IJNLS0rp27ZpqVvtRISFMU5NparJ799S9FGBs4ED288/s/Pn8r4YNVR1wZ4xt3LiRl5Vc9l+P77S0NB8fHxcXF16Sm9PV1bWzs5NIJPeR0KBWH62/+fr1a3lbJlNT0+K1Zbp161aPHj34r77I7bDc9evXO3XqxJ/Wrl27y28HHPPy2JYt+f29NTTY1Kns9evPXYiq69TDRwUGBmpoaGhqal69elXda1GV5GTWsSPr2ZPNm8d692a2tuz1axYTwypXLnjOzZusSRP1LbEskMmYRMI0NBgRs7fP35j56eLi2Jdf5kew+vcXMlXqPR4/fszbgB85ckTZc0GZcPPmTQ0NDW1t7YcPH/KRhIQEBweH4OBgAWdZvz6/VTM+61Tso+dXnyIpiX3zDdPUzN9S/PvvhVtnCXJ+9Sk+mvRcDs6vSnvAnXvx4oWLiwu/1qpVq5anp2ehZGTFiPln/bJLGK9PefmS/fYb69kz/4OZiGlpsX79mKfnW5H32Fjm5sb69mVffsk8PFhuLvrBqYD8arxWrVryq3E9PT1+Nb5s2TL+F+Xm5qbulRa2cycjYlWqMPn7Z2QkMzRkTZowhZzU4ktMTDQ1NSWigP8a4aWnp/fs6daiRTL6LalAXFwcERkbG8vfbaKioopXUPjNmze8itmN//rqRkZG8oqlpSr9igfcGWNHj7J27ZiTE0rKKMvn1kCLjY2tUaMGEa1du1b1q/2A6dMZEVNI0AG1UW9JGTlPT0/+qf3FF1/06tVLsfhDnTp1pk2b5uPj89HbS6BKiYmJrq6uPLPBxMTEw8OjUOG+jxaQfJ/PjddLpdLt27fz9zqxWDx37tJCu1iTkpibG9PRYUZG7LN6kuXlsV27bvBLXw0NjeJd+oKwUlNTraysiMjd3V3da1Gh775j48YVPJw8mc2di4B7MZ05w6pXZ0SsTp3PaAd58GD+vTtjY+bpqcz1vWX58uVE5ML3kAIw9vXXX/OUZCUdXybLT28/elRJM8BHJCQkzJgxg59fValS5a+/7nxWcDExkVWpwjQ1mYsLK3TO8uoVW7hwIz+/qlat2pYtWz58fvUpZULe58MhXKlU6uXlVb16dX7m5uzsHBsb+xkvstQoGwF37saNG507d+a/krZt2168eFHxu4VOpuXlGt5H2Io0LC6OeXqyfv2YllZ+5F1Dg/XsyX7/neXkMBsbtmQJCwtjt26xvn3ZzJnFnwg+n1QqDQoK4kEofrnOb5GJRKJVq1ape3VF69OncBOSK1fYx0pEfCqeE923b1/5CE94t7W1LTWJ/uUc78asuDOreH7++Wci6tevn3yE1wYZO3ZsCY8sLHnAnTHm4MAqV35vwD07+/MKdMH7hIeH851Y8o6Rurq6PPIuLyYjlUr79OlDRP379y89u3y4+Hjm6ckUa1GEh7OEBBYa+lbC2Z07DCFWZSslAXfG2L59+3j/Qx7ctLW1dXd3l3eNg9Lp4cOHAwYM4O9C1tbWx48fL/QEb29veT3A0aNHf/i3WZKKNPI9y+3aHTcwYO7urFAhtwcP2GfVQOYVafT0MszN6/bo0eNWCUvSgEDGjx/Pz2krVm/kFi2Y4qXxjRusYcP8gHtqav7XpUsIuH+qyEjWoQMjYrq6bNu2jzw5KSm/JCgRs7NTcSX9mzdvElHt2rXxUQhcXFwcz8fyf7dKSHGFhzPFnolXr6JYg/o9ePBgwIAB1ao1MzKSFVkT5gOOHWOFSqDz1qmVK7PWrROLd37FW08XWRPmXRMmTOCXqBYWFnv37i309nX27NmWLVvyM8MePXrcLstJeWUp4M4Yk8lk3t7evDu8SCRycnIq1BtXfjK9evXqDxxHST1XGWMsMZF5eTEnJ2ZgwIhYp05s1y7Wq1fBExISWKVKn5c/A8KJiYnZsWPHsGHDtmzZsnv3bnUv570eP2a6ukwkeqv0oiCio6P19fVFIpG8tP27Ce+gbAMHDiSiQ4pBrGKJiIhwdXU9d+4cf5iQkGBgYCASiUrbZb9iwD0ighkYFB1wP3CADRvGZs5kv/6qlmWWT/IaaPLbjTo6OryH5LfffktE1atX//RkBFXasYMRMfnb0tixzMuL9e3LfHwKntOsGftvdwcoy7ffssDAgocuLiw0VD0rycnJ0dPTE4lEW7du/cS+6FBK+Pj48KRjIrKzswt9+29IXkBywQd3tQjSL+vJkyhHx/zIWIMG7NixYhyDPXvGhg1j8p6rR49GFecooARHjx7lW7vk5RQqiqpVmeLWxhcvmL4+i4lhGhqsVav8L2trBNw/Q1YWc3XN///c2ZllZBT9tBMnmLk5I2J6ekwiKX7l9+KSyWS8tFqhhhlQka1evZqIGjduLNR9x9Gj39p8X7Mme/FCkANDSfn5xcm7ng4Zwoq3xf34cWZtnX+QAQPYw4fFKYf1WZ1dv/vuuyKTnqOiouQFSGrXrl3C6vClQRkLuHPp6enyWyj6+vrv3kJ58uTJ+/rFBQcHd+vWjf8dtGnT5sKFC8paZXIy27uX+fiwhQvZkiVvfcvWlp0+rax5obz48UdGxJo2Fbio+sSJE4lo5MiR8pH58+cXypIGZfv++++JaEmhd4YSW7JkCRE5OjoKe9iSS05mivfIX7xgqans+fO3cpOfPmXp6Swnh8lkzM5O9Wss/6Kjo3/77beePXvyfYI88i4Wi//99191L61oO3awDh1Y48b5WagIuMPly5d57RF1LwSKgyenGxsb8+T0d9syRUVFJb9ni5Niv6yGDRuWvF/W6dP5O+KJWO/e7NMbj6WnM3f3/P5N+vrM3f29UThQvbi4OL7X+ffff1f3WlSuRQt26VLBw6Cgggx3OZSUKYYdO5iuLrOwYPHx7NUr9v33zMGBDR/ONm1ieXnsyJH895Fu3YoZ6BLC5MmTiWjFihXqWgCUNtnZ2dbW1kT0vm7zn2v0aNapE5s0Kf8hAu6lCk9ONzbOr2/t6voZ+8UfPWIODvlvYw0bspK3I/3Ezq6pqamFMqffjfFmlIsTLBFjjMqmqKio77//fteuXURkYWGxfPly3irwfV6/fr1s2bKNGzdKpdIqVar88MMPM2fOlMcdlGjePDI2pqVLC0Y6dqSffqL/ylYCFCk7m1q2pEePaMUKWrxYsMO6ublt3rz55s2bDRo0IKIXL140bNgwKyvrxo0btra2gk0DH/T333+PHDmSiOrWrWv5NisrK75Z/nOlp6fXrVv39evXFy9eVCzhXeb4+dGdO/T99+peR/kVHx9/5MiRQ4cOderUqVGjRqNHj1b3ior2xx907RrJZGRuTkuXkrMz9e1Lu3fTrFnk6Jj/nObN6c8/qW1btS4UVEUikXz77bfTpk3bvHmzutcCxRQTE7N06dIdO3ZIpdKqVasuWbLkw2fjb968kUgkHh4e2dnZlStXXrx48Zw5c3j7rBLKy6M//qAlSyg+njQ1adIkWr6cqlV77/MZo7//poULKSKCRCIaNoxWr6b/auFAqeDo6Ojn59e3b9+TJ0/Ky6lVFLNmUXY2bd1a8FBDgxYvpiZNKCkpf/DWLRozhkJD1bXGsurmTZJKqVUrat2aHB1pwgRKSSE3N2rVilatol69yMGBFiwgFUQV3uPQoUPDhg3r3r37+fPn1bUGKG38/PwcHR2NjIwWL15sYGDwgWdqas7Iy9P6wBMaNKC9e2ngQFq+nDZtol69yMyMgoNJoU0eqF9MDC1dSjt2kFRKVavSkiU0c+aH3pbevCGJhDw8KDubKlemxYtpzhwS4vSK8vLy/vjjjyVLlsTHx2tqak6aNGn58uXV3n+CxRj7+++/Fy5cGBERIRKJhg0btnr16rrl5gRL3RH/klKs79OzZ88i6/vwnBpeyorn1LwRpPXkJ9q0iQ0dWvAwI4OZmLDnz1W3ACizzp5lIhHT02NhYUIeVjGDbMKECUQ0atQoISeAj8nMzDxy5Mj73pZNTU3btGnz5Zdfzps3b8OGDb6+viEhIR9tBsg3D3bv3l01L0FJ/vmHff+96vfjQmm0Y0d+Mx8zM/boUUGGu5kZa9Ag/0tbGxnuFQgvBb537151LwRKKjg4uGvXrvwjr02bNoGKRYv+w/tlyZszKalfVmIic3VlmpqMiJmYMA8P9uQJc3Ji8h4rvr7sr79YUBDr0iU/BczWlr3dRgpKhS1bthBR5cqVIyMj1b0WdUhIYC1bssGD2fLl7MsvWbNmLD4eGe5C2r37rSKxr14xY2MWF1cazlmTk5O1tbU1NTVRbA0UOTo6tm/f/qPxQFNTGf90e9/XkCFs9Gh24AD755/8zffIcC+1goNZ1675v7g2bVhgINuzh7m6Mnldlm+/ZQ8fMi+v/M7QYjFzdmbKaEeamJjo6urKO7uamJh4eHjkFtXaNSgoSJ4paGtre7HcnWCV4Qx3OZlMtnv37oULF7569UosFo8ZM2bNmjW8pxYRnTp1avbs2aGhoURkZ2e3fv16Gxsbla4vPp6aNqXNm+mrryg3l+bOpdhY+vtvla4ByqyJE6l2bfruO9LTE/7gDx8+bN68uUgkCg0N5QnvoEpJSUkvX76MiYkJV/DkyZOUlJQin29iYmJpaWlmZlarVi15RnyjRo2MjIyys7MtLS1fvnzp7+8vb09X5vj707x5NGQIGRkhwx3yM9w9PcnTk3x9ycQEGe4VGt+emJycHB0dzevVQlnn6+s7a9asiIgIInJwcPj999/lCU3nz5+fPXv2nTt3iKhHjx4eHh6tWrVS3kpCQmjOHDp9mojIzY08PKhPHzp+nIjof/+jJ0/Iy4uyssjMjFasoHHjqKIlT5d+4eHhrVq1Sk1N3b9//4gRI9S9HDXJzaUrVyg8nOrVoy5dSEuLsrPpzBmSnxYmJ1NwMPXurdZVllmLFpGuLi1bVjDSujWtW0c9e6ptSQp69+599uzZAwcODB8+XN1rgdKCMXb8+PGAgIAPP01HZ0129ocy3Fu0oDNnaPBgGj6cnJyoc2datQoZ7qUXY7R3Ly1eTNHRpKVFU6fStm3k6UnjxxMRdehAvXuTREJE1KMHeXiQMk+v6OHDh/PmzTtx4gQRWVtbr1u3Th6p4Fset2/fLpPJzMzMli5d+vXXX8tbjpUf6o74CyYpKcnNzU1bW5uIKleuLJFI7t27xzsTEpG1tfXx48fVtrhbt1j//szKijVuzCZPZrj5DJ/jhx9Y374sLy//oZ2dYEUCHR0diWjmzJnCHA4EEhcXd+3atQMHDqxcuXLatGn9+/dv3Lgxr2hWpJo1a1paWhJRy5Yty3pfEQA5nuHOGJNKWbt2rG5d1HCv0G7cuEFEDRo0UPdCQEjp6ekSicTQ0JCI9PX13dzcHj58qK5+WUeOsN692ZUrrG1b1qMHO3iQMcbWrGFz57Lvv2fffsve7uwFpYVUKu3evTsRjRkzRt1rgfJr9my2dOlbI+3bs1LTBWfVqlVENGHCBHUvBMonnuHOGIuKYhYWzNgYGe6lXVoa++EHtmgR+/ZbNmMGs7BgCQmMMda+PbtwgdnZ5Z/kqIaPj4+VlRUPXDg4ODx48EDe1EdbW/vdpj7lSXnIcFf04MGDuXPnnjx5koi0tLRyc3NNTEyWLl06Y8YMvp0BoMyZMYO8vemHH2j2bCKixo3p6FFq3Likh7169Wrnzp0NDAyePHlSs2bNkq8TlC0pKUkxF55nxz98+DA9PZ2Ipk+fbm9vb29vr+5lAghDnuFORMHB1KED/fFHERnuq1bRvn2kqUl9+9KoUWpcLyjX//73vwULFkyePHn79u3qXgsILCIiYuHChQcPHiQiPT29zMxMAwODxYsXz58/X08Z+/s+6NYtcnGhbdto8GC6d4+2baMXL2jtWhWvAj7D8uXLf/jhB3Nz87t375qamqp7OVBObdxIZ88WbFLPzCRzc7p9m+rUUeuy8t2/f79Zs2ZWVg0fP35c/jJEQe3GjMnPcCei1atp0SJ68QIZ7mXDd9+RiQmlpFBMDG3fTh060Pr11LGjqpeRnZ29bt26X3/9NTU1VVdXNysri4iGDh26Zs0anjhYXpW3gDvn6+u7dOnSjh07EtGyZcuqVKmi7hUBFN+MGWRmRp6edO0amZtT48bk7U1SKclklJ5OOTmUlUWZmZSXR6mpxBi9eUNEpKFxJCHhWlpaWm5ubmZmZlZWVk5OTnp6ulQq5RVLHj9+nJqa+uOPP/7000/qfYFQEjKZ7OXLl8+fP7exscF1JpQnz55RYiLJezmfPk0NGlBYGFlbk7ygyPHj1KgRVa5Mpqb0xRd06pS6FgtKN2jQIF9f3507dzo7O6t7LaAU58+fX7hwYc+ePWNiYiQSiboKB/GA+40bNHs2icVUuzYC7qXarVu3OnbsmJub6+/v379/f3UvB8qvuDhq1oz++IMcHSkvj+bPp+hoOnRI3csq8MUXF86e7XT5shbq7IHgrl2jWrXIwoKIKDeXjh4lBwelFLwFwfGA+8yZ1KwZ7dpFc+eqJ+DOxcTEfPfdd6amphcuXFi5cmXvClDirHwG3AHKkxkzqHVrSkmhK1fo77+pcWOSSGjo0I/8VPfurhcu/Pbh52zZsmX06NFGRkaCrRUAQB1CQ+m332jzZnWvA5RDJpNVq1YtMTHx+fPn8jLfAMogD7gnJ1Pz5tS/PxkaIuBeSmVnZ7dr1+7evXtz5sxZt26dupcD5d2NG+TmRhERpKFBnTqRhweZmKh7TQVmzKDNm+mnn+jHH9W9FAAoNXjAfeFC8vWln38mItqwQW0B9woIVVYAygZXV/rrLzp5kojIwIBatSINDdLXJx0d0tEhfX3S0CBjYyLKP/erXXvIwIHmBgYG2traurq6enp6WlpahoaGYrG4UqVKRFS5cuX69euXw8YUAFDBhIfT2rX0v/+pex2gNPfu3UtMTLSwsEC0HVSmUiVasYImTKBZs9S9FHgPNze3e/fuNWnS5Ndff1X3WqACaNeOzpxR9yLea8AA2ryZTpxAwB0AiuDoSNu3k7+/utdRwSDgDlA2aGnRxo00Ywbl5ZGFBd269dGf6E1U/jfpAEAFd/UqOTuTqysdO0bjxql7NaAcjwwMhqxc2Ry7l0H5NDRIvvFv9Gjaswe75kup06dPb9iwQVNT08vLS/W1/gFKm969SVeXrl+nV6+oenV1rwYASgddXdLVzf/3+vV07RqhtaUq4T82QJnRvTvZ2tLOnepeBwBAqdGkSf7WHw0NdS8FlCZIJIrq02ci0ttB+Vq0KMhhFYmQC1ZKJScnT5o0iTH2008/tWvXTt3LAVA/AwPq0YNOnqR//6WxY9W9GgAoHRS3vNSrR7Gx6ltKhYRqEgClXePGBR0CV62iL74gAwO1LggAoNSoVIksLcnSkhCMLa8Y0e20NCJqg44jAEBERDNmzIiMjOzUqZObm5u61wJQWgwYQER04oS61wEAAESEpqkAAAAAUGqFZ2YODw2tqqX1T4sW6l4LAKjf4cOHv/rqKwMDg1u3bjVs2FDdywEoLcLDycqKTE3p1Sts+wMAUD9kuAMAAABAKXUzLY2IbJHeDgBEL1++dHFxIaJ169Yh2g6gyNKSGjakxES6dk3dSwEAAATcAQAAAKDUupmaSkS2hobqXggAqN+LFy/09fXt7e2//vprda8FoNQZOJAIVWUAAEoHlJQBAAAAgFJqwN278bm5fzdtWk9XV91rAQD1e/PmTW5ubrVq1dS9EIBS5+RJ6t+f2rSh4GB1LwUAoMLTVPcCAAAAAACKEJmVFZ+ba6qpWRfRdgAgIqLKlSurewkApVSPHtSoEdnaklSKMu4AAGqGkjIAAAAAUBoFp6URURsjI5G6VwIAAFDKnTtHgwbRli350fb16yk0lJYto2fPCp4zfz4lJqprgQAAFQgC7gAAAABQGt1KTSWiNijgDgAA8DG3b9OGDbRlS/5Df3+KiqLDh+nVq4Ln7N5NaWlqWR0AQMWCgDsAAAAAlEa30tKIqLWRkboXAgAAUAY4O9OKFRQbq+51AABUeKjhDgAAAAClSIZUmpCbS0QrLS0fpKejgDsAAMCnMDOjb76hefNo796CQR8funcv/99ZWWpZFwBAhYOAOwAAAACUIufevNnw4kVDPT3+sIeJSVUtLfUuCQAAoEyYN49ataJTpwpGkpPp9ev8f8tkalkUAECFg4A7AAAAAJQubYyMfq1fX92rAAAAKGO0ten332n2bKpePX/E2Zk6dMj/99q16loXAEDFghruAAAAAAAAAADlQe/e1Lw5BQa+9wn37lFgILLdAQCUCBnuAAAAAFC6XHjzxuHePSJqZmAgsbRU93IAAABKO11dkkrz//2//9GFC6SlRbq6JFZIs9TToytX6O5dqlmTfH1p1Sq1rBQAoPwTMcbUvQYAAAAAgHz+r19fTElBSRkAAAAlSU2lcePoyBF1rwMAoJxCSRkAAAAAAAAAgIpizRqaMkXdiwAAKL9QUgYAAAAAAAAAoPyTSunnn6lePRo4UN1LAQAov5DhDgAAAAClSFMDA8cqVdS9CgAAgHLo0CF6+JAePaK1a9W9FACA8gs13AEAAAAAAAAAAAAABIAMdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AAAAAAAAAAAAAAAJAwB0AAAAAAAAAAAAAQAAIuAMAAAAAAAAAAAAACAABdwAAAAAAAAAAAAAAASDgDgAAAAAAAAAAAAAgAATcAQAAAAAAAAAAAAAEgIA7AAAAAAAAAAAAAIAAEHAHAAAAAAAAAAAAABAAAu4AABXUunV0507+v2NiaOdOta4GAAAAAAAAAKDsEzHG1L0GAABQAyMjsrSkoCDS0qLr12nmTLp+Xd1rAgAAAAAAAAAoy5DhDgBQcTVvTuvWqXsRAAAAAAAAAADlBQLuAGWATCZT9xKgfFq+nDw86Plzda8DAAAAAAAAAKBcQMAdoFR79OjRvHnzWrZs2bdv3/Xr17948ULdK4JypWZNcnMjV9f8h9u2UZcuNHs27dxJoaEklap1cQAAAAAAAAAAZQ1quAOUXjdv3uzfv398fLxIlP+/qlgsbt++/eDBgwcPHtykSRN1LxDKNiMjio8nTU1q25a++op8falJk7dapxoaUsuWZGub/9WkCYlxlxYAAAAAAAAA4P0QcP+IuLi477//vnXr1tevX1+xYkWtWrXUvSKoKC5cuDBo0KDk5OQ+ffrs2LHj/Pnzfn5+J06cSEtL40+oX7++o6Ojo6Njz549NTU11btaKIt4wF1Xly5fpgEDyNqaTp6koCAKDqagIAoKooiIt55vbEydO2c0a+betm1bW1vbBg0aqGnhAAAAAPkyMsjPj4YPz3+YkEBXrpCjo1rXBAAAABUbAu7vlZOTs379+uXLl6ekpBgZGaWmphoaGn733Xdz587V1dVV9+qgnPPz8xs+fHhmZubIkSN37typpaXFxzMzM0+dOuXn5+fj4xMbG8sHq1SpMnDgQEdHx/79+xsZGalv1VBmREdT7doFAXcimjyZ7t2j69ffelpyMt27R8HB+V+hodSixcW7d7vx7xobGzdv3tz2PzY2NiKRSOUvBQAAACq0qCiytaVXr/IfXr9OU6bQnTtqXRMAAABUbAi4F+3UqVOzZ88ODQ0lIjs7u2+//favv/7atWsXEVlYWCxfvnzcuHHqXiOUW3v37p0wYUJubu60adM2btwoLqqKh0wmu3Xrlq+vr7e394MHD/igrq5u165dHRwchg8fbmZmptpVQ5kRGkpdu5KzM82eTfXrEw+SZ2ZSYiKZm3/oB2Nj6e7dZ1eu7AwKCgoODo6JiVH8btWqVW1tbdu2bevi4lKnTh1lvgIAAACAfAi4AwAAQGmDgHthvEelv78/EVlbW//vf/+zt7fn3zp79uzcuXPv3LlDRD179vTw8GjZsqU61wrl0caNG11dXWUymZubm0Qi+ZQfCQ8P9/X1PXjw4JUrV2QyGRGJxeLWrVvzyLuNjY2SlwxlycuX1LkzRUTQoEF0+DBpaJTkUC+D/3Pjxo24uDg+PmvWrNmzZ1tZWQmzYgAAAID3i4qiVq3oypX8h/fu0bJlCLgDAACAOiHgXiApKWnlypXr1q3LyckxMTFxc3ObO3eutra24nNkMtnu3bsXLlz46tUrsVg8ZsyYNWvWVK9eXV1rhnJm5cqVixcvFolEq1atWrBgAR/My8uTyWSF/hSLFB8ff+LECT8/P39///T0dD5oaWnp4OCAUu9ARCkp1KMH3b5NHTrQmTOkry/kwSMjI4OCgpYtW3bnzp1ly5b98MMPQh4dypecnJxPeU8DACiJuDhycqILF/If3r9PP/5Ic+fS3Lm0bx/xRiQeHlSlCjk7q3GZUFJRUdSgAdnZ5T9MTqbUVATcAQAAQJ0QcCf6L4y+YMGC+Pj4TwmjJyUlLV26dPPmzbm5uSYmJsuXr58yxfm/ItsAxcEYW7Bgwdq1azU0NDw9PSdPnszHc3JyxowZk5eXd/DgwU8Pl6elpf3zzz/Hjh3z9/dPTEzkgzVr1nR0dBw2bFi/fv2U8hqgdMvNJXt7CgigBg3o8mWqVk0ps/j7+9vb2zdv3vzu3btKmQDKuP379//7779+fn49e/Z0cXHp06cPSv8DgJJER1Pr1hQfn//wxg2aPJlWrKBx48jWlv79l4howQKqUYMWLlTjMqGkUFIGAAAASpsiakNXNGfPnm3duvX48ePj4+N79ep169atnTt3Foq2M8Z2796dk5PDH5qYmKxfvz4kJMTe3j4pKWn//nbNmtHx4+pYPZQLUql08uTJa9eu1dHR2b9/vzzanpqaOmDAgL///vvChQvPnj379AMaGhoOGzZs165dr169CgwMdHNzs7a2jo2N3bZt2+rVqy9evKic1wGlF2M0ZQoFBFC1anTihLKi7UTUt29fU1PTe/fuyVsLAHBSqXTBggWjRo36888/ExISDh482Ldv3wYNGixfvjw6OlrdqwOACqRrV8rNpX371L0OKO9SU1Ozs7MzMzPVvRAAAIDSgjGWkpKSkpKi7oUoXYUOuEdFRY0bN65379537961sLDw8vI6c+ZMixYt3n3mgQMHnJ2dmzVrdvDgQflgo0aN/Pz8jh8/Ex/f+PFjcnAgR0d6/FiFLwDKhezs7OHDh//5558GBga+vr7Dhg3j40lJSV988cWZM2dq1qx55syZhg0bFuPgGhoaXbt2lUgkDx8+vHPnzrhx406dOrVo0SJBXwGUAd9/T15epK9Pvr75m+iJlPJ+paWlNWTIECJSfLcESExMHDBgwP/+9z9NTU2JRBIVFSWRSOrXrx8eHv7DDz/UrVu3b9++Bw8elN/YhlIuKIh+/JFyc/MfHjhAN2+qdUEA75GWRlOm5H/9+mv+oEhEGzbQokX05k3+yPnzFB5O2PcLQmGM7dy5s1GjRuPGjWvUqNHOnTuxrRxURiaT3b59e8OGDcOGDfP39w8ODlb3iqAcSkxMDAoK8vb2XrFixZQpU+bPn//w4UN1LwrKgJs3b/bo0WPIkCG1atWaPXt2OQ+7swopLS3N3d1dV1eXiAwMDNzd3TMzMz/w/DNnzjRp0oT/F/viiy9CQ0MVv5uTwzw8WKVKjIhpaTFXV/bmjZJfACjfq1evLl++PHHixP37979R2m80NTXVzs6OiExNTa9cuSIff/nyZfPmzYmofv36T548EWq65ORkDQ0NbW3tjIwMoY4Jpd/WrfnvTidOFAyeOMG0tNgPPwhw/BMnTowYMeLOnTvyh0TUrFkzAQ4N5cLDhw+tra2JqGrVqmfOnJGPS6XSgIAAZ2dn/f/6CZiYmLi4uNy+fVuNq4VP8ccfTFOTrViR/3DsWOblpdYFARQlKopVqsTOns3/2rKFNW/O/PzY4MGMMTZvHps1i82fz1auzD+NNzJiXbowFxfm4cECAxnOlcqK7Gx2/jzLy8t/mJTErl9X53ouXbrUrl07/rlWtWpV/o/u3bvfvHlTncuCci03NzcoKMjDw8PJycnU1FQe7TE1NTU1NcWZFZREYmJiYGCgp6enm5ubk5OTra1t5cqVC8UVK1WqJBaL//77b3UvFkqvmJiYSZMmicViIjIyMuJlRWvVqrVz506ZTKbu1SlFhQu4y2QyLy+vmjVrEpFIJHJycoqMjPyUH8zNzfX09OTnTJqami4uLvHx8YpPSEhgrq5MQ4MRsSpVmIdHwWkflDkRERHW1taGhob880NDQ6NLly4eHh6f+NfyiV6/ft2hQwciMjMzu3v3rnw8LCzMysqKiGxsbKKjowWckTHG93AEBgYKe1gotU6cSNDQYCIR27GjYDA4mBkaMiL23XcCTDF9+nQi+u6/Y+Xm5larVo2I7t+/L8DRoYzz8fExNjYmotatWz9//rzI5yQlJXl6erZu3Vp+1m5ra+vh4fH69WsVrxY+0R9/sGHDmIUFCw9nDAF3KK2ioljVqgUPr19/K+CeksLq1mUDB7Jly1j//qxmTUb01peWFmvVik2YwNatY2fPsqSkomextGSbN+f/+/JlNnq0Ul8TFCE7mxGxH3/Mf3jiBOvXTz0refHihbOzszyI4OnpmZub6+XlVaNGDSISi8XOzs6xsbHqWRyUOxkZ0rNnz/700099+vQxMDBQjH7Wr19//Pjx27Ztc3BwIKJq1aoVShkEeNebN29u3rx58ODBlStXTp06tW/fvlZWVlrv6VVoZGTUsmXLoUOHzp8/f9OmTTNmzCAiQ0ND/KWVNomJB+/da3jvnmVISOOMjLsf/wElyMnJ8fDw4JeEWlparq6ub968uXHjRufOnfmfU9u2bS9evKiWtSlVxQq4X79+vVOnTvw32q5du0uXLn3uEeLj46dNm6ahoUFE5uYNPD1zC0XVb95k3bvnn6a3bs3On2exsUwiYYmJ8jWw06eFeDGgNA8ePKhTpw4RNW7ceOnSpT179uS/cX6TxtbWdtmyZSVPE+AxfSKytLR8+vSpfPzevXu1atUiovbt2yckJJRwlndNmzaNiFauXCn4kaEUunHjhqGhUZcugUuXFgw+e5YfVhg1iglyL/nMmTP8L1k+8vXXXxORu7u7AEeHMksmk0kkEp7FMGrUqPT09I/+SEhIiJubW5UqVfhbrq6urpOTU0BAQHnNeii7/viDTZnCNm9mAwcy9l/AvWdP1qnTh76cnZ90+pgrV66kpqaq+/VBOfHhgDtjbP9+RsRWrcp/mJjIAgOZhwdzdmY2NvlpNIpfZmbMwYG5uTEvLxYSkv8ZKhaz+vXZixeMMXb6NOvVS4WvEBhjjGVnM21t1qABe/iQMTUF3DMyMiQSiZGRERHp6em5ubmlpKTIv5uamuru7q6jo8MDUu7u7llZWapeIpRuoaHs5MmCh+fOsbi4Ip6WlsYCApi7O7OzY3p6sipVCvoyWVpaOjs7e3p6hvOb4YwxxrKzs+3t7YnI3NxccRzg2rVr27dv//bbb0eMGNGuXTv56XchYrHYwsKiR48eEydO/Pnnn/fs2XP16tVXr169e0BnZ2ciatasWVpamupfDhRJJsu5edMgMzOUMZaXlyKTqeGjJyAgQF4vxM7OTjEnTyaTeXt78+Abz4eOiIhQ/QqVp6IE3N9NN5BKpcU+2oMHD/r379+z5xki1rjxW1UaGGMyGdu/n9Wpw4iYSMR++IGJRMzFJf+7a9awuXNL8EpAyYKCgnhybocOHeTJla9fv/b29nZ2duY35bi6deu6uLj4+PhkZ2d/7iwPHjywsLDgH0gv+CUaY4yxCxcuVKpUiYh69+6teJpeEgsWLKhTp05QUBB/uHPnTiIaLL/WhPIrLCyMZ1RNnjxZPpiQwBo3ZkSsZ08m1LWeVCo1MzMjouDgYD5y8uRJfstKmAmgDEpJSeHV/DU0NCQSSZFPWLJkieLtRrnMzExvb287Ozv+qU1EjRo1cnd3L2dnYGUaD7jn5bG2bdmhQ/kBd13dwtHJQl+dO4cXeS2nqEaNGnPmzFH364Ny4tUrpni+8/AhmzSJXblSkArNGJs6lXl7F/3jaWns8mW2aRNzcWHt2jE9vcJ/0qambM8epqnJ1q9nTk6MIeCuJtnZTE+P7drFevViMpkaAu4+Pj7169fnb2IODg7vC2s+fvzYycmJP61hw4be7/vLgwrp55+ZSMTOn89/2KsXO3Uq/9/x8ezIETZnDrO1fetGoIYGGz584ezZsw8dOlRkAJTLyMjo2bMnEdWpUwenUsDt2rWre/fuhc7BdHR0LC0t7ezsXFxcJBKJt7d3UFDQp0fPU1NTbWxseJ6NUhcPny4vLyU4WCM9PUgtsz98+HDgwIH8r8va2vr48eNFPi09PV1e8VtfX/+jFb/LkPIfcP9wukFJHD6cV79+/qfdl1+ysLBC8zKJhFlYsNOnWatWzMaGXb7MGALupdu5c+d4SN3e3r7IZMzMzMyAgABXV1dzc3P5J5OJiYmTk5OXl9cnlnqXx/S7deum+CN+fn56enpENGTIEAHTXsaPH09EGzZs4A+fPn1KRFWrVkXGqNqlpqYeOXKka9euo0aNWrNmzblz54R6d2KMxcfHN2rUiIgGDBiQm5vLBzMzWdeujIg1a/berfHF88033xDR4sWL+cPc3Nzq1asT0b1794ScBoorKipqwYIFY8eOnTNnjgp+KY8fP+Yn3KampgEBAUU+Z9u2bfwt1NbW1tPTs8iz+cjISIlEUrduXf5MDQ0NOzs7b2/vnJwcJb8C+AgecGeMXb/OrKzYsGHMy4tdvcouXfrQ17VriZc+aPfu3ZqampqamiEhIep+iVA+xcYya2u2fXtxfjYvj4WFMR8f5u7OHBzy94qdOME0NVluLmvWjJ04gYC7evCAu0zGunVjO3fmB9xVc5578+ZNedCqVatW5+Xh0vc7depUs2bN+I/06dMHZ0rA/fwzGzCANW3KeCpXr15s3z42fTpr2pSJRG+Vuurcmbm5MT+/z+gbl5aW1rVrV57BEBMTo7xXAWVCfHy8jo6OWCx2cnJaunTprl27Ll26JMgfxsOHD3k4ZbO81BqoW0zMylu3jJ8+HZKScpoxlpeXzJjSPyATExPd3Ny0tbV5uEwikXw0SzUyMpJvkiAiCwsLr3JRrbKcB9yzsrIaNGjAf2dOTk7vqx5bbNnZzMODGRszIqatzVxdWXJyoQWwmzdZ27bsxAnWogXLzUXAvfTy9fXl8e5Ro0Z9SjQnJCTE3d3d1tZWHnnX1NTkpd6joqLe91OKMX3FzqV79uzh9dEmTJggD48KwtPTk4hGjhwpH+HJyI8fPxZwFvhcubm5AwYMkCfwypmZmTk4OLi7uwcEBBR7O15GRgYviGZraysvziCVSmfM2GhqKrWwYEK3BmDnzp0jovr168tv5EyZMoWIVqzY8eEfBBUIDAzknUt4dRciat++/ZYtW5TUDtrf3593UmrRokVYoXvRCm7evDl+/Hh5ydHKlStPnz79xo0b7z6T91Z1cnLiJ21EVLNmTVdXV8XWF6Bi8oA7Y2zaNKajI1gN96lTpxKRnZ2dMIcDeNu0aYyICbXNLyqKZWQwTU3GGDt/njVowPz9EXBXAx5wZ4yFhDBzc7Z/P+vXj/3yC7OxYe7u+XVmBJeQkODq6srLTlapUsXDwyPvPf27rly5Uiiq/tHeYFAB/fwzc3dnzs7sl18YY6xXL3bwYH6oXV+fdenC3NyYj0/haMOne/PmTZs2bfjpGXrkVHASiYSIHB0dlXHw/fv3E5GWllYxCjiDkuTlJcXHb719u9qbN77h4SPv3rWIjHRNTg6QyYSMO3H8A44nmPLOJe/bf5OcnOzt7V0oDfTs2bMtW7bkV3w9e/Ys6w2fy3nAfd26dQ0bNmzUqNGnpBsU24sXbNy4/I/Ddu0Kf5cH3BljX37J1qxBwL2U2r17N493T58+/XPLDYWHh3t4eNjZ2Sl2FLGxsXF3d5cXcuF8fHx4TH/06NGKMf2NGzfyQJibm5vgief37t0jojp16shHvvzySyL666+/hJ0IPgtvNFq1atVjx45t37592rRpbdu2lccT5fm8zZo1Gz9+/G+//XblyhXFOzQfkJeXN3ToUB7+VkxVmD17NhG1aPHVvXvC39OWSqW894D8b/7cucg6dXJQVEbtPD09+d9Vjx49Lly44Obmxq/wSQkV0hWLtjs5OX3KHaPk5GQvLy87OzvFN0+JRFLkmVlcXNyaNWvkRQBFIlG3bt2ShN2sAZ9GMeCemMiqVxcs4P769WtTU1Mi8vPzE+aIAP95+JBpaTENDSbsDgoecGeMjRvH+vdHwF0N5AF3xti8eczWlvXrl7+lT95Y6+efmVCd/HjzN14EUt787X1Pzs3Nbdq0KQ86xL1dk/v169eurq6ampp8Q5iHh4ewOTdQtvCAe0wMq1mThYfnl5TZtIldusQ+v3xpPolEsm7dOvnDV69e8ZOoDh06CLitFsoWmUzGc1L9/f0FOWBycvLo0aOvXr0qH5k5cyZPUsatxFIlOtotKmru/fvNgoKIf925UzMiYnpKyimhIu+nT59u0aIFv1Lr3bv3nTt3PvDkBQsW8DywK1euKI5LpVIvLy++Xb7IT88ypJwH3EeMGEFEe/bsUcFcQUGsSxe2a1fhcXnAPSKCmZmxRYsQcC91fv/9d3m8Wz4ok8kWLlx49uzZTz9OQkKCl5eXk5MTL2HE1atXj5d6/+uvv/gp9YwZMxRj+vwOs0gkWiVv2iUomUzGgxeRkZF8ZPXq1UTkIm8sACrn7u5ORHp6epd5qan/5ObmhoSEeHl5ubq6dunShRcyU4y/29jYODs7e3h4BAYGvi/+PmvWLJ5s9eDBA/ngmjVriEhbW/uUvB6k0GbNmtWokZNEcos/zMtj1aszIvbBz1lQotzcXFdXV/7H4+LiIr/Jl5WVVahCesOGDd3d3Uu4CSwtLW3YsGH83awY9w4fPHjg5ubGT62ISEdHx8nJycfHp8iEwaCgIBcXF0NDw+rVq8+cObMky4ZiePiQzZv3obJUN26w334r4uuPP6J+K8qhQ4cUf3zt2rVE1KBBAzQVBGENGcKI2NSpAh9WHnCPi2MmJgi4q4FiwD0lhZmbs379WGYm8/Fhzs6scuWCyLulJXN1ZYGBxS84ExAQ0LRpU/5RZWdn99H6V2lpaTNnzpRH1Tds2FAoqs57g/EDNm7c+ESh5mBQYfCAO2Ns/Xr25Zdv1XAvnps3b4pEIpFItHXrVvlgdHQ07zfQpUsXdLZUkoULWevWBb2yOnZkDx4wGxsmz4PKzWU1aqio7NW7jh8/TkSWlpYlaWqoaPny5Ty9Tx5ez8nJ6dKlC3+TfN/WH1CNvLzk2NhV6em3UlMvhoTYJCbuZ4xlZIS8eOEeEmItj7zfvm367Jnzmzc+xe6q+uTJE3mTEisrq09pUvLnn3/Ko+pff/11bGys4neTkpLkRWkqV64skUjK4nVBhQi479u3TzXTyWRFvG/KA+6MMYmEGRkh4F66yOPda9askQ/m5uby0ufVqlWTV+T4dBkZGceOHZs0aZI8eMTjR0T0o0KjLplMNn/+fB5IVTwTEtyAAQOIaP/+/fzh5cuXiahp06bKmxE+YPv27fyXfuTIkQ8/MycnRzH+zv+E5DQ1NRXj77y1yIoVK3jmcmBgoPw43t7eYrFYJBLteveWoHACA/OIWP36BW+DU6cyIrZkifLmVKc3b5hCM1r2/DmbP/+tJ3h5sTlzCv5rLFpUuNWHUr169Yo3yNLV1f3zzz+LfE5UVJREIqlXrx7/ixKLxcWukB4ZGcnraxkZGR09erTYy87Ozvbx8XFycuKxCSIyNzd3c3MrsjRNYmKipqamWCz+xM0fIJSBAxkRmz37vU/4+efPa5rapUsXxR/nCaFE9L///U/ZrwUqjitXmEjEDAzYy5cCH/mLLwr+vXNn4c8CULaoKJaa+tbJxpkzb5Xpz85mx4+zyZNZ1aoFb0dWVmzFiufXrl379NvDjx49sre35+9ajRo18vX1/fRFfrRxnI+Pj6WlJX+Cg4PDBwqyQXklD7jn5bHWrVmVKiUNuDPGNm7cyE/wdu/eLR+MiIioU6cOEfXr168sBrBKv5kzWc2abNmy/Ic2NiwkhFWpUlDSMyeHETGBwt2fzcHBgYhWrlwp1AFzc3O7detGRH369JGH16OionhRkZ9++kmoieCzyGS5SUmH8vKSY2IkYWFOYWHDEhIKVzhIT7/14sUPISE28sj7rVuVb92ae+TIkU+/vEpLS5O3PDUwMPislqf8Z3mUg/9soTelknzylgYIuCudYsA9N5c1b46Ae2khk8nmzp3LQ587dhRUms7Kyvrqq6/4//P//PNPSaaQSqVBQUHu7u61atXS09Pr27ev4nfXrVvHA/GFkvsEt2zZMiKa/V90JCsrq2NHh169licmom+qqvn7+/NI4u+///65P5uenn7p0qUNGzaMGzfOxsaGlw1VvKNjbW0tEonEYvHff/8t/6kLFy7wzz/FW0rKIJUyc3NGxK5fzx85dYoRsUaNlDqt2sTGskqVCh7eusUK1c+ZP5/p6hZse2rdmgWpqj/8zZs3eaNRc3Pza9euffjJvEK6s7MzL3jFU/BcXFw+vAdQ0fnz5/nNxUaNGoUKtGP/xYsXEonEyspKfjOgS5cunp6ehdpZN27cmIg+falQcv/+y4iYsTH7QG+tf/5h33xTxNfSpeHfFGXt2rXvzPIvERkbG6O3W5mQl5dXKC+pFOrShRHlx7OU4Z9/mLMzUwhqgSpkZbE2bZiNzSfd0s7LY4GBzNWV1arFiFjHjquJyMLCgm9F/UA5F6Hy7AICAnhHcZ74ef/+fcXvZmdne3h48FZP2trarq6uycUu1w1lkDzgzhi7fp2JxQIE3Nl/15saGhqKCaePHj3i3X2GDh2KQkaCmzmT/forq12bPXnCWCkLuEdERGhoaOjo6MhrdPj5+X3zzTeKG6OLISYmhneJc1f4lD19+rSGhoZYLMbGHbV48eL7oCCKjJz9KU/OygqLi/N4+LBLUJBo3bpuRKSnp+fg4ODl5fWBTyKZTObl5cXfTEQikbOzc/HO2x8/fizPjm/QoMG72fGfu7es9KhYAfegoKARI0asXr1alWvIymLR0SwxkV27xp48YYmJLCFBlfND0XJzcydMmMDDlIrRydTU1L59+xKRiYmJgI0+fH19iah79+6Kg+np6V988YXySnzInT59ul69hmPGLJOP8MtOgeq2wacKDg42NDQkoiVCZH2npqYGBgZ6eHg4Ozvb2Njwskg1atRQLBb05MkTExMTIpo1a1bJZ/woV1dGxBYuzH+Yl8dq1GBErIw3OynapwTcXV2ZhQVLTGRMhQH3PXv28NB5ly5dFE96PnpBlZiY6Onp2apVK/ldHFtbW09Pzw9X+fT09OTtKwYOHCh4OXWZTHb69OkxY8bIyysV2qUxZMgQIjpw4ICw88L75Oaypk0ZEVNB6jnPBkX1s9Lv3LlzDRs2rFWr1pgxY0ptgYKDBxkRq169+P0GP+r335VSrwY+bO7c/HT1z/rNSqUsMJAtXLiU5/lyNWvWnD59+qlTpxQ/LgWvJPvR+u8vX750cXHhJ3VmZmaenp5ClX2AUu7lS3bwIJMnhoaEMKGqrC9ZsoTfxVHcWnHnzh1edNTZ2Rl/YyUUF8euXGF79rCff2Zbt7KZM9nmzczTk/Xrx5hCwL1/fzZkCBsyhA0erLaA+3fffUdEY8eOlY/06dOHiDZs2FDCI585c4aH1xVLw/O0P1NT02fPnpXw+PBZUlPPBwdrBAWJU1LOfNYPZmWFbd++rkOHDvLSo7q6uoMHD965c2ehC73r16936tSJP6ddu3aFKuUWw6lTp5o1a8YP2KdPn7t37yp+97O6p5QeFSvgfuzYMVJaO+YPO3yYEbEhQ1Q/MxQhKyuLd5U0NDT8999/5eOvX7/u2LEjP+cWNmUyMTFRJBLp6ellF7vrTQmkpTFNTaapyeTVcRYuLM+1PkqnZ8+e8du/o0aNku9fTk5O7ty5syAta5KTk11cXIhozJgx8sHs7OyxY8c6OjqqpnxeYCAjYhYWBXVUpk9nROz771UwuarFxjI9PbZ+ff7XokVFBNw9PNh33zEeMFRBwD0vL8/NzY2fpri4uCi+29y5c6dRo0bnzp37lOMEBQW5urryyzCe4FBkb9XMzEx+25IXbVfq1VpSUtLvv//eo0ePQhnuixcvxmZVVVq7lhGxBg2YCvagP3nyREdHRywW37hxQ+mTQXG9fPmSf7Tx5N/mzZs/evRI3YsqLDeXNWnCiNimTUqc5fhxRpQfXgHVOHGCiURMS4u93W7t84SEhLi7u1tbW8sj76amps7Ozj4+Pv/++2/Lli35YM+ePW8Llz6QkJDg6urKtypWqVLFw8Oj0HlaUFAQr4DMb35fvHhRqKmh1Hr0iBGxOnWUUtp74cKF/IxO8VTw6tWrvPHYpEmTPrf1TsWUnZ39+LH0xAm2cSObP58NHcpatmRGRoWq5+UH3KVS1r49O3iwIOB++jS7d4/du8du3VJPwD07O7tGjRpEJE8rfPLkiUgk0tfXT+T5QSXzyy+/8LTF8PBwPiKVSnlt2/bt26N+kcrk5SXevVsnKIhevlxa7INERkZ6eno6ODjI63xqaGh06dLFw8Pj1q1bzs7OPCJvbm7u5eUl1BtIbm6up6dn1apViUhTU9PFxeXVq1eKT/jop2dpg4C7iiDgXnq8efOGVxkzNTVVbIj88uXL5s2bE1H9+vWf8A1gguKlDz5a3kFJ2rRhREzeAvbIEUbEevdWy1oqotevX/M/gF69esnPNrKysniV7datWwsSrAwPDxeJREZGRoo112Qymcpu88hkrE4dRsTkf+ZnzuSnnpU/POC+YUP+l5tb0QH39HRWvz67ejU/4H72LFPSbyMhIcHOzo7v2tm2bZvitw4cOGBgYPC5H3+ZmZmFeqtaW1tLJBJeOCI6Orp9+/b8tqXiJiEV+/PPP4lo9OjR6lpAhfL6NTM1ZUTsneLDyjJv3jy+VwOBgNIpNze3e/fu/KPt/v37PC/JyMjoUzplqdJvv+XXN/v8/hSfITSUEbGGDZU4BSiKi2M1azIitmqVMAe8ffv2Dz/8IC/5QkT6+vr8ukBJH3PBwcH8koSI2rRpc+HCBcXvymSynTt31qpVi4gsLCzUkrIDqvS//zEippB5LCSZTDZ16lQiMjY2vi4v/sjYxYsX+Sni7A80ZqmQEhMTg4KCvL29JRKJi4uLnZ2dpaWlhoZG06Zp77aoqVyZ2doyJyfm5sb27MkPuDPGgoKYlRWzsiotJWX27dtHRC1atJCPzJkzh4imTJkiyPFlMhnfe9quXTv5BW9iYiLv0ztz5kxBZoGPkT19OjgoiB4+7CaTCRCMjomJ2bx5s52dnTzyzgPienp6P/74Y6FcKEG8fv3a1dVV3mzcw8Oj0Ebtmzdvyj89S55Zr1QIuKsIAu6lRGxsbOvWrfkmzXv37snHw8LCeKuipk2bvnjxQhlTT548mYjerVSrGrNmMSK2fHn+w/j4/NZhqNqnApmZmV27diWiZs2aybdiyWQyZ2dnIqpVq9bz58+Fmqtt27ZEdPjwYaEO+LnmzGFEbMGC/IdSKTMzY0Ts5k11rUhZPqWkjIcHY4wdPco6dmStWjEfHyYSMRMT5uIicJmdO3fu8HPZatWqKeYuyWQyiUTCI+ZjxowpXnPRR48eubm58cqMfBNfz549q1SpQkRWVlaKb6Sqd+XKFR6nUOMaKg7eBtnOTnUzJicn8+zp0hbABY43fq9ZsyavXpWamspPvPkmm2K0X1aGlJSUfv2OEDHB2+Vcu8YmTGDy07qMDCYSMW1ttfXBq1CkUta3b/6WAsH/g4eGhv7888+VKlUSi8Xjxo379OZvxePj4yPvXu7g4FCo8EJaWtqgQYM0NDQmTJig1GWA2vXuzYiY8nrPSaXSMWPGEFHlypVvKpyXnzx5kncsxH7BW7duffXVV61bt+ZlK96loaHh6Pi0Tx82ZQpbsYIdOMBu3GCvXxc+jjzgzhibMYMRlZaAO79HvmXLFv4wIyOD72cNEm4TbmJiIg+qTJ8+XT5469YtXu7Sy8tLqIngfeLiNvDep9nZgkUYuISEhB07drRo0UIsFjdo0CAiIkLY4xfy4MGD/v378//1Gjdu/G5JAC8vL7FYbGJiotRllBAC7iqCgHtp8Pz580aNGvE8TcU3iODgYF6csX379glKK7G/fft2InJyclLS8T9s715GxOztC0YaNGBELDhYLcupQKRS6bBhw/h+q8jISPk439ppbGx869YtAadbuXIlEY0aNUrAY36WS5cYEWvdumDkm28YEfv2W3WtSFmKDLhnZzN/f8YLYMgD7owxe3umqcn++IO1aFGQDtOxI9u2TYACnfIE9jZt2ii+syUnJw8ePJjvyJNIJCWchfdWdXJy0tLSEolEhoaGvXv3FmT/aUkkJSXxJESUH1W2kJD80mQqblPk6enJszuVkUEDJXH06FGRSKSlpRUYGKg47unpycvLdOvWTUkZDJ/lhx9+IKIRI4RPrPP1ZUSsf/+CEZ5wHRUl+FRQmETCiFi1auzlS2VNYW9vT0S+vr7KmkBBenr6jz/+yANS+vr6y+UJMowxxnbu3Elv11yG8ic5mWlrMw0N5TZ7y8vL450Jq1Wrptjl/vDhwzyZdOXKlUqcvtS7evWqPLauq6traWlpZ2fn4uIikUi8vb2DgoI+MXNlxw4mr1mblMRGjmSRkWz06ILQfF4e++orpdQO+oDQ0FC+E1reA3PHjh1E1LFjR2Enun37Nn83++uvv+SDmzdvJiIDA4My1O6yLMrIuHfzpl5QECUm7lfSFNu2bSOiyZMnK+n4hRw6dIjfwiGiL7/8Mj4+Xv6tlJQUvtlaNSspHgTcVQQBd7ULDQ21sLDgMSnFfkfnz5/nN7H79OmTKq9xrgQPHjzg6czKm+IDIiIYETMxKbiXPn48I2Il7o9ShkXlRD3JEr52UCF8p16lSpUUuwJs2bKFZworthAQREREBA+GFi+XueRkMvbvv29t2z93jhExS0tVn1Yq26tXrH79gof37rGOHdmKFczbm02Zwvz92ZIl7L8MEhYWxmrUyM9qDwlhbm6sSpX8sLuuLnNyYgEBxfnvI5PJ3N3di0xgf/ToUZMmTYioSpUqwnZmjomJ4bl4pWQHH8+AVnaSBfBk0jlzVD2vVCq1tbUlomXLln382aAqjx8/5udO69evf/e7N27cqFu3Lo/pBAQEqH55ci9evOD3I5VRAjskhBExa+uCkU6dGBF7uy4ICO/GDaatzUQiptRguCoD7lx0dDSviluouAcC7hUBb+zcrVvByPLlbO9eJvjpfHZ2Nu9JXrt2bXmhbcbYzp07xWKxSCTaLM/NrnhSU1P37dt37do1xaBeyclkbPlyVqkSu39fwKN+tm+++YaIvvnmG/kI3xitjKzzrVu38pIjiollvPNTo0aNkpXXvrxik0oz799vHhREERHTP/7s4lJxwJ0xlp2d7eHhYWxsbGVlpdgJAAF39UPAHbgbN27wUlPdu3dXbGfs6+vLb8COHDlS2XufZTIZX4O6mnTXrs2ICj7pt2xhREx9mdCqJmMyz3jPYWHDujzqsiB6wZu8Nx5xHvOi5il10tWrVxORtra2YsTTx8dHQ0NDJBIp3vYXEK+sfUjwzfPFJZWyIUPYb78pt3huqfL33x9vzZeRwXbuZD16MJEoP/Jubc3WrMnhlRk+RXJy8qBBg4pMYPfz8+OxsJYtWypeTQll1KhRhfJW1Ig3Qjh58qS6F1Ke+freNjZ+U7UqU8uWhosXL/Ku47itUkpkZGTw6nzDhw9/33Pi4+P79evHN+C7u7uraw/K119/TURfffWVMg6elsZEIqarW5DKMHo0I2LYMa9UqamsUSNGxObPV+5Eqg+4cxcuXHj9dokKBNwrggkTGBGTn829ecO0tJimJvuvFKWQMjIyevTowQsDKu5D2rFjh0gkEolE27dvF37Wio0nujVqxNQVak5NTeWXBnfv3uUjN2/eJCITExMl7SCcOHEiETVs2FAee/mUkwcoiefPpwQFUUiIjVSqxF2hqg+4cy9evLjBd5H/p0wE3MVFVqcCKE/OnTvXp0+fhIQEBweHf/75R16Ubc+ePV9++WVmZua0adP27NmjpaWl1GWIRKKOHTsS0eXLl5U60ft07kxEJJ+8SxciokuX1LIWNZDESjbGb5xdffafdf/UII3TqaeVPaO3t7ebm5tIJNqxY0efPn344PXr10eNGiWVSn/55Zfx48crY16+V/TgwYPKOHgx3L9PUVHUvTvx/8P++IN+/13da1KmzEzau5eGD//I0/T0yNmZzp2jiAiSSKhuXXr0iI4ejahdu3bfvn0PHjyYm5v7gR9//Phxx44dfXx8qlSpcvLkSTc3Nz7OGFu5cuWgQYOSk5NHjBhx+fJlXttdWNbW1kT06NEj+cjdu3fV9SfH2xHzLUSgDFlZWa6uQ3V0rNeseWBiooYFdOnSZdiwYZmZmd99950apod3TJ8+/datW40aNeIXXUWqWrWqv7+/u7s7Y+ynn34aMmTImzdvVLhGIqKHDx/+9ddfmpqaP//8szKOb2BA1apRVhbFxuaP8LfbZ8+UMRvkmz6dHj+mNm3o119VOq+3t7eenh7P0FSqbt268arKUHHIZPTPP0REDg75IydPUm4ude1KlSsLP52enp6Pj0+7du3CwsJ69eoVFxfHxydNmrRu3TrG2NSpU729vYWfuALbvJlat6bHj2nKFPUsYM+ePcnJyd26dWvevDkf+f3334lo8uTJvDu04DZt2tSmTZsnT56MHz+eMUZEenp6Bw4cqFSpkre394YNG5QxaUX2998Hr19/IhYbWFoeEIuF/J0OHDhQT0/v3LlzAh6zGGrVqsX3ZJQxagz2qwAy3CE4OJj3gXF2dlbsbvz777+LxWIicnNzU9lifv31V3p7J5cqnTnDdu4sKHYpkzETk4pSbDRXlmt02+h2xlt9KpWa4X7+/HldXV0iWrNmjXzw6dOnvFuAUL3gixQZGSkSifT19dPS0pQ3y6e7coVVrsw6d87PAVy+vBzWc5d7+ZJNnsyKsYklL4/5+bFp0zbK7/yZmZm5ubk9evTo3ScrJrAr7phJTU396quviEhDQ0MikciUVsRn//79RDRE4SON91BVS73mdevW0dutmUBYy5cvJ6KmTZvmqq/LdmRkpL6+vkgkKlQuHFRv48aNRGRoaPiJZVj9/PxMTEyIqEGDBoql1VTAwcFB2SddHTowIiYvV7N9OyNi48crb8KK7q+/GBEzMGAPHyp9rkIZ7nv27CE19chBhrsyhISElJ69cdevMyJWp07ByLhxjIitXq3ESZOSkni6ccuWLRU3Vfz4449EpK2tffbsWSVOX/E8fswqVWJErKhKbErXpk0bItq7dy9/mJSUxE+rirzQEMqTJ0/4BctaeXtxxo4dO1ZkAxgoiefPn1euXJmIjhzZIfjBe/fuTUTy/frqynB/FzLcAdTv8ePH1apVGzp0KM9y4oO//PLLzJkzGWNr166VSCQqW0znzp1JfRnuvXqRszOZmeU/FImoQwcihZz3ciw6N1rGZC31Wr77LZdIl/5P+y95ueTImyNROVGCTBcaGjpkyJCsrKxp06bNnz+fD8bHxw8YMODVq1f29vabNm0SZKIiWVhYdOjQISMj48SJE8qb5bM0a0ZVq9KOHepeh/KtXk2ZmbRiBX1uYpCGBtnb0+bNM+Li4jw9PVu2bBkTE7Ny5Upra+u2bdtu3bo1LS2N3k5gHzly5OXLl3k5dSJ6+vRpp06dDh06ZGxsfOTIEb67QujXl48nlT98+PADIyqjxqkrgtjY2FWrVhHRunXr5J+hqmdhYTFv3jzG2OzZs2UymbqWATdu3Jg3bx4Rbdq0qWnTpp/yI/b29rdv327fvv3Tp087dOjAG8irwIULF/z8/AwNDZcsWaK8WfgbsDylHRnuShUWRq6uREQbN5K1tbpXA2VKYmJiSEiI/GFkZGTPnj2HDBmi9pxN7vhxIoX0dpmMTp4kIrK3V+KklStXPnHiRKNGje7cuTNt2jT5+E8//TRp0qRKlSrxYBYIpWFD8vIikYgWLKCLF1U69eXLl2/evFmtWrUvv/ySj/z1118ZGRn9+vVr1KiR8uZt0KDBrl27RCLRokWLAgMD+eCgQYPmzp2bm5vr5OQUK98gBiWQl5c3ZsyYN2/e2NvbDx48Ud3Lgbcg4A7lXHBwcHR0dPPmzXk+O9ehQwd9ff1t27bNnTtXlYtp3769trb23bt3S8kZzLRptGkTdeqk7nUoXx7L0xBpFPmtf1P+PZly8pfYX74M/7JOSB2TOyZdH3edHT17Z+LO8OzwYswVExMzcODApKSkQYMG/f5f8ZSMjIxBgwY9efKkbdu2Bw4cUHbcqrRVlSGi//2P3N3p1St1r0PJ1q6lPXvI0/PjJWXex8TExMXF5fbt25cvX548ebKRkVFwcPDUqVPNzc0nTpzYt2/fxYsXi0QiiUSyd+9e+SbQkydPtm/fPiQkxNra+tq1a46OjoK9pKJYW1traGiEhYXJ697wBq0IuJc/ixYtSklJ+eqrr/r27avelXz77bd16tS5efMmT/YE1UtMTBwxYkR2drarq6uzs/On/2CdOnXOnz/v6uqalZU1ZcqUcePGZWZmKm+dRMQYW7x4MREtWrSI91VWEktLIoUIu6VlRo8ex/X1sVNeeLm5NGYMpaTQ8OGknIJ8UK4cOHBAMcJ+69atHQp5HxYWFk5OTpmZmQ4ODhdVHPssip8fkUJ4/fp1iouj+vWpSRPlzlujRo1Tp0716dOH31mXq1OnTnx8fOlJ3Ck3Bg+muXMpN5eGDydVhpo3b95MRF9//TXf988Y27JlCxFNnz5d2VM7OjouWLAgLy9v1KhRCQkJfFAikXTt2jU2NnaKuirslC/Lli27dOlS7dq1vby8lJduBcWDgLuKiMV5xsZMRydP3QupcHhS+aW3S5Xb2dk9ffp08uTJKl6Mnp5ey5YtpVLpjRs3VDz1u44coSlTqE8fsrAgIpo7l/78U91rUpo62nWyZdlFBtAvNLpw2PLwdzW/62fcr4pmlTfSN5fSLm14tWH88/FW963M75kPChu0InqFv7+/vMThB6Smptrb20dERHTo0GHfvn0aGhpEJJVKR48effXqVUtLSz8/PwMDA+Ff4duGDx8uEon8/PzS09OVPdcnatCApkyhxYvVvY6yo1OnTtu3b3/16pW3t7ednV1qaupff/0VHBxcuXJlf39/xQT29evX29vbJyUlOTg4XLt2jQeglUpXV7dOnTq5ublhYWF85N2q7ipTp04dfX39mJgY1VeILveuXr26e/duHR0dVW4Fex99ff1ffvmFiBYvXlxKblpXKDKZbOzYsc+ePevQoQPvB/5ZdHV1169f7+Xlpa+vv2vXri5duoSHF+eW9ic6cODAlStXzMzMeD6+8lhb/1OjRptnzybxh7Vra1+6NOTff+dmZ2crdd4K6NQpunGDrKzo/Y0DoGJRPMXNy8vr3bu3YvOboKAgXkuW69OnDy9Ax4lEoo0bN06ePDk9Pd3BwYF3j1SX2NhYXd3N3btH9eqVP1Io4V2pLCwsTp06Jd8uyfn7+xORvVIT7CuqlSupWzeKiaHRo0kqVcWMCQkJf//9t1gslke3z5w58+jRo9q1a6vmV7xixYq+ffuOHTtW3p1CS0tr9+7dRkZGVlZWeXmIj5VIYGDgr7/+KhaLvby8eIVPKFUQcFcRmcw3JUWcne2k7oVUOF26dCGiq1evFno3N5OXVlHHei6Vgl6lOTmkpUUzZhBjREQZGVSOLw+1RdpTq02dETUjIS+BiMKyw2Jz8/MK6mjXGVp56C+1fjnZ4GRCi4QXzV/4WPm4m7k7VHKoqln1Ze5L32Tf/TH77e3ta9asWatWLUdHx6VLl/r6+r56J1ubb467detWgwYNfH195dnHrq6ux44dq1q16okTJ2rUqKGC11u7du2OHTtmZGQc5+fspcPixRQYSGq9qCl7dHV1nZycAgICQkNDW7Ro8ebNm3nz5vXr10/+hLlz586ZM4cx9tNPP/n4+MibQitbobxyNaaZi8Vivh9WLeH+cowxxv+0FixY0KBBA3Uvh4hozJgxXbt2jYuLW7FihZDHTUmhf/6hP/6gCxfyL38TEujffwueEBVF/22FrrCWLVt24sQJU1PTAwcOaGtrF+8g48aNu3TpkpWV1a1bt9q0aXPkyBEBV5iVlfXw4cMTJ0789ttvc+bMIaKlS5cq3uHevHnz119/zfhJj0Bq1dKIi7v17L8Ud01Nzdq1a8tksqgoYSrUVWR+fgU1DxmjqCgKCKB9+8jYWK3LAjW5ffv2ixcv5A+PHz/Od3Nympqab968CQ4Olo8MHTq0Tp06HzigSCTy9PQcMWJEcnJy//79Q0NDlbHsT+Hv73/p0gxj4xl6evkjwcFpRDRwoHrW8+rVq6CgIF1dXV64GYSlqUne3mRmRmfP0tKlqpjxjz/+yMrKGjhwYH1e9ey/hHcXFxfVlArU0NA4ceKERCJRrDdw+fLl1NTUc+fOqbFcoVD++YciIwseHj5M/6XyExG9fk1bt1Jqav7De/foyhXBpk5KSho7dqxUKv3hhx/wP2zphIA7lHPVq1e3srJKT0+/d++eutdCpO4y7oXwTIo9e9S9DpVYWWulja5Nj8c9Gt1vND5ifFRuVGWNylU1qxZ6Wi2tWo6VHJeaLfW18n3V4tXjpo/31d83Km9Uz549jY2NY2Ji/Pz8fvrpp0GDBtWoUaN+/fpOTk4SieTUqVOJiYkuLi4nT56sVq3aiRMnqlWrxg+4bNmyTZs26enp+fj4KLVMXiGlsKqMnh55eJCgAZYKpHHjxmPGjCGixMRExfHx48fXqFHj77///vHHH1W5i7D0BNzVPnt5tWvXrmvXrtWsWXPRokXqXks+kUi0fv16sVi8du3aJ0+eCHPQx4/Jxoa8venVK1q+nLp1o6wseviQvv++4DlXr9Ln53SXJ6dPn16+fLlYLN67d2/dunVLcqhWrVrdvHnzq6++Sk5O/uqrrxYvXiz9/By/pKSk4ODggwcPrly5curUqX379rWysjIwMGjSpMnAgQNdXV21tbW1tLQUP3OjoqLmz5+/Y8cONze3kqy/EB6/eKZQtZ0nij5DHfcSW7uWBg/OD1swRlOnUu/e1K6dupcFavLHH3/whu1cp06drly5ovju0b179wsXLsgfdu7c+aOVrzQ0NHbt2mVvbx8fH9+vXz+lbrv5AJ4cI881fvny5T//GDdq1L9nTyHvDn46f39/mUzWu3dveeYQCKtmTdqzh3R18y5eXKTs1CjGGG+dIq8eExMT4+Pjo6mpqcq9/nzPtyIe9J8xY4bK1qA8a9fSnTsFD93d6fnzgodRUTR1Kv3wQ/7DgAAS8Op80qRJkZGRXbt2VWq7GiiJMn9DCeCjOnfuHBYWdvnyZd6KXb14hjs/R3z3s0f11q+nL75Qbk+eUkJXrLu29lrFkXb6H7luE5GooU7DhjoNqRMtPrtYJpM9fvw4ODg4KCgoODj41q1bz58/f/78+d9//53/fJHIwMDgxIkT8mzQPXv2LF26VENDY8+ePZ1UWyzfyclpwYIF/v7+aWlphoaGqpxaLjubvLyoY8eC5mb29uTiQrVqqWU5ZV6RYeVWrVqFh4er/qKoUA2Z+vXr6+rqRkVFqeXvjf+XQYa7gNLS0r799lsiWrVqlXFpSiht06aNs7Ozl5eXm5vb4cOHBTji/Pm0YAHNmUNE5OZGQ4bQxo35LcWBiIiioqJGjhwplUqXL1/+xRdflPyAxsbGBw8e3LBhw8KFC1euXHn9+vV9+/YVuf0rJibmmYLnz58/e/YsKiqqyB3o2traderUqV+/fr169UJDQ6OiooYOHXr27NlWrVoRkYWFxbFjxxwdHVevXl2pUqXvFW+olEDdunU1NDSio6Nzc3O1tLSIqH79+ufOnUPAXRBdu9LCheW54CF8um7duu3Zs2f+/Pn8oampae3ate/cudOmTRs+MmXKlKysrM89rJaW1sGDBwcOHHju3LlevXpduHChhPcUP1dOTk5AQAARDRgwgI8cP36cMdakia6urnpqMRe6AQDK0KsXrVy5d/bs1Xfv7ggODi5U0kdA//zzz5MnT+rWrSv/+N66dSvfk11LfddjoaGhFy9eNDIyGjVqlLrWoEotWtCJEzRuHP33diWMTZs2HT16tHLlyrt27SoHGwXKK/xioPzr3Lnzrl27Ll++/M0336h7LVSrVq26detGRESEhoY2b95c3cuhpk1p1KiCm67wAWKxuHHjxvJEYyIKDw+/ePFicHBwcHDwjRs3NDQ0RowYYWtrK/+RmjVrGhsbL1++fOjQoSpebe3atTt16nTp0iU/P7+RI0eqeHYiYowmTqR9+2juXNq+vWB8yxbVr6Wc4GHlBw8eFBpXSwpSoei/hoZGgwYNQkJCHj9+3EbY08nPXwyU3KpVq16+fNmhQ4exY8eqey2FrVix4vDhw0eOHHF0dPxAdThDHZ21Hy2UtnAhnTpFf/2V/1AkImdn2raNOnSgnJyCDKX4eAHWXTbl5uaOHDkyISHB3t6e34MRhEgkmj17dqtWrUaOHHn27Nm2bdv++uuv+vr6hWLrRYbPxGJx7dq16yuoV69e/fr1zc3N5XkMUql0zJgxBw4c6Nev3/nz53lX5759++7bt2/48OFLlizR09MTpLy7lpZWrVq1oqKioqKiLC0tqaicdyi2mTPpm2/owgXq2lXdSwF16969+7Rp02QymbwqBU9pl59yNG3atHhH1tPT8/Pz69+//8WLF/v27XvhwgWldlou5Pz586mpqS1atJAH+tUb787NzT116hQRDVRXRZsKY9Ys5/Pnjx0+fHjIkCFXrlzRk1cUEhRPJJ8+fTr/fMzLyyuU8K4WGzduZIyNHz/eyMhIjcsQUGQk3b+f/+93zz21tWnpUpo2raCYzKpV9PTphw5obJyWkvKhs5SUlJSjR48S0bZt2+Q3bJ4/f75///7F6JlWmiDgDuVfqariQkSdO3eOiIi4fPlyaQi4E5G7OzVvTrVrUynYAFDGWFpaWlpajhs3jogOHTo0bNiwu3fvKj6hT58+Dx8+VOWJuyInJ6dLly4dPHhQLQH3RYvya62OG6f6ycsnS0tLHR2dyMjI9PR0FbTe/bB3Y9yNGzcOCQl5+PAhAu7lQNu2bU1NTQcNGlSoTtHLly9VnxL15Zdf9ujRY+bMmfxy0czMrGXLls+fP/fz8/vAT5mamKxNSvrooSknh0xMCkaqVaPYWCKi58/pv/Zi9OoVqTbnsfSYPXv25cuX69at6+XlpVh9VRA9evQICgoaPnz45cuX58+fH//OjQ0TExP+OWtmZlarVi3+78aNG3/0DZBXikhLSzt+/Hjfvn0DAwN5HHzo0KHbt2+fNGnSggULjI2Nv/7665K/ivr160dFRT179kwx4P5ccT85FJe2Nq1fT9Ono/sLUI0aNapWrXr//n351dOPP/4oVMKBgYGBj49Pr169nj6NnTGDdux462NBqQqF17Ozs0+fPi0SieQJ7yoWGBj45s2bZs2aKS/nGjiRSLRjx447d+7cuXNn7ty5W5SQkRQVFeXv76+trT1x4kQ+EhMTU6tWLUNDw549ewo+3SdKS0vbvXs3EU2dOlVdaxDcrl0UEJD/77i4Ip4wdCht3VqQdnbsGH04NGVpqRUe/pEW4RYWFjKZTJ7Vl52d3bVr1xcvXtSuXbsUpstUWAi4Q/nXrFmzSpUqPX/+PDo6unbt2upeDnXu3Hnfvn2XL19W18dMWhqdO1fw0NCQVq2i4cPpv7xtKA4HB4dKlSoFBQU9ffpUscGguqLtRDR8+PB58+b5+/unpKSouCjEli20Zg1padHff1OrVqqcuTzT1NS0srIKDQ19/Pix2gtk1ahRw9TUNDExMTY2lv+Rq7GuS6NGjcRi8dOnT+VVHaCEYmJiEhMTt2zZMmfOHB7RyMvLGzdu3LFjx0JDQ1W5437fvn1Hjhy5dOnShAkTeE/g+/fvX716lTHm7u7+gei/rqYmFVV45C2tW5O+PsXGFhS6io4m3mevUaOCi6eDB2nXrpK/ljJn3759mzdv1tXVPXToUJUqVZQxhbm5ebt27S5fvqytrT148GCeq25pacn/UZL6VLxSxIABA86fP89j7nw/xPjx41NTU2fNmjVt2jRjY+Phw4eX8CXUr1//woUL8pR2ZLgL64svyMaGNm5U9zqgFOjdu7diwL3IOlTFZmJi8u+//06cqHHkSJWXLykggFSTeuvv708KAfdz586lpaW1bt1aXVesqCejSpUrVz58+HCnTp08PT07duw4YcIEQQ6bm5sbERERHh7u4eEhlUpHjhxZvXp1/i0LC4tr164lJSWpsu1TIbt3705JSenevXuzZs3UtQbBff89OTrm//t9GZW//UY9ehC/9+Hmlp/d8T7a2nk5OZ4feEJqaurKlSvj4+NXrVrFNyDq6OgsW7Zs8uTJ06dPb9++vSpbx8EHIOAO5Z9YLO7YsePJkyevXLmi2NFeXdSbcf/6NdnbU1AQLV9O7dvnDzo50fz5ZGWllhWVEzo6Oo6Ojrt37/77779LyU4uMzOzLl26BAYGHj9+XJU18nx9aeZMEolo2zbq21dl01YIjRs3Dg0NffjwodoD7kRkbW195coV+R4OXtVdLWnmenp6devWffbsWXh4uLW8YwCUwJQpU7Zt2xYcHLx27VreiElTU1MkEmVkZCxatOjAgQOqWUZmZia/ivj11195tJ2I5s6dm5eXN2fOnKVLlwowx5AhtGkTLV9ORJSXR9u2YVcOFxISMmXKFCL67bffFEulCevYsWMbNmzQ0tI6cOAAb3IjIN6u3M7O7saNG/369Tt37hy/bTBz5szXr18vXbrU2dnZ0NCwhJUTbGxsmjVrpqOjwx8i4C64deuoc2d1LwJKAV4cQ3mqV6++dSt1707XrtGAAXTyJCl7M+GjR4+ePHliamrasWNHPqL2eLfaF1DRtGjRwtPT09nZefr06S1btvzc0/ukpKTwd0RGRso7nVStWtXc3LzQT5mobAdHUbZu3UrqrmmjAnl5lJNDiptwGjSgKVNowwaaMIEGDfroAQyIXD78jDZt2tjZ2f344489e/bkveImTZp0+vTpvXv3jh49mqcylOxFgAAE3hxayg0YMCAhIWHPnj3KnujZs2fJycnKngU+HX8PuiKvm6VWLVu2NDIyevr0aeyH72wqQUwM9e5N166RhQV99RW5uhZ8a80axEZLit/OOShg6/ESU/2Srl+nkSNJKqVffqHx41U2bUVRqrqDFirkot66LqgqIyyxWLx+/XqRSLRixYrIyEg+uGrVKgMDA29v7/Pnz6tmGStXroyIiGjdurV8N/ShQ4cCAgJMTU35bQABSCR09CjZ29PcudS+PVWrhncuIkpLSxs+fHh6evqYMWMEqbtSpMePH48bN44xtnbtWsGj7ZyxsfGJEyeaNm0aEhJiZ2f35s0bPu7u7r5w4cKcnJxhw4ZduHChJFMsWrTo3r17zs7O/KGZmZmuru6rV6/S0tJKuHjgatemWbOKGE9OprFjqWS/PYC3mJvT2bNUty5dukRDhxZRi1lYPLo9YMAAef+JQgnvKhYeHv7o0SMTExN+4QyqMXbs2EmTJmVlZQ0fPvx9EaS8vLxnz56dPn1627Zt33777fDhw3npP1NT07Zt2w4fPnzx4sVbt249depUeHi4TCarU6dOr169evXqlZCQsGHDhuDgYBW/qPe5dOnSrVu3qlWrpvr2ZqoUFkYjR9L8+bRixVvj335L1aoJNkuvXr3mz5+fl5c3cuTIpP+KKG7atKl+/frBwcE/oEdfKcHKtREjRhDRvn37VDZjenq6u7u7rq7uvHnzFMcPHz5MREOGDFHZSkAR7//evn17dS8kX58+fYjo8OHDioNpaWkzZ848efJkdna2MiYND2dWVoyI2diwqChlzFDRZWVl8RzMx48fq3st+WJiYjQ0NHR1dZOTkxXHX7x4MWvWLC8vr5CQkLy8PKGme/qUVa/OiNiUKUIdEt6yc+dOIhoxYoS6F8IYYxKJhIjmzJnDH6ampopEIl1dXQH/oj7d3LlziUgikah+6nJs2LBhRDR27Fj5yE8//URErVq1UsFvOSoqipfqPn/+PB/JysriBbs2bdok5Ex5eezmTebjw54+zR9JSWF37hQ8ISGBhYYKOWPpJpPJ+K++RYsW6enpSpolLS2NNzlUwRtaXFwc3/vSuXPntLQ0PiiTyXhlP2Nj4xs3bgg1l0wms7CwIKLAwEChjlkxPXrEUlPz/52Tw4KC2Jkz7OjRgiesWsWImIUFe/1aKQvgQU9fX1/+kCdsjRo1SimTfRD/6Fd8KwalevyY1azJiNiQISw3V4kT9e7dm4j27t3LH8pksiNHjri6uqrlPIox5uHhoa4/8gruzp07fCfZoEGDMjIywsLCAgICPD093dzcnJycbG1t39dSVUdHx9LS0s7OzsXFRSKReHt7BwUFKX5wz5gxg4jq1KkTHx+vxhcoN2bMGCL6/vvv1b0QIYWFMcXr7IcPWUoKy8pijLE+fVh6+lunkNHRQsZhcnJy+P4YJycn+eD169e1tLREIpGfn58gs/B3qlOnTvGH27ZtI6LJkycLcvCSSElJISJDQ0N1L+RDEHAXjEwm8/Ly4uVERSJRoT9BBNzVKzU1VVNTU0tLS3mXjp+F33JcuHCh4iD/IyEifX19BwcHLy+vpKQkoWYMCWG1ajEi1q4dKx0fuOUTz3H75Zdf1L2QAj169CCi3bt3Kw4q5rwbGBh06dLF1dWVx9+lUmnxJnr1ijVsyIiYvb1yr08qsuvXrxNRy5Yt1b0Qxhg7evQoEfXv318+wkuOPpVHLZXm/Pnzb968URzhzaYmTpyo7KkrlMjISH19fZFIJA8dZmRk8EZqW7duVfbs/BRO8cp/+fLlRNS0adNcvMUoU15e3vjx48Visbe3t/Jm4f3Gra2tC90PVpLIyEjee6Bv375Z/DqYMalUyuut8WaMJZxCKpX6+Pi0a9eOiMzNzfX19d3c3FJSUkq8dmCMsevXmYYGq1SJhYfnj+Tmsi5dGBEbOlQpMyLgXpHdvctMTRkRGzuWFfe8+L0iIiJ27tw5adIkbW1tDQ2NUhIJZYz17dv33UsGULbnz59raGi0atWqcuXK72tEJBKJateu3b179wkTJixbtmz37t1XrlyJi4v76MFzcnJ4MduBAwcW+xJPKPHx8bq6umKx+NmzZ+pdiWoEBLAfflD6LP9n777Dori6OACfXXoTsfcCIopd7KixYEcTTTCJijFqSIyKGjWkuiZqgtEoGjXBmILGL5FYInaxYxes2AUbiIqIVGm75/vjbpYNTcrsDurvfXjysMMy925cdmbOnHvOjRs3RKu2X3/9Vbfxm2++MTW19PQ8Uoz3yLMh4F4WL3LA/dGjRyKfZfz48Ya+UXzq1Kku/9YXbNeu3eHDh/V/qlarxd1FJyenhw8fGnQmUJjWrVvrJ8rJa8eOHSLTSn/j9evXv/jii5YtW+oOrmZmZh4eHj/88MPt27fLMtzx41y5MhNxz56MSz+DCgkJEemfck8k17Jly4jo1Vdf1d94/fr1b7/99o033hCxM30VKlTo0aPH9OnT//zzz+vXr2s0muKMkpqa6u0dTsQdO3L5uKv1YkpOTnZ0HNS9e4Dc58zMzKJ+S4MGDXRbPDw8iEiqfIrCBAYGmpmZ9evXT//IfuDAASLq1KmTQYd+CYnKLW3bttVdp4kC7tWqVZPwlnB+R4/G29vXs7a21h3+4uLixBXF7t27DTcuCOJuh7m5+fLlyw2x/x9++EFcI5U9zF18165dE10Whw0bprtnk5WV5enpSUS1atWKiooq3Z4zMzN//vlnZ2dncRitWbOmrg5v7dq1V61aJVe+6gvmzTe1iSNZWdotd+5oo6I//ij9cAi4v+SOH2c7Oybid9/l4p0LFyUqKiooKMjHx8fV1VV3ym1paUlEH3zwQTFPtg0qJSXFwsKiXN0AeEmIXjWjRo3auXPnggULLCws6tWrlydpPUW33qfk7ty5U6VKFSKaO3euhNMuBbE0dvDgwfJOwzj27+eZM42UgibOzG1sbC5fviy2qNVqb++HRDxggAQfXwi4l8WLGXDPzs5eunRppUqViMjOzk7kAx44cMAQY8XGxvr4+CiVSnGyHhgYmOfmYVhYmFgiZGtrS0QVK1ZctGhRlu5UEYxl4sSJRPTtt9/KPRFm5qSkJKVSaWFh8fTp0/w/vXXrVmBgoKenp/5dbldXVz8/v7CwsJKek23bxtbWTMSvvsoFjQZSyszMFI1odAc82d2/f9/ExMTCwiJPRrDOkydPwsLCAgICvL299S8DdPF3/fz3At9+2dnZ4rr09dd34JaiodWuzUS5KX4yys7ONjc3VyqVupVDkyZNIqKFCxcaaMSMjAxRy1uhUPj5+ekfbbds2WJmZta7d28DDf3SSktLq1evHhH9/vvvuo1i3cz06dMNNKhazW5uXKWKetGi3HvkYv3Q66+/bqBBQV92drafn584CowYMUJXhkUSJ06cEC1G16xZI+Fui+PcuXPiGP3OO+/oDmeZmZn9+vUjonr16pU0vyE1NTUgIEDUkCGihg0bBgQEpKenM/PRo0d1hembNGli0OUCL4nERK5fn4lYvxrB+vVMxJaW/6kCJQkE3OHwYbaxYSKeMqXEv6tW8/nz15cuXerl5SVu9ek4ODgMHjx4wYIFK1euFJXTppRiAKmJldbu7u5yT+TlkpmZKd4eR44cYebs7OyrV68qlcpBgwZJOMqePXtMTEyUSuXOnTsl3G2JaDQaURVw+/btcs3BaEJCuEoVfu89njbNSCOKk+QWLVrogkv373P16kzE339f1p0j4F4WL2DAfe/evS1atBDHs169ev3www8NGzYUDz09PUudvZJfZmZmQECACOibm5v7+vrmWRUbExPj7e2tUChEhst3330nkmiIyNnZGWfeRvbHH3+Uq3uqYmnz6NGjjx07VtgKr8ePHwcHB3t7e4u0PqFevXo+Pj4hISHFKfX+5585ZmbamtrIrzKOd955pzwkEejr0aMHES1atKg4T05MTNTF3x0dHfPE3yMjI/P/iljBU6VKlatXr0o9d8ird28m4nJystq0aVMiOnPmjHgoslbfM0wJ/5iYmI4dO4rzqr///lv/R4GBgebm5kS0evVqQwz9kluzZg0RVa9eXXeSc+bMGRMTEzMzsytXrhhixJ9/ZiKuU4d1Yd7w8HBxl/r69euGGBEKtGnTJtGYpEmTJgV++JdCQkKCWFmla/9gZMeOHRMZMJMnT9ZtTEtLE8Hxxo0b379/vzj7SUpK8vf3r1y5sjg4tmjRIigoKE+xI41GExwc7OTkJJ7TuXPnPEtgoaTCwtjEhJVK/vfCn5l5/Hgm4mbNOD1dyrEQcAdm3r2bLSx41iwODMytvHzrFu/YUcCTc3I4PJwDAtjLiytX5h49vtGdP1evXt3T09Pf3z88PFz/um/37t3iBqRKpTLG6yncuHHjiOibb76Rdxovm//9739E1LJlS92WqVOnGuJcWqVSEVGlSpVu3bol7Z6LSbQIdnR0lL2yzQspOTm5UaNG1tZV5szJPTPfvp0VCjYz4+PHy7RzBNzL4oUKuF+/ft3Ly0sc1Ro1aqSLaOePjJe9omJISIguFJU/jp+enu7v7y9O6K2srPz8/HTrgEJDQ0WTKCLy8PCQ6gIGnunmzZtEVLly5fKwak8UotVdp1WpUsXb2zs4OLiw9WJPnz7dtm2bj49PzZo19fMjRowYsWHDhsJGWbFiRZMmw+3tNb6+EiwmgmLaunUrlZsq28KIESPEWkJ7e3v9dPXi/G5sbOzmzZtnzZo1cODAhg0b5l8XL5ooWllZHT161ABzh7wmTpQmW0ESQ4cOJb1GKaI9dbdu3SQf6PDhwzVq1CCiunXrhoeH67ZnZ2f7+vqKj0QfHx+sHjMEjUbTtWtXIvr00091G9977z0ikjYDS0hO5po1mYh1/Xc0Gh458mbt2l30JwDGcfXq1ebNmxORnZ3dunXryrg3tVrdv39/IurUqZOB+sMXx549e0QlB/0IV0JCgsjXGTBgQNG/fv/+fZVKJW5FEJG7u3tISEgR55ZZWVmBgYHVqlUjIoVC4eXlhftGZaFSMRFXr866OyNpady0KRPxhx9KOVCegHtoaGjXrl2/+uorKccoHgTc5RUVxWlpTMQDB2q3hISw7uj39CkfPMhff819+mjT4XVfvXqFjx49etWqVUXno2zatMnU1JRkbfyu0Whq165NROckXyoCRerWrRsR/fTTT+Jhenq6KNKgf64rCbVaPWDAACLq2LGjLMdfkXg6f/584w/9kggPP+vi8lSh4G3bcjf6+jIRN2pUpqrCU6dO7dq1q+49iYB7ibwgAffU1FSVSiXuD9vY2KhUqvyVOp5Z+6WYLl26JFaeElHTpk3zL8wJCQnRlUX29PTM3xQiKysrICCgYsWKRGRmZubj44NaacYhziTkrfWh0WhmzJhBRCYmJjNmzJgyZYp+EW0bG5vXX389KCjo0aNHhe0hMjJSpVKJOkVEVFgJhTlz5ohLu2XLNhvs1UABsrKyxKnSJf2W5PLZsmWLOI8Xnzn6qlevPmjQIJVKFRIScu/evVLsfO3atQqFwsTEZOPGjZLPHAq0dCkTsY+P3PNgZubPPvtMP2iVmJj4zz//SN40VZfA/sorr+h3iIqPjxerNywtLX/77TdpBwV9IsHc3Nz82rVrYsuDBw/ER4rkS4NnzGAi7tIl9z7x6tVMxI6OmpQUNIiQQUpKyltvvaW7rVWWC3XRMb5atWoxMTESzrAU/vnnH3Fk/O6773Qb4+LievXqVURoLDo62tfXVwTrdaH2Yo6YkpKiUqmsrKyIqFevb318WJJWZi8htZp79uQ8pWkvXGArKybiTZskGyhPwN04srKyFi9enOcwioC77NLSuEIF7tWLxfo6EXBfvJi7dmULi/8E2Zs0YR8fXrOG79wpwf7XrFmjVCoVCsWKFSsM9BKKFh4eLnIaykNe2svj4sWLCoXCzs5Ot4Lwl19+IYN1JEpISBCFH3x9fQ2x/yLcvn1bFDgtTqNXKLXvvmMirlqVY2O1WzIyuE0bJuIxYyQbRa6A+969e/NkfiDgbhRq9e41a0TpK6VSOXbs2Li4uCKenqe7qaiWVUwJCQm+vr4mJiZEVKlSpYCAgDzJnhEREeIuJRG1adPm0KFDReztwYMHPj4+Ym9Vq1YNDFyJih+G9sYbbxDRL7/8ItcEcnJyxHo9c3Nz/c+LyMhIf39/d3d3UYBIhOPd3d39/f2LuD1w/fr1BQsW5M9w14/pr1y50lAvBgonykx//fXXck+ET506JapDzp49m5ljY2NDQkJUKpWnp6fIttNXs2ZNT09PEX8v+oNU2Lt3rwiD/vDDD4Z/KaC1ezcTcffucs+DmZmDgoKI6K233jLQ/otIYD99+rQozFW7du0TJ04YaAKgI4plDR06VLdl4cKFRNSkSRMJFxbcuMEWFqxU8smT2i0pKVyrFhNxUJBUg0Bp6O57de3aNVZ3JVcSoaGhoobsrl27JJ9eKegiXIGBgc988vnz5729vUWMXqlUenp6ntS9R0vizp07H3wwxcYmnYgrVmR/f4mroLwk7t7lypWZiJcuzd24ZAkTsYMDS1UvwfgB99DQULGg5LXXXtPfjoC77ETA/dw5rlePk5K0AXdvbyZipZJdXdnHh4OCShZkz+OXX35RKBQKhWLVqlXSTby4xHLVDz74wPhDv8xETc6JEyfqtrRr146Iggx2xiNXDxVdY1hjDvoS0mh40CAm4h49cosJX77MNjbctSunSZS1YvyA+507d0SRegcHB/1MZQTcDe/ECe7UKa1pU1OlskOHDsUsaCAqKoomYGJp5zNbJIl0A11O+tSpUx8/fqz/hEePHuli8ZUrV84fiy/MmTNnRPMxd/dRTZuyfH0sXgqLFi2S5XackJmZKSL+NjY2Owqs/Mf84MGDoKAgT09PcSwUHB0dfX19i9kuVT+mjz4Bctm+fTsRtWjRQt5pREVFiZuRhb3n9ePvouZMYfH3/PkI58+fFwvqP/vsM8O/FMh15w4TcbVqcs+DmZlPnDhBRK1btzbEzh8+fFhYAvvatWtFoqi7u3txbg5B2d2/f190E9FFSzMzM11cXIho8eLFUo0yeDATsf4n1mefMRG7uTFqfsru1KlTYk1e1apVd+/eXaLfvX37tjjKlKsCwcuXLxcB9P/973+FPScsLMzT01PkQ5ibm3t7e5d9oeTFi+zlpc2HrV2bAwPRZafENm5kIraw4NOntVs0Gh48mHv14lLdDyqAWNBsnID7tWvXdGVR8zf6QsBddiLgzsy+vjx1qjbgfuIEb9nCiYmSjRIQECDypf766y/Jdlo8HTp0MP56jpdcSkqKOK06f/682HL69GkRSspfqkFC4sBna2t78eJFw42iL09jWDCoBw+4Rg0mYv0KVeHhUp5mrFy5kojGjh0r2R4LJwqZiJWF1tbWeQqZIOBuSHfu8FtvsULBRFy3bsTGjSVdAFX0P14euqvK3r17X7hwQf9Hoj6MCDyZmZn5+vo+efKkpK8mODi4ffu74szby4vzFaEBaRw/fpyImjZtavyhU1NT+/btK+7LFedgk5aWFhIS4u3trV8GpGrVqt7e3iEhIRkZGQX+VkZGxuuvvy5i+jJ2IYesrCxRoN9opzL5PXr0SHxqDRgwIE8bt8Lox99FVZzC4u/nzp2rU6eOSG3G4lMj02jY1paJuPC6U8aTlJSkUCisrKwk74Ckn8Cun0mak5Pj5+eny3mXsQz0S2jevHlE5OrqqvtI2bJlCxFVrFjx4cOHZd+/RsMLF3Lduqy7hxIdzZaWrFBwWFjZdw8SiI+PF1FIExMTlUpVzD/8jIwMkbXn6elZ3g4Z33zzjTiBzx9pCgsL8/DwEJ82NjY2vr6+d3U9E6WwZw+3basNu7u6MnIkSuqDD5iInZ1zS9OmpEhwZy4xMTE4ONjb29vMzKxq1art27c3aIVAUWtI5NnY2tqqVKo8J/lXrlxp3759vXr1ZCkfD4Iu4P7kCdety/PnswE6mDAzz549m4g6d54jdbW2XDk5OboCJsKDBw+USqWVlVWaVBmwUAw//fQTEXXXW7IqVkjPmDHD0EOLNYsuLi553gkGkr8xLBjUzp2sULCpKUvbXi0nJycsLMzX17dSpUpVq1atUqWKQZM7n5kknZqa+tlnn9nZ2RVWYLmceA4D7unp7O+vjTdYWbGfHxfSZ7I4dMsTiKhu3bpFrN/Zt2/f1q1b82wMDQ11dXUVv+7h4VGW4FpmJgcEsJ0dE7G5Ofv6lqmzARQoKyvL2tpaoVDkKZq/evXqI0eOGK5l9uPHjzt37kxENWrUOHv2bIl+V3y0+fn5OTs760Kf1tbWnp6egYGB+nnHKSkpffr0KX5MHwxq7Nix9G8hF+NLT08XtbPc3NwK68RbNLVafenSpTVr1kyZMqVr166iLo2OyPXr3bs3wp2ycHNjIi4Pf+UpKSl2dnYmJiYTJ04suidYiegS2Lt27aqfwP7o0SMR/zI3N//555+lGg6KKTMzUxyJli9frtsoenBJuA5dvz7NsGFMxKNHS7VvkIBGo/H39xctkTw9PfOs+CzQ+++/T0T169cvoj+NjD755BPxqSIyFdRqdUhISPv27cXxrkKFCn5+fgaauUbDwcHs6KgNu/fuzRER/OQJ+/nlJt9ERPC6dXzkCOsH4HbuxF0ofvqUW7ZkIh4/XoK9xcfH//zzz/379xelk8TSB3HyY2Fh4efnlyz1hZlarQ4KCtKVRfX29r6v6wPLzMwJCQmTJ08WhYzq1q2LMy4Z6QLuzLx2LTs4GCrgzszz5m01N2crK96/X7J9Zmdnh4eHBwQEeHl5VapUacKECfo//e2334hooK4nLBjFQHd3Ilq7dq14mJiYKMIUEp5OFyY1NbVZs2ZE9Oabb5Z9bzk5Obdu3dq3b9+qVas+++yzqKioPE/I0xgWjGD6dNH9iMt+SyUzM3Pbtm1jx44V2YS6PDzxzYABAwzRH7HoMuBqtfrnn3/WHT3LeeDreQu4h4Rwgwba01JPT6lSwfft29eyZUvxL9qzZ8/ihESvXLkycOBA8SuNGzfOH4svndhY9vFhpZKJuFYtDgzEGmqJiU98/X+vjIwMOzs7IqpcubK3t3dwcHDpApSFuXv3XtOmTYnIyckp/xGoRIoo9X7y5MlOnTqJmD76y5cHO3bsIKImTZoYf2i1Wj1s2DAiatiwoVTVNnJyci5cuPD7779PmjSpU6dOtra2RKRrVg5GNnIkE7F83Si0bty4IarN6kpgubm5BQYGluUjtIgE9nPnzoleT1WrVj1w4IAUrwBKbMOGDURUqVIlXfzx8uXLZmZmJiYmJb2d/Ez79jERW1uXqSouGMi2bdvEQqj69esXXc187dq1RGRpaVmeDxnTpk0T2Qyff/65WBxGRNWrV1epVKVYt1pST5/yggXs4KCtB/3VV6xU5obzfv+dR4/m777jyZP1J8zlqTaPbCIjtb1SC68J9Azx8fGilqOZmZn+qXVAQEBsbOy9e/d0DbeqVKlS/JKhz3T8+PGOHTuKETt27Hj8+HH9n4pYvOi1I2Lx6DQoL/2AOzP36mXAgLtGwxMmaA9/ZbmvlpbGhw7dmT17dq9evaytrfXzZvr376//TFHyVP9WOhjc0aNsZRU5cKDuRFdUvu3Xr59xxr927ZooaFOiRlwZGRlRUVGhoaGBgYF+fn5eXl5ubm553l1/i87C/7p06VKexrBgBFlZ3LEjE/Hw4aXcw9OnT0W5BVHJQ9AVOs7MzAwMDBSlAs3MzHx8fPLks5ZabGysj4+PyOqoVatWYGBgnqTYEydOiKgXEXXo0OHYsWOSjGs4cgfcjx/nhITchwcPcmoqM3NSEu/bxyEh/0nw6NZNG2pv04aL7EdaCsU/s3n8+LGfn59If3BwcPD395c84+DkSe7SRfta27XjI0dYrebg4NxF1nFxfPAg377N+qdnV6+y1Fe7LyCRx6RfdTohIWHq1KkijiNYW1sPHTr0t99+i48v68LnqCh2dU1v1aq7q6trTExMGfemc+vWrSVLlvTu3VukvdC/GceNGjWKjo6WahQoi+zs7KpVqxJRZGSkkYeePHmyuIFkiBvOgliKOGfOHAPtH4r29ddMxB9/LOccDhw4IN7hjRs3/vvvv318fMSdSyKqUKGCt7d3aGhoSfepS2C3sLDIk8C+bt06kWnYtm3bZ7ZdAYMS5dF8fX11W6ZMmUJEvXr1knCUnBxu1YqJeO5cCfcKUrpz546IGFpaWhbWof38+fPiUlzGfvXFoVarxYJXEVpt2LBhQECAQavo5vf4Mfv5sa0t79vHDRvyK6/w+vXMCLg/y/LlTMT29lyi899bt3jRIh4wYLS4qhfHnUGDBv3666/5VzNERER07dpVPK1t27ZhZVtccPfuXW9vb3HeXqdOnaCgoDx1lvLkgSGNpjzIyeHDh3Mf3r/P/5bdNgiNhseN076xS3SnMiWFQ0NZpWIPD7aw4NatE/UjZd7e3oGBgTf/m7CYlZUlAmo3UdPWmEaNYiLWRSQ0ms6tWhHRpk2bjDaFf/75R6FQmJmZHdZ/c/8rKSnp4MGDv/3225dffjlixIhOnTqJQFmBatas2bVr19GjR8+ePTvPle/EiRPpv41hwThu3OAKFZiIf/+9BL+VksJ//cVTp4bor25v06bN3Llz8wcWEhISdG0sK1WqVMZ70pmZmQEBAeJy0tzc3NfXN8/CspiYGN3Rs3bt2vmPnuWT3AF3d3fesyf3YcOGfOkS79/P1avzu+/yRx+xkxPPnMnp6dpu9NWr888/Gy7rWz+YXrFixTzBdGOmG6jV/PvvXLMmE7FCwV9+yUSsa1m/cyf37curV7OXV+6vzJ/Pete/ULDNmzcTUY8ePfL/KCoqKiAgQJc/7uQ0WKlkNzdWqbh0xRtPn+bq1ZmI+/R5Upw116Xw+PHjP/7444033rC1tVUoFNeuXTPEKFA648ePJyKVSmXMQb/99lsR/ijjBWHRtm7dSijGJ5+tW7ljR16yRLYJBAYGirt9gwYN0qV/pqenBwcHe3h46JbgNGnSxN/fv/gHyiVLloizdv0W6BqNRqVSiX2OHDkyPT1d+tcDJXHx4kVTU1NTU1NdS5vHjx97enoWneZcUitWMBE3bMjGjXlCyWRkZPj6+oq/d29v7zz1f5OTk5s0aULyNasvkezs7A0bNnz77bd//fWXVFnMpfDkCd+5ww0b8pkzXL8+JyfnBtxffZV37NB+DR2KgHuuoUO5aVMuTl3Pmzc5IIDd3bVdwLp1W2Npaenp6RkUFFT0UgZRTFZ0FiEiT0/PW7dulXSeaWlpKpVKFEyztrb28/PLsyCs+JVOwciiorhWrdyHhw+zm5thR8zJ4TffZCKuWvXZ7+3YWJ4yhdu2ZRMTbcYeEZuYcOfO6mnTPtq4cWMRyad79+4loubNm0v8AqAI8fFsaclKZW5q6Z49Gnv740OGFLPtllSmTp0qPm3yd+IJCQnJH1g3Nzd3dHT08PDw8fHx9/cPDg4ODw8votxW/sawYEy//84uLhwR8exnJiZycDB7e7ONjUj5fUhErq6uKpXqypUrRf/upUuXRHcfImratGnp+giGhIQ4OjrqjrB5ykKkpaX5+/uLFfZWVlb5j57lWfkLuJ8/z87OrPt3SkriOnX42DFesYJnzJCgClExXL16ddCgQeLfW1cuRpZ0g9RUVqnY0pK3bWMrK+7enTdvZkbAvQzi4+MVCoWFhcWZM2cKe87du3dXrFjxwQcHzM1zz1qaNeNPP+UTJ4p7u+fQIba3ZyLu1csY5fjFyppdu3YZfCQotl27dhGRi4uL0Ub8888/lUqlUqlcL/LiDCYrK0sUEzBoJzEo0O7dPHNm7gfR0qUFpFnpV8GW1tOnT8X6BoVC4efnV2DriytXrvj5+YnKeuLs3NPTMzg4+JlXESK2Hhsbq9uSlJT06quvEpGpqam/v7/ELwZKa8KECURk0CZFopnkf9clQzm1Zs0akcbepk0b3TWSRqMRXdxbtmyJRnwlIgLuzDxpEn/0UW7AvWVLnjRJ+9W6NQLuuRITOSmJPTw4JES75eRJ9vPLfUJkJH/1lbbgu/iys+O33uJ//klIFUuri0f/mr/AiHlh9OP1ovlbnnh9amqqSqWytLQkIhsbG5VKZeQFFlA04wfcmTkriwcNYiKuXZuLLkr68KH2HpKpKbu5sa8vBwdz0bleGo3mwoULy5cvF4VPP5Z31eTLZv58bXlkHdGyxuhLh7Ozs0W53V69euW503z16tXOnTuPHDnyyy+//O233w4dOhQTE1PShOIff/yR/tsYFozs6VP+/PP/HBAHDWJdZ+74eP75Z+7fn3VRL6WSu3fnH37IuVPCeo5FR8yL8Mx4fUhISIMGDXR7fu7W4pSDgPvmzZyYqP2qX59DQrhu3f88Z8YM/uIL408tJCRE16ZS92/s6Oi4YcMGI88kLo6zstjKiiMiuGFDTk3NDbh7enJMjPbr888RcC+Wjz/+uEaNGuKf1dfXNzQ0NKuQ6FRSEq9bxyNGcMWKuefoxcnT2rpVW1PytdeMlJ330UcfGT+ZGoqWnZ0tFsTo8kCFmJiYJk2ajBw5cvHixWFhYVLdod2/f78opR0QECDJDov27rvvEtHXX39thLFA34IFbGbGukqbAwZw/h4i7u7s4cFBQSxtOvjdu3dFI0FbW9tnHgpzcnJCQ0O9vLx0hXFr1arl5+d348aNYg539epVcR1YuXLlPfr35kFuCQkJonVSiC6+VWY3b/6nIsTJk4z2Ws+Rs2fPNmrUiIgqVKggPhy+++47sVq0+H/yIOgC7omJXKcOf/opSso8W2Ymm5pyo0ba1KwdO7hvXz5zhj//nJs0yT2Hd3Dg0aN58+YynZw/syZMHomJiZ07dxbHwfbt2+dp7yZi8XXr1tXF4lE2rRySJeDOzOnp3LMnE3G9elz0moolS3j//mec9eXk5ERGRgYGBnp5eYniy8Jnn32GD2rj0WjY2ZmJeNs27ZZ799jMjE1NWS/jxGji4uJEA8xZs2aVcVd5uqe+9dZbIj1L1xgWZDFoENvZ5SY5W1lxdDQvX869euWuiTE1ZQ8P/vFHLkv3t2fWhMnPz89PVKSpWrXqTz/9lOeuT0REhLghRERt27Y9JHVRceMoBwH3xo3ZzU37ZW7Oq1Zx+/b/ec733/PYsbLMLisrKyAgwN7evk+fPvKmG4iAOzNPmMAzZ+YG3KtW5e7dtV8NGyLgXiwZGRljx44V1YeFKlWqjBkzZuPGjYXlueTkcFgY+/mxszM/85Cxdi2bmTERv/MOG21Z2Pr164moT58+RhoPisfHxyf/GcymTZv0V+eZmJi4urp6e3sHBASEhYWVLhMwMjKyYsWKRDRjxgyJ5v4M27dvJ6IWLVoYZzjQWbCA33mH69TRnhLlD7jfu8cWFtrzp6pVedo0lqSPQFhYmEhab9SoUZ57SEW7d++ev7+/7ga2QqFwd3cPDAwsOq9w69atoqhoq1at0JqiHAoICCAiJyenDF2eTNmMGcP29nzvnvZh3brPCC5AeZOUlCQ67ykUilGjRpmZmSkUio0bN8o9r+ePLuDOzGvWsLV1oQH3jAy+eBFll5iZMzPZyoo//VR7KSQC7h4e2kNhpUrs7c0hISxh162iu57m0bdv35o1awYGBuaJJpw8ebJLly6FxeKh/IiKYlNTbtpU+9WggZEC7syclsZduzIROzuXJhaWkZEdFhY2b968fv366XrtCHXr1h05cmRgYODdu3cNMHEoxPbtTMT167Pu00ClKlN3yzLbt2+fiYmJUqncvn17MX+lON1ThV9//VXyfodQIoMG8ddfs4uLNrHdyooXLcotPOXuzgEBfP++ZMM9s+upvqVLlxbYc/XRo0e66vCVK1eWsGO58ZWDgHuekjIFZrh/+aWR56Xv/v37iYmJsXLcctTRBdwfP+batXnpUpSUKaucnJywsLCZM2fqwkBEZGVlNXjw4J9//vnBg7wdk/R+sajdLl/OSiUTsZ8fG7OLw/3794nIzs7u+f0weiGFhoZSvqoy2dnZkZGRQUFBvr6+7u7uYgVxYfH34lSsjo2NrVevHhENHz68iEOatLKyskSK68XilE0F6SxYwJ98wt9+y2+/zVxIhvujR7xkyX+Wz3fsyD//nJNU2rJsgYGBIlG9X79+pe5IER4e7uPjo2vCY29v7+Pjk7/ZgEaj8ff3Fydqb775JopRlE/Z2dnNmzcnogULFkiywzFjuHNnHjVK+xAB9+eR+OM1NTUVyb+ffvqp3DN6LukH3DUa7tmz4ID711/zsGG8dCn36WO45lbPDRFwT0nh+vU5PFwbcP/f/3jiRN637xmn7qUmmnuJW9Giudf9QoIWd+7cyZPoV6KQBMhOZLhnZWm/Dh40XsCdmR8/5tatuUEDDglh/ZOmHTsKrrablsZhYezvzx4eXKWKxtQ090JD1zo1UpJcDCiFwYOZiHVlErOzuXZtJuL9+2Wc1Lx584jIwcEhT46LWq2+c+fOgQMHfv311y+++EJ0T9VPW8yjVq1auu6pq1evPnLkiJGr0kN+gwbxzp38zjs8ezYzs5UV37jBQ4fyH39wkb1LyuTUqVO628nt2rUr7HZydnb21atX9bfoMp6JyMzMzNfXt+gOK+WfgpkL+4Mxhq5d6auvqHdv7UNHR9q8mfr1o9WrycODiCgtjVxdKTiY/k0ieDllZ5O9PaWnExH9/jv5+VHr1jRqFG3ZQsHB2ud89x3FxtKSJTJO83kVHR29ZcuWrVu3HjhwICcnh4g6dLivVlf39KTBg8nNrbj7mT+fPvmEFAry96ePPzbghAvk5OQUHR199uzZVq1aGXtsKIRara5Vq9bDhw/PnTunawKRR2Zm5rlz5yIiIsLDw8PDwy9duiTehIKZmVnz5s3btWvXrl271157LX+D+OTk5O7du587d6579+67du3KE743qPHjx//yyy+zZ89WqVRGGxQWLqSEBPrqK2rVipYto++/p4kTqU4dat6cTEzyPvniRVqzhlatooQE6tTp3tmzToMHD/bx8endu7eutWnRMjMzJ02atGrVKiLy9fVdtGiRSf5hSiI5Ofmff/5Zs2bNnj17xBZXV9fRo0ePGzeuSpUqqampY8aM2bBhg4mJybx58z7++ONizhOMb+/evR4eHtbW1p988oloilUYM7P3srMLyHvSadiQNm2iHj3o++9p8WLq3Zvq1aOwMPq3QyE8Tw4cOHDmzJkKFSqMGTOmjB8XLyeNhlJSyN5e+zAzk3JyyMSENBrSpQ+mp5NSSRYWpFDQ66/Tr7/mPv/llJVFFStSejr9/TctXEizZ1NAAO3aZYyhU1NTFy5c6O/vn5mZaWtrO3369E8//VSU+CvQ06dPly5dOm/evJSUFHNz8w8++GDu3Ll5Uo+hvImOpm7dKDZW+/DIEZoyhcLDjTeB+HjKyCB/f/rlFzp7lpo0ISJq2pQ2bqSmTYmIEhPp8GE6dIjCwigignRXEkol9e//iaNjWrdu3bp16yaKh4Bs7t6lhg3JxITu3iVxTbdhA73xBjVtShcvknxnvMz8+uuvb9q0qXHjxuPGjbt79250dHR0dPTNmzczMzPzP9/S0tIxHycnJ2Neh0IxeXrS5MnUpg21akWHD1OLFvToERW0GkFizLx+/foZM2bcuXNHoVC88cYbCxcuFDmChdmzZ8+UKVMuXbpERB4eHkuWLHF1dTX4RA1N5oB//gz3S5d41y6uXp0nTuQvvuCmTfmjj+SbX3mhy3BnZo2Ge/QoNMP9/fd5wgR+800DNs17gcXFxa1cufLVV70qVtToMkMbN+aPP+bDh/+TQJSUxIGBrGvoffkyr1nD5uZsYsK//CLL3HnUqFFEtFxX2hnKhw8++ICIBg0adPr06cK6BejLysrSz383NzfXfVzn7/SblZXVp08fInJ1dS113nGp7dy5k4iaNGli5HFfciLDnZn37OHmzblPH16/nm1tuWZN9vPj69cL+JX0dF6zhkeP/lEXvG7cuLG/v/89Xf2OQsTGxoqGzJaWlkFBQdK+kPPnz0+ZMkVXRdTS0nLw4MGiDLSDg0PpetyDkQ0dOrRjMfIhqlW7pzukFvg1aBCPGcNr1vCePdpFr8hwByiOGzd4xAi5J1EOiAx3oW9fHjGC+/Y16gSuXbvm5eUlPvGcnZ2Dg4MLfFpISEjDhg3F0zw9PVEw7XkhVw33PD78kPv0YQ8P7cMmTXj7dp48mVu21C6w1pVj7tCBp0/nzZs5IUGGeUKhPv+ciXjkyNwtvXszES9dKt+ctB4/fuzo6CjOw/U5ODi4ubl5eXn5+fkFBgaGhoZGRUVhRc5zRGS4M/Py5Tx0KFtZsTEXD+u3BLe2ti6sRveVK1cGDhwo3nIuLi7bdB0Onn9yZ7gfO0aNG1PlytqH+/dT+/Zka0sJCXT8OCUnU9u25OIi5wzLB2bav5969dI+vHePHjygWrUoIYF0d33u3qXMTLK3p6pVaeJEmjxZe/cbSuHpU9qzh7ZupZAQun9fu7FyZRo4kAYPpgED6MEDcnamkSNpzRoiop9/ppMnqW9fMjGhYcPkmfOPP/744Ycfjho1ao2YE5QPR44cCQgIEEX2zczMnJ2d3f7Vvn37InKghLS0tDNnzoSHh585c2bVqlW6/pNExMxjxoxZvXp1rVq1jh49Wt/ouaA5OTm1atWKj4+PjIxs1qyZkUd/aYkM92+/JSIaMYI2bKDvv6dly+jqVSIihYJeeYXGjqU33iArq7y/GxUV9dtvv/3++++xsbFEZGpqOnDgwG+//bbA9IHTp08PHTr0zp07derU2bRpU7t27QzxcrKysnbt2rVmzZpNmzbl5ORUq1bNwcHhn3/+aYID2POAmXfu3CnuvRXB0nJORkZRKfDNm9PRo9S7N40aRSNGUOvWtGwZMtwBnuHCBfrxR/ruO7K1lXsqctNluBPRtWvUqhV1726kDHd9e/bsmTZtWmRkJBH17t07ICBAlN4iorNnz06ZMuXQoUNE1LRp08WLF/fr18/Y84PSSkykn3/OXb585w5t20YTJhh7GhMnUqtW9Mcf9P77NHIkNW1Kc+aQuNFjakqtWpGHB7m7U7duVLGisecGz6ZWU926FBdHYWHUtSsR0Y0b1LgxWVlRTAw5OMg9P4qLiztz5syOHTv089Z1pSDhOSUy3Pv1I7WaOnWiiAhKTTVGhru+u3fvfv755yJIVbdu3blz544ePVr8KDExcf78+YsXL87KynJwcPDz85s2bZp+xuFzT+aAPxjA06c8YABL1MbsZZeTwwcO8EcfsZNTbuKAtTWvXMnOztymDe/dy8y8ciWPHy/zVM+ePUtEDXWFP6HcOHv27MiRI11cXESxTh0rK6vOnTtPnjz5999/j4yMLGn9fT8/PyKys7PLn/luNNOnz+3RY878+WXoaA4lpMtwZ+a4OLa319ZwDw9nHx+2tdV+TFWowD4+nK9AOjOzWq0ODQ318vIyNzdXKBQ3btzI/5w1a9ZYWVkRUbdu3QorSiutO3fuBAQEXLp06Zkd7eGFJDLcmfnePa5blytWRIY7QFHi4rhFC373Xfbx4du35Z6N3LKyuEuX3IfffccTJ8o1k6zAwECxeMvU1NTHx+fq1au65m+VKlV6rpu/gbw+/JADA/ncOa5dmxMTuUkTvnCB583jQ4fQPPk5cekSz52b+3DqVCbi996Tb0Lw4psyhY8e1X5/4gS7ucn2cbFv3z5d6eMePXqcPn06KChItAQQfVAePHggz8wMSe4Md5Baaip9/DFNnEjIN5VcdDRt2UJ//03HjtG+ffT++7RyJfn40LlztHo1nTxJP/8s5/Q0Gk2lSpWSkpJiYmJq164t51SgECkpKaJcu3DlyhWNRqP7qY2NTevWrXX5702bNs0ToNcXGBj4wQcfmJmZbd26tW/fvkaZfgF276Z+/cjFha5ckWsK8B8pKfTXX/Trr3T8uHZLy5Y0bhyPHPm4sm4x2b8ePny4b9++t956S39jTk7OF198MX/+fCLy8fFZtmyZ/roKAAN5911thjsRBQTQtGl06xYy3AHguRQfH//ll1+uWrVKrVbb2tqmpqaamZlNmjRp1qxZFZF7DKUlMtx9fGj6dGKmHTtya7jD8+fpU6pdmxITKSKC2raVezYAxqBWq1euXPnll18mJCSYmJio1Woi6t279+LFi1u0aCH37AwCAfcXSno6tWtHbdpQ3br07rsoxmMoDx9SSgoNGkRXrtCoUeTiQjVqyB9wJ6J+/frfuGESEOA/ePCL+YH1gklOTj5//rwu/n758mX9D2RbW9tWrVoVGH/funXra6+9ptFofv311zFjxsgzeyIiysmh2rXp4UM6f55e0KPk8+rKFfr9d/rtN3r4kFq3Trx0qUbfvn1Hjx49dOhQU1PTwn4rISFh+PDh+/bts7CwWLFixdixY405Z3iZnTpF1appI+w5OfTPPzRwoLFXvAIASOjcuXNTp07t1q1bRETEokWLXHBhBmWjC7inpFCrVvTkCR05goD7c0Kjoa+/pnXrKDubLC3p/fdp8mQ6cYJ27iSVSu7JARhVYmLi7NmzMzIyIiIiPv/886FDh8o9IwNCwP2FwkxPnmi/t7UlZCUaTlSUNuB+/z61bUvvvUf37skfcP/6a7VKZfLRR/T99zLPBEohISEhPDw8IiIiPDw8PDz87t27+j+1t7d3c3Nr165dxYoV582bl5aWNnfu3M8//1yu2eqIpR5ffklffy33VCCfrCzasoX27An++ecRIomgXr1677777pgxYxo0aJDnyWfPnh06dOitW7dq1aq1YcMG0S4VAAAAAGSnC7gT0bp19NZbdOkSAu7PiZ9+ojVrKCSEKlemO3eob1/67jsaMkTuaQGAYSHgDlAauoA7Ef3wA335JXl5yR9wF/U9OnWiY8dkngmU3ZMnTyIjI3X575cuXRLbFQqFmZnZmDFjAgMD5Z2hsGcP9elDjRtrm3ZC+XTv3r01a9asWrXqxo0bRKRUKjt37jx69OhRo0ZZW1sT0V9//TVu3Lj09PQuXbqsX7++Zs2ack8ZAAAAALSuXCE7O9LVDd2/nzp0ILS0fD40a0bLl1OPHtqHf/xBq1fT7t1yTgkADA8Bd4DS0A+4q9XUvj25uckfcE9OpkqVSKmkJ0+wEv9FExcXJ/Lf7969O3ny5ObNmxdRGMSY1GqqVYsePqRz56hlS7lnA0Vi5gMHDvz6668bNmx4+vQpEVWqVGnEiBHp6em//fYbM3t7e69cudLS0lLumQIAAAAAPP+YycqK7tyhatW0W86epaFD6eZNWacFAAaHgDtAaWRn0/37VLeu9uGTJ5SdTVWryjonIiJq3ZrOnaNDh6hbN7mnAi+NCRPop5/oiy9ozhy5pwLFk5SUtG7dutWrVx85coSIqlSpkpSUtGTJkgkTJsg9NQAAAACAF4iDA507R/XqaR8ePUrvv08XLsg6JwAwOKXcEwB4LpmZ5UbbiahixXIRbSeiLl2IiI4elXse8DLx8iIiCg6Wex5QbPb29j4+PocPHz579uzkyZPXrVu3d+9eRNsBAAAAACTWvDkdOpT78NAhatNGvtkAgJEgwx3ghfLHH+TtTUOG0ObNck8FXhoaDdWpQ3FxdOYMtW4t92wAAAAAAADKiV27aNw4Cgigli3p6FH65BM6cICaNJF7WgBgWMhwB3ih6DLccSsNjEappKFDiYj+/lvuqQAAAAAAAJQf/frRunW0dy9NnUqnT1NoKKLtAC8DZLgDvGhq1aK4OLp6lRo3lnsq8NI4cIB69aK33qL//U/uqQAAAAAAAAAAyAcZ7gAvms6diVDGHYyrcmVasiQ32h4aSjdv0o4dFBeX+5yNGykpSZbZAQAAAAAAAAAYCQLuAC8a9E0F4zt0iHx9adMm7cOffqKICPrmG7p4Mfc5M2dSbKwsswMAAAAAAAAAMBIE3AFeNN27U9eu1Ly53POAl0z//jR9OqWkyD0PAAAAAAAAAAD5mMo9AQCQEjMtWEBffUW9ehERXbhAmzaRhwedPElTp2qfs307xcfTO+/IN0t4Ebm4UNOmpFLRokW5G2Ni6OpV7ffZ2bLMCwAAAAAAAADAeBBwB3ihMNOGDXThAp0+TVZW9OABHTpEjRpRWFhuwP3yZbp5EwF3kN7s2dS8OY0enbvlp59o/Xrt9wkJskwKAAAAAAAAAMB4EHAHeNGYmlK/fjRvHs2dK/dU4CVToQL5+9OUKVS5snbL3Lnk4aH93slJrnkBAAAAAAAAABgJAu4ALyCVilq0oJEjc7dERdEPP2i/P3yYateWZV7w4hsxgn75hQ4epBEjCn6CRkPZ2WRhYdxpAQAAAAAAAAAYBZqmAryAHBzo669p4sT/bGTWfgEY1I8/UlpawT+6fJmGD6cJE3Jv/wAAAAAAAAAAvEgUjPAbwAtEoyErK8rMJGbq2pVatqTr12nsWNqwgTZs0D7n++/p5k1atkzWicKLJT6eMjKobl3tw6tXqVo1eviQatUiOzvtxshIqlePLCzI1JQGDKDdu+WaLAAAAAAAAACAoaCkDMCLSaGgFSuoUydydy/4CQkJdPgwtW5N9esbd2bwIqpa9T8PXVyIiBwc/rOxeXPtN9u20SuvGGVaAAAAAAAAAADGhZIyAC8aXZSzVSuaNIlsbcnCIjfLmIisrMjGhj7/nMzN6d13KSFBlmnCS2rvXjp0iD75RO55AAAAAAAAAAAYAErKALzUJk6kKVOocWO55wEvh40b6YMPaOhQcnAgf3+5ZwMAAAAAAAAAIDWUlAF4eV27RsnJiLaD8QwbRsOGyT0JAAAAAAAAAACDQcAd4CV17Bj9+Sf9/LPc8wAAAAAAAAAAAHhRoKQMwMvo6VN64w2qWZNMTGjiRGrZUu4JAQAAAAAAAAAAPP8QcAcAAAAAAAAAAAAAkIBS7gkAAAAAAAAAAAAAALwIEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASMBU7gkAAABAOaZW0759dPEiVa9Or7xCtWrJPSEAAAAAAACA8gsZ7gAAAFCIjAzq0YMWLSJTUzp7llq3poMH5Z4TAAAAAAAAQPmFgDsAAAAUIjCQLC1p+3aaNInmz6fly+mDD+SeEwAAQMFWrqS//9Z+r9HQp59SSgp9+WXuE2JjacECWaYGAAAALxEFM8s9BwAAACiXRoygV16h99/XPlSrycqKHj6kihXlnBUAAEBBevakiAg6e5YcHUmtJjMzunePmjalxETtE06fJm9vunhR1lkCAADAiw4Z7gAAAFCI+HiqVCn3oYkJOTjQw4fyTQgAAKAoI0bQpElyTwIAAABebmiaCgAAAIWoV4/u3s19mJZGCQlUt658EwIAACjKyJH08cf09980bJh2S3Y2rV+v/f7mTbnmBQAAAC8RZLgDAABAIQYMoF9+oZQU7cMlS8jTk6ysZJ0TAABAoRQKWr6cpk/PPXap1RQRof26fFnWyQEAAMDLARnuAAAAUIg33qAjR6hVK+rRg+7epbg42rZN7jkBAAAUpW1bevVV+vZb7UNLy9zvT5+mEyfkmhc8B9LT0+fNm5eTk2NhYTF9+nR7e3u5ZwQAAM8lBNwBAIwoJYWUSrKxkXseAMVw7x5dvUqTJ9Pnn9OlS1SjBjk5kYmJ3NMCAAB4hjlzqHXrQn/KTOfPU6VKqJEG/5Gamurp6Xnw4EETExO1Wr1ixQo/P79JkyZZYW0fvChWrKA336TKlbUPv/uOpkwhCwtZ5wTwgkJJGQAAozhyhFq2pO7dqUsXatOGIiLknhDAs+zeTb160ddfU5Uq1L07OTmRszN17kzMcs8MAACgKBUr0pw5hf7066/p4EGaOZMOHzbinKB8S01NHTx48MGDB2vUqLFmzZpevXolJCR8/PHH9evXnz9/fmZmptwTBJDAwoX08GHuQ5WKnj6VbzYALzQE3AEADC8tjd58k777js6coXPn6JNPaPhwysqSe1oARUpIIKLcHJjHj+nmTbpxgxQKGScFAABQmL176exZOn2aiMjbmzQaqlGDHjzIfUKbNnT2LKlU5OtLb75J587JNVMoX5KSkvr06XPgwIF69eqFhYW9/fbbe/fuDQ0NbdeuXXx8/CeffOLi4rJy5Uq1Wi33TAEAJHP//v0jR44EBQWdP38+Rdf5BCSCkjIAAIa3Ywc1bkz9+2sfvvkmLVhA+/dTv36yTgugSHkC7o8eERFVqSLbfAAAAIp08SJNnkx16tDdu7kbzc1zv1coyMyMiCgnh/78kxYvNvYMoRxKTEzs37//yZMn69evv2/fPkdHR7Hdw8PDw8Njz54906dPP3/+/Pvvv79kyZLZs2e/8cYbCiQfwHPrxAmKi9N+r9HIOhUwosTExOjo6Ojo6IsXL166dCk6Ovr69evJycnipz169Lh//35oaGidOnXkneeLBAF3AADDu3mTnJz+s8XZmaKjZZoNQPHkibAj4A4AAOXboUNERD16PONpycn06af0xRdUu7bh5wTlW3x8fJ8+fc6dO+fs7Lxv3778wSYPD48zZ85s2LDh008/vXTp0vDhwzt06DBv3jwPDw9ZJgxQRjt2UMWK2u+xZuPFk5OTc/v27Rs3bty4cSMqKkp8Ex0dXWBdrEqVKjVq1KhBgwYnT568detW9+7d9+7d27BhQ+NP+4WEgDtAAdLTaetWGj5c+/DRIzp2jAYPlnVO8FyrWJHyLNFKSiIHB5lmA1A8eSLseRLeAQAAypmwMCKibt2e8bQvvqCUFPrf/+juXRo0yAjzgnLq4cOHHh4eFy5ccHFx2bt3b+1C7sAolUovL6/XXnvtt99+mz179smTJ/v06ePu7v7tt992e+a7DaCcmT2bmjbVfr96taxTgbLJysqKiYmJ/q+LFy9mZGTkf7KDg4PjfzVr1qxmzZrip0+ePBk4cOCxY8e6dOmye/fuFi1aGPelvJgUjNZnAPncvUtubrntRE6epPfeQ5FHKIPwcBoyhKKjydKSiCg5mZyc6Phxbdp7dDTVq0emBr8D+s471K0bjR+vfdinD02bRgMHGnpYeG698godOkQHDtArrxARrVpF771H48bRqlVyzwwAAKAAtWvTvXt0+TI1aSL3VKDcu3//voeHx8WLF5s2bbp3715d4Klo6enpP/zww/z58xMTE4nIw8NjwYIFrVu3NuxcASTi6EjbtuUG3K2sKC4uN+EdngvMfOnSpYEDB8bExGjyVQVSKpV16tRxcnJq1KhRo0aNxDdOTk62trZF7zYtLe21117bs2dPpUqVduzY0aFDB4O9gpcFMtxfUsyMwnMAxtOuHfXoQUOG0NSppNHQd9/RyJHaaHt4OA0YQP37U1AQKQ3byJqZ9O+x5nkIkBcy3AEA4Plx4wbdu0dVq5KLi9xTgXLv7t27vXv3vn79euvWrXfv3l21atVi/qK1tbWfn9+HH364YsWKb775Zs+ePW5ubq+//vo333zTqFEjg84ZAICI1q1bN3bsWLVarVQqGzRokCdvvUmTJjY2NqXYrY2NzdatW996661//vmnb9++27Ztc3d3l3zyLxXDBneMKSGBLlzIfXjrljZQAPmp1erhw4cvWrRI7omUa2o1Xbum/dJvuySX5OT/TOPBA0pNlW82UApr1tDYsbRzJ+3dS1Om5Hbp0mgoM5P++IN8fWWdH0A+eSLsCLgDAEA5pqsng7QiKNqdO3d69ux5/fr1tm3b7tmzp/jRdh07Ozs/P7+oqCg/Pz9zc/O///7b1dX1/fffv3fvniEmDC8CtZqio+nJE3lnsXkz6d7vzHTwINnbyzohKKH09HQ/P7+nT5/Omzfv6dOnUVFRoaGhgYGBfn5+Xl5ebm5upYu2CxYWFuvWrfPy8kpKSurbt+/u3bslnPlL6MUJuG/fTi1b0p492odffUUhIbJOqBz78MMP169fP2/evPj4eLnnUn6lptK0adovXWhURv/7HzVoQCdOaB9Onkzbtsk6ISgpExN66y1aupQWL6bXX8+9FuzQgf75hywtaflymjXL0LOYP5+6dNF+hYcbejR4njHT48dERJUqabegaSoAAJRjxSzgDi+5W7du9ejRIyoqys3NLTQ0tHIZMgmqVKni7+9/7do1Hx8fZl65cqWzs/OUKVMe6iqTAghLllD9+jRhAr3yCnXqRHfuyDWRDz6g3r0pO5uIKCODunfHHcrnzJw5c+7cudOuXbuPPvrI1AA1ac3Nzf/888+xY8emp6cPHjx406ZNkg9RoGvXrok6XS+SFyfgTkRubjR5MhXUehdyzZo1a+XKlVZWVps3by7FzfyXh709bdum/SoniwFatKBJk9BJ/EXx5590/rz2+169aN06MjWlOXNowQKDDjtxIm3erP1q1cqgQ8FzLimJsrPJ3p7MzbVbRMAdGe4AAFAuHTpERNS9u9zzgHLs2rVr3bp1u3nzpru7+759+yrpsgrKoG7duoGBgRcuXPDy8nr69OnSpUudnJw++eST5OTksu8cXgQREbRgAZ04Qbt20blz1L8/TZgg43QUClq2TMbxofRu3LixePFipVK5fPlypcGq0ZqYmKxatWrq1KlZWVleXl6rDdlal5m3bNni7u7evHnznj179u/f/0VaJyRnwH3hQrp0Sft9TAz98UfpdyX6BLRsSV27kr+/BHN7UQUGBs6ZM8fExOSPP/7o2rWr3NOBkunWjerVoxUr5J4HlN2OHTRqFPXrR9eva7cMGUK//UZKJfn50cqVhhvZ1paqVtV+mZkZbhx47qU/fpzcsuVT/Q71oqQMMtxBVikpKZmZmU+fPpV7IgBQvsTFUVQUVaiAfAIo1JUrV3r27BkTE9OtW7cdO3ZUqFBBwp03adIkODj45MmTffv2TU1NnT9/vrOz87Vr1yQcomgPHjxYv3793r17IyIioqOjHz9+zGjWVE6sXUtjx1Lt2tqHn3xC+/ZpF5JmZRl/OnPm0PffU0yM8UeGspoyZUpmZua4ceMM3dFUoVAsXrzY399frVaPHTt21apVkg+RnZ29evXqFi1aDBky5OjRo9bW1lFRUbt27WrTps2WLVskH04WcjZN/fxzCg6mY8fIxIRu3qSffqJRo4p6/tOnFBdH9+5RXBxFR2u/Ef+NiaHAQCKiefOodWsaMcI4r+A5s3nz5okTJyoUisDAwGHDhsk9HSiN77+nzp3p9dflngeUUe/e1K8f7dhBvXtTWBjVr09ENGoUJSfTxIk0YQJVqEBvvSX3LOGldiE+vtP58x06dPi3kBV5m5hYNW+uqly5dlG/B2AozLxmzRo/P7/u3bsfPXp03rx53t7e6AAPAMLBg0RE7u5kYiL3VKBcunz5cu/evePi4l555ZWtW7fa2toaYpR27drt2rXr6NGjH3300eXLl0NCQmbMmGGIgfIIDAw8cODAX3/9lWe7paWlQ5GsrKx0z6lZsyaOqgZx6xZ5euY+tLSkWrXo5k2qVIl8fCg2lgICqFkzo02nenWaOpWmTClTzisYX0hIyPbt2x0cHObNm2ecEf38/Ijok08+8fHxSU5O/uijjyTZbWZmZlBQ0Lx58+7cuUNENWrUeP/996dNm/b06dNx48Zt3759yJAh3t7eK1asMNAHtfGwfMzN+e23eelSZuZDh9jdndPS+MoVPniQ//iDFy7kqVP5zTe5a1d2dGRLSyYq6mvJEn73XWbmH3/kgQN5zBj+5RcZX1y5c+DAAUtLSyKaN2+e3HN5DmRm8sGDnJOjfZiYyCdPyjmf9HT+8UeeNImZee5cHjWKvbz4r784PV3OWUGZpKVxt25MxM7OfP9+7va5c5mIzcx461bJxwwK4iNHch8uXcqRkZIPAi+IrVu3EtHAgQN1W0SR0/j4eBlnBS+tI0eOtG/fXpy7Vvl3mUX37t1Pnz4t99TgOTNrFsfF5T6cMoUTE9nHhyMitFvOnuVly2SZGpTJ558H9eixZ+nS+89+Krx8zpw5I44d/fv3TzfKFZQofDxgwAAjjBUdHS3CUl27du3du7ebm5ujo2OlSpVKGj03NzevVq2ai4tLx44d+/fvv2XLlhzd9TCUxfjx/P33/9ni4MC3b/OjR+zgoL30++gjTkw06Cyysjgri7t04RMnODubW7bkjRvZwoKZEVV4DmRkZDg7OxPRDz/8YOShf/zxR1G+xs/Pr4y7SkpKCggIqFGjhvjMadSoUUBAQEZGhu4JGo0mMDDQ2tqaiBo0aHDo0KEyjigvmQPut25xzZocG6sNuI8fX1RI3dKSHR3Z3Z29vNjXl/39OSiIQ0M5MpJTU3n1am3AXa3m9u25YUME3HOdP3/ewcGBiCZMmCD3XJ4PmZlMxLNmaR/u2MF9+8ozk9hY9vbmNm14+XJtwD0zk5s0YWdn/uMPdnFhb+//RGvhefLkCbdty0TcsiU/fpy7feZMJgrr00fyA8yaNezryxqN9uHHH/ONG9KOAC+OoKAgIvL29hYP1Wq1UqlUKpW49AIji42N1WWy16pVKzAwMDs7OygoqHr16kSkVCq9vb3v40AIxeboyBcv5j60suK7d9nEhNu25exsZubNm3nwYLlmB6XXokULIjp8+LDcE4FyJyIiQiQNDBw48OnTp8YZdM6cOUQ0c+ZMQw+k0Wj69OlDRCNGjMj/0/T09NjY2MjIyLCwsJCQkKCgoICAAJVK5evr6+3t7enp6eHh4e7u7urqmj+9vUWLFh988IGh5/9S+Okn7tkz9+GhQ9ygAavVzMwJCezryyYmTMSVKnFAABvmTHvPHm7enBcu1AbcmfngQXZxYQsL3rePK1c23Mggja+//pqImjVrli1OVozrjz/+EA1aJ0+erNFFE0oiLi5OpVLZ29uLj5e2bdsGBQUVdl156dKltm3bEpGJiYmfn19mZmbZpi8bmQPuajV/+y0PH64NuM+bx46O3LUrv/kmT53KCxfyH3/wwYN85QqnpT1jb7qAOzOHh7OJCQLuWtHR0TVr1iSi1157DYGSYsrMZHNzbtSIr1xhlingnp7OX3/NNjZMxFZW/Omn2oA7M4eGMhF/+SWbmzMR29vzwoX83H4KvdwePuQmTZiIO3fm1FTtRo0m7IsviMje3j5Cl3EnhZkz2dKSf/9d+7BtWz51SsLdwwvl+++/J6Jp06aJh/Hx8URUuXJleWcFL5X09HR/f387OzsisrKy8vPzS05O1v00JSVFpVJZWFgQka2trUql0k+QAShMgQH3ihV51ChetIgZAffnU0JCglKptLS0NFo41WgyMjJiYmLOnTu3d+/ev/76a9myZV999dXkyZNHjBhx7949tYjZQeFOnTolOqN6enoa8zDx1ltvEdHvutNug/nhhx+IqGrVqg8ePCjjrjIzM+/fv3/lypXjx4//8ssvpqamZmZmt27dkmSeL7WnT7lDB37rLd6wgZct41q1eNOm/zzhzBl+5RVtnmnTprxzp4SDX73Knp7afbdrlxtwZ2Zvb7awYB8f7U/btOGDByUcGSRz584dGxsbItq/f79cc9i8ebM4637//fdLdOi5fv26r6+vqLdBRO7u7iEhIc/8rezsbJVKZWJiQkTt2rW7fPlyGeYuG/kD7pmZ3LQpz53L7u5l2tu1a3zgQO7Dv//m0NAyTvBFEB8f7+LiQkQ9e/bEhWjxZWaylRWvWcM9e7JGI0PAPSSEGzbUHvk8PTk6ms+c4d27c5/wyy98+TJfu8ZeXtqnOTtzcLBRJwnSuHuXGzRgIvbw4H//SNVqtThNr1KlykX9wEDZzJzJvr5cty4/esSMgDsU6bPPPiOiuXPnioeXL18mIhcXF3lnBbJ4rL8Ex1hCQkIaNmwoTs09PT2jo6MLfNq1a9e8vLzE05ydnYNxIIRncXRkf39evVr7ZW6uDbjHxHCNGnznjjbgHh+fex8cyr/NmzcT0SuvvCL3REomPT09KioqT+qxj4+Pp6dnYUnH+qpXr/59njoV8F9hYWGiM+rw4cOzsrKMObRYchEeHm7QUW7evCluS69fv17ynY8cOZKIJk6cKPmeX0YZGbx2LX/8Mc+fz+fPc2oq792b9zl5QgBRUWUcMyWFVSq2sGAitrFhlYozMnjNGr53T/uEBw94wYICRi7knAtk8/rrrxe2isWYtm/fbmVlRURvv/12cT5RIyIivL29RdBcqVR6enqeLLJS87Vr1/J8Zh47dqxRo0Yi80Z0cC3razAu+QPuzLx3L9vZlTXgru/ECa5albt0kWyHz6m0tLTOnTuL5WCJBq4I9oIRAXeNhrt149Wrtfl+BbMAALsPSURBVAH3Ui2dKbHTp7l7d+3RrnXrYt1kFgvExK/07s0XLhh+liCtq1e5WjUmUr/1lm4ZSlZW1qBBg4iodu3ahUWaSmrmTF60iL/4gseNY0bAHYrk4+NDRD/99JN4ePjwYSLqgiPrS+b48eMff/yxubm5u7u7v7//9evXjTDo6dP85psTRDipdevWB4txINyzZ0/z5s3Fr/Tu3fsCDoRQOEdHnjSJv/pK+2Vmpg24M/N33/Hrr2sD7hMnMhHXrMkeHuzry4GBHBbGekssoHwRfSm//PJLuSdSKI1G89NPP3l6enbq1MnZ2Vm3rP6ZzM3Na9Wq1aJFi549ew4fPvzDDz/88ssvlyxZ4ufnp1AoLCwszp8/L/eLK6f2798vckJHjRpl5HXe2dnZFhYWSqUy1ZA37oooJrNw4cKBAweOHDly4sSJX3zxxcKFC1etWrVhw4a9e/dGRERER0cX51b6tWvXTExMLCws7t69a5hX8BL7/HNtbDtPfc/0dJ4zR7vI3db2x7lzS/cWUqs5KIirV2ciViqLVYQ2PZ39/dnOTru83s8Ph7zyYs+ePWI1Z0xMjNxz4YMHD4q7mIMHDy5iSVlYWJjnv42CLSwsvL29r169WvSes7OzO3bsaGpqqlKp9D+xk5OTxWUpEfXp06c8/E8ovnIRcGfmt9+WMuCelsaVKzMRHzsm2T6fO1lZWf379yciR0fHOP3mUFAMIuDOzJGRXLs2//UX9+3L8+axqyurVNo6M5J79Ci3gFtJy6hlZ3NgIFepwkRsaso+Poy+hs+Zc+c0NWp827Hj6NGjdWXR0tPTX3nlFSJycnK6p0tFKInkZA4NZZWKPTz47be1Aff0dHZ05CNHEHAvvy5evBgfHy9vWWqRSfH333+Lh//88w8RDRkyRMYpgZElJSU5OjoSkZmZmTjNVSgUHTt2nD9/flSZs64KpDsOtmhxpHLlygEBAYWFSI4dO5Ynqp6dnR0YGCh64pmamvr4+KDBLxSosJIyzJyVxc2a8bRpPHgwv/uutnCf/pdCwQ0a8MCBPHMm//57zsmTJ1NSUuR6IaCvQ4cORLRbfzVoOTNo0KBWrVrlCaZbWlo6Ojq6u7t7enp6e3v7+vqqVKrAwMCQkJCwsLDIyMjY2NgiEvree+89ImrTps3zW9/WoPbv329tbT18+HDjJ0VGRkYSUaNGjQw6ShHFZMRK2WdycHBo2LBhmzZtevXqNWzYsHHjxj158iT/fnx9fQ36Ql5GixZpY9sWFgXEtmNj2cfn/Cuv0L/da0r0Hj5+nDt10h62OnQoWUwsJoa9vVmhYCKuXZuDgoyUdAiFyc7OFstl5s+fL/dctMLDw0VXjJ49e+Y5C1Kr1SEhIe3btxefMHZ2dr6+vrGxscXZbUZGhq+vr1jU5e7unudaY8OGDeIkv2LFimvXrpXy9RiSnAH3S5c4JITF0SEtjYv3r1Bcn3zCRPzmm1Lu8zmi0WjeeecdcQB+5q0kyE8XcGfmjz5iNzfu25e7ds294mrThufM4UuXpBouMzDwsL19WVuUx8fzBx9oQ/ZVqvDvv29D1f7nyNljx0QazkcffaTbmJSU1K5dOyJq3rx5QkJCcfYTFcWrV7OPD7u6as+WxFfNmtqAOzOHhHD79tymDQLu5c7Zs2fFyrvu3btXrFjxjz/+kGsm4maPrlDgL7/8QkTv6pqlwEtArCV3c3N78uRJSEiIt7e3SGkRXF1dVSqVVDWvMjN54ULWPw4+eZJe2JOzs7ObNWsm2qXmiTIkJCT4+vqKtk6VKlUKCAiQpbUUlGdFBNyZ+cABtrDQ1nDPzuaoKA4JYX9/9vZmNze2ts49qjo7PxV/CzVr1vTw8PD19Q0MDAwLC0tGTqDRpaammpmZmZqaltv/+SdOnCAiGxubP//88+jRo1evXpWkVFdqaqpYaz9r1qyy7+3F8+677xLRe++9Z/yh161bR0Svvfaa4YYoupjMxYsXt23b9scffyxbtmzOnDnTp08fN27csGHDevXq1aZNm4YNGzo4OBQYgs/zR3Tp0iXRHeH5yip9Pty7xz4+2kv3mjU5MDBPtt3xo0d1gcvOnTuf0FVeL9zt27cnTbonLgDr1eO//ipluPzwYXZz01WYuXcKV4zyWbhwobh7V64KRF+8eLFWrVpE1LVrV3GXLiMjIygoqHHjxuIdW61aNZVKVYoyG6GhoXXq1CEia2vrgIAA/R89ePBg8ODBYv9eXl6yVLwsKTkD7ocOMRG3bWuQncfGsrk5m5ry7dsG2X85N336dHFDydBl415U+gH35GSuXZv79uWnTzkkhL29uWLF3MstR0f29eWwsNLf+w0NDW3WrJlSaerqmurhwZGRJfjdX3/lpUs5TzDh0iXu14/btNlLRE2aNNmxY0cpZwZGt2fPHtGK5KuvvtJtjI+Pd3V1JaIOHToUeCWZk5MTERHx888PvLy4Vq3/5OJZWfErr/AXX/D27fzkSW7AnZmHDGETEwTcy5GwsDCxLEmkvIlLaCIaOXKkLOcTokCHbqH6/PnziWjmzJnGnwnI4tdffyUiW1vbK3qrutLT0zdt2jRq1KiKFSvqLs6bN28xe3bmmTOlHys0lJs1035qFec4mJqaOmnSJF1UfenSpXmi6pcvX9b9NeE4KK8ff+QBA3L7uo8bJ0oG/acyrYcH/zel0rAaNfpPwoSNDcfE5Abcmdnbu9CmqdnZfOUKr1/Pc+bwtGk3W7ZsaW5unj9iVb9+/f79+8+YMeOKgRZFwn/t3r1bnCbJPZFCDRkyhIg+//zzsu8qTzLN4cOHTUxMTE1Njx8/Xvadv2Bu3Lgh2n7evHnTyEPPmjVLqn/xAhVRTKZEHj9+HB0dffr06b17927YsGHVqlWafNe0olHKtGnTyjIQFCo8PDetr21bDgvT/6FGowkODq5Xrx4RKRQKLy+v24WEt9LS0vz9/W1tbRs1etXOjv38uIzrrzQaDgriGjXY3d1boVB4e3ujaoLx3b9/X9Qf2759u9xzyevKlSt169YlolatWs2bN0/E34nI0dExICAgPb3QvJlnevLkyahRo8TeBgwYkGehf1BQkK2trTjXkrGFbDHJGXBfsICJeMIEKfepX+Fq5Egm4vIZHEhPTzfc0jYRFjEzM9spaXvrl8f163z1Kn/xRe6Wfft41arch5mZvG0bjxunLeEivpyc+Ntvb504cSL/aUph8kQEdu8u2Ynykyfa0kmurpx/Be0//+zWtZt7/fXXpSoCDoa2adMmEUVauHChbmNMTIz41xw6dKjYkpqaGhYW5u/v7+npKVJUevTYI96KFSqwhwerVBwaynluhM+axStWaL+/eZOrV+eTJ/mTT4wa6YD89Ivc2dra+vr6xsTEaDSawMBAcT5Ro0aN4jRzl1aNGjWISHeK8/HHHxORv7+/kacBsrh+/brIm1u9enWBT8jJyQkLC/P19a1evXqbNr3Eh0+DBiW+A331Knt6ag+jjRvzli0lmOSVK1cGDhwo/nBcXFy2bduW5wkhISGiJA4ReXp6GqgMDhRt1iyuUIHnzdM+7NqVDx1iZ2fWLzptaytzHbwlS/jPP7l0J+bZ2dlRUVEhISH+/v7e3t5ubm7W1ta6yPuHH36IN54RfPnll0Q0ffp0uSdSsIsXLyqVSmtr6/x1P/Q9ffo0NjY2MjJS10PV39/f19fX29tb9FB1dHS0sLDQNTPXEfXrmzRpUpYAx4tKRG0mSBtxKIZhw4YR0f/+9z8D7b+IYjKSi4yMFEnuxawLASWm0XBwMNevn9u09NYt/Z+npqaqVCpLS0sisrGxUalU+rWzNRrN2rVrRVKwQqF4++23Y2IkW+uTlKTx8/MTCWF2dnb+/v7lKs/6hTd69Ggy8FqZsrh586aTk5OIXYjIe1BQkFRLS4ODgytVqiSS5Tdv3qz/o6ioKHd3d/GG9/X1Lc/vSTkD7m+8wUT8+++S7XDqVLa1ZV1Dr4gIbewpKUmyISTx2WefTZo0ydbW1t3d3dfXNygoSMK77mvXrlUoFAqFIigoSKp9vlQyMrhtW65QIc/d5YLl5HBYGPv6atOKO3VaQER169b18fEJCQkp4rMmMTHRz89PZEVVrFix1Ieu0FB2dc3NCsyzsj8zMzMgIEBUADA3N/f19U0qb38MUJDVq1crlUqFQrFK7z7PjRs3XFxcvv3226lTp7Zv3153YBMaN248Y8Yvv/xS4gYD77/PRNy1K6elSfwq4Jk0Gk1ISEjHjh3FP2KFChX8/PwePXqk/5zo6GhR2oWIvL29jVks+JVXXnFycpo5c+bSpUunTJkiLll//vlno00A5JKVlSWqIQ8fPly3sbACZdnZ2QcOxE6YwDVq5N6BrlePp07lsLDcCOYPP/Do0bkPx43j8+fZz48tLJiIK1Zkf/+8NwiLKTQ0VKwBIiIPD488JW5wHJTdrFk8YwbXqaNNaS+HAfe4OLaxYYWCy7JKQ19OTs61a9c2btzYsmXLIu5agYR69OhBRP/884/cEynY22+/TURTpkzR33jz5s2RI0f269evbdu29erV079PU7T8S80yMjJEhd88QwAzX7t2zdTU1Nzc/NZ/I5iGJuoqGKifbdHFZAxB3D8ot/e0XhBpaaxSsZUVE81xd/fz88tz2n/jxo2hQ4eKzwFHR0eRZxAREdG1a1exsW3btocOHTLE1K5fvy4WOhBRvXr1EGgyjqNHjyoUCktLy/KcOnno0CEisre3Dw0NlXznt2/f7tmzZ4EXwtnZ2f7+/qLLVPPmzc9IdQ4nNTkD7nXrMhFfvizZDseNYyKeNCl3S7duTMRLl0o2RNmJ9WX5T6rq1as3fPjwhQsXhoWFpZU29BUaGipiuIt0ZSOghKZO1RaKKdEluVrNYWE8c+ZsseBLqFGjxoQJE/bs2aMfeVer1UFBQdWqVSOiAuvPllRWFgcE5Na99fXNm6187949Hx8fpVJJRDVr1ixp0xWQhchbMTExCQ4OZma1Wq2LugqmpqYdOnSYNm3axo0by9Ja8+5dbtBAe8OmHN8bftGIfjJt27YV/5pVq1YtosidWq0OCAgQqSUNGjQ4cOCAEWZ4584dX19fKysrIhKtBWrXrh0QEIDFpC+DadOmEZGTk5MuNp2YmNi0adM8hRTzUKv50CGeMkV7dqdrHTFhAu/Zw5MmcYUK/NNP2ie7uvJnnzERm5jw++/zw4dlmnBWVlZAQIBYcmtmZubr65un5xuOg8Z35w7v2cO7dvGsWTxvHq9Ywf37M+sF3EeP5o8+0n6ZmckZcJ88mYn43/VjUhLn/F/oL5kEqWk0mu3bt5ubmysUijx3rMuJqKgoUdUkTyGIq1ev5rkYtLS0rFmzpqurq66Hqp+fX0BAQFBQkK6H6pNC1iSeOXNG/E/A+ub8RowYQUST9GMEBvb06VNR58cQeZdSFZMpkQsXLhRnlQZI4ObNmMmTxWdC/fr1xZWgvn379om7uUuXLvX19TUxMSGiKlWqFNFnXip79+4VQxNRz549z507Z9DhXnJqtVpU8FepVHLPpSgHDx4koq5duxpo/xqNRnch3LBhw7D/ZsWeOHFC3N20tLT09/cvh6f3sgXc791jIra3/0+6U4sWvG9f6fcZGckKBVtbs+50a+NGJuKGDbmcdI786aefRBBtw4YNiYmJoaGhKpXK09NTNPnVMTExcXV19fb2DggICA8PL+b75uTJk6L4wKeffmroF/Ki2rGDFQo2NS1ZL+88IiMjVSqVi4uL7h+0UqVK3t7eISEhu3fvbtWqldjYo0ePs2fPSjXzuDgeO5aVSrEK7atVq1bleducOnVKrLshIjc3t8OHD0s1NBiISqUiInNz8+3bt7do0aJmzZo2Njbu7u5+fn4hISGFXXGVwvXr2tTUoUPz9gMAyWVmZur3k6lXr15AQEBxbrJGRka6ubmR4ZfORUdH+/r6ilWrCoXC09Nz/fr1IndGoVD4+Pik6tdugxfOjh07FAqFmZnZMb0D4RtvvEFEnTp1KuYq0chIVqnYxYV1pWYmTeLPP+c6dVjcH3R15bNneexYlu4wyI8ePdJdeVauXDn/lWd4eDiOg4aQkcGRkRwczP7+7OPD7u5sZ6f9p2/VShtwV6u5XTvesCE34L50KW/erP2yspIt4H77NltYsFIp5VtRZ+3atUTk5eUl/a6B+cmTJ4GBgc2aNRNX2kqlUn9dYPnx3nvvEdH48ePzbE9LS/vjjz927NgRHh5+69atsh9bv/76ayKqU6fOc9FHzphE208LCwujtf08ffo0Ebm6uhpi58YsJqPv1VdfJaKPP/7YmIO+tI4fP65bAtuxY8c8HRrS09N1fexFnoHRVu9lZ2cHBgZWrVpVlzv4sIxJE1CIH3/8kYjq1q1bzq+8/v77byIaNmyYQUeJjIxs06aNSDr08/PLysrS/Sg9Pd3X11ehUBBRr1697ty5Y9CZlJRsAfdNm5iI+/TJ3dKkCRNxGXt89u3LRDx/vvahWs1OTkzEmzaVabeS2Lx5s4mJSZ4yETpRUVFBQUG+vr7u7u7iBo6OnZ2dKD4THBxcWCrr9evXRdL0qFGjil9DHPTdv68NO+reP2V09uzZL7/8UrfUnf5d2dCwYUMDLQAMD+dhw66LYiNubm5h+ZqurF69WrSzqFu3bqauhRmUVyLPVNykqVSpkuH+yc6dYwcHJuJ33il9+18oWmpqakBAgCiwSP/2kykibp6Tk7Ns2TL9J+gvnXN1dZW8J/aFCxe8vb3FB4hSqfT09NQNIYYWK6gcHR0NtF61aFlZWTdu3MBpvUHFxaVVr16DiL777jvdxsDAQCKytbW9du1aSXd45gx/8QUvWsSTJvGPP/LcuTxyJDOzq2vJOoQXX0RERLdu3cRfWf611TgOllFWVtbVq1dDQkIWLFjw3nvvjRx5Rr+UkP5XtWrcrRtPnqwNuDPzqVPcqBG3b1++SsqMH89E2rel5E6dOkVELVu2NMjeX2KnTp169913xRosceta1LswMzMzxJL2soiJibGwsDAxMbl69aqhx8rOzhYRujFjxhh6rOfOm2++SUYsubN69Wr6b1k2qdy8eVMk2BmtmIzO6dOnFQqFjY0NzsSMQyyLr169ui60rQsE/fnnn+LT79VXX72uq6dsRAkJCbre9fmLXEHZJSQkVKlShYg2bNgg91yeYfny5UT0wQcfGHqgrKwslUolEmvat2+f56i6ZcsW8cfy888/l6twqGwB908+YaLcvpRPnrBSyZaWXMZrnx07mIhr12bdPY8lS5iIhw+/VKb9ltmBAwdEwuA8Xd+owmVlZYWHhwcEBHh7e+uHa4WaNWt6enqqVKrQ0FDRGyc2NrZBgwZENGjQIKl6FLxs1Gru04eJuEePUnbNKsKlS5fmzJljb2+vVCpHjx6t3+TEEEJCQsT7gYg8PT3zdAhISUkZMmSIiYkJTsfLP41G4+/vP3v2bCJ65513DDrWsWNsa8tEPHmyQcd5GSUnJwcEBNSsWVP8VbZo0aI4/WS++eYbImrWrFlERIT+9hMnTjRp0qTAO/yldubMGW9vb1Fww8zMzNvb+0pB3QDOnz+vn1xgtAY1YllAo0aNnJycKlSo4OPjU+rCa1AEcRx0c3v0xhsf6tZIXbx4UdwqXrt2bVl2LgLuGRns4sL79xsw4C4UfRxMTU3FcbA4Hj9+HB4eHhQU5Ofn5+Xl5ebmJk5ldbp1CyRic3N2dGRPT/bz48BADg1l/eQQXcCdmSdMYIWiHAXcr19nMzM2MSlx+5PCHDlyZMSIEYsXLxYPk5OTFQqFlZVVOVzj/DzKyMgIDg7WrVNRKBQeHh7BwcHieCo6e1eoUOHChQtyzzTX1KlTieitt94yznA3btyQKxpbzom+tUZr++nn50dEX331lbS7laWYjL7BgwcTFtMbV0pKikqlEumYtra2KpUqLi7O1NTU0tJy9+7d8s4tMjKyRo0apqame/bskXcmL54PPviAiHr37i33RJ5NLMqfNWuWeHjv3j0vLy/dQ8kdOXLE0dGRiKysrAICAvRj6/fv3xf5zeUqn0a2gHvPnkzEW7ZoH+7ezUTcpUtZd6vRaHtI6lqCJydzly6DiUjyZMDiu3DhgoODAxXUIb04p+D37t3btGnTp59+2rNnT9EgRcfMzMzNzU3EcTp37owYRKl9+y0TcdWqfO+eoYYYNGgQEW3RvekNKT093d/fX5xzW1lZ5Wm6ItIuRo0aZYSZQNmJah5GuHYKDdU2MJT6AuHlFR8fr1KpxOc/EbVp0yY4OLiYd92PHz8uKlPlD6w/ffrUz89PxMc7dOhwuQy9UMLCwjw9PcX0LCwsfHx8il6Ip59c0Lx589OnT5d66OJITk7+7rvvatSoIWZYq1YtkU1jiAR/yH8czMjIaN26NRGNHTu2jDsXAXdm3r2bW7fmJk0MG3Bn5rS0tFmzZokcWGtr67lz5+r/FMfBZ7p48SLlo1QqGzZs2K9fP19f3+XLl+/ff+X27Wesi/rxR/71V+33jx+zuzufPs1DhrB+Tl7XrlxIDwvDGjGCifi99yTb4aZNm4ho4MCBui3iFD1P8W4oqevXr/v5+Yl0PyKyt7f38fHJ0yFZo9G89dZbRNSwYcNyUmb60aNHtra2CoXC0MdKfUuWLCGiqlWrlqXBzwtJ1Eb76KOPjDCWOLOSPDVVV0xGrhzziIgIhUJha2uLJHcju3LlysCBA8UHoKii7uDgIPekmJk9PDyISPbQ/wvm9OnToglEubp/XJgPP/yQiH744Qfx8Pjx40TUvn17w4345MmTkSNHir8C/SPdo0ePys+fho48AXe1mitUYKLcFJg5c5iIp02TYOeBgUzE3bvnljqaMWMGEY000HrRZ4mOjhZn26+99lr+Rhavv/66o6OjKNceFhZWnIRB/eIzYoF/w4YNq1SpgiNfqZ06xebmrFBwSIgBRzFmwF24ffv2m2++KQpa6R8IEWh4jjx69MjU1NTCwiI5OdkIw23axKamTMQLFxphtBfZ/fv3/fz8dP2x3d3dQ0r++ZKenq4fWM+TdX748GEnJycqbZeY0NDQLl26iOnZ2tr6+vreK/b9Rt3QFhYWK1ZEGKJLSlJSkr+/f6VKlcQMW7VqFRQUlJOTc+7cOXGlIe5DlKsUhudagcfByZOnEJGLi0vZy0fqAu7MPHw4KxQGD7gLMTEx3t7eCoUiTyUBHAefKSMjo1q1ap07dx4zZsw333yzfv36CxcuSLKuJSKCnZzYKO2fixIZyUolm5tzdLRk+7x06RIRNWrUSLdFNDxHMKJ01Gp1aGiop6enOJUlIjc3t8DAwMISjNLT0zt16iSOuYZeTlocX3zxBRENHjzYmINqNJr+/fsT0auvvmrMccu/yMhIkeRe/LOdUhNLrApcLFhqMhaT0SfCvugFLYvQ0NDmzZt/8skn5SeqiIC75DQaTffu3YloxowZcs+lWMS9zHXr1omHISEhRDRo0CBDj7tu3bo8H4biHMzFxcXQQ5eIPAH3Cxe0vUx1PD2ZiP/6S4Kdp6fzwIFzK1Sw17XDunv3rpmZmZmZ2d27dyUYoCTi4+NFimKPHj0KvEpp1KiRfuqQtbV1t27dpk+f/vfffxen3n9qampwcLC41SzKy0BJpaRw48ZMxIbOeDB+wF0ICwvLU1sNgYbnSFBQEBH169fPaCP++isrFNyjx4Lff//daIO+SG7evKlrOkpEHh4eR48eLcsOQ0ND69WrJ1ar5AmsJyUl+fj46GL6xSnjqFarQ0JCRNd7IqpcubJKpUpISCjprMTNAGfn1ywtuVMnlrA47cOHD1Uqlb29vf69Cv1lAfoJ/i1btpSw+/RLq8Dj4LZt3LRpWuPGnpLkZs6fz7qz4pgY7tCBo6LKvtfiOnToUJ43OY6DMhJVJatXZ6Oflf/H0KFMxL6+Uu4zMzPT1NTUxMREd84vPqKXLVsm5TAvgfv37/v7+9evX1+3AMvLy6vARsd5WgXGxcWJI+bw4cPlreKalJQk1rcZvz9zTEyMGDooKMjIQ5dzQ4cONUIYKyUlRaFQWFpa5s+0KzXZi8noiPTVChUqlOLUEcouKyvr3r17cgXck5OTvb29J06cqNuCgLvkdu3aRUQ1atQwWiPcMhK3B/bv3y8erlq1iojeffdd48/kwIEDRNStWzfjD10EeQLua9dGdO167YMPct9D1aszEf+3xmbpiYSC119/Xbdl+PDhZPSKY2lpaZ07dyaiFi1aJBayVjY7OzsyMjIoKMjHx8fV1VVEEHR05dpDQkKKOKq1a9eOiP755x9DvZIX2siRTMRt27K05YiTk5MtLS2rVaum2yJXwD0/BBqeI+KmsZGv1X/++QgRmZiYGKhPS3Z29qlTp86cOWOIncsrJydHXOorlco333xTqliwfmC9a9euN27c0P/pjh07RBPIChUqBAYGFhZiyMrKCgoKatq0qdhPtWrVVCrVkydPyjKx3buf1qnDRGxjw8uXl7Xj7q1b7Oc3V3evol+/fkV0Zz1y5Ii4Yy0S/CW8rH0J5T8OxsRwlSpMxIsXSxmxCgriTz+VrF52WeA4KCO1mgcMYCJu04blyhWJiMhQKNjGhuPiJN6zWP1z6ZK2d9TChQuJaDK6oxRbeHi4t7e3aA8ulgv4+/s/evSowGf6+PjY2NjcunVLf/vFixfFLVuVSmWkSRdENGLp1auXLKP//vvvRGRvb49yRvrOnDkj2n4atOiQCEm3bt1awn3KXkxGX79+/WT/+3qZJSQkyBVwf/jwIRFVqVJFtwUBd8mFhobWr19/6NChck+kuERrMV2RN3Hs8/PzM/5MgoOD8wSBywN5Au7vvfceEel6Ct28Gd+hQ1zTppJ1+3zw4IGlpaWJiUnUvwlUJ0+eFB9MZV8WXUxZWVliQZ+jo2NcsU/nExISduzYMXv27AEDBlSuXFk/+G5iYtK8efNx48atXLkyzwo18bYePXq0AV7HC+6337ShojLUQC5YUlISEdnZ2em2IOAOJZWZmVmhQgUiuinV3chiE/1PzM3Nt2/fLskOU1NTw8LC/P39PT09K1asSERvvPGGJHsuV1599VUbG5t+/fpdlTDl+1/bt2/XD6zr/ygxMXHUqFHiYNG/f/+YmBj9n4qmo87OzuIJ9evXDwgIkGpR1JMn7OPDREzEHh5cjKVZBYiKYl9ftrDg7t1XKBQKT0/PEydOPPO3kpOTfXx8RKmBLl26FCfBH/LLfxxUq7l3bybi/v3LehMlj0GD/tO/R0Y4DsorIYGdnJiIvb3lmUD//v07dBg8d670sUhRb0GXBLNlyxYjL1N7TiUnJwcGBoqKYeKmtYeHR57lTUJSUtLy5cubN2+uuz76448/8jxn+/btpqamCoVi3Tp5wkBPnz4VBUVDQ0NlmQD/m7HRq1cveTP9y5shQ4YYOhgkEjwlPL6Uk2IyOseOHRO3cx4/fiz3XF5GCLi/2MQdu+rVq+u37yrPRP3P+Ph48XDatGlEtFCO6rTLli2jgrpmykuegLs4ndKtsv/zzz9J6gp377zzDhFN06sKL5LNV6xYIeEohdFoNGICVatWLUvYJTY2NiQkxM/Pz93dXZf0l3+NxrVr14ioYsWKqGZbItevs50dE7EhKmcg4A5lJ9aUSZsjU3yi+4W1tXURWcZFu3fv3t9//z1lyhQ3NzfR61LHxcXl448/lnbC5YGoim649eMPHz4cNmyY+H84YMCA2NhY/Z8GBweLO7UVK1Zcs2YNM6empgYEBNSuXVv8ipOTU2BgYHa2ZLe3ddav56pVmYjt7fm/9wKe4exZHj6clUomYlNTHjPmaZ4+eM+0c+dO8QKtra3zdKuHZyrwOCja6lSvLn3yLwLuoHPuHNvYMBEvX27socPCwkS0yBAlEcSl5vz588XDq1evElGDBg0kH+iFcfnyZV9fXxFPJKIaNWr4+fnlSVrXPdPPz0/Xh7x69eqFPZOZly1b1rPnRGvr7H37DPwCCrJ06VIycNe4Z4qPj69evToRLV26VMZplDenT58WSe6GSxUXHwLffvutJHsrP8Vk9Ikw61dffSX3RF5GCLi/8FxdXctJ1OiZsrOzFQqFiYmJruSpaGe6evVq409G5AuWt8U3MgTcU1NTTU1NzczMdOl1U6dOJaK5c+dKOMr58+cVCoWdnZ1uvbxYYuDs7FzSznKlMH36dBFsDQ8Pl2qfGRkZx44dCwgIGDFixF/5qt03a9aMiHbt2iXVcC+8rCzu2JGJePhwg+wfAXcou0mTJhHRl19+KcvoGo1m/PjxIioRERFRzN8SXZ1FjSxdlzMiMjU1dXV19fHxCQoKKk6DiueUaNpxWfIlM/8VHBwssgmqVq2ap+xPTEyMWFxFRG3bttWtlGrTps369esNevh78EBbE5mIBw7kZ/YkO32avbxYoWAiNjdnb+/SF4JPTEz09vYWr7Rfv355EvyhMAUeB0+cYDMzVirZEFdPCLiDvv/9j4nYzIwPHjTquD169DBcqOjHH38konHjxomH2dnZZmZmSqUSnZbye/jwobu7u/joVigUPXr0CA4Ozp/Tl5mZGRwc7OHhod86NSgo6JnZf1OmMBFXrszXrhnsNRQkKytLVJ+Xvdrn5s2bicjS0jLSOF2qnxOenp5E9Nlnnxlo/yI+LtUV3/fff0/lppiMzpEjR0R6R2FVc8FwEHB/4X333XdENGzYMLkn8myxsbHiTrlui/gA3Llzp/EnM2HCBCp/XXNkCLiLYvbt2rXTbRG555KvuevZsycRLVq0SDzMyclp2LAhEW3dulXagfIQfyFmZmbGfJ/NmjWLiN5//32jjfi8O3uWK1ViR0c2UDsKBNyh7Bo0aEBEJ0+elGsCOTk5ogFG1apVCwsiZ2dnh4eHBwQEeHl5Va1aVT+N3dbW1t3d3c/PLyQkpIy1wp8XIsCtW1VnOHFxceKKkYi8vLzy5GkGBQVZWVnVrVuXCmo6alC//cb29tr86LVr2cuLdbX69+/XprKGhWk7pYtKJr6+0vRO1E/wlyWx4rmT/ziYlMQNGjARG2i1PQLukMf06cZuoLpz504iqly5soHake3du5eIunbtqtsibsReuHDBEMM915YvX+7g4GBnZ+fj43P+/Pn8T4iNjfX3969Tp4442Ilnnjt3rpj7V6v51VeZiJ2c2PCH5Vy//PILETVt2tQIOV7PNGbMGHGL4nmpTmAE4eHhCoXC1tbWQGdrovpfKapBZmRkREZGBgcH+/v7+/j4eHh41KxZU5zYbNy40QAzLRMRaZE2YxKKAwH3F979+/fNzMzMzc3L1W22Ap05c4aIWrZsqdvSqlUrIjp9+rTxJ/P6668TUXBwsPGHLoIMAff58+cTka67cVZWlpWVlUKhkPwGaUhICBE1adJEt0V0Lurdu7e0A+lbu3atUqlUKBRG7gt/9uxZsbgSjeMKs2ULHzmi/V6j4cBAvnOHJepoWAAE3KGMxB91zZo15S2RkZmZOWDAACKqU6eO7uIhOTk5NDRUpVJ5eHhYWVnpB9lFq2d/f/+wsLCX7epOrVYrlUqlUqn7HP71118///zzktZIKSaNRrN8+XIbGxvxr5PnprW4yT9+/HhDDF2027e1FcCXLmVLS+7QgUXM4ddfefRo7txZG2q3t+fPP2dpzyTv378vyrOK+xAF9tl7mT3zOKjRcEAAu7uzgQrUIeAOeeTkcL9+TMSdOkncu74wHTt2JKIFCxYYaP8xMTFEVK1aNd2WwYMHU7kpvlyudOjQgYj279+fZ7tarQ4NDfXy8tIVo2vSpElAQEBKSkpJh0hJ4datmYi7dzfSG0ytVotbLPkry8siKSlJpNvPmTNH7rmUI+LM1hBLSB8/fiwyToo+e09PTz937tz69eu//fbbsWPHduvWTdT/yU80EN6xY4f+r2dkZMi+WnT//v1EVKlSpeTkZHln8rJBwP1lIM4cdD0vyy1R/9bDw0O3RfQvkWW1cbdu3YjowIEDxh+6CDIE3EX9WV322alTp0QWgOQDqdXqRYsW6XchT0xMtLCwsLS09PDw+Oqrr3bs2CFtr489e/aYm5vrp9Ubk5OTExEdNPK63OdHz55cpYo2w0WtZjLwex8BdyijOXPmENF7770n90Q4LS1NLPquV6/eu+++26JFC6VSqbsSUCqVzZs3/+CDD9asWVNYKdWXRHx8vEic1G0RV3Tbtm0z3KDR0dHdu3cnol9//VV/u2hOHliieurS0Wh461a+dYudnPiNN7SJ7b/+ymPG8Ouvc5UqrFKx4VptBQUF2dnZiZvQmzdvNtQwz6FiHgcNl5SJgDvkFx/P9etzx473Jk36xNBjbdq0SdwYTktLM9AQGo1GlCPXLTwSDVG++eYbA434/BINZvVXHickJCxYsEBc0RCRhYXFiBEjytgWJTaW69RhIh4zpswzLoZ169YRkaOjoyHapZTOoUOHlEqlqampjCsmyxvR9rNChQqSt/08ePAgEXXs2FG3JSsrKyoqKjQ0NDAw0NfX18PDw9HRUf9EWsfc3NzR0dHT09PPzy8wMDA0NDQqKmrBggVE1KlTJ90OT548Wbt27Z49e0o781J45ZVXSLpq9VBMCLi/DDZu3EhEzZs3l3siz7BmzRrS6zCh0WjMzMwUCoUsrSXF3e5Lly4Zf+giyBBwF83NdK1ERTPZMYY/CcrKyho9erS4E5snH9PLyysgICAsLOzp06el3v/JkyfFGfann34q4bSLb+bMmUQ0ZcoUWUYv/3r25Nde055tv+QB97/+SnNyypg4EfkI5ZrI/AoJCZF7IszMSUlJjRs31mXfmJqaurm5+fr6BgcHI4lY58qVK0TUuHFj3Rbxj3j8+HGDjpuTk7Nu3bo8G4cOHUpEeSq8G5kIuN+8yTVrclycNuB+7x4bLNKV6+bNm6JMMxF5e3sj/Uow8nEwPwTcoUBnzjy0trYx9D1CtVotVjovN3Cf1jZt2uh/8q9cuZKI3nnnHYMO+jwS12W/67Vs3r17t/jcrlWrlkql0s+aKouICG2HXiMEBtu2bSvj3e7C+Pr6ElHr1q3RV1ynb9++JHV7vZycnK+//pqIOnfuPHny5P79+zs5OekWauSJrTdp0mTIkCHTp08PDAzcu3dvYRnraWlp1apV049pJiUliWiG7Gl2ooJWlSpVyhJCgZKSMeAeH5/j5JTh5pbbkuStt1KcnDL27kWTEollZWWJSq3F76MmC9FkYurUqeKhjG9OZhY91ctbaKKAm6sGde/evdjY2IoVKzo7O4stJ06cICKxwNNw0tLSXn311dWrV9vY2CxevDg4OHj69Oldu3a1traOi4v7+++/p06d2q1bNwcHB3d392nTpv311183b94s/v5v3Ljh6emZmpo6atSoefPmGe6FFEEsHRDhFVkmUP5NmkTHjtGhQ3LPQ25ZWdZRURZJSXZyTwQK9eDBg/DwcCsrq969e8s9FyKiChUqNG7c+MGDB6+99trhw4dTU1PDw8OXLFni5eWla8sJjx49IqIqVaoUscUQTExMRKl9feKMpzz86zRoQB9+SNOnax/WrEnW1kYYtMG+ffsCAwOtra3XrFnTokULsfYZcByEcqh166orVwYS0aRJk8LCwgw0yl9//XXu3Ln69euPGzfOQEMIIsfq2rVrBT4EHXFwFAdKwcPDY9y4cVu2bLl79+7s2bNFnLHs2raldevIxIQ++4z+/FOSXRZs27Ztp0+frlGjhriXUH7Mnj3bzs7Ozc0tOztb7rmUF7NnzyaigICAJ0+elG4PiYmJERERq1ev/uSTT4YPH96uXbsKFSrMmjXLxsbm2LFjP/zww86dO6OionJycmrWrOnh4eHj4+Pv7x8cHBwZGZmenn758uXNmzcvXLjQx8enV69eou9OftbW1tOnT9dNmIgqVKgwZcoUIhJrYY0mICDgjz/+0N/i7OxsZWU1ePBgscQfXnjMJlFRFrdv51YTffTINirKQq22KuK3oBTMzMxGjRpFRL/99pvccymKWN6t6+Im1kBIdewukezs7CdPnpiamoqwe/lRwB1XgxILuDp27KhrND9z5swOHTqIm8wGkpCQMHjw4GPHjlWuXHnLli2iR6uXlxcRqdXqK1euREREREREHDly5MyZM0ePHj169Kj4RXt7+/bt27u7u7u5uXXp0qWwyMW9e/f69Onz8OHDQYMG/fbbb7qXZmQdO3asW7fu3bt3w8PD27dvL8scyjlzc1qyhCZMoNOn5Z4KQJG2bNmi0Wj69OljbYTYZEHOnz/v6OgoVu0QUWZmplgkGxAQIIqBQn75Y9xii6ED7gUyTqy/mGbOpFatyMbGqIMqFAofH5+uXbu+88474eHhvXv3fu+99xYvXizX31Q5geMglE8jR448derUkiVLhg8fHh4eLpbDSkitVovMU5VKZWFhodseEhLSunXrevXqSThW48aNSS/CLh5evXpVwiFeDOJwKQ6UgkKhWLVqlSHGGjSI5s+nGTNo3Dhq3pxatDDEIOTv709EM2fOtLS0NMgAxbN9+/bbt2+/++67umn8+eefKSkpERERoiA4EFHnzp179+69d+/eH3744csvvyz6yQ8fPrx27dr1/0pPT8/zNIVCYWFhkZaWNmjQoJ49ezZu3Lhx48YNGzYsYzx64sSJ33///dGjR/ft29erVy8imjJlSkBAwJ49ew4fPty1a9ey7LyYzp8/7+fnl52d3aJFC7FUiJl9fHyePn2akJBQYIUcACiLsWPHLl68+H//+9+CBQvkPaYUIU+EXcaAu2gwW7Vq1fL2cWTsgPuGDRuISKy1FFq0aNHCQGc9RER08+bN/v37X7t2rWHDhjt37hRnvTomJibNmjVr1qyZyERISUk5d+6cCL4fOnTowYMHe/bs2bNnj3hyzZo1u3btKuLv7du3F+frycnJgwYNunXrVocOHdatW1fgqjHjUCgUr7322g8//LBhwwYE3AvTrx+5utLy5XLPA6BIW7ZsISLRL0UWQ4cOjY2NPXPmTNOmTYlo//79KSkpbdq0QbS9CHli3NnZ2cnJyWZmZhUqVDD+ZMpPhjsRWVjQDz/QwIE0apSxh3Z1dT169Oi8efPmzZu3cuXKw4cPf/jhh23atKn8L7nukcsIx0EonxYuXHj+/Pn9+/d7eXnt379fPyxeUtnZ2Xfv3o2Ojr548eKlS5eio6OvXLmSmJhYvXp1b29v3dN27tz5+uuv169f/8CBA3Xq1JHiRRD9m9Kui7DXqFGjYsWKjx8/fvToUTm5CVpO5M9wN6jp0ykqirKyyNKSbt8m3enMuXPk6kplD0QfPHjw8OHDlStX9vHxKeu+yoCZP/300/Pnz1taWr777rtElJ2dvXDhQiL64osvXsJDXhG+/vrrvXv3Llq0aPLkyRUrVhQbnzx5EhUVFf2vixcvRkZGikqheTg4ODg6Ojo6Orq6ujZr1szR0dHFxaVhw4aZmZkrV66sVauWVPO0sbGZOnXqZ599NmvWLBFwt7e39/X1/eqrr+bOnbtz506pBipMTk7OuHHjsrKyJk2aJKLtRLRq1aqdO3dWrlxZVM0CAGk1b97czc0tIiIiJCQk/1LmcqJcBdzlGrpoRooOZ2VliTVTJ0+erF69+qpVqxo2bDh+/HhD338IDw/39PR88OBBu3bttm7dWlj7bx07O7uuXbt27dpVLNS6devW8ePHT548eeLEidOnT4viM3///TcRWVlZubm5tW3b9sCBA+fPn3d2dt66dauNkfP38hk2bJgIuIsMCyjQ4sXUpYvckwAo3NOnT/fs2aNQKETLTeOLjIyMjo6uVq2aiBpQObgB8FwQUQNdjFt0zKtUqZLxr2+Z+fHjx5SvZ4mRKZVkb6/9vk8fevttYxSTyc/MzGz27NnDhg0bPXp0VFTUpEmT9H9qaWnp4OBQq1atmjVrOvyXbmPVqlVfsKxAuY6D9epdc3dXmpvbET3jfAxeQqampn///Xf79u2PHTs2bdq0FStWFPMXY2Njr/3r6tWrV69evXXrVk5OTp6n2draPnjwYMmSJdP/LXHVpUsXNze3EydO9OzZ88CBA1Kl1edPaXd2dj516tS1a9cQcNdn5IA7ES1bRkoljRhB+/bR5csk1p337UvnzlGNGiXeW3Jycnx8/KNHjx49eiTavRLRlClTdKsDZbF169bz58/XqVNn5MiRYsv//ve/mzdvNmnSRDR3AZ0uXbr06NHjwIEDw4cPr1279tWrV69fv17gG7JSpUrOzs7Ozs6NGzd2/lf+dIr79+8/evRInD9IO9XJkycvXrz4yJEjBw8eFK1Kp02btmTJkl27dh05csTd3V3a4fL45ptvwsPDGzRo8O2334otsbGxH3/8MREtX778mQEWACidd999NyIi4rfffkPAvaQzKT8MHnCPj4//6aefVqxYcf/+fSKqXr26vb39tWvX3n///V9//XXJkiWGq96+d+/eYcOGJScn9+7de+PGjaXIMWzQoEGDBg3eeustIsrJybl69apIfj98+PCVK1cOHz58+PDhOnXqVK5cOTQ0VFe6SEbdunWrVq3ajRs3Lly4YNB1A8+1OnVo8mT6+OOCf/rgAeG0AeS1Z8+e9PT0Dh06SL6mvphCQkKIaPDgwbp7otu3bycE3J8lT1K5jEVdkpKSsrOz7e3t5a2qaWtL8+fnPpw/n6KiZJtMy5Ytjx8/3qVLlzNnztSrV8/S0jIhISEhISEjIyMuLi4uLq7oXxfp8FWqVNGlxlepUqVq1aouLi7GWc0traKPg4Zz585HR45sy8raQuRp7LHheVC5cuWNGze6u7v/+OOPbdu2HT9+fJ4nZGZm3rhxQySti+TTCxcuJCcn599VzZo1Rc6pLv/04MGD48ePnzFjhlqtFqGiChUq7Nq1q0+fPqdOnRIxd0nCZC4uLgqF4vr16xqNRhxGXVxcTp06dfXq1S7I+NBj/IC7LtGrbl36/HMq7J5OWholJFB8PMXHU0ICPXpECQmkVgdcv340Pj4+ISFBRNizsrL0f6tChQq2trZ5UiUiIyN379790UcfGeT1FGT+/PlENGPGDHECwMziTsCnn35a3hbalwcqlerhw4ehoaG6LRYWFrVr19YlresUZ2+RkZFE1Lx5c8nnaWtrO2XKlC+++EJk5RORvb39pEmT5s6d+80332zbtk3yEXXOnz8/b948hUKxcuVKcTOJmcePH//kyZMhQ4a8+eabhhsa4CU3cuTImTNn7t69++7du4W1eZAXAu7PZMCA+/Xr15ctW7Zq1SpR4KxVq1Yffviht7e3paXl+vXrZ86ceeLEic6dO7/xxhsLFy6UtngiEaX++efbvr7Jycne3t6//PJL2XPTTE1N9YvPJCYmnjx5cs2aNWvXrm3WrFk5KbNgYmLy6quv/vzzzxs2bEDAPY+ffiLdZdTUqdSrF+3fT8nJ9Oqr2o1paTR2LB07RmfPkqxZofCykz2dPM8Ezp49e+vWrZo1a7q5uck1pedCnortMhZ1KScF3K9fp+nT6dw57cOTJ+nHH8nwS58LZWlpOX/+/L59+6anp1+6dEksSnv69GliYmJcXNy9e/cS/0u3UURYEhIS8rc97Nix4/Hjx+V4NaWR5zjYsyd9/z3VrUvlNW8GXkaWlpYLFiyYOHHipEmTHBwcLC0tr169qstev3fvXv5fqVKliouLi4uLi6iY7OLi0qhRo/y3Gx0dHZn5vffe++STT6ytrcViF3t7+927d/fp0yc8PFzE3GvWrFnGl2BnZ1ejRo24uLiYmBhxgZOnqjsIxg+460ydSl9/TceOUefORESRkTR6NMXHa2PrT58W8CudOx89duxv/S12dnbizqu4F3v69OmLFy9OnTr14MGDJiYmRJSYmOju7p6SktKiRYs+ffoY4XXt27fvyJEjlStX1nUG3rhx48WLF+vVq/f2228bYQLPnR49ely4cOGLL75wdHQUCexl+QQwXMCdiCZPnrxo0aJ9+/YdOnSoe/fu9G+S+/bt20+ePNmhQwdDDKpfTEb3HkYxGQDjqFix4pAhQ9atW7dmzZrPPvtM7ukUIE+YO08PVRlnUo6wAYSFhXl6eopF9Eql0sPDIyQkRKPR6D8nLS1NpVKJ8v82NjYqlerp06eSzcDfnxWK/a1bf/bJJ3nGlVZGRoZInL9x44ZuY2Ji4o4dOww3aNF27NhBRC1atJBrAs+LkyfZxITt7Tk6WrslO5vd3ZmIhw6VYP+i2J+dnZ1uy6BBg4hoy5YtEuy9bFavZiIeNUrueUBBNBqNSGw/e/asLBN48OCBUqm0srJKTU0VW7766isiev/992WZz3Pk1VdfJaJNmzaJh+vXryeiYcOGGX8mIgTcoUMH4w+t78QJbtky9+E//3C/fvLN5l+icfqSJUuK/ysajSY+Pv7KlStHjhzZvHnzr7/+umDBgvHjx4uQytGjRw03W4MKCWGi/xwHDa08HQdXE9EoHAjLHw8PD3Nz8yFDhoiLiDyXLebm5o6Ojp6enn5+foGBgaGhoXFxcSXa/6pVq5RKpUKhWL58uW5jYmKiuKPs4uJS0h0WqE+fPi4uLrrj+F9//UVEQyU5v3yBPHjwgIiqVq1q5HHffpuDg/mff7h1a87O5mrVeMsWJsr9srbmunW5TRvu149HjGBfX/7qK/7994Pr1q3bt2/f+fPnY2NjMzIy8uw2MTFRZCD6+/vrNs6bN4+Iateu/fjxYyO8NA8PDyKaO3eubku7du2IaMWKFUYYHcSinGXLlhlo/+KE3MPDQ7fl008/JaLBgwcbdMQGDRqkpKSILTExMaLe/V9//WWgQaFoIqHHwcHB+EPHx7O5OdeunbvFw4OJePdu48/lZSGaNDg7Oxs0qlk6qampRGRlZaXbIu7srlu3zviT8fPzI6JvvvnG+EMXTcqAe0ZGRlBQkC6x2tLS0tvb++LFi0X8yp07d3TNi5ycnIKDg8s6CY2GZ8xgIlYoeMGCsu6tGMS7asG/Y6Wnp9vZ2ZmYmDx48MAIo+eXlZXl4OBARFeuXJFlAs+RN99kIm7fnrOytFvu3OFKlZiIf/yxrDtHwB1K5+TJk0RUr149uQ6rv/zyCxENGjRIt0VcrW3dulWW+TxHRGmRQ4cOiYeBgYFE9N577xl/Jlu3biWigQMHGn9ofSdOcNOmfPeu9uuXX8pFwP2ff/4hojp16mRmZpZ6J9nZ2aI5+fjx4yWcm/G99Vbe46BBlafjIALu5VF0dLS44/vgwYMtW7Z07969c+fOY8aMWbZs2a5du27evKlWq8s+ysqVKxUKhUKh0I9CPnz4UFzCtGjRIj4+vuyj6Dtz5gwRNWvWTNrdPu9ycnKUSqWJiYkk/6zFJwLuzOzpycuXc7VqfPUq79zJp0/znTucllb6PYeGhioUCgsLi3PnzoktarW6W7duROTt7S3F3Ity4sQJIqpQoUJiYqLYItKwqlevnp6ebujRgf+9o3/gwAED7f/JkyfiMj8sLExsefTokZ2dHRGdPHlS8uHOnTtnbm6uUCh2/xtP1Wg0/fv3J6JXX31V8uGgmGQMuOeHgLuhqdVqcStX91dffkRHR4sbcvobU1NTpUykLjbRJHzVqlXGH7po0pRye/jw4fz58x0dHd95550LFy7UqFFDpVLFxMSsXr3a1dW1iF+sW7fu6tWr9+zZ07x586ioqEnvvpvxxht06VIp55GVRSNG0MKFZG5O//sfzZhRyv2UxLBhw4ho48aN4qGVlVX37t3VarW4pDc+MzMzcUEr1wSeIz/9RPXr06lT9NVX2i1165JYGzdtGp0/L+PU4OUlyrkMGTLE+J029SegqycTFxcXERFhbW3ds2dPWebzHMlTyEXGui4yVrPJ484dGjVK+7V4sdyzISKiIUOGtGjRIiYmZs2aNaXeydy5c0+dOtWgQYPvv/9ewrkZ348/UoMG/zkOAsjol19+0Wg0w4cPr1atmqen58GDB5VK5Zo1a5ydnfv27dugQQNJilC/9957AQEBzDxx4kRxZ5SIqlatunfv3ubNm1+4cMHDw0N8ikrF2dlZVHVXq9US7vZ5Z2JiUrFiRbVanZiYKMsEli6l+fMpI4MqVKB+/ahNG6pbt0zNvT08PD744IPMzMzRo0eLCu9KpfL333+3tbVds2bN33///cw9lMU333xDRJMmTRIJyLot06dPt7KyMujQQETMfOnSJSIqOvpRFvb29pMnTyaiuXPnii2VK1eeMGEC/ftvLSFdMZmJEyfmLyaj++QEAINSKpWiovVvv/0m91zyKrCKi42NjahiUh4mUy6UMWB/9epVX19f3VG8TZs2QUFBWSVPlMrOzv7hhx+ODxjARGxqyr6+XNKVdykp3LcvE7GtLe/aVdIJlFpaWpq1tbVCobh7967YIvJD+8mXyCei/7IXE3guhIWxiQkrlbxnT+7G8eOZiJs147KkgyDDHUqndevWRLTLiB9i+jIyMmxtbfU/0MQpNTJZikNUrNMtbxJN0hYuXGj8mYgo8LRp04w/tL7yWVKGmdeuXUtETk5O2dnZpfj106dPm5mZKZXK/fv3Sz01GYSFsalp3uOgVFJSUvT/J5en4yAy3Mud7OxsUVFNl8Z1+fJlhUJRoUIFXYkzCS1evJiIlEplUFCQbuODBw9EsKx169YJCQlSjXX06FFra2szM7Pbt29Ltc8Xg6hub+RVuboMd2b++msmYinKCGmlpaWJF/XZZ5/pNi5fvpyIqlSpIknBogJdunRJqVRaWlrqhjh69CgRVapUKTk52UCDgr7bt28TUY0aNQw6ypMnT8QNlcOHD4st8fHx4tQ9PDxcwoFQTKbcQob7yyY6OlqhUNjY2JS3D3NxF1nGsKc+sfL4+PHjck8kr1IG3DUaTWhoqH6hdk9Pz9DQ0LJO5/Fj9vVlU1Mm4kqVOCCAc3KK9Yv37nHr1kzENWvymTNlnUYJvfbaa/T/9u47rsry/+P457CX2xT3Vpy5F7hRHOBKzCyszNB+Gu2w0mhZ2JKmqaVhVoYbd+7ALU5cuAdOFEQFGedcvz9uvkfCkcp9zkF8PR89engubu7rOoLn3Od9X9fnylWvLSkpycHBwdHR0TrV+m6Vlpbm7u5uMBi4rL8XYWFKRJUtq86dy2m5fl3VratE1JtvPviy0uvXr/v4+OR+ASo4QcPJk2ruXKXrVRn0cezYMYPB4OHhkac2aExMzMmTJ60wgMWLF4tI8+bNzS3+/v5SINdnFTRGo9He3t5gMJjjxWeffVZEpk2bZv3BaPvq5K7iahMFNnDPzs6uVauWiPzxxx/3+703btzQ9kN7/fXXLTE2m/jgAyWiKlRQehXSSE5OjoqKCgoKcnd3z337sOC8DxK4F0ALFiwQkTp16pgrqr322msiMmLECAv1qN2btLe3/+2338yN586dq1u3rjaLKP+Z+4YNG/z8/LRpSV9//XU+z1b4tG3bNnd0aAXbt6tFi9SRIzkPb9xQkyfnq4zMrTZs2GBvb29nZ2cuMWcymXr06CGWrLU9ePBgEQkJCTG3aD2GhYVZqEfkoV1Cd+nSxdIdjRkzRv5dNvCNN94QkSeeeEKvLigmU5AVqMA9NlbNnasuXLD1OAo7rTSZTT5U3sn69eurVq1atWpVV1fX3BdRVpCYmHjrnKcqVaqIyFGrbUt1z+47cNcKtdevX1+7dvTw8AgODt6/f7+eg9q/X3XvnrNtTd26atmy/zh+3z5VpUrOwceP6zmSe6N9bOvcubO5pXPnziIyffp06w9GM2DAABHRFszi7oxG1amTElE9eihz0eydO1XHjgnu7mXN+x/mX0EIGv75R4kocy3uDz5Q779vw+FAKaWuX78eExMTHh7u7+9fpEiRxx57LHfcoJRat26dq6trnTp1rLAzxIgRI0Tkww8/1B6mpaW5ubnZ2dlZbk5WoXHr5a8N/8kPHz5cRCbmfzOK/CmwgbtSasqUKSJSr169+60drC1c8PLyKkwlcY1G1blz3vfBB3Dx4sUpU6Z0797dyclJu0q0s7MbP368+QCb/KPIzMycMGFC7s3tFYF7gaRtlGpeFZSRkaEtG9J32mYeX3zxhZa5z5gxw9x49uxZLy8vEWnatOkDz57ZuHGjdsda+7gUGhqq45T5QkP7oc+fP9863V25osqVU5UrW/zz4ujRo0WkevXq5tnBiYmJJUuWFJFffvlF9+6OHDmiTfY6/r8ntmPHDm1GpO4bEuBOxo8fLyKvvPKKpTu6dOlSnrrt586d0xbcmzcPyI+srCxt96ZRo0aZGydPniwipUqVOmeeoQYbuVPgPmnSpLi4OKsN48UXVZUqyrz8rEYNdeiQ1Tp/5EydOlVE2rdvb+uBKKXU9evXX331Va3En7arhHZFnZKSYumujxw5opVXKVu2bJ5K8VrNFUssiMyn+wjcz507FxYWZi5HW65cubCwMAteO0ZHq+rVc2J3f391p5sV2dmqTh0lotq0UUlJlhrMXSUnJzs5Odnb21/43909beWgDe8A//HHHwXn32TBd+qUKlVKiahvvrnZ+M0332gvIsd1uiovIIF75cqqTp2cajkE7rZy/vz5uXPnvv76661atXJ0dMxd5kt7twgNDTUfnJKS0rRpUxFp1KiRRdfNmEymihUrisj27du1Fm2+YevWrS3XaaFx8OBBEalVq5a5pXXr1iKyceNG6w/miSeeEJFZs2ZZv+vcUlP/tZImKUnt3m270fxbZmamNhXivoKe2NhYe3t7BweHzZs3W25sNmF+H/z22/v+3jNn1A8/qGHDltrb22uvYw4ODr6+vhMnTszzydz674MrVqzQViT07ds3dzuBe0Fz9uxZR0dHJycn863lmTNnam98lu76888/1zL33EteTp06VaNGDRFp06bN/S7iJmq/d0OHDrXmKrqXX1Yiyts7X3cW70VGRsbjjz8uIiNHjjQ3zpgxQ/uVyHP/L/+Cg4NF5IUXXjC3aFOv3nzzTX07wl1odZYnT55shb7eeeedPAsmXn31VREJDAzM/8nNxWTML30UkylQbhu4Hz582NnZ2WAwBAUFWWea1IsvqmrV1OjROQ8J3C3q2rVrRYoU0TaDse1I1q9fX6dOHe1SPzQ0VJuN7eHhISKVK1devXq1hfrdtm1bYGCglvLb2dkNGDAg90eM1NRUEXFzc7NQ7/lxr4H7jBkzzPOVWrdu/ddffz1Y5dP7k56uPv5YubsrEeXqqn76SSmlfvxRdeigatdW3bop7TPbpk1q0CCdVwPeJ22Nlfl68ezZs1odPVsVWkpNTXVxcbGzsztz5oxNBvDQmTtXiShnZ7VrV84vtslk6tOnj4i0a9cu+x5LG92VtqbYOkFDQoIKDLxNPbV//lGdOqmXXlLvvacUgbt1JZ0+snxB1PPPP6+9S5k5ODg0b978lVdemTVr1pkzZ/7++29nZ2cR+eyzz8zfe+HCBW2Fe+vWrc2zpXS3bds2EalQoYJ5fv2wYcNEZNy4cRbqsTDRiqXmvjlRs2ZNEUlISLD+YDp06CAihaPCuOVod1VbtGhxj8dfu3ZN+5kW1hX65vfBe6zMd/KkiohQvr45hQAbNEi1t7f39vaOiIi40ww4674PJgQGBmovs7Vq1Yoy12xWShG4FzzaHoC50yJfX18R+eGHH6zQ+/vvv69l7rnjpJMnT1avXl1E2rZte4/X80Tt9+vtt98WkfDwcCv0FRen7O2Vg4PaudMKvan4+HgXFxeDwbBkyRJz48CBA0XEx8fnfhdX3cWZM2dcXFzs7e0PHjyotRw4cMDOzs7Z2TkxMVGvXvCftMkxGzZssEJfSUlJeSa5nz171tXV1WAw7M7f1AaKyRR8tw3cr127FhYWpn2EdHd3DwsLy1OeVHcvvqi++UZVrqzi45UicLe8559/XkTe00IcW0hLSwsNDdXm1jRo0GDr1q3mLx09etTHx0dEDAZDSEiIvr97MTEx5krmTk5OQUFBt5ZX2b17t4hUq1ZNx371cq+B+/Hjx52cnPQp1H6/EhNVUJAyGNTSpWrqVNW4sTpwQBmNKiZGlSunCsYsM22ZVe5ialpRwjwf8Czn1nJF2hX/T9pdCtyDl15S7dvvqFevsTnQvHz5cuXKlSVXhY0HYC5l6+joWLp06RYtWuzbt0+nId9GSop6/XXl6KhE1K0rHLTAPSlJlS+v9u0jcL8/l88c+2ZY62+Gtf5xVOdFP46+cf0/Pn4bs7MunDiwbelvc796+evnmn3gX+7zkTmfw93d3b29vUNDQ6Ojo5OTk/N845w5c7Q3swkTJpgbT506VbVqVRHx9fW10CVUWFiYiLz00ks54zcaPT09RSSf1+6PiOjoaBHx9/c3t2izgWyymYc2pZcf3N2lp6eXK1dORO7xwubFF18UkSZNmjzAzvAPi5deUiKqVi11l/t6ly+r8HDVooUyGHJWIbq6qn791IwZpjstJs39PvjYY49Z+n3w6tWr5o+dHh4et37sPHDgQIsWLSpXrpyfN3foyGQyaXezzBX/jx49amdn5+rqarWXUK0ssqOjY+5VL0ePHtWuA3O/tt8WUfuD0apwvPXWW5buyGhUrVtr+zNZuqubPv30U20eg/mX4eLFi9qVlY4F/bWtDp588klzy3PPPZf7cg5WYDQatR3UrFBUQaPdrMq9eCskJKRo0aL5CR8oJlPwJScnv/baa0WLFtUub/JU1Th06JB5qkHNmjUtmkS9+KKaOlVNn658fJTJROBucf/884/2hqLLTND7devE9jwHZGVlhYeHawv369evb14u/8CMRmN0dLS2Xly7sgoJCTl16lSewy5evBgWFlaiRImKFSvmnq1YcNxHSZkkGxVsybF3r1JKeXmp3FP2vvlG6bFyKv8uXryYZ6PUL7/8UkQGDRpkhd5/++03R0fHKVOm5G58//33HR0dC+tEPEtIS0vTUqphw4aZG9euXattfHS/c0VvW8rW3d1dRJydnUNDQ3Vf/WA0qshIVbasElF2diooSOW5LjKZcgJ3pdSUKapzZwL3+3Px1KFvX2yjlMpMvz5r/PAVv95mR8ob11MPbVu9esbnv77zxLgnqn/gX87835dDGs+e8GZERMS2bdv+c4XQtGnTDAaDwWCYOnWqufHQoUPa57S+fftaYo2RNjfHPBVr06ZNIlKlShXdOyqUpk2bJiLPPvus9jArK8tgMNjb2+s4i+3eab8nrHD6T5999pmIdOzY8T+P/Pvvvw0Gg7Ozc+G+jZGerh5/XImoF1+84zHJycrJKSdn9/dXkZHqTu9mtngfNEZGRpYtW1brKygoKE9AcOnSpZdfftnBwUFEKlWqlJGRoe8A8GC2r1ljZzBUrVrV/IL53nvv5X5FtQ5tu2knJ6cFCxaYG48fP96oUaO7zFolas+PX375RUSef/55S3f0ww9KRFWqdLe7ibozGo3t27fPs5hm2bJl2rvJnj178t9FUlKStpbfXLv55MmTWqVTm1ceeKQkJCSISOXKla3W48WLFz08PAwGg3mXi6SkpHzeofzpp5+0WaLmyWcUkyk4srOzJ02apG1tohXWEJHq1avPmTMnz5ErV65s2LChdkDnzp0tceFqMuUE7iaT6tRJTZ9O4G4NWuRtnppgHXeZ2H6rLVu2aIPUcsgHuzeQkZERGRmpLe4Xkccee+y2lcyPHz8eEhLi5uamHebt7X3lypUH6M7S7nvTVFvKylIODir3feOYGNWgge0G9C8dO3YUEfOeS8eOHTMYDB4eHnluPOpu0aJF2kfH3FukJiQklC5dOs8yRvyn+Ph47R9t7jqe2gewmjVr3kvEefHixcjISH9/f3NhbvMS+8TExDNnzgQHB2svWKVLl46IiNDrFuWmTapVq5zJhq1aqU2b/vVVLYtv1kz9/XdO4G40qjZtVIsWBO73wRy4K6XW/fl19HdvXr9yae5Xoxb9OHriqM6Htq36KcT3w94Vb4bsAeV/eKlD9Hdv7lwVdfnMsfvtLiIiQvv9mT17trlx9+7d2qZbQ4YMMelagjQxMVHbX8v8kqXlHS+//LKOvRRi2s57b7zxhvbQZDKdOnVKl4/TD0DLNy29mLQQuHLlirbbT0xMzF0OS05O1rY3MG/nWIjFxys3NyWicr0N5vX552rBAnWnqxvbvQ9uatWqldZjq1atNv37jVDL4suUKWPO4q2wDTXu1aBBmVWrbv3fRjpZWVkVKlT4z3+YlqDtdenk5JS78NGd7psSteeftlVM7lLUlnDunCpRQomouXMt2s9tHDlyRAvEc081feGFF0SkadOm+V8vpa3MyL0CY+TIkdpVYj7PjPsyb948+fdidyt44403ROSJJ57Q64RZWVnjxo0zTzKjmEzBsXbt2saNG2tvNx06dNixY8fq1au1jSK0iSM7/10qKysry5zOOzg4BAcHm/cazKczZ1RwsAoNzQnclVLx8apqVVW+PIG7xY0bN05EvLy8Fi5caJ1PeevXr69du7Z5Yvu9zFNJS0sLCQnRKsC0bdv2yJEj997d1atXIyIitM9cIlK1atWIiIjrt1QOP3ToUEhIiLaSVYvao6Oj7++JWdFDFbhnZysnJ5X7WnbtWtWkie0G9C/ffvutiPTv39/cok0XteiPf/PmzdpksTFjxpgbz58/X6tWLRHx9fVl9tb9+vHHH0WkePHix44d01qysrKefvrpu9/NO3nyZEREhK+vr3bzI3e+cOv6u7i4OK3KlXa1nc/Pk6dOnQoKCmrffp+IqlhRRUbm3Qlq5UrVsGFOFv/uuzmBu1Jq927l4EDgfh8unjr06YCaUeHBf3w45JthrZPPn7x66dzH/aoc2xV743rqsd3rP/Av91GfSpNe9Vs6aczemOjrV/L7wds8227ZsmXmxo0bN2of3vSNwidOnJjnFaxRo0Yi8vetWwHgdrSY5tNPP7X1QNSVK1dEpEiRIrYeyMNBSyvu/iF50KBB2vWcTVZxWt+PPyoRVby4+t/b4D05flx9/bXq0WOIeeKVs7Nzr169pk6deusSSUu8D2oX9xUrVoyMjMxzP3L16tXaC5qIdOrUadeuXfnpDjpLSlLOzsrOTp04oTVsW7rUyd7ey8tL3/vK90gr1ODk5LRo0aI7HUPUrpf169eLSJs2bXI3nj59Wt9enn5aiaju3fU967364YcftPuL5p0M9doRxHzPODY2Vms5d+6cVsjbVvf7H1kff/yxWKU4Um7nzp1zc3MzGAwWelPTismULl2aYjI2dJcrnP+cSXDp0qWQkBAtnShRokRERER+VkjfuKE++0x5eCgRVbSoevZZZV6G/dZbSoTA3eISExPHjh2rXXu4ubn5+/tHRkZaaFq3NrFdu6Rv2LCheSXNPVq+fHn58uVFpGjRopMmTfrP4y9cuBAWFqZNK9R6jIyMvPXXNS4uLigoSJu1Y2dn5+/vf/eMriB4qAJ3pVSDBmrp0psPx49XQUG2G82/nD592mAwuLm5Xbt2TWvRNoB67rnnLNRjQkKC9gobFBRkfuW9cuVKkyZNRKRFixaW21yxcHvyySdFpGXLlv858eTYsWMRERHe3t7au6CIuLi4aK99dy/hZzKZoqKiqlSpon2Xv7//8ePH73ec165dGzNmjKurq4hUqtT044+NaWn/OuDkSRUUlBO1V6qkIiPVsWNq8uSbB0ybdpuNVXEnF08d+vq5ZmcO7Tq+Z+Pcr0bN/erlq5fOfRn0uPbVrIwbJ+I3ZWXofLdZK83p5uZm/jSllFq5cqV2U1fHAsQ9e/YUkWnTpmkPT5w4ob1HctPuHmkbzN7LJYWlHTlyRArqvjEFkHk9/p0uJefOnSsi7u7uj9Ty/CefVP37q3uJEI8dUxERyts7p6R7u3a/WfN98Pr162FhYdr7oJubW2hoaJ4rn5MnTwYFBWldVKpUKTIy8n67gMV9/bUSUb163Wzp3Tu7XLndNtqFyGQyjRo1SkRcXV1XrlyZ56tE7fo6ePCgiNSqVcvccubMGREpV65cYGCgVoUvn/dd1q1TBoNydVX3M81OTyaTqUePHnkm8sfGxtrb2zs4OGzOx25kKSkp7777bu7Zx9rtotyTJ2Ad2o35X3/91cr9vvrqq/Lv7ab1QjEZm8tzhRMWFpaW56O+Ukqp5OTk0NBQbW1r8eLFw8PD83x2279/v/YSpE2OfrD6B9HRqnr1nFTB318dPqzmzFHmqPPqVfXOO8q29acfEadPn/7kk0+0eb3m9Kl3797Tpk3T8WrkASa23+rChQt9+/bVBjlgwIC71Cdfvny59nsuIu3bt1+8ePGt7/va1qnmCT1BQUEJCQkPMCrre9gC96lTlZeX2rpVpaWpxYuVp6cqSDfwtbXM5kJa2kVk8eLFLZFYJSYmah9T/f39zTd/MjIyunbtKiI1a9ZkrfQDS05O1v5ux44de9sDjhw5ouXs5lc6V1dXLV+4r4q0169fDw8P17Ke2yYFd5I7pzAYDIGBgXlyimvXVFiYcnFRIsrdXYWF3XHtP+5d7pIyyedPfhpYK3fgbiEmk2no0KHaK8mOHTvM7fPmzdMmLOhS48JkMgUEBLi4uJhfN7QlOwMHDsz/yR8RX3zxRaVKldq3b2/N/U60InedOnXK/S6zefNmEWnevLnVhvGwe/311+/0efX8+fPaje2CcCvFmtLTVVaW8vVV5kV6W7ao0NCbB8THqw8/VI0a5Xz6ElFFiqhBg9T8+ZfM0w7uhSXfB6+FhYW5uLho90tu3VsMBUX9+kpEzZuX8/DsWeXoqJyclO2uY00m0//93/9pv5OrV6/WGonaLeHSpUva1Etzy7p167RZ22Zly5Z94oknvv9+0vbt6n5XGWVkqLp1lYiy7fKzxMREbeLeL7/8Ym7U3np8fHz06iUlJaVYsWIiUvBn/BU+2jZg9zsJNP/Onj2rrWlYu3atjoEDxWRs6z+vcG518ODBXr16aa+ZtWvXvnWFVnR0dI0aNcxTHA4fPnyPg9m/X3XvnnOl5+WlKFdcQJw4ceJO9RXys0osnxPbbxUZGVmkSBER8fT0vNPCQW21lr+///r16/N8Sds6VdvMWZsLGBIS8nDtUvawBe5KqT/+UL16qQYN1IABat06W4/mX8aPHy8iTz/9tLmlXr16YoGaDCkpKVrRrlatWpk/2RqNRm1b6vLlyx+7r3XguMU///yj7ZW6atUqc2N8fHxYWJj2M9UUL148MDAwMjLyvvKFPP5zLXweW7ZsadOmjTaAFi1a5HlhMplUVJSqVEmJKINBBQaal2gjvy6eOjRhaIvLZ49fOHlw8cR3f//gGSsE7kqp7OzsAQMGiEiZMmUOHDhgbp8+fbqdnZ3BYPj555916Sh3iTTt1t1vv/2my5kfBUlJSdoH3XLlyi1evNjS3V29evXLL78sV66c9lKQe9uJJUuWiEh3Wy2efwhpn1ft7Ozi4+PzfEn79NK1a1eblLawrYwM5eCgatZU2lrVpUtVt25qxw713nvKy+tmzl6ihBoy5G4l3e/F/b4PJicn3/V90BQVFVWpUiXzJ9UTvBEWWOvXKxHl6anMawo/+USJKAtM2LwvJpPppZde0jL3H374gajdQkwmk4ODg8FgyLNy/MiRI5MmTQoKCjIvgmnSpIuI8vBQvr4qLEytWHFPrznab1Pt2srme5rMmDFD+/0x51zp6ekjR44015nJvw8//FBE/Pz89Doh7lFmZqaTk5OdnV1+Pg8+MD8/P/PkUBcXl3LlytWrV8/b29vX19ff3z8oKCgkJCQsLCwiIiIyMjI6OjomJiY+Pj4xMfEuVfIoJmNDW65veXbxs+YrnLts2X2rFStWmJMKX1/fPJe16enpn376qTbFwdnZOff+f7d16ZIKCVEODkpElSypIiJUPgrSwFLMOydpqxw09erVCwsLy50b3IvY2Nj8T2y/1bFjx7T9ww0GQ3Bw8G1fJ2+9rLpx40ZkZKQ2Hu3We1hYWHJysi5DsqaHMHAvwI4ePSoiRYoUMc+i0orDjhgxQsde0tLS2rVrp/1Dyv2rGRISot32yT0NFg8sLCxMRCpUqBATExMWFqZtuKwpWbJkUFBQdHS0jlMJ7r7bW25ffvmlFupNmjQpz6XSpk37WrTICUHatFH5WKWK27hyMXH6mIHTxwz88+NnV8/4PC01OS01eVb4cCt0nZGR4efnJyKVK1fOnRx999132g3tv/76S8furl696uzsbG9vf/HiRR1PW+gdO3ZM2z1bRIKCgu5rvcu9u3LlSnh4eKlSpbSOGjVqFBkZmfulYPr06SLyzDPPWKL3wmrEiBEi8uyzz+ZunDJlinZj9eTJkzYaly1lZChXV/XOOyokRKn/Be6+vjlvMSVLqqAgFR2tdFzCd+/vg0qpbt263fZ9cMuWLW3btr1TFo8C5/nnlYh6552chyaTqllTiajly206LKWUMhqNzz//vIhoH2KLFi06ZswYonbdaauI7pLrJSQk/PLLL6NHzzcXNND+c3VVHTuqu1QeOn5cubsrEZVr8owtDRw4UER8fHwssR3ItWvXtA0S1xWw6WiPgvj4eBGpWbOm9bv+9ddftSliJUuWzB233Qs7O7tSpUrVqFGjefPmvr6+gYGBwcHBb7/99ujRo7UZqRSTsbIzmWeCTwTbxdk5bHdo+VTLadOm3WnL7rvIzMyMiIjQ5gA5OjqGhITkqe+n7V1vZ2e3YMGCu5xkypRT2l7TDg4qJERdvvwgzwjWdPny5aioqKCgIO2eSu7k/T8nqus+sT0Po9EYERGhvUbVrVv37udPTU2NiIjQSsCLSPXq1SMiIh7eVaoE7jrTJp6bpzdu375duyGj16VVdnZ2//79tSA4d+6mTWpwcXHhMksv2dnZPj4+5uLsIlK+fPmRI0euWrXKQvvmaTuflC1bVv6388ltP35kZGSEh4fnyfISExO1984WLS6UL68mTVL3/waNAu369evaHoO1a9fO/Yuh3RlycnJ6sJJ8txUVFSUi7du31+uEjw6TyTRp0iQ3NzcRqVq16po1a3Q8+blzavz45UWLFtVekby9vW8tcpeVlfXMM8+IyCuvvKJj14XeiRMnHB0dHR0djx49qrUcO3ZM+6vOvXrgkaIF7levqipV1LZtOYH7H3+okSPV6tX3XdjhHt3j+6BS6uTJk3d6H9TerydNmvQAn1RhVampysNDGQzKXIhzxQoloipXttRv2H0yGo1ffPHFF198QdRuOdp8zKeffjoqKuo/p3ufPauiolRIiGrWTNnZKRF1l/3j/f2VSMHZ7UslJSV5enqKyNdff637ybXpOK1bt9b9zPhPM2fOFJG+fftaud8pU6Zob3nmLZ3S0tISExPj4+NjYmJWrFgRHR0dGRkZERERFhYWEhISFBTk7+/v7e1dr169cuXKaRsP3pa3tzfFZKwp05QZcT6i6M6iEieO2x1DToVcyc7XTphJSUkhISHaj7hUqVIRERF54ou9e/fe6XtXrlzZoEGDcuVauLurLl3U7t35GQhsIC0tLTo6OigoSLvvoqlWrVpISEhMTMytS0gtNLH9Vrt3727UqJHWUVhY2K2R2vnz58PCwrTdI0SkcePGeWaVPYwI3HWmBd8vvPCCuUWrlhUTE6PL+bV9nIoVK5Z7O3Jt2Ze9vf3s2bN16QWaEydOzJ49u27duq+99lpsbKx1PrpfvXo1LCxM2xLTw8MjLCzsxl3XwaalpX388cfu7u4i4urq+umn02yxnBHWkJKSom2J3Lhx49wrqt58800RcXNz++eff3TpSNtj8IsvvtDlbI+gvXv3asXmtKVzuWv1PJgTJ1RIiHJzUyVLJrm7e3h7e0ebS2v/j1bPXbtg8vPz21OQNjh5KGi/9i+99JJSymg0aosV+vXrZ+tx2YwWuCuloqJUy5ZqyRLVrZuVun6A98Hw8HBtRp6Tk1NISIiF1pdAZxMnKhHVufPNliefVCLqo49sNyZY24EDBypWrGgOBapXrx4UFDRp0qRba3zlkZSk5s9Xd1rWO3u2ElHFiqkCVet12bJlBoPB2dk5n+/RmZmZZ8+ejY+PX7t27Zw5c7777jtt3ZsVKtohj7S0tLFjx4rImDFjrNnvpEmTtLT9k08+ebAzZGdnJyUlHT58eOvWrStWrIiKipo0adL48eNHjx69adOmTHOZL1hYdEp0jfgaEicSJ/6H/Q/fuNfq6v9p+/btWikPEWnSpMl/zstMSEgw10+rVavWsmW6jQQ2kZ2dHRMTExISot3r1VSqVCk4ODg6OjozMzPPxPa4uDhLDyk9Pd3cY+vWrQ8dOqS1HzlyJCQkxFwd67YfdR9SBO4609aUlSpVylyL8L333uvVq9fdV0bfI61Ajaura+74Pjo6Wtsq4dtvv81/FyggEhIStIr82hteVFTUbQ+Ljo6uVq2adpi/v795biYKq/Pnz2vVjdq2bWuugKZtrOrq6prPD1qZmZkbN278/PPPtQna91v3DbllZWWFh4drS+fq1av3wDuYJSSoF15QTk45uzL06aPi4hLzHHP9+vUJEyaYA4tatWpFRkbm+xk8cvbv329nZ+fs7JyYmPj111+LSJkyZR7l7cfNgbtSqls3NXiw9QJ3De+DhV+zZkpEmReRJCUpZ2dlZ8fmM4+af/755+OPP/bz89Num5lVqFBh8ODBP/744969h+93Hw1tl7+JEy0z4nwYNmyYFn7dKdDUJilv27Ytz/TkwMDAu8xNbtiwYd++fR/B7UZsaMWKFS1btnzppZe01ed//vmn1br+8ccfDQaDwWCYMGGC1TrFg4lPj5+WNO3npJ8TMxOVUgOODFh/LafY3f70/d0Pddeidq+9XkuuWGRD0ujo6KpVq979MknbZ16b6KDtM3/3iQ54uGRnZ69Zs+bll1/W9jfSlC5dWivp5ujo+O6771rzHtuKFSu0z61FihQZO3ZsUFCQ9qZmZ2fn7++vS3BacBC468/Ly0tEVq9ere9pJ06cqE1jnzt3rrlx48aNWjRmXkqGwmTFihXarvci0qVLl9zTYXbs2GG+ZV23bt1ly5bZcJywppMnT2p7iHXr1s18MZSdnZ171cu9u3r16ooVK8LCwnx9fbUXExEpWrTo5MmTdR31I2rLli1169YVkQoVWnz8cfZ97TW0Z4966illb69ElL29GjxY3TofTityZ946tUGDBpGRkVlsafSgnnjiCRHRbl+JSO5320dQ7sD94EHl4mLtwF3D+2ChtWtXzm4A5rqcX3+tRFSvXjYdFmwpOzs7Pj5+0qRJgYGBWkVyTceOo4sWVb6+KjxcxcTcfuuIVavUihU3H/76q5o4sSDWV7x27VrNmjVFpGvXrm+//fbQoUP79Onj7e3t5eVVunTp3KUs78LBwaFs2bL16tVr3759v379goODJxbAewuFlMlkmjdvnrbkVESqVq1aq1YtEdltrdIbX3zxhYgYDIbvvvvOOj3igYWdCau8p/J7ie+9efrNCrsrnMw42SWhy5rUNZeyLoWcCnHY7iBxUnJXyYjzEVkmC169awsBtdLerq6uoaGh5oWAuUv5GQyGoKAgHXdyRgG0bdu2F198UbsH07Nnz4YNG1auXFlEkpKSrDmMS5cuabNqtOVZTk5OQUFB+/fvt+YYrIPAXX/vvPOOiIwcOVLHc86fP9/e3t5gMPz888/mxvj4+BIlSojI8OHW2LYRNpGZmTlp0qTSpUtrl9fBwcEHDx40F2UrWbLkrUXZUOglJCRoF0b9+/d/gJ/+yZMn//jjj5EjRzZq1Ehb0qUxGAz169cPDg6ePn06K0n1kpaW9tprr7VseV5EtWih9u27128cP16JKEdHFRSkbl1scPHixbCwMO0tQESaNGkSFRXF1LZ82rFjh8Fg0P5R5C4N92jKzFRt2958+PnnStfrmvsaCe+DhdGNG2rmzH9teVm/vhJR8+bZbEgoSEwmU3x8/MSJEwcPHty165rc26UWKaL8/NQnn6h//rl5v2bwYOXmpo4cyXno6VmwisnkFhsbW6FCBUdHx9uG6S4uLuXKlWvWrJm/v39QUFBISEhYWFhERERUVFRMTEx8fHxiYiKveDZhMpmio6ObNWum/aTKlCkTHh6enJysbVu6fft2K4whPDxcu2L/4YcfrNAd8iPhRkLRnUW1ie1KqeTsZKVUl4Qun5/7vMTOEhInDtsdXj758qUsK20Qcvr06aCgIO2uXoUKFSIjIzdt2tS6dWvt97lly5YbN260zkhgQ5s2bdI+Oe7Zs+fSpUuZmZmNGzcWkc2bN1t/ML/99tuiRYveeuutxMS8C7gLDQJ3/W3dulVEPD099Sr5vWbNGhcXFxH59NNPzY2nTp3Sbkb17t2bq65C78KFC8OHD9fCBe3utKOj42uvvZa7kDceKTt37tTC1ueee+5eYtYjR45ERkYGBwdru5PlniTVrFmzkJCQqKioixcvWmHkj6b161XNmkpEubio8PB7mnOXmqrefFOdPJm3/fRpNXp0inkbnE6dOq1cudISY340+fr6FilSpHz58leu5Gu7KuiO98FCbsMGJaI8PRVrdHA7R4+qyEj1wguqdm2VO3x3cVHt2qnx49XgwapPH9WjR87xBTlwV0plZGR88MEHn3322c8//zxv3ryYmJh9+/ZduHCBrZ4LJqPRGB0d3bRpU+3Sq1KlShEREWlpadpXf//9dxGxs7MLDAw0lyS2hE8++VZE7O3tp0+fbrleoJdpSdP8D/vnaeyS0GXW5VnuO9y7JHTZnWaDDUljYmLMN4208L1y5cozZ85k1s4jIikpSUSKFi1qbhkwYICI/P777zYcVSFG4G4RWjnRDRs25P9UGRkZWrD+8ssvmxuTkpK0MgUdOnRIN0/tQGG3c+fOjh07jh07tmfPntTXxoYNG7TNcl955ZVbv5qZmblt27aIiIjAwEBtrZZZkSJFfH19w8LCVqxYYf60AEu7fl2FhCiDQYmotm3VA3wiO3ZMhYQoFxclory9n/b19dXlXQa5paSkGI3G48eP23oguD3eBwuJtDQ1apTy8lI1a6q2bdXSpSorSy1YoEiRcA/OnVPR0So0VDVrpuzslIjq3VsNHqxmzlStWyttu4cCHrjjoWE0rps92zxbpUqVKj/99FPGv6saXbhwYejQodr0OEdHx+DgYEvM1hwzRlWtmlm+fHPS9ofF+HPjnzv+XJ5GraTMoRsWvDHzn4xG488//9ymTZsnnnjigw8+uH79ug0HA+vTJu2Z96kaPXq0iHzEfvWWQeBuEa+99pqI1K5d+6OPPlq+fHk+p1/t3Llz1KhR5ikPaWlpbdu2FZEGDRpcvnxZh+ECeDj9/fff2v4248aNU0pduXLFXJBdu+43K1euXGBgYERExLZt25g/ZUPLlqkKFZSIcnNTERHqHmeT7N2rnnlGOTgoEWVnpwYOVDt3MgkUwEPr5ZdVYKDSPuTHxKjSpdXhw7YeEx5Kly+rhQvV2rVq8GD1118qLk5VrqxSUwnckW9Go4qKUl5eF5s316L2iIiIPDtJakVmmjdv7uLisnXr1uDgYAcHB60ecXBwsF77rptM6rXXcsoMzpt3ux0MUCDNuDTDN8E3T6MWuNtiOECO5s2bi8j69Tmb906ZMkVEnn32WZsOqtAyKKVuWz8O+aFVb/j444/NLeXKlfPx8fH29m7WrFmLFi20jOwBZGVl9e3bd8mSJZUqVVq/fn3ujYYBPIKioqIGDx5sNBorVap0+vRp80u6vb19o0aNtJcdHx+fChUq2HacMEtJkZAQ+e03ERE/P/nlF7nLD2fXLvnqK/njDzEaxdFRBg2Sd98VLy+rDRYA9JaRIcWKycmTUqZMTstbb4mIfPGFDQeFh93TT0ufPjJwoLz8sri7S2SkbN8u/9tTHLgf2dny++8ybpwcOiQiUqPGwrCw7oMG5S67bzKZ5syZ88knn+zevVtEKlas+Oeff/r4+Bw4cOD999+fPXu2UsrDw2PkyJHvvPOOuQzgA1BKXn1Vvv1WnJzkr7+kb9/8PjlYzbmsc177vNbVXve46+MiokQZxOB7yHeM55iORTraenR4dD311FMzZ86cPn16UFCQiKxZs6Zz587e3t6xsbG2Hloh5GDrARRONWrUGDVqVP369Tdv3rx58+YdO3acPXt21qxZs2bNEhFXV9emTZu2bNmyVatWrVq10vYIvhdKqeHDhy9ZsqR06dIrVqwgbQcwcODA1NTUxYsXz58/383NrUmTJuaQ3byjJgqU4sVl+nTp1UtGjpTly+Xxx+X552XOHNm2TUqWFBHp3VvefFPs7GT8eFm8WJQSJycZPFjef19q1rT16AEgn44dk+LFb6btItKwocyebbsBoVD5+GNp3FhSU209DjyMsrLkzz9l3DhJSBARqVZNRo+WoUMDHG5mJiaTafHixWFhYTt27BCRypUrv/7668OHD9eWlnp5eUVFRcXFxb333nvLly8fP3781KlTx41bHhTU5N9LT++JUvLyy/LDD+LsLFFR0ru3Xs8T1uDp6Dmh4oSuh7r6FvF1s3PbcH3DFq8tth4UIDVq1BCRI0eOaA9r1qwpIocPH7blmAovZrhbQ3Z29sGDB+Pi4tavXx8bG3vgwAGTyWT+avHixZs3b65Nfm/btm2easu5hYaGfv75525ubitXrmzTpo1Vxg7g4bBt27bGjRs7OHAb9aFx/rwEB8uFC9Kjh0yeLD16yJQpIiKdO0unTvL++yIiRYrIiBHy+uvi6WnbwQKATk6ckMaNJTn5ZsvkybJmjfz5p+3GhIeeeYa7iPz2mwwZImfOMMMd90yL2j/5JGdWe/XqEhoqQ4fKv6P2OXPmhIWF7d+/X0SqVKny2muvmaP2W23YsOG9995LSDh66VLCY485jx2b53z/wWiUF1+UadPEzU3mz5euXfP5DGEbV4xX9qTvEZEGrg2K2xc/cONABccKReyL2HpceHRNmzZt6NChTz/99IwZM0REKeXu7p6enp6amlqkCL+ZOiNwt4GrV6/u2rVLy9/XrVt34cKF3F+tXr26Fr7nKT7zww8/jBo1ytHRMTo6unv37rYYOABAZykp8v33kp4uc+fKzz+Lt7d07iyhofL229Kjh7z9ds60dwAoJIxGKVVKYmOlQYOcliFDpF49GT3apsPCw01bOKEt7VNKduyQhg0lVwkQ4M5WrZIXXpATJ0RE6tWTMWPkySfFzu7mAdnZl+fObTN2bEJCgohUr1793XffHTJkiOM9/Ib9/feZ0NDyO3eKiNSuLR9+KAMH/uvct2U0ytChMn26uLlJdLR06fKgTw0A/i0mJqZ9+/atWrXatGmT1lK/fv19+/bt2LGjcePGNh1aIUTgbntHjx7VKs9s2bJlx44dN27cMH/Jzc2tadOmrVq1ys7O/u6775RSU6dOfe6552w3WACAzj75RLKzpXVreest2b5d/Pzkvfekc2cxGGw9MgCwhM8/lz//lO++kwoVZO5c+eYbiY+XokVtPSwAj6T9+6VBA6lbV95+W55+Wuztb37JZJI5c2TsWDl48Ll69f5JTx89evTQoUPva0WpUjJ7towZk1Oopn59CQuTwMA7Hm80ynPPyYwZ4u4uCxdKp04P/MQAIK+zZ8+WL1++VKlSSUlJWkufPn2io6NnzZo1YMAA246t8KH4gO1Vr169evXqTz31lNyu+ExsbGxsbKy2uOOLL74gbQeAQql7d5kyRb77LuchaTuAQuvtt6VSJfnxR7l4URo1kthY0nYA1pOYKJ9+Klu3ipub+PjIu+/Khg3SosW/Zp5nZcn06fLpp3L0qIhInTpffPBBiX79HqB4o8EggYHyxBMyZ46EhsrevTJwoLRuLePGSefOkpQke/bcTNUTEmTNGpkxQ4oXl6VLpXVrXZ4wAOQoV66ch4fHpUuXkpOTtS3fatasaTAYzmqrfKArZrgXaMnJydrMdxEJCAho0qSJrUcEANCZNsP9gw/k1Clp00ZKlZKvv2b5MAAAgN7S0uTxx+W552TECLl+XUaPFqNR/vrr5gFaPfePPxZtF8Hb1XN/YDduyMSJ8tlncvGiiIifn/TrJyNGyIwZ8vTTIiJvvCHly4uIdOggzZvnv0MAyCvA1zcjOfnnn3+u3KSJiKT8/LPLyy+7PPNMzn5i0A8z3Au0EiVKdO/enYrtAPAoqFRJXn6ZOsYAAACWsWCBlCsn770nIlKqlPz8s1SpIocPS82akpkpM2fKRx/JkSMiIvXqSWho3iIz+ePiIq+9JsHB8v33Eh4uK1dK377StKm895707JmzCYGIvPGGXh0CQF4LixWTVavk4EFp0kREileuLDdu5LzuQVcE7gAA2FLTpmI05vz59dfl7FmpUMGmAwIAACiUDhyQli1vPnRzkwYNZO9eKVtW6teXU6dERBo1krFjpX///97e9IG4u0toqAwbJmvWiIuLVK4sPXrIu+/KxImW6A0A/q1GDRG5mbBrD7U1PdAVgTsAALbUs+fNPzs6SkSEzUYCAABQyN1aU1cpKVJEWraU4sXlzTflmWcsFLXnVqqUDBggixaJiLzzjjRoIJs2WbpPALglcK9aVZyc5PRpSU8XV1cbjqvwsfgbCQAAAAAAgI3VrSvbt998eOOG7N0r9eqJiEydKrt2yZAhVkjb83B3lwkT5OWXxWSycs8AHj01a4rkmtJuby+VK4tScuyYDQdVKBG4AwAAAACAwq5/fzl9Wr77TjIz5epVeeUVaddOatcWESlaVAwGW42rb18pW1bmzrVV/wAeGXkC99u2QA8E7gAAAAAAoLBzcpK//5bNm6VxY+nQQVxd5ddfbT2mHD/8IElJth4EgEKvUiVxdpZz5+TatZwWAnfLoIY7AAAAAAB4BFSrJjNm2HoQOZo1k5Ilc/5cpYr8/bc89phNBwSg0LOzk2rV5MABOXpUGjUSuaWqO3TCDHcAAAAAAACrWrtW/vzz5sNt2+Svv2w3GgCPiDxT2rWHBO56I3AHAAAAAACwqrQ0SU6++fDqVUlNtd1oADwi8iTs2gx3SsrojcAdAAAAAAAAAAq7PDVkqlcXOzu5cEGMRhsOqvChhjsAAAAAAIC1/fOP9O+f8+eDB6VnT5uOBsCjoEEDadZMKlTIeejsLImJ4ulp0zEVQgTuAAAAAAAA1taokXz4Yc6fJ0+26VAAPCI6dpRt2+T8eRk6VDZvFqWkcWP59FOpWtXWIytUKCkDAAAAAABgbcWLS8OGOf+VLWvr0QB4dAwYIOXKSVyc7NwpTZpIz56SnW3rMRUqBO4AAAAAAAAA8AjYtEnOnpWPPxYXF3FykrfeEg8PWbLE1sMqVCgpAwAAAAAAYFXVqsn16zcf1q0raWm2Gw2AR8eBA9KwodjlmoTdpIkcOCC9e9tuTIUNgTsAAAAAAIBVde4snTvffPjEE7YbCoBHiqOjZGX9qyUrS5ycbDSawomSMgAAAAAAAADwCKhXT3bskMzMnIdKyebN0qiRTcdU2BC4AwAAAAAAAMAjoEkTqV9fhg+XEyfkzBl54w0pWVI6dbL1sAoVAncAAAAAAAAAeDTMnSuVKsnzz8ugQeLoKNHRYjDYekyFikEpZesxAAAAAAAAAADw0GOGOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHTgYOsB2IjRKJMny7p1kpYmjRvLK69IqVK2HhMAAAAAAAAA4CH2qAbuL70kx4/LuHHi4SG//CLt28u2beLqauthAQAAAAAAAAAeVgallK3HYHVnz0qdOnLs2M1Z7e3ayfDh8swzNh0WAAAAAAAAAOAh9kjOcN+/X+rU+VcNmXbtZO9eCQyUFSvu8n17WrVqt3nzXQ6oUKHCuHHjevfubWdHcXwUFCaTiV9IAAAAAAAAwAoeycA9M1McHf/V4ugo167JtWty5cpdvs+Qnn7lrgcYjcZ+/fq99957n3zyiS4jBfLJZDK1bt26Q4cOYWFhHh4eth4OAAAAAAAAUJg9kiVljhyRVq0kMVGcnXNa+vWTHj3k6aclK+su35dpMKTd9a9r/fr1ffv2NRqNf/31V2BgoI5DBh7MzJkzn3rqqcqVKx86dMjJycnWwwEAAAAAAAAKs0cycBeRTp2kaVP5/HOxt5cFC+Sll+TgQSlSJP8n/vrrr9944w0PD49NmzbVr18//ycEHpjJZHr88cfj4+OnTJkybNgwWw8HAAAAAAAAKOQe1cA9KUlefVW2bBGTSapUkc8/l2bN9Dr3888//+uvv9aqVWvLli3FixfX67TA/frzzz8HDx5cpUqVhIQEprcDAAAAAAAAlvaIBe5KyQsvyIAB0rOn5TpJT09v165dXFycn5/f4sWL7e3tLdcXcCdMbwcAAAAAAACszM7WA7Cuzz6TadMkKOjum6Pmk6ur65w5c0qXLr18+fKPPvrIch0Bd/HXX3/Fx8dXqVJlyJAhth4LAAAAAAAA8Eh4lAL3FSvk/ffFzk6mT5dixSzaVZUqVWbOnOng4PDxxx/Pnj3bon0BtzKZTJ9++qmIjB07lmIyAAAAAAAAgHU8MoH78ePy1FNiNMpHH0mvXlbosEuXLp9++qlSaujQoXv37rVCj4DZzJkztentQUFBth4LAAAAAAAA8Kh4NAL3a9ckIEAuXZI+feTdd63W7VtvvTVo0KCrV6/279//iiWL2MA6nnpK3n8/588pKdKli01Hc2dGo/GTTz4Rprfj/qWny+TJcvZszsMjR2TVKpsOCAAAAAAA4KHyCATu2kap8fFSp45ERorBYM3Op06d2rRp04SEhCFDhphMJmt2Dd3t2ycTJ8rWrSIi2dmya5etB3QHCxbsPnToWLVq1ajejvuVmiojRsioUTkPt2yRn3+26YAAAAAAAAAeKo9A4D5+vERFSZEiMneupUu338q8gWp0dLQ26RgPtXfflREjxGi09TjuzGiU995rUr586rhxfzk6Otp6OHj4lCsn587JokW2HgcAAAAAAMBDqLAH7itXypgxYjDIr79KvXo2GULVqlX//PNPe3v7Dz/8cBEh1kPOz08qVpTvv7f1OO5s5kw5cEAMBscnnmhh67HgoWQwyIQJEhIiaWm2HgoAAAAAAMDDxpaBe2Ji4vz58/39/b/44ouEhATdz3/s2LEPvv7aKCLvvy/9++t+/nvn6+v78ccfm0ymwYMH79u3T/fzHz58+KuvvurZs2d0dPTJkyd1P/8jLitL5s6VQ4dyHn7zjXz2mZw7Z9Mx3YHRKNo6ivffF4q34x6lp0tMjIwfL337ysWLIiItW4qvr3z0ka1HBgAAAAAA8LAxKKVs0vGhQ4e6det2+vTp7OxsraV69er+/v4BAQEdO3Z0cHDI5/nT0tLatm27a9euj4YPH/vjj2Jn47n8SqlBgwZFRUXVqVNn8+bNxfQobrN3795Zs2YtWrQoLi5Oa3F0dPT09Pz777+9vLzyf34cOiS//CK//irnz8srr8iaNfLnn1Kvnnz6qWzZIrGxkpRk6yH+2++/yzPPSJUqkpBA4I67OXNG4uJk/XqJjZVt2yQjI6d96lQZO1ZOn5ZLl+Txx2XECNm7V/7806ZjBQAAAAAAeHjYJnDfu3dvt27dzpw506xZs5EjR65evXrJkiWXL1/Wvlq2bNnevXv37t27S5curq6uD9bFU089NXPmzNq1a2/ZskWXdDv/rl271qZNm/j4+D59+sybN8/wQNu33rhxY/Xq1QsWLFi4cOHZs2e1xuLFi/fs2dPPz2/atGlr164tWbLk4sWLW7durevwHyHp6TJ7tvzyi/zzj2j/Pho2lFdflW++yQncMzLk8cclKUlWrpTQUImMFE9PWw9axGiUBg3kwAGZOlWef97Wo0EBk5WVtWvXyfXra2zcKBs2yKlTN79kby8NGoi3t7RpI02aiJ+fnD4tIjJ1qrz+uvToQeAOAAAAAABwr2wQuG/evLlXr16XLl3q3Lnz/PnzixQpIiJGo3Hjxo2LFi2aP3/+wYMHtSNdXV27dOkSEBDQu3dvz/tJNL/88su33nrLw8Nj06ZN9evXt8jTeCDHjx9v3rz5pUuXPvnkk/fee+/evzE5OXnlypULFy5csGBBamqq1li5cuXu3bv7+/v7+fk5OTmJSEZGxlNPPTVv3jwPD4+5c+d27drVIk+j8Nq3T6ZPl59/lkuXRERcXcXfX4KDxddXRGT4cHn3XalSRURk7Vr57js5c0Y2bZLKlWXuXGnWzJYjF5EZMyQoSGrUkAMHJN9LRFAYXLlyZevWrbGxsevXr9+wYYOLS8Xk5IPaS36RItKokfj4iLe3+PhIiRI533L+vDRrlhO4KyU+PlK5skyYIOnpUq2azZ4IAAAAAADAw8LagfuqVav69u177dq1vn37/vnnny4uLrces3fv3kWLFi1cuHDDhg3a8Ozs7Jo0aeLv7z9o0KD/LJayatWq7t27G43GqKioAQMGWORp5MOKFSt69OihlIqOju7Vq9fdDz5x4sTy5csXLly4fPnyrKwsrbFevXoBAQH+/v7e3t63TpM3Go0vvvjitGnTnJ2df//99yeeeMIiT6NwSU1NXbDg0rffVtu2LaeldWsZNkyefFI8PO72jRcvysCBsnatODvLjz/K0KFWGOztMb0dImI0Gvfu3bthw4aNGzdu3LjxkHnnARGDweDl5dWlS1zjxq5t2kjdunLbNTZGoyQmSuXKOQ+vXJGjR2XgQFFKYmKkXDmrPA0AAAAAAICHllUD9z///PPZZ5/NysoaMmTIL7/88p+F2i9cuLBs2bJZs2atWLEi4381hrVS74GBgW3btrW7pTL7iRMnWrRocfHixffff//DDz+0yNPIt08++WTs2LElSpTYsmVLzZo1bz3AXJx9+/bt2g/I3t6+devWAQEB/fv3r1Wr1t3Pr5R64403JkyYYG9vP2nSpBdeeMEiT6NQiIuLmzx58h9//FG+fPeEhFnFi8vAgfLSS9K48b2eITtbxoyR8eNFRIKD5fvvxdHRYsO9M6a3P+KUUn/88cf//d//mVfAiIiHh0eLFi3atm3bpk2bNm3alCxZ8gHOnJYmXbvKhg3SoIGsWycPdA4AAAAAAIBHhfUC94kTJ44aNcpkMoWEhEREROSZmj1//vxSpUq1bdvW3t7+1u9NS0tbtWrVrFmzFi5cmJKSojU+9thj3bt3DwgI6Nmzp7u7u4jcuHHDx8cnLi6uW7duS5Ysue2pCgKl1JNPPjlr1iwvL6/NmzcXLVpU/ldUZ9asWXPnzj2tFXQQcXNz69y5c2BgYO/evYsXL35fvYwfP3706NEGg+Hzzz9/8803dX8WD7WkpKTffvvt559/3rdvn4gYDIZOnTqNGLGwd283Z+cHOeFvv8nw4ZKeLj4+MmuWtUu6G41Sv74cPCjTpslzz1m1axQQ33zzzQ8//HDo0KFy5cr5+Ph4e3s3a9asZcuWTnfdPPfiRdm4UTZulIQEmTPnjodduiTt28u+fdK6taxcKe7u+o8fAAAAAACgcLBS4G4Ofz/77LPQ0NBbD6hWrdrx48dLlizZpUsXf3//fv36abXd8zCXep83b15CQoLWqKXSAQEBq1ev/uuvv2rVqrVly5b7jaet7Nq1a61bt967d6+/v39QUNCiRYuio6OvXLmifbVMmTJ+fn6BgYHdunVzvucAeN68eQsWLJgyZYrj/6ZY//DDDyEhISaTKTQ0NDw83CLP5KFiMpk2bNjw22+//fbbb+np6SLi6en57LPPvvjiizVq1Mjnybdvl3795ORJqVBB5syRVq30GPG9OXNG+vWTS5eY3v7o6tSp09q1a3/66afhw4ff5TCTSe3da9iw4WbObnbypFSqdMdvTEwUHx85flx8fWXRInmw+1IAAAAAAACFnsUDd6XU22+//eWXX9rb20+cOPHFF1+89Zj09PT3339/wYIF5orDrq6uvr6+vXv37t27d5kyZW575ltLvbu5uRkMhs2bNxeojVLv5ODBgy1btszMzLxx44bWcvfi7HeXmpparVq1y5cv9+7d+6+//jIXx//999+ff/75rKysl1566fvvv7+1CM8j4vr16xMmTJg6deqxY8dExN7evmfPnsOGDevZs+d/lja6E6UkPFxeeknMN3fOnZPAQImNFRcXmThRPffc/f0Q70tMjBw8KMOG5Tz87Tdp0ECaNLFchyi4Ll265OnpaTAYLly4cOu9xmvXru3cuXP9+vWxsbGbNm3NyDh79WrOb6a7u7RoId7e0qaNdO4srq536+XwYfHxkfPn5amnZMYMeVRfSwAAAAAAAO7GsoG70WgcPnz4L7/84uTk9Ntvvw0cOPDuxx89enThwoWzZs3auHGjyWSSXNulBgQENGvW7LbfdfLkyejo6J9++unAgQN+fn6LFy/W/5lYRr9+/aKjo2vXrv3SSy/17t27atWq+Tnbtm3bevTokZSU1KFDh+joaK1SjYgsWrRo4MCB6enpTz31VGRkpKNNSozb2qxZs4KDg1NSUipWrPj000+/9NJLVapUyec5x4+X0aOlVi2ZN0/Mt3jMJd07dFhUp87C77777u41PR7Y2LHy6aeyYIH4+4uItG0rX3wh3t6W6AoFXWRk5HPPPde9e/elS5eaG3///feYmJgNGzbs3btXeznV+PmdLVXKs00badtWGjW6vyURu3ZJx46SkiL/93/yww86PgMAAAAAAIBCwoKBe0ZGxjPPPDN79mx3d/c5c+b4+fnd+/cmJSUtWbJk0aJFS5cuvXbtmtaobZcaEBDQsWPHW2clb9y4sW3btvXr14+Pj9ftOVhY06ZNd+zYsXbt2g4dOuhywv3793fr1u306dPNmjVbunTpY489prWvW7eud+/eqampvXr1ioqKcnNz06W7h4XRaPTw8MjIyFiwYEGvXr30muZ/+rT07y9bt4qHh0ybJgMG3PzS77+fGzas+o0b6e3atZs1a1bZsmV16TG3sWPl2DHZtEl27xY3NwL3R1r//v3nzZs3ceLEESNGmBubN28eFxcnIg4ODo8//rhW1b19+/b5vLG3dq306CE3bsgHH0hYWD4HDgAAAAAAUNhYKnC/fv16v379VqxYUaJEiUWLFrVt2/aBz7Ns2bLo6OjFixdfunRJayxTpkxAQEDv3r27detmrp2SkZFRvHjxjIyMpKSkkiVL6vM0LOn69evFixc3GAwpKSk6JuAnTpzo2rXroUOHvLy8li9fXrlyZa09Li6uR48eFy9ebNWq1ZIlSx6KvyK9HDlypGbNmpUqVTp58qS+Z75xQ/7v/2TaNDEY5O23Zdw4Me/Uu3379v79+584caJChQqzZ89u3bq1jv2mp8unn4q7u5w6JUWKSHg4gfujKz09/bHHHktLSzt58mTFihXN7b/88ktKSkqbNm2aNWt271tB3Iv582XAAHFwyPjxx1VDh/bU8cwAAAAAAAAPO4tU4b18+bKvr++KFSs8PT3Xrl37wGm7iLi7uz/xxBORkZHnz5+PiYkJDQ318vK6cOHCL7/80qdPn6NHj5qPdHZ2btasmVJq8+bNejwJi9u0aVN2dnbjxo31nW9epUqVmJiYxo0bHzhwoF27dgcPHtTamzVr9s8//1SuXHnz5s0dOnQ4c+aMjp0WcNr+unXq1NH9zC4uMnWqTJokDg4yfrz4+0tycs6XmjZtum3bts6dOycmJnbs2PHnn39+4F6SkyU2ViZPlldeka5dpXx56fm/kPOTT+S332Tv3nw/Ezy0VqxYcf369ZYtW+ZO20XkhRdeeOONN9q2batv2i4iffvKlCnG+vX9X3wx4I8//tD35AAAAAAAAA81/QP3s2fPduzYcdOmTdWqVYuJiWnUqJEup7W3t/fx8QkPD9+/f/+ePXvGjRvXv3//evXq5T7G29tbRDZs2KBLj5a2fv16+d+YRcRoNJp3T82nsmXLrlmzxsfH5+TJk23btjXfgfDy8oqJialTp058fLyPj8+RI0d06a7g0+46WCJw1wQHy/Ll8thjsmKFDBkSYS5qVLp06eXLl4eGhmZkZLz44ovDhw/PzMz8z7OdPXt27dr0b7+VESOkfXspVUpKlpR27WT4cPn2W1m5Us6elVOncg4uUULGjZPXX7fQM8NDYMGCBSLSp08fa3b6/PP2zz3X22QyPffcc0uWLLFm1wAAAAAAAAWZzoH70aNH27Vrt2fPnvr168fExNSsWVPf82saNGjw7rvvzpkzJ0+7NpVeC7ILPu3GgHn6/+bNm4sVKzZkyBBdTl68ePHly5f36NFDW22wcuVKrb1y5cobNmxo1arVsWPHtJ+ULt0VcFrgXrt2be3hkSNHXn/99aioKB276NRJtm6VQYP+XrTotTZt2syePVtrd3BwCA8PnzFjhqur6+TJkzt37nz27Nnc35icnBwbGzt58uRXXnmla9eunp6e5cuXf/fdi6+8IpMmSUyMXL4sxYpJs2YSFCTh4RIdLUeOyKFDN8/w7LOSlia7d+v4bPDQMBqNCxcuFJG+fftaueuXX345NDQ0KytrwIABMTExVu4dAAAAAACgYMq79Wh+xMfH+/n5nTlzpmXLlkuWLClVqpSOJ78X3t7eBoNhy5Yt2dnZt+6qWqCYTKZNmzaJSJs2bbSW9evXZ2Zm6lhexs3NLTo6etiwYZGRkf7+/n/88Uf//v1FpGTJkitXruzXr9/KlSs7dOiwePFi8xgKqzwlZbZv3z5hwoQ+ffoMHDhQx16qVJGff27v5PT8tGnTBg4c+Pbbb48bN87e3l5Enn766dq1az/xxBPr169v1qzZk08+ee3atb179+7bt+/KlSt5zlOiRAkvr6MNG1auV0+0/ypUuFu/BoNMnChNm+r4VPDQWL9+/cWLF2vWrFm3bl3r9/7ZZ59dvnx5ypQpAQEBa9asadKkifXHAAAAAAAAUKDolkrHxMQEBARcuXKlc+fO8+fPL1KkiF5nvnelS5euWbPmoUOHdu3a1axZM+sP4N7t3bv3ypUrVapUMZddzjPhXRcODg7Tpk0rUaJERETEwIEDJ0+ePHToUBHx8PBYtGjR4MGD586d27Vr17lz53br1k3HfguaPCVlLFdhxsXFZerUqa1btx41atT48eN37tz5xx9/aPvTtmjRYvv27YGBgRs3boyIiDB/S/HixWvUqFGvXr369etr/69WrZrBYPjPvt59V8xHNWgg//wj69ezaeojR6sno91Lsz6DwTBx4sSUlJRZs2Z17949JibGvI4EAAAAAADg0aRPSZnFixf7+flduXKlb9++S5YssUnartFKohf8qjJ5CriLiDbh3VvvxNRgMEyYMCE8PNxoNA4bNuzrr7/W2p2dnaOiooYOHXr9+vWAgABzCZTC5/r162fOnHF2dq5UqZLWYrk9VDXBwcGrVq0qW7bs8uXLW7Zsaa7bU7p06a+//jojI6NkyZLff//9qlWrzp8/n5ycvG3btunTp4eGhgYEBFSvXv1e0nYRcXUVF5ecP1+5Il26yNtvy65dFnpOyHH69Om5c+faehQ3afVkrFzAPTd7e/sZM2b4+flduHChR48eeSomAQAAAAAAPGp0CNz37dvXr1+/9PT0ESNGzJkzx9nZOf/nfGBadZSNGzfacAz3QhuhuZbLoUOHzp07V6ZMmRo1aliiu9DQ0O+++85gMLzxxhujR4/WGu3t7X/++eeQkJDMzMxBgwbtKqRh7cGDB5VStWrV0qq7yC0l3S2hXbt227Zta9my5cmTJy9fvmxu1zaqbdeu3ciRIzt37lymTBlduitWTIYPF5NJ3n9fl/Ph9lJSUnx8fJ588sno6Ghbj0VEZM+ePYcOHSpTpkzr1q1tOAwnJ6e5c+e2bdv26NGj3bp1y/0LDwAAAAAA8KjRIXDftm2bp6dn//79J06caGen8y6s90ubIV7wd/DLM8Ndqyej+/T23EaNGvXLL784ODiMHz9+7NixWqPBYPjmm2+eeuopT0/PuLg4y/VuQ7cWkLH0DHdNxYoV161bt3jx4g4dOuQZjCWy/nfflSJFJDpaNm3S/dzIUbx48SFDhmRnZz/55JPr1q2z9XBy6sn06dPH5i+8bm5uCxYs8PLyio+P10YFAAAAAADwaNIhpklMTDx16lS5cuXyf6r8q1evXsmSJbUh2Xosd3ThwoUjR464u7s3bNhQa7FEAfdbPffcc3Pnzi1TpkyeAhSenp4F/G8sP/LE6xcuXEhJSSlRosRjjz1m6a5dXFy6du16l8HoqHRpCQkRESa5W9ZHH3306quv3rhxo3fv3ja/R2UO3G07DE3p0qXDwsIMBsPKlSttPRYAAAAAAACb0SFw12JiLTI2S09PT05Ozv/J75fBYGjVqtWt4ylQtOntrVu3dnBwyN1i6cBdRAICAo4cOdK8efPcjdaJ+20lz6Ryy+2Yeu+DsVDvb74pJUvKihWyZo0lTo8cX3311aBBg1JTU3v06HHgwAFbDSMxMTEuLs7Dw6NLly42GcDBgwc/+OAD8xYFIrJ+/XqllIXqYgEAAAAAADwUdAjcW7Zs6eTktHv37tTUVK3l+++/L168+BdffJH/kz+A294AKFDyFJBJSUnZv3+/s7Nz06ZNrdC7h4dH7ofp6ek7duywt7dv2bKlFXq3vjwZtxUKuN/FoUOHLNd78eLy+usiIv+rGASLsLOzmz59eo8ePS5evNitW7eTJ0/aZBjz589XSnXv3t3FvHmudf31118ffvjhDz/8oD1UShWoGfcAAAAAAAA2oUPg7urq2rhxY6PRuGXLFq2lSpUqmZmZtoq8tSBbmzNeMOWZz75x40aTydS8eXObBGdbt27NzMxs2LBhsWLFrN+7FeTJuK1TwP22Lly4cPny5eLFi+u1V+qtXn1VypSR9etl6VIL9QAREUdHx9mzZ/v4+Jw6dapnz56XLl2y/hhsnm7nGcD27dtPnTpVoUIF69w4BAAAAAAAKJj02Wovz6Tytm3bGgyGLVu2ZGZm6nL++9KyZUsHB4ddu3Zdu3bN+r3/p4yMjO3bt9vZ2ZlnlNu2okvhridz5syZq1evPvbYYyVLltRabFhSxgpdu7tLaKiIyNixopTl+oG4ubktWrSocePGe/fu7dmzp5Vfba5cubJu3TpHR8devXpZs1+zxMTEHTt2eHh4dOrUSWvR8vd+/foZDAabDAkAAAAAAKAgsEjgXqpUqdq1a6enp+/atUuX898Xd3f3xx9/PDs7e+vWrdbv/T9t27YtIyOjfv36JUqU0FoI3C3n1ozbhiVlrDO5/qWXpEIFiYuTefNI3C2rWLFiixcvrlat2pYtW/r06ZORkWG1rhctWpSZmdm+fXvzy4iVzZ07VynVs2dP87qc+fPnC/VkAAAAAADAI0+fwF2r4rJx40aj0Zi7xVZ1XQpyGfc8AXd2drZWiqd169bWH4xSatOmTVLYA3dzvJ6dnX3s2DE7O7uaNWvafDAW4uoqH3yQ2bHjys8+62z+9wgLKV++/IoVKzw9PVevXj1o0CCr/YUXtHoyx48f37NnT7Fixdq3b2+rIQEAAAAAABQE+gTu5cuXr1KlSmpq6r59+7QW20beD1HgrpW+qVWrlqenp/UHk5CQcPHiRU9Pz2rVqlm/dyvIM6n82LFjmZmZlStXdnV1tf5grFbN5tlnDSdPDt+2be3MmTMt3Rdq1Kjx999/lyhRYv78+SNHjrRCjxkZGcuXLxeRgIAAK3R3q5SUlH/++cfR0bFHjx5ay9y5c0XE39/fycnJJkMCAAAAAAAoIPQJ3OWWKe1aoGyrGe7t2rUTkQ0bNphMJpsM4C60GeXaX5fYuqKL9gPy8fGxSe9WkCfjtmEBd7Hifq2Ojo5jx44VkQ8++CArK8vS3aFhw4ZLlixxd3efNGnSmDFjLN3dqlWrUlNTmzZtWrVqVUv3dYcBxLu4uHbo0MFc0MbmM+4BAAAAAAAKCN0C9zyTyr28vEqXLn3mzJkTJ07o1cW9q1ChQqVKlVJSUvbv32/93u/i0KFD586dK1OmTI0aNbQWCrhbVJ4qLjYs4J6dnX306FGrVbMJCgqqW7fu4cOHf/31Vyt0h9atW8+cOdPR0XHcuHFfffWVRfuyebr9118+GRkXBw2apj28dOnShg0bnJ2d/fz8bDUkAAAAAACAAsJSgbvBYNCKklPGPTdtPObp7WLryLtwB+6ZmZknTpywt7evXr261mK1Oea3snI1G3t7+w8++EBEPvzww/T0dCv0CH9//2nTptnZ2b311ltTp061UC/Z2dla4N63b9/c7adPn7bONtEZGbJsmWRlOXXrVlFrWb7c6OPzVmDgC0WLFrXCAAAAAAAAAAoy3QL3Ro0aFS1a9MiRI+fOndNa2rRpI5Rx/7c8AXdiYuLJkyeLFy9er1496w8mOTn54MGDLi4uTZo0sX7vVnD48OHs7Oxq1ao5OztrLTYsKWP9yfWBgYGNGzdOTEycMmWK1Tp9xD399NPffvutUio4OHjOnDl6nfbatWuxsbHjx48PCAgoU6aMyWQqVqyYeZWMiCQmJvr4+HTv3j0+Pl6vTu9k5Uq5elWaNZNKlXJaoqLKrF37abt2P1i6awAAAAAAgIJPt8Dd3t6+RYsWIrJx40atRZvHTeCeW57AvWTJkosWLZowYYKdnW4/iPsajMlkatGiRWHd5/DW+ewXLlwQG5WUsX7WbzAYPvroIxH55JNPrl27FhER8fPPP//zzz/aXwIsZOTIkWPHjjUajc8888y6dese+DwJCQmRkZEjRoxo1KhRsWLF2rVrN3r06EWLFiUnJ2dmZl65cuWJJ57IzMzUDvb09GzRosXly5f9/PyOHTum01O5vQULRETM9WzS02XFCrGzExtt4AoAAAAAAFCwOOh4Lm9v71WrVm3YsKFfv34i0rJlSycnp927d1+9erVIkSI6dnSrZcuW7d69++233za3NG7c2MPD49ChQxcuXChTpoxFe79HKSkp+/btc3Z2btq0qdbi6uraq1cvW43n1vo2hcytGfe+ffsuXrxYunRp6w/GJtVsAgIC2rRps3Hjxh9++OHTTz9NTU3V2osXL16jRo3q1atXr169Xr169evXr1OnjoeHhzXHVoh99NFHqamp33zzTe/evdesWWP+9353WVlZu3fvjo2NXb9+/bp163LfF3FwcGjSpIm3t3ezZs3at29vNBp9fHyWL18+aNCgWbNm2dvb29vb//7776mpqX///XfXrl1jY2M9PT0t8dRMJlm4UCRX4L58uaSlSZs2Uq6cJToEAAAAAAB4yOgZuGsTt81F211dXR9//PGtW7du2bKlS5cuOnaUx19//TVkyJDMzMwWLVp06tRJa3RwcKhYsWJCQsJrr70WERHx2GOPWW4A9+LSpUtvvPGGiFSsWNHFxcW2g9FoP6nCWsBd7lDFxVa/Cbbar/Wjjz7q2rVreHh4SEjIqVOnDhw4kJCQkJycHBcXFxcXZz7MYDCc6NGjUlaW1K4tXl5Sp47Uri2VK4vBYOUBFw5ff/31+fPnZ86c2b1793/++cfLy+u2h505cyYuLm79+vWxsbHbtm3LyMgwf8nT07N58+bNmjXz8fHx9vbOU/r/77//7tChw7x580aNGjVx4kQRcXJymj17dufOnbdt29atW7d169aVKFFC9+e1aZOcOydVq0rDhjkteSa8AwAAAAAAPOL0DNzbtGljb2+/ffv2GzduaJmyt7f31q1b169fb7nA/aeffho5cqTJZAoJCenYsaPWqJR69913Dxw44O7u/scff8yfPz84OPjNN9+sUKGChYZxF2fPnv3qq68mTZp07do1d3f3I0eOvP7661999ZXBplFmVlbW1q1bzXvbFkrapPJSpUrZeiAitisf7+vr26RJk927dzdr1uzjjz/WGpOTk48ePXr06NG9e/fu27fv6NGj+/btK3vggBw9KitW3PxmV1epXTvnvzp1pF07qVrVyuN/SNnZ2U2fPv3KlStLly7t1q1bbGxs5cqVRSQ7O/vgwYNawh4bG5u7/Iu9vX29evXMCXu9evXu8hLRsGHDxYsXd+3a9aeffipdurT2ky1SpMjSpUvbt2+/Z8+eXr16rVixwt3dXd/npcXr/fvnPDQaZdEiEQJ3AAAAAACA/zEopXQ8XaNGjfbs2RMbG6sVKpk1a9bAgQP9/PyWLVumYy9m48ePf+edd0Tk/fff/+CDD7RGo9H4f//3f5MnT3ZwcBg7dmx8fPzs2bOVUk5OTk8++eSYMWOsNsv45MmTX3311ZQpU9LT00XE29vbz8/v008/vXHjxjPPPDNt2jQHBz1veNyXrVu3tmzZsk6dOgcOHLDVGCwtNjbWz8+vSJEis2bNateunQ1HcvXq1aJFi7q6ul67ds3K9fq1vwRHR8ft27dXr179TodlZ2fbHz9uOHhQDh6UhARJSJCDB+XMmX8d9OOPMmyY/PijxMZKWpo0bSqvvioF435GwZSWlubn5xcbG1u9evVevXrt2LEjLi5OezXQlCxZsnXr1m3atGnbtm3Lli3vt6rPwoUL+/fvn52d/eWXX2oLaETk9OnTPj4+J06c8Pf3nzt3rqOjo47P6PhxmTdPOnYUbaPldeukY0epVUsSEnTsBAAAAAAA4GGmdDVixAgRGT9+vPYwMTFRRIoWLZqdna1vRyaT6a233hIRe3v7SZMmmdszMjIGDhwoIs7OznPnztUad+/eHRQUZG9vLyJ2dnaBgYF79+7Vdzx5HDlyJCQkxNnZWevR399/y5Yt2pdWr16tVbQPCAhIS0uz6DDuYsKECSIydOhQWw3ACi5dutS1a1cRcXBwCA8Pt+FItm7dKiKPP/64lfvdsGGD9svWr1+/w4cPG43G+/v+1FS1dav6/Xf1/vvqySfVli1qyBDVs6eKi1MHD6rXX1f166v0dMuMvZBISUlp3Lhx1VwrA6pXrx4UFBQREbFt27b7/oncYsaMGXZ2dgaD4ZdffjE3JiQklC1bVkSefvrp/HdxF6+9pkRUaKjlegAAAAAAAHjI6By4R0ZGikifPn3MLVWqVBGR3bt369hLdnb2sGHDRMTJyemvv/4yt1+/fr179+4iUqxYsX/++SfPd90lBNfRnj17goKCtKnrdwr3t2zZou3b2aFDhytXrug+hnsRGBgoIlOmTLFJ71aTnZ0dGhqqleZ4+umnrXOH49af+IwZM0Rk4MCBVujdLC4uTqviPXDgwJ49e2r/XqpXr+7v7x8aGjpp0qQVK1acPXv2Ps544oQqVkylpNxsadNG/fmn7iMvZM6ePbtr164xY8YsXrz48uXLup//+++/1249zpkzx9y4ZcsW7V7LyJEjde/RrHp1JaI2bLBcDwAAAAAAAA8ZnQP3w4cPi0jp0qVNJpPWMnjwYBGZOHGiXl1kZGQMGDBARNzc3JYuXWpuT05O1urYlC1bdvv27Xf69uPHj4eEhJh3IPT29l61apUuA9uxY0dgYKCW7To5OQUFBR08ePBOB+/du7dixYoi0qxZswsXLugygPui9b5v3z7rd219M2fO1IpZN2nS5Pjx4xbqJS0tLSoqytfXV0RiY2Nzf2ns2LEiMmbMGAt1favt27eXLFlSRAIDA7Oysp599lntJ36r0qVLe3t7r3vvPTV+vJo3T+3bpzIybn/SpUtV27b/annzTWXFJ4U7ee+990TE1dV13bp15sbVq1dre2l8/PHHluh01y4losqWVZacQw8AAAAAAPCQ0TlwV0p5enqKSEJCgvZw06ZNS5YsSck9KzYfrl271q1bNxEpXrx47kzz7Nmzjz/+uIhUqVLlLjG32fnz58PCwooVK2aO3aOjox94VDExMf7+/tqpnJ2dg4ODT5069Z/fdezYsVq1aomIl5fXyZMnH7j3u7t69eqsWbPOnz+fu/H48eMiUqJECYuWmyhQdu3apVUwL126tF63WMw2btw4bNgwcwHuEiVKzJgxI/cBTz75pIj89ttv+vZ7Jzt27NDS9ieeeCIrK8vcfuPGjfj4+KioqPDw8ODgYG9v76JFi2pj3teunRK5+V+5csrXVwUHq4gItWKFOnJEmUwqOlq1a/evnt55R739tnWeFO7ulVde0ep3xcXFmRvnz5+vrbaJiIjQvcdvv1Ui6sUXdT8xAAAAAADAQ0z/wL1fv34i8uuvv+p+5suXL7dp00ZEPD09d+7caW43J9d169a9r+Q6KSkpLCxMK7uhTX+Oiooyz82/FzExMV26dNG+3cPDIyQk5MyZM/f+7efOnWvcuPG93ye4dxcuXIiMjPT399dK6OQuc6+U+uOPP0SkV69eOvZY8F26dEm7W6NXSffk5ORJkyZpP0FNs2bNJk2adO3atTxHasdYooTRrXbu3FmqVCkR6d+/f2Zm5n8ef/r06dWrV1/69Vf1+uuqZ09Vs6ZycPhX+K79FxSk9u9XZcr8a/57z55q6lQLPhncM6PRqN3Xeeyxxw4cOGBuj4yMNBgMdnZ2f+pU/GfXLpWUdPPPS5boclYAAAAAAIBCQv/A/YsvvhCR4OBgfU975syZhg0bikjVqlXN0+eVUnv37q1QoYKING/e/MFqs6SmpkZERJQrV07LTBs2bBgZGXn3XV5NJlN0dHTLli21bylVqlRYWNilS5ceoHdzJZwyZcrcpRLOPdqzZ8+4ceNatmypVbbRKjv7+PiY94/VjBo1SkTGjRuXz+4eOrlLug8ePPj69esPdp5t27YFBwe7ublpf8menp4hISF79uy59cirV69OmTLF0dFRRHJXQLKQXbt2adsD9OzZ88aNGw94lsxMdeSIWrFCRUSo4GDl66uqV1dhYUop1a6deuMNpc2a/+svVaGCuuXuAmwlMzOzR48eIlKpUqXctx4/++wzEXF0dFyiRzpeoYJq315p9yX371e1a+f/lAAAAAAAAIWH/oH7hg0bRKR+/fo6nvPo0aM1atQQkXr16p0+fdrcbt59tGPHjvncffTGjRuTJk0y17muXr16RETErZGl0WiMioqqV6+edliZMmXCwsLyWTDn+vXrWkzm4eGxcuXK+/327OzsmJiY0NBQLy8v81RrV1dXX1/fiIiI2864b9KkiYisXbs2P8N+eC1YsEArpdKkSZNjx47d+zeePXs2PDy8Zs2a2l+ynZ2dr69vVFTUbSeSa6G8tnGlnZ2duXjR6tWrdXsm/7Znj+rU6ayra8mAgICMO9Vhf2DaLaiLF9Uzz6jatVWNGsrPT+3apXMvyJ/r16/7+Phor8C5bwG+9dZbIuLm5hYTE5PPLipUUK1bq+nTlSJwBwAAAAAAuIX+gfuNGzdcXFwMBsOsWbMefI5tLvHx8eXLlxeRFi1aXLx40dy+atUqLc3s3bt3enp6/jtSSmVkZERGRtauXVuLR6tUqRIREZGWlnbrlypXrmz+ki79auUgnJ2d88xGv5O0tLTo6Ojg4GCtaL55rn1QUFBUVFRqauqdOoqOjra3t3d0dHzg+d2FwP79+7X7E6VLl/7PmxxGo3HFihWBgYHaRHURqVChQmho6G3D+suXL3/zzTfaagwRMRgM7du3nzx58ieffFK8eHHLxe5796qyZZWIGjYsUZd/d3hIpaSkaBtatGzZ8urVq1qjyWR6/vnnReTzzz/P5/krVFDr16vy5dXFiwTuAAAAAAAAeekfuCulvvvuu2rVqmkTKv39/SdNmpRn0857t3HjRi2m7NatW+7S2PPmzXNxcRGRZ555Jve2kLrIysqKjIysW7euFo+WL19+0KBB5snvtWrVmjp16r1Ux74vRqNx+PDhWhGYqXeui33x4sXIyMjAwEDzFp3afPyQkJAVK1bc6a/i2rVr0dHRQUFB2l9mpUqVLLGJ4sPlypUrvXv3/s+S7suXL9dqFomIk5PTgAEDli1bdtvNZvPUmSlRokRwcPDu3bvNB6SmpoaHh1sidj94UJUvr0RUt25Kp3tPeIglJiZqr8BdunQx333Jzs5euHDhg50wI0Nt3Ki+/lrFx6sKFdS5c2r0aBUcTOAOAAAAAACQl0UCd6PRGBYWlnszSQcHhy5dunzzzTfHjx+/r1OdPn26atWqffv2zT2H/ddff3VwcBCRl19++bbRpy5SUlJCQ0O1Ke0NGjQQkapVq44aNSr3LHvdhYeHa9Oiv/7669seMGjQIHM9k2bNmoWFhW3btu1OZzt58uT333/ftWtX89RsEWnYsOGYMWPuXqT+EWEymcLDw7V6L0899dRtp/wfOXLEYDDUrl07PDz8tveN7qvOjLpd7L5mzZr8PIuEhJy0vWtXpdOKCzz0Dh8+rK196dev34P9Yz93TkVHq7Aw5eurXF1zts4ND88J3K9dU1WrqhkzCNwBAAAAAAD+xaCUEos5ceLE8uXLFy5c+Pfff2dmZmqN9erVCwgI8Pf39/b2Nu/teReJiYmenp729vbaw2+++ea1115TSoWGhmrxtIXs37+/Xr16Xl5eX375ZalSpc6fP//BBx/s3Llz+/btWg10C/n2229fffXVOz3BOXPm/Prrr3369AkICChbtuxtz7B3795FixYtXLhww4YN2s/X3t6+devWAQEBffv2rVOnjuUG/zBauHBhUFDQlStXGjduPHfuXG1qcG67du3SanTkZjKZVq9ePXny5Pnz52dlZYlIhQoVnnnmmeHDh996hlslJydPmDDhm2++SU1NFZERI9YNGdK+TZv7Hvzhw9KxoyQmSrt2snSpuLvf9xlQWO3evbtjx47JyckjRoyYOHHifx5vNJr27LHbsEE2bpQNG+To0ZtfsrMTLy9p00aeekqefVbi4qRsWZk3T157TZyd5eBBCz4LAAAAAACAh4tlA3ez5OTklStXLly4MDo6+sqVK1pjmTJl/Pz8AgMD/fz8nJyc/vMkSql33nln/Pjx2gTwV1991aJjNgfu+/fv11qaNGlihcBdRH777behQ4dmZ2ePHDny22+/NW+5eRdGo3Hjxo2LFi2aN29eQkKC1ujm5ta5c+eAgIA+ffrcKZ2HiBw8eLBv374HDhwoVarUzJkzfX1973Lw6dOnf//9959++un48eMiYm9v36lTp+Dg4H79+mkLL+7d1atXf/zxxx9+mHH16u6UFIO3t3zyiXTseK/ffuKEdOwox4+Lj48sXSq5igwBIiIbN27s2rXr9evXx44d+9FHH916wNWrVzdv3hwbGxsXF7dhw0alLiYn59wE9fCQxx8XHx/x9pa2baVUqZxvqVgxJ3AXkYAASUggcAcAAAAAALjJSoG7WXZ29qZNm2bNmjV37tzTp09rje7u7p06dQoMDOzdu7e51EYeRqPxpZdemjJlipOTU2RkpLmyiuXYMHAXkejo6CeffPLGjRtPP/30tGnTcteEyS0tLW3VqlWLFi2aP3/+hQsXtMbHHnuse/fuAQEBPXv2dGfO871JTU0dMmTIggUL7O3tx40bFxoamueAzMzMBQsWTJ8+fenSpUajUURq1649dOjQ559/vkyZMvnp+vLl7AkTHL79VlJTRUS6d5ewMGnd+j++6+RJ6dhRjh0Tb29Ztoy0Hbe3cOHC/v37Z2dnf/XVV6+//rpS6sCBAxs3btywYcPGjRv379+f+y2gV6/TJUtWaN1avL2lQQP537Kif1m0SHx9xcVFROTMGdm9W7p3t9aTAQAAAAAAKPCsHbjntnfv3lmzZi1atGj79u25K58EBgb279+/UqVK5iMzMzODgoKioqLc3Nxmz57do0cPKwzPtoG7iKxdu7ZPnz6pqan+/v5RUVGurq7mL128eHHp0qWzZs1asWJFRkaG1li9enV/f//AwMC2bdvey6R45KGU+vzzz999912TyTRo0KBffvlF2wH14MGD06ZNmzZtmnZLw8XFJSAgIDg4uEuXLvdSE+keXb4s334r33wjKSkiIt7eMm6cdOhw+4MvXpSWLZnbjnsyffr05557TkSaNm167Nixy5cvm7/k4uLSvHnzNm3atG3btk2bNqyDAQAAAAAAyCdbBu5mx48f//vvvxcuXLh8+XKtHLbkKvXeuHHjAQMGLF++vHjx4gsXLvTx8bHOqGweuIvItm3bevTokZSU1KFDh+jo6KSkpIULF86aNctcnN3Ozq5Jkyb+/v5PPvlk3bp1rTOqwm3RokXPPPPMlStXGjZsGBQUtGDBgvXr12tfatKkybBhwwYPHnyndRj5d6fY/ckn5fnnc6YS790rUVGSnCzbtsny5VKkiIXGgsLj+++/nzp16o4dO0SkXLlyzZo18/Hx8fb2bt68uYs2WR0AAAAAAAB6KBCBu9mlS5cWL14cHR29fPnya9euaY1FixZNTU319PRctmzZrXtXWk5BCNxFZO/evX5+fomJicWKFTOXv3d3d+/WrVvv3r39/f1Lly5ttcE8Ivbu3duvX7/Dhw8bDAaTyVS0aNFBgwYFBQVZ7WbP5cvy9dfy7bdy9aqIyLvvSni41KghcXFSpIisWSMffSSrV0t6uri5WWdEeOhlZWUtXLiwRYsWuRcPAQAAAAAAQF8FK3A3u3HjRmxs7MKFC+fMmVOzZk07O7vJkyfXrFnTmmMoIIG7iBw/fnzo0KH29vY7d+7s0aNHQEBAjx49PCgjYkkpKSkLFiw4cOCAl5dXYGCgmy2CbfNs9/nzxddX3nxTMjLk669zAvc1a6w/IgAAAAAAAAB3U0ADdzOTyXT58mWbTOIuOIG75tKlSyVKlKA4+6PmyhUpVkwcHeXyZWnQQObPl5QUAncAAAAAAACgICro6a2dnR0lUzSlSpUibX8EFSuW84ciRWT8ePm//5OCfY8MAAAAAAAAeHQR4AIPjUGDxMNDfv/d1uMAAAAAAAAAcDsOth5AweVmZ/e0l1fpXBsMdq1Ysf6NG+5MM4ftfP+9NGkirVrZehwAAAAAAAAAbkHgfkdVTKYZBw7kbvn89Gk5cEBMJlsNCY+satVy/lCnjrz7ruzbZ9PRAAAAAAAAALgdAnegoMvIkE8+uflw5EiJjbXdaAAAAAAAAADcAdVRgILuyhV58cWbD0+ckLfest1oAAAAAAAAANwBgTsAAAAAAAAAADqgpAzwEDCZ5MiRnD+fPm3ToQAAAAAAAAC4AwJ34CFw44aMHJnz56tXbToUAAAAAAAAAHdA4A48BNzcZNmynD/v3CmDBtl0NAAAAAAAAABuhxruAAAAAAAAAADogMAdAAAAAAAAAAAdELgDBV3JkrJq1c2HtWvLX3/ZbjQAAAAAAAAA7oDA/c4cHKRkSSle/GZL8eJSsqQ4UPgeVuXgIM2b33zo5iaPP2670QAAAAAAAAC4A4NSytZjKNiysmTzZjl2TKpWlVatxMnJ1gMCAAAAAAAAABREBO53dfGi+PpK5crSvLnExcnRo7JmjTz2mK2HBQAAAAAAAAAocAjc72rECDEYZOLEnIejRonBIN99Z9MxAQAAAAAAAAAKImq431VMjDz77M2HQ4fKsmW2Gw0AAAAAAAAAoOAicL+rc+ekTJmbD8uUkbNnbTcaAAAAAAAAAEDBReB+VxUqyJkzNx+eOSOVKtluNAAAAAAAAACAgovA/a5695YpU24+nDRJeve23WgAAAAAAAAAAAUXm6beVWqq+PmJm5u0aiVbt0pqqixfLsWL23pYAAAAAAAAAIACh8D9v5hMsnOnHD0q1atL48Zix5oAAAAAAAAAAMBtELgDAAAAAAAAAKAD5msDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHRA4A4AAAAAAAAAgA4I3AEAAAAAAAAA0AGBOwAAAAAAAAAAOiBwBwAAAAAAAABABwTuAAAAAAAAAADogMAdAAAAAAAAAAAdELgDAAAAAAAAAKADAncAAAAAAAAAAHTw/65VmJ5kbvCXAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 AP fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACxHklEQVR4nOzdd1xTZxcH8JPBRmS4xS0O3OLeKGqtqB1iXeCoxQ2oKO6odaB1xC22DtS2CmorWhe4t4J7b0WRIUP2SHLePx7eiAkGAkluAuf78Y/23kvuQZM8ye8+9zw8RARCCCGEEEIIIYQQQgghhBQPn+sCCCGEEEIIIYQQQgghhJCSgAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBCCCFEAyhwJ4QQQgghhBBCCCGEEEI0gAJ3QgghhBBCCCGEEEIIIUQDKHAnhBBCCCGEEEIIIYQQQjSAAndCCCGEEEIIIYQQQgghRAMocCeEEEIIIYQQQgghhBBCNIACd0IIIYQQQgghhBBVpFIp1yUQQggxDEKuCyCEEEIIIYQQQgjRUxKJZNasWcnJyWFhYS4uLi4uLj179rS2tua6LkIIIXqKh4hc10AIIaQEev0aypYFG5svNsbEgFQKVapwVBMhhBBCCCHqkEgkw4cP37dvn6WlZWpqKtsoFArbtm3Lwve2bdsaGRlxWyQhhBC9QoE7IYQQrRAKYepUWLHii419+kB0NNy6xVFNhBBCCCGEFJpUKh05cuSePXvKli177NgxY2PjsLCwsLCw8+fPZ2dns2PMzc07dOjAwveWLVvyeDxuayaEEMI5CtwJIYRoBQXuhBBCCCHEcOVN20+cONG2bVv5rrS0tCtXrrDw/ebNm/JcpUKFCl27dnVxcendu3eNGjU4KpwQQgjHKHAnhBCiFRS4E0IIIYQQAyVP262srE6cONGuXbuvHRkbG3vu3LmwsLATJ068efNGvr127dps2nuPHj1sbW11UjUhhBC9QIE7IYQQraDAnRBCCCGEGCKpVDpq1Kjdu3cXmLYrePnyZdj/JSYmso0CgaB58+YsfO/UqZOpqanWCieEEKIXKHAnhBCO/fsvAMB3332xMSQEqlWDFi04qEdThELo0weGDPli44oVwONR4E7g0iWIioKePcHa+vPGK1cgJQV69eKsKlIcDx7Aw4fQqhXUqvV54+PHcO8e/Pgj8PncVVYkp09DfDy4uoKZ2eeNZ88Cjwddu8K//0LVqtC69Rc/cvUqxMVBv346rpQQUqIcPAgCAQwY8MXGQ4egRg1o3pybkkohedpuYWFx9OjRLl26FO1Bbt++zZL3CxcuZGVlse1mZmYdO3Zk4XuLFi34BjdAEkIIKQQK3AkhhGNly0JyMvz5Jwwd+nljxYowaBCsX89dWcUmFIKxMVhYfLHx0ydo1IgCdwL9+8PhwzB2LGzZ8nnjoEHw+DHcvctdWaQYFiyAhQuhdWu4cgUEgtyNy5bB7NmQnQ1GRpwWp7727eHqVZg7F3799fNGZ2fg8+HUKahYEVxdYdu2L35k+HA4fx7evtVxpYSQEsXCAtLTYd8+GDTo80Y7O/DwgDVruCurNJFKpaNHj961a5eFhcV///3XtWvX4j9menr65cuXWfh+69YtmUzGtpcrV87Z2dnFxaVnz5618l6vJoQQYuDoaiohhHDPwgKmToWkJK7r0LRJkyAu7os/PXpwXRPRGxYW8PvvcPky13UQzREK4e5dCAjgug4NsbCAFSvg0SOu6yCElDIWFuDjA58+cV1HqSSTyTSetgOAubm5i4uLv79/eHh4TExMUFCQp6dnrVq1Pn78GBwcPHbs2Nq1a9epU2fs2LHBwcHx8fEaOSkhhBAOUeBOCCHcGzkSsrNh1iyu6yBEh1q2hM6dYfx4yMnhuhSiISYmMH48zJkD0dFcl6IJLi5Qrx6MHw90OyghRJdGjYL0dJg7l+s6Sp+8afuRI0dUp+3u7u5Tp049evRoamqqWmcpV66cm5tbQEDAy5cvX7x4ERAQ4ObmZmdn9/Lly61btw4aNKhcuXLy8D0lJaV4vxMhhBBuUOBOCCHcs7WFBQtg61a4coXrUgjRoTVr4MEDEIu5roNozvz5YGQEU6dyXYcmCASwdi2cOweBgVyXQggpTezsYP582LQJrl7lupTSBBEnTJgQGBjI0vZu3bqpODgpKenvv/9es2ZN3759ra2tW7VqNXPmzLCwsOzsbLVOWrt2bU9Pz6CgoNjY2Bs3bvj7+7u4uJiamsrD986dO8tXXiWEEGJAKHAnhBC9MGECNGoEEyaARMJ1KYToSosWMGYMLFwIb95wXQrREBsbWLwY/v4bTp7kuhRN6N4dfvgBpk8H5fv7r14Fb+8v/oSHc1FiCSKVSgMDA69evRpOf5WkSE6fPn3z5s29e/eWgFXKJk+GBg1g4kSQSrkupXRAxPHjxwcEBJibmxeYtgOApaXlqVOn5s2b1759ex6PFxERsXz58p49e5YvX75///7r1q17+PChWgXw+fxWrVr5+fmFhoampKSEh4f7+/t37Njx9evXnTp1KvovRgghhCMUuBNCiF4QCmHjRrhzx7AXSiVEXUuXgrk5eHlxXQfRnDFjoE0bmDgRMjO5LkUTxGLIyAA/P8XtKSnw4sUXf9RsKkC+cObMGScnp5EjRw4aNKhNmzaDBg2KjIzkuihiMCIjIz08PHr06DFw4MAhQ4a0bdv2ioHfM2hkBBs2wK1bsHEj16WUAmxue+HTdgAQCoVdu3ZdtGjR5cuXk5KSQkND/fz8nJycUlJSDh8+7O3t3ahRo4oVKw4aNGjr1q1v1VxNWygUOjk5+fn5nT17FhEfPnxI74dEfzx9CjweVK78xfJjb98Cjwc7d3JVFCH6iAJ3QgjRF507g7s7iEQlpP3xmzcwZ47ixt274cQJLqoh+srWFvz9ISQEjh/nuhSiIXw+bN4Mr17BmjVcl6IJ1arBvHmwYwdcv/7F9p494ciRL/4UIqIh+Xj58uWPP/7YvXv3O3fu1KxZs02bNsbGxsHBwY0aNVq+fHlWVhbXBRK9lpqaOmvWLAcHh927d1taWrZq1apSpUo3btzo1KnTzz//HG3In6icnWHIEBCJ4ONHrksp0VjavmXLFpa2Ozs7q/sIFhYW8gVRP3z4wBZErV69emxsLFsQtUaNGvKe7Gr1hxEKhSz9P3XqlLpVEaJV0dEwbx7XRRCi3yhwJ4QQbqSmwj//KG787TcQCmHBgtz//fQJQkJ0W5bmzJ0Lbm7w8uUXG+fMgS1bOCqI6AGZDPbtU+ybNGoUdOwIvr6ft+/bB2o2QSVcCg1VvEzYsiWMGwfLlkFMTO6WI0fAIJrQ5uTA3r2Kq6ROnQoNGsC0abR6qoalpaUtWLCgUaNGBw8eNDc3F4lEjx492r9//4MHD9zc3FJSUmbOnOng4LBr1y6uKy2iUaOgVy/FcXDsWFi0iKOCShZEZBdm/P39s7Oz3dzcHjx4EBQU9Pz5c5FIZGxsvH379rp16y5YsCDTEG63SUmBQ4cUN65aBYifPxYmJcHhw7otq6RDxIkTJ7K0/fDhw0VI2xVUrFiRLYj65s0b+YKo1tbW8p7s5cuXlzd8L8wFxZ49ewJAaGhoMQsjRLO++47WmSCkIEgIIUS3ZDIMCsLq1ZHPx/BwtLLCefM+7924EYVCNDHBSZNw2jQEQGdnvHOHu3KLqn59BMDevb/Y2LQpDhzIUUGEa9euYfv2CIDr12O/fti58+ddd+6gUIjm5tikCYaEIADWrYtBQdzVSgrn2TN0c0MAHD0aRSK0sPi8KzERK1ZEc3MEwCdP0NQUbW1RLMacHO7KLUhYGDZpggC4dy+2a4c//PB515kzyOOhuTl2746IWKECjh6t+OPDhmG1arqr1qDJZLKgoKDq1asDAI/Hc3Nze/PmjcIxp06datq0KfvC4uzsfMcAB0IaB7Xn+vXrHTp0YE+PVq1aXbp0SeGAZ8+eubm5sQPq1q0bpMcjikyGgYFYqRIKBHjnDpqbo0j0ee+6dWhkhMbG6OODPj4IgN274927nFVbkshksvHjxwOAubn5qVOntHciiUTCerK7uLiYmJjIoxhzc3P51HipVJrvzz5+/BgAKlSoIJPJtFchIYX35AkC4IED2KIFOjmhRIKI+OYNAuCOHRzXRoheEeoy3Dcsly5dunv3ru7P6+HhYWFhofvzkgJ9+PDh33//1f15O3bsKP/CSUoAts4ea03Qrh0YGSkeMG4cBAbmHuDgALa2cOYMODnB2LGwcCHY2em64OJo0gROnoT9+2HgQK5LIZyKjIQZM2DfPkCEatWgalXFA5o2hUmTQCwGAChbFho2hEePYNAg6NUL1qwBR0edV0wKkpwMS5aAWAzZ2WBlBQ0bKnYwt7aGFStgxAgAAKkUOnSA06fBxwe2bQOxGLp356Tqr3r2DKZNy506yt54FXTrBkOHwp9/FvxQqakwcSKcOQOmpuDlBZMmab5aQxceHu7t7X358mUAaNWq1dq1a+XJaV7du3e/devWnj17fH19z5w506JFi2HDhq1atap8+fI6L7noaBzUuKioqIULF/7xxx8ymaxKlSoikWjMmDF8vuJ92yxkP336tI+Pz7179wYNGtS9e/c1a9bo24fqS5fAxyd3yeUOHUDp94AJE2DHDrh1CwCgXj2wtYXTp6FlSxg/HhYsyOfNihQSIk6aNGnz5s1sbnt3bQ5LAoHAycmJtWVPTU09f/58WFhYWFjY/fv32X8AQMWKFZ8/f25paanws/Xr169Zs+br16/v3r3brFkz7RVJDF0R8isLC4e0NBe1fqRsWWjVCgCAz4d166BLF9i4kZZiMmC7du1KS0vT8UkrVar0/fff6/ik3OA68ddTkyZNYndv6d6PP/54+fJlrv8CiKKgoCD5NBkdGzBgwMKFC7n+CyAa8P49enoin48AWKUKBgQgm8vStCmuXv3FkdeuYe3aufObEhLQzw+NjREAbWzQ3x+zsnRfe1HUr49jxqCbG1atip8+5W6kmX2lTXo6+vujpSUCoJkZ+vlhcjIi4pgx+NNPXxz56RO2aIF9+iAi5uRgQACWL48AKBSipyfGxnJQPMmXfDImAPJ46O6OHz4gIorF2KiR4pEDBmDt2rmz2kNCsE4dBEAAdHXF5885KF5ZaiqKRGhiggBoYYEiEWZmIiL+8AOOH//FkR8+YMOGOGwYImLz5ujrq/hQkydjmzZ49CjOnYtSKcbEoK0tvnqli9/CULx//97T05Nlo1WqVAkICPjapM68EhIS/Pz8jI2NAcDGxsbf3z/LQAZCGgc1KysrSywWlylTBgCMjY29vLyS2YiiUk5OTkBAALtOIxQKPT09Y/VjRHn3Dt3dkcdDAKxaFQMDkc1gbtQIxeIvjrxyBWvXxl9/RURMSEAvLxQKcz8W6vltQ3pLJpNNmDABAMzNzcPCwrgqIzY2ljV8r1mzZpMmTb522OjRowFgxYoVuqyNGJai5VcdOgxhn8oK/6dOndwZ7v/8g4jo4YFWVvjuHc1wNzwfP37s379/uXLlNBteFYajo+P3339vKJ/lioOH1I1Syblz57p162ZiYjJo0CAdTza/ceNGREREmzZtrly5ojxTg3AlPT29YcOGb9++7datW4MGDXR56o8fPx44cMDIyOj+/fsODg66PDXRoOxs2LwZ5s2DlBQwNoZx42DxYihTRo1HePIEpk6Fo0cBAOrXh9Wr4dtvtVSsxjRoAJ07w9y50LAh/PILrF0LANCsGdSrB8HBXBdnmCQSiVBoSLemHT4MXl7w+jUAgKsrrF8PNWuq8eMJCbBwIWzaBBIJ2NiASAQTJ4JB/QWUQNevg7d3bsvO1q1h7Vpo316NH8/JgU2bYP58SE4GIyMYPx5+/RWsrLRUbAFkMtizB2bMgJgY4PFg+HBYsQIqVdLkKVq2hI0b1fsrKqmys7M3b948b968lJQUY2PjcePGLV68uIw6A+GTJ0+mTp169OhRAKhfv/7q1au/1fuBkMZBDTp8+LC3t/erV68AwNXVdd26dbVq1Sr8jycmJi5YsGDTpk0SicTGxsbPz2/KlCnsKo7uZWTAunWwZAmkpICZGXh5wZw56n0sfPwYpk6FY8cAAOrXhzVroE8fLRVbAiHi5MmTN27caGZmdvjw4R49enBdEQBAQkKC7VduWNi7d++QIUN69ux58uRJHVdFDEKR86vy5dvExY1S61wVKsCwYVC/PvzzD3z3HcTGQoMG0KcPLFsGNWrAjh0wcqR6xROuTJo0aePGjbVq1erdu7cuz4uI//77b0xMzIoVK6ZPn67LU3OA48Bf/0ilUicnJwD4lc0i0K20tDTWznLnzp26Pzv5GpFIBAAtWrQozDwsjfv5558BoF+/fro/NdGIkBCsVevzpM4XL4r+UKGh6OiY+1AuLvjggeaq1AI2sw8RFy1CPh+vXUOkmX3FsGXLljlz5tSsWdPLy+vChQt63sozIgI7d859rrZogefOFf2hHj3CPn1yH6pBAzx6VHNVEnV8bTJmEURFfb7dp3JlDAjIbQCqS9euYbt2uc+rNm3wyhXNn+L1a6xUCVNTNf/IBufgwRM1/3+17ccff3z58mWRHyo0NLRhw4bsoVxcXB7o90BI46BG3Lp1q2vXruwfvWHDhsePHy/yQz1+/LjP/5Pp+vXr//fffxqss5AUPhYW49Wgp7cN6TmZTDZx4kQAMDMzCw0N5bqcQvn48SOfzzc1NU1PT+e6FqJ3dJ9f5Z3hjogbNyKPh3v30gx3Q/LgwQOhUCgQCO5ysSQI66NVpkyZqKgo3Z9dlyhwV7RlyxYAqFatWlpaGicF7Nq1CwAqVqz4SX7rKeFUZGQku1B8rjiJUTHExMSULVsWAI4dO8ZJAaTIHj7E3r1zvwg1bIjF+Ib4WXY2isVYtiwCoJERenlhUpIGHlaDsrPx/HnEPEFDZiY6OGDbtiiTUdBQRGfOnBEIBHmnt1evXt3Hx+fChQucXAhU4eNH9PJCgQAB0M4OxWLNZKkUK3BIuS9QSooGHjY8HDt2zP03dXLCCxc08JiFocErByp8+oTNmuHu3Zp/ZMPCxsH27d8UMipNKcRzKzs7WywWW1lZAYCRkZGXl1eSng2ENA5qSnx8vJeXl0AgAABbW1uxWCzRxIgSEhJSp04d+WWbhw8fFv8xC+PmTezSRTOXouXYx0Irq88fC+kbpAoymWzSpEkAYGJiwsnlliJr2bIlABjKFQKiS7rPrxQCd4kEW7XC2rUpcDckvXr1AoDJkydzVUC/fv0A4Oeff+aqAN2gwP0Lnz59qlSpEgBwuJC9TCbr1KkTAMyaNYurGkhegwcPBoDBgwdzWMOKFSvYN9Xs7GwOyyCFFx//OXO0tdVY5iinpUyzODIzMTQUvbywQgUEwMePPwcNiHjiBAJgYCAFDUWRkJDAbn6aP39+eHi4SCSqW7euPHkvV66cu7t7SEgI5+8P2r4aRLECJ0JCsGbNz5c6NNuRXCbDoCCsUSO3HbybG75+rcnHV5CWppUrB8pev8a2bXHTJq08uKGIjcWxY3PHqfLlcceOw6qj0sjISHd39+bNmxcyUY2Li5NHsXZ2dpqKYouDxkENYpdVrK2t2WUVT0/PuLg4FcenpKTMnz8/OjparcfPe9lGq1OdtP2xjd02xB6/XDm9+Fioh/Km7UeOHOG6HPX4+fkBwIwZM7guhOgXTvIrhcAdEW/cyH3/ocDdIBw8eBAAbGxsPn78yFUNz58/NzEx4fP5169f56oGHaDA/QtTpkwBgI4dO3J7q354eDifzzc2Nn769CmHZRBEvHz5Mo/HMzMze63VDKAgWVlZ9erVAwCxwiJKRP9kZ2evWSOzts7NBKdMwcREbZ3rxo0v5odeupSprTN9XVoaBgfjkCFYpszn5XSaNMGLF78IGhBx4EC0t0cHBwoa1DZgwAAA6NSpU9446f79+yKRqH79+vLk3dbWliXvmZkcPBOOHMl0cPgcy2pv+IqKwhEjcqcnV66MgYE5+jbHv8S4eTOrU6fcf9OWLXNn7GpDairOmYOmprnLlv76K2ZkaPg5LJPJ9u7NrlYtN9kfPBjfvtXsGT47cwbt7NDTE4OCMCioWG3EDFR2NgYEYLlyueOgpyeqTEoxNTV1zpw5pqamAGBhYXHz5s3CnysiIqJz587sPbBly5bntfc0/ToaBzUuNDS0UaNG8hno9+/fV3GwTCYLCgpil6XH5P3rLoS8l23KlSunjcs2WVlZK1dK2aVoY2OcNk2LNyZev47t2+c+A1u3xitXOPgwoLdkMtnkyZMNNG3H/3dgaNGiBdeFEP3CSX6lHLgj4tixFLgbhqysLLY04IYNG7ithDVwb9++vZ43Si0OCtw/e/bsmbGxMZ/PDw8P57oWHDFiBAB8//33XBdSqkml0tatWwOASCTiuhYMCQlh1yFVT/Ah3GJfETt3fsJ6rKv8hlhYGRkFHCCff9qsWRdXV9dXmp2A+hVpaRgSgu7uX+QLjo4oEqH8zmyFoCEyMndiKQUNalm/fj0AWFtbf+2yH0veWfdGxtra2s3NLTAwsDDNGYrv8ePH3377bceO7gBYrx5q5GtsgU97eTeSbt3CnJycLuisHUnp8PHjRy8vr3r1vhcKNTYZMzu7gAeJjMzt9NK27UF7e/vAwEBNff5mmWzXroe0feWAOXgQ/fw+/7l6Vbun0zehodio0ee1Ru7dU3Uwi0pr1KgBADwez83NrWjzG0JCQuQ94mkcNGhPnjxxdXVl/5QODg6HDx9WffyNGzc6duzIjm/VqtXFixeLcNKIiAh2ezG7bKPBASU0NNTR0bFTp52F+Vgok2HxL5fLbxvi8WRNm3Z2dXXlds6QnpCn7cbGxgU+qfRTZmamhYUFj8f78OED17UQfcFVfpWRgeHhilPKUlIwPFwzX36JVi1btgwAHB0dc3JyuK0kOTm5cuXKAPD3339zW4n28BARCAAA9O3b9+jRo56engEBAfkecPTo0du3b2v2pGPHjrWzs1PeHhMTU69eveTk5BMnTrD+SkT3tm3bNmbMGHt7+8ePH6u13reW9OnT5/jx4xMmTNi4cSPXtRBFT548mTJlyrFjxwCgXbsB8+b9++23GnjYjAxo0gR69IDFi6F8+a8elp4Omzc/nDevVUZGhrm5+YwZM6ZPn25ubq6BCr6UmAiHD8ORI3D0KKSl5W50dAQ3Nxg2DBwcvji4QQPo3Bl+//3zlt9+gxkzYOBACA7WeGkl04MHD1q3bp2RkbF3796ffvpJ9cEvX748fPhwcHDw5cuX2eBuZmbWo0cPNze37777jt04r1mJiYkLFizYtGmTRCKxtbVduvTp6NF2RkYaeOSBA+HTJ1izBho3/uoxiPD339L585u/eHGfx+MNHTp0+fLlVatW1cDpS7Hs7Oy1a9cuXrw4OTnZ2Nh44cJ7EybU08hzZ+lS2LMH1qyB3r1VHXbuHCxb9sOJE/8AQNeuXcVicfPmzYt80ujo6Dlz5uzcuVMmk9nb1168+JG7uzGfX+THI6o8ewZTp8KRIwAADg6wZAm4uak6Pjw83MfH59KlSwDg5OQkFovloWcRpKenr1+/fvHixampqebm5pMnT547d66lpWWRH/BraBzUkqSkJH9/f7FYnJWVZW1tPXPmTB8fHxMTk68dHxUVtXDhwj/++EMmk1WuXHnBggVjxozhF+Plffjw4cmTJ7958wYAXF1d169fL7+KUwSPHj2aMmXKiRMnAKBTp+5z555S/dYXHg7e3tC5M/j7F/mcn6WlwZYt9+fNa5ORkWFhYeHn5+fr62tmZqaBhzZAiOjj47Nu3TpjY+MDBw7Ir+gYnG+++ebEiRN//fXXkCFDuK6F6IUC8ysdmz8fli+HY8ege3euSyFfUZiYcdWqVVlZWRo8aYUKFcaMGZPvLn0L3DSP48Bfb5w8eRIArKysVFw0Hj16tMb//lWs0rNkyRLQj0tPpZP8gttff/3FdS25Hj58aGRkJBAI7ty5w3Ut5LPExEQ/Pz/2ndDa2trf31+DDT2OHPnc8XPjRlT9ZvDu3Tt3d3cejwcAVatW1eD80JiY7C1bsGdPNDLKncQnEKCzM65fj+/ff/Wntm7Fo0e/2JKdjStX4j//oFSK1AWkQBkZGU2bNgWAcePGqfWDr1+/FovFHTt2ZE8GADA1NXV1dQ0ICIiNjdVIbVKpNDAwsEKFCgDA5/Pd3d1jYmI08siI+OEDypsy+fgU0JQpLS1NJBKxHMHc3FwkEqWnp2uqktKGTcZkzxkXF5cHDx5o6pElEmzcOPfdY+DAAhrBs2dXxYoV5c+uwvdllmMNmtmS4/q5rmZJkpiIfn5oYoIAaGmJIlEBE3WjoqI8PT1ZNlq5cuWAgABNNYaicdAQqfuSz8rKkrdfNzY21mD79bS0NH9/f3adxtzc3M/Prwg3irGPhcbGxvKPhVlZWSqOf/cOhw/P7ZNWu7YGJrnLsXUR2MtBs7cNGRbW/dzY2DgkJITrWopl5cqVADBq1CiuC9E0iQQfPsTwcA2vElPSFSa/0rElS3Lv9KL4Sm+NHDkSAL777jsVx2h8skLjxo2/di69aimhDTTDHQBAIpE0b978wYMHq1atmjp16tcOO3jwYHh4uGZPPWXKlPJfmbaanZ3duHHjZ8+ebdy4ccKECZo9LynQjBkzfvvtt/bt21+6dEkeWjH79+9PSUkZMWJEcebRqHbq1Klbt275+voqbPf29l63bp2zs/Pp06e1dGpSeDKZbM+ePTNmzIiJieHz+cOGDfvtt9/YN0YNevwYpk6FY8cAABo0gNWroU8fVcdfv37d29v76tWrANCmTZu1a9e2a9euaKeOi4s7duxYcHDwq1fWDx7sBgCBANq1Azc3+OknqFSpaI8KMTEwciR07gyzZxfxEUqJsWPHbt261dHR8caNG0W7XyEyMvLYsWOHDx8+fvy4RCIBAIFA0K5dOzc3t59++qlSUf8Jz5w54+Pjc/fuXQBwdnYWi8XswoAGJSTAwoWwcSNIpWBrC/Pnw6RJIBB89fh3797Nnj17z549iGhvb79kyRJ5ykAK48mTJ1OnTj169CgA1KtXb/Xq1X379tXsKbKzYfNmmDcPUlLA2BjGjYPFi6FMma8en3e6q6Wl5bRp02bNmqViumteYWFh3t7eDx8+BAAXF5e1a9fKLyQQtTx8CLt2QatWMHDg541Pn8L27TBxIlSrBjIZ7NkDM2ZATAzw+TBsGPz2G6gYBjMzYcuWv+bNG5uammpqajplypTZs2dr/KuddsbBmAcPrgONg5p27tw5b2/vO3fuQOFuajl8+LCPj8/Lly8BwNXVde3atbVr19ZsSUUeUNjHwunTp8fGxrKPhStXrmRXpvOl7rti0Vy7ds3b2/vatWsA0LZt27Vr17Zt21bD59BjM2fOXL58ubGx8f79+/v168d1OcVy9+7dZs2aVa1a9d27d1zXoiEyGSxbBqtWQWJi7pa6dWH5cvjhB07LMgCq86u5c+d+//33ebtN6kZ2NjRuDM+ewcaNQPGVHrp582br1q2FQuH9+/cdFO7Iy2PhwoWaneFeqVIlLy+vr+29fPlyp06dTE1NHz16xHoMligcB/76YdWqVQBQt25dThaaU+HAgQMAYGtry+HywaWTikWT5TPf//33Xy2d/fXr10KhkL0VKuxKSEgoV64cABw4cEBLZyeFdPbsWfl3wq5du966dUurpwsJwTp1Pq9I+fy5qoPzThbj8Xju7u5qzX14+fIlu9qUd370sGHpO3diQkJxfxFEPHkS+XwUCvHKFQ08WknF3v9NTU1v375d/EeLi4sLDAx0dXU1+n/DF4FA0LFjR7FY/F7F5Ewlb9++dXd3Z49QrVq1wMDA4temwsOH2Lt37tO+YUM8fryA43X8qiwZEhIS1JqMWUzv36OnJ/L5CIBVqmBAQAGTfJ8+fZq3oXNQUJDqx2crCrDj69ev/99//2my+tLn338RAM3Mvlj69fhxBMCrV/HsWWzePPcV2rUrFviCCwnB2rWxTZtoAHB1dX2hzfVklSdNa2IcjKFxUIPUnX/98OHD3v9vy9KgQYNjx45ptbyrV6/Kg+m2bdteKeif6syZM82aNWPHd+vWrcCxm70c5J/rtLq6skZuGzJEM2fOhBIxt51h3ZNA5S3yBmb8eOTzcdYsfPECExLwxg10dUUeD/fs4boyfacivzp+/Dj7RJeamqr7wg4cQAC0tUWKr/SNTCZjjftmzpzJdS2KBg8eDACDBw/muhDNo8AdY2Njra2tAUA/v5WxzkpeXl5cF1K69O/fHwBGjx6tvIt9dGvXrp1W78qcOHEiAHTv3l15F2vgXqtWrYwCVxUk2sHVLbrZ2SgWo5VVbqsNLy9UfQt1amqqSCRiE0ItLCxEIpHqa4ovX75U6ENiZmbm6uoaGBioqZu15WbMQACsVk0zyUXJExkZaWtrCwAbN27M94CoqKjp06dfvXpV3edefHw8S97lM4X5fL6Tk5NIJHr27JmKH2RPJ1NTU/nTSWdvQWqlEqU2VigCrfYFUu3GDezQIffftFUrvHSpgOPZetTsGevi4qJ8NRq/vHJgY2Oj7SsHpQQL3MuXx2+//byRBe5HjqCxMQJgjRpY0HUQvHMHnZ1z/8WbNsVz5zRwHbEwaBzUT6wVGBtQCtMKLD4+3svLSyAQsHlIYrFYN/02CzmgqHspWt1ryZqSkpIifzlYWloW+HIwdC9evChTpoyJickRjSzmrh+GDx8OAGvXruW6EE0ID0cAnDfvi40SCXbujOXKIbUH/DoV+VVOTk7jxo0BYOXKlZzUhoi9eiEAUnylb3bv3g0AFStW1PjnmeKLjIxkDdzPnTvHdS0aRoE7enp6AkDPnj25LiR/Dx48YJOd7927x3UtpUVYWBgAlClTJioqSmHXixcvTE1NeTzetWvXtFpDQkICW01XeR69RCJh3RuWLl2q1RqIMn3oFh0VhSNG5Pb6rFwZ//wzRnXr22fPnrn9f926unXrKs8PvX//vr+/f8eOHeV3Ppmbm7N8oQitSwspJwfbtcvt5kwUSKXSbt26AUDfvn2/lqfLV062t7f39PQMCQlRN31IS0sLCQlxd3fP28zB0dFRJBI9fvw475EymSwoKKh69ershgk3N7c3b94U/dcrkowMXLwYLSwQAE1NceHCLNXTdrS6skLJcPr0aXkjIGdnZ90vDSKT4c6dWLkyAiCPhyNGyN6/V3VpJDs7OyAggN3jZWRk5OnpGRcXx3axUIw16NPxlYMSjwXu69YhAAYH526Uz3CfNw9//bWAVCQ+Hr28chcjsbVFsZiD1q5Pnz7V2TiYlYWFnElfOsdBNqCwe8bZgPL69WsVx+fk5Mhf+EKhMO8LX2dU5NTKVw5UX4qOi4sbP17CXg7ly+OWLSiR6OR3yCPvy6Ewtw0ZrrVr1wqFwhI2ZTIwMJDdIcR1IZrArjoqv6L370cAPHyYi5oMg4r8as2aNQBQp04dDj/3PniAQiEKhUjxlf5IT09nX+V27NjBdS35E4lEANCiRQtNLeqjJ0p74H779m2BQJBv7w79MX78eADo0aMH14WUCjk5OU2aNAGA5cuXK+/97rvvAGDkyJE6qGTdunUAULt2beXxkjVwt7S0VKsXBCkOdb8ialt4OHbqhHy+tFGjNk5OThcuXFB9fFhYGJvvwN5M7t69e//+fZFI1KBBA3m+YGNj4+7uHhISopuPaC9e5M7W37ZNB2czJPPnzweAqlWrqmgmdufOnSlTpuTtc1exYsVx48aFhoaqm7ynp6ez5J0tQJc3eQ8PD79x40aHDh3YxlatWl0qcCqyNsm7kXTteqhKlSoFLrT45MmTvN1IDtOXN0TUeV8g1dLSUCRCU1Ps2HF3YeIq5YmuYWFh3F45KNlY4P74Mfbrh5UrI1t3Vh64q5aTgwEBWK4cAqBQiJ6e+eQquqTVcTAjA0NC0NMTy5fHH34o7E/Jx8Ht29X+dQxReHi4/KpGYT66hIaG5v0n43bukUJOvW/fPrUuRcsvGXbpstHIiPuXg8JtQyVyXtd///0HAO3ateO6EE368OEDj8ezsLAoCbdw9e2Ldnb5bH/wAAFw2TKdF2QYVORX8fHxbMYe5594x49HAKT4Sn/MmzcPAFq2bKm3cXZ6ejr7YvvHH39wXYsmlfbAnc0inDJlCteFqCJ/6ywZ7ef03Nq1a792WfjUqVO6jLklEgmL/v39/ZX3fv/99wAwYsQIHVRCEDE4OJh9LWnduvXly5e5LgcRUSbD/ftfVq1alX3ZGzZsWGRkpIrjs7OzxWKxjY0Nm4eVN6gdO3bsyZMndXODdl779iEAWljgo0c6PrP+On/+vEAg4PP5p06dKszxGgyM0tPT//33X3d3d3abKsOSzapVq+7atUs3rZMKdOWKtGNHZ1Zeu3btCrzf6MiRI/Xr12fHKy/LUdpIJBL2cdbS0nLp0qV60prsxQscNWoi+zeqXbt2gYuU3Lp1q2vXrux41vqjdu3aBw8e1E21pYo8cH/2DE1Nc+8QL0zgHhaGjRvnNs3o0UNfprlpfBxMTcWgIPzpJ7S0zP1lAbB9eyz8m2XpGQc/fPjAOj5Vrlx5586dqgcUvZ2FfezYsbwDLgC0bdv2akFXn44ePSr/KTe34Xryb52dnb169Wo24leoUEFPhgMNSk1NNTExEQgECSWrbRO7UlISGi906YING+azPS4OAXDWLJ0XZBhU5Ffjxo1jl9B0XJLyjW7x8WhnhwBI8ZU+ePv2rbm5OY/HO3/+PNe1qPLXX3+x8SiJze8oEUp14B4UFMRmSMXHx3NdSwHEYvHXUmCiQfJGLocOHVLYJY+/l+nwejuL+FU3tynwUz4pvrS0NHt7ewsLix07dujbZWGFLjd+fn6q73+Pi4v79ttvy5QpY2FhUbRWJJrl4YEA2KQJlrgvekWRkJDAwtD58+er+7MseXdycpKnAEVuiSCRSC5cuODl5WVqamppafnLL79wsuySCup2ucnOzl68eLG5uXnTpk11VqR+mjFjho2NTefOnfXwBqnTp0+rteRgUFCQlZWVhYXFrFmz6NORlsgDd0QUiVAgwJs3Cw7c2Rs7ANarp49dAYo/DqalYUgIurt/kbM7OqJIhF925CoUd/dSMQ7269evTJkyo0aNUj0k6X+f8ezs7GXLlpmbm1taWha4io/eXjmQi42N7d27t7W19YQJE7iuRfPYpVnly7GpqamHDx9W7ttpEKZMmQIAc+fO5bqQYuvbF21t89l+/z4CYH4TzoiK/Or+/fu6b0QcGYn9++M33+SzSyxGAKxTB/XsLbw0YsPQsGHDuC6kYF26dAGA6dOnc12IxpTewD0jI6NmzZoAsGXLFq5rKZh8+YsVK1ZwXUtJpmKp0g0bNrA5dDqeAKJi+dZZs2aB9pdvJYiYkpICABYWFlwX8lVqreO6f/9+APih8De9a1NqKtavjwDo48N1KXqANa1q06ZNdnZ2kR9Eg4v+tWzZEgDCw8OLXIxWqdU8Ny4uDgDs8r15uTQZM2YMAGzdupXrQvKn7jqu7KILtw2+Sra8gXtmJtarhx064LFjBQTuGzaghQWKRPr7Nbto4+DHjx+3bds2eHCMiUluyM7nY6dOuGYNFmdhi5SU3HFQv2+4La42bdoAgIppIga05HViYiIAlC1bVsUx+n/lQG7v3r0AMGjQIK4L0bzFixcDwPjx4xW2sylNzZs356SqYjp69Ci7tYLrQorNz09VD3el5UCJ6vyqZ8+eAODt7a3LkuLj0dY2dx11BTk5uTe6UXzFrYsXL/J4PDMzM90vwVUEN2/e5PP5xsbGT5484boWzSi9gfuvv/4KAI0aNeJ2dmfhqVjJk2gEW59WIBDcvXtXYVdCQgJbr0n3d6w/f/7cxMSEz+crt01ISUmpUqUKAOzevVvHVZU2+h+4M2fPnm3evHmB9zjrVeCOiOHhaGyMPB4q3VhSurB1UK2trV+9eqWRB3z9+rVC8m5qaurq6hoQEFDIJSX1PHBnCtmRnAJ3Rs8Dd4atecu6T7A1b7/WrJYCd23LG7gj4tGjCIC//FJA4J6Tg3q+bK1a42BcXFxgYKCrq6uRkREAdOmyWSDAjh1RLEZN3SgiHwdL8N33qgP3q1evtm3btvBNWrilOnA3oCsHTAkO3K9du8buEVfYnpWVZWFhwePxPhRyjWN9kpaWxlrl6P89+l+QSHD8eMz7LTs8HAFwwYIvDpPJsHt3LF++hN/yUyQq8is2qNna2qpY/0lLVq9GAKxbN59L7GFhCIBlyiDFV1yRSqXs7udFixZxXUth/fzzzwDQr18/rgvRjFIauL97987S0hIAzpw5w3UtamCLv40ZM4brQkqmXr16AcDkyZOVd02ePPlrM991YMaMGQDQvn175TnLO3fuBICqVauq2zKCqMVQAndElEgkAQEB5cuXBwCBQLBA4VMsIupf4I6Iv/2GAFi+vMbCC4Nz//591hfo77//1viDR0ZGBgQEuLq6CoVCFmcIBIKOHTuKxWLVXzUNInBnTp06xbp+AUCvXr2UWz9R4M4YRODOPHjwgI3LANCwYcN8EysK3LVNIXBHxB9+QIGgUIum6rPCjINv374Vi8WdO3fm8/nseWhsbNynT5/du49pY7nLFStK+DioInDPyMioXLkyANSoUWPfvn26r01dKgL3pKQk+dSHLl263Lx5U+fVqa0EB+4SicTW1hYAXrx4obDrm2++AYA///yTk8KKiXXxLnC9Ez0ikeDQobkdRvKGxT//jAIB/vpr7kXaJ09w8GDk8ZAmkylRkV9lZmbWrVsXADZt2qT7wnJysFEjBMCVK/PZ6+qKAEjxFVcCAgLYhKS0tDSuaymsmJiYsmXLAsCxY8e4rkUDSmngPnz4cAAYOHAg14WoRz7ZmZZ907iDBw8CgI2NjfJl4YcPHxoZGQkEgjt37nBSW3JyMvse8tdffynskslk7AtMSWjkp8cMKHBn5Dcy5/tZXA8Dd5ks9wNZ164okXBdjc5lZGQ0bdoUADw9PbV6oujo6C1btvTs2TNv8u7s7Lxhw4Z8Z8QYUOCOebqR5Hs7LQXujAEF7kxoaKijo2OHDh3ybZNFgbu2KQfub9/mNi4vqYG7inuDYmNjtVeSTIZ9+yIAdutWMsdB1TPc9+zZs2jRonTlpff0kuoZ7n379i2wuZ9eKcGBOyIOHDgQAAICAhS2r1q1CgBGjhzJSVXFtGTJEgAYN24c14UUjkSSu1SFlRVeufLFrpwcnDULzc0/r4ZRpQpqYepJCaAiv2LPBw47N4SG5s5kV57G8/w5mpggn48UX+nep0+fKlWqBAAGcSU7r+XLl7PZNsVpsqonSmPgfuXKFR6PZ2pq+vLlS65rUZuvry8AfO2bJymarKwsBwcHANiwYYPyXjYDgtulhLZt2wYA9vb2yksXGvTz2VAYXODOfK0ziR4G7ogYE4OVKyMA6nBZYn0xbtw4AHB0dNTZ7IOEhITAwEA3Nzdzc3OWKN26dUv5MMMK3JmEhIR8l7anwJ0xuMAdEbOysr62xCsF7tp26RK6uGBk5BcbAwLQxQUfPeKoJk342jj48OFD+D9LS8tBgwbt27dPZzcRxsRgpUoldrHAAnu4GxDVgfuHDx8M5coBU7IDdzbBUzmmvHv3LrtLmJOqiun69esAULNmTa4LKQR52m5hgefO5X9MejpeuYKhoXjnDirdoUhQ5ff96OhoKysrADh58iQntTHffosAmO/EIV9fBMChQ69TfqVjU6dOBYCOHTsa3N98VlZWvXr1AGDt2rVc11JcpS5wN/QZwfLJztpoO1BqLVu2jKVdypeFDx06xGa+x2nj/uFCk0qlrVu3BgCRSKS810Dv2DAgXwvc379/X7ZsWUdHR06qKjL9DNwR8cQJ5PNRKMTLl7kuRYfY7TUmJib5Rt7a9unTpz///HPs2LH57jXEwP1rKHBnvha4jxgxomzZsv/++y8nVRUZBe46I5Hg8eMYFsZ1HRqiYhx0cnJyd3f/559/OMlMjx9HHg/NzbNv3FDsgGHoSk/grrdOnz5dtmzZ77//XmF7yQ7cX716xb7KSb68c0Qmk7Hv1A8ePOCqtiKTSqVsdTHlVjn6RSJBD48C0nZSENX5lYeHhz58rXv2LHcm+40biruSkrB37/GUX+nYs2fPWG+MG8r/JIZAT1K44uNDKRMYGHj9+vWqVav6+flxXUtRlClTZtGiRQAwffr0tLQ0rsspCWJiYljgvnr1anmbBSY7O3v69OkAsGDBAvaxhit8Pn/t2rU8Hm/FihWvX79W2Ovv729pabl///7Q0FAuqiu9ZDLZp0+fPn36xHUhJUSvXjB1KkgkMHw4lJK/1Hfv3v3yyy8AsHLlSnnXV12ysrIaOnToli1bdH9qolfS0tI+ffqUnZ3NdSFET2VkwDffwIABXNehfeHh4bt27fruu+/Yuho61rs3zJsXXbNmx59+6pmcnKz7AkgJlpOT8+nTp9TUVK4L0amaNWvWrVs3MTExIiIi73Yej+fi4gIAhvjtic/nOzs7g54XL5PB6NGwaxdYWMB//0GXLvkc8/GjzssyPCryq4iIiD179hgbG/v7+3NSm1zdujBxIshk4OMDiF/sKlsWBg5sCZRf6Za3t3dWVtaYMWNatWrFdS1F0b9//2+++SYxMVEkEnFdS7GUrsA9NTV1zpw58P+Akutyimj06NGtW7d+9+7dypUrua6lJJg5c2ZycvJ3333Xu3dvhV1isfjp06cNGzYcP348J7Xl1b59+8GDB2dkZMycOVNhl3wAnjJlikQi4aI6QjRj6VJo2xZevoRffuG6FO2TyWQeHh7x8fHffvvtxIkTuS6HEEII9+bOtStThv/y5Ut2PwohpJh69uwJ+WXTX9tuEPS9+Lxp+5Ej0LVrPseIxeDgADdu6Lw4Q6Iiv0JEb29vmUzm6+vLuuNySySCSpXg0iUIDlbcRfmVjoWFhR09etTKymrhwoVc11J0q1evNjIyCggIYB3ADFTpCtyXLl0aFRXVrl27YcOGcV1L0fH5fLFYzOPxli9f/ubNG67LMWw3b97ctWuXsbHxihUrFHbFxsYuXboU/v9S56I6RStWrLCwsNi3b9/58+cVdvn6+tasWfPBgwes2zshBsrICP78E6ysIDgYdu7kuhotW7Ro0ZkzZ6pWrRoYGChfnY8QQkhpZmRktGfPnjJlygQHB+8s8QMhIdqnInDn8Xhnz57Nysrioq5i6dWrFwCcOnVKKpVyXYsSRJgwAQIDc9P2bt3yOUYshilTIDkZ8qycQZSpyK/27Nlz6dKlihUr6knnBisrYOnu1q03MjIy8u6i/EqXJBKJj48PAIhEIrZoqoFq2LDhuHHjpFLplClTuK6l6EpR4P7y5cs1a9bweDz2aue6nGLp0KHDoEGDMjIyZs2axXUtBgwRfXx8ZDLZlClTlC8Lz549+9OnT/369WOLpuoDe3t71uLGx8dH4dOVqakpu2Ywe/bshIQEbuojRBPq1IH16wEAJk2Cx4+5rkZrLl68uHjxYj6fHxgYyG3HKkIIIXqlbt2669evB4BJkyY9LsEDISE64ezsLBQKr1y5otBOp1KlSo0aNUpLS7t27RpXtRVZjRo1HBwckpKSwsPDua7lS4gwfjwEBIC5+VfT9rVrYepU4PFg/XoYMULXFRoOFflVenr63LlzAWDFihVs0VR98PPPMHjw4tOn2yrPZKf8SmfWr1//4MGDunXrloD7pxcuXFiuXLnTp0//888/XNdSRKUocPf19c3MzPTw8Gjbti3XtWjAypUrLSws/v77b+XJzqSQ/vrrrwsXLlSsWFH5ff/WrVs7duwwNjbWt/ueZsyYUaNGDVaewi43N7du3bolJCQsXryYk9oI0RQPDxg+HNLSYNgwMMBZRwVLSkoaPny4VCqdPXt2jx49uC6HEEKIfhkxYsTw4cPT0tKGDRtmiNNvCdEf1tbWrVu3zs7OPnfunMIufW/MopI+Fs/mtqtO27duBTZfdcMGmDBBt/UZGBX51dKlS9++fevk5DR8+HBOasuXQACTJjkDwLJly96+fauwl/IrHZBnQWKx2MTEhOtyisvGxmbBggXw/9cC1+UURWkJ3NlVEUtLS9YkpASwt7f39fUFADZHm+tyDE9GRsbs2bMBYNmyZWXLllXYy/5Wvb2969Wrx0V1X2VmZsYWRZkzZ47yWp1isVggELCrmlxUR4jGbNoEderAzZswezbXpWjBuHHj3rx506ZNm/nz53NdCyGEEH20efPmevXq3bx5c3aJHAgJ0SHVbdxPnjzJQU3FpneBO0vbt2zJTdudnfM5ZutWGDcOgNL2gqnIr96+fSuf+c7n61eg17Fjx4EDB8qTlrwov9IB1u3AxcWlb9++XNeiGePGjWvatCm724PrWopCR6/PT9JPqTLOlkSX9/2ZPXt2lSpVuCpD4/z8/NhkZ+rwWATsumvLli1HKN3Ixq67VqhQgS1Rom8GDx7cpUuX2NhY5ZnszZo1GzNmjLxvFyGGq0wZ2LcPateG/v25LkXTtmzZsm/fvrJly+7du1dP1ocghBCibywtLf/8809jY+M1a9YcPnyY63IIMWBfy6a7du1qYmISERFhiA05u3fvbmRkdOXKleTkZK5rAZlMNnXChKQrV8DCAv77L/+0/fffc9P29espbVdNdX41derU9PT04cOHd+rUiYvqCrBq1Spzc3PWS0BhF+VXWsXW8xMKhWKxmOtaNEYgELCona1nwHU5atN84P4863lwYvCuhF0XUy9KMbfNdLen3TzfeGr8XIXEVratVauWQbfbV2ZmZrZs2TIAmDVrlvJkZ6JCZGTkqlWr8r0sLO8stnTpUuWZ73qCzWRft27d06dPFXYtXbrU1taWrUyty5LCw2HQIFBowHP3LgwaBM+ewdGj4OYGCk/Sd+/AzQ2UBmJCcjk5wZMn8P49DBoEISFf7Nq/H376iaOyiufhw4fTpk0DgM2bN9eqVYvrcgghhOivVq1aLVq0CBF//vnnDx8+cF0OIYaqXbt2VlZWDx8+fPfuXd7t5ubmHTp0kEqlZ86c4aq2IrOysmrVqlVOTg7nDToQcdy4cWu2bGkRFZVx9Gj+nWR+/x3GjgUAWL8e9KC19MvbF4KXj2V/jmyccfmfzenJenTRRUV+dfHixYMHD5qbm+ttF9lq1apNmzZNvlpe3l0GmV9FR8Mvv8DVq4rbZ8yA7dtz/zs7GwIDYcQI6NMHhg6F9euBi8tgU6ZMkUgkkyZNatSoke7Prj3du3f/7rvvUlNTdT8dNlsm83v5UuFPUGxs4R9Bk4F7TE7MN8+/cXjgMPz1cK9Ir85POzd+1Phexj0NnqIIEhMTRSIRAKxcudLU1JTbYjRu8ODBnTt3jo2NLTGtcnTD19c3PT19yJAhnTt3VtjF1s5u0aLFqFGjOKmtMFq0aDFy5Mjs7Gx2W1Zetra27J3I29tbl00/o6IgOBj8/L4YjKKjITgY4uPh2TPYvx8U+m4lJ8P+/UALlRMVhEK4fx+Cg8HTExITP29/8ACCg7krq6gyMzOHDh2anp4+ZsyYIUOGcF0OIYQQfTd9+vSePXvGxcUNHTqU7sEnpGiEQmHXrl0BICwsTGGX3jVm+VJOTs7KlSuzs7Pz3durVy/gunhEnDRp0u+//25ubr5t716zLl3yOUietq9bpw9pOwAkRr9+ePGwQGhkZlk2MzX5QtC6dZ4d4t+/4LouAJX5lVQqnTRpEiLOnj27evXqHBVYsFmzZlWvXv3mzZu7du1S2GV4+VViIvzxBzx7prj9r7/g7FkAgA8foHVr+OUX+PQJGjYEqRRmz4YGDeDOHV2WuX///tDQUFtbW7aabgmzatUqU1PTwMDA69ev6/K8EoBTiYkfsrIs+Hz5HxN1+jhpLHDPxuw+L/pcSL0QWDMwpXlKUrOkx46P7YR2J5M57om2YMGCjx8/Ojs7//DDD9xWog08Hm/t2rV8Pl8sFitPdib5unTpUnBwsJmZmfK7/Lt379gqqXrYEE0Bm4B/+PDh48ePK+zy8vJq1KjR8+fPN27cqOOqatWCSZNAKtXxaUkJZ2EBPF5JaOY+bdq0O3fuODg4rF69mutaCqVePa8OHTYKBOW5LoQQQjTJxKR6hw5D7e3zC4b0DJ/P37NnT6VKlc6ePbtS4UZCQkihqW7jfuLECQ5qKkhOTs6QIUOmT58+ZsyYfA9gxQcHB586dYqTFQVZ2r5p0yZzc/OQkJDu3bvnc9Aff+R2klm7FiZN0nGFqvUcOdd14oqBflsmbDgjzcm+dGAT1xUBqMyvfv/99zt37lSrVk3POzeYmZktWbIEAGbOnKnQ8qgE5lceHhAZCdevw7//wurVsG8fPHgAZmbw44+gq+mPmZmZM2bMAIAlS5bY2dnp5qS6VLt2bR8fH0T09vZGRB2f3cXGZn7NmvI/A8qVK/zPaixSDEoMupV+a439Gg9bD2OeMQDUN61/zuHctIrTNHWKInj06NHmzZsFAkFJamOkQD7Zefr06VzXYgBkMhl7rc6cObNGjRoKe6dPn56WlsaapHNSXuHJW8xPnTo1Jycn7y6hUMgaXS1cuDA6OlqXVS1eDLdvg85zflLCGRvDwoWwdWs+N/MZkP/++2/z5s0mJib79u0rU6YM1+UUytOnIy5fniCV6u8MGkIIKYKsrNaXL//57p0314UUSoUKFXbs2MHj8ebMmXPlyhWuyyHEILHJ4GFhYQphTcuWLcuXL//69esXL/RidrOcVCodMWLEgQMHypYtO+krOfXFixdNTEzi4+NdXFxsbW179uy5YMGCsLAwiUSigwoRcfLkyZs2bTIzMwsJCenRo0c+B23bBmPHAiKsXQuTJ+ugqqIpY1fJ0qZC8scoAHh999K5v1clfnh9eMP0fUtGJ8W81WUlKvKrpKSk+fPnA8Dq1avNzc11WVURDBs2rFOnTjExMayHTF4lKr+6dQvCwmDuXGje/PPG6tVh7Vp48QIOHNBNFStXrnz16lWjRo2+dnGuBJgzZ06VKlWuXr36559/cl2LGoSaeqD/Pv1nxDNyt3XPu1HAE+T9XwlKMmQZRXhwnpSHWUW5juHj45OTkzNhwoSmTZsW4ccNxbJlyw4cOBASEnL8+PFvvvmG63L02h9//BEeHl6tWjXlZiwymaxMmTIWFhbLly/npDZ1eXt7//7779WqVUtKSipf/ospqD179vz222+PHj06Z84cda828XgmiMZq/Yjw/28kzZvDzz/D3Lnw449Qtapaj0GIKmPGwO+/g6cnRESAIa4z+v79+xEjRiDiihUrWrRoobA3Ojo6OTm5Xr16nNRGCCFEz33zzTc+Pj5r1qwZPnz4rVu3rKysuK6IEANTv3796tWrv3379u7du82aNZNv5/P5zs7OQUFBoaGhderU4bDCvKRSqYeHx99//122bNmTJ0+2adNG+ZglS5bMnTtXIBB8++2379+/v337dlhYGOuZY2dn5+zs7OLi4uLioqVfiqXtGzduVJG2J+7aZfPLLwCg52k7ANw/fygpNrJtv9EAEPv26aWDm++c3l+5blPg8UzMrSTZmTKp2tcwpDKQyNSOsFTkVx8/fqxZs6ajo+PAgQPVfVjdYzPZW7duvXr16tGjRzs4OOTdW3Lyq3PnAACUn/89ewKPB+fOwU8/QXq6Wg+ZzeNlqTOJOyoqiuVXa9asEQo1FvDqG0tLyyVLlowaNWrmzJkuLi4WFhZq/bjA1BTU7WDB46l3fH409u/xPOu5vZG9Gd9MxTF7E/e6v3ZXccDXdEzoeKnnpSL8YJkyZSwtLRcuXFiEn9VD0dHRFhYWylMjK1So4OvrO3/+/CtXrhj2G5b2sZlBy5cvV74szOfzt27dumTJEoXwWm8ZGxtfunTpa9WuXr36xIkT+/fv3y5fzaNwunZdeO7cfLV+pG9f8Pz/oshLlsD+/eDjk0+L7RYtvniX08ncC1JC8PmwZg106QLr18PUqVxXo75z584lJSX16NFjstL3jdu3b/fu3btChQrXr183M1M1hhJCCCnZ4uLi4uLiHB0dlXctW7bs2LFjr1+/joiIcHZ21n1thBg6FxeX7du3h4aG5g3cAaBnz54scB/HOp9wjc1t/+uvv1Sk7StXrmRp+44dO9zd3QEgPj7+9OnTFy9evHTpUkRExP79+/fv3w8AlStX7tSpk4uLS9++fatqaD4UInp5ecnTdhcXF+Vjtm/f7ufl9aRlS1sPD71N27dN78cXCNOTE7LSU9r0G922/y9se05muuvE5bWb597yHjh74Ot7l9V98DTb5r/tOqbuT6nIr+rWrXv16tXEvKta6beWLVu6u7tfv35deX1Uw8uvZs8GhUmZMTEAAO/fAwAoNU4AExOoWBHev4czZ6BnT7VOdalr1+4sxy80IyOjnj179lTzRAbHw8Pjt99+e/XqVeXKldX92cGXLz8zVm9SqQmfH9qsGQBsjIraEhUl336yWTNLgeDrP/cFjQXuWZhVVlBW9TFGPCNLvmURHtyUZ2ppqfYPIiJrtZGRkf+0+qysrOjoaOW+Inpr/PjxV69e3bdvn3LDk9TUVERMSUnhpDADwpqIJX992WhDSdsZFdWyp4RUKlX3tWNiYqLuqy3vxYty5WDZMhg7Fk6cULwo6OcHeadkRUVBSVzSg2hLp04wYgSIRDB4MNelqC8jI0MqlaampkqlUoWpBw4ODnZ2dvfv3/f19dX9uguEEEL0BCKOGjXq9OnT+/bt69evn8LenJyczMzMnJycLF31hCWkhOnZsycL3BVudGYp1enTpyUSCefzQ1na/ueff5YtW/bEiRNfS9unT58uEAi2b9/O0nYAsLOzc3Nzc3NzA4APHz5cvHgxLCzsyJEjUVFRwcHBwcHBAFC7dm027b13795FvlGGpe0bNmwwMTEJDg7ON23/448/xo4di4h/eXhM8vIq2ol0oHXfUaYWVpLszHdPIm4c2WlpXb7zoNxWY5XrfJ5gbmRiZmyq3nRaAMgyNlb3a3iB+RWfzzesDt3r1q0zMzMzyu/2ZAPLr7p2BSenL7awiyIs7/jakuY8HgiFoG62YmKi1jNHIpFkZ2erWMXhzZs3FStWVFiAV28lJCRIpdJ8Yy6pVJqVlZWTk2NmZiYodOTNGAOYqznD3fT/x/e2seliba28vVBQQzo96VThToWv7W3+sPmQl0M0da7CGzRoEAAMHTpUedf9+/dr167dsmVLqVSq+8KK4NSpUwBgaWkZFRWlsOvly5empqY8Hu/q1auc1GZA9u3bBwDly5dPTEzkuhYtkslknTt3BoAZM2bo5oyHDiEAPnqEiCiVYtu22LAh/vcfAuCVKygWIwBGR3/xIw8eIADu3q2bAouFfRSwsLBQ2B4ZGQkAVatW5aSqImMTXn744QeuCymUWbPQxib3v2Nj0cYGPTxwwQLk8TgtS00JCQnVq1cHAJFIpLz33r17bG77P//8o+vKVGrZEgEwPJzrOjQhLi4OAOzs7LguhGOst+PWrVsVtrPbk4OCgjipqsjYy+r169dcF1LypaQgACoNg4Zq/34EQH0bBtkCPDY2Nm/evFHeO2LECABo3Lhxenq67msrPpYbloyvKmyGadmyZbkuRD1sXdCePXsqbN+7dy8ADBo0iJOqdCkuLo7P55uamiq/iFhbvytXrnBSmJxEIhk+fDh7dn3txcIWT+bz+YGBgYV5zBcvXgQEBLi5ueVN2IVCoZOTk5+fX2hoaHZ2duErlMlk7GZNExOTI0eO5HvMtm3b+Hw+APj7+xf+kXUs/NiuBa6Vkz9+kG85GjBnYX/7lPjoa4e3L3CtnJ6cyElhKvKrksSQ8quHDxEAd+1S3F61Krq745o1CIC3byvuzcxEHg/HjtVBgQkJCeXKlfvaF8ktW7aYmZktXbpUB5VoxNixY62trf/991/lXexjUp06dTIzM3VTTJpU6hQeHvjhQ8GHfoXGFk1tZtYsThL3IeeDph5QI1auXGlubv73339fuHBBYVft2rWlUunNmzd37NjBSW1qkUqlPj4+ADBnzhzlGyh8fX0zMzPd3d3btm3LQXEGZdCgQV27do2Li/v111+5rkWL2HO+QoUKs2fP1v3Z+XzYtAmePoWtW3V/clKSlS8PS5bA7t0QEcF1KWqysbHZs2ePQCD49ddfT58+rbC3cePGbEGh0aNHv3nzhosCCSGEcOnevXuzZs0CgB07drArSXkFBQUFBgZaWFgEBQVR8zFCiqZcuXLNmzfPzMy8dEmxVy2b5B4aGspFXbmkUunIkSP37NljZWV1/PjxfL/Xr1q1ytfXl8/nb9++3cPDozAPW7t2bU9Pz6CgoPj4+PDwcH9/fxcXFx6PFxERsXz58p49e7LVVpcvXx4REYEqO0cjore39/r1642Njffv39+3b1/lY3bs2PHLL7/IZLJly5b5+fkV8nfXB+XtHVAmTU/huGGLivyqJCk5+VXXrgAAZ84obj91ChBz92qZjY2NSCQCgGnTpinPc69Xr15GRsbSpUuj8jRF0Vt37tz5448/UlNT69atq7ArISFh8eLFACAWi01MTLiorig0FrgPtR2KgL9G61eIydbGZGOD7MsbPczMzFjAMXv2bOWuUvpmy5Yt9+7dq127Novd8zpz5szBgwctLS2VF4Am+RKLxQKBYP369U+ePOG6Fq3IyMhgOfuyZcvKli2g0ZOWtGwJ48fDoUOFPf7hQzh5EqKjtVkTKRHGjoVWreDwYa7rUF/nzp1nz54tk8lGjBgRHx+vsNfLy6t///6JiYnu7u5SqZSTCgkh5Gt4vMzmzac2aTKD60JKprS0tEGDBmVmZk6aNGnAgAEKe1++fPnLL78AwNq1axs2bMhFgYSUEF8L1jkP3KVS6ahRo1jafuLEiXbt2ikfs3r1annazm55UUveWe0JCQmhoaF+fn5OTk5paWlhYWEzZ85s1apV5cqVBw0atHXrVnYXb16I6OPjw9L2AwcOuLq6Kp9ix44dY8aMkclkS5cunTlzproVckiSnXn/wiFjUwu7qhwvnKsivyoxSlR+1aIFdOsGS5bA48efN8bGwrRpUKsW/PCDbqoYP358kyZNXr58KRaLFXY5Ozt///33qampnEzEVJePj49UKp08eXKjRo0Uds2ZMyc+Pt7FxSXfNx+9pbHAvYNFh7Hlxm6O2zzk1ZDQ5NA7GXf+Sfpn2Othp1MUp/Lp2MyZM2vUqHHr1q3AwECFXUOGDOnSpUtsbOySJUs4qa2QEhMTFyxYAACrVq1SaL0kn/k+a9asKlWqcFGd4WnevPno0aNzcnKmTZvGdS1a4e/v/+bNmxYtWowcOZLDMpYsgUKuZuHpCaNHw+HD0Lp1PpeHCcmLz4fNm0HNpm36Yv78+R07dnz37h2LTvLi8Xjbtm2rUqXKhQsX9HxIIoSUQoiS27fX3Lu3ietCSiYvL6/Hjx83atRoxYoVCrtYi4nk5OSBAwf+/PPPnJRHSInxtWC9e/fuRkZGV65cUbHQl/awtH337t0WFhaHDx/ON21fs2bNtGnTeDzepk2bipC2K7C0tHRxcfH39w8PD4+KigoKCvL09LS3t4+JiQkODh47dmz16tXr1KkzduzY4ODgpKQkVmRUVJSpqemhQ4fyDbx27twpT9vZ/Tr678hGv+DlY/9cMEz8c9v3T2/1GbtYIMyn27iOqcivSoASmF/t2gW2tuDkBCNHwtKlMH48NGoE8fEQHAy6mogtEAhY1L5kyZIPHxSbjqxcudLU1HTXrl3Xrl3TTT1FExwcfPbsWVtb27lKC/09ePDgjz/+EAqFrKuMIdFMbxtERJSiVBwjrn2/NkQARIDZLbNez3pdTb2KiG0et/F45aHBc6nlzz//BICKFSsmJSUp7Lp58yafzzc2Nn7y5AkntRUGa5TWvXt35V2bNm0CgFq1amVkZOi+MMMVExNjbW0NAEePHuW6Fg2LjIw0Nzfn8Xjnz5/X5Xlv30ZPT1Rob/Xff+jpiS9f4tmzOHkyJid/sTc6GidPxmvXcPt2ZM0DAwLwxx91V3PhUQ937dm3D1euRJnsqwccPIg+Poob16/XTU88zXv79q2trS0AbNq0SXnv2bNnBQIBn88/c+aMzkvLB/VwL3mohzspmq+NgwZKr3q4s8UMTU1N79y5o7yX9WSoVq1afHy87mvTIOrhzjnq4Y6ImZmZFhYWPB4vJiZGYVfHjh0BICQkRMclSSQS1hzGwsLi3Llz+R6zevVqAODxeFu2bNFqMfKG73lvkhYIBGxq/PHjxy9dupTvD+7cuZP1bV+yZIlWK9SU1/euHN4wnf058ceC60e2J8W+Y7te3bl4eMP07Iw0DstTkV8ZOsPLr6Ki0N0dlZ/53t4YEJD732lpKBZjv37YujX27o2//oofP+q4TERkd8iNGjVKeRe7BtauXTuZim/dnMrIyKhZsyYA5Psux66Vent767iqbJlsxdu31xRiLHVoMnCX+yT5FJOjOIZxSL6ApJ+fn/JeNlukX79+ui+sMB4+fGhkZCQQCJQ/hcuXRzhw4AAntRk0tuBMgwYN1FooRv/99NNPADBkCAdrFBffjh04eDDXReSHAnctefkSy5ZFADx0KJ+9Z85gjx747p3Oy9Iy9vf/tWyFfR6yt7fXh2yFAveShwJ3UjQUuGvJ27dvbWxsACBA/r09jzNnzggEAqFQ+LWQy4BQ4M45CtyZ3r17A8Bff/2lsJ3dUD558mRdFiOVSuVp+9mzZ/M9hs3o5PF4mzdv1llh2dnZ58+fZ7dmCoVCefhuaWnp6ur633//5T3477//FggEBpS26z/V+ZXhkudX+/fv57qWEujFixcmJiZ8Pv/atWsKu1JSUtj9BLt37+aktgItWrQIAJo1ayaRSBR2se/Otra2H7m4jFFMWgnc9VBERMTXZrLHxMSwS7jHjh3jpDbVvvnmGwCYMGGC8i5vb28AcHZ21n1VJUB2dnb9+vUBYPXq1VzXojGXLl3i8XhmZmaGmD6kp6OTE375+U1fUOCuDTk52L79VyOP2FisXBkBcMUKnVemfaylTKNGjdLT0xV2ZWdnt2vXjsfjTZnyJye15UWBe8lDgTspGgrctSEnJ6dDhw5fG5FjY2MrV64MAIsXL9Z9bRpHgTvnKHBn2KQr5UmgN2/enDBhwqlTp3RWiVQqZc1hLCwsvnZrIydpu4LU1FR5w3cejwcA33///ZEjR9jevXv3skS+ZLxT6Q8V+ZXhovxK29hdce3bt1eeyb5z504WXKSkpHBSmwrv3r2zsLAAAOV3wszMTLaAar53h+u/0hK4I+KoUaMAYMCAAcq7li9fDgANGzbUt8nOhw4dAgAbG5u4uDiFXfKZ77dv3+akthLgyJEjAGBlZRUdHc11LRoglUpbtWoFAAsWLOC6FrVlZ+MPP+TTOURPUOCuDbNmIQDa2+dzy51Mhv36IQB26YJKF7lLgrS0NLbwXb4XU1++fNmlywkAzG++o05R4F7yUOBOioYCd21gK5jle0uTTCbr168fAHTp0kV5tpchosCdcxS4M3fu3NGHT+9qpe36kzRFRUWNHj1a/j2C0natUpFfGSLKr3QgOTmZXarfs2ePwi6ZTMYG4rlz53JSmwrDhg0DADc3N+VdixcvZtPUcnJydF9Y8Wls0VT9t2zZsrJlyx46dIh92sjLx8enXr16jx492rx5Mye15Ss7G3bvLmtiYiUSiditN3lNnTo1JyfH09OzWbNmnJRXAvTt27dPnz7JycnsFkJDt23btvDwcHt7e19fX65rUc+HD+DiAo0bw+rVXJdCdOXcOVixAvh82LUL7OwU94rFcPgw2NjA7t2Guj6qaubm5kFBQWZmZps2bQoKClLYW6tWrcmTewGAtzfcvctFfYQQQrTs3Llzy5cv5/P5u3fvZmt75CUWiw8fPmxjY7N7925BiRwICeFIkyZNKleu/P79+0ePHnFVAyJOmDAhMDDQ3Nz8yJEj3bp1Uz5m7dq1U6dO5fF4GzZsGD9+vM5rzF/lypXnz58PAKdPnz579uywYcMkEsnSpUvnzJnDdWklkIr8yhBRfqUDZcqUWbJkCQD4+fmlpaXl3cXj8dauXcvj8VauXPnq1SuOCszH1atX//rrL1NTU+V142NiYtjGNWvW5O1tZUBKUeBesWJF1huXvdTz7jI2Nv7tt98AYMGCBR8/fuSmPiXr1sH+/V07dPgwYcIEhV1Hjhw5fvy4jY0Na3VEimz16tVGRkZbt26NiIjgupZiSUlJYZ9+Vq5cye7HMRSJieDkBC9ewKNH8NNPMHEi1wUR7fv4EYYOBakU5s8HZ2fFvffuwezZwOPBjh1QvToX9elE48aN/f39AWDcuHFv3rxR2DtwIIweDZmZMHQoZGRwUR8hhBCtSUxM9PDwkEqlIpFIOWu7d+/e7NmzeTzejh07qpfggZAQLvB4vB49egBAaGgoJwWwtD0gIEBF2h4QEDBlyhQA2LBhg3IUwK0aNWo4ODgkJSWZmJgMHTr0119/ZRkL0TgV+ZXBYfmVtbU15VfaNmLEiDZt2rx//145v27Xrt2wYcMyMzNnzJjBSW3KEJEtherr68sWTc1rxowZycnJP/zwA1s01RCVosAdAKZMmeLg4PDw4cOAgACFXf379//mm28SExNFIhEntSmIjYXFiwEAZswwNzIyyrsrOzubTWHOd+Y7UUuDBg0mTpwok8l8fHwQketyim7RokXR0dEdOnQYNGgQ17Wox8ICDh+GQ4fAzw/8/GDcOK4LIlqGCD//DFFR0LkzzJ2ruDctDQYNgsxMmDQJBgzgoj4dmjx58oABAxITE93d3aVSqcLedeugQQN48AD8/DipjhBCiFYg4qhRo96+fdu5c2flaaFpaWmDBg3KzMycNGnSgBI/EBLCBZbdcBK4s7R9y5YtLG13Vp54ArB161Y2pV0P03aG/QWGhYUFBgbOVf40TzRHRX5lQCi/0iU+ny8Wi3k83m+//fb69WuFvf7+/paWlvv37z979iwHxSkJDAy8fv161apV/ZS+8UZEROzZs8fY2JjNUTNQpStwNzY2Ztd55s+frzyTnU12DggIuKsH9/DPng2fPkG/fvDNN4q71q1b9+TJkwYNGujnAGxwRCJR+fLlL168ePDgQa5rKaIXL16sX79e/t7KdTnqMTYGJ6fPf5o04bogomXr1kFICFhb598uZvJkePwYGjeG5cu5KE63eDzeH3/8UbVqVcQ6y5dnK+y1sICgIDA1hQ0b4NAhTgokhBCieevXrz906NDX2sVMnjz58ePHjRs3Xl4aBkJCuNCrVy8ej3fmzJnsbMVPX1qFiBMnTiwwbR83bhwArF+/Xm+/7MuvWBjcF0+Dozq/MhTy/Goi3cyuE+3btx8yZEhGRoZyii2PtidNmiSRSLio7rPU1FQ27YBdBsi7i818l8lkvr6+Dg4OHBWoAaUrcAeA7777rnfv3omJiQsXLlTY1bBhw3HjxkmlUnYDF4du3YIdO8DYGFauVNwVGwthYQ2EQlN2eYCL6koa+Z1NU6dOTU9P57qcoli9+lXZsjajRo1q3bo117WULkZGRg0bNqxXrx7XhRiM+/eB3XW6ZQvUqKG4NzgYduwAU1P46y8wM9N9dRwoV67c33/funx5h0hkdvGi4t4mTWDpUkCEUaPg7VsOytu3D+7cAUdHDk5NdKxatWoNGza0srLiuhBCdKFnT7hzh5uVY+7fvz9z5kwA2L59ew2lgTA4OHjHjh2mpqZ//fWXWSkZCImuWFpaNmzYUPlZVwpVqlTJ0dExLS3t2rVrOjspS9s3b95sbm5++PDhfNP233//XZ6263M02aNHDyMjoytXriQnJ3NdS8mnIr8yCLGxsWzdS8qvdGnFihUWFhZBQUHnzp1T2MWatzx48GDbtm2c1Ca3ZMmSqKgo1uhGYdfu3bsvXbpUsWJF5WsGBoajxVq59ODBA7Y+8t27dxV2JSQksJtcDh48yEltTJcuCIDTp+ez65dfEADd3ZN1XlRJJpFI2NodhrjA+okTCIBVqiRHR8dzXUuJlZKSAgAWFhZcF6IZ+/fvB4AffvhBx+dNTU3t3r1fw4bh48fns/fNG7SxQQDculXHdXFv9mwEQHt7jFd6Ectk2K8fAmCXLiiR6KKY5GR0csLu3TE19fPGrCx0csLAQF0UoCVxcXEAYGdnx3UhHBszZgwAbC0pLzPW3vr169dcF1LylYxxcNkydHLCXbu+2Lh6NXbrpqMC0tLSGjZsCAATJkxQ3vvmzRsbG5uS9ArNq02bNgBw9epVrgvRgMTERAAoW7ZsvnufP38eFxen24qKZe/evQAwaNAgrgvRqbFjxwJAly5dzp8/n52dre3TyWQyNl3d3Nz81KlT+R6zdetWHo/H4/HWr1+v7XqKr0OHDgBw+PBhrgspFVTkV/qPffJ0dXXlupBSh12had68uUTpO2RQUBAA2Nraxit/+dSVFy9emJqa8ni8a9euKexKS0urVq0aAAQa9JdPREQsdTPcAcDR0dHT01Mqlfr4+CjssrGxWbBgAQD4+vpmZmbqvjYA+PtvOH8eKlQA5bW+b9+G7dvB2BjmzCnDRWkllkAgWLNmDQAsXbr0LSfzSItKIoFp0wAApkwpU7GiLdflEH3x/v17Dw+PAwcOcF3IF3x8fE6fPmxq6rlqleJ6CRIJDB4MiYnw44/wyy+cVMelhQuhQwd49y6f353Hg23boHJlOH8edNO/TiqFiAg4fRp+/fXzRpkMIiIgOloXBRRZenr6ggUL9GcVIFJ8Mpls165d33//PRryIiulxPDhw5cvX56VlcV1IapERkJEBPj4QGzs543v3sHt2zoqwNvb+9GjR40aNVqpdBOrRCIZPHhwYmLijz/++EvpGwjXrl3r4eERm/cfxmCNHj3awcFh+fLlOm5XQgovMTHx/PnzdnZ258+f79Kli7W1dc+ePZcvXx4REaGl4YbH41lZWZmbm4eEhHTv3l35gD/++IPNbV+3bt2kSZO0UYNmcdgHvxRSkV/pudu3b+/YscPIyEh51CPaNn369Jo1a96+fXv79u0Ku9zc3Lp165aQkMBuPuAES1w9PDzY9fi8li5dGhkZ6eTkNHz4cE5q0ySuE39uJCQk2NnZAcC///6rsEsikTRt2hQAli1bpvvC0tOxRg0EwD/+yGdv164IgNOm6bys0uHHH38EAHd3d64LUYNYjABYpw5mZnJdSolmQDP70tLSRCKRubk5ADg6OspkMuVjOJnhzk5qamp6584d5b2zZiEAVquWzxTvUuLt29wJ/gEB+ewNDUU+H9u3x5wcrVeSmIgA2Lo1GhmhfBpNRgYC4PLlWj970chksj179lStWhUAjIyM3r17p3wMzXBnDGiG+9mzZ5s3b84+rB47dizfY2iGu86oHgflbRkaNGhw9OhRHddWeBMmYKVKWK0aenh83jh1Klpb6+LsBY2DswCgWrVqHE430yoVM9wzMjLKly8PANbW1mvWrNHBdONiUjHDPSkpqVevXuzl0LBhw+PHj+u8OrWVthnuCQkJTk5OAFCzZs1ffvmlcePGebORihUrDh06dPv27W/fvtX4qZ88eZLv9t9//53P5/N4vHXr1mn8pFpy8eJF9p7PdSGlhYr8Sp917doVAKZRgMUR9vZeoUKFxMREhV23b98WCARCofD+/fu6L+zUqVMAYGlp+f79e4VdL1++ZDPfL1y4oPvCNK6UBu6IuG7dOgCoXbt2plJUqeKfX9tEIgTAFi1QKlXctXcvAmCFCqj0YiGaYXCv7fh4tLNDAAwJ4bqUks5QAveQkJCaNWuyLwyurq6vXr3K9zDdB+5v3761tbUFgM2bNyvvPXsWBQIUCvHiRZ1VpI+CgxEATU0xvygGjx5F3UQQLHDftAkbN8aOHXMHI30O3MPDwzt27Mie9k5OTl97A6fAnTGIwD0yMtLd3Z0txWZvbx8YGJjvtUOkwF2HChwHQ0NDGzVqxF6JLi4unHx/K9CECVizJu7ahTwenj6du1E3gXtB4+BZ9r33YskdCFW3lHny5Imrqyt7/tSrV0/P+1SobimDiKGhoY7/X//ExcXlwYMHOqxObaUqcE9MTGzVqhV7msm/6cfExAQFBXl6eio0uK9du7anp2dQUJBWL4P98ccfBpe2I2JOTk7ZsmUBQBtXJki+VORX+klF2kt0RsU1D09PTwDo2bOnjkuST3FeunSp8l5DnAWrQukN3CUSSZMmTQDA399fee93330HACNHjtRlSZGRaGGBAHjunOKu9HSsWbOUdjfWpdmzZ7PIRqp8xUP/jB+PANijB9d1lAL6H7hHRER07tyZfT1o2bLl+fPnVRzMAvcBAwbopracnByWh7K+EAri4pJq1MgCwEWLdFOOXhs9GgGwUSNMT+esBha4BwRgWNjnQUc/A/eoqChPT08+nw8AlStXDggIUPHWTYE7o+eBO7tHh60VaW5uLhKJ0lW+GChw15nCjIPZ2dlisdja2prda+Lp6alvnaxZ4C6TYbt22KBB7t2BOgjcCxoH46pUqQIAi0r0QFiYHu4GcdkGCxG44/9fDiyRNDIy8vLySkpK0lWB6ik9gXu+abuCFy9eBAQEuLm5sQUVGIFA4OTk5OfnFxoampGRocGS5Gn72rVrNfiwujFgwAAA2L59O9eFlBaq8yt9k56ezuaB6e1nzlLi1q1bAoHAyMjo8ePHCrtiY2PZZ7b//vtPlyVt2LCBXTpSfjs9ffo0+wrw5s0bXZakPaU3cMf/z2QvU6ZMVFSUwi4VLfy15+NHHDcOhw7NZ9eCBQiAzZvraNG8UislJYV959H/9Rnu30ehEIVCvHeP61JKgfT09FatWllaWopEIs1+zi6+jx8/enl5CQQCFiaKxWLldVHyev78edeuXcuVKycUCl1dXQMDAz99+qTVCufOncumqX78+FFhl0wmc3V1bdiw1cCBL+jNDRFTU7FBAwTASZM4q0EeuCOimxva2mJMjN4F7izIsLKykgcZqp/GqampM2fOtLKy0v0kDn2zZMmS6tWrN23aVN/W3ZLJZEFBQWx2IY/Hc3NzUx2j5+TkBAQElClTpmzZssOHD4+NjdVZqaVT4cfB+Ph4+ahka2tb4KikSyxwR8TwcBQIci/06iBwVz0O9u/fHwA6d+6sP39R2jBq1Khy5cr17t1b9bdo/c+pU1NTZ82aVaZMmcK8HNT9kKZ7z54969KlS9WqVWfPns11LdqVmJjYunVr1Wl7XhKJJDw83N/f38XFxdTUVB6+m5mZubi4+Pv7h4eHF3OG1rZt29ikAYPIT5Wx1GzIkCFcF1KKqMiv9I2KFTuJjrGFYfr27au8a9WqVQBQt25dnd02kZCQUK5cOQA4ePCgwi6JRNKsWTMAWLx4sW6K0YFSHbgjIvuMO3r0aOVdM2fOBIB27dp97UZmLVE+27t3uTPfz57VZSGlVGBgIABUrFhR2ylkMfXsiQDo7c11HaWGfAHS2rVrHzhwgOtyENX/UpqcnOzn52diYgIAlpaWrF0DAJiamvbv3z8wMDAhIUHjRZ47d04gEPD5/NPyu/fzEIvFAGBjY1NiLmIX3927aGqKAKj7Do3R0Xjq1BeBe2QklimDo0frV+AeEhJSp04d9ux1dXV9/vy5ioOlUunvv/9esWJFAODz+Tdu3NBZnfpJIpHUrl0bAIRC4eTJk/WkW3Qh+wLJnThxQt6ugaUVdnZ2GzduzNHBKgelmFrj4K1bt9hdzKBPnazlgTsiTpyIpqb46tXnwP3YMdTCMEjjYK4PHz6wm1fKlCmzbNky1d/t9TOnlkql27Ztq1SpErsuyJ7edevWLbClckRERKdOndjxPXv2U3kXou58+vRp+vTpxsbGAFCpUiV9m1CiWfK03cHBoQg9Y9PT00NDQ/38/JycnNigw5QrV87NzS0gIODFixfqPqahp+2I+OTJE/aXYBC3hpcYKvIr/fHu3TsLCwsAOEsBlh6IiYlhiYHyKjvZ2dn169cHgNWrV+umGC8vLwBwdnZW3rV582YAqFatWlpamm6K0YHSHrg/f/7cxMSEz+crz2RPSUmpXLkyAOzZs4eT2uSGDkUALAX3+ekFmUzGvvbr80SPAwcQAG1tUWmmFNGi06dPs3ZjbJC4ffs2h8Wo1R5UJpMFBgbKvyK6ubm9ffs2MjIyICDA1dVVKBTKb5jt2LGjWCz+8OGDRopMSEhgDR9EIpHy3nv37rHv3v/8849GTldirFmDAGhjg7qJXyIjMSAAXV1RKERra4yJ+WLt1pUrkc/HixdzA3fdXoBW9OjRoz59+rCna2HWZrx27Vq7du3Y8W3atLly5Ypu6tRzCQkJXl5e7IVvY2MjFos5zKmV+wKpjtWePXvm5uYmz7mCgoLUfVaQ4lB3HAwJCalVq5b88tjLly91U6cy9t6VN3BPTMSKFXHgwNzAPS4OhUIUCLBjRxSLUUPDII2DX3j79q27uzt7PlSrVq3A20lv3rzZpUsXdnzz5s3PKffc1KHr16+3b9+eFdO6devLly+fOnUq78sh37Vw82IL7XTo8CcAuroid68GxY+F7u7umvrgp5/ypu35Lquulri4ONbwXf7mJr8S6e7uHhAQUJhAX562L1u2rJj1cIv9Jdy8eZPrQkoRFfmV/hg6dCiUjkZVhuK3335jn5OVlyX/77//AMDKykoHA8HDhw+NjIwEAoHyiJmYmMiWTw8ODtZ2GbpU2gN3RJwxYwYAtG/fXnkm+/bt2wGgatWqqampnNSGiJcvI4+HZmb4leUPieaFh4fz+XwTE5Nnz55xXUs+srLQwQEBcONGrkspfaRSaWBgYIUKFdi0Snd395iYGB3X8Pjx42+//ZZ9uK9fv36BPdeUvyIqHPDx48fAwEBXV1c2y4n9aix5L+bXEtbbsVOnTsoJWmpqasOGDQFg4sSJxTlFiSSTYf/+CIBdumixjdiLF7hiBbZtizweAuSu1zpgAD558kXgnp2NjRtju3a5gXtgIHbvnv+yrlrFmlQUPiN+9+6dfNXNqlWrqlh1s9TKm1PXr19f9zl1EfoCiUQido+OhYWFSCTKO0NWrfseSHGoOw5mZWWJxeIyZcoAgLGxsZeXV3Jyss6qZa5fx/bt8ezZLwJ3RAwMRABs1w6trfHhQ+zZE4XC3PdDgQC7d8cNG1D9ubBfyMjI8PLyyrddTKkdBxUu2xQmp+b2so2KAYX1tmIZAXs5qG5vlZ6evmCBzNwcAdDMDEUi1P00vtJ2KTopKYmtH6CRtF2BvOG7nZ2dQvjOVlvN9+1u+/btJSNtx/8vDLNcT26BLDVU5Ff64PLlyzwez8zM7BUFWHojKyuLzWRfs2aN8l72jWDs2LHaLuObb74BgAkTJijv8vHxYbmBfj6ri4wCd0xOTmYz2f/880+FXVKplI3Q8+bN46Q2qRTbtEEAnD+fk/OXXmwCzo8//sh1IflYsgQB0NER6dZ5riQkJPj5+bF42tra2t/fPysrS8fntbGxKfC879+/l39FrFKlSoGZY0JCAkveWaTFvj06OTmJRKKnT58WoeCgoKCaNWvm24j5559/BoBGjRqpXhGx1IqNxSpVEAB//VXDj/ziBYrF2LHj55zdzAxdXTEwEFnambelDHPhQu7B/v7YpAkCoFCIkyahbpqR5I0zhEKhp6en6jgjLS3N39/f0tISAMzMzPz8/FJSUnRRqGHiKqdWty9QYSZjqpvgk+JQdxx8//69/FaGKlWqqF7iWIMiI3Ho0Nx3MFdXxcBdJkNnZwT43MM9IQEDA9HVFU1Mct8h+Xx0ckKRCIs0DObK9y+nNI+D6l62SU9P9/f3Z5dt2Bu7bi7bFPK86n48e/cO3d1zn5ZVq2JgoI7uHiuFl6LlaXvdunU1nrbnJZVKw8PDxWKxm5sbe8IwQqFQvtoqm1i6Y8cO9k64dOlS7dWjM//+e6Vr12tDhiRyXUjpoiK/4pw8QJtPAZaeOXz4MPvMpvxN6tmzZ8bGxnw+Pzw8XHsFHDp0iI2ScXFxCrsePXpkZGSk7QI4QYE7IuK2bdu+NpP90qVLPB7PxsaGk2/s27fnfhTjboZ9KfXhwwf2pf3kyZNc1/KF6Gi0skIAPHGC61JKvSdPnvTt25d9nq5Xr96RI0e0dy4dfzVNS0sLCQlxd3dnqSXj6OgoEokePXqkVuX5fucMDg4GAFNT0wLntZVmYWHI56NQiNeva+DR7t9HkQidnHIjJAA0N8/N2RUGN+XAHRE9PHJnuCckoJdX7iRQGxsUi7V75e/UqVNNmjRhz8Du3bsXuM4nu2FfHuPSzJrC0HFOre2+QMo9aqi3rPaoOw5ev369Q4cO7PjWrVtfunRJe7Wlp6O/P5Ypk3tZ0c8Pk5MVA3dEvH8fjYzyWTQ1LQ1DQtDdHS0tP79tOjqiSIRqDoP5o3EQtT+NoJjUnVmv/g2I2L597lOrdWtUuv9Qk9jHwtJ2KTopKalt27YAULNmTV1+HsjIyAgLC5s5c2arVq3YOgSMjY1N27Zt2fD022+/6awerfr4Efl8NDXl4F6NUk5FfsUtfWgRQb6GfQIfN26c8i42wXzYsGHaOzvr2ywWi9UqzNBR4I6IKJVKWWe3fBssrl+/npMv7cnJWLkyAqD+XbksFRYvXsxmHn2tcUFqauqIgowe/fOIEVjgn8J3jRgxAgHw++819muSYlKrl3rRcHjzdXp6OkveWRiXN3kv8vXnt2/f2traAsCWLVuKXFgpMXs2+vhgcRaNZzl7gwafAyNbW3R3x5CQrz5sVhYGBODDh19sjI3FgACUt2t+/Bj79Ml9wPr1saBUoSiUW3WrPj4iIqJz587s+JYtW57XkzXpDAfLqVk0UK5cOW0sUahu7/jiTMZUdxVWUhzqrikSFBRUrVo1+P+aItpYLDQkBGvVyn2Pytss+8IF/OsvxYP/+w937PjqQ6WmYnAwDh6cm92zP02b4sKF+PBhESdZ0ziYl8Yb5RVf3t7xLVq0UKt3fGhoKOsUVLiXAwYGYqVKCIA8Hrq7a2zxgLxK56Voedpeo0YNDn/llJQU+WqrACAQCOrXr79kyRKu6tGGVq1oKhgHVOdXctu2bSswr1BXVFTU106nz1PvCf5/IrlAIFBegycxMXHFihVaXT07KSlp6dKlyk3kjxw5Al+Zel8CUOCeSw9bTfn5IQC2b8/xInWlVmZmZt26dQFg8+bN+R7w8eNHKIiRkZH865mKP4XsRxIejnw+GhsX675monFsfihb+5vND01KStLIIxdneTF1vyKqlpGRERIS4unpyWbZM7Vq1fLy8rpw4ULhU7CcnBw2vfGHH37QVG0l3vr16OeH0dFfbNy8Gf/4I//jpVIMD0eRCOvW/fwmU65cbs6u9CGn6EJCsE6d3Md3cVHM6ItMdatuZR8/fvTy8mJJsZ2dnTaS4tIjPDy8U6dO8usWmsqpOekLxILdGjVqyIPdfNtbEY1QdxxkL3NTU1P5y1xT3/Fu3sQuXXLfl1q0QA2uspmRgSEh6OmJFSrkPn7z5s40DmpK8ZeC10gZGhlQlG8bUv1y+PQJp09HY2MEwCpVCvuloDDyXopu0aJF6bkUnSKReMydCwB16tTR1HOj+F6/fv3PP/+UvGm/s2YhAPr6cl1H6VOY/Gr06NEF5hXqevj1T/x+fn6gx83lCSJ6e3sDgLOzM9eF5MrOzmbN5VevXs11LVrBQ0SNvwgN1NChQ//++++ffvpp7969XNcCALBuHYhEcPIktG7NdSml1YEDBwYOHGhra/v06VOFxXAAICsr6++//1b9CHy+QCZzL/BEHh7A5xdcz9Wr8Msv4OoKy5YVfDDRsfj4+EWLFm3cuFEqldrZ2c2bN2/SpEl57yRVS1pa2m+//bZ8+fLMzEwLCwtfX9+ZM2eybEIHZ1dBKpVeuXIlODg4KCgoOjqabaxRo8aAAQPc3Nw6duzIpqN+zdy5c5csWWJvb3/79m3l1xTJV+vWEB4Ow4fD7t2fN3buDObmcOLE5y1SKVy5AsHBsH8/REXlbqxWDfr0AVdX6NMHhELN15aTA5s2wfz5kJwMRkYwfjz8+ivkuR1CPYi4e/duPz+/6OhoHo83fPjwFStWsEjlK2fP2bRpk0gk+vTpk5GR0fjx4xctWsQiP1JkiLh///7p06e/efMGAFxdXTds2MBi66I5ffq0j4/PvXv3AKB79+5isVjeJihfhw8f9vLyev36NTv7+vXr5XMziyAtLW3ZsmWrVq3KzMys7FB58tnJPpV8zPhmRX5AooK6I1FkZOScOXN2794NANWqVVu8eLGHh0cxzg6LFsHGjSCVgp0dzJsHkyaBFoZByMmB06chJCTzn39qf/jwgW2sVavWjz/++OOPP7Zt25bGwaJR9y1d3U9Kmj17gaKjo2fPns1uzXFy6jhhwsWRI1V92n/+HGbPhpYtYebMIp/zs5gYWLPm3m+/NZfJZBUrVly8ePHo0aP5hfmyYfhSpdJJz569zMgot2fPWh8fdj8N0Z4zZ6B7d2jWDG7f5rqU0qfA/Ory5ctPnz7V7Em///77fN8bX7586ejomJOTc+XKFdbGneihxMTEevXqffz4cf/+/T/++CPX5cCqVat8fX0bNGhw9+5dIyMjrsvRAo4Df30SGRlpYWEBAGfPntXleZOTMSgIFeYcpKVhUBBqoTsFUU/Pnj0BwMfHR8fnPXECg4MVmyOHheHZs6jNG31IcWlkjvnOnTvZ7Xg8Hk/1jXuozfn1qkml0gsXLnh5eVWtWlU+oNjb23t6eoaEhOTbKeLcuXMCgYDP558+fVoHFZYYrVrlLqAaFvZ5Y6dO2KsXIqJEghcuoJdX7j3p7E+NGujlhRcu6OgGqago9PREgSB3Kr1YrEabLLnLly+zG64BoGPHjgX2LFLrtn2irrxzzM3NzYs2x/zFixf9+/dn/0Z169Y9dOiQ6uO11xcoMjLS3d2966GuEAH2d+0D4wNlSHOvtEXdcTAsLKxx48bs+B49ehThtZydjWIxli2LAGhkhF5eqJNhkMZBrVB3jvmzZ88GDBjA/vLr1KkTEhJShJMqzK+/f/9+UctXxN7W2rb9FwBbtlT8uqes+KN23pdDu3b9dfaxUE+kSiQjHz1yCg/ve/fu++K05COFlpWFFhbI42mlIRJRjav8Kl/srXjUqFFcF0IKsGnTJgCoVauWVhvIFEZMTIy1tTUAFLikk+GiwP0LCxYsAIDmzZvr8ob0J08QAI2Nv7gf/80bBFDVU5Loxv3794VCoVAovHfvni7P27QpAqDCgjpt2qCrqy6rIEWk0C5T3S7qgwYNgsItKBcaGtqoUSNtfEUsPKlUGh4eLhKJHBwc5ImDnZ2du7t7SEiIfAG0hISE6tWrA8CCBQt0X6RBa9UKBw3Cnj2xXr3PjddZ4L56NVpbf87ZGzbEuXPx1i1u6oyIwE6dcitp2RLVbUbCPvwVplW3ug1/SZGxnJpN17W3t1d3icIrV67weLzCNAzRTV+gM8lnmj1sBhEAEdD1Sddb6bc0fgoip9Y4mHdhcHW/dIWGYqNGn3tbcTEM0jioeer2Qjl16hRb7WbatGlqnUjdhX+LQCaT/fUX2tvnNmofMgS11+MkJAQdHHJfDv364dOnpevKYrpU+svjx5S2694339Cyc5zhJL9SdurUKQAoU6aM6oliRB9IJJJmzZoBwOLFi7mt5JdffgGAvn37cluGVlHg/oX09HT29eD333/X2UlZ4G5mhs7On+c1UOCuP8aNG8fSTF2etGlTNDNDCwvMu5YYBe4GJD09XaEHcXJyYVdXe/369e7du1UHW0+ePHF1dZV/RTx8+LAmqi6u+/fvi0SiBg0ayBMHGxsbd3f3Q4cO9evXDwA6d+5M/bXVxQL3hw/RyAjlKQ0L3LdvRwB0dESRCIu6iq0myWS4Z8/nWMHXNywyMrKQPyuRSNauXZuWlqbimISEBD8/P2NjY/bU8vf3z9Jgs1vyFVevXmVLzwFA27Ztr169Wvif/f333z+onPOm43t0pCgNjA+seLciRAA/gu/+yj06O7rgHyNFou44GB8fv3HjxsI//qNHj8aNu8WyxQYN8NixYlesCTQOapBaq33m5ORs3ry58G8giYmJ8gHF2tpa2wNKWhr6+6OlZe6XPj8/VP+uIVUeP8Zvv/28mLkWLhzoO0rbObRqFQLgyJFc11EqcZJfKZBIJKxboL+/P1c1ELWcPn0aAMzNzTlc5eLWrVsCgcDIyOjx48dc1aADFLgrYg2wKlSooLP771jgPn068ni4a1fuRgrc9Ud8fLytrS0AaGPay9c0bYpublirFvbv/3kjBe4G5927d/L5oYWZulsYyl8RVS8pyYk7d+7Mnz9fPvueRWm2trb6s3SVAWGBOyL6+KCpae6aySxw//QJnz/ntrp8sFihceN0IyPzIncjUcAmwLJVN/l8vru7e4lcyF5vsb//ihUryv/+o6M1kFOrtUyiBiVKEv3e+ZncNIEIsLxlKYoSZcr07l20xNDqOGhpWblu3Rx/f9S/YZDGQc1QvmyjqQGF3VHB3tBiYmI0Um2B3r1Dd3fk8RAAq1bFwEAN9JBJSEA/v9w1V21s0N9fk8uuGop0qfSXJ09Y2v5OD98OSrq7d3OX/KWVMjmh+/xKwfr16wGgdu3aevidlHzNDz/8AAAeHh5cFdC1a1cAmDp1KlcF6AYF7vlgrSd9dbXYNgvc//kHBw/GcuUwLg6RAnc9s3r1agCoW7euzkaRpk1x+HDcvx8B8N9/czdS4G6grl+/3r59e/Z9u3Xr1pcvXy7a43D4FbHIHj9+vGTJkpYtW+7YsSM0NJTrcgySPHD/9AmrVMGePRHz9HDXW69fv3Vzc2NP+xo1auzbt6/IDyXvFQAAzs7Od+7c0WCdpPBSUlJEIpGJiQkAWFpaikSiIo+J+tAX6GnmU9fnrqzDjMN9h6CEIN3XUHpoahyUSCSbN28uV64cAAgEgrFjx8bFxWu2VI2jcbD4NHjZ5vTp0+xWegDo1q3b7du3NVtqYVy7hu3a5c5Gb9MGr1wp4uNIpRgYiBUqIADy+ejujnr/qVAr0qVST0rbOSWTYeXKCEDrz3FGx/lVXgkJCWxQ/ueff3R/dlJkL1++NDU15fF4F9RtA6oJ+/btA4Dy5csnJibq/uy6xENEIF+6efNm69at+Xx+jx491Frs3t5+yLt3P6l1rsqVYcoUqF8f/vkHnJygYUMYOhS2boW3b6FGDdixA0aOVK94og05OTlNmzZ9/Phxs2bN5De3FoZQaCSRBKt7ujVr4LvvoGlT2L0bXFzg6VN4+BAsLaFtW6hQAQ4fVvfxCPcQcffu3X5+ftHR0Tweb/jw4StWrKhUqVLhH+Hs2bM+Pj537twBgG7duonFYvk3RlKytW4NtWvDvn0AAHv3wpAh8O+/sHIlmJvDiRNcF1eQa9eueXt7X7t2DQDatm27du1aeXOSwnjx4sWsWbOCg4MBoFq1aosXL/bw8NBWraRwnj17NmfOHPaP4uDgsGTJEvmVlcJITExcvnz5mjVrsrOzbWxs/Pz8pkyZwm7Z4URYSphPpM+DzAcA4FLGZY39msZmjQvzgweTDtoKbLuV6abd+koQGgdJMV2/ft3b2/vq1asA0KZNG7FYLL+KUxiRkZFz5szZvXs36MGAIpPBnj0wYwbExACPB8OHw4oVoM6rAc6cAR8fuHsXAMDZGcRi+P+F6dIlQybzef48IiWlorHx1nr1qpqYcF1RKeXhAbt3g1gM3t5cl1IqFTm/Kr6HDx8+e/asR48eYWFhujwvKb45c+YsXbq0UqVKan07Kz5EvHDhQmJi4pYtW8aOHavLU3OA27xfb/3666/ff/+9un+ZHTpskC9eV8g/dep8nuGOiMuXI5+Ply7RDHe9c+LECdbMXS1GRkbqPiUA8Nat3BnuiPjoERobI1sCima4G7rU1FSRSMQ+BhVmIUHm7du37u7u7BlVhHULiaGTz3BnevTAevWwbVt9n+EuV7RuJEV7sRCdCQsLa9w4N5ju0aNHYdYV19u+QNmy7IC4gHJ3ykEEGN008nzjGZcTJ98blR3lH+0/+OXg7158N+3dtNvpufNhmzxsMuzVMI5KNmA0DpLikMlkgYGB7DoNj8dzd3dXvUoEk5aWJn/WmZub68+AkpqKIhGamCAAWligSJTbHMncHE1M8NGjLw62tUUfH0TEt2/R3T33K0O1ahgYyEHleiLj/3Pbv717N5LmtnNq1y4EwBK99qG+K1p+pRHjx4+/e/cu138BRG0pKSljx45ld8/rWLNmzSZMmFAalrShGe5fde/evRcvXqj1IyYmdbKymqj1I5aWUL167gz3774DiQRatgShEA4ehFq1aIa7fomPj79w4YJaP8Lj8RH7q3siZ2fo0iV3hjsAzJoFq1bBvXvg4UEz3EuC58+fz549m80PrVu37tKlS782PzQ9PX3FihXLly/PzMw0NzefPn36zJkzdTxtgXAu7wx3AHjyBJo2BYkEXFwMYIa7XGpq6sqVK9mqdJaWltOmTZs1a5ZJfjPR8MtpsAMHDly1alW1atV0XzNRTSKRbN++fc6cOR8/fhQKhaNHj16yZAm7rVjZmTNnfHx87t69CwDOzs5isbipns3GjJPEzY2auy1+mxSl5YXlt9XY1q9sv2PJx9xeugl4ApcyLmUFZa+nXX+c9XhTtU2e5TybPmra1Kzpnpp7uC7cINE4SIojLS3tt99+YwOKhYWFr6+vigFl//79vr6+b9++ZQPKypUrq1evrvuaVXj6FKZNgyNHAAAcHGD3bujeHdLToUcPyDth1M4OPDzAxgaWLoWsLLC0hDlzYMoUKLVTujNlMp/nz8NTUioaGwfUq2dfav8i9EN0NFSpAubmEB9fep+TnCtCfqURvXv3NjMz0/15iUacOHEiIyNDxye1tbVlfZBKPo4Df4JfzHBHxDNnkMfDhQtphnupJp/hjohpaVijBrq60gz3EuXUqVNsPXcA6N69u0JbaplMFhQUxL4T8ng8Nze3N2/ecFUq4ZbCDHdEnD0bAQxmhnteT58+lcdqDg4OQUGKXbM11eiZ6Ex8fLyXl5dAIAAAW1tbsVick5OT94A3b97I5yZXq1YtUL9nYz7MeNj7WW9+BP9G2o332e+tbls1edgkOjv3ngwZylZEr7iWeg1phrsm0DhIiuPZs2fyAaVu3brKA8qNGzc6dOjADmjVqtWlS5c4qbOQwsKwSRM0McFnz9DcHL/9Fnk83LPn8wFshrtIhDweurlhKX81ZEilY2luu55p3BgB8Nw5rusghBC9QYE79xQCd0QcPhwtLSlwL9XyBu6I+O+/CICWlhS4lyg5OTkBAQGswYJQKPT09GQNFm7cuNGxY0f2FdHJyenixYtcV0q4NHMmrl79xZa0NBw+HH/9laOCii3fbiTv37+Xr4lXpUoVahlhWB4+fNi7d2/2b9qgQYNjx46hIfcFupF2AxEXRS2CCLiUmn9IR4G7RtA4SIpJ4bINa2vw/v17T09PPp/PBpSAgACpVMp1pQXLzkZ2UcDcHEUiHDIEK1bEhITcvSxwT0vD69c5rFHXorOynqSnK/xJ+3/a3ofSdn0yZQoC4Ny5XNdBCCF6g1rKcO/p088tZZiYGGjQAJKSqKVM6dWs2eeWMky/fnDkCLi6UkuZkiY+Pl4kEgUEBEgkEhsbG0dHRzart0qVKsuWLZNHkISUJDk5ORs3bly4cGFSUpKRkVG7du1u3ryZlpZmZmbm6+vr5+dnYWHBdY1EbQcOHJg+ffqrV68AoF27dq9evYqJieHz+R4eHkuXLq1cuTLXBaqn9/Pe19KuJTVLyncvtZTRIBoHSXFIJJJNmzYtWLAgMTFRKBS2b9+eDSimpqZTp06dNWuWpaUl1zWqx8ICpk+HMWOgQQMYPhy2bAH4f0uZNWu4Lk635r9+fTQ+XmGjb7VqKyMjKxgbB9SrV43al+iNY8fg22+hTRu4do3rUgghRD/wuS6AgEAANjZgbPx5S8WKsGQJ2NhQB7TSy8oKFOKmtWuhYkUwtK8MpGB2dnYbNmy4f/9+nz59EhMTP378aGRk5OXl9ejRIw8PD0oZSIlkZGTk4+Pz4sULLy8vmUz26dOntLQ0V1fXBw8eLFq0iNJ2A/Xjjz8+fvxYLBZbWVm9f/8+JiamdevWFy9e3LFjh8Gl7QDwIedDDeMaXFdRKtA4SIpDKBR6eXmxAQUAkpKS5APKkiVLDC5tl7O3h3nz4Pff4coVrkvhVAVj42NNm+b981OFChOqVqW0Xd907Qrbt8OBA1zXQQgheoNmuBNCiL44efJktWrVTExMateuzXUthOjInTt3LC0to6KiOnfuzHUtRDPev38fHx//4cOHXr16GW5a2uRREx7w7ja8m+9emuGuJTQOkuK4d++eubn5u3fvunbtynUtRcdmuC9YANnZ0Lw5mJpCeDiUL19KZ7jfSkk5/P+uQURv7dwJf/4JHh7w/0VbAAD+/BN27oSTJ2HpUrh3D/bu/eJHjh8Hf3/Yswfs7XVcLCGE6IiQ6wIIIYTk6tWrF9clEKJrzZo1A4A6depwXQjRmKpVq1atWrVp06ZcF1IslYSVwtPDua6i1KFxkBQH6+deYgYUY2PYuBF69ICdO7kuhRCVXryAsDC4fh169IAqVXI3vnoFYWGACA8f5nOjRnQ0nDsH6ek6rpQQQnSHWsoQQgghhBDyhY6WHZOkSRHpEVwXQggpvZydYehQmDcPsrO5LoUjqVLptg8f5H/upKZyXRHJn7k52NnBtGlc10EIIXqDAndCCCGEEEK+8LPdzxZ8iwmREz5JP8k3psvSM2WZHFZFCCltVq2C9HQotTlzhkwWlpgo//M6k96B9ZRQCEuXwt69cPIk16UQQoh+oJYyhBBCCCGEfKGacbUdNXYMfz28/sP635f9voJRhRdZL/779N8q+1Wj7UZzXR0hpLSoWBEWLgRvb67r4Eh5I6O/HR25roIUyuDBsGULTJwI9+6BqSnX1RBCCNcocCeEEEIIIUSRm41bc/PmWz9uvZV+60Hmg5rGNZdXXT7IZhAAfGv1bXXj6lwXSAgpgY4cgRo1vtgycSI4OkJ1esshem/DBmjZEpYtg4ULv9j+9i2YmHyxRSbTZV2EEMIBCtwJIYQQQgjJh4OJw29Vf1Pe7l/VX/fFEEJKA2dnxS0CAbi4cFEKIWpq3BgmToTly8Hd/Yvt5cvD9u1fbDl1CsRiHVZGCCE6R4E7IYQQQgghhBBCCCmWhQth3z7w9YVWrT5vNDMDV9cvDvv4Ucd1EUKIrlHgTgghhBBCCCGEEEKKxcoKVq2CoUNL70q/hBDCUOBOCCGEEEIIIYQQPTK3enUJ1zWQIhgyBLZtg1OnCnVwVhacPAlpadCtG1SqpOXKCCFEh/hcF0AIIYQQQgghhBDymTGfb86nvMIgbd6suEpqvlJToWVL+PdfuHMHWraEFy+0XxkhhOgKzXAnhBBCCCGEEEIIIWrr1Qvs7L7Y4uAAf/0Fz54BjweDBkH79oo/0rIl/PorlC8P69dD9+4AAJ8+QVAQzJqlo5oJIUTbeIjIdQ2EEEIIIYQQQgghpDT65Rdo2hQmT+a6DkII0RAK3AkhhBBCCCGEEEIIBx4/hp49ITwcKlbkuhRCCNEQ6olGCCGEEEIIIYQQQnQtMhIGDIAtWyhtJ4SUKBS4E0IIIYQQQgghhBCdOn0aevWCjRuhb1+uSyGEEI2iljKEEEIIIYQQQgghRHcuXABnZ3BwAHt7AIAuXWDePK5rIoQQDaHAnRBCCCGEEEIIIYToTloaxMR8/l8LC+oqQwgpOShwJ4QQQgghhBBCCCGEEEI0gHq4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogEUuBNCCCGEEEIIIYQQQgghGkCBOyGEEEIIIYQQQgghhBCiARS4E0IIIYQQQgghhBBCCCEaQIE7IYQQQgghhBBCCCGEEKIBFLgTQgghhBBCCCGEEEIIIRpAgTshhBBCCCGEEEIIIYQQogFCrgvgzOPHj9PS0mxsbGrXri3fKJPJ7t+/X7t2bUtLy7wHf/jw4c6dO+bm5q1btzYzM8u7KzU1NTw8PCsrq0WLFhUqVNBR9UT/pKSk3LhxIy0trV69evXr18+7SyKRhIeH169f38bGRvkH7969m5OTU6FChWrVqsk3xsfHX716VSaTOTk5ValSRevVE32VkpISHh6empraoEEDBweHvLtevHhx//59c3PzDh06WFhYyLenp6dfv349OTm5Tp06jRo1yvsj0dHR9+/fz87OdnR0rFmzpm5+BaKHMjIybty4kZSU5ODg0LBhw7y7YmNj7927l5GR0bBhwzp16gBAZGRkbGyswiMIBILmzZuz/46Pj7927ZpUKqX3q1IuIyPj1q1bGRkZ9erVyzuiAcDTp09fvXpVoUIFR0dHExMT+fakpKR79+5JJBJHR8eKFSvm/ZFPnz5FRERIpdKWLVva2dnp6HcgeunNmzf37t2zsLBo2rSpwpMhISHh5cuXTZs2NTY2znv83bt3LSwsmjRpUr58+bzH371799WrV7a2ti1atFD4tE9KD4lEcuvWrcTExFq1ail8uJJKpWx8rFOnjsIuJisr6/79+wBQp04da2tr+XZEvHfvXlRUlI2NTfPmzfO+0ZHS4+nTp48fP7a2tm7evLmVlVXeXY8fP378+HGZMmU6dOiQN0/Izs6+fv16fHx8zZo1mzZtyuPx5LsyMzOvXLmSlJRUv359R0dH3f0aRP/k5OSEh4c7OjqWLVtWvlEqlV69ejU6OrpOnTrNmjXL++RJSUm5fPlyVlZWs2bNatSokfeh4uLi7t27l56eLv+oT0qzDx8+pKens2fChw8foqKilI9p0aIFn88HgHfv3t2/f9/S0rJNmzZ5P3cBQGxs7K1bt0xMTFq1akWfrz7DUunWrVtCoZDP57u5ubEtmZmZgYGBLHcQiUTyI2Uy2eTJk9nTCwCsra0PHjwo37tnz54yZcqwXQKBYNasWTr+RYie2LFjh7W1NZ/PZx+v+/Tpk5KSgogpKSkBAQH16tUDgHnz5in/4NGjR3k8Hp/Pnzx5snzj+vXrTUxMBAKBkZERn8+fO3eu7n4Tok82bdpkZWXF4/HY8+qbb75JTU1FxMzMzOHDh8s/VNnY2Bw5coT9yL59+8qVK8fj8UxNTQGgW7duCQkJbNeCBQuMjY1tbGwqVqzI4/FGjBghkUg4+90Id3bv3m1rawsA7EnSp08f+ZNkxYoVZmZm1tbWlStX5vF4gwYNys7OnjRpkvKHh7Jly7If2bBhQ973q9mzZ3P2ixFO/fHHH+x5BQA8Hs/DwyMjIwMRX79+3bFjR/kzp3bt2pcuXUJEmUy2cOFCc3Nztl0oFPr5+clkMvZoW7ZskecRRkZGS5cu5fJ3I9xJTk4eNGgQGwd5PJ6FhcWWLVvYrhcvXnh5ebHrzREREWxjRkbGyJEj+Xy+qakpj8czMzNbvnw52xUTE9O+fXuBQGBvb29ubm5nZ3fgwAFufivCqePHj9vb28vflHr16hUTE8N23bhxI+90hH79+rHPXXnNnj2bfTHM+5Xw3LlzedP5mjVrpqen6+5XInogNja2d+/e8g9Xtra2QUFBbFdmZub3338v32VnZ3fixAm26/jx42ymAhvyWrdu/f79e7br7Nmz7Do0+6m+ffumpaVx87sRTn369EksFrN5DCtWrJBvv3XrVt64vFOnTvHx8WzXrl275Iknj8fz8vKSf75atWqVmZlZ2bJlK1euDAADBw7Mysri4LcieuD27duenp7sHUYqlSLi4sWL8w2N09LSMjIyPDw85Llo5cqVz549K3+omTNnCgQCtqtMmTJ79uzh7tfSL6UxcJdIJK1aterSpUvDhg1Z4J6dnV21atU6depMnTpVIXBft24dAPj6+mZmZkZFRTk7O5uYmDx79gwR79y5IxQKu3btGhsbm56ePn36dADYsWMHR78W4cyFCxf4fP7atWszMzOlUunff/8tEAh8fX0lEkmVKlUcHR1nzZrF4/GUA/fU1NRatWq5u7vb2trKA/fz58/zeLwBAwYkJydnZGRMmTIFAPbu3avzX4tw7OTJkwAwZ86c1NTUnJycjRs3AgC7qufn5wcAa9euzcnJef78eYcOHSwtLaOiom7dusXn85cuXZqeni6TyQ4dOmRsbOzp6YmIZ86cYT/ORtOdO3cCwMaNGzn+JYnOXb9+nc/nT5o0KSkpSSqV/vnnnzweb9y4cYh448YNHo/n7e3NrsTs378fAJYvX56WlpaQR3x8fN26db///ntEvHDhAo/H69+/P3u/YmPoX3/9xfEvSXSOvV9Nnz49ISEhMzNzxYoV7NOURCJp0qSJo6PjjRs3ZDLZnTt3atasWalSpczMzC1btvD5/NWrV6empqakpLDrOrt27cL/j6p9+/ZNSEhISUkZN24cAPzzzz9c/5aEA6NGjbK1tT169KhMJktISOjTpw+Px7tz587FixdNTEx69OgxfPjwvIG7t7e3vb09u6iTkpIycuRIHo939epVRHR3d7e0tLx16xYipqam9unTx9zcXH65kZQSz549MzExGTx48Lt373JycoKDgwUCweDBgxExNTW1atWq9vb29+7dk0qle/bsEQqF7EOU3J07d4yMjCZMmJA3cH/w4IG5uXmnTp2uXbuWlZX18ePHK1eucPC7EU716dOnWrVqFy9eRMSoqKh27dqZmJiw9NzX15fH461bt04qlb57965169ZWVlYxMTGvXr0yNTWdMWNGcnIyIp45c8bS0pJ9vkpISLCzs3NwcHj58qVMJvvzzz8FAsGECRO4/R2J7mVkZNja2jZr1mzGjBl5A/f09HR7e/tatWrdvn07Kyvr4MGDFhYWgwYNQsQbN24IBIK+ffvGxMR8+vRp/vz5ALB161ZEjIiI4PF4kyZNysnJQcR//vkHAGhOQ+m0ZcsWU1PTb7/9tkePHvLAPSMjI+FLXbp0ad26NSJOmzaNx+OJxeLU1NT/tXfnUVEc+QPAv3MxDTIgl4jIoYjrBRqPiHJIUB4I4iK4rNGIt4kaBIkscdVVk6jRiEbRSBZ3RdfdGCLh0LgqHgFDAnEipwpyjTAj1wAzwIzDXPX7o37br98g7v4RYXanPn/RVd3zqPfqVVd/u6u+5eXlM2bMsLW1lUqlCKHz588DwJYtW5RKZXt7e3h4OJfLLS8vH+YWGgdTDLgfPXrUzMzs8ePHU6ZMob9wb25uRgjp9XpmwF2v1+O1XfS1dXV1LBZrx44dCKH169dzOJznz5/TJ3t4eHh5eQ1lWwhjoNVq7927xyyZOHHiggULEELt7e24hM1mDwy4x8XF2dratrW1MQPu0dHR5ubmcrkcH+p0OmdnZx8fn9fZAsIYvXjxIjc3l1kyefJkX19fhJC9vX1wcDBdXl5ejgOjOp3u7t27zEvmzJnzxhtvIIQ+++wzAKipqcHler2eoqg1a9a87lYQxkatVmdnZ9PfuSCEfH19J0+ejBA6e/YsADx8+JCusrOzW758ucEvXLt2DQBwPGv58uUURclkMlyFx6s333zztTeDMDK9vb1ff/01s8TT0zMgIAAhVFhY+PTpU7ocf8dQWlra0dGRl5dHl6tUKoqi1q1bhxCKiopi3gfxrmv+/v5D0RLCyIhEImbssrS0FABSU1M1Gg2Olefk5DAD7u3t7cxnvLKyMnw+QmjSpEm4T2KXLl0CgMLCwiFqCWEc1Gr15cuXmV90hoeHOzo6IoTOnTsHADk5OXTVqlWreDwe/VYGf7M1d+7cX375hRlwj46OtrCwaG1tHcJ2EEanurq6rKyMPrx+/ToAXLlyRalUWlpahoWF0VU//fQTABw+fBghdOfOHeaULCwsbOzYsQihkydPAsDt27fpqpiYGIqicGieMCk4ntDb28sMuON7H3PqFRcXx+Fw2tra3n//ffwHXTV16lT8PPjnP/8ZAB48eEBXjRo1Cr/jIUyNTCbDWzLs37+fDrgbqKysZLFYly9f1uv11tbWzHGsqKiInl95eXmNHz+eHspaWlo4HM7GjRuHpB3GzuSSpjY2Nh44cGDXrl0Gu9YylxbS2traRCIRXgKG4e2x8G2yuLh4/vz5eDEOALBYrMjIyMrKyr6+vtfZAsLocDicwMBA+rClpaW5uRl3MIOdQ5lKSkq++OKLI0eOGGz9X1JSEhQURO/6x2azIyIihEKhTqd7Lf89Yawoilq6dCmzxM7OrrOzU6PRSKXSCRMm0OXe3t4jR46sqqpis9lvvfUWXd7V1VVXVzdp0iQAcHV1BYC//e1vCCEAqK6uVqlU3t7eQ9QYwmjweLzIyEjmJo+4XwGjk+B3zyKRSCaTeXl5GfxCSkrKnDlz5s+fDwA///zzW2+9Re8myWazly5d+ssvv2i12qFpDmEkLC0tY2JimCX29vZSqRQA/P39mTst4FueVCq1t7ePiIigy/l8vrW1Nb6kuLh44cKF9H2Qy+VGRESUlJTgnkmYFDc3Nx8fH/oQb+De1dXF5XJfmhfHwcGBeWv7+eefAQDvfezq6lpaWlpRUYGrSktLKYrCm/4RpoPH4/3+979n7jzr4OCA92EoLi42NzdfvHgxXRUVFYX3TcaHJ06cKCsr+/LLL+k19QCg0Wi+++67ZcuWGWShIEzNb37zm+nTp9OH9GD1+PHjvr6+yMhIumru3LlOTk4lJSUAEBQURE/JlEplVVUVfoQsKSkZOXIk8wEzMjJSpVLhj2wIk/LSeEJLSwsAMJ8HFyxYoNPpqqurW1parKysmBGGgICAx48fI4QMpvpNTU2dnZ0Dp/qEKbC2tv63O60fO3bM1dU1Ojq6r69PLpfjqAI2b948iqIqKysVCkVlZSXz6XL06NG+vr44ZEqYVsAdIbR58+YxY8Z8+OGH/8n5YrEYAAyyTLi6ukokEgCQSCQGVfjwpXkGiP95Go3mq6++Onz4sJ+f3/Tp0w8cOPCKk9Vq9YYNG+bNm7dhwwZmuV6vb21tNehXLi4uWq12YNJCwqTgm9nMmTN5PN64ceOKiorodzDt7e3m5uZ4XAIAhNDly5ePHj3q6+vr5uaG93aIjIwMDg7+5JNPfHx8UlNTo6OjY2JiXro3N2FScChh5syZABASErJ06dITJ07Mnj371KlTy5YtCwsLw7ul0SoqKr7//nu8rFWv17e0tAwcr3Q6XVtb21C2gjA2CoXi8ePHdFpdJryp0cCnu2fPnrW3t8+YMQP3n4HzK7VajcPxhCkrLi4GADxkvUJDQ0NGRsb27dsTExOTkpKCgoIA4ODBg1wud+7cuWvXrj1y5Mi5c+cyMjJIkJR48OABTjYokUicnJyYsXjmk51IJNq/f//OnTuZQVUAaGhoUKlU7u7u+/btmzNnztixY6Ojo2tqaoa4FYSxwYPVG2+8gefnONCJsVgsFxcXet4OADk5OcePH/fz86Mo6vTp0wAgkUjGjh1L74kMAHgLb+ZVhCnDnzIUFhbSJT09PQAgFosnTpzY3d2NczsDgF6v7+vr6+/v7+joWLRoUWRk5KlTp2bNmnXy5Mlly5aFhobirUoJwsDz58+/+uqr+Ph4LpcrEAgcHR3xikNcK5VKLS0tJRLJq0OmBHe4/4Eh9de//vX27dv5+fk4M8C/1dXVBQDMTND4sLOzU6fT9fT0GCQfx2dKpVLyvYwJUqlUKSkp7e3tz58/Dw8Pf/ULw0OHDtXW1paWljK/MwWAnp4erVZLZ+LFcL/q7Oykl1MQJujYsWMKhQK/LNy9e/fGjRuDgoJCQ0Obmpq+/fZbuVyuUCjwmQihY8eOSaXS5ubm9evX42GKx+P5+fn98MMPZmZmODEA89tSwmSlpaW1tLR8/fXXAMDhcAICAm7evCkQCD744AOdTrdgwQKD848ePerm5oY/1MLZBQYbr5ydnYeoDYTxwTuzD3yEa25u/stf/rJhw4aBUc79+/cLBIJt27bJ5XKdTjfY/MpgTRhhUvr7+w8ePDhz5sywsLBXn1lRUXHixAmxWCwQCKZNm4YLnZycJk+e3NnZWVhYeOHCBXd3d4NuRpigzMzMR48eZWVlAUBXV9dgIw/+Zsve3n7Pnj0GvyCTyQDg6NGjwcHBq1at0mg0n3/+ub+/f0VFxejRo4eoGYSRkclkKSkpoaGhs2fPvnDhAgAYdC0rK6vGxkb6MDU1VSQSPXv2bPny5SNHjgSA7u7uweZXQ/D/E8YvMDDQ19c3OTn56dOnY8aMKSkpuXv3LgAolcotW7Z8+eWXwcHBGzZsQAjduHGjuroaABQKxahRowICAv75z39aWVnt3LlTp9P5+voahCMIAktNTaUoav369fgwOTk5MTExPDw8JCSksbHx8uXLPT09vb293d3d8LKQqVwu12q1XK5pBZwHMqEv3FtbW5OSklavXr1o0aL/8BJ7e3sAwH2I1t3d7ejoyOFwbGxs8ByLhgP05GMZ0yQQCIRCYVNTU1FR0YULFzZt2jTYmdXV1Z9++mlSUhJe48xkbW3N5/MNuhyeWpFZuynLy8v7+OOPP/zwQ/xZ6IYNG7KysiiKyszMlMvl165ds7KysrW1xSez2WyhUCgSiR4+fJidnb1q1SoAOH78+EcffXTr1q379+8/e/YsISHh2LFjGzduHM5WEcPt3r17SUlJW7Zs8fPzA4C0tLSkpKS8vLyCgoLm5uY//vGPZ86cwf0Hk0gkmZmZCQkJePIkEAgoiiLjFWHg+vXrH330UVJSksGmVT09PTiUcPDgQYNL0tLSMjIyUlJSHB0dR44cyePxyPyKMKDX6zdt2lRbW4vT7b765MjIyPLy8vb29m3btq1ZsyYnJ0en04WGhvb39z98+LC+vr6wsNDBwSEiIgJHKAjTVF5e/u6770ZFRUVFRQGAg4PDYCPP+fPn8/PzT58+PWLECIMfwYHUpKSk7777LiEhISkpKSsrq6Oj4+LFi0PUDMLI9Pf3r1y5UqFQpKamwr/2A8F9idbV1cWcKd25c6e+vr66uvqnn3767W9/i68i8yviFTgczo0bNxITEx88eHDz5k0vL6+0tDQAsLW1dXFxKS4uDgkJuXr16sOHDzdv3rxu3TpclZ6enpiYmJ2dXVBQIBaLd+/effbs2RUrVgx3awijo1Ao0tPTN2/eTEfSd+zYkZGR0dvbm5aWJpFIcnJyKIqytbUdLGRqZ2dHou0AYEJJU3EAdPbs2Yv+ZcSIEY6OjosWLVKr1fgcg6Spra2tALBnzx7m70ybNs3Pzw8h5OXlNW/ePGZVQkICi8VSKpVD0R7CiL3zzjsURTFz4DCTpoaHhwPA1KlTZ/0Ll8sdNWpUYGAgQmjcuHGLFi1i/tq6desMfo0wKZcuXTIzM9u6detgfQCPVH/4wx8GVm3duhUPSpMnTzZIORgbG8vhcFQq1Wv5pwmjl5eXZ2Fh8fbbb9NJcmbPno1TKtG2bt0KAHRO1J07d1pZWdGpLBFC48ePDwoKYl6yfv16Pp//0sQ7hCnIzMzk8/mbNm0yGK9aW1t9fHycnJxqa2sNLjl+/DiLxcLp4zAXF5fFixczz1m7dq25uTm5D5ospVK5cuVKPp9/69YtgyqDpKkGdDqdhYXF6tWrcXav8+fP01W9vb0URa1du/b1/duEMSsqKsIp6F+8eIFLNm/eTFEUfYgQyszMBIBbt27Z2Njw+Xz6EXLu3LkA4O3tvX//fhyj3717N32VRqNhsVjvvffeUDeJMAIymSw0NNTa2looFOISZupmTKvV2tvbx8TEDLx83759ACAWi2NjYy0tLZnZfc+fPw8AxcXFr7sJhHEySJo60CeffAIAzDT1tMDAQDc3N4TQ3Llzvb29mVVxcXEAgPNYEKbppUlTT548yeVynz17NthVTU1NALB3716FQsFiseLj45m18+fPnz59+uv5f//LmNAX7n5+fsnJyQsXLqSjnObm5jY2NrNmzRpsHY2jo6OnpyfOQY9Lampqqqqq/P398Q+WlJTgTYsAQK/XZ2dnz5kzx9zcfGhaRBiP2tpa5qFKpXrF4qzFixcnJycvWbKEnrhzuVwXFxe8e0NAQEBBQQG9Y3t/f39eXl5AQABZ7WWCNBpNfHx8bGzsrl27Tp8+PVgfOHPmDAAsX74cBu+KfD5fpVIxq8g7Z5Ol0+n27t0bGRn57rvvXrx4kf5WdLBOgl9F9/b2pqenv/fee8xl0QEBAYWFhfSO7Wq1Oi8vz9/f/99+f0r879FqtUlJSStWrPjggw/S0tKY49WPP/44a9YshUJx//59ZoIvhUKxcuXK5OTkM2fOMJPr+Pn53b17l/5YRq1WX7161d/fn9wHTVNjY6Ovr++dO3du3boVHBz86pNlMllHRwd9qFar8XsavDF3f38/XcXj8dC/PrUhTE1qampgYGBISEhubi690ai/v79Kpbp27Rp9WlZWlrm5+cyZMzdv3pyQkEA/QuIlqh4eHh4eHtbW1m5ubrdv36avevToEULIYENbwhRUVFTMnj27pqamoKBg1qxZuHDq1Kl2dnbffPMNfdr3338vlUrxc9/AeTsAIIQCAgL6+vpu3LhBV125csXa2vqlyVEIQqPRpKenT58+nZmmHquqqiooKIiOjobBp/p0sIsgAECn0506dSomJoaZfMLA2bNnASAqKsrCwmLmzJl4KSGukkgkxcXFAQEBQ/TvGrnhjPYPtylTpvzud7/Df3d3d9fX19fV1QHA9u3b6+vrnz9/jhBKT08HgK1bt3Z3dz99+nTevHmWlpbNzc0Ioerqaj6f7+Pj09DQIJVK8ZeAV65cGc4mEcMhKyuLx+OdOHGio6NDJpOdO3eOw+G88847CKGWlhahUCgUCtls9saNG4VC4UtfO9va2sbFxeG/KyoqzMzMfH19nz59KhKJ3n77bRaLdefOnSFtEmEEJBIJ3lZv7969QgaNRiOTyfLy8lpbW588efLZZ5+ZmZnh/pafn8/hcA4dOtTa2trT0/P3v/+dz+dHREQghHAw68iRIy9evNBqtfgJMzo6erhbSQw1qVQaEhICAAkJCcx+pVKpPv74YwDYt2+fQqHQ6XQ3btywtLQMCQnBFx47dozH4zU1NTF/DY9X8+fPr6mpEYlEK1euZLFYt2/fHo6WEcOptbU1MDCQw+EcOXKkngFP2Xk8no+PT3l5OV3e1dVVU1Mzbdo0CwuLjIwMulwkEiGEhEIhl8tduHBhc3NzW1tbbGwsi8XKz88f7lYSw+D69eu2trajRo3Kzs6mxys8lXry5IlQKExJSQGAS5cuCYXCtra2FStWuLu737lzR6lUikQivClWbm5uf3+/s7Ozi4sLTvklk8lw1vrr168PdxOJIdXX17dy5UoA2LZtG3OwUqlUL168GDduHM4L19fXhzcvSkxMHPgjpaWlAIA/yUII4ez0e/fubWpqKi0tnT59ukAgwE+LhOm4dOmShYXFuHHjbt68SQ9WjY2NCKHDhw8DQHJycmtra0lJycSJE8eMGdPb2/vw4UM2m52cnCwWi/v6+nJycgQCAV5Ar1Qq3dzcRo8eff/+/fb29iNHjrBYrAMHDgxzI4nhIBaLhUIhzo8aHx8vFArr6uoQQj/++GNpaWlHR0dRUVFYWBiXy6Vn4Hl5eQ0NDRKJJDc319PTc/To0e3t7QihQ4cOAcCePXv6+vp0Ot2tW7cEAoHB2nrCdDQ0NNTX18fHxwNAbW1tfX09XuOFV3eVlJQwT+7u7s7Pz+/t7a2vrz9+/LiZmVlsbCyuwsnA1qxZI5VKGxoagoKCKIp6adTLBJGA+/8H3HGggYmOMuzZs4fH4+FCJycnZighNzcXb1oEAHw+/xVrfIj/YTqd7k9/+pOFhQXuCWw2Ozo6Gu+6gO9qTC+9pTED7gihb7/9ls4LZ21tfe7cuaFrDGE0cGrTgTo7O7/55hv6gywLC4vExES85lSv13/66ad0kiUWixUeHo6TfalUqoSEBIqi2Gw2n89ns9lRUVHd3d3D3EhiyA282WG1tbUajSY5OdnCwoLFYlEUxWKxlixZ0tHRgRDSaDSurq74vY6B7OxseryysrJKT08f8jYRw2/79u0v7Vc4LDXQgQMHlixZMrDczs4O/+A//vEPnDgOAEaMGPHFF18MbwOJ4fLSDYvxFP3NN980KE9NTZVIJGFhYfRiCIFA8Pnnn+OfqqiowPkq8A105MiRaWlpw9o4YhjgRYED4Z06qqqq6ARLbDZ79erVzD09aAYBd61WGxcXx+Fw8IWurq737t0bykYRw47+tNMA3rRKp9Pt2LEDr7MBgClTppSVleEL09LS6CRMABAYGEi/qqmqqqJTofB4vPfff1+r1Q5bC4nhs2vXLoN+tWzZMoRQZGQkXeLp6Um/P+7q6qI/TGaxWEFBQXToU6PR7Nq1a8SIEfRUPywsDMfiCRNED0q0H374ASHk4+OzYMECg5MvXrxIr4/n8/nx8fHM++Phw4f5fD6udXBwuHr16lA2xJixkAmvHxGLxTweD+fgkslkBslMzM3NnZyc8N9dXV2PHz+mKGrGjBkG+zCo1eqysjKNRjNt2jSD5LyESVEqlZWVlWq1Gr9GxoWv7lc0kUhkaWlJv7wBAI1GU11drdPpJk2aRIdWCZPS2dkpl8sHlru7u7PZbPx6mcPheHp6GvQQlUpVWVn54sULDw8PZ2dnZhW+qre3l9lLCZPS3d1tkNYGc3Fxwa+WFQpFfX29XC738PAYM2YMrtVoNM3NzQ4ODvTrHCatVvvkyRMyXpmywcYrZ2dniUQysNzGxqa/v1+pVBqUczgceh8GlUpVVlam1+u9vb0tLS1/9f+Z+K/w7NmzgZEsPJWSSCTMLWIAwN7eHu95JZFIGhoa+Hy+t7e3waAkkUgaGxspivL29h74qEn8z+vp6ZFKpQPLnZ2dcbAAIfTo0aPOzk5PT0/6JmhArVaLxWJHR0dmDtWOjo7q6mqBQODl5UUH3wnT0dDQMLBQIBDgpKkAIJfLa2trraysJk6cyDxHo9FUVlb29va6u7sP3ImotrZWLpdPmDCBfglNmJquri6DfM44EyEAiMXilpYWOzu78ePHM0/Q6XR1dXU9PT3u7u50D6Thqb5MJpswYcJgoxxhCvASHGbJmDFj+Hx+Y2OjjY2NjY2NwflSqbSmpobD4Xh5eQ1MIS6Xy6uqqng83owZM8j8imbSAXeCIAiCIAiCIAiCIAiCIAiC+LWQtGYEQRAEQRAEQRAEQRAEQRAE8SsgAXeCIAiCIAiCIAiCIAiCIAiC+BWQgDtBEARBEARBEARBEARBEARB/ApIwJ0gCIIgCIIgCIIgCIIgCIIgfgX/B9BuCZd3shLpAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "67 FP fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAV4CAIAAAB3itGEAAEAAElEQVR4nOzdd1hT5xcH8JOELSA4UFDce1fcYF1Yf1qqdWBdOKrFapW6cdOlpdaBWq3YqkVbZ9WKq+6Bi4rgQkQFFcGBsncgOb8/XkwpWsu4IUG+n8fHB0Ly3kNNk5tzz3uOjJkJAAAAAAAAAAAAAACKR67rAAAAAAAAAAAAAAAA3gZIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkYKDrAAAAAAAAKCw9fcvTp3KZjIgW1qplJJPpOiIAAAAAAIBCQ8IdAAAAAHTvRXZ2o3LlRlapoutAAAAAAAAAig4tZQAAAABAL0RkZJxMTAxOTdV1IAAAAAAAAEWEhDsAAAAA6AUmYmZi1nUgAAAAAAAARYSWMgAAAACgF+qZmvawttZ1FAAAAAAAAEWHCncAPXXixAldhwAAAFBC1MwKmcwQg1IBAAAAAKCUQ8IdQB+tWbPG2dnZw8NDc8vZs2d///13zbcPHjy4d++eLkIDAACQWFx2dv/Q0KdK5VAbG13HAgAAUCABAQERERHXrl3T6lGePXsWEhJy9OhRtVqt1QMBAICEkHAH0DsBAQHTpk2TyWQdO3bU3GhtbV21alXNt7/88suWLVs03y5evHjRokWab3ft2rV79+6SiRYAAKCYvouKisnKOpOYqOtAAAAA/lt0dPTIkSO7dOnSv3//1q1bjxw5MjY2VvKjZGdnr1y5smHDhi4uLr169Wrbtm1AQIDkRwEAAG1Awh1Avzx48GDgwIFKpXLOnDlDhw7V3N68eXMnJyfNtxUqVHB0dNR8GxYWZm9vr/n2zz//jI+PL5mAAQAAiuNYQsLJxMRyCsXcGjV0HQsAAMCbpKWlLVy4sEGDBlu2bDEzM7OyslIoFFu2bGnYsKGPj092drZUB9q/f3/Tpk2nTJmSlJRUvXp1Ozu74ODgLl26DB8+PDo6WqqjwNvswAH68EMaOZLc3CguTtfRAJQ5SLgD6JHU1NS+ffs+f/78f//731dfffWGe3p4eLz33nuabyMiIho3bqz5NiwsrEmTJloMFAAAQApJOTnfP3pERJ9Xr17FyEjX4QAAALweM+/atatp06Zff/11RkaGi4tLaGjo2bNnb9686eLikpiYOHXq1GbNmh04cKCYBwoPD3dxcenbt+/du3cbNGhw4MCBwMDAu3fvent7lytXbuvWrQ0bNpw9e3Zqaqokvxe8nRIT6fvvadcu2ryZRo0iLy9dBwRvP5VKdf36dT8/v8zMTF3HohdkzKzrGACAiIiZP/roo127djVq1OjSpUvly5cv1GOZWS7PvYRWoUKFu3fvVqxYUTuRAgAASGPB/fuH4+MdLCzWNWiAeakAAKCfrly5MmXKlHPnzhFR69atV65cmXfzMREdP358ypQpoaGhROTs7Ozj49O0adPCHiUhIeG7775bsWKFUqm0srKaPXv21KlTjfJcjX748OGsWbN27txJRDVr1lyxYnv//h2K+7vBWykggPbto6VLiYiYqVMnunhR1zHBW+jp06eXL1++cuXKlStXzp8/n5CQQETNmzcfPny4p6enrqPTMSTcAfTFwoULv/76a2tr68DAwPr16xd5HbVaferUqR49ekgYGwAAgOTOJyV9fu+eiVy+rUkTe2NjXYcDAACQ35MnT7744osNGzaoVCpbW9svvvhi7NixCoUiKioqIiKiW7dumntmZ2evXbvWy8srKSnJ0NBwwoQJX375pZWVVUGOolarf/3115kzZ8bGxsrl8uHDhy9dutQmzyDxhQsX9u7dW4z4CgwM/Pzzz0NCQu3s4mxsjFaupA7IukM+ly/T5s20ejURUXY2de9OGAAAUsjMzAwODg4MDAwMDLx48WJUVFTen9atW7datWrnzp1j5o0bN44ePVpHYeoFJNy1IjSU6tUjY2NipqtX6Z13dB0Q6L29e/cOHDhQLpfv37+/d+/eug4HAABAu5KSkqZERt5Qq6fZ2w/Lk1MAAADQByKBvnDhwuTkZJFA//rrry0tLdPT01evXv3NN9+YmZnduXMn377kuLi4r776as2aNSqVqkKFCgsXLpw0aZJCoXjDgU6dOjVlypTr168TUbdu3VasWNGyZcu8dzh79myXLl1kMtmwYcO8vb2rV6+uVqu3bQudNq15bCzJ5fTxx7RoEeG9FP6WlUXdu9OuXWRnR6tWUUYGlflyYyiyx48fnz9//ty5c6KSPW/HGAsLixYtWjg4ODg5OXXp0kVcJly3bt2ECRMUCsXOnTsHDBigu8B1rBQk3LOysqKjo3/55ZcqVarY29tXqVKlevXqVapUMTQ01HVo/2roUPr+e6penbKzqVcvOnlS1wGBfrt27Zqjo2NaWtqKFSumTJmi63AAoKx7/JgMDalyZSKiO3eoQYMSOu6tW1S/PhkaUmIiKZWUnk61ahERpaVRenpuPPDWcHd337x16+Rt27774APMFIKSlJOTc+PGjefPn3ft2tUIkwMA4HX2798/derUiIgIInJxcfHx8albty4zb9u2zdPTMzo6WiaTDRkyZOXKlZVfd4ISEhIyZcqUs2fPElGrVq1Wrlz57rvvvnq3R48ezZs3b8uWLURkb2//zTffjBw58tW7paenL1myZMmSJRkZGWZmZpMnT54/f765uXlqKi1dSt7elJVF5crRjBk0Zw5hwxjQ3buUlUWGhvT996RUUrNmNG0aGRjoOiwoTcLDw3fs2CEq2ePyDN1VKBRNmzbt0KFDhw4d2rdv36hRI01n47y8vLy++uorU1PTo0eP5mvAVXaUgoT7hAkTzp8/f+PGjXy3W1tb29ra2tnZvfp3jRo1DHT6aoKEOxRcXFxcu3btIiMj3dzcNm/erOtwQH+pVKrQ0NDz588HBgZ6enra29ubm5vrOih4Oy1cSCdOUEAAyeXUvXvJvYu1aEHDhtHs2bR3Lz16RLt25W5+FcF88UUJhQElQLQ+MzIyCg4OxpRvKAEpKSmBgYGiOOvcuXOJiYnVqlUzNDRcv359z549dR0dAOiR27dvT5s27fDhw0TUsGHDFStWiP3HwcHBn3/+uaaNu4+PT+fOnd+81P79+z///PP79+8TkYuLy6pVq2rXri1+lJaW9v3333/33XeZmZlmZmYzZ86cPXu2iYnJG1Z78ODBrFmzdu3aRUT9+l0fNqz54MFERHfu0LRpdPAgEVGDBvTll3T/Ps2eTTIZ7dxJvXpRYUaDwVthwgRat46WLqXp0+nkScrOJkdHwidHKLCrV69u3LhxtWhJRFS1atU2bdo4ODiISnZra+s3PDYuLs7S0tLQ0NDDw2P16tXly5c/c+ZMvl07ZYS+J9z/+OOP/v37GxkZjR07lpljYmKePHkSExMTGxurUqn+7VEGBgZVqlSpVq1a1apVR48e3b9//5KMmYiGDqXsbDIzI2aKiUHCHf5VdnZ2r169Tp061aFDh9OnTxujIAH+KSUl5dq1a2IDl2YICRFZWVm1adPmwIEDeM7Am8XFxf3555+v/ZGpadeMjGqv3i6T0e3bFB1NbdvShAklmnB/7z0yN6dly+jqVSTc32bp6ektWrSIiIhYvHjxnDlzdB0OvJ2YOSws7OLFixcuXLh48eLt27fzfuqpV6+esbFxaGiopaXlqVOnWrdurcNQAUBPJCQkfPHFF2vXrs3JybG2tvby8vrss88MDAxevHjx9ddfiy4xlSpVmj9//n92idHIyMhYtWrVokWLUlJSjIyMPv3006+//vrIkSMzZsyIioqSyWSDBg1aunRpjRo1ChjkmTNnli07dvDgN2o1vfsu+fjkNrA9cYKmTKGbN2niRNq5k5YupVGjaNQo+uYbsrcv8n8SKJ1atqTr1+ncOXJ0pG7d6PRp8venDz7QdVhQakycOPHHH3/s0KHD1KlTO3ToUPAXqIcPH/bq1at169a//vorEQ0ZMmTXrl12dnYXLlyoWbOmNkPWS6zHoqOjK1asSEQ+Pj6v/jQ+Pv7mzZvHjh3z8/Pz9vb28PBwdXV1dHSsU6dO3jc/8RQp4ciHDOFHj5iZlUru1q2EDw6lyaeffkpEtra20dHRuo4F9IJarQ4LC9u4ceO4ceOaNm2ab39WnTp1RowY8cUXX1SpUoWI+vXrl52dreuQQX8dPnz4DZNqnJzCifjVPzIZL1jA585xjx789GmJvov17MlhYdy/P+/ZwytXcsOG7ObGbm7csyd7eZVcGKBtHh4eRNSqVSulUqnrWOCtkpqaGhAQ4OPj4+rqWqlSpbyveIaGhg4ODh4eHjt37nz27Bkzq9XqUaNGEVGlSpXCwsJ0HTvoK7WaV65kNzceNoyPH9d1NKBF8fHx4nXDwMBg0qRJcXFxzKxUKn18fCwtLcXLiIeHR1JSUhEWf/To0bBhw2QyGRGJ1USmIjAwsAirqVTs58dVqjARy+Xs5sZPnzIzK5W8di1fvcrjx3P37hwXxyNHclRUEY4ApVlyMisUbGjI6emcnc3m5iyTcWysrsOCUkMMiCai4ODgwj42ODhYvMSJNGxWVpbYR1i/fn1x9lWm6G+Fu1qt7tmz58mTJ//3v/8dOnRIvDkVkFKpfPr0aXR0tNj2ZWJi8vDhw3yn3VqFljJlQXR09Jo1a8qXL9+4ceMmTZrku9JTEJs2bfr4449NTEzOnDnTrl07LcUJ+i8tLS0kJOTKlSvnz58/ffr08+fPNT8yMDBo2bKlo6Ojg4NDly5dNJeFb9682aVLl/j4+FGjRm3atKlQr5BQRiiVyhYtWoSHh7dp06bB67qw29l5PX78mtvlcqpdm/r0IbmcfvqJIiJKtML96FGaO5diY6lFC1S4669nz56dPXvW2trawsLC8iULC4uCPPbSpUtOTk4ymSwwMBBlxVB8UVFRZ8+eFZXsN27cyLsFtnr16p06derUqVOHDh1at2796vyn7OzsDz/88NChQ9WrVz9//nzBC7igDNm6la5fJ29vysggFxfatInwPHlLzZ07d8uWLXZ2dj///HPz5s3pn23cnZ2dV61a1bhx4+Ic4vLly6NHj05OTk5JSVmyZMm4ceNe2/u4gJKS6KuvaPVqys6m5ctp6tTc2+/coVWr6KOP6NdfKTMTFe5lz/Hj1LMntW9Ply5RcDA5OFD9+nTnjq7DglLjwoULjo6OtWrVioyMLEKe4fTp0717987MzPT29vb09ExOTu7atWtISEjbtm1PnjxZppri6u/YBG9v75MnT9rY2Ihc0uXLl9u2bVvAxxoZGdWoUaNGjRqdOnU6dOjQ4cOH161bN3/+fK0GnNe4cSQ+dSoUNH261g+nUqkKm+qFYlq3bt2MGTOUSmV2dra4xdDQ0N7evkmTJk2bNtX8bWpq+m8rnD9/XpS3r127Ftn2MiUnJ8fLy8vf379Dhw6JiYmRkZHXr1/PycnR3MHOzk6TIHBwcHjtPLdmzZodPHjQ2dnZz8/Pzs5u8eLFJfgbQOmwevXq8PDwRo0aXbhwobBjxhcuJCJq145++YVK/rr8/PnUvDm1aJH/9j17SKmkIUNKOh7I56effjp9+vTWrVtf/ZG1tXXe/LulpaWVlVX58uU135qami5YsEClUi1cuBDZdii+mzdvrlixYuPGjeJbAwODJk2aODk5iQvVTZs21dwzKyvrwoULly5dOn/+fLly5cTUHENDw99///299947d+5cz549AwICbGxsdPObgN46fDj3TdHUlAYNopMnadcusramihWpQoW8f8dVrmxYoYKmeBlKnUuXLkVHR/v5+Yls+7Jly2bMmEFETZs29fHxcXZ2Lv4h2rZtO3369LFjx7q5ubm7uxdztfLladkyGj+eli+nzz7L/9POnWnTJrp+vZgHgVLo4kUioo4diYguXCAi6tRJl/FAabN3714iGjBggEwmO3/+fEpKSvfu3Qs+ZL5r167bt28fOHDgnDlzKlWqNHbs2CNHjjg6Ol6+fLl///4HDx4sO/Pq9bTC/fLly46Ojjk5Ofv373///ff37dvXv3//sWPH/vTTT4Vd6sSJE87OzjY2Ng8fPnzzEBIJffYZxcXR9u0UH0/u7vT779o6UFxc3FdfffXo0aM9e/Zo6xjwinPnzvXo0UOpVI4aNapixYqhoaG3b99++PBhvrsZGBjUrVu3adOmjRo1En83btxYpOAfPnzYrl272NjYWbNmfffdd7r4JUBn/vrrr/bt2+e9RaFQNGzY8LUJgjc7duyYi4uLUqlcsmTJzJkztRAslFaxsbENGzZMTEw8dOiQmPR15syZu3fv5r2PmVmv9PR/lDw5OpKo3AoIoLp1yc6O4uNp505q0IC6d9d6zIcP05Mn9PHHRESXLpGhId29m5tej4qiu3epWjU6epR696b69bUeDPybqKioZs2apaSkODk5mZiYJCUlJb+UlpZWkBWqVq2qUCgiIiJKZgSFWk2NGtHhw1S3Lq1eTY0b0549tHYtEZGfH9na0nvvlUAUoC19+vQ5fPhw27ZtBw4c2KlTpzZt2uStdXj69Only5fFBrJz585lZmaK2y0tLePj4zXVKklJSV27dr169Wq7du1OnDhRpmqv4L8NH05ff0116hARrV9PmZn0+eevveP3HTrMunTJwMCgYsWKFSpUqFChgviiU6dOn3zySYnGDEXSvXv3U6dOnThxonv37kQUGxvbvn37KVOmiDbuUh1FbHEePXr0pk2bpFozH1Hh/sMPFBtLjRrRtWuocC9j+vShw4dpxw4aPJiGD6etW2ndOho/XtdhQalRr169iIiIgIAAJyenvn377t+/39fXt7DXCNetWzdhwgSFQrFz584BAwZEREQ4OTk9ffp02LBhW7ZsKc7mnlJEHyvcU1NThw8fnp2dPX369Pfffz8mJmbcuHHMXPAkFBElJyf//PPPo0aN6tGjxzvvvBMSErJ169aPxef4EqFW059/kvYKl5VK5apVq77++uvk5GRjY+OIiIi6detq62CQx8OHDwcOHKhUKvPlylNTU8PCwm7duhUWFia+uH//fnh4eHh4uOY+crm8Vq1aDRs2vHHjRmxsbO/evVGYXAYFBQXlu2XWrFlFeyb07Nlz06ZNbm5unp6eFSpUGDt2rBQBwttg/vz5iYmJ77//vsi2E9HPP/8sZtdoODmFnzv3j0etXZubcO/cOfeWxETy9CQDA7pzhypW1GLAUVE0cCCVK0f9+lHFitShAxGRg0PuT2vUoBo1iJk2bMCHRh0bP358SkrK4MGDd+zYke9HarU6KSkpMTFR5N9TUlLEFwkJCZpvHz16dPLkSQsLi7S0tBKb+WxsTDNn0p49lJBA6ekUE5N7e0ICIbNaqqWmpp46dUqhUBw6dEi0jlSpVKGhoSK9fuXKFdGZXXP/OnXqODo6isvbeT/plS9f/siRI507d/7rr7/69et36NAhDCSHv3XpQnv30vTppFbTgQO0eDEdPEjx8RQX9/ff8fEUF5dqYWFpaZmcnPzs2bNnz55pFggKCnr06NFXX32lw18CisDGxubevXta3Ue+f//+lStX9u3bV4w2kUrt2uTlRd98Q3I5hYVp9/wN9A4zBQYSvaxqz1vtDlAAV69ejYiIqFKlSseOHVNTU48dOyaXy/v27VvYdT799NMnT5589dVXI0aMOHr0qJOT05EjR7p06bJ161Zra+sffvhBG8HrG31MuE+YMOHu3butW7devHixGGf04sWLXr16ff4v1QSvNWbMmD179qSnp8+fP3/q1KkjR45cvnz5mDFjSqzT8Zw5NGUKvW6/tQSOHz8+ZcqU0NBQetlODtn2kpGRkTFw4MDY2Nj33nsvX4bU3Ny8bdu2eRsfZWdnP3r0KDQ09NatW+LvW7duRUZGRkZG1q5du1KlSlu3bkUvoDLo1YT7+++/X+TVhg0blpiY+Nlnn40fP758+fKDBg0qXnTwNrh69erGjRsNDQ2XLVumubFr1675UkhVqlDDhv94YJMm+ZeqU4c6dqQjR+iLL2j1am0FTEQzZ1JGBvXv/68fC9PSaN48GjhQBy1uQGPTpk1//vlnxYoVV61aJW559OhRXFycaB1jaWlpbW1tbW395kV69ep19OjR5cuXf/PNN9oPmYioWjVq2ZJ27sz99t49WrKEiOjcORo1qmRCAK04ePBgZmZm165dNYOa2rdvf+XKFc0dLC0t27dvL1q0dezYsXz58v+2lI2NzaFDhzp37nzy5MkhQ4b8/vvvOEODXB9/TLNn04gRlJFBgwdTs2bUrNlr7/gl0ZdE2dnZ8fHxcXFx4u979+7NmDEjJibmiy++KCMFfW8Tbb8OREdHnzhxor7UG/cMDcnamhYsIIWC5s6Vdm3Qd8/v3DGsUcOyYkV59er07Bndv08WFlSY0lXQT3fv3k1JSSmBfoyin0z//v0VCoU40ercuXPVqlWLsNSXX36ZkJCwevVqFxeXM2fOtGzZcs+ePb17916zZk3NmjXLxAZ93c5sfZXoqFiuXDlRkyJymjY2Nk+ePCnUOsePHxcPzMjIUCqV9vb2RHT48GHtRJ3fxIl85w7v3Mmff84DB/KIEezmxteuSbDynTt3XF1dxb9dgwYNDh48KMGiUDBqtfqjjz4iooYNGyYkJDDz8ePH1Wp1wVdQKpW3bt3atGmToaGhgYFBYZ/V8HbIt1mnVatWxV/Ty8uLiIyMjI4ePVr81YKDg0+fPl38dUBXunTpQkTTp0+XZLXQUDY0ZIWCr1+XZL3XOHeOZTI2NeUHD/71PgkJfOwYHzvGcXHaCgPe7MmTJyKZ/uuvv2puzHeubGZmVrVq1QYNGjg4ODg7Ow8YMGD06NEeHh7z5s0LDQ0VD7l48SIRmZubx8bGlkDYKhX36sUZGfzuuzxrFu/bx9268Y0bfOMGe3ry77+XQAigLUOHDiWiFStWaG4ZO3asra2tq6urj49PQECAUqks1ILXr18XT/JRo0YV6gQP3mZTp/LMmfz4cZEXEBPvr169KmFQoA3dunUjohMnTmj1KGLmxOjRo5l57dq1RPTpp59KfpTsbCZihULyhaG4fvzxx/79+2dmZmpp/Z9//pmIBg8ezMyhBw5EOjqmurpq6VhQYoKCguzs7DZv3lwCx2rWrBkRHTlyhJlF+mv58uVFXk2lUokEpp2d3YMHD5h57969CoVCJpNt2LBBsqD1lX4l3CMiIsScGfGf/vLly0ZGRjKZbP/+/UVY7Z133tEs5e3tTUTOzs4SR/wvRMKdmV1c+IMP2NiYiZiIe/TgAwdYpSrKmqmpqV5eXqI+0crKytvbW3sv0/BaX375JRFZWlqKrIGfnx8Rubm5FWGpDz/8kIiWLl0qdYyg79LS0vIVy2zcuFGSladMmSKen0FBQUVbITg4eM6cOfXq1ROBffPNN5IEBiVMNPqwsbER1wUlMWkSE3H37lKt9w8qFbdpw0T85ZdaWR+kMmDAACJ6//3389743XfftWzZsnbt2tbW1m8u3ty7d6/mUf/73/+IaM6cOSUQtki4M/OhQ1yxIu/bx3375v5oxQr+/Xd+/pyTk0sgEJCYUqm0srIiooiICM2N2dnZxVz24sWL5cqVI6K5c+cWcyl4GyQksJkZy2R8926R1xg5ciQRrVy5UsK4QBuQcAdti4uLq1ChAhH16tUrNTVVG4cQLUbFpWgx9XfhwoXaOBCUmJMnT1auXHnXrl0lcKw7d+6IfGNWVlZmZqZIz0ZGRhZnzaysrJ49exJR/fr1nz17xsw//vgjESkUij179kgUuJ7So4R7dnZ2x44diWjgwIHMnJKS0qBBAyKaNm1a0RYUxfJNmzYVTUXFcyUkJETKoF9x4AD378/bt/Pz58zM9+7xli0cGcmenmxllZt2r1ePfXy44C+warXaz89PbOKQy+Vubm5Pnz7V3q8Ar/XHH3/I5XK5XH7gwAFmvnLlipjKtW7duiKstm/fPvHklDpM0Hdnz57Nm4GqVKlSenq6JCur1erRo0eLNcUOoQLKl2fXaNu2rSSBQUlKT0+vVasWEa1fv17CZePjuVIlJuI8KVPJrF/PRFy9OqelSb84SGXbtm3ikt6jR4/ecLeUlJSYmJjbt2//9ddfx44d27Vr14YNG3x8fL766qs7ohKBmZmDgoJkMlm5cuXEabf2qNX89ClPmpT77aef8pkz7OmZ++2OHbx1K2/cyKNGMaqZS50jR44QUcuWLSVf+ejRo0ZGRkT0/fffS744lDLLljER9+5d2Mf99ddfffv29fT0ZOYNGzYQ0YABA7QQH0gJCXcoATdu3LCzsxMftZ6LnJGkmjRpQkSXLl1iZkdHRyrBNg+gJcuXLz979mzJHOvbb78lopEjRzKzv78/ETk4OBR/2aSkJFEP3bZt25SUFGaeP38+Edna2kqVDNFPepRwnzNnDhFVr149Li6OmUeMGEFEzZs3z8jIKNqC+TrJiBbw4qmjJZcucblyTMSvzcEmJvKyZVyrVm7avUIFXrz49+jo6Devefny5Y4vZ1y0bdv24sWLWgkd3ujWrVvigo2oSX/y5En16tWJaJLmQ3zB3LlzZ8GCBenp6dnZ2ba2tkQUGBionZBBTy1fvjxvUnv27NkSLq5UKvv06SNeSB+8oTcHMzPfvHnTy8urYb4e3nnIZLIff/xRwvCgBIiNOK1atcrJyZF25dWrmYjr1OGivie/XnIyV63KRLx9u5TLgrRevHhhY2NDRD/99JNUa4rZFbNmzZJqwdf6+We2suJt2/7jblOnajUK0IqJEydqr3Dvt99+k8vlMpns559/1sb68AZTprCmPqpr179v79KFfXyYmc+e5RKq11SruWFDJuJ9+wr70AsXLhBR48aNmfnevXtEVLFiRVXRtjlDSUHCHUpGZGSkKHVq3Ljxm+sYCishIUEulxsbG2dmZiqVSlNTU5lMFh8fL+EhQOfCwsKua63RZ7t27TTbUseMGUPS7XqPjY2tX7/+sGHDNO3+6tat26hRo+DgYEnW10/6knA/c+aMQqGQy+WnTp3ilzviNZ3ciyxvJ5n79+8bGBgYGhpK+6Kmce8e29gwEY8Y8aY6KZWK/f3Z2Zlr1cqSyw0UCoWLi8uFCxdevefjx4/d3d3FBm07Ozs/Pz90k9SJuLg48Y44YsQIZs7IyGjfvj0Rde7cOSsrq1BLiQf+9ttv/HKHlzZOsECfDRs2TJPRVigUxdyf9ar09PTOnTvn3bGVz5UrV2bPnl3AMcsKheKPP/6QNkLQnujoaNEJQRst+LOzuWlTrl49+4cfpPwgunjxsSpVVE5OqC/Wa6JTdrdu3SQ8D7ly5Yq2i9wfP2ZrayZ6U8Jdrea1a/nKFS2FUBaVzMmqWq0WpQ9XtPaPt2bNGvE++Ds6/ZesyZNZ8+nbyenv23v25L59OTq6BBPux4/n7sAq/DVspVJZrlw5mUwm9iWLIrCbN29qIUqQDBLuUGKePHnSsmVLIqpZs2Z4eLhUyx46dIiInJycmPnSpUtE1KRJE6kWB31w6dKlqlWrbtdOpVJ0dLRMJjMzM0tLS8vJyRET6W/duiXV+k+fPtVceE5OTjYxMVEoFNre7apbepFwj4+Pr1GjBhF5eXlxnk7uxS8qyddJRnTrl7akVIiN5fr1mYj79OECdo8MCooYMmSIoaGhSGw5OTnt3r1b1CQqlUofHx8RuZGRkYeHRzLaixbSlZSUE/HxJ+Ljw4vXpCA7O7t79+5E1Lp167S0NGb++OOPiahWrVpFmPYmmlX17NmTmUNDQ4mofPnyaWijUJbUr19fk87u37+/Ng6RmJjYqlUrImrbtq3mpaNQeXZNtp2kG8QKJUBczhFTkrTh9OloExMrCwuLx8WYHZdXeHi4kZGRpWW1kBCU3uivAwcOEJGZmdm9e/ekXfmDDz4gohkzZki7rMaHHzIRu7i86T6XLvHs2eztjY5G0rh161arVq0k/Gz2b/766y8iqlGjhlbz+wsXLsT7YMmbPJkHDmR3d3Z359at/769Z0++do2HDCnBhLura3EGjDg7OxOR6Lor3qDXrFkjaXwgMSTcoSQlJCQ4OTkRkY2NjVQXjxcsWEBEM2fO5Jf7qseNGyfJyqAPsrKyGjdufPDgQS2tv2rVKiIaNGgQMx8/fpyIGjRooKVjbd26lYi6dOmipfX1hF4k3Pv160dEjo6O2dnZmk7uUvW58/DwoJedZMTZubW1tWgbJJXkZG7dmom4bVsu7MJRUVGzZs2ytrYWGa7atWu7u7trmikPGDBA8gLYMuKT27dPJiScTEgIL15PqEmTJhFR1apVxcaI77//nojMzc2LtosnMTHRzMxMLpc/fPiQX27Y2bp1a3EihFIkISFBJpNpMtrHjx/X0oGePXsmZmC0b99+5syZBcyzGxgY1KxZ89133x05cuTChQuPHj1a/EGsUGIuXLggk8lMTU3v37+vvaOI9+sxY8ZIsppoKvLJJ59IshpoQ2JioqgjXrVqleSLBwcHiydtTEyM5Iv/+isTcfny/F+t+0BKw4cPF3nwqKgorR5o3rx5ROTh4aHVo/DLxjUODg7YZlpiJk/mCxc4LY3T0vJXuDPz1Km8YAEvXMiHDvHixVy8vdBv9OQJGxqygUGRX0S+/vpretl/0tfXV6tXxEESSLhDCUtLSxPtQM3NzSW5siuu84lBlKLYdMOGDcVfFvRHZmam9hYXr4GiH8Nnn31GRPPmzdPSscTz00e0int76T7hvm7dOiKysrISHYfFqUmNGjWkajWVr5OMGBwh4efGrCxVz55MxPXrc+ErnnNlZGT4+fk1btyYiMTGjYYNG2K6RXF8cvu25uukAm46eMWmTZuIyMTERLTOP3r0qEKhkMlkO3bsKHJgYmP+119/zf8seIeyQFwoFpo0aaLVT+/37t2rVKmS2CiTj5GRUb169Xr06PHxxx9/+eWXfn5+Z86cefDgQfYr/6eo1epRo0ZR4QexQglTqVTiAp6W2hlrREREGBsby+Xy4s+fOHbsGBFZWFg8efJEkthAG8Smro4dO2qp9fCHH35IRFOl7qH+/Hlul7+NG6VdGP5D3rZmopOGljRt2rQE8mLMrFKpKlWqVLduXa1ey4S88rWUef6cT57k7OzchHtyMterxwMGsIEBE3HdupyYqJUwbq1erapQgYtRAXb27Fkiat68OTPfvn1b1LHiyo0+Q8IdSl52drbolG1sbCw2xBTHsGHDrK2tp0+ffvLkSVEwUQJ7zkBXbty4IeEn9BcvXojEaXx8vKZxn5aq7jIyMiwsLGQymahDfYvpPuH+xx9/VKpUSeQfmfnZs2cuLi7SDuEdNGgQvewks2fPHlFILslAOZGNevddDxsb9Z07xV1NpVKJemonJ6dXM19QKJ/cvj0nMnJOZOTttLQPbtx4NyRkxK1bnhERvjExx+LjI9LTVf91vnv+/HljY2N62dooPDzcysqKiL4s6sZS4ejRo+IZqFar8xW8w1tPTP0WSmAeqYuLi8jsjx8/fvHixb/99tu5c+diYmIK9WFPqVT27t2biLx79WLtDMCA4hMf3qpVq5aamqrtY3l6eooMbHGyBtnZ2c2aNSOi77//XsLYQFonTpyQyWTGxsahoaFaOsSNGzfkcrmJicl/zpAvlMGDmYh79MBsAB1ITEx855136J9tzaQlRlBaWVlp5m5JKyQk5NChQ6KI7M6dO0RUsWJFnJmXmC1bWDP3/Ztv+I8/+PhxXrmSV6zIvXHqVJbLmSj3jzaqxnNycmrWrGllYhJ28mSRF8nMzBQTC58/f87MdnZ2RHQ7T0kQ6Bsk3EEn1Gr1tGnTiEihUBRtOv2DBw98fX1dXFxEv2KFQqFQKOrUqdO1a1fMan5bXb9+vUqVKmI3gyR+/vlnIurduzczX7x4kYiqV6+upYvEf/zxhzhR1MbiekX3CfeZM2cS0ZAhQ7R3iLydZFQqlWjYIskEJBG8hYVFSEjRG7/cu3cvKCgoISGBmb/44gutbtwoOzQV7tlqdc+rVx2CgvL96RQc7H7z5rBhwxYtWrR79+7bt2/n/SgVExMjTounTZvGzMnJyaKWqn///sV80VGpVGJiwZkzZ/ifBe/w1hs4cKDItltZWUnb2OpVSqVS9KqKiIgo5lJpaWm/jBjBxsbcpAm/eCFJeJDXgsjIGffuzYuM/LVIBaHJycm2traaDYDaJsnhVqxYQUR169bV6r7IsuzXp0/nRUbOj4z8rahVxqmpqXXq1CGi7777TtrY8hkwYAARff7551ItuH//mQYNMiws/s7ZQQnTtDXr1q1bRkaG5OuL/n5ubm6SryyIjR3ffvstM3t7exPRqFGjtHQsKIhTp3j37tyvk5NZJvs72y7+rF0r8RH3798v3qSKmavq2rUrEe3du5eZBw8eTES+vr7ShAhagIQ76JB4u5HJZAU/7woODl64cKEYvioYGxv37t177ty5omvCu+++m6ilTUCgaxkZGRcuXJBwQdHqc/369cy8adMmExMTCU/O8xF76BcvXqyl9fWH7hPu0dHRRkZGCoVCq83KO3XqpOkk88MPP0hyOWXNmjVEZGho+OeffxZnHdEdUsQ2fvx4Ivrhhx+KGRt88s/6kaScnFtpaQdevFgVHT3l7t2+N260CQoafOlSvj4bzZo1c3V1nTt3rmjv07Nnz+zsbJVKJSqFW7ZsKUn16Pz58zWnWXkL3ou/Mui5mjVriieb5P0TXiWeWi1atJBmucREbtUqd1QFZjhLbW5k5LOXdZpRmZl309Nf++fGzZvXX+eTTz4pfsl5oYjPira2toGBga8N6c0CAgIqVKhARPv37y+ZgMugvE+qohGtG9955x0tFRFr3Lx5UxS5P5JiD018fLytra2hodkvv2irKh8KIiIiQlyZ+2riRJZiU2leYsqcJKUzr8rJyalcubJmG76YLCVhBRkU1tmzvGnT39+q1bnNZPL+MTH5uwuNJETeofh7sLy8vIhoypQp/PKT47Bhw6QIELQCCXfQrbVr18rlciLy8PD4t7P6nJycgIAAT09PcWFbKFeunIuLi5+fnya9HhYWJor8mjVrpo1JOfA2UalUgYGBomuoptVnSkrKs2fPtHE4pVIpPgmWhY61uk+488sJS6KUWEsOHjw4e/ZssWE5LS2tYsWKRDRr1ix/f/8rV648fvy4sPULO3bskMvlMpnsl19+KWZsooGp6Nj1wQcf4LReEtf/KzOekpNz9dGjn3/+ecaMGb17965du3beaZbVqlWrWrWqGCTw+PHjBg0aVKpUSar2nZGRkTKZrFy5csnJyfkK3uEtFhsbK55dMpksPDxc24cTybIFCxZItuKzZ9ygARNx9+6MqmRJzY2MnBkRsSAy8q/k5KGhoa/uyBF/jMzM6HUsLS3lcvmlS5c0C2pj92jeNVUqVd26dcWpUtFYWFi0bNlS8iBBY25k5K7Y2CNxcY8yM5dERU27d2/B/fvfPXz4Q3T0L0+e7I6NPRwXdzYxMeD8+ZCQkIiIiLi4uLzbvC5cuCCXyw0MDIKlTWL9CzE3SYwWLCZRMtOpUyfsoda5a9eujezePcPEhD/5RMLmPs+ePVMoFMbGxlrqV3PmzBkiqlevHjM/ffpULpebmpqWQLcu+Dc//MDe3nzkyN+3nDvHVlb5c+716nFSkjRHfPjwoXiOxRZ5PNdLJ0+eFFcumfnmzZviWrUUMYJWvE0J95wcbtaMW7WSfGHQrj179oiutiNHjsx7Ypaenu7v7+/u7l6lShXN6XTlypXd3Nz8/f2zsrJeXSomJqZ58+ZEVLt27bt375bgLwElLSQk5N69e4V6SGJi4rFjx7y8vFxcXMRnuho1alSoUEGrA3gEURfYtGlTbR9IHxgU+dOyhGbNmrV169affvpp4cKF5cuX18Yh+vTpIwZAE5GZmZm9vb2pqemSJUuWLFmiuY+1tbWtra2dnV3ev+vUqWNra1ulShWFQqG555kzZ0aOHKlWq5csWSI+2hXH48ePiUg0MMn7NRRH83Ll3nwHc4WiZfXqLceO1dySlpZ2+/btsLCwQ4cObdu2zd7eXjwbbW1tL126dP/+/Vq1akkSW+3atTt37nz27Nnff/99zJgxI0eO/OabbzZt2vTuu+9Ksj7op8uXL4svevfunbckQRuY2d/fn4j69esn2aI2NnT4MDk50cmTNGQI7dpFBnrxDvJ2mFa9emVDQ7lMZm9iovqX+6gbN87Oynr19ujoaLVaffXq1fbt26vV6nXr1q1aterixYuip5BUJk+enJCQ8P3331erVi0hISEuLi4pKalevXomJiaFXSoxMTE6OvrevXt3796tX7++hEFCXkZyubFcLpfJglJSIjIyXnufm++9l5WWpvnWzMzM0tLSwsLixYsXarV6wYIFohm3tn3xxRe7d+/+6aefPD09xYymojlx4sTmzZtNTU1/+eUXUSMGOtSiRQu/RYvI2Zl++okqVqQ8U0yKY//+/SqVqnfv3hYWFpIsmM++ffuISHQ62rdvn1qt7tmzZ7n/OqsE7fnss/y3ODrS7dv04YeUd6vqvXv0wQd05owER1y/fr1KpRo6dKjY61AcHTt2NDExuXbtWmJiYpMmTWxsbJ48eRIREVG3bl0JAgUtY+bvv/9+3LhxxakweLOhQ4d269ZN2hM2InryhObPp+BgMjSkH36gDh0oNJRE0uLnn8nZmST6UAvS69+//6FDhz788MPNmzcnJib++OOPx48fP3DgwOHDh1NTU8V96tSp4+Li4urq2qlTpzec7djZ2Z0+fdrFxeXixYudO3f+888/8zafkUBSEoncnVpNKhUZGhIRZWWRkRHlKWSEEnDt2jUx4P0N91EqlSEhIYGBgYGBgZcuXYqMjMz705o1ayqVyvj4eBcXl5MnT2rpFEvYu3cvvTzRevvpOuOfS1xPXrp0aQkca/PmzURkamo6aNCgPn36tGjRIu91wtcyMjKqUaNGp06dBgwYMGLECHNzcyLy8PCQJB7x2VJUT4vtt1FRUZKsDEWjVqtF49pTp05p6RCbNm0ios6dO/M/C961dDjQB19++aV4PTl06JC2jyWS+9WqVZO+x8j162xtzUQ8ahTGEUqlmN0/du3aRUQVKlR48eIFM/fs2ZMk7YjNzDdv3jQwMDAwMLhx4wYzT5gwgYh69OhRtNXS0tJEZ0kHB4fXluRA8eV9Ul1NSTmZkLD/xYvtz55tePx4VXT0ogcP5kRGTrl718nJqUWLFrVr17a2ts77mc3a2trIyEhTLKNWq7U96O+jjz4iookTJxZ5haSkJLFjrGROJqGgjh1jY2Mm4iVLJFlPbAYt2li5ghBXAc+fP8/Molhnw4YNWjoWFEdWFo8bl6/OPXXduvXFXFapVIrKp3PnzolbwsLCxNTTohEdkEQLNZFfwDNKb+WrcP/ll1/EG6K3t7eEpyt5K9y1JDyc69Thb79lZh45kv39WdNK4LPPOCREe0cGaVy4cEFc5tGcm8nl8o4dO3733XeF3Sedmpr63nvvEZGVlZXmZa24Tp7k997jyZO5Z0++cIGPHuUvv8z90YgRLFFXACi+mJgYf39/T09PR0dHU1PTvBlOc3NzR0dHDw8PPz+/Bw8eMPPz588bNmxIRN27d9fekC2VSiVyniWziVbn9CXhfuDAASKqXr26tluFRkREWFpaEtHGjRvz3p6VlRUTExMUFOTv7+/r6+vl5eXu7u7i4uLg4GBrayv75zU6Ozu7pk2b5uTkMHNYWFj//v2L3BhLpVIZGhrKZLKMjIycnByFQiGXy7X9HwH+08KFC4lo5MiRWlo/NTVVXDYUKYwuXbrg/PutJ3IE9erVK4FGB2JOgCT9GV7j4kUuV44/+4zRsUEiu2Jjk4rX41gk2UWX2HzJcUnkTeKHhoYWf33xGktEs2fPlipIyGvRgwcvCn8ukZKS8vjx49u3b4vJJePHj2fmtLS0tm3blitXTkudHIXw8HCFQmFgYDB16tQVK1Zs2LBh586dx44dCwwMDAsLi4mJ+c9r0p9++ikRtWvXLkfqjuFQXFu3slzOMhn//HMxV0pJSTEzM8vbY1StVj+Qbjzu9evXiahKlSoqlSolJcXExEQul5fA9moosh9+YENDTcL9vImJydWrV4u2lFqtvnHjhhiZ26BBA3Hj8+fP69atW6dOndDQIo6FmDdvHhHNmDGDmVeuXKnVzxdQTCLh/vXXX4tvb9686ezsLE5XmjZteuzYseIfQqVSjR07lohatWqlvV5V4eE8cSK7uHBkZG7CvX9/PniQDx5kFxck3EuHEydOGBgYlCtXztHR0cfHpzh92LOyssTQZjMzM2kKvzp04LQ0Zub4eO7cGQl3vXL69OlFixb17ds3X1WxXC5v2rTpxx9/vH79+uvXr7/2bDkyMlJkw4cMGaKllMW5c+eIqFatWmVkhKG+JNzVanWTJk2IaOvWrdo7SnZ2docOHYho0KBBhXpgRkZGREREQEDAjh07RGdkCwsL8aonXrxGjBhRtJCePcvs2vXke+9tYuaYmNjKlZvZ2NgUbSmQ0P379+Vyebly5ZKk6gf5ijFjxhDRvHnz+GUBhZOTk5aOBfpAvHv5+PiUwLGaNWtGRJJ8MHi9O3eYmR89Ynd3HjGCp0/nxEQOCGDNCLsFCyTrpQoFoEmy37x5k19mHp2dnSVZfPfu3Xkr6EWZTDH3eD179kzUWcjl8uPHj0sSJ0jozp07BgYGhoaGYqC9uF4oEkYSWrVq1dmzZ8XXKpXK3t5eM1n6tWQymbW1da1atVq0aOHo6Ni7d++PPvrI3d191qxZY8eOlclkRkZGEl5nAimtWZM7v2/XrsI+NCUlJSAgwNvb28XFxcrKqlKlSra2tuKDYk5Ozrhx4ypWrFjkZGg+X331FRF98sknzLxz5056uRkR9NmpU2xufpNoB5EFETVs2DAlJaXgD4+IiPD19XV1dRVbr0RlVYUKFa5cucLMjx8/btOmjSgOPXr0aBHCO3r0aO3atUUO9+rVq0Rkb29fhHWgBNy5c8fGxkYUeF6/fl3ceOzYscaNG4vnhrOzsxinXDR//fWXmMMs2pba2dn5+vpKntVKSuLwcP7sM751iwcOzE24v/8+b9vG27bxe+8h4V46iA2s7733niSr5eTkuLu7E5GBgcGmvHOoC+v5c376lPNG5ejIhw5xy5bs5sZublynDhLuuiUSnkL58uWdnZ29vLz8/f3j4uIK8vDr16+LJlcTJkzQRnjTp08nounTp2tjcT2kLwl3Zl6/fj0ROTg4aO8Qnp6e4iyngM+2fyPGnI4aNYqZo6KizMzMZDKZ5kNjoQQHMxG3aMHMfPkyE7GDQ5m41KP/unbtSkQ/F7sa69+cPXu2RYsWfn5+nKfgvSxMai6bsrOzx40bZ2xsvHv3bm0f6969e+KTodabdXTrxmJX47Fj7ObGu3fz8uW5P+rXj1+80O7R4Z/Gjx+vSbLHxcWJ2eBiD3txZGVliQYLa9eu5VeS78XxySefiHPBatWqFWe3PmjJiBEjNJnH4OBgmUxmampanAKrfIKDg8VVIlGevGLFCvHUmjFjhoeHx5gxYwYOHOjs7NymTZsGDRrY2tr+ZxPtChUq9O3bV6rwQHpeXkz0d1+DN7t79+T27RMmTGjRokXeKUpEJPo6fvLJJ2q1OicnR/ToqFatmiST7R0cHIjowIEDzDx8+HBCh6JS4tGjR+LfTvjoo4/ecOecnJzLly8vW7bsgw8+yNc7u3r16oMHD27atCkRWVhYiGdCRkbGsGHDiEihUKxevbo4capUKvHuLOG2DJBQdna2r6+v6N1vYGDg7u4uBucqlUofHx+xS97Q0NDDw6OwJVkxMTFubm5i07ydnd3cuXM7deoknnVt2rQRPaykiJ99fblSJd6wgT/7jJnZ05Nr10ZLmVJp2rRpRPTFF19ItaBarfby8hLlC8uWLSvcgx88YF9fdnFhQ0P+7Td2dPz7R+3aocJdr/j4+Hh4ePz2228RERFFW+H06dNiRteiRYukjY2ZRetmybob6T09SrhnZmZWrVqViE6fPq2N9U+fPi0athS/MXdERISJiYlMJrt06RIzL1iwgIhat25dhAvUBw4wEf/vf8zMf/zBROziUszoQBp+fn5E5Jj37USb+vbtK5fL7ezsBg0atGDBgm3btoWEhGiveRaUvDlz5hCRpaVlUFCQVg+0dOlSIho+fLhWj8LPn//j1apDB969m0eM4F9/5V9/ZQcHJNxLWFxcnOj2KBIEIn1Zt27dYr6MLFq0iIiaNGmSnZ2tSb6vWbOm+AHfvn1b05iyT58+ZWRfYSly9+5dUeQuztfFBOZpBcyW/pfs7GyRHRML3r9/X2RR9+7d+4ZH5eTkxMfHR0REhISEnD179sCBA1u3bl23bp23t3ePHj1EIY+ElwRAegcOMDPHxvKCBTx+PO/c+fePlEoOCmIfH3Z1ZRsbJtrXpYt4fTAwMGjSpIm7u7ufn19kZOTFixfF1RfRkCo9PV3MnK9Xr14xe79ER0fLZDJzc/OMjAylUilSsXfEji7Qe6mpqYMGDdKkzvN1+c/JyQkKCvLx8XF1dc2XZLe1tXV1dfX19RVbxJg5MzPTzc1NZNi9vb35ZaJKZEvd3d2zs7OLFuTp06fLly/fvn17zbFAD8XHx3t4eBgYGBCRtbW1j4+P+Bd//vy5h4eHuARYqVIlHx+fgnQwS09P9/b2FpVVRkZGHh4eokOaWq3euXOnGD0ik8lcXV0fPnxYnLD//JMbN85tr+TmxmJPWmoqN27Mhw/zvHm5d5sxg1/W7oNeE5shjhw5Iu2yq1atEqffnp6e/33v4GBeuJBbtvx7VoaxMXt784gRvGcPZ2Xx5s08YQIS7m+fffv2GRgYyGSyYo7MEQ36NN+GhITQy8Z9xY6xdNCjhDszf/HFF0T0wQcfSL5yfHy8eD/7UvNaUDxz584lIgcHB5VKlZqaKgafbty4qbDrrF/PRPzxx8zMa9cyEbu7SxIgFFd6errY7lcCVecxMTFVqlQRFxLzUigU9erV69evn2ruXPbz48uX+dVNss+f8zff8JQprP1RnFAcarV69OjR4hxdq0+qzp07E9HOvIkMbXj6lPv1+/vb9u159252d+fDh/nwYe7YEQn3krd8+XKRdcrMzMzOzhadhYpTnvn06VNRzyVO9xcvXqxJvksSsGgULvz444+SrAkSGjVqFBGNHTuWma9fvy6Xy01MTKKjo4u/smjcUbt27ZSUFLVaLYYEFOcy4bNnzwwNDYnIBWULek6p5M6dOSiIU1N52jRev54XL+b27fP24WYirlLlwcSJS5YsCQgIyMjIyLfGsWPHjI2NiWjJkiXMnJSU1Lp1ayJq2bJlQkJCkUNbvXo1vWw7eezYMSJq1qxZMX5VKGlqtdrb21vkkkxMTIKCgoKCgkQzInFK/2qSXXTNevNS48aNE+O1tm3bJs7Ve/XqlZiYWKjYnj59KvZMENGAAQMk+G1By8LCwnr37i3+yRo2bKjpfH3lyhUxCFfU2715j7u/v3/t2rXFnV1cXF59vqWmpnp5eYnnlZmZmZeX16uveP/pzh12dc197axfn7X9CQBKQGZmphgiEh8fL/niW7ZsEadMEydOfDXvmZ2dffLkSQ8PjwvOzn+/KZcvz0OH8o4dLAbqZGTw0qU8ejSvWsVKJd++zYcP5z5+82YuXjMJ0BO+vr4iH/W7pmdswSQmJh47dszLy8vFxaVixYqfie02zPxyiNenn34qdbD6S78S7rGxsaampjKZrDjN0V5LVGY5OTlJNUorLS1NZPB/+eUXZt62bXvnzu6NGsUWtmux2F87fz4z84IFTMReXpIECBIYN24cEc2ZM0erR8nIyGjfvr14foaEhOzcudPLy8vV1dXBwUGcfjlUrfqPT6E1a3KvXjxtGv/0E0dHc+fOfPEix8byuHG8fbtWQ4ViUiqVffr0IaLq1atraTfxixcvDAwMjI2N/3PAYHGp1dypU25W/eZNHjAALWV0Ljs7W2yEFxtFRcLIwsJCM12wsEaOHKlJDeRLvkvi1KlTmvSHiYnJddRc6Zl79+4ZGBgoFIrw8HBmFr07xOzc4ggLCxPbBMWcCXFCX6lSpWIOZe3fv794Lu3Zs6eYEYIWBQayZqB3aip368ZDh+a2d2/ShN3c2NeXb97k/9rysnXrVrlcLpPJROu/2NjYhg0bElHXrl2LkK4SxHTELVu2MPOkSZOIaL44QYdSZd++faKaWFQoazRu3Hj8+PG//fZbwffB7Nq1y8zMjIicnZ3FtZzz58+LHt/NmjUrYBcjtVrt5+cnOsmYmpp6eXlpveMfSMff379u3bqajPm9e/eYWa1W//bbb6LeTi6XixvzCQ4OFptviKhVq1Znzpx5w1GioqLEpgoisre3Fx1HCyIlhb282NiYibhcOfbyYuyOfjtcuHBBqxd99+/fL2Yp9e/fX+yFTU9P9/f3d3d310za9OjShStXZjc39vdnvGqVSV9++aX4jPbmK4tKpTIwMHDVqlXDhw+vV69evhLSvKUwohpM8n0b+ky/Eu7MLIY5jB8/XsI1f/jhByKysrKSpL2jxq+//ipKJJKTU5j53XeZiAs7UczdnYlY7M4fO5aJ2NdXwhihWM6fP09EdnZ2Ul2nea2PP/6YiGrVqiW6BOaVlZV148aN83v38pdf8kcfcYsWuadUmj8//fR3T77nz7l3b+3FCZJIT08XFej169cvZnbptTZs2EBEffr0kXzl1wgJ4f792c2NhwzhR4/4zz95w4bcH33yCRejzBCKTCTZLS0tRZL9/fffp5dtuAsrKChILpcbGRmJjgqi2Ll///7SBpy3626LFi2KnCkDLRHzvUePHs3MN2/eLH6Ru0qlcnR01JS3xMTEWFlZkRSbcvbv36+pXS1OmTNo1/HjPHdu7tdqNXfowIGBfOwYF/4i8Zo1a0Tt1a5du5g5KipKlML07du3CLtwEhMTjYyMDA0NRTlhrVq1iOjy5cuFXQf0QWhoaL9+/Vq2bFmnTh3RjCgqKqpoS126dEm0PK1Xr97t27eZOSIiokmTJuIy4X9O8Lp27ZqmVff7778v7UdRKBn/1sA9NTV1wYIFr2YtXrx4oek8U7FixQJ2nmHmkydPtmjRQjxbunbtevXq1TfcWaVS+fn5tW7dydg4Uy5nNzcuXkst0C+iQai7NlsfnDlzRmz9ad269fvvvy/y70KTJk3mzJlz9fLl/7z4DW+9zz//nIjKly8f8s/hD0qlcvv27VOnTu3UqVO+Pg3m5uZdu3adPXv23r17Hz9+rHnInTt3qGTmzOkTvUu4h4eHi49zefswFifdefPmTfHysW3bNikC/JtarXZxce3UaZunp5qZg4NZoWAjI759uxCLhIXxnj0srov37s1EXOwRdyClRo0aEdEhrXVrWbJkiXhVKmhpZ04O37nDe/fy4sXs5sa7dvFXX+X+KDubS6rjPBRHYmLiO++8Q0Rt27aVvA69b9++ROSLC3dlmNhFIc7R7969a2xsLJfLC5s2UqvVIis6d+5cZr5y5Ure5LuEtm7dmvcUbcqUKdKuD8X04MEDIyMjhUIhMk2urq5ENHny5CIvKD5DVqtWTeTExQZESXoJ5uTk2NvbiydSmdqsWso8ecI9e+Z+fekSF+lyoIaY/2ZkZCSqpW7evClGWbi5uRV2LMSpU6dMTEy6d+/OzEFBQeJZitkSpZpUH+mjo6NFz6IKFSqISWDJycnieraxsbHYEvGqtLQ0Ly8vIyMjcRWw4DXLoJ8eP37s7u7+5gbuIjUvkpgiNV/Y1kMijS52Ucjlcjc3t9dW55w5c0Z8lCCijz/ecuVK0X8v0E8DBw4kok2bNmn1KDdu3LCzsxPpDrlc7uDg4OXlJXmrCSjVVCrV4MGDRRFq3mvG2dnZYqCOUKdOHTc3Nx8fn4CAgHxvvtHR0bt37545c2bDhg1lMpmbm1tJ/w46pXcJd37Z1DVvs/UtW7YYGxvb2to6ODi4uLi4u7t7eXn5+vr6+/sHBQW9YWNgRkZGy5YtiWjcuHHaCDU4mOVyNjLi8HBm5k8+YaK/P0cUlhhHgbdMvfLtt98SkaurqzYWP3LkiEKhkMlkRa/su3+f+/bN/frcOZ44UarYQKuePXvWoEEDIurevbuEJb1paWlmZmZyuTzvxWQoa/Il2adPn05EnTp1KlTmaPPmzURUpUqVpKQktVot2pWKEYXSys7OrlmzpuZ0TSaT+fv7S34UKA7RXW3kyJHMHBoaKpfLjY2NHz16VISlIiMjxdn5vn37+OXTzMrKSpK+8PxyNrX43BgQECDJmiC9dev4gw/Yw4Pff5+L/U8/depUIrKwsBADyQMDA8UA3iJcFkpNTRWtIRYsWEBEebuOQhmXkpIiChqMjIxECiw7O3vChAnibev8+fP57n/gwAGxSUIul7u7uycVtuUo6Kt8DdzzvtEcO3ZMtPUjImdn5+LMxU1ISPD09BRXa6ysrLy9vTUJrEePHrm5uYn5vdWqVfPz88N1wbdStWrViOh2oQo5i+T+/fvXr1/39fUtcv9JeOtlZWW999579Mp0+lmzZn311VdHjx7Nd2VRqVSKKeVubm5iQ5jG9OnTIyIiSvw30CV9TLiLpq42Njbp6eniFjEI7g3KlSvXqFGjLl267N69O+9SEydOFM8M7bUzFn1gRGOi2Fi2smIi/q/9ha9XuTITMV7r9EpMTIxCoTAyMnr+/Lm0K4eHh4t99F9pStSLZskSdnXlWbO4Vy8ucFdK0LmIiAhbW1si6tevn1QjKPfs2UNEHTt2lGQ1KL2mTZtGRI6Ojmq1OjExUZRKFfzCXmpqqjjRF0NKtmzZokm+ayPaZcuW5X1Dr1y5Mq4Y6ZWHDx+KIncx7fmjjz4ioomFv76rVqt79OhBRKNGjWLm2NjYypUrE5GEhZ8REREiDUFEDRs2RIci/ZWdzRINgss7kFzU5R0/flyMVPX29i7amqKrw9GjRyWJEN4OOTk5np6e4uXFw8NDTBpcuXJlvp4Pjx8/1jTjbtWqVWBgoI7iBS3y9/fX1Aq4uLicPHlS7HggogYNGuyXaLt6eHh43mV3797t7e0tLiiamZl5enqmpKRIciDQNw8ePCCiihUr4moK6Ink5GSx06tNmzavvvKo1erw8HA/P7+JEyc6ODjkG6BiZWXVq1evhQsXHjx4MK7sDdTVx4Q7M7dr146IfvrpJ80tGRkZMTExQUFB/v7+vr6+np6ebm5uzs7OTZo0yTt3fv369ZqHHDp0SCaTGRsbBwcHay/UZ89yk+yi6cimTbx9e6G7XYWH89WrHB3NFy7wyZPaCBOKTkyoX716tYRrJicni8t9/fv3l+CtND2dHzzgnTv/7qANpcGNGzfE5vdRo0ZJckYlumwXOcUAb42kpCTRc1Yk2Tds2DBp0qSCn+Ko1ept27YNGDBApVJpJoRrb1trcnKyuPqo8d577+Ezhl4R83WGDx/OzOHh4eI6dGGbEYuO21WrVhVPRbFdurfUo0c0Q+qIyAtj6MsGpVIp0lKageTbt28XI1XFVcNCuX//PhGVL1++TPUYhQL66aefDA0NiWjAgAFpaWl5f6RSqXx9fUWn73Llynl7e2t1BBTolmjgLvrWiiS4lZXVihUrlEqltAfy9/evX78+EYluNjKZbOjQoUWeSQClwrZt24jo/fff13UgAH/TTKfv3r17ZmZmcnJyQECAt7e3i4uLKKDRUCgUTZo0cXNz8/X1vXnzprg+XWbpacL9t99+IyJ7e/sDBw5cv379P0cLJiYmhoaGHj9+XLPHOSYmplKlSkS0fPlybUe7bBkTcb16RR8Lvnw5167NYitGt24ShgYS2LlzJxG1bt06742PHj0q8hmVSqUSfZNatmyZmpoqRYzMf/3FRGxjw1Kf54FWXbx4UTRYKH6zjoyMDJG+L4Hth6D/fH19xdtovoxAYc2fP1+8AGr1bGnGjBn0TyXw3g0F9/DhQ2NjY4VCISqIhw0bRoWcb//w4UMLCwsiEjsRd+3aRUSWlpYPHz6UNlQ/Pz/Ns8jIyKg4m/qhFHl1IPmPP/5Yq1atgo+dePLkyZ49e6ZPn96gQQO5XD506FBtxgul2PHjx62trcVpvCbvGRwcLMrFRMkz8qFlxIMHDxo1amRsbNy5c2fJN0MLN27cMDc3r1mz5rx58zp37mxqatoNyYK3nYeHBxF98803ug4E4B/u3bsnKroqVqyo2VEqVKtWbcCAAUuWLDlz5oxkCa63gp4m3JVKZbt27UTzO82npjf0cM9XCqdSqZydnUusSk6p5IYNmYiXLSviCsuX85w5LHpF4j1U32RlZYmLN3mHxdevX9/AwKBOnTouLi6enp6+vr4BAQEFfHGZOXOmeJ2SuINVixZMxPv2SbkmaN/Ro0fF5vclS5YU9rGJiYnHjh3z8vJydnY2MTGpVq1aq1attBEklDoqlcrBwYGK17QqKirKzMxMJpNpux12dHS06FWqoe3daVBYoluxyELevn27V69er7YtfgMxHHXQoEHM/OLFiypVqhDRunXrJI8zPT0974aJ9u3bl/HKmrLj1YHkbz4ry8nJuXnzpp+fn7u7e5MmTfJ+dJw0aVJhN3BAmXL37l1R6GdnZ3f27FlPT09RfVytWrV83U3hrff5558T0YoVK7S0/tWrV4moRYsWzHzp0iUiateunZaOBXqiTZs2RHTixAldBwKQ359//mlmZmZqampoaOjg4ODh4eHn54fqljfQ04S74Onp2bNnz6ZNm4o6gjcwNTWtV69e586dhwwZMmXKFLGxtCT7wB46xERcvjwnJBTo/kolBwbyqlU8YgS3bs3LlvHBgzxyJP/1FxLu+mjSpElENGXKFPFtTk6OKIDK9zyUy+V169Z1cXGZNWvWpk2b/vrrr1eHB/z6669EZGhoeFLy5kFLlzIRf/ihxMuC9m3dulVsfv/555/ffM+cnJxr166tXbvWzc2tXr16eZ9+MpmsZ8+eSC2Bxrlz52QymampaZGLiF1dXellIxFtGz58eL5X1J5FHkEOWhATE2NqaiqXy69fv16Eh4eFhbm4uIhRSyNGjCCirl27aqkkQjTA0VizZo02jgJ6SDOQvFu3bq/t4J+UlCSuUru4uOTrZGVubu7o6Ojp6env7//ixYuSDx5KlxcvXogGVuJqsaGhoaenZzG3lEFphIQ7SCs9PV0MzkGPftBDK1euJKL//e9/Uo2ge+vJmPnNuWw9kZWVFRcX9+TJk8ePH+f7OzIyMiEhIe+dDQwMqlSpsm7dOtG4o2R4eFC7djRkCBkYUFoaqVRkafmPOzx+TFeu0PnzdO4cBQdTRsbfP/L0pHffpdatacwYysykU6dKLGookODgYAcHh4oVK8bExIhiZCJSKpV37969detWZGRkaGjorVu3QkNDMzMz8z6wevXqjx490nwbEhLi5OSUnp7+448/fvrppxJHGRtL1asTMz16RFWrSrw4aNnatWs/++wzhUKxffv2QYMG5f1RSkrKtWvXzp8/f+7cufPnz+d9uStXrlyrVq0cHBycnJy6desmtmIAaAwePFhU2xXt4WZmZswcHh5evXp1aQN7VUhIiJjGo/Hpp5/++OOP2j4uFNykSZPWrFkzePDgHTt2FHmRQ4cOvf/++2ZmZteuXct31VAqf/31V/v27TXfWlpahoaGlsBzGPRBZGSkk5PTkydP+vXr9/vvvxsYGERGRp47d+7KlSvnz58PCQlRq9WaO9va2jo5OTk6Ojo4OLRv31705gYoIKVSOXHixLp16x48eHDdunXNmjXTdUSgA1OmTFm5cuWKFSumTJmijfWvXbvWqlWrFi1aXLt2LTAwsEOHDu3atQsMDNTGsUAfnD17tkuXLu+8805wcLCuYwHIr1u3bqdPn/7tt99Ee0n4Twb/fRf9YGxsbGdnZ2dnJ/bI55OamhodHf306VPxd2pqqqenpxhjUmJWraLmzenpU5oxg44coZgYGjOGrl7NTbKfPUvPnv3j/nXqkKMjOTiQgwNdukREVLUq9elDP/9cklFDgbRu3bply5bXrl3r06dPz549Gzdu3LRp09q1azdt2rRp06aau2VnZ4sUfFhYmPjb3t5e89OnT5/27ds3PT19woQJ0mfbicjGhnr3Jn9/2raNpk6Vfn3QpokTJ8bGxn755ZfDhw+3tLSsV69eQRIE7dq1y9eIAyCvZcuW9e3b183NrWgP79+//8cff1wymcp33nmnR48eJ06cICILC4u5c+dOxeuYnpk3b97GjRt37do1a9as156M/afk5GTx9rdo0SItZduJqF27di1atLh+/Xregx44cEBLhwO9UqdOnT///LNLly779u1r2LBhQkJC3qvUpqambdq06dSpU8eOHTt27GhjY6PDUKG0MzIy+vnnn4lozpw5uo4FAN4SFy9eJKKOHTvqOhCA/F68eHHu3DlDQ8M+ffroOpZSo9Qk3N/M3Ny8UaNGjRo10m0YtrZ07hwNHkxEFBFB5ctTniwZ2dhQ+/bUrh116EBt21L58n//qEYNMjMjIpo4kV5O3AH9snTp0l9//dXPz+/kyZPiFkNDQ3t7+yZNmjRt2lTzt/Dqw7OzswcPHhwdHe3k5OTj46OtKMeMIX9/2rgRCffS6IsvvoiLi/vhhx8GDhyYmpqqud3ExMTBwaFjx44iR1AV2xegwOzt7UeMGFHkGgSZTJZvJI5WLV269Ouvv7a0tFy8eLGtrW2JHRcKyNbW9pNPPlm3bp3oLmpiYmKdh6mp6ZtvqVix4owZMx49etS+ffvJkydrNdTRo0dPmzZN8+3Bgwd37949cOBArR4U9ESLFi0OHz7s7u4eGxubkJAgRkCJC9Vt27bV7FMEAADQN0i4g976448/cnJy+vTpk68pH7zBW5Jw1x+LFtH06TR0KNnZkYEB1atHTk65lexNmtC/JS5q1Mj9QqGgPNugQY84OztXq1bN0dFRU70eFRUVGRkZGRmpqZszMDCoV69ekyZNGjVq1LRp08aNGzdq1EjstJg4cWJAQEDNmjV3796txZLk998nGxu6eVMZHGz0z+YMUCqsXLnS3Nw8Li5u//79bdq0ETkCJycnExMTXYcGpdirAyf0U6tWrXbv3q3rKOBN5s+f36VLl48++ignJyczM/PJkydPnjwp+MNNTU2NjY03bdokBgxqz8iRI+fMmZOVlaW5ZdKkSd27d//PmUDwdujQocPVq1cvXrxYs2ZNdBMCAIDSQnTqR8Id9NDevXuJqH///roOpDRBwl1iTZtSrVp05Ag1a0apqYRukG+Txo0bN27cWPNtSkrK7du3NQ1kbt269eDBg9u3b9++fVtzH7lcXqtWLXNz8+vXr5crV27fvn3a3b9saBjq4fHF5s1VNm78AQn3Ukgul3/77bdKpXL9+vW6jgUAIL/KlSsPGDAgOzubiDIyMhL+KTMzM9+NeW+Ji4sbPXr0//73v7zvpFpSsWLFDz744Pfff9fc8vTp07lz52IqQNkhl8sdHR11HQUAAEBBRUREPHv2zMbGpm7durqOBeAfUlJSTp48qVAo+vbtq+tYShMk3KXn5UXNm1OzZsi2v+UsLCzatm3btm1bzS3Z2dl37tzJN0Y1MjKSiHr16jVmzJiWLVtqOyru1+/3+fMrvHixdOlSlEWXUmjLDgD6z9TU1NTU1M7OruAPycnJMTAooTPPsWPH5k24E1FaWlrJHBoAAMqI+qNHDxs40K5yZS2tX1eheNK2rapGDSJqrFA8ads2p04dLR0LdM7CwmLp0qWirAFAr/x5+s/MzMwuXbpg/k2hIOEupbFjiYjMzenXXwmpzjLI0NDw1TGq9+7du337doltvWnWrJmDg8OVK1f8/f0Hi3kCAAAAeqDEsu1E1LNnT3t7+0ePHolvnZ2dPT09S+zoAABQFmRWrBiuUuVUqKCl9c1VKvPLlykri4gsVSrLy5f/tUctlH42NjbTp0/XdRQAr7Gr2a5awbXcVG66DqSUKR19XUuLjz7K/UI0bQcwNDRs3LhxCTe6GjNmDBFt2rSpJA8KAACgPxQKxaJFi2xtbbt163b27Nljx47lvRwOAAAAAAD/KVOd+Wfynw/5Yc8WPXUdSymDhDvA22bo0KEmJiZHjx7VVPYBAACUNW5ubtHR0SdPnuzcubOuYwEAAAAAKH2OpBxJUaW0Lde2hlENXcdSyiDhDvC2qVChQt++fdVq9a+//qrrWAAAAHRGLseJLgAAAABAEe1N3EtE/cuXaNuGtwM+hwC8hTRdZZhZ17EAAAAAAAAAAEBpks3Z+5P2E9GHVh/qOpbSBwl3gLdQz549a9Wq1bhx46SkJF3HAgAAAAAAAAAApcnplNPxOfFNTZo2Mmmk61hKHwNdBwAA0lMoFLdv3zY2NtZ1IAAAAAAAAAAAUMrsTdpLRAOsB+g6kFIJCXeAtxOy7QAAAAAAAFrSytw8m7mBqam2DlC5Mk2dStWqERHZ2tLUqVSzpraOBQDwipsZN4now/If6jqQUkmGFs8AAAAAAAAAAAV0My3t+0eP7I2NiWiWvb2lgXZqGTMyaMYMSkmhtDQaNowGDtTKUQAA/knFqj2Je6Kzo2sb1W5s0tg/yX9mlZm6DqqUQYU7AAAAAAAAAEBB5TC3t7CYKMrPtWf5cmrfnkaOpJwc6t2b2ren6tW1e0QAAKIRD0Z0Mu/kWM7xQPKBmkY1n+U803VEpQ8S7gAAAAAAAAAAhXApOTlNra5saDi6alVtHSMggLZvJyIyMKCePSkwEAl3ANC25znPY3NiJ1eeTETtyrW7lnFN1xGVSki4AwAAAAAAAAAUQitz8zG2tgqZTIvHMDKi7Ozcr5VKwpguANC+5znP7QztdB1FqSfXdQAAAAAAAAAAAKWJiVxubWBgqVBo8Rh9+tD69URESUl05Ag5OmrxWAAARERUw6hGeGa4rqMo9VDhDgAAAAAAAABQUOUNDGqZmmr9MJ98QsuXk5sbEdGyZWRtrfUjAkCZZy43d7V2HXJ/SGfzzlHKqGEVhuk6olJJxsy6jgEAAAAAAAAAAAAAdC86OzpKGdXIuJGZ3CxeFY8mM4WFhDsAAAAAAAAAAAAAgATQwx0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAAAAAAAAABJAwh0AAAAAAAAAAAAAQAJIuAMAAAAAAAAAAAAASAAJdwAAAAAAAAAAAAAACSDhDgAAAAAAAAAAAAAgASTcAQAAAAAAAAAAAAAkgIQ7AAAAAAAAAAAAAIAEkHAHAAAAAAAAAAAAAJAAEu4AAAAAAKCPtm7d+ttvv+k6CgAAAACAQjDQdQAAAAAAAAD5Xb58ecSIEUZGRjVq1OjcubOuwwEAAAAAKBBUuAMAAAAAgN5p27bt5MmTs7Ky+vfvf+fOHV2HAwAAAABQIDJm1nUMAAAAAAAA+anV6gEDBuzbt69u3boXL16sXLmyriMCAAAAAPgPSLgDAAAAAICeSk9P79q16+XLlzt37nzs2DFjY2NdRwQAAAAA8CZoKQMAAAAAAHrKzMzsjz/+sLe3DwgIGD16NKqFAAAAAEDPIeEOAAAAAAD6y87Obt++febm5jWePOHFi3UdDgAAAADAm6ClDAAAAAAA6LtHf/5p7+JCajVt3UpDhug6HAAAAACA10OFOwAAAAAA6Dv7//2Pli4lZhozhi5c0HU4AAAAAACvhwp3AAAAAAAoJSZPph9+oIoV6dIlqldP19EAAAAAAOSHhDsAAAAAAJQSKhX170/791OjRnThAllb6zogAAAAAIB/QMIdAAAAAABKj5QUcnKi69epRw86coQUCl0HBAAAAADwN/RwBwDQvdDQUF2HAAAAUEpYWNChQ1SzJvXsiWw7AAAAAOgbVLgDAOhYnz59Dh8+HBwc/M477+g6FgAAgFIiLY3KlaM9e2jrVjI1JUtLWrqUTE11HRYAAAAAlHWocAcA0LEmTZoQ0bJly3QdCAAAQOlRrhxFR9O6dbR9O23ZQm3a0IoVuo4JAAAAAAAV7gAAuhYdHV2nTh1mjoiIqFGjhq7DAQAAKCX27qW7d2nWLCKixEQaMoT+/FPXMQEAAABAWYcKdwAAHatevfrgwYNzcnJWrVql61gAAABKDyMjUipzv87OJiMjnUYDAAAAAECEhDsAgD6YNWuWTCZbv359YmKirmMBAAAoJTp2pCNHKDmZiMjXl95/X9cBAQAAAOiXsLDcL5KTKSZGp6GUJUi4FxFztq5DAIC3R4sWLbp3756SkvLTTz/pOhYAAIBSokIFWrqUJk4kNzcyNqZx43QdEAAAAIB+cXfP/SIoiNav12koZQkS7kXA9++73b8/7P794Wp1mq6DAYC3xIwZM4ho5cqVSs3ueIBSKDU19cSJE/fu3UtKStJ1LADwtouMpFGjqGVL2rKFZs4khULXAQEAAAAAkIGuA9CluLi469evv/ZH9vaGVaq8vobdyMg+Jye2fv0j2gwNAMqcXr16ubiMev78wx07DNzcdB0NQGE8fvz4ypUr58+fP3fu3OXLl5VKpbOzc3h4+O7du9u2bavr6ADg7bV1K4WH082buo4DAEBnMjMzo6Ki6tevL5PJdB0LAOij589JZBiePaOOHXUdTZlRdhPu169f3759+7fffvvan86e3WXQoDOv/VHDhmcUCuuIiA9tbCZbWPTQZowAUIbIZLKBA38ZM4bS02nECMIJM+iz7OzskJCQixcvnj9//sKFCzF5egEaGhq2bdv2/v37jx496tq16/r164cPH67DUAHgbbZ9OxHRsGG6jgMAQAeYecmSJZs2bXr27Jm5ufnw4cMnTpxYo0YNXccFAPqlcmXasoWI6ORJOvP6TCdIT8bMuo5BNz799FNfX99atWrVqlXr1Z8OGVKvW7d7r32gvf1KU9MWSmXUgwdj7O19TE2bazdQeFscOkQODlSlChHRxo308ce6Dgj0T3Y21alD0dF05Ai9917JHTckJMTQ0PDOnTv9+vVTYD8+/Ivk5OS//vrr3LlzIsmenp6u+ZGlpWW7du0cHR0dHBzefffd8uXLZ2VlTZ48WcwkcHd3/+GHHwwNDXUXOwC8jUJCqHVrsrGhmBgyKLtVRABQNiUlJY0cOdLf318ul1eqVCk2NpaIDAwMPvjgg3Hjxv3vf/+Ty9FAGACIiDp3poAAopcJ9y+/1OKx7t+/P3fuXCcnp2fPnnl6epYrV06LB9NvZTThrlarq1Wr9vTp0xs3bjRr1qyQj83IyYk1Mqrx4MHYSpVGm5u/q6Ug4S0zaRJ98gm1bEmU5/UOIB9vb5ozh3r2pKNHS+JwzLxq1apZs2bVrVs3LCysdu3a48eP/+STTypUqFAShwe9FxkZee7cOdEuJiQkRK1Wa35Up04dkWF3cnJ65513Xvuhbv369ZMnT1YqlZ07d961a1cVcckRAEASM2bQsmXk4UErV+o6FCidsrLI2FjXQQAURXh4+IABA27dulWhQoWtW7f27Nnz5MmT69ev/+OPP7Kzs4nIzs7Ozc3t008/fW19IQCUKdu300cfkUxGUVEUE6OtrjKpqanffvvt8uXLMzMzzczM0tPTq1ev7u3tPWzYsLLZ8KqMJtzPnDnTtWvX+vXr37lzp7CPzcl58fTpkpycp2Zm7SpXdpfJjLQRIbx9Jk2ivn2pcWMioqFD6dw5XQcEeik5mWrUoKQkCg6md97R7rHi4uJGjx594MABmUzWvXv3qKiou3fvEpGFhcXo0aMnT55cv3597UYA+u3w4cMjRoyIj48X3xoaGrZo0cLR0dHJyalr166VK1cuyCIXLlwYNGjQkydPqlevvnv37nbt2mkzZAAoM9RqqlmToqPp0iVq3167xzp7loKCqE4d6tuXUDH6drh1izw9qXJlevKEpk2jnj11HRBAIezfv9/NzS0pKally5Z79uypU6eO5kfPnj3bvn37Tz/9FBoaSkRyubx79+7u7u4ffvgh9hoClFktWpCHB40bR/v20f37NGWKxOsz8++//z5jxoyoqCiZTDZo0CA3N7dvv/324sWLRNS2bVsfH59OnTpJfFS9V0ZPGXfv3k1EgwYNIqLAwMDAwMCCX3gwMKhUvfoSO7tvEhJ23b5d5p4xUBy7dtG6dbRuHSmVug4F9JWlZW67oRUrtHugwMDANm3aHDhwoHz58jt27Dh+/Pjt27ePHTvm4uKSmpq6evXqRo0a9ezZc//+/WXzuqweCg4OHjVqlKhaKgGBgYF9+vQhokGDBi1fvvzSpUtpaWlBQUErV650dXUtYLadiDp16nTt2rWuXbtGR0e/++67Gzdu1GbUUIodO0bTp+d+PWOGTkOBUuHMGYqOprp1SduX8daupd27qXt3ioqi8eO1eywoMdOn048/0saNtGcPzZtHKlVJHjw6Onr06NHR0dEleVB4OzDzd9999+GHHyYlJQ0dOvT8+fN16tRJTU3V3KFKlSqff/75zZs3g4KC3N3dTUxMjh8/Pnjw4Bo1asyePTsiIkKHwQOArlSpQnv20PPnWlk8KCjIyclp8ODBUVFRbdq0CQgI2Llz5wcffHD+/PmdO3fa29tfvnxZ3OHRo0daiUBvcdmjVqvt7e2JKCgoiJl79epFRL/++mshF1GGhFgHBVFm5j3thAlvm88+46tXc792ctJpKKDfHj1iQ0M2NOSHD7Wyvlqt9vHxEUUu7dq1i4yMzHeH8PBwDw8PMzMz8TbRoEEDHx+ftLQ0rUQDBaNWqxs3bkxEy5cvL5kjfvDBB0Q0d+5cSVbLzs729PQUzyh3d3elUinJsvA28fPjJk344EFm5m7ddB0N6L2o2bPZxIQXLND6kdq35+zs3K+7dePERK0fEbRKqeTkZG7f/u9bBg3S1inXvxCzxIcNG1aSB4W3QFxcnMhdGBgYeHt7ixt9fX1tbGzu3r372ockJCT4+vq2aNFCnIPJ5XJnZ2c/P7/09PQSDBwAdKxnTw4M5NGj+Y8/eMUKDg1llUqCZWNiYtzd3UVnUTs7O19fX9Ur66ampnp5eZmYmBBRuXLlvLy8MjIyJDh2aVAWE+4XLlwgolq1aqnV6oSEBCMjI0NDw7i4uMKuExk5IiiInj5doo0g4e2DhDsU3NCh3KABX7wo/crPnj0TZ+oymczDwyNv3jM6Onr69On3798X3yYkJPj4+IjLk0RkZWXl4eERFRUlfUxQMAcOHCAiS0vLJ0+eaPtYV69elclkZmZmz549k3DZzZs3m5qaEpGTk1MJ/BZQuvj58fr13KULp6Vxt27s48O9e/OQIfzppzx7Nnt787p1vH07Hz7MFy8G3rp16/Hjx7gQWGZlZmZaW1vXLF/+eXi41g/Wtu3fXw8fzv+S1QJ9l5nJx46xhwfb2LCX1z8S7r16cUJCiQVy4cIFmUxmYmKiOeOCt09yMt97WZUn1avU1atXReuYSpUqHT9+nJnT09NHjhwpzupXrlz55oeLgnfN9EJra2t3d/cbN25IExwA6LeePZmZP/2UZ85kb282MeFKldjNjf39uWh1UFlZWT4+PpaWlkRkZGTk4eGRlJSU9w4qlapv375bt25Vq9XMHBUV5ebmJl5/7O3t/fz8JPit9F5ZTLhPnz6diKZPn87MmzZtIqJevXoVYZ2EhL1BQRQW1v6/7wrAfOECa05p9u7V5pFSU/noUT5+nFG5UGo9fcpDhuRW0f32G9+5I82yx44dq1q1KhHZ2NgcPnw430/nzp0rKl9cXFyOHTsmblQqlTt37tQ0XDM0NHR1dT1//rw0AUEh9e7dm4jGjx+v7QMNHjyYiKZMmSL5yleuXKlRowYRVatW7dKlS5KvD6WXnx9v2cJ79vD8+dytG48cyUSv+aNQ5OQdu2RkZFS5cuX69eu3bdu2xPZ/gM7t2bOHiBwcHEriYF265L4fq9XcsSNnZpbEQUEi6rR03r2bhw1jS8u/X0cGDuSpU3nTJlar+exZdnEpsXhUKpWYZbKgBDZngO6cPMlWVhwTw8zco4cElaRbt24Ve09bt24tLtVERUW1bduWiMzNzXfs2FHAdZKSknx9fd95OSfKzc0NBRAAZYFIuMfFcfXqPHMm163791tipUo8diwfPMhZWQVdzd/fXzM6wsXFJSIi4tX77Ny5U9zB0dHx8uXL4saTJ09qNtx069bt2rVr0vx6+qosJtzFM+PChQvM7OLiQkTr168vwjoqVUZIiEVQkCwrq0Q3IUIptWABN2/OYveMFjfLJyRwt268cSOvX8/dunFKitaOBFqUmsp16vCkSczMc+ZIUOqenZ3t5eUldnt179798ePHr94nJCRk5MiRRka5g6Bbt27t5+eX9fKNNygoyM3NzcDAQPzUwcHBz88vW7PLHkpEWFiYoaGhXC4XLdG05O7duwqFwtjYODo6Whvrx8bGduvWjYiMjY1/+uknbRwCSiORcGfmgQO5eXO+eZMPHOBff+U1a3jRIp41i93d2dWVP/ggpV27dg0bNqxSpYrYnapRp06dcePG6fr3gJIg5jAtW7ZMu4eJi2OVio8fZxcXXreOR4zgNWu0e0SQSFoa+/uzmxsPa3nz76RCkybs5cW3bjEzK5W8dCmPHMkLFnBSEt+9W8Qav0ISg0yqVauWmppaAocDXTl5kt3cWDQNKmbCPW9TvhEjRohWMKdPn7axsSGievXqXb9+vQjLimFOROTp6Vn04ABA7yUn88WLvGJF7rf+/nz8ODNzSAjPn89Nmvz9Jlm+PE+btnzv3r1vaDl169YtsV2eiBo1avRqDZ+GWq328/MT1X4ymUxzeU+lUvn5+Yl5YHK53M3NTdod1XqlzCXcr1y5QkRVq1ZVqVTJyckmJiYKhaLI/8AREa5BQfTsmY+0QYJOPHz4MEWb6ekFC3j2bPbyYtZGwl2tZtHrY8UK1mzP+fFH9vWV+khQElJT+cMPecwY/usvnjOHT53ioKCifxJ8+PChKFE3MDDw8vJ6tbFaXs+ePfP29q5WrZp4H7WxsfH09NQkXh88eDBz5kwrKyvx02bNmr15NZDc1KlTRaWA2J2nDaNGjdJ2HX2+lu5ZBS+ogLfX77/zH38wM9+7V4jGaxkZGU+ePLl9+/aOHTvES5b2/tcAPZGUlGRqaiqXy7V0UfBvAweyvT2fPcvx8XzuHGv7cFB4P//MH3yQ+/UHH3BcHP/yC3/wAZuY5KYPZDJO/WAIL13Kr0ys+duOHVyuHM+Zo+1oU1JSbG1tqfDDw6DUOXmSFy3iadP40CHu0YN//ZU7d+bx43n1aj5xgguee3j+/HmPHj1ebdouRjH17t07Pj6+yEFu376diAYMGFDkFQBA/7m5sYEBb9jwr3eIiGAfH3Z0ZHPzZFHLYmpq6uLi4ufnl7dLTFxcnIeHh0KhIKIKFSr4+PgUpPbu3xq4x8fHe3p6ilI/a2trb2/vt/LzYJlLuIueCZMmTWLm3377jYi6du1a5NXi47cHBdHt252lCxB0pmvXrra2tq+d8yCJBQv44kXu14/Dw6VOuF++zJ06cZ06nJHBU6awpt3HiRMl8OEBtEEk3J8+5R49eNYsXr2aidjAgJs0YTc39vHhgICC7vnas2ePtbW16JV27ty5AgaQlZW1c+fO9u3ba5o2uLq6ahqAZGRk+Pn51a1bt1atWpMnTy7a7whFk5SUVKVKFSLatWuXNtZ/+PCFkZGJgYHBa/cGSmvLli2ipbujo+Nrd11AmfLRR9yrF4eG/uPGsDD++GOeNo2/+opXrmQ/Pz54MOn06dMhISH379/Pl2ioXr06EaEj7VtPNITs3r27dg+TlMSmpiyX5+bZXV150SJGVbKeWbOGnZx42zZm5m7duEULTe8p7tqVV60q2FWSwEA2NGS5nF/209OS2bNnE1GHDh1wXfCtJxLuycncrRt37syTJ+dvj1apEnfrxhMn8vr1W0+fPv3ixYtXF7ly5UrNmjWJyM7OTuzOT0lJEU3/ZDKZp6dnMT+0ikrEZs2aFWcRANBnO3YwEZcrx2Fh/33nyMikJUuWtG/fXtO80dTU9MMPP9y0aZOPj0+lSpXExT93d/fnz58XKoy7d++6urqKNWvUqKFp4H779u0+ffqI2xs2bHjw4MEi/I76rMwl3Bs1akREp06dYuYBAwYQ0erVq4u8mkqVEhxsGhTU7MWLp5KFCLoQHx/foUMH8b96u3btxDmNVA4eZA+P3IT73bs8aBB368Zr1vCqVVzchhzR0ezmxjIZE7GdHd+4wcuXs6ZqZv16Xreu2OGDDoiEOzP/8APXqsVLl3KjRiyX/+NMvVw5dnLiL7/c9euvv4aHh7/64S0jI8PDw0M8qz/88MMijIZm5pMnT/br10/0ohGt1jTt3S9fvkxELVu2LNavCoX3448/iiso2pgYOWEC16uXOXPmH5Kv/Fp//fVX9erVZTLZzz//XDJHBP30/DkbG7OBQf7s2IED+ZMU77xziv7J2dlZ3FnMYvrPwXFQ2vXs2ZOItP6isWEDE7F4doWGMhFXqFCI/qZQItas4e3bc9vsd+vGX33F773Hvr6FqCDO9eWXTMRVqvBTbX2mi4iIMDExkclkgYGBWjoE6A+RcGfmHTtYoeBnz/j4cV65kt3d2dGRraxy39FMTVmhyO3lWKVKlR49ekyePNnX1zcgIGDdunX5ihLu3r3bvHlzIrKwsNi9e3fRAlOr1QsWLBg+fLharU5NTZXJZMbGxjk5ORL+7gCgJ+7dyx1fsnFj4R4YFRXl6+vr4uKiaScrStR79ep1S7RlK5ITJ068toH7vn376tWrR0Rt27ZNTk4u8vp6qGwl3G/cuEFElSpVys7OTktLK1eunEwmixKNOIpq4sThRPTjjz9KFSToilqt3rlzp6gjkMlkrq6uDx48KOaaYWHcu3fuGZWbW24nbi8vdnTMfe1r0oSPHi3S0llZ7OPDFhZMxEZG7OHBYr9PXBy/+y7//jvv2MFduvDb9YJVdsTH8/DhzMw5OezkxGLKSEoKBwSwjw+7uXGTJrnXWWxsct+0LCwsHB0dPTw8/Pz8bt68GRYW1rJlSyIyNjb28fEpZi1VRESEp6enqJTX9MyNjY0VG8qK+9tCIalUKgcHByL6+uuvpV35yZPcgs6SLBF++vSpuKKDkQBl2fffMxH37Zv/9keP+Kef+Pvved48njSJR4zgTz+90Llz5+bNm9eoUaN8+fLi7F/cWTRH7tevXwkHDyUmNTX18OHDCoXCyMioaFeRC6F7978/pM6ezUQ8YYJ2jwiFt2YN79nDx47xlCnF2z+qUuX+i/fuzdopP//www+JaPTo0dpYHPTNzz9zQEDu12vWvOY59egRHznCa9Ykjx07tn379paWlvmuJYuz7s8++0y0WTh06JC4pUGDBqH59oIVkmipLHIgdnZ2RCSmsALA20Sp5A4dmIhdXYu+yJMnT9auXWthYVHMSmWN7OxsX1/fvA3cY2NjmTkzM1OUus+cObP4R9EfZSvh/sUXX4h2scz8+++/E1GnTp2KuebmzZvzVldBaZeWlubl5SUKCszMzLy8vN4wMuINEhLY05ONjZmIrazY25tv3eLERGbmjAwOCuJjx/6eUOHsnH8T/Zsl//EH16qV++CBA3O7UqrVvHkzz5rFCQm8cyfv2oVse0lbs4b79+cRI3j0aC5G6XFCAlevzrNm/UfT9hcv+MiR7G+++aZfv36alusaFSpUEDuzQkJCihxJPklJST4+PgkJCeJbtVot/k/B4K+SFxAQIJPJzMzMHj6Ucmr3tGlMxIMGSbhkgYhugEi4l2WNGzMR799f6Aeq1WrN/JWHDx8SUfny5VGs99aIj48PCAjw8fFxc3Nr0qSJeK2oVauWra2tNrb4/O3xY1Yo2MSEExJYrc496dLkz0BviIQ7M48Ywa1aFW+t6GiuWJGJWAu7ZE6cOEFE5ubmMTExki8O/yY2NvbcuXMXRcVTCTp+nIm4XbvCPerBgweHDx9esmTJmDFjRIe0999/X/woPDxcvPoNGDCg+OWfnTt3JqLjx48zc9euXYnoyJEjxVwTJKdWqzEoC4pj5kwm4tq1c3NQxdGsWTMiKtp85tfSNHCXy+VBQUHixu+++w4J99JNbMIS7yhDhw7NW6pZZAkJCUZGRgYGBuLKDLwdHj165ObmJnpXVa9e3c/Pr+AFwioV+/lxlSpMxHI5u7n96+ZUpZJ9fLh8eSZiQ0P28PjvV0MxFXqYaC/SuDH/+WfuDy5d4vbtcw/5cm8OlKhbt3jgwNyvN27k774r8koi6VnY6RKPHz/29/f38vJycXEpX768hYVF06ZNtToHmJnF5q/w8HCtHgVea9CgQUQ0YsQIqRZ88YLNzZmIX572lBwk3Mu4M2eYiKtV4+LnycWL0l9//SVFXFDSsrOzr1+/vmXLlhkzZjg7O4sCqLwMDQ2bN28urigPGjRIi8mIZcv+vvwYEMBEXKOGlgqfoTj8/VmMp4mO5o8/LvZyf/zBMhkbG6uvXi32Wn/LyckRH0K//fZbCZeFvDIzM2/evLlz505vb293d3dnZ2dRx01E7du379ChQ2E7DheHqCp9OeK0KF4dZzp//vzFixdL0v1/7NixRLR27Vpmdnd3l6pwFaS1devWMWPG6DoKKK2OHlXK5WxoyJJccMybcI+JiXnw4IEkn9pu3ry5atUqzbdIuJdud+7cISIrK6usrKzMzEyxb0uSoXD/+9//iGjDG+b+Qul0+vTpVq1aac7VNBMj3+DUqVMDB0aJ0vMuXbggtcVPnvDHH+e2527R4tGGDRte+wEyNjbW3d1dpKUqV64cvXlzbmYiJobd3XMfb2vLvr6Mi+E68csvvHZt7tcxMdy/PzNzVBQXchTkvXtsbMxyebGSnmIHz4eiDbw2devWTVMjAyUsKirKzMxMJpMFSFR0OX8+E3GfPpIsVjhIuOuP7OzsS5cuLV68ODQ09MmTJyVz0BEjmIgXLJBgKZE78C5OngNKUFJSUkBAgK+vr4eHh6Ojo9g1lVf58uUdHR3d3d19fHwCAgLEpsNbt26J1gqzZ8/WVmQODkyUWzs9YQITYQq93rp4kdu2ZQ8PiZabODHC0dGxZUsJ28j+8MMPRFSnTp2MjAyp1izLsrKybt++vW/fvu+//97d3b1r166iL8qrrKys2rVrJ3763nvvlczmpz/+YCKuWrVYI5aDg4NJa+NMvb29iWjq1KnM/P333xORh2T//4AEwsLC3nvvvapVq549e1Z7R0lNTfXy8powYULHjh137typvQNByYuNja1du8677/pIdZE3b8JdlLbcuXNHmqXzQMK9dPv222+JaNSoUczs7+9PRA4ODpKs/NNPPxFRnz594uLisIv5LaNSqfz8/KpUqaJpMvX0X+rVNUXxNWp0q1NH7edXuEKoK1e4c2fu1GkYEbVu3Trv+6tSqfTx8bGyshK1XX9PhRZt3EUz+Lxt3EEndu5kzY6Zu3d5xAhWqbhLF65UifftK/gy/foxEY8dW6xYAgMDiahNmzbMnJKSsm3bts2bNxdrxX8hRhRu2rRJG4vDf5o3b554Lyt+mWdSEltb66xlAhLuOhcREeHr6+vq6irymETUoEGD+vXrl0D3g4QENjNjuZwlaSG7d++1d9454eKCrJa+S05OrlOnTr7smEwmq1u37sCBA7/66qt9+/a9YZTO6dOnjYyMSDtTlB6Eh0c6OqqrVePMTFYquVIlJmLpdlKDtA4fZiJ+OcqhuLIyMkQ1+thinoq9FB8fX6lSJSLaI67fQJGo1eqpU6f27t27bt26miF+eZmYmDRv3nzgwIGzZ8/esGHDuXPnNLvPHz9+bGtrq91LdC+pVNyyJROxKBk/f76Ib21aHWe6Z88eetmvZt++fUT0v//9T/KjQBE8f/58woQJ4qzY1tZWc7tarS5ak9vXUqlUGzduFFtAxLHEFalizgYAPaFWq0VBcI8ePaTaCIiEe5GVoYR7mzZtiMjf35+ZFy1aJJfLFy9eLMnKL168MDAwMDQ0HDRoUIUKFdzc3Pz9/cV4E3g7JCQkeHp6GhsbE5G5ubmXl1dmZqbmp6mpqfPmzRODm8uVK/f111+np2e+YbV/o1bz1q3b7O3txWfOIUOGREVFnTp1qmHDhuKNsHfv3mFhYeLOv//++6n+/XPbuA8YwFLs1YBiefGCnZw4Lo7Vap44kXfv5sRE7tWLiVgm4wkTuADnSadOMRGbmxe2LD6/x48fE1GVKlWY+dGjR/lO2iQ0d+5cIvrqq6+0sTj8p7S0tBo1ahDRL7/8UsylFi1iouJNnCsGJNx1Ijw8/Mcff3R1dc3XuKNBgwZjxoxp1KgRETVs2PBxMV+P/suqVVImy549Y5mMzcw4syjvw1BCnj59am1tbWFhYWho2KRJEzc3Nx8fn2PHjr148aIgDxeDQzZs2CAKEY4dOyZteAsXLiSiTz/5hJnj//yTDQ25eXNpDwESyptwf/KE//iDAwOLtWBoaKiZmRkRbd26tfjhTZ48mYi6d+9e/KXKONHWXLC1tXV2dnZ3d/f29vb394+IiHhzYvrcuXNGRkYymWzHjh1aDfK335iIa9bMvVpXrx4bGRWxpYOYz6SNcaY3b94kovr16zNzWFgYEdWtW1fyo0ChiEmS4uKcgYFBs2bNruZpbPXbb79JNRD+r7/+6tixo/j/qG3btmKTmTgPNDAwcHd3R5/k0m7p0qVEVKlSJQmLZpBwL7KyknAPDAyUyWTm5uaarXxPnjwp4Gl9QYi+CnXr1tWcB1hbW48aNcrf3x+bB98ad+7ccXV1Ff++9evX37lzp1qt3rlzZ82aNUWK3NXV9Q3VWAWUnp7u7e1tbm5ORKampqJNszicuMO1a9fE883S2DjN2ZlPnCj2bwYSCQnhMWPYzY03b86dWKtWs68vm5kxETdqxMHBb3y8aufO1Q0aZH3zTXEDUalU4nNFZmZmTk6OgYGBXC7XxlXAH3/8kV5OogadEIO7q1SpklS8DS5BQdyvH+uqORAS7iXmyZMnO3fudHd3F+9cGlWrVnV1dfX19dW8i8XHx7du3ZqIGjVq9G9buyTRqhUT8e+/S7Zgs2ZMxNrchw3FtXLlSlFTWdjiTbVa7eXl1bRp08TERGaeNWsWEVlaWt64cUPC8Bo0aEBEJ0+eZOahQ4fWr1Dhwpo1Eq4P0sqbcN+zh4m4+B31xOlN+fLlIyMji7POrVu3DA0NFQrFNQxYKrbt27f/8ccfYWFhRTuhXbFihSicunnzpuSxCTk53LAhE/HGjczM69YxETdowEU7uxEf97QxzjQzM1OhUBgYGCiVyqysLAMDA4VCkYnL1Lpz/PhxkdAUVcn5RlOmp6fXrFmz+A0kY2JiNDPq7Ozs8s6oi4uL8/DwEHtHrK2tfXx8cE6ue9nZfOvWa/88vH371uvExMRcuXJFJAH2FWaH/X9Cwr3I3vKEe1RUlI+Pj7Ozs0KhqFWrlrm5+ZkzZ7RxlAYNGtStWzcgIODGjRtffvllixYtNB9iLSwsrk6fzrt2cVqa5IeGknfw4EFNyblmGk+7du0uXLgg4VEePnz40UcfiXfEihUrPnz4kF++F4rMVIUKFfBeqL9SUrh+fXZ3z/2//upVbtKEidjUNPHWOubXNxt6/vznoCAKCWmUmSnB5i+RTRNjKsS2CW3UyOzfv1/svZB8ZSggtVrt5ORERHOK1F940iQeN46ZOSEhd+6ATiDhrlWxsbE7d+708PBwcHDIm2SvXLmyq6urj49P0L+MjIiNjRVn2C1atJCwRiGvS5eYiKtUYaVSsjU9PJiIv/hCsgVBcu3btyeiIjSNTUxMFHsvevfunZOTo1arhwwZQkS1a9d+9uyZJLFdunRJJCNycnJSU1PNzc1lMpk23kBBKtpIuDPzRx99JM7wlcV4eerVqxcRffbZZxIEBMU2evRoUcaUkJCgjfW3bAkzMFA2bMg5OZyRwfb2TMRFbo49fvx40to409q1axNReHg4v0yf3bp1SxsHgjfLW89Xr169174thoSETJs2TfOtWq0u7PudqOezsLAQ9Xyenp6vnVFx/fr17t27/13VhxldJSw5md3c2M2N+/XjDRv4wYPcZgav/On+zjv0OoMHDxZ5qs8//1za0JBwL7LXdEB7C0REROzevXv37t2XL19mZiIyNTVVq9Wpqak9evRYsGDBvHnzNP2qimnv3r3jxo0T7fkqV67csGHDZs2aLVy48MGDB/v27du1a9elixebbttGy5aRiQk5O5OrK/XrR+XLS3J0KHl9+vTp2bPnpk2bZsyYYWJiUrFixcWLF48bN04ul0t4lBo1amzfvn3atGmffvrps2fPNm/ebGNjM2/ePNG/yN3dfdGiRWLTGeijs2fp4UNav54uXqStW6llS7pyhTw901TX76V/ann391q1/AwN/zHfSaVKefx4ARHVrPmFsbEEzyV7e/uHDx8+evSoTp069vb2jx49io6OrlWrVvFXzncUIhJda0AnkpOT27dvf+HChWXLljk6OooOM/ko/s/efcdFdS1xAJ+lNxv2rtg7ih0UCxgLMRqDHUuMJBolRROM0RCNiUSNosZCEguxRLFjrNgBsSwKiopS7EpVell2d94fBzc8bJS7NH/fz/tjWfaee3hudu+dM2dGt6FKVfHl50UR1MePyd+fXiTWlIymTUNUKpbJyuc1SQlSqVRdunQRu5LFM5UqVbK1te3Xr1+/fv3atm0rlnVfp3r16idPnuzXr9+1a9fs7OxOnjxpbm4u7Qz//JOIaOJE0teXbMx+/WjVKjp1itzcJBsTJBQZGXnp0qUKFSo4ODgU9NhKlSodPny4e/fuR44cmTZt2h9//LFx48Z79+5duHDBwcHhzJkzohJIUWzfvp2IxowZo6uru2/fvtTU1N69e0v+7Qml3/r16y9cuHDp0qWvv/5adGMuqDNnzhw7dqxKlSo//vij1LODwlizZs3Vq1fVarOZM7O8vEjSWzfKzMz87jv7unWN3N1P6erWX7mSHj6k9u1pxIhCDtisWTMiCg8Pl3KWLzRv3vzu3bt37txp3rx58+bNIyIi7ty506pVK22cC14pLS1t6dKl7u7uWVlZpqams2fP/u6770QB2zwsLS0tLS01P27btm3Tpk0nT57M54kOHjz4xRdf3L17l4gcHBxWrVolllte1q5du5MnT+7bt6/y1q0me/fSiRM0fDgtXUq5qjiAFi1bRu+/T46OxEwODtSmDbVs+coXNqxbt2VGxsvP37x58/bt223bthXdK6FUKOmIv5QiIyM9PDysra01N5DGxsYODg5eXl5JSUnZ2dlubm4izt69e/ci7hBk5oyMDBcXF3Eue3t7c3NzHR0da2trd3f3iIgIzcue3r/Pv/3GPXuyjk7OqpShITs48KZNnJhYxDlACRIX3+7u7lo9y6VLl4hItPohovfeew8JCGXD9evcrh0TsZERu7uzSsXMic8PBAdXl8spOLhGYuLB3C9/9GiOXE63bvV4Xf57QY0ZM4aItm7dyi+ytCQpRZpHQkICEVWqVEnykSGfZs2aRUQWFhZviIR267b3lRkS5uY8YwafP899+3JsbMlmuDNRIfdcw5t1797d2NjYzs7Ozc3N19e3EKma0dHR4ia8Y8eOCQkJEs4tM5MrVWKZjG/flnBUTkxkXV02MODUVCmHBaksXLiQiCZOnMjMx44ds7GxKWiq+6VLl0Rg3cPDg5mfPn0qNnU5OjqqC9Sw/iVKpVJsXgwKCmLmQYMGEdH69euLMiZom7QZ7itXrnz27Jl4fPbsWZlMlqfLRYEYGBigz02pcvfu01q1FES8YIHEI//2229E1K5dO5VKlZycbG9/gIgPHSr8gD4+PqS1dqaitcBvv/3GzF9++SURLVmyRBsngpepVCovL6+aNWsSkUwmc3Jyevr0af4PnzFjRj431l+5cqV3797is8jS0rIAlR4UCvbw4IoVmYj19dnFhYtWuBLy5b33/gsPLl3Ku3YV6OjMzMw+ffoYGBhoev5JCBnuhVYesslu3Lixa9euXbt23bx5UzxTuXJle3t7BweHDz/8UNTCFn788UdbW1snJ6cLFy507NjR09NTxKEK4datW6NHj7527ZqhoeGvv/46atSoTz/99Pjx4wEBAQEBAd999123bt1GjBgxYsSIxo0b09df09dfU3w8HT5Mu3bRsWP077/077/UoQN17EgpKVShggT/R0DxMjY2JqJXLkRLSCTO16hRo3HjxnPnzh0yZIhWTweSaduWAgPpq6/ozz9pzhwOuqTavq5S5aFtzELv3ZuclHQ4IuL9qlWdGjRYr6NjolA8jI1dRSSrX9+D6E0Jp/mXO/dctJnSRh66ubm5mZlZUlJSSkpKBXyOFbuIiIjff/9dR0fnjz/+UKvVkydPNjExeflDqW7dSq9MYK9cmYjI3JycnGj1aq3PFkrEjh07ateubWBgUOgRatas6evr26dPn6tXrw4ZMuTYsWMVK75iw0SBhIZS9epUsybJ5bRjBzVvXsTx/k+lStSpE12+TAEBNGCAlCODJHbs2EFEY8eOJaKtW7f6+/sPHDiwQCN06dJl8+bNo0aN+vrrrxs1avTBBx8cPnzY2tp6165dLVq0+Omnnwo9t5MnT0ZHR7ds2bJTp05xcXEnTpzQ19cX3XTgXbBp06Yvvvjijz/+CAkJ0dXV9ff3Z2aVStW2ULvAoqOj4+Pjb9++Lfk8odAaNaq1ZQsNHEgLFlCnTlTwbTavlpqaKkJFixcv1tHRWblypa/v/JEjpw0evLbQY4pmEnfu3JFmiv8vd/q8VlPpIY9Lly598cUXonZZ165dV65c2b179wKNsDrXJTszh4eHN3/pKiohIWHhwoVr1qxRqVRVq1adP3/+jBkzClDgQV+fvviCRo6kH3+kDRto1SratYt+/JGmTCFdXVKrSSajN26RhMIwNqb09JxKGOnpZGBAV6++8oURuropKlWeJxUKRVhYmEKhuHTpUsvXpMZDCSjpiH/hhYaGurm5aappE5G5ubmTk5OPj8+bW6nExsZqopazZv1ciJ6mmzYdEMHWVq1a5e6Bk5ycvGPHDkdHR1NTU82s0gcM4J9/5twLTbGx/McfPGECX7rEAwbw55+zvT1aX5Y5X3zxBRGtWLFCq2eRy+VE1KlTJ62eBbRo3z6uWjV+ca/g4BqJif8yM7M6Ovq3oCBDuZyePFnAzNHRS+VyiooaL+FpV61aRUTTp09nZg8PDyKaOXOmhONriA9hbLwoEeK7bOrUqcx8584dAwMDQ0PDArWknzGDw8JYrWZ7e2S4w5uI+lRE1KNHj1eW/iyQceN4yBBm5qgo/vhjCaaXh6srE/HcudKPDEUUFBRERDVq1MjOzs7IyBCLN+Hh4YUYSgTWTUxMLl68yMxHjx4VDd+8vLwKPb2JEycSkUhJFkGN999/v9CjQfE4efKure2xadPOMPOhQ+G2tse++KIwTZPDw8NF6sCWLVuY+dKlS/r6+jo6OsePHy/cxKKiooyMjGQyWdG7HYK0fvmFibhCBZbq6lVs3LG2tmbm58+fV6lShYhOnz5dlDEVCoV4B2YUIlrxNkePHiWifv36MbOvry8R2draSn4WyO3Ro0eanqV169bN3bO00MLDw/N8SSkUCg8Pj0qVKhGRvr6+i4tLYhFrKly6xD16MBHLZBwUxJ9/zuPG8ejR/NVXrFZznz45L7t7lydNKtKJwMuLv/mG1WqOieGePfnGjYLWcBeLN6ampmFhYdJODRnuhVb2Au7Xrl374osvRPKmULt27enTp584cUKpVOZzELVa7enpaWJi2qVLdKtWnP++8YmJPGoU16r1yNy8qpOTU+prtiunp6fv3bt33Lhxn1hZ/fffhoUFu7hw7ksuW1sWu7NTU7lr1/xOAkoHBNwhn9Sxj2/f7ieXk1wue/DgS7U6k5nT0q5GRHyYkhIQF7chLU2enHwiK+uhhCfdt28fEQ0dOpSZ9+zZQ0TDJGki9hI7OzsiOnbsmDYGhzcQN0gVKlQQG1FFNeRPRAvUfPvnH46OZma+fp2XLOH0dG3M9O0QcC8T7t+/L+p+Wltbp6SkFGWoceN49mzetk1bAff9+3n3bs7O5sxMDgyUfnwoNFEFS7TzEqnuPXr0KPRoIj5eu3btBw8eMPNff/0lQgwnC57FEhUVtXfv3unTpzdv3tzKymrPnj2is+uOHTsKPT0oHkeOHCGi9957j5n37t1buAuezMzMjh07EtGECROYOTExUXzcubq6FmVuc+fOJSIrKyuVSlWUcUBaajWPHMlE3LKlBKUyNBH2U6dOMbOrq6vmDVlEIvf8xo0bRR8qj6ioKCKqV68eM9+/f198kEp+FhDS09Pd3NxEJTQTE5Mff/wxLS1NGyc6fPiwJht18ODBkkVd1WreupW//ZZ37mRNjSxXV/bxYRubnB+jotjJSZrTvbPUav7zT3Zy4ilT+MYNfvKELS1f+b9Phw+3fJW5c+eOGzdOfOm8OQW5oBBwL7SyF3DfuHGj+BCpX7++i4uLr69vdmHv0UNCYlq2ZCI2Nub8lGc8ezan23jlyrx/f/4qbWVm8r//8uTJXLXqf5H3Zs14zhxOTuaePf975aBBHB9fuD8ESgQC7lAQ6pgYj6AgA7mcbtxok54ewsypqZfCwwcnJR199qxgNdryQ7xzOnbsyMwXL14UX72Sn4WZJ02aRER//fWXNgaH18nOzm7Tpg0RLVu2jJlPnDghgu9Pnjwp3ICrV7OJCXt4SDrLfEPAvay4d++e6B5pY2NT0Jh7djafP8+LFvGCBTxuHD98yLa2fPWqVgLuzs7cuzerVBwTw6NGST8+FI5KpRIlzkRO+vvvv09Eq1evLvSACoWif//+RGRpaSnekF999ZXY8/rmQINCoQgNDfXy8nJ1dXVwcHhlF3oLC4tGjRppKSwCEpIk4C7KWDdp0iQpKYmZRcmjzp07FzFmkZKSUqdOnSJuvABtSEnhNm1yKv4XMc9YRNgHDBjAzE+fPjU1NZXJZBcuXCj6JMVGxn379hV9qDyUSqWfn19sbCwzq9VqEQtOQp1u7cjIyBDXTg4ODnfv3tXeiWbPnk1EzZs3P3jw4NtfXQizZvG5F/uHjh/nefPYxoadndnZmceMQcC9NEhJSRElhmbPni3hsAi4F1rZq+E+dOhQV1fXESNGdO7cWVa00lHt29e4coXmzKFVq+izz+joUdqwgV7Zdk6lop9+okWLSKWirl3pn3/IwqJWvs5haEhDhtCQIaRSUWAg7dpFu3ZReDht3Uq//EK5Sy+lpqKSO0D5JatR4wszM+u7d8dlZNwIC+vesuUFpTJGV9fczMxWR8dI8vPlrtueu5675LQ6OLzO77//fuPGjaZNm86YMUOpVIpIwQ8//KBpsFxQ9etTejotW0affUZa7kwBZVjDhg1FPXd/f//hw4f7+PiICntvEBVFJ07QiRPk60uJiURE5uY0cCAZGND8+fTTT1S5MqnVpKNT+FkdOkRVqlDPnv/3ZM+etH49ofh2qXLmzJlHjx41adKkS5cuz58/P3bsmJ6enqOjY6EH1NfX9/b27tmzZ3Bw8MiRIw8ePLhs2bK7d+/u379/8ODBFy5c0LS7jI2NDQkJCQ4ODgkJCQkJCQsLUyqVuYeqVatWhw4dLC0tO3ToULFiRScnp6ioKFdXVxGHgvLt6NGjK1eu1NfX37ZtW8WKFTds2LB9+3YzM7Nt27YVpQEGEZmZmS1evHjixInffvvtsGHDit4AA6RiZkZ791LXrhQXRykpVKB/GYVCERkZeefOnTt37ty8eXPHjh0ymWzRokVEFBISoqenN3z4cLFFpoiaN29+6NAhbZRx19XVtbGxEY9lMlnjxo1v3LgRHh5uZWUl+bnAyMjojz/+MDY21vx/riXz5s1r2LDhp59+qq+vr5UTmJlRWlrOY00bwhUriIju36fFi7VyUigI8c1lbW3922+/2draOkjVpwIKraQj/qXCnj1cpQoTcf36/HL35gcPuFevnLpVLi6sUBTtZCoVnz3Le/YwM0+bxlu2cHY2+/jwmDFFGxeKGzLcoRBUqvQHD1zu3HmPWc2sio5eHhbWMzp6qeQnUqvVonlmWlqaSqUyMDCQyWSZmZmSDJ67GuAff/xBRFOmTJFkZMiXuLjLAwfWNjMTCSyiRn+TJk2K8u+rVnP79kzEf/wh3TzzDRnuZcudO3dEzuaAAQNeWVv21q1ba9eudXHxq1bt/8pOtmzJ06fz7t08ZgzHxDAzjx7NkyezgwO7uRUmxzA6mp2cmIibN+fcE3F25ogI7t+fQ0KQ4V6KTJkyhYh++OEHZl6/fj0RDRo0qOjDRkZGisC6qFSTnp7etWtXImrXrt0333wzaNCgl1cidXV1W7duPWbMGHd396NHj4rCXLmdOXNGRFrXrVtX9BmCVhUxwz06OrpWrVpEtHTpUn6pknvRqdVqa2trIpqLthKlQ1wcr1yZ83jZMj53jseNY7Fla8sWjoj4vxerVHzvHh8/zmvW8OzZbgMHDmzSpEme5pO1atWSyWSbN28WhyQkJDx8KE2VyLVr11LBqwUW1KFDh0xMTD766KN79+5p9URQ5gUH85AhnJrKyck8YADfvo2SMqXT4sWLiahGjRqF3vqcBzLcCw0B9xx37+Z0g9DV5R9/5EOHcp5fvDgnFl+vHp85I/VZFQr28OBJk/jXX1kL7VBAq4on4H7v6lWPHj02jB6t1bNAsVGrlZGRjrGxa3M9p7p1q5tKJX3xbNHhUHwdip2MkZGRRRxTrVZ7eHhUqVJFs1v/8OHD9GIjLRSTzz5joswRI5g5ISGhatWqROTj41PEUf/5J6fbSHEGvlUqTk7mlSt5xQpOTWWF4r868unpnO/OLFDcwsLCRBDzvffeEys9T5488fb2dnZ2btiwoYhB9Or1CRHXrs2Ojuzpyffv/3f4hQsslodiY3nNGtbRYSIeN65gl0Le3iwC+iYm7O6e8265cYO3bmVnZ46K4kuX+IMPEHAvLbKysszNzelFPeLevXtLGNP08/MzNDSsVatWTEwMMz958qRatWpiWUioUKGClZWVk5OTh4eHn59ffgrFiCKW+vr6he6ZCcWjKAF3lUplb28vLmNUKpWmkvvEiRMlnKFcLtfR0TE0NCxcf2CQ1v37PHZszuNFi3j3bm7cmGfNYmb+5hs+eJA3bOA5c/jDD7ldOzYyyr1mPFZ8nujp6TVt2nTQoEFffvnl2rVrZ86cKZbxpPpA0xAFA3v37i3tsBpqtXrBggU6OjqSv+eh3Dp5kidP5ilTchoTLlqU83xcHHt6luC8ILc8X21FHzB3wH3UqFE9e/aUalkxd+tgBNzLuexsdnPjFi3Y1ZVbtMjJverbl8eO5Q8+QH11yKt4Au4slzMRI8O9vLh/f5pcTsHBVZXKZ8nJJ2JiVsfF/RkWZpOZGfHkycK3H18Qtra2RCR6x/Xq1YuIzhRt2TA6Olp8ectksjVr1ognN2/eTETW1tYSzBjyIzSU9fRYT4+vX2fmuLlzP23XTpIFD6WSmzdnIt66teiD5df9+2xkxGL5xtmZDx7k6dNzfjVrFktRARW05fr16yKtuFmzZk2aNMmd7lezZs3Ro0dv3rwrT6rg6xw6xBUrMhF37MgPHrz99eHh4ePHx4kIyMCBLAqiKhTs7s6GhmxoyCNHclQUM/NnnyHgXlqISKjoJvLgwQMdHR0TE5Midt/NzcfH536uVR2xzDxhwoTdu3dHRESoC1WkWZRmrlixorjJhNIpd8A9NjbW19c3JCQkn8fmSQMU1/aaSu4ScnJyIqIRI0ZIOywUwv373LcvHz7Mhw/zxIm8ezc7OvL48RwczN98w4sX/9/GLCKuU4f79GFnZ16//vSBAwfCwsJeruy/bNkyEXPftm2bhFN98OCByKDXPOPn59evX79//vmn6JtWk5OTP/zwQ3FV7+rqir6+AOVJns1bRZQ74C6VtLQ0d3f3Xr16aT58EHB/J2Rk8Pz5/PvvLFZ5+/ZF6jm8GgLuUFBPniySy+nKFaOUFD9mzsi4nZzsl5R0RKl8fv16Y7mcHj92k/B048ePpxd9unbs2LF27dqirEWfPHlSJLRWr1790KFDzKxUKhcsWKCrq6ujoxMQECDZvOHN7O2ZiL/8kpn52jXW02N9/aSbNyUZe8MGJuJWrbjYbrvu3+eBA/n991mtRsC97AkJCalTp06nTp2IyMzMzM7Ozt3dXS6XFyK4ee0aN26cE9q4ePG1L8vOzvbw8DA1NW3W7MOaNf/LpgoI4Natc6r/OTnx+fM5WyWSkhiR0lLio48+IqLffvuNmd3d3YlojNaqKZ4/f56I6tSpU8QQkkql+uijj3RksnMffpiTiQOljwi49+vXr6AHXr58WRTcE/XZDh8+LJPJ9PX1JWl3mcfTp09FAXdsmChx9++ztTVv28bbtvHIkTkB90eP+L33eNYs3r2bx4/nn37iHTv4yhXO/5rgjz/+KGLu//zzj1RTVavVpqamRKSp5Th58mSxsF2tWrWvvvrqZmEv/8LCwlq3bk1E5ubmR48elWrCAFB6HDlyRKovtVatWkkYcFer1du3bxcN52Qy2alTp8Tz4uIQAffyb/58DgzkadP49Gnu27ekZwOlFQLuUCAJCdvkcplcrvPs2W5mzswMDw6uHhHxgSgmk5joExSkJ5dTTIyHVGf87rvviGiRZq9fYWVnZ7u5uYkNp3379n38+DEzR0dHDxgwQHxNuri4KIra3QLyZ/duJmJz85xdVwMGMBG7uEg1vELBjRoxUU6fkWJw/z5PmcI//8xbtuQE3Js35/Hjefx4bt0aAfcyID09/eLFi5cvX1YWuQBQfDz37ctEbGTEXl6veMGlS5c6dOggYg0TJkyIj09m5sREdnHJKUrTtCmfPFnEWYBWJCUlGRsb6+joPHr0iJnbt29PRCLKqQ0zZsyQ6p4tPT09bPx4JuIePf6reAWlyaVLl6ysrGQymbW1tYeHRz5L1qakpDRv3pyIZs+ezczR0dE1a9YkomXLlmlpnqKpZps2bbLRsaREvVxSxtGRmfm339jCgi9fLvzI8+bNE3Wo9u/fL8FEmZm5ZcuWROTr6yt+TEpK8vT0zN3a1MrKytPTMzU1Nf9j+vj4VKpUiYg6dOhQ9GqTAFBqffnll0XZtvXgwQNPT08HBwcdHR1zc/N+/foVvdNDUFCQpntwp06dzp07J56/ePFis2bNWrRo4Vm+ahMh4P4KIuD+7Bnb2yPgDq+FgDvkn+r8yesB5nI5xcSsYubs7LjQ0OZyOYWHD1arc+674uP/fhGR3yHJSdesWUNEzs7ORRnkwYMH4ktRV1fXzc1NxNR8fX3FJrUaNWogL6b4ZGZy06ZMxKKJ3549/xd8l4inZ0qfPvN69+5XuAoMBSUC7pmZ3KcPjxmDDPd3XVYWT53KRNy+fdL338/PnZ68cuVK0afOwsJCkyJ64EBGnTpMxAYGPH8+S9QWGqQn6qH379+fmW/cuCHSKl8uyyCJ7OxsETkNDg6WZsS4OG7ShIn4o4+Kb/sPFMRff/2lr68vbuB1dXX79OmzevVqsbrzOqLfuJWVVVZWlkqlsrOzE3VptPfdl5mZKXrNoRNvyXr4kDVdSJcu5QMHeNIkZubsbO7Wja9eLdLg3377LRHVrFkjOrqol8dRUVHOzs46OjoNGjTQ19d3dHT08fHRrG2Hhoa6urqKxhii8pWzs/OVK1fePKZarXZ3dxc5NKNHjy5QmB4AyhxNY5IJEybk/6jIyMglS5Z069ZNJpOJTxhDQ0PRSd7U1HThwoXphco/iIuLc3FxERfz1apV8/DwEB9oDx48GD16tDiXKDxYniDg/goi4M7MmzZxnz4lPRsorRBwh/y6epUrVlS1ax5z+wdmVqnSbt3qIZfTzZudVar/26r69OliuZyCgvSTkop6me7n59e1a9eKFSuamZm5urq++bbzdfbv3y8u5evVqyfWn3Nnu/fv31+q1ueQL4sWMRG3acPZ2ZyVxc2aMRG/KKYvlYyMDNFp8MiRI9KOnEdCAo8YwSdO8JQpzMy+vmxoiIA7MDOvXauoXduSiD744IPk5GTxZHBwsJGRkYuLi6j6/fTpUycnpw4dXGQy7tGDQ0NLdMbwNiKauWHDBn6x+2ratGlaOpdo5d2qVSspB715kytXZiL+/nsphwXpPHv2zMvLy9HRUZTgEFq3bu3m5nb79u1XHrJ+/XrRWP6XX34ROQRPnz7V6iR37dolVpvi0Rys/Jo/f87u3S2vXDFKSjpWuBFu377t5OQkwlL6+vrt27cXj0Wm6i+//KK5/M7IyPD29hYfsLkT3jVfnbklJCS89957RKSnp+fu7l74vxAAyo7w8PAKFSpQPtrUR0ZGenh4WFtba+LsxsbGDg4OXl5eSUlJDx8+dHJyEr+qV6+el5dX/tenFQqFh4eHqKumr6/v4uIiMu7T09Pd3d3NzMzEuVxdXSVs7VNKIOD+CunpHBrKv//OJ07wq76tAJgRcId8eviQ69VjIh49mtVqtVoZEfGBXE7Xr1soFNGvevksuZyuXDFJTT1fiLNlZ2dv375dlFQWq9CadelJkyZdzXfeTmZmpouLi/hOHTp0qLgzvH//fs+ePcWVupubG9orFbctW7hmzZySGT//zETcujVrYWf60qVLiahHjx6Sj6wREsIWFkzE3brx7t05T65axaGh/1Wz8fHhXB0Q4d1y9uxZ0ZG1Xbt2UaL/KbOIhanV6nXr1ont8BUrVty06T4+ikq5p0+f6urqGhoaPn/+nJlDQkK+/vrri28o1V80on/Jzz//LPG4p0+zgQETcfna7Fz+pKWl+fj4ODk5iRBD7sj7KwteX7p0SVRy//fff4theqL5/JeiEQuUT+oHD2bK5XTlinFy8okCHRkZGens7KynpyfCUk5OTuHh4cz85MkTd3d3CwsLzTYOOzs7b29vTXmia9euubi4VKlSRbzggw8+yDNycHCwOLxatWonThRsVgBQpm3YsIGIzMzMXrn8HBoa6ubmlrtQlYmJiYizvxz+vnDhQrdu3cTLunXrlp/q8L6+vqIEPBHZ2dlpvoh9fHxEf3sicnBwuHv3bpH/0NIIAfdX27iRiXL2lwG8EgLu8Hbx8dyyJRNx376i2IH6qxn3t7UPDq6emXnnNceo7951ksvp6NGBYWFh+T9VSkqKh4dHw4YNxfdWjRo13Nzc4uPj5XK5k5OTuHYXmS9eXl5vrh96+/ZtsftMX1/f3d1dLF/v3btXXMc3aNDA398//xMDKYkdfNHRXLEiE/GxQiZPvVlqamq1atWI6MyZM9oYf8cONjVlIu7YkcvpxRVIICIiQrR0q1q16skXpdnDw8P79esnPs2GDBlyH2syZcHJkyerVKnSuXPnYjhXWlqamZmZTCbTrNNI6a+/mIj19RnhqrIgIyNDRN7F+pwm8u7q6urn5ydek5KS0qxZMyrGLm2hoaF6enp6enqh2JhTnqnv358uEmiSk0/l54CMjJu//PK5yGQ3MDD49NNPX66VrFKpfH19HR0dNQWU6tSp4+rqqglUZWRkbNmypXfv3nv+vxXP9u3bRQpOx44dy2tUCwDeYOzYsfSiipp4RsTZW7Roofl+NDc3d3Jy8vHxyXxjiUaVSuXl5SVq9+no6Dg5OUVHvyKJkJnDwsI0+2/atGmjKQgZFBTUq1cv8XzuMu7lEgLur4aAO7xVMQXcQ0K4Rg22t9fuWUAb0tPZxoaJuG1bfv6cmdnNjYnYvEpGzJsy+9RqxZEj03V0ZA0bNsxPKZjo6Gg3NzdNGcemTZt6eHjkqa0WFRXl6uqqyXxp3Lixu7v7s2fPXjngqVOndHR0GjVqFBgYyMwZGRkuLi7iwGHDhiUkJOT7/wKQSHY2L1zITk48ejT7+/ODB/z++zxsmPZOuGDBAiKyl/qTR6lkV1eWyZiIx41DA0J4i+Tk5KFDh4pdNStWrHB3dzc0NCSimjVrer2yrSqUSjExMVWqVNHT0zt8+LC2z/XPP/8QUc+ePbV1gtmzWV//1V19obTKzMw8ePDgpEmTNFdKRNS8efM5c+YMGjQoTwyiGHz66aci0a/YzgglQX3//mcvYu5vSl/IyLhx965TUJDu6dM9DAwMnJycIiIi3jx0dHS0h4dHmzZtxJtZR0dHJLwrFIo8r8zOznZ1dRUvGz9+fOEqLwNAWZeYmNi4cWMiGjt27JdfftmgQQPNt2GtWrWmTZt24sSJAjX0TklJcXNzE5flZmZmbm5uL4fpr1y5oqOjU6VKFXd3d/ElGx8frynjXrVqVU0Z93IMAfdXQ8Ad3qqYAu5nzvC33/LixRwby8y8fn3O8zdvcrleDCwPlEp2duZ69fjBA+YXmXG6urx371sPTU9PF61K27Rp84YA97Vr15ydnY2MjMT3pbW1tbe39xu+t5KTkz09PTW7uipUqODs7PzKHdY7d+4U9R9v3brVoUMHIjIyMvLw8MjP3w3SW7GCly9nZk5OZhubnC6p2mwQmZiYWLlyZSI6f74wpY1eKT6e7e2ZiPX0GLVDIZ+USuXs2bM1dwUymWzq1KmiMgmUIT/88IP40pGskelrvP/++0T0+++/a+sEKhWLtoT79vHHH/Onn3JIiLbOBVJTKpV+fn4uLi61a9cWHymVK1euUKGCqNpRbBISEkTov3iK2EDJUd+75yyX05Urpikpr7hrS08PjYwcJZfryOUUFGR4//7njx49LNAJ5HK5s7OziYmJJnDm6uqqidfHxcX179+fULQdAJgDAwP19fU1xdbq16/v4uLi6+tboDh7Hnfu3HF0dBQDNmvWzNvbO88Ltm7dKirTijLuYsOZKOOemJhYpL+njEDA/dUQcIe3Ko6A+7//8vjx/OgRBwSwtTVnZrKNTc6v9u/npUu1eGqQhFrNYo/VoUOsp8dEvHp1Pg9NTEwUke5u3bqlpqbm+a2fn5+Dg4Oosa6jo+Pg4JD/wKjYkZr7cDs7Ox8fn5c7n3h5eYktqC1atMh//XeQ3sCBrNmO8NNPfPBgMZxzzpw5IgUvLS2t6KNdvXp1+PBfiLhmTawVQoFt3rx53rx5vXv31lKZI9A2tVrt5OQkCiA8fFiwiFL+JSQkGBgY6OnpvW53s2QOH+aJEzkri6Oj2dqag4L499/Z11e7JwXpKJXKM2fOzJw5c+fOnZcvXy7+CaxYsYKIPvvss+I/NRQntVoZFTVOLqc7d+wViuj4+L+Tk0+r1Vnp6aEiq10up6Agg3v3nLOyCv/BGB8fv3z5ck0+jY6Ojr29/a+//irqTNapU0fC5AkAKLsCAwPXrVv37bffXrx4Mf8tT9/qxIkTbdu2FZ8//fv3v379ep4X+Pr6iiqR4tbyxo0bUp269EPA/dUQcIe3Ko6A+0cf/dc0cO5cPnaMu3bl8HAOD+f16xFwL70iI3nOHP7ySz57lpn52TOuVImJ+PvvCzTM48ePRS+RIUOGiMVnhULh7e3dtWtX8Y1lZmbm7Oz8yv4n+REWFubi4qLJi2nRooWHh4eIriYnJ4u+c0Tk5ORU/jqGlzEDBrAmC2DRIvbxKYZzxsTE1KxZs1atWrq6uq1bt3Z2dvby8ipcWeRt27aJt9n48Qe0FmoDgFItKyurT58+ol7ny6vIkli3bh0RDR48WBuD/5+PP2bN/eTvv/Pff2v9jFC+KBSKo0ePlvQsoDio1conTxZkZyfcutXt2bMdcXF/xsdvFlntV64YPXgwU6F4e/XIfBIJ7yJXRlx3WVtbP3nyRKrxAQBeKTs729PTU/QA09PTc3Z2jouLY+awsLDBgwdrQg2HDh0q6ZkWNxkzE7xk0yb6+GOaNIk2bSrpqUBpFRkZ+ejRo6ZNm9atW1db57Czo337SGz8+e03qleP5s8nEQYNC6NOnSjXRnsoLZ49o6FDaeNGMjenqVPp66+pVy86eJCOHKE1a0gmK9BgERERNjY2MTExI0eO7NGjx4oVKx48eEBENWrUmDZtmouLS+6CpIUTGxvr6em5bt26p0+fipGHDh16+vTpyMhIMzOztWvXirREKEnu7lSjBn38MSkUNGgQ/fMP1ahRDKfNzMzs06dPUFCQUqnUPNmgQQNra+sePXpYW1u3b99e04/3lVQq1ffff//rr78SkZOTk6enp7GxsdbnDQClUkJCQo8ePcLDw4cMGXLgwAFRxFNCvXv39vPz27p167hx46QdOa8xY+jnn8nCgoho0yZSKOjTT7V7RgAoy9TqjLCwLs2bn9LTq6FSJd240bJSpaF16vygry/9XWRiYuK2bdtUKpWRkdGkSZMMDAwkPwUAwMvi4+PnzZv3119/qVSqatWqWVpanjlzRqlUmpub//jjj9OmTXvzbWO5hID7qyHgDqXC11+TgwP160dENHo0/fgjTZ1Kfn5ERAcOUHg4Au6l0dat9OwZiS6jV67QH3/Q+vVFGe/SpUv9+/fPysrKzs4mojZt2nz99dfjxo0TXUqkolAoDhw4sGLFisDAQENDw+zs7FatWu3cuVPTkQlKUmYmzZlDcXGkUNCkSTRkSHGePC0t7erVqwEBAf7+/oGBgQkJCZpfmZqaWlpa2tjYWFtb9+zZs2rVqrkPTEhIGD169IkTJ/T09BYtWqRp2wUA76zIyMju3bvHx8fPnj176dKlEo788OHDRo0aGRkZxcTEmJmZSTjyK3h4UIUKNGUKEZGTE82aRZaW2j0jAJRxSUmHYmNX6evXatBgvUymI5NJeRkPAFBK3Lp166uvvjp27FiLFi3Cw8PHjRv322+/Va9evaTnVTIQcH+1rVuT589/OnRopZUra5X0XOAdFh1NEydS58507x41bUoLFlCvXgi4l3Zr15KZGU2YQER09y7NnUv//FPEIX19fVNSUtauXfv1118PGjRIVsA0+QLx8/MLCwurUaPGe++9p2nHCqARFRXl7+8v4u+3bt3KfRVhYWFhbW0t4u8KhWLEiBF3796tXr26t7e3KCUBAHDu3LkBAwZkZWWtWbNm+vTpUg3766+/zpkzZ8yYMdu3b5dqzNfKyKDPPiMiSkujLl0Iq4kAkD+PH39vatq1cuUPSnoiAABadPDgwcaNGxORprz7uwkB91fbtGnTxx9/PGnSpE1IcYcS9/AhVapEFSsSET1/TlWqEBFlZZFKRS+qb0Mpcv48bdlC69YREW3dStHRWBeB8io2Nvb8+fMBAQGBgYFyuTwrK0vzq4oVKyYnJ/fo0WP37t116tQpwUkCQGmzefPmyZMn6+rq7t+/38HBIf8HPnjwIOSF4ODgU6dO1a9fX/yqQ4cO165dO3jwYIEGLJLsbNLTK2ilOAB4BymVCXFx64yMWsTFrW3QYI2RUeuSnhEAAGjdO1dDB6DseXEzSUQ50XYikrScCEipZ0/at4+cnKhSJXr6lLy8SnpCANpSo0aNYcOGDRs2jIiUSmVISIi/v39QUNDZs2dHjx6dlpa2fPlyFA8FgDwmTZoUHh7+yy+/jB071t/fv3379q98mVKpvH379s2bN2/cuBEUFHTp0qXY2NjcLwgODhYB95s3b167ds3c3HzAgAHF8QcI+vrFdy4AKMv09KpWrvx+VtbdRo02GRg0KunpAABAcUDAHQBAakuXUkYGZWb+t0ACUN7p6elZWVlZWVmJH5VK5TvYGAcA8mnRokX379/ftm3b0KFDL168WLNmTc2vjh49+s8//4SEhNy8eVM0L9EQPbg6vNCqVSvx/NatW4lo1KhRWOEDgNLJ2LiDsXGHkp4FAAAUH9wMAwBogbExGRuX9CQASgyi7QDwBjKZ7K+//oqKigoMDHRwcDh79qzJiyp5N27c+Pvvv8Xj2rVrW73Qpk2bxo0b5+5ikpWVdeXKlatXr/75559ENHbs2OL/QwAAAAAAXob7YQAAAAAAKFZGRkY+Pj49evSQy+UTJkzw9vbW0dEhokGDBpmZmXXo0KFdu3ampqa5D0lMTAwNDQ0KCtLUmcnMzCSi6tWrz5o1y9raumT+EgAAAACA/4eAOwAAAAAAFLdq1ar5+PhYW1vv2bPn+++/X7x4MRG1bt26devWRKRWq+/cuRMcHBwcHCwapT5+/Dj34bq6ui1btrS0tLS0tPzmm29k6F8KAAAAAKUDAu4AAAAAAFACWrVqtW/fvgEDBri7u9etW7dv375BL4SEhKSmpuZ+cYUKFZo3b966dWtRZKZjx455UuABAAAAAEoDBNwBAAAAAKBk2NrarlmzZurUqXPnzk1JScn9q9q1a7dp00YTYW/VqpUoOwMAAAAAUJrJmLmk51AapaWlJSQkmJmZmZubl/RcAAAAAADKs02bNoWGhp46darDC5aWlrgOBwAAAICyCAF3AAAAAAAAAAAAAAAJYFcmAAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAUyY0bFB1NRJSZSTdu0JUrlJ1NRKRSUVAQEVFkZElODwAAAIoNAu4AAAAAAAAARbJ0KU2eTMwUF0dLltCCBZSSQkSUlkY//ECBgbRsGd24UdKzBAAAAO1DwB0AAAAAAACgqNq0oa1bX/2rJk2oVi2qW7d4JwQAAAAlQa+kJwAAAAAAAABQ5s2cSRMnUocOOT9On04GBjmFZWrUIBcXqly55CYHAAAAxQUBdwAAAAAAAICi0tcnNzdauJBMTYmI1q4lc3NKTqYxY4iIqlQp2dkBAABAMUFJGQAAAAAAAIBCysig27dzHvftS0ZGr3jN/v3022+UnFyc8wIAAICSIWPmkp4DAAAAAAAAQNmTlUUffEByOS1fTo6OZGxM8fEUFUXZ2dSlCxkYkFJJFy5Qo0Z0/jzVrEm2tiU9YwAAANAyZLgDAAAAAAAAFJhKRU5OdOwY6ehQ585kbExEVK0ade1K1tZkYEBEpKdHNjako0OBgVS9esnOFwAAAIoDAu4AAAAAAAAABSOi7bt2UeXKdOwYtW792lcy0/Hj1LAhPX5cjPMDAACAEoKSMgAAAAAAAAAFwEzOzvTXX1SxIp04QV26vOX1iYmUlEQNGxbL5AAAAKBEIeAOAAAAAAAAkF/M9PnntG4dmZjQkSPUu3dJTwgAAABKE5SUAQAAAAAAAMivn37avXkzGRvTv/8i2g4AAAB5IeAOAAAAAAAAkC/z5s1zc3Ns127O3r3Ut29JzwYAAABKHwTcAQAAAAAAAN5u0aJFP//8s66u7uzZVgMHlvRsAAAAoFRCDXcAAAAAAACAt1i5cuWXX36pq6v7999/jx07tqSnAwAAAKUUAu4AAAAAAAAAb7Jx48ZPPvmEiDw9PadOnVrS0wEAAIDSCyVlAAAAAAAAAF7Ly8tLBNl///13RNsBAADgzfRKegIAAAAAAAAApde5c+fUavXy5cunT59e0nMBAACA0g4lZQAAAAAAAABeLTY2tlatWoaGhomJiYaGhiU9HQAAACjtUFIGAAAAAAAA4NVq1KjRoUOHzMzMc+fOlfRcAAAAoAxAwB0AAAAAAADgtQYPHkxER44cKemJAAAAQBmAkjIA2nTtGsXFUceOZG5e0lMBAAAoS6Kiovz9/YOCgoKCguzs7OrXrz9lypSSnhQAvKP8/f179erVokWLsLCwkp4LAAAAlHYIuANozbRpVKUKtWhB27aRuzt16lTSE4Jya/r06cbGxrNmzapTp05JzwUAoJAeP3586dKlixcvXrp0SS6Xp6SkaH5lZmaWmprq6enp7OxcgjMEgHeWSqWqWbNmQkJCeHh406ZNS3o6AAAAUKoh4A6gHbdv048/0j//EBFFRNDcueTtXdJzgvIpIyOjWrVqmZmZT548qVmzZklPBwAgv1JTU4ODg0UOe0BAQFRUVO7f1q5d28rKysrKysbG5v79+1OnTtXR0fH29v7www9LasIA8C4bM2bMjh07Vq1aNXPmzJKeCwAAAJRqeiU9gRJy5Aht2UJE1KoVzZ1LurolPSEod+7epebNcx43bUoPHpTobKA8O3XqVHp6eteuXRFthxKkVCqvX78eFxfXp08fAwODkp4OlFJKpfL27duaCPvVq1fVarXmtxUrVmzXrp2IsPfu3TvPZ9qTJ09++OGH8ePHHz9+3MbGptjnDu8ElUr16NGjqKioqKiox48fz54928TEpKQnBUWyPTb2ZloaEbU1NR1do0ZRhho0aNCOHTuOHDmCgDsAlDMZGRmXLl06e/bsxIkTq1atamZmVtIzgrJEqaSsLDI1JSJKTSW8fYR3MuD+4AEtX07//kuGhrRoEW3cSFOnlvScoNypW/e/IPujR1SrVonOBsoz0b9r0KBBBT4yJIQWLSIjIyKixYupXj2ppwblXEpKysWLF0WVbX9//8TExLp16+rr6//xxx/29vYlPTsodRISEtq2bRsdHa15xtDQsGPHjl1faNas2RsOnz9/fnx8/KpVqxwcHM6dO9e+fXvtTxnKs6ysrMePH0f9v1u3bqWnp2tes3nz5vnz50+ePLkE5wlFFJya+l2DBlX0JLjtHTRokI6OzunTp9PT07ESA2+mUqlu3LgREBBw8eJFV1fX+vXrI4IJpU1aWlpgYKC/v39AQIC/v39mZiYRbdu2rV69ev/++6+xsXFJTxBKAjOpVFTAL80LF2jECLp1i8zNydGR9u8nQ0Mtza8seSdLymzbRs+ekUhMePiQZs1CrQ/Qio8+Int7atWKli+nr74iW9uSnhCUT02bNo2MjLx48WLXrl0LcBgz2diQjw9VrUohIbRgAe3dq7U5QjnBzLdu3QoMDDx//nxgYGBYWFjuq4imTZsaGhreuHGjYsWKp0+f7oTGFZBLenp6jRo1dHV1TUxMevXqZW1tbWVl1blzZyOx5vdGd+/eXb9+/eLFi4lo1KhRu3fvrlu37vnz5xs0aKD9iUOZx8y5A+uRkZHiQWxs7CtfX6dOHQsLCwsLi9TU1L179xoZGQUEBOADrez6NiqqT+XKZjo6LUxMahZ5A1a3bt0uXbr077//DhkyRJLpQXmSkpISEhIiYpcBAQHPnz8Xz1euXLlz587//vuvIUJQUNLi4+MDAgLOnj3r5+d39epVlUolntfV1W3Xrl2HDh0OHz4cFxc3ZMiQvXv3YtPqO2f+fLpzhwwMSF+f1q+n/L0BkpIoOJh++43q1KH162nQIATcc7yTGe65MZNMVtKTgPLI359++IHu3qXbt2nJkv/KywBI6tatW5GRkdWrV+/cuXPBjnz6lGrWpKpViYg6dKAnT7QxPSgH0tLSrl69KgqAnD59Oj4+XvMrfX399u3bW1tb29jY2Nra1qhRg5knT57s5eX13nvv+fn5tWzZsgRnDqXKkSNH0tLSunfvHhgYWKADVSrV4MGDw8LCFArFihUrtm3b9vz585MnTw4aNMjPz8/c3FxLE4byISIi4ttvv923b9/LvzIyMmrcuLGFhUWTJk0scsmd0zd16tS//vpr1KhRly9frly5cvHNGySVpVbrEamkyDMbNGjQpUuXjhw5goA7EBEz3759W5OIcOvWrdx10iwsLHr27Nm0adN169adOHFCLBjrSbHZAqBAoqOj/fz8xDpQ7mp+enp6VlZW4kq+f//+4prqzp07vXv3PnTo0OjRo729vfGOfYecO0cJCbRzJxHRqlW0aRMZGFBiIqWmUmoqJSZSSgqlpn5luNbvbr3k5JynU1JyXm5lRY8f0/nzJfs3lC7v5H88vXrR1Kn02Wekr087dlD//iU9ISh3MjKoVy8yMqKMDEpJofr1qVEjCg4uypDPnz+PiYlB9AryEPVkBg4cqKOjU7Aj9fVJqdTKnKDse/Dgwblz58QN5PXr1zXJL0RUr169nj179uzZs3v37p06ddLX1899oEwm+/PPP+Pi4g4fPmxvbx8QEIAcZBD27NlDRB999FFBD9TV1V2/fv3AgQM9PDzq1KnzzTff7N27t3fv3iEhIUOGDDl58iQKO8DrqNVqe3v7+Pj4SpUqNW3a1OL/NWrU6K1fnatXrxYrjhMmTDhw4IAMaTplU5/KlSUpKUNEgwYNWrBgweHDhyUZDcqi3IkIZ86ciYuL0/xKT0+vY8eOYguXra1tw4YNxfMjRoywtbU9cODAJ598smnTJnySQDF48uRJQEDAiRMn/P39b926pdmTamxs3KlTJxsbG2tr6969e1eqVCnPgc2bNz9+/Hjfvn337dv38ccfb968ucC3mVBGXb5MffrkPO7fn5Yvp4MHKddHnBDTckFQ2P+Voq1QgRQKIqJffqHRownvF413LOC+YgWdO0c//0zTp9PYsWRsTA0b0tdfl/S0oNxJSCCinNzh+HhKSqKkpKKM5+fnN2TIkLZt257HiiH8v8IXcK9enVJSKDKSmjShkyepVSvpJwdlU2ho6IoVKzZu3Ch+1NPTa926tbgut7KyatOmzRuOjY+Pr1at2u7duwcMGODv729vb+/n51ejaE3qoBzIyso6dOgQEQ0fPpyIMjIyClQY1NbWdseOHSNGjHB1da1evfqkSZMOHz7cs2fPCxcujB49eu/evUVMv0pUKqMVCiLSlcmaoWJpOXL48OF79+41adLkzp07hYgXXL9+vV27dnv27LGysjp48OCyZcu++eYbbcwTtMpA0uhmly5datSocffu3bCwMOTBvFNu3bq1du3a8+fPX7t2TZkrZ6VOnTqaRAQrK6tXluBo27btoUOH7OzsvLy86tSp88svvxTjxOGdo1arz50717dvX80zFStWtLGx6dWrV69evbp06fKGQjFpaWmPHj1q3769SJ3ZsmWLvr7+X3/9hVWid0KFCpSamvM4JYUqVKCpUyk9nUxNqUIFqlyZzMzIzOybio1nVRQPycyMxJKNvz+dPEnVqtHIkfTFFyX4N5Qy/O5IS+OaNZmIDx9mZo6PL+kJQfkVHMxE3L49M/Ply0zEnTsXZbzU1NTq1asT0alTp6SZIZQLqamphoaGurq68QX9QPP15d27+cYNnjKFnZz4iy84MVE7c4SyR6zfdOnSxd3d/dy5c+np6fk8UC6XV69efdmyZcycmJhoaWlJRF27dk1JSdHmfKEM8PHxISIrKytmvnv3rrGxsZOTU0EHWbt2LRHp6+sfOXKEmW/cuCH2Pjs7OxdxentiY+dFRW2Jjt4ZG1vEoaBUGTx4MBEtXbq0oAeq1eoJEybo6+v7+fkx87///qujo6Orq+vr66uFaYJ2Lbx3zys6OkOlkmpAJycnIvrtt9+kGhBKv+vXr0+dOlXET3R1dVu3bu3s7Ozl5RUaGvrWY0NDQ8PDw5n5+PHjItC5ZMkS7U8Z3l2XLl0iogoVKgwfPnzFihVBQUFKpTI/ByYlJVlbW9esWVN0aTp16pRotPPll19qecpQOjx6xLa2nJDAGRns6Mj+/vk/NDycDx5kZlapeMYMTkrS1hzLlncp4L50aU7cU63mhASuXJlHjODMzJKeFpRHJ04wEffrx8x85AgT8XvvFXHIn376iYj69+8vwfSgvBBFaa2trQt85IABTMRbtzIzHzvG+bhbgHdESkqKkZGRrq5uXFxcQY/9+++/ZTKZTCb7+++/mTkmJqZ58+ZE1K9fv0x8277bJk6cSES//PILMy9dupSIxo0bV4hxvvvuOyIyMTE5f/48M1+8eNHU1JSIFixYUJTp7YmNPZKQUJQRoBS6d++erq6uoaFhbGwsM6vV6gId/u233xJRrVq1Hj9+zMxz584lopo1a4ofoayIycqyksttr15VFfAN8Abbt28nIjs7O6kGhNJPfAL07NnzzJkzaWlp+T8wJCTE3Ny8cePG4qNj27ZtOjo6Mpnsr7/+0tpk4V33ww8/ENHnn39e0AOzsrLEQnW9evWioqKY+dixY6LTbxEvtKDMuHyZnZ158mQ+cqRwAyxcyAYG/Oef0k6rrHpnAu6pqVyjBhPlvG++/56JeMCAkp4WlFM7dzIROzoyM2/dykQ8dmwRh0xKShLdugICAiSYIZQLzs7ORLRo0aKCHZaaykZGrKPDMTHMzPXrMxFfvaqFCULZs2PHDiLq06dP4Q7//fffRfLXnj17mDkiIqJ27dpENGzYsHwm10D5o1AoRCq6SJjq3r07Ee3du7cQQ6nV6o8//piIqlWrJkY7ePCgqCezevXq/I+jUqvvpKfvi4v76d69Cbdu7YqJmRwWNjcqaqf4VATpxMbGXrhwYfv27YsWLfrss89iY2MLGvguNFdXVyKaOHEiM589e7ZZs2YFinAplUo7OzvxeZidna1SqQYMGEBEPXr0UCgU2po0SO1wQoKVXP5FeLiEYz579kxPT8/AwCA5OVnCYaE0a926NRGdPHmyoAempaVZW1sTUZs2bRISEph5zZo14kpp165dWpgpAFtZWRHRYVHXoYDS09NtbW2JqEmTJmKVSFO479dff5V6plDKZGdzvXo8dChnZBR6DC8vJuKePSWcVhn2zgTcf/2Vibh7d2bmhASuWJGJ2M+vpKcF5dTatUzEn33GzLxyJROxi0vRRxW5Fe+//37Rh4LyQbSjvHLlSsEOO3CAibhHD2bma9eYiGvV4uKKgEApN2bMGCJasWIFM1+9ejW24BU2vv/+eyIyNjY+e/YsM1+7dq1KlSoi7FVsgTZ4g7i4uEOHDrm5uYWGhhbi37cQjh49SkTt2rVj5kePHslkMhMTk9TU1MKNplQqhw0bRkSNGzd++vQpM//555+5l3le50lGhu+zZysePvwkLMzmyhUruVzzv7WPHiHD/dUmTsx5cPgw79jBoaE8Zgw7ObGzc97ajAoFh4fz0aO8dm3UL798+OGHlpaWFStWzFPKslq1aoUo8FIIWVlZonvEhQsXmHn06NFE9MMPPxRokOjo6Lp16xLRnDlzmDkmJkb8OHv2bK1MGrRg0b17VnK5V3S0tMOKEOq+ffukHRZKp/DwcCIyNzfPzs4uxOHPnz/v0KFD7iJ7bm5uRGRgYHD8+HGpJwvvuidPnshkMmNj47S0tOzs7MjIyIKOkJSU1KVLFyJq3rx5dHQ0M//9999iZ8a6deu0MGUoNc6fZyJu0aIoY6Snc+XKTMQ3b0o1rTKsLAXc1Wq1qlDV91SqlOwPbJmIjx5lZp47l4l44ECJ5wegsXAhE/G8eczMP/zARCzFJqz4+HgzMzOZTBYUFFT00aCsCwkJIaLatWsXOIj52WdMxAsXMjO7uzMRf/yxNmYIZY5CoRA7acTVeadOnXR1dUXtjgJxcXEhoooVK4oPq8DAQFH3Y+7cudJPGt5GoVCEhoZ6eno6OTm1bt1a0/aqefPm7dq1e/78ubYnIOre/vjjj8y8cuVKIvroo4+KMmB6enrPnj1FEF/Mf8GCBWKZxy9XLkVycrKfn5+Hh4ejo2OtWrXGHz2aO8g+7Pr176OitsfEhKSm7oyJQcD91Wxsch5s386rV3PPnjlbo86dYycn3ruXP/mE+/XjRo1YV5eJxP+S2rXTRNgrVarUqVOnjz766Ntvv/38889lMpment6ZM2e0PfGtW7cSUYcOHZg5NjZW9Du5d+9eQcc5f/68vr6+TCYTyzmBgYEGBgYymWz37t2Szxm0Yfj161ZyeWhhV/heZ9GiRZI0kIAyYcmSJUQ0YcIEZg4ICFixYsX9+/cLNMLjx48bN24sqoOKIntffvmluFKSy+VamTS8q/766y9Nit7p06eJaOjQoQUd5Pnz5x07diSi9u3bi50ZGzZsEHUjN2zYIP2koZRYsICJeMaMQhyqVPLhwyw+z5ydmYi//Vbi2ZVFZSngvmvXrjZt2nh5eRV0W/rTp+5yOcX4jGFmjo/nChWYiAMDtTJLAGbFN9+wvj4vX87MPH06E/Hvv0sysrg4GzlyZJFGuXmTFy/m5cv56VNm5r//znn+6VNGnkUxCggI+OOPPywsLJydnb29vZMK2Ftk8eLFRDRlypQCn7hhQybK+T60tWUixp7WEpWVxZoo0NOnrNmh/vw5372b8/j27eKYybFjxzQhqnv37slkMjMzs0KUX1epVKNGjSKi6tWri7ofmkZhxZPcWj5FRvLDhzmPRbwyMZH37+d//+U89WRVKr5xgzdt4mnTuFOn2jVr5k4xNjMzs7W1nTFjRqNGjYiob9++Wq2wr1QqRaKx6CzXu3dvIvrnn3+KOGx8fHzLli1zz3/mzJkieDFnzhwnJ6cWLVpolhaEMb/99kV4+B9PngQkJSX9f5ZiZHr6/SJsni3PmjZlDw/28OAJE3jhQh4z5r9fdevG33yjCbKzri43bMj9+vEnn2QsW7Zjx45Lly693NBbVOEvhkroIgH5jz/+YOaff/6ZiIYPH164oUTXgcqVK0dERDDzihUriKhChQq3bt2ScsagBXEKhZVc3uvKFaXU+6uuXLkiyhxj59a7QHyeiFW3KVOmENHPP/9c0EEiIiJq1aolPouUSqVarZ40aZLY91OUD5P09HQ/P7+tW7eKLV8Aw4cPJ6L169cz86xZs4jo20IFPmNjY1u1akVE3bt3F+WzxNefrq7uzp07JZ40lBI2NkzEBw4U4tAVK5iIR4xgZg4MZCKuWZNRga8sBdwHDRokbpnat2+/Z8+efF7fqFSpwcE15HJKSjrOzM8vuCt7tOdBg7Q8WXinOTk5EdH2v/9m5uXTp7t16RL0xn3u+ffkyRMjIyMdHR0RwyqMa9fY3p6vX2d/f+7Zk58//y9/TS7nL76QZJ7wVqdOnTIzM9PV1dUEg4yMjN577z0PD487d+7kZwQRtypokp3iyU1V66Y5NWSSklhfn/X0WPsprvAGkZE8YULO4x9/ZF/fnMd793KNGix6l/btWxwzmT59uqbqgshEHjVqVOGGUigU4lu7fv36Dx48YDQKK7o1a3j79pzHNjYcE8O2trxjB2/ezLa2HB/Pe/fynDnct29O3bwX/3u/W7fWrVs7OTl5eHj4+fllZWWJMR48eFC/fn0iGj16dOF2EObHqVOnRDY9M0dHR4smlgVdX3ylqKgo0SFg7dq1zKxUKgcNGiT2Ugj6+vpWVlYuLi5eXl6hoaGIixVGx44sl7Nczj//zD/9xLnX+7t35/Pnec0aPnqU79zhF++rN1OpVPb29kTUs2dP7VVCFzvAKlWqlJqaqlKpxNpSoUs3qNXqjz76SNyAiGaJI0eOFBssCtQ7EYrf0YQEK7l8Zv4uqwokPT3dzMysUqVKDRs2dHJy8vT0LGjKM5QVMTEx4psrOTlZpVKJoPmNGzcKMVRISIgosvfZZ58xs0Kh0DSoLND+mydPnvj4+Li6ulpbWxsZGRGRoaGhqanp3Llz8U33jsvKyqpQoQIRiXeUSE0QNR4L4eHDh2JnRr9+/dLT0/lFO1YDA4N///1XynlDaZCcnBMZSEwsxNFPn7KeHhsYsChX2bp1oUP35UpZCrgrFAovLy8LCwtxH9W2bVsvL6+33iI+fbpYLqdbt3owc3Z23NWrFeRyyoi9VCxThneUCDMdOnSImUXHLV9NCK3IRJ/MSZMmFfL4r75izZfu6tW8eTNbW3N0NEdH8/HjCLgXjyNHjhgbGxPR2LFjQ0JC3N3d7ezsRDsaQZP2Lko9viwpKUlfX19PT6+g5SCio5fI5fToxjRmzj5zgE1N2da2yH8QFMkbAu5TpuTU+ymGgLtara5Xrx4RiTow/fr1I6Ltmghvwb2hURiqMRRGnoD7L7+wt3fOj7//zmvXsp7ef3H2Ro145EhetozPnVO/PiZ4/fp1UURo+vTpWpr1559/TkTff/89M69bt65wW5tf5+rVq999953mUlDs+rewsFi3bt2VK1cKV2wX/k/ukjK//87W1jl7406fLnQtMk0l9G+++UaiWeb12WefEdHMmTOZ2cfHh4iaNGlSlFWl5ORkkeg3fvx4Zk5JSREdFMeOHSvZpEELfr5/30ou3yR15m9WVpaIk+Ze4SOiFi1aTJ06devWrY8ePZL2jFCCRJsQUaDDz8+PiJo2bVro0c6fPy/eNvPnz2fm9PT0Xr16EVGzZs1iXt+1W6FQXLx40cPDY9SoUWKlXENXV7dDhw6i4jYRTZgwAV2d32XHjx+nF3tVIyMjxdpzUd4SERERderUIaIBAwaIDYXffvstERkbG58+fVqiWUPpcPBgEbudOjgwEa9Ywcy8dCkT8bBhUk2urCpLAXchMzNzzZo1IihARJaWlqdOHWR+9VquSpUaHFxdLqekJF9mfvTIVS6n8PAhxTtleOeIi56LFy8ys6WlJRWireXrRUZG6unp6evr39UUm8g/hYInTPivgcXOnbxsGVtZ8ezZPHs2Ozkh4F4MDh48KLJRnJ2dc9//x8fHe3t7Ozs7i9wZwdjY2M7Ozt3dPc9uU29vbyLq06dPQc9++3YfuZyePfNm5rt3J18JNHwesrrofxQURWQkW1iwkxM7OXGHDv8XcF+zhj/9lM+eLY6A+6VLl4ioQYMGarU6ISFBfM4UscC3plFYt27dxOqRJjUGjcIKbM0a7tUr541SqxZPm8aawq9HjrCbG3/2Gc+fzwcP8utv2l92+vRpQ0NDIlqyZInkU1apVOI+TXwJihVoLy8vyU8kiAWeXaiRJaGpU3MeHDvGu3bxzZs8diyPH8/TpvGzZ4UeVauV0JOTk0Wz1uvXr/OLHIhly5YVcdjr16+bmJgQkdijExYWJrIIPT09JZg0vEpMVlZURkZURkZsYaNFo777buw//4S8VNqoKJRKpaZm2rVr1+RyuWgUIRYvNWrXru3o6Ojp6RkVFSXh2aH4OTg4aP7Dnz17dtEXC318fESSzW+//cbMiYmJ4m6xS5cuyZqqgsyJiYm+vr5ubm52dnbiw0ejQoUK1tbWrq6uPj4+z549Y2aVSjVgwADx2379+iUWKkEVJJednX3x4sVly5Zdv349WurWza/0xRdf0IueSWKv6ujRo4s45u3bt2vWrElEw4cPz87OVqvVYlXb1NQ0d+McKPNcXJiI3dwKPcCePUzEbdsyM0dHc716yn79/IvnnV9qlb2Au5CVleXp6SnC7ufOdb9xo92zZ94vh92fPv1FLqewsJ7MnJ0dL9LbU1MvlsSUJVDQ4vVQUsQ+DFHrU6QhSLvPdPz48QVOSLx6lZ2ceOhQ/vXX/3IkXV356FGUlClOO3bs0NfXJ6LPP//8dbs+VSqVXC53d3e3trbW0dHJk/bu4+OTmZk5efJkIvr1118LdHalMikoSD8oSE+pfM6sDgmpI5dTevp1Cf4wKII3ZLivWcPx8dy/P/furfVpfP/990Tk4uLCzH///bdIZin6sI8ePRL1HAYOHCgyjkXhGisrK2x8Lpg8Ge6//so7duT8uHIlb95c6IH37dunq6srk8k2bdpU1En+P39/fyJq1KiRWq2Oj48XqzjPihCofYOnT5/q6OgYGxunSt0dEbRh+fLlpJ1K6GInjViQjoyMFO+Kl6vJF8K2bduIyMjISDQ5/Oeff4jI0NDw8uXLRR8cXvZVePi6x483PHlyplBLvzExMTKZzMTEJCt/9Y7yQ6VSjRs3TiSN5ul1qVQqNcF3UTbk5eC7aGUBZUhqaqoo5ikqpDdv3pyI/P39izjsli1bRJE90X8yJiZGjNyjR4/Vq1dPmDChWbNmud9CMpmsZcuWkydP/vPPP0NDQ1+5XycmJkascBNRu3btHmqavkDxys7OFvdxDg4OmnW4tm3bNmvWrBjq7Ddt2pSIAgICmFmswWzZsqXow165ckX8LYsWLWJmtVo9fvx4Y2PjvXv3Fn1w0DSXjI7+r31XWhoHBOQ8Dg3lYug0lN2tGxNxERZRFAquUYMNDDgoKJGZhw//UJKMhzKtrAbchYyMjC1b1l+7Vk8uJ7mcbt60Skz0yR12T0sLCg93SE4+wcyPHn0rl1N4uEPJzbfw0tLSXF1dBwwYgPBE0WVlZSkUCq2uXlSqVImIRGaoSEmQ9v7/5s2bOjo6hoaG+eo5duYM29vnFBkwMeE7d3jgQF6wgL/+mp2cWK1GwL3YnPnnH1G0XVRXyI+nT59u3LgxT+ZUhQoVRI78yZMnCzSBZ892yeV0+7YtM6elBcnldO1avdftEIJikyfgfvAgr1vHJ07kBNyZ+a+/uHJlZubXVBiSRps2bTRvqhEjRhDRGnH6IgsPD69Vq5arq6v4UaVSVatWrUmTJoXZpvMuyxNwj49nW1veto03buT+/Tk9vShjr127loj09fWPHDkiwVRf+OqrrzTJgBs2bBDrLhKOn9vvv/9ORB9++KGWxgfJOTo6khYqobdr146IREs3sfO98FX4XvLpp5/m3l4mlg9FrQmQ3Ffh4SlFuFzfuXOnVCvHglqtFnUdK1asKLaxvo5Sqbx8+fKyZcvef//9PJnvDRo0mDBhwsGDB6WaFWjV7t27icjGxoaZQ0NDiahGjRqS3EWKRUd9fX2xFyciIqJatWq5l2pMTU2tra1dXFy8vb3jRD+ftzlz5oymQGXdunVDQkKKPk/Ij5QUPnaMFyxI7tWrl9g1qNGiRYsJEyY0adKEiDp06KClnAMhLCyMiMzNzZVKpWat6A2ligrk/PnzgwcP1mzC2L59OxHZojCpFDTBmD17ePnynMfh4WxklFMJeNIkLkiXh8J49OiRno7OZ507F7HP6c8/+1Wt2lIkhh44cICIWrZsKdEcy6SyHXAX1OqsuDjPkJC6Iux+40b73NnuSmUyMyuViVeumMnlsrQ06ZNQlEpldnZ2etHudd/A19dXpAfq6+sHBwdr6SzvgszMTE9Pz/r163/yySft27fX0lWIQqGQyWR6enpqtTo9PV0kQ0l+FhEOmz179pte5OfH/fvnhNrNzNjFhUWAXqnk27f/Wz/VFJrMzOT8Xc9BYaxfr9TXH92z548//liIo0XmlJubm5WVlUwmEwF3kfbu4uLi6+ubnwSue/c+lsvp6VN3Zn7y5Ce5nO7f/7QQkwFpJSX9l9V+8SKfP8/JyeziwnfvsmjKpVbzli385ZfcpQvn2m0spYiICCKqXLmyQqHIzMysUKGCTCaTMD0qVjTQYWbmO3fuEFHVqlVRYrtg7t1jzSLr+fPMzElJ7OPDR44UMdouzJkzh4hMTEzOi8GlIHptXbhwgZlFyeM///xTqsHz6Nu3LxFt27ZNS+OD5FJSUkRh9HHjxkk15rlz54ioVq1a4qOsRo0a9KLEnyQyMzO/+uorTfDr3r17urq69vb22ISqDV+Fh38TGfldVNTVlJQ1jx6te/z4YnJyRr5r8YvlkJ9//lmq+cyaNUt8SJ45c4aZb968OW7cuLfeAKpUqtDQUE9PT0dHx6pVq4qLNwcHB2SGlglOTk5EtHTpUmZetGgREX3yySdSDf79998vXLhQ86OoXdO5c+fVq1cHBQUV7hpJTFKoUqVKobtlvrOcnXMe3LnDmsRctZq7dmVxUfznn3zpEjNzcjL7+rKrK1tbs4FBzg13nTr16cWmZC8vrwcPHogRYmNjReePbt26JWvpUp552bJl9KLXyL59+8SeCS2da8KECaSdaoTvoNcF3MeN4379OCurOALumzZtIinaLImFyUqVKqWnp2dnZ9euXVtzI/BuKg8Bd0GlSo+J8QgJqS3C7rdudUlOPh0WZnPv3pTHj92YOTX14pMnC982TIGFh4fb2tpOmTKlRo0a7u7u0obdk5KSnJ2dZTIZEbVv3140soNCSEpKWrx4sbjvEh8BRGRsbLx8+fKiNNF6pejoaJH+wMwPHz4UKQbSnoKZr169KpPJTE1NX055UKlUu3fvVvTpk/PNX7UqL1hQlFqrIIHffmOZjGUylWgjUjTilq9x48ZmZma5r6pHjhy5efPm2NjXFkq7fr2ZXE7p6SHMHBbWUy6n58/3F30+ILmEBJ4///+eiYvjJk2YiPv358xM6c+4dOlSInJycmLmgwcPElGXLl2kPw0zM7u7uxPRxIkTtTQ+FI5arf7444+JqFq1amFhYUUfUHQFqFu3rlqtTk5ONjIy0tXVlSrTKo+4uDg9PT1DQ0MUri1brl+/LvoH/vHHH5IMOGbMGCKaN28eM2/ZsoWILC0tJRn5lRYuXEhEH330kfZO8S7TZLirmPsFB1vJ5VZyedegoPE3b6569OhsYmLyG9c5xLatolf/EMSSpIGBweHDh5k5PDxclO/I/55FZlapVCEhIWKfhPa+ZEEq2dnZYo3k9u3b/KJHl5Z2JygUCpHeHhkZWZRxVCrVwIEDNXcHhoaGOzTV5yAfNKHPq1d5xoycx2o1t2jBohb6woW8dCm3a8c6Ov81qtfT4+7d+Ztv+OjRK6/rfvTo0SNRddba2lpLte9E5sE///zDzJ988gm9qAAjOZVKJaq639R0hoMiqF8/p0OTre3/BdynTWMvL168uDgC7mPHjiWi1aslaO0mPiq3b9/OzN988w0Rffrpu5vhV34C7sKLbPc6wcFVY2PXRkcvf/sxhZWdnb148WKRZyq6M4kby1WrVmVIUWPp8OHDovy3vr6+q6urhPUH3ynx8fFubm7m5ubiH8jS0tLLyysxMVGzktGzZ8/w8HAJz3jjxg2xsn3q1ClRSFQ0Cpec6AP2ww8/aJ5RqVTe3t5i/fxknz5cowa7uTGiDyXO3Z2JWCbjVaskGa9Hjx5EdODAgezsbD8/P1dXVysrK8219enTPUNDWz965JqU5KtW/192jFqdmZx8glmtVD4LCtINCjJUqbRZowQKJTycJ07kwEDOU0IsMpJr12Yi/uADljw13MbGhohEA0OtXqPzizcwkvtKIaVS+cEHH4ivsKJXGnV1dSWiL774gpkVCsWhQ4cK2nYi//744w8iGjJkiJbGB+0R29INDQ3zVMQuhNjYWENDQ11d3Xv37jFzz549tbqpQqlUNmzYkApe3g3y6b+Au1p9NjFx+cOH42/e7BIUJCLvIvg+88aNOXPmHDlyJE/SaGxsrCjgninFGrVo962vr+/j48PMDx48ENt3bGxsChE4S09PNzEx0dHRecdbyZV+J0+eJKI2bdow8+PHj8U7StoSWBrHjx8XCXZFHyo2NlY0uhN0dHRWSXQD8i7o1o09PdnTk+fP/7+A+4AB7OrKBw/ywoW8enVOkN3Kil1d2ccnv3fb9+/fF98a9vb2knw05ZaUlGRgYKCrq5uQkKBWq+vWrUtEWqqOcOHCBZH7pY3B30Gvy3CfNo3Vah40iAcM4Hv3pL/701Cr1bVq1SIiSRJuRJlKe3t7Zg4LC5PJZBUrVtTSJ2fpV94C7oJKlZaaelGheBIW1uvevY8zMqRfebt+/bpYuiEiR0fHhIQEX1/fzp07i2eKmO2ekMDffLNeDNW9e3esHBZOTEyMm5ubSGYXi8k+Pj65i+AfPXpUfBWZmJh4eHhIVR//3Llz/fr1k8lkYuG3RYsWWuoUERgYKLL1nz9/npmZuX79erFsTkQNGzbc4ulZHM014K3c3JiIdXV540ZJxktISNDV1TU0NEz5/3rekZGRv//++5Ahg4OD64iNPnI5BQdXj4oan5CwPTs7npnT0oIiIoZGRY1PSjqemRnx/PkeSaYE0rp7l3192deXX95+c/06m5szEU+cmDccXxQxMTHiTZWcnKxSqcQll5Z6u0VHR6OzZWmWlpYmwpTt2rV7XZbWGzx//tzX19fNzc3BwcHMzEwmkxXPysp7771HRBsl+piFYjZt2jRx6VLE1qa//PILEX3wwQfMfO/ePT09vUqVKmnvo0Zs2G/atCkaLGnJqefPFS/9f5umUl1MSvJ8/HjanTvdg4LGnTwpLn11dXWtrKxEwetnz56J0tv9+/cv+jRErW1dXV2RKRwdHd2iRQsi6tGjR0phO6uIElubi9DsGoqBi4uLZhODSKLSXpuQzz//nIjm59neWFiBgYH6+vqUi4uLi+S7usulHj343Dk+d443bswbcE9N5d69ee5cPnaM/fwKud/0zp074jJ72LBh0lZW9Pb2JqLevXszc1BQEBHVqVNHS19P8+fPJ6IZmv+DoGhyB9yXLuX163ndupyAOzNfv876+rx1K7dsyVpqvB0cHExE9erVk2S0xMREsagssh9EotXff/8tyeBlTvkMuOeWlnbl5s2OSUlHb93qnpjoU/QBFQqFu7u76IbRqFGj48ePa36lVqv3799vaWkpvtjq1au3adOFgn4WHzzIdeuyuXl8/fqN3N3dURSyEO7du+fi4mJsbKwJtZ84ceKVr4yPjx81apR42ahRE588KdJ5jx8/bmtrK0YzMzMbOnSo2Idobm6+XdPpTlLidA4ODppEBgsLCw8PD8nXzKEw1Gr+6qucaLsUDeKFrVu30hubgKlU6YmJhx88mHH9uoUm8h4UpBsVNS48fEhW1n1mzpP5DmVIYCCbmjIRz5kj2Zh//fWX+CRhZj8/PyJq0qSJZKP/P09PT5KiRCBoT1xcnAgn9e3b963fJqmpqefOnVu2bNnIkSNF3lYelpaWSUlJWp3w8+fPDQwM9PT08tlWDkobhUIhlnmGDBlS0JBQenp6aGioj4/PihUrxEXX0aNHxa8ePnx46NAhLcw3x4ABA4hohRSV4qBw0pTKs9eufffddz179swdXtTV1RVlJMeNG1fEFoWrVq0SOcJbt27lXIWYLS0tCzpyfHz8hg0bRJ+J1atXE9GoUaOKMjfQNrGP4dKlS/ziv3cvLy9tnEitVot97UXf6KMhyvflNmLECEl24ZdveUrKZGdzSkpOwJ2Z9+zhWrW4iJuaQkJCxOb78ePHS7gKMnHiRCISWwlFuTNnTUF6qXXs2JGIjhw5oqXx3zWnT+c8ePSIr17l+Hh2d+fISNbUkz59mkW14IoVWRtFrZYsWUJEH3/8sfgxOTlZdJ4vtJ9++snT01OsSa9fv14Eqfbs2aPVpsGlUzkMuKtUGWq1kpmzsu5lZ8dmZyfcvNkxPHyIiDqFhfVMSjpW6MGDg4M7depERDKZzNnZ+XUtL3x9fa2srPT1TerXV9Svzx4e+Uo1jonhkSNzCoH17s0REaghU2CRkZEuLi5iOUQmkzk4OOSnU5a3t3e1atW6d99VuTJ7ehb4pGq12sfHp1u3buJqpkKFCi4uLmIzfkxMzLBhw8TzH330kbSxgOTk5GnTpslkMlEbp127dl5eXlihKW6a5CalMue/c7WaY2JYrWalkkeOZENDPnBAwhOOGzcu/3f4mZmRcXGe4eEOQUGGDx9+9eTJosjIESkp/syckXFbqUS5oTLp0CHW12ciXrtWmnp+77//Pr0ovCCSVmbNmiXJyC8TaX0bNmzQ0vggiaioKNHmaPTo0XnuBpVKZWhoqJeXl4uLi7W1tYGBQe77eTMzM2traxcXFy8vr6CgoJYtWxJRnz59tLoMvHnzZnqxdxXKqAcPHlSrVo3e2OLy2bNncrnc29vb3d3d2dnZzs7OwsJCR0dH8/arVq2akZFR8fTmioiIEJt1EhISiuF08FZpaWl+fn7u7u52dnai4KdoD6Cjo9O6dWtnZ2dvb++CXodv3LhRXGavX7+emZ8/fy5uA9u1a1eI3RgnTpygFzVDoqKiiKhKlSpoHl5qXblyhV7kCCcmJopiHVpa1r18+TK9aHki1ZhqtVrUiMutb9++6HTyZk5OOQ/CwnjhQl6yhGfM4MhI/vzznOcnT85pmloUFy5cqFChgghxSvKPrimqfuPGDWYWcYkDkt6Bajx58kR0ksP6jZakpfG33+bdypyRwRMm5BSpdXV9xTboorC3t6cX1f/5xb7DQYMG3b9/v4gjx8XF9erVS09PT1ytib1orq6uvr6+70iGaDkMuD95sjA0tEVSkm96evCDBy737k1JTT2vUqXGxHiEhNR60VK1R0Gz3TMyMtzc3ET2hIWFxVvLNarV6oMHr7dvnxNAb9CA16/nN5Rh9/bm6tWZiE1M2N1d4v+E3gXXrl1zcnLS1dUV19aOjo7i+yafoqMThwzJ+ccaOZLzeRWtVPL27Wxr+0hEHGrUqLF48eKXU/m8vb1FG5waNWrs27cv/7N6nbi4uO+//15TLUesYGNHc8nQJEKcPctz5/Lp0/zee/zll2xnx2fOsELB+VjyyT+VSiWStgpaYU2lSs3OjmXmtLSgqKixMTErb9/uExSke/Om1ePHbmlpcma8f8qSbdvY2nq7gYHBX3/9VcShUlJSxL4/sUyoUqn8/f2l7WyR+1xGRkYoXFsmXLt2rXLlykT0+eefP3782MfHRxSKEV9nGnp6eq1bt3ZycvLw8JDL5Xmi8w8fPhRZe6NGjdLeZnaxYiQiYlB2nThxQldXV0dH599//71169ahQ4dWr1795ZdfDh06tG3btiYmJvQqBgYGzZs3Hzhw4PTp03v37k1EDRo0KIa9DqJ7uSYdDEqVR48eyWQyPT09a2trkYUj6OjotG/ffubMmbt3746NjX3zIFu2bBEBAlEZMikpSVQTbd68eeFaXGRlZYkQmwhhiI1Efn5+hRgKioGbmxsRTZ8+nZmDg4ObNGnSp08fLZ1r3rx5pIUCHc+ePWvUqFGez8w2bdo8ePBA2hOVb3/8wVLUtc7L399fLAqKVjdFJIqqN2jQQPx448aNJUuWaKmi2pYt8ba2BydNWqCNweHJE/7wQz5wgF+5O9TDg3V1mYgdHVmSf97Q0FBXV9cqVarIZDJNR+iNGzeKW4CKFSuuX7++0FEmuVwu7gLq1Kkzffr0Pn365E7TMTMzGzJkiIeHR4GidmVOeQu4K5WJV69WkcspOfkMM6elXWH+7wZPpUp5+tQ9OLjai2x367i4fO0ICgwMbNWqlbhQc3Z2zv+Hl1rNPj7cqdN/YXcPD87M5NBQViiYmZ8949BQ/vDD/xLbtRPlKM+uXLni6OgosrwNDAycnJxEK/lC8PbmKlWYiGvW5P373/TKrCz+6y9u2jTnH27o0HkrV658Q9X++/fv9+/fX3y4ODo6Fno3jShMr2nSa21t/f333xNRvXr10Fa3ZOQJuPfokfPtl5zMPXpIfjZRuL/QPWpEJZmMjLDIyJF37tgHBelpas5cu1b/3j3n58/3o41qWSHKierq6u7ataugx6akpIhMQAcHh8qVK1evXr127drFsD9G1Jfs1auXtk8Ekjh58qShoaGenl6e2/UmTZqMGTNmxYoVAQEBb21Xc/36dRGjF2ELyWlWcYre5RVKnGhNKdKTX1a1atWuXbuOHj167ty5f/3116lTp+7fv597IUehUFhbWxORnZ2dVj/QMjMzq1evTkSXL1/W3lmg0ER5fREezc7OlsvlIvNdU21SsLCwcHZ29vLyejn+uGfPHvHRt3jxYmZOS0sTyzlNmjR5/PhxoSc2fPhwIvL09GTmr776iojmzp1bhD8UtKhDhw5EdOzYfzvjtZcb3rZtWyLy9fWVfOTz58/nKeZORPXr19dSn57yx8+Ptddq4fjx42JF0M3NrXAjJCcnHz169Pvvv2/SpIlMJhs2bJikE3y1Dz5gosJUBYD8SEvjyEiOjHxtk4AjR7hyZSbi9u05KqqQZ4mLi/Pw8Gjfvr34TBCRNB0dnRkzZog6ME+fPh0xYoT4rY2NTSGaqW7fvl2kSlhbW2su0dPS0nx9fV1dXa2srMRJhZo1azo6Onp6ej58+LCQf1JpVd4C7k+e/CiX0+3b/ZhZoXh65YpJaGhrler/4uO5s93HjrXp2bOn6Dj/Sunp6a6uriJvumnTpmfPni3ErFQq9vbmNm1ygrOtWnHr1uzuzszs7c0ff8xEXKkS//WXlE3w3hFff/21+K/UxMTkyy+/fPToUREHvHeP+/bN+ZdydOSXA+OZmezpyfXr57ymceP8lgxSq9Wenp5iKbtBgwavKyv/Onfv3s1dmN7Ozu78+fNi2Hbt2tGLchBQ3Fq3ZicndnLi997jb77hvn3/+5WtLRe2c/LriGDEzJkzC3icKinpqEqV/ujR3Kio8RERQ9PSLjOzUpn47Nmue/c+DgmprYm8b99uZWdnt3z5cknalINWifQrAwOD3DeErxMeHv73339Pmzatffv24kstd4oBEU2dOlXbG2VEQSQt9ZEGbdi1a9dvv/1WqVIla2trV1dXHx+fmJiYgg5y5swZEUJ1F5c+ktq+fTsR2draSj4yFD+VSuXp6dm7d+8mTZrY29t/+umnS5Ys2b1795UrV/IZ6nrw4IEIhS9cuFB78xRVjLp06aK9U0BRfPnll6+MYWmC7w4ODprkFU3w3cnJydPT8/79+0ePHhVRsAULFjBzZmbmwIEDRZgyqtDhDWZm/uOPP4hIBMWOHz9ORJaWlkUZELRErVbPmzfP1NRUq30ghIiICCKqXLmylnKnli1b9vL65ddff62Nc5UzCQk8dSq7u/OtW9o6xb59+8Tanqi9nh/JyckiZJmnrJ+pqampqWlAQIC25srMzJmZXKECy2Rc7uKiZUlYGLdowTo6qn79nE5rCsDng0ql8vX1dXJy0sSUqlSp4uzsfPnyZXd3d/F2atiwoea+0sfHp06dOkRkbGyc/+6SSqXS1dVVjO/s7Py6T7aYmBhvb29nZ2eRBZ9nLdzb21vbLaCKR7kKuOdJb3/w4Eu5nCIihr/mxcl37y4VTaKJqHfv3qdOncrzGn9/f7HdT09Pz9XVtYhlqkS2u6Ulf/UV29vz8OF89y57e/OaNfzLL1zkQPE76tChQ6Jm+pMiNjzNRaXiFSvY2JiJePhwbt8+J2o6fDh7eHDNmjmh9rZteds2LmgGVWRkZK9evehFG4CUlLdnE0dERDg7O4svYx0dHQcHhzwZVSLcYGFhgUKQJSB3hvt333H37v/9qls3ydfQOnfuTESHDx8u0FGpqZfkcgoNbc3MSmVyZubLt4vqtLSgJ08WhYX1/PzzvpovvMaNG4svvNf1q4ASJ1LkKlSo8HKjLYVCIZfLPTw8HB0dRSUiDVEGRGT2RUVFBQYGirXAORJ2Yn2JQqEQmc537tzR3llAcpKUgtm/f7+urq5MJtu4cWPRR8tNJOCsWrVK2mGh7NKUptF0T5WcKI8r+ZsZpGJpaUlEL9/Z5ZaVleXn57do0SJ7e3vxDaghFghdXV3FyxwcHIioZs2at4ocdXv8+LGofZyZmSkqzMhksqJnC4E2fPfdd0RUsWJFCRuZvpIIiI8bN05L46vV6qFDh+YJuOPjq/QQ1atkMtnatWtf95ro6GgfHx+RF5y7c4moiO3i4rJz504nJyciqlSpklbfsceOMRFjobDEJSby9OkbiUhfX//3339/6+vv3Lnj5ubWsGFD8c7R0dGxs7Pz9vbOHQ2/du2aqJxGRI6OjqJVyfPnz52dncWTlpaWV65cefOJEhISREV4PT29lStX5vPPuXbt2vLlywcNGpT769jIyKhfv35Xr17N5yClU7kKuD9+7CaX0+3b/flFertcLktPD37DISkpKR4eHqLFBBFZW1uLbPe0tDRXV1fxcda2bdtLRW+N8YJKxWlpbG/PN2/y8OE5AXcoNNHHRhsj37rFQ4bw/v1sY8Pz5jEz29vzF18wEXfowF5eBQ61ayiVSnd3d5E7Y2Fh8YZtEyEhIZrC9Pr6+k5OTjdv3nzlgM2bNyeibdu2FXJOUGh5Ssp88glv28ZpaezlxZ9+Ku2pYmJiRIu2tLS0Ah0oPhvv3/+cmePjveRyundv6uteHB8fv3379vHjx4skQcHY2Hjw4MESLmuBVNRq9aRJk4ioWrVqt27devLkibgit7a2zlOWoWbNmg4ODm5ubr6+NRzo3wABAABJREFUvi+XAfH19RUfSkuWLNHSVH19fcVXqpbGh1Ju3bp14rusoEuGglqtvnXrlpeXV+6mmmlpaaampjKZDBVpIbcFCxYQkbm5+d27dyUf/OrVq0RUuXLlgn4XQ/FITEzU1dU1NDR8a8ErDaVSqVmfNjMzq169ert27cSvEhISOnXqVKNGjVdegReC2MIv9rmKnpbYolo65bm+0t6JRCaWt7e39k6Ru5i7rq4uWp6UNhs2bBD9mXN3Znr8+LHI/23dunXu4hv6+vqi7aSPj0/uMIhSqRw9erR4x2qvZJCLCxPx999raXgoALVa7ebmJt4b48ePf+VXXkZGhre3t52dneYt1Lx5czc3t3v37r1yzOzsbA8PDxH1rlmzpqZs6eHDhxs0aCDefq6urq/rd3rt2jULCwvxJixQ6n3uCWiqwIlyWJGRkYUYp/QoRwH3Z8+S3N4LPm+SkuLHzA8efCGXU2TkiPwcmpycvGjRInNzc/Eu7NSpk9g6YWBg8OOPPypEtXVJ2dszM8+Zw5MmIeBeqp05wz/9xB9+yLdusb09P3jAUuVLXb9+vVOnTmKB0cXFJc/HVkBAgIODQ+7C9G/OCd2wYQMRtWrVSntd6eDVVq/OeRAZyYcOsULBq1axszP//jtLveFg06ZNRDRkyJCCHnjrVle5nBIT/2XmyMhRcjnFxKx+61EqlUp84VlbW+vo6FSsWBF9AkonhUIxaNAgkYeVO8Kuq6vboUOHadOm/f333/lpgrp9+3aRYlP0RqyvNGPGDCKaJxYwoSxIS0tbtGiRhAPOnTuXiExMTERJtLd6+vSppllr1apVNW9sTSudPXv2EFEPLTTMgBIxadIkSVZ2VSqV+FTs1q2b5N9cn3zyCRF99dVX0g4LUjlw4AAVoVlISEgIEdWoUUNzRf38+XMJW7rNmTOHiGbNmsXM69evJ6IPP/xQqsFBWgqFYvDgwURUr16918Wniig+Pl5PT8/Q0FDbe0kvXrxoYGBgYGCwc+dOrZ4ICsfDw0Nc4XzyySdjx46tV69e7kv6ChUqDBo06JdffvH393/Dl5pCodDsyNFSaVDRwS5/F3FQHHbu3ClKpffo0SP3FZRcLnd2dhadukXynKOjo6+vb37Kh0ZERPTtm7Pl3cHBQWzDSkpKcnFx0WQkX7x4Mc9RPj4+4la0Y8eOknxgJiQkvKH0d1lRjgLuP/zAROqPPuCc9Hbjt6a355GSkuLu7m5ubm5iYmJqatqhQ4egoCAtTVYE3FNTuXFjBNxLNRFwj4zk999ne3uJI6gKhcLd3V2s3bVp00a83/z8/MQ3JRGZmpq6uLjkZ6upQqEQW4T27dsn5RShNBk5ciQR5WfXWG7Z2bFyuc6VK0YqVZparQwONpfLKTOzYN2Zo6Oj37w1G0pWWlra5MmT33///QoVKmhqbReiOXNRGrG+lciuQo/BMiQ+Pt5T0q5YarV6ypQpIvPllbeCKSkpZ86cWbJkyUcffZSnpCMR1a9ff8SIEUuWLNFUdRw7diyhK0A5cuLECak6STx79qxx48ZUmK4nb5KYmCg2VaDNSakl2jvNnz+/0CNo9dvq7NmzIkWGmR8+fCiTySpUqICEhlIrPT1dZKA3a9asEC1M3kqkTA0ePFjykV+WnZ2tvb6vUHRubm66urqa4toVK1a0s7Nzd3f38/PL/0dEVlaWpueE5Hu8bt1iIq5WrfAb/UEbgoODxddWnTp1Dh06lLsbKhFZWVl5enrmp45xbqL7oIjXV65cWXM74OfnJ2pur169OveL3d3dRSx+zJgx2P+XW3kJuD9/ntOs99w5Zlb9OOf5D7b3bo0txEiJiYknTpy4fPmyVsth79iR8+D8eX5bHSQoSSLgzswLF3KlSpKnLDMzBwYGioIw+vr6TZo0EZ+MlStXnjdvXlxcXP7HWb16tVhR1HbbQygRSqVS7MKJiIgo0IGihkx4+CBmTknxk8spNLSFduYIJSwxMbHoe1wK1Ij1DdRqde5rO7lcTkR169bFB9Q7TqlUDhs2jIgaN26cJ5d58uTJedr5VqpUyc7Obu7cufv378/zYpVKdfXqVbHptazvNgUtuXTpkqiU9ffffxd6kDwtwlauXElEdnZ2RZ4daMsXV6+O37/fvwhVXz/77DPSWt/dPJdz7dq1I6KTJ09q41wgicTExI4dOxJRly5dJM9DF9XVpV3bhrLr+vXrixcvXrt2bWhoaKEvmNPS0sQqUdOmTaUtB7psGROxk5OEQ4I0YmJievfuLTZDiEvounXrfvfdd0Xsm/X48WNNB4iBAwfev3+fmdPS0lauXKm55UxOThYX9rq6uu7u7hL8MeVLeQm4z5vHRDxgADPzkydsbMwyGQcXIL29mGnKPh89mhPPhdIpJIS3bmVmzszkDz/U1nJuenq6q6ursbFx06ZNq1Wr5ubm9vz584IOkpGRUbt2bSLSXpcwKEG5U6IK5EnQp3I5xcSsYuZHj+bK5fTwITbCw5u8oRHrm6Wmpvr5+YkyuNWqVZs2bZrmV/Pnzyeizz//XOrJQtmTnp7es2dPImrXrl3uL7tvv/1WtPN1cnLy9PQMDQ3Ns4AkWhTkrjBTr169ypUro4B7OaClf8S1a9cSkZmZWX4K2mZmZkZGRvr6+np6erq6ujo6OlpZWZmYmCQkJGhe06ZNGyLas2ePNmYLRZeqVHYJCuoeFJRRhOVnUZRGe7Wqcm9YdHV1JaLZs2dr6VwgiZiYGJEd1a9fv4yMjMINIjqRHD9+XPNMWlqaiYmJjo4OmiSBtBITE62srMSFlmh9mU8KBQcG8pIl7ODAufPjk5NZpeIbN3j+fP73X8nnCxJQKBSurq7u7u4jRow4dOiQUrq4lbe3t7jqNjExcXd3z31xfufOndatWxORubm5r6+vVGcsT8pFwP3/09t55kwmYkfHkp7WmyDgXlacP8+7d+c8XriQtboP79GjRzdv3izKHpxff/1Vq3cIUIJyF/0sAKWSzc3VDetlx0Qwc1hwV7mckpKOv/U4eJflbhT21jZxkZGRW7Zs+fzzzy0tLfOkJ7/33nual4m9jbnvM6GUGzZsmKurq6Z4i7Ti4+NbtmxJRH369NG0MHn27FmedibJycmnT5/+9ddfP/zwwzz1TImoYcOGdevWJaL27dtjm3yZplaru3bt2rFjx4Juec6PiRMnElHz5s3zvJmDgoI2btw4b968sWPHdu/ePXef8DyuvsiVPn36NBHVrl1bG+2dQBL+iYlWcvmUohX8SU1NNTIy0tHR0UYJEf7/ljxnzpwhotatW2vjRCChyMhIkdj0wQcf5H8ffO5EBPEhU6VKFU3m8t69e3HjBloSFxcnVogtLS3fnMmXnp5++vTpZcse9u/PpqZMlPO/zZv/e03Xrrx8OTPzsWP8yy/anTmUQtHR0R999JG4KLK2thZ9pA8fPly5cmVxHY7Npq9TLgLuCxe+Ir09JKSkp/UmTZvy5Mk8eTIPGICAe6m2bx9rasN++CFr58JbMqmpqdWqVSOic2LxCcoREa88ceJEwQ7z92cibt6cmfnxYzY2VrxvrVa/urE4gIZCoRgyZAi9qlGYUqn09/dfunTp8OHDa9WqlTsspa+v36VLFxcXlx07duTOV717964oD4IytWVIUFCQm5ub9srrPXz4UFRpHzVqlCZZRqlUhoaGenl5ubi4WFlZ5VnCES0KXFxcvL29nz59ysyJiYnis9HW1rbQWYdQGqjV6pcbcEkiPT3d0tJSvNNyP6+5ddQwMDCwsLCws7NzdnZ2d3f39vaWy+W5K0iIxOQff/xRG/MESax89MhKLl/z+HERxxkwYAARbRW7XKUWExOjo6NjbGyclpaWnZ0tAhaIVpR+169fF+WAJk6c+IZyH/fu3du2bdvMmTOtrKz09PRyf8jUqVNnxIgRmsU/sRyIIgygJdHR0aLcds+ePfOsZ6empvr6+rq5udnZ2RkZGRGRre0KEWdv1Yo//ZS3bv2/uIe9PX/wAT94gID7O23Xrl01a9YkImNj48GDB4ui7Y6OjqmpqSU9tdKrXATcU1N56VIWl+mff85EPHJkSc/pLWxsWKFghYIPHULAvVTbt4+dnHjnTt65k7t1K+0Bd35Rfzl3YimUA48fP5bJZKampnnSP9/u+++ZiL/8kpn5zz+ZiD/4QAsThHLodY3CsrOzzczMNHePosq2m5ubr69vng06T58+3bt376xZs5o3b66jozNmzJhi/yOgVLt+/XqVKlWIaPDgwV9//bWNjY2JiUmeAGjXrl1nzJjx999/h4WFvTLA8ejRowYNGoisQwn3z0J5cufOnUqVKhHRqlWrNE+uXbt2/PjxP/zww+bNm8+dO/f4NSFapVJ57969U6dO/fbbb3p6enp6evlpZQ8lZcKtW1Zy+YUib81ZsWIFEY0bN06SWb2sc+fONWvWvHbtGjM7OjoS0Zo1a7R0LpBQYGCg6B0yZ86cPL/y8vIaMWJEnTp1cn+L6enpWVlZzZw5c/v27XnSFzIyMkT4Hh2YQXsePHgg2mna2dnlzkv46aefNO9SXV3djh07Lliwcc+evLGOx4/5n3/40CG2t+fr19nREQH3d93z58+dnZ1lMlnNmjVlMpmrqyu6c72ZjJmprDt7lh4+pG7dqEEDatqUnjyha9eoTZuSntab9OpFfn5ERMeO0eXLNG9eSU8IXmP/fjp4kIYNIyJyd6d9+6hGjRKe0ps9e/asUaNGKSkply5d6tKlS0lPB6Tx559/Ojs7Dxs2bN++fQU7slMnunqVjh2jAQNoxAjau5fWr6dPP9XONKG8SUpK6tu379WrV7t06XLy5ElNH56pU6fq6ur27Nmze/fuoqqpoFKpwsLCgoKCAgIC/P39xX5D8asZM2bMmjVLXPRDKZeSQmZmJJMVx7nOnDkzcODAWrVq3b9/XzxTu3ZtGxsba2trKysrKysrY2Pjtw5y48aNXr16PX/+/LPPPlu3bp2WpwwS++kn6tOHevXS7lkOHDgwfPhwPT2906dPW1tbv/I1WVlZjx8/jvp/t27dSk9PFy/o0aOHtbX10qVLtTtXKKx0tbpfcDARnba0NNbRKcpQd+7cadGihbm5eWxsbJ6tNpKIiYmpUaOGTCYjok2bNn388ccODg4HDx6U/EQgOV9f3/fffz8rK2vJkiXffPON5vlJkyZ5eXkRUcWKFbt27Sq+xXr16iV2MAhJSUmXL1/29/cXl0lVq1atXr361atXi/+vgHdHRERE7969nz59+sEHH+zatUtfX5+I/P39v/322169evXu3dvGxkasSQtPnlBAAJ04Qf7+dOsWMVP//qSjQ8eP0+zZRERVq9J335XUXwOlwpEjRxo1avTkyZP+/fuX9FxKu7IfcP/sM2rYkDp2pA0byMmJ+vWjEydy4qOl2K+/kqsrEdGNG3T3Ljk4lPSE4DX276fISJo1i4hoxAhat660B9yJ6NtvvxXVHkRlQCgHrly58vfff9vY2Ly8Bf5Nnj6lunXJxITi40lXl6pXp6QkunePGjbU2kyhvImNje3Vq9edO3f69u17+PBhse00t+Tk5EuXLvn7+wcFBfn7+ycmJmp+ZWZm1qFDBxE87dmzp+i3A6XfrFm0Zw+NGEEuLsXxaXHnzp3Lly9HRUV17dq1a9euIue9oPz8/AYMGJCZmfnril+//fJbyScJ2rN6Na1bRyYmdPEiaSGw+Z+vv/56xYoV9erVCwoKUigUmpB6ZGSkeBAbG/vKA+vUqWNhYSGqzTg5OWlxilA055OTXcLD25uabmzZsuijNWvWLCIi4vz58z169Cj6aG9w6NChUaNGOTs7L1++XKsnAqn8888/48ePZ+Y///xzypQp4slz585FRUX16NGjefPmshdL1iqV6saNGwEBAYGBgYGBgREREZpBZDKZnZ3d0aNHdYq2OATwVtevX+/bt29CQsJHH320Y8eOPIuIzHzr1q1z585duzbIx6fh48f//apiRbK2pgED6PBhOn6cUlLI0pI++QQBd4D8KuMB96dPaepU+vdfIqLkZBo6lM6cKeEpQfly7Bjdv0/OzkREzs60eDGV/pBRTExM48aNMzMzr1271rZt25KeDpScTZvo44/p/ffJx4dOnaL+/aldO7p2raSnBWVMVFSUjY2NSI3ZvXu3np5eVFSUiLAHBARcvXpVrVZrXpw7Pblbt24ijwbKnOvXac8eGjeOmjUr6ank28GDB2cunqm7Vndu/blTqk4p6elAATBTWBi1aqXds2RnZ/ft2zcgIEBPT0+pVL78AiMjo8aNG1tYWDRp0sQil/xss4DS4PfHjzdHR0+uVevzunWLPtoXX3yxatWq+fPnL1y4sOijvc6VK1f69++fmJj4yy+/fIcgVtmxdu3azz//XFdXd8eOHXmyYVJSUkJCQkQOe0BAwPPnzzW/MjU1tbS0tLKysrGx6du3r+i8BVAMgoOD+/btm5iYOGnSpI0bN6rV6rCwsICAgBMnTpw5cyYuLo6Ievded+7cZxUrUteuZGdH1tbUrRuJC/kNG0gsLZ0+TTIZ9elTkn8LQBlSxgPuQUG0cSOtWZPzY7dudPFiiU4IoFSYMWPGmjVrxo0bt3Xr1pKeC5QcpZICAsjQkLp3p2++oWXLyNWV3N1LelpQ9ly7ds3W1jYxMdHCwuL58+e57x6NjY07d+7cs2fPHj169OjRo0bp3wQE5dcfMX98+vhTPZnefov9QyoNKenpwFtkZtJLe2a06/Hjx7t37549e3aFChUsXtKoUSOkmpZRCuZYheKpQnE1JaVXpUqtTE2LPubRo0cHDRpkZWUll8uLPtorXb9+vV+/fvHx8R9++OHOnTvzNNiEUu7HH39csGCBgYHBwYMHmzZtmp9EhK5duxoYGJTgnOFd5ufnN3DgwPT0dNGcKTk5WfOrunXr2traDhgwuUsXu1atiqmoIMC7oIwH3OPiyMmJjh4lInr2jEaNIl/fkp4TQMl7+PBh06ZNVSrVrVu3mpWhBEWQ1v379NNPlJVF1auTszOdO0fdu1P79iU9LSiTLly44OzsHBsbGxMTU7t2bZGfZW1t3aVLF0NDw5KeHUgjOpqioqh7dyq7Uccfnv7w09OfjHWMTzQ70dO0Z0lPB16Lmdq0oXbtaNo0srUt1tv7jIwMJK2XMzfT05c9eNCtYkUiGlOjRkUpIteZmZlVq1bNyMh49OhRnk6YkggPD7e1tX369OnAgQP379+Pb9KyaObMmb///ruZmVlqaqrmSSMjIysrqx49eohchFq1apXgDAFyO3HixMyZM+Pi4hISEsRSkJ2dnbW1dZvS3f4QoOwq4wF3IvrmG9LToy5d6O+/aeZMQtl+ACIimjJlysWLF//8809tl56E0qtPH9q4kSwsyNeXtm2jzZtLekJQtqnV6sDAwIYNG9arV6+k5wJa4e9P06bRs2f04Yc0ZQpZWpb0hAplxsMZa+LWVNWr6t/cv6WRBKWcodAiIigtjTp0ICL691+ytycRVLx8mYioRQvaupWWLKGGDens2ZKcJ5R1N9PTjz179pXU303vv//+v//+u3HjxsmTJ0s78oMHD3r37n3//n07O7uDBw++3B8FygS1Wv39998nJCQcPHiwc+fOIhfBxsYG/6BQaqlUqvPnzzdp0kQb64gAkEfZD7gT0ZUr9OABde5MCAEAvJCSkmJqaorN0e+umBj69FPavz/nxx49KDCwJOcDAKXb7NlUuzbNmkV+fvT992RqSjt3UsWKlJJCs2eTp2dJzy/fVKwaeXfk3sS99fTrnW9xvr5B/ZKe0btr9256/Ji++IKIaOhQ8vIi0RN3/nzas4cuXKCKFalfP9q8mRo0KNmZQtl2Mz19/t27LUxMqunrfy3d/aCo0+3o6Ojt7S3VmET06NGj3r17371719ra+tixY6ZSFMCBEqRQKFAoBgAAXlYugnGdOtGwYYi2A+RWoUIFRNvfaSoV5e5BXw7WVgFAm+Li6OBBioqihg3JwoL09UmlIiJSqejJk5KeXEHoynS3NNrS07Tno+xHI6JGMOHTryQpFJSWRmlpOW8njYkTaf78nMeItkPR2VSq9EvjxhJG24nIwcGBiI4dO5adnS2eSU9Pt7W1nTdvnq+vb1paWiHGjI2NHTBgwN27d7t3737kyBFE28sBRNsBAOCV0JsFAKA8ql2boqPp2TMyN6eQEMQzAOCtFi6kWbNo5cqcHz08yNiYMjNLdE6FYqJj4tPEZ1DEoIV1FspIdivz1kPFQysTqyzOOp58fFLVSSU9wXfI/v0UGUlEdOPG/z3fpw/9/jtduVIikwLIlwYNGrRu3frmzZvnz5+3tbUlosDAwHPnzp07d+7nn3/W1dW1tLS0tra2sbGxt7evXLnyWweMj4/v16/frVu3OnTocOjQoQoVKmj9bwAAAIASgoA7AEB5JJPRmjXk7EwmJsRMHh4lPSEAKO2aNaO2bWnfvpwfBw7MKSkTFFSi0yqUqnpVL7a8KCPZwqcLHygeWJtZ//P4n1k1Zl1Jv4KAe3EaOfK/kjJ5/PorOTsX/4ygHKqpr29dqZI2Rh40aNDNmzePHDkiAu7dunU7ePDg2bNnz549e+XKlaCgoKCgoFWrVunp6VlZWfXu3dvW1rZXr14VK1Z8eaikpKSBAwfeuHGjXbt2J06cMDc318aEAQAAoJRAwB0AoJyytKTdu0t6EgBQlsydS716Udu2REQtW1KVKpSYSESUmUnx8WWsep+MZOnqdJ8kH3lLORFNrjo5LDOspCf1TgsMpDt3qFGjnB/r1KH+/engwZKcEpQPVfX1q+rra2PkwYMH//bbbxs2bKhXr16fPn3atGnj4OAgSs2kpKT4+fmdO3fu7Nmzcrn84sWLFy9eXLp0qa6ubseOHX/44Yf3339fM05aWpqDg0NQUFCzZs2OHTtWrVo1bcwWAAAASg8E3AEAAADedW3akKEhGRvTzz9TSAg9f04ifqWnR23a0ObNlJhIXbtSv34lPdGCeJL9xMLQoqRn8e6yt6cXta9p5UqqWpUGD6ZZs2jWLBLpyDNn0pAhJThBgLewsbFZvXr1F198MXPmTCKqWLFi165d7ezs7OzsOnbsOHjw4MGDBxNRWlpaYGCgv79/QECAn5+fXC7PPUh6erqDg4O/v3+DBg18fX1r165dMn8MAAAAFCMZo5MeAAAAALyRjw9VqkS2tiU9j4JIUaUMiBgQ2CJQ/BiWGbY2bu2q+qtKdlbvsgMHyNiYBgwo6XkA5FtycvLOnTvPnTt35syZR48eaZ43Nzfv1atXnz59bG1t27dvr/uiU316evr58+e7du0qCssoFIphw4YdOXKkXr16586da9y4ccn8GQAAAFC8EHAHAAAAgDe5cIFCQ+mTT0p6HgU34+GMKrpV7Cva38683cusFwLuJWjtWjp/nv7H3n1HR1V9bRzfk17ovUuRqiIYUekdlKIIRgWNFVERgwoaVDSiCEGKYEfQF1AEgigGEJBOQIpDDxBa6J0kpNeZ/f5xY8wPAVPuZAL5fhbLlUxmzt2RYebOc8/Zp08feeQRZ5cC5MuZM2c2bty4cuXKFStWHD16NPv2EiVK3HfffV26dGnduvU999zj4eFh3J6RkdGvX79FixZVqlRp7dq1jRs3dlLhAACgsBG4AwAA4JoyM+Wtt6RyZenQQe6919nV5N3qhNVRaVG3ed92m9dtB9MO3u1zt7MrAnDDyw7fN2zYsG/fvuzbfX19W7Zs2bp161atWn333XehoaEVKlRYs2bN7cbmGAAAoHggcAcAAAAAID/Onj27YcMGI3zfv39/9udrd3d3X1/f1atXN2/e3LkVAgCAQkbgDgAAAABAQZ0+fXrt2rXr169ft27dO++807Bhw3tvxJVBAACgYAjcAQAAAAAAAAAwgYuzCwAAAAAAAAAA4GZA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAAAGACAncAAAAAAAAAAExA4A4AAAAAAAAAgAkI3AEAAAAAAAAAMAGBOwAAAAAAAAAAJiBwBwAAAAAAAADABATuAAAAAAAAAACYgMAdAAAAAAAAAAATELgDAAAAAAAUU3axJ9gSnF0FANw8CNzzLDlZMjJERFQlKUlSUkQ160dJSU6sCwAAAAAA4L9dyrz0+qnXHz/6+OQLk89knBlycoizKwKAmweBe54NHy7PPSciEhMjzzwjzz4rZ86IiGRkSO/ezi0NAAAAAADgPzxx7Il+ZfrNrTO3iVeTDHuGs8sBgJuKm7MLcKbo6Og9e/Zc9Udubs0yM8v8+3YPDxGR5GRZtUqaNXNgbQAAAAAAAKZLticn25PblGgjIt1KdTuTccbZFQG4wWVkyLffSmSk3H67PP+8uBXrwFmKc+C+fPny5cuXf/rpp1f9aYsWZ//66yq3V6wojzwi774rb7whP/2UdeNrr4m39z+NZQAAAAAAAIqmNE3zsHg4uwoAN5EXX5TOnWX0aPn5ZxkyRL75xtkFOVkxDdzT0tJeeeWVI0eONG7cuFKlSv++wy23ZPr4XOWBZcuKiJQqJS++KJMmZd04ebJUry4ZGdK9u+NKBgAAAAAAKKiyrmXjbfEXMy9WdKvo7FpuTrGxMmeODB4sIvL773LrrXLypHTuLCKyYoU0bSqVKzu3QMBUNptERsr334uIPP+8fPutqIrF4uyynKmYBu6ffvrpkSNHmjRpsmvXLrc8LnMwXjH795cffhBfX4eUBwAAAAAA4CCf1/z8qWNPVXCrYFPb+OrjfVyuNuUQ+RUdLSNHStmy0r+/zJ8vDz8sa9dmBe6LFkmFCgTuuLmkpEjOacteXpKeLp6ezivI+Ypj4H7+/PmxY8eKyKeffprXtF1EunXLmuc+ZYqsXSvR0VKihIiIq6s88ojJpQIAAAAAAJhlafzSCecnfFnzy6W3Ls2+8etaXzuxpJtSv34yfbo88EDWtykpcvFi1hfAzaZECUlOluRk8fGRhASx24t52i7FM3AfMWJEfHx8nz59unXrlpKS4uXlZcnLMoc+fbK+SEmRkSOlXDkZNkxExMUla/I7AAAAAABAUZNiT3nlxCtH04+uTFjZyKuRs8u5mbm7y8iRMnJk1rd//SUhISIi27Y5sSjAYT76SB5+WJo3lx075OOPnV2N87k4u4DCtn379lmzZnl4eHzyySciMmTIkLZt2+7bty8fQzVuLGXLSmSkfPml2VUCAAAAAACYavS50UfTj97lc9fLFV52di03v44dJT5eIiJERNq1k4kTZeJEadPG2WUBplu0SPbulc8+k8BAGT1a0tMlOtrZNTlZ8QrcVXXo0KF2u/2NN96oX7/+jh07ZsyY8ddff+WjsYyIuLvLhAkiIqNGZa0MAgrN7sTEVw4deu/o0feOHk21251dDgDgpnPxorz8sgQEyDPPyNGjzq4GAAAU1MG0gxPPT3QRly9rfulqcXV2OcXC+PFy+PCVN0ZGyqRJMnWqMwoCHGHGDBk6VCIipFo1GTVKunaVzZudXZOTFa+WMj/99NOGDRsqV6789ttvZ4fvr732WoMGDfI3YK9e8sADsnSpvP++fE3HMxSiJLvdr2TJ56pUcXYhAJArqrpp06b58+c/+eSTlSpVqlmzprMrwn955RUZPlzuuUeiouTZZ2XtWmcXBAAACuTlEy+nadpLFV66z/c+Z9dyk7vlFhk6VGbMkBo1ZP9+KVlSWrXK+tF774mnp5QqldWduIhIsNm+On3a+PrJypWrF/sG3MibpCQREV/ff772Ke77MBejwD0lJeWdd94RkbFjx5YqVeqnn34KDw+vVKmScWO+TZokK1fKtGny0kty550m1Yob2e+///7rr796eXl17Nixb9++jjvQ9oQEEans7t6zfHnHHQUACmjv3r3z58//8ccfjxw5IiI//viju7v7kiVLmjdv7uzScF2nTsk994iI1K0rvr4SEyPlyjm7JgC4me3bJ/Xri7u7XL4s6emSnCy1a4uIJCVJcrJUrOjk8nCjmx0ze3XC6vJu5UdXG+3sWm5+7u5y/rw8+6y0bSvr14v8HUWKZP1bXrNGWrZ0Wnn/lmKzxWZmjrzlFhHxcSlezTBgguRkkf8N3LOf8cVVMfpXNHbs2BMnTtx1111PP/10zvC9dOnSBRm2USMZPFhsNnn9dZMKxQ3rwIEDPXr06Nmz5/Tp07/44ot+/fp17tx59+7d5h4l1W6ff/GiitT28mpXunSzEiXMHR9FxIEDB6ZPn/7MM8/s3r378uXLzi4HyLPt27ePGDGibt26t99++6hRo44cOVK7du3AwMC6deuePXu2Xbt2S5cudXaNuC5VZ1cAAMXL44/LxIkiImvWyNy5EhCQdfvmzWwbdk2JiYmffPJJZmamswsp6i7HXf7owEciMrH6xPJuTNgqDHFxIiKlSl3lR0uWyNdfS0JCIVf0HxJstsMpKUdTU10sFmfXUnzF22zjT540/pxJT3d2ObmWc1a7Eb4zw93ZBRSSkydPTpw40WKxTJ482cXFJSQk5Pjx482bN3/mmWcKPnhwsMyeLRER9sWLI3r1alrwAXHDuXz5ckhIyOTJk9PS0sqUKRMUFFSpUqW333579erVzZs3f+KJJyZMmFCpUqWCH2h9XNyEEyfOpKc/UblyOXf3W729Cz4mio6oqKiVK1du2LBh3bp1J06cMG4MCwtr3LjxH3/84VvsLxHjhmDMZ587d+6BAweMW6pXr96vXz9/f//WrVtbLJb09PTnnntu9uzZDz744Jdffjlo0CDnFoxrql5ddu2SO++U06clMdH06e3h4eHZL3R51bt371JX/fyKG1dcnGzaJJ6e0qaNuLs7u5r8iI6W9HSpWlVEZP9+adBAXGmPXARER0cvW7Ysf4+tV6/effcVatuNKlVk61Z2zcibwYMH//DDD4sXL547d261atWcXU7RNfLdkZdCLz3z6TNP3fWUs2spLuLjRa4RuPfsKT17FnI5/y0hM/NgSoq7xXIHHzydJ9lmi8nIeLtWLRHxvYHOJP7dUqbYP4uKS+A+fPjw5OTkAQMGtG3b9uTJkxMmTLBYLFOmTHExY6VM2bIyceLhV1/tFBjo1qXLPi8vr4KPiRuF3W7/8ccf33rrrfPnz7u4uAQEBIwfP75y5coi0rdv35CQkE8//fSHH35YtGjRiBEjXn/9dQ8Pj/wdaH9y8oSTJ3clJopIYx+f2l5eblx2vvFlZmZu27YtPDx8/fr1GzZsiI2Nzf5RlSpV2rZte8cdd0yfPv3PP/988MEHlyxZwssLiqyjR4+GhobOnDlz//79xi3ly5fv0aPHU0891alTp5zvth4eHj/88MOtt946atSoF198MSoqauzYsRZe0Iqgzz+Xt98Wm01sNvn2W3PHHjx4cERERHh4eP4e/swzzzz33HNt27Y1tyo4zalT8tRTMnCgXLokn3wiYWE3Yua+Zo2cPi1Dh4qIBAXJzJlStqyzayr2li1bNm/evBkzZuTv4V27dr3ttts+/fRTU4v6D2PGyLBhWXPbL16Up54SETl37p/uz7jCq6++un79+vDw8GbNms2ePbtr167Orqgo2rZt2zfffGOxWF67/TWLcNJVSK4TuBdNtby8HqV3VRGQZLMdS0tzE2lyA2XWOWe152wvU4wVi8B948aN8+fP9/b2HjNmjPxv+G7WIZ54os7EiWV37949adKkAjaFxw1k3bp1r7322s6dO0Wkffv2kydPbtasWfZPy5QpExIS8txzz73xxhtLliwZMWLE999/P2nSpJ55vJYdl5k57ezZ0IsX7aql3dwGVq36WMWKLPK6cWVmZu7atcuYyR4eHh5nLDUUEZGqVau2adOmdevWbdq0ueuuu4wIcsCAAe3atVu9evVDDz0UFhbmyfY1KEqOHz++cOHC+fPnb9y40bilXLlyPXv29Pf3f+CBB9zc3EQkOTl51apVP/zwQ7169caOHSsiFovlgw8+qFmz5ksvvTRu3Ljz589/++237jdgvnYzW75cpk2T+++XgQNl0SJ591158MGs4KfAFixY8PXXX/v6+j766KPGkyRP9u7dO2PGjN27d//111+mzJyA8335pQQFSffuIiKXL8vixfLww86uCTe89PT011577cCBA3fffXeDBg3y8fDFixevWLGiR48ehZnhNmokjRrJkiXStKlUrCizZomIrFol+b1AefNr0aKF1Wp98sknly9f/sADD4wcOfL999/n3SEnu90+ZMgQm8325ptv3sm+c4XICNwL1sMYxdFlm21fUpKHxXIjBe5smvpverOz2Wx33323iIwaNUpVN27caLFYvL29jx07Zu6BVq9eLSIlSpQ4ffq0uSOjCDp58mRAQICRh9aoUWPmzJl2uz3nHfbt29e9e/fdu3cb365YsaJJkybGP7ouXbpERETk5ihpaWmzjx5tt2OHn9V637ZtU06eTMzMNP+XgeMlJSUtXbr0nXfeadOmzRWJeaNGjQYNGvTDDz8cP378Wg+PjIzMXjaRkZFRmJUD1zJ16tS77ror+5lcrly5gQMH/vHHH5l/v0wlJibOnTv34Ycfzl6ZUbt27SsGWb58ecmSJY0Xxri4uEL/JXBtX3yhIjp4sKrqhAkqom+8YcrAKSkpderUEZGvv/46fyMkJyffcsstIjJt2jRTSoLz9e+vhw9nfT1njn76qTOLya/587VFCw0I0IAArVFDY2KcXVCxN2HCBONEKz09PX8jhISEiEjjxo3zPUJede2qqpqUpHXr6pQp2qZN1u0rV2pwsC5YoHPmFE4hNx673R4SEmLk7D169IiOjjZx8A0b9MwZVdXLl3XHDhMHLiRffvmliNSsWTMhIcHZtRQv776rIvrRR86uI9cy7HZVPZOWNvrYsVW8jTnJ2bS096KinF1Fnl28997EJk3sycmqaqtUyV6qlBb78Ormn+H+3XffWa3WmjVrDh8+3G63Dx06VFWDgoKMj2om6tixY9++fX/55Ze3337722+/Tb/a5gauFovPtbYg8/UVrsPfCJKTkz/55JNPPvkkJSXFx8fnzTffDAoK8v5XL/UPPvhg+fLlq1atGjRo0IcfftilS5edO3d+9dVXwcHBK1eubN68+csvv/zhhx9eZ8/elStXDh06tFafPkl9+95TqtTwmjXr0k7kxpSYmPjzzz8/++yzxrcuLi5NmjQxZrJ37NixZs2a13nssWPHYmJi7rrrruXLl3fs2PGXX355/vnn/+///o9pO3CuX3/9dd68edu3by9Tpkzv3r39/f27d+9utMxKTU39/fff58+f/+uvvyYmJoqIi4tL69at/f39H3vssSvG6dat26pVq3r37r1y5co2bdosWbLk+v8icBOYMGHC0aNHb7vttoEDB+ZvBG9v75CQkP79+7/77rv+/v7XeSeFQ1mtVj8/vwL1g8rIyGodU6uWREVJvXoiIkeOSOPG5pRY6J54IqulzIMPOruUYu/ChQujR48WkUmTJhkrqM6dO7d48eLcPPbWW2/t0KGDiLz++uvff//9/v37v/nmm1dffdWR9YqILF0qjz8uIuLjI7Nni7u7ZO8AVb++iEj16vLHH3LoUNa3yMlisQQFBbVo0WLAgAG///57s2bNQkNDzWrBP368uLrKggVy4oT83//JlCmmjFpILly4MHLkSBGZPHlyiRIlnF1O8XKdTVOLJqNp7eb4+F8vXdqVmNihbFk+cyI3bDZbxS1bXFxcMr28kpOTfS9c8Pb2Tr6BGtA7iLMT/6v49dOhv01546dRT0VuXlbAoeLj46tUqSIi8+bNU9Vvv/1WRGrUqJGYmGhGpVeKiory8vKyWCz9+/e/6v/tB+rUUZGr/9m4UcPD9ZFHNCBAX3pJmehX9Njt9tDQUONSjcVi8ff3v846iZiYmKCgICN+Klu2bEhISFpamqpeunQpMDDQ1dVVRMqXLz958uTMf13327t3b7du3YznTJMmTTadP+/YXwwO9vPPPxt/3W+99dbixYsvX76cyweeOHGiZs2a5cuXN5ZKbNq0yThLfuWVVxxZL/DfOnXqJCLvvfdeamqqcUtqampYWFhAQEDOrSz9/PwmT578nwu/oqKiGjVqJCLVqlXbuXOn48tHLjhmhvupU6eM17E//vijgEO1a9dORIYPH17wqpAPS5YscXNze/rpp/M/8zcpSe+7T4ODVVWPHtUOHTQsTGfM0C5dtLBmE5tr/nydPDnr6969meHuZC+88IKI9OzZM/uWdevW5fID8oABA7IftXDhQuNk/uLFiw4t+Phx9fbWChX00qVr3sdu1+HDNSXFoYXc8E6ePNmqVSsRcXNzCwkJMWXMhx7St9/W0FDdvVsDA00ZMg/sdvv58+cHDRo0aNCg1157LSgoKCgoaMyYMSEhIePHj586derUqVNnzpwZGhoaGhq6dOnSFStWrFy50mq1Wq3W3bt3+/v7i0j37t0Lu26ovvJKUuXKtpkzb7AFyhl2+4N79vhZrctMXSmCXLKrptntqhqdnj7+xIlF13lXKDLi4+NFpESJEqp68eJFI/0o+LCpqanTp0//d2J2oyiKgfsP7/fPSEvNzEifPqxXUlz0+aP7dq/9JS05MSXh8lX/JMVfjrkGYyZCq1at7HZ7SkqKEb7PceRKPKOBe9WqVUtcTZ/bbtMSJa7+Z80abd1ajUVeCxfqa685rkjkg9Vqbd26dXaEFB4enptHRUZG9ujRw3hUgwYNFi9ebNy+fft2IykQkebNm69bt864/VoxPW5oxtz2fJzxZ2ZmGqfIlSpV2r9/v6quWrXK6M7xGi8RcB673V6uXDkROWOsr1YdN25c9ixji8Vy7733Tpo06eTJk7kfMyYmxnhVLFOmzJo1axxSN/LEMYF7QECAiPTr16/gQ23fvt3V1dXDwyMyMrLgoyGvFi9e7OvrKyLdunWLj4/P8+MzMrRnTxXRW29V4+EXLujcufrbb6aniZmZmVu2bCmEi3mHDulff2V9/dtvyhmcE+3YscPV1dXd3T3n68PBgwefz50r2lV17969EKY7PPqoimiOqP9KiYk6dKiuX6/JyQ4t5GaQkZERFBRkrL95+OGHcz/Z5Qpnzui0aTp1qj70kEZHa7t2unGjEwL3GTNm1C/AooZy5cp5eHgczm7bhULUp08fEVmwYIGzC8mz3y5e9LNaH96zJ/N/G+fmSdilS68dOjQyKuqTEydMrK34WBYd7We1PrBrV6rN5uxa/sPZs2dFpHLlyqp67NgxEalVq1bBh33//fdFJCAgoOBDOUURDdzXz5v88ycvbV3yfyf2bf0+qE/k5uXWZT980KvqVf98+kr3a727lCpVymKxbNu2zRh548aNgwcPthfgJeM/JSQklC9fvkaNGnnuEb9pkw4dmvW13a733Wd2acinM2fODBo0yOjgUbVq1alTp9ry+Hp3RQP3vXv3GreHhYUZfWxFpGfPnhMmTKhUqZKIuLi4BAQEnGdi+03BZrMZl/r27NmTj4enpaU98MADIlKjRo2oqChVXb58udEF/qMbqB1g8ZGaqtn/ci9cyIqNzpzRyEi9iZrvHz58WESqVKmSfctXX30lIk2aNAkODj548GD+hk1NTX388cdFxMPD48cffzSpWOSXAwL3TZs2WSwWT0/PQ4cOmVChqtGUplevXqaMhrzatWtX9erVReT2228/kdfP0q+8oiJavrweOKCqun69Omb5aVpaWsOGDY034i5dumzdutURRzGsXKlVqmhsrKpqx46OOw7+W/v27UVk2LBhpoy2b98+d3d3V1fX7M2ZTLdhg1os6u2t1/kEGRurK1boihXKlNNc+vXXX8uUKSMiDRs2zNPfXUSEhoRo69ZqsaiI1qypDz2kSUm6dKn27FnYgXtMTIzxCfH555+fOnXqpEmTQkJCQkJC3n777aCgoOHDhxsz35966il/f39/f//777+/S5cunTt39vPz8/Pzu/322729vS0Wy1/Z1wNRiIwloStWrHDcIbp1y/pi3jydPt20YW12+8MREX5W65ICvOL8cO7cOuNNEfliV+2/b5+f1Tq7yEdDR44cEZE6deqo6t69e0WkcePGBRwzMjLS09PTxcUll7Ndi6AiGrhfPHHw+N4tM97ud2zPn6t/GKeqO1eFhjzW8Kp/Pn+9T5lrMJYtr1y5stCKv3DhQsmSJUuUKLFt27YL/xJz8aJeuHD1P5s26ZAhWaPYbNqyZaHVjOvIzMycNGmSiHh6eo4YMSI/c7hUVTU9PX3y5MnGDFB3d/fAwEBjqkVycvIHH3zg4+MjIsbM5U6dOjnubB6Fb+vWrdkXeGNjY8PDw/O6JCopKcn43FivXj2jNceCBQvc3NxE5JNPPil4hQ69BlnsbN+ur76a9fXrr+vWrfrqq/rSSzp6tHburKdOObU408ybN++KlDM2NtaUCNVutwcHBxvT5IONRhNwEvu0b7RcWfubr6uq/YvJWq6sfeSIAg1o1969o+69t88777xjUo16/vx544116dKlZo2JPDl69Gjjxo1FpFq1ajtyv5Pgxx+riHp768aNqqobN6q3t95zjyMy92+++UZEypcvb5xrWSyWXr16OSJ237lTw8L0oYfUmAZN4O5ExptUpUqVYs0LeoYMGWKcpZs1YE42m959t4roqFGOGL5YO3DgQNOmTUXE29v7u+++u849ExMTf//98gsvaLVq//R89fXVhx7SadP0wQc1KUlVtW/fwg7cX3zxRRFp165dvs/Yg4KCRKR9+/am1oVcufvuu0Vky5YtjjtE9tbKP/6o+d2N/uoWXbrkZ7X2KcAk9x/OnXs3KurbM2fW53eVCdZdvuxntXbeuTOpaLdV2b17tzEDQ1X/+usvEfHz8yvIgDabrU2bNiLy8ssvm1SjExTRwD0jLdWWkf7ta/cf3bXRCNzzZ+zYscacu4zCmlpotAusW7fuVWfcX6+H++rV2qpV1oyFH3/Ud98tnIJxfZGRkSJStmxZU1bhXauB+4kTJypXriwi48bl/9mOoslIDwcPHqyqs2bNEpG+ffvmdZC4uLgWLVoYM3TOnTunqjNnznRxcbFYLN98800+qsrMzLRarZMnT/b3969YsWK+V9riSlcE7rNm6XPPZX27atVN0yvsrbfeEhHHBeJTpkwxFhU999xzhfb2jStcuPCF1SrHjw9W1XPnJlitcvJkgWa4z5qlIlqtmiYkmLkqdvz48cYkmvx3EkfBxMTEGFeFS5YsmZsrH5dP/2SvW0tdXfXXX1VVDx/WSpVURAcNMr229PR0YylhaGjohQsXgoODszeZ6NKly6ZNm0w8Vr9+Ony4jh2rzzyjW7YQuDtNcnJy7dq1ReTbb781cdiYmJgKFSqIyK/G89ZU336rIlqjRlakC3OlpKRk79EdEBCQ/L8deY4dOzZ16lR/f/8SJUq0b7/Q+Fx+yy06aJCGhmZ1e1XVnTvVCLsuXtQ5c3TgQC2c+Sp//fWXi4uLh4fHvn378j1IbGxs+fLlReT33383sTbkRoMGDUTEaA3qIDVq6NChOnSo3n+/yYG7zW7vGxHhZ7WG5b2H+Ja4uHEnTvxw7lzohQtRKSmXOEkrgGcjI/2s1ul/d/LMn3PnziUlJTnug9WmTZtE5N5771XVtWvXGpcJCzKgsX66atWqJl47L3xFMXBfOePjsM+H/zJxSOTmZReOR+5YOTffQ6WlpRn9zr744gsTK7yW7HaBr776aoWr8W/eXCtUuPqfrVt1+3YdMEADAvTNN2nOV0QYgXuDBg1MHHP79u1t27a9IiAw4lSHXv2GU/j5+YnIkiVLVPXRRx8Vkc8//zwf48TGxjZv3lxE7rzzzpiYGFX98ssvjQZEuWy+kZycvHbt2lGjRnXp0sVovJvNoesci5ft27VRIw0I0IAAbdxYP/xQP/ss60exsXqzbFfVuXNnEQkLC3PcIRYsWODt7S1sV+A85gbuCQlZcwZnzTKvRFVVTUtLMz7NTs7erRKFLiUlxXiDmz27c3T09d6S4uNXbdvmsXd1xczZ36qqXryo9euriPbs6Yi+W9OmTTNOt7KbAV68eDE4ODh7z4nWrVuvWrUq3+OvWqXZHcLnzdMWLXTsWD13Trt2VeaSOsuoUaNEpFmzZqbvsfb5558b06pSTN1mID5eq1RREZ2b/4+8+G8zZ840lrk0b9784MGDf/7559tvv21Mfje4uLj07h348ce6a9c/j8rIuHJTiZQUrVpVRf45v3Mcm812zz33iMi7776rqvv27ctHg0rjH8LEiRNF5I477rhx9x68QRkNzYw1yg5y330aHa3R0Tp1qsmBu6r+Hh3dbfv257/+OvfTGv6Kjx8YGelntfpZraOPHaOlTMFtT0jws1rb79gRl68zpUuXLgUFBXl7e/fs2bNp06YOSpxWrVolIh07dlTV33//XUTuv//+fI925swZoyHYjbj/QU5FMXA31y+//GLMUL7k+L19jQk+b5ixqxiKiJyBe3p6+rFjx84U7NKiwW63z5kzJ+fGgATuN6WzZ89aLBZvb2/jerLxtpHv1RLnz59v1KiRiNx3330JCQmq+umnn4qIq6traGjoVR+SmJi4YsWK4ODgLl26GD2LstWtWzcgIGDq1KlGa3iY44oZ7p9//s9ypf379Ybd7yWn7B1THfrhQVU3b95csmTJxx57LCF7ghkKkbmB+9tvq4j6+akj9nwKCwszzvQuXrxo/ujIHZvNtnDhx1arxWq1nD075qr3SUnZu2NHWatVTp4crqqalKgtWqiI3nOPI2b2pqenG0tO58yZc8WPLl26FBwcbLwpG7F7/vpPBgf/s7VBUpKWKKEjR6qqfvGFenrqiRP6ww8F+hWQV6dOnTKmFKxdu9b0wTMzM++44w4RCQkJMXHYMWNWVK5sa9OmkGZMF2fbt2+vV6+eiGT/2xeRUqVK+fv7z5gx48KFC9n3jI7W0FANCNAyZXTq1CvH+e03FVEvL42IcGzBn332mYjUqlUrMTHRbre3atXK3d0999MdEhMThw0b1qxZs4yMjLS0NON3/7//+z9HlowrGZd5Eh2zSYnBcS1lVNVmtze7+24RmZ6L9vA7ExJePnDAiNo77dw59fTp3y5e3MFpvBkGHzzoZ7V+nsf2pJcvX37//fdLliwpIhaLpWzZskZ08Prrr5v+nFy2bFnJkiUbNmw4bdq0Hj16iEi/fv3yPVrfvn1FpGfPniZW6BQ3f+Cuqt26dRORV7NDEMcw2gVWrFjxhl7ygCvkDNx37twpIk2bNnXEgQjcb0rTp0+Xv1tdr1mzRkSaNGlSkAFPnjxprI7v1KmTMcFq5MiRIuLh4WFMolfVuLi4FStWBAUFtW7d2sPDI+fMnSZNmgwaNGjmzJnX2t0umbU1BXRF4L5xo7ZrpytX6oED2qePhofryZM3+mZnxpY4xh70DnXu3DkRKV26NNsMOIWJgXtUlHp5qcWimzebWmIO999/v9zgTR5vDhcvTtu2zc1qlWPHnrPb/2c2XHr66d27a1mtcuSIv6rNbs88crBv8nPttE4dPXfOEcV8//33IlK/fv1rzeiMi4sLCQkxPn8asXtukqwlS5Zkv+Hu3681avxzGemdd9TIsjIz9bXX9PbbVUSDgwlSC8+AAQNE5NFHH3XQ+MYMvpIlS5oy/0ZVDxw44OHhUapU9R07YkwZENcXGxt72223lS5dumLFioMGDQoLC0tLS8v+aURExFdf7W/TRl1d/2n7auzKcIVnn1URvesudVyfjHPnzhkXBozXJWO9TpUqVXLfBzI9Pd1Y62/0n/zxxx9FpHr16km0LiosGRkZRr7p0FPZ997L+iI8XP/4w/zxf/rpJxG55ZZbcv5jucKuxMTXDh0yovaOO3dOPX06gbUUptqbmNhlx47Hv/wyl+8+qampU6dONfZbFpEuXbps27YtOTk5ODjYyAeqV6/+yy+/mFVeamrqlClTjCbJxj6aFSpUyF/nW1VdvHixcTX05MmTZlXoLMUicN+7d6+bm5tDd5bPbhc49d8XwXEjI3BHQTz88MMi8vXXX6vq8OHDReTNN98s4JiHDx+uVq2aiHTr1i01NVVVX3vtNRHx9vZ++OGHb7vtNovFkh2yu7u7t2rVKigoaPHixf95gp6enn7nnXcWwmKgm9n585o9TXLVKj17VmNjdfJk/fBD3bZN4+K0aVO99VY9eNCpVRZIaGio42YcrFq1asiQIcZUU+NkqyONkJ3ExMC9b18V0aeeMrW+/7Vv3z53d3dXV9edO3c68DDIhdjYhdu3+1itcvBgt8zMrK3m7fb0vXvvtFolMrKtzZaiqsePv2y1ys6dFTLOOeT1MDMz0+g19J9d1+Lj40NCQoyFO7mJ3efPn989R3+wL764suNEtu+/V3f3rCc/3WsLwZ9//mksKzx69KjjjvLQQw+JyLPPPmvKaD179hSRF154wZTRkBvPP/98zum6GRkZ4eHhQUFBDRs2FJFmzV4TUTc3bd1aQ0L+6Rl1hYQErVdPRfSDDxxVZ//+/UWkT58+qhodHV2xYkURmTdvXp4GmT9/vohUqlQpPj7ebrcbjS7NXaKB64iOjhYRHx+fnOsnTNe5sxod/n/+2SGBu81mMxb3XHVjjE2bNj3Yr1+n7dv9rNYOO3ZMO3MmkajdMR574gkReeWq1wBzSE9Pnzp1qhEXiEirVq1ytlVQ1V27dhm9qox5gafyOGv+CjabLTQ0NHsPy3vvvXfWrFldunQxvu3Ro8exY8fyNGBcXFyNGjWksLqCO1qxCNxVdfDgwSLSuXNnB43vuHaBcC4Cd+RbWlqasYDLeJtp3LixWWucIyIijJ27vvrqK1W12+39+/fPXh7r4+PTunXroKCgsLCwvO6GGh8fX/DycE1nzuidd6qIVqmif/3l7GryKSgoSETef/99RwxubMf6wQcf6N9vrMOHD3fEgfCfzArcV69WES1RQh3cgkiHDh3KFZoiIjFxy86dlaxW2bu3aXp61ge5S5dm7t3bNCMjWlXPnh1rtcr27V4JCRscVMPMmTNF5NZbb83l/mAJCQmTJ082JmeJSMuWLXPG7suWLRszJqtPTlJS0sKFC3NZxh9/aKlSKqKdOyvbkztUdrdrB709ZTty5Iinp6eLi0vBT9pXrFhhzJc/e/asKbUhN5588kkRmTVrlqpGRUUZkzENlStXfuGFlxcssOemB0Z4uLq6qpubOuLT29q1ay0Wi4+Pj9H40bhI0LVr13wM1apVKxEZNWqU/r3ctkyZMkyvKRw2m83oC1S2bFnHzcu86y7t1Uvtdv36a0dtBWH0cqhVq5Yx2cuwdetWo3OIiDw5bdrU06fjicIcKSIiwtgw8siRI1e9g5F933rrrcZfyh133HGtrrOZmZmTJk0yOrC1bt3ru+/ysxTPbreHhYVl74TRpEmT0NBQYzGH3W6fOXOmkVf4+PiEhITkPiZ95ZVXjOD+5khWi0vgHh0dbezN/dtvv5k+uEPbBcK5CNyRb3/88Uf2EyYqKkpESpcunfsNZ65v27Ztw4YNy94Fbvz48SLi5+e3cePG6yz3g/MlJGiPHiqivr7qyE1HHceYs+CIN1P9ezvWRYsWqeqDDz4oV2u+jMKRmLjp1KkRsbG/qWpCQvipUyMuX16Sj3HOnNGnn9YxV+/pbaaYmBjjzP5G317p5pCaenDPnlutVtmzp35mZmxMTGhs7G8ZGRdVNSZmrtXqYrW6xMT87KCjZ2ZmGpNVZ86cmacHxsfHjxkzxngi5XwunT179mB+Vybt2qXVq6uI3n67XqOdG0xgdBCqXr26Q3slG4wLzy1btixIm4iMjIzbb79dRMaPH29ibfhPxg7PxlRxu91eo0aNJk2aBAUFhYeH2/K4zcgbb6iINmqk5nZkTEtLM6bpGFPRt2zZ4uLi4unpGXmt+fbXtX79ehEpUaKEcV2ne/fuwp5zDpaz6cfRo0e7du2aPdvXES0yunbVTz7RGTMcGLjb7fY777xT/l63vXv3bn9/f2NRdYkSJYKCgqJv8IaZN4qAgAAReeaZZ/79oxUrVhh/RyLSuHHj7Oz7Oo4ePdq790P16u0V0Q4d9MCBPFSyZIl27Jjm61vJmNwwe/bsf79+njt3zijYmJr8Vy5mm23evNnV1dXNze2mWbFaXAJ3VZ0yZYqI1KtXL+d1OVM4ul0gnIjAHflmTLd855139O9djx577DEHHatjx44iMte8k6ydO3cOGDDAtIaDJ07owYNqXKY+e/afpfXFM3vIyNAXX1QRdXXVL780ceAIR+/epWq3242r1wVcfnitwY2uDsYHlerVq4tIvkMumOLkyTcOH34oKqp/ZmbeZud266bjxqmqbtmiQUEOqe3fvvrqKxGpU6dOyrV6fKAQZWRcioxsc+HCl0eOPHLhwjcxMXNTUiLt9tQ9e+parXL+/GTHHdpoVVyvXr1cTm+/QkJCgrE01qy2IVFR2qiRimjNmrp3L1v7XsV7UVHDDx9+Nyrqx3w19I+Pj69ataqIzJ492/TaHHQ4Y997R3wyxfX16dNHRH799Vfj24JszJ6aqnfcoSI6dKgppWUZPXq08fEzNTU1MzOzWbNmIhIcHJzvAY0ZDEYnil27drm4uHh4eBw+fNi0ipFDQkLCnXfeecX8p9DQUOP8uXTp0lOnTjXrE9bWrXrkiHbtqunp2r69hoTo3LkO2Z1eVX/++WcRqVSpUt++fY2o3dfXNzAw8JxjdmHBVR09etTDw8PV1XWf0UVIVVVXrFhhREnGKoSpU6fmaW54WFjWtAAvLw0O1v98R1q3Tlu3ztri4qGH1k6dOvX6EwqXLFlyyy23iIibm1tgYOB1XnIzMjKMawYjjQ3obwrFKHDPyMgwmk+NMz4CmsRoF+jl5eXQdoFwFgJ35JuxT9HGjRv17+kkxvJV08XFxRlvvWZNLrDZbHfffff8+fNNGMtu12ee0aFDNThYu3bV6GgNCNCoqKyftmljwiFuRHa7BgerxaIiacHBppx2r1692sPDIzAwMK/zs/LEWKvhoB1TDx8+LCJVqlTRv3dMLVWqlEN/neIjISFh9zWcPr03OXn3Vf+kp586cCCrQ4vNlnzV+xw9Gr97t17x58gR7dZN+/bVY8cKNXDPzMw0Vra+9tpr1/p9ry/nBxgUnN2eoaqRka2Sk/+ZqZSWduLcuYmOO6jNZjMmDn///ff5HsR41zbxI19MjLZvr23bRpYsWXLp0qVmDXvTeCcq6vzfn9hPpKYeSk6+6p89ERFX/Zf7wgsvFHzKeZ4YE+qrVq26ZcuWfLzUhIeHGxeYjRVdKEwPPPCAiGRvfVxA27erh4daLGrWP+vjx48bS+dXrVqlqpMmTTIuzBTkQnJkZKSbm5ubm5vxHvfUU0+JyBNPPGFOxVDdsmXLxYv/XEy96gvR2bNn+/bta6Si7dq1K+CEkt271d9fLRYdMECNVkNr1mjVqjptmjZsqI7oXrNr164yZcq4u7sbUfubb77p0Mb0uJaXX35ZRPz9/VV106ZNnTp1Mp5UFStWDAkJyd8V3NhYDQxUF5es1Xh//nn1uxnPOiNqL19eQ0Jyu7gnKSkpKCjI1dXVmBazbNmyq97to48+EpH69evfTPNmilHgrqorV64UU3eWz24X+F725tC4uRC4I3+MZ065cuUyMzMTExO9vLxcXFzOnz/viGMZm1i2b9/exDFN60vzxx+a3YN7/nwdNYrA/R8zZmipUi/dcccjjzySjxOL3bt3f/fdd9nfhoaGenp6ikjfvn2TzV3bnIOx+1aPHj0cMbjRILJXr16qumTJEhHp0KGDIw5UDC1fvlyuYdiw9larXPVPXNwfhw71PHr0mcTELUlJf131PkOHLjHOvHP+ue8+7dZN9+7Vvn0LNXA3flMXFxdvb+9r/b7XV65cucKrtdhITt595Ij/wYPd09LytnFW/syZM0dEbrnllny/kVmtVovFUqJEiZwBSsGlpOjjjz8pIh4eHv+5lWtx805U1JtHjrwXFbU1Pr7/3r1+VutV/3j4+Fz1X26pUqVcXFw2b96cPaAjLtbmHNNms9WrVy97r918KFWq1J133ml6kfhPRvO6ldlb3BfYRx+piNaqpXFxJozWu3dvEQkICFDVs2fPli5dWkQWL15cwGGNi1KPPPKIqp46dcrb29tisVitVhMqhuqQIUPeeuut3NwzNDTU2P82r42ts+3cqX36GJN2tEQJfffdfzalf+klfeaZrDOx3r3VrMWoe/fuffTRR11cXETExcWlRIkSJ4rnGuWi4cyZMz4+PhaLpU2bNsa7Sfny5ceNG5eUlFTAkdes0QYNVERdXDQwUN99N2tP+KVLdfXqrAs8xrMuKCg/29Ls2LHj7rvvNmr29/e/4oLNwYMHvby8LBaLiS/ORYFbvs8SbkSdO3fu3bv3okWL3nvvvenTpxd8wJkzZ27durV69epGLz8AMBhxYY8ePVxdXVeuXJmamtqyZctKlSo57lg9e/Y0cUwPD4/sryMjIyMjI40VuLkVHy8bN8q+feLhIc2aZd14112yYIG4u8uwYZJji6ri6+mnd9WsObtPn4Q9e6Kjo3/55ZfsnW+v6tKlS3/88YfRxExESpUqld1oWET8/f1r1Kjx4IMP/vLLLx07dgwLC3PE823btm0i4ufnZ/rIVwzu0AMVQyVLljTm/P5blSpVvb2v/iNX15K33ro4JWX3iRNDKlcedtW7lS1b6t8D16snFy9K48bSoIEsXlyw0vNo165ddrvdy8urXr16+Xj49f8NIveSk3ecPftR7dozXF1LeXvfUbduaFzcoosXvylfPsDLq5GIi4OOq6pjxowRkZEjR+Z8I8sTY9fNV199NedrbMF5eclPP81q2LDeqFGjAgICDh069MEHH5g4/o3ujRo1Krq7u1gsNb28bNe4j71x44y0tH/ffurUKbvdvnPnznvvvddut3/zzTefffbZpk2bypYta2KFr776amxs7Pjx46tXrx4bGxsdHR0XF3frrbd6eXnldajLly+fOnXq8OHDhw4dMhZEotCkp6fL/57oFtCIEbJqldx/v/j6FnSohQsXLlq0qFSpUuPGjRORwMDAuLi4Rx55pOAn+aNGjfrpp59+/vnnP//8s1WrVkOGDBk/fvzw4cONbVSRV/v27TPabxrfvv3227NmzcrNA/39/bt06TJixIhvv/12xIgRYWFh06dPN1r25+KgEhIis2eL3S4+PjJwoLz9tlSp8s8dvv5aRKRHD3n5ZVm0SNavl1Gj5NVXxSW/b7lRUVHjxo377rvvbDabh4fHM888s3Xr1p07d/7yyy9G61QUvrS0tPr16+/bt2/Dhg2+vr5DhgwZMWKEKaevHTrIrl0SEiIhIeLrK999J66uMmqUrF8vMTEyf754esrTT8uHH8rfG8znTbNmzTZt2vTll1+OHDly/vz5K1euDAkJeeGFFywWi6q+/PLLqampzz//vHFN9Obh5MC/0B0+fNjYWX7r1q3ZNy5fvrx+7nz88cfZj8ru38cslZsYM9yRP8byLmO/R2NSyejRox1xIJvNVrlyZRHZu3evI8bfsWNH1apVf/jhh/++a1ycrlihQUHaurW6u6uIWiw6bZpO/Lt1wMaNOnQoM9yvsGfPnpo1a4pIkyZNjh37n+mfaWlpOTsPxMbGlilT5vrNRg8dOmTsTV+3bt38ba51fca+TwsXLjR9ZP170llYWJiqPvTQQyLy008/OeJAyCW7PSMjI1pVT54cltcdU7t1U7tdExO1UaPCm+F+7tw5YzLgtRaronCkpR3btaua1SqnT7+nqmfOfBgTExoV9eTZsyE7dpQ5fLiPzVbQeVjXYiz5qlWrVr6nt2/bts1isfj6+jpusfy3337r5uYmIs8995xZW6nf6HK2lMkHY/VVuXLlLl26pH+/VQ01ta92RESE0ZRjz549+vei/s6dO+dvtKSkJONyjp+fH3vdFzJjeXrO9RAFZ7frlCnapo0arUQ6dszPIElJSbVr1xaRr776SlX/+OMPEfHx8bni5DDfRo4cKSJt27ZV1djYWKOlOG+X+XP48OEKFSrExMTke4QlS5bUqFFDRLy8vIKDg6//XrB3797AwFlGxw9vb339db1+4/SzZ7Vfv6yp7m3b5m0zTENUVNSgQYOMtyoPD49BgwYZuzeFhYWJSJUqVQo+nxp5deLEieeff974SzHa6P/222+OOFBEhEZHa58++sgjGhmpb7+tq1fr8OF6+rQ540dFRRmN+0Skffv2kZGRxmToChUqmLuysCgodoG7qr755pvyv23+jC0gciPnqZspO9SjiCNwRz5kN1U3PvjVqlVLRLZv3+6IY23evNkIFxwxuKp27dp1wYIF1/rpqVOnZs+ePfPtt7VJk6xlZsYfDw9t1UpHjNAjR7R1aw0P1/37tXt33bWLwP3fTp8+beyIVbVq1Xnz5mW/p6Snp1eoUCHnB62vv/76PxsTnT171livV65cufDwcHNLNQKCkydPmjus5tgx9fTp06pqfAg5kI+PCDBPRsalY8cGRUU9cfr0SNW89WeYPDkrd1i5UmfNUpM6+f2HZ599VkQeeuihwjgYriEzM27v3qZWqxw40MFuT1XVxMSNsbELk5N3JiSE79hR1mqVyMhWGRnmf6ay2+1GE/9vvvkm34MY/Rxy2Rwg3xYuXOjj4yMi3bp1i4+Pd+ixbgjzL1yIy3trhZyMkP21117Tf4XjpsgZ4u/du7fg47///vvGp8sRI0aYVSRywzjj2rFjh7nDTpmiPXqo0eqvY0c9f17PndOYGI2Jye0mlka24Ofnl5mZmZqa2rBhQxGZMGGCWRUmJCQYc3SMkG78+PHGB1s2y8mN1NTUvn375kyZn3322YLsZKuqly9fHjRokJGc3nnnnVft8GME30bz62bN4gcNykPoOXeuVqqkIurrq9Omrc/lX/TRo0ezo3Z3d/eAgIAjR47kvMO9994rIhMnOnAvFlzh4sWLQUFBxmoqNze3gIAAY4VB69atHXTExETt00ePHNFevXTECN20yfxDzJo1y/hc6eXlZWxcYUxVvMkUx8A9e2Z69tS5hISEA7mTPdvlyJEjxkx5EtKbG4E78sGYadWuXTvj20uXLs2dO9dBV+bee+89ERkyZIgjBtd/dUGNioqKjIwMDQ0dNGhQkyZNjM+KlXx91d1dfXy0dWsNCtKwsP9pY3n+vE6cqKNHa0SEqurixf90fWN50N8uX75srIpwcXH57LPPsm8fOHBgPs5oExMTe/XqZZzBzJs3z6wijx49KiIVK1bMvmXfvn2zZ882ZfAjR47I39uxXrhwQdgx1dkuXw47eLDr+fOfq2pMzM8HD3a9eDE/m3CtXq0VK+rDD5td379s377dxcXFw8OD6zROZLenHTjQ2WqVvXtvy8yMVdUzZz7Yvr1EXFzWYp3U1EN79txqtcqePXVTUkz+m1qwYIGI1KxZM3+bhqnqjh07LBaLj4+Pg/ZcyWnTpk0VKlQoV64cz1hTZIfsERERqvrSSy+JSJcuXUwZ3HhqZc+g79atm4gEBgYWZMzz588bu024uLjcZC1rizjj9NX0haFTpujChdqpk168qB076qOPXrm7iaurli2rNWvaqlatWrdu3bp16zZr1szPz69FixZdunRp06aNq6urq6vrX3/9papHjhy5/fbb77jjjoyMDBOL/Oyzz0SkYcOGGRkZaWlpdevWFZGZM2eaeIib2COPPJLznPz06dPHjx8v+LDr1q0z+kq5ubkFBQVlv38dPHgwICDAiNo9PT1feeWVU6fyPHkhJkYHDdIWLS4Y80SvvzP88ePHr4jaDx8+/O+7/f7778Zk5OsvuoUpYmNjR44cWaJECePNon///sZ2uwkJCUbv0N9//90RxzUCd1UdNUrvuMMhgbuqxsTEDBo0SERKlixZsmRJcxceFRHFMXBXVWPNQo0aNRITE/M3gtHO+JlnnjG3MBQ1BO7Ih8mTJ3t6ej777LOFcKy77rpLRHI2HnGcH3/80Tjty1a6dOmePXuGhIQkb96srIsvmLS0tCeffNJiseScn7t58+b8Xe3PzMw0Fry7urrmTPDzJz09fcmSJV26dLFYLLfddptxY3x8fO3atS0WS85ma/lmNILo2bOn/n0qb+4+wMirCxe+sFrl+PHBqnru3ASrVU6efCMf45w7p6VKqYguX252iTnY7fa2bdsWwsRkXI/dfmnFUKtVdu2qnpZ2UlWjo2dbrZZt21xjY3/Nvld6+tl9+/ysVtm5s3xCwgbzDm43dn348ssv8z2IcXo/bNgws6q6voMHD27cuLFwjlUcvPjii9khe3R0tNExY9GiRQUc1miYK383+rgifC8Io+WgiFSvXv3mW0dfZBmd9w4dOmTusFOm6KJFumGDvvSSduyoL72klStr2bJatuz/LAEtV+5aOxRIjRo1atWqlXOZoyl5bk5paWktWrQYP3680cjIaDt+6623Mr8hNyIiIipXruyIlDkpKSkoKMj4kHXbbbf9+uuv159jnleLF6+oXr26MRFnzJgx/76Kc+LEicDAQE9Pz+wjXv8fiLFd5yeffFKQqnB9KTbbT+fP99+xw93T03hru2K5/IQJExy3SCU7cE9N1YYNHRW4q6qxF52xJa+rq+vQoUNvsgs5xTRwt9lszZo1s1gs5cuXr5F3VapUcXd3L1GixJnCWSMN5yFwRz7s2rXLw8PD29t79erVDj3QmTNnLBaLt7d3cnKyQw+kqtu3b69YsaIxwblXr14hISHh4eE0nzWX3W6fN29ezZo1zVoPMXnyZOMMJjAwMB9nY5mZmeHh4YGBgdn7rxoNsl966aXMzExVnTZtmvF54Nlnny3gk8FYSW3sVfjRRx+JyBtv5CfehVnMCtxVdcwYFdEmTdTUiXr/Y/bs2SJSqVKly9kLaFD4goLU3T16ctfk5F2qGh+/ets2D6tVjHUSOdlsiYcO9dq2zfWddxaGhppz8G3btrm6upYsWfLs2bP5GyEiIsLFxcXLy+u0WW1KUbiio6ON1mSLFy9W1U8//VRE6tWrl+8VD4aPP/5YRJo0aWJMCjbC94Jc18kWGRnp8vduhj169KBJaeEwNs4xPcs2AndVHThQmze/yh0yMowOM7bTp08fOXLkyJEj27dvt1qtW7ZsWbFixaJFi4zT7J9//tncwq7j4MGDRntunnu59Pjjj//6668OGnzp0qXGmoNSpUoZwfcLL7xgVgf/y5cvBwYGGi84TZs2NRZSqOrJkycDAwONXiUuLi7+/v7GBOrrW758uYjc1rJlYsFageGq0u32eefPd9u1y89q9bNa35g5888///z33VJSUoxXs1CzTqRySEjQ7Knzmzfr0aOmH0FVNSkpqU6dOiIybty44OBgYy/ratWqXaef7Q2nmAbuqvrKK68Y6/jyp2TJknfddZezfwk4XM7A/dChQ61atXr66afNGjznyQ2B+83EbrcPHjxYRHx8fNavX++4A02bNk1EHnzwQccdItuAAQN++eUXR+zDiSu89tprsbGxZo0WGhpqnEb37ds3lxdmbDabkbNXqVIl+12vSZMmwcHBX3zxxRV9h7M7EXft2jUuZyuhPOrSpYv83VfUmGRqVrMa5I+JgXtamtavryJqRkJ1FcnJybfccouIfGd0z4VTfPutiqi7u7GWITk5YseOMlarnDp19f7UdnvGggXrjDYLX3yR/8OmpKRkf2102S5RokRQUFB0dHReh+rXr5/83QQcN6hJkyYZM3ZTU1MzMjJuv/12KVgX7HPnzhnh1/Lly1V1zJgx2eG7KQUb/d8MX3/9tSlj4vqMPubnrr/pZB6tXq2rVunu3aqqFy7oBx/kZ5Cvv/5aROrWrVto++j27NnTmDNROIe7CWQ6Ml822oS2adPmu+++a968eZUqVQqyH8lVrV+/vkGDBiLi5ub26quvDh8+PGfUnqdPeW+GhbXZvv37/F7hxlXZVFfExDy0Z48RtT+1f/+6684j+eabb4yoytzeU6p64oT275/19ccfq2P61ujrr78uInfffbfxL2vXrl3GDgEi0qtXL2Of3htd8Q3cjT4MM2bMOJF3u3btcnNzc3d3L8jO1Lgh5AzcTXTo0CF/f/8xY8Zk30LgfpOx2+0DBw40ZgRfdQ8cUxi55NSp+WmsjOJj9erVZcqUEZH77rsveyeSf8vO2Y1tTgx16tQJCgrK2fNx8+bNxoT3Fi1aGJ9Xt2zZYtzStGnTfO+naqx1NR5uzNfg6o5zmRi4q+qCBcZSei1wD4arMPYebN68OYvinWbxYnVzU4tF/+//VFVPnkwZ0mv7FveoqP6q15s4OXlyVrOFwMDc7itot9uz57AnJCTUrl07OwHZsGFDdnxZokSJwMDA3M9237t3rzG9/eb4gFdsZWRk3HbbbfL3hn4rVqwwpknle93DU089ZVyx1n+F76ZYs2ZN9huul5fXbiOyhSOVLVtWREz8FP/ddyqiL75Y0HEyMzON/vKmrJ/4Tz///LOIlC1bthC2rEBuGNtgTpo0Sf/ehcIRz4TExMShQ4ca73fZUfv+/fvzOs6W+Hg/q7XTzp1Mci+IXy9eHH748MioqCknT667fPnxvXuNqP2RiIgVMTH/ufAkPT391ltvrd64cZjZm1IUQuD+119/ubq6urm5bdu2LfvGzMzMTz/91OhZ37Rpi+nT9UZfflNMA/ejR49aLJaSJUvmnBeTJ507dxaRWbNmmVsYihojcK9fv75ZA8bFxb355pvZ62WypzDcfffdBO43mczMzMcee0xEKlSoYPrWTKqalpZWsmRJccCqWNx8IiIiatWqZcz7+/da0YiIiODgYGMdq6F27dqBgYHh4eFXHe3IkSPGBJk6deoY5+hHjhxp2LCh8cDr78h0Lenp6bt27VLVixcvGmEZ4alzmRu4q2q3blm5qrlOnjzp6+srIg5dToTr+esv9fVVEf3wQ1XVy5f1jjtUJH34U3b7f7fymDVLPTxURPv102stwomJ0exV9Zs2bbrjjjuyf/TvqaB//vlnr169LBaLiPj6+gYGBuamA+Sjjz4qIq+++up/3hNFnBGylypVygjZjTm8L7zwQj6GslqtxlbMxvvm008/LSIPm70HtLH3gKFp06b5/nCKXDKW5eV7I7cr7N6tPj4qknW1sYB++eUXEalYsWJBlgzmRlJSkrEyjFk7Rcezzz6bvVZvwIABIvLDDz846FgbN2788ccfAwMDC/IR9YUDB/ys1un0WC6AqWfObI2PV1Wb3f5IRISf1dpr9+4FFy/ach0zL9m9u8327b12704zNZk+cULr1NGAAA0I0ObNzQ/cMzIyjAnQV9176fjx4z179vTzWymibdpovj5ZFhXFNHAfP368iAwYMCDfI3z11VciknNrO9yUTpw40bp1a19f3+Dg4AK2gLTb7TNnzjRaNFgsloCAAOOTQEZGxtSpU0uUKFGhQoUOHTpERUWZVDucLz093ZhtV7169QJud/NvRvu8O++809xhcbM6c+aMcWZTvnx5Y5s+I2c3dg8z1KpVy8jZ/7Ob56VLl1q3bm3MjVq3bp2qRkdHG3solS1bdu3atfmuc+nSpSLSrl27fI8AU8RETTu0qM65XW+pavThzw8tqnN+z3sFGXD3bnV11apVbfv2mXmN0Liu2T97Hg4K35o1Wrq0Pv+8qmp6unbtmtWzP9cTSFeu1NKlVUSHDtUdO7JunDZNs1upf/utPvZY1td2u71Nmzb/uV/ljh07/P39c8bu1+nMvm/fPhcXF09Pz3yv0UGR0qNHDxEZNGiQqh46dMjT09PFxSW7Z3Eu2e12423unXfeUdVt27blDN9N9NNPP0kONDVyNGPvmewODCEhIaGhofnbDCk+Xhs1UhEdNMi08oxnnbGljeMMHz7cWKrI5Iaiw2hrNn/+fP272VRYWJizi7qeHQkJflZrhx074pnknl9Tz5wZe/z4j+fObYuPD798+ecLFzLymJvbVPvv3etntc41damKo2e4jxs3TkRuueWW61z7DAvT6tWzuhUGBWnBojinKaaB+3333SciBWnGf+7cOVdXVy8vL6OJLW5iX375pXEGXL9+/Xy/7W3ZssV41onIPffck73xxYoVK4ylryJiTHv39vYeOXKkWdMu4HTJyckdO3Y0osyC7Htz7ty5+fPnH82xZUlgYKCIvPvuuyZUieIhPj6+W7duxrr1GjVq5MzZhw0bltcVNikpKcacUE9Pzzlz5qhqamqqkX56enrmuwO70R7k9ddfz9/DYZovvlARHTxYVXXCBBXRAm9jGxy8s2TJ6t26dTOhPFVV3bhxo7FxtFm7iiGfDh3SjAy12/Wpp1REq1bVPP6N7N6tjz6qkybpLbdkBfU1a2bNmFfVmBgtU0bzcWa0a9eu7Njd09Nz0KBBV+0Y079/fxEZbDzbceO7ImQfNmyYiLRq1SpPO0POmjVLRCpXrhwXF2dc5hGRESOuvidBQWRkZBhzjQ0Wi6WIp2w3NJvNZrTRML6NiYnx9PQUER8fH39//7CwsNzvAG+3a79+KqJNm15zdU4+bN682WKx+Pr65mZpTv5ERES4u7u7urpu377dQYdAPhjbkBgdq9q1ayciBZm/UjheOnDAz2qdyiT3/Jp65sz8Cxf2JiaeK8DODWtiY/2s1i47dyaZd+XDoYH7sWPHjMWp/9mfLTZWAwPVxUVFtH59Xb3azDIKR3EM3E+dOmWxWHx8fAqYabZt21ZE5s2bZ1ZhKLJWrlx5xx13GOfBnTp1ylODxVOnTgUEBBgf9qpXrz5z5kzjdN9o426MWa9evdDQ0NOnTw8aNMjYPbxatWpTp05l0sHNISkpyXi5qF+/fp66iJ45cyY0NDQwMNDPz894Chl9/QzGxOSr7loOXEtGRsaLL75oBAcVKlQYNGhQbuazX0tmZuaQIUOMgCA4OFhV7Xb7W2+9lfOWXEpJSQkLCwsICPD09Kxfv76R4MOZHBC4R0dHly9f3qxJWzabzejG9kH+9qdDwa1bp6NG6bffZqVNU6aoiJYsqfkNcT7/XIOC9KWXVFXvuksbNfrnR0FBevhwPsvcvXt3QECAcX7l4eExaNCgnDPZDx486Orq6u7uzmWbm8kbb7whIq1bt7bb7ZcvXzY2GgkNDc3lwxMTE42dRWbMmKGqP/zwQ3b47ohqJ06cmHOSe8WKFR0XthZzKSkpxrQD49u4uLgpU6Zkb9Nn/C0HBgZu3rz5P4cy3hjLlMn/S9O1PPzwwyLykvFSaDa73d6hQwcRCTS9xRsKxngebtq0SVWbNWsmIkX/isiuhAQ/q7X9jh1xZm/aWUxkt5QpoGf27/ezWk3cwzYtTQ8cyPr65MncL1nMFWP6V0BAQC7vv3atNmyoIuriooMH6/vvq/H/LDxc9+zR77/Putu2bZqjG3xRURwD988++0xEHnnkkQKOM3nyZBF59NFHTakKRZzR+KVChQoi4ubmNmjQoOvsPWhITk4OCQkx9nzw9vYOCgpKSEhQ1cTExODgYGOjEqNZTc52jRs3bjQ2UBWRli1bbqWr+03h8uXLRo/OO+644/oL4SMjI6dNmxYQEJBzupOIlChRomvXrsYyQ1Xdv3+/iJQrVy6TRXzII7vdnpKS8ueff5p1SW/y5MlGkhUYGGiMOXHiROOW3/9rRkRKSsqvv/76+OOPGzMdjHlnX331lSmFoUAcELjr3+dO9erVK2CXNlWdNm2aiNSoUYM1Yc7x0086cKAeOKC//KLdu6vdrnFx+sADumxZvof8/HNduFCffVY3bdKOHbV2bY2IMK3ePXv2BAQEuLq6GrF7QEDA4cOHVfXJJ58UkRcLvuMhipK4uDiji6MRsn/33XdDhgyJjo7O5cPtdvucOXP69u1rs9mSkpKMTVD+z5Qu3VcTHx9v7G2erVu3bvm+Fo7riI+PL1GihKur6xUb1Rw/fnzy5MlGypm9+C8wMHBHdper/7VpU6y7u1osunCh+UUeOHDAmIHuiC2gvv/+exGpUqVKbGys6YOjIBo3biwixl+6sa/SYdMv5jjA4IMH/azWaVwjzJefL1yIMOMkdktcnNHep+hf+TBWj5UvXz5P2zWnp2tIiHp66lNP6S23qLEQ+tNPdcEC7dgx6z7fffdP+F50FM/A/ZkyZbx/+umnAo5z8uRJY6Z8UlKSKYWh6IuOjg4MDDR6/5UrV27y5MkZ13hR+/nnn42zc4vF8thjjxnbWl6rjfsV7HZ7aGio8fCJHTqov7+yK+aN7+LFi02aNBGRe+6554pWVJcuXfrss8/8/f0rV66c8+NW2bJle/fuPX78+M2bN+d8pmVkZBj9ZJ588slC/z2Aq/j555+9vb1FpE+fPsZ7Ymho6CuvvHKt+2dmZq5YsSIgIKB06dLZT/gmTZoEBwezj0VR4ZjAPSMj4/bbbxeR8ePHF2Sc+Pj4qlWrisjcuXMLXhXyo2NHTUjI+vrpp02Jxo3A/fx57dZNO3TQOXN0//6Cj/o/IiIismN3d3f3Pn36GNPbeeW5+UydOlVEatasWcBPaiNHjhSRu+66y6ELT42e2jnlXNQIE61bty77f/Ltt9/+8ccf52zYuG3btmHDhhnrGwzNmzefMGFCzo9sFy5cqFGjRrt2c0aMcNSsl5deekkcsENvdHS0sdqj4EkITFetWjURMRZgGZP8/nN6X1GwJzHx29OndycmHkxOPpicbO7Wncg9o73Pl9ferqYouHTpkvESNHPmzHw8PCJCL17Url316ad1+/aswL1lS42K0qgoHTeOwL0IyMg4v22b644dZZOTTVgSaCz8+fXXXws+FG4g+/fvv//++42TsEaNGl11Cue7775rnKKtX7/euGXr1q0tW7Y0HtWiRYv/7AQSHx8fEhycVrJk1gLtsWNv1K0i8LdTp04ZExZatWqVc0rmyZMns0/rK1eu3KtXr5CQEKvVmvOjXUZGhtVqDQkJ6dWrlzENqnXr1gXZiAIw159//ml8PLj33nuvNWchMzMzPDw8MDCwYsWKV+Tshw4dKuSC8R8cE7ir6sqVK0WkZMmSBemZYIRTeW3KDDPde+8/X7/1lprRatYI3FX1q6+0ceOCj3dNe/fuDQgIMOZPeHp6Dhw40IEHg5PYbDZjceGH2bsB5N2JEyd8fHwsFkvO2dCOcOrUKWMzp2yenp5Fv6HEDcpqtQYGBuac5uLn5zd58uRz584Zd7DZbFecrmT3GrbZbEY/hJYtW+a+4XtenT9/vmTJkiJi7hNv0KBBItK+fXveOougzNq102vXzoiLU9XTrVodbt06Pcci+KIsMinpucjIGWfPzjh7tujPsL5Z7U5M9LNa++zZk1mE/3U/9dRTItKhQ4eCvAR17apnzmjXrjppki5YoLVr63vv6Xvvae/eBO5FwIUL31itcuhQb1NG++STT5hkWmyFhYXVq1fPOAnr1avXFWu+EhISZsyYYQSm12rjnisnTmhAgIqoiNasqfm6GIii4/jx40avmK5du+bsqDB06NDp06cfyG6Wpqqq8fHxy5Yte+edd9q0aWPs6ZTtWld6ACc6dOiQsbVA3bp1cz6Zsz+45vxwa+TsVzznUYQ4LHBX1V69eolIvlPOw4cPGzsibt261aySkGePPvpPg8/771czOofu3p21oi8z0yGNGq4QGRk5cODAo0eP5mldM24gGzZsMPZVPp7fpaLGfktPPPGEuYVd1RNPPHHFJPeuXbsWwnGLLWMSwKBBg4xoW0RcXV1bt249derU7KWoqampCxcufP7557NbOBpbu1eqVOmqOzCbKDg42JjEYFY4vnXrVhcXFw8Pj3379pkyIMxks6nFoi4uarNpcrKKqKens2vKrcikpAknTji7CuiKmJiVsbGhFy6EXrjwlxmt4c21Zs0a4x25gLOsjDfGyZPVz4+WMkXPwYNdrVa5dGmGKaNFRUWJSOnSpdMKsK0wblzp6emTJ08uVaqUiLi7uwcGBl6xmZLRxt04jTPauMfn77Vv9Wpt2jQrdu/YUXftUlVNSdGoKDUuIyclafaM6YsXtQhf2MTBgweNtkJ9+vT5d0ui+Pj4FStWBAUFtW7dOudcJxcXlyZNmgwaNGjmzJknOKdBUXX27FljRmH58uXXrVtn5OxG64+cOft+0/tEwHR79uiXX+rq1XrkiG7dql9+qRs3mjX2gQMHPDw8fH19Lfnl4uLy/PPPm1UP8mPvXu3SRceN06ee0rFjTRnyww/171mk2qaNKUOiuPP393dxccn3S42vr6+Pj0/OXXYdZ/v27VcE7g7aNhNXMLZt9/f3zz7x9vLy6tWrV2ho6BWf8VeuXOnq6uri4vLHH384uqqEhATj88Ivv/yS8/Yjf4uJiYmJiUnIbu11XZmZmc2bNxeRkSNHOqZeFExsrIpoqVKqqufOqYhWrOjsmnIrMinp4YiIt6OiiN2dbsjBg3/Fx+9MSDhRxFojJCcnG7OyQkJCCjiUEbhnZmrz5lcG7p9+qmPH6rvvFvAIZipegXtmZuy2bR7btrlnZOR2z5z/ZGyusmTJErMGxA3nzJkzgwYNMnYIrFq16tSpU41JEGFhYbVr186eAl/Q9qA2m86cqRUrqoi+9ZbOmqUPPqjBwdq5s27dqrNna/Y2g927KzvIFW27d+8uX768sT7GZrOdO3cuLCwsKCjIz8/PeCJlT7Tx8/MLDAwMDQ3N/U5fgHMlJCT06NFDRHx8fHKuyXj//fcjTNwAEYVg/Xrt2lWDg7VHD/17x2azrFy58qGHHpL8mjdvXvbafzhNaqru3q3mNZklcIfpTpw48cMPP+T7pebJJ59cvXp1oVXbuXNn47glS5YcO3ZswTeXRp7ExsbOnDmzV69exjYPIlKmTJmAgICwsLDMzMwTJ04YrfNGjx5dOPV8+eWXItKgQYOcvWty9pfPycfHp2zZsmXLlq1du3bdunUbNmyYcyhjx/JatWqxzXgRdfx41nJ2VT14UEW0Xj1n15RbzHAvOoYcPHgpPT0+MzOjiM2/DAoKEpE77rij4J24shtSxsZqUpJeupT1bXKyJiWpzabvvqtFpxuTRVXzfQpyw4mOnnHs2LOlSnWvX3+ZWWOOHj36vffee+6557777juzxsSNaOvWrUOHDt28ebOI3HHHHe7u7sZElebNm0+ZMqVt27bmHCYmRsaNk2HD5KGH5M8/xWKR8+clIECeeUbi4uTll0VE7r9fFiwQX19zjgjH2Lp1a5cuXRISEipUqHDp0qXs2729ve+999527dq1a9fuvvvu8+XvETegzMzM119/vVSpUrNnz37ooYf8/f3btGnj7KKQdx06yG+/SenSkpkpLVvKli2S44pgwRlnovl7rIuplaCI+OgjWb9ejCUxmzfLwYPOLgg3C7vdnr8HGvPczS3mOnbu3PnRRx+VKlVqzJgxOReHoZCdPHly7ty5P/30086dO41bqlevbrFYTp069cADDyxevLhw3oMyMzObNm26f//+r7/+2thGVURatmx54cIFEYmNjRWR9PT0pKSkfz/W09MzNTXV+PrcuXONGze+fPlyWFhY7969C6Fy5FlEhNxxh9x2m0REyLZtcvfd0ry5/GvVS9F0IDl5cXT0sJo1nV0I5NVDh6p6eLhYLH0qVGiUY+aTc+3Zs8fPz89ms23YsCF7U0MHiYiQ9etl8GCHHiQPilfgfvhw77i4xbfc8m2FCi+YNeaBAwcaNWpUvnz5c+fOGZsvodhS1Z9//vnNN988c+aMm5ubj4/Pe++9N2TIkOxZEqY5eFBGj5ZZs7K+vfdeGTpUPvtMGjQQEVm1Sg4eJHAv+tatWzdp0iRj5lTLli1bt27dpk2bNm3aeHl5Obs0wAQ2m838Vz8Upvvuk82bs77u21c+/1yuMbEOMMVHH8m990q3biIibdtKeLizCwJQvO3fv3/evHk//fTToUOHmjVrlpCQsHnzZmOee+FYsGDBI488UqlSpcOHD2f3mr+qpKSk9PR0Ebl8+bKq2u12o4GDiAwYMGDOnDkPP/zwL7/8UhhFIx82bpQ2baRlS/nzT1mzRjp1kvbtZe1aZ5eVK7GZmUdTUu667vMThePVQ4cm1KvnWZRmpRhBx5YtWwIDA6dMmeLQY+3aJa+9JvffLy++KGXKOPRQuVWMAmKbLSEhYaXF4lqmTP6XMP9bw4YNmzRpsm/fvnXr1mUvA0TxZLFY/P39e/ToER4e7ubm1qJFi9KlSzvkSOXLy8WLWV/bbGJMvXn66X9muONG0L59+/bt2x86dKhu3brkkrj58Ky+4amKatZbTHS0lCvn7IIAACg8jRs3/uCDD4KDgzdv3uzt7d2oUaNCnhbTr1+/1q1bb9y48dVXX3366aeNncO8vLy8vb1FpFSpUkZP+dKlS/v6+hrrYsuWLZtzhHXr1s2dO9fHx2fSpEmFWTnyJj5eRKRUqSu/vhGUdXMrS9qOa7BYLJ988sno0aNHjx7t6GPdeaesWePog+RNsQrc48qU6We3J7i5VTJ35H79+u3bt2/BggUE7hARX1/f+x0deZcvLyVLyoIF0rq1fP219Ovn2MPBkerXr+/sEgDgarp3l/Hj5amnZOVKqVNHvL2dXRBucp06SbVqWV+/+KJTSwGAv1ksFke3QbiOsWPHPvTQQ7Nnz545c+b17+np6Wlsn1OyZEk3NzeLxVKmTJmjR4+qanBwcPbWYiiKbuTAHUXHmzVrehSl6e2Gdu3a/fHHH86uwjmKS0uZixe/iY9f5uparmbNSa6uZUwZ88KFC5UqVRKRXbt2NWvWrHLlyqdPn2ZCHwpJWpp8/70cOSItW0q/frJnj6Slyd13i4j8+KM89pi4uzu7RADAjUxV5s2Tv/6SRo3k2WeFvnkAABS6xMTEfv36paenJyQkiEhKSorRnz0+Pt5ms9lstngjor2aevXq9e/f//3333fns2FRduyYbNokVatKhw6yZYv8+KPce688+aSzywJQIMUicLfZ4g8f7tGwYbhqpsViwjtNXFzcyy+/vHXr1u3btxsLuxo2bHjw4MH169ebtjcmAAAAAADAf0lNTU1JSRGRhISEzMxMu90eFxfn5eV12223Obs05MK6dTJhgpQtK5cvy/jx0rChswsCUFDFYrKSq2tJuz313LlPypd/2t29SgFH27hx4xNPPHH8+PHSpUtHRES0atVKROrUqRMVFbV3714CdwAAAAAAUGi8vLyMFvNXtHHHDcBmk6AgWb1afHzk6FEZMkSWLHF2TQAKqsj193EMS8OG4Z6etQ8f7p2WdlQ1PX+j2O32KVOmdOzY8fjx4y1atNi2bVurVq1iY2P9/f2XL19esmTJRx991Ny6AQAAAAAAcHM6c0Zq1hQfHxGROnUkOtrZBQEwQTEJ3NXFxbNs2cfKlOmVmLguIqLhhQtT8jrEqVOnOnXq9Nprr2VmZgYGBm7cuLFevXpbtmy5++67f/7551KlSn3++eflypVzRPUAAAAAAAC42fj4SFKSs4sAYLJi0VImM/PiiROvWixuImqxeKWnHzt58rXExI233PJtLjdQ/e23355//vno6OjKlSvPnDmze/fuxmz3N998MyMjo0WLFnPmzKlXr56Dfw8AAAAAAADcLMqXF7tdtm0TPz+ZM0fuucfZBQEwQbHYNPUKsbELjh9/wWaL9fCoWafO7BIlrtd1PTU1NSgo6PPPP1fVbt26zZw5s0qVKqdOnXriiSfWr19vsVheffXVCRMmsOs3AAAAAAAA8iYmRsaOlbNn5bbb5I03xNPT2QUBKKjiGLiLSHr68aNHn0hM3GixuFapMrJq1fcsFtd/323//v39+/fftWuXp6fnuHHjAgMDLRbLv2e7F379AAAAAAAAAICippgG7iKimnHmTPC5c+NE7CVLtq9RY7aPT/Wcd5g+fXpgYGBKSkqjRo3mzJnTrFmzq852d1b9AAAAAAAAAIAipZhsmnoVFot79epjGjRY6e5ePTHxdOPGfvPmzct5h4SEhJSUlICAAKvV2qxZs/379993332fffaZh4fH5MmTly1bRtoOAAAAAAAAAMhWfGe4Z8vMvDhq1FujR88QkcGDB0+cONHLy0tEVHXt2rUdO3YUkVmzZg0ePDgpKSl7trtTSwYAAAAAAAAAFDkE7iIiqjpt2rTXX389OTm5SZMmc+bMadq0qfGjuLi4F1980Zj8HhAQ8PXXX/v6+jq1WAAAAAAAAABAUUTg/o+9e/f2799/z549Xl5eISEhQ4cO3bx584ABA44ePVqqVKlvvvmmf//+zq4RAAAAAAAAAFBEEbj/j6SkpKFDh3733Xci0qRJkwMHDthstlatWv3000+33HKLs6sDAAAAAAAAABRdxXfT1Kvy9fWdPn36ggULypYtm56ebrfbAwMD165dS9oOAAAAAAAAALg+Zrhf3bFjxzw8PM6cOXP33Xc7uxYAAAAAAAAAwA2AwB0AAAAAAAAAABPQUgYAAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAAAAAAAmIHAHAAAAAAAAAMAEBO4AAAAAAAAAAJiAwB0AAAAAAAAAABMQuAMAAAAAAAAAYAICdwAAAAAAAAAATEDgDgAAAAAAAACACQjcAQAAAAAAAAAwAYE7AAAAAABFyAcffFCvXr0ffvjB2YUAAIA8I3AHAAAAAKAIOXv2bFRUVHJysrMLAQAAeUbgDgAAAABAEZKZmSki7u7uzi4EAADkGYE7AAAAAABFiBG4u7m5ObsQAACQZwTuAAAAAAAUIQTuAADcuAjcAQAAAAAoQjIyMoSWMgAA3JgI3AEAAAAAKEKY4Q4AwI2LwB0AAAAAgCKEwB0AgBsXgTsAAAAAAEWI0VKGwB0AgBsRgTsAAAAAAEWIMcOdHu4AANyICNwBAAAAAChCaCkDAMCNi8AdAAAAAIAihMAdAIAbF4E7AAAAAMAJbDbbiRMn/vzzz7S0NGfXUrQYPdxpKQPcAKKjZedOSUx0dh0AihAumANAITp0SJYtEy8v8feXMmWcXQ0AAIDTpKSk9OjRw8vLa9myZW5ubnfeeWfr1q3btGnToUOHihUrOrs6J2OGO3BjmD5dVqyQe++VESMkKEg6dnR2QQCKBIuqOrsGACgedu2St96S0aPlwgUJCZE//hBvb2fXdCWbzbZly5ZWrVo5uxAAAHAzy8jI6Nev36JFi8qWLVu1atXIyEi73Z7900aNGrVs2bJNmzatWrVq2LChxWJxYqlO0axZs127du3cufPOO+90di24saWmpq5bt27lypUDBw6sXr16iRIlnF3RTSQ9Xdq1k02bxGKRy5elTx9Zu9bZNQEoErhgbo7MzMw9e/ZcvHixQ4cOHh4ezi4HQJE0bZp8+KG0aCEisnu3/P679Ovn7Jr+cfHixfnz5+/cufP48ePLli0rhp9sAQBA4VDVF198cdGiRRUqVFi/fn3jxo0TExN37ty5cePGDRs2bNiwITIyMjIy8v/+7/9EpFSpUvfcc48x+b1169beRW++giMYLWWY4Y58O3r06IoVK1auXLls2bKEhAQRmTFjRu3atZcvX16uXDlnV3ezOHVK6tQR43NTmTKSkuLsghwuOTl5y5Yt69atW79+/bvvvnvrrbfecsstzi4KJktLSzt8+PDBgwcPHTp06NCht956q1q1ar6+vs6u6wbD+3f+JSQkbNmyZcOGDdu2bduwYcPly5erV6/u7u7+7bffdu3a1dnVASh6LlyQqlWzvq5WTc6fd2o1WeLi4n777bf58+cvX748IyOjSpUq+/btI20HAACOM2zYsP/7v/8rVarU0qVLGzduLCIlSpRo06ZNmzZtgoKCbDZbZGRkdvh+9OjRlStXrly5UkRydp5p3759pUqVnP2rOIrRUoYe7siT1FTZtOl0WNiEpUuXHjhwwLjRYrH4+fm1atUqLCzMarV26dLljz/+qFChgnNLvUlUrPjPZzqbTW7Sz1BJSUmbNm3asGGD8bKcmppq3L558+Zq1aqtX7++WrVqzq0Q+ZaZmXnixImov+3du3ffvn3Hjx+32WzZ91m6dGmbNm3mzp3rxDpvRLSUyQNV3b9//6ZNm/78889NmzZFRkbm/L936623enp67t27t1SpUmvWrLnrrrucWCqAoui99+S++6RnTxGRYcOkVy8n9vhLTk5evHjxnDlzli1bZpwzubu7u7u7T5069cknn3RWVQAA4Kb33nvvjR492tvbe+nSpe3bt09ISChZsuR17n/8+PGNGzf++eefGzZsiIiIyE4BSpQosX379vr16xdK1YWtXr16UVFRR44cqVu3rrNrQZGgKvHxUrq0iEhKiri7S/b6h6NHZcUKWblSli8XL69zFy9WU9USJUp06NChd+/ePXv2rF69uoicPHmyc+fOhw4daty48apVq6pmzwRCQTz/vNx3n7RrJ99/L9WqydChzi7IHDExsmGDrFsnJ09u+uWXttkvvK6urnfeeWe7du1atGgxceLE7du3N2jQYP369ZUrV3ZuwfhPdrv9xIkTh/5mTGA/duyYsaAqJ3d39zp16tSvX79BgwalS5eeOHFiQkLChAkThg0b5pTKb1AE7v8hKSlpx44d27Zt27hx45o1ay5dupT9I3d396ZNm+acXqGqzz777MyZMytUqBAeHt6oUSMnVg6gyDl/Xp54Qnr0kEuX5ORJmTWr8CdB2Gy2NWvWzJo1a+HChcbaUhcXl5YtW/r7+/fv37906dKenp7Zdw4KCgoICLj99tsLuUjkXlJS0rhx4+69996exoWcwmWz2dLS0nx8fAr/0LjppaSkuLu700sBuPl88cUXr776qqura2hoaN++fU+ePNm2bdshQ4YMHz48Nw+Pj4/fvHnzn3/+GR4evnXr1rS0tAsXLpS5GTeiv+WWW06cOHH8+PFatWo5uxYUCampUqKEbNwo994r770nnTtLRoYsXSq//y5/z2UXi0WaN5e+fT/r0MHvvvvuc3V1vWKQ8+fPd+3adc+ePQ0bNly1apURxKNAbDYJDZXDh+W++yQ1VRYtktdfl8aNnV3Wf9u+Xbp2lchIqVhR+vWT6dMlI0O2bJGNG2XlStmxQ4xtNXx9k2y2CrfddpuRfXXu3Dm7JdHly5c7deq0Y8eOpk2brlmzhlZFRVZ8fPyMGTPeeuuttLS0K37k6upaq1at+n9r0KBB/fr1a9eunfMkPCwsrE+fPi4uLr///nu3bt0Kt/YbmeJfjh8//sMPPwwePLhZs2ZXvEXVqFHj0UcfnTx58ubNm9PT0//92PT09B49ehj3PH78eOEXj6Lg66+1T5+sr3v3dmopKDpeeUWHDtUTJ/Svv3TfvkI+uM1mCw8PDwwMzLnyukmTJiEhIadPn77qQ8aMGXP77bdfvny5kEtFnnz99dciUr9+/bS0tEI+9I8//vjee+95eXn16tVr5syZPFVgojFjxgQGBpYtWzYgICAsLCw1NdXZFQEwx6xZs1xcXCwWy/fff6+qZ8+evfXWW0WkY8eOmZmZeR2tY8eOIvLTTz85oFIn27t3b+nSpUXkl19+cXYtKCpSUrRdO+3aVTMydORIHTZMRbL+lCihvXrp1Kl68uR1Hp4SHh6uqhcuXDB24q1du3ZUVFTh/QI3q+XL9amndPFiVdWnnlIRnTLF2TXlyrZt2r27Pvecqmrfvv/zjBJRLy9t317ff19XrNDExGueiV24cMFoC3bvvffGx8cXXvXIi2effdbIAcqWLevn5xcQEBASEhIaGmq1WhMTE3MzwjvvvCMi5cuX50Uj95jhfqWIiIhPP/30+++/N751c3Nr0KCBsT+Pn5/fbbfd9p8jpKSkdOvWbcOGDQ0aNAgPD7+JGwviWiZPloUL5ZVXxN9fOnWS1audXRCczm6X0qUlKUkuXZJy5aRmTalSRVatklKlHH3kvXv3/vDDD7NmzTp79qxxS5MmTfz9/Z944onrLMGOi4vr3r37L7/8Qj++Ii4zM7N58+YRERGffPLJm2++WWjHPXDggJ+fX1JSkouLi91uFxFPT89u3br17dv3wQcfZHoLCmLx4sUPPvigq6ur0b9YREqXLt27d+9+/fp17969mGyWCBNdvnx5586dTz75ZOnSpcuUKZPzv9mu+BELdxzkt99+e+SRRzIzMydNmvT666/HxcV17Nhxx44dLVq0WLVq1fW7ylzV5MmTX3/99ccff3zOnDmOKNgpVPXzzz8fMWJESkqKxWJxdXX96KOPgoKC2F8Hqany6KPy4IMSHy+xsXLnnTJ2rNx/vzzwgLRsKf+ay/4/MjIy+vTps3Llyjlz5vTt2/fy5cv333//li1batWqtWrVKuO6F/Jp7Fh55x15+WX56iv57jsZOFD69ZOff3Z2Wf9t+3YJDZW4OHn8cfnsM+neXd54Q5o1kzZtpEsXadNGvLyu9/C9e/cePXq0V69ep0+fbtu27dGjR1u3br18+XK21ixq4uLiqlevnpycvHPnzqZNm+ZvELvd3qtXr6VLlzZv3nzjxo2ckOeKsxP/IueBBx4QkRYtWoSEhKxfvz45OTkfg1y+fLlZs2Yics899yQkJJheJIq4Tz/VX37RDh00Lk47dnR2NSgK9u1TEa1dW1X1+HEV0QoVHHrAvXv3jhgxonbt2tmv9rfeeut77723d+/efIxmt9vj4uJMLxKmMDaRK1my5JkzZwrniKmpqc2bNxeRp5566tSpU59//nmHDh2yF4S5u7vff/8D336bef584ZSDm8q5c+eMHqATJ07cv3//6NGjjSebwdfXd+DAofPmKedWyL2PPvrIw8MjT5+PPDw8KlasWL9+/RYtWkyaNMnZv8FNYtWqVV5eXiLy4YcfqmpSUlLbtm1FpEGDBufz/oZx9OhR478iUrp06cJf5uUg586dy+4R9+STT7799tsuLi4i0rlz53Pnzjm7OjhZSor27q02m3brpgMH6oYNeXv4yJEjRcTV1XXmzJmqevny5VatWolIlSpVIiIiHFJxMbFxo4robbepqh48qCJasaLa7XkdZuDArC8OHdJx40yt8Bq2bdOgII2O1o4d9cEH9exZzcjI7WNPnTpVoUIFT0/PZcuWqerx48dvueUWEenatSsLE4uaL774wngfKeA4MTEx9erVE5GAgABTCrvpEbj/j4SEBC8vL1dX14sXLxZwqPPnzzdo0EBEOnXqxCtOcfPpp7p4sS5frsOGaceOmpCgV+s/ZJr09LMZGSRbRdvs2SqiDz+sqrpwoYpo9+6OO9rRo0dfeukl49Na9erVAwMDw8PD7Xk/7cv2/vvvDxgwwMQKYa7evXuLyPPPP184h3vttddEpF69ejkvw1y6dGnmzJm9evXy8PBo3ryTiLq4aOvWOnmynjpVOHXhhmez2bp06SIi3bt3z/mSdezYscmTJ7du3dpisbRv/7qxzNlYO3/hghPrxQ3AbrcbHw5/+umnPXv2hIeHL168+Mcff/zyyy8//vjjt956a9CgQf7+/t26dbvnnnsaNmxYuXLlnHuZiEjdunUHZqcgyK8tW7YYE9iHDBmiqunp6cYkp5o1a+ajCWeLFi0sFovxQGOnmRUrVphfdKFbsGBB+fLlRaRChQq//vqrcePKlSuNy5A1atQw+oEgN06dOjV9+vTVq1cfOHDAQYe4eFGzY2qrtTCuBBuBu6pu367e3nkO3FU1JCTEyNy/++47VU1MTOzcubOIVKpUadeuXWbXW2ykp6uPj1osalw7rFZNRfLRQbRNm6wvdu3SwYNNrfAajMBdVb//Xr29NSYmbw83Ftd6e3uvWbNGVQ8ePFilShUR6dOnT0buk3s4njF5Ze7cuQUfateuXcYqwKlTpxZ8tJsegfv/mDt3roh06NDBlNEOHz5sbPzdp0+ffDQlxI3o5El9/32dNCmrh9sTT+jdd+szz+gdd+jWrQ454pkzH0VF9T958vWEhHUOOQBMMXy4iuiHH6qqBgeriI4Y4bijjRgxQkTuvvvudevW2Wy2Ao6Wmpr66KOP5mP2GQrN4cOHPT09XVxctjrohSaHpUuXWiwWd3f3zZs3G7dMmDBh9+7d2XeIjo6eNy+yd2/18spqAWmxaMuWOmGCRkVpYKC++66q6vnzSoSFK4wZM8b42H/27FlVjYmJmTRp0rFjx7LvcOLEialTT7Ztqy4uWc8uDw+9/36dNk0vXtROnXTOHFXVVav000+d9DugiFm+fLmI1KlTJ0/vhikpKWfPno2MjJw3b57xnCzIRWtEREQYOXJAQIDNZrPZbI899piIVKxYMTIyMh8DPvLIIyLy+eefq+q7774rIq+++qrZVReq+PiEp59+2rjG88ADDxivgapqTNs6efJkmzZtRMTNzS04OLjgp3Y3q8zMTKvVGhwc7OfnZ3Tgady4sY+Pzx9//OGIw61dm3VKo6rPPacOC/b/kZGhn3+e9fX332uOt8c8GDdunIhYLJYpU6aoalJSkrEFYtmyZQvhNPKm1amTiuiCBaqqjz+uIvrNN3kd49579auv9Kuv9N13CylwP3ZMZ89WVbXbNShIk5Ly9nC73W7M8fL19TUuB+7atctoLPnkk0/ySlVEbN682biOa9Y84NmzZxtrmrkG/J8I3P9H//79ReRT8z6l7d69u2zZsiLy9NNPc6Z+0wsP18qVVURfflm3bVNVPXlSX31Vb71VRdTNTUeM0JQUkw8aGdk6I+OSyYPCdJ07q4guWqSq2ru3iui8eY47mnHevHDhQscdAkWNMcekZcuWDn2vOXfunDF1Zfz48cYt27dvNwKCOnXqXLGWIi5Of/pJ+/VTH5+sbNTVVQMCtGNH3bNHz57V/v0dVyluPFu3bvXw8LBYLIuNS9aq//d//2c8u5o0aRIcHLx///7sO589q19/rV26qJtb1rOrdm3t3Fm7ddPYWF22TMeOddKvgSLGSGY//vhj49vvv/++c+fO/fr1e+655954441Ro0ZNmTJl5syZCxcuXLt27Y4dO44ePRrzv3P8atSoISJ79uxxRvk3g+PHj9esWVNEHnzwwYyMDLvdPmjQIKMPzPbt2/M35qxZs4zGBaq6ZcsWEalVq1YhfNQKCtKPPlJVPX9eX3vNtGE3bdLbb0+qW7eRt7f35MmTs3+RzZs3V6tWbenSpaqakZHx5ptvWiyWcuXqDxiQfIlz/xxOnz49ffr0Rx55xNhm1lCiRImHHnqoQ4cOIuLl5bVkyRLTj1v4gbuq1qmj1app3peF/I8vv/zSYrFYLJaJEyeqalpaWp8+fUSkTJkymzZtMqfQ4uaDD1Qk63Xhq6/sDeumfDEsr2O0bKkbN+rGjTprViEF7jt2qKenFqQ7iN1uf/75542X9G3btmmO9UzPPvssCVhRYPwFvfnmmyaOGRgYKCJVq1Y9ffq0icPefAjc/5Genl6mTBkROXLkiInDbtq0ydg14p133jFxWBQ1U6eqh4eKaPv2V65wT07WoCB1dVURrVdPV68254jJyRFpaSdiY3/bv/+ekyeH22x0tC3CKlRQETXekGrUUBE9eNBxRzOWHudjjXZu/PjjjymmXzhCgcXHxxtrquYYU3wdwGbTp5+efEW7j4MHD7744ovGU87QqVO/N97QjRs1e15LUpIuWKADBuiDD+rAgRoervffr2fOELgXFenp6QcOHGjbtu2qVaucVcPly9q27XMiMnz48OwbN2zY8Pjjj+fcR/Hxxz8cNUpzdpq9dEm/+0579tS33tKuXXX1ah08mMAdWS5evOjp6enm5pb9gdBYAZYbs2bNMh4SEBAgIsZUUOTV+fPnGzZsKCKdOnUyTh7eeustowXB+vXr8z1sdHS0m5ubu7t7bGys3W6vXr26iOzYscO0uq/h+ee1Y0fdt0/PnFFTOu2lp+vbb2d9RujTZ2fOy4qqasx5d3Fxef/9943V0osXL+7Y8bSI1qypf/5pQgE3rn9PZjfUrVt30KBBYWFhxlxOu90+dOhQEfHw8Pj555/NrWHtWr3jDn3ySX3ySa1XrzAC9xMnVETLldOCTx2eOnWqsT3AqFGjVDU9Pd24POnr67varA+rxcra1bbb6ieNGqCqyckRVqvs2lU9r2MUfkuZ0aNVRF94oUCDZGZmPvroo8aiJWO3sI0bNxoJWGBgoDmFIr8SEhKME+l9ee9xdB0ZGRnt27cXkVatWt00e6g4AoH7P4w1p3feeafpI//xxx/GZk3ZUwJxM8nI0MDArBl2gwZdc6eRHTu0efOs7gqDBml8fD4Pl5kZd+nSzIMHu1itcvKkceXcfuHCN6dOvZ2RcVGVpVtFj7FLaqVKqqqXLqmIliplwpnyNZw6dUpEypcv74jBbTbbiBEjoqOjHTE4Cmj69OkiUqNGjcTEREeMHxKirq7aq9fqf+/bZrPZwsPDAwMDa9So0b79JOP1sEIFDQjQsLD/2cRi4EA9dkzHjdNx4wjciwpjqanh4YcfNnfaQS49/rj6+toHDPjp32ftKSkpYWFhgwYNqlSpUvPmq4xnV926Ghio4eH/sydZ166qqgEBOnYsgTtUVT/55BMReeihh7JvOX78+IoVK0JDQ6dNmzZ+/Ph33313yJAhTz75ZO/evdu2bdu0adNatWoZk2Szs7nvv//+ikGQS5cvX27WrJmI3HPPPfHx8ao6duxYEXF3dy/4dGNj5rJxjdmYMm/khg71/PMaHq4PPKCnT+uAAbpokW7frvnuG7p/v/r5qbHlSWCg/juysNvtISEhxp7k7du3N64bnTyprVtnrZ0NDnbc6WQRdf78+dDQ0ICAAGMRucHHx6dLly6TJ08+do0eK9mbhWZfSDNF4c9wnzHDuDZjzmizZ892c3MTkaCgIFXNzMw0rvE4rgnPTcxmS962zdNqdcnMjFW179xZyWqV1NS8nVA980zWFwcP6t/rshyrZUsV0YIvik5LSzN2e65evbpxGrlixQpjl+z33nvPhEKRX19//bWY1zQ7p3PnzhlLAF8zY8HXzboYgsD9H4MHDxaR999/3xGDz54928XFxWKxTJ8+3RHjw1kuXNAOHdTYwO3//u/q99m2TQ8fVlVNS9P331d3dxXRbt3OGTt655o9Pn51VNST27d7W61itcqOHWVOnx4ZH78yPf30+fOfnzoVtHfvHYcO9cjMvFzgXwtm2rB48Xdt2ux68UVV1eXLVUTbtnXc4RYtWiQiXbp0cdwhUDTZbLYWLVqISHBwsOmD//WXenioxZLVGOla7Hb7pk2pw4drnTpZlyFF9Ntv/7mDEbinp2vLlgTuRYURuNeqVatUqVJGFhYYGJhzR1xH++47FVFfX71+M+f09PRlyzJfeEErVvzn2ZWz36wRuJ85o7VqEbhDVbVx48Yisuj6L1tXY7fb0/++VHj8+HFjsTwbMuWVsSvDbbfddunSJVX99ttvLRaLq6vrPDO66k2aNElE+vfvr6qLFy8WET8/v4IPe33PP6/Hj+vYsTp+vA4YkPVa5OurrVtrUJCGheV2y0G7XadOVV9fFdFbbtF1192GadWqVUYzt/bt3zaWIWVkaHBw1lYWvXppcZgFYbVa33777WbNmuWczN6kSZNhw4atWLEiN42JszcL/f77782qqvAD92efVZGsTUo+/VQHDtT8tmXKMnfuXHd39+zlZTab7bnnnhMRT0/P3377zYSKi5PIyNZWq1y+vFhVDx9+2GqVS5fy9mSbMEH/+ktV9dAhLYT//dHR6uqqnp4aH6+Zmfr667pkieY79kxOTu7YsaNxPmlc+lq4cKHx7BozZoyZdSMv7rrrLhGZbbTqN9umTZuMfeZnzJhRkHHeeuutSZMmmVVVkXIDBO6Fc63Dbrcb12eMzlOO8OWXXxpv86YvZ0NejRgxYsyYMX/99VcBt/LYunVrq1YRxrpOq/Xq90lO1vr11dtbQ0KypsDs2qVt29pq/T979x3X5NXFAfwkYYMLJ25RUXGLG9zgRK0DtVXU1oqzaLUV9a1iW2txtOKW2qrUWdSquMVZxIkbt+AAFFSQPZOc94+LEXEBecLy9/34B4TkPheNT57n3HPPqdqBiJycnF58rArjo0ePHj2ad/16DRFnDwyU37nTJSpqk0qVxMwvX/4bFjY9MnJpfPzpK1fMAwMpKMg6JeWeNr8XSGv27NlENGPGDGZetGBB1+rVd8+Zo7vD/fjjjyR1mTYoLAICAmQymbGx8fuSvHInPp6trJiIM1X7+LiLF3nmTLa25le935iZf/uNRX78f//lUfIOfJQIuLds2fLJkycuLi5ij7mFhYWXl1ceRBjv3eNixZiIs593qFTy0aM8YQK3bPnGneG0aRlfrFvHOiutBIWGv39yx44zGjdurv3buFatWkSEdoI51b9/f7lcfvz4cfHtiRMnSpQo4eXlJcngwcHBYiEkNTU1JSWlWLFiMpksNDRUksHfRwTcU1O5dWseNIhHjODatV+v/4lWJY0b84QJvGnTGw0tQ0Jen5Q2buSePTOeP3Jktva8Pn36tE+fkRYWSoWC58zJyGr39WVzcxa3IQEBOvhtC5Lvvvsum8nsHyBi7jKZbOnSpZLM6ulT1rQMPH4899uXs09kM4jiSa1bMxHnLH3rXXx9fUXIbOzYsSqVSq1WizTEOnXqpL9v4za8S1jYzMBACgubxsyRkYsDA+nBgy9zNEKXLty9O6ens78/50Fe+IYNIguQmTkgIGP7oDYSExPbtWtHRLVr137y5Akzb9u2TezRWbRokRRThpy5cOGC2Piuu3qwK1euFGXichRH9fX19fDw0Hy7dOnSXr166agcbv4q6AH3mzdvNmnSRNp6Q+90/vx50n2/HRF3MzAwwC6tfJSamipqihFRsWLFHB0dvby8QkJCcjqOt7e3kZFRtWq1evSIjox879NiYtjZOeOqulWrjMqz6enpnp6eYhrly5f38fF5+4UpKSk+Pj6Ojo56enqHDrULDKRr1yqHhbl9YG9aSkrwjRsNAgPp8uXiMTG+Of2NQEd69+5NROJfefDgwdovAn+Y6Hq0efNm3R1CmDx58tChQ29/OCUV8tyQIUOIaMiQIRKOOXQoE7GNzTs2vOfCihVcvTqjxFrBoQm4i28DAwNtbW3Fp6SNjY2/JpygAykpGcXWBg2SZsAJE7h6ddZBbzzQSnp6+pkzZ+bNm3fjxo2nmZfgdGnYMCaSJmYhKpZkvjmE7Bg5ciQR/Zppv0nkB66Yc65+/fpEdOTIEWbu168fEa1cuVLC8TM7eJBHj+YFC1j8BidOsCZlMzKSd+7kqVO5bduMfk6aP5Uq8aBBvGQJ//03m5tn5K526sTTpnHJkpyjjEO1OqOwGxF37MhPnjAzP3zIrVoxEffty7VqcUwMM/PIkVz0WqqePXt2ypQp2Uxm/4Dly5eLZqGSZFNevcomJnzvHjPzoEFZm3hJLnMB9/h41tdnPT1povx79uwxMjJq3LixKP2kVqvr1KlTpkyZkx/efAFvio09EBhIt261ZubExIuBgXT9eg4C2HFx7ODAa9fyokV5FHAfMoSJWDQomTmTiVj7iusxMTE2NjZE1LBhQ5FWuGbNGvGf7p0RD9ApcfUyZcoUnR5FNGWtXr368+fP3/ec4ODgZcuWab7du3dvt27dNN/OmDFDJpM1b9686DWKK+gB96FDh4o4+OPHj3V6oP/9739509VBrBjb2NgU1SpFBV9KSsr27dvHjBljaWlJmdSqVWvcuHE7dux4+fLlh0dQKpVubm7iVS4uLtlpE7F/P1etykRsYMC//fZc7FO+f/++2HhFRI6OjmFhYeLJFy9enDBhgqY0obGx8eLFrnFxR7JTn12lig8OHhAYSBcvKp4+xZ1hgSB2z9y7d4+ZraysiOjq1au6O1y1atWIKEvfLV2oWrUqEd3Jgw20kBOhoaFiMU+q26R167JV7iP7fvmFiXjGDGlGA+1lCbgzs1qt9vHxEScTmUzm5OQk7Z4JjcmTM9qJS1XAxsmJiViKehUggeDgYC8vLycnJ80ljZWVVe3atTUtTHXn5Us2MWG5nB88kGC0LVu2EFHmm0PIjn///ZeI2rRpo6PxZ86cqbl9W7duHRF1795dFwcKCMgo/+Lt/ZFnpqdzYCB7erKT0xvFr+bO5Rkz2MGBlUru1IlTUzMi5jnl58flyzMRW1jwuXPMzKmpPG8enz7NdnY8cSIzs5MTvz/oAbx69erMzUK1cfUqOzmx6O+QBwH3zAXcDxxgIpbw/9aJEyeevfoFlEplyZIliahIJpzqjkoVf/Gi3sWLeipVvFqtvHy5xMWLirS0rH2PMgsOZm9vdnHh6tXZ3p4dHFit5q5deetWnQfclUouXZqJMlaMGjdmIj50SIKRnz17Zm1tTUSLRfEjZnd391KlSq17X/ld0I34+HhRK1J0stWd5ORkUdTUwcFBs6cwOTn533//1Tzn5s2btWvX1nx79+5dy0z7KS5duiR6Xjo7O+t0qnmvoAfck5KSNNtS3u7SJiGRInFUFMbTJZVKVaZMmZo1az6Q5A4AtKO5FTQ3N9dE3hUKhY2NjZub2zvTKF68eGFvby92KqxZsyb7x0pMZDc3NjbmWrX6NmjQ4Ny5c8ysUqmWL18uOkebm5sPHz68cePGmpm0aNFi5cqVH10AeIv66VOPwEB5YCCFhAxRqRJz+HKQ0vPnz4moePHiKpUqPj5eLpcbGhqmZW4iKano6GiZTGZqaqpluaSPevHiBRGZmZnp+kCQC+7u7kTUtGlT7Qsp3LvHZmbZijJkHwLuBc3bAXchMTHR3d3d2NhY7OJ3c3OLj4+X8Lj797NMxvr6LGGhDgTc892dO7xqFTs5cbduazOnNVhZWX355Zd169YVlQqe5C7cmG1LlzIRSxUhj4yMlMlkJiYmWmbXfmoSExNNTEzkcrmOtjWIc1e1atXUavWLFy/09PQMDQ0l7z9x7VpG5ZYRI3JW3Vit5lu3+K+/+Msveft2XrSIV67kpUu5Uyet5hMZyQ4ObG7+RsmaK1f4u+94xAg+fx4B94/buHFj5mahuRAaymvW8H//8dSp/NNPvHlzXgTcJ02Kl8kyCrhPn67DS6nAwECRi6aT0Yu0W7daXLyol5BwlpkTEs69q7OaKjHxsq9vaP/+b6zJiXYOohXNlStcv77OA+6nT78wN1fVqcPMHB7OMhmbmrJU6cXh4eG//fab5ltPT0961XID8swff/xBRO102TpO4+HDhyVLlqxVq5YmZpucnDxq1CjNE1JTUzOHztLT069fv555hKtXr4qMsVWrVuXBhPNMQQ+4M3NMTEzTpk1F8DFON6XR7t+/T0QlS5bUXRRM4+7du6KOEmqiFSgqlSowMNDDw8Pe3l6UsRNEoUAPD4/AwEC1Wn316tUaNWoQUdmyZU+cOJGLAwUEPKhduzYR6enpTZs2LSkpiZnDw8P79u1LRBYWFkRUqlQpFxeXS9o1wYmJ2Xv5comDByvZ23fQUWYiZMehQ4eIqH379szs7+9POm7qdfToUSJq27at7g4h+Pn5EZGdnZ2uDwS5kJSUJHKTtW/TnZzMrq6SlfsQEHAvaN4XcBdCQ0OdnZ1Fn7rKlSt7e3tLtUXv2TPu2ZMXLJBksAwIuEtl3bqMxjPx8W/8fc6axWLZ5b//+NYtDgnhsDB++pTXr+fhw7ly5dexg7ZtH1SoUMHJycnLy0tzHRIdHS36d9WtW1enmTRNmjARS9g1qUGDBkT033//STbip8HR0ZGIcpShkn0qlUpcOV+5coWZRZKWtFUL7t9nC4uMtGJtbt0OHOBFi1il4q5duXFjbWelVHKWfYwi4P70KTs48IABCLh/3JYtW0TMPftNj5RKDgxkd3e2sWGZjInYw4OnTuWUFO7YkXv10nnA3dLS0tzc6sqVR8zct2+cTCZBAfd3WrRoERF9/fXXOhm9SEtJuadSxaekBN+75xgS8vmzZ6uYWa1WJiYGRkZ6Bgc7iY5rc+duER+UFSqwkxN7enJgIKtUGQF3Zp48mWfN4oUL+dUGeOlNnz5doTCYPftPZl67NkEmy9iroQsODg5EtHHjRl0dAN5FZJ3/nf0WSdqpW7euTCY7pMUuic2bNxORvr5+UbrWKgQBd2aOjIysU6cOEXXq1EkXZX0WLlyYZ/sXRLeWESNG5MGxIHcSEhL27ds3efJkcXOlUb58eSMjIxGVCNPi0y8pKen7778X/UOsrKxEDy6VSiW2/KxcuTI7NWqyd6DrvXt3JqIKFSqcOnVKkjEhp3799VcimjRpEjMvXbqUiEaPHq27w4mz2YQJE3R3CGHBggVE9M033+j6QJA7ogBCuXLlYmLeTq75CNHEUpzkRo7khw9Z2saZCLgXNB8OuAsnTpxo0qSJ+DRs1arV2bNnc3es7dvZyopFlnCnTqxSsbSbZBBwl0qXLhn/TE+esJPT68crV+apU5mZFy3ijRt5+nR2d+clS17H2cuV48GD2cuL79179z/ts2fPxPVVo0aNPto3PnfOnmUiLl+eJUykmTRpEhG5u7tLNuKnQWTY9e7dW0fjjx49moh++uknfnUJNGzYMKkGDwvL6FFpb5/x3yHXLS1EwJ2ZAwPZyEiqCb4mAu7MvGwZFy+OgHu2aJqFjhs37gMLyU+eRP/5Jw8YwCVKvD7RFSvG/frxn39mnA8PHWKFgsPCWHc1zx8/fiz2Q4sts/r6+uXL14+P10myoOg+tWHDBl0M/ikIC5sRE5PRTObx44mXLpkGBpLmz/XrNc6fX7R2bUYtl/f5/Xcm4nr1dLWQIz6IRYGHvn37Vqhgs2HDBV0cKCEhwdDQUKFQfKDAN0ju6tWrIqU4MTEvqh2Ijpjad2cV11oVKlTIg9qDeUNOhUG5cuX2799vYWFx/PjxL78cq1JJPP7u3buJSKQY61peHgtyx9TUtGfPnosXL75+/XpkZKSPj4+Li0uVKlUiIyPNzMxat2594sSJSpUq5Xp8Y2PjBQsWBAYGNmvWLCQkRKRXXLp0KS4urnr16uPGjRMVrLRnbNxg/fptDg4OERERHTt2XLZsmSTDQo5cvnyZiBo2bKj5WmzZ0enhdHqIPD4Q5M6QIUPat2//7Nmz77777vq73Ljx4Pp1euefuDhq0YKmTXs9mkKRf78JFAwdOnQIDAz08vIqW7bsuXPnbG1tx4wZ899//73z3XXz5tP3vbvS06lGDVq0KGNYuZzkheNS9FP06BE9fEhhYW88WK8eRUbS1atERCVKUJ8+1K8f9e1LffqQpyddu0YREbR1K7m4UK1a7/6nLVu27NGjR+vXr3/t2jV7e/vo6GjJZ75mDRHRiBGkry/ZmKLpzvHjxyUb8dPQp08fuVx+5MiRxMREHY1PRL6+vkQkmsbv379fqVRqP3JUlLprV3rwgNq2pV27yNCQ5s6ldu3o119zM1rbtjRsGKnVlJ5O48ZpP7usDA2palUionHjyNFRynd+Eda7d+9///3XyMho1apVY8aMUavVmh+pVKqLFy/OmTOnefPmNWpUmzyZd+yg2FiytCQXF/L1pefP6d9/qU8f6tmTiKhrV1q1isaMoS5daOtWncz22LFjRNS+fXu5XH7q1Kn09HRLy+JmZtL/S6tUKrElt3379pIPXrSp1YlxcUdiY/cVL97lyZNZL16sVauTZTJ9tTrR0NCydGnnatW8GjQIadAgpEWLqV9+SbVqfWi0L7+kZs3o1i2ytyfJPydDQ0ODgoKKFy9uZ2eXmpp69OjRyMhLHTtWkPgwRETk5+eXmpraqlWrMmXK6GJ8eKfVq1cT0YgRI0xMTPLgcGvWrCGikSNHivzUXFu4cGH79u0jIiKmT9+Tni7R5PJXfkf8c+D69euVK9exsXkxfHjOKuh9WGRkpEKhMDQ01FG9mswiIiLkcrmxsXFCQoKujwWSmzt3LmWqoREWFvbrr7/mIntUIzU19fjx4+LrefPmEdGYMWO0n2cWWVq85kHdJNBITk7++eefGzVqVKpUqfHjx4t6RGfOnNHdEevVq0dEFy9e1N0hBLHr6PLly7o+EOTa+fPn5XK52DrztkaNJmYuHJn5z8KFPG4cT53K+/dnZLhLCxnuBU12Mtw14uPjf/jhBz09PVFk5p3at3/vu+u333jVKu7dm+/f17aQ8Tshw10qXbrwjBn8ww88efIbGe4ODhwWxl278sKFvGdP7sePiIgQH1hNmzaNiorSfsIaKSlcogTLZCxtS++YmBiFQmFgYIBr+Jxq1aoVEe3atUsXgyclJS1cuFDTv100CdBcXedaQkKCnV0HO7s7DRuyeHuuWMFErFCwNhVrVKqMlqeSd7DbsoVNTVnrJqCfouPHj5uZmRHRF1988fjx47/++mvgwIElSpTQfKKZmZmNG/d49Wr+aANRD4+MN8natdLP88svv6RXXSinT59ORDN0cyGFAu45olLFx8b6hYe7371rf/GiYWAg3bjRiJnT019ERPwWHDwoLS38w31TP+DZM7a2ZiJu1YqljVStXLmSiAYMGMDMBw8eJKImTZpIeYBMvv76ayKaO3eujsaHtyUlJYm+x1nqpOtIfHy8aEkoSXfWiIiIPn0OyeXs6qr9YPlPT4tYfV5r0KCBj891e3v9ixfJwoI8PKQZds+ePSqVqkePHuJdolO7d+9Wq9UODg6iIQAULpMnT16wYMGpU6du375dt27dkSNHHjlyxNzc3MXFJXcDGhgYdOzYUXwtKmKLAmfSUigUHh4ejRs3HjVq1B9//HHz5s3t27eXL19e8gOBhlKp9PPz27p1665du+Li4ohIJpOtXLlSLpe7uLhk7osrraSkpLt37xoYGIgu0LqTmJh47949AwMD0YMeCqarV6+q1Wq5XJ6lOpZQrVqZTLlcbxC3me7u1Ls3VayoyylCIXTw4MGNGzeKBNIaNWq883rGwqLiu950RERiB9fChfRqIRgKLnd3MjSkp09p0qQ3Hq9Uibp1o82bac6c3A9evnx5Pz+/jh07Xr58uVevXocOHXrf6mD2BQVR2bJUvjwFBtLWrWRlpeV4byhRokSzZs0uXLgQEBDQtWtXKYcu6vr06XPu3DlfX19dbPA1Njb+7rvvNN82atTo3r17Tk5OPXr0sLGxsbOza9as2QdWB98pJSWlT58+p06drF2793//XTM3N9y0ib75hmQyWr2anJxyP1u5nHr2pHXraPdukvYCautWSkwkc3Mpx/xENGvWbMiQIZs2bdq8efOWLVuYWTxubW3do0ePHj16tGvXLpubj8Xn2vTpNGoUJSTQN99IOc8TJ04QkbhzFF936NBBygO860DwTs+fPz916lTjxudSUw8nJ19jzii/IJPpmZq2MDProFbH6+mVLlt27MuXPvr6ub+SLluWDh+m9u3p3Dnq0YMOHSKpYkj79+8nop49e2q+7tWrlzRDv4mZDxw4oLvxPykvXtDbu+yiotLNzPYYGqqSkpJSU1PFgwEBATExMW3btn3nPaDkNm/eHB8f36FDB0kiA+XLl585s+uhQ7R0KTVtSiNHaj9kvsrviH+O+fmxoSETSdZlSxQp01EznyzESe2vv/7Kg2OBLogV2unTpzPzhg0biKh169baD5uYmChKm0mb5JXFuXPnKlasSHnVruATJPZgurq6Zl7PsLa2dnd3DwkJ8fT0lMvlRPT111/rqGfy6dOnSZcZChoBAQFE1KxZM10fCHItNja2QoUKRPRPznN9793jceOYmf/5h01MkOFe9GUzw/3mzZvdunUTZ7Z69eodzFWztu3bedUqZuaZM7lixVwM8BHIcJdK5hruAwfy0qU8cyY/eZLR0i09nRs31irDXQgNDbW0tCSiNm3aaL/TdOhQ7tWLmTkkhL/6Stu5vU3sFxQXgZB9QUFBRFSuXDmltP1A3nL69GkTExNRlVujTJkyffr0mT9/vr+/f3ZqyyqVyoEDBxJRxYoVQ0JCmPnQoRB9/YwNOtrbuZOJWIq7h9diY9nIiBUK1mUf4iJr7969RNSoUaM5c+YUL168Vq1a33333UMtLn2WL2eZjGUyXrxYskm+XcBdT09PR7vzUcD9nZ4+ferj4+Pq6mpjYyNu6E6dahUYSBcv6t28afP4sWt0tI9SGS2eHBW1MSRkWHDwwNhYP6UyNi7uhDaHfvSIq1VjInZwyPhc1lJycrKJiYlMJhNlsmvVqkVEp0+flmDot1y6dImILCwsPtAm4VMWEfF6w9PZs6wptx4U9PrxEyeYma9d41at3r15lOgmUdbU4XLlyn3++ed581s0b96cpG6Ku3o1E7GREQcGSjhqPih8AXdm3ryZ5XKWyVj7IHl8fLyJiYlcLn/69KkUU/vIsYyMjORyeQSuhgotEWesUKFCenq6ZquO9ntnxMJvNrfza+PJkyeDBw9GxxLJBQUFubu7i4oxmePsd97c0L5t2zZjY2Mi6tatW2xsrOTTWLFiBRF9+eWXko+chegHMGrUKF0fCHJtypQpRGRra5uLC9zISN60KePrWbP4/n2+fVvKuSHgXtB8NOAeFRXl6uoqen2bm5t7enrmOnB28WJGT7nERP7uO75/X+JuYAi4S0XTzVSl4uhojo7mX37hO3f4yZOMx6OjWZJGXI8ePRKfnra2tvHx8doMNXQof/cdb9okccD93qvGdocOHSKiFi1aSDb0J6N27dpEdOrUKd0d4tq1a+bm5kQ0fPjw69eve3l5OTs7Z74wIyI9PT0bGxtXV1cfH5/IyMi3B1Gr1V999RURlS5dWlzeBwQEmJqatmu37YcfpIkWJSayiQnL5SzhrefatRmdXSEXvv/+eyL64YcfmHn+/PlENHr0aC3HXL2a5XIm4p9+kmKKzOvXryeizz77jJmjo6PnzJkzfvx4aYZ+k1KpFLe3jz5aQOfTcPPmzS+//LLWm9XWTUxMOnfufPSoZ1zcMZUq6e1Xpac/f/lyp1qdplanXrpkEhgo18Tic+fWLS5Xjps0Of75587ap23t2bOHiGxsbJg5LS3txx9/dHBw0NGC6M8//yzJ/6mi6vDh16XAhg3jBw8yvnZ35/r1M66yOnXi48d5+HBWKN4XcGeiFpnfohYWFjKZTE9PTzTF1akrV66Qbrqzfv01E3G1aoW7DXihDLgz88qVGSXStm3L8Wvj4+P9/f09PDwcHR1LlixZtmxZCwsLXedcMLOPjw8RtWvXTtcHAp0SJUf37NnDzGPHjiWi77//XssxRWjsf//7nxQThLxz48YNd3d3q0y71qtWrerq6urv7/++l5w5c6Zs2bIilSY0NFTa+YgdGEuXLpV22LeJ29Hly5fr+kCQO/fu3TM0NJTL5RcuXNByqNu3uWpVtrJi7eJgb0DAvaD5QMA9LS3Ny8tL9LnS19d3cXGRcMn20CEuXpx79ZKyMQ8C7joSE8NLlrBuEuD44cOH1atXJyI7O7ucxtzT0/n0aZ47l3/8kYcO5dBQ7tCBL1+WJuCemJjo5uamUCh2797NmfYjRkdrFTr5BH377bdENG3aNB2Nf//+fQsLCxGRzBKNCg8PF3mptra2+m/2ErWwsHBycvL09AwMDFSpVPzqgtzExCQgIICZr1y5IoKP0gY3HR2ZSIK8MY1u3SQe8JPSokULIvLz82NmR0dHqfI0//yT5XJu1WrXjz/mPuiuVCoDAwPd3d0rVqwol8vHie2HuoQC7lmIBG0iMjU1tbe3d3d39/PzS/lYnnlQUN3AQEpIOMvMt2/bBQZSTIy2O8KuXUuuWLESEX3xxRfifJUj6enpgYGBIgJmYmJSokSJXmJHmI61adOGdNbDowj4QMB95syMe6VOnTgxkX/9lWvW/EDAvZ2BgUHnzp0XLVp069YtZv7f//4nsmTEVi3dEQGxyZMnSz5ySgq3bJmxnKz7YK2uFNaAOzPPmZOxy+Du3Y8/+d493rhxy7hx4xo1aiRStDREm5TRo0frep/L0KFDiWjRokU6PQromsh96N+/PzOfO3eOiMqXL69lJ9IhQzba2HQ7cUKHiT8goUePHnl6etra2mpOI6VLl3ZxcfH398/OaeTOnTsiUcLOzkXaRiY2Nja6ziATmjZtSkTidhQKIFEnUZJ0kpQUbtKEiVjCjRMIuBc07wu4+/n5aRpC2NvbS955KSyMy5RhIin33SPgrgtKJS9axG5uEm92yezevXuVKlUS77SkpHckDGYRHMxeXuzkxCVLZtxtmpvzF19wZCQfOcL9+/NXX3FqqlZT2rt3b9WqVUVatObqvXXr1ogd5MLx48eJqG7duroYPDw8XGSyd+nS5cOBsNjY2EOHDrm7u9vb24sbQA1zc3NxujMyMhIpgXfv3hUVAnMX3vqAP/5gIu7dW5rRnj9nPT3W13+9KwWyLy4uTk9PTzRD1iR3h4WFSTL4P/9EmJiYEJGbm1uOXhgaGrpmzZr+/ftn7myhr69vZGS0b98+Seb2PosWLSKir7/+WqdHKURUKpWnp+eFCxdylJ358OHowECKiFjAzOHh/wsMpNBQbfPzmPnSpUviLTpy5Mjs3HImJCQcPnx41qxZ7du3NzIyynzGUygUcrl83bp12s/qA6KiohQKhaGhoY7KHxUBhw9z48bs7MzOzmxp+UbAPSCA+/fnmze5Uydm5oQE7tHjHaF2Cwt2cLi4ffv2LLvnVSqVKGfdpEmT7FxW5U5CQoI4TQUFBeli/MePuWxZJuLCW5O7EAfcmfmbb3juXP7hBw4OZmY+fz5jnzIzp6VxYCB7erKTE5crx0Rcv35LcX7R09OztrZ2cXHx9vYOCQk5c+aMaPml05qMaWlppUqVIqK72VkfgAIsIiJCX1/fwMDg2bNnzNyoUSMtb70iIlgmY1NTaYqyga7169dP033L3Nx89OjRR48ezekWmefPn/fs+WXlyuklSrCfnzQTS09PF0WrdH1Nk5qaKrKntdz7DzoiOjAXK1ZMqlJpd++ymRkTsVSl+RBwL2jeDrjfvXvX6VVnwNq1a/v4+Ojo0Pv2sUzGhoZ86ZI0AyLgXnjdvXtXdJrp2rXrO2tt37p1a+XKla6u/mKdRvOnbl0eP563b+fPP2dRJmTIEHZ25saN2d09N/snIiOTBg8eLN7/LVq0uHz5MjOr1Wpvb29TU1M7OztNkRnIJqVSKTbK3JZ60ebly5eiF32rVq1ydFmiVCqDgoJE5RnR501fX7948eJr165l5sTExGrVqhGRo6Ojllk1b4uIYLmcjY05IUGC0cS2b0dHCYb6BIkC7nZ2dsx84cIF8ZEn4fi+vr6iqcC4ceM+HCHVJLPb2NhkbvNraWnp6up6+PDhiRMnEpGBgcGOHTsknGEWKOAuiaioDYGBdO+eIzPHxh4MDKRbt1pJMnJAQIBYLPzmm2/e+YT4+Hg/Pz+xrJiloYWlpaWIgD1+/HjJkiUi7C4aBeuI6HjXtWtX3R2isPtAhntAAIeE8GefZQTcmfl//8u47JHJuEUL/vlnvnjxQxc50dHRNWvWJF028Pvzzz81p1AdOXaMZ8zgy5czFpUTEvjWLb56NeMXT03lmzd1d3AJFO6Au9CiBQ8YwMy8ZQvPm8eTJ3OrViya22j+lC/Prq5rFyxY4O/v//YKj5+fnzgfLZCqE+tbRASkQYMGOhof8lKfPn2I6Pfff+dXiQB9+/bN9WgbNjAR9+wp2fRAp7799ltjY2NHR0cfH59ULdLnUlL4iy+YiPX0MloIakmpVHp4eMjl8lGjRkl+c5iZ2Fypozw10FJ6errI0ZN2N5VIxzMzy9aWsiyuXHnj28REPn2aFy9mf39pYg2gvcwB95cvX7q5uYmLIjMzM3d3949undbSxIlMxLVqcU7XCpVKvnbtjUfi4njvXl68mG/e5Gw0R4QC5/bt26IwSLdu3cQb78mTJz4+Pi4uLiL6SUTt2n0tUrqcnNjLizPXGT57NiN34dkznj8/o4by0KE5ezP4+HCZMtysmZuJiYmHh4dYUL9586adnZ2YQP/+/dH8LRecnZ2z3Gqlp6drWdIzMTGxbdu24g4rKipKm6FCQ0PFNkFvb2/xyKZNmzp06JCgmw+qQYPOt2//ja+vBDkXHTowESNAmjuZC7gvXLhQqt2Bme3bt08kF48ePfrtrRKRkZE+Pj7Ozs4ic1kwMTGxt7f39PTMUkhd1IhQKBR///23tJMUUMBdKqmpoYGBdPlyCbVaqVLFX7yof/GinlIpTUaUn5+feEdpqtE+e/bM19fXzc0tS+EshUIh0kx9fHxevLUF5qeffhILjb6+vpJM7G1DhgwhoiVLluho/CIgS8D90CFesoQPHMgIuDPzzz9z+/avn798Oc+bl4Oa5levXhX7bFavXi3pxDO0atUq8+em7gwYwEOGMDPfvMnjx3OnTiyiHWFhPHiwrg+ulaIQcHdw4J9/5n/+yQi4iwi7QsHW1uzszF5eHBT08fSWzZs3y+VymUz2559/6mKSYlFafJxDYbdz507N8klkZKToFP9E00csh0aMYCL+/XdJpwg68/z5c6lagqjV7O6eccpydeXc7VeeOXPmwYMHxdfbt28XTVl79Oihuzz3v/76S+yw1tH4oI3FixcTUa1atSQPkn7+ORNxixbZrdIQFMTu7mxlxUR88eLrx7/+mkeMYGZ++pQ//1zaOUIuaQLu3t7eooSCXC53dnbOmx7vmrJF2Sy6rVSyvz+7unKFCmxs/EZ3gRYt+LffmJkPHuRff9XJbEHXrl+/Ljqd1K5dW2RmaZQvX37IkCHr12+7fz9bQ+3bxyVKMBE3bcqPH3/8+XfvcqdOGR/KQ4fGPXjwgJnT0tI8PDzEElSFChXy4K6yqNq2bVuWPLjt27ebmZnZ2tq6ubn5+vrmtDJ+ampqt27diKhmzZq5vgjPbPny5UQ0QKRxMTOz7lZW5s2bR1J0uX/yhBUKNjLiN2sJQHbpqIB7FsePHxdZyV988YVYZ3pfMruLi4uvr+8HLuE8PDxEIFVsxZAWCrhL6Nq16oGBlJh4mZlv3WoZGEhx0YelGnzXrl0isN6mTRtra+vM7yJDQ0M7Oztxe/jRm8Hp06eLbRMHDhyQam4aSqWydOnSRIQ9YR/w4kVGrQ5mvnaNQ0M5KoqnTePgYI6JYWZOSWEtG3Jt2rRJrKx8oMlc7ly9epWISpQoIXm71LcNGMDffMN79yLgnh8cHDg5mdu35zVrePVqXrCA/fxynCfFzCtWrBAfYNty0Yn1Y0QzKO3710FBkJ6eXqFCBSI6f/48M/fr14+IFi5cmLvRKldmIpa6NC4UGn/9lbEjZ+BA/kCBtczh+E6dOmn6n9y9ezfzHuqzZ8+WK1eOiBo2bKij/BSxfJjrNzzoTlRUlLi03bt3r+SDv3zJ1aqJUjDvDUAolcrjx4/PmnVXnNbEn4oVeffu18/5+mseMICPH0fAvQARAXeRAkNE7du3FzU08syNG2xiwkS8det7313Jycm7du0aOzalVKk3aolk/vR0cOA+ffjxYwTcC7erV69WrFixWbNmYpuFvb29h4dHYGBgLqKf165xjRoZJ6Jz5977NKWS581jY2Mm4nLleNOmjMcDAgLEniGZTObs7Px2hiBkX3x8vCh8p1nJ+/nnnzMvqCgUiqZNm06cOHHz5s2PP7ZColQqRdmrihUrStURLiwsTCaTmZmZvbOikbSCgoKIqGzZslrm+P/+e8YFJORGbOyZzp2nt2iRmJgoeQH3LDQx95o1a5YoUULztjczM/vss89Wr16d/Yt2EXOXyWRLly7VZkpPnz5du3Zt5qLwKOAuoQcPRgQG0otHK5g5xXueukYVfpWQLont27eXLVtWlCw2MTERK5d+fn45rdY9depUMcJJTWlmifz3339EVKdOHWmHLfK2bWPJi25MmjRJJA2Eh4dLOOyECRPo/dWNpDVgAD95wu3b88WLGQH3oUN52DAeMAABd91zcGBmPnCA69ZlLbdKuLu7i1W+Q4cOSTI3QSwXV6pUCVtQiwzx4SSaxfv6+ub64+TGDSbiChVyU2MUioz9+7lYMSbi9u3fSB/W3PHFxbGl5esq/+PHj/9AwZDg4OC6deuKu9CLmVOLJSK6xR45ckTykUFLok28vb29jsY/d46trFLq1v3c783OA0ql0t/f39XVVdSC6NDhWyKuWpVdXdnPj9PTM56WmMjXr/PXX/OVK9yhAz96hIB7QXHz5s169eoRUeXKlb29vfPlWsXLi5s0ibay6pQldpaUlOTr6+vs7CyaMtnZ3SNia2t2d+fAwNdPEylCDg58/To7OSHgXuglJSWdO3cup33q3unFi4y8dUNDfl96ukrF7doxETs58bNnzMwxMTx+PNer97m4wJM8EvFp6t69OxFlbtMXERHh6+sryg1n6elnYWHh6Ojo4eHh7++fpYKfWq0eNWoUEZUsWfJKlrJl2hHLPLruSynUrl2bMjW6X7169ZgxY9xemTFjxooVNz082MODFy5kLy/28uI7d7IO0qoVE7EOUsU+DXv3MhHb2TFz8sWLAR07zu3RQ3dHO3/+fJUqVRo0aJDNZPYPWL58uUwmk8lkv+dwi7RIrvfw8LC1tRVp0Znra6OAu4TSDm9WV6yQUfjY1zfjNk9ScXFxO3bsCAgI0KaUqFqtHj16NBEVL14817mhKpXq8uXLS5YsEcmIgpubGxFNmTIl13P7BPn58T//cA67LH9cenp6hw4diKht27baVMTNLCkpSaz35E2OzoABHBvLO3bwkCHIcM9zIuDOzAMGaBtwZ+Zvv/2WiIoVKxaY+U5OO7NmzSKiCRMmSDUg5DuRmSJ20KSnp4sw05kzZ3I6jqcnE7HO+lhAoXHtGletytOns1yekYXn4sKZy6R36PA6TTgmJubDMYjo6GjxsWpmZiZtsrNKpRIZOs+zXz0O8kRQUJCenp6ent51Xe6XmTt3nljLEV2jmfn48ePiekuoVavWjz/+lvmKPTGRfX3Z2ZmLFeMaNfjrr/nhQ/77b54yBQH3AkStVv/xxx85TYySlpPTYCJq3bq15tZx9erVokyWYGNjs2zZwcyNBF68YG9vdnRkfX3u3z/jgnDqVJ4yBQF3eC09PaNVwAcKuN2+/bqH+c6dXKkSE3HDhvGzZs3Kg3znT8SqVatEWvc709jT0tICAwM9PT2dnJxEh1WNLBvhNSmZmmi1VObMmUNEY8aMkXbYd5oyZQoRTZs2TXzbt29felObNv9kbkj2dqH2kBCWybhYsQ/tj4QP+f57JmJR8XXhQiZiqQu4Z5GSknLx4sWHDx9qP9Tq1avlcjkR/fTTTx998tOnT9etWzdo0KDMF2ympqa9e/fWVNNFAXeJ3b3LRFy2LKvVHB3NcjkbGhbM/6tKpfLzzz8XS5iXst3CXizeiDO2ubm5eFN99913mieItaWjR4/qZtZF1tOnuSwz+2ERERGVK1cmokmTJkky4Lp164ioTZs2koz2USLgzsw9e74j4L5rF3t6FtDuTUUh4K5Z1X/wQNsKR8ysVqtHjhxJRGXKlLkpUcvbRo0aEdHhw5LV7YKCQPSI2LRpEzNPmzaNiFxcXHI6SK9eTMS66XwDhcyzZ6xUcsuW3K0bK5U8Zw6XLv26R+WqVZyjFIGUlJRhw4aJPdorVqyQapK3b98momrVqkk1IEjFwcGBiCZPnqzTo6hUqs6dOxNRjx49RB708+fP9fT0LC0tXV1dM8dEoqN5/Xru3ZuNjDIiBXI5t2nDzs788CGr1ezggIA7vOHly5ei/t7MmTPFI0ePHiUia2trd3f3u5kC7Y8f85Il3L59RldMIjYweB1wF1uCEHCHLLy8Mgq49eyZURr1bU+fsrNzxpuqWTPWwSaxT1p0dPTq1auzk8auVqtv3rz5559/jhw5sn79+pnXAn/88UexHVnTwEZCoi28hYVFHmz0OXHiBBHVrl1bfHvw4MFVq1Z5vDJv3rxff73u5sZubvzdd+ziwi4urEkeffaMExI4JYW3b8e5TgstWjBRxlKboyMTsQ4KuOvOxo0b9fT0iMjtXQmxmZPZRWhe0CTXZ15KDA0NFR1ZUcBdShUrMhGLgFLjxkzEJ07k95zeTalUDhw4kIjKlSt369at9z0tOTn5v//++/nnnx0cHEQClkaNGjWGDx++Z88e8czHjx+LrHmp8qlBe2fPnhUNaTLvM8s10bFcF80k3unw4YwyAI8fs78/HzqUUR8iMZFPnOC7d/nYsTdKmBYcRSHgrum+s3evNNccaWlpvXr1IqLKlStrvwT94MEDkQqN000RI+4ZRPWGW7du1apVa/HixTkdZN067tePpWj1BEWBSsXduvHKlbxsGf/4I/frxz///PpHOaVWq0WZLCJydXVVabdcfuPGDXd396pVq1asWHFwAd+79enZvn07EZmbm+dBieGwsDCRe+jp6SkeyZwM9ezZsz/++GPs2HUisCV6mHfsyEuXsiiLun07v3zJzHzrFm/erOvJQiFz7tw5fX19uVwuyhalp6dnLjcZHBy8YMGCL74Ilsky3l1GRty3L//9d8abStP2/tgxPn48z2cPBd7Jk1y2rEhd5yx1v9Vq9vZmc3MmYhMT9vBgrYvZwDt8II3d1NRU00A1KirqnS/XNNzy8fHR0QzFsl/mwgg6olQqxd/A7du3c/raESMyVqwfP+bhw6Wf2ychLo719NjAgBMSWKnkkiWZiHVTwF13tmzZImLu33//fZYfNW/eXPOfy8TExNHRccWKFZmLtr3du7Vt27a6aGX36RoyhIl41Spm5m++YSLOxnaE/JKamtqjRw8RActS3C86OnrWrFnt27fPUvirbt26o0eP3rBhQ5btSs+ePXNxcaE3e1BDQSD2mRkZGWlZdfbmzZsiwpmQkCDV3LQ0Zw5HRub3JN6lKATcbW05Pp7j46Vc5E9KSmrXrp3IO4jM1T/d06dP//3336lTp1pZWcnl8s+RyFfkxMbGmpiYyGSyYE1v6ZyoUCGj/uySJbx3L/frl/H42rX8zz/SzRIKFRFwV6nY3p4nTuTlyznnuyayWrt2rWhkP2DAgFzUiwgJCZk3b57YpiO0l7oEIWgpJSWlVq1aRLRKXNPr3r59+2QymaGhoWbn6bNnz7y9vR0dHcWbrUoVS4WCbW3Z0xMLipAzIn21fPnyms6KwcHBnp6emoKzrVsvNDZmR0f29s7YXgqQfXfvcr16TMQjR/Ls2RkPzp7NHTtmrOL06cOhofk6xU9JcHCwt7e3i4uLtbW1+A8uKBQKa2trZ2dnLy+voKAg8eSNGzfK5XKZTKYpgqELojP8D6LMiI4NGjSIiBo1avT555+7vDJhwgRRxn3evDs//MCijHvmSu4bN/KIETx8OB88iIC7FjIVcOcLF5iIX+02KFx8fX1F1uq4ceMy78yYOHHi+5LZ16xZ079/f9EZRShWrFi/fv1QvV1iK1YwEX/xBTPztm1MxDprsySJxMREUZK0Zs2amdMdEhMTDQwMMu+Q8Pb2zhJkf/r0qY+Pj6urq2b9xtHRcefOnXn9O8DHiA4o1apVy2l52JSUlKCgoH///Xf+/PmiXpBoZ5jv0tN5zBj28iqgF29FIeBeqxaPHctjx3LPnlLuqouJiWnatCkRtWjRIi4u7qPPVyqVQUFB77xqnDhx4oMHDySbGRQYomSHu7t7Ll7bokVG5ZD583nnTtZ0rFm9OmuJRvh0iIA7M58/z2ZmfOyYNMMeOXKkRIkSRNS6detsriC+ePHCy8tLE+EiolKlSjk7O/v6+qZrmmBCwTB37lwiql+/fl7+04jG9NWrV//ll1/atm2r2a1saGjo6Oi4bt26qChkh0JuaMoW2dnZzZo1y9raWnM1VaJEiaFDh+7atb9AFkGFQiMmht3decsWrlGDRVWSTp148mQuX/69XVUhD0RGRu7ateu7775r27atCCBqVKpUqX379iKTN6ddInPq8OHDRNSwYUOdHoWZY2Nj69atW65cOXqPZs38stRwF3+qV+cRI/j2bW7fnu/cQcA9t/K8gLvu7Nu3T6Qejx49WrOfNXMjzbeT2TXBU1dXVz8/v9z1boWPCApiIq5UiZn52TOeMoUPHMjvOX1EbGxsixYtiMjKykqT98DMnp6eu3fvzrL3KDg4eP369V9++WXNmjUzn7tMTEw6d+68f//+PJ8+fFxycrL4J7a3t39fT7j09PTg4GA/Pz8vLy83NzdHR0dLS0uFQpH5X3nq1Kma5fD8lZ7OgYEcGMiv+osVLDJmft/HfGHRrh35+xMR7dtH16/T9OmSjfzs2bN27drdvXu3U6dO+/fvz7KJhoji4uLOnz9/6tSpixcvnjp1KiYmRvMjMzOzxo0b29nZ2dratm3btnTp0pJNCwqMY8eOdenSpXLlyrt27UpKSkpISEhISIiJiRFfKJUmERFT4+MpIYESEyk2luLiKCGBEhJoyhQ6fZr696f0dEpOJisrmjyZ+vUjIrp+nUaOpGHD8vt3g/zATEuX0qRJRETLllHXrlSnjjQj37hxo1evXo8ePbK0tNy/f3+d94wbExPj6+u7bdu2gwcPKpVKIjI2Nu7Spcvw4cP79u2ryW6AgiMiIqJOnTpxcXGHDx8WZdzzRkpKSsuWLR8+fBgfH0+v3idOTk59+/YVqzsAuRYWFtakSROVSiUuq8zNzXv16uXk5NS1a9csYTiAXPPxoSdPaNcuOnCAevWiPXsoPZ1KlszvaQERESmVyqtXr546dSogIODEiRPPnz8noqZNm/bu3VtsgtGd9PT0cuXKxcTEhISE1KhRQ0dHSU5O7tmz54kTJ6pXrz5z5kxTU9OEhATNBMTXpqZDYmKqvXqYlEqKjyciKluWwsJo3jwKCKAjRyglhby9dTTNIq1lS7pwgfz8yN6eevemvXtp40YaOjS/p5VLJ06c6N27d0JCwhdffOHt7S1Wp549e3bw4MG9e/f6+flpwhQmJiZt27Z1dHTs169f1apV83PSRR4z/fQTtWpFcXF06BCVKEGurlS9en5P6yNiYmI6d+58+fLlxo0bHzt2TNMQVQgJCRFnZj8/P1E5WTAzM2vdurWtra2dnV27du1wtVaQhYaG2tjYPH/+/Icffvjxxx8fP35875W7d+/eu3fvwYMHIg6Qmb6+fo0aNWrXrm1lZVW7du2+fftWrFgxX+ZfuCDg/hEhISF2dnZPnz7t27fv9u3b9fT0xFnm4sWLAQEBly9fVqvVmidbWFiICLuNjU2rVq3Eznoowpi5Vq1aUVFRsbGxb/+0RIlqsbEP3/nCKVPo+nU6eJC6daMmTcjWlpYuJR8fIqK//6Zy5RBw/0TFxtKcObR4MRHRxo1UsSJ17izZ4E+fPu3du/fFixfNzc137tzZvn17zY+Sk5OPHDmyYcOG3bt3p6WlEZGhoaGDg4OTk1P//v2zdMWBAmXDhg1ffvll3759d+zYkceHvn//fnR0tKen54ABA3r06GFiYpLHE4Ai7PLly48fPz548OCAAQM6duwoYgcAEvLxodhYKlmSbtyg//6jY8fye0Lwfrdv3z5//ryTk5OxsXEeHG7IkCH//POPp6fnJJEBITWVSjVo0KB///23UqVKp06dqp7zANzIkTRvHlWsSD17UtmyCLjnysqVdOwY/f03GRpSmTIUE0NhYVSpUn5PK/f8/f179eoVHx/v4ODQpEmTw4cPX716VfPTBg0a9OjRo3v37nZ2dkigyVNbttDp07RoEYWGkrMzHTlCpqb5PaePeP78eYcOHW7dutWqVSs/P7/nz58fOXLk1KlTJ06cCA0N1TytWLFirVq1sre3t7W1ReyrcDl27Fi3bt2YWaFQiHv/zBQKRdWqVWu/IiLs1atXx9V4LhSFgHtwMIldLPHxlJxM79+Zl0vXrl3r0KFDTEyMpaXly5cvX758qfmRsbFx8+bN27Zt26ZNmzZt2nxgVyAUVS9evPDw8Dhy5IiZmZmZmVnx4sVLlChhampqZmZWvHipEiWmmpmR+FOyJBUrlvF18eLUtSsdPkyBgWRvT+vX06pVdOgQEZGXF5maIuD+iYqKolGjaNcuIqLFi6laNerfX8rxExMTP//88z179hgaGq5du3bAgAGHDx/etm3bzp07RTqVQqFo3bq1k5PT0KFDs3QzgwLr+vXrxYsXr1atWn5PBACg0BAB99Gj6bPP6P59CgrK7wlBgbF58+ahQ4d27tz56NGjkg/OzKNGjVq3bl2ZMmVOnjyZuWpW9u3bRx06kJkZhYTQrVvUq5fk0/wEvHxJu3dTWhrZ29PevXTrFq1ald9z0tbp06d79uxpZmYWHh5OmZLZP/vsM1wl5pvPPqPVq6lCBSKi2bOpbVvq3j2/5/RxYWFh7dq1e/jwoZGRUUpKiuZxCwuL9u3bt2vXrkOHDvXr189coQgKFy8vr5CQkAULFpQqVcrS0tLa2rp+/fqWlpaWlpb16tVDHpVUikLAPQ+cPXvWxcXl2bNnkZGRFhYWNjY2IpO9RYsW2C8DuTN3Lv3wAxHRwoXUsSMdOpTxrZ8fGRlRu3b5OzvIH1FR1KkTjR5NRHTiBA0dKnHAnYhUKpWrq+vKlStlMpmJiUliYiIRyeVyW1vbIUOGODk5lS1bVuJDAgAAFDC7dlFcHA0fTvfuUe/edPt2fk8ICozY2Nhy5cqp1eqIiAjJi4JOmTJl8eLFxYsXP3r0aPPmzaUdHLIrLo4cHWn6dDIxIXd3Wr+edFY+KI9duXIlNjZ27969PXr0QDJ7geDgQP/+S8WKEREtXEiWljRgQH7PKVtCQkJ++eWX48ePp6SkiNiXnZ1ds2bNEGQvMkQcwLTAb7ko1BBwzy61Wn3mzJlq1apVrlw5v+cCAEVTVBQNGEALFxIRbdlCdnbSB9yFJUuWHDhw4OjRo1ZWVk5OTsOHD7e0tNTJkQAAAAAKFXt7+6NHj27cuHGopEW9Z82aNXfuXCMjowMHDnTs2FHCkSFn1q6llBQaP56I6MABOn2afv45v+cERdSMGWRnl7EPpW9f8vQsXKs7sbGxaM4EkGuowpNdIgM0v2cBAEVcyZLUogUR0alTOjzKpEmTXF1dnzx5UqkwV6sEAAAAkFyfPn2OHj3q6+urCbhfunRpxYoVdnZ2bdq0qVu3bi7GXL58+dy5cxUKxcaNGxFtz2eRkaQp5lOpEj19mq+zgSLt++9p9Gjy9aXISLK3L1zRdiJCtB1AGwi4AwAUFHp6GR0piKh8eSpVSofHkslkiLYDAAAAZNG3b99Jkybt378/NTVVlA89fPjw2rVr165dS0TFixdv2bKlKLBga2ubnVauGzZsmDRpkkwmW7NmzYBCUlCiKKtdm27coL59iYiCgqhOnfyeEBRd5ua0YwclJ5OhIcnl+T0bAMhTKCkDAAAAAAAAkKFx48bXrl07dOhQ165diejOnTsHDx48ffp0QECA6EgpGBoa2tjYtG3b1tbWtm3btuXKlXt7qN27dw8cOFCpVP7+++/ffvtt3v0O8D5KJfXvT23akKkp7dlD27ZRyZL5PScAAChqEHAHAAAAAAAAyDB79uyff/65bdu28+fPb968uZGRkeZHjx49OnXq1JkzZ06dOhUUFKRSqTQ/srKy2rx5s42NjeaRY8eO9erVKyUl5aeffpo1a1ae/g7wASoVXb1K6enUpAkZGub3bAAAoAhCwB0AAAAAAAAgw40bN5YsWbJmzRoi0tPTa9y4sagh06FDh8xp7AkJCVeuXAkICDh16lRAQMDLly+fPHliYWEhfnr+/Hl7e/v4+PiJEycuW7Ysf34TAAAAyA8IuAMAAAAAAAC8duvWrRUrVrwzjV3UkLG1ta1bt65MJhOPq1SqmzdvNmzYUHx748aNDh06REVFOTs7r1+/Xo7yzQAAAJ8SBNwBAAAAAAAA3uHtNHbNj97XQPXx48d2dnahoaF9+vTZsWOHnp5ePs0dAAAA8gcC7gAAAAAAAAAfoVKprl69GhAQIBqohoaGan5kYGDQrFmztm3bNmzY8Jdffrl//37nzp337duXuf47AAAAfCIQcAcAAAAAAADImSdPnly8eFEkv1+4cCEtLU08bmxs3LBhw6NHj5qZmeXvDAEAACBfIOAOAAAAAAAAkHvx8fHnzp0LCAg4f/78zJkz69atW7p06fyeFAAAAOQPBNwBAAAAAAAAAAAAACSAbukAAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAYqUb76he/eIiAIC6MgR+umnjMevXKE9e/JxXgAAAAAAAAAAAEUfAu4ARcr58+TmRkT0+DGFhJCfX8bj4eF040Y+zgsAAAAAAAAAAKDo08vvCQCAlEqWpJYtafNmksmIiBIT6ehRIqKrV0mO9TUAAAAAAAAAAABdQgQOoKiZMoX++IPi4oiI0tMpNJRCQ+nFi/yeFgAAAAAAAAAAQFGHgDtAUWNgQD/8QL/9RkRUsiSNHEkjR1KXLvk9LQAAAAAAAAAAgKIOJWUAiiB7e2ralIjI0DDjEYWClEr65RcKD6dFi8jEJB9nBwB5JD09ff369SVLliQiExMTQ0NDhUJRvHhxIipWrJienp6BgYGpqSkRlSxZUiYKUQEAAEAuJCTQjh2UkEBdu1Lt2vk9GwAAAIk8eEAzZpChISUm0pw51KBBfk+ocJAxc37PAQCkwUxDhlDbtjR27OtQexaLFpGzM5Uvn7czA4A8d+nSpXnz5u3YsSP7LzE2NjYyMpLL5SVKlGjWrNnChQurV6+uswkCAAAUFWlp1K0bTZ5MFSrQ7Nk0bx7Z2OT3nAAAAKTQsyctW0Y1a1JEBDk5kb9/fk+ocEDAHaDoCAykFi2oUiUKDaV35qpeuEBXrtDo0Xk+MwDIW2q1uk2bNufPn2/cuLGVlRURJSYmpqWlKZXK+Ph4IoqLi1OpVKmpqUlJSUT08uXLLCOULl06MTHx7t27VapUyfv5AwAAFCZ791JgIM2ZQ0R06RKtWkVr1uTzlAAAALSnVpOdHZ0+nfFt9+60dSuVLJmfUyokUFLm3aKjo69du/b48eNWrVpZWVlhoz0UCiKTdcCAd0fbHzygX3+lVq0oPJwqVcrjqQFAnlq9evX58+erVKly6tQpMzOzbL4qKSkpNTVVpVLFxcVNnTp1165ds2fPXrdunU6nCgAAUOg9e0YVK2Z8XakSRUbm62wAAAAkIn+z92d6OhkY5NNUChkE3N/h/v37dnZ2ZcuWDQoKIqLixYs3bNjQzs7O1ta2bdu2pUuXzu8JArzbzp1ERAMGvPunNWrQv//m5XQAIH9ERkb+8MMPRLRkyRIRbY+JifHz8/toGXcTExMTExMiKlOmzOLFiw8cOPD3339PmjSpSZMm+fn7AAAAFHBWVuTjk/H19etUt26+zgYACptLl2juXDI1peRkmj+fatbM7wkBZFK1KgUEkK0tBQWRoSFaAmYTSspkFR4ebmdn9/Dhw8aNG1taWp47d+7Jkyean8rl8rp167Zq1ap169atW7euX7++QqHIx9kCaFy7Ro0bU/nyFB5OeFcCfMqGDRu2adOm7t27HzhwQDxy4cKFli1bZue1AwYM2L59u/h60qRJS5cu7dWr1969e3U1VwAAgKJh+HCqWpUqVKCdO+nvv7GfFAByoG1b2ruXzM0pOJhcXWnfvvyeUH579owWLKDnz6lZM5owgfSQK5xP1Gp69IhKlqQ5cyg6mkxNac4cqlAhv6dVOOBd+4bY2NhevXo9fPiwVatWR48eFUl/T548uXjx4sWLFwMCAgICAm7evHnz5k2xxd7U1LRJkyY2NjZ2dnbt27cvj06UkH9EPZl+/RBtL1iePycTEzI1JZWKoqJIqaTy5UmhIGYKD6fKlfN7flDknDx5cvPmzcbGxitWrNA8WLx4cScnp+yUcdfLdDk7a9as9evX79u379ixY507d87zXwUAAKAwGDmSkpLol18oLY0SEmjUKDI2zu85AUDh8eIFmZuTuTkRUc2aFB1NzO+uEvuJUKtp0CBatowaNKAVK2jOHJo7N7/n9Km6d4/q1qX69SkoiJ4/p127KCICAfdsQob7a8nJyd26dfP3969fv/5///1nLs53b0pPT798+fLZs2fPnTt39uzZkJCQzD+1tLRs3bp1+/btx4wZk1ezBshQvz7dvEl+fmRvn99TgUxGj6aXL2n7doqIoClTKDWVVq2icuUoKYn69aNDh/J7flC0pKWlNWnS5NatW/PmzZsxY0YuRlAqlZlj7nPnzp01a1bLli3Pnj2LdiYAUIgwM85akBdUKipThmJiKCyMKlWiNm2ocmXy8qJ33UsCALxDfDwNGECHD2d826YNnTmTrxPKb8HBNHs2bdpERMRMbdt+6n8h+cjHhwYPpt69ydeXfH2pb19ycHj9XoUPQoZ7BpVKNWzYMH9//8qVK+/fv9/c3PzOnTt16tTJ8jR9ff2WLVtqNubHxsZeuHDh1KlTIv89JCQkJCTkypUrCQkJU6dOzfNfAj5dt2+rb96Uly5NHTrk91TgLWZmtGcPtWiR3/OAT8D8+fNv3bplZWU1ZcqU3I2g9+aGzalTp3p5eZ0/f37Hjh0DBw6UYo4AADqUmprq7++/Z8+enTt3jh07tlWrVl26dMnvSUGRdukSxcSQlRVVqkShoXT2LJUsSSVK5Pe0AKDwKFaM5HK6do0aNaLDh+mtMNQnJynpdZVwmYyQJZyPrl4lImrcmIjo2rXXX0M2yD/+lE8AM7u4uPz7779lypTx8/OrWrXqoUOHGjZs+NH0wBIlStjb28+ZM2fPnj3Pnz+/evXqkiVL7t275+bm9vz587yZPAAR7djxa926X7i4BOrr5/dU4C1ubrRoESUmZnw7cSINH06jR+frnKAoevTokYeHh0wmW7VqlaGhoSRjGhsbi/6rM2fOTE9Pl2RMAADJxcfH//PPP4MHDy5btqyDg8PSpUtDQ0N/+OGHXr16bdu2Lb9nB0XaiRNERB07EhEdP05E1KEDKjwCQHZ5eNC2bfTnn7RmDQ0bRkeP0rJl+T2n/FarFt24QeLWIyiIatTI7wl9wjIH3MXXjRrl53wKFWS4ExG5ubmtXbvWxMTE19e3bt26Fy5cGDhwYE4jCwqFolGjRo0aNTp48OCBAwf27Nnz1Vdf6WjCAFls37799u0rdnbD8nsi8A4mJvTttzR/fsa3y5e/LikDIKEJEyYkJSWNGDFC2nrrX3/99dKlS2/evPnnn3+OGzdOwpGhUHv+/Pm2bdvs7e1NTEwqox8F5JPo6Oi9e/fu3bt3//79ia9Wtq2trZ2cnBwdHbdt27ZgwYLBgweHhYV9++23+TtVKLJOniSijE2mmYPvAAVKTAxFRpKlJSE/q0CJjqY5c0ippLAwWraMzp6lVq0+6ertROTnRy1a0P/+R599RuXLU1QULV2a33P6hL0dcEeGe7ahhjstX778m2++0dfX9/X17d69+7179+zs7J49e+bs7Ozt7Z2L4o9r1qxxcXFxdHTcs2ePLiYMkMWDBw8sLS1LlCjx7NkzAwOD/J4OvGH0aPrhB6pWjfr2JVPTrDXcf/yRrl8nZ2cyMsrviUIht23btkGDBpUqVer27dvlypWTdvB///13wIAB5cqVu3//frFixaQdHAqX2NjY3bt3b9u27dChQ+np6XXq1ImLi9uzZ4+NjU1+Tw0+IaGhoSK7RbwPiUgul7dp06Z37979+/evXbu25plLliz59ttvmdnNzc3DwyP/pgxFVJYC7paW9OABXb5MTZrk98wAMlm4kK5cobp16cQJWraMrK3ze0LwyqpVNH48de9OBw7QlSvUtCnZ2FBgYH5PK/+8fEkWFqSnR+HhVKLEG7VlIO9FR1Pp0mRqSnFxlJxMxYuTnh7FxxOCTtnzqWe4b9q0adKkSTKZ7M8//+zevXt4eLiDg8OzZ88cHR3Xrl2bo2j7pUuXjh49+v333/ft23fcuHF+fn5xcXHFixfX3eQBBLFXuk+fPoi2F0D9+1OpUkRECxfSwYNUpQqZmRERGRjQqFGkUFDDhrR9Ow3D5gTQQnx8vEje9PDwkDzaTkT9+/e3tbUNCAhYvHjx7NmzJR8fCr7k5OQ9e/Zs3br1wIEDKSkpRGRgYNCtW7cnT548ffq0U6dO//zzT48ePfJ7mlDEhYSE7NmzZ9u2badPnxY5QwqFwtbW1snJadCgQRYWFm+/ZNKkSebm5qNGjZo/f/6zZ8/++OOPLJ0qALSSpYD7gwdkbo7t9p+CqKiogwcP5u61NWvWbN26tbTz+ZCICDp6lMRsBw+m//2PUGjrY+Lj4/X19Y3yICVq40YiyrgV3LCBiKhNG50ftCDz8aHUVOrQgUqUoGvXqEsXGjOG5s7N72l9qkRKe8OGJJdTUBCp1VSvHqLtOcCfsL179+rr6xPR4sWLmTkmJqZRo0ZE1Lp164SEhBwNpVKpKlSoQETXrl1j5nbt2hHR1q1bdTFtgCxEF99du3bl90TgvR4+5OLFuUIFViqz/mjZMr51Kz/mBEXI5MmTiahFixYqlUpHh/D39yciMzOziIgIHR0CCiClUunn5+fs7KzZ2SCXy21tbT09PSMjI5k5NTV12LBhRKRQKJYvX57f84WiKSgoyN3dPfMuCmNjY0dHR29v75iYmPe9KjQ0dOjQoeIJe/bsMTExIaLPPvssOTlZspnt28eTJ/Ovv3J0NKvVvGpVxuOBgXzunGRHgZx78eLF5s2bZ8+effHixfT0dB0eacECJmIXF2bm9euZiD/7TIeHg4LhwIEDI0eOzHUExsHBYfLkyXk33ZMn+bvvXn/bsmXeHbqQUCqVwcHBvr6+7u7uTk5O1tbWcrl8xowZq1ev1u2B799nmYxNTTk+nlUqrlSJiT71jw87Oybiv/9mZv7uOybi8ePze06fruhVq9L09TM+47y8mIidnfN7UoXJp5vice7cucGDB6enp//www+TJ09OTk52dHS8du1agwYN9u/fb2pqmqPR5HJ5796916xZs3PnzoYNG/br18/f33/nzp2DBw/W0fwBhLCwsAsXLpiZmXXt2jW/5wLvVa0aVahAd+/S8eNkb//68d9+owoVqEKF/JsZFH7Xr19fsWKFQqHw8vKSy3XVC93Ozq5379579uyZO3fuMrRyKurUavXp06e3bdu2devWZ8+eiQetra2HDx/u7OxcsWJFzTMNDAz+/vvvmjVr/vTTTxMnTrx79+7ixYt19z6ET9Dt27d79+794MEDIipVqpS9vb2jo2P//v3NxH6x9xs1atThw4dv3Lhx4MABR0fHY8eO9erVa9euXT169Ni1a1eJEiW0ndnGjXT2LLm70+3b9NlndOQIbdlCY8cSEQUFUXo6tWyp7SEgh27cuLF3794jR46cPHkyPT1dJpPNnz+/a9eu27Ztk6qXeBaDAgLKNmo0uVu32kTs7y+jV8XcoehKS0ubPHnynTt3mjdvbmVllYuX792718/Pr2fPng4ODrqYYVZlytCrj3JKSECBDiJ69uzZtWvXrl+/fv369WvXrt28eTM5OTnzEwwMDObPny+Xy6tXr96tWzddzWPjRmKmAQPIzIwOHaLwcKpdm1q00NXhcujFixeav6WrV6/Onj27Vq1a9erV0+EhHz2igAAyNaV+/Uitpq1biYicnXV4RPig7y5c2CiTrW/e/HOiYxER3LRpSxsbVBfNgfyO+OePGzdumJubE5GLiwszp6Wl9ezZk4iqVKny+PHj3I25f/9+ImrSpAkzP3z4UCaTmZmZSZlEA/AuixcvJqLBgwfn90TgI2bPZiL+6qvXj6jV7OfHfn4cEpJ/04JCTqVStWnThohEkWKdunXrlp6enr6+/r1793R9LMgvQUFBbm5umUPq1tbW7u7ud+/e1Tzn2rVrM2fOnDJlSuYXrlu3TpQ169+/f2JiYp5PHIqsqlWryuXyYcOGHTlyJEepyg8fPqxbty4R1ahRQ7yBb9y4IRr8NmzYMDw8XNuZdenCsbEZX0+YwGfOcIsWfOsW37rFv/7Ka9ZoOz5kj0hmd3Z2zlxRzcjIqGvXrlOmTBF3fD179tTFTZlSqRQrN+Lt1MDKanyjRs+vXJH8QFCgLFq0iIjq1q2blpaWuxFEP4l69erleoTsuns3Y/9Njx68Zw8/esRjxvCmTbo9aMGTlpYWFBTk4+Pj7u7u6OhoaWn5dljMwsLC3t7e1dXV29s7MDAwJSVl1qxZRFSsWDFRw0AnrKyYiP38mJmHDWMi/uknXR3rYz76t2RiYmJpafns2TMdTuKnn5iIhw1jZj58mIm4Vi1Wq3V4RPigZs2aEdGpU6eY2c7Ojoj8xNsVsqfwNU2tX5+2bSNra/rzT6pZkzp1yvEIYWFhtra2jx8/7tOnz44dOxQKxahRo9atW1emTJlTp07VqVMndxNLT08vV65cTExMcHCwpaVls2bNLl++vHfv3l69euVuQID3SUpKunz58vnz58+fP3/gwIHY2NhVq1aNFUlVUFDdvk316lHJkhQRQbrJsoJP0erVq8eNG2dhYXHr1i0JEjY/ZtSoUWvXrh08ePBWkXICRcWtW7c2bNiwdetWkUdMRLVq1RoyZMiQIUPq168vHnn8+PHOnTs3bNhw8eJFIjIyMoqMjMzcq+bYsWMDBgyIiYlp1aqVr6+vVO0E0tPTRQFA+AQ9efKkUqVKJUuWjIqKysXOiejo6N69e58+fbp8+fL79+9v1qzZo0ePunXrdufOnRo1ahw6dChze9XsuneP/v2XLC3p99/p9GkSDZ9mzSI7Oxo7lr7+mojo8mXq3j3ja9CNLMns4sEaNWo4ODjY29t369ZNnJ2uXLni4ODw4sWLjh077tmz56MbI3Lk/PnzrVq1qlOnzu3bt0NDQ6tWrWpubv78+XPs8inCnj17VqdOnZiYmP3794vOJREREXv37s3Oa2vVqtWxY0ciSktLa9iw4d27d5cuXfrNN9/oaq5qNbVpQyEhtG8fNWhA69ZRRAR16kSdO+vqiAUMM1++fHnYsGH37t1TKpWZf1SiRIkGDRo0bNiwcePGDRs2bNCgwdtX0cw8dOjQLVu2VK9e/dy5c5I3SVKeO6fXujVVrEiPH1NKClWoQImJdP8+vWs9QBcePXqkyV6/fv363bt3s/wtFS9eXPwtNWrUyMrKaubMmRcuXLC1tT169KiO9gxR3bp05w4dOkRdu9KIEfT33zRnDrm76+RY8DFKpbJYsWKpqakxMTHFihUrVapUbGxsZGSkLhqGFVn5HPDPuSZN2NGR1WpeuJB9fXO83PXixQuxC6ZDhw4i02Hq1KlEVKxYsX3ukGUAAKdASURBVMDAQC3n9vnnnxPRokWLmPmnn34iolGjRmk5JgAzK5V848aTv/76a8yYMU2aNMnS70sul1tbW798+TK/pwkf0bQpE3FeFttPSEi4d++eGnkBRdTz589Lly5NRNu3b8+bI4aHh5uYmMhksjNnzuTNESEPPHjwYPz48eIDpVKlSq6urv7+/przRlhYmKenp62traaTfKlSpZydnX19fd9ONw4KCqpWrRoRWVpa3tKuPUVKSoqvr6/IWv3mm292796tzWhQSG3fvp2IunXrlusREhISRFDMzMzs0KFDzBwVFSU2BpUvX/7SpUvZHSgoiN3d2caGiZiIO3TgUaNYc+/Qowc/fszt22d8u349Mtx14cWLFz4+Pi4uLpl34ejp6dna2np4eLzvVu7mzZvi+e3atYuLi5NwPvPnzyeiMWPGMPP69euJ6DMUcC/qRo8eTUS9evXSPHLy5MlsBl6++OILzat27dolPk+fP3+uq7muXctEXKkSJySwWs2f3pXbvn37RM0fPT09S0tLR0dHd3d3Hx+foKCgbDY9SkpKEu1tbW1tU1JSpJ3e+PHjP69bN+jXX5mZ//6bidjOTtpDvO3atWvjxo2zs7N7e4FBoVDUrVt30KBBc+fO3bVrV0hISJZbyKdPn1apUoWIhg8frpPJnT3LRFy+PKenc2IiFyvGRHznjk6OVcjt3r174sSJffv2PXbsmO6OcuPGDXFJz8whISFEZGFhobvDFUmFL+Du4MCLFvHatbxwIf/+e8ZF79t/2rXbIM6tpd5kbGxMRE2aNBE9lH777TciMjQ0PHLkiPZz8/HxEadjZg4KCiKi0qVL67ZRz6dHrVZPmzbtzz//zO+JSObAAV60KOPrOXNePx4ezr6+7O7Ojo5cqhS3afM488ehtbW1s7Ozp6fnwYMHNc1+sYu/gBONtfKs/M/y5curVKlSqlSp5s2bHz9+XKfHkmBvPuRcdHR0165dq1evrnlErVbreu3Nzc2NiOrXr79x40YfH58dO3b4+fn5+fmdPXs2MDDw2rVrwcHBwcHBUVFR0dHRqKtWKMycOZOIbGxsTp48qbkFjY6O9vb2dnR01CzxGhsbOzk5+fr6pqamfmC0p0+fNm/eXMQRTpw4kdPJpKenHzx4cOTIkZpbQRHoVygUS5cuzeVvCIXW999/T0Tu7u7MfOTIkX///TcXwan09PQvv/ySiAwMDP755x9mTkhI6N69u4jCHz58+H0vVKlULwMCeMoUrlHj9T1GqVLs7My7dvGjR+zgwG5uPGAAL17MKhUC7jry9OnTn376qXXr1gqFQnMxXKNGjfHjx+/ZsychIeGjI9y+fVtUE7K1tf1Ao92cEiVJN2/ezMziPbZ48WKpBocC6PLlywqFQl9f//bt25oH7969Oyp71rx5WhCVwSdMmKCTucbHs4UFE/HGjcyvOvrq6FgF1ZAhQ4ho4sSJOY2VK5VKNze33377jXUWZU5LSytTpgwRXb16lZlXf/XVA1vbNB1/cJw4cUJkiGryJ2xtbV1dXb28vPz9/d+OJMTGxgYEBHh7e2seuXz5stgnNG/ePMmnt3T69GMdO8bOns3MvHEjE3HbtpIfpbBTKpXTp0/XJMHI5fJJkyYlJSXp4libN2/WLCTv3LlTywSIT1OhDLinpXHHjvy//7GnJ8tk7wu4e79vbVkmk2nC69euXatcubK4+NZefHy8sbGxXC5/8uQJM4vqNLm424QPOHTokFhK2bt3b37PRRrLlnHt2nzhAjNzp068ciX36cMVKmR9S7dpk/L555///vvvp06dynJKDQsLExmFffr0USqV+fNrQDY8fsxyOZuYcHy8zo/l7u4uTnelSpUSp76+fftqmXD6Tvfv33d1dTUyMhKZg5CXwsPDTU1NZTLZ6dOnmfnWrVstW7bUxZWQv7+/Jg775MkTMzOz8uXLv+9D9m1yuVyseVepUkUkPmczsQjyhog8/vvvv+Jbf3//nj17aqq4GBkZ9e/ff9u2bdm/mk9ISOjTp4+Ib27YsCGbrwoMDHR1da2QqYu0KB8fHBzs6ekpbi1cXV3xMfdJadeuHRHt37+fmR0dHYloy5YtuRhHrVZ/9913YuVm1apVzJyamiriDoaGhj4+PpmfrFQq/f39XV1dK1asuLB164zrsDJl2NmZfX05y4JTWBhr/mtoSrqnpLDUuZCfrJiYmHnz5olzwkeT2T/g/v371apVMzU1HTjwXHS0BBNLT08XVWtEzkGNGjWI6PLlyxIMDQVVhw4diGjq1KmSjHbz5k19fX2FQqGTEuHTpzMRt27NajXHx3PFikzE2f5ELgJiY2PFpswHDx7k9LUnTpyQyWQKhWLPnj2smyiz2OJQv359Zn7y5IlCoTAwMHjx4oVU47+T+NTr2bOnn59fZGRklp8qlcrg4GBfX193d3cnJydra2tRHUsmk2XO5tm3b59CoZDJZFu3bpVwbunp6eLmQpxFr4wdqzY355UrJTxEEfDs2TPRaVlPT2/WrFm//vqr6J9Us2ZNf39/yQ8nsqxE0sOcOXOIaNq0aZIfpWgrlAF3Zj55kkuX5o9GXNPS0qLfNHLkSCKaLdbNmJk5XtLQV+/evYlo9erV/OoNOmnSJAnHB2aePXs2ERkbG4vuDYXdsmX855/cpQsrldypE/fvn3FnV6IE29qymxv7+vJbH4iviTewpg+w2NYKBVa3bum2tve3bQvQ3SHUarWolKVQKP7666/ExEQPDw+RKyqXy52dncWKoPYuXLgwYMAAcSmmUCh0kekAHyVyk9u3b8/M0dHR4jwgbTebixcvKhQKW1tbsWFrxowZRFSxYsWhQ4c6OTn169fP3t7e3t6+ZcuWNjY2DRo0sLS0tLS0FBH2d1Z4NDAw2CjyraBgEDFuzR2pr6+v+E9ta2vr5eUVq4kh5oRSqXR1dRX3aeJK/X2CgoLc3d1r1qypeYfUqFHDzc0tc/4gM/v4+BgZGRHRZ599hu1cn4j09HSxpihiEKJmaC5CJxqalRs3Nzd+8+Ny9erViYmJ27dvHzp0aMmSJTXvxpb16/P333NAAGOZMJ/s3r2biKpVq+br65udZPYPePjwYc+eJ4i4SRPWvu3fuXPniKhOnTrM/PjxYyIyNzfHcnIR9s8//xBRuXLlJNxKOHHiRCLq3LmzVANmCA5mIyOWyfjcOeY3g++fjLVr1xJRx44dc/fyn3/+mYjMzMyuXLnCOogyDxw4kIgWLFjAr9rw9u/fX5KR3ycuLk6sQISEhIhHIiIiDh8+vGjRopEjRzZr1kxcZWVmZGTUrFmzkSNHZrl5FNW0jI2Nz4k3mBTExae1tTUzP336VE9Pr6SpaYKOVyAKF39/f1EerVy5cpkTiJs0aSJC8G5ubh/ehJpToiKfyMjp168fEW369Foua6nwBdy//z7jixkz+OzZHL/84MGDRNSwYUNpZ6UhzuwiwfDs2bNEVLlyZRRQlpy4OildurQuMnbz2LJlvGsXr1zJy5Zxp0585Ahv3sz372frtTt37ixdurQopnz27FlTU1Mi+in/mpvDR61YsYLerPwoLaVSOWrUKBHT3LZtm+bxyMjIcePGidIQZmZmHh6e2ty0+vv7Ozo6irCFgYGBs7NzltAY5Jm4uDgRhNq3bx8z//rrr0TUpEkTqe75VSqVKF753XffMfOdO3cMDQ3lcrnIqc8mpVIp1rwfPXq0YMECIqpevbrkpTAhd548eUJEpUqV0lyrpKamenl5SVJV1tPTU6zJjRw5Mi0tLfOPQkJCPDw8Mneqr1Kliigf/77RAgICxP7rFi1aREREaD894cGD1zl/mzfzrVsZe86Y+Z9/kKacnwIDAzUBzfv374ubTC3H9Pb2Fh+F48ePF+fJuXPnio+zzAuEjRo1cnd3F3EWyF9TpkzRZNhp7+lTrl+fibhuXdayGN7SpUtFjCwhIUHcAKKAexGWlJRUvXp1Ivrjjz8kHDY6Olp8ru3cuVPCYfmzz5iIR45kfiv4/sno1KkTEf3111/MvGDBggkTJtzJSTVwtVrt7OxMRJUqVQoLC2NJo8wxMTGiLkJoaCgzN27cWPr3wFvWrVtHRB06dNA8IlJFM7OwsLC3t3d1dfX29g4MDPzAtbqLi4t4vvgVtDdo0CAi8vDwYObff/8dZ9QsvLy8RDJ7+/bts6x/pKWlubu7i5JrDRs2lHCjlbhKX7FiRUhIiKWlJREFBQVJNfgnopAF3J894woVeOLE3I+QlpYmCizk6ISbfS9evNDT09PX14+Ojlar1aLg1wXNrRtIRKlU9u/fX6xnPH78OL+noxURcFepuFs3btUqZ68VOzbKly9///59Zt61a5dCobCyGrhuXdpHXwv54vnz5/r6+vr6+rpokZSamurk5EREJiYmBw8eZOaoqKjMgdc7d+44OTnJZLL27ZeXKcOenpyjHhMqFf/7L3/++XRxTVa8ePHvv/9eqnx5yDVxVdqwYUOlUpmcnCw+d3JXdeFtYomoSpUq8fHxarW6c+fORDRu3LhcD6hSqUQiBgrdFhB79+7VSXrdKzt37jQxMSGiLl26xMTEPH78WLRg1dzdlS5d2tnZ2c/PLzvZCffu3atdu7ZYs7l586YkMzx8mEuXZrFlrlMn9vHhJUsyfuToyOhHno+WL19ORCNGjGDmjRs3ElHfvn21H3b37t2ipZOmIZCbm1vJkiVFC3p3d/cikMxRlDRr1oyIJOwLFxnJjRoxEVtZce4iRfHx8b6+vi4uLqIAQr9+/cR5CZ9rRdiPP/4oEhokL2u2bNkyIrK0tJSq7c3l48dTq1fnYsVYXKL368dEPGKEJIMXFmFhYQqFwsjI6OXLl2q1WiyWnDx5MkeDpKamiiJCzZs3F1vrpIoy//HHH0Rkb2/Pr/pSlipVSteZKF26dCGizI0E5s2b165du/Hjx69evTogICBHOxrT0tLETUHTpk213HvEzLGxsWIFQgR2mjZtSkQ7duzQctiiIS4uTqxGyGQyV1fXzPkrX331lYeHhzgpnTlzRrQI1tfXd3d31/JMJTo52dvby2QyIyOjEiVKVK9e3crKKkv2DHxUIQu4r17NRKxlbuiwYcPo1f4dXRCnHrFfXiRiz5w5U0fH+pQlJSXZ2dkRUYMGDaIlqcWYT9as4f37mZnPn+fWrXP22rS0NLHTx9LS8unTp8y8fv3BEiXUenrs66uDuYIURLlkUXhKQomJiWLkkiVLimpL4eHh9evXfzs2eurUaTu7NFG5yNr647W5mDktjb292dqaibhOnctly5Z1d3ePioqS9leA3ElNTRXlONavX8/Mf/75JxHVqFFD+wv3iIgIsUQt9hKuX79erPBpecoVEd5SpUoV6lN3kSE2TUtVkfadzp07J8JSZcqU0XR5KlWq1FdffeXn55fTW4IXL16IT/9SpUpJEoM7fJhnzODOnTktLSPgPncuR0RwRAR37YqAe34S2YUrV65k5m+++Yakq5/733//jRo1SvPeE3mLX331lSSDg4RiYmIUCoWhoaG0HeGio7llSybiatWyu6lUrVZfvHhx7ty5tra2mXu3VqpUSawpOjg4iDRYKHrCwsLENmJd9GZTKpUNGzbU5PZqKT09vWHDhmYGBheWL2dmPnaMidjMTNsNHYWNh4cHEQ0aNIiZT5w4QUTVqlXLxe7P58+fi2tsJycntVotVZS5ffv2muv2adOmEdHYsWNzPVp2hIeHa1YgpBozKipKrDX2799fy5214uZFJH/cvHkzb1YgCoVbt25ZW1uLRLfMm9eZ+cKFC+JjqEOHDqJMUFJSkpubm9ha2rp161xkGCcmJm7ZssXR0VHTycnMzKxTp04iTaFLly64d8upQhZw79KFiXj9eq0G2bFjBxG1adNGokllJZapBwwYwMxHjx4lIisrKx0d6xMXExPTqFEjcZaRKikg7/35J48ezbne+hMfH9+iRQsisrGxiYtLYGZ3dyZiY2MuEiXuiyBvb+8sG/q0FxMTIyJQ5cqVE/vI7ty5U7VqVXFFGBcX9/ZLfH25Vi1NS14OeE9V+YQE9vTkKlUynlm9Oi9bxomJuAAqWDZs2CBu+5OSkpRKZf369Ylo6dKlWg47dOhQIurevTszR0dHi9o12e+B+QHidgWr0QWB2C6m66r6Dx48KFu2bJUqVYyMjBwdHX18fLS5j0pOTh4yZAgRGRgYeHt753qcs2d56lTeu5fnz+e1a3nBgoyAe+fO/N13/N13XLPmJxpw9/ZmTScIZ+fXj0+bxn/9xcz84AH/+isz89q1OpyGyNW6ePEiM4tLHQnTnDMT/wu0eS+BjogC7tJeMgkvX3KrVkzEVap8KBQZH8++vuziwrVqqQwNi4sAROberSIQX7p0aSLq0aOHtAsDUEB88cUXmuitLoiIQbFixbTfNpo5X16pVF4dPJjlcv7lF0nmWYiINQzR8lQU2/zf//6Xu6Fu3LghWmHNmTOHpYgyp6amduzY0djY+ODBg6mpqWJnasD77sQkItaVnZycpB329u3bIjVHy0v6jh07EtHatWuZefr06UTk4uIi0RwLsY0bN4qlvsaNG9+7d+/tJxw8eLBSpUpEZGJi4unpKbaKHj58WLypjI2NPTw8svMuValU/v7+Li4uohM4ESkUCnt7e29vb9Ev8PLly5UrVyaiWrVqoZBsjhSmgPvz56ynx/r6HBXFajX7+PC7gkgfl5iYKFowSVVwKovQ0FC5XN6pUydmViqVoi4bdqfqSFhYmIgq9u3bV/ItfnmjbVsm4jcXLHPm+fPnderUad/+ny5d1CKCMXEiE3Hp0izRhnuQUlxcXOayfdqLiopq2bIlEVWtWlUsZQcFBYmeKi1btvxAHnpqKi9ZwmXKMBHLZPzFFzxxIh8+zMwcFMTLl/OcORk/JeL69fnvvxnbyAomlUolNt0vXLiQX0UoypYtm7t2l8KJEydkMpmxsXFwcDC/2kXbvn17SbqSnD9/Xgxe2GuCFQE1atQgIqnKs3yA2NB96dIlSUZTq9Xu7u70qilrjt6WQUHs7s61a2ec3GbP5vnzWa3mHj24QQOUlGFm/v131uzktrN7/fjAgdy5Mz95wrdu8bhxvGkTDxnCEv2TZhUVFSWTyUxMTNLT05OTkw0MDBQKhTbntA8Q96s6qjYJ2pC2gHsWCQncuTM7OfGwYRlv46NHed8+Vqv54kX+5Re2tWWFIuNEQcTdu88fM2bMrl27RAAisxs3blhYWIi1gbd/CoXa6dOnxRWLNh2bP6pv375E9OWXX2ozSJaK8CtXriSiKZ07c6HNS8udS5cuicvgtLS05ORk0Qdbm9rTBw8e1NPTk8lkomNkTqPMqampQUFB3t7ebm5ujo6OIn9F3KaJIKalpaWue/6JFYjdu3dLPvKJEydEbfHMxWpyJDo62sTExNjY+OHDh5r6Px/o6PMpSElJcXV1Fe8TZ2dnUdHonV6+fCm2AxJRt27dxEarmJgYceMmdl99IOYQFBTk5uYmPr8EGxsbT0/Pt1slhYWFiZtNc3NzXez1KaoKU8Ddy4uJuGdPZuazZ5mIa9fO5VCfffYZEa1YsULC6WUWGRmp+VpU2R42bJiEDb4gs6CgIPGZp01Z4fzy9CnL5WxiwlqWPgsJeVmhAhPxsGGsVrNSyf37MxFXrswIZxU0p06dEj1qFi1apP1oT548adCggbhWE4HR8+fPi0yrTp06vTO3PYv4eHZ3Z2NjbtSIu3Thrl05MZFPneJx41guZyJu1oy9vblwrmd9QkRL8JIlS4olFpEqMnv27NyNlpqaWq9ePXpVwOH8+fNyudzAwEDCsKzoNzB69GipBoRcePnypYhp6mLFOiIiYuLEiVu3bmXm6OhoXRzojz/+EA0wBw8e/NGNbvfu8c8/Z/RLFH8qVeJvv+W1a3n+fGbm69fZ0DBrwH3XLv79d/7nHwlnXQj8/juPHMm//ca//caZd2kOHMgnT/IXX2QE3JlfJ8JLbt++fWKRj5lPnTolMrx0caBHjx6JG0hdxzsgFyQv4J5FYiIrldymDffowSoVb9rEM2eyuKIWfwwMuEsXXriQPxqsu3Xrlsh1sLOz09HKEOQ9lUolklpyfUGVTcHBwaIpvTYNOUXpLVGXQxN8/wQLYYuFum+++YaZfXx8iKh58+Zajrl48WIiMjIyOnPmDH8wyqxUKu/cubNt27ZZs2Z99tlnlpaWmmJ6GqVLl+7cubOILDdo0EBk4uvOlStXxMdcamqqLsYXBWH09fWPHz+e/VeFh4f7+vp6eHg4OzvXrVtXLpePGDFiwIABRFStWrVP+RP58ePHrVu3JiJDQ0NPT8/svMTHx0fc/pcsWfLvv/8WD+7du1dE0kuUKOHl5ZX5+Y8ePfLw8BA9UYXq1au7ubndvXv3A0eJi4vr1auXmJgkO54/BYUp4O7gwES8bh0z85QpTMTffpvLoURJB9GnQtecnJw0y5gWFhaOjo4eHh7+/v6FtwRKAXTy5EkjIyMi+lXscC48li1jIh4wgJn56VPWpijWtWtcsiQT8fffMzMnJbGdHRNxgwZaDQvSunbtWvHixStUqEBEVapU2bJly+3bt3Nd9i4kJEQUFqxfv354eDgzHz9+vFixYkTUp0+fHJ1kHj/mS5fYwYF37+YZM/jUKf7hB/7lF8YCdiFib29PRNOmTWPms2fPymQyU1PT3G1P/umnn4jIysoqJSUlPT1dNC/64YcfJJxtcHCwSFlFv/t8dOzYMdJZkT1fX1/NtZbYL9+2bVvJj3Lw4EGxAdbW1vadzahDQ0N/++03OzsHE5OMCFqZMjx2LJ84weLUm5T0Oo09NJQTEjgmJuPbJ08y8gJ1WeK+IPr9d160iC9d4kuX2Mbm9eMDB3JMDLu68vLlrOskh9mzZ2tOaIsWLSKiMWPG6OJA//zzDxH1FBk9UJDoqID72xwceOVKXrGCN21iT0/W0+Py5dnZmX18Xp8NsuPOnTsiX3XgwB8/zc0xRc/atWuJqFKlStq3hfwoNzc38Ymcu1DjzZs39fX1FQrF1atXmVmkx4o9958UlUolNi2JpQuR5LREs5CuhXHjxhFRhQoVHj16xJmizL6+vv7+/l5eXq6urra2tqIGSGb6+vrW1tZOTk7u7u6+vr4iQYqZX7x4UatWLSIaMGCAljXQP2zq1KlENGHCBN0dQrzfSpcu/c7KJ8z84sWLo0ePenp6fv311y1atBCtLzIzMDAQf3WdO3cWvVs+TUePHhXBw6pVq+Zo+S0iIqJPnz7iL9PJyenFixfMHBkZ2a9fP/HggAED7t69q2mFqln7cXFx8ff3z+ZpR6lUijNV+/YrXV1ZqrdtbGzsvXv3imSAtNAE3F+8eKOeTLVqTMSnT+dytJcvXxoYGOjr6+u66Z+4Q9DX17exsRFRMA0jI6O2bdt+++23//zzD/bUa2/37t0KhUImk63NbT1RpVJ5/fr1tWvXLlu2LM+6HnXsyES8eTMzs6sr6+tzbjdjMTMfO8aGhkzEv/3GzBwVxdbWXLp07gvEg7SePHkiKiD179//m2++EatE4grD2tra2dnZ09PT39//A7vGMrtx44bIpWrRooX4TPX19RVjDhs2LD09PRczdHBgZu7Xj//6iyUNrkJeuHLlilwuNzIyEncC4gIrF1t/Hj58aGJiIpPJjh49ysy//fabSDaR/G5z/PjxRPTZZ59JOyxkn/jHHT9+vC4G//HHH7METHV0s3f16lUR5Kpdu7YmNyc6Otrb29vR0VGkwBNR587Bw4fz/v05Lo21desnt/SYpaSMWs1iO7IIuMfEcIMGPG4cP3igw81PXbt2pVe5mWJDTK4v8D5M5EL++OOPuhgctKG7Au5ZODiwUsmdO7OnJ//xB7+KhuVGSEhIhw4Tzc3VNjb84oV0U4T8EBcXJ/JDRSGRAn64bt26aT5nswTfPylix2ft2rXVanVUVJSBgYGenp4klQbS0tJEaku3bt3EI5MmTRLZvllixxYWFvb29q6urt7e3oGBgR9oWnPr1i1R8WbWrFnaz/CdNCsQZ8+e1dEhmFmpVIq1jXr16r18+TItLS0oKMjHx8fd3d3R0fGdaf5Z/paSk5MPHTokSvd8mtnTarXaw8NDtDzt1atX7gKV3t7eIupYvnx5TQWhdevWiT4EmtWgYsWKDR8+/ODBg7nbeLpu3Sk9PSbiIUO0KlilVCr9/PycnZ3NzMxatGhhYWGxd+/e3A9XIBWagPvGjc+MjLh7d+ZX9WQqV2ZtNpqI06VO+yNt3LhRLpfLZDJxFKVSKap3ubq62tjYiP9Lmc84jo6O7u7ufn5+2Qy3QRarV68Wyxv79+/P5kvEVibxSWBubi7+LYoXL25iYvKX6AumS6ItgaEhx8ayWp3RlzIwUKsxN21iuZw1Xe4fPeJbt7hjx4xH/P1ZZ5/m8BFJSUmtWrUiIjs7u+Tk5ISEhJYtW9rY2IjthJnp6ek1bNhw+PDhv//++/Hjx9/ZTf7ChQtio6imbsymTZtEP/EJEybkOktCBNyDg7l2bQTcCyXRSVLUAL19+7aenp6enl5O68CI3YIjRoxg5idPnohLNF1sd42MjBQXhZ94ocZ8NGzYMNKi7OaHifJ9W7Zs4VcNeP/8809dHIiZw8LCmjRpIlJ1fvjhhx49emji7MbGxgMHDtyxY0fuEmdWr+ZRo7Tqs1IYbdnCmn3hLi68Ywdv3swLF/K0aSzKU2/bxtOmsYUF9+nDukg+VqvVolqgSIAQa9U3btyQ/kjMbdu2JaJDhw7pYnDQhk4LuGcmLn7OnePKlfmPP7Qd7fHjjBYR9eqx1i0wQQLXr1+/liujR48mLVLOc0Ek1FtYWJw7dy5HUz1z5kyrVq2KFy9+//59Zu7evbvuVtMLOHG98fPPPzPz8uXLSdINTNHR0U5OTppcycePH8vlclNT07Zt244dO3blypX+/v4xOdoXw6zrKPOhQ4eIqFatWrp+G8fGxooyp+bm5pprMI1ixYq1adPGxcVl+fLlJ0+ejH7PBvylS5cSkZGR0elcp9YWWjdu3BB7f3/55Rdt/rFCQkLat28v/tpHjx4t6gg9evTIxMSkRIkS9vb2mzdv1j7eePgwlyjBRNy6Ned0PUutVvv7+48bN06UwSEiuVwuUmf09PRWrVql5dwKlEITcO/WrVuxYpU2bz7LzNOmMRFPmqTVgCtWrCBdJtbt3btXBL8WL178zifExMQcOnToxx9/7NmzpybUqwm3NWvWbMKECX///fcLZEfkxP/+9z8iMjExed85OiYmxs/P75dffunbt2/m7hBCjRo1hgwZMnDgQCJSKBS7du3S6WxFW4LevZmZT59mIq5eXatlJOHtG1IHBx4wgB88QMA936hUKhF7srS0FD0ePDw8xDrz06dPY2Ji/P39PT09nZ2dbWxs3pkoIRbkfHx8goKCNHVjevfuLUJIK1euFGt4bm5u2sxz+PCMLxYsyNgnAYVLSEiIqAF65coVftXpdODAgdkfQRS7LFWqlHijilqKORohR0Tfy1atWn3KtRrzkbW1NREFarnS+x4iSHr79m1mFi0BLl68qIsDCaNGjRIltsQpVKFQ2Nraenl5oZiyJKZM4SyLbufOsbk5E3GHDjkru5EdN27cIKKqVasy85MnT4ioRIkSuthxn5aWZmxsLJPJ3nfzD/lI1wXcNTQXP1Om8NatEgwYEcENGzIR16nD2myaDQ4O9vT0tLe3Hzt2rIuLS3Ya88Db3o79ZVPx4sXlcnnmvGBdnIUyj6lSqWrWrJklMpAjbm5uc+bMERdy7yyzVrQlJCSYmZnJZDJRtkWkOomFf11YuHAhEQ0QxWG1IBYGjIyMTp+WPglddNTMm11c586dMzIyMjU1VSgUlpaWme9es/9/Z8KECURUpkwZsXr06fjf//4nk8kk6UqoVqu9vLxMTEy6desm7rCuXbtGRBUqVJDwhuv6da5ePSMTOpsFFW7c4EWLdmdON2zUqNH8+fMfP36sVqvd3d3FTggXF5fcbdYvgApHwP3Fixf6+vr6+vovXrxQq9X167dq23bpmTNaXXM8ffpULpcbGxvroiLb2bNnxX6N7Fe8DQ8P9/HxEZW/Mofbzp8/L/n0ijC1Wj1q1ChxjhY3+enp6WJjgYuLi7W1dZaNBcWLF7e1tXVzc/P19c2810wTuA8ICNDdbHv0UGvaEkydykS6qhLr4MC3bnG/fgi45xtNYbs7d+4ws4+Pj1wul8vl72xklJSUdP78eS8vr7Fjx7Zu3frtInci2j58+HDxUSRi9zKZbOHChVrO87//2MmJ82TjLOiKaJnl6OjIzOHh4d27d89RBcDZs2fL5XLRWkdsyy1WrNgHuttrKT4+XrQ00PUCJ7wtKSlJT09PX19fFzUTRZdUMzMzlUqVmJioUCgMDAw+sKtaS7GxsTKZzNjY2MfH58cffyxVqlTXrl2xiiOVuDhWKvm777I+fvNmxua8Bg20iiq+7a+//iKiQYMGMfOOHTuIqGvXrlIe4JVz584RkbW1tS4GB23kWQF3ZnZz4xEj+NYtKcd89owbN85IpgkJycELY2Jitm3bNmrUKFE2UBD3hvXq1RN3N5AjTZs2bZArotbH6tWrmVmlUq1YsaJOnTqSL86NHz/+888/F7t5Xrx4UbJkSZlMVqtWrVxMWISxzM3NzczMstlrsYj5+++/icjOzo6Z7927J5PJihUrprviAY0aNZLqCnbChAkNG461slJKG2QWKxBE9OFmmNpYs2ZNQECAuOIShQq7du2qzXlbqVSKvbbW1tY53S5QqG3fvp2IbF51zlm3bl23bt20WWe9cePG06dPxde//vorEX311VcSTDST58+5XTsm4mLF+APFYMLD2dOTbW2ZiBs1+o+IKleu7Orq+nYiztatW0WB3O7duxeNjJnCEXAXLSm6d+/OzOfPnyeiSpUqab/C3KZNG9JB5+4bN26IdWkXF5fcjZCQkHDy5Mn58+cPHDhQR72ki7D09HRxji5Tpkzz5s2zJAuL0vmTJk3atGnT+3p68LsC95KLiooqVapqu3YroqLUzGxpqVVbgg8TW2VnzGA3NwTc80HiqlVdqlUzNDQUdTPOnz8vYui/ZTuHPHPto9KlS5csWbJs2bLiHBgdHV2lShWFQiFJrYZ587TqRw0FwfPnz0UPyVxnBV65ckWlUiUlJVlaWhLR77//Lu0Ms1i2bBkR1alTp8jkMhQWZ8+eJaLGjRvrYvAjR44Qka2tLTOfOXOGiJo0aaKLAwknTpwgopYtW/KrC8WGDRvq7nCfmn37+Lff+MqVd/woPDwjk7d6db5zR7Ijit054lMyMTHxv//+01HhqSVLlujiFhS0l2cF3JkzeoNduybxsC9fcqtWTMRVq/L77zmYmdVqvnKFf/2Vhwz5JXM6duXKlb/++usdO3Zs2LBB5AwVK1Zs+/btEk8U3mPbtm0ifi12nDs4OBDRJC132b8pKChIVP+7fv06v2rL2aVLl9yNplKpWrRoQURTp05Ny2m7kiJB/BuJrBHReXvkyJE6OlZQUJB4e0iSTJCent6rl1osYEsYZtywYYPmYkwXXr58aWRkJJfLxYqRKO7377//ajlsTEyMtbV15cp2I0a81F2rmIImJSVFLPKJAnodOnQg6Spg29nZ6SLyycxJSTxoEBNx/fo8c2ZGSfeDB/nRI46N5XXr2N6eFQomYiIuVYrHjFGfPOn/gVhuQEBA2bJlxZW8aEtWqBWOgLvoASJqan///fdSfdQtWLCAiIYNG6Z5RKVSheQoCeEtoaGhYg91nz59EDvIL0lJSXZ2dqJMPxFZWlpq2lFm/xNRqVSKGiA1atR4ooMSjKJIn2i6Ehh4qXXrhT16PNRRf3IRcE9M5Dp1EHDPc7t3s0KhKl366LZtzBwSEiI6j48ePTp346WlpVWpUoWIfH19xSO3b9+W6uPTyYmJ+O+/JRkM8s1PP/0kgo/aZPiKjT4NGzbU9T1bWlpa7dq1SWeVxOF9Vq5cqbt7UXGJNXHiRH5VxE+0FtCRxYsXE9HYsWOZ2cvLS+wB0t3hILPoaG7blom4fHnWvmiQUqk8duyYKPqXB90dvvjiC010BgqUPCvgHhzMRFy6NOviIjwmhtu2ZT09XrAg43+HSvU6DTAhgX192cUlY6cIEXfseFKhUNjY2Li7uwcGBmb+EBf5iWJHo5ubW+463UFOiQDu5MmT+a3guITji8jGjRs3tB//9OnTYr/XgwcPpJpkYREeHi6204kFEnFtefToUR0dTkSlJCyUHxfHDRowEXfvzlKFkUQYTXdFsf/44w8isre351e14EqVKiXJCkRw8AMrq3Tt60gXLiLjU3TQFX+3kmzvi4qKEltadbRjQK3muXP5+nUuX57Fh/bMmfy//7GxccZHm5ERDxjAO3dyNt8a9+/fF7UoLSwsJCz4IfLJpBotmwpBwD06Olp0lxZlyESBzlOnTmk/8r1794ioRIkSmizyq1evikfs7e3d3d19fX1ztGvsxYsX4p3RoUMHXWzQhuxLT0+/e/fusWPHtNmKkpSUZGtrK0JO72xcqQ2Rhv/HH38w8/Tp04nI1dVV2kNo/PxzxhdHj/KrbtWQJy5eZFNTJuK5c5k5NiqqTp06RNSzZ09t7pR+//13ImrVqpV0E81Qq5ZOkrwgjyUkJIhw1dbcFqO9c+eOqAWfNz2Ltm7dSkQVK1ZEz/C8JNrBLVmyRBeDf/7555pUia+//pqIli5dqosDCcOHD9eETceOHUvv76ADupCQwN27MxF37bozd3trUlJS/Pz8XF1dRY0puVxuZGTUs2dPXd8aiX08V69e1elRIBeaNm2qzVat7PvrLyZirYswv1d8PB84wNOnc4MGnJDA6ens4MAeHtyhA+vpZQQjRA3cr79mX9+4D9y5iJ0fQvfu3aOionQ1aXhFE2QPCgriV58vIryoPVEvS5NB37VrV0nuB8Xn7+DBg6WYY2GSuaJ6enr6unXrBg0apIuy+8ysUqlEj0dpr5MfPOBy5ZiIJ0+WYLSIiAg9PT3NCoQuiOac69evZ2Y3NzdN6oMkTp1iQ0Mm4pUrpRqyoDt27BgRVatWTa1WR0dHi3uxMK1r9m3atEnCE9f7JCZy3748YADfucMzZ/KaNSyXs60te3pyLtpJREdHd+7cWRSo0L4NQ1BQkLu7e/Xq1efOnavlUDlVCALuooyjSAS+cOGCWOiQ6tTZsGFDIjp48KD49sCBAyL5VEOhUDRu3HjMmDHr1q27efPmB7IFExMT27ZtK4Kz6LxUZLx48aJu3bpE1LFjRwmLz8bFxRkZGSkUCtGWUARhT548KdX4manVXK0a167N4eG6GB7eLyyMK1dmIhZ5nWlp3KXL8Q4dGjRooOXyckJCQpkyZSR/z8TGslzOhob8SW5CLWqWLFki2s4QkZ6eXqlSpUqVKlWtWjVLS8t69erZ2NjY2NjY29vb29v37t3byclp8ODBLi4uLi4uU6ZMcXNzE2lBY8aMyZvZqtXq1q1bE9G8efNy8fKpU1mEyy5c4H37ePbsjMeDgviff6SbZZHTvHlzIvrvv/80j2T+Wkvio/PSpUvMbGNjo+ts5QYNGtCrtjctW7YkohMnTujucPC2tDT+/vtzRGRoaLht27ZsviouLu6ff/4ZPHiw6E0i1KlTZ/jw4aVKlSKidu3aSZ7xoBEZGUlEpqam2JNa0Lx8+TLPCrgPH85ErMsFQWbm6dP5l1/4++8zAu6NGjERKxRsY8Pu7hwYyNnZkJaWliYCEELVqlUvXLig23kD85gxYzSxqqioqNKlSxPRnixdpHMuNTVVXGutXLmS3wq+ayM0NFQ0k9PRrWWBNWHCBLlcLrLZdM3Pz4+IatasKXm3GAmjzKKier9+/aSY1zs8fPhQLpebmJjExcWpVCqxA1uSvFgNb28mYj099vOTcNSCS/PXKBZyRLkF7TNIxGY+XWeiiID7/fvcuzfPmMEBAdp290lPTxdVtmQyWe62uz148GDu3LnW1taaz81evXppNaecKwQB9+7duxORKE98/vz5Hj16TJkyRarB3d3d344p3L9/f+PGjd98802LFi309fUzx99LlizZvXt3d3f3a2+mgKalpfXo0YOILC0tdVF+BPJRaGioOPENHjxYqpWejRs3ElHnzp351b6K8uXL62hz6LlzGYkz6B6Xp2JjM26nOnbk1FRWq3noUPEvkSzF0oc4d/Xs2VP7oTT++4+JuHlzCYeEfDNt2jSRJUq5YmlpaWNjk2fZc5s3b+7ZsycRmZmZLVmyxMfHx8fH5+DBg35+fv/9919gYGBgYGBwcHpwMD99ytHRWatb2tpyr16sUvGuXbx4MdvZZTx+7BiKaL1Xenq6kZGRTCbTZFP+8ssvROTq6qr9J11CQoLY1p2ampqWlibqe2rT9+nDkpOT9fX19fT0kpKSlEqliYmJTCbTXZQW3ketVost9gqF4sMb2KOiory9vZ2cnERUSLC2thZlNMRzbt68KYo01q9fX0d9m319fYmoU6dOuhgctLFr1y4i6tixYx4cS0cF3LOYPp0DA9nJiS9fZgcH3rGDt2/PTaXmqKgoEaUVjIyM1q1bJ/10IZOoqCjRnm3v3r38qoJZzZo1tczEEp+51tbW6enpmuD7ihUrJJnznDlziKhp06afVOkhUVCuUaNG8fHxuj7WiBEjSGc1r9avZyLW1+dclMNJS0u7evXqxo0b3dzcRCFsTdcHtVr9+++/S1hUZO7cuUT0xRdfMPPRo0eJqHr16pKvQEyfzkRcvDgHBUk7cAElrqMmTJjAr9pINNfu5lytVnbu3Eomk92RsNPOu4iAOzPPmcONG0vWm9DT01Pcz3711VfZLHMaHR3t7e1tb2+vST4zNzd3cXHx9/eX/P35UYUg4D5s2DA9Pb1NmzbpYnCxjd3MzMzW1tbNzc3X1/f5mxse0tLSAgMDPT09nZ2dM6+NiF3SglqtFufcsmXL6vp9DPni+vXrItNKqjJt/fr101xUiY4uEm6/ymLaNMk2pkF2paWxgwMTsbU1i6DPrFkZDbwvX5bkCFFRUaLp/NvdvXNt6VIm4tzWlocC5MaNG/r6+nK5/MyZM8yclpYWHR0dHR394MGD4ODgGzduBAYGXrhwwc/Pz8/Pb/fu3T4+Plu2bPHy8vLy8lq0aJGHh0de3sC/fPlSFJFo0qRJs2bN3rcGUKaMSrP1XvOnWDH+4gt2cOBly3j16oyAe/PmfOgQHzrECxYg4P5eSqXSw8NDLpdrrl//+usvkWQwcOBALbNKAwICxK0+M1+5coWIrKyspJn3u2TukiqamNWsWVN3h4MP8/T0FHc4bm5uWX70+PFjLy8vR0dHTTqLXC4X5arv3r379lDh4eGNGjUS9/CSdLBPT09PSEjQfCs6VcyYMUP7kUFa3377re6CWZnptIB7ZiLg/ugR9+qV0Vop127fvi3uSjQmT56MXRo6JWo51qpVKyUlJT09XeypWrRoUa4HjIiIEP3tDx06xMzz5s3TBN8lmXBiYmLVqlVbtuzt7f0JbbuPjY2tX78+EfXo0UOnKw2JiYliV5buIj/Tp3OjRhwYyOJyLC3tvUU5QkP58OFrHh4eX3zxRaNGjTJni8pkMj09vcmvogAiF6dbt25Svc3E3/b+/fuZeeTIkUQ0W7PJVDpqNQ8ezERcowY/e5bLQcLDww8ePJjrSpt5SVw2m5ubp6amJicnizaq2lwCxcefCgykgADpS9FmoQm4p6SwlZVkAXdm3rFjh4mJCRHZ2dk9f395muTkZF9fXycnJwMDA/FfwNjY2MnJydfXNx+bSBeCgLunp6c4X3z77beaYuvaU6vVv/32m6GhYZZbeplMVqdOnREjRqxcufLy5ctZzkdhYWHbt2+fOnVqcHCw5kFxUVi8eHEJI19Q0Jw4ccLIyIiIFixYoOVQiYmJJiYmcrk8PDycmSdPnmxkZHT48GEppvkOoiq37huPQSbR0dymDVeowA//3959x1VZv38cvw4bUdx74565t6blqMQsFTdlWlialA01rcyyoqyvaJY/TDO0HGhDzTI1c+YCF+6BW9wDRPa5fn/ceCI1E7gPB/T1fPTocTyc87kvAc+5z/v+fK7PMVXVOXPUYlFnZ725zakpXn31VRHp06ePWQM+99yD1SbvfmW1Wtu1a2fiBUJ7GzJkiHEKlZKS8t1331WsWLFjx45+fn4dO3Zs3759q1atGjZs2KBBgzp1Unx8tHhxLVhQ8+X7O3P389MOHTQlRR95RKdP14kTtX59nT1bZ8/W0aMJ3O/mhx9+8PT0FJHHHnvMmH6+fPny/Pnzi0jz5s3PZ/pjjeqUKVNEZNCgQao6c+ZMEendu7dpdd/m7KxZf7ZtO+f111V11qxZxjUD+x0O/yk0NNTFxcV4FUpNTY2KigoODm7ZsqVtqpGzs3PLli2Dg4P/c1Xo5cuXjd10ChUqZFxBzATjM1hAQEDx4sU//PBD2/2PPvqoiPz888+ZGxb2069fPycnp2+++cbeB7J3A3cbI3BX1Y8/zmrgrqpr1qyxBQqG1q1bR0dHZ71O3FFycrKRLX7++ed6s51Ivnz5Mv09N/Yd6datm94Wvpvlhx8uGHtZ22eXxBwqKirKmNb9xhtv2O8oRkfs5s2b2+8QqakaF6c9e6ZNhDpwQI2ODImJunu3hobqyJHq65vW8L1t2zW2lwInJ6cqVap07979vffeGz9+vBF2/d///Z+qHjt2rHjx4iIybNiwrFdotHouVqxYcnJyfHy8cfZoyqXx212/rg0aaNGi97oxe2Ji4u7du0NDQ0eOHOnr62tM6xGRokWL2qM80xldr40lNQMHDszilYxTp0aFh8vJk8PNK/DOrl/Xm426dcuWtBTELDt27DB6TlSuXPmWX7PU1NR169YFBAQYL6S2k8yQkBD7La69d7kgcLdarcHBwcZZRYMGDe44BSajzp07Z6xeFxF/f/8jR44sXrx47Nix7du3Ny6e2Hh5ebVs2TIwMDA0NPSOm30by8Hc3NzsF5gih/j555+dnZ0tFkvm5n4eOXIkNDQ0MDCwbt267u7uVapUsX0pJibGTjNTtm9X42TrQVpQmDPcuKH79qmqrlmT1opvyhRzj3Dy5Ek3NzdnZ2dTXhVVtWfPaW3bbty0ye7LMGFXRr5ZvHjxXLGbyNatW52dnV1cXIxNC411lPf+GebaNb1+PS282LhRK1empUzGbNq0ydi6pnbt2sePH1fVXbt2GX08KlWqlOmpW8Z2rF988YWqBgYGisgnn3xiZt23GDxYRXTiRFWNHz36YoMGu7/4wo6Hwz1YtGiRcTnH2HHEdlLdo0eP77//PkNL2uPi4ox95r28vGy7Lt2Lq1evzpkzp0ePHukb1/Ts2dP4ampqqvHZjJgyB/rpp58sFkvRokW3m7Qu8N+89NI7LVpMnjHjyH8/NGs2bFCjNXdSkv7yiwkDGpucpVe6dOlMX5TCfzJCdm9vb+MVw3hReiFTy0LDw8OdnJzc3NyME3hjobw9Gm23aaMias/kOSdau3Zt+pTZHoxOwmb1/7mLnj21Xz9dv14PHNAXXtAqVdTJ6da1noUL64ABJ1555ZXp06dv2bIlLi4u/QjGhwJXV9eVK1eq6oYNG4xvzpQsfyx95ZVXRMSYPj937lwRadrUjnOoT53SI0e0d++0zZm2bNH0DclPn9bFizUoSP39tWZNbdXq/255eSxUqFDbtm2HDRvmwJnO9+7jjz+2TaozevVkZbeAPXvqhIdLTMxKU2u8g5Mn1Ta75qOPdOlSk8c/ffq0sRK6UKFCxkZNtq1QbT/omjVrBgUF5ajzulwQuBu2bt1auXJl42Lyd999l5Whfv/9d+MyV9GiRRffNuE0OTnZuCAWEBBQs2ZN22QcQ8mSJX19fYOCgtatW3fjxo1Zs2ZZLBYnJ6ewsLCslITc4quvvjLetH777bf/fPDp06eNCzm+vr5G7z+bvHnzWiyW2bNn27vgt99WEc0l81zvC9ev68KF+v33evasqur581qwoP3Odp977jkxqR9RYmKim5ubk5NTNvQ9hP1cunTJyE+z+EaZPVJTU439LUeNGqWqu3fvNjrhbNq0KUPj2D6lDhmiU6dqx45pf1y7VseO1fHjdfBgpaH3v4mKijI2OC1ZsqSxUM92Rlu4cOHMbaNqtBA9e/asqrZu3VpE7DspoUkTFVFjd7i2bVVE7+E9Gva2cePGevXq1ahRo2DBgn5+fqGhoZl+f0lJSRk0aJAxwWXu3Ll3f/DFixdDQ0N9fX3TL2M1GsTv2bPH9rC1a9eKSMWKFTNXEuwqMTHR2CyuQIECdg2Ry5cvLyK77N3BXfWFF3Tv3rTbtqvCWfT666/fEiq5u7sHBwebMzpuY0zXCwgIUNVDhw65u7s7OTlldN9aq9VqrNoZPXq0qkZERKQP3821bZs6Oambmz5oLW9vSZnNde7cORcXF1dX17u0tjBLz556+LC2a6e7d+vgwVq5srq6as2a6uenY8fq4sV65B6uFb7xxhtGRmnMopg/f77FYnF2dv4lC5f+kpOTjTzN2HbF+KeR9RD/P7Vvr489pleu6Nq1OmKEPv+8NmmiXl63XoRo1y7ioYce6t+//yeffPLbb7+dyuLendnu+PHj6XejLVOmjIhk7q0wMfFEeLhl27a8VmuW9py4F/YO3FU1NjbWuNjp5uZmvH0bqlSp8t5779njVTTrck3grqpXr17t2bOn8T0dOHDg9evxGR0hPj4+MDDQyNDbt29/+h62Lrxw4cIvv/zy9ttvt2/f3rZIweDq6urs7GzXy6fIgUaNGiUiefLkuf1VLyYmZt26dUbH/4oVK95yEmxcrRk7duyKFSuMRkn3GNxnRY0aKpKZHVeQGTduaLt2OneuLl2qDz+sxpqYkBDt1ctOzUH379/v5OTk7u5+L69md7dt2zYRqV69uimFwVGMmcUPP/xw9u8JkwmTJk0SkXLlyl2/ft1qtbZt21ZEXn75ZdMPNGWKyQsb7zOXL182vvl58+ZdsmSJqsbGxvr6+hrxzZw5czI9stVqNc6dstKg5j+kpGiePGqx6NWrarWmXePMSXNbHmRWq/Xo0aOmrOGzWq1G/1mLxWJ0dbjF8ePHjQbxRjcbEXFycmrZsmVQUNChQ4dsDzt//rwRx7u4uFSoUKFYsWJ22pEVWZSYmNi9e3fjdWnVqlX2OMSRI0eMK4tZ3yn6P9kjcE9NTe3atavcxt/fP4v7cOCObgnZjQseLVq0yNAZl9H3rHjx4teuXbNara1atbJNO7CHQYNURLt0sdPwOdctKbOJjF1zuxrNqu2sZ0+9fFmnT9chQ3TwYD15UjMxP9v2QlGtWjVj8auxf4m3t3dkZGTmClu6dKmI1KhRQ1XPnTvn6uqaPVcgOnTQ1at1yBBdu1bffjttDbmIliyp7dtrYKCGhmp4uMZnOCbMcdq0aSMis2bN0pu/zJn7fHT+/Ffh4XL4cDezC7yDkye1QgXt31/799f69e0SuKtqSkrKyJEj69at6+Li4sCtUO9dbgrcDaGhoV5eXvXqtatZM2XHjgw8cc8ebdkyuVSpZq6urmPHjs3cqZWtK0jDhg0tFkuxYsXatGmTiXGQe1mtVmNacZEiRfbu3Zt+PYSxgbKNt7e30Y8oLCzMmOiXni24/8vEHSX+ad++07VrxxQtqmyklE2++05tGygtW6bZsg9bt27d5E5702XUN998I6Z2hIcD/PXXkrZt83t52amFormuRkcbUayx1MxYHV+iRIkrZs9F37ZNuSz+nxITE/v37y8izs7OxhyllJSUoUOHGvlmprcuPHjwoIiULVvWzFpvERmpIlq5surNDRBLlrTj4eBQwcHBxrnW7e96Rs9T4ypR+/btg4OD068pPnjw4CeffNK0aVPb0lVXV1ej1a9ZO7LCdCkpKUar6zx58qxYscL08Y33ne7Z0MFd9YUX9Mkn05IIE/suxMbG1q9f//bMvXXr1qYdA+m89tprItKyZUur1Xr16lVjTeG9r3S/fv166dKlReTbb79V1dmzZ9vCdzsVfO6c5s//IK77uj1lNkvDhg1FZMGCBSaO+W+MwN1q1TZt0nq4Z05cXFyjRo1EpE2bNomJiVartU+fPiJSsWLFzM2HMJ5u7IlizCN88sknM1/fPTN6SD7zjAYH67vv6vff6+rVmhs6aGZYSEiIiHTq1ElVt2/fLiJFixbNRD+cQ4c6h4fLhQsz7FDjrbJhhrtNXFzc5s2bc8Vu4bkvcFfV3bt3t259VkQ9PXXq1P9+vNWqkyerh4eKqK/vuW3btplSxq+//ioilY3PeHiQJCUlGb3bbtmwyMPDo3nz5q+88sr333//n0tarFarsQlGkSJF7PRJ74MPPhCRIUNG2GNw3MGnn6rtnHv/fn3mmWw45pYtW4yrO3ePKRMTE48cObJixYqQkJCxY8cGBAS0b9/ex8fHNu9j2LBhYsaewHCY5GR96CEVuZ5uS8AcrVeviw0ajHvuOVW9dOmSkXz9Z7OIjIqO1oEDNSREc9tyUgewWq1jx4413s4CAwONeQm2fHPQoEEZOtHfs2fP2LFjy5cvX6pUKVvXbLuYNStt81xVXbhQRfSJJ+x4ODjarFmzXF1dRWTAgAHpP2t98sknPXv2nDdvXvo9soz+nkY+YvD09PT19Q0JCTl//vzly5eN6aWFChWy3+wHZEVKSopxtuzu7r5o0SJzBzfS/MmTJ5s77B3ZY4a74eTJk6VKlbolcHdycsqGafsPoGvXrhmdNIyQfcaMGS+//PKlS5fu8elWq3Xu3LndunVLTU2Ni4szdkzJ3N5g9+7TT1VEa9TIzOToXO2WlDlDz01KSoqMjJw7d+6oUaM+s82mUt27d6+I5M+fP3sWkXz/vRrH2b1bf/wxS0OdPn3auNgzcOBAVb1x40bTpk1FpFWrVgkJGWs2EhMTkydPHovFEhUVparGNzl7GiwbgXt0tPr4aBa2Ec0FLl++7O7u7uzsbEwdqF27togszWCGnZp6Y9u2POHhlqSkrC6FvxfZGbjnIrkycFfV+HgNDExbQvLUU3qXt7nz57VLl7RH+vvr9eum1ZCammq842Z6MQ5yr+vXr48ZM6Z58+Y+Pj7+/v7BwcHr1q2Lz+D6pZSUFOPau4+Pjz32dqhbt66I2LtrDf72ww/6wQdpt3/6Sd9/P3sO++ijj9pmGRgiIiKmTZs2evTovn37tmjRomTJkrfPfjL8+uuvxlOM0MEeM8iQTT77TEW0fHn953ZJOdTy5SqiefIYnZdefOEFEWnfvr2jy4LOnDnTSDO7detmfJ4MCwvz8PCQm41r7+7o0aMfffSR8e5jaGVutnS74cNVRD/6SFV1zBgV0TFj7HtEONqSJUvy5MkjIl27dr099UhNTQ0PDx87dmy1atVsv4cFChQw+sinj+NVNSEhwVgo5uXlxflSzmS1Wo05AW5ubj9mMXP6J6MDbPZ8jrNf4K6qW7duNf5F2Bg7GcIejJmnZcuWjcva6dbbb78tIg0aNLD3pZHERK1aVfv314xsVn2fuCVlvovLly8bjWEDAgJatmxpbPptqFu3ru1hb731lmR2s9xMeOopNcLws2d1wICsjhYeHm68UEycOFFVz5w5U7ZsWRF59tlnMzTO4cOH27dv365dO1U9cOCAMfEre65A2Palmz79nubd5mrGRibGthxffvnlyy+/vG/fvgyNkJAQtX9/q337mtinwFslJv79NnfixN0S2gdKbg3cDT/8kNars1w5Xb/+Dg9YsUJLlVIRLVBAzZ42p6r6/PPPi8i4cePMHxq5QdaXscTFxbVo0cJ4L79q6nmQsZC/QIECGb2kj8xLTtYnntDgYP3mG23XTs+dy57DrlixQkSKFStmO9d56aWXbgnWXV1dfXx8WrZs6efnN3LkyJCQkBUrVhw5ciQlJUXT9VnOhu57sIuTJzVvXhXRLOyAlH0SErRaNRVRY0XF+vWJFSq83bSp6X02kTkrV64sUKCAiDRt2vTcuXOqumnTpsqVK99lX8GLFy+GhIS0bNnS1q+jQIEC/v7+ixcvtvt6z4cf/nu1/BNPqIguXGjfIyIH2LRpU5EiRUSkbdu2xulTSkrKunXrAgMD08/2LVKkiPF7eJdzoZSUFON8/l52ZIVDWK3W4cOHi4iLi8vs2bNNGfPw4cOSXQ3cVXX9+r/jTnu8US9cuNDW2fKll17KyQ1tc7vU1FRj0cz7WZhYc+LECWOO8Lp160ys7d/Exqqfn65eraq6apXOnauDBqV9acsWDQnJhhIc5paU2SYlJeXrr78ODAxs165d4cKFb/nc5OTkVKlSpaeffvrdd9/9+eefjadYrdYKFSqISOb2k8+E9u3T2pGfOZO2kC+LFixYYLFYnJycjHaO27dv9/LyEpGgoKCMDmWc3Y0ePVpEnn/+eROKuwfvvJN24+hRnZEdXVIcacGCBSLSuHHjzD39+vW/jh4dcOLEKwkJR02tCxmTuwN3VT1yRJs0URF1ddWgII2ISLs/IkKHD1eLRUX0kUfstZbc2C+iXr16dhkdD4YLFy4Yk7DatWuX0SVdhvj4+L/++is4ONjYw8fw8ccfi8gz2dLVBH9LTta1a3X5cjNX09yDZs2aSbrd4efNmzdgwIBx48aFhoauXbv2xIkT//Z5Mi4ubvfu3dOmTRORMmXKZGPJMFW3bn931cj5xo5VEa1VS5OSbJ1wNLNdwmEPu3fvNuZ++vj4GBNq7pibX7lyxbb/pPEZ1ejXERYWln3XeidO1G7d1NgopWRJFdGoqGw6NBwqMjLSmLpYtWrVHj16GFeJDD4+Pq+//vr69evvMUu1Wq1vvvmmEbLMZhV0TvXuu++KiLOzs9H/Oit27Nhh7Mjao0cPU2rLCf73v/9Vr179xRdfJG23t/Xr11ssFk9Pz+PHj2duBD8/PxHp16+fuYXdRZs22qGDJibqjz/qpEl/L7NYufL+P/+ypcy3tKVKn7Pnz5+/ZcuWAQEBxrL12NjYWwaJi4ubOnWqiJQvXz7b/om1b6+vvqqvv64vvmjaOf64ceNEJF++fDt37lTVn376ycnJycnJyXZd4d5ZrdaKFSuKyGrjYo792X5vt2/XTO0hmpvEx8cbJzaZaz68d2+j5OTzycnnU1PZQ9uRLKoquVxKiowfLx98IGPGyMSJsnWrVK8ujz8u5crJN9/ImDHyzjvi7GyXQycmJhYrViwmJubIkSM+Pj52OQYeAEePHm3ZsmV0dHTv3r2///77WzZfvaOoqKj169dH3JSQkCAib7311kcffWQ8oHHjxuHh4YsWLXryySftWz1ygB9++KFHjx7lypU7fPiw0Q7iFklJSadOnYqKioqKijpz5kx0dLRx+9ixY1arVURq1Kjh5+dnnIQhl1m2TB5/XPLlk337pHRpR1fzXw4fljp1JDFRVq2Stm1lwgQZMUIqV5bISPHwcHRx+NvZs2e7dOkSHh5eqFChH3/88eGHH7Z9KT4+fuXKlbNnz160aFFSUpKIuLu7d+jQwc/Pr1u3bnnz5s3WQpOTZc4cOXFCWrQQi0V27ZJXXpGbE+1xfzt+/HinTp3i4+NPnDghIjVr1uzSpYuvr2/6xRb3bvLkyQt+/z3xvff8S5V6uXRpfodyoE8++WTUqFEWi2XKlClDhgzJ0HPj4uJWrVr1yy+//PbbbydPnhSRXr16DRkypE2bNvYpFveznj17/vDDD5kOUvLkyaOqBw4cKFOmjLmF/ZuOHeW55yQqSmrWlJMnZcYMGTxYROTAASlYUN57L3uqcJj3339/7Nix+fLlW79+va3r3fjx493c3OrWrVunTp3St50/nzlzJiIiYu/evXv27ImIiDhw4ICxuOHJJ580Lv5lgw4d5JtvxN1dzp+X99+XsDATxlTVZ5555rvvvitfvvzmzZuLFy8eFBT0zTff/PLLL1WrVs3QUGvWrGnbtm25cuWOHj16L/FF1jVvnva7GhUle/fKF19kwzEdadCgQd98802PHj06d+6clJSUlJQUFxcnIleuXBGR6tU927U7o5pstV4XkdTUKyKSmhqnmlSy5Lvnzk0oXNi/YME+zs75HPu3eMDdD4G7ITJSrl2TWbMkOloWL5YnnpC5cyUqSho0sO9x+/TpM2/evM8//9zYtRzInMjIyDZt2ly9enXo0KFTpky5/QGnT5/eclN4eHhMTIztS87OzrVq1WrSpEm3bt2M3VyPHTvm4+Pj5eV14cIFDzKsB4DVaq1Tp87evXtnzpzZqlWrY8eOHTt27OjRo7Yb0dHRd3yiu7t7hQoVKlSo0K5du5EjR2Zz2TBBfLzUri1RUTJxorz6qqOruQdPPCG//SYDB8qMGXLypNSsKdevy9Kl8sQTjq4Mt4qLi+vbt+/ixYvd3d1nzJjRo0eP5cuXL1iw4Keffrp+/bqIODs7N2vWzM/Pr1+/fkZ/Dwfo2VO6dpVGjeSrr6R6dbmtoRbubxcvXrx69eqPP/7YrVu3ypUrZ3G0pZcufXD8eIrq00WKvFWunBNXbnKeCRMmjBgxwmKxTJw48ZVXXvnPx+/cufO3335btmzZhg0bUlJSjDtLly79+OOP9+vXr23btvYtF/epkydPrlmzxt/fP3NP79+//8CBA9u1a2duVXfRsaP8/rv4+kqHDuLkJN99J5MmiYiEh8ulS/d/4H57ynzLAy5fvrxr167IyMjIyMidO3fu2bPHSDZtXF1da9So8eabb/bv3z/byu7QQZYsEQ8PiY6WV14xJ3AXkYSEhEceeWTjxo2NGjVas2ZNnjx54uLijN4yd3ft2rXIyEjbRYjw8HAXF5dXXnnlww8/NKey/9KsmQwbJiJy4oScOXP/B+5//vnnyy+/bGzVe7uePVuOGLHhjl8qV+7/ChXqdenSd5cufVuhwreenrXtWSbu5v4J3EVk/Xr54w9xd5fSpWXOHPn5Z3F3t/tBw8LCevXq9UTfJ5Z+v9TuB8N9bfXq1Y899lhiYuJnn332+uuv2+7fu3dvx44dT58+nf7B5cuXb9q0aZMmTRo3btywYcP075EJCQkjRoz44osv+vTpM2fOnOz7C8ChZs6cOXDgQIvlzq/qbm5uZcuWrVChQsWKFSvcVLFixZIlS2ZiGiByEKtVpk+XWbNk9Wq52dYj59q5Uxo3Fm9v2b9fihSRp56SRYukVy+ZN8/RleHOUlNTX3311SlTplgsFi8vLyNnt1gsLVu27N27t5+fX7FixRxZX3S0DB4sixeLiCQny8MPy19/ObIe5H5bYmLeiIq6kZrapkCBjytWdM+WWXvIkKlTpw4dOlREPvvssztOeLp9MruIODs716tXz9fXt0uXLg0aNODkB1lnLBLNBIvFks2/gR07yvLlsm+fdOwob74pCxbIunUiIn/8IevWyVtvSXKyZPP6tGyWPmX+448/Tp48aQuO9+7de/To0Vs+QBUsWLBmzZoNGzZs2LBhrVq1atWqlf2T2MaNk9GjxdVVrlyRGTPkjTdMG/nixYvNmjU7cuSIn5/f/Pnz7/jbmJycvH///sjISNulCNvLqc1XX33Vu3fvggULmlbZXbVunfZ7u2OHzJhx/wfuInLx4sUhQ4bkyZPH3d3d1dXVWEVaoEABi8VSo0bRFi1SLBZXJ6e8IuLsXEDE4uSUx8nJ3c2trItLMRG5fHlOcvK54sWHO/Zv8SDL8R/OM+611+TxxyUpKZsO90TnJxqEN1jutPxc8rnirrdeLAXuXdu2bUNDQ/v27fvmm28WKVLk2WefNe4vX778uXPnvL2969Sp07Bhw1atWrVp0+aWK/PpO8yEh4cnJiY2bdrU6A+IB0S/fv1KlSrVo0cPY3/UW5QvX97ZTq214BDHjsmIEeLhIbGxMmqUrFuXO3poPPSQRETIiRNSpIj89pssWiTe3vL5544uC//K2dn5iy++qFy58m+//fbnn3/WrFnTz8/P39+/UqVKji5NREQuXhRb4u/qKpnNPgCbJt7eU6tUeeXw4bVXrw47fPh/lSrl5d0zh3nppZdcXFxefPHF119/PTY2duzYscb9UVFRS5Ys+eWXX9auXZt086NgsWLFOnXq1KVLlw4dOqRv9A9kXfa00TBFlSoiIjVqyJAhUqyY2JYD5csnBQvKlCly8KCMHy9FizqwRvvy8PD46aefmjZtavTKS01NTf/VvHnz1qpVq27dukaHmbp162ZbiHwXN1/bpGBBM9N2ESlSpMjixYtbtGixYMGCOnXqvPPOOyJy5coV2xWIPXv2bNu2LT4+Pv2z3NzcKleubFyBqFmzZpMmTW5fK2BXefKk3XB2zo6ZtTlBkSJFwjK+tEE1JSqqt7Nz3sTEI+XLT7dHYbhH9+EM97FjZdUqad9e4uOz6d/hk0eeXHJtSUi5kIAiAdlxPNzXvvrqq6FDh7q6ui5ZsqRTp07GncePHy9Xrlz6i8+2DjObN2+OiIhI32HGxcWlVq1awcHBrJN9AFmt1lx09g8ROXDgwDvvvOPi4pIvXz4R8fb2dnZ2dnd3z5Mnz8vu7l7GqaWnp3h4iJOT5M8vIlK5srz6qnz6qVStKteuSadO8tdfkvN/7snJsnGjJCVJs2aSN680bCjbtsmkSRIY6OjK8N9U9cyZM7c3OXWw2Fh54om0+U5nz8pzz8lvvzm6JtwPjiYkvHzo0LmkpEqenl9UqVLsTpujwLHmzJnz7LPPpqSkdO/evUCBAr/99tuZM2eML7m6urZs2fKxxx57/PHHbf2aAdzFhAnyzDOSvfGpA0RGRi5btmzkyJElSpSwBccNGzasUaPGA/gBaunSpV27djUak546dery5cvpv+rk5OTj4/PQQw/VqVOndu3aDz30kI+PzwP4Xcq9rNYEJyd6CzvYfRW4nzkjZ8+mNW3/4Qfp2jWbltfPvDRz4PGBj3k/9ltlPubBBCNGjJgwYUK+fPlWr17d4OYuBNevX9+xY4cxh33Dhg1RUVHpn1KyZMmGN7Vu3ZopPEBusXr16n9r4plctqzLbYs3RUTGjJGVK2XTprQ/9ughEydK2bJ2q9EMSUny1FNpm7t++63MmycuLjJlih23NccD4ssvZcMGadhQVqyQDz6Qxo0dXRDuE2eTkoYdOnQ0IaFDwYIJVmteZ2cPJ6cx5cs7ui78LSwsrH///iVKlDAaHTCZHcicX3+VhATp1s3RdWSXhIQENjkzTJw4cdmyZcuXLxeRAgUKGM1zjIsQ9erVy3t/txkC7O++CtwXL5YDB+TNN0VE/Pzkiy+kRInsOO6llEslIktYxHKu7rmCzo5ffITcTlUHDhz47bffFi5c+OWXXz527NjWrVv379+fvlFgwYIFm6Tj4C66ADLr3Llza9euTU5ONrpjX7t2zWq1JiQkxMfHv+fu7nH2rIjIjRuSmCipqWKsZenbV6ZNk40b04bw9ZVvvxVHbVl5j8LCJCpKRo0SEVm0SHbs+HuhLJBFFy/K6dNSpcrfi40BM1xLSZl//nxhN7c8Tk6PFyrk6HJwB1u2bDlz5syBAweYzA5kTnS0TJ4sFStK586S05axIRskJCSsWbOmTp06pUqVcnQtwP3mPuzhnv0KuxRunbf1n7F//nrt136F+jm6HOR6Fotl2rRp0dHR4eHh48aNM+50dXWtXr16q1atWrZs+cAufAPuP8WLF8/MdgsbN8rSpdK5s+zdKwkJOT1tF5Fjx9IaiIpI1ary008OrQb3lyJFcsE/AeRC+V1cAkqV+vHixXXXrl1ISqrg6dnG6OuFHKNJkyaOLgHI3UqWlI8/dnQRcBwPDw9bG1sA5rrfAvf58yUyUkRk69ZsPe7TBZ7+M/bPn67+ROAOU7i6ui5cuPDUqVOffPJJ48aNmzRp8tBDD7nSQhSAYeJE+eADmTtX8ueX775zdDX3oGxZOXo07fbRo1KunEOrAYAMqOzp2dTbO1/2tKoEAABA7kdLGXOcTj5dNrKsp5PnhboX8jixohkAgHQSEuSJJ+SFF8TbWyZMkO++kzJlHF0TAPy3Hy9e9KSlDAAAADKClhTmKO1aurFXYy8nr0OJhxxdCwAAOYyHhyxZIq6uEhMjCxaQtgPILQq4uORnb2cAAABkxH01w33fPrlwQdq0ERGZM0eefFKyc1/l08mnTySeWBG7oqRryWcLP/vc8ee+r/B99h0eAAAAAAAAAOBQ99UM9xo10tJ2EenbN1vTdhHZl7Dvo3MfdSvQrbBL4Y1xG88nn8/WwwMAAAAAAAAAHOq+Ctwda+almR+X+ri2Z+1uBbo9nPdhR5cDAAAAAAAAAMhWBO6muZxyuZhrMUdXAQAAAAAAAABwDAJ301T3qB5xI8LRVQAAAAAAAAAAHMPF0QXcP14v/nq/o/02x22Os8Z1zd/V0eUAAAAAAAAAALKVRVUdXcP9I0VTjiQeyeOUp6xb2ejk6JKuJR1dEQAAAAAAAAAgmxC4AwAAAAAAAABgAnq4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7neSkCDR0Y4uAgAAAAAAAACQm7g4uoCc59NPZetWqVBBdu6UGTOkbFlHFwQAAAAAAAAAyAUI3P/p2DHZsEEWLRIR2bhRxo+XkBBH1wQAAAAAAAAAyAVoKfNPe/dKw4Zpt5s0kd27HVoNAAAAACDb/fqrBAXJkiWi6uhSAABALkPg/k8FC8rly2m3r1yRAgUcWQwAAAAAIJu9+65EREiXLrJ3r7z5pqOrAQAAuQwtZf6pcWMZNUo2bpRq1WT0aHnuOUcXBAAAgDtZtEi2bJEKFeTZZ8XNzdHVALiP/PabbN0qIlKrljRtKlarODFTDQAA3CvOG9K5cEEiIuSbb2TVKnn/fenWTXr0cHRNAAAAuM3nn8vWrfLSS+LtLX36OLoaAPeRpCTx9Pz7jwUKSEyM46oBAAC5DzPc01m+XPr3Fz8/CQuTVatk7lxJSJCnnnJ0WQAAAPinBQtkwwZxdpZeveS77+TcOSle3NE1AbgvuLlJcrIkJIiHhyQn02gUAABkFIF7OgcOiIhUqyYisn69TJ8uRYoQuEOSkiQ0VI4fl6ZNpUsXR1cDAABEVMXZOe12kSJy+TKBOwATXL4sBQvKqFHSq5e0by+rV8sbbzi6JgAAkMvQUiad9IF7+tt4wPXtKwULyuDB8tdf8r//OboaAMi5rFbrkiVLOnTo8Pnnn7/++utJSUmOrgj3r4IF5exZERFVOXBAKlRwcD0A7g/9+4uPj5QsKd9+K40by9dfS8+ejq4JAADkMhZVdXQNOUa9erJzp2zZIo0bS6NGEhEhf/0lzZs7uiw41Nmz8sILsmSJiEhqqrRqJRs3OromAMhxLl68OH369KlTp544cUJEvLy84uLimjZtOn/+/PLlyzu6OtxfNm+WGjXk4EEZPVratJGICOnaVQYMcHRZAHK/ixelVCkRkehoKVxYOnWSpk1l1CjJk8fRlQEAgNyEGe43qcrhwyIiVaqIiBw6JCJStaojS0JOcPmyFCmSdtvZWbhABQD/tH379sGDB5cvX/6tt946ceJE5cqVg4KCFi9e7OPjs3nz5oceemjhwoWOrhH3kaQk6dpVSpeWwoVl6VLx85PZs0nbAZjjhx8kOVk6dJDChWXLFlm+XKZPFw8PR5cFAAByGXq433TypMTFSYkSUqCAnDkjMTFSpIgULuzosuBoFSrIwYOiKhaLREdLwYKOLggAcoTU1NRff/118uTJK1euFBEnJ6f27dsHBAR069bN2dlZRLZt2/b8888vXLiwZ8+ew4YNmzBhgpubm6OrhvnOnj0bFRUVFRXVsWPHokWLWiwW+x7vhx/k3DmpW1cqVpQLFyQgQAYPlr597XtQ2MeqVauio6Mz99xu3bp5enqaWw8g8+eLiPTq9Y/bTjlrjlpiYmJkZGSxYsXKlSvn6FoAAMCdEbjfdHsD9+rVHVkPcog8eWTQIOneXRo0kLVr5eOPHV0QADjY+fPnZ86c+dVXXxndY7y9vXv37v3qq6/WqFFDROLi4ry8vEQkf/78YWFhkydPHjFixOTJkzdu3Dh//vyKFSs6uHpkVlJS0qlTp6L+6dChQzExMcYDHn/88fr163/44Yf2rWPqVBGRIUNERGbMkLVrpUABAvdcx2q1BgQE7Nq1a+vWrZkb4dlnn33llVfq169vbmF38fvvv69du/att97Kmzdvth30QZaUlHTo0KGImx599NGKFSsOsOtylrNnZe1a8fCQrl1FVX74QeRm+O5QycnJBw8ejEgnISGhW7duKSkpP/zwg4sLn+gBAMhxeHtOc+XEifxFijgZPWTYMRWGyEgZM0Y6dpTQUImKkldfFTt/xNqwQRo3Fjc3OXtWUlOldGm7Hg0AMiYiImLatGmzZ8+Oj48XkapVqw4ZMmTQoEFG/HTo0KEZM2aEhISsXLmyYcOGImKxWF555ZUWLVr06tVr69at9evXnzFjRvfu3R3818B/OX/+fNRtTp06dceNfwoXLuzj45M/f/7ly5cvW7asefPmvr6+9qps3z5Zv17y5ZM+fcRqlWnTREReesleh4PdhIaGzpgxI3/+/L1793bK+PThHTt2hIaGHj16dM2aNfYo73bJycmvvvrq/v37S5QoMWzYsOw56IMmJiZm+/bt2246cOBAamqq7as7d+6Mi4tzdnb29/e3VwVhYZKaKk8+Kfnzy/r1cvy4lCsnTZva63D/7vr16zt27IiIiDC+Ffv3709JSbF91dnZuXr16itWrIiNjR06dGhISEj2VwgAAO6OwD3N2J07v7h4cXKNGsNEfr94MV/btuUbNCDtfNCFh8uSJZIvn7z8suzZI40by0svyaRJ9jvg889L//4yZoz8+afExkpAwH8/JSkpKS4u7saNG4mJideuXatbt67RzAEwXL16dceOHf3798+fP3+BAgXS/9/mli/lYWcw/FNSUtKiRYsmTZq0YcMGudk9JjAw0NfX12KxWK3WxYsXf/HFF3/88YcRyK5atcoI3A2NGzfeunXrs88+u3TpUj8/v2HDhn322Weurq4O+/vgX8TGxoaFhQ0fPjw2Nvb2r7q6upYrV87nnypVqpQ/f37jAZ9++unIkSP9/f3Dw8MrVapklxK//FJU5ZlnxNtbli6Vo0fFx0c6drTLsWA3sbGxY8aMEZGvvvqqb6ZWJ8TExFSrVm3t2rVhYWE9e/Y0u8A7mDJlyv79+ytXrhxwLydnuDcxMTG7du2yzdrev3+/1Wq1fdXFxaVmzZoNb9qxY8ewYcMGDRpUokSJDh062KWg2/vJ9Okj9m6TJSIisbGxO3fuvMdvRf369b28vMLDw9u2bTtt2rQKFSq89dZb2VAkAAC4dwTuafbv3y8iPlWrikjwhg3LVq9eNHw4gfuDbs8eEZHatUVEdu+W5GR793AvW1a2b5cjR0RE4uLktdckLk7i4iQpSa5eleRkiY2V+HipXn3F2rV9U1JSrl69essIU6dO7dmzZ6FChexaJ3KRKVOmfPDBB0lJSadPn77Hp7i5udkS+T59+gwfPtyuFSIni4+P/+ijj77++utz586JSOHChQcNGjRkyJDy5cuLyLVr17799ttJkyYdPXpURDw8PPz8/N588806dercMk7hwoWXLFkyefLkN998k/YyOdaoUaMWLlwYGxvr4eFRqlQpHx+fmjVr1qpVy8jWy5Urd/fGBW+++eaWLVt++OGHbt26bdq0yfz+2tevy+zZIiKDB4vc7C3z4os5rb0y/tP48eOjo6ObN2/ep08f456lS5feYzP3Xr165cuXz9vbe9y4cYMHD37jjTd8fX3tfZ348uXL48ePF5Hg4GB3d3e7Huv+lpqaunLlStvEbeO9w8bDw6Nu3boNbqpTp076nT9atWp1/Pjxzz77rEePHuvWratbt665tZ05cSJVpEzhwhZfX7Fa5ccfRezeTyYmJuaFF16IiIiIiopKv4TIzc2tTp06DRs2tH0rPG7buLVRo0bz5s176qmnxowZU6ZMGTtO/AcAAJmgUFVVY8+ZQ4cOqaoRAezfv9/RRcHROnZUEV28WFW1SxcV0QUL7HrADh304EF98kmdM0c/+URF7vxf27arbf+EXV1dCxYsaCQjxjTDL7/80q5FIhexWq3GPNM5c+ZERkauW7ful19++e6777788ssPP/xwxIgRAQEBfn5+HTt2bNKkSbVq1YoXL35LlODj4/P88887+u8Bh1m0aFGZMmVEpF69eiEhIXFxccb9+/fvDwwMNHq1G78nQUFBly5d+s8Bt2zZUqFCBREpXLjw0qVL7Vw+MiA2Ntbb21tE1q9fn+lBYmJiqlevLiJ2ed2YOlVFtE0bVdXjx9XZWd3d9dw58w8Eezp8+LC7u7uTk9PmzZttd7Zp0+YeP7kcOXLEeEpqamqjRo1EZNy4cfauefDgwSLSvn17ex/ovvf9998XKFDA9tN0c3OrWbOmv79/cHDwunXrEhIS7v50q9Xar18/ESlduvTJkyfNre2zzz4TkWf79lXVK2vWqLu7Vqli7iFuceXKlY4dOxrXJl1dXdN/K+Lj49M/Mjk5edeuXd9++21gYGCrVq3S/9uZOnWq8Z1cuXKlXasFAAAZYtE7teN80MTHx+fNm9fFxSUuLi41NdXLy8tisdy4cYMF7w+60qXlzBmJipKKFcXHR44elX377LqbbseOsny5vPuuHDokrVpJQoLkyyeenuLhId7e4uoq+fOLu7t4eV3z8ko0ovb0T583b16fPn2aNm26adMm+xWJXGT58uWdOnWqWLHi4cOH771JbkJCwtWrV69du7Zz585evXoVK1bs7NmzlmxZUv2gOXhQ/vwzbbbu11/LCy84uqDblC1b9tSpU2FhYX5+fiJitVqXLl06efJko3uMxWJ59NFHAwICunXrdu/NrC5duvTMM8/8+uuvFouF9jI5x9SpU4cMGfLwww+vXr06K+NERkY2a9bsxo0bM2bMGDhwoEnViYj0feSRgaothwzx9POT0aPl44/F319mzTLxEMgGXbt2Xbx48cCBA2fMmGG7c8KECQeMLZT+S1BQUJEiRYzbGzZsaN26tYeHx/79+42pM/awc+fOhg0bWiyWHTt21KpVy05HeRDs2bOndu3aXl5ezz//vNEapVq1ahlthJiQkNChQ4f169fXqVNn3bp1tpZWWdeoUaOIiIiffvrpqaeeevHFF5fNm/fNO+888vrrZo1/u2+++WbQoEENGjT49ttva9SokX4JUUpKyoEDB2wdZrZv337jxg3bVydNmhQYGGj74/Dhw4ODg/Pnz79u3brbV5gBAADHcHTinyPs2LFDRGrUqKGqkZGRIlK1alVHFwVHu3xZRTRvXrVaNTZWLRZ1d9fkZLses0MHVdUbN7RSJQ0JyfDT4+PjjXlD+/btM7025EY9evQQkQ8//ND44zfffPPoo49279594MCBr7322rhx4yZNmhQaGvrzzz+vXr16+/btR48evXz5cvoRjNnNkZGRjij//rdsmRYpouvWqaq2a5d2p9WqEyfqtWsOrCtNUlKSs7Ozs7NzUlKScc/TTz9tnDx4e3sPGzbswIEDmRvZarUGBwcbOXuTJk2OHj1qWtHILKM/w7x587I+1MyZM93c8j766K7t27M+WBpj/4CiRYsmJCQkJiaebt9enZx0wwbTDoBssXLlShHJly/fmTNnTBnQuBbYr18/U0a7o7Zt24rI8OHD7XeIB8Tbb78tIoMHD87iOBcvXqxWrZqIPP7448kmnZkfOXLEYrF4e3vfuHEjOTm5aNGiIrJ7925TBv83HTt2FJEZM2YYfzx+/Pj//d//BQQENGzYMH0vHRGxWCyVKlXq2bNnUFDQ8uXLr1y5kn6c1NRUYzfyChUqREdH27VmAABwjwjcVVXnz58vIk899ZSqLly4UES6dOni6KLgaGvWqIg2baqqummTimi9evY+5mefpS2O37ZN9+7NwBPPnj1rLLJ+/vnnRWTMmDH2KRC5yYULF9zd3V1cXE6fPm3cM2rUqHu8Fjtr1izjKUZL0EmTJjnu73E/W7ZM335bH3lEk5L+Dty/+EJFtHJl3bbNocWpRkVFiUi5cuVs93z//fdVqlQJCgq65cJM5mzevNloL1OkSJFff/016wMi09atWyciJUqUSExMNGXAN9+8bPwa/zMXyrz+/fuLyOjRo1V1zpw5IvK8cY0auUdKSoox/faTTz4xa8wTJ07kyZPHYrGsXbvWrDHTW7gwtU2bKZUrVzPlRe8BV6VKFRFZtWpV1oeKiooqXry4iAwaNCjro6mq0aP/mWeeUdVff/1VRGrXrm3KyP/mwoULLi4urq6utm5sCxYsSH8mVrJkSV9f37Fjxy5evPjChQt3H+3GjRstWrQQkYYNG8bGxtq1cgAAcC9y+jZTiYmJhw4dsvdRjEWsxlyJ9LfxQNu9WyTdjqm22/Y0ebKULCn79kn9+lKjxr0+a/78+WXKlHnrrbdE5JlnnhGR0NBQq9VqvzqRK8ycOTMxMbFz586lSpUy7nnppZdWrFgRFhb29ddfT5gwYcyYMS+//HL//v27dOnSunXrunXrlitXzlidbduArl27diKyatUqR/0t7nv584u/v0yc+Pc9vr7SpIkcPizNm8ukSY6rTOT48eMiYuyPaujdu/eBAwdGjhxZ0IwdpJs0abJly5ZOnTpdvHjx+++/T05OzvqYyByjC/CgQYNumVaZaR98ULBhQzl8WPz9JevNCy9evLhw4UInJ6cXXnhBblbbqHv3rNeJ7PTVV19FRkb6+Pi88sorZo1ZtmzZ119/XVVfffVV0898EhLkzTed1q4d+sYbe0150XuQRUREHDp0qESJEvfer/8uKlas+Msvv3h5ec2YMePjjz/O+oDG7KtevXrdctt+FixYkJKS0qlTp0KFChn3NGnS5JlnngkODl67dm1MTMyZM2eWLFny3nvvdenSxdZG6d94enouXry4atWqERERvXr1SklJsWvxAADgvzk68b+bkJCQbt26OTk5tW/ffvHixVar1U4HGjZsmIj06tVr7969PXv2FJGvv/7aTsdCbvHdmDE/Pvzw0a+/VtXU119XEf34Y7secfduFdESJTSjv+mnTp1ydnb28PC4cuWKbZNMUyYQIVerUaOGiCxZsiSjT7RarbYWIkbkmj9//pSUFLMLhC5bphMmqNWqjz+utWrplSu6aZOqakKCBgambZL89NOmzRHOqJkzZ4pI//797XqU1NRUY9qj0Rce2e/ChQseHh7Ozs7m9vY5dkwLF1YRzfps5k8++UREfH19VXXPnj0WiyVfvnwxMTEmVInscvny5cKFC4vIzz//bO7IN27cMBq4f/PNN+aO/MEHKqK1atm7oeAD4c033xSRwMBAE8dcsmSJs7OzxWKxLcvLnH379olIwYIFExMTExISjJkHBw8eNKvOO3r44YdFZPbs2SaOeeTIkWLFionICy+8YOKwAAAgE3LuDPeUlJTx48f/+OOPrq6uK1eufPLJJ+vVq/fNN98kJCSYeBSr1bpy5cqzZ8+6urrOnz+/Y8eOK1as6NixY8OGDU08CnKjaevWdVuz5lD58iLy2K5drcuU2V6/vl2PuGyZiMhjj0lGN6csXbp0u3btEhISFixYYLFYjHX3s9hH7sG2fn1S8eLBDz3U6fHHH8/ocy0Wi20Ty3LlylWuXPnatWvbtm0zu0aksVhkwgSJipJBg6RVK3nvPXF1lUmTZO5cyZdPfvpJ2ra17twZmf2F3T7D3R6cnJySkpJExGgvg+w3ffr0hISEzp07m/sjKF9eQkPFyUlGj5YVKzI/jqpOnz5dRF566SUR+fLLL1X12WefzZcvn1mlIhu88847ly5deuSRR7p27WruyJ6enh999JGIvPXWWzExMWYNe/q0fPKJiMjEiZJuM0tkht7sl2LutHFfX98pU6ao6qBBg/74449MjzN37lwR6d69u5ub22+//Xbt2rWGDRsaV4LtJDo6ev369R4eHk8++aSJw/r4+CxZsiRPnjzGQkYTRwYAABmVcwP3hQsXnjx5smbNmmfPng0ODi5btuyuXbsGDRpUrly5UaNGnTp1KovjR0VFvf322+XKlevQoYMRU/r6+hYuXPjKlStr167duXOnKX8L5F579uwRkdq1a4tIZGTk+lOnClWvbtcjGoF7p04iIm+8IT16yL3/GhqdZIyQ/dlnn7VYLAsWLLh+/bp9KkXGpKSkbN68+eOPP967d+/Zs2ez56AhIW6rV3d88sllzs7OWRzqkUceEbrK2EebNvLCCyIitWrJ/v1SsaKkpsq4cfLUU3L5svTuLeHhUq+e5Mv3TbNmTSZle38Z+wXuqampHTt2NNqDpKSknD592snJydihF9nMarVOmzZNbsbZ5urcWUaNktRU8feX06czOciyZcsOHTpUvnz5Tp06Xb9+/bvvvhORwYMHm1ko7Gzv3r0hISHOzs7BwcH2GL9v376tWrU6d+6cKd1FDKNGyfXr0qOHdOhg1pAPro0bNx47dqxs2bLNmzc3d+QXX3zx1VdfTU5O7t69e2Rkhq9MJyQkbN261Wq11qlTZ+PGjX/++efs2bPF/v1k5s+fn5qa2rlzZ29vb3NHbtKkybx585ydnUeOHGm8WgIAAMdw7AT7u2jWrJmIhISEGH9MSkoKCwuznaW5ubn5+flt3Lgxo8MmJCSEhYX5+vraQqiqVasGBQWdPXtWVZOTk0eOHGncHxAQYNbWYch1Tp8+LSKFChVS1QsXLohIvnz57NfUSFWvX1d3d3V21osXVVXLlVMR3b793p9+PV++fBaL5fDhw6rasmVLMXuZKjLqyJEjISEhfn5+tsavVatWrVKlim0LU/u5ckXz5FEnJzWlP8RPP+2vX/+yr2+qCWPhXxw/rqmpqqqLF2uhQiqiZcvqhg2qqvHxKUYwLSJ9+/bNzs3QjGstv//+u+kjG1F+6dKlVfXYsWO228h+S5cuFREfH5/UVLv8G09J0UcfVRcXnTcvkyNMnTrV29vb2MzQ6N7epk0bM0uE/XXs2FFEhg0bZr9DREREODk5ubm5mdIJZONGtVjU3V0PHcr6YNB33z3y8MPD33knyB6Dp6amdu/eXUQqVKgQHR199wcnJSXt3r07NDQ0MDCwZcuW7u7u6T8Xu7i4lCtXrnjx4seOHbNHqTbG59ywsDA7jf/ZZ58Zn5fpMAkAgKPk0MB9y5YtRtx5/fr1W74UHh7u7+/vcnNtZ8OGDUNDQ5Pvobfivn37Ro4cWbRoUeOJHh4efn5+K1asuD1FnT17tqenp4i0bNnyP8/bcF/6/fffReThhx9W1T///FNEmjdvbtcjLlmiImocJDIyM83cn332WREZO3asqoaEhIhIhw4d7FIr7uLAAZ069bUBA2wvNbao/bnnnqtevbqIVKtW7cyZM3atYvJkFdFOncwZ7dw5tVg0Tx5NSDBnQNziyhWtWFHbtVPj9+LECW3RQkXUxUWDgtJeBxYuXGh0la1ateqOHTuypzBjQ4gDBw6YPvKaNWtEpEWLFrfcRvbz9fUVkU8//dR+hzh3Ttet0xkz1PjNPXlSf/31Dg+zWvXUKd2wYf/MmTPfeeedfv36NW/e3OhHbOjatWvlypVFZO7cufarFqb78ccfRaRgwYIXjTkFdjNgwAAReeqpp7I4jtWqTZuqiI4ZY0pdD7rUVC1dWkV061Z7HeLGjRstWrQwPhjeclk6JiZmzZo1EydO9Pf3r1Wr1i3L/lxcXGrXrm1sVfrjjz8aC6169uxp10k2x48ft1gsXl5et3/ONVFgYKDxaXr//v32OwoAAPg3OTRwN9bxjR49+t8ecPr06bFjx9p2da9YsWJQUNDly5dvf+SNGzfCwsLat29vO7WqWbNmUFDQpUuX7lLApk2bSpcuLSJlypSJiDhnwl9JVVVTUlKWL19+6dIl24aEyJk+//xzEXn55ZdV9YsvvhD77z40dKiK6HvvqapOmKAi+txzGRvBaF5ZoUIFq9V69epVT09PJyenEydO2KPaB8WZM7piRdrt33/Xs2f10iWdPFnHj9dt2/5+WHS0hoVpQICWL29sc/lZs2YiUqJECT8/v5CQENs8qcuXLzdo0EBEqlevbqyqsZN69VREFy40bcDatVVE1641bUCkFx6uxYqpiJYsqX/+qaqamKivvqoWi4ro0KFHjHe3ffv21alTR0Q8PT3tNy3OJjU11d3d3WKx3Lhxw/TBjf5Xffr0sd3u27ev6UfBfzp+/Lizs7O7u/u5c6ad6vybTp30scc0JUW3bNE339Tdu3XxYp04UYcN086dtUYN9fBQEW3bdrz8k4eHR40aNYxdoAsWLPjcc8+xADEXSUxMNHphG7227ers2bNGg45ly5ZlZRyrVWfP1saNNRsXFN3P/vxTRdTHJ2PzSDLq4sWLVatWFZGOHTsuX758woQJffr0qVatmpPTPxqourq61qtXb+DAgVOmTNm4cWNcXFz6QSIjIwsUKCAiY+x5scXYBdp4B7SflJQUY78EHx+fCxcu2PVYAADgdjkxcD916pSrq6urq+vJkyfv/sjY2NiQkBDjM5iI5MuXLyAgYN++fcZXw8PDAwIC8ubNa3w1f/78AQEBERER91jGhQsX2rVr16LFFHd3nT49S38jVT158mRQUJDRCbdevXqtWrVi7nxONnDgQBGZOnWqqr744osiEhwcbNcjdus2q3TpY5s2qao++qiK6Pz5GRvBarUa+92tXbtWVXv27CkiQUF2Wb37oNiyRYcPT7s9bJhu2qStW+uqVbp3rz75pK5bp8OGaZUqRsie9l+xYtqr19FZs/5tSfv58+eNjQHq1q1rp7l+mzapiBYvriZe1wsM/PuCEOzh3Dnt0EFF1NlZx45Nay+zaJHWrZvg7V22XLlyf/31l6rGx8cHBga6u7vf+3tZphl7pRQvXtweg3/wwQciMmrUKNvtt956yx4Hwt299dZbItK/f/9sOFanTjptmk6cqFu26Ouvq5PTP147ba+g/fqt6Nev3zvvvDNz5sw1a9acOnXKmGqampr62GOPiUizZs0I3HMRo6l6zZo172U1qmMPt3KlliuXFrK3a2d+bQ+sF1/MpuUCBw8eLFiwoJeX1y0Je82aNf39/YODg9etW/efl5BXrVrl5uYmN/dntgdj7sXPP/9sp/Ftbty4Ubly5caNGx8/ftzexwIAALfIiYG70UW9X79+9/j41NTUxYsXG61mRcTJyalFixa2FN5isbRt23b27NmZmKOXlJT0yivJxofAl1/OTHoVHx8/Z86cRx991GKxGPX4+PgULlxYRMqWLbvVfksrkTVNmjQRkT///FNVW7VqJSIrV6603+EOHTokIkWKFElNTY2Nvd6s2e9eXvF3XYNxZ6NHj7ZNxv/ll1+Mz5zml/vg2LJFBw/W6GiNjtZBgzQ4WMeNS/vS7t367LPaurWKaN682r69BgVpeLjeQxPkc+fO1apVy7j2dvelNpkzaJCK6IgRZo75888qorRNtquUFH377bQUsmNHPXcuWVWjoo42btxYRNzc3IKDg43k8VC2NBXesGGDiDRp0sQegz///PO2i5rG7f/7v/+zx4FwF4mJicWLFxeRDcZ2AXbWqZMmJ2uHDvrzzzpihLZtq489pkOH6uef608/6c6d/z2b+NKlS8Z15eG2S6HI2cyacn7vbBPqx4wZs+tO9uw5uWuX3vG/pUu1Uyd94w1VAnfzJCenLeHatSs7DtelSxeLxeLj4zN06NAZM2Zs3749E6uKZ8yYISLOzs6LFi0yvcLDhw+LiLe3d3x8vOmDq2p8fPy1a9dsf6xZs6aI/HrHNl4AAMCeclzgHhcXZ+TRmzdvzuhz9+/fHxgY6ObmZiwGLFGiRGBgYGRkZBZLmj1bPT1VRFu10nuflb5zZ+orr7xqa3rj5eU1YMCAdevWqer58+fbtWsnIu7u7jNmzMhieTBdSkrKqFGjqlSp4uPj07dv33z58omIXRuATJ482dZRYfHixSLSpk3bTIxz8OBBi8Xi7e0dFxeXnJxcokQJEeG6TuZt2aKNGukbb+gbb2iDBvree2qb7nT+vHburOvW6ebNmpKS0YHPnj1rXBSsX7++uZl7QoLmz68Wi5rbdvvqVXV2Vjc3tWe7Uaiq/vGHliihlSvHly9fY8WKFXpzN2/jqm3Xrl3v2DzNHubMmSMifn5+9hi8Q4cOIvLbb7+pqtHzzbiN7GT8iOvWrZs9h+vUSVNTdds2rV8/81cEN2/ebGxymA1dlZB1mzZtKl68uG2HhtTU1Dlz5tgjZ1y0aJGtacacOXOcnZ1vadVt06JF/9uXVhj//e9/+vHH2ru37txJ4G6aZctURKtXz45jJSYmGp+89u7dm8Wh3n77bRGpXdtv2zaT++C8//77IjJgwABzh7WZPXu2h4eHsaXTvn37jE5crAoCACD7Od3xZNSBvv3220uXLrVs2dKYYpwh1apVmzRpUqNGja5evfriiy+ePHly0qRJRveGrOjfX9avl/LlZf16adRINm++24NjY2XWLOnQQR56yGnt2sjLly83bNgwODj4xIkTM2fONOZKFy1adPny5SNHjkxMTBw0aNDgwYOTk5OzWCRMsWXLlpdffrl48eJBQUGHDh06duzYnDlzEhISXnvtNWMaoJ0Ye7Qai+WXLVsmIu3bP5KJcapUqdKkSZOYmJjFixe7uLj06dNHRGbPnm1qsQ+Y1q1lwgSZMEFatpRKlWTHjrT7t22T2rWlVStp0kT+5VP9XRQvXnzFihWVK1fevn17586dY2Jisl7p7t1y7py4u0t4uLz/vlStmvUh/5Y/vzRoIElJsmGDmcPido88IuHh8tBD7x0/vu/xxx//6KOPnJycgoKCfvrpp4IFCy5atKhevXqbNm3KhkqOHz8uIsaEYjsNbrRZS38b2Wnq1KkiMmTIkOw8aP360qpV5p/epEmTzz77TEQGDhxoZEnIyS5cuHDu3LnTp08nJiaKyMCBA/v27fu///3P3KMcPXq0V69e1apVu3jxoojs2bMnNTU1X758te+kdOmytWvLHf/z8BARmTBBRo0SVXNrfHDNny8i0qdPdhzr999/v3z5cr169WwLnTPt/fffHz58xqlT8319LSdOmFJdmvnz54uIsV2ZPcybNy8hIcGYc2O7cG40yQEAANnK0Yn/P1itVuMMacGCBZkbYdeuXRaLJV++fOkX05kiOlpbtVIR9fDQmTPVNif1zJm0G3/9pQMHat68adNkChbUsWO37tix4y5jzp4929PTU0RMb+l++vRpE0e77506dSo4OPihhx6y/bswdtY9c+bM2LFjjXsCAgLstNVtQkJC3rx5LRbLmTNnVLVSpUoismXLlsyN9uWXX4rIE088oarbt28XkcKFCzOxJZNu6eG+bZsOHapDhuiHH2qHDprlRQ8nT5708fERkebNm8fExGRxtH79tHNnVdWoKB04MIuD3cHIkSqi/76VNcyUkpIyduxYY6u3Rx55xHiDOHLkSKNGjUTE09Pz66+/tncNxvYV9tjn0Gq1Gu99169ft1qtHh4exm3TD4S72Lt3r53Ol+7o6lXt1UtXrVJVTU7WLG7E6+/vLyLVqlXL+isn7ColJaVu3boi8tFHH6nqqlWrRCRPnjzm7ujerVs3EXnmmWdUNSoqysPDw2KxGItKM2TlSv34Y1XVTz/VPHlMLPDBlZioBQuqiN7cYMu++vXrJyIfGz/FLEtK0vbtVURr1tQrV0wZUvfu3SsiRYoUsdNnisuXL7u5ubm4uBj7YBsfq//44w97HAsAANxdzgrcly5dKiLly5fP9MZKAwYMEJHXXnvN3MIMyck6cqS6uurIkVqtmiYkqKq2a6eTJ2vNmmk5u8Wibdvqd9/pPa6XjYiIKFeunIiULl06E110bpGQkBAWFta+fXsnJ6fsafKbq924cSMsLMzX19fFxcVI1QsVKhQQEBAeHp7+YXPnzjWyoQ4dOlwx64w7HWN6e8OGDVV1//79crOZe+ZGu3Tpkru7e6VKlRISElTV+KBrjx6UD4SEBLXta3rxohrXLU6e1H371KTN344fP16xYkURadmyZex/NjC+q3799I039Pvv7RW4//yzLlyoycmakKAbN5o/Pm73xx9/GJPUSpcubWyGnJCQ8PLLL7dt21bs317m8ccfF5ElS5aYPnJ0dLTxQqeqZ86cEZGiRYuafhTc3dChQ0Vk6NCh2XO4yZNVRB991JzRrl+/buyE0bt3b3NGhN388ccfIpI3b15jLkj6cNwURohvG7979+4i4u/vn4mh9u1To7VVUpK+8ko2ZcT3jVOn9OrVtNu7d+u5c3rqVNrtbNguVVXj4+ONDQMOHz5s1pjXrmnduiqibdumfe7LIqNTTUBAgAlj3cn06dNFpGPHjqoaEREhIiVKlEjJeOdDAACQdTkrcO/YsaOITJgwIXNPP3funIeHh7Oz85EjR8wtLL0DB3T6dO3TR997T1W1XTvt0kVFtEQJHTlSM5Fym9LSfdeuXYGBgelbxi9cuDBzQ933UlNT161bFxAQYDRnN77zvr6+YWFh/zbf5K+//jJaylSuXHmf2Z/AXnvtNREZM2aMqgYHB0tGdgy+o927dxs7K6rqp59+KiLdu3c3oVDYx7Fjx4yuHa1atcpo5p6crH/9pePH67hx2q+fnjypDz+s27fbJXAPCNA2bTQ1Vc+d0169zB8fd3Ty5EmjF1n6/MhoL2Ncn960aZOdDm3MjNtlh33ujJY4jRo1UtWNGzfabiM7zZs3r1ChQp9//nn2HK52bRVRE09MDhw4YIRrX331lWmDwj6efvppEXn22Wc1azPQb2ebQf/hhx9quhn0x48fz9qw2qWLurjonj1Zr/FB8cEHatsZt1UrnTRJq1TRuDjV7NqBdsGCBSLStGlTc4c9dUrLlFER7dNHrVlu5161alW7Tjk39kcxPk6OGDFCRF5++WU7HQsAANxdDgrcd+/ebbFY8uTJk+ktBI3uH926dTO3sNtNn65z5+qTT+rBg9qunf71l/78c5YmvBp74mWidUlMTExoaKix45zBaBlv7jaM9419+/aNHTvWmFCc/tt10TaL+d8dO3bM+FDXokVnE8+TU1NTq1SpIiLG9NWTJ09+9dVXf/75pymDX7t27bHHHvP09Fy6dKkpA8JODh06VLp0aRFp3779jXtotXDkiIaEqJ+fFiiQtramUCHt21fPndOVK7VbNx04UDO7RiLNL7/ohg3/uCcgQEeN0i+/JHDPbsnJyZ9++uktF2OOHTvWtGlT43phcHCwPY7r5eUlIldvTlk8ceLE6NGjTVkFb3SwNS4Ezps3T0R69OiR9WGRIUYDd29v7/3799v7WKtXq4iWLKnmNlEwfpFcXV033PJqhRzmyJEjRshuLOUcPXp08eKl+vX7Nevx5YwZMQ0ajKxYsWJ8fHxKSorRG3D8+PFZr/mll8xck/EguD1wf+klfest1ewK3Hv06CEi//vf/0wfOSIirWXo2LGZeXpSUtKOHTtmzJjRu3dvY3WXbcr53r17x40bZ1ad58+fd3FxcXV1vXTpktVqNSZzmHJlCwAAZEIOCtxfeOGFrFyHt+0PYwSXdmUE7gcParduZp5Ezpo1695buoeHhwcEBOTNm9cIjvPnzx8QELBt2zbTqrm/hISEpN+Gt1KlSu+9915GV0LExsY+88yLRYuedXXVqVOzWpKR/leoUKFw4cJubm4fffSRuUs+d+7cabSDL1KkyF9//WXiyLCHgwcPlipVylgIHH+njlT79u376quvAgOPFCmSFrIb/1WvrkOG6MKF2qePnjunqtq7tz73nPr66tixmZmNdfas+vuriFat+o/WWAEBeviwPvqo7txJ4J4jJCQkBAYGGq9pTz31lLkNr7Zs2WKksbZ7jD42zZo1O3bsWBYH/+STT2zN34zbr7/+ehbHRCYYndBr165t7wb6vXplPqu6O+OfQNmyZS9cuJDVsc6fT5uOq/p3a4ykpL/vRBaMGjXKeAGxWq2xsdcrV44V0VmzsjTm5ctqvCEuWnRJb15DKleuXJwZP7JLl7RwYRXRxYuzPtgD4YMP9NFHtX9/7d9fK1fWSZN08WLt3l337MmOwP369eteXl4WiyWLixv+zdKl6uKiRYvqvbzSJCbq1q3hISEhgwcPbty4sbu7u+0DSPHixd3c3IzT8hs3bhgnfp9++qkpRRrbOHXp0kVvrh4rU6ZMpntUAgCALMopgfulS5fy5MljsVgyPdPqm2++EZEGDRqYW9gdGYG7qr7zjlapYubI/9nS/cqVKyEhIem392zYsGFISIgpny7uY0bP0Pz58/v7+69YscKa2VlVVquOHasWi4poQEBmJutduHDhiy++aNy4se0nWLRoUYvFIiLNmzc3a6bhnDlzjNmp9evXj4qKMmVM2Nv+/ftLliwpIp06dTJa8J85cyYsLCwgIKB8+fLGb0vr1qHGRFE/Pw0J0fSfKzdtSmswev68fvmlOjmpiPbrd6/7SRjCwtLyizx5NChIjWtAe/bod99pQIBGRemWLdq1K4F7DvLjjz8WKFDAaC+T9Y1ArFbrihUr/Pz8nJ2dCxYs6OTk5O/vb7y/bN261VgelD9//kxvbG4YMmSIiEyaNMl2e/LkyVmsHJlw/fr1mjVrikifPn3sd5ToaHVzUxcXPXnS/MGTkpKMnkuPPvpo5i9aX76snTvr8OHat6+OGKGq2qpV2pdWrrTLhYIHT0xMTMmSJZs16zZvXoyqhoamNWPMypa9gYEqkhbmXrmijz8eni9f6Sy+OqUXHKwiWqmSOc2773u3z3BfvFiPHtWuXbMjcP/+++9FpHXr1vY7xJw5euiQPv542qnXvHm6ZUval5KSdPduDQ3VwEBt2VI9PLRMmQq283wnJ6eqVav27t37008/NabhFy5c+MCBA6q6YMECJycni8Xy3XffZb3CNm3aiIgx1KuvvsrFbAAAHCunBO7jx4+3XZPPnHr16onIrCzOlrk3W7bojh2qqjduaGYbzv+r8+fPGxMJ07d0T01NXbFihb+/vzEFXkRKlCgxcuRIdka9Rxs3bpw3b94dJw5nwty56umpItqhg97jnoWJifrLLwe6du3q5uZm/AQLFCgQEBCwfv16q9W6bNmysmXLioiHh0dQUFBWprqnb0/k7+9/L/1JkHNERkYWLVpURKpUqWIsUEg/K6p3797ffvvzPW4GtnSpenuriNavrydO/PfjDx061L//BWPW/GOP6dGjqqpJSRoUpO7u6u6uPXuqce3mxRcJ3HOWo0ePGit4stJe5urVq8HBwUaHKxHx9PRs06aNh4eHiDz00ENGNHD16lUjLLBYLIGBgYnGNsIZl5SUFBUVZbQ+e+KJJ4SNnR0nGzqhjx+vImq/bn8nT540XjbfM7bWyYR339Wff067/dxzunUrgbs9zJlzQURLl9br19Vq1aZNVSTz22nu3auurursrDt3qqoOH64i6utrZjSenJy294Dpp/r3pTsG7qo6frzWrq2qJjRAv4snn3xSRKZMmWLHY6iqavXq2rOnqmpQkH75pT77rNaurS4u/1h66Oys3boN9/f3nzhx4po1a66lu6yUkpLStWtXEfHx8Tl37pyqfvbZZyLi5ua2atWqrBR25swZZ2dnDw+Pa9eupaamGo0Kt9iuCQAAgGyXIwL3pKSkMmXKiMjKlSszN4KxS1KxYsUSsmUWypQp+uuvabc7dzZ//PSZab9+/d59912jDZ+IODs7d+nSZdGiRclZ6RmPLNu4UUuUUBGtXFnvvovq7t06cqQWK6Y+PgnGT7B9+/ahoaG3LEq4du1aQECAMdW9WbNmmdua9ezZpDZtHjZyt//7v//LxAhwuJ07d5YqVapBgwYikjdv3vbt2wcFBYWHh2diWcauXVqxoopoqVJ6l6nPycnJwcHBXl5eVap0K15cQ0LS7t+wQWvWVBG1WNTfX//6S43LN9euqR320USWpG8v8/TTT2eovczBgwdHjhxpTJMXkVKlSo0dO9Zo0LFnzx5jBnS+fPnmzJmjqlarNTg42Lhw2Lhx46wvoKlVq5aI7DAuYsMRjDb6duqEnpKS0rjxcRH9/XfTx/7bH3/84ezs7OTk9Ntvv/3HQ69c0YgIXbBAP/lEBw/WDh30xRf1qaf0zJm0B4SE6PTpWq2a+vurv7926EDgbharVZs0URF9+21V1Y0b1WJRDw/N3KvIY4+piL70kqrqvn3q6qpOThoebmbBqrpihYpovnx//4Lg32zf/vcqliVLNDJSjfZjCQkaFqZjx+rgwfY69JUrV9zd3Z2dnc+ePWuvY9zUoYOOHq0//6xBQfr552kJu4uL1qyp/v4aHKzr1unde3TFxcUZW7A0btzY+CxgvH0XKlQoK+tcJ06cKDc3R1m9erWR6Wd6RS8AAMi6HBG4nz9/vk2bNs7OzoGBgUeNeZUZZMxreP/9980u7c4mTPh7LpRtFpTppk2b5u7ubuvSXqZMmZEjR2a9eS7Mcvy4PvSQimjhwvrLL2mNO6Kj9fTptK9++KFWr/73hJd69fSrr+bf/cPA0qVLjTkpnp6eISFnMtR3cetWLVdOH374l9KlS2/cuDErfzU41o0bNzZv3rx169ast/W/eFHbtVMR9fDQ0NA7PGDLli22FlXPPPPMxYsxqnr1qgYGpjWlqVxZTdwlGHb1ww8/GLl5lSpVtm/ffvcHGwunfH19jet8ItKyZcuwsLBbrubGxMT06dPHtmjGSAe2bNliay+zcOHCTBecmJhoNL8ytwE9MmrYsGFiVif0f1q8eLGzs/OTTw6zd+zzwQcfGImVcRqZkpJy7NixP/744+uvv37rrbd69ep1oF8/LVToH9NQjf9q1dLnntPdu9MG+ugj/fFHZrjbiS1kN072+/fXrl01Ez23U1P1o4+0bNm0htqPP64i+uKL5habxtdXLRZ9662jdhn9wRAZqR4eKqKff26X8Y22ou3bt7fL6P/UoYPGxWmbNjp2rP70k06dqps3Z6x3n6pGR0cbU6m6dOmSkpKSmpr69NNPi0jFihUzfc2gWbNmIhIWFqaqL730koiMHj06c0MBAABT5IjAXW9upmTM/+3Ro8f69evv/blRUVHOzs7u7u7ZMK/BMGGCduumI0boiBFaubIdD/TXX3/98ssv/fr1W7lyJZMUcqDr1/Xpp/WDD7RaNX33XVXV2bN17Fh95JG0sNJot/366xmYEXz16tWAgICmTT8S0ebN9R4nu3z5pbq5qYg+8oj13DmTExPkaomJ+sILKqJ1614bM+ad9NtnTZo0ydnZ2ZgGtXz5cuPORYviS5VSEXVz03feoXdtLnPgwAGjwZqHh8e/tZcxuscYibnxSH9//113fZEKDQ3NkyePiNSvX99oZXbx4sXOnTvb2sskZXBHi+jo6KCgoDJlyuTLly8gICBDz4XpkpKSWrZsKVnshH4njz32mIh8bqeYLZ3U1FSjPVGJEiWqVKli695ms6JtWxVRLy+tU0e7dtXhw/WLL3TpUj1wQP/8U3v00PPndedObdlSr18ncLeffv1URP38VDUzG+GkZzz9l19URAsU0PPnTSjvdgcOpDZoEOjk5BQREWGXAzwYwsLUyUmdnDQLl2j/VadOnUTk66+/Nn/o23TooKr6889asqT+54qau9i7d2/BggXl5v7hN27caN68uYg0atQoE7tYHz9+3GKxeHl5Xb9+PSUlpVixYiKy02i3BAAAHCSnBO6qun379oCAAKNjrIg0aNAgJCTkXppuGwvxnn/++Wwo0jBhgs6cqWfO6Jkz2qxZth0WOVFqqlqt2qGD+vnp/v06e7Z+/HHaBC5fXw0Ly+TnyV9+STZCzzx5NDhY7zLVPT5eBw1KC/czt48rHgRffZVUsmQ9EenatWtMTIxx544dOzw8PAIDA2NjY1U1Ojra39//oYcCLRZt3vzvGZ/IXeLj423tZbp163b16lXbl/bt2xcYGGhMKheRSpUqBQUFGb3U/9O2bdsqV65stJeZO3eu3mwv4+rqmqH2MuvXr+/du7fxLKNBfOZWtsFctk7o48aNM2vMI0eOODk5eXp6Xrx40awx7+LSpUtdunSpW7eurTlSq1atnn322XHjxs2ePfvwpk0aHf2vT169WocP13fe0VOnVFWnTk27//BhXbEiG4p/cJw6pV5eKqKrV5swWlKSVqumIjpxogmj/ZvXX39dRFq0aMHcl6z45JO09XbmNq+6cOGCq6urq6tr9rzOPPNM2o2+fXXNmiwNtWbNGnd3d7m5hfiFCxeMN1lfX9+MXvj8/PPP5eb217///ruIVK9ePUvFAQCALMtBgbvh7NmzQUFBpUqVMj4vlShRwtZM9o5iYmKM/b6y8zJ+9rSUQS7SoYMeOaKdO+vs2Tp9uv78s6bbISmTrl7VgIC0JL1FCz1w4A6POXEirSOqp6d++21Wj4j725o1a4xArU6dOrZsNDo6WlWtVuvUqVPz588vIt7e3jNnHs9QOyPkQAsXLjR+oFWrVt22bdvixYvbt29vdI+xWCzt27cPCwvL6Ef6mJiY3r1729rLGHsyr1+/3tiFpUiRIsYWcHeUkJAQFhZmzOATEScnJ19f3xUrVhBg5RwZ6IR+b0aMGCEiAwYMMGW0exQeHr5nzx6z9kiHPbz/flqfvayvpvjsMxXR6tXtO9sgJiamRIkSIjJv3jw7HuYB8PLLaZ0Y73hOmzn/93//JyKd7bGn1m0SE/XLL9Nur12rW7dmdcB58+ZZLBYnJ6cffvhBVQ8dOmScpw3OYMP7pKSkpUuXhoeHq+rAgQMlK5tIAwAAk+S4wN2QkJAQGhpqm6bk7u7u7+8fGRl5+yONS/rZ07bP5qef/t6BcNSo7Dwycihjhem4cfr00zp9upkj//qrlimTFqkHBenJk2mfKm/c0CVLtHBhFdEqVfRO/ziAWx0+fNjYA7Nw4cJ/3GzNfujQoUceecR4se3cufPxTPTTRY60f//+OnXqGHtCGD9fb2/vwMDAA1mLOkJDQ40B07eXeeKJJ4YNG3bHx585c2bs2LFGiCAiRYsWZT+SHOv9999P3wk9KxISEoy2BpvvsmUzHkg3bmjFijpggN5cbZV5oaFatKguXWpGWXc1bdo0ESlTpkwm2n3AJiVFfX3Ttoe5cMGcC/vt2rUTkVmzZpky2t3Fxupjj6Xd/vJL/f57E8YcP3688Tb9119/qeratWuN1d7/+9//MjFaUlJSoUKFRGTPnj0mFAcAALIghwbuNuvWrfPz8zO6DItIy5YtFy9ebJsQl5KS4uPjIyJLlixxbJ14wBmBe3y8VqlicuCuqpcuaf/+KqKFCmmzZmntZP/8U4cN0/z5tXNnvXzZ5CPiPhYTE2PsMu3i4jJx4sSgoCBjRXPx4sVD77itKnKzGzduPP/88++++26VKlWCgoLM2ps0IiLCWPnu7e1tTPm0Wq23t3EPDw/39/d3cXFJ3ynOmBePnMlqtXbt2lVEmjRpkpC1DRxmz54tIvXq1TOrNtxPYmO1a1c19ndftkx//DEDz01K0qZN/+79k5FdnzIvNTW1UaNGTBzOurg4bdZMW7ee3rx5C2MX7qyIjo52dnb28PBI3zzNfmJjtWVL3bZNt23Tt94yJ3BX1SFDhhirxA4ePKjppr1vzfgU+iVLlvDCCwBADpHTA3fD4cOHAwMD8+bNa3xor1y5cnBw8PXr1xcuXCgiVapUSaX9ARxq0aK0G9u326vz9c8/68KF2qGD9umj+/frn3/qe+/pnj1KPwZkVEpKyhtvvGHbS9BisbzwwgtmRbHIgaxWq+mdW65du9arVy/jVyggICB9OBsfH59+jZqbm5ufn98KGmHnEpcvXzY21B06dGjmRoiOjt6wYUOtWrVEZLrpl6Bxv2jZUjt10uRknTNHQ0Iy8MTERK1ZU/v2VVV9911du9ZOBd5qw4YNFovF09OTBTpZdPZsbIUKFUSke/fuWfkEl5ycPGrUKBF5+umnTSzvLmJjtXp1/d//9H//0+7dTQvcU1JSjJkQlSpVOn/+vKp++umnH3zwQYZG2LNnz+zZs2vUqCEiH3/8sTmVAQCALLCoquQSV69e/frrr6dMmXLixAkRKVSokJeX18mTJ6dMmTJ06FBHV4cHWuvWsm6diMiiRXLokKQLM03WsaOEhMiwYfLGG7JmjYwda68D4b4XGhp6+PDhtWvXvv/++w8//LCjy0GuNG3atMDAwMTExAYNGoSFhVkslmnTpk2fPv3SpUsiUrx48QEDBgwdOrRs2bKOrhQZsGPHjhYtWhgXTp555pl/e1hSUtKpU6ei/unQoUMxMTEiUqxYsXLlyq1evdq2SS+QXseO0qePXL4spUrJwYMybty9PnHcONm8WWrWlLZtZfNmad9eWre2Z6Hp9O7de+HChdOmTTPaZCPT9u3b17JlyytXrrz22mtGd9B7kZKScuDAgYibtm/ffuPGjZo1a77zzju2/UXs6vp18fOT334TEfnqKylQQPr2NWfk2NjYhx9+ePv27a1atVqxYoXRVeYubvlW7NixIy4uzvjSa6+9NmzYMOOSBgAAcKDcFLgbrFbr0qVLJ0+evHLlSm9v7wIFCuzZs8c2+R1wiOwM3Jcvlw8+kLNnpVgxAncADhYeHt6zZ8+jR496enomJiZarVYRad68+bBhw7p37+7m5uboApEZISEhL774opeX1+bNm2vVqnXhwoUjR47ckq2fPn3a+HHfonDhwj4+PjVq1AgNDc3+ypFbdOwov/8ujz0mHTtKbGzGAvctW2TePOncWZo1E1/f7AvcT506denSpYceeiibjndfW7t2bceOHRMTEydNmhQYGHjHxyQmJu7atWvbTZGRkYmJibavWiwWHx+f6dOnt23bNntqtl/gLiLR0dHNmzc/fvy4n5/fvHnznJyc0n81KSkpMjLS9q3YtWtXQkJC+gdUrFixQYMGDRo0GDBgQKlSpUwrCwAAZFbuC9xttmzZcuHChccee8zW4R1wlAoV0j7vnTolnTvbPXBPTJQGDaRnTwJ3AI4XExPzwgsvuLi4LFy4sGvXrq+++mqLFi0cXRSy6plnnpk9e3bBggVTUlJiY2Nvf4CLi0v58uV9blOgQIFsLxa5j3E+s3OnPPGEjB0rzz9/r09MSZFu3eSXX2ThQhk6VBYuzL7AHeaaP39+nz59LBbLggULunXrJiLJyckHDx6MSOeWWLlkyZINb2revHmRIkWyueakJDGuI6emioiY+xl07969rVq1unLlyogRI8aPH3/v34qmTZsam1QDAICcIxcH7kDOkW0z3GfMkEGDREQ2bZK4OHn0UXsdCADunapardarV68WLlzY0bXAHDdu3Bg+fPi2bdvCw8M9PDxKlSpl5Ok1a9asVauWj49PuXLlbDviAhk1dKh8+aWIyLhxUreuPP30vT4xOVnefFOCg0VEBgyQV16R+vXtVCPs7qOPPhozZoyHh8cjjzxy/Pjx/fv3pxpJtoiIODs716hRo8FN9erVy5cvnwOrzQZ//PHHE088kZyc7OTkdMu3omrVqsb3oWHDhvXr1/f29nZgnQAA4D8RuAMmyLbA/fHH05ay7tgh8+fLxx/b60AAABw/fjxfvnyFChVydCEA7k9Dhw7dtGnTtm3bRMTFxaVq1aq2idv169d/ADeB+O67744cOfLBBx9Uq1bN+D7UqlWrYcOGBQsWdHRpAAAgAwjcARPYJp7v3y+XL4v9uinYkv2ICJk9O22GFwAAAJDrpKSkXL169ccff2zQoEGdOnXc3d0dXZHjJScnp6SkeHp6OroQAACQeQTuQG7SqJE8/LCIyPnzUrgwgTsAAAAAAACQg9B8E8hNPDxk1CgRkV27ZMkSR1cDAAAAAAAAIB0CdyA3sVikaFERkQIFHFwJAAAAAAAAgFs4OboAABlg9JMRkYIF5aGHHFoKAAAAAAAAgH+ihzsAAAAAAAAAACZghjsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABgAgJ3AAAAAAAAAABMQOAOAAAAAAAAAIAJCNwBAAAAAAAAADABgTsAAAAAAAAAACYgcAcAAAAAAAAAwAQE7gAAAAAAAAAAmIDAHQAAAAAAAAAAExC4AwAAAAAAAABggv8HD13iPGcAhGIAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 FP fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACRv0lEQVR4nO3dd1yT1xoH8CcJW4aIssSJA3FLnbi11oFb6kRtHbW2xVqtaB24xVqVamtFaxVHVXDiqBZHFbfgAieCgy2C7Jnk3D9ObxoDKEqSN8jv+/FzP9eTcZ7c+/rmzfOe8zwixhgBAAAAAAAAAAAAAEDZiIUOAAAAAAAAAAAAAADgQ4CEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7AAAAAAAAAAAAAIAaIOEOAAAAAAAAAAAAAKAGSLgDAAAAAAAAAAAAAKgBEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAZIuAMAAAAAAAAAAAAAqAES7gAAAAAAAAAAAAAAaoCEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7AAAAAAAAAAAAAIAaIOEOAAAAAAAAAAAAAKAGSLgDAAAAAAAAAAAAAKgBEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAZIuAMAAAAAAAAAAAAAqAES7gAAAAAAAAAAAAAAaoCEOwAAAAAAAAAAAACAGiDhDgAAAAAAAAAAAACgBki4AwAAAAAAAAAAAACoARLuAAAAAAAAAAAAAABqgIQ7QHlVWFgYGhpaUFAgdCAAAAAAAAAAAABARKQndAAA8A7i4+PDwsLCwsIuXrx46dKlnJyc0aNHN2vWbNasWUKHBgAAAAAAAAAAUNGJGGNCxwAAJcrOzg4NDb169eqVK1euXr0aHx+veEgkEtWsWfP58+dEtHXr1nHjxgkXJgAAAAAAgPq9ePEiJyendu3aQgcCAABQWki4A+ic6OjoCxcu8JXs169fVy4aY25u3rRp044dO7q6urZv375q1aobN2788ssvJRJJYGDg4MGDBQwbAAAAAABAjXbv3j1q1Kjhw4fv2bNH6FgAAABKCwl3AOFlZGRcu3aNJ9kvX76ckpKieEhPT69BgwYuLi48ye7s7CwSiVRevmDBgiVLlhgbG//9998dO3bUbuwAAAAAAAAacffu3SZNmtSpUyc6OlroWAAAAEoLCXcAAUil0ocPH/JS7BcuXLh//77yv0Q7OzsXFxeeZO/QoYOJiclb39DT03P9+vUWFhbnz59v1qyZJmMHAAAAAADQBrlcbmlpmZGRkZiYaGNjI3Q4AAAApVK+E+4FBQWHDx+2sbGpU6dOjRo1hA6nRJGRkampqU+fPh06dKieHhrVVlDK/U4vXryYm5ureKhSpUotWrTgSfZOnTrVqVPnXd9cJpONGDFi37591atXv3jxYq1atdQaOwDoFsZY0c0uAAAAAB+e7t27nz179siRI25ubkLH8qFgjM6fp/BwkkioTRtycRE6IACAD005Tv6eOnXK09Pz/v37VlZWOTk5np6e8+bNMzU1FTqu12RnZ69atcrHx6dy5cpJSUlOTk5r1qzp06eP0HGB9kRGRs6aNevq1asJCQmKQbFY3KhRo7Zt27Zr165du3aNGzcu450YiUSya9eutLS0U6dOffzxxxcuXLC2ti5z7ACgW548eRIQELBt2zYPD4/8/PyFCxci7Q4AoC4vXry4fPnypUuX5HK5m5tb586dcY4F0AVt27Y9e/bstWvXkHBXj9RUGjCAoqOpSxeSSmnOHOrRg/78kwwNhY4MACocb2/vW7duLV68uHnz5kLHomblcoX73bt3p0+fHhwcTEQNGzZ0cHA4c+YMY6xGjRo//vjj8OHDdeHiWC6X//HHH/PmzUtKShKLxR9//PHDhw+fPn1KRIMHD161apWjo6PQMYLG3b9/f/bs2UFBQURkbm7epk0bV1dXFxeXDh06WFlZlf39CwsL9fX1FX/NyMjo2rXrzZs327Rpc/r0aV27/wQA7+fZs2d79+7dvXv3rVu3+IiRkVFeXt7o0aO3bNliiF9HAADvRSaTPXjwoGiJPyMjo/z8/FmzZvn4+AgdIwDQwYMHhwwZ0qtXr5MnTwodywfBw4Pu36fgYLK0JCJ69ow6dKBJk2jhQoEDA4CKp2fPnqdPnw4ODu7Zs6fQsahZOUu4v3r1auXKlWvXri0oKLC0tPTy8po+fbqBgcG1a9emTZt25coVImrTpo2vr2/79u0FjFMlnp9//rldu3aFhYUbNmxYsGBBRkaGvr7+l19+uWTJEnNzcwHjBE1bsmTJggULevTo8dtvv9WvX1+9b3727NmJEyceP368YcOGisEXL1507NgxMjKyZ8+ex44dMzAwUO+kAKA1KSkpx44d27Fjx+nTp/mXdeXKlfv37+/u7q6npzdixIiMjIwOHTocOnSoWrVqQgcLAFA+pKWlXblyha9kv3r1amZmpuIhU1PTNm3adOjQwdjYePHixfn5+T/++OP3338vYLQAQEQJCQn29vaVK1dOTU3VhaV15VtWFlWpQvv20YAB/w2uXk1r11JsrHBhAUAFhYS78ORy+c6dO2fOnJmcnCwWi0ePHr169WrlFANjbMeOHV5eXomJiSKRaMyYMT/++KOtra2W44yLi5szZ87OnTsZY9WrV1++fLmHh4fyZUFCQsLChQt///13uVxuZ2e3cOHCCRMmSCQSLccJ2tGqVaubN28eO3asb9++an/zwYMHHzp0qE6dOhcvXrSzs1OMR0VFubq6JiUljRo1aseOHWKxWO1TA4DmpKWlBQUFBQYGnjx5srCwkIiMjY179Ojh7u4+bNgwRRfl8PDwfv36xcTE1KtX79ixYw0aNBA0ap0TnZt7KytL8VeRSDS4alUB4ym/EhISjh07prn3t7S0HDp0qObeH4CIoqOjL1y4wFey37x5Uy6XKx6ys7Pr2LEj34DYpk0bxUqF3bt3jxkzhjG2adOmiRMnChQ4qE1eXt7OnTs1OgWOE41ycHCIi4t7+PAhLnjK6sYNcnGhp09JuenXmTPUowelpZGFhXCRwb9wvoJt27ZJpVLNvf+IESN0pxzCB5xwJ1YenD59ulmzZjzgbt263b59u6RnZmVleXt78/31lSpV8vb2zs3N1U6Q2dnZPj4+/Kg1MTHx8vLKzMws6cmhoaEdO3bkn8jFxSUkJEQ7QYI2PXnyRCQSmZmZaeggzMnJcXV1JaImTZqkpqYqP3T79m0LCwsi+vrrrzUxNQCoXU5OTlBQkIeHhyKlbmho6Obm5u/vn5GRUexL4uLiWrVqRURWVlb4HlGx98WLbrduzY+O5n8WPHkidETlUkBAwMiRIzV6IVq7du1hw4ZlZWUJ/Vnhg5KVlRUSEuLr6+vu7q6yB0hPT8/FxcXT09Pf3//p06dveJMNGzYQkUQiCQwM1FrkoAk3b94cPny4Rk9lRDR8+PDo6GihP+sHa8iQIUS0fft2oQMp/27eZEQsKem1wUuXGBF78YK9/qMStA/nqwouNjbW3d1d04UKhg8ffunSJaE/67969OhBRMHBwUIHon66vsI9Kipqzpw5gYGBRFSjRo2lS5eOHTv2ra96/PjxDz/8wF9Vr1695cuXu7u7azTOI0eOeHp68hLtbm5u69evr1279ptfwhjbt2/f999//+zZM5FINGzYsFWrVtVSvs8M5dzq1atnzpw5cuTIP//8U0NTpKSkdOrU6f79+126dDlx4oSRkZHiobNnz/bp0yc/P3/VqlUzZ87UUACgU16+fJmYmJiQkJCQkMD/S2JiYnx8vIGBwaJFi9q3b49NuDpIJpOdPXt2+/bthw4d4pUNxGJx+/bt3d3dR40a9dZaMVlZWSNGjDh27JihoeG2bdtGjBihlajLgYDk5MMvX+5q1EjoQMqxnJwcJyenmJiYzp07q70qmsJff/0VHx8/f/78xYsXa2gKqCDi4+MV1divX79eUFCgeMjW1vajjz5ycXHp2LFjx44dla+X3mzRokULFy40MDA4cuRIr169NBM4aFzXrl3PnTvXtGnTNm3aaGiKkJCQR48eDRkyZP/+/RqaooJbuXLl7Nmzv/766/Xr1wsdSzmXkUEWFnT9On300X+Du3fTpEkUF0d2dlSnDrm708iRpFS2FLQG56sKzsPDY+fOnY6Ojl27dtXQFDdu3OBt/y5fvqwL5RCwwl0AGRlszhy5g0NrIjIzM/Px8cnLy3undzh9+nTTpk35x+zevfudO3c0EWdYWFinTp34LK1atTp//vw7vTw7O9vb29vY2JhKsS4eyhe+/DwgIECjs8TGxvL7NAMGDCgsLFR+aM+ePWKxWCQS/fHHHxqNAbQmNTU1IiIiODjY39/fx8fH09PT3d3d1dXV2dn5DZvC9PX1RSLRunXrhA4f/iOTyUJCQjw9PZVT6i4uLr6+vvHx8e/0VlKpdOrUqUQkEom8vb01E+87Kihgd++yu3dZfr5QIex98WLUvXtCzf5h8Pb2JqKWLVvKZDLNzXLp0iWRSGRsbPwEuxDgHRUWFoaGhvr6+np4eKisdJFIJM7OzpMnT/b394+IiCjLLNOnT+c/Rq5fv66uyEGb9u7dS0TVqlV79eqV5mZJTEzkrbn+/vtvzc1SkZ09e5aI2rRpI3QgH4TmzdnUqa+N9OzJhg1jFy4wExNG9O+fli3ZkiUMV1NahPNVBXf58mWRSGRkZKTRq+Ls7OyaNWsS0bZt2zQ3S+l9wCvcdTHhLpczf39ma8uIWKdOkePHjy82+5Cbm7t8+fJvv/32DW9VWFjo5+fH0xl6enqTJ09+8eKFuuJMTk729PTk5detrKx8fX2lUukbni+VSrdt26aSEuViYmIUpd4dHBz8/f3lcrm64gRBJCYmisViIyMj5VoQMTEx2dnZap/r7t27VapUIaJJkyapPMR3Q+vr6x87dkzt84LaZWdnP378OCQkJDAwcN26dT/88MP48eP79OnTrFkzGxubt65Pr1y5srOzc7du3caMGfPdd9+tXr16586dZ86c4UuBDA0N31CPC7QmNDTU09NTue+Cs7Ozt7d3ZGRkWd7W19eXr1CYOHFisV802vPjj8zcnFWrxqytmZkZW7qUCfGNtvfFi+63bi19+pT/OaPJ3y0fpJiYmEqVKhHRuXPnND3XqFGjiOjTTz/V9ETwwZDJZCtXruQ1JBWsrKzc3NyWLVv2zz//qLFIkVwuHz9+PBFVrVr1HhJP5U1OTg6/GePn56fpuZYuXUpEjRs3Fvhb+AOVmZkpkUgMDAzedREevIYfnGfPMiMjNm0aCwlhp06xESNYlSrs0SPGGMvJYUFBzMODWVj8l3mvW5d5erKQEEGu6CoOnK8qOLlczrc1zJs3T9Nzbd++nYhsbGzS09M1PddbIeGuPdeusfbt/z2xt27NSiordODAgbp16xKRWCx+/Pjxm98zNTXV09NTT0+PiCwtLX19fct4WikoKPD19eV3BfX19T09PdPS0t76ql9++YWIGjZsWFLq859//mnRogX/zdC2bdsrV66UJUgQFs90Dxw4UHlw2LBhxsbGQUFBap/u6tWrPDMyf/58lYfmzp1LRMbGxhcuXFD7vKAWz549c3Jy4qeUNxCLxXZ2di1atOjXr99nn302b9689evX79+//+LFi9HR0W9uFTBp0iR+UZWTk6O1zwXKIiIivL2969Wrp/g/tHbt2l5eXu+RvsnNzZ0wYcKzZ89Uxvft28f3S/Xq1Uuwi6fffmMWFkyxXubUKWZpyXx9tR/I3hcv+ty+vT0xkf+5gd1j74jXDx05cqQW5oqNjeVfYf/8848WpoMPwHfffefo6EhEdevW9fDw8PPzi4iIUNdqlefPn58+fVp5pKCgoF+/fnxZzJvLvoOuWbRoERG1aNHizeui1CIvL49/y2/YsEHTc1VMTZo0qVer1mPsNXlvW7awtm0ZXw0WGspGjGDOzqxpUzZpEouKUn1yXh47coR99hmrUuW/zLujI5s1i129itWBmoDzVQW3detWIqpevboWil7I5XLeVHLOnDmanuutkHDXhthY5uHBRCJGxOztmb9/8TdQ79+/37t3b56tcHJyOn78eCnf//79+3369HmPF6oIDg5u9P+asD179rx7924pX3j8+HFFqmXAgAHFLmaUyWT+/v42NjY8uebh4ZGYmPh+cYKwPv74Y3p9k05OTk6lSpVEIlHRNJlaHD16lN9V8n09tyWXy3kXcisrq9IfrqA1Z86cMTc352uTDQ0N7ezsXFxc3NzcPDw8vLy8fH19AwICQkJCoqKiynKnMDs728nJiYg8PT3VGDy81ZMnT3x8fBopVRJ3cHDw9PQMCQl5798qs2bNIiI7O7vQ0FCVhy5fvmxtbU1EzZo1e/78eZnDf3d16rAlS14bWbGCOThoPxCUlCmLixcv8jIvWsstavNHJnwA+LIbTfw2S0hIqFmzpomJiUozsZycHF5Dsn79+rg4Ly+0fzNv3759RFSlSpWXL19qZ8YKJXfKFEbEUCPx/cyfz4iYSMR27363F0qlLCSEeXoyOzuedr/h5FSjRo3JkycHBQVhfbS64HxVwWVmZtrb2xPRjh07tDNjaGioWCw2MDB4xHe3CAcJd83KyWE+PszMjBExY2Pm5cWUinD8JyUlRbFQvUqVKu+3UD0oKIiviCEiNze3t66OV/bgwYO+ffvy175hofob8KXxFhYWb14an5mZ6e3tzffJmpqaent7Y+tc+fLq1SsDAwN9ff2UlBTF4MGDB0nDlQd37twpEonEYvHevXuVx6VS6dChQ/n9UqzM0jX8RuC0adOUjxZNCAsLMzAwEIlER44c0ehEwCUnJ7u4uCjy7NWqVZs6der58+fLXg47IyOD33iuVKnS4cOHVR6Niopq2LAhEdnb29+4caOMc72bxERGxEJCXhu8do0RsVLsA1MvJNzfm0wm++ijj4ho4cKFRR9dt26dQZkVFBSovK1iG/WmTZu08imhHLt16xYR2djYaKK7gGKZgoWFxc2bN5UfSktLa9myJRG1bt06o9jfKqBj3lCu6tSpU2U/lakcIRxfczNt2jRNf7qKyM+PEbExY4SOo7yRStkXXzAiJpGwsnzJSqXs3Dnm6bl8wADF9a2Njc2UKVOCg4OReS8jnK8quNmzZxNRu3btii7JevjwYdkPgGIzAOPGjSOiwYMHa+UjlggJ9zIpLGShoUy5dnpyMlMstA0KYnXq/LtFyc2NRUcX/w6//PK7paUlEenp6X3zzTdlyUwVLQjz1q33qampXl5eBgYGRGRpaenj45NfhkZwL1++LE3x90ePHrm7u/Nvsvr162u69yao0bZt24jo448/Vh4cO3YsEa1YsUKjU69cuZKIDAwMTp48qTyem5vbuXNnInJ2dtZ0YhdK7/79+yKRyMTEJDk5WQvT/fjjjzzzm5CQoIXpKrjBgwdXqVLFwsLCw8MjKCioaIaxLAoLCydPnkxEEomkaDvclJQU/u/d1NRUq/0bnjxhROz+/WIGtbi9JrWwMCYvDwn397Z582a+FaPYKthr1qyhMiv2Ioo3CrO2ttZoozD4ACxcuJCIvvjiCw29v1Qq5Vfg1tbWDx8+VH4oKSmpQYMGRNStW7c3V3IDwfGGzCW1nvv777/LfioLCwsr+s4RERF6enp6enrh4eEa/5AVzc2bjIjVry90HOVKXh4bNowRMRMTpr41N7xSIl/hwVlaWvIrXqwUfA84X1VwUVFRRkZGIpHo6tWrRR+9f/9+2Q+AQ4cOFX1nRftcldyRliHhXiYvX/5bkF2RVf79d9asGbtxg3Xu/F8H7JKacp06xZo2ZV27nieiHj163LlzRy1RxcfHT548mWe97ezs/Pz8is16K7dd5TVe1NV2NSwsjG9NJaJWrVqdP3++2KcFBwc3adKEP61nz544FZYLAwcOpNcLohUUFPC+pg8ePND07DNmzCAiMzMzlXIT6enpvElAmzZt1NhMDMqC92H75ptvtDOdTCbj32e9e/dG7UWNevLkCRFZWVlpNCPj6+vLW+l6enqqrPTMy8vjK2X09PQ0XpwxOZn99hsbP57l5zOJhJ09+9qjFy8yIqatCgx5Mtln9+/3vHVrT1LSmpgY7Uz6IcnIyOAdfXeXsOVcKpXmlVlJs3fp0oWIZsyYobHPBx8Cvsz8vYtDlkZ+fv4nn3xCRI6OjvHx8coPRUVF8X8jAwcOxIpOnSWTyXjruaLNjTi5XF72U1lJl1JTpkzhP9w0+RErJKmUVarERCKGChillJrKOnViRMzSkmmmmxfPvDs7OyvyeiYmJm5ubv7+/tgJVEo4X8HgwYOJaNy4ccU+qpYDoKRNgcuWLSMiZ2dnAS9pkHAvE55wt7dnip/8POE+cSIjYtbWzM+PFVux89Ej1r//vxn5Jk1kR46o/8I6NDSU9wrgWe+Q1zfCnz59ulmzZvzRbt263b59W+0BBAUF8T3UROTm5lbsLc2CggI/P7+qVavy1MnkyZO1sxgW3k92draJiYlYLI6Li1MMnjx5koiaNGmihQDkcjlP41arVk0lvx8XF8ePt379+uFXouASExONjIwkEsk71bZ6J2fOnFm5cqXySGxsrJWVFRGtX79eQ5MCY2z//v1E1KdPH01PtHfvXiMjIyIaNGhQdna28kNyudzb25t/vxTNyKtBdjYLCGBubkxf/9+v6jt3WLNm7PvvX3vaDz+whg3VPHUJ5IzNjY52CQ3tf+fOS7VuKag4Zs6cSUQdOnQQ5J7czZs3JRKJvr6+Fm5OQzn17NkzkUhkamqq6QXm2dnZ7du3J6KmTZumpqYqPxQeHs5XUYwdOxZ3r3XTH3/8QUTVq1cXZIlJSkoKv9ZCET/14+njEyeEjqM8iItjzZoxIlarluruQw24d+/ekiVL+Ooubvz48Zqe9MOA81UFd/r0aSIyNTVVTh9pTX5+fv369Yno119/1f7sHBLuZcIT7ps3s8qVGS9jwBPuSUnMy6v4sq5ZWczbmxkaMiJWqRLz9maa25kkl8sDAgJq1aqlyHo/ffo0MjJSUc6lRo0a/v7+mpqesZycHB8fH1NTUyIyNjb28vIqtisxL2HPl+TzEvYVqrFYSEhIbGys0FGUSkBAABG5uroqD/JbxwsWLNBODAUFBbwyeN26dVVWZkVGRvKuvKNHj/6QfiWWx53dvFJbsaX61CI2NtbQ0FAsFp86dUp5nLcTMDQ01MRNRODmzZtHRD/88IMW5rpw4QK/I9u6deuirfy2bNmir69PRMOGDcvJyVHDfDk5LDCQDR3KjIz+zbPr67O+fdn27Swzk+3dy0xM2I4drKCAFRSwPXtYpUps1y7GWPGd0NXq55gYl9DQzjdvRqrlk1Y8jx8/5ieNa9euCRXDpEmT+F1hoQIAHffzzz8X/ercuXPnrVu31D5XcnIyb3ndrl07lTzIlStXeHc7Ly8vtc8LZaTYqbNz506hYli7di3fIZGH8hrqNWMGI2KLFgkdR6nk5OQU27BNG+7eZTVrMiLWuDF7/lybMz9+/HjlypVt27YttoQFqMD5qoKTSqV8je/y5cuFioEvFBOwfS4S7mXCE+4xMax/fzZqFGP/T7gXSyZj/v7MxubfHtoeHkw7pYazsrLmzZtnbGxMREZGRjw9YWZm5uPjo53zTmxsrIeHBy8OUL16dX9//2KTobdu3eratSu/E9CxY8cPKWH6BqdPnzYyMiq6wkg3jRw5koh++uknxYhMJuPfo8X2KtGQ7OzsDh068JVZKvVwr1+/zm/wzJo1S2vxaFR4eHiTJk22bNkidCDvICMjo3LlykR0+fJlxWBhYaF6K30vXryYn1JUvj55Sqtx48bqycBCEf369SOiwMBA7UwXGRnJ1ybUqVPnXpHC5cHBwbxZd/v27d+/KppUykJC2OTJzNz83zy7WMxcXZmvL0tKeu2Z/v6sZk1mYMAMDVmNGmzrVsYYy8lhXbqwEqqUqMXB5GSX0NC2YWFX39aXBUri5uZGRBMnThQwhqSkJH5u1GjBECi/unfvTkS7+G08xhhjmZmZfLtYksq5SB1iYmL4ohw3NzeVL+jg4GBDQ0Mi+vHHH9U+L5SFl5cX/8oT8IdSYWEhLwq6atUqoWL4MO3dy4iYzt+Uzc/PHzVq1MSJEyUSiaurq6+vb9ElERp05QqrWpURsXbtUH5Hx+F8VcH98ssvfJWksMsHe/XqxbdECzI7Eu5loki4R0UxY2MWHFxiwj0/n7Vu/e8P+Y4d2esFqLUhJiZm9OjRpqamJiYmHh4e2u8rePXq1Xbt2vF8eps2bZQzccqCgoJsbW1btmyp/HvjA5aWlta8efNiVxjpmry8PN53IioqSjEYEhJCRLVr19ZyMC9fvuQrs7p27apyBj99+jT/lah8Y6D84rsKKlWqVI6qEPDGg507d1Ye3LJlS82aNUsqnfweZDIZv0U3aNAg5fHs7GwnJycBv1Y/ePb29irnAU17+fKlq6srEVlaWp45c0bl0fDw8Jo1a/LVK+/0z0Qmk509ezb/m2+YldW/X89ErE0btmYNe/Ouo6Sk1+q2b9z4b45eM+eci+npbcLCPgoNPYIflu/r1KlTfKmByr4o7fvpp5+IyMnJSb03IOED8OrVK319fX19feUVGPwaoFOnThqa9NGjR3xr4KhRo1Rqc/35559isVgkEm3evFlDs8O7ioqK4jt1im09p03BwcH8pIpO9er09CkjYtWqCR3Hm6Snp/P8kYmJCd+ezgvD9uzZ87ffftP08XD88GFprVqMiA0ZwsrhDuAKBeerCi41NZVvUz5w4ICwkdy9e1fA9rlIuJeJIuHOGFu8mDVuzDZuLHGF+5QprHp15u+vha3nxcvOzualXYSZnjG5XO7v729ra0tEIpGopLz/ihUrqCI1FlMUH3dzc9Pl4uNHjx4lopYtWyoPfvfdd0Q0c+ZM7ccTExPDs2wDBgxQ+d9N8Svx6NGj2g9M7UaPHk1ELi4u+fn5QsfydoWFhXzFXFBQkGJQLpfzjkPqvZEWExPDS81u2rRJeTwsLMzAwEAkEqFgn9olJSURkbm5ufJalZUrV7q7u1/QTMcqLjc3d/jw4URkYGBQtBJafHy8i4sL3zBYUptuZbwLVp06dYgoytWVETFnZ+btzR4+fM/4fH2ZWMyI2MSJTK2n8cc5OV1u3nQJDfUTovThh0GnFjcVFBQ0bNiQiNauXSt0LKBbtm/fTkS9evVSHuQXABpdQHD9+nUzMzMimjp1qspDGzZsICKJRBIQEKC5AKD0Bg0apDvFo/l2t0mTJgkdyIeF74WPjhY6juIlJia2atWKiGxtbW/evPny5Ut/f383NzcDAwOeeReLxa6urj4+PpGRkWqffdOmTRKJZHjDhgWensV3yQNdgvNVBefp6UlE3bp1EzoQxhj78ssviahHjx7anxoJ9zJRTrjn5bH69Vnr1iUm3NPS2Otd37RN8IQ7l56ePnPmTP7FbG5uXvQiftWqVRUq4c4Yi4yMtLa2JiIPDw+draUzYcIEIlq8eLHyYN26dYno4sWLgoQUHh5uaWlJREWPohkzZtjY2Ozdu1eQwNQrMzOzXr16RDRnzhyhY3m7Xbt2EVHDhg2V18odOXKEiBwcHNS+qDMwMJCvsrn/esekH3/8kYiqVauGtQzq9ddff/GdJcqD3bp100KVDEWjVJFI5O3trXKqzMzM5DVDDA0N//zzz2LfITw8fO7cuY6OjvR/devWPbxyJVPLeod9+5ixMSNivXoxNRV+eVFQ0PfOHZfQ0DnR0Tr6xVAe+Pr66lT5Tn4+rFy58vsXQYIP0dChQ+n1vl4FBQX8IufRo0canfrMmTO8Q7XKNR5jbOHChfxO58mTJzUaA7yVsK3nioqMjOTLV69fvy50LB+Q/v0ZkUaL1L23qKgoXuLP0dFRJZ+emprq7+/v7u7O2z9wzs7O3t7e6tqh6+Pjw98WvSXKBZyvKrh79+7p6+tLJBIdaaumaJ+rvCJQO5BwLxPlhDtj7O+/GVGJCXfB6UjCneO9W8VicWiR8joVMOHOGLt27RovPq6dVoTvSiqVVqtWjYgiIiIUgzdu3CAiGxsblW3I2nThwgUfH5+i49OmTfuQrsmuXr2qr68vFotPnz4tdCxvwVe+qOxA79KlCxGtWbNGEzOOHTuWiFq1aqW8A0Amk/Gvt969e+vsTayiUlJYRAQ7dYpt385WrWLffstGjmSdOzMnJ6attsRvsXz5ciKaPn26YkQul/N9Btq5t7Fp0yY9PT0iGjt2rMqeD6lU+tVXXyky8orxZ8+e+fr68qI0nL29vaenZ0hIiJqPjcuXmbU1I2JNm5a9i1e2VDry7l2X0NBJDx7kl59jWNcIeIX9Brz195QpU4QOBHRFXl6emZmZSCR6rnTq4LvgmzRpooUADh06xE+tRfdeTJ8+nW/GR55CQFKptGnTpkS0YsUKoWP5z4wZM4ioQ4cO5ehCS9ctWcKImNJVlo64fv06XxzWunXrN9wtzs7ODgoK8vDw4PtmlDPvRX/yl5JUKuWrUyUSycaNG9/3E4D24HwFvXv3LnbnnICEWn+DhHuZpKQwS0umfN9u9GjWsaMWZn4fOpVw54p2wGMVNeHOGDt16hRf+K+hvGRZnDlzhojq16+vPDh//nwi+vLLL4WKqiRyuZxXm7ly5YrQsagNX9tbtEeoTuGFkq2trZUL61+/fp1vZ0lLS9PEpJmZmXzFjUqn3NjYWJ5oW79+vSbmfQ9SqTQuLi4sLOzIkSO///774sWLv/rqq0GDBrm7L6tVixka/ldIvOifMWOEjp4xxpi7uzsRbd++XTESHR3Nb7xpLYYTJ07wfhKurq7Jyckqj/r6+orFYiIaOXLkTz/91LZtW8VPPisrq8mTJ589e1aD9wijoljDhoyI2duzGzfe+21kcvm3kZEuoaFDIyLSsW+6DATcQ/oG9+/f5wt/bt26JXQsoBP4vofWrVsrD3799ddENG/ePO3E4O/vLxKJxGKxSrcVuVw+fvx4IqpatWqx1+2gBevXrycdaD2nIiMjg1cK3bNnj9CxfCj48j1XV6HjeM2pU6f4dVfPnj0zMjJK85Lc3Fyeeeed7RXbCt91uUNeXt6nn37K9y8GBgaW4UOA9uB8VcEdPnyYiCwtLYv+TBOQosKklrvBI+GuHrdusSNH/lvqrgu2bt3auHFj5bKPOphwL1aFTbgzxnbt2sWLjxctUiysb775pmhJk8aNGxPR33//LVRUJbl27RrPTX9Id7BlMhlfJz5kyBChYykRv5u9dOlS5UF+oazR3QbXrl3jOwBOnTqlPH7w4EF+jS7gdjaZTNavX78WLVrY2tryRHBRtWt/zLPq5uasUSPWpQsbPZpNn85++ont2MFOn2Z37/5bpGTOHLZv339vfv8+W7JEqx+H12NR7jmzf/9+Iurbt682w7h9+7aDgwO/C1i02EJAQIChoaFiX7OxsbG7u3tQUJCWuiCkpLDOnRkRMzVl79tGYvW9ey6hoR/fvh2nG1VQyilhuyS92bfffktEHTt2/JC+p3SNjuxkL42JEycW/fbkDX60ua6cF23Q19dXKRFWUFDAC+A6ODg8ffpUa/EAp2g9d/DgQaFjUbVp0yZ+YGQLWzj1g/HqFTMwYB06CB3Hf3bs2KGvr09EHh4e71EZUiqVhoSEeHp68v7MXK1atUqTeX/16lXnzp155i4kJKQMHwK0B+erCi4/P79BgwZE9PPPPwsdiyq+NNDMzCw+Pl5rkyLhrh7jxjEitnWrNud8C17CWLmbJRLu5cIvv/zCf+389ddfQsfyL7lcXqNGDSK6du2aYvDRo0dEVLlyZR3s5Dlnzhwi+uabb4QORM2eP3/Oy7lu2bJF6FiKER4eLhKJTExMlNfgP3nyRE9PT19fP0bDNyQXL15c7A6ASZMmEVHjxo1zcnI0GsAb8IorRCQSiWxtbZs1a9a3b9/x48fPnTt33bp1gYGBFy9effyYlSZAPT1mYvJfM60jR5gWV5az9PR0kUhkZGSk/Itr3rx5RDR37lztxcEYY+zZs2d8nYKtrW3RZcK8UY+jo2NgYKAA/9fn5bFRoxgRk0jYhg3v+urly5ebVa06LiQkIitLE9FVHL169SIiT09PoQMpxqtXr/gv0n3K99BAff755x9zc3Nd6JT7VjKZjC+7U74zFBoaKsjSge+//56ITExMVNJbOTk5nTp14rc5ExMTtRkS8FUv3bt3FzqQYshkso8++oiIFi1aJHQsH4qUFHb+PAsOZs+eCR3Kf7sGPT09SzoX7dix49ChQ2+91lJk3u3t7RWZdwcHh8mTJwcFBRUWaTgfHx/fvHlzIrK3t9eRMtBQGjhfVXA8CdmoUSO1d25TC97xa+LEiVqbEQl39UDCXY0qeMKd/f/XTjVLy4ywMKFjYYyxq1ev8ksi5SstXsp53LhxwsVVIicnJyI6c+aM0IGoX0BAABFVqlRJXT2I1GjcuHFFc1v8qksLHeplMlnXrl2JaNCgQcrj2dnZ/HgQMOl25syZ69evx8XFFf058a709FjHjqx//3//quWE+7lz54ioTZs2yoN82aMgScOMjIw+ffrUrVs3KSlJ5aExY8YQ0aZNm7Qf1b/kcjZ7NiOSm5v7LVlS+pRZQECAWCwWi8X79+/XaIAfPL73okqVKjpbhmvDhg1EVLNmTay00oQdO3bwLYPbtm0TOpa3uHDhAr9BqDzIq/Z99dVXWg5GLpfz5fYWFhY3b95UfigtLa1ly5ZE1Lp161KWlYCy07XWc0VduHBBJBIZGxtj94MabNjAzMxYvXqsTRtmbMz692evXgkSiFwunzVrFl8s8oY7l4pVWcbGxm5ubv7+/ulv6xsvk8lCQkK8vLzq1aunyLxbWVl5eHgoNiPeu3ePVwd1dnZ+XuamOKA1OF9VcElJSbyKlO6sHFXx+PFj3j5XeSGpRiHhrh5IuKsREu5yufybiROTWrdm1aqxhw+FDofNnj27aL6ydevWRHTo0CGhoipJREQEv24re3JTN40ePZqIXFxcdGpvQVxcnIGBgUQiefz4sWIwNTWVtwLWTp3imJgYvpZcJc0aFhZmYGAgEomOHDmihTA0Sk+PnTrFqlZlBw4wpvWE+9q1a4noiy++UB60s7MjoqioKO3FoaSgoCA2NrboOC94JXyLv02bZrduTUQjRowoTYuekJAQIyMj0slOHuVLfn4+b+3w66+/Ch1LiaRSKV++p1JIBNTl119/JSKJRKLj2wj4MgvlK3bGWLNmzUigqn1SqXTw4MF8YalKSiIhIcHBwaF27drPdGDtbQXxySefCHLr5Z3w4oGjRo0SOpBy7vhxpq/PFC2+4+JYy5Zs6FDtB5Kfnz9q1CgiMjAwUGnqoCI3N3fFihV81bCijt/AgQO3b9/+6m23CuRy+dWrV1Uy71WqVHFzc+M5u44dO6ampqrzg4GG4XxVwU2YMIGI+iuWhumkmTNnkhbb5yLhrh5IuKsREu6MMSaVssGDGRGrUYMJfWO/YcOGRHT27FnFSExMDC8eooPr8nhpkQkTJggdiKakp6fXqVOna4sWyQsXCh3Lf/gqmOHDhysPLl26lIj69OmjtTACAwP5Xvj79+8rj/PzYbVq1RISErQWTBkVFrLYWHb9OgsKYps2sYULWXIy09NjYWHs119ZjRosM1PbCfexY8cS0caNGxUjSUlJfCGkTtWhzsnJ4ZW7daFZU3BwMP/d2K5duxcvXrzhmY8fP65WrRoRTZ48WWvhfaiWLVvGV8bp+J1X3pDcxMQE6UsNWbBgAc8Z6WC/GQVe7VS5hMuTJ0/4qVWoO+v5+fm9evXq169f0cu8IUOGEFG5qNXzATh06BDpXuu5op4/f25iYiISic6fPy90LOVZ//5s7NjXRv75h4lETLvtKLKysnhPJlNT0xMnTpTyVc+ePfP19e3Zs6eenh5PnUskEldXV19f39Jce0dERHh7e7u4uPDXmpub9+7dW8BqkPAecL6q4G7cuCEWiw0MDB7qwILRN8jIyODLxd58N1FdkHBXDyTc1QgJ93/l5LCOHRkRa9KECXd7Pzw8nIiqVq2qnLbw9fUlInd3d6GiegO+3/no+/YqLBeeXbkiMzBgYjHTjbI5GRkZlStXJqIrV64oBvPy8viX2enTp7UZDE8Kt2rVSjlPIZPJ+Ldd7969dSc1nJ2d/fjx40uXMgMD2bp17Icf2PjxrE8f1qwZs7FhIhHjnVQVfy5f/jfhLpWyjz5iM2dqO+HetGlTIrp69api5Pjx40TUtWtX7QVRCleuXCGiZs2aCR3Iv8LDw/nOaEdHx5KKQb18+ZIn3fr27avjOWLdl5iYaG5uTkQnT54UOpa3Gzp0KBF5eHgIHcgHi/enNTc3Dw0NFTqWYty9e5eIrK2tpVKpYnDNmjWCr7/LzMwsWoBVKpXy3gM6/nP6w6BoPbdu3TqhY3k7fnOrZcuWMplM6FjKLUdHprSmgTHG8vO1fLX/8uXLdu3aEZGtrW3Ye5U2TU5O9vf3d3Nz461WlTPvxW5JVHH//n2+0ksHd1HDG+B8BbzF8ffffy90IG+3efNmInJwcMjSfLssJNzVAwl3NULC/T9paaxZM0bE2rVjAq0lX7RoERXpLNGlSxci+vPPPwUJ6Q2ePHkiEonMzMx0YWWrZi1cyIhY9epMB8oTr169umjWlX+TNW/eXMsJ7szMTF5KYtasWcrjsbGxVlZWRLR+/XqtBZOTkxMVFRUSEhIQEODr6+vl5eXh4eHm5ubi4mJnZycSiYioQ4fnKol1/kcsZnZ2rEUL1q8f++wzNn8+e/z434Q7Y+zqVWZkxNas0V7CPTc3l5dlVF7wyNcRT58+XUtBlM5vv/1GOtZhIj4+nq/bqlKlyrlz51Qezc3NdXV15TeKMjMzBYnwQ8L7SQwePFjoQEolOjrayMhIJBKp9KhUI5m0MDXhaWrC01eJzwrzP/QvxyLkcjk/JKpWraqy+UkX8LOoyrY8fpW1d+9eoaIqyenTp4mocePGQgcisD9e/hGeE/7255XNypUrSYdbz6nIycnht5b/+OMPLU/9PP/52qS1Wp5UIywt2Z49qoNmZkxbP7iio6N5zrRu3bqPHj0q47ulpKTwzLuBgQHPvIvFYhcXF29v7ze/+Zw5c4ho3rx5ZQwAtAnnq1L6cM5Xr9u9ezdfPZCWliZ0LG+naJ+7UPMFA5BwVw8k3NUICffXxMayWrUYEevfnwmx7LFFixZEdOzYMcVIcnKynp6eoaHhW7viaN9PP/1ERCNHjhQ6EM2TyViXLoyIDRkibCCFhYW1atUiIuUK6XK53NnZWai7MteuXdPX1xeLxadOnVIeP3jwIBEZGhqqq5NPYWFhXFxcaGjokSNHNm/evGjRoqlTpw4cOLB9+/YDBw40NDSkNzIyMqpVq9b48TcGDWJff80WL2ZbtrCjR9mNGyw+niktdvyPIuHOGPviC1atmvYS7teuXSOiJk2aKA8OGzaMiLZv366lIEpn8uTJROTr6yt0IK/JzMx0c3PjR+CuXbsU43K5nDdmqF69ekxMjIARfhhCQ0P5htayJwu05ocffiAiFxcXDa20Sk+OX+hmt/azj9aMd1kyuNauRR55WTr39a1RBQUFffv25auZdK1PWps2bYgoSFG1mbGXL1/q7FWWp6cnEf3www9CB6I90fnRnz39rH5E/ep3qrs9druRfYMx1uxeM/8Uf43Oq/ut54rauXMnEdnY2Gg04fJn6p+dH3aufqe6813nuXFzc2Q55zLPWdyy0NyM2tOiBVPp4JKWxojY6dNs8GDm6sp8fVliooYmv3Pnjr29PRF99NFHRXvRl8WrV68CAgI8PDx4YyfO2dnZ29u72Jug/HK9V69eaowBNArnq5J8yOcrJTk5OTwbsHnzZqFjKa2LFy9qp30uEu7qgYS7GiHhrurRI2ZtzYjY2LFMu4uFeRVRlQXjOTk5u3fvXr58uTYjKSW+SjQgIEDoQLTi+XNmacmI2JYtAkbBr1caNmyonCoKCgriqQ2hljnwUv7Vq1d/+foOgEmTJvHVeaWsC5mXl8dT6kFBQX5+ft7e3p6enu7u7q6urnXr1lXUqSyKr080MjKqW7euq6urm5vb5MmTvb29/fz8goKCQkND4+Li3iO5ppxwT03VasLdz8+PiMa+Xl3U0dGRiCIiIrQUROnwls46WJlRKpV+9dVXRCQSiby9vfkg739gbm6urvtAFZlcLu/YsSMRzZkzR+hY3kFmZiZPc/j7aySFxxPu6cnxjLGcjFe/ftnl1LZlmphIl+Xk5HTq1ImI6tevr95cUlnExcUV7YizdetW0m77k9KrU6cOvV5Y7MMWWxBrc8em56OewRnB17Ove8V6tX/QXsZkWki4f/7550Q0YMAAjc6iXnK5nP8r8/Ly0tAUq5NWG9ww8En0CcsOO55+vNX9VjtSdnw4CayJE5mr62sjv//OzMxYcjKrVOnf/Y96eqxnT7ZhA1NrU6LTp0/zUmw9evTQ3K2+zMzMvXv3fvrpp8qZd5ULS8ZYfHw8EVWuXBnlPsoLnK+K9YGfr5R4e3sTUcuWLaXFrhfTVcOHD9fCSk0k3NUDCXc1QsK9GFevMlNTRsTmztXmtPz/i/LSxTsxMVEikRgaGmZkZAgdi7YEBDAiVqkSK6EwtBa0atWKiH7//XflQV7Ebe3atQIFxWQyWdeuXYlo0KBByuPZ2dlOTk5E5OnpyUdevXp17969M2fO7Ny5c/Xq1d99993o0aO7devWqFEjXpj+DcRisa2tbfPmzfv27Tt+/Pi5c+euW7du3759Fy5cePLkiSZ6PU2ZwpR7KwYFMaVzvGZNmTJF5f/T9PR0vjRAp2qOFxYWGhsbi0Qind3S6OvrKxaLiejzzz/ntzH09fV1uaNjObJ9+3a+XkkHlwa/mb+/v+YiV064M8b2/fjl/lVTGWMnNi+IeRB6+OfpB9dOU/ukOig1NZU3onBt106mG7WbNmzYQERDXt+pNmjQIHq9PbWOuHHjBhHZ29vrTisUTZsWM61OeJ0C+X9LB6RyKdP8Cvfy0nquqLCwMM1FniXLMrtl9mPij4oR/n/Hh5PAevyYmZuzr75iT56w9HS2dy+rUoX5+DDG2MuXzN+fubkxA4P/Kg+6ujIfHxYZWcZp9+3bZ2RkRERjxozRzkKZ3NzcoKCgyZMnV6tWbY3Kon7GGGMODg5EVFLbG9ApOF8V68M/X/1fTExMpUqViKhozUwdp53IP+CEe4kLDwHKnzZt6OBB6tePli2jqlXp2281N1VhYeHt27evXLly9erVI0eO0P/X6uq+gwcPymSyfv36mZmZCR2Ltri70+jRtGsXjR5Nly7R/4skas2pU6du3LhhY2PDa2Jw169fP3/+vLm5OV/vIAixWLxt27YWLVqcOXPm8ePH9erV4+MmJia7du1q3779+vXrDxw4kJKSkpub+4b3MTQ0tLa2dnBwsLa2rl69uo2Njb29va2trZ2dnZ2dnbW19RsWuatXdjZlZNBvv7022L8/9e+vnfnp5s2bRMSbEitGGGNNmzbV2v8IpXH//v3c3Nz69evzza06aNq0adWrVx87duwff/zBl7Ju3Ljx448/Fjquci83N5cXfvXx8eEr9coRDw+PDRs2XL16tVu3brys5JuJxeJ+TUr7Tdd+4GQien7vmrFZ5RfPHkTd/OfTOb8T0eOws4+uBbcf9IWZlV1Zgi8vLC0tT5061bt7990ikXjgQDp+nN5W+EvTDh8+TEQDBw5UjOTm5gYHB4tEIl6BSqcoouUNSCqC0JzQEVVG6Iv0FSMSkUTx3xclLIovjC/lW9les00MTizlk0+cOCGXyz09PXlB7XKkVatWY8eO3bZtW79+/bp37/7W5+tX0i/8trA072ynbzfAYkCmLHNMlTGKQeX/Oz4Ejo50/jx5eVGjRpSXRw0b0rJlNGUKEZGVFY0dS2PHUloaBQXR0aN0/DhdvEgXL9Ls2eTsTO7uNGIEOTm965zr1q2bPn06P97Wrl3LFwRompGRUf/+/fv3779+/frCwmIOgLZt28bGxl67do03UIWyiI6O5gXWNQTnq6IqxPnq/+bMmZOdnf3pp5/y9XbliIODw4wZMxYvXjxy5EjNXXQ9ePCAiHx9fQMDAzU0xYQJE3h9Qi3Tod//AGrQsydt3kzjx9OMGdSgAfXtq8b3jo+PDwsLCwsLu3jx4sWLF5VTkGKxeP369Z9++ulbV/sKjpf8Gzx4sNCBaNfGjXTtGoWFkbc3rVih5cl50XxPT0++NIbjGyOmTp0qbM6rVq1ae/furVevXt26dZXHW7Vq1bx586dPn8bGxhKRkZGRpaWlvb29nZ1d0f+0tbXVzm8PIsrNpYQEio8v5j9fvaKEBHJxodBQ7cSiSiaThYeHi0Si5s2bKwZ5Cp5vcdAdRW8M6KBhw4YVFhaOGTPG2Ni4UqVKyLarhUQi6dGjx+HDh93d3Ys+WlhYqK+vX3RcEEWDEYlEAwcOfPjw4Y0bN/g64jcTi8W2fW1KOd1HfcYS0fXj28QSvfQXsRbVHIwq/Xs7qqP7Ny0/HvmO4Zdj1tbW1w4f1uvYkRITacwY2rOHJIL9AE5PTz979qxEIumrdEX3999/Z2dnt2vXrnr16kIFVpJDhw7R67cHPnjP8p/VsKxR0qMBrwLu5d0r5Vt1Ce1ybtO5Uj65cuXKJiYmn332WdGHdPxURkRjx44NDAyMjY3dtGnTW9+hUrVK2WOySzOXk5FTc+Pm+iJ9W33b94m1vGjenE6cICJijIq9s1W58r+Z98xMOnaMDhyg48fp3j1atIgWLfqsR4+6XboMGTKkcePGb52KMbZo0aJFixaJRKKVK1fyAndaZmBgYFDcaqE2bdrs37//2rVrHh4e2o/qA5OYmFiaf4zv7QM4X8XExOB89d46dOhw6NChMWPGFH1I9w+A8ePHr169uqCgQKP/RkxNTY8dO6a59+/cuTMS7gDqMHYsZWTQgQPUsWMZ3ykvK+tKaOjVq1f5SvaEhATFQyKRqFGjRm3btm3btm2TJk2mTp0aHh7ep0+f06dPm5iYlHFezUlLS/vnn3/09PR0cFGYZpma0q5d5OpKP/5IH39Mpbg/ry4RERF///13pUqVvvjiC8XgkydPDh48aGBg8M0332gtkpL06tWr6GBMTMytW7eI6J9//vnoo4/4VjLtePXqVXx8fEJCgsp/vnr1KiYmNj8/vaCgxNcaG2t/A8N/Hjx4kJOT4+joqHzjTTdT27oZlYq4uLhZs2bJ5XKJRPLixYsOHTocO3asWbNmQsdVvunp6d29ezc9PX3NmjXz589XjOfm5np7ex85cuTmzZvKtwaFcvDgQS8vr/Xr13/yySeKwby8vM2bN6elpY0aNao0S4REIpFLTeNSzmhgbEpEQ2duMK9qR0Rnd63as3T8t39cJyKJnq78ENIaPUdH+vtv6tKF9u2jCRNo69bis1qa99dffxUUFHTr1q1q1aqKwaJr3nXEs2fPbt++bWFh0a1bN6Fj0Z7KepXTZeklPbrQbmGqLLWUb1VpYKWRdUp7c8vf3//y5ctLlizZvXu38vjatWt/+umnq1ev8oIbwrp3797HH3+8ePHiCRMmKI/7+PhkZ2f37NmTt1V/M4mhRFZTVprpLCWWlSWVC1lhtjzbVGz69heUd289L5mZ0YgRNGIE5ebSiRO0f3/mgwfbTp+m06cXLFhQt25dNzc33nOo2C0pUql0ypQpW7ZsMTAw2Lp166hRozTyKd4XTx5dvXpV6EA+BI6Ojhs3btTc++N8VVSFOl89ffo0KytrxYoVbm5uymebHTt2zJkz58iRI7rwoywpKemjjz76+uuvZ82apRzkkiVLsrOznZ2dly5dqqGpfX19Hzx4MG3atEaNGmloirZt22rond9Cm/VrUMNdjVDD/S0U5ZJDQ9nUqaxXLzZ4MFu/nr21YHRUFPP3Z56ezNU1/PV/8Obm5q6url5eXkFBQcnJycovio2N5V2n+/fvr1OVmlXwArg9e/YUOhCBeHszIla9Onu9R6hGjR07loimTZumPPj1118T0Weffaa1MN7Vt99+S0QeHh7anFTlEqRYTk4Fzs6sWzc2Zgz77ju2Zg3buZOdPcvu3WOCVyPfsWMHEQ0bNkx5kFdDvnbtmlBRFYsnK0+cOCF0ICXKyMho0aIFEXXq1CkhIYE3GzA1NT169KjQoZV7Fy5c4H0Fnin1OpBKpfxmxrJlwncKzc/Pr1+/PhH9+uuvyuNLliwhosaNG2vie1alhnvUzXOLBjhICwt+mdLp9plAtU9XPly+/G8Twh9+ECqEESNGEJGvr69iRCqVVqtWjYju378vVFQlWbt2LWm+t5iuGRw1eEjUkKLjmq7hXlJhWb59Z/To0ZqbuvR69+5NRFOnTlUePHDgABFZWlq+1MDl6PP85xRGZzPOqox/eDWR349UKg0JCfH09LSx+W//U61atTw9PUNCQpQbkGZlZfGNNaampn/99ZeAMZckKytLT0/PwMAgLy9P6FjgLXC+KlbFOV9lZGTY2dkR0a5du5THZ8yYQUQdOnTQhb4v/EZL//79lQc1WsRf4QOu4a7VhPsXX8yoUqXB9u17tTnpmyHh/oHbs4cZGLCvv2YBAWzDBtagAWvbluXmvvac5GR29CibP599/DGzsPi3xw4RI5IZGnbu2PHrr7/esWPHo0eP3jzVo0ePrK2tiWjs2LG6cMYsFm8yppLCqEAKC5mrKyNiP/2knQljY2MNDAwkEsnjx48VgykpKaampiKRKCIiQjthvKu0tDRe6IbXH9cavm7C0tLS2dm5Z8+eHh4enp6ePj4+/v7+wcHBEREROt7j8bvvvlPJV+bm5urr6+vp6WmiN+x7k8vlvHR7YmKi0LEUTyqV9u/fn4gcHR1fvHjBGMvPz+fbMCUSScU9g6lPsT/wzpw5wzMLcXFxQgXGLV++nIicnZ2VE+uxsbGmpqZEpKHeuTzh/uLZg9zMtKSn9/3nuvv/4M4Yq9AJd8bY33//235w1SrtT15QUMA3DEVHRysGL126REQNGjTQfjxvxW8N7tmzR+hAtOpQ2iFxmPhI2hHFyIvCF0zzCXfGmLe3NxG1bNlSKpUqBp8/f25iYiISic6fP6/R2d+Kb8WwtLRUXqajuKH4yy+/aGje7o+6t33QNrnw30kzpBl58rwPL4FVRorMu729vSLzXq1aNQ8Pj6CgoKSkpA4dOhCRjY1NaGio0MGWiK/quHLlitCBwNvhfFWsinO+2rJlCxFVr149KytLMZiRkWFra6sLVw7F9vWVy+WdOnUiIi8vL43OjoS7eowbN46IturSEnck3D9k2dnM0vK1n4hpaaxaNbZyJXvyhK1bx0aPZvXqKWfYGRGrWZN9+ilbs4ZdvKiamn+bq1ev8nvX8+bNU/NnUYfs7GwTExOxWCx4MkVI0dFs06b//pqRwQoKNDfb999/T0QjRoxQHnzy5MnAgQP79eunuXnLiGe7evXqpeV5MzMzla9Byx2eajl+/Lhi5Nq1a0TUtGlTAaMq6vHjx/yCT+hASvTVV18RkZWVlfKdTrlczn+rEJGnp6fyMjR4V4ofeCEhIcrjQ4YM4beNhQqMMZaYmMhv+J08eVJ5nN9xUdlBokYZKYk+I5z4H9/P2xxY/U1GSiJjbPN3fSNCDmto0vJh1y4mFjORiP3+u5Zn/uuvv4ioRYsWKuN37949c+aMloN5q5SUFD09PX19/VevXgkdi7Z5x3sb3DD46P5Hg6MGN4hoMDhqMNNKwj0nJ4dvMP399YOT18tq1aqVgN8U+fn5vDvizz//rDy+YsWKojcU1SumIKbV/VZVblfpHdn7k8hPzG+Zn8o49UEmsNRCJpOFhIR8++23NWvWVGTe+f1dR0dH5RUzOoivSFU5xkA34XxVrIpzvpLJZLwM1IIFC5THeWF0BweH7OxsoWJj/9/9rJwXZYzt2rWL33dM0/BGciTc1QMJdzVCwv3tjh9nYjFTuoXIGGPffcc6dGABAf9l2CtVYq6uzNOT+fuzJ0/KOOfRo0d5o4m1a9eW8a3Ujjd97tChg9CB6IDCQjZvHrO2ZhIJk0hY164sLEwtb5yUlBQeHn7ixAl/f/+FCxfyGzDFLjzR2dJD+fn5fLGPhpaRfqjkcrmlpSURJSQkKAZ5OUhh05dFBQQEEJGbm5vQgRTPx8eHiIyMjC5evFj00a1bt/Jz7NChQ3Vq30C5M2/evKI/8KKjo42MjEQikYDL5fi14uDBg5UHL1++LBKJDA0NIyMjhQqsQvv1V0bEJBK2b582p508eTIReXt7a3PS97Zt2zYi6t27t9CBCCO2IDbwVeCulF1Xsq7ImIwxdinrUnxBvKbn5QWRra2tldMBOTk5PHkq4K9O/huzUaNGBUoLO0q6oah2Mia7mHVxe8r2oLSgmIIYxtgr6aszGTp3m0rXREREeHt7Ozo6VqtWzcrKSmc3Air4+fnpTkESeCucr4pVcc5Xly5d4kUdnyglnWQy2UcffUREixYtEiqwko5Mfovojz/+0HQASLirBxLuaoSE+9v5+TFbW9XBDRuYgwOLiWGffcY2bmS3bjF1r6jduXOnSCQSi8WC7wxSwVv9rBJiV7jOmTKF1a7Nzp5lBQUsMZFNncrMzFhU1NtfWFDAYmPZtWunjh718/NbuHDhlClTBgwY0LZtWwcHB4Mi/Tpr1Khhbm6uUvFfx/3xxx98UbbOVkbSTVFRUURkZ2enPMg75era7bc5c+YQ0fz584UOpBgBAQFisVgkEqmUOFR26tQpXmWiXbt2vOAMvIfs7Oxif+Dxw6Ndu3aCnAFCQ0P5hlaVzQ2809HcuXO1HxL8a8ECRsQMDJiG78XGxcUFBQV5eXm5uroaGxtLJJIjR468/WU6YPDgwUT022+/CR1IhcPX5X3//ffKg7yrio2NjSDF6JKSknjpNpXa3+PHjyeiQYMGaT8kKL2cnBx9fX2JRJKlsmxL99y6dYuI6tWrJ3QgUFo4X1VwI0eOJKLhw4crDyq6Kz19+lT7ISkS65s3b1YeX7BgAS+CpIW9F0i4qwcS7mqEhPvb7dnDqlRRHVy7ltWuremZ+XGlr6+vOz0JFYVQdXxrpDbExDCJhCnfq5fLmYsL++orxhjLzWVxcSw0lAUFMT8/5u3NJk9mbm7MxYXZ2TGJhG+MGNagARWnSpUqzs7OPXr0GDNmzIwZM5ydncvXlYpcLm/cuDER7dixQ+hYypl9+/YRUd++fZUHw8LC1qxZc/fuXaGiKhbviXTgwAGhA1F17do1ExOT0twXjIiI4JeGjo6ODx480E54H55if+BlZmbyPS7bt2/Xcjxyubxjx45ENGfOHOVxvnDY1tZWx7s4fPimTmVEzNyc3bmjxnfNz8+/dOnSmjVrhg0bplxMmYjEYjH/Z668c0g35eTkVKpUSSQSxcTECB1LhVNS5Vl+Ppk9e7b2Q3pz67m39oUCwbVq1YqIVKqu6SCpVMrPPJpoaAmagPNVBadon/vPP/8oj3/66adENGrUKO2HpAvdBZBwVw8k3NUICfe3Cw1lRCz+9d2sn3/O+vTRwuQzZ84kIjMzMx3ptHPs2DEqrhBqRbRnDzM0ZCqLNxctYh06sMBA1Zr+Kn8kEmZnx1q12jBx4ueffz5//vz169cfPHjw4sWLT58+zS1S9D8mJqZKlSpE5Ofnp70PWAb8OKlevXp+fr7QsZQzc+fOJV3t36CCN+cRZA3FG0RFRfG+0xMnTizN8+Pj4/nv4apVq954/lzT4X2QSvqBJ1SCW9duAIAquZyNG8e6dGFlPjDSExMPHDgwc+ZMV1dXIyMj5SS7lZWVm5vb0qVLz549++LFC963sEmTJikpKWr5EBrC2821bdtW6EAqKJ1KGOlgQg3e1ZQpU4jop59+Uh48fPjw7Nmzi17tC4u3NFRZmwy6DOerCm7hwoU8LaML7XMVNwDOnTunPK7lGwBIuKsHEu5qhIT720mlrF499sUX/6VWHz5kxsZs924tTC6Xyz/77DOeDNKFBZgTJ04kQUuD6ZCNG1mNGqqDfn7MwYGFhDBDQ2Znx1xcmJsbmzyZeXszX18WEMBCQlhUFHv3wut84bOJicn9+/fVE78mdevWregPDCiNvn37EtH+/fuFDuQt4uLiiMjS0lKnSgalpKXxZk19+/YtfXuDrKys/v37u/v5tQ8L+0u3k3E6q9gfeIKUcFGUuNm2bZvyuLAlbkBVfv5//eQfP2YLFrAxY9hXX7H9+9mbdxxLpSwigvn7s8mTmbNzZpMmykn2unXrenh4+Pr6hoaGquxcfvnyJd8r1q5dO10u7/D5558T0fLly4UOpILSqZIIOlgyAt4Vr6/46aefKg82a9aMiC5duiRUVMXia7wWLlwodCBQWjhfVXA5OTm1a9cmok2bNimPa7OEi4KOlLhBwl09kHBXIyTcS+XqVValCuvcmS1YwKZMYRYWbMIE1aXNGlNQUMBzcHXq1ImP13jbKMZYYWFhVHGFyKVSKV86Gh4eroUwdN3Ro8zYWPUwWLqUNWqkoQnHjh1LRK1atdLxZeOhoaFEZG5urulG5B+kPn36SCSSoKAgoQN5i6NHjxJRjx49hA7kPwVy+RcPH44OCmrarNm7HntSqdTn2TOX0NCPQkO36nzRCd1U7A887Tcp1dkmrlC8Y8eYkREbPpytW8fmzmXW1mzAANWmOKmp7NgxNm8e696dmZq+tl3MyqrfJ58sWLDg+PHjr169evNUsbGx/Kdpz5498/LyNPeZ3ptUKq1WrRoR3bt3T+hYKi5hm/4p6GxTRHgnd+/eJaLar5chnTRpEhH5+voKFVWxAgICqEhJQ9BxOF9VcHv27Cn2f3mtNSnldKeJKxLu6qGDCfdjx46NGTNmt9KSZyTcPzQvX7Jff2XTp7MFC5h2d+gwxnJyclxdXYmoadOmqampmpgiPj4+KCjI29vbzc2tcuXKlStXLroM8OzZs0RUv359TQRQ/kRHMyJ29eprgz17ss8+09CEmZmZfPWuyvIBXTNixAjdD1Jn8cUgpqamOt7fb8mSJSq3mYUlZ+yH6GiX0NC+d+68yM5+vzf5MympdWioS2jooqdPC7EO+h2V9ANvzJgxRDRs2DAtxKDYSKtSMHfIkCFENHbsWC3EAO8gJ4dVq8aUf4k9e8ZMTdnmzSwmhm3Zwj7/nDk7M5HotSR7vXrMw4Nt2PAe/eojIyNtbGyIaOTIkdpc+VVK586dI/QtFFp+fj6/1vr555+Vx1esWEFEzs7Opd8+9d4U6ZLff/9deXz+/PlFbyiCLpPJZPybMTExUTG4efNmbdZYKKWnT5/yYlzYB1aO4HwFfG+Byi+yXbt28b0FWlj9JpPJWrduTUTe3t7K45s2bSIiBweH7Pf9XfYekHBXj5IS7nK5fNeuXVo4rZSGriXc8/LydhdXAgUJ9/Li5cuXjRo1IqIuXbqopepfTk5OSEjITz/9NGzYsBo1atDrGjRooHxpyHl6eqIK22sGDmStW/9X33/DBqavz27d0tyE169f19fXF4vFOvtF8vTpUz09PX19/ecoh/1e8vPz+VYGiUSybt06ocMpEc9g7tq1S+hA/vVrbKxLaGinmzcf5uSU5X3OvHrleuOGS2jol48eZb5jLg+WL19e9AdebGysqakpEf3999+aDmDYsGFENGbMGOXBM2fO8JtYcXFxmg4A3s3x40wiYZmZrw1Onsw+/pht3fpfhl1fn7m4ME9PFhDAkpLKOOetW7d47/epU6eW8a3U7rvvviOiWbNmCR1IRccr6VtaWiYnJysG8/Pz69evT0S//PKLpgPQhdZzoC7du3cnIuWdi7dv3yYiR0dHAaMqlp2dHREVu8sZdBbOVxXcjRs3JBKJgYGBcvFhuVzOuzJ4eXlpOoAtW7bwxLpyvb6MjAze62vPnj2aDkAZEu7qUVLC3d/fn4gaNmx47NgxbcZTLJ1KuAcFBTk6OhJR0f9lkHAvR2JjY/nOrAEDBrzfjaW4uLiAgABPT09XV1dDQ0PlDLuZmZmrq6uXl1dQUNCLFy+KvlYul/PZr6qs6a7I0tLYkCHMwIA1bsysrZmdHTt0SNNz8pXF9vb2ytdVumPatGlYSVp2vr6+IpGIiDw9PXVzYQivzKAjdQ8OJye7hIa2DQu7rI4akRFZWR/fvu0SGvrp3bsJul2+SdeU9AOPn7UaN26s0SURikqRz549UwxKpVJeLXfZsmWamxre0/r1xbRCWb2aOTqyyEj26ads7Vp25QpT2imvFmfPnuUdVlVWYwmO//O5ePGi0IEA6927d9G7MgcOHOCJrZcvX2pu6pJaz7m7uxPR6NGjNTc1aALvIDJv3jzFiFQqNTU1FYlEunYlP2DAACL6888/hQ4E3g3OVxUc77Hn5uamPKjorqTcxlbtMjIy+I06lfPGjBkziKhDhw5a3jGDhLt6lJRwP3HiRL169Xj2cMCAAVpuzaxCRxLud+7c4YcdETVp0kRlkzVDwr28uXv3bpUqVYho8uTJpXl+RkZGSEiIj4+Pm5sbLwyqIJFInJ2dPTw8/Pz8IiIi3prUu3r1KhFVr14dOw1VJSSwkBB2+/a77m1/PzKZjLck1XIznNJITU3lS1lv3rwpdCzl3p49e3hKaNCgQdrci1car169EolEJiYmUh1YAx6akdEuLMwlNDSwuDuF7ycuL29YRIRLaOgnt2/f07H/8XVcsT/wcnNz69SpQ0S//fabhuaVyWQuLi5EtHjxYuXxX3/9lYjq1Kmjlp1hoGZbt7Lq1VUHf/yRab5y3eHDh/X09IhozZo1mp6rlO7cuUNE1tbWunmTtaK5d++evr6+RCK5ffu28nivXr2I6JtvvtHc1Lwu34gRI5QHi72hCOXCwYMHiahXr17Kg126dCGi48ePCxVVsZYuXUpE3377rdCBwLvB+aqCU7TPVTmlfPbZZ0Q0cOBAzU09a9YsImrfvr1ygigyMtLQ0FAsFl+/fl1zUxcLCXf14An3tWvXFn2ooKDA19eXH3D6+vqenp5Cde1LS0sjIkNDQ6Gum1NSUjw9PfnPCUtLS19f32JXls2ePRsJ9/LlypUr/E7yggULSnpOamrquHHjnJyc+CJZBXt7+yFDhvz444/nzp1T3vVTGvxQ8fT0LPMngLKKiYnh9138/PyEjuU1vKDEJ598InQgH4gLFy5UrVqViNq0aVO0xJOAeI2O9u3bCx0Ii8rN7Xrzpkto6K+xsep953SpdPLDhy6hoZ1u3DiP9r/votgfeIGBgURUpUqVlJQUTUy6ceNGIqpRo4by3anU1FT+L2j//v2amBTK6vx5JpGwjIzXBidMYH36aGHyP/74QyQSicXiwEDVxSiC4BtBJk2aJHQg8C9eR7Fbt27Kg3fv3tXT05NIJHfu3NHEpIrWc0+fPlUMlnRDEcqF+Ph4IqpcubJyTuD777/XwU02wcHBfFGq0IHAO8P5qoLji2idnJxU2ufyvOiJEyc0Menjx495Yl2l/kG/fv2Eup5Bwl09Tpw40aJFCyMjI29v72KXLL18+dLT01MikRCRlZWVr6+vllfhBQcHN27c2NjY2MDAoGXLlipbbDStsLDQz8+PL2fW09ObPHlysRVCsrKyvL29DQwMXF1dtRwhlNHRo0f5rZSSGtzzvYr8tpOLi4unp6e/v39ERMS7TsQXyPv6+rq7u/M3PHPmTJnDBzXYt28fEZmYmNy/f1/oWP6Vl5fH95R9kF9yQomMjORFBurUqaPN+i1SqTQkJMTT07NTp05FH/3pp5+K7l3VvuSCgn537riEhs6OitLEne0CuXx+dLRLaGjrsLC9L14UyuWxeXnKf/KxELU4/Aeenp6eyg+8rl27EtH06dPVPmN6ejqvFBkQEKA8zitcqfz+BB2Sl8dsbNjChf+NPH/OKlVi/v7amX/dunWurhtMTNjRo9qZ8E0++ugjIjqqC6EAY0zpjt2BAweUx6dOnUpEPXr0UPuMJbWe8/PzK3pDEcoRBwcHIlKusMxvQvfRys3F0ktLSxOLxUZGRvmop1fe4HxVwSna56pkh3x8fIjI2dm5QN3V+dj/i1B9/vnnyoP8vp2ZmVlCQoLaZ3wrJNzVo6CgYOjQoXzFbp06dfbt21fs08LCwnivACJq1aqVdjo2PHjwoG/fvnzSGjVq8PQTEX366afKt/4059SpU02bNuWTdu/evdj7mXK53N/f397enohEItHnn3+OIiHlzo4dO/jKrL179xb7hP3794eGhr7ruVUqld66dWvjxo2fffaZs7OzWCxWXiAfHBysI02JgTHGW2u2atVKRy6LecuUZs2a4XyiXsnJya6urnyv0tmzZzU6l1wuDwkJ+eqrr6ytrRX/8IvW/hs9ejQRbd68WaPBvFmuTDb2/n2X0NAJDx5oLvEtZ2xDXJxLaKhLaKhfXJxLaGjPW7c+/v+f8HfcJ1RxFPsDLyIigifi3+Pu75vxVpOurq7KJx/FDutbmmxkDWV1/DgzMmKjRrGNG9nChczWlg0ZwrR4K2v2bEbETEzYhQuanSgzM/P06dNLlizp27fvqlWrVB6NjY0ViUSmpqaofaRTfvnlFyKqW7eu8v8vKSkpVlZWRHT48GH1Tvf7779TkdZzihuKJV3wg+7jiYvt27crRp4/f853fenaNbOTkxMRhYaGCh0IvDOcryq4oKAgKrl97vr169U73enTp3liPT4+XjFYWFjYpEkTIip6naMdSLir09mzZ5s3b87TAV27di3pB1VQUBDv7UZEbm5uT5480VA8mZmZ3t7evBGlqampt7d3Xl5eTk6Oj4+PmZkZERkbG3t5eWWo7JxVn8jISN6egojq1aunss5L4fr16x06dOBP++ijj9CaqfzidywNDAxOnjxZlveJj48PCgry9vZ2c3OrXLmycoZdZYG8rl0UVnCZmZn8Vvb3338vdCxMLpc3btyYiHbu3Cl0LB+g3Nzc4cOH83/vyj/Y1CgiIsLb25u311bcz/by8ip2C4WzszMRhYWFaSKS0pDJ5d89fuwSGjowPDxV83cBg16+HBoRcTMryyU0NEsHytbrvpJ+4H3xxRdE1LNnTzXOVVKlSN5D7Msvv1TjXKARkZFs3jw2YgSbPJnt38+0e6Uhl7PJkxkRs7BgN26o+c2VO9UbGBgozq5F/wmsX7+eiIYNG6bmCKBsFF2Xly9frjz+888/E5Gjo2NeXp665iqp9VyxNxShfFm5ciURff3118qDfOlbZGSkUFEVi1fu3bBhg9CBwDvD+QqKvfTlbSRUEvFlJJVK+RpfHx8f5fG1a9eq/WB7J0i4q5lMJvP39+cL8cRisYeHR1JSUtGn8aw3L4jBs96ZmZlqD8PGxkYRhkqx3djYWA8PD15N297e3t/fX73nIF4chuf6K1WqxHP9RZ8WFxc3efJkvmbZ3t7ez88PfZnKO94A2szM7J0yXwUFBaGhob6+vh4eHjxxpszOzs7Nzc3HxyckJAQrrXTc9evX9fX1xWKx4N8rR48e5cscNLFhDRhjcrnc29ubiEQikbe3t7q+RKKjo318fBo2bKg4A9SoUcPT07Noh22F7OxsPT09fX19Ac8PPs+euYSG9rh167m2rucK5fKo3Fwk3Euv2B94KSkpvP+EGutm8G2FKo3Ei13mA1AsmYx9+ikjYtbWrMh+nneTm8suXGCrVrEhQ+S1ajVUvrjS19dv06bNtGnT9uzZ8/z5c5UX9uzZk4h27NhRpulBA/giPlNT07i4OMVgYWEhzzWsXLlSXRPxot6603oO1Ojs2bNE1Lp1a+XBQYMGEdGuXbuEiqpYvNP4+PHjhQ4E3gfOVxVcSZs7P/nkk6L3/Mpi3bp1RFS3bl2Vi3y+2ubIkSPqmuhdIeGuEa9evfLy8uIrRypXruzj41Nsulk56129enV1Zb3/+eefFi1a8Ivptm3bXrlypaRnXrt2rX379vyZrVu3vnTpUtln58Vh+M4dkUjk4eFRbLGk/Px8X19fvtDewMDA09NTcwvtQZvkcvn48eOJqFq1asqVAYtSXmbF780omJmZubq6enp6BgQEFHvLCnQZb7Nmb28vbF6JV2f+6aefBIyhIvDz8+P9G8aNG1eWUkLPnz/39fXllWo4KysrDw+P4ODgN38zymQyvmW1efPm7z37uzqcnNz3zh3Fn8Hh4UEvX3a+efO2Wu+dvxVPuB99+TI4NTU4NfUavkbfSPED78cff1QeX7Nmjamp6ZYtW9QyS05OTp8+fSwsLJS/vEoqZAlQkvx89sknjIjVrcuU9kaXSnw8CwpiXl7M1ZUZGTGif/80bTrFwsKiZ8+e3t7ewcHBb6hmm5aWZmBgoK+vn5qaWtZPAhowePBg/rWrPHjy5Ek9Pb0ffvhBXbN8+eWXenp6KomqYm8oQrmTlZWlp6dnYGCgnKNYvnw5EU2bNk24uIpx/fp1ImrUqJHQgcB7wvmqgiu2fVF4eLi+vv748ePVtWBryZIlBgYGBw8eVB6cMmVKsXv4tAkJdw16+PChm5sbTxw0aNCgpPsqV69ebdeuHX9amzZtLl++/N4zxsTEKDL4Dg4Opcngq+TH3d3diy5yKb1SfpagoKC6devyp7m5uUVFRb33jKCDCgoK+vTpw+8xKt9u4f1OfXx83NzceAddBYlE4uzs7OHh4evrGxoaio0O5ZpMJuvWrRsRDRo0SKgYQkNDicjc3DwtLU2oGCqOEydO8Lun3bt3f/Xq1Tu99uXLl35+fq6urvybi9+l9vDwCAoKeuvWhIiICC8vL74DunXr1hqqbFOsXUlJI+7ejc7N5X+e5uYyxtK03k+CJ9y/fPjwq0ePvnr0aHUZvr4riFOnTlGR8o4FBQXx75rRfJtnz54p/3XVqlVE5OTkhA03UHrZ2axDB0bEmjRhKSmlesm+faxmzf8y7ERMImFNm7IvvmD+/uzRo1elnHrnzp2C/0aFN4iKijIyMhKJRFevXlUeVznzlJ3KGwrbeg7Ui9+BVl6Zx78i27VrJ2BURRUUFBgbG4tEone9wgQdgfNVBadon7t//37lcU0fAIpGTeHh4eqd6J0g4a5xwcHBvI4wv3IttjFXKVeFv0F2dra3t7exsTERmZiYvGuNGl4BxsjIiP5fAeZdN+aXcrX+vXv3+P4Rfqf6xIkT7zQLlBfZ2dm8Lr+Tk9Pq1avHjRvn5OSkSKhx9vb2gwcPXrly5T///JOFRn8flpiYGF6lwc/PT+1vnpqaevfu3dOnT+/YsaOkfa+8vPisWbPUPjsU6/bt2w4ODkTk7OxcmsYkr1698vf3d3Nz09fX5ycEY2NjNze3gICAty6Tv3Pnzg8//KC4a0tEjo6Oy5YtU88nKZ1dSUljiyslr2UoKfMe+vfvT0QTJkzQ2oxJSUkWFhZEdPz4ca1NCh+Gly+ZszMjYm3bstJcKP39NyNiZmbM1ZV5ebGgoNJm6hUyMzNPnTrFq+6qvaEZqNHs2bN5blRrhYkLCwv5T1rsHfwwTJgwgYh+/vlnxUhGRoZYLDY0NBSq2LFcLn/58mXRcb4j/9SpU9oPCdQC56sKjheGqlOnjjaLf3788ce6sGUHCXdtKCgo8PX15T+39PX1PT09i110mZaWNnPmTF6IxtzcXKXhQ0nkcnlAQECtWrUUS9SfPn36fnE+fvxY0eO0Ro0a/v7+pXzhb7/9ZmJiwnP93t7exe5RTUlJ8fT0lEgkRFSlShVfX18pcgQftOTk5Dp16vDDnlPpdyp0gKBZ+/bt4+eEYltcvllqampERERwcLC/v7+vr6+Xl5eHh0fPnj2dnZ3Nzc2Vb9vUrl276MufPHnCK3qXZb8OvKvY2FhezczW1vbatWtveOb27dsVzfoMDQ0HDhy4e/fut951e/r0qa+vb6tWrRT/71evXp3Xdtd+H6RdSUmj791LLSzkf3IF2pSDhPt7ePz4MS/o+eajVI0mTpzI9/NpZzr4wMTGstq1GRHr2ZO9NQmWk8PCw9m7npCK7aT65Zdf4jtUl2VmZvINXlqrs79mzRoiqlevnlDZWFAvPz8/Iho9erTyIO+kJUjBa6lU+sUXXzg6Oqp0nmP/L0mh5aUVoEY4X1Vwiva5WvtXzBMRVapUKfYenjYh4a49L1++VGScraysSso4R0ZGuru7i0SiNzSIUwgNDe3YsSO/MnZxcSnNS97q9OnT/N8DEXXr1u327dtvfQlvBebm5lbswsaCggI/Pz++kURfX3/y5MnoGFZBjBkzhoiaN2/+yy+/hIaGYit9RTNu3DgiatWqVUlrlm/cuLF+/fr58+d//vnn/fr1a9mypZ2dHT9JvoGZmZmTk1Pnzp1Hjhzp5eVV9G09PT2pSK1A0IKMjAxeTqpSpUqHDh0q6Wn37t0Ti8Wurq6+vr4vXrx483vGxsby2u6KLTKWlpa85kyh1ku4KOxKSvooNLRdWBj/s0ndBUlKCQn391NsZy0NuXHjhkQiMTAweHNTE4A3iIxkNjaMiI0c+c7J9GLl5uZeuHBh1apVgwYNsrGxUf6GVXRSVfteb1C7rVu38nvP77St+f1oor80COvWrVtEVL9+feVB3ojrl19+0XIw2dnZfP9ZpUqV/vnnH5VHFy1aRERffPGFlqMCNcL5qoI7c+YMFWmfqyF5eXn16tUjog0bNmh6rrdCwl3bbty40blzZ35R26JFi3PnzhX7NJU2vkXFx8dPnjxZLBYTkZ2dnZ+fnxoXjMtkMn9/f15lWywWe3h4vDUnUlLAKhV1hK2gBNokk8ns7OyI6ObNm0LHAsLIzMzkfQK///77Yp/g7e1dbErd0tLS2dnZ1dXV3d3d09PTx8fH398/ODg4IiLirQUcU1NTTU1NceAJpbCw8IsvviAiiUSivE9ZxVtvu6ampvKaM7wjKxGZmJi4u7sHBQWVpTWruuhISZknubmuN25kI+H+jjIyMvjX0+7duzU9F7/kmzlzpqYngg9baCgzN2eNG7OYGJae/tpDr16x0tx8jI1lgYFsyZK/2rVrp1jGzllbWw8YMMDHx+f8+fM5OTka+gigdnK5vE2bNkQ0b948Tc/Fv9lR1v9DIpVKK1WqJBKJlFeA/vbbb0Q0duxYbUaSmprKVxBWqVLlwoULKo8eOXLExMTE0NAQF/blGs5XMGTIEO2cXpYtW0ZEjRs3FnBtlgIS7sIICgqqU6cOv8x1c3OLjo4u/Wt5gRpeV4EXqElXufRWk9TUVC8vL35Rbmlp6ePj805pjkePHikK1NSvXz8gIEATQYLOCgkJoRIqfkDFcf36dX19fbFYXOzXzF9//TVlypSFCxf6+fkFBQVdu3YtNja2jDsh+Fds7969y/ImUEa+vr78fvDkyZPf6VonOzs7ICDAzc1NkQ8yMjJyc3Pz9/fXqU4POpJwh/f2+++/E5GDg4NGj6s9e/bwbCa6N0PZXb7MUlLYyJFMT48pr3IxNmbFrt6RSllEBPPzYx4e/xaCJ2KdO4eTUqd6Pz+/iIgI7VflAnW5fPmySCQyMjIqTfeU96ZoPYeCkB+YTp06EdFff/2lGAkLCyOihg0bai2GuLg4vre+Vq1aRatQ+vv782Y/48eP14XcGZQFzlcVXHR0NG+fq9yrWe0SExN5pvTvv//W3Cyl9wEn3EWMsWLXTuqI3NzcdevWLVu2LDMz09jY2NPTc+7cuWZmZm9+1ZEjR6ZPnx4VFUVEbm5uvr6+jo6OGo3z4cOH33333fHjx4moYcOGa9as6du375tfkpaW5uPj4+vrm5+fb2pqOmPGjDlz5hgaGmo0TtA1M2bMWLNmzcyZM1etWiV0LCCkpUuXzp8/397e/vbt27y0lObk5+fXqVMnISEhODi4Z8+eGp0L3iwwMHDs2LF5eXm9e/cOCAh487dbXl5ecHBwYGDggQMHsrOziUgikbRr127s2LEjRoxQKdyvC/588eJkaqq/k5PQgcB7ksvlrVu3vnHjRs2aNa2srDQ0y5MnT9LS0jZt2jRp0iQNTQEVzahRdOIENWlC584Rr7NlYkInThDfPfvyJV2+TJcv06VLdP065eT890ILC2rfnnr0SGve/Hrbtm118LwK72fMmDG7du2ytrauXr26hqZ49uxZamrqtGnTfH19NTQFCOL777//6aefFi1atGDBAj5SWFhYuXLl3NzclJQUS0tLTQdw79693r17x8TENG7c+MSJEw4ODsqP/vzzz9OnT2eMeXl5rVixQlFaEMovnK8quB9++GHFihVVqlThHSg1IT4+PikpafDgwQcOHNDQFO+kZ8+ep0+f/jBTE0Jn/EslLi7Ow8ODf3/Y29v7+fnJSqjOeP/+fV4bl4icnJyOHz+uzTiDg4MbNWrEZ+/Zs+fdu3eLfRqvRcPLQfJaNEXbnkAFUbduXSK6ePGi0IGAwGQyWbdu3Yho0KBBan/zwsLCuLi40NDQI0eObN68eeDAgUTUrFkzrNfTBRcvXuS3WJo3bx4bG1v0CVKpNCQkZPLkyYrUj6K2u45/d2CF+wfg8uXLihSDhtSvX3/ZsmVoEQ9qNHIk8/RkNWqwLVv+HTE2ZsePs/HjWcOG/y5jV/xp2JCNH882bXqfTqpQXsTExCxdulSjpzIiWrlyZWpqqtCfFdQsICCAiPr166c86OrqSlpZHHr58mV+w7tLly4q+8DkcvmMGTOISCKR6EIVZlAXnK8quMzMzBUrVmh6Je6SJUuioqKE/qz/wgp3nXD9+vVp06ZdvnyZiFq3bu3r69uhQwfFo6mpqYsWLdqwYYNUKrW0tPT29v7qq68UZW21prCwcMOGDd7e3unp6fr6+l9++eXixYstLCwUTzh37ty3337LG7C0bdv2559/btu2rZaDBB1x48YNFxcXW1vbuLg4XlkCKrLY2NjmzZunpqb6+flNnjz5nV6bn5+fkpKSkJAQHx/P//PVq1eKvz5//lwqlSo/f9iwYSNGjBg6dKhaPwG8p8ePH/fr1+/Ro0fVq1c/duxY8+bNiUgul1+6dCkwMHDv3r1JSUn8mc7Ozu7u7uPGjVPUW9NlqYWF6TJZHSMjoQOBMsnKynr06JHm3t/Y2FixWAFALUaNolq1qEUL+uorevCAqlYlExM6fpwGDaL0dDIxoZYtycWFOnakrl2pWjWhwwWtkEqld+7c0egUrVq10uj7gyCePXtWu3ZtKyur5ORkxfrx7777bu3atUuWLJk3b57mpj58+PDIkSNzc3MHDRr0559/GhsbKx4qKCgYN27cnj17DA0Nt2/f/umnn2ouDNA+nK/g1q1bcrlcc+/fpEkTlV41AvqAV7iXp4Q7ETHGduzY4eXllZiYKBKJhg0btnr1ajs7uz/++GPevHnJycl6enqff/750qVLqwl6+ZySkrJ48eJff/1VJpNZWVnNnz//66+/TkhI+OGHH3bu3MkYc3BwWLZsmWLZPlRM8+fPX7p06dSpU3/99VehYwGdsH///mHDhpmYmISFhTm9XogjLS2Nb/6Ki4t78eJFbGzsixcv4uLikpKS4uPj09PT3/C2YrHY2traxsamevXq1tbWDg4Ow4cPb9KkiYY/DbyDlJSUQYMGXbhwwczMbNWqVQkJCdu3b3/y5Al/lOfZR40axfvrAgDAG/CE+4oV1KMH1apFf/zxb0mZlBSqUYNatCCtL8gBgHLM3t4+ISEhKiqKb00mouDg4EOHDg0dOrR79+4amnTr1q2TJ0+WSqVfffXVunXrlNdmZWVlDR069O+//65cufLhw4d543EAgHIKCXfdkpmZuWzZMkX188qVK8fGxhLRxx9/vHbt2saNGwsd4L9CQ0O//fbbixcvElGtWrWSkpLy8vIqVark5eU1c+ZM5XvUUDE1btz43r17H+SZBd7b+PHj/f39a9eu3adPn6SkpMTExISEhISEhLy8vDe8ytDQUJFPr169uo2Njb29va2trZ2dnZ2dnbW1tfa3+8C7ys3NHTNmzIEDBywsLPgdlJo1aw4aNMjd3b1jx45CRwcAUG4oEu6PHlGLFnT2LHXr9l8NdwCAdzJw4MCgoKDdu3ePGDFCOzOuXLly9uzZIpFowYIFCxcuVH4oMTGxb9++N2/etLOzO378eIsWLbQTEgCAhiDhrotiYmLmzp27e/duR0dHmUy2fPlyd3d3oYMqxpEjRzw9PS0tLW/fvj106NBVq1ZprvsBlCORkZENGjSoXLnyixcveGd5ACLKysrq0KGDSCRS2UhoZGRkaWlpb29vZ2dX9D9tbW1RlegDIJfLN2zYUFBQEBMTM2LECBQcAwB4D4qEOxH98AOdP09hYXTyJBLuAPA+li1bNm/evOnTp69Zs0bTc8lksq+//nrjxo28MrtKkcmoqKjevXs/fvy4UaNGJ06cqFmzpqbjAQDQtB07dkRHR48dO7ZcFE19J+U44c49fPjQ0NDQ3t5edyoQFZWTk5Oampqdnd2wYUOhYwFdsWLFih9++GHcuHHbtm0TOhbQLVKp9MSJE9HR0ba2tvb29nzpuomJidBxAQAAlAPKCfecHGrShJ48oXPnkHAHgPcRHBzcq1evDh068J3rmpOfnz9mzJh9+/YZGRnt3LlTpdnS9evX+/Xrl5yc3KZNm6NHjwpbQRcAAN6q3BcZKBcpbBMTEyTLQMXBgweJaPDgwUIHAjpHT0/Pzc1N6CgAAADKPRMTWrOGcLUFAO+tTZs2YrH4xo0bhYWFmtuX/OrVq4EDB4aEhFhaWgYFBamUEzx16tSQIUMyMzPd3Nz27t2L3AIAgO4r9yvcAcqj2NjYmjVrGhsbJycn44IJAAAAAABANzVq1OjBgwfHjx/v06ePJt4/Pj6+b9++t2/ftre3P3HiRNOmTZUf3bFjx4QJEwoLC8eOHfv777+jGCkAQLmAmr8AAjgmO9YlsMvY+WORbQcAAAAAANBZo0aNat68ed++fRs3brxw4cKHDx+q8c3v37/fvn3727dvOzs7X7lyRSXb/vPPP48fP76wsNDT03Pbtm3ItgMAlBdY4Q4ggK6Pup7LOvdnnT9HWo4UOhYAAAAAAAAokaen55YtW3JycvhfW7ZsOXTo0CFDhjRq1KgsbxseHt61a9fU1NTOnTsfPny4cuXKiocYY15eXqtWrRKJRKtWrZoxY0ZZJgIAAC1Dwh1A215KX9qF20lI8qLZC3OJudDhAAAAAAAAwJvk5uaeOnUqMDAwKCgoPT2dD9atW9fNzc3d3d3V1VUkEr3rexYUFPTt29fU1HT37t3GxsbK4+PHj9+9e7eBgcH27duHDx+uto8BAABagYQ7gLZtfrl58vPJ/Sz6HXU8KnQsAAAAAAAAUFr5+fkhISFHjhzZu3dvUlISH6xVq9bAgQPfI/OemZlpYmIikUgUI1lZWcOGDTt58qSpqen+/ft79eql5g8AAACah4Q7gLb1fdz3r4y/fq/1+wSrCULHAgAAAAAAAO9MJpNdvnw5MDAwMDAwISGBD9aoUaNPnz5ubm59+vTR09N71/dMSkrq27fvjRs3bG1tjx8/3rJlS3VHDQAA2oCEO4BWZcoyq92pJiVpQtOEanrVhA4HAAAAAAAA3p9cLr906dLRo0f37dsXFRXFB62srPr27evu7t67d+9SNjuNjo7u3bt3ZGSko6PjiRMn6tWrp8moAQBAg5BwB9CqP1P/HP10dFezrmfrnxU6FgAAAAAAAFCbu3fvBgYG7tmz5+HDh3zE0tKS13nv1auXoaFhSS8MDQ3t16/fixcvWrdufezYsWrVsDYLAKAcQ8IdQKvco933pe372eFnT2tPoWMBAAAAAAAA9eOZ98DAwHv37vERExOT7t27u7u7DxkyxNTUVPnJp0+fHjJkSEZGRs+ePQ8cOGBmZiZEyAAAoDZIuANoT648t9qdajnynKdNntY0qCl0OAAAAAAAAKBB0dHRR44cCQwMvHTpEk+/GBsb9+jRw93dfeDAgRYWFrt27frss88KCws9PDy2bNlSyvozAACgy5BwB9CeQ2mHBkcPblOpzdWGV4WOBQAAAAAAALQkKipq//79Bw4cuHbtGs/DGBkZNWzY8M6dO4yx2bNnL1++XCQSCR0mAACoARLuANoz7um47anbV9ivmG07W+hYAAAAAAAAQNtiYmL++uuvI0eOnDhxwszMzNDQcMaMGTNnzhQ6LgAAUBsk3AG0pJAV2obbpkpTHzg/aGjUUOhwAAAAAAAAQDBJSUn3799v1aqVubm50LEAAIA66QkdAEBFEZIVkipNbWzUGNl2AAAAAACACs7GxsbGxkboKAAAQP2wwh1ASxixq9lX02Xpn5h/ci7rXGxB7Ogqo4UOCgAAAAAAAAAAANRGLHQAAB+4HHnOnPg59e/Wt7pt9fmzzx/kPWDEQrJC9r7aK3RoAAAAAAAAAAAAoE4oKQOgQYzYkOghD/Ie/Fzj5yZGTe7k3pkbP/cT80+EjgsAAAAAAAAAAADUDwl3AA06l3nu74y/Q51CW5m0IiJHQ8dBlQeJSCR0XAAAAAAAAAAAAKB+KCkDoEE3c282MGrAs+0csu0AAAAAAAAAAAAfKiTcATToecFze317oaMAAAAAAAAAAAAAbUDCHUCDLCWWabI0oaMAAAAAAAAAAAAAbUDCHUCDGhg1eJj3MFWaKnQgAAAAAAAAAAAAoHFIuANoUD/zfuYS82mx0/JZPh95XvBc2JAAAAAAAAAAAABAQ/SEDgDgQ2YmMTtU99DwJ8NrRdRqatT0pfRlTGHM48aPhY4LAAAAAAAAAAAA1E/EGBM6BoAPXCErvJ5zPaEwwU7frqVxS2OxcWxhbJYsy8nISejQAAAAAAAAAAAAQG2QcAcAAAAAAAAAAAAAUAPUcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADZBwBwAAAAAAAAAAAABQAyTcAQAAAAAAAAAAAADUAAl3AAAAAAAAAAAAAAA1QMIdAAAAAAAAAAAAAEANkHAHAAAAAAAAAAAAAFADJNwBAAAAAAAAAAAAANQACXcAAAAAAAAAAAAAADVAwh0AAAAAAAAAAAAAQA2QcAcAAAAAAAAAAAAAUAMk3AEAAAAAAAAAAAAA1AAJdwAAAAAAAAAAAAAANUDCHQAAAAAAAAAAAABADfSEDkBgSUlJt2/fNjQ0bN26tYmJicqj0dHRjx49MjU1bdq0qYWFhWL85cuXN2/e1NPTc3FxMTc3127IUD7cv3//4cOHlStXbteunZGRkWI8PT09NDQ0NzfXycmpXr16inHG2M2bN2NiYuzs7Jo3b25oaChE1KDr+CnLwMCgTZs2KqesgoKC+/fvN2zYUPl4IyKZTHbr1q3k5ORq1ao1b95cT6+in/ZBRUJCQkREhFQqdXZ2rlWrlvJDUVFRERERJiYmHTp0qFSpUtHX3rt3Lzc3t0qVKnXq1NFWvFA+5OXl3bhxIzk52cHBoWXLlmLxfys8MjMzL126lJ+f37x5c5VD7v79+5GRkVWqVGnRooWpqanWowZdl5+ff+PGjRcvXtjb27dq1UoikfDxqKiotLQ05Wc2bdrUwMCA//fIyMgHDx5UqlSpefPmVlZWWo4ZdF9WVtbNmzdTU1Pr1KnTrFkzxTj/jlN+pouLi8prb9++LZVKbWxsHBwctBErlB84rkATcFyBJrzhuv3p06fh4eGVKlVq1qxZ1apVi7721q1bMpnM1ta2evXqWgy5nGAVlUwmmz59uiL3VLly5QMHDigejYqK6tSpk+J/pUqVKj18+JA/tGTJEn19fT5uYmKyefNmgT4B6Kj09PT+/fsrDh47O7uLFy/yhzZu3Ghubi6RSPiPwIEDB+bk5DDGIiIimjRpQkQ8Vero6Hj16lVBPwToHJlMNmPGDOVT1r59+/hD6enpvr6+NWrUIKLt27crv+rIkSPKV1QtW7aUyWRChA86at68eQYGBlWqVLG2thaLxRMmTOBHSF5e3pgxY0QiET9yqlSpcuzYMZXXXrx4USwWSySS0aNHCxE76K6zZ89Wr17d0NCwRo0aenp6TZs2ffz4MX/I399fkUkXiUTTpk2Ty+WMsfj4+K5duyq+B62trQ8fPizohwCdc+HChZo1a/LjSl9f39nZ+f79+/yhzp07q/zAycjIYIzl5uYOHDiQiOzt7c3NzStVqrR+/XpBPwTonP3791tZWRkbGzs4OEgkkvbt2yclJfGH+JWVQtWqVVVee/jwYZFIJBaLv/vuO60HDjoNxxVoAo4r0ITTp0/b29sbGRnx6/ZmzZpFR0czxrKzsz08PMRisZGRkUgkMjExWb16tcprAwICxGKxSCSaPXu2ELHruoqbcF+zZg0RzZ07NyMj49GjR926dTM0NIyKimKMZWRk1K5du3bt2idPnszIyMjOzj579ix/VWBgIBGNGzcuMzMzJSVl2LBhYrH48uXLQn4S0DHjxo3T09PbsWOHVCoNDw9v0qSJjY1NRkZGcHCwWCzeuHFjfn6+TCbbtm2bSCSaP39+bm5urVq12rZt++jRI8ZYeHi4g4NDzZo1kRgFZT///DMRzZ49Oz09/dGjRz169DAwMIiMjExISOA3nL/44guVhPv58+f19PT69u17+/btgoKChISE0NBQAT8C6Jq///6biBYsWMDPNps3byaiTZs2McZmzZolEonWrVtXWFj4+PHj9u3bm5qaxsfHK16bn5/fuHHj3r1716tXDwl3UCaTyaytrdu0aZOSksIYe/z4sa2tbbdu3Rhj169fl0gkbm5uSUlJaWlp8+fPJyK+cKFz585169a9du0aYywmJqZly5aVKlV6+fKlsJ8FdIdcLndwcGjRokVycjJj7OnTpw4ODu3bt+eP1q9ff8KECalK+PjChQvFYjG/X1hQUDBp0iSxWBweHi7UpwBd8+rVKxMTkz59+mRlZTHGbt68aWpqyr/U5HK5gYHB4sWLFQdVWlqa8mvT09MdHBw+//xzMzMzJLBAGY4r0AQcV6AJUqm0atWq7dq149dOkZGR1tbWH3/8MWNs6tSpNWvWvHLlCmMsIyODL8ZSziekpaXZ29t/+eWXBgYGSLgXq+Im3J2cnFq2bKn4a1RUlFgsnjNnDmNs+fLlRKRIsitr3769ra1tYWEh/+urV6+MjIxGjBihlZChHMjJyTEwMBgzZoxihKe0tm3bVlBQcO7cOeUn16hRo3fv3oyxkJCQ2NhYxTg/AhXrAQEYY40bN27WrBlfCsoYe/r0qUQimTVrFmMsJiaGMRYZGamScHd1da1WrRq/JgMoip9q+BIGxphMJtPT05s4cSJjzMrKqlevXopn3rp1i4h+/PFHxciCBQtMTEyioqKQcAcVT548IaIVK1YoRkaPHm1qasoY++qrryQSiWI1llwud3Z25hdj4eHhERERipfw9Q1//fWXdmMH3ZWQkEBE3t7eipEJEybo6+vzr0VTU9OlS5cWfVW/fv2qV6+u+Ovly5eJaOvWrRoPF8qJixcv8qt0xUj37t0bNGjAGEtKSiKiXbt2lfTaKVOmWFlZvXjxAgksUIHjCjQBxxVoAs8hKP/KGzFiROXKlRljiYmJymsUrl+/TkQbN25UjHz22Wc2NjapqalIuJek4jZNjYuLa9iwoeKvdevWrVWrVnh4OBEdOnTIycmJb21WJpPJrl+/PmDAAOWqDt27d+eX7wBElJqaWlBQoFycvVOnTiKRKCIiQl9fX3nLc0xMTGJiopOTExF17NhRueJVlSpV+FtpMXDQdfyUpSjxUatWrTp16vBTVrFl+F6+fHnp0iUPD49iS28DEFHNmjWJaPv27fyv4eHhUqm0WbNmBQUFKSkpyuex5s2bW1hYRERE8L8+ePBg5cqV3t7edevW1X7YoOOqVq1qbGx8+PBhXlNbLpffuXOnadOmRJSQkGBhYWFtbc2fKRKJOnfufO/ePcZYkyZNGjdurHgTfA+CCktLSzMzs6NHj/KjgjF269atJk2aiESijIyMrKwse3v7oq+qWbNmQkICX/pARDdv3iQifjQCEJGDg4NYLA4ICOC1j/Py8u7fv684XxFRsccVEV2+fHnTpk2rV6+uVq2aNgOGcgHHFWgCjivQBGtrayMjo0OHDqWnpxORTCZTXLfb2NjwusfctWvXiKhRo0b8r2fPnt22bZuvr6+lpaUQgZcPFTfh7ujoeP369YKCAv7XzMxMAwODuLg4Irp7966Tk5Ofn1+XLl0cHBy6det29uxZIkpMTJRKpSoNvmrWrBkfHy+Xy7X/EUAHWVtbW1hYXLhwQTGSlJRkbGzMDy0iysvL+/PPP5ctW9apU6f27dvzDfUqrl69amRk5OzsrKWgoTxwdHQMDQ1VnLKysrL09fUVx1VRPIdlb28/Y8aMli1b1qhRY8yYMbGxsdqKF8qBYcOGdevWbeHChe3bt//ll1+GDx8+atSoKVOmGBgY1K5d++LFi4qvNuXzmFwunzhxYoMGDaZPny5o+KCjTE1NfXx8rl275uzsPHfu3M8//zwnJ2fr1q1E1KBBg9TU1Lt37/JnyuXy7Ozs/Pz85ORklTe5cuUKEbVs2VLLwYPOMjQ0XLVq1a1bt5ydnWfPnj158uSUlJQdO3bQ/xMNfn5+NWrUsLCw6Ny586lTp/irvLy8HBwc+vTpM2TIkHXr1s2bN++nn34q2kcOKqyaNWvOnj37+PHjjRs3Xrp06fDhw21sbNatW0f/P64WLFhgZ2dnaWnZp0+fGzdu8Ffl5+dPmDChU6dOY8eOFTJ60FU4rkATcFyBJpibmy9fvvzy5cvOzs7z58//7LPPCgsL//jjD8UToqKitm3b9s0333h5ec2ZM4cvIc3JyZk0aVKvXr1GjBghXOzlgJ7QAQhm9uzZI0aM6NGjx9ChQ+Pi4gICApKSkmrUqCGVSrOzs48dOxYbGzto0CBLS8vff/+9V69e586dMzMzIyILCwvl97GwsCgsLMzMzFQZh4pJX19/1qxZc+fO7du3b6dOnaKiog4dOlRQUJCdnc2fkJWVtWbNmqSkpMTExKFDh5qYmKi8w/3793fv3j19+nQsTAZls2fPdnd37969+9ChQxMSEgICAhITE0tayEBEfG3pDz/8MGDAgAkTJqSnp69Zs+bSpUt37txRdCyECs7AwKBjx45Xr17V09ObNm2aWCweMmQIf2ju3LmTJk3q1q1b7969nz9/fuDAgfT0dH4eW79+/eXLl0NCQhT9wwFUNGvWrGrVqrVr1/7111/T09O7d+/Oj5apU6du2rSpZ8+eEydOlMvlJ06cePDgAREpviK55OTk9evXDx06VLGIBoCIGjdubG1tXbNmTT8/v7S0tM6dO/PjysbGZtasWbVr13Zycnrx4sVPP/3Up0+fM2fOdOrUqXLlyq1atZLJZJGRkQcPHrSysqpatarQnwN0S+vWrc3MzBwcHFasWJGTkzN48GCJREJEjRs3nj59erNmzWrVqvXs2bNly5Z16dLlxo0b9evXX7x4cVRU1P79+xX7DgFU4LgCTcBxBZrQrFkzKyurWrVqrVu3LiMjo2fPnoqSHkR08+bNtWvXxsTEmJubK3ajLliwID4+/uTJkwKFXH4IXNJGUIcOHerRo0eDBg369+9/8uRJJyenNm3aMMZMTEz69u0rlUr501JSUszMzD799FN+53DJkiXKbzJ58mQjIyNFYWUAxtjWrVu7devWsmXLcePG3bx5U09Pb/z48SrPCQkJMTExmTBhgvJgUlKSk5NTkyZNMjMztRgvlA9BQUGKU9Zff/3VuHFjFxcXxaMqNdz5vpx169YpnnDw4EF6vfAfVHDLly/X09O7dOkSYywmJubbb78ViUSff/45f3T//v29evVq0aLFyJEjr127VrVq1b59+z579szMzOzLL79UvAlquIOKe/fuGRsb8wqhOTk5/v7+1apVs7Oze/XqFWPs0aNH48aNa9asWe/evf38/KZOnUpEyq29cnJyunXrZmtr++zZM6E+Auigx48fV6pUaerUqYyx3NzcXbt22djYVKtWrWhn3dTUVAsLi8GDBzPG3NzcHBwceNuAW7du9e3bl4i2bNmi/fhBN4WEhEgkklWrVjHGMjIyfvnlFzMzs0aNGuXn56s8k19lfffdd7dv39bX11duJ4CayKACxxVoAo4r0ISIiAgjI6Pvv/+eMZaTk7Nt27aqVatWr149PT1d+WmFhYULFy4koqNHj/IE1/LlyxWPooZ7SSp0wl0Z73XJs5/16tXjrSwVWrRo0bp1a5lMpq+vr5Ih7dWrl6Ojo1ZjhXLl9u3bRLR69eqiDw0dOpT3o+CioqKcnZ3r168fHx+vxQChXMrNzTUyMlK+kaOScH/48CERrV+/XvEEXg9E+ZILKjhHR8fu3bsrj4wcOdLAwEDRGFyB32/28vLy8PAgIicnJ5f/MzQ0rFKliouLC248Azdv3jwiSkxMVIwEBQUR0d69e4s+uUuXLrVq1VL89eXLl926dbOyslLu0QTAGFu6dCkRPX36VDHCK7P7+/sXffJHH33UokULfuKaN2+eYlwmk9WpU6dTp07aiBjKgwkTJhgZGRUUFChG/Pz8iOj8+fNFn2xlZTV48OBevXoRUZMmTRTfgxKJxMbG5uOPP9Zi4KDTcFyBJuC4Ak2YM2cOESkvXzhw4AAR7du3T+WZhYWFhoaGn3/+eZcuXYioWbNmiuNKJBLZ2tr26dNHu7GXAxW3pIyKLVu2FBQU8N30zZo1O3PmTHZ2Nq/pkZ2dHR0d3atXL7FY3KFDh6CgoIKCAgMDAyJKSUn5559/Ro8eLXD0oMN++eUXiUTCD63IyMj69esrHsrLy1Ps7Tp27JiHh4ezs/O+fftsbW2FiRXKj61bt+bl5SkKgBRVu3Ztc3PzU6dOff3113yEd7xU6UIBFZmhoWFeXp7yiJ6eHmOs6DN//fVXIho2bFh4eLhKIaPo6GhbW9uePXtqNFQoR/gFkvKhxfelFu12Ex4efv78+e+++47/NSwsbOjQoYaGhiEhISgmAyqKHld8H71cLpfL5RkZGZUrV+bjOTk50dHRnTt3NjAwEIlE+fn5ipeIxWKxWIzGS6BgaGgok8kKCwsVRdIUx1V+fr5MJlPUfoyPj09NTa1du3adOnVU2kuEh4fXrFmTl7UFIBxXoBk4rkAT3nDdnpqayhizsrLi4wUFBXx91cCBA9u1a6f8Jrdu3apdu3anTp20GHg5IXDCXzj5+fnHjh1LS0t7/vz577//bmpq+vHHH/MD6MyZMyKR6NNPP3348GFUVNSgQYNEIlFwcDBj7NixY0T06aefJiUlPX/+vF+/fvr6+rdv3xb604AOiYuLO3ny5IsXL8LDwxcsWCAWi2fMmMEY27lzp6Gh4S+//PLy5ctXr15t2LBBLBZPmjRJJpPxp3Xo0OHSpUuh/8d3QANw+fn5R48eTUtLi4mJ+eOPP8zMzLp3785PWS9evIiKijpz5gwRrV69OioqKjk5mTE2Y8YMiUSyZs2auLi4S5cuOTo62traKpdugAqOJzpXr16dm5srlUoPHDhgaGg4YsQIxlhaWlpQUFBiYuL9+/d//PFHfX19Dw+PYt8EJWVAxdWrV0UiUZ8+fWJiYhhjDx8+bNmypaWlJb9qDwoKio6OjouLO3z4cP369e3s7Pj5avPmzUZGRg0aNDh9+rTiexBVZUDh1q1bYrG4R48e/Kh4/PhxmzZtzM3Nk5KS5s6dW7du3d27dyckJNy+fdvNzU0ikZw5c4Yx1rZtWzMzs+PHj0ul0tzcXG9vb3p97xdUcIcPHyaiUaNG8RPRzZs369atW6tWrfz8/FGjRrVo0eLo0aNJSUmXL19u27atiYnJgwcPir4JSjSAChxXoAk4rkATLl26JBKJ+vXrFxsbyxh78OBB8+bNq1SpkpaWNnTo0Lp16/7zzz85OTlPnjwZPnw4ER07dqzom6CkTEkqbsL9xIkThoaG/K4DL7GtXDV7w4YNipaVFhYWmzdvVjz0888/Gxsb84csLS0DAwOFCB9012+//aa47Wxubr5o0SKZTMYYk0qlXl5eRkZG/CGxWDxy5MisrKywsLBib4atXbtW6I8COuTUqVOKg0dPT2/s2LEZGRn8oc8++0zl4OFVbvPy8saMGaPYReHk5BQWFibohwDdkpub+8033xgaGorFYv6f7u7uvGBfQECA4ivSxMRkxowZyjtYlSHhDkXt3r27Zs2aRMSvl5ycnK5cucIYS0lJqVGjBj+uRCJR9+7dHz16xBjLyMgo9nvwq6++EvqjgA7Zt29f7dq1FcdV/fr1Q0JCGGPPnj0bMGAAX+hHRDVq1Ni/fz9/yfPnzwcMGCASiQwMDCQSibGx8fz581H/CpT9+uuv1tbWiuPqo48+unfvHmPszp07Xbp0UVxENWrUqNi6DQwJLCgOjivQBBxXoAk7d+7k1+f8uHJ2dr527RpjLCYm5pNPPlEcV+bm5iUtWUDCvSQiVtzm8QoiLS3twYMHcrnc2dlZsRFVITs7+/bt2xKJpFmzZooMO5eZmXnnzh09Pb3mzZsrUmAACq9evXr69Km+vn7Dhg0VyXcuOzs7PDxcKpU2aNCAf1/m5+fz4toqrKysLCwstBQxlAeKU1ajRo0sLS0V48nJyZmZmcrPNDc3r1q1Kv/vCQkJjx49srKyaty4MdrTQ1EZGRlRUVHZ2dn169e3sbFRHo+OjpZIJPXr13/DN11MTIyhoSE/mwEoSKXSJ0+exMfH29jYODk5KcZlMtnjx48zMjLq1KmjOE3J5fKnT58WfRPlUxkAKR1X1tbWTk5Oyl9qaWlpjx8/NjU1bdCggVgsVn4V3wcmEomaNm2qWE8DoFBQUBAVFfXixQsHBwdHR0flh168ePHs2TNLS8t69eqV9PKnT5+amZkpNt0DcDiuQBNwXIEmFBYWPnnyJCEhwdbWtmHDhsoPxcXFRUdHGxkZNW3atKSfhE+ePLGwsKhSpYpWgi1PKnTCHQAAAAAAAAAAAABAXcRvfwoAAAAAAAAAAAAAALwNEu4AAAAAAAAAAAAAAGqAhDsAAAAAAAAAAAAAgBog4Q4AAAAAAAAAAAAAoAb/AxXQS3e3J/0iAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "41 SE fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAPoCAIAAAAJPPL9AAEAAElEQVR4nOzddVyUWRcH8DMMDYpgYkupIBaKAWJhY4u5tqKuva6LjS2+uoq92B3Y2GITFga2AjaCCiidM/f94+rsLBYwz8wQv+9n/2CG4d7LOszzPOc59xwRY4wAAAAAAAAAAAAAAEAxGupeAAAAAAAAAAAAAABAQYCAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAIVXdDTFxX35OiqKMjPVuhoAAAAAAAAAAIB8DgF3gMJrxgxq04akUiKi4cMpIkLdCwIAAAAAAAAAAMjPEHAHKNTKlqV//lH3IgAAAAAAAAAAAAoEBNwBCrWJE2nzZoqKUvc6AAAAAAAAAAAA8j8E3AEKNR0dmjeP/vpL3esAAAAAAAAAAADI/xBwByhcGMv6TLt2lJJC9+6pYzUAAAAAAAAAAAAFCALuAIWLiwu1a0dhYf95ctkyio1V04IAAAAAAAAAAAAKCk11LwAAVCcmhs6eJZGIihcnImrWjG7coMqVqUIFeveODAzUvT4AAAAAAAAAAID8DBnuAIXI0aOUmUnOzmRsTES0ejWNHUtXrhARpabS27fqXR0AAAAAAAAAAED+hoA7QCFy8CARUffuRERRUXT1KunpUbt2REQbN1LlyjR7thpXBwAAAAAAAAAAkL8h4A5QWMTF0blzJBZTp05ERAcPklRK7dp9qSRz4AAxRvXqqXeNAAAAAAAAAAAA+RgC7gCFxbFjlJ5OzZpRyZJE/812f/mS7tyhIkXI2VmdKwSAfODRI+rZk9q3p9696dkzda8GAAAAAAAAIG9B01SAwkI+wh4dTf7+pKNDHTp8+RZj1LEj6eqqc4UAkNclJ1Pv3nToEFlY0MOH1KMH3bxJOjrqXhYAAAAAAABAXoEMd4BCISkpKS5um51dTJcuRESHD1NmJrVqRUZGRP+NxQMA/NDVq9SwIVlYEBHZ2JCtLd26pe41AQAAAAAAAOQhCLgDFAonTpy4eHGQnl4XU1Oi/0bYIyLo2jXS16c2bdS5QgDIB2JjqVixfx+amFBsrNoWAwAAAAAAAJD3IOAOUCgcPHiQiLp3705Enz9LLl4kTU3q2JGI6NAhYozat//SPRUA4IesrOjBg38f3r9PVlbqWw0AAAAAAABAnoOAO0DBl5qaeurUKZFI1LVrVyLy9d1VunTToUMvFi9ORHTiRLeGDf/u0+e9mlcJAHlfrVpkaEjz5lFAAM2YQZUqIeAOAAAAAAAAIA8Bd4CC78yZMwkJCfXr169UqRIRHThw4M2bK3XqPCOi6Ojo8+eP3bkz3dlZT93LBIA8Ly6Odu0iGxsKCCB7e9q6Vd0LAgAAAAAAAMhbEHAHKPjk68kkJib6+flpaGh06tSJfyszM7N169ZFixZV8yoBIO+zsiJtbXJwoClTKDSUbG1p82Z1rwkAAAAAAAAgD0HAHaCAy8jIOH78OBF169aNiI4fP56amtqkSRNTU1P6byweAOAXEhOJiAwNiYjevKGHDyk+Xr0rAgAAAAAAAMhTNNW9AABQrlevXpUqVapixYoWFhaUtXvq58uXL2tpaXXk7VMBAH5CKqWUFNLQIH19ov8G3wEAAAAAAACAiBBwByjwLCwsnjx58unTJyJKSUnh3VO7dOlCREeOHElPT2/Tpo2JiYmaVwkAeV9iIjFGhoYkEhERJSURERkYqHdRAAAAAAAAAHkKSsoAFArGxsZEdPr06aSkpAYNGlSoUIFQTwYAciRLhB0Z7gAAAAAAAADfQMAdoBDJEmFv27ato6Nj586d1booAMgnskTYEXAHAAAAlZNIJGvXrnVzc2OMqXstAAAA3yfCUQp+ZutWOnmS9PRo4EBq0ULdqwGFpKent2vX7tq1a/fv3zczM1P3cgAgv7lzh+rWpdq16c4dIqL69Sk4mG7coPr11b0yAAAAKETKly8fERHx5MmTqlWrqnstAIXV9et04QIVKULdu5OpqbpXAwK4ePFiRESEr6+vo6Ojo6NjrVq1xGKxuheVj6GGO/yYlxc9fkybNlFCAvXuTdra5Oio7jVB7p07d+7ChQsNGjRAtB0AcgMZ7gAAAJAHNGrU6MCBA0FBQQi4A6jH7t20Zw/99RfFxFC7dnT8OJUvr+41gULOnTvn4uJiaGgYExOzf/9+IjIwMKhdu7ajo6ODg4OTk5ORkZG615jPIOAOP7ZpEwUGUpEiVKQIeXjQ5s35OuCelpY2a9asUqVKffr0aerUqQaFr9HfgQMHiKhjx47qXggA5E9ZIuxomgoAAADqwAPuV69eHTx4sLrXAlAoeXrSpUtkYkJEFBdHa9fSwoXqXhPk3vXr17t27ZqWltarV6+mTZv6+/sHBgaGhoYGBgYGBgYSkZaWVt26dR0cHJo0aeLg4FCyZEl1LzkfUGnA/f3796GhoXFxcR06dFDlvJBLiYlUtOiXr8uVo8hIta5GIfHx8V26dLl48aKWllZGRsbWrVs9PT379esnEonUvTQVyczMPHbsGKFFKgDk1oGkpMHa2n1NTLyJiGhY6dLFS5acaYgUdwAAAFCpRo0aEdHVq1fVvZDCJTExMTQ0tGLFisWLF1f3WkDdEhO/RNuJyNqaTpxQ62pAIffv32/fvn1iYuKAAQO2bNmioaExZMgQInr//v2NGzcCAwMDAgJu3rx5/fr169evL1u2jIjMzMwcHBx48ru1tXXhCazliLIC7p8+fXr+1cOHDx89ehQaGhofH09EJUuWNDMz27hxY40aNZQ0OwjDxIQ+fiR+5yosjCpVUveCcikqKqp9+/Z37twxNTVdunTpmjVrgoKC+vfvv2LFihUrVjRu3FjdC1SFS5cuRUdH29jYVKtWTd1rAYB8KTExMTE9PU1Liz/cHhKSkZExD/F2AAAAUK26devq6Og8evQoLi4OVQ6UIT09/e3bt7JgDg/svHz5UiqVDhkypHz58nPmzFH3GgupjIyMxMTEz58/p6SkWFtbq20dmpqUmUmamkRE799TqVJqWwkoJiwsrHXr1rGxsV27dt20aZOGhobsW6VLl+7YsSOvkZCUlHTnzh0efPf39+efCTt27CCiMmXK1KtXjwff7e3ttbW11fbL5DGKBtwZY2/fvg37RnJy8rcvLl68uIWFRWxs7PXr17t3737jxg0cHfO08eNp9Gj63/8oPp7mz6f169W9oNx4/vx5mzZtwsLCzM3Nz5w5Y25u3qdPnwMHDvz555/BwcGOjo49evRYunRpxYoV1b1S5Tp48CAhvR3UiO80fP6cbGxo5EjS1aX582nGjC/flf8a8qrExEQi4hntaWlpGRkZ2traOKMCgDzl8+fPoaGhZcqUqVChgrrXAgDKoqOjU6dOnWvXrt24caNVq1bqXk7+lpGR8eLFi9DQ0GfPnoV+9ebNG6lUmuWVurq6FSpU2LZtm1QqrVWrVrdu3dSy4ALjxYsXSUlJiYmJPICemJjIH/786/T0dP7jurq6U6dOHTNmjIks01w1GCORiLp0oaVLacoUSkqi5ctp3jyVrgEE8vbt21atWkVFRbVq1WrPnj2aml9CxKGhoZMnT+bVY+zs7LS0tAwMDHgnVXd398zMzNu3bwcGBvLKM1FRUcePHz9+/DgRFS9e/Pnz50VlpTIKNxFjLKc/s2nTpidPnshi66mpqd++plSpUhYWFhYWFpaWlubm5vxrY2NjIkpNTXVwcLh9+3bHjh2PHj2KrQd5Ubt2ZGNDM2bQ1at0/DgZGFC/flSrlrqXlWM3b950cXH58OGDvb398ePH5etMJSYmLliwYPny5WlpaYaGhrNn/z1mjJuOjhoXq0RSqbR8+fKRkZEhISE1a9ZU93Kg8MnMJEdHmjyZGjUiX1/y9aWTJ6laNXry5MsL5L+GvMrT03Pq1Knu7u6enp6xsbHFixc3NjaOjY1V97ogh+LiaOpUev2aJBIaNIh69VL3ggByKS0tLSIiQj77kiOiPn36FC1a9J9//lH3GgFAWf7444/ly5fPmTNn1qxZ6l5LfhIdHX379m0eVecR9pcvX2ZmZmZ5mZaWVpUqVSwtLa2srCy/qlChgoaGxvLly//44w9DQ8Nr167Z2Nio5bfI7zIzM/fv3z906NCUlJSc/qxYLC5atKiRkdHnz58/f/48aNCgLVu2KGOR3xcURCNH0sKF1KoVLVxIwcEkFtPgwdS1q+rWAAL5+PGjk5PTkydPGjVq5OfnJ9/mcMOGDW5ubvxrfX39OnXq8AR2R0dHHteV9/z584CAAB5/f/funVQqjYyMLIRNE7+Vs4A7Y2zKlCl79+59/fq17EljY2MzOdbW1ra2tj9PXX/16pWdnV1MTMyCBQumTZuW++WDMoSEUO3aVLw4vX1Lurr09ClVqUL5MIfx3Llz3bp1S0hIaNWq1cGDB4sUKUJEz58/P3r06JgxY7S0tIjozZs306dP37Fjh5PT/RcvasyfTwMGqHvdSnDlypWmTZtaWlo+e/ZM3WsBIqLnz5+fO3cuICDgypUrU6ZMsbS0bNmypboXpUx+frRnD23e/OVhixb0zz/UqRMC7vnLzJkz58+fP3fu3JkzZ75+/bpSpUoVKlSQPx+A/KF/f2rThn77jZKTqX17mjePgoKIiCZMoIJ62xnyv7S0tLCwsND/ioiI+PaVhoaGlStXDg0NTUtLW7Vq1ZgxY1S/WgBQgf379/fs2bNt27anTp1S91ryjQcPHuzbt2/+/PlZnjc1NbWxsZGP6tjY2Ojq6v5onEGDBm3bts3KygpFC3Jn69atgwcPNjIyKl++vIGBQdGiRYsWLWpoaMi/NjIyMjAw+NHXsn+X0NDQWrVqpaSknD59uk2bNipaesuWdOECzZpFc+Z8SXWH/CkuLq5Fixa3b9+uVavWxYsXs4TRIyMj/fz8eBj98ePHsrixWCyuVauW41empqZZhm3YsOH169cPHz7cpUsX1fwieVnOAu6XLl1q3rx5sWLFJk+ebGVlxfPWc9cvzc/Pr127doyxEydOtG3bNhcjFGwpKSl8A0HdunUrVqyo0n0AI0bQ+vX0xx/099/EGFlZUXw8+fuTlZXq1qCwHTt2DB06NCMjY8CAARs3btT6WnS4W7duhw8ftrS0XLBggaurK3/ywoWAP/5wCAkREVGLFuTlRba2alu5MowfP37lypVTpkxZtGiRutdSSGVkZNy6dYtH2AMDA+WTgjU1NXV1dc+ePcu7PxVMW7bQmzckyz8aNoz69KFevahhwy/PhITQmzfqWh1k08SJE728vP7+++8//vjj0aNHNjY21atXf/TokbrXBTnBGFlYUHj4l4c+PnTrFi1erPqFJCQkhISEzFCsllTz5s3Hjh2r6p3UoHwxMTHXr1+XL27w+vXrb4sb6OjoWFhYyGdfWlpali1blogOHz7cvXt3TU3Nc+fOOTk5qeOXgHwjMTHx/v37U6dOVWSQJk2aTJw4ER9HqvTu3bty5coVK1YsJiZGvugw/ESvXr18fHysrKyaNWvGPzOtrKzMzc1zWiEwJSXF0dHx9u3bnTp1OnLkCIoW5EhGRka1atWeP3++c+fOfv36KTLU4sWLp0yZUqlSpQcPHuQuLpcz/v7k5ETFitHz52RsTEeO0OLFtHgx4Tib3yQnJ7dt29bf39/KyurKlSulS5f+yYujo6ODgoJ49Zjg4OCMjAzZt8zNzR0dHdu0adOnTx/+zKJFi6ZNmzZkyJBNmzYp93fIF1hO9O7dm4g8PDxy9FPy7t27t3HjRv61h4cHEZmYmDx//jzXAxYAqamp4eHhfn5+Xl5ebm5uzs7OZmZmspOGrl27/vbbb6pbTUICK1qUEbGHDxljzM+PEbGKFVlmpurWoDAvLy/+P3DcuHFSqVT+W35+frKNb87Ozg8ePODPSyRs2zZWqhQjYhoarH9/9v69OpauBFKplFeov3nzprrXUrgkJSX5+/t7enq6uLhkSf0wNTV1dXX18vK6efPmsGHDiMjIyCg4OFjdS1aa06fZsGH/PmzVij1+zKpW/fcZ+a8hJ+7fvx8ZGfnixQsVzDV8+HAi8vb2Zoxdv36diOrXr6+CeUFIKSmsWrV/H549y4YPV8tCRo4cWb58eQVPYitUqFCmTJm4uDi1/AqgJE+fPp07d26Wf2tNTU0zMzNnZ2c3NzdPT09fX9/w8PDMn56d/vnnn0RUunTpt2/fqmzxkB+NHTu2XLlyin8clSpV6tOnT+r+bQoX3qrhIb9uhV/5+PGjjo6OWCx+9epVrgfZtWtXQkICY+zFixfFixcnogULFgi3xkKBlzuzsrL69iiWlpYWGxsbHh5+7969oKAgPz8/Hx+fzZs3r1q1ytPT093dffTo0X/++afs9RkZGXZ2dkQ0YcIEVSzdyYkRsfnzGWNMKmW1ajEitnq1KqYG4aSlpfGk5woVKuT00yA9PT04OJiHOGRJ8Z07d5a94P79+0RUqlQpiUQi8LrzoRxkuEdHR5cvXz4zMzM8PLxSpUq5OBGJjIy0srJKSUk5e/ZsixYtpFJpx44dT548Wbt27aCgID09vVyMmb8kJCRk6S4bGhoaGRn57St1dHSqVKlStmzZoKCg1NTU1atXjx49WhVL9PamkSOpWTO6eJGIyNWVDhyg+fNp+nRVzK4wxpi7u/uSJUtEItGSJUsmTZr07WsyMjJWrVo1b968z58/a2lpzZp1cMyYjsWKERF9+kSLF9Py5ZSeTsbG5O5O48fTo0dUpw6JRJSaShERZG6u4t9JUdevX2/YsCH/MEX2gbIlJCRcv35dVsIsLS1N9i0zMzNe9YzfVJM9L5FIfvvtt71795YoUeLy5cvq7DWvPOnp1LAhLV9OjRvTsWO0ejVduIAa7gp6+fLlokWLNm3aZG9vHxISMmvWrD///FMsFitvxr59++7Zs2fXrl19+/a9cOFCy5YtmzVrdpEfLCAfsbamoCDih70lS0hTkyZOVPESHj58WLt2bSLasGFD5cqVcz3O5MmTg4ODJ0+e/L///U+otYHajRw50tvb28zMrG3btrLs9SpVqsgaeWWTRCJp37792bNnGzZsePnyZXR4hu969OhR7dq1pVLp+vXr5U/PcmratGlXr16dMGHC8uXLBVwe/BzP1964cePQoUNVM2NKSsrLly9PnDhRQk6pUqXyRYfA//3vf+7u7p06dTp69GjuRpg3b96sWbNcXV337dsnEolkRQuOHz/erl07YVdbUKWnp1etWvXly5c+Pj6yDffe3t5Tp05NSkqSNUT9iRIlSnz8+FH28N69e/Xq1ZNIJFeuXHFwcFDWuonozBlq25aKF6cXL6hIEdq3j3r3pooV6dkz1CTMRyQSSZ8+ffbv31+qVKkrV65UrVpVkaHu3bsXEBBQpUoVFxcX2fNmZmYvXry4du1agwYNhFhyfpb92Dy/mOnUqZMiAX6+d7h48eI8HS82Ntbc3JyIhqspwUrZHjx4MH/+/EGDBjk4OPxom4aurq6NjU3nzp0nTZq0bt06Pz+/Fy9eyG4H7d27l4i0tLSuXLmiihXXrcuI2J49jDEWFcW0tJimJouIUMXUCktLS+M7WXR0dPbu3fvzF8fExIwbN05Pz6hy5XQTE+bl9W8S/8OHrHVrRsSIWJcuTCRi27czxtjTp6xbNyX/DkowefJkIpo4caK6F1JgRUVF+fr6uru729nZyW9oFYvF1tbWbm5uPj4+Hz58+MkI6enp/BBVrly58PBwla1cpaKi2MSJrFMnNmMGi49njLHJk//9rvzX8CsvX74cMmQIjz3p6OjUqFGDv+V45F1583bs2JGIRo4cGRAQwLfeu7i4KG86UJYdO5iLCzt7lm3axOrVY+pID2/WrJkgB6bbt29raGhoa2s/ffpUkIWB2iUmJvK4lWwPYi7s3LkzKiqKMRYdHV2lShUi+v3334VbIxQovPDxmDFjFBznwYMHmpqampqairx1Iaf47Y2hQ4eqZrr09PT27dv/qAiksbGxtbW1g4ODi4tL//793d3dvby8tm3b5uvr6+/vHx4enpqaqpp1fpdUKrWysiKiY8eO5XqQZ8+eFStWjIgWL17Mn5k9ezb/3QvsJYzQVq5cSUQ1atSQz/9dvXo1fxdpamoaGxtXrly5Ro0aDRo0cHZ27t69+8CBA3///Xd3d/dFixatXLly27ZtWcbkp+XVqlVLSUlR4tIbNGBE7H//Y4yxzExWvTojYuvXK3FGEJpUKuW3J4sVK3bnzh0lzTJ27Fgimj59upLGz0eyG3CXfUCfOHGCMRYeHl61atVVq1bldD6JRMJvftrb2/NDTkhIiL6+PhHJSs0UGKdOnRo4cKD8YVhbW1u2H9bLy8vPz++X+2EZYxMnTiSiMmXKRCg78H39OiNiJUowfjawYAEjyi8x5oSEBH7GbGhoePbs2Wz+VEjIx6ZNv8TWa9dmly79+y0/P2ZtzY4eZXZ2rEEDFhOTXwPu/J5WQECAuhdSAGVkZGRJ79XV1W3SpMn06dNPnToVz8PKP5WcnPzx40f+BY9AVaxY8eXLl8pfu8q1bs169mTY16+YDx8+uLu7815JWlpa/fv355c3J06c4JWjNDU13d3dlXG2LZFItm/fzve38bnq169/5MgRwScCVbh7l61YwbZvZ/HxzN9fxVXj9u/fT0QmJiYxMTGyJ3fkhPxV/ZAhQxRPB4G8Y8OGDUTUpEmTXI/AYxlOTk7p6emMsdu3b/NNtJs2bRJumVBAHDlyhMcK+ckYt2vXrux/HIWFhcl+cMSIEUTk7Oysjl+lkLp27RoRWVtbq2CuzMxMno9sYmIyfPjwgQMHdujQoUGDBubm5kWKFPluCP5bRYsWtbCwWLBggSJFXXLn/PnzRMQrFjDGvLy8Fi5c+POUoO/y9fXV0NDQ0NA4ffo0Y0wqlXbr1o2IatWqlZSUJPy6C5aUlBRewCrLKXR8fHx0dHSuT+BTU1OrV69OihV//gVfX0bEypRh/F952zZGxCpXZmlpypoRlICHFg0MDAIDA5U3y9mzZ4moZs2aypsiv8huwP3cuXNEVKFCBf4B7e7uTkSDBg3KxZSxsbF8v97IkSP5Mzt37uSBqhs3buRiwDyradOmRNSmTZsNGzZcvHjxzZs3uRsnIyODD9W4cWN+8aAsQ4YwIvbXX4wxJpUyc3NGxM6cUeKMAomMjKxbty6/LZGLO3U+PqxSpS9h9x49WHT0l+czMlhSEnNwYIcOseHD82XA/fbt2/x/C0poKcOlS5fEYrGenp6zs7OHh4efn1+OzpMSExOdnZ1r1qzJo06JiYmOjo5EZGlpyVPzCo7375mGBtPTYzgRz63o6Gh3d3d+f1pDQ8PV1fXZs2fyL0hKSnJ3d+clZczNzc+fPy/U1BKJZO/evbL9hjVq1HBzc+PXlsWKFVu/fn2WVhmQn4wZw4iYt7fKJkxJSeEZx+vWrZN/PpuhCm7r1q2yH3z//j1vknHq1CmV/RagPPb29kS0nW8tzJWoqCjeHmD8+PH8me3bt/MLDTSzAXlpaWk8n2zlypXyz+eoeNGGDRtkPxgTE8Obph4/flzlv00hlZ6erqenJxKJ5O/gKoNUKuWdbIyMjG7duvXd18TGxj548MDf39/X13fbtm2enp7jxo3r37+/i4uLg4ODmZmZrLBV5cqVK1WqpOIGJPLd+DIyMnh/6dwF3WbOnElyrfji4+N5tLdfv37CrrngWbJkCRHZ2dkJfvIcFBTE9/zdv39f2JEZY1KpVNKwISNiXl6MMZaZyaysGBH7JtcehPXPP0zWqEvx/GS+E0JPT+/ixYuKjvVT6enp/ORcNW3G8rLsBtz57dx58+YxxtLS0nh1lKtXr+Zu1rt372ZJNhk5ciQRVaxYUT6/IF97/PixSCQyNDQU5FAaFRXF74VOmjRJ8dG+6/Pnz8dbtcqoWJHxIM6pU4yIVanC8nygNjw83NLSkseYQkNDczdIWhrz8mJFijAzMya/248H3BljHTqwHTvyX8B9+vTpRDR69Gh1L6Rg4g3Z3N3dc/fj79+/50HMxo0b8+5Dnz9/5reOZFH4AmLTJkbEUH4kVxISEjw9PflZi0gkcnFxuXv37o9eHBQUxPtCi0Si/v37K/4u8vPz4+9Jfn3o7e3N77u/e/eOJzQRkaOj4+PHjxWcCNRj3z5GxEqWZKpq9Ddv3jwisrGxycjIkH++X074+/vL/+zixYuJqHr16spNSgDlCwkJ4XfyeJrk+vXr3d3dc7Hr69q1azo6OkS0ZcsW/gxPPa5YsWIu0jmhoPL09PzuR8fAgQOz/3GUJWyxbNkyIrKwsFBv8ZBChRetVvY9V16iU19fX8Eqr58/f378+DE/sxo2bJhQy/ul6OhoXV1dDQ0N/ol64MAB/ubP3Wi8QwYR1a5dOzk5mTH2+PFjXg0sy+0rkJeYmFiqVCnlvV1HjRpFRPb29r+soJBTBw4cqF269P2OHRnPLduwgRExS0v233M5EFzVqqxjxy9f16ih0FBeXl5EpKWlpUhRqezr0aMHEa0u9A11sxVwj4qK0tLS0tTUfPv2LWNs3759pPAGAVmySXBwMGMsPT2dHyxbtmwp+AeEWkyYMIHksvgVFxAQoKWlJRKJDh48LdSY8njhsFayXZDdujEitmiRMuYS0M2bN/lxq379+opfRL15w65f/88zsoB7WBizssp/AXeebnDhwgV1L6RgqlatGhEpcub95s0bnuzZokULnh3/4cMH/q/WsGFDHoUXTFgY272b+fkx1cek+OfJfxNa4ZcSExM9PT1l/d+dnZ35ETOL9PR0V1dXWdmo9PR0T09PHmwqU6bM/v37cze7v79/kyZN+NQVKlTw9vbO+Oas2tfXl98M1tXV9fDwSFPCrlKJROLn59erV6/Tp08rdfNj4cULq/3xhwqmevv2raGhIRFlv/JbdsjSVFesWCHgsKB6v//+OxGNGzeOP+RHQ19f31wMtW7duiwXGnwPWYsWLb79KINCKCoqit/J5mUxhJKRkcFvey9dulTAYeEnePrLrFmzlDfF3LlziUhbW/vkyZOCDPj48WOefcir9arA0qVLSa71Di/E6sWzlXNF1oqvf//+/JlDhw6JRCItLa3Lly8LsOKCaMGCBTzRSknjx8XFVahQgYiWL18u4LASiaRmzZr0dW9ielqalBdC2L1bwFngu+rUYePHs337GGOsRg32+DHz82N+fiwoiAUHs+Bg9ugRCw9n4eHs3TtpbGxsbGwsvweWxebNm0UikYaGxm5V/att27aNiNq0aaOa6WSePHmSp9IWsxVwX7hwIRF17dqVP2zRogURrV27VsG53dzciKhSpUo8q/3du3empqZUIIrrp6Sk8B2FP9pxljsrV65s3nyssXG6Mprx1K5dm4h4aCYiIqJ+uXIXW7ZkebuuxZkzZ/ile4cOHZRUM04WcGeMeXjks4D7w4cPiahEiRK4tlSG8PBwIjI2Nlbwf29YWBjf1NmmTRser/w2Ci+AXbtY69Zsxw42ezZr2lSl5fbS0liRIoyIFcja9MqRlpbm7e3Nj4lE5ODgcEm+xcR/8YLFGhoao0ePlu2pevbsGe8KwK+vclTTLCgoiB/oiahkyZKenp4/eR/GxMQMHjxYJBIRUffuKwWsDPfu3TtPT09+OcfTykxMTOSr5YIw7txhYjHT0mJPnih7qt9++42IevToIfjIR48epW8KMUP+kpyczO8v8k08Fy5cILlyw7kwbNgw+QuNyMhIfrTN9b40KEgGDx5MRJ07dxZ8ZD8/PyIqUqRIZGSk4IPDtw4ePEhErVq1UtL4a9asISKxWLyPB70EwiPgZcuWVU1syNramoiOHj3KGHv16pVYLNbV1VVw6pCQEAMDA/m4EL/5Ubp06bdo2vSNz58/8wCRgFUfv3Xy5El+zizgCfOuXbv4wZRfqK5Zs8apQoVnPXrk/UIIBUCdOuzTJ1anDouLYzVqsBEjvpRB/vY/Y+MY+i8dHR1jY2NjY+MSJUro6uqKRKL1KuxwGx0dLRaLdXR0stPWTijPnz8vV66cra3t+/fvVTbpz/064C6VSi0sLGT3/8PCwkQikYGBgeKVUtLT0xs3bsyz9vjJ9IULFzQ1NUUi0cGDBxUcXCKRvHz5Ul3J8jx/397eXvCRBw5kRMzKin3+LOSwgYGB/OjI91Ty2/g9e/YUcg4lOH78uI6OTu/evZW3i1wqZdu3s+nT2d27LDOTCZtwrGxz5sxR8XbFQmX58uVE1LdvX/5w4MCBK1asyF18/MmTJ7xOV/fu3fmnlnwUXphdyVZWTHa0c3dnX3fZq8LZs1+6EkM2pKenb9u2jd9x4Rsd/Pz8fvkjspR2U1NT2QFUKpV6e3vzHb5GRkZeXl6/7OUQEhLCK8gRUfHixT08PLJ5knT58uVatRpXqJChocHc3BT6qMzMzPTz83N1dZVV0S1fvry7u3uHDh2IqFq1ap+FPf4BY8zNjRExpUUruKtXr4pEIh0dnVwXf/u5tm3bEtHvv/+ujMFBBTZv3kxEjRo14g/79OlDivV/S01NrV+/vvyFRmBgoLa2tkgkEjZwBvnO7du3ebHjp0+fKmN8fsAaPny4MgaHLN69e0dERYsWVcaF/44dGTVqNBCJRBsVL5/8XxKJxMnJiYgGDBgg7MjfunTpEj9F5ElCvOKoLDNdEbt37yYiLS0tvt83MzOzdevW/PRVGbse8zUPDw9SrCV4NvGjZ/PmzQUpE5+Zmcm3dPNa0CkpKbxLiuLxOsiOOnUYY2z7dvbnn6xGDbZ0KXN2Zs7OrGFDZmfH7OxYtWrMzIyZmTFr6/c8vK6rq0vfMDQ0VN7Wih/hOwtV9laRVett3ry5YDmLCvt1wP306dNEVKVKFX6hPmnSJAFDeK9fvy5ZsiTJ7QLjhTiLFCmSo4KwERERfn5+3t7e7u7urq6udnZ2/Haru7u7shsCfBcvjyOrUC+g5GRWty4jYp06MQE7bQwYMICIpk6dyhiTSCSVKlVS9t1XQfAj+uLFi2XP3Lx58yfVjXOne3dGxBRo36U2fPMX+sgpibOzMxHt2rWLMfbkyRMeoMz1uf6dO3d4Zt/AgQP56ZEsCt+tW7fcJ9EnJrJz59jz56xevX+fPHCAKa0bxHeMH8+I2IwZqpsxf5JIJD4+PvwONxHVqFHDx8cn++fK9+/fb9iwoSylXZZbFBER0bVrV/58kyZNfnRsffjwoaurK09UNzQ0dHd3z2lcOzmZTZ7MNDW/tP/IRb/t0FC2cOFGWV6/jo5Or169/Pz8+OlHQkKCra0tEbVt27ZglJ7LQz58YMWKMSKmtL3tUqm0QYMGpMxdjI8ePdLS0hKLxSEhIUqaApSqUaNGRLR582b2TbnhXJNdaMz4egziNUwNDQ0fKGO7KOQHUqmUF0z766+/lDRFaGiojo6OhoYG+vSqQEhICL90FbxX5OHDTFOTGRrGr1vnI+zI3PPnz/lebWUHpPr160dEM2fOZHLtUhUsRi/D6+iWKVMmIiKCMRYdHc2zRtBCTN6nT5+KFStGRCqot/Px40decXeLEPlVW7ZsISILCwt+NcrbVNStW1fwpq/wXTzgLpWy1q1ZtWo5+9nU1FReZIZvGTQ1NVXxvxoP7Q4aNEgFc0VHR/N6bvb29qrMqf+lXwfc+YX6okWLGGNpaWn8tFXAs4fz58+LxWKRSHTo0CHGmFQq5el1tra2iYmJWV6ckZERGhp66tSpVatWjR8/vkOHDlWrVpX1+86CR69Uv6fp0aNHPJ3w2/UL4sULVrw4I2KensIM+OnTJ319fZFIxJPOjh07RkTm5uZ5/2OU75kqV64cz3Dnx4N27doJO0v58oxIBVvtBcYLnhQrVgz5BcqQkJCgo6MjFoujo6PZ122hCqaoBAUF8dPusWPH8mfu3r0ri8L/Mjf5X/HxzM+PeXgwZ2emo8OI2L59TL4t0ubNbO5cRZaaMxYWjIjltsl2IXHr1i2eP0JE1tbW+/fvz8UnsEQi8fb2LlKkCP/b9/b2lg3i6+vLr6++Lbb+4sULNzc3sVhMRPr6+uPGjVNkF97du6x+/S97G11dWXY6a6SmMh8f5uzMRCLm4LCDp7F7enp+25bjxYsX/CRk2rRpuV4hfN/ffzMiZmGhpHpTW7du5cdrgVtT/NfYsWOJqEWLFsqbApTk3r178ifPf//9NxF16NBB8ZFl22dlDS0GDRpERJaWlopvl3nz5s3Dhw8VXiOoFC+PUKpUKaXul/rjjz+IyMHBIe9fT+Vrnp6eIpHI3t6eiLy9vQUc+fx5pqvLiJgC22x+jVcFLFOmTHS0sgrLyO5fvnjxgjF2+PBhfqIl1DszIyOjadOmRNS4cWN+enn79m1eoV4Z2Yf51JQpU0iF9ax37tzJD6kKxsHS09PNzMyIaOfOnYyxxMREng12/PhxgVYKvyDrCPngAVMkcF25cmVho7jZweOiJUuWVHamVFxcHN/RaGtrm6cKuLNfBtwjIyO1tLS0tLTevXvHvp6g1Ba6MsCiRYt4dIAHfBMSEniVsU6dOp04cWLFihVjxoxp27athYWFlpbWt4F1kUhUoUKF5s2bDx8+fPHixQcPHgwJCUlKSpJIJLwfSMOGDVXZKd7DY5OWlpZSb+oeO8Y0NJiGBhOkzQ9P9mnbti1/6OLiQkRLliwRYGglk0ql/K3Cs4xjY2MNDAxEIpGAFz/v3jEiZmSUz2qUSSQSvhlFBbsUC6cDBw4QkZOTE3/YvHlzIlJ8i7qfnx/fBcaTUJhcFH7MmDE/+cGIiIgkHx82ejSztWUaGv+Wc9PUZPXqsSNHWJs2jBcBT01lzZqx7/XeVIaPT5+mmpmxkiUZUpJ/LD09fcaMGbq6upUqVfL29lbwpCQiIqJLly78+Ojk5PTk693CT58+ubm58Rz2mjVrXr9+/dWrV25ubrxyi7a2tpubGz/WKygjg3l5MQMDRsRMTJi3N0tNZbIuG8nJ/3btvXuXjR3LjI2/vFsNDdmIEclBQUE/GfzKlSu8IgT/2AfBpKVJra3vOTltWbVK8LETEhL4/Z7tSt4sFhsbW6JECSLiORyQj/CbJbKTZ352d+TIEUEGX7JkCREVKVKEnx8mJyfXrVuXiDp27Jj9m9mxsbHBwcE+Pj6enp79+/e3s7Pjdzdr167do0eP2NhYQZYKypacnMyzoZUdCoyLiytTpowgJ4fwXVKplOdWi8XiPn366OvrGxsbjxs3zs/PT/HmVdeuMUNDRsSUnaUtlUo7dOjYtKlnnz7KOk/mKcmyjLT27dsT0bJlywScIioqipcZkbW85vV1dXV1scmDMfbx40d+vLh27ZrKJu3UqRMp3DXnn3/+ISIrKyt+bcKjdvXr18d9RNXIzGTW1mz4cKZ4s8LRo0eTkptLf5elpSUR/fziTkHJycm8b5m5ubkgV7LC+kXAndfydnV15Q95oTHBa+1LpdIuXbqIRCJZp+yHDx/q6enxthLf5q07ODi4ubl5enr6+PgEBwf/JFsqJiZGxXuakpJYsWKsVKnIBw+U+489Y8aXWMaLF4oOxTdfHD58mDH25s0bsVisra2dd/oM/Nz69euJyM7Ojj/8/fffSdCaiYcPq6CwrTAiIyN9fX09PDxcXFyKFy9ORCYmJpNUWTmkMOG9tng5o8+fP/Mbk58+fVJ85CNHjvAAqOfXPSznzp3jUfgZ/63KEhER4ePj4+bmZm1tLRKJjtrb/xtkt7Nj7u7M15fJlvT2LevRg3XowFq0YFu38p9nSmt+IMNz/2eMGqXsifK1mJgYHgwSsB2Fj48PTwbX09Pz8PCQjXz27Fmeq6KhocHfaVpaWm5ubq9fvxZqai40lLVo8eUtOWQIq1DhS2H3WbPYzp1s2zbm7PzvjSE7O+btzbK5/2/16tX8Ku769evCrrmQO3/yJM9++HZvgYKmTp3Ksx9UcIXG3x5mZmZ5p3oj/FJycjI/5799+zZj7PLlyzzlU8CPxF69ehFR1apVeQ+qly9f8nsz8+bN+/bFnz59unHjxq5duzw8PPr06VOvXj0jI6NvL0mIqHTp0vyTtl27djnYiAbqM2vWLCKqU6eOCv69vL29iahChQpJigdL4L8yMzOHDBnC0wV8fHySk5N5KJArWbLk0KFDjx07lrsDwb17zMSEEbH+/VWRcfX8ubRIEUbEfJRSt+bLlT6/D/369WvexlDwA/3Vq1d5h0ZZwGv48OEikShf5PApG9/v0rFjR1VOGhERwY9cihQsqlevnuyuYUJCAj/e/bK5FAiF90GzsMjlj1+9enXixIn8zIrXCa/DK9SoEL8tyitXK0N6ejpvmlKuXLnnz58raRZF/CzgLqvlfe7cOcbY48ePRSKRoaGhMmrixMXF8a7ZsqnLlCkjEokaNWr0+++/L1u2zNfX9/Hjx7lIVL9z5w7f0yRIEatf2ryZETEVNCSQSFibNoyIKZjB/Pbt24oVK5YpU+bNmzfs62morA9k3peamsp3NvGCaM+ePdPQ0NDR0YmKihJk/KlT82716YSEhMuXLy9ZsqRHjx4VKlTIchHIj4ja2to4KAqOf0AREc+V27t3LxE1b95cqPF37typoaEhEonWrl3Lnzl69Cjf3zNhwoSVK1f27NlTVueaK1q06PpRo9jChczfn2Xnc/L5c1alCuvWjSmcBPRzfJOpj5KuIQqKV69e8WtyYYeNjY2VpbTXqlXrxo0b/Pnk5ORJkyYVKVLEwMDA1dX12bNnws4rz8eHOTiwNWtYixbszz8ZY2zWLDZt2pc4u5ERc3Njd+7keNgRI0YQkampqYpLxhV47dq1I6IRI0YIOGZ4eLiurq5IJFJNYldmZibvX7Jw4UIVTAeC2LZtGxHZ29vzh7/99tu395gVlJiYWKNGDSLq3Lkzv/Fz9uxZsVisoaGxatUqHx+fBQsWDBo0qHHjxvz06bsZP/b29v369Zs7d+6ePXuCg4N57F5WJl62NQ3yrNevX/MqmkJVr/45iUTCw1Vz5sxRwXSFR2pqKq95a2hoeOZrx5hjx46ZmJgMGDCAJ1RyhoaGPXr02LlzV/ZTYsLCmKkpI2KdOyv7HPlf//zDiFiJEkyg69d/XblyRf7+pVKv9H18fOSboh86dIiIWuWLtDVlevfuHf/Y4XFPVeIpCGXKlMmyByslJeXjx4/h4eF37twJCAg4ffq0j4/Pxo0bV6xYsWDBAnd391GjRvXv379bt27NmzevXLmyq6vrgwcP5syZQ0QODg4q/i0Ks8GDFapqNX78ePpahzM1NZVvs1CwNU5OnT9/nohq1KihjMElEknv3r154OvRo0fKmEJxPwu4Hz9+nIjMzc15CgD/BxspKyOkTCdOnJCfWkE8v0BXV/fWrVuKj/ZzDRowIrZtm7LnYYyx6Gg2fjx7+pTJOsSEhf26YK78llg3NzdnZ2czMzORSNSpU6fRo0eXK1eOVNLNQ0C85XeXLl34Q75/avbs2YIM3rIlI2K+voIMpqjMzMwHDx5s27Zt3LhxDg4OWboXFClSxMHBYdy4cdu2beNF+v7880/+vAre+YXKtWvXiKhKlSr8Yf/+/Ylo6dKlAk7xzz//iEQiDQ0NWc3ZXbt2aWhoyO/7KVWqlIuLi6enp7+/f47TAO/e/VLIY8AA5WXvCJv7X4A9fPiQiKrL19kXzunTp3nZPk1NTVlsPSoqip+dKGPGb3l7s7VrWcuWLCSEzZrFDhxgPXuyXbtYrlOQ09PT+ebBRo0aqbJkXIH3+PFjLS0tDQ2NYOGqTvGwyMCBA4Ua8Jf4yb2hoSFv4AZ5n6OjIxFt2LCBfW0sJCs3LKBnz54VK1asSJEiskJb8+bNI6Jv61Xq6OiYmZm5uLi4u7t7e3v7+fmFh4f/ZOTz58/zMvEHDhwQds0grJ49e6o4ryggIEAkEunp6b169UplkxZsnz594p8YJiYmV7/2B9q+fTv/Q3Z3d2eMhYeHe3l5OTg48JwDGxt7sZg5ODAvL/bmzc8GT05mZmaMiDk7Zyt9RShSKWvXjhGxTp0EHplfpPB25ZmZmRUrViSiixcvCjzN93Ts2JHySZVapRozZgwpXNoldyQSCf9jKVu2rI2NTaVKlYyNjXnTphwxMjISiUTyOY6gAqmprFgxRsRyXSz53LlzRGRra8sfduvWjYhk+XyqkZ6eztsFC55+LpVK3dzc+PtTwMsWwf0s4C7/KSnb7KmayB2Pmf7vf/8TasChQ4cSUaVKlXiHQyUJCWFErFgxAaosZd/atczYmPHNW9OnM7l9AuzjR3b1Ktuxg3l4sL59WYMGrF49p+9+jBoYGBQtWpSIHBwcWrRokb/Kcr1//563guE31S9evMhjkYpvJ5dKv3zMCZ5ukH0RERGyQjH800pGU1PT2tq6f//+3t7eDx48+PbulFQq5Z3BSpYs+fTpU7Wsv0CaOXMmfW1tKpFIeCP4J0L31fXy8qpWrdobuSuDChUqiESiDh06bNiw4fHjx4pOcPWqsutT7tmzh4hatmyppPELjOvXrxNR/fr1+cPatWsXLVr03r17Qo2flJTk7u4u39EhLCyMiMzMzISa4ud4wP3+fdasGZs5kwlSXjs6OprXxunfv78Aw8FXEydOJOEa/V24cEEtsW/exmCQIu2lQFWy7KBdvnw5yTUWEpafn598DlRAQAARFS1atEuXLpMnT16/fv3Fixdz915dvHgxyZWJhzwoMDCQx75VnN/n6upKRP369VPlpAVWRMSCTp34Rb3sxHvVqlUaGho82p7lyPX69etVq1a5ue3R1PyytU4kYvb2bOFCJvskWLGCfc2SZ7Nns127mKMjU2Z77+97+/ZLJszOnYKNye9fikSisLAwxtjRo0eJyMrKSgVX+vmuSq2SvHr1SkdHR0NDIyQkRDUzRkVFyf/7LlmyRF9fP0vkR0dHx8TExMzMrGbNmo0bN27VqpWrq+vgwYPHjh07ZcoUT0/P1atXb926df/+/X5+flevXh03bhz/o1uzZo1qfgtgjB06xIhY3bpfHg4YwLp0YTlK484S7N6yZQvJtXNQGV7Tb+XKlcIOO3nyZCLS19dXzZa1XPthwD3LpyTf7NmgQQMVrOnNmzeamprCfkCnpKTwPX2tWrVSXpPckSMZERs/XknDf9/atWzAANarF2OMTZ/OvL1Z796sXr0vkeIs/zVs2P27aTsSiSQwMFBLSyufpufwGyqyrpK8SfHGjRsVHPbhQ0bEKlVSdHm5c/DgQV63RJ6FhUXfvn29vLyCgoKyc0chPT29bdu2RGRubi5UmR3gzdZOnz7NGAsMDOT/e5UxkXzRz/DwcCIyMTFRvBPUv86fZ7q6jIhNmybYmHJ4WQBh+zIVSDwhV1aVyMLCgogEr/Qif/599+5dIqpZs6awU/wID7gzxv78k1lbCxNwZ4zdvXvXwMCAiP7++29hRgTG4uLieBKTbHtNrsmquyxYsECQtWWfrI4NCv3nfby+p2wHLS83rEjN2ewbOHAgCVRaVCqV8uxpWZl4yI1jx9jmzV++Pn36S3OPsWNZ+/asQwemwBWKrLqLUFtgs0/FdWwKstBQVqWK1Mjoz7ZtZfkonp6eRCQSiX6eqBcTw7ZvZ926fenozv+zsmJTp7K2bVnNmoz/1fKyB+pqx8Ar0xYr9os0/OxbsWIFEbVp04Y/dHFxIVWlnM+ePZuIevEIRSE2fPhwUuGuGqlUWq9evVq1avGLiMzMzGrVqhHR9OnT79+///z589jY2Fw0R8nIyKhTpw4R/fXXX0pYNXyfqysjYvzvNTGRGRgwkYjl9H4xPzPhwe4PHz7wFg7KqBAuTyqVymeC7ty5k4SuLsULHGlra588eVLAYZXhhwF3XqajT58+/GFgYGDHjh238lZ7Ssan7t27t7DDvnr1ivdHUtKZVkICK1qUEbEHD5Qx/A+tXcu8vVnfvuz06S8Bd9lpRLFirF491rs3mzGDbd3KAgJYVFTyT4ZasmQJT8/JsyWQfuTBgwcikUhfX5/vYNixYwcR2djYKHgDf8sWRsR69hRolTmxbt266tWr8z0yDg4O7u7uvr6+Oepvc/nyZf76pKSkRo0aEVG9evV+0mEYsikiIkIkEhkYGPAbHtOmTSOiiRMnKntenvQnfIbU0aNMS4sRMaHrHWdmZvKPXKWWCC8YeM6Ri4sLf8jvtCm1zTrP62ysgn4jjDG5gHtSEqtUSbCAO2Ps0KFDGhoaGhoax48fF2zQwi0lJYXn6ire6G/NmjVEVKVKFbX0L50yZQqpqlMr5FpqaiovgM530PKPJmHbpf7I58+feRhUvuiwIhISEvjdgl69euNNl0tbt/57NrJ7N5s9mw0YwHgXroQE1qQJy+0ttPXr1xNR+fLlExMThVlqTvCdkXXr1kVn3dy7f5+VLcuIWP36vIJqZmYmb+giFos3bdqUzWFSUpifHxs3jpUpw4iYkxNr25atWsXGjmXsa8Bdjbp2ZUSsdWsmyGdIrVq1iIjn0kkkEldXVwMDA8HbpX4rSyPAwszHx6dYsWLy78+QkJDNstuKQjt8+DARmZqa8vM3ntFsYWGheLbW7du3NTU1xWLxzZs3hVgp/EJ8PNPX/zfCvn37l8+rnOJhMVmwmweFDh8+LORavzFp0qTevXvLTuRiYmLEYrGmpuaECRN8fX0VrziyatUq/smfL7rEadIP8B3uvB4Fvyz39fX90YsFJJFI+EcDP4IKqGLFinv37m3Tps3cuXPr16/fvn17Ycffs4fi48nJiWxshB04W5YupY4dqUULKlmSduwgCwuysKASJb59od5PBpk0adLNmzd9fHy6du1648YNXmQmX7CxsWnduvWZM2c2btzo7u7eq1evadOmPXz48OzZs23atMn1sDduEBHZ2wu2zuw7cODA48eP//77b97WPKdOnTrVtWvXWrVqXbhwwcDAwNfX19HRMTg4uHPnzidPntTR0RF8wYUHj+u1bt1aV1eXPyQi3h1bqXhnC+En6tSJtm+n336jadPSixXTHjVKqIGvXr0aHR1dtWpV+e5V8F1JSUlEZGhoyB8mJibKP1QGFUwhr3dvIqIbNygqis6fp2+27uRe165dZ86cOWfOnL59+169etXa2lqwoQurZcuWeXp6VqxY8fXr13Xr1i1fvnzuxpFKpTdv3iSiJUuW8E9LFZs2bdrWrVuvXbtWp06dEt87H8qmDh068DI7oAwHDhz4+PGjnZ0d3zq2YcMGIhoyZMi3ddUFt3379uTk5FatWvFNRYozNDQ8fPhw69btQkOHLllCf/0lyKiFz4cP9OgREVFEBDFGAQG0bRsRkaEhjR5Nhw7R5s0UFvbdH71obr4gPPzb5xljso8jvi9Kxdzd3Tdv3nz79u06der8qCtvdrRt25b3Zyp0rlyhTp0oLo5atKAjR6hIEUpLmzpypPfWrfr6+vv27eO529mhq0vOzuTsTMuWUUAAMUaLF5OrKw0YQLduKfV3yJY1a+jyZTIyotRU0vvZVfv3paenh4eHP3v2LDQ0NCgoKCQkpESJErxUr4aGho+PT3x8vAou8E+dOvXq1SszM7PmzZsre648Ljw8/PPnz3Pnzu3Zs6ehoeHr16/r168vEokaNGgg+Ckr+7qxYNq0afr6+hkZGbxPiYeHh6bmD4N+2VSnTp3x48f//fffQ4cODQ4OVsExupA7coSSk8nJiSpVIiLas4eIqE+fHI/Tvn17TU3NS5cuxcXFGRkZdezY8erVq8eOHeOlF5Vh1qxZf//9t66u7r179+zs7Ijon3/+kUgkRYoU8fLy8vLyIiIzMzMHBwdHR0cHBwebHAZPt2/fPn78eJFI5O3tzSu25XU/isRPnz6diIYMGaKy2D/HE/2qVq2qpIwk/rljbGzMa5kJyM6OEbFdu4Qd9dd4hjtjzMuLlS79nxruuSCXnpPPtoCdPn2aiMqVK5eWlsYYW7RoEcntocudunUZEVP9BtDo6GhNTU0tLa0sLcWz78OHD1ZWVkTUsmVL/j8kPDycp8326dMH+TWK4KetvGDR69evRSJR0aJF+f9k5UlISNDR0RGLxcrqQrF1a0aFCs6VK/OedYqLjo7u3r07EU2aNEmQAQs2nnk3bNgwxphUKtXQ0BCJREr9Oz148CARde3aVXlTfIs3FQ8KEnhYqVTKiwNWrVoV7XkV9PbtW34bZtmyZbm73SuvdOnSenp68sl0fn5+Sq2evHPnTvls+iZNmigS2+KGDx+uvAVD06ZNieiff/7hD3///XcDA4OfdygVSu3atYlI8PQoX99MkYiJxczPT9iBC4etW5mTE5s8mU2ezFxc2IwZrFq1f7979iwbPpzVrv2doplEjOhU06Y/+kMuVaqUrq5uZGSkbLCLFy8q9Z22e/fu5OR/NxY3b95ckTt/XCHtS+Hry/T0GBHr2vVLs/XERNamTYqlZe1Klfz9/RUcvm1bFhXFHj9mzZoxGxsB1qug16/Zzp1MVo5xxYrvF5HIyGChoezkSbZy5erRo0e3bt26SpUqWfphlilTxsjI6O3bt6pcP2Osc+fOROTp6aniefOgjIwMHnOUbYYeOXIkETVo0EDwKsf79u0jogoVKqSmpjLG/vnnHyKysrISaqKkpCR+f1r1dQILod9/DylZUsL3B3/8yLS0mKYmy1297SZNmtDXQpH379/nB0QlXWbyMlZisVhWl5LvdhWLxVOnTp0xY0bTpk2zNBUoV65c7969V61adffu3V++Vw8fPszvHuWjaqI/vNnVq1ev5cuXb968uUGDBrz9q2p4e3sT0YgRI3hXccFNnz79zp07hw4d6tat29WrV79tIpFTr19T2bKkqUlbt9KqVdStmyDLzAEdHeLH1tGjad8+UvB2o6Gh4aFDh+zt7fft29ewYUNeWDNfaNOmTc2aNe/du7d///5+/fqNGDFiwYIFZ86cuXfvHq8hm1OpqXT/PonFVLeu4Iv9hSNHjmRmZrZv397Y2Dh3I5QsWfLUqVONGzc+f/784MGDd+7caWZmdvbsWScnpz179pQvX/5///ufsGsuJNLS0i5cuCASidq1a0dEx44dY4y1adNGW1tbqfOePn06LS3NycmpePHiSplg4MDtiYnnxoy5OHKkkZFR7m4XR0VF+fv7BwQEBAYG3rlzRyqV8s6faWlp2FTxc/L55klJSVKp1MDAgHcAU8GMKmNkREQUFyfwsCKRaMuWLWFhYbdu3erVq9fJkyezXHBC9k2dOjUxMbF79+4TJ06Mi4t78eLFy5cvx44dW6FChVyMNnv27MDAwFmzZq1bt46IvLy8Jk6c6Orq6uPjI/TCiYiOHz/+22+/LVu2LDg4WCQSXb16NSAgQEdHZ+fOnbwqfe7kOscfvistLS30q9u3b1+5ckVfX79v3778u2vWrPluhzfBXbt27e7du7LcTwF17CieMYPmzaNevSg4mKpUEXb4QqBtW5o6lYhozx569oyIKC7uy/EjJISqVaNhwyg+/rs/Wk1Lyy8j47vfmjdv3pUrV2bMmLFx40YiWrNmzZgxYzp37nzkyBFl/BJnz57t27evra3t3bt3NTQ0bt26dfnyZbFYvHXr1nLlyuV62LJlywq4yPxhxw4aMoQyM2nUKFq9mjQ0KDqa2renmzd1TU1vnj2rWaOGIPNUq0aNGlFeuDyqUIHu36fdu6lpU6pbl27coKZNqWhReviQHj2i58+//PfoEaWkEBGVK7crIuIq/1lNTU0LCwtLS0srKysLC4vdu3dfvXq1e/fuly9fVtmpeFRU1MmTJ7W0tAYMGKCaGfMyTU3NTZs21a9ff8WKFT169GjcuPHixYtPnDhx/fr11atXjx8/XqiJJBIJT2+fMWOGjo5Oeno6b28wf/58oc6K9fX1N2zY0KJFi7lz53bp0gWbSpUnOjp6w4Z6YrG2q2skUZEDB1hGhqh9eypVKjejdezY0d/f/9ixYz169KhRo4a5uXl4ePjNmzcbNGgg7LK3bds2YcIEkUi0YcOGHj16ENHOnTvHjh0rEonWrVvH+xkQUWZmZkhICI8YXLp0KSIiYu/evXv37iUiQ0PDhg0bypLf9f67zefcuXO9e/fOzMycP3++4llBqvOTYPyuXbuISEtLKzAwUDXh/9evX/NC/kotLhYfH8/bRwhSDblcObZ4MWOMSaXM1lbx8XLMw4MtWMCETXs9cuSISCTi20+EHFfJ+Dl03a+9nMeMGUNEQ4cOzd1ogYGMiNWqJdjyso8Hc3m5t6ioqN27d+euAVdwcHCRIkWIyN3dnT9z4cIFfr6Vj+4K5im8rku9evX4Q16ZSgXNLXh1r8X8s0Zp5s6dyz/z+Y2E7Hj69OnGjRsHDBhQ5b9BBT09vRo1avD7pk2aNFFWYn5Bwf/Pz5gxgzEWGRlJRKVKlVLqjDzdYNSoUUqdJQve/GfvXqUM/vLly1KlShHRn3/+qZQJCoGrV6+KRCIdHR1e0vrRo0daWlpisfju3bu5G/Dx48daWloaGhrBwcGMsbdv3/JiDso4tUhLS+P7ury8vBhjEonE3t6eiGbNmiX4XJBNGRkZ4eHhfn5+3t7e7u7uLi4uZmZmWa78S5curaur+0DF7Y8YGzJkCCmt/5tEwjp0YESsdm2mWB+EwufbGu7btrFOndiFC2zrVmZnxz5/zt3AYWFhOjo6GhoaN27cYIxFRUXxwhqnT58Wau0yGRkZNWrUICLexlMqlTo6OpJA7XkLl8+fWenSjIh5eHx5JiKC2doyIlalChOo+8KKFV86piYlsd9/F2RIRbm7s7VrmaMjy8xk/fqxxYu/s6NDQ4NVrsycndm0aduXLVt2/Pjxp0+fZul+ERMTY2ZmRkQjRoxQ2eJ5OQFXV1eVzZj38aYy1apV47nn/HJSX19fwE0227dvJ6LKlSvzXdcrV64koho1agieyDx82DBvB4f0Vq3U1ly4EFi7di0RtW/fnj90dnZp2PB/+/ZF5W60x48fE1Hx4sV5/vjYsWOJaPr06YItlzHG2MGDB/kJ3vLly/kzR44c4dnoP2/UHB4evm3bNjc3N2tra/mUa01NTTs7u3Hjxvn4+Hz8+DEoKIhfRIwfP17YlSvbzwLujLHRo0cTUYUKFVTQXoMxNmPGDCL67bfflD3RvXv3+D/YunXrFByqdm3WtCl7+VI9AfeEBFakCCNiDx8KPPJff/3FL4RUvw0t11JTU3nVFH4x//z5c37/Rn4DafYFBLDmzZnye2Fm9fnzZ21tbbFYzP/oeFyse/fuuRvt/PnzPMK+7OvWxD179vCCFdu2bRNs0YXG77//TkQeHh6MsdTUVD09PQ0NjaioXB7/skkikfA39kPB/86/4e7uzsPlFy5c+NFiHjx44O3t3b9//4oVK8rHTQwNDZ2dnT08PPz8/HhVh0mTJvFvmZubP3nyRNmLz7/4//ZFixYxxsLCwojIzMxMqTPyrpiTJ09W6ixZDBvGiL7UQFOGWbNm8RO1pUuXKmuOgksqlfJUF9kpeNu2bRW/K8P3yTk6OvI6gXPmzCGi2rVrC76Tmm/bql69Og83bNq0iYjKlSunlgaJhZBEInnx4sXZs2fXrFkzYcKE9u3bW1pafrfGq5aWlpWVlYuLyx9//LFu3TpeednS0lKV9aA+f/5sYGAgEomePn2qpCliY5mFBSNiyr+mKViePmW3b3/5OjSU8e58t26xv/9mmzfnOtrOTZ48mYgaNWrEP4548Ulra2vBO/TyGrXm5uY8uMYDYaVLl85d9kxhd+sWk12tP37MKlZkRKxGDRYRIew8v//OypdnCtenEYa7Oztzhs2cydasYf36sT17WNmyrFkzNnw4+9//2KFD7MEDlpqaraHu3r3L9wwJVTTy5yQSSeXKlYno7NmzKpguv0hNTa1evToRzZ49mz/Tu3dvImrRooUgVZQzMzOrVq0qSwJLSUnhO2mOHDmi+OBZSD99YqamjIitXi344MDxIjA7duxgjL1+/VpDQ0NfXz8hISHXA/KUlICAAMbY2bNniahmzZqCLZexs2fP8ogTv5hljJ07d443cJozZ072x4mIiNi3b9/YsWPr1Kkjn58hEol48NbNzU1JhceV5xcB9/T0dP7v3aJFC8GvjrLIyMjgG+UUr8WWHbt37+bn/fydl31paezxY3bsGFu2jF26xOrUYYGBrFMn9QTc161jRKx5c+FHzszMbN26NT8xVXZ9agHxvVSdO3fmD7t06VKqVKkfhQ5/5J9/2NdqosLvHvglfl7esmVL/pB3m9mlQHOA3bt38wj79u3b+TM8iK+lpaWMvJ6CjZ9Eyvqzv379WgXdsa9du0ZEVapUUfZEjDGpVDpq1CiediH7KM7IyAgODvby8nJ1dTUxMcmSnOji4uLp6env7//tJWtGRkbTrwVVTUxMLl++rIJfIT/i97ZXrVrFGLt7967gp0HfmjVrlvx5v2pMmsSI2P/+p5TBExISZNW6xWLx2rVr890JmXpt27aNiMqUKcNDQr6+vkRkbGz88eNHRYb99OkT/3fhxRyTk5P5p6i3oDde3r9/b2RkRESnTp1ijMXHx5uamip46ITsePXqVdeuXW1sbL5brEAsFlepUqV169ajR49esWLFyZMnQ0NDMzIy5EdISUnh9W1dXFxU1mCGnwW1aNFCqbPcu8cMDBgRW7NGqfNAdsk+GXbv3s0YS0tL403dVwsaNoqJieHV/3x9fRljSUlJPDtBBbshC5QHD9jhwywk5N9nbt5kJUsyIubkpOCtl+/67TdGxDZvFnzg3OAB9+RkVq8ea9eO5Xab2Rc7duwgIh0dHb69Q6lOnTrFr1nQMCyLy5cvi0QibW1tvqPr48eP/OxIkE8Gvsvf0tKSH2GXLFlCRHZ2dso6Ez52jBExAwP2/LlSxi/ceIRdV1eXn5DzhBIF2yvyAiy85kF6enqxYsWI6MWLF4IsODAwkEfDZbu4rl69ysuWjh07NtfDJiQk+Pv7e3p6uri4GBoali5dOp9+sPwi4M4Yi4yM5Gcnyt4Hx3u4Va9eXWUXyePGjSMiU1PTd+/effcFKSkpDx48OHJEunQpGzmSOTuzypWZWPzvZq5x41idOowxNmQIO3JEDQF33tVTSTv0o6Oj+YXxuHHjlDKBEnz48EFPT08kEj1+/JgxFhERId8/LZuGD2dmZoynPbVrx16/FnyZP8P7zKxdu5Yx9vHjR01NTR0dnc+KnVny466WltaZM2f4MzzNp0iRIrdu3RJg0YVDWFiYWCw2NjZWcSBv5syZqvwzlEqlQ4cO5W+P4cOHN2vWLEsBtSpVqgwYMGDjxo3ZyQ2MioqSlRzlxZRV8CvkOwMHDiSiLVu2MMYCAgKIqHHjxkqdkZ94qTgTfO5cRsSE3sL4xcKFC7ME+wSpGldIJCQk8L9Tfl82S3kWBfEC7hUqVEhKSmJfm3qVLFlSwIzmYcOG8Ygtf8i36MnyWEF5Pn78KPuLMzY2trOz69+/v6enp4+PT3BwcDa3F7x8+ZI3k8xRGpQi6tSpQ0R79uxR9kS7dzMipqPD3rxR9lSQLTwsVb58ef7mPHz4MH/rClj4jmctyPJmpk+fziNf+TFMoDbTp7Pevdnmzey339gffzDGWEwMMzJiRKxTJybXilZAc+YwIpZHqv7wgDtj7NgxpqGhaMCdfd2hq4KiBd26dSOihbLCUCAnS7tUnmNnYmKi4Fbp9PR0XtiT30pMTEzkJRZ5CoKy9OjBiFi7dkqcorDiEfaePXvyh/yMRcHNChcvXiQia2tr/pB3axPkZvOdO3d4+F62I/bevXs8P2/gwIFCnYe/fftWQ0NDT08vKR/W6ft1wJ0xFhgYqKWlJRKJZN1mlYHnU69cuVJ5U2SRlJTk5ORERM2bN09KSpIVmhw3bpyzs7Os0GSZMpnyFdM0NZmFBWvblo0Zw44e/RJw//iRNWig6oD79euMiJUokd09Zbma4jrPWspHeRm8IcPo0aNz+oOJiezxY3b3Lhs+nG3axFq3ZlKpqgPuCQkJvEpJREQEY2z9+vVE1KFDB8VH5sU9ZBF2qVTKy4KXLFlSeVuqCx6++V3YZKhf4gda2c0SFcjMzOzZsyePgHBmZmb9+/f39vbOxc3woKAgWVNZkUjkISvECV91796diPhuidOnTxNR69atlToj74X+j2wvj0qsWMGI2Jgxwo8cFxf3bT9hU1NT4WcqoCIWL25vZmZvb8/PjPk92mrVqglSaSEzM7NWrVpENH/+fP4M3/jyBw+jKOz27dtisVhbW5vXrQoPD+eVmq9fvy7I+PBzBw8evHPnjoKle/z8/MRisYaGxvHjx4Va2I/cuHGDiIoXL56qvLNnOTNmsMOH2d27jP8xSSTs8WP28SOT3W+KjmaxsYwx9oPkHxCSRCKpX78+fa0NyL5efiqShSfv4cOHmpqampqa9+/fZ4y9fv1aX19fJBKpZvd2AfHyJWvQ4N+HTk6M1yTctIkNHsz+u0VGQPz2WI8eSho+Zw4cYLLGFsuWCfDhICta0Lx58wyl/T+MjIzU0tLS1NSMELrgT8EQFxfHW9DLshk6duwoH1rNHb5ny8bGht/VW7BggQoSd1hkJDMxYUQMqVRC4xf+hw8fZl/LrxcrVkzBM5bMzEx+ofTs2TP29WZPmzZtFFzq06dP+d2dfv368bdfaGgoL4TbtWtXYT9qeGcmvnUsf8lWwJ0xtnTpUh6te/TokTLW8fz5c37XIpafdarEvHnzrK2tjY2NNTQ06Hu0tbWtrKyGDPk4fjxbtYqdOsVCQ1mWy08ecGeM/fOPqgPuQ4YwIqachk//4k0b9PT0bsuKKuZtT5484YWuvk1XyczMjIiIuHHjxokTH1etYtOns4EDWatWzNqaFS365YaKrS0bPpzdvMnGjmU7d6o64M5T/5o0acIftmnThog2C7G/USqV8izakiVL8o/a9PR0XqLX3Nxc2VXIC4wtW7aIRCLefVs1M0ZERPCyZbnYq6GItLS0V69eubu7Hz16VPHML34EkRk8eLDgJVPzNf6XePLkScbYgQMHiKhbt25KnbFv3770tTigymzdyohY//7Cj8y7zmaBSu7Z9fw509Vl2tqRN24wufIs/A0piAsXLhCRvr7+q1evGGN37twRi8VaWlqCtHbgmROyZrl8l9jgwYMVHxlUiccIihUrFipQI8Qf4WkZKu6uXLz4l1agycmsfn22eDHbtOnLt5YvZ//8w+Lj2cyZTLXH+UIqMDBQJBLp6em9fPmSfQ2Ri8Xie/fuKT44D9/LtiT26NGDVNKcrEA5efI/rUv//JMdOKCCaW/eZESsVi0VTPVrHh6saFEm7KVGZGQkr+utvE8//jGu7DPYfC1Lu9RXr14VKVKEiA4dOpS7AVNSUsqXL09EBw8eZIx9/vyZJxefP39eyHV/1+bNjIgVL87ev1f6XIVGlgg7b300ZMgQxUfu06cPfe1oGhMTw4soxMfH53rA8PBwvju2U6dOPLb+5s0bXh6jVatWguc08G7Mw4cPF3ZYFchuwJ0x1rNnTyKqWrWqMlq+8N7NgwYNEnzkH5H19PDy8lq5cqWmpma5cuWcnZ3d3Nz4ZtgHDx5k57aMrKWoRMJev2aLFrHFi5W7cu7zZ2ZgwEQi9uyZ0ucaMmQIEVlYWKiypZUi2rVrR0Surq6LFi0aO3Zsly5dGjRoUK5cOd4omYgcHHZ82+1dV5eZmzMXly8B98+fmZ0dc3JSacCd/5Xx+96fPn3S1tbW1NRUsISuTHp6Oo/gyyLsSUlJjRo1IiI7OztFGnEUKrztu1gs3qukWk7/5e3tze8Sq2Au5ZFKpfyyU6ZVq1YKFkoqSBwdHYnoypUrjLGtW7cS0YABA5Q6Iw9K8uwJlfH1Ta5UKXTwYIEPWp8/fzY2Ns4Sbe/du7ewsxRk3boxIvb1LXd2+nRtsViQnVXy+DaO/l/vt/Cgp+Kz7N27l4hKlSrFP0/Onz/Ps0N+VCoQ8izZYcLW1lZ5rW4TEhJ4dENJ+UM/Urs2a9aMPX/+/YD76tVs2zbWvTvLYVcpyCXerlB2mOBtVBSv6c+Lo5qYmPA0BX9/f5FIJLvRCNl15QqTDwiMGsVU0nEqLo4RMX19lhdKkdWsyYiY4FtbZVtOlXEJI5VKLSwsSNmVTPK/LO1SV61aRUSmpqa5yzpdvnw5P27y/GIPDw/51D2la92aEbG+fVU0XSHAm2zJbtMmJyfv379fkLTX69evnzhxQpbAx689+X2aXIiIiDAzM+PvZD7mhw8fqlWrRkSNGzdWxlkcb3Jmamqa78pF5iDgnpCQYGNjQ7mt2S+RSF69enX+/Hlvb+/Jkyc/kG2UYiw9PZ2Xib969WouRs6d48eP88ijRCKRSCTjx48nuf3OuXPtGtPQYGIx8/MTapk/tGoVI2LOzkqfiKmppZUizp49y3dsfatMmTJ16tQZPdpnxAg2Zw7btImdPMnu3/9PZ1QecGeM7dzJRCLVBdxTUlKKFCkiEon4qTlvYdeqVSsBp4iPj+f/lPXr1+e9cN+/f29ubi4SiVRQzLTA4HebtbS0VLD5vVOnTkS0ceNGZU+kbAkJCdbW1vJ/jDY2Njy/DGrXrk1E/HRq9erVJFcIT0latmxJRH4qOFbJ4WnOTZs2FXZYfm4qT6kBu4LmwoUvMQZ+qLt9m2loJNnYhAtdauzVq1fypRXev3/Paz4qkkcva8HKtxxlZmba2toSkaenp2DrBhWSHSaUd8Psn3/+Ucan0C/VqcOuXWMdOvwbcG/fnk2ZwqZMYc7OjBf3unBBxYsqvN68ecM7vPFe7rGxsXyv/dGjR3M9pqwF65o1axhjEomEn2/PmzdPsHUXEgkJzMaG8VLjMTGsRg2mqnyvUqUY0b+5dOry4gUjYkZGLC1N+MF52pCBgQGvepQLCQkJt2/f3rdv36pVq+SfP3PmDBFVrFiRFyiHH8nSLlUikfDQZy5SdxMTE0uXLk1Ex44dY4x9+vSJn1nxTzZVeP6cGRgwOzuGvD2BhIaGlitXrnTp0sqOi44dO5b/wc6fP//y5cvJOeyN8fDhQ1NT04YNG/KUzc+fP/NKOLVq1VJehi4/57/J43T5Rw4C7oyxp0+f8o3Gy5Yt+/krY2Nj/f39vb293d3dXV1d7ezs+JmNzCZZasfXMho1a9bMzW+QW7xm1v/+9z/GWHJyMt99o3gDyVmzGBEzMVF60+ZevR7o6zNlFtX/D1lLKwXvSaiGVCpNTU3t16/fn3/+6eXl5ePjExAQ8PLly7TsnbkcPPilvZVUyhYuZCdOMAcHpoJaR7x3k729PX/II62CF1n+8OFD1apVF8ttxFi3bp1IJFJ2gK+AcXd3JyI9Pb2LFy8qb5aUlBQDAwORSFQwiiE+efKkaNGiWW6A5bujpjLwnCBe62nx4sVENHnyZKXO2KBBAxXf5GaM3bp1i4hq164t4JiyqwsZY2NjZZekKDgyM7/k0S1Y8OUZJydGxJSz3zxL80BeaUqRSvGzZ8/m7yh+ec/TxMzMzFRTmxuU4cmTJ/xC4++//1bG+DwGqvr23bz+5PDhbNeuLwH3uXPZvXvs3j32119Mtd00gLGveaB16tThH0crVqzgaVi5/vTgxTSsra359mh+a0fWLBpyxt+ftWjBXFxY8+aqvBPl6MiImDLP67Pl77+VmzQ8ePBgIrK0tPxlXCwtLY23uPPy8nJzc+Mt7mSVeDU1NeUP33yLEu4wZUeWdqlPnjzR1dUViUQ5zYN5+PChlZVVg689D3jFCMULc+fMzZssI4P5+TEPD7ZqFROuAXXh9O7dO95oREdHR0lN4zIyMmbPnq2pqamvry+7etLU1LSzsxs3bpyPj082iyuEh4fzbRlJSUn8ppGVlZVSyxTz5s+zZs1S3hTKkLOAO2PsyJEjIpFIU1Pz0qVLWb41efLkDh06VK1aVdYfL4uyZcs6OTkNGTJk4cKF8pXyWrRoQURr165V9LfJtjdv3vAWW+/fv2dfU4llgU5FSCSsfXtGxGrXVlITdcYYCwwMJCJLy/qqLIMsa2klYF3XvE8iYXXqMCLWtKnSa2v+9ttvRMRD4bLuqcrYF5/lHiav5ox6xzkilUpHjRrFk0SU1wuLV/qrX7++ksZXPV7/QZ6+vr6CjdcLAN5ehv+xP3z40NvbW9n9Hvl+tVznN+VOWFgYEVWpUkXAMadNmyb/dlJN08WCY+1aRsSqVPlyeNu7lxGxUqWYcso9JSUl8c1n27ZtY4ylp6dXrVo1Ozkc3yXLUeWno7GxsTwtAJ8n+Z3sQiPX97NjY2OvX7++c+fOOXPmyG895vuRixcvruKeKOxrwD06mtWt+/0a7qBiycnJlSpVoq87CDMyMvj+mMW5KgwaFRXF8wl4f/u4uDh+WN+vssQoEMLgwYyIeXureRlNmjAi5uOjrPF/snP99evXy5YtGzVqlLOzc6VKlb7b5U5XV9fW1rZbt27u7u6yAtBRUVG8XepbtW8QyCeytEudN29emTJlclGNJyMjg/8///jxIy+Ydu3aNYHX+ktLlrCBA9mNG2zfPla7Nnv7lnl6Mk9Plh/qIuRBGRkZPLGPiLp27SpsCdbw8HAeHBeJRG5ubjt37hw7dmzt2rXFYrHsb1wkEtnY2IwYMWLHjh0vXrz4+YBpaWm8ZHHFihWVXT/t1KlT/E65UmcRXI4D7oyxv/76i4hKly6d5SOV5+hxxsbGdnZ2rq6uHh4ePj4+wcHBPyrJHxYWxlsCKqM0/I/wvIY+ffrwh40bN6b/Jt0rIjaWmZkxIqa8mv4DBgwgomnTpilrgh/glTQUr3KYv7x9yypWZESsUyemvE1y6enpvAwxz83cs2cPETk5OSlrvq9SU1N5Nhlv3gLZJ5VKhw4dSkRGRkaKb45JTEw8d+5clrQ7fiN39uzZCg6ep/AtbPLEYnEhLwFhaGhIRIo0rskpHmj45VmUsD5+/EhEJiYmQg0YHR3Nry5k5s6dK9TgBV9sLCtRghF96UeXnMwqV2ZEbP165c3J8xtKly7NT/l4cb+iRYvmIiOGd3+SFTkcM2ZMITw/KaimTp3KI+O//IxKTU0NDw/39fX19PSUJWDKfyZERkbKXjxixAgimjhxonJX/z2yy8MNG74TcF+yhM2cyYYMYWFhql9a4bV7926S6wBx7tw5ym0HCH5dJusVOXHiRCJycHDId6VmC7nVq89Vq9Zn6lR15mh//MjEYqajw5R6SijbuT5nzhz55y9fviz/+amlpWVmZiZrcefr6xseHv7dijGenp5E1KVLFyUuumDJ0i41PT09dzXcZf744w8i6tSpk0ALzAlzcybbG+TpyVasUMMaCpzDhw/zLbxWVlYhISGKDyiVSr29vfklZ8WKFS/8d/NQQkKCv7+/p6ens7Oznp6e/OeAqampi4uLp6env79/lj2pmZmZfGtL2bJlVRBKSk1N5eWX3/BiFPlEbgLumZmZvAl7w4YN5Wt0HDhw4PDhw/fv3/9l5sibN28uXry4YcMGd3d3Xlx/2LBhuVhJ7mRmZlasWJG+ZkU9evSIh8wELPl69y7T12dETBmFlz99+sQLoYap/MRcIpEsW7asEO6OfPiQmZgwIjZihLKmOHnyJMkVW+AfXiuUf8Q6duwYEdWtW1fZExVImZmZvM9tyZIlc9GBLT4+3s/Pz8PDw9nZWUdHh9+qlE824aXKgoODBV21mqWnp/Nb61m4ubllp091wSOVSjU0NEQikZKqXiYkJHh6ejo6Osq/tXi9WqEaMmdTeno6EWlqagoVg+C3/2U6duyYL7qM5BXjxzMi1rz5l4ezZ3/ZnafM6qtSqdTBwUE+Y6Bt27ZENGPGjByN8/TpUw0NDT09Pd4H4uHDh1paWmKxWH73JORfEomkXbt2RFSnTp0se/KioqL+97//DR8+vFmzZmXLlv32UMJjpnXr1u3Vq9eMGTM+8ErQjCUmJvIcZPkmUiojyymSSll8PEtPZ7LDHf86KopNn84eP1b90go1JycnkqvhxnNO3d3dczRIeHi4WCzW0dHh12WhoaHa2toaGhoF7OStMNi/fz8Rde7cWY1r2LiRETGh25Z/h2znuvy+wI8fP44ePXrFihWnTp0KCwv7+Wm5rJj7vHnzeG1ebDHMEQXbpcp79+4djw7duXNHiKXlREwMkw8jHD3Kxo1T9RoKqGfPntWqVYuIdHV11yuWDRMVFeXi4sLPkVxdXX/+lsvIyAgODvby8nJ1deX9BmQMDQ2dnZ09PDz8/PySkpKGDBlCRCVKlFDZmVW3bt2IaN26daqZThC5CbgzxqKjo3kkaNyv/qJiY2ODg4O3bdsmK+aeJR+NiKZPn67K098jR44QUdWqVfk1P8+KGjNmjLCzbNnCiJiuLrt1S+CyL15eXkTUtm1bYYeFn7t69ctNFCUVsee50rzyXXJyMq/c/Vr5DVsHDRpERAtkBXwhh9LS0tq3b09E5cuXf56N1g0RERF79uwZPXq0ra2t/FZNTU3NevXqTZw4UXbnLyQkhPJnM+5fioyM5I2ys2jTpo0qs7zziIyMjOnTp+vq6jZt2pSXcRdKUlLS4sWLeWydiM6dOyf7Fr/Bk9MOOYrjSROC3N7++PEjT9PgLC0thd10WfAFB7OmTdndu4wx9uYNMzBgROybaoFKmDZYQ0NDW1ubv9sfPXq0bNmyXJRxDwgI4L1SGWN8N6vgJ3KgRrGxsTxXfcCAAfLPP3v2TP6ooa2tzRMwx40b5+3t7efnFx4e/t2D5oYNG4jI0dFRVb9Bzrx7xxYsYOhpomK3b9/mH0dPnz5ljD179mzJkiXZbPgkLygoyPtrIRJ+r2iE8jJ0QGn4ibe1tbUa1+DiouydZv/ijQeKFSv2y843Py/mTkTFixefNm0a2qXmiCLtUrmEhISoqKiwsDC+569Hjx7CrjBbMjOZufm/D9evV1aspFBKTk7mTResrFyHD5fk7rrt6NEwfjFYokSJgwcP5uhnpVIpL3bav3//KlWqyJ+AaWpqElHRokVV2Y9ty5YtRNS+fXuVzai4XAbcGWPXr1/nV+y8w3JmZuaLFy/8/PzWrVs3adKkzp0729jY6OrqfhtSIaLSpUs7ODgMGjRo/vz5e/fuVWpx/W9FDhu2rFGjNV5ejLHk5GRex0MZ9wNHjmQODtusrKoKm0XIa+8ePnxYwDEhO3x9maYmE4mE37iQmZnJ7x/yLOlDhw4RUcOGDQWe5hsZGRl8R+FjZFUpIDk5uWnTpkRkbm7+3e6mERERPj4+bm5u1tbWIpFI/kBlZ2fn7u7u6+v7becifh6syt0/qnT+/Hn5anEyfyqnW2Med/78eZ4cZGBgsHz5csWvWNLS0ry9vWXpn40bN5bfOfjw4UMiEovFCs6SC7ysrSBNgPnmWc7Q0FAtWasFR58+jIh9Lc+ibFnKLyiIZ1EYGxureMcGKNvdu3d5Ry/5xK709PSJEyeuXbvWz8/v5cuXP9/UIivmPmvWLH6Xl/cPyGtev2be3mzKFKa0jjDwQzzfpWPHjoKMxlvvFC1aVL6WEeQXSUlJIpFIR0dHXYHjxMTEli3XlC37VjVvH6lUyndU29rayjIh0tPTnz59evz48ewUc69Ro0bXrl3/+uuvDRs2FLz0IBWQtUvdvn37rVu3Ll++fPLkSR8fH29v72XLls2bN8/d3d3Nza1fv36dO3d2dna2s7OrWrVq+fLlefxKpkiRIpqamooXOM2lAQO+VEn7+JHVq8d+df8GcmrLlq3VqqUSsZo12dOnOfjBuDjm5sZEImn9+h3atGmj+PVXZGSkr6+vu7u7g4ODtrb21KlTv+3rqVQfPnzgW8oSEhJUOa8ich9wZ4ytW7eOiHR0dCwtLXnw/VumpqayRqk+Pj63b99WcwLjq1dfSqN9+MAY27N1Kw9GKGOqtLSMBg0aEFHr1q2FOnJfuXKF/1/NRToYKO6ffxgR09dnp0/fEXBYXjiyatWq/GG/fv2IaMmSJQJO8V1nz54loho1aih7ogIvLi6OtxSvWrVqljuIWdLxihYt2q5duwULFvj7+6fKCt59Jb+HS09PT1tbm5f2K5AWLVqEgLvM+/fv+/fvz/8n1K5dO9db0SUSiY+Pj6yKsb29va+vr+y7r169cnNz09TU1NLS2rVrl0BrzwHeJDMX9ZeyiIyM5JE4IhKJRPv27RNkeYVFQgKbMIG1b89cXNiRI0wqZbNns+LF2cuXqplf1mDw7NmzCg6VlpZmZWVFRKtWrRJkbZCn7Ny5k4i0tLQCAgJ+/spfFnMXi8WzZ89W/baebHr7luWrkqQFx/v373kro1y0K8xCwUbQkBeUK1eOVN7hRobXtHFwcFDZjHFxcby6r42NTbt27SwsLHjWahZaWlpWVlYuLi5//PHHunXr+P1ORNgFMW/evO/+P88OfX39UqVKmZmZ8fzlv/76Sz2/Q2Ii++sv5uLCunZlly+rZw0F3aNHzMaGEbEiRdiePdn6kfPnWYUKjIgZGLCNGxME/4NVV8i7UaNGRHTkyBG1zJ4LCgXcGWNjx4797bff+N/8t41SVdkHNbumT2dErH//Lw8bNfpoZxe0d6+SZnv37h3PqZk+fbogA/JQ7MyZMwUZDXJh7tz0OnUm6evrBwUFCTXmqFGj5P9Z7927N3PmTBWc7fEGYh4eHsqeqDD49OlT7dq1ebQ0S2W0WrVqde/e3cvL69atW9/ee0tMTPTz85s1a1azZs2ydCk5evTot0H5AkMqlXbu3Fn+923Xrl2ejYaoxokTJ3iLEU1NTXd39182RJHHQ+08+MivnXx8fGRnV2/fvh01apS2tja/cBo5cqSK95ZxDRo00NTUrFWrlru7u5+fX67vHMu33p0yZYqwiyz4Bg36slErPp45OHwpY6Ha7izz58/n71IFOzfwRm3Vq1dHFkJBxQs/mpqaylpZpqamPnjw4NChQ4sXLx42bFjTpk1/Wcx9+vTp27ZtK8DHU1DE4sWLBfkY+fvvv4nIwsIC77T8q3nz5iTEzeDcUVnGlbwnT56Ym5vzk0/O1NRU1ijVx8fnwYMHhbPHkmqkp6ffvn3bzMysdu3ajo6Obdq0cXV1HTZs2Pjx46dPn+7p6blu3bodO3YcOnTIz8/vxo0bjx49evXqVWxsrHz89MaNG2KxWFNTU5XFPUDFEhK+7EclYm5u7CfHmZQU5u7ONDQYEWvQIGdJ8XnfwoULiWjo0KHqXkh2iRhjubifJu/du3cxMTEWFhZZQkV5UWYmVapE795RQAA5ONC9e1SrFhUrRhER9DVXTnAXL15s3bq1RCI5cOAAL/OfI4mJiWFhYeHh4WFhYY8fP969e7dUKg0PD69UqZIyVgvZMXbs2NWrVxcvXtzf37969eq5HufFixc3bty4cePGhg0bEhISgoOD7ezsBFznz0ml0nLlykVFRd27d8/W1lZl8xZgHz58aNq06ZMnTxo1anT27Fn5AtNZJCQkXL9+/dy5cwEBAcHBwWlpabJvmZmZOTg4ODo6tmrVKkuttILn8+fP9evXDwsLI6Lu3bvv3r2bR4QLs+Tk5Llz5y5dulQikZibm3t7e7ds2fKXP3Xu3LnJkyffvXuXiKpUqTJlypShQ4fyoj0xMTFLlixZuXJlSkqKhoZG9+7dFy5caGFhoexf5LsYY5UqVXrz5g1/WKxYsWbNmrVs2bJFixbW1tbZHOTdu3cWFhYpKSlE1LJlyzNnzny3PBF8H2Nkbk7h4cTLW+3dS3fvkqenileRmppqbW394sWLmjVr/iha+ksSiYRvFTpz5kzr1q2FXSHkERkZGS1atAgICKhSpYqFhUVoaOjr16+lUmmWl+nq6lpYWFjKsbKy+m6zEIAs0tPTbWxswsLCbG1teYJzLkgkksDAwOTk5OPHj3fo0EHYFYLKjBgxYv369atXrx49erSKp87IyChduvSnT5+ePn0qS55QDYlE4uvrq6GhUbVqVTMzM5yK50eTJk1atmxZzZo1g4ODtbS01L0cUJbt22nkSEpJobp1af9++u9ePiKi+/epf38KCSFNTZo0iebNowL2dnjw4IGtrW2pUqUiIyO/W+0qz1F3xF+1Dh5kRKx6dcZvCY4cyYjYhAnKnpanThQpUuTnlbJTUlK+3Q+b5W1Up06dzZs3K3vB8HOZmZn83kn58uVz1Nc0Li7O39+fFwwpXbq07J9VU1NTJBKNHTtWeWv+1qVLl4jI0tJSlZMWeK9fv+YNpZ2dnbOkJ0dGRvr4+IwbN87Ozk7+71osFltbW7u5ufn4+BTCGsQhISF9+/b9448/0GpJXlBQEG/XIRKJ+vfvHxMT86NX+vn51atXj7+XKlas6O3tLUtEio+P9/T05JvlRSKRi4tLSEiIqn6DH/r48aPsD0H+6FaqVClXV1dvb+9fbu7hW4KIqFKlSoXwT0ZRKSmsWrV/H549y3LbrUtBx44dUzyi4ezsPGPGDLWsH1QmKiqqZs2atWrV4v/oWlpavFEqT8D09fUNDw/HEQQUcerUKb6XQhHNmzefNm2aun8VUMiSJUuIaPz48aqfmtf5tLW1Vf3UUAAkJSXxZJqFCxeqey2gXDdvsipVGBEzMWFr1jBZyb29e9mCBUxb+0u8M7fVSfMBnpJ47do1dS8kWwTIcM9P2rShs2dp5UoaO5YSE6lcOYqPpwcPyMZGqdMyxnr16rV//35bW9urV68aGBh8+vRJlrceFhYWGhoaFhb24cOHb39WV1fX3Nzc0tLS3NzcwsLCxsamSZMmSl0tZEdKSkqbNm38/f1tbGz8/f2ztC6RSUtLu3Pnzo2vQkND5b9bunRpe3v7+vXr6+npzZw5MzU1deHChVOnTlXJb0Djxo1btWrV1KlT+cYcEEpYWJiTk1NkZGTnzp2XLFly9erVwMDAgICAR48eyV6jpaVVs2ZNZ2dnBweHJk2aFCtWTH3rhTwqIyNj2bJlHh4eaWlpZcqUWbVqFe9tJU8ikdja2j5+/LhUqVJ//PHHhAkTeD+VpKSk1atXL168+NOnT0Tk7Oy8ePHiunXrquHX+KnIyMiAgIBz586dOnVKlvZORDya5uDg4OzsnCX9+fXr11ZWVmlpabq6ugEBAarcFVRwVK9O169T0aJERMuWEWM0aZJaFvLx48fg4GBFRjA1NeW1vKBgk0qlFy9eTE9Pt7S0rFy5cq4r3gL8SExMzI0bNxQZoUyZMnXq1BFqPaAWR48e7dKlS40aNa5du2ZgYKDKqUePHr127dqZM2fOnTtXlfNCgXHp0qUWLVpoa2vfvn07+9tGIT+Kj6ehQ+ntW7KyoqtXKTiYihalVq2oUSOaP5+GD6dly0i1H2AqxaNY06dP5wUq87jCFHB//pwsLUlHhyIiyNiYNmwgNzdycqLLl1UweUJCgr29/ZMnT3i/05iYmG9fo6+vb/GN8uXLi/i+b8hj4uLinJyc7t275+TkdObMGV1dXf78u3fveID11q1bt27dSk1Nlf0ID7M6ODjY2dnZ2dlZW1vL/nF9fX27desmlUo3btw4ZMgQZS+efS3soOI6NoXE/fv3mzVr9vnzZ/lt70ZGRjy83qRJk/r162PDJmRHaGiom5sb34/i4uKybt268uXLy7/g2LFjYWFhI0eO5FXd0tPTt27d6uHhERUVRUQODg4LFy50cnJSx9pz5vnz5+e+4vcJOB58d3Z2bt26tZGRkZub24YNG4ho8+bNgwcPVt9687MtW+jYMZowgd68oWXL6Px5wj0/AAAo9GJiYpYuXerp6Vm2bNlFixb1799fNZfhjLGKFSu+ffv21q1beTA9AvKLYcOGbdq0qVGjRgEBAfmj2gbkFmMUH08TJlC5cpSYSF5e1KoVbdtGr19Tw4bqXpyS+fn5tW7dumbNmiEhIepey68VpoD7lCm0eDENGkRbthAR1atHt27Rrl3Ut69q5n/8+PGCBQsOHTqUkpKio6NTrlw5a2trGxsbs68qV66MT8b8JSIiwsHB4dWrVw4ODk2bNr158+aNGzfi4uJkL+DVQuzt7e3t7Rs0aGBjY/OTtCxvb++RI0eKxeIDBw506dJFqSu/evVq48aNK1eu/Pz5c9zRUYabN2/evn3bw8ODR9idnJxsbW1RaRpygTG2YcOGyZMnx8fHGxkZzZkzZ+zYsd8eLDIyMrZs2TJ37tyIiAgiatSo0bx587JT/z2vkUgkwcHBFy5cOH/+fFBQEK/VTkRaWlq1atW6c+eORCIZM2bMqlWr1LvO/O36dbp0iUxMqEcP+sEOLQAAgMImODh49OjRfLuDg4PDypUrVRABv3HjRoMGDSpWrPjy5Utcl0GuxcXF2djYRERErFmz5vfff1f3ckDpBg+mCRNo8mTy9CR3d9qxg8qUUfealC8jI6NkyZJxcXEvXrzgtXzzssIUcO/dm3x8KCiIGjak4GCqX5+KF6e3b+lrYrJq3Lp1q3z58vL1uyFfe/jwYZMmTYyNjZ8/f86fMTU1tfvK0dHxR9VmvmvmzJnz58/X09M7d+5c48aNlbNkIqI///zz77//njRp0tKlS5U3CwAIJTIycsyYMYcOHSIiR0fHDRs2VKtWjX9LKpUePHhw2rRpvP2sra3tzJkzXV1d1blcgWRmZoaEhPC09ytXrqSnp9eoUaNYsWIXLlxASygAAAAQHGPswIEDkyZNevPmjYaGRr9+/ZYsWaK8i/e4uLi+ffuePHly3LhxK1asUNIsUEgcO3asU6dORYoUefjwYYUKFdS9HFAuHnDX1qbffyexmHbuLBQBdyLq2bPn/v371dLgOqcKU8CdiMLDydyciGj4cNq4kf78k5YsUfeaIN979uxZeHh4QEAAz2Q3NTXN9VCMseHDh2/atKl48eIBAQGygJrgzM3Nnz9/HhQU1KhRIyVNAQCCO3bs2KhRoyIiInR1dd3d3adOnerr6ztz5synT58SkbW19ezZs3v06FEg06Pi4+MvX75cvXr1ChUq8FL1AAAAAMqQlJS0ZMkST0/PtLS0YsWKTZkyZeLEicIWhLx169b69et37dqVlJQ0ZMiQUaNG1atXT8DxoXDq0aPHwYMH27Vrd/LkSXWvBZSLB9xr1aKpU2nlSgoPLywB9+3btw8cOLBt27anTp1S91p+odAE3OPiaNkyCg0lc3P64w+6cIFWrKCNG8nKSt0rA/gPiUTSs2fPQ4cOlS9fPigoSBm3pm/fvm1nZ1emTJmIiAhUMQLIX2JjYydNmrRt2zbGmImJSWxsLBFZWlp6eHj06dMHf9EAAAAAgggNDf3jjz+OHz9ORFZWVsuXL2/fvr2CY757927btm1btmwJDQ0lIg0NjebNm8+aNStfdNyBvC8qKsra2vrTp0+7du3qq6riyaAWs2dTv35kaUlJSdSxI+3fT8WLq3tNKhETE3PmzJl27drlqJiEWhSOK3OplDp0oNq1af16qleP2ralLl3oyhVE2yEPEovFO3fudHR0fPv2bfv27eWbB+ZUZmbm3bt3vb29582bJ//8wYMHiahHjx6IzQHkOyYmJlu2bLl06ZKVlVW7du0qVKjg7e396NGjfv364S8aAAAAQCiWlpbHjh3z8/OztrZ+9uxZhw4dOnbsKKsjmiMSieTcuXM9e/asXLnytGnTQkNDy5Yt6+7u/uzZs3PnziHaDkIpU6YMrxk7bty4Dx8+qHs5oETFi5ORERGRgQG5ulJamroXpCrFixfv27dv3o+2U2HJcA8OpkWL6ODBLw/79KExY8jBQa1rAviZmJiYJk2aPH78uGnTpqdPn9bNdqeBd+/e3bp169atW4GBgUFBQcnJyUSkra0dHx8vK8JQvXr1J0+eXLx4sVmzZkpaPwAoW2pqKhFpaGgIu8EZAAAAAORlZGSsXbt21qxZ8fHx2traI0eOnD9/fpEiRbLzs8+ePdu9e/fmzZvfvHlDRNra2q1btx4wYEDXrl01NTWVvHAopNq0aXP27Nl+/frt3LlT3WsBZenYkZYtI0tLIqLu3WnuXLKxUfea4L8Kx0f8u3dUvvy/DytWpIgI9a0G4NeKFy/u5+fXuHHjy5cv9+7d++DBg2Kx+LuvjI2NvXnz5o2v5O9ji0QiKysrXlk+MzOTB9wfPHjw5MmTEiVKODo6quiXAQAlyP59OAAAAADINS0trfHjx/fs2XP27NkbN25cuXLlgQMHFi1a1L9//x81zklNTT127Nj69evPnz/PcxyrVas2aNCgwYMHlypVSrXLh0LH29vb1tZ2165dPXv27NSpk7qXA1BIFY4M99u3ae5cOnLky0NXV5o0iRo2VOeSALLh4cOHTZo0+fTp08iRI9etWyf/rdevX0+bNu3GjRu8/J9MqVKl7OV8u9Fm9uzZc+bMcXNz8/b2VvovAAAAAAAAUFAEBwePHz8+KCiIiOzt7VeuXNmgQQP5F9y6dWv79u07d+7kjXb09PRcXFzc3NxatmxZINvaQ960bNmySZMmlS1b9tGjR0a88ggULB07UlIS6esTEd26RefOIcM9zykcAXfGqHlz+v13at2aLlygZcvoyhVCrVvID65du9ayZcvk5OQFCxZMmzZN9nxsbGyJEiUYY1paWjVr1nRwcLCzs7Ozs7O2tv72TE6+zoy/v79UKj127FibNm1U+6sAAAAAAADkb4yxHTt2uLu7R0VFaWho9OvXb+nSpdra2j4+PuvWrbt79y5/mZ2dnZubW9++fQ0NDdW6XiiMpFJpkyZNgoKCRo8evXr1anUvB4SHkjJ5X+EIuBNRYiJ5edHTp2RpSRMmUNGi6l4QQHb5+vp2795dIpFs2LBh6NChsud37txpa2trY2Pzbfm/T58+3ZCTpc7MhQsXHB0dUTQQAAAAAAAgF+Lj4+fOnbty5cqMjAwDA4P09PSMjAwiKl269IABA4YMGVKtWjV1rxEKtfv379erVy8zM/PSpUtNmjRR93JAYAi4532FJuAOkJ+tX79+xIgRYrH4wIEDXbp0+fYFmZmZT58+DQwMDAgIuHXr1pMnT6RSqey7RkZG9evX51nwjRo1KlGihOqWDgAAAAAAUBCFhoZOnDhRJBKdOnWqefPmbm5uXbp00dLSUve6AIiIPDw85s6da2VlFRISgv5PBcyqVdSrF/GWEOvWUefOVLasutcE/4WAO0D+MGvWrHnz5unp6fn5+Tk4OBDRu3fvZBH2W7dupaamyl6cnTozAAAAAAAAoKDU1NTExERkNUFek5aWVrdu3UePHq1Zs+b3339X93IAChcE3AHyB8aYm5vbxo0bixYtWrt27Xv37n3+/Fn2XbFYXL16dXt7+wYNGtjb29eoUQMVYwAAAAAAAAAKratXr968eXPMmDEa6GIIoFoIuAPkGxKJpGfPnh8/fvT39yciU1NTu68cHR2NjY3VvUAAAAAAAAAAAIBCDQF3gPwkPT09Ojr6xo0b9vb2ZVGjCwAAAAAAAAAAIC9BwB0AAAAAAAAAAAAAQACo4gQAAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4P5VXBy9eEESibrXAQAAAAAAAAAAAAD5kqa6F5AHMEajRtHbt2RmRtev06pVZG+v7jUBAAAAAAAAAAAAQD6DgDvR0aMkkdDx40RE4eHUuzfdvKnuNQEAAAAAAAAAAABAPoOSMkRXr1Lbtl++Njen1FRKSlLrggAAAAAAAAAAAAAg/0GGO5FI9J/S7YypbykAAGoTmpJy8dMn/rWzsbGZnp561wMAAAAAAAAAkO8gw52ocWM6c+bL1+HhZGBABgZqXRAAgBqEpqTEZmY6GBk5GBmV0NJS93IAAAAAAAAAAPIfZLgTdexIJ09Sly5UuTJdu0arV6t7QQAA6lFKW9sGdxwBAAAAFPHiBU2YQBIJJSXRoEE0cKC6FwQAAAAqJWKFvIJKTAwdPEiVKpG9PX38SFpapK1NpUuTJm5FAEDhcjI2duO7d2V1dIhohYWFWCRS94oAAAAA8iEnJ1q6lOztKTWVWremlSupdm11rwkAAABUp9CHlZ89oxEjqEEDunaNjI2pZk26f5/u3qVatdS9MgAAVXMpUWJImTLqXgUAAABAvhUfTwkJZG9PRKSrS7/9RmfOIOAOAABQqBT6Gu5xcURERkbffwgAAAAAAACQTUlJpK//70MDA0pMVN9qAAAAQA0QcEfAHQCAiKikllZ5HR11rwIAAAAgPytThqKj/w2yX7+OzdMAAACFDQLuchF2xighgUQiKlJEvYuCQksqlcbHxx85ciQRiTCgcp8zM/e8f+8bHa3uhQAAAPzMzp07Fy5cqO5VAPyASESzZlGPHrRzJ82YQWFh1LWrutcEAAAAKoWAu1zAPSGBpFIyMEDHVFCL9PT0vn37NmrUqGvXriVLluzYseP27ds/f/6s7nVBYXE3MfF+UtKnzEx1LwQAAOBnnJ2dN2zYsGvXLnUvBOAbAQE0diyVLk1r1pCmJrVsSceOkVis7mUBQO6lpaU9e/bsxYsX6l4IgEBu3qR27ahTJ2rThgID1b2aAgsBd7mAO/+6WDE1LgcKrbi4uDZt2uzbt+/169d169ZNT08/fvz4wIEDS5cu3aFDh02bNsXExKh7jVDAPUhKIiIbAwN1LwQAAOBnypQpc+LEiT///DMoKEjdawH4r1OnaPVquniRzM2pUyfy8qK//1b3mgBAIfv3769ateqMGTPUvZB869EjOnaMnj5V9zqAiIiSkmjIENq4kXx9ads2GjHiSywUhIaAu1yQHQXcQU2ioqKaNWt26dIlU1NTf3//W7duvX//ftu2bS4uLoyxkydPDhs2rHTp0o6OjitWrHj37p261wsFUAZjocnJGkTV5dt8AQAA5BlHjx49deoU/9ra2nrLli3r1q1T75IAsrp2jYioQQMiops3ydeXfHzUuyIAUFCZMmWIKCoqSt0LyZ/++osWLKB372j6dJo9W92rAaLbt8nOjsqVIyIqU4acnL4cuUBoCLjLBdl57Q4E3EG1wsPDmzRpcvfu3erVq1+7dq127dpEVKJEiQEDBhw7diwqKopH3sVicWBg4IQJEypUqODo6Lh48eKwsDB1rx0KjmfJyemMVdHTM8CuZwBQzOLFdOTIl6/d3UkiUedioCApV67c4MGDQ0JC+MO2bdvu2LFDvUsC+A+plIKDib4G3HkIo2FDdS4JABSGgHvuPX1K16/Trl00YgTt308nT9KbN+peU6GXmEjym9oNDCghQX2rKcgKe8D9SpEix+zto01MiCglKelTsWIMAXdQoZs3bzZq1CgsLKxBgwZXrlypWLFilheYmJjwyPv79+99fHz69++vr68fGBg4ZcoUS0tLGxub2bNnP8XmLFDYQ9STAQCBBAbSjBkUG0tE5OdHjKl7QVBQ1KtXb+XKlZ07d/7w4YO610JSqZThzQ1ZPHhA8fFkZkalSxMRXb9O9DX4DgD5FgLuuXf//r+fgSIR1a9PDx6odUFAZG1Nd+78+zA4mGxt1beagqywB9xnPnjQ6caNB4aGRHQ4Jsbk8+e+CLiDqvj5+bVs2fLjx48dO3a8cOFCiRIl0tLSpk6d+t1GqcWKFXN1dd2+ffuHDx98fX379+9ftGjRR48ezZkzp1q1ajzy/ujRI5X/ElBAPEhOJqIaqCeTT0VG0q5dtHs34UoA8oYxY2jKFHUvAgqKoKAg2a6+nj17ent7m5iYqHE9SUlJixcvtrOza9eu3ezZs9PS0tS4GMhbsqS084A7MtwB8rnixYtra2t/+vQJH/g5ZmhISUn/PkxKIkND9a0GiIioUiVq3JiGDaP9+2nUKLK2pqpV1b2mgqmwB9zj4uKIyMjIKMvXAMq2ffv2Dh06JCQkDBo06NChQ/r6+vHx8e3bt/f09BwwYMBPflBPT69jx47bt2+Pioo6fPjwb7/9ZmRkxCPvNjY2Tk5OKvsVoCBBhns+dv8+delCRCSRUMeO+SVthDEWHR2t7lWAwKTSL/X5OnakyEhCP0sQxMOHD11cXGL5pgmiNm3aaGpqqmUlGRkZ69ats7CwmDJlyt27d8+cOTNnzpw6depcunRJLeuBPEc+4P7yJb17R8WLk4WFehcFAAoSiUSlSpVijL1//17da8lv7O3pypUvZ4fR0RQcTHXqqHlJhdz797R0KTk7k5sbJSfTwIG0Zo2611RgIeCOgDuowYoVKwYNGpSRkeHu7r5582ZNTc2oqKjmzZtfuHDB1NR07ty52RlET0+vS5cuO3bsiImJ8ff3HzduXIkSJV6/ft2zZ09lrx8KmASJ5E1qqraGhrmenrrXAjm3YAEtWUL9+lH//vS//9GiRepe0K9FRUVNnz59zJgx6l4ICCY+ntavJ1tbcnP78syKFeTuTlKpWpcFBcLw4f9n787DY766OICfyb7bl8QeRcW+L7GLPZYiSomlrShlaHmbVrVjKdLaoq0SpQRVEmvsDYqEoBNrbCFBZCFIyL7MzHn/uDHS2LL8Zkbk+3ne530yk+Teq8bM73fuueeMd3V19TN058k9e/Y0aNBg0qRJ9+/fb9269bFjx44fP+7k5HTt2rWuXbsOGzYMgRj4T8BdfN2uHclkhlwSvOuY2d/f//z589r+FqALoqpMXFycoRdSfBw9Sl98QSkptHQpDRpEAwaQmxv99hsy3A3s0iX63//oxx+pdWsaM4amT6cWLSgqytDLejcZJj3k7YGAO+gZM//vf/9bsmSJsbHxL7/8MnHiRCKKjIzs1avXrVu3ateufejQodq1axdoTGNj4w4dOnTo0OHbb7+tXLnyw4cPVSqVoZK/oDg6ffRo9NixfUaONEHGQXF0/To1bZrzdbNmdO2aIRfzWtHR0du3b/f39z979mzVqlVPi2AEFHOXLtGKFfTnnzknhrOyco6lOjpSz540Z45hVwfFWGRkZKVKlaytrYlo0aJFMsNFLUNCQr766qvg4GAiqlev3rx584YOHSrWc+HChd9++23WrFn+/v6BgYGzZ8+ePHmyMdqPl0xPntCNG2RhQU2aEKGAO+iDUqmcOnXqqVOnHB0d79y5M3LkyMWLF1esWNHQ63oHoYx7gS1YQEeOUOXK5OlJPXoQM3Yf3wqRkUREjo5ERMx0/jylp1OZMoZd1LuqRGe4M3NycjIR2dnZEQLu8F8XLpA2Uen0aWl6vmVlZY0YMWLJkiXm5uabN28W0XZt39TWrVuHhIQUNNqeW8WKFWvXrp2WlnblyhUJlgv6kphIN2/mfB0fT/ovs3HmzJm42NjSarW+JwZJlC5N2sYPT55Q6dIGXMtLxcfHr1ixomPHjtWrV582bdrJkyfVavWCBQu0N4QaZEEXQ2o17dlDPXpQ06a0ejWlppKzM/n50bVr1KcPifJUX31FkybRtm00daqhlws6dvHixY8//njq1Knbt2+XKtH7119/HTlypGhMaqho+7Vr14YNG9a+ffvg4OAKFSp4e3uHhYW5ublp12Nqajp16tSLFy/27dv3yZMn06ZNa9269b///muQ1YJhHfv338kNGx4dPpzMzIheqOcO77ynT2nhQvrsM/r5Z9J9pe+YmJjRo0e3bt361KlT9vb277//vrGx8caNG+vVq+ft7Z2dna3rBZQ0lStXLle2bMaz4mbwBhcv0tGjZGtLEyYQEW3aRL16odTgW+H2bSKiWrWIiOLiKD2dKlYkW1vJ58nOzo6NjfX09Fy1atXff/998+bNrKwsyWd52/HbJz4+PiUlRQ8TiWi7tbW1ePjRRx8R0caNG/UwNbz9+vXjnj1zvm7ShNXqog6YnJzcs2dPIipduvTx48fFk4GBgba2tkTUo0ePpKSkos7BPHLkSCJavXp10YcCvfH3Z2trvn2bmXnZMl6zRt8L6N+/PxH99ddf+p4YJLFsGf/vfzlff/kl//yzQVfz3JMnT3x9fV1dXU1NTcUlh4WFhaur6zfffHP48GHtj23btm3YsGEGXCcUVFxc3JIl6x0cmIiJ2M6O5XK+fv1VP8xWVkzEP/6o31WCHvn7+8tkstxp3Y6Oju7u7j4+PhEREYUeNisrKyAgQMJ1Fsi9e/c8PDzEH8rGxsbT01N7nZacnOzt7a1SqfL8SkBAQPXq1YnIyMjIw8Pj6dOnel81GNLs2bOJaPr06cyckZHRuVat5c7O6idPDL0u0IusLG7dmrdt4+ho/uUX7t9fd1NlZmZ6e3uLW0gzMzO5XC7ebW7cuOHq6irehOvWrbtnzx7draEkmjWLiXj2bEOvo5gYPpyJePr0nIdNmzIR//GHQdcEzMw8bBgT8Z9/MjMHBTERt2mji3m++OKLOnXq5Ik/lylTpkWLFm5ubp6enj4+PoGBgREREeqix9reVm9XwP3kyZOurq6VK1euXbu2h4dHcnKyTqeLjo4mIgcHB/GwX79+RIRPJhD69eORI3nzZmYpAu5xcXFNmzYlInt7+wsXLognN2zYIOJQo0ePzsrKKvTgK1euHDJkSFRUFDN7e3sT0aefflqk5YJ++fuzm1vOlblBAu729vZEVJSwCBhMejpnZfGsWdy7N/fuzd9/z9nZhl5RekBAgLu7u5WVlbi0MjY2dnFx8fX1fXFb8d9//y1fvvyZM2cMslQoKKVS6eHhYWFhIZPJHB2v1a3LXl6cmPj8B16IQDIzBwSwsTHLZDnX9vCOSUpKqlKliogzzp07t0ePHtb/7b9do0YNd3f31atXX7t2LZ8DajQaXS/7NRISEjw9PS0tLYnI1NTUw8Pj/v374ltZWVk+Pj6isMDatWtf/N3U1FSFQmFmZiYu+Xx9ffW7djCk3r17E5G/vz8znzp1iogaNmxo6EWBvhw4wLnvvzp1Yt1cVwcEBDiKWhBErq6uL169BwYGNmjQQPyAi4tLWFiYLpZREv3yCxPxxImGXkdxcPs2m5iwqSnfvcvMfOAAE7GDA2dmGnplwNyyJRPxqVPMzL6+TMQjRkg+ya5du2QymYmJyfjx4z/55JNu3brVrFnzVUWPLS0tGzRo4OrqKpfLly1btnv37kuXLuk6Gqwfb0vAPTg42MXFRfzntra2Fn8Tjo6OR48e1d2kYWFhRFS/fn3xsEOHDkR04sQJ3c0IxUi/fnztGjdrxomJ3KQJ797NPXvymDE8axavWMEBAaxUcmws5+eW8NatW++99554sd0VnzrM3t7eRkZGRCSXy4t4Yyn2ivz8/Jg5JCSEiBo3blyUAUHP/P15/nz28OBt2wwQcL9z5w4RVahQQa+zgiSys9nKit9/P+f6NSKCHz0y1FpUKlVgYKC7u7vtszOJRkZGzs7O3t7e8fHxr/qV+vXr7927V89LhYJKS0tbs2ZNs2c9HkxMTIYMGXLixH+Cp0FBzzcOX7RoEROxhQWfPKmPBYM+TZs2jYhatWqlTVBSqVRKpdLb29vNza1cuXK576kqVqzo6urq5eUVFBT0qlSDMWPGaFMT9CwzM9PHx6dChQpEJJPJ3Nzcbt68Kb6l0Wi2bt2qzdVq37796dOnXzXOxYsX27dvL36ya9eu+dxpgGJNo9GULVuWiO7du8fMS5cuJaLx48cbel2gL7//zj/88Pzh2LH8zz987ly+7hXz5+rVq7169RJvLPXr1z948KD2W3kO3GRlZXl7e4tKuaampnK5/AlOWhSdvz8T8QcfGHodxcGUKUzEo0fnPOzWDUcd3yLlyjERi0wChYKJ+NtvpZ3h5s2b4v3n5/8evM7Kyrp161ZgYKCPj8/XX3/94YcftmrVqnz58i+NwouLxpkzZ6anp0u7PH0yfMD91KlT2qNPtra2np6eCQkJly5datmypbjY9fDwkKTUxotu3LjRtWvX5s2b9+3bd/DgwaJ29vnz53UxFxQ7/fpxTAz/+SfL5dykCc+fn3N2Ps//TE25WjXu2fPDIUOGyOXyn376aePGjceOHbtx40Zqaioznz17Vty5tWnT5uHDh8ys0Wj+97//iZf34sWLi75UcYJ1xowZzJyRkWFubm5sbPxubAmWECLg/vgxN2vG8+fzmjUcF6e/2f38/IioX79++psSpHLxIhNxnTo5D/v1YyLevVufS1Cr1UFBQXK5XLzRCU5OTl5eXrGxsW/89dwlF65cufLFF1/ocrFQYNHR0QqFQnspXLFiRU9Pzzt37mh/ICmJV6xgJ6ecz0QLC37F9gpPnsxEXK4ch4frafGgB5cuXTI1NTU2Nj537tyrfiYiIsLHx8fd3b1GjRq576NsbGxcXFwUCkVgYGBGRob25w1yslitVvv5+dUSJU2JXFxclEql9rsnT550dnYW36pXr56fn98bUyU0Go2vr6/4t2NhYaFQKIr1HSO80bVr1yjXyekPP/yQiNbo/9AiGMq+ff/Jfe7WjY8eZSKuUIHd3TkgoCgHEB8/fiyXy0WFq7Jly+YuaXXjxo1+/frNnDnzxd969OiR9rfKlSv30kJYUACi+Ea7doZex9suO/tx1pCObGTEFy8yM1+4wDIZ29r+50QkGIg6/amqY1NNvdo5e4GjRzORtOl+6enpIkcn/yVD09PTIyIiRCDe09PTzc2tRYsWNjY2RFSzZs3OnTtLuDw9M2TAPXeoXdRGTEhI0H43Ozvby8vL3NxcXLvsljqCkJiY+P333+dpkTpixIgHDx5IOxEUUyLgzsw9e3L58nz3Lu/bx2vW8OzZPH489+vHjRtzhQo5MXcjo5efjilVqpRoyTtgwIC0tDRmzszMHD58OBGZm5tv2bJFkqUeOHCAiDp16iQeis0qbZl4eMslJ+cE3Jl57VquUoWXL+eyZdnVVUdHUfOaMWMGEc1GRcLiaP16JuIPP8x5aG/PRHp63TCHhITI5XJRWkFo3LjxwoULb4t2BAUUHx//3nvvofzC26bts3Z/bdq02bhxY+6o6PXr1+fMOWFnlxNqr1KF58593WahSsUDBjAR1679yqA8FC9qtbpdu3ZElP+tsvDw8LVr144ZM0Yb2hasrKwWLVqk09W+RmBgoKj7R0QNGjQQRwaFK1euuLm5iW85ODj4+PhkFyRq9vjxYw8PD9Fh9b333sudkQq6ExMTc/PmzdmzZ+uzjP66deuIaOjQoeKhqOZ/5coVvS0ACir3J5okw3HTphwUxNnZvG0bd+vG//zDNWs+z9KqWJE9PPjQIS5IHVFRxkps3ZmYmHh4eIj8LWZOSEiYOnWqKE9qb28v7jRfdO7cuU6dOok3saZNm+IOsfBu3mQirlXL0OvQreTk5EePHhUldS82dp5SSdGnPsp5/OGHTMQzZkizPiia1NTzSiVduZJT7uzBnpGPF3TMuiZlkY9x48YRUZ06dXJ/BG/evLlPnz6ff/754sWLd+zYcf78+Tceu9FoNOHh4SKYdunSJQlXqE+GCbiHhITkCbU/fvz4pT95+fLlVq1aiVzgTz755MkTCZJ2k5KSvLy8ypQpIxbg7Ox85MgRHx8fsYVSsWJFUXpPdw4cOPDTTz8tWbIkRgR0dU2t5l9+4YED2c2NUaE+37QB9xs32Nz8lTXcMzI4IiI7KCjor7/+Wrp06RdffDF8+PAOHTrUqlVLbBeVLVu2cePG2tszkdteunTpY8eOSbXUx48fy2QyKysrMcukSZOI6KeffpJqfNCdjRu5fHletCgn4K7RcPv2PHUqW1vn5Ip++y3ruoe0uAo/cOCAbqcBXZg6lYnYy4uZ+f59JuLSpSU8vPwa165d0xYYqVGjhlwuf01+a36EhYX9/Na0ewVBoVAQUYsWLf7991/tk2q1OjAw0NXVVSaTOTrWl8k0LVqwr2++AgjJyTlNszp2ZGkDHWAQq1atEoGewhUriI2N9fPzk8vlLVq0kMlkDRo02Lhxo+SLfCPxOhdZVJs2bdLm17+maWpBnThxQltS2dXVVZQcAd3p1q2bKG5WtmxZhUKho6PSeUyYMIGIxNHV2NhYkXbzDjeCK+6ysrL69OkzduzYAm2hvVJiImdkcEwMy+U8YADPmsXaV51Syd98w3XrPo+8ly2bMmXKnj173hjxDwwMbNiwoXjr6N69++XLl8XzarXa19e3YsWKRGRkZOTu7v7GlMGAgADtNqerq2tkZGSR/8wlT0pKzu3Zu+vQoUP29vZ9+vSxs7OTy+XR0dEFHUGtTr94sbJSSUlJR5k5M/N2ytSuXL4c44Pv7ZCYuF2ppJs3c0pAXrxYRamkzMzbUo2/evVqIrK0tMxTOOSLL754MTlV20BVLpd7eXn5+fkplUpRJUJrypQpRDRp0iSpVqhn+g645z/UrpWdne3t7W1lZeXoWL9GjfQdOwo/+0tD7drvRkZGdu/eXfs5pItoeFBQUJcuXYhIXL6XLl163bp1ks+S18KFPG0aZ2VxQkLOZju8yf37PGiQBP+pdu7cSUStW7fWPpOYmNirV6+L4oCVdESNeDHs+vXricjNzU3aKUByP/3EMhkT8YubIzEx7OHBRkY5DWZ8fIratvelLl++rFAoRP/D3DUioNjo2JGJ+NAhZub9+5mIu3TRz8ytW7cmohEjRuQOxUolMTHxpd0IQc8WLVpERF9++aV4+PDhQy8vr5o1a4orJWtr6wkTJly+nPr6QfKIieHq1XMOZhi0LyYU1aNHj0TSpSR5Kt988w0RfSt1FdE3Onv2bPv27a2trb28vLQlX17TNLXQsrKyFixYIFpJly5duugDwqscP35c3GZqs3orVKiQ++9XR5o0aUJEwcHBzLx9+3Yi6tmzp05nhKJQKpXi3+PAgQNflRueXxoN9+vHzZrxrVuv+7GwMPbyYmdnJlJ27ixO9ri6ur60pXx4eLj2bE2dOnVyH7s5evSoeLERUZcuXfLf8SItLc3Ly0vsRVlaWhZlE7HksrFhIn4XC+KnpaVNnDhRnMfSnl61sLDw8PC4fv16/seJj1+pVNLVqy3Fw6ioKUol3b35sW5WDQV2//4ipZKioqYys1qdrlQahYaaaDRS7DsyX7x4UVw7rV+/Ps+3bt++vXv3bm9vb7lc3r9//wYNGoh34BcZGxv36tVL+4tXr16VyWQ2Njb6PLImIf0F3AsRas/t2rVrbm4Xxa6wuzsX5FeZmRMTefZs7tJlhHaLOCgo6MUf02g0Pj4+4nOoTJkyPj4+BZvm1bShdiIqX7789OnT+/fvLx726tVL20hTJxo0eJ4ie+QIjxunw7neFd99x0Q8eHBRx0lOTjY2NjYzM5P40OILPvroIyJavXo1M1+9epWIqlevrtMZoSg0Gv7qKyZimYxfc4b+33+5ffucbJiWLTk4WJrZw8LCFApF/fr1xVuQaN7bsmVLFNQqZjQaLlXqedMb0WjiWWxUp7Kzs8U+jY56cH300UdyuVwXI0OB+Pr6EpG7u7t4+OOPP4o3jdq1a3t5eRXoKi63sLCcV+5330m3VtC70aNHi4tYSUZbuXIlEU2YMEGS0fJvz549RNS3b1/tM76+viI1x8jI6KOPPpI2DzQ6OrpHjx5VqlRBGTfdEWWOFixYwMxBQUHasHu1atUKWhEo/9LS0kxNTU1NTU+fPp2VlSXOs37//fe6mAukcubMmTx9tgpp2TIm4jJlOJ939Ddu7Fq+vEWLFtoAk5WV1ZAhQzZv3vz06dPk5GSFQiHOSdvY2CgUCu1dZFRUlLu7u/b1XLgqfDExMe7u7iKu6uDg4Ovr+8aOFPDce+8xERckAF0sXL58uXHjxmKPWaFQqNVqpVLp7u4ukkSNjIxcXV2D83Ujqr58uY5SSQkJW5k5O/vxuXM2SiWlpRmmETq86O7dSUolPXjgzczp6deVSrp8ubYkIycmJoqmmJ999lk+fyUhIUGpVPr5+Xl5eXl4eLi4uDg6OpqYmAwaNCj3j3Xt2pWIfv31V0nWqWf6CLgXMdSupdGwj0/OtmKlSpzPfJonT3j2bC5dmon4/ffPubi4vDTUntudO3d69OghFty3b98iHvzME2pXKBTazRk/Pz+RHGRnZ+ft7a2rU4e5C41ducK5birgpdLTuVIlJuI3vVLyRZwEPH36tARjvZq3tzcRjR8/npk1Gk3p0qWJKD8dC0H/MjP5o4+YiM3M+K+/3vDDGg2vX88ODjnReU/PwMIdvtFoNCEhITNmzMhdNrdixYoeHh6+vr516tQholq1aoWjm2ExIkpJVq2a83DoUCZivRRkuHTpkki50tH4cXFx6Ov1Nti/f3/uiOqjR48GDRp04MCBol+uHDzIJiZMxKtWFXmVYAgnTpyQyWSWlpa3Xp/RmW/+/v5ENGTIEElGy79t27blmTcgIICIXFxcQkNDdTHjwYMHkfusO3v37iWiChUq5E7d3b17t4glEdF7773n7x8n7S1XampqQEDA8OHDbWxs7OzsGjZs2KhRIyLat2+flNOADly9elU0c3ZycipkAtylS2xhwUS8a1dBf/X27duLFy9u166dyH0hInNzc9FhzsjIaPz48dpUmNTUVHEmVUTni96E+eTJk6LpV4GiY8AdOrCxMZ88qbcJ//zzz4MHD86bN6/QWQ6vp9FovL29xQZP/fr189SHvHHjhoeHh3jhEZGzs/P58/uZX/kGmpCwTamky5driYzp2Ng5SiXdvIno01vk5s0+SiU9eRLAzE+e7FcqKTzcpejDajSawYMHE1GTJk2KeGYoKysrd2tPfnaJWL9+/eK4O6jbgPuFCxfc3NzEDqqNjY1cLi/6CcrISO7WLSfl083tdX23kpPZy4vLlMn5YWdnzlU/5s38/PzKli1LRKVKlfLx8SnE325QUJDYjXkx1K51//79oUOHip/p2LGjlNGu+/f5yy9ZqeSWLZ93Mdu5kydP5pQURizj1VatykkolsQnn3xCRLquTXzq1Ckiaty4sXjo4uJCRJK3GoaiS07m3r2ZiG1scgqBML+59nFqKisU7OSUZmJiUaDrbLVaHRQUJJfLq1atqo2zV6hQwd3dPSAgIOvZxI8ePRIZYZUqVdJRiAGkt3UrE3H/nBp8XLs2E3FYmB5mFnWr8t96vtDUarUuStZAPimVSiJq1qyZLgb38WFTU/7jD12MDbqVmZnp5ORERPPmzZNqzH/++YeIOnfuLNWA+fTnn38S0UcffZT7yZCQEN3NuHv3biLqr33rBuloNBrRXGTZsmUvfisgIKBx48bvvTfQyIjr12c/v6JWtXr48OHatWtdXV210SgiEr1SZTLZ9OnT8xSihbdTbGys6Jlsb2+f//IsOVJS+P33mYgnTy7KGuLj4319fV1dXY2NjStXrtygQQNtqpZGo/Hz89O+rtzc3KQ6Ga/RaHx9fW1tbdu2bYtOqvn1zz+8Zg0fOKCHWMrTp09HjRolbtyIyNra2sPD48aNGxJOERcX17t3b/HS8vDweNVbVnx8vEKhKFeunKmp8blz1S9frv3ggbda/ZKgqgjmPnjwC/+nmPs/Eq4ZiigsrJ5SSWlpl5k5Pv5XpZLu3PEo+rDiFGyZMmUiIiKKPloe2dnZVapUISIJmyDqja4C7iqVSlsyxdbWdubMmY8ePZJqcJHqbmubc3hr5UpevZpF9OnpUz506CWh9sOHCzNRbGzsoEGDxJ+id+/e+f94yx1qL1eu3EtD7UlJSdocsYCAAAcHB7Fl7eXlVdTcsYcPWaFgOzsmYldX/usvHjCAL1/m4GBu2ZKvXWN3d27alP/bxwAEjYbr12einNTjR4/4t9+4KBfMoqXYqFGjpFrhS6Wnp5uZmRkbG4uW4jNnziRD1EKF17t/P715cyZie/vn//62beP69Tk/pxEiIu6IrWORjb5t27ZX/aRKpRJxdnt7+9w3gXK5PCgo6KXvMCkpKX369BGbo2igWiw8+eEHtrDIqcrx9CnLZGxpybo5LJ/H1KlTiWjhwoW6nujhw4cTJ07U9SzwKlFRUURUVXuKQmq3bvGWLVypEotElsWL+Y19bRITE69fvx4cHLxz585Vq1bNnTtXLpePGDFi3LhxaEShN/PnzxdnXCQslyfOzTRs2FCqAfPpjz/+IKJxOi63uGbNGk9PT5FV4+fnR0RDhw7V6Ywlk/hv6+Dg8Kr0OpVK9ddfD2rWzLlDbNGC9+8v8Cx37/Lq1RFdunQRxRaIyNjYuGPHjkuXLr19+zYzr1ixQiQsT5kyBU1Ti4XExERReqhMmTInTpwowG9+/DETcYMGXMQq8M+I6OfOnTvFw8zMTJEQQ0Rt2rTRxYFpUSn+rzceuQVmXriQhw/nHTv4+++5Tx+d9Nd6JiQkRFTnsLS0nDx5cu/evUUOq4mJyYgRI/LkoRfO9u3by5UrJ048BwQEvPHnk5OTDx78/dKlGkolKZV08WLluLgFKtV/MpHV6tT4+N/U6hRmjo//LXcxd3g7aC5cKKdUysTf0b1705VKiosr6g3dqVOnTE1NZTKZ9r1LcqK//Ycffqij8XVHVwF3X1/fRo0aWVlZSZLV/lK3b3OPHkzEo0ezuTmLKnk3b3K/fly+fM6FVNeuXPT92gIVfnkx1P6qErdDhgxp167dtWvXxMOEhAQPDw/xi+3bty9Qb4rncofaidjFhUVu4PHj/NVXPHs237jBjx9ztWpMxObmPH++fqIzxcjevTlFGkTur6iKXJT+o+fPnyeiunXrSrXCVxEHA0WGwq5du4ioR48eup4U8i8yMrJu3bodOvzh6Mg3b+Y8uXhxTt/UX37J7zj//PPPq3olaePslSpV0sbZa9asKeLsuY/pqNXq4ODgWbNm5X5Dy87OFgcyzMzM/vzzz6L/kV/0ODs7JjMzJjMzNjNTF+OXKL1797YwMTmyezczx508+aRJk2x9dUwV96UHDx7Uz3RgKOnp6eINQXdHOLds4U6dWOyqLF7Mv//OISEcEMB//MELFvAXX/CoUdyrFzdpwg4O3LHjr/QK1tbWpqamONelB3fv3rW2tiaiw4VLZnmF2NhYIqpcubKEY+aHqB2v64oKnTt31mZmbdy4kYhGjhyp0xlLIJVKJQ5evLEFV1YW+/hwlSo5d0vt2uXrDHREBHt7s7Mzy2RsZZVmbW1tbGzs7Ozs7e39YgnHHTt2iLT3kSNHZr3xGCO8BTIyMoYNG0ZE5ubmuTuUvo6/PxOxhQVfvCjVMgYOHJg74M7Mn376qYODg4+Pj442bz788EME3PMlKYnr13+e2D52bGH26/IhOztboVCI/bxWrVpp6x9cunQpT3WXgICAwl2epaamyuVyMU7Pnj0LWIRW/eRJwLVrrUXY/dw5m6goeWZmTlpqRkZkYuLO1NTzzBwR8aG2mDtI6OnTp8eOHWvQoEG/fv2mTJmydOnSXbt2Xbx4UaRd5kd2dnxWVmx29sPExO137nxaxCMIDx48EOnn33zzTVHGeb3Y2FjRKKVwxXUNSFcB9759+xLR5s2bdTS+oNHwunUcF8dt23LXrnz9Ot+8yYMG8UcfFT6r/aXu378/ZMgQ8a70qsIv+Q+1M3NcXJxIabe0tPzpp5+0xWr37t0rXq+WlpZeXl4FKGL7qlD7Sz19ynI5GxkxETduzKggkUv37kyU08cyM5Pt7ZmoSK8llUplbW0tk8kkPOTxUpMmTSKiRYsWMXNcXBwRlSpVCpk1RfH555/37dt39uzZ+/fvL+Jfn1KprFixIhG1b+/88KGamTUaVihyKrP/9FPBRlOr1b6+vmJA0dVt3bp1I0eOFGUfhYYNG37//fcX/3sPoK0wI95niOjkf6sQajQasYEsk8l+/PHHovyRX2pKePh3t28vvHv3x6goyQcvacS2ijh6tXTpUj3EjASNRiNeaTraTX+pzMxMvJsZhJ2dHRHpqDsuM2/ZwgsXcr9+fPo0L16c03nuVf/r3DnA1ta2Tp067du3Hzhw4Keffvrtt996e3tv2rRJfAJWqFAhTltDD3RDHGCVPF6clZUlk8lMTU31XKBTtMCZOnWqTmdp27YtEYlKNWvWrCGijz/+WKczlkCiyXPNmjUz87ejn5bGS5ZwhQo5by89evDvv3OrVpySwsz811/s68saDZ89y19/zfXqPX8jsrFhNzfevv3Ei8eXczt69Kh4/3RxccldUB7eWiqVSnyUGBsbr1y58vU//PD2bS5Xjon4TRs8BfJiwD0hISH/cbT8yMrK+vXXX1evXi0eIuCeX5cu8YABzx/+8gsvWSL5JJGRkc7OzuL+Ti6Xv/huFhcXp1AoRLc2ImrcuLGvr2+BdvXOnj0rendZWFh4e3sX+jP36dO/w8N7iLB7aKhpZOSoJ0/2X7/ePj7+t6ioqRpNJjMnJx/XaFDHWEoajWbIkCEmJiYvzT6pUKFCmzZtli37Mjp65sOHvyclHc7IiBT19HONoLp50zUycuStWwOfPg0s4nrUarVoftm5c2cd9STXEoW4586dq9NZJKergLt4pyjYmazCSk/ndu04NJR79MgJuBeticgr+fn5iRJaeQq/BAUFdevWLZ+hdq0nT554eHiIw0FNmzY9/6zARGJiojbVvW3btlevXn39OPHx8Z5ffRUnjkfKZDxgQH4D6CdOcJ06TMQmJuzpydKdCy6+Ll1imYxtbTkxkZl53Tom4kaNilrksUOHDkR0SFuxWzdEVWW3Z9n41apVI6JCHpUAZmZ2dHTM/Rlmb2/v6urq5eUVFBRUoGYgR44cyXPTlZ2dcwjVzIwLvS+ZmJjo6elpZmYm7g3EIp2cnBQKRZ73jaysrIMHD44fP168gwm1atWaMWPGS+usLV++XJyGlsvl0kY5p4SHxyG3XQrR0dHiE0c8dHd3z09anyRu3rxJRFWqVNHDXForV660tbWVsGA05JM40ay7dsoi4H7zJrdvzz/9xGvWcJs23K8fjx3LX33FS5bwhg28fz+HhvK9e6+7TtFoNKIo1oDc98MgtR07dhCRnZ2dLjKMxE5eorgC0xdRdfSrr77S6SyisLgoArBixQoiQrEsaWVlZYk3qw0bNhToF1NSnpchnTuXnZxYvBZ8fPjbb3OOBIv/lS/P48ZxQEABbjO1yRatW7d++PBhAf9MYBheXl7i9tzT0/NVP5Odnd2uXbsJjRolf/KJtLO/GHCXXHJyMhFZW1uLhwi459fdu5z7IOm8efzHH+zry1euSDWDr6+vjY0NEVWvXj1PVX2VSnU+VzXgpKQkb29vbYOuypUrKxSKN356qlQqLy8vU1NTkZh1UYqTGWlpF2/fdg8NNb1ypVFc3Pz795cWfUx4jcWLFxNR6dKl9+7du3PnzqVLl06ePLlfv37169fXnn743/+6iI2QZ9shJpcvO9640f3OnfFxcQtSUk7duNFVqvV88803RFSpUiU9JJ4fPXqUiBwcHIrXuTFdBdwbNmxIRJL8M34jEXBn5smTef58HjRIh3PlLvzi7Oz8559/FiLUntvBgwdFFxRTU1NPT0/tNuaBAwdEwFQ8/9JX1cOHDxUKhQjkfdm5M7u48NmzBfvzJCfz55/nlLRo3DimxFd19/Tc6eSUos1zatqUiXj9+qIO++WXX+phO+7q1aviE1o8FGcyfH19dTrpuy0mJiYgIEChULi6umpTCQQTExMnJyd3d3dvb2+lUvmaqPSmTZtETHzUqFHiH3JycvLgwSNq1gy3s5PgII5oNGdpablo0aLIyMjc38rIyAgMDJTL5eJ+Txtnf7HCzIu2bdsmPra1yy4iDXOKSjUlPPzHu3d/jY4++Phx0ccsyfbs2SO2cMRD8Zl7tqAfAYUiiuS6urrqYS6t8ePHE9Hy5cv1OSkws6geGxwcrKPxRcCdmRUKbtz4zTXcXyM6Olr0uv/9998lWh38R2pqas2aNYnot99+08X4gwf/4ey88dYtvfaZnDt3LhF9J5ph6IwodXLlyhV+diBp2rRpOp2xpBENk+rVq1e4DLuEBP7tN963j2fO5G7d+NIl9vHhZcu4dGmuVo09PDgg4M397V8qIiJC7ATUr18/Cmf7ion169eLoOTYsWNf+ooSvbKqVq36WOqrWQTc314aDbdpk9ODKzGRmzXj8+fZwoJlMnZx4XzUQH+NxMTE4cOHizs1Nze3hISEPD/g7+9PL5SRyczM9PX1bdCggfhFOzs7uVweHR390inu3LkjCkLKZDK5XC5hCxZmzsy8k5JyJiMjPCzMKTJyVEqKPu5HSqCQkBAzMzOZTLZ9+/aX/kBMTExwcPDly36xsXNu3x5z/XqnS5eqKpVGuePv6ek3rlxpdPfuRFH5Jy5uwb17Xzx48POTJ3vS06+8tBfuq+zdu9fIyMjExERvXZfFDe+r/vhvJ10F3EWwWD8NrLQB98RErlNHtwF3Yfv27ZUrVyYiKysrEWpfsGBBoU8LPn36VC6Xi3zSxo0bK5VK7fPaFPgmTZqE5spbj4+P/+qrr8QWqEwm69+/v/a3CiM4mOvVC2nY0Nzc3NPTU9r332IkLi7O3Nzc2Ng4MjKGmQMDmYgrVZLgwMSWLVuIqH///hKs8tU0Go0ICotCbCJpa/LkyTqdtORQqVRhYWG+vr5yudzZ2VnE0LVsbW2dnZ3lcrmvr2/uqLe3t3eeVPEHDx60aNGCiJo3by9Fwxvevn07EfXu3Vv7TFpaWkBAgLu7u9iNE0Tme4HeKLSJ+d27d3/9uenXUDNfTU31iYn54PLlbyMjp4SHBz95ci01Naakvs9IRQSJ/ve//zFzenq6qampiYlJuo6Od/2XyGX4XjRO0RfRo0I/x+YgN13f/GsD7hkZXLdukQLuzLxt2zYRR9BdSn5JNn36dCJq2bJlAQoeFkTr1kzEISG6GPuVvv32WyL64YcfdDqLODB369YtZl64cOHrk2ehoNLT08WNp7+/f1HG2bePv/2WL13iLl3Yx4d//pkjI4t6yJWZY2NjResdBweHS5cuFXU40IuAgABxmz9gwIA8p1qPHTtmbGxsZGT0zz//SD4vAu5vtYgIHjKE+/XjXr347785Lo4nTmRLy5xTMG3b8rZtheikevjwYVHq087O7lVndFasWGFrayvu6Zo0abJx40ZtOpRGowkMDHR1dRXfNTMzc3d3v/LfvHs/P78yZcoQUeXKlffrpvT8M5qkpGNhYe+npV26dq1dXJyXSqWrmoQljbZUekHP5Gk0Genp158+PRAf/9u9ezM0miyNJjMxcee1a20eP/7zypXGucPxSiVdvGh//bpzZOSoqKi569atO3bsWFRU1IvJhXfv3hVNd3VRhPZVfv7559wJZ8WCrgLuIkyjn2OhmZk8dmzO11u28PTpepiTHz9+LE7xfPLJJ5IU5jtx4oQop2ViYpI76n38+PH33ntPm+oeGxurUCi0lZpdXFykSWlMTV383XciMujk5KSLHuhvP3HTNXToUPHQ3X1Wp04XvLwkKH8RGRlJRBUrViz6UK+3aNEiHx8fccxCJD63atVK15OWTCkpKcePH1+0aJGbm1uNGjXov6pWrTp48GBR0czIyMjb21v8luibSkSOjo5SxYM8PT3zRD/Hjh2rXUnLli0XLlxY6LkuXbokPtpbtmz54MGD/P+iWqM5m5Tkdfdur4sXWyiV4n9uV66gpIxUPvjgA3rWKOXMmTNE1KhRI/1M3bt3b13fDeaRnZ1tYWEhk8kKvfEDhfbpp5+SzqoVhYTw/Pl8717Ow+hoLnqvkxEjRhBRu3btdBQULrEuX75sampqZGR05swZHU3Rty8T8d69Ohr+5WbMmEHP+t/ojvgkvXfvHjPPnj1b/3uW7zZxaKBx48ZFLIInAu7M/OWX3K0b//yzNMtj5sTERFFesmzZsnl658Bb68yZM6ISY9u2bbUVgRISEsTZ9Dlz5uhiUgTci5+HD9nLK6ftGxE7OrK3N6fm66hWVlaWQqEQEZi2bduKTdlXeWMZmdDQUHd3d1Fl1MjIyNXVNTAw8OnTp6NGjRK/MnjwYJ22lNPWCo+MHBUTM1NEby9cKBcTMys7uwB3kfAitVrds2dPcX0rVUGVp08P3rnz8ZMnAffv/3T37mfh4b0uX64TGmqWqxbNe9qQgpmZWd26dXv16jVx4sSffvrpr7/+atSoERG5urrqs/VOUlKSra2tTCYrRmWTdRJwV6vVRkZGMplMn3c7Hh7s4cH6vBkXBRmLlFr+X6mpqZ6enuI9t2HDhtpIelJS0qRJk0Squ7Y2k6ur67+vaYtaKCEhIfXr1xfv0R4eHimibVDJkJqaWr58eXrWQ/L69etGRkZWVlZSlVwUNT1u374tyWj5kZycbGxsbGZmpp+k1xIuMTExMDBQFJ8RLyQiql69urGxsbZ3dKGD168nejXvzRWiCAgIaN++/ZIlSyR5vRVokyAzM/PUo0fz7tzpfuGCNs4+4PLl5ffuXU5J0aCGu3TENs+1a9f42VH60aNH62dqccBLPyfYhIsXLxJRnTp19DYjaImD87qonq9ScbNmTMTLlkk5bGJiooiG6DpnuUTRaDSiOZNcLtfdLKNHS1PHr0CmTJlCRD9LGFt9GXFhEB8fz88OCc2fP1+nM5YcKSkpooX4vn37ijiUNuCelMRVqkgZcGfmjIyMwYMHi0DngQMHpBwadObq1aviA8XJyenu3bsajUYExDt27KijKAcC7sVVair/+is7Ooqwe1ifPnPnzn19dPvq1asimmRiYqJQKPL5inppGZl72swF5vDw8AkTJmhDRuL4u42Nzdq1a4v6Z3yFx4//fPRonUaTGR+/Kjy8Z3h4z4iIDzWajCdPAq5fd34WujW/fds9Pf0NvQnhVWbNmkUSlUpPT79y69bg6Oivr11r9fTp3y98X52ZeTcp6dijR39cubJo1KhR7du3t7e3pxeUK1fO3t7+xfJHujZhwgTSfa97Cekk4P7kyRMisrW11cXgr2JlxUSszxCxOB968+ZNaYc9efJkvXr16FmquzZaGhwcXLZs2fLly7dt21Z36UXp6ekKhULUrXN0dDx69KiOJnrb/Pbbb5QrH1zUC540aZJU4/fr14+Itm7dKtWAbxQTE1OuXLmKFSs6ODjI5fLAwEBdd44GQaPRXL9+fc2aNeLon/a8SPfu3YmoV69eycnJUs2lVqvFcSIJI/gvevTokajjXKlSpdCX9WROT08PCAjw8PCoUKHCyAMHtHH2RVFR55OTc+96P1WppOzBWlIlJCTIZDJra2uRzSeuPJZJG7Z8hZiYGCIqU6aMPtMZREfoYcOG6W1G0Fq2bJmOwqw//8xEXL269Fduhw8fFjUl9dPVoCR4+PBh06ZNbWxsdHrK5MsvmYgXL9bdDC8hOjPpuuO0uB4Q//VEX5/Fev5zvrvmz59PRK1bty76p9LKlaxNo7p4kaW+w2OVSiXODJmZmWmzMeAtFxsb27RpUyJycHD46quvxCWQ7nIOEHAv3lQq3rpV07p1l+rVicjc3Nzd3f3GjRt5fkqj0fj4+FhbWxNRrVq1CtEm541lZOLj4xUKha2tbbVq1WrVqqW7OnsaTdalS9WUSnry5OVbnqmpytu33UNDjZVKUiqNbt50TU7GKZ+CCQwMFGWs/v77xfh4AajV6XfvTnrwwFulSkhLu1CgYwdpaWlXrlzZs2fPzz//PG3atDZt2oidyNw/o5/gu0jDKlWqVHFJDtZJwP3u3btEVLVqVV0M/lJZWUzEJiYSFNrLP1G0SKSr7N+/f968eVJVYklNTf3yyy/FgaCVK1dqnxcHNy5cuCDJLK9x9uxZ0ZHAyMioJNwSaDQakdovAuLx8fGWlpYymUxkj0pizpw5RDRdPwWPmC9fvqwtBqfdh7S3t580adKRI0dw0F4/RLGX4cOHi4fx8fGvaoBcaGFhYeJaTcIxXyolJaVPnz4iRUKbmZWamurv7z98+HBtVUEiGvndd7/HxkbgXIUuXbt2rVGjRk5OTmvWrDl+/Hjr1q2JSD/9avbu3UtE3bt318NcWlOnTiWihaLUN+jXn3/+SUQjRoyQdtj797l0aSYqYpuxV5o2bRoR1a9fP0/tXSic9PR0BwcHIvLy8tLdLPPnMxF/843uZniJMWPGENF6HefVi74volzk559/TkS//PKLTmcsIZ48eSJaJR85cqSIQx0+zETcqJFu7yU1Go24OJTJZCXhDuvdkJiYqO02qetoOALu74agoCBXV1fxghHVXbRhogcPHvTv31/cNLm7uxcxDUuUkTExMRGvT1FGRvvdn376SdoMwhc9euSrVFJY2PvMamaOjZ13796MrKzYPD+WkXErKkp+7pylUkl//tnY2dnZz88PEYn8iIqKEofkin4flJ5+Tamky5dri4fh4T0uXCibnBxUiKEyMzPF2bKQkBBmTk1N7dmzZ9myZVPzV0ypiMSZy9WrV+thrqLTScD9QVjYlE6dZj6rha0HDx8yEZctq7cJmZlFGnjuq2dpT6SeOnVq5MiRubOSxaE2/ZQlycrK8vLysrKyKgkJYgEBAURUo0YN8V9blNccMGCAhFMcOHBAnECUcMxXCQkJEbtBXbp0SUxMPH369FdffSUOZAjly5f/9NNPA48dy9bnDlXJEx0dbWZmZmJicvfuXR1NsXbtWiL68MMPdTR+btnZ2R9//LFIo/j8888HDx4s2kmJK7xWrVp5eXlJfuIH8lCpVEFBQR4eHmIvzc7OTiaTOTk5tWnTRjRv0LV58+YR0YwZM/Qwl5a40T106JA+JwXh77//1sUWy6hRTMS5mj1LLCMjQ+Qo6LQESomyd+9eY2NjmUymu8xcHx8m4vHjdTT8yw0fPlzXwSaNRiOTyWQymUjBFjnOxeVG8S0nTtlL8gbVrh0TsX42dr29vUUFUU9PT30eF4NC279/v4mJiaWlZenSpXV6uYWA+7vk0qVLo0ePFiEj8U41f/58UZ2jdOnSEn6YRkREyOVycV9Wv3597bvKli1bKFeDOl24erWpUkmPHq1jZpUq6fz50kolpaS8vPt5VlZcdPQ3Q4d2Ef9B6tevv3btWm3nQnhRVlZW+/btiahfv35F/7B48mSfUknh4T3Ew8uXayuVlJ5eyARTUR/P3d1dPBTrXLNmTREXmR8iGahJkyZ6mKvodNM0NSiIibh9e50M/jK3bjER6z7L87nU1FQisrCwEA9FM4pX9ZWWiuiVqs9KSTqtU/H2EFWwlyxZwswqlUqkcUlbTufx48cymczKykrXdV127dplaWlJRB988EGezL6wsDCFQuHk5CQ+5IauWNHl/HnPiIi9jx6lFa3NFLzKyJEjdRqd/Oyzz7QvXT3QaDSiv5zodG9kZNSiRQuFQqG7g4ogqNXqY8eOffbZZ9oOAUTUqlUrbeS9W7du+ulSLkrQ/vnnn3qYS9BoNOKz7/79+3qbFLQuXLhAUrfkDQpimYwtLTkiQsJR8zp37pyZmZlMJtu/f78OpylJRK6cpaWlSGiS3PbtTMQffKCLsV9JNKDesWOH7qbIyMgQe9Xiobu7OxH5+vrqbsYS4uHDh+KA3alTp4o4VEAAE3GFCpyUJMnS3mzjxo0iDDd27FiUfHzLaf+yxDWYm5ub7uZCwP3dExcXp1AoRC11cSLHxcUlOjpa8okePHjw3Xff+fn5aZ85duwYEXXo0EHyuYQnT/YrlXTxooNGk8nM9+8vUirpxo0ur/+t5ORkb29vkUhKRJUqVVIoFI8fP9bRIos1kdRbvXp1Sbrdxsf/qlTS3bsTmFmjUYWGmimVMrW6kKfS7969a2xsbG5uLgKGGzduJKKmTZsWfZ1vpM2vL/qnvx7oJuC+dy8Tcd++Ohn8ZUJDmYibNdPbhBwbGyveIMRDUUJr9+7duptRo9HovxXtu0qlUoWFhfn6+srl8qZNm5YuXdrMzEwbzYmMjNTFoek6derQfysCxcbGnjhxQi1dsHvt2rXiTNnnn3/+mmHDwsLmzJkj//dfbVvLjufPfxMREZiQoI28b3/4cElU1JKoqGW52rBAQYWGhoo0ZB2lw4hmO0FBhTkLVjja6Oe8efOK3rYF3kjsk9WqVUsbZ3dyclIoFNqKkBcvXqxatap4Xg/nn2rWrElEV6/qr+vRzZs3iahKlSp6mxFyE1c7lStX1j5z+vTpZcuWnT17tnBBouxsbtKEiVgHfVjzWrBgARE5ODjgRk4qEydOFK8HXZQwPn6ciVgvRwGf69u3L0nRb/M1nj59SrlaWw0bNoyItmzZorsZS4jp06cTkauraxHH0WhyGjgvXy7JuvJrz549IkWmR48eW7dujYqK0uv0kD/a4whyufzmzZsiy+GPP/7Q0XQIuL+rEhMTxYGqFi1aSHjv/3rXr18novfee09H49+40VWppLi4HzmnmHv11xRzz0OtVgcEBLRq1Urc3djY2Mjlct0dCi+OxAEFc3Pzf//9V5IB792brlRSXJwXM2dm3lEq6eLFIt1eDRgwgJ4VG8zMzKxYsSI9KzIjuczMzNwPZ86cSUTt2rXbt2/f1atX09/iYra6Cbhv2sRELHXFz9c4coSJuMsbttOkdO3aNSKqW7eueNixY0ciOnbsmO5mNEgr2ndJZGTkX3/99cUXXzg7O4sLXC0RQHR2dtbp6QGR7Jy7MZeXlxcRlStXzt3dPSAgoIjVvcVoMplMoVDk81eiMjLWx8W5X7vW8lnkvf25czNu3dr/+PGU8HBlUtKd9PS7b/H7V7HQuXNn0k1Dy7S0NFNTUxMTE133DMl9VEJEP+3t7XU6I1y5ckWhUNStW1f7NlW9enW5XP7SzZXo6GjR0at8+fKF6LyUf4mJieKkjj73ff38/Iiof//+epsRcsvOzpbJZMbGxtr7wy+++EK8Jq2trZ2dnT09PQMCAvL/6bl8eToR16nDejhDrFarxTvw4MGDdT5ZyZCVldWjRw+xwyf5RvK9e/z117xunbSjvoHoZ3748GHdTREfHy/en8VDPQTUSoJz586Jfkvnzp0r4lBbtzIROziw/js+nD59ulKlStpGOPb29q6urgqFIjAwUD+VcOE1NBqN6JIqk8kWLVoknty6dav4+JOw0VduCLi/w44cOUJEXfQYsRLhI+3ftbRU18/fDHA8f95OpXrCzI8erVcqKSysvijmnn+5690Xm3ZNV6/yxYs5X1+/zuJjSKnk5ct50yYuWl1+4caNG2J7b9WqVUUfTbh16wOlkhIStjJzUtJRpZKuXy/S6QdRM7lGjRrixvDrr78motGjR0uz3FyysrI6dOggl8u14bI///xTFFbV3imXKVOmRYsWbm5unp6ePj4+gYGBERERb0Omsm4C7itWMBF/9plOBn+ZHTuYiAcO1NuEfPr0aSJq3bq1eNi4cWMiOn/+vO5m1H8r2uLu6dOnQUFBXl5erq6uYsMtN3t7ezc3N29v76CgoAsXLtSoUUPcQOpuZ3X58uVE9Omnn2qfWbly5XvvvaddUrly5T7++ON9+/bl2cF7I5VKNWHCBCIyNjYuXFXQ+5mZmx88mBge3jo0tIVSOfzKlSnh4XEFXAa81K5du4ioZs2akh8ZDg4OJqJmuj/a4+Tk5OjoGBkZyc+Kpg0aNEjXk5ZMd+/e9fb2Fq1ghPLly3t4eAQFBb2+cl9SUpLoamthYSGaP+vC0aNHRTaBjsZ/KVEi8Pvvv9fnpJCbOAGtPc26b9++Tz755P3338/9kWpsbNy8eXO5XL5169bXnH2Jjo4uV86+c+f9hw7pqWxxZGSkuGORoA7StWs8fjz3789z53JaGicl8bff5nwrLY09PYs6fjHx9OnThg0bElGvXr0k/Fw7eZKrV2dRyNDfn5culWrgN+jQoQPp+KDYvXv3KNcxnd69exMRKh0VTmRkpPiUNDIyqlq1qrm5uZeXV1FS21Qqrl+fidhQRfVF46hq1aqJd1otU1PTli1bTp48eePGjWiQo3+ZmZkfffQREZmZmeUJRouqUI0aNdJFTiUC7u+wK1euENH7778vHt64cWPfvn1xcXE6nVQUdi9ia9aXGz6cjYyyVuYcV7xypYlSSY8eFbIDeWho6OjRo/VZOblIfHxYW9B13TpeuJB//50HDeKDB9nHh1u2LGJ5spSUFFEEeISkGczi7yg19V9mfvhwjVJJt28XKTiu0WhEctjevXv5hSIzEpLL5SKyL14hUVFRFSpUIKI2bdr06NHjvffe03ZKyMPc3LxevXq9e/eeNGnSokWLtm/ffu7cOf20PdPSTcB9wQIm0ue9x7p1TMQ62E15pUOHDhFRjx45PQdEuFYEpHTk0qVLRNSgQQPdTVHcZWVlhYWF+fj4uLu7Ozk55d7yIqLSpUu7uLgoFIqAgICHDx/m+d3Y2FiRImpvb5+76ouEQkJCiKhevXp5ttpEyYgWLVpol2plZeXq6urr65ufT8eMjIyhQ4eK3xJvdkURn5XlFx+/7/HjKeHh469f/zw8fG1s3j7jUCBqtbpOnTrNmnXbvVviK6qlS5cS0YQJE6QdNo+kpCQjIyMLCwuxDzR16lQimj9/vk4nLWkePnzo4+Pj7OysfdcqU6aMOPiS/3hWVlbWuHHjiMjU1OL333XSfmPx4sVENGnSJF0M/ioiOIVsUAOqV68evayOUHx8/K5du6ZPn96uXbs8V7qOjo7u7u4+Pj63bt3K/SuimMaQIUP0uHxes2YNEZUqVapIG+rx8dyoEYeFcXY2r1rFw4bxw4fs7Jzz3adPuVUrSVZbLNy+fVvkMYyXrsPp8ePcsiWL5lt//sl6+5AR59nPnj2rfebQoUPSHoiOjo5u0qRJ586dxUPRN+jIkSMSTvHOCw0NnTVrVoMGDXJfKmsPgVWrVm316tWFOye6fj0Tcc2abKgkk7CwMLG5np2dHRMT4+fnJ5fLnZ2dzczMcr+plipVSnsXU2xiUsVWcnKyuPawsbF5sWF7cnKy+Fj84osvJJ8aAfd32OPHj8W/ZfFQ/JfXdVckUZRS+k27yEg2MWFTU46KYmZ10KH7K9peulBNFHN/970YcK9Th7UnzufP559/Lsrwo0ePFnE/aU+xJ3j1jF7TMjvrETPHxHyrVFJMjKKIYy5atIiI+vXrJx7279+fiH788cciDpubOFdkamp68uRJZs7KyhKpaS4uLtqomkqlunPnzj///LN27dpZs2Z99NFH7dq1E3XeX6ps2bItW7aUy+USrvNVdBNw9/RkIl6wQCeDv8yaNSe6dJkzd67+Ll7FX7y26bPog6HTIqFBQUFE1F6PrWiLkRkzZrRs2TLPDb+1tXXHjh2nT5/u5+eXn2KjiYmJnTp1EqGuEydOSLvCR48eff7552ZmZtbW1toaMnky2SMiIkTajjboZmlpKSLvT58+femwCQkJIjmrbNmy0paSQIa7hFavfqKLNtKiFODatWslHve/Dh8+TLmSmtu1a0c6Pn1fojx8+LBr166iPCgR2drajhw5cu/evYUuMDVv3rzOnS8Q8dSpLPkpOlEXS8KzjfkhrpZ0UTAa8uPx48dVqlSxtbUtX768OBamVCpfLD+alZWlVCq9vb3d3Nxy52l+88032p8RbyZWVlZ6aDaQh9iW7tSpU8EKp6an8717rFRyUBCvXPmfy9oGDfjOHW7XjtPSOC2NHzwoUQF3Zj579qzIm1suUd3r48d56lT+8EM+ckSvAXdxRPXis7PhSUlJVapUkclk7u7uLyZnSKJ9+/ZEJO4b4TVUKj52jGfN+lFkNWlvkkePHr1z505R7C4wMLB58+biWzVq1PDx8SnQ+fGsrKzBg5dbW6ds2KCzP0Y+iOhtnsKkKSkpQUFB3t7e7u7uuf8LEJGxsbGTk5O7u/ur3pChKO7fvy+yoCpXrvyqgkVKpVI05Q4ICJB2dgTc32Eajcbc3JyIRMEokcO0RBu31Q1x4yb9Ka7Jk5mIx4zJedi1KxNpfl0m8SxvLR8fdnLifv24Xz9u0oRnz+YmTZ5/d88enjyZR47knj35s8/4xx/Zz4+VSs5fqPDXX38Vu31XrlyRcs0PHzIRP9vvUcs9VM5Nso4WtZ1MQkKClZWVTCYLDw9n5v3791OuIjNFFx4eLg6qrlixQjwjst2rVauWn4u0jIyMiIiIwMBAHx8fT09PNze3Fi1aiAFFyF6SRb6ebgLun33GRPzsP4oezJkzh4i+++47vc24evVqIvrkk0+YWaPRGBsbE5FOu8zv3buXiPr06aO7KYovEXTOfQEaFBRU0MIszJyRkSHy78zNzf39/SVZW2Zm5qJFi0SZeFNTUwcHh9y3DePGjdu7d2/Gf2vZRkRE/PTTT23atMkdeT9w4ECekWNiYsSNYo0aNSSvJIiAu4RSU7lcOSZiaZuIODo6EtHly5elHPQF8+fPJ6KpU6cyc1ZWliiZmpiYqNNJSw6NRlOzZk1zc/P8H2p5I39/trDIKbMmbQ3Y/fv3V6lSpX379no7ixcTEyM2QV9fUQd0JCIiQpSOER9hWuXKlevfv/+PP/4YHByc8UItdrVaffHixV9//XXEiBFHjx4VT2ZmZtavX5+kTnvJp4cPH1auXJmIlj6rVJKdnR0bG3vp0qXAwMA///zT29t71+LF/OmnPHAgt2/PdeqwrS0T5fzP3p5nz/5PcXEXFz57lsuV46FDeehQHjSopAXcmdnPz08mkxkZGe3evbso4zx5wmvX8rFjPHUq37vHLVvy+vV6Crjfv39fpOprL7HS0tK+/fZbkVxcsWJFX19fyd98RCxPqVRKO+w7IyODAwNZLmd7eybizp3/R0QVKlR4aaoKM2s0moCAAHE9TET169f38/PL59/aqlWriMjZuathq7x6enpqL7ReJTIycvPmzXK5vE2bNnmS39u2bauvlb77IiMj69SpQ0SOjo6vTwr+6aefxCvzNVXUCkEPAfeUlBRra+tKlSqJhwi461P16tXpWVEE0df9q6++0umMH3zwARFJFdbI8fgxW1uzTMaiKsC//zIR29mxfit1GFKeDPf58zl3Z9r161mh4GrVnl9Gav9XujQ3a3Z06tQZM2asWLHiwIED169fz30hffbsWbErs3HjRonXfPYsE7G2FG3btkzEUuSYjh07VvtKzlNkpojS0tJECYoPP/xQPJMn273Q7t+/HxISkvt0o+7oJuA+YgQT8aZNOhn8Zb788ksiWrx4sd5mFKcnvvzyS2ZOSkoS21A6nVGUTpa2kNM7459//jl+/Lgkh25UKtXEiROJqGHDsb//XtS7rMDAQFGBS+yhhYWFMXNYWJiXl1fuMs2vqiETFRXl4+Pj6ur6YjGssLCwatWqEVHDhg3v3btXxHW+aF1c3BNdbiCVNN98w0Q8bJhkA4ombDY2NrpuBjJo0CB6duBRqVSKu1mdzljSKJVKyePXp05xhQpMxK1a8f37RRpq8eLFsc/qSoWFhYngVKNGjaKioiRY6JuInebu3bvrYS7I4/Tp09q/7sjISG3FNnE8WcvExKRFixZyudzPz09b5/1F4saybt26Lwbo9SMgIICIzMzM6tatW65cOXrBB23a5L0vMjPjKlW4aVN2deV163jWrJyxNBquW5ejo0tsSRktUX7axsamcLX4rl5luZxtbJiIly5lEW9cvJjbtOH583nCBN6xQ9r1PpeSkuLl5SWynCwtLU1NTeVyufYyMjw8XPSGJaKOHTuKizdJJCYmisQLXW+Wvw3WruVdu3K+3rCBcwd8hg/nLc/y6sR9dFISb93KH374n62uOnV4/vyI06dPvzGArlar/fz8tI2RGjVq5Ofn9/pfSU9Pr1q1KhFt27atcH9AqYjGYDVq1MjnPoH2RNGgQYNMTEysra0jIiJ0vciSQKlUikN1rVq1emMNYo1G069fPyLq0qWLhJfiLwbcDx48uHLlSt1d7SPgrk+tW7cmolOnTjHzH3/8QbrpMJmbCGv88ssvUg46Zw4Tcd++OQ+HDWMi1vHOwdvlxZIyw4ez6KGVnMzOznzxIl+9ynv38i+/8Bdf8KBB3Lix9uPtp7Ztc19/ipYknTp1GjFihLjwnjJlivRr3rKFiXjw4JyHlSoxEUdHF33g0NBQkYsj2lrkKTJTFGPGjBH3DqLYgzbb/ddffy364Hqjm4C7lxf37s16PCz58ccfE9Hvv/+utxlnzZpFRHPmzOEXuiHpyIoVK4joMz22oi3JfvzRp3x5NRHPnl3IEW7cuCGuw8TbxEt3+bStn95YQyZPucaQkBARL+jSpYue2z5A4cTEsJkZGxuzVPdEIhCph073IjQg0nzEu9AY7flBeIvdusV16+aUpi3QkcSQkJDcR6RXrlyZO8krMjJS5Cnb29vrIUNz7ty5RDRjxgxdTwR5bN++XRQM6dGjx4s1zbSFhlu0aKEtiCRoq7fnjlFGRUVZW1uToetWz5kzZ9SoUWKdxsbGlSpVatiwYdeuXUeMGDFlypT1S5bwqlW8cycHB/P163kTtVJSuFkz3r+f79zhWbN46tSSXMNdS6PRiP6BDg4O+d/7z8jgjRu5XbucoKpMxt268YoVOQH37Gxu0oTHjcv5rqsrS1uCKCsr69dffxX3tETUt2/fYcOGiZexo6Nj7l6mfn5+IvomwvFFPIGUmZnp4+Mj5p0/f760hVnfTgsXPj8WsmQJ+/g8/1bTpuzsnHO8vlEjnjqVzc2fx9mbN+d587gQ2xxZWVk+Pj5VqlQRf7lt27Z9TQU80QinefPmBj9BpdFoROg/NDQ0/78VHx8vEgm7du1qqI3Md8mRI0dEKMfFxSUpfw0PHzx4IM5OeXl5SbWMPAH3zMxMkXHfuHFj7YkxaSHgrk8DBgwgoh07dvCz4hs9e/bU6YxiX3yWNmOg6NTqnNxt8YL8bzH3kmL79ue5xQEBvG4dJybyhAns6sp9+z7fan7Rw4d85szR7dsXLFgwfvz47t27Ozo6mpiYaK+iO3fu3K5du0LUaXgz0WVT3FKlpLBMxubmLFFFMtEOx9fXl58VmTEyMipie8uVK1cSkbW1tbiheDHbvbjQQcB9714ePpyHDWNfX+kHf4UhQ4YQ0RtzGSQ0ZcoUIvL29mbmy5cvE5GTk5NOZxTZYZ56bEVbwq1fzyYmTMTjxnGBUr0TEnjevPOioHyZMmW8vb3fWI75zp07IvKujVxYWFi4urr6+Pi8mGGxa9cuS0tLIvrggw9ECUsoFkaPZiL+8ktpRlMoFHp4Q4iKiiKismXLittRcWRshR7LhUFRPHrEHTvmnF98zW1aUhI/K7PBzPz333+3bt36NcMmJCR06dJFXANJXr00D3ESVtcdpSAPb29v8WH0ySefvPHzKzExcd++fTNnzuzYsaP4bNKqUqXK8OHDf/75527dutHbcUQvOjr6ypUr8fHxhQmxPXjAc+fypEns68saDaemPq+dmJFRxAZZxVdmZqboAtq8efM3BpGjo1mhyDl/Iw6ge3iwSPVOTOTr13N+7M4djoxkX9+camyWlqxQcNEjihqNxs/PT0SviKhNmzbaqtlKpVLcLhKRq6urtr9uYmKiXC4XdSOrVq1auFRotVq9YcMGbRnubt26Fe5AQLGzcCHPncsXLvCFCzx9+n8C7s2a8a5dLHruNmrE33/PRkbs7MxeXhweXtR5xd6GiIQSkbOz8/Hjx/P8TEpKithNyb3FYkCff/55gYJiT58+bdasGRG1atVKkmJ0JdymTZtEoZ5Ro0YVqInOwYMHZTKZiYmJyFkuCo1Gc/r0afEGtXDhQu3zAQEBooakeHeS9jRDdna2eOtDwF0/PDw8iOi3335j5nPnzomtFJ3OKApnffrpp1IOGhfH2vYtn3/ORDx2rJTjlzDZ2dmRkZGHDx/+/fffz5w5o6si1ePHPy/6ffkyE3G9elKNLY5raOub5S4yUzgXLlwQ9xQbnrVYEWNqs92LEakD7gcOcO/e/Pgxp6Tw6NG8cqXE47+Ci4sLEb3YRlx3RO/gdevWMXNwcDDlaiqoI6LA3wI9tqKFgAC2ssophZyfyLZazb6+XLEim5lxrVo93d3d33ggMY979+6JGjLarU5jY2NnZ2dvb++4uDhmXrt2rfjW559/ji5JxculSyyTsa2tNAXuevfuTbo/B71t2zYi6t27t3goUpv//fdfnU4KEkpL4yFDmIgrV+YlS1gUGlWreeJE1qYdqNXs4MA3buQ8VKlUkyZNev0NZ2ZmpkhrNTY2lviY6n/VrFmTiK5evaq7KSA3lUol4j4ymUyhUBT017Ozs7WtUytUqKCNvJcqVcrOzk7aQrfw9nj06JEIEvXr1++ldQ/UanVgYKCbm1v79ju1Kcw+PvzGJO/799ndnWWynOoif/9d+EWePHlSW8qvXr16L5b5zs7O9vb2FimuVlZWCoVCm2IWGhoq6gCIgFeBejgHBgaKwKhIzdFnbpDBLVzIrq48cybPnMkuLnkD7szcrx+fOsWNGvGDBxwfL/HsompQmTJlxH98FxeX3PnjP/zwAxG1l7ydfWGJntL5TN7KzMwUJY/ee++9+0UsGwe59pjlcnkh7q2mT59ORI6OjoULA6nV6qCgIE9PT21BJPHp6erqqm0wnpmZqX13MjMzk8vlkoScjhw5IpoffPzxx/GS/wuEl/n++++JSFxfxcbGElHFihV1OuOuXbvEy0myEVNSeMcO3rCBIyJYpeL69Vkm4xJQJK3Yc3FhIhZ7zAEBTMTS9YZMS0sT1RfE6ec8RWYKKjExUewyfv755+IZsW+kzXYvXqQOuA8bxqdP53wdF6e3A7Zib/a0dmrdEwe+xIGgffv25Y5J6chnn32G3FL9O32ay5dnIm7bll9dnJaZ+cgRbtQoJ2mra1e+fLlIuVj3799ftWpVjx49ckfexQ2tTCbDvksx1a0bE3HR29FrNBrxqaaL8v25ffXVV9rrwqSkJCMjIwsLC50ccwOdUavZ05NPnODq1XO6CGRlccWKPGfO85+ZMoXnzi3YsBqNRqFQiHJYhbtHfaPExESZTGZlZaXrRgUgJCcnu7q6EpG5ufnmzZuLOJpGo7l69ervv/8+ZsyYn3/++UqBChtBcXP9+nUR2cyT0PTgwYMFCxaInTMiatWq1+jRXNCr9SNHuF69nOIzo0fzgwcFO51w5coVNzc3sQAHBwcfH5/XpI/FxMSI3USReKjNWlWr1T4+Pi8Nx7/Kv//+K852EFG1atV8fHxK2lvZa0rKiID7rVvcqRM3bKjDNSQlJXl5eYm2zzKZzNXV9eLFi0+ePClbtiwR6ahGRyFkZ2eXL1+eiK5rD3q8gkqlGjp0qHgx35a23FLJo9FoREKbTCb76aefCjdIVlZWmzZtiGhYQTo1ZWdnBwYGfvbZZ9qjGERUvXr1KVOmTJgwQaR2Wltbz507V3uaOSYmxsPDQ+wN2Nvb+/j4FPrS6+bNmyKUQUS1a9fes2dP4caBghLFOSdMmMDMKpXK2NjYyMioQIcqCkq0iGjZsqU0wyUkcKtW/PPPvGULd+7Me/Zwdja/unIXvEVGjOAqVXISrLy9mYgnTZJweLH1qD1LkbvITIFoNBpxvrlVq1aiWpo2270Qo70NpA64d+7Mz45hskbDtWpJPP4riBp2165d0890zCwO1ItqpJs3bybdlxMaMWIEEW3SYytaEK5e5erVmYidnF5enSwqit3dc0Lt1apJXEspISHB19dX9E21tra2trZetWqVlBOAHu3Zw0Q8dGhRx7l586a42s79pC4Kaos3OtGBQKRf6fooD+hOs2b8ySe8bx9nZXG9evz++8+/dfYsF24Xb/369eIU9gcffJCamirVUoWdO3fiJac3MTExzZs3FwkpJ06cMPRyoPg5fvy4ubk5Ea1cuZKZlUqlh4eHtspQ7dq1vby8Hj58WLjBs7LY25utrdncnJs0Gebt7Z2f4HVUVJSHh4coCGNjY+Pp6ZnP0sxHjhypV6+eCMO5u7trlx0dHa2N3Y999Qn6O3fuaONiZcuW9fLyKlySV3GXJ+C+ciUvX86zZ+c0RBBmz2YHB52vJD4+/osvvhCvRmNjY5HV6+LiovOJC0J0h3t9NXCNRvPpp5+KY0MlpDCR7mRnZ4smcGZmZkXcY75165bYjVu/fv3rf1KlUgUFBcnlclHRSKhZs6ZcLg8KCtIeu7l37567u7vIaahataqvr6/2W//++6/2sE6LFi2Cg4MLtNSUlBSFQmFhYSEC+gqFomS+OxnK9u3biWjgwIHioXgZ6PT83507d8SrSJrh5s9n7cHW2Njnb+VQLNy6xRs28O7dHBrKK1bws6p6Eo19y8jIyNLS8vHjx8y8e/fuX375pRBncUQZ7TJlyogS8Nps90mSbg/ok9QB99Gjn1eKjYjgjh1ZrWbdv4+Ls1exsbG6nkhLnA8VEa4dO3bUqVPnf//7n05n7Nu3LxFhC9og7t3jhg1zNgK1Nw///sunT7NCwRYWTMTW1qxQ6PDF/vTpU9EG6jIObRUfERGsjVzdvs1HjvCCBXzuXM4zf/zB+SwjnJmZeefOneDgYD8/P29vb9GPN3ebnd27dxsbG3/88ccS1n1Tq9Xi/kFURhKff1NFVzsohpo14wcPuHlzfvqUmzfn2rVZkrv1I0eOlC5dmojatGkjydn2tLQ0Pz8/V1dXU1PTpk2b5q5kCjpy6dKl6tWrE9F77713Q1tdCKCA1q5dS0QmJibaisPGxsYDBgw4cOCAJIdgbt3iiRNPiJHbtm17/vz5V/3k48ePPT09RVDJ1NTUw8OjoO9OaWlpCoVCbCGULVvWx8dHG/A6evRogwYNzmk/y3N59OiRp6en+C1R+SExMbFA875LLl58XpD98mU+e5bv3eMDB9jPj7dvz3k+PZ31lkr04MED8bdjbGxsY2MTEhKip4nzR1R+aNOmzWt+ZubMmURkaWkZFBSkt4W9q0JDQy0sLOzs7F7TWTf/1q9fL0LYLz2jkJ6eHhAQ4O7uLg5bCI6Ojnni7HmcPn1a5M6LF4b2FSvaUYhPbZlM5ubmlp86VxqNxtfXVyTUi61EUa0U9OnkyZO5/5mLJpAF6pZcUBkZGTKZzNTUVJqjqKNGce49HkfH/N7KgsHt3Mndu/PWrbxsGbduLU2J2//q1asXES3N3RmsgI4dO2ZiYiKTyXbt2sUvy3YvjqQOuJ89y+3b8/nzfOMG9+3LO3bw0qVcuzb/84/EEz1z4cIFNzc3S0tLPTeQFPcSt27d0tuMYjcbeWeGkpDAc+awnx/b2OQcnFq2jCdNen7GWQ/FaYcPH05Ea9as0flMIJGAANbuxB04wFOncr9+3Lw5i5PoTZr8pzf448d8+TLv389//MFz5vDkyemurq7NmjXLfdpUq0aNGra2ttrElp07d4rUrSFDhkiVqyLaQTs6OoqHgwYNIrSvLM5EGspvv/G333Lz5rxoEUu1gXvlyhVRMqJWrVqFPmqWnp6+bdu2oUOHalNiTUxMtMX7QHf+/vtvEQJo3759oROQAYSvv/66UaNGRFSpUiVPT09dlLwICAgQkSYTE5MXaxmLYsdiF1CEoopyrR4eHt6zZ0/xjtSxY0dt8dAXIxeiYrj4p2RkZOTm5oZyHy/17bds2P8wkZGRf/75Zz7POuhTWlqatbW1TCaLeulx2mfFKIyNjUVFUyi63bt3v3TnrHBGjRpFRM2bN9fWm0pLSxNxdltbW+0FvJOTk0KhyGeZNbVa7evrK/KgjYyM3N3dtXuHycnJM2fO1Oaq//DDD6+pc3X27Nl27dqJBbRq1aroLV6hcCIiIsRNnHgoOnLt27dPp5OKgm/SXOBNnszaRtMaDdeuLcGYoB+NGz9vlrJ4MS9aJPkMu3fvFrk7hd7dCQ0NrVWr1syZM8XDhQsX5s52L6akDrgz8/nz7OnJX37Jx46xWs2tWjERGxnxtGks6Xnzs2fPiqRvIrK1tX2xAb1OiQLKOr01ffLffaeGDRsS0aVLl3Q3I7yRvz9Pm8atW3NGBi9bxmvW8NSpfOaMnmZfunQpPav7BsXCSwPuM2fyDz8wMzdpwps3c8eO/N57bGmZU5Uo9/+srKy0kccqVaq0adNm0KBBU6ZMmTdvXocOHcQVtvYqLSQkRBQAbdeu3aPXNxzInzVr1hDR8OHDxUMHBwciunnzZtFHBoMQAXeVijt25ObNJR48Li5OVOsrU6bMPwXZYhfHqz08PMRxCnFLKTpFoxecHqxZs8bU1JSI3NzccK4cik6tVqenp+/fv1+n3T5SU1MVCoV46drb24uynmq12s/PT1svPk+TzKLw8/MTAS9TU1O5XJ6cnJz7u1lZWT4+Pvb29tp5L168KMm87xiVihcvZgT6XmPw4MFE9Ouvv774rc2bNxsZGclksj/++EP/C4P8SE5OFkVuJ0+e7Ofn5+7ubm1tnSfO/sYa/a8aWXvgxsbGRqFQaJM9o6KiRPGZBg0avPSQa3R0tLY6jYODQ+7qNKB/aWlpRGRubi7+FsaOHUtEa9eu1emk9evXJ6mOyB86xAMHsnilbdjAn3wiwZigB9nZXKfO84f//MPjxkk+iVqtFtdgfxehx31iYqKoGZgn27340kHAPY+sLPbyYjMzJuJatSRpqiCy2sUnh7W1tVwu1/9tuZOTk4WFRdG7ir3UlStX3N3dK1asmDv/omrVqkR0V1siHwzB35/nz8+pQSkC7voUHBxMRE2bNtXrrFAEAQFcuzb368f9+nHr1jkB96gobtuWIyK4SRNevvx5eN3Ojp2c2MWFR4/mmTP5l194z56/z549GxMT82KxWpVKNWHCBJHrtHr1avHklStXRN5fgwYNXpUhlX9ifHEu7N69e0RUtmxZXKYXX599lvPFv//yxInSj5+SkiJ6cJmZmW3cuPH1P6xWq18sYypuR4t1FkMxItreiv/ycrkc/7Sh2Dl//nzbtm3Fa7hNmzai6joRtWjRIjAwUNq5EhMT5XK5KAdfpUqVbdu2iecDAgJEQ3siat269TFJK6K+Y65e5e+/Zy8v/eWpFDsbN24kou7du+d5/vDhwyLYukgHOYkgoTNnzpiamoq/LJFA0KlTJ29v76JfkzNzeHi4todEnTp1/Pz8tN86evToiyWS0tLSvLy8RHK9paVl/ptYgE6J/JKEhARm/vrrr4lo/vz50k4RHR2d+2HXrl2JSLKPxRUruGdPdnXlTz7RRVkS0JXcxxF27uQvvtDFJPPnzxcRA1dX1ylTpixbtmzXrl2XLl3Kk6nwRvfv3xepft9++60u1qlPug+4CxcvcosWOdU3PDy4sG/3Fy9ezBNqN1T1MdHygoiGDh0qChxLIiwsbNiwYaLPkoWFRe7dIfF5+QTvawYlAu4qFbdrx9Om6TvgnpaWZmpqamxsnJKSoteJobBemuEeE8MnT/KgQdykSU5h96tXuXB/pV5eXkQkk8kUCoV4JiYmRnQDc3BwKOKBmNatWxORqBO6bds2Iurdu3dRBgTD+uab519//bVOplCpVHK5PM9rMo+wsDCFQlGrVq08cXaUDtenjIwM0YndxMQEjbih+Lp+/fq4ceNKlSpVsWJFIqpYseK0adPy00+1cE6fPi16OBFRly5dRJ9hIqpXr952bVVygMJ68uSJmZmZsbFx7iPUZ8+etbGxISJPT08Drg3yafv27YsWLXJxcVm5cqUuwhSHDx8Wp97F3syr0pYDAgK0F1qurq5IZXh7iGMQV69eZeZly5aJpAepBtdoNN7e3ubm5rnb/n300UdE9MZUGHjHjRrFW7cyM2dlcZ8+0nZM1YqPj1+9ejW9TJkyZVq0aOHm5ubp6enj4xMYGBgREfHSczkqlcrFxYWIunbtqrsrOr3RV8CdmbOyeM6cnFT3GjXitb1V8+ftCbULGo3Gx8dHBMFLly7t4+NTxAFFVrvInTEzM/Pw8Mi9OXn48GGZTCaTyaTpdwGFJQLuzHzqFFtZ6Tvgzs+69aJXUnHxqoA7M3/8MVtZcdH/Qa9du9bExISIJk+eLN4fEhISOnbsKD7YivJSyczMPHPmjKgy4enpSUSvCqFCsfD++8+/rldPhxN5e3uLz7KxY8dmZWWJJ69cuaJQKMRthlC9enXRLkyHS4GXefTokXiLsLW1PXDggKGXA1B44r5u5MiRZ8+e9ff3F7t9Oj2uoVarfXx87OzsRFXcChUqeHt7S9iuHEo40TNg/fr14mF4eLjYTBo1ahTOIYGQnZ3t4+MjykiamJh4eHjk3qE5d+5cp06dxIVWs2bN9Fx0F95I/O0cPXqUmf/66y8iGjFihCQj37t3r1u3bi9mvbi6uuJ8DPDjxzxmDLu6cs+e/OxwvC5kZGRcuHBh586dS5YsmTx5ct++fevXry+6TbzIxMTE0dGxe/fu48ePX7BgwZYtW86cOSOStypXrhwbG6u7deqNHgPuQlgYt24dV7Fi2TJl3NzcHj9+/MbfeNtC7bnFxMT0799fvFz69u177969QgzyYqg99zhBQUHdu3cXp9L27t0r3dqhME6cYG0Zoe+/Z/1HKj777DMiWrJkib4nhkIJDuYVK3K+Pn2aly/nqVNzGpY8fMjt2kkQcOdcHVM/+OADER/PyMgYOnSoOCijPfleFF26dCEivAUVa3oLuDPzrl27RAeCDh06fPfdd6KJomBvbz916tSQkBDEDgxFXFTUrFlT2wESoJj65ZdfiEh0V05PTycic3NzPcwbExNz4sSJjRs34sQhSGvlypVENHDgQGaOjo6uUaOGyFDGpg7k8fjxY22dq7Jly4rON9pnypUr5+3t/Q4kh757hg0bRkSiLnFqamqevt+Ftn37dtFisGLFitr09qSkJA8PDyJq2bJlYmKiJBMBFE5CQoJSqfTz8/Py8vLw8HBxcXF0dBTvV3mUKlXKxMTkxIkThl6yNPQecGfm7Oydv/4qdjmqVKnymgjO2xxqz83Pz69s2bLixeHj45P/IMLVq1fzE2oXn6MKhQL1ZAzuyBE+eDDn6+PHWf/hx7Vr1xLRhx9+qO+J4e0WEhIiLrO6dOki3ihUKpXYnjE2Ni7iERy1Wi0KDkpYPgv0z84up51Av35cq5bOpzt79mylSpXEOTBx3sLd3T0gIABRA4MLCwtzcXF5Oy+oAApk8eLFRDR9+nRmfvLkCRHZ2dkZelEAhXf//n0jIyNLS8uoqCgnJyciatu2LfZ14FUuXLggcmKISCQ6mJmZTZ8+HUGDt5bI3hUtsiShjaoTUa9evbRJwWfOnBEtRiwsLLy9vZHmAm+hjIyM69evHzhwYMWKFTNmzBg8eHCzZs2+/fbbd+kAriEC7szMfOvWrc6dO4u3Bjc3t9wnoZj50qVLxSLUrhUXFzdo0CDtO90bW5sWNNSOPcm3xMqVvGxZztdr1/KPP+p7ATfu3Bm5d+8noaH6nhjeemFhYdWqVSOihg0bat9PRJF3KkLpz7i4uO+++46IHB0dpVssGIA+M9yF27dvHz9+/OOPP967d29mZqY+pgSAkkS055o5cyYzP3jwgIgqVKhg6EUBFEn79u2J6P333xdXdPk5Dg4lnOjeLJJGcXbtLSc+tr788ktJRntpVF2lUnl5eZmamor3kCL29AKAojBYwJ2flUEXfWAqVaok6h68GGovRrV7/Pz8RD01Ozs7b2/vl9Zbz8zMHDFihGiLam5uPmnSpFeF2u3s7Dw9PRFqf6sYPOCuZu50/nwLpfLxs8rIAFoxMTGidkfNmjWvXbsmnly1apXY2ytQT5579+75+Pi4urqKAvGNGjV6l7aaSyb9B9wBAHTq+++/J6I5c+Ywc1RUFBFVrVrV0IsCKJJFixaJO8GaNWvGiLY/AG+iVqvR6a1Y2LlzZ7NmzSwsLORyee6OfQWVJ6p+8eJF8fydO3dEnx6ZTCaXyzMyMiRaOAAUhtGLRXP0RiaTeXh4nD9/vlOnTg8ePBg6dGjt2rWbNGni7+9vZWU1Y8aMyMjI5cuX29vbG3CRBeLm5hYWFjZkyJCkpKRp06Z16dLl5s2beX7GzMwsISHBxMTE3d396tWrK1asqFq1KhGdPHmyf//+HTt2PHLkiK2traen5927d728vEqXLm2APwm82u+/k6srubrS8uUGmN2IqL6VFRFdSUszwPTwdnNwcDh+/HiHDh3u3Lnj7Ox88uRJIpowYcKOHTusrKyaNm36xhEiIyMXLVrUrl276tWrT5gwYe/evSYmJgMHDvzqq6969+6t8z8A6NLw4S//GgCgmMrMzCQic3PzPF8DFF9ubm6zZs1q1arVoUOHHBwcDL0cKB6MjIxEPh+85QYNGtSjR4+MjIyff/65du3a48ePv3HjRkEHuXv3brdu3b7++muVSiWXy5VKZePGjYnI39+/WbNmQUFBlStX3r9///Lly/GZCGBgho74Mz9Ldbe1te3atauVlVXxymp/KT8/vwoVKhCRlZWVl5dXng3n8PDwqKgo7cPg4GDRPJqIRKgdWe1vLYNnuDPzz9HRLZTKVch5gVfIyMgYMmSIeP/RNsl4fZJUZGSkt7e3s7OzOF1ERJaWlq6urr6+vlI18wEAAJDWtGnTiGjZsmXMHBYWRkROTk6GXhQAAMDrhIaGassLy2QyV1fXwMDAfP6un59fmTJliKhy5cra88dPnz4dNWqUuIkbPHjwo0ePdLZ2ACiAt2IjVKS6X79+fcuWLbdv3y5eWe0v5ebmduPGDQ8Pj7S0tK+//rpTp065ty7r1KkjSi2LrPYOHTrs3btXhNqjoqKQ1Q6v18DamoiupKYaeiHwljI3N9+6deuECRPS0tIGDhz4+++/E9FLk6SuXLkye/bsli1bOjo6Tps27eTJk9o4e3x8/J49e0aPHi3apQIAALxtkOEOAADFTvPmzTds2BAeHi6Xyy0tLffu3dujR4+WLVtu2LBBrVa/5he/+eabYcOGJSYmDh069MqVK+L8cUhISLNmzTZt2mRra+vj47N9+/Zy5crp648CAK/zVgTcBQcHh4oVK1asWNHQC5FGmTJlfHx89u7dW6VKlZMnTzZr1uzHH3/UvoGeOnUKofbiqGFD0pblcHKi5s0NsQYrKyIKS0tjA0wOxYOxsfGqVavE8ZoJEybMnj0793dFnL1+/foNGzacM2dOaGhomTJl3N3dAwICEhISRJxddNcAAAB4a7WxsfmqefN6trZEZJ6d3bNmzRbFPGUHAABKCEdHx+XLl9+5c0ehUJQrVy40NHTMmDH16tVbvnx5enr6S3/Fzc2tdOnS3t7e/v7+ZcuWValUs2fP7tixY2RkZOvWrUNDQz08PPT8pwCA15AxI2qnW0+ePPH09Fy9ejURtW3bdsqUKX/99dfevXuJyNbWdtKkSZ6enuJYEEA+9b10KT47e0fDhtWRyQWv9ccff0yYMEGlUk2ePNnDw2P79u2bN2/W9pYoV65c37593dzcevXqZWZmZtilAgAAFMzIkbR5M23aRCNH0rFj1LUrde5Mx44ZelkAAAAFkJqa+ueffy5ZsiQ8PJyIKlasOHHiRLlcXrZs2Tw/mZKSIvKibt++PWrUqFOnThkbG8+YMWPevHmihyoAvD0QcNeTffv2TZgwISYmxsbGJiUlpXTp0tOmTZs2bVqpUqUMvTQofv4XEfHPkyfzatXq88JnMEAeO3bsGDlyZFZWlkajEc9UrVp18ODBgwcP7tChg6geCAAAUPwMHUrbt5O/Pw0dSocOUe/e1LMnHTpk6GUBAAAUmEaj2bdv3/z588+cOUNENjY2H3/88ZdfflmjRo08P7lhw4bPP/88JSWlRo0aGzZs6NSpkyHWCwBvgIC7/jx9+lShUNSvXz8uLm7atGmoHgOFtu7+/RUxMcMrVpxRrZqh1wLFwIkTJy5duvTLL78MGDBgyJAhbdq00TZHBQAAKK7696e9eykggPr3p4AAGjgw5wsAAIBiKzg4+Mcff9y3bx8zGxkZ9e3b97vvvmvdujURPXr0aPz48bt27SIiNzc3Hx8fFEsAeGsh4A5Q/FxLSzufkvKepWVpExMHMzMbJCkDAABASdOzJwUG0qFD1LMn+fvTsGE0dCj5+xt6WQAAAEV16dKlxYsXb9myJTs7m4icnZ179+69atWqmJgYOzu7FStWjBo1ytBrBIDXeYuapgJAPt3OyDj25MnZpKS/ExLuZ2UZejkAAAAAepeZSUQk+tnk/hoAAKCYa9y48YYNG+7evatQKEqXLn3y5Mlly5bFxMR06tTp8uXLiLYDvP1MDL0AACiMtnZ2H1eubOhVAAAAABgIAu4AAPBOs7e3nz179tSpU1euXFmnTp2YmJgpU6agCxdAsYCAO0CxFPTkycOsLCL6X7VqRqjHDQAAACUNAu4AAFAClClTZubMmYZeBQAUDALuAMVSExuboRUqEBGi7QAAAFASIeAOAAAAAG8lBNwBiiU7E5OquKsEAACAEqtKFcrMJGtrIiIjIzI2RsAdAAAAAN4GCLgDAAAAAEBxExhIjx6Rvz8lJFCnTqRSGXpBAAAAAABEREaGXgAAFFjvMmXGVKpk6FUAAAAAGE5CAvXsSeXKUZcu9PPP9Ntvhl4QAAAAAAARkYyZDb0GAAAAAACAgli0iMzMaOpUIqLUVGrWjMLDDb0mAAAAAABkuAMAAAAA0qL/3gABAABJREFUQLETGUnvv5/ztbU1mZlRWppBFwQAAAAAQISAOwAAAAAAFD/ly9PDhzlfM1N6OllaGnRBAAAAAABECLgDAAAAAEDxM2wY/fYbPX1KROTjQ927k0xm6DUBAAAAAKCGOwAAAAAAFEeHDtGKFaTRUIMGpFCQlZWhFwQAAAAAgIA7AAAAAAAAAAAAAIAUUFIGAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAAAAAAkg4A4AAAAAAAAAAAAAIAEE3AEAAAAAAAAAAAAAJICAOwAAAAAAAAAAAACABBBwBwAAAAAAAAAAAACQAALuAAAAAAAAAAAAAAASQMAdAAAAAAAAAAAAAEACCLgDAAAAAAAAAAAAAEgAAXcAAAAAAAAAAF1RqejBg5yv1ernXwMAwDsJAXcAAAAAAAAAAF2JjqYxY3K+fvCARoww6GoAAEDHEHAHAAAAAAAAAAAAAJCAiaEXAAAAAAAAAADwLouMpPnziYiSkw29FAAA0DEE3AEAAAAAAAAAdKhsWerWjYjo0SM6e9bQqwEAAF1CwB0AAAAAAAAAQIdKl6Z27YiIYmMNvRQAANAx1HAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAALri4ECffUYaDRGRrS3Nm2foBQEAgC4h4A4AAAAAAACQ1+jRz6t/fPIJ3b1r0NVAcZaZSUOH0sqVRETR0bR8uaEXBAAAuoSAOwAAAAAAAEBe9++TSpXz9YMHlJ1t0NVAMdemDW3aRHFxhl4HAADoHgLuAADvKI2GUlIMvQgAAACAYkyppOBgCg6mxERDLwWKORMTmjuXvvjC0OsAAADdMzH0AgAAQAcWLqQDB8jBgWJj6eefqWlTQy8IAAAAoPj5918qVYqIKCHB0EuB4ik1lXx8aOBAIqIePWjNGvrnH0OvCd4NajVt3Uo3btB779GIEWSC+B7AWwT/IAEA3jnBwXTqFB0/TjIZhYfTRx+RUmnoNQEAAAAUPxMnUvXqRETBwYZeChQ3ycn0xx/k5UX371N0dM6TS5dSp07UooVBVwbvhmHDqHVr6t+fjh2jgQNp3z5DLwgAnkNJGQCAd86xYzR4MMlkRER165JMhqQsAAAAAAD9ePiQZs2iatVo2jS6f5/at6cuXcjWloioShWSy8namlatokOHDL1QKL6uXKGUFPL0pJYtacYMMjam0FBDrwkAnkOGOwDAO0etJmPj5w9NTNDkCwAAAKCgpk8nO7ucr6dMoUqVDLoaKA7i4+m332jZMkpKIiJydiZPT+rfn4howICcn5k6lf75h7p3J0tL2r+fOnc22GqhGIuMpHr1nj+sX58iInB0AuDtgQx3AIB3TosWdOJEztePH1NSEm4QAQAAAArK15c++yzn6/nzSa026Grg7Xbnzh2FYmv16jRnDiUnk6srhYRQcHBOtD2PLl1owgRKS6N+/VCtCAqlQgV6+PD5wwcPqGJFw60GAPJCwB3gHaRSqU6cODFz5sxmzZpt2LDh6NGjhl4R6ItGQ8nJ1K8fZWbSuHHk5UWDBtGSJYZeFgAAAECx9OABHTxo6EXA2y0yMnLChAl169b96aexZcrEurrS2bO0Zw+1bfvKX5HJ6Lff6JNPKDWVXF1RCwQKrmVLunGDzp8nIgoLowsXqF07Q68Jip9Hjx5t3749LS2NmQ29lncNSsoAvDtiY2MPHjx44MCBw4cPP3nyRDw5fvx4Y2PjHTt29O7d26CrA704cYL69qUJE2jjRrp1i+LiaOJEKlXK0MsCAAAAKJbmzqUvvkDRD3i5ixcvLliwYNu2bRqNxsTEZNiwYd98o3n//Xz9rkxGPj6UkkJbt1Lv3nTsGDVooOPlwjvj55+pQwfatYu++44SE6lUKdq5k8zNDb0sKB7S09NPnjx5+PDhw4cPnz9/XqPRtGrVqlmzZqtWrZKJPnAgBQTcAYo3tVp94cKFPXv27N2799y5c9ptSUdHRxcXl379+v39998rVqwYOHDgli1bPvjgA8OuFnRuyxZKTycbGyKi6tVp/nwaMIDw9w5vmfv371eqVAnXcwAA8ParUCHn0CBAbhcuXBChdmY2MzP78MMPv/vuuzp16hRoEGNj2riRUlNp717q3p2OH/9PUW6Al7tzh6ZNIxsbio8nX1+6f58qVSJcV8NraTSaCxcuBAYGHj58ODg4OCMjQzxvaWnZqFGjCxcu/Pvvv2ZmZj///DPu0aSCgPt/JCQkpKWlVa1a1dALAXiD+Pj448ePizh7YmKieNLKyqp9+/aurq6DBg2qUaOGeLJ///7m5uZLly51c3Nbv379qFGjDLdq0DGVinbuJCL68EMior//pvXr6cIFBNzfeSqVav369c2bN2/evLmh1/I60dHR27dv9/f3Dw0N7d69e58+fT7//HNDLwoAAOAlbtyg2Nicrz/7jLp0obg4SkujPXvI3d2gK4O3wKeffrp27VoisrKy8vDwmDFjRpUqVQo3lKkp+ftTv3509CgNHarety+2evVqki4W3jn+/sRM/fuThQURkYsLJSfT4cNUwP0eKAni4uKCg4MPHz68d+/e2GefakZGRi1atHBxcXFxcenQoYOFhcXff/89cODAX3/9NSsrC3nuUkHAnSIjI4ODg0NDQ0+ePHn+/HlXV1eVSrVlyxZbW1tDLw3gP16fzO7q6tqzZ0/zF86RyWSyJUuW2NjYzJ07d+zYsWq1esyYMXpfO+jF0aMUH0/vv08NGxIRbd1K9Cz4Du+0a9eujR8/vk6dOuHh4YZey0vEx8f7+/tv2bLl5MmT4o3L2tp63759+/bti4qKWrhwoZEROsoAAMBbZMMG+vxzMjWlTp2IiIyNadkyatOGPD1p0ybasYPWrKFy5Qy9SjCQU6dOXblyxdzcfMKECV9//bW9vX0RB7SwoIAAcnPLun17nIvLv8ePHy/6mPAu276diGjIECKiGzfoyhUqV45q1TLsouDtkZKScvr0aVExJjRXgwh7e/sOHTq4urr269ev3H8/w3r27Ll79+6BAweuXr2aiBBzl0RJDLinpKScPXv21KlTISEhISEh2uxgIrK0tAwODk5ISBg8ePDevXtfjF0C6F/+k9lfY86cOVZWVl9//fW4ceNSUlKQVaprDx48OHfuXLdu3fT6NiIi7CNGEBFlZNCePUREQ4fqbwFgIOfPnyeiZs2aGXoh//H06dPdu3f7+/sfOnQoOzubiCwsLFxcXNzc3IYOHern5+fh4fHTTz/dunVr06ZNlpaWhl5vCZKenn7jxo1p06YVZZBmzZp99913ZcuWlWhRBZaUlPTvv//OmzevKIP06dNn/PjxBvxTAMDbJimJJk2iP/8kInJzo2+/pZo1iYhatqRLl+jaNdq/n3btotBQ2rQpJxwPJU1cXNzp06f79OmzfPlyqca0tqYtWzK6dw9XKm927dr1+PHjlSpVkmpweKdER9PZs2RlRb16ERH5+RERDRpEJm9pcC82Njb0mdOnT//www8dO3Z0cnIy9LreNSqV6uLFiyLIfvz4cXHzRUQ2NjZt27YVyewtWrR4zQiIuUuPS4aYmBg/Pz+5XO7s7GxmZpb7v4C9vb2rq6uXl1dQUFBGRkZERITYTx44cGB2drahFw4l3b179+zs7LQvVycnp+nTpwcGBmZkZBRitEWLFhGRTCbz9vaWfKklXEJCQlBQkLe3t7u7u/YConfv3gsXLtTTCrKyuGxZJuKrV5mZd+xgIm7VSk+zg0GJyKn+XmyvlZ6eHhAQ4O7ubmVlJf4hGBsbu7i4+Pr6JiUl5f7Jw4cPly5dmojatGnz4MEDQy24BPruu+8qV65cxAtIe3v7UqVKxcbGGupP4e7uXvQagDVq1KhevXpqaqqh/hQA8FY5e5Zr12YitrXlDRte/jN373KHDkzExsbs6clZWfpdIrwFRKJDgwYNtM+oVKrMzMyij5yYmCjyJ5o0afL48eOiDwjvoGXLmIiHDct52KQJE/H+/QZd038kJib+/fff8+fPHzhwoIODQ55LL5lMVq1atXv37hl6me+UsLAwa2tr7X9kc3Pzrl27zp8//8yZMyqV6o2/fvr06Q3PPvMOHTpkYWFBRB4eHhqNRscLf8fJ+FlVineAWq02NjYWX4vtHVEr5sSJE3fv3tX+mImJSd26dTt06ODs7NyiRYsGL/QCDwsL69y5c0JCwpgxY9atW4ddHTAUlUpVtmxZtVrdrVu3fv369enTJz/J7K+3atWqzz//XKPR/PDDD99++60k6yyZYmJiQkNDz507J/5fWxBNsLOzq1mzZlhYGDNv2rTpo48+0vmC9u0jV1dq0oQuXCAiGj6ctm6lxYtp+nSdTw2G1qVLl+PHjx88eLCXSHUxBLVa/c8//2zYsGHXrl3JyclEZGRk1K5dOzc3t48++qhChQov/a0rV67069fv7t27jo6O+/bte//99/W76pLo3r1777//fnp6+vLlyxs1alTocebOnfvPP/+MHTt23bp1Ei4vn06fPt2+fXszM7N169YV+ty9RqOZNm3a5cuXFQrF7NmzJV0gAOjQ7Nmzq1WrNmjQoHLSVXVhpp9/pv/9j7KzqUUL+uuv1xVDVqnohx/ohx9IraY2beivv6Ss5aBWq4OCgrZv3z59+vSaIrse3jLJycl2dnaWlpapqakymeyrr75avnz5L7/84uHhUfTB4+Pju3Tpcu3atbZt2/7999+ocwt5dexIwcG0dSsNG0Y3b1LdulS6ND14QP/NK9Wn7Ozs8PDwkydPivjb9evXNRqN9ru2traNGzdu0aJFixYtWrdu7eHhERQU1KBBg6CgoDJlyhhqze+S8PBwZ2fn5OTkKlWqiEz2Xr165c7afL379++///77ycnJa9euHTt2LBGJeu4ZGRkeHh7Icy8SQ0f8JTNv3jxra+uuXbv26NGjefPmedLYK1SoMGDAgIULFx4/fjw/eUwhISFig+jrr7/Ww+IBXiokJISI6tevL+2wq1evFhWTPT09pR353RYTExMQEKBQKFxdXV+M79jZ2Tk7O8vlcl9f37CwMLVazcxLly4lIlNT08OHD+t8fe7uTMQLFjAzp6ayjQ3LZHznjs7nBUPTaDQiT/z+/fv6n13EBeRyee6QupOTk5eX12tyn1Uq1bZt28TXcXFxLVu2JKKyZcseO3ZMXwsvuYYOHUpEo0aNKuI4ERERFhYWMpnszJkzkiws/zQaTevWrYlo1qxZRRzq5MmTMpnM0tLyDt4tAYqJxMREcaNnbGzs7Ozs7e0dExNTxDFjY5O6dWMilsl4xgzOZ6byP/9wlSpMxGXL8u7dT4u4BpVKJT5PtReZixYtKuKYoDvly5cnIvHamzt3rrQ3Vvfu3atVqxYROTs7p6SkSDUsSOvWrVvbtm37559/xH2fnsTFsZERW1pycjIz84IFTMRjxuhvAc9ERET4+vqKGhIiIVrL1NTUycnJw8Mj932x1pMnTxo3bkxEnTp1Sk9P1//K3z2//vorEbm5uRV6hCVLlhCRTCZbtWqVeAZ57pJ4RzLcMzMz7ezssrKycj/p6Ojo7OwsMtmdnJwKui1z+PBhV1fXzMzMn3766X//+5+k64UiYeZvvvlm2LBhzZs31+lEq1aRvT0NHEhEtHYtlSql72rYXl5e33zzzcSJE3/77TdpR968efOYMWNUKpWnp6eXl5e0g78z4uPjxS69SGN/+PBh7u+WKVOmRYsWzZs3F9v1jo6OL32TmTZt2vLly+3s7IKDg4uSTPp6mZmZ+wYM6BkTY7N7N9WuTX5+9OGH1L49nTypoxnh7REZyT163Hj//Sv79g3R57ynT5/+66+//Pz87t+/L55p3LjxiBEjhg8f/saMPPHv4rPPPvvll19MTExSU1M/+uijgIAAc3PztWvXjhw5UuerL6lOnjzZsWNHCwuL69evV69eXTy5bdu2jIyMfI7QokWL+vXri6+//vrrH3/8sV27diJsrZMVv4yvr+/YsWOrVKly/fp1GxsbIlKr1X/99Vf+R+jUqZP2jz98+PCtW7eOGDFi8+bNOlku6JFSqczMzLx27dq4ceO0x17hHZOamrply5bt27cfOXJE3P0ZGRk5OzsPGTJk8ODB1apVK+iAgYGBo0ePrlHjXGSk/fr11LdvAX73yROaMIH27UutVKmls3OrlStX5j7Unx8ZGRmBgYHbt28PCAjQ9mqqV6/ekCFDRo4ciTLHb622bdueOXMmKCioQ4cOmzdvHjly5NChQ/39/aUaPyoqqlOnTnfv3m3Xrt3kyZMzMjJUKlVaWlpmZmZWVlZqaqparU5KSiIi8bJJSkpSq9XiBzIzM9PS0lQqVXJyMjN7enr26NHj9bWboUBSU1MXLVr0448/MnN2dvbAgQM3b96cJ+isI7xypWzSJBo0iHbuJCJq2ZJCQykggPr318PsRLRv375FixaFhoampKRonzQ2Nq5fv36rVq1at27dqlWrxo0bm5qavmaQmJiY9u3bR0VFDRgwYMeOHfi8LqJBgwbt3r37jz/+GDduXKEHWbp06fTp02Uy2cqVKydMmEDIc5eEYeP9Ujl79uyLf7SbN28WcdjNmzcbGRnJZLI1a9ZIsk6QxNq1a4modOnSISEhOp3ohx+eV2/86SfW/6ugd+/eRLRlyxZdDL5161bxQTh9+nRsWr7oxo0bs2bNyv2WUqpUqdw57C/9j5aeni4agmufUavVQ4YMIaKqVavqrlbdzp07iahly5bi4dPx45mI9V6pPy4u7rfffnNxcRk3btzs2bPXrVt35MiRmzdv5qflQHIy//EHiwSI+/f5xAk+cYK1tSuDg/nhQ10uvTjz92cidnXV66TXrl3T9mitUaOGXC4/d+5c/n99+/btoktqjx49nj59yswqlWrKlClEJJPJFAqFrtZdsqnVanG/PXfu3NzPizS9fMqdcZmUlCQyMTdt2qS3P0VycrKoB7ohV33l3Hd9+eHv76/93Xv37okA2fHjx/X2pwDJaTQab29vMzMzcYa6S5cuqA/7zktMTPTz83N3dxcbb4KTk5NCobh+/Xp+RsjIyJg6daoIIgwd6lG4c2IaDf/xR6CItTVo0ODSpUv5+a20tDTR7yRPryZPT8+goKDCrAP0S5SLXL9+PTOfPn2aiJo3by7tFOHh4XZ2doXYQ8rD0tKyZs2a6FYiCbVavWbNGtHP1sjIqE+fPtoPnSdPnuhhAX179JjZokW0OCd6+zbLZGxry/rKE9+4caOLi4t4XYlWiAqFIiAgICEhIZ8j3Lt3TyS8h4WFiXoyn332mS6X/O5TqVTirHNUVFQRh9JDnntSUlJAQMDvv/9eQo6WviMZ7itXrpw0aVLuZ957770bN26IuhlF8dtvv33++efGxsZbtmwZquf0ZngFtVo9duzYTZs2WVtbBwQEdOvWTUcTzZ9PajX16UNEtGkTNW5Mn3yio6leQhRwT0lJiY2NLXp3u5fau3evm5tbRkbGhAkTfvvtt6L/e3mXTJw4cdWqVfXq1Rs6dKjIZH9pAX1RsU7beF3k1tWvX//q1avan0lPT3dxcTl16lTz5s2PHz+e+7ZQKiNGjNiyZcuiRYtmzJiRnJxcqVKlTvb2u4KCLF5oU6M7zNykSZOYmJiEhIQ835LJZJUrV37vvQb29oHVq1O1alSzJlWvTtWrU9myOT8TFUV16tDy5fTZZ3TqFPn6UlISffUViaDumDE0aRK1aaO3P01x8u23tGABffcdzZ2rv0nbtGlz9uzZESNGfPnll6IgTEGdOXNmwIAB8fHxjRo12rt3r0g3Xr58+ZdffqnRaMaNG+fj4/P67BgoKB8fn88++6xatWrXr1/XtrQlokmTJoksufz46KOP+ubK/1y3bt3HH39cpUqVGzduFDSvs3Bmzpy5cOHCtm3bnjp1Sptrk5mZ+UlBPqGnTp3aqlUr7cPZs2fPmTOnWbNmSqUSH4XFUXx8/Lhx4/bv3y+TyT744IOQkJC4uLjSpUv7+PgMGzbM0KsDnUtPTz98+LC/v//u3bu172ZOTk5ubm7Dhg17VZL4jRs3RowYcf78eRMTk2+//fb7778vyj//q1evDh8+/PLlyxYWFl5eXnK5/KXJgGlpaUeOHPH399+5c6d2p1Asdfjw4WhkUox8//338+bN++677+bOnfvo0aMKFSrY2dk9ffpUwinu3btXp06drKysnj17Ojg4mJqaWlpaWlhYmJqa2tjYGBkZlSpViohKly4tk8lsbW1NTEzED5iZmVlbWxsbG9vZ2anV6p49e54/f/7rr79euHChhMsrgc6cOTNt2jSxv9K6dWtvb+927dpduXKld+/e0dHRDRs2PHjwYJUqVXS3gIcPHzo4OBgbGz948KBUqVIHVq6svmWLY716lqtX627S3Lp373706NEvv/zS09OzYsWKBf11pVLZr1+/wYMHr1y5kohOnDjRq1evjIyMhQsXfv311zpYb4kQEhLSvn37999//9q1a0Q0f/58S0vL0aNHFyifRksXee5qtfrChQuHDx8+fPjwiRMnsrKybGxs1Gr1zJkz8yQ4voMMHfGXhijtn5u3dKmdCoWCiMzMzA4dOiTVmDkSE/lpUev9lUwqlWrMmDFEZGVl9ffff+tolh9+4MGDefZsnj2be/bUd4a7jgq457F//36RZ/rJJ5/otfzc2y07O1tcQ1y+fDnPt1JSUoKDg5cvXz5mzJiGDRuamJjkfucxMTFp1KjRxx9/nGcH+NGjR3Xr1iWiPn36ZGdnS7va1NRUGxsbmUwmNoo3bdpERJ07d5Z2ljfat28fEdnb2+/du3f16tWzZs1yd3fv1KlTzZo1Rdi0Ro3uRJznfzY27OTEffrw5s3cpw+3acP37/PJk+zhwcOHszZnevRoPn1az3+gYqN3bybiHTv0N2N2drYo3l3EXJ6IiAgRXHBwcAgNDRVP7ty5U8SCXVxc9JMrVEI8ffpU7N36+flJOKxarRbl1L/77jsJh30VbeH405K+I6SlpYktVZxoLI4CAwPFSYsKFSrs2bOHmePj411dXcXnsru7O/I6S4709PSAgAAPD4/cbUUcHR3lcnlQUFDuazNfX1+RAFGzZk2pjsymp6fL5XIx6cCBAx89eqT9VkJCgq+vr5ubW+7NTpGMHx4eLsnsoGeiYfhHH30kHorYd+6/9KITIY4RI0YUcZyzZ88aGxubmJhcuHBBkoWVQPfu3XN3dxehxqpVq/r6+uZ+P7l9+3a9evWIqFatWjdu3NDdMkScun///uJhmzZtiGiHvu4BHj58aGJiYmZmlv989jyOHz8u0qUXLlwontm9e7exsbFMJvvjjz+kW2nJMmfOHCKaPHkyM6tUKnFu4Pbt24UeUKo892vXrv3yyy8DBgzIfZDLxMTE2dn5gw8+EDvc2lfCu+odCbg3bNgwd8zLxsZG2rv0L774gohsbW2VSqU0Iz56xL178/DhPHQoDxiAsHshaDQacazB3Nx8165dupjCsCVlRA7CxIkTdT3RsWPHxC3H8OHDJY8FF1OHDh0iovfff1/7zLlz59zd3Z2cnPLUmDMxMWnSpMnHH3/866+/hoSEpKWlvWrMiIgIEcT/5JNPpF2tn58fEbVv31487N+/PxH99ttv0s7yRp07dyaiJUuWvPgtlUoVHR0dEnJ182b28uJJk9jVlRs25FKlnkfeV63igQP5wAEeOfJ5wL1jR+7Xj/v146pVEXB/pcqVmYiLcFlVYJcuXSKiOnXqFH2ox48fi1eOjY3N3r17xZNnzpwRZ3UbNmxYQs4b6sH8+cdLly7TqVMnyUcWmeYWFhZFubjPpw8++ICIxuigOZgo4F6xYkVs8xRa/N3r678ZsuWHcf5eEx5F39LDjNnZ2QqFQtyzdevWLXfnTFFhxtzcXIQ181nlA94Z2gakuQ+JigJoBw8eFMVAxH6MKHItoR07dpQtW1ZE5QICAnx9fV1dXUWXV3pWbt7b2zs6OlraeUHPTpw4QURt27YVD0WdPQm7iF+7ds3ExMTU1DR3mdykpKSEhITo6OiIiIirV68qlcrTp08HBgb+/ffffn5+fn5+v//+u4+Pz5IlS7y8vHJfQU2cOJGIOnTogDqiBZWamqpQKES00crKytPT86VvGo8fP27fvj0RlStXTndlb0U5F1HI6N69ezKZzMrKSm+byj4+PkTkWrQqli9G2MUugqmp6YEDB6RYZonTsWNHItq9ezc/K29Vt27dIo5Z6Jh7fHy8n5+fh4dHntoAjo6OHh4efn5+iYmJ4if/+usvkbk4b968Iq72bfYuBNxTU1PzJJlKHqPUaDRih7l8+fJXr14t0lhRURwYyFOm8MaNOc/88gvPmlX0RZZAGo1m6tSpRGRmZrZ9+3bJxzdswF2nBdzzCAoKEhuPbm5uWVlZepjxLffxxx/Tf8sci6tqEWF3cnJyd3f39vYOCgoq0CXO2bNnRcmF+fPnS7haUSN++fLlzJyYmGhubi5OGko4xRuJRhqlSpUqaKzqyRO+dIn37OHQUB44kJl5yBD28kKGe36lpXH//tywIevzBmr9+vVENGzYMPHw1q1bRbl/y8jIGDVqFBEZGxuvWLFCPBkZGSk6c9rb20u21V2CXb/OZmZcvvzDCxcidDG+6HPr5uami8G1jh49KvZmcsdVJdSpUyci+t///qeLwUuC6Bvndi2bxsy3L53cMv/j7MyMjJSnTx/GZqXrJBZw+/bttm3bis9lhUIhTump1WqVSqX9mdDQUHG8zMrKat06fVxQwdtGG3l3eFZkT+So2tnZ6a75xJ07d0ToTWQaig84EWePi4vT0aSgZzExMURUoUIF8VDUnt28ebNU44sEGpG1KsTGxlJBHDx4UPu7T58+Ff8EcJAr/zQajZ+fn6h5KJPJ3NzcXp8Fkpyc3KtXLyIqXbr0P/88fs1PFs6jR4/EHszjx4+ZeenSpbmvxvWgZ8+eRLRu3Tpmfvz48bVr1wo3jjbCvn//fvGMp6en+KQ+9X/27jusyeuLA/hJ2ENxoSJO3LhAREXcYq0VVy1Wa7HWWmqtolUrtQ76a6tF2ypu0VqLWgd14hZHlTrBvQdOUAFlyIYk5/fHhZjiAvImEfh+Hp8+hHHvpcbkfc8995xjx6RabSmRmppqampqbGws7sF//PFHIho1apT2Ixc85p6enh4WFubn5+fi4qJZmc3W1tbLyysoKOjevXsvnaI0xNxLQsBdHQhT00UaS3Z2dq9evYioevXqWiXcHT3KLi7s5PQ8q/3+fdZ78YeSZMqUKeJCVrN/miQuXOCovNDE5cusdRfeQsjJYXf3fpaWlnq7Lj9+/LjotjFlyhT9zPjWys7OFqlJmrtrKSkpQUFBERERWVlZ2gy+fft2sasfHBys9UqZmZ89e2ZhYSGXy0WqlDjf2r17d0kGLzgR9P/uu++YWaVS/fPPP4Ud4d693ID7/ftcrRoC7m8QFMTqN7oVK/jMGX76lCUve/YqYqdTnAGMjY0V74zaDKhSqUT1NiLy9fUVgbOEhIQuXboQkWjXIc3SS6v33mMi9vHR1fjR0dFiN7EI//YLSKFQNG/enIhmzpypoynOnDkjl8tNTU11eh68BIu+fmbDzBFPom8dXj/38Pq59y6dWOrbPXT+hNi7VyXPqVTXA6lVq9bRo0fFJx8/ftyjR498XZfT09N9fX1NTEyaNj3ev//zXtxSuX79+syZM3W0CQQSUiqV4eHh48aNE9d40lcK/a+cnBxRUs/d3T04OLjIFRjgraVSqUSBINH7fdKkSRKGjY4fPy6TyaytrTXvBBMSEqytrcuXL1+tWjUHB4dGjRq5uLi0bt3aw8PDw8PDy8vLy8vrs88+8/HxGTdunJ+fX740wb/++ouIKlSoEBcXJ8kiS7ZTp065ubmJS1NXV1f1G83rZWdnf/zxx126BJmasnSbL7mWL19ORD179hQP3d3diWjDhg0ST/MKCQkJpqam6nD//PnziWjcuHFFG01UbFdH2EX3JiKqVKkSrsEKZfv27aRx0l2cG96yZYskg78m5v75559HREQEBAR4eHiIzwiWlpYeHh4BAQGRkZEFufYr8TH3khBwF5t7at26ddPRROnp6eK8Rv369QuXPerry+o645mZbGXFzZo9D7g/eMAdOki81lJGRGqMjIzEjqtUli7levVym35Pm8YSvXAVyPHjTMRNm+o12fzff/+1srLy9vYu5YcNxfuWk5OTjsZX7+qHhYVpP1q+iu3iYISes1eioqKMjIzMzMwePnzIef8D1eUFCygm5nk0MDCQv/uOx49n9Z2Cnx+fPy/lmou7L7/kAwdyPx47ljds4BkzeMgQlu4o8+uIRGCRObV7926SqGfAH3/8Icr9DxgwQFRnysrK8vb2Fi/vCxYs0H6K0mnfPibismVZpxu4ooKkk5OTZn6xhBYtWkREderUyRDvyrohjjf16dNHd1OUYNHXzywe3TXsz5/W/m/osS1L7106sX3hN8ysyM6aO9w1JMDn3IEQ7bPdnz17Js7EENEHH3ygPpu8bds20R+sevXqqamp+X5q8+ZrZcsyEdeqxQULm7zBpUuXAgICRLyDiPACVYyIf+bqe/vExMRVq1ZJkuCydu1ade+fx48fi0ujZBQOLbmaNGlCRGfPnuW8ahvDhg2TZGTx2pJv+1B7oue5VIssqaKjo9Xl2u3t7YOCggrV50ylYj8/JmKZjH/5RcqFad7lPXr0SC6XW1hYSF4U61VWrFhBRO+++654KMJi69atK9poL0bYs7OzxS/o4ODw+PFjydZd0oksKPFakZaWJk66S7jF+2LMfffu3aJ1szoAa2Rk1Lp16ylTphw6dKgIuYnBwcEiLz4gIECqZb89SkLAXV2GT5BqP+elkpKSRIE2V1fXZ8+everbMjMzDx8+/PzxtGn/KRrj5saens/Dt3/+yTi/rLWAgADxWiDhPc/Spdy+PYs+cHoOuP/8MxOx7uu3/0dYWJh4but11rePuJPXaQcP0RaibNmy57WOIg8dOpSI5syZo1Qq4+PjTUxMTExMpG3Z9Eaig/kXX3whHrZv356K2rlapeKRI9nVlTMzJV1iifPll7xrF6elcVoaf/UV797NMTF6KnulUqlEZzBxNTxz5kwi+vrrryUZfP/+/WLwtm3bio1tlUo1ffp0mUxmYWGBeu5FkJPDTZowEb+svYKU0tPTa9euTURBQUGSD56QkCBiqbooH6cpNjZWPANRSLQI1CVlVCrVnGEu9y6d2Ll4MjPfOf/v95524s/MD+r9PeuLy+GhRYu8R0RE1KtXj4gsLCzU7zKiU6UIjnTv3v1VkdO7d9ndnYnY2Jj9/bloG0ORkZGTJ08WZWqEChUqDBs2rIDJj/A2ED3e1XkVAwcOJKL58+drOWxKSoo4cSjevJYuXVqE5AMoXvr06UNEGzduZOb9+/cTUQcpsui2bt1KRLa2tpLv1ty8eVM0Hj+gztoADWlpaQEBAeL4lIWFhZ+f32sCPq8XGMhyOROxr680VR8TExNF5RBxQEEkmL///vsSDF0wYrdm+fLlzPzo0SMjIyNzc3NtnqIvRtjT0tJEpTgXFxe9bSQUd2LbLzw8nJl37dpFGo0lpDJr1iwi8vX1VX/ms88+MzY2rlix4siRIzdt2qR9fH/dunUmJqYdO14qeWnuJSHgrnnVW7NmTR2lVqnFxsaKGbt27fqqNKv09HQrK6vn7RN37eKuXZ9/+ZtvePZsbt+ex49nX1/u3Jnj43W65lLi119/lclkMpls7ty5kgy4dCkvWcIdO/LVq/oOuL/7LhOxXuq3Pzd16lQq9eVrMzIyRLTlpi5LCCmVSlHq0d7e/v79+0UY4dmzZ+Hh4YGBgR9//HHt2rWNjIy+//57X19fInrvvfckX/BrxMbGijtMcXD15MmTIgBR5OskR0cm4ogISVdZ4nz5JXfqxF5e7OXF9euziA3q52jKzZs3xVNXPPTy8iIiCSt6XbhwoUaNGkTk4eGh/uQnn3xiYWFRUg8b6tScOUzE9erpYxNrw4YNIkagTjqWinhx69Kli7TDvpS4r2jcuDE6mhRW9PUzq6cNunXmn3//Xrh6+mB1wJ2ZE2Pvn9i2fMU3fb7vXU1E3n96v/ba/w09dyAkI7VAt+uiCaroPOni4qI+cn716lUnJydxbkxdyf1VcnLY35+NjJiIO3XiBw8K9HsplXzsGE+YwG5uXdV3HJUrV/bx8dm7dy+eJ8VOdna2KK1+69YtZl63bp0k57TWr19PROrG1N27d6e83oZQUo0bN46IZs2axcx37tzRvDoqMoVCISJo2m8CvZQ4jtagQYNM5LZoEOXa1W0ePT09te8Dv3o1m5gwEQ8dytq/UVy7ds3Nzc3Z2fnQoUOpqamicshff/2l7bgFI8L96iZhCxcuJKJ+/fppOeyLEfb4+Hh1qE3LOq6lQUxMjEwmK1OmjLgUESl900S6qKTCwsI0SyCINzhpew1u2BAtLs90mfRoAMU+4J6UlKRZmF8/xxCioqLs7OyIqG/fvjk5OeKTGzduXLJkifp7PDw8Ll26pF4lv3jcJieHr1zh69dzc2wWLeIxY3S/9hJuyZIl4vlQ5LhMXByHhLC3N9evz0uW8NKlfPo0v/MOT52qv4B7Tg6XKcMymW6P/79IJCbv2LFDr7O+ZTZv3qyfNP+MjAxxXLRp06YFaTSalJR08ODBX375ZfDgwQ0aNNB83SMiUfvM0tKyf//+ISEhul68pu+++46IBgwYIB7269dPy3d6b28m4rxTa/By+UrK6DMZNyQkRNyKiId169YlIvUheknExMR07dr1+Xso8+eff055nYGh4J4+5QoVmIj19rou7gDHjx8v4ZhXrlwxMTExMjLS/khQQWRlZYmbPTzfCis1KT5y9+rI3auvHt+tyM5KSYi9dzl/laukuOjjW5f9Manv/3rbi8j7L2P6vffee7///vtrzmbFxsb27NlTHGT09fVV34QHBweL5gENGzY8o2768SYHD7K9PROxjQ2/pvitUsnh4ezrm/vNRNyp0ze2trbe3t6hoaGIsxdr4izj7NmzmTklJcXc3Fwul4uyeEUmtp/VHew1ix1DSbVgwQL1EU+FQmFqaiqTydLStCqcJQp31K5dW0cB8aysLNGU/qefftLF+MWUKFtHhSnXXhBhYVymDBOxpycX4Xmhzq/y9vZ2cHAQK3Rxcalataqpqak+K1YFBweTRulm0WNp9erV2o/8YoQ9KiqqSpUqRPTRRx+V8jq3byT+XtRHqZo1a0ZE/6m0oQMZGRki2U7ybhDr1rGxMRNxScqwKvYB9wMHDqhDTubm5vH6ShU/f/58mTJlGjRooL49uHr16qlTp4o43J07bGZW0p5cBrJ8+XIRi/Tz8yvgj+Tk8JEjPHkyOzuzTJZ7W0XEU6bkRv1Gj2YnJ/0F3EUB98aN9TSdoK75JXlmYvHy4YcfEtGvv/6qh7mePHnSsGHDV+3hJycnq6+xHB0d80XYTUxMHB0dvb29AwMDw8PD09PTRW0ZOzs7fZbdSE1NrVixIhGJjjfXrl2Ty+Xm5uba1EINDGQi/vxz6VZZEhkw4D558mQimj59OjMnJyfLZDJzc3Ndx55atWpFREeOHNHpLCXPF18wEWscFdC5s2fPGhkZmZiYXLt2TaoxxYnjUaNGSTXgG23bto2Iypcvr7erylIo5enjiJ1/Bk/xer97W/XOcbdu3RYvXpzvHSQsLEykudja2qpzApKTkwcPHix+0Nvbu7BnquLiuFcvJuL69bl6dVYXI2zWjLOzee9e9vHhypWfXxDWrs0TJvCJE2mFquQLb60tW7YQUZs2bcTD3r17E9FSLbb6xeFmmUx27949zutg36NHD2mWC28rUcBBfSCvfv36RHT58uUiD5iRkVGzZk1dZy7/888/olKfOOQB6enpbm5uJiYmK1eulPxF/sQJrlSJibhfP1afak5Le3kH74wMPn6c58/nMWPmNGzYUJRKUytXrlz37t0bNWoktmSkzS9+PVE9afHixcwcHx9vbGxsamoqVaHwFyPsERERorDPt99+K8kUJZXodCU2eh8/fiyTyaysrHR9eEWUz2rZsqUuBpc25p6ZmXngwIHJkyevWbNGguGKpNgH3EXlbmH48OH6nFp0jZNkZ4+ZeevW3CdXkQofg6a1a9eKhN9Jkya95tsePny4du0JLy8uV+75PZWVFffuzYsX8507vHRpbsA9OZnt7DgkhCdMePm7o7RmzmQi1mNsgRkF3JmZOS0tzdraWiaT6S1mffv2bXGF8dlnnyUlJWlG2PNdY+WLsL9Yzyo7O9vDw4OIHB0dJeyU8nqij4r6IPaIESOI6Evtmg+EhzMRu7hIsLwSbMsWVt8lhYZyXnEFfRDRT9Eu5fDhw0TUunVrnc6Yk5MjSo6i9VxhrVnDtWo9bz6sH+I4Qq9evSQZLTQ01CCx7x49ehDRV199pc9JS6enT58GBwd7enqKcjFEJJfL3d3dAwICrl696u/vL/abu3XrFhMTI37k5MmTItevbNmyRb6JUqk4MJAjIrh5c3Z3Z5Hc3KxZbp138adhQ548mSMjpfpd4W2RkZFRpkwZdXz8zz//JKLu3bsXeUBxPlJdOdfT05OIli1bJs1y4W117do1IqpTp454KC6QQkNDizzg7Nmziah58+a63tsThzzeeecdnc5SjIhiMppnKyV06xY7O3NICMvlfOIEM/Pu3c9b+EVFcXAw+/qyuzubm+e++3TosEZ99+fj4xMcHHzp0iXxrEhLS3NzcyM9Fjp/9uyZ5jEg0R9YfdRVEpGRkfki7Lt37xZtOXfu3CnhRCWJSqUS6QiirOvq1atJL6Vl/fz8CpXbWljax9yjoqKCgoK8vLzKlCkjLiwN+FpX7APuog6yEKHHor+pqaniJIUkTe1zBQezTMZy+Uvqz0AhhYSEiNfoUaNGaZ5FUigUkZGR/v7+Li4uMpmsfPm6olaUgwP7+HBo6H+q3MbFsfqgzN277OPDRNy8OcfG6nbxPXow0euOOesCCrhzXgHidu3a6XPSEydOiBcT+i9LS8t27dqNHj165cqV58+fV1eveo3k5OTmzZuLCLgeKjNmZ2eLNBxxJfT48WNzc3MjI6MbN25oM2xKCsvlbGqKvqmvM2cODx2a+7GfH+ul0kauqlWrEpHYlJo7dy5p9MvVkfPnzxNR/fr1dTpLiTFzJvv45H7s68tXr+p7AbGxseXKlSOiXbt2aTmUurpL0Zowa0PPdWyAmRMTE1etWtWvXz8LCwvxPig2nk1NTWfPni2u5UQld3GB5+rqKkm3FWdn3r+fP/yQmblZM/b3Z0dH9vPj8HDtx4a3l6gAI15b1N0Ii7yxN2TIECL65ZdfOC84pS52DCVYZmamkZGRkZGROKh69OjRQ4cOFaRQ5EslJiaKY6N79uyRdJkvER8fL1qRb9DzDefbSsSUVq5cqaPxlUq+eJG7dWN3d87J4d27+euvuXPn3IIz6j9GRtykCX/6Kf/5593IyMhXnR/Vc6Hzv/76SzO/6p133tHF/ysRYf/000/VoZsxY8ZUqVLFgLnJb7mLFy8SUbVq1cTDTz75hIjmzJmj63ldXFyIKCwsTHdTrF9f6Jj7vXu8YgUPG5YqchnVCRzOzs7ffPONAdtEF/uAu7q1hbu7uz7n3bhxIxG1b99e4nF//pmJ2MSEtb5NhR07dpibmxORj49PdHT0H3/84eXlJaIAgpWVVe/evVesSC5gT5THj7lp09yMp+hoXS1bXcD98WNdTfFSKODOzO+//z4Zom7voEGDLCwszMzM3N3dfXx8RA570a6foqOjq1evTkSDBg3Sddk7UTaucePGYiKx3T1w4EDtR27UiIn49GntRyqxpk3jRo1YJFENH85FrmdWWDExMSLdWPyli0JG2hzDLwiReyjJU6s0mDiRGzVicRk8aBDrJlvrDX799VciatSokZa1hkSun6H6l44ZM0bczep/6lIuJSVlw4YNAwcOLF++vEwm27p1q/j8w4cPRZMAuVw+efJkqZ4Vzs7MzB9+yGFh3KxZbmclKPFEj9MOHTqIh+JQS9FCSPm6sIrglH6aPIPBidQTSTb/xIW09v17C0jkKVetWrWUVxMVRL90nRavu3iRvb15xgyeMyc3w712bSZiOzv29GR/fw4N5YIfUdZnoXNxgyy6+CYkJOiuQcXp06c1fxdROE5sZMKL5syZQ0SffPKJeCgiANJ21XrRkydPRP3Y9PR0nU60ahUbGXGtWnz0aG4SnlKZe2ZXHbtLTeWwMPbzYxeX53WhGzRoUbVqVS8vr6CgoGjdxewKrHgH3OPj49XB03X6zQoX9ZJ08u//m2+YiC0tkVqjvV27dok8Kc3qHI0aNRo/fvy+ffuKkAIcG8stWjAR16nDt2/rYsn89Cl/9hnr/jDQf6CAOzM/e/ZMZJrr4aX5n3/+uXDhgvqhaF60b98+SQY/c+aMOD/1/fe/STLgS6lUqhYtWhBRcHAwMz979kzsZp0QRyW1M2QIEzGOYr/GtGm8ahW7uHBqql4D7jt27CCNpkmiOU/R+5cUzNixY4no5xLWtF5nJk7kv/7iVq04I8NgAfesrKx69eoRkaOjY7ei6ty5s3gH363HHgWaMdynT59WqFCBiA4ePKi3BYCmjz76iDS6qiQmJtaqVatKlSrSPiVEwD0mhtu142bNJBwY3mopKSniqk8USVi2bBkVtUjCzp07ichZPJPyglMLFy6UcrnwthLdI/fu3avlODExMZaWljKZ7Pjx45Is7I2USmW7du2IaMyYMfqZ8W126NAhImrVqpXuphAB98xMbtWK//iDv/mGIyO1SrB7sQyLLqSlpYkGFffv3+e8pr7vvvuu7mYUMjMzy5YtS0RRUVG6nquYeu+99yivwPWVK1fE/pmud19EPQAPvbSHCgnhO3fY1panTmVmzsjgVq346VOeNImjo/nHH3Oz4MWfcuW4f39etIhv3NBTZd0CKt4Bd9GohIjs7Oz0cJpGTaFQiANf13VRN1el4k8/ZaIl776r6x2q0mD//v3ff/99mTJlPDw8RD1QLQdMTOQ2bZiIa9ZkKbIZnluyhMeOzf34f/9jLTruFBoKuDPzmjVr9JZXIgq/iMNN586dIyJbW9uCFI0poN27dzdq9EG1ajmLFkk1ZH4i8Fq9enXx2isSUaVKBZ0zh4lYx3VKiqXsbN61ixcs4GnTePt2Xr6c/fz0GnD/8ccfiWjixInMnJGRIWpupKWl6XRS0TFF+7vZUmLiRN6/n+fN4++/12vAfcOGDZq1RPv37y9SPrVhZ2dnZWWleTx/165dIjqmI507dx4xYoQ6b8vFxaVevXraXzlA0WzatImI3Nzc1J85e/ZsnLrYn0TywqT822/ctKm0Y8NbrW/fvkS0ZMkSzmsDaGZmVoR6IMOHDyein376iTWCUw8ePJB+xfD2EWcjmjRp4ufnt3bt2kuXLhXtel60QfLy8pJ8ha9x8eJFExMTuVyutyj/WyslJUW0fH+xS5ZURMCdmcPC2MGBJSnjKsqwVKxou2yZrgpYhYSEkEYxCRHkXb58uY6mU9u6dauut0CKtaysLNF5TlwVz5s3j4i8xTNMl0SjplmzZul6IjVnZ+7ena9ezQ24nzzJQ4bw1q28ejUbG7OLC/v5cVgYG+IobIEU74D7//73P3FL9r///U+f8x44cEC8s+pqgpyc9b6+RFStWrXbOsqjLmUkDGUyc1ISt2vHRFy1qpRh8enT2cGB9+9n1m+NCGaeMmUKvanHbInXu3dvymu/rlNXr14lovLly4tQ9eTJk0kHZxh//11FxMbGrKNOM+Jc/2+//cbM2dnZNWrUkDAR9fBhJuLSvQH0H0olh4ezry9XqcJEbG7Okybx9u2sVHKnTtypk/5eLkTi3l9//cXMp06dIqKmOg5QqVQqGxsbInqs5zJbxZYIuCsU3K4du7vrKeB+/PhxmUxWp04d8bKmLoAeFBQUpoVWrVoR0YQJE8QsM2bMII3Ds5ITJSYqV64sDnuJi70yZcroNMQPr5EvsU5HZs/ms2eZmXNy9JrrAAa3atUqzUy9zp07q9/gCi4nJ0fUwhZt60TRUT13AwJDCQ4ONjIyEnl4aqLRpZeXl7+/f2hoaEHeQa5du2ZsbGxsbHxFz13Omb/55hsicnFxUZT6clpNmjQhiY7qvpQ64M7MAwdKE3Bn5jVr/q5d+4Zczn//Lc2A+Xz44YeUVxlctLswMjKSfOf7RaKeBI63vsrhw4eJqFneubzo6Ojly5cfPnxY1/PWqVOHiE7rsfCrszOfPcseHpyezmL/5ehRZub0dNZLz2BtFe+AuwiQmZiYxMTE6HNeX19fIvruu+90N0VWVpboR1G3bl0p+7KCRJ49406dmIjbtr0sVUPz6dP599/Z1ZUzM/UdcHd3d6fS3QQ8MTFRFNXRQ1DP39+fiD7//HPxUBRe0MUb5NSpueWpJL90FJFWGxsbkQj2xx9/EFHz5s2lOsUm+qaamb29m9V6c+oUf/0129s/PzHXpAn/+CN/8w1v387MfOFC7rbKu+9yAdtRaKN27drqsIKo/jlU3bxVN27evElE9vb2Op2lJBEBd2Y+dYrlcn0E3FUqVZs2bYhoypQp4jPvvvsuEX355Zdajnz27FmRcXbt2jVmjoqKMjc3l8lkJ0+e1HbRL0hPTxdP72XLljGzQqEQFZMCAgIknwsKbsCAAZRXOlYXUlLYwoLlcn03zoG3gbpXqggeLViwgIjef//9Qg0iDomq07BE0WGRjgAlW1BQkFwuF292mzZt8vf379+/f926dTULmapPa73zzjvffPPN6tWrz58//2L/if79+0vyplkEaWlpIoKm/xZWb5thw4bp9O0mKIgXLmSRQJ+VxRJWwBZNAE1NWfI2lhkZGWXKlJHJZHfv3uW89l16KCeibowhLv8gn2vXromzNXquByVuyipWrKhUKvU2qTiG6OvLK1ZwcTzwULwD7nZ2dkT00Ucf6Xle8baki/s9Tc+ePRO5Xc2aNUsoeAcN0Je0NB406HaVKna2trZnRXJUkZw/z7Nm8bhxPH06b9/OgYH8v//pNeCelpYmNquLcIq2xFi5ciURde/eXQ9zOTo6EtH+/fuZOSIiQlyI6yKvRKXiTz7J7cZz966UI4sIiNh0VKlUIiVE2ibyDRowEWvxD6t4u3Tp0qxZK+vWfR5nr1OHv/uO1ZX/IyL43r3cj0NDuX//3DM3ERE6XFViYqJMJrO0tBRP15EjRxLR3LlzdThl3lHW3r1763SWkuT48edtvTdu5KCg/zSBPH6cJT8tLbraVq1aNTk5mZlDQ0PFIZ74+HjtBxdnV3v16iUefvvtt0TUtm1byYtUfv/990Tk5OQknt7z588nIgcHhyK0ewEJrV27lnRZ7W39eibijh11NDy87cTu4IoVK5j50aNHcrnc0tIyNTW14COIt8Lp06czig6XJgsXLpTJZDKZTN1kQu3Zs2eRkZHBwcG+vr4eHh7iAIQmY2NjzRT4zZs3y2QyCwsLQ/X3Cw4OtrCwELWVSrNFixbprihHRkbuKdVDh3QxPI8dy0RctqzEt06bN28mojZt2oiHffr0obwyXDolGmM4OTnpeqJiJC4uLiQkxMfHp1atWuKVpGrVqi1atEjRY5r3kiVLiOjDDz/U24ycF3BPSuKWLRFw16/o6GjxVNNz0bEzZ86IYi+67kjAzPHx8aKbopubW6Eu/kA/srKy+vXrR0TlypUr1PNQtFT29eWaNXOjacbG7OfH27dzTg63a8fdu+sv4L5v3z4iat26tZ7meyuJO67ff/9d1xPlq9g+ceJEIhqrLt4vtexs7t6dibhx40I0vn+9W7duGRkZmZmZiUOy9+7dc3BwqFmz5osJO9oYPJiJWPd/IW+Xe/fuBQYGihMnxsbGtraPK1ViHx8OD+fXv+E8e8Y9ezIRW1nx1q26Wt7BgwdJo55y9+7dieiQjm4d8oiaSyKWAYXVpw8TsfrOaPp0lsl4xgwpp0hJSalWrRoRrVq1ipmzsrIaNGhARIGBgZKMHxsbKxoy79q1S3M6aXf4Hjx4YGVlRUT//PMPMyckJIgSAVt1988JCiYlJcXc3Fwul+vouKeXFxNxqc/sLL2WL19ORO+99554KHpIbty4sYA/rlQqRfrX+fPnOW+7EUWHS7yAgAAikslkBckKV6lUt2/f3rJlyw8//PDBBx/Ur19f5MXnI7rj6MeUKVO+++47daLVV199RUQDBw7U2wLeTiILqlGjRroYfNkyJuKWLXUxNjOzUpn7dlatmpRZVkOGDCGi2bNni4dr1qx577339FB9QTTG+PHHH3U90VsuLS1tz549EydObNGihebRmSpVqvTp08fW1paIOnfurLc4oUi500MFf03qRjtr1iDgrl9xcXH9+/e3sLC4rN+Ci6IchN7OfD148EDsYnl6ekpbiBwkkZWVJV56rK2tDx48+PpvvnQpcdYs7tyZTUyeJ65Wq8bDh/Pff/N33+XWiDh2jOVyPnmSN2/Wx6+AAu4JCQmmpqYmJiZPnjxRf/Lq1au6aMWsWbFdpVKJCgbHjh2TfCK15GRu3jw3g6/ImZpZWVmnT59etmzZyJEjRbn2AQMGqL+qUChu3LghzXLz/PorE7EhDtcaQExMTGBgoCjKIVSoUOHzzz8/cuRBwU/s5eTwF18wERsZ6Sp49Ouvv9J/+w3cvXtX1/m/YjNsy5YtOp2lpNq4kYm4QgUWr20HD+aWmVIfj9CeeE1Tp5z/8ssvRNS4cWMJd+DEE69Ro0ZiTHEgyd7eXsIbjLFjzzdo0EIdbhDRB6m6QIOWRAHJoKAgyUdOT2dra5bJpPwXAcXLkydPjI2NTUxMxGHi3377jYgGDx5cwB8/cuQIEdWrV088/OSTTwhFh0u66dOnE5GRkdEff/xRtBFSU1NPnDixbNmyr776qmPHjlZWVnK5fOTIkeKrOTk5gYGBmpfZ0rp7966ZmZlcLhfns2/fvi0OOktVIrX4ys7OFmXrRB8XCalU7OjIRFzIDhGFk5XFHh5MxI6OnNf6vYjS09OPHj3666+/WlhYENGtW7ckWmOB5GuMUdoolcrIyMiAgAAPDw9zc3P1vaGFhYWHh0dAQEBkZKS45L5z546IJLRv314Pee4KhaJChQpEpOcek5o74AXeDX+LFOOAO+c1l69Ro8Y9PV4pt2jRgoj27NmjtxmvXLkiXnTWrVunt0mh4BQKxdChQ4nI0tIy7IXaaampqWFhYb6+vjVr1mzefJQIshsZsYsL+/tzZOTzxNXwcFa/na1ezSNGMBF//fUbMlu1hwLuDx486NmzZ9WqVdPS0sRn9u/fX7Zs2SFDhkh+kEWzYvuxY8fEK5iuj8vcv8/VqrGREe/bV9AfyczMjoiIWLp0qY+Pj4uLi6mpqWYajpmZmY2NzVHRskQ3jh/nAQN41SrdzfBWiI+P79KlizrXqUyZMkOGDNmxY0eRg5WBgSyXMxH7+LC0W7TJycnt27cnoqVLl0o57ptUqVKFiO5KWxSpNBFnXMaNy304YAATsVQHpm/fvi3uTkWTsdjYWNHhVqr+yUJ2dnbDhg0pr36RUqls3bo1EU2bNk2S8Y8eZZmMra0V9+4lMfPly5dFx9cL6hJOYFCiZtE777wj+cibNzMR552Vh1Kqa9eu6kMz9+7d8/f3L3jkMTk5edWqVeJ8T3Z2tghGoOhwSaVSqcaNG0dEJiYmISEhUg174cIF8aYj+hDGx8eLI1Zr166VagpNoheluv24aIk5fPhwXcxV7IjcF1H2U0I7djAR29vrvDdVYiI3bcpE3L594bKsFArFpUuXRB0kd3d3MzMzdQKQkZHRKv3ej+3du5eImjZtqs9JDS4qKiooKMjLy0u8jwhyudzFxcXPzy8sLCzjZRUh9RlzP3nyJBHVr19fp7O8qGHDl39cXBTvgHt6enrHjh1FZoEeWh0y8927d2UymY2NjS5SX1/j5MmTs2bN0ueMUCgKhUIcfTIzMwsNDWXmCxcuzJo1q0uXLiYmJuoXzZo1HXx8lH//zQXZON+xg83NcwNnuutLIQq4Gxsbi9q7pVN2draIg7///vuiB8iFCxdE2Eja3sj5KraPHTuWiL6Rqkv9a509y9u3848/8uLFuZ/x9eW8/QVm5uxsvnSJg4PZ15fd3dnRMUMzwi6Xyxs1ajRkyJA5c+aEhYWJ5k6WlpaiyIMuDBjwfBNbv5Xi9EqccjAzM/P09AwODpbkUmnNGjYzYyLu2/c/f8VFk5GRERoa6u3tLQpu2NratmvXTm/9HmJiYoiofPnyeqjhVlJdusTGxmxszBcvMjPfvs3m5iyTcXi4BIO///77pNE4d8SIEeJAngRD/9f27duJqFy5cqK34bFjx2Qymbm5+R2tOwUrlezqykTs75/7mS++WGZiYvLVV19pOTJIRXS2NDExeaplzt4LhgxhIs47Kw+llCjc3L9/fy3H2bNnDxE1a9ZMklXB20ahUHz22WfiXk/yU3fjx48nolatWokbBFHpqEqVKpKnWl+4cEEul5uamoo2A+fOnZPL5ebm5vpMXnybjRkzhohmzpwp7bBduzIR//KLtKO+XEwM16rFkyZxWFhuC5+0ND5//iXfeecOb9jAEybwsGF/WVtba973GRkZNWvW7LPPPhOXeaampvsKnrSlNR8fHyLyV1+WlVzPnj0TeZkODg6a//8dHBx8fHxCQkIKctmjt5j7Tz/9RIbo7YyAu4ElJye3bNmSiFq0aCH5e9KL5s6dW6iThlB6XLly5YMPPhBZDyIlUzA2Nu7YsePMmTPPnj1b2JjR7t1sYcFEPGSIxMmqaijgLly5ckU0Q1ef6Ny9e7exsTERLVy4UKpZNCu2K5VKe3t7IoqMjJRq/DcaOJAbN2bRyqtdO46M5IUL+dNPuUULNjZ+XuZIdLp3dm7n7e0dGBh45MiRfO/fCoVCdDI0NTXV/uRNTs5LOhY0b85ubiziuiX77jUyMlLy+PXRo1ypEjdvnuTq2r5oPbiys7N37do1dOhQ0f9NbLq0atVK/DNp1qzZ/fv3pV3zS+3YsYOIunXrpoe5SrCRI5mIPTxyH373HRNx27as5TaGqOlvbW0dExPDzGfOnDEyMjI1NdVRdmfPnj01X6JFXVEvLy8th12xIjfvTNSn2bqVidjZ+arksV3QxjvvvENEK1eulHDM7GwuX56JWL9n5eGtI3qlWlhYaBmqENdF33//vVQLg7eH5mlmXUQe09LSRMhM3HSoVKrOnTvTf4v4SeK9994jovHjx4uHHh4eekv9KRZWrVolyfabpvPnWSbjMmUKlG8niaQkTk9nIyOeO5eZ+eZNFr9QUhKHh3NAAHt65nZwFX86djwnEsI8PT1FI98EjcZf4lRH2bJlz0rbj/UVFApF5cqVieiiyBMpuZ4+fWpkZKQOGVWsWNHLy2vZsmVFKNiio5h7vvPW4kVp06ZNUo1fQNbW7OmZ+6duXT1PLoFiH3Bn5ri4OHHWuEuXLi89aiEh8Txbv369TmeB4ujLL78koo4dO/bq1UucwPrggw+Cg4MTtGtVefgwlynDRDxokE5i7ijgrnb48GFxgE5ULWDm33//XWzyS9I3L1/F9sOHD4sdbH2m7g4cyGvXsugN1q4d//jj84stIyN2dGRvbw4M5PBwfmNtZJVKNWnSJCKSyWTq/2NFEBbGzZqxhQXni986O3NICIsc05IdcNeRq1dVTk5diah27doF73SiVCrDw8N9fX01dw0dHR39/f3F9d/t27dFK287Ozs97BX98MMPpN9OYiXS06dcsSIT5bYJSUnhjh0TmzYdERwcXOQxFQpF8+bNiWhGXg9WceJQd39ZV69eFYfuz507x8zR0dGabU6L5tkztrN7XlY1K4vr12ciXrBAqlWDNIKCgiQ/PLFzp9hckXBIKK5EwbQFCxbcKqrr16+L+p8lPkhULPz7778jRozYvHmzJLGnrKwskedbkH5dRbZ582YR1hR5EpcuXTIxMZHL5RL2eRK3HmXKlImNjWXmQ4cOiaNjmi2sSrmrV68Skb29vYRjfvxxbpFYfUpP5zZtuF07fvAgN+DeuvV/MquI2NaW33uP/f15794UcXzwpZRKpZeXFxFVq1ZNDwUeDxw4QEQNGjTQ9URvg5YtW4qKMeHh4UrtChpIFXNPSUkJCwvz8/NzcXHx8fFRfz4tLc3MzMzIyEj/+SjIcH8r3L9/X/Tx69Onj+46iz59+lT01dFDKj0UO40aNSKiEydOZGdni5MQUt0Z/vsvly3LRNy7d9GbXr4KCrhrWr9+vUwmk8vlG/OqmUydOlXks4gKxdrIV7F91KhRJHXJmjcaOJBv3OAvvuCQEG7Xjg8d4k8/5YUL+dixItYeCQwMFD3T/fz8CvuzZ89yt26513wNGnBExH++KoIgPXpwRAQC7kX05MkTEUQoU6bMG2tqX7p0yd/fv06dOvni7NevX8/3nQkJCWLv2crKSlTQkkpGRoYoYKomihf9pdMmU6XD3LlMxHXr5r6JBAcHE1GVKlWKXExMFGGoU6eOSHRYv349EVWuXFmn5YZEmlX79u3Fq+j//vc/InJychJn8Ivgzz+ZiNu1y+2VEhCQ221M11VWobDi4+ONjY3NzMwkLH83atRkd/clgYFFOQMEJczo0aMtLS1JO2XLlrW1tTX0rwLMzF9//bX4SzE2NnZ3dxdtBos2VFpaWo8ePYiofPnyx48fl3ad+fTp04eIBg0aJB76+fkRUfPmzaUKbri5uam3yVUqlYuLCxEFBARIMnjJoFKpypUrR0Ti6J72oqOjO3Zca26erXUBvMJJT8+90RswIDfg3qsXW1mxuzv7+nJwMF+6VIgucVlZWeIwRP369V8TmpeEuEGeOnWqTmd5S0ibdVfkmHtWVtY///wzderUtm3baibdOzk5qb9n9+7dRNTGEE1vEHB/W1y6dEl0GPD29tZRxqjo2vTuu+/qYnAo1mJjY2UymbW1tTh6I4ICEp4qPXGCy5UTtWUeZ0oXdL9+/bqJiUkpL+Cez4wZM4jI3NxcdARVqVSffPIJEdnZ2WlZLFhUbBfpnwqFQmQQn39pUT2dEQH3p0+5VStu2ZIl+WsPDg4WtXdGjx5dwM35hw+ffvppbm/PihV53rzn4a2YGPbx4eDg3ID7tWvctSuXsq45UsrMzBw0aJC45wwKCnrxGy5fvuzv79+gQQP11VXNmjV9fX3DX1vhOysrSzTdMjIyWqB1MrBCoRBp9ZUqVSpbtqzmSTVx4XjlyhUtp4DsbG7eXNm589HAwCBmVqlUYre1aHt+CQkJIpdTHCxNT08Xf1PLly+XeN3/lZiYKOYVe6LqeV/63C6g/ftZHJJ+/JhtbJiI9+yRaLkgKbHPJ1UXwZycHFtbW7y8ADPHx8dXq1ZNJpNVrVrVoajq1Kkjev/88ccfhv6FgC9fvjxjxgx3d3fN4FG9evV8fX337t1b8Dup1NTUbt26ie1kcbhKp+7duydKae/YsYOZ09LSRGVnbQ6Sqm3cuFHczqSmpjLzunXriKhatWpp2nf7KVnE37hUZfrFrsmwYV9IMlrBiYA7Mw8ZwosWcf/+HB/PRU1OYGZOTk52cnIiotatW6e+8Rx0USmVSjs7OyLST/makqdQMXd1m1bx5qXepFS3adUsKSP6TBhkI0QzhVUHXaJ0ruQE3Jn5xIkT4l3K19dXF+OLVLslS5boYnAo1sRVS8+ePcXDFi1akHbn3F909iw3aBBXt65j586dtTkoJGJb4qCQTCarW7eu5nEhYOavvvqKiCpWrCgqEWdnZ3fv3p2IGjduXOQCQeqK7REREcwcFhZGRA31vksrAu6cV7ZYqn2WrVu3mpubE9HHH3+c/drU0LS0tICAgDJlyri4PDExYR8fjo/P/VJqKk+fzpaWTMR16rB6T/2777hOHWnWWTqpVCp/f39xFeXr6ys2pO/duxcYGChCrkKlSpV8fHzCw8MLuGMthhXnG3x9fYtwEFKpVB45cmTUqFEi7CW4uLjcyiuonJiYKJPJLC0ti5y/DJr27AkjIhsbG3GWPDIyUi6Xm5mZ3bx5s7BD+fr6ElGXLl3Ew++//560yzQvuMWLF4ttIREj2LBhAxHZ2tpqf/Tw009zWw3D22nBggVENGDAAElGE+/CTZo0kWQ0KL5UKlXfvn2JqEOHDlq+gomXIysrq6tXr0q1PNDS06dPQ0JCfHx8qlatqr7SsLCw8PDwCAwMfH2n0MTERJESbmdnd+nSJf0seNasWURUt27d9PR0zssqLVOmzIMHD7QZVqFQiHqAS5cuZebs7Ox69erpYZu8OJo8eXKR0xHySU1NFfmg2p+TLix1wP3RI65XjyUpSh8TE1OrVi0i8vT01FFJCVH1qA5u/LTw+pj706dP//zzz48//ljzJVEmkzVv3nz8+PG7du16cTfl/v37f/zxh7hZkza69Ua//86DBvHhw/qcU3olKuDOzGFhYaIK86xZs6QdOT093crKSiaTafmGByXSyJEjKe9Q3tOnT0XDd8k7Cly8eFmkRXfp0qWwMff79+8HBQX169evTJky6pfXsmXLfvTRR9IusgRQKBTi7svBweHx48fMnJycLDZROnbsWLQTBvkqto8YMYIM0X5961YWWwYqFc+bJ2WFooMHD4qnVu/evcVNQj5KpXLFihXVqlUT7+tffPGruk+dUskhIVyzZm55GU9PvnWL1R1Z0tJYoozGUm3RokUiz8vNza1169bqF4EKFSp8/vnnBw8eLFrpwD///NPU1JSI+vfvX/AkKVG+RuRtCY0bN/b398/XbHPLli1iwUVYGLyUaDHy+eefi4fimEJhI5ixsbGijKM4oPPgwQPta6kXnEKhEK/GP/30k/iMqB3/888/azPs6dMsl7OpKb9QQgneFqKzpaWlpebd4KJFi+YXmGY3C3HZNn36dEP8KvAWmT9/PhGVK1dOktrE4kW1WbNmum4qBoWlVCojIyMDAgLc3d1FroDg4ODg6+ubL5eTmZ8+ferq6kpEtWrVuqXHxso5OTniPW7atGniM6J8/Pvvv6/NsKINRoMGDcSvuXDhQpH3o7tKvMWXKKbfvXt37YcKDAwUm3naD1VYGRnco0fuxwsX8scfSzPslStXxBaC+kqyyLKzsyMiIg4dOqT5SZHPUYQ6paDpNTH3I0eOqF/9qlSp4uXlFRQU9GJ4MzU1VV3JXbxgymSyefPmZWVl6fH34J49mYjXrNHnnNIraQF3Zt60aZORkZFMJlu2bJmEw27bto0MVLcI3n7qAu6c9z7dtWtXXUx07dq16tWrE5Grq+sbe1bkS2Z/8eJSzy+axUhaWlqbNm3E/2dxbx8dHS0aRXz44YdFCE0+e/ZszZo1q1evZubs7OyKFSsSUcFbWUrl/ff50aPcjwcN4tdm9hTaqVOnRLWHTp065StSdODAAXH/IF5F//33X/WX9u9nJ6fcULurKx85IuWSQNPevXvLli0rUpwsLCw8PT1DQkK0fxE4cOCAqHfZpk0bsUH1KleuXPH39xdNzoUaNWq8WL4mPT09JCTE09PTxMTEyclJy0AqaLp586aZmZlcLhdHbaKjo8uUKfPRRx+9/mDKi86cOTNv3jzx8eDBg8ULo/TLfYWDBw8SkaWlpUhOPHv27MKFC7WJGqhU3KEDEzFu8d5y7dq1o7yCQoIoaFZA6lxO9aF1PVd1g7fNxYsXLSwsiGj9+vWSDJiSkiLe477Wc4dEKIzY2Njg4OB8hRQqVKggYk8PHz589OhRs2bNREha/5l2J06ckMvlpqamouDVw4cPxTqL3DUnPT1d3Dz+/fffzJySkiKSWzdv3izlukuK6OhoIrKxsdGyRrFCoahbty5JV52mUFJS+O+/cz9OT2eJXuGYmU+cOCHSLP73v/8V9mdjYmJCQkJ8fX3d3d3Fa28zjT5dKpVK3GufOnVKsuWWVq+KuWdnZw8YMGD+/Pkv1tPLzs4+cuTI9OnT27Vrp3lxZWNj069fv4ULF+q5jWVWFltbs0zGDx/qc1rplcCAOzMvWbKEiIyMjEJCQqQac8iQIUQ0c+ZMqQaEEuPRo0eaBdxFqe4ivAkV0J07d0RmaMuWLV/aVv7x48cvXkdaWVkV5PgkqMXFxYnjlp6enuKU8cWLF8X/0m+//VabkXft2pXvCkNvunbl6Lz+cO++y7dvSzz+lStXxDW9i4uLKFshfPfddyK6GhwcrL5+vXz58vvv54hQe+3avH59Ibr3QNFcv379zJkzISEhLz2FUGSXL18WV3V16tR56VH6oKAg9Y4LEVWtWnXMmDHHjh3TvJnJyMjYuHHjBx98IC7BicjY2Pirr76ScJ3AzBMmTCCidu3aif/5j9RbcEVy7NgxmUxmYWGhZYuLwhowYAAReXt7SzJaTg7/8AM7OEhWZQt05LfffiOiwYMHqz8zduzY0QV27Ngx8VPizFm9evUM9HvAWyEjI0MEVb/88ksJh42MjDQ1NZXJZNI2FQddyMzM3Ldv37hx4+rXr6++RDEyMhI5vM2aNXt9GoHufP7550TUsWNH8U49d+5cIqpZs2bRaorOnDmTiFxdXTX7jbdu3VpHTe9KAHEed926dXfv3i1yYsrff/9NRA4ODgapi/jgAXfrlvtxbCxLm2QfGhoqArILFy58/XfGxMRs2bLlu+++8/Dw0IxLEJFMJmvYsOGwYcPUz8OjR4+Ku0U8MyVRwHru6kruIn1K/TKoruRuqATNf/5hIm7e3CCTS6lkBtw5773E1NR0T1G7XykUikuXLgUFBXl7ezs6OpqamlaoUEFvFdygGHlpAffDuiw3de/ePRELdnJyEr3CkcyuC+pzcyNHjhSfOXjwoCigoU2jSNGFVV0PQZ+6duW1a3nvXt67l11dpQ+4M/Pdu3dFB86GDRuqd3eePXs2Z84c9QnrJ0+e+Pr6Ghsbd+580Nqa/f0ZZ6+Lu0ePHonD1+XLl893PpTztiHLlSvn7e0dGhqqmYwsXrt8fHzKli0rXrXkcrm7u3tgYKChbnRLtmfPnonUtg0bNmg5lFKpFOWJ9F+X4/bt2+bm5jKZ7PXdfV/vyy9Z3ZTnww+5kFn+YAB37tyRyWRlypTRsl6HOLSu5d45FHcipuno6Ch508jZs2cTka2tbUxMjLQjg+6IqJOnp6eZmZmXl1enTp3eeJJYd54+fVq5cmUiCg4OZmaFQtGyZUsqUqmNhIQEcS+zf/9+Zo6PjxeXWwcPHpR+3SXF2LFjNfdgypcv7+jo6OHh4ePj4+/vHxQUFBoaGhkZ+fqEX9EAYNGiRfpa9X/oNODOzMuWLRNh2RfPSdy5c2fmzJn9+vUT3cs02dvb9+vXb8aMGWFhYUlJSfl+ULTlnDBhgsRrLcVeFXOPjY0VzS1q1qyp+Rfk4ODg4+MTEhLy4t+O/k2ZwkRcAp4OJTbgznn/aC0tLdUpLW8UHx8fGho6efLkTp06WVpaaj7/bGxsitBYDEqDq9OnB7q5/TF3LuuygHs+0dHRoo5NrVq1evbsma8y+/vvv798+XL0G9DekSNHRFuI3377TXxmxYoV2tyoZ2VllS9fnohuiO6l+tW1K//wA8+bx/PmcePGOgm4M/Pjx4+dnZ2JyM7O7sKFC5pfysjI+Pnnn8W1vrGx8bhx36mbpkJxl5qaKpofmJqaiupJalevXg0NDdXc9lMqleHh4b6+vqIvheDo6Ojv739bR89LyCNqudaoUUPLMJN4MbS3t3+xw5IeiHMzLi4uRWs/wMweHuziwvfvMzMb4sQRFIWLiwsRbdq0Kb2o0tLSxKF1UVgJSqeNGzcSkbm5+blz5yQfXKVSiYYZnTt3RtPvYic1NVXzjKahBAcHE1HFihXj4+OZOSIiwsjIyNjYuLDP2HXr1snl8h559bzFdmOvXr2kX3HJ8uOPP7q5udnb27++cJmNjU2TJk169OgxbNiw6dOnL126dPv27efOndu5cycRVahQwSAXSMz84AFXqsS9enGvXty9u/QBd2aeNm0aEVlYWBw9elTz8wcOHFD//ylTpoy7u7uvr29wcHBUVNRLx4mKilq3bt348eNFCny+0UBL6pi7m5vbxo0bv/7666ZNm2o+h+3s7Ly9vVetWvXwLSvdMnToqgYNzu/aVeyPO8iY+TUvIsUaM3/22WcrV66sVKnSkSNHROHaF92+ffvff/89evTov//+K87Cq79kZ2fXvn17d3f39u3bOzs7y+Vyfa0dipXGjenaNTpxgtq0ebhrV8hPP12pXHnZ1q26njYuLq579+5KpfLy5ctE5ODg4Onp2bt3744dO4osbJBESEiIOMC+Zs2ajz76iIhOnTql2XbyjR4+fHg6z8mTJxUKRZ06dU6fPq2zJb9St260ahWJhIOePWnxYqpTRycTJScn9+7dOzw8vEKFCjt37mzbti0zb9y40c/P786dO0Tk4eExd+7cfG/5UNwplcrx48fPnz9fJpNNnz79+++/f/F7Ll++/Pfff69atUo8E4jI0dHRy8vro48+EmcjQNeUSmWrVq3OnTvXqFEjcRVeBMx8/Phx0Z1C1NzTs9TU1IYNGz58+NDZ2Vlz20aTre36+Hibl37J1ZWOHydfX1q5kjZvpubN6cIFXS4XJPLzzz9Pnz5doVBoM4i5uXnlypXv3r2reSIQSo8HDx44OTklJCQsXrz4yy+/1MUUcXFxLVq0ePz4cUBAgJ+fny6mgBKvW7duBw8e/Pzzz0U28ejRo2NiYhYsWCCKNxbcxYsXTUxMGjVqdPfu3UaNGuXk5Jw+fdrJyUkniy6JEhMTRWX/27dva34QHR397NmzV/2UXC7/9ttvZ8yYoc+lqkVH07BhtH8/EVFcHH3wAWk0y5QGM3/++ecrVqyoWLHiv//+KxIBiejZs2dTp051dXVt3bp1gwYNXnyfTUpKioyM/Pfff0+fPn3q1Km4uDjxeSMjo+Dg4MGDByPmJq1bt2517tw5Pj4+OztbfMbS0rJdu3YeHh4eHh4tW7Z8C6+FkpKSKlWqZGRklJCQIHoGFGMGDPbrgUKhEK297e3t1d3nU1JSwsPDAwICPD09RetCNUtLS7ELFxISIip1ALzBo0csk7G1de5x9LFjmYh1VsA9n6dPn965c2f58uXR6srcoAM///wzEZmbm2t2+3yNe/fubdmyZerUqT179nwxEtS7d++XFt/XA13XcNeUmZnZv39/IrKyspo/f767u7v49R0dHXfu3KnDicHQAgMDjYyMiGjYsGHqbpyXL1/29/fXDKnXrFnzxY6poB/ieIGWF5CtW7eeMGGCAUttbty48fXBsoYN00WXiBf/vPsue3jw06c8dChv344M92IjISFh69at5toZOHCg+qYAShuFQtG5c2ci6tWrl05fvvbs2SOTyYyNjQt+0hpA0/Xr10XxNHH3oU1vcEHsjg8dOlSK1QEz85MnTy5cuLBjx45ly5b5+/sPHz783XffbdKkSbly5fbt22fAaJKuS8oICoWiX79+RFSjRo3XHKxPSUn5559/fvnlFy8vr1q1auW7VKtcubKnp+f//ve/Xbt2oQSujty8eTM0NNTd3X3atGmHDx/OfuurKG7atImIunTpYuiFSKAkZ7gLGRkZ77zzzr///luzZs2uXbuePn36ypUrSqVS/Q21atVq166dm5tbu3btWrRo8fpzQwD5rV9PgwdTz560axcRkZMTnT9Phw9Tx46GXhlIacyYMQsXLqxYseLRo0cbNmyY76uaOewRERGxsbGaX7WxsWnatKlLnsaNGxtq6/7ECXJyInNzIqKTJ6l5c8rrT6kTOTk5n3766V9//WVmZpaVlWVvb//TTz8NHToUmQsl3rZt2z766KP09PT27dt36dJl69atFy9eFF+ys7MbOHDgoEGD2rRp8xamVJQeycnJx44d02aEihUrFuqsjy48fvz47Nmzr/qqsXEnhcLypV+ytaXJk2nDBlIoqHdvSk6ma9d0tkoAeGtMnz79xx9/rF69+rlz5/LlXUlu4sSJv/32m4ODw9mzZ9V9SgAKTjxdmzRpcvbsWRMTE22GunDhgrOzs7Gx8dWrVx0cHKRaIbyd4uNpxgwKDCQiSkqiKVNo0SKdTJSRkeHh4XHs2LFmzZodOXJENN5UKBTXr19X3xqfOnUqJydH/SPW1tYtWrRQ3xc7OjridgDyGTVq1JIlS2bMmCEKSBZrJT/gTkTPnj3r3Llzenr69evXicjY2LhBgwaiVkyHDh3q6KikApQSI0dSUBAFBJCfHyUkkK0tmZpSYmJuUBNKCqVS+cEHH2zdurVOnTrHjx9XKpWalxHq03BCvgh7ab6SUKlUv/zyi62tbXR09IQJE4r9oTAosIiIiN69e6enp6ekpBBR+fLlPT09vby8evbsiY1teBt0704bNlCFCrR4MY0bR3kHbQGgxAoPDxcZc2FhYV27dtX1dDk5OR06dDh58uTAgQM3bNig6+mg5MnKymrRosX169dnzZo1adIkbYbq2bPnnj17xo8f/9tvv0m1PAAievr0afv27a9du9a8efMOHTqcOXPm7NmzmZmZ6m8wMTFp3rx569atXV1dXV1dGzduLA7CArxKgwYNbt68efLkSYNn9mivVATciejJkyfx8fE7d+50c3NzcXExRzAUpNKoEV2/TidPUuvWtHkzDRhA3brllkyDkiUtLa1z586RkZHm5uaalxFEVLlyZRcXl5YtW4oIe76W3wCl0927d+/fvx8cHPz+++93794dvSXgrbJzJ3l4kJkZKZW0ejUNG2boBQGALiUmJjo5Od2/f9/f3/+lLUZ0ISoqqmXLls+ePfvzzz8/+eQT/UwKJcm+fft69OhhYWHxyy+/VKpUKTk5mYiSk5NVKlVqampOTk5GRkZmZmZ2dnZaWppKpRLfkJSUxMwpKSkKhSI9PT0jIyM7O9vExCQqKqpSpUqG/p2gpLlz5467u7uNjc21vNOCdnZ2Li4uIsPVxcXFQqdHqqFkiY2NrVmzppWVVXx8fAnYmyktAXcAnXj0iKpVozJlKCGBjI1p7FiaP59++IGmTTP0ykAnYmNjZ86cuXPnzoSEBEdHR3UOe5MmTQy9NAAAAAB4uf79+2/durV9+/aHDh3S50Gr4ODgYcOGWVlZnT59+sWahABvNHjw4IiIiKioKG0GGTp06KeffioaGABI7sGDB1FRUceOHRNp7KK2DEDRpKWlXb9+vWXLloZeiAQQcAfQwrp19NFH9N57tHMnEVGLFnThAh05Qh06GHploEPJyck2NjaGXgUAAAAAvNmiRYtGjx5drly5s2fP1q5dW8+ze3t7r1mzpmXLlsePH8dhLyislJSU8+fPz58/n4jKly9PRGXLljUyMrKysjI1NTU3N7ewsDAxMbG2tpbJZCLQaWNjI5fLra2tTUxMxDeYmpqiriMAgJ4h4A6gBVHAfdYsmjQpt4C7mRklJpKZmaFXBgAAAABQ2l2+fNnV1TUjI2PdunWDBg3S/wJSU1NdXFxu3LgxYcKEX3/9Vf8LAAAAAP2TG3oBAMXZJ5/Q1KnUqxcR0T//kEpF7doh2g4AAAAAYHCZmZkfffRRRkbGF198YZBoOxFZW1v/9ddfpqamc+bM2bFjh0HWAAAAAHqGDHcALSgUtH073b9PzZtT1ar011/UoAENHWroZQEAAAAAlHYjR44MCgpydHSMiIiwtLQ04EpmzZr17bff2tranj9/3s7OzoArAQAAAD3QX8cYgJKGmfr0ofbtqVUrWr+ebGxo9mxDrwkAAAAAAIiIXFxcKlSosG7dOsNG24nom2++OXDggKWlJcq4AwAAlAbIcAcoqgMHKDiYVq0iImImJyc6cIAqVTL0sgAAAAAAgIgoNTXV2tra0KsgIkpNTbWyspLJZIZeCAAAAOgcargDFNWNG9S0ae7HMhk5OtKtWwZdEAAAAAAAPPeWRNuJyNraGtF2AACAUgIBd4CiqlCBEhOfP0xIoIoVDbcaAAAAAAAAAAAAMDAE3AGKysODdu2ix4+JiM6coaQkqlvX0GsCAAAAAAAAAAAAg0HTVICiqliRgoLIx4eYydqaQkJIjh0sAAAAAAAAAACA0gtNUwEAAAAAAAAAAAAAJICEXAAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0AAAAAAAAAAAAAQAIIuAMAAAAAAAAAAAAASAABdwAAAAAAAAAAAAAACSDgDgAAAAAAAAAAAAAgAQTcAQAAAAAAAAAAAAAkgIA7AAAAAAAAAAAAAIAEEHAHAAAAAAAAAAAAAJAAAu4AAAAAAAAAAAAAABJAwB0A4G0xatQoZ2fnQ4cOGXohULylpKSsWbNmxYoVhl4IAAAAAAAAQKljbOgFAABArkuXLp07d04mkxl6IVC83bhxw9vb297e/tNPP5XLsbMOAAAAAAAAoD+4DwcAeFtER0cTkb29vaEXAsWbi4uLg4NDTEzMyZMnDb0WAAAAAAAAgNIFAXcAgLcCMz969IiIqlWrZui1QLHXv39/Itq0aZOhFwIAAAAAAABQuiDgDgDwVnjy5ElmZmb58uWtrKwMvRYo9gYMGEBEmzZtYmZDrwUAAAAAAACgFEHAHQDgrSDqyVSvXt3QC4GSoG3btjVq1Lh79+6ZM2cMvRYAAAAAAJCAl5fXZ599Fh8fb+iFAMAbIOAOpd29e5SSkvvx/fuUnGzQ1UApFhMTQyjgDhKRyWT9+vUjVJUBAAAA0FpWVpahlwBAaWlpW7duXb16tbW1taHXAgBvgIA7lHazZlFERO7Hc+bQ8eMGXQ2UYiLgjgx3kIqoKrNx40ZDLwQAAACguGLm7777bsyYMXZ2dr179/7+++/379+fkZFh6HVBaXTy5EmFQuHk5GRhYWHotQDAGxgbegEAAECEDHeQWvv27StXrnzz5s2LF680a+Zo6OUAAAAAFD9ff/31vHnzrK2tU1NTd+zYsWPHDiIyMTFp2bJl27Zt27Vr5+bmVqNGDUMvE0qFEydOEJGbm5uhFwIAb4aAOwAtWkTbthERHTlC775r6NVAaSVquCPgDlIxMjIaOXL5hg01N21ybNbM0KsBAAAAKG5++umnefPmmZqabtq0qWnTpkePHv33339Pnz596tSpkydPnjx5ct68eURkZ2fn4uLSvn17d3f3Vq1amZubG3rhUDIdP36ciNq2bWvohQDAm8mY2dBrADCkUaPI3Z3Ee9ZPP9GHHyLmDobRo0ePffv27dq1q2fPnoZeC5QQ+/ZRjx7UtCldvGjopQAAALzCxo0b+/fvb2RkZOiFAPxHUFDQyJEjjYyM1q1b5+Xlpfml1NTUc+fOifj7iRMnnjx5ov6SsbFxixYt3N3dXVxcOnbsWLt2bX2vG0ooZq5SpUp8fPydO3fwvAJ4+6GGexGtXk1KZe7Ha9dSTo5BVwPasbOjunWpbl2ysTH0UqAUQ4Y7SK5LF6pQgS5domvXDL0UAIBS6/x5WrqUQkIoPd3QS3kb+fr6enl5+fv7G3ohAP+xdevWr776SiaTLV26NF+0nYisra3bt2/v5+e3ffv2uLi4K1eurFix4rPPPnN0dFSpVKdPn54/f/4nn3xSp06dOnXqDBkyZOHChch0BC1FRUXFx8dXqVIF0XaAYgEB9yL69VdSKHI/njuXMjMNuhoAKP5Qwx0kZ2JCffoQEW3ZYuilAEgkKyvr4cOHhl5FSaNSqeLi4gy9ihJq5UqaOpXs7Skujjp3ptRUQy/orTNgwABjY+OZM2duExUeAd4CBw8eHDRokFKp/Pnnn0eMGEFEV65ceVXEXCaTNW7cePjw4b///vvly5eTkpLCw8MDAgI8PT0rVKhw9+7dtWvX/vrrr3PnztXvLwEljagn065dO0MvBAAKBAF3KO0+/ZTMzHI/7tePXFwMuhoordLS0pKTk83NzStUqGDotUCJMmAAEdGmTYZeB4AUjh07Nnv2bHt7+3LlyrVq1Wro0KGzZs3avn377du3Db204m3ixImurq43btww9EJKooAAWreOevem0aOpTx8KDjb0gt46nTp1+vHHH5n5008/vXPnjqGXA0ARERF9+/bNysoaM2aMn58fER09etTV1fWzzz5Tqg+5v1qZMmXUye/x8fEXLlxYtGhRbGzsxIkT79+/r/vlQ4mFAu4AxUuJapp6/vz5Zs2ayeV62kXo35/EVDdv6mdC0IkdO2jZMrpwgWxtafVqGjmSbG0NvSYppKSk7Nu3LyUlZdiwYYZeC7zZgwcPiKh69eoymczQa4ESpXt3KluWTp+m27fJwcHQqwHQzoQJE06cOGFlZZWcnHz69OnTp0+rv1SpUqWmTZu2a/d39eqVHB2paVOqWDH/jw8eTD/+SPXqUXIyzZ9P06bpdfFvrfT09IiIiPv373fq1Gnfvn3N0GRZQs+ekbk5WVvnPnRyor17adgwevKEHByoTp3n/1V/T6nk5+d36tSpLVu2fPjhh+Hh4WbqXBgAvbt586anp2dqaurHH38sGqJeunSpT58+6enppqamhe00IJfLmzVr1qxZs3/++efvv//etm3bmDFjdLNwKPkuXvy5Zcv+7dvXN/RCAKBASk7A/ebNmx06dHB1dV29enW1atX0MOOWLbmZ0a6uepgNdOjDD2nixJKWcvTw4cMPPvigWrVqCLgXC6gnAzpiZka9etG6dbR1K40fb+jVAGghNDT0xIkTtra2UVFRCoXi8uXLV65cEf+9cOFCXFzcP//8c+FCxYSE3O+vWpWaNPnPn0OHaNw42rGDMjPpyBGD/jJvE0tLy717977//vt79+7t1KnTrl27kD0nGSur/9RtT0igChUoNJRezHKtXJnq1DncocM+U1MHB4c6deo4ODhUr17d2Ljk3Ky9hkwm++OPP86fPx8RETFhwoSFCxcaekVQSkVHR3fv3j0uLq53794rV66UyWS3b99+5513EhIS+vXrt2jRoiKP3LdvXwTcQRtpaXTihI1M1t3JydBLAYCCKTnXcI8ePbK0tDx48KCzs/PKlSvfe+89Q68Iig0PD/rzTzp0yNDrkFSDBg0qVar08OHDe/fu1apVy9DLgTcQAffq1asbeiFQAg0YQOvW0aZNBgi4K5XKjRs31q5du3z58g0aNND39FCCqFQq0VNx6tSpZcqUIaL27du3b99e/Q0xMTFXr964cEF25QpdukRXr9Ljx/T4MR04kPsNEydStWpUvz6tX09duhjid3iLWVpahoaGfvTRR5s2bfLw8Ni2bVu3bt0MvagSwciInJ1pyxbq35/S0+n332n+fPrgA4qKojt36Pbt5/+Ni6O4uAiZbOaJE+qfNjExqVmzpgi+9+zZs1+/fob7TXSuXLlymzdvdnNzW7RoUevWrYcOHWroFRleSkrKnTt37ty5c/v2bfV/p0yZ0qRJkxYtWhh6dSXQkydP3nnnnXv37rm5ua1fv97Y2Dg+Pv6999579OhR165d169fX9j0duHZs2dly5b19PQ0NTU9fPhwQkICCkhCEUREkEJBrVqRpaWhlwIQHEzr15OxMTk40IwZpfyU3muUnIB7x44dL168OGzYsF27dnl6eo4ZM2b27Nm6O5Do7Ezq0jUtWlCR3nzhLTJ3Lnl5UcOGhl6HdGQyWZs2bXbu3Hn8+HEE3N9+0dHRhAx30I2ePalsWbK2ppwcMjHR37yHDh0aN27chQsX7O3t4+Livvzyyx9++MHGxkZ/K4ASZP369efOnatZs+YXX3zx0m+wt7e3t7f38Hj+mXv3SATfxX9dXOjAAfr+e+rcmVq21NOyixFTU9MNGzaMGDHizz//7NWr14YNG/r27WvoRRV/OTm0dCl98w2tWEFKJfn6kkhNfLFuz8OHdPu2c0zM99euqUOrMTExUVFRUVFRRFSuXLmSHXAnohYtWsydO3fkyJGjRo1ycXFp0qSJoVekJwqFIi4u7tGjR7f/686dOy926fTx8bG1tT19+jSCttJKT0/v06fP1atXmzVrtnPnTktLy2fPnvXo0eP69euurq7btm0rQmDh0qVLAwYMqFKlypEjR2xsbDp16hQWFrZz505vb29d/ApQsh0/TkSEE2hgeAcOUEgIbd1KZma0eDF98w0tWWLoNb2tuGRRqVSBgYGmpqZE1KRJk4sXL+poot9+4wMHcj/+/nsdTQK6tXs3jxnD06fz9u3MzLNmsY0N79zJrVrx0aOGXpwUfvrpJyLy9fU19ELgzUaNGkVE8+bNM/RCoARSqXj4cH74kJn56VNesEDnM0ZFRfXv319cZtSuXbtHjx6ivUrlypWXL1+uVCp1vgKQQmJi4qlTp9asWTN9+vRBgwZduXIlJSXFICtRKBQNGzYkot9//52ZMzIyJk+e/OjRo8KO4+zMzLxmDXt7s4eH5MssCZRKpdjSMDU13bRpq6GXU8zNm8etWvGdO0UeIDMz89q1a7t27Vq0aNGxY8ekW9lb7ZNPPiGiBg0aJCcnG3ot0ktMTDxx4sTatWtnzJgxYsSIrl271qlT51WFg8zNzR0dHXv16jV69Og5c+Zs2bLl9OnTbm5uRNSrVy+8mUooKyurR48eRFS3bl3x5pKent6xY0ciql+/fmxsbNGGTUlJMTc3l8vlYkxRkWbAgAFSLh1KjT59mIj/+svQ6wAYNYp37cr9WKlkBweDruatVtIC7kJkZGT9+vWJyMLCIjAwUBdTdO3Kzs6cmsrM3LSpLmYAHcrJYT8/lsmYiD//PHfvJDubO3bkDz9kIjYx4Z9/5uJ+HXvgwAEicnV1NfRC4M1EIuHGjRsNvRAogZRKLl+eBw1iZr53j3v10uFcqamp/v7+5ubmRGRlZeXv75+RkcHMZ86cETeuROTs7Hz48GEdLgIKLysrKyoqKiwsLDAw0MfHx8PDw8HBIV8P50qVKg0cOFClUul/ecuWLRNRj5ycHGaeO3cuEbVr166w44iAu0rFXbsi4P5KKpVq4sSJFSpUatDg0ooVhl5N8XXiBJuaskzGmzYZeinFTHp6upOTExF9+OGHhl6LxM6dOzdhwoSXxtbLly/v4uLi5eXl5+cXFBQUFhYWFRX10pD6/fv3K1WqREQzZszQ/69QIikUCi8vLyKqVq3a7du3xWfef/99Iqpevfrdu3e1GdzT01O9WxwTEyOTySwtLdPS0qRZOpQmVaowEUdF6Wr86OjoHj169OvXT1cTQInx0Uf/SVCtU4cNcXdQLJTMgDszP3v2zMfHR1zBDBgwICEhQdrxu3bl+fN54kRmBNyLm/v32d2didjYmP3980fVMzPZz4/lciZiNzcdvqXpQWpqqrGxsYmJCa7q3n4uLi5EdOLECUMvBEogpZJdXPiTT3jPHh0G3FUqVUhISM2aNYlIJpN5eXndu3cv3/eEhobWqVNHvDV7enqK21rQM4VCcevWrd27dwcGBo4aNap79+61a9eWq8vkabCysnJ2dh44cOCUKVNmz55dtmxZIpo9e7aeF5yRkVGjRg0iWr9+PTOnpKRUqVKFiHbs2FHYodSHiK5c4eXLpV1mSfPLLzFELJPxwoWGXkpx9PQp167NRPz114ZeSrF048YN8YKzaNEiQ69FSp07d5bJZHXr1v3ggw+++eabJUuW7Nmz5/r161lZWYUaZ//+/UZGRnK5fN++fTpaaumhUqk+//xzIrKxsTl79qz4zPDhw8U285UrV7Qcf/ny5eKaRzxs3bo1EYWGhmo5LJQ2t24xEVeurMMp4uPjxeafDueAkuF//+OlS3M/fvw4N58FXqbEBtyFkJCQcuXKEVGtWrX+/fdf7QdUqfjkST5xgrt25adPuUsXPn8eAffiZNs2rlCBibhGDQ4Pf+W3hYWxvT0TsY0Nr1mjx/VJTaQIHTlyxNALgVdKT09ftmyZtbU1Ee1SH84CkI4IuD96xC1b8vXr3KsXHz3KkZFSThEREdGuXTsRpW3VqtXRF8pyKRQK8UF6enpAQIBoemlhYeHn5/fs2TMplwKvsGrVqr59+zZq1EiU3cvHxMSkYcOGvXv3njBhQlBQ0MGDB6Ojo/ONsG3bNrlcLpfLd+/erc+Vz5kzh4iaNWsmkj1//PFHImrdunXRcu1zcrhxY7a25rynJLzSwoW5ZwFRO7FwlEp+910m4rZtuZCBVFDbsGGDeGkqMbV0rly5IpPJypQpI0mpnGnTphFR5cqVX3ythkKZPHmyuCAJz7szFKcQLC0tJXnuxcbGGhkZmZmZiaudGTNmENHw4cO1H7lQoqOjIyMjx4wZ89dff93Ros4VGMrq1UzEffvqcAqVSiUuEcXhVIBXiotjFxcODuY9e7h7d96yhZk5Pd3Aq3orlfCAOzPfuXNHRAGMjY39/f0VRbrBUio5MpL9/blePSbi7t25a1dOSOALF7h7dwTci4fs7OdlZPr04adP3/D98fHcty8TMRF7eXFioj4WKbkvv/ySiGbNmmXohcBLPHr0aNq0aba2tiLgJZPJzMzM5s6dq6eKDRkZCDiVEiLgzszz5/MXX3CvXty+PRNxzZrs68vh4VqVz4qJifHx8RH50dWqVQsKCnrxCHxKSkq9evXU5WWYOTo62tvbW1Qssbe3Dw4ONkihktLj22+/Ve+IiPQld3d3Hx+fgICAkJCQyMjIAt5ciRBPhQoVovR1/is1NVXks2/fvp2ZExMTy5cvT0QHDx4s8pg1auj2UHZJsmoVGxszEfv5GXopxcj33zMRV6jA2lWigDFjxhBRzZo14+PjDb0WCYhuPaNHj5ZkNKVS+c477xCRm5tbdna2JGOWQgsWLBD7Ojt37hSfEQFxU1PTPXv2SDVL+/btiejvv/9m5suXLxNRxYoVRYU0/YiPj2/cuHH16tXVlwFVq1b19PT09/cPCwtLR5isOBg/non45591O4t4kmhZRglKhYQE/vNPXrCAL13i5GTu14+rV2e8Gb2g5AfcmTknJ8ff31+EA7p06VLwRACFgvfv51Gj2M4uN/AqMqMnTswNuDPz+PFsYaHDxYMkbt682alTAhGbmnJgYCFqTC1ZwpaWTMSeng+OHz8u4ZJycnLEuUWdWrVqFRGhFtvb5vz58z4+PhYWFuKq19nZecWKFaNHjxbxRw8PjyI0AyyEmBju2ZMHDODu3XnUKITdSzx1wF2h4FatuFcvHjs29xCP+GNvz6NH86FDhXsuZGVlBQYGilx1U1NTX1/fV+Wqr169WjzV69Spo9mo4NSpU6L5GxG5urqWmDTGt01SUpKVlZVMJluwYMH58+eLdmstdkSUSmWvXr2IqEWLFvopVpYvn/3bb78lonfeeUebMbt1YyLWb5p+MbZuHZuYMBF/+aUEvW1SU1NPnDghqgOVTAcOsJERy+UsXbSu1MrOznZ3dyei9957r7g3CE1JSRFFci5evCjVmLGxsfb29lVsba/99JNUY5Yqz549s7e3l8vla/KOM//+++8ymczIyEgEx6Xyyy+/ENHHH38sHooe4HprZpOWliZ23Bs0aDB16tTevXuLHgBqpqambdu2HTdu3IYNGx48eKCfVUHB7drF8fGsUvG1a6zrN09XV1cikjboASXWw4fPW6c2bcpEaFrzolIRcBcOHDhQrVo1UY7t9XXTsrKydu3aNWVKWKVKz+MRdevypEl88mRurPa331jcaT57xqNH8+PH/PChXn4NKLxNmzaVK1fO1dWzdm1VEd4+rl7lrl2zKlVyNDY2/uGHH4p2SEJISkoKCwvz9/f39PQUxY4GDRokuujoyM2bN8WBU91NAQWnUqnCwsI8PT1FYF0ul3t6eoaFham/Ydu2bRUrVhR/ZTos2jBoEOcl8vDYsYymeCXanTt87hyrb8YjI3nBAmZmlYqPHeMJE7hOnefvdJUr87Rpu/fu3fvGdLl81djfmO986NChFi1aiO/v3LnzuXPnxOdVKlVwcHDVqlXFIQ9vb2/d7jaVSosXLyaibt26FXmEiIgIZ2dncQg9MTGxXr16RDRkyBDJlvgK+fLZHz16ZGVlRUVqdzFzJn/yCYuEwi+/ZKLn9dzhjXbsYHNzJuKPP+bCJmUmJCSEh4cHBgZ6e3s7OjoaGRkRkZGRUbdu3a5evaqb9RpMfHS0qlo1JuL//c/Qaykh1A1Cf9IuppyUlHTmzBl1FrP+LVq0SCR+STvs6WPHYqpXZ5mMt26VduTS4MCBA9bW1k5OTurPREZGVq5cedmyZdJOdOvWLSIqV66cKNY/adIkIho/fry0s7xUVlZWjx49iKhu3boPNaIVMTExISEhvr6+7u7uJiYmmvF3Ozs7T0/PgICA8PBwlBZ5GzRsyN7euR83a6bbufr06UNEmzdv1u00UAJER7OJCZctyykpzMzz5zMRa5cQUyKVooA7M8fFxYnMLJlM5uPjky85KyMjIzQ01MfHR1R4aN68PRE7OOSeuH9NTvSJE1ylCnfpIkHiD0grPT1dtMEhIi8vr6SkIl40aB6SaNOmzc2bNwv4gwqF4ty5c4sXLx46dGj9+vXpv8QOkLGx8bZt24q2sIIQh/HRnNCwMjMzg4ODmzRpIv7qra2tfXx8rl279uJ3PnjwoFOnTuJlytfXt7B9tAqkbt3nHx89ynkZN1Dy5ORwu3Zsbs6vDzJcusT+/ty4MRNx48YuouSIt7d3SEhIampqvm++cuWKuHkjosaNGxf8zLVSqQwODq5cubLYbfL29o6NjRVfSk1N9ff3Nzc3JyIrKyvN4jOgvZYtW1Jex9Gi8fT0FGnmmZmZzHz16lWRqrlA7N7ojMhn7969u3g4evRoIurfv38RhqpZk4n41i1m5jlzmIglqutQWoSFsZUVd+3Ko0fnVuPJzHzJ2fbsbL5wgVev5okT+YsvTqprpqmZmJg0b968QYMGRf6rfGtlZ2e3a9dueJMmqYMG4ZZAQoVqEJqdnR0VFRUWFhYUFOTn5+fl5eXu7u7g4CCefnK5vGfPnuGvaeKkM82aNSOikJAQ6Yf+7Tcm4nLlcl/goMDyVVcXEnVTRbRp06ZEJJJsjh07RkS1a9fWxUSalErlwIEDRR7P9evXX/VtKSkp4eHhAQEBnp6e+ZLfTUxMXFxcfH19g4ODUWbEUJyd+ZNPWCRo6Trg7uPjQ0SLFy/W7TRQMnTowES8fDkzc1ISW1qyTMYFDpSVEqUr4M7MKpUqMDDQzMyMiJo0aXLhwoXU1NSQkJAPP/xQNC0UnJycfvzxp8uXC1R5JC4ut+YMzvO9Va5evdq8eXMiMjc3DwwM1H7AgwcPirpmZcuWDQoKetW3JScnq9PYRWqempWVlbu7u6+vb0hIiIg0iXq45ubmujtX2Lt3byL666+/dDQ+vN7jx4/9/f3V1692dnb+/v5PX9ZD4PHjx+qiDYGBgSLfxNXV9ZaEd1D37nFKCtep8/wzp07xwIGSjQ9vmSlTmIirV+cnTwr0/RcuKP39vxdxAaFs2bKDBw/euHFjWlra06dPfX19RYJqhQoVAgMDi3DiJzEx0c/PTzRlKleuXEBAgHpX6ebNm15eXmLeunXr6iQwUfpEREQQUcWKFUWs/KUvPm+UkJBQt25dIvLOS7LavHmzTCYzMTH5559/pFyuhri4OFGwSBxtvnv3rpmZmVwuVx+PKBQPDybKPfm6YweycIoiMpJTUrh6de7dm5k5JYXbtuXkZA4P56Ag9vVld3e2sHh+YqZVq3gisrGxEQ0DAgMDw8PDRUWj2NhY8Zf777//Gvi3ks7YsWOJqEaNGiWj4PhbZfr06fRCg9CHDx/++++/q1ev/uGHH4YNG9apU6eaNWuK5JgXWVlZNW3aVOz06P/v6PDhw+IKUCfF1lUq/uADJuLmzdGzrrA0q6vr1NSpUymvgr9SqbSzsyOi8+fP63RSX19f8SJ85syZAv6ISqW6fPnyihUrhg8f7ujoKI7kqh04cECfpedBcHbmhw/ZxYUzMnQecPf39yeiadOm6XYaKBnWrGEiVh8SGjaMifjbbw26prdOqQu4C6dPnxaXXGZmZiKljohkMlnr1q1nzZpVhPDWoUNsZMTGxnz0qC7WC4UWHBwsDp43bNhQwlLpSUlJgwcPFk8YLy+vBFHInzkqKio4ONjHx8fR0THftb6dnZ2Xl5e4z3xptrK4Qytbtuzp06elWqemmTNnknQ9mqDgzp496+Pjo36FcXFxCQ4OftV1akZGRvPmzbt27RoTEyM+c+LECVGyo2zZsmvXrtV2NadPs7c3m5hwYCC/8w6rL/F//ZVnz+bkZDQ5KXkOH86tJFyE7pLXr1+fOXOmi4uL+qXMwsJCvKiamJiMGzdOyxSw69eviwNnRNSgQYMdO3aov7Rv3z71WZCpU6dqMwtwXrLShAkTmFmpVNapU8fV1fVh4avgnT9/3tLSkoiWLl0qPjNx4kQiqlKlio5Kvop+ieoeJJ9++qlmxL+wRo1iIhab7zduMBHrPrmwZHJ2Zl9f3rAhN+AuOjCr/8hkXLcuDxjAP/zA27dnviYjUoRQ27ZtWzIaJm/dulVsQZWkLYS3h1Kp9PDwIKLatWv36tXL0dFRfXGVj7Gxce3atbt27frZZ5/99NNPa9euPX78+OPHj8U4OTk5HTp0IKKuXbtqUyKysIYO/ZSIpk+frqsJnj3jRo2YiEeM0NUUJdSvv/5KGtXVdScyMpKI7O3txSveF198QUT/02XtqSlTpoiLtyNHjhR5kGfPnqmT3y0tLY2MjApy0AQkcf06f/UVh4SwszMzc2Agz5ih84D7kiVLiOjzzz/X7TRQMmRmsq0tE3FkJDPz8eNMxLa2nJlp6JW9RUppwJ2Z09PTBw8ebGdnJ5PJXFxc/P39C14n5KX8/HJbqhYpewwko1lGxtvbO0VUlZLU77//Ls5DVK1atWPHjuJkvZqlpWWHDh0mTZq0detW9SX+ayiVyg8//JCIbG1tX1pjREuHDh0S0d6iD5GVxdOmcc+e3KtXbr3voCBWVx7/44/n7TKAWalUvr5Q+0udPXtWHL2vUqWKukZHUlKSeG6IJ/OLxT3eTKHgjRu5XbvcWIiJCU+axGfPcps2/PPPPGECd+3KKSncty+7uuIIWEmSkJBbQ+P777Ua5969e4GBge7u7jKZrHLlym5ubhI2fAsLC1PH1j08PC5duiQ+n5OTExQUZG1t3b59ez00ly7BUlNTxTvU5cuXmXnv3r1EVKdOnaK1H/zrr7/Ejou4e1coFKK4UNu2bTOlvra+d++eZj779evXjY2NTUxMinziZ+5cJuKvvmJmzslhExOWyxmFi4rA2ZkTE9nJiWNiuG1b/uYbdnXlzz/nRYv433/5FY2TXyIlJUU0b9iyZYsOl/taDx8+PHz48EcffTRlypQVK1YcPHjw7t27RYjD3rhxw8bGhnRfZKk0e/LkiY2Njb29vfp6u3z58i4uLl5eXn5+fkFBQWFhYZcuXXpjU+hHjx6J5GJ/f3+9LJwfPeKyZdM7dfrjwYPoN393kV24wJaWTMR//KHDWUqcfNXVdUelUtWsWZOIIiIimHnXrl1E1LJlSx1NFxio6tBhjYmJiWZCg5bEseyvxPso6IxKxXv38nvvsVzOROzqmhtwz8nh9u25USPdzr5161Yi8vT01O00UGJMmMBEnLdDo2rjkvBd22f3thh0TW+X0htwZ+awsDAi6tChgySj5eSwmxsT8QcfSDIeFNHdu3dtbGykKiPzKnfu3GnSpIm6OKlme5mCxx3++ecfkRiYnZ397rvvEpGDg0MREg9fLy0tzdjY2NjYuOh7D1Om8A8/MDNnZnLfvhwaytOnP++S/tNPvGqVNGst5jIyMoKDgxs3biyeFWXKlPH19RVtBgsiNjZWPA3yVW8PDg4WiaWNGjUqRPDx2TMOCuKGDXND7WXLsq8v37uX+9XUVD56lM+eZaWSY2JyQ7M2NqxFlefXSExMnDVr1h9//DF79mydnKeGF/Tty0TcoQNLlcPn6upKRJKXvs3Kyvrll19ErMrU1FSzWleXLl0or+ApFM3vv/+ueZ3zwQcfkHa9B8WRrKpVq4qzOE+fPhUHcb744gtpVpxn+PDhmlmHotbQyJEjizzgzp1MxHnV4LlBAybivC0eKARx5x8czKNGcdu2hftZpVK5atWqHj16iMNeCxcuJKKGDRsapEZBZmZmq1atRKlATSYmJg4ODh4eHj4+PgEBAcHBwWFhYa/pC52enu7s7ExEA1GfTZcOHjxIRBUrVty0adP58+efFXxv52VDiaLwOuxOr+GHH/R1eyhO95ubc4HrhwDnldfXw8WGOLYlju5lZmaK7XBdNNlavZplMpbL+e+/pWxMffr0ac0kfZBcZiYHB3PTprm3bmZm7O3NFy6wOvp99Ch36cJ37/KhQ7paw8mTJ7VN1INS5dYtlsnY2pqTk5k5PnZpZCRdv97V0Mt6iyDgTt26dZNqwKgoLluWifj336UaEgrtq6++0s/2+8cffyzyjosWIj9w4ICZmZmjo+OTJ0+YOS0trV27dkTUtGnTotXYfQ3RMa/olXYbNXp+MujIEf74Y54+nefO5evX+fp1/vprBNyZWalUbt68Wdyu16lTJyAgQF1xqOBEkwlR3trFxeXGjRvi81euXNFsSPD6K907d+4snT4998WIiOvX50WL+PXZ8UlJPGhQ7vd7e7N050KioqL8/PxEOFX8t3Xr1lJWpYeXWbAgt4OahA2u3N3ddRFwF548eeLr62tiYiIyv4Ru3boh4K6lNm3aENGqVauYOT4+3szMzNjYWLMIcmHl5OR07tyZiNzc3MSm4NmzZ8WO4HLRNEkK+fLZz58/L5fLzc3Ntaldc/Omql69i7165Z7H+uwzv0qVKm/evFmaFZcmIuCuUnHXroUOuOfk5Ig9abG1lp2dLfrJv6Yvju6Ikg729vaLFy/29/cfOnRo+/btq1Wrlq9msVq5cuWcnZ0HDBgwceLExYsX7969+/r165mZmcOGDSOiBg0aJCcn6/+3KD3EfuEPIv+jSG7fvv173h3aDz/8QEQVKlQoeFZE0SgUXKsWE/GBAzqdJ89nn7GNDetlI6HE0Fvi9v79+4moSZMm4qE4wyp5ftiOHWxiwkT822/SDszMLLbYT506Jf3QpdvDh+zvzxUr5t6KVa3K/v780k4TDx6wnR2XKaOrbbV79+6Jd0adjA4lUcrcYTePtYqLXcLMCsWzs2fLREbKMjJe2aX59S5dunTixAlJF2hgCLg/D7ivWrVq4cKF2mRMcF5uQYUKqqtXdVLSFN5oz549IhdYPHzw4MGMGTOCg4OlnSUnJ0e0wSxyEZjk5GSREuXq6ipyz588eeLo6CiO5xeleMiriU2In3/+uaA/8OgRb9nC33zD7dvzunX/qXR7+TK/9x5Pn869evHXX/PXX7O7OwLuzPzw4UMisrCw2Lhxo5aFQU+dOiX6E5YpU2b16tXikxkZGaL3ERH17dv3ycuaYEZGRnp7exsbGxNRcvPm7O7OISGFyHAODmYrKybihg1Z6zoe4eHhXl5eosEmEbm7u//2228v/l4guUuXcvsWSntcQTPgfvXq1YULFx6QOn5w//59zYcIuGvpwoULIkqYlpbGzLNnzxavHloOGxsbK5KC1a1BVq9eTURmZmYnT57UcnBh4MCBmlnzovW3KENfZAqFwtTUVC6Xi4oT48ePJ6KAgAAJllvKTJqU+8GlS/zdd4X+8b///puIKleuLK63Q0JCxDFBaS973mjt2rViD/vF9jkZGRlXrlzZuXPnggULxo8f369fvxYtWogWry+Sy+VGRkaWlpaXcFxClx4+fGhiYmJiYqLuc1NYiYmJlSpVksvle/fuZWaVStW3b18iatOmjU5riWzaxETcuDHrKSc4PZ1v3WKlkpcv588/5ylTWDc9NkqSfNXVdSc7O9ve3r5v377ibUi8CnXp0kXCKY4fz72Q11HPS3EnMmXKFJ2MXipFRrK3Nxsb54baXVw4OPh1fbVUKh46lInYzo51sV2YlZUlk8mMjY2LVnsQSqGEhPWRkXT5cnPx8O7dEZGR9ODBxEINkpmZGRIS4uHhIZPJ3NzcdLBMg0HA/XnAvVatWkSkfabD2LGJ9ev3b9GiheQlTaEgcnJyRKUXUWhYVCJzFhlZ0hFJCo6OjtoMEhsbK5r3du3aVTxboqOjxfOwV69eElbeWLNmDRH16dPnld+hUPClSxwUxN7e7OjIMtnzDmhffMFubs8TZdev56+/RkmZF0VERBCRk7pPt3aSk5M/+ugjcT+v2Ypg8+bNFSpUIKLq1asfPnxYfDInJ2fDhg0ilZWITE1Nvb29b5w7V5SJL17kJk1yjyQvWFCEG8Ts7OyQkJC2bdtqLubChQvq30vddlhHLRZKuYwMbt6ciViL2hsvpxlwX7lyJRF98sknEs/xXwi4a2n06NFENGbMGPFQZBZLUs71zJkzFhYWRLRCdPXI29a1s7Mr2pGvzMzMS5cubd68edasWR9++KFMJjM1NVXns9++fXvEiBHxL831KoyGDRuqrw1EW7DPPvtMyzFLoehorlOHvbyKPoI4z/fjjz8ys0qlcnNzUz/Uj4sXL4oW0IU6lpGQkBAZGRkSEhIQEODj4+Ph4eHg4GBkZGRtbd2xY0fdrRaY2d/fn4g+/PBD8bBo2VH5stoTEhJEuu7YsWOlW2l+Hh5MxPPn626Glxk9mqdP55gYPnCAmzblwh+4LG1q166tn8RtzYycpKQkU1NTIyOj48ePSzL4xYtcvnzurZuOHDhwQPv739Lpiy9YbBcmJnJgIGdlcUhIbjli0WPLy4uPHi3QUNnZ3L07E3G9ehwXJ/1SK1asSESxsbHSDw0lkUqVdf58lchISk09wcxpaRGRkXTuXEWlskCNkq5evfr111+LZx0RlS1bdtSoUSWpAi0C7tIH3FNTU8VNnU4v4OA1RNPU6dOnM3NmZqYoZKGuziEJUYZP7PBnZWUdP368aPvAUVFRondTv379xEXYjRs3qlSpQkRDhgyRam85KiqKiCpVqqSZuxEbG7tt27Zvv/22U6dO9zp1eh5hJ+IyZdjDg6dN4127OCGBd+7kbt34wAHevJlbtuQ7dxBwf9GWLVtI6iYzwcHBIijQoEGDM3lHB+/du9e+fXsiMjIy+vrrr3/77Tfx2kVENjY2vr6++dKECy0jg319mWiDm1ufPn1emkr/UklJSYGBgTVq1BCLqVy5sp+f30uT0dS/V8OGDc+g0qikfHyYiB0dOS1N4pERcC9e0tPTy5cvT0Si8YPonl29enUtz9+oBQcHiwRhUQUoOzu7Y8eO4izLG9NFY2JiwsLCgoKC/Pz8vLy8HB0d1UdhhGrVqpmamh6SukapyJTftGkT50UNpOriU6ocPsxErE360ZEjR4jI2tpaNJY/fPiw5kNdS0lJEZtPQ4YM0fy8r69vs2bN+vTpM27cuHnz5m3fvr0gHThv375tZGRkamqK2ITu5OTkiF6pojTilStXLCws1FuJBadUKnv27KmZ1X7q1CkzMzMiWrNmjfTrZr55k2UytrTUb8Q7M5Pr1XueMPHTT7xkiR6nL5Y0b+v0JikpqXLlyqKTatmyZT08PPz9/UNDQxMTE4swWlQU29kxEffrJ1nznhcpFAotT3iXWuXL86BBzMwxMdytG1erlnvPbWvLU6ZwYY/uJCezkxMTcZs20l/wN23alIjOFS1zC95WBw8e1N3g0dF+kZF0586n4uGVKy6RkfT06drX/EhWVpY6pV1c/Lu4uAQFBZW8bDwE3KUPuDNzZGSkqampTCbbunWr9qNBYe3bt0/E8sTDoUOHknZt4vJRN5oXqRCiiE13dS+2Qrpw4YIIi6jbwZ06dUocXpawnmDVqlWJaNeuXcHBwT4+Po6OjppVSkM6duQGDfiTT3jpUj5//iVXahcv8i+/8OLFLLIXT55k9QZGRATjqiuv+ZuogaBQKJYuXSpJJunVq1ednJyIyMTExN/fX+zB5OTkTJkyRS6Xm5iYiL/BRo0aLV26NE26a66szZtrVq8uInRvrP5/69YtX19fEUMX2wOBgYGvj1NcvnxZdKkyMzO7tmKFvs5al3Di6Lq5OeviIhkB9+JFBMTb5tXYFidm/P39JZzCx8eHiGrWrBkXF8fMjx8/FkGxcePGqb/n0aNH//zzz/LlyydNmtSvXz9HR0cR3srHxMSkfv36vXr1Gj9+/OLFi0WxZktLS2lj7hMmTKC86moPHjwgoipVqkg4finx559MxP8NVheap6cnaRy/yPdQp0QDnmbNmuV7x+zateuLz0wiKl++vIuLi5eXl5+fX1BQkGigqrlxJSqTFKJqHxSSqDvUuHFjkTUizu6MGjWqCEO9mNW+YMECsd9z5coVCdcsjB2r23Tjl7t3jzWPXKxdy5Mn63cFxU++6up6kJ6eLrJnbG1tReqVmrGxsbOz81dffbV+/bZXd2vOr02b3MbguqyQxJx3Wz1r1izdTlPiODvzJ5/wnj0cE8M9evC773LDhhwYWPRweUxMbn+IPn0k3mLx8PAgoj179kg5KBjUr7/+SkQ+Pj46KqGWmRkVGSk/c8ZCoUhg5vj4oMhIunHD4xXffPPBg2/27n1XvOKVKVPGx8fnxfp+JQYC7joJuDPzL7/8QkSVKlUqcrVBKDKFQlG5cmUiOn/+PDNv376diFq0aCHV+KJ4iLrYn+i79f333xd5wOPHj4tgpcjKZ+aDBw+KqMSMGTO0WWp8fPz27dunTJlSqVKlfH3ArK2tu3TpMmXKlO3bt2t/VB8mT55Mee28RCinatWqkoyckZEhyjUQkaenp/qM1axZs4iocuXKO3fu1EXdyfv373fo0IGIZDKZr6/vS892vVioPTQ0tICLEVXpv3ZyYrmcu3fnR4+k/g1KndOnuUEDXrRIJ4Mj4F68iDt5UfIlMTHRwsJCLpfflbCLLnN2draYpWvXrjk5Ocx87Ngx0fO5ffv2Li4uZcuWfWkEs0aNGl27dh05cuRvv/22Y8eO69ev53t5UalUIppvZWWlrp2lvaVLlxLR8OHDxRTW1tZElJSUJNX4pYS/PxPx1KlaDXL16lXRF1ecPlQ/vHnzpjSrfIV58+aJ65+rV6/m+1JiYuLp06c3btw4e/bsL7/8skePHg0aNBDP5xdpvvqJrIuaNWtKdXwE8unSpQsRLVq0iJlTUlLEuVV1qbrCejGr3dvbm4iaNm0qYdYCM6el5db30HcYITOT69d//vDnn3V1WVCCqFtzXb9exEZ/hZKdnd2rVy8iql69+r1795g5JiYmNDTUz8/P3d1dvS3t5jaQiKtUYU9P9vfnsDDWTGVZuZIXLMj9+Ndf+cgRfv991kNu6ObNmxs3dhk2TOLuaCWeszM/esQtW3JUFPfowUU6xpDf5cu5LzLSlpEUL4krV67UapSHD58/X1NSOCfnJR+DLs2ePVvdy33FihXm5uZE1LZt2we6aexx40b3yEiKjV3AzEplSmzs3Jycp5rfoFJlJySE3LjhERkpi4ykM2csevbssHTpUi07aL79EHDXVcBdpVKJhJ1OnTrhElz/RBB86tSpzJydnS3KXkuVvTJ16lTK6xenVCpFYoKWB6+2b98uel3OmTNHfGbLli1GRkYymSwoKKjg4ygUikuXLr00jd3Y2NjS0tLLyyswMDA8PFynTaJKIZHx8ccffzDziRMniKhVq1YSjr9169aKFSt++eWX6s+sWLGCiIYOHSrhLPkoFAp/f38RT2/Tpk1UXqaNOAXWunVr8dQyMzPz9vYuWsu4nK1buUIFJmJ7e9blYbeSytWVRQ5Kdjb36SP9wVI1BNyLkWvXrslkMmtra3EVGxgYSEQ9e/aUfKJHjx7Z29v7+fmpC6CNHz9ehC0Ezezg4ODgyMjIAl5YK5VKcctXtmxZqXqxiro66nLbLVq0ICJREgcKztubiTiven/RDR8+nIgGDhyo+VBdpFsXTp48KY6f/v333wX8EaVSef/+/cOHD69cuXL69Okff/yxu7u7nZ2d5mERlUol+vGEhobqZN2l25UrV8SrmQgciO4LnTp10mbMfFntKSkpjo6ORPTRRx9JsmYhJYVnzWJJhyyw4cN5zhzOyuJz57hZM0ZWTQGIy/jZs2freiKVSvXpp58SUaVKlV7c+WPmtLS0w4cP//zzz6NHh1au/J+SnyYm3Lo1jx3L69bxmDFcqxaLS+8BA1gvOwVieWxpyXI5F6ljS+kl2snNn89ffcU9ekg27OHDbGXFHTuu/fXXX6Uac9KkSUQ0c+bMIv78hQvs5saffcY9evDo0axSsbc3qy/kPvuMw8OlWipoysrKOnLkiPrhli1bNC+5z5w5Iw54VapUad++fZLPnpCw8fRps5iYKcycknLk8eNfExLWq1SZzJydHf3oUcCFCzUiIykyks6cMY+K8kpOLi33dwi46yrgzsyxsbEiFKtlkjIUgTgbWLduXfFw2LBh6uxj7YnSZiIMdOzYMSKqXbu29sOuWbNGLpfLZDL1lrJIx5PL5SEhIa/5wadPn+7cuXPatGndunUTtWjULC0tO3Xq9O233/78888kXUtPeJE4jb53715m3rhxIxH17dtX2ikePHigWadFtP/67rvvpJ3lRYcOHRKVImxsbIKCggICAqpXry6eYFWqVPH399f2hMT9+9yxIxOxTMa+vlyC2qToQaNG7ObG6emclcUuLjqcCAH3YmT8+PGUV+GK896zNm/erIu58gXQBw0aRET9+/c/fvz406dPX/VTBaFQKEQlHBsbG0nC4unp6Tdv3szJS63y8vIior/++kv7kUsVd3cmYu2L/cTExFhaWspksmPHjr34UHJPnz4VfRHHjx8v+eC//fabjva0QBTXVheQcXZ2JqL16jZCRZUvq/3atWvi+nnZsmVajnzuHFevnhuL3LWLpatnWRgZGfzLL9y/P3/5JUvawqoE27RpExG5u7vreiLxBl2mTJnIyMiCfH9MDIeEsK8vu7uzqWlu5L1cOfb15aAg7tKFVSq9BtyZuW9fJuLC5INBbsBdoeDWraUMuDPzpk3hcrlcLpdr/8IozJkzh4h8fX2L+PPu7qzOcRw2jLduRcBdp9Rp7CkpKRUqVHhNdY0nT5706NGDiIyMjPz9/aU9H69SZefkxDFzcnLYjRseycn7YmMXpKWdvnHj3chIuQi1X77cLC5uoUJRuo6WIuAufcBd/aRn5r1798rlcmNjY3d3925awA1hYSkUCtF6VPSL27lzJxE1a9ZM+5Fv3rxJROXKlRMZ4mIT+Ouvv9Z+ZM5LujExMdm5c6f4zI8//khEpqam+SqpRUVFBQcH+/r6uri4yOVyzSC7nZ2dp6dnQEBAeHh4Zmam+P709HRTU1MjI6OS14niLSFaJYssb3FovWgFRgtOHONYpJeTwvHx8aLfoLpQu5OT059//inZOQmFgv392ciIibh1ay540cpSr2VLXraMp0xBwB1yZWVl2draEpG4mT969CgRVa1a9aVVoaT15MkTc3NzuVwuzshrLycnZ8CAAURUsWLFc+eKWEHipTIzM8VdR+fOnUv8aVZpiVZvkvwNf/vtt5pnDvI9lJBSqXz33XeJqG3btro43peYmCh2C24guCmpfAVkwsPDxauZ9n+JL2a1r1u3TpzYK2AY9FUiI7lFi9zuiFu3alt8qSiePOGqVfnrr9Edp1DS0tIsLS3lcvlDXWZuq2/rRIJOYT17xgcO8I8/8rRpPHYsHznCEyfyihX6Drj/8QcT8Xvv6W/GEmDSpNwPTp2Sfh9OlDI2NTWV5JpZvBiqz5+9UlYWP3jAJ07wtm28ZAn7+/MXX/CxY+zo+Px7Nm3iiRPZ25vHj+fAQA4M5LZtEXCX0K5duzp37qx+uHHjxtf3n1epVAEBASJ21KdPH12UVYyLW/zgwQTxcVbWvdOnjU6fNitVKe35IOAuccBdlH1Q90pNS0uztbUV/Sq1IWHDz9Ljyy+/JKLJkyezRlWZy5cvazns7Nmziejjjz8WD0WYVcIis6IUuIWFRXjeu5FIhbC0tJwzZ8706dO7d++erzCuhYVFhw4dJk2atGXLlkevLoTdqlUrItJpi+rSTLMcsNiG0fXRFlH/UW+dmVUq1bx581asWNG7d+8DBw7oZI5//uHq1ZmIy5fn/ftzP6kZC9OMGCIRnpmZW7ZkpZLbt+cLFxBwB+a8OyV12xJxwGuyXprmiTzfXr16SThmdnZ23759Gzb8sEEDxcWLEgyYlZUVFBQkjumI6jcVK1YMCAh4fZ9nEDIyWCZjExNpWrQlJSVVrFiRiESSQb6HEvL39yeiypUr66h0KeeVxPnmm290NH7pJArIqPdgBg8eTETTpk2TZHB1Vru6cqO4cahVq9aTJ08KO9qTJxwRwRs28D//8IgR/PHHvGePgQLus2YxEffurfeJi70+ffpoPh8kJw4uGxkZvf7gcgGJgHtKCru4cPfueg24P3nCxsZsZsYaSYbwZufPc+vW7OWlk8HHjRtHRGXLltWyyC3n1d/r0KFDSkrK1atXDx8+vG7durlz506aNGno0KHdu3fPadOGbW3/U+1I/WfZMm7c+PlYmzfzhAns7c0LFvC+fbxvH/fsiYC7lubOnas+jJWdnV2tWrXCBri2b99erlw5ImrQoMFFSa6tmZlZpVJkZ0fn5Dy5ebP31attnj5dw8yJiZtEJ9VSCwF3KQPu0dHR4uYtMDBQfGbEiBHiqbxjx44wLUhY6Kb0EO8WDg4O4ryMuBfSprWpIKJOGzduZObLly+Le/Uc6bp/qFSqzz//nIgqVKggoudKpXLIkCEymUwzk/2laeyvJ47losCRLiQlJRGRlZWVeCjKIAQH67ahkJOTE5W8AsRJSTxwINvY8O3bHBzMbm48eDC7ueXG3xs2fP6dmh+XYi1bMjNHRvK77yLgDsx55a2WLFnCzElJSVZWVjKZTNe9KAWRMSr5LmBWVtbAgVmid5w2rVgyMjLmzZtXrVo18Tbq5OQ0Y8YM0RqaiOzt7ZcsWaKHcwDF2pUrTMT16kk2oDi63qxZM9HuKN9DSRw4cMDIyEgulxctpbSAzpw5Q0Tly5eXtvFmKadZQCYuLs7MzMzIyEjC5s/5stozMzNFboqnp+erztpnZGRcu/Zo505euJDHj+f+/dnJicuWfR5uWr6cR4zghw+5ZUvesEHvAXeViuvXZyLetUu/E5cEojfSe//N3N62bdvGjRtfU6WhgNStuZYvX67lUIIIuDPz33+zTKbXgDszd+rERLxhg14nLe7EG2iDBjoZXKlUfvDBB+Ji5v79+wX5EZVK9ejRo/Pnz+/atWvlypUzZszw9fX18vJycXEhIs0+cPlk1q3LRGxszNWqsYsLe3ryiBE8fTovXMjXr3Pr1nz7du4co0ZxSAhKymhvxowZ6leh/fv3N2/eXP2lv//+uwgX+Tdv3mzWrBkRWVtbb9D6X3J29sNHjwIuXKh97Vo79WeuXm2bknLk9T9YGiDgLlnAXalUirvcnj17iqs0UcfZ3Nz8/PnzUq0ZCk6pVIr7anEZvXv3biJq1KiRNmM+fvzYyMjIzMxMnED/6aefiGj48OHSrDiPQqEYOHBgQECA+jPiFK2Njc2ECRM2bdpUtNOOa9euFXcR0q0Ucl26dImIGuaFgDt16kRE+9U52rohqka85kxDcaVS8Y0bfOcOu7qyODb+5Ak3bsxpaQi4v0gE3Jl51KiXBNwVCsnOlCPgXixERUXJZDJLS8vExERmzszMXLVq1YQJE/Qwtbragy5i1llZ3KsXFznmLrLaRS8KEc8NCQlRB9TCwsJElE0ktwYFBaHX/avs2MFE/M47kg2YlZVVt25dIhLda/I91N6DBw/Ee6VUXXxeQzQS//PPP3U9USmRr4CMuOR+//33pZ0lX1b7vXv3xDGLWbNmJSQkREZGhoSEBAQE+Pj4eHh4ODg4yOXypk1HvJjWWbYsOzlx//68ahWPGMHMPG8eu7vrPeC+cycTsYMD5zWyhoJ78uSJsbGxmZmZZnnYNm3aFDnVSe3AgQNmZmZEpHlzp6XQUFYHLfz99d0Zd84cJuLBg/U6aXGXmMhEXKZM7sO9e3nqVD56VLLxMzIy2rdvT0RNmjRRXwTGxMRERkaGhoYGBwcHBASIkLq7u7uDg4OJicmrQuoiyc/S0rJevXrt27f38vLy9fWdMWPGypUrd+3alXbxIj969MobjBMnuG1bnjyZBw/mjz9mpRIBd+2NHDnyxx9/FB+LVu3aN7xJT08Xp2CJyMfHp0hX78qkpF23bvU9fdpYVGm/dKlhZmaUSqVg5tu3hyQn79ZykSUAAu6SBdxFA8MqVaqIwkn3798XNUxElhkYxOjRo4nIz8+PmXNycsRNl6iyXTRBQUFE1DvvnKarqysRhYaGSrNcDfkyaySpFH/nzh0iqlixorQtMoCZ9+7dS0Rdu3YVD+vVq0dE165d092MmZmZMpnM2Ni4xAaG1qxhzWPjH3zAkZFsb88rVuT+yWuJXMpt2pT7QWIib9rEf/3F0dG5n3nwgDt14l9+kWYiBNyLhV27dlWoUKFLly76n3ro0KFENGXKFB2Nn5nJPXsyEVevzrduFfSn0tJ40aJUO7vcrHYXF5dt27a9+CaoUqlCQ0NbtGghvq1x48aaEXlQW7CAiXjkSCnHXLNmDRF55R2z/+uvv0RsS/tKytnZ2SL64OHhoYf3SvHC2Lp1a11PVEqIw4KigIxCoRA9byV/R1Bntc+bN098Zvv27TKZTN2xJh8TE5NWrXp2785ffMEBAbxhA0dEsGYFmsjI3IC7QsHOznoPuIudSane+Eufjh07EpFmvueMGTPeeecd0UtATV3Mc+vWra+vmMzMp06dEmUnx4wZo4s1d+vGcjkXLKdZMnfuMBHb2LAOmmKUZBYWTMSin9rXX0v/j/Xp06eNGjUS9/vly5d/VTxdzdbWtmnTpu+8887QoUMnTZo0d+7ctWvXHj582NzcnIiK3uEmK4vPn39+QxIby+o9qrg4zsiQ4FctZc6fP1+jRg31lczmzZtPnTolychBQUGmpqZE1LFjx4Kn8WVnP3r0KODiRQcRZz992jSvSrsqMXHrzZvv3bjxzoMH45mVaWkR9+6NUipL7+E/BNylCbifPHnSxMRELpeLC8GcnBwRm+jfv7+EC4bCOnz4MBHVqVNH3DaLCj/+/v5FHvC9994johUrVjBzdHS0uCLXQ+FXqSrFi/y+63o+dlgK/PHHH0Q0dOhQ8dDCwkKry5QCiIqKIqKaNWvqbgoD+/NP1iwANXgwHz/ONWrwpk25fxBwf8HcuUzEXbrkZrbt3MkyGZuasiRlhxBwLxauXLliampqbm5+5swZfc6blJQkmkbeKngsvPDS0rhLFybiGjXe3Fk5LY0DA3M7fLq6/q9FixZvjKErlcqQkBCxY0p5ifBS/gLF3/jxTMSzZkk5plKp3LNnj/qvRqlUVqlSRWRImJubOzg4eHh4+Pj4BAQEhISEREZGFrxmy9ixY4moRo0a8XpJ/szMzBTLLmml3gwhXwGZrVu3ElG9evV0sQ12584ddT1cZlYqlba2ttbW1jY2Ni4uLl5eXn5+fkFBQWFhYVFRUW+sIZmQ8Pw99+ZNPnuWv/+eC18Tvkju3mUjIzYz47g4vcxXAomqVupWumpKpfLixYvLli0bNmxYo0aN8lXbqFu37scff7xw4cIXu0TcuHGjcuXKRPTxxx/raBPXy4uJeP58XYz9Oi1aMBHv2aPveYu1OnWYiEX9j9mzmYjHj9d2zO3bt4dr5IwHBwcbGRlZWloSkampqZ2dnaOjo4eHh7e3t5+fX2BgYEhISHh4eFRU1Gu6Tzs4OBAR2oC/VVq3br1jxw5djBweHm5nZ0dE9vb2r0+cV6lU+/btW73a9/RpExFqv3ix7qNHATk5sS98Z26+/LVr7SIj6cmTP3Sx8mIBAXcJAu6JiYki7ULdlGzq1KlEVL169SJ03QEJKZVKEWIWe4AiDblhUStRpKSkmJubGxkZxcXFMfOCBQuIaMCAAVKu+GUkrBT//vvvE84764A44CJeAZ48eUJENjY2Op3xyJEjROTm5qbTWQzp4kXOOzHA2dns6MhJSSgp83pxcWxnx0Ss7tQwbhwTcd26EjS2QsC9uBBdQGrVqqWfIKMg3hDfkbDUyCukpeWWjq1Zk191vZaayr/8wpUr55Z6aN2a9+xJLfgU2dn/b+/O46Ku9j+Of2bY3Rdc0tzQskjN3BXcB5fE5bqb4s1Ku/UrWg21FCsXuum9VLbQoqJmV0S9gpoB7qJmuGuZIoa74o7IPuf3x7GJ0Lwq3xkQXs/HfdwHfmfmfA86zfL+nvP5ZIWFhdlKvbdr127dunVGzL046NdPiSi7XoYICgoSkVKlSv3VEmOz2Vy7du2OHTuOGjXqvffeW7BgQXx8/M3Lsv773/+aTCYXF5d4A3fs/y9jx44VO1QaLIF0ARnbuqVu3bqJyL///W8HnDoqKkpHqLlGVGV58UUlop580iElXoKClIh6+mn7n6nY2rdvn4iUKVPGx8cnKCgoKirqlt/lr1y5EhsbGxwc7O/vn3cdcb447Pjx4zpe6N27t4HtvvJZsECJqN/zDMeZN0/NnasuX1ZKqStXVGbmHx81s7Lop3pr7dopkRslVebPVyLqpos7d+fKlSvVq1c3mUwbN25USmVmZuoV7kFBQecKcOFNf+Yv+FI/GCg6Onq13S5wnTt3ThfHdnZ2vmXlq4sXL4aFheleTRUqeOzaVfnQIcvFixG6esyfWZOT/2/3bs/s7BSl1Pnz4QkJ8ssvre0086KPwN2AwH3YsGEi0rJlS32dcMOGDbo709q1a42dMO5BYGCgiIwdO1YplZ2d7enp6ezsfG/7GBYtWqS32+g/WiwWEZk/f76Bs72lqVOnGvX97cMPPxSR559/vuBDIa/nn39eRGbNmqWU2rNnj4h4e3vb9Yy609cgO7W6LyImTFB/+5v64APVtav6+mulaJr6v61bp8xm5ex8oyhkRoZ64gklon7ffXHvCNzvF1lZWfofq2vXrg4rOaV7OC9evNgB57p6VbVpo0TUtGnK1j3x+HF1+bK6dk2Fht647CSimjZVERH32MYgLS0tNDRUr0wUEYvFovvBlHBNmigRZb+/iffff19EXFxcoqOjlVJnz57dtm3bwoULp06d+uyzz3bp0qVu3brOzs63DOI9PDwee+wxf3//wMDACRMmlC1bVkQ++eQTe831Vo4cOWI2mz08PC5cuODI8xYz+QrIJCYmms3mUqVKOeZvtWfPniIyc+ZMQ0Y7flxVqaJE1O/Vd+0mI+PGZUZbrWTcpYyMDB055V3AbjabGzVqNHr06Dlz5vzyyy83r1LPycnZvXv3Z599FhAQkPc6d0pKyqOPPqoXx9i1l/Lly8rVVTk7O2ojxe969lQBATd+btJErV2rbN8v4+PVqFEOncz9on//Py5ax8be2JZaEK+//rpeGaCfmf/85z9FpEGDBnfbZiAf3X9VN6xGCZGdna1XPIjI8OHD9auW1Wpdu3btkCFDdNkZEalbt+6UKVMuXrxd8ZnDh/0TEuTMmRlKqdzc67t3V0pIkLS0HQ76TYoYAvc/Andvb+/SpUsnJyff1SBffvmlvhKuN91cvHixdu3aUrC6JTCQ7rlUq1Yt/T60cePGe952oK+s/Otf/1JKXbp0ydXV1cXF5eLFi0ZO91YMrBS/efNmEcnb2BqG8Pf3F5Fly5YppVatWuWAlZ762smrr75q17MUvmPH1MaNf2yOztst8R46J5YMb711o+aGfnE6eFCVLq1E1HffFajQZt7AfcGCBaVLl7b3pTsC93t26tQpvTlUtzCxt23btomIp6dnAb/g3bnLl9WcOSo0VFWvfuN5PnasmjRJeXreiNrbtTNmn3tqampISIiu3msymfz9/ffs2WPAuPetUaNUixbKTrGn3ifh5OT03Xff3eZuWVlZR44c2bRpU75ulvmKPFSuXNlisdhlordlbFxbMuUrIKMTpdGjRzvg1DrcN/aSSVyccnJSZrP64QejhryFZQsX/rdjx9Qnn7TjOYq1nJycQYMGiUiNGjW2bdsWFRUVHBxssVh0MWubcuXKWSyW4ODgqKio23wHTEtLa9u2rf7O5YCvin5+SkTNm2fv8/xJz56qRw+1Zo1SBO537P/+T4ko3TBi/34loh555N5H+/nnn3VNY72V/8yZM/rjyqpVqwo4z5dffllEQkNDCzgO7jsLFy7U+wsbNWo0fvz4hx9+WL/0OTs79+3bd9WqVXey9+vy5WhdbUYpq1Lq2LFXExIkOdnQ/j/3DwL3PwL3e3Do0CHdBWXBggX6SN++fUXE19e32HYyvN9YrVZ9CWTbtm0FGScrK6tChQoicuTIEaXUvHnz9JI3g6b5l3Sl+FKlShmyOCI9Pd3V1dVsNl9hp5+h9OpOXbZVX4QbZedPmq+++qqIfEhfLNwkO/vG+t+BA28cmT1bder0a9WqdQvSvyFv4G4Px44de/XVV/MWlCRwL4j4+HhXV1eTyZS3+ZudPPvss7adZI4UGqoGDrzRwHPsWPXFF8psVu3aKcMbmZ8/fz4oKEg35zCbzYMGDbJrqfqiacQI9e23N34ePNj48efOnWs2m00mU95q2nflypUru3fvXrp06cyZM3XU1atXL9utmZmZjmlgY2xBkpKpe/fukqeAzNGjR4OCgnbv3u2AU7/55ptGbSrNKzhYiaiqVf9oImi4Nm3aiMjs2SW3Tm5BWK1WXY2tfPnyu3btyntTdnZ2QkJCaGhoQEBAvXr18obvTk5O3t7eAQEBYWFh+/fvty1+z8zM1M/h+vXr33kTwoL49FMlouxf5fRPevZUO3eqli1VRsaNwL1tWzVjhpoxQ738MoH7rU2ZokSULkJ84YKqWjW3WbO7KHmXT48ePUTkH7/3MQ8ICBCRvn37Fnyeenu9YxZtoKjZu3fvQw895OTkpNcx1KhRIygo6DfbltI7krt3b52EBLl6dY1SKj39l4QE086dZXJy7NjfrsgicL/3wD0jI0OnbLZkTa/NqVChwl0+I2FfOpp84403CjLI6tWrReTxxx/Xf9y6dWtAQMCcOXMKPr3bmzVrlhhaKb5Vq1YiEhcXZ9SAUErpPmmnTp1SSgUHB4vIxIkT7XpGvQxn4cKFdj0L7lNHjqhy5ZSI+uabG0eeeuopEWnRosVtWiTdnv0C97S0tMmTJ+v+TnmvIRG4F1BoaKjegbdv3z77nSU1NVXX7vjZ4ZtOQkPVnDmqVy+1dasaO1atWqX27rXj6U6cOPH888+7uLiIiKurq/0qaRZNLVqotm1vlCxo1OhPN2VlqY4dVWiouucW8kuWLNGFYmbMmFHQiSqllEpJSdFNd3QJwV9//bV69eoPPfSQnZoW5pWbm6tTuZL2DDFKbm7uyJEj3d3dHf9l6vr165UrVxY7tL3NzVXduysR1aaNutc34dvZtWuX/gZq19Ilxdi4ceNExMPD439+yElOTv7uu+8CAwNbtmyp3w5sqlat2rdv32nTpvn5+emUKikpyTHzP3lSmUyqVCnlyH//nj3V6dPqX/9SU6feCNx791Zr16q1a9UnnxC439q33/7UsuW7r74aqpSyWq16/8S9/We7dOlSEalYsaIuZLRlyxaTyeTm5mZIp9PZs2eL/UtHosi6fPlyZGSk3spzb8uIT516LyFBjhy5sUDj1187Jmw3X/0l3NBp3h9uXQaxhDh16pSIHD58OD4+vm3btmaz+a4ePnbs2N27dzdo0OCjjz4SkQMHDrz11lsi8sUXX+hy8CgiBg0aFBoaOm/evIceeijfjuO0tLSsrKy8R3Jzc69evZpvhGvXrq1bt05E9A4GEWnTpo1eS2Jvel9tv379jBqwbdu227dv37p1qw6zUHCZmZnnz593dnbW1X5zc3PLlClja7hnJydOnBCRBx980K5nwX3Ky0s++0xGjJCwsMs+PmcbNmz42Wefbd26NSEhYdKkSSEhIXc1mtVqjY+PP3r0qIgcPnzY19fXwKlGR0cHBgb+9ttvIuLv7z9gwAB9PDMz8+TJkwaeqAR65ZVXdu/ePXfu3P79+2/fvl1v0jLcwoULU1NTO3XqpIvVOt5HH8nIkaLfkBs3tuOJatas+cUXX4wfP37atGlRUVHt2rWz48mKpKAgeest+eab/MeXLpUNG2TDBgkJkddfl3/8Q8qWvYthY2JinnrqqZycnKlTp77xxhuGTNXT03PAgAHffvvt119/PWXKlAYNGnh4eBw+fDg2Nla337Qfs9k8ZsyY8ePHf/7553qVK+6K2Ww+f/58RkbG66+/HhkZme9zu10tWrTowoULrVu3btGihbEjm82ycKE0by7btsmECTJjhrHDi16d8+yzz+pL17grs2bNCgkJcXFxiYyM/J+fcGrXrl27du2hQ4eKSHZ29t69ezdv3hwfH79x48azZ88uX758+fLlDz74YMWKFVevXp1vRbz91KghLVvK9u2yZo307u2Yc97w8svSsaOcP39jGp07i4i4ucnOnQ6dxv2iQoVzP/0UXKlSd5FXTCZTtWrVkpOTz549e7dPlfT0dP12OWXKFE9PT6vV+sorryil3nrrrYceeqjg86xevbqInD59uuBD4X5Uvnz5AQMG2L6U3QNPz+dOn37/8uVl2dmnXVweqH0t0G1wkqnSR7JjpIHzvD8UduJfaCIiIsqXL29rLO7p6RkQEBAVFZWVlXUnD1+1apW+irhjxw6lVHp6epMmTSTPph4UHVar1dfXVxe0LYjKlSv36dPHAcujbOxRKf4///mPiDxJkUfjJCUliUitWrXyHrT380QXStIFjoBbCgr60dnZvWnTprqy9vbt23Wpx5iYmDt5eE5OzqZNmwIDA21XjypWrGg2mwMCAs6cOVPw6e3cubN9+/Z65CeeeGLDhg22m6KiourXry8ir7322qVLlwp+rhIrPT29efPmIuLv72+nAhc6mfrWVm3EgfQKd6VUcLCqVUsVuGbpXSiBZdlatFA5OapPH7Vpk2rUSKWnq/T0Gzfl5qrISNW8+Y0C+hUrqkmTVEpK+m3Hu2HNmjV6iZ/hLUni4+NFpEqVKvoFcNq0aSLSr18/Y89yS/nW1+Nu/fbbb5UqVRKHl8LXPZPmzp1rp/G3bFGurtZOnT5YunSpgcNeunSpdOnSJpPJMUWTipmjERFOZrPZbC74u1hiYuL8+fNffPHFlStX7rXrfqtbmT7d2rjxlQkTNjrgXMeOqcTEGyvclVKbNyuTiRrud2Tnzp2SZ8d869atRSQ+Pv5ux5k8ebKINGrUKDs7WykVFhYmIg8++OC1a/deoCYvvWmmcePGhoyGkinxcP8Tc5plRcxSSqnMzBsNxI3eQFb0lcTA/erVqyNGjNBf8nv16hUYGJj3omKVKlVGjx69evXq2yfv33zzjbu7u+6fqZQaM2aMiHh7e7OVr8h65513xtzk1VdfDfqz8ePHh9xk1qxZtvqt43XdNYeYP3++GF0pPjk5WQdnVBc1ysaNG0Wkbdu2Djtjbm6urs6cnn5HiQZKpmvXrjVs2DBvkqVrMtasWfM2z5zMzMyVK1c+88wzeme91qBBg9dee23UqFF6A3X58uVnzpx5h9enb3b+/PnAwEAnJyd9ITM0NNS2XXHfvn0Wi0WftFGjRuvWrbu3U8Dmt99+8/T0FPv0ct+zZ4/+RyyU1yJb4J6RoR5+2KGBewmkA/ejR5Wvr/L2VjNnqqpVVXCwyntFbNMm5e+vRFSVKrmVKz8YGBh4/Pjx24y5bds2XY/oxRdftMecmzVrJr/XXrOF4HYqVKI39dsMHz5cRN5++217nKskiI6ONplMzs7OGzc6IkBUvwdh9n41Cwtbpt9DDx8+bNSY//rXv0Ske/fuRg1YgkRFKWfnRF/fTz7+uLCnUlAHDhzQT2CdwNpPSop69FFVvbrasEHZSk0kJ6v09Bs1x5RSGRl//Iy8dH2FqlWr6j/qLeyRkZF3NcixY8d0W8v169crpS5evKhLm0ZERBg1zzNnzoiIp6enUQOiBLLG/qBElJeX0qHTm28qEfXcc4U9L0crcYH7Tz/9pDfaeHh45O28vH///uDgYG9vb1u+UKFChUGDBoWHh//VpcLDhw/rRaxLliwREXd3d8f080FhiY2NdXNzE+NqjP5PeiPPJ598Yuywug7JL7/8YuywJda2bdvatGlTpUoVh70C6C1+fAzC/5SQkKCvzSxfvlwplZubO2LECP0BPZ/09PSoqKiAgIDy5cvb3ge9vLwCAwM3bdpk27Fx6NAh3T9ARB566KG7/XCflZUVGhqqT+Hi4hIYGHj58mV908WLFwMDA3Ud54oVK4aGhtr7S2PJERcXp3sfLVmy5K4emJGRsX///oiIiJCQkDFjxvj4+PTo0SPvHV544QV7rE2+4+mpL79U33yjzp9XaWnqXi8A4Y7owF0pNWWK8vS8EayLqEqVVHDwn7KVzZvViy/G6kogbm5uY8aMuWWP2T179uhVzAEBAXZaAaAX/bVv317/0X4h+JEjRypVqjRu3DjbtcOAgIBq1arl3biDu6ULdVavXl03yLG3UaNGichbb71l7xPp99DGjRsbskjLarXqK+v6XR53YcsWVbq0ElF2uBpdKPQzwa4vO2lpql07JaIaN1bG7b4uQXJycpycnMxms16zoj9EzZo1664G0fnAsGHD9B9feuklEfH19TVwd3Vubq6zs7PJZLrnzk+AslpV/fpKRP3wg1JKJSYqk0mVLq1K2CbREhS4W63W0NBQV1dXEWnWrNlfbbs7cuRIaGio7g6nlSpVyt/fPzw8/OrVW/TVPX78uP7C8Omnn9r5N0DhW7hwodlsNplM39h6EdpNRkZG2bJlTSbTsWPHjB154MCBIjJ79mxjhy3J/P399WW8zz77zPDBL1y4MH369P/85z+2Iz/99JOING3a1PBzofj58MMP9eatkydP3nzr9evXdc5eNk/RZW9v7+Dg4AMHDvzVmLGxsY0aNdJ3tlgsd9iTMzY21nZV22Kx2MbPzs4OCwvTy3OcnZ3HjBlz7ty5e/tl8VemT58uImXLlv2r1qZZWVlHjhyJjY0NDQ0dM2aMxWLx8vK6uXpy5cqVbQ+5fv26rgu/f/9+R/0e+elP8n/9VIVhli5V+rt8RoaaN0+pPOvZRVTp0iowUOVdzr579+4hQ4bojSxOTk5PPfXU9Tw9VQ8dOqRLxPbr189+l9bS0tJ06cg9e/YopTZv3ix5iswYxVa4yVZ10PGrs4ul7OzsDh06iEjnzp3vrWnbnbt48WKpUqVMJpMh/QZvLzU1VXe8ePbZZws4VHZ2dnh4uIjUrl3b3n9Fxc3evapiRSWiXnihsKdiGH2N6vXXX7fT+JmZN3r/1q9/o5gM7oF+79Ofyd999927vQy8Zs0aHU8lJycrpfbv3+/s7Ozk5KTf5gyki/Hefpsa8D9MnapEVP/+N/7YpYsSUXZIS4qykhK4nz17tmfPniJiMpkCAwPv5KP20aNHdfJu+8Lp7u6uk3fbirzc3NxOnTqJSK9evRxZ2huF6NNPP9XfHu92qeDdioqKEpGWLVsaPvLMmTNFZPTo0YaPXGKlp6cHBgbqF4p+/fpduHDBkGETExMDAwP1tsGGDRva1gDqVrq9evUy5Cwo3qxWq74g1LFjR9sX8kuXLkVERAQEBOhnV96c/eDBg3cybFZWVlhYmK5VolPyfBUV8vrll19sjQofffTR1atX225as2ZN4987XXbp0sXxZU9LCKvVOnjwYP1Kkq/++KJFi+rVq6eD0Xw8PDwef/zxgQMHTpgwYc6cOVu2bMn7rzx79mwRadeuncN/mxuuX1dOTsrFRbEAqxBt2qR69lQmkxJRbm7q+edVUtIfG0OPHDkSGBjo7u7eunVr28Hk5OQ6deqIiJ+fn7HZ9830W7OtwVLeIjNGGT16tIg0aNBAfzsorPrjxdKZM2d06DNx4kS7nkhfmXZYf6N9+/bp7qZ3vnzn4sWLCQkJtv1G+pqo3hP24IMPTp061a4TLm4SE1X16kpEDR2qilGBzS1btohI3bp17TF4bq4aPFiJqKpVFc0CCqJp06YikpCQoJRKTEzcuHHj6Tu+fJGdna0/M0+bNk0f0UlUYGCg4fPUb5fbt283fGSUIKdPKxcX5eys9KqvRYuUiGrSpLCn5VAlInCPjY3VH9eqVKmyYsWKu334sWPHQkNDLRaL/lijw1YfH5/Q0FDdHrpmzZrnKVRWkkycOFEnEXbdtffss8+KyJQpUwwfWX8ga9SokeEjl3BLlizRi+lq1apVwOfGpk2bBg0aZIvAfHx8oqKibFf1PvnkExF53tacCLits2fP2jKL8PBwf39/vdlLRMxms4+PT0hIyC1rPvxPFy5csFVjr1SpUt5q7Hlt2rTJZDJVrFgxJCTEtjv18OHDtuo0DRo0MLD0JG4pNTX1scce0xcF8y4RWLZsmb5q4uXlZbFYxowZExISEhUVdeTIkdsX+tDNvuboMuqFYccOJaJ4KysK9uxRAQHKyUmVLq08PR/x9/ffsWOH7dZjx47ZrqWdOXNG1z1o166dUe3dbuOXX34xmUxlypTRaXi+IjMF9+233+oVOfr3vXm1Owpo3bp1zs7OZrN5ld26NFit1ocfflhE7uFL4j3L98yxuX79+v79+6Ojoz/66KNXX321T58+jRs3LlOmzM0XRPU7eK1ataKjo+194arQXb169e23316xYoUB37hPnlT16ikRZbGo4vX3lpubqz/sGb7YWSkVGKhEVPnyatcuw8cuWfQa0Ojo6Ht4rG7YUL9+fd1q4rvvvhORypUr2yOJ6tWrl1CrCgU3cKASUTrRysxUHTqof/9blaQtWcU8cM/KygoODjabzXrp3C031N+5kydPzpo1q0uXLrYUzM3NzcnJ6Zb1cFG8vfLKKyJSrly5nTt32mP83NxcvePMHlv1MzIy3NzczGazba8GjJKcnOzr66svywUHB9/tDt/MzMyIiAgdY+lXmICAgLz1Oq5evRoWFvbAAw9Ur169cePGXOrDHVq9erXJZNJdKHS6arFYPv/88zNnzhR88J9//rl79+63XMBu8+WXX9qerteuXQsODnZ3dxeR0qVLBwcH0/7XMQ4dOqSLwISEhNgOXrly5ddff719C9xLly7lXVzp4+NTtmzZihUrli9fvhB7xYeHKxE1ZEhhnR/5HTyoxo/fpVsrm0ymvn37/vjjj3nvkJKSoutKtWrV6pZ1Gu2hS5cu8ns7nHxFZgro5nXKzz33XN7V7jCEbvddsWLFpKQke4z//fffi0idOnUcXJVF742oWbPm2LFjhw8f3q5dO/3J/5YqVqzYrFmzgQMHjh079vPPP1+9evWvv/5acsorx8TE2P4qHnjggUGDBoWGhiYkJNx1+4esLNWkiRJRbdsq+1/wc7znn39eRN59911jh337bSWiPDwUVbIK7plnnhGR4cOH79q1665ec6xWq76gq8P6tLQ0vVfsq6++ssc89dtZWFiYPQZHCRIbq0TUww8rpVROjjp2rKTtSy3OgXtSUlKbNm10shAcHGxgR6aUlJSvvvqqR48eU6dOXbRokVHD4j6Sm5s7ZMgQvW3ir/oB3OE4+/bt+/LLL0eNGpW3VvuGDRv0dzYjJnsLb7/99r///W++ENpDdnZ2cHCwvizXpk2bO/x+ePny5dDQUN3PVkSqVq0aHByct3rD0aNHX3/99XLlyuk76EogBV9Kj5KjevXqpUuX7tSp0+zZs+1xqSYqKsrLy0s/P/39/Y8cOXLzfaxWa3h4uM4UTCZTQEDAnW+khSGio6PNZvNtloump6fv3bt3yZIlISEhzzzzjK+vb9WqVW8ZALVu3frs2bMOnn9eb72lRNR77xXiFHALp0+fDgoK0km0/L5DSyl15coVHRY4+GpxZGSkvhaol5zrIjMvFLhw882VuP9qzTIKyGq19uvXT1+nscdS7t69e+e7DOkYej+Eraia5uLiknezUUREREJCwsUS357y4MGDQUFBHTp0sL2waOXKlevXu7eaNEl9/726dOmOxlqwQDVtqgyq/VjUrFq1SkSeeOIJA8ecNWtWhw4vubnlOnAHSHG2du1aW5XF0qVL+/j4BAYGRkRE3MkHqoyMDFtJtAkTJohIs2bN7NR1/J133hGRyZMn22NwlCBWq/r0U5WSopYvV61bqxdeUD4+6uOPC3tajlNsA/fw8HC9/65u3brx8fGFPR0UQ1lZWT169BARLy+vU6dO3fkDr169umnTppCQEH9//8qVK9s+NeYtKvr666+LyFtvvWWHicMR1q5dW7NmTREpX7787S/LHT58ODAw0PYV4vHHHw8LC8vbXC4hISEgIMBW0srHxyciIiIpKUkvpTebzYGBgbdfnQrs3r1bRKpVq2bXFXyZmZmhoaG6/6qrq2tgYGDeRazbt29v27atfhq3bNlyy5Yt9psJbiM4OFhEKlWqdOTIkZMnT8bGxoaFhQUFBfn7+3t5ed2ymLubm5uXl5e/v39QUFBYWFhsbOxdvevZSa9eSkTZuZ0K7tHZs2fHjx9fvnx5/RRq1aqVDhYbNGjg4CdPdna2vpi9bt06lafITL5mBndLV8Rq3Lix3uRhW+1OR3p7uHjxYr169UTk5ZdfvoeH25pCf/nll+PGjcu7MDw5OdnJycnNza1QLh9euXJl48aNkyZNmjt37oYNG44fP26n7KzYyM7O3r9/f1hYWEBAgN4u07lp0xu9m0WUl5cKCFChoSoh4Y/i7CEhqmtX1bOnGjBA6RcfuzVqLnQZGRl6ac706dP3799f8KfT/PnzTSaTyWSKiGBxu2GWLl06YsSIBg0a5Pus1aBBgxEjRsyaNWvHjh23byeemJjo7u5uMpm2bt1qp0nqrnXUL4UxUlOVt7dKTVVKqZwc1bZtyekFUQwD96tXr44YMUK/bA0aNOjSHV7uBu5eWlpau3bt9Deu2yw/sVqtBw4c+Oabb5599llvb29d48imdu3aw4YN++ijj/IuhdYLRblWdF9LSUnRzSpFJCAg4JaFF8aPH6/bMpvN5l69esXFxdluys3NjYqK8vHx0SO4uroOGjQo7+eqvEvpW7dubaet1igedOcJx3xuPnny5JgxY/QLXY0aNcLCwo4dOxYQEKCf6jVr1gwPD6e6cSHKzc3VL023zNZdXFwaNmzYu3fvN95444svvli7du3x48cLe8q3VreuEik5n9jvS1evXg0NDdVlhWvUqFGnTp28m/kcZvLkySIyePBg/UddZGbWrFn3PKAupFu2bNlffvlF3Wq1Owy3a9cuDw8PEZk/f/5t7nab5qI2hw4dst1//Pjx+kOa/X8DGO/UqVMHVqxQb7yhfHyUu/sfybuIqlhR9e+vVq5UgwbdCN9XrFD9+xf2lO1u1qxZrVq10k/1smXL+vj4BAUFRUVFXbj7Rf3R0dG6RBgtoO3k8uXLsbGxwcHB/v7+utyZTalSpfTi9/Dw8N9++y3fA/WnuKefftp+c1uyZImI9O3b136nQAmyffufSkAGB6t58wpvNg5V3AL3n376SV8tLFu2LDWn4ADnz5/XKyzatGlzc/uvGTNm9OjRQ9fMtXF3d/fx8XnjjTeWLFlyy74CP/74o4hUq1aNdS73O6vVGhoaqgtne3t727rG2SxbtkwXaj9w4IDtoE4odGE+ESlfvnxgYOBfhRTr1q2zLaX/z3/+Y8dfBvcz/TIVExPjsDNu3brV9pVP92j18PCYNGlSIZb8hs2lS5dmzpxZvXr1ihUr+vj45K1dcL/U009NVSaTcnMrxksVi4+0tLSPPvro6NGjhXVh+NSpUy4uLs7OzidOnFBKLV68WPIUmblb27Ztc3V1NZlMkZGR+ohe7d6kSRNe3+zqs88+E5EyZcrk/ciklEpOTtbNRXW1vZuZzebatWt37Njx6aeffu+992ylzDIzM6tVqyYi9lslCsfJzlb796uwMBUQcKMtavv2KjBQ5a2EUr++KgHX++fMmTNkyJBatWrl+6+gcePGY8aMmTNnzsGDB//nq9/WrVv1f1ATJ050zLRLuJycnP3794eHh48ZM8bb21svUrF54IEH/P39Q0JCNm3atHLlSh122XW72JYtW0SkVatW9jsFSpDt29Xvix6UUio4WIWHF95sHKr4BO462NLf6ps3b5538QJgVydOnKhbt66I+Pv759v/5efnd/Pb5C3jjJMnT0ZFRQUFBfn4+Li6utaqVWv06NGO+g1gXzt27Hj44Yd14BgaGpr3ptzc3LxLTpKSkoKCgmxXaBo0aBAaGnrzhZx8UlJSdAVS+eul9CjJfv31VxGpUKGCgxusWa3WiIiIhx9+ePjw4f7+/mzCKGru61JUCQmHO3YM6d+fTe64IzoT170Es7Oz9YXqe4hZL1y4oC+Hv/nmm/qIbbX7wYMHDZ40bjJy5EgRadiwYd56ZadPn7bFUhUrVvT29s5XA/2vPhctWLBARJo2beqo6cOBjh1Te/ao555TeTaPqoceKlEXaU+dOmX7dqk71duUK1fOYrEEBwdHRUXdXA9g7969esE1FUUKy/nz51esWPHOO+907dpVl2q00dsTZ8yYYdcJHD16VERq1apl17OgpLh6VXl7K10y12pVvr6qxHxkKj6B++zZs0XEZDK98cYbJadpO4qIw4cP6zUyw4cPz7ss/fvvv4+IiLjlfvyMjIz4+PiZM2cOHDhQf/HL+z76zjvv3L52G+4v169f143aRKR///43FyC6ZaH2Oy+3bbVaw8LC9G5rb2/vPXv2GP0b4D42ZcoUsfPO09vIzc1lsw4Mpz/1DR8+vLAngvvD2rVr9eoHfZ1p2bJl99BGIjc3t3v37iLStm1b/V3j5tXusKtr16499thjIjJ06FDbQavVumTJkp07d95JHdFTp07Fx8cvWLDgvffe08X9v/rqKzvOGIXr44/VtGk3fj5xQrVoUaizKUzZ2dkJCQmhoaEBAQF6oVjeL57e3t4BAQFhYWH79+9PTEzUdcD69etn18Y/uEO2xe+BgYG60/KsWbPsvWYiPT3dZDIRuMMwixYpX181frzy81MffFDYs3Eck1JKioWcnJyhQ4eOHj1afxQGHCwhIaFLly6pqakvvfTSJ598csv7nD59OiEhIT4+fvPmzTt27MjIyLDdVK5cuVatWvn4+DRv3tzX1zdfHTcUD5GRkaNHj758+XLt2rUXLlzo4+OTm5u7atWq6dOnb926VURcXV2HDBny5ptvNmnS5B7GP3DgwNChQ/fv3+/u7h4SEvLKK68Y/RvgvtSsWbNdu3ZFR0fbmgoA97s333xz5syZ06ZN0yWYgf+pcePG+/fvj4yMHDBgwL2N8O67706ePLlq1aq7du2qUaPGxYsXmzVrlpyc/Oabb3744YfGzhZ/5dChQy1btrx69ernn3/+j3/846/ulpGRcerUqaQ/O3ToUGpqqu0+zs7Ob7zxxsSJE/+qFg3ue9evS8+eYrFIzZoyd65MnCi/bz4u4ZKTk7ds2bJt27atW7fu3r07OzvbdlOZMmWuXbvm5+e3YsUKXTwARUpmZqauVmpvOTk5+RpgAAVy/bocOSK1asmf6y0Xb8UncAcK3bp165588smMjAxbBJCTk/Prr7/aEvaff/457/29vLxsCfsTTzyRr5kqiqXExMRhw4YlJCS4uLj4+fnt3bv3xIkTIlKlSpUXXnjhxRdf1Fsl7ll6evq4ceM+/vhjEfnb3/729ddfV6pUyZip4/509OhRLy+vsmXLnjt3Lt+GYuD+1bNnz9WrVy9fvrxPnz6FPRfcH2bNmvXyyy937do1Li7u3kbYtWvX4MGDP/vsMz8/P6vV+uSTT/7www9t27bdsGGDbi0Ix1i0aNHQoUPd3Nw2b978+OOPHz9+PCkp6ejRo7pPgP4hJSXllo/19PSsV6+el5dXvXr16tWr9/e//90x0RUKTXa2bNokly9L27bywAOFPZuiKDs7e+/evZs3b46Pj9+wYUPTpk3r1q07c+bMMmXKFPbUAOD+RuAOGCkyMnLo0KFWq9XPz+/atWs7d+7Mu4y9QoUKbdq0adu2bZs2bdq0aVOuXLlCnCoKS05OzpQpU95///0GDRocOnTooYce+r//+7/Ro0eXKlXKqFPkXUr/7bff+vr6GjUy7jthe8K+nvP1o6mPzvtmXmHPBTBMrVq1Tpw4kZiYWL9+/cKeC+4PqampDz744NWrV/fv36/LktyD7Oxsna0HBwe/9957VatW3blzZ77CgHCAl1566dNPPy1fvnxaWlpOTs7Nd3B3d7el6nl/yFcNGUA+V69e5SsqABiCwB0wWHh4+BtvvJGWlqajdpax45Y2b97s5uZ26dIlPz+/fJ3oDZGcnPzUU09t2bLF2dn57bffnjhxou6xg5Km7a9tt6VtW+K1pH+F/oU9F8AYV69erVChgoeHR2pqKu+quHP/+Mc/5s6da7Vaa9Wq5fVnDRs2vPPlnGvWrOnevbtSavXq1X5UqCgMmZmZEydO3LRp07Zt2ypWrOh1k7p16/LiAAAAChGBO2C8S5cuLV26tGbNmm3atKlQkmpUoUixLaW3Wq2dO3eeP38+q/BKmpPZJ2vtq+Vh9jjX5FxpMzVqUUxs3bq1Xbt2zZs3T0hIKOy54H5y5syZyMjIl19++eabTCZTjRo19FLovP9fo0aNfBfFjx8/3qxZs/Pnz0+dOnXChAmOmjtuISUlpXz58pSZBgAARRCBOwAUZzExMSNHjjx79myVKlXCw8N79uxZ2DOC43yS8kng8cCBFQYu9lpc2HMBDPPVV1+NGTNm5MiR4eHhhT0X3H8uXLhgK/Zt+/9jx47lbRto4+7uXrduXVsEX7t27Q8++CAhIeHJJ5+Mjo5mDTUAAABuib7DAFCcdevWbd++fU8//fSqVasuXLhQ2NOBQy25tEREBlQcUNgTAYx04MABEbnnMtwo4SpXrly5cuUWLVrkO37p0qWkmxw9evTgwYMHDx603a169ep16tSZP38+aTsAAAD+CivcAaD4U0qtWrWqV69ehT0ROM7Z7LM199d0FudzTc6Vc6L/FYqPpUuXrly5ctSoUXSEhr2lpaXlWws/atSoRo0aPfzww4U9NQAAABRdBO4AABRDYefD/nHsH33K91lef3lhzwUAAAAAgJKCvZAAABRDSy5TTwYAAAAAAEdjhTsAAMXNpdxL1fdWV6LOND5TyblSYU8HAAAAAICSgqapAAAUN24mt/C64YmZides1w6lHWpTuk1hzwgAAAAAgBKBwB0AgOIjzZr2wrEXTmefVqI6lun4c8bPG69tJHAHAAAAAMAxCNwBACg+Zpyd4eXmNa/uPBFJzExMzEws7BkBAAAAAFCC0DQVAIDiY/219QGVAvTPDdwaFO5kAAAAAAAoaQjcAQAoPjKsGe5m98KeBQAAAAAAJRSBOwAAxUdjj8bx1+ILexYAAAAAAJRQ1HAHAKD4GF99/ICkAQczDpZ1Knvder15qeaFPSMAAAAAAEoQk1KqsOcAAAAMc916/afrP+WonFalWmWr7CvWK/Vc6xX2pAAAAAAAKBEI3AEAAAAAAAAAMAA13AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMACBOwAAAAAAAAAABiBwBwAAAAAAAADAAATuAAAAAAAAAAAYgMAdAAAAAAAAAAADELgDAAAAAAAAAGAAAncAAAAAAAAAAAxA4A4AAAAAAAAAgAEI3AEAAAAAAAAAMIBzYU+gOPr6a4mIEBcXqVRJ/vUvqVKlsCcEAAAAAAAAALA7VrgbbdMmWbJEVqyQlSvlb3+TF14o7AkBAAAAAAAAAByBwN1o0dHy3HPi6ioi0r+/7N4tVmthzwkAAAAAAAAAYHcE7kZLTZUyZf74o6urZGUV3mwAAAAAAAAAAA5C4G40b2/ZufPGz+fPi7OzuLsX6oQAAAAAAAAAAI5A01SjPfOM+PmJu7vUri1hYTJ5cmFPCAAAAAAAAADgCCalVGHPobjIyZEBA6RdO3npJYmLk0uXxNdXGjQo7GkBAAAAAAAAAByBkjLG+ekniYqSOXOkdGnp21dSUiQmRi5eLOxpAQAAAAAAAAAcgZIyxlmzRkSka1cRkdxcCQmRixelZ0+pVKlw5wUAAAAAAAAAcABWuBsnb+C+c6dcvCj160u9eoU7KQAAAAAAAACAYxC4G+T6ddm6VZycpFMnkT+H7wAAAAAAAACAEoDA3SCbN0tmpjzxxI0CMgTuAAAAAAAAAFDCELgbRCfsFouISEaGxMeLySSdOxfupAAAAAAAAAAADlM8A3elVEpKikNPGRcn8vuS9i1bJD1dHn9cqlRx6BwAAAAAAAAAAIXHubAnYKSUlJT169fHxcWtWrWqevXqDzzwQGhoqJeXl73Pm3PhgvPeveLuLj4+ItSTAQAAAAAAAICS6L4P3NPT0zdt2hQbGxsTE7Nv3z6llD5++fLlhISE3bt3r1u3rn79+nadw/L16yeUK/dO374BHh4iBO4AAAAAAAAAUBLdr4F7UlJSXFxcXFzc6tWrU1NT9cFSpUq1a9fOYrFYLJaGDRv26dNn3bp1nTp1WrduXYMGDew3mbi4uEMXLx5v0EBErly50ufMmWc7dhzZvr39zggAAAAAAAAAKGrup8A9b8WYEydO2I57e3v37t3bYrG0b9/ezc3NdnzFihW9e/deu3Zt+/bt16xZ4+3tbaeJrVmzRkS6du0qIuvXr9+YnKxq1x5ZpoydTgcAAAAAAAAAKIKKeuCenp4eHx+vF7Pv3LnTVjGmWrVqHTp0sFgs/v7+NWrUyPuQ7OxsFxcXESlVqlR0dLTO3Lt06bJ27Vp7ZO7Hjh07fPhw+fLlmzdvLn8O3wEAAAAAAAAAJUfRDdx/+OGHmTNnbt68OT09XR8pXbp0x44du3Xr1q1bt0cffTTvnXNycrZt27ZixYq4uDhPT8/Vq1fr4zpz79u3b1xcXJcuXdasWfPYY48ZO0+dsHfq1MnZ2VlE4uLiRMRisRh7FgAAAAAAAABAEVdEA/eYmJgvv/wyNjZW/rpijIjs27cvJiYmNjZ248aNtly+cuXKOTk5Ov4WkVKlSkVFRfXp08eWuTdq1MjAqeZd0n7q1KmDBw+WKVOmVatWBp4CAAAAAAAAAFD0FdHA/bvvvlu6dOmIESP+/e9/e3p65r3JVsn9+++/P378uO24l5eXv79/7969fX19bWm75uHhsWLFioEDB65YsaJr165xcXGNGzc2aqrr16+X3wP3NWvWKKU6duyoa9oAAAAAAAAAAEqOIhq4r1u3TkTefPNNnbZnZWVt3LgxNjY2JiZmz549tkruNWvW9PPz69atm8ViqVKlym0GdHNzi4yMtGXua9asMSRzP3DgwMmTJ6tXr65L3FDAHQAAAAAAAABKrKIYuB86dCg5OdnT09OWiaekpPj5+emfPTw8fHx8LBaLxWJp1qyZyWS6w2Hd3NyWLFkycODA6Ohovc69SZMmBZzqmTNn6tSpU69evR9//LFBgwZr164VAncAAAAAAAAAKJGKYuBuWyduNpv1kZo1aw4cOLB+/frdunXz8fHJV8n9zrm6ukZGRg4aNCgqKqpTp04xMTEtWrS4t6EOHDige7SeOXMmOTn5pZdeSkxMNJvNVatWNbBeDQAAAAAAAADgflGkA/e8BxcvXmzI4K6urosXLx48ePDy5cu7dev2ww8/tGzZ8g4fe/z4cV3WZs2aNefPn9cHnZyc2rRpk5aWduXKlUqVKs2ePfvOF90DAAAAAAAAAIoNk60eehFhtVqrVat2/vz5I0eOeHl52eksWVlZQ4YM+e9//1uhQoWYmJjbZO7Xr1/fsmVLXFxcXFzczp07bX9d9erV8/Pzs1gsXbt2rVSpUnZ29tChQ5cuXVqhQoXVq1e3bt3aTjMHAAAAAAAAABRNRS5w37FjR4sWLerUqfPbb7/Z9UTZ2dlDhgxZtmxZhQoVfvjhh1atWuW91VYxZtOmTZmZmfpg6dKl27Ztq8vHN2/ePN+Aubm5I0eOXLhwYfny5X/44QcydwAAAAAAAAAoUYpcSZm4uDgRsbVItR8XF5fFixcHBAR89913urZM3bp1N27cGBcXt2LFilOnTum7OTk5NW/eXIfsHTp0cHV1/asBnZyc5s2bZzKZvv322+7du69evbpNmzb2/i0AAAAAAAAAAEVEkQvcb1nA3U6cnJzCw8Ozs7MjIyMtFsu1a9dsN9WrV69bt25+fn5du3atUKHCXQ1oMpkWLFhgsVhWrlzZsWNHu0wdAAAAAAAAAFDEFK2SMllZWZUqVbp+/frp06erVavmmJPm5OQ88sgj165du3r1qo+Pz19VjLlzubm5o0aNWrLk+yZNDk6fXrlTJ+PmCgAAAAAAAAAoqorWCvf4+Pi0tLQmTZo4LG0XEScnp6tXr6akpBw8eLBhw4aGDDhnzpzKlc+Hhlbu00dWrRJf34KPCgAAAAAAAAAo0syFPYE/0fVkLBaLvU80ZMiQ/v37JyYmisiePXtSUlJq165tSNquOTk5zZhR7e9/l9RU6dFD1q0zamAAAAAAAAAAQBFVFAN3exdwz8zMjI6O/u9//1u+fHn5vU2r4Sm/k5PMni1PPy1paeLvL2vXGjBmUlLSF1980b9//2XLlq1fv96AEQEAAAAAAAAABilCJWVSU1N37Njh7Ozsa+cKLPHx8enp6U2bNq1SpYrYM+U3m2X2bHF3ly++kN69JSpK7uEkaWlpW7dujYuLi4uL27Fjhz64fv36jIyM5cuX+/n5GTxpAAAAAAAAAMA9KUKB+7p167Kzs319fcuVK2fXE+VN2LOysjZv3mwymTp37myPc5lM8tlnYjLJ559Lnz6yfLncyUr63FzZvl3WrJm+evXKH3/8MScnRx+vVKmS7um6ZcuWuXPn9u7dOzIy0t/f3x4zBwAAAAAAAADclSIUuDumnky+E23btu3atWuNGjV64IEH7HQ6k0lmzZKcHPnqK5k+XapUkccfFxG5dk0uXpTatf+4Z1KSxMXd+N+lS/L446v37Il3cnJq3ry5ztk7duzo4uIiIs8991zZsmU/+eSTAQMGREZG9u7d206TBwAAAAAAAADcoRIXuF+5cmXHjh2urq7t27d32EnNZgkLk4cflu7d5fHHZfly6d1bdu2S//xHpk2TdeskJkZiYyUx8Y+HNGwo/fu//f77b3bu3LlMmTL5BjSZTB999JHJZPr4448HDhy4ePHiPn362PVXAAAAAAAAAADcXlEJ3M+ePfvzzz+XLl26VatWdj3R+vXrc3Jy2rdvr1Nshy2rN5nkzTfl6FHp2lXef1+6dBERyc2VGjXk+vUb96lUSbp2FT8/6dZN6tQRkW63HdAUGhqqk/dBgwZFRET07dvX3r8FAAAAAAAAAOCvFJXAPS4uTinVoUMHNzc3u54ob8Kempq6fft2Z2fnDh062PWkeZUrJ0OHynvvib+/ODlJmzZy5YpYLGKxSMeO4uJyF0PpzN3DwyMkJGTw4MGLFi3q16+fveYNAAAAAAAAALgtc2FP4IZVq1bJn1eaJyUlff7554afKG/gvnHjxuzs7JYtW5YvX97wE93GqFGybZscPCgiEhsrCQkSEiIWy92l7TbTp08fP358VlbWkCFDli1bZuxUJTtb1q+X6Gg5fVpE5MoV2b37xk2pqbJrl8GnAwAAAAAAAID7VmEG7unp6XFxcePGjWvRokVERESZMmVsxcrT09O7du364osvfvDBBwae8fTp07/88kuZMmVat24tDqwnk4/ZLB99JFOm3Pi54KZNm/b222/rzH3p0qUGjKilpUnXrrJhg5w+LYMGSUyMHD4sM2bcuPXoUQkJMexcAAAAAAAAAHCfc3RJGavVunv37tjY2JiYmPj4+MzMTH3c3d392rVrr732mpeXl5+fn4eHx7Rp0wICAsaNG5eVlTVx4kRDzr5mzRpduMbFxUUKL3AXkaZNpV8/yckxbMApU6aYTKYpU6YMHjx4/vz5w4YNM2DQr76SXr0kKEhEpFcv6d1bvvzSgGEBAAAAAAAAoDhyUOB+7ty5DRs2xMXFrVy58uTJk/qg2Wxu3ry5xWKxWCy+vr5jx46dNWtW7969Fy9e3Lt372HDhplMpoCAgEmTJimlJk2aVPBp5E3Yz507t2/fvlKlSrVt27bgI9+hcuXklVdu/Dx58h/VWQzx/vvvm0ym999/PyAgwGq1Dh8+/N7Hys6Wc+dk3z6xDVKzply7Jrm5Eh8vTz0lInL5spQta8C8AQAAAAAAAKBYsGPgnp6eHh8fHxcXFxcXt3PnTqWUPl69evX27dv7+/v7+/tXqlTJdv+PP/7YZDJ98sknAwcOjIyM7N2799ChQ00m04gRI4KDg5VSwcHBBZySDtwtFouIrF27Vinl6+tr7zateR09Kl9+KbpF6/Hj8vnn0rmzkeO/9957JpPpvffe+/vf/66UGjFixN09PilJ4uIkLk5iYqRlS/H2luvX/7g1N1ecnKRVK/niCxGRAwckNNTAyQMAAAAAAADAfc34wD0pKSk6OnrFihWbN2/OyMjQB0uVKtWuXTu9mL158+a3fKDJZProo49MJtPHH388cODAxYsX9+nTZ8iQISaTafjw4ZMnT05PTw8pQNHwX3/99fjx456eno0aNZJCrSdjV++++67JZHr33XeffvppEfnfmfvFixIXJ7GxEhMjx479cfzyZeneXebMkSefFLNZVqwQ/Q/n4iLlyomIlC5tp18BAAAAAAAAAO5HhgXuhw8fnjx5clxc3Llz5/QRJyenVq1a+fn5devWrW3btrps+u2ZTKbQ0FCz2RwaGjpo0KCIiIi+ffsOHjzYZDI99dRTH3zwgVLqntuobt68WUS6du1qNpvlz6vdHWn9evH3FxFJTZVq1exyismTJ3t4eIwbN+7pp5+2Wq0jR47Md4fs7OytW7fGxMR4Hj786pIlkpt744aqVcVikW7dxM9PatQQEdm3T7p1Ew8PcXeXWbPk9Ok/ysg4O1NSBgAAAAAAAABsTLZKLwWUnJxct25d+euKMXdlwoQJ06dPd3V1XbRoUb9+/UQkMjLyqaeeys7OHjt27D//+c97G/bgwYO5ubmPPfZYUlJS/fr1K1WqlJKSovN3x0hIkNBQWbBARGTvXpkyRSIi7HWuDz74YNy4cU5OTt98883f//53EUlKStIVfmJiYq5cuSIiFdzdL7m4yMMPi7+/9O4tTzwhDvzbAAAAAAAAAIDixLAV7nXq1JkzZ07btm0bNmxY8NGmTZtmMpmmTZs2ePDgRYsW/e1vfxs4cKDJZBo2bNiHH36olPrwww/vYdhHHnlE/xAXFycinTt3dmTa7mBBQUE5OTnvvPPOs88+Gx4enpSUlJycbER9bZEAAAYTSURBVLu1UaNGevNBdocOLqVKFeI8AQAAAAAAAKB4MLKGuy4abpSpU6eaTKapU6cOGjRo/vz5w4YNGzBgwLJlywYMGDBjxgyl1IwZM+558MIq4O7hITVr3vjZ3V0efNC+p3v77bfd3Nz++c9/btmyJTMz09PTs3PnzhaLpUePHrVr17bvuQEAAAAAAACghDGspIydTJw4ccqUKU5OTvPmzXvqqadEZOXKlQMGDMjMzHz99ddnzpx5twPm5ub+9NNPPXr0uHLlyqFDhx566CE7zLpouXDhQkxMzCOPPNK0aVOTyVTY0wEAAAAAAACA4qmoF1R5//33J02alJubO3LkyG+//VZEevXqFRER4erqmpiYmJOTc4fjnDlzZt68eYMHD65ataru4Praa6+VhLRdRCpXrjxs2LAnnniCtB0AAAAAAAAA7Keor3DXJk+e/O677zo5Oc2dO3fEiBEisnXr1ubNm7u6ut7mUampqevWrYuJiYmNjT106JDteIMGDbp16zZz5kx3d3e7Tx0AAAAAAAAAUDLcH4G7iHzwwQfjxo1zcnKaM2dOQEDAX93NarXu2rUrLi4uLi5u48aNWVlZ+niZMmXatGnj7+/fp0+fevXqOWrWAAAAAAAAAICSwsimqXYVFBQkIuPGjRs1apRSauTIkXlvPXPmTExMzIoVK9asWXPx4kV90MnJqXnz5haLxWKxdOzY0cXFpRDmDQAAAAAAAAAoGe6bwF1EgoKCTCZTUFDQM888o5QaOHDg1q1b9WL2HTt22O7m5eWlQ3Y/P78KFSoU3nwBAAAAAAAAACXIfVNSxmb69OkTJkwwm81ms9nWNLVChQpdu3b18/Pr1q0bFWMAAAAAAAAAAI53/wXuIvLBBx+cPXv2448/btq0KRVjAAAAAAAAAABFwX0ZuItITk7O9evXy5UrV9gTAQAAAAAAAABA5P4N3AEAAAAAAAAAKFLMhT0BAAAAAAAAAACKAwJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGIDAHQAAAAAAAAAAAxC4AwAAAAAAAABgAAJ3AAAAAAAAAAAMQOAOAAAAAAAAAIABCNwBAAAAAAAAADAAgTsAAAAAAAAAAAYgcAcAAAAAAAAAwAAE7gAAAAAAAAAAGOD/AQi94lsZS4pKAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 SE fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACUyklEQVR4nO3dd1gUV/cH8LOFLgg2VKzYUbGgsWAXSxRNomJsqDG2WLDEiIkxJDFGEhsaTTSWiJpExYpGRbAFS1SwoqIIqKACCkgvW+7vj5vfvpuliLC7M+D38+R5nzd3FuasGXfnnrn3HAljjAAAAAAAAAAAAAAAoGykQgcAAAAAAAAAAAAAAFARIOEOAAAAAAAAAAAAAKAHSLgDAAAAAAAAAAAAAOgBEu4AAAAAAAAAAAAAAHqAhDsAAAAAAAAAAAAAgB4g4Q4AAAAAAAAAAAAAoAdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHiDhDgAAAAAAAAAAAACgB0i4AwAAAAAAAAAAAADoARLuAAAAAAAAAAAAAAB6gIQ7AAAAAAAAAAAAAIAeIOEOAAAAAAAAAAAAAKAHSLgDAAAAAAAAAAAAAOgBEu4AAAAAAAAAAAAAAHqAhDsAAAAAAAAAAAAAgB4g4Q4AAAAAAAAAAAAAoAdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHiDhDgAAAAAAAAAAAACgB0i4AwAAAAAAAAAAAADoARLuAAAAAAAAAAAAAAB6gIQ7AACAeN27dy8mJkboKAAAAAAAAACgRJBwBwAAEKkVK1Y4OTn5+fkJHQgAAAAAAAAAlAgS7gAAACLVpUsXIjpz5ozQgQAAAAAAAABAiUgYY0LHAAAAAIXIz8+vUqVKdnb28+fP7e3thQ4HAAAAAAAAAF4DK9wBAABEytTU1NXVlTF27tw5oWMBAAB4i1y8ePHkyZNTp04NCgpSKBRChwMAAADlCRLuAAAA4tW7d29CVRkAAAAjOnz4sJub29ixYzdv3jxw4MAaNWqMHDlyx44dWVlZQocGAAAA5QBKygAAAIjX5cuXO3fu3KxZs8jISKFjAQAAqPi2b98+ZcoUpVI5bNiwli1bHjx4MCIigh+ytrYeNGjQ8OHDBw0aZGVlJWycAAAAIFpIuAMAAIiXUqmsWrVqenp6fHy8g4OD0OEAAABUZD/88MOiRYuIyNvb29fXlw/GxsYGBgYGBARcvHiRT5/Nzc3d3Nw8PDyGDh1qa2srYMAAAAAgQki4AwAAiJq7u/tff/21a9eusWPHCh0LAABAxaRSqWbPnv3LL7/IZLINGzZMmzat4GuePHly8ODBgICAS5cuqdVqIpLJZJ07d/bw8Pjwww9r1qxp9KgBAABAjJBwBwAAELVVq1YtWLDg448/3rJli9CxAAAAVEB5eXnjx4/fu3evmZnZrl27RowYUfzrX758eezYsYCAAE1LVU3m3cPDo3bt2kaJGgAAAEQKCXcAAABRu3btmouLi6OjY3R0tNCxAAAAVDSvXr167733/v77bzs7u8DAwG7dupX8Z1NSUo4ePRoQEHDy5Mn8/Hwikkql7dq1c3d3HzduXOPGjQ0WNQAAAIgXEu4AAACiplara9SokZycHBsb26BBA6HDAQAAqDieP38+aNCgGzdu1K5d+/jx487OzqX7Pa9evQoODj5y5MiBAweysrL4oJOTk4eHx6hRo5o3b66/kAEAAEDskHAHAAAQuw8++ODQoUO//fbbxIkThY4FAACggrh3797AgQOfPHni5OR04sSJunXrlv135uTkhISEBAQEHDp0KCMjgw/yzPuQIUNcXFzKfgoAAAAQOanQAQAAAMBr9O7dm4jOnDkjdCAAAAAVxJUrV3r06PHkyZPOnTufO3dOJ9uuVquXLVuWkJDwpr/WwsJiyJAhO3bsSEpKCgwM9PT0tLW1vXv37jfffNOhQwdHR8c5c+acP38e694AAAAqMKxwBwAAELvbt287Ozs7t2x5MyJC6FgAAADKvSNHjowaNSo7O3vo0KG7d++2sLDQPpqfnz9x4sQ///yzc+fOFy9elEgkZTmXSqW6dOlSQEDA3r17NRn8+vXrv/feex4eHl27dpVKsQwOAACgQkHCHQAAQOwYYze7dnW+ckUaGUlNmggdDgAAQDnm7+8/ZcoUhUIxceLEzZs3y+Vy7aOZmZkeHh4nTpyoVKnS/v37+/fvr6/zqlSqs2fPHjhw4ODBg8+fP+eD33///aeffmpqaqqvswAACOJSevrzvDztkW6VK9fAhxu8rZBwBwAAKA9GjqSAAPr1V5oyRehQAAAAyqsffvjh888/Z4x5e3v7+vrqHE1MTBw8eHB4eHjNmjWPHTvWrl07Q8SgVquvX79+5MiRDRs25Obm+vr6zpw50xAnAgAwmvkPH0ZkZTXU2jA0p04dJ0tLAUMCEJD89S8BAAAAwfXuTQEBdOYMEu4AAAClwBhbsGDB6tWrZTLZ+vXrp0+frvOC2NjYAQMGREVFOTo6BgUFNW7c2ECRSKVSFxcXFxcXe3v7GTNmXLlyBQl3AKgAOtjYfN+wodBRAIgCEu4AAADlQe/eRESnThFjVLZisgAAAG+bvLy8CRMm7Nmzx8zMbOfOnR4eHjovCA8PHzx4cGJiYseOHY8ePVqjRg0jRNWpUyciunz5shHOBQAAAEaDhDsAAEB50Lw5OTjQ06cUGUktWggdzRs7ceJESkrK5s2bBwwYMGDAgLZt25axBx0AAEAJZWZmDhs2LDg42NbW9vDhwz169NB5wenTpz/44IP09HQ3N7cDBw5YW1sbJ7DWrVtbWlo+ePAgNTXVzs7OOCcFADCQdKXyblYW//+WMlkDc3Nh4wFtmZmZMpksPz+/cuXKQsfyVkA/dLFISko6duyYSqUSOhAAABCrnj2JiE6fFjqONxYYGPj+++9PnTr17Nmzn3/+efv27e3t7UeOHPnrr79qusYBAAAYQkJCQvfu3YODg2vVqnX27NmC2fb9+/cPHjw4PT193Lhxx44dM1q2nYhMTEzatWvHGAsLCzPaSQEADORKRsbUBw/4Pz/GxQkdDvyLMRYQENCyZcuxY8c6OjquXbsWuUcjQMJdMCqV6s6dOzt27Jg2bVrLli1r1qw5ePDgPn36rFmzRujQQP8YY3n/bdgNAPDGeFWZM2eEjuPNHDlyZOTIkXl5eWPGjDl58qSXl1f9+vVfvHgREBAwbdq0OnXqdOjQYdGiRSEhIQqFQuhgAQCgQomOju7evfuNGzdatGjxzz//tGnTRucF69atGzlyZG5urpeXl7+/v4mJiZEjfOeddwhVZd4CmA/C28DNzu58u3b8n5+bNBE6HCAi+ueffzp37jxy5MgnT55cvHgxJSVl7ty5HTp0+Pvvv4UOrYKTMMaEjuEtkpaWdun//fPPPxkZGZpDlSpVatCgwZ07dyQSyc6dO8eMGSNgnKAXWVlZ169fDw8Pv3DhwtmzZ8eNG2djY/P1118LHRcAlFsxMdSoEVWtSklJJC0fj8z37t07btw4hULx2Wef/fjjj5rxmJiYkJCQI0eOhISE5Obm8sFKlSr16tVryJAh7777bt26dQUKGQAAKoirV68OHjz4xYsXnTp1Onr0aLVq1bSPMsa++eabb775RiKR/PDDD5999pmh48nOzr5+/bq5ubmLi4tmcPfu3aNHjx4yZEhgYKChAwAjw3wQ3irzHz40l8nQNFU8nj179s0332zZskWtVteuXdvHx2fy5Ml//fXXnDlzYmNjicjd3X3dunUNy8V/suho2rGDHjwgmYycnemjj6h6daFjeg0k3A3u2bNnFy5cOH/+/IULF65fv65WqzWHatWq1a1bN1dXVxcXl3feecfU1PSnn37y8vIyMTE5ePDg4MGDBQwbSufRo0cXL168dOnSxYsXb926pVQqNYcsLS2zs7O//vprHx8fASMEgPKtQQN6/Jhu3KACa/REaPfu3Z6enkql0tvb29fXt9DX5OTkXLhwISQkJCQkJDw8XDPu6Ojo7u4+ZMiQ7t27m5mZGStkAACoIEJCQoYNG5aRkTFkyJDdu3dbWlpqH1UqldOnT9+6daupqen27dtHjx5thJC2b9/+0UcfjRw5cs+ePZrB2NhYR0fHGjVqJCYmGiEGMDTMB+GthYS7eOTn5//yyy9LlizJyMgwNTWdPn36d999pymYlpOTs27dumXLlhV6VIwOHKDRo6lTJ+rWjfLzKSiInj2jEyeoY0ehIysOEu76l52dfe3aNc1z7BcvXmgOyeXyNm3a8Ax7z54969evX/DHP//8c19fXwsLi6CgoO7duxsxcCgNpVJ58+bN8+fPh4eHh4aGPnr0SHNIJpM1a9ZM80wlOjp6+PDhSqVy9erV8+bNEy5kECOFQrF///6//vrLCOeys7NbtWqV8XdMg3589BFt305r1tDcuUKH8hpbt26dOnWqWq0u+cQyNjY2ODg4JCTk5MmTaWlpfNDS0rJr165ubm5Dhw5tUQ67xeqdQqH4888/g4ODjXAue3v75cuXV6SPC6VS+eDBg+XLlxvndEuXLq1bt65MJjPO6QyKMaZUKivSxaBQKBYvXmycNhJ9+/YdO3ZsRfrTE7+dO3d+/PHHCoViwoQJW7Zskcvl2kezsrI8PDyOHz9eqVKlgICAgQMHGiequ3fvtmzZsn79+tpTBiKyt7dPSkp69OhRodNDEDnMB4GIFArFrVu3/Pz8jHO6FStW2NvbSyQS45yuhJBwF4kjR45or2Ffu3ato6NjwZc9e/Zs0aJFu3btYoxp1r9LRbiLOjGRGjemiRPpp5/+HVEq6d13KSaG7t+n/36/iwsDfXj69GlgYKC3t7erq6vOQryaNWu6u7v7+PgEBwfn5OS89lep1eopU6YQUeXKla9du2aE4OFNPX/+PDAw0MfHx83Nzfy/fbdtbGzc3Nx8fHwCAwNfvXql84M7duyQSCQSieS3334TInAQKbVa7erq2rp1a+N87FeuXLl27dqRkZFCv28oFX9/RsSGDhU6jtf49ddf+e3a0qVLS/HjSqUyLCzMx8fHxcVFey7h6Og4derUvXv3pqWl6T3mckGlUnXo0KFly5bG+bioVq1a7dq1Y2JihH7fevPtt986OTkZ50+PiJo3b/7TTz8J/ab14ObNm66urj4+PkIHojePHj2qXbt2dWNtRm7ZsqWLi4tSqRT6fb8t/Pz8+HeHt7e3Wq3WOfry5csuXboQkb29fXh4uDEDU6vVtra2RPTs2TPtcb6zec+ePcYMBsoC80HQMX/+fKPN5oioSZMmO3fuFPpN6/o9IWFvUpLQUbzV7t69O2DAAH6RtGjR4sSJE6/9kStXrvDvRCLq2LHjhQsXjBDnm/HzY+bm7OXL/wxeucKIWFCQQDGVCFa4l1LJn2OXYlasUqlGjx4dEBBQo0aN0NDQpk2b6jN0eHMqlSoyMpKXBgoPD7937572XxxHR0dXV1f+X9zJyan458yoGgQF7dq1y9PTs0qVKsuXL7ewsDD06Xbu3BkcHNyvX7+TJ08a+lygf3FxVK8eVa5Myckk1mWzGzdunDFjBhGtXr16bplX4iclJZ07dy4kJCQwMDAhIYEPyuXyTp06DRkyxM3NrX379mJb4GM4v/7667Rp0+zt7ZctW2Zqamro023btu3s2bPDhw/ft2+foc9lBE+fPm3WrFlWVtYXX3zRvHlzQ58uPDx87dq1dnZ2Dx480KkcXe5cvHixW7du5ubm9+7dqxgrcEeOHBkQENCzZ8+PP/7Y0OdSKBRffvnl8+fPN27cOG3aNEOf7i3HGFu4cOHKlStlMtm6dev4l5G22NjYgQMHPnjwoGHDhkFBQU2M3tPPzc3t1KlTgYGBQ4YM0Qx+++23Pj4+n3766cqVK40cD5QQ5oNQjIcPH7Zq1UqhUPj4+BihHHZoaOjmzZsdHBwiIyMrVapk6NO9qZOpqfG5uf2rVKmDmpBGlJKS8s0332zYsEGlUlWpUuWrr76aNWtWCTdZMsb27dv36aefxsXFSSSSESNGrFy5sl69eoaOuaQ++oguX6a7d/8zqFSShQUtW0YLFwoUVgkImu4vZxISEjTPsXWSYtrPsVNTU8t+rry8PP5gytHRUWcFBBhHWlpacHCwj4+Pu7s7X4qiUalSJVdXV29v78DAwJc6z9lKYNGiRURkYWHx999/GyJyKF+ysrL4l5nR1rkkJSXxS/qvv/4yzhlBzxo3ZkTs6lWh4ygcTxZIJJK1a9cW9RqFQrFo0aLg4ODc3NyS/2aVShUWFubr6+vm5qZdmcHe3t7T03Pv3r0pKSn6eAfilZ6eXrNmTTLiKsjnz5/b2NgQ0cmTJ41zRoPiHelHjhxptDPye7lZs2YZ7YyGM2rUKCIaNWqU0IHowfnz5yUSiYWFxePHj41zxr179xJRlSpVkpOTjXPGt1NeXh6/UM3MzAr9nLx165aDgwMRubi4JCYmGj9Cxtjnn39ORF9++aX24IkTJ4ioe/fugoQERcF8EEpo0KBBRDR16lTjnE6tVr/zzjsFP0lEYnZUlEtY2PkC2zvAQPLz8/38/PhnlImJydSpU1+8eFGK35OZmenj48O37FhZWfn4+JSkRIcxeHiwbt0KGa9enYnyr4AGEu4l8ssvv+jUPJJKpS1btpw8efK2bdvu3btXcK9i2WVlZXXt2pWIWrVqhbtz44iOjvb39/fy8nJxcdGpXVWrVi0PDw8/P7/Q0ND8/PyynAVVg0Dbl19+SUTt27dXqVRGO+mqVauIqHHjxnl5eUY7KejNlCmMiP34o9BxFOKHH37g2fb169cX87LQ0FD+0WphYeHm5ubr6xsWFvZGJ3r58uWff/45ceJEnoDm5HJ59+7dly9fXrY3IV6ffvopEXXt2tUQdx1F+e6774ioZcuWCoXCaCc1hIsXL/Ica2xsrNFOeufOHRMTE5lMduvWLaOd1EDi4uKsrKyI6Ny5c0LHUiYqlcrFxYWIvv32W2Oet1evXkQ0b948Y570bRMVFWVnZ1e5cuWzZ88WPHr69OnKlSsTUZ8+fQSsS3bw4EEi6tevn/ZgcnKyRCKxtLQs75+0FQDmg/CmeFsdGxub58+fG+2kly5dkkgk5ubmxryrKSEk3I0pODhYU1TDzc0tIiLitT+Sm5t75cqVoo4+efLE09OT/8K6dev6+/vrNd4SUyrZmTNs1ix2/TqbMoU1bqz7grw8JpWy1auFCK6kkHB/ve+//75jx45lf45dPKVSGRUVpTP48uVLXmm0c+fOmZmZ+j0jcC9fvvz222/fffddOzs77TsqCwuL7t27e3t7Hz58WO9LYJRK5ciRI4moRo0a9+/f1+8vh3LkyZMnlpaWEokkNDTUmOfNz89v1qwZEa0W91cUFO76dXb8OMvIEDoOXb6+vkQkk8leu10jOjp60aJF7dq1095z3bhx45kzZx45cuRNv++io6P9/Pzc3Nx4D5VmzZqtW7eu9G9DrKKioszMzKRS6VXjbm7Izc1t3LgxEf3yyy/GPK9+qVQqvhZsyZIlRj71zJkzeYLPyOc1BN79uF27dsZ8Qqx3mzZt4nPIrKwsY573xo0bMplMLpeXZDIMpTN16lQiWrRoUcFDBw4c4GW4xo4dK+xqg2fPnvE0q87fI17c5vr16wLF9VbDfBBKTaFQ8HTnqlWrjHzqsWPHEpGHh4eRz/taSLgbx/37993d3fmHVZMmTfbu3VvCH1y+fLlEIvHw8Chmn9/p06ednZ35L+/du/fNmzf1FPXrKJUsNJR5ebFatRgRI2ILF7LNm5mJCXvy5D+vPHWKETERVpzXgoT76/Eqn1u2bDFcp6O8vDwPD4+qVaveuXNH51B8fHyDBg34Oog32noPJZGenv7FF19oFi/UqlXL3d3d19c3NDRUv3/aBS8eVA0CxpiHhwef+xn/1EePHjX+WgzQj1u32KRJrE0b5uTEhg5lBw4IHRBjjH311Vc82/5G6yCSkpL27t07derUWrVqaS9Ud3V15cve32gpd3p6+s6dO/l6n+zs7Dd/E6LGy7xOmTLF+KcOCAggoipVquh9tYHRbNu2jYgcHByMv3whJSWlatWqRHTo0CEjn1rvsrOzeQH3LVu2CB1LKaWlpRm5LpM2ng7WWdoMevTLL78QkaenZ8FDERERdnZ2Xl5eYnhcVLduXSLiRcA1xo0bR0QbN24UKqq3FuaDUBarV6/mq0aMn6uJj4/nO8/OnDlj5FMXDwl3Q0tNTfX29uYrjWxtbX19fd/o8lu2bBmvG1OpUqVly5YVVTdGpVL5+/vXqFGDiKRSqaenpwFLseXksMBANmECs7P7N89OxJo1Y59/zm7dYmlprEYNNmYM03yDZ2ayTp2Yiwsz4q7fUkDT1NeIiopq2rRp1apVExIS5HK5gc6iUqlGjhx54MABBweH8+fP8wy7xsOHD7t165aYmDh69Ohdu3bpbG2DstizZ8+oUaMaNmzo6+vbtWvXOnXqGOIsjx8/dnd3X7lypaZhNJednd2vX7+LFy+2atXq3LlzVapUMcTZQbQuXLjQvXt3c3PzyMhIQXqSDBo06Pjx49OmTdu4caPxzw6lFBxMQ4dS//40ZAjZ2ND587RxI332GS1bJmBQX3755bJly3i2nS+3eVNqtfr69eshISEhISHnzp1TKBR8vEaNGj179nR3dx8yZIjOurOitG/f/vr166dPn+7du3cpIhGnkJCQfv36WVtbP3jwQLuKjtH0798/ODh47ty5a9asMf7ZyygjI6NZs2bPnz/ftWtXodfnkiVLcnJyyn6iqlWr8urMOnh/PEdHx7t375qV8wZif/7555gxY2rUqPHgwQNenaN8+fTTT1evXu3q6hoaGlqwq+GxY8dOnz6tlxNNnTq1adOmOoMvXrxo2rTpq1ev/vrrL17wF/Tr+vXr7du3b9asWWRkZMGj8fHxBrrVf1MjRozYv3+/v7//+PHjNYP8g2LSpElbt24VMLa3EOaDUGopKSlNmjRJSUk5evRoof1vFyxYoJcTOTg4zJs3r+D40qVLv/rqqzZt2oSHh5ewPaYReD18eDEtbW3jxq7l8D5B5NRq9a5duxYuXJiYmCiVSseOHbtixQp7e/s3/T1xcXGLFy/euXMnEdWpU2fZsmWenp6FdntOTU394Ycf1qxZk5+fb2dn5+3tPW/ePL5jTA9ycigkhAICKDCQ0tL+HXRyoiFDyN2dunX73yvPnaP336eaNalHD8rNpdOnycSEgoLI6J3P34zQGX+x4xvkJ06caOgTZWdn9+jRg4gaN26ckJCgc/TGjRu8B8KMGTMMHclbZfTo0WT4qhpff/01EVWqVOny5cs6h1A16K0lVA1Zbffu3TMxMZFKpW9aPhsEk5/PHBzY8OH/Gfz5ZyaRMIEKgKrV6rlz5xKRqanp/v379fI7MzIyAgMDp06dytcAcjKZzMXFxdvbOzg4uPgSt/PnzychKocYjkKhaNWqFRGtXLlSqBgiIiLkcrlcLr99+7ZQMZSat7c3EXXp0qWoDRP6Shw3aNCg0N+vVCpbt25NRL6+voZ8o0bC71c/++wzoQN5Y6+ty7Rw4UK9XAlEFBQUVOgpND1UsG/VEBQKhZWVlUQiEXkPbd7vZObMmdqD//zzDxG1atVKqKjeWpgPQqlNmzaNiNzc3Ip6gb6+U9q0aVPo78/JyeGLNUW1OQYr3A3k7Nmzbdq04ZdEz549y16C7MyZM5pf2KtXrxs3bhT1ysjISM1CgWbNmv31119lOW9aWpr6zz/ZsGHM0vJ/69k7dGDLl7MHD4r8sRcv2Pr1bNYs5uXF/P2ZZjezCDauFQUr3F+ja9euly5dOnjw4Pvvv2/oc6Wnp/fu3fvatWtt2rQ5e/asTif0s2fPvvvuu7m5uV9//TWvoQllpFAo7O3tU1NTo6OjdZri6hdjjPfXrVq16t9//83vqDSePn3arVu3R48e9evX78iRI+V97RuU0K+//jpt2rS6detGRkZaWlpqxv/555/FixevXr1a8+WnF1lZWStWrMjJyeFzPI358+evWbOmqLV+IDqnTpGbG129Sh06/G9QoaC6dWnCBPrvf1wjYIx5eXmtX7/e1NR079697733nt5PERMTc+TIkaNHj4aGhubl5fHBqlWr9unTx83NbfDgwQ4ODjo/cvTo0SFDhnTr1k3TmrW88/PzmzdvXqNGje7cuSPgd8Qnn3yyceNGNzc33hysvIiJiXFyclIoFJcuXeJl3Atav359bm5u2c9VuXJl3gSvoNOnT/ft29fa2vr+/fvaBZTKo+vXr3fo0IE/fSm4iFvMBg8efOzYsalTp/Iy7gX9/fffV65c0cu5PDw8ePkdHQqFonXr1vfv31+9enWhyxWhjLp163bhwoWgoKD+/fsLHUuRzp0716tXrw4dOly9elUzmJeXV7lyZYVCkZqaamNjI2B4bxXMB6HU7ty507ZtWyK6ceOGpmuljpUrV+rlXDVq1NDeEKMtICBg5MiR1atXf/DggU4GSShY4a538fHxX3zxxa5duxhjxS9If1N8yfxnn32WlJTEl8yvXLmSl5EpKCQkZM6cOXfv3iUiNze3tWvX6nyUFS81NZVP644dO/a0UaPKt24RETk5kYcHjR1bmrXqubnk7U15eSTa/fqCpvvFLiEhQSqVWlhYGO1Rc1JSEu9k2KtXr4KllA4fPszL2qDPoV4EBQVR0Y+L9UupVA4bNoyIHBwcCnYSj4qK4vuARo8eLYbKkmBomhqyOr1N1Gp1p06diGjx4sX6PWNRq1PT0tL4tRcQEKDfM4JBrF/PiFjBRn89erAhQ4wci1qtnjFjBhGZmZkFBgYa+nQZGRmHDx+eMWOG9ny4adOmBV+Znp4ul8tNTU0rxjKx5ORkXgH8yJEjgkfCt7ofPXpU2EjeCF8wYYStiq81dOhQIpo0aZLQgejBpEmTiGjo0KFCB/IG+IMia2trwTuX/PXXX4QeKgbDNzktXbpU6ECKk5mZKZfLTUxMdNqN8IeCp0+fFiqwtxDmg1Bq/fr1I6K5c+cKHQjr2bMnEc2fP1/oQP6FFe56lJWV5ePjw0uuW1pa+vj4GKJPVcmLwufn5/v5+fG9oSYmJl5eXq9e9x86ISFh48aN/fr109TolslkRydPZuvXs6dPyxR3RAQzN2dEbN++Mv0eg0HCvTh8/ct7771nzJM+efKEV3MeOnRowV3zO3bskEgkEonkt99+M2ZUFRJPFX311VfGOR2qBoEGnw26urrq1DfYvn07EdWsWTMtLU3vJ/3kk0+IqG/fvjrjvMNY3bp1swqmcUFsVq1icnkh++YGD2b9+rG8PGaAK6dQSqVywoQJ/M4vODjYOCfVePDgwbp16wYNGuTt7V3oC3jOoqiSDuVLUX9zBSFgZ7DSOXXqFBFVqlTpaRlv6PXh4cOHvJ5JwXoC5U5iYiKfax0/flzoWEpEoVDw5YcC1mXS9u677xLRtGnThA6kAtq9ezcRubu7Cx3Iazg7OxPRpUuXtAdnz55NFaX2VHmB+SCUjqj6yV+/fl0mk8nl8oiICKFjYQwJdz1Rq9V79+7lu+UkEomHh8ejR48Mesb79++7u7trVjUVs9bn5cuXXl5evG1A1apV/fz8CjaFjouL27Rpk7u7u3ae3dXV1c/PT58LDvhyNFtbVuApphgg4V4cXqVo27Zt2oPnz5//4osvbt26ZbjzRkRE8EVknp6eBeuNrlu3jj9NKmPhpLecWq3mLXHCw8ONdtK0tLT27dvzZRSpqak6R8+cOcMfXX799ddGCwmMr6gashkZGbVr1yaiHTt2GOK8Ra2T1VSTF/lyMGCMsZ07GRF79kx33NmZeXqyo0eZTMZcXJi3NwsNNVw9O6VS6enpSURWVlanTp0y0FnKgtfsXrRokdCBlJXYKqeLLWtZPE3l9OXLlwsdy794ifBiqsmXI7xAWYsWLfLz84WO5fXE9qwoKirK1NQUPVQMITY2loiqV68udCCvMXnyZCLy8/PTHuT964YNGyZUVG8bzAeLpn7xYktkZI/btxvfu/dOfPwXjJX7ry09ys3Nbdy4MRH98ssvQsfyr6lTpxJRv379hA6EMSTc9SEsLMzV1ZXnqV1cXEJDQ4126uDgYE2JJDc3t2Ke4oSHh3fv3p2/sl27dn///Tdj7NGjR35+fq6urpqKN+bm5u7u7ps2bUpMTDRIxO+/z4hYt26s2C5fgkDCvUgZGRnm5uYymSwpKUl7nHfG+Oabbwx69suXL1eqVImIZs+eXfAoTyVYWFjwaxpKgdforFevns6k98iRI8nJyYY7L6oGAX+SN3XqVJ3xL774gn+hGm4bqZ+fHxE1atRIJ+PAC7hbWlo+fvzYQKcG/YiNZRIJ27z5P4PR0UwuZ5s3szVrmFz+v84z9vZs/Hj2xx/sxQs9hpCfnz98+HAiqly58sWLF/X4m/XoxIkTRNSpUyehAymr+AkTBjs6enl5CR3I/xw7dszKyn7AgH8MdM+sRz/99BMROTo6Fvy2FUp6ejov4P77778LHUtZ5eXlNW7cuEOHdzdt0ucnjCGIsxoSL+BecK8blB2vy1GwZIeo/Prrr0Q0ZswY7cH79+8TUe3atYWK6m2D+WBRkpLWh4ebPHv2XVra8Zcvt8XFlb8u2Qb13XffEVHLli0LFiQQSlJSEt8eIYZFmUi4l9HGjRt5trpWrVrbt283/n1CwboxBZ8Ocmq1+s8//6xbty5fhs9rdXBWVlYjRoz4888/09PTDRtuSgqrV48RMR8fw57ozSHhXqS9e/cSUY8ePbQHVSoVnyndvHnT0AGEhITwIkoFV2ap1Wrelaty5crXrl0zdCQV0uLFiws+z3j27JlUKrWxsTHoci1UDXqbnTx5kgqr3BoTE2Nubi6RSP755x/DnV2hULRq1YqIVqxYoXNoxIgRRDRu3DjDnR30Y9QoVqcOu3//339NT2cDB7L69RmvV56ZyYKDmZcXq1//f5l3qfTfZe/BwaxsH255eXm8Iratra1Br9UyysrKMjU1lcvlhqjOZDwHDjAiVrNmpiGn/aXw4Ye5RGzKFKHjKFZKSkq1atWI6ODBg0LH8h9bt24lIgcHhwrQY+DYsRdErEoVJoL99MXha2Xc3NyEDuQ/iurmAmXHd8Tv3r1b6ECKc/PmTb7rQntQrVbzzYjx8fFCBfZWwXywKJGR3WJjPQU5tfg9f/6ctzU+efKk0LH8x6pVq0SylwsJ97J48uSJu7u7mZmZl5eXsBMZ7boxVapUKbRuDJedne3r62thYVG1alULCwt3d3d/f/+MjAzjxfr330wmY1IpE9neayTcizR27FgiWrVqlfbgpUuXiKhBgwbGieHAgQMymUwikfz66686h5RKpYeHBxHVqFHjvibzAiXGt8mEhIRoD/Ji1h988IGhz46qQW8nTTUGnQ8WxhjvoTR+/HhDx6DpGvfsv2VJnjx5YmlpKZFIjLlhDUojLY25uzO5nLVty7p1Y9bWrGlTVmi9kbt32erVbMAAZmHxv+S7nR3z8GBbt75685LWubm5vOujnZ3dlStX9PBeDIlvwxTVgtY3k5fHGjdmROznn4UORVdUFDMzY1Ip+29ZLHGZNWsWEfXp00foQHSpVCreY8BoJYMNauBARsTEXG1YU5dJJJVttW3cuJHQQ8UAvv32WxJT/8BCKZXKSpUqSSSSF//dhTZgwAAiOnDggFCBvVUwHyxKZGTXu3c7qFRGzJeVH7ys4vDhw4UORFd+fj7fOSH4Xnkk3Mvi9u3bvGSf0IH869q1a7zzBI/qxIkTRb2SV6kVLJmwZAkjYnXqiGoZCBLuhcvPz7ezsyOiBw8eaI8vWrSIiObNm2e0SPhXvkwm27Nnj86hvLw8fk/m6Oj4rGBJXyjaw4cP+QpNnZULAwcOJKLt27cbIQZxVg16/vz5wYMHFyxY0L1791OnTumznQUUXUP29OnTZMS2fnzl1+TJk3XG+TIfg9a0Ab25cYNt3crWr2enTr1+0Xp2NgsOZt7ezMXl37S7qWmtSpUcHR2nTp0aGBhYkoUwWVlZ/fr14095jbDHq+y+/PJLIvr000+FDqS0li1jRMzJSYTlCBlj8+czIubqysRZDOPu3bsmJiYymcygHXdK7eLFixKJxMLCQuQlL0ri7l1mYsJkMibaTwX+wTV37lyhAykEeqgYSFBQEBF169ZN6EBeg6cwjh07pj24ZMkSqhA9SMQP88FipKTsDQ+X3bpV9+nTJbm5MUY+u5hdunRJIpGYmZlFRUUJHUsh/vrrr0L3UhsZEu5lwRPuLVu2FDqQ/9izZw9v30pERbVv5QtKBNsDrVAwV1dGxAYPFs/8BAn3wvFFoK1bt9YZb968ORGdPXvWmMEsXbqUiExNTQs+TcrKyuratSsP1aCV5iqYFStWFKyekZGRYWZmJpPJXui13nExNFWDfH19dQ4ZrWqQUqmMiIjw9/efOnWqk5OTprUFEZmZmTk7OxdVrgveVFE1ZJVKpbOzMxEtW7bMOJE8fPiw0K6tWVlZfHOrceYYIIzYWPbLL0nTpllbW2uX2HN3d1+/fv3Dhw8L/aGsrKy+ffsSkb29vUi6d77WqVOniKhdu3ZCB1IqCQnMxoYRsaAgoUMpXFoaq1mTEbECiwFEgS9HmDlzptCBFGn06NFE9OGHHwodiB7Mns2ImPj2EjDGWEBAAN8H/VJMy520oYeKIaSmpvJnWiLv6PvZZ59Rgd6YR44cIaLevXsLFdXbA/NBrRMps7KuJyVtiIkZd/due94fNTv7dlzcvJs3a4WFSVHDnVOr1Z06dSKixYsXCx1Lkd59910imjZtmoAxeK1e3XfOnNNi3ggpYuJMuLP/rxvDp5Bnzpwp+AKBE+6MsSdPWJUqotofjIR74fhO5CVLlmgPPnjwgIiqVq1q/OYYn376KRFZWlpeuHBB59CLFy+cnJyIqHPnzhWgHqhxdOvWjYgCAgK0B3fv3k1EvXr1MmYkglQNSklJ+euvv5YsWdK3b1++qkLD2tq6b9++S5Ys2b17N3+8hOtKX4qqIfvzzz8TUcOGDY3Z1o9/pHTt2lVnB+uOHTt4UrV8V76GElAqlWFhYT4+Pi4uLtpP2viy971792qugczMzN69exNRzZo179y5I2zYJZeTk2Nubi6VSkWbaCvO+PGMiA0bJnQcxdm0iRGxunWZ2IphHDp0iBc+Mlq6pBTi4uKsrKyMv4bDEFJSWLVqjIiJrQZGbm5u48aNieiXX34ROpbioIeKITRt2pSIRN7pij8QGjRokPZgUlISvyEvqlQu6MtbPh9UKtPT0oKfPvWJinK/ft0uLIw0/+Tk3NO8TK1WPn26JCyMsrLC9Hj2csrf31/8E6WoqChTU1OpVBoWJth/Mp70R3Xc0hFtwp2Li4tbt25doYeET7gzxvbtY0TM3JzduCFkGP8PCfdCqNVq3mZX50PK19eXiCZOnChISJMmTeLp/oL5jvj4+AYNGhBRv3798vLyjB9e+ZKYmCiTyczMzHTaJfPlZmvWrDFyPJqqQQW7ZumxalB0dLS/v7+Xl5eLi4tUKtVOsteqVcvDw8PPzy80NFR7KZD2dSV465Xyrqgaspq2fvv27TNmPOnp6bxXm05LMbVazacfn3/+uTHjAWE9f/58+/bto0aN4r3aNHtc3Nzcli5d2r59eyKqV6+eODfPFqNXr15UHivhhoUxqZSZmrL/FrUTG5Xq3xpF334rdCha8vLyeKKtqMmAeHz99ddE1LZt2wqQVlu/nhExR0dmxAfHr8d3iLZs2dL4C2XeCHqoGAIvsrxx40ahAynO48eP+eROZ/VDw4YNiUiEXQcqkrdzPpibG/3ypf+TJ15377qEhUm1k+w3b9aKjvZITPTLyAhVq/+zNUShSA4Lo5QUUXchNoKMjIzatWsTkb+/v9CxvMa8efOIyNXVtWBvAONAwr0sCk245+bm/vHHHyKf1Igi4c4YmzLl37KcIlgTZKiE+82bN3UeF5cjYWFhROTg4KDzCdWlSxciOnjwoCBRKZVK3lbRwcGhYNHPqKgoe3t7IhozZgzqLxdvy5YtROTu7q49mJ+fb2trS0TR0dHGD4k3d9Jv1aDMzMzQ0FA/Pz8PDw+e0tUwMTFxcXHx8vLy9/cvfguz5roaPXo0rquy4Im/gu0f5syZI9TG4V9//ZWI6tSpo7ODISwsTCqVmpqaPhB3sg8MQaVShYWF+fr6urm5mZiY8E8MGxubunXrlsdi09988w0VURdVvNTqf+sPfvGF0KG83vnzTCJhFhZMPMUwfvjhByJq0aKFyEtJMMays7P5U+3NmzcLHUtZKZXM2ZkRseXLhQ7l/8XHx/M9fCdPnhQ6ltfjPSfat2+Pey19+emnn4joo48+EjqQ1+D5O516bh9++CERbd26Vaio3gZvyXwwIyPj1KlTJ06sjYoapLOM/do1i8jIbnFxn6WmHsrPTyjwg+dUqn8nCElJG8LCJNnZEYypGHt7P6O++OILKifNrtLS0vjKKqEycki4l0WhCXe++alatWpCRVUSYkm4Z2UxJ6ewFi2+W7hQ4EgMlHCPj4+3tbU1MTHRaQJTXvBmNbNmzdIeTEhIkEqlFhYWApbXyM7O5t11GjdunJCg+71448YNfoswY8YMQcIrL4YMGVJwfsvbK7Vp00agoPRTNejp06d79+718vJydXU1NTXVWcbu7u7u6+sbGhr6RqVLcF2VnaaGrM4tsqat3w0hdjypVKoOHTpQgeKhjLHx48cT0TBxl7MAQ0tOTt6zZw8vLeXt7S10OKURGhpKRK1atRI6kDexYwcjYvb2TMS7lbV5eDAiNnas0HEwxhhLTEysXLkyERXMVogTr11Qo0aNV+W/sdipU4yIVarEjNL8+/X4Aufhw4cLHUiJoIeK3l2+fFnMW/I13nvvPSL6448/tAdXrVpFQpdgrvDeqvnggAGNNcvYo6Lcnz/3zcgIVamKmQ+q79xpfe2axZ07zrdvNw4Plz979o1arYiNnfD48Sf6eKPlT0xMjLm5eTnairRx40Yiqlu3bpYQi3yRcC8LJNzLLvX2bRsbGyLav3+/sJEYaoW7gD21y65169ZEFBwcrD24adMmInrvvfcECupfaWlpfHd/mzZtCnazPHXqlLm5ORF9K6oN3mKSlZVlaWkplUp1OnfPmDGDiL766iuhAitd1SCFQhEWFubn5+fp6alpG83J5XInJ6epU6f6+/uXcVPqmTNn+HVVMDMLr5WTk8O3BhesITtw4EAi+uQTwe5cL1y4wLuK6fQZT0hI4F9RQWJt2AhGs2fPHiLq37+/0IGURl5enpWVlUQiKfiIWqSysli9eoyIlZ+k25MnzNKSSSRMDDNQ/jU6dOhQoQN5A3whxYIFC4QORA/ef58RMSEqL+q6dOmSRCIxMzMrR4Ww0ENFv/Ly8nh/eJH/eS5btoyIvvnmG+3B8+fPU/lt+l0eVLD5YG5u7oULF1auXPnBBx/wdc3a25o7duw4f/7c5OTdeXlP3iiY7Oybqan7U1MP8h/Mygq7ds08LIyePXsb54PDhw8nIk9PT6EDKSmVSuXi4kJES5cuNf7ZkXAvCyTc9WLdunVEZGtrq5PoMDJDJdy1e2pfv37dQGcxhNjYWB62TjH0QYMGEdG2bduECkwjISGB94Dq06dPwQ1Nhw8fNjExWbx4cQUoCWoI+/fvJyJXV1ftQbVaXadOHSIKDw8XKjBW4qpBw4YNCwgImD9/fpcuXXhTe43q1asPGTJk+fLl586d0+/T7MOHD8vlciJavXq1Hn/t26CoGrJHjhzh3wHCtvUbOXIkEY0ZM0ZnnM8AnZycRF76FgwtMTFRIpFYWloW2shBqNKQJde/f38i2rNnj9CBlMzixYyIubgw0e9W1vbll4yItW8vcNTXrl3j5bD021bO0K5duyaTyUxNTSMjI4WOpayio5m5OZNI2OXLQoahVqs7depERIsXLxYyjjeEHip6xy+DU6dOCR1IcV6+fFmwQkh2draJiYlcLhdwX3XFVuHng0OHDjXEfDA19XB4uDwsjBIS3q754OnTp/nOg+JrsYpNaGgov4c3fthIuJcFEu56oVar+R6y7t27C5gaNWDTVMP11DYovolv7H93R2dkZJibm8tksqSkJKEC0/bkyZOGDRsW7GPOGHvw4AF/Ko40WaF4rYwff/xRe/DKlStEVK9ePcGTR8VXDbp69aqVlZW1tbX2TZWjo6Onp+emTZsiIiIMGv+OHTskEolEIvntt98Md5YKpqgasnl5ec2aNSMhmjLp0PRq09mNlJeX16RJEyLasGGDULGBSLRq1YqIdLbQHjt2zNnZ+dNPPxUqqhJavnw5EU2fPl3oQErg8WMRrRV/E5p1+QJ+OajV6u7duxPRQhGUa3xTkydPpgKlhMupRYsYEevcmQl4P7V9+3YiqlmzpsiXNheEHir65eXlRUTLxdNY4E20a9eu4Dcv6Avmg6X28uWOsDBJWJjk5cvfDHcWUVEqlW3atCGi7777TuhY3tiIESOIaNy4cUY+LxLuZYGEu76kpKTwen0C1mkwYMKd6bWnttHwrzed/uB79+4loh49eggVVUFFPa/29fUlooli2NArPkqlkrcP1VlHtnjxYiLy8vISKjBtr169atu2rb29/e3btwse5as1W7Vq5ePjc+LECSNPJvnGHBMTE3x9ltC4ceOIaMSIETrjK1asIKLmzZuLoa3fV199xXcu6+yY4ct/qlSp8vLlS6FiAzGYPXs2FahUxhf7iH/D+z///ENEzZo1EzqQEvjuOxFVQ39DO3cyIibg5fDHH39QuS2Grik9f/z4caFjKav0dFarFpNK2cWLwgSQkZHBu1Du2LFDmAjKZsKECUT0wQcfCB1IRbBr167y+4c5ffp0Ilq2bJnQgVRAFWw+GBQUZOT5YGLiurAwCg83efXqqDHPK5Sff/6ZP4kRpBh6GWlWVhn56R0S7mWBhLsenTt3TiaTSaXS06dPCxKAYRPu7L89tVNSUgx9ujJ6+fKlXC43MzPT+d4aO3YsEa1atUqowEquS5cuRHTw4EGhAxEjniFycnLSGW/ZsqWo9pwmJCQUWnU0Pz/fzs6OiKKjo40fFVeu2zMYWVE1ZDW5FZG0lc7OzuYNALZu3apzqF+/fkQ0Z84cIeICsThw4AAR9e7dW3swJyfHwsJCKpUKWxPptRQKBW9IEB8fL3QsJXD4MCsXcRagVrO1awXr81rMh1h5wZ/CtmjRQgxPYcvo2DF29apgZ//iiy+IyMXFpWDRxXIBPVT0iO/6rVWrltCBlMaHH35YvXp1qVTq6urq5+dXbjqRlAeYD5ZdfPyisDC6ds0iI6OCzwdTU1P545l9+/YJHUsp8SdJRv5aRMK9LJBw1y/+V6BOnTqCLCI0eMKdMfbixYsWLVpQCXpqC27btm1ENGjQIO1Bzbea+Dd4JiQkSKVSCwsLkf85C2XOnDkFi2M+fPiQiGxtbcU/yz158iQROTs7CxiDdnuGa9euCRiJyBVTQ1aE1QN+//33QheHRkREyOVyuVxe6Poa/bp74ajvqOb8n3VTugT+tCDzlagzuW+P5ORkqVRqZmaWnZ2tPd67d28iOnDggFCBldDgwYOJaNeuXUIH8l9paWz+fFa/PpNImI0Ne/ddduWK0DGVyZUrzM5Ot2FmvXrMCOuMfXx8Ct2mU47k5eU1bdqUiPz8/ISORQ+6dWMODv95eOTjw/r0Mfh5Y2JizM3Njb+UT7/QQ0Vf1Gp11apViSguLk7oWN6AUqnkN4oymUwmk/GCIXK5vG/fvj///LNOk08oBcwH9UH96NGUsDC6fr1yVlZFng/OnTuXiLp16yZ4oaFSy8rK4lU1tm/fbrSTGiHhHp6R0fXaNe1/Pn340HCnMyYk3PVLoVDwJeDDhg0z/tmlZHjVqlULDg6uX7/+P//888EHH+Tn5xvhpKVz+PBhIuLF9TXOnTuXmpraunVrXtFYzA4fPqxWq/v3729lZSV0LGIUGBhIBf77Hjx4kIiGDBliYmIiTFglxq/P999/X8AYJBLJL7/84uHhkZaWNnDgQL56CArasWPH5cuXa9asuXDhQu3xGzdu/PbbbyYmJitXrhQqtoJGjx7dvXv3pKQkXvBao2XLllOmTFEqlfx206BUSkVuZtr4pXvGL93Tb9JXj25dOLBylqFPCiVRpUqVNm3a5OXl8fIsGjzhfubMGYHiKikxxpmXR25udPgwLVtGt2/T/v1UuTJ1706hoUJHVnpKJaWm0q5dFBLyv8FXrygvz7DnjY+P5x+nfn5+UqkxbmsNwdTUlL+Lb7755uXLl0KHU1bp6ZSQQNrfGzk5lJFh8PMuWLAgNzfX09OTdx8tpxYsWNCkSZO7d+/++uuvQsdSvkkkko4dOxIRr81dLuTl5Y0aNWrLli2WlpaHDx9OSkry9/d3d3eXSqWnTp2aMWOGg4NDhw4dvv76a54ghlLAfFAfJPXq/WJnN1KlSouKGpibWzHng5GRkRs2bJDJZOvXr5dIJEKHU0qWlpbfffcdEXl7e6enpwsdjt6oGctTq9c0bvxbs2b8n3l16ggdFIiRXC7fvXt3lSpVDhw4sGnTJmOf3mip/QcPHvCe2mPGjBHnEqSsrCxLS0upVKpTbn7WrFlEtGTJEqECK7lBgwYR0bZt24QORIyuX79ORLVr19Z5QM1nZeLfJqZWq+vWrUtE4eHhQsdSLtszGFMxNWR79uxJRCJsNRkeHs57ten0uE5OTuYLxAIDAw0awO1zB792/9++7yt//fbte3VVivycjFcv4x8qFfnR18/FRYYZNAYoyvz58wt+D4aGhhJRq1athIqqhMLDw/mHldCBaFm3jllYsNjY/42o1ax7d9amjVARld3Fi4yIffwxa9KE5eT8O2hjwzZvNux5P/zwQyIaPXq0YU9jFAMHDiSiTz75ROhAysrZmY0fz0xMmGZx28KFrGNHw56Ul4moVKnS06dPDXsmw0MPFX3hXWq8vb2FDqREUlJSePPnKlWqnD9/XvtQamrq3r17PT09tddUOTk5+fj43Lt3T6iAyyPMB/UaTN6DBwPCwuj2bcf8/Ao4H+TLtKdPny50IGWlVqv5Fa6zscNwjLDC/Wp6uktY2EvRb0kpBaxwN4SAgAAiMjc3v3nzpjHPa7yEO2Ps6tWr1tbWNaysnvn4GPO8JcSfbHfp0kV7UPOtFhYm9kRPRkaGubm5TCZLSkoSOhYx4lvOdeaxiYmJMpnMzMwsPT1dqMBK6OrVq0Tk4OAgkh1tmvYMrVq1Sk5OFjoccfn888+JqHPnzjr/sWJiYqpXry7atn4fffSRVCr9+eefdcb9/PyIqFGjRrm5uYY7u07C/fDa+Ws+6sAYu3vh6JqPOvgv9lgxtvUf34w3XABQjCNHjhCRq6ur9mB+fr6VlZVEIhF5bVmVSsUfGsVqJ7iF1acPGzxYdzAggBGxmBghAtIDnnCPjma1ajHNXZ6hE+4XLlyQSCQWFhaPHj0y4GmM5e7duyYmJjKZzMiTAb1zdmZLl7K5c1n9+ozXODR0wl2pVDo7O1MFajLJmyKKpH9j+XX06FEi6tWrl9CBvN7Tp0/5NVy/fv1icujp6em7d+/28PDQzry3b9cu77vvWESEMQMupzAf1C+VKisysmtYGN2500qhqFDzQf7pYWtrWzFSK2FhYXxllXGKJCPhXhZIuBvIxx9/zP9gdaqkGpS8zEvk30CHDh0OHzrk8tlnNt98QzIZLVlizLO/VqH1ZMLDw+Pi4hwcHNq3by9QXCV1/Pjx3NzcHj16VK9eXehYxKjQ/75HjhxRqVTvvvuutbW1QHGVFI9/2LBhItnRZmlpGRgY2KNHj4iIiMGDB4eEhKCQEadQKPbt2yeRSNasWaPzH6thw4YPHjy4d+8eb5oqNsuXL581a1bBz7oZM2b89NNPjx8/rlKlilxe0m+NT0d0MM2ML+GL6zR3adt3JBEF/DBNrVKmPIvNyXw1avFv/Gjai6d9PBc59x5ewt8GetezZ0+5XH7lypWsrCzN33QTExNXV9eTJ0+eO3du5MiRwkZYDKlU2r1790OHDp09e3bixIlCh0NERNHRNHSo7iAvWxcTQw0bGj8ifbG2puXLado0GjOGmjb9d/CDD+j06ZL+hg4dYsPC2pbwxfwp4IIFC3jT1PKuRYsWU6ZM+fnnn/fu3ctTb+Wajw/9+SctW0bff//vyJEjNG7cG/wGa+sWGRnPSvJKlUqVl5dXp04dvh2nAlixYkVISMihQ4eWL19uaWkpdDjlVefOnSUSSVhYmEql0tRDF6G7d+++++67T548admy5YkTJ+oUXRjB2tr6ww8//PDDD3Nzc4ODgwMCAgIDA20YM/3yS/ryS3J0JHd38vAgV1cSx3xBbDAf1C+p1LJRo8P37/fIyYm4eXNsixb7K8zn1Z9//klES5YsqRipFRcXl5EjR+7evdvZ2dnU1NTQp8vOziYiDw+Pks8cux47ll3iZIKDqen8unWJaH50tPz//y4sqV+/gbn5mwcLb4u1a9eePXs2MjLy1KlT7u7uxjmpURPuRNS7Tx/y8aHhw+mrr8jamgxfF7iEVCoVf4ypUxCNf6t98MEHIvlWK0ahNxDAPX78+ObNm9bW1r169dIeL0d/aIcOHSKRhVq1atWTJ09269aNt2c4cuSImZmZ0EGJgq2trVQqtbGxKfRQly5djB9SSdjb2/PCXzrkcrm5ubmJiQm/eSqh/Jwsll3Skr35OVn8/9Ru5ExEVWo1jPj70Nk/V334xVY+3rrXByU/NeidtbV1+/btr1y5cv78eV5Oiuvdu/fJkyfPnDkj5oQ7EfXu3fvQoUNnzpwRS8JdraaCMxBeN1alMn44+jV+PG3dSjNnUnDwvyNZWVTyqqG5udI3qjEqkUiKSpHcuXOnZcuWJf9VxlRUbNbW1kV9fZQ7tra0YgVNnkzjx/87olC8wZVARGp1emZmSX/A0tLSzMys0PrLCQkJJiYmfKeL2Dx8+LBu3boFb5+sra3lcrk4H8+XI1WrVm3YsGFMTMzdu3dbt24tdDiF++eff4YMGfLy5cuePXseOnTI1ta2JD9lbm4+ZMiQIUOG5OfnJ5w7R7t30+HDFBND69bRunXUsCENH07Dh1OnTkVm3lNS6OJFSk+n6tXJ1ZUqSp60GJgPGoJcXq1Jk6ArVz6YMSPW3v69o0ePVoz5oJ2dHREV9SFcHm8wKlWqJJPJcnNzc3NzjRCGTCZ7o5ljplKZU+J74Cy1mv8fNzs7q/9/mFq5xMl9eDuZmppaWlryzIbxzmq0tfT/4e/PJBImkTAj9kou3tmzZ4moSZMmOuP85iw4OFiQqEouPz+ffysYZ5dQucNrYowaNUp7UFO1//nz50IFVkK8M5KtrW1eXp7QseiKioriWdrRo0eLsz2D8X3yySdE1LdvX6ED0Y/t27cTUc2aNePi4l6VWE5Wem5mWgn/yc/J0ikp8yox7ushtW+dPXD3wtGv3Wup1bi0BLZo0SIqUAmXt1Ft2rSpUFGV0K1bt4iodu3aQgfy/7p0YcOH6w4eO8aI2J07QgSkB7ykDN94fesWk8vZwYP/lpTJymKvXpX0n7S0/JJ/zuzevZuI7OzsXrx4oR2MWq0eMWKEVCq9evWqMH8cxQoJCZFIJB9//LHOeFxcHN9Bcu7cOUEC0xdeUoYxplaznj3Zu+/+W1JGoXiDK+HVK5aWllbCKyEpKalx48ZEtGHDBp1g9u/fb21tPWXKFAH+IF4nPz+/efPmjRo1Knj3PmzYMCIaPx6F1Mpq9OjRRLRly5ZCj+7evVvYXkSHDx+2sLAgovfff7+sm9yVShYayry8WO3ajOjff6pXZ56eLDCQKRT/efHy5czcnFWrxlxcmLU1q1aNib58edlhPmg4FW8+uHPnTiKyt7dPS0vTHlcqlQMGDDAxMRFn+4R9+/ZJpdL58+frjGtq1p0/f77kd1ml1q9fPyLau3dvyX8kU6HIUCpL+E+WSoWSMiIk8pIyfDJbt25dY9ZDFijhzhhbu5YR/aehkqDmzZtHRIsWLdIejI2NJaLKlSuL8FtNx8mTJ4modevWQgciUr179yaiP//8U3uQ96TSqUosTitXriSicePGCR1I4W7cuMHX48yYMUPoWETBaI1GjaCYBrD6pZNwV+Tlfvte3bDjO5FwF4mgoCAieuedd7QHlUol/7sfHx8vVGAloVar+TwwKipK6FgYY4wtWcKsrZlOO8Rx41i9eqzcTlO1E+6MsU8/ZU2bMisrgzdNLarR6MKFC4moS5cuIil0q6FUKvliDl9fX51DFaYBrCbhzhiLiGAmJqxdO4M3TS2q0WhUVJSZmZk4n76sXr2aiBo3bqzTIqUiNYAV3Jo1a4ho6tSpBQ/FxsZKJBKpVOri4uLj42P8L4jffvuN11uYNGmSQichXhYqFQsNZXPnsnr1/pd5r1GDTZ3KgoKYQsF++41JpWzXrn9fn5/PPvuMyeVMfH9H9AvzQYOqYPNBTaNRnQQRY2zatGlE5ObmJkhgxcjJyWnYsCERbdy4UeeQkbuyo4Z7WSDhbghnz56VyWRyuVynJ7mhCZdwZ4wtXMiImIUFCw0VMgzGGGOOjo5EdOnSJe1Bfos2ZswYoaIquZkzZxLRkiVLhA5EjJKTk+VyuYmJSWpqqvb4+PHjiejHH38UKK430L17dyIKCAgQOpAinTlzhu/N+frrr4WORRSM02jUCIpqAKt3POGek/EqJ+PVq8S4I+sXfjesQfKzWCTcRSIrK8vU1FQmk+l8kA4ePJiIdu7cKVBcJeXh4UFEmzZtEjoQxhhjiYmsRg02ZAjj6+ny89mmTUwmY7/9JnBgZaCTcE9PZw4OjMjgCfeiGo2mp6fXqlWLiH7//XfDRvCGfvrpJyJydHTMycnRHq9IDWC1E+6Msc8+Y0QGT7izohuN8sLurq6uonr6kpycXKVKFSI6evSo9njFawArrAsXLhBRmzZtCh66c+fO0KFDNVvLJRJJx44dfX19jZN59/X15efV2TqmZxERzMeHNW/+b9rdxIQlJ7MmTZiHx39eplSypk3ZyJEGjERomA8aQQWbD4aHhxfaaLSoT2/BLV26lCdqdR7gHTlypNDtgIaDhHtZIOGud0lJSXwF4VLt21OjEDThrlazyZMZEatcmV2/LmAgN2/e5DuGdDZA5ebmHj9+XIQrYnSo1eq6desSUVhYmNCxiJG/vz8RDRgwQHtQqVRWq1aNiO7fvy9UYCX04sULmUxmZmaWnp4udCzFOXz4MF+ns3r1aqFjEZ5CoWjVqhURrVixQuhYSi8mJsbc3FwikRjhi5Mn3Pk/3wyt8/PM3g+uBDPGkHAXD77S58iRI9qDfL3VpEmThIqqhH7++eeCG8mFdPs2a9+eEbHatZmpKbO1ZevXCx1Tmegk3Blje/YYI+HOGPPy8iKi3r1764xv3bqViBwcHDIzMw0eRMmkpKTwe4+DBw9qj6tUqo4dO1aYJIVOwj0ri9Wvb4yE+507d+RyuVwuv337tvZ4WlpazZo1iWjPnj0GD6LEilojyT+sGjZsqPNIBkonJyeHPy0u6nMgOzs7MDDQ09NTuxuEk5OTj4+PgSZWSqVy+vTpRCSTyQouRDWUGzfYkiXsk0/Ys2eMiBXctjh/PqtZ00jBCAHzQeOoYPPBCRMmENEHH3ygM17U/iQBxcfHV6pUiYhOnjypPZ6Xl9esWTMi8vPzM1owSLiXBRLu+qVWq4cOHUpEPXr0UCqVRj67oAl3xphSyTw8/t3mJtz33DfffENE06ZNEyqAMrp69SqfUopq5Y548DqYP//8s/Zgdnb2mjVrJkyYIFBQb4CnDAYPHix0IK+3Y8cOiUQikUh+K8/rNPUlODiYiKytrYUtD1oWxqwhq1Tk8+XtORmvlIp8nXEjBACvtWTJEiLSqQt57do1nhsSKqqCCi0eGhkZSUQ1atQQ1xdlVBQLCWGXLzM+YUtNZa/K69W+bx9LSmI6f7opKcwIU1FNFnv//v3a4yqVit/6f/XVVwYPomRmzZpFRH369NEZ37x5MxHVqVNHPM8GSu2ff9idO0wnV5yVxYyTIyqqh8qmTZt44c6srCxjxPE6ERER/NlARESE9rjmYt73FhTUNhoXFxci+vvvv4t/WU5ODs+8a7dJbNiwoZeXV2hoqL6+O3Jzc/mOKzMzM2GWKt+8yYjY6dO642vWMKlU90O8AsF80Ggq0nwwISGBtzEPCgrSHlcoFLwx6apVq4SKTce4ceOIaMSIETrjK1asIKLmzZvnGzE3bYSEu0KtTlUoKuQHFhLu+sXLltjZ2T1+/Nj4Zxc64c4Yy8tjAwYwItaoETNuWiorK+vcuXPLly+vXr06ER0+fNiYZ9ejL7/8kohmzZoldCBilJuba21tLZFI4uLihI6llPgTuV9//VXoQEpk3bp1RGRiYmLQr9jywt3dnYgmT54sdCClgRqyoINfEu3atdMeVKlUvGNBbGysQHH9j1qtnjNnzsiRIwtdv+Dg4EBEd0TblfToUVa9Ops9W+g4SuPoUUbEBCyBu2HDhkIXBV+8eJHXaRHD9ampfnPr1i3tcU31G53KwuVRbi5r3JhZWrLLl4UJoKgeKiqVimddv/32W2Ei+69evXoR0bx583TG58yZU+h2DSgLvplg5syZJezlqFQqQ0NDvby8ePMPrn79+jzzXpaGkKmpqT169OAz/1ChSqpGRjIiduiQ7vg33zBLSyECMgbMB42sIs0Hv//+e77rRadOC19ZZWNjI4Z2u5cuXZJIJGZmZjoVsRITE/kTxGPHjhkzHiMk3CswJNz16NatW7zO1aGC33pGIYKEO2MsK4t16cKIWOvWLCXFoKd6+vRpYGCgt7e3q6urmZmZ5i5KLpePGjWqnPbU5t23goODhQ5EjAIDA4moQ4cOQgdSSllZWZaWllKpVAzf5SXk7e1NRBYWFq9dTFThPXz4kPdqu3LlitCxvBnUkIWCcnJyLCwspFKpTgnIDz74gIi2bdsmVGCcWq3mm/TNzc2vXbtW8AXvvPOOlZWVeB+u37nD5HImk7H/ZmPFLy+PNWvGiNiaNYLFUMxH1ujRo4noww8/FCQwbQMGDOBZP53xBQsWEFHXrl3Ftf2iVJYvZ0TMyYkJuMm7qB4q58+f509fBFnipC0gIICIqlSpkpycrD2ueSRz48YNoWKreDIyMlxcXHjx1mrVqnl6egYGBpZwpacm885/nKtevTr/JW/a5vTZs2dt2rQhotq1a+v0nDCqvDxmbs4KNG1mI0eycjtdei3MB42vwswH8/LymjRpQkQbNmzQOTRo0CAqoiezManV6k6dOhHR4sWLdQ5NnjyZiNzd3Y0cEhLuZYGEu75kZmY2b95c2KXJ4ki4M8aSkv5t5/LffV5ll5+f/88//6xZs8bDw4OvbtNOsrdr127mzJnff/89f/RXHntqx8bGElHlypXz8vKEjkWMoqKiOnfu7OjoWE63aR84cIDPw4UO5A2o1eopU6bwy7LQtNdbpZxmUopaLgpvud69exPRgQMHtAf5OiZPT0+homKMqdXqGTNm8E36OitbueXLl/OCEqL+LpgxgxGxAtUwRG7lSkbEmjcXMsfKit6UExcXZ2VlRURnz54VKjbG2KFDh6iwlmXl97lsQQkJzMaGEbETJ4QMQ9NDpWAXRF7KY+zYsYIExuXk5DRs2JCIfvnlF51DAwcOJKJPPvlEkMAqpISEhPbt2xORra0t73fFVatWbfLkyceOHSvh7EmlUoWFhfn4+DRu3FjzS6pWrcoz7yX5JXfv3q1Xrx5fJ/vkyZMyv7OyGTOG1avHsrP/N/LwITMxYaIpjqF3mA8aX0WaD/I//ypVqrx8+VJ7PCoqin+DC9vzb/v27UTk4OCQkZGhPX7t2jWZTGZqahoZGWnkkJBwLwsk3PVl0qRJ/E8yW/v7zrhEk3BnjD15wtau1R1MSyvNr0pIYIcObV62rFu3bhYWFtpJ9ipVqgwePHjp0qWnT5/W/kgqvz21V61aJfjkQcySkpL4De7gwYONWblMX3irlh9++EHoQN6MUqnk09oaNWqIvw2RQWlqBezevVvoWEqqqILIAN9++y0Rzf5v2RN+X1i7dm2holIqlfyj0tLSstDNXr6+vkQkk8kEX4b/GsnJrGpVRsREuwy/gMREZmvLiJhxNysXrqi2E19//TURtW3b1vi9kri8vLymTZsS0bp163QOlevKYzomTmRE7P33hY6DsZCQECqsh8qTJ08sLS0lEolg1TwYW7p0KZ/+6ayPPnLkSKGPZKDUYmJi+LpUR0dHXmYhIiLCx8enRYsWmomhra2th4eHv7+/TqKqKGq1+sqVK97e3tqZ99e24758+TK/rercubMo/vvGxTEHB9ahA9u2jZ0+zdatY3Xrsq5dWcVdvIX5oCAq0nywf//+ROTl5aUzPn/+fCJydXUVamVVRkYG34Kzo0AnZF7AasGCBcaPCgn3skDCXS/4bkJzc3Mht5SJK+Gu7dYtNmgQMzNjRMzKio0cyWJiinu9UskiIpi/P5s6lTk5MYmEES3u1YvfBjk6Onp6evr5+YWFhRVTNKac9tTmn6R79+4VOhDxioqK4kUYx4wZU76qBimVSn6Dbvzn0mWXm5vbt29fIho2bJjQsQis3HXDQw1ZKEpoaCgRtWrVSntQrVbzz9gHDx4YPySlUunp6UlEVlZWpwt2gWPsq6++4tl2f39/44f3xtau/berjRGajerDlCmMiImki1tMTIy5ublEItG518/Ozm7QoAEJV/2WP/Jp0aKFTqKnqLxweRQezqRSZmrKhPgYKERRTzJ436P27dsLckMYHx9fqVIlIjp58qT2eF5eXrNmzYjIz8/P+FFVSGFhYfyLqWPHjomJiTpHIyIifH19XV1dNUlzCwsLd3d3f3//tBIv9uLpexcXl4J5Lm2BgYGWlpZE9N577wm4yE7Xs2fMy4s5ObGaNVn79uy775g4+gkbDuaDgqgw88E7d+7wTtc6XVjS0tJq1qwpYDbm888/5w/zdDL+u3fv5o86Xr16ZfyokHAvCyTcy+7Jkyd2dnZEtGnTJmEjEWXC/e5dZmPD3nuP/f03i4tjJ08yV1dWqxbTqVmWmsqOHWNLljA3N2ZtzYj+90+lSqxPn3s//vjXX3+lvElR+HLXU/vly5dyudzMzCw9PV3oWETtxo0btra2VN6qBp05c4ZP0YUOpJTS09NnzpyZmpoqdCACU6lUHTp0KC8baFBDFoqRn59vZWUlkUgSEhK0x0eOHCnIPU1+fv7w4cP5huWLFy8WfMHixYt5tn3Xrl1Gjq2UFArWujUjYuVhIdv160wmYyYmTDxJABHOPDUty078t9JKMZVPyh21mnXvzoiYt7fQofy/omr1ZGVl8YWugtzqjxs3johGjBihM75ixQoiat68eXlceytCp06dsrGxISI3N7fip0ixsbF+fn6urq4SiYRn3s3Nzd3d3Tdt2pSUlFTC0xWzsnX79u0mJiZE9NFHH71pzXfjefCAlfMq2yWE+aAgKsx8kJcu7Fug7t/GjRuJqG7dullGf2ol2nUGSLiXBRLuZaRQKLp27SqS53yiTLgPGcKaNmXa237T0liVKmzGDJaayrZtY5Mns5YtmVT6nyS7oyMbN45t2MCuX2dl2DJcvnpqb926lYgGDRokdCDlwOnTp3nVoG+++UboWEpq7ty5RPT5558LHQiU1YULF3ivtkePHgkdy2ughiwUj2+q3bNnj/bgL7/8UpJt9fqVl5f3/vvv85oABe/t1Go1/wg1NTUtZ8WRQkIYEbO2ZqJf9dyzJyNi8+cLHYcWEe6t5hUkhw4dqjNeVG/P8mjXLkbE7O2ZEAvpilRUD5WdO3cSkb29fcnXMuvFpUuXJBKJmZkZL2+ioXkkc0wMhZnKv3379pmZmRHRuHHjSv4A48mTJ35+fm5ubny7M39S6+rq6ufnV+o2lb6+vjyP7y2eJ1EF3bnDiFj9+kLHYSSYD0KpJScnV61alYh0egWpVCoXFxci+vbbb40ckmgr6SHhXhaFJtyzs7N9fX0LViYUFZEk3L/44gteXUCnNb0gxJdwz81lZmZsxQrdcS8vVqcOe/z4fxl2ExPm4sK8vJi/P9NrDqsc9dQeOnSoGDZKlBeaqkFr1qwROpYS4W21BP/MAr348MMPiWj06NFCB1KcwMBAQg1ZKBbvPjp9+nTtwcjISL582GglLHNzc/k3oJ2dXcFuk2q1evbs2TzbfujQIeOEpE9DhjAi9vHHQsdRnD17GBGrXp2JbdWaqLqHXbt2TSqVmpqa6pSvLWreXh5lZ7N69RgRE1uLBE0PlT///FN7XK1Wd+vWjYgWLVpktGDUanWnTp2IaPHixTqHJk+eTETu7u5GC6YC8/Pzk0qlROTl5VW6siEvXrzw9/d3d3fnK9OJSCqV8sx7fHx8CX+JUqnki2FlMlnB7rjiolb/24hD9I949QXzQSi1tWvXFvqk/Pz583xl1ePHj40WjJh7xSPhXhaFJtzFIyMjo6iVTGJIuJ89e1Ymk0ml0jNnzggYhob4Eu4xMYyIHTigO86rmubns48/ZqtXs0uXDNfXpbz01M7KyrK0tJRKpRWg9KfRaKoGbd++XehYXuP69et8BVb5qjMIRdHc/Yj2SZ6mrR9qyEIx/vnnHyJq2rSpzriDgwMR3blzxwgxZGVl9evXj4iqV69esBOOWq3mmQ4zM7Pyms18+JCZmTGplBV4liAS2dmsQQNGxET4xF88mU21Wt29e3ciWrhwoc6hTz75pNCd6eXRkiWMiLVvz0R4t1JUD5Xw8HD+IMRonSf4c6CaNWvqLKu/fv268Z8DVUhqtdrHx4eIJBKJXso0JScn88y7qampJvPu4uLi4+NT/GWTm5vL11iYmZmVjyZbffuWr2bdZYf5IJROMbXgRowYwTfWGCcSpVLp7OxMRMuWLdM5NHr0aCL68MMPjRNJoSZ99lnrAQOChetPXq6JNuGuVqv37t1br149qVR69erVgi8QPOGekpLCywaKZw+T+BLu0dGMiBVcj7Z+PSMyWvP0ctFT+8CBA0TUpUsXoQMpZ/ijafFXDeJ7wXSWkUK5xps3tmvXTpw3zaghCyWhVCp5CVSdtX5jx44lovXr1xs6gKysLN6Ay97eXqd1FQ9vwoQJRGRpaRkcHGzoYAzos88YEevShRlr08Ab+fZbRsTati1LDT8DEkntjt9//50KKxyv6b12+/ZtI4RhUE+eMEtLJpGItAR0MT1U+AfFBx98YIQwiql01LNnTyL69NNPjRBGBaZQKHjtJlNT0z/++EO/vzw1NXXv3r2enp684S3n5OTk4+Nz9+5dnRenp6fz58G2traiXWCh6/PPGREr8ISyYsN8EEqnqG7nT548sbS0lEgkoUbJMm/YsIGIGjZsmJOToz1+8eJFvtY+NjbWCGEUZXZUlEtY2HlRlZkrP8SZcL948WLHjh35N2Dnzp0LLnhiQifc1Wr1e++9R0Tdu3cXqphSQeJLuGdnMxMTtnat7viCBaxWLWMGkpeXN2DAACJydHQU5xJyPlXw9fUVOpDyZ+HCheKvGtSuXTsiOn78uNCBgN5kZ2fXr1+fiLZu3Sp0LLpQQxZKbvDgwUS0c+dO7cHw8PDTp0/r3PfrXWZmZu/evflC0YKr6ZVKpaenJxFZWVmdOnXKoJEYXHo6q1WLEbH/VsMQg/h4ZmXFiJhwm5VfT/DulMV84PNGCF5eXgYNwDhGjmREbMwYoeMoWlE9VBISEnhfzaCgIEPH8NpevhWgnaCQMjLujB9vXamSjY1NSEiI4c6TnZ0dGBjo6enJrxxN5t3b25un2J49e9a2bVsiqlWrVnnqPH/wICNi/foJHYexYT4IpTNkyBAi+rhA3b8vv/ySiNq3b2/olVUpKSnVqlUjIp3KHiqVimc8v/rqK4MG8FpIuJeF2BLuT58+nTp1Ki/XVrt27U2bNhV1hQubcOePUe3s7ETVM098CXfGWJ8+rHfv/4zk5bE6ddhHHxk5kKysLN7ftnXr1mKouK9NqVTyz1lsQS0F7apB169fFzqcQjx69EgikVSqVKkC9FIDbUUteBQcashCya1cuZKIJk2aZOTzvnr1qkuXLkRUt25dnZXLjLH8/Pzhw4fzD/YLFy4YOTaD2LKFEbG6dVlWltCh/MfEiSoiViCVLS7x8fF8OerJkye1x41WO4tXtyi4pWn//v1EVKVKlZcvXxo0ACMIDc2TSJilJXvyROhQilVUD5Xvv/+eJ0wVCoXhzh4TE2Nubi6RSHSmoNnZ2Q0aNCCiX3/91XBnr/gSE1mHDowouG/f8PBw45wzJyfn0KFDnp6efL8X16hRIz41c3JyeiLyvxI6nj1jRKxyZTGWhTIkzAehdB4+fGhmZiaVSnV6CGVlZfFyFoYuVTRnzhwi6q2TMWNs69atROTg4KBTRc34kHAvi+joaBcXF2traz8/P4Pen7xWXl6en5+ftbU130Dm5eWVnp5e6CvVarW/v7+NjU3lypXr1Knj5eUVGhpqtM5ejLHbt29bWFgQ0Z49e4x20pIQZcL9/Hkml7P58xnv2vf0KRs7llWqxArMro3gxYsXTk5OfFmK8T+5cnNzo6OjCz105swZvkTLyCFVGCKvGsQf0AlbfA0MoZiSvgISpJcglF/Xrl3j+1iNedLU1FRemLt+/foPHz7UOZqXl/fBBx/wXfyXLl0yZmAGpFLl9Ou30dX1mwLVMAR08eLFWrU69OwZI+hm5RJZunQpXyKkM10xQndoTdOOc+fOaY/n5eU1adKEiDZs2GCgUxuNSqVycenQvfu05cvFPqMW9j/HsGHDiGj8+PE647xSRNu2bcWz8bn8iYlhTZsyIuboyIxVjl+bUqkMDQ318vKqWbMmEfXq1atTp07lsu183bqMiN27J3Qcxob5IJTOggULiKhr1646KcWdO3fymoc67Tr06O7duyYmJjKZTGcbjaZP+O+//26gU5ccEu5ltHr1av4o19nZ+fTp04LEEBgYyDs28zV5MTExRb3y/PnzLi4u/JV8xzzXoEGD+fPnX7hwwdB7PrKyslq0aEFEM2bMMOiJSkGUCXfG2PHjrFEjRsRsbBgRa9OGXb4sVCzx8fF8BUq/fv3yDF9E/vnz54GBgT4+Pm5ubhYWFkWl1OfOnUtEixYtMnQ8FZimalCjRo3EVjWoT58+RKT3MpQgBteuXeO92sRzZ9+jRw8iWrBggdCBQPmgUqmqVq1KREYrEJmSksLrBjZo0KDgDV9ubu7QoUN5CvWKWLuMlk5R1TCEolar+XbRJUuWCB3L6+Xk5PCpwsaNG3UODRw4kIg++eQTA51a2CXVxvHrr7/y7SZZItuBUSihNhycPn2aiCpVqvT06VPt8fj4eP4M4KyYCzMVIS4ubu3atXFxcQLHcesWc3BgRKxDB5aYKGwsSqXy9OnTycnJ2dnZwkZSSsOHMyLm7y90HALAfBBKQZPd/vO/df/UanW3bt2I6PPPPzfQqYu6geElkrp06WLMZcVFQcK97AIDAx0dHTX57qKW4RrC9evXeXKAiFq0aHHixImiXhkfH+/p6SmRSPjWCn9/f81z6Dp16mgy79WrV/f09AwMDDRQOUe+U79ly5Yi/AoWa8Kde/CAXbnCRDDJjIqKsre3J6IxY8bo/fmMQqG4du3a+vXrx44dq3mIxEml0tatWxe6iYz/9as46/gEol01KCUlxTgnjY6O9vf39/LycnFxKXQDY3JyslwuNzExQU3Piuqjjz4iovfee0/oQBjTqiErtio3IGZ8Ofm2bduMcK7ExERnZ2ciatq0qU6nVsZYVlYW71BXvXr1Qhv4lHejRo0iolGjRgkdCGOM/fbbbyLZrVxCAQEBPJ2qUxiwqAVieiGGouGGlp6ezpf0im3rblEEKamvVCr5Z9eyZct0Do0ZM4aIRo4cqfeTGoFm5R1vHCrM6oHTp1nlyoyI9e3LDLaS9C3yww+MiM2cKXQcwsB8EEph8+bNRFSnTh2dO6KwsDC+suqBAbbdFLVFLzo6mle5uSzcKlVtSLjrBa/owm8deUUXw+2c4JKTk728vGQyGb959vPzK2oTXnZ2tq+vLy/eaGFh4e3tXbDaTEREhI+PDy/kyFWtWpVn3vW4jnnfvn1EZG5uLs5poLgT7mJy48YNXqdPL/sU0tLSgoODfXx83N3dtcv/8VUwrq6u3t7egYGBRS23uXHjBt+sZOjdGW+DFy9e8B0ohqsalJGRERoa6uvr6+7uzpeFahS6i3nHjh1E1L9/f0MEA2KQkJDA91sV88TYOFBDFkpn3bp1ROTp6WnoEyUkJLRq1YqImjdvrrNElDGWlZXVt29f/oV469YtQwcjiKKqYRhfRkZG7dq1qUC/XJHr1asXEc2bN09nvKgSqGWkUqk6dOhARF8XKATEe91/8MEH+j2jID799FMqbDe9mBXVQ+XOnTtyuVwul9++fVu/Z/z555+JqGHDhjrdpC9evMgfyRhtk5B+BQcHDx8+3NLSUnM3265du+++++6e0QqS7N/PzM0ZERs7lhm4+/Hb4uzZf/cKvK0wH4Q3pVKp+OZLo33dF9OE5r333iOij4ze8rAoSLjr0bNnzzQ9S2vVqlVMz9KyyM/P9/Pz45lJExMTLy+vYh71BQYG8gQCEbm7u7/2ZoZn3vlnLGdnZ+fp6bl3794yft4+efKkSpUqRPTLL7+U5fcYDhLub+DMmTPm5uaFfqqWhPZzbP4XRqNWrVoeHh5+fn6hoaEl2WfByz5OmzatFGFAQfHx8Xzdkx6rBj19+nTv3r1eXl6urq4mJiY6/7nd3d19fX1DQ0ML3b7A+/5VgAKvUAxfX18iatGiRVF/5V++fLlHT4ppI4YaslA6YWFhRGRtbf3dd9+FhYUZ6Onv8+fPeRsVJyen58+f6xzNzMzs3bs3EdWsWTMiIsIQAYhEUdUwjGzRokU8GVGOcqyMsRs3bshkMrlcrnORpKSkNGrUaNWqVfr9U83Ly1u6dGnz5s11Cq0YdMmbkUVFRfGVdFevXhU6ljdQTA+VTz75ZNiwYXov3HTu3DlnZ+d9+/ZpD6pUKl6X6auvvtLv6YwsOzs7MDDQ09NTu2Cro6OjwVulrVvHpFJGxLy83rYmnwaUmcnkcmZiwsS3H99oMB+EN1XUhranT582aNDg559/1u/psrOzv/jii7Zt2+pMHk+dOsXvycVTEwkJd727evWqq6sr//RwcXE5f/68Hn95cHBwy5Yt+S93c3MrZlYVHh7Ob6X4xORNFwNFRET4+vpq3ggRWVpauru7+/v7F9WOtRgKhYL/KjGvZUHC/c0cPnxYLpcT0Zo1a1774szMTM1zbN62XsPExMTFxcXLy2vv3r2Jb152sF27dkR07Nix0rwHKMyDBw/KWDUoPz8/LCzMz8/Pw8OD/yoNuVzu5OQ0depUf3//YtpNcLm5udbW1hKJRPjimGBImkUK69atK/QFFy5cID0pal+OZuVseawhCwLi68olEgmv2UdE1apV8/Dw2LRpU8FF6GWxbds2Imrfvn3B/V6vXr3q0qULEdWtWzdKiJ7qxqSphrFlyxahYoiOjjY3N5dIJCLZrfxGpk2bxqcQOuOGe9Co85uNUNTVmAYPHkxEU6ZMETqQN1ZUDxWjXQmMsa1bt1K5qsv0Wrm5uUeOHJk4cSJfZcY1atRo4cKFly9f1mfmXa1mPj6MiEkkzNdXb78WOGdnRsTe7mqlmA/CmyqqZYvRvlaUSmXr1q2JyFdMn4pIuBuCWq3eu3dvvXr1iEgikXh4eJR9ocD9+/fd3d35Z1TTpk2PHDlS1CtfvnypqTZTtWrVYqrNlERsbKyfn5+rq6tmLmlubs4z7yUvcvvll18SUZ06dQzUhkcvkHB/Yzt27OBZhu3btxfzsi1btvDLUaNOnTojR4708/O7fPlyqdsFJCYmbt68WSKRVKpUSWeDKpRRKaoGPXv2LDAw0Nvb29XVle9+0KhcubKbm5uPj09wcPAbdW84cuQIEXXs2LFUbwLKk0OHDlFhZfi4+/fve+hJwZK13OjRo4noww8/NPAbhQolMzOTd/GqUaPG2rVrp0+frt19RCqVdujQYfHixaGhoXppC7lz586CBVVTU1M7depERPXr13/48GHZzyJ+f/zxBwnaa+H9998nookTJwpy9jJKTk7mqcC//vpLkAB27txJRPb29oYuvmkEwcHBRGRtbV1w00m5MGnSJCIaOnSoIGfX9Nn7/fffBQnAoDSt0vh7JKImDRqwunXZ1KksMJCV8RtBqWSTJzMiJpezIu5qoEz4H2+BUhVvG8wH4Y0IXvfvp59+IiJHR8dC90kIBQl3w8nKyvLx8eEfNZaWlj4+PqXrFJqamurt7W1mZkZEtra2vr6+RV1CvNoM383Gq83ocTLy+PFjPz8/Nzc3Te5UJpO5urr6+fklJCQU84Pnzp2TyWRSqfT06dP6CsYQkHAvjbVr1/KrrZiZ299//639HLvUbYWVSmVERIS/v//UqVOdnJz4I6COHTsW7L8EZXf69Gn+4fXNN98U87KcnJxRo0bVrVtX+45KJpO1adPmk08+2bFjR6mXW6rVat4f77vvvivdb4DyZcCAAUQ0a9Ys45+6vNeQBUFkZGTwitg1a9a8c+eOZjw6OnrTpk0eHh7W1taaT0UrKyt3d/dNmzY9fvxYjzGkpKTwopkNGjR47RqxiqRHjx5E9Nlnnxn/1Hy3cqVKlfS7g8GYeJvHxo0bG39GmpWVxZcjFb9Qo1xQKBS8p8LKlSuFjqWUEhMTBeyh4u3tTURdunQpX3WZ3pRSqTx79uzs2bNXvvceI/r3n5o12SefsODgUmbeZ85kRKxSJVb+ew6L1K+/MqLs8vlUVb8wH4Q3ImDdv5SUFF5H4dChQ0Y+dfGQcDe0uLg4T09PnhusU6eOv7//G91XbNmypXr16vwja9q0aUlJSUW9Mjg4mJf3JCI3Nzft2Z9+vXjxwt/f393dXVN9S5N5L1grKSUlhd9a+/j4GCgefUHCvZT4HbOFhcXff/9d6AsUCkXpnjUxxl69enX8+PGvvvrKzc1NO3nBp7u9e/deu3ZtGWKH4pSwahC/u7K2ttZ0uC11U3teeojvPaxevbpMJqtbt67eO3eBON25c8fExEQmkxm532OFqSELxpSamtq5c2ciqlevXlHTyJycnODgYG9vbxcXF80mQb70ZurUqYGBgWXcm5WYmOjs7ExEzZo1i4+PL8uvKneKqoZhaEqlkv+Zf//998Y8r34pFApennLVqlVGPjXf8dq+ffsK0Oh+zZo1RNSoUSNRraR7U6/toWIg0dHRvPZ9eazLVHoREczHhzVt+r/Me5UqzNOTBQayQq+i5GT27besf3/WqRMbMYL9+ee/hdrj4ljbtuziRSOH//Z4cutW4/r1GzduLHQgooD5IJScpu5fUVuKDWfWrFlE1KdPHyOf97WQcDeOM2fOtGnThk+1evbsef369RL+IE9m9uzZ88aNG0W9JjIyctCgQfyXN23a9OjRo/oJ+nWSk5N55t3U1JSfXSqVurq6+vr6arY18y7B3bp1E38XOiTcS0mtVk+ZMoXvFCv5lV2MErZU1VcLFyiGv7//a6sGnTp1KiIiotST59jY2N9//33WrFnt27fn93MatWvXrgAd1aDkBLlVqng1ZMHQUlJS+EOa+vXrl3DP1vPnz/39/T08PPjubM7CwsLNzc3X1zcsLOxNY0hISOCra5s3b15+l1qXhSDVMNavX88fmZT3QnYnT54kIhsbG2PWQnny5ImlpaVEIgkNDTXaSQ0kOTm5atWqRFRMic9y4bU9VAyEzw8/+ugjY55URHjm3cnpf5l3S0vm7s78/VlGxr+vefyY1avHWrZky5axrVuZlxezsmJjxjC+cK9CbwsQnFKprFSpkkQiKbTO4VsI80Eoud9//52MXvdPqGVbJYGEu9GoVCp/f/8aNWrwxLSnp2fxlVi49PT0/fv3F3U0JSXF29ub57vt7Ox8fX0FSUKmpKT4+/sPHTpUU6pLIpF07tyZV7m0tbXVe697Q0DCvfSUSqWHhwf/bC3FcjOd59jaX7FyuZy3VPX39y8Xl1HFU5KqQW9EoVDwFjqenp4NGjTQ/s8tk8k0pYeKaQkNFZVmM+DBgweNc8aKXUMWDCEpKYkvoGjSpEkp+ncplcqwsDDelV77iXLDhg2nTp26d+/eksxPnj9/zrc0Ojk5ldPi0WWnqYZx/Phx45xR8wF14MAB45zRoPhSnalTpxrtjCNGjCCicePGGe2MhjN9+nQqrPdseVR8DxVD4HWZrK2tC+6MfuvcucO+/Za1afO/zLuVFfPwYDk5bMgQ1qQJ014KcPIkI2K7dwsX7luEFy47duyY0IGIBeaDUEJqtbp79+5EtHDhQqOdVMDCpK+FhLuRlbwge/EKpu8TExP1Hu2bys7ODgwM9PT05MU/TE1Nzc3N9+3bJ3RcJSJhjBGUVn5+/tChQ4OCghwdHc+fP6/pEVSUZ8+ehYeHX7hw4fz581evXs3Pz9ccqlmzZocOHVxcXLp169atWzedjitgfN7e3j/++KOFhcXJkye7detWit+QkJBw9epV/l/8woULOTk5mkM2NjbvvPOOq6uri4tLjx49eAIF3lrr16+fPXt23bp1t23bpilbZjhbtmzZtWtXly5dLly4oF30A6BQiYmJ/fr1u337drNmzU6dOuXg4FCW3/bixYuzZ8+GhIQcPXr02bNnfFAul7dp08bd3X3IkCHt27cveFk+efKkb9++Dx8+bNeu3cmTJ3kK+O30448/ent7N2rUaNOmTToL4gzh559/3rt3b58+fXi6sLx7+PBhq1atFArFxo0b+Rpng4qIiJg9e7aFhcW9e/d4rcny686dO23btiWi69ev840m5d3AgQODgoI8PDxmzpxp6HOp1erp06c/ePDA19eX7+MGIqJHj+jwYQoIoIsXqWVL+vtvqlaNNmyg6dP/87Lu3alyZTp6VKAo3yILFy5csWLF119/zWtSA2E+CCV2/fr1Dh06yOXyrVu36lT2N4QLFy4sXrzYzs7uwYMHIrwr3puU9DAn58MaNRpZWAgdy1vkwYMHn3766dGjR4moSZMmq1evdnd3L/mPnzlzZu7cubdu3SKi3r17+/n58ZKS4pGTk3PixIm4uLjhw4eXcUJqPEJn/Mu9rKysrl27ElHr1q0LVm3Dc+zyS61WT548md6kalChHW41HB0dPT09N23aFBERUbGbZcGb4sWFefk/I7C2trawsLhy5YrQ7xvKgefPn/PK1y1atNDvwkyVSsWXvbu5uWk/Z6pRo4aHh4e/v39ycjJ/5aNHjxwdHYnIxcXl5cuXeoyhPMrNzW3cuLHRPi5sbW0tLCxu3rwp9PvWm3nz5r12eYQe2dvbf/vtt0K/aT34+++/GzVq5OXlJXQgehMREWFhYWFnZ2ecK6F+/frlvfa9AT1+zC5dYufPMyJ2/rzu0ZkzWf36AkT19gkICCCiQYMGCR2IiGA+CCX30UcfGTMJWLVqVSMXRiuJv5KTN8THa//zBF98xhUcHMznbkTk5uZWkkzjkydPPD09+Y/UrVvX39/fCHG+JbDCXQ9evnzZo0ePe/fude7cOSQkJCMjA8+xKwaVSjV69OiAgIAaNWqEhoYWuhouPT39ypUr58+fDw8PP3/+/KtXrzSHKlWq1KZNm27durm6unbt2pVXPgUoVHJyckBAwJ9//mmEc1WrVu3XX3/FBQmvFRcX16dPn4cPH7Zt2zY4ONhwK2hSU1NDQkKCgoKCgoLi4+P5oEwme+eddzp27BgQEPD8+fOuXbseP37cxsbGQDGUI8nJyTt37jx48KARzuXg4PDTTz9VpI+LzMzMO3fuLFy40DinW79+fZMmTSrGtsW8vDyFQlGpUiWhA9Gb5OTkOXPmxMXFGeFc77///vjx4yvSXyX9O3WK3NwoIoL+P1Pwry+/pM2bKTFRoLDeIk+ePKlfv37VqlVfvHiBHZAamA9CCaWnp4eHh3/99dfGOd3mzZsdHR2NsNnxjcx/+PBhbm47rVuF8fb2WOduZAqF4ueff/76669fvXplYmLy0UcfLVu2rNB5XFZW1ooVK3744Yfc3FwrK6sFCxYsWrSoYty1igQS7voRFxfn6uoaFxdXuXLltLQ0zbhUKnVycurSpUvXrl27dOnSrFkzAYOEUtBUDWrUqFFoaChfFhcTE8PvqC5cuHD9+nW1Wq15fa1atfgdlYuLS6dOnYxQHgQAwCAePXo+Y4bTmTONW7UKCgqqUqWKcU4bExMTEhJy5MiR4ODgvLw8IqpWrVrz5s2PHTvGK/cBAEAFdPMmtW1LQUHUv/9/xidOpPBwun1boLDeLg4ODs+ePXv48GGjRo2EjkVEMB8EKKH5Dx+ay2TfN2wodCBAKSkp33zzzYYNG1QqVZUqVb766qtZs2bJZDJ+lDG2b9++Tz/9NC4uTiKRjBgxYuXKleW9/qEIIeGuN5GRkV999dWlS5devXqF59gVSUZGRp8+fcLCwurVq9e8efOrV6+mpqZqjlpYWHTo0KFr165du3bt3LkzbzEBAFC+RUdTnz705Enc6NHWP/9sa2tr/BCysrLOnDlz9uzZyZMn161b18rKyvgxAACAkSgUZG9PH39MK1b8bzA/n5o0oXffpY0bhYvsLfL+++8fPnz4999/HzNmjNCxiAvmgwAlgYS72Ny7d2/evHlBQUFE1KJFizVr1gwYMODq1atz5869ePEiEXXo0GHt2rW8SjboHRLuehYfH1+rVi3NgyOoGHjVoMqVK//zzz9EVKtWLd7e1tXVtWPHjrwfNABABfHgAfXpQ0+fkqsrHTtGqOICAABG4ONDq1fTmTPUoQMREWO0ZAmtWEHXr5OTk9DBvRW+//77xYsXz5kzx8/PT+hYRAfzQYDXmv/wYbpKNcbenv+rrVzevgJVoiu/AgICPvvss8ePHxNRkyZNHj58yBhzcHDw9fUdO3YsaogZDhLuACWSmZkZGxt77969rl271qlTR+hwAAAMIzKS+valZ8+oe3f66y9CFRcAADAOhYKmTKHffycXF6pdm27coORk2rKFPDyEjuxtcerUKTc3ty5duvCVj6AD80GA4s1/+DA8M7P6/5dRamFpuRSr3cUhPz//l19+WbJkiYuLy8WLF6dPn/7dd9+hXKehIeEOAAAARER07x717UvPn1PPnnT0KGFNCgAAGNmtW3TuHGVmUt269O67hOKcRpSRkWFra2tqapqWlmZqaip0OABQzqCkjMg9ffrUzMwsKyurfv36QsfyVhBXU2MAAIC30+3bt4OCggYMGNC6dWthIrhxg/r1o5cvaeBAOnCALCyECQMAAN5mzs7k7Cx0EG8pa2vrZs2a3bt379atWx14YR8AAKgoHBwciKhatWpCB/K2kAodAAAAAPxbXM/Z2blmzZojR47csWOHdj8ugwsPJzc3evmSBg+mgweRbQcAAHgLderUiYguX74sdCAAAADlGxLuAAAAwuvZs+ekSZNq166dmJgYEBAwYcKE6tWrd+vW7bvvvrt69aparTbgucPCqF8/Sk6mIUNo/34yNzfguQAAAECs3nnnHSK6cuWK0IEAAACUb6jhDgAAICIxMTFHjhw5evRoaGhoXl4eH6xWrVrv3r3d3NwGDx7MNwPqzfnzNGgQZWTQyJG0axf9f5sjAAAAeNvExMQcO3asZ8+eghW4A4By61hKiolE0s/OTuhAAEQBCXcAAAAxyszMPH369IkTJ4KCgmJiYvigVCpt37596KBB5m5u1KULycvWi+XiRerfn7KyyNOTfvuNZDI9xA0AAAAAAADwFkPCHQAAQOxiYmJCQkJCQkJOnDjR2MHhWmQkEZGVFXXpQu7u9P77VJJe869eUVISVapEtWv/b6RfP3J2ps2bSYoqcwAAAAAAAABlhYQ7AABAuZGbm/v00qVGR4/SiRN09+7/Djg50cCBNGAA9ehRSBH2qCiaOZNOnybGSK2mxo3phx9o2DAiovR0srYmicR47wEAAAAAAACg4kLCHQAAoHxKTKSgIDp6lEJCKDX130ELC3J1JTc3cnMjFxciohcvqE0bcnKiVauoZUt6/px++YV++IEOHKD33hMwfAAAAAAAAICKBwl3AACAck6ppEuX6MQJCgqi69dJrf53vGFD8ven48dp61Z6+JCsrf/3I4MGUUwM8dI0AAAAAAAAAKAnSLgDAABUIC9f0pkzFBJCR4/Ss2cUHU0jRpCTE+3a9Z+X7dtHHh4UG0sNGggTJwAAAAAAAEBFhA5pAAAAFUi1auThQZs2UVwc3bhBjo4UH0/16um+rGFDIqK4OOMHCAAAAAAAAFCBIeEOAABQEUml1KbNv/9HpdI9qlAQEclkxo4KAAAAAAAAoEJDwh0AAKBCa9iQHj3SHYyJ+fcQAAAAAAAAAOgPEu4AAAAVmrs7BQXRy5f/Gfz1V+rYkWrVEigmAAAAAAAAgIoJCXcAAIAKbfZsqlaNBg2iv/+m9HS6e5dmzKCLF2nlSqEjAwAAAAAAAKhokHAHAACo0Gxs6O+/qWFDGjCAKlemVq0oLIxOnqQePYSODAAAAAAAAKCikTDGhI4BAAAADC8vj168IFtbqlRJ6FAAAAAAAAAAKiYk3AEAAAAAAAAAAAAA9AAlZQAAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD1Awh0AAAAAAAAAAAAAQA+QcAcAAAAAAAAAAAAA0AMk3AEAAAAAAAAAAAAA9AAJdwAAAAAAAAAAAAAAPUDCHQAAAAAAAAAAAABAD5BwBwAAAAAAAAAAAADQAyTcAQAAAAAAAAAAAAD0AAl3AAAAAAAAAAAAAAA9QMIdAAAAAAAAAAAAAEAPkHAHAAAAAAAAAAAAANADJNwBAAAAAAAAAAAAAPQACXcAAAAAAAAAAAAAAD2QCx2AYB49epScnKwzaGJi4uzsrPnX2NjY+/fvW1lZtW7d2tbWVvuVUVFR0dHR1tbWzs7O1tbWRggYyoXr16+r1WqdQXt7+zp16vD///Dhw4cPH9ra2nbo0EEu/89fwJcvX16/fl0ul7u4uNjY2BgpYihXkpOTw8LCcnNzmzRp4uTkpBl/9uxZeHi4XC7v1KlTlSpVtH/k0aNHd+/eNTExad26dc2aNY0eMpQDCoUiPDz81atXtWvXbt26tUQi4eM5OTlhYWFZWVlt27bVuXhiY2OjoqKqVKni5ORkaWkpRNQgdriuwBCePHly69YtiUTi7Oxct25dzXh8fPydO3eIqGXLlpqbrtceAuDi4uJu3brFGHN2dq5Xr572odjY2Dt37kil0jZt2jg4OGjGnzx5cufOHZlM1qpVq9q1axs9ZCgHcF2BIeC6AkNQKpXXrl1LSUmxt7dv06aNVColopiYmNTUVO2XtWzZ0tzcXPOvMTExDx48qFSpUuvWrStXrmzsoMWPva0mTpxY8E/DwcGBH42Nje3Zs6dm3NLS8s6dO/xQZGRkp06dNIesra0fPXok3PsAcSk0QTBv3jzGWFZW1tChQzWD9evXv3LliuYHv/32WxMTE831tnnzZuHeBIiRQqGYM2cOf0hjZmZGRF9//TVjTK1Wf/bZZzKZjF88FhYWW7Zs4T+iVConTJgglUrt7e2rVKliamrKfwRA22+//Va1alXNR5O7uzsf3717t52dHR+UyWTe3t5qtZoxlpSU9O6772peX7t27ePHjwv6DkCMcF2B3qWkpLz33ntEJJFITE1NpVLpgQMHGGNqtdrLy0smk1WrVq1atWpyuXzOnDn8ulKr1bNnz9Y+xG/JADRevXo1bNgw7esqICCAH9J8LkmlUhMTE6lUeuLECcaYSqWaNm2aVCqtXr161apVTUxMFi1aJOibANHBdQWGgOsKDGTv3r3ai2C6devGx/v376+T2kpMTOSHoqOju3Xrphm3srK6f/++cO9ApN7ehHtmZmaKlhcvXtSrV2/06NGMsYyMDEdHx3r16h0/fjw9PT0rK+v06dP8p5KTk2vXrt2kSZNTp05lZmZmZmaePXtW0PcB4pKamqp9XQUFBRHRwYMHGWP8q27jxo0qleru3bvNmjWrVatWZmYmY2zv3r1ENHHixMzMzOTk5OHDh0ul0kuXLgn8ZkBMeMpg9erVSUlJjLH79+/zb7uNGzcS0cKFC7Ozs589e/bBBx9IpdLr168zxn755Rci2r59O2NMpVJ98cUXRKT5NANgjO3du1cikYwfPz4yMlKpVD569Oj27duMsevXr5uYmPTr1+/x48dJSUkLFy4kom3btjHG+vTpU69evXPnzqlUqqioKGdn50qVKiUnJwv9VkBEcF2B3qlUqu7du1euXDkgICA9PV2tVl++fDkvL4/9/03UqlWr1Gq1Wq1euXIlEe3du5cx9ueffxLRmjVrGGNqtfrHH38kov379wv7XkA81Gp1nz59bGxs9uzZk5aWplarr1y5kpubyxhTKBQdO3asWrXqoUOHMjIyVCrVpUuXlEolY2z79u1E9Msvv/DfsHTpUiL666+/BH4zIBq4rsAQcF2BgRw/flwqlQ4fPjwiIkKhUMTHx/NkAmPM2dl57Nix2gkuPp6ent6gQYMGDRoEBQXxlOmZM2eEil/M3t6Eu459+/YR0eXLlxlj/Hb85MmTBV/25Zdfal4G8FojR45s0qSJSqVKSUkxMTEZNWqU5tCRI0eIiC9G7ty5c82aNRUKBT+UkpJiZmam/WJ4yz1+/FgqlU6aNKngoY4dOzZt2pQv5WOMJSUlmZmZTZ8+nTE2adIkExMTzaGYmBgi8vX1NVrYIHJqtbpBgwYtWrRQqVQ6h/hy0WfPnmle2bx5cxcXF8ZYeHi45iaM/X+qC4uRQQPXFRhCYGAgEa1bt67gIf7kJjU1lf9rWloaES1YsIAx9umnnxJRWloaP8S3RXt7exsrahC748ePE9Hq1asLHtq9e7fmRl3HzJkzJRIJf97DGHv+/DkR+fj4GDRUKEdwXYEh4LoCA+G1iTQXibaqVat++eWXBce///57IkKS/bXQNPVfq1at6tWr1zvvvENEhw8fbtSoUb9+/Qq+7NChQ+3bt+cvAyjeo0ePDhw4MG/ePKlUeu3aNYVCwbeAcQMGDLCysrp06ZJKpbp69erQoUM1Jd3t7Oz69Olz6dIlgQIH0Tl69KharZ42bVrBQ8+fP2/UqJGmOHL16tWdnJwiIiKIqF69egqF4o8//uCHbty4QUStW7c2UtAgejdv3nz06NHUqVN5kT5tT58+tbGxqVWrFv9XiUTSq1eviIgIxlj79u3btm2reWX16tWJ6OXLl8aKGsQO1xUYwpEjR2Qy2ccff1zwEK9gu2PHDv6v/MuO92Qq5hAAEQUGBkql0ilTphQ8dOTIEQsLi/Hjxxc8VK9ePcYYrisoCq4rMARcV2AIsbGxt27dmjRpkqmpqc6h/Pz8lJQUzX27tkOHDjVv3rxXr17GCLE8Q8KdiOjKlSuXLl3iq2CI6M6dOy1atNi8eXPPnj3r1KnTq1evkJAQIlKr1ZGRkc2aNfvpp5+6d+9ep06dfv36nT9/XtDYQbz8/PxsbGz4N198fDwR1a9fX3PUxMSkVq1aT58+ff78uUql0j5ERPXq1Xv27FnB/qvwdrp79y4RpaenDxkypE6dOo6OjkuWLMnLyyOiJk2aXLt2LTMzk7+SFyl6+vQpEc2aNcvJyWncuHHvvvvu+vXrZ8yYsWjRokGDBgn4RkBUeBdBOzu76dOnt2zZsmHDhp988klKSgoRNWrUKDU19d69e/yVjLG8vLy8vLwXL17o/JIrV64QkXaqFN5yuK7AEO7evVu/fv0TJ0706tXL3t6+devWmzZtYowR0YQJE9555505c+b07t17w4YN48ePnz59+tixY4noo48+6tix4+zZs/mhCRMmfPLJJ6NGjRL63YBY3L17t06dOqdOnerdu7e9vX2rVq144QV+qHHjxvv37+/Ro0eNGjXatm3722+/8Z+aOnVq27Ztp0yZ0q9fvw0bNkyePHnu3LkffPCBoG8FRATXFRgCriswBH7fXqNGDS8vL2dn5/r160+aNCkxMZGIEhISGGO///5706ZN7e3t+/Tpc+bMGc1PNW/efNOmTTxlqn0ItCHhTkT0ww8/NG3alOehGGPp6elBQUEbN27s37//4sWLMzMzBw4cGBoampmZqVQq9+3b98cffwwaNOjzzz9//vx53759r127JvQ7ANFJT0//7bffZsyYYWVlRUR8F7NO4+bKlSsnJycXdUihUGRkZBgxZBCvtLQ0iUQyduzYli1bLl++fPDgwd9///3MmTOJ6PPPP3/58qWrq+t33303d+7cVq1aPXjwICsri4isrKw6depUrVq1ly9fzp49OzMzs2bNmvy2DICIXr16RUSffPJJTk7OrFmzxo4du2PHjgEDBqhUqk8++aRy5coDBgz4/vvvly5d6urqyrdKaB7tcKmpqevWrRsyZEirVq0EeQsgQriuwBDS09MfP368aNGivn37rly5skmTJtOnT9+wYQMRWVhYdOnSxcbGJi8vb/bs2QkJCXXq1OE/pTmUm5s7e/bspKQkzSEAIkpPT3/69OmCBQt69+69cuXK5s2bz5gxY+3atfzQ3bt3ly5dOmDAgJUrV9apU2fSpEnbtm0jIktLy06dOtnZ2aWnp8+aNSs1NbV27dpCvxUQEVxXYAi4rsAQ+H37vHnzXr58OW3atEmTJu3fv7937965ubmVK1eeO3fuiBEj/Pz8fvzxx7S0tH79+p09e1apVGZlZf31119btmzp37//F198kZqa2r9//4sXLwr9bsRHgDI2IhMTEyOTyfgyGc7GxqZ///68ywRjLDU1tXLlysOGDVMoFDKZbNiwYZqypAkJCebm5hMnThQgbhA3X19fMzMzTaXanTt3EpFOH1RHR8fBgwc/e/aMiJYuXap9aMqUKebm5prq2/CWmzlzplQqff78uWZkwoQJcrmc9y05c+bM0KFDnZ2dhw8ffvz48XfeeadFixaMsY8//tjW1jY6OpoxFhkZOXr0aCL6/vvvhXoXIDZ8e+mBAwc0Iz/99BMRnTp1ijF2586dkSNHNmvWrHfv3n5+fvwBj6ZVDmMsNzd3wIAB1apV49cYAIfrCgzB1dW1UaNG2dnZ/F/VanXbtm0bN27MGFu4cKGFhcXNmzcZYzExMVOnTiWiTz/9lDG2YMECS0tL3rM3Ojp68uTJRPTZZ58J9z5AXHr27NmgQYOsrCz+r2q1ukOHDvXr12eMtWvXrlWrVrwhIWNMqVQ2a9asdevWjLFZs2ZZW1tHRkYyxqKioiZMmEBES5YsEeY9gPjgugJDwHUFhnD48GEi+u233zQjBe/kudTU1CpVqgwaNIgxZmlpOWjQIE3KNDk52draeuTIkcaKutzACndavXp1lSpVPD09NSMODg5qtVomk/F/tbW1bdKkSWxsrFwut7e3JyJNWVJ7e/t69erFxsYaP2wQM4VCsWHDhrFjx2oqXjk4OBDRo0ePNK/Jy8tLSEhwcHCoUaOGXC7XPsRf6eDgoCnMDW85/qHEtBant2vXTqlU8tIxvXr1Onz48M2bN/ft29e3b9/79++3bt1aoVDs2LFjxIgRjo6ORNSsWbM//vjjnXfe4a3qAej/P5e0P2c6duxIRPxLzcnJac+ePZGRkadPn54zZ05kZGSdOnXs7Oz4K9PS0t5///3Lly8HBQXxawyAw3UFhuDg4JCZmWlhYcH/VSKRtG3b9vHjx0S0devWd999l1ekbdiw4aZNm959913+Zbd169ZBgwbxrRKOjo6bN28eMGAAvgdBw8HBISMjw9LSkv+rRCJp165dXFycWq12cHDIzs42MzPjh2QyWZs2bR4/fswY27Zt2/vvv9+sWTMiaty48fbt23v27InrCjRwXYEh4LoCQyj+vl2bra1tixYtoqOjiah27draKdMqVao0atQIedGC3vaEe2pq6vbt22fMmKG5gyciZ2fny5cva6p55OTkREdH8xLbzs7OoaGhvHQyEaWlpcXFxelU3wb4888/4+Li5syZoxnp0KGDubn5/v37NSPHjx/Pzs7u3r27TCbr2rVrYGBgfn4+P5ScnHzu3LkePXoYO24QqzZt2hBRUFCQZuTGjRsmJiZ169bVeeWuXbvS0tJGjBghlUpNTEw0H1acXC5HYwDQaNmypVQq5U1KON5ut+CXWmRk5JkzZzRtn2/fvt2xY8f79++fPXu2ffv2RgsYygVcV2AIbdq0SUxM5N3eiIgxdvPmzQYNGhCRmZlZbm6u9os1X3bFHAIgojZt2iQnJ4eFhWlGbty4Ub9+falU2qZNm9jY2AcPHvBxtVp9+/bthg0bEpGZmVlOTo7275HJZLiuQAPXFRgCriswhKZNm5qZmRV1365d4jg/Pz8mJoa3o3d2dv7nn394GVsiysrKiomJQV60EIKurxfed999Z2Zmpl2ogTF27tw5iUQyfPjw+/fvx8TEjBgxQiKRnDhxgjF25MgRIvL09IyKioqKiho0aJBMJrtw4YJA4YNItW3bduDAgTqD8+bNk0gkq1atysjIuHLlSsOGDR0dHfnOr6NHjxLRyJEjk5KSHj9+PGjQIBMTE745GoAxlp+f37x585o1awYGBsbFxa1du1Ymk3300UeMMYVCERAQ8OzZs+jo6M2bN9vY2HTv3p2XvXrvvfdMTU3//PNPhUKRn5//008/SSSSxYsXC/1uQEQ+/PBDc3Pzbdu2JSQknDhxonr16i1atFAoFIyxkydPPn36NDU1NSgoqEWLFtWrV+fflbt27bKysmrZsuWVK1ei/9+LFy+EfisgIriuQO+ePXtmbW3dpk2bCxcuPHr0aPbs2US0du1axtikSZOkUummTZvy8/P57i6ZTDZ9+nTG2MSJE6VS6ebNm/khf39/mUw2Y8YMod8NiEVCQoKNjU3r1q1DQ0MfPXo0d+5cIlq1ahVjLDY21sLC4p133vnnn380pYo2b97MGBs1apRcLvf398/Pz8/Pz//1118lEgmvYgTAcF2BYeC6AgOZMmWKiYnJzz///OzZs7Nnz9apU6d+/frZ2dnLly9v1KjRvn37UlJSoqKiRo0aJZFIjhw5whg7deoUz1/dv38/Ojr6/fffl0gkISEhQr8V0XmrE+65ubm1atWaPHlywUObNm2qVKkSfyZhY2OzceNGzaHVq1drlsNXqVJl586dRgwZyoHg4GAiCg4O1hnPzc0dN26cph6Rk5PTnTt3NEfXrl2rua7s7OwCAgKMGzWI3YMHD1xcXPgVIpPJPD09MzMzGWMXL160sbHh46amphMmTEhLS+M/8vLlyzFjxvCl7nK53MTEZNasWTznBcClpqa+++67mmfw77zzzsOHDxljycnJmopYRNS1a9e7d+8yxnSaW2oggQXacF2BIZw5c4avqyIiS0vLr776ihdby8jImDx5somJiUwm4/87YcIEXu09PT39448/lsvl/EuQP6vOyckR+q2AiJw7d06zKM/CwmLx4sWaZl0nTpzQdBesVKnSsmXL+Hhqaur48eNlMhm/ruRy+dSpU/Py8oR7EyA6uK7AEHBdgSFkZmYOHz5cc/vt7OwcERHBGHv06NGgQYM0+atq1apt375d81MbNmywsrLihypXrrxlyxbh3oF4SZhWUeC3TX5+fnx8fI0aNTS5dW3Z2dk3b96USCTOzs6aUllcZmbmzZs3TUxMnJ2dzc3NjRUvlA8pKSmvXr1q2LBhoRXYnz17FhUVVbVq1ZYtW+q8ICMj49atW3K5vE2bNriuoFAxMTHJyckNGzasVq2aZpCXvVIoFI0bN7a2ttb5kZSUlIcPHyqVSicnJ1tbW6OGC+XE48ePY2Nja9eu3bRpU81gXl5eZGRkWlpa/fr1NTf3arVap+EEZ2Njo31NAhCuKzAAtVodGRmZm5vbpEkTne+7V69eRUdH5+bmNm/evGrVqiU8BEBEarX6/v37OTk5Ba8rlUoVGRmZn5/ftGlTTWaBS01NjY6OzsvLc3Jy0jSiANDAdQWGgOsKDCQ+Pv7hw4f29vYtWrTQHk9MTHzw4IGlpWWbNm3kcrn2oaysrJs3b8pkMmdnZ+0a3aDxVifcAQAAAAAAAAAAAAD05W1vmgoAAAAAAAAAAAAAoBdIuAMAAAAAAAAAAAAA6AES7gAAAAAAAAAAAAAAeoCEOwAAAAAAAAAAAACAHvwfprzQBbaKDgMAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22 GA fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAJYCAIAAAC1geo8AAEAAElEQVR4nOzdd1xT1/sH8CdhD1EU9wYnbnHjNtZRtGqL1kGrtU0dLY6O2BlX29gldkf9tcU6KloHbsEJblBUVBw4QASUIbIhyfn9cfzGGBAZN7kBP+8Xr+/r6yXkPNSY3Pu55zxHwhgjAAAAAAAAAAAAAACoGKnYBQAAAAAAAAAAAAAAVAUI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQADWYhcAAAAApZWj1R7OyDA8IqtRw1aK2+cAAAAAAAAAFgGBOwAAQKWRotF8eevWUFdXqUTCjwyoXt1W3JoAAAAAAAAA4H8QuAMAAFQyC5s1s8OsdgAAAAAAAADLg8t1AAAAAAAAAAAAABBZRE7EocxDYldRUZjhDgAAUMl8dusWv2HepVq1iXXqiFwNAAAAAAAAQNmtTVsbmBp4p+BOA5sGb7m99UbNN7Y/3H6n4M6gaoPELq1CELgDAABUMoNr1LCWSIiovp2d2LUAAAAAAAAAlNnSpKXLkpZ93fDr3k69r+Vd+zLxy+6O3cUuShgI3AEAACqZIa6u6OEOAAAAAAAAldRD7cOvkr76o/Efb9Z6k4i6OXZ7vebr0qrS/LyK/BoAAAAAAAAAAAAAYPku513O1+VPcJ2gP1Jl0nZC4A4AAAAAAAAAAAAAZhNfEF/Tuqa91F7sQkwCgTsAAECl4WptPbdRI97AHQAAAAAAAKAycrN2y9BmaJhG7EJMAoE7AABApVHNympK3bpWEsma5OTJV64czcgQuyIAAAAAAACAsmlt31rLtMeyj4ldiEkgcAcAAKh80goLr+bkxObmil0IAAAAAAAAQNk0smk0rsa49+Lfu5Z/jYh0pDuUeUjsogRjLXYBAAAAUGZN7e2J6E5entiFAAAAAAAAAJTZX03/mh0/u8PlDrWsa2XpslrZtdrXYp/YRQlDwhgTuwYAAAAom7NZWfKrVzs4Of3Vpo3YtQAAAAAAAACUzaW8S41sGtlJ7O4V3qtrU9dJ6kREhayQEbOV2IpdXYWgpQwAAEDl08zOjohuY4Y7AAAAAADAi6d5c4qOfvLHgwepZ0/xqikXv9t+bhfcLuRecLdz52k7EdlIbCp72k4I3AEAACqjmjY2LlZWmVptmqZq7uoOAAAAAAAAz3L7NuXnP/ljTg7Fx4tXTdklFiZG5UTZSew6OnQUuxbhIXAHAAColJqgjTsAQKlptdq8vLzCwkKxCwEAAAAA2v1oNyM2pNoQe6m92LUID4E7AMALLTU1dfbs2atWrfrnn3/ErgXKBvumAgCUhk6n27RpU7t27WbNmtWmTZuDBw+KXREAAACAABIS6ObNx1/JyWJXU0Z7MvYQ0YjqI8QuxCSsxS4AAABEEx4ePmnSpPj4eGtra41Gs2fPnt9//7169epi1wWlgsAdAKBkOp1u48aNixcvjomJIaLk5OSHDx/KZLIZM2YsW7asWrVqYhcIAAAAUH6zZ5Pt/7qd5+SQRCJqNWVRyApDM0OJaIRL1QzcMcMdAOBFxBhbsWLF4MGD4+Pje/TosXz58ho1amzYsKFjx45Hjx4VuzoolWYI3AEAnoExtmPHDi8vr0mTJsXExDRt2lStVicmJqpUKltb299//71Nmzbbt28Xu0yomtLS0iIjI3U6ndiFAABAFbdtG8XGPv5atUrsasoiPCs8Q5vR3qF9U9umYtdiEgjcAQBeOPfv3x85cuTcuXM1Go2/v394ePh777137tw5b2/vuLi4wYMHL1iwAF1uLV8zOzsiuo3AHQDAAI/au3XrNnr06KioqCZNmqjV6hs3bsjlcnt7e4VCERkZ2bNnz3v37o0ZM2b8+PEpKSlilwxVR1ZW1uTJk7t3796nT58mTZosXLgQLzAAAICi9jzaQ0QjXUaKXYipIHAHAHixHDx4sHPnznv37q1du/auXbtWrFhhY2NDRM2aNTt8+LBSqSSiZcuW9e3b98aNG2IXCyVpZG8vlUgSCgoKGRO7FgAAixAaGtq9e/fRo0efPXu2cePGAQEB165dk8vl1tZPGmm2a9fu+PHjarXa2dl506ZN7du337x5s4g1Q5Vx8eLFbt26rV+/PikpqXbt2gkJCYsWLWratOk777xz/vx5sasDAACwILszdlPV7SdDCNwt3IULJJHQ558/OeLrSwsXilYPAFRqGo1m4cKFQ4cOTUxMHDRoUFRU1IgRT328WVtbL1y4MDw83N3d/fTp0127dl25cqVY1cJz2UokDWxtbSWSu5mZYtcCACCy0NDQHj16DB06NDIyslGjRjxqnzNnjp2dXdEHS6VSuVx+/vz5IUOGJCcn+/r6jho1KiEhwfxlQ5WxZs2a3r17X7161dPT8/Tp03FxcSEhIb6+vvn5+atXr+7cuXO3bt3WrFmDFYQAACCUmjXJYEYB2dqSq6t41ZRFfEH8pbxLLlYu3s7eYtdiKpU1cNdoNKdOnfr222/nzJlz7NgxjUYjdkWmYm1Nv/1Gly+LXQcAVHLx8fGDBg1atGiRVCpVKpUhISENGjQo9pG9evU6e/bs5MmTMzMz3333XV9f3/T0dDNXC6Xk/Msvx7p1O3/woNiFAACIJjQ0tGfPnkOHDj1z5kydOnVUKtX169fnzJljb29f8g+6u7uHhISo1WoXF5edO3e2b98et5mhHHJzc+Vy+Ztvvpmdne3n53fmzJl27dpJpVKZTBYUFBQTE6NQKGrWrBkZGfnmm282adJkwYIFd+/eFbtqAACo9A4fplq1nvzRy4v++0+8aspiZ8ZOInqp2ks2EhuxazGVyhS4a7XayMjIFStWjB8/vnbt2r169VIoFL/88svAgQOnTp1aVTelsbEhf3+aNYvQMAAAym379u2dO3cODw9v3LjxwYMHFy5caGVlZfiAgwcPMoN3merVq69du/bPP/90dnbevHlz165dT568Zvaq4fnqODoyne7q1atiFwIAIILw8PCBAwcOHTr09OnTtWvXVqlUt2/fVigURlF7YWHhpk2bWHEn0xKJRC6Xx8TEvPLKKw8fPnz33XdHjBgRFxdnrt8AKr2rV6/27Nlz1apVDg4Oq1atWrNmjaOjo+EDWrRooVKp7ty5o1arO3TokJSUtGzZMg8Pj/Hjx4eGhopVNgAAVAEjR1KfPpSV9fiPwcH0xhuiFlRqvIH7iOpVtp8MWX7gXlhYePz48a+//nrYsGE1atTo1q3b3LlzN23a9PDhw7Zt286YMWPRokX29vbr1q2bPn16Vc3cP/6Ybt6kwECx6wCASig/P3/OnDljx45NS0sbPXr0uXPn+vXrZ/SY3bt3y2Syl1566d69e4bHp02bdvHiRW9vb8Y8hg9vuWABYRm0pWndujURIXAHgBdNeHj44MGD+/Xrd+TIETc3N33U7uDgYPgwnU63adOmdu3ajR8/Pjg4+FnPVr9+/W3btgUFBbm5ue3du7dDhw4rVqyoqlcWIKC1a9d269bt4sWLbdq0OX369Ntvv/2sRzo7O8vl8gsXLoSFhfn6+vJX5tChQ728vFauXJmTk2POsgEAoMqQSCpf3+n8wvzIrEgJSYa7DBe7FlNilqewsDAiIkKlUvn4+FSvXt2wWnd3d7lcHhgYGBcXp3/8sWPHnJ2diei9994TsWxTOH+eOTgwxth//zE3N5aSwl57jSmVIlcFAJXF1atXu3TpQkQ2NjYqlUqn0xX7sF27drm5uRFRnTp1du7cafTdgoKCr79OtbJiRKx3b3bzpunrhlI7dOgQEfXp00fsQgAAzCQ8PHzIkCH80qBWrVpKpTIjI6PowzQazZo1a1q0aMEf2bZt23379j33yZOSkl577TX+I3379r169aoJfgOoCnJzc/39/flLxc/PLysrq0w/npCQoFQqa9euzZ+hRo0a/v7+t27dMk2xAFBpaLVaw7ALoGSNGrHVq5mzM4uKYoyxP/9k3buLXVMp7Nu3z9rOesynY8QuxLQsJXA3DNldXFyeG7IbCQ0N5UtH586da86yTU0fuDPGhg9ns2cjcAeA0tq0aRO/Z9msWbMTJ06U/OCkpKSRI0fqrxuzs7ONHnD8OHN3Z0SsWjWmVpusaCgjviihZs2aYhcCAGByx44d8/HxMYzaHz58WPRhWq02KCiILwAioubNm6vVao1GU/qBgoODGzZsSEQODg4qlapMPwsvgqtXr3bq1ImI7O3tAwICjL6bk5Nz+vTp0jxPXl5eUFBQnz59+GuVt30PDg5+1gwJAKiSNBpNREREQECAr69vzZo1GzRoMGbMmIsXL4pdF1QCjRqxgwfZp5+yXr2YVltpAve5c+cS0WeffSZ2IaYlZuCuD9llMpnR8k99yB4fH1/KZ9u3b5+dnR0RffnllyYt22xyc58K3K9fZ87OrEMHplSysDB26pSoxVm2K7lXCnQFYlcBIJqcnBz9rKtXX301PT29ND+l0+kCAgL4G2nbtm3PnTtn9ICHD9mkSYyIETFfX5aWJnjhUB41atQgogcPHohdSEliY1lQEMvNfXJk506WmCheQQBQqZw4cUIftVerVk2hUDwrag8ODuZJKL/frFarCwsLyzFienq6XC7nz9OrV69Lly5V+JeAUikoYEY3OHJzmUXlz1u2bOGfvK1atTp//rzRd3kWX6NGjdjY2NI/Z0REhFwu1+890KpVq4CAgMzMTEELB9PS6XSZJlPWJRRg+XJycg4dOrRo0aIhQ4Y4OTkZpmH8HaZevXrXrl0Tu0ywdDxwz85mTZsytbrSBO6tWrUiovDwcLELMS1zB+7PDdmDgoLKnRps3brV2tqaiL7++mthyzY/tZp5eLAjR54E7owxpZIRsQULWJMmzNqaKRQsL0+8Ei2DRqfZmLbx/bj3Z8bN/DPlT56zUyRdy8OHU3mcevRoXHS0/mvqlStiV1S5paSkREVFTZw48Ycffjhy5Ih5LpwuXbrUoUOHZ826eq6zZ8+2adOG//ivv/5V9BI3MJA5OzMi1qQJO3pUmJqhIrp372755ysrVzIiZnhDvEkTtnu3eAUBQCURFRXl6+trGLUXexdZp9MFBwfzLmpE1LRp03JH7Yb27NnTpEkT3plNoVDk5+dX8AnhuUaOZIsXP/mjVsuIWFQU69WL1a/P9PdZ9u1jDRqYu7a8vDz9hIZx48YVveuzYcOGatWqEVGbNm0uX75c1udPSkpSqVT8JUdELi4ucrkcN3sqhZSUlPXr15PJSKXSLVu24C2ossvKygoJCVEqlTKZzGhzb3d3dz8/P7VaffPmzfz8/BEjRhBRo0aNbqKbJ5SIB+6MsW3bWO3a7McfK0HgHhsbS0Surq4VP0+zcGYK3G/cuPHll1/279+fz53Uf2x07tx5zpw5W7duTUlJEWSgTZs2WVlZEdG3334ryBOa36NH7LXXGBGTSNi33zLDxry5uUwmY7/8whQKxvspt2vHIiLEq1VsBbqCwdcGN7zQ8LOEz75J/Kbz5c4Tb05kCNwr4FB6+ogLF2Jzc/nXHcP5qFBGOTk53t7eNWvWLHouFRAQEBYWVrRtS8UFBgY6OjoSUdu2bS9cuFC+J+ET5CUSSe/ed4YOZQkJxg+4dYv16cOImJUVUyhYAdaTiMrPz4+IVq9eLXYhJVm5krVowVxcWEzM4yMI3IExdv/+fbFLAMt14cKFl19+WZ88fvHFF2nPWFoVEhLStWtX/sgmTZoEBATkCTcnJSMjw9/fXyqVElGHDh3OnDkj1DNDsUoI3F1d2bx5j4+bP3C/fft2z549icjOzq7ohIbnZvGlp9FogoODZTIZfzaJRCKTyYKCgtDayJLNnj2biGxtbZ1Mw8bGplJHHC+yjIyMkJAQhULh7e1ta2urvyq0srLy9PR8Vl+H7Ozs/v37E5GHh0dC0YsxAMauX2fMIHBnjPn4sCZNWPfuLDaWzZvHTBA2CGPFihVENHHiRLELMTlzBO7Xr1//8MMP9SE7f1sJCgqqeMj+4MGDOXPm5D6dCf79999SqVQikfz2228VfH7zu3qVtWv3uEvy5s0lPfLECda6NSN6PNX9xbzb/fP9n6tHVU8seNyVIEebc6/gHkPgXgGH0tNHoVucELRa7auvvkpE9erVW7Zs2bvvvuvl5cXPlfWsra07d+789ttv//HHH5GRkQUVy60zMjJef/11/szl2LyrqF27ot3cGBGrU4ft2mX83cJCplQ+vvPXowe7fp0dOMCOHHnygORkFhxcwRKgVJYuXUpEH330kdiFlGTlSjZwIPv4YzZo0OPOAAjcX3Dh4eFz5syxtrb29PRUKpUx+lsxAIwxxjIyMr7++msicnJy8vf3T05OLvZhISEh3bp14599jRs3FjZqNxQWFsabwltbWysUilzMSDCZEgL3JUuYszM7e5Yxswfu27Ztc3V1JaKmTZueKtLZs+QsvtzOnTs3ffp0/aJwDw+PX3/9VagnBwFdunTJ2tra2tq63JNdnis0NJSIqlWrdu/ePRMNAQJKTEwMCgry9/f38vLi92v1V39eXl7+/v5BQUGpqaklP0lGRgZfxtq6deukpCTzVA6VhVrNbG3ZypVPBe537jAnJ9a9OxsyhBGxli2ZZS6BHj58OBGtWbNG7EJMzhyB+5IlS4ioY8eOwcHBpWwlXEr8zr+Pj4/R6qrVq1dLJBKJRLJq1SoBhzO1bdtY9eqMiLVpw0qzBjEnhykUTCplRKxjR1ak33LVNzZ27My4mUWPW3jgfu/evYyMDGH/LQiFz3C/mZvLvx5W9TU+psNnOVWvXt2wuWdhYWF0dHRgYKC/v7/RHAcisrGx8fT01M9/L9Oi0TNnznh4ePAT8XXr1gn1WyQlsREjHi+4kcuLuUl+6BBr3JgRse7dWZ8+zNaW6dc9h4ayevWEKgRKsmnTJiIaPXq02IWUhAfujx6xBg0YP7lC4P4iS09Pb9q0KQ+n9O+BnTt3Xrx4MZonAHfmzBmeoT+r1WRISAhPIoioTp06KpXK1CF4Tk6OQqHgS2lbtGhx6NAhkw73who5kvn5sd27H3/t2vUkcF+zhn35JevRg2m15gvcCwsLFQqFRCIhojFjxhQ9gddn8c2aNSuaxVfcw4cPAwICmjdvTkSDBw8+Yji7ASzDSy+9RET+/v4mHWX06NFE9NZbb5l0FCi3hISEoKAguVzu6enJ3zE4R0dHb29vhUIRHBxc1rUv6enpvFVap06dnrXGC140WVls8uTHV+iffMIUCmY4a2XNGvb11+ziRda1a0lX8SLKyclxcHCQSqXPmktRlZgjcOcbr2/btk3wZ46Jialbty4RjR071qj7T0BAAF+ns379esHHFVxhIVMomETCiNikSaxMM1OPHWMtWzIiZmPDlErjXYaqts6XO3+X9F3R4zxw352xO1drWfOP8vPzAwICXFxchg0bVrNmzYCAAEtbHHooPb1HZOQrFy/yr81Y7F8uKpWKryoNDQ0t4WEFBQXR0dFqtdrPz8/T09Nw+gPP3/kMiMDAwOjoaK1WW+yT8J1OeXbv5eV1nS8tE45OxwICmJ0dI2KensXc2EtNZRMnsogI1qcP69CB9e//eP4yAnezuXDhAp/8InYhJeGBO2NswwZWpw57+BCB+wtt4sSJRNS9e/eMjIzg4GC5XF67dm39u5+7u7u/v39YWJjOovZJBPM6cOAAEQ3kbxxPCwkJ4bOJ9VF7Tk6O2Qo7ceKEp6cnX7Y7Z84cE02of5GNHMlatmQjRjz5Mgzcc3JY8+bst98eB+4XL7JXXmELF7LgYFakJYMA7ty507t3b35WplKpjL773CxeQFqtdt68eUT0+uuvm24UKIctW7YQkaurq1A9cp/lxo0bdnZ2Uqn09OnTJh0ISi82NjYwMFAulzdr1szwOs7Z2VkmkymVypCQkAp+TCQnJ/PttXr16oWNlOHaNdahAyNizs5s48aSHllQwFQqZmPz+Crect42goODiahnz55iF2IOJg/c09LSrK2tbW1tHz16ZIrnj4qK4i2SfX19jbLLxYsX88w9KCjIFEML5f79xys+rK1ZkRO5UsnOfjLVvWdP9uLsc9krptfSxKVFj1Mk7crYZX3WutGFRoGpgTpmEVfsmzdv5pNTiKhRo0b8/3Tq1MlCZkhpdbqEvDy0lKm4DRs28K5W//zzT5l+8NGjR2FhYQEBATx/N5wZwaeue3t76/N3nkM9ePCA97eVSCT+/v6m20np4sXHH+329kylYsWG/336sD/+YM2bs7/+YgyBuxnl5uZaWVnZ2NhUsCuRiezYwf7880ngzhiTydgHHyBwf3GtXLmSX4teu/ZkLZpGowkLC/P3969Xr57+fa9p06ZI3l9YW7duJaJXXnnF6PhPP/3EXx5169Zdvny5OaN2vYKCApVKZWNj07Zt24s4axJaCS1l+AKpHTtYrVrs339ZgwaPd+TWf9Wowby9mb8/Cwxk0dHFn66UXnBwML/MbNKkyYkTJ4y+q8/ihW0jU4KwsDAeuplhLCil/Pz8li1bEtEvv/xihuE++ugjIurduzc+FkWXkZHB+1Dr1a5de+zYsQEBAZGRkRWcVGe0w018fLx+jQsamr3IgoNZjRqMiLVuzaKjS/Ujp06xtm0tqxP1zJkziWjhwoViF2IOJg/c+W7dMpnMdEOcPHmSbwc/depUo0mgn376KZ9nunPnTtMVUBHh4axBA0bEGjZkx45V6Kn273/c26GERKyKmXxrsu9N36LHKZK2pG/pdLkTRRJF0sBrA6Nyosxfnt7ly5d5myoiatOmzZ49exhjwcHB7u7u/KCPj09sbKyIFUY+ejTx8uXRFy+GpKUhcK+IQ4cO8Q4JP/74YwWfKjU1de/evUuXLh0zZoz+Do1erVq1BgwYwOeE1qpVK9j07dKzs5lczohYkyas2NWQffqwv/9mW7YwNzeWkoLA3XzOnz9fvXr1mjVrdurUSa1Wm+j2djmEhLAePRgRq16dBQQ8CdxjYli1aszZGYH7i+jatWvOzs5EtHbt2mIfoE/eGzRooH/Ha9y4sVwuDw4OLkSjsxdGYGAgEfn5+RkdT0lJad68uUqlMsXG42WiUCiIaPbs2eKWUfU8N3BnjL3yCuvYkTVowBIS2IYN7OOPmUzGatV6KnwnYi4urH9/NncuCwxkFy9eLv0bSGFhoVKp5EsPR48eXbSTQ8lZvInEx8cTUf369c0zHJQG32rC09Oz6KsrMDCwXcWEhIQYPeejR4/q169PRJViEX/VtmzZMjs7u+rVq0+aNOn333+/dOmSUHdBfvnllxo1akRERBgevHHjBj8vGjZsGFZWvYA0GqZUPp5i+8orxV+MP0tuLlMoHm+91qHD431QRMSXg7wgK3VMHrj7+fkR0Q8//GDSUY4dO8av39577z2jb3388cdE5ODgcFC/lYDF+O23PL7EY+BAVnQbjA0bWFn3Ic/IeJyIEbE+fdg1y21jLoydD3dan7U+nHlYf+SR5hH7X0sZLdMGpgbWvVCXIkkaKfW75ZdUYO7NRlJTU/39/Xm7T95DxvBsjHeY4beLbG1t/f39MzIyzFxhQn7+x7GxXhERXhERPhcu/Hv/PgL3crt48WKNGjWIaP78+cU+4PPPP1+yZMmePXue1ZG2BOnp6SEhIUql0sfHRz8DtE6dOq1bt75161ZFSy+1rVvZ0aPFf4sH7oyxkSPZO+8gcDeTDRs2ODo6EpG9vb1+Eev06dOPHz8uYlV79rCePR9/GNWrx378kf36KzPsDPHpp4yI7d7Nzp1juGp4ceTl5XXu3JmIpk2b9twHa7XaiIgIpVLZokULw3uNfn5+wcHBlrmeAwT0888/PyvOflaPNTP76quviOiTTz4Ru5CqpjSBO98XrmgP94QEFhzMlErm68s8PZ8k7zVr6qjIZjnPumcTHx/v7e1NRNbW1iqVyihEe24WbzpardbW1lYikYiysAOKSkpKcnFxIaJ9+/YV/e4PP/xAFbN58+aiT7t69WoiatSoUVaZutCC0Pr160dEmzZtEvZpdTqdr68vEdWuXdtoVxt9O+Vx48Zh/sEL5cEDNnTok5YY5buzc/w4a9XqcSdqhYKJdR4dHR3NQwwLOZczNdMG7lqtlr8pXDbYA/TixYum2Fw7NDSUxw1z5841PK7T6fiaBUdHR8vZZCYnJ2fq1Knt279tZ8f8/Y1f7gUFbM4cRsSkUmaw4WJp7dnDGjZkRMzRsepPdf/y3pd2Z+0GXxs8+dbkNpfazI+fz57eNDVdk664q7A7a0eRVCOqhipJlaczR7pTWFioVqvd3Nz4+bpcLn9WxpqQkCCXy/mJe4MGDdRqtXnefXK1WnVCQp+zZ70iIrzPnlUnJORptUcePnytlMuT4Gl3795t3LgxEY0fP77Yv0GdTsfjeK5+/fo+Pj5KpTI4OLgcPR/v3LnzxhtvENGECROEKF8A+sD9xg3m5MS++w6Bu2lpNBp969gpU6akpaUFBQXJZDJ9M6I2bdqoVCozb0cTFsYGDnwccLi5MZXq8S49UVHMcDJWdjZbtoxt2MCcnZmPj0UsbwQzeP/994moRYsWZV2HER0drVQqeQ9TztXVlSfvmOdVVVl+nM1nuH/99ddiF1LVfPAB+/PPJ3/U6VivXuz6dTZ1Ktu168nxFSvY8OHPearkZLZ3L/vmGzZ7dmKLFi2MmvVZW1t37NjxzTffDAgIOHLkCJ/1Ehoayq9eGzdufKzI6uOSs3hTMLq56OHhQUQxhhvkgXjefPNNIho7dmyx301JSblYMcXOxNJqtXy/aKVSadpfD56Nt022sbEp6yaopVFQUODj40NEdevWNfrHHhUVxbdofvPNN1+QvBLOnGFNmzIiVrs2O3CgQk+Vmclmzny8c+TIkTlXzNuK+vbt24GBgT169KDiGgZWVaYN3E+dOkVEzZs3Nzw4ZMgQiUSyy/CMSSD79u3jzRy+/PJLw+M6ne6dd94hIhcXF0tYuXD16tX27dsTUbVq1XbsuGT03eRkNngwI2J2dqzc/QDT059MdZfJ2J07Fa3Zkt3Jv7MxbeP6tPVnss/wdu17M/Zma5+atHI176rPDR/eYaZldMsdD3eYtKTQ0FD+V0xEQ4YMKU1/zzNnzvDthYmoW7du4eHhpitPx1hIWprPhQteERHdIiIUsbH3EHdVTEZGRseOHYmof//+z+qsV1BQsG7dunnz5vXr14+vyNGTSCStW7eePHny8uXLw8LCSjljJS4uTiKRODk5ib6sntMH7oyxhQtZzZoI3E0oNTX1pZde0l/zG37r6tWrCoWC5wVEZGtr6+PjExQUZOotmsPC2KBBT6J2pZI9d8XO+fPMzY0RsREjMM+96tu9e7dEIrGzs4uMjDQ8frYsS1t58u7l5aV//3R0dPTx8QkMDMROYlWM5cfZfEKPeRo3g1rNPviAVXA2+cOHDw8fPrx8+XI/P7/27dtbW1sbnYw1bNiQh/I+Pj6pqalGP15yFi84rVbbtGlTGxsbwx16hgwZQs+YTw1mFhkZKZVKbW1tr5l9Ufnx48clEomDg8Pt27fNPDRwvG3y4MGDTfT8+fn5w4YN4+82Rn/LJ06c4BeSaGj2IlCrma0tI2J9+7KEBGGeMySENW3KunX73N7eXqVSmfQKMSEhISgoSC6X893muZo1a9aqVcvMcb9YTBu4L1y4kIhmzZqlP5KZmWlnZ2dlZWWiXby3bNnCT56MTtA1Gs2kSZOIqEaNGkZXemYWHBzMZ7m2bt06ushU4rAwVr/+45buFe8HsHPn42dzcWFqNTt0iMnlzHB1wUcfscuXmVrNtm9/6gdnz2Zm7FFhPiGPQtpdasdjd9k1WXSu8FO5r127xleBEVHLli3LtGGvTqcLCgpq0qQJP+n39fW9Y4JbJZezs9+KieE9ZKZcvnwOCUWF5efn8+sfT0/PUq4s1mg00dHRgYGB/v7+3t7eDg4Ohpd8VlZWhkueS1g4zG8R//fff8L9NuVnGLjn5bHWrRG4m8r58+f5DhBubm4HnjHVQaPRhISE+Pr66gOFhg0bKhSKmzdvCl5PWNjj+8RErFatUkXtevrMfeRIZO5V2d27d/mSL6P9LTZu3EjPbsNVgtjY2ICAAG9vb/2UVQcHB568m785G5iCpcXZzZs3d3JyMuzhNnnyZCJao+9yAiaTkcFq12ZEbNs2IZ+2oKDA8GTM0dFRIpHUqFFj3rx5RlNHNRqNvo1MsVm8ifCLAsN9nt566y0iUqvV5ikAnkWn0/Xt25eIFixYIEoBr7/+OhG9/vrroowO/P3fpG2Ts7Ozedeali1bGvWHOHDgAG/tMG/ePNMVAOLKzWVvvfX48kouF7gDzMOHudOmTePnz/379xd2N8Fr166tWrVqypQpfPW/nqur6+jRo7/77ruBAwfyK9MbN24IOK5lMm3g3rNnTyLasePJbOKtW7cSkbe3t+kG3bRpE2+Z/e3THdA1Gs348eOpuH5Y5mF4rjZmzJii64/UasZbug8YwBIThRk0OZmNG/f4H6q/PyNihp/L9euzkBA2bhz79NOnfsramp08KUwBlqZAV/BD8g/Vo6pTJNmctZkfPz89N12QZ87MzFQqlXyNhZOTk1KpLHmde3R0dLGzY7Kzs5VKJf8QdXR0VCqVQu1F/qCg4Kvbt7tHRHhFRAw7f/6/Bw+02OC+wnQ63ZQpU4ioQYMG5Z5mUlBQcPbs2ZUrV77zzjtdunSxsbEx/HCysbHp2rWrXC4vGq1+9913lnO2vWYNu3DhyR9Pn2Y//yxeNVXXxo0bnZyciKhLly6lecklJCSoVCq+CJ2IpFKpTCYLCgrKF2Jdy6FDh95440991P7NN6wct/Cioh7vdDdunGj9BMGktFotvys5fPhwww4McXFxfNfB33//vdxPHhsb++233/bs2VOfvNvb2y9dulSIwkFMlhZn16pVi4gM2wOOGjWKiLYJmwFDcRYsYESsf3/TjlJYWNi1a1ciOnz4sOFxnU7Hp5paW1svW7bMDG1k9Pr3709Ehqd/ixYtIqJPja7cwOz++ecfIqpbt65Yt3jj4+P52aDltMx9cWg0Gj6H4OrVqyYd6OHDh3xJX4cOHYymq+7du5fHDjjhqZKuX2cdOzIi5uzM/v3XVKPs2bOnYcOGfM6KSqWqSJOi2NjYwMBAuVzetGlTwxyjWrVqMplMpVJFRETonz8nJ2fQoEF8AYc596IThQkD9wcPHkilUjs7O8NFvnK53AzvC3///bdUKpVIJL/99pvh8fz8/Jdffpl/Opp5CcODBw+GDh1Kz2j5l5mZ+eabBURMImEKBRN8Vce6deztt9mvv7KePVmdOky/DPEFDNy51MJU/3h/q7NWHmc96jaoGxAQUJGlNFqtNjAwkC8ylUqlfn5+SUX3wC1iwIABfJpMsZFZXFwc33CYvxMFBgaWuzzGWF5e3qrt2/udO+cVEdE7MvKnu3ezTdxc4sUxb948InJxcTl37pxQz2k05crW1pa/Er777jujR1pUV5kzZ1jjxmzJErHrqLp0Op1SqeSp4uTJk8u0Z5pWqw0LC5PL5XyHVT7LQC6Xny/HPiGMMcbCw8NlMhkREUl69sz46itWxqbcTzl3Dpl7VbZ06VIiqlOnTqLBbILCwkLeSG3cuHGCjBIfH69Wq318fKRSaffu3Xfv3i3I04JYLC3O5p/Fhrcq+YncoUOHxCvqhXD3LnN0ZBKJAGt/n4vf5vlbv17vf1avXt2wYcOwsDCTV/A0vlvPnwYt7QMDA4lo0qRJZq4EDGVnZ/PFB3/99ZeIZSiVSj79wtQ9A8FIeHg4Ebm7uxseHD169Lhx4wRfSPrgwQPei6Nz587p6emG3/rvv//4MtaiV4hQqe3YwVxdGRFr1YqVojNxhaSnp/OElohkMlmZ+ivExsaq1Wo/Pz+jmey1a9f28fExCtmN6BdwtGjRIkGoXjkWyYSBO7/xO2zYMMOD/MOpTP06y2f16tUSiUQikaxatcrweE5OzuDBg3mIaYqV9cWKiIho1qwZf/EVnaPKW7r36LHUxYUJvc31U379lQ0dytRq1qIF43OmX9jAnTubfXaKagp/X+jcubPRfJZSOnnyJF/JQUQ9evQ4ceJEaX6qsLDw888/541EnJycFi9eXGx2dujQoU6dOvEnHzhwYFRUVDkqDA4O5pNbx586Nff69Xh0bRDOr7/+ymeg79+/33SjZGZmHj169McffyzahIpZUleZTz9lROz998Wuo4rKyMgYPXo0Fde0nTFW+i0o09PT1Wp1ly5d9GdFXl5earW69P2vjx07xrdy4tMWFAqF0QVA+Zw7x2rWZETstddYYWHFnw8sxenTp21sbKRSqdH75GeffUZEjRo1ErzH4Ntvv01EAeXeBgcsA4+zDx48KHYhjDGWk5PDF08YHuRvpOJ2qnwR+PkxImaehJm/Ly1atKjot8q61bMgvvjiC3p6b8wjR46QiReLw3N9/vnnRNS1a1dxd63Mycnhk0mN4g4wtU8++YSI5syZoz/y8OFDGxsba2trQU6JjSQlJbVu3ZqI+vTpY7TRl36aqanbTCUlJQUHBysUCi8vL+zWK4i8PONdSdLTWV4eUyqZVMqI2CuvMBPsyFu8TZs21a5dm08iLPm1pA/ZGzVqZBiy16lTRx+yl3Id2MOHD7t160ZErVu3Ls101UrKhIE775lueMFz4cIFIqpXr5551uIFBAQQkZWV1fr16w2PZ2dn8wV6Hh4eZridolar+aSYvn37Fh1u8+bN1apVI6L27dtfv27ahoA8cNdoWLdu7IsvGDMI3GvVYq1bP/kieiECdy44OLh58+b8ncLHx6f0t2Hi4+P9/Pz4bNOGDRsGBgaW9YVt+AyNGjUq9hn49Pk6derop88nJyeX8vkvXLjAV/HzF9gh0+/v9EIJCgripzgVXH9QQZbTVaZtW0bELCMbqWpiYmLatGlDRG5ubqGhoUbfPXv2bLNmzcp6qh0REeHv788bevDo3M/PLyQkpIQfOX78uIBRe2oqM3ozO3sWmXtV8/DhQ/4Jq1AoDI8fOXLEyspKKpWaIk719/dH4F4FWFScnZSUxK8nDQ/y2QzXr18Xq6oXQVQUk0qZrS0zT6PXlStXEtFbb71ljsFKYfXq1UT05ptv6o/cvn2bX3eIV9SLLi4ujrf7N/+Kh6I2bNjA35qK9qoF0+nYsSMRGU4j4BvSDBgwwEQjxsXF8ZsrMpnMqNnsL7/8wlOCdevWCTvorVu3AgMDp0+f3qpVK8NodciQIcIO9GIKCGBEzHDKnJsbe+cdRsSsrdkPPzAzt/5NTk4eN24c/ysePnz43bt39d/iIbuvry/vpKRXt25dX1/fgICA0ofsRtLT0/nJXseOHc22OYqZmSpw12g0vNeh4bbdKpXKzCcxixcv5pm70d6VGRkZfFpoq1atEsvVLr2wsDAtLS05OTk2NvbKlSsRERHHjh0LCQnZsWNHUFBQYGCgWq0OCAgYMWIEfznOnTu34Ol18hqNRqFQ8LB14sSJRrcrTYEH7oyx06eZgwO7ceNJ4D5jBouJefL1gsxw18vPzw8ICOB3Pmxtbf39/UuexpKdna1Sqfj+4I6OjgqFovSTQ4synCPfs2fPYufIp6enKxQKfuemRo0aKpWq5P7Lqamp/v7+fJWZq6trQEBAIeIrQR05coT32V+2bJm4lVhIV5lr1x538cYLTXDBwcEuLi5E1Llz56J97gIDA/lLcfDgweU418nNzQ0KCpLJZPr+123btlWpVPfv3zd82IkTJ4yi9lLuD/wsaWmsWzfWpo3xhiWRkY8XUY4fj9dSVcDnXnTr1s3wMystLY2vd1y4cKEpBkXgXjVYVJx99epVImrRooXhQT4drPTTIKAcZDJGxD76yEzD7du3j3+emmm85wkNDTVK8TQaDV8zVPJOUWA6vr6+RDR58mSxC3mMzyP8yGz/SF548fHxEonE2dnZ8N8g7/5ktIOgsK5du1avXj0ieuWVV4yu63/88cdiI69y0Hfi1s9H5JycnLy9vRUKRUhIiFDby73gAgJYnTqsUaMnPTnd3NiePWzwYCbivgxr1qxxdXUlolq1ak2bNm306NH8j3qNGzeeMmXKqlWrDGPekhUWFp44cUKlUsXFxRX9bnJyMm+a1LNnT1FWkpmaqQL348ePU5HOVnxx6CaTtk0p4tNPP+Up6s6dOw2Pp6am8mYdLVu2XLx4sUql+vTTTxUKxYwZM+Ry+fjx4319fWUy2ZAhQ7y8vLp06eLu7t60aVNXV1cefJSSh4eHra3tv0V2Onjw4AHvfltscwAT0QfujLEZM9jYsS96SxkjCQkJcrmc72rboEEDtVpd7DrB4OBg/V4QPj4+guzzUMou8FevXuWbEPB7RYbbEesVFhaq1Wp+EWhtbS2Xy42CM6i4S5cu8c+ed999V+xaGLOMrjLffMOI2NSpIpZQBel0OpVKxd+UJk6caHRPpbCwUKFQ8DcEuVxewU1QY2JiFAoFX0xDRHZ2dr6+vsHBwYYNZJydnSsetXP377P27RkR69iRGexByBhjJ04wFxdGxD788AbaklZqfG6ms7Oz4a5iOp3ulVdeIaJ+/foJ8vc7ffr0Xr16Xbp0SX8EgXvVYFFx9pkzZ4ioa9euhgf5hnWIHkxn505GxFxdmdnmvfE7K0YXsCK6ceMGETVr1szwIO9TaiH3ol404eHhEonEwcGhTJ2OTers2bNSqdTW1tbUG3gC9/vvvxPR2LFj9Ue0Wi2/ir98+bJJh75w4QKf0vraa68ZnUHxdli2trZl3cBGq9VGR0cX24lbv91lWFhYBa8yoKiAADZyJHv5ZTZ37uMjbm6sXB2OBZaYmMi7mOrns9evX9/X11etVhfb3rZYhYWFERERKpXKx8enRo0a/Hn+7//+r9gH3717193dnYj69OlTkWmslslUgTtvOefv768/kpGRYbrOViXjuxo6ODgYrfy6f/9+48aNjdoPlZKVlZWrq2vt2rXd3d1bt27t5eXVu3dvmUw2cuRIX1/fKVOmyOXyd955x8rKytra+sHTccKZM2d4YlunTh1z9qY0DNxTU1mdOszaGoG7sdOnT/Nt3IioW7duxwzasERGRvbt25d/q2vXrkePHhV26MzMTKVSya/fnJ2dlUplsbNXQkJC2rVrx8uQyWSGb3yhoaEdOnTg3xo8ePCFCxeErRAYYwkJCfzf76hRoywkDbSErjI9ejAitn27iCVUNRkZGTyXtLKyKnpf9sGDB7xhlJ2d3cqVK4UaND8/f9OmTcOHD+cpPx+diFxcXD7//HNBona95GTWrh0jYp06MaMm3seOsSFDrltZ2b7xxhviNkiFcrt+/TpfN/bPP/8YHv/pp5+IqEaNGsVuGF4O/I7jSYOzFgTuVYNFxdkHDhwgooEDB+qP5Obm8nRDxKqqNo3m8X3Z5cvNN2heXp5EIrGxsbGQE7z8/HypVGptbW04oXXgwIFEVHILODAFrVbr5eVFRIsXLxa7lqdMnz6dX5iIXcgLgU9DWb16tf7IiRMniKh58+ZmGP3s2bM8vpw2bZrRwtYPP/yQiBwdHZ+7Lx0PQwMCAnx9ffW9Jbm6des+d7tLvUOHDllOA65KhwfuV68yR0fGN7i0kMCdMZaUlCSRSGxtbVetWlX60/W8vLyjR48uXrx4yJAhjo6Ohq+rNm3avPvuu8efvfX5nTt3+L3kok2TKjtTBe7802jPnj36I5s3byZTdrYqgU6nmzVrVufOnYtO9fX29iYiHx8fhUKxdOlSlUr122+/qdXqf//9NygoaP/+/SEhIREREZGRkbGxsTdv3kxLSytTizTeUubXX3/VH9FqtTwS7d+/f/m62ZSbYeDOGPvzT0aEwL0YOp0uKCiIL3iXSCS+vr7nzp3z9/fnwZObm1tAQIDpTsSvXbvG1yoSUcuWLYtdGlZQUBAQEFC9enUisrGx8ff3P3v2rP6nWrRoUfEFZVCsjIyMzp07E1GPHj3EbeFiSPSuMnfvMomEOToyi/lPUunFxMS0bduWiGrVqlX0ovrcuXP8pKRBgwal3Ki5rOLi4hYuXFi9enUrKys/Pz8TtdVLTmaenoyIde5cNHM/xuPaqVOnInOvdPLy8nhPRsPWw4yxixcv8t3Ci678KzcE7lVSXl6eRcXZW7duJaLRo0frjyQnJ/NzQhGrqtrUakbEmjdnZm6dUr9+fSIqduW7KPjMMMPIY+rUqUZ5H5jHH3/8QUSNGze2nEsALjk5mV8VGmYvYAq5ubm8g7/hznx8E93333/fPDUcO3bMycmJnp7byhjT6XRyuZzPkjl9+rTRTxUUFOhnHPNXi57h/OUydafMy8vDUpty44E7Y+zTT1mPHkyrtaDA/a+//iKil19++bmP1M9kl8lk/Axfz93dXS6XBwYGlvLz9Pr16/zzd9iwYVWpZ5pJAvfk5GSpVOrg4JCTk6M/yG+9mq19ihGtVlu0JZAZJt2vX7+eiHr16mV4MDo6WqFQmL+n9v377PBhpr9jpNOxiAiWkcGuXWNG/wpOnWJVbjFHmT169GjBggX6+eZ8JunHH3+ckZFhhtFDQ0Pbt2/P362GDBly8eLFoo9JTk5+++23+URU/gbn4uLy7bffYs2XiRQUFAwdOpTf0rC0Rj3idpX55RdGxF59VZTBq6AdO3bwU+HOnTsX3cZ5/fr1fNZAnz597t27Z9JK3nzzTSIScAZ9UUlJz8zcw8PDeeY+bdo0ZO6Vy5w5c4jIw8PD8BMzNzeXTziYOXOmgGMhcK+SLC3ODgwMJKIpU6boj1y/fp0sqfdIFZOZyerXZ0TM/BNIevfuTUSWsB8mxyeHGU5ZVSqVRPTFF1+IWNULKCMjg3fQtsxZTd9++y0RtW3b1mjTOBDWrl27iMjLy8vwIJ9hsHfvXrOVERISwjdw+vLLLw2Pa7VavndOjRo1zp49m5mZGRISolQqZTIZf7xhGOrn56dWqwXpjgvloA/cs7NZs2bsr78sKHAfP348Ef3yyy/Ffjc7OzssLIyH7EVfVzxkj4+PL8e4MTExvDvTuHHjqswGhCYJ3IveEtHpdA0bNiSi8+fPm2LE8uGT7vv372+6IXJycnhuEhMTY7pRSm/gQObkxCzmHLISiI2N7dChg4uLS7t27cx8C5d3Y+fNs3g3dqPeRFxkZGTjxo1dXFwGDx5cbOd3EIROp+PhY+3atS3wZr64XWWGDGFE7Om+EVAehk3bX3/9daMpVHyrbX5CU/Gm7aXx9ddfE9EHH3xg0lESEljLloyIdevG0tOfWjwUFhbG73e+9dZbJs3cU1JSjh079n//93+GbcSgfHbv3s17Mpx8eq3cO++8Q0Senp7Czg1E4F4lWVqc/fPPPxPR7Nmz9UciIyP5bVERq6rCli79duDAJQMGZJd9L/CKev3116lILywRTZ48mYj+/vtv/ZE///yTiPz8/ESs6gXEW9R6e3uXY4N6M8jPz2/VqhURrVixQuxaqrJZs2YRkVKp1B+5d+8eX2ds5j4Y27Zts7a2LjqftaCggHekdHFx4avzOSsrq65du86ZM2fLli2mmDcWFxeHBRZlog/cGWPbt7MGDZiLi0UE7hqNhjcaunHjhtG3vvjiC29vb1tbW/3rSiqVdu7cec6cOVu3bk0xmjlVLlFRUXz0KVOmVI3pViYJ3IveEjl37hwRNWrUyKI+ovik+2+++cako/B1f0a3H0WRkcFsbJi1NTN7F/3KbdGiRSJOJElNTdV3s6lZs2ZAQEDR2318Y3TDc3EQHA86q1WrFhkZKXYtxdB3lcnKyjLz0OnpzMaG2dgwQft7v4gePXo0ZswYekbT9pSUFP1W22a7mtqyZUspVxRWUGIia9OG9et3tVu3Hkbta/SZ+/Tp0wU58SosLIyNjQ0JCQkICJDL5TKZjG/Uw5ltRXBVlZSUxCenfP/994bH+RQHe3v7qKgoYUdE4F4lWVqc/dVXXxHRJ598oj9y6NAhU8/aeWHdu3ePN0wIDxfhDuiCBQuIaMmSJeYfuliffvopES1atEh/5ODBg0TUr18/Eat60Vy/ft3Ozk4qlUZERIhdyzMFBwcTkaura7EztEAQvKOjYcOWlStX0tMNx8xm7dq1UqnUysrKaGZnXl5ew4YNGzRoYGVl5eXl5e/vHxQUZKLmkNy9e/eaNWv2008/mW6IqscwcGeMjRrFiCwicD9y5AhfLlP0W127duUXqp6ennK5PCgoSJCQ3cjJkyf1S5wtKj0uH2sSmlarDQ0NJaLhw4frD+7evZuIRowYIZFIBB+xfBhje/fuJaKRI0eadKApU6b8/fffa9asWbhwobi/fkgIFRZS//70v42CoRKoWbPmihUr3nrrrXnz5h06dGju3LlpaWn8HgCYjVqtXrZsmY2NzaZNm/gnjaVp3Lhx9+7dT58+vW/fvnHjxplz6OBgKiykoUPJ1dWcw1Y1165dGzNmzJUrV2rVqrVhwwbevEjv/PnzY8eOvXXrVu3atYOCgviGaWbQunVrIrp69aqpB6pXj0JC8gYN8rlx4/rIkSP379/v4uLCv9W3b9/du3ePGDHi//7v/yQSycqVK8v0SZqSkhITExMTE3Pt2rWrV6/GxMTcunWrsLDQ6GEuLi6tWrVq3bo1byYA5aPT6aZMmZKcnDxs2LD58+frj8fHx/O+oj/++GOnTp3EKxAqjUePHhGR/n1AdLwefgVoeMSoEy4I4osvvsjOzn711Ve9vfuYf/SmTZsS0Z07d8w/dLGK1sMjP8up8EUwZ86c/Px8uVzOt6mzTKNGjRo+fPjevXuVSuWvv/4qdjlVUHR09O3bt+vUqWP4MuBNZl5++WXz1zN58uScnBwXFxd+uq5XWFiYkpKi0Whu3brVuHFjM1RSp06d1atXDxkyxAxjVRlNmlDnzk/+uGIF5eVZxNX0nj176BkZ6aJFiyQSSb9+/Ux6etazZ8+9e/cOGzbsr7/+cnZ2/umnn0w3lhkIH7gfP348LS2tTZs2Hh4e+oP8r43vIGohzp8/n5CQUL9+fd5R1HQGDRrUuHHj27dvHz9+nLfhE8uePURElvSXAKXVqVOngwcP/vfff0uXLp09e7bY5bxY9uzZM3v2bJ70DRs2TOxynsnX1/f06dObNm0yc+C+dSsR0dix5hyzqtm1a9fkyZMzMjI6deq0devW5s2bG37333//nT59ek5OTteuXbdu3cr3czaFhw8f7tu3r6CgwM/Pjx9p0aKFtbX1rVu38vPz+YYWptOokf3BgwcGDRp06tQpfsWoP5nr16/ftm3bRo8evXr1aolEolari83cCwsL4+Pjb968eenSpcuXL/P/k5iYWPSR9evXb9eunbu7u6enJ/8/zZs3t5wJAYJI1aReyL1ARF0du1a3qp6iSel/rX9EmwhHqaPpBl22bFloaGidOnX+/vtv/X9PjUYzceLEtLS0l19+ecaMGaYbHaoSywzcDeuxtAqrjCtXrgQGBtrY2HzzzTeiFGBpcTav5/bt2/ojjRo1srKySkhIKCwstLGxEaswM7l+nUJDaebMJ0d27yYbG+LzEsLCKDSUcnPJw4MmTDDRnLKQkJDdu3e7uLhY/oSnH3/88cCBA2q1+t133+3YsaPY5VQ1+myd934kovz8/IMHD0okElPP4HwW3qzPSEhISH5+vre3t3nSdiKysrIyTNt1Ol1OTg5fnwrPMnbsk8vn/Hzat49q1yZL+Fernypd9Fs+Pj7mqaFPnz5bt24dNWrUzz//bG1t/eOPP5pnXFOQCv6MRbP19PT0kydP2tjYDB48WPDhyo2/knx8fEx9jS2VSidOnEhE//zzj0kHKhljtHcvEZFIHwdVSkZGxvHjxy9fvmzmcV999dVz587VqVPHzOO+4DQajZub26xZs3h7KIs1YcIEiUSyY8eO7Oxssw2ak0MhISSR0KhRZhuzSmGMLVu2bPTo0RkZGRMmTDh27Jhh2q7VahcsWDBx4sScnBw/P7/w8HDTpe1ElJyc/Prrr/Pd2DhbW9tmzZpptdrY2FjTjavXuHHjQ4cOubu7nzhxYvjw4ZmZmfpvyWSy7du329vbr1q1asaMGYyx9PT0yMjINWvWLFiwYPz48d26dXNxcfHw8Bg6dOjcuXNXrlwZGhqamJhYvXp1Ly8vX19fhUIRGBgYERGRlZV17969kJAQtVo9Z84c3lKmiqXtXyZ+2Si60Zy7c+bfnd8kusnatLUaprmSd0XLtKYb9MyZM3wl359//sl3luMWL1587NixRo0aBQYGVrH/zmA6ljZ/HIG72cyfP1+j0cyaNatly5aiFFA04BZX0RsANjY2DRs21Gq18fHxopVlNtHRpFI9dWTzZtq+nYjo3XdpzBjKzKTq1WnjRmrblqKjBR9fo9Hw7u1KpdLwo80ytW3bdubMmVqtdu7cuWLXUgUVncx+5MiRzMzMTp06NWrUSLy6jIk46Z6INBrNm2+++cUXX5h74NxcCguj3bvpypUnB2/fJqO7p+fOUUaGmUt7LmtrWrSI1q+nM2eMv3XunFkruXv37sWLF52dnfv27WvWgYuQyWRbt261s7Nbvnz5kiVLxC2mQgRvUtO5c2ci2r9/v/7Iv//+S0SDBw8WfKyK4K+hLVu2mGGsS5cuEZGrq2teXp4ZhivWuXOMiDVqxCp/HyRzK9rDfd++fUQ0dOhQEasyhB7uJsXbAX/00UdiF/J8vJfxf//9Z7YRt2xhRKxXL7MNWNV8//33RGRlZfXdd98ZfSslJYU3lrG2ti7a0t0U+Fw5qVSak5OjP8jP183zWcnduXOH33Xo06fPo0ePDL+1Z88ee3t7Iip21oyVlZWHh8fIkSPnz5+vVqsPHTqUmJhotrItx9rUtfbn7A9nPm4DeTjz8P6M/YkFiRRJjzSPSv7ZcsvMzOTpmNFb5dGjR62srKRS6YEDB0w09IQJx7p123nmTLr+yMKFl7p127lq1S0TjQhmwPshzJw5U+xCHhs1ahQRbdu2TX+Ez79WKBQiVlX18O7kNWrUELEJdU5OjkQisbW1tZDt2nJzc/k21BrNk03F+/fvT0QHDx4UsTAz2bKFNWny1JFp09js2WzbNubgwGJjHx/U6dgbb7AePQQf/4cffiCiFi1aiHgVXyZpaWlubm5mvhx4EaSlpVlbW9vY2Dx8+FB/kF8kfvbZZyIWZkSn0zVs2JCIzp8/b/7RCwsLx40bN2LECMNLCXPYsoXVqsU6dGBDhjA3NzZoEOMfItOnM6MTiTp1mEVu7jpvHiNi/v5PHezdmxExoTc/KolarSaisWPHmm/IEv3333/Fbg5ciQjcUiYxMfH8+fNOTk78PICzwH4yZp507+np2blz56ioqN27d48VqfPC7t1ERCNGEKaXAZSJr6/vTz/9tGnTpmXLlhlOz3z48GFSUlKbNm1ErM2I+bvKoJ9MRWi12sOHDzs5OW3ZsuWll14y/NaFCxfGjBnDm7Zv3Lhx0KBBZqjH2tra3d396tWrN27c0Ddba9269a5du8zQxl2vSZMmhw8fHjhw4PHjx0eMGLF37159vD58+PCJEydu2LAhKyurRo0aHh4ehm1h2rZt6+hown4plUVgWuDUmlMHOA/gf+T/J6kwiYgKWWFcQVwpn0daINWl6Ur54A8//PD69eteXl5Lly7VH0xPT58yZYpWq1UqlaY73bp1q09EBGkN5u6npXlGRHhOmWKiAcEcLG3++LNmuBt2dYcK0ul0H374IRF98sknPDEUhYODQ506dZKTk5OSkho0aCBWGXr29vb16tVLTExMTEzUz6Lljd0tZxq+CHbupNdeI/2e5xIJLVhAnp50/z4VFJDu+R9eSRJJAWMlPyY1NXXx4sVEtGLFClM31hOKq6vrokWLZs+ePX/+/A4dOpiobCcnp1q1apnimS3W3r17NRrNkCFDDJde8ZYJYs0lL9bZs2cTEhIaN25s6rbJxbK2th49evTEiRNtbW3NN+rVqzRxIqnV9OabREQZGTRmDL31FgUHm6+GCpsyhZYvpw0b6PvvSd8qrEsXOnGC1q0js+1/ZGnJ7bhx4/7888+pU6d+8skn1apVmzVrltgVlZnAgfvu3bsZY0OGDNG/uTPG9u/fT5b010ZE+/fv12g0gwcPNttiVT8/v6ioqH/++UeswB0N3AHKh7fAu337dkRERPfu3fnBI0eOvPTSSz169AgLCxO3PEMTJkz4+OOPeVcZJycnUw9XWEi7dhERvfKKqYeqmqysrM6dO5ednW20cD4/P3/kyJEJCQk9evTYsmULn6hiHm3atOE7ixoG7mSWfVMNNWnSJCQkZODAgTExMXFxcZ6envx4VlbWzp078/LyNm7cOH78eHOWVIncyLvxuuvrxX7ret71Xtd6lfJ5ukd2PyMvsrT1GWrVqmVvb//vv/8aXmKlpKTwRamff/55KZ8HgLO0OLtoixtLuyVQGWVkZNy5c+fOnTu3bt2aNWvW2rVrz54926hRo/fff1/cwpo2bZqcnHz79m1LCNyJqGnTpomJibdv39YH7pbWaN607t8nw0kJly7R2LEUG0tGcxFatCCplG7coJEjS9My4sM2bdbFxDz3YU5OTr169RKrQ3f5yOXy7777Lj09vVWrViYaYsqUKeI2yzW/on1aYmJibty44ebmxlcYWwh9nWI18XuTp97/s23btrS0tLfeesuEQ65bR926kX7c6tXphx+oWzdKTjbhoELr2pXat6foaNq/n/SvsilT6LffaN06+uYbsrIyeQ0FBQUHDhwgIovatc7Pz0+j0UyfPv29996ztraWy+ViV1Q2AgfuRW+JREZGJiYmNm7cuF27dsKOVRHmv3UzefJkhUKxa9eu1NRU898QTk+nkyfJxoYsqYs+QOUgkUjGjh3LJ7nrA/du3brZ2NgcP348ISHBnHloyRo3bty9e/fTp0/v27fPDJPcjxyhtDRq145atzb1UFVW69atExISrl69ati63c7ObuXKlVu2bPn111/NPKOqaLzO13DElOKiVFgeHh6HDh3Kzs7Wp+1E9MMPPzx48MDb2xtpewlyWI69xL7Yb9lKbRvblnYHrVpOtUq53ZZOp0tPTy8oKLh9+3aLFi30x1u2bHnmzJlHjx7x1aAApWdpcTZ6uFdEbm5uYmLizafdu3fPcFPrYcOG8R1EVCqVg4ODeMUSETVr1uz06dO3b9/u06ePuJVwzZo1O3ny5O3bt/VNdV+sGe4uLvTRR0/++MMPRES2tlRY+NTDNBpijOzsqHFjKsU/zBp16jR+3qZHubm5qampqampGo3G8IOssLDw999/nzBhQt26dcvwi5jA5cuXIyIi/Pz8DNPV7OzszMzMrKysevXqmWhbXRHXoIhCq9XyjrKGgTuPtkeMGGFlhii01MRt4G7k33//nTNnzo4dO0w7zNWr5OX11JFOncjamq5fJyI6d+6pfSByckxbTAVMmkSffkpr1z4J3Hv3plat6No1OnSIZDKTF3D06FG+J4FJ9wwrh2nTpmVlZfn7+8+cOdPZ2XnSpEliV1QGQl4CaTSa0NBQejrIzsjIaNeuXb9+/QQcqIJEmXRft27dIUOG7Nu3b9OmTTNmzDDbuNz+/aTR0ODBZDG7TwFUJkW7yjg5OQ0bNmzLli3//fcf799nIczZVQb9ZCqudevWBw8evHr16vDhww2Pjxw5UpTpVEUDd37E/IE7ERlGt0T08OHDFStWEJFh0xIoqqlt01sFt4r9Vgu7FnHtS9tShtoTlfqEdunSpV988cWUKVOioqIMt5VzdHREnx8oB0uLsxG4l0pq6uMd6vj/3rpFd+40S0q6c/9+sQ93cnJq1qxZs2bNmjZtunr16ri4uM6dO0+cONHMVRdlafPHi9ZjaRWalr09DR365I8bNhARtWhBly499TD+Rw8PunixNM/6C9Evz3tMQUFBhw4drl279ttvvxme7c+ZM+f333+/ePHiqlWrSjOW6cydOzckJCQxMVGhUOgPLl68ODU11dvbOywsDHuVC+LkyZMpKSnu7u6GiwYsKtrm7t+/HxER4eDgYJ62ySVbtWrVwoULQ0NDTdLcJi+PTp+mo0dp+HDKySGj27RWVmRnR1lZREQFBU8teSlFvymxTJ5Mn39O27ZRRsaT1G7iRFq0iNauNUfgziclW+aCnvfff7+wsPCDDz544403rK2tK9HUK6mAzxUeHs7jdX7XnRsyZEh0dPTPP/8s4EAVJNakez8/PyISZfkV+skAVIRhVxn9QV9fXyLatGmTeHUVY8KECRKJhHeVMelAjD3ujIfAvSJEadhSgqL11K1b19XV9eHDh/efkZiYzbfffpuenv7SSy8NHDhQ3EosXH/n/n+n/p3P8s056KeffjpkyJDk5ORp06ax53XFBUsQEBAwfvz4tLQ0sQsp3rPi7EuXLq1du9YS6nkRA/eCgif/X6ejTZvo++/pvfdo1Chq356qVSM3N+rWjV59lT74gH76iXbsoAsX2jg62tvbu7u7y2QyuVyuUqmCgoLCwsJiY2MzMzOjo6N37ty5cOHClStXEtH3338vlQp5cVo+/ErWcuLsHj16vPrqq4ZJ34s1w71YEyZQcDCd+V/fs4ICWrSIRoygGjUEHMTW1va7774jooULF6akpOiPf/DBB3Z2dn/++eeZM6VtvGYK27ZtCwkJcXV1nT59uv7gjRs3fv31V6lUGhAQgLRdKDxbHz16tP7Io0ePwsPDra2tjTZhEtfu3bt1Ot2gQYMsYa5DYWHhkSNHDNP2pKSke/fulf8Zs7MpPJyWLaOhQ8nVlQYMoC++oOBgcncnozfD+/cpK4s8PIiIevakb7558vW/faEsUJMm1K8f5eU9ntPG+fmRREKbNz++fWBSfE8Ci+oEbmj+/Pmff/65Vqv18/Pbu3ev2OWUlpDnNCXcErGo1cS8TvPfjRw7dmy1atWOHz9+7do1c47LGPEXpEXerAKoBHhXGXo6Xh89erSTk9OxY8fi4+PFK80Y7yqTnZ3NVz6aTnY2jR5NffpQly4mHaeKE6thy7O0bduWiGJiYgwzU36RL+5dgZSUlF9++YWIFi1aJGIZlcIndT+RkKTP1T4rU1Zufrj5w4QPA1MDTT2oVCoNDAx0c3Pbu3cvX4gAliw7O3vp0qWbNm3q2LGjydd6l0uxcbZOp5PL5X5+fiNHjjTnJ69Go+nXr1/Pnj3t7Z80ayra1b3KKiykzz6jevXI0ZGcnGj8eEpIIKmU3n6bPvqIfv2Vdu6kS5coK4tq1KBOnWj0aPL3px9/pC1bKDLyv4iI3Nzc2NjYkJAQtVqtUCh8fX379u3r7u6uTwOlUmmXLl1q1arVq1dpN5kwKUuLs8eOHbt582Y+z4Nr0qSJVCq9e/euRqMRsTAx9etHCxfSoEE0YQK9/z517Uq3b5NaLfg4o0ePHj58eHp6Om95xHl4eLz//vs6nW7u3Lli3WMuKCj4+OOPiWjx4sWGDV7mzJmTn5//9ttvd+vWTZTCqqSik9n37dtXWFjo7e3t6uoqXl3GLGrS/axZswzXqsbFxQ0YMKDMpxxpaRQcTB98QD16UI0a1K8fLVhAoaFUUECdOtH779OQITRoEO3YQQY9ykitpubNn2yqXHn4+RERGc4r8PCgXr0oO9vkW8DeunUrJiamevXqFvJBXKwlS5a8//77tra2FjtfpCghA/cePXo0aNDA8n95sfbedXR05JndBr4UzlzOnj1bt27/MWNWGjTCBYCy0c9n159YOzo6Dhs2jDG21fA2tAUw3dT7hAQaP/7x572zM/36K02YQOZ9P6tqLG2Ge82aNWvVqpWZmZmUlKQ/aAlFfv3115mZmaNHj7bks0ALUdO65pk2Zya4Ttj/aP/m9M3OUucB1QY4Sh3fdnvbVmr7/J8vr4YNGwYGBkokkgULFpw7d850A0HFOTk5nTp1auDAgQkJCaNHjx4/fvyDBw/ELuopGRkZVCRwl0qlc+fOrVWr1p49e9q3b79ixQqdWdaGW1tbh4SEnDx50vDgCzTDffZs2rKFduyg/Hy6epU0GhoyhHJzado0mjuXAgJo2zaKiqL0dEpPp6go2r6dVqygefNo7Fjq2tWpFDtX2dra3rx5MzU1dcKECYVGjbnFwBu2WE7gXpStrW39+vU1Gk1CQoLYtZhYjx70669PHZk5k/gGjJ99RlFRNHgwNWtGKhWdPUv/21RWWD/++KONjY1arb5w4YL+4Jdfflm/fv3jx48HBQWZYtDnWr58+fXr1z09Pd999139wdDQ0N27d1erVg2zEwQUHx9/8eJFZ2dnwybJvJGyRTXfKCwstMCquFu3bg0ePHjGjBmGL9dnSUxM3LhxY9jixdSxI9WuTa+8Qj/++Hg5S69e9NFHtGMHpaZSVBT99BMNGECvvEIjRlCfPvTbb7R1K/n70zffkFptjm1GhebrSw4OdOgQGU4qmDKF6OkU3hT43Zrhw4ebaOMHofTo0SMrKysw0ORziQTDhHPo0CE+k33ZsmUCPq2wUlNTrays7OzsMjMzzT96SEgIEXl4eOh0OrMNyj9xZ86cabYRqxj+H/CLL77QH+Fzh4cOHSpiVYbeeOMNIvr777/FLqQq0+l0fP/A06dP6w/ym2d9+/YVsbCi4uLiJBKJk5NTVlaWsM985QojYvXrs/T0x0cmT2affCLsIC8WrVbLV31mZGSIXctj3t7eRHTw4EH9ka+++oqIPvzwQ7FKunfvnoODg0QiOXfunFg1QCm99957RNSiRYtHjx6ZZ8QePRgRO3nyyRF/f0bEAgLMM34lptPp1Gp1tWrViMjV1VWtVotdEWOMZWZmqlQqZ2fn6tWrv/vuu3l5eUYPSEpKeu211/hVTL9+/a5evSpKnXyzxMTERFFGN5+EBCaVsmPHnhzJymJ16jDhzjlzcnIuX768adMm/p903LhxGo1GqCcvn6ysLCKyt7c35/VaWfXo0YOINm/eLHYhL4T333+fiAYPHmx4kDdwb9SokeDn28+VlJTEl9fs3btXf7CwsJD3y/3+++/NXE/V9vvvv/O3JsODhYWFhw4dunv3rlhVFXXgwAEiat++vdiFGLt8+XLjxo1XrVpleNDo3TUhISEoKEgul3t6evLFT35t2zIiZmPDvLyYQsGCg9nDh88cQ6Nha9awSZPYyJFszhx26dLj4//8w9avf+qRH3305LsWydeXETHDPDUlhQ0adKljx3eSkpJMNy6/T2P5gdLkyZOJaPny5WIXUlpCBu6MsaCgIL5N83fffSfsMwtl3bp1IkalWq22UaNGRHT8+HGzDcrnAwYHB5ttxCoGgTtwc+bMIaKPPvpIfyQ7O9vJyUkikcTFxYlYWFH8Muy///4T9mmvXGFWVmziRDZjxuMjCNwrrmPHjkR05swZsQt57K233iKi33//XX/kv//+IyIfHx+xSpo5cyYRjR8/XqwCoPTy8vI6d+5MRG+99ZZ5Rty9mwUGsgcPnhxB4F4mt27dGvq/DQlffvnl+Ph4sSp59OjRkiVL9Mvz+SV3+/btDe9z6wUHBzdo0ICIHBwcVCqV+SNaBwcHIsrOzjbzuOa2fz9zdjY++OqrbP78sj6TUWMZPz8/mUzm7u7Om7a7u7tHRUXxv/2pU6eKnnTzHh0We0Nl+/btjo6OTZo0sbKy8vHxCQkJEbuiKi4tLY2/JLZs2aI/qNVqeduWhQsXmrmeadOmEdErr7xiePDHH3/kN7yL3qeEivDx8SGi//u//xO7kOeYP38+ESkUCrELMbZmzZr1T6feWq323XffXbJkyR9//DF58uRGT69NqVat2vDhw7/75hsWFsZevBfz9u2MiHl6PnXwlVdeMWnKnJOT4+joKJVKTZrpl1VgYODYsWMNP+C0Wm2dOnWISKzJFuUgcODOGPvrr7+kUqlEIjG8XLccU6ZMIaIff/xRrAI++ugjc843F3dGf9WAwB248PBwImrcuLHhdeC4ceOIaMWKFWJVdefOnaIH+RZP48aNSysiPj4+9mk3b6bGxrLr11lERPFfR4+ykBAWEsKio5mVFYuPZ87OjN80ROBecbwF0Nq1a8Uu5LFly5YREW9LykVHRxNRy5YtRann9u3btra2VlZWly9fFqUAKKtLly7xdRvr1q0TpQAE7uUQFBRUs2ZNIqpevbparTZz3JmVlRUQEMAnOBORt7f3gQMHjh07xne5kEqlcrm86BzS9PR0uVzOf6RXr16XzDhnraCggIisra3NNqJo1qxhzZoZH5w5k02c+Mwfychg58+z4GC2YgWbPz/l3Xe9vLwMe0wbsbOza9my5ciRIxljx48fd3JyIqIFCxaY8rd6Ph6knjRcO2MZ8vPz58yZw29HeXh46LdJ69y586pVq3JycsQusMriG8m4u7vn5ubqDx47dkwikTg4ONy+fdtslURGRkqlUltbW8PIKTU1lb+H79y502yVvCCGDRsmlUqjoqLELuQ5eAfIo0ePil3Ic6SmpjZt2tSob0mtWrVeeeWVH3/88cyZM6IvchJXQQHr2zetX7/Ac+fO6w/yVrFeXl4mGpT3k+nevbuJnr98+DbFq1ev1h85fvw4ETVv3lzEqspK+MCdMfbzzz/zmSmG/3Usgf6WCN8RThQ8uahZs6Z5bj6vXbuWiF566SUzjFVVIXAHzgK7ykRERDg7O/v7+2u1WsPjly5dkkgkpWzB1r//JiJWmq/Tp5mVFWOMLV7MOnRgBQUI3AXw+eefG73DiGvbtm1ENGLECP2R/Px8Kysra2vr/Px889fz1lvTicjPz8/8Q0O5qdVqHt3evHnT/KMjcC+fu3fvjho1in8uvPTSS3du3TLDoDxqr1evnj5qDw0N1X83NzdXqVTyzzJ3d/cDBw4UfYbdu3fzj2YbGxuFQmGGt6mbN29OmzbNxcXF2dk5ICDA6PO3qjl4kNnbM6MbMGPGsI8/Zrm57Nw5tnUrCwhgc+awMWNY587M1dXo1EHzv79cOzs7d3d3mUzm5+enUCjUanVISEhsbKxRtrJ//347OzsiUqlUZv1Nn/bqq68S0b///mt0PDk5efHixWLNAYyLi+vTpw+/2aNSqXQ6XWJiokql0s8PrV69ur+/vyhvvFWeRqPhSxK/+eYbw+MTJkwgookl3IISlE6n453EjSYy89bYMpnMPGW8UD755BMiat++fUpKiti1PFNsbCwRubq6FhYWil1LSfLz81999VVbW1siqlevno+Pj0qlioiIqOKfpGU0e/ZserqZZ25ubo0aNYgoOjraFCPyhpBKpdIUT14+eXl5zs7OEonEsHHTF198QUTvv/++iIWVlUkCd8bY8uXLicjKymrDhg0mGqIc+H5Hot8S6dSpExFt3bq1fD+elpaWmpoaGxt7/fr1iIiIU6dOhYSE7N27Nygo6Pr160YPrnRNjiwQAnfQs6iuMjdv3uTzASdNmmQ4G7GgoGD48OH8rKuohg0buj9t7Nj/3N2Zhwfz8ir+q29fJpMxmYxFRDwO3PPzWevW7KefELgL4J9//iFL6pdy5coVnm0ZHvTw8CAi888xv3qVtWiR36/fLzdu3DDz0FBBr732mqOjo5/f9oICcw+NwL0igoKCateu7WJnl9OuHVOpmMmugfPy8tRqdf369XlQ2Lt372c1P4yKiuratSufyiOXy4tuD5CRkeHv7887k3Ts2NF0HbquX7/+xhtv8OaZ+pnFQ4YMiY2NNdGI4nvwgNnYsP37nxx5+JDVqME2bmQREcXfnHd0ZJ6e7OWX2axZbNkyXVDQyZMny9Sb5b///rOyspJIJH/88Yfwv1HpfPDBB8WG/kuWLCEiW1tbX19fMzdy2bFjB5/C3KRJE6PepPn5+UFBQTKZjL8mpVKpTCYLDg4WvTNPFcN7ZDs7OyckJOgPxsfH82UZR44cMUMNfC5d3bp1Hxr0s46Ojra2tra2tjZRGPeCe/DgAW+O37lz57S0NLHLKV5AQIA5b/yUT3Z29vDhw0ePHr1nz56isRXonThxgogaNGhgeEP6nXfeIaJPP/3UFCPyCz2LWtTFA7cuXboYHuSLz3bv3i1WVeVgqsCdMbZw4UI+32T79u2mG6VMlEolEb333nvilqHv9mB0PDIycuLEib6+vsOHD5fJZD169PDy8mrRooW7u3vNmjX1TS1LYLRHiiXM6K8CELiDXrFdZfg0qADzpjspKSl85eCgQYMMJ/TpdDreg9vNzU3w7ma8hzu3fz+rWZONHInAvaLOnDnDQyKxC3msoKDAxsZGKpUaLprmG+mU+z5xuU2cyIiYXG7mYUEAaWlpffteJhLhLeL6dXbwIBOvFXmld//+/YgPPngcnvbtywRvlJmTs/H33/Wz2nv37r1v376Sf6KwsFClUvGJzw0aNCj2yuLo0aOtWrXiUbhCoRB2Ient27flcjkP2W1sbPz8/GJjY0XvI28mH3zAmjZl+/ezzEwWHc2GDmVeXqyggKWksPbtmY8Pe+899v33bNMmduYMu39fkDH/+usviUQilUrFmrn1008/UXEtQMPDw8eOHctvuhBRt27d/v77b8OPS1MoLCxUKpX8ltKoUaNSU1Of9cjTp0+/8cYb/F8KEbVu3frnX3/O0FjKruxVwJgxY4ho6tSphgd5wtClSxdTz9LNyclp0qQJEf3555+Gx/k+HIbNAEFYycnJvMVZ7969LbNPL38NWE6DymIdPnx4+vTpVfazUlD8Mn+/wd3uI0eO8Buugr/P8LlWbm5uFrXOYO7cuUT02Wef6Y8kJydLpVIHB4fKtX2OCQN39r8FOLa2trt27TLpQKXUvXt3IhK9mISEBCsrK1tbW6N1STt27HhupE5ENWrUcHV1dXd39/Dw8PLy6t69u0wme+mll3x9fY32SOQ3x0Sf0V/ZIXAHvWK7yvz7779E5O3tbbYycnJy+JriDh06PHx6x3a+0srBwcEUOzMbBu6MsfHjmVSKwL2iHj16xBuAWs5ZDg+tLl68qD8yb948MvsC/+hoJpUyW1tmls4WILxTp5iNDZNKmdmmgdarx3r0eDIne+VK1qePmYaugnbuZI0aMSJmb8+USibIUoX8fKZWs4YNr/btS0SdOnUKCgoq/U9HR0fzLcGJyNfXt+jq/pycHIVCwcPQFi1aHD58uOIl37lzx9/fnyeYPGo3nJeXlpam7yPfu3dvc/aRNx+tln37LWvVillbs/r1mVzOnh34Cuibb77h/81F6UkdHBxMT3dXM5SQkKBUKmvXrq2/NPP39zdRF+/4+Pi+ffvyO0lKpbI0pwrp6ekBAQFNmzYlop4LelaLqia/I7+Yc/G5PwjPFRsba29vL5FITp06pT+Yk5PD/2ubel/NL7/8smiyz5s716xZ05IbnlQBcXFxzZo1I6IhQ4aY+h5bWWVmZtrZ2VlZWT0w3EEeKjM+d/mNN97QH9HpdM2bNyciQc5tDP3www9ked07+dVoeHi4/shff/1FRC+//LKIVZWDaQN39r89Qh0cHA4ePGjqsUp2//59qVRqb29vCbdE+E1Io5WS8fHx69atCwoK2r17d0hIyMmTJyMiIq5duxYbG5uSkpKWllbWOIZ/Kos+o7+yQ+AOhkTvKqPRaMaOHUtEjRo1in96DueqVauIyMrKykQzkY0C93v3WPXqCNwFwOdI3rKYXJnvUbNp0yb9kT/++IOIpk2bZs4yxo5lRMzf35xjgsAWLWJErG5dZp6Ox/XqsWrV2MqVj/+IwL2iHj5kcjmTSBgR69SJRUaW/6ny89lvvz1O8Il0PXrsK1eKqtVq1Wo1b+BQt25dw7cpvRMnTnh6etL/WtCUezZiXFycv7+/vb09EUmlUl9f32vXrhX7SPP3kX9BKBQKfhVpnmYdejqdjm9IVrNmzX379j2rMUteXl5QUFDv3r157G6KRi4HDhzgzQMbNWpkmDuURmFh4ebNm/0i/CiSKJIkkRLZNdnW9K0aHaaXVsiCBQuIqFevXoZ/0evWrSOiOnXqGM2DEVBcXJyjo6NEIjHcFTMvL69FixZE9Pvvv5toXNC7fv06b4M2evToAvP3y3u2LVu2mHnuF5jajRs3JBKJk5OT4TnMp59+SkRvv/22sGPxdmTr168X9mkrotg9CcaPH09Ev/zyi4iFlYPJA3edTjdz5kwicnR0NM+myfHx8cWelgUGBpYwVcHM1qxZQ6bfaNFCZvRXdgjcwZDoXWX4riY1a9a8cuWK4fFdu3bx1e6m+xwqKGBGjWoTE1lKCvvpJ4ZZNRUxaNAgItq7d6/YhTzG75QvXbpUf+Tw4cN8/qbZaoiMZBIJc3BgBjvlQOWj1bLBgxkRGzHCeNtFU6hXjy1ZwmrWZMnJjCFwF8qRI6xlS0bErK2ZQsHK2qqloIAFBjIPj8c9atq3Z0FBFXw1xMbGDh48mKecPj4+hv2U/zdmgUql4tuyNW/evKy9tpOTkxUKhWHU/twWbWbrI/9C0el0fCtIFxeXiIgIM4xYUFAQGBjI+zXr+8a0aNFCpVKV0Ls5IiJCLpfzFwwRtWrVKiAgoIJ9JzQajb6NzJAhQyqyTWtMbox/vL/zOWeevDe40EB5T/mgsFQzYbO12VnarHIPXSVlZmbyeRL//POP/qB+L9OPP/7YROPysGnSpEmGB/mmAu3atbPwrTKrjIsXL9aqVYuIXn31Vcv5bz59+nQi+vrrr8UuBITEl7Mbtgm6cuWKg4PDO++8I+AoWVlZfHmERS2RWbFiBT29J0FhYSHfNrbSbetl8sCdMabT6d5++20iql69umEfBgHdu3cvKChILpfzKS116tQpOrng9ddfJ6KffvrJFAWUVVZWFt9113T7LPEZ/ZWuyZEFQuAOhsTtKrN06VIisre3DwsLMzx+5swZZ2dnIvryyy9NXYMRhYIRsVGjzJGmVVUzZswgohUrVohdyGOrV682WlqYmJjIb/OYrYaRIxkRM9l1K5jP3busVi1GxMzwAq9Xjx09yl57jfE1uAjcBZOdzRQKJpUyItauHTPopVASHrW3aPE4am/XjgUGCrULq06nU6vV1apV4w091Gp10cecPXu2S5cuRFSrVq1Spp/3799XKBQODg76qL1M2yCZtI/8i0mr1fIrODc3N5Nu3J2VlRUQEMAbZBNRkyZNvvrqq4ULF/JTPiKqVq3a7NmzS6ghKSlJpVLpH+/i4iKXy8vXZSg5OZkvhraysiplG5nnytBkqB+oPS958tjd7qyd703f41lPtR9MKkj648EfnyR88tP9nxILEhljCxIWTLtt1sVtlQLvbNCwYcOsrCd3I86ePSuVSm1tbQXfQokxFh4eztsPGnYuunv3Lj/5N2z0DKZ27tw5vrXem2++aQndIHU6Hb8DdP78ebFrASH99ttvRDR8+HDDg4bvOYLYunUrEfWxsNPl4cOHE9GaNWv0R3gL+7Zt24pYVfmYI3BnjGk0mokTJ/Jz4siKrEg1cPv27cDAwKlTp/JmRno1atQYNWqU0XoujUbD70ZazobIU6ZMIaLFixdX/Klyc3PT0tLu3bsXGxsbHR0dERFx9OjRjz/+2HJm9FdqCNzBSAldZe7cuWO6cdetW8f3ENu8ebPh8djYWL7iePLkyQIuZC6l+PjHaZp5d42tUpYvX05Es2bNEruQx8LCwoioR48ehgf5tIL7Am2IV7JjxxgRc3Z+PE8ZKrudO5lEwuzs2NmzphoiK4vl5j4O3OPimLMzO3QIgbvQwsJYq1aMiFlZsY8+Ynzfs+PH2SefMLmcffMNu3nz8SO1WhYU9HhePBHz9GSBgcwE+6QlJCTwFlj8jLdoY7eCgoKvvvpq3bp1z30qo6jdx8cnKiqqHCVlZWXNmTNHKpU61HAYcn6IUaAJ5VBQUPDyyy/zfNMUvdcyMjICAgL0u/i2aNEiICBAf7NEq9UGBwfLZDKJRMIf4O3tHRQU9KzJrRqNhj+eP1gikchksqCgoNLvE3jo0CHetqJOnTplXZzxXFqm3Z2xe+SNkdJIKU/e+8T0WZ+2vkBXcPDRwWpR1QZdG7QgYcGY2DE1ompczbuKwL1YOp2O7ydheHnIGHvrrbeIaPTo0cIOp9Vqu3XrRkSLFi0yPO7n58enWgs7HDzX8ePH+a0OS+jcGxERUXTtNVQBqampfO55YmKi6Ubh+9AsWbLEdEOUVU5OjoODg1QqTTa4DuS9vD744AMRCysfMwXujDGNRuPr60tEtWvXLveeQgkJCYYz2fWqVasmk8lUKlVYWFixHbV4F4hWrVpV7JcQEg9tGzduvH///qCgoKCgILVa/ccff6hUqq+//lqhUHz00UdyuXz69Om+vr5jx46VyWQDBgzw8vLq2LGju7t7o0aNXF1dHR0d6dnatWv322+/if2LVnoI3MGIKF1lDh48yFfHGw3x4MEDPp9u8ODBYvWN5WmajQ07eVKU8Su9PXv28L9BsQt57MGDB3x2nuFBfm1ptLTCRHgTErOv1gATmjWLEbGWLdmjR0I+bXY2Cw5mfn7M2ZmtX/84cGeMLVvGPD3Zb78hcBdabi5TKpmNDRs1ijHGFi5kzs5s/ny2YgWbMoU5OLCdO9mDB0+i9jZt2Pr1Qs1qf5agoCA+q8bFxSUgIKCsUw4fPHigVCr5ZHmJROLj43O2wreGjh8/7rvLlyLJ6qzVvPh52VosNq2QnJyc/v378zRcwOghMTFRqVRWr16dXzd17do1MDDwWcl4TEyMv78/T9mIqEGDBkqlsoQtCs+dOzd9+nR+C4dX/sMPP5SciOl0OpVKxVvZDBo0yKQhy428G4q7ilrna1EkVYuqllKY0vBCw/fj3tc/4Ez2GR3TIXB/luPHj0skEnt7e8ObQMnJyfzlJGyTwJUrV/LrDsNl6ydOnJBIJHZ2dpYzm/CFEhoayrtIffbZZ+JWwnfXnDFjhrhlgCmMGTOGiJYvX266IfiGz0WnROt0OrFu4ezYsaPoxK+OHTsSUWhoqCglVYT5AnfGWH5+Pp+hULdu3dKv0NSH7EYz2fUhe0RExHPPrT/77DMimjNnTkV/B+FcvHjR3t6er0iqIFtbW1dX13r16rm7u3t6enp5efXt21cmkx04cEDs37IqQOAORszfVebChQv8DN6oNWROTg7frcvLy6uC3UIr6P33GRHz8GAZGSJWUVndvHmTiBo2bCh2IU+cPHnSqF8tn0i1evVqUw999CgjYjVqsGf3y4XKJzeXderEiJggWz2lpLDVq9nIkczW9nGuK5Wyzz57ErgXFLB27ViPHgjcTePMGXbvHouMZFLpU+1lli1jtWuznBw2cCBr3pyp1cxcLW6TkpJee+01flbcr1+/UrZ0SElJUSqVLi4u/AdlMplQy3AZYwW6AlWSyvasLUVS84vNQx4JPFX5RZORkeHl5UVEHTp0KKGdeildv37d39/fzs6O/9V7e3sHBweXsgy1Wq2f+GVnZ+fr63v8+DPXMTx8+DAgIIBfw5Z8inj//v1hw4bxuz4KhaL0M+IrIkub9ceDP35I/uFM9hmKpORC42VlCNxLMHnyZCLy9fU1PLhs2TIiatu2rVCbaj569Igvv9i4caP+oE6n69mzpyWkvS+y7du329jYkOmbp8fGxv7111/Tpk37888/i36Xb9q3Y8cOk9YAoti8eTMRde3atRw/m52dnZaWlpCQoO+BER4eHhISsmPHjqCgoDVr1qjVaj5tvG7dukbZukajeeutt6ZPny5K5j5r1iwiUiqV+iPx8fESicTZ2bkyduoza+DOGMvJyeG7wzVu3LiEVYFJSUmrV6/28/PTN8Lj3Nzcxo4du2LFivPnz5dyAotWqz137py7uztZ0pZ0//zzD5+c3rFjR5lM9uqrr/r6+r7zzjtyuVyhUCxYsEClUi1btkytVq9atSooKOi///4LCQk5ePBgREREVFRUbGxsXFxcWlqa4F2coKiigfvVq1c//PDDVatWiViVIQTu5mfOrjLx8fGNGjUiotdff93wfU+j0fD73s2bNzfpNKjSyMtjXbsyIjZ+vLiFVEpardbe3l4ikTwSdvavoPj+AYaveRPp358Rsa++MvU4YG6XLjFHR0bE1q8v5zM8eMACA5mPD7OxeZyzW1kxb28WEMD4rpn6wJ0xdvQok0gQuJvS11+zvn2fOpKby2xtWVgYS0oyW9RuKDg4mLeydXBwUKlUJUSWqamphlObZTKZibY5PZ9zvtuVbhRJkkiJ3y2/1MJUU4zygnjw4EHbtm2JqFevXuWeZBAZGenn58dnkfPeQeX4q9dqtSEhIb6+vvqNVb28vNRqdW5u7rMev3379oMHDz7rCY8cOcJfurVr1963b19Z66m4oLSgmueL2aYFgXsJ7t696+TkRESHDh3SH8zPz+cLT4XaN+6DDz4goj59+hgmX3///TcR1atXLwPzXES1efNma2trIvr++++FfebY2NjAwEC5XN6sWTN9FObj42P0sOTkZGzaV4Xl5+fXrFmTiObNm/fZZ58pFIpZs2bJ5fJJkyb5+vqOGDFCJpP17t3by8urTZs27u7udevWdXV11d9LLo1mzZrVrl3bKEmIioriCzhEaeHi4eFBRKcM5nOo1WoiGjt2rPmLqThzB+6MsezsbP2qwAR+hVQEn0HM1a5d28fHp5Qz2TmtVhsdHa1Wq319ffkiU3t7e1tb2+HDhz9rRLMpLCxUKBT8V/Pz88Obo+UrGriLJSUlZdGiRUW7RiJwN79iu8rMmjXr/fffL9pDtiJSU1PbtGlDRAMHDjS6qTt79mwiqlWrVpm2dDOd69eZiwsjYqafA10FdejQgYgiIiLELuSZNm3aREQvvfSSSUfZtYsRMTc3gRuPgIX44w8mkbCyTsiLi2NqNfPxYdbWxjm70a3Gnj2ZwbojNnMme+01AcqG4r399uPdaQ15eDBRz0bS09N5Q1Ii6t27d9Emlo8ePVKpVHxTCh61Gy5WM4VCXaEqSWV31o4iqf6F+lvTt5p0uKotPj6ex08ymaysM93CwsJ8fHz437udnZ2fn1/FN7e8ceOGQqHggQgR1a1bV6FQlOk8UKfTBQQE8HmyAwYMEOtC9b/0/1yiXIoeR+BessWLFxNRp06dDG/vbd++vXHjxlu2bBFkCLVaXbt2bcPFN5mZmfz2jOGOgiCWv//+WyqVSiSSYvfuLj2NRhMZGbl8+fKxY8e6ubkZRqJ8yuny5cuL7izC9+8dOXJkRYYGS/bZZ5/x5Sxl5eDg4OrqWr9+fX0PjD59+shkspdfftnX13fKlClyuXzmzJn8I7VTp05GS8f27dvHg/svzdvi8/LlyzwBNgx++RTDlStXmrMSoYgQuDPGMjIy+OKXVq1aFTsxMysra/z48T///HN0dHQpFzJoNJozZ858//33Pj4++tNozt3d/aWXXuLTWNzc3IKCgoT+hUrr7t27vP+DnZ2d6Xo9g7AsIXAvLCzk51tE9PPPPxt9F4G7+el0uiZNmhjdfRVcbm5u3759iahdu3bp6emG3+Kn+A4ODuHh4aYroKw2bmREzN6enT8vdimVDW+GUJqd/cTy3Xff8d611atX9/Ly8vX1VSqVQUFB0dHRZe2YXIKTJ5m3N/vhB6GeDyzOqVPs8mW2adNTE6A3by6mg9Dt2ywggHl7M4nkcc5ub898fFhgIHv67RBE8t57bMIE44MNGjCDvgdi2b17N18ja2Njo1Ao+AYnmZmZKpVK38tRJpOdNOPGI9fzrg+4OoBvU+l70/dB4TN7f0PJrl+/zjtsjBkz5lk7lxriu57yPSeJyMXFxd/f/969ewKWlJubGxgYyDvM8ledr69vafY7ffDgwYgRI4hIIpH4+/uX5tcxkaicKIqkuHzjWwUI3EuWm5vL4yqjsPVZax3KPYrhHz/99FMi8vLyEvDsCyri559/JiKpVLq+jCv4CgsLIyIiAgICfH19jfoM16tXz9fXNyAgoOQpp/zy4ddff63wLwGWKzQ0VKFQLFmyRKVS/fLLL2q1eu3atUFBQbt27QoJCTl27FhERMTly5djY2Pv3buXlpZWpvef+/fv8yZpXbp0Mcrct27dyhdwmLppkqHvv/+eiN4wmM+Rn5/Pd9kRvIuAeYgTuDPG0tPTu3btSkQdOnRISUkp35NoNJpnvUnVr1/f19dXrVbfvHmTPzgxMXHUqFH8u76+viXscmMiR44c4SeIjRs3NucpPlSQ6IH7gQMH+OxXIho8ePCFCxeMHoDAXRS8q8yHH35ooufXarV8I9aGDRsazZZau3atRCKRSqX//fefiUYvt2nTGBFr145h9U6Z8I1GzDyJoJQKCwvnzp2rjyqKzqFwcnLy8vKaMmXK119/vXXr1mvXrpW++ey337KlS5/88epV9sEHLD+fzZrFDPOQc+ewh2rVsWQJI2KGW0DZ2TH97L3YWOOc3cHhcc6OpfOWZcUK1q7dU0eSk5lUyiq846ggMjIy/P39pVIpEbVv337mzJmGUfuxY8fMX5KWadUP1M7nnCmS6pyvE5gayI9nabN2PNyhfqDe+XBnni6PMTYvft7Hdz8u8cleaBcuXOB/m2+++WYJE7Py8vICAwN5fw8iqlu3rlKpTDfl/bqIiAg/Pz8+XZ3nF2q1+lmrmU+fPs2zWjc3t927d5uuqtLQMm3L6JbTbk/TssfRnkanYQjcS2Hjxo18PqZJX1p6N2/e5E0IzbOJPZQS77toY2Pz3N0gsrOzw8LCVCqVTCbTb6pslF9FR0eXZtCCggI+o7SERs0Az3X37l3exaV3795G7do2bdrEO6d999135ilmyJAhRLRhwwb9kZCQECLq1KmTeQoQnGiBOzO4ndK5c+fS735TQsju7u7u5+enVqtLeNMJDAzkd0jq1Kkj1FKv5zJcLTho0KDkZOMdacCS8cB99OjR5p9HcP36dV9fX/7ybtGiRbGLMwoKCnr06IHA3fyK7SojIB7ou7i4nH96uviBAwdsbW2JaMWKFaYYt4KyspinJyNi77wjdimVypo1a4hoQtHpomJLSUmRyWREZG1tzV9yaWlpERERgYGBCoXCx8fH3d1dIpEYRfBeXmnu7szHhykULDCQRUSwnJzin79fP0bE9Fs9HTrEatdm+fmMiBlebmzaxJo3N/XvCmayZAlr357VqMHi4x8fsbNjISHs889Z27aPQ3a+ca6fH9u27ZkvHhBZfDxzdHzSQEarZdOns44dmRhbbD3L0aNHed7KWy17e3sfOHBA3JJu5N0YdG0QRZLdWbu4/LiTWSfrXqjreclz0q1JHS93bBXd6l7BvVlxs+bEzxG3Tgt34sQJvujK39+/6HczMjICAgJ42w0i8vDwCAgIEHbScQnu3bunUqkaNmzIR69evbq/v79+Bhh7+sKwR48eFhKWnc4+Xed8na5Xur4f9/4bt96od6FeuiYdgXtpDBgwgIjmz59vhrHGjRtHT0//BAvxySefEJGtrW0J98/mzJmjvyFHRBKJpF27drNmzdqwYUPp20lptdqoqKiffvppyJAhUqm0ndGdb4Cyi4uL4zeAhwwZYvRZqW+a9Pvvv5u6jMzMTDs7OysrK8MJ2fPnzyeiTz75xNSjm4iYgTtjLCkpibcn7tWrVwmbxRmG7EXbxfCQ/fbt26Uc9Pbt24MHD+Y/7uvrW+759aX06NEjvtjHnJvOg4ASEhJ43tS1a1ezzSbIyspSKpW8c5aTk5NSqSy2VWVISEi7du2IyM/Pz9SvZDBi0q4y3333HRHZ2dkdPnzY8PiFCxf4XIYFCxYIPqhQLlxgDg6sR4/tGzduFruWSuP06dPPunsvygbx3Llz55o3b86nbhnuCWYkLS3t2LFjq1atmj9//rBhw5o2bermptXHpvzLxoa1acNefZV99hnbsIGdO8f46Vy/fszHhzVrxvgW4AjcXwRLlrAJE9g777Bx4x4fsbNj+/czqZQRsZo1mZ8fCw5m+fmiVgml8d9/rFo1NmgQe+st1qED8/Bgly+LXZOxrKysP/74Y/369SW8iZmZjunUD9TLk5fn6/KbXGzy9p23+WxiHdNtSt+k0WkQuJdGSEgIP0/+ymCX7aSkJKVSqb9a7NKlS2BgoCgXX/n5+UFBQd7e3rwSqVQqk8mCg4PT09P5+kXeRqagoMD8tT1Lhibj37R/lyUtC0wNvJl/kzF2NvvssSwRloNULufOnbOysrKxsTH1pkoHDx4kImdnZ9E3pYNi8R1uHR0djxw5UuwDFi9ebGVl5enpKZfLg4KCSt9xwTAN4zsUckOHDi3a2B2gHK5fv87vUr/00ktGudMvv/zCP7NWm3ijti1bthBR3759DQ/yuPjo0aMmHdp0RA7cGWNxcXH8er5v375Z/IKbMfa/nlYqlcrHx4cHTEVD9nL38dHpdGq1ms+MqFev3vbt2wX6bYzFxMTwWfwuLi5mm1APglu7di2fqCKRSCZPnhyvn5VnAjqdLjAwkHcfkkgkfn5+xe5zcOXKFd72kYhat269Z88e05UEz2K6rjKhoaHVq1f/559/DA/evHmTvzBef/11EUPY0lizJlwikbi4uNy4cUPsWiqHjIwMInJwcCi6kkYul8tksqCgoHzzBpAbNmxwdHQkIi8vr7J+2mZmstOn2d9/M4WCjRrFPDweZ6mGX1ZWbOFC1q8f+7//YwMHMoWCMQTuLwYeuN+/z1xdHy9u4C1lvv2WhYYyTEuoZFJT2caNTK1me/awMm5iCUczj1qdtSrazx2Beylt2bKFd5j98ccfb9y44e/vb29vz8+Nvb29n9vbwTxOnjw5ZcoUfm+AT3gnolq1au3cuVPs0kAwfK9mk+5dqdFo+D4BhneYwKLodDr+SnBxcTlz5kzRB6SlpZUwx9RITk7O4cOHFy1aJJPJ+CItvWbNmr3xxhurV6++fv26oL8BvNBiYmLq1q1LRGPHjjXaU2T58uVEZGVlZdjsRXDvvPOO0VvczZs3icjV1VXEPU4qSPzAnTF2+/btpk2bEpFMJjt+/PizQna5XB4YGFimnd9LdvPmTb4EjE91L31bm1LasGEDz/Q7deqE1Kmyy87OViqVvNWao6OjQqEwanEliFOnTvXq1Yu/Jnv06HH8+PGij0lPT1coFPzEvUaNGiqVqtjJ72AGvKuMk5OTt7e3v79/YGBgKZvulYbRkoWUlBR+g3fgwIGV4m980qRJPKutFNVagvr16xOR0WqtgoICNzc3/p5Qp06dDz/88MqVK6auRKPRKBQKPqifn1+OEB098vNZdDQLCmIqFfPzY15ezN6e/fHH48Cdr4q4ePGpwN3dnbVp8/irYUME7lUHD9wZY7//zpo1Yzk5T/VwB3hx/J3yd+OLjYseR+BeeqtWrZJIJHxjGx4HTJgw4axlbCRgKDk5WaVSNWnSZMaMGT179jTsMANVwP379/m6il9++SXKNPhmP82bNzdbcyQoB61WO3HiRCJyc3O7ePFiWX88KysrJCREqVTKZDL97UOjKad49wDTOX/+fM2aNXk6arQ4bOHChVS6jQrKjTcPOHfunP4I35HYAnuulp5FBO6MsStXrtStW9ewp5VhyG66CcV8qjufxNe0adPQ0FBBnrawsFCfVkyePPlZu+VApRMfH+/n58cbFjdq1CgwMFCoicZ3797VP3PDhg2LfWatVhsYGFinTh0ikkqlfn5+SUlJgowO5aPVavnqTkP169f38fFRKpXBwcFC/QXl5OTwVcnt27c3z6ZMFffo0SPeOXfu3Lli11I5DBw4kIj27dtndDw9PV2tVnfu3Fn/GvPy8lKr1aa458cYS0lJGTp0KBFZW1urVCpTDMHl57OcnMeBO2Ns/nzWv/9TgfuOHezKlcdfK1YgcK869IG7Vsu6d2dLlyJwhxfU6pTVzS42K3ocgXuZfPfdd9OmTbOzs/Pz8zN1T48KKiwszM3NtfBFilA+P/zwA59pZyISicTOzm7zZnRrtHQFBQWjRo0iojp16pRmlkxGRkZISIhCofD29ubbdHFSqZQ3nxF2yilAyU6ePMn3vJw6darRwuvSbFRQblFRUTxIMfyIHDlyJFXyrQoljDHTfTCUycWLF69cubJ06dKBAwcOGDCgf//+tWvXNs/QsbGxU6dODQ8Pl0gk77zzTgU/L+/fvz9x4sSDBw9aW1svXbpUn7xDlXHq1Kk5c+acOnWKiHr27LlixYqePXuW+9lyc3N/+umnpUuXZmVlOTg4+Pv7f/7550VfgYcPH547d+758+eJaMCAAQEBAYYBHIjo3r17kf9z8uTJlJQUw+/Wr1/f63969+6tn61cejqdztfXd8uWLQ0bNjxx4kTjxo2Fq920IiIivL29CwsLt27d+sorr4hdjqWbMWOGWq3+6aef3n///WIfEBkZuXLlyg0bNmRmZhKRi4vLK6+88sYbb/BNJgRx/vz5sWPH3rp1q3bt2kFBQfwegEn1709Tp9Jbb1FmJrVtS2PGUFAQ3b1LdnYUHU3t2j1+2ObN9PHHdPOmqcsBc1i6lKKj6d9/iYgiIkgmo6wsOn2aunYVuzIA8zqQeWDEjREPOz10lDoaHp8dP9tGYhPQKECkuiqlhw8fGm30BWBOBQUF165dmzx5some38rKavv27ZXoKuBFVlBQMGbMmD179jRq1CgsLIxvR2koKSnpzJkzx44dCw0NPXfunE6n48etra07derk7e3dt2/fIUOG8LnGAGZ2/PjxYcOGZWVlvffee3yOud5HH330/fffOzo67tq1S9jrRI1Gc/z48QcPHvBtTogoNzfXzc0tLy/v3r17vNdNpSR24m8pCgsLVSoVb9PRvHnzcm+sFBYWxtsCNGzYsNh+IFA18Mnm/F9+RSabBwcH6z+DfXx8bt26VfQxpptWD6aQkJAQHBysVCp9fHxcXV2N3nIN57+Xso2Vv78/EVWvXv38+fOmLl5w33//PRG5urqWfl/rF9by5cutra2bNGny119/Ge5oYiQ3NzcoKEgmk/H3BCJq27atSqUq/c5Lz/Lvv//yHpFdu3Yt9xYpZaWf4c4Y27iR2digh3vVp5/hzs2cyYgwwx1eRJnazBpRNb5O/NroOGa4AwBUatnZ2f379yeiFi1a3Lt3jzGWkJAQFBQkl8s9PT315/BEZGNj4+XlpVAogoODHz58KHbhAIwxFhISwpsaGS1V1+l07777LhE5OTmFhYWZtIZdu3YRUffu3U06iqkhcH9KdHS0l5cXEUkkErlcXkLkUSy1Ws274gwYMKDYjS6hisnMzFQqlfw+jbOzs1KpLH276sjIyH79+vEP2q5duxa78zJvHM/f7BwdHZVKpSDNlMGcYmNjAwMD/f39vb29efcqQ7wfX0BAQFhYWLG9p1QqFRHZ2toK1fDKzHQ63ejRo4moX79+lXe3E/PIycmZN28ef2G4uLi8++67p0+fLuHxMTExCoWC95giIjs7O19f3+DgYE3ZN53kTdv52f+UKVPM+T5jGLgzxkaMQOBe9R07xrZte/LHtDSmUjE0SIMX06b0TbZnbX1v+v6Y/OMnCZ90u9ItR5uDwB0AoLJ7+PAhT5bq1q3bsGFDwwtAFxeXESNGfPPNN+Hh4fn5+WJXClCMvXv38phr4cKFhse1Wu2UKVP4dMCIiAjTFfDee+8RkVKpNN0QZoDA3Rif6s77Z3l4eBQbgxaVmZk5YcIEntT7+/sXFBSYuk6wHNeuXfP19eUfny1btgwKCnrujxQUFPAlgXXr1l29erVReyzGmE6nCwoK4psJSyQSX19fTBCuAgoLC6Ojo/X5u9FmONbW1p6envr8PTc3d8OGDVKpVCqVluZFZbFSU1P5Fiiff/652LVYunLMXs/Pzw8ODvb19bW2tuY/0qhRI4VCUfp3jNTUVPM0bS9WTAwz/OVSUlhUFNPp2PHjzDD2T01llrcHHpTTypXs99+fOiKXM1OesQNYtGt5175K/Gp23OwliUtOZJ1gjO3J2LMvw3g/DwAAqFwePHjQtWvXYcOG8ZBdJpOpVKqwsDCERVApbNmyhV9gfvPNN4bHNRrN66+/TkRubm7RhjOkBOXh4UFEJ0+eNNHzmwcC9+KdP3+eN8i2srJSKBQlT1u+evVq+/btiahatWqbNm0yW5FgUUJCQvjLgIhkMtlz9yVfv379Rx99lJGRUfRbvPM1fyovL6/w8HDTlAwiy8vLO3Xq1K+//jpt2rQOHTpYWVkZ5u92dnZ8xczy5cvFrrSijhw5YmVlJZVK9+/fL3YtlUOxs9dDQkJKaCd1584dpVLJ723wDy8fH5+dO3eWPND58+fd3d35CdPBgweF/j0AijFjBnv77aeONGzIgoNFqgYAAADANLRa7bVr1y5duoSWsFAZ/fPPP1KplIi+//57w+Nl3Ry4rK5cucKvT4vOTK1cELg/U0FBgVKp5BFYu3btzpw5U+zDtm/fXr16dSJq06bNpUuXzFwkWJSCggK1Ws13xbS2tpbL5WXtqnzv3j25XM7f1OrXr69Wqyv7WwyUXkFBQUREREBAgJ+fn6enp1Qq9ff3/+yzz8SuSxgLFy7kSzrQbqv0yjF7XavVhoSE+Pn5OTg4EJGfn18Jz69v2t6lSxesoQGzQeAOAAAAAGD5/vzzT4lEIpFI/vjjD8Pjubm5MpmMh6XCZlb37t3jXWtKvpKtFCSMMYJnO3Xq1NSpU2NiYqytrT/44IPFixfzbjNEpNVqP/vss2+//ZYxNnHixFWrVvHkAl5waWlpixYt+vXXX7Vabc2aNb/88sv33nvPaPJyUQUFBb///vuXX3756NEjW1vbGTNmLFmyxMXFxTw1gwXKyMiQSqXVqlUTuxBhaLXaoUOHpqambtmyhS8Qg9JLSEhYu3atWq2+desWEUml0sGDB8vl8jFjxvBlEEU9ePDgn3/+6du3b48ePYp+1/Dza/LkyatWreIBPYAZzJxJGg2tWvXkSKNG9PvvNGqUeDUBAAAAAEARP//8s7+/v1QqXbNmzeTJk/XHc3JyJk2a9Nlnn3Xv3r2CQyQlJYWFhYWHhx87duzs2bOMsTFjxrz77rvDhw+v4DOLC4H78+Xl5S1cuPD777/XarUdOnQIDAzs0qXLgwcPJk2aFBoaam1tvXTpUoVCIXaZYFmuXLkyb968ffv2EVHbtm2XL1/O27cVa8eOHXPnzr158yYR+fj4rFixgjd5AKhKUlJSnJ2djTrXQ+npdLqDBw+uWbNm8+bNubm5RFSvXr3x48e/8847+n5WpZGWljZx4sT9+/fj8wtEMXMm/fUXGU5RePiQtm1D4A4AAAAAYHGWL18+f/58KyurdevW8d0rKy4uLu7IkSOHDx8+evTojRs39MednZ379u37wQcf8Bn0lRoC99I6fvz41KlTr1+/bmNjM2nSpEOHDsXFxTVo0CAoKEjfbhvAyHOT9JiYmHnz5u3du5eI2rRps3z58sp+Ew8ATC09PX3Tpk2//fbb+fPn+REvLy+5XD558uTnLrSKiYkZO3ZsTEyMm5vbxo0bBw8ebPp6AZ4ycybl5FBAwJMj7dvTH38gcAcAAAAAsERKpXLx4sU2NjZbtmzx8fEp35Pcu3fv2LFjoaGh4eHhly9f1h93dnbu1auXt7d33759+/fvr28rUtkhcC+DrKysjz/++I8//nBwcMjJyRkwYMC///5br149sesCi8Z7xXzxxReZmZm8V8zSpUurVavGO8/89ttvGo2Gd56ZPXu2vlMzAMBzRUZGrly5cv369VlZWUTk4uLy+uuv+/n59e3bt9jHBwcH+/n5PXr0qEuXLlu2bGnWrJlZywUgIrSUAQAAAACobBYsWLBs2TJbW9vt27eXfp6oPmQPCQnh/VE5HrLLZDJvb++ePXs+q1FqpYbAvcxCQ0Pz8vJu3rw5a9YsxKNQSgkJCQsWLFi3bh1jrGHDhoMHD965c2d6erqNjc3MmTMXLlzo6uoqdo0AUCnl5ubu3Llz5cqVoaGh/Iinp+cbb7wxffp0voczETHGvv32208++YQxNmnSpFWrVjk6OopXMrzQELgDAAAAAFQujLH33nvvt99+c3R03L1794ABA571yJs3b/KG7Pv27btz547+eLVq1Xr27Fm1Q3ZDCNwBzCciImLOnDnHjx9v2rTpnTt3hgwZsnz58g4dOohdFwBUBTExMX///feff/754MEDIrKzsxs9erRcLu/evfubb765fft2NG0HS4DAHQAAAACg0mGMzZgxY+XKlS4uLiEhIT169NB/6+bNm7xXzJEjR+Li4vTHa9eu3bNnz759+8pksi5dukilUjEKFwcCdwCzYoz9888/rVu3vn///iikCwAgtPz8/G3btq1evfrgwYM6nY6IqlevnpGRUbt27aCgoIEDB4pdILzoUlKIMapd+8mRO3eodm3CogsAAAAAAEum0+neeOONdevW1ahRY82aNYmJieHh4YcOHbp7967+MXXq1OnRo8eLGbIbQuAOAABQBd29e3fdunV//PHHoEGDYmJi1q9fj6btAAAAAAAAUG4ajWb8+PFbt261sbEpLCzkB+vWrdu/f3++8WnXrl0lEom4RVoCBO4AAABVllarzc3NdXZ2FrsQAAAAAAAAqPQKCgrWrl174MABqVQ6YMCAAQMGtGzZUuyiLA4CdwAAAAAAAAAAAAAAAbygnXQAAAAAAAAAAAAAAISFwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAAAAAEgMAdAAAAAAAAAAAAAEAACNwBAAAAAAAAAAAAAASAwB0AAAAAAAAAAAAAQAAI3AEAAAAAAAAAAAAABIDAHQAAAAAAAAAAAABAAAjcAQAAAAAAAAAA/p+9+45r6mrjAP4kYSMgbnDjQHECbnBjXai1ipu6qVbFWm2prRbX29JaLdW6WqulWq1UreIWrYMhCjhxi4oKiouNjJDz/nFsvARExJvcAL/vxz/0JNz7pA3Juc8953kAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAERQlhPuiYmUmfnqn3l59OABMSZdQAAAAAAAAAAAAABQdpXlhHv37rRz56t/3r1LtWtTaqp0AQEAAAAAAAAAAABA2VWWE+4AAAAAAAAAAAAAADqDhDsAAAAAAAAAAAAAgAgMpA5Au0JDSaV6+ffHjyUNBQAAAAAAAAAAAADKtDKecL98mV68ePn39HRJQwEAAAAAAACAMi0lJeXBgwcODg4ymUzqWAAAQBplPOH+0Uc0ZszLv8fG5uuhCgAAAAAAAAAgokOHDg0fPnzIkCHbt2+XOhYAAJAGargDAAAAAAAAAIjg5MmTROTk5CR1IAAAIBkk3AEAAAAAAAAARMAT7l26dJE6EAAAkExZTrj36EG1a7/6p7k5DRhAhobSBQQAAAAAAAAAZVRSUtLly5eNjY3btGkjdSwAACCZspxw79uXnj179U+5nAYPJjMz6QICAAAAAAAAgDIqNDRUpVK1b9/exMRE6lgAAEAyZTnh/tNPNHQoHTv28p+3b5O3t6QBAQAAAAAAAEAZFRISQqgnAwBQ7pXlhDsRtWtHM2ZQbq7UcQAAAAAAAABAmcYLuHfu3FnqQAAAQEplPOHu6UlmZrRsmdRxAAAAAAAAAEDZlZmZee7cOQMDg44dO0odCwAASKmMJ9xlMvL3pyVL6M4dqUMBAAAAAAAAgDIqPDw8JyfH0dHRwsJC6lgAAEBKZTzhTkSdOtGIETRzptRxAAAAAAAAAEAZxQu4o54MAAAYSB2ALvj5UZMmdPiw1HEAAAAAAAAAQFmEhDsAAHBlMOGemUmffUbjxr0aqVKFvv2WPv2UiCgjgxYsoPnzydJSovgAAAD00r///rtnzx5/f3/+T0tLS4VCQUQymaxixYp80MDAQL1L2sTExNTUlP+9QoUKhoaG/O9WVlZyuZyI5HK5lZUVHzQ0NOzataubm5tuXguUZydPnmzYsKGtra3UgQAAQDmSm5t7+vRpmUzm4uIidSwAACAxGWNM6hjEdO4cjR5NV69S8+ZkY0Pvv08ff0xEpFKRqytdukRjxtDatdSgAf31F7VpI3W4AAAA+uHx48dNmjR58eJFVlaWlk7h5uZWt27d9evXa+n4AMePH/f19Y2IiMjJybG2tnZwcHD+T9OmTfl9IACAt5KXl3fhwoXQ0NCwsLDGjRs7ODiMHDlS6qBAH4WHh7u4uDRr1iwmJkbqWAB0ZMPDhw+ys9X/dKtUqRMWtwIQUVla4c4YrVhBPj6UnU1Nm9KmTRQfT/Xrv3xULqeAAAoNpe7d6fx5ioigjh3pq6/o668JF18AAPkwRjt30u7d9OgR1a1Lo0ZR9+5SxwRa5+Pjk5SU1Lt374MHD/KRlJQUlUpFRCqVKiUlhQ/m5uamp6fzvwuz8+np6bm5ufzvycnJ/Ha+8AeTkpJWrlx55MiRkSNH9uzZU1cvC8qRy5cvv//++ykpKQ0bNnz27FlSUlJYWFhYWBh/1MrKqnXr1o7/adq0qYFB2ZkGA4C4MjMzz549GxYWxvPsSUlJfNzKyiolJSU2NnbevHnSRgh66OTJk0TUpUsXqQMB0J2TKSl1TEycKlTg/6z234ZXACgjK9wTE2nCBNq/n4jI05PWriUzs9c+OTeX5s+n778nxmjAANq4kSpX1lmkAAB6b+ZM2rqV5s6lhg3p3Dn67jvy86MZM6QOC7QoPDzc1dXVyMjo4sWLjRs31tJZlixZMn/+fEdHx6ioKKw1BnE9evSoQ4cOcXFxQ4cO3bZtm1wuT0hIiI6Ojo6OvnLlyuXLl69cuSJ8vqGhYaNGjdTr352cnMyKmDsCQDmQmJgYFhYWEhISHh5+9uxZpVKpfqhRo0YuLi6urq5ZWVmffPKJUqlctmzZp7xiKcB/+vfvv3///i1btmAPBJQf465dG1i58gdVq0odCIDeKQsJ90OHaNw4evSIqlal336jAQOK9VNBQTRhAj17RrVq0ZYthL4mAABERGfPUtu2dPYstWr1cmT7dhozhu7fJ0ykyqi8vLy2bdueO3fu66+/XrhwofZO9OLFiyZNmty7d2/z5s2jR4/W3omgvHnx4kX37t1Pnz7dtm3b48ePF5o6T05OjomJif7PtWvX+AYOTqFQ1K1bV12CpkOHDlXxiQdQDty+fZuvYQ8NDb169ar60lihUNjb27u6urq4uHTr1q1OnTrqH/njjz/GjRtHRL/++uvEiRMlCRv0kEqlqly5cnJy8r1792rXri11OFCm8BmLfq5WQcId4HVKd8I9K4t8fGjlSmKM3NwoIIDeqj/W/fs0ahSFhpJCQfPm0fz5pFBoLVYAgFLB35+2bqXTp1+NMEZVq9LGjcW9nwmlzcqVK729vevUqXPlyhVzc3Otnuv3338fP358rVq1rl+/jgXFIAqVSjVkyJBdu3bVr18/IiKiWrVqxfmptLS0Cxcu8MXvPAWv0b3AxsZGvf69WbNmdnZ22gkfAHRKqVSqC7IfP378yZMn6ofMzc1bt27Nk+ydO3dWdwsviH9vKhSKrVu3enh46CJu0Hvnz593dHSsX7/+7du3pY4Fyo7MzMzvv//+0KFDeXl5PXr0mDdvXoX/irfoiXHXrt188cJQJuP/PNa6tUzagKDUUqlUMTExJ06c6NSpk62trY2NjdQRvatSnHC/fJlGjqRLl8jYmBYupM8+K0k1dqWSliyhxYtJpaLu3Wnz5rdL2QO8Tl5eXmJioi3eT1DqzJxJDx9SYGC+QScnGjeOvL0ligm06PHjx/b29snJybt37x44cKDGo/3791epVBYWFvyfxsbG6iy5ubm5kZER/7uVlRVfdCOTydQZCkNDw9q1a7u5uQkPqFKp2rZte/bsWT8/Px8fH629LChHvL29V65cWalSpfDwcHt7+5IdJDs7+9KlS+f+c/HixczMTOETatSo4ejoOHLkSE9PTzGihhLC/ApKID09PSIigifZw8PDhb/dNWrUaNOmDU+yt2vXTv299ka+vr6LFi0yMjLavXt3nz59tBM4lCYrVqyYOXPm2LFjf//9d6ljgbKAMbZ58+YvvvgiISFBJnuZuKtbt+7SpUv15D5fHmMKmWzctWs9ra37/1emuRIa5MDbyMvLO3/+PP+C/vfff589e0ZELVu2fP78eUhISL169aQO8J2Uyl8Gjf6oW7ZQ69YlPJSBAS1YQC4u5OlJx46RkxP98Qd77z3ck4OS4Mvl1O2VbGxsHBwcli1bJtyFCqDvrKzo+nXNwdRUev06LyjVPv/88+Tk5N69exfMthMRX1BT4oO3a9dOI+Eul8t/+OGHHj16/O9//xs3blz16tVLfPAyY/fu3X/++eeqVatQw6QEfvzxx5UrVxoZGW3fvr1gtv369euZmZnNmjV7YxLN2Ni4TZs2bdq04f/My8uLi4tTL34/ffr0o0ePDhw4kJmZ+fDhw88//1wrLwZeA/MrKIGHDx9GRUXxt82ZM2fUbb2JyM7Ojhdkd3FxadasWcmOv3DhwoyMjGXLlg0ZMuTQoUOurq4iBQ6lVUhICBF1Lo2Vap88oexssrHBfn/9ERUV9cknn/DG723atPH39zcwMJg5c+bp06eHDRvWvn37n376qX379hJGeCY19YcHD2bUrElE5nI58uxQfFlZWadPnz558iRvmpKRkaF+qF69ep06dTp//vyDBw969ep18uTJUr3OvfStcH+r/qjF9+QJffghHTxILi5rnZ2vLl26tPgLHKDcYoxdv3791KlT4eHhp06dunr1qrAgrJWVVUpKir29fUhICNIoUGr8+Sd99hndvUvqz8BHj6hOHQoNpXbtJI0MxBcWFta5c+cieqUeOXIkNzc3PT2d/zMrK+vFixf87+np6er8RUpKCv/0U6lUKSkpfDA3N7dmzZqLFy8ueNh+/fodOHBgxowZK1asEP1FlTq8x9qaNWumTJkidSylzN69e99//32VShUQEFDowvOPPvrol19+MTAwaNy4sbo+TOvWrUuwHfvOnTs7duz47LPPqlWrFh8fb4ALS23C/AreRVZWlpeX16ZNm9Qj/I4az7C7uLhUqlRJlBMxxiZPnvzbb79ZWVkdO3bM0dFRlMNCKWVra/vw4cMbN240atRI6liK7fBhmjmT4uLI3Jzy8mjOHJo7l2RYfSilhISEhQsXrl+/XqVS2djYLFiwYNKkSXwjqUql2rx58+eff56YmCiXy0ePHr106VLdL16Jy8pa9uBBeEoKEXW2skpSKlHDHd4oIyPj1KlT6qYpwkKO6rvgvXr1ql+/PhGlpqa6ublFRkba29ufOHGiFK/QYqXKwYOsRg1GxKpWZUFBIh88L4+tWHGHX0F16tTp7t27Ip+gMElJScHBwd9+++3IkSMvXbr04sULHZwU3kV6enpISIi/v7+Hh0eVKlWEv02GhobOzs7e3t4BAQF3795NSUlxcnIiolatWiUlJUkdOEDxpKayGjWYjw9TqRhjLCuLDR/OnJ1f/hPKEKVS2bp1ayLy9fXV8amvXLliYGBgaGh4/fp1HZ9aD/GsUJcuXaQOpJSJjIzkLQf+97//ve45vr6+TZo0UeRfsieXy5s0aTJy5Mjvv/8+ODj46dOnxT9p06ZNiSg4OFiMVwD5YH4FYunXr1+NGjXMzMzc3Nx8fX2Dg4MzMzNFOfL69evnzZsnHFEqlby2Q7Vq1XjPVSifrl27RkQ1atSQOpC3cf48MzZmq1YxpZIxxkJDWfXqbOlSqcMqv7Kzs/39/S0tLYnIyMjI29s7JSWl4NPS0tJ8fX2NjY2JqEKFCr6+vllZWbqJMFWpXPHgQcfoaOeoqG7nzv3+8GG2SjX26tUdjx/rJgAoXVJTU4ODg318fFxcXIQLmuVyuYODg5eXV0BAwL179wr92aSkJH4bu1WrVs+fP9dx5GIpNQn3Fy+YtzeTyRgRc3Nj8fHaOtHp06f5TRUrK6u//vpL9OOnpaXxywlPT08HBwdhp+kKFSoMGTIkLy9P9JPCO4qPjw8KCir4SUFENjY27u7ufn5+ISEhBe+X8OLIRNStWzfcTYFSIzKSNWjA6tZlPXuyGjVYmzbszh2pYwLx/fTTT0RUt27djIwM3Z998uTJRPTBBx/o/tT6JjU11dTUVCaTxcXFSR1LqXHnzh2+2mXChAlvfHJ2dnZMTExAQIC3t7eLi4upqanG6hP+Ve7r6xsYGBgTE6N6/f1FX1/fYp4UigPzKxBdenq6iYmJXC5PSEgQ98i3b9/m79LvvvtOOJ6dnd23b18iql27tm4WbIEe+vXXX4nIw8ND6kDexsSJbODAfCNr17LSdc+gDAkKClK3Z3d3d4+NjS36+Tdu3FBXcm/UqFFgYKBWw8tjbO/Tp70uXHCOimobFTX/zp1nOTn8obisrOTcXK2eHUqRR48e8amds7OzMNtpYGDAF08EBgY+e/asOIdKTExs0qQJEXXo0CEtLU3bkWuDfiXc8/JYYCATLg64dIlFRLCYGNayJSNixsbMz49pOyOdnJys/vDy9PR8x0xEZmZmeHj4ihUrPvzwQ40MOxGZmpp27NjR29v722+/5Y3mpkyZItYLgRLLzc2Niori90U0GjUoFAr17biYmJg3HurevXu8xujAgQNz8VUEei4ykgUEsJs3mVLJIiPZoUPs0iWsbS/a3bt3xVo6p0uPHj3iXzp79uyRJIDExETei/XkyZOSBKBXhg4dSkTLli2TOpDSISUlpUWLFjzZmp2d/bY/npOTc+7cuQ0bNkyfPt3FxaVgeZmqVau+9957Pj4+O3fu1PjZq1evElHFihV1tpqsjMH8CrRt586dROTi4qKNg//5559yuVwmk61du1Y4npGRwSt3N2rU6NGjR9o4Nei5Dz/8kIhWrFghdSBvo0MH9sMP+UauXWNE7G02fsG7u3LlSu/evflXYZMmTQ4cOFD8nw0ODm7evDn/2Z49e166dEkbEUanpo68fNk5Kso5Kmry9evXpVipA/osPj4+MDDQy8vLwcFBJqhJxXco+vj4BAUFJScnl+DI9+/f59PFHj16lMYFFvqVcM/KYkSsUSOm/i/51Vfsgw+YuTkjYs2asQsXdBfMunXr+D6dZs2aFWfer5abmytcSMUPIryx4+Dg4Onp6e/vHxISIrxgO3HihImJCREtxU4uKTx8+DAoKMjX19fNzU1j+ZulpSXflFqyT4qYmBheLNLT07OIdXMA0pszhxGxb799NXLxIps3jx06JF1Meu3Bgwf169fv3LlzyeYQEuJXhgMGDJAwhgULFhBRu3bt8MG4Y8cOImrTpo3UgZQCOTk5PXv2JCIHBwexyonwdda+vr7u7u7CMpFOTk4Fn8wLMe3evVuUU5cHmF+BLo0fP56I/Pz8tHT8DRs2yGQyuVy+ZcsW4XhycjKvdNSyZcvSu/kdSoynhM6fPy91IG+jUSP222/5Rh4/ZkQMxZF05dmzZ97e3rzwXaVKlfz9/Yu+f3zt2rWCgzk5OevWreOl2AwMDLy8vJ48eSJWhInZ2fPv3GkTFeUcFdX34sW9T5/iuxbU1q9fP2rUqFq1amlM7fr27fvNN9+EhoaWYFlMQTdv3rS1tSWi3r17l7r1LvqYcG/RgqnLyX71FRs5ki1axD7+mOl+BWF0dDTveVKhQoVNmza97mlKpbKIrcp8wY46w170Qsht27bxdRN//PGHFl4QFGLv3r2jR4/mdYTU5HJ58+bNJ0+evHHjxkK/2IpQ6JaI06dP8zV0M2bMEClwAC0YNIgRse3bX42sWcOI2KRJ0sWk165du1a7dm2emEtMTJQ6nOIKDQ2VyWSmpqZv3K+qVZmZmXyKtnXrVgnD0AcvXrywsrIiohs3bkgdi15TqVT8XpGNjY32KvDcu3dv9+7dvr6+P//8c8FH/fz8iGjEiBFaOnuZIfr8qlCYX4FQXl4ev2d2+fJl7Z3lxx9/5Av3NLaIPX78mG9+79ixY3p6uvYC0PTiBfvpJ9a/P+venU2YwE6ffjm+cqVmOnXsWHbxou4CKzfu379PRFZWVkpeDL20cHNjixfnGzl3jslkDOuXtS83N/dts+S3b982MTHp0aPHxcJ+iwvm7t/x3Zienv7L7dsdz551jopyPXt2fUJCFkofg8C6descHByE6yd4GcB3T7IfPnxY40v82rVr/Mv9gw8+KF2bGvUx4b5vHzM3Z7yPGk+4Syg1NXX06NH8beTp6amuHCQsOsl7dgkJ606+bUWaH374gc/hDh8+rIUXBPls27Zt4MCB/P9ahQoVXFxc+IaXt2qhlpOTo94fXbdu3deVdj1y5Ajf7qC9RTcA78rBgREx4fKc2bMZEcOb9vXi4uIaN25MRPb29qWiBrdSqWzVqhURLViwQOpYXtY8rVevXqlbsCA6nkderHHpC/l9/fXXRGRmZnZanVHSubi4OJlMZmZmVkqrSeqGKPOrQqlUKo2DYH4FamFhYURkZ2en7RN98cUXRGRqanrs2DHhuHrzu5ubm46+13JzWY8erHlztnkzO3SIzZ3LTEwYL4c1dizTuBFVqRJDz2ct+PPPP4nI3d1d6kDe0pdfspYt85WO9PFhrVpJFk+5ceTIkRLUgdm/fz/f1GVgYDB9+vRCq2ALq9M0bdr04MGDJQhPpVIFBgbWrVvXfdGiNlFRPrGxCWKsU4ayJC0tzdjYWC6Xf//990V3P3pbISEhxsbGtra2t27dEo6fP3/e2tqaiMaOHVuK2l7qY8I9Lo55e7OePRnTg4Q799tvv5mZmRFRrVq1unTpwjtHCzVo0GD48OFLly49duxYob2k38onn3zCbxOVsl1ppVDbtm2JaOrUqRcuXHirm8Dx8fF///33rFmzOnTooNHmq1OnTq/7qZ07dyoUCplM9ssvv4gRPoCo8vKYqSmTyZgwizRwICNiO3ZIF1YpkJiYyKtM1KlTR5Q1m1rFl+Y1aNBAHwrh5eXl8Qb0P2hUES1/Dhw4QERNmjSROhD9tWXLFplMplAodu3aJW0knTp1ws6MopV4flU0pVI5adKkhg0bapTJxvwKOJ4HnzVrlnokNTX1vffeW7lypejnUl+vRUZGCsdv3rxZo0YNIho8eLAuFuIFBDBrayasr/Xdd8zWluXmIuGuM1OmTKEC3XT1lzpX9eQJq12bDRvGTp9mV66wb75hZmYoI6lV79jp9Pnz597e3gYGBkRkbW39uhI0b9t/Vej06dMdOnTgP9u+Q4dLItXugzJGe+1SsrOz+U2jgn3IT506xTc1Tps2TfTzaomeJtyTk1mNGmzrVn1JuDPGrl69Wrt27Zo1awrXsPOik48fP37bo8XHx+/evXv+/Pk//vhjwUdVKhVfVm9ra1sq1kuWUvHx8XyRWnF2IfDCQevWrfP09FTvneHUVYPWrVv3xvt7a9as4T+i7U7iAG8tLo4RMVvbfINNmzIinTbQKJ2SkpJcXV2JqFq1amfPnpU6nNeSvFdqQTzRXLFixXdf+lqq5ebmVqtWjYgu4NetMMePH+ermLWROHtbK1asIKKBAwdKHYieeqv51VtJSUnhG3TatGmTmpoqfAjzK2CMNWvWjIj+/fdf9UhgYCARde3aVfRzqVQqXi++SpUqGpvfL1y4oF6Ip/XuApMns3Hj8o3wMtw3biDhrjP82jA8PFzqQIpn3TrWrh3jvyYPHrCPPmL29qxuXTZgAAsJkTq4MistLc3X15fPZCpUqODr61viTTBXr17t27cvT0TY29vv37+/4HOys7P9/f0tLCyIyMjIyNvb+42rQhMSEry8vORyOU92rVu3rhStIwYdmzhxIhF988032ji4sA95QkKC8KGjR4/ytpfCO+v6TE8T7oyxzZtZ7dps1ix9Sbgzxtq1a0dEX3zxRQm6zycnJ4eEhPCqI8J0bYsWLQp9fnZ2tronGBrvaMmqVauI6IMPPnjdE1JSUoKDg3kXNV5dV83CwkK9P7rQ/VxFWLRoEf/mK9kmLwBtOXKEETHhRWleHjMxYTIZ02Up0lIrIyODT3+trKxC9PWKZcyYMUQ0aNAgqQPJ57333itFMyft4Uvk5s6dK3UgeufKlSs8ezV79mypY2GMscTERAMDAyMjo7edAJQTb5xfvYvHjx/b29sTUffu3TW26WB+Vc7Fxsbyr+CcnBz1oKenp/Y2USmVyiFDhvA1Urdv3xY+pF6Ip8XuAllZLDOT9erF5s/XfIivUx47lhkbM2vrV39kMiTcRffkyRPeF0eU9oBap1SyRo0YEdu2TepQyou8vLyAgABegVoul3t6epYgm1RQUFBQgwYN1MvYNepvcPHx8eocuq2t7ety6Dw7z6s4GBoaFic7D+WZSqXiC5G1t0goOTnZ2dmZ50s1lmQdPHiQ37hasmSJls4uIv1NuKtUrFs3VqmSviTc79+/z1frFLMHTnJy8tGjR7/77ruhQ4fyWn5CFStW7Nmz5xdffLGTl9h7zRFatmzJF2WguK028BRPQECAxviuXbvGjRvHL+eE7O3tx40bt27dukuXLr3j/d5PP/2UiMzMzMLCwt7lOABi4v1RJ058NXL3LiNiNWtKF1Mpk52dPXz4cP7bXeh6E2mFhITwa0KNvIDkLly4oFAojIyMynnL0BMnThBR3bp1tb4iUgyXL1/+4osvFi1atGfPngcPHmjvRI8fP27YsCG/ntSffnRubm5E9JtGQ0JgjL1+fiWWe/fu8W7VAwcO1NhNj/lVecYLpo0UXDoqlUrek/A6bw6mBdnZ2fwN36BBg/j4eOFDwcHBPCmwaNEi0c6XmsqCg5mvL3NzY6am7Lff2LBhbObMfM/JymIyGYuMZGPHso8+YklJr/5YWyPhLq74+PhRo0YRkZOTk9SxFM/mzYyINWzIhN+n588zZBu0IyIion379jyZ0L59+1OnTol48JycnOIkyiMjI3kpPL4/LDQ0VPioRv2ZQhP3AEJRUVFEVLt2ba1esDx58oSvVG7dunVS/tJGO3bs4IWVli5dqr0ARKG/CXfG2OXLzNBQXxLuy5YtI6Jhw4a97gnp6enCNez8RqIabxjl7e0dEBAQExNTzHTtgwcP+BXF8OHDsaNHXMnJyUZGRgqFomBDcG9vb/5/zczMjP9fCwwMLEHhoCKoVKoJEyYQUeXKlTV2oWpXXh77+282YQLz8GBffMGuXtXdqUH/FeyPGhzMiFi3btLFVPoolUovLy++yvKvv/6SOpxXcnNzeSkGMa/8xcM35nt4eEgdiJTy8vJ6u7h8261bdkSE1LG8wffff29oaMhzSeqVBCWY57xRZmYmryXapk2bYq540I3ffvuNiNzc3KQORO8UMb8SUUxMDO8d5+npKbzek2x+BXqgR48eRLRlyxb1CL+L2bBhQ62eNz09nSezmjVrprEQ759//uFJgWXLlpX8BHfvsk2b2JQprHlzJpczopd/5HI2bx7z9WUdOuR7/vHjzMCAJSejpIxWRUVFeXp6Ghoa8n0VxsbGEnbzLi6VijVvzojYhg2vBjMzWY0azNaW3b8vXWRl0P379z09PWUyGRHVqlUrICBAS9lJXgpGoVAQUZUqVfz9/QuuTuB9UOvUqUNEMpnMw8MjLi7u6tWrffr04bO4Jk2aHDhwQBvhQdmzcOFCIpoyZYp6JDMz8/Tp06JnLB89esRXwXbq1EnjKuD333+Xy+UymWzdunXinlRc+pVwVyqZnx8T3pb7+2+2e7d0AQnw672///5bY3z79u3jxo1r3rw5/4xTMzEx6dChw/Tp03///feYmJgSr8m6dOkSr7c7Z86cd34R8MqWLVuIqEePHgUfCgsLW7FiRWRkpFY7HSmVyg8++ICIataseefOHe2dKJ/Ro5mtLfv+e7Z5M/PyYiYmTP8W4YJkeH/U7dtfjaxezYjYpEnSxVQqqVSqzz//nO8b1Z9JwPLly0lveqUWFB8fb25uTkR6W41HRz79lBFpLlfUM3///Tef406bNu2zzz5zc3PjqU8hS0vLLl26zJw58/fff79w4YKwwkPx5eXlDR48mIjq168vyv5rESUlJRkbGysUCn0LTHKFzq+OHTsm+mbNiIgIXrLD29tbOC7N/Aqkxu/0GBgYCEtxzpkzRzfXUElJSbx3etu2bTW6CwQEBPAPzPXr1xfzaEqlMvniRbZyJRsxgtWs+SrDTsRMTVmXLuzLL9m+fSw5mTHGbt9mZmbs559f/nBiImvblo0dyxhDwl0bkpOTf/rppyZNmvAvO0NDw6FDhw4aNIiIatSoodHiT+/88w8jYrVrM2H1m59/ZkTM0ZGVht11pUV4eLipqSlfwLdw4cLMzExtnzEqKop3k+L7LQqdTqelpc2dO5eXwDYxMeErRCtXrrxq1SpddHiGsoKX2hb2AwsKCiKi3r17i36ue/fu1a1bl69x0biG/fnnn/nl9p9//in6ecWiXwl3DdOmsRo1mD5cyNy7d+919WSmT5/OP9cMDAx450x/f/+QkBARryuOHTvGF5EV2mEVSoaXffjpp58kjCEzM7NLly586Y0urtiDgpiJCbt379XI4sWsVi2G71fgHBw0+6Py3N9330kXUynm5+cnk8lkMpmvr6/UsbBHjx7xRhR79+6VOpbXmj9/Pt9vWyoKqmhLZCQjYjVqML2pnaLhzJkzZmZmRPRd/k+G+Pj4oKAgX19fDw8PBwcHvqRLzdDQUDhHKuZadb7hrFKlSteuXdPOq3knAwcOJP1o4qpXCs6vbt68SUR16tQR/VdbXbJD492o6/kV6IGtW7cSUffu3YWDfGXciRMndBBAYmLi67oLrFy5kt7U0TcjIyMkJMTPz8/d3b1SpUorOnV6lWS3tGRubszXlwUHs0JvmR88yGxtWb16rH17VqECGzaMpaUxhoS7yK5cueLt7c3v8/H0uo+PT1xcHGMsJyenV69eROTg4KBR+kC/dOzIiNiKFa9GcnJYvXqMiL2+zi2UwOjRoy0tLfv166fLezB8GTvPThKRu7t7oWe/d+/eiBEjrKysTE1Nvby8xN3HD2VeYmKiXC43MTHJyMhQD3700Ufa20V948YNGxsbIho0aJDGnSG+nqzor1dp6XXC3d2dEbFff9Ucv3+f6bi8ShH1ZEJCQn7++eeIiAitrhncunWrTCaTy+UFl9hDCeTk5PB9A5IXMk5JSXFyciKiVq1aaX1+NmsWGzIk38jz54yIxcRo97xQKhTaH3XAAEbEduyQLqzSbe3atXzxiLe3t7RJ5NGjRxPR+++/L2EMb5SWlsanU+X9m453Mzt6VOo4CnH79u1q1aoR0aQ3bXxJSkoqos6eQqGws7Nzd3f39fUNCgoq9GJv7dq1PFN/5MgR7byad8UTfJ06dZI6ED1S6Pxq6dKlROTp6amNM+7YsUOhUMhksl9++UU4rtP51X8eP35cOromlkW8jvby5cvVI/xOT6VKlXS2cjMuLo5XbBgwYIDGth5fX18iMjIyEvZ3SUxM3Llz56efftq+fXtemURtcPv27MMP2S+/sCtXirXuODeXnT3Ljh9nwjryjx+z/CVu2N27TPsrbcuY7OzswMBA3reDc3FxCQwM1PhfnJKS0qJFC77GU08XC/NCkdWqMUGajG3cyIhY06a6Tq+UdXx5uzAjqTMZGRm+vr7q9fU+Pj5p/A6cwMOHD4moWrVqug8PSruNGzcSUb9+/YSD/LsvOjpaSye9ePFi5cqViWjo0KEatUO+/PLLgl+v+kOvE+6//caIWP7/lWzYMCaTMR3vOH9dPRld+vbbb/k76aheXoSXLgcOHCAiR0dHqQNhjLHHjx/zFTHdunXT1m2bvDyWlcUGDWKzZ2s+ZG2tL2WbQFqF9kdt2pQRsYsXJYqpLNi6dSu/ih47dqxUF2B62yu1IJ5jtbOzK9etwufNY0Rs8mSp49D07Nkz/m3Vp0+ft30zp6WlRUVFBQQEeHt7u7i48O3MQjY2Nur8e2xs7N69e3kW9Y8//tDSy3l3GRkZFSpUkMlkqFuiVuj8im9y3y6sVyaqNWvWFLq+SRfzK8ZiY2MDAgK8vLz4xo5Zs2Zh04PuKZVKfiku7Lyt1Ts9r3P9+vXq1asT0ahRozSq2fL6Nqampl988cX48eP5m1PNwMCgTZs2M2fO/PvvvxMSEnQZM7zW7dvMx2dSr178/1HFihVnzpxZxI6rO3fu8P/7b7wnLY3u3RkR+/bbVyN5eaxZM0bE9PirtpSSMOHO3blzx8PDg79169atq9Fegifcq1evLlV4kE9uLrt3j2mz842Ihg4dSkSrVq1Sj5w/f57P5LW6vOzcuXN8Sce4ceM0TsS/Xs3MzHSzoe2t6HXC/elTZmDAjI3zVXWfM4cRsU8/1V0YRdST0bEZM2YQkZWV1UXkv97NlClTiGjBggVSB/LSvXv3eHfcgQMHipaSS0tjISHMz4+5u7NKldjq1WzMGDZ1ar7nqFTM2JgdOybOGaE0O/Pvv9+2bx88ceKroULXvMPb27dvHy/B8f777+s+j5ybm9uyZUsiWrx4sY5PXQJKpbJ58+aktRJqjx/nawmmVLLYWJaXx+Li8r3Ns7PZrVvaOH/xXL3KiJi1NdOnpbLZ2dm8IWHz5s2TeeHgdztaVFTUr7/++vHHH3fs2JGX7xfiI/r/ph0xYgQR+Ql7TZdvBedXiYmJCoXC2NhYo7C1uHj/LiMjo4MHDwrHtTG/SklJOXTo0IIFC3r37m1paSl835qamvINqZs3bxblXFBM//77LxE5ODgIB3lZId1vM4+MjORvjKn5Z90qlerDDz80NDRUV9wyNzd3cXHx8fEJCgrS6zok5U1eHgsOZh4eTKFgRKEtWjg6Ov7666/FSQVERkbyKZ/eVYKNiGBEzMqKCd9pf//NiFj9+qgvKjrJE+5cRERE+/btC+5wRcJdX+TlsfnzmaUlq1qVmZiwZs30PDOj3sgoXGuyZMkS3dxoDAsL4xcIM/JXS1OpVF5eXkRkaWl55swZbYfxVvQ64c4Y69qVEbG//no1EhbGiFi9erqLoYh6MjqWl5fH20DVqlXrnrASN7wNlUpVq1YtIjp37pzUsbwSExPDm855enqW/N7g9evs99/ZRx+xFi2YXJ6vydLMmWzRIta+fb7nX7zIiPJtPoXyiq8QFH5Txt29+0GjRiv69JEwqjLj5MmTvIR6z549C+7r1Cr+FdawYUP97JVa0N69e4nI2tr62bNnoh984kSmULCzZ1/+Mz6eEbHnz1nduvmKl164wIgkvfxs2ZIRMUEzImmpVCpPT08isrW1LXT6ceDAgWnTpq1fvz46OrpkJTXUJeDd3d0rV65cqVIlGxubdw5c63bv3k1ErVu3ljoQvVDo/Gr9+vVE5O7uru2zf/rpp3x9U1hYmHBclPlVfHx8YGCgt7e3s7OzRn0kvjnDz88vJCQkOzt7xYoVRGRoaKjPDTPKnlmzZhGRj4+PeuTZs2cGBgaGhoaSJLLDwsIsLCw0yhyx/7aAVK1a1d/fPyoqSk8Lj5RnSUnM35/Z2b28ejI2Zh4eb1v1PjAwUC6Xy+XyXbt2aSnMkuBVIufNyzfo7MyI2Jo1EsVUlulJwp0xplQqha2kOSTc9YWvL6tTh/FKLEol+/57ZmLCrl6VOqzXOnr0KF98Ixzs2LEjEf3zzz86CCA4OJhvk/3666+F43l5ebyyXMWKFc+qr/T0gL4n3P39GREbPvzVSF4es7FhROz8eR3FoA/1ZNQyMzNdXFz4uxxLIUomIiKCb63St758ERERvA+Pxi27ImRkZCSGhbFvv2UDB7KqVfNl2I2NWceO7NNP2fbtL1Pqt24xExMWEPDyh9PTWe/emjWboLziqQrhOs3Dhw/znfgSRlWWREdH8+LX7du310YquaDMzMz9+/fzdXb79u3TwRnFwiulzpkzR/QjT5zIbGxY+/YvS5Xqb8L9m28YERs9WroI8uHlES0sLF53o5p3N1UXRlD3Rw0ODi7Buz07O9va2pqIrly58q6ha1l2djZP5l6+fFnqWKRX6PxqwIABRPRrwY5MYlOpVOPHjyeiKlWqaLxzSjC/ysnJiYqK8vf39/Dw4B/dwne4s7Ozt7d3QEBAodWEvvjiC77a/eTJk+/+uqA4GjVqREShoaHqkU2bNhFRr169pAopMTGx4OC0adMKpglAR1QqFhrK1q9nmzaxgr+5UVHMy4uZmr68jKpZk/n6smI0k3z06JGHh8fDhw+Fg4sXL+b3//RlreWFC0wmY2Zm+V7R/v0vm7SjrL8WFEy4822CetKWBgl3vZCXx6ys2J9/5hvs0YN5e0sU0JvxjIHG7W0dbGQU2rVrl4GBARF9KyyQxZhSqeRllKpVq3ZVb25a6HvC/e5dJpOxChXytWT/6CNGxHx9dRGA/tSTUXv69Cmv+te9e/dyXeW2pObOnUtEM2fOlDqQQhw5csTY2Ljo/el8GaCPj4+Li4uxsfH3HTq8SrLXqMHc3ZmvLwsOLnzytH07s7Zmzs5s4EBmY8NcXNijR1p8PVB6DBw4kIh2CPqjrl69mogm618h6dLr2rVrvKVM8+bN47WwsyQ1NZW3qfTy8uKfD0RUp04djWUI+u/8+fNyudzQ0DAgICA4ODg8PDzqPzdv3oyNjY2Njb19+/bz/6SnF7fT18SJbPZs1qQJW72aMX1OuPPZj7m5PhR0+u2334hIoVAEBQW97jlRUVFLly4dNWpU06ZNFQqFMDspl8vt7e1HjBjx3XffHT58+EnxKlTyzKn+VH4rwoQJE4jIVzezUv1WcH6VkZFhZmYml8s1slFaolQq+U7QmjVraqTCSzC/Er6Nq1evznsMBAcHZ74pOaXe2mxlZaVXy6zKqitXrhBR5cqVhY3Uhg0bRkQrVqyQMLCC6tWrR0SRkZFSB1L+PH3KOnVideqw0aOZuzszN3+ZSnjxggUEMEfHl1dScjlzc2OBgSx/U74iDB8+nIjatWun8cnAPwRety1Mx36fOTO5VSv2ySf5Rjt3ZkRs6VKJgirjkHCHN4uLY0TswYN8gwsXMjc3iQJ6M56HFK4n+OOPP4jovffe02UYf//9N7/cWLZsmXA8Ozu7b9++vCKInrQu0/eEO2PMyYkRMeHivIMHGRFr2VIXZ9efejJCt2/frlGjBhGNHDlS35Zp67+mTZsS0b///it1IIXbuXMn7xSn3oiak5MTERHx448/Dhs2jG/WVlMoFCN79GDTprHNm1kxP1PS0tihQ+zvv9m5c0z95vnrL0krFoP0+O+FsD8E36D93XffSRhV2RMXF8dnKnZ2drGxse94tKdPnx4+fNjPz2/48OGNGjVSl4VVL8Ns2LAhb5eqcb2XlpY2f/58fc4Ede7cWWNVaRFq185V33Y0MWHW1i//1KrF7Oxe/mndmi1cyCZOZF98wQ4eZBUrsocP8yXcp05lv/zy8o+vr9QJd8YYv5m6bZukQbBjx44ZGRlR/uZIRcvOzo6JiVH3R+XXnEK8BIePj09AQEBMTEyh05hDhw4Rkb29vaivRiuCg4OJqGHDhlIHIr2C86vt27cTkYuLi85iyMzM5JW7GzZs+Cj/koKC86vc3NyYmJh169Z5enra2dlpzK/4Ro1169a97l1ahLy8PJ7wrVat2vXr10V7eVCY7777jojGjRunHlEXmdWT623u3LlzpP22clC4kSNZ585MXdMvMpIZG7N9+9gnn7ycPVStynx8Cln5/iZPnjxp2LAhEQ0ZMkTYJjcnJ4cnWB0dHXVcS1DDzZs3FQqFkZHRI2ETm/BwRsQqVWK6WpRa3iDhDq+lVLKzZ1lgIDt7lhExjc+Hn39mrVpJE9ibxMbGEpG1tbWwHhq/6fjTTz/pOJiNGzfKZDKZTKaxhzIjI6NTp04KhUL3HVwKVQoS7osXMyImLMGfk8OsrRkRe+dkxZvpVT0ZoaioKL499ssvv5Q6ltLk5s2bRFSpUiV9Lpu4atUqfrE3ePDgzp07a2QrrK2t+/Xrt3jx4qNHj4ozgdu5k8nlzM6OJSSIcDQoUnx8/JAhQ3Sz1q/48vLyTExMZDKZcCsPrwOwU7juF8SQmJjo6OjIr7ovXbr0Vj8bHx8fHBzs7+/v6enp4OCgkWE3NDRUl/IICQnhs3ze1HHs2LHC48ybN4+IevbsKeLrKpkTJ050795doxzH06dPeZkOJycnNze3jh07Ov+nYcOGdnZ2dnZ29erVs/6Pnd2rhHsRfyZPfplwZ4wNGcJGj86XcO/Vi02e/PLPkCF6kHDnNfUK9LnSpcuXL/Ok1Rf8v1qJ5OTknDt3bsOGDd7e3q6urhYWFhr598qVK/fp00eYp2CMKZXK6tWrk551WymUOtRoXoKzvCp0fsVL/3///fe6jCQlJcXJyYmIWrVqpVF9UZfzq+zs7N69exORnZ1dAuZX2uTq6kr5t+jx22AtdbM4q9gWLVpERF5eXlIHUv7k5DBDQ6aR6Bw3jo0ezWJiWKdObPNm9g67xq9evcrLoGl8Vz579qxx48ZE1K9fP2Wxl8yLbtKkSVRwx2q/frqrGFAuIeEO+eTmsqgo5u/PPDxYpUovy/8mJDAipnFX/osv2MCBEkX5Bv7+/kQ0cuRI9YhSqeSXbDdv3tR9PMuXLyeir776SmOcr/bo0qWL7kMqqBQk3GNiGBGrUiXf1q5RoxgRy7+BQHx6WE9G6OjRo3zdmb7tl9RnfBXMhx9+KHUgb/Dll1+amZmps2l2dnY8iRYVFaWRlRBBRgbr1IkRsebNmU5KS5dnQ4cOJSJbW1thpVHJ3blzh4hq1qwpHGzSpAkRvW1GGIojOTmZJwgqVaoUERFRxDOFnST5xiahChUqODs7qzPshRYZu3PnjrGxsVwuj4qKUg8mJSVVrlyZiKRt65ednc2XxGrU4Js8eTIRuZVoQ2VmJnv+/OWf+/dZbOzLP+fOsbi4Vwn3e/eYhQULDNTXkjKMsYcPmULBjI2ZRP1aEhISeAUkDw8Pcb93Cr6rmzVrVvBpvNjx559/LuKptWT69OlE9Nlnn0kdiJQKzq+USmWVKlWISPdLvB8+fMjXnA4aNEjjIT6/Ujc+1er8ii+zIqLmzZvrpnVHOfT06dOC1WN5V4mCF+HSatu2LRHt0Ztu2OXIzZuMiGlU1V+2jLVvL9YZjh8/zq/K165dKxyPjY2tWrUqEc2aNUusc72V+/fvGxkZKRSKGzduqAejo6P72tnd7NED133ag4Q7sMxMduwYW7iQ9ezJzMzyLQKys2Njx7LHj1mjRmzx4lc/olSyhg3ZN99IF3RRevXqRUSbN29Wjxw/fpyImjRpIlVIISEhBQf1ql1KKUi4M8bs7RkRE3Ye2rEjt337+LFjt2j1vPpZT0Zo8+bNMplMoVAIl3VAEfiVj/7/59q8eTMRNW7ceN++fbq4SHv6lDk4MCLWvr0+lAwuS3744QdhTvPJkye8IaSBgUERlWR1jK8FE/ZHzcvLMzY2lslkbyxWCyWTkZHBa8xVqFBBOPkW5iL5RZqQlZWVi4sLb9YXExNTzPTQ7NmzqUD/W74ooEmTJhJu9/Hz8yOiRo0aCW8VREZGyuVyIyMjbbS7USfcGWPff88aNNDjhDtjbOhQNmkS00K5/zfKyMho164dEbVr1054uagN9+/fL3RteEhICBHVrl1b/8svhIWF8VDFvyNeehScXx09epSIHBwcJInn3r17rVq1Cg8P1xjX8fzqyZMn/Laii4vLCy3/KpVPv//+OxH16dNHOFi/fn0iKvp+to4lJCTwCm/a/kSFQly5wojY06f5Bn/6iTk5iXgS3u/E0NAwODhYOB4SEsJ7Qvz8888inq6YZs6cqbEilf23+qec3yTWNiTcy6fU1NT9+/dnf/01c3FhRkavMuwyGXNwYFOmsD//ZMLiTrt2MTMz9sMP7PJlFh7OBgxgDRuylBTpXsFrpaWlGRsbKxQKYTemzz77jIhmz54tYWAF8XYpp0+fljoQxkpLwv3zzxkRE94YTktLMzU11XYXJr2tJyO0cOFCIjIzM9Pnarx6IjExUaFQmJqa6tWWhUL3GPIOyzrdu/DgAatXjxExN7d32VYJV69eFW4eP3fu3IP8vVCUSqWPjw/fvjBq1Ch9eDcW7I96+/ZtIqpVq5aEUZV5OTk5vOydiYnJoEGDOnbsaG5urpFht7Gx6d+//7x583bu3Hnn7UuLcoWuZ8/Ozm7UqBERrVu3TpzX85bu37/PC6MdOHBAPZiXl8fzvFqqliZMuOfmspYt9Tvhzhg7coTNm8c++4ytX69Z5FFrlErloEGD+OLfRI0lgTqkUqn4jDksLEyqGIpJHWqhC23Kg0LnV3yVsYSVDwu9/6H7+dWDBw/q1au3o0sX1qsX5leiGzJkCOVvMnHx4kUiqlatml7dAFu3bl2hWy5AF168YHI507gBM20aE3tRHc89WVpaamwP3bp1K18hp+P9DU+fPq1QoYJMJhO2aLp27ZpcLjc2No6X4nZ++YGEe/mRkpISHBzMO67znS5PnZ0ZEVMomIMD8/JiAQH5kuwajh5l/fuz+vWZgwObMePVXhw9+w3duXMnFejK4+DgQHrWHDEmJkav5gClI+EeEZHTpcvF995bIBzk9YXVjY9Ep+f1ZITc3d3r16+v/1ekkvvll1+IaMCAAVIHks+iRYscHBz++ecf9UhWVpalpSURlTi/VkI3b7Lq1RkRGzmS6ccnVGk0e/bs4tQ73r17t5WVFRG1atXqltQdaz/99FPK3x/18OHDRNS9e3cJoyoPVCrVRx99xMtkqzPs7u7uvr6+QUFBIpb9LXQ9e2BgIJ+RpEixkoKnvTT2kPF7P7Vr19bSN++aNezPP1/9MzSUeXiw9HT28cdMuAwiLo4NHSr1p2BeHhs5klWvzubMYYsWsU6dWJ06uuluzQukVK5cWfJmjzx5MX36dGnDKA4fHx8imjZtmtSBSKPQ+RVfZawnK4w4qeZXSTdusKpVGREbNUrqT5YyJSsri7eFuHv3rnrwf//7HxFNnDhRwsAKcnd3J6L169dLHUh55ebGhg9n6v1Sjx4xKyv2xx/inkSlUvHGOfXr19e4XT1//nwisrCwuHDhgrgnLcJXX31FRAPz14MeO3YsEU2dOlVnYZRPSLiXbQ8ePNiyZcvUqVObNWsmbKllaGjYqVOnyO++Y3v3suTkkp/Az49ZWbHISPFCflcTJ04kom8E5W7u3r3LbzHm5ORIGJgGvn9a2EddWqUj4a5SqWrVqkX5e2dt2LCBiPr27aulk/7www8FcwH6ie8LW758udSB6Lv+/fvr4WSXt0/cv3+/emTfvn1E5CTqPsfiunCBVazIiBjmYcU2b968v/76S/3P69evT5kypTg/eO3aNX5b2NLSUnjHRfcK9kflneXQ2ksHIiIieIr5yJEjz58/19JZXree3cXFhaQocnfkyBG+N0uYJXn69Cmv+Kyzql8ZGczXl733HtPHmiUBAczK6tXylrw89v77rFcvbZ+WT36MjIz0YblKdHQ0EVWtWlWf+5xz586dKy2hakPB+dXZs2eJyNbWVq8qAmF+VcYcPHiQiFq3bi0c5BuUd+3aJVVUBWVmZvLOAVrdmQ1FuX6d2diwXr3Y8uXM15fVqqWl++qZmZn8Heji4vLixQv1uEqlGjNmDBHVrFlTY+erlqSkpPD1HMI1effu3eMl3SVf61PmIeFeJh09enTcuHENGjQQbkc2MzPr3r27r6/v0aNHxSkalpfHhg172ccyJkaEA74zlUpla2tLRMJbhitXriQiDw8PCQMrqHPnzqRPRUpKR8KdMTZ16lSNpMDTp08NDAwMDQ2TtNNPrH379nr1v4q7cOGCxq9xRkaGubm5TCYTpi2goLS0NBMTE32b7MbFxclksgoVKgjnZF5eXkS0cOFCaWI6doyZmKBzfRFOnjwZGxur/mdgYKBGdeziS01N5TfMZDKZj4+PVFufCvZHnTVrFhF9//33ksRTrvBl5h988IFuTqSxnj0iIoJXlb137562A1BT90oVbqpg/y2d6KX9nLJaWhqrUYMRse3bdXbOYvPwYBoru0+dYnI502ZbhaCgIIVCIZPJNm3apL2zvBX+VtEoiSstlUpV6O4TfgP10KFDug9JWoXOr3x9ffVwESXmV2VMwcZoiYmJcrlc36pH7t69m4jai9eiE0ri+XO2YgWbMoV98gkLCtLenfaHDx/yluPDhg0T3nF88eIF73Xh7Oysg/fnN998Q0Q9evQQDvJfGWF3a9ASJNzLJN7ikYgqVKjg5ubm6+sbHBycpY1icTk5bMAARsSqVWPXrol//LcUFRVFBfoq9enTh4h+//13CQPT8Pz5c54iTn6X7QWiKjUJd17foEWLFsLBbt26EdGWLeK3TtXPejIqlapOnTrm5ubCPuM8h9KxY0cJAysV/v77byLq3Lmz1IHks2LFCo2NFHl5eTY2Nhr3D3Vt925mYMCIGLZN/EeYCp83b97MmTPV/8zJyalRo8bNmzdLdmSVSuXv729gYEBE/fr1094a59fJy8vjFR6fPn0aGhr6+PFj9t/eZ2nX3ZcT33//PRHNEnYp0ZpC17PzWz4TJkzQQQDct99+S0SNGzcutFfqNd1OK9esYUTMzk7/Sis7ObGffso38uwZI2IxMZqd30QSGRnJuwh8++232jh+yfC8rS7fn280d+7cypUrFyzXPnLkSAsLC7268NCNQudXrVq1IqKDBw9KFVVBmF+VPbx3QmT+Tfdnz579U1g7TA9MmjSJiJYsWSJ1IMDYunVs/HgmqGmuDZcvX+Z1I33z3117+vRpw4YN+TILrS6yefHiRY0aNTTSu48ePTI1NZXJZBol5kEbkHAvk65fv+7v7x8dHV1oEz6RZWezPn0YEatdm+m4znABvG2kcBN/ZmYm76n56NEjCQPTsGXLloI3GqVVahLuOTk51tbWRCSsKPrTTz9paRcD31I9fPhw0Y/8LsLDwwveWeJlcFFP5o34Pr4ffvhB6kDy6dmzJxEJLwz4/+V69epJGBVjjG3YwGSy1V276ttFiySmT5++YcMG9T/j4uIqV64snEK9++rg48ePV69enYjq1KkTqfN6bZcvX54yZUqVKlVMTExsbW09PT3d3NwMDQ0xI9cBvtrI399fB+c6depUwfXssbGxxsbGcrk8OjpaBzGoe6UKM3HqXqnz5s3TQQxCSiVr1owRMZ38H3gbHTowjS+sR48YEbtxg1lbs4oVmYsL8/ZmAQEsJubd98Xfvn2bfwTpW+Hja9euEVHFihW1soDo7f32229EpFAogoKChONnzpwxNTVVKBS6/wCXXMH51d27d2UymZWVVXZ2toSBadCX+dWmTUwmYzIZ27hR4khKOV7HycbGRq/KFhWk3ol/UctJXiiWIUMYEQsM1PZ5Dh48aGBgIJPJ/shfKf7q1as8p+Hj46O9s/MkSbt27YSDvNeIDrZUAkPCHUSRkcG6dGFErGFDJl5nrxLgl2nCts/6uXNr9OjRRLRs2TKpA3ml1CTc2X8T+qVLl6pH7t+/X7Achyh4PZnterbJnBd5+PTTT9UjqCdTTLm5uQVv2EguKSnJ0NDQ0NBQuKiZT4Z0s9y1aKfWriUiQ0PDffv2SR2Lrv3zzz8xgoppe/bs6dChg/AJffv2/UPsVkv379/nnzwmJibC/L72vHjx4o8//nB1dVUXobO3tzcxMSGiNm3axMbG6kl377KNbyYQVptdvXp148aNV6xYoY3TFbqe/ZNPPtHZcgAegMb9bN4zoE6dOpLsKtuzhxExa2v27JnuT/56Y8aw8ePzjQQHM0ND9uABq1yZEeX7Y2HBOndm3t5s40Z27hx7y+ZFycnJzZs3J6LevXvrYQny1q1bk35UZP7333+NjIyIaNWqVcLxO3fu8LWE4zX+l5UDhc6vfvzxRyIaMWKEhIEVpD/zK7ZiBSNihoZs716pQyl9YmNjAwICvLy8ateubWZm1rVrV6kjeoPTp08TUd26daUOBBhjjH30ESNiq1fr4FS8m7ShoaFGT5Tjx4/zr5I1a9Zo6dT9+vXT+N5MTk7mi+7PnDmjpZOCEBLuII6UFNamDSNizZtraYfrG6lrtQnfz7xG36JFiyQJqVBKpZI3A9PxbumilaaE+44dO4ioU6dOwkFnZ2fRi3vqbT2ZunXrEtGpU6fUg6gnU0y8QV/z5s2lDiSfTZs2FSxYbG9vT0THjx+XKiqhL774gohMTU1PnjwpdSw6tWTJEmG/0Ly8vLp16549e1Y9cvz4ceE9XrFkZWVNnjyZ5769vLy0tzbw+vXrPj4+/DuJiCwsLLy8vPgLvHDhAm8FU7ly5XJYjFj3eKJT2BKcp7+Fd5dFpF7PLnw/P3/+vFKlSjqo/xAcHMzrHgo7hj19+rRy5crSljByc2NE7LPPpDp/YfbsYSYmr3olZWaybt3YqFEv/xkXx3btYr6+bOBAVru2Zv7dyEjVrt1HkyevWrUqPDy86MlMTk4O32vVrFkzLTXFeUffffedPmRvY2JieAO6uXPnCsdTUlJatGhBRN26ddOrBd26Uej8ipd83Lp1q1RRFUqv5lfsiy8YETM1ZeVsflUCmZmZJ06cWLJkSb9+/XjGUI1/nWmjuKiI5s2bR0QzZsyQOhBgjDE2bx4jYrpKEs2cOZPPqDWWfG3YsIHn4kVMYqSmpsbGxkZEROzdu/f333/38vL68ssvV61axXNkvCJE7969xTodFA0JdxDNkycvd+O2bs10XnuWMbZx40Yi6tevn3CQd6oQXk5KLiwsjIjs7OykDiSf0pRwz8jI4B3ehb2qwsLCrl69Ku6JUE+m7JkxYwYRffXVV1IHkg9f6fnzzz+rR27cuMGnZXqyxlClUvG7l1ZWVnr1eaptDx8+tLa2FvaWXLBgwccff6ybswcEBPBZmouLS6Gt+UosKysrMDDQzc1NJpPxi1VnZ+d169alpaUJn5aSkjJ48GBeNsHX1xfr3LXKwsKCiISJTv4fX3stuwtdz7506VIicnBw0N6HT3Z2Nm/Pq9GMd8KECUT03nvvaem8xXHuHJPLmZERu3VLwigK+PxzZmHBRo5kH3/MGjdmbdqwx48Lf2ZyMgsJYf7+zNOTOTgwufxF48bCtJSNjY27u7uvr29QUFBiYqL651QqlaenJ39CXFycjl7XW1Ivg9D4pNKlhIQEfmnh4eEh/EjMyclxc3Pjvzv6ebtC2wrOr549e8Y7VunVfxB9m18xlYpNnsyIWMWKLD5e6mj0TkpKSnBwsK+vr5ubG994J/w08/Dw8Pf3j4qKWr58Oc9aamMNhFhatmxJRIcPH5Y6EGCMMfbjj4yICVoxaVVeXt6gQYOIqEGDBk+ePBE+9PnnnxORpaXlG+s3ZmZmxsfHx8TEhISEBAUFrVu3ztfX19vb29PT093d3cXFxc7OztjYmApjZ2dXo0aN69evV61aVY/uOJYDSLiDmBITmb09I2IdOzKdT4Z5zkq4uTMpKalv374NGjTQq5JuX375JRHN1NXHezGVpoQ7Y4x/Y61du1arZ0E9mbKHd1XSqz10WVlZFhYWMplMWEyZ9xIcN26chIFpyMvLGzZsGBFVq1ZNrwryaNsHH3ywbt069T8fPHjQsGFDnaWeo6Oj+Zu2atWqGhtRS4YvaeezbfWS9iJqdqtUKj8/P7lcTkQDBgzQq7xJWfLs2TN+uSUcdHR01OrnVaHr2bOzs/nOhvXr12vpvP/73/94XjJHUPDkzJkzkvRKLcjTkxG9WkGuL65cYatXs2XL2IEDrPgNmtLSnpw6tXLlygkTJjg6OhoaGmpcgderV2/w4MGLFi3itQ4rVKig57dUO3XqRERSrWPNyMjgxSvbtWsnvHhWqVRjx44loho1apTbmVjB+dXdu3dHjRqlb8tW9HB+xfLy2PDhLH9PxfIsPj4+MDDQ29vb2dlZvSyA3/t3cHDw8vIKCAi4U6BxnHov5rFjxyQI+k3i4uJkMpmlpWU53P6ipzZtYkRs9GidnTAjI6Nt27ZE1LlzZ2EzEpVKNWLECCKqW7fuzp07t23btmrVqoULF3p7e48aNap3796Ojo68blKhmfSCKlSoUL9+/Xbt2vXr18/T03PWrFlLlizp0KEDEbm6ug4aNMjV1VVnrxqQcAeR3b3L6tRhRDu9vHTZ1ignJ4fvLSv4/auLzrFvQz9vb5eyhPvvv/9OWt4MhXoyZU90dDQR1axZs+AtONGr/xff3r17iahNmzbCQT4rkrCuQqGys7N79+7NV0mIu+Banx08eLBVq1bCER1/qTx58qRXr15EZGBg4OfnV7KDFHNJ++vs27ePF+dt3LgxGqhqA/90atmypXCQZ8Mfv24tsxj4evYWLVoI39Vbt24lIltbW218/d27d8/c3JyIjh49qh7My8vjV6Hz588X/Yxv68EDZmbGZDIWHi51KGLLzc2NiYkJCAjw9vZ2cXHhTWu5atWqKRQK/W/UsXLlSiIaOHCg7k+tVCr5ag87Ozvh5gDG2IIFC3imLyIiQveB6YMi5lf6Rj/nV0z93y0nh/n7s65dmZMT69fvVUfHgACm8fE4dSrT+1/YYlIqlTExMevWrfP09OSXOWpmZmYuLi4+Pj5BQUHP37SDnm/bsrCw0KuFNRz/7Bo2bJjUgcB/DhxgREy3lVXu379fs2ZNIlqwYIFwPCMjo2nTpsIv5UKZmJjY2Ng4ODi4uLi4u7t7enr6+Pj4+/sHBAQEBQWFhITExsa+LgH3+PFj3hH9559/1pPe4+UEEu4gvhs3Vri7E9GgQYNy3rJdU8mkpaXxuo7NmjXTwenehbq7p7590JWyhLt6m+ob514lhnoyZc/XX39NhbUyi4uLs7e3F65i1iVeqnvx4sXqkUePHvF+FHp1s4fLyMjgCwybN2/+TL8aC2qLSqVq2LBhZGSkhDEolUpfX1+eKx85cuRbvTFu3LghXNJuYmLi6ekZFRX1tjHExcW1adOGL5wJVKcAQCQ7d+4kogEDBqhHUlNTeQpPqwmsQtezq1Qq/muucUEoig8++IC/jYWDPBMhVa/UgubOfblZU++Th+8kLy/v6tWrW7ZsmTZtGt9eoP9bWB4/fmxgYGBkZKT7L6Dp06dTYRV4t27dKpPJ5HK53uVwdeh18yt9o8/zK8YYU6nY4MGscWO2bRs7c4atWcMqVmT/+x9jjPn6MsEXBGOMOTmxX36RJExRpKenh4SE+Pn5ubu786YIatWrV3d3d/fz8wsJCXmrC2aVSjV+/Hj+eyrseK8P3nvvPSLatGmT1IHAfyIjGRFzdtbxaaOjo4cPH66x3iUnJ4f3lmjSpMnQoUOnTp06f/58f3//zZs3HzhwICoqKi4u7t0/tXbt2sVvYpWrncqSQ8IdtOHSpUu88dWQIUO0tBYwNTU1ODjYx8fHxcWFt3e2s7OrVauW9hKwolizZg0RDR48WOpANJWyhDv776Nq7ty5wfmFh4dHFSY6Ojr2NRISEp4XwFNLBevJqFQqYekPHSuinozeFl3VH9evX69Tp07jxo01cgq8/4NCodB9+aC8vLwaNWoQkXDV8Nq1a4no/fff13EwxfT06VMHBwciat++vZ5esort+PHj8XpQWXX37t18J1fLli1vvanCdHZ2tsaSdgcHBz8/v3f5jszIyOB1J2Qyma/vd3q2e6x04/Vnhb3ULl68SERNmzbV9qm3bNlScD17eHg4Xx0g7l6Ww4cP8+WHwl6piYmJfP/Erl27RDzXu0hNZdWrMyJWfjKovP74b7/9pjGekZGhm7UzxcdD1V7Jo0LxvSAmJiahoaHC8RMnTvCCuStWrNBlPPrmdfMrfaPn8ysWHMyMjZnwKiMoiBkZscTEspFwf/jwYVBQkPDqXc3Ozs7T03PdunUxMTHvcptZqVQOGTKEf6nFxsaKGPy7SEtLMzY2VigUGsW7QUp37jAiVreu1HEwxpifnx8RNWrUSNtbrj/88EMicnZ21rdv9jIMCXfQknPnzvELqLFjx4pV7TYhIWHbtm3Tp09v0aIFryjLGRgYtGnTplq1akTk6uqqzykgd3d33V8mFEfpS7iPGTOGb4zSEhMTEyMjI2GzRMZYdnb2mDFjqlateuPGDd2/ZNSTeUePHz/mywe6deumMaFZvHgxERkZGQlrGesA76HcoEED4WDfvn2JaOPGjbqM5K3cv3+fvxX79u2rL23Hyofr1683a9aMiCwtLXfu3Fnocwouaffw8AgODhYrhnXr1llYWDg4nOnShT18KNZRy7uZM2cS0Q8//KAe2bNnDxH16dNH26dWr2dfuHChcJy3bPXy8hLrRNnZ2fwTWPgyGWPjxo0jLdeIK4HVq3O7dv2pXbtO5eSidP369UTUq1cv4eD8+fPNzc3150YI99tvvxGRm5ubzs64fft2uVwuk8k2b94sHL969Sq/1Jk1a5bOgtFPRcyv9Iq+z68WL2Y9e+YbUamYlRXbv78MJNxzc3OFFTMMDQ07dOgwe/bsXbt2iVs5TVj/UB9WS7D/Lta6dOkidSAgkJbGiJi5udRxsLi4OP6rIeJc/XWSk5N53+8lS5Zo+1zAIeEO2hMeHs4/PaZPn17ig7yub4qBgYGzszMv6ZacnMwYu3fvHm/Y07NnT/2c7L148cLMzEwmk+nJt79QKUu4x8TE8M4hzs7Obvl17NjRuTCOjo52r2FjY2NdAL+BM2nSJOF5c3Jy+ByuQYMGGhU8dQD1ZN7dvXv3+Dxj4MCBGpni2bNnE5GZmVlYWJjO4uGN6WfPnq0eSUtLMzExUSgUWi3c/O5u3rxZvXp1Hx8f/S/YWsakpqbyFuEymczHx0d9Q/t1S9q1UXghPPyJjQ0jYrVrs9OnRT98eTR1anyXLjFBQa82+fIqK1OmTNHB2Qtdz37r1i0jIyOFQiFW1f4lS5ZQgV6pYWFhMpnM2NhY3zY45+bm8q08K1eulDoWXUhKSuILMB89eqQe5OUa9a22Hg9VLpfrZjJ95swZPuHUaKHx5MmThg0bEpG7u7u+dYuSRBHzKz1RCuZXkyezDz/UHHRwYGvWMF9fRsRksld/iEpXwp0xNnjw4L59+y5evPj48ePC9JPoMjIyXFxciKhZs2ZPnz7V3omKydPTk4iWLl0qdSCQn4kJI2KZmdJGMXDgQCpQak97jh49KpPJDAwMpK2WWX4g4Q5aFRwcbGJiQkTz5s0r/k/FxsYGBAR4eXnVr19fuObY3Nzczc3N19c3ODi40JT6zZs3bWxs+GRPD9ck7du3j6eIpQ6kEKUp4f7ixQveeXbChAnaO8uZM2d4YzeNRX+pqamOjo5E1K5dOx1vpuD1ZITJWdSTKYGYmBjeitDT01OYLFapVBMmTCCiypUrX758WTfB8BVhJ0+eVI9s27aNiLp27aqbAN6F7u85AadSqfz9/Q0MDPgmg6ioKB8fH36PUBtL2gv1+DHr0YMRMWNj5u+v1VOVC46OjIgJr33mzs2tXz97xQodJYbef//9guvZp0+f3rx589Ni3FR58eJF9erVZTLZsWPH1INKpZJ/n/r6+r77KUT3zz//EFGVKlX4so4yj1/zC28wqLvHF7O7ss7wUHVQxeX27dt8M+XEiROF45mZmR07duRzen3eV6tjr5tf6YlSML+aO5e5u2sO1qjBtm9/ucJdpXr1p7StcNexpKSk1q1bE1Hbtm1TU1MljESpVFapUoWIrl27JmEYUIhatRgRk65ULPuvrrqlpaUu12POmDGDL4DQzzWqZUzBhLu3t3enTp1K0E9LG5BwLwN2795taGhIRN98883rnpOXl6duTl67dm1hkt3CwsLNzY33TcnOzn7j6YTl4/VtgcXHH3+st9eVpSnhPmnSJCJq3LixtudPe/fu5Smt1atXC8cTEhJ4PQ13d3edvclUKhVfOhQREaEeRD2Zkjl9+jTffSOsmMwYUyqVvKFfzZo179y5o+0wrly5wvP7wnfRqFGjsGUBiiM4OJhfwikUCv592bp169WrV2sUwtKe3Fzm48OIGBHz9GTaXKxW9llbMyImXHbp4cGI2JYtOgrg+vXrhoaGGuvZ09PTRVy6++DBA43V4itWrCCiOnXqaHWp47tQd4uROhBd4NX8XVxchIN8legWnb0Ri2fr1q1E1KlTJ62e5dmzZ/ymeO/evYVf03l5eXyqUK9ePeGGAGCvn1/pg1Iwv9q0idWowYQpsOvXmUzGrl4tAyVldC8xMZH/Cnfv3l0HicXY2Ng9e/YUHD958iQRNWzYUNsBwFtr3ZoRsbNnpTp/RkYGX16q4710L1684AUqP/vsM12et3wqmHCXSkJCwqRJkzSaESLhXjZs376dJwSWLVumHszNzY2KivL39/fw8ODrIdTUzcmjoqJKUP9dG+XjRcEr3pw5c0bqQApRahLuPMVsYmJy/vx5HZzul19+4fksjRqmV65c4e9aEevbFg31ZMR15MgR3ujs22+/FY5nZmZ26dKFz4y1fSH9zTffaGzUyMnJ4R9e+tPoCfRZXFzcxIkTx4wZM2HCBOGtOF3asoWZmzMi5ujIbt+WJIRSLzWVETEzs3yD7doxIhYerrswpk+fTkT9+vXTzekSExMrVqxIREFBQbo5YwmcPXtWLpebmJjcvXtX6li0LiMjo0KFCjKZTHi/mZc2GqCR6ZNaoaGKKzs7m99uadasmcYWB77d0NLS8uLFi1o6e6n2uvmVtErH/CotjdWuzaZOZXyb9rNnrHt3xjt5IOFeInFxcXy50oABA0Tf/K5UKtULBvlFvqGhYcG02meffUZEc+bMEffs8O5+HjfOs2nTUOkqe/DKos7OzrqvSxYVFWVoaCiXy48fP67jU5c3+pBwf/HixTfffMNvh3t6egofQsK9zNi4caNMJpPJZHPmzFmwYEGPHj14RUQ1Ozu7sWPHbtiw4ebNm+9+OlHKx4vr0qVLRFStWjW9ugegVjoS7rdu3bKysiKidevW6eykX375JRGZmZkJW5UyxiIiIvibWDdXFKgnI7qdO3cqFAqZTPZL/iuWlJQUJycnImrZsmVSUpL2Amjfvj0R7d69Wz1y+PBhfl7tnRRAdFevsiZNGBGrXJkdOiR1NKXQxYuMiDk45BusVo0RMV12fHny5An/hj18+LAOTjd27FjSv16pBfFVsRrXJ2XViBEjiOi7775Tjzx+/NjAwMDQ0FAb3SDeBQ9Vo666WFQqFa+5bGtrq7EWbN26dTytpifVV/XT6+ZXEio186vLl1mbNqxCBebgwExM2Pvvs+fPGUPCveSuX7/OC0ONGjXq3S/C09PTjxw5smDBgl69ellYWAhzGdWqVXv//fcfPHig8SN8lf2JEyfe8dQgOv49ItUWrpiYGJ7y1sgw6Mz8+fM/atEiw8WFSVpzqcyTPOEeFBRkZ2fHP6bc3d1v3bolfBQJ97LE39+fl08QJtk9PT3XrVunjRUqR44c4eXjv/rqK9EPXgJ+fn5ENH78eKkDKVwpSLjn5OR06NCBiIYOHarL86pUqnHjxhFR1apVb9y4IXxo9+7d/Iri999/13YMqCejDWvWrOE7GLZt2yYcf/z4MZ8fd+vWTUu7UOPj43ltXOEX8LRp04jo66+/1sYZAbQnJYUNHsyImELBfH2ZXt5X1l9BQYyI9e37aiQzk8lkzMhI1/8lv/32WyJq1aqVtpcGhIaG6mev1ILu3LljYmIik8nKQ3sxXkzW0dFRONirVy8iWr9+vVRRFWr37t28jpY2Dv7VV18RkYWFxblz54Tj+/btMzAw0MGsrwx43fxKKqVsfvXgATt7lgnvcmVmMo1WCikpLCtLx3GVUufOneMbqsaPH1+C7gKPHj0KCgry8fFxcXExMjISJtltbGw8PDz8/f2joqIKPfLNmzeJqFKlSvpW6BbYfxv7dNAOpCCVStW9e3ci+vjjj3V/di43J4e1acOImK7265dPPOGu1TV8r3P16tU+ffrwD6smTZrs37+/4HPu3LnDP6P0c1EwvK3Dhw9///33n3zyyc6dO3XQIr445eN1pnPnzkS0fft2qQMpXClIuH/yySdEVKdOned8rYcO5eTk9O7dm4gaNGig0Shy9erVfK3TIW0u7AwLC0M9GS1ZvHgxERkZGR08eFA4fu/ePX6TY+DAgdqYJfNr0cGDB6tHVCoVb2ERHR0t+ukAtC0vjy1YwORyRsTGjGEzZjBhw5LQUDZnDnv8mA0cmC9psHcv8/HReax6ZuVKRsSmTn01cvUqI2K6r/j64sUL3qFEq/lEpVLJe9npZ0+bgnhBAL3utSiS7OxsXi5P2Dn8t99+I6KePXtKGFhBhYYqCpVK9eGHHxoYGGhcmkZHR/PNswsWLBD3jGXV6+ZXuof5FYSFhZmbmxPRJ598Upznx8bGBgQEeHl5OTg4yGQydYZdoVA4ODh4eXkFBAQUZ4fxDz/8QERjxox551cA4vP19ZVqKrJx40a+rFj3aY18rlxhpqaMiO3dK2UYZdrSpUvNzc0bNGgQGBios5M+eZI7depUXtS7cuXKq1atKjSbERQUVK9ePXNzc4VC4eTkdPLkSZ1FCGXG9u3bedvLH374QTdnLLTs8/Pnz/mWXI06kPpD3xPu+/btk8lkhoaG4bqsaCuQmprq6OhIRG3btk1PTxc+NHv2bL4S6qzWmq7wmw2oJ6Ml/P+gmZlZWFiYcDwmJoZvyRkzZkwJVsQUbebMmTKZbOPGjeqRyMhIIqpZs6bo5wLQmf37WaVKLCCANWzI5HKmrk2yZQtr2ZLdvcuI8i3aW7GCabnxYSkwZw4jYsLaGAcPMiLm5iZBMJs2bSKiGjVqXLp0KTY2NjY29u7du8//o/H1VzJ8w6OdnZ0OutiJIikpiTco1udy82KZMGGCRgIiJSXFxMRELpfH67LCkUBKSsrPP/9c8JuRhzp48OBLly6Je19cpVJpbGh48OBBrVq1iGjkyJH4ji6+182vdAzzK2CMHTp06I3dBS5cuDBo0CD+ga9mYWHRu3fvhQsX/vvvv2/1JXjt2rXmzZsTkZ7s8wANvEnJtGnTdHzeZ8+eVatWjYg2b96s41MXYulSRsRsbNjTp1KHUjZdunSpadOm/MPkvffeE32VgIbcXLZuHatShbVv/42BgYGXl9eTJ08KPu3cuXNdu3blUTVs2LBGjRpEJJPJRo0adf/+fa1GCGXP77//LpfLZTKZ9up+x8fHBwYGqu+CF7wk2bJlCxH16NFDSwG8O71OuN+/f59PfYRdd3UvISGBt8Rxd3cXXtqpa33a2Nhoo68a6slom0ql4tftlStX1vgWPH36NF/RNmPGDNHP++DBgzTBWt958+Zp6UQAusTz6Q0bsjFjWKNGjOdUkXAvwtChjIht3fpqZO1aRsQmTpQgmLy8PBsbG41e9oUyMzOz/k+dOnXs/uP8n3bt2rn9p3///h4eHh4eHoMGDeK7a/fs2SPByyspfpPA3t6+zJcF4KWu7e3thYODBg2Sat99Tk7Oe++9R0Tz5s3TeMjT07Nq1ar83WhoaOjg4ODp6env7x8SEiJusdSUlJSWLVsSUZcuXbJQxONtFDG/EldGRsbx48e/+eabQvd9Yn4F3I4dO/iSzx9//LHQJ1y+fJl/pNSoUcPd3d3Pzy8kJKT43VZzc3N5G1UPDw+eUTU0NLSwsPjtt99Eew0gnq1btxLR8OHDdXzeyZMn821zenELMC+PdevGiJhg1zWIKzc3d926dXzGwpPgWqr1cfAga9qUETEiNnJkaqFfu0+fPvX29uafhJUqVfL391cqlRkZGX5+fjzpYWZm5uPjk6ZRxAygSPz+pVwuF6srhkqlunz58tq1a0ePHs2XvAjvgh87dkzj+aNHj5Y8XVw0/U245+Yyd/dEZ+fe/fv3l/xr6ebNm/yz0it/sbPs7Gw3Nzciatq0qeiNxVBPRgeUSuUHH3zAF0Bp9JQ4cuTIG1fEiIKvgkEfNigbGjZk+/czV9eXhWWQcC9C27aMiAm3b82dy4jYokUSBLNkyRI+265Xrx5PoNetW1edWNfod18yvXr1krBoacnk5OQ0atSIiNasWSN1LNqlVCp5g0Hhpr2//vqLJLrHP3XqVCKqUqXKzZs3heO80I1CoejatWuDBg2ENR/4BW2LFi0+/PDDH3/88fjx4++yvTQnJ4dXsW/atKnEe/9LpyLmV+8oPj5eXVmbz9OIqEGDBgWfifkVqG3cuFEmk8lksg0bNhR8VKVS/fnnn2/1Rk1JSTlw4MD8+fO7deum8RVpY2PD66cZGhru27dPtNcAIgkODiadF0w7c+aMXC43MjK6cuWKLs9blDt3mKUlI2IS9Y8tJ549e+bt7c2Lb1hbW/v7+4u4huPGDebh8TLV3rAhK7R6TU5Ojr+/v5WVFf9Q8vb21qgsf//+fU9PTz6hqlWrVkBAgOTJNyhF+CWkoaFhiTcEK5VKftPa09NTI8luaWnp5ubG74JnZ2cX/EG+Plufe4Ppb8J93jxGxGrVUj15ohf32SIiIvh0SqMzQEpKSqtWrYioc+fO4m6Tv3z58sSJExcuXKgeQT0ZbcjMzOzSpQsRNWzYUKMy1M6dO3l3XO1tk7l16xYRVaxYseAnCEBpxBPuUVHM1JRduZIv4V6hwqs/xsZIuLOqVRkRS0h4NfLiBbt2Ld+IbqxatYqK3ecwIyNDXWrm7t27vP7MrVu3ov4TERER/J89e/YE/ke4W6sU2bFjh6en571796QOROt4H7nPPvtMPZKRkVGhQgWZTCZuwvSN/ve//xGRqampRjnBY8eO8daFP//8Mx9JTU0NCQnx9/f38vISpl+FmS93d3dfX9+goKCEt/nVmjJlChFVrVpVI+MPxVfE/OqtZGdnnzp1avny5UOHDq1Zs6bGLRYnJ6fp06f/+eefGgkCzK9AA9+xpFAoStxaLSEhQX2zh/eLU7Ozs/P09Fy3bl1MTAx/K/r4+PDPsePHj4v6OuBdnTt3johatmypMe7j4zN69Oi1a9devnxZ3ISjUqnkJWoL7tmS2K+/MiJWsSIrB5McaV29erVv37784+J1jUzfSloa8/VlxsaMiJmbM1/fwttpBwcHN2vWjJ/Xzc0tJibmdQeMiIho3749f2a7du1OnTr1jhFC+TF37lwiMjIyKv4bOzc3Nyoqyt/f38PDQ2ODtXqrWVRUVNFNfUNDQ/n3rxgvQlv0NOF+/DhTKJhczo4elToUgaCgIJ5+FRbgZozFx8er22wqlUrtBbBt2zYi6oQ0ldhSUlKcnJyIqFWrVhq3fNeuXUtEcrlcS3UY0VUJyhiecGeMffwx69kzX8L93j2Wlvbyzw8/lPeEe2Ymk8mYsTErciKhC3/++ScvwPfLL79IHApIik9bNfbVjRw5koj8hK0GtGzbtm1yuVwul+/YsUM4fvny5YoVKxKRz+sbLufk5MTExAQEBHh7e7u4uBTcmWFtbe3i4uLt7R0QEKDOixXE236amprigvMdFTG/KtqjR4+CgoJ8fX3d3Nx4NSqN5U78JkoRx8T8Cgr68ssveVLg0KFDxfwRYRtVjZs9zs7O3t7egYGBhdZKVqlUH330EX/HajSHAGndv3+fiGxtbTXGGzRooPE587pllW9r+fLlRFS3bl1ROuKIzN2dEbFevRgWNWtfUFCQ+m3m7u5+69atkh1HqWSNGzMiJpezSZNYoXe0r1+/7u7uzs/VuHHj4lR0zMvLCwgI4Psd5XK5p6fnu9wsh3JF3bznxIkTr3tOdnb2v//+u2DBgh49emhM0Rs0aDBu3LgNGza81S8FXxxTzKboUtHHhPvjx8zWlhExwdpufbFmzRoiMjQ0PHjwoHA8JibG2tqaiKZOnaq9sw8dOpReX38Q3sXjx4/t7e2JqFu3bho7FfiFt7GxcWhoqOjn7dy5MxH9/fffoh8ZQBLqhHtSEqtenY0Zg5IyhbtyhRGxRo0kDiMoKIgv0/v+++8lDgWkplKpeMca4ZddUFAQz5bqJoaQkBATExMqUDovISGhbt26RDR06NCiV7sIKZXK2NhYnrd1d3dXV34XplTU+feoqCieVfnrr79kMplcLt+5c6f4r7D8KWJ+JcQ3FKszmxrFgvjyYX9//zcud1LD/AoKNWvWLCIyNzd/XUdf4bK7ypUrC9+HFhYW/GZPcHBwZmbmG8+Vl5fH71lWqVJF2y0TofiysrL4fReNe66XLl1atWrViBEjbG1tNf6/9+nT53//+19ISEgJ+nkkJCTwah562sMmMZFVq8aIWFkvnacnsrKyvv32W142vW3bz774gqWmluQ4P/zA2rVjha4KSEpin3zCWrQYT0QVK1Zcvnx58TtSMMbS0tJ8fX35lkFzc3NfX1+0sYE3UqlUXl5eRd9jfvz4sXB2p94Z9lb7aGNjY3nxGb7i2cHBofh30CWhdwl3lerlfdauXZk2F4uX3Geffca/eoV1Thljx48f5x9MWqrZj3oy2nbv3j31TgWN2mqzZ8/u1q1bSkqKWOfKysoKDw9ftGiRXC43NjZOLdk3LYD+USfcGWMBAUwuLyrhnpfHjh1je/YUvguybHvxgkVGspMnpYwhLCzM3NyciL766isp4wC98fnnnxPRtGnT1CM5OTl8p6cOskW3bt0qtF9ORkYG3+bctm3bd2yLGhsbu3379q+++qpfv342NjYa+XczM7OWLVvyW1D+/v7v9mrglSLmV2p8di3McPXs2XP+/Pn79+9/q6XxmF9B0dQdfStWrHju3Dk+mJKSEhwczHdU8Ht+ajY2Nh4eHm91s0coJyeHLzKtWbPm7du3RX4xUFI83VnElV18fHxgYGDB+398Z4OPj0/RO2yE+IK5IUOGiBa96P7552Vdkhs3pA6lvEhISBg3bry9fSYRs7FhGze+9YZXpbKQPQlKJVuzhlWpwohYq1YpH330UYnbtN64cYP3DiSiRo0aBRZaHh5AQHiP+dKlS4U+Z8iQIZ988sk///xT6M6wQuXm5kZERCxdunTAgAF8ibNajRo1Tkp7LV0Mepdw9/NjRKxqVRYfL3Uor6FSqT788EM+A9O4G7Nlyxa+Kuqvv/4S/byoJ6MDMTExPLPg6ekpXPWgUqnefTvhw4cPC+6PbtGixfr169/xyAD6Q5hwV6lY9+5FJdw//5x9rS0dBgAAP5ZJREFU/TVbuZL16ydJsBI4dYoRMWErkH792HffSRDJ+fPneYEOrW7MgtLl7NmzRFS1alVhVnTixIlE9PXXX2v11E+fPm3cuDER9evXT3h2pVI5aNAgvhAmMTFR3JM+f/6cl4D39PR0cHCQy+VENGLEiI8++kjcE8Hr5ldqf//9d4MGDTw9PVetWnX+/Pm3qtCI+RW8ldzcXP6pUrVq1REjRmhkVBUKRevWradPn75169b79++/++kyMzO7detGRA0aNHirThKgPfXr1yei2NjY4jyZV7jy8fFxdnbmXxPqt4qDg4OXl9frygoxxg4dOsTv5t69e1fUVyC2UaOYrS3TwmZuKEJUFHN1fdny1NmZhYS809GOHWOtWr08Wrdu7Px5ESI8cuQIbz9ORD179nxdFhWAy8nJGTBgABFVq1bt6tWrJT4O32rm5+fn7u7OL1cLvQteKrr76lfC/fRpZmTEZDJW0g63OpKTk9OrVy8iatiwocZtw6VLl9aoUSMqKkr0k6KejG6cPn2ar3qYMWPGOx4qNzf37NmzP//88+jRo/nETk0ulzdv3nzy5Ml//vmnKGED6Il795hwBWpKCrt/nymV7N69fGs30tJYYuKrbUytW+s0SAmdOsWMjZm1NVMvdJMk4X7jxg1eonHUqFElWLIHZRivU3z48GH1yJEjR3iqSHsnffHiRadOnYjIyckpLS1N+NCMGTOIqFKlSteuXdNeAFxycvKxY8eeP39eKmbwpQ7mV6A/srOze/fu3bRpU/62MTMzc3Fx4cuWnwlXB4gkNTW1bdu2RNS8efOnT5+Kfnx4W23atCGirl27Llu27MyZM6/beVPQ8+fPg4KC5syZ06FDBwMDA/Unj0wmW7JkicaTs7Ky+I1kLW1/F1NS0st1MQ8fsk2b2Jo1LCiIvb4IGIhFpWKBgaxuXUbEZDLm4cFKcGvm3j3m6fky1V6rFgsIELMgf25u7rp166pUqcJ3eHh5eRV/bTKUQ9nZ2bw/cO3atd+qVkx6enpISIifn1/BrWbq4jPFvEuqV/Qo4Z6UxOrXZ0Tss8+kDqUYUlJSWrduTUTt27fX2OAs4kQqPj5eXXvUwsJCJpPdQw9x7Tty5AivDvTtt9++7c+qN6UWvB1XoUIF9Wwes20AtQsX2ODBUgehK6dOscqV2ezZrG/flyO6T7jfu3ePl8N+77333n3vDpQxCxYsIKLx48erR/Ly8nhBW20sJmCMqVSq0aNHE1HNmjU11pMuW7aMiIyMjP79919tnBp0DPMr0B9paWlxcXHLli2LiIh4qwLHJfP06dNmzZoRUbt27VDpSHLPnz+3s7NTf4aYm5vzz5BiVufnMjIyeHrI3d3d0tJy+/btGk+YP38+v8uigzeYOH7/nZmZsT592MSJrFUrVrcui4mROqZyISOD+foyU1NGxMzMmI8Py7/24A0/aGLy8gd9fbV1l+TZs2fe3t4KhYKvgfD39y/+bSoobzIyMrp06cJXJxe9rys1NTU4ONjHx8fFxcXIyEgjye7l5RUQEFDa8596lHAfPJgRsbZtWWm5/I+Pj+c5i4EDB77V1teij6nOsFerVk34njM2Nr5w4YIoZ4E32rlzp0KhkMlkv/zyyxufHBsbGxAQ4O3trbHTkAR7XkJCQkrNZAtAh2JjWdeu7MEDqePQFZ5wT05m1asz3sxPxwn3R4/YkCHfEVGXLl2Kf1UJ5ce1a9eIyNLSUtjfki8znzNnjjbOyAvHW1paakxy9uzZw7+IN23apI3zgiQwv4JyKz4+nid5u3fvXkQDYdANXqWdf7wUrNLu7e0dGBj4/PnzYh4tOztbo7HkjRs3TExMZDLZ69rz6p1r15ihIdux4+U/lUo2fjxr3pzdvs2GD2fDh7PPP5c0vrLv/n3m6clksnwL1W/cYOvWMeE78a+/2J07L5fG16nzTkvj39aVK1f69OnDf1OaNGly4MABrZ8SSqeUlBS+kajgvq4iinSpP3vL0uIJfUm4//wzI2IVK7LS1U7m8uXLvHL/lClTSnaE5ORkdf1QjV2xRFSxYkUXFxf+tkPVPx1bs2YN/83ftm2bxkPqDS/u7u58g5WaoaGh+pNC9GqzAGXMvn2sXTsWFsZiY/W0S7boeMKdMRYQwGrWZKmpOk24JyW9LO84evQvycnJOjorlDaOjo5EtGvXLvVIeHg4EdWuXVv0AkTr16/nX53CIjaMscjISN7R9xthxwMoEzC/gnIrNjaWbxgqooEw6F5iYiJPALm4uPC+2eoEEK/SHhAQ8LYF/d3c3Iho0qRJWopZfN98w9q3zzfy8CGTydjFixIFVE4dP85at35ZH6ZrV/bjj4yICTvLNGrE1q5l7du/fE67duzUKZ1GGBQUpN4g4u7uXhqrfIAOPHnyhDcAaN269ZUrVwptQ82ndnyHYlm9MpUxxkgPXLlCI0bQ3Lk0cqTUobylkydP9u7dOysra+nSpXPmzHnj81NTUy9evBj9H95MQP2opaVlixYtnP+j8Y4EHVuyZMn8+fONjIyCgoJatGgRFhYWGhoaHR0dGRmZk5OjfpqNjY2zs7Orq6uLi0vbtm35dmkAeCN/f3r06OXfv/qKLCwkjUYnIiLI3Z2ePiXGqEcPat+eLl2irl2pY0eysqKWLbV46sxM6tOHQkKoUSMKCaHq1bV4LijVli5d+vnnnw8fPvyvv/7iI4wxJycnJyenH3/80dLSUqwTHTx4cMCAAUqlcs2aNVOmTFGP3717t0OHDomJiRMmTPjtt9/EOh3oD8yvoNy6fPly165dnz17Nnr06D/++ENj6wZILj09PSIiIjQ0NCwsLCQkJDs7W/2QnZ2di4uLq6urm5ubsCJNQVu3bh01alTlypWvXbumce9Qf02cSESk8Z1brRqtXUsffCBJROWWSkWbN9Pnn5OREX39Nf3wAz15Qnv3UseORESNG9PChfTppyST0YIFNGkS6f5TJCcnZ82aNV9//XVqaqqRkdGUKVMWL14s4vwQyoaHDx927dr15s2bwkELCwsXF5fOnTt36dKlPEztRE64nzhBQUG0bNmrkWXLyNY2Xxr9yROaNo1GjHj10b12LZma0siRlL9uT6kRGBg4cuRIxlhAQICnp6fGo+np6efPn1dn2K9du6ZSqdSPVqhQoVWrVuoMe9OmTTHx0iuzZs3y9/c3NzfPyMhQDxoaGjo6Onbs2LFTp06dOnWqVauWhBECQCmiTrgTUUwMdexI9erRmDG0aRNdvkwuLuTjQwMGiH/e3FwaNIgOHKBatSg0lOrWFf8UUGbcv3+/bt26pqamiYmJvMulNsTExLi6uqakpMybN2/x4sXq8ZSUFFdX15iYmO7dux88eNColE4N4U0wv4JyKzIysmfPnmlpaVOnTl29erXU4cBrZWZmnj17lt8RDAkJSUlJUT9kY2PD7wW6uro6OTkJV8ilpqY2bdo0ISFhw4YN48ePlyLwEhk3jgwN6ddf8w3a2tJPP5GHh0QxlWvJyXT7NsXE0Nq1NGQIBQRQdDQZGlLjxvT992RrSw4OpLU5WrE8fPhwwYIF69evV6lUNjY2CxYsmDRpEnJZIHTv3r29e/cuX768efPmXbt27dy5s6OjI28GUE6InHAPCKAffqBLl16NDB1K9vb0v/+9GomLo3r1qGpVunqVKlcmIpo8mSwsaPlyEQPRteXLl8+ePdvQ0HDfvn3dunW7ceMGT6+HhYWdP38+Ly9P/UxDQ8NGjRqpF+w0adKkXL3hSh3G2Ny5c1NSUrZu3dq2bVs+r3JxcTE1NZU6NAAofYQJdyKaM4eWLaMlS+jpU1q/ntLTiYg6dCAfHxo4ULQVK3l5NHo0bdtGVavSyZPUpIk4h4UyzNXVNSws7M8//xw1apQ2jp+QkNChQ4f79+8PGzbsr7/+UqcqcnNz+/bte/To0WbNmoWGhmr0xoSyBPMrKM+OHTvWr1+/rKysL7/88n/C62TQV3l5eefPn+cr3//9999nz56pH6pWrVq7du34J1j79u1nzZq1atUqV1fXkydPlqat6osX09GjdPz4q5GUFLK2puhocnSULKpy748/aO1aOn6cWremiRNp9uyXCff335c6sv+cPn165syZp0+fNjIyunbtWsEiyQDlmWQJ95EjydT05aalMpBwJ8FSnezsbKVSqR43NDRs2bJlm/80b97cwMBAwjihBLKyskxMTKSOAgBKvUuX6JNP6OjRl/9MS6MBA2jCBPrwQ0pNpY0b6bvv6OFDIqIGDWjGDProI3rHzx7G6KOP6NdfycqK/v2XnJze9SVAebBq1arp06cPGDAgKChI9IOnpaV16dLl/PnznTt3Dg4OVm8mZYyNGzfujz/+sLGxiYiIqFOnjuinBn2D+RWUW4cPHx4wYEBOTo6fn5+Pj4/U4cBbUKlUly9fPnHiREhISEhIyEM+byMiogoVKmRmZioUirNnz/L6xaXG2bPUti2dOkXt2r0c+fpr2ryZbt4krA6UDk+4h4fTsWM0cCBdu0bdu+tXwp2IGGObNm16+PAhPsoANEiWcI+Lo5Yt6Z9/qHv3MpJwV6lU06dPz8rK+uOPP+zt7Z0FsFoHAACKIzubtm2jJUuI17urXp2mTKFZs8jKqoQH9PGh778nU1M6dIg6dxYxUijLnjx5YmtrK5PJHj58WJnvRhTPkCFDdu7caW9vHx4eXqlSJfW4r6/vokWLzMzMjh071k59wQ8AUEbt2LFj+PDhKpVqzZo1H330kdThQAklJCSEhYUdOXIkNDT06tWr48aNa9q06WeffSZ1XG9v4UL64QeaNInq1KHwcDp0iPbtw9xRWuqEOxGNHk0KBUVE6F3CHQBeR/yE+8SJ+fIC6ek0Z04hCffsbPL3pz/+oHPn6OOPy0LCnUtKSjI2NjYzM5M6EAAAKK1UKtq3jxYtoqgoIiJLSxo3jr74gmxs3u4433xDX31Fhoa0axf166eNSKHMeu+994KDg3/99ddJkyaJe+TIyMjx48f/888/jRo1Ug9u3bp19OjRcrl8x44dgwYNEveMAAD6aePGjRMnTpTJZJs3bx4pbHoGpVNCQoKxsbHoN6p158wZ2ruXnj6lBg1o5EiytZU6oPJOmHB/+JAcHCg3lzZvRsIdoHQQv6dB48Z08+arP336vPaZn35KcjmtWCF6CFKytrZGth0AAN6FXE4DBlBkJIWEkLs7pabSihVUvz59+CHduFHcg6xZQ199RXI5bdqEbDu8NZ76+eqrr2bNmvXHH39cunRJWC7vXbRt2/bixYvCbPuJEyfGjx/PGPP390e2HQDKj/Hjxy9fvlylUo0dO3bv3r1ShwPvytbWthRn24moXTtatIhWr6bZs5Ft1zc2NrRgAQkajQOAvhO/mLhCQYL9wWRo+PpzG9CKFTR4MHXtShYWogcCAABQurm6kqsrnT1L/v60ZQtt2kR//kn9+tHXX1PbtkX94KNHNGcOyWS0di0NH66rcKEM+eCDD7Kysj7++GN/f38+ou76zjk5OZV4hYFc0BH46tWrgwcPzs7OnjNnzvTp0989cgCAUuSTTz5JTEz08/MbNmzY/v37u3XrJnVEAKAvOnbMVz1i2jSqUIFat5YsHgB4Kzqq4T5/Ph07RtbW1KHDq5IyRkZERGPG0NatNHNmGSkpAwAAoA23btHKlfTLL5SVRUTk4kI+PjRgAGVlUbNmNHw4ffPNy2cuXUoPH9KAAXThAn3yiXQRQymXkZERGhp67ty5s2fPnjt3LjY2VjhpNDAwaNKkieN/WrduXbFixbc9xZMnTzp27BgbGztkyJDAwEBhIh4AoPyYNWuWv7+/paXlkSNH2hZ9Rx0AAABKAx0l3KOjacAAuniRGjSg4cPzJdwTE6lJExo/Hgl3AACAN7h/n378kX79ldLTiYg6dKD586l/fzIzo5AQcnIiIvryS7p3jzZvljZSKGvS0tIuXLhw5cqVy5cvR0dHR0VFZWdnC59gY2OjXv/erFkzOzu7og/44sWLHj16REREtG3b9vjx46jIBwDlFmNs4sSJGzdurFy58okTJ5o1ayZ1RAAAAPBORE64p6dTcjLVqvVqJDGRDA3JwoIMDenBA5oyhXbtonv3qH59kslePufRIzI0pFJd7gwAAEBnUlNp40b67jt6+JBWr6aPP6ZZsyg0lE6dIoUCCXfQhdzc3Bs3bkT/5/z58xn5C4taW1s7ODioU/BNmzYVLmBXqVRDhgzZtWtX/fr1T506Vb16dZ2/AgAAPZKXlzd8+PAdO3bY2tqGhIS88Z4lAAAA6DORE+5FW7eO0tJozhydnRAAAKDMysykTZto+HCytqbYWOrbl2bMoOnTkXAHCeTl5cXFxfHF79HR0adPn37y5InwCZaWli1atOCL3x0cHP76669Vq1ZVqlQpPDzc3t5eqrABAPRHVlZWv379jh071qNHj6NHj0odDgAAAJSc7hLuwcG0ciVt3/6ykgwAAAC8uxcvyMyM7t+nK1do2DC6epVWrkTCHaR3586dcwIJCQnCR01NTVUq1eHDh7t06SJVhAAA+iYtLe3jjz/+9ttvawn3jAMAAEBpo4uEO2O0fDkdOULLl1OFClS7trZPCAAAUF6oE+61apGHB5mZUc2aSLiD3klMTBTm36dNm1a3bt3BgwdLHRcAAAAAAIDIdJFwz8ykRYte/r1qVZo9W9snBAAAKC+ECfcHD6hZM2rfnqpVQ8IdAAAAAAAAQAIGOjiHmRn5+engPAAAAOVarVo0bx59/jmNHi11KAAAAAAAAADlklzqAAAAAEA0s2ZRy5ZSBwEAAAAAAABQXumuaSoAAACILjeXbt+mxo1JJns5kpRE6enomAIAAAAAAAAgAaxwBwAAKMXu3qUmTSg9/dXIxo3k6SldQAAAAAAAAADlGBLuAAAAAAAAAAAAAAAiQMIdAAAAAAAAAAAAAEAEBlIHAAAAAO9qwwYyNn7591OnJA0FAAAAAAAAoBxDwh0AAKDUi4khQ8OXf09IePV3AAAAAAAAANAlJNwBAABKveXLycLi1d+DgiSNBgAAAAAAAKC8Qg13AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACAClJQBAAAoxSwsaPjwfEXbmzSh9HTpAgIAAAAAAAAox2SMMaljAAAAAAAAAAAAAAAo9VBSBgAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHQAAAAAAAAAAAABABEi4AwAAAAAAAAAAAACIAAl3AAAAAAAAAAAAAAARIOEOAAAAAAAAAAAAACACJNwBAAAAAAAAAAAAAESAhDsAAAAAAAAAAAAAgAiQcAcAAAAAAAAAAAAAEAES7gAAAAAAAAAAAAAAIkDCHaB0U6lUMTExDx8+ZIxJHQsAAAAAAAAAAEC5ZiB1ANLLy8tLTEy0tbWVOhCA4kpPTz9//nxYWFhoaGh4ePjz589HjBiRnJy8a9cuY2NjqaMDAAAAAAAAAAAop2Tlc1VsWlrahQsXeL4yLCzMxsbGwcFh2bJlderUkTo0gMLduHEjIiIiPDw8PDz88uXLKpVK/VDt2rWTkpLS09NHjRq1adMmuRw7VwAAAAAAAAAAACRQXhLujLHr16+fOnUqPDz81KlTV69eFeYrraysUlJS7O3tQ0JCqlatKmGcAGq5ubkXL17k94ROnDjx+PFj9UMGBgatWrVycXFxdnbu0qVLvXr1Lly40K1bt+Tk5KlTp65evVrCsAEAAAAAAAAAAMqtspxwz8jIOHfuXHR0dFhY2LFjx54+fap+yNDQsGXLljxf2bVrV2tr6+7du589e7ZVq1bHjx+vWLGidFFDuZaQkMDfsaGhoVFRUdnZ2eqHqlev3rZtW2dnZ1dXVxcXF1NTU42fPX78eN++fbOysnx9fRcsWKDTuAEAAAAAAAAAAKDsJdyF+crIyMicnBz1QzY2NupkZZs2bUxMTIQ/+OTJk86dO1+/fr1bt24HDhzQeBRAS5RK5fXr1/k7NjQ09M6dO+qHFAqFvb29+k3r4OAgk8mKPlpQUNCQIUOUSuXy5ctnzZql5dgBAAAAAAAAAAAgn1KfcFcqlRcuXAgNDY2Ojg4JCbl79676IZ6v5MlKZ2fnZs2aFX2o+/fvu7q63rt3b+DAgTt27DAwQEdZ0IqUlJTIyEheKyYsLOzFixfqhywsLNq3b8/fsa6urtbW1m978E2bNo0dO5aINmzYMG7cOBHDBgAAAAAAAAAAgKKVyoT7o0ePIiMj+Up2jXylpaVlu3bt1LWtrays3urIly9f7tKly/Pnzz09PQMCAt64oBig+PLy8iZMmBAeHn7r1i31oEwma9KkSceOHV1cXDp27NikSZPiv+vi4uKqV69ecDfGypUrvb29DQ0N//nnn/79+4v2AgAAAAAAAAAAAKBIpSnhvm/fvq1bt4aHhwvLbsjlcgcHh44dO3bq1Kljx4729vbFP2BmZqaZmZnG4JkzZ3r27Jmenj5jxowVK1aIEzqUe4yxESNGnDhxIjEx0dzcvHXr1nwNe/fu3atUqVLMgwj3c/D6M//++2/37t0LPnPu3Ll+fn6mpqaHDh3q3LmzqC8FAAAAAAAAAAAACldqEu6BgYF//vlnUFAQEVWoUKFVq1a8VkynTp0qV65czIPk5uZevHiR5ytPnjzZs2fP3377reDTjh492r9//+zsbD8/Px8fHzFfBpRXERERHTt2rF69+sGDB1u0aKFQKIr5g48ePTp16lR4ePipU6eio6OzsrLUD1WuXPnnn38eMWJEwZ9ijE2ZMuWXX36xsrI6duyYo6OjOC8DAAAAAAAAAAAAXq/UlCn/4YcfIiMjp06dOmXKlGbNmhU/X5mQkBAeHs7zlWfPnhW2Ub127VqhP9KzZ8+tW7d6eHjMnTu3UqVKkydPFuEFQPm2e/duIho5cmTr1q2LfmZeXt61a9fUvX+vXr0qvCtmZ2enrvDu6Ogol8sLPYhMJluzZk1ycnJgYGCfPn1CQkIaN24s3qsBAAAAAAAAAACAQpSOFe4JCQm1atUyNTV98uRJwSIwGni+kicro6Ojr1y5on6It1HlyUoXFxcHB4ci6mWvXbt26tSpCoWCJ99FezFQLjk4OFy9evXYsWPdunUr+GhaWtrp06fVtWKSk5PVD5V4PwcR5eTkDBw48NChQ3Z2dqGhoTY2Nu/8OgAAAAAAAAAAAOC1SscK9127djHG+vTp87pse2pq6pkzZ3i+MiQkJCUlRf2QhYVFy5Yteb7SxcWlUqVKxTzplClTnjx58vXXX48ZM8bS0rJ3794ivBIol27evHn16tXKlSu7uroKx9PT02fOnHnq1Klr164Jb301bNiwY8eOvJPqW+3n0GBkZLRz585evXqFh4e/9957J06cKP77HwAAAAAAAAAAAN5W6Ui483IcgwYNKji+a9euU6dOXb9+XThub2/P85WdOnVycHB4XdmNN5o/f35ycvLy5cs/+OCD4ODgTp06lew4UM7t3LmTiNzd3Q0M8v3GmZubBwUFPX361NDQsGXLli4uLq6url27dq1WrZpYpzYzMwsKCurSpUtMTEy/fv2OHj1qbm4u1sEBAAAAAAAAAABAqBSUlElJSalWrVpeXt6jR4+qVKkifGjmzJkrVqwgIjMzM0dHR14rplu3blWrVhXr7IyxSZMmbdiwoXLlyidPnnRwcBDryG+gUtHOnXTgAKWlUYMGNHYsNWmio1OD2Dp16nTq1KmdO3cOHjxY46Fdu3bZ2to6OjoaGhpqL4D4+HhXV9e7d++6ubnt3bvX2NhYe+cCAAAAAAAAAAAot0pBwn3r1q2jRo3q0aPH0aNHNR4KDw+Pjo7u2LFj69atNdYOiygvL2/YsGE7d+6sWbNmaGhovXr1tHSifMaMoWPH6JNPyNaWTp6kP/6gnTupb19dnBpElZiYaGtra2xs/OTJEwlXl9+6dcvV1TUxMXHkyJGbN28u8bYPAAAAAAAAAAAAeJ1SUFLmdfVkiKhTp046KPOiUCg2b97cp0+fkydP9urVKzQ0tHr16to95Z49tGMH3bhBtWsTEY0eTbVrk5cX3blDWruvAFqye/dulUrVq1cvaWu5NGzY8NChQ926ddu6dWvFihVXr14tYTAAAAAAAAAAAABlkr6vcs3NzT106BARDRgwQMIwTE1N9+zZ4+TkdOvWrd69eycnJ2v3fMeOUf/+L7Pt3LRp9OAB5S9VD6VCEXeMdKxVq1b//POPiYnJmjVrFixYIHU4AAAAAAAAAAAAZY2+J9yPHj2anJzs6OhYv359aSOxtLQ8ePCgvb39hQsXBg8enJWVpZXTqFSUnU23b5NG4Rpra7K2pthYrZwUtCY9Pf3ff/9VKBTS3jFS69at27Zt2wwMDBYuXPjjjz9KHQ4AAAAAAAAAAECZou8Jd/1ZHUxEVatWDQ4Orl279vHjx4cPH65UKsU5bno6hYbSd9/RgAFUtSpt2EAWFpSZme85jFFmJllainNG0JUDBw5kZWW5uLiI2Mj3HQ0cOHDDhg0ymWz27Nm///671OEAAAAAAAAAAACUHXpdEJwxtnfvXtKbhDsR1a5d+8CBA126dAkKCpowYUJAQIBMJivJgW7coFOn6NQpCg+ny5dJpXr10PXr1Lgx7duX7/kxMZSdTY0bv1P0oHN6dcdIzdPTMzk52dvb28vLq2rVqv3795c6IgAAAAAAAAAAgLJAxhiTOobXOn36dIcOHerWrXvnzp0S5rW14/Tp025ubunp6TNmzFixYkVxfiQzMzP9/PlqJ0++zLM/efLqMWNjcnKijh2pUyfq2JFsbSk2lpo3p3Xr6MMPiYgyMmjIEFIoNLPw5VhKSsrVq1c7dOggdSBFyc3NrV69elJS0o0bNxo1aiR1OJrmzp3r5+dnamp66NChzp07Sx0OAAAAAAAAAABAqafXK9z56uD3339fr7LtRNS+fftdu3b1799/5cqVNWvW9PHxKfRpCQkJ0dHRYWFhoaGhUVFRix0dP4uIePlYjRrUpg05O5OrK7m4kKlpvp9s0IA2b6bJk2nFCqpZkyIjyc6OduzQ8ssqNZKTk7t37x4bG3v06NG2bdtKHc5rnThxIikpqUWLFnqYbSeib7755vnz57/88suAAQOOHTvm6OgodUQAAAAAAAAAAAClm14n3Hft2kX6V46D69mz59atWz08PObOnVupUqXJkycTUW5u7tmzZ0+dOnXq1Knw8PAHDx6on69QKM6ZmdG0aS9Xsr+xB+yQIdS7N4WHU2oqLVxIrVoRv+uwbRu1aUMNGmjxtek9KysrJyen8+fP9+3b9+TJkw4ODlJHVDj9rCejJpPJVq9e/ezZsx07dvTv3//s2bM1atSQOigAAAAAAAAAAIBSTH9Lyty6datRo0aVKlVKTEw0MNDTGwOrV6+eNm2aQqEYOHDg06dPo6KiXrx4oX7U2tq6Y8eOHTt27NSpU7t27SpUqPCu5/vnHxo6lOrVo9BQsrF516OVZnl5ecOGDdu5c2fNmjVDQ0Pr1asndUSaGGN169a9f/9+ZGRkmzZtpA7ntXJycpycnIyMjDZv3qy3ty4AAAAAAAAAAABKBT1NZBPRzp07icjd3V1vs+1E9PHHH8fHx/v7++/atYvfurCzs3NxcXF2dnZ1dXV0dJTL5WKer3dv6tCBwsPpvffoxAmqVEnMg5cqCoVi8+bNffr0OXnyZK9evUJDQ6tXry51UPmcPXv2/v37NWvWdHZ2ljqWohgZGZmbm585c+bWrVtIuAMAAAAAAAAAALwLUdPBotLzchxqDg4OmZmZjRo12rdv37Nnz2JjY//444+ZM2c6OzuLnG0nIjMzCgoiBweKiaF+/SgjQ+TjlyqmpqZ79uxxcnK6detW7969k5OTpY4oH/4GHjx4sF51IJg5c+b7779//vx59UhCQkJkZKSZmZmbm5t0cQEAAAAAAAAAAJQFeppwf/z48enTp01NTXv37i11LK/ExMR88MEHfOm9Gs+rTp8+vV+/fpV0sOS8cmU6fJjq1aPTp+n99yk7W+tn1GOWlpYHDx60t7e/cOHC4MGDs7KypI7oFT3sQKBSqQIDA3fv3i3cNRIUFMQY6927t5mZmYSxAQAAAAAAAAAAlAF6mnDfvXt3Xl6em5ububm51LG8snPnzn/++efw4cPqkezs7EOHDhHRgAEDdBdHzZoUHEzVq9ORIzR+PKlUuju1/qlatWpwcHCdOnWOHz8+fPhwpVIpdURERHfv3r106ZKVlVWXLl2kjuWVU6dOPXr0qEGDBs2bN1cPlpatJAAAAAAAAAAAAPpPfxPupH9JwIJRHT16NDU11cnJSddNOxs2pMOHqWJF2rqVpk/X6an1T+3atffv31+pUqWgoKAJEyboQx9gdQcCIyMjqWN5RV3lRj2SlpZ27NgxhULRv39/6eICAAAAAAAAAAAoI/Qx4Z6enn706FG5XK5XScD4+Phz585VqFChe/fu6kEpbwy0bEn//EMmJrRmDS1YIEEA+qRZs2b79u0zNzeP3L8/efFiqcMpNXeM9u/fn52d3blz5ypVqkgXFwAAAAAAAAAAQBmhjwn3gwcPZmVlubi41KhRQ+pYXtm5cydjrF+/fiYmJnxEpVLt2bOHiN5//31pYurWjbZtIwMDWriQfvxRmhj0RocOHYJ27jxfubK1ry/5+UkYybNnz8LDw42Njfv06SNhGBquXLly48aNatWqdezYUT2onzcGAAAAAAAAAAAASil9TLjrZxKwYFSnT59++PBhvXr1WrZsKVlYAwfSL7+QTBaze/eWLVskC0M/9HjvPWM/P1Io6Msv6ddfpQojKChIqVT27NnTwsJCqhgK4k1cBwwYoFAo+Ehubu6BAwdI/37XAAAAAAAAAAAASim9S7grlcp9+/aRjtuQvklycvLJkycNDQ379u2rHixYEVsa48dfXrOmxYkT48aN279/v8TBSG7wYPr5Z2KMpk6lwEBJQigtd4z+/fff5OTkVq1a1a9fX7q4AAAAAAAAAAAAyg69S7ifOHEiKSmp+f/bu/Poquszf+BPFlJZRFpErXGhFZcRB8UNcxMCFgGBIQpWHI+itqMFOtIeK6eCZ3S0LmnHwfYoylKXqlQ7qYCCR1mkIJIEacEjCoqgRawDskRQiCwm9/dH8rugrY6t3yzA6/UXeT7f+32e7zmXf973cz/3lFNOOOGEpp5lj2eeeWb37t09evT4+te/ninWbRluDrlq52HDRo8evXv37u9+97svvvhiU4/T1IYPj9tui5qaGDo0Zs1q5ObV1dVz5szJzs5uVp8YrVu3q7r6n9u0Ofi8887LFOsi+CY7EAkAAAAA9jvNLnBvnruDFy7836ys7L2nWrVq1cqVK9u3b19YWNiEg2XceeedP/jBDz7++OOBAwe+/PLLTT1OU/uP/4jrr49du2Lw4KioaMzOs2fPrq6u7tat2ze/+c3G7PvFnn4677XXHigp2dSyZcu6SjqdrvsFgub2fw0AAAAA9l3NLnBvhiHgzp3x+OM/PeKIXRdeODRTnDJlSkSUlJTk5uY23Wh7ZGVljR8/fsiQIVu3bj3//PPffPPNpp6oqd11V3z/+1FdHSUlsWJFo7X9gk+M1q9f32hjfMZTT0VE9O2bl6ksXbrtmGNuOPnkgtNOO62JhgIAAACA/U3zCtyXLl26Zs2a/Pz8M8888zNLO3bsaJKRIuL55+OjjyI/P+eoow7JFJcvzz/44PySkpKmmuqvZWdnP/bYY3379t2wYUO/fv3WrVvX1BM1qaysmDQpBg+OzZujT59Ys6ZBu61bt27q1KmjRo36/e9/H3/rFwh+8YtfnHTSSU3y5YOtW2PevMjJif799xSnTj24ouLa886ryMrKavyRAAAAAGC/1LwC97rdwX369PlMCLh27drTTjtt0qRJTTRVRMTeW5bXr4/HHx+ak/OX3r0HNMlInycvL2/q1KmpVOrtt9/u06dPVVVVU0/UpHJyYvLkKC6O996L3r3j/fcTvHdNTc3y5csnTZp0xRVXdO7cOT8//6KLLho7duyuXbuysrLuv//+vS+ura3905/+tHXr1v79+7/11lsJjvFlPPts7NoVxcVx6KF7inV73pvTN0kAAAAAYJ/XLI5Dybjssst+85vflJeXb9mypV27dpn6H/7wh5UrV/7whz9s3779RRdd1Jgj1dbGjBkRn44mn346amujZ89o3bpFYw7zZbRq1Wr69OnFxcWvvfZa//79586d27p166Yequm0bBnTp0fPnrFpU2zZEocf/lVuVlVVVVlZuWjRovLy8j/+8Y/btm3LLLVt27Zbt26pVKp169Y333zzfffdd+ihh95yyy11q9nZ2b/97W+3bds2c+bMc889t7y8/Oijj/4qk/xd/voTo9WrY8WKaNcuundvtCkAAAAAYP+XlU6nm3qGPTZu3Ni9e/eVK1f27NnzueeeO+iggzJLt99++0033ZSXlzd9+vS+ffs22kgVFVFYGB07xp//vKfYv38891w8/HBcdVWjDfL3+ctf/lJUVPTOO+/069dv+vTpzeSg+Sbz/vuxY0cce2xExEcfxaxZsW5dtG8fffp8atf3X0un4/XXo7IyKirSL710xJo1G7Zvzywef/zxBQUFBQUFqVSqc+fOOTk5dfUZM2YMHjz4k08+GTt27E9+8pPM9dXV1X369CkvLz/llFNeeOGFb3zjGw3xrJ+xe3ccdlhs2RJvvx3f+lZ98a674qc/jaFD49FHG2EEAAAAADhQNK/APSLefffdoqKitWvXlpSUTJkyZe+keNSoUWPHjm3VqtWcOXNSqVTjzHPDDfFf/xXXXx///d/1lW3bokOH2L071q2LDh0aZ4p/xOrVq4uKiq666qrS0lLndNerqIgLL4zjj49TT41Vq2LRonjkkRg8+FPXbN8eL78c5eWxcGEsWhSbNmVWRnfrVpGXl0qlUqnUOeecc9hhh31en8mTJ1955ZXpdPrBBx/83ve+l6lv3ry5uLh4xYoV3bp1e/7559u0adMAD/kpM2dGv37RtWssXbqnWFQU5eXx5JPRuF8XAQAAAID9XLML3CNi+fLlxcXFVVVVQ4cOfeSRRzJhcTqdvvrqqx966KH27dsvWLDg5JNPboRhTjopVq6MBQv2HL5RVhaXXBI9esT8+Y3Q/yvZsGHDF4TCB5ydO+O44+LKK+OOO+orEyfG9dfHqlWxY0eUl0dlZZSXx2uvRU3NnlcddVSkUpFKRUFBdO0aLb7sIULjxo0bOXJkixYtpk2bNmDAnrP+33vvvaKiojVr1px33nnPPPPM1772tcQe8G8ZMSImTIhbbon//M/6yoYNceSRkZsbGzfGwQc3aHMAAAAAOLA0x8A9IhYvXtyrV69t27aNHDnynnvuydRramqGDBkyderU/Pz8hQsXduzYsUHHeP31OPnkaN8+1q+PzFb7yy6Lxx+Pu++O665r0OYkbe7cuOCC2LAhWrWqr6TTcfzxccMNMX16PPNMfTE3N044IYqKorAwiori29/+hxveeOONpaWlLVu2nDVrVve9jktfvXp19+7d169fP3jw4LKyssxZNA2hvDz+539i2LDo3Lm+8sADcc018S//Uv/jBAAAAABAUppp4B4Rc+fOHTBgwM6dO0tLS0ePHp2pf/zxx+eff/6CBQs6deq0cOHCw7/az2B+sbffjrvvjoMPjtLS+sru3XH44fHBB/HWW18liaUpTJwY48bFq69+qlhSEv/0T3HMMTFnTv029jPPjJYtE2mYTqeHDx8+adKkQw45ZN68eV27ds0sLVu2rEePHlu2bBkxYsT999+fSLsvaeDAeOaZ+PWv4+qrG7MtAAAAAOz/mm/gHhHTpk27+OKLa2trJ06ceM0112TqH3744bnnnrt06dIuXbq88MIL7dq1a7SR5syJPn2iS5d45ZVG60lCxo+P8eNj2bJPFeuOdL/rrgbqWVtbe+mll5aVlXXo0OHFF1888cQTM0vz58/v16/fjh07br755ltvvbWBBviM7dujQ4fYuTPeey+OOKJxegIAAADAgSK7qQf4IoMGDRo3blw6nR4xYkRZWVmm3rZt25kzZ5544onLli0bNGjQjh07Gm2kp5+OiLjwwkZrSHKOOy7WrIlduz5VfPPNOO64huuZnZ392GOPnX/++Rs3buzfv/+6desySz179iwrK8vNzf3Zz3529913N9wMe5s5Mz7+OFIpaTsAAAAAJK9ZB+4RMXz48Ntuu62mpmbo0KGzZs3K1Dt06DBnzpxjjjlm/vz5l1xyySeffNIIw6TTMX16RMQFFzRCN5JWWBgtWsSECXsqM2bEW29Fv34N2jYvL2/KlCmpVOrtt9/u06dPVVVVZmngwIEPP/xwdnb2qFGjHn744QYdo07dJ0bewAAAAADQEJr1kTIZo0aNGjt2bKtWrebMmZNKpTL15cuX9+jRY/PmzZdffvmjjz6alZXVoGP86U9x1lmRnx/vvhsN3IqGMWNGXHJJDB4cp58eb74ZjzwSv/pVDBvWCJ03b95cXFy8YsWKbt26Pf/8823atMksjRs3buTIkTk5OWVlZYMHD27QMQoKYtGiWLkyTjihQfsAAAAAwIGoue9wr3PXXXd9//vfr66uLikpWbFiRabeuXPnZ599tk2bNpMnT/7xj3/c0GPMmxcRceGF0vZ91sCBsWJFdOkSf/5zHHVULFnSOGl7RLRv33727NkdO3Z86aWXBg0atHPnzszStddeO2bMmJqamssvv3zBggWJt16yJNavr/93ZWWUl0dubuJNAAAAAIB9ZId7RNTU1AwZMmTq1Kn5+fkLFy7s2LFjZmnu3LkDBgzYuXNnaWnp6NGjk+27cWPs2hX5+fV/LlsWVVVRXBzZ+8ZHFTQvq1evLioqev/99y+99NLJkydn//+3UTqdHj58+KRJk9q2bTt//vyuXbsm1TGdjuzsOOWUWLo0WrSIiPjZz2LZsnjyyaQ6AAAAAAD19pnYOCcnZ/LkycXFxe+9917v3r3ff//9zFKvXr2eeOKJnJycG2+8cdKkScn2HTMmOnaMV16p//PQQ+Pcc2Pr1mSbcKDo1KnT7Nmz27Vr98QTT1x77bWZelZW1vjx44cMGfLhhx/27dt35cqVyfatro5f/jLZWwIAAAAAn7XPBO4R0bJlyxkzZpx++umrV6/u27fvli1bMkuDBg2677770un0iBEjysrKku3bvn38+7/HPvJNAJq7Ll26TJs27aCDDho/fvwtt9ySqWdnZz/22GO9e/feuHFjSUnJ7t27E2x6551x++3xzjsJ3hIAAAAA+Kx9KXCPiLZt286cOfPEE0985ZVXBg0atGPHjszSsGHDbrvtttra2iuuuKK8vDzBppddFhs2xIMPJnhLDmg9e/YsKyvLzc299dZbf7nXzvO8vLynnnrqO9/5TmlpaYu6818ScsYZccklMXJkgrcEAAAAAD5rnznDfW/vvvtuUVHR2rVrS0pKpkyZkrvXT0COGjVqyZIlTz/9dNu2bRPpdfXV0aFDFBbGlVfGG2/E7t2Rnx9VVfH1rydyew5ckydPvuKKKyLioYceuuqqqxK884YNUVkZFRVRURFPPhlHHBGrVkW7dnHSSfHAA7FsmTPcAQAAAKBB7JOBe0QsX768uLi4qqpq6NChjzzySFZWVl09nU7v3r07Ly/vq9x8/fqorIzy8jj77Jg9Ozp0iNLSuOCC+MY34o47BO4k5t577/3Rj37UokWLadOmDRgw4B++T01NvPFGLFkS5eWxcGG8/vqeE5CmTYtBg2LVqujUKX796/jFL+Jf/zXeeEPgDgAAAADJ21cD94hYvHhxr169tm3bNnLkyHvuueer3Orz8srvfjcOOaQ+cF+zJk45JSZPjkGDBO4kZsyYMT//+c9btmw5a9as7t27f/kXbt0alZX1O9lfeik++mjPUps2cfbZkUpFQUEUFka7dvWBe21tFBbG2rVRUCBwBwAAAIDk5f7flzRXZ5999lNPPTVgwIB77733yCOPHD169N/18g8+2JNXLl4c27btWTr44OjWLVKp6NUrHn20vtixY9x4Y9xwQ3IPABF33nlnVVXVpEmTBg4cOG/evK5du37elel0+s0336ysrKyoqFiy5LXlyyt27tyz+q1v1SfsqVR06RI5OZlX7bkmOzsmTowzzmigRwEAAACAA90+vMO9zrRp0y6++OLa2tqJEydec801X3BlOp1+/fXXFy1aVF5e/sEHNz31VMe9H71TpygoqN8R3Lnznryy7gz30tKIiF274tRT44037HAnSbW1tZdeemlZWdlhhx324osvnnDCCZml6urqpUuXLlmypLy8fP78+Rs3bswsdenyUYsWbQoL44wzokePOPbYv33zdDqGD4/bbovDDquv3Hdf5ObGsGEN+EQAAAAAcGDa5wP3iJgwYcKIESNycnIef/zxIUOG7L20ffv2l19+uS6vnDdv3qZNm+rqPXpMqagY3KVLFBZGUVH06LEnjvyMsWOjXbv4t3+r/3P+/Ljjjpg2Ldq0acAn4kCza9eukpKSWbNmffvb3/7d7363evXqup3sr7zyyieffJK57MgjjywoKEilUgUFBWecccZX/K0CAAAAACBZ+0PgHhG33377TTfdlJeXN3369E6dOlVWVtblla+++mpNTU3msqOOOqourCws7H3aaZ1btGjCkeFTtm3b1qtXr8WLF+9dzM3NPfXUU1Op1DnnnFNYWHjs5+1jBwAAAACagf0kcI+I66677le/+lXr1q23b9+eKbZo0aJr164FBQV1+4KPPvroJpwQvtimTZuefPLJCRMmHH300XXv2LPOOqt169ZNPRcAAAAA8KXsP4F7Op0eM2bM1q1bn3jiibPOOquwsLCoqCiVSrVq1aqpRwMAAAAAYP+3/wTudXbs2HHQQQc19RQAAAAAABxw9rfAHQAAAAAAmkR2Uw8AAAAAAAD7A4E7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACRA4A4AAAAAAAkQuAMAAAAAQAIE7gAAAAAAkACBOwAAAAAAJEDgDgAAAAAACRC4AwAAAABAAgTuAAAAAACQAIE7AAAAAAAkQOAOAAAAAAAJELgDAAAAAEACBO4AAAAAAJAAgTsAAAAAACTg/wHp8ritMYFYeAAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 GA fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAACuEUlEQVR4nOzdZ1xTZxcA8BP2EGW4UBzgQMAJ4sIFgqLirFitxVZbsVrFLdYFto44qjiqxWotbsEJbhBUhooMUUQEcYAMmbJXkuf98PjGGIYBktwEzv/nh/bmkntQyL333POcwyKEAEIIIYQQQgghhBBCCCGEGkaB6QAQQgghhBBCCCGEEEIIocYAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBgoMR0AQgghhBBCCCGEEEJIlmRlgZ8fvHsHampgYQG2tqCAZbsIiYRFCGE6BoQQQgghhBBCCCGEkGw4exbmzQNtbejbF/LyICoKzMzA1xf09ZmODCE5gAl3hBBCCCGEEEIIIYQQAAA8fQqWlrBoEezYAYqKAABv38KoUdCxIwQFMR0cQnIAE+4IIYQQQgghhBBCCCEAAJg3D/z94dUrUBLoRH35MkyZAhERYGHBXGQIyQfsvoQQQgghhBBCCCGEEAIAgNBQGDToi2w7AIwYAQAQEsJIRAjJF0y4I4QQQgghhBBCCCGEAAAgKwvatxfeqKMDzZpBVhYTASEkZzDhjhBCCCGEEEIIIYQQAgAAVVUoLBTeWFkJJSWgpgb378OOHfD0KRORISQfMOGOEEIIIYQQQgghhBACAIAePSAxUXjjq1fA44GJCZw4Aa6u0KcPtGkD06fD8eOQm8tElAjJLqWv74IQQgghhBBCCMmqkhLIyQEDA2CxPm/MyQFCoGVL5sJCCCE59c034OICcXFgavp5499/Q/PmMHo0aGgAIXDrFrx/Dz4+4OMDioowYADY28OYMWBpCQpY3YuaOhYhhOkYEEIIIYQQQgihejp+HH74AUpKQF3988YpU6CsDG7cYC4shBCSUxUVMGIEvH8PmzfDgAGQlwc+PrB3L/zzD/z00+fdXr+GgADw84OAACgr+7RRTw9sbMDWFsaNAwMDRsJHiHGYcEcIIYQQQgghJMcw4Y4QQmJACNy7ByNHAgAUFoKbG5w6BZmZwGKBhQWsWweTJ1f/hcXFEBQEN2/CrVvw6tWnjSwW9OkTNnNmxYABVlZWysrKUvkeEJIJmHBHCCGEEEIIIZFkZGQ8evTo0aNHDx8+HDx4cPfu3X/44Qemg0KYcEcIoQYjBBYvhr/+gv37YdGiz9uLi0FFBURPl9Oy94AAuHULCgocjIyuvX6toaExZMgQBweHSZMmde7cWQLRIyRbsIc7QgghhBBCCFWvsrIyISEhNDQ0JCQkMjLyxYsX/IqlqKio/Pz8jx8/LlmyhNkgEUIIoQbhZ9tVVaFjxy9e0tSs21sZGYGzMzg7Q3k5NzTU9ObN5Js3nz17FhAQEBAQsHTpUmNjY3t7e3t7+xEjRqgLPiZFqBHBCnck08rKynbv3p2UlHT06FGmY0EIISQpP/8MmZlw6hRoaX3a4u8PO3bA7dtfjL9DCCHpSEtLi4yM5CfZy/h9aQGaNWvWp08fCwuLoUOH5uTk/Prrr4SQY8eOYZ07s2iFu53dF4P6oqPB3Bwr3JGw1a9fl3G5X2zp2NFAVZWpeBBiHo8HP/8Mx46BhgZcvgx2dmI/QmZm5r179/z8/K5evZqXl0c3qqmpDR061NbW1tbW1tzcnIXX/agRwYQ7kmmEEF1d3Y8fP6amprZr147pcBBCCElEz57w/DksXw5//vlpC02d8HiYcEcISUNhYWFMTAxNst+7dy8zM5P/kqKiorGxsYWFBU2y9+vXT0Egp/vXX38tWrRIWVnZ19fX3t6eidgRwP/PGtu3g5LAEu5jx8DAABPuSNjwJ08smjXr26wZf8sEPT1d7C6NmiwuF376Cby8QEMDfH1h1CgJH4376NGjmzdv3rx5MzIyksfj0e2dOnWyt7ffsWNH8+bNJRoAQtKBCXck6+zs7AICAi5fvjxp0iSmY0EIISQRPXuCtjY8egSPH0PfvgCYcEcISRiXy42Pj4+MjKRJ9ujoaP49PwC0bdu2f//+/CS7jo5OLW/l6uq6Y8cODQ2NgICAwYMHSz52VA3s4Y5EN/zJk1/09b9r04bpQBCSAVwu/PgjnDwJmprg5wfW1tI8eE5OTmBgYEBAwLVr11JTU1u2bPnhwwfBp9oIyS/s4Y5k3cCBAwMCAsLDwzHhjhBCjZiNDejowC+/QFgY4GU2QkgSMjIyHj9+zE+y85e0A4CysnK/fv2srKxokt3U1FT0he1sNjs7O/vff/+dOHFicHBwjx49JBM+QgghJFYVFTBzJly8CC1awI0bIPVnxnp6eo6Ojo6OjoSQ6OjolJQUzLajRgMT7kjWDRgwAAAePXrEdCBNGI8H4eHw4gUQAj16wKBBmAxDSGaVl5cnJCRUVlb269dP7tog7t4NvXqBpycsWMB0KAihRqGysvLp06e0D3tkZGRcXJzgq/r6+rSA3crKqn///mpqavU7CovFOnz4cF5e3qVLl+zs7MLCwjp06CCO8FHTVVFRER8fz+Vy+/Tpg+knSXhWXHwxO5v+t4GKygB5a2ERGRmpp6enpaWlp6fHdCxIblVUwLffwuXLoK0NN2/CwIEMxsJisczNzc3NzRmMASHxwoQ7knWDBg0CgPDwcB6Ph5ebDHj9GqZNg2fPoHt3YLHg5UswNQUfH+jenenIEELC/Pz8li1blp+fX1hY2LNnTw8Pj6FDhzIdVB106wYrV8LatTB1KtOhIITkVklJycWLFx89evTw4cOYmJjKykr+Sy1atBgwYMCgQYMGDhw4cODAli1biuugioqKp06dGj16dEhIyLhx4+7fv197FxqEahEQELB06dKMjIySkhITExMPD49hw4YxHVRjE1NcnFJeTv97QPPmcpRwf//+/dq1a0+ePNm7d+93796tWbNm2bJlKioqTMeF5E15OTg6gp8f6OjArVtgacl0QAg1NtjDHcmBzp07v3v3Li4uzsTEhOlYmpjycujbFzQ1wdcX6NDatDSYPBlyc+HZsy96ZMon78zMxNJSwS12uroDtLSYigeheouNjV22bFlAQAAAdO7cubS09MOHDywWa9asWWw2u3379kwH+BU9e8LUqfD771BaCj17wsiRMGIE9nBHCNVZZWWlp6fn0qVLuVwufG3eaZ1wOJxnz549fPiQw+EsXry42n3y8/NHjBgRExMzaNCgO3fuaGho1P87QXWUnQ2vXsHAgV+cNRISgMcDOerxEx8fv2zZsps3bwJAp06dysvLMzIyWCzWt99+u2PHDlw5IS7V9nDnEqIo29ccxcXF27Zt+/PPP8vKyjQ0NDp37kxX7ZiYmOzZs2fMmDFMB4jkR0kJTJ4M/v7QujX4+0Pv3kwHhFAjhPXCSA5gVxnGXLgAL1/C8eOfsu0A0K4dnDgBr1/D2bOMRiYeoQUF4YWFSiwW/w9+JiK5k5eXt2TJkn79+gUEBOjo6LDZ7JcvX75+/drNzU1VVfXkyZPdu3d3d3cv/fLZkowoK4NDh4DL/bxFXR08POC//yA6+tOWf/+FnBxGokMIyZ+7d+8uXrxYW1ubzWbfvXs3Pz//+fPnx48fX7JkiYWFRV2z7WlpaX5+fu7u7nZ2di1atDA3N1+4cOG2bdtq2r9FixbXrl3r1KnTw4cPZ8yYweFwGvwNIVGlp8OGDbBr1xcbDxyA27cZCqiOPn78uGbNmj59+ty8eZP+ANOzOZvN1tTUPHv2rLGx8Zo1a4qKipiOtNFa8urVxrdvcwXWxMgOQoiPj4+ZmdmWLVvKy8sdHR3j4uKeP3/u7+9vamr64sULe3t7Ozu758+fMx0pqs3bt29jYmK2bdsWFRXFYOVrUVFR2IIF4O8P+vpw9y5m2xGSFIKQzNu5cycALFiwgOlAmp5584iBQTXbu3Qhs2dLPRrxc0lMXPnqFdNRIFRPtJCzVatWAKCkpOTs7JyZmSm4Q0pKipOTE+3kbmBg4OXlxePxmIq2Kl9fYmREAMihQ8TMjGzY8PmliROJqioBICEhhMUiOjqEzSbl5czFihCSE7/88gsAbNy4sX5fXlxcfP/+/Z07d06dOlVobRCLxTI2Np49e/Zff/3F4XBqeZOEhITWrVsDgJOTk0x96jZu9+4RAKKkRKKjP28cNIjI/g0El8v18vKiPzMKCgpOTk4fPnwQ3OH9+/f8s3n79u1l7Wwuj4ZFR5/KyBDcklhSMjAy0iIiYkR09ImMjApZ+huOiIiwsrKiH0QWFhbBwcGCr1ZUVHh4eLRo0QIAlJWVXVxcPn78yFSoqBYvX740MDDo3Lkz/ads1aqVo6Ojp6dnamqqNMPIz8+3srJSV1cPtLMjL19K89AINTXYUkZKPnz4kJCQkChg9uzZvXv3trOzYzo0ORAcHDx8+HBzc/PIyEimY2liJkyAnBwICxPePmoUKCiAvz8TMYnTklevVFisnV26MB0IQnUWGBi4dOnSZ8+eAYCNjc2ePXt611Cfcu/evSVLlsTExADAiBEjPDw8+vbtK81Qq4qJgaVL4e5dAIDevWH/fli48FNLGSo5GUxNobgY4uLAxQUCAgAAzMxgzx5oyqfNyrKSW0fd6X+raTZvadCt5/BJSir1HPOIGu5JUdH1L9dfdFZTE+pRgKSJx+MZGBikp6dHR0eL/kGXlpYWGhpKB6tGRESU/7+tMwA0b968V69edKrqoEGD6ANOUYSHh48aNaqoqGjdunWbN2+u6zeC6uH+fRgxAkaMgIoKCAkBuphh8GDo1w8OHmQ6uJrdvXt36dKl9Bw9cuRIDw+PPn36VLtneHj4kiVLHj58CAADBgzYu3cvnXSF6qHaljLJ5eUHU1MD8vIAoKOq6sL27W2ZnsSQnp7u7u5+5MgRHo+nr6/v7u7+888/V7tSJycn5/fff//rr7+4XK6ent6GDRsWLVqkqKgo/ZhRteLj40eNGpWWltanTx8LC4s7d+68e/eOvqSgoGBhYWFvb29vbz9w4ECJ/qvl5+fb29s/fPiwY8eOd+7c6dq1q+SOhRqB8vLymJiYXUJrxyRp165d7du3bzyfXUxn/Buh3NzciIgIb29vNpvt7OxsZWVFHzgLad68uYaGRrRgDQaqQXFxsZKSkrKycklJCdOxNDFTp5K+favZPnAgGT+elJfL+1Nxl8TEOfHxofn59M/jggKmI0Lo6xITEx0dHemppGvXrt7e3l/9Elo916ZNG/h/9VzGl4VdUpOTQ1xciKIiASC6usTDg9A6UXd3cuXKF3ueOEGcnQmtMPP3JyYmBIAAEFtb8vw5A5HLgpKCXHcH/RMbZ/odWHVpt8vOWb32OQ8pLcpnOq6m60JWVv+ICPa7d/w/Z76sS0VSFhwcDACdO3eufbf8/Pzg4GA2m+3g4CA0N1VRUdHU1NTJycnT0zM2NpbL5dY7GH9/fzrGcM+ePfV+EyQ6WuEeGkrU1Mjff3/aKMsV7snJyU5OTvQHr0OHDqLUrfN4PC8vr7Zt2wIAi8VycnJKT0+XTrSNzPZ37x7mV3/2fJSfP/35c4uICIuIiAUvX75i6PazvLzcw8OjefPmAKCiouLi4pJfQ8CCoqKihg8fTn+o+vXrd+/ePSmEir4qLi5OX18fAEaMGFFYWEg3JiUleXp6Ojo6agnMD2vWrJmDg4Onp+e7d+/EHkZeXh5t1dupU6ekpCSxvz9qfJYsWdJDulNQjIyMDh06xPT3LTZY4d4g5eXlqampz58/j4uLey2g6p46OjpGAkxNTY8cOeLl5dWpU6eIiAiha31UVb9+/Z48eRIaGjpkyBCmY2lKVq2CI0cgJwcEKykIgbZtYcYMGD0aHBzA1BQmTAAHBxg6lLlA62nJq1ePCwo0//8EVUdZ2dvUlNmQEKpFcXHxzp07t2/fXlZWpqmpuXLlyjVr1qipiVrg/PHjRzab7eHhUV5erq2tvWbNmqVLl6qqqko0Zr7KSjh2DNatg+xsUFKCuXNhyxYQ/exXWQkHD4KbG+Tng7IyLFgAv/8O1T3ObsxKC/N2fGc2Y/0x44FjAODjh+S98wZP+HWH+ZhZTIfWRF3MzmYnJ4ebmzMdCPpkxYoVu3fvXrlyJe1GKCg7O/vcuXOPHj169OhRQkKC4EsGBgYDBw4cPHjwwIEDzc3NxTjp9PTp005OToSQ//77b/bs2eJ6W1QtWuGelgaHDsGBA/DiBbRpI6MV7iUlJTt27KBncw0NjVWrVtXpbE4vBthsdnl5Ob0Y+O2336R2Nm8KuIRcyck5mJr6kcNRZLEm6ektbN9eW0lJagH4+fktXbqUZhUcHBz27t1rZGRUpy93cXF5+/Yt/fJ9+/YZGhpKKFT0VU+ePLGzs8vOzra3t7948aK6urrQDqWlpaGhoQEBAQEBAYIL+o2MjGxtbR0cHEaPHt3wX/CsrCw7O7uYmJhu3boFBgYaGBg08A1Ro/fixYs+ffrweLxt27Z16tRJCkd8+PDhnj17dHV1ExIS9PT0pHBEiWM64y83ysvLk5KS/P39PTw8nJ2dbW1tjYyMql3Ppaqqampq6ujo6Orq6unp6e/vn5aWVvUNy8rK6ANGW1vb2htBIkKIs7MzAOzevZvpQJqY+/cJgHDd6bVrBIDcuUOOHCE6Op+KTgFIt25kzRry+DFDsdYH9nBH8kKMRW0vX750cHCgJ6xu3br5+fmJN9Rq+fuTnj0/fVSMGkWePavn+2Rnfy6Q19P7XCDfRNAK9/iHN+n/VpaX/T6pQ8j5vwghfgdWJYT7X9qzZO+8wc9DpPFvigghF7KyLCMjmY4CfUZzUqGhoVVfevXqFf9aXVNT08rKysXFxcvL6/Xr1xINaf/+/QCgrKx88+ZNiR4I0Qr3tDRSUkIMDcn33xMiexXuPB7P29u7Y8eO9Gzu6OhY7zrWeix3Q3WSX1m5MznZMjLSIiLC+smT0x8+cCTf2J2OP6X/rD169Lhx40b93qekpITNZtPSaXV1dVdX1wJcyMuEyMhImjccN25caWnpV/dPT0/38vJydHTU1tbmn7M0NDRsbW3ZbPbz+q7x/PDhQ69evQDA2Nj4/fv39XsT1NTQzyIpT1KkPbeXLl0qzYNKDibcq1FZWUlz656enq6urg4ODkZGRtV2EVJRUaEPHl1cXGhuPSkpSfQhNsnJyXQ8ztq1ayX6HTUCR44cAYAZM2YwHUjTM20a0dUlp0+TzEySnU3OniUtW5LJkz+9yuGQ4GDi4kLatv2cee/Ykbi4EH9/UlnJaOhfV23C/VlRUZgIazZRg3A45Nw5MncumTqVzJlDzpxpWnnTOgoPDx88eDA971haWoaFhdW0Z1lZ2Zs3b0R5T39/fzMzM/qetra2sbGxYgv3SwkJxNHx81M5sSQEIiPJsGGf3tPcnNy/L4b3lAs04R526e+0xJg3MSHe2+btcuqTn5VKCDm0yGarY7dbRzc9CTiXkyrZBKIkZGVl5efnZ2VlMR1I3VzIyrKMiOD3JQvNzy/EjzLm0MLAtm3bVtsHhsfjLViw4NChQ9HR0ZXSvT5ZuXIlzZjU8umNGo6fcCeE3LhBWCxy//6nhPv588TGhvz1F6muCEp6Hj9+zF+q279//5CQEFG+KiEhoZbWRgEBATSPBgA2NjZPnz4VX7yIEEJel5YuTkigHWa+iY0Nldg9Qk5OjouLi5KSEgDo6up6eHiI8kmVlZVVy6kTx+0y6/Hjx7q6ugDg4OBQVlZWp6/lcDgRERFubm4WFhb0X5AyMjJydnb29vYWpcUQlZ6eTq/5TUxMqq0ERagqPz8/ANDR0ZHyxXlsbKySkpKSkpLkbk6lCRPun/F4vN9//71bt27KyspVc+vKysrdu3cfP378smXLDh486O/v//bt24afsQIDA5WUlFgslo+Pj1i+i8aKDgY0NDRkOpCmoayM/PoroRU3ZWVkxQrSvPmn5JaWFlm2jFR9Ps/lfsq8t2//OfPesiVxciK+vqSiQvrfhCiqJtzLeTzH2FiLiAjXpKSPMv/A4O3btz///POpU6d27NghTwtliovJyJFEU5PMmkU2biTffUc0NcmwYeT/PQ0RX53ulHx9fbt06WJmZiZiLqmiosLDw4NW0CgrKzs7O4v3iqqwkLi5EVVVAkCaNSNubqSO9xpf4etLOnf+9GHj4EBEe9Ag32jC/fOfCe0CvLZyOZWEkEOLbK7sXc50gPVRWVnp6enZsmXLsWPHamtr0yYJTAclqgtZWRYREaOePOH/eVFczHRQTdf69esBYOHChUwHIozH482ZMwcAWrZsGR8fz3Q4jZZgwp0QMnEisbQkAweSBQvIjBmfThYKCsTKiuzeTd6+lWpsqampzs7OdG10u3btPD09RRwPUFBQoK+v369fv/s1P1umn6J0oq+SkpKzs3NmZqb4YkeEEHInN3fCs2c07b7q1auUoiIxvjn/PMj/FxT9emzOnDlfPXWKXreBxCg4OJi24J8+fXpFw+6FMzMzvb29nZ2daSN4SklJycrKis1mR0RE1HJ3kJyc3K1bNwDo27cvfjIgEZWXlxsbGwOAh4eH9I8+f/58WhAm/UOLHSbcPxs/fjz9qQIAfX19W1tbZ2dnNpvt7e0dEREhygqg+qEzf5s1a1bvJUJNAYfDeTdyJEdfn+B5QtLy84m1NQEgQ4Z83lhZSRITSULC11PnXC4JDSXLl3/OhAGQli2D1627ceOGrKVRqibcuYRcyMoaGhVlERFhFxMTkJvLVGy1S05O/uWXX+g0NnoxZ2lpKTdlTStXkubNSVzc5y1xcURLizSWtWNiQdcCN2vWTJS1wM+ePbO1taXnLzMzs+TkZNEPRCuq6CouWlHV8Ic3HA7H09Nz3Dhvmt2YN49IaJBkcTHZuJGoq9Nhqk/c3d2LG3W6U7ClDLey4u2zsB2zel49uIYQcmiRza2jm/h75qa/TU+qb+MeKbp586aJiQn90eW3EzUxMZGX5hvYUkammJqaAoC/vz/TgVSDw+FMnjwZADp06FCnj2gkOqGE+5s3REODKCuTBQtIcTHx9SVOTqRZs88Xp6amxM2NvHgh2ajo6Eva2UP00Zd8kZGRHTp0AAAWizVjxoxafngE66N1dHRErI9Goqvg8U5/+DA8OnpoVFTnPn3q+k9Zk4CAgJ49e9LT36hRo+p0MV9ZWcnvP1P7qRPH7UrZvXv36G/9jBkzavlNLKrjkxsulxsREcFms21tbQWLRNu0aePo6Ojl5ZX75a3ru3fvunTpAgDm5ubZ2dn1/GZQ00MH4fTo0aOBz4rqJycnhy4NuXr1qvSPLl6YcP/k9evXCgoKampqDx48qOt6n4ajY5SMjY0/fvwo5UPLE5oFlv/fOpmWnk769SMARF+fREc39N1iY4mbGzExIQDWHTsCgLa2Nr0aKJSNWuaDqamHq1tY976s7JeXL2kZy9LExExZqtD/8OGDq6srnayloKDg6Oh44sSJrl270iJlV1dX6X+C1Q2HQ7S1ycqVwttXryZaWjK7GELKfH19O3fuTK+hHRwcamkxnJubK5Yb7Li4uDFjxogl3Xn37t2+ffsCgIKC0rff5kZF1fudPnFzI05OtaXs370jP/xQoa3dGQA6dux49uzZxrpiWqiHOyHk+t9r//yhH6mScD+9afamCe0v/rm4KE9Gn1InJCTwuw9369aNdh+WWqejBvpYWbkzOdkrPR0T7rLj5cuX9DKDkZtDUZSUlFhZWQFAz549c2X1cb5cE0q4E0I2byYAX/RwLyn5lHnnL93kZ94jIsQfkq+vL3/WpYODQ1JSUj3epOoD+Fquol+8eDF27Fh6xB49ely/fr0B4aNqZFZUbL1yhS49bNeuXUOatAieBxvShd/f358+bvzqqbOoqMjNzY3eRGhqarq5uUmuprApCwoKor+wc+fOrWUtS1FRkbq6uoWFhaurq7+/f10v4AsLC319fZ2dnekzOUpRUZG+YXBwcFJSEh2Wa2FhkZOT0+BvCzUVHz58aNGiBQAweAbZvXs3/WCU9czG12DC/ZPffvsNAH744QdGjl5SUtKvXz8AmDRpUmNNE4iBqysBIBs3Mh1H45WURLp2JQCkSxci1lGi5c+eubu781tM0iUd06dPP3funIxk3qviEXIhK2tYdLRFRMTI6OgLMtBZODMz09XVlY62p6l2/sr04uJiV1dXulS5Z8+ejx49YjbU2sTHEwBy6pTw9nPnCED9h2k2FlFRUcOGDaO/Jv369bt3715Ne0piCbmvry+9NP9qor9aKSkp/AY4BgYGYmkVmp9PtLQIANHVJfv21TYY4tGjR4MGDaLBDxgw4MGDBw08tAyqmnA/sWHG4WVjyZcJdx6Xc+uI+++TO7o76G/71jjs4iFOpQylIAsLC93c3FRVVfk3/IIX07TTEb3QV1ZWdnFxkalahAoe70RGxojoaDpD72xmJibcZcTWrVsB4Mcff2Q6kNpkZ2fTvNjw4cMxzyVeXC5JSCDOzkTwA6O8nCxeXM0VByGktJRcuUJmzyY6Op8z7z16kLVrSVSUGD4wxfgYm6pHizn+2fyVWK/qESHk8ePH9PkZzWaK2I6fjya+azoP1kOdTp2C43a7dOmC43bF6/r16/SRxrx582rvHBUcHEx/BqiWLVvOnDnzv//+q8fig5iYmO3bt9vY2NDVz/zbbQAYOnSoWJZioKbj559/pucOBmOorKykJTi7du1iMIyGw4Q7IYRUVla2a9cOAOp6sqwfT0/P8PBwoY1v3ryhA6y3bt0qhRjk0oULBICMGcN0HI3U48ekdWsCQAYMkFzfntevX3t4eFhZWfFnv6ipqTk4OHh6espmU7nMioplr17RUvfFiYkZDLXEycrKEky1Ozg4PHnypOpuoaGhPXr0oPs4OzvXdZWilDx8SADInTvC2+/fJwAkOJiJmGRCdnY2v7WLnp5e7a1d7ty5IzgkLSYmRlxhVF38XksrG77i4mI3Nzf6I6qhoVF7/V1dxceTceM+ZUOMjcm1azXu2ehXTNOE+6XdLiE+B+6f23vmjx/cJ7SLC71KqlS4E0JyUl97s51pt/d9zkOeB/syFPVnXC7Xy8urTZs29GPKyckpIyOj2j3r9OsgNY/y8x2fP6dnhAUJCUklJVjhLjssLS0B4MqVK0wH8hXv37/v1KkTAEycOBE7fohLZibp0aP6xPpXcTifhhC1bfvpRDNixINOnTq5uLgEBwfX47GxJBq18Qk9Wq6lGTfNwNKugzQDi0k38eLxeN7e3h07dqSXHI6Ojm9FmAxQ9TwoxguVul5J9u7dWxJXkk3Z1atXabb9l19+EeXTo7i42N/f39XVlb9GgTIyMnJxcfH3969rO1b+G3bt2rVly5Z6enoyW9yGZFN0dLSioqKKiorQyBkej7d69WoJNcG+f//+9u3bhTb6+/sDgJaWllzfzWHCnRBCzp8/T6sPpFBdfurUKQDo0KFD1fTirVu3FBUVFRQUcPVf9VJTP1U54iIAsfP3/1REamdHREiuNdy7d+88PDxsbW1pKwy6As7KysrDw0MGP1L9c3NtnjyxiIgYHh19+sMHkaZciUlWVpabmxu9X2KxWA4ODlG1dugoLS11c3OjTf2MjIwCAwOlFqqonj8nAOTsWeHt9IladQ8SGr161yU1ZAFy7UQf70ZvOGn+SPQbznrw9yempp+yIba2pJbrPbEXjsmOsuKC4+un0z+n3L+/dmjt+/hP2V6/A6sibhyv+iWvnwQf/NWapt291jl+eCvhdsU1e/jwYV2XIERFRQ0fPlyUBR+S9q60dEliIk21T4mNvf//39CQjx8XJSQwFRXiS0lJYbFYzZo1KykpYTqWr3v+/DltTjpv3jymY2kMeDwyfjwBICNHNugWgcMhgYHk11/JsGEu/LSXgYGBi4vL3bt3RUmaV1RU1Hv0pejq9Gg5LS2NfzbX19f39PSUhYeXjQktOKA5Vg0NjdqbtEhnKZ7op07BtZI0+y+b9U/ywsfHh96CrVixoh5ppaSkJE9PT0dHR3rfR2lqatra2np4eLx586ZO71ZeXq6hocFisSTxKYQasREjRtCfYaHt586do3eFYp/Jl5aWpqKioqioWDXLMW7cOABwdnYW7xGlCRPuhBBCV/xJZwJvRUUFbRdgbW1dtbDF3d0dAHR0dOrX46/xa9+eABC8uRWvEyeIsjIBILNnS7+Ddmpq6oEDB2xsbGg5BgAYGhpKOQZR5FRUrE5KotmWn+Pj30l+JXh2djY/1Q4Atra2kSLXUT558sTc3JzeiTk7O4tSoSwNGRkkJISUlxMNjWp6Q23aRNTUSGNJjIpOqPNmLYUD0u+8GR4ePmTIEBpb//79Q0NDhXaIiIgQXFIdLOEFChUVxMODtGhBAIiyMnFxIbX0GpHOkwm5wOVURtw4seM7M3cH/d8ndfA7sKo4X6qtPAV7DX21E0JVDex01EAFHM6+9+8HRUbS9mL/paeX41N/2ePh4QEAjo6OTAciqkePHmlqagLAhg0bmI5F7u3ZQwCIjg559048b0jHErq5uXXr1o2f9tLT03NycvL19a0p1+Dv7y84+vKZhFvk1enRckRExNChQ6V2sm6CkpOTa2+p18DzYD3UexoQm80We0KtKTh79iz9O1y9enUD36qysjI4ONjV1dXCwoK/KJyWUjk7O3t7e4t4Zzdq1CgA8PHxaWA8qOk4e/YsALRu3TovL09we0lJCf08OXz4sCSOu3z5cgCwsrIS+mBMTExUVVVVUFB4/PixJI4rBZhwJ+/evVNUVFRTU5PaKIn09PT27dtX++CIx+NNnToVAPr06VNcXCydeOTJlCkEgJw4wXQcjYiHB1FQIADExYXZpQNZWVn//POPvb39qlWrGAyjdvc+frSPibGIiBgSFfVfejpXMn9jOTk5bm5utN6ZJmHrcY6pqKhgs9n0Tqxdu3YMr7LPyiKurkRDg7RrR0pKyJw5RF+fCBZcZGeTdu0I7b174wZ5+ZKpSKUpPj6ePrcHgO7du9cyh53BTilVV0y/e/eOMFo0l55O5s799LnVqRPv2LFTtbTIDAgIEOy98/TpU+kEKYNKCvJueK7fNNHA3UF/+0yTh1f+4XIk3s6iuLiYP+uvIb2G6MxA2umIzgyUwnNELiFXs7PtnjyxiIiwjIjY8OZNTiNtAFJtjzL5QguyTp8+zXQgdXD16lWandmzZw/Tscixp0+JmhoBIJcvS+T9Y2Nj3dzcaL8+SkdHh2be+QnuakdAS4foj5althytKQsKCurTpw/95xgxYgT9aBXXebAe6nTqFLwoNTY2vlZL/z5UxenTp+nnuaurq3jfOSMjw9vb28nJSUdHh/8ppKamZmtry2azIyIianlys3nzZgBYuHCheENCjVUtWXVaFty3b18J3e7l5+fT+9xz584JvVRTLl5eYMKdrF+/HgC+//57oe3JycmSO2hYWBidaHG2Sl+FgoICExMTAJg1a5bkApBX27YRALJ4MdNx1FNRUdHq1avnzZvn4ODg5eXF8CA4Ho+sWkUACItF5HwYhTQVcDhb3r61iIiYFBk53MZGvI3MCgoK2Gy2trY2P9Vedd5DnTx79mzAgAH03RwdHbOzs8UVqqhoql1T89NP2pQpJCODZGaSbt2IkRFhs8mlS2T7dtKlC+nalXz4QNLTia4uUVMjbDZpvKueS0tLBYuJPDw8KmpeXBIeHj548GD6j2hpaVlLw1bJKSgoWLNmDX1+06xZs3HjxtFbR1VV1TVr1jCyhCIykgwbRkaOvA8A5ubm9+/fr2nPysrKvXv30hsVJSWlxYsXN+VZhVnJCSc2zqQdZg78MiwxQoJdp3x9fWlyh5bXibIamsfj1VL9IDgzsF27dhKtEIwoKJj5/3btzi9fvpSHRiX1s3LlSgUFBbmugMvKylJSUlJVVZW7FtUnT55ksVgKCgpV7zCRKIqKSI8eBIAsWiTxY8XExGzcuJFfww4AzZs3nzFjxrfffkubSLRo0WLXrl2MlAYLjXWp5dFyUVHR+vXr6cAVTU3NzZs3SzPOpoDD4Rw6dIi2FVJUVBwzZoyBgQF9yDFz5kyJphdqUqdxu5cuXeKP2500aVJqaqo0Q5VTR44coQUomzZt+vre9cXhcEJDQ9evX29paUkPR3Xq1Gn+/PlBQUFVvyQsLAwATExMJBcVakxqyqqnpKTQNXl3796V3NE9PT0BoEOHDkJlx7Xk4uVCU0+4V1ZW0mJzoe5mHz58UFFRsbKyktw4o/3799NrnapLDl+8eEH7SOzfv19CR5dXgYEEgAwcyHQc9ZGVlUXb9tGOEDRXNW7cuKNHj0o/DVpeXs6bNYsAEFVV0oQ7LdRb8MeP9vPn03/ELVu2NPyDorCwkM1m84sXrKys6nRK++eff2rqQ8Xlcj09Pelpsk2bNufPn29gqKLKySFubp/af9Cu24J1+nl5ZONGYmlJjIyIpSVZv57k5n7aPmcOYbEIALG0JI20Hvnhw4empqa0XeaHDx9q2q1O90hSQFdMAwC9e3RwcHj16hWD8fB45OzZCx06dKC3sjNmzKjlVpZOsVNSUjI2Nn748KE045RBcaFXPX4aSNPu57b+nPJOzHWOkZGR/PYFtT8OEXLmzBltbW02m11LbwRJP4JKLStb9f9Z2ROePbtDP5oar61btwKAiorKrVu3mI6lng4fPgwA48ePZzqQ+ti+fTv9+7958ybTscifuXMJADEzI9J8Ivb69WsPDw8rKyv+2bn2EdDSIdiMm7aPr6UZN7+9ibW1tYQm4DVxeXl5rq6uKioqNPNep/OghIh+6uSP223WrJlcP4uVDk9PT5r+lubjq+zsbG9vb2dnZ5rIAoC1a9dW3a2yspKub8AHJ+irasmqz5w5EwC+/fZbiQbA5XL79+9f7YOrmnLxcqGpJ9wvXbpEl00JZTHo5e/EiRMlevQ5c+YAQNeuXYV6JBFCLl68yGKxlJWVGRwRJosKCoiiIlFVlbtGz2/fvqXLUTt37vzgwQMvLy8HBwdaEQMC80KlczosLCy0t7c/MWwY0dIicnuDzbj8/HwXFxd6jdW7d+96dxajqXY6P42m2qstUqjFw4cPFRUV1dXV2Wx2Teu8kpKSbGxs+KWmkv1JKyggbDbR1v6caq9rnf7du6Rr10+Nul1d5e73/aumTZsGALtqXllCVwHTKnKpNdAQ0ezZswFg9uzZTAfyieBibfp3Vcti7T///BMAvvnmG2lGKJs4lRUPr/yzbXr3Pb+OUVFRcXFxEUt1cFZWlouLC53J0bJlSw8PjzotPv3555/px1SPHj1u3LhR024SarJEZ985rF1rERFhFRXlmZpaXnO3osZk2bJlAKClpSX6pBCZMnbsWAA4cuQI04HU04oVK+jff0REBNOxyBMfHwJA1NRITAwzAbx+/ZrOy5GdOnGhZtweHh61VITMmzcPANasWSPNCJsUmiTq169fLY3vpKlOp87Hjx8DQMeOHaUZodw5ePAgi8VisVhMdQbj8XiRkZFbt26Njo6udgd6fpSvfmuIETVl1cPCwlgslrq6el3H9tZDSEgIPda7L0ey8HPxv//+u6RjELt6JtzPnDlT15SQbKKtyv7880/BjTwer3v37gDg5+cn0aOXlpZaWFgAwOjRo6veka5cuZJWpL5//16iYcgZMzMCQB49YjqOOoiNjaUFoT179hT818zJyaGZd9pfCAAUFBSsrKzYbHZiYqKEgsnIyKC3B/r6+hmNtHxYmu7fv08/LpSUlFxdXWupyqyqqKjIw8OjTZs2/FT7nTt36hFDXl6es7MzfZNBgwbVVKzE4/E8PT1ppYOOjo6np2c9jvUVhYWEzSY6Op9T7fX+VS0uJq6unxp19+wpX7/yX0UT7jX1WhV9zhUj3NzcAMDNzY3pQL4g4moAHx8fTLgLKshOX7dqiViatPBr4gBAWVm53hl8f39/MzMz+vNva2sbGxtb055iHCNM0xDt2rWjaYjtT55kSn2EOIN4PN4PP/wAAK1atXopbyM0Pn78qKKioqioWEs9r4zj8Xjff/89APzwww9MxyI3kpM/XWtI4lpGdLNmzQKAEzI2XOrFixc0y0YfXl6/fr3a3ejqFky4S861a9cAYOzYsUwH8gURT51v377FhHvtdu7cSa8Z9u3bx3QsNdqxYwcAzJs3j+lAkEyrKavO5XJpc9qNGzdKJxI6laRqb+2acvGyrz4Jd3ryaN26NSNtyMQoJSVFUVFRRUVF6Bo9MDCQLpmXwgi4t2/f0rVmVZMXHA5n9OjRNINWpyxeI0eXj8pPs527d+/S6ZfW1tY1NW3Py8uj41BokSZlamrq5uYWHx8vxmBev37drVs3ADAyMpJcTr+pKSkpcXV1pRWdXbt2FaUVTHFxsYeHB60xAYAhQ4b4+/s3MIzr16/T3hrKysqurq41dRFNTU2dOHEiPe7YsWPF9jEulGq3siJieSgbGvqpP6uSEnFxIUVFYnhPGVBLwn3VqlX0X6dfv36ML0Culmwm3Kn79+/TB4oAMHTo0Li4OKEdMOFercePH1tZWdG/NwsLi5CQkLq+g7+/Px0/Q7PkVf/m64Tm7umpk+buaxl58urVK/7MwA4dOnh5edX1cI8fPx4yZAh9h/79+9fj228EKioq7O3t6eWB1GYyi8XJkyfpJRbTgTRIdna2kpKSkZERXvCLorKSDBlCAMjUqQxHIpsJd+rixYtGRkb0k+3vv/+uugMm3CVNNhPuVGJiIv92YOTIkVV3wIR77dhsNs22//XXX0zHUhu6UqFr165MB4JkVy1Z9aNHj9JKpiJp3YMnJydraGiwWKyqd8E15eJlXH0S7lwulz4279evX4k8T5GiWYOZM2cKbafrKaSWTQgICFBUVGSxWBcvXhR6KTs729DQEHC6tKC//yYAxMmJ6ThEcunSJTqYaMqUKaJU3pWUlPj6+jo5OdEiQcHMe8MXGkdERLRu3RoALC0ta2kbjeonLCzM1NQUABQUFJydnWtqalFWVubp6amvr0//cQcPHuzr6yuuGETvcuPt7a2npwcAzZs39/DwaMha18LCwm1bt1bStDgAsbEhwcH1frdqlJYSV1eiqEgAiJERCZTgjEepqSXhHhcX17Zt27o24pAmWU64E4EV0yoqKlVrdTHhXhMej+ft7d2xY0d6A+no6Pj2rUiN3ePj4+liQQAwNja+du2auELKzs7md6fR09Or/Zfizp07vXv3pmFYW1vHiNZjIjU11dnZmX5mtmvXztPTU0YW/jOiuLiYdvjt1atX1VaHMuubb74BAFkuMBTFqVOnakp7oarWriUAxMCA1DxiWUpkOeFO/v/wslOnTllZWVVfxYS7pMlywp2i43ZPnTpV9SVMuNeCZtsVFRWPHTvGdCxfweFw6IQwES/qUBNUU1a9oKCApiyq/YiQnA0bNgCAubm50DV5Lbl4WVbPljK5ubl0gLWTnOQ9q+JwOPTGMvDL9E12draampqCgoI0P5XoFY+WllbVorDo6GiasT169KjU4hG06tWr2S9eCP55xmyRaVQUASDduzMZg2gOHDhAb+MXLVpU13v40tJSX19fZ2dnOv6IMjIycnFxCQ4OrseS/zt37tAkvq2trew0g25kKioq2Gw2bRBkaGgYEBAg+Gp5ebmnpydtWQAAAwcOFGOqXZCIXW4yMjJongIAhg0bVo82ArQlDq3T9xk+nFhZkS+/ZXF68oSYmxMAwmIRZ2ci5z/DtbeUqZDtXhYynnCn8vPzr169WnU7JtxrR5uY05XmGhoabm5utdRVCDULZrPZNS2saYioqKjhw4fTT6q+ffvWMtiGy+V6eXnRkyadYVhLj5Hy8nIPDw/aYkuMLezlXVZWFp03M3LkyHr355GmkpISTU1NFoslL4tu379/X22ZGD0p7N27V/ohyZ27d4miIlFQEM86ugaS8YQ7VdNFBSbcJU32E+6EkMrKymrvKzHhXhOaDVRUVDx+/DjTsYiELmWox/o/1BTUklVfvXo1rQ6sd7fJ+ikpKaF52n///VfopZpy8bKs/kNTY2JiNDQ0AEAijYAlz9fXFwC6dOki9AO0a9cuABg/frw0g+HxeHSJRI8ePare8h0/fhwA1NTU6j2VsSEmPnu2ODHxQlYW/88HCdxR10FlJdHQIPr6RLZXV/AXmjUwLcXhcIKDg11cXPjtRwCgU6dOdcq8nzx5kmaBv//+exnP5TUCMTExdKwHnUeUm5tLU+38OfK9e/f29vaW6KlL9C43vr6+9BlA7TNXhRQXF+/atYsumACAoUOHBtWr+3zdlJcTNzeiokIAeF273m9wEx4G1Z5wlx3Tpk0zNjZ+9uyZ4Ea5SLjXBBPuokhOTuY3xDcwMKja2L2ystLT05OmtpWUlJydnSXdPtvX15cu+IOvDTbIzc11dXWlp7yaHgP4+vryOy04ODgkJSVJNHj5kpycTLuTTZo0SWbX2fBdvHiRPsBmOhBRfffdd+rq6hcuXBDcyH9sIHedSaUvKyvbzKwSgGzaxHQohJAaEu5Xr141NjZesWIFU1GJCBPuklZTwr1Hjx7GxsaMhCQ6TLhXa+3atfTKR8o1vw2xZ88eAPjxxx+ZDgTJopqy6klJSaqqqgoKCo+YmKNGuwW2adNGKDXKz8XL/uISvvon3Mn/1z8qKysHi7eBgFRMmDABAHbs2CG0nTaFuHz5spTjKSwspFPCpkyZUjUTN3/+fHrOk/5IqInPnh2QtamtGRmkpIRkZxOZ7HTJ4XDoBEtFRcXDhw+L8W1p5p2ft6WpEGdnZ19f38rKypq+0MPDgxbau7i4yNHDQLlWUVGxefNmVVVVAGjdujX/YYm5ubmvr6/UnhI/ePCAfqCxWKxautzk5ubyZ64OHjy4ppmrlFCd/qBBgyRUp1+jZ8/IgAGBI0cCgKOjY3Z2tlSPLibyknCnj47Cw8MFN2LCvYkICgrq06cP/U0fMWJEdHQ03U5XoNPtNjY2IjZvabiSkhI2m01r0tXV1V1dXWtZrVVTo5u4uLgxY8bQ7SYmJjdv3pRO8PLl2bNndAX6/PnzmY7lK5ycnACAzWYzHYhIKioqtLW1AeDVq1eC2y9dugQAAwYMYCowecHj8SZMmNCmTb/vv0+TkYdB1SbcT58+DQAzZsxgKioRYcJd0mpKuNNzkJSLRusKE+5CeDzekiVLAEBFRaVqH2BZ9uTJE/ynRNWqJas+adIkAJgzZw4jgfF4vKFDh1Z7hqopFy+zGpRwJ4S4uLgAgL6+fmpqqlgCko73798rKSmpqKgIdbK+d+8e/XYYqQJ++fIlHRG2a9cuoZcqKiroz5yNjU0tqVVJkLmEe0gIGTbsU0NnZWVib0++rL5kVllZGW3ToaGhUW1Dg5ycnAZ2GuVyuREREW5ubnT8KaWnp+fk5OTr6ytYysfj8WhqjMViVX22hCQtMTFxyJAhzZs3V1RU7Nmzp6Sr2qsl1OWmltGsX525KlSn36dPH8byxRyOx86dtNeWvr7+pUuXmAmjATDhzhRMuNcJh8M5dOgQHe2uqKg4c+ZMOsIHALp06SL90gRCSGpqKr/6/qtd1y9fvty1a1casL29/cyZM+m6n5YtWx46dEj2y7cZ9ODBA7qM1d3dnelYalRRUUEfDIh3vLzk0Oxb3759hbbPnj0bALZt28ZIVHJk7969dOWK7DQjxoQ7qgUm3BsNHo+3aNEimm2/cuUK0+HUDY/HoxdyuJ4PCakpq37nzh0A0NLSSktLYyQwQkhkZKSCgoKKikpCQoLg9lpy8bKpoQn3ysrKESNGAMCQIUMk0btTQjZt2gQA06dPF9r+/fffA8CGDRsYiYoQcuXKFRaLpaioeOvWLaGX0tPTaVWpq6urNEOa+OzZ/Jcv/0tPp39uMjufKDiYqKoSR0cSEkLevycBAcTGhjRvTl68YDKq/8vNzaW//7q6uiEhIVV3SE5OphXH+/fvF8sRY2Nj3dzcaMdVSkdHx8nJydvb++PHj3PnzqVXBqdPnxbL4VBdPXv2DAA6d+7M7FW1UJebnBp+i2uauUpT7QYGBvRnTAotcUSRlJRkbW1NQ3JwcJCvh76YcGcKJtzrIS8vz9XVVVVVlbZr19TUdHNzY7bBd3h4OB3vCQCWlpahoaE17UlnBtJqBhUVFdoAp9r5gUiIr6+vsrLynyNGEFltLH7z5k0A6NWrF9OBiOrnn38GgE1fNkOpqKjQ1dWVo8cGTHn27Bl90H7u3DmmY/kME+6oFphwbxy4XC69p9bQ0KiaopELtBzwyJEjTAeCZEhNWXUOh0NXsjK+fPDHH38EgMmTJwttrykXL5samnAnhGRkZNBEzNKlSxv+blLA5XI7deoEAELFnnl5eRoaGgoKCm/evGEoNEL+3xpMT0+vaovS0NBQFRUVFosliWvNAg4nrrjYPzf3v/T0LW/fzo2PHxEd/aa0dOKzZxOePl2QkED/7ElJEfuh68DCggwfTgQvUEpLSbduZNIkxkL6v9TU1N69ewNAp06dXlT3AOD58+e055SZmVmKuP8aY2Ji3Nzcevbsyc+8034mzZs3D5DcHEv0NQ8fPgTZWCdeWVnJZrPpLER9ff1a1kIKzlxdtWrV0aNH+c2OmarTrwmPx/P09KQtJnR0dORooAgm3JmCCfd6Cw0NBYBmzZqlp6czHQshhPB4PC8vL9qwi8ViOTo61jI2Mz09vVmzZgBQ7bNwVJO3J04QFosoKpIve47LCNpuUV4+izgcDh18IjQV49atW/T0ylRgcqG4uNjExAQAFi5cyHQsX8CEO6oFJtwbh4KCAnNzc3V19cDAQKZjqacDBw4AwKxZs5gOBMmKWrLq+/btAwAjI6Myprs3Z2RkNG/eHACqdoCsKRcvg8SQcCeEPHjwgGb3/vvvP7G8oUTRk5+RkZHQMmQ6UMLe3p6pwCgul0uXbPfr16+kylxQDw8PescbGxtb70OUcLkvi4v9c3OPpqe7v3kzJz5+1JMnFhERVf/c//hRhlrKpKQQAFJlWjH54w+iqkoYrbZ7/vw5bcfRs2fPapPpDx48oIu5Bg8eLNGu069fv/bw8LCystLS0lJXV3/48KHkjoW+6vbt2wBga2vLdCCfJCYm0jVJAODo6FhTmWdRUdGSJUtoqTu/qv3ixYuyeW+Qmpo6ceJEGufYsWNrSbrJDky4MwUT7vWWmZkJAC1btmQ6kC8UFRW5ubnRR4m1l97TEa9CjQTR1/3xBwEgKirk9m2mQ/kCl8vV19cHgCdPnjAdi0iCgoIAoFu3bkLbf/nlFwDYuHEjI1HJC7o4wMzMrOqdEbMw4Y5qgQn3xoH2jB46dCjTgdTf8+fPacUV04EgWbF///5qs+q5ubl6enrAxEjLam3btg0ATE1Nhbpq83Pxsr/o5HM+pSEGDRpEs9ULFiyIiooSy3tKzj///AMA8+bNE0wnAcCRI0fodmbC+j8FBYVTp0516dIlOjqaFu8IWrJkyY8//lhUVDRlypT8/Pyvvlt5eXlcXNzly5d37tzp7Ozs8vLluKdPh0VHf/fixZrXrw+mpvrl5DwtKvrI4WgoKBhraNjp6MzV19/UufOxHj3u9OkzrEULyXyX9fLqFQBAly7C27t0gfJySEmRfkTUw4cPhw8fnpKSMnLkyJCQEH7nDT5fX18bG5vs7OzJkyffuXOHfopJiKGh4ZIlS0JCQjp16kTzDpI7Fvoq+ktKzweyoGvXrkFBQZ6ens2aNfPx8TEzMzt+/HjV3TQ1NT08POhqfRUVFR8fn+jo6ClTptC+ybKmXbt2V65c8fb21tPTu3HjRs+ePffu3cvj8ZiOCyEkcZqamu7u7rGxsZMmTSouLt60aVOvXr2KioqYjqsRWb8eli6FigqYNg2io5mO5rOwsLD09PTOnTvzR/vKODoZla7r5+PxeFeuXAGAKVOmMBOWPLhw4cKRI0fU1NROnz5Nu8oghJDU2NjYAEBMTAyHw2E6lnoyMTFp27Ztenr6y5cvmY4FMS8vL4922N69ezctm+bbuHFjTk6OjY0Nbe/OuOXLl3fr1i0uLs7T01Nwe5s2bX777TcAWLZsmYz/Yoon4Q4ACxYsmDNnTmlp6aXffoO8PHG9rdhlZGRcu3ZNSUnphx9+ENweGhr6/Pnztm3bTpgwganY+HR0dC5evKihoXHixInDhw8LvXrw4EFzc/PExEQnJyfBpBKHw3n9+nVAQMDhw4fXrFkzffp0MzMzTU1NMzOzKVOmrF69+p9//nlfVJRZWanMYrVXVR3QvPmM1q3Xdup0sFu3Kz173u3X75SJyTYjo4Xt2o3X0+ulqdlCSUm63/fX0N8lNTXh7RoaAACVldKOBwAArly5YmNjk5OTM3ny5OvXr7eo8ojiv//+++abb0pLS+fOnevj4yO1W4VBgwYBwKNHj6RzOFStgoICkKWEOwCwWCxnZ+enT5/a2tpmZmb+8MMPEyZMSE1NrbqnsbExALRu3XratGlCjydlkKOj4/Pnz7/55puCgoKlS5eOHDkyISGB6aAQQtJAJ7gGBgb27t17yJAhtHsMEpvdu8HJCQoKYMwYkJnPVZq/pquFZB8h5PLly1Alsc5/bNC3b19GAquDuDi4fRvu3QMRyn3EKCUlxdnZGQD27NlDOzcihJA06evrGxsbFxYWRkZGMh1LPbFYrJEjRwIAXWuFpCE1Fao+3oiLg4yMz//7/j34+8OdO5CWJs3QNm7cmJ2dXTWrTvPaioqKtKmGLFBRUdm+fTsAbNiwIScnR/ClmnLxskacGdWDBw86lJdPPX8eZs2Cq1dBJhM0R48eraysnDZtGl2IykfL3ufOnausrMxQaF/o3bv3P//8M2vWrEWLFpmamtJRnJS6uvrFixf79+/v5+c3ZcqULl26JCQkJCYmvnnzprJK0llZWdnIyKhbt27du3fv1q2beatWHdu2bauiIov/Nl/Vti0AQEoKDBjwxfbkZGCxQF8fxo0DRUVwdISpU0Eq99vHjh1zdnbmcDi//vrrvn37qiYlt2/fvmbNGgBwdXVls9lSCIlvwIABR44cCQ8Pl+ZBkZBqE+4ZGRkrVqwwNDTcvHkzQ3GBoaHh7du3//nnn9WrV1+9evXnn3++ceOG0D4y+LSgdm3atDl//ry3t/fixYuDg4PNzc29vb3HjRvHdFwIIWmwtraOjIwsKSlhOpBGh8WCo0chMxNu3YJx4yAk5NP1GKOqzV/LrMePHycnJ7dv397S0lJwu3w8NoiKgh9+gNhYaNXqU7Z90SLYvh2UlODAAfD1FfFtilq2nJqdLfphd+/e3aNHj5kzZ+bm5k6ZMoX23kEIIemztrZ++fJlUFDQwIED+RsJIfPnzw8NDY2MjFSrWhEoY6ytrc+ePRsUFISfpVKyfTsEBkJs7BcbR4+GOXPgjz/gwwf48Ue4eROaNwceD4qKYNIk+Pdf0NWVdFy1ZNWXL19eWVm5aNEi2t5dRkyZMmX06NG3b9/etGkT7S9P0Vz81KlTN2zYMGPGDIn2kGgQMbeoSU4mrVoRALJhg5jfWRx4PF6XLl2gSq+fjx8/amhosFisxMREpmKr1uLFixUUFPbt21f1pZs3byorK9NpgXw6OjpWVlbOzs5sNtvb2zsiIqLhvQ7/S08Pzc9v4JuIB4dDWrcmVcclOTiQPn1ITg5RVCQABIBoapJp08iZM6SgQHLh0AQ6i8Wqtpcxh8Oh5zNFRcW///5bcmHUJCYmBgC6du0q/UMjPrpca/369YIbo6OjAaBPnz4MBfWFlJSUKVOmVDsTgs5IHDRokPSjaqDc3FxnZ2c9Pb2MjAymY6ke9nBnCvZwr7eaergvXrzYzs4uPj6ekahEhz3cG6qggFhYEADSuzfJy2M2Flpm2LZtW6FpTDKL1l64uLgIbaczyUNDQxmJSiTJyURHh4wdS+h8lIoKcvYs0dAg9HtZuPDThbcIf8q6dq3TLer9+/fXr18PAAYGBhKdftQQ2MMd1QJ7uDca586dA4DRo0cLbe/Xrx8AyMUw1cTERABo1aqVjP/gNR6LFxMzM+GN7duT9etJeTnp14/06EGiogghhMslYWGkUycyZAjhcCQd15gxYwBg0aJFQttpBYCOjk5NM94Y9Pz5cyUlJUVFxadPnwq9NHr0aABYvHgxI4GJQtw9Qzp0gLNnYcwY2LwZ+vSBLzsVMu727dtJSUmGhoa2traC248fP15SUmJnZ9e1jteCkvbnn386OjoOGzas6kscDqeysrJ58+ZsNrt79+7du3fv2rWrUA8msfhBBuqYPlFUhJUrYd06GDsWHBw+bTxyBK5ehbNnQVcXkpLg8mXw8YGwMDh/Hs6fB1VVGDYMHBxg5kxo3VpcgXC53EWLFv3999+KiooHDx6ka10FlZeXOzk5+fj4qKqqnjx5kpHaJTMzs2bNmiUlJWVnZ9N5rUj6CgsLoUqRuExVjhsYGFy8eLHal2QqzjrR0dHx9PTctGlTmzZtmI4FoUbu4cOHjx8/FmWoDJJvWlpw8yYMHQpPn8LUqXDjBkjgmlNE9LZw6tSpst/ujKIBC9XjR0dHv379uk2bNrQHoIz6809QVIRz54CW+Cgrw7ffQnIyrF0Lrq6weDGI3OaVp6R0qy6NVgsLC7dt26agoHD8+HHZrVxDCDUBI0eOZLFYISEh5eXlgvkWa2vr6OjooKAga2trBsMTRdeuXTt27JicnPz8+fOePXsyHU7TduECREfDkydAh9AoKMDgwXD8OIwYAdevgyQbXF+5cuXWrVs6Ojq0fIqvoqJi9erVAPD777/LYOLI1NR0/vz5f/3119KlS+/cuSP40p49e/r06XPw4MF58+bJVGE+nwSadNvYwNatsHo1zJkDJiZgair+Q9QX7Rvz008/CV2g//vvvyAD41KrUlZWrjbbDv//XlavXk1/N5qK5cvh/XuYNAm6dwcjI3jxAt6/hy1b4NtvAQA6dYIlS2DJEsjKghs3wMcHbt6EgAAICIAVK2DQIHB0hOnT4ctuQnXFT6arqamdPHnymypPlT5+/Dhp0qT79+/r6Oj4+voKtgOSqNLSUsEG8YqKiubm5vfv33/8+PHYsWOlEwMSUm3OWl4S2TTOqmMJ5EVb2XlYiBBCjUDLlnDjBlhZQVAQzJgB58+DoqKUQygvL4+Ojvby8oIa+snk5uZOnz7d3d1daldfXxUbG/vy5cuWLVsKhSQfjw38/WHUKPhyQS1MnQqrV0NgIHz/PfToIeI7qQOMFvmweXl5ffv25XK5bm5usp/JQgg1bq1btzYzM4uNjX38+LHgJ7m1tfXu3bvlpTH6yJEjjx8/HhgYiAl3ht2+DZ07g9DI9+HDoWVLuH0bRo+GggLR3yybxSL/XzdTu4qKilWrVkF1WfW0tDQNDQ0zMzOZ7Ti0adOmM2fOsFisoqIiwVlNpqamzs7OBw8eXLZsWUBAAIMR1kQyUzFXroSICPD2hqlTITwcZCOv9OHDB19fXyUlpTlz5ghuf/jw4ZMnT1q2bDlx4kSmYqur9PT069evq6io/Pjjj0zHIl2KirB3LyxaBHfuQH4+TJ0Ko0dDhw7Cu7VqBbNnw+zZkJkJly7BhQtw9y6EhkJoKKxYAcOGVU6f/mHCBAMDg7oePy8vb9KkScHBwTUl09PT08eOHRsTE9OuXbsbN25IZ74Tj8cbMGDAs2fPsrOzBbsMDRw48P79++Hh4ZhwZ0ojSLjLfpwIIYSkxNAQbt2CESPg8mVYtAgOHZLCMdPS0iIjI0NDQ0NCQiIjI8vKyrS0tDQ1NcvKyqruvH///jt37kRHR9+/f9/MzEwK4X0VTaxPnjxZSemL2y66vEzW29CnpHxeVMrXsSMoKkJysuQOGxkZmZmZ2bdv3w0bNkjuKAghJCJra+vY2NigoCDB2/8RI0YoKSmFh4cXFxdramoyGJ4orK2tjx8/HhQU5OLiwnQsTUNSEvTv/8WWzEwAgPfvoVOnavbv3BlSUuDcOfjhB9EPYqqhkSXy+KJmzZp16tSpala9c+fOkZGRaWlpQhcqskNPTy8yMrJz585VX/r999+PHz+ekpKSk5Mjg+vhJPMXSscrxcVBbCz88ANcvAgslkQOVBfHjh2rrKycMmVKu3btBLfzy94l0Y9FQo4cOVJZWeno6NhafG1S5Em3btCtm0h7tm4N8+fD/PmQlwd+fnD1Kly/Dnfvfigr67BwoampqaOj43fffde9e3dR3iwtLW3cuHE0mX7z5s2qi1ZevHhhb2+fnJxsamp68+bNDlWfBEiGgoKCoqJiRUVFZGQkHUFODRgwAABwbiqDMOGOEEKoUenVCy5dAnt7OHoUFiwACRQWFBQUhIeHP3z48NGjR+Hh4XR+AKWoqNizZ08lJaUnT57MnDkzMDBQaAzphg0bnj9/7uPjM2bMmNDQ0E7V3tNKV7X9ZBITE58/f66trT1ixAiG4hKNggJwucIbCQFCJLq+oaioqLy8vKCgoLS0VLCWDSGEGGFtbb1///6goCDBp4BaWlrm5ubh4eGhoaG0l7Qss7GxAYC7d+9yuVxFqS9Qa4r09GDx4i+2LFsGUMOJFQC4XFBUBDU1qEtTFz0NDSJawp3D4RQVFZWWlpaVlVU9sSoqKkoteVU/1WbbASA/P7+yspK2npduRCKR2BOMZs3g4kUYMAAuX4YdO8DVVVIHEg0hpNq+Mfn5+efOnWOxWD/99BNDodUZj8eT2R44sktH51PNe0EBXLv24MEDjadP4+LiNm3atGnTJnNz86lTp37zzTc9al4Y+9Vkenh4+Pjx47OzswcNGnT16lUpP14bMGBAeHj4o0ePqibcHz16RAhhycBDryaI9jXGhDtCCKHGY8QIOH0aVFXFlm3ncvNevDj/4AFNsr948YLH4/FfbNOmzcCBAwcOHDho0CBLS0stLS1CyE8//XTs2LFx48YFBwcLXrwpKCicPHny48eP/v7+dnZ2ISEhzNamvH379smTJ1paWjTTwXf+/HkAmDRpkoqKCkOhiaZjR3j3Tnjju3fA41VfoCcmY8eO7dOnz5MnT1xcXOhdD0IIMWjEiBEKCgphYWFCTVytra3Dw8ODgoJkP+HesWNHQ0PDN2/exMTEmJubMx1OE6CtLVyrvm4dAEDHjnDrlvDOhMC7dzBiBEyfDtOni36QFyLvSQgZNmxYaGjotm3btmzZIvohZNzKlSvLy8tnzJghg93nQYIJdwDo1g1OnIBJk2DtWujTB+ztJXisr7lz505iYmKHDh2EPgpPnTpVXFxsY2PTTcSKaRlw+/btt2/fGhoajho1iulY5FDz5jBzpuPMmQ7btwcEBPj4+Pj6+kZFRUVFRa1fv97IyMjBwcHR0dHKykowQ/3o0SMHB4dakul+fn4zZswoKSmZNGnSmTNnBE/D0lFtMXvHjh3btWuXlpb2+vXrLl26SDkkBLVWuGsJdUSVPfISJ0IIIWkTrNcOCYFt2yA8HIqLoUMHmD4d1qyBry6uz8iAx48hMhIiIyE0VFNb2/nNG/qKkpJSjx49hg4damVlZWFhYWpqKlQ0wGKx/vnnn7y8vMuXL9vZ2YWFhQmWQaioqJw/f37kyJHR0dEODg6BgYEMlkhfuHCBEOLg4KCmpia4vdqyd1lkbw9HjsDHj6Ct/Xmjjw+oqoKNDdy9CzExIr5TkZra0eq6ANXkwIED9vb2x44dGzVq1KxZs+oSNEIIiZmurm6fPn2io6MfPnwoOFjC2tp6+/bt8tLG3cbG5ujRo0FBQZhwZxI9sT5+DIJL9AIDITcXJNkHmMVi7d27d8CAAbt27ZozZ07Xrl0ldyypCQoKunTpUrNmzbZu3cp0LNWTcI8eBwdYvx5+/x1mzYKICDA0lOzhakb7xvz8889Cy2eOHDkC8lYqTr+XefPmyfSQJZmnrq4+YcKECRMmlJeXBwcH+/n5nT179vXr1/v27du3b1/nzp0nTpxIM+9Xr16tPZnu5eU1b968ysrKOXPmHD58mJHWVwMHDoTqusdYWlpeuXIlPDwcE+6MwJYyCCGEGrMrV2DaNJg2DTw9oVUriIqCbdsgIADu3gWhVo1lZRAVBY8ewaNH8PChUN20ip7e/B9+MDU3HzhwYL9+/b5a962oqHj69Gk7O7vQ0NBx48bRSfX8V5s3b37r1i0rK6vHjx9PmTLl2rVrTBWSV5tYf//+fUREhIaGhp2dHSNR1cGyZfDff+DoCIcPg6EhVFTA+fOweTMsXw6tW8OmTXDwoIjvpNy169JXr0Q/8v3793fv3u3s7PzLL78MGDBAjkqjEEKNkrW1dXR0dFBQkGDCfdiwYSoqKpGRkQUFBbJ/02RtbU0T7itWrGA6liZs0iQYOBC++w5OnQJLSyAEwsJgzhwYNQokfFVgYWExa9asEydOrFmzhq60k2tcLnfp0qUAsHbtWqG24bJD8plBNzeIjIRr12DqVAgNBQ0NiR+xiuzs7CtXrigqKgqNGC0sLGzbtm3r1q3loMDk/zIyMvz8/JSUlH6oyywFVAtVVVVbW1tbW9tdu3YFBQVduHDh8uXLb9++pZn31q1bZ2dn83i8X3755cCBA1X7nW3fvv23334jhLi6urLZbEa+BQDo1q2bnp7e+/fvU1NT27dvz98+YMAAmnCfOXMmU7E1ZZhwRwgh1GiVl4OzM8yYASdOfNoybBiMGgXm5vDXX7B8OaSl0QJ2CAmByEgQLHBu1gz69AELCxg6FEaMgNat/67jwdXV1a9cuTJ8+PDY2Nhx48bduXNHQ+Auo1WrVjdu3Bg6dGhAQMCcOXNOnDgh/TqVDx8+PHjwQE1Nzf7LZb607H38+PEaTNwW1Y2+Pty5A3PmgJERtGwJ+fmgqAgrV8KmTQAA1tYgcpVJRbNmLkVFoh+5ffv2w4YNCwoKOnPmzKxZs0JCQmS9/Q5CqFGztrbevXt3YGDg77//zt+ooaFhaWkZGhoaHBw8fvx4BsMTBW1udv/+/crKSmVlZabDaaqUlODaNfjpJxg0CJo1A0KgpASmTwdPTylMvtyxY8eVK1cuXLhAO+9J+nAS5enp+fTpU0NDw2W0Ob5MknzCXUEBTpwAS0t48gTc3WHHDokfsYpjx46Vl5dPnDixY8eOgtu1tLSuX79eVFQkR+NS//3338rKyqlTp8rsMxz5paysPHr06NGjRx86dCgsLMzHx+fixYupqam6urqTJ08+dOiQ0P5cLtfFxeXgwYOKiooHDhyoOu5ZmlgsloWFxe3bt8PDwwUfIPHbuDMXWpNWWFgImHBHCCHUKN29C5mZ4OLyxcaePcHODry9YcQI6N//83ZFRejdGwYOhEGDYOBAMDGBBmfA9fT0bt++bWVl9fDhwxkzZly8eFFwlWGXLl1u3bo1YsSI06dP6+rq7t+/v4GHq6uLFy/yeLwxY8YINWeTm34yVK9eEBEBr17B27egpgZ9+wK/RQ9d3CAaLYC9dT/4wYMHHzx48PjxY3d3d5ldMI4QagpGjBihpKQUHh5eXFysKdA2zdraOjQ0NCgoSPYT7vr6+sbGxi9fvoyKiqLr45GkbNwIq1YJbwwJAXpnracHly9DejrExwOLBaamIK15M23btl29evX69euXLVv25MkTRnoziEVeXp6bmxsA7Nq1S6hrn0yRSq2Hjg5cvAiTJsHq1dI4HEBFRUV8fPyVK1d27do1f/58Wndc01hUBhs71hUh5NixYyBvPXDkjoKCwtChQ/fu3ZucnDx+/PicnByathZy+fLlgwcPqqurnz9/ntlsO1VtVxlLS0sFBYXo6OiKigqG4mq6iouLORyOurq6UAWBvCSyaZwtWrRgOhCEEEIyKT4eAKBqrw9jY3jxAnr3BkNDmDQJtm2DoCD4+BFiYuDwYZg7F8zMGp5tp9q3b3/9+nVdXV0/P7+5c+cSQgRf7d2798WLF1VVVQ8cOLBz506xHFF01SbWs7OzQ0NDVVVVZT8184WuXcHWFoYOBeneN2lra587d05ZWXn79u0BAQHSPDRCCAnS0tIyNzevrKwMDQ0V3E47zMhLG3f5ilaOtWwJAtNlPuncGXR1P/+vvj5YW8PIkVLLtlMrV67s2rXr8+fPaatqOeXu7p6dnW1tbT116lSmY6mNtBZX9u4Nly8DnRsbFga//gr29jBhAmzcCO/fN/C909LSAgICDh8+vGbNmunTp5uZmWloaJiYmEyePHnVqlWHDx/Oz89XUFB48UL0Eb4yKiAg4NWrVx07dpT31R/ygsVi0Sm7VXujA8A333zz22+/3b59e/LkydKOrDrVFrO3aNHC2Ni4rKzs6dOnDMXVdNWUsJaXRLa8PBhACCHEjLIyUFCoJgPbogWUloKyMrx+DZcvw5o1MHKk5BK1pqamN27c0NTUPHHixIYNG4Retba2Pnv2rKKioqur67///iuhGKr6+PHjvXv3lJWVJ0yYILj90qVLHA7H1tYWT68iGjBgwIYNG3g83vfff//hwwemw0EINV20JYtQtnrIkCFqampPnjzJyclhKK46wIQ7UlVVpRXJ69evl4sf2qpevHhx6NAhRUVFDw8PpmP5CqlP3dyyBYYOheRkGDYMTE3h8mUwNYX790X6WkIgJQUCA8HTM2HbtkmTJpmYmKiqqrZv397Ozm7+/Pnbt2/38fGJi4tjsVhdu3YdO3bskiVLDhw4sHHjRgBYu3btrVu3JPvdSRh/XGrVTuJIQmpvybJ169ahQ4dKN6Ia0Qr3iIgILpcruJ1+C9U+M0ASVVPCWl4S2fISJ0IIIWa0agU8HqSnC29//17K5VoDBgw4d+6ckpLSli1bqt59TZ48ef/+/YQQZ2dnWnUuBVeuXKmoqBg5cqSuYDmb3PWTkQ3r1q2zsbH58OHDnDlzhBYxIISQ1NBsdWBgoOBGNTW1QYMG8Xi84OBghuKqg5EjR7JYrJCQkPLycqZjQYz55ptv7OzscnNzN2/ezHQs9bF8+fLKykpnZ+fevXszHctXSDfh/uABbNgA+/eDnx+sWwfbt0NUFAwbBjNnfjFGicrLg8hI8PEBd3eYPh3694fmzaFjRxg1Cn75pZWPj6+vb3x8fEVFhY6OjpWVlbOzM5vN9vb2joiIKCgoSExMvH79uoeHx6+//rpx48Z169bxeLzvvvvuzZs3Uv2WxSc7O9vX11dJSWnOnDlMx9KE9O3bV1VVNS4ujiYfZVmrVq0MDQ0LCwvj6RLv/6u21QySAky4I4QQaswGDwYAePDgi42EQFgYWFlJOZbx48f/999/LBZr+fLlx48fF3p1wYIF69ev53K5dPymFOKpNrFeWFgYGBioqKg4ceJEKcTQaCgoKBw/frxly5Y3btzYt28f0+EghJqooUOHqqioREZGfvz4UXC7DJaNx8TExMTEVN3eunVrMzOzkpKSx48fSz8qJDv27NmjpKR04MCB2NhYpmOpGz8/v5s3b+ro6AiOL5ZZ0k24HzkCnTvDwoWftygpAZsNaWlw7RqEhoKbG3z3HVhagrY26OpC//4wfTps2gQ+PhAZCUVF0KYNDBsGc+eqOTmdP3/+6dOnpaWlubm5ISEhnp6erq6ujo6OFhYW6urqQkd2d3cfN25cbm7u1KlTS0tLpfpdi8nRo0fLy8vHjx/fvn17pmNpQlRVVfv06cPj8aKiopiO5euqrcfHualMkeuEOyGksLCQxWIJjXpDCCGEPjExgdGjYd26L4rcd+2C+HhYskT64cyaNYvNZhNCfv7556qrWv/4449FixaVlpY6ODhIus9eSUmJv7+/goLCpEmTBLf7+fmVl5cPGzasVatWEg2g8Wnfvr2XlxeLxXJ1dY2OjmY6HIRQU6ShoTFgwAAulyv04FbWEu5RUVGjRo2ys7N79epV1VdHjBgBAIcOHSosLJR6aEhWmJmZ/fzzzxwOZ9myZUzHUgcVFRUrV64EADc3t5a0Y7lsk27CPSoKevcGFuuLjWZmoKICUVFw6xb8/jucOQMREZCfDzo6YGEBjo7g6gqenhAcDB8/QkYG3L8PR4+qL1v2zTff9OrVS8SJtAoKCidPnuzSpcuTJ0/mz58vke9OkgghR48eBRyXygQ5SlhX2z2md+/e6urqL1++FHoUjyQtPz8fqiTWuVxuSUmJgoKC4HR7GVRYWMjj8TQ1NbGBFUIIoRr99x9oaoKJCUyZAvPng4UFrF0LHh4wZAgj4axevXrFihWVlZVTp059IFR6D+Dh4TFt2rT8/Pxx48a9e/dOcmGoqandvn179+7d7dq1E9yO/WQaYty4cQsXLiwvL58+fTrmiRBCjKg2tz5w4EBNTc3Y2FhZmDMRGRlpZ2eXk5MzYMAAAwMDoVcrKiqePn3apk2b06dP6+jo9O/f393dPTIyErt1NUFbtmzR09MLCAi4du0a07GIat++fQkJCSYmJgsFy7hlmHQT7gUF1bR0VFCA1q3h40ews4P168HLCx48gOxsyM2FiAjw9gY2G5ydYehQaNiMQR0dnYsXL9KRSocOHWrIW0lfUFBQYmKigYGBvb0907E0OXLUkqXaUJWVlfv160cIiYiIYCiuJqraSvaCggJCSPPmzVlCjx5ljFyU4SNJs7a2njx5so6ODtOBIIRklb4+RETAP/+AoSEoKMD06RAXB4sXMxjRzp07f/zxx5KSkokTJ758+VLwJUVFxVOnTtna2qamptrZ2WVmZkooBgUFBSsrqyVflvmXlpbeuHGDxWJNnjxZQsdt9P78888+ffq8evVKlivyOnToMHnyZEtLS6YDQTJqypQpkydPlvEbAVSTahPuKioqQ4YMIYTcF3E2ocSEhYXZ2Njk5uZOmzbt0qVLQsWp5eXl33zzTXBwcElJiYWFBYvFioyM3LRpU//+/du3bz9nzpxz587J6RRNVA+6urrr168HgKVLl8pFT//MzEzadH737t3KyspMhyMS6SbcmzeHqpe2PB5kZUGLFjBsGPzxB8yeDYMGgZ6eJI7fu3dvOnd0yZIlcjHUgo+G/fPPP2O1qfTRsvGHDx8yHcjXmZubKysrP3v2rLi4WHC7HBXpNybV5qyrLXuXQZhwZ1B61QmEDNmxY8elS5e6du3KdCB1Jjt/hwg1fkpK4OgIu3fDoUPg6grdujEbDovFOnz48NixY7Ozs8eOHSv0aaCionLhwoV+/folJiZOmDBB6HpJom7dulVcXGxpadmxY0epHbSRUVVVPX36tIaGxtGjR0+fPs10ONUbOnTopUuXli9fznQgn+AJUdZcvHhRatObvyonJ6eiooLpKOTJ4MGD1dXVY2JisrOzBbfLQleZ4OBge3v7goKCb7/99syZM0IZyfLyckdHx6tXr+ro6AQGBkZERHz8+NHf39/FxaVTp07p6en//fffjBkzWrdu3b9//zVr1gQEBFRWVjL1vSDpWLRokZmZ2atXrw4cOMB0LF+3bt26/Px8BwcHOapClm7CvU8feP5ceGNCApSXQ79+0glh5syZS5curaysnD59elpamnQO2kA5OTmXLl1SUFDAcamM6Natm56eXlpaWmpqKtOxfIW6unrPnj05HI5Qd8tqW80gSaupwr3qRhkkL3E2PqGhoZ06dVqyZAn2gKqfoqIid3d3Q0PDe/fuMR0LQogZysrK58+fHzJkyJs3b0aPHp2Xlyf4avPmza9du2ZoaBgeHv7tt99KLaGA/WTEwtTUdPfu3QCwcOHCN2/eMB2OTEtPT58/f36XLl0SExOZjgXJHA6Hc/jw4R49euzfv5/pWOSJmpraoEGDeDyeUPkmTbgHBgYyFBfcu3dv3LhxhYWFM2fOPHnypJKSkuCrJSUlDg4Ofn5+rVu3vnfvXv/+/QFAU1PT1tZ27969b9++jY2N3bVrl52dHZ0Ku337djs7O319/RkzZgSdOQP43K6RUlJS8vDwAIBNmzZlZGQwHU5toqOjjx07pqKismvXLqZjqQPpJtx//BFevYKTJz9vIQQ2bYLWrWH8eKlFsXPnzhEjRmRkZDg6OsrFE91jx46Vl5ePGzcOK2IYwWKx6DlJLhLW1XaVoRvloki/MaENRjHhjuokJCSEy+Xu27fP2Nj48OHDXC6X6YjkBo/H++eff7p06bJp06bKykr8xEOoKdPQ0PD19TUxMYmNjZ0yZUpZWZngq/r6+v7+/m3atLl27dqcOXOk0Lu2srLy6tWrgAl3cZg/f/6MGTPy8/Ol+bxEvpSVlW3durV79+6HDx/GrpKoqtu3b/fp02f+/PnZ2dm4Brquqi1m79+/f/PmzV++fMlIid6tW7fGjh1bVFT0008/Vc22FxcXT5gwISAgoE2bNnfu3OnVq1fVdzAzM1uxYsXt27dzc3P9/f1dXV0tLCxycnLOnTunfPgwtGsHXbrAkiUQEADy0HsEic7W1nb8+PGFhYUbN25kOpbaLF26lMvluri4GBsbMx1LHUg34T5yJCxfDnPnwrx58O+/sG8f2NnB5cvg5QUaGlKLQklJ6dy5cwYGBmFhYatWrZLacevt33//BRyXyig5qhCvNlQjI6PWrVtnZmYmJyczFFdT1Agq3Fs0bHIGqgdXV9fIyMjhw4dnZmbOnz+/V69et27dYjooOfDo0aMhQ4Y4OztnZmYOHDgwLCzM1dWV6aAQQkzS09O7fft2x44d79279+2333I4HMFXu3TpcvXqVS0trVOnTq1bt07SwQQFBeXm5vbs2VO+bhRl1qFDhzp37vz48ePff/+d6Vhkjp+fn5mZ2bp164qKihwcHJ4/fz5z5kymg0Ky4tWrV9OnTx8zZkxcXFzXrl29vb29vb2ZDkrOVJtwV1JSGjp0KABIf4XljRs3Jk+eXFpa6uzsfPjwYQWFL1J89HMgMDBQX18/MDCwZ8+etb+burq6ra0tm82OiIhISkr666+/TLt0gWbN4PXrT+m7li1h8mQ4dAhqWWNECJw9CxMmQK9e0L8/ODtX0+gCyQwPDw9VVdWjR4/K7NPZc+fO3b9/v3Xr1rTpvByRbsIdAP78E7y9ITsb9uwBLy/o0gUiI0HqLXjatGlz/vx5VVXVffv2/ffff1I+ep3cu3fvxYsX+vr648aNYzqWpkuOeqDXFCot0peLb6HRaAQJd9mPU67V9PvYt2/fe/fu+fr6Ghoavnjxwt7efsKECTKycJ7D4dDneeHh4ULZK6a8f/9+9uzZgwcPfvTokYGBgZeX14MHD+iynqqw7B2hJsXAwOD69eu6urq+vr6//vqr0Kv9+/e/fPmynp4ezZ5I1IkTJwBg6tSpkj5QE6GtrX3ixAklJaWtW7feuXNH+gFUVFRcv36dnlMePnwohUUSooiPjx87duzEiRNfv37do0ePGzdu+Pn5GRkZVd2Ty+XiTYGk0b/hV69e0YtqxhUXF7u7u/fs2dPHx0dTU9PNzS02NtbR0bHanWNiYqQcnhwZMGCApqbm8+fPP3z4ILidkTbuV69epau4FixY8Pfffwtl2z9+/GhnZ3f37t2OHTsGBwebmprW6c2NjIwWLlyoe+QI5OVBRAS4uYGFBRQXw5UrsHAhGBlBly4wfz74+EBh4RdfOW8e/PgjdOgAy5eDkxMkJYGFBVy/3vDvF0lC165df/31Vx6Pt3TpUhk5nQkqLS1ds2YNAGzZskX+ygFJE/b3338DgJqaWkREBNOx1GjWrFkAsHHjRqYDadIyMzMBQEtLi8PhMB3LV3C5XJokzcjIENzu7u4OACtXrmQqsCZo/PjxAODr6yu40dPTEwB+/vlnpqIS0Z49ewBgyZIlTAfSOL17987Q0BAARo4c+eTJk5p2KykpYbPZWlpaAKCiouLi4lJQUCDNOIXcuXOnd+/eAKCnpwcAxsbG165dYzCe4uJiNpvdrFkzANDQ0HB1dS0sLKxp57i4ODpgp2PHjm/evJFimI0EPQ+2bNlSaLulpSUAPHr0iJGoRNeqVSsA+PDhA9OBIAY8fPhQU1OzpsvpWj43GqKgoCA4OJjNZjs4OLRq1UpRUbFdu3ZRUVGSOFaTRS9u27dvn5WVJZ0jlpaW+vr6Ojk5aWtr01vpli1bAsCAAQMePHggnRiqlZOT4+LiQvtI6Orqenh4VFZW1rRzUFBQnz59AGDQoEGZmZnSjLOJiI+Pp3cB9BJOT0/Pw8ODwbtILpfr5eXVtm1bAGCxWE5OTunp6TXtnJaW5uzsrKCgoKamdu/ePWnGKUdGjx4NAOfOnRPcGBkZCQBGRkZSC8Pb25tORq32Hj83N5eW4nXq1CkpKUlsR01NJUePkunTia4uAfj0R02NjB5N/vyTpKYSX18CQC5f/vwlPB6ZNo20akVKSsQWBhKr/Px8+hEh9FMtC+i5vm/fvrKfi6uqSSfcCSE///wz/QyS2oVanWRnZ6upqSkoKLx9+5bpWJo6mh2LjY1lOpCvs7GxqZrnvXHjBgAMHz6cqaiaoGHDhgHA3bt3BTfu3LkTAJYvX85UVCLatGkTAGzYsIHpQBoneufTunVrAFBQUHBycqolD5iamkrvfACgXbt2np6eXC5XmtESQhITE/k1UF26dNmwYYOJiQn9X1tb27i4OCnHw+PxvL29O3XqRGNwcHCo5SxJ0xCKioqipCFQTTDhjuSan58fzUV6eHhI6BCVlZXR0dGHDh368ccfTUxMWCyWYIWTvr5+fHy8hA7dZHG5XFpSOm7cOB6PJ7kDFRYWnjt3ztHRkT65ofr16/f777/v2LGjTZs2ouQxJaSystLT05Pm/ZWUlJydnWu5q01OTnZycqLx0zVhEv17a4Jyc3NdXV1VVFQAQFtb28XFhbYZoT8wjOSvHz16NGjQIBpD7U+GKioqPDw8aOWWsrKyi4tLfn6+NEOVI9u2bQOAX375RXAjl8vV0dHR1taWTmbpzJkz9Lzm6upa9dXMzEz6XK179+4pKSkSiYDDIRERhM0mtrZESelT5j0wkEybRvr0Ed752TMCQC5ckEgkSBxoXWCHDh2Ki4uZjuWzlJQUeuYVSqrIi6aecC8rK6PP/WxtbWXwgcnu3bsBYOzYsUwHgsi3334LAEePHmU6kK/77bffAGD9+vWCG3NyclgsloaGBmaapIZe5QiVs/39999GRkY7duxgKioRrVixAgBkP065lpeX5+rqqqqqSu/K2Gx2WVlZTTuHh4cPGTKE3i9ZWlqGhoZKJ8iioiI3Nzc1NTUAoAuQS0tLSXV3ZR8/fpROSBEREfzbV3Nz8+Dg4Jr2rFMaAtUOE+5I3p04cYLFYikoKIixeistLc3X19fNzc3BwYFf8kwpKytbWFi4uLh4eXnJRbmGnEpJSaGLrvbv3y/2N8/Ly/P29nZycqJLqShTU1M3NzfBxyf0REnP5vREWcvZXLwCAgL4HZlHjRr17NmzmvYsLi7mn801NDT4Z3MkLrXUUvj6+nbu3JlfIiC1ZXbv3793cnKiD//at29f+/MVX1/fLl268IN89eqVdIKUU7SdVPfu3YW2v3r1Sjo5pVOnTtWSbc/IyKCTUY2NjVNTU6UQD8nOJmfOkJ9+IuXlpHt3MnOm8A6VlURJibi5SSMYVC9cLpd2Id60aRPTsXxGZ5B8++23TAdST0094U4ISU5OpqfGdevWMR2LMDMzMwC4ePEi04Eg8ueffwLA/PnzmQ7k6y5dugQAo0ePFtretWtXAKilfwUSL7oqQk4vWOmU5r///pvpQBq/ly9fOjg40Duc7t27+/n51bQnLevu0KEDraRzdHR89+6d5ALj8XhfXYCclZXFLx6XwoppusyZHq5ly5a1H070NAQSRU0J99mzZ5ubm8t+PhET7ogQsnXrVgBQUVG5detW/d6hoqIiIiLCw8PDycmpajNcfX19R0dHDw+P4OBgqaVc0cWLFwFAVVU1OjpaLG+Yk5Pj5eXl4OBA65Rp/tTKyorNZicmJtb0VYJLwegsSrEEU5OEhAT+4bp161bL4ejFQ8eOHfkXD7hyWuwCAwNpzz0AsLa2jomJEdqBNgmkT27U1dVdXV0l2iRQsOcePVwtvbPouCAafI8ePa5fvy65wBqNyspKWnTy/v176R/9n3/+oStff//996qvpqen0ySSiYlJWlqa9MMj7duTRYuq2d6qFZH5Rd5NXEhICIvFUldXl+g9pujCwsJoPPLbDhQT7oQQEhgYqKSkxGKxfHx8mI7ls+DgYABo27ZtRUUF07EgEhISAgD9+vVjOpCvS0tLowWzQn0n6DyAw4cPMxVYU0NLruS0OSZd0nH69GmmA2kq/P396cUxANja2taSvqyp5Fy8wsPDBw8ezC+oDwsLq2XnyMhIwZLz+/fviz2eOi1zFj0NgURXU8JdpvB4vJp+HTDhjqjly5cDgJaWVmRkpIhfkpqa6u3t7eLiYmVlRauY+bS0tKysrFxdXX19feX0dN84/PLLL7T2vCEL4bOysmienfZEBgBFRUUrKysPDw/RS0SFnvU+ffq03vHUpLCwUPSC+sePH1tZWdF4LCwsQkJCxB5PEyfYpadDhw5eXl617FynkvN6E72gXrD1v46ODvbcqxPapv/kyZNSPi5/MuqWLVuqvpqcnExr7Pr27cvYss6ePck33whvLCsjCgpk82YmAkJ1QO+hZs2axXQghMvl0mYkcj3PEhPun9DGylpaWs+fP5fogfLy8sLDw0+dOuXm5jZz5kxLS8uaLtBnz54NMll33zSVlJQoKysrKSkVFRUxHcvXGRgYqKioCBWw7N27FwB++uknpqJqamhhlJzWuI0dOxYArl69ynQgTQjNKdPZ6zSnnJeXV9POdbrBq5N63w1KbsW06MucBdMQzZo1k+a6/kZP9hPukZGRw4YNE2qoyocJd0TxeLwffvgBAFq1alVTU/X8/HzBeaeCGXZFRUVTU1MnJycPD4+IiAjpT9RA1SotLaX1xc7OznX92uTkZA8PD1tbW5p2FMyzZ2Rk1COYqt3MxPUwhjYtoS3jadOSWiIUHACjr6/PyACYxq3eBRCPHj0SvaahTuh5UJQCCMn9lDYdu3btkv6d9V9//cVisVgsVrXzSN69e0cvmM3NzbOzs6UZ2Bd+/JF06UKEbh8ePCAApL7Ly5DUJCcna2hosFisWj5AHB0dLcVk1apVNR3l6NGj9G5ULvJvNcGE+2e0otPY2FhcjWjLysqSkpJ8fX3ZbLazs7Otra2RkZHQDCUAqLbWIC8vj/6gy2k/ikapX79+AFBLv2DZkZiYWDXNRJvN9erVi5GQmpqSkhIAUFNTYzqQ2rx586am0Um0HkouftobmezsbKEJn7V0TfnqEuY6oeudtbS0oL7rnQWXMGtoaNS+hFkUL168oM9+6Nm5lmXOdUpDoHqQ5YR7enr63Llz+YOFq/2pw4Q74quoqKD9E4yMjGinLA6HExsb6+Xl5ezsbGpqSn+W+PT19R0cHNzc3Hx9fWt5DoqYFRsbq66uDgBnzpwRZf83b954eHhYWVnxb83U1NQcHBy8vLzEcicoWDsslnndDx8+HDhwIA219tGX5eXl/DVhKioqOPpS7Kp26alr+wVRuvbVieDV41db/AUEBNAG3wBgY2MjiXUYTUFUVBQAGBoaSu2IO3bsoD8w1Y6sePPmDW1n2r9//5ycHKlFVY3QUMJikb/++rylrIyMHEm6dyeyNzQRVbVhwwb62Kamx7TGxsYgJpMmTar2EAUFBfr6+gBw6tQpCX6rkocJ98+KioroGsBJkybVdXlXWVlZXFzc5cuXd+7c6ezsbG1tbWBgUO2PVLNmzfr16zd9+vR169b9999/YWFh1T6xocXIVdtwIwbR9ap//vkn04HUU1lZmaqqqoKCAl52S0F2dnbbtm01NTWlNtyyTpKTk11cXFRVVbt161btHSC9EG9gAhfVW1RU1PDhw+lZo2/fvrWMZaeJZppMFBrSVSe+vr70Mh0AHBwcXr9+Xe/gU1JSGr5iOjc3V/RlzoJpiIEDB9aShkD1JpsJ96rrQmrKlGHCHQkqLCyk834NDAysrKw0NDQEr9U1NDSGDh26YsUKHx+flJQUpoNFovrrr78AQFtbu5YlVklJSUJ5dnV1dZpnl0RPbbF0x67TWdXX19fIyIh/Nk9KSmpA+KgaYQ/C6KcHAAwaNKghM8OrjtutR5NA0c+DROqTBho3LpdL24dKp7s0m82ml/pHjx6t+urLly/bt28PAFZWVjJxp795M2GxyPjxZMsWsmoVMTEhenokIoLpsJBISkpK6APFY8eOVbvD06dPH4lJQkJCtYdYvXo1AAwePFgSfbekCRPuX0hMTNTW1gaAbdu21bJbUVHR9evX9+7d++uvv44ePdrQ0JA+TxaiqqpqZmY2efLkVatWHT58OCgoSPQOgH369AEAmeopj/79918AmD59OtOB1B+9QAwKCmI6kCZh//799MJoyZIlsrMSKiUlZeHChbTdjaKi4uzZs6u9Lu/UqZPUriBRTURPgufk5CxevJhfSVenfzjB5H6/fv3u3bsnhtAJefTo0aBBg+jb1l6LV9Xbt291dXUBQElJadGiRbXU6QimIQwMDCTUDhWR/yfctbS0xLUKsOH8/f35UyttbW1raQmYn59Piz0x4Y74srKyWrVqRU92gPNOG4vp06fTk47QBKzY2Fg3NzfBObfa2tqOjo5eXl5SuEITSoLXaflyaGgordzX0NDYtGlTSUlJTXvGxcUJJvdv3LghjtjRZ6kVqc7vnEd6jwSAdu3aiatLT0OS4JWVlfyZARMnTqwpdUWqS+7jB13DTZkyBQCGDh166tQpifbkcXNzozdu//33X9VXX7x40a5dOwAYNmyYRIfx1k1YGPn1V2JvTyZOJJs3E+xZJFdOnjwJAG3atGHk+U1SUhKtE23IE00ZgQl3YX5+fgoKCgoKCrXUICQlJQnl1pWUlIyMjGxtbZ2dndlstq+vb1JSUi0ruWoXFhZGf75xXKpMiY2NBYDOnTszHUg98Xi8/v37t27d+tKlS0zH0iRUVFSw2Wya2jY0NPT392c2ng8fPri6utLbNgUFBUdHx5ra1xJCdHR0AIDhBYnoyzYvdGF4LVfS8fHx48aNs7GxEfHN67QAuR6qtnkRfcX0mDFjal/mLPb2Nah2tIaOxWJJ4kelruiPOr0AMzY2vnbtWk170h/Ctm3bslisP//8s7y8XJpxIllWUVFBz3SHDx/Gk12jkZubSx+i0BlrNM8uuPhdV1fXycnJ19dXyp8Ggm1evjr6W1BFRYWxsbEooy8Fm9Hh6EvxKuGW/JH+h2a0JkRCi+gWm3ZuEvtzmjt37tSvzctvv/0m4nkQxNS+BvG9ePHiu+++43+8mJqaurq6+vv7i/fjJTc3t3PnzkpKSmfPnq36alxcHO28MWLECBm9Es7MJKdOkcBApuNAdcDj8YYOHQoAa9askf7RJ02aBABz5syR/qHFDhPu1aCPEHV1dWtahcfhcMaMGbNgwYLdu3dfu3YtISFBvJnxOXPmMPXDjWrB5XLphbI8tgauqKigIxb19fWLi4uZDqcJefr0af/+/fnXuIzc1WdmZgqm2h0cHJ48eVLL/vn5+fS2DZ/5yQjB0WdfLaoSpbalTguQG6h+RVW1fBe0dyq/LtXBwUFoQDSSkGfPntGLb/jaNDbJyc3NdXV1pQ8ydXR02Gx2Lbe1wcHB5ubmNOChQ4dim1ok6ObNm4CDbRqje/fuKSoqKigo0Me9/BUMCxcuvHPnDrMPC9PS0uoxyLSWE2LV0ZdZWVliDRkR34++hs8MIRIgEhxeObwur3/PvdrRf03aAE30QaalpaW1PF9pyHJDJIrExEQPDw97e3t6n8VfQDNt2rQjR46IqynZ69evfX19q26Pioqiv/729va1LH9h2JEjBIBMncp0HKhuIiMjFRQUVFRUalk6Iwl37twBAC0trbS0NGkeV0Iw4V4NHo9H1wf16dNHmqnJioqK+Pj4s2fPqqurs1gsKf9kI1HY2NgAQLUnPFlWVFREiwE1NTVxhan0VVZWstlsNTU1en918eJFqR06KyvL1dWVdqdlsVgODg7R0dG17F9UVOTh4dGmTRt1dfUdO3ZIK0wkkvDw8CFDhtBLeUtLy3qPBxBqxBEbGyveOKuVkJAglrahERERgjlfnOsrfb6+vp07d+Y/7WhIu/86qdO4gvfv3zd8kABq3ObPnw8Abm5uTAeCxM/NzW3y5MkA0KFDBxcXF39/f5mq+I6IiKCj6QHAwsKi3ieygIAAfjuRUaNGPXv2TLxxouiS6OEvh9NUu8lzk5v5N6Vw0DrNsKkFngelrLS01N/f39XV1cLCgj8iAgCMjIycnZ19fX3r0aC/dhEREbSJ/Pjx48X+5uL0+jUBILq6RBwtmJA0/fjjjwAwefJkqR2Rw+HQtT5sNltqB5UoFiEEUBWFhYUDBgyIj4+fNWsWbWAkdmlpaXFxca//7/nz5wkJCRwOBwD69u3bt2/fY8eOSeK4qCHWrl27bdu29evX//HHH0zHIqrc3NwJEyaEhYW1adPm2rVrFhYWTEfURL169WrevHl3794FAEdHx7/++otmjiQkJydn//79e/bsKSgoYLFY48eP37RpE7/Ys6ri4uKDBw/u3LkzKysLAIYPH37kyJFu3bpJLkJUD4SQ8+fPr1ixIiUlhcViTZs2bdeuXXSsjSgSEhKWL19+7do1AOjevfvu3bvHjx8vyXiF3blzZ+nSpbQ916hRo/bs2cNfQP1V6enp7u7uR48e5XK5LVu2XL9+/aJFi6odoIIkrbS0dN++fVu2bCksLFRXV3dxcVm3bh1tfCQhQUFBS5cuffr0KQBYW1t7eHj07t272j1LSkr279+/efPmoqIiGtv69etp6yGE+Hg8noGBQXp6+pMnT+jYJNTIlJeX0yWGgpkv2UHP5qtWrXr37h09m+/cuZO/cuurEhMT161b5+PjAwDdunXbsmUL/5E2qpNsTnYpr7SDSgeh7TmcnN8zfv8r6y8u4eoq6W5su3FRq0WKLOldcsTHxy9fvvzGjRsAYGxsvGfPnrFjx4r4tXgeZFxGRsbt27evXr3q7+//8eNHulFdXd3KysrW1tbW1rbh9+MRERGjR4/Oy8ubMGGCj48PXUgquwwN4e1biI6Gvn2ZDgXVwYcPH7p3715QUODk5NSlSxcpHDE8PPz69etGRkZxcXGy/lMtIoYT/jLsxYsX9O7xwIEDDXyrlJSUwMBAT0/PlStXTpo0ycTEhK6GFqKoqGhkZDRmzJjdu3eL5VtAYnfp0iUAGD16NNOBiOrNmze0c6WhoeHLly+ZDqep4/F4np6e9JK3devWXl5ekjhKTk6Om5sb7RYCALa2thG1DoUvKyvz9PSk7f8AYPDgwXK3hqOpoU1a6JoJ2qTlq4UteXl5/EYc2tratTfikKiq69+/umKaNsCpR+tbJFHSqZ5LTk6m/dAAoEOHDrV/bApV3+PYZ1ST+/fv00sjpgNBTVpxcbGbmxt/Jqqbm9tXm0IUFhbyu7Q1a9YMR1+KroBTcDb37O9pv7Mz2PcLP7VEW/F+hcULC8HdKngVHh88WjxpAZGgHKXskuKSx8ljIFxCCCG+vr78JJeI43bxPChTOBxORESEm5ubhYUF7SVF0bJ3b2/v+l3QBgcH0zzV9OnT5aP/55w5BIBgjksObd++3dbWVhyJZ1GNHDmyMU0cxAr32ly8eHHatGlKSkoBAQHDhw8X5Uvy8vIEi9bj4uISEhIKCwur7qmjo2NkZGRqampmZmZkZGRkZGRiYkI7PyCZlZ6e3q5dO21t7ZycHMGzpmyKjY21t7dPTU3t1avXzZs36fhyxLg3b944OzsHBAQAwPjx4//++28DAwOxvHNhYeHBgwfZbDYtprC1td26daulpWVN+1dUVPz333+bNm1KS0sDgEGDBq1du3bChAliCQZJWkpKyrp1606cOAEAHTp02Lx58+zZs6vuxuPxTp48uWrVqszMTAUFhVmzZu3atat169ZSj/cLubm5mzZtOnjwIIfD0dXV3bhx46+//koXUAvx8/NbtmwZnVXu4ODg4eEhnQoLJKLHjx8vWbLkwYMHAGBpabl3797BgweL5Z2Li4t37ty5ffv2srIyTU3NlStXrlmzhj5nqioqKmrp0qXBwcEAYG5u7uHhMWzYMLGEgRql5cuX79mzZ9WqVTt27GA6FtTUvX//fu3atSdPniSEGBgYbNmyhf8sUxA9m69evfrDhw/0bL5z507BPvWoFveK7jm+diwjZf3U+ymyFEOLQie0mHDa8PTatLV3C+9G9IiguwUUBixNWfq87DkA2GrZenTwMFMzYzRwqKysPHjw4MaNGwsKCpSVlRcsWPDHH3/QEgQheB6UcVlZWXfv3g0ICPDz80tPT6cblZSUBg4cOGHCBFtbW3Nzc1FW5Ny/f3/8+PFFRUUzZ848fvx4tRfPMufECZg9GyZMAF9fpkNBdRYfH3/mzBmpHW7x4sW0MKuRYDrjL+tWrFgBAG3atHn//r3QS3l5eREREd7e3mw229nZ2dbWtqaLHh0dHQsLC0dHRzc3N29v74iICBkdIY1EQHOj8fHxTAfyFUFBQbTG2cbGBqtBZQ2Px/Py8tLV1QWAFi1aeHp6NrAytLCwkM1m6+jo0M8cW1vbR48e1bJ/eXm5p6dn+/bt6f69e/f29vbG3o7yKDAwkN9bw9raOiYmRuhVfreEkSNH1j4sV/pevHhhb29Pw+vRo4fQhIkXL17wF1AbGxtfv36dqThR7egHWtu2beH/06HT09PF+IaOjo7Jyck17Zydne3i4kKbC+np6Xl4eDA7FBHJBUNDQwAICwtjOhCEPrl7927f/zdbGDFihNDEnYcPHw4cOJC+OnDgQBx9WSeZlZm6MbojE0Z+5HyaD/+i9MXGtI0cHodf4f6y7KXDKwfarr17bHe/j36MhiyMjtulZ7qWLVsKnenwPChfuFxuREQEm822tbVVVlbmp4xat27t6Ojo5eWVm5tb09fevHmTron56aefRBm5LCtSUwkAadGC4E8mamIw4f4VHA5n9OjRAGBubn769OmtW7fOmTPHysqqpubLOjo6AwYMmDVr1qZNm06fPv348eOPHz8y/U0gcfrmm28A4Pjx49W+WlRUJOV4qnXx4kVaBvjNN9/I9BCVpi0tLY3OZwaAMWPGvH37th5vIpRqt7KyCgoKqmX/iooKLy8vIyMjun+vXr0w1S7v6DBJWrTOHyZZp0YczPL19eX/QNIV0+KaGIakqR6djqoVHh7Or5GvfTgw7TVEHy3TXkN4xYVEERkZCQBt27aVp2wFagLo2ZzWb9GzeUZGRkpKCr/g3cDAAEdf1sOujF2sSNazkmqGytKE+58f/lSOUoZI0H6ivfvD7gqejPboiIyMFJobj+dBeVdYWOjr6+vs7Nyhw+dBAoqKihYWFq6urkIDn69fv06vsubNmyd/569u3QgACQ9nOg6EpAoT7l/34cOHDh06VK1eV1VVNTIycnBwcHV19fT09Pf3T0pKYjpYJHHbt28HgEWLFlX76tixY42MjFxcXIKDg5m6IN6/fz9td+Pi4iJ/J+Omx9vbmz7A09DQYLPZov+TFRUVeXh48D+arKysAgMDa9mfptr57Th69uyJqfbGJCcnZ/HixTRJ3axZM36D1y1btsj+U7fS0tKtW7fS8Qaqqqr0P5SUlBYtWpSTk8N0dKgOEhMT+bP7unbt6u3tXacvX7p0KT+vdPLkyVo+oPz9/U1MTOiBbG1tnz9/3uDYUVOxfv16AFi4cCHTgSBUjby8vGXLltG6V01NTXo219DQ2LRp01c7vKNqTUuaZhRrVO1LNOEeUBCgEKng9MYpoyJDyrHVFe0sRNdbs1gsPT09eh6cOHFiYmIi09GhBklKSvL09HRwcBCcFamnp+fo6Ojp6enl5UW3//LLL3J5++bsTADI9u1Mx4GQVGHCXSTx8fGXLl2aPHnyqlWrDh8+HBQUVLXDDGoigoKCaNld1ZfKy8v5kycBoEuXLqtXr3748KHUToo8Hs/NzY1egbm5uUnnoKjhPnz4wC9GtrKyevHihShfFRUVRTNTVlZWAQEBtezJ5XK9vb27du1KD2FmZubl5YUPYxql+Pj4cePGde/evWXLlo6Oju/evWM6ojqgK6a1tbVNTExsbGyePn3KdESonu7cudOrVy/6gWNjYyPU6agW//77r7q6uqura0FBQU370B9y+ubGxsbXrl0TU9SoqTA1NQUAf39/pgNBqEYJCQmOjo6GhoZ6eno4+rKBrBOsh78cXu1L/JYyr8q+Po9UdhQXF7PZ7GbNmtnZ2eF5sPEpLi729/d3dXWlZyuKNu5fuXIl09HV15kzBIDY2zMdB0JShUNTEaqb4uJibW1tBQWFgoICwefPFJfLffDggY+Pj4+PD38cSocOHcaOHevg4DB27FjJDTbhcrkLFiz4559/lJSU/v77759++klCB0IScu3atV9++eX9+/dqamru7u4rV66k3Rhr4ebmNmLECBsbm5p24PF4Fy5cWL9+fUJCAgCYmJisWbNm1qxZX31nJNeys7MBQE4Hzsh18IiPw+H8+++/69evz8rKUlJSmjt37ubNm2tqx8fH4/FSU1MFF1YLysvL2759+549eyoqKnR0dFxdXZctW6aioiKB8FGjlZCQYGxsrK2tnZmZKdg8FyEZhCdEsbB/Zf+h8kO0SXTVl1amrhQcmipfsrOzlZWVNTU15WNsJqqXxMTEW7du3bx5c8iQIS1atPj111+Zjqi+MjOhbVtQV4e8PMArN9RkYMIdoTrr3bv3s2fPBOcXVcXj8cLCwq5evXr+/PmkpCS6UU9Pb9y4cY6OjmPGjBFvjqCkpGT69OnXrl3T1NT09vbmV/8h+ZKfn7969ep//vmHENK3b9+jR4+am5vX761oqn3Dhg0vX74EACMjI1dX159++glT7QghqcnLy3N3dz948CCHw2lIilwwfa+goDBr1qw///zzq+l7hKraunXrunXrfvzxx2PHjjEdC0JIGhalLDqZe/JD7w+qLOFKKblOuCMkZ8zMIC4OQkNhyBCmQ0FIShSYDgAh+TNgwAAAePToUS37KCgoDB06lM1mv3r1KjY21s3NzdjYOCcn58SJExMnTmzbtu3s2bP9/PzKy8sbHk9ubu7o0aOvXbumq6vr7++P2Xb51aJFC09Pzxs3bnTq1OnJkyeDBg1as2ZNXX9IeDyej4+PmZnZ9OnTX758aWho6Onp+fLlS2dnZ8y2I4SkSUdHZ+/evbGxsWPHjs3Ly1uzZk3v3r2vX79epzcJDAy0sLCYP39+VlaWtbV1dHT08ePHMduO6ufSpUsAwJ9YjhBq9Ca1mJTPzT+Wg8/YEGKUtTUAQGAg03EgJD2YcEeozmhh+/bt2/fu3ZuSkvLV/c3MzNzd3ePj42nm3dTUNC8vj2bedXV1J0yYcPz48aKiovoF8+7dOysrq9DQ0M6dO4eFhQ0ePLh+74Nkx5gxY+Li4lxdXblc7vbt2/v37x8eHi7KFxJC/Pz8LCwspk+fHh8f37lzZ09Pz4SEBGdnZ1xtihBiirGx8fXr1319fbt06fLy5cvx48fb2dm9ePHiq1/46tWr6dOnjxo16unTpx06dPDy8goMDOzdu7cUYkaNUmVKyjQlpQ4tW9rZ2TEdC0JISuya203Vnrrs/bJtGdseFT+KLY09lnNsU/ompuNCqImhCfegIKbjQEh6sKUMQnWWn59/6NCh3377jf6vqampo6PjzJkzjY2NRXyH169f+/n5+fj4hIWF0d9BdXX1UaNGOTo6Tp48mQ5FEcXz58/t7e3fv3/fs2fPmzdvtm/fvh7fDpJZYWFhP/30U3x8vJKS0sKFC7du3aqpqVntnoSQq1evuru7R0VFAUDHjh3XrVs3d+5czLMjhGRHZWXlwYMHN27cWFBQoKysvGDBgj/++KPaU15xcfHOnTu3b99eVlamqam5cuXKNWvWqKmpST9m1Kjs2wdLlpBvv2WdPct0KAgh6akgFdsyth3LOfau4p0KS8VQ1XCu3tzVbVa7pbuFFoUGdAtgOkCEmoCcHGjdGlRVebm5CnhFh5oGTLgjVB+lpaUBAQE+Pj5XrlwpKCigG2nmfcKECRYWFiK+T1JS0oULFy5cuPD48WP6y6impmZnZ/fTTz9NmjSp9q+9d+/e5MmTP378aG1tfenSpRYtWjTkO0KyqayszN3dfdeuXVwu18jI6MiRI9a0OkBAQEDAmjVrIiMjAaBDhw4rVqz45Zdfqk70RQghWZCdnf3HH3/89ddfXC63ZcuW69evX7RoEb/hFSHkxIkTrq6uGRkZLBbr+++/37FjR9u2bZmNGTUSI0bA/ftw5gzMmMF0KAghBpSTcmWWsgKu8keICSdmzNh99+6es2dHjhzJdCwISQMm3BFqkLKyMn9//6tXr166dCkrK4tuNDIycnBwcHR0tLKyYrFYorxPSkrKjRs3/Pz8bt68yeFw1qxZs23btlr2v3z58nfffVdaWjplypTTp09j3V/jFhMTM3fu3KioKBaLNW/evF27dmlpaQFAQEDA2rVrHz9+DAAGBgYrV66cP38+/jAghGRfVFTUkiVLQkJCAMDc3NzDw2PYsGGPHz9esmTJgwcPAMDS0nLv3r3YJw2JTXY2tG0LSkqQmQkiLyVECCGEkFgsX758z549Gzdu3LQJezqhJgET7giJB5fLffDggY+Pj7e3d0ZGBt3YqVOnSZMm1SnznpGRcfny5eHDh5uamta0z7///jt//nwOh7No0aK9e/cqKGCZRuNXWVm5e/duNze38vLydu3a/fLLL1evXqW93Vu3br18+fIlS5Zgqh0hJEcIIWfOnHF1dX3//j2LxerWrVtiYiIhxMDAYPv27TNnzhTxvImQSP75B5ydYfx4uHqV6VAQQgihJsfPz2/ixInDhg27f/8+07EgJA2YcEdIzPiZ9/Pnz6elpdGNBgYG48aNc3BwGDt2bAPbam/fvn3NmjUsFmvjxo3u7u5iiBjJj2fPnv3000+PHz9u1apVVlZWq1atVqxY4eLioq6uznRoCCFUHyUlJfv379+8ebOFhUV4eLiLi8u6devoIh6ExGncOLhxA44cgZ9+YjoUhBBCqMnJz8/X09NTVFTMzc2taTIZQo0JJtwRkhQejxcdHe3n53f69OnExES6UU9Pb9y4cY6OjmPGjFFRUanTG3K53IULFx4+fFhRUfHQoUPz5s2TQNRI1nG53H379nXp0uXVq1cLFizAVDtCqBF49+6dpqZmcXFxp06dmI4FNUb5+dC6NXC5kJ4OrVoxHQ1CCCHUFA0YMODx48e3b9+2s7NjOhaEJA4T7ghJw/Pnz318fM6dOxcfH0+36Ojo0D7vo0ePFmW+ZXl5+axZsy5cuKChoeHt7T1+/HgJh4wQQggh1CicOgXffw/W1hAYyHQoCCGEUBPl6uq6Y8eO3377bevWrUzHgpDEYcIdIamimferV69GRkbSLRoaGjY2No6OjlOnTm3WrFm1X5WXlzdx4sSQkBBdXV1fX18rKysphowQQgghJM+mTYMLF2DfPli8mOlQEEIIoSbq5s2bY8eOHTRo0IMHD5iOBSGJw4Q7Qsx48+aNr6+vj49PWFgY/TVUV1cfNWqUo6PjpEmTWrRowd8zLS1t7NixT58+7dSp082bN3v06MFc1AghhBBCcqW0FFq1gpISePcOOnRgOhqEEEKoiSoqKtLV1SWE5OTkNG/enOlwEJIsTLgjxLDk5ORLly75+Pg8ePCAx+MBgKqq6rBhwxwcHGbOnJmdnW1vb5+SkmJmZnbz5k0DAwOm40UIIYQQkh+XLsHUqTBwIDx8yHQoCCGEUJNmZWUVFhZ27dq1cePGMR0LQpKlwHQACDV1HTt2XLJkSUhISHJy8r59+0aOHMnhcAICApYuXWpgYGBpaZmSkjJy5MjQ0FDMtiOEEEII1c2lSwAAU6YwHQdCCCHU1FlbWwNAUFAQ04EgJHFY4Y6QzMnJybl27ZqPj8/t27fnzp374cOHU6dOqaurMx0XQgghhJBcqayENm0gLw/i48HYmOloEEIIoSbtzp07tra2FhYWERERTMeCkGRhwh0h2ZWXl6eqqqqhocF0IAghhBBCcujWLbC3h1694OlTpkNBCCGEmrqysjIdHZ2Kiors7GwdHR2mw0FIgrClDEKyS0dHB7PtCCGEEEL1dP8+APaTQQghhGSCmprawIEDeTzefXqCRqjxwoQ7QgghhBBCqDHasgWePQNnZ6bjQAghhBAAtnFHTQYm3BFCCCGEEEKNxYMHMGECtGwJqqrQtSscPw7Nmn166YcfYP78L3YuL4fOnT8NVkUIIYSQhNna2vbv39/IyIjpQBCSLCWmA0AIIYQQQgghcbh5EyZNggkT4PBhaNsWnjwBNhtu34bQUNDUhA8fQGgKPY8H795BURFD4SKEEEJNi5WV1ePHj5mOAiGJw4Q7QgghhBBCSP5xODB/Pjg4gI8PsFgAAEOGwOjR0Ls3/PknbNzIdHwIIYQQQqhJwJYyCCGEEEIIIfn36BEkJ8OiRZ+y7VTXrjBhAnh7MxcWQgghhBBqWrDCHSGEEEIIIST/4uMBALp1E97eowdcvAiEAAC8fAmbN39+icORVnAIIYQQQqipwIQ7QgghhBBCSP6VlQEANG8uvL15c+BwoLISAODjR4iM/PwSjyet4BBCCCGEUFOBCXeEEEIIIYSQ/GvVCgDg/XswNf1ie0oK6OiAigoAwMCBcOnS55dKS0FDQ4ohIoQQQgihxg97uCOEEEIIIYTk3+DBoKAADx4Ibw8JASsrJgJCCCGEEEJNESbcEUIIIYQQQvKvQweYMgXc3eHt288bDxyAqChYupSpoBBCCCGEUFODLWUQQgghhBBCjcLff8OECdCrF4wYAW3bQnQ0PH0K27fDqFFMR4YQQgghhJoKFiGE6RgQQgghhBBCSBx4PLh6FUJDobAQOnWCKVOge/dPL124AEpKMGnS5505HPDwgHHjhNu+I4QQQgghVF+YcEcIIYQQQgghhBBCCCGExAB7uCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgNMuCOEEEIIIYQQQgghhBBCYoAJd4QQQgghhBBCCCGEEEJIDDDhjhBCCCGEEEIIIYQQQgiJASbcEUIIIYQQQgghhBBCCCExwIQ7QgghhBBCCCGEEEIIISQGmHBHCCGEEEIIIYQQQgghhMQAE+4IIYQQQgghhBBCCCGEkBhgwh0hhBBCCCGEEEIIIYQQEgMlpgNgUmJiYkFBgeCW3r17Kysr0/9++fJlQkJCs2bN+vTpo6urK7hbampqVFSUoqLioEGDhF5C6O3btzk5OYJbTExMNDQ0BLe8evUqPz9fS0ure/fugtuzsrKePXvG4/FMTEzat28vjXCRnEhLSysrKxPcYmhoyGKxBLe8f/++oqKiefPmLVu2FPryzMzMoqIiVVVV/LlCQuLi4kpLSwW3WPyvvXsPaurKHwB+bh4EAQ0BMTzSiGjloQmKKFuLZUURhZFKu7hilbGziLjYpVPHurVbOqita51dtq0trY+1tgUdqlVA8UGVBVsqu20hpEFwyUMgTQQJDQQkyU3u74/z2/u7E8TObwbyWL6fv7znnOuc63y9j5NzvmfJEvrPRqOxp6cnKiqKzWYz28hkMp1OJxQKFy1a5BCHAAAAgMdRKBSjo6OBgYHh4eHMcqVS2dbWxuFwYmNjQ0ND6XKNRtPW1sblciUSSXBwsLO7CzxEe3v78PCwQCCIiIhglut0OoVCwWazFyxYMGvWLGZVT09PW1sbj8dbuHBhYGCgc/sLPINMJiNJMjg42OHLTqVS4SEsiUTC5/Pp8gcPHjQ3N7PZ7Pj4+BkzZji9v8AzQFxNPGoK+9WvfsX8pyAI4uHDhxRFDQ8Pp6enEwQRGho6Y8YMPz+/0tJS+qzXXnuNxWJxuVw2m83j8T788EPXXQFwR88++6zD/zKNRsNsoFKpfH19WSxWUlISXTg8PJyTk8Ni/e+iExaLVVZW5uyuAzcWHR3NDCpvb2+73c5scPv2bTabTRBEfn6+w7m9vb0zZ84kCGLp0qVO7DLwDA5vVEFBQbhcrVbv3btXIBAghGQyGd1eq9UuW7aMbr9o0SKHWxwAtOrqahwnH3/8MUVRfn5+Y19ECwsLmadcunQJlzNfvQBggrgCE+7rr79msVhsNnvr1q10oU6nS0lJwa/l+NPv5s2bFEWRJPniiy+yWCyhUBgQEODl5VVUVOS6vgP31dzczOFwWCxWVlYWXWgwGDIzM+nJClwu99q1a7hKr9evW7eOvo/xeLzGxkYX9R24rwsXLhAEQRDEvn376EKVSrVixQo6eHx8fNrb23HVgQMH6EmlPj4+x44dc1HHgVuDuJoMUzqljE6n27lzp4HB29sbIfTWW29dvXr12rVrWq22r6/vN7/5za5duzo6OhBCZWVlhw4dysvLGxoaMhgMzz33XEFBQWNjo6svBbgRvV7//PPPM+NKLBYzG+Tn50dERDj83pOdnf3FF18cP378/v37FouloaFh7MA9mMr0en1hYaHyP9rb25nTikmSzM/PX716tcMcGaywsNDHx4f5sAQAs9vtvb29Bw4coO9XnZ2dCKH6+vrIyMhvvvkGjzUwvfDCC3K5/PLlyxRFNTQ0dHd3b9y4kaIoV3QfuLWff/55x44d6enpdElVVVUtw/HjxxFCzF8TjUajwykAOIC4AhPOYrHk5eWlpqbOnj2bLrRarevWrZPJZNXV1YODg6Ojo7du3UpKSkIInTx58tSpUydPntTr9X19fXv27Nm/f/+NGzdcdwXAHZEkmZubu3z58sjISLrQbrevX7++rq7uzJkz/f39ZrP5+vXrycnJCCGr1bp27drvvvvuwoULAwMDo6OjNTU1CQkJrrsC4I4GBwdfeuml3NxcDuf/klUMDQ0lJyd3dXVdvXp1cHBweHj40qVLOPDOnz//xhtvbN68GY9fpaWl5efnf/vtt667AuCOIK4mi6tH/F3GbrfzeLx33nlnbFVKSkp4eDh9WF9fjxDC043j4+NFIpHNZsNVP//8s7e3929/+1vn9Bl4BJFItHv37vFqT506xWKxGhsbk5KS6BnuOMYOHDjgpC4CTzMyMoIQ+uijj8ZrUFxcPG3aNKVSKRQKHWa419TUIISqqqrS0tJghjtwoNfrEULl5eUO5aOjo729vRRFnTt3DjFmuH///fcIoTfffJNueeTIEYTQrVu3nNVl4DG2b98uFArlcjn6z0xkB4WFhQEBASaTiS7ZsWPHzJkzW1tbEcxEBuOAuAIT7o033vDx8VGpVBEREfQM99OnTyOEPv/887Ht8ZAE/T2oVqsRQm+//bbzegw8weHDh728vNra2mJiYugZ7l988cV4966///3vCKEzZ844t5vAw2zfvn3mzJl9fX1cLpeeiXzo0CGE0I0bN8a2X758uVAotFqt+BCPX+G5MgDQIK4mydSd4Y5/UmZm4qOJxeLu7u6bN2/iw+bmZoIgJBKJ1Wr94YcfMjIy6LwffD5/5cqVTU1Nzus3cG92u/3+/fshISGPrH3w4MGePXvy8/OfeuopZnllZSVCKD8/3xldBB7op59+Qgg98n6FEOro6Dh06FBRUZFDdkiE0PDwcEFBQVZW1vr16ye9l8ADjRdaPB4vKChobPvbt28jhJ577jm6BP8ZZjQAB/X19SdOnPjrX/+KsxKNNTg4eOrUqV27dvn6+uKShoaGY8eOlZSUjN2FAgAM4gpMOLlcfvjw4eLi4jlz5jDLq6qqZsyYsWnTprGniMVikiTLysrwYUtLC0JIKpVOfmeBx1Cr1fv373/ttdccckJWVlZ6e3tv27Zt7CkXL14MDAzMyspyUheBB8IPwbFPtMrKyvnz5+OlEkw2m+2f//xnRkYGPW2Zz+evWrUK3tsBE8TV5Jm6A+46nQ4hdPToUZFIxOfzf/3rX9fV1eGqffv2BQcHr1mzJisr69133y0uLv7b3/4mkUh0Op3dbndIDyIWi3/66ScKVtMDhBBC/f39Vqv13LlzUVFRs2bNSkpKun79Ol1bUFDA4XDeeusth7MUCsWsWbNkMllaWppYLI6Li8MLogHA8P3qxIkTcXFxMTExW7duvXv3Lq6y2+25ublz587dvXv32BP37t3b399fUlLi1O4Cz4FnuB88eDA8PDwkJGTDhg0KheIx7Xt6ehBCzEX3YrGYIAitVjvZXQUexGw25+fnJyUlZWdnj9emtLTUbDbv3LmTecozzzzzwgsvOKubwMNAXIEJZ7fb8/PzIyMjCwsLHara2tqefPLJ8vLyxMTEoKCguLg4eoT997///YIFC3JyctauXXv06NGdO3fu3bs3LS3N6d0HboqiqLy8vNDQ0D/+8Y8OVQqFYt68eTU1NWvWrBGJRAkJCWfPnqWrIiMjKyoqVq1aJRKJnn76aTwlCwDsMU80hUIRFRX18ccfJyUliUSilStX4smj9+/fJ0mS+d6OEBKLxTqdzmazOa/rwI1BXE0qzi83+S8VFha2Z8+euXPnzp8/X6/XHzlyJDU1tb6+/qmnnhIIBIsXL5bJZG1tbefOnQsKCsL7gw8MDCCEHLbfnTFjhsViMZlM06dPd82VAHcybdq0V155JSQkJDo6emBg4P3331+3bl1NTU1qaurly5crKirOnj3r7+/vcJbRaDQYDNu2bduyZcuGDRuuXLmC9wl45ZVXXHERwO2IRKLs7OyFCxdu2rSpq6vr/fffv3Tp0g8//DBnzpwPP/ywsbGxoaGB3rSE1tTUVFpa+u677zrsigkALTo6eufOnbGxsWKxWK1Wv/POO4mJic3NzeHh4Y9sbzAYCIJgPgc5HI6vr29/f7+Tegw8wZtvvqlWqy9evMjcaoLJarV+8MEHW7duDQ4OxiXFxcUqlerLL78c7xQAIK7AhHvvvfdu37799ddfj32JGhwcvHv37pEjR7Kzs/Py8srLy7ds2UIQxObNm/38/JYtW6bX6/v7+1966SU/Pz865ABACJ08efKrr76qra3F+8MxGY3G7u7uV199ddOmTc8///z58+ezs7NJktyyZYvRaOzq6jp48ODGjRuzsrLKy8szMzMvXryYkZHhkqsA7gY/BPHOlsxym81mMpmuXLmi1WozMzMFAsGJEyfWrFlTX1+Phx34fD6zPZ/PJ0lycHBwvLViYEqBuJpcrs5p4y4ePHjg6+uLsw6tWbMmPDy8r6+Poqjvv/8+NTUVIfTZZ5/hpfcHDx5knvi73/3O19fXNZ0Gbm9oaEgoFCYnJxuNRpFIlJqaSlcxc7inpKSEhoYajUZ8aLfbExISQkNDnd9h4BHwjqmFhYVarZbP5+fl5dFVdA53s9m8YMGC+Ph4kiRxFeRwB78IT29/9dVX6RKHHO5/+tOfEEIGg4FuYDabCYJ4zMYVYKppaWnhcrn0riR4VYRDvtrTp08TBKFQKPChTCbjcrnFxcX4EL9uQa5twARxBSacRqPx8/MrKCigS5g53KOjoxcvXmyxWPChxWKJiIjA71G5ubn+/v6dnZ0URbW3t+NZgQ5fiGDK0ul0AoGADiSKopg53GNjY2NiYkZGRvCh1Wp98sknFy1aRFHUnDlzli5dajabcdXDhw/DwsLor0UwxeGH4P79++kSZq5tX1/ftWvX0h99BoNh+vTpWVlZeCUr8yyKonbs2MHj8ex2u9M6D9wWxNVkm7oz3B0EBgbOnTtXrVb39PRcv359//79OIFRXFzc5cuXw8PDT506lZ2dzeFw8MY4NLVaDbNHwXj8/PwkEsm///3vw4cP9/T0BAQEpKSk4Cq8eVdKSkp5eXlYWNjt27fpSaMEQSxdurSpqclsNvN4PJf1HriryMjIsLCw9vb23bt3G41GtVq9ceNGXGU0Gmtra3NycqRSqUKhiI+Pp5feNzc3m83mjRs3lpSUwF0LPFJMTIy/v79SqRyvAY4cjUZDT164d+8eRVEQUYCWm5trt9sNBgNeSj80NIQQunDhAk7dgNuUlJSsW7cuJiYGH27fvt1msw0MDOBTTCYTQujixYsURdG5QcAUB3EFJtzrr79uMplu3LgRHx+PS7RabU1NTXx8/HfffRcWFqbVaumZ71wuVyKRfPvttyRJnj59OicnZ+7cuQihyMjIzz//XKlUfvLJJ6+//rrLLga4jaKiooGBgTt37tAffffu3evv709JSampqQkLC+vo6Jg2bRqu4nA4ixcvvnbtGkIoLCxseHjYy8sLV3l7e0skkscn+gNTx8svv2y1WmtraxsaGnAJSZLl5eUajaasrCwsLIyiKDabjasEAsG8efNUKlVQUJCXl5dGo2H+VRqNJjQ0FBZ+AQRxNfmm7oC73W4fGhqi10GYTCaNRpOamoofcmazmW7JYrEIgsChlpiYWFVVRQ+D9vb2NjQ0vPjiiy65BOCehoaG6PxCJEl2dnbitOx79+5lNuvo6EAILVmyxMvLSyqVfvLJJ01NTQkJCbhWLpeHhITAaDvAKIoiSZL+6jOZTH19faGhodHR0Q5JrgiC8PLy8vf3f+KJJ/Ly8phVHA6HJEmBQEA/NQHAc/foW41OpzMajU888cR47RMTExFC586dW7x4MS45f/48QmjFihWT31ngGYRC4cqVK+VyOT7EL1T37t2jd56ora1taWn5y1/+wjwlOTn5xx9/dDgFPygBQBBXYBIkJyeLRCJmiVKpDA4OXr16NUIoNja2rq5OrVbjzVRtNptcLp8zZw5+0WJ+KiKE2Gw2BRt6AYQQQomJiQEBAcySlpYWgUCwZMkSgiCkUunVq1eVSiX+wYaiKIVCgVMhS6XS48eP63S6kJAQhBBJknfu3HHIkgymrPXr19MDBdjNmzdDQkIkEglCSCqV1tbWmkwmPz8/hNDIyIhKpVq1ahWLxVq+fHl1dbXFYsHDXAaDoa6u7jFboYApBeJq0rlqar3L7dmzZ968eRUVFTqdrqWlZe3atRwO59atWxRFxcXF8fn8a9eu2Wy2kZGRffv2of+sWr1y5QpBEJmZmRqNpqOjY/Xq1Twer62tzdVXA9xFSUnJ7Nmzz54929/fr1Qqc3JyEEIVFRVjWzJTyvT29vL5fKlU2tTUpNfri4qKEEL0ImgAXn755RUrVjQ1Ndnt9u7u7oyMDDab/c0334xtSaeUGQtSyoCxtmzZkpCQ8NVXXxmNxubm5sTExGnTpuGHWk9Pj1Kp/OCDDxBCly9fViqVOO1VWloaj8erqKjAef34fH5ycrKrrwO4r7GpP1JTUyUSyWPWnELqD/CLIK7AZGCmlLl79y6Px1u+fHlTU5NSqdy2bRtC6LPPPqMoasOGDVwut7y83Gq1WiyWo0ePEgRBr8EHwAEzpUxnZyePx3v66adlMplWq921axd9X2ptbeVwOCkpKT/++GNXVxee0ldWVubSvgP3xUz9UVdXRxBEVlZWR0eHSqXKzMwkCOL69esURdXU1CCEsrKy7t+/39XVlZ6ezuVyW1paXNp34L4gribW1B1wV6lU6enp9EzP2bNnV1ZW4iq1Wp2eno4Q4vF4LBbLx8enuLiYfoMvLS2lp5QKhcKqqirXXQRwOz09PRkZGSwWC0dIQEDAsWPHHtmSOeBOUdQ//vEPepYNl8v9wx/+YLVandRp4PYaGxsXLFiAEMKrtAIDA8+cOfPIljDgDv5f/vWvfy1btoz+DT4iIuLGjRu4Ki4uzuEX+o8++oiiqL6+vlWrVtGFzzzzjF6vd+lFALfmMDAql8sJgvj0008fcwoMjIJfBHEFJgNzwJ2iqOrqano31OnTpx85cgSXP3jwYPPmzSwWi8vlcjgcLpdbUFBAZ3sHwAFzwJ2iqMrKyqCgIBxX3t7eRUVF9DjDmTNn6JR9Pj4+f/7zn13UZeABmAOjFEWVlpb6+vri4OHz+cwhiPfee8/HxwdXCQSCR84FBACDuJpYBDW1l78NDAwolUo/P7/IyEiHfEO9vb1KpRKv/KIjCXv48GFHRweHw4mKiuJwpm5aHjCevr6+jo4Ob29vqVRKZ+JzgD/8QkND6RKbzdba2moymWJiYgIDA53UV+A55HK5SqUKDAxcunTpeOmGWltb/f39xWLx2KrOzk6SJKOioia5m8Dz3Lt3T61WBwUFxcTE0I9CrVbrsGR+5syZ9O/NKpWqq6tLJBLNmzfP2d0FHuXhw4eXLl1asmRJREQEQqi9vV0ulz/77LPjPRwRQqOjo9XV1XFxcXjFPQBjQVyBydDd3c3j8WbNmkWX2Gy2O3fukCQ5f/58h+9Bg8GgVCqtVive/sTZfQWeo6enh8vlCoVCusRischkMovFsnDhQjrDLTY6OiqTyWw2m1QqxWkcAHgktVrN5/OZ+YtGRkZaWlpYLFZsbCy9TwBmMplaW1tZLNaiRYu8vb2d3lngMSCuJtZUH3AHAAAAAAAAAAAAAAAAACYEy9UdAAAAAAAAAAAAAAAAAAD+G8CAOwAAAAAAAAAAAAAAAAAwAWDAHQAAAAAAAAAAAAAAAACYADDgDgAAAAAAAAAAAAAAAABMgP8BtaQN0A6wAgAAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 B1 fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAABDK0lEQVR4nO3dd3yN5//H8U9OdogQKogVgtpiVYqgVlWolWobof2q0RoJpWbFCGKU4IciVBRtjbRGS9Hao0bN2FtEkBDZ89y/P+70VFWt3OeciNfz4Y+c69y5rs+pI/l+3+e6P5eFoigCAAAAAAAAAAByRmfuAgAAAAAAAAAAyAsI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGiBwBwAAAAAAAABAAwTuAAAAAAAAAABogMAdAAAAAAAAAAANELgDAAAAAAAAAKABAncAAAAAAAAAADRA4A4AAAAAAAAAgAYI3AEAAAAAAAAA0ACBOwAAAAAAAAAAGrAydwEA8Oq5f1/Wr5eLF8XVVVq3Fjc3cxcEAAAAAAAADbDDHQBM69o1qVFD9uyRChXkxg2pU0d+/93cNQEAAAAAAEADFoqimLsGAHiV+PlJ4cISEpL9cNkymTxZzpwxZ0kAAAAAAADQAoE7AJhWxYryzTfSsGH2w9RUcXCQe/ekYEFzVgUAAAAAAIAco6UMAJjW7dtSpMjfD+3sxNFRoqPNVxAAAAAAAAC0QeAOAKZVsqRERf39MCFBEhKkVCnzFQQAAAAAAABtELgDgGk1bSqLF//9MDRU6teXfPnMVxAAAAAAAAC0QQ93ADCVO3ekaFGJjZW33hJXV/HykrNnZcsW2bxZatQwd3EAAAAAAADIKQJ3ADCJqChxc5MWLWTDBsnKkl275Nw5KVVKvLzEycncxQEAAAAAAEADVuYuAABeDYsXS3q65MsnOp3odNK8udSrJwUKmLssAAAAAAAAaIYe7gBgfHq9LFkiItK7d/ZIWppUqCCtWkl8vBnrAgAAAAAAgIYI3AHA+DZvlqtXpVw5eeut7JHwcLlzR27fZpM7AAAAAABAnkHgDgDGt2iRiEivXqL766fuwoUiIp9+araSAAAAAAAAoLXnPjR19s2bex88UL/WiXxXpYoRqgKAPOTWLSlTRkTk2jUpXlxE5NIlqVBBHBwkKood7gAAAAAAAHnGcx+aGp2e3qFIkbbOziIiFhbaVwQAeUxoqGRkiI9PdtouIl9/LYoiH3xA2g4AAAAAAJCXPHfgLiJ2Ol0Bqxf5RgB45RiOS+3VK3skPV2WLRN56ABVAAAAAAAA5AkvkptvvX//SkqKiNTMn795oUJalwQAecivv2Yfl9q8efbI2rVy547UqCH16pm1MgAAAAAAAGjsRQJ3VxubqvnyiUhxW1ut6wGAvEU9HJXjUgEAAAAAAF4BLxK4V8mXr7Xaw11ERPSKoqOZOwD8S1RU1LrY2A89PJw+/jh76NIl2blT8uWTDz80a2kAAAAAAADQnu7plzzR6aSkLhER55OTNakGAPKSxYsXf7Z7dy93d3FxyR7iuFQAAAAAAIC867kDd90/vyc0Ovp6Wlqv8+f3x8drWBYAvOz0ev2SJUtEpNdfx6WmpaV9feLEgxo1OC4VAAAAAAAgT3ruwD3Ize3dIkUMD4PLlXvH2TkpK8v/4sUf7tzRtDYAeIlt3rz56tWr5cqVa/7Xcanh4eGfbtniJcJxqTCq+vUlMDD76/R0KV9esrLMWhAAAAAAAK+MnLaUsbGwGOfm1rt4cUVRpt24MenatSxF0aQyAHipLVq0SER69eql++u41IULF4rIpxyXCiO7dk3mz5eTJ0VEFEUuXzZ3QQAAAAAAvDIsFI3y8S3374+9ejVdr/csUCC4XLl8lpaaTAsAL6Nbt26VKVNGRK5du1a8eHERuXTpUoUKFRwcHKKiogrQwB3G5OIiX3wh4eGye7dkZIidnWRmCr+WAQAAAAAwgZzucDdoVajQ1xUqOFtZ7Y+P73nuXHR6ulYzP1lGRkZcXJxp1gKAZxQaGpqRkdGhQwc1bReRr7/+WlGUDz74gLQdJvD++2JpKYsXm7sOERFRFGXVqlVz5841dyEAAAAAABidZjvcVTfT0gIuXrySmlrE2nqGu3sVBwcNJ3/EkSNHli1b9sMPPzRr1uzKlSs//PCDup8UAMxLr9eXL1/+6tWrW7dubdGihYikp6eXKlXqzp07Bw8erEcDdxiZi4scPSqxsdKihRw9Kq6u5tzhfvToUX9//927dzs4OJw7d65kyZLmqQMAAAAAAJPQbIe7ytXWdvHrr9d1dIzJyOhz7tzWw4e1nV9Ezp49O2bMmPLly9etW3f27Nm3b9/+9ddf//jjjwYNGhw8eFDz5QDgeRmOS33rrbfUkbVr1965c6dGjRqk7TCe1FSZOlXu3s1+WL26dOsmY8eKiCQnS1CQJCSYtJ7Y2Fh/f/969ert3r27cOHCkyZNMtzwAQAAAABAXmWl+YwFLC3nVqgw7caNk/v2tf7wwzFjxoxV/+9+zkRFRa1evXr16tV79+5VR1xdXTt37uzj41OzZs3333//l19+adKkyeLFiz/88MOcLwf825EjRxI0zasKFChQu3ZtDSdELqEejtq7d2+OS4XJbNggAQFy+bJcufL34NixUq2aiMj06TJ+vMyaJaNHS//+Rt/tnpGRMW/evMDAwAcPHlhbW/fr12/8+PFOTk7GXRUAAAAAgFxA45YyDwueMmXUyJF6vb5Xr15z5861trZ+gUni4+N/+umn1atXb968OTMzU0ScnJzat2/v4+PTpk0bK6vsDwwyMzMDAgLmzp1rYWGhVcQPGOj1+tGjR2/cuPHkyZMaTlurVq133nknKCjIwsJCw2lhXunp6R4eHhcvXrx+/bqLi4twXCqM7OxZGTRINm8WEXn9dZk5UwYOlF27pFgxEZHVq6VPH9myRQYNkj17RERq15ZZs6RRI2PVs23bNn9//9OnT4tIixYtQkJCqlataqzFAAAAAADIZYwYuItIeHi4n59fcnJy8+bN16xZU7BgwWf8xqysrO3bty9btiw8PDwpKUlEbG1tW7Zs6ePj06VLF4f/aA0/a9aswYMH6/X6jz76aMGCBTY2Nlq9ELzilixZ0rNnz4IFC9asWVPDaY8dO/bgwYOwsLDu3btrOC3MKzExcf/+/T/88MOxY8dGjBhRvnz55cuXf/XVV5988smiRYvMXR3ylHv3ZNw4mTdPMjPF2VnGjJF+/cTqv29d27BBBgyQa9dERLy95f/+T7Q9+uT8+fODBw/++eefRaRixYozZsxo27atlgsAAAAAAJDrGTdwF5Fjx461a9cuMjKyQoUKGzdurFix4pOvV49C/e677+7evSsiOp3O09PTx8fH19e3SJEiT11u06ZNXbt2TUhIaNiw4Y8//vjaa69p8zKexd27smaNnDsnJUpI27bChr68IiEhoVKlSrdu3fruu+/ef/99DWf+9ttvu3fv7uLicv78eTY+v9Ti4+N37dq1ffv2HTt2HDt2TK/Xq+PW1tbu7u4FCxbcv38/x6VCQ5mZsmSJjBolMTFiZSX/+59MnCjP8EtSkpNlzhwJCpLERHFwkAEDZPRoyZ8/p/XExcUFBwfPnDkzPT29YMGCw4cPHzRoEB97AwAAAABeQUYP3EXk5s2b7dq1O3r0aOHChcPDw728vP59zenTp1etWrV8+fJLly6pI1WqVPHx8enRo4ebm9uT509PT7e2tjY05Thx4oS3t/eNGzfc3d03btxYqVIlbV/O4129Kg0bSqdO0rSpXLokU6dKaKh06GCKpWFkQ4cOnT59+ptvvrlnzx5te78oitK4ceO9e/eOHDly4sSJGs4ME0hKStq/f/+ePXv27t27c+fOjIwMddzKyqpmzZotWrRo2rTpoEGDzp49O27cuJYtW3p6epq34CfIysq6efNmnz59Cj2Ro6OjuSuFiMhvv0lAgJw6JSLSvLmEhGQ3an92kZEycqQsXy6KIiVLysSJ4ucnL/bjTa/XL1++fOjQoXfu3NHpdL6+vtOnTy9atOiLzAUAAAAAwMvPFIG7iCQmJn744YcbNmywtbUNDQ3t1q2bOn7z5s01a9Y8fBRqqVKlOnbs+NFHH3l4eDzLzHq9vkuXLjY2NkuXLrWzs1MHo6Ki2rdvf+TIEWdn57Vr1zZt2tQIr+mfPvpInJxk1qzsh+vWZd+3T2/ul9ylS5eqVq2akZFx4MABY2xPPnLkSP369a2srE6dOlWhQgXN54e2kpOT9+3bp4bsu3btSk9PV8cNIXuLFi0aNmxob2+vju/atatp06Y2NjZHjx6tXLmy+Qp/iq+++mrChAkPHjx46pV2dnZPDuUNXFxcLI19NOer5/z586NHT926dVFcnEWFCvLVV9Ku3bN+b0qK/PXGzLZzpwQEyLFjYmsr77zj/+WXz/qb12D79u0BAQEnTpwQkaZNm4aEhGjbdwsAAAAAgJeOiQJ3EcnKyho8ePDs2bMtLCz8/f1r1aq1Zs2aTZs2ZWVliUihQoW8vb27d+/evHnz59pEfOrUKU9Pz8TERC8vr/Dw8MKFC6vjSUlJvr6+69ats7GxWbRokdF7ZFetKvPmSZMm2Q+zssTeXq5dk+LFjbsujKx9+/YbNmzo2bNnaGjow+NBQUE7dux4gQmbN28+YsSIh0d69OixbNmyTp06rV27NielwkhSUlKOHDmyd+/ebdu27d69Oy0tTR23tLSsVauWmrA3adLkv5oC9ezZc8mSJU2aNNm+fXvuPB333LlzHh4eKSkp48ePL1++/P379+Pi4u4/TkJCwrNPa2lpGRQU1LVr16fepYRn8eDBg6CgoNmzZ6enp7dsuapVK5+BA+XZW7akpEjVqtKokUyfLg/vPs/KksWLZf363T//7KXT6Xr27BkUFPQs+9Nv3LgxatSob7/9VkRKlSoVFBTEWRQAAAAAAIgpA3fVnDlz1L6uKSkpImJnZ9eiRYvu3bu/++67L9zs9eTJk97e3tevXy9fvvzGjRtff/11dTwrK2vUqFFTpkwRkYEDB86cOVOn02n1Qv6m14uFhRQrJlu2yMM7+1xcHh3By+a3335r0aKFo6PjuXPniv/zs5OuXbuuWrXqBeb88MMPV6xY8fDI7du3K1asGB8f/+uvv7Zq1SpHFUMjmZmZx48f37Zt27Zt2/bs2ZOamqqOqyF7w4YNGzVq1LJly2c5CPrevXuVK1e+c+fOkiVLPv74Y+PW/fz0en2TJk327Nnz70+VHislJeWxWfy/3b59O1++fDVr1ty9e7cJXkgepvZs+eKLL27fvq32bJk6dWqxYsWea5LNm6VdO8nMlEKFZOxY+eyzf5ytmpiYOH369ODg4LS0tPz583/++ecjRoywtbV97FRJSUnTpk2bMmVKamqqg4PD0KFDhw8fbrjDDAAAAACAV5ypA3cR6dWrV2hoqJub29ixYzt27KhJU+Bbt261b9/+8OHDhQoVWrt2bbNmzQxPhYaGfvbZZxkZGV26dFm2bJn9I3fU50REhKxeLd9+K99+K/7+MnastG2b/VRysjg6SkyMFCqk2XIwrczMTA8Pj1OnTk2dOnXo0KGPPHvq1Kno6OgXmLZ48eJV/3Wg7qRJk0aNGlWlSpXjx49bPRyDwbQiIiLCw8O3b9++f//+R0L2pk2bNmvWrHHjxi9wvO2KFSu6devm7Ox85syZ3NbbeurUqcOGDXN1dT158mQhTX9excfHu7u7371797fffnvrrbc0nPmVcvDgQX9//wMHDohI/fr1Z82a1aBBgxeb6tw5GTxYfvlFRKRiRZkx4+9fWaoLFy6MGjVq9erVIlKhQoWJEyf6+Pg8fIGiKGvWrBkyZMj169ctLCy6dOkyffr00qVLv1g9AAAAAADkTYrJ+fn5iciCBQu0nTYxMbFDhw4iYmVlNX/+/Ief2rJli5OTk4i88cYb0dHROV3p2jUlOFipXl0Ryf4zYoQyfLjSrp2SlZV9zYwZSr16OV0IZhUSEiIi5cuXT01NNfZaaWlp7u7uIjJv3jxjr4X/EhkZ2a9fP8PPxnLlyvXu3XvVqlWxsbE5n7xt27Yi0q1bt5xPpaEzZ87Y29tbWFj88ssvxph/woQJItK0aVNjTJ7n3bhxw8/PT21D5OrqGhYWptfrcz7tunWKu3v276527ZTz57MeuWDr1q3V/jqDtXnz5idPnlTHDx069Oabb6rjdevW3bt3b86LAQAAAAAg7zHDDveaNWueOHHiwIEDb7zxhrYzK4oybty4cePGyb96yERERHh7e1+9erVkyZIbNmyoVavWc88eFyfr18u338rvv4teLyJSqJB4e0v37tK8uSQlSZs2oijStKlcvCh798ovv0jVqtm37j/nvf8wu3v37lWsWDE2Nnb9+vXtnv1QwhxYu3Ztly5dnJ2dz58/bziKAKY0Z86cgQMH1qxZMzAwsEmTJs7OzhpOfu3atapVqyYlJW3ZsqVly5YazvzCsrKy3nzzzYMHD/bq1WvhwoUPP7Vp06ZOnTrl/HDU+Pj4smXL3r9/f+fOnV5eXiZ5WXlBcnLynDlzgoKCEhMTHRwcBgwYMHr06Pz582s1f0aGzJsngYESHy8eHv6NGsn48ePVj6VVmZmZS5YsGTVqVExMjJWV1fvvv6/T6ZYvX67X60uUKBEYGPjJJ58YpUUbAAAAAAB5gIkD/rS0NBsbG51Ol5CQYKQlQkNDra2tRaRz585JSUmG8bt37zZu3FhEHB0dN27c+IyzpaSkpIaHK+++q9jaZu8JdHBQPvhA2bBBSU//x6VZWcoffyhhYcq2bYq67pQpiohSurRy4oRmLw8m8emnn4pI8+bNTbmomsP6+/ubclEYqJ/VjRkzxkjzBwcHi4i7e8WkpAwjLfFcJk2aJCKurq73799/5KmVK1c++y8RnU5XuHBhd3f3evXqvf32249MFRgYKCItWrQw0avKEw4dOqQ2W/P29r5y5YqRVomOVkaMuKTm5i4uLqGhoVlZ/9jtHhsbO3DgQEtLS/UDFRsbm4EDB8bHxxupHgAAAAAA8gZT73A/fvx4rVq1KlaseO7cOXUkLi7uWQ4efC6//fZbly5d4uLi6tevv27dOsPhcmlpaT179lyxYoWlpWVISEj//v3/awa9Xr9v377Vq1evWLHi96pVa+zaJTqdeHpK9+7ywQfyjH3nY2OlUyfZtUvy55eVK8UkG6WRc6dPn65Zs6aIHD161NBawQQiIiLUey9MvC5UgwYNCgkJmTlzZkBAgDHmz8jI6NBhxI0bY9q2LTB5sjFWeA5nzpypXbt2Wlrapk2bWrdu/e8Lnv1w1Dt37mRlZanf5ezsHBsb+/A8Dx48KFu2bFxc3O7duxs1amSK1/byq1KlypkzZ5YvX+7r62vstf7888+AgAD1YFsPD4+QkJBH7kXYvXu3l5eXvb396dOny5Yta+x6AAAAAAB46Zk44A8LCxMRHx8fw4iXl5eTk9OBAwe0Xej8+fMVK1YUEVdX1z///NMwrtfrAwMD1a64AwcOzMzMfOQbjxw5Mnjw4BIlShj+E43t1EkJCVFerPl7aqri56eIKJaWyqxZOXlFMJlWrVqpbw/TL22WnfVQ9ejRQ0SWLl1qvCUOHlQsLRUrK+XoUeMt8nQZGRn16tUTkT59+uR8tqysrJiYmAsXLhw8eHDXrl3/vmD06NEi0qZNm5yv9YqoXLmyiERERJhsxfXr1xvCdG9v78uXLxueunfvnogULFjQZMUAAAAAAPBSM3UP1uPHj4uIun1YRBRFOXHihLoFUtuFKlSosG/fPi8vr5s3b3p5eW3cuFEdt7CwGDt27HfffWdnZzd79mxvb+/4+HgRuXHjxqxZszw8POrUqTNjxoyoqKgyZcoMGzbs7NmzgWvXir+/uLi8SB22thIWJsHBoteLv7/06SOZmRq+TGguPDx8y5Ytzs7OY8aMMf3qQUFBhQsX/u233wzvWJjM/fv3RaRQoULqw8uXLzdu3PjhY1Rzrl49+fRTycyUPn3kr03hZjBlypRDhw6VKVNm2rRpOZ/t4ZYyatuuRwwaNMjR0XHTpk0HDx7M+XIwhnbt2p0+fTo4ODh//vwbN248cOCAuSsCAAAAAOBlZebA/dq1a3FxcUWLFnV5sTj7iQoXLrxly5Zu3bolJiZ26NBhzpw5hqe6du3666+/Fi5cePPmzR4eHvXr1y9TpkxAQMCxY8dcXFwGDhx44MCBq1evBgcHV6pUKad1WFjIsGHy/fdiby8LF0rbtvLgQU7nfKLU1NQNGza89957EydOHDVqVCYR/zNLT08fPny4iEyYMMEsJ5c6Ozt/+eWXIhIQEJCWlmb6Al5ljwTut27d2rNnj/ojS0OTJknJknLwoCxYoO3Ez+rMmTNBQUEWFhYLFy50fMbuWDnj7Oysfm4RFBRkguXyHkVRMjIysoz8EY29vf2wYcNOnz49ZsyY999/36hrAQAAAACQh5k6cD958qQ8FLirYZbat9oYbG1tly1bFhwcrNfrBw4c2KdPH0P67OXl9ccff5QpUyYlJeXQoUN2dnY+Pj7r169Xt7q/8cYbGpfy3nvy229StKhs2SKNG8u1axrPL5KVlbVt27aPP/7YxcWlffv2q1evDg4OnjRpUtu2bR8YOeLPM6ZPn37hwoUqVar07t3bXDX069evWrVqly5devgjIpjAI4H7Iw+14ugos2eLiIwYITdvajv302VmZvbo0SM1NbVv375q6yTTGDJkSP78+Tds2HD48GGTLZpn/PjjjzY2Nj4+PiZYq1SpUuPGjVO7rgEAAAAAgBdg0sA9Kirqzp07zs7OpUqVUkce2fBuDBYWFsOGDVu2bJmtre3ChQvXr19veKp8+fLvvvvurVu3OnfuHBMTs2rVqnbt2llbWxurFE9P2b9fXn9dTp7c89FHhw4d0mriiIiIsWPHuru7t2zZcunSpfHx8VWqVAkODv7hhx9cXFy2bNnSsGHDq1evarVcXnX79u0pU6aIyMyZM62srMxVhpWV1cyZM0Vk/Pjxt27dMlcZryDTBO4i0rGjdOgg8fHi76/53E8xefLkQ4cOlS1bVn2rm0zhwoX79u0rIpMmTTLlugAAAAAAACZm0sBdjddr1KjxyIhRA3dVt27dtm3bNmzYsE6dOj08fu7cOfVZBwcHY9cgIlKunOzbd+299zqcONG0adO1a9fmZDJD3/lq1aqNGzfu6tWrat/5c+fORUREDBs27J133jl8+HCtWrUiIiLq1q27e/durV5HnjRs2LD4+PiOHTuacufvY7Vo0cLb2zshIcEsfeRfWSYL3EVk7lxxcpK1a2XdOmNM/3gnTpwwcTOZhw0ZMsTBweGnn37SvEsPAAAAAABA7mGGwP3heN1kgbuINGrUKDg4+KklGV2hQq4rVnR9//3k5GQfH5+xY8c+7wT3799ftmxZy5YtDX3nnZ2de/fuvXv37itXrgQHB1esWNFwccmSJXft2tW2bdvY2NiWLVuuWLFCy9eShxw5cuTbb7+1sbEx8c7f/xISEmJra7tkyRJacJhGenp6cnKyjY2N4bM3owbuJUrI+PEiIgMGSEKCMVZ4VGZmZs+ePdPT0/v169eyZUtTLPlPLi4uvXv3VhRl4sSJpl8dAAAAAADANMwZuCckJFy5csXW1laDg0lfyN27d6OjowsUKFC2bFlTrmtlZTV37tyQkBALC4tx48apKdhTv8twFGqxYsV69Oixbds2Q9/56OjoBQsWNGrU6LGNdx0dHdetW9e/f/+0tDQ/P7+xY8cqimKEl/USUxQlICBAr9d//vnnFSpUMHc5IiLly5fv37+/Xq/39/fn78sE/h2vGzVwF5H+/cXTU27cENPcxjBx4sTDhw+7ublNnjzZFOs9zrBhw+zt7desWaMe5gEAAAAAAJD3mDNwP3nypF6vr1q1qhHbpj/RsWPHRKRGjRpmOSDO399/zZo1Dg4OS5Ysad68eUxMzGMv0+v1e/bs6dOnT9GiRdWjULOyslq0aBEWFnbnzp1n7DtvaWk5Z86ckJAQnU43bty4Dz/8MDU11QivySjSlfQ0JU39Oiw27FjKMc2XWL58+Z49e1xcXIYPH6755C8sMDCwWLFi+/btW7VqlblryftMH7jrdDJvntjbiwnaWR0/fnzSpEk6ne6bb77Jnz+/0df7D8WKFevZs6eiKGYM/QEAAAAAAIzKdIF7SkrKhQsXrKysqlSpoo6YoZ3LP5m9gI4dO+7bt69UqVJ79uzx9PRUG8obREREDB8+3NXVtXHjxgsXLkxISKhTp05ISMjNmze3bt3avXv35w3O/P39w8PD8+fP//333x/p319iYzV9Ndr7Nf7X6meqlz9V3vWkq89ln/is+PUP1p9LPff073weycnJo0ePFpEpU6YUKFBA28lzwtHRcfz48SIyZMiQpKQkc5eTx5k+cBeRWrXk2jXJyJCNG7NH9Hrp00eysrRcxdBMpn///k2aNNFy6uc3bNgwW1vbVatWnT171ryVAAAAAAAAGIPpAveIiIjMzMxKlSrZ2dmpI2bPu81egLr6gQMHateuffHixTfffHPnzp3Xrl2bMmVKpUqVqlWrNmXKlOjo6MqVKwcGBl64cOHw4cP+/v4uLi4vvFz79u137dr1bdu2DZcsEU9PuXBBw9eirctplztf7jyh+IQb1W/cqXHHy9ErXXl6450XMGnSpOvXr9epU8fPz88Y8+dEz54969atGxkZOX36dHPXkseZJXAXkddek+XLpVev7M+/9HpZuFD0ei2XmDBhwpEjR9zc3HJD8/SSJUt+/PHHWVlZkyZNMnctAAAAAAAA2rMy2UrmPTH1GUsyixIlSuzYseODDz74+eefW7VqZejnXqJEiffff9/X17d27doaLufh4eGxcKG8+64cPiwNGsiaNdKsmYbza2Vt3Npmjs06FOwgIjrRDXhtgOGpFfdWZMnT9wDbHrJNu5325Gvu3bs3Y8YMCwsLtd9OzkrWnk6nmzVrlnrer6OjY5EiRTScvEOHDrlqR795mStwV3l7y7BhEhqq/czHjh2bPHmy2ZvJPGzEiBFLlixZuXLl6NGjHz7hGQAAAAAAIA8wW+Cu1+tPnTolItWrVzdZDQ9LT08/d+6cTqerWrWqWQp4mHqu6eDBg9VcrH379j4+Pm3atLGyMs5fUIkSsmOH+PrKunXy9tuycKH06GGUhXLgUtql6vaPf2/879r/nmW3e9WlVSO+j3jqZSVLlnRxcWnUqNFzl2gSb775Zo0aNWJjYz///HNtZz579iyBu4F5A/ehQ6VVK9mzRxo0EBGJjpbt26VQoew/BQtKoUIv0uo9IyOjZ8+eGRkZAQEBZm8mY1C6dGk/P7/FixcHBwcvWbLE3OUAAAAAAABoyWyB+8WLFxMTE0uVKlW4cGGT1fCw06dPp6enV6pUKV++fGYp4BGWlpazZs3S6/WTJ082dN0xonz55McfZdw4GTdOPvpI/vxTZs6U3LTF28bCJkPJeOxT3Zy7/ddTD3Ou41zb+ik3B9y9e3fz5s3379+PjIwsWbKkOnj58uUhQ4Z4eXkFBAQ8Z9U5NX369AMHDkyfPr1s2bLqyLVr186fP5+amvrOO+9o+4/FyclJw9leduYN3B0cZMYM+fRTOXRIROT48cd8BGZr+3cEX6iQVKp0LCNjSaH/4ODgICLjx4//888/y5UrN2HCBBO8imc3cuTIsLCw5cuXjx49uly5cuYuBwAAAAAAQDMmCtwVRTl58qQ8FLibvZ2L2Qt4LJ1OZ4q0XWVhIWPHSsmS8tlnMnu23Lwpy5a9yDZa46hkV+n7+98/9qnFZRY/0xRDnumq9957b/Xq1cOHD1++fLk6cvr06R9//HH79u2+vr6vvfbaM82ihTt37gQFBT148OCTTz4xBO5Dhw5NSUnx9fU1lAdjeCReT0tLS0lJsbW1tbe3N00BnTpJaKjMny8iUqSIdO8u9+//409KikRHS3R09vVxcSf37p3zX7PZ2toWKFAgPj5ep9OFhYXlkmYyBuXKlfP19Q0LCwsODl64cKG5ywEAAAAAANCMiQL369ev379//7XXXitWrJg6Yva82+wF5BaffCJly4qPj6xdK5GRsm6d5OBQVg11LdR1/K3xE6Mn9nutn42FzbaEbd5O3sZY6Kuvvvr5559XrlzZp0+fxo0bi4i3t3ebNm02bdo0ZsyY+WoCahIjR4588OBBu3bt3n77bXVk7969a9assbe354RJY3skcDfl9naD2bPFy0tEpE4dCQt79NnU1OzkPS5Ozd/rdO06+/5/SE5Ovnv3bpEiRSwtLT09PU35Kp7R6NGjV6xYsXTp0pEjRxo+XgIAAAAAAHjZmaiFiJpu16pV65ERAvdcoUUL2bNH3Nzkjz/kgw/+Hk9I+MdlivKkh1orYlVkZ8WdESkR9c/Wr3u27tr7axOzEsvalC1oWVDbhUqVKvX5558rihIQEKDX69XBGTNmWFtbL1q0SH2fmMDRo0e/+eYbGxub6dOnqyN6vT4gIEBRlBEjRpQuXdo0ZbyyzBK4//V2y+buLr17/+fFdnZSvLhUqSJvvilt20qXLlUGDBgwZsyYmTNnLl26dN26dbt27Tp58mRkZGRSUlJqampkZGSBAgVu3769atUqwySXL1/u0aPHxIkTjfaanpW7u3vXrl0zMjKmTZtm7loAAAAAAAA0Y9LA/eF02+x594kTJ8xbQO5StaocOCBt2sjcuaIoEhQkZcqIp6eULi3du0tioohIxYpy+PDf31KnjmzfbtSiXrd7faXbyvNVz5+ucjqsbFgBywJflfyqdYHWmi+kJtp//vnnsmXLspd+/fV+/fplZWWZrI27Gvf7+/tXrFhRHQkNDT18+LD6eYBpaniVmT5w1+ulY0cZPly++04MjYuGD5etWyXnhyXb2tq6urqOGDFCRCZMmGD4JOnWrVvLli2bPn16XFxcTtfIsVGjRul0usWLF0dGRpq7FgAAAAAAAG2YJ3BPTEx88OCBg4ND+fLlTVPAI27evBkTE+Ps7Gw4JxNStKj88otUriyLFsl338n+/XLqlJw7J4mJ0q+fuYszLnt7e3XP7/Dhw+Pj49XBwMDAIkWK7NixY+3atcYu4Pvvv9+1a1fRokVHjRqljsTHxwcGBorI9OnTHXJNY/08zPSB+7Bhsn69hIZKhQpia5s9aGcnLVqIhYU2S/To0cPNze3MmTOG93DDhg2bNGkSFxc3b948bdZ4ZjExMep/VYPKlSt7eno6Oztfv37dxMUAAAAAAAAYiXlayuTPnz8uLu78+fOWlpamKeCx9bC9/fHCwmT0aClRQkTE3l5mzpSVKyU93dxlGZevr2+jRo1u3749efJkdaRgwYLjx48XkcGDBycnJxtv6ZSUlOHDh4vIxIkTnZyc1MFx48ZFR0c3bNjQx8fHeEvDwMSBe1iYTJ8u1tayenX2PzVjsLa2/uKLL0Rk3Lhxhk3uX375pYjMmDEj4ZGeUUbWp0+fatWq7du3zzASFRUVERERHR2t05noNxEAAAAAAICxmSLmSEpKunz5so2NjaFXhohYWFi4urqaYPXHInB/kosXpWrVvx+WKSMODnLliojIkCHSoUP2n8uXzVWgMVhYWMyaNUun082YMePChQvqYO/evWvWrHn9+vWZM2cab+kpU6Zcu3bNw8Pj448/VkcuXrw4d+5cnU4XEhJiodVuZzzRIwl7tWrVRo8e3b59e2OstXev9OkjIjJnjjRrZowV/tazZ88yZcpERESsW7dOHWnevHnjxo1jY2NNeSDwypUrw8PDExMTH76pqFevXnFxcW3btm3QoIHJKgEAAAAAADAqUwTuZ8+eVRSlaNGiVjnvTKwRAvcnsbOTtLS/HyqKpKeLvb2ISK9eMmZM9p/ixc1VoJHUrl27e/fu6enp6qZgEbG0tFSj9kmTJhmp60VkZKR6SmpISIjhho+AgIC0tLSePXvWrVvXGIviEenp6UlJSdbW1vny5VNHatWqNWHCBGPcXnD1qnTqJGlpMmhQduxuVNbW1kOGDBGR8ePHK38ddKx2Lpo2bVqiejyDkd29e1c9C2HmzJmG43+/+eabX375pWDBgl9//bUJagAAAAAAADANUwTuderU8fHxiYyM9PHxMWprjmdH4P4klSvLH3/8/fDoUbGxEXVfaqVKUrt29h81gs9bgoODCxQo8NNPP23ZskUdadasWefOnZOTk0ePHm2MFYcOHZqUlPT+++97eXmpI9u2bfv5558dHR3VhjYwAfUEUaN2bFclJEj79nLnjrRuLVOnGnu1bL169XJ1dT127NjGjRvVkdatWzds2DAmJmbhwoUmKKBv3753795t2bKl4R6OqKgo9Sjg//u//zPjrU4vi4YNG/7yyy9qLyAAAAAAAJDLmahz7oABA4oUKRIeHt6wYcPIyEjTLPpfUlJSLly4YGVlVblyZfNWkksNHiwTJ8rvv0tmppw5I336yOefy6vRZNnFxWXEiBEiMmjQoMzMTHVw2rRpdnZ2y5cv37Nnj7bL7d+//4cffrC3tw8ODlZHMjMz1b3AgYGBxYoV03Y5/JdTp06JiF6vv3r1qvFW0evF11dOnpTXX5fvvxeT3fBja2urbnIfO3asYZO7+j6fNm1aSkqKUVdfvnx5eHi4k5PT4sWLDf2RPvnkk/v377dr187X19eoq+cNLi4ubdq08fDwMG8Z33///axZszIyMsxbBgAAAAAAuZyJUtRGjRrt37+/UqVKx44da9CgwZ9//mmadR/r1KlTWVlZlStXtrOzM2MZuVerVrJokUydKhUrSu/e0q2bqDsrq1WTvxpuiIhUqSKOjuaq0XgGDx5coUKF06dPL1iwQB1xc3MbPHiwoigBAQGGkydzTq/X+/v7K4ryxRdflClTRh2cM2dORESEu7t7//79tVoIT5CZmTlr1qx3333XyckpJiamfPnyLVu2XL16tTFSxS++kA0bxNlZNmyQggU1n/5J+vbtW6JEiT///HPz5s3qSNu2bevVqxcdHb1o0SLjrXvr1i1/f38RCQkJKVWqlDoYGhq6adOmwoULm2Z/PTShKMqgQYMCAgJq1qz566+/mrscAAAAAAByMcWEYmNjmzRpIiL58+dfv369KZd+mJrydOvWzVwFIJcLDw8XkUKFCsXExKgjCQkJJUqUEJGwsDCtVgkNDRWRkiVLJiYmqiOxsbHOzs4isnHjRq1WwRMcPHiwVq1a6k/CNm3avPfee4YP4UqUKDF69OgrV65otdbSpYqIYm2t/P67VlM+n2nTpolIgwYNDCM//fSTiBQvXjw5OdlIi3bs2FFE2rZtaxiJjIwsWLCgiKxcudJIi+YB6t1Xf/zxh7kLURRFuXXrlogULFhw69atVf86T7tFixanTp0yd2kAAAAAAORGJg3cFUVJTU318/MTEUtLy+DgYOMtlJmZuXXrVj8/v1atWj3yVL9+/URk2rRpxlsdL7tWrVqJyIABAwwjYWFhIuLi4vLgwYOczx8fH1+8ePFHYse+ffuqSVbO58eTJSUlDRs2TD2l1s3NbdOmTep4XFzcggULatSooaaKOp2uRYsWq1atSk9Pz8lye/YotraKiPL111pU/0ISExOLFi0qIlu2bFFH9Hp9nTp1RGTu3LnGWFH9J+Pk5HTjxg3Dim+//baItG/f3hgr5hlhYWFFixZ1dnYOCQnJzMw0YyXr1693c3PLnz//rFmzFEVJT08PCQlxcnISEWtr64EDB8bFxZmxPAAAAAAAciFTB+6Kouj1+uDgYJ1OJyK9e/fOyMjQdvJ9+/b169fvtddeM0RmkZGRD1/TqFGjh1Mn4N8iIiKsrKwsLS1PnDihjuj1+jfeeENERo4cmfP5hw4dKiKenp56vV4dOXXqlJWVlZWV1cmTJ3M+P55gw4YNpUuXFhErK6uBAwcmJCT8+5pdu3Z169btkQ3vV6+mvsByV64oRYsqIsqgQTkuPWcmT54sIm+++aZhZM2aNSJSqlSptLQ0bdeKiopSb9d4+KYQtU1TkSJFoqOjtV0uj4mMjGzYsKH63qtTp86ePXtMX8OxY8eaNm2q1lCzZs0zZ84YnoqJiRk4cKD6eVXhwoXN/qkAAAAAAAC5ihkCd9WqVavs7e1FpFWrVppskTtz5kxgYGCFChUM3XKqVKkSGBh48eLFhy/T6/VqQwMSHzyZeifEW2+9ZRg5fPiwTqeztbW9cOFCTma+ePGira2tTqc7ePCgYbBly5YiEhAQkJOZ8WRRUVHqHTYi4uHhcejQoSdf//CG93LlXtfp9C1aKKtWKc++3z0+XqleXRFRWrdWNP1s8UUkJiaqn0T+/ldfG71er766BQsWaLtWhw4dRMTb29swYmgm88MPP2i7Vl61fv36smXLqm9Xb29vDRscPVlsbKwhT3d2du7Xr1/t2rV37979yGVHjhxp3Lix4V/TYXN8KgAAAAAAQC5ktsBdUZT9+/erLQ6qVat29erVF5skJiZmwYIFhs2AIuLq6jpw4MB/pwOqCxcuiEixYsVyUDheCffu3StcuLCIrFu3zjCoxrXqGaovbODAgSLy8ccfG0bUjcbOzs6GrvHQll6vX7BgQYECBUQkX758wcHBz7Und9euXV98scnOThFRRJQSJZTRo5VnyT+nTFFElCpVFC0aEWlgwoQJItKsWTPDyPfffy8ipUuX1nCT+zfffKN2/X64mUzr1q1F5N1339VqlVdBUlJScHBw/vz5RcTe3n7YsGGPvSFDK+np6QsWLChSpIjaMaZ37953795V/+IsLCx8fX0Nf6EGas8ZnYVFXI0aire3cvmy8coDAAAAAOClYM7AXVGUy5cvV6lSRU3AH97t+1TJycmrVq3y9va2srJSc3YnJyc/P7/169f/V4+aU6dODRs2rEiRIm5ubg9nncB/mTVrloiUL18+NTW7l0hkZOS8efNy2D8hIyNj7ty5t27dUh+mpqa6u7uLyPz583NaMR7nxIkTnp6ehp3C165de7F54uKUBQuUGjWyY3edTnlkw/u+fcqPP/59/ZYtyrlzysSJyqVLOX0JWnnw4EGhQoVEZOfOnepIVlZWtWrVRGTx4sWaLHHz5k11iW+//dYwOH/+fJrJvLDIyEg/Pz8LCwv1E+WwsDBDKyoNbd26VX0nqCdJGHpbJSUlBQYGqnekOTg4/Dv0T05O3jJzpuLgoIgo9vbKl18qSUmalwcAAAAAwMvCzIG7oijx8fHvvPOOiNjZ2T18gORjGY5CzZcvn5oL2Nraent7h4WFJf3H/8M/d+7cI61mGjVqZITXgTwoIyOjevXqIjJlyhTjrRIUFCQiVatW1fY8AyiKkpycHBgYaGNjIyLFixd/uJ94Thw+rPTunR0wiijFiinDhimXLimDBik6nbJ3b/ZlXbooGi2opcDAQBFp2bKlYWT58uXqB0uavAPVn+ft2rUzjFy9etXR0VFEVq1alfP5X1m7du2qXbu2+lvM1/f/jhzRbOazZ5W+fdeoM1esWHHjxo3/vubGjRuG0L9kyZKPCf0jIxU/P8XCIvsekLAwxQifCgAAAAAAkPuZP3BXFCUjI+Ozzz5Tb1oPDAz8r8u+++479RQ+EdHpdE2bNg0NDb1///5jLza0mlEDAvXYwye0mgEea9u2bSLi6OgYFRVljPlv3bql9jnhFF/N7dixo1KlSuoPlt69ez/QuqtLbKwyc6ZSuXJ27O7srPj7K23aKNWrZ+95z52Be1xcnNpL3fDDMDMzU/0PlfMPJBYvXqw2kzEcVa3X61u1aiUiXbt2zeHkyMrKCgsLc3Ut4+6eYmGh+Pkpf90n84ISEpTAQMXWVnnttazixSsFBgYa7uZ5rB07dtSqVUv9lfrGG28cOHDg0SsOHlQ8PbP/SdSrp+zbl6P6AAAAAAB4CeWKwF0VEhKi0+nU3taP7Sa8b98+w1Gol/+jUayh1Yy1tfUztpoBnqx9+/Yi8r///c8Yk6tN4Tt37myMyV9ZsbGxvXv3Vj9sq1Gjxv79+4263K5dSrduypAhyqBBytSpyrvvKlOnKkpuDdwVRRk1apSItGnTxjCydOlSFxeXpUuX5mTayMhItZnMihUrDINz585Vm8ncvn07J5PDIC4ufcgQxcZGEVEKFFCmTVNeoP1+ZqayYIFStGh2c6RevZTbt5/pLODMzMwFCxaop+9aWlpOHTxYeeRvVq9XwsKUYsUUEcXCQvHxUa5ff+76AAAAAAB4aVkoiiK5xo8//ujn55eUlNSwYcOffvpJPbrNQFGUM2fOqD3fH5GVlbV9+/Zly5b9+OOPiYmJImJra9uyZUsfH5/OnTsb+s8AL+DSpUtqv5cDBw7Uq1dPw5mPHDlSv359a2vrU6dOqW3ckUOKonz77beff/55TEyMvb39F198MXLkSLWljAkMHizFi0uXLlK/vhw+LEOGSLt20r27aRZ/DrGxsW5ubgkJCX/88Uf9+vVFJDMzMz093cHBISfT9urVKzQ0tEOHDj/++KM6cvXq1Ro1aiQkJKxevbpLly4alI6/XLwoI0fK6tUiIu7uMmmS+Pg86/fu3CkBAXLsmIjIG2/IrFnyxhvPt3piYuL06dODg4PP165d+uRJ+fxzGTFCbG3/viIhQYKCZNYsSUsTR0fZuVM8PJ5vDQAAAAAAXk65K3AXkePHj7dr1+7GjRvu7u4bN25UGx08wZEjR5YtW/b999/fuXNHRHQ6naenp4+Pz4cffqhuwQNy7osvvpg2bVr58uU/+ugjQ5OiHFIUZdmyZRcuXBg5cuTEiRM1mfMVd+nSpb59+6pdgJo2bbpgwYKKFSuasgA1cB86VCZOlOPHRVFyaeAuIsOHD58yZUq7du3Wr1+v1ZxJSUnjxo0bPHhwsWLFRERRlNatW2/duvWDDz5YuXKlVqvgYb/9JoMGycmTIiLNm8vMmVK9+pOuj4yUkSNl+XJRFClZUiZOFD8/eeEfaVfPny87eLD8/LOISKVK8tVX0rbtP664dElGjJDTp+XYMfnrhHMAAAAAAPK2XBe4i0hUVFT79u2PHDni7OwcHh7epEmTf19z5syZH374YcWKFRcvXlRHqlSp4uPj071793Llypm2XuR98fHxzZs3j42NvXLliobTli9f3tnZ+ffff8+fP7+G076CMjIyZsyYMXbs2NTUVGdn58mTJ/fu3dv0ZRgC97Q0qVlT0tJk3LhcGrjHxMS4ubklJiYeOnSobt26xlji//7v/wYMGPDaa6+dOnWqaNGixlgCIpKZKUuWyKhREhMjVlbyv/9JUJCMHCleXuLnJyKSkSG+vrJkiUyfLlOnSkqKODjIgAEyerRo84Nn2zYZNEhOnRIRad5cQkKkWrV/XBAfLykp8vXXcuKEFCyYXZlOp8XaAAAAAADkOrkxcBeRxMREX1/f9evX29jYLFq0qPtfkVVUVNTq1atXr169d+9edaRkyZKdOnXq3r17nTp1zFcvXgnz58+PjIzUcMLSpUv36dNHwwlfTXv27Onbt29ERISFhUW3bt1mzJjxSDcqkzEE7iKybZu0bClhYbk0cBeRIUOGfPXVVx07dgwPD9d88itXrtSoUSMxMXHNmjWdO3fWfH48IiZGxoyRhQslK0s6dpS9e0Wvl6NHpWRJSUsTOzv59FOZP18sLOTDDyU4WEqW1HT5jAz55pt/pP4TJ4rhn2FsrNStK126yHvvyb178uWXUq+ezJ2raQUAAAAAAOQWuTRwF5GsrKxRo0ZNmTJFRPr27dugQYM1a9Zs3rw5MzNTRAoWLNiuXTsfH5933nnH0tLS3MUCMA9FUTw8PI4fP/76669//fXXj70hxmT27xcHB6lZM/vhqlXi4SEVKpixoie5fft2uXLlUlJSDhw4oHZy14per3/rrbd27tzp6+u7fPlyDWfGk6nd1KdNk1atpEcPuXRJ1q7NDtyvXJGPPpLJk8XT02jL37sn48bJ3LmSlSXOzjJmjPTvL5aWEhQkR47IX5395dYtcXeX06elTBmjlQIAAAAAgNnk3sBdNW/ePH9/f2tr65SUFHnoKNQuXbrk8Hw/AHnD/v37f/311xEjRtg+fGajOXz5pXh4SKdO2Q8nT5aSJbPbeuROAQEBCxcuVH+62tnZFXo2xYsXf/JJBrNnz/b39y9WrFhERISzs7OpXg3+5uIiBw9KmzYydaq0bCl2dpKZKSb6bPr4cQkIkB07RES++koGD5b33pMmTaRfv7+vqV9fxowRb2+TFAQAAAAAgEnl9kPMPvvss1OnTs2fP79MmTKBgYGdOnVycnIyd1EAchFPT09PI+7afQ4XL4qr698Pr1wxVcT5or788ksvLy8/P7/k5OTU1NRbt27dunXrqd9lY2PzhDg+PT195MiRIjJ37lzSdjOytpa5c+V//5OjR027cM2asn27rFkjM2ZIr14iIvHxj3aLL1BAHjwwbVkAAAAAAJhIbg/cRSQtLU1Ehg4d+vHHH5u7FgDIOwoXLtypU6dOnTqJSEpKyv1nEx0dffv27du3b//XtCVKlOjYsWMnw1Z/mEmzZvLmm/LVV+ZYu0sX6dIl++uyZeXy5b+fUhS5dEnc3MxRFgAAAAAARvcSBO7Hjx8XkZqGvsgAkFv9+qvExWV/ffy4uLubs5jnYm9vb29vX6JEiademZaWFhcX94RE/ssvv6yQa1vXv2KmT5fatc1dRIcO0rOnfPqpFCsmIrJ8uej1UreuucsCAAAAAMAocnvgnpWVdfr0aQsLi+rVq5u7FgB4Cnt7KVAg+2tra7OWYjS2trYuLi4uLi7mLgRPV7y4DB8uAQFmLeLtt6VPH6ldW7y8JDZWzp+X1avFxsasNQEAAAAAYCy5PXA/d+5cSkqKm5sbrdsB5H5eXtK3b/bXx46ZsxK8yjZskKJFs7/u318aNJAnHnNrfGPGSECARESIk5NUrChWuf1/ewAAAAAA8MJ05i7gKegnAwDAs9Pr5Y03JCUl+6GlpTRvLs9wGq6RFSggnp5SpQppOwAAAAAgbyNwBwAAAAAAAABAA7l9o5kauNeqVcvchQDAUyxf/o/GHfPnm7uPBwAAAAAAAEzr5Qjc2eEOIPeztHzSQ8CUmjcX3V/3sBnaywAAAAAAAGOzUBTF3DX8p7t37xYtWrRAgQJxcXEW7BQFAOBp9HqxtJTz5yVfvuyRChXk/HlxdTVrWQAAAAAAvBpy9Q73Y8eOiUiNGjVI2wEAeHbFiomjY/bX/AoFAAAAAMBkcnXgfqdq1U6HDzfJyDB3IQAAAAAAAAAAPIXu6ZeYz7m0tGsipdzdzV0IAAAvBwsLadNGrB76PL11a7GzM19BAAAAAAC8SnL1DvfzKSkiUtHe3tyFAADwcrCwkF9++cfI2rVmKgUAAAAAgFdP7t3hnqEo11JTdSLlCNwBAAAAAAAAALle7g3cr6SkZChKKTs7e13uLRIAAAAAAAAAAFXuzbLpJwMAAAAAAAAAeInk9sC9goODuQsBAAAAAAAAAODpcm/gfiE5WdjhDgAAAAAAAAB4SeTiwJ2WMgAAAAAAAACAl0cuDdzvZGTEZWYWsLIqamNj7loAAAAAAAAAAHi6XBq4008GAAAAAAAAAPBysTJ3AY9Xytb20xIl2N4OAAAAAAAAAHhZ5LrAfWFU1I64OMPDNs7OVhYW5isHAAAAAAAAAIBnkusC9+j09JbOzh2LFFEfkrYDAAAAAAAAAF4KuS5wFxF7na6gVW4sDAAAAAAAAACA/5Ibc+2dcXHR6ekiUsXBoZWzs7nLAQAAAAAAAADg6XJj4F7UxqaSg4OIFLO1NXctAAAAAAAAAAA8k9wYuFd2cGjDxnYAAAAAAAAAwEtFZ+4CAAAAAAAAAADIC3Jf4G5hYWHuEgAAAAAAAAAAeF4WiqKYuwYAAAAAAAAAAF56uW+HOwAAAAAAAAAALyECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQAIE7AAAAAAAAAAAaIHAHAAAAAAAAAEADBO4AAAAAAAAAAGiAwB0AAAAAAAAAAA0QuAMAAAAAAAAAoAECdwAAAAAAAAAANEDgDgAAAAAAAACABgjcAQAAAAAAAADQwP8D+ICLsaJ2wPkAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9 B1 fragments with the most retrosynthetic routes found\n", + "legend: number of retrosynthetic routes found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAAB9N0lEQVR4nO3dd1wU1xYH8LOFDtLEhhUbgpoodjRGRZ9RotGISVTUJIqJGqwJxoY1YixBjTU27AFbsIua2NuCDTuIIlKUotLL7n1/jEGywErZnZnF3/fD531eZpadg165s2fuPUfCGCMAAAAAAAAAAAAAACgfqdABAAAAAAAAAAAAAABUBEi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBbIhQ7gHfIYO5WSonbQ0cystpGRIPEAAAAAb+Jzcm6mpakd7GhlZSrFigEAAAAAAAAQI7En3LNUqqlRUWYymVGBj9Zja9RAwh0AAKDCu5GWNi0qyloul0gk+QebmZubGhoKGBUAAAAAAJSBSqWSYukMvAfEnnDnjLO3729nJ3QUAAAAIIBtTZpURYYdAAAAAEBvpaamjh49um7dunPnzhU6FgCdw2MlAAAAAAAAAAAA0IkrV660aNFi27ZtK1asSEpKEjocAJ1Dwh0AAAAAAAAAAAC0jDG2bNmyTp06RUZGuri4XLlyxdbWVuigAHROP0rKbE5ICP73CZidgcGi+vWFjQcAQFsYYzt37pTL5aGhoT/99BNuPgAKmxgZafBvDfdu1taeVasKGw8A6JHkZIqKolq1qEqVtwefPaPERPrgA4qMJKmU6tX7z7dERZFKRfjAAYWpVKro6Ggiqlu3rtCxAPAhKyvL2NhY6ChAjz1//nz48OFHjhyRSCTe3t6LFi0yRKFIeD/oR8K9oYmJs6kp9//N5foRMwDAO4WFhY0bN+7cuXMWFhapqal//PGHj4/PhAkTcBcCUFBbCwtzmYz7/w1MTIQNBgD0y7FjNGgQtWpFly7Rv79IaNUqWruWEhNp2DCqVIkOH/7Pt4weTampdO4c/8GCuKSkpDx69Oj27dt37tx59OjRo0eP7t27l56e3qdPH2tr6/Xr18vxyRQqqMzMzBMnTgQFBR06dKh///49evTw8PAQOijQPydOnBg6dGhcXJydnd2mTZt69+4tdEQA/NGPWwTXSpXQNBUAKpK4uLhZs2Zt2LBBqVRWrlzZy8vr2rVrR44cmTJlyqZNm5YsWYLbEYB8X1SpgqapAFAeN2/SmjU0ZozQcYBYJSYmPnz48MGDBw8ePHj4r/T09MKvtLe3/+eff16/fm1nZ7do0SL+QwXQnezs7GPHju3cufPAgQPc+JdKpevXr9+4cWNUVNRPP/0kdICgN3Jzc+fPnz937lyVStWtW7ctW7bUqFFD6KAAeKUfCXcAgAojNzd31apVM2fOfP36tYGBwZgxY+bOnVupUiUiOnHixLhx4+7cuePu7u7m5rZs2TInJyeh4wUAANB7o0bRtGnUvz9Vry50KCC0rKysyMjI/EXrjx49Cg8Pj4+PL/xKa2trh385OTk5Ozs3atTIwsLi4sWLH3/88eLFi1u1avXFF1/w/yMAaJdKpbpw4UJQUNDOnTtfvHjBHXRxcfH09Bw4cGBgYODEiRN9fHwePHiwevVqAwMDYaMF8bt///5XX3117do1uVw+Y8aMmTNnSqXoHwnvHSTcAQD4c+DAgQkTJkRGRhKRm5vb8uXLmzRpkn/Wzc3t+vXrq1at8vX1PXHixIcffvj999/PmTPH0tJSuJABAAD0no8PBQfTxIm0c6fQoQCPcnJyYmJi1MrCREVFMcbUXmllZVW/fn2HApo2bVqtWrUi37Z9+/aLFy/29vb+9ttvnZ2dmzZtqvsfBUAnQkNDt2zZEhQUFBcXxx1xcnLy8PAYMmRIgwYNuCPjxo2rVauWp6fnhg0boqOjg4KC8NkENNiyZcuYMWPS0tLq1q27Y8eO9u3bCx0RgDAkhe82RCVNqfz4+vWptWvrUUkZxlh8fPzQoUN5vu6oUaO6d++OyY9/r169+vXXX69cucLnRR0dHefNm4e/bj1y7969iRMnHjlyhIgaN268dOnSXr16FffipKSkOXPmrFy5UqlU2trazpgxY+zYsbL80rNQ4bx+/frSpUv870xfs2ZNnTp1xFyC9lhy8rSoqEPNmqGkjJhhHoQyKMOwkUrlKtWRUl2lQwdydKRBgygp6U0x96NH6X//o2nT3tRw79iRYmOpf///fNfevVSjBmq465nc3NynT59yKfX89Prjx49VKpXaKw0NDWvWrMmtWM9Pr9erV0/yb3fuEvrmm282bdrUsGHDK1euWFlZae0nAdFIVSp737qldnBCzZr9KlcWJB4tun37dlBQ0Pbt2yMiIrgjdevW/eKLL4YPH+7o6Fjkt1y+fLlPnz7Pnz9v1qzZwYMHa9euzWO8oB9ev349evTo7du3E5GHh8e6devwuxHeZ2JPuOeoVCuePetuY9PczEzoWEpqx44d3t7eSUlJPF+Xu1kMCQnh+brvuaSkJEdHR2Nj45iYGD6vW7Vq1czMzFu3buFeR/xSUlJmzZq1atWqvLw8a2trX1/fMWPGlCTFGRYWNn78+LNnzxJRixYtli1b1qlTJ93HCwL48ssvr1y5EhUVxfN1q1atOm3atB9++IHn65bcvYyMQ0lJXjVqWOCBk1hhHoQyKNuwkUoNVKqcUl2oTx/68ss3CXcbG+rWjZ48ofBwmjv3bcI9IoLUlt9dvEgNGiDhrh+USuW6deuWLFny+PFjpVKpdtbQ0NDBwaFx48YNC6hZs6ZWLp2VldWxY8fQ0FB3d/e//voLBRMqntdKZdfr1wfa2bWrVCn/YANT0xp6uwjg8ePHf/755+bNm+/du8cdqVmzZv/+/T08PFxdXd/5zOnRo0e9e/e+d+9ejRo1Dhw40LJlS92HDHrj6tWrgwYNioiIsLCwWLlypaenp9ARAQhM7An3fH8lJibl5X1WubKNiBfiEVFmZqajo2N0dPSkSZP+97//8XbdtLS0ESNGJCcn79u377PPPuPtujBmzJhVq1a1adNm3rx5fF530aJFISEhX3755U5sjRaxvLy8jRs3Tp8+/cWLF3K5/Jtvvpk3b55dKffrHDhwwNvb+/Hjx0Tk7u6+YsWKunXr6iJaLVIoFDKZrFmzZmJeOi0e58+f79Spk5GR0R9//FG1alXernvhwoVZs2ZZW1s/ePCgsrjXamWoVLuePzeTSr+oUkXoWEAd5kEog7ING4lEwphbqS5UpQrdufM24f7gATVvTr6+lJb2NuFeqRIdPvyf7/rkE0pNRcJdP4wYMeLcuXP3798nourVqxdctO7k5OTo6KjTDYJPnjxp1apVYmLirFmzfH19dXchEASXcJ9ap05/cd8mvVNMTMyePXuCgoLOnz/PHbGxsendu/fQoUO7detWqr0dKSkp/fr1O336tLm5+a5du3r37q2bkEFdXl7egQMHOnXqJMKbdsbY8uXLf/rpp5ycnFatWu3YsaNhw4ZCBwUgAkxPfHn7totCcT8jQ+hA3mHGjBlE1LJlS6VSyfOlV6xYQUQODg5ZWVk8X/q9dfv2bblcLpfLb968yfOlnz59amZmRkSnT5/m+dJQQidPnmzWrBn3m7Zr1643btwo81tlZGT4+fmZm5sTkYmJiY+PT2pqqhZD1QqlUqlQKHx9fbkbrFatWjk6OiYnJwsdl9gplcpWrVoR0ezZs/m/OvdgeMyYMfxfulQScnJcFIqe5fhHBDqCeRDKgOdhs2MHI2JJSW/+8+efmYUF++YbZmvLGGOuruyTT9S/pWdP5urKQ2hQXi9fvjQzM5NIJMeOHcvOzhYkhhMnTshkMqlUevDgQUEC0F95KlWGUqn2pRI6qoJe5eW5KBR7XrwQOpAySkpKCggIcHNzy0+pW1paenp6BgcH5+TklPlts7KyhgwZQkQymWzlypVaDBiKExgY2LhxY4lEIpVKXV1d/f39Y2JihA7qjfj4+J49exKRRCLx9vYW6lcxgAgh4a5N0dHRpqamEonkzJkz/F89Ly+Py+75+fnxf/X3U48ePYjI29tbkKtz62hatGjB/9Md0Ozhw4ceHh7cfW2DBg0CAwNL+I2a0+gxMTGenp7cHbO9vX1AQIBKJfynkry8vFOnTo0ZM6ZGjRr5j3Lt7e2rV69ORF9++aXQAYrdunXriKhmzZrp6en8X/3OnTsGBgYymYz/bGmpIOEuWpgHoQx4HjZqCff0dFanDjM0RMK9Ili5ciW3rEHYMObPn09EVlZWDx8+FDYS/fJXYqKLQqH2lVCORLDWcQn3mVFR+1+84L5C9GEpycuXLwMCAtzd3Q0MDLg7c2NjY3d394CAAG3dbapUqvwtHd7e3piFdSoyMrJSpUpE1Lx5cyMjI+6Pncu8L1269PHjxwLGdvz4ca65dJUqVQ4dOiRgJAAihIS7Ng0cOJCIBg0aJFQAJ0+eJCILC4vY2FihYnh/7N27l4isra0TExMFCSAjI6NOnTpEtH79ekECgMLS0tJ8fX2NjY2JyMzMzNfXNzMzs4TfGx8fb2tr6+3t/fLlSw0vu3z5crt27bg7rdatW1+4cEEbgZdaXl7e2bNnvb29uXssTp06dby9vc+ePatSqSIiIrhbw40bNwoSoV54/fo19we4a9cuoWIYO3asGLIVmiHhLk6YB6EM+B82agl3xti+fYwICfeKoEWLFkS0c+dO3q54+vTpwuktlUo1YMAAImrWrFlaWhpvweg7LuF++dWr2+np+V+5IlhNko9LuHe5fr33zZvc14h794QOqliZmZnBwcGenp6mpqbcnblMJnNzcwsICHj9+nWZ3zY7O/vZs2dFntq4cSOX0//8888zxJ2o0V+5ubnt27fn/pAZY+np6dzfMrf1mePk5OTr63v37l0+A8vKyvLx8eF6V7i5uSEBBVAYEu5ac+7cOYlEYmJiIuwzxr59+xLR119/LWAM74Ps7Gyubsbvv/8uYBg7duzgnidrTtECD1QqVUBAAJc8lUgknp6ecXFxpXqHDRs2cLcs1apV27hxo4alIuW/Vplxt/JeXl5VCpTSrlevXn6eveCL//zzT+7BA8/3f3pk0qRJRNShQwcBNyskJydztSD37dsnVAzvhIS7CGEehDIQZNicOsXc3JhaumnsWNa/P2OMTZzIpk9X/5Zp09jEiTyFB2V25coVIrK1teWtnOZff/0ll8tbtmxZOLeYmprq5OSEvX2lwiXck3NzhQ6kWHpRUiYvLy8kJMTT09PCwqLg2md/f//nz5+X881VKtWwYcOqV6+uUCiKfMGJEycsLS2JqF27dgkJCeW8HBQ2ZcoUIqpVq1ZSwefGjGVkZHCZ90oFOvpymffi/rK06N69e9zzTrlc7uvriy0OAEVCwl073lmEV6lUZmpVcWXXIiMjjYyMpFLp5cuXdfkTv+9++eUXbkrLLeYeMSsrS7t/48VF8tFHHxHRjz/+qLOfFd7typUr3NKDcq46Dw0N7dSpE/c+LVu21FyciltNz+0rLO1q+tIq8y0d156+WbNmuotNfz18+JD7dX316tUiX5Cbm6vdXyPF3Q3ntwAR7V8TEu4i9M55kDeYB/WIeIYNY2zPHrZkidBBQDmMHDmSiCZPnszbFVNSUho0aEBEQ4YMKXz2/v37XOZxCQZWySDhXh5KpZLbbGpnZ1fw5tzPz0+La43T0tI6d+5MRObm5sUVDAkPD+d2mzk4ONwT8Q4AffTPP//IZDK5XH7u3LniXpNZmuVQWhEQEMCtr69Xr97Fixe1/v4AFQYS7trBFeGtVatWcWXRDh8+TFo1YMCA4oLx8fEhovbt24uhvnOFFB8fz6Udjx07VtxruBtuLSruo2lYWJhUKjU0NLx//77OfmIoli7qqgcHB9etW5f7e3d3d4+KitLw4jLXiy+J8m9aTE1Nbdy4MRFNmDBBi4FVDL179yaikSNHFveCUaNGaffXyNatW4u8kPhbgCDhLjYlmQd5g3lQX4hq2Ny5w6RSZmjIHjwQOhQok9TUVG497507d/i87s2bN7l2zUX2ity/f79EIpHJZMePH+czKj3FJdx/j4lZHxvLfV1+9UrooP5DtAn3oKCggkUdP/jggwULFmj+yFBm2dnZ3AIamUxW3Oak2NhYFxcXIrKxsUEnc215/vw51yJr7ty5JXn9Owt+lj+kV69eDRo0iHtnT09Pze3HAAAJdy3IL8L7559/FveaY8eOGWmVhkrxr1+/5toVbt++XTc/8ftu2LBhRNSvXz8Nr6latap2/8bz8vKKu9a3335LRJ9++qkOflYoVkZGhp+fH/dhz8TExMfHpzzlEdWkp6f7+flxaW5TU1MfHx/NNzQnT57kEqZE1LVr13I2wExOTuZaLRkVaMvj4uLi6+v7oPSZCYVCYWhoKJFIgoODyxNVBRMSEkJEFhYWGsoBjR07Vru/Rnbs2FHctUTeAgQJd7HRMA/evn1bp5e+e/du4b0amAf1goDDpkjffMOIWJ8+/F8ZtGDNmjVE1LlzZ/4vvXPnTiIyMDAocifizz//TES2trY6yn5WJFzC3fPOneF373Jfu8RUkyQpN1ecCffTp0//73//y8+lhoWF6fqKXItUboFRcS1S09LSPv30UyIyMjJCFqL8VCpVnz59iOijjz7SkAcoUv7uB3t7+/zMe82aNb28vIKDg8u8w+zy5cv169fnPi8Ut4gHAApCwl0LxFCEV82GDRuIyN7eHn17tC40NJRbSVeGzKOOJCQkcAvqjxw5InQs7wu1ReiPHj3SxVWePn1a8uXzubm5a9eu5XaVyuVyLy+v0tZtTExM5PLsXPsjbiULVwIyJiamPD/Ir7/+SkR2dnbF9Vx63+Tm5jZt2pSIFi1aJHQsb4m5BQgS7qKiYR7kVneOGzdOR5eeNWuWTCYr3IoZ86D4CThsipOQwCwtGRHDqNFH3HLabdu2qR1funTplClTnj59qtOrT5w4kYiqVatW+AZJqVR+8sknRNSiRQu0kdRMzCVlNsbFdb1+/fyrVx3Cwv4SWcJ99uzZRDR06FCer7tp0yZDQ0Mi6t+/f5Hb+vPy8saOHUtEEonE19eX5/AqmN9++42IrK2tnzx5UuY3USqVCoXC19eX657CsbW19fT0DA4Ozs7OLuH7qFQqf39/7hNiq1atHj58WOaQAN4rSLiX1zuL8ApCqVS2adOGiGbOnCl0LBWKSqXq2LEjEU2ZMkXoWP5j4cKFRNSkSZPiivuDtoSFhXH1grmPUjzsmrx8+XK7du24K7Zp00Zzpbzk5GRvb2+5XM7dovn7+79zFcPTp0/Xrl3r7u7OfVfBPLu2erGqVCqufMrHH39c2jUaFRJ3D12/fn3e+ryVhJhbgCDhLh4a5sH8fpgrVqzQ0dW3b99OxbRIxTwoZsIOGw0WLmRErEkThlGjX65fv86ljdRaj+Tm5nIrOnV9e5aXl9e9e3ciat++feGkVXJysoODgyApUf0i2oR7SHJya4WitUJxMiVF6FiK8NlnnxGRhm2LunPy5EkrKysiatu2bXEtUv39/aVSKRF98803mJHL5ubNm8bGxkS0f//+Il+gUCiKK2VcnPDwcF9fX0dHx/zMu7W1NZd51/x5JD4+nttRIZFIvL29S56mBwAk3MvrnUV4hXLhwgWJRGJiYoL9jFq0detWIqpateorkVUYzM7ObtSoEREtW7ZM6FgqrMTERG9vb5lMxn3G8/f35y13rFQqAwICqlatylV38fT01JwKv3v3Lre6iogcHR0PHz5c+DWPHz/29/d3dXXlVtATkbGxsbu7+9q1a0u7NL6gBw8e9OvXLzk5We14QkICV3pLtFXCeZOUlGRra0tEBw4cEDoWdaJtAYKEu3homAf9/PyIyMnJSXcfsFUqFddZ+qefflI7hXlQzIQdNhpkZ7NGjRgRw6jRL9999x0V1R5m//79RNS4cWMeZrHExERus+PYsWMLn71+/bqpqSkRrVu3TteR6K/iEu5/JSY+Ey6pdy01tX1YmItCsS0+XqgYNOM6lArVnjS/RWq9evWKa+m0d+9ebvy7ubkVfkAOmqWlpXFp8SJ/tzDGcnJybGxsTExM3N3dAwICSpuXCA8P9/Pzc3V1zc+8m5qacm9VuITpsWPHuE+gVapUKfITJQBogIR7uZSkCK+AuI4WAwcOFDqQCiI9Pb127dpEtGnTJqFjKcJff/3FPal+IbJtjxVATk6Ov78/V6/AwMDA29tbkHvHtLQ0X19frq66mZmZr6+v5vUIwcHBXKE9ru5NREQEYywyMlItz17m27UicQu+Pv/888Knjh49KpFI5HL5hQsXyn8h/cWlCdzc3IQOpAiibQGChLtIaJgH4+PjuV+SR48e1WkMGlqkYh4UJzEMGw3++osRMWtrhlGjL9LS0rjuu+Hh4WqnuIVQS5Ys4SeSsLAwExMTIipc54oxtm3bNu6+8dy5c/zEo3eKTLifffmytULR/caN20JURo3JynK7ft1FoZj3+DH/Vy+J5ORkiURiZmZWZCF1fsTFxbVq1YqbcP/5558iX3P58mUuUdu0adPyFEV5D33zzTdE5OzsXFxNqidPnrRr167gkqlPP/108+bNhRc8afbo0SMNnwozMzO9vb25U927dxdnkycAkUPCvezyi/AuXrxY6FiKFhMTY2ZmRkTFTYRQKtOnTyeili1bCnh/o1nPnj2JaPTo0UIHUqFkZ2c7OTnlp60Lp3h49uDBAw8PDy6eBg0aBAYGanhxVlbWggULuM6uhoaGXMqDY2lpOXjw4L1792q3wGh0dLS1tTURrV27tvBZruOFg4OD2PaI8ObmTdalyzRzc3NBOgSWxMaNG0l8LUCQcBcJDfPg119/TUR9+/blIQwN18I8KEIiGTYa/O9/jIiNGSNsFFBSf/zxBxF17NhR7fjTp09lMpmhoWF5NuqVVkBAAJfwUigUhc9y9ayrV6+OXFWRTiYn971169V/E+7pSuUPDx+6KBTtw8KOlzKBWE4vc3P7hYe7KBQ/PHyYJ7KtfvlOnDhBRB06dBA2jLS0NK6lp6GhYXH9Mx89etSkSRPun0CR/0CgsKCgIO5Xyo133fQ+f/6ca75V/qKgjx49WrRoUfv27Qsm8WvUqEFERkZGv/32m9h2vgLoCyTcy06cRXjVzJo1i4g+/PBD1E0up+joaFNTU4lEcvbsWaFjKdadO3cMDAxkMtk7Z2gouVWrVjk6OtauXfvgwYNCx/LWiRMnuAd+RNStW7ebN29qeHFsbKyXl5epqamJiUkJq/WVh4Y7xZycnLZt277PO2+6dmVE7KefUoQOpFjibAGChLsYaJgH8/th8vNIUsOyaMyDYiOeYaPBnTvMwIDJZAyjRi9wk1RAQIDacV9fXyL66quveI5n5MiRRFSnTp3Ce2tycnK4xj+urq6iKGadmsoiI8W/myNPpfrlyRMXhaKVQrH22TN+LpqtVH5z756LQjH4zp10sS6uYowtWrRIQ7ERPuXl5Xl7e5PGFqnJyckff/wxEZmbm4uwlKLYaF63VJzExEQu8861tCUiqVTKZd4Ld3XWLD+JL5PJateuXaNGjbCwsFL+EADwFhLuZSTmIrwFZWRkcOUFUUCwnLg1xYMHDxY6kHf44YcfiKhr165CB1JxcKWZCn+uE1xubu7atWsrV65MRHK53MvLS/OSLq6WYgov3Z807IWMiIjgdoJv3ryZh0hEZfduRsRsbFhiotChaCTCFiBIuItBcfNgfl11Hx8f3oLhCn8X2SIV86CoiGrYaPDDD4yIYdSI340bN4jIyspKrWGgUqnk6kqfOnWK55BycnK4asjdunUrvMIpPj6e6+M6ceJEngP7j/Pnmasrk0oZESNijRqxLVuEjKcEdiQktFYoXBSK+Y8f63q9uYqx6Y8euSgUn9y4kSDunpDcB5MNGzaoHZ8zZ87q1asL1+DWNX9/f67B1fDhw4t8qpSdne3p6cmtv/799995Dk+P5ObmdujQgYj69+9ftndITk4OCAjw8PDgihxwnJycfH19Hzx4UKq3mjZtGhFNmjSpbJEAAAcJ9zIScxFeNbt27SKiKlWq8JNoq5DOnTvHpZ/EX4EuOTmZy8Du3btX6FgqCO6+dtu2bUIHUrSkpCRvb29uL6GNjY2/v39uod5THO7ei58bcc3dfjZv3kxEZmZmQrV7EkRWFmvQgBGxVauEDqUExNYCBAl3wWmYB7dv305EVatW5bO5RX6L1BUrVqidwjwoHmIbNhokJ7PKlRkRw6gRudGjRxORt7e32vEDBw5wO48FKX0QGxvLdUD5+eefC5+9ePEit/JUsKUGZ84wIyPWtSs7fJg9ecLCwtiIEYyI8VXsvsxOJCdz/UvHPniQrsvt2stjYlwUik7Xrokn21AcrkiL2rrj7OxsIyMjqVTKf8KdMbZv3z5uWU+3bt2K/JWuUql8fX25ciXe3t6irc4qrKlTpxJRzZo1k5KSyvlW6enpwcHBnp6eXFnRgpn3O3fulOQdFixYIJ4n4gD6S28S7hOOHh184MA9cfQKDw8Pl8vlcrn81q1bQsdSIp07d8YjyjJTKpUuLi5ENGfOHKFjKZHff/+dK5OdmZkpdCwVgcgT7pwbN2506dKFu52aP39+ka/hM+HOGLt586axsTER7d+/v/DZIUOGcCV9s8W9jEiL5s9nRMzZmRXzQERcxNYCJOH168EHDow6dEjoQN5TGubBjIwMblVpkT0DdWr//v1UTItUzINiIM5ho8HvvzMi5uDAMGpEKyMjg6u3cP36dbVTXDnphQsXChIYY+zcuXMGBgYSiaTI5jorV64kIhMTk9DQUP5jY02bsg8/ZGqrj7/+mhkZMXF8uNbgRloa18X0y9u3dbT2fP+LFy4KRdvQ0Iui7zCUnp7ONSpQqwwZFhZGRI6OjkIFduXKFa5FqrOz8+Ni+s1u2rSJe/LUv39/tR0q8M8//8hkMqlU+vfff2vxbTMyMrjMO1eILz/z7uPjo7lMLhLuAFqhNwn35s2bF3l3JYju3bsT0bhx44QOpKSuXbvGzc3v1XpSbVmzZg0R1apVS1/uDPLy8rh/L7/88ovQsVQEepFw5+zZs6d169bFdajnOeHO/m10YW1tXXhtY2pqKrc69T15EBgfzypVYkTs+HGhQymx2bNni6cFSExMDBHVqFFD6EDeUxrmwZkzZxJRixYtBFmw9r///a/InTSYB8VAtMOmOHl5rFkzRsQWLBA6FCgG19a7cLvI2NhYuVxuaGiYkJAgSGCcpUuXcrWqw8PDC5/lqu3VrVs3kee6crdvMyK2erX68Rs3GBErTalooTzNyuJ6mX5y48Z9bX8cu/DqVZvQUBeFYjePvXbL7MKFC9wvT7XjGzZsEKSBQUFRUVFOTk5EVL169atXrxb5mpMnT1pZWRFR27Zthf3XKirJycm1a9cmotmzZ+voEpmZmcHBwcOGDbOxscnPvDdq1Ojnn38u8ikgEu4AWoGEe6nt3r2bK93A991S+YwYMYKI3N3dhQ5Ez7x69apatWpEVORyFdE6efIkd8f/jK9GQxWYHiXcNeM/4a5SqbgVZx999FHhpO3Vq1cNDQ0lEonIO2FoxdChjIiVtSSjMETVAgQJdwFpmAfz+2GeOXNGkNhu377NtUgt3Dga86CwxDxsNAgJYUTM3l4ZGyv2rpLvp/bt2xPRpk2b1I7PmTNHJGXQhg0bxqWxChfWyMzMbNWqFRF1796d1yfZQUGMiJ08qX48K4tJpUxPFpC9zM0dce8eV/XlvPbqUEVmZHS+ds1FoVipJzMFt1Xim2++UTs+duxYIvr1118FiSpfSkoKt+PWzMwsODi4yNeEh4dzO5wcHBzu3r3Lc4QipFKp+vbtS0SdOnXi4TdDXl7e2bNnvb29uSpYRNSmTZvCL0PCHUArkHAvnaysrAYNGhDRKr2owltAQkICt5Po8OHDQseiTyZMmEBErq6uglSELI9+/foR0bBhw4QORO8Vl3D/4IMPHBwcBCmVWDb8J9wZY8+fP69RowYRzZ07t/BZru2hnZ1dbGwsn1HxTKFgUikzNGSl7FckPPG0AEHCXUAa5sGBAwcS0aBBgwQJjMNlGYpskYp5UEAiHzYa/PDDbRubRsOHDxc6EFB38+ZNIrK0tExLSyt4XKlUco+HQ0JChIotX0ZGRsuWLYmoT58+hQf/kydP7OzsiGjmzJm6iiAri4WHs7172cKFbMQItmYN27yZEbEiP0RXqsRGjNBVJNqWrVJNffTIRaFoExq6Rxur0RPS0z+5edNFoZj66JG+fMzjltAVbl7Cte09ceKEIFEVlJ2dPXToUCKSyWTLly8v8jWxsbFcwbGRI0fyHJ4ILVu2jNsQXFwpHh3Jy8v7+++/x44dW+TCGiTcAbQCCffSmTdvHlebrLi2hGK2aNEirrhbkQ3EobCHDx9y/WcUCoXQsZRaZGSksbGxRCK5fPmy0LHot+IS7lwXmleir/aYT5CEO/u3KKFcLj937pzaKaVSyVXo6tGjh6gKC2iRSsVcXRkRmzpV6FDKRCQtQJBwF4qGefD8+fNcP0yePyKqSU5OtrW1LbJdBOZBoYh/2GiAYSNaP/zwAxGNGTNG7fjhw4eJqF69eiK5kYiKiuJ+KRXZU+fEiRNyuVwikezZs6e8V8rNZZGRLCSErV3LfHyYuztzcGAyGSN6+9W3L9u/nxGxI0fUvz01lRGxH38sbxg8UjG29tkzF4XCRaFYFB1dnr/v169ft2jZ8qvt20fcu5etP8uquMc5anfUSqWS+1RSuKOJIFQqlZ+fn+YWqWlpaZUqVbKysoqJieE/QvG4deuWiYkJEe3bt0/oWP4DCXcArUDCvRTi4+MrVapERMf1qApvAdnZ2Y0bNyYif39/oWPRD7169SIiLy8voQMpoylTphBRu3bt9G55vqgg4V5+3FCsVatWUlKS2qmEhASu7IDg22B1ZMsWRsSqVmX6M1L+g2sBYmBgIGwLECTchVLcPKhUKrnaCLNmzRIksIKWL1/ObU5XayLHMA8KRC+GjQYYNiKU3y41LCxM7RS3l0VUDRuOHz/O9T8scmMxt73PwsLizp07JXxDpVIZFRUVEhISGRDAxo9nvXqxhg2ZgcF/cuvcl4EBa9SI9e7NJkxgq1axCxfYkyeMiC1apP6m588zIrZzZzl/WP7tfv68TWjogKtXh48cWfjXfknk5uZyv6YaN26crD/3Zzk5OcbGxlKpVO1m/t69e0RUp04dgeIqWkBAgKGhoUwmu3DhQuGziYmJRFSpUiWRPCcTRHp6epMmTYho9OjRQseiDgl3AK1Awr0UuO1R/fWrCu9/HThwgNuyJJIH4GJ2/Phx7j4gLi5O6FjKKDU1lavmsXXrVqFj0WNIuJdfbm4uV3f1888/L3z2yJEjEonEwMDg4sWL/MemU+nprHZtRsQ2bxY6lHIQQwsQJNwFoWEeXLduHRHVrFlTrbaDIPLy8po1a0ZEfn5+aqcwD/JPX4aNBqmpqVxx2wrQvqXCCAgI4Botqh2Pi4szMDCQy+Vi69bANR63traOiIhQO6VSqbjCSo6OjkXeRiYnJysUisDAQF9fXw8PDxcXF+4WjoiCPvroP+l1a2vm6sq8vJifHwsMZAoFy8wsIpqPP2Z167KCpc+VStarF7O1ZeL+x1icc0lJDs2bE1Hnzp0LL+Z4pzFjxhBR5cqVH+hVsb9r165xDwnUju/cuZOIPvvsM0Gi0uDUqVNr1qwp8hQ3U3Tq1InnkESFu8F2dnbOyMgQOhZ1SLgDaAUS7iWlUCikUqmhoaF+TcyF9ezZk4i+//57oQMRtdzcXGdnZyJasmSJ0LGUy6ZNm4jI3t5ej0qNiw0S7loRGRnJtZH4448/Cp/lqv3Wr19fj/48S2LaNEbEXFyYXi/fEUMLECTc+adhHnz9+jW3MWXXrl2CxFYY1yLVwsKicEMIzIN80q9ho8HGjRu5YSPyZwPvj44dOxLR+vXr1Y7Pnz+/uMf5wlKpVP379yei5s2bp6enq51NTU3l/qW4u7tfuHAhICBg2rRpAwcObNGihbm5ORXF3t7+448/3jplCvv1V7ZvH7t9m5V8cfedO8zWljVpwgIC2JUrbP9+1qMHk8tZ+cvaCOfmzZu1atUiogYNGty/f7/k37hw4UIiMjY2Pn/+vO7C0wXu99KXX36pdvynn34iotmzZwsSVdlw+zy8vb2FDkQwu3fv5sbhjRs3hI6lCEi4A2gFEu4lolKpuFYkU/W0Cm8Bd+7cMTAwkMlkghfEF7OlS5dyN3Bl26goHiqVqk2bNkQ0ffp0oWPRV0i4a0tgYCARmZqaFt5DnZOTww3UgQMHChKbLjx5wkxNmUTCzp4VOpRyE7wFCBLu/NMwD06aNImIOnToIKqCG3379iWir7/+Wu045kE+6d2wKY5SqeSGzYwZM4SOBdjdu3clEom5ufnr168LHlepVA0aNCCio0ePChWbBi9fvmzUqBERLVu2rPDZe/fumZmZcdVK1VhbW7u4uHh4ePj4+AQEBCgUCrUfvCwiI9mQIczGhhExExPWo0cFuDt59uxZixYtiMjW1vZsyX6coKAgqVQqkUh27Nih6/C0jmtjsHDhQrXjbm5uRBQcHCxIVGXzxRdfENGmTZuEDkQY0dHRNjY2RLR69WqhYykaEu4AWoGEe4ls2bKFiKpWrapHyTUNxo0bR0RdunQROhCRSkpK4qbAQ4cOCR2LFly8eFEikRgbG0dFRQkdi15Cwl2Lhg8fTkRNmzYtvHfy4cOH3B/pli1bBIlN67y9GREbPFjoOLRB8BYgSLjzTMM8GBERwfXDvHr1qiCxFScyMpILrHCvS8yD/NDHYaPBhQsXMGxEYvz48UT03XffqR0/duwYEdWuXTsvL0+QwN4pPDx8wYIFxT1kcnJykslkjRs3/uqrr2bOnLlt27bLly8nJyfrNqbc3P/8p0rFAgKYWP8A3yk1NbV3795EZGRktPNd9eivXLliampKRIsXL+YnPO3i9nmEhISoHa9cuTIRPX36VJCoyoZ7FiXOxd26lpubyy3l7Nevn9CxFAsJdwCtQML93dLT02vXrk1EAQEB/F9dF5KTk7mJeY8+byTUnVGjRhGRm5ub0IFozeDBg4nIw8ND6ED0EhLuWpSWlubo6FjcHlJuq6y5ubmw/Tm1JSeH+fuzmBih49ASYVuAIOHOMw3zoLu7OxGNGDGC/6jeidtW3759+8LpLcyDPNDTYaMBho0YZGVlcR9bQkND1U4NGDCAiObOnStIYOV048YNIrKysipccIZX337LiNhPPwkZQ/nk5eWNHj2aiCQSia+vb3Eve/ToUZUqVYho5MiRPEanNSqVitsPoXYbFh0dTUSVK1cWKrAySE1NlUqlRkZGQu2bFNb06dOJqGbNmomJiULHUiwk3AG0Ql5kkbjibIqPP5yUVPBIJbl8Q+PGpXoTvfPLL79ER0e7uLgMGTJE6Fi0w9raevbs2WPGjJk8eXKvXr2MjY2FjuitX6Kjr6WmFjziaGo6t1493gK4cePG+vXr5XK5v78/bxfVtYULF+7fvz8oKOiff/75+OOPhQ4H3l9mZmaBgYFt2rRZsWJF165duRIQ+b7++uuTJ09u37598ODBFy5cMDQ0FCrO0vrqK7p6lYKCqEWLtwfbtiVPT7K3Fy4srXJ3d+/Zs+fRo0dnzpy5atUqocPRrfEREc+yswse6WRl5c3X36WY58ETJ04cPHjQwsJizpw5vMVTctOnT9+6devFixd37tzJPSvNJ9g8GB9Pv/1GJ07Qy5dkYUEffUSTJlGdOkREz57RgAE0bx516/b29Skp1KsX/fwz9enDX5DaoL/DRoP8YXP69OnOnTtfvHhRqVSW/NubyeWWeXmluF6NGuTgQEQUH09Ll9KJE/Tqlfqwef/s3r07MTGxVatWLVu2LHg8MTHxwIEDcrn866+/Fiq28uB6CHt6enJrrgXzzTe0dSstWkQuLjRwoJCRlJVMJlu5cmWjRo0mTpw4e/bsZ8+erV69Wi7/T5YjOTn5k08+ef78+SeffKKn9zAPHz58/fp1rVq1uOdP+cLCwohI7V+HyF2/fl2lUjVt2tTAwIDXC2dm0urVtH8/PXtGhobUsiX98AO1a0dE9OoV3bpVqjc7L5Ewxkr++qZNm1pZWZ05c2bBggVSqXTLli22traluiIA6J9SpecXRUd3vnYt6Pnz/K9gvp7LCbXC/cmTJ6amphKJpISF4fRFXl4e90c6f/58oWP5jx8ePOh361bBMfZ3SgqfAXCfwydMmMDnRXnAfcr94IMPRLvrVrSwwl3rlixZQkTW1tZPnjxRO5WamtqwYUMi+vHHHwWJrWw++ogRsdat/7Mn29qaVbDavwK2AOF5hXv/8PCv794tOBNdLn/93BIT7TyYm5vbtGlTIlq0aBGf8ZTKhg0bqJhelwLMg/fusWrVWK1a7Oef2bZtzM+PNWjArKwYV/QmIoIRMbUOogkJjIitW8dThNqj18NGg9mzZxPRhx9+mJeXZ2JiUqoPWXFt2jCiUnyNGcPYu4bN+6dz585EtHbtWrXjXNPFvn37ChFUeWVkZFhbWxPRtWvXhI6FMX9/RsTMzVl4uNChlMvu3bu5f6Q9evQoeH+enZ3dpUsXImrRooUYboPLZteuXUUOeF9fX9K3lcjLly8n/rcapKWxNm2YuTkbM4atX89WrmSdOjGplG3YwBhjJ0+W7tc1kYFUWqoZ4ejRo8nJyVzhBA1bMUQCK9wBtKJ0K9yJyFgqHWBnV9rv0l8TJ07MyMjw9PTkiqZVGDKZzN/fv2vXrgsWLBg+fHiNGjWEjuityoaGQo0xbu2bjY0Nt9WrIvnxxx83btzILUDjNn0DCGXChAn//PPPgQMHhg4devLkSZlMln/K3Nx8+/btHTt2XLx4cefOnbm6nHqhbVu6fp3WrqXRo4UORWeaNGkyevToZcuWTZgw4dSpU0KHo1t1jY0FvNsR5zy4cuXK8PDw+vXrc33bxGn48OFr1669cuXKr7/+yqVK8wkwD379NZmY0JUrlL8g8fvvydWVPD3pzh0+AuCLvg8bDX788cdNmzZdv359w4YNHTp0yMrKKvn35tWrR6Vav1m/PtG7hk2BGfN9cP/+/TNnzpibm3/55ZcFj7N/n66NHDlSoNDKZdeuXSkpKe3bt//www+FjoVo3Di6fp02b6Z+/ejqVbK0FDqgMvr888/t7e379Olz/PjxTp06HTx4sFatWoyxb7/99u+//65Ro0ZwcLC5ubnQYZbRtWvXiKhFwa2UGo+LmTAx+/rSjRt0/jy5uLw58t13NGQIjRlDbm5kZUWurqV6P1eZLLc0e56sra2//vrr6Ojojh07zpgxo1TX4l+lSj07dbKysdGncQUgRqVKzy+Kjv6fQK0tBFnh/vfffxORqalp4WWYFUP//v2JaOjQoUIH8tYPDx6MvH9fkEtnZmbWrVuXiNasWSNIALoWGBhIRHZ2din8LpbUd1jhrgvPnz+vXr06FbPJ5pdffiGiKlWqxMXF8R9bGXz0EfviCzZ5MrOyYvkhV7wV7ky4FiD8r3CfLVybRHHOg4mJidx6zODgYEFiK7lz585JJBITE5PCN2+8zoPh4YyIrV6tfnz3bkbETp6sMCvcK8aw0eDPP//kb9jculX0sAkKejNs3jOTJk2iolbCnjx5kohq1qyppxs327dvT0QbN24UOpB/ZWSwli0ZEfv0U6ZUCh1NuURERHBt3mvUqBEWFjZ16lQisrCwEKQVnBb16NGDiP766y+147Vq1SKiBw8eCBJV2XDPmS5evMjfJZVKZm3NCic9YmKYRMJ46QOxYsUKIrKysnr8+DEPlyunBQsYEcMCd4ByKvUK9xzGLr5+nf+fDU1MzGSy48nJpX2flEOHlKUpa5icnExE+/btUygUpb1W2ahUKm6v4tSpU7m9PxXP4sWLDx8+vHXr1tGjR7dt21bocN5IzcsrOMaamZllqlQXXr0q1ZtI8/KeHzpUqm85ePDg48ePnZ2dv/3221J9o77w8PDo3Lnz6dOnv/rqK67NFG+aNWvWpk0bPq8IImdnZxcQENCzZ09fX9/u3bu3bt264FkfH59Tp06dOHFi+PDhR44ckUgkQsVZKjNm0LZtNHEi7dghdCg6Y21tPWfOnNGjR48dO/b58+e8Fd9MSUkhooyMDG5JY8nZffopK+We3y5WVkT0PDe34EzUysLCgMdxKMJ50MrKav78+WfPnv30009L9Z78c3V19fLyatCgQbVq1dROlXke/NTEpEpmZimCcHKi+/eJiAovX+Uq7SoUb0pyJyRQRMTbs6W/oxbc4sWLK8Cw0WDgwIGrVq06ffr0vHnzFi9erNuLXb1KVNSw4ZZkKhTUtatuAxCTnJycLVu2UFHL2P/44w8iGjFihEwPl/zfvXv34sWLlpaWA8VTM93EhPbupVat6MAB+uUX0uedvvXr1z937txnn312/vx5V1fXzMxMAwOD3bt3f/DBB0KHVi5FrgpPSkp6+vSpubl5fW5/jD7Iycm5c+eOTCZr1qwZf1eNiKCUlCJ+tdrbU7VqpPv80u3bt7m+7mvWrKnzvjbkAHgPlTrh/jovb1yBDwaz69ZtYW4+98mT0r7PnR9+yPxvT7B3MjExUdsdrGs1a9a0tLScMGECnxflU7169dzc3O7evSuqvqkPMzMLjrFNjRunK5WlHWOVZbJjI0aU9tIWFhY+Pj5qbXb0Tlpa2u+//+7t7V24C9P06dOvXr166tSpo0eP8hnSpEmTkHAHNd27d588eXJcXJyTk5PaKalUunHjxkaNGtnZ2THG9CXhXqkS/forDR1Kw4dTjx5CR6MzXl5evr6+BgYG33//PZ/XNTAwePny5YhS/mJ3DQvLUqlK9S2OpqZEdPn16ysF7lKONW9uzePUIMJ5UCaTff/99zz/pZfZmjVrijtVtnkwrk0bunKlFBGMGfOmPEjhXrvckfzE+rhxNG5cKd5ZfGrWrFkxho0GU6dOVSgUfKy/SUkhKsGweT/s3bv3xYsXzZs3V3sqn5SUtG/fPqlUqqftUrlfUIMHD+a2HopFnTq0Ywd98gn5+lLLltSrl9ABlV3lypVPnjzZu3fvf/75RyaTDRgwoIee35bFxMS8ePHC1taWW8+ej+uY+uGHH0pLubZAQOHh4Tk5OU5OTryOf+5Xa5FFdO3tefjVampqWqVKlVq1an3xxRe6vhYAiEepPz1WNjA42rx5wSOv8/L6/LdZdkm4DB6cl5NT8tfv378/OTn5s88+s7GxKe21yiYvL2///v2vX7/et2/f4MGD1c6qVKrNmzc3btzYtZTVvviXm5s7e/Zsb2/vKlWqqJ169erVlStXnj9/HhERIZ7H/i0tLNY1alTwSFRWVmnHmHFurv0335TqW86fP3///v2goCBPT8/CZ69du3b27Flvb+9Svacg/Pz85s+ff/ny5X379qmd2r59e0ZGhoODA9fcjDfi2T8BouLn51dcMv3XX3/NysoKCwtjjPEcVXkMGUKbNtGYMRQeLnQo5XPz5s0zZ8589913hTNoISEhL168MDExGTx4sJGRET/xZGRk7Nq1y9TUVK2M7zvVt7bOK+UDG0u5nIg+tbWdWbduqb5Ri8Q5D1YMZZsH8+zsqGnTUlymQwfiHtikpNB/8yNvPvbnPxFfu5b69Hl7NimpdBcSgYsXL6amplbsYbNjx4709HQ+7gO5gfHOYfN+4Jaxf/fdd2rHJRLJzz//HBsbq49bkDMzM7dt20ZEpX1+zIfu3WnWLJoxg4YMoatXSX8WTRd2//79q1evKpVKItq5c2e9evXmzZunLws4CuOWt7fkNkiV4LiYCVPAnWt5zf0iVZOSQra2ur5+RETEkydPEhISbty4IZ6sCwDoXKkK0LxvNdw3btxIRPb29mlpaWqnVq9eTUQffvih+EsH/vbbb0TUunXrwqcmTpxIRK6uriqViv/AiiRg7dqEhARLS0siOnLkiNqp+Ph4IyMjmUx2Q6DxX3KPHj0yNjaWSCRnz55VO6VQKKRSqaGhoX6V+RMcarjz79ChQxKJxMjIiEu4ix9Xw50THs4MDNhvv+l3DfcuXboQ0bx589SO5+bmOjs7E9HixYv5jAc13PmhYR6sGHidB//+mxGxvXvVj589y4hYYGCFqeGOYaNNp069Y9i8NyIiIiQSiampaQXrPBQQEEBEbdq0ETqQYqhU7PPPGRFr3pwV+vyrL/Ifxnh4eKxfv54rfzdgwICMjAyhQyujWbNmEdFPP/2kdpxbhbBp0yYhgiqjMWPG8H8bydLTmVzOJk9WP56ZyQwN2fjxPITAbfZq2LChXnwWQw13AK3Q79IZujZs2LA1a9ZcuXJl4cKFc+bMKXhq+PDhCxcuvH79+oYNG7y8vISK8J2Sk5Pnzp1LRNw8XVBERMTKlSulUqm/v7/+PvDXoipVqkybNu2nn36aOHFit27dCtYmrlq16nfffbds2bLx48efOnVKwCDf6ccff8zKyvL09OzYsWPB44yx8ePHq1SqSZMmNWzYUKjwAN7p2bNnw4YNY4wtXLiQ7/Uv2uDsTOPH09y5lJ0tdChltXv37r///tvGxqZwIYjff//99u3bDRo0GDt2rCCxgU5pmAcrAL7nwQ4dqGpV2riR+vX7z/ENG8jcnHr0oMREncfAiwo/bMaNG6dSqSZPnrxly5ac0mzP9baysn/5shQX69CBPvmEqlalTZvUh8369W+GTcUVHx//4MGDh/+6dOkSEf3vf/+zsrISOjRt4pbtF65KLxYSCW3aRHfv0s2bNHKkPjalSUtL6927d3R0dMeOHbds2WJsbFynTp0BAwbs3r372bNnf/31l52dndAxllpxq8KFWS1ePlwZHL5jNjWlHj3ozz9p1iwqWMpmyxbKyaH+/SkyktatK9VbTpVKlaUpWjh69OgLFy7cuHFj4sSJ60p5LQDQV6VKz79vK9wZYxcuXJBIJCYmJlGFFrv9+eefRGRnZyfmlRejRo0iIjc3t8KnevfuTUQjR47kPyoNBFzZxxjLzs5u1KgRES1btkztVHJycuXKlYlo9+7dgsRWEtzDAFNT0ydPnqid2rp1KxFVrVpVj1ZkiwRWuPNJqVR27dqViD755BPx7Lx5p4Ir3Blj6emsbl1GpJcr3DMzM+vVq0dEq1evVjuVlJRka2tLRAcPHuQ5Kqxw542GeVDfCTAPBgQwIvb99yw+njHGkpLYlCmMiC1dyhirMCvcWYUeNlzTTm7YmHBFCUosrk0bRlSKrzFjGHvXsOFXnkr1xe3bal/BiYnlfNvk5GSFQhEYGOjn5+fl5eXq6lqpUqXCf4AmJia1a9dOSkrSys8iBnfv3pVIJObm5q9fvxY6Fo3u3WOVKjEi9ttvQodSOnl5eX379iUiBweH58+f5x+/desWt+a9fv369+7dEzDCsuGCv//fe4PU1FRu8012drZQgZWWUqk0NzeXSCQC/Lu+eZOZmLAuXdjt24wxlpnJNm5kpqZswADGGDt5snS/rokMSlk3/+jRo+Hh4VyLtR07dvD945cSVrgDaAVWuL9D+/btv/rqqx07dvj4+HAZ9nwDBw5ctWrV6dOn586du2TJEqEi1OD27dsbNmyQy+X+/v5qp06cOHHo0CELCwu1lfvvOUNDw0WLFvXt23fWrFmDBg2qXKBgrrW19Zw5c0aPHv3jjz/27t1bVG1mOUqlkmvwO3XqVLWilhkZGdOmTSMiPz+/Ij/SAIjE/PnzT506VbVq1U2bNunvzhtTU1q8mAYMEDqOMlm8eHFUVJSzs3Ph8rLTpk1LSkpyc3PjntdChaRhHtRrwsyDQ4cSEf30E61eTRYWlJpKNja0YgVVuA0iFXjYTJ8+nYgWLlxYqVKlefPm5ebmluL7LSyof/9SvN7FhYho6FBijHx8xDBsVEQRmZldraxcLCzyDzYszYOHDKUyOjs7Ojv74ZEjl48e5dawJxfVorBy5coNGzZs1KhRw4YNGzZsWKdOnTFjxoSGhn7xxRdHjx6VyWRa+HmEtm7dOsbYkCFDLAr8eYpR48a0YQMNHHjpwIHsFi06d+4sdEAlNX78+L/++svW1vbIkSMFV7I3bdr00qVL7u7uYWFhHTp02L9/f6dOnQSMs1SSkpKio6PNzc0bNGhQ8PiNGzdUKlWzZs0MDQ2Fiq207t+/n5aWVrduXd7a8r3VrBmdOEGjRpGzM5maUlYWyeXk5UWLFxMRNWhAfn6ler/5EomqNI2mGjVqVK9evcWLF48ePXr06NHt27evK1yvIADgSanS81lKZapAJcuFWuHOGIuJieFWhv7zzz9qp65duyaTyQwMDMT5qJxrCDZhwgS140IV4S2JdKUyXakUNoaePXsS0ejRo9WO5+XlcU1O5s+fL0hgmnF9BWrXrp2enq52ivu42LJlS6XQf7b6CCvceXP58mUDAwOpVBoSEiJ0LKXz+nURlU6Tk9mZM8VWQH3xgomwA0hMTIy5uTkRHT9+XO1UeHi4XC6Xy+W3bt0SJDDicYV7Wl5epnC/LcU8D+ovIefBvDwWFsZCQtiVKywn5+3x3Fz26JH67wilkj16xES++rUYFW/YcA9pXFxcRDRs+JWjUrkoFNsTEkr44pisrMuvXu1ISJj/+PH3Dx70uXWrlULholC4KBR95s/P//hpZGTk5OTk4eHh4+Ozdu3akJCQ2NjYwm8YHR1dpUoVIpo2bZq2fzIBZGVlcSng0NBQoWMpkQMLFhBR1apVY2JihI6lRBYtWkRExsbG586dK/IFqamp7u7u3AgU/xLjfCEhIUTk6uqqdnz58uVENGLECEGiKpvt27cTUb9+/YQM4sEDFhLCzp4Vaqr94osviKhNmzY5wv1ufyescAfQitIl3AUkYMKdMTZ79mwqpkUqV8C9e/fuggSmQVBQEBHZ2NgU3rHFtVFt0KBBVlaWILGJ3J07dwwMDIpskZpfsyU6OlqQ2IqTkpLC3cQXrngTHR1tampaZBtVKAkk3PmRkpLCLfT4+eefhY5FO+bNYxJJ0VVlNm1iVlZs7VreY3oXT09PIvr8888Ln+revTsRjeelr1RhPCfcQcM8qI8wD/IDw6biKS7hnqtSPcnMPPPy5bb4+F+ePPn+/v3eN2/m59YLfnUIC/vy9u0fIyPXnD69YcOGM2fOxHOlckrm1KlTcrlcIpEEBQVp9ScTwLZt24jogw8+EDqQklIqldxTtLZt24r/M+Pu3bulUqlEIil8x15QXl4e17RTIpH4+vryFV25/Prrr0T0ww8/qB3/+uuviWjlypWCRFU2kydPJqI5c+YIHYiQUlJS6tSpQ0QzRFx6Egl3AK1Awr1EMjIyuEzQukJVNZ8/f8418zl8+LAgsRVJnEV49Yi3tzcRdenSpfCp/v37E9HQoUP5j0qD8ePHE1HHjh0Ll7328PAgosGDBwsSWAWAhDs/vvrqKyJq3bq1HlWi1OzCBSaRMBMTVrgYeGAgI2J2dkxUHUAuXrwokUiMjIwePnyodmr37t3cE9zEcpfuLRsk3PmnYR7UOwMGDCCiIUOGCB1IxYdhU8FwCXe/J08uv37NfV1LTWWM/fzoUeHcetvQ0D63bn3/4MH8x493JCRcfvUqJiur/FsDuGXLFhYWt7nKy3qLK8yyZs0aoQMphaSkJAcHByIaNWqU0LFocuXKFa40tp+fX0le7+/vL5VKiejbb78V8ypjDneHvHHjRrXjn3zyCRGdP39ekKjKplu3bshCMMbOnDkjk8mkUunJkyeFjqVoSLgDaAUS7iW1a9cuIqpSpUrhFqlcAfcGDRqIJ080d+5cInJ2ds7NzVU79d1331ExbVQhX36L1L1796qdevTokbGxsahWPN2/n2hsbCaTyQr/Azl37hzX9bdwG1UoISTcebBu3ToiMjc3f/DggdCxaNOgQYyIDRxYxKnOnRkRmziR95iKoVKp2rZtW+TO/aysLK5s6KpVqwSJjSHhLgQN86B+4ebBItuJg9ZVmGFz9uxZDBv2b8K94Ff3GzcYY+tiY/vcujX2wYOF0dG7EhLOv3r1NCsrT2etzrkKDI0bN3758qWOLqFr9+/f59ql6tF9I+f69etcLvuPP/4QOpaiPXr0qGrVqlz2vOTfFRgYyHXk+uSTTzLEXcXL0dGRiK5du1b41IsXL8STfygJboJ49uyZ0IEIz9fXl4js7e1fvHghdCxFQMIdQCuQcC8FbmHCpEmT1I7n5OQ0btyYiJYuXSpIYGpEW4RXv6xcuZKIHBwcMjMz1U5NnTpVsJqeRfnkE9aoUcbPP6tnhJVKpYuLCzbulRMS7rr24MED7leW5l3A+igmhpmZMSJWqAMIu3aNyWRMLmfh4UJEVsjmzZuJqFq1aoWH9Lx584p7gssbJNwFoWEe1Bf58+DcuXOFjuV9gWFTkZSqhrvupKWlNW3alIj69u1beCunXuAqaYwcOVLoQMpi69atXN3zy5cvCx2LuqSkJO5j+P/+97/S3qVcunSpSpUqv7Vvz5o3Z2J9tJaWliaVSg0NDfUrsV6kx48fc+sXhQ5EFJRKZZcuXYioV69eIvy1hoQ7gFYg4V4KGlqkHjx4kIgqVaoUFxcnSGwFDRkyhIgGDBhQ+JSwRXj1S15eHjfqfvnlF7VTqampNWrUIKItW7YIEltBBw8yImZlxZ4/Vz+1du1aIqpVq1bhNqpQcki461RWVtaHH35IRF9//bXQsejE7NmMiH34YREtUr28GBETQwcQDb/T4uLiKlWqVOQTXD4h4S4IDfOgvlizZg3mQZ5VgGHDdaHHsGGiSbgzxh4+fMjV8FywYIHQsZRadnY21/31ypUrQsdSRqNHj+b+USSIYDDky8nJ6dq1K7cmoGy7H6IiIlRNmzIiVrMmE2XzifPnzxNRy5YthQ5EC/bt20dEPXv2FDoQsXj69ClX6ff3338XOhZ1SLgDaAUS7qUzcuRIIurdu3fhU1wZNcEr3Im5CK/eOXnyJFfmovDGt4CAgOJWg/IpJ4c1bsyI2G+/qZ969epVtWrViCgwMFCAyCoQJNx1at++2UTUqFEjsQWmLRkZrG5dRsQKdQBhz58zKytGxA4dEiKyAjTs2tHQRpVPSLgLRcM8KH6YB4Wi78OGK09RAbp0lp94Eu6MsWPHjnFVj0XVN6skdu7cSUTNmzcXOpCyy8nJ6dSpE9ehQcDtbgWpGJvz8GGnESPs7e2fPn1a9jdKSnpT5s/cnImstvidO3e4DMOnn34qdCxaMHPmTCL6+eefhQ5ERPbs2UNEH3448uZNcS1yR8IdQCuQcC+dhIQES0vLIluk3r1718DAQCqVKhQKQWJjJSvCW7iNKmjQr18/Iho2bJjacQ1/1HxavJgRMUdHVrjfz/z5RyQSaadOnUS4SU2/IOGuOy9fBisUkn/+6RQaGip0LDq0axcjYlWqFNEidckSRsQaNGBZWQIExsnvS3Hp0iW1UwqFgtvIXPgJLs+QcBdQcfOg+E2YMIGIXF1dMQ/yD8OmYhBVwp39W/XYxsYmMjJS6FhKgVuFvXLlSqEDKZe4uDh7e/siy6sKYtWzZy4KRdfr18PLf4uSlcUGD2ZETCZjIvhrio6O9vf3d3V1JSKuBouhoWEFqLv46aef4hF4YTNnnjMwYE5OTFRbqi5fZosWsTNnhI4DQM8h4V5qixYtIiJHR8fCPc0Fv0cXeRFefRQZGcmlogpXLdSwmYAfCQlvlscWXuhz/z4zNGTNmr2+dk0c9aH1WXEJ94SEhLi4OD36QC62hHtOTsz165UVCoqPF0X3C53i1k4V/oiav0llyRIhwmKMMda/f38iGjp0qNpxlUrFfdibOnWqIIEVhIS7gDTMg2L28OFDQ0NDYZdBvM/0dNiIYfWMqIgt4a5SqbhnOR988IG+FPyJiIiQSCQmJiYphZ+665sLFy4YGhoS0a5du4SN5K/ERBeFonVo6Glt/amqVMzXlxExIubtzYRo0xUXF7d8+fIOHTpIJBIu1W5tbf3NN98MGDCAiCQSia+vL/9RaRH3wEbwNRxik5nJmjdnREzoQgmMMbZlC/PyUq+utGABW7tWoIAA9BwS7qWWnZ3N9Wb5rVAVD2F3oYq/CK+emjJlChG1a9eucGpV2GILI0cyIlZUfSPWqxcjYl5evMdUERWXcBehqKio8ePHF34WyBFZwl15/343hYIePOjJmN48tCgzrkWqgQEr1AGEHT/OiFilSkyQDiCnTp3SXDiratWqYtjGgYS7sDTMg6LVq1cvIvLCRCgcfRw2IqkPKSrJublZQiQfi/P69WtHR0ciGjx4sNCxlMhPP/1ERN98843QgWjHihUriMjMzOzWrVtCxaB4/bpdaKiLQvFn4QZW5bRxIzMwYETs889ZRoaW37wYKSkpAQEB7u7ucrmcy7ObmJi4u7sHBgbmN0r19/eXSqVcx6Pi7vNF7sWLF1zHu8LVCyE8nJmYMCK2c6fAkXDphdat/9N6ql075uEhXEwA+kxvEu7fLl3ay9f3TlSU0IEwxtiBAweIyMrK6sWLF2qnBOyz9PPPP4szL6zv8p9kbN26Ve1UTEyMubm5IE8yNOTvQkKEzN9VPHqRcE9LS5s+fbqJiQkRLVu2rMjXiCrhHhs7T6Gg69er5OS8L8N0xAhGxNzdizjVqxdr3z564sRfeQ4pv7fh/Pnz1U6lp6fXqlWLiAICAniOqkjxSUm9fH2/1MNeeRWDhnlQnI4fPy6eVvbvLb0bNocOHcKw0Qt3797lFhKtWLFC6FjeIScnp3r16kR08eJFoWPRmqFDhxJRw4YNy9antJwiMzM/vnbNRaFYFhOjkwucOMEsLRkRa9eO6XJvR0ZGRnBwsIeHB7dpgIiMjIzc3d0DAgKKvFfft2+fqakpEbm5uQnyJ19Ox44dI6KPPvpI6EBE6vffGRGzsmLCprtGjmTVqzNjY7Zq1duDSLgDlJneJNy/vH3bRaG4z9ej5nfq2bMnEX3//fdqx5VKpYuLCxHNnTuXz3j0ogiv/tq0aRMR2dvbF74BEqpWD1ehYuJE9eO5uczZWeAKFRWMyBPuKpUqMDCwTp063G5TDw+Px48fF/lK8STc09KuhIYaKBTSV6/eoz03CQlvPsEVVQMqysDAQCaTXbt2jc+QVq1aRUT16tXLzMxUOzVt2rTi2qgKIiEnx0Wh6Km2xxV4pGEeFJvc3FxnZ2ciWoKJUGh6NGxycnK4DaxLl1b8KmcVwN69eyUSiYGBwenTp4WORZPAwEAiatasmdCBaFNmZqaLi4uXlxf/S61f5OS437zpolD8FBmpw7uTW7dYnTqMiDk4FLGyqZyyslR//eU5aBCXPScimUzWvXv3jRs3vrPo0OXLl7nN9E2bNn3y5ImWA9OxBQsWENG4ceOEDkS8PvuMEbGOHZmABYBHjmQffsh8fJiV1dule0i4A5QZEu5ldOfOHS4/UrjKzdmzZyUSiampKZ8ToV4U4dVfKpWqTZs2RDR9+nS1U4J0o/3zT0bE7OyK6MG4dKnwPRgrGDEn3BUKRX5LJRcXl7Nnz2p4sUgS7nl5L2/dqqdQUEyMj7CR8G/RomK7HPPfAiQ5Obly5cpEtHv3brVTT548MTU1lUgkmkcUn5BwF5yGeVBslixZQkQNGjTIwkQoNAwb0J1JkyZxdc9idLTSWRu6d+9ORMuXLxc6EC0TpIB+llI57O5dF4XC8+7dTF2vBoiNZS4ujIjZ2DCtPNRRKtnZs8zbm1WuzIgmtWjB3br7+/uXakvNo0ePmjRpQkTVq1fXr1YTAwcOJKLNmzcLHYh4JSez2rUZEROwVj+XcH/9mlWvzgYNenMQCXeAMkPCvezGjRtHRF26dCl8iuttMmTIEH4i0ZcivHqNa5FqbGwcVWijV1BQEBHZ2NgkJibyE8zff7MmTdiaNerHk5KYjQ0jYgcP8hPIe2H8+PG2traurq6iWksSGxvr5eXF1XOsXr362rVrNaxEViqVAQEBZmZmhoaG7du39/f3j4+P5zPagh49GqRQ0J07rVSqbKFiEEp29psWqYU6gLBXr15Vq1aNiAIDA/kJRsMU9vnnnxORp6cnP5GUBBLuYqBhHhSP58+fW1lZEdGhQ4eEjgUYw7ABncnLy+vRowdXTjO/1LWoPHr0SCqVmpiYJCcnCx2L3lMyNikiwkWh+PTWrSR+FgCnprLevRkRMzZmZW7PplKxc+fY2LGsatU3HVmJWIsWkatWlfljRXJy8scff8xV0g8ODi5jYDrw5MmTAwcOFHe2YcOGRHTz5k0+Q9I7Z84wmYxJpezkSWEC4BLujLEtWxgRCwlhDAl3gHJAwr3sNCwPjI6O5m15oB4V4dV3gwcPJiKPoiYcbgHL+PHjeQsmJ+c/zUw4o0YxIubmxlsU74Xs7GwuE2pubr5gwQLB175lZ2f7+/tz1UsNDAy8vb01P047ffp0ixYtuFXwXIKeiORyuZub2+rVq3muVPvixXqFgsLCzDMz7/N5XfE4cIC1a/eiZcsvC7cAWbNmDW8tQDRs0uKe4PK8SeudkHAXCQ3zoEiMGjWKK3ErdCDwlviHjZeXFxF1795d6ECgdBITE+vVq0dEY8aMESoGDSUlufZaw4YN4zGcCuvX6GgXhaLL9euPCxXB06G8PDZ2LDMwYPnNuh4/ZnPnskGD2JdfsmnTmIb0cXg48/Vl9eu/zbPXrct8fNjdu+WPKzs7m+vQJpPJBO9kkJSUFBAQ4ObmJpFIzMzM0tLSCr8mNTVVKpUaGRnpacdXPs2YwYhYzZqMr4V8jDGmUrELF9iLF28T7ioV69yZNWrEsrORcAcoOyTcy0UMBXA1xDB16lRRFeHVdzExMVxRjr///lvtVHh4uFwul8vl4eHhQoTGxcDkciaXM+FCqLCio6O5+1ouHyrgE6zg4GAHBwcuEnd394iICA0vfvr0qaenp0QiIaKaNWsGBAQkJiYGBAS4u7vnN2iSSqWurq5+fn489HjIynp47ZqFQkFJSfrRQE9HxNACpLgY8vLyPvjgAyKaN2+ermMoFSTcRULDPCgG169fl8lkws7FUBiGDehOWFgY1zF+w4YNur5WcnKyQqEIDAz08/Pz8vJydXW1tLRct25dkS/Ozc3lmgafO3dO14FVeNvj410UinahoVdfvxbg8vm/GXbuZEZGrG5dNmgQGzuWNWvGpFL2yy//eXFUFPPzY46Ob/PsNWsyb2+m7UV4KpXK19eXu8n39vbm/8N+SkrKxo0be/ToIZPJuM8UpqamX3zxRZElns6cOUNErVq14jlIfZSby1xdGRHr3ZvpusxkfqGjmjUZEVu+/G3CnTEWHs4MDNiSJUi4A5QdEu7lonl1ee3atXVdqix/lf2ePXvUTuW3URVPEd4KYM6cOUT0wQcf5BVaXi74qrqPP2ZEbMIEoa5f8Z06dYr7984V4rjBb+7v7t27XJKUiBwdHQ8X7rxZQHp6up+fn7m5OXf76+Pjo1a6PSUlJTAw0NPTk3sNx8nJydfX957W20MxxhhTqbLu3GmhUFBU1DBdvL8e0bC6/Ny5czy0ADlw4AARWVlZFV5lv3r1at5W2ZcKEu7ioWEeFBy3y34CJkLxwbAB3dmyZQsRGRsbX716VVvvmZqaGhYW9ueff86bN2/o0KHt2rWztbWlokybNq3Id9izZw8RNWnShLfWLBXVmZcvW4eGtlIoDvG54rewu3eZkREbPPhtHx6Vivn4MCJ29ChLSWELF7IPP3ybZ69alY0dy86d02nSdPPmzdwamn79+vFz55aZmRkcHOzp6Vmw6aubm1tAQMDr4h+HLFu2jIi8vLx4iLACiI5+UyR21SqdvH9ODjt2jHl5sSpV/rMBY82a/yTcGWM//sisrVmjRm8S7i9f6iQegAoMCffy0lA/nbv/02n9dP0qwlsBZGZm1q1bl4jWFCqgnpSUZGNjQ0QHhSigHhT0pq9PUhL/F3+PcMXQq1Spwq0N9/T0TEhI0PVFk5KSvL295XI5EdnY2Pj7+2vYv8wYCw4OrlOnTv4q+MePH2t4cUZGBnffzNWoKZh5v337thZ/iujocQoF3bpVPy8P/SSEbAGSnZ3duHFjIvqtUCH5lJQUOzs7Igoqc61SnUHCXTw0zIPCCgwM5H5JJmEiFB8MG9ApbtVL7dq1nz9/Xtrvzc7OjoyMDAkJ8ff39/LycnNzc3BwyC/BV5CRkZGTk5OHh4ePj8/atWtDQkJiY2OLe1tukYS/v3/5frL33e309I5hYS4KxQZ+SyAWYexYZmbG1D7U5+UxBwfWowdLTmZGRoyIWVkxT08WHMz4qp1y8uRJrgVF27ZtddeiKS8vLyQkxNPT08LCouAeWX9//5L8oxs+fDgRrV69WkfhVTy7d79pH1BocU7ZZWWxkBDm7f2fPHu9em82YHAPhtQS7unprE4dRsQ8PNjevczKiv35p9biAXgfIOGuBf379yeioUOHqh1XqVTt2rWTSCTbt2/XxXVTU1Pt7Oz0qAhvxcB9NrOzs0tJSVE7tXTpUiLq06cPzyFlZrJ69RhREW1UQReSk5N9fHy4FSVWVlZ+fn466taVm5u7du1abheLXC738vLSfFMbGhrasWNH7j64ZcuWpdrdkpGRsW/fviFDhlhaWuZ/tjxzpv+zZzMyMsp7r/fy5WGFQhIaapCWdqmcb1UxCNgC5OjRo1Kp1NHRsXAZzfHjxxNRx44dRbgcDwl3UdEwDwpFtPlcyIdhA7qTk5PD3f9069ZN86KE5OTkQ4cO/fbbb6NHj+7evXvdunWLzK0bGxs3a9asf//+Pj4+69evP336dKl63jx58kQmkxkbG+NBTskdTUr6/sEDta/A589bKxRzNK4d4Unz5szVtYjjw4czU1OmUrFFi9j+/UyIVk+3b9/mfpXVq1fvrjZqxOdTKpVnz5719vbmFmTkr8vx8/PT8LSpMG6L8KVL+BRQCiNHMiLWsmV590hkZLDgYObpySwt3+bZnZyYj08RhY7UEu7s31V9Hh5syBBGxCQSNnYs47OTAoBekzDGCt9kiNBXd+48zMzc4eTUyMRE6FjURUVFOTk5ZWdnX7x4sW3btgVPXb9+PTU1tVOnTjq6dGJiYkhIyFdffVXwIFcI+MaNG/PmzeNKyYN2ffzxx6dPn544ceKSJUsKHs/NzQ0ICBg2bJiBgQGf8cybRzNmkLMzXb9OcjmfV36v3b9/f+LEiYcPHyaiRo0aLV26tHfv3lp8/5MnT06YMOHWrVtE1K1bt99++61Zs2bFvTguLm7WrFkbNmxQKpWVK1eePn362LFj84sqlopSqbx48WJQUNDx48E7drxQqdKJyNCwrpVVH2trD3NzVyJJad8zIyM0KmpQ5cojq1adXIaQKqTVq1ePHj26Xr16d+7cMTY2Lnhq+vTp8+fPHz169MqVK3Vx6dDQ0Ozs7A4dOhQ8eO/evebNmyuVyitXrnCl5EXleW5ur5s37QwMjvxb1gmEVdw8WFDfvn3T0tK0eNGQkJAiU2NENG/evBkzZjg7O1+/fl2OiVCsMGxAd+Li4lq1ahUbG+vj4+Pn51fcy/7++++uXbsWPGJgYFCrVi2Hfzk5OTk7O9epU6dsN1GcGTNmzJs3b8iQIVu3bi3zm7xvNsbFrY6N/bp69YIHR9eocTU1tYW5uVxS6ptPLatWjbp0oZ071Y/PmkWzZ9PLl1RgwQr/4uPj+/Tpc/XqVWtr671793KVssrj9u3bW7du3bJlS1xcHHeE294xZMiQBg0alPBNXr58GRwcHBQUdPr0aWNj48ePH+cXooF3ysigQYNo5kxq2bKM337yJAUF0f79lJr65qCTE3l40BdfUJMmRX9XaCglJ1P37v85GBxMdnbUrh398QeNH0+ZmeTkRDt3Em7JAd5N6Ix/SYl5hTv7tw29SNqTirYIb4Vx7do18fTXiolh5uaMiB0/LnQo76WQkBAnJyfu16mbm5tWyrA8fPjQw8ODe88GDRoEBgZqeHFOTo6/vz9XEMbAwMDb21tbNayUytzXr088efL9jRvVFArivm7erB0dPT419Sxjxf6uUyoznj9f9eTJd1FRQ+PifsnMvM0YUyrTGBPdumkBaWgBkpaWFhQUxPMy808++YSIRo0axedFSw4r3MWmJPOgpbazD8UtXI2JieHaURzHRChuJRk2BeubaUVxVePzh404W7lCGZw/f97Q0FAikfxZfNWD2NjYHj16jBkzxt/f//Dhww8fPtS8Ir4McnNz7e3tiej06dPafeeKbUNsbOvQUKGjKJ69PevXr4jjP/3EiJgIchRpaWl9+/YlIkNDw61bt5btTcLDw319fQum1OvUqePt7R0WFlaqSHbs2NGnTx8jIyPuTYyMjKKiosoW0nvu3j3m4cHUPiuEhDAPj6KXmScns4AA5uHBzMz+s57d15fdv6+FeMLDWdOmb8rdoGIWwDthhbt2pKWlNW7cODY2dsuWLZ6engJG8vLly0aNGr148SIoKIirBQy6MGrUqHXr1nXv3v348ePCRvLqFc2dS8+eFbHkAviRm5u7atUqX1/fV69eGRgYfP/993PmzClbpik9PX3RokVcjRozM7PJkyf//PPP+XerhR04cGDChAmRkZFE5Obmtnz58ibFrVgoF1Va2oVXrw6mpOzJzo7gDsnllS0tP7G29qhUqadE8nZLh0qVdvdu65ycGEvLXlKpSWbmLWNjp3r1sMKrCNw6O3Nz8/v379eoUUPASA4dOuTu7l6pUqX79+9Xq1ZNwEiKgxXuIvTOefDMmTO5ublavGLXrl0lRS1y9PT03LZt24ABA4KCgrR4OdCFdw6b06dP5+XlafGK3bp1K/I4hk2F5O/vP2HCBHNz80uXLjk7O/MfQHp6+h9//DFhwoTGjRvfvXu3yF9ZUKSNcXFr4uKulG01Lw86dqSMDAoLUz/+xRd0+jTFxwsRkzqlUjlx4sTly5dLJJKZM2fOmjWrhN/45MmT/fv3BwQEXLt2jTtib2//+eefe3h4uLq6lnAYZ2dnHz9+PCgoaP/+/ampqUQklUrbt2/v4eExaNCggkVpoOQuXCBXV5JI6ORJ6tLlzcG1a+m77yg1lczN3xxJSqJDhygoiI4fp5wcIiKplNq3Jw8PGjCA7O21GVJmJk2ZQsuXExH160fr15ONjTbfH6BCETrjX1IiX+HOGNu8eTMRVatWTXctUktCzEV4K5Lnz59zDWoOHTrE20Xv3GF+fkxtJdbp02zZsvIWd4PyS0xM9Pb25jYg29ra+vv7F7eqrjgHDx6sWrUqEUml0m+//VZz46O7d+9yS5KJqHHjxocPHy5f+CWVkRH+7JlveHjj/DXv16/bREV5vnwZrFJlMcYSEpYrFJSRcTP/W1QqnRS4rxiKawHCp5ycHK6N6tKlSwUMQzOscBchQebBwi5evCiRSIyNjR89eiRgGFBCGDaga8OGDSOiRo0avXz5UqcXysnJ4bqtrl271tvbu2C31caNGy9ZskSnV694uBXuERkZ+V8vtb35oFzmzmUyGYuM/M/BV6+YtTUbNkyYkIrh7+/PfR4ZPnx44YY9hXl5eeWnhuzs7EaPHn3mzJmS79ovss67i4uLv79/qeq8Q5HOn2dEzNmZOTu/bcS7Zg0jYqmp7PlzFhDA3N2ZgcGbxewyGXN1Zf7+TNd/9rt3M2trRsRq1WJnzuj2WgD6Cwl3rVGpVFwB92nTpgkVw927dw0MDKRSqUKhECqG9wdXgbRBgwY6aphZ2M6djIjZ2rIXL94enDqV2dryc314t9DQ0PyeDS1atCjVbmJur32bNm0uXryo4WXJycne3t5ctVlra2t/f3+t74YuifT0a8+eTQ8Pd8rPvF+7ZpWS8ld09LjQUAMk2Uvo0aNHxsbGEolEwEZSixcv5vlXWRkg4S5O/M+DalQqVZs2bYho+vTpggQAZYBhAzqVkZHRsmVLIvr000+1VeozNzf34cOHhw8f9vf3HzNmTI8ePerVq1dkkXcjIyNnZ+cjR46IocqoftkQG+uiUBT82qpx6QnfXrxgVauy1q3Z06dvjqSksE8/ZSYm7N49QSMrwpEjRywsLIioW7du7+xTvWrVKktLS09Pz+Dg4JIk6PMpFApvb++COyOdnJx8fX0jIiLKFT0UwCXc9+xhxsZswYI3B7mE+/79TCp9k2c3Nmaffso2b2Z89ml+8oR17Pgmy+/ry0q50gzgvYCEuzZx62WMjIwePnwoSADcitfvvvtOkKu/b/hfFsol3KtXZ99++/YgEu4iFBwcXLduXe7W093dveRVCy9fvqxhb0pubu7atWu59SNyudzLy+v58+faibgcsrIiExL8791zVSgkmZn3XrxYr1BQZOQX2dnRQoemH6ZOnUrCtQDJX23K2yaJskHCXZwE3x7BbS60t7dPTU0VJAAoAwwb0LXHjx9XrlyZiObOnVuGb09OTj579uzatWt9fHw8PDxcXFxMiqpoKpfLHRwc3NzcvLy8/Pz8goODIyMjS7u7EfJxK9yTcnLyvzLF9tDi2jVWvz4zMGBt2jBXV2ZqyqpWZceOCR1W0a5fv871EnB2dn78+LGGV2ZkZGQWWQ68GFyd9/r16+f/W6hbt66Pj8/du3fLHTWo4xLuYWFs+nRmasq4TVlcwj0hgdnaMnd3FhDAdLyfp1i5uczXl8lkjIi1a8ewZwxADRLuWjZkyBAiGjBgAP+XPnjwIBFVqlRJcyUK0KL8P/O4uDgeLscl3NeuZRIJO3v2zUEk3MUpIyPDz8+Pa8hmYmLi4+NTzg/2J0+ebNasGXdf27Vr15s3b777e/iVnf2YMaZS5T5+/E1oqEyhkD544JacHIReqZqlpqZyBdy3bNnC/9W5fcS9evXi/9KlgoS7aPE8DxYk7L8dKA8xDJsyNxUEvXD8+HGZTCaVSjUXL0pOTlYoFIGBgb6+vlxu3Ty/KPJ/WVtbu7q6crn1wMBAhUKRIfqPpfpF7E1TOdnZ7PBhtngx8/Nje/eytDShA9IkJibmgw8+IKJq1apdvXq1nO8WFRXl5+fn6OiY/4+iZs2a3t7eZ/M/lIIO5CfcMzJYvXqsZ0/GCpSUEUnVpVOnmL09I2KWlmzXLqGjARATvWma+uvTp8+ys31q1apRfP9AMXj27Jmjo2NaWtqBAwe6du3K23Vzc3PbtGnz4MGDpUuXTpgwgbfrQq9evY4cOTJixIhly5aV/LskEgljpWv/K5fT3r301VeUlESff04vXtC1a2RgQNOm0dq1lJhYyriBF8+ePfv555+3bdvGGLO3t//ll188PT1L20ErIiJi6tSpXFe3Bg0a/PLLLx4eHrqJV2tyc2OTk3cmJQVkZt6qWnVSzZqLhY5I1AICAoYPH16tWrXr169zW4D5cfPmzY4dO0ql0lu3bnELTkXrVV7ezMePreTy2f/uHQHxKNs8WH6zZ8/+9ddf27Vrd+HCBXQm1DsYNqBr8+bNmzFjhrW19dWrV+vXr5+SkvKogNu3b9+6dev169eFv9Ha2trBwcHBwcHJycnZ2dnBwcHR0dHMzIz/H+G9IvamqfopNTV14MCBR48eNTMz27FjR58+fUr7DjExMXv27AkKCjp//jx3xMbGpnfv3kOHDu3WrRt+i+oa1zQ1LIxatKD9+6lfP9q/n+Lj1ZumCi4xkb75hg4cIGvr5OHDF8+fP6PIjUEA7xuxJ9yVjP398qXawcamprVEnHafN2/ezJkz+f+DNTMzq1mz5q1btwwMDHi+9Pvs3r17zZs3NzExKfKWvThSqYFKlVOqC/XpQ1999Sbh/uwZtWxJ8+aRjw8S7nrgypUr48aNu3TpEhG1bt162bJl7du3L8k3pqenL1q0aOHChVlZWWZmZpMnT54yZYqxsbGO49UaxvKioga9fLn/gw8SZbJKQocjXoyxdu3a3bp1KzMzk+dLy2Qyb2/vpUuX8nzdkkvIybmVnq520NXS0kQqFSQeKKxs82D5WVhYpKWlXbx4keugA/oFwwZ0jTHWr1+/v/76q3LlyiqVKjk5ufBrbG1tGzZs2KhRo0aNGjX8V3GL3EGnkHDXkby8vDFjxqxbt04mk/32228//PBDSb4rOTn54MGDW7duPXnyJJfWsLS07NOnj4eHR8+ePZFt4E3BhDsRubvT/fvk7U3e3uJKuBMRY7RiBQUFfXXu3K6mTZvu2rXL2dlZ6KAABCb2hHuaUvnx9eumMplRgcenY+3t+1auLGBUmmVlZV24cMHd3Z3n6/r6+vbq1Su/6ATw5vz584sWLTp+/HjJv0UmM1AqX5XqKu7u1L//m4S7jQ1NmkRr1tC9e7RmDRLueoAxtnXrVh8fn/j4eIlEMmTIkF9//bVgl6Fyvl60XrxYHR09ulmzJ4aGtYWORdTu379/8uTJyZMn83zdPXv2tG/fnivjLk7HkpOnRUVZyuUF8+tbmjSpbmgoWExQSBnmwfJr1arV/Pnz8/tUg97BsAFde/Xq1ffff//gwYPQ0FAjI6P69etzK9Y5zs7O1atXFzpGeAMJd51atmzZhAkTGGPe3t6//fabtJhVC69evfrrr7+CgoKOHTuWm5tLRMbGxm5ubh4eHgMGDDA1NeU3alBPuD96RE2bkoMD3b4tuoQ75/bt21999dWtW7eMjY39/PzGjRsndEQAQtKPhPvU2rX729kJHQuAwHbteptwT02lJk3oo4+oXj0k3PUGt2Ldz88vOztbw4r1K1eujB8//uLFi1TKFfFikJ5+VS63NjJqQERKZWpERK+srHsffPCcCHtOoSy4hPuhZs2qIsMOAACl9+DBA0tLy6pVqwodCGiSkpeXnJtbH2UodCYwMHDYsGFZWVmfffbZ9u3bC2bPs7KyQkJCgoKC9uzZk5GRQUQymaxLly6enp79+vXjs9ohqFFLuBPRnDnk60tEIk24E1FmZuaUKVOWL19ORJ999tn69ettbW2FDgpAGNiRDaCXLCxo6VLatYsuXRI6FCgxMzOzWbNmhYeHe3h4pKenz549u1mzZlxxds6zZ8+GDh3arl27ixcv2tvbBwQEXL58WY+y7UT04sXv4eENw8Mb3rvX/tatWpmZN2rXXo1sOwAAAAiiUaNGyLaLn7Vcjmy7Tg0cOPDEiROVK1fev39/ly5dEhISlErliRMnhg4dWqVKlT59+mzdujUrK8vV1dXf3z8uLi4kJGTo0KHItouNjw+Ju+8SmZiYLFu2bM+ePTY2Nvv372/RosWZM2eEDgpAGFjhDqA3Cq5w5/TqRUeOkK0tVrjrn1OnTo0fP/7WrVtE1LVr14ULF548eXLevHlpaWkmJibe3t7Tpk3T03vczMwbGRnXc3MTDA3tK1X6n1wu3gpgIH5Y4Q4AAACgFXfv3u3du3dUVJStra1SqXz58iURSSSSdu3affnllwMHDtTHCpYVWFoa3b9PTZpQwXI+z55RfDy1aEEi72cUHR09ePDgc+fOyWSyyZMnz507F9X/4X2jHwl3eyMjW7mcO1LZ0PBXBwdhowIQROGE+8OH1KwZmZsj4a6X8vLyVq1aNWvWrJSUFCMjo+zsbIlEMnDgwF9//bV2bVQ8ByD6N+HexNTU4N9WLl2trYdgrSIAAABA6SUlJfXt29fKyurQoUNOTk4eHh5Dhgxp0KCB0HFBEc6coSVLaP16Krj69OpVmjePli+nOnWEi6xk8vLy5s2bN2/ePKVS2bZt2x07djgglQfvE/1IuH9kZeX070O9SjLZwCpVhI0KQBCRkXTyJA0bRkZGbw8eO0YJCTR0qHBhQfkkJSXNnDmzUqVKZ8+eXbBgATq5ARTEJdw9q1Y1k8m4I05mZh0qVRI2KgAAAAA9lZWVlZWVFRcX16RJE6FjAU22b6chQ+jx4//k1g8coD596OZNatZMuMhK459//vH09IyJibG0tFyzZs2XX34pdEQAPJELHUCJdKxUCSVlAOrXp/r11Q/+739ChALaY2tru3LlSqGjABC1L6tUQUkZAAAAgPIzNjY2Nja2srISOhB4L3z88ce3bt0aNWpUYGDgV199dfjw4dWrV5uZmQkdF4DOibvsEwAAAAAAAAAAAOghKyurXbt2/f7778bGxlu3bm3btm1SUpLQQQHoHBLuAAAAAAAAAAAA4pKWRq9fv/3KzBQ6oDKRSCRjxowJDQ1t3rx5o0aNbG1thY4IQOf0o6QMAAAAAAAAAADA+6NpU6Ej0B4nJ6eLFy/m5OQIHQgAH8SecDeUSAZWqVLfxEToQAAAAIBvtY2NB1apYvpvx1QAAAAAgPfHsWNUvfrb/zx9mn74Qbhoys3U1NTU1FToKAD4IPqEu1T6U61aQkcBAAAAAmhiatoEN+UAAAAA8F5q3Jjq1Hn7n48fCxYJAJQKargDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBZIGGNCxwAAAAAAAAAAAABERElJFBFBLVqQoeHbgy9f0v371Lw5mZgIFxkAlAAS7gAAAAAAAAAAAAAAWoCSMgAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWyIUOQHRSU1Pv3LnTvHlzExOT/IO5ublhYWHx8fHVq1dv0aKFgYGBgBGCPsK4Al1gjOXm5hoaGgodCFQ0r169srS0VDuYmJiYnJxcp04dIyMjQaICfYdxBbqAcQX8iImJuX37NhE5OzvXrFlT6HCggsC4AgCoqLDC/a34+PhZs2bVrVu3Xbt2p0+fzj8eGhrq6Oj40Ucf/fDDD506dXJycrpx44aAcYJ+wbgCXcjMzFy3bp2Tk5OZmdndu3cLv2D27NkSiUQikZw9e5b/8EB/nTp1yt3d3dra+scff8w/eOPGjQ4dOtjZ2TVu3NjMzGzUqFHp6ekCBgl6B+MKdAHjCvjBGPP29q5bt+6QIUOGDBlSr169CRMmCB0U6D2MK9C1Pn36cJ8HhQ4E4D2FhPsbd+/erVu37qlTpz7//HO1U0OGDDEwMHjy5El0dHRUVBRjzNPTU5AgQe9gXIEuXLp0qU6dOjNmzLCxscnLy8vLy1N7wb179/z8/D777DMhogN9xRhzdXV1d3eXSqWGhoZKpZI7Hh8f//HHHxsYGJw9e/bBgwd+fn7r1q2bPHmysNGCvsC4Al3AuAI+BQYGrlixYtGiRc+fP3/+/PmCBQv8/f13794tdFyg3zCuQKe2bdt26NChnj17Ch0IwPsLCfc3HB0dnz59eubMma+//rrg8dTU1Hv37vXu3btatWpEVKNGjU8//TQ8PDwzM1OgSEGfYFyBLjRp0mTfvn1xcXFFLoRRqVQjRoxo1qzZd999x39soL8kEslvv/324sWL4ODggkUYjIyMpkyZcvDgwY4dOzZs2HDy5Mldu3Y9dOiQgKGCHsG4Al3AuAI+KRQKIvrmm2+4taIjR44koitXrggdF+g3jCvQnaSkpEmTJo0ePbpt27ZCxwLw/kLC/Q2JRGJnZ1f4uJmZma2t7dGjRxMSErgj165da9CgQcFK3ADFwbgCXbC0tHR1dZVKi/4FvnLlykuXLq1du1Ymk/EcGOi7Nm3amJmZqR20trb28fGxsLDIP1KvXr3Y2FjGGL/Rgb7CuAJdwLgC3tSuXZuItmzZwv3n9evXiah58+YChgQVAMYV6I63t7dUKp07d67QgQC815BwfwepVOrv7//w4UNnZ+dJkyZ5e3tHRETs3LlT6LhAv2FcgY5ER0dPmzZt/PjxLVq0EDoWqLDCw8MbNWqEipCgXRhXoAsYV1B+X3/9devWrb29vbt06bJy5cqhQ4d+9913gwYNEjou0G8YV6AjR44c2bFjx/Lly62srISOBeC9Jhc6AD3g6OhYo0YNOzu7gICApKSktm3bFty7ClA2GFegC2PHjrW2tp41a5bQgUCF9c8//1y+fHnt2rVCBwIVCsYV6ALGFWiFsbFxhw4d7t+/n5WV9cMPPxgaGtaqVUvooEDvYVyBLqSnp48ZM6Znz54eHh5CxwLwvsMK93eIjY11c3Pr3LnzlStXYmNjg4KCYmNjO3XqFBsbK3RooMcwrkAXtm3bduDAgRUrVpibmwsdC1RMT58+9fT07NChw7fffit0LFBxYFyBLmBcgbZMnTp13bp1586du3jxYmRk5NChQ6dNm+bj4yN0XKDfMK5AF6ZMmZKQkLBy5UqhAwEAJNzfZffu3a9evfrxxx8lEomhoeGAAQP+/PPPly9f7tu3T+jQQI9hXIHWpaWlTZgwwcLC4tChQ6NGjRo1apS/vz8RLV68eNu2bUJHBxVBREREly5dbG1tDxw4gA4BoC0YV6ALGFegRRs2bOjVq1ezZs2IqF69euvWrevZs+fmzZuFjgv0G8YVaF1oaOiqVascHBzWrVs3ZcqUKVOmnDhxgoimTJly7do1oaMDeO8g4f4OhoaGRJSVlZV/RC6XE5FKpRIsJtB/GFegdZmZmV26dOnZs2fKv1JTU4koNTU1IyND6OhA7x04cKB169b29vYhISE2NjZChwMVBMYV6ALGFWiXkZFRwZt2IpLL5bhph3LCuAKte/nyZdeuXatVqxb6r7i4OCIKDQ1NTk4WOjqA9w4S7m9FRESEhobev38////HxsZ269bNwMBg/PjxkZGRRBQdHT158mQTE5O+ffsKHS/oB4wr4IednV3gf82YMYOIZs+e7eXlJXR0oMcYYwsXLvzss88GDhwYEhJiZ2cndERQEWBcgS5gXIEu9OzZ88iRI3/88Udubm5eXt7WrVuPHDnyxRdfCB0X6DeMK9C6bt26hfyXp6cnEYWEhHTr1k3o6ADePwz+5e7urvaH4+vryxg7ePBgw4YNicjExISI6tatGxISInSwoDcwrkAXWrRooTau1q5dq/aakJAQIjpz5owgEYI+Wr58udq4atu27fr164u8f7h06ZLQ8YJ+wLgCXcC4At68fv3622+/NTAwkMlk3P8OHz48IyND6LhAv2FcAQ98fX0JST8AgUgYY0XemL6H4uPj1QovWFtbW1tbE5FSqXz8+HFMTEzlypWdnJwkEolAMYL+wbgCXQgJCXn58mXBIy4uLg4ODgWPJCQknDlzpkuXLpUrV+Y1ONBbT58+5bbj5LO0tKxevfq9e/cKv7h169aWlpZ8hQZ6DOMKdAHjCnj28uXLyMjIrKwsR0dHW1tbocOBCgLjCnTq9u3bd+7c8fDwEDoQgPcREu4AAAAAAAAAAAAAAFqAGu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaMH/AXLCU3cmyV3QAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18 B2 fragments with no retrosynthetic route found\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAGQCAIAAAB50mx4AAD060lEQVR4nOzdd3hM2RsH8HfSK6K3kKJFJ6tGF21F3Y0eq4ZVovwQPexasmp00YO1Eixi1WCXqKsTIogWJUiR3iZzfn+cuBlJEHLv3El8P4/HkzmZ3HNGxsyd977nfRWMMQIAAAAAAAAAAAAAgLzRkXsBAAAAAAAAAAAAAAAFAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAACgWcnJdOpU5s3UVDpxIuPriAgKCKDDh+n5c1mWBnmBgDsAAAAAAAAAAACAZr19Sz16ZN589466dCEi2r6datQgX186eJAaN6ZffpFrgfB1FIwxudcAAAAAAAAAAAAA8C0JC6OaNSkmJuPmmzdUsSKFhlLlynThAtWuTUQUHk7Vq9OhQ9SkiYwrhS+CDHcAAAAAAAAAAAAALXD2LDVqlBFtJ6LSpalXr8xSM5Af6Mm9AAAAAAAAAAAAAIBvT1wcVayY8bVKRUQUFkblyn1wn/Ll6elT8vCgc+fI2ppsbMjaOuOLEiU0vWDIBQTcAQAAAAAAAAAAADTO3JyePs34mpeUKVWKIiM/uE9EBJUqRZcu0cmTWX/czEyIv6dVqXLM0tLGxsba2trY2FgTi4ePQA13AAD4jLj09BilUrhZ2sBAT6GQcT2Q3ZvU1NT3b+gGCkVJAwN51wMAAAAAAACfkWMN9+vXqUEDevyYihcnIkpLo6pVacUKqlGD7t+nR4/o8ePMv9+9Ew6WVKWKyf37/GsLCwubbCpWrKirq5uamnrnzp169epp+LF+U/JbwP3kSTp6lF69Ijs7+uknKl9e7gUBABR8W8PD/d68KW9kxG/Os7JCPFfbDAgOVhGZ6eoSkaWh4SxhTyJAAfXsGenpUdmyGTefPyeFIuvWW4DcSEtL09PTU+BCMgAAAGhejgH3pCT63//o+HGaOJGMjGj9eipcmPbtoxxPV6Kjhfj785iYYVeuPH78+MmTJ6mpqdnvq6+v36NHj8DAwKZNm+7Zs0fKB/aty1clZdavp/nz6bffqEsXOnaMGjSgCxfIykruZQEAFHytLCymWFrKvQr4lEmWlvXNzOReBYCGLF1KRYvS7NkZN1euJH19mjdP1jVBfpOWlvbnn3/OmzevR48eCQkJK1euRNgdAAAANKpwYZo5M/OmmRl5eBARLVlCAQF09iylpNDYsdStW87RdiKysCALC6pfn4jKEx19PxwdHf1Ize3bt2/dupWQkEBEp06dqlatmpSPCvJRwF2ppKlT6fBhatyYiKhFC4qOpoULac0auVcG3zqlUklEenr5538TAAAAwDcsLS1t27Ztv/322+PHj4lo2bJlaWlpjLFVq1Yh5g4AAACaU6gQTZ6cedPEhKZOzfi6XTtq1+6rD2xhYWFvb29vb89vPnnyJCAgoGfPnoULF0b8SgPyzz/x06ekUmVE27lOnWj+fPkWJKbExER/f/+IiAg7O7vWrVvr6OjIvSLIFcbY9u3bZ86c2axZs7dv33p5edWoUUPuRQFI4mBExL/R0URUy8zsdxsbuZcDOXAPDdVXKIjo53LluhQrJvdyoGCKj48/cOBAQkKCtbW1o6MjQpOQe+np6b///nvhwoVv3LgxbNiwRo0aybIMIav9wYMHRGRnZzd16tTSpUt37959zZo1aWlp3t7eeGID5OzFCzp1isLDqUoV6tiRDA3lXhAA5GD7dlIqafDgjJt//knx8TR8uKxrAi1gZWU1HM8DDco/Afd378jc/IORwoXVOwPkR+np6f/888+2bdv2798fFxdnbGycnJzcvXv3HTt2mJiYyL06+IyzZ8+OHz/+6tWrRLRv377k5OT69eu7ubnNnDmzcOHCcq8OQGRdihefZGlJRAhCaK3fbWzqmpsTEa7ZguhSUlKOHz++e/fuffv2xcfHm5ubx8XFOTs7b9u2zeh9dwfNW7qUNm3K+PrdOxo7Vq6FwOdFRUX17dv3+PHjhQoVio2N3bhxY61atYYNGzZgwICiRYtqZg1ZQu02Njbu7u5Dhw7V1dUlogMHDnTt2nXDhg0mJiZeXl6aWRJAfnLqFPXqRYMHk5UVbdlCM2bQmTOkqf+/Gvb8+fOnT58eOXJk5MiR5dE3DvKbkBBSr9394AFFRcm3GtBuSqUS2e4SyT+fyq2sKDycEhMzR0JDydpavgV9vfT09JMnTw4bNqxEiRLt2rXbvn17fHx8kyZNhg4dWqhQoX379rVu3fr169dyLxM+6sWLFwMHDmzRosXVq1fLlSvn4+MTFhbm5uaWnp6+ePFiW1vb5cuXp6eny7W8xo1p2LDMm6VKUXy8XGuBAkWHSAcBd22mUOjkp/d1yAeUSuWxY8cGDRpUqlSprl27bt++PTExsXnz5oMGDSpUqNDu3bvbtm379u1buZY3cSI9fZrxZ+RIuVYBn3fr1q0GDRocP368ePHiq1at8vDwsLS0vH379rhx48qWLdurV68TJ04wxqRbgEql2r17d40aNX766acHDx7Y2Nh4e3vfv3/f1dWVR9uJqF27dgcOHDAyMlq+fPmECROkWwxAvsQYDR9Oa9bQokU0ejTt30/VqxeY7eZZhIaGNm/evF27dr/99putre24cePe5fM8P9AeBw8ezLGPJYCGxcfHe3t716lTZ8OGDXKvpcBSSHp2K7Jmzah9+4z2WPHx1KIFTZ5MffvKvawvcOfOne3bt2/btu3Vq1d8pHr16s7OzgMGDKhUqRIR3b17t3Pnzk+ePLG2tj506JCdnZ2s64WskpKSVqxYMW/evPj4eGNjY57Pbva+S+H169fHjx9/5swZIqpXr56Xl1eLFi00v8jq1SkyknbtotatiYgMDCgyMuv+ENAMlUq1du3au3fvinjMmjVrjhgxQsOFp7aGh79JS0PTVG02IDh4onxNU1Uq1bVr17Zs2SLuYRcuXGhqairuMSE3VCrV+fPnd+/e7evrK2QA8DOWgQMH2tjYENHt27c7d+4cFhZWqVKlQ4cOValSRcOLHD/+g6ap7u5omqqlfH19hw4dmpCQUK9evX379lWsWJHe7/Jcv379vn37eC8cS0vLfv36jRo1qkKFCiLOrlKp9u7dO2PGDPWs9iFDhnwsmevo0aPdu3dPSUmZOHHikiVLRFxJAaZSqV68eOHp6SnuYSdNmlSxYkVtrrSpUqmmTZsWL2pii5OTU4cOHbTxUYeHU8WKlJREwtr8/cnTk86fl3VZ4rt3756jo+OLFy/q1KlTp06dHTt2qFSqokWLTpkyZdy4cTJu6oICwNXVdcOGDYsWLZo0aZKkE82cSZcvU8+eGTcPHSIbG8LeLRAsWLBgyZIlrVq1GjVqVOvWrVFJTyosHwkNZdWrMwcH1r8/s7JiI0YwlUruNeVKUFCQh4cHD6lzFStWdHd3v3v3bvY7v3371sHBgYgsLCz++ecfjS8WPsrf39/Kyor/Bp2cnB4/fvyxu1m/33vh5OT06NEjzS6T2dmxVatYtWosOZkxxvT1WWyshpcAjDGWkJBQs2bNqlWrivuiXa1atVq1aiUmJmrysQS+e3coMlKTM8KX8n7x4mlSklyzT5gwQYpyzDVq1Dh+/LhcD+rbxM9YbNT6NNjZ2Xl4eNy7dy/7nV+8eFG/fn0iKlasWGBgoIaXOm4cmzs38+aUKWzGDA0vAT5DqVS6u7vzT3H9+/fP8Z2LB2qFp5yOjo6jo6Ofnx9vYZoX6enpfn5+wqUgntWem8MePnzY0NCQiCZNmpTHNXwj1q1bx18KxPXdd98tX75c7gf3USEhIZUrVzYT+zp3gwYNunfvLveDy8n166xMmQ9GLlxgVlYyrUYq165dK1GiBBG1bNkyNjaWMXb58uU2bdrw346lpaW3t7dSqZR7mZBfHT9+nIjMzc1fvnwp6UQzZrAWLdj8+Rl/HB3ZuHGSTgj5zNmzZ58/fy73Kj7q1atXZ8+e7dOnz7Rp0zZs2HDixInQ0NC8nxlqXj7JcA8MpD//pC5dqEMHevSIXr2i6tVJ6zvCPXnyxNfX18fHJzg4mI+UL1++Z8+ezs7ODg4On7iIlJyc/NNPP/n5+RkYGGzcuNHFxUVTS4acXbt2bfz48YGBgURUr1695cuXN2/e/BP354nwv/32Gy/N7+bmNmPGDHNNJZlXr067d9Mvv1DNmjRrFjLcZTNnzpy5c+fa2NhMmDBBrIvGjLHly5c/fPjwl19+mTVrlijHzKU3qam/h4WVMjBAnrvWCoiOPhoV1d7CooNmC6reu3evdu3a6enpkyZNEjE1NSAg4MCBA3Z2djdv3tTX1xfrsJCj4OBgX1/fXbt2hYSE8BFLS8sePXo4Ozs3a9bsEz8YHx/fp0+fQ4cOGRoabt26tU+fPhpZLxHRgQNkYkLt2mXcPHSIdHSoUyeNzQ+fERUV1adPn4CAAD09vXnz5rm7u3/iziqV6tSpU9u2bduzZ09SUhIRlSlTZuDAgcOHD7e1tf3SqXlW+8yZM+/fv09E1tbWU6dO/URWe3b79u3r3bt3Wlqah4fHnDlzvnQB35R3795VqVLl7du3Q4cOrVevnliHvX37tre3t4WFxf3794sXLy7WYUXUuXPnw4cPt2jRolevXmIdMy4u7rfffouPjz9y5EjHjh3FOqw43r6lsmUpMZGEd+S//iIvLzpzRtZlieny5csdO3aMior6/vvv9+zZY2xsLHzrxIkTU6ZMuX79OhFVr159zpw5zs7OGl7epUuXdu7cWahQIWNj44kTJyLXPp/q1q2bv7//Tz/9tHXrVulmmTmTUlNp4cKMm7/8QlFRyHCH/CE1NbVly5bPnj17+fJllm9ZWFjYZGNtba29GfpyR/xzx8ODEbGpUzNHRo9my5ez1FT51vRRYWFhXl5e6iH1okWLuri4BAQEpKen5/IgKpXKw8ODiBQKhYeHhyqf5PIXPBEREW5ubry+Z7Fixby8vD6W1BAWFpbl1/T8+XMXFxf+NOCl3qX7PSqV7N9/mZsbO3+e2dmxoCAWFsZKlGCPHiHDXR5hYWG8FMbp06fFPfLZs2cVCoWxsfHTp0/FPfKnPUpKsr9y5YegIE1OCl9k/cuX9leurH3xQsPzdurUiYhGjhwp7mFTUlJ4aurKlSvFPTIInj17xs9YhNPCYsWKubq6BgYG5v4NS6lUjho1SjhjkXK9H9i3jw0ezFJSMm6uXcuOHNHY5PAZN27c4EnrxYsXP3nyZPY7vHjxIjWn0/ioqChvb+/atWvzJ6SOjo6Dg4O3t3cu93VlyWq3trbOZVZ7dnv27NHXN2jZ8pr6RgrIbvz48UTUrFkz0c9yecR51KhR4h5WFDxNtVChQq9evRL3yAsXLiQiOzu7HP+DyKx6dbZ5c8bXKhVzcmKzZ8u6IDH9+++/PDuqW7duyXyb8If4y4uwHadp06Znz57VwMKePHni6ekpvKzxywAODg5v3rzRwOwgutDQUCMjI4VCIenWwBkz2OTJmTfnzkWGO+QbY8eOJaKyZcuuXr167ty5gwYNatGihaWl5ceKrZmZmdWqVatbt27jx49fsWLFwYMHg4KCNFwP4GPyScC9a1dGxHx9M26GhTEiVqyYrGvKKjIy0sfHx9HRUXgeFC5c2MXFxd/fP5cnTHfu3PH391cf8fb25sk4gwYNShE+U4JGpKamenl5FS5cmIj09fXd3NzevXv3sTvzwJC9vX32N87//vuvSZMm/CnRoEGD8+fPi7hIpZIFBjI3N1amDCNiRGz06IyAO2Ns8WLm7IyAuzx4mmefPn2kOPiPP/5IRAMGDJDi4B+DgLv2kyXg/vfffxNRkSJFpPjgt3//fiKysLB4+/at6Af/lkVERHh7e6tnBhQpUoSfsXz1bk0vLy9+/jNs2DDNbPlcsIAZGrJ58zJuDhvGcGlGS/z555/8knP9+vWfPHmS4306dOhgYWHh6up669atHO9w5coVV1dXoYtDkSJFXF1db9y48bFJRQy1C/bte6ary4jYb7/l5TAFWXBwsL6+vo6OzpUrV0Q/+N27d/X19XV1dW/evCn6wfMiLS2tRo0aRLRkyRLRDy5cbPby8hL94F/p119ZWBhjjF24wEqUYCNHst9/Z46OrHFjFhcn9+LE8ffff/NAdv/+/T/9upGSkuLt7V2yZEl+mdnZ2fnBgwdSLCn7O3XZsmXd3Nx8fHx4Jwxra+sc69OC9psxYwZ/i8x9OuaXT4GAO+RKenr6wYMHe/funeOFRs3z9fXl8bfscbOUlJSQkJCjR4+uWbNm8uTJP/74Y/369S0sLD6WXF66dOmmTZv2799/1qxZmzdvPnPmjOYfTj4JuJcvz4jY/fsZN/39GRFzdJR1TRnevXvn4+Pj5OQkbHg3MjJycnLy8fFJSEjI/XGioqKsrKx0dXVXrFihPn7kyBF+sb1NmzbR0dEirx4+IiAgoHr16vwX6ujoeOfOnU/fPygoqFy5cvzEa8CAAVnqYalUKh8fn9KlS/M7uLi45DEdJjmZHTzIBg9mRYtmxNmJWOXKbOpUduNGZsA9NZXVqsUUCgTcNe3cuXM8CT1LoOHdu3cvv0pMTIz6cZ49e2ZiYiJ1ZkQWCLhrP80H3FNTU3mXgqVLl6qPp6SkfN1TPTw8PMsUHTp0IKIxY8Zo7EEVYNHR0fyMRSisYWxs7OTk5OfnJ8pFfWEDfvv27bO8aklhwQI2eDArW5Y9fMgYAu7aQb1o+4ABAz6WXpSUlFS3bl3+JFQoFC1atNi2bVuOd46JieEhJ+Hjk729vbe3d5xamE+KULvA15fp6SHm/lF8h9OIESMkOj5Pc2vTpo1Ex/86S5cuJaJKlSpJFJ7w9/fXoovNvr6MiFlZMb7HNzKS7d3LVq1ip06xglLKfNeuXfyD/MiRI3MZAI2Li/Pw8OBvefr6+q6urmLtdUhMTPTz81N/pxZy+ISXtVevXjVo0ICIzM3NDx8+LMq8oEkJCQn8qsmGDRskmuLNG6Z+JejlSyb2bhwoCN6+fWtlZdWoUSMfHx9t2FYVEhJSqFAhIlqzZk3ufyoxMTE0NDQgIMDb29vd3d3Z2dne3l7I2BCUL19+48aN0i0+R/kh4B4RwYhYoUJMeP+bO5cRsSlTZF0WY4xdvXpVqJ5mYGDg5OS0Y8eOuK+91O/l5cU/ori5uanXLblx40b58uWJqEaNGh9LFAKx3Lt37/vvv+e/06pVqx46dCiXP5iQkCCceJmYmHh4eGT56BgfH+/h4cGfMKamph4eHklf2OEwISFxzx7Wrx8rVCgzzl6zJvPwYOqpP+3aZV6cOn2a2diw+PgvmgfyJD09nZ8EZy+tMGzYsI9dgP207MU6Zs6cSRJnRmSBgLv203zAffHixURUrVq1LKdop0+f/rqnuqmpaZYp7ty5wzMcP5YGC7l09uxZAwMD/u9saGjYrVu3Xbt2fVFmQG5cuHCB5/3Vrl372bNn4h48iwUL2OTJbMUK1qEDYwi4a4GIiIh27doRkZ6enqen52fvf+XKFTc3NyE1qXDhwq6urlevXs3xzkFBQe7u7sXeN3AyNzd3cXE5fvy4dKF2wa5djOe5L1gg7oHzPb7DSYqyKoKoqChewP2vv/6SaIovFRkZWbRoUSLK/WeEr6At5XQSE5mVFSNi69fLvBLJbN++nYe23d3dv/Rnnz9/7urqykuPmpqauru7f/XFZqVSGRAQ4OLiIgSJDA0NeQ5ffE4f5JKSkvr27ctfb78oMgVa4s8//ySiYsWKRURESHH8lSuZjg47dy7j5vjxeAuDnAVpzaf7xMTEOnXqkEhFAtLT0589e3b69OktW7bMnj17wIABvMn5pUuX8n7w3MsPAfdjxxgRa948c6R7d0bE/vxTvjUxxtjz588rVqxobGzs4ODg5eX1+vXrvB/Tz8+PB2S7d++u/jH4+fPnPBWodOnSly9fzvtEkF1UVJS7uzuPR1hYWHh6en5Fxl9YWJhQt718+fLZ67Y/ePBA6LFja2vr5+f32WMmJCT4+/u7uLiYm5tbW6fwOHv16szDg+VmH6FSyTw82LBhX/pQ4Ctt3LiR//aznx9PmjSp9FfJ/hkgISGBd6fcsmWLZh4XAu7aT8MB99evXxcpUoSIsmdXXbx48eue6ra2ttknGjNmDGlfhmP+EhISYm1tbWhoyM9YJM2aDA0N5fseypYte+3aNSmmePKEnTmTEXBPS2N16zI/PwTcZXbjxg1ra2siKlGixKlTp3L/g0lJSX5+fo6OjkLZhOrVq3t6ekZGRma/c0JCwtatW4VGvsKPVK5c2cfH52NddvJuyxamo8OIWC6uI3wrctzhtHLlymPHjuXxyCdPnly2bJlwc9WqVURkY2PzpXkqEhkxYgQROUq801pbyunMmcOIWN26mcnsd+4wBwd28aKcqxLPmjVreDG0r4i2C+7evSt8uCtevPgXfYRMT08PDAx0c3MrUaIEPwJvXJGbd2qh5RsRubm5aSwFB8TSqlUrIhonTamXlStZ7dqsdm3Gr0Ej4A7a76effiKiqlWrxmarz9C3b19XV9cFCxb4+vr+999/X/dBxt3dnYh++uknEdaaa/kh4O7pyYiYm1vmSMWKjIjduyffmhh7v91P9BDAuXPneCpHgwYN1DfXx8bG8mQHU1PTAwcOiDvpNy49Pd3Hx4ef6Ojo6Li4uOTx8sm///7Lr84RUcuWLa9fv57lDidPnhQagrVu3TrHk+moqKitW7d26dJF2EWhUCgGDTq3eDF79OgLFnP/PjMxYURs5848PCTIndjY2DJlyhDRn9JfEdy+fTsRlSpVSgOlGxgC7vmBhgPuw4cPJ6LOnTtLPZGQ4bh//36p5yqoeCJVly5dNDNdZGRkixYtiMjMzEzEJNCICObtzRwcmELBbG3Z/PkZ9UnPn2dWVqx/fwTcZbNz504TExMiql+//lc39A4ODnZ3dxeiTkZGRs7OzgEBATm24gwODp44cSKvrrZp0ybpQu2CzZuZjg5TKNiHpR+/XUuWLCGiSpUqCbHFhw8fGhoa6ujo3MvDZ7RHjx7p6urq6+sHBwfzEaVSyc+ZF2hBuOjGjRu6urp6enoaSAl0c3PjHxOknuijnj9npqaMiP37b+Zg+/aMiI0dK9uqxOPp6ck/XmUpi/d1Lly40Lx5c/7yVaVKFT8/v0+3EQ4KCvLw8BBasPJrjR4eHo8+8jEvKioqNDQ0+/imTZt4PZwePXqIvmsNJBUUFKSnp6enpyfFdbWVK9moUaxHD7ZoEWPaEXBPSEg4ceKEzIsAbbV27Voe6sxezDk5OTl7u1QjIyMbGxtHR0dXV1dPT08/P78rV658utbI06dPdXV1DQ0NNdlxOj8E3Hv3ZkRMyOKMimIKBTMzY3JfxZ07dy4RTZGgss2DBw8qV65MRFZWVupPuLS0NJ5Voauru3z5ctHn/TadOnXqs7Hvr8CD+KVKlRKC+FlqE6elpXl7e6tH+fn//IiICF5jV9j7L2Q6ZCkNn3vr1jEiZmaWWWoGJDJ58mQiatKkyadPskWhUql4lt+0adOknosh4J4faDLgfv36dR4TyUtgJfdWrlzJMxy1pJ9PvjNlyhQimjt3rsZmTE5O7tevnyi73aOi2MaNzNExo6wHETM1ZX37sjlzMhuCDR3KjI3ZypXs4UOGHvOaxIu289MVFxeXjxVtz73k5GRev5hXaeC5Tp6enjlmQtja2hKRxtoGbtyYEXNftUozE2qvN2/eZN/h1K1bNyIaPHhwHg+ePYX85MmT/ALeC812Bc+OZ6ROmDBBA3MJF5v37t2rgely0K8fI2K9emWO/PUXI2IWFkyaIhiaxHPDdXV1xS3pGxAQULNmTf7a1bBhw3/++SfLHcLCwry8vOzt7YWwkaWlpZub28c2hCUnJ/ONziYmJl27ds3xPoGBgfypUrdu3TDe3hbyidGjR0uRwcneB9wfP2YlSrCnT+UPuPv7+1tZWRkYGNz/xuMRISFsyRI2YQJbu5ZpMOybG9euXfuiHYoiunHjBq/MvG3btuzfTU1NPXz48KpVq/73v//17Nmzbt26hQsXpo8oW7asg4ODi4vL7Nmzt27dmiUE7+TkREQLFy7U1CPLFwH3KlUYUWaN6hMnGBFzcJB1TYwx1r17d+nyWCMiIngozdzc/MiRI+rfUi/1jr1jecT3rfA4jhTVIaOjo93d3Q0NDYmoSJEinp6eWaJFkZGRo0eP5qUDixQpUq9ePeETpr6+fvv27b29vUWpVtSnDyNiDRogEiGhBw/SqlatraOjo7G6T1euXNHR0dHMuQsC7tpPkwH3li1bEtHEiRM1MBdjTKlU1qpVi4hyUxgasuOVtf39/TU5aR53uycmMn9/5uzMDAwy4uyGhszJifn4ZHQC5yVluMhIVrw4+/VXVr48a9OGoce8ZkRERDg6OlKui7Z/kdDQ0OnTp5ctW5Y/hQwMDJydnbPE1nnTHU3ufVm9mikUTKFgIsboEhISrl+/7uvr++uvvw4YMECi8gLicnV1JaJ27doJI0JM/OXLl3k8eI5F0vnHrkGDBuXx4Hnh7/+4aNHixYsXj9bUS8zq1auJqFOnwTJU0zl/nikUzNiYPX6cMZKSwipXZkT5/YqTSqUaP348f+HKMbiTRzynim945ZeObt68yZuWq9fOsrCwcHFx+dgmHqVSeeLEicGDBwtxJV1dXScnp48l9Dx48IB3syhXrpxExdyyi4iIyF75Ab6IcF1t9+7d4h6ZB9wZY/PmMWfnjIC7LKGjoKCgNm3a8KdxvXr1ZC6TJa/jx1nx4mz+fLZ7Nxs7lpUpw3LatiKLFStWVKxYcfPmzZqfOjo6mu/1GT16dO5/Kioq6sqVK/7+/uqNUvluS3VZis8cOnSIh/40FkfV+oB7XBzT0WGGhkxoyLZwISNiY8bIuizGGOMFlKVL7ktOTu7Tpw8/G/D29lb/lq+vb46l3uGLnDx5slWrVkZGRl/Rv/SLhISE8ItpRFS5cuXsddt5p1YjIyNDQ0NDQ0NHR0exugIIoqMzmh5pJBn6G9W1K9PXT5027agmJ+UXjXr06CH1RAi4az+NBdx9fX2JqESJEhoLOrD30Rxzc/O8R3O+QfzjnCyJb8Ju9x9//DE36c/Jycn79+//3/+CeCUDIqary9q1Y5s2ZQ2jJyUx9ePFxbFLl1iZMhltToQYEUjk+vXrQtH27FmcYklPTw8ICHB2dubPoiwB9wkTJhDR77//LtHsOfL2Zubm7I8/mKsrE3YenjvHNmz4/M+mp6seP3587NixFStWjB49ul27dhUqVBACcJy1tbWk68+77DuchGuiYlV9Wbp0KRFVqlRJyFMJDQ01MjJSKBQabncmSEpi1tasSJEoH5+zGptUqVT++OMRIjZ/vsbmZIwxlp7OGjZkRGz27MzBBQsyXl7F7kusSUqlcsiQIURkaGgoaSfeuLi4uXPnmpubE5GOjg5/BSMiExOTvn37Hjx4MEu3eQEvNWNlZSW8JvC2Fp89+YmIiBCKuUl6fT0pKcnf39/Z2dnAwGAlSrnl2bp164jI0tIyx+64XyolhXl5sYEDMwPuycmsalXWoAFbsIB168ZcXJhkXa6z4qmHfNd+0aJFvby8NFD/TatVq8Z27cq8OX48c3GRbzUfiIuLk+W3o1KpevToQUQNGjTI+z5mpVL59OnTf/75Z/PmzTNnzsy+5U6lUvFSIpK2PVen9QH3wEBGxL77LnOkb19GxDZtkm9NjDEWFRWlUCjMzMyEayMrV67s0KGDuL+5LNlh6te0P1bqHXLvt99+I6KxmqpCGBAQUKNGDSHZIXvxR57nLm4vO/XrCGfPMj09pqPDAgJEnAEy8L035uZMw8HA8PDwQoUKEVHe25R9GgLu2k8zAffExET+OTDLlWANEKtewbfm2bNnRFS8eHG5FhAQEMBz9Jo0afKxsolZGsfVrj2KiNnbMy+vL/tk+Pw5q1uXEbHSpdl//4mz/tz43//Y6tWZN/v3Z/HxrGvXD96Ff/iBFZhcQKFou729/VcXbf8iL168yN4knFf8HDJkiAYWoC48nJ05w/T12Q8/ZIxs3sz69s16t+hoduUK8/Njnp7MxYXZ27PChZmBgVmW9CsDAwM7O7sePXq4u7tv2rTp/PnzGn44Xyr7Dieh6pdY+StpaWn8nHnJkiXC4NSpU4mocePGGqjal92vvzIiVqOGpqPNp05llIXUaDWdzZsZEStXjgkRwPBwVqgQI2ISn21KKjU1tVevXjzqffz4cQ3MGBER4erqamxszJuWe3t7fywl/OnTp56entWqVRNeGSpWrOju7v5FuX3JyckDBgwgacrPKpXKo0ePuri48KsIPClw0qRJ4s7yDUpPT2/QoAERzVa/vvVV9u1j1tYZyQpTp2YE3BljAQGMiE2enLFl0NyczZ/PJN03o1KpshTX1WTVbC3FM4nV/93PnGHVqsm3IK2wYMECvuPnY+0rRLdw4UIicnJy0sx02h5wD9y06ULLlq/U+4ZXq8aImKa2Sn3MiRMniMhBrbJNz549ieiPP/4Qfa4NGzbwUGyvXr3UT2TVS71rrH5lQcID7pqpf82lpqYuWbKEV70sVKhQll6XPPch933tPysggJUvz86dyxyZO5cRsVKlGK7RiCstjdWqxYiYBguCZZo/fz7Pf0mT8lPgo3fvel28OFqTESz4Qj737vW6eHHT+0ZzEvnll1+IqG7duprPgwgNDeUd+eTKcMyn9u/fT0Tt27eXcQ23b9/m+wJtbW3Vwwcqlers2bNjxozhn8q4unXrLly46KujuLGxrFOnjFLvGqs1UqsWK1SICW13jI1ZVBQj+iDCrq9fAOoes7S0NHGLtufFqVOniKhZs2aan/rMGdakCatXj/FMGx5wP3WK/f47GzqUNW/OSpTIiHpk+dOw4YDWrVuPHDly6dKlhw8ffvjwYf7K+PPz88uyw0koibBv3z4RJzp+/Dg/W371/ppbXFwcLzG0Y8cOESfKjefPmZkZI2IaCdJm1aMHI2I//aSh6RJjY5mlJSNi6v/OgwYxIta9u4YWIYHk5GRemKhw4cJnz2pumwL/L9OpU6ccvxsZGent7e3g4CDsdClatKirq2tgYODXXVhSqVSenp78aK6urqJ8NAgKCnJ3dy9dunSWpPtXGsuULujOnTunUCiMjIy+OuYYEsK+/z7jXaZaNXbsGDt1iqnHpTw92ZEj7P595uyccbfy5ZmPD5Pi8uXly5ebNGnCnyotWrS4ceOG+HPkR48fMxOTD0bu3GHFism0Gq3w77//6unpKRQKTdYGjIqKMjEx0dHR0UyIX9sD7oMHDyYiod1WfHz8qdatXzVpwuRum8YvjIxRq2zD99VKFPg+duwYT2J1cHBQz4AWSr1bWFjI1eIg/9J8wJ178+aNq6tr9ovYogfcJ01iRMzSkkVFZYykp7M2bRgR69RJkvfXb9by5YyI2drK88qUkpLCr72tVk+wFNvdu3eJqNo3fx1em/FW3rNmzZJuiufPn5uamhLRv//+K90sn8Cbf2qmL3GBwbfKuavnLsjh5cuXvE1c0aJFz5w5w3fN86aXnJWVlbu7e7AYV4zS0tjIkRnlaDRT9r9WLTZlCmvRIuO9tQAH3HlRaQMDA83vccnu+fPnPPir+anPnGEODuzMGWZtzRISMgLuXbp8EFs3NGTVqzNnZ+buzry9WWAg+zDRIv9JSkrKvsNpzJgxJE3TP16j39XVVRjZsmULEZUrV06U2gu5N2AAI2I//qjJOTOFhjIjI6ZQMM1ca3Z3d+9ia/uyb9/MjwpXrzIdHWZgwPJtt8P4+Hjey6Ro0aIavmY/Y8YMIpoxY4b6YGJiIu8OLZSaMTY2dnZ29vf3/1ipmS/i6+vLOxB26NAh5mtfd548eeLp6clLw3PVqlXz8PD41pteSoNvTfiKGqHx8czDgxkaZvQz9vL6/C6cU6cy9gISsYYNmYiXn169euXq6qqjo0NEZcuW9fHxwel6ppQUpqv7wYng4cOsfn35FpSzly9fSprDJwgPD+cX0WfOnKmB6dTxkrya+WSk7QH3unXrEtGFCxf4zXPnzhFRvXr15F0VY6xv375EtOl9ZZvo6GiFQmFiYiJdlsrNmzctLS2JqFKlSurvcwkJCbzsUaFChSIjIyWavUDKHnBfsWKF6Pvvck/0gHtqKmvUKOsnhLAwVqwYI2KrV+fzj31aIzIy45/0wAHZ1rB3717+KSJCsnAOAu7aTwMB9/79+xORs7OzdFN8WmxsLG9EJsV+soKqa9euRLRLvWqkTGJjYzt16kREvA8NV6FChcmTJ0vR5M3Li+noMCLm6ip5FYhatdj168zBgfGqJ0LAfdUqtmFDxp8sn7PyI5VK5eDgYGBgIF3R9i+iUql4cQPNnwDzgDtjzMWFTZuWEXDfuJGNH8/WrmUnTzI5OiZIju9wqlOnjvB55+7du/r6+rq6urdu3RJ9ugcPHvBdTUIv+vT09IYNG0r9TpfFhQtMoWCGhuzBA43NmdXUqYyINW4sebpMDjvJVCrWrFlGiYr8KTo6umnTpkRUunRpKZ6on8b7eGXp4MWzB/jFyy5duuzatUv03ULnz58vWbIkEdWqVeuLCn9FRERkSbovW7asm5tbYGCguCsEda9eveLplUeOHMnlj6hUzMeHlS7NiJiODnNxYblvAJeenvmzCgVzds5r55vU1FQvLy9eP1BfX9/NzQ0NdXPg6MjmzMn4Oj2dOTmx6dNlXVAOGjZseP36dalnUSqVjo6ORNS6dWvN7/O7dOkSERUvXlzSPo6cVgfcU1JSDAwMdHV1hSyGVatWEdHQoUPlXRhjjFdYEz4f8j2tTZo0kXTSp0+f1qxZk4hKlSp19epVYTw9Pb1ly5bly5eXotN6AZY94M5PLDTWszgL0QPujLGHDzMqLqp3Pdi3jzVvvq5w4SIaeDH9FowaxYhY27YyL6N9+/ZE5ObmJtHxEXDXflIH3M+fP893vD6WtR/lpk2bZMlwzL/41XotSUlLS0tr2LBhyZIlzczMXFxcAgICJM1+8vNjRkaMiHXsKEn9dKWSBQSwp09ZrVrsxg124wYrXZpFRmYG3GfOZL/8kvGnAATc2fsTYM0HrT6mfv366qk5GiME3MPDWalSbObMHGq4FzDCDif1yy0dOnQgotGjR0s06cSJE/kGX+GFQsPvRCpVRvLKhwnKmhYXx8qWZURs+3ZpJ8reK+XO3r0qc3NWunQ+7UERGRnJC2RXrFjxgRzXTPhbcEhIiPrgjRs3mjdvvnbtWukSZRhjoaGhdnZ2RFSmTBnhqtXHCEn3vJItr73j4uLi7++vmXRX8PT0JCI7O7vc7HK4fDmtceOMLHUHB6YWGfoCsbFs2rSM0yQTE/b779Ffd2p98uRJ9U51omxVLJgePmS2tszJiU2cyBo2ZG3bZvTJkLtctjrNbErgxQlLly792XbQEvnuu++ISAPhU60OuF+9epXXCBNGhg4dSkSrVq2ScVWMsYSEBF1dXQMDAyE2umTJEiIaJXSmkExcXNz3339fvHjxLGcMvAOMj4+P1AsoSL6FgDtjzMcno5St+nvf6NGj+W4JXHzOozt3mJ4e09Njsgcf7ty5o6enp6enJ1EcBAF37SdpwF2WvMJPryTv3aW+BREREUSk3uNddp07d86e7iedc+dY8eLM1jbZwaHz8+fPxTrslSvMzY2VKcOI2OzZGQF3xtj48czNrSCXlOHxuN27d8u9kAx8y6nmT4CFgDtjbOVKZm5e8APu2Xc48f4QFhYW6uUuxRUTE8MrR6u/Ymhyr9XWrRlNmGUvB7RlS0Yf07g4qaY4efIkf78QIiDx8fHly5evWaJE2J9/SjWrxPjHvapVqz579kzzs0dGRhKRqampXG/BUVFRbdq04WvIscuCUqkMCAhwcXHhl9OIyNDQ0MnJycfHB2kNGpaSklK1alX6sFl0dpGRkW5ubnXrjlEoWJkyItRhDwtjLi5MoWD29tPKli3r7e2d+4zjZ8+eubi48GdO5cqV//777zwt5VuQnMwuXmS7d7ObNzN+c82bMyL2LVW6P3jwoEKh0NPTO3PmjFxr4PlbUidMMy0PuG/cuJGI+vfvL4zwNJZz6l0g5ZC9sg2vurVhwwYNzJ6ampo9T41XcNaehKN84RsJuLP3pSdr1cpsi52cnFynTh0t2S+Sr7Vvz4jY2LFyr4MxxtioUaOIqK00yfYIuGs/SQPuclXOzRHPcDQ2NpY31z5f4I0HZekq+TG8YmNoaKjGZgwOZk2a9CEiKyurO0Jj069y/TqbMoVVrJhZp7tKFbZmTWbAPSaGVazIdHU/GnAPC2P5us/95MmTiWjevHnCyKxZs3r06JGQkCDLeniLguka35StHnBPT2cNGxbwgPuFCxey5JWnpKTw4s4rVqyQdGpvb28isrS0FJ5jGusmIuSVa8MWYpWKNWyYsW9GCkqlslatWkS0YMECYXDWrFlEVL9+fe25ZPuleFKaXNcI+Sb4xo0byzI7l5aWNnLkSCJSKBQeHh58MD09PTAw0M3NrUSJEjxaqqOj4+Dg4OXlJd31M/gsfs5mbm6eY9pvWlqal5dXkSJFeDGi+fOfiZg4d/FiHE9nIaLvvvvus5HQhIQEDw8PXiHQ1NTUw8MjWe4mi/nJixeZX48bx4jYiBHyrUajnjx5UqxYMSJatGiRjMtITEwsWrQoEV25ckXSibQ64M6TcBcvXsxvpqSk8KJycdJd2c8dXtlmyJAhwgjfRCP1b+tjYmJidHR0DA0NRemy8u34dgLucXGsenWlo6PnpEmThcE7d+6YmJgQ0c6dO0Wf8Rvx118ZDWq0JGkxMjKSv4H5+/uLfnAE3LWfdAH3uLg4HiTdsWOH6Af/OjyttXfv3nIvRNv9/vvvkhab+lKvX78mokKFCmm4j5bQZN7c3Dz3BVIFjx8zT09WrVpmnL18eebmxgIDM/KThIA7Y2znTkaUc8B91y7m6sp++YVpvF+7aHg2zMCBA4URXmTm5s2bsqxn586dRPTDDz9oeN4tWz7YAh4d/QXFc/MdlUrFAzHqnc34a0suqx/kRXp6Ou+3/MsvvwiDvJp83bp1Ja39On06I2L29kxLos28mryRUV6rLedo5cqVRGRjYyPUtH327JmJiYlCoZAxCTHv+Mc9iZJRPmvZsmVENEILQmleXl68leUPP/wwefJkXuiGq1u37qJFi8IKZN+JfIgX/R80aFCW8X/++YdfEuPP5zxmD+RIpVL5+fnxzthE5OTk9PDhwxzv6e/vz++mUCicnZ1l2T6SXymVrF07ZmDAXr3KGHnwgCkUzMSERUXJurJMSqXyzZs3np6efn5+ly9fFrHyVXJyMn9D79Kli+wNdXnNumHDhkk6i1YH3Hl7k5MnT/Kb169f15JwD69ss3LlSn4zMTGRV3LQQNH9HJ05c4aIGjRoIMvs+de3E3BnjF2+fMvAwEChUBw6dEgYXLduHREVLlz40aNHUkxa4F27xhwcmNw1rj7g5eVFRLa2tqJnGSDgrv2kC7hPnTqVp2jJfm4kCAsL00yGY37Xp08fItrCW3lqgSNHjhBRq1atND91cnIy/9fQ09Pz9vbOzY88e/Zs0aJFrVunCHH2kiXZ6NGZcXZBTAxTj/tFRTGVKuu12MjIjLBdWhrr0CGvD0cugYGBRNSoUSNhhBeZ0ViNoCx4/clatWppctL795meHitUiEVHa3Ja2Qg7nIScp9evX/PmeEePHtXAAs6ePct3NQm9HxMTE3m4J5f/l7+Ovz+rVIlpvEHApwwYwPr3Z6LXvI2KiipevDgRqVcdcXZ2zrLXPD+KiYnhGcGybJEfNGgQEa1Zs0bzU2e3e/duIyMj/q/Bd424ublJ0bEc8uLhw4dGRkYKhULoTfL8+XOhbIutra3U77YJCQmenp68ITlvf/ru3Tvhu8HBwbx1B6/3gFa6X+PHHxkRU7uEzBwdGRGTeLtY7k2fPr1u3bqkxsjIyMbGxtHR0dXVlQfir1y58hVp0K6urkRUqVIl9SeVXB4+fKijo2NsbBwZGSndLNobcE9PTzczMyMi4fFv3ryZiPpqwY7NLJVtLl68SER16tSRaz3Lly8nIldXV7kWkE99UwF3xtjChQuJqESJEi/UNjH17t2biBo2bIjtEblx7Bjr1IkJr8lbtrDNm7Ul74lLS0vjrZUXLlwo7pHFDbinpKePvX9f+LP7zRtRDptfPE5KUn/450QqDStRwD00NJSf+l+6dEncI+fRnDlzNJDhmN/xmg83tKY05Pz584lowoQJssyuUql4BRKe9f+xC0iRkZE+Pj6Ojo78rKBFi9uFCzMXF+bvz0R5q9y8mb3P2ch/+B6FIkWKCCNTpkyhD4vMaFJ8fDwvdaLJ14F+/RgRGz5cYxPKSdjhtF2tX+eQIUOIqGvXrhpbRvbgr6+vLz+tjRbvuseKFWzQoMzzuqlTmbZFk5RKNnnyBx1c+/dneU9NHjNmDBG1adNGGMl+kSP/mjFjhoafroJ69eoR0fnz5zU/dY541mD9+vXPnj2rPSkUkMW0adOIyN7ePj4+3tPTk8fETExMPDw8NJbf+eLFC1dXV11dXSIqVqwYrzXk5ubGe+oWLVrUy8sLp99f6eRJRsTKls08p9y7lxExO7u81uMXw6FDh3R0dHR1dXv16tWjR486deoUKlSIcqJQKMqVK9esWbOBAwd6eHj4+PicOXPm+fPnH3tt4VsSjYyMrn5dk18J8KtHy5Ytk24K7Q24BwcHE5GVlZUwMnbsWCmiSF8qNTU1S2WbtWvXUk4bfzSGXzxfu3atXAvIp761gLtKpeKt6lq1aiW8QUZHR1esWJE+3CYMH7NlCzM2zvyMPXOmVJU08+LEiRP08fJ/X03cgHtCerr9lSsPEhP5n7ff2PWem/HxPYKChIcfI9IJq0QB9+7du8v7HvcxQoajZhqo5EdxcXE6OjrqPd5lx6Nm22StiLxhwwb+ibFXr17qn13fvXu3ZcuW9u3b8+/yz7e9e/f+++8LIm4Z2rGDTZqkDR+pvh6vevn6fQkVXmTGxcVFrvWUK1eOiDTW0SEoiOnoMAMDScp6aKHsO5yuXbvGX1hCQkI0towcy5u0bNmSiCZOnCjWLKNHM2Njtn59xs0OHdj+/WIdWzRt2zITEyZs7qpYkd27l6cD3r17V19fX1dXV2gGlp6e/t133xHR3Llz87ZYrRAREWFmZqZQKDTc7SwtLc3Q0FChUMTI3nL3va5duxLRrl275F4IfEpCQkKFChWIiO87USgUffv2laXmz+XLl5s3b87PiHjcX09Pb+zYsVFaU/wkv6pRgxGxv/7KuKlUZnQHel/bQy5Pnz7lzzpPT0/18aioqCtXrvj5+Xl6erq5uTk7O9vb2xsbG+cYiDcwMMieDn/+/Hm+NXnjxo1yPbrseO/3SpUqSRcA1N6AO78A0qNHD2HEwcGBiAICAmRcFXtf2aZq1arCCN8ZsXz5crmWVLt2bSK6ePGiXAvIp761gDtj7PXr16VLl87yGhoYGKirq6ujo3PixAnppi4YtmxhvXuzSpUY39+inQF39r78n7glyaQIuItyqPzoZnx8HwlqL0oRcD958iQ/yVbfGaM9du3aRUQlS5bUhp2JWujs2bM8SUruhWSytbUlotu3b8u7jGPHjvGEHQcHh+fPn/v7+7u4uPC+JkSkq6vr6Ojo4+MTK2I/MsYYY5s3sxo1mLs7mz9f3ANrVKNGjYhI2EievciMhrVu3Zo0VduEMdajByNiWtMWQVo57nBq06YNEU2aNEnDi5k5cyYRNW3aVBi5fv26rq6uvr7+vTyGnN8bPZpNmMDKlMmoyK+1AfepU1n16ox/Ysh7wP3EiRPlypUbNWqUMJK9UW1+N27cONL4Rvlbt27xUI4mJ1X36NGjLBsUeJZVcHCwXEuC3AgJCalbty4vBluzZs3Tp0/LtZITJ044OjoOHDjQ1tbW1dW1ZcuWrVq1sre3Fzep61u0YgUjYo6OmSO//MKI2I8/yrcmlpqa2qRJEyJycnLK5Q4Y9UC8q6uro6OjjY0NbxeRI23L31IqlTx56/jx4xJNofexfwvZlSlT5ocffihWrNiwYcP69etXtWpV/qaVpZyQ5vGAO98gxl27di3LiCalpKQEBwfr6uoKbTQAPqZkyZJbt27t1KnTzJkzW7RowV9SmzVrNmvWrDlz5kyfPv3SpUtyr1HbGRrS4sU0ciRdvSr3Uj5uyZIlx44d27p165kzZ4RUzTxKSUkhosePH/Me0Z9Qf/fuFMY+fZ9JFSsS0dbwcH6zW/HiFiKtM7+IUiqFhz+odOmhISFxSuWnf8Rg797rvr6fuMPbt2+JaN26dXv37hVrna9evSKi6dOn85IC2qZXr17Lly+/cOHCjh07eKN1UCfv+Ul2sbGxjx49MjIy4m02ZaSvr+/u7r5ixYpz585VqlQpOTmZiHR1ddu0adO3b9+ePXvyJG7RDR5MgwdLcWCNqlq16qVLl0JCQngf2qpVqxJRSEiIjOv5559/QkJChMKy0rl6lfbvJ1NTmjZN6qm0wurVq5OTkwcMGMCbpnLr1q2bN2/erFmzNLyYqVOnPnv2bJraP33dunUHDx68cePGpk2b8oSSjylTxvbVK/9PH79pUzI0JGtrGjKEJk2ibdvEWbYUWremhw9p8WKaPp2IKCyMevb8zI/Y2r4JDW39se+am5ufOnVq+vTprq6uxYoV46W3Fi9eLFyGzO8mTZq0du1aPz+/uXPnVq5cWTOT3rx5k4jq1Kmjmemy8/Dw2L59+8aNG3klmXfv3j179szY2Fhj/wLwpWJiYubOnbtq1aq0tDR9fX3GWNu2bVu0aCHXesLDw0+cONG/f/979+4pFApdXV0bG5vHjx/zsyb4eoMG0YwZdPIkhYRQ1apERMOH07x5tH8/vXhB5crJsqjx48dfuHChYsWKW7du5Xmon2VhYWFvb8/7oAoSExMfPXr0+PFj9b8fP36ckJDAqxlrD11d3eHDh8+YMWPt2rXt2rWTYgptDHCkp6dfuHDhzz//DAgIiI2NJaKdO3cWK1asTZs2ycnJfI+DjLIE3JVKZVBQkEKh4Gnmmnf79u20tLQaNWoUmFMikFSHDh0mTpy4bdu2hIQEYbBp06YKhQKnX7nUrRtt2EDLl8u9jvdu3LhRrFgxS0tLYaR8+fLm5uY6Ojr3798XcSJ9ff2UlBSe6v4JRVNSklSqT98nOT2diAzfXwD/6HXwgktH7eET0ZPk5JjPBdyLREd/9h/f2Nj47du3PPIuCl5CLctVltTU1H/++UcDsa0skpOTAwMD1c+HFAqFlZVVUFAQ33sLWWRPEZDX9evXGWO1a9cW60LgV1u7du3u3buXLVsWGBiYmpr68OHDGjVqjBo1iqfuwqfxxgBChL1EiRJFixaNiop68+ZNyZIl5VqPuO93HzNzJjFGY8fSJ6O7BUflypUNDQ0rVaqUZdDHx0fzizE1Nc0+b+XKlfX19aOioqKioj7xs8nJ7NGjzxy/bNmMuMf06VSjBp0+nafVSm3pUrK3p379iIhSU+lzZwdkaKj32VOIzZs3b9y4sXfv3uHh4U2bNuUVwAqG8uXLDxw4cOPGjYsWLVq/fr1mJpU94H7jxg0iEnLybt68yRirVasWL8wNWoUxtn379ilTprx+/VpHR8fFxWX48OFt2rRZvXr10KFD5Uqs5KnKKpVKOG0TRmRZT8Fhbk79+pG3N61bR8uWERGVLk09epCvL23YQHPmaH5Fvr6+a9asMTQ03Lt3b7FixfJyKBMTk5o1a/KucoJff/119uzZmzZt6tixozB4+vTpkJAQXi9ELsOHD//ll1/8/f2fPn3K9wCJS4sC7iqV6uzZs7t27dq9e3dERAQf/O6777p16/b3339funTp3bt3fn5+8i6S3n985X1TiSg4ODg5Obly5cqFCxeWcT3a83EatN/8+fMnTZokpAJFRETw3T08SQ1yY8UKatqUunUjOWILH1AqlS4uLo8ePTp27BhPNiQiT0/PqKioWrVqnTp16hO7ur7Io0ePunbtam1tffDgwU/f09jamj53Vbywvj4R9ZX9n08+RfT01B/+5qpV0z+3LSBt/HjlsGGfuMPatWtXr149cuRI3v1MFD4+PosWLXJ3d+/UqRMve5WWlmZvb3/37t3Lly8Lb4WasXTp0hkzZkyYMGHp0qV8JDg4eM+ePSqVSoozpAJA284QtGc9PPff0dFx/PjxaWlp/ALSmzdvEHDPDX62oB7grly5Ms95lyXgrrEU+3Pn6OhRKlyYJk2SeiptUb58+ZSUFC8vr1GjRpUoUULu5WQVHR29aNGitLQ0Ly8vR0fHT9xTR8foswEiMzNatIiIyMSEli+n8eNJ7iyvT7G0pMmTafJkIqIKFSgo6DP319ExUqk+c6fhw4dfuHDh9evX9evXX7lyZS4zHPOLqVOnbt26devWrTNnztTMRXoe75Zrd35KSsq9e/d0dXWFsJfsFwDgY65everm5nb+/Hkiatiw4cqVK/mmIldX1zVr1owfP54XeNS87OF1BNxFM2oUeXvT1q00bx6ZmmaM+PrShg2qGTN09PU1uZb79+8LVbKzpKuLZfjw4fPmzdu/f/+LFy+E1jtt2rQxMjJydna2sLCQYtLcKFGixA8//LBz586NGzf++uuv4k8gUamaLxIUFOTh4WFjYyOsqnr16h4eHkI9vuTk5H79+hGRnp6evK1B09PTzc3Niejt27d8ZOvWrUTUq1cvuZb0888/E9GSJUvkWkD+9Q3WcM9OpVLx/jnNmzdHq/HP2rKFDRyY8fXcuczQUP4a7itXriQiGxub5PdN/XJsLJZ3qOEuonxUwz0lJYUHs7y8vITBSZMmEVHTpk1zWeBPFM+fP+f9mtSr7PEs+9GjR2tsGflISkqKgYGBrq5ufHy83GvJMHDgQCJat26dvMuIiYlRKBRGRkap79s1e3p6EtG4ceNkXVe+wWs8qr8d8N+sXO2LHz58SEQVKlSQeqJWrRgRmzNH6nm0S6dOnYho5MiRci8kB25ubkTUunVrsQ44ejRbsSLj6y5dmKGhltZwP3aMMcZSU1mNGszQMK813AU3btzQ1dXV09MLCgoS54hapm/fvkS0fPZszUzHL0BmqaKuMfy6svoL9ZAhQ4ho1apVsqwHchQREeHm5saj2GXLlvXx8VE/tY6KiuLVHfbs2SPL8ni2q7OzszDCPxSI1TbjW+fgwIgy+3QzdqdXr+6VKvn5+WlyFfHx8dWrVyfpu1zwejIeHh7CCM92X7p0qaTzfhbvRVS6dGkpAnFy7uO/e5dmz6a2bYNq1qw5d+7cR48eWVtbT5s27ebNm3fu3JkzZ46Qb2toaLhjxw4PDw+lUvnzzz+PGzdOrqtqDx8+jIuLs7S0FCrbyJ6ulSXjHuCLrFixwt/f38LCYseOHdhg+EXc3cnKSuY1REdH8xjrkiVLDA0N+eCkSZMSExP79u0rtJUH+GoGBgaLFy8morlz5wqbz2bPnl2mTJnz58/7frKmvLimTZsWHx//ww8/CCVl/P39jx07ZmFhMUeOrZfaLygoKDU1tUqVKqY8cUYLaMkZi1DZRv99ApHs53L5S6VKlXR0dEJDQ9PS0vhI9px3TbKysjI0NAwLC1OvlSe648fp33+pWDGaMEG6SbTR0qVL9fX1N2zYwNNjtUdwcPDatWt1dXW9vLykOP6qVSR37avP0NentWspNVW0A9apU2fo0KFKpXJCAX2Wz5k27Vzt2m6LF5N4lfc+5tWrV2/evClSpIh6yUdNyp7Pjgx3raJUKpcvX25ra7tixQpdXV03N7fg4OCBAweq7yyxsLD45ZdfiGjChAmSvsF9DDLcpTVqFBHR6tXCwL8tW+5/+HDt2rWaXMXcubeCg+/VqFFjw4YNkk7EE4XXr18vnD3ykTVr1sj7jGrWrFn9+vXDw8P/+usv8Y8uegj/s549Y15eGZdz+J/Gjdu6ublduHDhs7lymzZt4p+Ofvzxx8TERM0sWN2uXbuIqFu3bsII72Jx9OhRzS+GMaZUKk1NTRUKRVRUlCwLyNeQ4X779m1jY2Mi2rdvn8YmzddSUph6qmhMDFu8mJ0//8F9nj9nO3dqaD28ckibNm2EkbNnzyoUCmNj4ydPnog7l7gZ7oyxBJn+o2mDdMaSJHj4UmS4czwB4eeffxZG+DlZ+fLlNZM9feHCBYVCYWho+ODBAz6SkpLCCzcvX75cAwvIjzZu3EhE/fv3l3shGZKSkvT19XV1dRMSEuRdybJly4hoxIgRwghvYcLr20Ju8CJO9+/f5zd3795NRF27dpVrPTw568aNGxIdX6VS9eu3rUKF1N9/l2gGrTZu3DgSNZFcFNnfmPIuIYG93y7IGGPPn7MpU9ibNyLOkFc+PszXl73fnMMYY9HRTMQdqjxGTESHDh0S7aBapUsXRsRmzJB6nsOHDxNRq1atpJ7oY8aPH09E8+fP5zfT0tKMjIwUCsW7d+/kWhIITp06JZT6cXR0vHv37sfumZ6e/t1339GHecEaw+OPPXr0EEZ4V6eCuglG05KTn7Vr51anzvn30YS4uLhChQoR0e3btzWzhDVrGBFr0eJFcHCwBqbj3QiEFP709HQrKysiOsb3bcln3bp1RNSiRQvRj/xlAfdNm5j6btFt29iaNR/cYdo0NmlS5s2BA9njxxlfR0Qwb2/m4MAUiow4e5EizMWF+fuztLQvWMPx48d5tfQmTZq80fgZkLu7OxHNUdtNyk9KwsPDNbwS7s6dO0RkbW0ty+z53TcecI+Pj7ezsyNUY8iDpUsZEfvuOyY8ZSIjWaFCTF+faeA9686dOzx6devWLT4inJPNnTtX9OlED7iD6KQLuN+9e5c/2YR4Vnp6eoMGDTTzAUClUjVq1IiIZqh9Qv7999+JyM7OLlU98ABqRo8eTUSLFy+WeyEZ/vvvPyKqWbOm3AvJWtkmLi5OR0fH0NAQz6Xca9++PREdPHiQ3+RFZqpWrSrXerp3705Evr6+Eh3/wIEDRFS+vHVCwrdYfE/2sgbZ+fv7E5GFhYVQ5FMKffsyIqZ2bU5mr1+zwoUZUdZUD3EtWbKEiCpVqpSsfvGhwLh4kRGxQoVYdLSk8yxYsIBkrVTWqlUrIjp8+DC/GRQUREQ2NjZyrQe4sLAwFxcXHmqvVKmS8Db6CUI21aNHjzSwQnX79+/PkmzKA6bCZ0/Io+nTpxPRgAEDhJFRo0YR0ZgxYzQw+3//MUNDRsS2b9fAbIwxtnr16izX7+fPn09E3bt319AKGGOMnT59Oku+clxcnJmZmYGBQVhYmLhzfVlJmdBQevgw8+ajR5Rl8+j167R2LR07lnHz/Hl69Yo2bqS2balUKRoxgs6dI1NT6t+fDh6k169p2zbq0uXL9uu1a9fu33//LVeu3IULF5o3b/7o0asvegh5lH3T8ZMnTwIDA0uVKqXJZWRZj+y7syE/GjduXHBwcI0aNRbxFlHw5UaOpAoV6MoV8vHJGClalPr2pbQ0GjtW8tknTpyYlpb2888/C53rN27ceOXKFUtLy0nfTkM30Ag7O7tRo0alp6cL28x1dHS8vLwUCsXChQufPn0q6ezbt2+/dOlS6dKlp0yZwkfevHnDz894rQNJZ8+/tK1MivacsWRZyY0bN1QqVa1atfBcyr0sNWQqV66sq6v76NEjYZuwLOuRqG8qY2z27NlE5O4+0cTkWyy+J5Q1mDx5cnJystzLodTUVH6e4+HhUVzKxqazZ5O+Pm3YQFevSjfJF5g5k2JiqHNnatJEwlnGjh1btWrVhw8frlYrdFBwNGpEbdpQbCxJXLRB9vott2/fVl+A7OuBpKSk33//3c7Obvv27SYmJh4eHkFBQU5OTp/9QQcHh759+yYlJU3mXZI1CCVlpDZixAhdXV0/P783b97wkTFjxigUCh8fn9jYWEmnjo6m3r0pJYXc3GjAAEmnyjRw4MBChQr9888/Qe87fQ8fPtzIyOjgwYNSf5wU3L9/v0uXLvb29sK/ORHdvXs3JSWlYcOGvPeGiMSv4T5+PI0ZQ0lJGTdv36bhw+nUKdLTIycn8vGhV69oxw5yciIDg6+com7duv/991/9+vWNjTs5OJQODBRr7Z+X/eNr4cKFmzVrprkVfG49ALmxZ8+eTZs2GRkZ7dy5k1eVga9gbEzz5xMRTZtGMTEZg/PnU9GidOIEHTok4dQHDhzg1as9PDz4SFxcHP968eLFJiYmEs4N3yQe1/jnn3+E8nZNmzbt1atXUlLStGnTpJs3Pj6eH3/hwoV8lyURTZs2LSYmpmvXrrykAGSnUql40nHdunXlXksGLTljSU5Ovnfvnp6enrCbm3eWk31h+Qsv6CQEuI2MjCwtLdPS0p48eaKB2bPPImkReV9f35s3b1aoUGH48OFSHD9fcHV1rVOnzuPHj5cuXSr3WmjFihX379/nV4IlnahaNRo9mlQqGj+eGJN0qs+7cYM2byZ9fVqyRNqJ9PX1V65cSURz584NDw+XdjJZTJ9ORLR0KUlZFFveAHdYWFhkZGSxYsXKli2rDeuBgwcPVq9eferUqfHx8U5OTsHBwXPmzBH6b33WkiVLChUqtHfv3mNCZqtGIOAutQoVKnTu3Dk1NXXz5s18xM7OrkWLFnFxcTt37pRuXsZo8GB6/JgaNiRN5l6amZkNGDCAiLy9vflI8eLFf/jhh/T0dKkryHNJSUl9+vSJjY1Vj61HR0f36dMnLS3tu+++M/jqIPVHfHHA/coV8vLK+HPxYg53aNKEGjfOCEIRUaNG5OxMW7bQ69d08CANHEhmZnlbMhERlS1b9t9//7WxWRgerujQgfbuFeGYn/bkyZPp06e/ffvWzMysXLlyks+XO/iUCF/hyRNaseIuEXl5edWuXVvu5eRv/fpR8+b0+jUtWJAxUrQozZxJRDR+PKWkSDJpamoqT/WdO3eukNvFPxc1bdrU2dlZklnh2yZkOE6aNEnIcFy8eLGpqemff/555swZieZdsGDBy5cv7e3t+/fvz0euX7++detWAwMD7M75hIcPH8bHxxcvXtzCwkLutWTQkjOW27dvp6Wl2dnZCRebteRKQP6SPcCdJQQvHV9f35o1ay75MOgo3ezp6em8Wtfs2bNzHxwpeHR1dXnzg99++y0sLEzGlbx582bevHmkqR1OHh5UogSdPauJD5ufNn48paeTmxtVrSr5XO3atevUqVNsbGzB7Eneti01bUoREbRpk0QzJCUlPXjwQE9Pj7eX0LwbN27Qh+9rCLjLJSQkpGPHjl27dn3y5EndunXPnDlz8ODBChUqfNFBSpcuPXXqVCKaMGGCJneSIeCuAfzK8dq1a9PT0/kIbyW6atUqJtmV3vnz6cABKlqUfH2/Pg3664wePTpLCj//F1i/fn2KRKETNaNGjbp+/XqVKlXWr1/PR1QqVf/+/R8/ftyoUSNesFRkX1SAZvp01rYtW7o040/Hjmz8+A/u0LEj+/tv9uoVK1mShYSwSpWYpOX+lUo2ahQjYgoFk6iKbEREhLe3t4ODA6/ubWpqSkTdu3eXveUXY0ylUhUtWpSIXr58Kfda8qXsNdybN2/u4ODw2ea9EtFMDfe0NNakCdPRYePGXZJ0om/H1atMR4cZGLCQkIyRtDRWowYjYkuWSDKjp6cnfVi9+sGDB4aGhjo6OpcvX5ZkStRwzw+kq+HOKZVKfonut99+Ewb5vop69epJ0f3i0aNHvMdXYGCgMMh7lU+ePFn06QoYno3bt29fbajDq1QqTUxMFApFtMRlcz+L59QMHDhQGOEBiIsXL8q4qnyH7/wtU6aMMDJ27FiSuGeAUqmcMmUKPyEfOnSo+rdCQ0OJSF9ff9CgQQsXLjx06NCjR49EOZ3jSWeVK1dO+6KWUwVUz549s/z30bxhw4YRkZOTk8ZmXLuWETFLSybjhz9fX0bESpaUuvB4pgcPHhgYGOjo6Fy5ckVDU2rSgQOMiJUvz6T52CV7z5Jff/2ViP73v/8JI7z+7WOhvR5ILzo62t3dnSfMFi1a1MvLS5mHBscpKSn80vKyZcvEW+NnBJ08ubRJk23DhgkjO/r33968+bMC+bIgE5VKxX+zQkH/1NRUnuB75swZKWb85x+mq8t0dNj7Fg+a1rJlSyJau3atMMLLPO7cuVPSeflHAFNTU/WuvzyfrGjRohK9PH5xwN3dPfPmnDk5B9wZYytXMicnyQPunJcX09FhRGzYMCZWv6uoqKiNGze2bdtWVzejVqOpqWm/fv0WLlzI80kbNGggV6NUwePHj4moVKlS8i4j/8oecNeYgICAgICALIOaCbhPn55xhhkRIek835bBgxkRU+sowwICMnoyvXol8lzh4eG8cfTRo0eFwc6dOxPR8OHDRZ5MDQLu2k/qgDtj7NSpU0RkZmb24sULPpKYmFixYkUi2rhxo+jTZQ/u8P2VJUuWfPfunejTFTABAQEyNpnPgtdqtLW1lXcZjDH/WbO62NqueP95NSUlxcDAQFdXVxsSKfIRlUrFa5fFxMTwkVWrVhGRq6urRDNGRkbyTq16enqenp7q37p7926VKlUUCgXPvBMYGBhUr17d2dnZw8PDz88vKCjoS4MdqampNjY2RPTHH3+I+mjyqxwvgmrStWvXdHV1DQwM7t27p7FJlUpWpw4jYvPmaWzODyQmMisrRsTWr9fovLxri4ypSBJSqVitWoyISXDqwhjjtRH69+8vxcFz48cffySibdu28ZuvX78mokKFChXAX6VWUqlUPj4+/CKHjo6Oi4uLKKdhBw8e5L9HzWVbHj/OiFi7dpkjjRoxIoYcBVEtXryYiDp16iSM8M4xffv2FX2u8HBWpgwjYrNni37s3Nq1axcR1ahRQxjhofDmzZtLN+nNmzf53lYfHx9h8NSpU7q6ujo6OkeOHJFoXhEC7gkJ7MwZxoPPQsBdqWT16zMDA00E3Blje/YwY2NGxNq3Z+/P/L9GYmKiv7+/s7OzULvH0NDQycnJx8cnLi6O3+fBgweVK1cmIisrqzt37ojzAL7K3r17s/zPhC8iS8D96dOnvDW5tbV1UlKS+rc0EHD/99+M65mnTkk3ybcoPJwVLsyImFoMnHXpomrR4va4cXPEnWvw4MH0Yb/4gIAAIjI3N38lenRfzcOXL3suWzbc21u6KSCPNhw71nPZsnXqz0IJaCwIzoP7JiYmz5494yOSBvcLpNu3b/Nty7a2tpqMT2W3bds2Ivrxxx9lXEOGhg0ZEfv3X37rxfXrLnZ2jerUkXVN+RLf7yJsqzp+/DgRtWzZUoq5bt68yQPfxYsXP3nypPq3Dh48yC8s1a5de9euXevWrRs7dmzbtm3LlCmTfV+vsbFx/fr1BwwYsGDBgv379z948ODTIXh+FaFGjRpS7ODJp6ZPn05E9vb2svyb8B1OkyZN0vC8p04xImZiwp4+1fDMjDE2dy4jYnXrsjxkx36NmJiY0qVLE5Gfn59GJ9aMP/5gRMzWlkmweWXMmDFEtHDhwizjGvtfw4MVN2/e5Dd54W9Jg1kgePv27XfffcffdFq0aCH8FkTBU6yGDBki4jE/5cQJRsTats0cadKEEbHz5zW0gG9DdHQ03wZ6//59PvLixQt9fX19fX0hw0kUaWmsRQtGxFq31vQbirrU1FTeXkK4eJ+QkMBrYIr7/0UQHR1ta2tLRD///LMw+OrVK36u6CFRsRTGmCgB9z59mI8Pa9eOvXqVGXBnjP33H9PR0VDAnTF24QIrWZIRsVq12PvP5rmVnMz272e9ezNHx4zOb7q6uu3bt9+8eXOOe58jIiJ4o1Rzc3PpLoZ81syZM4lo+vTpci0gv9NwwD02Ntbd3Z0XADU3N1+wYEGW2LrUAfeoKFahAiOSqv7SN87TkxExO7vMfTb37t3X19fX1dW9fv26WLNcu3ZNR0fHwMAg5H39mrS0tBo1aki9kZ8x9igpyf7KlR/UdmCBtln/8qX9lStrRT0zy07IcFQvwdG8eXMimjJlilizKJVKXuhDY+VrCipeAZ9vlpRoa2pu8ExJ9d+mPJRKZmLCFIrMugwbNjAiNmCAnKvKn3i/kB07dvCbb968WbFixenTp0WfaNeuXbyiY7169Z48eSKMq1QqT09PntXep0+f+Pj4LD8YHR195coVHx8fd3d3JycnGxsbXo5Gnb6+vnoW/JUrV4QSTElJSeXLlyeiffv2IS1UEBcXxz8nC8mzGsNz4uTa4fTDD4yIubhoet7nz5mpqfpVQo1at24dEVlaWhbAPUBKJatUiRGxD6/hiYKfFB07dkx9MDAwsGbNmkJATTrx8fH8w4LwoZIXJh47dqzUUwNjTKVStWjRomzZsj4+PqK/dzx8+JAXEdVQHTx+sbF168wRBwdGxM6e1cTs35IhQ4aQWsHM48eP9+jRY+TIkeLuZkhNZW5urHx59vq1iEf9GrNmzcqSwu/m5kZEI0eOFH0ulUrF08Xq1KmTmJjIB9PS0vgLdZs2bfJS6+mzvizgrlR+cCVE/easWfL/vwsNZdWqMSJWtiy7du3z91cq2bFjbPBgVqQII2JErGrVm82aNVu1atXrzz0Hk5OT+/Tpw3e2ekuc8pmQkLBr1669e/dmGedXOHfv3i3p7AXYqlWrSpYsWbly5dsSXxfi28p4kohCoXB2dn724UWh9PR0Hx8fExMTAwODzp07e3t7i779X6Vi3boxItasmZzXMwuw5GRma8uI2Jo1mZdMJk6cKOJuXJVKlT2syZuY2draSl2mGQF37aeZgDtjbNq0aUTUuHFj4Ymd/VJQHq1ZsybLTqCwsDAedJMiolewxcXFOTk58U17UpdH/JhWrVoR0WG5qkUKbt/OSGkU8F5AEjXcKNB42sdsKfckK5VKd3d3HiUfMGCA8DGJMRYTE9O9e3eeIpOlwswnREdHnzt3bsOGDRMmTGjfvr2lpWX2LHhDQ8M6der06dOnQ4cO/OPZ6NGje/ToIc1DzJd8fHyIqHTp0jF52Vb8hRITE62srIhow4YNGptU3aNHzMiIKRTs0iWNdsUYNCiRiMm1Oyg9PZ1fsv3111/lWYGkAgIYL0UdHs7ycBatUqlevHgRGBjo4+Pj4eHh4uLCk6iefrghonXr1vyK0XmJs4PPnz9PRHXr1hVG+vXrh92BmvT06dPs14DF4u7urrltRv/+y4iY+t615s0ZEZMvgaOgunbtGhFZWFgcPXqUJzRwFhYW9vb2zs7O7u7u3t7eAQEBoaGhuf/Vjx//QS2yPn1YfDzr1u2DQty9ejG10ysN4Sn8BgYGQpnu+/fvKxQKMzMz0a+p8yuOFhYWoaGhwiCP0pQvX17qqptfFnD/mMhI1qlTXt6nRBMRwZo1Y0Tsp5+Yo2Nmun1wMFOvKnnlCnNzY6VLZ8TZiVj16szDgz18+AVzqVQqnm1HRG5ubqJfwFQqlQEBAS4uLubm5kRUq1atLHfgCSbqzxv4Ujx8qa+vP2HCBIk6uf33339NmjThz5MGDRpkP8c6ffq00EReyL0yMDDo2LHjhg0b3r59K8oyli9nRKxIEaaWHAYiO3BA2arV0dKlK0ZGRvIRYTeur69v3o//xx9/ZMntioyMLFasGKl1WZEOAu7aT2MB9xwzHHlqRteuXfN+/KioKN4uZc+ePcIgv8jdp0+fvB//G6RUKkePHs3fZSTdOJkjlUrFN4pKWvYqV7ZtY1liV40bMyLUWfsKvExQ7969JTp+REREu3btKKei7ffu3bOzsyOiYsWKHT9+PC+zxMTECFnwzs7O1atXVy8EX6VKFV9fX34ejra6ApVK1ahRIyKaMWOGxiadM2cOjyFKmon2ab/+Gte06crGjZtobMfD+fPnixcv2abNZhlbXQYGBioUChMTk6ey1NOR2qpVzNKSNWjAbG1Zy5afrxkUH89u3bp26NDSpUvHjh3buXNnOzs7IyOjLNftdHV1FQpFkyZN1HP41C9+b9++XbrHtHbtWiL66aefhBG+F1aoAAb5WlxcHO+ouWXLFsknO3OGETH1YkQtW8q246aga9asWbdu3Xjp/0qVKllZWenp6WVPCyAiY2PjTp36OjmxsWPZ0qVs/3528yZ7XwD7A9WqscKF2YMHGTf19FhUFCP6IMJOxGRpjMWzzuepdUdp27YtEa1cuVLEWc6fP6+vr69QKPbt2ycMHjhwQKFQ6Ovrn5U+Z1yEgPuzZ6x37y8LVUsqKYn9+it7+ZIZGDBb24xn3sWLrE4dduMGmzw5o6oG/1OtGpszh+WlrumGDRv4/4RevXplKcn9dZRK5YkTJ4YOHco/nfKPx02aNFm+fLn6KSaan4giMjLSzc2Nt8bNe/fwLJ4/f+7i4sJj6DluKwsLCxPuUL58eR8fn7dv3/r4+Dg5OfHMCH7G5uDg4OXllZcCXrdvZzQ52LUrz48KPoknxI0ZM0YY4T1A8r4bV6hevWnTJmFw5MiRROTo6JiXI+cSAu7aT2MBd8bY1q1bs2Q4vn79Ons7368zbtw4ImqttoP13LlzCoXC2Nj4Ca4Z5oGXlxcPJg4dOjRVrC7zuRAaGkpEZcqU0diMHzVhAiNiQmUbpZKZmjKFgr2/Sgq5d+nSpSxJlCK6ceOGtbU1EZUoUeLUh5dD/P39+UtNnTp1Hj16JPrUsbGxhw4d+vnnn6dNm8bPCadOnUpE33//vehz5V8XLlxQKBSGhoYPhM/xUhJ2OP0ra5QnISGB74pQb7kmnfT09IYNG5LEvdBzg3fgHFDwSm8dP87Kls2IYqhUbOpU1rBh5nejotiVK8zPj3l6MldX5ujIbGyYQsGIDrZqlSX+VbJkyUaNGvXt23fGjBmbNm3asmULP2m3trZWb/mmVCrHjh0rXPyW6FM8/3SwdOlSfjM5OZmXuCyAdYG+VTt27CDN1Nc6e5YRMQeHzJHWrZGmIJGUlBRHR0ciatWqFT/9SE1NDQ0NDQwM9PPz8/T0dHV1dXR05PXxmjbtK4Q0hT8lSrCGDVmfPmzaNLZ+Pbt9m1WrxiZOZO3bZ0yhVQF33oXO0tIy7X0jjT179hCRnZ2dWK+N4eHhPEVMvQr3gwcP+Gmkl5eXKLN8Wl4D7vHxrEoV9uOPzNVVu3onREQwCws2bhybOJGx9wH3QYMynovlyzM3N/a+Rn9eHT16tFChQkTk4OCQl3zkoKAgd3d39S5P1atX9/DwyPFc9siRI/x/Yx4WDhnu3r3L46T8f3jeo0WJiYmenp48JcrY2Njd3T02Nlb9DgkJCZ6enmZmZkRkYmLi7u4e9+FFyYiIiE2bNn3//fe85jsR6ejoNGvWbMOG/740vyQhgdnZMSKm1iICpHLnzh1+Unvr1i0+IuzG/eWXX/Jy5OzVq4OCgvT09PT09KSuicQh4K79NBlwzzHDkW/Zs7Ozy0swNzg4mP8nunHjBh9JT09v0KABSdzT5huxd+9eY2NjImrXrp3GykHwE+jOnTtrZrpPadWKETGh+87du4yIWVvLuqb86t27dzxV89SpU+KGjf78808TExMiql+//seKtvft21ei4NGbN29MTEyMjIzCwsL4SEREBJLcs3NxcSGiH374QQNz9e3bl6TcTpF7vJxOqVKlNPD6uXnzZiIqV66cdLUpcunZs2e8oV+gWB+etcTgwUy9VE5SEitUiF27xqpUYQYGWUNZ/I+hIatWLejnn8eMGbN06dJ9+/bdvHkzLqfM0rdv3wot3w4dOqT+LW9vb56u17t3b1HS9bLgW6uF/tJXr17l52aiTwRy4WXiiWgiD3VJ5/x5RsSaNMkcaduWEbETJ6Sd95vEr+6XKlXqs3XbY2Njb90K37ePLV3KxoxhnTszOztmZJT15Wr2bFatGrt1i9nbZ6RdCgH3TZvYtm0Zf+QKuKtUqmrVqhGRkHuelpbGe+ecEuOKTnp6Ot8o2apVKyGmn5SUVL9+fSLq1q2bZhKXxSkpo4V4wD0qipUpw65fzwi4nz7NxoxhZ88y0f9tb968yVMeKlWq9KW9UIKCgjw8PCpVqiTE2StWrOjm5nbtI3XolUrl8ePHefPr8ePHi7F8YIwxf39/Gxsb/itwcnL66lo9/v7+PC2LHydL+pVKpfLz8+NZD/wOn07YTEhI8Pf3d3Fx4dH5unWjhQpIwcG5Ws/Tp6xuXVajhgzFub5NY8aMIaI2bdoII//++y8RmZmZRUVFffVhDxw4YGtrq/5Rh7+FjBs3Li+rzT0E3LWfJgPuLKcMx+Tk5Jo1a86YMSMvHyCfPHnSvXv3ESNGCCMbN27k24BkDzoUDBcvXixZsiQR1apVS+oSAWlpaYcPH+b9bzVZfSJnKhWzsGBETKhss2MHI2I9e8q6rHxs+/btvJZCpUqVPDw88v504kXb+QlS9qLt3bp1oy8s2v51evfunWWzGm9c0alTJ0nnzV+eP3/OT02zV/WJj493+1rZCzyeP3+e73B6LGNdlfdUKpWDg0OWdDkpxMbG8hwsoS+xvGbMmEEaKxutMS1bMj+/D0bq1mVHjzJzc0bELCyYvT1zdmbu7szbmwUEsNDQL2qElZyczIun6+nprVq1Sv1bQrpe06ZNRa8gPHjw4CpVqghZgJs2baIPmxNCAXDt2jVdXV3J864uXmRErFGjzJF27RgRy1sxN8ju4MGDCoVCT08vL62qXrxgZ8+y7dvZ3Lls0CB25AirVo0FBbFLl1i5ciwmJjPg7u7OZszI+CNXwJ0x5uXlRUTthQx8xubOnUtEzs7OeT84P3MrVaqUeqEIXgG1cuXKGuu+XsAD7oyxLVtYkybswgVWp460M7548aJu3bpEVKxYsdwUA3ry5ImXl5dQvJunMLi5uQUGBn7sYsuVK1fc3Nx4SWgiGjJkCDbXiyslJcXLy4vnMRkYGLi5uWXJTP+0a9eu8avNPBM5+8vllStXeLIDz9v6ojyR+Ph4P7/dffuqzMwyr1vWqcN++YWpbVVkjLElSzK7FzDGpk9n7959viYhiCUqKorXVd+/f78wOHv27HPnzuXxyMK1WfY+Y7Ro0aIRERF5PGwuIeCu/TQccGeMDRgwgIh+VKuIrf4szQvhOELQQa5unwVSaGgoTyopW7bs1atXRT9+enp6YGCgm5sbr0RJRKNGjRLyhWUTGsqImHplm//9jxGxAtkMUCOioqLmzJlToUIF/lvW19fv3r3733///XXV+SIiIvhm6hyLtvNnbLFixQICAkRa/kfduXNHR0fH0NAQSe6f9uuvvxJRjRo1srzyv3nzhr7Ws2fP1A8llFWRtD3vF7ly5QpvEv6lKVZfhF95atJEc/XiPy0hIYH/T9+6davcaxHP99+zLA+ncmV29ix78ECsNKUsLd/UL1fcunWL/5Pa2toG5zKL6qu4ubkRkdTXKUHzRowYQURt27aVcI7//mNErEGDzJEOHRgRy3M9AFD35MkTHj1YtGiRuEfmAXfG2IgRzN1du0rKMMbevXtnamqqUChCQkL4yMuXLwcOHJj3c62///5bR0cnywUMXovJyMjoY5nNUij4AXeVijVrxsaOlTzgzhiLi4v7/vvv+W9x18erZfv6+vISE1yJEiV+/vnnM2fOfCxl4Nq1a5MnTxY+zxBR1apVPTw8hOcliOvFixeurq58z3LZsmW9vb0/m83x9u3b4cOH8x8pWbLk+vXrs/zIy5cvXV1debH44sWL56VYfFIS8/dnrq6sRInMyLuNTUaVJJWK2dmxYsXY+4bPTF+ffclVAxDBihUriMjGxiZZml7SycnJfE/MmjVrpDh+jhBw136aD7h/IsNRLJMnT9aqoEOBERkZ2bJlSyIyMzP7W/0ibd78999/EydO5O28uBo1avz6669a0eB9zx5GxNQr27Rpw4iYeA//25Senh4QEODs7GxgYMB/6WXKlHF3d/+iX3pMTIyVlRURlS5dOkvayoEDB3gqaN26daUo2p6j7Enu06dPJyS5f0g4G1m7dq36eGJiotfXylKdgyfnakNZFXUDBw4kop6SbY4JDQ01NDTU0dG5dOmSRFN8Bd4nWTPldDRkyhQ2dGjmzadPmbGxFC09tmzZwl8ee/TooV4L6+XLl3zPuoWFhSglFHLE3+uPCLXUoKCIjIzkUdq//vpLqjkuX2ZEzN4+c6RjR0bEDh+WasZvT3JyMo8NdunSRfQPO0LAPTKSWVoyhUK7Au6MseHDhxPRhAkTRDzm06dP+X+N33//XRi8desWL1eoiW7Dagp+wJ0xdusWMzbWRMCdMZaWlsYblfBeKDneZ9WqVURUuHBhFxcXf3//j9W6ffz4saenJ8/o4cqXL89T4CV8APDe5cuXmzZtyv/lv/vuu0+nJz9//tzU1FRfX9/NzS3L/pTU1FQvLy/+WZHfQazz1JQUduQIGzaMFS+eGXkfNozZ2bGffmL9+2fcDQF3zVMqlbVq1ZIunWTevHmUU06ZpBBw136aD7izj2c4iuLhw4c86PDff/+JfnBITk7mexR0dXVXr16dl0PduXPHw8OjSpUqwhlLhQoVtO6Mhe+bnTkzc6RoUUbEPlcrE3IpKirK29ubv/0RkY6OjqOjo4+PT2LuckXd3d3t7e3V69Lwou28t7x0Rdtz9Ikk99xsY/127N69myTbbyfscPrjjz9EP3hehIeH8xN7iS428+pJgwcPluLgX02lUvF9utOmTZN7LSJ5+pSVLMlWrGDPn7Nr15iDA5OsTuPZs2eLFy9ORHXq1FHfxhEfH9+9e3ci0tPTy3LhSiwWFhZE9Nmq0JAf8bBShQoVpHp/vHqVEbH69TNHvv+eEbEP2xJAXvCdChUrVoyU4GqfEHBnjG3axIi0LuB+48YNIipSpIiIl9Xbt29PRF27dhUuYMTGxvKw6vDhw8WaJZe+iYA7Y2ziRA0F3DkvLy+e7Dx8+PDsMYi3b9/+9ddfHytxGxYW5uXlxesDckWLFnVxcQkICEB+n4bxeut8b4FCoXB2dv5EfdJdu3Zl33Pg7+9va2vLf49OTk4PHz6UYp1KJQsMZG5urGxZtm0bs7NjV6+ySpUy2pkg4C6LkydPEpG5ubnoJ7hSf8z7GATctZ8sAfekpCTetWLdunWiH7xLly5ENFQ9AQ1E9Ynd7rnx9OnTLGcsxYoVc3V1/URxPDmNHMn09NiePRk3Hz9mRKxkSVnXVDBduXLF1dXV1NSUPyuKFCni6up68+bNT/+UUqlU3xYWExPTtWtXyqnCjGbwJPfRo0cLIzzJvWPHjppfjDbjHWWkaCs1ZcoUrd3h9Ntvv0l0sZmfQJqZmWlhhFQz5XQ0KiSEjRjBmjZlXbqwVauYlBXqHzx4ULVqVcpWzC2Pb8Sf9uTJEyIqUaKEiMcE7aFUKnmbnJUrV0o0AYuKYjExLDKSXbzInj9ncXHoCyeinTt3EpGRkZEUBR4ZY8+esZSUjK9VKhYaytLTWZZPii9fit/h8ovwPs8bN24U64BPnjxxdnYWmuepVKoffviBiGrXrp3LFBARFdiAe2IiU6/Mk5TEpHkOf9Tu3buNjY2JqEOHDrmpAx4ZGenj4+Po6MgTeXKTAg+aER8f7+HhwduCmZiYeHh45KYfYHBwcKdOnfivsmrVqoc1svEqPZ2lpjI7OxYUxA4fZlWqsJQUBNxlwyMFAwYMeCOqvn37SrqR+WMQcNd+sgTcmVqGY0hIiIhP9b1790p01Qqy2Lx5s76+PhH98MMPuTkTjYiI8Pb2dnBwEM5YLCws+BmLJrfdfI3ERCaEdE+dYkZGDMFTycTExHh7e9evX1+4HmNvb+/t7Z2lZkiOgoODeS5S8eLFT/D0AY27e/cujy0KDZMiIiL4Be//LlyQZUnaKSgoSE9PT09PLzAwUMS3gMuXL2thWRWBUE5n0aJFIj7qV69e1ahRg4gWLFgg90PMmdTldAo29WJu/v7+6t/auHGj8EYsSrby06dPPT09raysypYt26NHj7wfELRTYGDgypUrJTz7Sk5mvXszGxvm7Mxq1WJNm2YWroW8uXfvHt85t2HDBrnXIqft27cTUd26dSU6/uLFi3nyh0TJr59WYAPuQUGsfPnMm/fvy5DDdP78+RIlSvBrKR/rFfbu3TsfHx8nJyf+FssvcDk5Ofn4+Ghy5yx81rNnz1xcXPjvyNLS0sfH52P3jIqKcnNz09PT4zEILy8vDQcgeMCdMdazJ1u4EAF32Tx48MDQ0LBIkSIkqiJFihgZGWm4IPLz5OSz7979Gx19Ojr67Lt3SVJmAMHXuREXF/ju3b/R0YHR0ddzEc8SV8uWLXkxd3Hp6uqqV98D6Zw4caJw4cJE1Lhx49evX+d4n6ioKH7Gwt/giMjY2NjJycnPzy9FyJ/RZtHRbNo01rYta92aTZ7M3r5laWnszRu5l1XwBQUFubu7Fy1alD9tChUqxLdBfOz+vr6+PDu+Xr16jx8/1uBKs+rTpw99mOS++bffQh0cVKjk/qERI0YYGhqK/hZgZGQ0aNAguR/cR/GrwqI/8MKFC0vXBCjvXrx4YWZmVqdOndzkk0F2KSkp/KKFrq5ulr07AQEB/FNDo0aNwr82pvn69esVK1Y0btxYeEbVV68HAvClPDxY27aMpxuqVGzECIbrbWKIi4urXr06EfXr10/utcgsOTmZR01dXFzWrVt37Nix+/fvi/XJ4sKFCwYGBgqFYu/evaIc8EspGGPiniVoiTt3qGNHCgvLuPngATVrRq9fa3oZoaGh33///f3798uVK/f333/XrVuXjycnJwcEBOzevXvv3r2JiYlEpKur27p1axcXlx49evArXaCF/vnnn/Hjx9+6dYuIWrduvWzZMr6Ni1MqlZs3b545c+bbt2/19PSGDBkyb948/vKhSdWr0+7dVKMGhYVRkyb06hW9e0d4Tsni2rVrCxcu5LuDxeLo6Dh58mT1nEEN2Boefjgqqu77+gAjy5Ur+j7iBlpiQHBwSQOD4np6RFTKwGBomTKanP3x48dnzpyZNGmSuIf19/evX7++FHEcyC4oKMjJyenp06c2NjaHDx/mO9+JKCkp6cSJE9u3bz9w4EBqaioRGRoatmvXztnZuWfPnlJcaJGEUklNm1LdujRlCuno0LJldP48Xb5MOjpyr+xbkZycfPDgwfXr1588eZJ/+qhevfrAgQOHDRvGe1sRUXp6+owZMxYuXMgY69+///r163mHK7kEBwfXrFlTT0/v/v37FStWJCKKiiJra4qNpcBAatZMxrVplYiIiCtXrgiJKWLZsmVLw4YNS5YsKe5hRXT16tV+/fpFRUWJeMyJEyd269aNB2K0040bN2rVqqWrqyv3QvIrxtjChQunT5+uUqlcXV1Xr14tXMa+c+dOly5dHj9+3K9fvz/++CP3x0xKSvr777+3bdt27NixtLQ0en9F3MXFpWPHjkJiH8AXq1eP5s+n9xv36cULsrGhxETCK0DeuLi47Nixo1atWhcvXpT3VEcbbN682d/f/8CBA+qDFhYWNtlYWVnp5PrU/c2bN/Xr13/x4sWUKVN+//13CRaeC7KE+TVAGzLcuYiIiObNmxORubn533//HRAQ4OLiIoTUdXR0HBwcvLy83iDHKp9IT0/38fHhZ/86OjouLi48GfDkyZNCo7A2bdrcunVLrhUKGe6MMU9PRoQMd8irLa9e/a7W4gm0UP+7d69qPLEdCpiXL1/a29sTUdGiRU+cOOHv7+/i4iKE1HV1dfkZy9u3b+Ve6ZfjddaUyoybKhWrXZv99Zesa/pG3bt3z93dXYiiGhoaOjs7BwQERERE8D5XchVtz1Hfvn3bWVk9mD07c4h33+3QQb5FAUC+5+fnx8vPtm/f/p1ay8LXr1/369cvl12IlUoljy2ov1PzbtW5Kd4F8HkWFuzu3cybKhUzMmIfb2sHubF8+XIiMjMzCw4Olnst2uLs2bPz5s0bOnRo69atraysPnZN19jYuEaNGk5OTm5ubsuWLdu/f/+tW7dyfLlLT0/nZ5VNmjSRsUZ3Qc5wr1OHypXLuKlUklIpQ4Y7l5SUNHDgwD179piYmPB8doVC0bhx4z59+vTq1at06dLyLAvyICoqas6cOWvXrlUqlUWKFLGxsbl27RoRVapUafHixd26dZNxbRcuUO3axHOR09Lo9Glq3RoXoSFPtoaHv0pNHV++PBHpEhkgJ1T7DAgOHlOuXB0zMyIyUCh03xfXBvgi8fHxffr0OXTokKmpaUJCAr3PDOjTp4+zs7Pm92yJZvFiCgqirVszR0aPphIlaM4cuVb0jUtNTT1w4MDGjRtPnDihUqmIqHDhwjExMSVLlvTz8+NljrVBTEhI4dq1SaGgBw/I0pKI6N07sramd++Q5A4AeXHx4sVu3bq9efOmZs2af//9d8Y2mty5evXqtm3bdu3a9ebNGz5ib2/v4uLSt29fbd4UAvmPrS3t3EmNGmXcTEoiU1OKjaX8ssFR+/z333/NmzdPTU3dvXv3jz/+KPdytFRaWtqzZ88eP3786NEj4e/Hjx9HRETkeP+SJUtaW1tbW1vb2Njwv/fv379y5cqSJUteu3atnBAX1riCHHDXhpIyApVKNXPmTFNT0507dzo7Ow8YMIB32oF8LSQk5H//+9+hQ4eqVasWFhY2adKkqVOn8vaqMipRgq5dy/hUSETlytHp04SnG+TF1vDwreHhFnp6RFTD1HSetbXcK4KsBgQHRymVhgoFEQ0vW/b79+WSAb5Uenq6u7u7ubm5n5+fs7PzwIEDbWxs5F5Uns2bR8+e0fr1mSMTJ5KBAXl6yrcmICJ68eLFjh071q1b16ZNm7t37+7ateuLok6a0K8f/fknjRpFq1dnjMyaRfPmUYcOdPSorCsDgPzt8ePHnTt3Dg4OLlOmzIEDBxo0aPDp+wcHB/v6+v7xxx8PHz7kI9WrV3d2dnZxcbG1tZV+vfDt+fFHql2bZs/OuLlvH3l40K1bsq4pH4uKirK3t3/y5MmECROWLl0q93Lyn+Tk5JcvXz76UEhISHx8fJZ7Fi1aNCYmJiAgoHXr1rIslUPAXaMYYwpkHRY4Z86cKV26dKFChbRks4KFBd28SRUqZNwsVYrOnqXKlWVdE+RzW8PD36SlTREu44D2GRAcPNHSsj7yTUAkBe2M5c8/ac0aCgzMHOnYkX78kYYNk29NkCk9PT05Odn0facQ7XL/PlWvTrq6FBJCVlZESHIHANHExcX17t37yJEjRkZGW7Zs4b2as3jx4sWePXt279597tw5PlK+fPmePXs6Ozs3w0sQSOrWLXJ0pKlTqVkzCg6madNo06bMku7wJVQqlZOT05EjRxo1anTmzBkDAwO5V1Rw8Cg8z4LnXzRt2rR9+/byRtuJCF3vNKpAfXaF91q0aCH3EgAAAMRU0M5YOnYkNzf66y/q2ZOI6OhR+u8/2r5d7mVBBl1dXS2NthNRlSrUqxf9+SctXEhr1hARFSlCY8bQvHk0bx6S3AEgL8zNzf39/d3c3NauXduvX7979+7NeV/rLCYm5sCBA7t37z569KhSqSSiIkWKdOnSZeDAgW3atMl950CAr1e7Np09S1u30sKFVKEC7dlDTZvKvab8at68eUeOHClatKivry+i7eIqW7Zs2bJltfACZIHNcH/9mjZsoJkzM25GRNDq1eThIeuaADTCwoIaNSJj44ybR47Q7dvIcIc8QYa79kOGO8BnXLhAI0YQY6SjQ0olrVlDWlMoHLTdgwdkZ0c6OnT/ftYk9zNnqHlzmZcHAPnf8uXLJ06cqFKpfvrpp+7du//111979+7l7d+MjIwcHR0HDhzYrVs3xOkA8qN//vmnXbt2jLHDhw936NBB7uWAhhTYgDvAN8vCgv74g4TyNu3a0cWLCLhDntxKSEhMT29cqJDcC4GP8o+MbGRuXgofwwA+LTaWVCoqUkTudUB+078/7dxJI0fS2rUZI7ySe/v2dOyYrCsDgAJi7969AwcOTE1N5fnsurq6bdq06d+/f48ePQrhJBwg3woPD69Xr154ePjcuXNnCwXx4RuAgDtAQYMa7gAAAABievCAqlcnhSIzyT06mqytKSaGLl+m776TeXkAUCBcvnz57t27mzdv7tGjR+/evcuUKSP3igAgT5RKZevWrc+ePdu2bdtjx47p6urKvSLQHATcAQoaBNwBAAAARDZgAP3xxwdJ7hs3UokS1LUrFbCeBwAAACCGiRMnLlu2zNLS8tq1a8WLF5d7OaBRCLgDFDTt29P27VSqVMbN77+n9eupfHlZ1wQAAACQr2VPcgcAAAD4iCNHjnTu3FlPT+/MmTONGzeWezmgaQi4AwAAAAAAfM6AAXTnDm3aRPXr0969dOAAvXpFlSuTqyvVrSv34gAAAECLJCcnjx07tlatWm5ubnKvBWSAgDsAAAAAAMDnxMWRmRkpFLRyJa1cSStWkK0t/fMPTZ9OgYFkZyf3+gAAAABAKyDgDgAAAAAAkDuMUYkS5O9PTZtmjMydSyEhtHOnrMsCAAAAAG2hI/cCAAAAAAAA8omXLyk+npo0yRxp3Zpu3JBtPQAAAACgZRBwBwAAAAAAyJ2EBDI0JIUic8TEhBIS5FsQAAAAAGgXBNwBAAAAAAByp2JFSkig8PDMkXv3yNZWvgUBAAAAgHZBwB0AAAAAACB3DA2pRw+aOZPS04mIoqJo0SJydZV7WQAAAACgLdA0FQAAAAAAINciI6l/f3r4kKyt6e5dGjCAPD0/KDIDAAAAAN8wBNwBAAAAAAC+UHw8vXpFVlakry/3UgAAAABAiyDgDgAAAAAAAAAAAAAgAtRwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAiQMAdAAAAAAAAAAAAAEAECLgDAAAAAAAAAAAAAIgAAXcAAAAAAAAAAAAAABEg4A4AAAAAAAAAAAAAIAIE3AEAAAAAAAAAAAAARICAOwAAAAAAAAAAAACACBBwBwAAAAAAAAAAAAAQAQLuAAAAAAAAAAAAAAAi0JN7AQCgIcnJyQkJCTExMbGxsQkJCfzruLi44sWLd+3aVe7VAQAAAAAAAAAA5HsKxpjcawCALxATExMZGRkTE5OQkBAfHx8XF8e/TkhIiI2NjY2NjY+PF77m9+Ffp6en53jAWrVqlSpV6q+//jI3N9fwYwEAAAAAAAAAAChIEHAHyE+OHTu2efNmPz+/r/hZAwMDMzOzIkWKmJmZmZqampqaWlhYmJqanjhx4vnz525ubsuXLxd9wQAAAAAAAAAAAN8OBNwBsoqIiChevLjcq8jB27dvbWxsUlNTy5QpI8TNCxcubG5uzgPoRYoUUf/azMyM34d/ra+vn+Nhb9269d1336Wnp58+fbpZs2YaflAAAAAAAAAAAAAFBgLuAJmSk5Pnzp27c+fOe/fuGRsby72crCZNmrRkyRInJ6eDBw+Ke+SZM2f+9ttvVatWvXHjhpGRkbgHBwAAAAAAAAAA+EboyL0AAG1x7ty5evXqBQUFnT9/Xguj7a9evVq7dq1CoZg9e7boB581a1b16tVDQkLmz58v+sEBAAAAAAAAAAC+EQi4AxARTZw4sU+fPp6engcPHixXrpzcy8nB/PnzExMTe/bs2aBBA9EPbmhouGnTJh0dnQULFly/fl304wOAlrh582bnzp2nTJmyZs0audcCAAAAAAAAUAChpAwAEdGxY8caN25cuHBhuReSs7CwsMqVK6elpV2/fr127dpiHfbp06evX79u2LAhvzlmzJjVq1c3aNDgwoULurq6Ys0CANqAMebl5TVt2rSUlBQ+8sMPP2zcuLFIkSKyrgsAAAAAAACgQEGGOwARUYcOHbJE2+Pi4l6/fi3XerKYN29eSkpKnz59hGj7vXv30tPT83LMq1ev1qxZs3fv3gkJCXzk999/t7a2vnz58vLly/O6YgDQJm/evOnSpcvEiRNTUlJcXFx27txpYWGxd+/eOnXqnDt3Tu7VAQAAAAAAABQcCLgD5ODw4cM1a9bcs2eP3AshInry5MnWrVt1dXVnzZrFRxISElq1alWzZs3w8PCvPmydOnWqVq365MmTmTNn8hFTU9PVq1cT0axZs0JDQ/O+cgDQBseOHatbt+6hQ4dKlChx4MCBbdu29e3b98aNG02bNn327FmrVq3mzJmjUqnkXiYAfPPCwujtW7kXAQAAAACQVwi4A3wgOjp6xIgRY8eO3bRp0+jRo+VeDhHRnDlzUlNTXVxcqlWrxkdWrVr1+vVrMzOzUqVKffVh9fT0Nm/erK+vv2LFCiHFtVOnTv37909MTBw+fDjqTQHkd8nJyePGjevUqdOrV68cHR1v3LjRtWtX/q0KFSqcPn3aw8NDpVLNnTu3ffv2ebmABwCQJ7t3U4UK1Ls3depEVaoQdt4AAAAAQH6GGu4AHzh37tz+/fvnzp1rYmIi91qIiB48eFC9enWFQnHv3j0bGxsiio+Pt7Gxefv27fHjx9u1a5fH40+fPn3BggXVqlW7ceOGoaEhEUVGRlavXv3NmzebNm0aMmSICI8BAORw586dfv363bp1S19ff/r06bNnz9bRyeEq+4kTJ1xcXMLDw0uWLLlt27YOHTpofqkA8E0LCaEGDejff6l+fSKi3btp1Ch69IjMzeVeGQAAAADA10CGO8AHHBwcFi1apCXRdiLy8PBQKpVDhgzh0XYiWrZs2du3bx0cHPIebefHt7Ozu3fvnqenJx8pVqzYsmXLiGjixIkvXrzI+xQAoGGMsfXr1zds2PDWrVvVqlW7dOnSnDlzhGh7luoxPPO9Xbt2b9686dSp07hx49LS0uRYNQB8q/bvp27dMqLtROTsTFZWdOqUrGsipVKZnp6OzCQAAAAA+AoIuH+Knx+5uGTe3L+fevWSbzUgkwsXLsg19Z07d3x9fQ0MDKZOncpH3r17x6Ph8+bNE2UKQ0PDTZs26ejozJ8/PygoiA/269evW7duMTEx48aNE2UWAE178YK2b6dFi+jAAUpJkXs1GsX7o44YMSIxMdHFxeXKlSv16tUTvrtt27ZGjRolJiaq/0ipUqWOHj3q6empo6OzYsUKR0dHXGwDAM15/JgqV/5gpGpVevRIptUQEZ04caJOnTqjR49u0KABOksD5FMqler169eDBw+ePXv26tWr/f39//vvvxcvXiiVSrmXBgAABZ+e3AvQaikpFBf30ZtQ4D1//nzUqFFPnjw5f/68mZmZ5hcwe/ZslUo1YsQIKysrPrJ48eLo6GhHR8dWrVqJNUuTJk1cXV3XrVs3dOjQ8+fP6+rqEtGaNWtOnz69d+/ev/76q2fPnmLNBaAJp05Rr140eDBZWdGWLTRjBp05Q0WLyr0sTTh+/PigQYNevXpVvHjxTZs2CRXbiejt27dDhw49ePAgEe3bt69///7qP6ijo+Pu7t64ceP+/fufOXOmbt26W7ZscXJy0vQDAIBvUKFCFB//wUhsLBUuLMtagoODJ0yYcOzYMSIKCwuLi4tr3rz5gAEDPD09y5YtK8uSAODrLFq0aPny5a9evcr+LQsLizJlypQtWzb73xUrVuSfhgAAAPICNdw/Zft22ruX9u/PuOnrS1u30pEjci4JNCY9Pb127dq9e/eeOnWqgYGB5hdw7dq17777ztDQ8OHDh+XKlSOiyMhIa2vruLi4M2fONG/eXMS5YmNja9asGRYW5uXlJWS1r1mzZvTo0aVLl757966FhYWI0wFIiDGqVIkWLMjckdSrF1WoQIsXy7osySUnJ7u7u69cuZIx1rZt223btqnHhk6cOPHTTz+9fPmycOHCa9eu7du378eOExERMWjQoEOHDikUirFjxy5atEiWF0AA+CYcO0YmJvTkCa1cSf/9lzGYmEjW1nToED1/TpaWZG+vmbW8e/fO09Nz2bJlqampRYoUmTp16ogRI7y8vH7//ffk5GQTE5PJkydPnTrVyMhIM+sBImKM+fr6btu2rXfv3j/99JPcy4H85OrVq02bNk1LSxs1alSJEiVevvfq1avXr19nKa+nTl9fv2TJkuXLly9durSlpWWpUqX41/zv4sWLa/JRAABA/oWA+6ds304zZlCbNhk3nzwhY2ME3L8hycnJMn6scnJyOnTo0KRJkxYtWsRHpkyZsmjRou+///7QoUOiT3f48OHOnTubmJjcvn2b14tXqVStWrUKDAwcOnToxo0bRZ9R81Qq1YsXL4Rq9WKZNGlSxYoVc2xHqSVUKtW0adPis+QP5o2Tk1OHDh208VGHh1PFipSURMLa/P3J05POn5d1WdL6RH/UlJQUDw+PRYsWqVSq1q1bb9u2rXz58p8+GmNsxYoVU6ZMSU1Ntbe337VrV6VKlaRbfEJCwu3btxs3bizdFJDfxcXFPXjv/v37VatWdXJyqlOnjtzrgjx48IBmzKDdu8nOji5eJAcHatWKfv6ZkpNp7lwioq1bqXJlioqiAQNo4UIqXVq6tahUqh07dkyePPnNmzc6Ojr9+/dfvHhxyZIl+XfDwsJmzJixfft2Iipfvvxvv/3m4uKiUCikWw9wV69eHTduHC/po6en9+jRI0tLS7kXlZVKpfL29haqMoqiRo0aI0eO1MZTrPwjISGhfv369+/fHz9+PK/GqU6pVL5+/frFixfh4eHPnz/P8vfbt28/cWRDQ8MDBw44ODjIsvsZAADyEwYft20bc3Bg//yT8Wf2bNaxo9xrgm/D5cuXFQqFqanp69ev+cirV69MTEwUCsWlS5ckmrRPnz5E1KZNG5VKxUdCQkKMjIwUCsXx48clmlST1q1bV1/oySae7777bvny5XI/uI8KCQmpXLmy6J8KGjRo0L17d7kfXE6uX2dlynwwcuECs7KSaTWS4x/1eZ/natWqXbt2Tf27wcHBvIC7np4e78Cc+yNfvnzZ1taWiAoVKrRz504R15yamhoUFOTj4+Pm5ubg4MAz6Hv27Ll7924RZ4F8KiUlJTQ0NCAgwMvLy9XV1dHR0cbGJktws2TJknp6eidPnpR7sfBV3r1jkyYxAwNGxAoVYgsXstRUFhnJZs1iHTuybt3Y4sUsOZnFxrLJkz+4W0qKFMs5deqUcPGmVatWN27cyPFu//zzT27uBqJ4/fr1kCFDskScp0+fLve6skpMTKxVq1a1atXEPcWqWrVqzZo1ExMT5X58+djAgQOJqGbNmklJSV/6sykpKS9evLhy5Yq/v7+3t7eHh4erq6uTk5O9vX2ZMmUUCoWRkdGiRYukWDYAABQkyHD/FJSUAcHDhw8TEhI0lk/Xvn37gICAGTNmCM1Rx40bt2LFih49evz1118STRoREVGjRo03b95s3bpV2Lc7f/78GTNmWFlZ3b59O1+ncrx7965KlSq8jLV6D8k8un37tre3t4WFxf3797Vzk2nnzp0PHz7cokWLXuI1fY6Li/vtt9/i4+OPHDnSsWNHsQ4rjrdvqWxZSkwkff2Mkb/+Ii8vOnNG1mVJ4s2bN0OGDOFbXlxcXNauXWtqaip8d9u2baNGjUpISLC2tt6xY0fTpk2/9PixsbEjRozYtWsXP/66det4ZP9LpaWlBQUFXXnv9u3baWlpwnf19fXLli379OlTIyOjgICAZs2afcUUkB+lpaU9fvyYJ60LCezPnj3LfmpqbGxcWc3Zs2e3bNlSrFixy5cvW1v/v737Dovq6OIAfHaXLmAXEbAgNuxii2hsGDXBWCKJjahR0ZgEu9ixJWJBsQdj9CMaE7FFNCYRu1GjgthAUMAGKCogve7O98fougIiwr17F/y9T548Miwzs7psOffMOfUk2TyUhEpFO3fSzJkUH08yWbFS1yMjac4c2rOHiMjOjn74gVxchNqOZuq6jY3N0qVLeZDuzdsvKhEeBLRw4cJF/KCDhurVqz98+NDQ0FCSLRVq8eLFnp6etra2kydPFiohnTG2du3ayMjIhQsXenp6CjLn+2bPnj2ff/65iYlJUFBQkyZNhJ38wIEDgwYNsra2jo6O1le/1QQAAChI4oC/bvvlF9a//6svf/8dGe7vqd27d1erVm3nzp3aWe7s2bNEVLFixYSEBD4SGxtrbGwsk8nEzqjiHzurVKny+PFjPpKbm8uzwqdNmybq0mKbPHkyEXXu3Fmdvy8UHnGeOHGisNMKIjAwkIjMzc0fPXok7MwrVqwgoiZNmuTk5Ag7swDs7dm2bS/+rFIxZ2e2YIGkGxLFP//8Y2lpSUTVqlU7ePCg5reePn2qbpfq6uqamppamoX8/Px4nL1JkybXr18vzo/k5eVp5rDnC9MrFAp7e3tXV1cfH5+zZ8/yJL7vvvuOP+8Vcwkoc2JjYwMDA319fT08PFxcXBwcHAot2qavr29ra+vk5OTm5ubl5RUQEBAVFaVUKjWnUiqVH3/8MRG1atUKSaBlxsWLrGNHRsSIWPv27MKFd/jZ48dZ8+YvfrZHD1bqZ4m0tDRPT0/+CDQxMfH09HxTGuzjx4+zX8+sT0pK8vDw4EdzKlWq5OXllZWVVcr9QD69e/cu9HOrn5+f1Ft7JSYmhl/kPnXqlLAznzt3TiaTGRsb37t3T9iZ3wfR0dEVK1Ykoi1btuT71pYtW/r16zd+/PiFCxf+9NNPhw8fDgkJefTo0Tt9NFCpVPb29kT066+/CrpxAAAobxBwL8rBg+zbb199eeQIc3OTbjcgnejo6OjoaK0t161bNyJatGiRemTChAlENGTIEC2s3q9fPyL6/PPP1SMhISH6+vpyufz8+fNa2IAYbt26xe9CUFCQ4JOHhYXp6+srFIpr164JPnlp5ObmNm3alIi8vb0Fnzw7O7thw4ZE5OPjI/jkJbRkCXv4kDHGLlxg1auzCRPY8uXMyYl17MhKF3HWNZmZme7u7rzIRs+ePWNiYjS/e+zYMd4utWLFikKVggkNDW3WrBkRGRsbv+lfPDY2NiAgwNPT09nZuWCbZUtLS2dnZ09Pz4CAgMTExII/npeXN2jQICKytrZ+yP8doVx4/vz52rVrC01KVSgUtra2vXv3/vbbb9etW/fXX39FRkbm5uYWZ9rExERe8sjV1VXsuwCldf8+++ILJpMxIla7Nvv9d1aCK9+5uWzdOlalCiNienrsu+/Yy6SEd6JSqfz9/WvXrk1EMpnMxcXl/v37Rdy+d+/ednZ2/v7++cYjIiKcnZ35I7lhw4aHDh0qwWbgTdLS0vgV5XzatGkj9dZeGT58OBG5uLiIMTk/lThs2DAxJi/HcnNz+Xm+QYMGFfzuuHHjCr2QQ0SVK1d2cHBwdnZ2c3Pz9PT09fUNCAgICgqKjY3Nd8WXMbZlyxZdezSWFbqYpgMAIBoE3IsSE8O2bGHqlJfQUCZ0BgNAfjwluVKlSklJSXzk3r17BgYGCoUiLCxMCxu4f/++mZkZEe3fv189OGPGDCJq3rx5GX2f1LdvXyIaP368SPPz5NwePXqINH/JrF69mojs7OxESr4LCAjgH1GePn0qxvzvZvduRsTq1mW8THlCAtu3j23YwE6cYO9SuFz3hYaG8tpW+vr6np6emp8Dc3JyPD09+an2Dz74QNjLhBkZGe7u7vxz6WeffZaUlKQZYS9YT0kzwl7MR0hGRgb/nNy8eXP1EyCUdaNHj65evbo6nOHq6url5eXv7x8UFJSenl6ama9du8YPT/z4449C7RaElZ6e7uXlNa9TJ0bETEyYh0dpL38mJjJ3d6anxwwMBrds6ePjU8wrNNzly5fVxbXatm177ty5om//7NkzdT2Kjz76KDQ0NN8NAgMD+YVtInJycrp58+Y73yN4g5s3bxZ6oe6///6TemuMMXb+/Hley/vu3btizP/gwQPeuunMmTNizF9ezZ07l1+5f/bsWcHvhoeH//HHHxs2bJg3b96oUaP69OnTrFmztxaENDIyytc/ICsrq2bNmkR08uRJLd2xsu/Bgweurq4jRoyQeiMAANqDgHtRjh5lRK9KEWzaxEaPlnRD8B744IMPiGjZsmXqkdGjRxPRl19+qbU9rFu3jsfL1ImoGRkZdnZ2RLRkyRKtbUMohw8fJnHKqqglJiby9+uaVymklZCQUKVKFSI6fPiweKvoSjmdjAxWty4jYgWOD5c/P//8MwndH7X4fvnlF97LoWrVqvk+kVpZWfXv33/JkiV//fVXia/BPHv2rFGjRkTUvXt3VGkoB54/f16hQgWZTFayA0CJiYkXL17cuXPn/PnzhwwZEhgYmO8Gv/76K7/4dPbsWSH2C4JRqVS7du2ysbEhIplMdn/yZPbggWCzX79+4WWmarNmzY4dO/bWn4iNjXVzc+PXI2vVquXr61swa7VQubm5vr6+/KKRnp6em5vbkydPNG+Qk5Pj4+PDS1jo6+u7u7s/f/68hPcLXrdt27aC0U9dCNgplcr27dsT0fz588VbZcGCBUTUunXrYj5W4cyZMwqFQi6Xv2tL7bd2SV28eHG+H1m4cCEROTs7C7f9cis1NXX27Nn8+pm5ubm6bCkAQLmHgHtRjh5l7doxGxsWHs4YAu7AWFZW1qZNm8R748tDw9WqVUtJSeEjd+7c0dPTUygUERERIi1akFKp5ClgmmmDp06dkslkhoaGBTO8dFlOTg6P361evVo9uH79+n/++aeUMx8/fnzNmjXqLzds2EBEtra2b6oDq2Xjx4/nCXfqkZMnT65du/adkgHfSlfK6SxcyIhYq1avktlDQ5mjI9ONPDgB5eXl8Us7+f7C/fz8eCXZunXrvjVns5RCQ0MNDQ2rVKlibm7u6Ojo7u7u5+cXFRVVmjk1A1jR0dE8cWzo0KGCd1wALdu4cSMR9ezZ8623zMrKioqKCggI8PLycnNzc3JysrW1zRdoKxjyYIxNmjSJiGrWrBkbGyvCPYCSCA4O7tKlC/9Xa9OmjUgpugEBAbysEA97RUZGFnqz7OxsHx8ffnTPwMDA3d1d/Rar+BISEtzd3fX09IiocuXKBTPrnz175u7urlAo+PVIHx8fka56vm9GjRqV73nAwMBA8oAdvxJgZWWVlpbGRx49ejRjxoxSns16/vz5zJkz4+Li+JcZGRl16tQhop9//rmUG34fJCUl8VJRgl8FSU9PT05Ozjf45MkT3l5LO+ePSyY1NfXkyZPqR6n25Svh5erqKl7yEwCADtLdgPvdu3clz247epT17Mm2bGE9ejCVSlcC7uE8/A9SyMzMnDRpUgk+qhWHSqVq165dvtAwLxA5btw4MVYsQlhYWMFk7a5duzZp0uT27dta3kxpeHt7E5GdnZ266VlkZKShoaFcLi/Nr1J0dLRCodDX17916xYfycvLa9GiRb7TCVK5efOmnp6enp6e+nh7bm5u8+bNiWjjxo3CrsXLjHTv3l3Yad9BTAyrUIERvVbz66OPGBH77jvJdiUaV1dXIlq+fLl6JCsri//jjh49upT9UYvj+PHj/HdKqAm3bt1qZmammaEcFBTE8+jzHeKGMoefuvj99981B7Oysm7evLl///7ly5ePHTu2a9euvOtAQWZmZm3atPniiy/mzZvn5+d3586dgkvk5uZ27dqViDp16pSvuSVo39OnT7UZd+bZ5ebm5urs8nxxsYCAgHr16qmD8qW8NHjr1i1+rouIGjdufOTIkXw3uHLlyocffshv0KpVq9OnT5dmOWCMpaen8w4ib732pjWpqam8vvzOnTvVg/w0ailbSowcOZKIRo4cqR7hh3hq1KiBYxNv9cUXXxBR+/bttVb90s3NjYjcdLXDm6+vr6WlpZGRkbm5ubu7e9HNKsQQHBzs6OjIf2eLU8ILAKD80dGAu1KpdHBwsLGxkbYZPQ+4K5WsXTu2Y4f0Afc7d+64uLiI1PgRJLdv3z4isrS0VJe1jY+PNzY2NjQ0vHfvnrR7Y4xlZGTwtNODBw9KvZfievLkSaVKlYhI81Nx//79eWiylJMXTCHngUhTU1PJEy179epFRJMnT1aPiJeAry6ns2/fPmFnLq5hwxgR02jzy/bvZ0SscmVWWAXPsm7//v1E1LFjR83BGzduFOzpJ4gdO3Z06dLlwIED6hHew3nu3LlCLcE/slatWlXzGtiRI0d4Mum6deuEWgi07OLFi0RUrVq1fPkTX331VcHYuoGBga2trZOTk7u7u6+vb2BgYFRUVDGPODx+/Nja2pqIJk2aJMo9gWIoGPvWWogwLi7Ozc2NR/mrVavGo/xhYWG9e/fmj64mTZr8/fffQi331sz6fFF+YdtpvIfCwsL4JVg1ExOjvDzJWgrNmjWLvwqrn6CCg4PlcrmBgUEpU1KioqKMjIxkMtnFixf5iEql4odFPDw8Srvvcu3HH38koooVK2rz1y0iIkIulxsaGkp+5KKgAwcOKBQKmUzWoEED/lujr68/dOjQS5cuaWF1zRM/lpaWxS/hBQBQzuhowP3hw4fqdIaePXveuHFD+3uIj38RcGeMXb7MrK3ZihVs9GiWlMS0n0GVkpIyc+ZMXvvMzMxs9+7d2t4BlIJSqUxMTLx//35YWNilS5cCAwP379+/Y8eOH3/80cvLa968eVOmTBk3blyNGjWIaMOGDZo/e+/evV9//VWqnWtauXIlETk4OJShIg88kNerVy/1iDomrj6xW2LqIul//vmnenDAgAFENGrUqFJOXhp79uwhoipVqqgbRqlj4pphUwHxqhF9+46WoJrO+fNMJmPGxkzdtSw7mzVowIjY679K5UZ6ejoviv3w4UMtLPfJJ5+QRnWpvLw8CwsLIrp69apQS+Tl5Q0cOJCI6tatq3nWeMeOHTKZTKFQSHYtB0pn7NixRDR9+vR8497e3g0bNvzkk0+mTJmyadOmwMDAe/fulfKV5cKFC/w90vbt20szD5TMgwcPeKMXIvr0008LPYsgtkuXLvEuOERkZWXFYz3Vq1f/8ccfBc+yf2tmfUZGxqJFi3hTX2NjY81UaCiBHTt2aAbc69WjxERRrjG/ldgx8SKi+dqsLVm2hIaG8t817X9icnZ2JqKFCxdqed2i/ffff/wvhHfeCg4OdnV11dfX578+Dg4Ofn5+wlaYVCvY06JgNR4AgPeHjgbcGWNKpdLPz483KZLL5a6urvHx8dpZ+uFD5urKqlRhe/cydd3Rr79mtWuz0aPZ8OGsQQMmTiphIVQqlZ+fH88sfi9qn2VlsQMH2LJlbOtWpgNp3UUICQnx8/PbuHGjl5fX7Nmz3d3dx4wZ4+Li0rt3786dO7dq1crW1rZatWrGxsYFU/kKVbFiRQMDg/90sup0Wloavx7w119/Sb2X4goJCeFVX9Rps3l5ebzyhlBVX1avXk1EdnZ26vzNgp/EtCwzM5Mn1m3evFk9+N133xFRjx49RFo0Ly9v8OC/iNgPP4i0whsolax9+9d6WzPGli1jRMzenonzWUIX8Os6mzZtEnuhpKQkQ0NDhUKhfv3ll6waNmwo7EIZGRm8b0Tz5s01s2J5UzJjY2OcRC5zUlNTedVsrdW33bx5MxEZGRkFBwdrZ0VQW7VqlaWlZf369TWvQGsfrxdcq1YtGxsbhULh5uZW4gbOxcEz63kjVp7FmS+yHxsb6+rqqlAoRo0apYM5sGXLuJdtcmvXpk2bKDz8Q0m2UTCvYufOnURkYWEhyJGO1NRUXmJrx44d6kFer6Z///6ln7/8ycrKatWqlVTJLidPnuQX9jIyMrS/eqFCQ0N5PlC+WjePHj3y9PRUd7yvV6+el5dXYmKigEsHBgY2bdqUz+/k5KTL1e0BALRDdwPuXGJiooeHh4GBARFVrlzZy8tL1AKdaWls7lxmZMSIWIUKbNmyVwH3xERWowZzdWVNmjAiRsT69GEvqzeLRTNbp127dufPnxd3PcklJ7OWLVn//mzjRjZ7NqtShR0+LPWeCrdu3brPPvusmJF0/ui1sbFp3Lixg4ODk5NT//79hw0b5ubmNnPmzMWLF3t7e/v6+vbr14+IWrZsqbXig8W3dOlSIurUqZPUG3kHvKrv1KlT1SPr168nQcuq5Obm8neW3t7e6sGC2UnatGTJEiJq2rSpOnVFO31NT5xgRMzUlGm1ms62bYyIWVkxdT+ox4+ZuTkjYqVuiqvL/Pz86PWjGyL53//+R693vBS8noza06dPeX/jHj16aL7QT5w4kQoUnAFNd+/e1cFe1jz83a1bN20uOmbMGCKqU6eOqGFWKIgfSw0JCZF6I4y9LHvdp08f7SwXFBSkrlPs4OCg2Y6Ca9iwIRFJclq3PMnIyFi40GbWLLpwgYKCKCiIMjK03a29YOXAjIwM3hBy27ZtQq2yfft2IrKyslI3ZXn8+DFPGRawMlK5wTsJ1a9fX6QOW2/Vvn17ItqyZYskq+cTGxvLG+06OzsXmsOemZnp5+dnb2/Pn7LMzMzc3NxK//7q9u3bLi4ufM6GDRse1tXP7wAAWqbrAXcuPDz8448/5k/ijRo1EiN9RqVi/v6sTh1GxGQy5uLC7t1jMTGvxXvPn2enTrHcXObry6pVY0RMT4+5uTExPtbFxMS4urrKZDL+lsvPz68M1fEouXnz2IABr74MCGBWVkzMdlslExcXxxvT9+vXb8KECR4eHkuXLl2zZs2WLVv8/f3/+uuvM2fOBAcHR0VFxcfHF781fHp6Oq8K6uXlJer+39Xz5895rsSJEyek3ktx+fv785STpKQkPiJSWZWjR48Skbm5ufroiTo7SftHyGNiYnid06NHj6oHeRHbb775RuzVBw5kREyj15e4MlJSmI0NI2Kaf8+jRjGi155GyqOkpCR9fX19fX1hU5MK0kI9GU1RUVF8/uHDh6tf8vLy8njfhXr16pXzA14lEhISUrVqVTs7O/VznY5o06YNaf2Af2ZmJu897uTkJGqvTsiHB9yvX78u9UYYY2zv3r1ENGjQIK2tqFKpduzYYWVlRURyufzW6/k4/MI8Au6ll5kZERJixqPtQUF07944ba5e6CnJ+fPnE1GbNm0ELFGtUql4DHfevHnqQS8vLyJq0qSJDiblSOivv/6SyWT6+voSng/mV/gaNWokeZny5ORknuzfoUOHoj9+KpXKwMBAZ2dnHmqQy+XOzs6BgYElWDQtLc3T05OXdKtUqZKXl1e+ri0AAO+zshFw5wIDA9XXY52cnATM5woKYo6OL/LWHRxYgdyUQiQkMHd3plAwIlalCvPxESwsnJGR4eXlxQ9iGxsbe3h4SHXFXgI9e7LffnttxNycRUVJtJs3+vbbb4lo8ODBgs98/PhxmUxmaGioU6fwFixYQERdunSReiPFlZmZWbduXSLy9fVVD/J/NTHKqvDLgZonN9XZScW/3CIIV1dXIvrss8/UIwcPHuQHLLSQ7xkVxYyMmEzGtFNNx8PDo1/9+nFDhzL1xcjgYCaXMwMDVrquZWVCz5496fUj54LTWj0ZTZcvX+YXjebPn68eTE9P54e9HBwc1Bl/wGVmZrZt25aIPvroI90JMV+9epWfSxC8S/NbPXjwgFcj1IxVgdje84A7l5aWNm/evC+//DLfOALuAkpM3K0OuF+5Ypybm6C1pQs2n3/w4IGJiYlMJjtz5oywa124cEEmkxkZGd192Z8mOzubd79cv369sGuVXfHx8bzm6ooVKyTcRm5uLj/lIG1ad3Z2tpOTE78qk5Dw2u/FlStXPDw8Cm38c/XqVTc3N3X509atW/v5+RXzoo5m2Vte/heFswAA8ilLAXdWWCOOUtbLi4tjbm5MLmdEzNKS+fqyd7o4HRbGevd+Ealv0oSVvrp1QEAAr7/Mz4Jps9O6TmjWjB079tpI/frs338l2k3h7t+/b2hoKJfLRSrQMWrUKCLq2rWrjpxpSEpKqlSpEhGdPn1a6r0U1+LFi3lxHnX4SV1WRYxwwJ07d/hD4vLly3xEqVTy7CTNoKHY+MczQ0NDdbe67OxsfpJ93bp12tnDrFmMiHXsyMR+8EZFRfG/81e18lUq1rkzI2KzZom7tm7gn/xFjShps56Mpj///FNPT49e7yD99OlT/mDu27evSJ2+yq779+/z4zuenp5S7+WF8ePH56vopU0nTpzQ09OTyWR79+6VZAPvIR0PuO/YsWPt2rViHwl6EwTchXX//kR1zP3x41XaWVR9SnL//v3qwc8//5yIhg0bJsaKw4cPJyIXFxf1yIEDB7SWQqH7VCoVP4TXrVs3yVPLV65cSUTdu3eXagNKpZJXdKlVq9a9Ai3QRowYoU5jL7QjTnx8vJeXFz+eS0Q1a9b09PR89uxZEStevnyZt94honbt2l24cEHI+wMAUF6UsYA79+zZM3d3d4VCwfOnfHx8SpDVlZmZuWFDqKkpI2KGhmzWLFbitLk9e1jdui/C7mPH3itZlPzKlSsffvih+vJyGQpuCqlPH/bLL6++VCqZiQm7f1+6DRWCd20S6e01Y+z58+f8HY+6jIO0eEVyrdVCLb2YmJgKFSoQ0cmTJ9WDYpdVmTp1KhE5OjqqL5OcP38+X3aSqFQqVYcOHfIFQ5cvX67lA8ipqaxWLUbExEy8ZowxXmNk9OjR6pHQfftUZmasZk32fhwJiomJkclkJiYm6enpIi2h5XoymrZu3UpECoVCswBUZGQk38CIESN05Hqk7jh27JhCoZDJZPv27ZN6Lyw1NdXc3JyIJKwsv2LFCiIyMzPTwer25ZKOB9wbN25MWuzfmw8C7sJSqbLCwhx4wP369boqlTZO9hRsPv/vv//KZDJjY+OC8U1BFPFu9ttvvxVjxbKFx7irVasWq9XeQYVLTk7m6YBSteyePJl17eplbm5eaCONS5cuDR06VF9fn8cZHB0d9+zZUzB4kpWV5efnx+smEZGhoaGrq2vB11DNZtG1atV6X8reAgCUSJkMuHPBwcFdunThLwlt2rR5p9N8AQEBtra2pqaWFhZKZ2cWGVnazWRnMx8fZm7O2rfvZ2Bg4O7unpycXMyfFeT6QTnB29Sq8xR27mQNG4qeK/su7t69a2BgoFAobonZMJfXHzc3Ny/09J82PX36lFc3krA24rsqmBP0xx9/iJ0TlJyczM9U+vv7F7ET8fBk5Jo1a6qfeeLj4/m7/79Kf/TmXWzf/qKPqXiVP9Rdy+Li4vhIWlqatbV1s+rVH+arSVWu9es3qWvXI4cPF/e15p1IUk9GE69kZWxsrNkt/NKlSzwAoTup3Lpj2bJlPMQseUWyLVu2SF6FTKVSffHFF0TUqFGj4r8fK76kpKTI0r93LEcQcC8CAu6Cy86+d/VqFR5zf/78kNjLFWw+r1QqeS2vRYsWibduwfOaoaGh4p3XLEOCg4MNDAxkMtnBgwel3ssLU6ZMIaLhw4drf+kVK16kD549W1Sfm0ePHnl6elatWpUHT2rVquXp6VnouZ+zZ8+6uLjw0IRMJnNycgoICFCpVLzSAL+gzsMd71HZWwCAEinDAXcuICCAF2vmNVjemkx6/fr1Hj168Ns3b9789Gkh33zHxuaoO53WqlXrl19+KfqSr+AVcsq8zEzWrRvr0oV9/z2bMIFVr/6insyzZ2z0aKYDn1VGjhyZL69WJAMHDiSiTz75ROyFisbfPn766afSbqP4Cq16qZ2yKr6+vkRkY2OjzjhWZyedOnVK1KXVbVp/0Tgg8tVXX0nyb6dSsfbtGRETqX6y1rqW6b5ly0TsUitVPRk1lUrFH8PVqlWLiIhQjx8+fJgXnNm4caN2dlJWqFQqfqK8cePGYoSYi4+3LdV8OpJEWloajwL379+/NPl3WVlZUVFRAQEBXl5ebm5uTk5Otra2MpmsWbNmAu62rEPAvQgIuIvh+fOAoCBZUBDdvt1b7LUKnpIs+JZPDOqORJpnXsXrSFRWpKWlNWrUiIi+++47qffyysOHD3k3+/vaPZm9axeTy5lMxor5kpuZmenn56fuimdmZubm5lZoGtmtW7fGjx9vYmLCb9mwYUMbGxv+50GDBr13ZW8BAEqkzAfc2csuo7zNGu8yWmhTtYSEBHd3d/5BvUqVKj4+PiLVgdUsata2bdt/31CCPDAwkL8FJyInJ6ebN2+KsZmyR6lkZ86wH39kBw4wdfG46dMZEevQQbDWtCVy+/ZtPT09fX39KPH7uMbFxVWuXJmIdu/eLfZaReyBN4Mq9HyiDlKpVLxyumavPK2VVVEqlQ4ODkS0ePFi9SDPTmrVqpWox1bmzJlDRA4ODupw85UrV+RyuYGBgWakUmsuXGAyGTMyYmJU01m/fj1pq2uZjrt9+0XXbjFeyiSsJ6OWl5fHawfZ2tpqduLiCdQKheKPP/7Q2mbKhNTUVP6+YuDAgVId8b527RoRVapUSdQ4VDHdvn2b9yDx8vIqzu2zsrLCwsL++OOPlStXurm5de/e3dramgpjamraqVMnsfdfhiDgXgQE3EXy4MGkoCAKCpJlZoaLt0rB5vMpKSn8UKMW3qLzM6/Vq1dPSkriI4mJiTxJ+b19BRw9ejQRNW3aNCMjQ+q9vIYfq5oxY4bWVjxxghkaMiK2evW7/aBKpQoMDHR2duZpgry8e2BgYMFbPn/+3MfHx8bGRi6XV6xYsWHDhlo+OAsAUKaVh4A7FxMTo84ut7Ky0iwolpub6+vry3vd6Onpubm5PXnyRNTNqFQqf39/3rJcJpO5uLhoXu6OiIjgsQx+uVjanuZlQ0oKs7EpyRsKQQ0ZMoSIxo8fr53leFCpWrVqYj9c32TixImkrYoogti+fTv/9VdfclOXVfn777+1sAF1QU/173tGRgbPTvL19RVp0ejoaCMjI5lMdvbsWfUgbwihzTf9+YwYwYYPZy8rvghG3bVMs7Q3z+qV5Biv5Jo0YUTs+HGBp5W8noxaenp6x44d+dVrzUvpc+fOJSITExPNgjPAGLt16xY/7u29Sku9BPPhLxyTJk2SZPWCDh06JJfL5XJ5wRhBbGxsYGCgr6+vh4eHi4uLvb09P0Gfj4GBga2trZOTk5ubm4+PT2BgYFRU1Ht1mKY4EHAvAgLuIlGpsm/d6nDrVsesrNsiLaE+Jbl27Vr14LRp04ioU6dO2rmu2bVrV3q9B/W6dev4peisrCwtbECnqFQqT09PY2PjoKAgqfeS3+XLl4nI3NxcOwfWr19nFSsyIlaaN/vh4eHu7u7Gxsb89a5169a+vr7qjBa1pKQk/mqotaZQAADlQ/kJuHMXL17kH86JqH379ufPnz927Ji6+0fPnj21+WEgPT3d09PTyMiIxwU8PT0fPXrk4eFhYGDA87+8vLyys7O1tp+yRKVivr5s/vxXI0eOMCJmYiJAxf0SuXnzplwuNzQ0fPDggXZWVKlUTk5ORPTll19qZ0VN9+/fNzQ0lMvlOvL5+a3UZVV2aPTr1H5ZlYLB3927d+fLThLWoEGD8j1Idu3aRUQ1atSQsERVXh6bMYNpVh8ZPpyVviVBwZPUBS9yvFfmzGFETPD2aW+qJzNPpDpBRXry5EmDBg2I6OOPP1afS1OpVLzAV+vWrdGtK5+DBw/WsbK63KwZ++cfLS+dkZHBM8p1KrbI+wFUqlRpyZIlU6dO7devX6NGjfg7sXz09PTs7Oz69u07adKkjRs3Hj169O7du4itFwcC7kVAwF08eXkpjKmysqIfPJgcFTX44cPp2dlCtjAteEryzp07/O3x5cuXBVyoCCEhIQqFQk9PT30YWl1br5hnd8qZli1bUoGqZTk5OVo4f/xWvL3cmjVrxF4oOprVrMmI2JAhrPSvUY8fP/b09KxRowZ/KaxVq9YPP/zwTH3QnLE7d+4QUb169Uq7EgDAe6a8BdwZY0qlcuvWrfzwO094J6IGDRoEBARIsp/o6GgeEeNnkIlIoVBMmDBBvP6N5UFYGNPTYwoF0+zVOWwYI2Ldu0vSRnXs2OedOq1zd5+szUWjo6N5EXDtJGhrGjt2LBGNGDFCy+uW2KxZs4ioY8eO6uibJGVVCi1vUjA7SSgnTpzgTyyxsbF8JCMjo06dOkS0detWwZd7Jz17MhMTpi5fX6cOCy/dmW911zJ1TEc7Xct02eXLL1rUCvukWLCeDP8Ypu4Xp2URERHVqlVzdnbWPD+ek5NTuXLlDh06qB/8oJY1fz4jYtWrM21dIeZ+/vlnnvipzUXfSqlUOjo68iptmipXruzo6Ojm5ubl5eXv7x8UFKRrBQrKEATci4CAu6hUqtzr1+s8erQsLe3is2e/ZGffFWrmQpvP89fHcePGCbVKcbi5uRFRr1691CP82JmZmVmc4GcJdd62bduIqHnz5uo3/KGhodbW1s2aNZP8Avwff/xBRHXq1BGpbi339Clr1OjFZ2IBDzlkZ2f7+fm1aNGCv0SePHlS/a3Tp08TkaOjo2CLAQC8H8phwJ1LS0ubNWuWubl5hQoVPD09JTxzd+rUqXbt2g0ZMqRly5bu7u7dunXr3bt3u3bt0GzkLWbNYkSsceNXbyWePWM1ajAitn27lvcSHMxkMmZiwuLitP1ObsWKFfytW6GdCUQSGRnJI5vhpQyRaktUVBQvq3Lx4kX1IG+PPH36dC1vZt68eflCTjw7SV9fX9i/z7y8PJ7m8/3336sHly1bRrrRPrRnTzZrFrO3Z/wYT+kD7seOHbOyspo4caJ6RDtdy3SZSsVq12ZE7NIlwebUnXoymiIiIvJ9fL169So/OyLqx9qySqlkffsyIta6NdNiEJkfMdyu9dfofA4dOhT5+mE4nvfg4ODg5eW1b9++69evFzwyD6WBgHsREHAXVVZWVHCwvkol/Ae9MWPGEFG/fv3UIzzLoWLFipptRbRAHfo/duyYevDTTz8loq+++kqbO9EFWVlZlpaWmn8bOTk5vJ+n9vOT8lGpVPzZRrz6/hkZrFMnRsSaN2fiHJ1lgYGB375+dvK3336jMlVlFABAR+gVPFFbPlSoUGH69OleXl5VqlRZuHChhDtJTEy8fPmylZXVlStXiEgulzdt2jQsLCwjI0PCXZUBCxfSwYN06xZ5eZGnJxFR1aq0ejWNGEGTJ1OvXmRlpbW9LFhAjNHEiWRpKdPaotzUqVN55t28efN8fHy0s+iiRYtyc3O/+uqrRo0aaWfFUtq4cWNWVtaIESN401Tuxx9/XLp06fz587W8mVmzZj148GD27NnqkVatWo0ePXrr1q2dOnXijbYEkZaW9uDBg9q1a0+dOlU9OHHixKSkpH79+snlcqEWKrHu3SkyklatojlziIgePqSXp33eqH79J1FR3d/0XTMzsxMnTsyZM8fNza1q1aqenp5EtGrVKhMTEyH3XXbIZNS/P61fTwcOULt2wsx58ODB7Ozsnj17qg8X79mzh4g+//xzYRYoEV5FVxPf1eDBg3kvdHiNXE6//krt2lFICI0fT7/8ooU1b9y48d9//1WsWFHah0pWVtbIkSOfP38eHh7OixE9e/bszz//VCgU+/fv5811AKDcMDCwNjSsHxnZz8Jiqrn5R0TymJipycn/FP1T+/c3//33G0XcIC8vLzo6Wl9ff9WqVerBDz/8cNOmTXK5nB+k1poaNWqsWLEiLy+Pn5jkvL29//777127di1dupQHoN8ThoaG33zzzbx587y9vXv27ElE+vr633zzzaxZs7y9vXv37i3h3mQymbu7+8SJE1euXCnSS2FcHMXEUL169M8/VKmSGCuQk5MTL2qqsWgcEfHSnQAAUHz4mKo9uhD/KksMDennn6lzZ/rhBxo8mJo2JSIaPpz8/SkggCZPpj17tLORy5fpyBEyNaUZM7Sz4GsUCsXPP//ctm3b9evXu7i4ODo6ir3i7du3f/vtN319fd6WsExo0KCBoaGhnZ1dvkE/Pz/tb6ZChQoF123QoIG+vn5iYmJiYqKAa1WsWLFmzZq8UQRnbm7OS47qiNWrycGBhg0jIsrJobCwt9ze0FAv7G032rZt29atW7/44ovHjx936tSJ181/bw0cSOvX07599MMPwkzIA9nqv1WlUrl//37NER2xb98+0r1d6ZDKlWn/fvrgA9qxgxwdafx4sRfkjb5dXV2lvQC2d+/exMTEtm3b8mg7EW3fvj07O7tfv36ItgOUPzKZQaNG5xISfo6JmcnYlAYN/snJeZiV9ZY3Eo8fV3/rm41q1aqpVCpra2v1iEKh+PrrrwXY9LvjVWU01apVy8zMzNra+j38gPn1118vW7bs77//Dg0N5SdIxo8fv3Tp0sDAwKtXr7Zq1UprO4mNjbWwsNC88D9y5Mg5c+aEhIS0adOmbt261tbWNWvWtLKysrS05P+vUqVK8ec/fZq6daNDh8jZmYjo55/p5Em6cIHS00mbF1l4wP29uq4DACAIBNxBh33wAbm50Y8/0pgxdO4cKRRERJs20enTtHcvHThAAwdqYRdz5hBjNGkSvUz31LYWLVrMmDHjhx9+GDt2bEhIiGZ09V2pVKrk5OTU1NS0tLT09HR9ff2C70oXLFiQl5f39ddf29ralmrfWmRtbZ2dne3j4zNx4sTq1atLvZ38kpKSVq5cmZub6+Pjky9npJTTOjs7X7p06ciRIx9//LFQ0wrLxoZmzHhxsap2bbp58y23l8uNVKq33GjcuHEXLlyIj49v06bN+vXr1b063k8ffkjVqtHt2xQeTo0bl3a258+fHzt2TKFQDHz57Hr69OknT540bNhQXdZTF1y9ejU8PLx69eq8QRkUrkUL+uknGj6cvvuOmjalzp3FWyozM/PXX38lIl6EQUI//fQTEY0bN049sn379nwjAFCe6OlVsbCYYWExPTp6aHy8t7X1GkvLhUX/yJw5iokTlUXcgLfmDgkJWb58+aJFi4TcrkBWrFiRkJBQu3ZtHXzfK7YqVaqMHDly06ZNa9as2bp1KxFVqlTpq6++WrdunY+PD2/8rgWZmZl9+vSpUKHC/v371dnfsbGx2dnZ5ubmISEhISEhBX/KyMioVq1atWrVcnD4lai2lRVZWpKVFdWsSTY2ZGqa//a1atHUqdSzJxkbvxrRMmS4AwCUDALuoNuWL6c//6SLF2nDBpo0iYjIyoqWLqWZM//cvt2xe/dKIp2me+nff+nYMapYkTSKdkhgwYIFf/zxR1hYmJeXV8ESSRERERcvXkxPT09JSUlOTk5PT+d/TklJSU9PT0tLU/85MzNT8wd79OjBqzOr3bx5c8+ePUZGRnN4EZAywtnZuW/fvn/99deCBQs2b94s9XbyW7hw4bNnz7p37z6JP4aFs2DBgmnTpk2aNMnJycnAwEDYyYUyeTK1bk2PH5O+PhWjRpEJUdOib7F582YHB4cDBw5cvXqVZza9zxQKcnam//2PDhwgjTpGJefp6RkTE6NT9WQKQj2Z4ho2jC5epHXryMWFgoPF+5ju7++flJTUoUMHbaYWFhQREXH27FlTU9MhQ4bwkZMnT966dcva2lpnr0oCQIkwIn65XcVYrkxmSCTT06smkykMDKyJrIv+YSurt1em3Lhxo6Oj48qVK0ePHl23bl1BNi2UmJgYXuvGx8fnPcxwJ6Jp06b5+vru3Llz6dKlvFrjlClTNm3axGvsaJ5LEM/06dNv3rxpZ2dnZmbGR3Jzc11dXTMzM3v27Onh4REXF/fo0aPY2NjHjx/HxsbyP6ekpERHR0dHRz9/XrlgGkqFCmRjQxYWZG1NNWtSt25Uvz41bkxLl9L332vhPhUOAXcAgBKSuoi8iJ49e0ZEVapUkXYb/DD+gAED1CP29vZEdPPmTQl3VZb8+ScjYiYmLCrqxYhSOWXAACIaN26c2It368aI2KJFYq/zdufPn5fL5QYGBgX7bq1bt674v/KVK1e2sbFp3Lixg4NDvpY4jLEBAwYQ0aRJk7R0r4Rz69Yt3uj16tWrUu/lNWFhYXxj165dE3zynJwcXmd/9erVgk9eSj17sn/+efHnM2eYTFbapqma+NnqXr16CTZjWXb2LFu1it29K/zMeXl5PPIuxqO3NHhTshMnTki9kbIgN5d17cqIWKdOL1oYi4CXO9u6datI8xcTb2jh5uamHhk6dCgReXp6Srep9wKaphYBTVMFl5199+bNRomJuxljGRk3r1+vfedOv4iIHjdu1M/KihZwIf4E8sUXXwg4pyD4NcUhQ4ZIvREp8c8s8+fPV48MHjyYiGbPnq2F1f/880+ZTGZoaHjlyhX14IwZM4jIxsYmMTHxTT+Ynp4eERFx+vTp3bszvL3ZlCls6FDWpQtr0ICZmDCi1/47dIh16cKePGEWFiw0lG3dyoYP18Kdy4+XaJPqKRQAoOxCwF10CLgLYMgQRsR69GAqFR8IDw83MjKSyWSBgYHiLXv0KCNiVauy5GTxFnkHvHBk+/bt8/LyNMdPnDgxYsSICRMmeHh4LF26dM2aNVu2bPH39z9y5MiZM2eCg4OjoqLi4+PT0tKKnj8oKEgmkxkbG8fGxop5P8TC88e7d+8u9UZe06dPHyL6+uuvRZr/8OHDRGRubv7o0SORligBPz+2ezfLyXk1kpTEXn/YlsqTJ0/46ZY///xTsEnLrB492GefvfqyXj32+LEwMx87doyIGjZsKMx0AuFntKtXr56bmyv1XsqIR4+YlRWrUIFdviz43E+fPt21a5dMJjMzM0tJSdH8lkqlytF8FhBZdnY2L61w+eXdfPbsmZGRkVwuv3fvnta28X5CwL0ICLgLLipqcFAQRUeP4F8qlekZGVczMq6qVAI/4Tx8+LBChQpEdOrUKWFnLo1z587xt+vv+TPb2bNn+Sd99QecS5cu8dSi1NRUUZeOiYmpVq1avnyXkydPyuVyPT29c+fOlXjm589ZaCg7doz5+bHly9mpU6xLF8YY27yZde8uWcDd1NSUiJJ15PMwAEDZgYC76BBwF0B8PKtW7VH79gd27lSPLV26lIjq1av31jhyiXXsyIiYl5dI07+z5ORkGxsbIlqzZo0Y8/ft25eIZs6cKcbkWpCYmMjf/u7du1fqvbwQEBDA3/o/ffpUvFX4P9z48ePFW+KdxMezihUZETt/XsRVvL29icjOzi4rK0vEZcqCdu2YhQXbv//Fl5Urs7g4YWYeP348Ec2bN0+Y6QTCC16JdxGrfLp4kfFjCrm57No1FhjIHjx41zkyMzNv3rzp7+/v5eXl5ubm5OTED/ITUZ06dZo1a6Z549TUVBcXF1dXV6HuwVvt2XOciFq3bq0e4c8Sn3zyidb28N5CwL0ICLgLKzX136Ag2ZUrJtnZ9/mIUpmRkyPQdeYCeCHHVq1a5QmYNVAKSqWyXbt2OLjDdezYkYg2b96sHunUqRMRrV+/XrxFlUplz549iah3796ql6lgT58+5T1FlyxZIuBa6oC7UsnatWPOzhIE3JOTM+zsmlpaWml7YQCAsg8Bd9Eh4C6IC/7+RFS1atXHL1M3c3NzW7duTUQzZswQY8VDhxgRq16dvZ6xJ7EjR44QkYmJSWRkpLAznz9/nohMTU3j4+OFnVmbNm3axC/DZGZmSr0Xlp2d3bBhQyLy8fERdSFeTkculwcFBYm6UDGNG8eImNgxLnU5HW9vb3FX0nnt2rGNG1mdOi+erIQKuKOeTDkUFsZsbVmvXmzMGNagARsyhL0pAz0jg127xvbuZcuWZX/9defOnWu8oW94xYoVW7RowXtIaEY9rl27ZmJiQkS+vr7auXPduzNb22w/vxD1CH+79ccff2hnA+8zBNyLgIC7oJRhYQ5BQRQX9yqsGRe3OCTEPCFhZxE/VmIZGRm8gPuWLVvEmP9d8b7Q1tbW4uUblSG7d+8mogYNGiiVSj6yb98+/kFAvAsky5Yt48fs1EdLVSrVp59+SkRdunQRdl11wJ0xdvkyUygkCLiHhTEipmNnHQEAygZ0G4OyoaOLS79+/Q4dOuTu7s7fXenp6W3btq1du3arV6/+/PPP27ZtK+yKzZvTV19Rq1b0shGOTujbt+/QoUN/++03Nze3Y8eOyWSygrfJzMxMSkrKysrifyjmn58/fy6Tydzc3N4UVSkT3NzcfH19r127tnr1asn7vq5bt+727dtNmjSZOHGiqAs1btz422+/XbNmzaRJk86ePVvoo0Jrrl6lbdtIX5+8vcVdSF9ff/369R999NGiRYuGDRumzrR9P7VpQ717k6cnrV5NRBQSUkh3TFNT0td/9WWrVn9evepKRDKZrNDu01lZWU+ePKldu3aLFi3E2ve7u3r1anh4ePXq1bt06SL1XsqgESNo4kSaNo2IKDOTunenDRvo22/p4UOKjqboaAoNpbAwio6me/dIpeI/ZCCT3TExeZKebmBgYG1tbW9v37RpU9uX6tWrJ5PJfvvtt2HDhrm7uzdt2pT/07Ro0eKnn34aPnz4t99+a29v37lzZ1HvWVQUnTpFJiYGAwa04iPnz9+8dSu8Vq1an3zyiahLA4DWPH36U0ZGsIGBjYXFVD6Smxv7+PFylSpdX1+UPpnGxsZeXl5DhgyZN2/e559/XrFiRTFWKabU1NQFCxYQ0cqVK3mtm/fcZ599Zmtre+fOncOHD/OQ94ABA+zs7CIjIw8ePDho0CDBVwwODvb09JTJZNu2bVO/89ywYUNAQEClSpV27NihUCgEXM7MjBo1evHntm1p1iySyYgx0uY7/bg4IhKv5zoAQLkmdcRfRMhwL2fu37/Pu8AfOHBAPTh9+nQiatGihSCFYjt0YD/99OLPcXGsVy927x7r2/fVDWJimJNT6dcplSdPnvDCKR06dHBycurYsWPz5s1tbW0rV66srxlOe3cymczFxUXiu1dqJ06cICITE5MH714wQUDx8fH8U9lff/2lheWSk5MtLCyIaM+ePVpYrgi8O+O0aVpaTtfK6UiiXTt24QJLSGA1a7Lr11nlyi8O6BT9X8eOe9/6nFCzZk0DA4MzZ85IfRdfQT2Zknv8mOnrv9Y3dccO1qsXW7iwkMeHgQFr3Jj178+mT2e+vkGnTj18+LDo6SdPnswfM5pdQNzd3YnI0tJS7NYgM2YwIjZmzKsRV1dWt262t/dFUdcFDhnuRUCGu1Dy8pKvXasZFESJif7qwejoYUFBFBX1uahLf/jhh0Q0ffp0UVd5K96T84MPPlBXMoE1a9YQ0YcffqgeWb9+PRF16tRJ8LVSU1P50dUpU6aoB2/evGlsbExEv//+u+Ar5vPoERs5knl4iL3Oa375hRGxYcO0uigAQPmAgLvobv7557bOnQ989516ZJeLy7bOnR/duiXhrsqodevW8Y/u6ubvGRkZdnZ2RLR06dLSz6+vz6ytGQ8L3LvHLCzYrVusVq1XN4iKYtWqlX6d0tq1a9eIESPeFCMzMjKytLS0tbW1t7d3dHR0dnbmhXTd3d09PT29vLx8fHz8/PwCAgICAwPPnj178+bN2NjYa9eu8ZY4Bw8elPr+lRZPafnyyy8l3MPYsWOJyNnZWWsrbt68mYhsbGzS09O1tmg+u3czIlajBktK0tKKd+7cMTAw0J1yOpLgAXfG2M8/MyenN5aUSUlhiYma/2UnJiYmJiYmJCREvcG4ceOIqGLFirpTVQb1ZEru0iVmY/PayJkzrGFDtns3q1+f9enDvvuOrV/P/v6bRUWVoMdxbm5ut27deDAo+2VYPzc3t2vXrjz2ka0Z6xdUdjarUYMRsf/+ezGSlMRMTJhMxoSuvgaF0/GA+/Dhwx0dHaXqMImAu1AePpwaFETh4Y6MvQg3p6WdDwqSXblilJ19V9Slr1y5olAoDAwMwsPDRV2oCJGRkYaGhnK5/NKlS1LtQQelpKTwU3r/vXwBSE9Pr1q1KhGdF7qVkKurKxE1a9ZMXbgyMzOTnwJ0c3MTdq1CXbnC5HJmYMAiIrSw2gteXoyISX2xCQCgTELAXXz79zMippHhzuztGRFDhvu7UyqV/Fi65tuakydPymQyQ0PD0NDQUs6vr89++IHxJG9dDrgzxhISEvz9/Y8ePXru3LmrV69GRUUlJCSUsnvk6tWriahWrVpJWguXiiM6OtrIyEgmk509e1aSDUjywUypVDo4OJDQ/ZqKLyOD1a3LiJiWy5xOmTKFiBwdHd/bhC91wF2lYp06MZlMsKapSqWSX76ysrKS9sgIFxISQkTVq1fPzc2Vei9l0N27rEKF10YOHGCdOwu4Qnx8vLW1NRG5u7urBx8/fswHJ0+eLOBamvilvhYtXo34+DAi1qePSAtCfjoecNeakJCQ3377Ld8gAu7CiIiI39z9akiV9PQrL4eUt261Dwqi2Nj5Wlhf+4kU+fTr14+Ixmge5AHG2MvE/yFDhqhHZs+eTUSDBw8WcBV/f39+glbzrMyECROIqEGDBqmpqQKuVYQxYxgR0+bDcNIkRsTe+35JAAAlgYC7+BBwF1R4eDiPpR47dkw9OHbsWIVCsWnTpoK3T05OjouLu3MnJSiInTjBDh1iv//OfH3ZqlVs0SI2YwZzc2NDh7JPP2UXLjB9fZaSwho3ZkeOvAq4m5mxhQtf/Ddpkq4E3MWgVCo7depERBMnTpR6L6XF6044ODio2yhpk1RHj3kBdxMTk/v372t5acbYokWMiLVqVYLU2FJJTk7mZTT9/f3ffuvyhV9iGDCAhYS8GLl6ldWvzwTsfJyRkeHo6MhTuiS/FId6MqWSl8dq1GCahwNGj2Ya5+IF8d9//xkaGhLR9u3b1YMXLlzgg//73/+EXY5zcmJEbMOGVyPNmjEitm+fGKtBIRBwf/bsmbu7u0KhMDU1zVdACQF3YXzyCSNSTn31BvXZs+1BQXTtmpVSqY32oepSgUeOHNHCcvkcO3aMiMzMzOKEuqJejsTExBgYGCgUiujoaD7y+PFjIyMjhUIRKdApp+joaP6v/5O69ihjhw8f5ilfV65cKeJnhRUfzypVYkRMaw9DFxdGxApcSQQAgLdDwF18CLgLbfHixTybICMjgzF27NixUaNGOTk5OTs7d+vWzcHBwc7OztLS0tzcXF1l5cMPQ95a0fj335m+PsvKYseOsfr1WXj4i4B7pUrs559f/Ld8eXkOuDPGwsLC+HlVnaraXAKpqam1atUiol9++UXLS//+++9EVKNGjefPn2t5acbY4MGDiWjEiBFaXjcmhlWowIjYqVNaXpkxxn788UfJy+lIwtub9e/PEhLEXeXZs2e8kEu3bt1KeYymlFBPprR27GCWlszXl/39N5s8mdWuzR49EnwR/vtoZGSkWehp06ZNRGRsbBwcHCzsclFRTC5nxsbsZak59u+/jIhZWDAhertAsbzPAfecnBxvb28ejNPX158yZUq+V38E3AUQGMiImLm5+ilLmZty7ZplUBAlJOzQ2i5WrlxJRI0bNxakcVTx5ebm8l+xFStWaHPdMmT48OFENHXqVPXIyJEj8x23KrHc3NwPPvgg37NKTEwML1zj4+NT+iXeyapVjIjZ2THR6rS9xtGREbHTp7WxFgBAOYOAu/gQcBdabm5u69aticjDw2PKlCm8yMybmJqa1qxZc9Cgsw4OrGtX9vHHzMWFubmxqVPZ/PnMy4v5+rKdO9mBAyw29kXAnTE2ZAibMEGnS8qIZ8GCBUTUsGFDdYHCMsrPz4+IatasmZycrLVFMzIy6tatmy8FRpsePHhgYmKi/XI6o0ZlEDFBD+++A8nL6Uji0iVmYMBkMvbnn6KvFR0dzY8RDBkyRKrSPagnI4z//mPz57Nx49iaNezpU5EW4bUX6tSp81RjiTFjxhQcLL3nz9maNczT89XIyJGMiM2eLeAi8BYfffSRqampq6trSkqKtDtJSEjo37+/ubm5hYWFFl4HAwMDeTydiJycnG4WeG8fEBBQqVIla2vrCG0WXS5ncnNZ06b5q1rMnp04p2PUdWd1PXctyM7O5j0ztRxjXbt2LRHVr19f2mveuuzatWsymczMzEx9uevGjRsymaxChQrPnj0r5eRz584lImtra/VUSqWyZ8+eRNSnTx/tvynKyWGNGjEitnq1NparV48RsTt3tLEWAEA5g4C7+BBwF8HFixcVCkX79u15Ovb8+fN37doVEBBw/PjxoKCgiIiImJiYElQ/UAfcY2NZlSrvacA9Ozubf3qcO3eu1HspFZVK1aFDBy3fkYULFxJRq1at8rRcV0UD/2CgzXI658+fr1atRo8e2+7e1c6ChZC2nI72paayhg0ZEROtLHZ+wcHBvK/yrFmztLTk61BPpgzJyspq3749D0GqnwwzMzPbtWtHRL169RLvGfL58xftUhEd0KZ79+4pFAre72Hnzp2SXJbLyclZvXo1b5/ISxjJZLJhw4Y9fPhQjOUiIiKcnZ15qL1hw4aHDh3Kd4MbN244OTnxG6xcuVKMPbwvVq9+kdCrDjdHRTEjIyaTsYsXtbyXgIAAIqpcubKwFw6LkJCQwDOpDx48qJ0Vy6ju3bsT0apVq9QjgwcPnjFjRkLpjgGeOXNGoVDI5XLN03Xff/89P8z6SIRTYsVx9Gi+Ix9iUamYkREjYmnaqNsEAFDeIOAuPgTcxXHmzBmeLjd8+HCh5lQH3Blja9YwCwsWEcFsbV/d4O5dZm0t1Gq667///lMoFHp6eoKf/deyCxcu8OqKd7QSenn48GGFChWI6JQkdVVeSk9Pr127tnjlkvNRKpU8sjZ/vja6lhVBqnI6khg2jBExBwemzXS348ePGxgYENHatWu1t+pLqCdTtjx48KBGjRpENGfOHM3B6tWrE9G8efNEWnf9ekbEnJxEmh7e6NKlS7wNDBG1bdv23Llz2lw9X6Z5UFCQl5cXv0ZoYmLi4eEhYEvDpKQkDw8PHtOvVKmSl5dXvrzjxMREd3d3PT09Hpn18fHBuZySS0hgVaowInb48KvBAQMYERs1SpId9enTR5tXfydOnEhEPXv21M5yZdfhw4d5HrqABX8SExP5O+oFCxaoBy9fvqyvry+TyQ5rPia17pNPGBEbO1bcVZ4+ZUSsUiVxVwEAKK8QcBcfAu7iuHv3Lu+QEx4eLvVeyiF3d3ciGv3RR6yMf0p0dXUlos8++0wLaw0dOpSIvvjiCy2sVbRffvmFiCwsLLRQTmfbtm08qzFN6uwXqcrpaJ+vLyNipqZM+09+O3fulMlkcrl8n3b7UaKeTFl04sQJPT09mUy2Z88e9eDx48f54N69e8VYtFUrRsR27xZjbngLlUrl7+9vY2PDs8tdXFy0cORIM9O8QYMGmt2zHz586OrqKpPJeBjOz8+vlKn3SqXSz8+PX0mSy+Wurq7xr7eozs3N9fX15VeV9PT03Nzcnjx5UpoVgY0fn/8a2vHjL14CX29OqzVhYWH6+voKheLatWtirxUaGqqnp6enp6cjDRJ0mUqlsre3J6Jdu3YJNef169fr1q3bqVMn9XuP1NRUXlZo2rRpQq1SMpGRzNCQyeXs0iURV7l2jRExe3sRlwAAKMdkjLEi6l+XaQkJCdWqVatSpUpCQoKU+zhwgAYNogED6MCBFyNNm1JYGN28SS+TcaAERo4c+csvv3z11Vc///yz1Hsph9LS0v4cPvzzkydl8+fTjBlSb6fkYmNjGzdunJaWdvTo0V69eml+Kz09nRepKIFFixbxc+tqFy5ccHR0NDIyCgsL42XcJcQY69Kly7lz5+bMmcPPvYokNTW1UaNGjx492rlzJ+9YJa158+Z9//33Dg4Oly5dksvlUm9HFKGh1L49ZWTQzp0kyV/5kiVLFixYYGxsHBgY6OjoKOzkSqUyPDy8UqVKVlZWmuNz58794Ycfvv76a957E8oKb2/v6dOnm5qaXrx4kYdCiGjlypUzZ840MzP777//1IOCuHiROnakatUoJoYMDQWcGN5Benr6ypUrly9fnpWVVaFChenTp8+aNcvIyEjwhZ4/f+7l5eXj45OdnV2pUqVZs2ZNnjzZsMA//MWLFydNmnTx4kUi6tChw9q1a3m5uXd16tSpyZMnX7t2jYi6du26du3ali1bat7gxIkTkydPvnHjBhH16NFjzZo1LVq0KOF9Ay43lz78kIKD6do1atKEiEippDZt6Pp1WraMZs2Sal+TJk1at25d9+7dT5w4ke9b/v7+586dK8GcnTp1+uKLL/IN9u7d++jRo9999926detKuNf3yU8//eTm5ubg4BAUFCTUnMnJyWlpaer3JK6urjt37mzTps2FCxf4mT8JzZxJK1eSq+tJP79u/MriO0lJoevX6dw5+vdfioyksDDSnCM9nWQyksvp5k3KyaHmzcnYmPT0hNw/AED5J3XEX0TIcC/HIiIi9PT09PX1o6KipN5L+XX8OJPJmLFxWS+Fu2TJEiJq2rRpvtzYJ0+elPiZ88GDB5pTqcuqaJ45lVZQUJBcLjcwMLh9+7Z4q3h4eBDRBx98IFUjzXy0XE5H+9LSXryAiH2IuGjffPMNEVWtWvXWrVulny02NjYgIMDT09PZ2bly5cpE9P333+e7DerJlF1ffvklETVq1Ejdy06lUn3++ed8UNhTODdusM8/Z2W8/0g5ERkZOWDAAP6KaWtre1vY2gt5ef/6+fFEcoVC8dZEcp6ZbmFhQS8z0x8/flz81R48eFB0pvydO3dcXFz4nbWzs9PMsofSUipfK9S+YQMjYra2LDNTuj2xxMTEatWqEVHBw17jx48v2RvLcePG5Ztq//79RFS5cuXSt/18T2RlZfEG7yKVduTnRytUqCDIm5/SS05mTk6uRPTrr78W5/Y5OTlXrtzfsIG5urJGjZhMxohe/RcZ+dqNhw5lNjZM3Qa7XTt25ozQdwAAoLxDhrv4kOEugiFDhuzevXvChAmbN2+Wei/l2siR9Msv1LUrnTxJ7546oSOys7ObNWsWGRm5efPmCRMmqMczMzO3bNlSsjnHjBnDi8Ny27ZtGzNmjJWVVUREBC/jrgv4KZBBgwbt27dPjPmjo6Pt7e1zc3MvXLjArzfogh07dnz55ZcWFha3b982NzeXejsC++or2r6d7O3p8mUyMZFsG0qlcvDgwX/88Ue9evXOnz/PP98W371794I0JCcna363Xr1633zzzbRp09QjV69ebd26tYWFRWxsLG/MCGVIZmamo6NjSEhI//79Dxw4wKOWaWlpHTt2DA0NdXFx8ff3L838//5LGzbQxo1UtSoR0d69lJVFI0YIsncorZMnT06ePNnw6dNLKSnUvj35+FDpk75Pn6bJk5Xx8bVSUpq0bevj49OqVavi/FxaWtqqVau8vLyys7NNTU2nTZs2e/bsghnxmjIyMr7//vvVq1fzbP3Zs2dPmzZNM1tfa+n8QESUlEQNG9KzZ7R/Pw0cKO1eNm3a9M0339SrVy8sLEzzX/zkyZPXr18vwYTNmzfv0aOH+sucnJxmzZrduXNnw4YN/CI3FMeiRYsWLlzYrl27RYsWWVtb16xZk1+ZK73o6OjWrVunpKT8/PPPX331lSBzlt7//ve/0aNHW1lZhYeHa34wUYuLiwsODg4ODj537tz58+erVm378OFp/i19fWrRghwdycGBHBzyhyWGDaOgIHJ2ptWriYjatydvb+rSRfR7BABQrkgd8RcRMtzLq5s3b8rlckNDw3xZxiC8hARmYcGI2JYtUm+lVPbs2cOfDcTIEkpJSbG0tKRiJ5hozePHj3nE+Z9//hFj/v79+xPR6NGjxZi8xFQqVefOnYlo9uzZUu9FYHv3PiRiJiY68eqRkZHxwQcfEFGbNm3e2o1QM4edJ5lqsrS0dHZ29vT0DAgIyFcQmeOlnyZOnCjOXQHR3b17t2rVqkT0ww8/qAdv375tY2NT+kruv/7KjIzYmDEvvly0iM2cWcopQUi5ubkPt21jVasyIqanxyZOZCV+Ib57lw0e/CIbs27dqIMHSzDH7du31dno+Wq+F5SRkVGnTh1ej/7evXua31KpVH5+fvxyo0wmc3V1ffToUQn2A4XLy2MLFrDGjVnduqxZM8Y7dcfGsoEDWY8eUm+OMcby8vJ4yaCCR7IE8cMPPxART2sQY/7y6smTJ61bt9bMtzAwMLC0tHRwcHB2dnZzc/P09PT19Q0ICAgKCoqNjS3mAc3c3Fz+nkc7TaGKT6VS8RpZc18/23XlypX+/fvny4eQyWRNmjQZNy5n0yZ25cpbunQNHco2bWLW1iwkhDFkuAMAlAgC7uJTqVhODsvJYZGR7NQp9vAhy81lwvVPfw8NHDiQiCZNmiT1Rt4Pv//OiJi5OXv4UOqtlAov4D558mTBZ545cybpUlkVTbyAuxgf2I4fP05EpqamcXFxws5cetopp6Nlt2/fNjMz69Jl/M8/68pn76dPn/LWYT169MjOzi54g1OnTn366ae1atXKF2GvXr16375958+fHxAQUJzHT6NGjYjo5MmTwt8H0JZ//vlHoVDI5fIjR46oBwt92LyrX39lAweyBg0Yb5aMgLuOSkxkHh7MwIARscqVmZcXe6d//fR05unJjI0Zv+ro6ckyMkqzncDAwGbNmvFnpJ49e964ceNNtzx69OiFCxfyDV66dIlH34ioXbt258+fL81moBDz5zNHR8Yr/0RGskaNmLoTZun+6QXEC7ibmprGCt2+VeyEiXJv1KhRTk5O9vb2+fotFWRiYtKgQYMuXboMHTp0ypQp3t7ev/766+nTpyMiItLT09UTzp49m4isra0TEhIkvF+F4m96DQ0NNd/08lbzRFSxYkUnJyee0/D06dO3zpaXx65eZTdusKFD2Y4d7JdfWIcOTKlEwB0AoCRQUkYrHj2ifv1IT48aN6ZLl6h+fdq9W8pyAGXZlStX2rZta2RkFBkZWTCOA6IYOJD++IOcnenQIam3UnKhoaH81PnJkyd5/E4Q9+/f79y5s66VVVHLyclp2rRpZGTkypUrR44cKdS0SqXSyckpNDR02bJls6TrWlYEscvpaFl2dnanTp2uXLlS+vobwoqOju7UqVN8fPzw4cN37NiRr2fXoUOHPv30UyIyNzdv3ry5w0v29vZv7e6Vl5cXGhoaFBQUGBi4e/du1JMpB/hJ/8qVKwcFBdna2pZ+wqQkio2l69cpIIBGjKDZs+nKFVq2jNLTafny0k8PIoiIoKlT6cgRIqKGDWn1avrkk7f8CGO0dy/NmEH375NMRoMH08qVVKdO6feSl5e3bdu2uXPnPnv2TE9P76uvvvr+++95Ye4ixMbGzp49e+fOnYyxWrVqLVu2TF3eHYRkYUGHDpH6bdWePbRyJV26JOmeCjFo0KADBw4MGzbMx8dHwGknT568a9euAQMGHFDXI4WSyszMjI2NffToUWxs7OPHj2NiYjT/n56eXsTPmpubW1lZmZqa8qD2qVOn+BlKXcPf9A4cOJDX/SeivLw8f3//Dh061K9f/60//ugRBQVRcDAFB9O//9Lz5zRsGDFGH39Mw4dTz540bBht2YKSMgAA707qiL+IdCXDnTHWvz9zd3/x55wc1qcPmzVL0g2VYR9//DERzZgxQ+qNvE/i4lilSoyIlfE+YOPHjy+6WmvJGBkZjRo1Suo790Y84iz4Ha9YsaKtrW1WVpbU969wsbGxpqamLVu2TFH3eyrLvvvuOyKqX7++uu2k7rh8+TIvGzp//vx830pISNi1a9ft27eLefgjNjbW39/f3d3d0dHRROOadI8ePTTToqGMUqlUgwYNIqKWLVtqZg4WR1YWi4piAQHMy4u5uTEnJ2Zr+yJV+tdf2RdfMMZYv35s+XJkuJcFgYEviisSMScnFhr6YvzJE3bsGDtzhqlb6QYFMUfHF7d0cHhxikFQCQkJ7u7u/GJelSpVfHx88vLyCr1lRkaGl5eXmZkZERkbG3t4eJSP1xddlJTEZLLX2qLeucPMzKTb0BtFRUUZGRm9NY36XVWqVMnQ0DAyXxdLEEFGRkZUVNTZs2f9/f19fHw8PDxcXV15drxmXZrhw4cvXbpU6s2+kfpIxN9//12c26enszNn2MqV7LPPmLX1a61TiZidHZsx40WGO2Ps5k1mbc0aN0aGOwDAO0OGu/hUKjIxochIsrZ+MRIYSNOmUYk66rznLl++3KFDhwoVKkRFRdWoUUPq7bxPfH1pwgSqVo1u3aK35X/prGfPngUFBbm6ugo77fbt29u3b6/LD8jg4OBhw4YlJiYKOOfUqVP79+9vb28v4JzCunr1avPmzctBTvSff/7Zr18/PT29M2fOdOzYUertFOLIkSP9+/fPy8t7195ukZGR6tapV65cSU1NVX9LJpPVr1+/Xbt2bdu2dXR05CVKoaxLTU3t0KHDrVu3hg8fvnPnzkJvk52dHRkZefv27cjIyAcP3G/eNLx9m+LiCrmlmRk1aEDffkv//EO//0737lHHjvTZZ2Rqigx3nZeTQ2vX0tKllJJCVavSw4e0bh2tXUt9+1JmJh07RuvXU8eOVL8+KZVkaUnLlpGrK8nlIm3n1q1bU6ZM+eeff4ioSZMmq1ev7tOnj+YNDh06NGnSpLt37xKRs7PzunXr6tWrJ9JmgNLSyNycUlJI3QQyIoI6dqSkJEm3VbgrV66sXLny2LFjAs7p5OQ0Y8aMNm3aCDgnlEBiYiJPjW/evDlv16Szli9fPmvWLHt7+6tXr+rr6+f7LmMsPDz80qVLFy9evHr1TnBwYE7Oq+9WqkQdOlCHDtS+PXXo8OJz3rBh9PHHLzqQz5hBq1bRmTPIcAcAeDflOeCelpY2ceJEMzOzjRs3SrmPuDiqU4dyckh94DQyktq0oZQUKXdVNjk5OR0/fnzevHlLliyRei/vGcaoe3c6fZrGjKGtW6XeDcD7IiYmplWrVgkJCWvWrJk8ebLU23mjrVu3jhs3TqFQ7N27d8CAAW+6WVxcXPBLFy9efPr0qeZ3eVsz7oMPPnhrbQcoi8LDwzt06JCSkrJu3bqvv/76wYMH0S+FhoaGhYXdv39fqVTyGzdtmhoaakpEBgZkbU22tmRvT02bkq0t2dpSvXokk9GuXRQQQL//TkT0/fe0dCm5uyPgXkbEx9PcudSoEX34IfXtSzdvEi8VeOkS9ehBUVG0eDGZm9Pcua8Cr2I6dOjQ5MmTo6OjicjZ2Xnt2rW2trYhISGTJ08+c+YMEbVu3drHx+fDDz/Uwmbed9bWtGsXqf+qd+6kzZvp3DlJ9wSgu3Jycpo3b3779u1169bxY5HJycmXL1/+999/g4ODL1y4oJmA2LBhpp6ekYMDde5Mjo7UpEkhVzPXrqU2bV5E2NPSaMIEmjuXmjTR3j0CACgHynPAXVdkZVGFCpSUROqDaZcu0ZAhFB0t6bbKnn///bdLly4VK1aMjo6uUqWK1Nt5/9y5Q998Q+vXk3AF0AGgCHl5ed26dTt37tzHH398+PBhHS8TvGDBgiVLlhgbGx8/flzdTjApKSk4OJh/3rt8+XJ8fLzmj2hG2Nu3b29hYSHFxkHb/P39hwwZYmhoqFQqc3Nz831XX1+/Xr16DRo0aNiwYcuWU6ysbBo0IBubNyY3awbcc3KoZUv69FME3MuaJUsoJoZ8fV+NdO1K335LLi5a3khWVpa3t/eyZcvS09ONjIyaN28eHBysUqlq1KixdOnSMWPGyEXLsofXrFhBv/9Oe/eSrS1du0YDBtDy5fT551JvC0B3BQQE9O/f39TUtHfv3levXo2KitL8ro2NTYcOHTp27NihQ4c2bdqZmAhfYxMAAPJBwF0rmjWjefNoyJAXX3p6UlQUveEwNbxJt27dTp8+vXjx4vnz50u9l/fY48e0aBFdvkyMUbt25OlJun3EEqDsmjNnzrJly6ytrUNCQnQ/3ZsxNnbs2G3btlWuXHnkyJH37t0LCgqKiYnRvE3VqlV5lRjOyspKqt2CtLy9ve/du7dhwwZLS8umTZvaamjatKmRkVHxp8rJodxcqlDhxZeZmURExsYibBrE4+ZGtWvTvHmvRlxdqVUrmjZNku3ExcUtWrRo69atrVq1unHjxtdff7148eKKFStKspn3FGO0Zg399hs9e0Y1a9LEiSR0PUCA8ueTTz559OhRSEgIEVWoUKFVq1Y8p6FLly6oggUAoH0IuGvFkSM0ejQtWkT29nT2LK1fT//+S3Z2Um+rLDl69Gjv3r2rVq0aHR2t2cQGtCori9q0oX79aMYMksloxQr66y8KCaGyXyYbQNecPHmyV69ejLHAwMAePXpIvZ1iUSqVgwYNCgoKintZctvMzKxFixbqNHZ7e3sdz9MHrUlNTTUwMBCjkTWUPXPnUmYmrV79auTjj2noUGljrJcuXbKwsMjKymqEg30AUBYolcpr164FBwd36NChadOm5aCPEQBAmYaAu7aEhNDevfTwITVoQK6uVLeu1BsqYz744IP//vtv+fLlM2fOlHov77H9+2nxYgoJedGQgDFq3ZoWLKBBg6TeGUB5M2zYsN9++23JkiXzNLM+dV5aWlp8fPyGDRvatm3brl27Bg0aIMIOAG9x4ADNmkVhYS+u3yckkJ0dXb6M3BQAAAAAKKMQcIcy4PDhw/369atevXp0dLSpVhpnQeG+/54ePHityurXX5OlJS1YIN2eAMonlUq1c+fOESNGoGQwAJRzKhX17UtyOY0bR9nZtHIl9ehBq1ZJvS0AAAAAgBLSk3oDAG/BGFu8eDERzZkzB9F2ieXl5a8eo6dHBVreAUDpyeXyL7/8UupdAACITy6nw4dp9246c4YMDWnxYvrkE6n3BAAAAABQcgi4g67bv3//5cuXLS0tx48fL/Ve3nt2dnT8+Gsj16/T2LES7QYAAADKBX19GjGCRoyQeh8AAAAAAALAQXXQaSqViqe3z58/39jYWOrtvPc++YQiIujXX198uWsXhYfTp59KuicAAAAAAAAAAABdgRruoNN27do1fPjwOnXqREREGBoaSr0dILpyhb77juLjSSaj6tVpwwZq00bqPQEAAAAAAAAAAOgElJQB3aVUKpcsWUJECxYsQLRdJwQEkLExnTv3om67vr7UGwIAAAAAAAAAANAhyHAH3fW///1v9OjRdnZ2t27d0tPDxSGpZWdTgwb08CEdPUq9ekm9GwAAAAAAAAAAAJ2DGu6gu548eWJkZOTp6Ylou07w9aWHD6l5c+rZU+qtAAAAAAAAAAAA6CJkuINOi4uLs7CwUCgUUm/kvZeZSQ0aUGwsHTyILqkAAAAAAAAAAACFQuIw6LRatWpJvQUgIqINGyg2lhwcqF8/qbcCAAAAAAAAAACgo5DhDgBvk5ZG9evTkyf099/Uu7fUuwEAAAAAAAAAANBRqOEOAG/j40NPnpCjI6LtAAAAAAAAAAAARUCGOwAUKTmZbG0pMZFOnKDu3aXeDQAAAAAAAAAAgO5ChjsAFMnbmxITqUcPRNsBAAAAAAAAAACKhgx3AHizhASytaWUFDp9mj78UOrdAAAAAAAAAAAA6DQ9qTcAALpr44YN3Vq1alKxohzRdgAAAAAAAAAAgLdBhjsAFC4+Pr5+/foZGRmXL11yaNtW6u0AAAAAAAAAAADoOtRwB4DCLVu2LD09vX///oi2AwAAAAAAAAAAFAcy3AGgEI8ePapfv35WVlZISEjLli2l3g4AAAAAAAAAAEAZgAx3ACjEkiVLMjMzXVxcEG0HAAAAAAAAAAAoJmS4A0B+9+/fb9SoUV5e3o0bN5o0aSL1dgAAAAAAAAAAAMoGZLgDQH6LFy/Ozs4eNmwYou0AAAAAAAAAAADFhwx3AHhNZGRkkyZNGGOhoaGNGjWSejsAAAAAAAAAAABlBjLcAeA1ixYtysvLGzVqFKLtAAAAAAAAAAAA7wQZ7gDwyu3bt5s2bSqTySIiIurVqyf1dgAAAAAAAAAAAMoSPak3AAA6xMbGZsWKFYmJiYi2AwAAAAAAAAAAvCtkuAMAAAAAAAAAAAAACAA13AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQAALuAAAAAAAAAAAAAAACQMAdAAAAAAAAAAAAAEAACLgDAAAAAAAAAAAAAAgAAXcAAAAAAAAAAAAAAAEg4A4AAAAAAAAAAAAAIAAE3AEAAAAAAAAAAAAABICAOwAAAAAAAAAAAACAABBwBwAAAAAAAAAAAAAQwP8B4bWrGwFREmgAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 B2 fragments with the most retrosynthetic routes found\n", + "Save custom filtered fragment library to data/fragment_library_custom_filtered/2024-05-27_10-36-49\n" + ] + } + ], + "source": [ + "pipeline_dict = filters.pipeline.start_pipeline(\n", + " fragment_library,\n", + " pains_parameters,\n", + " brenk_parameters,\n", + " ro3_parameters,\n", + " qed_parameters,\n", + " bb_parameters,\n", + " syba_parameters,\n", + " retro_parameters,\n", + " global_parameters,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "9993c5e2-14ab-4006-b38e-cce5d2a7fad6", + "metadata": { + "tags": [] + }, + "source": [ + "## 5. Inspect results" + ] + }, + { + "cell_type": "markdown", + "id": "66d64214-c2bc-4ffb-a0a5-c65f8f0241e0", + "metadata": {}, + "source": [ + "Load and inspect the results from the single filters.\n", + "The `custom_filter_results.csv` file is stored in the `/data/fragment_library_custom_filtered` directory.\n", + "\n", + "**Note:** If you want your filter results displayed please adapt the path to your created datetime folder in this directory by simply adding the folder name in front of the .csv file e.g. `saved_filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"YYYY-MM-DD_HH-MM-SS/custom_filter_results.csv\")`" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "46168613-fba1-411a-b93b-793ef5a5acc4", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
smilessubpocketbool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybaretro_countbool_retro
0Nc1c[nH]c2ncccc12AP11110.5659001130.950959704.01.0
1N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1AP10110.7471850117.682659NaNNaN
2CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1AP10010.656515010.611823NaNNaN
3Nc1ncnn2cccc12AP11110.5638031128.754427188.01.0
4Cc1cc(N)[nH]n1AP11100.4888541115.727015NaNNaN
.......................................
3500c1cnoc1B211100.4472611111.831072NaNNaN
3501c1ccoc1B211100.446031115.852398NaNNaN
3502CNCB211100.3986711110.078885NaNNaN
3503c1ccc(N2CCOCC2)nc1B211110.6167810148.630055NaNNaN
3504Cc1cn(-c2ccccc2)cn1B211110.6216141132.8216140.00.0
\n", + "

3505 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " smiles subpocket bool_pains bool_brenk \\\n", + "0 Nc1c[nH]c2ncccc12 AP 1 1 \n", + "1 N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 AP 1 0 \n", + "2 CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 AP 1 0 \n", + "3 Nc1ncnn2cccc12 AP 1 1 \n", + "4 Cc1cc(N)[nH]n1 AP 1 1 \n", + "... ... ... ... ... \n", + "3500 c1cnoc1 B2 1 1 \n", + "3501 c1ccoc1 B2 1 1 \n", + "3502 CNC B2 1 1 \n", + "3503 c1ccc(N2CCOCC2)nc1 B2 1 1 \n", + "3504 Cc1cn(-c2ccccc2)cn1 B2 1 1 \n", + "\n", + " bool_ro3 bool_qed qed bool_bb bool_syba syba \\\n", + "0 1 1 0.565900 1 1 30.950959 \n", + "1 1 1 0.747185 0 1 17.682659 \n", + "2 0 1 0.656515 0 1 0.611823 \n", + "3 1 1 0.563803 1 1 28.754427 \n", + "4 1 0 0.488854 1 1 15.727015 \n", + "... ... ... ... ... ... ... \n", + "3500 1 0 0.447261 1 1 11.831072 \n", + "3501 1 0 0.446031 1 1 5.852398 \n", + "3502 1 0 0.398671 1 1 10.078885 \n", + "3503 1 1 0.616781 0 1 48.630055 \n", + "3504 1 1 0.621614 1 1 32.821614 \n", + "\n", + " retro_count bool_retro \n", + "0 704.0 1.0 \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 188.0 1.0 \n", + "4 NaN NaN \n", + "... ... ... \n", + "3500 NaN NaN \n", + "3501 NaN NaN \n", + "3502 NaN NaN \n", + "3503 NaN NaN \n", + "3504 0.0 0.0 \n", + "\n", + "[3505 rows x 12 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "saved_filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\", na_values=[\"\"])\n", + "saved_filter_results" + ] + }, + { + "cell_type": "markdown", + "id": "474524d2-b5d0-4deb-8e50-1e90941098ae", + "metadata": {}, + "source": [ + "**Note:** NaN in the `retro_coun` and `bool_retro` column indicated that this fragment was not included in the pairwise retrosynthesizability filter step." + ] + }, + { + "cell_type": "markdown", + "id": "921b135b-e46b-4522-87d1-197468a7d3a0", + "metadata": {}, + "source": [ + "The following data is generated when the according filters are activated:\n", + "- `pains_df`: PAINS structures found per fragment (first match only).\n", + "- `brenk_df`: Brenk structures and structure name found per fragment (first match only)\n", + "- `mol_df`: Contains fragment pairs, fragments building these pairs, ASKCOS children and plausibility for those pairs where the fragments are substructures of the children\n", + "- `diff_df`: Contains fragment pairs, fragments building these pairs, ASKCOS children and plausibility for those pairs where the fragments are NOT substructures of the children" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "648772ba-e418-4462-b8ee-00f309462c23", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['fragment_library', 'pains_df', 'brenk_df', 'mol_df', 'diff_df'])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline_dict.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "b093ca98-54e7-476a-a660-4a21561772d4", + "metadata": { + "metadata": {} + }, + "outputs": [], + "source": [ + "fragment_library_custom = pipeline_dict[\"fragment_library\"]\n", + "pains_df = pipeline_dict[\"pains_df\"]\n", + "brenk_df = pipeline_dict[\"brenk_df\"]\n", + "mol_df = pipeline_dict[\"mol_df\"]\n", + "diff_df = pipeline_dict[\"diff_df\"]" + ] + }, + { + "cell_type": "markdown", + "id": "13a0f103-3cd7-45db-9822-d8862e961031", + "metadata": {}, + "source": [ + "Inspect `fragment_library_custom` contains the fragments passing all filters applied." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d624c2d4-cdfd-4a72-92e9-1d19e2a274bf", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybaboolretro_countbool_retro
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]11110.5659001130.95095917041
1APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11110.5638031128.75442711881
2APCNc1ncnc2[nH]ccc12\"Mol\"/\"Mol\"/\"Mol\"/ACKAckTK4ewhT77BAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na ...[26*]c1[nH]c2ncnc(NC[54*])c2c1[37*]11[FP, SE, FP][AP=FP, AP=SE, AP=FP]11110.6339121138.386371121
3APc1cnc2ccnn2c1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3q4tTAKABAP AP AP AP AP AP AP AP AP AP AP AP SE GA16 16 16 16 16 16 16 16 16 16 16 16 na na[33*]c1cnc2c([46*])cnn2c111[SE, GA][AP=SE, AP=GA]11110.5113761139.622898128701
4APNc1cc(C2CC2)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3socGVDAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5...[17*]Nc1cc(C2CC2)[nH]n15[SE][AP=SE]11110.5817561118.52486114541
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library_custom[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "3bfe475b-73d9-4bf6-a259-9abdf099a32e", + "metadata": {}, + "source": [ + "Inspect `pains_df` containing the fragments and the name of the first PAINS structure found in this fragment." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5b07c6a9-debe-4fda-955e-0e4f907e4094", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
fragment\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
painsImine_one_isatin(189)Imine_one_isatin(189)Imine_one_isatin(189)Quinone_a(370)Thio_ketone(43)
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(pains_df.head().T.to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "c5a8c12c-3ae4-4403-bb6a-93c0dc1d599f", + "metadata": {}, + "source": [ + "Inspect `brenk_df` containing the fragment and the first substructure from the list from Brenk et al. and the name of the substructure found." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "242f800e-1dd3-4d36-85c6-49080ca9e11d", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
fragment\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
substructure\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/
substructure_nameMichael-acceptorstilbeneiminequaternary-nitrogenaldehyde
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(brenk_df.head().T.to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "e655e948-3b22-4305-8990-651d82e73b0a", + "metadata": {}, + "source": [ + "Inspect `mol_df` containing all fragments and pairs with a retrosynthetic route found, and the children building this fragment pair from ASKCOS." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e02059d6-5020-4a68-8a4b-8b18127e9d84", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fragment idsfragment 1fragment 2pairchild 1child 2plausibility
0[AP_0, FP_0]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999674
1[AP_0, FP_0]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.997180
2[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999986
3[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999856
4[AP_0, FP_1]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.997353
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(mol_df.head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "7b9fabcb-a313-4249-91ee-de9417609a8c", + "metadata": {}, + "source": [ + "Inspect `diff_df` containing all fragments and pairs where a retrosynthetic route was found, but the fragments and children structures are not matching." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c54031f2-e054-4bfc-9835-5d04e70425cc", + "metadata": { + "metadata": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fragment idsfragment 1fragment 2pairchild 1child 2plausibility
0[AP_1, FP_170]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.786395
1[AP_3, SE_6]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/1.000000
2[AP_3, SE_11]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999914
3[AP_3, SE_12]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999415
4[AP_3, SE_14]\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/\"Mol\"/0.999660
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(diff_df.head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/2_2_custom_filters_analysis.ipynb b/notebooks/custom_kinfraglib/2_2_custom_filters_analysis.ipynb new file mode 100644 index 00000000..c1aa04c5 --- /dev/null +++ b/notebooks/custom_kinfraglib/2_2_custom_filters_analysis.ipynb @@ -0,0 +1,26645 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9e527a41-63b7-44e6-bcd6-8c6c45d248b4", + "metadata": {}, + "source": [ + "# Analysis of custom filters" + ] + }, + { + "cell_type": "markdown", + "id": "f97c3fc4-451d-4921-8c3e-2b1ac7891fe5", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "id": "fa36e9c3-bfed-4a7a-94b1-e815bf1ae803", + "metadata": { + "tags": [] + }, + "source": [ + "Analyzing the pre-filtered fragment library (`data/fragment_library` and pre-filtering applied), the reduced fragment library (`data/fragment_library_reduced`) and the custom filtered fragment library (`data/fragment_library_custom_filtered`) by fragment library size, chemical space, fragment subpocket specificity, molecular properties, and custom filtered fragment library size development during filtering.\n" + ] + }, + { + "cell_type": "markdown", + "id": "b1082f16-464f-4601-a9c8-f519c721a28e", + "metadata": { + "jp-MarkdownHeadingCollapsed": true, + "tags": [] + }, + "source": [ + "## Table of contents\n", + "1. Load the fragment libraries\n", + "\n", + " 1.1. Load pre-filtered fragment library\n", + " \n", + " 1.2. Load reduced fragment library\n", + " \n", + " 1.3. Load custom filtered fragment library\n", + " \n", + " 1.4. Check which fragments from the pre-filtered fragment library are contained in the subsets\n", + " \n", + "\n", + "2. Comparing the chemical space spanned by the libraries\n", + " \n", + " 2.1. Comparing fragment library sets\n", + " * Pre-filtered fragment library vs. reduced fragment library\n", + " * Pre-filtered fragment library vs. custom filtered fragment library\n", + " * Pre-filtered fragment library vs. reduced fragment library vs. custom filtered fragment library\n", + " \n", + " \n", + " 2.2. Comparing single custom filtering steps\n", + "\n", + "\n", + "\n", + "3. Fragment subpocket specificity\n", + "\n", + " 3.1. Pre-filtered fragment library\n", + "\n", + " 3.2. Reduced fragment library\n", + " \n", + " 3.3. Custom filtered fragment library\n", + "\n", + " 3.4. Compare cluster sizes for all subsets\n", + " \n", + " 3.5. Compare most common fragments in complete fragment library with the clustered fragments in custom filtered fragment library\n", + "\n", + "\n", + "\n", + "4. Connection frequency between subpockets\n", + "\n", + " 4.1. Pre-filtered fragment library\n", + " \n", + " 4.2. Reduced fragment library\n", + " \n", + " 4.3. Custom filtered fragment library\n", + " \n", + "\n", + "5. Fragment similarity per subpocket\n", + "\n", + "\n", + "6. Fragment properties\n", + "\n", + " 6.1. For each library subset\n", + "\n", + " 6.2. For every custom filter step\n", + "\n", + "7. Development of number of fragments per subpocket during custom filtering" + ] + }, + { + "cell_type": "markdown", + "id": "6f035a5c-09da-4a5f-9f3c-9409b9acefed", + "metadata": { + "tags": [] + }, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "561155b8-c69d-4803-b912-f9413ac169d4", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit import Chem\n", + "from rdkit.Chem import Draw, PandasTools\n", + "from IPython.core.display import HTML\n", + "\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a844e20f-7c9d-4a87-9aae-4b359f1f51bb", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5886162f-9900-4c10-acce-48abbc1a1648", + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "id": "03bba292-e50e-428c-8e39-57905b00de1d", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "markdown", + "id": "26f5d836-fee1-452c-b286-a53d3d22e211", + "metadata": {}, + "source": [ + "**Note:** If you want to run this analysis for your own created custom fragment library please adapt `PATH_DATA_CUSTOM` to the folder containing your custom fragment library, e.g. `PATH_DATA_CUSTOM = PATH_DATA / \"fragment_library_custom_filtered/YYYY-MM-DD_HH-MM-SS`\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f05f3c5e-ce51-4bce-acc7-f419e14efb68", + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"../../data\"\n", + "PATH_DATA_CUSTOM = PATH_DATA / \"fragment_library_custom_filtered\"" + ] + }, + { + "cell_type": "markdown", + "id": "d76da7ad-6991-42d7-af2b-b347bb62a3b9", + "metadata": { + "tags": [] + }, + "source": [ + "## 1. Load the fragment libraries\n", + "* 1.1. Load pre-filtered fragment library\n", + "* 1.2. Load reduced fragment library\n", + "* 1.3. Load custom filtered fragment library\n", + "* 1.4. Check which fragments from the pre-filtered fragment library are contained in the subsets" + ] + }, + { + "cell_type": "markdown", + "id": "b32a2941-28db-4f5e-862e-d1f9865fd175", + "metadata": {}, + "source": [ + "**Pre-filtered fragment library:** Fragment library without duplicates, unfragmented ligands, fragments only connecting to pool X and fragments in pool X. `fragment_library`\n", + "\n", + "**Reduced fragment library:** Pre-filtered fragment library, without AP fragments which are not hinge like and chose a diverse subset using Butina Clustering. `fragment_library_reduced`\n", + "\n", + "**Custom fragment library:** Pre-filtered fragment library excluding fragments filtered out by unwanted substructures, drug likeness, synthesizability and pairwise retrosynthesizability. `fragment_library_custom_filtered`" + ] + }, + { + "cell_type": "markdown", + "id": "33c7f2f1-7cee-44a7-b5eb-a9ef9b50e990", + "metadata": {}, + "source": [ + "### 1.1. Load pre-filtered fragment library\n", + "Fragment library without duplicates, unfragmented ligands, fragments only connecting to pool X and fragments in pool X." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f8f7a5f6-ac62-456c-9c11-57e96e229cb5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3505, 18)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_orig = utils.read_fragment_library(PATH_DATA / \"fragment_library\")\n", + "fragment_library = filters.prefilters.pre_filters(fragment_library_orig)\n", + "pd.concat(fragment_library).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "7bd72387-fb7b-432e-8fee-ffc1ae233068", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_name
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "e20e6f6f-99e5-492b-b5aa-9c0a79a13312", + "metadata": { + "tags": [] + }, + "source": [ + "### 1.2. Load reduced fragment library\n", + "Pre-filtered fragment library, without AP fragments which are not hinge like and chose a diverse subset using Butina Clustering." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ee0ca3b3-38d6-4bcd-bfbb-0bae34ca77df", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(727, 15)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_reduced = utils.read_fragment_library(PATH_DATA / \"fragment_library_reduced\")\n", + "pd.concat(fragment_library_reduced).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "0a9accaf-a842-44e8-87ba-c020629b5810", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmilessmiles_dummysubpocket
0\"Mol\"/\"Mol\"/\"Mol\"/AKT1AktAGC3ocbXM1BAP AP AP AP AP AP AP AP AP AP AP AP AP FP14 14 14 14 14 14 14 14 14 14 14 14 14 nac1ncc2cc[nH]c2n1*c1ncnc2[nH]ccc12AP
1\"Mol\"/\"Mol\"/\"Mol\"/AKT2AktAGC3e87G95BBAP AP AP AP AP AP AP AP AP AP AP AP AP AP FP16 16 16 16 16 16 16 16 16 16 16 16 16 16 nac1cnc2[nH]ccc2c1*c1ccnc2[nH]ccc12AP
2\"Mol\"/\"Mol\"/\"Mol\"/JAK1JakATK4e4l0NHAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 nac1cc2c(ncc3nc[nH]c32)[nH]1*n1cnc2cnc3[nH]ccc3c21AP
3\"Mol\"/\"Mol\"/\"Mol\"/CK2a1CK2CMGC3nga3NGAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 16 14 14 14 14 14 14 14 14 1...Nc1nc2ccccc2c2cnccc12*Nc1nc2cc(*)ccc2c2cnccc12AP
4\"Mol\"/\"Mol\"/\"Mol\"/ALK2STKRTKL6zgcH8HAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP S...16 16 16 16 16 14 5 5 16 16 16 16 16 16 16 na ...Nc1ncnc2ccccc12*Nc1ncnc2cc(*)cc(*)c12AP
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library_reduced[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "4e412bc8-2fde-48ff-992a-c3c3467ad1d9", + "metadata": {}, + "source": [ + "### 1.3. Load custom filtered fragment library\n", + "Pre-filtered fragment library excluding fragments filtered out by unwanted substructures, drug likeness, synthesizability and pairwise retrosynthesizability filters." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f45a78eb-342f-4035-a0ab-6e925ae0ecf9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(523, 15)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_custom = utils.read_fragment_library(PATH_DATA / \"fragment_library_custom_filtered\")\n", + "pd.concat(fragment_library_custom).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "284333cb-9754-4b3a-8b00-29698eb5ef3c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmilessmiles_dummysubpocket
0\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na naNc1c[nH]c2ncccc12*Nc1c[nH]c2ncc(*)cc12AP
1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na naNc1ncnn2cccc12*Nc1ncnn2ccc(*)c12AP
2\"Mol\"/\"Mol\"/\"Mol\"/ACKAckTK4ewhT77BAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...14 14 14 14 14 14 14 14 14 16 14 5 5 4 4 4 na ...CNc1ncnc2[nH]ccc12*CNc1ncnc2[nH]c(*)c(*)c12AP
3\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3q4tTAKABAP AP AP AP AP AP AP AP AP AP AP AP SE GA16 16 16 16 16 16 16 16 16 16 16 16 na nac1cnc2ccnn2c1*c1cnc2c(*)cnn2c1AP
4\"Mol\"/\"Mol\"/\"Mol\"/ACTR2STKRTKL3socGVDAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 5...Nc1cc(C2CC2)[nH]n1*Nc1cc(C2CC2)[nH]n1AP
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library_custom[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "369d910b-c040-4191-b19b-309eaa9388ba", + "metadata": {}, + "source": [ + "### 1.4. Check which fragments from the pre-filtered fragment library are contained in the subsets" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b9ed1a54-7f6c-4ae1-b08b-eeea65783ac1", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.analysis.frag_in_subset(fragment_library, fragment_library_reduced, colname = \"bool_reduced\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c11e6b2c-26cb-4c78-820c-3d84cbd28cb6", + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library = filters.analysis.frag_in_subset(fragment_library, fragment_library_custom, colname = \"bool_custom\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "af98cbf8-efae-435d-a94f-f28e6f9d659c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
subpocketsmilesROMolROMol_dummyROMol_originalkinasefamilygroupcomplex_pdbligand_pdbaltchainatom_subpocketsatom_environmentssmiles_dummyfragment_countconnectionsconnections_namebool_reducedbool_custom
0APNc1c[nH]c2ncccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5l4qLKBAAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP F...16 16 16 16 16 16 16 16 16 16 16 16 16 5 5 na na[11*]c1cnc2[nH]cc(N[27*])c2c13[FP, SE][AP=FP, AP=SE]01
1APN/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther5te0XINAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...7 16 7 16 16 16 16 5 16 16 16 16 16 5 5 5 5 5 ...[12*]N/C(=C1\\C(=O)Nc2cc([20*])ccc21)c1ccccc13[SE, GA][AP=SE, AP=GA]00
2APCC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmcYFVAAP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A...4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 4 4 4 4...[39*]c1cccc(/N=C2\\N=CN=[N+]3C=CC(C[42*])=C23)c11[FP, FP][AP=FP, AP=FP]00
3APNc1ncnn2cccc12\"Mol\"/\"Mol\"/\"Mol\"/AAK1NAKOther8gmdZRRAAP AP AP AP AP AP AP AP AP AP AP AP AP AP GA FP14 14 14 14 14 14 14 16 14 14 14 14 5 5 na na*Nc1ncnn2ccc([25*])c126[GA, FP][AP=GA, AP=FP]11
4APCc1cc(N)[nH]n1\"Mol\"/\"Mol\"/\"Mol\"/ABL1AblTK2f4jVX6AAP AP AP AP AP AP AP AP AP AP AP AP AP SE5 5 14 14 14 14 14 14 14 8 8 8 8 na[22*]Nc1cc(C)n[nH]110[SE][AP=SE]10
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(fragment_library[\"AP\"].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "199c132e-71f2-43f7-ba27-fe49984bc217", + "metadata": {}, + "source": [ + "Number of fragments in each subpocket for the three subsets." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b5a2b6e2-96ac-490f-ad02-b0aade624ea1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre-filteredreducedcustom
AP1201.0164.0145.0
FP1100.0235.0139.0
SE743.0169.0138.0
GA355.0101.092.0
B147.020.09.0
B259.038.0NaN
Total3505.0727.0523.0
\n", + "
" + ], + "text/plain": [ + " pre-filtered reduced custom\n", + "AP 1201.0 164.0 145.0\n", + "FP 1100.0 235.0 139.0\n", + "SE 743.0 169.0 138.0\n", + "GA 355.0 101.0 92.0\n", + "B1 47.0 20.0 9.0\n", + "B2 59.0 38.0 NaN\n", + "Total 3505.0 727.0 523.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_fragments = pd.concat(\n", + " [\n", + " filters.analysis.count_fragments(fragment_library, \"pre-filtered\"),\n", + " filters.analysis.count_fragments(fragment_library_reduced, \"reduced\"),\n", + " filters.analysis.count_fragments(fragment_library_custom, \"custom\"),\n", + " ],\n", + " axis=1,\n", + ")\n", + "num_fragments = pd.concat([num_fragments, num_fragments.sum().rename(\"Total\").to_frame().T])\n", + "num_fragments" + ] + }, + { + "cell_type": "markdown", + "id": "adfebf34-900b-485d-80ce-76cfadfcfdb3", + "metadata": { + "tags": [] + }, + "source": [ + "## 2. Comparing the chemical space spanned by the libraries\n", + "* 2.1. Comparing fragment library sets\n", + " - Pre-filtered fragment library vs. reduced fragment library\n", + " - Pre-filtered ragment library vs. custom filtered fragment library\n", + " - Pre-filtered fragment library vs. reduced fragment library vs. custom filtered fragment library\n", + " \n", + "* 2.2. Comparing single custom filtering steps" + ] + }, + { + "cell_type": "markdown", + "id": "44d1f340-314a-421f-aa01-0a133a2e5ba9", + "metadata": {}, + "source": [ + "The chemical space spanned by the fragment libraries will be analyzed using t-Distributed Stochastic Neighbor Embedding (t-SNE) plots, which can be used to visualize high dimensional data in a low dimensional space, showing clusters of similar molecules. \n", + "\n", + "We will use them to compare the included and excluded fragments in the fragment libraries and the filtering steps." + ] + }, + { + "cell_type": "markdown", + "id": "304a27a5-d945-4102-a1e3-8b3049422417", + "metadata": { + "tags": [] + }, + "source": [ + "### 2.1. Comparing fragment library sets" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e0b3eca8-a865-4c4c-8a17-62a122f24403", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAANVCAYAAACwCjYWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3wc9Z3//5yyVbvSSqveZdmSewGDA4RiSEKoIZBeaAkJyeU4yN0vyaVCjkDK5Y5vcoRL7gIkOdILmATSCBCaqS64F1nF6lppJe1KW2bm8/vjs7vSWrIx4ILtz/Px8AM0MzvzmZmV/Zr3vD6vtyaEECgUCoVCoVAoFAqFQqFQKBQKhUJxHKIf7QEoFAqFQqFQKBQKhUKhUCgUCoVCcbhQRXCFQqFQKBQKhUKhUCgUCoVCoVAct6giuEKhUCgUCoVCoVAoFAqFQqFQKI5bVBFcoVAoFAqFQqFQKBQKhUKhUCgUxy2qCK5QKBQKhUKhUCgUCoVCoVAoFIrjFlUEVygUCoVCoVAoFAqFQqFQKBQKxXGLKoIrFAqFQqFQKBQKhUKhUCgUCoXiuEUVwRUKhUKhUCgUCoVCoVAoFAqFQnHcoorgCoVCoVAoFAqFQqFQKBQKhUKhOG5RRXCFQqGYxhe/+EXq6+sxTZNQKATAOeecwznnnJO3naZp3Hzzzbmft2zZws0330x7e/sRG+urYbZzON5pb29H0zTuvffeoz2U/XIi3heFQqFQKBSKo8Hw8DDve9/7KC8vR9M0LrvsMmCmrn/sscfQNI3HHnsst+yhhx7K2+aNxr7ncCLz05/+lDvuuONoD0OhULwBMY/2ABQKheKNwgMPPMDXvvY1vvCFL3DBBRfg8XgA+N73vveKn92yZQu33HIL55xzDo2NjYd5pAqFQqFQKBQKheLV8G//9m/87ne/4+6776a5uZmSkhIAnnnmGWpraw/42Yceeog777xTFZqPAX7605+yadMmbrzxxqM9FIVC8QZDFcEVCsUxy+TkJD6f75Dtb9OmTQDccMMNlJeX55YvXLjwkB3j1TIxMYHf7z9qxz9aHOp7q1AoFAqFQqE4NjlUunDTpk00NzfzwQ9+MG/5m970pte979fKiar1FQqF4mig4lAUCsVR4+abb0bTNNatW8fll19OYWEhRUVFfOhDH2JwcDBv28bGRi6++GJ++9vfsmLFCrxeL7fccgsAfX19fPzjH6e2tha3201TUxO33HILlmUd9FgaGxv54he/CEBFRUXelMJXiqy49957efe73w3A6tWr0TRtRgzHX//6V8477zwKCwvx+/2cccYZPPLII7Nej5deeol3vetdFBcX09zcDIAQgu9973ssX74cn89HcXEx73rXu2hra8vbhxCCb37zmzQ0NOD1ejnppJN4+OGHD+oarFixgjPPPHPGctu2qamp4fLLL88tu+uuu1i2bBmBQIBgMMj8+fP5/Oc/f1DH2ZdDcW97enp4z3veQzAYpKioiPe+97309fXNONb+7uXVV189w8GfTCb56le/yoIFC/B6vYTDYVavXs3TTz+d2+ZI3BeFQqFQKBSKY5mjrfmzEXl//etf2bp1a06rZ+NOXilK5Oqrr+bOO+/MbZv9k41BPFg9eM4557B48WL+/ve/c/rpp+P3+7n22msBGBsb41/+5V9oamrC7XZTU1PDjTfeSDwez9vH2NgY1113HeFwmEAgwNvf/nZ27NhxwPMHGBwcxO1286UvfWnGum3btqFpGt/5zncAWZjPjsXr9VJSUsLKlSv52c9+9orHmY1X0tQHijDc994MDg7ysY99jLq6OjweD2VlZZxxxhn89a9/BeQ1/sMf/kBHR0fevcoyPDzMJz/5SWpqanC73cyZM4cvfOELJJPJGcf91Kc+xT333ENrays+n4+VK1eydu1ahBB861vfoqmpiUAgwLnnnsuuXbte07VRKBRHFuUEVygUR513vvOdvOc97+H6669n8+bNfOlLX2LLli08++yzuFyu3HYvvfQSW7du5Ytf/CJNTU0UFBTQ19fHqaeeiq7rfPnLX6a5uZlnnnmGW2+9lfb2du65556DGsPvfvc77rzzTn74wx/yxz/+kaKiolecFpnloosu4rbbbuPzn/88d955JyeddBJAroD9f//3f1x55ZW84x3v4Ec/+hEul4vvf//7nH/++fzpT3/ivPPOy9vf5Zdfzvve9z6uv/76nPD9+Mc/zr333ssNN9zAN77xDYaHh/nqV7/K6aefzoYNG6ioqADglltu4ZZbbuEjH/kI73rXu+jq6uK6667Dtm1aW1sPeB7XXHMN//RP/8TOnTuZN29ebvmf//xnenp6uOaaawD4+c9/zic/+Un+8R//kX//939H13V27drFli1bDup6zcbrubeTk5O85S1voaenh9tvv52Wlhb+8Ic/8N73vvc1j8eyLC644AKeeOIJbrzxRs4991wsy2Lt2rV0dnZy+umnA0fmvigUCoVCoVAcDxwtzV9VVcUzzzzDJz/5SUZHR7nvvvuAg5/t+aUvfYl4PM6vf/1rnnnmmbz9wsHrQYDe3l4+9KEP8ZnPfIbbbrsNXdeZmJjg7LPPZu/evXz+859n6dKlbN68mS9/+cu8/PLL/PWvf0XTNIQQXHbZZTz99NN8+ctf5pRTTuGpp57iggsueMVzKCsr4+KLL+ZHP/oRt9xyC7o+5Ye85557cLvdOYf8pz/9aX7yk59w6623smLFCuLxOJs2bSISiRzU9ZrOwWrqg+XDH/4wL730El/72tdoaWkhGo3y0ksv5cb2ve99j4997GPs3r2b3/3ud3mfTSQSrF69mt27d3PLLbewdOlSnnjiCW6//XbWr1/PH/7wh7ztf//737Nu3Tq+/vWvo2kan/3sZ7nooou46qqraGtr47/+678YHR3l05/+NFdccQXr16/PK7grFIo3IEKhUCiOEl/5ylcEIG666aa85ffdd58AxP/93//lljU0NAjDMMT27dvztv34xz8uAoGA6OjoyFv+7//+7wIQmzdvftXjGRwczFt+9tlni7PPPjtvGSC+8pWv5H7+1a9+JQDx6KOP5m0Xj8dFSUmJuOSSS/KW27Ytli1bJk499dQZx//yl7+ct+0zzzwjAPHtb387b3lXV5fw+XziM5/5jBBCiJGREeH1esU73/nOvO2eeuopAcw4h30ZGhoSbrdbfP7zn89b/p73vEdUVFSIdDothBDiU5/6lAiFQgfc16vh9d7bu+66SwDigQceyNvuuuuuE4C45557cstmu5dCCHHVVVeJhoaG3M8//vGPBSD+53/+Z7/jPlL3RaFQKBQKheJY5o2i+c8++2yxaNGiGcv31fWPPvroDF3/D//wD2K28snB6sHs8QHxyCOP5G17++23C13XxfPPP5+3/Ne//rUAxEMPPSSEEOLhhx8WgPh//+//5W33ta99bcY5zMaaNWsEIP785z/nllmWJaqrq8UVV1yRW7Z48WJx2WWXHXBfB8vBaOo9e/bM0OxZ9j2vQCAgbrzxxgMe86KLLsrT9Vn++7//WwDil7/8Zd7yb3zjGzOuCyAqKytFLBbLLbv//vsFIJYvXy4cx8ktv+OOOwQgNm7ceMBxKRSKo4+KQ1EoFEedfXP53vOe92CaJo8++mje8qVLl9LS0pK37Pe//z2rV6+muroay7Jyf7KOiMcff/zwDv4VePrppxkeHuaqq67KG5/jOLz97W/n+eefnzHN8Yorrsj7+fe//z2apvGhD30obx+VlZUsW7YsN5XzmWeeIZFIzLiep59+Og0NDa841nA4zCWXXMKPfvQjHMcBYGRkhAceeIArr7wS05STh0499VSi0Sjvf//7eeCBBxgaGnqtlyfH67m3jz76KMFgkEsvvTTv8x/4wAde83gefvhhvF5vborqbByp+6JQKBQKhUJxPHAkNL9t2zM09+HkYPVgluLiYs4999wZ+1i8eDHLly/P28f555+fF9uSvU77XseD1bwXXHABlZWVea75P/3pT/T09ORp3lNPPZWHH36Yz33uczz22GNMTk4e7OWYwcFo6lfDqaeeyr333sutt97K2rVrSafTB/3Zv/3tbxQUFPCud70rb/nVV18NMCOqcvXq1RQUFOR+XrBgASCv43THd3Z5R0fHqzoXhUJx5FFFcIVCcdSprKzM+9k0TcLh8Iwpd9kph9Pp7+/nwQcfxOVy5f1ZtGgRwCEp0L4e+vv7AXjXu941Y4zf+MY3EEIwPDyc95l9z7O/vx8hBBUVFTP2sXbt2tw5Zq/Xvtdzf8tm49prr6W7u5u//OUvAPzsZz8jmUzmxCHIaYh33303HR0dXHHFFZSXl7Nq1arcZ14Lr+feRiKRvGmmWQ72nGdjcHCQ6urqvKmis43vSN0XhUKhUCgUimOdI6H5zzvvvLz1h6r4uj8OVg++0rlt3LhxxueDwSBCiDxNmb1m0zlYPWmaJh/+8If53e9+RzQaBWRvo6qqKs4///zcdt/5znf47Gc/y/3338/q1aspKSnhsssuY+fOna/m0gAHp6lfDb/4xS+46qqr+N///V9OO+00SkpKuPLKK2ftBbQvkUiEysrKGZEl5eXlmKY543tYUlKS97Pb7T7g8kQi8arPR6FQHFlUJrhCoTjq9PX1UVNTk/vZsiwikcgMgTdbxlppaSlLly7la1/72qz7rq6uPrSDfZWUlpYC8N3vfne/nef3LeDue56lpaVomsYTTzyBx+OZ8fnssuz1mk0E9vX1zWj8OBvnn38+1dXV3HPPPZx//vncc889rFq1akZm4jXXXMM111xDPB7n73//O1/5yle4+OKL2bFjx2tyN7+eexsOh3nuuedmrJ/tOni9XkZHR2cs3/cBpaysjCeffBLHcfYr2o/kfVEoFAqFQqE41jkSmv/73/8+4+PjeZ87nBysHsyyv3Pz+Xzcfffd+z0GSE052zU7mAJwlmuuuYZvfetb/PznP+e9730va9as4cYbb8QwjNw2BQUFuX42/f39OVf4JZdcwrZt2w76WHBwmtrr9QLMaE45WwZ5aWkpd9xxB3fccQednZ2sWbOGz33ucwwMDPDHP/7xgGMJh8M8++yzCCHy7sPAwACWZR3274pCoTj6qCK4QqE46tx3332cfPLJuZ9/+ctfYlkW55xzzit+9uKLL+ahhx6iubmZ4uLiwzjKA5MVuPtOFzzjjDMIhUJs2bKFT33qU69p3xdffDFf//rX6e7u5j3vec9+t3vTm96E1+vlvvvuy4tUefrpp+no6DioYqthGHz4wx/mjjvu4IknnuCFF17g+9///n63Lygo4IILLiCVSnHZZZexefPmQxbxcbD3dvXq1fzyl79kzZo1eZEoP/3pT2ds29jYyK9+9SuSyWTunkUiEZ5++mkKCwtz211wwQX87Gc/4957792vg+hI3heFQqFQKBSKY50jofkPV8Px6Vrf5/Pljetg9OCBuPjii7ntttsIh8M0NTXtd7vVq1fzzW9+k/vuu48bbrght3w2zbs/FixYwKpVq7jnnnuwbZtkMsk111yz3+0rKiq4+uqr2bBhA3fccQcTExP4/f6DPt7BaOqKigq8Xi8bN27MW/7AAw8ccN/19fV86lOf4pFHHuGpp57KLfd4PLNGuJx33nn88pe/5P777+ed73xnbvmPf/zj3HqFQnF8o4rgCoXiqPPb3/4W0zR561vfmusUv2zZsoMSkl/96lf5y1/+wumnn84NN9xAa2sriUSC9vZ2HnroIf77v/+b2traw34OixcvBuAHP/gBwWAQr9dLU1MT4XCY7373u1x11VUMDw/zrne9i/LycgYHB9mwYQODg4PcddddB9z3GWecwcc+9jGuueYaXnjhBc466ywKCgro7e3lySefZMmSJXziE5+guLiYf/mXf+HWW2/lox/9KO9+97vp6uri5ptvflWxG9deey3f+MY3+MAHPoDP5+O9731v3vrrrrsOn8/HGWecQVVVFX19fdx+++0UFRVxyimnADITr7m5mauuuoof/vCHr/JqSg723l555ZX853/+J1deeSVf+9rXmDdvHg899BB/+tOfZuzzwx/+MN///vf50Ic+xHXXXUckEuGb3/xmXgEc4P3vfz/33HMP119/Pdu3b2f16tU4jsOzzz7LggULeN/73nfE74tCoVAoFArFscyxrPmXLFkCwDe+8Q0uuOACDMNg6dKlB60HD8SNN97Ib37zG8466yxuuukmli5diuM4dHZ28uc//5l//ud/ZtWqVbztbW/jrLPO4jOf+QzxeJyVK1fy1FNP8ZOf/ORVncu1117Lxz/+cXp6ejj99NNnvDhYtWoVF198MUuXLqW4uJitW7fyk5/8hNNOOy1XAP/xj3/Mtddey913382VV16532MdjKbOZqrffffdNDc3s2zZMp577rkZxf3R0VFWr17NBz7wAebPn08wGOT555/nj3/8I5dffnnevfrtb3/LXXfdxcknn4yu66xcuZIrr7ySO++8k6uuuor29naWLFnCk08+yW233caFF17IW97ylld1HRUKxTHI0ezKqVAoTmyyneJffPFFcckll4hAICCCwaB4//vfL/r7+/O2bWhoEBdddNGs+xkcHBQ33HCDaGpqEi6XS5SUlIiTTz5ZfOELX8jr6H2w4xkcHMxbfvbZZ4uzzz47bxmzdGC/4447RFNTkzAMY0aH88cff1xcdNFFoqSkRLhcLlFTUyMuuugi8atf/eoVj5/l7rvvFqtWrRIFBQXC5/OJ5uZmceWVV4oXXnght43jOOL2228XdXV1wu12i6VLl4oHH3xw1nM4EKeffroAxAc/+MEZ6370ox+J1atXi4qKCuF2u0V1dbV4z3vek9cRPdvl/aqrrnrFYx2Ke7t3715xxRVX5L5DV1xxhXj66adn7TT/ox/9SCxYsEB4vV6xcOFC8Ytf/EJcddVVM7rIT05Oii9/+cti3rx5wu12i3A4LM4991zx9NNP5213JO+LQqFQKBQKxbHGG0Xzn3322WLRokUzlu+r6x999FEBiEcffTS3LJlMio9+9KOirKxMaJomALFnz57c+oPRg/s7vhBCxGIx8cUvflG0trYKt9stioqKxJIlS8RNN90k+vr6cttFo1Fx7bXXilAoJPx+v3jrW98qtm3bNuuzyf4YHR0VPp9PAOJ//ud/Zqz/3Oc+J1auXCmKi4uFx+MRc+bMETfddJMYGhrKbXPPPffMqrNn42A09ejoqPjoRz8qKioqREFBgbjkkktEe3t73nklEglx/fXXi6VLl4rCwkLh8/lEa2ur+MpXviLi8XhuX8PDw+Jd73qXCIVCuXuVJRKJiOuvv15UVVUJ0zRFQ0OD+Nd//VeRSCTyxgyIf/iHf8hbln2++da3vpW3PPt9mf5cp1Ao3phoQghxZMvuCoVCIbn55pu55ZZbGBwcVBlsCoVCoVAoFArFcYjS/AqFQqF4I3BoWvQqFAqFQqFQKBQKhUKhUCgUCoVC8QZEZYIrFIrjHtu2OdCkF03T8jqiKxQKhUKhUCgUCoVCoVAojh9UHIpCoTjuOeecc3j88cf3u76hoYH29vYjNyCFQqFQKBQKhUKhUCgUCsURQxXBFQrFcc/27dsZHx/f73qPx5Pr+K5QKBQKhUKhUCgUCoVCoTi+UEVwhUKhUCgUCoVCoVAoFAqFQqFQHLeoxpgKhUKhUCgUCoVCoVAoFAqFQqE4blGNMffBcRx6enoIBoNomna0h6NQKBQKhUKhOEQIIRgfH6e6uhpdV16QEwml8RUKhUKhUCiOTw5W46si+D709PRQV1d3tIehUCgUCoVCoThMdHV1UVtbe7SHoTiCKI2vUCgUCoVCcXzzShpfFcH3IRgMAvLCFRYWHuXRKBQKhUKhUCgOFWNjY9TV1eX0nuLEQWl8hUKhUCgUiuOTg9X4qgi+D9npkYWFhUogKxQKhUKhUByHqDiMEw+l8RUKhUKhUCiOb15J46swRIVCoVAoFAqFQqFQKBQKhUKhUBy3qCK4QqFQKBQKhUKhUCgUCoVCoVAojltUEVyhUCgUCoVCoVAoFAqFQqFQKBTHLSoTXKFQKBQKhWIfhBBYloVt20d7KIpXgWEYmKapMr8VCoVCoVAoFDNQGv/Y5FBpfFUEVygUCoVCoZhGKpWit7eXiYmJoz0UxWvA7/dTVVWF2+0+2kNRKBQKhUKhULxBUBr/2OZQaHxVBFcoFAqFQqHI4DgOe/bswTAMqqurcbvdylV8jCCEIJVKMTg4yJ49e5g3bx66rpL/FAqFQqFQKE50lMY/djmUGl8VwRUKhUKhUCgypFIpHMehrq4Ov99/tIejeJX4fD5cLhcdHR2kUim8Xu/RHpJCoVAoFAqF4iijNP6xzaHS+Moeo1AoFAqFQrEPykF87KLunUKhUCgUCoViNpROPHY5FPdO3X2FQqFQKBQKhUKhUCgUCoVCoVAct6g4FIVCoTiBGItFaB/YRSw5RsBbSGPZXAoD4aM9LIVCoVAoFAqFQvEacWIx7IEBRDKJ5vVilJWhBwJHe1gKhULxhkI5wRUKheIEYU/fNn74yLf55d/v4qFn7+OXj9/FDx/5Nnv6th3toSkUijc4jY2N3HHHHa9rH4899hiaphGNRo/6WBQKhUKhOF6w+vpIPPIIyb//ndSzz5J8/HESjzyC1dd3tIemUCje4JxoGl8VwRUKheIEYCwW4f5nf0xkpCdveWSkh/uf/TFjscir2p9IJon2trNx6+M8temPbNzz7Kveh0KhUCgUCoVCoXjtOLEYqWefxRkZyV8+MiKXx2Kvan92NEpq+3ZSGzaQ2rED+3UWtRQKheKNhIpDUSgUihOA9oFdeQVwQzcoD9eDx0PCTvBCz4uc0nAaQU/wFfflRKO07VnHAxt+RSSa2afbTXnDfN5x8gdoqpx/uE5DoVAoFAqFQqFQZLAHBmYUwHG5AHDGxrB6enA1NKB5PK+4r3RXF8knnsAZGMgt08vL8Zx5Jq66ukM6boVCoTgaKCe4QqFQnADEkmO5/zd0g5qaBTzR/zy/2PRzHth6P/dt+D/uWX8P7dH2A+5HJJOM7NmWXwAHSKUY6NjG/S/epxzhCgXyd8Xu78fauzeX0XnYjykE3/zmN5kzZw4+n49ly5bx61//GiEEb3nLW3j729+OEAKAaDRKfX09X/jCF3KfX7NmDStXrsTr9VJaWsrll18+63Ha29vRNI3169fnlkWjUTRN47HHHsste+ihh2hpacHn87F69Wra29tn7Ovpp5/mrLPOwufzUVdXxw033EA8Hs+tHxgY4JJLLsHn89HU1MR99933+i6SQqFQKBTHETP0hceDMzqKMziIE4ng9PaSWr8e5xUc3XY0OqMADuAMDJB84gnlCFcoMiiNf2xrfFUEVygUihOAgKcQkAXw1qZTeDaynmF7nECghIA/hNv0MDw5zJrtaxhPju93P040SudEX34BPEsqRSTaR/vArsN1GgrFMYETjZJav5701q1Yu3aR3rLloB5AXy9f/OIXueeee7jrrrvYvHkzN910Ex/60If4+9//zo9+9COee+45vvOd7wBw/fXXU1FRwc033wzAH/7wBy6//HIuuugi1q1bxyOPPMLKlStf81i6urq4/PLLufDCC1m/fj0f/ehH+dznPpe3zcsvv8z555/P5ZdfzsaNG/nFL37Bk08+yac+9ancNldffTXt7e387W9/49e//jXf+973GNjnAV2hUCgUihOVPIe3zye1RioFmga6DqaJmJwkvX37AYt1dn//jAJ4FmdgALu//xCPXKE49lAa/9jX+CoORaFQKE4AGsvnUlZSh88XZHe8i7/s+GNuXXGgjCatBXtwkEFzhPaanSypPWnW/Yh0mlg6Pus6AByH2AGK6ArF8Y5IJuWD5uRk/vLMA6h7+fKDmpL8aonH4/zHf/wHf/vb3zjttNMAmDNnDk8++STf//73+elPf8r3v/99PvzhD9Pf38+DDz7IunXrcGWmTH/ta1/jfe97H7fccktun8uWLXvN47nrrruYM2cO//mf/4mmabS2tvLyyy/zjW98I7fNt771LT7wgQ9w4403AjBv3jy+853vcPbZZ3PXXXfR2dnJww8/zNq1a1m1ahUAP/zhD1mwYMFrHpdCoVAoFMcTRnk5enExTiyGiMcRkakZmVppKU4qhRgaAtPEqKnBrK2dfUeJxIEPdATcrgrFGxml8SXHusZXRXCFQqE4ASgMhLlg5Xu57S9fIRQshcx0KZfLg9f0sqt7E8uKF+AaTzO6tw3LrMasrJyxH83lIuAq2P+BdJ3AQeSKKxTHK040OkMcZxGTkzjRKEZFxSE/7pYtW0gkErz1rW/NW55KpVixYgUA7373u/nd737H7bffzl133UVLS0tuu/Xr13PdddcdsvFs3bqVN73pTWialluWFe5ZXnzxRXbt2pU3/VEIgeM47Nmzhx07dmCaZp5bZf78+YRCoUM2ToVCoVAojmX0QADXySeTeOQR6QDPaHyttBTXokWI0VG0oiJIp7F7e8E0Z9X4eL0HPtBhKO4pFMcSSuNLjnWNr4rgCoVCcYKQSMQp9xRTFqojXFiBrul4NRfaWJy4Pcaot5KSwQn8dUmstjb0QAA9EMjbhx4KUe+vJByqlpEomobm84FpgqYRDlVSX1CFtXcvmtuNXlR0WN6IHyyj0QE6+rcznhgj6CuiobyFolD5URuP4vhHpNOva/1rxXEcQE55rKmpyVvnyfwOTkxM8OKLL2IYBjt37szbxufzHfSxdF2m6WWzBwHS+5zX9HUHGvPHP/5xbrjhhhnr6uvr2b59O0CeyFYoFAqFQrEPqdSUI7y/HwwDLRAgvX49IhpFKypCTEwgmpsR6fSsGt+oqEAvL5eRKLqOXlmJ7veD46AFAuih0BtG34PMMLf7+6WD3efDKC/HUC/JFYcRpfGZse5AY36janxVBFcoFIoThNhkFHNgGK9eQou7hp5YDyIVA8sCICUswkVVVI84pLu2YVRX5wlkkUziRKMUBku5bOUHeWDLb4nEh2QGmmVRWtHIxYWn4nrqBezGRsT4OJrXi6u1Ff0oiNK2rpe5/4kfMjTQnltWWt7IZWd+hDl1S474eBQnBlpm6uFrXf9aWbhwIR6Ph87OTs4+++xZt/nnf/5ndF3n4Ycf5sILL+Siiy7i3HPPBWDp0qU88sgjXHPNNa94rLKyMgB6e3tzDpTpDXSy47n//vvzlq1duzbv55NOOonNmzczd+7cWY+zYMECLMvihRde4NRTTwVg+/btRFVzLoVCoVAocojJSaydO9ErK3EiEfSCApzduxHT/730eHBGRnDGx2fV+CSTuJcvxx4YANMkvXkzdlsbmt+PUVND8qmnMN8A+h4g3dU1o4mnXl6O58wzcdXVHZUxKY5/lMafGs+xrPFVEVyhUChOEAKmdHMM9LVxXvPZPNL3FN17t+XW1xTVcYn/dPy7IwjHQUxM5NY50ehUBpqmUeSBN889jz49hgudarOEqoEk/j2DCMfBamvDbGhAxOOHNSNtNkQyyWi0n989/gOG+ttB13NvmYcG2rn/iR/ykQs/rxzhisOCHgqh+XyzTpfUfL7D9sAYDAb5l3/5F2666SYcx+HNb34zY2NjPP300wQCAUpLS7n77rt55plnOOmkk/jc5z7HVVddxcaNGykuLuYrX/kK5513Hs3Nzbzvfe/DsiwefvhhPvOZz8w4ls/n401vehNf//rXaWxsZGhoiC9+8Yt521x//fV8+9vf5tOf/jQf//jHefHFF7n33nvztvnsZz/Lm970Jv7hH/6B6667joKCArZu3cpf/vIXvvvd79La2srb3/52rrvuOn7wgx9gmiY33njjq3K0KBQKhUJx3GOa4Dg4fX2Yzc2gadh79uRWa14vmmkixsdBiP1rfEDE4+A4eE47DZFOIxwHe8cOSKePur53olGE45B8/HHswcE8F6kzMEDyiSfQL7xQOcIVhwWl8SXHusbXD/sRFAqFQvGqcWIx0m1tpLZuJb1nD04slrd+PDnOpv5NrN27lk0Dmxg/iGaU9cFawqV12I5F1+71nFm6kvcufh/vWHg5V596HR+vvoyq3RHITLnK/jevCYim0eVL8eP2+3ngpZ/y7AtrWLvlL2wYeJltpTYvVdnsrPUQ9+myKz1TGWmvlbxz7dlAtL8Ta+9e7IGBGV3u7UiE1NattA/sYqh7l3S5p1KI7DkhC+Ed/dtf83gUigOheTy4WltlTND05T6fXH4YHxb/7d/+jS9/+cvcfvvtLFiwgPPPP58HH3yQxsZGPvKRj3DzzTdz0kmy6e1XvvIVqquruf766wE455xz+NWvfsWaNWtYvnw55557Ls8+++x+j3X33XeTTqdZuXIl//RP/8Stt96at76+vp7f/OY3PPjggyxbtoz//u//5rbbbsvbZunSpTz++OPs3LmTM888kxUrVvClL32Jqqqq3Db33HMPdXV1nH322Vx++eV87GMfo7xcvcBSKBQKxbHJK2l8kUxi9/fvV+vOhh4MopeWguNg7d6N5nKhl5ejl5Wh19aiFRfnCuByELNrfGEYUr9bFnZvL8KyEOPjmK2tGPX1UtscIn2/77laAwNYPT2znrcTjZLavh2rsxN7aAi7uxsyBfrpOAMDMiJFoTgMKI0vOdY1viYOJtDlBGJsbIyioiJGR0cpLCw82sNRKBQnADlnQzqN5nYjLIvU88/jjIzkttGLi3GvWoVZWUl7tJ0129cwPDmcW1/iK+HS1ktpDDXu9zh2fz/tQ7u5f93PiAx1oQWD2D09hMM1vGPuJVT1xHPTJjWvF9/FF2PW1mL395PeuhWAmN/gxx1rGOzYipicxNAM6pe9mUe6HmdUS7C0YC6u4VHChZW8Y+UHqB0RIATm3Ln770Z/AKafqzMxgTM2RthbzKVzL6Y24QHHwdXSgh4KYQ8NkXzqKZyREdbPD/L7v94lM8vNzKQntzvnGLn43I9x+tILD3gf3gh5h4ojTyKRYM+ePTQ1NeF9pSZRByDv++RySfeI+j4dEQ50D5XOO3FR916hUBxpXq3G39eVDVMFtgO5TO3+fuyhIVLr1uEMDWE2N5Nevx78foyKCunoHh2V+5tN42sa+P2k1q1DZIrIemmp/HwwiNXTg1ZYCJaFe+VKxMjI69L3MM2BnkyihcM4Q0OQSqEFg2iGAULgamlB8/lI79ght43FMOfPJ/nXv8oxu1zgcuU5wr3nnot76dID3gel8U9MlMY/9jkUGl/FoSgUCsVRxB4aIr1xo3SBGAZ6SQnWnj05lwWmyUhjKdtdo4y2PUTRWA0TyTFGh/sRrqkC7/DkMGu2r+Ga5dcQ9ARnPZYeClHb6eLq5VfTZUWIO0l8LSmqB9P4tvXmusJrXi9mSwtGJhNMpNNoBQUA7HVHGerfk3OQVNS08EjX4/QMtoHHw3h4LuGSEkZ0iwc7/sKVTe8kMGm/poy08eR4XgHc7uxET1mYlYU81vs0TQW1hAPl1HbtoticL69j5qEi4M1cAyEQliWvk+OAYcj1+1yj1/rQoVDsD83jOSwd4hUKhUKhULzxeUWND2CaOKOjJJ95Bmf5cqlDTROtoEBGlgiBmJx8xegRPRTC6uzEtXy5nAWZ0bv20BB2JIKeca7uV+P7fFjbtqE5DmSKR87YGMRiiNFR9MpKORbA7urCaGiQDSlfYwZyzoGeSKCHw7niPboum3IWF8tC/pYtGM3NuQJ49hzkTgSk0/JcM+cLwD7XSGl8xaFGafxjG1UEVygUisPEK7kO7Egk51zOonk8OJGIFMvhMNuaA3x343+zu38r2DaJUAFl/lKuXXo1W3c9gx0qzInB4clhOqIdLK5YPOt4NI8H17x5BLZvZ/6kGzQPWjCINdgOdXVSNJeVYZSV4V68GM3jQSSTiFSK9M6diFiM8QVBnOFh2XXe70crDNLT2yVFcCpFykri9I0hkkkGPD10FCxi/rgPs6npVV+/jmgHw5PDCMvC6e9HT1nUNS/nkc7H6WnrYmH5IsIJg7KaeVxacAVV8Xjus7VOIaXVzQz17J6a+pn5b2l5Iw0VrTixGPbQEGJyUuYfejxohiH//yAfOhQKhUKhUCgUJxavW+OHQiAE9uAgJJPQ1YVWUIDV3o6rtRUnEsk1ocxqUica3W/hLavxp0ebGDU1iHRaHusVNL4eDmO1tcnCtteLUVmJ3d4Ofj8imUR3u7FHRnCGhnD27gUhcMbHIZlE93hedTHZiUYRk5PynHfvlgVww0AkEmDb2MkkIpnEqK5Gi0bzMsyF46BXV+P09EhtP83kopeXY1RUKI2vUCj2iyqCKxQKxetkNiGcFVd5jTNME6O6Wk778/txBgdlbp0Q0hVimohUCpFIoHk8jNSV8N2Nd+YK4AC2Y7FlYDN3b7yXK1vew+b25zEqK3OO8Fg6NtsQc+ihEO7ly/OmcLlaWhDxeN6ULpFOk965EyeZxO7qkusnJgjo0jmCbSMSCRJGZuzpNOg6LkeTGX6Zc4nFR8AMYu3ejR4MviqhGUvHMDSDIneAZJ0H03TTkx4nFCqnf7SHlJ1CJHUisQEe3L6GD4bOxBeJAODd1sZlp17J/c/9eKoQrmmUljdy2VkfpSDhkGrbSHrbNkQsJsW114vZ1IRZV3fQDx1Hg85oJy/3v8xwYpgSXwlLypdQH6o/2sNSKBQKhUKhOK44XBofw8Du7ZUFcMuS29k2YniY9PbtmPX1eU0oQbq2D8Tr0fgEAlM7SiRwolG0zLYkEqBp0hluWbLonE4jxsdxXmODTJFOy+tiGLKYrmkIy5LLHEc2+RwdxayvxxkcRA+HcQYHAbC2bcN96qmknntOFsKz519ejuessxCJBOm2tmNS49vRqPzeJBLg82GUl6smnwrFIUYVwRUKheI1kBXFzvi4nOZo2+Dzye7sg4OI4WE5pc/nk2JyfBx7717SO3bIonVxMZrjYFRXg67jxOM4g4NowSB6UREYBtvNEdoGt085mQFDl39tbxncQmqxkXNi6MEgmmkScAX2N+Qcs03hEi5XTjRbfX2kXnwRe+9ezDlzSG/ejF5ejlZQQK1TSDhUTSTaA46DzzU1vdJfEKLIFcRs9Ev39tAQBbpXiv5XKTRFMklBSidkBvjt1t+wu387dSWNbBp4maaSubxt0VsY79+LSMQgnSYyOUx3yQRzTTPXDLNyYwdXL7+GvStjxNMTBPxFNITnEHQHSW3YgLV7N2JsTApuTYNkUk5TtSyM2lrIPNy80kPHkeSZrme47YnbeHng5dyyJeVL+PyZn+e0utOO4sgUCoVCoVAojn2OhMbPFr3lATM6P9uUMp1GLylBaJrsZwOIiYmDihZ8rRofr1eOQ9fBcRCWhV5YiBgfx5g3D6O+Hr2wENxueU2EQExM4MTjaG73q9b4IpVCKyzEGR6ecmun0/Iae71SyycScjufL78RYSpFeuNGXMuXo61ciWZZ4POhh8Nobvcxq/HTXV0kn3gCZ2Agt0wvL8dz5pm46uqO4sgUiuMLVQRXKBSKV0k2W84ZH8fu6wPbltPvqqtJPvEEmhBSwLhc6DU1uFpasLdvx5mYgHgc16JFUpyNjsrpfy4XWlER7pNPxurvl0XjWIyRSUvmWRsGwnHQXC48ugvT9JBOTjA+GcWJRNAmJhDxOGX1rTSEGl5x/GOxCO0Du4glxwh4C6kvqMHX3iMFdmkp6fXrpVjOuj0y56OHwxSk4NJFl/PgzgcZGu5GxGLUVMxlZKSHea5KjPYurMQkWiBIecsyaiY9ICzg4IVm9voWFGn8cftD7B7cCY6DjQNo7BnezWOmh/fUX8hQ3zO5zvAxkcIoLcUeG2NkbjU79CGi1k5CaR8tWiVlgw7078by+6XAHxuTBzSMKRdOOo0zMiKndabTaF7va8ozPxx0RjtnFMABXh54mdueuI07L7xTOcIVCoVCoVAoXiNHSuPrAKmULPim07Ix5OQkekmJLMD39WG1taEPDLyq/GonFsMeGJCOdK8Xze/Hbm+X0SOvoPH16mpEdh2ApuFavBiro4PkU08hMrMttZoa3CtXwq5dUj/z6jW+Y9ukX34Zs7xcjrW0VBazhZCueSHk8QwDJ5lE93pl9KIQ6A0N6C4X2La87rqONj6O09+PdoxqfDsanVEAB3AGBkg+8QT6hRcqR7hCcYg4porg3d3dfPazn+Xhhx9mcnKSlpYWfvjDH3LyyScDIITglltu4Qc/+AEjIyOsWrWKO++8k0WLFh3lkSsUiuOFXCOXyUmZW2dZ4Pdj9/Zi7d2L7vVO5dZZFk5PD2lNQwuFYGgIo7YWa+dOxJjMzcbtltum06Q2bEAPBjHr67EHBih2+aYaO7rdaAUFGLZD2Cwkkk4TMGWzSjSNsLeEi4tPI4D7gOPf07eN+5/9MZGRzPRBl4sSrYBL5l5IneaRYx4ayos4kScucIaG0AoLqSsp4cON72TPggmGCqDFfQZP7HyERGQAkYwCUGIGudC3gsLCUkRULjsYoSmSSdI7diCAPaledAFBXxHjE1EMdEDgNjxEY0MI00AvLpbTLxMJgkWl6N4itjT5+O7z32H30A55jxyH5sqF/OMpn2LxiBsxMSHvUebcRPY8pztyLAt7aAhXUxN6KDTjocIoK0PPTB09Uh3nX+5/eUYBPLdu4GVe7n9ZFcEVCsUxidL4CoXiaHMkNT6aJnVnMolWWYnZ2Ijd0ZHL2c41etR1RCKRly2+P6y+PlLPPpvbVi8rwxkdRS8slJr1ABrf2rYN96pVWNn4EyEwmpqwOzrQbFu6v0Hmdo+MkHruOcyFCxGjo8Cr1/ia241ZWYkWCmHYNvbAgBx3tgBfWIgxdy5aQYF0rS9bhivjxk9v24Y9Po4TjeZc864lSyCZPGY1vt3fP6MAnsUZGMDu71dFcIXiEHHMFMFHRkY444wzWL16NQ8//DDl5eXs3r2b0LS/DL75zW/yH//xH9x77720tLRw66238ta3vpXt27cTDAaP3uAVCsUbktcibLKNXOQPztR/hUD09qIvWYI9PSPQshAjI1JIOg56YSF2b29uKqAeDOKkUnIqYV8fenk5Vnc3rsWLWRDyMrfxJNoiO3ONJ9F1vEmbt8x9C3NK5hBceQmhQJj5ZiXh4dQBpyOOxSL5BfAMQwPtrEndz1UL3kcglZILNU0WvmMxKe4tSwrcdBpncJCx1kqe6VrLcH+U1NgIReV1VMxdQc2yaqrHdRr3TuB7dhv6W98qr6/Pd3AOlmgUAaS3bmW4MUG0Zw/1oTK0ijrcpps5xXMZnxghMTnOhJNACwRA1wkXVlCb9DLkh+8+dye7ujagmaa8n8kkbQPb+O7z/8XXVn6W0nEnL2KGZFI6cTLNeLIZhZrXi9HQgD0ykvdQAaAXF+NetQrd6yW9YwcxLU0XUWLWBEFfEY11SygKVx1S8TycGD7g+pHkKz8gKRQKxRsNpfEVCsWh5o2u8TWfD6emRupOXcfauhWtoABSKfSqKtA0Ge/h96MXFMiM7ANofCcWm6FVNY8HZ2AAMTaGNmeOfI6A/Wp8u6cHo6pKamvLQi8tla72yUnweOSfZBIyhWZ96VJp1HkNGj/7EkErKcFsbUVPp7EnJuQxHAe9uBizvh7N70draJAvFVwuUi+8gNPXJ6NlgkGc4WGcSIT0yy/jWrw4d79yHAKNj6bJ71TmXM26OvRA4NAWxxOJA69PJl/7vhUKRR7HTBH8G9/4BnV1ddxzzz25ZY2Njbn/F0Jwxx138IUvfIHLL78cgB/96EdUVFTw05/+lI9//ONHesgKheINTHY6nkgkiHk1uqwIcSdBYXkd9cUNFBWVzypm8qb7ZR0Utp0nlkV2emNWsEzP/XO5pDgeH0cvLZV53uGwLDD7/eDzYdbUoNk24UiCG075B77z0l20RXaBaaJpGovmrGJl5Un85W9343hcaKbJxkA5l8y5gMYDTEdsH9g1owCeHXck2kOXNczCgsapdYaB3deH501vIrVxoxSdySQTpUHWbPo10ZCHUZJsHd7MZO9z4DhUlzRwQeVZhIIN+DK5gnpREa7W1oMShyKZJL1lCyIapdhdhhAO4+MRGO5D9xdQW1pNWzpByknjdwdIju8iXNHIhbRi/vlxtp5Rza6uDeiBgIyQ0TR5XYG28Q62Wb282axBaBpaYWHOwULGsaN5vRgVFeiVlTK3Uddz4lg4Tm5Kpd3fT/LppzEXLaLLjPNg28NEYlMOjnBHDe84+f1U7xyUrh7DQPN40IPBA05pFckkdjSKyGRQaoEARjiM5vFQ4i054LUr9hS/4vVVKBSKNxpK4ysUikNJTuNPTiJSKVns9XgwW1rQi4ow9lOwPJIan4kJjKoqrLY2RCYGBUCvqsKoqMDatQvN6wXbxo7HMUpLDxg5knNS5y2U4xKJBE48jllePrVuPxrf7u7GqKzEtXQpYnQU0dsrx55MygJ1tsD8OjW+VlgIgGYYpNeuxWhtxX3KKYisU72wkOTatbiamrAyzTuN2lpcLS0kR0bQa2rQ/X6MujrZtDMWQ9g2msv1qjW+HYlMRaZoGnYkQuqZZzAWLgTTlPco64TX9dxMARGPy++GYWCEQrgWLTrgy4ADOc7xeg988Q6D+1yhOFE5Zorga9as4fzzz+fd7343jz/+ODU1NXzyk5/kuuuuA2DPnj309fXxtre9LfcZj8fD2WefzdNPP71fgZxMJklOe7M2ls2PUigUxy256Y6JBF2+JGs2/46hgXYpfjweympbeMeSK2iqnD9DzEyf7qd5vbKBi2FMiWVdl+I3HJ6a0phtbBMKya7sY2NT8SKZhpPYds6ZkG2MoxUUMH9XL7dUfoidTeOMWjFCoSo6+rbRvu1ZHJ8HLXPcSGyAB9se5pqaZvJHPEUsOcvfb9lxA3ErDqYphfvQEJrXi15eTmrdOnS/H/2kk8Djoa8oxfD6EVLDBjusLiYTU8KwJ9pFrM7h931P8aF5q/GFQriam3Pi+JWcOc7kZC4+Zd5kkDmVC2gb2inXTcQYiw5Qb5RQ13wapxUvw9dYTX2gFve6zeA4jKTGZcd6y5Iuk+yUSCHA5WKMBKRSstt6OJx7SAKkiK2tRa+qwu7slO6TkRGs7m55Dy1r6kEHsDs6SCyax4N7/igL4NnvhhAMW2P87rHv8+Hi1fiHM9c907QzvX077uXLZzwwONEoVlcX6W3b5IOMEHK6aFMT7uXLWVKxhCXlS2aNRFlSvoQlFUv2c+cVCoXijYvS+AqF4lAxPdLEicWwOjsR4+My8qOzE7OpCbOxEbOy8uhq/EAAu7MTYdvoxcWyoFxaijM4iDM8LDVo9rjZ+I5pmn22855BNlIls4+D0fia2409MEDq+edxLVsmPzsxkYt20bIxIbaN/jo0Po4jG4sKIfv+bN0qnde7dqHX1CC6u6U7WtfliwfAHhzESSTwnH22LF5nstmxLLTSUlzz5iFGRw+s8aurpcZ2HLThYayenhn6Hl3HTqcx5s6dKoBnvht6OIzd3Y3d3y8bdmbuiTMygrBtPKtWzfpCwOrrI/XMM9iDg7liu1FWhvu00zArK2Vxvrx81kgUvbz8oJuOKhSKV2b/f5O+wWhra+Ouu+5i3rx5/OlPf+L666/nhhtu4Mc//jEAfX19AFTs8xdERUVFbt1s3H777RQVFeX+1KnOuwrFcU92umPMq+UXwAGSSSLj/dz/wn2M9HXOEJV6KJTrUK6ZJkZpqRTJmoZWVYWTFb/RqJzCWF2N0dCAMXcuRlMTzuQkRnMzelkZenW1zKIbGZHTCktKpEg2TdnIpqsLq6OD4pfbWLVlkvN3uSgZs9i15Wms5NS0OeE4JDWH7cm9rB3eyKaeDYwnxwHoGNzN77c8wE9evIcBMc78RWfhLghKYexyyT8ZYVtgFiCGh3GvWIFeWiqbz2QEvTM6Kp0kg4OMjfQhJiYYcyaYsBJTmYdCgBAk7ARDQ530lJjoFRU5MehEo6TWrye9dSvWrl2k1q8n8fjjpLZvJ7VjR06Iahk3RPHWTm5Y9jGaKxfI/Ws6jmNTVlDOx5vfx/Jdk8zdNEDBhIWm62h+P8XuQrRsZuN0QQuQTlNoGWjFxWhC4Jo/H+/ZZ+N929vwrF6N95xzMMrLsXbtApcLq60NJxJBjI8zUeBiZ52Hdc0edjYXMlFVgjAMuiZ7iTABweDUFEzTxBkbY7BrB3sKLXbUuHipymZnpcE40pHkZB8CsvcwmSTd2Ul6yxY5lXZiQj7AjY6S3raN1Pr11Pkq+PyZn2dJeX6xe0XlCr509pcYS46xdu9aNg1syt1/xYnFOeecw4033nhI9nXzzTezfPny172fxsZG7rjjjjfEWBRvTJTGVygUh4qsxhepFHZXV64ADkhnsGWReuEF0n19R1/jd3bidHdj9/TI3OfeXuz+fukUzhaWs+5zwJmYwOrpyY3bGhwktWULqRdfBCFwnX46RmMjRlUVRm0teL1oRUXy5EzzoDS+3dWF09uLMzgom3pWVsrPp1IyBiWZRFgWenHx69L4Ih5HLyubeobIOMtxuaSbe2xMvmAwzdw100wT3e3G7uiQjvFpiKEhrO3bD6zxKyoQY2OkN28m9dJL8rsSichnBk1DWJZsyOk4snhuWZgLFmAuXoxZV4fZ1IReWSlfrGSumUil5DWZmMBqb5eu8n2/k7EYyaeeko72jL4XExNYXV0kn3oKJxbDCIXwnHkm+nS3PqBXVuI5+2xIJrH27s05yRUnHkrjHzqOGSe44zisXLmS2267DYAVK1awefNm7rrrLq688srcdlomsymLEGLGsun867/+K5/+9KdzP4+NjSmRrFAc52SnE3ZZwwwN783PjgNwHCJDXXQl+ghFK/LevmseD67W1py7QPN6MUwTiorQKypIbdokBYwQUFCAEQ5jzp2LMzSE2diItWsXRnU1VjqNMzwMGceC5vPhPvVUnL6+XFd2JxaTgnGaG2Q8NixdGKmUzCLUdcYMi+2jbSQ0m3mdL/Lk4P3UNC1hYdUyvvX4bWzsfgkAt9tHQ2kzHz3po+zY+BipZFK6osvKKE67qDNLIO3gRCK4Vq5ENwxELIbT0CCdGPE4CEHAkA8IKScNGSeIE43msga9uhstECBRXYoZDstrPs2Zkz03u6cHMTkpmw1VVEAigblggXTNaBpicpKW57v4tyUfZ8eCKKOpcUKhSlrSIUraB2U2XzCIMzgonSW6zrxYLc2VC9jVvk4KZ69XimjHYU55K/MmA+ATuFpa0EMhjFAIJxSSneqHhrD7+tBCIeyuLnnDTZPe1goe7PgLkfZeKdJNk3BBKZfUrCaWGJeucdOU7plIRDYwLS0lVuzj+dEtdG95To5F1wkXVnLpwsto2mdKa/ahze7vn5p2m/2+JhJYfX2YkQin1Z3GnRfeycv9LzOSHKHEU0J1UTV/7/g7w5NTmeElvhIubb2UxlDj7L8DR6jRj+LI8tvf/hbXQTSnUijeSCiNr1AoDhVZje/E43I24Cwa3xkagkRiRsb20db4zsAARnW1LJSmUrIom5BmE6O4GLutjdTAAGZzM0ZFBYnHH8fp7paD13X02lo8b3oT1s6d8hkhmcS1dCnW9u1TueKvoPFxuXLXzOntxb1iBal16xDZF44ZB7PnzDNft8YXo6NoJSVo5eXyWhQXYzY3S+e5y4VWUJCn8fH50EtKcEZHMRobmSgpYK83SSw5ToFtUmM7FMN+Nb5IpWQBe3JSxqGYpjzXVEpGqQQC8qWJZSEAkUqRXrcOV2sryaefBtvGtXIlRmmpdPEnEjJ6xTTBtuWLhGgUqqvzvnJ2fz92d/cMfY/j5FzleiCAq64O/cIL5bNAJn5GLyrC7ujIy6LXfL5XjFZUGv/4Q2n8Q8cxUwSvqqpi4cKFecsWLFjAb37zGwAqM28p+/r6qKqqym0zMDAwwzkyHY/Hg0f9paBQnFBkpzvG0vGZ4hhy0x5jqfis+Xt6KIR7+fIpgeFyoYdC2NEorngckUqheTxS4E1OYre14SQSOFu3YpSUMNqzh56mIPG5PoLuAupcpRTVz8MMhxEVFTjRKPbwMJrHgxYITE2HBAK6V07FrKhAc7lI2kl2jmzH9AcI6DqhonK8hod5pa189bFb2NG3iWyJIG2n6Bpu539f+h+uan4PW595EDweSourecfpH6LYLM07H83jId3Wlt+sxeWi1goQDlUTEQNSdHu9aOEwIpWiOliNUViEq6WFwvDU38XTmw2JVEq6XqJR2cl9dBSjuJh0WxtacbGcamhZUqCm05R0RznNNBFWENNbiRgfx06n0fx+TK+X9LZtuSY/ofU7+dSFn+A7k//Bnuge6ZYQDnMqF/KPiz9C8UtdaGc25gnH7P20urvRCgrQPB5SGfE+blj8fvgZItGeXGMcLIvIcDe/963lrKZ3yIeKWEy6ggoLccbHSTopdkx00ZpcIEVvOo1wu4nEBliz6yGurZxD4cBATpiKdFoK3n0FcpZ0OpdHWB+qpz5Uj0gmGY3286NN/0ckMSK/L6b8Z314cpg129dwzfJrCHrym8Y50Sjpzk557S1LfsbjwVVff1CNjRRvXEpKDpwbr1C8EVEaX6FQHCpykSbZjOd9yWhqkUodeo1fXEzquecw5szBVVODpmmykeL8+Qel8RECa/du3KecIptajozIcaZS2IODuObPx9B1tMpKEo8+KgvgmpaLZHG6ukgkk5itraSffhqtqAg9EMB77rlomnZQGh/DQC8qQvh8aIEA1s6dmPPnoy9ZIiNECgowyssxpxV6X4/GxzDQw2GpR71e9IIC7ERCavyqqjyNTzIJhoFwHLr9KR7c9TCRaC+43eiFhZR4i3nnwiaa96PxneFhaXbJxNoIy0KrrET09IDbnXN/A2iVlfK+Dg+T2rIF18knk96wAdJp7IEBGV0yNibHk0igeb3ye2HbWO3t8pkgq/Gz2eGz4TjSiZ7ByBTvsz2C0ps2yf1P0/hicvKA0YpK4x+fKI1/6Dhm4lDOOOMMtm/fnrdsx44dNDQ0ANDU1ERlZSV/+ctfcutTqRSPP/44p59++hEdq0KheGOTne4YcBVMFTazeDw5ARRwF+TlA05H83gwKiowa2tzLhK7vR2SSXS/H3vvXuyODjm9sb8fkU7jxON0BR1+arzMrzf8jIde/Dm/eOx73LPuHjpGO/L2a5SUSEG1T/5fbdJLOFiR6yY/ZsVxuTx0ju9lLDnGC51r+cWmn7NnvJOdwzuwsx/XdUQ6TSI+RsfALoIl5Vyw9HLevfBdfDB4JvVmad75ZEWVUV4uswoz+YWa30/ANri09VLmlDTjM71SZLlc1FbM462LLyVipigN19IQasiNe/qDhhOP58Rx7gHFcSCZJL1uHWZTE5rfL8/RtiHzwOE95xxcjY2Y9fXSAVFVhZXJ9cs+1Gg+Hws7Evzb/E/xlXNu5qZzPsfNb7udf2u+nnlP7pJOjXh8xlRCLZODSDKJGBuTglQIOiNtRL0CLRjMdZQHmYkYdduYo3HChZkiTCol75dtM2bFKQ6WIcbG5dRKIdAMA5FMEhnppiPaTnrLFlLr18tptZkHj/1/afW89dlpp+1dmxjs24MzOoo9OIgdieCMjeHE40TGB+iIduTtRiSTWF1dWDt2kN68GWv7dvnfHTvkNE01xfKQMZ4cZ1P/piMaUTN9qmRjYyO33XYb1157LcFgkPr6en7wgx/kbb93717e9773UVJSQkFBAStXruTZZ599xX1nueyyy7j66qtzPw8MDHDJJZfg8/loamrivvvum7Gf0dFRPvaxj1FeXk5hYSHnnnsuGzZsyNvm61//OhUVFQSDQT7ykY+QmP6QrjjuUBpfoVAcKnKRJpkYk+loRUXSHQ5obveh1fjj49hjY7gWL4bJSeyuLlLr1pF64QXE8HDefven8ckWOePx3OxAu7c31zzT6uwkvWkTxGJTDnCQxetkUjqYe3qkOSUoDRBOf790bx+kxteDQfSyMoyGBoQQGJWVOO3t2N3d8rqmUhgZB3iWQ67xFy9Gr6+XBfDpGj8YBJeLiXCQ34+sZTg9JsedcbUPJ0Z4sP3PM/RWVuOLWCxP49t79+JesgStunrKAe9yoVVX4168GHvHDmlCiUbRvV6Ix3FGR6V7P9O0NBuFqAWDYJrY3d2kNm3K0/iv2NQyGwmTvYYZjW93dWH39c2q8Z3x8VmjFZXGPzIojX9sa/xjxgl+0003cfrpp3Pbbbfxnve8h+eee44f/OAHuZutaRo33ngjt912G/PmzWPevHncdttt+P1+PvCBDxzl0SsUijcS2emO9XsEpSW1eU0x9aIixPg44dI66rwzm+bsj+kuCGCqizgyzkJzu5ksLmDN1t8Rddt5b/0jIz08uH0NH6mZl3Pt6qEQRnGxFDiZojyAPxLj0nkX8/uxZxmx41g67BltJ+QNcVb9mazd/TggncCjiVGKvcU41uSUiwJIJSeITYzy1gE3YAMDiMYYzOKo0wMB3KtWkdqwAWxbCvFolHK/n6sXnM5pp76ZTaM7c06U7pFOQoEw72h9R54DOe9BI53OOyd5oMyDQKaRkWvhQlmUzrpEQiGMzBtwOxrFGRkhtXGj7GrvOIj+fsjkgmslJYTb2wnt2pXZeR94veiFhRAIIDJ5jvs2mcmNcdpYY9YEzvCwfKgKh6ccRBmHRrw8xiWN5/Og9meG45l8Qsch5Cpk5Zwz6Xj+Eblv05TfD48HPRwmlhgDSnNuDteiRWgul+xmv2/ztozDRQsESLe1IRwHu60NNI1YSRpndDQ3DRPHQQsEZPak4zDeGIHMaYpkEqu7G3twUOZA+nw4kYh0ocRipLdvRy8vx1TNd1437dF21mxf86oiag4H3/72t/m3f/s3Pv/5z/PrX/+aT3ziE5x11lnMnz+fWCzG2WefTU1NDWvWrKGyspKXXnoJZ39upYPg6quvpquri7/97W+43W5uuOEGBqY1eRJCcNFFF1FSUsJDDz1EUVER3//+9znvvPPYsWMHJSUl/PKXv+QrX/kKd955J2eeeSY/+clP+M53vsOcOXMOxSVRvAFRGl+hUBwqshpfpNM4fX25HG+tqAizvh5r926Zie31HlKNTyKBs3cvRlERdk/P1HrLkpnb03K+96fxNV2X0SEul4xN0XVZdPV6c2MH6QTGcabMEYYB08ZHOi3jT0BGq8RencbH60WvqEAPhzEqK6Wm1DTQdVxz5sxwHx9yjT8wgFlWhlNaKvV95th6dTVGZSXdvRsY6t419ZIj03RUc7sZYYKOaAeLKxbPHOO+Lz0si/SuXZh1dRilpblnM2diQrqpM654dF0WsnUdu6MD18KFCID2dhl3mImaMTJNN3PXPqPxjcbGXEPSGfegtFTGSsZiMu97msbPRr/sT+M7jY25Zxml8Y8cSuMf+xr/mCmCn3LKKfzud7/jX//1X/nqV79KU1MTd9xxBx/84Adz23zmM59hcnKST37yk4yMjLBq1Sr+/Oc/EwwGD7BnhUJxIqKHQpQsXME7i708sP4XDA13SwfF+DjhcC3vXPkhiivrDzpDbboLQuwr/jINI7sDFpH2XoyyshnrI4mRPNGmeTy4Fi2S0+o6O6em5/n9NBQ3cu3Ck+kY7WRbdBfhQBljEyOs3f04lpN1sQdI2Al03cDJjmEaIU8REJ9asG8TSaYy5UgkZIf0DRukm6KyEgEEHZPlz3bTEq6it9JHXE8TCC+kqW4JRaGqvH1lnTlicnKmMycUkg8p2Z8NQzYe6u7OCWenvx9L19HLy3MikXic5OOP41qxAmPlSnkOXi/Wjh3oVVWyqeXIiNxpIoEIhXDPnw/xmTE3IpmUeYAFBeByYcybh717N0FPEGd8HC0eR9g2RmmpzHk0DIRl4bc0Kp/fxodqV9Ld6mMyVICvdwituJgHBp9ElJZgZnLEc40zU6lcrjpIkSziccw5cxCWRXrbtqlCuNuN2dCA2dJC6umnZQ5ibS3pLVswGhrwm6lc7mP2HopEQorwoiJ8sSROLEb/WA9bBrYwMjFMsd/P3JifkkgUs6Yml1MoYrHcg5LKE3ztjCfHZ4hjOHBEzeHiwgsv5JOf/CQAn/3sZ/nP//xPHnvsMebPn89Pf/pTBgcHef7553NTLOfOnfuaj7Vjxw4efvhh1q5dy6pVqwD44Q9/yIIFC3LbPProo7z88ssMDAzkYir+/d//nfvvv59f//rXfOxjH+OOO+7g2muv5aMf/SgAt956K3/961+VG/w4Rml8hUJxKNFDITynnCLzuTs6EBMTOPG4LICXlOBeuRKzsvKQavzc/+9bZMo2TJ9mvtivxg8EcLW2YmSacOrBIHogIBti7t6d23e2uWTeMaazb7H3NWh8o6QEq6sLe/dujLo62Si0uHjW63PINb5lkXr8cVxLlqAvXCgd6LoOLhfpzZuJ15jyeFldkDk/PRxGc7uJpWN5Y8hpfJ8Pc/FinOFhnL4+mU0+Pk66owNOPhlr69Zc5KSTSMgXCxn3tEgmcS1ZQnrbNtK7duG99FL5PJfJErdHR2WRO5mEaf8uiclJsG3cK1eSeuGFvEK4XlqKe+VKsCwSjzyCMzKSp/ExzQNqfCcWk8XzSIT05s1Sx6fT8piGgVlfrzT+IUZp/OND4x8zRXCAiy++mIsvvni/6zVN4+abb+bmm28+coNSKBTHLJrHw5zG5XyktI72/h3EJqIE3AHqQw0UhSryBMF4cpz2wZ2MRQcJ6B7qC2ooClehBwJyX9MEZzazbWqBjNGIGfbUz9NX+3zoBQUzRJseCuFZtQpz7lwpXAwDLRDACIVwezwsCZQQGe1lfefzTKbieZ9Npic4qXol/WO9M465pPYkFupVQMYpbZqy2eY0nGg01+TGicXQfD6sjo6cU16vqsp1R/eNj9OiNWGUlEEStGQnIlCSd/2mNxvSvF7w+SAWQwuFMOvqSG/dKrcLh8Htxm5vz5sqKixLdlzv7MRobMxtK4aHYWKC1Isv4gwO4jr5ZKzNm9FKS6Vor6vLRcc4sZh07AiRd7+mn6tIJGRzy0AAc9EiahKjhIsqGI4NyQK534+WlIXlcKCMmnEddJ1kVSkjxRajYpzQnAqaCuooHnyegbExnGwmn2Ggl5QQ9pdSRwiY9lA1OYnm82FUVaGVlsqMRsuSzhOfj/S6dbJZD+SEsOZyUd03SriwkqG+tqmblym0h4Pl1BdUs67reb7zzP9jd+/m3CbNVYv4x4VX07qjGyMcxhkczO17+vWY/h09UBMexRQd0Y4Z4jjL8OTwrA6lw8XSpUtz/69pGpWVlTnXxvr161mxYsUhyxjcunUrpmmycuXK3LL58+cTmvadefHFF4nFYoT3mUo9OTnJ7ozDbevWrVx//fV560877TQeffTRQzJOxRsTpfEVCsWhRPN4cM2Zg1FeLiNLJiZg2bJcw8TpGlUkk9jDw7IonDFEGGVlr0rjaz6fLJbvE3Gil5eDac4wXxxI42seD3owSGp0VBbJM43nc+PVdfS6Opys43yaxteqq6VRJMvr1Pi4XOA46IEAIp2eNYv6sGj8oiLSGzZIXb9xIyISwbVqFfaOHfgLamTeeVGR1LyZvPPsS4KAKzDruWYLyGJyErO5WRaCJybQKyvRS0vRCgvB68UZH5fNOf1+SCbRystz18p92mnyHHbtkmabiQm0ggKEEJjV1bJn0b4vKVIpdL8f16pVskieTMoIlEwvodTTT+NkTTvTNL7d1ydniGabkkJO4+vBIJrfT3LjRqwdO3LmGeE46MEg6DpWZydGebnS+IcQpfGPD41/TBXBFQqF4nBQGAizNHDafte3R9t54KWfM7BjvXQd6DrhokounXcxjdULMauq8l0QSDdHdrpkVgwFC0vl8mlCWCsowNc4l3nVSxmKD/Hbjb8k5CliQfFcKotq0TyevOYz09E8HkrDtbSGW9ge2TFVCNd1nuh4kk+t+hS/3Phz1rWvlaJJ11lSvZwvnP45KtZ3yW1NE7O+Pi/fb98u7zlXSyolnSmBgGxc05YpvE53wSALurPFjWSb09iRCEZ1tcy26++X4thx0MJh3IsXy+Kvruc9aIhMUdgZGpKFYtPEtXgx9uAgVl+fLIYLkXODi/FxrIkJNJdLNqTRNHmuTU3ypUPmH+19z1XzejEqKnLF8uJ5i3lnVTEPdvyJodE+nEgEIxymxFXEJWVvxtc9xo5zF/JfW++lbdNuKYaLimguauS6VZ/g2XicwcEOOaZ4nOLCCi5dcikFESvv3OxoFGfbNuxM93rN58NsbITRUfTa2qkCOExNf3UcfF0DXHzyeTw4OUlkdOqFR7hQfj9jA718d/d/s7trQ24dmsbu3s18l3v4asNHqAiUyoeZjFtppK+TLiNCzBMnaPqpJUTBRGK/TXgU+ez7MuvVrj+U7NtFXtO03FRIn88320f2i67riH3cZunp7rjMOm3fPgvTcByHqqoqHnvssRnrQurhS6FQKBSHGD0QyBWzZ8OJRknv2UNqwwYZBaLraG43Rn09roUHr/GN6mqcQABnWlSKXl4unb5C4ExOktq0CUwTvahI5oK/gsY3wmGMcFgWiLOFcF3H2rwZz5vfTPKpp6Sj2rZllnVZGe5TTsHanDE9HOMa3xkfx9q1CzE0JLVvRuPXRGyKbbcsRmZ1SMZsUuIryfUkmlXjl5XJn3Ud90knYQ8PIyYmZGxJXR3O0BB2NuJB09AqKzHnzCH98ssyD725GXvPHjS3W5prUimMoiKcvXuxLAtXa2veS4ucxu/rky73REIabebMQRsfRzjOVAEc8jS+3dWF6+STZQF/dHRqTIWFmPPmkXz2WRmr09U19VmvV77wyWTe66X5Gj/d1ye3m95oM3P+SuO/MkrjHx8aXxXBFQqF4gCMJ8d5YNNvpgrgmS7ggz27uX/iF1w5fClFg/W4mppyLggxMYE5Z47M1kskMEpLAajDoGL+CoaivRAKgWniKSxhQf0K7l13DyPRXgxL/uM1p7SFG1Z+kuWVyw/4Zr6xopXm2qX4C0KMpsZICQu320fIV8xocoz/eNt/sHVoKyOJKMXeEIvMGip2D0JBAQSDGMXFMo96mujZN/sQMv/4OQ7EYtIZkUpJEeVyMVldSk+pQ5xugt4i6vRiivZxvGTJCn7d75ei2OWSQtowEJnGPLrfj/D78z/oOFNC3bKwenvRgkFcc+eSTqUQbrccj2miZQUgMj5GxGLgcuVytV2Njbnzne1ctWmuGc00qR3XubL2ErqqhxkfHSJQGKYmZhBIwvDqBdy5/tu0De2ULzc0DQ3Y1bGeH1j/xZdPuonRsUFik6MU2AY14zqhsal8dpGZ5iiSSeyhIbAs6YxJJrG7uzEbGhCjowjHmXLMJJPSraLr4DhUd8f5UPhcuuvSxEWSgL+YWidAUcLLE54edkd2oWk6gWAYPG4sHEzdZGByiF3FFqW7OrD7+tCLi9kbsFmz+w+MGKncFNBwoJxL5lxA7Xhi1gef3HdETa8E8h1Ir2X9kWLp0qX87//+L8PDwwflFCkrK6O3tzf3s23bbNq0idWrVwOwYMECLMvihRde4NRTTwVg+/btRKc1bjrppJPo6+vDNE0aM26vfVmwYAFr167lyiuvzC1bu3btazhDhUKhUCj2j0gm8wvgGY0v4nGciQnZkHDu3IPS+MJxZAF0clKaGNxu6XbWNNLbt8uc8Iw21kIh3MuW4WpqOqDGzzaz1AoKEKmUzDZ3u2VBfnwc30UXyXiNRAJ8PoRtY3d25pzAr1vjG4bM7nYc7KEhGZeSdbzPwiHX+PPn4/T1odXW5ml830CUS+aew++HnyEy2ClfLBQWUlpUldeTaL8aPxNXonk8aBntbhQVSd09f77sIeQ4aMEg9tgY6U2b0DweGali2/IFQUEBekmJLKonEmg+n8zvnv7CYF+N7zjyeqZS2Hv3YjY0yLz4A2h8u7sbPRxGr6uT99/vR2Qywo1AQL6Emd6ANJGQbvDCQozaWuyOKY2vBQIyVscwcho/W5AXmUabSuMfGKXxjw+Nr4rgCoVCcQA6oh0MDXbmHOAikUDYNnpBAVEtSU8RFAlBavNm3IsX41q0SL7pTyZxn3KKzL5DTmsLFxRwabSKB7evITI5jOb1Mq9yMfeuv5fBaA8ea+ot68DEAN/f/GM+bCcpHAlR7y4j6ArMEB1BT5B3LHona7avwbtPg46L5l1EQ6iB5vKW3HKRTOIUZUSMyyXdLfuImH2zD7Nd3vWKCtllPtM9HdOkt7GYB3sfYbgrU8D1eCitmsNlVdcyh9r9Xlc9FMK9dCl2JDJjGqgTjeY1FZIf0KemmBqGdKx0dWG7XIjRUZxoVApQv1+6Yfz+XLd7s6gITBOjqAjX3Ll5jqD9Cfksmq6jeb0UxCeZTxDHMtAmfaQ3b8T2eNhWMcGu9nVybLY95ZjRNHb3bGLP4n5OWdeLVlCAZgic0WGcwhEZjZKZCqrX1WH39s5oJJRrvJTJBMx2j3ciESmcJyfRiorAtvEPTTLPtmUTna5hNH8CK24xUtiHDgQr6tgzsofxsdHsmREMljJsxxApHT0UItFcy4N7HiAy1CWbcRYVQTpNJDbAmt0P8e7mSxmObCU+upnCQJiG8Jzcg4Y9NER640bpgDKM3FTeE3F6ZUOogRJfyazTJac7lI4273//+7ntttu47LLLuP3226mqqmLdunVUV1dz2mkzZ8ace+65fPrTn+YPf/gDzc3N/Od//mee+G1tbeXtb3871113HT/4wQ8wTZMbb7wxz43ylre8hdNOO43LLruMb3zjG7S2ttLT08NDDz3EZZddxsqVK/mnf/onrrrqKlauXMmb3/xm7rvvPjZv3qwaYyoUCoXikJKNw8g6wLPNB43qalkIzThoD0bjawUF0lU+MCAj7rxeNL+f9JYtMzSeGBsj9fLL0kVcWSlj+vz+GRo/mx3ObPEVzc1SX5WXT+03mcQpKzs0Gl/XczEj9sAAIhaT2q64GFdLCwfiUGl8EQ7LyBeXK1/jA9W9k1w59xL2tqSY0CwCgWLmzD2ZwsA01/vBaHyfDyYnpflF1yGRwNq9WxbIS0pkwdvnk05sy5J/DEO+MAiFsLq6pMb3eqdy1g+xxneGhnCyGr+zU76ImJjA2rQJ18kny6abg4PyOcRxwO3GKCvD7uhAM030UAizuRlrzx750mSaxhexmMzKr6jA7u+X8TjBIMa076LS+FMojX98aHxVBFcoFIoDEEvH8oWrbUsRNzaGE40yVrZXxm54vdi9vQhNg4kJ6UQWYkbO2pzAYq4ta6Aj2kEsHSMSjxCJD2ILi3HNxtRNygOVtI+0sWloC3MLGxjt7yLsLeGSORdQ116Aq6UlT3Q0hhq5Zvk1uX0GXAEaQg2zNubQPJ79vuXPbTNtelX2gUCMj2NUVkoXQ0EBwjCYbKrmwd6HGU6M5NwtIpkkMtzNg+1/4toyOYb9uQf2Nw1032mnkJluGo+jl5bKBjFZ10NWOGceRJy+PszmZnkvYrFcwxqjrEzeh32mxGr7Ng+ahrAs6aaorMRua8OZnMQZHkYLhdCKi9E0jehkFM3tnmqU5HKR84AIh9HUOCQS8uFoaEi6YEIhmTdZUgKGgbVr16xNi7Jj0Hw+9OJiGesCU86Q0lI8p52Gk5le6cTjsmmn2y3dH52dFJcW4XcH2DPWwXhqWqSKpjGeGmdgYoDJhhUEkoK9rgkiscwU0OlTOS2LPbEu/hxZy56BHfJemyZl9a28Y+m7qbODckru9OmcGVF/Ik6vDHqCXNp66ayd46c7lI42brebP//5z/zzP/8zF154IZZlsXDhQu68885Zt7/22mvZsGEDV155JaZpctNNN+UcIlnuuecePvrRj3L22WdTUVHBrbfeype+9KXcek3TeOihh/jCF77Atddey+DgIJWVlZx11llUZP5eeu9738vu3bv57Gc/SyKR4IorruATn/gEf/rTnw7fxVAoFArFCYdIp6fiNAAcB1dLi2wI2dEBBQUY5eUHrfH1jN7Mal4nHpdRFlndahhM1pbT7ZkkJsYpdPqo60vi3b0Xo6REFpj3KSxmY0ZyOno/xW04tBpfLy7GGR1FLyiQ+k4I6Wp2HBl5UiF7Jx1Wje9y5TLXYabGL4hbLHSH5X1obEUPhPKO9Xo1vohG0SsqZFNJQCsrk3nr6fRUE9QjrfFdLoz6euzOTnC7cfr7Ebous8PHxuT1EkJ+PxwHvaREvpBxuaYK7/tofKe7G83vx8441LMNWs26OoRtK40/DaXxjw+Nr4l9w19OcMbGxigqKmJ0dJTCwsKjPRyFQnGU2dS/iV88/T9SDGeEmJiYwGVrzD3lLQTLaxifGKHEVcQCrYKqiIUYG8PV2ipd4+m0FGf7OJCz/HzTz/niX/6VdFKKwbJABUOTEdJ2CiNt85GTP0qqtwdD02lqPpn60jlEJ0coLqpigaeGcHwq4+5AmYevBpFMklq/Xub+jY1J0QWyW3x1NUZlJWJ8nG3+GL984vu56BEAPB45llCI95xyNQs9ta+pActsjVvIdI5Pb96ca0aj19ejCYEzNDS1rWlitrSgB4PEQ372ihHipjPDvbzvucrBaeD15rqxZ10YWkEBIiMANa8XzeslvX07z9SkuPmRL+emLWpeL9i2fLCy0tz8tts55bF26d4YGZGNfMJhzMZGNCEw6uqwduyQHd6ndYzP4lq0CDE5idHQQHr9+jwRqhcX4161SuYBRqPYg4PSxRGPy2mNo6OMNFfytejv+OOuP2Yy0zPFek2nuWohl9W+hXPKTqVWFPGU1sH9W36Ly4bCtIHHH0SkUqScNBtju7hs2XtxhEMiPYHXkNfICRbwgZJz8Ty7buZNNE2MykrcS5a84kPZG4lEIsGePXtoamrCu29zo1fBeHL8oF5MKQ49B7qHSueduKh7r1AopmP395PetYvU88+DpsnCbzQqi8Lz5mGEw1Mmh0xPlVej8VObNpF89lnp0tV1ehdU82DHn4iM9YNtY5SVES6p4eLSN1Ob9Er3uaahl5XJ3GyY4cp9vRysxtcCAVIbNuD09uaK0lpREWZzM6TTeFauRPN4DqvGN5ctw+7qki7sbCF5msbXCwqkM7mwUL4A2Oc6vV6Nb/f3I+JxGZ+SSmHW1eFkYkPEyIhsTtrff+Q1/tgYztiYLJwLgau5GWdyEnv3bvm9KSrCtXRp7iWGSCTQAwF5zdNpsCz0cBiRTiPGxxGJBO6VK2XWfTYWSNcxamogHie9cePMm6g0vtL4R4lDofGVE1yhUCgOQEOogdKyegb6+2XDQpcL09aYf94V/HDTj+h4YTeppHx7f1LDm7jh9JtwdycoGNhMrbsMX9te6bIYHsZ90kl5onA8OY4tbBzhUB2qw+Xy4HcXMJgaQddcCEfgM7zYhklZXSs/3v4LfLt9jI/0o5kmTcEG/nHpdcx/cQQ9GMS9ahVmZeXrPufpXd6Z3uAnEMAoLZVTR2MxRofb5JS6QEC6IXRdCst4HAoLiU2Oku6YkM5ol0s6J9xuBJDesQP3smX7FfX7c76AFIZibEx2bzcMNNPEamvD6urKCTu7v5/uoM39j/2A4dFeNL8fo7qa0vIG3rH03TSGGmecq8hkKqa3b0eMjEgxOD6OVlSE+6STsNraZMZiZaX8HtTXsyCoM7d+GW0jMhsy13zH52NOaAHz4gWZi6rJh4f6ejnNsqUFZ2gIPZVC2LYU5plCeu4+ZHPJPR7MykqM887LTcPVPB6M8vLcQ5dWUICzdats3AOyMc7kJCWdEa44+TJ2DG2nbawjN721tXIh1yy/ltHBvezQR3hxfCeGy83ukd04to1P9zA/tITghMWYmcYdKCTijPPnlx/Ija+6sJbzWt/O3kQ/zbPdRMvKPSSeiAQ9wSPWIV6hUCgUCsWrQw+F0Px+tFAIMTaGHgzmmhFae/Zg79iRc/xq5eV43vxm0kNDJF96Cb2kRDZshFk1vkgmZda2poHbzWRNKb/v/huRkR7ppHUc0DQisUF+rz3FB8yV+HfvlgXLoiKEbWM2N8uie0sLZl3dIYmeOFiN7wwPo7ndMo4lo/GdiQnsjg7ZQH5yEquj4/BqfNPErK4m9fzzsois61Lj9/VBKkXyySfBtmUD0pNOwhkcxKypye3r9Wp8o7paavWyMqzt22WTT8C1YAHW9Gz0I6jxhW3L6JVMYduJxUjv2oV75Up0nw/8foyqKtn7yTBk1IvXK+9NIpFrkJldJywLLRCQLz2efTY3Rq2wELOiIq/Rax5K4yuNfwyjiuAKhUJxAIKeIO9YfAUPpNIMdu8E22bemRfxw00/pmukg1RqEtDw+oM8tfcZhv8+zkeb38vW5/5AWfNiLq45nerumBQpmWljIF0Qe2JtuC2Ns5pW8+ddfyI6OcKqujdR7CtB0zRaw61UFFTgrTT5zY77aRtpY37ZQjlVUNNoG9jGdzf+D7e2XE/xrj5Szz6Lft55h8QRPr3Lu93dnVsuxsdlUxbDIKDLQiuJRN5nNb8fdB2/Y0oxvHWrdBZk14dCuBYuPGADFtj/tE6zogIqKnJOEieRwKiqwqirA9PEiUQYT8W4f8MvGR6VTT5EIoHd28ugpnH/sz/hmlUfpyhUnn+uw8OknntOTp/0ehHj43L6ZzSKtX07enk5TiSSyx/X0mnCk24+tew6/mvjD9nVMeWGnlPczD+d9k+U7RyH5cvlNMP+fpm7V1Ii3USWhTMygh4K4cTj6G43Tl9fLsLFnDMHMp3ms1NL9723TiwmRfPYmJzCWVKCiEalOC4sxBkbo6zfwztq34JVGGAiPUHAE6AqWM2DL/+GaDxCfGcCEYtx1sILaKleyo6ejSSw2BHvZFlpC7Y1jhWP0h1pz3w5ZG5jz3g3j+z5K0tOXjhD3E8N0DngdFSFQqFQKBSKo4Hm8eBqaiLm0ejo3UpcjxF4cwtVQyP4xsamIi80DTE4SHrLFvTSUtIvvogRDuNYFpppzqrxnWhUzo7M6NVuc4KhaI80b2ga+P2yWaRhMNixje65rcyzLNmw0HGk9ty9G6M2M6NSCNw+3yFxhB+MxkfXsXt7cTQt/5plNL5wnCOj8aNRXMuX57K4neFh6eDfulW6wzUNZ3yc9JYtuFasIN3djQkY2aL669D4mmnK2JR4HHtgIKdzraEh3CtW4HR3Q339kdX4IyOIeFzud3xc5tEXFspoxkBAFsA1DWvTJuy9e+VsXZcLs6UFo7oau6cHzTDQCwsRLpcsxmsaVmcnABPVYbr9aWLOJEUT7dQFw3iUxlccZ6giuEKhULwC9YT4UOl5dHrnE0uMMVTopWNoN2knDcLG7SlgJDVKyk6woW89qUUfQDgOkWgva8b/xJUV5xMQunRN9PbK7LlYjNFQDGFMsLB0IRv6NlBdWEP3eA87R3bSHGom6Anys133865F76L9xTbQwNS0nCAHaBvYxvZFo7wJcEZGsAcGDlksyvQu7zOmLbpc1IlySouqiIz1TS3PNJIM+0up1YtJb3oSZ3RUCv4MIholvWMHZnU16bY26Xp4DZEuszlJnFiM1PbtdFWbDEd7c2MSqVTOXdPf/hxtBYtYMvf0nHNe83jk1NCRkVzkzdSF0OQsAMfBGRyU4tjjkVMBS0tZGHP42pu+wLblXUQnhgm5g7Q4ZRRv6sUeH8eorye9YYPM5istxZVxq9g9PTiRiHTPuFzSzX/yyVIMe725Zjb7e+Cx+uSLD2dkRArsoiLphC8tlU10YjE0r5ealBcRn2A0GQXAVxpkzYZf0jO6l+KSakYjUQwheHrbX3nbiitwHJtd4+0kNIsxLUWxv4TygnLW7n4811G+yF/C3OrF+H1B2hJ7MZZX0NCTxD8QzRPKeiYfUaFQKBQKheKNRidRHhh5lKFYJySTOPE4objDJa3nUfVyVy4GBcdBjI6iV1dLnZOd+RgMSp25j8YXloVWXIxeVIRRU0PMPSwLubYFgaCMPgG530SCmEhI53jWPY7Uy1pTk3RBZ7K3D1X0xCtpfISQjvSxsanlGY2v+f0IXSe9adOR1/jPPCNd4pkCuOb3I2Ix7F27MOvqSK1bh1VVhefMMw+JxtdcLvTqanxVVbIQLgTCtrF27UJMTBxxjW+UlWEPDMhivd8vxxcOo4VCuZ5V1o4d8l4FgzLOJ5XC2r0b16JF6JDrdaX5fGCaaG431p499DaH+UP3o7icIigIkIwMUuIr4fTFC6nd0jejuafS+IpjFVUEVygUigMgkknS27fjHx9nXl8MdJPf+kdJJeLS/Wq6wDRIJZOg6SAE4+mYFMhCEBnqYm/tBPPTHpx4HNrbc2/bC/xuJvxp/ueZ/+K60/6BoUSEeCrOans1u0d289ONP6XCX8bWoa2ECytIpCYRqbQsRE4rNI6mx8n+dS6SyUN+DWYTohgGob4+LvVezJqdv5eF8IzgKg3XcnHxKgpiKRIDA1Jgulxo2c7vpolr7lwSTz0F00R3Nv/u1US67OsksYeHQQhiTma/mQJ47npl7kssPjLDOZ+7dtlxZo/h80kBWlKSWZAR+5aFPTSE2dhI6YTGGSNBNH8FpDPNbpqawOeT+Y4ZlwamiTM8jJWZ8poTv+k0zvAw6S1bpHB/hYccJxbLiePsmO2eHlwtLdiZxj4MDyNSKfyRGO84+0P8vuOvRCaGEI6gZ3QvPncBQVcBI6YbDBe2EPxl95/52Kmf4OSJIRJ2ikUVSyhwTG5//FYsHEimKAlV0Vjewt/2/I3O8b2cXL4CPZHgzY1n8b7aM6jeOy4fBoqLcS1dekI1zFEoFAqFQnFsMJ4czzS4i0hnsK6jaRqRkR4e5BE+XHcmvs4+WZj2+6VOtKyclhTJJFpBgXQj76PxRSqFUVhI8sUXca1aRVFBEeZIvTywYeCMjuKMjGCEw2AYBAw/iFHwePIjJjJZ2MKyDkv0xP40vt3Xh+71kt65UxbCMxpfD4dlZEkshnOUNH6ucabXK5s9Zq+LZYEQOMPDh1Tjk05LV3eBjDgUliWd5kdJ4+slJTI3PZkEjwfX/PkyM7ytDaO6GjE5KZ3ig4NyzEVFaIaBMzCAa+lS+TKnsBC9uBh7ZITk448zUV7EH7ofpaC6gUf2PELP9g5ZJNc0/l65gP9v/kdp2DrlhlcaX3Eso4rgCoViBvvr9H0i4kSjsrN7IpF7A17sDeVcIbhcOFnXRma6WNAVYMDrlXmAtk1MJLH7+uSUNb8/t+/apJdnPQMkUxMMxQf5f899BwONltL57B3vxnLSmUaEkwT8Iaq9ZYyNR2S227Rid5ErCGSyqA/TfZpt2qIeDNIULePauha6JvuIkcJv69QlvBSMpSGYAo9HjjWdRrjdaJqGOX8+qU2bIJVCn3Y9nJGZhenXMk40jYDum1o4fQpfJhO7wPDNcM7nXTu3e6p7umlCJnJFxGI5IS0mJtDcbozqavSiIqxEYqq7e+ZYrpoaAOmyyUwX1Vwu6UovLp66jxnxLNJpnKEh0okERji83+tgDwzkNdDR3G7pytmxA6O6GtfixTj9/fKFictFU8V8rq1tZc/eTeyM7GRh2UIK8TImklMPWI6DlZyke2A3I717wOWiovhkNNOkOTyX7SM70XWLgK+IRzMFcL/hxa0ZjI2P8FTPWrx1Hj6y7B0EhBuzrk4+3B2jqL7hxy7q3ikUCsXsKI0/RUe0g+HJ4TyNT8YdG4n20l0jmKtp4PPJiLnhYemcLS7GGRvLOZFn0/iYpizOplIwNkZl7zBFo2mGE8MI28YIhWThVAjCoSpqkl4wYujBYK5ZJSB1HKCZ5mGLntifxrejUYy6upxLXNg2JBIyniMYPGoaP1uo1jQt/8WAaebWn0ga36iokN8Pw5DO8KIi+UEhcq534fHIYnx3N/bQEK5Fi7B7e2WWeVMT3dogLqdIFsCHO6RjPp1GLyxkV/cmflbwEDct+zAFExaaz6c0vuKocSjunSqCKxSKPGbr2H0wnb6PV3LiKlNIFbbNwnQJS2pW8HLPejRdxzBduaL40qoVeNLIt/RjY2huNwVpHZFKSEE5MgIeDxOFHvZ6k5QFK2gsb0FooKNhC4edkR3UFdXRWFhHeUEFBa4C5oVb2Nn+EsLrgXgcTdPxh0qpKW/GLizguZN8tHrrqMgKn+nncJgeeDSPB7OigmIqKKZlKqOPjLA0DPSiIpzR0VzGIYYhO5VHImizdG1+vZEuRnk55rx51JsOZfXzicQGEBMT8l4UFCAsi3BxNbVJL5DKc84b5eXoxcXS7ZH5L+m0vFYeD04shl5WhubzIRxH5kAODkqxOjiI2dwMtp3X5Cd7nae7bJxoVArU7LE9nlwTItJpLL8fOxLBNX8+5pw5s7pm9nX8Z/P9nLEx7L17MRsbsXt7c84bPRAgCCwKzMEZHmZd2g04FLo8+NwFTCQzThrTxGvI8y223VR3joJh0kgx3sIW+pwxSoIVDHQ+TkD3UugKymmkpslkepI9Ez10BwVLahYcsw/VrsxD5sTEBD6f7xW2VrwRmcg89LlUVqVCoVDkUBo/n1g60/RvmsbHstCDQUQySdyro1dUIFIpnP5+9JoahGFgzpuH3dkpozgSCUQqNaXxM4VtjUzh1e8H28bfN8IlNefw4MCTDMcHcSYm0IuLKS2r5+LyMwl0jSMCAakFNQ0tGMSoqcGoqZEu5UBAFp334XBr/CxTGj/DUdT4Ih6XRWyPB2dgAHvvXrTycpyJicws3ZmzY49njW+EQpBMYnd1Tb18cblyxX4hBJpty3uU+X7a3d04g4Pg86G5XEzWFqJpIXp27ZX7ECI3m1ZzueiJ9bLXjLF4zsIDxri80VEa/9jnUGh8VQRXKBQ5stEfzvi4dEVkBI1mWbmGL9l/9HLNOl5j1tsbgfHkOB3RDmLpGAF3gIaiBoKeYN42OddFRgg4Y2OUPjHK599yE7c9921eHtwMjoPH7WN+6Xw+cfIn2LXnJekQSSQIF1VRM2GiB4MYc+aQWruWvsW1PNj2RyJjfZTPWYwmIG2nCReUMTo5gqbp9I52U+wrptQo5IVNf+VzF3+Nn45F2dWzGbMohM8bIIVNQ0ENX//t/0faSdFcvYh/POUfWJ5elhNVR/KBZ8Y0TcOQgjw7FU/XpSiz7dy6WffzGiNdsg8CpFJ4tu7mwurlPDjyCMOJBEZNDZrHQyhl8o6Gt+Hvlg8+00WcHgjgXrWK1Isv4oyOyutjmtLJ4vWSevFF+TuRSsmu6fPmyX0YBiIex9q9O+93ZDrTXTaWrk9N5XS58sQxuo5WUoJhGDLXb+9e+fu1z72a9Rhut5yimkqhFxfjOeusvO7yIKe91vWXEw6UE4kN4E47tBbPZfvQdiYsi+qiWrBsim03l1atzl2nS1rewu/7n2BwcADNl8ZlC4KeQuYUNjI60pebnprCZsItjllxDGAYBqFQiIGBAQD8fn9e3qXijYsQgomJCQYGBgiFQhgZB51CoVCc6JxoGv9gisMBV+acpml8HEc2EOzroyDh4MQnZH5zfT3ulSsRiQTpl19GZEwtWibv2Zgzh9Qzz2BUVGAPDckirdstj5mZMVrVNsyHG86lu3KCmEgRcBdQM2QRqgpjaTHINjmclhedeOABeZ98Puw5c3CfcsoJr/Gt9vapiBafD9epp6IXFZFav17mbWciT04kja+HQjK+BNACAUQsliv2a5mXFFpxMSKZxKiqmmqIOjmJ5vNRkLJIaHbmYgt5D6fNPHZZDnF78pBl0h8tlMY/djmUGl8VwRUKRQ4nGpVv6UdHpzLvsm/ULSvXkGV6s44sryXr7WjSHm3P5ABOTTks8ZVwaeulNIYac8tyoiKRmMoCBBb/ZRvfOfPzbHGPEE2OUlRYSno0yqb1j5A2dXS/n3DNXC5teDtF4xpC13EGBphsrOLB9j/nmklGOrbzroWXsHOiizJ/KY6dJp6MUewJsSA0j1hPJ03lLbR2JLml7hp2LpxkzC3YPdZOz0Abj710P7bmECyuYNAe466tP+ETusk8r06hr2hmsxtATE7OeOA5FOw7TVMMD+NesYLUunWyqY/fL50xmWml2n7+8XotY3KiUdKdnVjbt2P396MVFlKb8nJVy3vZa8SIk6LAVUDNKBR0x3KZ1UZ5ed5+dK9XTn0MhWTTI11HxOPEfTqdzYXyhYkeoCZm4G9rw33yyVMOosnJg2paZITDmPX1U7mRmamk6Dquk07Cam+XHecBvbwcMTyM59RT8x5opjta8q6dYWBUV2M2NMz6wKp5PBTXz+NS7RLWbH+QSGyAwqTGspIFeEJh3lJ3DiHhocoelwXwzLnVDKa5svly1lUtoz09wPbBbYh0mtGRPoRwctN13aZ76qHyGKYy8/dYViQrji1CoVDuHioUCoXixNL4B1scbgg1UOIrYWgfjW91d1PeuIDGhqV4ymz0cBhreJjU88/LondxMfqcOdL1PDmZ0/h6WZnMrc5EbTi9vZhz5yJsW2aHC4FvVxdzDUPGngx2oYVCWNu2QTCIa/FiNF1HOA723r2kX35ZFpZBFt9375Yu5bPPRvf5TmiNr5eWypW2jTM2hjM5KSNpMsd9NRpf83pxzZ0r75uu48RiWMeYxtc8HlytrbIp6Zw5WG1tshAeDqOZJhgGrtZWrD17ZAF8elQkUOcqpaSoQkb6ZCM/MwVwnydAoWUS2McodqyiNP6xzaHQ+KoIrlAocmT/gXcGB+U/2pmca83jQcuu37dZR4ZDkfV2pJhqhDOct3x4cpg129dwzfJrco7wrKhwnnsuF6dBIoHm9VLVE6OsfxizthYj2MToRAdNdW9jotCDf3SS2qQX/7YebF3HKC/HjkbpnVvI8N6p49p2msE9W5jXtIiVq07l751P0BHZjZ5I5grgNyz5KKEndwFw+qJFPNMguP/lX5FIxBAeKCuqoSPaSSwaZdPAJuaXzOPJnme4dOFlVCcSs16DgxVzr4bsC4OcIHccnEgE1/LlcmpoxlWgFRVh7N074zsEs4tWOLBrP+tuQtflPi0LMTyMALwRD61lZdg9A5hzSrB7ehCZ47iWL88T9dn9TH+gcIaG2Oue4MHtf2dETEiBLAThoioubllNo9cru79n93EQTYs0jwf30qVohoHV25s5cR1j/nz5+9fTM7Wx4+CMjpLesYPkwmY64725a1C7ajnu5zbkZUdOjz/ZH3ooxBzfqVxT3kBnrJu4PUmBWUDNsE3BSBrcbqzB7n0GrVEQibEiPJee7k6CtouecfkiJ+sW8bn8NJe10BBqeMVr8EZH0zSqqqooLy8nfRgaUSkOHy6XSznAFQqFYh9OFI0/m5aD2YvDQU+QS1sv5f7n/o/BjMYXiQThYBkXeZbjen4jTm0tWkkJJJOYdXVohYWI0VFEMik13DSNb7a0kN68WTrtARwHe3gYs6UFo6YGZ+9e7N5eea0HB9FCIcy6upyGNauqwO1GjI5ibdok92EYuYaPpNM4g4NYXV0YxcVTx9n3GhxjGv9Arv0DaXw8HoyyMuyeHsw5c7BtG2HbB6/xBwelu1zT5LUSQmaZh0IYtbXoR0rjb9+Oa9EiRDyeuwbulStJvfDCrC+j9vc7qIdCuJcty917kUzmXqo4kYhsxjpb4VfXCSQEb254E38P/5XdvZtzq3yeAK1FzVR5q2ioaH3F8z8WUBr/2OVQaXxVBFcoFDmEZWH19cF0UaVpCCGwIxHpTNinWcd0Xm/W25Ei2whnNoYnh+mIdrC4YnFumR4KYcyZI4t9mYw1kUzmpppZu3ejl5VRFKqgoC2O7i7FifYjYmNgmhilpbK5SkkJ4xMRtJIStHRaii2XC3w++vt2M9S/h2tWvI/J8SjRiQgh3c+8cQ+hJ3bKh5VMPtuAFaF/YoBUfJzyoiq2Dm5lPDWO3/Rh2IIJaxIRn+DpnrW0ljaSjI8R9ASpNUooGI5PuRoO8T/8ORfCdJHpOBCPz5yauWrVfp1G+35/sq793vFeRhOjpJwU1cFqPrjkg7SWtuaal5KdcjqdZFI2dqmpwaytRc/cC0wTu6MDp68vN7bcfqYRL/KyZscaokwiMk4phGAgEmHNRJxrKm8g4PfL7vTMdMrsDz0Uwr1yJXp3N1ZnJyIWQwsGSa1dm38OmemlXWacPzz3P4zoU7+bJb4SLln1dmrjphS6Hs+M+JP9oXk8hCrqCVXUA/LhIDW4HiFkvncepimnRApBwXCMN7e+DaOoiAe3raFnTBbLfS4/Z7acx7sXv3dGpNCxjGEYqqCqUCgUimOeE0Xjz6blssxWHG4MNXLlnHfSbmxkwgUF7gJqkz4KYimc4nhO4xuhEFZbG7rbLY8Ri83Q+MTjsklhTY2MBck0crR37wbHwbVixVRms23LAui2bbLQndF+wrJykSJygZhy5maeBUQigdXTg1ZaKp3MHo9sZDg8fMxp/Kxrf3pMjx4M4lqyBKO09LBqfABnfBxXfb38fu/ZkzuGVlmJUV4uc98Pp8Y3TZyREdK7duWaawJoBQW4Tz8dMT7+qjT+bE1OpcYfnN2dP03jN/uq+dy5X+K+5+9m73A7bt1FoWVS5a3isrM+SlFo5guMYxml8U9cVBFcoVAAmbfwmQYhec6CjPNAC4VkZt5+hOX0/bzRyTXCeRXrNV2XDUeQ57jvddAyzg2zoUE2sKmvx85OW8wUFfXiYooqStBj63Ii1RkdxXEcRCxGamwMf1OcJS+PQDINzog8zrRmJpM1pTgiQtqSjmSPy89odDcAE9YkAd1HgVlAUUU1v9+6hieNAsIJA3SdcLCCdyy6nJqhtMyGOwxN4/RQKK9BzL7NY7KYlZXo5503lTm5H3GXde23jbTJ3OpUHCyLnb2b6Yrs4QtnfYnGtOw+r2W7wufdGOl0EmNjWIOD2Hv25ASyUVoKjpNzBs32wNDtSTBijcvu6tmMQbcbDIPIaB+dkd0sLFskm5V6va8qg1HzeDBrarB7erD27sWorp4Sx5qGVlyM5vEQL/TwwNb7ifrBKC7OfX54cpgH2/+YN3PhtTL94Qam8gRzD3iZ77Dm8dBU1UppaQ1LKpfTM9GH5VhUhWppKZt/XBXAFQqFQqE4HjiRNP4rFX9nWx/UfbR0yXMTyTHE5CTWtPUHq/H1igqcTZsQ2TiUgQEwTcTYGM7YGOb8+VJn2TaayyWvd8Z9TGGhbKio61jRqHxZoetTsTUul3SE6zqa3y+jUjLOdXQdLRjEvWiRjCY5RjR+Lqd+ZAR7eFg6wP1+RCpFets2RGurfGHA4dH4AEZJCVZXl4xSCQbl54UA28baswejvh5iMRnzchg0PraNHYmghcNThidAxOPYbW2HJNYmp/E7O6f0PeRp/Oz5zfdU8C/BL9LRv51YcpyAJ0hDRetxVwBXnNioIrhC8QblcHX73pdc85uJCbAsXAsXSuGR6U4OoBUWYtTWymYhrzCGY6Eh3itlFs+2Pi+fbR8RppeW5jppi3gcvb4eo6ICs7JyhlBsIkVpfz2R8QHsvr6p6X2pFKXlDdRqxWiuETS/H2d8PNfcBV1HD4fp8Kdhb5QFZQvZ0r0eW9i5cTiORUN5M+XuMA+1/5nu3h34SubiDEspPzg6yhrjfq5seS+BePqQN83JknUhZL/D9uDgrN9hPRA4oKNBJJPs6d5CT/9utkU2M2lNIiYmpJAVgl1jL/F42R8Jz70YX+Y66cXF2NmGT8hsQjEygh4OSxd31uVsWdhDQxiVlZBxBs32wBAnhebz4QwPoxUUyP0lEjInzzAYG+rBcUoxSkowqqtf9e+s5vHgXrwYkUrlHprQNPSyMkQigRON0lWUZKhru9y/y5V3zWabufBamf5wo5eXz3jAy+Zpah4PhR4PSwNhlr7uoyoUCoVCceJwxPV9Rq9gWZi1tVggHafHqcZ/peLvbOsPlcYHcPr7ccbHZ2h8vbwcYVkYtbU4/f0Iy5I54SCbI9bVQSCAtW2bzBAvLZ16Fss0bKSgAKO+HqutDXvvXnlfsy8mRkdJGwZmSwvE48eExre6u6Xz3ePBnDsXq70dhodzM1+dWAzX4sU5E8qh1viarqOFQtjt7eiNjTi9vVO/G4aBcByMujq0ggLMOXMOi8bHceT3qqICvbAQsi9GOLSxNnoohNvnwygpybn5Na83VwDP6nuAolA5S1XRW3Eco4rgCsUbkH0buojMm3+zri73tt84BKI51/xmYkIW9jQNMTmJa/582XUbwDBwJiawe3pwL16MXlg4a7MO2H/W2xuNbCOc2SJRSnwls2Ya57qKP/ssdiSSc2fopaW4V6zIZcZNdwrMNiUtiIdLWy/lgZd+zqBlSWdHKkW4sJJL695KwVgSY8UK0tu2yYacui4fTIqKMOfNY2y8kx0vPsK1Z3yAezSNseRYbt8t4VYua30HcS3J3r1bIZ3GpZmgO7kGJwMd2+iaP8bS1kPbMGdfnGiU9ObN2CMj8tiGgREK4Vq06KCEefZ3YMzpJDo+SDw6KB0wpoz+yArE4eFu2ts3sqhyIU5fH2Zzs8xgHBxEKyxEc7vR3G5cCxZgDQ7iTGt8lHXQaIEAIp3GKCvLzzsEAu6AzDn0eOSxs+LUNNEMg4AmXRxOJIIQQj6wZJitCdNs6KEQ3jPOwM64d8TkpPz9yji0Yg6QcW/Ze/eizZkjnSoZXmlmw6sh+501YNYHvGPhAVihUCgUijciszZsdLnQ6+pk8cs0D4nGz2tumdEPemGhnLFWVIReVZUr9B1vGn9GdvU09ufmPVQaH8DV2krqpZek1sxofK2wELOuDjE6imvePCzDQMRiiIzjWPP55HUfHCS9bh2uRYtwLV5MessWRDbD2e3GbGjAqKoi8cc/wsQEBINTbvFkEqujA3P+/LyC5uHgUGl8u79fvizQNHkNSktJb9iQc3/bQ0OIVArX/PmHReNjmvK5urxcnsv/z96fh0mWn/Wd6Od3ltjXjMzIfamsJWvr6upNLanVaqQGYST1AnjBgARCw3iuPQaP5854jO+9D9gYDZ7nzsUGrj3YXGM89tjGmF4kDAIB2tWtXqu7tqyqrNzXiMzYt7PdP34nTkZuVVlZVd3VrfN9nnpaythOnDgR53Pe3/f9vq2WXFhQFPlfw5AdAMeOYV69etNBq7vpZoyPEIhkEnt9HWt+Hv3ECflb4OpOxtqIYFDOserp8fne1/e0/CK4L1/3mLYP7nAaDayVFexiEXN6Wq6+1+voExNow8MHXun3ht80m7JVzV3xFoEAxqVLKNEo1uIiBINeG5WaychV7VvIersX1R6Es304Zle4i2cmntkz0mFLe1+tJuFVCAnHtr1jJX0vjaXG+KmJv8p0/CIVp0Wkt85QK0KcBNb6Ksa5c6g9PajJJEQiKLEY5vQ0rZdeIvbhI7SsJhfO/TmfOfmXUeNxLq5fxrJMqrUi19cmGU+OQatFOBwn0VI2Yc5xwLapWY275hABN3vu3Dk5Gd3cbCi1NzZwLIvgo4/ecB91fgdi0QgtW2YntiesC133HBUhoVMurODExxGpFM7GBtqRI2inT2MvLuIYBnapROMrX0FEIuhnzmBeurS5XW03ia7vmnc4TIpMZoi1Ws2LpGlPTk/2DKH09fGqWiRaaTGiJonFYtItVKvtOoTJ2xcdDi0RCqH29KANDqJEozRfftmL3gGIh1MoySROuQyOg12tonYUwW/W2XBQ7XWB58uXL1++fPm6Ne02mM9pNDBnZnCuXJGFqbU1RCx2W4y/ZbhlJIJTqyFUVXYXWhZoGsaFC5IN34eMv2t2NdyU0e8U4yupFNrEBCIel+aI3t7NeJT1dY/xlURiK+O/8QbBRx+V9ysWUbu6CD7+uCzmmqaXCe4UClCtygK765juZHxhWe8ZxkdR5FDNcBhrcVG6nvv6Nhm42cSamUEbG7srjC9CIUQwiBKPYxWLcmZTLIbXC6CqEArJYaYdzv07yfgilULt7sZ0c+M792l72++0fL739b0uvwjuy9c9ps7BHY5pyiE1xaJcPS6VEKPSpWytr8u2ut5eD1xvRdbqqnSAF4ubLWStlsxDi0ZR+vpkq5S7Mq/fd9+WNrDgE09gr6/f8kC+e0VjqTE+d/ZzzBRmqBgVYnqM0dToTTONO9v7vJbWVOqWV9LjWpTj1SgimsWYP4/Sk5RtgAC1GtbcHBbIzLhoFLWnB2yb4VAvPaPHWZub5Nw3/gBVqIwcfYCvLH+HolXlTOo4oXSQcCjOROIwerEuB3p2DP6IaZGD7LJ9y8rnd8AxAKaJOTsrAXZgYM/Hd34HhkkxmBjiyvIFCfhu2yTAQGoYKhWiKem0UQcGEL29OJZF85vfxC6X5cWDm+dt5/MY586hHTuGdfWqfDFF2eLs2Z53mNJ1nh35LM+1fpu15Sl5QVSpEBodZyAxyO9/41/hdKUQmkZm/VU+Pfz9DFakI8YplXZtZdzi0HLVvsDU+vrkEFZF8QYjDYcUukSUvFPy9mNbe3Uu+PLly5cvX77uHW0fzLed8cXwMEpPDyIYxFpbwxECXdNuma294ZbBIM76+g7GDzz6qOz2bDuQ34eMv9/s6h2Pu0OMLzRNDqyMRjHn51F6evbF+AQC6MePY87OYi0tyfu7RWKtrw80DSWblZ9nMCidxNsY34sEuUu6k4wvQqEtGdzO+jrK4CAWeLE0Tqt11xhf6DqOosg88nRaMv7ysoyYEQLR3Y1dqaC2uyPaeePp9B1jfMc05bHhFuw79+ut5pD78uVrf/KL4L583WPqbHtyGg1vUjbgRaG0XSNKTw/WwgJqT8++WrK2vE6rJU/Qbr4yzSaEQnIKtWWhJxLQ34+SyaCOjmJdv36gNrAbbkOzKSfSl8t3rAX0VhQPxm8rS/l2VtLb7ZoghxCKYFAucrRbG4WQLXzVKk4uhxqPY12/Tuy++/h03xM8n8vJXHHHYvbCy/zQxEcYH7kP1YZ4IkO5b5rC/DUJwx35hpnUACOpkQO/5/3IccF0V5nm5kCW7Y9r5wuur2O70+6jNcFfP/wssxszXJt7072jw0BqmCeHPkp1ZYHBgO61g6oDAxhTU/LiQ1Fw3FZHbBsRCmHn85uuChdktzt7tn+uh+jlc4//baYmX6acXyIYS3Jx/QqXL34TJ5XAWl5GRCLkHIcXJ7/IZ8Z/mITjyM+vXN7ynd7i0OqQvbFB66WXUJ58Ug5hnZ/3bgsrCk+N/AAvznyZfGnZu8C5WeeCL1++fPny5eve0PZYgy2M38n3bhyh0tODs7pK4MEHb43vm03Q9T0Z3y4U0CYmvCzlu8X4u7lh38lC+u26Xd8NxtdPn8Yul3GKRVnkFgJqNblgEouhnz6NCAYR2SzOyop0g3cwvkil7nrR9E4yvtA0OUy0k4ldx7tXzFeUu8r4AM4DD9D8znekQ7sdUZJOo42PY5w7R/nwEAvhFuXSGvFYF6NOmNgdYnwAJZnEbue+a5rset1n54EvX75uXX4R3Jeve0xb2p5se3OSNKD09WF1ADK27eWL7dWStZusQgEsS7biaRqOaWLPzckMskBAukOCQUQkgujpwZqc9IaStLWf17zR8B+7UNjRTne7LaDvlO7EUCOvLW9y0hu2Asj9HApJd0CzuTnwxr1IcqpV+ufKfGbgUywEalTMGjECDNZ0oudLqH192Ivr/MjYJ3mh8Rz54rL32WVSAzx79q+S7Oq/g3tjF93MhdLpWHHVmZMpolHstTVvavn4eoS//8Df5lv935UtjZEI9fI6uq3yQ6eeJjpVkDEluo7TbEpXiJvpJ0B+R2q1zeNaVdFPnZJdFL29+/rs4o7OqcQRrGKQy6EWVzeu4ERC2KurnuOHQIDVtWnmso9y3OlG6+2FWExepLjyHFq7yN7YwFpd3RzQVChAOAy2zcBqk88Mf5qFmEWjt4t4NL2vzgVfvnz58uXL17uvHbEGHYy/g+/d2+1K5Zb43mk2vXgMJZWSLFmtSndrm/EVRW7LXWT8m7lh72W9q4zvFrxFOi0XSCxLMqSqQquFvbyMXa+jHzuGYduyWO5+dsJ1OatdXXdwb+yiO8z4SiQiC8mRiIx5CQYl+wohB1fG43ed8YWmoY2NoUQicp87DrZlYbz9NktjKV6cfYECdaxcDiWRoLt/nGfu+8sMObfB+NWq3Jfu6yk9PSjRKNrwsIxo8XO6ffm6a/KL4L583WPaMtDFdQt4t6XTWNevd9xZ8eBnvxOkjbk5jAsXEKGQfNzGBo6ioI6PY01NyXbJri4PAhW3FUxJJHY8116v6TSbWGtrGBcvYlcqsk2vY2iKCIcxzp/f0U7nuLDvOA6BcPieO/l77+vyZTlsxXUxHNQxo6RSBO6/H7tQwE4msYtFCXyAXa/LwqoQniNCpFI4tRr27CyxiQkm6nGoa6DrOPUadj4vMyUXFxnOnuWnznyWeWudqlUnqkUZifSRHjt+1/eriMUkwLstvqiqfA+mKW/b5gTaLSdTxGI4lYo33X10XaXZ/xD/duq/MLswTwiVLiPAurjOsw/8GMMAmkbrzTdxFEUCtW2DriMSCW/ADY6DiMfRx8ZuaT84hoFTrWItLVGyDez1dQnlQshWTTeLUe3uplIvYLx+Bau3F5FKQbOJ4gKt077gURSUdoxRuyXSzef3BjS98Qbm5KSEeyBUTHHi9Gm0yBG03nv7ItKXL1++fPnytakdAxs7GH8H37dvV5R9871dKNB8/XUckNESxaIs0IXDqCMjWLOziFgMe2MDYVnY5fJdYXw07aZu2HsxWuWeYfz5edSJCcmV9bpk/JrL+L292IuLqNks+pkzMuPdzXkXkcgts+1B5DF+oSAzykHyvaIcmPEVNxLGjkYlX7evgTMZOSgS7irje4NFp6Yk05smSiZDvSvGi4t/Tr60gupmd9ulEquXXue5RoPPZH+Q5AEYX3/wQVqvvCJjUNzHKJkMyvi4HE57DxvBfPl6P8gvgvvydY+os21QcU+ywrIQoZA33VqJRjHbEOHmkrWL2XDzCdLm2hrWyopsVysWUYeGMN56SzoPdB1laAinXEYbG8MxDLTx8c1i/B5yDEOCY6EgJ523Wji2jTk5Kdu9LAsCAc/Z6lgW2sSEnMK9SzudU6mAW4DfDfjvhEPjILILBYzlZWx3/4lgUA6qsSyAW3LqdKrdlqekUti5nHRJBIM4s7O0ewBEJoPtOGhDQ7Ig6ra2qpkMxONY+bxsNR0YQB0YQOnrQxscJJNM0lWtvvPTv92hPMbiorwIAwiF0A4dQh8fR90GdztyMms1tPFxCaPuMTVzpIv/OvcnWJrCeHqcYiXPlco0VjLAi3N/yk+f/WnCb78N0Sh2sSiPQ9d5IyIR1L4+nFoNJZ1GGxy89c9J1+XFkKYRD4U3W1B1XQKsOzzHXlsj2trMMVRDIRzD2Hp8KArq4CDmwgLrA0muxCpsGGW64mlORBx6V1cl2Eej6CdPSpeLosgBWlNT2Pn8PXsR6cuXL1++fPnaqjbjt+MwHHeAoQiFJCN38j3sYPyb8b3TbGJMTcki+/o62ugo5tIS1qVLcvhiNot65Igcwnj1Kmo2i9bTc1cYXx0Zuakbdi9+8Rl//4yvJJMyTuUdZHy7UMC8dAkRCmG5c6Vou5YjETlg9VYZv9EAIVASCbRjx7A3NlC6uuRCjpudrSSTGHeb8UMhWcBvNmUsiaqykDTIz8zL76PL+O3tzReXWTzqkGjeGuNnFxexXcNZIB7fyviXLyMaDQIPP3zPGcF8+Xo/yS+C+/J1D2jXtsGeHvRTp9BGR2WGmgtPOA4EAqiZjITDjra0G02QNpeXab3+OsZbb0GjIVfLu7rQT5+WIKFpqIcPyzy0VgslncbJ5xHJ5JZC+w7ZNsbkpFzlbzaxi0W0sTHM6WkJaOWybOHb2EBJJjFnZ1EHBzdzzneRY5q7Ar9dKGBcuUIlrDBn5qm0KsTDSUb7jpPqGbzxTr4NOc0m5soKTi4ngU9VJYTVamijoziWBft06uylzqnlAEp3t/x7LCZhcX4ec3ERJZtFdHdLh4r7uai9vXKhJBxGHR5G7QThd7hQalcqtL77XexGA6W3F2V42GvzRNMQXV2Y7oWTiMVQM5nNz1oIRCQii8uOg3bqFNg2l8Nl/um53+JLk19EEQqqUBlNjPDRQ4/z5uJrhIMxZjauc6xuYs3OgmGgHT6Mee0aTqEgHTTr66jDwwQeeuhAxWMllYKVFUQsxlBLoTs9SL68Ii+SwAPfrnCGwYoqWxw78tg9R1U2izo6ijkzw+VjCX79rX/J7NoUDx17nPGBU0yu5EmFUhzSejgajRMul7ErFez1dZRkUrZH3+Qi8mZ6ty4yffny5cuXr+817WB8XUdJJtFPnEA/ehRrbQ27VNqMP9yF8W/E9wDm0hLGlStYMzOS8QFlaIjgk09iLy0hurpQBgYwXn0VbXQUJZO5a4yv3ISDPbfs9pfyGf+eZnyn2ZRdvPPzckBnJ+O7AxxFOr1/xj99Wv7NMLA2NrAWFrCnplCiUfkdyWax19cxV1cRiQR2vX7XGV9JJLBLJbnNQlCx6nIb3Rghxy2Ot69pKrTkvrkB419bviivuUMhDg+e5uce+e851UzLHPjl5a2M32phbWzc1rHmM74vXzeXXwT35etd1p5DNNbWMN58k9CTT6IND8sBko2GdHEbhlyx7iyAh8MQDMqBIduG0HivUat5cIwQOOvrGG+9hZJKYc3MoA4PSyf4+LiE41AIbXgYs9ncsorvvaauY9VqmJcvSwe3rsvVc8uCahUbUKJR6WxoSVDANDedJ22obxdJQQ4D0bQdwO80mxhXrjAfMXju9f+LfG7Ou607O8azT/ws44Onbu/D2EPm2pos7ObzmxPNk0m0kRHMmRm0w4elY+EGTp39DAjqnFqulsuYc3NYa2u0Xn7ZWzSwl5fR778fIYT3N6FpctHkNocY3QltycMzTex6fXPIjRBY09OYV67I2zUNbWQEzZ2ULmIxzOvXN4e22jaLj5/kN1//t5xfOUe9XpZuEUXjOjMw43BfbJzixhKVwhqYcezlZUQ4LAfGDg0hDh3yYFw/evS2sijVri6csTEiV67w6YHv48XFvyBfXEJEIijxOBk9yaeGzxK+tCyjUtqg7MoxDKo0uZ6F1aDOq+U3iEfS/MAjf5WCVebXv/sbTBWuE9bDHE6M8ZeGPsZnUx9jsGQTOHsWc2lJPpHbUnmgzyeXo3XunMyndKNqlERCund6enxQ9uXLly9fvu6QdmV8w8DO5TDefpvQk0+i9vZira/LLshaDREIbGF84RYY9+JIu1LBePNNGa/RZnzAnpujVanImIa1NQLJJCIQkKx/Fxnfy7nei/F34Qyf8e99xrcLBdnFaxjyXyfjl0qoPT0Yr70m40zgxoxfKMjibCIhvw/LyzInXFGwXFOJiMVQYjGcel1m5ZvmO8L4Tju6xXGIhZOIeBwlHN5y/Sxcxo9pEXAPd8cwEMhFizW1zq9f+OdcW5uUD4lGcQyDq1Ov8k+b/2/+Yd9P0rVSQR0dhVJpK+Pb9k07P/aSx/gbG15MjpJOE7jvPlR34cWXL19+EdyXr7uq/azG7meIhu5mhFmNBuqhQ1jT01uc1CIcRhkcpPm1r2Gvr+NYFk6rhdLVRfCRR7znIhDY+gJCyOnwIyNYqopQFIKPPy4hdXDQa60Tqrozzy0cRh0cxFpe3pwE3t6mdo55vQ7JZMcbcoEuGESJxbDm52Vhv61AAG14GEKhHaBnFwpUwsoOOAbIrU7z/Ld+h8//0P9CIpbZdV8eVE6ziXn+PHYut7WgWSxKx0smg3Db9fZy6tzKgKB266Ta2wvBINbS0pbPWunuRjt0SLZTVipb3BbvZAFzL+DfUpx1Ic5xB7ja5TJqT8/m7aaJOT2NY5ooPT0Y589LyC2VoNWifmyMbyy9zNTqJKqqeYV027GotarMbFznw9mHWKsUiaphD8qdeh0RCEhXT3u/2bbX1nrL77VQwJicdLPX66gjI4wKwecG/xvmlDLljRUipQYj8WEC33lNRpmEQt4/AIRg1szx/Ff+E/nSCrOiyF9M/RlPn/krlJwaL05+ianCdcChbtTZaJX44tU/JDIm+HzzFJFXXkEZGEDt75e5nrf4WTvNJlYuR/PVV7FmZ+XnZJoytzCRwKnVUMfG0A84lNZ3nvjy5cuXr+8l3VHGj8fRjh3bzKN2eb2dR225edr2xsbujF+tbjrJ2+pk/FYLoWnvCOMTDKL09GDOzGwWx0Ey/ugoaja7c1/4jC8fdw8zvpfD3dY2xreWl7HbEYhwQ8YXsRjWygp6KIQ5P49IJlGHhzez6XVduqOjUaxKRX42bv75XWf8sTFZINN1xuJBemrnyS1NybzzQABUFREKkUkPMEwKcPdDq0XjK19BhEJMJja4tnRBFsxjMXmt62aWX1u6wJUjdR55fdEb7tnqYHynWr1p58d2bWH8mRn5Xe4wuji1GsEPflBG7BxAPuP7er/JL4L78nWX1DkJG8CxLLmanEjIvDl3CMjNHJ1Os7kVsNxhG0oyidLTI7PXgkFZAC8UqKYjzIsSFdMgppYYuvA6yf4x6cjQ5BBFOleYXbeBSCTkP5BQIQSOYXgnPfXQIVk0s20ve85aW9u6Wu0CpF2vI5JJb+XesW0JkYqCCIfl6n4mIwcBraxsFsdDIQmAAwM7Tq6OYTBn5nfAcVu59XmmV69y5g4Dsl0oYJfLm39QVQ+0nGJRtgJalufU2fH4vZz++xgQpA8Po3zyk3IfNZvywiKdlvt9eVnuI1WFhQWUSOQdA5IbAf+u22Camw4iXffcQU69Lh1ErsvFXl/fzMBXFBZCDTbWc2goNM0myWCSYkO+pu04mLqOoTgMdo8zHMyidFvox4/L1sJaDW+krJureatQCZsDfVAUrNlZzIUF76JO1zSOnTyJEhvHqs0iaGJlszjlMko8jprNek6uaiLI8+d/n/zGIug6Daspv2OKQr6WZ622uuV1bcdio1rgcn2OhcQJjswVUIaGMKen0Q4d2vUici/ZhQLG7KzMG7x2zYtDah/L7TZsdXj4QLmXdqHAxvVLzNaWqRhVYoEoI+E+0oeOv+udCb58+fLly9ed1l1h/GJRsnE8jtA01JERtMFBHMPYLIC7kSSYJtbGBo1qFf3MGXk+13XJ4Z2FSiG8zkuRSr0jjK8kEqgDA/LxHUVwEYmgDg7uymI+49/7jK/fd9/u+fFtxm//V1HAMGS05R6MryQSUKmA4+CYJtrgIOblyzLuBCS3x2JoR45ANCqLuV1dm4xfrd51xkfTCJ88yVOjn+BF8aesG0UZAWSadPeM8MzhTxEtm959zbk57I0N1KEhNprFzS5Yy5LX3UKAI7+bBbO8OZ9reBhrbk4y/swMgTNnbomddzB+e+Cqpm0y/twc5sgISix2y8eRXShgXL8uP0vDkJ2u4TD6oUM+4/t6z8ovgvvydRe0fRK202zKqdavvYZTr8v2QdNEGx1FO3bshs8lAoGtMGLb2Gtr2GtrKPk82pNPSqdJocDCQIQXJl8kv77gPT6T6udHDv9Nut2p4komg53Pby2Eh0LoExPYpZJ0mQNOo4HTbHoRKTjOjgnp7WGBW6SqWHNz6G7GHbYti27JJMrQEGo6jb2+jl2poJ04IcG70ZCTs21bnmR3GZgpdJ1Kq3KDHSWoNMt7335AOe3WTffCog1wnuPAcWQb3vj4rmCxHxfQjfLr1FTKGzJjLizQ+NM/xV7dLJgq3d0EHnwQY34etVaT+zsQwCmXcVqtPdsyd7zPfa7y3wz4Ax/5iByQ1HG7Y9sIZM69U6ttXhRqmizGus4OJZmUrglNQwSDVKw6ITUAtk2zUWUkPsSs41BsFrznzUazPN31GPpXvonR24u9toYIBNCOHpX7SVFQu7tR4vEDwVp7oI+IRrErla2uJtPEmpqCgQG0U6cQgH7sGObsrDxWNA3HNGVBP2KQW5ySDhIgpIbAcWhZTSpmjYAaADZdXIpQsBE07BYV2+2WsG1otdCGh/ededgJ+BiGvNByHPlcjuNBstNqeS76W8kidJpNpq6/zvNv/h75wqL390xqgGf4Kxw++WHfLeLLly9fvt43upuMb6+tebfZxSJqNutxZDtGopPf7cVFxIMPYi0toQ4Py+J0sbhZCFdVRDSKFonIOAs3quJuM77TaBB44AEZ0WIY3pwUp1jclTF8xr97jH8rLt4bMb45NyczswsF7zrNMU3sWk0u1rgDPR3kgoezuiq3dxfG94wYiiLjgKanvYI5pimL4+48LJFM0vzqV1H6+rBzOcn4R468Y4w/ODDAT536CRYoUqFFpG4ybMWJlt14UkVB6e2l+dWvytzwZpN0LLXZmdEuhjsOCAUch5QWB3Kbt4N3PXQrrv8djN/u5nAcuR87Gd89Dm4la9xpNjGuX6f15pveIFIA4e7rwMmTPuP7ek/KL4L78nUX1DkJ2zFNHMuSOWjtE0gyCbUa5swMIp3eLExvk5JOy5awmwCW02xSy8R48fofbimAA+QLS7xw9Q/566P3ESs1pVMFF9odB5FKofT0oIRCXo6bY1mUaTEfr1MtXSTR3c8QSWINB2NyksD998tIk45hgU6lglOrSYCs1zGmp1FHR1ETCZxWS07KvnoVY3FRrkzn8yh9fegnTsgiqVscdPbIQlNSKWKryR1/lzfKASWxYHw/H88tSei6dIAkk9J9Y1lbTvhKNot+7NgNJ93fSHvdvh1aCQRofvvbW+AYwF5fx1pZwXEHxmijo7Ref106LqJR+XnHYmiHDsn3Ew7LTMgOyNruaGrfb7f8wT2B3/0M7FwO/fRpjIsXvQnuIhCQ7v9wWLZD2jYiGkXJZOR3QdNkpr2mSSdRPA5CENMjOKUyqWACVdOZLsyQDXYxnBjGEjanek7zdOoxDs3XMSwLe3kZpbcXp1LBzuXkAkuziRKPo09MHAjU2sei4zqkdsiysFdXUdJp1OFhtKEhtOFhz11kVypgGJSK8/Ji0G3p7E4mScd7CKhBNLuFLS8bAAhrIYQpXyukhgh293L1bJx6l0l0oI9DQUjt3JJd5f0WtR1FW96cs/V/uw6fW8kiLK4v7SiAA+QLizz/5u/x+b5DpPrH9v18vnz58uXL172sd4PxHduWhazdzs+2LQcO1mqovb3YwaAs5Aoh3d+JxFbGb7Ww2nNBFhdRDx+W7lHnLjF+rSZnpCCX+n3Gf+cY/1b4Hm7M+E61inr0KGq9LrPBTROnUkEdGEA9dIjmN7/pFWFFPI7S3S0XWHZjfNcxbpfLKN3dmGtrsgCtaTK6032MvbGB6nYs28vLqP392KXSO8740XSak8PjaEND3mfXyfh2oSDjaxQFy3GY6J/g8OBpLxKlvQ8RgvHMEY6Wg5tdGvE4ysCA928Hq99At8r4t5o1bq2v7yiAAziFAq0330Tt60Pr77+l5/Tl616QXwT35esuqPMk4zQaMmes8wTSPtG2WlizswQfeQTj7bd3jZfYC4695282EcEg88GGjFrYRfnSMssTH+KoreMUixKcolGUWEwOYAmHMS9dclepBfNRgxeufJncyjTYNurYGJlIhqdGf5BhtQurUKCeijBTmKEUWSd6vIv+lQihi1Py+bu6UPv7UYeHodlEpNNypbo9MCcQQMTjWIuLXuuYk8t5U9J3a2kTwSBjfcfpzo6RW53evEFREJEI3ZkhxrJHbvbR3LKUVAolHofeXtk+2o6SEAK1pwf9yJEbOjBuBmW7uq13gVan1ZIDZLa1uip9fRiXLqGk02hHjkg4drMNRSSCvbKCNTWFef26HI7UbKKfPYt59SqBM2cQ4fCO1wIZVbJbNMauQK8o8gJoZkZmS2ezMqonm0VEIljForxIvHxZ7rtQCKdSwarVEOm0zPkulxHBoHRRu66kwZ6TGI06Hxv/GH925Y8ZDvZAMIBpWxzqPsp/f+yzDP3523D0KEpXl2ztzeVQ+/pQEgm0gQGUWMzLvTyI2seicOF95x0kxFbjARZaC9Tm54kFYoxE+wnObnj3iYWTnvPdqdcJmSaPDnyAulHDcWzGUmNs1DcIqyG6Ixla5RKZZD+jyREulaeYnHkdpZIBy6KndoFngn+FYSt2U2dP+7dIaJpcbEomcTp/U1xIFqmUNzNg11blPZxEs4WZHQXwtvKFRWYLs34R3JcvX758vW/0bjA+exXp3G3Qjx6V5+ibML7TaGAtLWHXarKoHomgtlpyGT4YhFhMDi1MpeR/IxH048cxV1YwL170GX+X7b6R3k3G10+dwrx6dd98D/tjfG10VDKjYaB0dWGurWEtL2+66INBnFIJq9n0CvzbGV/p7YVAAGt+Hu3QIdkH2Y5SURSP3c3ZWdS+PkQ8Lg0u+TxKNisz9N9BxhfxOE6rJfPLAwHpHG9Htwgh5/+0Gb9aJfnqRf72I3+T33jrX3EtfxXhxg+NZ47wcyd/htTXJyEcRiSTXhyPvbEhF8uqVfl+3GGst8T46TRO54LbNsbfKzJmL8a3C4UdBXDvMYWC7Arwi+C+3oN6zxbBv/CFL/ALv/AL/PzP/zy/9mu/BoDjOPzSL/0Sv/Vbv8XGxgaPPvoov/mbv8mpU3dnmrQvX3tpy0lmt2EdnSdaw8BptQi5sSZt4FWzWZRYDKNWu/Frufetzjqbq82dt0ej0tm9vkzggY/LqdPbXsOcn/dOlNWIxgtX/ojc4jUcy5Kr7qurrOQv8gdT1/lM18cpDXbxh9Z5CtrmCnraCfHUxz7O4LqFY9tYq6u0vvlNsG20o0ex5udRXdcLwSBOLgetlgQ/F4CcSkW2We7RPprqGeTZJ36W57/1O+TW573Ms+7MED/86Gfv+MCc9v7VJyYk4GuaBDzblhcXZ87cdMiIms3uiAdpS0mnd2Q7b2+zBbfd0C0k6w8+KC8slpfldkQiMpIjkUAoioRjJPBYq6vgtk86uRxKf79sa7MsCdNvvIF27NgOQPZed5dojN0gTMlkJByXSpBOy2OpXsfBhbpmE2t6Gm10FNNxcNbW5HdCCNR0GhGPY5w7h3b4MNrhwwjLAtNEN1WefuQn+MP5P+PD0ZOI3hgNu0U63sNHeh5m8I0FCY+tlty/7sAhJZ328hNvpe1vNymplHSwAEosJp1C7XZJRYFAgKVDXXxx5jkKQcdrHU7bIT7d+1H6Li+jJJMM1KErmCK3OiMdUZpGt23TSkY4fPQjPDz4CCE1xHxxDqNRIx3v4VPHPsVEYIjLV74jL25qNVAU8tU1/uCbv81nBz5FtOoC8B7Ons7fIrtWQzt6FPPKlU1IFgKRTsvvXKOxa+5lO2+QZlPGu2gaBIPoIyOUrd2PnbYqN7ndly9fvrbLZ3xf97LeDcb3Zuhsv723F7tWw7p+ndAP/MANGd8xTaxcDrvZxKnXZbF0cpLWwoIsZum67Ax94gmv4AmSQYXjEPrYx2TUic/4nu5lxjenpmTxeXukDbvzfXt/7Hgf2xjfqVYBpCM7n8cRYpPxhdjK+MPDuzO+ZaGNj2O5HZLCHSiPpiHicRmbWSxKZ3mziWMYKL29CEVB7eqSGeDvEONrhw5hzcxgB4Ob+9K2UXp7MS5fljnhrhvbWV2VjuxWi2PfNvmlo5/lykmDIg2ShsqxVpLk61dB01D7+1F6e7HzefQTJ7A3NuTCRq1G85vfRB0Y8Pb1LTG+bW+aXToZ33F2z7W/AePfdNjoAYeR+vL1bus9WQT/7ne/y2/91m9x5syZLX//J//kn/C//+//O7/zO7/DsWPH+OVf/mV+4Ad+gMuXLxOP3/kWKl++9lL7pOrU6/Ik2tmi1HZ0eHdWZNthLLar22A/gKXEYiRHDiMuxrZM7xbRqGyNzOWIjadkbtour9F5Ep2z18nnZiVwZLNyVdptRcxXVlm8P85Xzv8BG1YF7ehRlFAIoWmsl9Z5YfIF/rpxisjitrZPy5KF0WBQnuSbTRzLkttp25v7w82CdqpV2MN5MT54is//0P/C9OpVKs0ysWCcseyRuwLHbSmpFIGzZzdXyd2hQftxHiixGIFHH91zkOT2z8PK57HW1ryp3u32ORGPI9rDHjVNAu7Vq5uOEU3b4k4SiiLhWIjN/evmQDvLyygnT2JcvChzutvQs4u2t87tdjwK1/UhQiGUaHTL/e1yWQKmbWO4Qx1FT4/cFkVBGRyk+e1vo4TDckiOZWHlcl7bZL9h8JMP/HVmVyeplPJEtQiDRpTQN85DMIhIp7EbDdkK7L5XcQNH8420lxNCn5jAmJyUridFwZybk68TiVAf6eVLpW9TUA2EFvKea6m6xO9c+g88NfE0pcoaSr3JY4/+CF899yUKM5MIRcGp1RhID/KJ+IOEHJWHPnSKlWYeR1EYjvQRNuD3v/OvsSzDc5wo0Si2EOQ1jTkKHEfu772cPd5vUa2GmkrJdtbhYcTQkPxehkKISER+Rq3WjpZSp9nEnJvDnJz0Wj2VTAYRi2HaNvFofNP9s12BALFI6pY+A1++fH1vy2d8X/e63g3GD3zgAzS//W1ZNGy7P3t7Cdx3H61XXkHt7b0p4zuNhnR/t1qo4+PyvL6+jujrky7RQACnXqfxta+hT0xsPl7TsEsljMlJ2XG3uK37y2f8gzG+pkn3txtnIwwDTBN7YwPt8GE55PA2GN/K5eQQSnfQ6nbtFo1xS4yvKNjr6zLacDfGDwZRurtpvvTS7oxfKKD09CB6etBGRmTuvaJgLS5CpYLo7kZ0dWE3m9I8YtuoAwPvKOOrIyPYpZKM7GzvQyEoqxbzK+dpHk5Qqa8hanW6HxmldzZF+O0rcmGiUiGzWqF/8AGZlx4RsnPiY8My190wsObnwTBknrjjILq7ZaRiqURnuMktMf7ICGJwUH4nw2FEJCKd80NDuzr/b8T4RKM3ZHwRidzSZ+DL172i91wRvFKp8BM/8RP8y3/5L/nlX/5l7++O4/Brv/Zr/IN/8A/4kR/5EQD+zb/5N/T29vLv//2/52/8jb/xbm2yr+9BdZ5UFbcAqN93n4QTwLp+Xd4xEEBJpXY4BTq1X8A6NHiK3vs+QG75ugRzIXBsGzuXo7t7hENHHvLua1cqm46UUAglnfaAvtwse62AQtclfCgKmBKWlkWF9ZJ0oziVCoTcwp+ikK8XWewLcbQUkxcG7qA9VFUOSanX5Qp7IOC1TKIochsyGZlltw30dlMilrnjE+JvpttxHGh9fSh7uIA6ZRcKWAsLntPDAdT+fpkHuLGBY9uobiaj0t2NFgxK967b9roFbnZrm1XkQBYcR7qnSyU5aCmflzAYCu14yHbI3PV4tCw5nGdoyINTTx0Xh8JxsFdXNzMPdZ1AV5e8OMxmMaem5DHXaMjjw7JgbQ09l+PU44/TvLiOvTqD0tUlHeDpNFpfH8Zbb8ljx91+p9GQbqZbGJJTWJ1nevoNyrUisUCUYbWLuAjJLMhUisD993uuGf3UKelu0nWuixwbU/aWAnihUeDy6ttolkNgKckfv/R/EQnGONE1wYODD/HhU59AqbeIqSGG02NElzfAtskQQITHCZw9i1Uo8K3zf4yRz20O1bFt7GoVp9FAHRhwh0RtXpDs5dxvu5ycUkkOyBob8xYL2m4aoWm7XvRZ7bZdF469ltgrVzACAfrPHKe7d4zc6szWjoJAgOzo8bvSvuzLl6/3p3zG9/Ve0LvB+FpfH/aDDxK47z7p2gbsep3WK6+gdHURfOyxmzI+pZI3dFCJxWSusztkETceRenuxl5exjl8mC29papKNQALAxqlkE5MjTBY1Ygsb/iMfxDGVxSUgQEZMePyrmPbaOPjBB55BDuXQzt5UhZND8j4mCZOtYrdau3K+LsVkW+F8UUoJBnfdQNvYXxNQ4RC6JHIDRnfXlvDmpkh9H3fR/Oll+TxWa3K543F0Hp7Mc6fRwmHpXmkPWdol67FG8lcXd0cvhkIyGNWiJsyPkLI7e4ogM/HbV68/F+JhOP8+ezrzM9fIBKMcSx1mPHUOE9/6tMM1dxjP532XP3gOrpPnMAqFGh+61tbFzocByeXw6zXUcfHd0TT7JvxDx2SjO/mqotYDHWPRZ2bMb5+5ox0q6+u7mB8bXT0hr9tvnzdy3rPFcH/1t/6W3zqU5/i+7//+7cA8vXr11leXuYTn/iE97dgMMgTTzzBt771rT0Budls0uz4kSmVSndv4319T0lJpdDGxzHOnZOg6ThyKE0ggH76tMw56+kh8OCDN8ybg/0BVjwY55nTP8oL+gvki8vY1SrCNMn0jfPs/X+NZKoPa2UFu1LBmJyULV+GIUEsnUa/7z7sxUViZlgWwN2TpQgEvJZIAMNqSeewrm9tg1IUnEKB2pAtBwUVCtIFkEzKk+XYmMyEFkLCS18fQghEIoHo7oZyWbbIOc4tr+6/F7SXC6itLRO+249JpbDm570J6BgGTiiEtbCA02yi9PWh9vdLyHHd+kp3twfYnRKplPzM24NSNM3LunMMA6tYRNW0LW6RvSBz+/HoudW3F8ABoaryOQIBCeVt15Rty/betTXsfB51eBinWpUOEnc4kbdv1tclkEaj6A88IAc8ZbPY1SpYlhwuZZpyH7DZNlg2KkwvvEGlWSIWSjDWs+km6nSEzNrrPPf13yZfXZP7xbbJJPt5euLTDF+5IrPT97hAqs2vbdlnTbPJ5dxlFFVlauMaR2rH5f2aFS6uX0ZvtFibvsRnJ/4qsSaoARMiEdlCrKqoiYTcvkqFmCX3k2MYm5+bqnrtupGmg+NsdfHvNXDqoC4np1KRcMy2lliAVovIWpFPDz7Ji/afsm5s/qZkUn08+9CP31X3li9fvt5f8hnf13tF7zTji2AQPZvFuHIFkUyCaaLoOsEnnkDt60NNJDzGLyxOM2esUTGqxNUIQ3o3qfHjONUqlmtywXFk/Ekshr225r6IkOxlmvJfO2JRCBZ6g7xw/r+wsW7KGI5Gg0yyn6cOfz/DwaDP+LfI+EomgzU9jV0qbbKx67K3lpfRJyaw1tbQDx8+MOPbtRoiFsNaXJSmmg7Gv1EReb+MLzQNEYshtrnD20VmVBUrn78lxtdGRrCXlqTL3L32VNzjHZCueZfxHcPAdK+HRCiE2tODEovtcHzbrRbNb3yDimKwEDGo2HXikS5Ge48Suwnjm/PzWxi7GtF4cep59FCEryx8nWVTLhTUmhUmC9cItWyey/+bDsZ33dK7ML5TrcoC+HbGLxTkYlGzKb8v7yLj22trqIODm9ci7bpBKkXgoYdu+tvmy9e9qvdUEfw//If/wGuvvcZ3v/vdHbctLy8D0LvtB6y3t5eZmZk9n/MLX/gCv/RLv3RnN9SXL9wWo2vXZOuhaWLl8xIiDANrdZXAAw/Iqcr7XEW9GWABjKXG+NzZzzFTmKFqVInoEQzLYLG8wNraNAE1QGl5jojVYtAWREo1CV3FIgDBD3+YsUKanvwJ8pU16Sav1ZCeZMikBui1IltO1uDm2a2vg6oSaSHdAocOSfdANCqnw5fLMs/QtrHLZZyNDQk8ySSt73wH/fhx2RZoGLe0uv9+kV0oUFEt5oJVKseiREWAkegAQRdOME2vfQ7TxFpeRjt6VOZgDw9jXr6Ms7GBfv/9tF5/Xd4vGoV6HdHVhTYwgHHhAuBmSFYqKPE4TrOJ2t8vQajRQLjHWBsy94KozuPRaTZx2hPKd7mfSKXQBgflFHVdRzQaMg+vpwdzYUFCc7MpB2Y6zubFV/tfOCyhdmNDQmM2i3Hpkjw+3dY/JZ2WcKxpqCMjzDSWee6l390yLDaTHuDZRz/LaKjPy2Ssdsd57vJ/Il/Lye1zswDXcjmeK5f53Af+W1K75Ca2nVbhRgNrYwMlGkUEAhQbRepmnagSomxUCKibFw21ZoVS0kav5llMCY5eLWHWatLVZZryPRw+jDU/j0gkGCirZBK95NZmt+b9qyqZZB/DwV6EEkLouvye3uDi8sAup4627nZL7NYdYTNcD/DZoU+xmBJU7OY70r7sy5ev95d8xvf1XtK7wfhKKkXgzBmv2IVrRnGKRVpzczhCMJOf4oUrL7BeXpPub8sik+jj6cAzHLr/Awg391jp68O8cGFrAdxxNt3E7f8iC39fnP4S60YJEYyhdneDbVOwbf7QPM/nHvko0XLLZ/wbyC4UsCsVRColI+kCAclsgQDWwsIWxnfKZZyxMRkzchuM71Sr6CdPyusz0/QY/2Z8D/tnfDUeRxkakkMrSyUZsefeTxscxFxcvDHjA0Sj0uW8vo7d1YUxOSlvc9lWHRryGF/t7UUbHMTa2NjZPdHVhf7AA9iLi962iu5uzCtXmI+ZfHHuz8hPLXn3z2THePaRn+DQDRjf2cb4cxTIV1bp6z/CYmlhSzzMrTK+YxibXRPbGN/LR3fz0t9Nxqdel59BKiWvs/bodPDl672k90wRfG5ujp//+Z/ny1/+MqFdWvbbEtsGAzqOs+Nvnfr7f//v83f/7t/1/n+pVGJ4ePj2N9jX97zsQgG7XMYqFrHX1mTxzm2VxI2fcNbXUfeY+HxQxYNxTveeZrowzQuXXyBfXmUjv8Dl/CTpaDcfS55l9sJLpBI9PDXyCQZWmyx/4CjnWWHj2u/TFcnw5P3P8tW3/4jl/HVELCZzzVIDPD38/SSXDTLpATacmhzgUal4uYjdfYcY7T6MqK3Ik7rrbBCOg4jFCDzwgBz+UijA8LAcxjE5CbaNeeUK2tGjBE6fvqP7427JKhQk8DcaEApJOLjJFO8baaaxwvMLX2T1+gV5nDSbdPeM8FTfEwzHT2JcvSrzoPN5eWFiGCihEM2XXsKp1VDaYLi8TOChh8AwqAQFc5V5SqUc0co6g0NZIoYgcPo0xtWrqIcOYedy2Lkc+v33e+2Wt+IigG3teB2QLMJhmWt4/TrqwIDMtxMCZ2wMa3UVu1JBGx9HSSQQsRhKTw92rYadTmNduyZbCSMROdy1WkU7cgSnWMQxTZTubukqCYVky277dRWFalDw3Fe3FsAd2ya3Ms1zL/0unxn4JNFyA6FpzJl51ms5eVHZbHotkgD51Wlm1q6QTG8FS3N52YPv/p4EqY0m6ysrqENDtGxZRDexGUmPUaoXJcC6rhdDcVDiCcobKzh1ZK6565xxqlVM1+WlaBrR9QqfHnqSF1t/RL64JC+wFYWuVD9PDT5J4GtvYESjKJkM2vi4hOw7fHEp4nHpjjfNXYd/tS/kYnWHk4NH0IaG7ujr+/Ll6/0vn/F9vdf0bjF+u9hluzEGdrksIzaKRZqPnuXF6T8in1/YvH8kwrpV5sX5r/DTqQFiicRmATIalREp7gBKLEvy1eAgIA0uTqPBjNpkbXV60z1smt5cl0JIYd4pciLW4zP+DWSXywC0XnnF+82y83lEJIJ+4gTGtWtbGb/ZRBsZofntb+/J+OBGrKyuYlyROdSit5fAmTOS8UdH5cDS3l6va1Tt6rolvodbYPyBAcn4o6O3zPh2vY52+DCoqnS7l8syhzsQ8BhfhMNog4M4hrGjAO7YNo7j0PzqV2X8T3uIpWlSUU1enPlj8qXVLeeL/Oo0L179Ep/rGiTV8X47GV/p6cHe2MB2Gb8SlO+/4bgd0e0i9QEYH8NAicexW63NQriieLN6mt/4Bso9wvjU6yiDgz7j+3rf6D1TBH/11VdZXV3loYce8v5mWRZf+9rX+I3f+A0uX74MSLdIf3+/d5/V1dUdzpFOBYNBgu+Bk7Gve1te65VpypYuIXBaLSohhYWT3Uw3LapGkB41wcS6TurtKWi1MAsFtHwebWDgjm5PuVnmhcsvsF5fp9mocjk/Sb1VpW7W+UqxwEcGz7A4f4k/rp/j7Md+iH/41V/klYWX5clXUXik/2H+n4//P3h88SSV0wHCuRKDy3XCkyugKDz90A/zciRPqVWkXikQCkWJqSof0k8QnlmWE63LZc9F4hgGak8PLC1hzc5uOk/crEDAy5zbMlDoHpUxN0fz61+XGWkgW/B6e9GyWbmyv7yMPjKyb1gpN8u8eO1LsgDuDh8Rus56Lc8LM3/MZ4efJjo6inX5srdPlZ4eGSWyuirdPo5D6803cYpFzMuXWT47xotv/CHralNCjGmS6e7jqfEfYmCxKvMZhZADamwbWi2UWOzAmYg3ascTmrYJz8Eg5rVraMeOYVkWTrlMyx22JCIR6RgvFgl86EPSHeM6HxzDwF5dRX/wQZmDfuQIlusOFJomI3oUBaWvj5nVSfLNgnRYuBPqcRxEMEi+lmfeKXA82YtQVSrGjHSnB4PS0dVuFXZVqRe35PLZlcoW+I7kKzw1+glenPky6/Pz6ANJAIaTI/QO9PDtS1+RrZCNBlgWASWA0INECaCk5CKSNwDVcbBWV9EzGexcDnVwkIHpaT6TfIKFYZuKYhJTwwyH+4hMb3htzU6lgjU3R/AjH7njF5dqJoM2MoI5O7t1+JeiyAvBcNj70/uxxdmXL193Xz7j+7qXtRfjO7WaPBcmEnLQo6pKVsnl7irjt6M1nHpdOmiLRbBt5s08uZVpGWNoGIh4HCWVws7lWJu5xHTXBQ6/No86NIT60EMEPvABjNdek5nFjiNNAPE4wY98BDufxzFNUFUqrYp83+GwLAb29m7Jl64YFZSeoz7j7yGn2cRuNjGuXJGOaiFQentljnqrhZXPy4J1J+Nns7RefXV3xr94EWV4GHttDe3IEfQTJ9DGxryirLWyssn47hBONZtF7eq6ZxmfNuM/9BBaNiuzsgERjcrYFV1HHRyU1z21GiKTQY3FpMNdVRGJBIqmYS0vy3gW93ffMQwWsyE2pqu7vq98cZnZ5hopxoGdjG/n82ijo5gzM1jz88S65Xc5rEdQEgnprj8o4w8PY16/Ls08iYR3P6W7G3Nmxrse8Rnfl687r/dMEfzJJ5/krbfe2vK3z33ucxw/fpy/9/f+HuPj4/T19fEnf/InPPDAAwC0Wi2++tWv8qu/+qvvxib7+h6R53TQNMypKZmtFQiwfGaEt0NL/Ivv/EsuLL4JgKYF+ODoR/i7f+n/xul6EsVxZOFtH9prqvVuminMsF5fB6DYKlFvuSd/IVjcmEMMfwS1r4/k4CF+9Vv/G6/MfXvL4787/xL/8Gv/iH/+2Bc48sYM2vgEolvBOdZCBINoUYOl6+e4tnSBltkggMqhYD+EjmDO58GyZCG8Kl9XuEXGHa1TrpNERCJyxb6dOXYH9sf2wUDtrLjblVUobMKxEOhjY5hzc1jXr2PEYrLN0XWn6eHwvoBlpjBDrrjsOTsAN+8xSDCW4q1UnaAJkZPdDJYUwos5mSfoDtBECJRIBGtqCoBaIsSL1/+IfEE6oR0hUAYGyG8s8MJbv8dnRp8hut6SU8ltW0agBIMHdhhsccyEwxK2O56rE57tSgXHNLFmZnAcRw5gctv8HMBcXESJRDAuXEAdHMSpVOSAmGIRbWgINZ32hjjqR496biy7UgHDwJqZoRTOy89dUeQxFgggFEUWzU2TSn+R1oVZMAwi9/fLbTAM1ExGZnt2KBaIelnjgHS3dN7HthlYqPCZ3k8wH2xQGkhzvbVMWAvzpctfwoqEEO4QyrAWJp0ZoDuYYTiQxcpNb209VFUJ7+5A28BDD+G0WkRzOY6t2ohoEsdxUBWwSiXUgQE5lMsdQHQ3Li5FMCjzElUV27ZRslmcSkV+p7LZfeVL+vLly9eN5DO+r3tVuzK+rqONj+M0GpIf2kygKKjHjxMYH5fnRLdYvh/dCuPbHdEUTrPpDdarWHW58B8Oo2YykrXm5nDqMlu5UiuidHVhXb9O07LQT51CO3UKceaMdDmHQohQCPOtt7BtW/KJaRI7mkTt7sZeX5dOdyFQBwa8839Mj/mMfwO1Py/PRe048vqonQOey6H39GCFQnKxwI0ssTqiajoZ36lUpHO4VsM8dw5TUQh88INeHI1IJKBYfG8yfiqF0DS0sTGcalUeL7aNVSh4hXE0DcdxZBRJsynnCxUKtK5dw15YQL/vPsy1NRRdh2CQUjgnox+7umQ0STvSE0DXqSmb7Lwb41sLC3LhJxhkpKuXnpHjKNEog11jLJTmvUHzB2V8O5eTzxEOy+4mXZc56j7j+/J11/SeKYLH43FOnz695W/RaJRMJuP9/e/8nb/Dr/zKr3D06FGOHj3Kr/zKrxCJRPjxH//xd2OTfb0PdDPI6hx04sExUEuGeLsyxb84/ztcWH4LmaktMBV4afab/FPD4pdHfobUKxfRDh1ChEJofX17b0ehgDE7C82mdLxqGgSDezoRKkbF+98tuwM43ZyxZlDFLhZp6YJzS290vJDtuUFeWXiZC8Y8g4qCeekSal8fQtOoRFS+OPenlPKLZAotQMFxbIr567xYqfOTmY8Tq1Roryd3njiVeFyunLtto+0WTG+goaZ5LoZO8G3vg/bfUBSZxdjZlqfrqKOj8nMxTYzz5zfdKICSThN49NEb7uf9yFpZkYMqAbW3F3NuTrZ+AlQq0pVQr2NcvoySzaLtw3VRMeTjRCgkhx5aFqqiMTx2H19Z+DqvXbjGoB3DyufJpPt5+qGnGOs9ROPP/mxz5b5jUvxCwiY/t5l7126tRNfJl1aYqy1xbE26m0Ushj4xgTY8fCCHQadjpi0lmyX4+OPoHW3n7RZeJZWS7bvXrsl8QBeOsSx5fCsKyuHDONeuoQ0NYczMUFFN5rNQtWrEq9cZzR4j6W6rkkphTk9v5v/F48T0lryAqVZlm5/jeEBn1+uEaybO+joIwcC6TSY9wNriNexyGSWRoIVJSbdJJ7IoPVkqYcVrldw+rb297yNrJY4BgcExxsZO8MXJL/J9h76Pr0x9hcXKImEtzET3BAPpcT7d/zHC33hLuqw65LS/38ePy4vFRkPmvg8OYuVyKMkk5twc5tQUSjwuFwQ63Fj7vbjcS3tddCqpFIGHH5YXOCMjWNeu4bj563Dz/Hhfvnz5upF8xvf1buigjA/guIMH22YPFAX9/vsxp6exZmdRurqwV1fvCuNvOde3F+mFIKqGZexEPC5zv2MxbLcAjlCIWir2+rocojg9jTh7Vp7PGw2P8c3JSfmctZrHtgMrQVItlQ2X2ZxGw8uX7gp3MZqS7O0z/u5yDAOqVZRkUrr2m00v69oyTajJ+UzU64hMBm1iQh5rtr0r4wNbC6K2jbOxIefmlMtohw97++a9wPioKko2i7As7Gp1M2/aHXLZeuONLYzvCIH53e/irK7KDgw3Fz3w4IOYgQDm/DzOxgZWOIw6PExMi8rZVeWyzMQvlcBxZARkPE40sJnrvRfjt/dnbHCQZx78Mb44+UWeHH/SZ3xfvt6jes8Uwfej//l//p+p1+v8zb/5N9nY2ODRRx/ly1/+MvF4/N3eNF/vQXVmgrW1HbLaq/vtVXsllQLLYjFtUKDBxfylzeEyqgqGgeE4XNi4xJUjRR5RVexCgdZLL6E8+eSuLgan2ZQnxcnJLQAuYrE9nQgxffN5AsGIN9nbqdVAVQlpEkzKRsXNRxObQ3E6Vsg3GgUaZz7AXGOFqt0kHo9hBCE/nduSHSaEwNF18qVlFoYNJjZ0eaLfduJUUim5El8s7ljRFrGYhOONDRb1Guebc2w0CnSF05yKHaFvXj5GRKNYi4uyBS8U8oan2PU69uQkSn8/xrlz2Pm8HELiAo3tDlHZaz/vW25cCSCdGW04bsvdL97E7X0AckyPeXmM7X3V23+UP1v6FkulBU5kjiNiCVRVpYDFl4ov81OjJ9DcwjmWtWVSfMVuyOPNcTbBWQjZEjk0RGMwS3B4WC6KxGLSeXEAuOl0zHTKXl2l+fWvo3zyk1vcIsCmW8h9v3JnbV4sUatBuYxdreJYFisn+nnupd8ltzItY0uEoDs7xrOPf57x4fs2HVFCUI1ozEWq5NeWOHz8Q9RWF1hZncYyWziVMigaxx/5AaxgmnOPKcS0KIONAE/1fooX6r9PrrBIJR3m8upF0loXD2eO8gfn/zNdleM8E/xhxlJjN91PIhhkLDXGT93/U8wWZjnTe4ZKs4KqqN7FYrhQoxkI4LgXhJ2fkQiFvM8F28ZZW0NEo3LYrKIgFhfRRkcR4fCWifFwe62KntvNjYJpf3+14WHUTMa7wFEBra/vQFPoffny5eug8hnf153U7TA+wSBKIIDa0yMdvrkc6qFDckG+VpPxKG4B824wfue5XgQCststFGJgoUpP3zj5VkHyfjQKQvJ/pnuYwQ0bajVEOi0d3c0m2qlT4Ea8EAohNjY8M0ZbkeUNnjr8Ub5Ue51c7arHll3hLp6ZeIZ4UH4H98X46+ty35imXHwIy8K9vbQkGfh9yPhC16V7uVyW7uVkUrp9CwWU7m4ZR9jXh67rsrNxaQn1/vuli3sXxgfkUNROflRVj/HVwUG09wjjB06coPnSS9grKx7jdxbZOxlfRCKQTGJ8+9syclPXEW4EkbOyQuv8eYIf/CCO66xG07CFYLhVobtrkHxhSR5v7UWvbJYuU2cgZ2BHCvtiWZ/xffl6f+g9XQT/i7/4iy3/XwjBL/7iL/KLv/iL78r2+Hr/aHsmmPf3bZDlGIY8oQQC0tngDpgpTUQph4o4liVPYu6JzHFPhJZlUrCq3vRne2MDa3V1V3Cz3OE3nXAMEsD2ciKMpkbpCnexXl8nFU4TSWSo5pbANBnoGkXYDiIcpivUhWW5oNrZHua2+qVCaX7nG79JvrQsT8jRKANH7qdIg3hndhggFAUnEKCqWIhoypvg3XniFMEg+qlTOJYl88dcSBaxGPrRo6DrfFdd4gvf+t94a/kNOUXcsrhv4AH+weO/wIPLmvc5oGmyVaynRzpGSiUJG6qK7UKFvbEhXSbtATI32M/7VufQrs591lbnftk+ZGQPjaZG6e4ZYXVlRV58IFfeFzdmCIfiJAMJ2U7qXhAUNJsFvcr48LDMcgSZkZdM4hSLxEIJeWHUbp/TNLniHwohNI1Euhe999iBd4H39jocM9tlr65irazsAGSQbiHVhay2U9vrQnAcr0W0Gg/yB9/6TXLL1zejTVSV3Oo0z339t/mZH/x7RCs1CIVYiFn8/ux/ZWpqjsb6KkQihLQAD058gJmL3wEFjp/9OFO5q1x4+794n013/zjPPPyTfHbir3I9UOGV1nUmMsfAMFlYuwZdaTaMIi9cfoHPnf0c0WwWJZ3e8dsA8gJazWYBOaD2VO+pXfeNaRTRxscxp6Zky3GtBrYtH9/Xh1Ovy1ZrN1ffqVQQloV26hROubzFHdXW7bQqOs3mznZvV9bMDMHHHkPt7t58rYNOoffly5evfcpnfF93S7fL+CKRQFdVjMuXUQcHUYaGULq7MUolCAaxczmUgYG7xvhKKiWjE+p1r5hnLS4SzjX41AOP8YeNN1nN52WhVNPIJHt5uvcJOdcHJGeFwyAEzT//c1kED4fRjh7F3tiQOcCdLGvb9F/L89lHPs1sepFaABJDhzk0eNIrgMP+GN+xLFqvvCLZUQgZ/dffT/BDH/Lctu83xldSKcnwyeSmqzyRkIPeazXUkRGP4RQ3xkZJJFD3YHzhFpmFm4ndjjtRe3sRmoaaTt8RRrvbjC/icZrf+pZ8jx2M3y6yix/8Qfm9CAa9z1sA9tyc+0LK5uKAphE4ehTj9dexrlzZ3JbhYRIPPMAzZ3+MF658kQ2lIQd4KgpdIsrTY3+J6EYNo36ZwNmz0oXuM77P+L7e93pPF8F9+bpb2pEJ1iG7WKSYW2Sh2qJUXSGashnYWCHonlREOEzUVIkHXAhrr4C3ndaAqmikgglEqOa1Ce7agkWH2+BGt207WcWDcZ6eeNobjjnRdZRL1SqpYJInDz3J/PwFugIpHowd40T2BK/MvYyMbIG2K/xDw49h1iqs2xWE266I4+DUG1wuXOVM5DBaIAAdeYdCCGLBOFpyZwG8LSWVIvjoo2hHjshtV1U5TKjZZEGv84WvywK4+4Sgqry1/Ca/8u1/wq8/9o/pX3Nfz7ZRMhmMc+ewZmc9GFXicXnhUqvJQvD2fbbHft6v1N5elGxWgmEnDAuB6OnxIB1dl66FfSgejPPM6R/l+ZbB6uQbOI0GDbtFOBhjInOMcHpn1mFBaTH10DCF6TrRhs1grUFiZAQrl2M4OkB3aoB8RRaD1e5ur6Wus3X1ttXhmNlVe+xrJZVCicflZxiLYVer3ucnUinsSgUlm2XO2SC3eG0TctsXJEKQb6wzfeW7HMspVBST/3Puz/jm0ndoCAt7fR0UhVAiTSrewzOP/TShUJQ/vvyHNAorW1w1ubVZXnjr9/jpBz5HsG6wvDqPcIfTiGyP58RYr69zNX8VTdVYOKbSKqr02hEOFVQiuRJKMkng0UdvevFlVyrY1Srm1BQik0EfGtp0FpkmTrEoL4LW17332+6oUNy2Vm8AkavbbVW0CwUQYgccg7yoNM6dQ3nsMd8J4suXL1++3vO6GeNbuZzMI65WJZNsbHjnRhEOY5fL0g0ejeIUi1huoc5el7N4UBQvx/duML4IBj0WoF73BiIqvb2Mpg/xk3Yfs+YwtVSESJ/N4GqT8Pn5za5UVZXZ4OUy6uCgLNC62dH27CzCceRg8U7Gt22iVZNjyzb6oUMEBs/eMuM74A17BLwivb2+Tuv119EfeACnWPRe755hfCEQ8bgsNndst9hnsV0Eg+iHDgHI4ZaFglfwVbNZtNFRryCKbSMATJPgBz5A45vfxF5exlpcRD96VMZmpFLy2FQURFfXZkFV0+5sdvNdZnwcB3txcVfGdxoNzCtXsHM57FJJFoeFIHDmjFxcCQRkgd00IZFAP3GC1ttvywWRDte8nc9jnj/PyAMP8NnRZ1iIW1TqRWJahGFSRMume21bx8rnQVXRTpzAmp/HsSxotWTXgc/4vny9r+QXwX352kV7QpSisDgY4w8v/nsKYeRU77U1Uk2Vp44+Qd/kKiIQYCQ2wIwxzcn0MS6sXZCP1XUQAl0NcLL7BMfMLoTWUUDe6+Rzs0EYHU6EznzDwVCIn5r4Meaaq5TWl9FHniagBag2KzwcOsLAaoPwl1/n//UDv8A/5Fd4Ze4ld0MEDw8+wv/9Q3+Xb7z8+9jFojwZqypCCOxghpQap6xbdGcyEhpcSM6kBhhNjaIfPnHDk6kIBtEGBmR7lnuyt0sl3h5pcG7+1c0WMMOQ7ZFC4Vpuktfq1xBBi55HB2jYLUq1cyRHFY6mjpB665rcV44jswxte7Mlddtr347UVIrg44/LFsFaDdHTQy2sstgfpmLWiNoVBgkQR8VaX0eJxfYFpGOpMX7msb/F9LErlAtr1IXJml0mFIkjAgEJT40G2DZFGlxbm+TalZflBHTTJBPu4ukjzzD6yCNEHIdnxnp58dofykUMd39ub129bXU6ZnbTHvu68wJOHRqCuTnsUgmRTKL19WEVCuhnzlApz7oPEFv+K8Jh7GKRcq2ACA1wPVrmm5e/Rb1ZkUNn3DbMRiHPq82/4NmHHgXRpDB9WX4W7TZNRUGoKrn1BebsDSqKiRKP72hBBCg3y0yuT/L8pedZrCziWBZhdB4b/CA//pG/zKHssZvCcbv9Gk2TUD8/L11cQ0MymxBQenvRDx3CyWZ3bUXsHEB0p1oV2zmDe12I25UKdqHgO0N8+fLly9d7XjdifHVwEOPiRZRw2GN8p9lEO3oUY3ISEQig9/bKv7tFLWwbtb9fMlGzCZGIXEzv0J1mfBEKoU1MQLMpWbOvTw7hbDaJ5NY5uuLgXF2WOeX1a14nKpEIIpFAO3IEe30da3ERxy3+qcPD0oWsqnKgfQfji0QCxzTRRkbQT506EOMr2Sz2/LzcT0JAve5dP1izs2jHjsloiIkJhKbJaJlYDPr7sRYXN93E7yTjt00kliWLs9WqLO52dd3SaympFIGTJzcd0oYhF1M0DRoNzzTjuNcx7fgK/dQpxH334bRaKPE4gQ9+EOHmW7cHwrcL6Hc8u/kuM75TLrsP2J3xnVpN7vtqVeZ4dxTSnXpdZoy7RW8lGpXRIqmULIJblrcAY+dyYBjEWnDCSOM0A9AE2MzYdppN7PV1jEuX5GccDsvc8Hic4Ec+splTfgP5jO/L13tHfhHcl69dtNfJppaJ8eLMlymkgygijFUsgqKQLy7xRfXr/MTY9xEXIYIXr3FyMM7fePBn+T/e/P9xYeVtcBx0Lcijwx/k75z4b+i6mPOet7PFase2xOObq93b1eFE2C3fUE+nOf7oo4iuHoyLF+Ufgz2Y166g9PdjBgqc/eOL/PMn/yHnH16h0CySjmQ4FTnE6tI1GsuLWwrgACvTF/j4/R/huthAieqIaBSn1SITyfD0yR+hq/fYvk7W7YFD3mq3orDRKMoVeduWYGvbCKEQTXazXF1hMjeJYTR48eqXWKutcSJznMrcdQ71HONvP/55jn3jKna1KgenGMam66XtILnBfr4V6cPDKJ/8JNbKCnOiyPNv/EfW3r7qQXJ37xjPPvDXGcwXMOp1Amd3d8xsVzwY576hB2FIFl3PV66xXl/HrtUkABoGraBK0SxSXZiRwOhCZL6+wAtv/Wc+e+yv0DVxhvFgLz/Td4iZwgwVo0JMjzGaGr1zBXC2OWa2SclmbwhUW6bJnzyJ02rhWJYcttTdjXnpErHT2c1jT4gtbY80m0T1KMLSWFFr1FtyOJXjOPLiyZTQV6+XWFFrdFkOZjpBOSpohcPotiBhKOgtGyEEVbNOsncYUX1zx7Y2zSa2Y/Mn1/6ExcoiAEJVaWDzrdzrhONd/I3Bo9xoz3rt18Uite4Ei6ezlNZtopbKUKtCwgiiJBKeG4QbwPadblUUur5jgM8WKcptD+Tx5cuXL1++7gXtxWNKJoM5M4OSTuMI4TG+XSzKIvHYGEIIOSyxUkF/4AGZA+46y0U0Kh3iXV1eRAfcPcZvZ5irXV3YKyvSQaxpOMUi2uHDmNeuYbz5JtrEBOLwYYSqog4M4KgqVjuH3C2AI4R0Gx87hl2pIEIhlEwGEY0idB3t8GFEJOLlB99MuzE+rZbkZNuW/2135bWNCeUy1sYG1vIyzsYGSiqFNT2NSCbRjx/HuHz5HWd8NE1GduTzXmev2tuLPjEhBxjGYvsuUIpgEK2/H/r7Nwc+NpuITEYWahsNHEWRRXLHQe3pwXz7ba/Qr6TThIaHUTIZ1N7erYMO70J2891mfP30ae/Y243x0XWEZW3GIQqBbZoy076zk0PXvehHhJBZ+M2mvH5oP6dpys/s2rUd2+qYJo7jyNiddqG4JgfK2oaBvbSENjh4w33VyfhKdzf6mTNYU1Ny4SqX8wZR+ozvy9e9Ib8I7svXLtorE2w+3GLdLKGILHa5LE/Cbrtgbvk6i/0fZiQzzIySo+KUGWp086tP/DLTtQUqrQo94W5ONFOkL855wNuG2L1WmNVMBm1kZEu+HgCahjYygprJ3DTfMPjEE5v5gZomJ10vLcnV6VCIkXUY0QZBG0VLD+M0GlQDUemW6SiAA1i2ydyV1/jrP/Q/oMTiBy6wesNOXIlQiHQo1XEH6fiIxFIsV5epGjWyiV7+vy/9JpfzkwgBF9cvM9E1xNTKRX5d/Db/6P7Pkzp3Df3YMaxcbktcyc32861KTaWohVW+9MYfU4gICd62LYv5NHjh0vN8duRpotX6gVbY25E2z7/xn1idveRlhQcGB/hw6gzzq1exa9UteYj5yipzzVVS7uvFg3FO956+I+93N21xzGyfHP/Rj+6aFdipzkEsIC+arLU1mYOZSjEc6qOn/zC5levewBwAbJtMZogRrRssB11z23ZtWzpqolG5kOI6jHRFw0kkOWfNU1+tyAsZTSMSjHGs+zCJukM8nWWsd4KupW+xXl/fsp3FRpGB+ABX8lfYrrpZZ2pjipnCjLevd5vAbq2uYheLLA7GeHHmj8hfXUWkUghFkQtIoz/KoYGTd+z4vBW180V3Vbul+zYG8vjy5cuXL1/3ivZifBEOS84WYgfj28vL6P39iGBQFtKCQYxLl9BPnkQcPQqGgXbiBPbSkpdtDfcG47cHM7bnwziNBramyffXLkIC2DbG5CTayZNohw/LzrgDFld3Y/wtzmHT3HTrtrs443HMl1+W93UcGUcRDOIUCphCoI6MYC0svGOMr4TDNL/1LdSuLlm8drfXaTYxLl1CGxk5sIO27ZY2l5ZkRExOGqMc25YDRnt7MefmUHt6tmSld2ae3+3s5rvN+IRCKP39W4ZiAl4UjmgvjqiqHP4aDmNdu0bg/vtp1mo4bl46tg3ugNX2goFw41hQVYSqygWSnh6shYUdmdtOo4GIx2XXw3aZJtbGxpbP+UaMrw4OYs7MYE5NoR0/jj44KN9Pdzfa8LDP+L583SPyi+C+fO0iJRYj8OijW6EzGKRi1eVwjlJJugJMUzo+XEheCVv8xbX/zOqVc/LEret0dw/z1PD3M1iKg10n+OgZnEf65Cq1O9DmRiAhgkECZ84gVBVrY8MrtKrptNeSaC4s7J1vuLGBvb6+mR+IHFLjVCoyl667W8KxYciBKpkMAMOlNbrTg+SLS1ufUFVJxbsZchJ07TEUZD/avuosNI1TwWHuG3iAt5Y33biOqlI1ajww8CAhNcjbq2/JaffAcnWFI+kjoKpMrVziyskaj7gQrz/0ENrIiBwaEwxS64ox1VylMj9NLBBjNHn7ruiZwgz54jJOrSadG4qCCAQQqkreWGGOAseJHniFfTTcz09GPszMkSGqVp2oGqYZDfClb/+fWMKRU+a3qWLW3tEV/S2OmWbTG85zMzjeTSIYRBsaktBfKBAwDJ594r/l+W/9a3Jr0vkuwmG6s2M8PfL9xM0oaA4DAZvB5DALGzNy2rphyIzLaJSB2AC92UOcX36LVDBFve62X1oWNaPGZOEaT448wUh8iBiBLVn6bSXDSXpjvVSN6q7b3bJbVAzpHrELBTauX2K2tkzFqBILRBkJ9xGPdlHrTsgCeHkFEY/L35Bmk1Xmea5W46fPfJb0yNE7l+e4T4lgEG14GGtmZuvviKahdnejxOPv+Db58uXLly9fd0N7MT6WtTfjGwZUq3Jge6slC7fhMObU1Ob91tcJPvqoF0tyLzO+tbgoi4vbhz/quhxUOD6ONjR04H28G+Oj67LoubGx+bpuEVz09cnC98YGIpuVBXDDkNEX+bzMUh4extqD8ZWuLmg2MefnvcLk7bqi7UIBq1DAWl72Ppc24+/1Pm9FIhzGWlqSsR/uoFIsC9uNvFF2cd3fbub5repuMr5jGISeeEI67dfWPMZXs1lU97NF0xDVKiIYlBnwjYaMzhkdRTl5Ut7HXWAR0ai8Fmu15HVAMAiGgTI0JIvisGfmthKLYe31WbrXFSCPidbbb2OtrXnbp/b0oGSzKN3dmDMzOJWK7MS4csXLuFcyGZyTJ9FPnfIZ35eve0B+EdyXrz2k9fWhPPmkzN9rtXBKJRKBAiwYsr3KBRF7YwOlu5tmq85CfYX8hoxLQFURmkZu8Rov1Gp8pv+TxEMx2VbZzueqVuXU6OFhD0x3k5JKEXj44T3b3m4GRU6zuaU1Tclmsa7JjMB2/vH2LLlEvJunDv0gL17/481CuKrS3TvG04NPElf2WFXep3ZbdR7IGfzCh/4eX3jpf+Pc/KugKJhYPDDwAD9++sd5ffENd3yng0A6JupWAycWQanUKFhV6XTJZtH6+9FHRhDBINOFaZ4//+/Ibyx4zoBMaoBnTv0wY6mxA7+HUmFFXgAFAl62naNpKIkEIhCgYtaA6IFX2O1CgfDyOsfWW4AKtJgcAsuxoGVAMrkjDzGmRd7xFX01lToQEO+lTnfLYYb4fPofMLNymUqrQrjSYsiIEn5zhpZloSQSDJ08wlPHPs0Ll55nsTAn90mzSV9ykE8PfAwlt87kd7/M9z/4g3xl6iss5q/LY980ScVSPD7xCUKXrtMKLjIyMcHnzn5uS4yMg8M3576J0z76bHvTuSQEutDk/ZpNpq6/zvNv/h75wqL3fjKpAZ4++SyVNOSvrMhWzvYQpGAQbJt8Wbr4Y5ftfcfn3EmpmQzBxx7DOHdO5kwqimyHjsfvbMakL1++fPny9S5rN8YnEMBaWNjJ+O1IiGBQDgsUAgIBlFBIFoyFwGq10MbG5Pmz0cAxTUSzidloyCzgGzDSu8H4an+/7JqrVjcL0sGg3E7L8oapH1S7cmilQuCRR2idOyezwdsZ0L29BM6ckftYUeQ/08RZWUE9dAjbsjbjL3ZhfLtQwJidlRnRpinfczCIPjJyW8U9q1CQAxnbwzrZyviOad4Wb9uFAk6lsmXAZ7s42y76d2bCw+1nnh9Ed5PxQbr4rZUV2XFRqeAYBsabb+K4jK+OjaHWajKmJ5HALpWw3ONHhEKSzA2D4Pd9H+alS/I205SfVTKJfuaM/Lvrvt+eue0A1tzc5ga2P1N34QNFkfdrNmm+9pqMEeoYGmqvrKCOjaGkUphXr6KdPIm9tuYNLnUMA8ey5CLX5cs+4/vydQ/IL4L78nUDKbGYXB1eWcFYXmZYRMnEsuSrm62OmCZOuUx4eJim1fQg0qlU5ElSUciXVlg4ajGxXgFNw7x6dcuACmtmhuBjj6F2d++5LTdqe7vZyat9e2drmuYOZ9krS07t7WX4coLPHvph5vUqVbtBVA0zVA8Qq2q3nbvXbs/a0pZmWTww1eSffugfcaE+Q6GxQSSa5q21t/nVv/jH/LWzP46FDQ4IBIpQUBFUFYdoPE462UvgkROofX1ovb2IYJBys8zz536PtdnLW1pN1zY2eN4y+ZlH/7sDOcLtSoXwWlG20SmKvDhqNsE05QCgdFoWpJWDT2pvD3zp1FAzRCY9QH5tdhPQXEjOxLIMB7PvuxX9ZCrLKUul+Y1vuC6GDbm/i0XsQoHQxWt88PgZrEMNyppJvVIg5OjEtSiPpu9jpZHHScaZX7zERw99H9bRj1EyKmhaAMc0aFVL4HTh1OsYly8TO3t2S4xMuVnm3Mo5BmIDLBRm5cKVu/gQDkQ5pGQY1jIU15d4YfJFOYw0FvMu5PJF+fcHT3xculEMY4sbQ+g6QlWli795sPicOyG1uxvlscfuasakL1++fPnydS9oO+MLIaSLutrR9eUyvtLdjTowICMPxsawl5e9rHA0TRZDbRtrZUUWeF2JWAwhBHo4fNNhku8042uHDkkWaQ99dBywLNSenrvD+LaNNTuLfuYMHDsmc5dDIexajeY3voF+6JDcjlJJuu0jEZy2C3hwEKWvj0BX1xbGd5pNzHa+ecd11X73+16yKxXstTV5Hdfme9jC+CJ8cL6H3RlfBAI47Yx417TT1p3KPL/XpLoLL5uMzxbGZ3oadXAQsbGB0tODcekSIhaj1ptmIWpQaVWIiQjDpRyJU6fQjhyBZlMWzOt1b6GnzfiBs2e3fNecZhNrRXZoOq2W3AY3ThFFQYlEQNOw1tbk939oyPts7GpV/hasr6Ok02iHD8sIlc7s8XAYta9POsrrPuP78nUvyC+C+/K1D7XboKI1k6fGf4gX5/6E1eVlzz2Riffy0NDj/Nlr/wVrPY/a3S2dnrYFclQNtQBohw9jvPXWJky5sjc2MM6dQ3nssQOdjPbKN4S9oelmWXJKLEbgwQeJvfQSx5ab7vtooKTDBB79wG3nmnVOD++EZCUcZqimM2iMYlyqsnomy+/Mv0ylVWK5tMSJ7hNczF3EwSEd7qJltrAsg8MD93Eycxx9oAu146Q+nb+2owAOgGmyNnuZ6SPXuG/g7C1vv7W6ymARMok+8uUVlGRSXhC5hfCuUBfDwSz6yNFdP9PdMuW230/ounTjdAxNiuQrPD36g7zg/BEFffM9ZWJZnp54mvTw7q93L8iuVKTrqtmUE9N7evZ1HLUvcrYc382mLCi7eX8j4T66H/pxrk+/QS3RIqpHaBTzLC5exuhJ0RftZa2R5/L6JJdXz1OrFBCRCNg2vQ92M5TJMtSUOZTGzAyKOwxKSSaJB+M8NvIYOPDi6/+RRVteaIUDUT4y/Bg/OvD9hKbmuZxosLY0JY8B1yVOKISaybDeKmKHAvK9ax2nXncolNNoEFOk88oxDEqVPNOrV6k0S8RCCcZ6jpCI7d0tcqd0tzMmffny5cuXr3tJbcZ3ajW08XHMuTnoYHwRi6FmMljT0xjT0+jHj2MvLW0WytxhiSKRwLx2DaWDwZxKRWYgZ7NoBzy33jXGf+ihzUgYR3ZYKpnMHcnW3pPxIxGEZeEAxvQ0BAIyCqPZxLYs1KGhzQKi44Cu41SraOPjqH19cjhnB+NbhYJ8jY4CONz+fm9nPONyoMf3IONv4nG04eE9efugjC9UFcV1OxMOe10Adzrz/G7orjG+pqH29aGfPInx5psEzp5l1szx4uSL5OdXZCeHaZIdO8En7YfpPz+PU6+jnz6NefUq+oMPonR3g3scbmd84XYNCF2n9eqrWwrgam8v6ugo5tQUIp3Gzuex252cQsiB9g88IBfKEgnM6emtUZXuIoddLMoZTsjfm4Puq9uVz/i+fEn5RXBfvvYhr93NcRgqK3z28I8ykzxLpZwnKoIMB7MsFCtYtpxibefzMqMukZAnSkUhnurB3qjI1eJdspztSuXAq8O75hty+9C0pV202ZQnz2z2jp2oO9s326vSIhrFuHAB6nX0EyeoBuv8Nw/+LBvNAn969cv81EM/A47DWi3H0fQRpten+Mjgh/i5R3+O/pETO16jXM7vLIC3ZZpUKuu733YTOc0mkXyFp0Y/wYszX5aF8GgUkkkysR6ePfvX6Bo9sysg221ob18YCIFIJFASCZxWaxOIUimUeBwsi7JVZ14tU7FqxCyVv3bmxyl0R6gYFaJqmJHYIMlU760PL3qHQMxcXt7z+NT6+m68jdsGLHkyDPkvFkMEAiRTWc6MfYDry5d4/rX/QC43i2OaGGth1gItPjjyKC9f/SI5u4oVcNCEwXh6lHqjzHNv/Ec+k/0BQlfn5EVIJoM2Pg7T0+jHjjGWGiPVVDj9cD+LrTymbdKnpRk3E0RLBkSguDq/tbUY+dth5fOIcJioqdClJ9gQjc3PyZ1en4llGWxFQAhmzRzPf+U/bUYrAZn0AM8++lkO9R2/vQ/Cl699aD8X8L58+fL1flAn4zvlshwKmUxKM4u7mG28+qqMDdA0zMuXURIJlLYjNBxGHRig8bWvyefanuNcqcgi7QGLT+9nxhfhME65LB21S0uyAJxK4dTr0oFrmohEAv34cekU3yZv3+6i29nvTrOJnc97Q0vbfI9ty4iNBx/cM8bylhnfNGXRvVr1Ojy1sTH0o0flsNMTJw78uaxUVriweoFCs0AqlOJkz0l6Y3e+CPpOML6aSuFMTLBx+S1emP4DOZPJNOX+HBhgdfYyLwaW+cnujxIpaNilkhxAHwhgvP46IhDAyuV2ZXwllUKp1VBHR9EOHZLdEcEgQlFwymVEJIJ55YpcsGlH1AgB0Sjm9etyOObKCvbqKsqRI7KjxDRl7IjbFdq+NnBaLRpf+cqB9pUvX3dCPuP7RXBfvvalLW19jkM0X+FU4gjmmpB5bmmTAT1IJj1ATgjs5eUteWGZzBCDRhSM6o7Wt80XUW5rwMrdgtl2u+jdUueqdLsgK2Ix2RJp25TqBRanv8tfO/LDOBMKTbvFP3zil6hbDRY2Zsme7eOjsfsYDY/u+vwxLSIznFVVTh53HNleKAQYBlH1YNnmws1yHlio8JneTzA/0vCGVw41Q6S17j0d4NvhmHCY1ltvSbdRKgWGgbWwgHbkCPrEhMyZfvtFWRR1HEQwSM/YcZ4Z/jHuO/SBA20/3B603orsSmXH64DsgGi99BLKk0/e8Bhz3IFOe7+A7V3EVsMqX1z8c/KVVW+QTsCwSOgB/nztZRKxDBcXpctoODzMid7TXFm5QKRQZy6zztF2C26lIqe7j4567ZMxQ2EipzBBT8eLS8eIY9tETWVLPI0IBGQrdbWKEgoRqrd4qv/7+OLGd8hpJXkfIcgk+nh69BNECzWqQz08f/73txTAAfIbizz30u/y+Sf/x3fEEe7re1d2oYAxOSlb400Tp9Wi1hVjIWZSVS3ikdQdGSzsy5cvX/eCtjO+k89LV+fammR8dzim7Tiow8OYb74pByaCdPGGw9Ll6RbOdtW2bOdb1fuV8Z1ajda5c6iDg9I4ZNsyLsWyZC72wACO4+y9jaYpYyjTaS+SBlWVsRP5/IH3e5vxrYUF1GxW/n/Lks/dbMrriV20K+NHIpiLi4jlZcmyQmDOzqJPTKBPTNB87TWZ3+6+ppJMoh4+jAiF0MfGDrT9AG8sv8E/e+mfMbUx5f1tPD3Ozz36c5ztO3vg592ud4rxnWYTa2aGhVCD9WbBY3zHNLHX1lCSSTZqNZYOpTlhHcFcW0MbGsI4f14eT5XKZszOLoyPbSMsa/OYqddpW1oc28ZeX5ff9zbjx+M4jQbO2hpqMinnfBkGdqEgj/F6Xd5XUWTnqePISNTtrvdb2Fe+fN2udjB+syk7bPr7EY6DiES+J4rifhHcl699aEdbX9stMjGBmkphV6ukajWeif8YL1x+gdUOZ0Kma5Bnjj9LTA1D2N4yAMWTpiFCoX0PWNkrKuFuw+zd1I6CbDuK4nAXC/OXGYk+zJ9e+xNWC4ucGHuIRKIbXQ9xf9/9JMXeuXwjgSyZRB9rc5c3WxmFQESj9IweZyQ2eKDt7WxPjayVOCb/CrRQ0tE9c/t2OB5CIYxLl1AzGczZWZkl6eZNm7OzmE9+hBcX/4wNpYmSTnuLKLnl6dsqit4utN6KrNXVXdt4269nra7e8LXa3wsRi+3q+FFiMe/znynMkK+sSTB2B1gKIQgJFcus8cSh72MwMYRuQ6myztev/hlaw+D+1HGq7UUqF8bbr9XO8Lvh97PZZKgZprv3ELmV6xJ8AwGZbek4ZBK9DJIieG2Gn+j/IEsffJJKtUgUnaFmiMhCBWVoiIWEQ/7NuV1fIr+xyPTqVc74RXBf23SnXB1OsynhGDAuXMDO5Vg6muXF83/KullGGx5GiUbJpAd4euLp2xos7MuXL1/3gvbD+NroKObiImpXF1Z/P87iomSFUAgRjUI8jggE9mb8W+CpvTr03o+Mrx09Kgvi1Srm8jI0GuhnzqDE44iuLkQ0Ks9pe2VvB4MoXV2YU1ObAyxVFaW3F21k5Jb2e6c6Gd9eW9ty242yuXcwfjgsBznOzuIUi14Mn0gkELqONjEBqoo2NLSlyG6+9Rb27OyBWXylsrKjAA4wtTHFP3vpn/GFJ79wxxzh7xTjt/dtJdjYyvi6LhcRhMButShX1jGmVyEQQPT2Snd2Nis/l9tgfBxnM5ao2UTEYjIWyS10o+sIRcFaXUU/fFhub60mv/+KghKLoQ4M0PzGNw68r3x9b+quMf7qqrzBNFH6+wl84APYk5Oy22Vi4n03Y6xTfhHcl699are2vvZACWtlhdbCAv0rLT4z+GkWjnyCcnGVqKMz5CSI5Mo49RWZG1YqbYUFTZPDKuLxff3YXF++xHPf/h1ya7NeJll3zwjPfOAzjGrdB/6BLBZWmVm5TLlRIh5OMpo9RjL1zgxg2bMgWyoxUIjTNXiY2clXeWLww3R98Cj/dfIPmV54nQAazcV5LqSGeTb5OQ71Hd9yoiAQIFxu8unMh3lhbY18c0k+sePQpSX4dNeHSUS7DrTNB21P3eH2d1v5zDYghzed6fbqKtOLF8mtzMh2OtjiarmdoujtQuutqJ1peNDblVQKZmZkVufU1BZIVtJp9DObsTMVQ049d0xzc4ClolBUbGpmganVy7w6+xIYhtdG2TKalJQWUTWMiFib+xpkOyPyc1N7enYOemorFCKyUOWp4Sd50fkT8qUV2UYpBJmuQZ46/CmiuSpWLEZkYY3DS3m006dR43G5HYNh9CNHqMx9e/O1XcD38sU1jUqzfLPd7et7TDtarwERDh8IYO1CAcdxPDiuD/bw4vyfki/I305rZQUnmyWvrfLC5Rf43NnP+Y5wX758ved1U8Z/+20UN+Ig+NGPyo7PSkUOu7MsnFIJ/cQJrOXlrRF8moY2MrJndMZ2mcvLtF59VQ4EdPlFSaUIPPAAQlUPzPhWoYC1sgKNhoxvyWZl5+E7oBsxvjk9jXb0KNb166j9/WhHjtB6802c11+XHZxu4VBNpdD6+nYwvl2rYa+uSsOB92Yt7NVV7EgE5eGHD7TNd4rxha7LoZ3tAn07EqNUwrh0CaWrC+v69V2f63ZY/MLqhR0F8LamNqa4sHrhjhXB3ynGb+/bmBbZwfhOvY6jadi1GtGaJR3ahQJ2T4/MFncXGEQodGDGRwi5gBGLIZJJueAlhDccF8NAJBJQKkmXeSfjhyXjm3NzntFpN8a/2b7y9b2nu8n4gHcM2ouLGBcvog4OYpfLXofE+9UR7hfBffm6Be01UMIRAiWdxqnXiRmCYw0NlCGUYEC2tp0aQe3tlavZoRDGuXPYFVmsE6EQSjwuswZv8kNTquR57pv/mrWFK95JFGBt4Sp/8Of/Bz999qeIrBTk6ncwKAvrySRqJnPD556ae4vnvv7b5Fanvb91Z8d49vHPMz58313Pjd5RkA0GsTc2ELpOaHKapx96lucK/xrbNviDl/8ti7nrRGIpRrpPEDBV8uUVnnvpd/nch/8W4al570QholHsSoWB5To/2fuDLAzXqNoNokqIwVaExLolM5zfwTzFHU4Dw0CJRLCmXFhtR7a4qtSL8gS1m7sIDlwUvV1ovRXd7Ljez+36sWMYk5NoozL2pg2V2vDwlovLmC6zAzEMCcyOI4fdWC1oNslE5X0dw5D7GhCKQiqeZciKIbTq1td2oVToOiIYpH5okOnpNyjXi8RjXQzr3cRaAqW7G3t5mcGlAp/p/UEWhmpUFZNIxWDQSRBflk4TbXQUc2YGp1TCKRRwFEXCzNgYSixGLJjw3p8H+G0pCjHtYPE9vu5N3e5v647W6/bf6/UDAaxjGGCasu3XcViImeSnlzZvbzRk+2Sjwbq2zkxhhtO9p/f9/L58+fJ1r2ovxl8VNc6nChTq66T1JMfydbqDcdR4XDJ+Oi0fZ5oY589jbWx4xTk1nUY/dWpfv8N2pULr1VcxZ2a2DN3ENGl87Wtohw7JAuEtMr4xN0fz61/fLHoASjZL8PHH0YeH31XGt5pN9PvuwzQM1ESC1muv4ayueg57EQzilMu0XnoJPvxhrKmpHYyPokgXcaPhFRRFKCTdwu8245vmZgEctjC+UypBrXbDbTgoixeahdu6/Vb0TjF+e98O2XG61Dg5o+gxfruYnUn1M2hEcGp5L55QhELSpQ07Yle2M746Nobx5psyTzyTQQmHZYZ4Tw/28jK2YcholVbLi9gUXV1yOGexeFPGb++LvRj/hrEwvt5zutcZf3vNwVlfR4yMYDcaclHpgLPq3gvyv2m+fN2mzIUFGl/9KnY+LwHMslCyWfQzZ7AWFgh+6EOo3d3e/dXubpTHHtvVbXIzTa9M7iiAt1fAc9UrzJ3MMaEEMK9ckXAVCMjhH/39BM6c2XXFsFhY3VEAB8itTvPc13+bn/n4/0DgpTcOlBtdbpaZKcxQMSrEArE9c2S3QF4ggNNoSIANh7HzeQbmy3z22F/jrXSd1166xKmhs8StAIGqCaqDo2nk8vNML1/ieF3dfF7ThFYLO5cjlk4zUQ+CrbuRIhZozm3lsMOt5yluyZ4EaGcYgnQTbFMsEN9ygtpx+wFdmLcLrbeizrbS7bpRW+mW+6VSBO6//6bfm9HUKF1KlNVQSDqemk0cRSGASjKYZCJ1jLfCr7DYmJXFclVlIDXMsyeeJXa1jg20kx7bbbQiHEZEo0zNnOO5l/8t+bocfGtvbJCJZHh64mmGpkpy+rwQRHN5GY8TieJUKqh9CZmDCTJfsrcXcfgwan8/ajK55X2MZY+QSfaxNje59XuOHI45WNNpXb2KUNV3bJq8r7ujO5HJb+XzWG6rdn4gxWVWKDZLpIJJJrR++m8RYIWuy0FU7m9OxW5su4OQjir32KwYuw8k8+XLl6/3g95YeI1f++qvMpW/6jH+ePY4f/vMz3Jywd7B+IGHHz4Q34MsFm8pgCP5w1pfB9NEGx4GRbklxrcKhR0FcJCdhs2vfx3x8Y8f+Dy03xb9mzG+vbaGMjCA2t+PcekSRKOb85NME0fT5LlueXlLMchj/PV1GReYSnmLD9593mXGdzo5bhfG3zND3tVBWTwVTN3W7beid4rx2/s2srLCp3sf58XGn5AvLslCcyBAVyjNU/0fI3J1DWIx1MFBRDqNFo+DomCvr2MXi3syvjEzQ+u734VAAHVsDGtqCrPRQOnqwi5tMr7tDrtH11H6+1H7+vbN+Go2i5JMbnGEAzL33o1eMqanZUbz90Au8/tZ7wXG31FfcOeled0Kt/n7eS/LL4L78nUbsisVmt/6lgeX3gpvuYw5OYn+8MO7DmXZy21yM5WrGzsKY4BclXYcKkYV8/rCZltgqwWmiTk7i1BVAg8/vOOEOrNyeUcBvK215SmmV69w5BZyo9tQPNNY4cWp/8q6VfZWtrvCXbvmyHZuk9A02bLZbKL09OCsr4NhEF5cJHA4SN+GiREWlPQqRkAhIDQStkPAgkq9BKS3PJejqnL/1GqbWY3tz0RR9p3D3vne9gP8e91vR/akpkEk4rXpdR4vIhRiWM/Q3TVEvrq243Uy6QHGskf2vf2duhPQul8dtK10u/bzvYkR4NN938dzc/OsRw1IJhGaxuFYhsHUMOe/8yUeH34Ycfhj1GslQo5KIpDg0KV1nLq8yLQWFhCRiJwcb5qoo6NsLFznD777L8nn5hCRiLwotW3yjQYvXHyenzrxY0QLZUQigT48jFOve4NwzCtXPOjGtnHqdbSREfTR0R3HTyKW4ZkHf5w/qMrXaivTNcjTE8+if/1lrOPHsebnUbq6CHzgA/I5y2WZOxiP++D8HtCdyOS3CwWshQXsQoFLJ7v49dd+lWvLF70hwOPZ4/z8E/8TD+7xnXGaTax8fsuxo0Sj8rh1uyRiSmjzAarqDR1rFxliur8I48uXr/enVior/NNv/X+YWr0MbLLq9fIMvzH5u/zjh/8efdsY/6B8D0hnaEcBHJCM2Gx6jj3z+vVbYnxrZWVHAdy7bXl512i8/TC+3WhIV7ZleYy/V4v+TRl/dBQnn8dxB8NjmpJr4nHv+UUotMMN+V5gfBEMyigNw9iV8ZV0+q6w+MnsScbT47tGooynxzmZPXmg591N7xTji2AQ7fBhrOVl+q/m+Mm+j7MwbFCLaMSCCfpnNohMrqC41zfW9DTm9DRqf7/MBU+n92R8Y34e45VXsHM5lIEBWq+8Io8pRcGp1dDGx3HKt8/4SiyG/uCD2NUqdi4HyIUSJZWSQ1K/8Q3048exCwX048dllnmlcte6NHzdHb1XGJ/OAb/tyCFd9xj/Vn4/32vyi+C+fN2GrNVV2VLSVkeB2l5dhVoNJxLZ8/F7DbjcS7tmr3as5sWCMZzS7NbbbRssC2tjY9e2lnKjxJ6yLBnHsYt2y6pr51ZVFJPnZ54nX1n1Ms9FKMR6fX3XHFmvIFur4eg6+qFDcrtjMZS+PpkJ6DjEkyHKXREur09S36h4wBsOxjiWHCcWTsC2zkJHUWRG2/bVTE1DTaf3nae1ayaXrqO6rXttELYrFcy5OQlI7bY2x0E/dsx7re3Zk45tY+dy2MvLm88dCqEODRFrCZ758E/z/Cv/jvzGond7Jj3ADz/62QMNxYQ7B6371V5tpULXZc7wbQ77aMsuFBhqBPlM9geYDzaoWnVi8QwDGzYb9SYr6SxLy1dxrlZwGg0y3cN84uhTxAwTx7ZxDIPgRz8qWyM1TbpDLlxgLlDYLEprmnSZC4ETCJAvLDJnrnMimMIxDJREAtHdLeFBVeWQrVoNp9XyhuCq/f17vs8RtYufPvvTzJl5Kq0qMT3CQAFCL1+SF4eWJSfWh0I0/vRPpbOqUkG4LcH6xIQcYPg+HmjyXtftZvK3WyRRFDbGe/n11/6ZhGOQx4eqcm35ghyAFe+jLzm05XizCwVab72FXa3K3ynLkjmxvb2ow8PS2TQ/z2BFI5PqJ19elc49N/tShEJ0hbsYTY3e0f3iy5cvX/eKLqxeYGr96uYfOhh/avUyl2qz9Eb2LlLeciv8bk7hTuOLrm/Nvm7ffgPGp7Gtm6dTlrV7/jE3ZnwURUY+VCpbGH+vFv39Mr5IJje7jdrvzZ3f4liWdFhviw+55xnfNAmcOiUXLzq2XYRCaMeOoWYyd4XFe2O9/NyjP7djOOZ4epyfe/Tn7lgeeFvvFONjWaiHDyOiUZKWRVJVIRDCvHIVe30DpbcXbBvz7bdxCgUIhbCLRZRMRh5HezA+gYBXlPYiKl3Gp9HArlZR0+k7wvhCVdHPnpVdDu4Cl10uSxe6y/h2pYKVz9O6eFEek6Yph2veopPY17uju874iuIx/v+aGqEvM7z1NfbJ+ID8zXW/m2ia/K11O3Xez9eRfhHcl6/bUPvkteftrdaeq2jXly/x3Eu/u6Ow+eyjn+VQ3/FdHzOSGiXTPbzFIdp+/e7eMYZFeueD3Ew03ALfdsVDiT23XxbW48DuudOdLY6duVVz0aosgAOYJlYuh9rXh9A01us7c2TbBVlzeprWG2/I1h8hED09KKmUfO4LF8j0fpiyaFE3G5vv3XGoNyuURYueaBby+c1tqtUkBOs65vy8dNOAN6hovzmN2zO5HNPEqVax63WsfB716FGoVqVrIJmU93OHJaHriHAY48oVAh0DHLc7HkQwKHPoikXQNJRoVE5nPnqU8VSKzyf/R3fBpEwsGGcse+MFk/3oIHmHt6PtbaV2oUDr/Pk7MuyjrXYOeLRuc2ytBaiwUkIdHCSaz/MTiY+yNB6gtDJLLBBjyEkQenMay93nTr2O4oICuIMAazUqdMQ+tC9KHcdzxlbNKpCSUB0IoA0Nee8R2/aylLEsbMPAWl5GaNqu71PoOtFcmeMEgADWxgbWzIx7o4BYDO3IEay5OZxqVeYhVqsQDkOlIo9VxyEQDvuO8HtUt5vJbxcK8iI8GuVysLQJx7B5XCoK15YucGHlPF3Xc973qv176pgm1uLilqKK1d1N4KGHCD7xBMZrr6Hk8zx9/FlenP4j1mt51IEBlFiMTDzLMxPP+EMxffny9b5VoVm4IeMXWqU9Gf8grfBKKoVIpWTxzvuj68hLJnePxrsJ4xMK7fxbW45zQ0bYi/FFNLo5vHAb4zv1+o5i/H4Zn0hE5isXClCvb+57NyqC8NaZKO8449friO5uWex0C1GOECiBAMbkJIH779+V8ZVoVMbarK1JDtQ01J4eAqdPS3fzXWLxs31n+cKTX+DC6gUKzQKpYIqT2ZN3vADe1jvG+O4x5h2DiiId3qGQnL3T14dVLEIkIhcuNjawarUbMv4W7cL47WG3d4rxHbfgblcqksPa29DJ+DMzchCnomC7jH8rTmJf757uGuM7zuZ5QFW5tnSB80tvklXj3rF2K4xvra3JWN1GAzQN/exZnFxO1h/2MavuvSy/CO7L121IBIPSFaoou8aU7LWKVqrkdxTAAfIbizz30u/y+Sf/x10LnMlUL88+/BM898q/21II7+4b55nTP0pko8oWBO4cprhHW+Bo7wTd2bFdI1G6+8cZshPA4o7bgB3OwjboVMxtQOEOUmvnr+2WI6umS4Y97wABAABJREFU0xhvv40SieD09kIoJFt5rl/HjkRQBwdZy8/x2OCHqLeqLBbmvccOdI3xkfEnyFVWyHT+rDkOTqmE6OoidOSIhAzLkq6TmwwS6lTne3MaDexCAXN5GRoNLJDuHNNEHRjAmJzEXlnx4Ewkk+jHj6NmszccMKH19qI+8cSeeXiJWIYzt1n03k23mnd4p3Snh320JXTda130pszbNtbCAtrJkySrVVI2GOs5HKOJU7kugcKyZHSKEFsuJL1p9IGOfdSRN9mGkagWpf3la3/PnGYT4/x5jOvXPYBuy1hfx7HtXQvVO3Lj248VAmVgALtcRgiBtbAg74/MNnQqFZmlWamA2677fh1o8l7X7Wbyt49Lp1ajGG/IizTL2gRkVZXP0WxSaJZw6gnve2UXCtiWtbWt3pWdy2FOThL44AcJffzjWCsrHKrX+ZlDJ5kXJWqKSSycZDS1+3wHX758+Xq/KBVM3ZDxU+HUrox/0FZ4tauLwP3303rzzc1CuGmiZLOoIyM7Xdv7YHy1txclm901EkXt79+aWb1NezG+s41ntjP+bsX4/TC+eekSgbNnaV26hCOEt8/bc5aobLt2eCcZ37LQxsZoffvb8nN136OSzRJ48EFQ1T2ZS0mlCD7yyI3zru8Si/fGeu9a0ftGercY36lWEYDS14djGPKzchy5QHIDxhfbvkubd3ALjh0DK+8o49v25msoivyeu8extbQkneW6LheeqlWIRvflJPb17uquML5pbjkePcZvFLZ8p26V8Z1aTQ5bDocRto0YHLylWRbvVflFcF++bkNqNouayWDZ9o4pz0o2K50Ru/yITK9e3VEAbyu/scj06tVdC54iGORQ33F++uGfZa6xLKMSgjFGYkNEFtawGzVEIrE5MCedlif+G7QFJlNZnn388zuGY3Znx3j2sZ8h8tYs3rtSFBQXLNur4W3XgmMYiHicXFxQaG6gDw4T1cPoTYv1lektoL1bjmwbQu1CQTpENA1naQkiEZxKBWVkhLK1xMybX+PxYx9AOfFDNIwaITUELYP5mbc51XN6a/EQ2XKoDw+DpmHV69Kd3WzK7d3nD7x3MjJNrGIRe21ta4upYeA0m5hXr2ItL28ddlIsykE/inJT58PtZEm+19R50bFduzmJ9tL2bEYRjcq23HJ565R5TZMXKaUSjjvUcouryj3m2sDZfm6n1YJgkOFIZnOxyDTlMCO3EySTGmBY6wLD9ha+7EoFc2EBc3FRFq0DARkl0d7uGxSqd82NB5TeXtS+Plovv4w+Nga1GjiOHOYZDsu8SdOU8Shu26eve1O3m8nvFTsch5SekBdwnYUaITxXXCqYgMrm98oxDJlzWSqBprFxfJgr4QobRpl0IMGEE6GvUkHp7fUusrrcf758+fL1vaKT2ZMczhzhmj25g/HHsxOc6juzK0cetBVeBIMyKgQ3H9w05fC9dBp7dRW7Xr9lxldTKYKPP75jOKaSzRJ87DGMt97avPM+Gf9Sc4HCCUFKj3OsFiM9vbpl3+xWjN8P49vVKs1vfxv97FnUvj6cYlEWoA1DFsgfeUTy+7vA+CIapfXd78rIjI73Z6+u0nrtNQIf+cgNmet7ie/h3md873mrVUQ0Kl3j3d0ymrLd1VssyseFQijRqHyaO8z4VCqS14RAHR2V8Swvv4w+MQHVquzkUFUZ6RKNbjL+TZzEvt5d3RXGDwbl76x7vHQyvpPf/E4dhPG/F+UXwX35ug115ipb+by3Sqd0dRF87DG0np5dH1dp3iCHG6g0d48fAbmC3BUOkyr0bnEUMDQuB+AMDWFeu4btnoD30xY4Pnwfn//kLzCzctmL2xjtnSCZymIGs9LRUixKp4Y7uV4dGpJF34UFebIG3lLX+PVv/AtW62vM1pYot8oc7p3gR44+y3plDQf2zJF1DEP+qGuaHPbjOLKo02hIt0soRDzYhR0Osjj9Nmp52yKBphFP9RA4fGKH28LK5eQA0/V17zXaOXz7yVUTrtPbLpclXDcacvvarZqKghIMbrY6bmufdYrFzew3X8DuTqFbuR32yHCMRFBHR7FmZqRroi1FQc1ksPN5HNNE6enZhGQh5LEWCKCm04hoFHN+Xj53rYZdqxG8ZvD06Wd5QTxHbnVGtliWSnQn+3nm5A8Tqztem6flur2Em0XoFIs4miZzBDvcJjcqVHdmSqrVKlZPDyIWo/EXfyHbhNtOFUWRx1aphDI05LVUio5ivq97T7ebyd/pJDoeHGQ8c4Sp5YtysdFxvKzS8b4THA8OAfKc0/5dxLJA05h8eIhff+tfcW1lM07l8OBpfr7vf+JBDt/5N+7Lly9f7xF15ipfy1/1GH+86wg//9j/QF/P2K6Pu51WeCWVInDy5A6OZfzgjK8PD6N88pPeQErcgqzquv1ulfGn1i5LN7iicGT4DP/9ic9xckW+1l4dsPthfKWrC6dex5ycRIDX7Qay201JpVDHxt4dxg+FMJaX5bZui6WxV1eh0ZCRNb6Ae5fxlVQKxzRpfOMbsntB17HW1hDhMIFHHpELHcvLaIcPY87NIRwHdWhIFrnvAuNb+TxWT4+cSSQErb/4Cy/Orp2P79Tr0gmsaV4Hwvvdpfte191g/GuL570i+G6M73U1dDL+I8P8qyv/iZnKHKZjoQuV0dQoP9v3333PM75fBPfl6zal9fUhnnhCwqVte24Iu1LBKhRQd4HBWPAGOdzg5nDvrb0cBdrICE574nqlApZFLq5wsTZDcenPSW2kONmzNQ+uvRoeNQxOpSd2DC3xsupyOYyLF1HSaUQ4LE/M7gnauHaNXEzwG2/9K6bWLiOEwnhqjKniNNdWLvNfeI4fOfVXcBSxZ46s0HWw7c2V0852NMsCVWWwJOjuGiS3Mr3V9ahp9IxMMJY5vGPfmGtrNL761a2toIqCZdv7z1XTNJxqVU7obrW8QUSoKiKVwq7VUNortG2w3+1z2+Pv34u6WYH2Zrfv2mrpro5by8soPT0SFAKBLbl81tKSzAw8dAgT5Eq5olAfzrI0FKeWaBCdfpn+1SaRhbVN4AiF6Ht7ns8c+8ssnG5SbVaIp3oYCfcRrZqQURHxOA7QevllKprFYqpFyYFoT4bBskp4tSC/X65b5GaF6vaxrCLB35yelu5vwC6VEJmMvAhotdydImFfxGIQDL6vB5q8H3Q7OaCdTqLMSpWf/9Df4Z9++9eYWrrgDWoa7zvBz3/o75JZ2bxQ9NqwYzE2To7y6xd+m6n8FQ+oHWBq/Rq//spv8o+VJD1EvWFu2x1Ztz3gypcvX77ucZ3tO8svPvGLvLXyFuv1PGk9wenIIQYq4T0Z/3Zb4W+F8QmF5CDApSXExsaO4Zudv9tqOv3/Z++/4+S863Nv/H236X229yatpFVzlW25gbEBB9sQkudJCBAghZwkkDw5Oef8CCcJJASflIcTIKTwPAnn5OSBJByKZYeAKbZx76or7Ura3ndmp9e7/f74zszOFsmSbMuFvV4vvSTN7szcc89dru/nc32u6xXh+CD4i20YnJk+yl/Z/8Bn9v1HGgvyOX1kL4Tj29msUH6Xy2tCQquB39Wi/WvC8auvcS6Or+tbnKsOrzjHlyQkjwcAc3oapb1dKPLrG0Wcg+NTOacaGpBCIYqPP14Lk6eyPrBSKfQTJ9CuvVbwbNNE27VLHIdFYUdRz/FRVaRQCMW2URobsTIZMeFxkRxfbWtD9njQz5zBmp9frSHkckiNjcIWqVwWVoeV9ciFKIm38NrjFef4T/x3zs6dEHx9E45fPdZWOX4P/zD1DR5deIpMMQWAJmuEw638YP5xpvUYAWegVhf6SeP4W0XwLWzhZcJKJjFOnwaXi/JzzwkipihifCoaxXnwIFpX15rn9DQNEA23bWqJEg230dM0cMnbIzmdqM3N0NzM4YXD50wG398iVKb63BwUi7ULNLEYWlvbGjIn+3zYuRyy240tSZgrKyjNzRhnz4pRMpeLk7s8nJk5huRwYJVKpJKLdHlbkYJdmKpKX2SAm3tu3rQAnillmDDnSTUU8XqgPdyBJ1sWATmlErLfj5VI4Emnuav3Nh5wPErSK9fIaDTczruHfnrDa9ulEubCwkYvxIp9jRmPX1BCs3H2LEpnJ0xPC8U/CEIWCKB2dqKfPo3c37/aqV/vsaiqSB6PWFhsAdjE97oOF5JIvWHUUpKQ/H6MsTGsdFos5BQF2e9H27OndiOvkgorm0Xdtg1JUZjx6Tyw+CiJRB5zdBmAcEnhru47aJsVfoN2qYQcieBdWGFo927U7e01b0OzXqXS0MC0u8QDMz9iIZ4nbeYplXJ0BDr4P694O91nVpAU5aIL1WpLC1YqhRQOg2Fg5XJCqTI5KQJ2KueCHA6jDQ6idnbWPvNPGrF5vSOdjTO6dIr5/CIO1UlbsIOe9r6L9tiunxbYq+v8t3f+BSeTZ0hmYgSdfnaobYRG57E8HtEMqviaAqjd3ZxmgrOzx8AyK69YaaAYBqfHnme4d5jrhvPimLrySqz5+TUBUi834GoLW9jCFl7vmEhOcGjkEMsL45hTU9j5PKeCrdzVeRvtL6o4r79+A8d/uaPw50M9x3+p8M1Xi+PbpZLgMaoKksRYZopRZ4b2wVs25RZ2qYRNxXc5m0VuaBCcbR3HB8A0Ubu6kFtbhc2bqoLTuYbT1L/u5eL4anu7ePxcHD8Q2OJVdXhFOX4dv7ezWWzLQp6ZQQ4EahzknBy/0rCQo1GM+XmsxUWsuTnRyPB4kCrvpTQ1YZfLyIqC3NoqFOMVjm+v4/i43ZjT0xizs2JyIJsVjZq+PozFxYvm+HIohNLQIM6rUAgsCyuTEYX8sTHslZUax69OOJyr0bXF8V97WNmsKHzn86LJEgyitrdf9HeygeO/4y8YXjlFspAk5Ays4fiy1ysmWSRJvF93N2e0WR557iEyhSQgCuC37/opHpl+jAfGvssd/XewnF+mL9zHx678D+xaYM10xZud428VwbewhZeBaqcat3u1AG4YwiNa1zFLJYoPPYT0znei1pHegC/Kuw98cEM4ZjTcxnsOfHDTUMyX2o71N8AlPbmhAA4wlhjjC09/gc/e8sdE5lKUn3pqg0+gdN11aOvCPGxdF355sRhyOCyKb5mMSC9WVRJ6Wnxu20bSNCzDIFtMQ1lGtj2UrfKmRZ6J5ATfOf0dIu4IJVeBjLFC2B9if3sfPbKMlU6jNDZijI8jeTx05FQ+cutvMyNlyOpZfJrvnCFt5/Okw7IuyKLESibFjUySUPr7kVtbxcilZdWUA9i28Gr0+5Err2lXAuqkCqGSvN437Y3kUrDB97r6eOWme6GhIbXneTyiAF75vmynEykUwjZN9OPHsXp7RVe+jlTYuk5Ws/i3M98gqRnY2bIYNVQU4ull7p98kA8034FnOb0a0FQ37rhZ6E/WLnL/2HeZ0DKMxscooIOuc2Z5hKnMDJ/Y8+t0zZfQtm/fdFF3PsihkFCcVD6jMTqK3NKC3NEBmoba3S1+p25BsOk46Zuc2LyeMb5win96/is8NvkYBUN8J23BDu4a+mkO9txET8PFjSfWq+JagdbmfqxkktILL2CceQGpvR1jdBS7WESp+F0qjY0oPT2kjFxNNV59Lbvic48kkTIy5FsamXEWyZ39MYHWLjr8YXx5ozaWq4+O4ti3b2vBtYUtbOFNh0wpw6GRQ8QSc7UCuG0YxGJTHDK+ywdCb8HehOO/3FH4zbZjMjkpOK/DR3ewG68unTd8U7rlFsy5uVeN49uGUcuikBSFlJXb9D5gJZPop09DxcbCyueF3YjTKfhMLreG4yvRKI5rrkFSFGy/f9MQyfrXvmwcP59Hbm0VanXbXsPxlc5O1NbW877PTxpeSY5f5fd2NissRopFpNZWsG300VHMZBK1tRUlGt3A8ZFlzFgMO5vFmpxEqX5P1Swvnw/JMEQB3OercapzBXti27XmEKYpfPklCTuVwpiaQm5vR7LtDWKUl9xfbjeSw4HS1LSW47e2Ind3I/v9KG1tKC0ta64fWxz/9QVjYYHy889jTE7WPOhlvx9t506UyjF6MVjP8ZvdDUJ8NbmMOSc4vjk5iQnouo7S3l7j+Et6kkwpAwhbp33d1/LI1KOMJcdBkiiZJbyqh6X0PH//4j/wvt0/T8K1glUq0aKF6dMd+N7EHH+rCL6FLbwMVAmYpGmrBfCqV5xpgixjzc9jzs2hrOvM9rbs4Jdu+49MLJ2p+XD3NA1cdAHcSibRp6ZEN7oaDuJ0csK9uKEAXsVYYozhxeNc89TsBgWFtbRE6amnkMPhNaRO0jRBXA1DpA+nxGhN1QM7rPlX/1/3OaVKQSXkDG3Yjkwpw3dOf4cmTxN//+LfM7w8LPababKndT9/cPD32GfuhnIZtbtbEOSmJjw+HxtfbSOqwThyZdwMyxIBI7kc1sKCILAXSsRsGzseRwoEkL1e9LExrJUVEUbodCIHAqj9/einTmFOTwuSUhlb03bsuOiC5+XCa6kgWE9Wz7fYWY9Ng5fS6ZpSVWlvF6S5MgopLyxgdXaiDQ2JQnGFVMwsHiehV47lqrqnohyJpxeY6SqyvfYGVu29z7X4mibFgrHC6fw0isOJ3xXAwEZVNGJGkaekGVpvvBNPqPm8n3Oz70UJhVZVLlUv8EQCyzRx7NqF1tOzdlFbSa43E4nasS85nVBRt1STxLfw6sKuTMZMFRb42vGv8fjMk5i2jlwqgWkymx/lUOH/w0wlCW6/i4DT/7LOQ5vKuXXgAMbYmFD5qSrWyopQ9TkcWEePEmoLE2jpwrANVEkFyya7OI2ll5FcLjy+EN9ZPkLGMCmaRTzlSTzZMje4d9I6mUBtb0dpb7/ggKstbGELW3gjYTI5yUphRRTfKgXwKsePJ+eZ7TAYOLW0Kcd/OaPw9ZhITnDfiW8RT8zW7uPRUBvvar2F5ioPXwcrkcBMJCitK4DD5eX4dqmEfvo0ksdD+cgRsprNXINGTrLwuTS6G/rxWtoGjn+h++hycnxME+fBg6LxsLxc4/hKYyOO669/3QbMvVk4flUBbheLqL294ryqNIDkxkbMs2dxHjwoLE/qCofm4qJQUlffs85mp9ooweFYw+/hJYI9UylxbPn9IrjW7YbKdIO2YwdKJIISiZzzc272ncihEExOovb1CUFPleOvrGAD6tVXiwmQda+zxfFfe9ilEmY8jl0uUz58GHN2FsntFtfQUglraQkzHkfdtg1t2zZkl+uSz0M5FEIZGBC5B21tGNPTws4pmQTLwpyZERz/yBFczQ7QNKopZQ2BNsbGHwTEdVuVVcaXzxB2hzlcOopr1MO3jv4rDd4GQpKHg50HeV/7O+l9k3L8rSL4FrbwMlBLFK8qDerDUlSV5O5eTrsypPRjhCeXGGrbt8aPO+CLsvccRe/aTbJQEL58hgGmieTzoVTS2+1SCWN6GmNkZE0AiBwOk+gvY1vWOX2ok7mVjSOEFVjVZPs6glwdbQNEobqaUAzYts22gp++5h2MLZ4S21H9I8v0NW5nV9OuDe8zmZwk4o6IAvjSCaHCrSgsjs48z+ee/kv++6330hLdtunNYjN1TL0iXNI0kSKez6OPrTYEpGAQtb8fu1C48IRm8UGx02kkrxfHtdeuJoc7ncKiYmEBta0NtatLeMG53eL7ukDSd7lhxmLoR4+KgKUKeZL9/suqIDiX9+VLYf2opW0Y4hyxLOSuLqFiStcF0Oq6IIrriGFWz9a9aN254nBAuUzOLABK7efVMU5zeXnT7cqaBTIeFU31M56fIVO3SPW7ghiSyUxpmZCza9Pnw/mVHWpnp1AgrWt6qV1dG44xc3ERfWamtl+o+B8qlfCmN0vxMp2NV5qJaXyuAD2NF99MfLVgJZOMTx/j0Mj9OCINHJl7kYnEOJqkEnWGcJri+jkbGyfdmWJ87EWGPN1gWZd0HlrJJOVnnkEfHkYdGMAYGRFNusp3bheLWPk8c1GVyaWz5AtpxmKjAPj9DfQ2dJJanKK3bQjJlvjO3MPMJaZFYcTtptXZgLrdy+0NHXimp8Gy3hTH0Ba2sIUtrEeNHxiG+LvK8SUJ2eejEPKgbYuK4sPKygY1sOzznbM4WiucZDKiQGfbSBXf42qBJFPKcN/Rr7M8cXJNWONyPM79mTTva9iHZyl5jo3PvuYc30omxaTskSPMBm3un/oB8bPzNRV1Y+d23vOWX6O3e3OO/1IF3NeC42v794v7oaIgeb2X1Ni4XHizcHy7ev4ZBnJTk7AhKRZXf9mysBIJ9KNHkQ8e3DDhAKzmnpRKSIHA6vqgek7X8fv6522AaSJ5vcIWSNfF+VvxaK6uGzDNc675zsfvte3b0UdHUbu7xTZUeJfa2bmpgtiYn0efnhZr57r1S/V33ywcv2YvUiohuVwbcg9eS1jJJOWjRzGmplC3bRPXXMsS0yTVMGDbFraVnZ3oL76I0tb2sji+/vzzqxz/5Mkax7czGcHxczkwDDrbG+jzd9U4ftlcnYqJehqQbHBKKvlyjunMDAPhfvRSnpgUQ/U08fj047gsmV9t7r4g4eEbDVtF8C1s4WWgSp6kCoGtweNh9F1X8cji0yzll/DqXoorx/jnk1/n1/b/MnuV9k0JXbWom87E8GbLtBcceEsIRWuxKMauLAu1sxPH3r1YpRL68PBqKKeqkm8OM+vJYpgy17dfR9rIMhofxbCMNdsedLyE/2w1bK/6WSujbVYisTpCL8vgdCKpKpHpOB/b96t88ciXGc9Oi+coCv3tu/mt6397TfG/iqyepWyUhQK8UgCHVWXJyPJJhuOnaIl2b3hu1adxpbACgF0uE8bDXT130KVEhR9bxQpD8niQPJ6aSthOpTBjMdx33HFRCc3iybYYh9R14SPY0gJ1ZMbOikWTMjCA2tFx/n38GsKMxyk9/vjqKK0sk28KMWflyJ6eI9TeR3f04n2KLxfWj1pKdSRUCYfFdEQ9ZOEhn5UNZmcPk3fY+Bw+vJoX2bQxCoI0VEOmqn6eXsUNlEXxuOK3LTmd5wy78Rkyps/D+MwMmWJ6zXRIxlxhITVPLphc9edch3ONYNp1yg7H4OAaZQ1OJ+bKigjGqhBESdOwVlaw4vG157LDgQTIqropyX89k83NML5walNbqXcf+CC9LTtewy0T32Vi6jSHRu8nnl0iHPBi2MJ/Wy8XiNsWzY4IckEQ06JZIldMgWft932hDUAfDjElkFo32VAqYaVSyF4vdj5PLujmvpH/TdrM8dP9d/FN7mcsNkqmkGJcN7ip/yDvv/oj/M3Df8FccqbyYURBZL6wxAPTP2LP1b/NdndAhJm9xLj5FrawhS28EeHTKve+Kr8Aof5taMCWJLxOP7hUrHQaq+q7rarnVNxWi7pWsYhx5gzm/DxKa6to2heLws4hGKxle0zkJ1geHxbXdNtG8nrFNVfXicWmmdt1gIFYXUh8PUxz42P1uAwc39Z1MAyyqsn9Uz8inpqv7ELB8WOLExwa/ja/dMtv4WftvlpfLLQr26v09Kx6Lr8WHD8WE9vxRuP4ALKMHQphZbNoe/ZsmF54PaGe49cKvLYt/OOra94qZBlMU/DXeFxY6VQaJ2iaOFYApa8PO5tF7enBmJgQhXBJ2sDv4TzBnYaB0taGOT+PpKqCixeL4nUUBTMWE6/X2Ljp+f+S/H7fvg3KeVvX0cfG1vByu1jEnJgQEw9VOBzI4TBmPC4sXd4EHP+lcg9eS1SV+MbUVM0Kl6pdVPU6Wjk2AXGMptMobW0vyfE3awACF8TxkSSslRW6lwN8YOh9/K8TX2UsNooma4BN1NPA3uY9zMTHcWouSrZOspQUP5dldKNMyTZQzAJjhVmmSsuE6LsMe/TyYqsIvoUtvAzUlBOqitzcjDU7Cw4Hx39qH7/32Cd5avop8YuSzK7GIX5213v5m8e/wKf2foxorLjGt6ta1I1nljAXFrDLZaLeBn4qepDWbLbW6ZaDQYypKeE13da2WgDXNOY6A9w/9V3iyXmKLREeLgzj94S4uecWnp59ulYI7wv3sdPXC8rJzYmyqoLLhVEZq6mSeaWxEXX7dpBl1N5e7Hweq1AQHU9FYccpiT+54ncZdWVJlTOEws0MNe/ZlByDWGBkyhmx/fVNhAoUSSFZSG7oZld9GqsFcCubxZyeZjGf51uTE7w//FZ8ZXBcdZUYn0skkKtqENMU35fPd06VfD3O52unNDTU1AUbnreOQL2Uav1yojpBUF8An23zcv/E/cSHF8Vnm26mobmXe4beQ7e79XUZurJm1NIwUBMJodBet7ij4ls526jxwOR9JOYN5EAA2zDwSS76HC2Mjj+BKUu18UgpGKSxYxvdLYNoQaF2VZpXLUzOFfrTaQcJe8JkzcLquVVZ8HWFe5hbHiMT3Y+5soIkyxv26XlHMAuF2rlQPR+MhQXKjzyygSBqV16JmU6LfVG3gMAwsBIJoWRZd4y+nsnmZkhn43z76X8kmVqktbEXnE6KZhGH4uLRke8T9TW+popwK5lkurREPCvUeC7VjSqtjuLqRpmS06Qal+tSnHgVd031VP991+Nc4/F3dd9OW7Eort+wdrKhVIIKiZ6R08RXZpFDIRZfeJx7Bm5C738nBcnAIzu5tela4uk4k/GzNSUgqiZGLkslZudOMZedp/fYAnJrK9rg4Cu/87awhS1s4TVGd6ibiDtCzFdE8nqxUynkQACcTiJlhdZTC+gzS6K5HAwiWZZQdedyG3x5q0VdZBlzbg5jdha5sVEU4zIZQBQubQBVRR8ZIRPMrhbAg0GseHyVHygKmbYllO5uzMnJNUVBORyGSsH8teT4kqZhl8vMenTiY/Ob/IJEPDXPZHKS3c27aw+vLxZWOb6VzyNNTorPVy6/rjj+6ymccAPHRzQRrGwWK5lE8vuRvF5MSRKFX7f7dbPt9ahyfDOZFI2mdFp8H/XHdCWjBwDbxpydFX7dkgReL+b4uGhsGJUsk3K55q0tdXcj+3zCq7l5rUXhOYM9KxY7kssl9q+u1ziXFAxiLS5iZ7Pi2FnH8S+W38PmvFzp7RXcvsrPqse5rmOnUiJwtlh8w3N8K5ul/MwzZFWTmQ4HWbOAX/HQXjLxPfMM8lvf+poW8K1kUkwYVycVNE18J9VrsW2vbdZUiuIvxfHPZXOrVL7Xl+L46DpWsYg3Z3DQiCD1vJtYf4lAsIGskWUhvYBHcXMyOUdLpBPTtugL9xPPLYtzyzAw9BJ2CcrFHDkz/2rsvtccW0XwLWzhZaBGnk6fxnH11ZQti6XBVv7m6P+7pgAOMLx8gq8P27y9+zZOGQscJFTrBJaGBmpF3aonH4ZBPBfj/pUHeH/LW/HM1Sk6DQMzkRAp0kC+vZG5Jgf/Mv3vJNQkgYAX13KKa7ddzTPzz/HI2EPsiezkxNJx+pt38PEDH6fZ1U6hsxNzelpc9BwOYtftYtiVJFHOEDVPsSvfTut4EcnhqJF5rasLfXQUpbsb/cQJcXF2u2sX/oaMTXRJJnXt9ZzKTvLE9BOEXCF2Ne7aQJS7Q92ElkKbFsBVRcOJSsgR2NDNrvo0giB2xtSUUG44HKzk48z1wvZ5E31kRHTsK/tNdrlEirvLhXQOJexm2MzXTvJ60UulC0o+P1fR6p6h99AT6rmgbXglkUouMmEtkm418SseolqQ+0e+QWx5qjZuayUSLGcy3Fcq8f7Gt+GNr9qGvJ5CV+pHLSWnk9Ljj6/1/KsoI/JhL/dP/4CVXAy5oUGoKFIpEvE4+cYW+lt2MTL2LJLHAw4HUTXAPft/jpCzaVMPw3MtnHw4uHPwXTy38Dxn54ZrJLUr3MNNHQc5MvkMci4vfApTKfF+kgRuN7LHI4irzyfIlK4LMl8h8HaxiLmyUkv/tgoFSo8+KhaoUBu7MxcXkcbGxLEaiQjVTN2iwS6VUFR1zfdnZbPnDdmSb7vtdacWmVg6QzK1SHv7Tn40+TBz6Znaz9oCHWzv3M91vptes+2zdZ2sUUceyzotnmYmc7Nk9DgApi0IclukGz8uOkoupKBaU1evv0bVxuOnRlaJN7CcSHAon+MD4bfiKXmxXC5RMAgGxUg3gGUhuVximzRR1LYUicXRIyI0M52mHAhQtDspuURjUlJVQbQ1TVxjK++pm5Uxz0IBc3wcta3tdbFo3sIWtrCFVwp+p5+7B+/m0MghlrtK2OPjyJEIoZzFXdGDuE/Ni6J3uYy9vEz52DGcN92EncutUfrBapC25PUKe4pyGdntFjYeDodQR5fLwge4WMRWVbx+RVy3fT6sWGwt3zRNvDgwFxZQBgex43FheeFwoO3cKVSe9RxfVdF270b2+2ucwlxZwU4ma3zmYji+49rbhU/z9Aq6K7+polQOhZCWlshamxT+JKlm0bbGlo61fsw1jl8okNzVzWlfgZSaIWg5GFyZpqG9/TXn+OcqWmldXa8JTzbjcex0ejXo2raFNY2uY4Mo4Mbj4jgolUSIfJVH8vrj+GpzM7LTiX7iBFa9DUqF31MqiQyuYpEa+9c09OPHhVdy5Ziwy2UxxZHNovT1oQQCG4rf9e+7geNLErhcqNu2iQbR3OoEohQKoXZ0oJ8+jdLUtCnHl1wupHBYFM434fhWKlUrmkseD1Yut8rxK98jkiTOidFR1MHBDRzfLhSQK+/zRuf45tISM16D+ycfJJ5eVbxHAy3c1X0HvUtLr+k227q+psht6zqS3y++03WQIpHaNIuknpvj12xuR0drk+UAks+H3dOD5PUil0rn5fg1Ox5VpfVMgjvDTcz3hsnG4wxuex//OvINpnJzWJaBIil0B9pp8Tbx/RP31+oxCjJINg7FgTunn3N6+Y2MrSL4FrbwMiGHQsKaJJlEftvbOJl9kdETp2vFb6B28xpeHuae7feQLKeh4rBkFwpMLJ2pFXXXdxDjqSVmO3W2VV+r+vPK3/Pbm7h/4kGcaguPjz0MgNvlYzA6QJPl4S3B/cSVErf1vIX3dtzBoNJCKy0ooRDOgwfFuFwyybEbuvjss3/OsfkjYoTMttnTso9PXP+fuTrrRZ+awlEhftVxLSUaFWTeNNd0pE8EC/zVk59hLDGGYRmUjBK94V4+du3H2N+yv6aA9jv9XN1yNXta9nJs5oXa7lIVjQZXhG3hbexQWzZ0s+sJs5XNYmezQsmQzWKXy2QSS5jjafD7cfX3Y9q28I9b5894znG3TbCZr92FJJ9nShnuP/YN1FyBZlcDRbOIS3FBJsf9x77Bh6791cuiCK8q0Wczs8yvTJJLxVmcPSU6wD1XMGEnqO2ZaiE8lWJJGmW68Rp2OD2rnnr5/CsWuvJKjuYpDQ04b7wRY2kJJZtdJSKWxVzQZmVBjClKDgfm0pI4ZstlSnPT7LjmFva4usnZJfyBBjrlCCFn03n99DZbOKEoRGZf5M7uO0g2XkVOz+OQNdLZFY5MPkO/v4tgzgKvgeT3Y4yPI4fD2MkkpTNnVq1dFEX4ALa3Yy0vC4W7YWA3N6MvLoIsI0ejQvViWTVPwCoBsivj2UpTk1iQ13mTSz6f8KSrg1n1CN3sO0okMF9jsrkZsqU0TdGuDQVwgLn0DN8euY+h9v2v2cSFpGn4VE/t/0tLY9zQcwOK08UTE4+SKaZQJJm2SCd377iHA3TiTVgbXqMeE/GzGwrgABgGsZnTTHfczE61CS0QEI8PDFB+/nnsRIJCWwOzQci5yiSavPjzZTS/H9npxKooEa1sFl+oCadDwhuIkjcKq2rCyj3H7fbTbPuQXHkxgm5ZbxrvyS1sYQtbqEdPqIcP7/+wsCrcuYynZNNyZAL32djqqHvF49peXhb34gqqSr/qv6GSX1LP46tqwWrz3rJqP+9Uo0T8TSQo1Kw+qoiG2+gwvFixKZTm5pqNSbXwtYbjJxI4rryS8tGjIvzR6xUFweZmoabO5y+K48vBIOUnn8SMx2uWb3I0ivP661Hb22vbKDmdKC0t+GMNa3eqJNUCBWWvd9V2prrf6vahlc1iFwqMXt/LF4/9v4wtnBT3nUKBvtZd/NZN/4nBsdeO41eLVub4uNhXlfwV2edDkiQ0t/uyFI9qVjuZDFapBC4XSmsraBpWOg0VGxfxy3ZNNY3Hg1KZYHg9c3w5FMJx9dXitbJZsa9BFMBVVUx3VnO6KhladuXcwzAEN7YsrGwWxeNBiURQ1/HgTd+zjuMDmJOT2C4XSne32F/VMNZsFv30aaH0rU6UruP4xunTIpzc6dyU48vBIPbcnGiClUoofX0i+HAdv6dYFNeWRGJTji97PMiRyJrP8kbk+BmrsKEADhBPL3D/5IN8uHuQyDmeezkgadoaNbY5MYG6cyfmzIyY4KlcN6RIBHVgQEzhulwbX6MOZtUGKru2MWhnsxinT6NddRWyqm7k+CsrYsLX5UJyuVC9XvTRUeRwmEBTE94z89jZElIiTX/Xz3E6YvJC5wsE3SFKps43Tn0T3RCFeVV14kTF4/PRF+ihU/e+KTn+VhF8C1t4BVAlTwqQOPxjFEVbJYzrUDALhBwBqOOz2VJdgF/1glpVSQA5q7j256YJskzOq/FviaeIZ5eINK7eCgqlHKOlOfYV/bjmYnT4fPhxUnDaPFQcJbK0zB7lCro7+5Hf8Q6m0zPc+/B/4nj8ZK0AbhsGR6ef47PmvXxh/+/RMhoXpKGjY83nXTMCqGksOw3+6pHfZywxRtEoEsvHMCyD5fwyn330s/yHq/8De1v21hTQg42DfOrWT/EXj/4ZI0vDKJKCE5Vt4W18/Ir/QENe2aBGWEOYdR2czpqyBsDnDiA3Cp92O5VCu+IKrIWFWpANIEj7y1Q5XEjy+WR8DKch8aO5pzYoVd/a+1Ym42Psbtv3srajHovZRU4sHieZixNyBtkZHqAkwwNj/07JKJEsJMmVszR5Grn6ijt58Uf/ykpmidOlWfb4W1DTFYJmmqj+AI2uBuZzC6TTRTGGJocIhltEkfVl3hRfjdE8JRoV441+/6ryyuUiS0L49DU0iG585fyUAgEwDMrZFENzMiAhlyRkn35BKqL6hZNdKlE+fJgO2YNaLFOanSGv6KRsA01S2eXuosUO0V50gduNcfKkaN7k85jT04LEqiq2aSI5HBjT0yLcthLKJPl8NUWJnc2K8JPKeCcVxa5tGLViPOUy+unTaDt3ivR6wwCfT5wX5TLG3FxNwftSvs6vR99nn1OMpa8vgFeRKiY3jFlfTsihEJ2LTUR9TcSzS5iWyfTEUa5s3cmNt9yIbhm0OhtoMzy0L5fxFiwxgl4pSK9XmwFkMvGNBfAK7HKZbGKR0nOHybeEmXWXyTkgeMM2XKqL703+gFgiSUuki0QhwVh2mcFgPwGkWshUtKGL9pg47m9ouYbHJx+jIFlIkoQNuD1Bbuy4gZ64uH4qTU0Xpbjbwha2sIU3GvxOv7iPNEP58GEK00+v/rCq0KzAXmc/sv7aWJuugbVWZVXIcu1xv+rlrp538G+xx1hitvYr0VAbd/fdiWtqUdwvdB05GhX3fsPAOHMGFAWtsxP5He/ATCYpP/GEKBi6K5Zb5TLmxATFQgF1xw7sxcUL4vg4nZQeeQRzeVkU5isFe3NmhuIjj+C6/XbUxsbatqqNjfQNXkvD7GPEFsZraxvZ7Ubp6CAabKE7tDb3Z01hSNdJDvXUCuCqrLGz40r8Dj9lW+f7cz8mdMXttC3kXhOObyaTGBMTIqyxzorPSqXE52xqQn0Fi0dmMilsMItFcLvFPRjQR0exTFPcjzMZYX9SLGKOjiJ5PGg7dqCfEqGmUiAgRBLt7VjxuFASG0ateK90dmJnMq87ji85naidnUhu92rgZ7U4LEkokYhQwbrdYNsiqDCXE77Zti3Wt1Vs5qN/jvdUmptr/L7mNa7r6GfPrk5ZKooQ2VStKjbj+Mmk8PQvFpGczjUcv1octU1TqPW93pooxq5cH2zTRKr6TNu28K0/cwZ1xw5kj0fsC4cDHA7sQgEzmawde29Ejj9jrmwogFcRTy8wY668pkVwORRCCYdFo7MywW+cPInS24trYAA7HseurLeseBxJ016S49sVYd9msNNp7JUVys88g9zSItZ1DgfOG24Qx1UqJSygolHKjz0G+TyWrqNUpgUkvx8rHidcKnF9WxsdjiEeOPYAga5tvL3vDv6tVGA+O0/UHcXv8HFj1428t+PteNPGm5LjbxXBt3DRqCpK47llTL2Mx9bwSk46w134jMro3uvIU+xyI+KOoFs6YXeYZDEJULuBATR6G9mhtgCrhW2fM1D7t1QZ56upQZxOvLILKK96n1VCPGbULAm5hBwM4nJ6xXgVIqymiE6qmCSqKCw0uXhs5TD/8+m/q73P3u5r+eStv8/1nddzYvFxhhMjtIY6UVUNwzTQFI2yXmR44RjD8jLNWaEMWB/2sV49cXLsoZoCPJaPibH5itplePE4iWKCQyOH+PD+D+N3+rFLJa7QuvnvN32W4dgwyVKakDPADrWFhryCtm1janzVp3GlIHwKJUkSF2hJoqG1j/YUIqEZsJaXsZeXkVRVBAeqao2EvRLH50sln+cKaX40/qNNlao/Gv8R+7uvfdnbUMXhhcN8/vHPcXb2eI3gDbVfwYGu67Esk68Pf50X516oLbiu6TjA797+W8yNnyCXWSHT2knE9IpgplKZ9sZ+fjjxI45nzxJNC6IXDbRwt/YuurwtL+um+GqO5klOJ2pHB0pjY23xEijPouRaBBlJpYSyR1FE8ryu4w81wcLKGhXWxaiIYHWE1ytJ3N3zDu7LZNBmToNposgSAzv20dc8yOlSmQBLtLpl/C4XFAqCHFcVYbIsFoq6jp3PC+9ChwO5oQFUFePYMaz5eRzXXCPIUoV8UwlEkVtakBsbUZqb0WQZY2yM8unTqG1tGMePi2Cf1lasuTmspaU1qqbz7dPXG3qaBnh06tFNf+Z2+Ql5IxvGrC8Er5R/v+R0Eu7axt3SXRwaub9WCJ9dPEOjU+GeXT9Np+kTyi1NBHHZmYxYrK1Tm1VRryyvqo2q57NVKOCTncwPNHD/9A9JZMWivbzyJMtynoO9t6AVbOJ6itt33833jx1iJHWW/Q27UYBotIN7Bu/Gc1Yoxn6+4604DYkJO07ZMtACOn3+Hn667W0EEhZSyFVb8F3subKFLWzh9Yla0bNUwioUakIDyeFAsm0kj+cnlt8Dwmtb02qNwzX2ay4XksNBvcHfZtdG2efDSqVWx9mrKm+HY9XOw+1G8nrpdjbxwf6fYdIxSNYq4pNdtBcc+NKSmBCTZaRwGP3ZZ4UlSgXm8jL21VejdXZiLi5iLS8jVdTJmCb4/djlMvbSEvKePRjZ7AVxfH1sTNht5PPiXuXx1NYsdrGIubyMEgisUUr7FQ/vufGXOHTqPuLZZaFY93qJBlu4Z/CeDffXNX7MisJpb56xxVOossb1u9/Oo3NPMhU7K7bP7SY2uMivqNfTNl+47BzfzmaFWnd9Fk25jDE9jbZrF7xCRXB9elrYY1TWNwBySwuOffuwAXN8HHNmppb/Ijc3o+3ciX7sGIaui6K3rqN0dIhjIp3GXFoShbMK760W75XW1tctx1caGpAPHlzTnLABc36eVHqZmXKMLCW8hk276icwMCA+V7VgbVmXzO9BKOWlhgaU9naxv00TFAWluxslHK550UsVC5Q1HB8Eb3M6Vzl+eztSY6No3DQ0UH7xRexkUnD8qthFVSGXw65cIxw33CCuyaqKMT6OZRgYZ89iZzJIwaAI1EynkZ3OTS0d1+P1eD3Parawsam3wKlAcrnIXSLtfKX8+yWnE21oCNs0V8MxDQNrfh4lGEQdGhL/z2SwGhsviOPXi1w24/hYFurAgGigZLNImoa1uIjc2CiaPgsLMDuL88ABSk8+ucYqR/J4oFwWga6xGF0dHby/8y7mXAbliI+Dt1xFRs9hWSYtjih9RgBvejXs882GN0wR/N577+Wb3/wmp06dwu12c8MNN/Cnf/qnDNYFMtm2zac//Wm+/OUvk0gkOHDgAF/60pcYGhp6Dbf8zYVqeOPZ5VFOTb1IPrNCW6CD27pv5QexBd61+z10xFZPYKWnR3Q4KySx/mLzegoKfCWxp3kPbb42nIqTs4mztUI4wHUd1/GWthuJTq+SJcntpqdpgMiyKOpKFbWqGYthF4s0dg7SQRAcReF9ZlmoXV1oQ0NkVo6K5OtgEFl10N6yjaX0PDuahwj4InhkJ4GBENn8NKMLx9ds57H5w3z20c/ypTu/RKKYoDPQyanYKZbyq+SqydPIjpYdJMsZQDlniEM9kiXxeUtGCd0o19KSq8jmEsQzC0wmJ9nl7KipdcOSxI2ednD2IPt8yH5/rUNqLi6uuVnV+zTGXNla8b+hqZu7mm7GfXRS7NtIRIz5WxYWoA4MiJuGy4U5OSnIykXc+C5lrC9n5M+pVJ1Lz5DVN3qHXQoWs4t8/sm/XFMAB5jMTLNwNkGLv4WR2Mia7+LZmaf5qu9feV//e+heGKCzcxfOXhf5YobWcCfjC6fIlrN0u1oAQf7i6QUOnX6AD137K4Rexk3xcozm1S9eektBIlOPsHT6+dXx3orXcWNrH63LZeRoFKu6qNykQ/9SqC0YbJv2FZNf3PuLTHWOkytmkEMhHp14hNPD9wsiMm0QLincvednaM9XvpOqoqyybXIoJBQ9lYWKubAAloXc1IQ5P4+VySA3NWHNzIiFuMOBtm0buFyUn3tO/KziS6hs315buEouF2YshtrVVfMtVQcHkcPhTb8TORxGqYZOvY4Q8EXZ13UNh07dR6GYqT3udvnZ2bEPp8OzYcz6pVC9x9VnDoTxcFfPHXRpjRc9yiuHQvS5r+XDTd1MZWfJmQV8vgg90f7a/a6qMjqf2qyKLl87UV8TseTcGhWeretEfE00NnTzL9P/RDLkwFpYwc5mSUacnF4ZIZ+MccuOt7NkZ5gvxbh1951YhkGXv4P2HpkutQFPLI1Vec22mQwfid7KXLuPnFHAndPpJIjfcIBv9TpyKefKFrZQjy2O//qAlUyij45ig/DfXV4WGRqFAmgajh07ar7WSlub4EIez6Yc//UUFPhKQmlsRO3rwxgbE4Xwin0cTqcIrKubAq2/NlaLunY+j9LZCbKMMTuL2t2NubCAXSyKSbZgENnvRxscFEGAPh9+TWOH1IyVEo16KSJ+R9Y0pIplib2+2LiyQunRR5HvvBOKRaH+XVkRzfIqR3S7kVtaaoWXC+H4dqlUK8xIfr8oLtapSK2lJcxAALWjoxYGahcKtEkSH4i+jemWHAWfE78/SneoGx+ODRy/3o9ZcrlIWKK4v6P7Ch6df6pWAEdRwLaZSk3xADYfHLgHb7Z8WTm+XShsLIBXUS6fMwjxYmEmkxsK4CD2d+nZZ1H6+sSUY0UlLPl8gs/JMuquXVgLC2hXXIFt21iLi+IYHh3dmMlUKd4rnZ0vq/D1anP89c0JK5tlPD/HoekHiCfnxcSjZRH1NXJX7zvojESw5kU4q+zzXTq/B/Ha8TiOPXsw/H6sbBa1vR1jZgZjYkJw/JkZ7FIJbc+e1SZXleMrimgE+f1C+ZtIiEkCTcM2DJTGRvRKGKjc3LyW4w8Ogm1jjIwI3/B4HDkQEDUDXReTEKUSViKBXJmIdezfj9LU9Mbj+N6IaNjMzKwphEsuF0pHB35v+KJfs/6aBNR8upWeHiRNuySO7zxwoFZfQFGE5WQdh78Yji/5/WIiuFjcwPFxOMg1BZnMT5Dtc+At2rTH8rhnljDn5zHn53HecktN4OS44QYolZCqz5dl7HTFecCyMGdm8Eej7Iq2CwvUhQVQ3ELckgeoeJi/STn+G6YI/sgjj/Abv/EbXHPNNRiGwSc/+UnuuOMOhoeH8VZGn/7sz/6Mz33uc/yP//E/2L59O5/5zGe4/fbbGRkZwe9/4xdXX2tkShkOjRxiPjXDqenD5DMrYNvMpWf4wcSPuCmwh/sO/yu/uPv9uJ4/hq3r2LIswlySSZSODuGR5vEw1xXg/skHV32wEQrquwfvfk2CAl9JdIW6+MRNn+DeR++lZJboDfVi2ibbI9v49Ss+ytBcndK00gl0+kK1ou5KYUVc4FtaiMg+7up9BxEpRHaoyHh+nqxdwu910plP4F5YEaE3isLCSoLbuw8S69J5YPQBpiemaNBCaP4ALd4WOvytaLKGblVu5JLEsaVjHFs8RsQd5lTsJEv55TWfpfr/qL8J1JToyL6EMiDkDAFgWMaGAjgIJeN8LEYml0CfyK0SRNuueThbpRJqZ2etQGcXi+LG7nZDPI5kWbQpCh/supvp9hUyXYs4Z5foKDpxHT0tFgnhMGpXF/qJEyjd3VAoIHu9NYXOhZD9elzqWJ+MhNvhpVDeWOx2O7wo9d7xLwPDS8OMLY9uGPEzLIOV3DxNvmakjfmjnI6fJtmX5+eu/2X++sW/48S08GbvbBxAt8r8/JX/JyvDL1I/4BtPLzBtxImELt1mohYKAuTDHmacRbJmHr/mo8HdQLI4TX5m6RVrkPlwcKfvSu6TThEzkrXOeNTXyLsab8SbsJBCztqUxYWoozdAllc9IRUFj66zK9BJNiTzj2f+N1nFRGlowJicRHI4WF5a4n7n/Xyg8y4clrVamLdt0DTMeLymKrNLJSRVFQuLQgGlpQX99GmcBw9SNk3s+XmUjg6sclkQfcNA1jTMbFaowzUNPZEQ5Lx6XlZHLAsFKJVwHDhwzmP89eYVWMW+9iu5ffddnF0epWyUcagOQt4IToeHiDuyYcz6fKje46r3JSubxZyZYalY5NszM3yg+Q58hnJRo7yZUoaJ5dOkk8v4ZCc7vJ0EA63IzrX786XUZlUEQ83cve2n+PbRrzPpVViW8hSNIt3BXm4b+FkWlyeI52Pk7BIrISgEHChOJ01aLwtLU1i5LJZcBJeLxZIoLFwVupahkiquifU2XpaFt2CxUw9j550i8CeZBHltAfySzpUtbKEOWxz/tYddKgm+BejDw1hLS6KQVvV9djgoj4yg9vdjHDuGfuaMsFh48kkol1c5vtuN0t2NOTW1xsf69RS293KghEI4rrlGiCuq6s6KDYe2c2ctYHD9tbHeX9rOZFBaW0XhRVGEWtg0a7xI8noxs1n0Y8cwFxbEmqCrCyudRmlvxzhzBnNyUkyZlctYsZhQ/J48ucoBZVkUpBcXwe3GisWER239Nb5QEGP6gcBqeOBLcHzJ6awpGdcXwAGwLPSREeRQaK2ftm3jzenswIFUcuHo3IZdKFAeOYxdKpGLeJk2V8jOlQi4AnR52vD19qK0txNJiuJQMNjM1MT3a59PcjiwdR2X4mSlkGLWq7Ojkm5zuTi+5HQK3raZvYYsv2L3RnNxcUMBHADbFt//9u0iILSyjrLzeXA6a00rdXAQ48wZjIolitLRgZXNou3cKYrh9SiXheDiZZyrNY5fyayxqwpXWUZSFOxKw+GVao6lcyvcP/kgseUpcQxX1Nmx8iz3qz/kQ7t/Ade8+E61vXsv+j2lSoHaLhZrHN/WdWEb1NODNTMjQmd9vhrHt5aWMJxOkcGznuOHQpgrK6sc37KQTBNraak2AaqfPo3zxhs3cvzZWTHR2dSEOTWF3N6OOTUFLtfqZEqlUVV/HrzROH53qJuGxi7iDoewfzQM4f9emSK5GH4Pdfe4yjWpyvHtYhFjZgaluRndMC6K49ulEmbFi59SSQRXer0bjq8L5fhKNCoCVkdHyTeFmPWUyZoF/M4IzsYmvnf8n1ieHq3YYJWJhtq4a9dttJ6NY83NYYyPo3R1CW/5SnCrsm0bamenmA6qfzPLEvuiMpGgDQ2JnKnzZCC8mfCGKYJ/97vfXfP/r3zlKzQ1NfH8889z8803Y9s2f/mXf8knP/lJfvqnfxqA//k//yfNzc189atf5aMf/eimr1sqlSjV3cDT6fSmv7cFmExOslJYIZlbIZ9PrSluzq1MQtsNxEdHmTFj9FWUDsbp00IRUixizswg9fWR82p8++l/JOkVpKF6YVtWE9ynf4OPXHN5ggJfTVzfeT1/dedfcWzxGIlSgrAzzJ7mPXS6m7G8m3cC68N3snoWn+ajOySKf+MLp/j20/9IPFFJovZ4COVsfmrbnUScYeLJOQxFoVzIczpxmqA3TNAXpU0Jk5F1vnf63+kKdrG//UqenX5a3IQrN8pEcYVWXyuN3qYNRXCARk8jTs2F0qAhqepLKgN2Ne2iL9zH0bnDa44RTXZwz96fweMLE+7ZwXxxianGHjrn1A0et3ahgBmPCw+1ioLFzuWwqsEi6bQIfgiF2Nbbi7ptP+XF48hNHqwhhyD/uZwIKfF6az5t9vr3ucBRv5cz1hf1NzEY3c5IfHRNIdzt8DIYHSTia9z0eReLZCm5UdEBqLKKoZvoZhmwUSQF014taSuShMfl48vPfRnb1NndtBvDNtHcXkYWTnBo5BD3dLyVpbFjqy8qy+Qd0su6KUpOJ7ZlMdfq5tD4A8RX5kCSyEZ9ZBSdG3e+nYXlJKZtvuwGmV0qYczO0jqyyPtDtzDbYZI1C/hsB+1ZBfeRSZSrrkL2etG2bz9nWvz5YCWTtemNmp+bqoKuMx01iWeFos6cmBDE1DSRXC5i6QWmpRQDgcBqh16WhcVPoYDU0ICVyYgFjcslwjGTSeTGRsxCAf3YMdS2NuRdu5AaGrBTKSy3W7yG1ysWvKYpCt913uGSx7PWx1TXUTs6kG+7bVUJ5XQK9cjrkBxX4Xf6+Znd/8ea4jWIpupmY9bnQ/UeBwgvzbk5sZCTZeLZJWa6imxfLlN+5hlyN1/HdGnpvJNME8kJ7nvhn1kaPVxTsUQDLdy94256+668ZE/M7mg/B6//WZLjD5JLTxN0BphOTPBHz/4ZH9z7fpa9Nk9PPEMiJ2xNdFXB6/JxZed+NIebZs1H2SHjUl1ISPjdIbTBdqG6qywyqh70al9fbXwTw8Bx7bUihOkl1Cxb2MLFYIvjv/aojftrmlAMV0aga16xsizuQ8UiVj6PEo0KjlbZp1WObxsG5tNPo3R0EG9wccpYIFlOE3YGGFxQaXPvfsNfM7TOTmS/XxSYSyVwOpEbGpAMAzsU2vTaeD5/6TUFWFlGGRzEGB4WBfNcDkwTMxbDcc01WPPzyIEARCLY+bz4k0hg2LawZ5ieFoKRqvVDsYjt9QqP4Xx+TZAbiII7ioLS0HBBHF9pakKuTlnWF8BdLhbfdjUn7AUSxQSRqTRDjV0vzfFLJWajKt9+8X+yUk6Kwnq5TENTD3cPvYcuQuzq2kl/2xBl2Rb7tK6QH/E10KAGkFSTrJEHvKvvcxk4vhQIoDQ3i2OhvhAuy4JLVgPsXi42sYQQGyCJP9XibD1KJWxZRg4EKD//PJLLhVyx3cDhEFYu4+PIbW1CbVy37dImhbyLgeR0iqJx9Riu2jpIEnYlGFI/daqm+n+5BffJlXGWK57zkqYJHlPhuPGVGWZcJXbu3y/CKKPRi38TVRXr0PpjpMLx5ZYWsc6s2A9WOT5eL/G2IGeiaVZubCAse9iWdhI6MXFujm9ZwsakpQWzWNyc41caL7WcINMUf87B8avngdrS8obi+PVT3yuOl8fvYfUeVz0uzdnZ2vSEnU4jdXVhLi9TfvpppFtuEefPeSaZrGRSXLufe040GUGc9+3tOA8evHTf+4EBprUc9526j/iMWBu3de/m+eFv45fd+CUJWxcq7Xhyjvv5IR9oexvuyXnRBCuX1wTdSqoqJggMY9W/HNZw/OrkS72N6Jud479hiuDrkaqk4EYq6bfj4+MsLCxwxx131H7H6XRyyy238MQTT5yTIN977718+tOffvU3+E2Aqrdq2ShtLLZZFkWzALZNrpiBchnZ7cZMpZAaRCq4XSxi5XJMh3XiiTncUgt7W/eRadBJldKEnEF8psrU7CmG+q653B/vFUdXqIuuUNeGx8/XCayF79QhnY2vLYBrGnYuR2x2lu+Uvsnbh+7he8fvI56ax1RhdPoI3oZWdrTvJWCoZHNTWLbFRHKC6zuvrykTqp5lIUeQmeQ0d22/C4ATyydq7z3UsIu7Bu9mJj2D5Oq9oJGYZl8zHz/wcT736F/weHYZw9TRZAcfuOaXmE5P8+FvfQhFlvGqXnY27uIPbv59Diw6N4wT2pVEeMnrxUwksOvDAwHbMLBSKTF6pqpCzXD2LPrYmCBBTidyICAsJWwbPJ61Czou3Mf2vGN9mQyplQWmZ+fJFNP43UG6m7YTDInRsp5oP/2tu3ChkjZylC0dh6wRUL20t26nJ9p/QdvwUgg5Q5uHsRoGHs2DpjgwLRO35qKgFzFtk5ArRK6UxQaWcou4HB5B3GwbDS+6pTOWOIs+8M5VQiVJSC4X/tCFFe8zpQyn46eZy8yhqRpt/jZ6gj14IhEKnU0cOv2vogAOGH4PI+mzFMwSpQmVW7bdzmJhmZXCyhof+YtBdfQNRcEulXAvLTEgScJCRyrX/OqxbZS2tpdMi98MNXVBsVgbk7azWTAMzFiMbNiN0tCAVSisjvRJkiAb2Sx5s7D6vHRaLGAr3oBqezvG+PjqCKUsi3NFkpCDwTX/1k+dworFhFpI11H6+2vqs9pzK+S4Fq5TQfVckH2+1y0hPhfO10C8GKSLaVp9rWTKGQK+NrRANxNP/4ByKQeKQg4xTjjjNfjOM18m6Vhd2K9v1GRKGe47/o01BXCo2AmdOsQHdY3oJe7rGSXDZx6/l2MLR8S5qjjY33YlLa4wCSPHeG4GTXGgyg4aG7pwOF3opkFBsVBCYb7+3FcwXCJfoi/cx1t637KmQGP19IiJhvX+hdu3i+19gx0fW3jjYYvjX37UCob1E3zVvysqRkmWRbGtyvEXF1efX+H4kqZhZTKM+vI8tXKYom2QK+fwGT5G89Nc57bY3/3G5/hKKIRykYW7zdSA6wuwcjQqCl0VewTJ7xdFxEIBe2UFY2ICpaUFxe/HdrtFwwJEc7yzE9Ptrr0GIIqdiQTq9u0YgB2L1WwZpIqPbLUIciEcX/b5cN5wg/CbrSqTXS4Ov3MXn3nyD4nllvE4fRi2yfbIdn71il/mmgXHOTl+rsHPt1/8H6zk40IUVeHosZUZDg1/m1/c+XNEplf4rYO/w/fOPljLAdJUJwFngF3RHRQsHdXjwqd5oa4u/7I5vqoSizg5PfVjUnqGkDvMrqYhWkLttV9RQiGh5Jdl8RoVniyHw2g7dlz0MXJOVIITN4NUsdewy2XBH6tKzkq2DLCqDK7YIkiyLJTiqRRyby92HceXw+ELLkrbpZKw2stkRCHY70cJBpEjESSvVxQHqwXwyh8pFMLM5ZAjEexYrGbZcSnFtirHz2h1Uwk1ji/VOH4eHcfOnZf0HnaphHH2rAgM1fVVoYthYJdKyB4PtqqKtWqV76kqp2/axhcP/x3jR6ZF4GWxSF/DNj5206+w42Ric44vSbUipezzie/vJTg+tr0aqLsJx68/D95oHP+V4vcAZ6xlTjTEWCkkiLSE2Tmwm7bvvyAU3C5XrXFo5fMYo6PnnWSySyX0hQX0+gI4CJuR2VnKTz6JfPvtl7SvM0aeQxMPkjCzYrpAlpHCIc5OnsbjCbDX1SWmyG0LJJl4epHZboOBSgPETqUwTp8GhNJf7e0VHP/qq1EqGRFVVK/99WrvlxOG+0bCG7IIbts2v/M7v8ONN97I7t2iYLiwINJjm9d9cc3NzUxOTp7ztT7xiU/wO7/zO7X/p9NpOjs7X4WtfuOj6q3qUOu68HV/uxRx8nhVb001VrswV2EYZA0Dp+JgX98B/u+nP8cLs8/Xfnxl+1X8/o3/lZ3Z7BvqIv1qYmLpzGoBvIrKDXI5No2eSfH+6FuZ7dQZ95XZ1TREKNiE2xUCoFlqoTnYzmJ2AQMRMoFtYxsGe1r2sju0ncPmCb7y7P/DOwbv5M6BOymaRVyKi+XMAv985P/j/37H53jOmyDY7KeHMn7OTyL2t+znT2/+NId3HGMyM0NbuJN/PfGvfPvUt1EkmaAjSDqf4LmpJ/mjRz7N373ti3RMJNaqGOrChqSqJ1aV1APVEEG7WMRcWUHt78exb5/wQksmsfJ5QVwmJsRYX0uLUJRXPLYuxuPqnKnZqsr8jha++ezfMpYarxW4+4K9/Oy1v0hf5x78Tj/37P1Z7lO+hSsxWws+jIbbeffQT79iUw+7mnbR17ids9NH1+zHXCHF/v4bUGRN+MhZJi7FSdAdpCvYRdgZQrbB5fIJFVDleZKi4vdFyeRWyJvF1VR1VaWxa/CCivcTyQm+euyrLOeWcapOymaZqDvK3ua9DHn7yXT4WTle+U5tm7RmUciVkL1eZhfPYve+pfZaK4UVJpOTG5pE50P96JsUCKyG0ZRKglg6HKteph7PBnXIheYWrAnMyWRQu8WInm0YSKpKIGohFY5BJrPmecb8PEpzM17FjeR247z55lV/SZ8P4/hxzNlZEWgVCIg/xWItLMrK5XDeeCPm8jLFhx4SXf/qtdfpxIrHhWKvrQ0rm0UKhcTnNk2hEqgsqt4Mfm+bNRAvBg+NP8SfPf5nPHj2wdpjV7ddxcdu/U1OP3wf5VIOjw75phD3T36HpF9BaVxtBK1v1EwmJ4ktT6GZEv1XvI2SUyGjZwk4AjiKOrNWktAlemIeT57m2PxhADRZ4/Ztb+eJmSf5fvwstqaxnI+RLCfZ23+Ap2efYXlpiZAzRKqU4vmFFzi4/XaemHkCVVYJOAN87+z3aPO34Xf6xWjvRfgXbmELrzS2OP5rg1qhpFo8qvw7ecU2TvtLJKwcYUeQQS1K4Iwi7jPrG++GAYpCoq+Fo7mzfOXY/+LwwuHaj/e37MfjDtAa7aLZ95Ox0H4prC/ASk7napFNF8HytWtv5d9S5f4tgfByzVWsBT2eWiAekoTc3Cz+r+vozz6LMjiIPDBQs4qwUin0F1/E+da3Ypsmanv7hu3bDGp7O/a11yJHo2AYTGyL8uCZrzPUvIe8nmckPsLzMy/w3NxzTKTG+dxb/5w9U/KmHH/aiBOPTQuOVs+1bZt4co5pY4Wdeoi92k6i+97PSinJRHKcbDGDVS4xOX4E2zLpa9mJJxCFfOmV4fiqyqkdIb744pcYL8yK4rFt09+yi4/f/Ltc2XVt7ftSOzuF2KZUqvE+Ko+/UvdNpblZ5Lyst0SprG8sy8LOZES2DQgeqSiC95mm+K4qdg3V5ymRCOZKxWe+wvElnw9tcPCCivdWMkn52DHR/FJVcVy53VjNzchuN479+ylms9jVopttI7W04BgaQj95UqzZuHjrmirqOb7P413l97a9luM7HPi8GznMheYWWMmkWDtK0gZ+Dwj1NayZeEgMtPKFF/6GsZWzyC6XyPkJBpkoLfCls1/jTw7+/wg+fR6O73Ri6TrOq69+SY6vdnYihUK1bazn+Fv8XuCh8Yf41EN/yFPTT9Yeu67zAJ96xx9y5XdPiuaFpolJqERig5d/1Z612qyxkkkxFZVMog4NIVetJjUNqyLau1Tf+6nCPLHpEfEfWUZubKSQFduUNwzSLR2EbRsUtVa4z+oi78lKJFC6ulYbIk4nxtmzyH6/uFZ1daE0N2/xe96gRfDf/M3f5OjRozz22GMbfiatI2S2bW94rB5OpxPnT+AXf6FYzC4yvDRMspSk0dOIS3YQ1Px4XH7yZlKoGS2J6/bfhRptxh+8gYWwTODWK2mNi0T5NWNwqopPdbBvx63838/85ZoCOMALs8/z50/+BX23ddDj2wo7AsiW1o3vWtaahUfWyOOZK7ENYCBANG2ihFa7viFvhJt6buaxqccIeyN0B7sxLINtkQF+7YpfoeXMMkOdAww17+Fbw9+sPU+SJAKuEL3hXrKlDEdSZ5FyR4jMX5g1RUuog7dOrZANdvOweZaHxx8i7AxiGjrp/Aq2JIENz80+y/H0KJ2+XnG+qqpIL67cOGzDEBf59WN+1X1QLYbrOmpzM9q+fRR/+EPhXQtCmeDxoDQ2Un7uObS9eyGXuyiPq3P9Xr6nja+OfZPH55+mUFgtcI6nJinJJr/l/wTBUBM9oR4+cvUvvyKd7HOh2dfMb13/23ze+tyacMze6DY+1P8zlB0qsdwyZ1ZGkSWVkl4goPn5Lwf+IwVLXyVzFeT0HH3RfsYkCa87QDoSuajifaaU4ZvD36RslHlu7jmm09O1n+1s2MlH932EkOlAjkZFKrphYKh5pKILK5NBUlUK5TzUXb6r0ygXivriNA4HaBpyMLjqY1nx9auqMeq/5/UBiZqssbNhJ6qikiqmCLvCdIe6KeklHIZFKVSklE/jxUFHvow3J0g1qkpXWxcRd4RlVSx0bdtGqpD0qCNE69k45akTYiFTCe7RrrlGLCwq6hw7lYJwGNnnw6qMq2s7dqAfP47S1CR+7vfXSBzlMjYgaxpyNIp+9Cjanj2Y8yIwqDb6/Cb2e7tQjC6P8qmHP8Xw8jAu1UXREEqe5+ae44vP/RW/duDDxI88Q3tGZqYhTzy9gBLe6EVY36jJ6lkclszAgbfz1y9+maOVojXA3tb9/OGN//XczbWXQKKUqin59rXs54nJx5hITwE2x5eOc0Pn9YytjPH8/AuUjBI2MBDZxrboAN878z0aPA3cM3gPmUwMR1kiFptmIn6WPW37a+9xof6FW9jCK40tjn/5sCYI0OOp+ffKlZHokd0NfOHw3zG+crY2Zt/fNMhvvu3D7Iprq8WtKiq/M90g86WH/3pNARzg8MJhvvTsl9gW2b5VBK9gw32g6htchbWaI4Qs1wrYVciVkFJzeppqsLbkdCJFIjj27q0VxOTmZszh4dV8F4dDXOfb2oT1hW1jnD2LOTt7QfYUaiWwb8pd4m9PfIV/Gf5XMuUseSNPX6iP9+56Lw+cuh+/M8CRlROMBt14VRdD7h66EtQ4fracXf2c9aic1zkjB4hCfldzF7+070Pc+8NPs7AiGmO2qtDmaedg41X823Nf44N7P4AvZ7xsjr/S3cAXX/wSZxeGxdRdRVF9duYoX3joT7n3nX9Ba1Ov+A5CIRxu96taWFJCIZw33bQhHFNuasJ54ADm8rKwNUkmkUIhpIpdhrZzp+CRp06tfcGKZYIcCqG0tCCHwxdVvLdLJfThYWF/NDe3aucHmA0NOK68EiseFyrUXbvE/lMUrHSa0o9/jBwOrzn2L9S6ph71HL9TCtPYsZ3lmdHVQrhlgdtNY+d2unztG567xrNelpEaGkTRvChyU+SKcCRTzjDpSpMpZ/GV3XTYQXwlu3YeSm1tSG53rRhu2zanPTnGFoXdi10uiyJrxR72TOJZTm4/w7Xn4/ixGNq2bRfE8QHUjg6MxUXsfF7kMjQ01AJ2f5L5Paxy/Kdmn17z+FPTT/Gpxz7N397+32h/+FgtJLNmK7PumKxv1tgVn3vH1VdTPnoUu9KoB0SjZ//+S+b4WTNfa+jIkQhWLIYr0AqmgS3L6A5FiPoyGRGw7HOjdzRxpMHEo8t0mQWkoW3MGDGyVga/bNKdXCTULNwJtvi9wBuuCP6xj32MQ4cO8eMf/5iOjo7a4y0V352FhQVaW1trjy8tLW1QjmzhwnB44TBfePoLjCXGAFAseGf/21EVjcGmXZyaP0Y5l+G2a3+WI0tH+eeTX6cj1MWXH/08Q617+b0bP8E+vQdrWhS/JJcL2eulEy+ntCQvzD4HiOLStV3X0xxoxbAM3KqL06VZOhcb3nSp8pcCn3Odn5wsiwANlwu7WMSruKjO/7XnNRqaukl5PbVfLxklXIqLewbvYVfjThQUFFkml0/z90/9Lb+29yPsOjnHH9zy+/zRI3/Mc3PPAuDRPPSGe/no1R9lPDmBqjlpcEWwDYPvDN/HgdZr2NY4SMC3ubea5HSi9vXhfuwxUq0JMoWkGN0RPxV/VZQDifwK+mhBpFk3NeG4+mooFISCQVVFd7v+ZiRJq4uEyr+rKiY7l0MOBkXSdVXtUiyK4p9pImka2kWO3Z0rVXvCU+DxqccpWGtvdIVSlscmHuXO5fdwdcUW5ZXoZL8U9rfs57+9/c85sXicVH6FoCPAztAAzd5m9JER/mjfb3OiNE2ilCTsDDHk7KQtJZEYaKUv3Fc71wFsbDKlDDf33MxtA7dTMksXVbyfTE6imzo/HP/hmgI4wMnYSe4/8x0+tOt9InSrXAbbRo04QdeFQlmScEka6XKmplCpTqNcKNaQ6mIRbWAA/cwZZK8XgkEkWRajYoODKBXbJtgYkKjJGv3hfv7yqb/kVPwUfoefRDHB/ub9/OeD/5l/PfI1ZhdG2e7txp8uEfU3c1f3HbQtJlEiEfyql7sH7+Y+/RssLS6Kz2uaRAMt3NVyM57hOex1gVTWygqO3bsxpuv2nWWBpqF1dmKbJkpTE/qpU0LBXlUBNTQgRaM1T1dreRl1cBDHtdcKRUg0iuRwiOTyikLkJ/XaWsXx5eM8Pfs0EhJhl0ibry+E21d9lLu63obnbJxsyFe7l22GaqPGp/no69q7oQAOcHT+MF98/ksM3PJn9FzC9kbcETSnh/0NQxzoPojb7eOqzmuZS81SsMv84OwP+MiVv0TEGyXkCpEqJpFR+Jfhf6HZ28yRhcPcPXg3aixB9Yqcnh3H8vS84RVDW3hjY4vjXz6s8aF2OrFSKWGNkU6jtLay0h3lC0f/lvHcjCiO5/PgcHBm7Hm+WCrx2Vv+mEAlVAxWOT6yzExpqVYA12SNa9uvpS3QjmEZuFQXBaPA8cXjLzll9ZOADfdfRcEqFJDCYeyKR3i1QGzl88hNTWvuP7ZhIMky6sAAclNTjRtbhQKlZ57BMTQELpewMHniCay51clSye9H27sXe1nkAUkVZbd+5gxyOCzUx+fywnY6KQ728sBjX2QiN4mmOMgbwj5gIjlByBXij2/7DP907J/46tGv4lA0npt+hlv73spHr/ko/kIRd6iM3xlFkVWs+sJ/Hcf3ql7QVycVyrks1wR3cU3TFRTNEi5FFBZn5kcwTYNZLc+e/de+bI4/qiU4uzAs1iDrLEDPzp9geOkELcG22vtcjsKS1tmJfOeda7zolYrq2lpeRtuxQwiHKopUSVWhVELp7t50DUOphNLUhNLaWlsfXSgntJJJLNPEGB9fUwAHsGIxjLEx5LY29OeeW7XCMU2U9nZh4VGZaLABisULtq6pRz1n9hUt7mq9hftNg3g+XlO3R4Ot3N3zDoKh1e9mfUCisJsIU37qKREU63BgF4vIra0s3bCLQ6OHWBp+oWYjEw20cFfvO+gsuUXDqeK5bOs6VoXjJ8opcQxr2qpCu65hmywkXlGOj9uNs7dXNDRlGaWtDSUa/Ynn97DK8YGagKSKp6afYviaebq7usR61LJqtYf1RXBYPeYkTUMKhSj96EdrCuAA9sIC5aNHcdfZt10M/JoPLRyh0deCFPBTCMbwBxu5ededPDn+KGo6i9LVjZ1IkHZYZKwiJ6cPMzd9EqWlBXX5MQa693F67FlMS7Q9G9NHuMf5vkvO1noz4g1TBLdtm4997GN861vf4uGHH6a3t3fNz3t7e2lpaeH73/8+V1xxBQDlcplHHnmEP/3TP30tNvkNjcXs4poCuG1Z6Nks3znyDW7Zfgc/v+v/oLT9HmyXi6+e/GcWM/M0eBqYiY9jOzWOxU7w2Sf/jC9c/xmakslacrzkcOCzNYpWGRkZRZa5Z/d7+fHUo3x3/EFkZGxsTNvCs0PhqiWHuDG/SVLlLwU9TQNEw21rLVEMAzkcJoyb9ryj9rDP0nj3wY/wwPzDIsS0mGQkNkKrv5WwHOIz3/8DXJqb3mAP6cwytm3zV4e/zGd2f5zrCiH+9ta/4ER+gkQxQdAdIlvKMp6cwLItWt1N/GD435hLTgFwtPFpBn09vPvAB+lt2bH5xhsGktdL2B2uPLBOsWVZYFuEnAHM5Tmh0o3FKP7gB2h79kA6jW2aQiFbLCIFg8K/KhgUhMm2kSrjn/U+XdbyxoBPSVXFTa1+tPQCIft8m6ZqL5gpUQDfJBW+UMoynxcqqTVqq0r4xKtl99Psa95UYaX199M2MkJrIQJEIAuS20IbHKQlFOLjBz6+5pwH6A338qtX/Sr7W/Zf9HZk9SySLG0ogFcxk5klb5RoiHYQmzsLkkTQFcKtuMjnU7Q19GDF4hipGZTWVhqiHRedBF5Pqu1cTgQYdXcLex3TRPL5kPx+1JaWNcdEfUAiCE+6v372rzm6dBTbtnGrbizb4sjiET776Gf50N5f5CuTLzBinGWfb4B4don7Jx/kA8134KuMn/b4mvnINb/KeOsNpMZO4ZVdtE2lcT89glrxYjYnJ0X337aF8sjpRBkYQN2+vTbea5fLGFNTKC0tYtohk1kldbaNtbiIFAwiV8M9SyWhBB8dFVM5pilIUmvrlhKggloYpm2RKKzg1bwEHQFsbCRAsiVazwpy7PdGaveyzVBt1HSHunl+/nmOLhzZ8DsOxcnw/HGO58fo4eInnvY07+GDV/wi3xj+BmPHpzixJHIc+sJ9vGfXT/PD0w9yZmWUrx3/GkMNQ5yMnWSocQhN1kRArm2TL2eFgqhC6L040M+cYaE3yvHYMCvFFSKuCEOhbXTonp/4ZvQWXl1scfzLizU+1JXxb8pljBMnUPr7UZqaOCNPMVFaEPfKqudwRWV8dvEUJ5eHObhjB8bJk2s4vuR2k9PFfd+jevj1A7/BC/Mv8OLCizhUB9e3X8/nn/48DZ4GOoPCmublhl+/kbG+AGuXStiFAmp3N4a6LlTSsnAePIg1Py8C3opFzFgMye1Gcjgo/eAHtYm3ap5D+ehRXG99K9bSEo4bbhAK0mJRKP/L5drUpByNUn7xxZq/reTxoDQ34zhw4JwBb9NGnKRXxl0WnAhARqbB00C2nGUkNsKzc8+yr3kfuqlzdecBHpt5nLHUOL+w5xdIp5fxojG45xZGzz6D5XSiGBbNnYNCKa5pGF4nOdlLpMLxM6UU88vjGzdGVZBUhaxVekU4frKcFvuyGii6DslisqYKrZ+aDrlC7Grc9apNOpzLi17bvl3kv1QnCUwTyeEQWR6h0KZrGDkcxnHVVZcU4GfrOlIlUHAzWNksSsUCxFpaAkVB274dY3oac3YWKRAQx66i4Ni9+5LW9+s5flegnfc33cGMlSBnFvD5onT52wl3bltzTKyZEgWkUIjys8+K7bRt7IrtSE42+NZj/0DSrwj+XReUfv/4d/lA250ENV+tceC85hqU1laMsTHC/jSSqmJns8KCxjRFg6LC8UPuCEgu1N27RfNC15H8fqxsFv3IEbShoYvm+Obc3CrHfwWteN7oqHJ8WZIACVtarUZYtkWylMQ4O48cjQo//KamVV/9dajlJ4VCEIthx+Ob/p4dj2+wVLlQdDcPsr33ah4Y/x5zczNYmQyyJDPYfSU/dcXPsjx6BDsWo+xxkFF0DrYcZGZhFDkYpJiMcSR7lpOlKW5uvrZ2rYwXVvjume9ye+/tnIqd2uL4vIGK4L/xG7/BV7/6Ve677z78fn/NHzAYDOJ2u5Ekid/+7d/ms5/9LNu2bWPbtm189rOfxePx8L73ve813vo3HoaXhtcUwzAMsCwMLH546jvc2HItB5Mhvh9Y4HtHviluuPWdck3jeOwEJ615ut761tWE2kqXuWFiEZ/m4crOAzw2/TjjiTFkJOyKLi2ej3Hvk3/OF2/4Y1rnchu8mH6SEPBFefeBD66GY+o6cjhMxHZz9673EMpr0NQhxp96euhrauLDzb2cjp/m6dmnGYwO4lbdfOahT6NbOnpJZzw1QZe3jWw+yVhslBFitPg66HM30utoRtI0nimc5nvLPwCg2d24pgAOULZEwOm3n/5Hfum2/7ipItzWhc3Gbm8vV3dcy3PTdaNIlePl6o5rGTIbkTxJQb4rCoaaItgwsJNJ1O5uZL8fc3ERc2YGu1wW4Zc+nyD8hULNK/F8uNTjZ7NUbUfh+KYF8Co01blWbVWBHA6fd2HxaqA++G6zcc39Lfu597Z7V4m8M8Supksn8j7Nh26ee7xRVTQMyeSeK9/Ht41/ZKWwgroUZ7u/m0zI5GDrAaZOv4Btm4Q8Ud6177aLVorJFbWzXRChvXY6jeJffQ2lvX1TpcR625WCUeDo0lFAECbTFp11G5unZ5/mI/s/BIpCvpgh5ckTLRnEpWVm/BZDvh4RauXz4Xf6GfL1UXaJ5pClL0G4Wdiz2Dbazp1ivNLtRunspPz00yjRKPrMjFDKuN1C3eN2owSDQrUAWKmUUI1VQ2NTKexMBqWrC0vXMZeXsWZnkZubUfv6kDRN+EBWwnYu5Jy4UH/01wIvd9si7ohQetk2FjaZegsqSSLoCuDY14/kdtPb30nDmak1TRIARVLoC/dRNss8NfMUPocPh+LA7fRRKGVr1zuH4iTsDlO2dZKl1CVtf0j1ki/lKJRzBJzByqM2i7lFji8c5Z6Bu1gykwDIkgwIy4ieUA9j8TOAKE4VEcdP1NdEpxLlOW+Ke//9DzgeG67ZIuxp3scnrv9PXDXuEAvqn9Bm9BZeXWxx/MuLDUGAVaWmZWGePo0SCpHUEmLku1xeU4i1DQM0jZSZRwn6UDfh+I0Ty4TcYX7t6l/j0Mh9HF4UzcCbum7i4cmHkSWZU7FT3LntToKu4MsKv36jY30B1orHUTs7MZeXhZWFIvzXqxxfbWrCbm7GjMcxZ2dFCKYkUfrRjwQfLZWwUqla8dZOJrFzORx79qzhf3ahIDJzAKmhYU0BHBD3w0SC8tNPI99226bCjayeRVJVmrzNRD1R5rPz+J1+0iURMr1cWCbsDJMpZQi5QhxbOoZpmQwvD1PQC0guFznDYMJYYqD3Ks4unqQ90s0Pxx8isZBkR+MOFmITNHZu555CIz3Ono3Tsevgu8TjZz3HD9vjqwXwdUpwgJAzgK3rG6amQTSkP37g45ckILlUvBTH32wNozQ1XbIgR9K0mh/xpqgIjrS9eym/8AKyx4MxNycEKaGQOG7TaWxZxpidRW5rQ63LWbnQz7ye4wf9DQQRk53n4vgbrFcMY9ViphrgCcwGbOKnJlAcHbUiuJXNImma4PieMpHu7jXTALLPBy4XO5x++tuGOBs7XctHk1wuJFWlL9zPzmA/1kxCBDBmMmL96nYjhcM49u4VKvlKg+FycPwL9Ud/LfByty3ijiAhYVgGlr16zMrIqLJK2B3GcfWQsAWKRMR3sv6clyTxHZgmxsyMaPhalrAlSafXqsadTtHEK5cvaX1SVG2OFSdI2wV8vgi2qZJNx5icHabd1cTPXfmL5PQcRXROzh5h4vHvYrkcIlvLL1MoZphLz0JXZR+pKi5viA5/B7/577/JydjJLY7PG6gI/jd/8zcA3HrrrWse/8pXvsKHPvQhAP7zf/7PFAoFfv3Xf51EIsGBAwd48MEH8ft/sgjVK4FkKSlOkGqadCXMr1rwEx3yxlVv0jp4VC9v3/tuAq4Q84Vl7pdfYHfDbrY3bq/9zt7mfezruIombyMPnHlgzfPb/e3YhsHR+Rc5UZqmlQhw6cEZbwb0tuzgl277j0wsnSFbyuBz+umO9OIr2ZuSHb/Tj0NxsJgTSmQZGd1eXcRkSmkIdtX+nyxnRKJ4FZKEz7FKjGzDWFMAB3DIGpgQT8wxsXSGvZsUwasd0865An9w03/ljx79Y56bfqb286s7ruUPrv8Ezd95Uai8q6naleI3ilJbXCmRCIXGABO+AtnOTvyqhw5HI86yhLWygp7P49i//5zWJSCKz0pT0wXt882wPlW7fTZFW7SXufhGVUpbtJc2f/uaArhtmtjlsggxKpXgtttQo5vbybwaeKlxzXOpyC8F3aFumn3NqLKKYRlrfuZ3+HGqTlpDnfQo7Xz4xt9kurRMZnEar+Ki0RlhOTHLYGcAn+qhveggNJHEdMbW2Ja8FCSnE21wcHXs0bYFAX+JyZKqmtc2DOxikYwjLa6BkoSNLQqLNrg1Ny7ZQcEockP3QdKFFIZtIssKqCqFgBs7lcHW9RoRSq/M43GUaIunCDS2oh85UptcMG0bpbsbx9AQxvAwSmMjZiUFvuobiG0LBc3KCnIggNzTg7mwgLZjB8bUFHZ1Eevzgd+Po7MT/ehRJJ8PtacHc3YWO5tFbmgQipILmLKp+qPPZ+ZJFVOUrTJN3ibe3vd2ksUkAVfgVVU+nQ/rvdthVVUYdUcviHzubtjFde0H1gTmIIZ0ua7jOna6u8HKovb1EYo2cLdy95r3VCSF/kg/Y4kxRpcqATuWRbSxmx2NO5nPzmOYYvoJG8q2uLaFneHzbv9mqkgrmWRs4nnU+SXe0XoLSamIBBSMIl5LYWVyFL//ShR/lHf2vxPD0vE7fBT0PC7VQ8AZoD3QjlO3KFoWUV8Td/e9k7RP4d4n/pxjseOiEVMJATu2cHhNQ/ontRm9hVcXWxz/8sIulYTYoIJqcHT1PolhEPIGxL/rOb4kiXuRLBPyCm4ueb0bild7m/fyof0fYqWwUiuAA3QGOnl29llhOyWJqdOgSzTyLiX8+s2CTUUWV10lghY34fiS04mkKKLBjpikWCPIKJUgGFz9//pipSQJzl9VmBrG2gJ49XcAK5E4Z8BblStFPBGubr2aZDFJySiRKqUwbROf5qMr1MXYyhiN3kYWc4s0eQUHzxt5HIoDSVUxgKGBg+zvP8hXT/4z4YZ2epTtODUR7JewcrUmyabTsRVEw230NA1czK5fg3qOP5QM0Bfu42zu2Ibf62vZyQ5nB8taiS88VTc1XeH4Z3LH+HzpL7j3tntpiV6+IN6X4vjr1zAvB3IoJAp9dbWBGhwOkbcTDCJHIkIJbRjox49DYyOSLGMuLooGmyQJm49AAEmSLgvHlyrhv5JHWIfWFNqVJhKSBE4nWYrYpinOH10XE5rhsPh/heNXUS3UmisrSA4HkfkUv7nrI3zxyJcZW66EHNo2/S07+diBjxOZzQkrlAq/l5xOsU0VD3HJ6QS3G7mzE3NqCm3PHozp6VeF41f90a1MRvBX2ybfHGYuqpAtZ/G5AvQ0DpzT/vTVxAbvdljNMqr34T9PcXxnw06ubruaJ6afQGjABb+3sLi6/WoG/f2owUaUxkZxba1MVdTeU5KEN3cigb60VOP4cmMjcigkrJxMc/V+WQknnXaV+LfDX7lgfg9iTfPQxEM8Pf8sRrlAUS/gdGgM9l1FJKlTPDWMpezmCq2N5x1LzC2Ngc9TmwApY9TCrYtmCVQVpaGBve37+dwTn+Nk7CQOxbHF8XkDFcE3dGQ2gSRJfOpTn+JTn/rUq79Bb3IEVZ/ofltWrSNqW1Yt/TnkCICtEnZWbC4qSnCP5uUXrvslvj78vzm2dIyrWq/i+NJxDrQf4FO3foq39L4FgK5QF7938BN8a/S+Ne/b7m/nQPu1vDj2JNg2iVISKkVwuLTgjDcLAr7opoXmc6FezerRxKKl3gurvjAZ8oYxz5xZs3/bIl7CspeElaOgFypBlqII53H6CCge0MVrZEuroZD1qO/SH1h08Tc3/jknihMkiylC7hBDcivN33labFv9d2vbwoevXMZWVSRFYTI1yb/PPkIg0EBRNskUJ4jKUa5sGGJ7SV3TJDnn2N+BA6+oDUlPwwB3X/lzHHrhn9cUwtuivdxz5c/TaflXC+DlMlY6XVNUGZkMan8/6PplVYRfLvidfm7tvpWHxx/mqdmnaseb3+Fne3Q7V7RewbboNhQc+CYm2GG5MRZV7FwKKzdHoEpEHQaSJGEHm9CPHkU+ePCibs4vpY7ZDN2hbsKyl+WFETAM/E3baiTfpTkxLZOAw0+6nCFTTqObOl879jW6Qt28d+d7WRk9hmVZwq/f6WSyvMwDz32dhJ7CymaxYjEi7gjvct5K565dIiSzXBYq73BYeBGGw0gOB2YshtLbW7P/qTZ49GPHROjRrl3oloUxOYnc3Izc1QUOB2pXF2Y2izEygqRpKAMD2OUyst8P1UVJJYX+fKSn6o8+lhhjJDZCwSiQLWeZSc/w+NTjvG/3+/jyC1+mM9jJr1z5K1zVdtVFHimXjnrv9mrDAssikS/y+OTjzGfn11wHz0U+++wwn7r5D/jUjz/NU9NPVR6VuK7zej59yx/Sm3Eg+XwYY2NIqkpPqIcP7/8wE/GzZLMreB0+vjf+fcqFtPBprJzjpieCgkTA4We5EMPEFPxbktjTtIcdDTs2FMCBc6oi7VKJxNRppowYc3IWR1mjuWgTdG9nJHGGQjmHbdsUzRKO+TT/6Ybf5bOP/AnHF46KY0eSua3/dj565a/inovh23uQzrIHb8bgB9o0xxYOC/Jcd98HOLZwuNaQ/kluRm/h1cMWx7+8kBwOUWBxOGoBclaxCA6HUBuqKjvUFvobBzkzfaTGHyWvFzuXoy86wMBcmdLsk6BpuG69Fa3OwqYr1MVbe9/Kt05+C6eyel9RZAWfw0eimKDR20jRLK7ZrosNv34z4WILlPV8XaoUHdcUu6uFycp3XT58eG0hSdNEYWdF3D8TQz2c9mRJlDOEnQG262Ei0+J+dq6At+5QNxF3hJXCCl2hLt7e/3bmMnPMZ+bZ07KHbDnL2MoYIXeIgi7eu3que1UviVKC5ewSRb3AUGSQPncHzpxOg+6AYhFLM5ElCcnnW9MkWTMdW0E03MZ7DnzwFSvUtYTa+fjN/4kvPPSnnJ0/UXu8r2Unv3X979CQtnhcmVgtgK/j+Gcyz3G8/xkadO1NyfElp1NY9oyPY87OrjnelGgUpbVVeFkD5sSEEJJUfK3NXG612OxwiEJ4LnfZOL4cCiFHIqLQmc2i7tgBuZw4hzwesV2Whc9yQFlYXpqLiyL3oBLoKTkceBUXdi6HMTODOTkpPMErHF9yuxlytfKZXR9nxF4kVU4T1HzsDO+goegGrxAwEA6LRkHFesfK57HicazKtI525ZUYTif66dMoHR2vOMev+qNbiQRmLAaWxWyrm/tf+AdW9BRKWxt2oUA01Mo9V/48fW27LuYweVmo926v5/jk80iTk9jZ7Nrr4DkK/rZh8okbP8FnH/ssT04/SdUM5frO6/nkjb+Hnc1iLKfXhAI79u/HjMexs1lwOIT3faGwhuPbkiT2eSAgmoh1PKa4s58H5h8iYeXWbMv5pp4ypQz3nfgWhlnGLpVQJAWPqYAqMxOfICK3gW2TtYpYKysErx2A4YrdZ+Ue4PQEkG0RjOv2hUgrYiI/U8rwwsILoh60xfGBN1ARfAuXD3apxA65hV5fJ2MLJ8Vjle6WJEn0NQ2yQ22BVJHdDdvY03EVx+ZeBNvm7bvvrhXAo65oLfX76dmn+dTDn6Ld115ThF+r9ZLtfRunV05TMks4FSe2ZfLi2JOUzTLIMmFnCOo48aUEZ/ykoj5E0Kk66Q/3c3blTK37p8ri9O9r2cEOuwlbX+t5503keVfkOh5IP4dqie46uo7b5WebqwFldhEq4ZPnGj+UnE6KA12MTx8jm1vEG3NysBzCVwwgNzSgnzghDHDy+TVKdDkSEUV3y8I4dYq838n9k0doHLqSv3r+b3hh/gXxi7bNdZ3X8Ue3fJprzujiRlkqIUkSjmuuwcpmxRipy/Wyxv7OBb/Tz8H+W7AlSOVWKOp5XJqHoDfCwb5b8M7nKSPUIfXkuAq7UDjvqOmrgZcaKzvXz19qpGuz5w1EB/j9W36f/3X0fzGWGEOWZPwOP/3hfn526Gdrz9cGB9EnJsSNuRJGonR2IgcqSjRFQQqFBCm8hJvzxQYW+XDwrvB1HFpaJp5dwmVI7GvZz6nlk4ScIfJmiVQxSdnSubrtalI5UcScz87zxPTj3DpwE8WlOdrm86SlIvdNP8RKKYnS0CAsflSVlcIKDyw8wvu9B3HPLAulQTiMGgxinD6NOTOD2t2N4vcLhXexKMJ6SiXkQAC1vx9zZobSD3+ItmcPcmRVlWem0xgzMyjRKJbbLRa6S0uYExNiJLPio6/29WFnMuclPZPJSeYz87UCeNksM5OeQTd1npt7jitar8Ctufnume8ym57lz972Z+xs2nlR38+lourdXvVFxTAoazLhaDv/fPifiPgaaFFCOHRxXMXLZQ6NHOJDQ7+AN2fUjlU7m+WaF1b42xv/nOHyNMlixQ5Ia6f9h8dhaDW0tLqY8BZMtk+XsAsyp7zLpOYmhAerqqK7HaTtAgvzx3j7wNsZjZ/mh+M/xK4IKvc07eH3bv49SkZpQwG8is1UkePLp7lv9Os4QhHOxE8D4FbdbFe72ecfIOPTKOtFrtx2I1dF9xAINNLxlr/gROYsiWKCkEs0HlseGUb2eNCa2rCTgrgnisnVMDLTXP13pfGZKGeQGrZjr6z8RDejt7CFNzrsUkn8SSbRl5bEuW4YSMEgak8PltcLqkp0pcTHr/kNPm98nrMzR4WgoVIA//juXyb0zCS2w4G9tETx4YeFErFOER50BekL99ET6sGwDFRZJegMki1nsbGxbAuX4lqzbRcbfv2TjDXrIVVFaWnBXFhYLYTLsiiW9fUJ24l1/rS2rmMnEkjRKCe0OH/5/Jdraz5kmb7mHXz8iv/AjpHkeQuKB9oP8O2Rb7OSX0GTNUKuEJZtcUPHDXz9xNfxO/3E8qLxD6KZNdQosjB+cOb7JDJL2JZFj7OF75YT7IsMERs7TnlxQUy++f2oPT1IDgfZQgq7VKJLCvPha36FqewsWSOPzxWkp+mVV6pe2XUt977zLxheOlHhBQF2ODtoSFtoAwOk5h8S+/IcHD9VOL+dzKuBS+X4l/I8JRrFdcstlI8eFYIfSRLB6+Ew2tBQ7fmvN44PYsKhOn1s6TpSczP20lJtzWhns7Sn/TS0byNRztf2gW0YyI2NhMsKbQsFTN8K5rFj2MXiGo5vFwpYCwtEvV4OzKQrHN+BGnRhnB5FUhTMpSXhkz41JTIXKrYaUkMD2sAAxtgYpQcfRLv2WhF+aRhCHJPPv2Ic30omsTKZGofONfi5/+y/EU/Ni9Bdj1AZL8eO8e10ho+87XcJNXVseJ1XA1Xv9nqOb1sWcjRK6fnnV4vdFWW+XC6jj4wIP/VcrnasJtMLHD78Hf7w+k8QvyYthHjOIFHZxzMP/Qv+q34a7OCahoFdKGBOTwurVa8Xc26uxvGRZTE9MzeH2t0tfqcaZGzbyE1NLAw0kJjObfq5zjX1NLE4wvL4CVpbBlav15VciKKmkm0I0hBpJLhtF+7oTnoDTlr2XU8sNiU+r20TdKq4cxphVxRJkmrT9KliClkS9i+Ylmj4VK1/JImEngGlUXjX/4Rw/K0i+BY2wEwmCR45zcd2/zJftP4fxpZOCSWmbdMb6OHj13yM6LwI12pLWnzyLX/IZx/7E47NHSZQ8XyLuiL0hnsZrgR2SUg8M/sMR5eOUrbLdAe78Wga24hilEoMV1LkkSTsimJ0b+t+hpydgLiISG73mu7e69mj9vWAeoVGspjkvbveyzeGv8HZxFn8qhdJVuhv38PHr/lNolPFjS9g27SvWHyw/24mFkaY6rmZRGaJQFlGTRawK53xpu37N4wfVsnSZHGR+8f+nXg+hpXJQLlMxB3lrm3vonV0DLW3F71QEIrvchlcLpFWv3Mn5vKyGOtKpZjtbCIcGuSvnv9rXph7HlhN2X5q+in+9Mk/5y+v+CTdMfE+1dRsEMeN2tb2qhHQnlAP0aE62wXNR3dIHIv6yqpCZD05BmqBVOcaNX2lcb6xMjkUwozHxbhdoVC7cQLMdfo5dPbfiScqag9FIRpq456h9yAjc3ThCInsMhFXiF2OTlrHizVvscGGQf7Lwf+y6f6pQg6F0AYGBIlbWEDbuVMoK6qp6U4nSiaD2tNzWW7OVjIpjv3ue5gmSd4u8emb/5DPP/N5Xpx5DqfLQ8wqc0XLFXz0qo/ypUf/O5rmJOptZCE+hbND5W3+a3GdmebM9jDx1AKSqgpVd0sLSkMDZixGPDnPTKTI9op/nLZjB/qpU2JxWiggBQLox44JL/POTuTmZhGS43Bg5XLIra1Yy8voL74IgLZ7N2Ymg+u225AVBVvXUdrb0YeHyfkdzOyMkrVL+FUv7SUZ7/g4aldXjSxuhqyeJVVMUTDEMZMr59BNnaJRxLRN4vk4jR5R+Di2dIyHJh6iI9hxWa7FWT2LbRg1cpx22owkRtgfDHB08QiDxX7m83kGgwP4M2Usp5Pl1gJjzufZkRSqiXijh1P6HMmuAqH8AtdaLYTHwZqdBWaxbWE5ZafTYqFmGJgrKxgnT4omm6KQ1USn1i6VyLhgNHGGfE74vJ9dOMkv3frbvHvwbpKlNCFnkN3RHXQHu3l6+cWX/HxVZEoZ7h85RDy7RKvbS1ugg7n0DAWjwGhuir2+ARplPw1tu7im92CtGNBX7KT9yBRWQkPcS8+IUKWmJoxTp2rff9gdFpMIkiQGRSVpVXUDhCQn+rFjwqtyqxm9hS28YWEmk+gnT4oClcsFxaIo2qRSGPPzOG+6CbuietzfPMh/u/2/cWL2CCkKBIuwLeMk9PQEst9fs9CwZmexlpYwKgpJORjEp/nQFI2gM8hIXNgBnFk5Q0+oh/HkOBF3ZI2FVsQdWRN+vcXxz481fsjFIurgIDaIQoxDTC8pzc1oO3aI0O3NYFmshBx88fEvs2yk8Dd3YFgmqqSwnF/mi4f/js/s/x3a19kI2qUS48unuX/kEMlSmmggioqKhcV1Hdfx1OxT/P0Lf8/dO+4mVoiRLWfJlrM0e5vpCfXw3l3v5Z+PfY1ERgQRdoW6SedWmMtMcXZplHta38JyPoeVSmGn0xjT0yhtbbhiKfTMKNbKCi7bZjsguYNobYPIvtCrsp9bm3ppCbatVRp3C6VxaEW857k4flDzv644fio+L0RJhZSwlCSEDwdKZyfm2bOYiUSN4yuhkCgmAubiItbSEjaItUG5jORyoQ0OojQ04Dp48LxK7Ncjx8eyRMB8sQipFM4DByi/8ALWorARxeHAq7h59/Uf5ls//jJxWUZpaMC2LEI5i3dFr8c9PofdLyw5NuP4VjKJGokIi411HF/yeFBaWjBmZrDTadShIaTGxpp/uJXPo2zbhjkygv7EE2i7d2PMz6P296MNDSGr6hqOL/n9qDt3isaRqmKXShgXwPFtXRf7oHL8zmr5WgG8apVUtc6KLU0wMXGYfcHGy2KXYev6Go5vGwZ2Pi8aFrkclmWJ9b6qIskylsuF3NoKTqcIFVVV4m1BVswseiTEkcUjaLpNfGqEqYxoTOhuB0WHxHPO5co5oRFcx/Hlyue3i0WxL2xbnGOmiZ5KiYyvnh6R36BpyNEoufzoeT/b+qknu1QitTgt9nepVOP4GIb4fKqKLkNj2wB9vftRfVECwD2738u3Hv974nYWCXAUDQ52HqQ/3MfoxIvQ1IikqoTcITyaB1mSsW1TTPfUTQ6FZDdyUxPW0tJPDMffKoJvYQPsbBY7nWbHKZXPbP81RnYla2M824oBWo0ocp+/dqO7HvjiDX/CifwE86U4V7VcRbac5cTiccyKP65hGdjYxAtx/vfw/yasBbmr+3Za5/N84sDvcu/Tf86xhSO1i/eepj188ob/QuuiKM7W/J8qF92J5AT3nfjWpkW5n8R0+c3gd/q5e3DVu3alsMJ7dr4HRVJo9jUTcUXY1bSLaFLHsM5s/iK2jTdVZNtIgl9qexeHMoeIpaZqXddosIV7dt6DezmNkSqKC6csY5w9S1Y2uG/yPuKlhOieKgp2oUBsZYVD2X/mF4feh+vMNGp/P5IsgyyLMbNyGXNuTtzEUylwOsmpFiWHVCmAb8TR+SOc2DdPR8wvRtu6u1e9Ei9DqKrf6d/Ux7LmT57b2A2Wm5pqpORco6avJOrHytY8Xtk/Sm8v5ccfx1xernWG5XCY4q4Bvv3EV4jr6TVp2alsnudDz/G/jv4TL049XWs67GnZL0I2llZVs+faP/WQfT4cV15J+eRJ9OPHawEwOJ0iXX55GVNRUOtGrl8t2JVpCW9OZwdewAslhe6r/isndk8TM9KYlg6GxVPHH+Sqlv2YpoGRz+IIuemVorROJpB8PrJmXlhL+XxIlXE+2edDaWnBSqfJB9xoQ9vE+xaL4lzxeET337KwSyWxYJieFt9NhZRJFXsfq7GxVqyUgkEUlwtZUWqKD3NxkdkgHBp5kNjiRO0zRgMt3NV9B92VZtK5SI9P81EyimKRZ9sYpo6NXQsHVWUV3Vol17FC7LL5uvo0X428lzWZkcQIhXKOMsKXU7ElMoUMI5xln7cfrVjGnJoi25YDxc2JRosvPPHHnF08KSZkJIn+tiE+duC32L68vFoErhJtxL3IXFgQyp0KPJUMA93tYCR5lkIhXWvSGWaZxMIkS8Vh3h+9jaC/AXtxjrI7gbf1/BSsXhU5mZwkXlGNL8WneGv3rfxo8mFRCNfzZFSDjmgn777y59eq4UwTpa0Npb2drGYxbSeFcs7K0a6GCEUiyF1d7FHz7G3Zx9HFo7XjrloA39N+BbuKIcyZY5QlCfc73vGKfH9b2MIWLj/sbFbcZ0D471qW8L2tWN5Jpom6Y0etkNXidhNJGVAsUh5+BqQCtqaJYlFFxYlpYhUKIt+iEiDWEfaiFkr83NDP8bUTX2M0Pspzc89x1/a7aPI2sS26reYHHnFHuGfwnlqRe4vjvzQ2+CEXCmjbtwv1n89Xm4C0ksk1o+9rX0TiZHaMZDlFzilhGiVKpSwr2RjtkW5cTpvnXHESyyfoSjXi14QHdHJunPtGv048u0RZk3li6nFyisFCYZnOQCfv3vFuji0e45vD3+SO/jtwyk48Dg+7m3azmF3kyeknWcwIpXdnsIub2g/y1MgPcWtuDCd4O3pI+xQ8toaayhKbOEXUHaYtZqBnRy47xz+X0nhX0y76wn2c2cw3vGkHg3oQKLz2HH90lLnuEN9+4h+ILU/VOH403MY9O99DyxNPCN5b91wrm4VQCGNkBGNyUtiXAHI0irZnD3axuGa/v5QS+3XH8REFfanSnLCTSbS9e2tcEF3HKhRoemaEDw29n2k7QTa7gj/QQOt8Hs9UEipe5+fj+FIggDYkJh/qOb5VKCA3NmLOzAjh19IS1sJCjTtKDQ04rr5aTN8Vi0h+P4phoO3YgdbeXvss5uIicjAoLE2qBXxEzoPa3b36eufg+JKmic9Q4fgZgzXWqVVrmCqyhdRls8uQNK3G8W3LWrXp1TTsSkAptg26ju1wQFlwfKWtDVSV4Wb4/MO/z1J+iancLJlimr6mQd6762dYOv4sSTekKXFq7hjzC2K6MuKOcI/vZ2memal9bqmaUybLYj9V9hUg7p/pNGZl8lxpa8NYXMQdKovvzeXa9LOtn3qykkl8OICNHB/DAIeD9mjPBo7fafr4YNtPMd2WJFvO4cVBh+kDSWGov51C2Is/2IRbdXNFyxUcXTiyoQC+p/0KduUDlA4/ieOmm7aCMbfwE4xqN9swCB6f4JpMRhTzAm6wStjBArbfj1pXZGmdTtNKhO80WhxbPFp7KVmSawVwgKAzyFxsnOWZGe5bWOCDQ7/A/pFxPr/3EwxfESNZThF2R9jdtJtOO4Dt3dhVzpQy3Hf06yxPjazpvC8nEtxnGnzkwK9tqUUqqHrXnk+Fa+YWz/l8u1jEyuUwJyZonoD3b3sLc70SOUnHa2u0ZVUCkylKMydqXW5jbAzJ4WA6ahLPLombVVVpZJpIkkQ8Nc9UZoYdwSBKYyN2oYDS1FRLU5Y9HqxsFqWjA9sw8OommXJ919Su5FpU1N6yTLKUxloqbAxogZflcVU/AkjlJmvncqIz6/ejbDIyaCaTwkfMNNH27cMulzEyq77pclMT2t69GKdOie2/DB316ljZpj/LZLDHx0VIS93+M4tFJhtsYiuzSPXBqUBf5z4+/9RfMp9d2OAtVh+ycTH7XWloQO3sxBwfx640VDCMWtDN+hv3hcBMJjEXF4Xaze1GaWpCeYkb/GZk0S6VaHp+kibD4Mz+Tv71x38LlkVEUcAuIUcimLEV5LCXUElG8nqRFAWf4hD7tEJiaqRKVZEcDnySo7aYo3oclMvIwSB2Loc6MIAxP4/s9yM3NoqFiKKI83J8HKW5uRasKft8wqOuTvGRMXLcP/0DVswskt9fG32PZxa5f/JBPnTVR/Ctm7KpR6capU0NczovxkFVVRZk1LbpC/exkF1YU5TwqB6yeram4ssUknhtjS6HWEC/konz3aFuou4Iy8RIU6RQFvvRIWv4HeJaAlAoZUkHDaII7zyf4ibe6OELT/wxk4uj7Oy/Fq8nRNEq4VZcHJr5Ab9yzR0EHnleNKuq542mYcbjKAUxCSPJMgAdRQcRTwMjxlkKpSy2bSNVFh6twQ5Ip4mX4syEEwQRoU92oUBb0ktYC5LQUxs+23pVZFbP1sZsTcNgdvYkNzVfA103UjRLDDXv5oaBWzeMg9u6jp3PM+O3uP/0v4trcgVRXxP3dL2fvuZ+uoHfu+n3+JNH/phjc4fXFMB/79rfpeEHw4LsJ5NYKysveQ5tYQtbeJ2ijjdblYK44PiBWgPM0nWUynXaSiaxl5aQolGspaWNr1edunM6xb3a78cYHUU1Td6x83r+bexBfq73HorboWAUaPa18H9d/38hIW3KS7c4/oXjQvyQ7U1EGABIEjN+i+eXj/DY1OOUzZKwoXSH2dN7DUcXjjCSGeeKtit5/vkHRIjyjntoHYsz3WjX7iVpihSKGYqqhW7qjCfHWcotsad5DwFngN5QL5ZtcWPHDeySW8h4soQ0P0HFg2ZLpPMJnjr9kGis+70kc/McWTrC/Ue/AYZOX3Q7H7juF7i14Ro8z58R3tLr8Fpx/Ihp8pv7fpUvlv+KM5nnar/T17SDj+/9VcKnxKTEa83xs5LOfS/+M8vTo2s4fqw4xiHtAX7e3I1vnZBd6eyk/NRTgjPWFfGteBz92DG03bsver+/rjl+uYw5PAyGgbptG+Xnn6814Jynxti5cyflY2fRBpswFpNIbrfggIpyXo4vVfzOgTUc3zYM5NZWlJ4ejNlZ0VwYGqKaiWVlMpgTEzWOLwcCSIpS45217TYMzGQSuaFBTBvIMlYuh7WwgDE5ieOqqzZM0q+Bqor1eYXj+0y/UIEriihC6/qa9Z9X9QpeuW6tK/l8KNHoK3qsV6ddALF/q/tWUYSwbl0xmkpYsKQoxNqCfP7h32dm6SzX7L6N671hksUkDsXBfHGJ5sH9TE09zcG2A8wmxKSMbVnEFic4dPoBfiF6FZ7ltHi8WBS2MNXGTSWEEkAKBrHSadHIyWZRKtveqYu1YFI11kxWw0Z+D4KrdxIi6msinl3awPEj4Vbu3HXPmump6vO8OZ3BooIZK4ORB5IADKgqzut2/v/Z++8w266zzBf9zbByXqtyDntX7by1pa0cjCXLxkGSDdhtwMg2cKC5h4a+B06fB9PH0Cb14XIu3YTmHg59aWigacBtBds4YGNbWdqSdg61d+W8qlatnGc4f4w5Z61VYWfJCvU9jx5JtdIMY47xju97v/fF1S669T93/+f4re98gZOTLzmfb8T4Rr2OVK+/K0wxYScJvhNbhBQKiQnRqli6du0SLMTpaVAU9HxeMD0+8AHUjo6mhMu+wJBohZt70fmbYRpIksRdPXeR8CWctpZUOcX0zClG8iadMyadkgspthu1cwjXZfSmplLjm8AxAJrGyswFpnaNc7Drlpt9Wd62cSUWblNLJTiO2aZhCA83t1uYIeXz+M5PsiscXm+TKpfhHiupUyigjY+LJM3qKoWQBTJswKXrziIFUNRKGCsieWhmsxguF2YqRf38eeREAiUcRvb5wOWiN+wj7m1kskjOv72qF12vE/PFUIfaRKtSMCiOzfq9xXYvZ9ZeIr2UJe6Lc7DtIH3RviteO6e10KrC6/PzwgDGak2SgkFco6Oovb3CITqTQZuddcxWAPB6ce3fL1pVczlRFKjXRQJc05BjMZQNraZvRFyuxdB2VW8qIHi9LN2zl3FpkbjrFsKeMB5DYurSMWr1KhXV5MTicVoCrU3f5XZ5uZAe47XqJLsCAfq1ItFrOE5JVR1Xc9s5XgoEhM6gxVq72qjPzlJ95pmmjbvc1obn/vtx9fZu+7lNzwQ4bAQpGKRXTdDSPiCY1TYYUlUkv5+W1j56CCOpoujRU/WSCHewZic6GwBsItZNr6dNGPJY5y7+Q3I2BdRqqN3daAsLkM0iW/p8cjyOFI+vf7ah1bYR4M9UllldHBfX0kpeSy4XUjhMKrfMrJzn0Oht2xrmeMdn+dGBR5nNzDKxOoZfcuNVvXQE2rmr5y5OLp8k4A4AMBQdwqMK49A/P/7npNILznyfCLbxyNAH6b3kQe7pgXKZgkdi1kxTlOqE/NFrbncPeUI8MvooT6b/koXyujGty5S5p/tuLky96kwVNaMOpkIi0kmvEeZ4bY7p5TGOHn4/Xxv/BhfXLmIX1XYnRrhn8H7u7e5GbWsTz7x9bW1Wh73hAfypAo+MvI/l2TysnHXe2xXp5cGeB5idPEEtGmDOV6NkzhIKeOghSiBT5pGhh/ny/Lc3ucc3siJBsEYky+VdX11F1zQWlsedVsmuXe8XLL0NIblcFP0qT08+xaKeJufRqGlV3KqHmp7m6fGv8pMdg4Q8Ie7uvZs/euj/5HTqPOnCClF3mH21GC3fuSDmB9vA6k1gte3ETuzEGxPXjfH9fuSeHoy5ueYvNE0xp/v9SJUK2sQEZrmMOjBA+8sX+KR3mHk0ClKdUGyUwe4jxNqHtz2+HYx/bXElFu52GL/gk3l6/H9Qj/qpGaJgjGHgU7ycWDqBZtSpVouoiosakCokeWr8q/y4ehu5QtYpBNesTjBd1xzMXdbKnLXWwvZAO5nsMjmpk7pRRTl/nug+H8cmnhVjy/KfCAQTnE1dIFNeo23fj3Cg/SD1WgVVUnhl7mV+sPdB1KGhZowvSQLfV2dJz3+NeLblqvE93ByMP+L18hv7f54Lo0kyuSQRV4jRekQkwN8iGH/WWGN1ba4JPysuD+Hdeym6Fb4Wqor1Xu6n69QcVCpIqoqxuIi80dRTkoSZqlUs2C7xvl28HTA+qiqSmtmswPgV0eks+f2C8e33i0QsAidL4bBgkEMTxldiMZH43grj5/OYuo7c2oocDguMX68LY8t6HTmRcDD+dvje/n19dlYw6y2ML4dCqMPDYk8uy02d9Bs/q42PCy+ITAZjdZXusotEpIO1Ukp0Mufzzm8mol30qnEwDOpjY817XVVF7evDtW+fGBv5vDh3ixQi+f3XTIKxu12MdBozlVo/bllG6e4WGuiquq5tbZpIkQgYBudL08wlx3nozk/w9+f+gXMrZ3EpLiRJYbRllH/33i/gK2rMZ2fRq5YkrIWnU6UUcy0VRqzfM1Ip1JERca0bxpoUiaD29Ih7Z+Nj00QKBAhKEo/0PsxXMi+RZl1ydit8b9/XQEnjkaEPChnZQpLFjFhrE4EW3rP7Dtpc0c3XyOUShZB0mlJLmDlXkYJWIuQK0F3z4yoWxRj1eATGv+/fc2r/OTK13NYY3yIPvRtiJwm+E5tCSSRQ+/qoj42htLUJjeBMRlQFLXaimc9TO34c5b3vbZqQB+bL/Pp7fo1f/+6/48W5F7HTlnf13MW/vf/fcuzSc2KSURT05WXy/jX0uSJ23Vdua0Ofm0P+0Ie2reTm86mt9ZUBNI1CYWujsZ3YOppaKi0gqE1MiAXM64W1NbH58XiE47XHIxbbUAgpGm2aMI1cDqWzEzSNANaibQOCxvYqIKD4AGGAqq+uInd1UT9+HCWRQF9aQp+YEJXpahVvWxu3fuAId/XexYuz6wUWr+Ih4o2wO7aLfbRRffZZAJS+PtyHD2NkMrzaUuF3nv8tTqXOOKDlYNtBPnf/57i79+5tr0tja6EUCKDPzqLNz4vzlWUBwgsF8R7TxKWq1Gdm0MbG1kEBQKVC/cQJ0Z6lKOiX1qVnZEvS4s3QCrycxpdZrQoncTu8Xl5/zyBfeOHzjKUukiyJFudbO2/l54/+v7h0+hmHmS9LMoYEOiY+t590NUtNqzGTm+X1i6doze/hscAnr7qFWXK5kP1+pN7edTkKWUbyesWm5ArnYTN6TMOgfu6co1lqh5FMUn3mmcvOMZvajEHIjQSDqENDBNYKPLr7EZ6Sv0IqvSCAlyzT0jnEoyOPEryw5Mx9/lSBR/rfz5eT3xNsbCuJagOhGBHq5fXfkYJBAYzDYfE8xmLUjx9H7exEW1gQoM96juTOTmEAm06jDg5i5vNNjA+zWiWXnHMMYgFhclyrCZDf0kI54N6WIWJkMpilEkMVmV858gs8t/oa6Uoa3evhteXXObl8krt67uIb499gKDrED+/7YapalanMFKl80kmAg7WBvvg0nwrej+/SJZZG2nnq7JdIVdZQEgnkSIRErItHRx+9pnb3wdbdPD7ycY4b8xxfPoFX8SAj0RcKkY0us5ATCWy37CIRbecjiXvxVwwyRobdQ7fxtYlvcHHN1u4TGfOLqTH+9ux/Z+ToL9D26sV19kkgIFpcMxmna8UeG52XVvixI5+kN9xDuVLEp3gEA3v2DNkWPxeWz9AfH+Tl7DzU605RYIDoFbt1oMHjgTWhY1ksivvq8ZAIttGdNqmtHne0P+2Qo1FmF4tMaiucXzhJqZhxXvMHY1S9apN8Ta8cp1MbpPriNFAClsSbrbkTSXrXsER2YifeiXG9GN+09MKrzzzTlAiXu7vx3H8/xuKiwIeFAnJPD7UzZzDX1vDJMrZrjNzmQ5p7Cf1DiR2M/ybFdhh/OqaxujKNy9PLUGyIifSEkIHzBJnITtEWbGcovotadT1RmMotMddZIYjHKQS7ZTE+FElxsIlbcTuf8chu9NVVAh1+6ifPoyQS7M6bDPp7GF88Iz7jcqFHW0iX1xhJjJBJL5FfmcesVUFROZ1d4dz+S9z+rNCWV/r6cN9yC6+oiwLfLx0XnhaKclX4Hm4uxo+euMQ9XV2gRNAvTQLimr1VMH6+mm9Ozro8RA/dxl+f/hvOJM+wr2UfE6mLHO25nc/f+6vc+urqOr5pMMi2mdsYBlQqQsIkk0HOZK5aQuF6Mf5GY05TUag+99ym7pSbgfHNfF4UlmxvFFsiMhpFDgQwIxFnDBipFGp/v0iO6rqD8W0ZV0B4X22F8UslgfEvXlzH+NPT67/X1SXGTyyGmcttYnSb1Sra2JjoBrXnTNPEsDC+OjyMHAhcEeOblQquI0cwVleJVKt8dOhxnjr3JVIFwUA383khR7XvY4Q0VRhzNibAATQNbXJSyC95PEiqijY9LQxDLYwvx2KbMOqVQmltFQnofF78nqIgt7RAPo8RiznSXkgSUjQqzEIrFTJmmqP7HuTvz/0DZ1eEP11NF2P65NJx/uLEX/Cp3T/C9GsX19n1qiqKEIZBUWnoSDAMtEuXcN12G0oy6ayXRqmEvrKC2ttL/dw55z5pc3OCMDU8zKdHP8GcWrosvgerMOP10pOv8PjAR5l1l8inFgnoCj1akNBkitrK1hhfUhQWOn08ee5LpFKzzmstXcN8bOCzDDR0a3TVvMS/Z+H6rTD+uwjf7yTBd2JTSB4P7kOHhI6xLAsdWsstXvJ4HG1UMyt0oZoqqprGPfkE/9f7/pCz+YusVTIE3UES/gSvLb5GuWa1lhgGZrlMUPZgG19imqDr6AsL6IuLyD7flpvtoOq/7PGL5OpOXEvYLZV6JkP99GkBRtxuUe0vFlE7OtCWlgSDSJZR9u5FaW8Xi70sI3V0QCbjtETJra306CI5k6oKkx40zUlCJ8Id9FS9SEE3pmWwYv9bm5kRC4y12Bu5HObyMkMvTfKF+/8d/8dLv8fJpRNIJuiGxu7YLj5/z6/SdWYZMxYTml2lErXXX2flvsP8znd+g1PLJxzWJggDv99+5rf54w/98baMkY2thUah0JT0sjcAZqEAdnW4Wm0GBXZYmnHuW25B7e11qrJKW9ub5hi/FfPBeS0UEowMv5/0YBvT/UH++PifkquXaA20UdBKlGpFXlt4lT869p/4l/s+Td0l41bc6KZBQSvhU32sllapaBUkSSbgDpJyuVgzCjx14Sk+e8tnr4rl67S/lctN7AfYbI7bGBsNgfTVVQFObDZEA7vESCbRl5cv2zK5sc3YrNUwUikBuEyTnrzMpwc+xuyA0FgOt/XQXVQJrJWRBgdFIalQAMOga7nCp/d+koWESlHWCLqCtHhirKzN82J1jGBLiL7gEMG6jNLZiT49LVoh19ZwdXcjRyJoCwvC8EpRREFJVTFWV9FnZ0WXQSrlGBXZ86aeSuEvWUx1W+/V+rdZKCB1dBAKxLa9Bg6zyDDoXzVp8d/GrD9DQa9w+8FbWKqlGM9O8rO3/Swe1YOJyX199/H18a83Ge2A1Wa4NMnsroN0e1Wenv0mqdySc5wmkFLVaxorINarWN9ubpmBk/nnWSxMCkbiSor7E7ci9T+ApKocDe9lMKviW81hqgUi7WECgSgXzzea16wX6ZbzS5wpT9K1a5dzzfB6qb/2GgDqyAj63Nz6865p9JRUdLeLQjaHP9yJ0daCJ+HHV8tzOHwfhn0fEEWBpyf+kc92DxO9Cs38Ro+HVD4pjIYthv2jve8jkK9jShqLS+NcSAkfj6g3yr7WfWT9MucXTzUlwJEkytUC52deJ7V/BSwioRyNQjotmFobCkjIMkpr65vCatuJndiJNyZuBOMbySTuBx+EQmFd7zQcxpgVhl6mhfEkRcFcXW1KvO1g/O9fbIXxS94ikqqykpnn4aGH+ebEN5lIT6CbBkgS/dF+7u26i5XCErFAQEhiqColt8RIwUci2MZaLUMYLz53AF0r4VLcdIa7yVXFXq8r2AW1GglvnF4zjOTNoM3MEM3n+fl7P8sfyf+F8YUzUK9T16qMtO3lkeEP8d0zXxH4QxayB7LfT7a4htyA8WdrK/zOsd8TCXCLTQ5Xh+/h3YXxQ96wuD4eD3W/h2Dvbv76zN9ybvU8sqygWInuY7Mv84Xnfos/uf0L9JWFebhpGyPW602SFNh62vX6NWmyXw/G38rw06hUhDlvMrmJPX4zML7k9aJ0dTmJeqW1VWh+1+uoQ0NNGF9fXsa1dy9KIuGMQ1PT0BYXkbxe1NFRMXbq9avH+IoiMP70tLPf3sjo1lMp9EymCePb/zZWV0XCtJHgtCEaMb65uio6Tf1+enWdzxz+NLNynsLaMgHVT68aJ4QXpa8LfWlp03NgGobDbncMQHM55zhNAFW9Zv1+yePB1ddH/cwZNDvZ7/WK4ktrK3Jfn4PPsUw0FVUlGong84edBPjGmM5MkTcrogvB5UKycgQ27g0lOpFSmSaMT6GAnEhgSJIo5rS1iY6qSkUk6m1tdda744Nd93OgfejqztMqzARNmd1jGcyCDqqE0uIWa2q1uiXGdw/38tQ//W1TAlzyeEhreb70wl/w0+/7ZaIWyFfa2x0DzI0ht7W9KVrvb5XYSYLvxJYhR6OoIyMY8/OiKmbpzBpra+tsXkURFVn7wR0bA1VFm5pCdrUgGSYqMpV6mcXsPJqhrQNiwyAR7aS7YA1By1xH8nhEQq5cpnbhAq6+vk0LYl+w29FM2hiJYBt9we5Nf38nhVEooCeTAmR5vSitrTcFZEkej5A/URTweoVOdLUKkoQ2PY3c2op66BBSMEj99Gnqp05hZrPILS2Yqora3482NiYYxYZBqGW/aOuZ/BopWRaLoc9HS7idRwd/kHDNjxQKYebzqMPDmLkcst+PPiHYKJRKEI2iDA46Uip31Tv5D3d9gTOlSTKVDFFfnP1SO+1ffw1DkgRzXJaFO7Msc6Y4LhLgLpej0WvHqeQpTi2f2hYkN7YWmo3Az/mj2fS6Wa2K920X1uddQ1deDN+I2JL5gACdyq5d1I4dY+xoD3/w6n9iUD7CF8/9AwAJb4ID7Qc5vXSSUr3EawuvUj38GRKai3t77+V709/DMHQURaVSES1fRzpvoVzJU/d7kPJ5UoZx1WaJlzvOy7X0bTIE0jTMbBZtZga5owNjYaH5Q1ch6dDYZmxWq9Rs01Cg0ThT8rXg7rlFGBCVL4gx3b+u96a0txNobydhHfvk0nn+23f/WLDIrUjEuvjonY8z2LEHpbXV2aAZxSJyezv6woIAedZmT5IkR29f9vmQG4zMnOuSz9NTcdMS7WI1uyjGoA2SZZmEN7ZJl67p/BsZOZuMQiUqe+5nruNwE8Ph7MpZoe258XmxnN2Lepl5v5fU0tL6a7WaeL1SYU1du2ZjTTkaJe47xGNxH09feEoYSPZ6WVqYI16K8mj/++kYyyG53bjvuIP6mTOMmq1827P15qA90E69ViZTSGHkglCtik6OcllIRVUqojho3WNT05B8Pvy7dvGY1sNzk8/wxVN/y4mF15FcLmpalbt67iHYGqDohkBdbFJSlTVm9TWiXF3rtu3xMDl/llxghqDqp1eOg9vDhdgay2qFL579C+byc5TMGiZCt/2Tez9BvV5dNxGy50LTJF/Lk6/n+fr416nrdbqCXQy3duI7epTasWPriXCr/dR9991v2qZ+J3ZiJ96YuCGM/9prSC0tyG63wHWVClJrK+by8nq7v42FGuaaHYx/dfFmYfwAArf6ZTdnpo9xR9utvHfoIdqC7YyvXSIgezh14Vn2KR3oFQ25tRUzk8HfKhHyhnlk6IN8ee5bpApJRmO7uJCdoD0ywMG2Azxz8Vt0BDt4sOd+yqUsjw5/kECuimFjfMNg5LlL/MZdP8fY4QLZWg45FOaZqe/x3YlvU1dl5EjEScIa2SwRvBjpWQfjnzWXObV0QoyxDRj/Svge3l0Yf6C7j8TcM0y21jg/+zp39/RzYvk4AHFvnIpRc5Knx2Zf5szRZXq1HuTeXozZWUFIKpfXjdnb2sDjQd2zR5x3rXbV2uDXivG3NfzMZNDT6a3xPdw4xgdHEkfy+VC7uzHjcXEsW2B8pb0dyeNBW1qi9tJLGOm087rdEaD2CKnXq8H4IHoTzXIZOR5H7e7efG3yeYd9btoGlg0YH9O8LOt6I8Zv9A8IVODAyF6ktgNNfgP6ysrW0jsWxpesY7AT4EATxjdV9Zr1++VoFPfRoyi9vUL/XZbx3HkntVdeEYUGv9/pJvDYGF/u5Tll6zRnzBenVq+Sr+Yc/X+5q0u8qKqiaFfzo/YL42Yb47t27RKMd1Wl9tpr6DMzTn5C7urCdegQRi4nrr1hiALKNWjc24UZbX4eaXERqaUFye+n1BZhzkhvi/F/bM8nWKukBUHFuv9mvY6RTrNqpJjOzxIYxyEqeu67j+qzz26WEXrggXeV389OEnwntg0lkUCfmWmayO2QAgGxMFgTqByN4tq3j9prr3FsX5AvPPtvOTb/CpIkE/ZFGIwN8TNHf5ZJTaeiZkj4E3w4th/fmJUIsStwmQxmLoeRzWKkUkiShGsDWyQSbefR0Ud46sLTm0y+Hh19lEj0nVvFuuziulG37TrCroYX/CpzIZVCPEhQDdBd9eA9Ow7DwyIxsrjotB4Z2SxUKmjVKkp/v2itWltDn5mhd3CQx/seZdZVpORV8OfKdC5X8L14njoI9+oRS3XL5VoHoVbCxazVBGAul8Ui5ffTbRj0uANo40u49seoHXtebLhCIUeTC8PALBZJVySwjEm2inR189i2oxEcSKrazGiC9c2d9bpktX9tG7J82XbFNyO2M1ECWDk4xB8+82tMro3T3rfH+UyqssaF1fMMxYZIFpOiLVR2cV+hjcSdv0i+VuD1pddF656scKTzCP/TLT/Ff3v+TxkM9pLI6RgeD7meRbR6FMntvqIu3JXMnjZuEiWXazP7xboXZjYrgPzGH7nGlq+rAe6Sx3NFk6pcIcUTL/1lUwIcIJVe4ImX/pKfeuiXCAcTDkDUl5cx1tbEdzRu0mRZ6BJav7sloFRVR47l6elvOMxrEN0Yj448clnG9eWYRZLXSyTaTtTTvMkMuALO8TWF1U4bkL0UjPLm1w3DOb9CfQum1RVC8ngY6jnAT7b2O9IigVvd9GhBAmUdemQBCpNJ1N5e2lC4p/ce/irYwXJh/bq0B9o51H6Ys1PHiN4idB5tsxuzVHL0Ce05BkDy+6n0tnOxOEVZK3MmdRbV7WVX2x48bh8L2Xlenn2BhfQ0t7UfoeZz4a4ZKC0tFI3KNme0dYQ8Ifa5u9GqZajLzCdMnnj9z1FCYZ5Y+BYTqUuEAjGG20bJ14tMpCd48sKT3DX6IM+e/dr6vQCqHoVopI2Z7DR/d/6LAPhUH/f23cun9v0oPQ8/LFpbazUkv18wSHYS4DuxE++IuC6Mf+wY6tAQtddeo7605GhAy+3tuO++G0olwe50udYZjbCD8a8y3iyMj99PXzBCS0sfqcoaQ/FhxpbPUV412B/ZxWxxDq/pYsjXjZrMYpomxsoKrX2j9OgB9NUlenft4vH+x5glQ1HS8MRbcJWqpLPL3H/kAAFDwVuT6Gu7k6AmY7pKzRi/s5PYxQVuT6WgXCZz+z6eXFugVhAFa7tzwMznGWobZXc52ITx0xXrGm2D8S+H7+HdhfHdwAcOfJT/4/nfpVwrUdIEpot5YnSHuhlfu4TL5UbXRHIzU8thFAp4br+daq2GsbAgEnLhMHIkgjo6Sv3sWWqvvCLwZ08PcjTqSJXcTIyPomBksw5T1wlV3R7fw/cF4xuFwqbnF8BIp6m99BLyQw8hB4NNmP2KGN/qzN7yeqqq0A+PxcRvNuo5u93Ira1XvA/bYnyfb0ujS8nl2vo5aJTMsaU1mi7COsa/nH79diF5PKh9fcIo1Lr+3ocfxiwUxJwmN2P81prKLR23EPPFSTd47sR8cYZjw8wvXaTd10rRnyCVWxaEomCQ1r5RPhK7m8BaHdMU11Py+0WHR7Eo9Lfn54Wxqd0VaZqiA/3ll5G7upDiccxM5po17u3zlNxuYVQty8wnVJ54/b9cFuM/N/c8JZ+Kb7lZKsy0un/zpSzVl6fEH1UVdXAQ7/veJ8ZMtQrWeHw3JcBhJwm+E5cJJRpF3b0bbWZGJD2tkAIBlP5+lFisWZuqWGS2J8AXvvNrHFs4JipRmOTKWS7qF/jrk3/N5x/4PP5Bie6KF9/0IoxGMMplpzXSSKWQWlowdR3T0mKT29pQGxI8ksfDYO9BHje9zFaTFLSSYMR52oj17n7H6pVe7eJ6QyHLzMUVnnz9b4Tpn6KAptHSMchjR3+EPrcbY2UFydYyc7sdswozlULeuxc9m0Xp6xOV0ViMaDBILBCgfuIE9clFkbC271G1ij4xgdzWJtocLXdqubUVo1gU2uOVShObSJuaEoCrrU204lqtUaaui3Y9SxcQXSfmjW2bAAcBALe9FBvAgRwMioS/rRdogQApGBQLSFsbRqEg9N42tkuq6qbnZbvIV/Pr+sDu4DWbBV4ptkuYnq8vMLEmjE39ruZ25FQ5RX90gFxFmDtGPRECuQpypspPHfw0tUOfomLUqRlVSuU8Xz3+RSqFLDV/B6YBZi6HdzGFbmQwV1cdUClHo5t0/mzwvN1xbrVJVAcGMAqFpvEvBYPC0LVY3ARCrrfl60rA/XLX146p5KVNCXA7UukFppKXOBRMNP2mFAqJcWYb0lpyKJLb7RQBtgrJMvDpmi/wE+3vZ66vQlEvE1B89Mgx4oHLM+quh5Vva1enLIOZRkZgItpJd8nFQsyzWfNVlp1NaHALg8erje2MgLW5OTRLj99OXu8PdfOB4Q8wl5ujbtRxyS7qtTJnp46xt/MA+2oxcImEvxQMojawFhvHwKxS4KlLf08qn6Td18o3xv6RcqXAUHQQvVZjJb+EaZrM5Ga5t+9ecrU8bR3dSKp63eeqp9OUult44thfsZqaI95+GxMpcX75cpaJlYv0twxT1EpMpSf54dGPMTF/hoWsaJfUXQqRUAv7WvYxl13X9y1rZZ6beQ6v4uVnj/4soXdRa+RO7MS7Ka4H40ux2DoRwg5dx1haov7663juuw93RwfGygquW24RDNEdjH9V8WZhfCkep/b666grK3xw7x6eTn8bvZblcNdBcnKNmObmk3f9G144+00y42edomncE+PR4Q/jv5hEjkZRWlqIuN1EXbuQHIy/sGltl5bHMa4C40dPTfDzP/gz/MHLf8hkblok2iSJodZRfuHATxF9baYJ48c8EUHG2QbjXw7fw/cP42+HeW9WbIudDY2jrgGOjuwl1r6Xg60HKVTzjK2eRzd1XLaOuyQR9UShVKJ25gzqvn3Ihw6JPb0kYeRyVL7xDUfL27TMcCVVRWltdUzdbxbGVzo70SYnxb5vC4y/VZLx+4Xx9WRyy6IiiOdYTyY3PcM3jPGt8ShHItYPifsiB4MikXqZuB6ML0ejsLy8+Tmw/GIkv7+pgLT+wXWMfyPFok3X3/rvrTD+wWAPDw4+yGRmCt3QUGSFWq3C/OJF9ncd4mAxzL19jzJnZijHQ4TjHfRH+wnibhoDKArapUvCJNTnQ5udFR5pPt86IcY6Z9nlEuacV+Fjdbm4FoxfqpdYc9fptnIfYPk/SYIIGFR9gDUuLe12CXAfPfqOXU+vJnaS4Dtx2XD19CB94APUjh8XYEVRkIJBFMvcoKn1vl7nTGmKYwuvNH2HiUmxVuS5mWdZKizy/ouyAD8uF3oyiRQICP2o48eREgnc+/cLcxKL3WlkMpgbFiG7/T16mYXqnRbXs7heaxSkGk+e/DuRAAcxmbpcrK7O8uS5J/nsXf8SVZYFyAmHhX5be7tTgQXRFmZXie3FSl9eRk+ntzQ7MotFh/WhtLejt7WJz9dqopXI0kaTLH1wqlUwDNSBASSfD6mtTSTi7Vb/eh3T7UaOxTgQHeVg20FOJU9t+t2DbQc52H5w22vRBA5KJZTeXqGfaTvHy3Kzc3wwiKuvD0mStnbM3r//iuNzKjPFUxeeYq2hah33xa/ZLPBaw6xWSeeWHXfzcrnAgbaDnE6eQugkS+iGaPk62nMn+81WCsYs37j4DN+Z/DaSqnJg4HZOpS8wszxGyBumL9CBy5BAq5MId9CVqkPCMmcsl6mPjQldvfHxLcHXlrqA22wSTU1Dn5tDGhpy2CKy14vS1yfa1RoYPjfa8nWlJPeVolDNXeH1/KbfU3t7hYZg43mrKkpLC3IotO3GS4lGnTHsW86w2wLYUkTGvbfrqq7B1WwKGqNJu9rS50PTSMS6eCRxL4G5PH2RPuKuCCnEhhi3WzxTXi9xX/yyEi3XG1sB0c6lEp89+BP81nd/i7H5E85m6mD3ET53xy/T+so8ZkuLuOfxeNN9t/87X83z1PH/Tiq9gL66SrlVRdfq5EsZJowJ9rTsIeQJk6/mQJKoo1MzdSRVva5z1RYWqE9OYmSzzLVLrMyOgSw7zC5xshL5SnZ9cyhJrJVS3Jc4gtR7LxWjhunzsFha5rWF19jXfUvTb5S1MhPpiWuWpdmJndiJt1dcK8Y36/XmBLgdli6uaRmmGcUi0g7Gv6Z4MzA+kkT95EnM5WUAOi8s8xMd9zMfMij6VcI9Q3ScmML3zQvs2fte5m+/XRQhFB9dBZVIQYHWVpHccbsdeYebgvGDQfacSfEbPZ/hYsIkS5moN8qulEz0+XPrBo0Wxt9HOwc7D3N69eym37wSvofvD8bfStv6cpj3ZoVZrZLLrbAwdx6A3u79BN1BzjXoJZsIJu/R7jvYb7ZirIxhFIvok5Og63je+16MxUXqJyysZLPnrY4PI5dDaW0V33UzMb6iYFYq22J8KdRMEvp+YnzzChIsW71+szC+kcs5SXQpEkEdGHhDML6t0b3xObA11KVQSBQ7w+F1SZQGjH85b6cbie0w/s/f+i/5re/+FqeWXtsS4ystLYwqLjy7Dm6J8c1qldrx42IOXl0VY7xeh0oFU9fF+GtIPmMYQhJGVa/rXK8H4+frRaKBBJLHOgbTFFI6uk4i2kmPEQYayFeahp5OX7MszTstdpLg77LYqiILXLYqrXZ0oLz3vVecICWXi7XK1gDOjnQphZG2ZArqdeHwaxgY+Tweq/VaW1gQuoRWW4+xvEwtk9m0aN5oMurtFtezuF5rTKenSGWXmid00wTDILU2x6y2yqCmidarbBa9WBRSJQAeD3Ik4piKwPqiZNbrV2wJUiIRsWA8+CD1U6fQKxUBsizZFbW3l/qlSwIw1+uY2ayjy6urKoYF6jFN5EgE17599KpxPnf/5/jtZ367KRF+sO0gn3vgc5fVC4TN4EDp7ha/XSqtbxYbngU5GsXl8wmzjELB0d/aqqVsY+SreZ48/UVWV2YEkFFV5ECANdau2SzwWsPIZIioIee+vXbu23zi9o8DWIlwUCSZoz138Ov3/1s6vnWOi31eKhNJ/O4AZcXg3NRrPHDgA3yvWmUmM40rsYtwRSIebOGR/vfjv7SCOdDQqifLaBMTjlmPXTgxS6VtjVO22ySa1Sq43RjFIkpDy6QSiaAcPozc3Y3a13fTWr7MapVsZpmZwjwFvUw4mKA/MXRV9yfouTwzI7jFd0geD65Dh4TRTD4vgKTfjxwKbcvWsD+n9vYKw598XgA3m+Hk8WCWy1eVVLiWuVbPZOharvKp8HuYDWcpDhsEFR99nlaCuooeWUG6eJFH+h4WEi2VNcc5PhFq47HRx96Qcb5l26euc1suwh/9wO9xOj9GprRG1BVmXy1G6yvzqJ2dGGtrqIOD2wLZ6cw0qXzSSfZ7FS+KLFpB85Us5XqJwUg/k9lp8tUcLtmFW3UT98Wv+Vy1ZJLKd76DsbqKOjxMQVsHwT7Juo+K4jDjNEMkJEp6hYNdRziz+HVWLwkj0MWggRH0c+/Qe3hp6dim36oZteuSpdmJndiJ71+80Ri/qd1+Q8ihEPriorNG72D8a4s3A+Mb6bRgO9sY3zTxzSyxy9IJ9/a0Upl/BTkWwzc+y3A2u/5hjwd5cHTdOLAh6XQzMX50tsZd3d0ore1C8kLX0VtaNmH8bjPM5+79FX7nhd+9LnwPby7GN6tV0pPnmdGWKFAk6A7Qq8QJVirXbBZ4rWFkMsJw1sL4J597gl9++H/h9178//LK/EsASEhNGB+PR+zvvF4hQZFMinFjFTDESYnEuRQIOJrQTtwkjG9Wq05CdSPGVzs6UHbtEp4tN0nWwZlDLZNDSZIE3r4Kxv71vv52w/j68jKoquj20XVxjSyZl/rZs+iZjPAJm57GrFQcjH+l87mReKMwvpHJCBNTC+M3yXxZ8lKS3y/mDF13rr+kqtd8rteL8cfSF/mVu/83TpS+wmpyChDksJbWPj569MfxnpjY4sSM65KleSfFThL8XRSbKtCShByPO/qmdmxVpb2aCVKORomvXqb9zDSJeiJA0fl/ymWx0FpGCpIkIbe0sHBLP2eqM6QraeKBVfb7+ukbH8d94MA7mglyubjRxXer2Ci9kdbyQv/V7XZYF5KqCjOLcplivYTS34++vEzt7tuY91UpVAuEPEG6jBCubBYlGHTa4ewxJLlcm/X2Go/dqpgq7e3YSmJyW5sAvbKMUSqJ9h1JwrS00eTWVnC70ScnUbq6hEmJLcGgKEiIMXm3527++EN/zKnlU6SraWKeGAfbD14VQLav67VsxCSPR7T2XuPmbXL+DMnTrwhmjBWG14vS08MavKGsTLNeZ4/ayVDbHiaS56lqFf75lX/gA3sf4qMjj6IoKkfab2HUSNAzUUT3eilKdVylKiOxYS7qSUrFDC9OPcuByAjvGfwBDrQdZGQFurMS/omUqI673QIoSBKS10vt9GmKQRfzrhIFvUTIH6evZZjAWmHLCvV2m0AjlULt73dcue3YsiWzUECv1a4IaLdLdAfKOpOzp5r1SmWZ1u5dPLLrI/T7Oi773QNtu0jEuraUREnEuhho29X0N6c1NJtFTiSQ43HRdtrXt6VRzsaQfD7RZlksivda862+sgJb6LHeSNRnZ6k+84zQ5AMGsVg599+Pq7sXsAyEOjsZLBT4yeEDzBppSrJG0BehP3pzpX8aY1PbpyRR8ErM1RcollX6XK3cExrGN78idMDDYWdcXY7hVagXxDNrb/6qVYYig6SLKer1KpqhUcyn6At20dlzJ7e038JI535GWvdc9bma1Sp6JoM2OYm+uCg2l+PjhO4RbegArqrGUMsIE+lx53OqrFI1NAZjg9zSfSt3td/G9PIFCtU8FZdEspbmz078/x0g3Rhu2X1DsjQ7sRM78ebGm4HxJZ9v6xcVRXQENpqAbYfxYzGhpWrPm34/Rq1GfWwM9+HDOxj/Ol/fKjYWRajVxD8WxpdkWSQudd0htCj9/ehLS7gOH0b2+Zz3G5qGnsuhWBIUTePn+4HxdZ27u+64IXxvX9c3BeMvnuNLJ/6SVKbBED3axaP7PkpvmTeUlWnW6/SqCRJtA6SSU5SreU5+82/55Xt/jsKtP0NBK9ERaGcfbQ7Gl2wTdlVF6elBUhSMYhH8fmHgCOvjxzAErldVgdNtjH/yJGa5LLC5NWbUkRHMUumqMb6Nw7Tp6aZOg6Z5LJG4Loyvp1KiqKOqQpLETtyrKtrEhCh0qCpyPC6Y58PDwoh+m+9WLNmfrcg6ciwmjAs3xNsV4zvnZWF81TKWlO+4A3V4GLNQQB0eFns/WXZyAm/U/L4VxseSTO3WInQpe8FVcZLZV4vxzXq9CeOb1arA3V6vWMMsrXPJ40GKRJBCIdShIZR4/KrP9UYxfl+kjwOdhzj6ocMOxg+4AvR42vC8+PrWxeu3gIfB9zt2kuDv8FguLHM2eZZ0eY2o4WY01EmpNcyZ0iRrlQxxKcK+1i56l2vYCk5muXxdVWnJ4+Fg6wGOdt/OsflmSRQUhaOdt7Ff7gQurf/dMkCsnzlD/dVXMXSd4w8O84Xn/jeOzR9zTBaOdt3O5+//t9z3Nm/duBEtuOtZXC8XW0lv9Hk7yScChFJFhzFgSpIAMJJEADfuw7uY0VI88eJ/YXXhEkgySBItvaN89PYfp7eqbNITk6NRlFhMmKxt1Au09PYaAbXS0oI2PY2+utrsMA0CgCQSwjAnlULp7kabmMBo0CZT+/pwjYw4v98X7bsmUHwtcaP6fvlqnqmVi1xcPkdX716MYpHk8iSGxwWqirG6CoZBoZy98pddZ0guFy2ZOv/q9p/nD1/5I8atRPgLp77KUPse/vUD/4bRCxnQ1kBRcB04QLA4BS4XEbwccveRlWJofg9GTaM6NcmIeoRdY6uCmeDzCUaYLZPj91O/dIn5KDw99RVSWau92jRJtA3w0aM/ysAWFeptr6thoM/P43ngAWSfbxOb7VpbUI1MZnOiW1Vp7Rnhg53385WxLzt/NzUNs1RiuXCcJwtFHu/6EEFD3fa7w8EEH73z8U3mmIlYFx+783HCDXrgG1tDjZWV9deyWZS2tiuONT2ToX76NHI0Sn162nmeTNNETiTEmA0EbliXUs9kNoFjACOZpPrMM8gf+pDDqLLBcsz6582KRtbXVGGOp849ITpfNA1cLhKxLh4deZTemk8kkMLhKzK8gq5gU4IpmZrhfd33o2FwYuE1VEmhbBiE1SAP9tzP3b13MdCxZ9vvg4Y5pVwW8gPVqpjvikXxPEkSpstFVxYSoTZWlyZZvXCCH771Eb548SkmMhOEfVGQZYYiQ/zCnb9Ae1Csm4eiYp3IV/M8deEp2vxtLBSaCzI+1cdQbOi6ZGneaE+DndiJnVgPx0CuXMYE6OxEyucFA9Dnw1RVtGRSzL02E/MGML7S1YXc3Y0xP7/+gsUilkMhR1LNiY0Yv1RC9vsxJQm1vZ36pUtIk5Pg8eA+ePBt3579VsL4W+Ieaw22yRamzfYFkTTSNNyHD2OMjFA7dgxzaUnsBRQFeWAA95EjYBi4ens3ydd8vzB+n+eNw/dw42uaWa2SXVvkyZN/z5pREKzRSgXJ62XNKPD09Df49Oi/ILKFlMzNCsnlIpAp89HbP8UTr/wVq0sTlEoZXvzmX9DSOcQP3f/TdFxahfo6xjfm59HTadRdu9AXFkShJBAQhYpKRXju1OvimQ8EmvW6/X7qFy86xtqm1VGsz85ilkqoe/ZsyULd8lmx8L3S3o66axdyILDZkPI6MH7t5Em0mRlnvMp9fVAuI8di6DMzjsyHWakIA+FQCH1tTRRjDGPL75aDQdx33rmtue1GOaN3OsZ/s6MR4xuFAvVz50Tni64jt7SgdHai7trl4OirwfiSy9WE8Y1UCqWnB1QVfXoa26hXCoVwjYygDg5e0cS4sQBjAqZhiOfEZvPfBIxvVqvULlxAc7s3EcSuxcNgq2N/Iz0N3szYSYK/g2LjwDxVn+MPjv0RE+kJzFoNd03n0aM/zktnX+KrF55GNw1L4/cOPn/fv+XOpHe90mXp9F0rGB1uG+XX3vvr/Lvv/DthjgkgSRztOsqv3/95uk6ssHzLIGdZJl3JEg8k2Fup06JpSIEAy7cN8YXnP8+xuZcBYQyBaXJs4RW+8Mxv8n998I/YxbpO09vpQdxykfb7qQz3MlNdJp9PEVT99IV6iEQ2L3zXurheLuwEiJ0AVySFFm8cv9tPOeqnGnATLYO6mhGTu8tFS/sgvWqcvMvgiZf+htXVWXB7nLag1YVLPPHyX/FTD/0S0fZ1gGwDyFx7nYAnQedqHX/S+t4Gvb0mQG39XXK5RHuYtahLXi/qyAjuQ4dEtd40MfN5AUoQCUnJ58O1a9eNaydeRdyovp9diFhZGCeZnuNs8gxd0V4e2vt+Zs68iG7dH6NcxttXxMhk3hAtNRtM7l+s8JsHfoEL+jLZWo6IK8iI2UZ7NYoZ1NaBQLFIf2KQttHDrM6M4aobJEoGlGro3e24QypVn8qlPQm6MwZBxS82uLaJqqZRdJk8Nfk1UinLlE+SkNxuUqszPDX2FT5z5LNEN5hdXnaTGIkI/bwN992sVjfdI9g+EWBWq6RnLvLUWEMCHEDTWFma4BnJw2JlBTcCuJilkrgutRqpQpJZMuwpBy6bZBjs2MNPPfRLTCUvUajmCXpCDLTtakqAw83RCDULBSSvF216WrSgN4K5xUXqp0+jdHRsC+obr8vl5lt9eXkTOHZ+J5lEX15+SziPSx4PxYDKUy9+sZmNX6uRWp7iqdo/8FMP/dKme7Fd9Ef7SQTbWFkTz6pu6MzPn+OhxO18aNcP0h5oxyW76Ap2MdAydMXvtecU+/4amYyYJw8cEIwrj0e0/QKeE+d57K4f5knzi6yuzZE8/zof7X0Q14GP0xHrJe5vYV/bPgccN0bIE+LevnuRJIkvX/iykwj3qT7u7buXj+//+DVv9CdXLvL0hadIVdKCFWPpnr/RngY7sRPvhtiYjOsxQrhfPoGxtoap66i7dqG99JJgua2sCNmIri48994rWLbq+pbvejG+2t6O973vpfrss+jJpJMAkONxXLfcQu2118A2eNN15PZ2oQlcKiHFYkiyLNa0SgVN01BHRtBOnYJcjtqpUyidnQ5T+O1WUNsO46vDw+S14hXl024mxt+EeyxDTBQF1/79jnyCvrgoihiGgdzdLfSX3W7qr7wiEjKBgHOPjZkZavU6vocfbsIJ72SMf6M+PfaYmNQWWZk6J/Ci14vS1iYkJapVVpJJpsOH2beaF8nKNxDjdy9m+fSBTzG3P02xViDgCtKjxAgslISkhW2kWCyiDA+j9PaiTU2BJKGn07hiMeSREbRLl0RR3usFWUbt60Pp7FxPwGoaRi4n3mOzu1UVye8XxYxqFaNcFqzahnGxLcY3DNA01O7um4Lx62fONCXAASTDoD49jSsQwMjlBMu9AeNLodB6YvwyhUS1owP5oYdEcdI6P6WtbcvxuoPxb35IHo8w6n3xxaZraySTGMkkciyG9xpMhuVoVJjmWhgfw0Cfm0NuaUF94AFhQurzCUPpLfagG6OxAGPWauL+BYO4Dh8W+B4cEuKNYPzttNuvxcOgMcxqFX1lRXxXpeJg/DfD0+CNip0k+DskmsCXJJHqDPEfXv1dJjKTSIoCpsmtw/fxZ6//ZxbyC3RGepjLzABwbO5lvvDsb/L/+4H/k96ZdVO269UKemDgPfzpI/83p5KnSFfSxLwxDrYdpF8P8dLI6/z2i1/g1Pzr4s0uFwfbDvC59/wSh87lOSOvcGzuFbB56dZEAHBs4RVOp8fY1bmf6eQl8f3lNHFflH3uXrpmJAGM3oIP4paLtCQxqxZ5+rk/JlVOOY7kiWAbjw59kMHeA5vO5VoW18uFrWNrVioopkRnywD/dPZrJPOL3Dl4P2ezp5nOpRnt3U9orURLSy8fveWTBAsy5yrLrM6NCWAsy04HAbJManmSmeI8MY+QdGgEkKamYVYqxF0RHrnzA/TJMaRwuElvb9O5BoMoXV0OCJGjUZTWVmfyta+p7QQt+Xy4BgbeFHB8rcBrYzQVIjSNsKbi8wRZKC7xTxe/zv2JA46JTSLURm/98onVGwnJ40EdHqb60ktEjl3iDqtqLIVdqP0y9ZMnce/di1koiHnBNAmsFXl010d4qvYlUrllTJ+PnFwnl1vk3oEH+Pr8d9AlSEQ6eHTvx+heEODM1DQkYM5fJ5VZXD8IRRGtkKZJam2OqcVz7Dk9hvvOO52qur1J1ObmBCulXheGqIqCusE53g6bUbtVbJUIMDIZZqvJ5gS4HfU66WKKHBVacAsAbTmx21GUREFvu3ZPO8LBBIeukBC9KRqhFsvZWBEyH3ZbOiA6DQoFFElqGrfQrCFrmibamTNi86IoolXZ1vbz+QTbp1gUrfCyLJhCkkS5Pcq8v05BLxOtztG/6CES7/y+Fyunkpe2lKMBSKUXmEpeuuK9sSPkCfHYoY/zpfx/dr5TN3Rq5QI/6Lmfnkrgqlv87TnF1h80rVZLM5dDn55GiscFu9NqPaZcpu35szx+4DEWblMpUCeo+uhVE0Rbe66Y4BqIDpDwJTjYdpCFwgKartEZ7GR3Yvc1JZuMTIb0zEWeHPv7ps4JpaXlTfE02ImdeKfHxmScUakQTVf4SMd76Cp6UFpbqZ89i5lMgs+HFIlgZjIYc3NUn3sO9333YS40z3nXi/FdAwPC/CyZFO3gXq+QN9F15IDAKViYTPb7MZaXkaJRcLuR/X70TAb8fsxcTkgu2F2HKyvOWn0meYZjC8dYK68R8UTwqB6+N/09PrT7Q2/Jgtp2GB+3m4uzJ3gue4pMJY1XEWQjI+DjkYM/vOlcbhbGNzIZsRYHApi6jhyJUDt9GmNpCTmREIalbjeuPXvQpqaQAgE8d9whsHS5jDE762B8J2QZY3lZaA9b0Tguq1qVTDlNxBXko3d/mFFXNyFf5G2L8TeShexYK1/dmtY4Jgq2DKiiCMPY5eWmZGXBrGIaxpuC8T3HTjLsYPwy6kBASBmVy46WsS1lJLe2IltySnI0KpKKkoTr8GGx9/N4xGc8HszVVVG0sDC+5HavaydLgtRmFgriPeUy2vg4xuIi7kOHnL3um4XxtzRx1XWxD6/XxWvuDRjfMnBFkq6I8eVg8KrG6Nsa41vsfuf3CgW0uTnn+f1+xs00Gbb12o18fv07reKIpKqgabh27bp6jN9YgLHGl5nLoU9MILW0CJkou8B8gxj/RjwMGsPIZKjPzKCNjTUl05WWFoA33NPgjYqdJPg7IJrAlyQhhUKcy00wPn1ctFS43UiA1xvkdPI0IDa/zuIEHJt/hTOlKXpZ3/jfiFbQcGKY4cRw0zFOzZ3ld479PqcWTzQcvMmpudf4ben3+YP9/4Z0eRIwm15vPM5sNccL08/xW9/9TU4tvC7aWSSZu/vv4ydv+Sy+8XkinQNXbVL3ZsVWi3Qx4OLpua+QnDgjJlJrIVnN53na9Q1+QvIR923WQL/axfVykcuvoi8JGYD2jt1889TTLKSnweXipclneO+uh4l1+5Fcbu48eg+7IgP4xufQU0kK7dbGqaFA4YQkUayJCbIRQJoVocOlGCauRIjvLr3IYLiPFk8vA/gJsfXE2XiudpVaX1lxqtTX4mh9s+NagdfGmM5Mr4NrVcVVrjEaGWasPMtCago67wIgEenk0cEPEihpmGb9jWsX1nWU/n5x/XTdSUrr8/NgGGhzc7iPHhWO0/U6pmHQee4cP8YtzLfXSLt1JutJKuU8M69/D12v4+rswuMJ8L3M6wy29RJXQ/QqXfizZQrzY0he77oGug3e3G4kn49CPoWRdlF76SXkDVV7fWZmfRMhy6JNsqdny9O60ka/8XV7jOWLGdE+pqpIGzaBXtlNzagDbqdN2DEDMk0CuoxezKPEYjdsOnIzNEJtwyLn+m4MXRdgFjFu9eVl9MXF9bHtdjtMoEZGD5pG7eRJpGgUc20NKZFYb+Nzu1kcivP0zDcdpr9aOU2sIvPYLZ9gaPDITWvDg8ubvm31HflS2tGwBdY3PF4v1GoU0svULlxAbmlB0rQrfvdAyzA/ed+/YnL2FIVylqDqp5coQc3VJMt0pXAkUGz9wYY51kinUWIx1L4+9KUlsSmxjt23sMrerqOY6bT1mTxm9OrGXsgT4mD7QQ62H7yq928MG3/MyqukCkmRoNc0qFbRLaOxNdbeUE+DndiJd3JsTMaZlQpGKsXK7CxPZbJ8KvEgEVnGTKXEnFatinnZYvgac3Prc3dD3AjGVxMJSKzvF8xqldr4uEjAu91O0hJdF/sSWxe8WhWJJls7vFFD3OMB0+S56ef4/D//703dpIfbD/NzR3+Wr7z+d/z4/h/dslvy+xlb4UEpEOCSkeSPLvxXpovzaBioskqnv427fbfz9Nkn+cxtP7klI/xGMb5RqQhTukIBuaNDaDMXi8iRiGjnb20Vic9aDe/7348cDKKdO4eRyyF3dlpfYhVbG/ZgSJKjL9s4LjOVDBdWL1DWypiGwXR6mg8Pf4B7uu5mkOi2x/lWxvhNGH1DrJWvvKY1jomgS+ioS14vktuNkU47Wr8oCqFQAqmuXneHxlXFdhh/TmA0ZXBQaFC73UguFyZQf/11MY4MQ3zG7Ubt7KT2wguCWXzkiDOW5PZ2MacoCkY2i3H2LHI4jGH9NtWqwAahEHI0ijY5iSHLSIoi9haNrOM3GOM7OuWNGF+xelAsPyzxgQaMbxiY1SqmrguDznczxrdzFvbvmiamaVJ66ilce/bgufXWa8b42zHRr7Xr36xWHWPbJozv84nxL0mY6fQ1YXylpQXPffehzc4KqTG7q0rTrhnjNxVgtsL4u3ZR17T1ZPMNYvzr9TCww8b4yDJGLre+N6nV0JNJYUr7Rs5bb2DsJMHfAdG40Ep+P9rEBJkOq1plVepMoFQrYieYdaOhumlNmulKGqwkuG1gsN3kM5OZ4dTyKdYqa8R9cQ62Xd6IxMhkOFOa5NTicbFI2g++JGGYBq8tv86Jo2tEpBiK6kbX6uJYG8GXotAV6uS3vvMbnFwQTHIZie5YH8/OPsel9ASf3PUYmcVnaGnte0u1YG+1UM6qBVZmLjiVVFPTxOJSLJK8dJrZ/vcSvUmTSq6QsqQXcgTdIVx1w9mc4POwYHUFoGnUDYO55CXKJSFP4R54AN/kAma1ihwMEvTqAiBZ7a6m7VQsSeByEfSKdjobQJqa5iTAu7v38u3p77BwcY59rftoMf20Du7nsf0fu+y9upzsyPdr0r0W4LVVFOrr+oZyIIDh8RDKVzkcHyHjaqUr1ss9B4boqfsJl1zgMq/qe683zHodM593APGmsFgZSk8PeipF7dlnMQoFfCsr7JJlLvb5GD//bcEKi4ZRq3V6Bg7x7al/ZuHSEvvbD9DqiZPwxvhI+3sI+WNis24DbttMx+PByOUItnkBvalqb+vnmbmcMGyyjz2X2zJZDg0bfcsIcVZbo1AvEnQH6FXixKzX7TGGLBPQJAGiZBn8/qY2cknX6A73CDAiSeIZqFSQVJWY4aFjKo1eXEF2ueAGdfGuRSN0W6DocolkceNcCo4RkFEqISmK0KXTNPTlZec5s59xI5kULL5IxGHJ6NksJJO49u4V3+fxIHd0YCwuUk6EeHp2PQEuhUKYus5qcoYnj/8dn8FHfN+Ra2ci2Kwwq6tEcrmQYjEMi9Vm1mpIPh/q6KjY2FhmrPa1yCTnmJo6TpY8K9U1QoYLty45bAZtagozn8fjOYImmeiZDHI4LLqpFAUlGsW1f/+W4D6S6ORwMH5DG3bn2bY3Mg33zCyXkf1+6nNzKN3dqIODgoni9yO3tmKurTUB6q0SXG+EhJiNPwqekqOPbx+/WS6LjUc02jTf7cRO7MTVR2MyzsZT9iY6lV1kvrcu9IRtTGea4r91XbAo6/VNjMIrYXw9kxFJqEpFPMNtbZdtdTcyGahUqL/6Kkp3N3Jvr2CPtrUhzc1hLC2h9PQIJqEt6WSxCgFHM3ohZPC7z/x7SxLRPliJEwuv8Scv/wk/s+9xpqZPstdoeUu1YG+Fywpemf868RW+N/88+WrOmc+nfRFkxcXRzttuWnHQ0YavVpG8XvSVFTEXqypyWxuytYbj8SAFg45BOZqGJEnoU1MAYr3zep0kmJ0spQHj26aI9risatX1BLi1BszncmRbb+PJmb/g8ZGPE+vbfdl79VbE+Fdas670euOY6FXjJKJdwhTTMqSTFAX8fhKxLnrVBNSNTZ+7mXEljG+m00iDg6gbML5ZLouCSaUClQq6qqLu2YOxuorS3k79vOhYtaURJK8Xpb3d0daWrEKHWSwKjB8OCyYsCCyZTjsJtBvC+CBkfopFx0DV1g+HZoxv1mqbML5ZrSKFw2IuDIfFHGVhfExT4HBVFTixWHxXY3wsnzA7AS51d2NYmtbahQtIbjee22+/puRw4/NvapqQ2envF9I7tZpIiF8lxi8YVXzROt0lFX+6hNLaijIwQO211zAXFyEcxjU4eE0YX0kkxD70RjF+Y6FiC4yvr6yg9vWJ830LYXwURSTmG47frFTEb0Qib9i89UbGThL8HRAbB55ZKBB1hRv+IACxX11fUBRJWX+YLBAa88Wg6hLs6pYW9GwWfWpKLBRWSMEgr7VU+e3n/z2nkqecv9/ScQu/eOcvEnAF8Lv9m7T7zHqddCWzfjxWaJJJyahgaDrJQpIONcbBzsOcXjqFptfXAbKlK26YOidnjzkPYUu4k5nMFNlanmwlQ2X0MTCMq25Xe7Niq8mqoJWdBJppgVFAgE9ZppBfw4zeuFHK5NL5JhM+WdO59cDD9IzcRrGcxesJsL91P+fnT6LpVULBFvbG96BEDCrUWSwt0620EbA2V72eNlraB1ldnhQ/IMvOP63tg/S3j4rzq6+biqBptLUOigR4TgCwmlEHXSOVnr/svXI6HazNmF15NnWd+uQk7n37vi+MoCuxqK70etDVAORkWYCLpSVcmkkiXWMg72JkrobS09b0XW+Um7PkcjUlezeFBdzNahVtdlaANpdLbKzqdQpmxdHwl3w+Orr38O257zGfvASSRDWfQV8pkVSXeKpY4hN7fthxqjetVj3J60UKBIjVXXTX/eCyzJusDZ5RKFxzi5scjSL5/cyQ4amzT4hNiBUtbQN8tPdnGCgEqI+NCeClKPRFB2jpGGR12Zr/gkGHLWIEg/xo28N8/cyTrKzOCICpqrR27eLDodvwXVjGUBTq4+PCgOUG4mo1Qi+3gaReR4pGhZlZKtXUJilZraxO0rJSAYtdbf+/M942GqtYiWibBW8uL+O5+26qzz/PfKhGakZI3UihEEp3N/rMjOh0WZtjprR0TQW+xm4ns1IRLCOrFVXyepETCcyFBSS/H9JptPl5lJYW4Ujv9SL5/cx3eHnilb8mlV2ks3WQjFRhsjLPaHiIiK4LZkw+TyLaRa+3A21yHjOVwggE1pkO6TSmruO5884t5xzJ47mhDbtzre11T1WFqZhdrFZVYQwVCon/j0Qc87AmcGwluBrjRv0LtgsbfwQVgS+kYFDMAUHLMFTX0bNZ/MbmuWVj4kZpbX1T2tx3YifeTtGYbHO6RBoluMzqOovRToJbOs4AuFyifb9aFetBIIDS3++0xzfNCYEAcmsr1eefb9J/lTs6xLzncm25uTbtRLtlfmfzuxUrgWbPBc5+RVWROzsxFUW0alvr1On8OKeXTjYXAq3/PrH4OpVDP0FBK2FWr8/c842KrXDZhLnKM7PPic4jcBIe+WKa52ef577BB25KcVBbWmrGCFZBwX3nnWCa6PPzTucnmgbBIEp7u5BEcbkwi0WMQkEkguzPt7djLC+L/2/A+Ep7u7PG2ceerWQdBnhjEbSiV0kXksxWkwQvGNveq7cqxm/C6NfxeuOYCBTqPDryEZ66+GXWDKtLQpJIhNp5bPQxguXLJ7duRtwoxgdBtMM0xVodj2NomtBKtmUyXC5wuTBLJVwHD2IWChipFKYsY6yuIllyN/Xz51ESCZFYq9XQ19YEKe56Mb7Ph76ygj43t95dCphtbZimiVEokB47zYy2QlExCPT76PR14J9LOhjfSKVw7d6Nkc+j7t6NPjWFsbqKaRjCzFfXUTs7qV+8CO9yjG8sLIg1x0qAe+64g8o//ZMoFpRK6CsrV80M3igl1YjxtakppGAQw8L3l8f4Pp4993Vy9QIVxcQLBFS4p28PvcFWaq+/LhLgqorS0YG2sPD9wfiN3cVbYfy9eyGXE9f3LYLxTV0X/hZDQ+I4XS4hz6jrjvcDW8xbb3WMv5MEfwdEUxXUmqxG6xGG2vYwkTwvHhzTpFwpcqDtIAv5eUq10noFSpY52nWUfa4etPlpIX0wNSUMSnbtEkwQawJdCJv81nd/g1Nr5wT7F/AoHp6ffZ610ho/e/Rnubh2cZNxiORyEfNGm47bkKBUL2FIgCQRdoc5+cyT/L8f/tf8/sv/gVPJ0xgWc/22ztv49Qc+z9TqeNNE4PH4yWYnxP+oKiWthGxNMFfTrvZmhb1IN05OQZdwCHfYMPZ51euYQFD1XZ0e2GUiV0g1JcAVWaG7Z5T/9upfUPe7yZUzuF1ecqU09+99H6cnX+bh/Y/y7KVvs5BfgHqd8fI8Z/19PNL3fnryMoHlDB+9+zM88cJ/YXVpQlT2FUUkFB/4aSKWM3HQFRSskFpNTOY+n2O+BuCWXaDjFC2mM9PsCwxsmjDNYtEBx/WzZ9cBl2kit7QgRyK4hoZu6DpdT2x1T+24EssKhKFe3BcnlV5wmF1SMAiqSkvvKL3+TpTOmgAVxSLFoJt5T5lS6gTBUoSB1s1Gijd6PiwvC5ZQYcPGrMFJuqntt15HjsUwCwVCIcspvlzG9PsxYwZzs2eRLckTl47DKFkpnWOlN8lHj/4oT134MmuVNfEZTSOGj0eHHyaQ0oSrt2XgZKytOUymrVq7gS2fF8njoTzQxdP/9DdNCXDcbtakMk8d/+88vuvjuE6fFr9nmnjicT7cez9fURRWF8bFpszvp7V3hEcPfZw+Xwdd0W6mVi5RyKzg12W6Fkr4zi+ttxDX600FxOuNK2mEXkmbXuntxczlUIeH0T2edeOiahXTauXD7xfPWygkmGKRCBQKAmBaWpJSPC7YPOWyM2fpKyvrLH6LTeK+/XbKtQnU8pDobNF1kQC3295Nk6JWvCbWgNO+arFTjFRKsNWqVcFE6OykvraGrCjifYUCSiIhjHq6uymYFZ544W9ZzS5hrq2xtLrGg6N38q3aM4wVZzjsjyAXCiSiXTza9zBBXaFusy6KxfWEjKahzcyg7tqFeoMMoK3CnlMkS+NRkmVheletIkejIpFRr4vW4NZWQGjxbQTH6vBw07wj+f2iyHOd/gWXDZcLKRik1xMkEelgdWUGORwWm9FSCcnjIRFqp+NiEs295Oj7b0rcsL7xs9+zEzuxExuSbfZcJMuCkVupEJC9ohjb1iZ0eb1egbssjK6OjIg27NlZ5zv0lRXU/v7Na6bHQ+W738XMZtf/pijos7NUSiXcR4+K1vgNm2vJ5do8h5gm+swMrn370KykiZnJCP1ww0Dp66P++utCS7yzE/fRo6ytfIsGpxnne8SPSORrBYKeHqjyxkpHXGNshQcX9QyVSmG9KNEgsZAvpanotSsmUq8UNnPWmUetNbt+/rzAMx4PsmXcbXcFUCqhLy0hh0IYS0vo1hqDlVBykl0vvICxtORgfLmtDc8DDzgdATbGr1YKAk9skGLwKmI82EULI5NBCgTeNhjfxuhbSaLEfXH6o/2Xxfj2mDDSafTVVToNg08lHmI+KlHsyRHwhuk1QlBXOe/Lk5YqGC6VYOE8/tI0/a3DbymML0UiAo9kMhitrRhW8UTt6XEY1tTrgi1dLqP09aHu2YNZKiF7PBgdHRjlMtrMjEiAWya5UrGIWShQX16+boyvDAxQHx9vSoBL4bBIdk5NMR/SeeL0X7GaXRTjKhol7onxkZG76RxLiv1XOIwci+Hat0+YcLa1oedyGMmkSObnctTHxnYw/u23iwS5pf1u1GoiAW4n0U1TvH6VGL9xvG3E+EYyiautDb1SEVh/O4xPlecnX+Ers99iYdUi6Hm9dHoSqIMhWqK7Ua0EOD4fcjCIPj7+fcH4SiwmOqcsk18jkxHnFg6L6726itrbi9rbC7w1ML4cjzvGoEaxiDowQO30aUz7PNxu1IEBuPvutxXG30mCvwOiEXxJqgqqikfy8Jm7/yV/dfqvWcwvYtZqvH7hO/z0PT/FS3Mv8dULTzsA+WjXUX7t3l+l6+QcxuqqY9Bomz6477jDqUKdqc5yavG4Y1Thlt2kK2lqeo2TyZOUNfEArpXXePL0F3m85xECZVFB2u/p52DHLZxaOg6AjoFhionntt47CXuC1LtaOHPxRX7pzl9Ckwyy1axjrNmXgYxruencdbMBdJkmfpefqrReZXurtGBLHg+u0dGmhazX3UY81EYqu+RU2e1IBFrp9bQ16xFfRdgu7YV6gaA7iFEqk8muX7PWaDf/dOkbLKQmkb1+9vUewTQMTleynE2d5+O3/BhfPvMlFjIzSB4vvkCUUF1hNbvE0xP/yOP9jxEo1ulOVvnMPT/HbDVJSS8T9EXobx91EuCAMG4oGqyurmKWSpQjGQf4+hQvYbzAuqlgLrNM5cXxTROmumcPeL0CHKdSAhxZC5axsEDt1VdFhfJNnlS3uqewXnndkmXVsHEMeUI8OvxhvvTcfyZldwFomtAA730fvpPT6NUqZrXK4kgbX579OmlKYtGTZRKJHh679UcZ6tp3887nKpykzXp9E5tECgbpypgkIu2kMkugKFQMwTozDAN/KE5YUwFRNUZRKNQKjBZUHu97hDmlSD69RED20V12EVipiXFQqwlDLXuD7fOh9vc7v2tkMmLOssbDdov8TGGeNbOIq72Dtmi32OjrVbyqF7NUZHr5AkOZjNPaZywv01mt8qnd72Nh34cp6RWCvjB9kT4iPqFFGpJ97K1Fqb52uqml2yku2i3pNxCNGyw5GETu7t50jltq00uSYEyA08amTUwguVwo3d1OYdTQNGFQNDODdvy440sg9/TgueMOjNlZ0fLa0YGZy1E9eVJsMqpV8HpRe3vFprlYdM5Xn5rC7y857aOSy4UcDouEuMUWDKiBa2I72WDaYUHWamKzBOvX2War2HOprmNks8jxOLO+AiuzY8jhMCZCDmz2wjHu7z4EkQgDXXvpct9Gd0HFN52BgWizaVK9LgC/1SK+aQN5mfunp1KY+bwYI263aBm22lc33sumOaVWE8UDi2WhtLZSn5hA9nrRTp9GeeABlERik2Yqqoo2Pt68OTMM8RxZY7PoV5klQ0ErEZL99GeWibZvLWd2uU2+kcmgX7pEfW4O19oaH9lzH1+WX2CtuIIcCGCqKjF3hEf6349vYp5aoY780EMAm8AxCKbXdi3PO7ET79ZoSsY1YEKlo4NYXaWHCPrSkjA5nJwUheNUCiQJZXgYpbcXbWpKbGKtRIWxKnxhGvE9IEwbFxed9cORQbBb5u15tlKhPjmJHIkIXOf3i3b6RgaxJcdYv3BBaAf39aHm86KAGQ4jFQpCW9wy1jQzGWLuMKau41Y81PQNCS/TJO6L0WtEAWtNeIu0YG+FB12yC48p43J5qGu1TZ/xubz0R/s3/f1ysXE+3sScDQbRpqcFkzAeR3a5MHI50a6eTq+b/RUKSC0tSPE4RjaL5HYL2cKODpHYSiZx33OPkKzTdSGJ097eJIljY/zlquYUqTFNJK+XrkCnk8gMqn6ogp7JoL344tsG44c8IR4dfXSTOWbcF+ex0ccIlHVqF45vi/EdM8rnnnOem8Bqnj20oPTcQu3UKRY6Tb488U9MmWuMlaYpSzpdwS4e7HsP3z77VR458om3DMY3Uql1iSW3GwoFzKUlkfDu7hbySeBIkaBpSJYetVGpCJkSVRUyJ5IkxoGmIbe2CswaDF43xrf17hVbl9z2IFAUctkkT859j9XMwjrGX1khFa7y1eBJHv/AjxLSZHFsoRByMCgkoSw5qPrJk868K+1gfMGQLxRQ+/oEJg0GcQ0MCC34fB59ZUUwnK8S4zdptm+F8e0Olo3vb8D4cwmDp197goXyevcSlQqLxgpfXvhnDvXfzoDdnWh99vuG8ffvx9R1tMVFzExGFJis7hxtfl7M2X4/kqU1fs0Y3zKnNW0Ca7GInkptm9S/EsbXLl6kduIEZrGI0t8vWPO6jhqPY7hcwuja7cbIZh38Dm8PjL+TBH8HRCP4QpZZ2t/NE8f+mnRqgQO7DzLaM4ykKBzqOMwB9wA/2HYfP7Lnh0hX0sS8MQ5ERuh46YIAuI2VPAQQMlZWkGMxJqMGudwCjx3+BH7VT6qc4sW5F6mV1sFdwTJFNAoFknPnmax0MjInkuqdo6P8yt3/K7/zwv+HU0vHMazfuK3ndn7p7l/mZPKk0BcDXls5zg/u+kF+qOeHnO+ur15gn9HKwe5bOTX/mmjJakh4j7buxad6qbE+sd0oy+JmhhyNNk1moVKJR/d+lKfOfsnRzgUEG3HkEYI1CalBE+1K0ejSbkelXGCoaw9zUyfRdQFMFlJTAJiGTq1aom02y60De7mQPIPhUS19cAmfP8Ke9v24KyaSopCqppl1FdkjCVOVwEKKvb4g7lvu2zTRm9Uq3vFZPtL1IE/lnyJVnceresE08UkuRtv24a6Y4HU7+my+lSxGOtf0PUY6LRyvJUls4BrAceN79Pn5m2ImdK2x8Z7aGmEAtePHr1iV7dWDPN71YWa7REIq6IvQtWbAYoaLw2FKUp1QMM7Xxr9Grp4VSUSrbTC5tsYTuTw/+b5fJtq2tWHMtYbk8yEnEriPHHE06uUNTtI2sJGCQbF4ptNIPh++yUUeGf0Bvqw8y1opgwchreRTvYzGR3Ct5td/SNcJ+iKo7cNEdF3omcZG0Obm0NemReeAlQB37d8v9PoKBeqnTzvMJNxu1J4eoVE+NycAcIN+XmMUqjncpsTI4O18c/Y7zM7PosqiRTAi+znQdtBhHokbZWJmMvhmPIyYvUiqHykPzI9TCyyh9Pc7jBfc7uY2wsZWxBsYj1fb2rYpCWCZI2sTE8IUK5FA6enB1d+PNjkpGHmItnelpwe8XrRjx5pa6CVJovrCC4JF1tqKaZroExNiE60o4px1HSOVQpuYQOnsdIzQJK+XXrefRLST5AaHdsnrpbV/L32Bzmtqz3PAtO1ED+vJINNc/2/bpd5+3TAwazXytVLz/UUkwhdmz8GcxK3dR9l1YUrcz3q92VDH+q4mWRy7bfwyYWQy1E6eRJuZES2lpRJSMIhr924xLqamcI2MbLoO9pyizc+LpH2lgpHPoy0sIHu9IEno6TTa7KyzWbOZkGa1Su30aQqJILO+AoVKlpAvQo+7Fd9SGiUaZVbK8vTkV0kVkk7xtTV3gsc8P+Z0btmg2MjnMQqFdcaTJXXkGh1F8vnE+KzXkX0+5N5eOs7N8GMtB5kPlylGNQIuP/0tw/hX89AdcRItGMY1tzzvxE68W6MxGZeyTHz1xUXi3hiP7v8hQjkZurrE3PHgg5DLiTZ3rxfcbrFu2gQXO0xzHd/b7L+wkFF0HTwIlh6pPjcHDZtth2Hu81E7cULMzXUhXaiOjOC+/XZqr7yynghXFJSuLtT+fvE3XRcJhtVVlF27mszu6qur7DNa2dOyh7H0JdKVDDVj/ZiP9tzBbbH9BGYb2J5vkHTE9cRGPNhVmqI3PoSWlUiVUtR161wkieG2UXZHhq9JrnErTIDbDW63uKamiVSviwQ4OOulPjeH68ABNFuuxFoHpVCI6nAvs+VFSj6VgKrQ45EIGZbXycKCmO+3YBE2Yvza9D8yIV+ibIoEY6e3jYeG38fs1Eni4XZ63a2YmSzGysqWSZG3MsYfiA7w2Vs+u04ucgXpj/YTxH1VGB9dR+nqQunqEkk2nw99bY3ayZOU+zv5SuqfWPbUGEvPUtIqYJrML17gW6US9yWO8MR3/vQtg/HNTEaMsUhEPMuWv5eZySAPDDTJJ6FpSH6/8AEoiE4B+vrQlpaEUa+igKaJrjZLUuRGML59nJWRfmayM+QzGYKKn75wH7PVFVLFFScBLj5gYuZyrPoWmJ47zV61C0lVMRYX0S25qB2Mvz3Gl10uISFTLjt+AgBSLIZr715RTLhKjN80h2+F8Rux+DYYf1ErspCd2yzJUauxsDLBYn2NAcsIlWr1+47xPXfeiTI3J/TOTROzUkFfWkIyTcx6XbDRR0ZQu7o2Y/xTpyAUckxDJa8XU5bRUymUSEQk5K1uBSOTEWvA/Dyy3+8cy7VgfCOTEUzv3l60mRmM5WWBLyw9eveRI4KEa5nIvp0w/k4S/B0SNvjKri3y1Hf/SrCLJZPkxROixS0U4mypxtFd/bTkTPo8oyBVoaQjqS5qtmO7HY1i/ZrG86EUv/Gd36Sq13hx7kUA9rXu47HRR/mzV/6Usl4BWSboDpLOJR1drqJeBoRDvXbhArcODfFHH/h9TmcuslpO4XF5CXlCnFw+SXUD62NjAlsKhWg/scLn7vhlfvvl3+PU/GtUa2Ui3igd4S5+7OCPkq8Xnffb7WpvpWiczOrj4/TJcX6i5yPMd2cpmBWCkoduM0zYDAsdsqtcRBpd2hsjW1rjWysnuS9xhMXFi1T0KmACEi7Vy67eQ9Aro+plHuzbRyzew97BO5BNiARbUCam0Usl5HgcU9PIdy0jRfZjWmwe1+jolpV5I5NBTybpWFjgx6O3Mz9wmKrPy9LgD1BJJfGkCpjZPNFDt1H1KEiyzHxcJXD7LrpOzQkJHvu7slnBJLUYkZLb7Szmpl3xLJe/b5PqVhphjcYjG6Oxhdes1wkU6+whAASQXEGmzRmeXvwGq2fnkVSVrl238K3JbzESHCCCVwgEWQyr1eQUU1PHORxpvSnmF/WxMQpSfZ0l6oswkDhIpOG75WgUpqdRh4bQZ2fFBsZiXXQlq3x6348yk5uhFg+zvOt9VJKLeErr7uQAiUgnfd52tPHxdR1KQFJVPPfdJzQqczkBMq2knz41hZnLIfn9YiNeraLNzaFYjveu0dFt73/IE2HPyD38+en/ytnkmfW/e8MMhvr51tS32dN3J77JdbkUKRjEyGZxDQ9Tn54Wbeb2Nbh4Ec8994hqeG8v2uxs8/zpdqP294uWz+uIXCHFxNSrFIwsoYCfHqIEStqWrW0bkwC2ObLDZJAkcd0CAVy33ioAnmVOZmoa1W99a91QDUBRkEMh6mfOoAwMCEZvsSgAsLXpkTwehxFjlEo0wkU5FCLW389Hpus8lVxhpTLhsGUS0U4e6X4voWBCALaGjdflwu52olBodnu3jsOwN/2yLDYIkQiGnbiRJIKyb/31LSLgDQlN/rU1cLmEPmo4LDZ9AUvmxzYRi8e33fg4jApNo37hgmDkWS2pAGYuR/3iRZSBAZRQaNs2RcnjESw/ax4thjzMd7soGGWCip/ukhtXsbhJCsDIZJgLG3zpu/+R1bmLzt9bekb42L2fJTS/wJNTT5LKLQnWZkyY06YaPDQCZV0A33xeyK8YBnJXF0rcMv2s1ahPTKB0d68bckcigplSKOCv19mVzQrJA8qYM2cwgkGhP2t1A6jDw02m3Ftdx53YiZ1YDzsZN7l8gax6Hn+4RncGfC+PUZdlMVcDUi4nNGL9fjH32CZxG/VerfneTn5L0SjVl18WLOD5ebFvaGlBHR2lfvq0k3yQ3G5MSaJ+9ixmJoNkr3GGgTY2hjI4iPfhh0VLfrWK6XaLOdVKgDcdwsa1y8L4v3LHL/M7L/8e51fPI6kquqFzsP0A/+au/5VdC+uJrK10Ub/f0YgH+6ZKPNL/ME9PfQ2X4qKKhm4a9EX6+eHBD7NHuXpm83aSCBiGwL7xeDNjUpLEHGuxduuXLqF0dCAPDzuGf4ujHfyPb/0nUul51KEhjEyGlkQvj+55jJ68fNUY/9OxW7nr6O2cSl/ANA3IF5i98AqhusyH24/gGZtG3r0bE5CHhjBmZppYmG91jB/yhDbJal4LxreThwCoqkg2lkrMxjVWZ8fIhhWKuZQ4f4vdu5CdReq9l9VLYzcd4zvPvpWUlzbgsG0xPiDF46i9vQLHdHeD3w/l8qa1XIpGhUHr1FST1IUky3juvVd0mpdKDh7Vc7kbwviSx8PirlaePP1XpJLTzt9b+/awp+sgLNVFYrcBW9gYvzQM2vTsm4bxbfawbs+zgYCTgHy7YHylv5/a8eOCoGTL11jmuWalgrxr11Vj/CYpKdt/AESXQFubSNI6b94a49cNbf31LaJuaDcX41vzsTY7KxLIluHltWB8NE14ETWytu15r1YTCewN7G1bUqr6wguimGRflr4+3EePim4aC7dL4TBqf78YZ+Aciz3GrhrjGwZyZyfa/DxmsSiK65WKMI8F6ufPI4fDwjAV3lYYfycJ/g4KyeNhJjfL6tKkABEgqryRCKamkTx7jClzgF0nFyEQwDU6ivvwYcfMZlMoCug607vj/OZ3/leem3mOkcQIcV+c1fIqp1dOI0kSH9n7KF+/+DX2te2nzddKzZVhsTaGDgQUH2AtHIaBfukS3V1dDOx9lHw1z58f/3MupC5s+umtEthKIoHa0cHhs0v8wS2f4+ytK2SqOaKBBMuZORbKqxiK5Hz+sdHH3hKmmNuF3V4WDkYJ6yGHTWOUShjlNO5Dh64a9Ngu7Y1hahoh08NEPQceN2ap5Gj0uRQP773th3jq0lc4t3jS+cwnDv84+3qPkDp3AqOaEYuMqjq63kF3ECOdxnXgAMplXJGNYtEphPhLJXYDBAzi7XfztPYN8kGVyF1H+Oszf8N8do7eSB+/t/a73Np5K5+/91e57fWUkwg3UinUoSHkRAJjZUUsWgCKgmS37bjdb5lJFa7comu/vhHcFFwGT09/QySprMWwolcpVYtc0C5xS9vh9Unb2ggWytkb1sU0q1XqY2PMqkWenvhHwRK1IjHdxcfu/SkGWobFMXs8uEZGqI+NoQwMIAUCSH4/RiKBUangOXGO3YaBtGwS73uQp1afJiM1JMDDHTx6+BNoS8ucc2cp6hWC7gC9SpxgRcdYWUEZGBCtl/U6BAJIFrgAxIIcCgn9ScNAUlVcw8OXbZVtjXfzlemvNyXAQRSPZuV5dsmtLPQoDC+saxHaBiZGpSLY9w1hrK5SP3cOOR5HbmtDMYx112xZFkXJw4evedNiVqtcXB3j2ZlnSRdWxfNaLqNVKnx4UGjyb9RBdXQn83kBPl0uAfRUVWjFeUUHhlkoQKGAunevaLubmxOMkY3tnI3GarC+kbZMcJAkp90PQPZ6RftcZ6fTCWFkMvQUVB7f9SPM7spSrBcIKD66Mya+1yfRR93UlpZQ+/pwHzp0xUSG3e2EpomWWrcbs1xG7elBisWov/KKw9yQEwmURAJtfFy0Jrrd9EpeEm0DpI2Cs67ZkYh30+/rxHNPF7VXXkGfnESfn8d95Iho69Q0sUFRVaRQCNfoaFNLuDMmGlk9Ho+QH0ilHId3FMXZ7Egg9HwtpoYcja63VFq/g7WRWejw8vT0N0llF9ePOdLJY4OfYnDDJjyvFfnSM3/WlABHklidG+NLz/5nHr73U6ROLom/14TkkJxIIHm9rJXXmEqNMzJbdQxIMQzkjg60sTHqxaLYnObzyIkEnmDQGSuSqornU1XXx43HIzbPlma7sbIixnilgj415czn293vndiJnWiOkCfEnnKIyomUKAqqKrS2og4PC4bY976HqeuCuW1hfHV0FCYnt/5CRRH/eL1UX3wRc34eWlpEYqtaxUwm0UxTSB2MjSF3dgqjrkxmXTPcTriAwPjj46jd3bj37RPHtAVbFrZOYDdi/P94y+c4K6+QqWaJ+RPspY2uuTpImvP57RK0b5UI+SLc6dmF3v4AeapUjBpe2U0ID3erg4R8kSt/iRVbSSKYlu6uHIkI6bmVFZTBQed1KRLBkGUHS+sTE+jW2lIe6OTJU39PKj0vtHet+TvtNfhK+gU+feBTRKLtV43xjyzKjPbtYV7OU/CUCA88QNdKDe+pKSHrl88jhUIY6TTuI0fQLlxwEuHvJoxv1mqOeWjBKIMkUTPW5R0au9UqVhfEzcT4qGpzAhXQp6fx3HsvSkuLOOYrYHxtakqQV3RdaAWnUk3JRykcxn3oENrEhBhXljyKHAgItvXqqsD4584JStZNwPileJAvH/92UwIcIFVIslBOUkPHHQ6L49mA8f0V403D+HoqRSY5x2xxnkItT0Dy0F3xEom1i/O3EuFvB4wvqaowOoxExD228KxudSleLcZvVDOQNE1odFvFU9fBg0KOxi7qsTXG7/B48fsjlGXLfLnhnP3+CJ3hLjz3tN0UjG8bxmqzs+sY32Jk24zyq8X4pmEIFrmtw26H9XzZGvHOMdRqmxLgKArG7CxVTcN9663UrE4AM5dDm55GGRgQ/18uo2cyTmHqqjG+LAsZRruYtxHja5rA+NbhvJ0w/k4S/B0UZrVKvpJbd5q1Fh6jWMTM5TCrVQpmRTxclYpwOJYk3LfdhhyLiYXMDsMQjrteL+eKUzw7+yyaqTOWusht3bdBClbLq1xYvcD7h99PV6ibj408xh9+/TdItPTw4PBRiiuL9FS9OEnwhuOEK+utbUxgSx6PSAwrCp0LaToNL8h+FD1OZe9dzGqppna1t3ICHECJRnHt3i3MDGzms2Egh8Oohw45gORqYivtc7NSwV3TGW3d4xRFzFKZrsQg/X0H+eqlr3IueRaQAJOIJ8pEcoyJtUt8eO8HST7zDTFZ+3xQq5Hwt9Bd8yMpChKXn8TMeh3DaseVVBVbJ7DzwhI/0XIfk/ft4fdf/SNkJFr8LUxlpkCWeX3pOL/5/O/wx3f8Bl2vXHSuiRQIiHNQFLFBk6x2zUwGqatr3QX7LRJXatF1wMUGM6VZMyMS4OAwpO3CRblSICfXiTtfIhaigBq4YV1MI5OhINU3JcABUukFnjz59/zkvf+z80zZAFCbn0efngaPBz2dbjLTMotFevIxHh/8IWEEVEgRUHz0yHHyPh9/+dp/Zq2UcgpwiWgXj+77KL1lQNed62JqWjM4sACbbYDrFPwuEwulZWqSgaEq6HodBRnZBFV141E8lKQ6hXIOORAQm3zDQPJ4kH2+9bZuOyw3+7xWZNHnIpdaJNQRoy+4j2BFgHa5pQU5dG3zj5HJcH7hFL977D8wvnTO0afr7tjNg93385XJb/Cpvo8QKNYdbW1HS7C1VWguLiwIE5tSSbQstrVt0na0P2vWauuvNQJi+xpLkgOy0fUmxr4N3tA08W+XC6V1nalk1utIikJIh71aGD1Vx0itrDNpLD0+bWYGSVFwHz16VWwR99GjKL29GGtr6NmsYK9Uq4L94nYjBQIA1M+eFUZPVoI3rPr52F2P88Qrf0XKU3TOORHr4qMHfoRop1VwdbkwhoaEHuTCAnJ3NzKIYozXi5RIoLa1bdkabifATU0T7zcMMUeVy2KDoetikyPLmJkMeqGAUSgg33WXYJQ0sOOkYBDXwYOUWsM8deJLjrGxeFEiVVnj6Utf5rMtP0es4TimMzOszo41Xzhrw7M6d5GFWqr5NU1DtudooFBYwyyvS8tIsZho17Q2iFIkgolIWtTPnUNpaxPMEFkWnR62NI3bLcaLZbbmMDe9XvGMAXIksiVAlmOxbVued2In3s1hWh2b6uCg2PgWi0JeYXUVY3ZWrL/BYDPGl2WUvr5mqQIAw0Dp6HDmYtPaVJvZLHJ3t3h/qYS5siLYu/E4rtFRqv/8z7hHR5FCoSYTuk3HSXNyY6uW/63YcVti/HhcJPPbtCbZubcS5tsqlGiU/mg/kZrMnJGmqJctDBQjGundMtGyXWyF8cxKBaNQQOnuFkkxez4NhZBjMSS3GyUSwWhvx7TlKzQNKZFgabiV5BMnxZxsJbVwC3nCtFJjjhxRz9Y+EfbxGKUSkt/vrB/BfI1dCymo1XAnotRnTmFaRRYjmcTV14d+/jy148dRR0cxJibEl72LMD7gYF6729ktb/1dXllg25uF8ZGkTQlwEPIE9ZMnke+9t8nU84oY38KZSm8vUlsbLo9H4GNZ6Gtrc3NCXsP+Ha8XpadHYKqbjPFnSgus6aJT0JZ5kSxj9nIhiycSR5+ZEbi8AeMnfAm6ljcUVxRFPFvJpGDDrq0Jrfxg0CkoXQ/G11dXmbjwMk+e+xKptXmHid/aM8Ij7vfQF+hw7s3bAuNbcjCmpqGnUs2SW9eI8RulpOxkv5ZMop0/L4oQ3d2XxfjDSpT7976fZy79M2WP7pyzzxfi/l0PMtp9CBfuG8b4Rj4vvBNaW5sxvk0WlCSxbl4Nxj90SBQgV1bWx7/FppeCQYxqFT2TQW0ofpm5HIZtcG2HJXFjzs8jHT3afNyVCkpLi/McmoXC+lx0lRjfHh+2xr4tVSRZsqUoijOnvd0w/k4S/B0SdoXKV6uIiQjA4xEgt1rFsCbuoORxKnbk86Jqt7CA68gRDMsF2Q4pHMa1Zw9r5ZNohnhANVPj1YVXGYnvZrRllLpeZ09iD21qlC8++2dUtDIL2Xmeq8GvHPiX+M8nNx1r4+Synd7adglsOxGyUYPZ4/EQofNmXc43JSSPB7W3VyQPrJZ5SVXB40Ht6LgmwLel9rnVWhNM5rhj9xHc772Fol7h6MGHeXntBGdf/1PxPlkh4ovSH+lnKjNFV7QXxeMRC77lKp+IdPJI3/sIpPLQ4rkyIJMklI4OoUPV0iJaHd1u5GAQVVFYKq/w9fNfRlXdlPUKuqmDpe/+3NzznL59ka5GECnLwg25UMBsmFSlRAKlrw8qlbfMpArbAF8rGhlQGzeJBa3kGBc5ALFUoivax8LaFDXNAmtWdTYR7aJXjd+wLqZZFxIoGxPgAKZhsJqeZ3LuNPtDw45phuTxIMfjwlClXMZ9663Uz50TSWPTFGaWPh/xQ4eIplKYcjuSqlLwwFNn/l4Uvho6UFKZBZ46+wSf3vtJoobR5HNg2uBMlsWma4OW2+XOfyozxUvzL1HWKnjdfichF3AHCLqDKKaE5lEJ+sMY2QWnYKN0dCC3tlJ99tn177f06xeHW/jyyjfJrNXEhk3TiOluHul+iK6lMoyNoff2XpYB0QhwcbvJTl/kb6b+lvGFM+ugplZjfuki3zZN7m+5jVky7JHEs24z7ExNQ19eRg4Gcd96qwDM1hpgZLPrhSg7DIPa8eOC5W6aSIkEpXiQ+aBuyW346PXK+Hp6BNNQVTFlWbQOWklcYJ054fViFIvUTpxw9O8a70eT0Y0d9v3UNPR0+qpZTpLHg9rXh9nejmwZyqDrwpSlWoV8HlPTcB89CqYptKotbcLBcpnPHPwJZkpLFLUiATVAn7+D2OCe9Y0foGUy6EtLKK2t6OfPU8/nnQ2E2tOD+t73brqP2vw8prWRNysVx1wacNpSKZfF2GptFUZQlrZmfXJStBE2Gv+USmgLC8x3KqRr2XXmjlWcliMRVtfmmdVTTUnwQqXhvc1HCUhoWk20W9sbokbmNnbnljXHyLJgeDcypBq+18zloK1NXKuODvFeSxdRjsfXf8Nim0rWBtje0Mqtrcip1JbO8W8FrcCd2Im3UtgYX5udRbt0CRAbVvftt2PMzgpzKjsaMX46jbu3F72jQ7RJWyFFo6ijo0iahmQYTYlHY21NrLOxmEiWW4SM6vPPi+/ev19o0XZ0NOmFO9+9QVphK9+U7fDtdhj/rZQAvdqQPB7Unh4ihkGk2tKM8Xt6rumctsQ4VhJGO38e9113CQwsSbgPHUJfXaX2ne+ALOO65RbkQ4ecgqRRrVLQ8qKIWa87CXCbUQ5bE2ucn7XujdLVtSXGNy2igLm21rwW1WpC3mBlBfnQIQxLl/fdhPFNTRNYqlKhV4mTCLZR17P4vSFKRtbBxF2RXsxS6aZifGBLwz/TMITPyNycwEsWxrc/I7e0gCThOnKE+okT6wm1eh2lp0dgsnIZMxwW49tKIpuNcxIWQ3RuDmloCG4ixjcyGbLzk2K+CASENrGlTyy53awaOR7e/X5e0L/NZGGWml7H7fIx3DLII4n78T1zal1L2jYCVlVMXcdYXkabmxPPqmGIrpjVVZSVFYylpU363U3nuwHjZybO8eSpfyCVWVjH+MUiK7MXeFrX+PSBTxEo4GCym4nx5Xhc4Co7ken1Ind3v6Uwvi0lpbS3Y1arQqu8v/+qML43GuVTvS14vUHGV8aoaTXcqpvh1hE+fuBfrBO4uEGM7/cLGUFV3YzxCwUIBCj3tjPRCgWzQDDionvyPP7FtWaMX6lgapqQocpmHb19dF0k4nfvxkgmMWMxaLxuNrGkUb2hEZfXamJ/YXUsOPexwfjaiavF+CsrwgzTOj7TMATGt++zlY94O2L8nST4OyAaWWh9nhYSiR5htFitYqyt4QmGGbz3LsxwiLNILHbvZm85RMvzZ5wqlqyqeN/3PvTZWRZCBmeqs6SrGeLeRdpdHbhkF5opHh7N0Di7epZWfyvLpSSfPfwZVi6dYig+RM2o44kmCBV1SoXMerulvZhuUQHaSm/tcrGVBvPbNeRoFLfPd8OAvz/aT9wXb5ZEsSbKRLCNgaUa/hWr1cyrM7WnjQMdh9FNA0WSqdbKzCYvYegas+ULtN/exn0jH6VoVAjIXrpLLvzjKejtBS7PgjCrVUzTRI7FkCMRtIsXBZPAShYqfX2kqyUURV1PgDsfNtFNnWQxScEVIlDSRSXecqt27dsHtZqouKqqMG6anER94IE3bFI1CgX0ZNJpd1JaW6/4W9fCgGrcJIYLE6g9PY6ZBZJEcnmS940+zLdmv4tLE3/D5aIl1s1j+z5GCO8N62JKLpdIwDcaENqmI/k8psdDLjlHfbbqnINRqQj351LJcXlXdu/GMzIiqs8WmJGDQczWVmeMzxcnSWm5LV3VU5kFZrU1Yq5R57romQzm9DRye7sw32gEx6qKEottOn8bfOa1Ik+O/T0uf5BsNUtHsIPZnKiiF+pFgp4QkqLSlRigv+8wnsCQ0HczTUzre5wquBXl9hhPL/4za6WUMIspFDAyGVarVZ6qVHi884P4V3KXZUBsMsTx+ZhOjzOfn2+4KZbLd5zLVHYAAQAASURBVK0mDF+676GglZBivUJqwxojpnVsRjpN/fx51D171oGIXYzweARArdXE9SyLNlw5GiV52zBfevEvWT095gCglt5RPnb/T9G9WBabz1gM2eWiPj4u1pVcDhQFtb0dyetFu3ABdXCQ+tgY7sOHmzeIttGNJCEFAmKDFQig9PWJ59jW07uW8erxCHZEI0Oi0eF8i3lU8niI7ztC9HLv8fkEeyGfF2Y3NuvJeuY2Mqbs+6gvLwsmHgityKEhUUTMZgVzyNqUyS0too1yZgZjZUX8tt9P9vZ9XKjNk6lkiXoj7PH0EjkzSVbLI0WjKIGAAK8ul2OUqbS0UCjnxAbN7Uby+wl4w9skwQW7pMPXSku8p7nYZT1PcV+cvmA3INh5kte7+b4oitBht3SB5UBA3OdqVTB0LM1gORoV4y4eR45GKbZFmI1UKZo5Qh7olWNEo1HUhx5an1s9HpS2trcMON6JnXirRCPGl4JBUWwrFjGzWbTxccEo9nrF+i3LEAiIObdSEUntfB7PvfdiLC6KOTkQEO8rlZDa2sR8Yc9TILDV6iqmqgomYLWKNjYm1hS3WyRGYjGxLtqY4TIY/1ox+w7G3/p7NiVdLYwmBYPCdNJKHuvLy7gOHBAGp6YpGJmTkwKHSxLUagQfu1vM0YoiCqOaJlr1Y6KsuiWxhvWxSDh8WYwvR6Ob1yJFwbBkUSiV0FdXxXh5F2F8I5t1pBz8S2ke6X8/T898k0rrHsZykxSzq3RH+3io7z0UU8s3FeObFoYQJ70Z4+vJJPrsrEj0dXZSf+01ge09HmGOGQoJEzwrkW5jfMnlahrfRrkspCo24RCre6FYdJ6DG8X4tsRD0BWwTlRy5iJME7xe9EoZxeuju3cvwXInVa2KR1IJKwFwWXIijVjHTh7WagID1euiyFitir1NZ6cw/1PVbTWft8L4M4X5Jlk7B+OXSqSKq8zWVtmDR7BzbyLG99x2G9UXXxTeDtY9kfv68Nx3H8bCwjsG4w94BvjZ23/usqTKG8X4ZrUqZFr27duM8UEQpBb+mbWTeeHN4fEQ88R48I6Ps6CnWSuniXuj7A8O0/LycVy7d4siYkeH+A63G8MqYuvJJGpfXxPGN61uC3tP4Ry7NW4lj8dJVtv7VklRBA3G5xNzr6XdfdUY3+sV5Ja2NnG93G6RBFdVpEIBORxGamtDjUREAcrjQZJllLcBxt9Jgr8DolErLliDxw7+iKg2rs3jMhVGDv4Af/b6/81seppKMQeYHOy6lc994H/h8MWKqATV66g9PbxSGecPX/oDJrOT6IaOKqt8ePdH+MSBT/B3p//OSYQDmKbJ7Z23o5jgKlVJACguZJ+oLBbqRYyVvGPAJfv9b6kK0Fslbgbg30paRvJ6ScS6+IjvCP75hup/pUJIjTC7NLbeEuUcjIRhGARdAUaSVcxcDVvOxm5zuZIZkZHJCO3efB6zUBCTd2srWBOpPjFB7OAoyAr6pkSoCZJM0BNiaVcre+oxzGwWg/X2K1PX1yvPqirMSa4RIF4t6NWWlkSid4tK5uX06eDaGFD2GBiM+mlZfYWUP7lulCFJLNcz/NjRz+DDRb6YJuqJMKp20lpVhRP1DbKk5GiUUCiBkc0KICVJ4PMhqaqoeisKQV8EasL0pL6wgD456QAluaVFbKJWV9F1Hc999zXdk8YxXjh3zqnsbzLrAopSrYlFo7a3I1vSJPULF9aZLKqK2teHa//+Zs20BvA5FSiyMn2Ozo5d5EppHuh/gO9Nf4/Z3CyaoVHVquxuGeaTrQ/hefk4RiwmvkvXxbl3dSG3tKxLopgm81FYW0mvF/isTg6AVGaRuYEKI7AtA2JLg6tqlXwtj0vHAcaSqopNi8UAruhVkbT3+ai9/rqosvt8QtIiHMaUJNEqKcuY+Ty1ixeFtp4sI8XjuA8cQOntFZtV61zy1RxPXniCjB/UkRFnY5RRVZ4ae5qfvOd/FoachQLEYkKKxJIhsa+1PjcnTNEmJlD7+53zdVg+hYKj7WlqGpLLRfWZZ8TmPR7HffDgDbOc7LFytUyT7UKORsV9j0bRZ2bWmdKyLFr/VBXDKnrI0ej6fWzYtJmFAvVz58S4lCS0uTmxOQiFMCUJtbMTfXZWaKSGw1w40skfvfa7TKQuOeylwVAf/+rQ/0RwrYaxvCzYTZZhkRwOC9OcbBa/JlE/f144tasqfft309K9m9X5Zk1wJImWnt0MuTuIDX1wXfbIYvnYEmQRXzs1n0iU2YxFR0PdZrlrmtAHnZ3FGBpC3bNHbKJ6e8WcUCyKTZvVwju9v4O/vfAPzGVncasewqabrkAHHxv8GRIuP9OBEgV3gaA7SL/L5K0tYrYTO/HmRyPGl71elL4+9JkZzFJJyBH19a1veu1NraqKZLeiiESnJDnyBvVTpwQ+0zS4cAFl1y7UAwfQ7CRJAyaUOjowGo3vFAUzlxMdYJmMMN3awfiXjZuB8bdKukper5A98fkc8zPAScrUT57cbBRnsa97Pe3E8ZMqNHQHWBh/K08mO+yxKAWDl8X4pqah9PSIdRTB6Lb1mKV4HMli/Etu97sK48vRKLUTJ1C6ulC6uujTdT5z+08za6TJKHX0WgV/XcJbM+iN308IH66RkZuC8eVQ6LIYX/L5ROIXqL38skiQWRjXxvj65CTuO+5AicebjqlxfOvnzglMYjOLN14Lr/emYXyjUMBYXaWrr51EqI2UJIl7WauJOUvTCLd2M7k2zoXxV8S8CGAYLCkKa1qeHxu5Fe8Z0V1jd4JKLpfAe5aGs43xjUwGdWBA7HcqFUxVvWqMX9BK690gW2D8olFBcgWRfD7qZ86IseT1iv2IJb1iLC1dE8a3j0Xy+1EaMD6qinbxIp677xbryDsE41+JVHnDGN8yId0K45e7W/nyyjOklSoSCvraGorfz7lImZfO/AlHO44ynrmEW3bzz/Kz/PDBD3DLSl6MVQvfi5+Q0CcmBElV05owvrJ/vzD4XFxsSn6jKEidneB2o7S0iCKNpjkGn05xzudDt4oXN4Tx63WoVpHjcVwHD6JdvCjY7KoqSJCBAOrgoJgTAwFMS7v9ZoyDmxk7SfB3QDRVckyT3qqPzxz4CWZqK9Rao/zOa/+R6dQktXIB0RYNpxZe47eP/T5/cNdv0VMSVeKZzAx/cuxP+Pb0P5OpZJyvXCws8a/v+tdUtSpfPPdF5++3dB7hk/v/BZdOflf8oRFsSRLhrgHc0aCYWCzpj2sFMjtx9bGVtEyPHMP9wqsYja0zqsr+wBAHe49yav615i+RJA72HmW/bwC1P4Q2PS1cp20tt0jkimZEZr2Omc+jtLZSGx9f35RJkqgkhkLsN1o40nUrz05/z3pNBlMc4+09dxDGQ6Gah6pXvF6vO+wAye1GadCIu1JSfmNcLeg1CoVN7wNRja+99BLyQw9dFVvkWjY/TcUMVRQzFElhOD7M8dRZlvOLVKsl3LKLoegQHz/0SQZu0jPVU/WR8LeQqi8KA6NMBqNcRvJ4aGnto2tNR4qGRKFkeVkwPSxAJbndghmGaM8z1ta2fdaDnrBIkMVEgcOs1ZyNt+R2E27vbRpfZrUqWuPicdy33y4Ag2kiBYObnMc3gs9CrYBZq7E8e54Hhm7je+nXONh+kHv77qWm1xiMDfKBtvvpeva0KNzYbbjWQq0nk7jvuAPt/HkxDlSVopwDSRKacLb2sx2SRFEvg+2lbhibtP3Mel2woRrbFxWFoOwjXJPweYKUK3kHJNvHE4920BvpQ5+dR+npQRsbQ1tZWU+at7aKNuhkUmjBGoYwFbWYX/XJSUfj3wa4s/UUqwvjzmHIiYTDHkjl80ynxhldlcU9LRbF+aqq8/tN7X0NWoawvkHUUyn0tTX0pSWMpSVhzmRdMzOdRpuYwLV372XH5psV9vNqZDKb9BGdFl1ZdlrIG5MRWKxJye8XY9owUEdGUPftE0kJSyNTX1oSkmWKQub2vfzhK/+e8dmT1ufrSF4fE9WL/OHxP+Xzt/wi0b7djOenqelF3LiIym7UUonW3hF6ym70pTmHrelKp/nYe36aL333z1ids7TBTZOWnhF+6P6fJrC4RkCXebz/MWZdRcpBD6FQookt4xodpT42RkGqM6sUyB1pJYCbXqL4ZpYEs3RlBamlRZjGLi6Kduh0WmzsLTaNFA4zEzP53e/8JuNz6+bL4Wg7LT0jPH3pq4S9YZGcU9yMr407899AdODNuuU7sRNv+djI1lIiEaTduwWDU1EwJUkkIGwpRHDmZrtt2WZo1o4fR5uYcLRtAcEUv+su0XZvF6lVFbmzE9e+fVRfeUUYfVktz0algiRJgpHY17eD8d+k2CrpasoytRdeaMYhVnJD7ukRTM/G0HXkvj6ChipYyJYRu43xE5GOLT2Z7HBkNbbD+O3tmKEQxtoaroEB9JkZp72//uqromgfCmGUy5jWOgG8azC+YzrZgFMD1Sr74u0Yq2uYclBcB0NH8gdR+/tvmAVuh1mtCnxSrzsY3zbylltbRdIuGgVZdjoZN2J8o1gUCbTL7AElj0eYnQ4MiEKEZQRq46iNe8gbwfhYetX+xTU+MngPX1ZeJGWzZA2DlrYB7tr9Xv7x2T8Xf7PHr2FAucxK4TxL73kvu2q7HYyPpXfvGhigfvq06JRwTk5qMgIGrh7jS57mPEkDxpe8XkLRVtATwrA8HBZazem0k6SVOztRR0fRl5evGuNTrzfNAY0Y38jnMSwt7x2Mf5UY3+q8scdXI8afdKXJnH0dc6XiEMTSrQEups9zNnkGr+rl707/LYqssqdlD2FPmPaOH6RtThf3U9fX59BazZEZ0peW1juy1tbwvOc9VL/73SZzTLmvD8/dd2Mkk46cpyTLKMPDwti0oThnFy+MfF6Q2Gz5mVBI3GO3+6oxvhyPi2Oxip0ARKMo3d3Ux8fFb1qyiObamlPMvVlz2o3GThL8HRCbKiumSbAKe3JuvhVZ4/jCq4KZ5bSmCWbYqeVTnGOJnuAoUiDA6cVX+cbEN8hUMsiSTFeoi6A7iGEa/I9z/4Nf+4Ff45HRR8hWsoQ9Ybp9Hbx4+puYWVHplbxe0RIty8R0N10zWbQVIT0gBYMosRi8RQb+9cT1tMy92bFVFVS/x0P95EmMQsHZxHSldX71B/53fvu7v8nJhkT4oe5b+dX3fp7+ll3ohFEsPS67mnc1bZyS1WJpVipNi4W9sMjhMF2X1vjV+z/H540ar8y9bH1Q5vbuO/g3d/8yJ1//Oh/Z/RFHntYslVCGhzGWlq7KYGmrMKtV9JUVtPFx5M5OlMFBcS8tExZtfh45GHTuqZ5MbgLHdhjpNHoy+Ybc/43FjIArwJfOfYmX5l+iVF/X35wqLVBVTX7xzl+8JhPYppYySwfSyGQIFGo8euCHeHrmm6zOX3LY0IlgGz+491Hm8xku5NYI+qP0uHx4rC4CU9MEKNZ15EhEgMBtDLMABtp2kYh1kSqlnLYre3wkIp30hXqd9xqZjABUVsXbNpJRe3tREolN390IWoxSCb9PwiyX0SSJ2XMvc/foEaRgkCoaXtXLfX33MbCmUmvUSbNaP22WujE/j9LVhWvPHsx6nXBlBmWtRYBFu/0cHKAqdJUthrtl0lN97jnx/CmKYCAsLaG0tAhghQDkPUToUGJU/W4umOOUqwWHGTzctod7o4cJpkv/D3v/HSfZdV/3ot+T6lSOnXP3hJ6MQRxkkAQlkSABkKKyRFIUJUuXsoKl6ydL9vWldH1Fv+dnfSRR4YqyfGX52rKeRBNJFHMCCRLgABhM6Ind0zlXzlUnvD/2qVNVHWYGwCSQ8/t8+OGgUp86dc7ea6+9fmtBLEb1hReavpmOesBeW6N+7hza/v3g+HXKjXTvRkCyYbQBv0K92H4CZbkJ8DWN3MocZsqPOT/vhr7YtRpWsYjn9tupHzvWDpIdFUijJF1H7evDLhapzc01bX6c89WYLy61aXK9S+nuxlxf3+SdLTnqmYZKqJWYklQVpaMDK5sVCfCVClY2i/HSS8LOpK8PymXMixfddkWlv5+zpVlBgNPiw+cEa86mLjLtKdIXH+Ll9EkWMwLwBuxuHhi8m/f2vA3v1GLz/EsS9soKffN9fOSRX2OuskyhnCPoCzMY6CfiiyCFxQImqmnEtxnL5WiUpbEETx//e5KFVUGMra4Sqyo8PvAOeidySB0daHv3Uj9zpjkG2rZQpQYCmDMzVO85zDcmv8jk8oS7qaQqHg6MHeHTZz/DYnGJkdgo87l59nbs5aO3f5SzybM8c/YZPnL4Izd9sPWtulXXq7ZST8leL1at5gbTqjt2YBhG08dV11FGRlDHxsT8HAhgLC01CXCnO6XRUl8/fRrP296GNj6OXakgBwKY5TK1l19GarRVO4tbSZIwFxfFPOmMg291jG9Xq2LsdpSfUigkNhtuMi/yrUhX6f77N2F88nm8b3sbla9/HatFJS739+N95BGUjg5GfT4+MjzOvJmiqEEoELtkJhM0r8XtMD6WJewQvF6U4WGUkRFhh1Ctot12G8b8PNrBg9SOHm0jQr6fMP7GzQw0DeP0aYyFhXZbDlUV3vtHjryu63A7jG8XCmgHDmDOzorOAacjszw2wPJgiFx6mlApylBoELWhAleUTRjfTKVQHKuzrUrp6moqvRvnu3F9aJobbghvHOPbhoFdLGLlcuIcGgbdL6f44H3vYn6gRKGUIaj4GBk6yOnUOUyr2XVsN8ZJB4vmsusofSMuxrcrFSFYWFlp81ZuYHzX77phm3KFGL/fCNDRPUIytdDEbbaN5PfT0TtGf9kDkrBjNKammqGijr2FtbSEoWmia/MKMX7b9dQ45haM37D5uIXxXwfGX1sT114m42J8dWCAnDErwlfDYbBtzK4EyXqGidUJ0tUMhiXOo2kZnFk7g23ZPNB/L72JhOgqyDfFT8rwMHJvL8bZs+0Y37Es8jzyCFQq4r70+SAQQPb5UKLRy3alyNEo6s6dGHNz2NUq+oMPUp+YwHjtteb37eq6LMbX7rkH48IFscnS4qmvDQ2J4zZNsemWyyF3dOC5/XYRuLmNhdCNqO9JEvzP/uzP+A//4T+wtLTE/v37+cM//EMeeuihG31Y16y2DeiQZdI1h6B2wg8aPkK2M6im86sYM1Ukw2DNXHMJ8PHEOHO5OaYz0+7HfWfuOzw69igAAS3AoN7F8OEEz/qeIVlJI8kyVrFIzPTwRO/b2yw47EKB+tmzbenCb6XapCyQZcrDvSwNhih5EK3ckUuDxxtVSkcH8gMPbGrZu1/X+dPQn3Ni7STpSoaYN8rBzgMMd+4AeMPgT45GYWVFeFS2TsANJYAsYxcK3Fbfw7+58zdYP5wnW8sR8YQJWionzr5AQA8zSBRoervJXi/q6whYai03VGppCcnjwVpddVu8KJfFJLZnTxvotavVS37m5Z5/M9W6mfHK4it8e/7blI32+7tslPnW7Ld4bOdj3NF3xxV97iafOgT9psTjmIuL9Hk8fHjnB5gJX6BQKxKwVfyRBJ8784+spebE7xcMkgh28p6dd9N7btX1HbWLRWxNc4FYwwNsY4WDCZ68+2d46mufYj274j6eiPbxxOA78U0vYkc6AQQ4VtX2RHtNw5yfR9u/X2zMtCxUG6DFKpUwZ2fpiweIe6Iks0sYisLS2kVYtVG6RevkSHQEqdiSXu3scG8MeLGzWaxaDc/hw4wWIiRmvkYy7agrJElc65ZFR6SXgaoXEH6WUiCAMTPjtgSD48NWqYhwHSdQkFqNcDDB4zvfw3OLX8EbgFzEoCZZDHTv5KcP/QxDU1lszWmhzOfbT2rDW7BSQdJ14f/asCUqFDAXFpBCIbSdO8XrHSAf1KLNVrgW5VWjArZHgGNnEdsIyrUuXsTs7kYdH8c4fdoFvdspthotn3I8LlQrDrmPJAmfxWt4L73eknQddXgYc26ufYHsgOBG0Ka1IfQJVRXXvPO7N8IgKZex1tZQd+7EPn0aOZFA6+9HDgTI2tMigGrj9zcN9vQf4unzzxI+v8BDfQeh9z4qVg1/pINgxSJqaO3XaSOop1JBf/5F9u7fj12UoABSIY1yeHjbsbKVACroEk9f/AwpqyBUnysryJEImXKZz5oTfOiH3odvNUvtxAlBjgWD4vdtfJbTwj5nrJPOr7UpFMeHDvLF6S9zPj1JLJBwF6an10/zV6/+FR8+/GHOrJ9hJjPzunJCbtX3V93C+I0nZCSfD2N6GsnvR3/HO8Q8Wa+Lzau5OeonTwpV1sSEILwdAlx27Claw+vsuTnUsTFAkJ2KrqPGYoIMsm0xD5RKmKmUGL9bxq23Msa3Mhlqx49jzM66hIMUCqEdOCAsxxwlrHwTkuKwPcaXdF0oftfWxO/u9SJ3dqJ2CnwlB4PEgfjr+FuNaxHYjPFB4B7HcsVcX6f+2mtuIKfc3Y3+wAOYzrzaIAiB7zuM37qZYSwuCkuFVjEGCC/32VnUnTtR+/qu6HM3YXxJohj0MK+XyRpzhMpBhvbuxB+JiOD1mMQz558j+e1Fd43WOTTOu3fvoW+pJO7xDRjfzucx5ubQfL6tSbZgEM8991D5ylewVpv5I41uA3N62iVEN2H8RhfmzAza7bcLT+pWJbhDUpurq+I6MU2Bg5z7M5AqsCuXQx0eBsvCE+0mUGz6cNuW1UaAAwQ9AexME+NbhQLmzIxQi3s84ndxML4ciYjrwiFLgSvH+IE4jw//IM9pXxXrB9tG0nU6R/bwxJ73EZhch5DskpvtF4yjQK9UKHklZh/YTS6zQtCo0F+Q8S2sNzF+wyu6keHQwNxbYHxs+xbGb9SVYnyPR/ymDQ/uSgUrmSQ03C2uL8tC6esjoxtUjBLpqvgbqtykXE3bYCY3w1olRf3UktjQ6OoS11h/v7CaKpe3xvjVKvXnnxeCp2JRWFIVCiiXIJbbNnl1HePiRXE9WRZGLoc6NCTGRacLzCqXL4vxMQzI59vuJaW3V3itp9NI8bj7nLW+Tu3VV9EOH8ZeX7+ioNTrUd9zJPjf/d3f8eu//uv82Z/9GQ888AB/8Rd/wbvf/W4mJiYYGhq60Yd3TWq7gA4lFiMeMAQxZNvNRFnHZxjbJqpHsIpF6mfPoo97sG2bvnAfc7m5NksUgLpV58WFF9tUWpFoFx/t38VMZoZcegV/1aJvqUywpiHvHaQRytJQRG514a8UVphYnSBTzRD1RtnXuY/u4JXfHPlqvmkBcg3I6E0tc7LMYn+QZyc/Tep0RoSgeTzEffGbtpV7u5a94c4dLul9Nf+WNjSEoeuYHR2i9R9EO1ckIo7D40GemmGklufE/JdIZpaYc+wwOjqHeeK+nyWw3K4GaYDh1ztwtoVKhUJYKytCBVEui0na48HOZDAuXBCpypOTYkccsE2zfVd9w/e8HrWYX9xEgDeqbJRZKixt+dzG2sqnzsxkMKan0XbvFrvbuRw+TWPnYg7J46EY8vD/zH6GVN0JD3EUP8nsMs+WvsHPxO7E1+r5Z9vCc2xtTQCobX6rYSXBh3b8MHPDKYpGCU8gjK77WKkVKKowND9FUPaC34/R6hHoqLSttTWsfF4APidlvpFYbhsG1soKdqWCf7nG4zveybOzXyKZXcKu1ZA0jbgcdFt+rS4JORZr3t8toEOKRt32SLtcxspkiHT38v4HPuoqZQFkn4+ooTU3/1QVdWAAubub2ne/2/47NJLnazVXSSUpCna1ypCvk5+9+58xV14WobR6iNG+vQTKJoaVFgS4E0RiQVtLO8Eg2oEDGBcuYFy40FT7xWKuxUV9chJ1ZITayZNQq9G3c1AoUzLCAqeV1EgEu+ivecVxVqtuq547jxQK2JGIIHfzeRGE09+/rR+m5CyEt0opv9mIBSWRQH/ggU3qOjkUclVpG4mphoe/5PEIn71GqCqIf+s62p13Ypw/j5VKIfn9RHbrQlkTCIhzLDmKI1khHIixlF8iINkszp8Rj+s62e4Mdj7Poeg4u1qOWZJlEUzmtNc2QOvllHQbCaCLAx5Wzr0sVFjOdYqjsMsks8zvKpHrt1jpDmPZFoNqhHFFxV8qCe9hn0+EdtaKeOX2RVcglGDqwgWQwbYtFLk5tp5eP03NEPdeoV7gVt2qreoWxm/H+FIiQfnpp1F6eqhOTTU9eB0rA2V0FHNmBnVkBLthNxEKiXbtDR1btmVhLiy0qbQUR+VmJpNY6TS2aWLlcsJjOJG4Ioz/Zrsot1K2Xq05w65WqZ861UaAI8vCu/m73wVNE5YMjs3AzdTK3VrbYWO1sxMc0vtq/Z0GnpA7OkRmyvp6007A8Ye30mnxeL3etF9YWKCuKCijo0Il22IXcc0xfi6HlcthZrPYp0+LuVlRsC2rPYhxw3e9HmXn85sJ8EYZRhP/Xu5zNmJ8SWJOK/L00f9CWqmJYL9aja4dB3hP/D6ilsbTx54jmVlsWn7YNuvZZZ4zkvxM19vxnZtuC4aXQiGsYhErmUTu6toW40uSJH5jJ7cGRRE4MBjENk3qja64Vozf0oVpra1hlUpY+/ejNYJWwd1ccfGWJGFrQhBgZbNIe/ZgO8pUbWQESdeb3adpp3OuhbRLdAwyqCaAvIvxFWezpn78OGYgIGwgHIJS6e3FXFkRZKnPhxSPv36Mf9cvbI3xbSEasHO5bTH+8p5enr3wadYuHBd/R5JIxPp4fPwH6T23Qv3CBdTRUWoTE1CroezaJTYeVlfFOWzB+HIwKLqJbmH8N4bxneBLALtYZMg7QtfOQ6zNnwPTpGobWF5xrY1Fx1jILQCNvA0bG7BNwcmZ8/OYgBSPo4ZCmBcvCpK7pa4WxlcGBqifO+difMnjwVxepn76NGga6/fuZSJWIJ3QiHu72Es3/TXZ9bNvYHxqtU2ZE3I43NwQavCOjeNwfMqBTRZvN6q+50jwP/iDP+CjH/0oP//zPw/AH/7hH/L5z3+eP//zP+cTn/jEDT66a1cb26sKmsVcfR0tJfGz9/wipxZf5djya9SNEsJ7WebgwB3sq8WxCytYlkW/fwf7OvdhY7cpwAF2JXZh2zapcmqTSiukh9inD2DYCubaAnbVBl2i9u1viyRZVQVNE4EKvb1tAOfY8jH++MU/Zio95T42FhvjV4/8Kod7DruPNUDwnJXiZOY86WqWuD/OSHSEr898ndVic7f5apPRG1vmSomg8NHLi8Ayy0kXXlPTPF3/ND939z+7KRXh17PkaFSoBAIBjFOnsBrhOT6f2GXt7KTy9a/TV6vxwd7HWNhZp2jXCCpe+rISsYqObQvrj9fTDrlVtfl6eTzi3w2QaJpih19V8Rw8SP34cWqFgmgr2rUL2dnFl0AA5mpVgL9IRICi61CaeukgCVW5smG89TyAUEsb09NQKGCtrSEnEpi5nFB8ZDJIiQSLEZvkzFqTzGsBSBmpzEJCZaeTwdIIZ1ETCcyVFQFqnXt940bVgOEnWLHZS4z5UIRnL36OZC0jQIZt0xHu4fFd72Gg5nc3JNpU2o4CDk3DLpepT0+j7dwpQIssN99jWfROJvmZnnewuFOmpMsEwwlGOncSdYKf5GAQz5EjYqOrhdCXolG0ffua1wrNiXukYwcfuecXmF69QKGaJ+gNMeTtJlAFu6coAKTXK1QqDUDZOO/JJOrgIObqatvjcjSKumMHHtMkUk+0qaDMlaZiXvL5sJJJ0crutN0hy8gOsJG93iaRb9vYqRQGoAwNCWVDvY4ciQAQyFZ4fPRRnvN+i2ShqYhPxPp48rYfI3D0PCY0F0G27friyT09GDMzlIIe5j1FilaK8EKJEfkgkURv27WndHW1bzS4X8bJCbBtaseOCW/KaHRT6NKNqEup62ALYqqhlAkGUfr7Mc6fb/9A28bO5dwFraSq7CpGGevczVRqEklRUCyJPX2HCEd76IkPsV5cx4iH0SqGG2BlA2ia4z3fXnI0KtqPOzrcFPZLKem2IoAKplCfmMmkCF3TdaxMBt0XYv9DT/Bc9rs8dfp/MpedRbMlOvwdvHf8CT4y+ATDoUHkeJx6tUpQL0CpTF90kMWMsEWrWo0FmEREj1A12tVB+ZrocAhqN5fN2K26eeoWxm9aKFCvY66vo91xB5KqYn7rW01rCtuGUEiQ1uvrKAMDYs7o7ESy7TYFOICUSGDbdhsR1Ci7XMacnxdhWaurQh0N1L7zHTcMazuMf6X+zA2Mb5XLYjx1upPkaFSoMotN666rSUZbmYxQJrcQNnIiIfJw8nnkvj4xbzpzn12vo9999w2fn25kydEonttuE+FxDz+MceZM04bHUcw2FIFSNOoKryQnVFX2+9ss8645xvf70XbvxioWqX3rW8KywudD2b8fZVCItSRHuXojMD7qZTD8NkKcjbUR4+c1i6dP/APra8KioRF8mcwu80zqOR4+/ATJs+vtf1+SBL7XLRajsKOB/WQZKRZD3bVLYBvLasP4GzeqbMMQGxoej1BFp1JCXZvPIyFIQ7xe0QnnKLnbujAbGN+yqJ8/j9LfL0g7p8OubTyQZWyPBzkkguPljg6UaNQdH8LBBO878iGeevFvWF++6L4v0THI+27/KQLJ5mc1ML7S0YF0zz1i885Zc8g+H7ZpCns70wRdv/oY3xlLt8L4pYFOnr7wj2Q8RnONY9skUws8yxf54OAP4N+A8e2MI9QLBkWYYuNYYjG0226jdvSoeGA7jH/xojufSE6XkXTwoCBBW+oWxocgOu/tuJ+nV5ZIldN4fBoeGw50HeBQ1yE+M/E/kZAI6kE8iodEoJMOb4zyDhX/agYpFBIK9aUl8Ru0bD416mpgfJzuCTOZRE4kUJy1nBSL8eqDQ/yf3/5/88rSK8iSjGbL3N5zmN956Le5U4uLc+ZgfHQdq1RCikabeKLVCkfXN23uNa7bmyUg83uKBK/Varz88sv8q3/1r9oe/8Ef/EFeeOGFLd9TrVaptuyM5bZIMn6rVGMHfTozzTNnn2F9bRYrmWQxYJIxi/zQ+GN8/uTT1M0aB/sO86+P/Es6v+5MZqUSY7UwH7395/ji1Jc4uXrS/dxdiV08Mf4EZaOMT/NtUmnZ1Sr12VmM8+dFan0uh3XuXNPPyjDASdCVgkGRkB0MslJY4ZMvfpLVwioBLYBhGaiyymphlU+++El+/9HfpzvY7XqGHU2U+Ytj/4kLqQuosoqFhV8L8HO3/xzpcpq6JSavVDl1WV/R16Met20bZWjITSpf8OVJTq4iRSJYyWTbLv3qygoX+x7g0Ni9b+an/J4oSdfRBgZQOzs3TTL1qSkkZ5AM5quM50EMR4arzFB27nxd7ZDbVZuvV6NNS5ZR+vuFd5eiIHd1YayuCt+ywUHUgQEBGLNZEQDpdFNI4TDanj2oY2PXzQ++L9hHX7CPxcLits9drvLVPBcLU+T0NUKqnwGieNdLItUbMBcW0B95RNiYIBaBdq1GwRbqfXd33+MRi5xqFatYpDQA2qFDTUsQj0eAplpNqCUSCWbJiKDPcso9npjl5T3RI8QsnWenniJZy4gAl0wGqlVW02meyqT58L6fwucAZGzbJcDVHTswl5ao5/MuULBTKTx33IGyYwfGykpbcE6gUGdvYhhzegF1VwhNDbSdH7WnB/nRRzEWFrCWlwUAUVWxkGqoGmhO3FYmg372ArvLZUAFuYrcVaE2MSEUEQ6wl3w+tMOHqR8/3gT3jtpOGR5GHRx0E7MvdZ27ioRSCXlwELm3F2txsekk7fGg7NghNh1DIVeJ7IbT5HIo+/YJ3zkHyDaq98I6H7r9/Sx4qxSqBYKKl6HoMOFQB9Wwo6hqlOOBru7ahTE/z2KXh2fnv0KqlnHVVImZPt7/wEcZ6djRtjDSDh7EmJsTyfXOolju6kIKBCg/9ZR7THJXF/q996L29QnC/xopAK+kLqdKayWmrGzW3RDduPgBwLYFgRSPu4nt8aUcv3LbP+OTx/6CueIS9+56gOfnv0U+c4KfiX+Ec6un8cs6u+O7Cdckt/VX6eggGIyD2lRWSMGg8P91AsvUgYHLnqs2AkiWkTs6CHfKyCtxsbDzerFTKex6ncH73sWXFr7Bi/MvcmbtNCChKRpmTeFzk59nODLEmJQlmy8TjUcY1bqxNYVHh97Gl/kai5k5dEWE5PQEuxmOjnAmeabteEKeEKZtMuxsUN2qW9VatzB+M9SrfvYs5toaVjIp5l5JQtu/X6i5LAv8fpS+PjGfNQgrRcFz++0C07TaFCQSqOPjSIYhNpZb5oeGuhRZFnYnW2F8R0G4EeO7XZQNmwPHbqHxeCN40MpkqJ8+ja3rzTA4TRNznmHgOXxYzMWN+axcvqyv6JWqxxshgYrf72J8yefDmJwUGH9tDbtUclXL1sqKyAhxbGO+X6txLSqA6lyTDYxv5vPUXnhBYPyGdUrre1UVde/e1215sl1dDuNLkYjASsUitm2LDZRgUCggDQNjeloodiXphmB8KRgUCuktFN+N5y5X7iaSE8gn6TpzUob1NaHKtPJ51OFhaj4PaY/FYjXDkFbECPnxoGyJ8Us+tYnvAVuSMJeWBLZ2vKNha5tFLAspGhXe6uvryPG46DSZm8POZoXyXJZRd+4U2NjnayPAN2J8c2VFdJD09KDu2EHd6c5slByJoA4Pi4C/YHDTdTfas4ePPvqbTC9MkMuuE/QEGFQTggBvwWqtGL/tO8kydHVRn5igqMO8XqFQyxPyRRk6vA/9+JmrgvExDPGbJxLY6+ttGH9hZ5hkfgXFsYhpiIYAkrllFvdp7CqbmzC+cf48+sMPw65dYrPK8S2XQyGh3N0O48/OupYZdr0O9TpGPo+Vy6E/+CBKInEL47eWZdF7fo0P9jzGYkIhq5ksy0Vma2t86pVPYdgGcX+CQr2Arvm4ved2Xp0/yqtSkR++8wfoXXJCMKtVsQkTDDZtR7h6GF/u7sbj84lxIhLBmJ/HKpc5/84D/Jsv/yYvzL2AR9a4d+B+hqJDSEh8YearhHe9n5XMa2TzNaLxCONakIjHgzo0hIHYcHE37MJhcf8vL7efb2ctf7N0U31PkeDr6+uYpkn3hgu6u7ub5Q0/RKM+8YlP8Lu/+7vX4/CuWm1nH7JSWOHU6ileXn4ZGZmOUA/JVJq+IoQiu5A0L3/w+CeR6yb7ajG6Xl5pU0wmMjUe6LuXsDfCUGSIqllFV3QqRoVCtUBnQLTUbVRpNYgrO58XO5AeD2Ym406cgPi3YYhQAceTbWJ1grXSGjPZGVcBBmIhLMsyE6sTdGlRaidPcqLX5ne+/m/4ztx33Nd1Bbs52HOI5849xxPjT1CoFdBVnenM9JaK9UY1NglaSbnt1OPG8jLZ+SlmcxcpWBWCio+qJ4LW3UNtaZFiV4Q1rUrFKONTfXTgJTc/heEbvil2Oq9XWYWCaFErlcQAF4m43pBbBvlcKllclpECAdSBgatybBtDPNB1tH37xGQ9OyvaXXM5bNPE+/a3Y+fz2IZB/eWXsRYXkeJxQVy1pEMrsdjW5+AaBKeOREd47/h7ee7sc21EeF+wj8fHH79sx0PbpphjTZMIdvHezgfoOic3VWOSJNpZbRttzx7M5WWCUhXbNIW6WFWR43EwDEwHBPurtlD7OAvu+ksvuep6KRAgPXeBp3PPk27YqTiVsgo8O/dF3rHjncJSxO8XSohq1VWbJ/OrzJNlLJVC6e932/jknh430EMbGBCLU0eVUZ+dRenuFkChq8ttw7SrVQH0LGtbTzs5GEQbGaHWUNNsaNdqvG8rWxkpHqf2yisiNGhpqakcsyzkzk60O+7AOH68CZosC8k0UbdpLdxYrYoEa3ER/aGHqL34IubqqrDrkSSxcdTV5QZ2up/bWMCYpvAGHRxs/3DLIliX2V3WkKS4UPAU1qh786j79onk95kZQaxXKoIwiEbJlLM8O/88ycySWBDJMpKmkUwv8vTx/x8fHv9x9DMXXZ9ySVWRVBX9wQddv/j65KRoJW0519bqKtUXX8S++24BvlPNcfpmbEd3xzdHMW2XSsixGEiSuN8aafLOZnDjfOCA/vFTSf6PkZ9nZiDAP5z9NGOJnXToMfwViz69g4XVSc5WqxwK78JTLiMnEiQSg4ztvhtvR7GtS8DO55G83isPEqvXXWJKGRjASibpOV8mkquTzCyJcU/TqPZ3kjfL1E2DqdSUsG2xbepmnUqtzH17H+BvT/89XkmjWC8ieTyMRUb5+Tt/jqOvfo6H+u5H2ukjEOngib3vp2JVWSwsIUsyli3uib0de4l6ozwy8sj3fSfVrdq6vl8w/nZYovG46XxXKRSCVMr1ezZzObTDh4U4o14XmLxFmWWtraHt3y9avSMRMW86wXdUq25gXStmaqhLpUBge4zfCBfbgPHN1VVhaZDNtnubejzC1mB1FUnThPdoIEDt5ZeFlUGjwmGUvj6Mc+dQx8fFZ6gqtnNM2/mKbkXKbTd32IYh1KkNmwTHPkPu7sZcXBTqUkfd3LCYMefmREv4LYy/Jca3isXNBFFLSV7vVfWDvRzGl3t6sPJ55I4OfI8+Kjxry2XqExNYi4siRLOzs00Fez0xvhKNNhWnLUS4FAyijY9fNlCwcb03AggBUFUKve1K0pxmciY1RTlTRNI08vUirxUuMN65h4ihbcL4flMWRKiDYZS+PuonTjQ7aJ3MmU0EOMJayZqbE77AhoGcSFB75RUh1GgQZZYl/lYD4zu1FcZveDBbKyugKNtifG3vXtgG44eDCQ6O3EPt2DHsTBloz9a5Eoy/ELF5dulrAvc6GD/ROcyTd/wkvcdn3jzGP3dOdKfefjv1U6ewMhlhM6frFDUbJR4Xx6Wqrtq7MQ4XzDJ2objJoqIhdGyM87ZjsWN6vVtj/EiESl8H08tJsiEV2+vFbwXwVS36yjr+1QzG0hJWsYhx/vz3BcaXncBJe31dCOIiEWjpIHIxvm3jX0mzuyLm18WRLiyjxA8OvI1VM0uqkqJuGnQGOhj29/JPxz+DZkuUayV+SX0AfzIn1NmJBNru3SgdHVcd41e/+U0xl5smys6dyMEga/cf4GTqtEOAe/iR/T/KC3Mv8LXZr+GVdX7i4E/yr5//t9RqFcq1Ing0RiMj/Modv8j4sSXkvj7knTsFUb9vn8AbDYzgbNTIHR3g9bo2RTdDfU+R4I2SWslXhJJ342ON+u3f/m1+4zd+w/3vXC7H4EaS4CaqrexD9iT28FMHf4q/fu2vBRG+dgqA0fAwP7zjcdZnThPK17HzdQZ1kx2vzoM5Ay2tXpKjiD3cc4hEpJuTKydZLa7iVb10BjoJehzlmi++SaVlOyE8QDPYohG21ihnEMcJzAPI1rJcTF9sI8BBtERfTF8kV8thJpOsyWW+snC0jQCXEaTPa8uvoas63cFu/urVv+JQ1yE+dvfHmExPbukrmq/mNxHgsLV63CoUuDj1Cs9cfI615Sl3sFNHRxnqGee7coGvzT3Par6x+LLpCvXy2P73uUEZN9tgfi3KWF7GmJqifuaM60cpeb2ou3ej33HHlt9/29YpRJvW1WxD3OjrpQwPk1tfZGFApzAQIagGGPTF0M/NYCwssLKjg4nqHOl9JrE7xtmb99PxygWUSES0wTm+l8WA6thh5AiqAXrn8/jmVlwQtFXL7xupkB7i/sH7sW2bXDVHxajgVb2E9TD3D95/ScKo7XpXVaG2MAySRo5nMy/yU0M78U0vIg8MYCwsYE5MCPsLWUY7coRBn0JHYoC0x0Rq2JHIMvVoCF3vpt7XxWQ8Tn/KQj992k2hl0MhzGSSubhBMr2waaEgqSoZvcKi0aIkaxDgmuaO14V6UagjGi2HgBwIYC4uCqJ+ZcVVo0l+P7KTWC9JErbTKu7ugCcSyJEIsmNhtJXiYFP7mywjJRLimExTLDQ0DQIB0dpbLLZ5ohrT02IMbJACDvFszs6KILK1Nffa0A4del1AYGM7vPcHfsDdgMQBoObsLHaD9G5dlDiPSYFAc+OzUR6PCEeZnGzzC5QCAdSdO9Hvuw9r3z7xXet1oUyRZRbjCmvfPt30EVQUpEAAyetlbWWaKeUVds85Y7ATOCN5vVhra3gOH6Y+PS0Cd7bwhrNWV0UK+QYwfyUKwBtRxuIitVdeEaGw6TR2vS5aPvv7sTIZ1NFRsSjyepF1vfnb1OvIXi+JrEFmwEO4AmEphrWSZnFqkXfsfZCvKAoLS+fIR+skDInOxADv2//DhIMJCCZcZegbUdVJjupHTiQEuba0hK9e5/Hd7+RZvkSqksUul1kP1Ok0K8iSLDqubBscjdL9Qw/wpemvUK2VuaP7Njy6j5pZJ11J8/87+2n+xdt+jWx2lUI1T0gPc2jwLv7s5T9nrbxOT7CHqlFlNDbKr97zq9zWc9stAvxWXba+lzH+lvYhiQTawYPUX3sNy7EvA4Hb1R07BIFhGAJ/dXQIktw0RdCW87oGcaf29mJFo1grK4KsVFXkQMC1PNu4SdxQ2W6L8SWpOf5vwPh2rbY5aBqEf286je20ZFuVigiDW9zQ7VapiO9qmkjBIPVXX0Xu6sJz993uOLuxtiKwYOu5wyoUMJeXMRcXsVuU8croKHJ3t1A5rq5Csdi0PPD7wevFmJ6+hfG3wfjXE9/D1hjfWl8XQpqBAQgGkatVzMVFapOTaCMjYJpoe/ciHT6MmU5jnD8vyBknCNHKZJACgSbpreuCPG3pJLlaGF/SddTBQWzbdklKSVXBefxS87l7vVerJHuCnD4QJFNJE9P8JAIdeBSdmlnF6O7gzMoEpbS4zm3AL+vEIt2cy13k9oG78Ki6i/Ej/aMoXV0cv8MiIHnoT9ubML6xtiYw5cYQR3CP3z1223YJcMnrbfrE1+uu7Yl7XrfA+A2/eSkQQDtwQNyvGzH+wIAIf/X5rgnGL8gGz0x/kVRh3cX4tmmSXJvhudkv8NOJO/GvievjDWN8x2bINgyU7m7XGkry+4mwin3mOeeLSJvOe9DW3LG+rRx7GuPcufZNlq0wvmEwFzR5bvZpJlOTnD1xhnK1QF9siEcHH6GYTfLesR9iKJ+neuJEc83wPYzxrUyG2rFjGMvL4ryn0+DzoY2NiVBqn08ESm+B8fumM/xAzxj7RnYw56/ztZmvoloSueQSz7/yDKZXw6zX+dbct3jXPQ+zb9kQBPj+/cLqxOmsupoYn2pVbGJVKqLbPZViYrBMqizG63sH7uOFuReYygie8f7BB/jm7DexbZueQBc9kV5KtRKZSoa/Ofs/+FeP/K8ksnV3nGR0lPrRo0Kg5WwOyLEYnnvuQe3puWl+V/geI8E7OjpQFGWTImR1dXWTcqRRuq6j30Q/yKVqpbCyiQAHGI2N8rtf/13KRpmQp7mAnMpO8z/PPcX7Bn+IteVJqNUo+RUB7jKZ5g5WOIy2e7doTdF1hvQhPnbPx7ZUSzfC5FpL0rRmwIksC8Dr9zdDEmRZEHC1WtMnCNAkbRMB3qh8LY8qqdj5PGeVFCvZlZZnbSK+OMlSkpJR4rau26gaVWzL4vjqcf7su3/GL971i1v6is5kZjYR4I3aqB7Pri/yzJlnSOaWkf1+rFIJDINKcpWvK1kMyW4jwAH8ipcvXvwS43s+TO9i8aYbzN9sbWwxxeOhfu6caGFtAYd2pYJx7hySx7Olf2KbD/MWXpFXsw1xI+hZ6vTwmbNfYn1lWjzv8ZBIDPDYIz/JilblD77zbzmzOoFdr1M3qhwcvIvffuTXOPTKqtjxDoWYLszzzHc+LYJW/H6s5WXiniiP73g3/UuibddKp9taft9MjURHSPgSTQsfLchw9NIBsPlqnqMLRzEtk24thpldZ2VlDcMUO8Nr6grLDz/CWKGGtns31S99qfnmQAAzncbMGtzZfxcnzSUBZDqjnF87QzqV5v6OO/js0b+lns2QiPTw3tEH6J0VSjTZ8QgrWNVtFUGS14vp9SB3dAh1kTNZt5IZAaOlXdIwxP8rimjJXlkRSlvbFpOtomDlchgTE6j792MXiyhdXYKQjMcx5+exHLWaubCwreKgrf2tVMKcn8dYXsacnxfgQZZRentRR0cF4MzlRAum1yvazhpjYSMd3RTtieq+fUJZ6/OhDg4Kf8PXWZu6KlrVV4UCciyGubwsFirZbFM9H48L9czwsGif3/B9G/YxDUBqGwaWo/TQjxzBmJ4WChxJEqGfY2MUqsI/XvJ4xG/n7PbbpRJEIhQrWcBR/BgG5vo6Sk8POAo+Wlo5t6xqVQQebahLKQBvRBmrq1S+9jVBljjt31Io5KqT9PvvFws+TRM2Qvk8Zr3e9MpzCPN8IY1x8aLwuyyJPITZU9/hwdEDSIMP0hvuY4fSycjAftfPHi7fznmpkqNRlFgMq1LBbnRiAL3nVvjgwDtY7NLJF9OsDcXI1POcM8+IhXqzSZf+SD9fnv4y9w3cx9n0BWYzM+KeRGIgNsSjY++gK9BNONjj2o79fvT3m91sepR9Xa8vDPtWfX/W9zrG3xTC7pQUi1H5+tdFq3wjnwOwslmMc+dQBgexlpdFB0qDZHKIGykcFuN+JoPnttvEeKHr6Pfcs61auhWvNVS2bwTjI0mbCfBGOa+183lBNuU3rAWcNnC7XEYOhQSO0DSs1VVq3/0unrvu2tJXdKMvcmttnDvM9XXqExNi3PN43GO1kknxPTweQYA7Pskg8KKxsIA2NobtKHBvYfx2jH898T1sxvhqZyeVs2ebCspgEMnvx3PffVAsUv32t7GTSfF7e70oY2N47rhDWFg495eZyWB85ztY6TTKzp0Y585hpVLCXsV5zdXE+HI0iqfVGuIKyC67WsVYWMCWJE72SfzliT/lYnoK1RQbUJ2RPt7/6E9y7FufIRNQKC00N3r6EiOkl6Z5dOBhvjz/DTKVDB2WDzwePJpOnxzhv3/lk2SCMtVKkYHIID9+29sZmlhpw/hul4jTIdD2u3i9Ih9q/343OFWc3KZAzk4mXYxvO2vsTRhfloWPuGVh5/MY09PCsrFQaGL87m7sbBZrZQVbVUXI4FXG+AveKsn0UnMsdNYetmmSLKyxuC/Innjv1cX4LTVSiJCI9bO+eGETxk8kBhiQY6hDAcy5ufbvG4thrq21EeDbYfxST4ynL3yZVb3GucwFypU8KAqLhSW+vPhNHuq4k2fOP8dH7v4FPLlc8/r8HsX4drVK7dgxsQHoBJFKPp+wN0yn0Y4cQQmFtsf4loV/cZ3xeidzPWVeeuUfxbqwsTFQrCH5/VRUhbUQYlNtYKDtmr0WGN8lwnUde32dTDVHyBG7DkT6+drs19zPGIgM8PXZr/Pw0MOcWj3JdHaGfCkDQGeomx8a+0F+IHCbIO2djSclEmnbQGz4l99s9T1Fgns8Hu68806++MUv8v73v999/Itf/CJPPvnkDTyyq1MTqxObCHAAv+bn5aWXGY4ME/M2W7gkSWIqP0tNd4gIVcVftVEGBlDvvNPdBW347SotCeIj0RE+cvgjV0S6ydEorKwITzMHVEher2gbAXHD67pr4N9QAcR9ccaiY+5uU2uNRceI++JQV8nUc/gUr/OMGFA11UOpLIgCyzYJeAJ0+juxsFgqLOFRPFv6im6lDt/u+dnSIsmcs9iyLGS/H2wbjy0WBL2+9mCIkego9w/cz1Ov/R1vH30HXWum2B3t779q1h7Xq+xqlWxmhdnCAgWzTDiYYFDvwjs55xI0IICWFI9v6WVnVyrCs3Kbyazhw3w9BsoG6MlmVnj2lf9M2i6J1hxHyTTjKfLU8td4aeVVvnHxawD4VC+jHTtIV9L86Zn/wq/d9VHGkhKST+aZ008JAhzcVrNkqcSzk//EBwfeQ2BdLOisdNptDX6zFdJDW9r7NCpXSLrKdMujMZ2b5fn5b3Fm6QRWOk1voIdHR9/O3OQxTFnYzuSz62hHjmA1PNwAIhG0gwdZCBo8O/lPJE+tUemIsFZLE/FGefTQE5QXZjn92lepWTVkv5+0XeKztRN8+OEfQ51eonb6tGgLO9gtAl4aPoMbqi/cT0fnEOurM2JB25raHu5hoKJjpZfRH3xQkMm1mlggrK1RO3++STSrKlYuJzweMxnkVEqEyjgtg+bFiyLkryUA6FKKA0nXRajrmTOYS0vN3XMQYM/x41b6+wUActqkxZub7V+N45McexK1t3fLhc3VaLNtLDyrzz8v2rgDAYhEkMNhoZyxLIxTp9oAmBQMoo6OUv32t5sEuHM9N6xj6mfPYq2vC2JAlpE7OzFXVwmEfGKBUCy695FkGEIppygEFC/QogAxDLGJFAwKBZ/jY7tlNbwpHSJ509M3SbK4Xa1iTk8LAhyE2qlUglIJ25lX7XLZ9Y+VdV0ojVTVTZqXg0GUnTvxX3xJfEbLOTHrVRbOvYLS1cX9e8fZU9vsZ/9mStJ1tP37qZ05075YURSCnhB7pRi2GuHbismF9bPois5YbIyL6SmCnhAe1YNl24x37GEhv0ChJGyPJBvC/ghz2Tm+PPUVdkRHSVbTbbZjt0jvW/V663sd428MYW+UpGlYS0tIkUjbPCpJkvD6deYTu1ZDjkTQbrsNJRx2u4Ko15E7O9sw/sbOou1IN9erFpoY3+ejPNzLgp2hYFcIKl76Kx4CBa0N48s+X3toVut3ikZF0FyDLNjYwi/LzY3ChhWJY5XX8DffSoF9ubmhze+8VGpTNtOwPXHOuRQIiM44Z06XolHUgQHqp06h7diBubb2lsX4W2EODGPTxsgbxfjXE99D83o2Mxlqr7wigi5bML7S04M5P4+5sIC9vCyuJ0kSa9VMBnN6GnXPHpfAs9bW3HtRcjZfAKxcTmBJx9LjamL8y5FdrRg/qAboN4P4JueYGvDxv3/jE5xYOuZuDIU8IVQjxKen/5Efuf9Jnj79lPs5fYkR3rnnMRbWJrEzczzUcSc7Bg4STJfwhKKcLc/x3QvPM1E4RzlZQFIUJnPTzNfW+O13/gsGzq65GN/KZkGSXK/ijaSnHAwKcYimNTfK3CdlYXGyLDC+umsX1tqaUH0nkwLjyzKSxyO6VhCbUFYuhzI0hOJswik9PcLackOA6NXG+AXLuS82YHzJwfglXUbrHbtmGD8cTPC+ez7IZ57/S5LJeRfjJ8I9PHngh4mYIczp6XZVfSyGunMntW9/u3leLoHx57skktklshGNUqUg+CEnE2sxOQ1995HMrzIn5dixEb9/D2J8M5nEuHixGeTbgvGNUgllaAgpEkHp7QUujfHV5W9t/gO2LRTxgQCqBZTLbevUN1vbYnxNQxkcRInFsDs7iflqTOWnuaf/CIbVHmZZt+rsTuxmMj3Jenmd7kCP2wmxllvmW7Pf4mB3nI5UtW3j6WYkvTfW9xQJDvAbv/EbfPCDH+Suu+7ivvvu41Of+hSzs7P80i/90o0+tDddmqLxs4d/llwlR9QbxcbmHyb+gWJdTA6GZSAhEfKEXIW1JMuUpTpyRwcJX5yxnXehpIuughK2Vn/A5Um3Rkm6jjY0hCRJGA7xrY6OYtTrov3JGQTl7m48t9/u3hhhPcwH9n2AT098uo0IH4uO8YF9HyCsh5H0IFFvjGIyy57OvU4gF66PqASMxXYwn53jYlakPsuSwmx2lsn0JId7Drcd61bq8O2eL1gbBuaWiaVULRIID/GTB36Sum2gSQpruWW+MPEMddskXU5jLojfwIjFhHryTbbMXetyAVYlh2RZPD/5FXJpR0nh85FQwzw++i4GHD9YEEokMhnhubexlRXEpHiJyazR7nM9KlfO8krqFMez5/CEZMJyAE/FoGobnMtdINw9yHxOhMjIyAzERpjJz1GplTi5dooDiX18azXNfQfeRSa/1vzgFlVDMrPIwmiJ3S1/d6sJ/mrXxeUzPPXi35BML1LTZF7LniXmT3Df7rdzfuZVzHqdxfwiX575Kg/GDrA4dxpbkghUTJS+AIX9O5kOVShQJRTpJF6o8NTRvyOZWaKQCHB+YZKyZFKsFXh17iUe7j7C8M7bmD3/CmY2C9ksSVVlemGC3Ss1EW4qSQxYIeLBTlKOQqB1co/74uxK7CLuj/O08RnWUilxPVkWiXAPTwz/IP7FInI8jrW+LhZhkoQ0MICUSolFq9OOaBcKYjPCCeuxUinkSEQoQxCqB7smjqvRti2papviwMxkhHKoUgGfz22LtUulNpsQJEnYgmSzSA7wsS1LBFJuAfgkn0+A3nh8ywXOlu3vb7DNVu3pQfqBHxB+iuWy+A6qKhZwto06Pi48BZ1wHCkYxEqn21sSG96osixUHYbhgnYrn8eu17GWlxkePkwi2sd66YK4B2wLfH5kj4e4FGDAjgDrzfOjKNjlMma1ijI4KAJaenpEK/+GFHS5u1t4jG/zPW+WZPGGB/iW5Sz2Wu//7Ygnc22NAStEIt4nWm032IklQt0MWGEk/9Zel2+m5GgUdWhILPqqVdExMDqKOT9PfX4eFIVdkV38j6Wz3DP+CLFAB1+9+BVOrJ4gXcugKioJX4ILpRSa6kGql/DrAbLVLBWjSrGap2qIBcSVhFbfqlt1qfpexvi2oqAdPiyIBK8XGzAmJpqqsQYGbVEtS073lNzRIRSIAwOY6bSYT1ox/tDQlkTQ5RRmrV616tgYZi7HQtDk2bXvsjZ9Wiz0ZZlEYoD33fZjjI4cdjGd5Hgz1ycm2ohwKRpF27fP9W+WAgHMVEqEwaVSTZJJUcT8E4uJwL9cThD7ioKdzWKm05vmyMvNDW3Pt3apbfi3Xashx+NoB5prICuXE8pxj6eZM8JbB+O7RJxlUX/lFeGF7hCHyuio6OzasBnxZjD+9cT3AFa5jJVKIXk8qDt3CizofF8JhJDCCbbDtpE7O7GyWexMRtifOBs2yvCwazkEtNs5OFiyNXjxemN82wm6TcT7efedP8E3Vl/kxOKr4r5wxoVcLclUvc5wZIjAbV38zJGf51jPS+iKB8mGuclXqadTYNvML8xzn76LvWYnpwuLHF/5BmfMBcrlHMgydq0KtRqTynmen36ex+0RvJYlyF+vV3SkTE2JYEqHrAYx7iiJBLLfT31uDnVwEGNuzg24l/x+JEUR1jnr64IM9PuFbaOiuIpbuyr+PrYtML5jUyRHItj5vLBUKhbFd98G4zdwlpXJuJtpGIbA8leI8UOhxCUxfjjec80x/mjPOD971y8wV1mmUCs2Az5Xi+Atoj/wAFYq1bbx1MhDah7Q9hi/6Bed8tWqsKJ0r23LAmwqdh1Z1ylk14WNboMcdrz07UIBs15HBRGQ3NUllOlvUYxv5/ObLSQb5XQot45/l8L4fVqcvtgQi9n59o0UoC8yQK8W3zaz6s3UlWD8vb0H+K9T3+Cf3/PPeW3ltbb3x/QY3YFuvrn+DUBCRmrrjipV8pwxlniQ+E1pZ3Op+p4jwX/8x3+cZDLJ7/3e77G0tMSBAwf47Gc/y/DwZlXwW6m+evGr/Ltv/Du+Ov1V97EjA0f4zXt/k7WimKxVWaVYLzIaG23z2vZrATydMZ4cf5JodBi7q/qG/YW2KzkaRfP5kAIBqi++iByJ4Ln3Xjf4woZNSoKh6BD2jM37976fqlGlZJTwq350VcfGZig6hIKHfZV9/O2pv+P9u57gMzacWZ9AlgRQu6vvbh4ZeYTf/erH0WTNGVAlFEnhj57/j/z+vf+aTtMr/IIjEYajw8R98S0tUTb6nYejnWIh0hjkW0pXdFKVNJ89/QyNcAywQZJB04h6Qkh+oQTH68W4cEFMMjepd6ALsAprdPs6+ebKd0lXMyIwpS4WImsr53nGMvnwyPsJFJ1BX1VFu2BXF1uaXqjqTTGZTc2d4Knn/wor6Of8zKvYhoHfH2FP3yGqtTqlSoGyUcF0Nld6wr3M5ebIVDME1ADYFiWzTKme4+n5LzIY7mVpfVqANWj6YiLCSaDZsnytJ4JcIemCY4CcVEVRNXJWiZcXjvKB23+aE5Pf5szcMRaT00j99wGQiPTQV9CYrSzxj6kXWZl4UQDeUokd+x9gRsnhDQc4U1sgbZcwbQtTlciWVjEViS/PfYMH+25nOT0rAKemUfaryN0xLMfWIWgoPLHjPTw79U+kHYUAtFsrhfQQP3fXzzM9eJbc0ix+Q2bADIIkcX6HTNFrErJWGQjHCAYTIrglkRAArVaDQsEN6ml0a2CaGBcvou7Zg1Svu+E+qKpY5LX419n1OvX5eRHwkhetf1axKADkVgDVWYQ3/o5tGOIeGB0VoZgtC0XJ70fp6UEOBLYENlu2v8syBdVk4cILlEsdhINx10biSkpxAlzM5WVBhEuSCCcql9GGhjYdh2GabQnkjfZ2dccOzMVFsYh0rGikUAh1zx6MM2fwL6zz5J4neNbzOZKZRXdDImp6eLzzAQJJ0epol8vinKZSYlERDFI/fx7Z70e/5x6q0EaEy11d6PfcI85Po5uo9fRfA5DYWq9HsWM7IaTbf5h1RcSTpGmEDJkndj7OMxeeI1VOiXnHNEnE+nh81+OE61tvVl+NUhIJ1O5uN9TTnJ9vtr4rCvHVEr94+CN86sR/4f7xRxmNjlCsFzAsi+HIIMVqkRdmnkdXdAIeP4qiUalUGYvtIJlboRTqB0XM2ZcKrb5Vt+py9b2K8esXL1L9xjewpqfdx6SBAfR7720SS7IsVN0Nv+XG4lzTUDo7XQWW0tV1VTF+q1dtKR7kmW/9Kal6FmVw0MW/WVnmubVv8pEdB4i2vE+amRFhdYYh/qeqYh52ngew+vuxz59HHRrCsCxBmKuq2PSORlGHh6l+5StNX25HFV47dao5xzkYf6M/dGttnDvkaHRbjI8kYds29akpQYI2iA7H4gHLEoTdWwTjN4g4KZEQ1h6rq8IPvmHvUa9jXLiAOjbWZrnzVsH49bk5qs8/j10qia41w0CKx9H27hUkYL3e7DawbaRAAKtQaGbRgMBzlUrTMk5VUUZGRAeGz+deExst/q43xscwqHs1ztUWmT/33xmIj2CrCpJhuuQmQL6aA0Uhl13jbYEDvDo3z2It2xRBOJgtEeujP2lg5Oco7vSSWypTKueRdF0Q/l6fII5lmaxZYKFDY+eMLKwPfD4UTRPe3K3npEVcJ+k6Hp8PMxZD8vtF16YkieO0bWFXuLoqyORIRIxxiYS4N2s1YUm0BcY35+ZQHCsVY26ORkC8+9s5G4NWpSLyFFIp11LRtm1B2jeCA9sOfmuMPzx6gM6l3awvTjZf6mD8RKBzy+7z7SyurEKB2tGjcOiQsI3Zwr98q5J0nVjPEMFlD1ARv4+kQlcXWk+PGP83jEFWKHTFGD9wW6/gb+oZsSnmjNcNwtan+0mur+OvWGKTwel4NNfWxNrM7xcYf3ISbXwc/YEHqH7rW21E+I3E+Ha1ipnJCD7KyZpQEontz70zD21bsrxp/NsO4w/U/Tyx50meOfM0i7kFN0izLzrIE+NPMChFbxjG757J8Kt3/jKffPXP+eFDP8Yv3PELzGRm8KpeugKdrBTjWNj4FB9mi1J8LL6DYiFFtpYF4sDNZWdzufqeI8EBPvaxj/Gxj33sRh/GZStfzbt2I2FPGAmJ0+unSZVTxP1xDnQcYHfnbs6tnePjX/s4ry6/iiqrbqvCi/Mv8h+/8x/5+CMf587eOykbZWxs8tU8w5FhbGx6g708OvYoO+M7XRLlzfgLXaokXRdAw9mldVvEW8p22sJBKM3fu/u9PHP2GdeGpFAv4FE9PD72GP5MCdPME3n5DP/LbR/l/zr1X3j7wIO8d/w9QiQiq3QFu/jdL/1byoZYJNhIHO69nVI5x4Wpo5wafJV7z9XdoJbA+DhPjD9xRX7nI5276Np9mNVzx9pAsuT1sr9rL+lyxgWLtmW5i4GDXQfYRzdWcQHJ68WYn3cJODMSEdYQoZDwGc/lBPGmqkihEMoVToRXo1zLk/Iy/+3V/0q2mCTsCSJ5dBazwlPs7NoZDnccwGNZYFkk04vMjWTYg2jJb4QMskX7jksg3eBFQTazylPP/xXrq9P0hQ8LAKyqlEpZziwep7dnB8gyPtWLIgtVTEAPMpWbBsCWAEkioIep9Kkk88sMhjqRfD7M5WVB7KqqWKjKMgHZCzTDMa92CNDGml690ATHQEWxmS0ukqtkYeUEXYFOzhQvct+eR/n2xBepmDUS0V6eGPgBqFs8O/lPpDUDZWgIK5XCSqdJl1OczV2kf2APF+eWRBieZWGoEnWjjqTrLGUXkMd/AHvlggihqVTwBctY61WhnjIMZJ+PgbzEh4afZCEuU9KlLa2VQnqIg0N3YXcfxMpkmKms8MzZZ1hfmxFjiiTR0T3Cu9MH6Xn5giCnNU2oSDo6sAsF7EIBa2UFZXxcbLrVakJ5nE4LlY+TLo/fj4TwA1V6e7Eti8pXv4q1tOQejxSJoO3Zg3HxolALbRzLHG9sKRhE6epCHR7GTKeFt9758+KeaLRv6/q2ATmb2t9lmcX+IM/OfIHk+WWU4WGUWKzNRuJy1Vjsms5CsLHI0O+/f+uQ2kRCkA+zs+L1koTc04OxsCAWQY5aBq9XqG5mZ5H7+sC26b2wzk8Z+1jo2UPBqhD0hOgvyPhenkR54AERatTwB3QWperAAObCApYsIykK3kcfFUC4XAaPR9wzcUdRUCi0e9b6/ag7drR5ll7p4uFK6vUqdiSnxXe7lv8rvf/laBQ5HGZwvcaH+t/DvFaiKNUJan4G5ASxrp2ovb3XbG5otEzapimCrhvg2ONxlVwHMj7+7cFf4Zi6yn89/jfolkyippFNfpN3PvIkRxdeYio9RVgPY9s2Y7EdPDL0EF+ceI77hx+kYDfn0MvZkt2qW3Wpeqtg/I3+yjY0xzq/H7mjA7WzE2NtTeQKLC83iV7Anp+n+p3voD/yCHJvb5PEqFaRIxFAqG3VsTGUeNwdH64Fxm985tzkFOl6VghONihgk7VFZgsLRLuH3Pdou3cLi40GiewQ85Udg5zPnCdXTOFbXGfoyO3oExdQRkZcD3AbMeZXv/KV9nDs7m5QVYyzZ8XcXG9ifG18vD34rnH8W3S8Kp2dqLt3i8C4DRhf6enBqlaFrZrTFQbCAsRWFGzLEpvlNznGN5NJ7FqN2ksvYWUyaN3dTTxjGK69h0sAF4uuLza8NTC+mclQff55rNVVoU61bYHJUynqp0+LYGqnY8ENCdd1Mc81yFhVbf7u+TxyOIy6Zw/148dR+voE/llZEZverRspNwDj53wSZ9cnKVXy+KrL7OzeQ8Es45c9KGa7rZlhm0TQCZZNnjz4Izw78wVWzx8XBLNtk4j08MTAo/jOrmAbBqF9e6lJprjfHDW2XauJ82eaeGomhXwKdf9+pBaSVOnpEVist3fLjTdJ11EHBkRHYSaDlc9jlcuYs7MY58+DqqIND1N74QWs5WVxzi+F8WUZY2FBdCjkcqKj0eMR+N4hfM31ddTduzHX1gQJ3pKHI0UiYswMBLYmObfA+Eo6zfuOfIhnzj9HMrvsYvy4HuPJQz+6pVBlS4srXQSQWmtr4t5zwkGvNGTXqlQwT58WxLNjS6F0dqJEo8hbvP71YPz+pEkMHzXVwO8JUCplHTW4TV90CGs9RSLWR99SCWXnPqxkkvr58+L6UBSkSERg/JkZ7EwG76OP4nvXu0SX7Q3G+FYmgzE3J+aGhihTVVGHhvAcOrTluZeCQUEaO9Ymbc+Fw3CFhL0cjRKa0TkS3oc5UiZnlqlQxyfrhLUA9w0+SLx3943D+D4fd67rfOKuf8VpY4nHdrybp888xUJymm8cfYqfevs/51zyHOlSinxZdNOMxXfwAyOP8tKpL/Gj4x+Alr3km8XO5nL1PUmCvxVqOjPtErGarDEcHeYvjv4Fk+lJ0uU0NjZH+o/w8bd9nGw5y4sLLwLC/7tUL7UR4alyiv/9kf+dv37tr5lKT2FjU6gXGIuN8c+P/PNNliDXtFQVeccOZE0TO64eD1a9LjyHncCL1trKe3xQTeCdnKNemkOKRjFnZ9m96uV/2/1TnNezZOU6EdNDsKuP/8/RPyJvNAJ1JA73HObnDn+Ev//Gp7DrdbLVHFam6oKi+tmzDB8+fEV+5yE9xJN3/ARPezTW12ZdFUtH5xDvO/AjLGUWOLt+WviwSRK2YXCw9zb+9b2/RcfXTor0dEedZC4vU/3Wt8QOZyyGOjDgBvg02umlYBBtfBx1cPCag0ork+Hi3AmeOfssnngHL5z9IkgS/nCcaLgJ6MqVPFmrTKfinBvbpmCUwCHBJY8HpaNDtFwtLm5KjvccOHDDW2JmVs6yvjoNCA/Ivsggi9k5JFWlXCtiO0BPlzQGQoOcXz2N6bYpSUiSxHjXPrweH1W7RjQQB68ulLalEnalgtLXh7myQlyL0J8ysU0LpaPjmoQAbaxiNU98YCcVBUpGiVHVQ8gf5QtnPkvFqmLWa9QqJSZSZ3j7/se4vfM2DpRr+M4tM3nnIMmldeRwGCUSEQuhchmfL0xRs0iaeQzbENe3JKEgU7bqlMwKwUQv5XJBLB41TahJ6gHs4jrW+jrazp1usnqgWGf/0N4rar0uRf08d+xrpCqppvoqGGTlzKs8o17gg/3vwHdxFm3vXoz5edHq2NUlEuQjEdFyubgogKej4JCj0aZlSqkkgpIMAzkUoj4x0UaAAyIxe3oaKR4Xai9db1/wq6pQD4RCqAMDSLouWj7PnUPp7hap7oZx2YCcjW20pYRDgDeyCJyF95XaSLSqTqRG3gNgF4vUjh4VSrkN16Ok63gOHUJSFOHdaBhIkQh2KiXUTw0P8WoVfD4R8jk6KlRRuRy+2WV2gnhdwFlc1utY2SzqwAB2Tw/W+jqS349dKjVbMy1LtLMbBp7x8S2vBbet0DDEuZJlai+/7AapSrqOHAq5i4eNpNPlwHPr6wHqk5Niwd96Ti8RfiVHo0iStGXLv9zVheeOO67o/m9YDgCEsxp7iprYRIpE0A7ehnodFBVyNIp+5Aj1ixfFpoUTDCd5vWJRaVl0pKrEu/3s6dgrFmByHRIectlV3j7yNh4cfJCQN4RP9XF66QRfnHiOwfgoiqywml2lZtXwKB48sueyx3OrbtVbuSwnNLGRvSNFo9SOHhXzkrPol/v78b7tbWKj0LHWQNPEeNtChFMu433kEUHkNAgVRxH+Rlrq30yVjAp7dt9PRbXJ1wqEPSF0A6amjlIzahTNdgX2Vu3hc0qBZy78PalySgRwz8wQj/Ty5G0/ymDFK3yCczmU7m7qp041yX9A6u7Gc/fdVL/xDWGdEgyK8aoF43sOH74iv3NJ19HvuENkiaytuRhf6ezEc+AAZiZDZXVV4AMHA0jxOJ477hB4/ibH+LXjxzFmZ1F37cKYmhJzdLXqEmeAa+/hrs1azjW8NTC+ubLSRuy7eE1VsXM5IVhxvHalSMTFpYBruyM7mxfYNnIggBSJUD9+XAi6Uin0+++nBtirq4KQdc7LjcD4HYoHf6yTl899A03TMU2DnfGdXFg/R1D1Itm4Su/R6AjjtTC2Umew5uPDu36M6chhilKdQBX68xK+c6vuNTFQ9zMQ7GeyOC86QxsqbEWhLzYEpQoBXcVaW2tifHDzd64E48vRKMb0tNhIcmxn1D17BHZdXASPB3P2Mhh/YcG1SGnF+C6+dzIFJJ9P/I4bAuHtbJb62bNohw+L6+UKMf7AuXN8qPtdzHVnKBglgr4Io4MHiSR6t/y+m6xyNK29i6exuXaFNhIuxs9mN4Ukb4dTXw/G96WLPL7zEf6xdIyKX+Ps8ilK1Qp90UEeHXiEwvoiT4y+G9/JOazOLMrwsHvtbMT4Db98bWxsyw6Z14vxpdbg2Cskx12MXy5jFgoiILTVwtAwMGZnkRRFhC1v+DwlGkXbs0esV1ZWmpkR4TDa3r2oXV1XrODXdu9m6Nw5Yh33M2ekKBpFgr4IIyOHiXZd+0yJy2J806R3sUh/9y7MpSXu7PkZzvanyFZzdPuH+InxD7BeTFKjjkfRKWbWeOnEFxjuGWeP0oNVSLV1ar0V6hYJfgMqX823KZEHwgN88qVP8vLiy+iKTtATJF/L8+LCi3z8ax/n3zz8b9z3VowKXtWLhISNjYREqV7i4ZGHGe8YZ2J1gkw1Q1SPsq9r3xsOn7IKBcz1dTfxWY5EUDo7L3+zyzLm+fPUWy0BHC9wc3bWtUNorYb3eEO1YM4KvyQpEGjuJlUqxCZmuLteR+ntxVpbwy7O8b/+8K/y8PBDFOslAlqAUjHDp4/+VyoVQYxH1CBYZaFUjcexVRUrkyHU3X1F7dgj0RF+7u5/tiVhPhwd5k9Dfy68USsZYnqE/Z4BepMG1vAwVqkkfMqyWTHRO6EgcixG/fx5ocBoAK96HbtQEIsm28bj810zYGlXq6Rnz/PMuWdJFlaJhZ2gNdumVClQNEqYmoJSF61LdasGCoJQkySCqh9a5nWlsxN1bEycXydsQ45Gr+x6uQ6VrzQT7VeXp3h0xyN8efbrrtrdI2vs7N3HUHiQ3YndJMtJykYJkFBklfGOPfzEwZ8kVxWfo3v8HOo8QNlzgqTzfc3FRTpH9/Pk+BNE8zJyPC4WOtfBD7Hogf9x4WnOrp/GwqZm1dnTuZefuutn+e8v/Wc0W0FVNJKrs/T3P8qBqQq+hTXkzk5KYS/MNUOpJI8H2e9Hsm264gNYLQoJSZaRFJU9XftYzi0i+XS8kgApHd0jPD74A/hOinPq7uxLEsWAxpxeoZQ+QbAwxVBogEhke+Awk5kRY+MGn2q7UCBJgYWBOjttm/rEBMrAgCDwh4cxQyFsTcO4cEEQCbUamCbW6irqnj2Ys7NiAedYNEnxOFIshj21OZgXwFpdxTMy4vqsGo3keCcIS9u7F3VwEEnXRVdPdZ58V42ArTHk6SSkBi7bhr7xuXm90iTAoU19dSU2EtsFq8GlA5zkaBTPXXe5ANPK5TBXV6FcRunsFASBQyY0PPLUnTvFJlDe2YR0WlvtYhG5p0eE3vh8UCoJwNXqsekelLWtYqABXq18XrQt+/3Ujx4Vi92Gn6TXK1qDz51DGR7GOHVKvNbxhGwlyDf96VaSClwfXWVwEGNy0g1rkzyebc+dq3Q8d66t5V/y+VBGRlBfh0LsSoPqrmVJui6S5LfZtAEI6mEkVUWJxUQLtGWxNn+OvSP7+PTEp/GrOnatzmxpicH4KO878AG+Pvc8veE+OvwdeGQP51PnCethdiZ2Xrfvdqtu1fUqu1ptVyKHw1Rfegl7cVEsEB1Pb2thgcrXvob+8MPNNzcsQ1pKqtfRRkZQOjquWtDgSmGFUysnyRSTRPUIe2M76YkMXHa8KWvwqdN/w2tLx9zHbus5zP9yxy9y/vx3CAbjm97TIL6sTIa8UeTpiX8gZeZdxSZAKrvE06/8LT8TfpigpWGtrVE/ehTv44+L0EmH3LQKBdHKnXI6OR3l/EaM39iMvlzJ0Sj63XdvOe7K0ShSKCTmnEpFqIFtGzuXQxsdvakxfv3UqabyszHHNqzPGpYZDXxnWeKaCoe3VHzf7BifFhW/XS4jRyJiM7vFz1hWFBGmGIlQc9SwgBBu9fYKost5veTxCAV84xozDKovvIB26BDybbeJDepE4sZhfLPGvq79/OjtH+DFU1+gUEjz+K738KxlMp9bQDMB2+Zg7+38wv4PE3t5AWk8gV2tEjQVxpctbEkVpHEDv4HoZC3W+fGRx5k3U0xlp7Gdc9TfMcqjQ49QmJ+m36O9KYzfICWlQDPkW5JlsRHYyEO5HMZvbNpshfENQ+BPhwy3tujSA4HxJUVBHR7G0vVLYny7WsWuVlG6ugjbNgc8I4L4f50YH2gPB1VV9/68EhuJa47xFYWek/N88KHHWIwrpNJLmGadgKGgFyr0RXbhm1hA7uoS59g0m8KRLTD+pfzyrxjjmybG/Dz5eoE5I0nBKBFS/QzoXcSGdm27odiK8a1CQfj/O5lEGzF+o2N4k42JrqMODmLbNsrIiLg+nCBUdWxsW4HTVtWwFYtlMkRvYowv6TqSLNORqxFbr2PXFOxTk3jvvotPTv0FU4VZNzdjR/c4v3rXLxM9u0DBrzDvr1CQDSKpM4zo0rabQzdL3SLBb0C5JI9TFaPCy4svA1A1q0S8Efe5FxdeJFtpV6bVzHaT/pg3BkB3sPsNk96tZSwvY0xNUT9zprnr7/dTPbyPpR4vRdkg6Alu8qk1MxmqL74o3tMS7GWvrFA/fhz94Ye39ctrDFbm2prrESUFg2j79zfbQ51wE2t1VQRvzswwuGbyf018hanVc2KwVBR3p25H9x52lYPAmnvDwutv07hUQOhwYpThxKj4DoUClS9/GdvxBwRQd+4UwQONkB9EC72VTouJLxxu+zzb8ai7ln5KVibDXHWVZEEoJ7yqr+VJi1R2mc5YP6lVERKpyQLAK4kEcU+EQaKAOIetLVw3qxdiyNs8x6ZlMDd5jAd7bkcafICKVeOOXQ8x1LWLz01+jvnUIr90+OfBI4gaj+LBp/nIVXOYtrie4744+5U+dg+8h4XREgWzTFDx0V/3Ezh2EcOyros6BGA2M8v//ep/ZrkgNp1sAVk5vTbB/8TmJ+74EKvpOex6HX8ozkDHGGErCL3DSH4/QSnntoGCUPegqqwmZ3lo6CGmcjNM6eeFt6AkMRQf4eGhh/nW1Nc53Hs7d3UcRveN05eV8J9eRO7sbAbYmCbzIYvnFv+JtdWmrUki1seTe55kdPDgluClYZXQOBbXS9RR7hTqJfdxc3YWE5B7ezFmZ/HceSfV115DGR0VCzpZFsE9i4so3d1IQ0OuD5zk8SA5Lcxblm1jFwooAwMoPT1ohw4JAOQsjhUHvExnpnn61GdIphfcXfBEtI8n97+fEf3S93CjhbsBagstKjrJ6xXp71ucm+3qcgFNl3q+tYXeXFlBSSSa6ebhsOsZaIdCQumeySB3dyMtL4s2fgBNE4vD4WFkXUdOJDCLxfZgqdbawk8PmvOBlc9jLi+LTVHHi7Wg2Sz4axS9MqFAmAFLJ6Qo1M+fx2y0pYN7jWylrtlEUoHoGkilxCI6GBQehoCtaUI103Lu3DZzp81dGRlxw4beDLC9VlZlr6cu56k70rWT+FqcFCmUnh73Gklll/nw4Q8xFBkmW0oT8IeZy87xj1OfY1/PQb4x8w0ylQyjsVGen32e0dgov/XAbzHesbkL4FbdqrdyNUgetwxDEODgetu6r11YaCPx3Ne0lvP6qxU0eGz5GH/0rT9gcuGkO16OdezmY/f8MgFviLxc2xLjz2Zm+aOX/ogzybNtn/fa8jH+/NW/4NeP/DojiR2b/l4rGTEdKLI2c9r17G2df5P5VRZ6DXZNpl2Mby4sYExOCkVvKCTGyI4O8YZAQFgRwpvC+Jcad9VEAhzCoIHxpbcAxm8oPoG23Aorn0fq6sJeW2sSwbKMlUy6isc25f1bAOO33k/YNnY+L7BTJAKWhdLTg3LokFDDezzoDz0kXpdKiXA+VW0q5BHfGU1DjsWaYYuyjDk3h+X8xp5E4sZhfEliYvUUf2/b/MT4DzOi9/DM+ed4sPsIHXv6MWpVOoKdvK37CKOTWezW84NYW9vJpNgssKymmjsSwZYkdlQD/Kvbf5UXCqdIrS/ilTXsYpHi8gKP736c4ExGqMTfIMZvvT+lYFCQ8ZVKU53fyFq5FMYfHt4W40uaJjo4wfW/3rIcjK8OD8Pg4LYY38pkqJ86Je4pB+Mr0Sja/v2XxXkbMX6rpYYUjbaR4BvPzZaHfJ0wftgXJVwwsbUd1Cde2xbjS6HQ9viebTYBuATGj0QEIW+ayKGQsP3y+ZiprfHsxc+Ryq+4n5EIdvGE9Dhjvns2/Z1NGN/hkLbD+HIk0nbuN2F8J0D0+wHjK11dbodGA+PbtRp7piv8uzt/i3N6lkw5TdQXY9xOED09x2JcEV3MlZSw+Jmtkoj18f4HPspIx2ZMcLPULRL8BtRGIqMRYNkouyUxFqBQK3Ck/4hridJaR/qPcKDz6gVMWY5SoQE6AcenNsCzr/01mTMWSl8fkqpu8qk1V1bEQKkoTVDitMlY2awgn1oGjZXCChOrE6TLKaKWh/FAJ7GWjUS7UBDhdrt3Y5w5IwYxn0+EYDiPd0V6+bUH/1f+5MR/YjI1KdrRdZ0d3Xv4lYM/T+zoXPMDG15w1yjERQ4G8Rw54oJjQAyYkoTt7Kw1HnMne2dgbi37EmnrV6Pset2xNHGqVqcvPsJiahrqdc6mzvPYvif5bvXrpKsZIrIPZIWO3jGe3PfDRM3gDVMqvpEa7h6no2vEtUQxLYOlxXMAdHSNcGfvnUSiXXw4+GFX8R/SQtzVfxefn/z81t7xKZPqep7dgAjBNIHmfXy9zsmJlRN8e+E7DMdGmUlfJF3JiL9vw3JuiYO9t/G5hTPs6z5AxBOmq6xiFQrIDgk86Omkc2ictNXS0hiPY66skM+u81Dsdu69/27OZS5Qlyxy9QIvLr5EX3yYn9j/4xw6ncOuyqDYSENOeBDCN7PcE+cfL/w9a4uTbe1n65UpnrY+w4dtL3HfZq/soBZ0j0Xp6BBq00YwiyQRlL1gFV3PPiRJ+LZFIqLl0QnIUvbvF953sRh2Pu9O6gByR4dQMYVCghAPBNpS7RslBYOu195Wla/mefr437M2e7Zt4biWTvO0afBzR37pkvYljTGjYWESVMT5k7xelIGB9oCqlnOzXV3uurvS61KORpFDIewNGwQNlTX1OnaphBSJ4Dl8WPiPl8uipdTx3Nf27cMyTfD7UfftE564liXG8lpNAMtYbNMiqRW82pWKOK+ahpXPs9Tj5bnSaxSyOXZ491E3C3zHqDLiH2I/QTpHRzEvXnQX8o1rZyPhsImkArFQqlREcExfHy4NVa9jt3iitraZN37z69nmfq2rYc2ynaeuHoy25Wo0urtivjhv3/GDDJpB7LCYHyZiQwRDcT534XOE9TARPUK+msfGZio9xX87/t/4lw/8yysOfb1Vt+qtUJvwW6224QX2pufl/v6mJUpLyf39YnP5KtVKYYU/+vYfthHgAKfTZ/m9Fz7BT+/+AGdKM1ti/BMrJzi2fIyYL06aNFWjSd6fSZ5D1Txt93IjZNhsECg+HwXDmYed8VluBFRXKkiSRFEWY2oD4yv9/Si9vZjz80IFubqK0tkJgQBKd3d7sNotjC8+f0PYn12vI3d1Ya2uUj95Ev3BB6mfOuWq1xvWAurYmFAJ3sBupDdSSne3+/0AQW46mFPu6kLp7RV+yY51TuO70dsr1rpbzHNmKoXkWCVuVTca4wMs5hfZ2bOPE9/8DPd2H0QKhxnydjMg+Rikk9BSHSkcRhoYcFXtdrlMZe8OZlZN8qUM4aFe+vIywbKFMjIiQhLTaXbuPkJP1yjT8msUqnkCUR8DVphgDej1vSmM37g/7VIJdWwMY3KyHetKkrh+L4fxh4a2xPhyRweybbsBi3IgIMQYG6x+0HXhiRyPbx9+Xq1uwnsgVNe2aaIfOXLJa2Ejxne7bqNRtH37XGusjedmu7rpMH69jnbHHeK1Xm8bxt/OL39bjJ/NIkmSsG7RdcylJczlZcqdEZ4+/0+kKsL2pkG6JwurPHP2WT7SNezmULjfYyPGb4zN22B8q1BwN1S/3zG+7HzX+tmzUC67GF/SNHq7hukFpA4xN5iZDFk0/vHCP5DWTWQ94nbUJNOLPH387/m5B375psX4t0jwG1AbiYyQp/3ikDaENIT1MB9/28f5+Nc+3kaEH+k/wu+9/ffY3bn7qh2b6YTMuAQ4UOqJ8ezsl0hml5AiEeRKBSkYdH1qPzT2AfzrOSgWUQ8cEJ5Qq6usHRpmQk2SrmaJ6zEO6FVGnM88tnyMP37xj5nNzrIzMopf9fMVT4AHxu7lQKyP2MVVocxbWxMtPOvCZ1iSZQgGRZv7nj3IPh93RHfx7wf3cWrhNdLJBSLeCLuLfqJHLzQnLY9HKD+vYeowgNrTIyaCUkkM6LGYAFGNgcbjEROMJLV50tkOKSQ5qoRrmbYuaZqwNHFqdXWKR8d/iC+f/TyLqWnqtQoXkxd4z4H3M9q1G1WSCQbjjCR23LQD2aUqEu3ifQ991A3HbFRH1wjve/jniUTFJL2V4r8v1LelFY6lFtp391vqegTlNCpVSWHZFvP5BbqDPQxGh6gYVSQbipU8yfwKncsC1HT0JBhU4mh74kLh4PMRj0Z5stzpElp2pYKVTpOI9/OuXe/mC2f+iVQ1Re/gHiRdp2JUONh1kLAeZl/XPpS1C1vuJsudncyrBdbW59r91wAsi/WVaeZGlolmhjbtig9Hh4n74oJgawQVFYtI4TBxLUx/wUltd5Lbpf5+rEoF22lR9YRCyIkE9ZMnxWS/Z4/oamm0fTrka8NjTonFsIeGRCtlCxEu9/aKRfglxovp5OQmAhwAw2Bt9izTOyc52Hf4kr+h2tOD/OijmKurjFhluqwp0pQ2EeBxX3zL9Pk2H2yfTwR5btGW+Hquy+1AkhKLIYXDYkFl29jZLFIggOKEtkler2hdTSQwVlepPv+8IECclmy5txfPPfdQn5hA7enZUknTBl5bFvKVvWM88+pfU1Dq7Nv/CP/5+F8zsXIKZBlN9XB/7xF+7cDPs29gAGtWdLFgGELFsIFwaPy37TyPbSPF48IfslIRmyTDw4JEt23kREKQ6YUC9YmJTQui69Xmfr3qctYsW2V5bJWrUZy/SLqcZjozveXfWSwsXtbi51bdqrdabcJvG8byTUFsuo73bW8T4ZgtRLjc34/37W9HvYok+MTqBFNr59rGVlOWWK8kWS6uUNv7w4KQ3gLjp4qr2PU6VdMi6o1i2xaWZSKLmExy5WbXqhsyXCqBLCP7fODxEOyLNX3PnS4vZWBAWJxUKgS1AFJQacP4cjSKvWMHxsICVjIp1KOW1d75cwvjuyVpWpv61ZyeRjt0yPW4rr3yCur+/aJDStPc8L8GEXijlYqvt5RoFP2hh9xwzEbJXV1tHchbqTDlUGjreU5V3xIYf72wQjWbYrGQpaNnlPtG7yEcb2J8ORoVftNOftF80OTZM/+DZC0jrpH1ColYP0/sfy/9OVNsMOk6SmcnEWAvXdhWCBrDheNC8mYwfqsS1c7nhX2e3488NIS1stLE95fA+Og69WPHkAKBdozvdLa6Qbg+H+rICLZpCgK9gdt0HXV0FHVg4JKKfjOZ3IT3ANdLWt25E7Wv75K/YSvGt2s17FxOiB3L5bYN0e3Grpse4y8tCeLTspD7+vDccw/m9DSeu+7a8txuh/GVoSGMiQkkWcZ2bK8wTeY6bNbnz7uWrHI47P4eycJqWxize862wPjFRIj5SA+FWoFwh0XvcC++9ZzYBAyHsWu1Wxjf+V5XbM9YrzNXXiaZWdrir4jf52bG+FdMgs/PzzMwcO2N278fqpXkAfCqXu7su9P1BK+bzQV7Q+m9u3M3/cF+Tq6dJF1JE/PG3MevZtnV6qZWzAV/neSUc4FvUDWsLU0xlf8GO47OiJ34uTmk0VFOPjrOXx//G6YyU+iKh3qtit/j57eUf02ft4t///XfZzJ5nkfG3sGXLn6Ji8lJAP5H4G95z/AP8sE9T7DnjBNsl88LcsK2xc6817vJC7Fb76Zr5BHqtXPUz51DjmoYfr8g8530W5f4usaDlxKNot9zj9hFk4U/tLm05IIqu1x2/RFty3J3JpFlkXrvtGJdq5KjUQZXukgEu0gWVjEtk4WZkzw89BDsehTZ4+Hu3rvY3bWHcPDK/a62q9cbVnctamzwIB997HeYWTlLoZonqIcY7h53CfDtaiMxblermCsr2PU62sGDGHNzmDMz7j3RCKq6Hm2SAHFvHNvxVV6tLGDbNqZkU6qXsLDdDbZEsIv3dj6EbymJcmQn6lATMIzogtCaTk6SW7hIICILe5NXZnh37108O/MFFk69iDIwgF2rkfDGuG/8PoLocInd5PzKy9u3yVkWhWp+MzlZreLPlHhvz9t4duqfXN9QSZLo3nM7j3kO4XvxjPOHJKTBQfS776b64ovC+69cFqnj6TRKPI65vk79zBnU8XF3kdrwCm1cg41AQknXRauyabrqh8sFjuXzyc3guFGGQaGQ2vq5DdVoc48D7+sItGVGQEsHwgaScaOvNZKE4gDyNuX7G7gutwNB7oLKAfB2oYBkmm3e22Ym4y5IJVnG1jRQFJEk/+qreN/5TpR4fMtxoO2acBbyciLBbGaG9dVpDj3yIw4BftI5CRZ1s87E+mn++Oif8X/e/78RW9Hb/EA3Eg6SpmFXKq6ntTI4yJpa5Vw8KzZtNYOdAzE6IxGM9XW0vXupv/wyVjwOfv8mZR9cnzb361mXa9u8lE1Yo4JakIpR2fZ5j+y5rMXPrbo+dQvjX73a1G6sqkh9fU1P8BaM3VB6q52dSMGgGLcd/+nG41ezMtXMJiV6FQPDWXcU6sVtMX70ncMiB0JRqFrmJsVxBC/1uTnXLkTy+VD7+jDm5qifFMrznp2DxGwvaQ03AFQOh5HGxojhZ2TkNrxjvk0YX9J1tJER6rWag/EdDH0L428qORp1Fd2NjQbjzBnU3buRDh1CkmU3xPBqYNWbAeNrg4PIjz0mwuscSwulu/uyFi6t89zG7+E5coTaSy81vcF5a2L8RgBhNrPCP578f0irNTAcL/1ikbX0SZ5Kp/jQjh8hWDJQRkcxFhdROjsvqRh9oxjfymSQe3owp6YESVkqUZ+bQz9yhOp3v4vl2FS0YfyXXkKSJBfjW2trwpIln29ifMMQWDoUaiPs3FDIZFIQopKEHI2iHTp02dBxO5+/JMa3C1eGX1qtrFzcvoEA32rsektgfEURljumibW+LjD+u9617dy1HcY3JifFpkgiQe3MGRfDF+oF1zbGSqeFdYlhCBsj2BTGDJsx/uJgmG+aF0iqRYpKkWCtQLxD5f7EMAMFBSkQoP7qq8Ir+xbGv6LnQZznNmeBjSXLNzXGv2IS/MCBA3zyk5/kgx/84LU8nu+LCumhtnbi+dw8v3LPr/AXR/+CyfQk6bLYed6o9N7dufuqk94bS9L1ZuCEUwWrIpQbTpCKbVlY+Ty2YWAuLVEYyorH63WIRjn1wDC/9dXf5oW5F9zP6A32cmTgXj5z+jM8PPww4x17+JEDP0qmnEWRVZRdCnPpab5w4fPMlBb55PG/5N/t/iViF5aRFAWKRbTxcdbUqgj/nHuNqDfKvs5m+GdrgAG1Gp4773R3k5VEoo34utbVOrnIXV0Y58+77UTm2hrKyAhyPo+dy7lKAykYRBkaQu3ru6bHKek6saFdPCE9zjNnn3WJ8KX1i3QOjfO+/e/bUnH6RmrTBA5tO/TXEzhHol0cugzpfanKrC0wvXyGQjlLSA8xoMQJaBr6gw9elaCqN1IHOvZxMLGPE42QKttGMS2Cso8D/YfZHRplz+0/TX/Zg38+jzI2tuWkFtJD7FN6qWXXm8pdoG+hwAf7HmOx10d+bZGAR6W/6sX/laOUI+fx3HMP2v792MWiUHVYliCTazVhW3KJhOiA4msjJ61MhvrEBJZp0qco/Ez8HczJeUpynWBfgH4jSNAbRureLZThHg+2LFM/fx61rw91aEiofvN5sWHmqMjtSkWoyTo7t9zJvtId70Zrt12tis/u7GzrqNjuO77e2kplOxToJVA0MObn3XsF2Oxr7YR2KX19aHv3imN1AoKo10VoTst9drnF61YgqC3RfZvzZa6stCmyJEkS84pDhFu5HGrv1oEprdeE6wuvqhRyaVBVarrSJMDFtwBJwsRiauU0Z40l7nGAMvW6WHxEo+0ef42go1oNpbeXU6Eif/zq/8XU4ilBWGkaYx27+ZW7/hf2999G/eRJ5HBYhOssLyMnEu1KHFkWanFFwUylxCLrdZznG1V2tYqZyTQ3f4JBlETiqh3bcHSYqC+65XM+1UfEG7msxc+tuj51C+Nfvdqkssvl0O+5h9rRowLvOWP2RqW32tkJV5n03lhRPbpJiW7apsDNtk1A8W+L8ffVYhzsv4MTyQnXSxYnh+TgwJ3sk3qpT00J24l0GrmzU1hxBIOo73wnxtwcvgsXeO9db+PZmS+S8TT9ehORHp4cf5KomsBcXcVwyHSls9PFVLcw/pWVpOsCl5lmU9FoGFjLy1e9pf9SGL/oU5o4ZguP+atdypvwLbcyGerLy2LDolYTv4+u4zlyRODbtzjGl3SdeXKk7BJWC7ErRyIgSWRkiwVPmV0ZG+Nb33LtLK4VxpdkGcJh4SutKNj1ulDZPvQQkhM428D4xvQ0Wn+/EOI4GF/S9bZMEtnvR+3v3/K+2hgK+Xow/raZQY3awJdcSW215mhYMr5lMb4su9eClUyKjaNt5rLtML6dSoGui/VCi7d5EIeXMupg2CL/oVQCx9azEca8HcYv9yZ4Xp3lv575B6bWz7tZRGOxMTj407w3uAvf5JzYuLyF8V9XydEoQV9k6yedroybGeNfMQn++7//+/zyL/8yTz31FJ/61KdIvI5E1Fu1uTYSHWEtzKfe+ylOr5++pkrvy5XS1SXAZzgsFBaSRMgXEa18kiQ8+FZXRbtkOIyVThMYcNrGMhnW33k3n5v+UhsBDpAsJekKdPHi/HeYzkyzWlzlb0/9Dwzb4N6Be3nu7HMc7D7Ah+/4Oc6unWYqe5Gz/hIPOCoZSdM4lj3HJ1/5My5mp93PHYuN8atHfpXDPYcBZ3JpJVevs6fdpoEwGkXRddSeHjE4FwrYpinUIYODUK2Kc+nxgMfjDlTXuuRolDHfPXyka5jZwgJFs3zVLU+2DJ9DeNLVjh9HikbdawnLEu2vBw82Q49uoppaOMVTX//LNjuVRMcg77v9JxlIJl0Ps+tdA4af3773X/KJb/8HTiwfcx8/1HuY37nzN9m/YGIumUAZKRpF3bFj2+O06/WmP1ujLItQMM6Ol88JNYDPhxT1iPZFy8KYnMSq1ZA9HoypKZH4rutIqkp/d4yEP8GaJ7vJEzUR7mFI63QXYna1Su3ECWzDwJieBttGzWYZrdWQu7rQDh4Eo4KdLVM7exbJ70f2+0GSUHt6UPr72xT5jZJUVXh+v8kdb7e1u6U1Vo7FGLzjAIlQN8mWsBb3Owa7GAr2b/uZl6pWla2VyZCeOs+J6mpbKnok2r2lFU2jhVHu60OKx8U92KKsKYZ1FsI2+WqeYLFOvxUiWBFEQmsI1qXqsgqBjUFvG+sS4T2tKsqGL7xtmgQ9QZAkoVSkhcRx2s4VWQXJJFvPu9ebHIuhHTrkjjkuIaDrYlOkXifZF+GTL32CqdWz7kYvlsXk3Gv8ce0P+T/v+H8RXljArtVQd+8WgZ/ONWVXq1jpNEpvL8bMjCBEIhGslRUkvx91xw6hqjl7Vozzzr1xpef5UtUKbgtSjTk7Q1ExCfmjV0Q2WJmMUGiePdtUM6kq6tAQnkOHtj221wP2Q3qIhwYf4vmZ55lKT7mP+1Qf4x3j9IZ6r9qG6616c3UL41/d2oroUN77XuFhfQ2V3perfV37GOvczeTccXe+VJDBNNnXfQAdZVuM3/HiaX7nXb/FJ178jxyfeZHGOHyw7w5+567foHfZIXEcT9n6uXNIqoo6MED1+HFB3Bw+TN/8Mj8TfIDl3d2Uwz4CeBjSOwlkofLKF0WGUOM8OgrHRlfWWwbj2zaFwS7mqqsUKiFCniADni60Qu26YXz9yBHUnTvF+K4oggC5iudqW4xfqXBx7gTP5Y6yXF4lW8lSs2r0hfr46YM/fdOFIdvVKsbyMvWjR9s85uWODqS77kIbHb1hhNbVxPiFemEzxq/Xwe/HXF4m55/BWtGQolHkjo5rjvGtrHif3NODOjQk1sHZ7JYYX+7paea9ONXA94Aggi/xG71RjK/dfnuTD9n4mcGg+/dfb7Uej5XJUJ+aEnxAQ+Gs6yiOKntTXQbjS+GwsPeoVsXmhdONcrNjfBq/n6K0hfn2F1U6Yn2sr0zTyIZqZDF0Do0zktix2ce7BePP9Hj4r9/570ylJt1zhGUxuXiKv6n+3xy8+1+ze2kJ2zBuWozf4ImkSATlCgn2N4rx89X8FW9eSrrO6OBBEjN9JNOLzSec3zUR6rqpMf4Vk+Af+9jHePe7381HP/pR9u/fz6c+9SmeeOKJa3ls3/O1VTvx3q69N+hoRDUM8SVNo37mDBgGfSmTRLSXbMSDlUw2k6R1nUSkh/6ShpVbQwoEmLBWWCg0boQmUXFk4F4+P/l5VFnF7wlwau0UErBWFoDjcO9hji58l7pp8EM7foh1vZOsUuOVRJlg9jzhUAeffOE/Mpk6j+T3u20wU+kp/vjFP+YTj36iTRF+I1pVLqWIkKNR1zfMcAJ+jJMnMVdXhX+Z14sUDKLu3IlZKFwXUC/pOtHuoU1eWlerXN8vSRIEv2WRDCuctVbIlDPEpDi7/F5iyxmhUkmlsHI59AcfRLmJFuC5QpKnX/jrNgIcILk+x1Ov/i0/e/hnid6g9ii7XufOVQ+fvP//4FR1jnQ5TdQTYp/VSfeZdeTRDqTxcfd+kTekxLeWpGlbtoBJmiZa3qJR1D17xP1fKokd8YUFEbQZCgk/cSdoSenoIFis896eR3hOUVibP++C5ES4hyf2Pkl0bI97jZvJJFaxiLm4KK6FYtEFUdbqqlAVaBrmBeFBbmcywqLQaeu1KxVxDBvCLRt+cHa1ukkhcaVlFQqbwDGIYBz95RM8cehHeOa1vydZaKoiEsEunhh/gkj0jV8TDVXDTOoiz1z8rPh8p40wEeziib3vI+JXmJdyTXKcKP5MSfwmKysCBIOr/JvzVXnmtb8jVRGKCzubJRHt44l972OwrLtgznP48Jsbfy5xnQGg62Qzq8ysnCVfyRHyRRju2k0k2rVJRSl5vUiaRv+qn86BXUJVIMvNa9W20FQvuimJMS2QQNvbg9zdLRRvwSC1o0fbPf4MA2NiAmXHDs7JSSbXBVlj247KxFE4Tq2c5qyc5G6vF7W3F3NyErtYRPL7hRopHEbbt0/4UVYqSIGAULY4gU61kycFodS4Lp17A3hT59kFt+fOsRCVRCp7YdVtcU/E+toC7TaWXa1Sn53FOHeuvZ3X8bmUFEUop8pl0V5eqYDjV2nOzra953Jgf2diJ7/1wG/x347/NxYLi3hkDxFvhN5Q75YWP7fqxtQtjH/1a0ssep28hLer7mA3v3bfr/NH1h8wuXAS2zTxWHCw73Z+9vaf5dR3/hErK+wfNmF8n4/bF2T+6M7/jYkDc2TqOaJamH2VMN0nMxjZrFAmNryUHbsAQ5JQEgnsXA6jUEAdGSFUrxNX+7BTFZfwqL7wPFYq1YbxrXSa2osvIj/6aJsi/GbH+NOr53nm/LOsr82KcEJZJuFP8PiuxxmuVHj9+tHXX5KuX9av+M2Ui/EVhWR3gLO1RSqY1GWbxdwCdbtOqVbiXOochmVwIXWB+dw8v/Pg77AzsfOaHdfrLTOTEV0arSGrgLW+Tu3oUeRY7LK2GdeqribGD2rBLTF+Q1kb0AKoe8auP8ZfXsbu6REE+cWLQo2fyWDJMpLfL0jIfH4Txnf9nh27mIZa//XWpTB+/eWXhZ/+sWPtuMfhSt5o5wE0Mb61uoqVy4lwz2RSELzBINLOncJDvFYTv5uiiO/n2NhshfHx+ai99prAbA7Gbw3hvJ4Y38xk2vCj0tXlbsJthfElv1/gSEVBisWEMtyy8F1c4PE7HuUZ64vCJtLZQO7sGeV9h36MIB5qp7bH+PNqganM1NYYP3mOOTnH7psU4xvT0xhzc+LekmWU7m60ffsu281zWYzv8ZDe1c/E+mkylTRRX4x9XfupUN/SjvNS64lIopf3P/BRnj7urINlGcnrJRHquukx/usKxhwdHeUrX/kKf/Inf8IHPvAB9u7di7qhVeSVV165qgd4q65/qT09yMEgSl8fdrGIur7ODx/6RZ45/RSrxVn3dYlwN+/Rb8N3VvgcSppGupbFI4sQIAnJ5cEHwgN8ffbr7IjtQJZkUuUUHX5BdF7MXOTegXt5fvZ5FguLDEYG+Oq5z1MwSvjLBjWrzuG9b2PVzCDZNNtgnNabqfQUE6sTLgl+I+pSquf6mTMsjcY5mTpDupIm7ouzR4vRmcmIgJ9SSYAv08RcWEAZG4NCAXV4+C2VQrxRIdNKgNdOn+bsniiffOE/MbVyRngnhsMMR4b5+ds/irK0RkDy0F81Uebn3V3Ym6GmVy+wnprf8rnk+hxzRpJI/cZce5KmgWnSu1iklzi2EXbsTGbEC2xbqAuq1csGRsnRqGhjbvE/BATxqmloBw5QP30ae2XF/WwpEkHr76d+7pxQva2KQFtzfR00jaF4Dx/qfYy5HTWK1QIBWWfQ10sk3tOm+LfzwvvbzuWQwuF2FUEjHMcJJpS8XnHvS5LY7R8ZQQoExPmIRt22OrtUwlxfR/J6sVIpzLk5d8GKqoq2x1JJXIuRyLYe1ebq6pbhSCCAyhD7+dDuHxWKL6NEUPUzqHcRG9z1hq9hY3UVc3qaPDWennmaZHZJtJVHo1Ctkikl+U72JPPL58nnRMuebZrE9Rjv7X2EvnQWq1Cg+uKLwvtw/34KVHlm4imSmUUBUpywtmRmkWcmnuLDe3+CYNnGLpfftOed0t0tMiJa2iUbJff0MO+r8dRnf39zUO1DH2Vs8OAmFSWKQjiZ5L3x+zhVLrKv7zYmFo6BbaGqOgk9hmLAjuFD7K5FsOtZAbgTCcyVFUyHkGkehCDR7WKRTLmZTk+12hJiJyavrJFHicUw5kQAlDo2JuxVKhURllkui8Bo5/6SAgHQdYzJSUEGpVLN68C5N5SeHniD57kV3BZ9siDAc8sAQlklSSRVlWfOPsNHDn9kSwBqZTJiXNjoZynLwtNWlqlPT1M/dQprfd1tg5bjcfR77xVju6NmvJJF1XjHOP/ygX952SDNW3Vj6xbG//6owz2H+fc/9B84tXKSTH6diOyjL9zPl449RTXbnP+3wvjUavSez9Fx4hyEQlAQeEDev190Y3m9QgleLrtWAnY6jdzfj7m2hl0soiQS1I4do7qyIuZW28Zz993YhiFUjhswvpVOi03s62hDsbEuifFPnUIZHXWJ/0LIwzOzX2B9fU74ha+sYBeLrDDNZxYX+fDuHyOuqqj9b6xT7EbVlhhfUTjVZfGn3/kEHfF+vjj9ZdYrKSRJZiAyQM2s847Rd/DyzLcxbJPJ5AWen3ue7mD3TTP+W5nMJgLcfW59XcyXN4gEv5oYfzg6TCLYxdpGjG+aJKJ9DHfvpv7yyRuD8S1LPJ/Pi00wRXFtMuTBwU0Y31pcxHSORQoGxYbF6qq7IeVam7xZjJ/NItk26u7dm5Ta6uDgm8b4VqGA7fhuW5kM6sAA5sKCyF4wDIyFBWEPAqBpQpRULAr/7e7uNowPUJ+YwM5k2jC+7djQaHv3ukT4tcb4ks9H+bOf3RxU+9BDwr9/C4xvra8LRbxtow4PY9Rq4rtoGj3nVvnQzvey1OunqNoE6jAydJBodOiyGL9SKV0S41fN2pVh/GBQdEHbtsD409NCFZ5Ou+f6amJ88+JFjIWFZpeFZYlNBVm+bEDnJTF+Rwen4jX++LP/gkmnA1aSJEZ6xvnhQz9Bvppve0sjIHu79QTASMcOfu6BX37LYfzXRYIDzMzM8OlPf5p4PM6TTz65CSDfqu+NaoQ4GPPzWGtrDBQ1Ptj7bmY84xStCgHZy6C3G++FOTGAOam9MX+M5OwauxPjnE2K4AcJibolFIxRbxTTMvEoHuqmga7oVM0qhmWgoNAT7OHs+lmyRpG6VWMifQHqdTqyOzi1dopd8V1Uc85g5w5kTtjPDay2tOOWsut1Xu6s8onPfZwTS8fQFJ07B+9hT+de9t23l866hx1rYaLHxKBjOxNubWICW5LeMinEWypkolFsSaJ+/DjpgTifPP6fmFo5LZ6s16kYFV5Yfom1byf54Oj7OXXyqyTCPTw5+FOMXsHEcSVt+VfDp6tQzW3y0Gx7vlbcFLx3vWpjAFejtaxB/jZqu9CV1pJ0He3QIax8vh0Qer0oQ0OY8/PYy8tt58J2dqvlQIC2sC3DcJPfwyMj7LlwAStnYttFJOUi9eAa9u7dSIg2RlS12SK8jVIFw0CSJCRZFm1qgLZnD7Xjx7Ed9ZhdrYqd8ttvx1hcRPJ6UcfGhEccTtvrygrG+fNCNeCACykaxXPbbWijo5sWEfYl2vpAqFHi44eIvsn2bBe0Gwb1EyeECrxXYe3iKaGQiMeFV6XfT1egm2fPP0dUDdKBx001Xyst8UwyyQf7HiO0vo42Okr9/Hnqp04xf7CHZHaJul8npxrU1RJaWCFsqCSzS8wZKfYivvvGMKPXW0o0iv7QQ25wTqPkri7qD9zNU9/85KbOivXVaZ56/q/46GO/4yrCW8cA++BB+r/9bSKVEIm7f4M/1f8Tk6kLeBUduW6yY3Avv3rbP6NzzUbq7HS7STaGt7nl8SD7/URURSzoG/62jfBnSQJZJiL5kKM65vnzaPv3YywsYM7NCXWObSN3dKDdcQd2Monk91M/cQKlsxPj7Fm0vXuxcjmkUKip0HLUS1Iw+IbOcyu4nY96XAJcPGmJzodKhZSa2jaV3a7XBeHUWrKM0t+PMTODDdRPnhSqJF0X3RaZDNbSEtVvfxvP/feLkL/G510B2L+SIM1bdePrFsb//qjuYDfdwW6M+XkRYlmz+cnuR5lRR7fH+IpCsj/C2UqOdEcPMSXIrkw/0WMX3DFW8nqbY0tjHHVILhAWE3a5LPx2NQ3J48FcXMQuFrHW1gT5UCxuwviXm4evdW2L8SsVjMVFzGKR+rFjKAMDzI7HSBXXxZxtGMLz2DkPyewyc/V1Ai+8gPzud99QYv/11HYYfz2u88ff+n28up8vXvwSU6lJQv4o2VqOcqpMl7+LL174PPd03s7phWMgy2QK69vOTa11vTD+pawbgE1WH9ezribGD+khnjz0o3wm/1dt1gWJSA/vHboH74U5QbDfKIxvmkiKIjC+xyMw/vj4Jowvd3WhHTgAq6uig7qB8W2b+vnzKH191I4dw5iZuWoY3zM+/qYsmNqsLSyL+okTYoMlnxef19kp8GJe+LrbuRzG8rJYWzoErpXLCVK4XkeKxTA3YHzt4EGXAHfHXWcj0W6E5DaO5xpifP2BB6h+85ubCHJrdZXq888jP/aYqwhvw/jO+rOx4Sn39yOPjrrXvxYIEvP3YK2vC99yp9P2chi/U9EI+WPka3k2YvyQJ0SnHEKOapfG+HfeCaWS+N2SSbQ9ezAmJsQ5N4wmCQ5XDeNbhcLmsceyxPr8MgGdl8L46zEPf/TN/y+Ty6ddQZmtaUysTrD2nT/lw3d9lDOps21vTZW3X0806q2I8V8Xuv3Lv/xLfvM3f5N3vvOdnDx5ks7r7GV3q65/Ncg9u14nUDTYdaHhi1UDuYC6ezeGaQryaXSUfTWoVIu8beRtWLbFudQ5bGxUWWUwPMjejr1Mpy9SN6tgQ8KfIFvJ4FW9eBQNXfZg2xb7E+MsTU9gSyLgzqvopEspKtEalqagNAYWVUWSZRH28zrKrlYxUykx2JgmUiDQFsDzemurgc42DBY7Pfz+i/+Ok2sn0VSdx/a8ly9f/ApPnf0M3cFe7owfICL5+OWHfobd3zwv3miawn/sLZJCbBUKVF95RSiIHYJS0nUBLCUJO5nk/D5/kwAHLK+HZGkdQ5GYWDlJfd+PA5DMLfPsxc/xs8FOQvPbg9orCdy0KhWRPu6oiFtf83oU9kE9LABcqwVD6/O+8A1T7G8K4EIsQrXRUZRh4cP1egCb0tGB/uCDYkfc8WsjHEbp6MA4f37zZoCmYWUyaMPDm30uLQvJ5xMWJg5Ji2FgGQb29DTm4iLa7bdjr68Lr/HGvbcxaKdFESK+kAjnVYaHBTheWXHbqSWPByubFYDwjjsgm3XBMYAUj1M7fhxrebnteO1MhtqxY9j1ugjX0TQ3mAZZxnJS0iXHq05qOcbG9f5m7tOGHyG6jrm4iLW4CD4fxVGxiLZTKfF7BALivuocZTE9S6D/EJgyVi7nLiJSlRRLPV58RyeRFAWlpwdzcZGCESYf8nA2O0m5VhQEQ7WKTw8yHtlB0SiBQ4JfjU0dbXAQ+bHHhHKhWhUeh93dTK2cEN5+AJJE3echp4qOn2RljvNrZ7hriwBb2e9HO3SImGFwpGaw897f5UxljkxuhYgSZG9sF4nlgntPNK53qRHq3FqmibpzJ3IwyLhis2P4NiZnj2PLiuMXaCJ5fezo3ceudfFeZWio2ZboqJZAKJzMc+dQdu2i/t3vYiWTTTsnWRaAOJvFVlX3PS5h9AbOcyu4LZhb+0U2Pn+7VHZJ05rH4pScSAgCPJdDGhpy23KpVLADAREK5IRlUa+LAKPGOSiVLgn2b9bQoFvVXrcw/vdfXTHGr9c5e6ibT776H5lcnhAb0aUSY4md/MojH2X/mgKBgCB+MxnxEZYl5uYGoa3rouV/fR1jelrkjESjaLt3i/m9WqXUE2NeUijKdUIenf6qjj9ZeN3jhV2tkk0tMZuZIW+WCQVijHTuJBx8Y1Z722F8M53GXFpCbnSZ6TrZxYsYU1MCu0gSciAgupJSKSRFoWiWsVK1G65uv9LKFZJMTX2XfDVFUPMxYEcIVoUC+SxLTC6e5J5D72bqgvDclRAEXKqcYiQ6yrnV07x9+G3iwywLjyGRS69g1KM3BcaXAoFt8T2OJceNqquN8Uc6dvBzD/4KF+dOUChnRediZAj/YhIjs/SWwPh2JoNx5gzaPfdswvj4fML+rlVBi2Or9OqrAuOPjLi+yna1es0xfqs3sxQMNjF+IODic/P8eaxkUvjQKwrK6Ci173wHz+HDmMkkxsWL4phqNWFNOThIfbId42MYoCiuglkyTaGEVxSxYdJCil5LjG+urGA1ugmg+XvbNtb6OubKypY2MrLfj3b4MJphYNfrKMEg1GqC9A4GkXt7sdbW3hDGf2Ts7Xx9+mvkjZSL8UPBDh4ZfJBda+KavyTGn5oSqvBk0vlRLff/7WIR2+Npx9RXA+NvNR4559F2ztF2dSmMfzYWZXLhpFCUN44TMGQ4tXycaq0swnNt27XgkVR12/UEvHUx/hWT4O9617t46aWX+JM/+RM+9KEPXctjulU3UTV2oZFlrGp1U0CEubyMMjiIOjyMOTNDd6bGr9/7L/jEC/+ePfFx3jb8NupWjbv67qYv2Mc3Z55HURQSvg7Wy+usFpY51H0YXdG5o+d29nceoFOP8/LsFzAtMWDblQrFUpbdHePUjRr1Wgm/pYqFuCwz1n+AfV37rvg7WZkM9YsXqb32WhOsezyow8N47rzTDeB5PbXVQGdXKkyQ4sTiq0geD3f23cWXL36FC6kLAKwUljC7DnFh9gR/Yv0Nv3fbB4keO+/u4l5ukLsZyspkqF+4QP3kyeaA7fGI9OFyGbm3F3w+0kZLqIgsU9VkqJncPXQfHYFOyrJJ/67bscoV1pILzOTm2JPVBfjUNLErHA5vn5gNWPk81aNHkfv6QJIwJycFOagoAvB4vW/ID22kaycdiQHWrVkBKFompo6uEUZ69rzhwf5qTBxbBXC9GU95JZEQtigtn2daFubsbPsLG4nmTkvsJvAsy6BpYqG4vi7IwEaqtyyLBbHTZgYItWxPjxhfGpsoiiLGH1UV/45GXVW47PUKcCxJ4u/bzR1+K5WCUmmTRziGgZ3Pi9bRFoBgmyb28jL20JAgAksl8Xt0dWE6SfTW6iq2JHynCQaRVBEWprxJj9dWP0JlaEhszCHGlEDZEt/LaRGXIxGsYpFyOQ+qisfrR9K8yE4bObUact38/7P333FyXfeZJ/y9qXKu7uoc0WhkgAEkmESKomQrkpLHUaYl23SatS3PePadHY135x3bY3tnxt4g2euxX894XnuCw2rFIMnKiSIpZpCIDaBz7q7qyvGm/ePcut3VgQRAggSofj4ffURUVVe44Zzn/M7zex6qepVLw2FKRplIKkiX1I7HFxAF8HqpJfG+Wi8xlh/HE4xAiddtqb0SKLHYFrJbnHbGAklaL8rX18nVc0sv0tbev8V/To7FYGrKve+TJbibELYh7HHU3g6kfT1brn05FkNxgpsxjBbFs6WqRKtVfu34J/hs4z8yWZgW5NP0Mhzfw68ffoT2BQu5ux2pUhHzXVeXUEU5Ho1WpYJVraIYxjpBbrbxO0UeO5MRKv7mcZflqz7OG8ltSPFv8wLJ/fydUtnlWAyWl4VSxWmXlLxed26XTFP8PttGTiSw8nlsjwdtYEBskGWz7j3aVGLtRPatXA59ZmZLK7HW339D2X2907HL8X8wcbkcP7e3mz955Q+ZLM8Ku4F8HknTmCzN8ifj/53fu+O3iAeD2Pk8ljO/U68L1WIqBYEA9uysCNts+tziKE0B9dAhlo6P8MT8V0kvT4mFt6IIf+H9D7LnCuZZK5djYvJlHnvl74X9F4DHQ2pgPw/d+nGGOvdf8XHaiePbjQZUq0iRCGYuhzU1RajX09JNZBWLoogTjWIXiwRlH0jG265uvxxM5aZ47IX/yvLZF13um4x08pGh99O7WiXXURSc3lr/Laap41V9lI0KpiUKpw2rAYpCd6wPa20Nv1bEWB6/Lji+0tEhwtXn51sLTw5XeCMCh+uR40eTXRwLJTZxfE3YGW3EdcrxbcMQ9jU7cPxm4GYTtmmKYmq1ij0wgDE5iQkoAwOiKFupXDOOv9mbWU4k1jm+oogCsmkKjp/JIPf3i2M5MYHc0SEsUvr7hULe4xGbiIWCsA2RZexqFXloSFjDyLIogJumUE83v4RpuoVxdP2ac/yW66hZlN+wgWLl8yJgctPfbeb47rm1bSRJQolEkBKJq+L4P3/8Y1i1GjO1JQyjgWLaDIR6eGTkJ2hfMFs4frUrwXzQoGRVCSkBeioeQtUqcniDtcdGjh8KtfJ75/k3zPE3F/bdF0gifPM1CuyvxfHzdck9rs1Ct63rKJoq1mWVLMbEhPA/dzanlLa2HdcTNzLHv+wiuGmavPrqq/T29l7L77OL6wzuLvTMDHatJnyapqeFgiMQEK1Oti08uRyfMc9slV87+POUNItCo0DEEyHqFUFYZ1ZOY1kmxzqPcWr5FDFfjOPdt/Ds5FPc1XkbPz7yUf7Ls3+BaW/YcTZNXpl9gQ/v/yAX8uOcmX3ZnXyHE6JQkVguYRF8XVWFXa9vLYADNBqidQqQ77vvitUZm1vWALAssrW8SxzaQikuXXys5e/qVgMMnYnMRS7urXCip0fs8iYS4piWy1cd6HetYdfrwjN2U2GYRgMzk0E2DOENFggQ90fW054di5wfOvgRnl56nq9NfJ2l4hKZpUm624Z4oPseKmYNKdwm0shLomindHYih8MoXV3bptGbTriIqutgmugXL7qhiRIgO0rMK/VDi4SSfPTEJ3j02b8inZkTk6xt05bo5aN3/xyx9tf2ddyJBL9eyNKVQPJ6xcLU+Rwrnxetg+XyVZHv7VQPckeH2KFuer0jFKBIEnJbm1BSNKGqKPE4ciiEOTfXElaCoqD29WHMzKA7gZd2rYbS04Pn+HGMc+eQKhXsbBbbMFDa24WXn6YhRyIirT6TEe/l+IJLPl/rNWjb7iJ7I5rtbVIoJNrXmgvVSmV9QWuamM2xYWYGOZkUwTivvipIstPhoPT34zlx4g0ruVr8CJu/CaF46ckYJBPdZFacDQjnN3oNiYA/Qswfh2xBLCpUFSlXoPfA7Xxp8TsY4+PiPKwmiOka9wUeIRFoY96outeBKPiaxP0JvL4AmVCYMWWN/MSXiPliHGw/+KZnLYR9EQB0/9YCOIAN2/rPbaeIApDD4de8ZySvF+3QIWzTxJiZQY7HxRxWqyGnUsi2zf5LRX6n+xNc3FcjLzeI+aKMlkPEzi1iNhpI4TCSLKPt3StCjZeXaabUS9Eo6vBwK8kvlZAc5Z82MIDRLCqDe2+8XuvyTthIbnvrMslI57olihNII/l8JPyJHVPZJYegSpK0nhxvmuL3+P0i9MiyRMGqWIRKZd0qJZfDDgTAsXmxSyXM2Vmh5twEu14X4T6bwnmkUAhJktBuELuvHwTscvwfTFwuxx9T15isLSEHg8KSIBx2N8omitOcN5d4V98QeqmEFBRc3HIUoEpPz3omx9AQ9eefd8dPbBs7l6MsG3yx8Dxr9dz6Rp4ss9bI8cXC83wys5coXZfF8bOT51sL4ACNBivT53mU/8oj9/2TK1aE78TxsSxRuFMUZFnGzOXoiXSSjHWTKTrzhKELBafXS7JnhP7YIGpCWFkYU1PC7uw65PjFepHHznye1eWpFn7V7Nh8OPU+YloYSVXxqj6Xu1QaFdrCHTTMBoqsCPW3pNKlJXlP8jYqlSK9VhgpHL4uOL4cCuG9+24azzyDubrqXptKezueO++8rGtul+O/hRy/OW7sxPFVVfiOb+L37t8UCpjlsvCR9niwFhauGcff4s3c/E22jaRpog4RCKxb8jSFPNWqmxlg5/MYly4ht7djjo+L1+u6+F8gIN6zITaZpEhEiHgcD3W7KVYIh7Ftm7XOa8/x3dDMDUX5jZBUdduNqmvN8T/d/qNcDL82x1/c284XVr7H2gaOn4h28uDgD9NbWt8E2szxrWJx/Xe+SRxfDoW2bOg0c3twxoOd8FocP+qLrW9oybJ43DTx4kezZUKK371fiESQDINYXaY/2LXlc250jn/ZRfCvfe1r1/J77OI6hhyL4fH7URIJ9AsXUPfudQtIkt+P2tcndiEd+FH4/jN/1/IeSk8Pvo5uPnHkYUJaAL1Rx3ebuEnyxTQ/PvQgI2kZ/4pMZ7CD85wRO7/OoNIw6lyYepmfvOUTSPt+jIbRIGIo7C14iX/tFDXfRWp7B1jsC1PxQMgTYiC61ZTfyuVE6/bGAngTjQZWLndVLYrbDt6yTNwfF7titi2UEJvglT0097HzcgOlo09MeE4rlxyJoKRSyM6Aej3tqlm5HGY22+JL58IpJtqWhRwMsjfnYTg5IkIxgSNdt/L0wrNMFWZoD3egSAp4PCxkpvimqnJi4C6MMxMtxMGu1bBVVYQMNXcbwVUh2LWaOPZN9Xy9jpXPIweDmJmM2NV0zuuVKuyHOvfzyAP/jKmVS5TqRULeMIOp12+t3YkEq3v2kFucYlZOU/JWCKsBeokRrNSuKlHayuXQL1xYJ661mihoxePYzbTxqyTfsL7TLiGKts0JUopEkGIxpFgMRdNQnHAWpaMDxVExbC5Oy/E4xswMdi4nFGKWJTZO5ufddji7UBDEzu8X40CthhQIoMTjKN3dIqzPNCEYhGZ4iqoKVZFlCdWE3y8I/AZIXq9opW166zXV45om7B40DVuSsFZX3XMleTwYFy6g3XQTkiy7AURKRwfqm2BV1KIGU1VXYYxl4Z/L8JFj7+UJ/ctksvPicV0n1IC7O29Dr+nYG9TFHQMHeWr1JVI1BdW2xb2gKGTNGo9e+gIfve2nefTM51jITLnHozvWz/v2vI9Vj8H/8cr/wcTaJZrJ53uSI3zqxKe4qfOmN63dbaBjH22pQcZqs1sK4N3JIWRVZbWa2dZ/7moVUXIshvfECdSREaFqrteRPB4xdoVCmPk88Qvz3N5ooB0+jHlxBXWwDckp7Co9PVj1OvqTTwornQ3jh12tYioKnjvuQHauZ9swUPfswZiYQL9wAaW7G6WvDzkQcO+NqyWGG8lt8MIFPjLwQyIcsyQ2S5VU6rJS2eVYDM3vR06lhE9lo4FVqQifT11HamtDkiTsfJ5qfyeLA34KmkVoqIceK4h/fA4lGhX3ndcrVDub5k3TGf+s5v3sLCrsQgF9bAw5lXpT7qFdvHHscvwfXFwOx8+vfHf9DyRpi1dprpTBDg6gHjkiLAoA6dgxwQPLZZRUSviPr66KQqWui/nOGRfm5AKrC+Movb1CednMN2g0WBk7yaS6l/2no2iHDgkV3GvYaMxUlloL4E00GmRyS0ytXOLoFRbBd+L4cjQqeFY263Id/9wKHzn4Hp5Y+g6ZwrotQFtbPx+M3EYwX8VYGMdw7AOVtrbrkuNP56YF79gGmcIS8z0VRhliT8cByqU1hhN7mFgbx8YmU1phpH2U7mAngyO93JI8wlA1QGl2kg/v+QDhUAJjfPy64fhqZyfy+94n+G29Ls5LKvW6a8HX4vjG4qKriN5oHfYDzfGDQdTDh6FQEMKoYBBqNaFQDgYvj+M3bRo8nlaOL0micLiZ33s8oojvhHnakiTsQ2QZzy23YFnWNeP4W7yZmxzfqQtsgaZhl8viuPt84v7wi44/27IgFoNi0d2ApCysDZXBQSRJwnv33UKctiSEEXIwiNzbi7p/P2fDFb4y+zVWKit4FS/5eh7d1PnV23/1TeX4bmhmOr2lAC6nUuAEpG63UfV2cvxCvcAXn/w70ksTLRw/U63yhPJ1PrnvJ/DuwPG148dRHKX4m8nxkeV1ixZZFplX+/dfVijrThx/n5xiT/chxhfOiPHENEU3DRIn+k4QtX3iHNXrSLpOMtnHg33vI1g2YNNweKNz/N3Em11cFiSvF7W3F6W9fdvBycrn3df21n2t6jQAVaVeyLIwt8rDbQ/gG5vDLk8hJRLCR68mYy6J3eSf2v8Qs+VFJlbOYzstUD2JAd49/F4mls/z8N4fxXfmopjo6jmwbRb6I3xh/HOsncuJ1myPh4Q/wYP7Hmxpq7ebu6c7wbKuukVxS9qxLHO4keZIxzFOLb+CR/a0vL4j1IVigeQVyr2oN4o1l3V3/po732Y6DTvsnL6daIZR2Nu00LqvWV3Fc+IEiWef5deP/AKf5S+YWD5PezDF7NQ87eEObum4idX8kvhdsky2lKZh6VtTjTcQrWboRPO/MQxBmEyztYWoXodoVCgBNizarsanKxJKXtHCya7Xt23ptGs1Jqdf4Ym5b7YsMJKhFB8Z/gC9xdoVqVjsel2QY1XFmJgQ90WpBJaF3NYmrslM5qraRJvYuABEVcUxtyzkUAj10CEkwA6HtxAWORYTpNTpErEtCyUQEP5qXq8YR5oEz1nQGBMTmFNTwmtweRkpEEAdHBQEOhpFu/VW0bXh94tWzY2LKEcBoaRSwifPKeq5aC5oNgZ3WZZITI9GwevFmp9HTiaxVlfd95M7OtBPnly3i/D7UUdGxPcul8U94PNdVa7AxnNhO4oEu1x2C+Fd42l+JnYv86N+KgGNwFqJnopGad8eHj/1OXIxoZKxdZ1gdx+R8RnUQk68t8+HbdvIySTp4gpZ/zL3jTyAPWxRM2r4VB+SqlI1DP7+9N8yPn9q/YvJMuPWBT7z7Gf4/bv+FfGJ5TdF0RSNpfjoux7hz579U1g54z7enRzifUceZLGeBl7Dz/oqvRklrxe1uxvDslASifUnVBVFVZH9fhE25fGIIoyjrGn+Rn1qSij2N48xui7+zvFdbIYBGYUCcmcncm+v+OyhIdQ3QIw3YiO5HSqV+PmhA8zaOcqSQRAP/d52wg2/u5h/zWPS0QEdHVilElaxKIo5siwUWxMTLLapPLHwLXKv6sLTNhAg4Yvzkb0P0NdQhYdls6i1CXap5G48b24ztyxL3LvXMUHexS5+UPB6HD+Wj62/eJuMlFgwgf7yy1jZrJg/nVBdbd8+zOlplIEBMX80GsidnVjLy2Kec4qDZcXCOzBEJNZBXbYoN4oElS48NZ3cxHnK6BjT05irq2gHDggLkm3mIFvXKembLBI2wrIo1YtXdYy24/hmNkvj+98XORDNecGy6Dq3yM8MvZv5PSqlap5wOEFfoBv/7ApmYQHXf7hpJXEdcvySXmqxOdy88VGy6+yfy/Gpu/4Jf/zMZ3nf4AN8DZhYGycZbGdPdJA2KcSPH/oJ1KVVDiZuots2CJxfRLpnz3XH8eVQ6Ir422txfGN6GnNuriVkfmOI4w8cx3dsRoyJCQDM+XkhSKlWRdF7cVF8Xjx+eRy/s3Ndcdz8DfG4KCAHg8InvMlJKhUs00Tu6REbKU1bktVV7GIReWAADOOacPzN3swuxy+VBMd3XyiJDQNNE+Ib5/+tfF4EhcZi2Pm88NzWdWhaXMRiWPU6SkcH+qVLKO3tqP390Nsr1jmqCprGmCfH//K9P+B0+qz7kX2RPu4duJc/ee5P+N07f+tN4/gbQzM32mjKqRSe224THJOdN6reLo4/NzVPOruwZYyxdZ10Zo45f4PhDXWOJsdX9u1D7etDDoffkE3RRmzk+NrBg8JWyOsVHQ6mieUUtV9vo2I7jt+2WuBTd/8mn3n6f2d86Zyb27GnbS+/fuDn6Blfo3/fxyirFqFAjAF/F8Hi9va8NzrH3y2C7+KKsNPg1FQrW9ksgUxpXZ1WWBLt2V4vsVyDj3TcS2A+KyZTx1fVSqdRb77ZbUMaGEvz6Vs/xVNrr5CrZvF5/Eial3J6mQ8EjuEfm0R/9VW35ak62MUTM19hrSTUm1a5jOLxsFZd29JWL2naui3HdnCUGW/W8RnIBfiXd/9P/P7T/5Z0aYWRxF4urV2kI9TFbV3HycxdBFVlOLWPfXoMpVPDzuchEFgP5tigkLiegjKbYRRWJrPeQrthgpCjUbTDh7EyGTy3385RXecP7v89zusLLOgZPqivYdomy4VFTFO0N/r9EfbF91KvllF6e0VhtBnQtjGoxO8XnulNZYimITk7kJajDJCiUXEsmwNzMxzxTfRDey1YudwWcgxQDqg8PvZ51uzWhVqmtMITE//AJwYeInoFKhYrlwNJWm8r3RCoYaXTGOPjKN3dgshdYZvoRkh+P8rgILLTViWFQsL7/XUmYM1J/LayWbGzbduilSsaxapUREugLQJwrUxGtFn7/ZhLS6Jro1LBkCShOlldRX/xRfD5sNJpPMeOCWujZgiLaaJ0dOC5807U9naUSKRlQW+bJvbIiLA8WVwUJMhR06h9fciShH7xIgQCYjybm3PDDZvHWZIkcZ0VCtS+8Q3xOxzluByP4zlx4opyBTaOndbKyrrazDSF6gMIWioHPL3oz70EhoEUjRKrenk4ei9Le9op7WngX82Tpcalmrj2m+r2pgolYmpYWCxnpl0SX9Cr2FWDlL+d2fR46xdzvB3H0xc5s/Qqd1cjLU+/kQXXcN8RHpZ/kf6OvdT0Cj4tgKyqLNbTrhXWTv5zbxSS43MJuGozCbA1TXQb9PYKBcmmxZ5dKonFnq4L5VITPh9yJIJdLrvE31pZEXPbwgKkUnjvvRfNGc/M5eU3JTxmI7mNA9EWRdoMOjsvYor1ItO5aYrVHEFbo09twz8+i1UoYMzNiU3YeJzGnbfypZf/E7mgjBRMIDtenVm9wBfWnuETAw8SkVT3uG6GreuuP6gyMoLs9YoFhqpi1evXfebFLnbxg4adOP7B1EGG48NMZCcENw0E3IXvcOcBRvMeLGeTDKfQg2Vhra6i3XabWLin00JkUq2i9PWJ/zYM5GiUSDJG1Ojiv5/9O8bS510F4b7UQX7qyE8QrKtCEdpouJvY281BkqYR0oI7/0BZJvQaHTJXenzkQAD7ppsw5+fFuB6PCxWqx0NgrczIfBUpHEb1JaBQR+rsxCiVRAG8ieuU44e0kOA/uu5ylI2F8JA/hjZwmEOZDL97x79grLHAuwffQ0MykGwIGzJ7GxHiY2uge5Hb2yEpQbgNALm9fZ3fwzuG40uBgCgmb1L62qUSxsQE6sDAFc197wSOjxNmKnk84t7eyPGrVbHeS6exstnL4vjee+4RPtDxeAu/Ny5eRNu3DwOE2tu5XqVAQKxH5+YwNnB8u1CASOSacfzN3swuxz9/fl3ZbVnIPT0oQ0PoLwmOr8bjIkByYEB0EKZS6OfOYZXLwmoiGhWbKiMjmCsrwsbHGTOtTGa9UK/rlD3w15c+x6nVM+K3OZgtzPLd6e9yJHX4Tef4Wl8f0v33Yy4uisK/xyM2VzZ0zLwZ4Zzb4Wo5frG05nJ8ewPHl3w+5HCYilUXCvem84HDh9W9e9EcG7lrxfFh566T7Ti+q+o3DHdz0JyawioWMebm2HsB/s0d/4wLtxfIFdNEPWEOhIaIfP8U1OuMlhVARk6oKDHdPa6bcaNz/N0i+DsYzYVuSS/taA/yZkEOhfCcOOEGvHXPl/iZjh9ifhSq7VFCeOi8tEpgvuS2RjXbmMxSCXVkBHVoyJ3k++eqtKduZzZephrU8FdNOrMZ/C+Nw0EnBNMwsAsF5uQQmXIad2jf0Hq0Vl1raauXYzHhcxiLbbVE8XhES9gbDLprOS6xGHf67+KPI5/hzNp5GpbBV8e/wtLaLJm5i5iSzZ6eI3zq2C8TP7mI1NcnJovNcCaN62lA2RhGYc7Pi/af/n4xAPp8yB0dqF1d0NWFlcuxYuYZK86Tp0YikKQzmEKpG0RUiwZ1vN4AoWIDbWKeQHsD/dwMUiSC2t+PubrqHhe7UkHdswf9lVewslls51qSEgk8N99M4/nnwbJEq9LMjOstKXk86+nyb4HSZqdzNUuOTGnFVUBvRKa0wiw5YtrIa773xns7ULfp8XvwNtsCNxFvq1BA6e5+3e9llUrrraCbFA/bTr6BgDiOr9M+p7S14b3nHhGoVyiAx4O0sIBVqYjiYbEofEebrX+OAtre8HusbFaoG8ANkKRcxpicFO3Rx44J1YemIbe3uwR184LVmJuDahV1dBRlYACqVTFZ12oYly6hOsdJSSRQ+vux29tF+GGhgNLeLoKTnE09K5/HzuVaxgsrm6Xx7LPIDzxw2WqRzWOnOT2N2t8vVAWRCGY2i9ks/pum8KDeuxcrnSawWmD/8AE8Bw5g9ZQ4vXyK3qN3UTNr+FThG7iSnsKs1wj5g9w6eBdj2Yus1XJEfBF8qGQzC6T8bZQruW0uCgu70SBXzQGRLU+/kQXXYNsI35p7kqKpUzTzsKFr8rX8rN8wFAVzYWFbhZZkGKg9PduPD7IsfHKd9mC37c+yhOpIltH6+pA/+EERdlSvg9+P7LTvGjMzmLmcWARsWKy/GS3wOyrStlnETOWmeHzscTLZBaFAlCTito+PdN1Pd6GC0t4uxgjTZCYzTqaSEYokJ1C2uTjI1KaY21PmoOnbseggeTxCDbp/P/rZsxjOQhJAam/f1kd8F7vYxeXhzWpfvxx0hDr41IlP8ZlnPyMK4aoKoRDD4QE+dcuvEPvOmAiTaxYyHV5mFgqoIyPY+XwLx5dUFdl5vTIygt9Y5QuX/kEUwDdgbOUsX/B+iQ8d/20464wfGzj+5jlIjsXoDzie3JstUTwekrFOBlOvza+uBHIshvfwYczOTqG06+lBv3BBcNNKRVgVtLejdHWhnz2LOjDQWgBv4jrk+AOxAZLxHlYdX+NmaCWWRTLSyUDHqMvxO3M5OuqOb7RtgyyjT5zHWryIVa8LPn7xInahIPKOCgXXg96cn3ftLeDG5/ggCt7bcXw3pO51CoDXguMvl5Y5u3KWXD23xQ/6mnP8cFgIMjyeLRzfzuWQhobcIMcr4fhb+L1tt3J8x9/bqtWw19bQT4luRyWRQBkZcTtKjPn5a8Lxt/NmNqenUYeGBMcPBDBzOcx02uX4ciqF0teHceECcjwucsJ6e1E6OjAWF111OB6PUAQXi1CvU0nFmBv0M1lapdhYod2XYD+dlCprzBTntv1+s4VZ7u6585pwfCWREErwWq2lqAzXeKPqKjl+SPa6HF/ehuMHVT/+D965zu+9XtEJaRji2rOs64Lju9ZJTueI5PeLTRLDECp4h+PHz0xxZ1sbVj2K2tmJNbWKWautW5uoqvu936kcf7cI/g5Fc6G7Vl1zH9vOHuTNhNrZifzAA24hzev10uZ4qjXOnaOxukFpuKmdsqkOUQcGQNNEO43fT8IJAmksXaAxuYAbmNOEYVAyKq2kQG29rDe21UteL9rQEEBrOKbHgzowgOfWW99w0N1mSF4vgx2jDHaMYtfr3BE9zNnsefL1IlFvmP1SB20NP1asun0BHNzffK12Tq8Gm8MoXB/lUAituxu1s9MdlE/Zi3zmebF4AjgY38dMbppuLUFiPoccDmNni2AYJELt9Fa9grgsLqI77XLmyorwTgyHsYpF4bPb3S0KM076tbWygveBBzDn5zEuXEDp7xdtqpKE6vz3W9VqutO5KhkVcY16PFQknbRVomrV0VQPQcnHnFpmOKhuQ0cEpnJTPHbm88JKxbKwTZOEFuFDvbfQPVd0PQNdyHKLJ91238tYWnKLsO6fOYoHJR4Xyc+yLMhhcF1lVX/6adHWGwiI3fYdJnwlmRQBOpkM5toaSm+vUF3UamKh0CQMkYgYCzb5yGHb6485ymwAqlXMCxdaXuq9994djpzz220bO5sV32ViQkz00aggF7KMdvAgxtwc1tgYkqqK8axUwnP8OObSkvitkQhWs81v03e1stkrzhXYPHY2/SgxDKxSCdnrRd63T5xLQJJlUcBk3U5lujTHl89/gW9MfINKOQdAd2KQB/a9n5XMHAdGbuN/fep/5czyaadVzeRw51H++R2/ST2TwaxWxfFRlBa1CJZFzBOBVnt1V6Vlrq2BJF1xASbsDfPgvge3nadez8/6amHX6xjj4+J7Nv1owQ139N5zz46/QQoExEKuUMDe/FwkIhSQiFZQxZm39LExjPl54Wm6JLqimu3Q2PYbUtpsxE6KNGhdxBTrRVEAL66I68cwQNPIpGd5ovFVfqbjhwiki6LNuNGgWFpDCoexnPBWJR7HajSw6zVs06RUSGMHk3h2KDpIXi/akSPor7yCvYEcg2gxbrz0EkoyiXId+eDuYhc3At7M0L3LxU2dN/EHD/zBeiHNG+Ng6iDx2TUaG3k5tHD8ZiC1XSy2cPzmwtrK5RjLT9MwakS9UfL1dXvFqC9KvVHlgrFE58b33pjLsOG/Ja+X+NB+HuLHWsMxPR5SA/v56K0fv+JQzNeD5PWuh9jV6+uexk4mRzOgT0kkbiiOH/aGeejQx3jMNFidGXOPeTKU4sHhDxDv7F/vlLJtGo4dDrKMduIEVjqNlU6Lgt7kpFBtq6pQZ3o8WMvL6OfOIbe1YefzmIbxjuD4dtOGwu8n2xliTMuTaxSIa2H21sKkTLOFR2/GteD4J5dOuhtYTQzHh/nUiU9xLH7gmnN8qblRsRPH3/jvq+T47u9ucvy1NcxLl5A7OrCyWbcgpx08KIp1c3OY09Pi+iuXrxnH3+zN3FTZS14v+qlTwte+yfH9fuRoFOPCBeHzrqru77JKJYzTpzGmplzbVjmVQrvpJibJcEbL8tT5vyFfz7NQWOTU0klu67mdX7rllwhIHlGI3objN8z6NeH4OwVdXsuNqjfC8fsD3STDHWQKS1s4fjLSSX+g2+X30DoHXy8cv1ksR5bdDWe5Kfp07kEqFZfjW9ks2uHD1J99FntpybVeaV4r5uIiciLxjuX4u0XwdyCK9SJPzTyFJmtEvVHh+4rEamV1iz3Im42dPNU23zyb2yndgAvLQhsc3OLxh66LnTePB6teR2prw3Y8yEKS192xk3w+5E3kYnNbvRyL4Tl4EKWzU0zSpilaZC4jBOWNQvJ66eodpbN9oMWmQQoG0Z0Brtk25UJVhaXMW9TidyXYGEbRVPFKoRCVoMpMeY7S3HkkJL46/lVm8oJQ2I0G5y48wx0H3suriycJJJMETRmrUiGZ6OGhfQ/iPTMpFkfOJCIHAphra9j1OvLhwyIh27aF997CggjgaO40qyp4vXjvu88Nath8Tb1Vx0by+7dMXCFVqCtWfQbPzjzDaiVNxahi2RbtwRQ/dODD/Jdzf8sH935wy4ZVsV7ksVf/XixImpO7ZZE2VvlCvMbDbXfjXzLWN5icBZfUDLnY5hqySqUtBXBYVzxox49jTk5ilUoo3d3oY2OuT5+VTot7p60NOSLK9jtN+E2/NjkQQLJt9AsXhOe/sxEmp1IinX51FaWnh2aCuhwKIYVCyMmkINC1GnIshrm01OpBhijcv1YnhxyLIWma2LV3CuLYtmgf7O1F7u3FuHBB3JPxOObSklCy1GqY8/Oi7TOTES2WzY23bVRdV5MrsNPYqR04gH769LpPeL2O6agOmr+3UMrw6LN/RSG7wGhylDHzHNVakYW1Kb459S1+9uZP8h9e+Y+8PPl9bAlxbBWFl6e+zx8Y/5Z/f+e/Zk/HfsaXzyNZFraiuGq1Pe372Cd3YJUy66GdkiQ8IA0Du6MDfXn5qgowg7FBfu6mn1vvWNJCDMSuXcdSk0hKPh9KZ6fre4ksiwyGjQFGm6C0tQm1w/nzLbZPUiSCduAASlub+9hm1YbrabqxHbos7JDeiNLG/bzXUQ82n5/OTbNWXXO/D5Lk2uZkrToL3UFGoykyARhjhWUzx2jsZpRAlrH8t2hkMsiRiFAEWhbhWAqls29bxRuIcUdpb8fu6YFUSmy+FAqYTruuOTsrWn6vs3ltF7u4nmHX6+tFqzchdO9K0BHqcNWjTejerR7cGzm+y++doLrtOH62lmMuO00q1E5ftB/T1FGQqNcrzGWmyDZEYVyKxbYUwTcX/eRYjD0H7+KRziFmcjOUzCqhQOyywszfKJrKT9sJDWzh+A5HvZE4/mBskJ8/8StMjYxTKq0RVPz0h3qIBBPY5bLgUoA+Pu5mQ8mpFNbiIko06tqImZOT4npVVZS2NsG5nE5SORbDKpfFHPkO4PiSE+B4fl+Uzz7/J4wvn3MLqXs6D/Ab9/5zDp0/jzYysq1V2ZvN8ZdLy1sK4AAT2Qk+8+xn+L3b/gXRa8nxHXsUdXhYZAMUCsgeD+biIkpnp1BEt7WJcHonEPdqOH7zfFjFotjk1zTBVTMZ5K4upHgcz113CSvEalWEbno8Qu17jTn+ZmsL9/Hjx0XnSCYjvke9jnH+vKiLhEJCbRyLra/T8nkxfpimEMmk01xqLPDnq1/isYtfYKm0BJLEcHSQH9r7fr5y4R+IeqMcaj/Ey8snWStntnD8VLDjmnH8qw26vFq8EY4fbevmwf0P8vj5x1sy7ZKRTh488BDRtg3dFtcpx3d/f9NL3+djdjDKmVQ32VqWhC/CQa0bf91mzFomV8+TYIo93RFi6TT6uXMozloYWYZIRPx7h3MuqSrV9giTPRqlVISQ7KenIOPPFG8Ijr9bBL+OsLG1cdVTZ7yywHJlBcu26I/2c7D94GUVB86unuWLF77IQmm9FbA71M0Dww+wUFxosQd5q7DR97aJZjulHA6jpFJIXV3bDo4tPt66jjk5KXZybRt7bY2eikYy1k22nnW9nprYqa1e8nrdNr63A9v5Lmr79qFfuIA6PLzu/eYQRjkcfsta/K4UTeLTxFRuisdeESoGu9FgxswwkZ/i3sH7+P7sM+jVKnq9wvcvfZt90WEeOPIjxAs6/lSFnpJCcK6EVa1iaRqyE24hRSLCV1KWsTMZsRCSJIxTp4QC3QkpQpKgUhHHr1pF6exE2tSGdS1h5nKiVapWA8dfz5yebkkw7/OmCHUP8MWxz7GmF6haDSwJkGSCvjBPzz3Nid4T225YTWXGW8gxiMWmLUmklyaYv/Vu9q6IxWfTO7p5P+y0+246Ks/tYNXrGJcuYUxOInd1iQJgsSgKs80AnbU1jHodVZKQVRVeZ8JvqiKkaBRzZkYEIEUimGtr1J98UhAzWUbds4eSXWfOzlEszRGq+OnRA0RCCaxcDnVkBOPSpfUiuqNcf62NLMnrRRkYwFhcFDv94TAUi0jt7SjJJNbcnFh8BYPIgQByJCIWdpYlflM0Ksix8xmuqmWbz3mzoMRi2CMjOyr15VCIqYkzZLJivI82ZG5KHiSvl9EVG5/spabAmeXTKP4AiiRjmya6XsOWJE4tv8p4ZZZf2/9JPqv/BROrF9ziyp6ug3zqjk+ReGVZkHQQ6fXFYkurHFy9f2DYG37L5qMWxaCqusFb2z2/GXIz1Kq5KeskqqNporV1w3ttUW1sDPzaHAa2w+deidXB66kHm8+X9NK6z2qjIe7BxUW3I6oYusjZgUH+YvrzjGcn0W0TA4Nub4ofu/djnPr2/00jJ67BZKybrgsr2IECjZMnt18cKQrGuXNiUR0Ou8fce/fdGJOTYiF6lUHUu9jFjYTN9/OcUuZ0+ixrtTUS/gRHUkfoj/Vf1nuZq6sYFy60jCVXG7r3ZmA7fg/OJlhfH0pXF7S17VgAkTSNuC+GZVusFh3vX0lyw9dRFGKeKFLMg3bwoBg3mn+7U5u210usa5BY1+Cb/XMvC+8kjh/2hjnSfZP7byuXQ3/lFUzHqgRdx5Zl1NFRjKkpUQwql9HPnhUFlHgcua1N8HddF/Ym9bqwxEkkUOJx5HBY+MhfxxzfrtdZys1xLneJXD1PPNjGgeFh4lOrbsELAK+X/OFh/vjkHzKRmxCc1vGZnshN8pkX/pjfO/pPaduGL10Ljn925eyWAngT4ytjnFl4hdsn568Nx5+dFee0XsdcXKT+rW+5lqTee+8lNzfBgr9IcXmBkKXSY4avmuM3lccNx1cbn09YNGkaSns7jRdfRBsacjm+bZrC7/tt5PhyKIQ2PEyjVBLWPs55l0IhNCdwUfJ6Mebn3fFV0jTRvVqvU+mI8zfzX2GqPstKeQVJkpEkian8NABHU0e4kBnjls6buT1xlGf1l8hW11yOf7TrJj4w/MMkTi5cM45/tUGXV4M3yvGHhm/hE7rGrL5K2awSVPz0ae3Eh47cEBzf1nXRFVKtYksSL92c4He++895Yfb7ACiyykcOfYxbu2/lSxe+REUv41E8DAd7+MX7foTRb53FnJ4W7pSKgtzfjxKNupuVmzGrlPj8ub9hde6CGIdsm2S0kw/ffj8dz18U4951zPF3i+DXCdy2CsPgVJfEM3PP89j5x1goLaLKKpqi8aG9H+KRWx55TTuTYr3Io2OPthTAARZKC3xj4hvcO3Bviz3IW4XNvrdNKMnk64ZMyLEYcjC4njhvWYJc9fcjDw/jDQb5WO8RvrD4LbLGeur7tWyrvxaQYzE8x461tLVIsuyS/OuRHG9GU8WQXpzAdHbTqwmT6aUxvqPrHOk4yunscwAYlsHpmRd478D93JLtRD/tKEU6O932UXRdtGGFQuRmLjHbWKUkNQjJfvqUBJHRUUGymnBSne1sFqmnB8lZSF1rdRSAPju7HornQE6l8L7rXcgejyg+1etEZZnbAnfwxckvs1xexpJsJElmIDrAPf338IULX+Dmzpu3+NkDFIuZVj9MJ5gD2wZNo+JThJpCkoQ/oqqi7NmD7PO5E9jm0I4dFQ2aJkJrnAld9vsxC4X1xUggIMi9349tWSKwxe8XKoWNrcr1Oubqqui6kGWkYBApFEI/eRJrbQ25vR3j9GnREhgKiWDb/n5myfPEzFfIrM2L32maolPg0I8wEExg12p4773XTc2+kk4OdWAAJAnP6CjGygrW3Bz6xISwSopGRTvz6qpQ/GqaIMKwbtvi8wnfvo4O4SG4Aa+nRr8a7GSX0vy9pXqh5fUeU6KNAKo/TE+wi+n8NCvl5fXnFR9xX4y6Lmwtso0C9561+d29/5iLx8rk9SLRQIJDPTeRmM9BTw92tYqZySABVrGInEwKVc+GDZ43Q/FwLXG5RHInqJ2dQt2ww3loYgvh3WQVYG9So2z+3Cu1OtioSGsWuZvFIyUWc/8maKlCXSVJEAhgzs2Jz3C6LsL9w/zp1N/xlcmvk63nwLZRNS+Tyjh+X4B/9L6HOZ8ZQ1IVjiYPUV9EjBP5/JYxttmWajcaYjOpUKDSFmFey1JaXiPSnaK35zD+G2Be28Uu3gha7mePhxc6df7wuf+dsytnUBQVVVIZig3x6Xd9mjv77nzN93IVaJsW2lcbuvdmYCd+74bIvc58IMdiHCoNcqTzJk4tnRQP2rY7Lh7pvokj7YfxHGuIOXmT3+qNwI3hncHx7XqdxquvYi4uuhwfWRY2YcWiCB+cnwe/X3jkzswIJatj34bze11LD+dalSMRUQR0wsqRZVAU1OuE41u5nLAUeeH/YiJ9wf0te3oO8xt3/BOOqAdcji/JMmO1BSZyE273g/vbvV4mVsY4byxxdzW2hS9dC46fq+e2/U22ZWHX6+SdPJir5fhunlCl4toLSn4/+smTwp95eVn4godCYnOrVELu6mK6OMcT+e+QuTTthve9UY4vx2Ko+/YJ6zrTxHPoEPrEhPgufr/oIrjOOP5OHdXKxmD2Teu0pjhwsT/C5PgiZb1Mw1oPrZWRmcpPc0fvHVyavES7v43RSpBgx51k1Do1o8ZAfJBP3PSzjC6Z0NtLKagy72+wKJXQ6yqdWpyRyBDBtfW55geB4ydDIWLXKce3isUWfi95vaKTovk3loW5tITS2cnizYP8zlP/ihfmnnffZzAxzLemv83Lyyc5mjrCE2PPYNkW5zxhbFXjX93/UyQXnfWkpol7wu/fdnwt1os8Pv5F1vS88FKv63T0jiIpHr6af5Hb77mF/sncdc3xd4vg1wFcUttocLJX4q/O/Be+Nv41JnKTAIQ9YfoivXzxwhcIeoL86m2/umNhdzo3Ta6SdT34kCTRaifLLJQWsLG32IO8VXi9Qs5OkLxetOFhbNtGf+kltxBuLi6KlpejR9nT28vP9+59y9rqrxXeyh3Ta4GpzDirixPUKwUKPpOGx0L1+EhFupjLTnN3z52ibU+SnARhjZgaxioURFhpoeBaNTQnDTmVYro4x6Pjf08muyhSwHWdZLyLB70/Qt+xYyJQBNEqazWtCppelFz7idvM5bYUwAGslRXqTz2Fcf9dTJdmWKitYJgNbK+PDw99gNWeNXL1PJqssVpZ5avjX0W3dIoNsZmzecMqpAZEV0Rzk6BWE4Uv0wTTJGipqPv2IMmyOzG2hGVsM+nK7e0t/vwtMAyhdm3+z+tFTqXE2FIuYzc91xQFKZVyj7frYZfLUX/pJaFaa7YCRyJo+/cLpU8uh+T1irAkSRIk2+ej1t/JEy/9RzKOYkFyxrG1WpYnxv+Bn739FwmWDGRHbX8lKGkWU74CpWqBMBF6RwcJpVKolQpSMIhZKGBeuuQqfSW/XxTuFQWls1P4m/X0gCzTeO65luN2OWr0q8VOdikAIe9WB3nJ6yUV7uTrU9/mvW3/qOW5hlkjW8sRc/xWY2oIbX8P7aUS7eUgSCHsjIFqrWFlMuL6cnxP5XAYKxrFKpcxpqZQwmHRZujgegr22oyd2pdhZ0Xhlvd4jfPgvtcmwiv5fC3+hM3W5e0+d0sAjiSBz4dtGDROnULu7ESORlE2qEZcBdSrr4oi9wY1kdTf775Xd84m6UuQqWeRFGW9kKZpJMMpln0NvjLxNbLVDCiCHhqmgWFLhP0xvr76fS5On4R6nccLf8VwzyF+Y/+n2V+tQqGAsbCA2t0tQqWabZl+P1atxuJwgifmvkFmRmzQK6kO4t44PzL86wy/7lHfxS5uTLTcz4rCqR6ZT3/jt3hm9hlkSXizBj3Cwu/fPfXv+D/f/3++piLcyuXE5vQ2HP9yQ/euBa6W34MYvwaSw/zLu/8nfv+pf7teCAeO9NzCb737f2aw9xB2aoNy7hq31V8r3Ogc38xkRCddNrtuqaUo4PNhra4KLt/WhrmyImwr02msYlHw+2YGk6YJtbhlCYuNSER4fI+Pi/fVNNB1pHgc1etFe5s5vl2vs7g03loAdz5/fP40n3nus/x/7/4tsoV5StU8YdlPQ22gKhpGQGmx7mnaouQaBSC2hS9tx/Hluk6qfQACfjJWiYujvfR7O4j4o5fF8aOJHe5BwwDTJOoJg1K7Ko5vLC3RePFFjOlpsYGBOEfawYOi6G3brn2cGywuy9T6Onji5F+yphfcgj6S9KZwfFSVUsTHbHWRUj1NeF+C3uEPEyzUkAKB65Ljb+6o3u75zVDa28naZYrVPNrmIisWhmVgYoFtE5G8vO/gTzNTmqOslwlKXnr1ILEFHWttjbmEwrPqBE+c+xKLxQVsw8Cv+bmn/x4+3v8Reouyu0Gwy/HffI5f8knMGguUT00Q6eynP9pPNJpq4fjKwADmNhvNyuHDYh1dr2Pmckg+H3a9zhmyvDD7nPNCcf7CgRinMmeZLczy3qH3UtLLqJJCSS/xpfEv86N7P8od3xJ2PFgWyp49SIEAxvQ0xtycqCs4a4/p3DSZ4ooQRSHTf/B2vjH3JAuOl/6r3S+zLzzEx8K3Xrccf7cIfh2guVhc7A7yxfFHKdaLTgFcDDjFRoHZwiy94R7OLZ9x1aHbtVIUimnCFROfIVFtOAq95o6u4xu4nT3IW4XLGVy2/TsngV1t+ngbBgQCInXdGVzeyrb6XWyPYjFDQapzPjdGtS4WZHrZS94q0xsfQDd1UVCTZexqlZGhW9hrxDHnTgqLm5UVofx2vOGkUIja3n4e/eq/JZNdXFePKAqZtQUeP/3/8PP3fQr1RUG81J4e9HPnxGuctPhm8fVaTtzm8vKWAnjzO8y3qbww+RUef/VzLKxNidfHIvRG+hhKDPHtyW9j2K27xmFPmNXKasuGlZXL0ZMxidcV0vkVQTi9XuGVXamQDLbTJ8dpnD4tWuwOHEBpkuNSicZLL4kiczQq1B26OBdWNitsWyY2tUtallCKG4awpXGUWdbKChIIpUW16pJ1u1oVbY7OhG/X6zROn24pgANY+Tz6+fNIiYRYJG1s+wSo1Ziz1lirZITKR5JaCEemsMRsI81+vFd8TidmT/H57/y5aDd1iG177ygP3fKTtD/1vOtFLre3rytCIhHhaxoKicCnvXtdQiO/5z1Xteh/szGYGiEZ73YtUVx4vOQqGTx1i6NdN/Pq4svuUw2zBkqCo903czi2H2t6QixWFEWcV9vGjsVEy3O5LIiXaQpf7DNnAJA7O0WYVXu7IH2Ggd1oYMzNvW5739uBtyqoZzMRl5yWdzOdbtkw2O5zW9osJUmoMM6cEeOLbSOnUkgeD57jx0XhaUN6u+S0IduG4c731toaeqWCMjhIMFvhI8Mf4InJL5Np5FwFeDKU4gNHf4SX9Cx5vYiiekGWMBuCxN/adzdfvfRVRttGKa4KD1hUjcnyHJ/5/v/Bvzn6T4m9Mo5VKNBwOjqwLPd6qPZ18MTCF8nkFnHucpBl1mprPH7m8zzS1n/DbVjvYheXg43382KHj+eWnuWZ2WdQZBXDMrBsC72mY1gGdbPOyeWTbhF8O45vFYtYlYqYN52i02aO/3b5Sl8tvwfxne/038UfRz7D6bXzInjTn+Box1H3eNzoBeR3AuyiEGhYxeJ6YGAz20VRwLEFsdJpYWchSZhzc2j79mEAtm0LJbETmKgOD4Npop89KwrgGzi+vbaGcfo03vvuQ3/xxbeN41u5HOdrs60FcAeSbZMur/CF8X9g/vlvuZ1x+r5hTnTfzrMLz2E0RT8b0Awi3Mhtt+P4ij9I35G7+Mb418itrHGsssj3CxXakn189PaHGfaK+6FQyjAx9SIlK084FqXXjhAsiEDRfaQYig4ymZ9q/fK2zXD7KPuMGHLCvGKOb5VKWwrgIPKE9DNnkNvbkUMhcc4drkGlgg3M2VnWysK3e3NB8Y1wfH12lsnxF3nszOfEmhEhBkjtPcIH7H30Vjw3JMff1lLW68Xy1NFLBaRolM5gF0vlRfd5Cwuv4uNw5xEOxfcTmLjIvqqETUh0UvgM7FiZomzw9MrLfGnmGyzkZ8Hrxa5WqVSrfG/qSXySxiPdDxIs67sc38GbyfFn/XUeP/N50itTLsdPeKJ89PhPM9S5311PmzMz62HBGzi+OTMjQutzOexsVthtTU6SbeTWv7BloWhedEt36w11U/B7wzaomWDVLJYbGzpRIhGkYJDG00+LAvzqqvCJ1zTkUIiCtSJ+R6NB58hRvrHwNAu5WZocv2Hp5JQGT5x/nJ9P9l2XHH+3CH4doDnIn6nPMluYw7AM2JRNW2yUMLGo1cuUqvntd3wTCQKNCp6qzr74CGPZS1QbZbEYrVTwx9o52nH0urwQLwduAruTwr6L6w8e1cPY2gW3AI4koVbrhAMBlqurdEW6RXHb62U4tY9f2/NxkosN5NtuQ/J48B4+jF0uI8syVqOBJElcLM2TWVsQagFVFURNkrBVlUx+kVkry+jhw1jlsiDHliVUJ6oqdmYdXFN1VK0GskylM858QKdkVQkpAdq8CZ61J/jiq19mYW3afblVq/Fy9WXqRpVbO27i+4vPu2ndB9oO4FE9LX72zZ3jQKnORwZ/mMfHv0h6dQbF78daWSEZbONDkdvQvv8Slm2jHj9O/ZlnhM8ioE9NiV3cri6x2CgWxURtmkjxON577sHO5cQE50COx1H6+zGnpjDzeTHxxeOY6bRY1Bw+jLGwIAJqNU0sahwCInm9mMvLmKurLQVw27JA17HyebR4XCheGg1syxJBWg5KVl281lGo27ouFBvOa8pWDfBe0TnN51Z49Lt/QXr+klDBOqGY6eVJHn3ur/nknR/H+/JZ1MFBjGIRO58X3uSJBMrAANq+faLYu4HMvJFF/5uJSCjJR098gkef/av1QrhlgSKxL76XyVPf4x/f/kv8KX++oRAusb/9IJ8+/k/puLiEfuqU24IsRYXCqKnIsms1sYiTJHFftrW1pI3btZrwjqzXhXLcWQhfTZDOtcZbEdSzHRGXfD60oSGUAXFP7/S5TT5gGwZ4vcIqqNlK7iwkrUyGxksvYZ84gcfvX1deb7h/7UaDckBlNlCiZKwQyen0dCXoq9l8YvTHmJWL5EPnCUle/OEkXx77AvFb7qBiiEW8qmj4NA+G3qAz0slXJr/CwdRBpFCYpr8pqsqlqZc5PzLDPSMjmFNTYpGmqqh792IuLSF5PMwHKqxV10QbfFO96vNBNksmv/i25JTsYhdvBTYWcc7UZ1mtpJElWRTAWVcYlholbNtmJj9DsV4kWDW35fg0GlCtrhdEGg2X40uxGEpHx3VVlLgSSF4vgx2jDHaMvt1fZRc7QVVFobdZ1JWk9aKJaQouWCqhdnVhzM2hDAwgDQ+DZeG56y6kYBBrcRHPgQNY5bLgopK0XgB3OH7zv23Hr1l7Gzm+revkGqJbMeiPgio2sFRZxa/6uJCbJJ1baLGGM9bWOMcqo+EhzhbHW2xRhttG2a92IvkllxvtxPE7+w/w9fNfJFfOMBoeQpkVeTZrwSCPfvcveORDv0WWCo+99DeszpwHTcNcXSXpjfOR/vfSNZ4hkkjw63f9Mn986v/X4g0+nBjh14/+AskLBYyr4PjG/LwQpW0ogLscP5cTfLnJ8TVtW44vIbiK2wH8Bji+mcuRPXuSxyceI1NYFyXZ5TIrY6/wpWGDjytHicTjNxzH39ZyyjQJ2hpRT4SqbnG8+1ZeWHjRLYSPJkaJ++P87MiP0nFqGv3sWcHZg8H10EhNY84qUjCrrBSXONx7C5FIO3WjhheVQiXLVHGWWXLsqym7HN/Bm8XxS16Jx05/jkzasXxyOH4mM8djL/0NnzzxSyT8frcDrOV96nXX/rAZUCx1dUGthjo6SkK+2DI+IknI0vo96FWa30vCsAy8qhdN8SB3d4PHI7p+02msTAbtwAEkj0dkBjhZFoG9UaxCAds0kTweFqsrLRzf6wti1+tkSivXLcffLYJfB2gmh2frk3hkD6Ztbvs60zLxyh6ClkZ29hITviyLWh5F04hqEXxynqqq0ohHaJQzHGo7QMWo0jAbeGSNPV2HONpx9C3+dbv4QYJH8RH3J6jk0usP2jaBfJWh7n3c3HkTw/cNErU87KON5GIRZGchGAyiP/88ks+HNDiIOjCABJQXV9aJkL2+OSRJEraiULYbGLOzYoKwbaEW2b9fTPJOUehy26CuGj4fi3uSPDHzdTITQrGuh3zQ3cX+npuYqMyhaQqKbmLbNmq5SiQcoKSX2du2jxfmnsOQbQ6mDvELN/8Cy5XlFj97d+dY1+kpGjycfC8LwzalSp5gw6ZXTRJYENYVKIoIk5Ek4cWXywmymUiIdlOnJbVJaO1sFuPMGTx3342dz7uKBzmRwLh4EXV4GDOdxlpZwXPzzcJHr1hEn5hASSSQR0aQPR4sXUft718n9c3wQKcNC0kSiwCn+Iwsi3TzchkpEBAqE0lC8vsJquvtiZhCoWLruiA0Pp94/grP6fTyGKur0yIN3rYFMbFtMAzSS5PM31JnqFbDGB8XlhP9/Ug+H+rgIGpv77YE6kqCTa4FCqUMUyuXKNULhHwRfuqef8xqfpFivUBI9lLXayxMnqbRyDH2zD/wi8c+TuPoJygaZcLeCLe0HWXvd8cgEln3tDNN7FJJLDBlGSkQAOeakQIBzKkpNEfhZReL4tx4vWBZqHv2CGLt9boqBf3CBTzHjl1XhZm3QlF4tURcchabZjotfCuXltx0e2RZnJ9qFXNmRviler2ovb2tiilJYi5s8cTEY2RKortGCoeJFQw+3H43XeMZRg8fxlz1Ug57+evJvydTWqVXvo/9yf2cz5zHsEyqVh2f6kE3ddoC7WiS5oZ82aaJlc8jaRp5s4y5OL++4eWohSSfD9s0KZnVViWcx7MelqOqb0tOyS528VZA0jRx/wUCZOuTBNQAkiRjber+AjBtE5/qYyozzmhGWExImrZuR6aq4r2iUexqVYQNOpYGyDJKV9euUnoX1xaKIrJblpdbH9d1JMerWunrw8znUUMhyOfF846vtPHSS8JvORp1Ob65uCg23KGF47tWK7b9tnJ8SdOIeSNEwu1M5qcoOhkslgSJUIqQN4zXG6AY9qOVatiWhW95je6+Nvrb9nA2d0HMh14vw/E9fOrmf0xbRUHbt7fFymQ7jr/k03l14SX6w3vRilVxDGQZa22NtJxjOjPOt9PPi3leVTFXV6FWI1Nb5ImZr/Nw53sILKTZfybK79/z25zLXxJdFt4YBxKjxC8tIg0lhcrzSjl+vY7r374dx5ckoViNRIRnvMfTyvFDIRFeqCji/d4gxzeXl5k10mTyi66Fog0up12rrjEfrhIYX71hOX7/PbcTzFfFsZdlAtVp3tN/H9+cfZJiLse9vXdRs3WSgSQfHvkQA75Ohr/4AvT1rXP8chlrZQW5p8fhXwYN2+CO0ft5cvZ7zEx8Wcw1pkl/bICPHvgY5VoJu+7b5fgb8GZw/NlulfTSpMvxpQ0cf3XmPLOjU0S3sbsE3PfAMIQC3e8X4hinS+fge27meNetvLD4onhPSaZh1En4EnSEOpgvziMEtxIgMZocpcPXjuRZxNZ1jHPnRKdGIAAg6gdNC0XDoKcRIBlKsZrNUjXrLRzf7wkSqUsQFOPD9crxd4vg1wMUBXNhgdhAkHRhEZ8/wnBsyPUEbyLqi3EwuhdVVvi/Zv+e780+TbaRZ622xkjbPn549IN0hjrY232ImlFjamkMv23R1tBI+lM8tOcjN6wKfBc3Bio0eM/QA3yj3hDWHw6h7Y728kDiNrxzK3zA7BSF4K4Ypk932+atsTGkQEC0RxqGGwoSLreJtqNNu6AAcjBIONqG/6GjorjrKMQxDEGOLestCU+qtEX4wvefIpMXBfBi3M+F/AT20gqGR8WWZZarGZK+OJ6K8PL0F+t0x5Lc3n0bJ1K34PeF6Ir24vcE+aHYD7Xcq83E5+aEFwoE2G9E0S8sCNuSuLa+KLFt7EoFpb1dhGgUi4K4adq6JyO0TFiWo4rQhludu6S9e9EvXRLqMp/PXeBIXi84ZNwul6m/9BJyR4cInHTfVITuuOet6XHo8wnlSDCI5PFgXbyIumePWAgZBkpPD716kGSwjfTCuLDPMQxRmE8maWvvp09JoO0buaJzWqzm3UWGC1VFDgREoU4XxXhJlsXGgSShdHUhh0Lbfs6VBpu82ZhcOt+q/AaS8W4+euITHBm+HbteZ21yjIQWZS2oY6gqYxefXVfXx7oZiN4pzoWmrRPkZtuqZWGtraHu3Sva701TqD/qdYz5ebRDh7BzOeREAluSkPv60E+eFOfb8ZOTolHUkRHXq7NYL67nNnhCDERvvNyGK8HVEHEpGFwPQXLU980FCYoilFZN1GroY2PriisH5YC6XgAH8PsxFxdJl0o8UavxcNcDBM6fx3P8OAv5i2QurQKwMnGGnzrycf77mb/h/OpZ4ScpeekIdnAkdZhyPo1VrbobU9g2eL1EfTHseq3l3rJzObGBtrREiPVuELxeYbPkdKPIweDbllOyi11ca8ixGHIigT42RmwkyOniaY51HOP5xee3vPZQ+yH8qp9iPo05UxfFKF0Xc4zXizoyguz3izG5UMBcXhb3YKMhrCX27LmuChG7eOdBApSBAWHL41h0gWNH2N2NVSoJDmrbqF1dmPrrc/xm4OJ2HF8KBpGjUfwPPfS2cXw5FmO41I8ty24B3JBsKkYVu5oh4Amg2TKvViYZjQ8TWhXigORsltuGRjlx3+3kKlli3ggHOw6RkiNbimU7cfxi+iKJbAPJrzjqW9vtjpRDIRZKi2SKK+u5Phs6LzP5Reb7dPYCVqFAMq9z//D9Lb/NGgleNceXPB7sRmNHji+FQmCaqP39GDMzolslGETp6aGPmCigzZx3xShvlONTrVKqF13fcnHyZGHV53y/smwK8c8NzvGHhg9g1+v0Ttb5Zj7N3YljSIEANauBT/ZgV6tMnXuWuzt/GNnv38Lx7VpNbBTUakTbe+hSy3z+5T9jZs2x4jUM8HiYKc7xvYVneN9t96J0dKGfPv2aHP/t3jR4q/FGOX7JrL4mxy/ViuhjY2gHDrS8x8axAkCKx9Gfe07UATweJE2j85nz/Kv7Ps3vPP0HvLDwApIkMZuf5Yf2/BCH2w/z+9/9Pff9DrTt52eOPczAmr0eRGzbUKshRaPg8bRY8QAEcxUe3PNBHiuX8Sge93G/N8S+6B60mi3ySny+65bj7xbB32bY9TrG+DiS18tBYpiWSdwT4YMjH+JLl77kFsJ7I728b/ABfmT4Izx68u94cfVF0FS8apj+cJKCWeH/Gfs8t3ffTswb5Vz6PElfgnsG7mePkmKoESLm21WI3Ai4kSeRkD/KUnWF+4bejdWnUzOqeCUNO7PG7PQZTtx1Aut8GiwLPZtFO3IE6sK3TmpOJIaBNjrq/ubB1Aip0aOsXHi1hSRLgQCp0aMMpvaihZLQv8lHMx5/y8KT5owMuZgXqRCkIVtcyE9QqZeIxGLUzTpejx+90CBTW6NDiyI3RNq7v24xqnSwP6dACbT2/pYJ1f0t9booVDeDZwxDENRGwy0ou/B4ROHYsoS/X60G0WhLK+L6B9hClel81mbIsRhKdzfm0hJWPg/FolCXZzLrr0mlQJbFa53v7gZ0hEKCEDeJuWmKoJ/2djAM5OFhvJEItq6j7t+P7PViVSoEXn2VD3fcyxP1OpnCsiBrskzCl+Chw/+IRM+hKzqnVqlE0FoPLXFhGFiVCpLXS8gfxXO00yXNzee3I7tNv3NzdVW8p6oiO+dguxTtNxuFUmYLOQbIZBd49Nm/4pEH/hmRUJJ4Zz8fPf5xHn3hv66328ky7T17eejWnyK4XMFwEsDlVEq0tjaVPU0fS8tCGRhA7evDTqeFCqlUIj9zifl2jbKeJ9iQGKxG8Nbrgpg1z/fSElY2i/ye9zCbm+LxscdZq65bdiT8CR7c9yCDscFrdqxuNNjlMsrQEOYLL4gODr9f+Pg7ynzbslxlE87GlpXLtXgUzpJbL4CDKEo0GqCqpNfmmO8sM1IoUP/udynf2Ye2Zw9YFqtmnk6lg/cPvo8fHn4fdbNOzBdnKDpEuV7k7ORzYuHb7PKwbfZ07Ge/0glMtf4Qp1NA6ehgKD5EqnKGdEGEdtrFolg89PaSjHa+rTklu9jFtYaVzWLXahy0evjP6Qs8fPRhDEvn5eWT7mvu6ruLX7n1V3hp8hkO+D3oF+fde0wKBKj2pphrzFGWJMJ6gB4jQFBVhd2EokCjgbzBi3QX1yduZH4Pogho53JoR44IvlCrCZu0TAZjZQXPrbdinD17RRxfSaVQR0dFfswmjq+Ojq77ML9NHF/yeilrNj88/F7KjRKXspeoGFUs22I4sYebOo+RKa5QqZcYy49zLDyIWhBWpIm1Ooejg9jVMFRB64pcEccPSR4wdDA9uDapTQ9226ZhCzuEZgF7M8pW7ZpxfKtQEPYHXu96Z1eT4zuvk3t7oVpF6e8Xqm+vF9u28b34Ih+O3c4TlTKZ4sqbwvFtyyIkbfqbpp2iqoKmEekeQIuH31Ec/8FbflJw/AXHs77J8W/6cfzPCDXvthzfuYZ65QRnPR6yRtHtNpJtiTZvAn8gSt1ssFxL04v3NTm+9DZvGtwosAoFl+OHbC9KMrl+LXm9YmOpUADLIqQFsHNVN8C1eWztWm29AB4KQb2O5ajBNwZn3/TlKn/6nt/mrJImW8vhU30k/Em+Pfktfvm2X6ZhNoh4I/gUH/tjo+THFwgOdOGfX13nH/G4GHM2Q5LoWTP55LFPMmdkmK0ukyuuEjFUtJqNkkwiR6Mkw6nrluPvFsHfZjRboCSfj+6sxT8/8c/4d8/9b3gVDz977JMoioomezjcfpDjZjczyxOM1eY4X5piTc9TNaqosoamaHQEO1itrLJWW+PlpZd43/D7+Malr7L/4M9RC/v4Tuk0+bWnifliHGw/SEdofSL+QVPoXa8wMxnR9letrk/Sto02OnpDTCIDsQFisQ6WiyvYZg1bb2DXath2g2TnAN1poyVpm3IZ7ehR7HJ5x3aiSCjJQzf9JI8CmdySu1uajHXy0Zt+kkgo2fId3o7wpJJeQolGkYaHWSuvUltWkANxJK+Pkl6hK9LNbHoC3WhQ99j4gYA/zJ7ECH1SHHDS0zcoKZsqBCufx9Y0UTwqlbBNExkgkXADsVxy6/UiRyJY5TKEw4KcOn6hcltbK1lFHCspGgXHAmU7KMmkqyo3V1ZQ9+zBsG2hwvGK4Bq5sxPP7be7IbVuQEdfHwDG5KQo2iPCdrT9+5ETCay5Ofd6UPrFBkDj7FnMuTm6FmQe7nwX8x06ZatGUPbRU9FI1HxXTD7NlRV6al7auoZJL4y3PmkYtA0coE9OYFfX3FTv11IXGfPzQhGxMfDT50Pp7UV2fv+1vAanVi5tDcF0kMkuMLVyiaOhpFAw+W/mkXg3M7lpSo0SoUCMwY5RgmUDQxYp3vbaGurQEMb0tCBfIIhwKCRUxj4fxsWLrqfg4sFuvrD2HNmlulg4SRIp8yIfiB6ia7bR8n2slRUK2SUem3tKkOwNWKuu8fjY4/zcTT+3O984MEsl6s8+i+zzofT0YJdKGFNT4v6xLNGGGgqhDA+LIrnPJ8bODR6FJWN1/Q1V1c0bwDBAkihJurvYCWTL2IaBkkph12osTZ2hK9mDrqlUlDq3Jo9xQO5gcKSTv66VWSwsgCRTKqwyFBngUzf/Csk1E3NjG7uj/sC2sYtFor29fPRdv8Bjr/yd6JZpb0cOBklGO1tsn3axi3carFxObCR2dtK1XOM3b/sNPnvyT7l/4H5+/NCPUTFqtPnbONh+kBdmnyNkSHRnRCEJxyt3YSjOE9OPslbPuYXuZKSTD0Zvo/dSFe3QIUpWlfnyFKVzrxLyRRhsH2nhRjd68fWdACuXQ5+ZEUXhZrCZ14u2wWLieocci4mA1kJBWBcGAoJftrcjWZZQh18hx5dDITw33QQ494vD8Zt2A5s9md8Wji/rZOt5Pjb6ICWpQbaWxaf6MSyDL1/6Mu/uvBOAaq1EIWyRAJKJbvp8HS3F6Svl+D0ZlWR7P2t5p9NTcQrJuk4y0UuXt00IXlQVKRgUxaoNXZ5BLYgc91wbjl8ooA4NISkKxuwsNL2Ro1G0gwcFN1lcdLsF1AMHXI5vLSzQJcs83Hkv851vDse3ajV6lATJWDeZ3AZ+bNvIoRDJaBd9elDcfz8AHN+/kqfuFEq35fiqiuT3Ew0niTei7IvvZaxxhnK9xGBqlLZIJ+2hFJotM1tZYqk2y+3Rjm05vpXNYs7NbREa2dXqW7JpcKPAyuWwCgXq3/8+cjDIwOBR4vPfIz13aV1dH4mgdHcT0zV6zBCSzwRdb/Ugd8ZYKRRCHR4Wj8myqAXYthgHHCFT57dfof/WW7HrcebbFL5w6su0R0I0PBIBLUy+nkdD4fHT/zeVYpaeUDc/ee8H6H91HgDPoUNbA2qbHN+yCKYLHNp/hF+Op3j87OfJVDJIHg+Sz0cynLquOf5uEfxtxsYLyy6XOfpsmn9/y//EGVbI1tZIBJIc9PTTv9JACtnkNIPzuYtk6llKRgWv4qVm1MjVc+imzvv2vI+l0hKyrDBTmOU9Q+9hXM5y0cjw/OwLlPUyPsXHd6a+w8cOfIxjnceY2lXoXRcw02nqTz3Vmv7sDHAbPbfMXE60wdZq4PejpFIuMdmIt2PRE/aGeXDfg+J6UsX1ZNdqxE0PH4reTmDCucZUFbW/H+3gQUFwXyd4ZKhzP4/c8+uON1qRkDfMYGpkSwH87UJIC2GVSphzc9TVihsaUqrV8KpePrL/IZYKi8xkJjAlCITi3DP4Ln503z8iuLruldW0NGiG5DTTmG3DQLv1VrEDXyhANCo83VIpsQjJ5wXhrNWw0mnk4WGU/n4olcTxdTy1le5u8d0sS0xigQBUKsiJBHIiIRQguu4GJOJcO+qePRjj4673mNLXh7x/v+sVpg4NoW5Ut+i6WwBTe3pQBwbWJ2dZFuFI6fT6RL7R+6+5gLIsAgsZ9rrv6hCvgxsWWJcJu17HPzHPQ7d8nMf4by2F8LauYT52+8PEEgPQ3vO63m5WqYQ5M9NCjsHxZ5ubQxoevuJE+ytFyWnJ3fn59WKz5PUS6+gn1tHf8hpbq8PyMlIohF0qYc7Pi5bY/n6xaEgm0UZHBWlbXUXZtw9sm3LEx5dWv8paLSsWrACSRHptni9pJT7ecxP+2Q1+oYrCbH1VBLnG41u+61p17apDU95phR2rVBLFguVl6OtDP39e/CaPp8WLD0VB7e8Xqg+cVup63S0aROZBXhWbZJLPh1UsuqofSZIIKX4kj0mlM44eVumK7ENWVCyjyLKeZmXqHJLXS5s3zlB7nEdf+Vuyq3Mc7h9lX98IkqZyJHWEI3IPiWwdORHHWllxFVdKW5u7idu8t4e8HTxy32+sb7ZrIQZiu5vtu3hnozkXSKqKXatx9Nllfu/Wf8oZaYWZwixt3jb8qodn558lZCl8uO+9+L/1srjPbZtqXwdPzH2DTG5BhNI6YcVTWpH/YD3D/fvejSxdQvUpnJs9TbFeIqj6Sc4/z7tH3stQ5/63va1/F07X7+ysUDuXNnC+UAhJktCcgGOAmdwMp5ZPsVZbI+FPcCR1hP5Y/7bv+VbPf1sC4UzTVQwqsRjGhBO8eIUcX+3sRL7nHsyVFTeXxlWAXwcIWiqNhTmW8nkWAwaX0hdAUVACQfpivSRjXaI43WigSxZtbf08dOAhYu171oOtuXKOH7QVHjr8ozx+4QlRFDVN7EqF9oEDfPTmnyRaaJAMpchSEyGO0ajgprZNMtYlRDb1tWvG8Zsqb2VwUIxZTsep5POJsNOmXc5bwPHNiQlihw7xoP8hHj/3mFsIl0IhUqPH+OitHydmhn5gOL6Fdz1A2bJaOL6kqqgjIyjt7Zirq3TqPkbCg6S8SRoatIe7+Pbkt3h28kkky+ZSxznCahCp6z7e15vCP7O0/kGKCMw0V1e35fh2tXrVmwbvJI5v1+vos7NibbyygnzzzWjf+T4f7riLJ0pFMmsi3NIul4lFO/nYvb9AOGNAUHQzSH6/60Fu5fNCgASiszIaFR/StFCUZXGNd3aKDgafDzkcpntqip/yHmfeqlBXvHxp8Umyqs6llXOUs6sgSVzKjjNXXeZf3PMbDFkxwTmqVXetuIXj+3wosRjD3g4e6Ri6oTj+bhH8bYY7ITYamAsLLPQEeeKp/yzUUpqG0tHBpC/BQ7c9TL8dwcpplPQyNqCbDbyqF9MSu765eo6EP4FlW6Qrac6mz9IV7mK2MMv3Zr9H0p/kubnnaFgNhmJDBLQAcV98SwEcdhV6bzXseh391CkxuPT2rntD1esYk5Oo/f1i4Gs0qD/5pFBbOJBTKbzveheao7qFt9fLbDA2yM/d9HMtA2F/sItA2cDuKoFpCiXjxhagy0AklOTodVL03ow+b4pYwSDdaOCNhAVxtG1sScJrSARVP7921z+h3CgRVgMMaR0M2wlRAN+mEGzlcpirqxiTk25B3c7lkNvbkbu6RNCMbSOpKvrFi2L32ONBctqjtSNHsJaWxILl6FERaFGtog4NoZ89i12rCS9sx9NZO3IE/cIFV6FkO7v5ciIBpZLwGx0ZEUqValUoUJ1glO2I5MYg040LvmaQh7ZvX8vv3qjGkGMxt6C/GZLPd1XXr+T1gmHQdXaeTx78OPNHy5QaZUKeIN2NAHE5gZK8vGvLXFlxj89m2LWa8Le8gkT7Le+/aZMrE9M4l71IrpYl5o9zMHWIsDf6mu8RuowxW3IUaJIkibGiVMJaXV1fvA4PI4dC65smkoSZyTCjKaxcfHVdbeQEHdmNBqurl1i45U72OM4rKAqSz0fJrGy1otmAKwlNaZJiq1gU/qO6vh6YdYMXdszlZfFbPB538a9///sow8PIAwPiPHg8WJUK+tgYqtPGbDtBR83fPtRzkLbVQXdel4NBVzGejHbRU/OyuMfLEzNfZ225QKknydjiaeL+BO8ZeDfz8+eIRTv5QNe7+OLJz5EpLmPrdVYuvYrteIGf3Zvn+MBDeA6Ldnf5+HHM8XExNjQD/OJxlFgMc3UVyeMhFI1elwnxu9jFtcJmjq/09ND+vVPcVyxS7W5jocNLGZ0je95Lv7cd38wyuVSU+QE/JbOK3hFg+cUiKkLVJXk8LEQlvjf3HZYL85jYVO0659LnafMnOT33EoZlMJwYwVZVEr4EvrHJFi4Iuwq9txpmLod+4cI6z9vA8fULF5BTKdSODp6ZfYbff/L3ObVyyv3bI6kj/Mt3/Uvu7LvTfezt5PjbBcJJwSBWuYzS1XXVHF8Oha6bovdG2PU63RmDuBRgLSbh9ehIZb/gRKZB0NYYSe4l8a5/TLVa5Ka2w9yk9hOy1B3FHlfC8TsvjfNw8gEW+k1KZoVQKMFg72EC82Jefejoj/H4+BdZY01Ym8zNkfDE+EjPA/inVpBiMbTDh8mOvcqEWmDJzKHZMl1qnD5/F8G0UPVfLcdng4VNC8ffUAB/qzi+ceYM/Xv28PP3/xNmG6uU7Doh2cdAYph4257Leq+3muPLsZgoVG8QtoV2CENs4nI4vhwK4Tlxgsazz7qFcGt1FTkeRztxArWzExDnss+O0uVvQ5mZJzw8ypfGvsZibhoJCPujYFoslOd4ovwlDh35H9gz43yIw/Fxspt2wpVsGrxTOb6Vy7mZXXg8yOEw9sICXUsyPzP8HuYHLEpWjZAnRE/FQyyPCKdU1RaOr3R0IMdiNE6eXB//VRU5mcSsVFyPcXXPHoyZGaylJVS/H3NqCrtWIxiPM1o3udBnUa8UuFgap2pUxXdzNjQvzZ/iqe5naY/dRXx4GDsaRW5vf8dx/BuiCD41NcXv/u7v8s1vfpOlpSW6u7t5+OGH+a3f+i08nnUz9pmZGX71V3+Vb37zm/j9fj7+8Y/zh3/4hy2vud7Q9PE0s1nKMT9PzHxdFMBBtDZUKqym0zweeZyfPfYJAqsy/cEelmvOznIz2NWGodgQmqxxIX3BXfwm/Am+PvF1nl94nq5QF4dSh3hp8SUm1sb5r6f+K0dTR/nu1HcIekK0B9sJedYJyBtR6O3i8mGVShjz80jJJHahgJnJiAAYpy1GHRgQ/qrbFMBBtCLVn3wS+YMfRPb7MTMZzPl5V3HbnDzeykVP2Bveet2EgLe4hfGtQmCtxIe73s0XQ8/TWLqIt2pQrRXpjvfz7sStnJ14HmIREv4EPzr0YXyXZrCr6zv9m0miXa2KgphDjkG0s8mKguFYiKj79mEsLKC0tSHH4yJ0JhBAbmvDWlwURU7HRkcOh90Fi9rXJybUXE7s8IbDGFNT6OfPiwm1XhfXXlsbqiyLYnmlgnHpkrh2Np1Du1531SXNnfqN/sQbIfl8aENDQqW+gxpDaW9f94fcQJIln0/4Q7a3X/H5UVIpVxHhvzDNiPtMFTkeR7np8q9Lu9lK6STeb8bVkngAfXZ2/R5XVcaO9/LH3/vPTNYWROigJDHcPsqvnfgU7e2DrObmW4M+EcE5g6mRHT6hFXIshub3I6dSYrNim8Vr81xSLOK55RbKa6+2tNtKgYBQk6ytYdfrVDRBVJstwFIwSFDyCvuNHbBTaIpVKq0rw5zWa3NqSrTtLgl/abcdsFgUY9yZMygjI67C6UZRjjTvIwA5EhGKKkPYR5mXLmE6nuBSOIxdFdcttu0qMjaO7y0dOdU1JI8HpaeHWK7Bh9vvhgqiAK7nUTo7idQMjoZGKKoG48VpPn7LT9NrhphOj5POzIoFn8cjxgXbBkkiX88zH9BZWBuj4rEJ+UP0336MYNkQCx5JwlxeFnPbDWjttYu3Dj8oHF+KxURAnKPg8q/m2VsRHE2z82jHBpnUKjxWfor0xXHAJmnfwiu1Kfa1DxMxVYpBhSdnvs1KUSjxYsEEXz7zt0xkJ+gKdXIodYCzy6cZy17gP53+Kwbb9oK5QtwboE+OE6rZbnHqjSj0dnH5KJQyTK6dp9gvE6xU6c6V8c8si/nW4fh2qcSMt76lAA5wauUUv//k7/MnH/wT+vwd1wXH386SRA6F3pEc38rl8C9leeiWj/Poc39FPZvGWzMFx0/t4YHB9zA2exI76CcRSHC8+7jD8bduUFwVx08kiMbjRCoVpEAvcqINe3bZ5fiDsRg/F14XHgVv8tCrBwislaFjFFuSmJg8yd+sfJ2nlp6jUhEWdj3xAT6y/0HuTN1KT7q6I8cv1otML19ssUsNXccc3xwbwwsuz5fjcXyj3Zf9Xm8Zx5ck4ecsSah79qCfPi2OV1sbvTcfJNnWRya/9IY4vtrZifzAA6/ZYSHHYoSmNR7s/2Eer9Wp+33M5KYBCPuiDMeHKTaEUGUhP8eSVmNkE8d3wx13wE6bBj9QHN8whG+3zyc4fnMdZVn4L80yoqpiUyEkxgc6+1tU15vH940dOfbaGp7jx6k7GwhKVxfGzAzoOkpnJ5JliWPpvI+SSlHxlSnIOpVK3uX4ktMxiiRRsGrM+evMr5zZwvGLRpmZ2jKF9EXCdR+9xAhWDHH/30CbFDdEEfz8+fNYlsWf/dmfMTIywunTp/nFX/xFyuUyf/iHfwiAaZp86EMfor29ne9973tkMhk++clPYts2n/3sZ9/mX7AzmheyubbGvJYlM+EUwL1e0dZUFC0vmfwiM9UlfIUy7+m5B12FJ2e+B4Bt2+yJ7eG+gfsIaAG+Pvl10V4naSQDSS5kRFjCcnmZEz0nGInvwcImFUxRNasc7TiKT/NTN+qsllcJeoLka3kaVoPp/PR1385wI8Bt6alWxe6+k95r6zqNF17Atm3MxUURRhIMCjWFoiD7/aKg4PNhVSpCqbkNrNVVUXBw1AXNNhkpGEQbGRG+3OXy7qLnGsGu1+nztPNx+Rbm2gd4YPSHmS8vU1lZYObkk9ixCB1td/LQvoeIxrqwQ4kWFc2WpHjL2qqSkCT0s2dRenpEt4As47n5ZqHcqNVQ+/oEGdF1pLa2lvfcuGCx63Uaq6tiotN1EYSTzQr/P5/PbcO2V1cxbBvPLbcIVcQ2146xuiqUqNWq+CxFgelptL17W1tmmz/hMnbxJa8X7y23IHk8LaE0Sns7nsOHr4rsbFFENB+Px/GcOLFFffRaLXiS14uVyaAODLT66wFSJLKjx+DrwczlWja5svt6+eyrf87E0nmhGohGsUslxqdP8se1f8//eMdv8tWXP8eat+r6vCfj3XzsxCeuyCZI8npFm+sOY4JLti6I9t9Iew9KT49QNykKzdBFORDAqtcJKsILGtt2F/i9ukVbe/8WT3AQG7XbhaYYS0s0nntOkEKvFwIBrMXFls+UZFl4Zk9MoA4MiHCuuTkRDussLm8U5UhTJWJVq9iqKorOiuJ6d2PbYtPK8fqTPB6kSMT14YTWotbmjpyg7KO76iFU0jlnL5Mzvchyp7g/VRWPCW22B3JioREiTMmorJ9LSXLDcRRZpafvIP/t0qN4qnVBnoNB2uLdPLjvQfqUEPUnnxT3r0Oo5XhcLPQ2WHvtYhfwg8PxJU3DbNpFbOL4Vj5PsV7k8fOPkTWKrteyT/ZQq5eZU4q0J7spmHkWy0vIgIRE1BdjIivec7G0xNGOY5SNKh7Vi2nbrFRXmW5M0O5vY8pc43Cwj9685PqKWvn8WxIe/k5HkzMUjTIzjVXKkk4kEEcxLP7h+f9Oem0eK53GrtdJJnt58OCD9GQtZKdDxzZNXl0+t6UA3sSplVO8uvQKHfnULsd/i2HrOnJ7Ox0vnOZh7Xbm+00eiCsux58++ST0dtPu73nbOP5G4ZFdr9MYGwNFwVpdpdIW5tH0d/ne7FNC8elYJsxnp3ni/ONYssSHAjcTLG+9dsZWx3hh6QVy1RxhbxiP4uG709/lg3s/SP8ux78ibOb4+HxYa2tQraLX66ijo+inT2OtraFls3z41vfyROHzb5jjv16HRXMzpffiRT6x/6f4eu00+7uPokoigLVQL4LXg6wqWI0GutnYwvFtXRebF9uowVuscDagheP7fFTawkzPzVK264QCAXriAQKZ0juG49uOwMyqVATH93oFp3c4MiD4fpPjBwKigL1hc2Hj+L65IwdNw3PHHSJLBNDPnxdi2qpQeaOqSI5dEUDIE6Jh6dtyfFXR6Ez2898ufh6PLjZrZZ+PtkAb9/Tfw3emvsX83FkKRpmGpdMT6eWn9nyU4bX6DdVhdkMUwd///vfz/ve/3/338PAwY2Nj/Omf/qlLkL/61a9y9uxZZmdn6e4WO35/9Ed/xM/+7M/ye7/3e0Qir91a8nZCjsXQDhygOl8Q4XWOAswuFl3FBqpKqZBmr5JEX36aW5NHOJw6jI24WHO1HNO5aSwsTMvEq3o53C4mxEK9gCzJHGg7wFRuivZAGyPJveTreSZzk1i2zb/59u+yr30/j9zyCN+e/DZLZaEymcnP8Jcn/3LXH/wNwA0/yWaF35uzs6kdOULj5ZexSyWUvj6h/gaoVpFDIczVVfRx4V1s5fOo3d1CBbjxunAg+f1iYjVNsduYz4uB0PGbUwYHUWIxEbpiGFuUuzv6om3YoVXa26/LVsXrAZLXi6Qo+E6eYwQYkWWqPe3Mx5KUInsJ+aMM995F3Cn2vV6wj+T1IsdimMX1oqFVKiFFIpgrK0IB5HhJgjj/ak/PZU065urqui+lpolJOZdD278ffXoaKRJB8nhc/26aQZGq2tLSZszPU/vOd1qtedra8Nx8M/rFi3iOHt3SMnu5i205FsN7221X9bc74XIUEeDcr2fOYDrtgygKSiyGdugQciwm/iYabfXQdlqb0TSUVIpCKeP41xe2DSnbDubycsuxvBgoiwI4iHu56b0JjC+fY7m6yif2/AhzUoFKxEfIc+188uVex9SlAAEAAElEQVRYDM+xY1i5HAPVAAlfgrXi8jqxcohTe/8++qMDaAcCbqu3XS4Tv/12HvLt3TZ7YrvQFKtUQh8bQ+7sFH6ZtRqSLGOMjSGlUiiOTYutKEiaJlo829ow83kIBsV1HQi4GzPN6/F6JmVNP21zaQnP4cMYKysizCoUEnOD14sUDiMBBAJi3JZl7O3ex8Hmjhwrl0NPj1Gy8qL1FkQbZSiEteHvypIBqkYk3ilyBxRFLNglCQyDVPsw37j4VaKGSrIqi+8ZDLLaX+cx4/P8tHorntnZloA0s1YT6rbh4d0izS5a8IPC8c35+dfk+DP5GdbMIla1KrhZOIyieth/8B6enn+W2doKncl+dLOBhMxo2yh1o7WQVjfraLLGse6bObX8Kt+c/AZ/++p/R7bh9u7b+Mc3/xJRPUggLcZhK5+ncfLkDVFEuF5hOVYns2qZJyb+gUxJdHJ1Dx7huZmniUg+Ig6PAsiszfPFle/y08G78Z0+LTo9KxWy/TnRar6hUNGEbdtkS2nsavh1OX7RKDO3fLpFubudkGm5tMzZlbPk6jlivhgH2w/SEdodlzdD0jQkWcZaXMRvmls5fsIgOnKQ4YGjLv+6Ljh+vY65ssL0gTbGC1PUZFH8dgUrwEJ1maJVZVbKs59AC394Yf4Ffvs7v92yMXOg7QCP3PwIX7r4JX7m6M8Q+gHl+FezPt7M8SVFcTcQ7HQaaXTULXZbq6v0lva9tRz/6FFiuRx7SiVkSaasl8Vc5fe5Y1Iw1UN3rA/tAC0c33P77cg+346bIpvPawvHz2aZCxo8celzrJx/CcnvR/J4SHiifGTg/cR0mXmtQsWcJuiz6elpI+qsUW8kji/Jsqi/rKzgOXwYq15HSiREBhC4vt0AcmenEJdso67feI9uHmdkr1ecA8tq4fhSKLQ+rzgdpX3+ED2xfi7lJsR5bvqJSxJ3dN/B1049ilo3SFZlpOVllP5+1GAnn3n2MwQlLxcyZ6k2xEbEpcxFZovzfPrmTzGQrt0wHP+GKIJvh3w+TyKRcP/9zDPPcPjwYZccA/zwD/8w9XqdF198kfvvv3/b96nX69SdQQegsE3ry1sBpa2N4JzW4p/bhOTzIQeDBPHgeeEkH73tAf4m+13GC9O8tHSSmD9G0BPinoF7OZ85z3B8mJ5QN7d338bU2iSKrNAV6mK5tMxPHP4Jvjv9Xb41/W10S+f0ymkUSeGf3vmb/Pun/z3/6eX/xI8f+HG+cOkLdIe6kZB2/cHfAJrhJ1ax6BbAm48bly6hdHVhl0qiJcoZ7JTu7vVwGRADmKpiIxYscjAoPJ27upADATFwBQIQDGJnsyKMpLGe3mwXCkiyzHSwwVlvmrXFMRL+BIf8g/RNVZE0bcsCyFha2nFHvekjtot1KKmUaN1qwrLwzy6LdjxNQwqp+PrqO/35Fkiqijo6il2pYGUyAJgLC2hHjwrFaKMhwi7YmWRsh+b16I4zTuuTnc1i2DbqyAjG+fPrGzKyjJ3NCm/wRsNtabNKJepPP73VmiedpvHyy2gOMVY6Oq56Iny9RcTV4PUUEXa9TuPVVzEWF10rCmRZBBaaJl5HUeIqTjZ0ZjTvj+nSHI8++1ctye7JeDcfPfEJhjr37/zlNqmCsvqmuWhDQREg18gTqiXYTwht4MA1JxzN8xGrx/jo0R/l8bEnxGLfQTKU4sF9DxLrHcYKxLYsQgaBnzj0E5e16DZXVjAXFzEXF8VxMU20m25C6e/HXFzEckJX0TTk7m6UaBQJhO1PuYxdqdB4+WXQdXdj5nonZZKmQa2GNjqKfuECSlcXyuAgdlcX+qVLYsz3el0LFKW3d/tW3dfwqtwpOBOAYlFc814v/rKOPvUK3T1txCuQKS0iRyJY2awYbxIJrLKHguZlOVzFr4ZpJ0h4fp60bTMT6WJk0/WKZWEuL4vfdI1DpXZx4+OdyPHNubnX5Pgls4y1vCwWwI2GMwfBcHiAc8ppypKOT/WBJDOa3MePH/4JfJqfHz/046iyymx+hoDmZzS1n1PLr7JaSaPJGpgmlqLw6vIp/sOLf8bg7b/FyBKCd7LrD/5G0ORUJdlYL4AjPOCtSpmJtXH8qp9jyUMoTvenHA6zOnuBuYNHGXGKkpIsE/fGhP+tx4NH8XBr160kA0kaZgOv4qE70oNdsHbm+KEGZ31ppmdfJqAF8KpeZvOzrj3WRiHTyaWTfObZz7hdBADD8WE+deJT3NR501t09G4MyLEYzMy0Ptjk+IoCPh++njBq2RC2j5eBt4TjK0LJW7KqNPSa4GTNcLvmprYkUasUKEcMUSB3+MNyaZk/evqPtnQmnEuf4z++/B/55E2fdO1Sf9A4vlUqXd36eLPyfzNH2qyibjQIGfJbzvH3xQLcs/c9PDXjdA448Kt+7u6/m9H+m1FDpW03GrRDhy5rc2Ajx6+2R3n04rfIeUzB4Z05MluY58WBWco+k6xZoprXCSp+Eg2Nd1UlOl68dGNxfL8fSZJQ+/oEx+/txXfffTRefBFrbU3MA16v6O45eNAdF7a8z2VwfGN+Xly7DseXnEK4Xamg9PRgLizgndb5yQPvY2blIuOrF8T40mjQFenhQPcRXlp6maOJAygB071HLEPnQuYCSW/cLYA3MZG+wFPpl2gL3Er0BuH4N2QRfHx8nM9+9rP80R/9kfvY0tISHZsu/ng8jsfjYWljcWoT/uAP/oDf/u3fvmbf9XIhh0IMjdxK28x3Sa9MuY9LPh9Kby/JaCd9gS4wXqDj2Qv8Us8RprpvY3Xvj6J7ZMJamJqtc1fX7Xw/uZ8zS6f43Mv/jWM9t3Kw7QAgcaDtAN+d/i7T+Wl0SyfpT5Kr5lgoztMV6uKu/rt4cvpJfuboz9Ad6uaB4QdYKIpCzq4/+NXBtUCp1dYnOK8XK5sV7Vb9/ejnz6MMD6MdOIB+7pzYgZ6ZQXIU2lIotB5QEgqBpqH29mJMTWGuCTWPFI+LYJ0DB1BjMTHZappQjBQKPNdr8Tvf/TQvLDzvfrfj3bfxr971P3NimZYF0HYTPICVzdJ49lnkBx7YVYRvghwKCY9eTWv1b9M0sdDUdWFvcLnvF4shTU+j7t8vWr4aDXcSkpNJtD17XEudK1FPNK/H9Q8SO9OoqvAUB1eJAIjHdR1zaspVSYAgMNZaa5iu+xnOZs+NWOgyMxlRZM1kWhaZeDyYzvNqd/eOipMSdR792n8mvTqz3uKmqmSyCzz67F/xyAP/bGcVR7MY6SCubVI2blKHRT1RcDj1W3msJa+Xob4jfML2MVtfoWRUCKkB+rwp4n17hZJmG0XhVG6Kx8ceJ5NfwiqXwTB4JdrFQ8d+nKGOUfd17iKuUhHXYlMpKcuYS0tiQ7Beh3AYra8PY3oac3wcuasLa2EBqbMTBgaQ29uxVlYoeWwWVk5TleKES2H6w71Eo6nrrtjjhkVVq2h794p7KJdDikTw3HEHsmMDIwUC6/ZF23QEbdzM3KkjYXNwJjhFunyeuK7SWxIdIP6JeT6y5wM8MfUVMuW0GHtMCESSnFw7y2x2CtvRondHeriv9130NRqUzVafUBeWBbrOqlbn/MS3dhWIu9gW71SOr46MiKCqjWpAh+PL0Sghf0N0Zi0uCt6naVgBD1899/9wrPMIx4buIOgL8+6h+wlpIf761b9mrjBHvp5jtZLmcOow9w3cx/MLz7NaSXOw/QDzuVnABsvCVuHs0immzDR7N/iswq4/+NWiyalmg+X1ArhhYFcqVCsFbF2nUiqRD2Rpa2sTnrBeL1Y+T9mqiQJFMAiqyiFvB0c6jjGWvcAHRj7AN6a+wfia6AbtDnUT1ELUBt7FWkwi7Omlww7hn18j7o0y1l3jL1/5D1xcu0SulmOhtMBNnTfxq7f9qjv3NoVMy6XlLQVwgInsBJ959jP8wQN/sDseb0BTtY3XK+zHmvOuoiAFAoKbORscl4u3hOPLMtg2Qbx4FKe7c0NHofhxEl5U/KWGWEc6/OHsylnG1sa2/Yxz6XM0jMYVBZpfL3ijHB+g9rWvtVi9oaqXtz7exPE3c/otntqa5p6rt5Ljh71hHj76MD7Fx0R2gobVwCN7GI4P82OHfoxoLAWx1Ja/a3bEFO0as8YaJb1MJB1jYOAYsVSv+7rNHH8+ZJCZWkTp6BDdEE6nVM/QUZY9DT439nlmlsfAI4q0w+17scMhPtQeI7CSu6E4vhyLYZVKqENDorskk0E7flw4BDgFazmRwLh4cesmCZfP8dWeHqzV1fVOg0oFdXgYM5cTXuFO8G3/K3P8i8O/wlOF02RrOfzeANbiMoVylr3hQeQL4xi2E+wbClPtHqZu1Kkp23P8bC3LbCBHlAH0iYnr3kngbS2C/+t//a9fl5w+//zzHD9+3P33wsIC73//+/mxH/sxfuEXfqHltc22oY2wmz43O+DTn/40v/mbv+n+u1Ao0NfXd7k/4U1FrHOAjz3wP/DYK38nwjFVFTkYJBnt5KF9DxExQ1S7ukRL1uwyB2bhAIBpooyOonR1Yc7MELnlPl6Yfga9UeWVuRd438EPs9bI0x3u5pm5Z1BkhYQvQXe4mzMrZ7CwmC3McE/fuzi/eh6f4uOe+DFmZ85gB3zCGgFuyAnv7YY7cTUHM00TxeVGQ0x4zuPW2pqwRenvF5Oq4wUrhUKCCPl80GigHTmCVakItW6zCBkMoqRS2LqO/txzSLKMOS1CLeTBQZbuO8bvfPOf8MLss+L1kgSyzAsLz/M7T/4b/sO7/5C+maK7ADJXVloL4M1dR8tyW8Cux8Hs7YacSKAMDKynwcuyONbOTvWVtBo3Pdr0sTGsahXLNKFeR4lG0Y4eFR7OVwFb18W1pKrrmzKGIQJg6nVRdFRVUbRXFOSODqxCQYRrbCDidr2+7mG23edsUI3fSLCKRczN5Big0cDMZFyFAmyvOJm6+AqrsxdayYssQyBAJrvA1Molju5QBFc6OpBTKbdAsrcSZLhzv+sJvrHgOZzaz361CxAbFm/1sZZjMRJ+0Tp5Oa2sxXqRx858nvTKFHY+L1r1DIOVhQU+n07z8+/+DcJKANs0sfJ5UfwNBMTxSKeh0XA/R9I0rEIB9cgRjKkp1yrENk1wlBaNV17Be889zJqiiykzNo20EgfDIOlL8ODohxnqO3Jdtf9vDrpxUa+jDQ62fFc5FEKvVF6z7XRy6fxrdiRsDM4EUYxr90T5YOAWQmmdUneQOQNKdpF3HfoAHlmjoph4EimeWnmOkCfIvvYDyJJMsVZgoTDPd+ae5CPDHySo+MFT3XofqSpn2kz++OnfZTI/5T68q0B8Z2KX47dC7ezE98AD6K+8IuwsHI4vR6No+/YxYFZp6xomvTghQsCAalsBu1KlLdzB1ye/Qaae5e6+u/mLsb9gtjArQuo8IfxqAMu2+MbENzjRewez+Vnu7rmLv3/lv7mfL8sKklehYjdQegbFPO7zCdGEbd+QG9dvN5rHrGRUxL8tSxR3LAuf7HXn7YZewy7rSPG4y/GDnhBS2HA5ftdyjU/f+f/hsakv88XxL60XwMPd3NV7F3979m/5h/F/oDvUzbcmv8ntPbfzz078Jl9dPcn//e3HGEufp6SXifvj7Evu4+TSSf7k+T/hV47/ChPZCVfIdHblbEsBvDkfY9uML5/nzPLp3SL4JihdXah9fSK8esPGPJYlBDCONdvl4i3h+M7n9GRNhsP9TJXnqZo193sjy/S0DRO2PfRWPShD6xwuV8+hSMqOn1NsFHcMNL+e8UY5vn7xIsYmq7cmx7ey2ddcH2/m+E3OSrWK1N6OtYHPycmksMJwiuBvNccfjA3yy8d/2c2UCWmh18yHs+t19LNnmSHH4xe/IAI9ASyLtouDfPTeX2RAa8O2LKxstoXjl2yhKLZNUxTAHZuVzr3H+INn/x2zuRk80rqVx2Rxlv9y/m+46b7fJ9oY4vHzj5G5MIu0GodKxelK/cj1z/Gbm1H5/JZufGnv3te1lnk9jt/yWU73rNLeLro+ZZlSyMOckaZUWOJIaA+eiEbFbuD37EX3e1m0x7CdkFq7VsMqFPBWGhhGAzXgWR9HNsCneCnpFfTxcczJSffx69VJ4G0tgv/ar/0aP/mTP/marxkcHHT/e2Fhgfvvv58777yTP//zP295XWdnJ88++2zLY9lsFl3Xt6hHNsLr9eK9jnaLhjpGeeS+39hx4PHdd5/w4V10AjQlCWV4GLWvT+wcmSa3LGt8Zv//yNmjWXJGkbg/QdKf4Nn0K4zGR/B7g8zkZtwCOIBl21TNCjWjSkDSOHPqGfH2TZVKKHRDTnhvN9yJa+OOb3PylWUIhwWBUlWhNkgmxYLE8dmVJAk5kRCToW1DvY7a14e1vAyRiBugYCP8xigU0A4fxgTweLBmZzldCPDCwgvr4Wq27RKgFxae50xlij6SLpm3NyqBvV6hYt/wN+baGkoicV1NLtcDFKcNqfHCC+uFcByf7OPHt1XHvhY2h168GZ55kqYhOWnTZjotAnb8fnEtyrIgZI6fspxIiN3kYlHYoWy4hiWvV5DsbSZB2DkI5YaAo4yvpGLMB3VKVo2Q7KOnrOKzNzswr8Ou1ynkV7cej+aiOBSiVN8aDNmEEovhfde73OCc+Ngcv378l/hj9T8zWVtwQ2CGU/v5jdt+jbasuF/frmN9Ja2sU8tjrI6fEl6XGzpi5GiU1eVJJi6+wOFuce/IPh/G9LTwv/b7Ufr6RNZBqYS6Zw92pSI2WRwfVSkeR45GhYrKMMTYaFmU7DqPPv2fBEFUFCRn4zEjyzx+4Qt8wvaR8F9fHoKXe8+/3usKpcwWcgy0dCRsDs4MaSF6jQC+8Tnmuj08fv6xlq60ZLSL++/4CWYbqzwz+wyFeoGJ3CQSEklfgtH2/VxYPY+kafRKMWojQWbNNUpGBV8kjiZrmNEQf/TqnzBXWkCV1+nnrgLxnYldjr8VakcHyn33bXvvxojx0ft+mUe/82ekF0WR0id7ODZyF6dyF1jTc4DYDKgZNVLBFBIS+9v3oyCzUlympJe4o+8OpjLj/P0r/42GJfimLMkoyKgWJC0fDedYSrEY2sGDohBzA25cv91oHrOQGhAPNC0WACplumN9LKyM45E1UBw/ZsOgLd5Nb82LJJnrHN80uXXFQ3X4fZxfG6Mv0odH8RDxRPje7PdYLi0zX5jjWMdRDNvg7OpZ/vC5/41fuuUXeWXpJAGPsM/IVoWIpTvczUuLL1HTRctYU8iUq+fc7287oYtNazwkiVx+GSuXu3E53DWAHArhveuu1hwc03StGOxK5YqP1zXn+JkMcjKJP53mo4MnqPfJPL3yAmUjg+Tx0B3r48HRj3C7f5RwSWnh+DFvDK/qRZVVDGtr2GHMH9s20PyGgGUh9/Qg+/1u9pFVLmMtLW3prtsIu14Xm5evwfFb1s+bsJnjU6uJtZUkoY6M0HjlFUAUwLUjR9yu3LeL42/OlHktmMvL5HMrPDbzOJmcwzudwMvVpQkee/6v+eRNP4v2ne+jRCItHD8cSyFHImAYyImEqEWYJiW7xoX0BQKekMgdkmVsScKu1xlfGWOqPM/E977EWiUtPsu2kaNRMqUVHh974gee40diyS3vYVer2LEYc2FrK8ePdPLgTT9Ob10mPzNHrCaRXhF+5ZI/gNLejpXNsi+5j5JRQfL7xfXueIl3hbux6zVC8RDGhUk2ShOuVyeBt7UI3tbWRltb22W9dn5+nvvvv59bb72Vv/zLv0Te1EZy55138nu/93ssLi7S1dUFiCAdr9fLrbfe+qZ/92uJ1xp4tMFBpHDYHUDxerE9HvQXXlg3tq/XaXvmJPdKEng8KKkg5WiWl4IGyyuT+GNtZGtZbKcAHvPGKNaL+JUA9/TchZJbL9TYtRrmwgLJkSP0GgGxy7lDkOIutkKOxYQPlFNYcydPR+ltFQrC/82ywOdD3bsXolE0p8VKarZD+XxiEmi2szUnWsMQ7SaRiHhMktY/w1H0Zmvb2FZsmOiztSyQdMm8e249Hmg0xPdrFsIBe3CQxvg4amenGJh3rwdAHDe1sxP7+HGo1UShzuMR57Wz86qO0Zvtmde8HgGUzk53g6Pc086cp0JZMwilDtArxQjkKqIAHgwKP7ENC2QllUJJJjE3qJ7cz0ilRKL1jXhNKAoEAiy0aTwx9xUyuUXhk6iqJNv7+Zh2iD07/KmVy60vhLc8KZRWodfJVND6+pA/+EGxoVWvc8zr5X/98P/OuexFcrUsUdvLPrlDFMAt64q8It8u2PU6+eVZ1wLFhbOgkDweKqpN48UXMefmkEdHkRMJoQhPp8WmjM+H0tkpbJtuuUVYQwWDyOGw2ACcmUHu6Fi3CJFlZhsropDkzIOS3y/Gs2yWTNRitr5C7Dps/7/ce/61Xje1cmkLOW5iY0fCZq5hLi+T8ys8MfGFFr93gEU9wxPTX2Gunuaxscf4Rwf/EQATuUkytTVs4ETfHbx78N0U5TiPvvBfyWTnKYY1xsbHiQfb+Ik7H+GFxZdAgrZAm/A3djCRneDsytndIvg7CLscf3u81r27Z/AYj4T/F6ZXLlCuFgiGE/izpzl58v8vOKEsU9ErLJeXkSWZkCdEvpanVCtgl0roehW9VkHX17u1ZEkhoPrxyBonum5hf8Hvfp5dKJBfnWOxL0K1epHwyuqOQYq72Iomp+pDIxlKkc7MAkJdvbwyxQP738VTpky4YmJXGsiJBMlELx9uvwepqHMhYlMyl4n4kvQpSUK2RqGxQqEuvOszlQxSWGImP0NAC1AzaximmEc1ReP7s9/nZ4/9LIZttBQdstUsvRFhQVBsiDVdU8gU88bc72jXaqIw4ijBZUkmIgc4NfsilZyXcCC2ez04UHt68L3vfZhLS9hOeG3TSlDbu/f64/gdHSJUPBAgEfDwUP+HOb73XZSNGlE1QIcVpKfqJVSyhOhqA8c/mDrIaHIUwzJIV9IthfAjqSPc1nnbjXlNKArq6CjGhQuYzewjSUJqa0M9ePA1NwKtXG6rZYn7pOD4r3cNbOb4eL3I8ThWNov/3e8WPNkRvGHbNwzHN5eXmVOK6wVwEOKValWITyoZpiZOsmdpCSUeb+H43WoPCW+MtXoOM51G6epCkmXqto6saqiSLNbTjmc1kgSmScWskVmbW+f4pomVzbqF8F2On9zyHubyMuWAyhMTj23h+OncAk9Mf5Wf9tzO/8vee8fJdZ/nvd/TpvfZ3ht2gUUlAQLsVV0EKVp2YssSVeLYji3JiWXnOrYjJ/KNk1wriS3Jlu04zr3usS1LLLIaKVEkJQokABIdC2B739npfU67f/xmZneBXTR2cp/Phx8JO7szZ86c+Z3n977P+zzukXEO3vROHi0WiafmsIsFLMAM2vzyvk/xR8f+lEx8TkwzmKawUG67nRI6LeNJkVfk8awJ9rzSpMTrgTeFJ/jc3Bx33303XV1dfP7znye2KqigpSqtf9e73sXw8DAf+chH+N3f/V0SiQS/8iu/wr/8l//yDZ0af62oWxYAlq5j5/NIti2K4qoqVMUOh/Auk6T6mKg3VeTO/pv50dZ3cyE1Rpu/jcXCEolCgrZAG5ZlEXUE+ekbPsULRx5feUFFIYyb+6O34rowjb5qUd5UCVwZq8dfMAxx05VlcDpR29sxxseRw2GxkNRuog0NqF4vlaNHhaIYQJZROztx3HKLKDqugm2aoshumvXnri0+tiSJsJ3LIOwKI5mi02yXy0gOB2pPD7YkibBHXUfyesXIZiAAqooxNSW6ionE5vWwCnIohMPtfkWVHa8k1lyPxSK43cx4dR6b/jZJh4GVSGClUkT9TRzseQ/t6TxmNova1bV2VEvT0G64AfvFF0VIk6Jgm2ZdLaNWR6heD2zkkbYe7HK5/lkhC6JV3tbH46f/WhTAQRBSVSWpVHh84lt8on3LuuTf1nU61SjRhk7iy9OXPB4Nt9PTNHDF41cu8tRuBXzBBiZTk2SLKRK2jC/agV/1vmrXll0uY6ZSIkDJNJF8PpSoIFR2uYwZjwsvWVVF8vtFMOUGx2GlUvhwrDsxYBeLyF4vPncAK3a+HvJr2zYUCit2Qs3NomDu92MuLGBOTaE5nSL4xeVCikbB4UBubBSbetsmp1dDW2xrrbqnOomTMwpv2fH/XPny4X8bTSTIoRDT81Vv24smPbKahVIpkCwl0C2dr5z+Rw50HODmjlswLAOn4mQg3I/P4efxuadJajpGc5RzidOUZJP5coyvX/gn9rTu4fDcYZYLy7T4WtYowlcrFDfx9sEmx19BtpxlurxIngoeQ6JtsUyHO4LLkCiWcuDx4FJcyDa4FSeSYWKYuhBJuFw4KxUaJC+/su9TfEl1MhIfARtUSWa4YTv/evsnCD9fDfmTZeb7ozw2+3XSZS9KNYg04o5cEqS4ifVR41S+c+c42PdeHtUfIVYYF3zC5yE/P8Ov7fpFiull4ZHb2k2nr5OUkeEvLvz1CleQZRo7B/nALR8jXFgJhDVtk7Ip9nx29T6mKhogVfMYbCqmuKdZto0qKRi2Wf23WLv9Dj+aotEd6sYul9nq7aLX28no8jlsXRd7CEVBVlW2d9/EVHKC755/HrW5GTkY3LweVkFtbEQJBN4cHL9UohDycM6V5WujXyeTyeMvWKjLSSKBZnq73417dglTli/h+E1aiE/u+Tm+eOgLnNNNyhhYEgxFt/Irt/0Kg42DGx/Eq4yaLefV+A1fwvFtW9hxrLacs23sXA47na43ENZ9Ll0XdZaqt//FkMPhum/45XAxxwewg0ExfVEsCosvh0OIPV6la+ty5/B6OD5Azixc8phtGKKxoChkc9Wgx4s4vnshwcFd7+axqW8Tr9a1rFSKkOKj2d1IoSCsw2r+60gSfslFWKvuw1Zz/FU2N5sc/1JcjuNLqko8s8hMY4YBp5O2hRIP9z7ErLNEzirhlV10uVoI2q382vaf59noCySLCZymhJ3Pk5+f5v6h+/Fl81irpiOkVYKGy01KvB54UxTBv/3tb3PhwgUuXLhAR0fHmsdqpEBRFL7+9a/zC7/wC9x222243W4+9KEP8fnPf/71OORXBVYqVU81roU6SIEA2u7dIlilWki1MhlRrEgIdZYdDDLfE+KJF/6Om7r3Ml9cYiI5TsQT5Ya+G/A5fHxw60NsW1IIH4sxEL2bmbYSebuMx5Bpz8qE0pJYaNhMkr9WrB5rsfJ5kYq8sIA5P4/k8YgFohpSYKXTKOEwxoULIMvIjY1icXe7iXeEGJl/jrRUJrQrwGDJT2i82smr3hgkn08EFhYK2B4PWBbbzUb2td8kPMFr3pnV/93XfhPbA1vQOrrqn6tdLIob5NwcdqWCtns3+okTIMsoHg+VZ58VxfD+flG8v8rrIVvOcj5+ntnMDA5bptXdRJen9Q0ZYPFy8Goknl8vsuXsit2BwycUPbX06Pl5MqlFHh//KvFiHKmi1BXfiVyMx6e+w0ea34W3WPU8rMJKpTCmp9HPnxeebl1dolAaCKD29qJeBQl8tXAlj7TVsFKpNZ5rVrXgO9vuIKFnBJm1bVHgrwb6xYsJJuKj7Gzbc8lrS5qGN5HnAzf8FF978W/WFMKjDZ18YP9HNg7FvAwmUhM8cuqrxJOzgqwoCtFQGw9uf4ge5yt/ndU/35ERUQQHUFXUri6hoDl/HmNysq7qlnw+tKEh1M7OdRthtq7TSYhoqI3l7KVBS1FfE52mf2VtqlRQGxsxSiXh9w2CqBkGjl270M+fh1JJbBja27GSSbF2zsyIe6DXizo0hNeoFt0lWRSIVodBWRY+1fOWHf/3OS9fFNxoIkFyOin4hLpNMgyxWSkUQFXRHRIVo4xD0mgPdDCbmeHZqWfqf6vJGp/c/0lcqouklUeJRslmFyhJZt2jNFFK0uITRU3DMigbZVTHCg0NXaFhu4m3JjY5vsBEaoJHjv89sfmxOsePBlq4Zc/7uDE4RFIqU5EsPJbMzsgw47Fz2IBSMbCMElQq9LdtZ2vBT+iH5/nd7T/D+aEiaSNHKNjMYEIlfHIJvF7weilEfDy+9C0SpSSKuTKVkSgm1gQpbuLykEMhHLt305tK8YmGTiYSY+QycTw6dJSceEaWRDHI6UOWbYpug0cvPE5SLtc5vulyUQ75eGz8W/SG+9jeuJ14IY6GilNxYiO87/tCfcxkZgCQkAEJt+Zme+N2JlOT+B1+djXvojXQRsgV4j0D76Er0MW2pm14iyaVkZcIl8t8cvjjfOGFLzGaOoXs9WLlcmxr282+6C5Gn/smtipjh8PYhnHV14NdLpNOLTKVmSZbyeF3Benyt29y/FcRq4u8ksOBHAzW95zjiyP8YOY5vn72W8wXFkBRcJsyW8LtkFrisclvX5bjD52f5XNtH2GkOy3WEF+U7W17aGnsed3er7GwQOXQoTW5VRv5Da/H8eVQCEolIewKBkGSKDQFmdGK5OUkocIkvWXfutd5TfjluOEGKi++uKYQLjc04Ni//7pUrlYqRXLqfD1o3q966HA2Ee66vumCK+Fy51B2uUSdaWrqmjg+gM996WOAmJiwbXyKG8heyvElibaZLB8O38vCviiZ2CzenE6oGOXezjv4/sTTZI28KKBaFn5vhLt67qKjUp28vZjjV4u6mxz/UlyO48teL3ZJ1P6Uri7MmRlck5Mr088eD847B5FUla7ZCg969jKlxsjl4ngjbjq8LjzTWWSPR/hM1LImqrmCtdd/I+FNUQT/2Mc+xsc+9rEr/l5XVxePP/74FX/vzQi7XEY/dUosTJJU73bZmQzG+fPILS3YiQRmLIaUSqH29mJUAxALTSEeHfsGSTOHlnHx4NYPUDbKFIwCDe4G7h+8n9aEQfn80wB4YhUGATSHUNoBtPetUfJtJslfG2qkSQFQFMyZmfqYiF21SpEbGzHOnkUOhzHm5ij1tTMj5ygoFmaDiz998QuMT50QneoqGf7k8MfYOirGGuXWVpRwGP3kyfq4EKpKy6lZPnv7b/K5Z36bw7Mv1P2993Ue4Ldu/0064yaGHsc4fRrbNJkdbud0ZZlEs0TE1cKwGqDTezPm5CT66dPC/yyVwhgdRW5oqI88Xe56mEhN8JfH/5Jnx79PIR0Hy6It0MHBLe/n5vBOejt2bCrJX2FMpCbWBN/BisKr0/SjHzvGpDdPbPKseDAQwEqnkf1+JJeLpK0z1+5jmx6uK8TlUAh9agrj3DmhnMis6kYvLiIZxmUVA68mrsojrVqErqeTr1aDVANbsiENyeUSxVVNWwmo1TSsfJ7M8jx6XoSZrbYCqik22uNlPrbnY0wbcXKVPD6Hl05XC5GWoWt+T9lyVhRFpkbWWInEkkkeMQ0+ceDnX7EiRU39YSYSmNVU7zoMA2NiQvghatqaY7FzOXEubRuH233JZy9pGt6CwQODB3mkkCcen6k/Fg23crDvvXhxUKmpBUwT/dQpkUXR0SH8Gzs7Mc6epfzUU6g7d4qQVp8PKRhEP3NGEGm3WzQTg0GUhgbac3Ghyk/NX+LzGA200OlsesuuOT1NA0TDbeuOS0bDbZedSAj4G1askixL3EskCWcxjsPpIZub4tb2W/ih/UNms7P1v2vzt3Fv190oRjXISVXRlbWkV5GVNderaa80JvrCfQw3Db+s972JNyc2Of5KeHBsamQNx49nFnjm3BNsDQ1xPnEOMx6nkDjLjw8d5CvWI8SKcaFkLBTob9rKp/f+Ik05L9zgo9kwaLGbULcNYiUSlC88veY1Z7T8yhpx0Zh/opioBylu4sqocfwQzWy3NSoXXqg2kcuXcPzpsE5s5jxGQ5iMkcdwKnRHOvnG+Ld4af4ltjVuY7hpO9OZKXyaD4/qocPfjt8Z4ED7Af725N8iSRK6pXOg4wDzqRl+fNuP880L32QgMsDzc89zZOEInYEu9rfvZyo9RcUq893cMmFfmP72fhYyU3zwwEepWBVM0yBsOQlXVL725JcxTR1MsKqTnpLPd8XrwUqlGJ8+wSOnv8ry4oS4dzgcNHYO8kDPe+jt3OT4rzQuLvLCSnhe1izyyIt/i8MbYG65GoKqquQrFc5ZFrtbt5EsX5njhzMZbgZAATWHlpvFDrS+LhzfyuUuKd7C+n7DG3F8O58XFjEuF1Y6zfyWRr6e+L4QvqgaLVqcI/ETtIU6aQ91rLECqnF8Kx5H27NH2JFeZHt5rbDLZcanT/DoucfW2FNEfU08IB2kz73/FTvXdrmMmUhQef55IfrRNKgWsK1kkspzz6EMDa0pgMPVcXy7UKC7cQvRph7iq3ymJZcLORwm6mukPVcNWr2Y41ctYXznztH7jSOoO3ciKRZS2cEntn0Y2zSZzEyjWwaqBd2hHj7R9RBtSYtoYyfx5EUcX5aJuqObHH8DbMTx7UIBFAWfL4I1tbxiu1tDpYJdqdRDlL15naGMjJVQgIr4z+NZe32s+lyudlLitcSbogi+CXGzM5NJcfFVwxAlt1v4keXzaNu2YRgGLCxQ7Gtn1pmmsL8NHw4qtklyKo0ty1Qmx1myRKEKYKkgvOc6mnrqvlRAPb28NgpjVSpI1U5zDW/VMZNXG7LLhdotAkXsSkWM75dKmFPVEVXbZr7Tz2OTj5Awsmzv3c9fPPcnnE9cIOqP4LKF9cRYepw/uPDX/Kc9n6FB8iG5XJR/9CPx2ckyxeYwc10BCmEv4aUMX7r7v3E2P0aqmCLkDrHd2UNX0qby4vOora3oExO89M5BPvfsr3B45oX6sezruInP3vFZ9hxeFfqnKNi5HFJTU737utH1kC1n+YdT/8CzE8/UC+AAc5kZHjv/dcyeCiHL+YYLsHgzI1vOXlIAB7GxfeTUV/lw5F6cySQ5lwi00N0Osg6dksfAKRUImDJOWyZXTGOXxXfe1nUx9lYuryiEV8MwMJPJV6Q5tp665UrXxtV6pIFYT9eQY6iHAnl1CcnjQfF4wLaFb//Cglhry2VcgRi6rCB5vcKX2udDDgSQg8H6GKp3OctWHIADyXaj9XRd17U9ER9dUwC3a531cpnY6Ekm+s6zs+PGa37ei1HbTJmxGJLLhTE+LuxFwuE6EbJLJaxkEqWt7ZK/t3M54fG9zmcvh0JILhedBfjo1p9iOj9LrpLDK7voIIg/IyEPRJFDIcx8Xtx3LAtzakoE/Hq9OCIRzOlp0ahYXsZaWkLbupXK88+j9Pai7twJuo4NWJkMlWPH8PX2crD9Ph6Tv0eiEBfrostFQ0MXDwy8j4D39bPsebUR8EX5wIGH152KeOjAw5edSOgOdRP1N5FQ164dIYeMy9ZockcZPfcCt/bso9K6l5JZxq262Rkc5MazeRa3rihUHLJjzXMkigl+cvtPcmLxBGeWz6BIYlPUF+7j0wc+vekHvom3LSZTk2LaZxXH190OMqrBfH6SPdvuZtFKkVxYoBQJcjZ2mod2/Dj9kQH0fBZ/GbaU/ESeG4Nt2+obVbtQgHIZpanpEo6fk/SV7BlJWinoVFELUtzEteFKHD9nlcm6Jc4tHkPx+el29/CN0W8SLyXoifTh0jycWjrFQGSAjmAnvcEefmrnT/Kt0W/x+MjXkSVZBKI2bOUzN/8y/3Tma/hx87N7foYnJr9Lm7+NG1puoMXTRGe4hz86+kfMZmaJOsMUrTLtgXZ+eudP8++/8xtk9Qw3tu7ll2/+N5ilLGbN+1mShFXKanuBDa4Hu1wmOXWeR0YeWSmAA1QqxKbP8ahl87C9yfFfSaxb5KU6qX3qFOOBMvHkHGFXlb/bNlI1Q6pgp8j4sjSYzjcVxzeXli4pgNdwsd/whhxfUYQNXzBIuaORf8o8Qzw5h1Qs0771Jr57/knmsrN4gw3sad9Lq7uJg/3vo9vdsobj26vtUGxb5LVdx7WdTi3y6MhKAbyiyWQoMVccJzH2j/xCUxutzRslEV096g0TwxD8Hi7h+GYshtLdvTa7p4qr4fjeRI4P7PspHh15nHh6vr6nijjDPLj9g3ifPSEUwhdxfLm9XUzDzMxcwvG3HD3Pr+35IOf7yqTLGYKyhy3lAKEfXEDr6+Ng57t4XHqSeGFZ1MX8fqL+Jh7oeTeBwCbHXw8bcXzb4SCYNemUI9ixM0JYVAuPlSSkYBBzfh5ldc7LRdktFIso27djLi6KSYlaLklt0uAN5AcOm0XwNw1sXV9TgJT8fqHKqy1eU1Mora3M90V49MzXiKeSWCcS2Ok07XvvIq0a+LM6lMuYU1NIW7ZQoEIsF+PF2SMs+ebYtn87wcNn6t1/K5cDSUKJRjFOnEByOETnrnoRv1XHTF5tyKEQTEzUbUfqI1VVv/WcZvPo+DeJp+ZFV97r5HT8LOg6y8YiLc4G5HIFSdMYS45y1pjnds8wxtwcjn374IYbmLGTPDrxLRKZ09gJA3SdaKKJ9/v30TbvA6uC0l2mcuoUdiwGDQ0s3rWLz/3wsxyeeV4cjySDJHF45nk+9+z/zZfv+izNj/9AbJoCAdFFXGUxsNH1MJmaZCw5RrGUvcQXeC4zQ9YqvmEDLF5rXA8xXA+TqclLCuA1xJOzTLsXGECMi2X9DkbSoxTzwosNWcbrjzDUMIRP80K1GSxpmtgUrUOQ6rCs62qO2eUyZiwmCLgkYauqUFnE42sCIC/X1b8Wj7T1jrFm2dBRdhF1hYlX0lhLS1i5nPgMbJuGxi46yi5sM4et6xgjI2JdbGlB9vvRhoauKvn7apHNxlcK4Iaxkgdg29jFIpmlWQxHx8uyoFmzmbKsle90NURSDgaFWqQ6QbLGVmT18xjG+ud1lUelv1hkm9yCZeaRNJcI/PH7MaemcOzeTUWSsAoFpEhEhFx6vSjNzZjpNFJDg5g+qL2GZQnCHIuJc10NhjYTCahUkN1u2qZ1Hu64n7moSt4h4bMUOgjiWSyjl89gTk/j2LnzLakW6W3Zyr+47zNVf/wsPqefnqaN/fFXY2/rXo4vHgdAQiJWiNEa7OCu9ts4Of0i2fkpZkaPAeB2+TjQeTs/ae/GM71E57ZhIu4IiWKCoCuIW3VTNMRmtMXbQqqU4qN7Poppm7gUFxFXhOGm4c0C+Cbe1sjpuTUcv35fLoti1Mmpo7R627jhPbcyMndcTOBNzfHcU98i3NrD/U13EhqbwCqV0A0DbccOETyWyyHPzoLPh7Z3L/rRo2LKye3GW8rXg/PMyUksp3MNx68FKW7i2nAljq8pGiPLIxTKOQI+P0FPGCSJpfwSqXKKZm8zZaNMspQiXkzQH+6nQQvzE4Mf5I6uO8jrBfwOPwHFg79o8lstHyFWjrNog89U2Ofow1GRCbV28Zcn/pLTsdPYts1ApJ+pxeNMpCcoGSV+bv+/4vM/+H84On+E/37o9/h3+z+D4fegZgt1zrNaybfR9WClUkyXl0Qx5uLsj0rlDR1S91rjleL46xZ5qzCTSXJOwRtdiqtu52c7HIK/GQblcgHbVkSY+5uE41/JT3j14xtxfNswhJ2nrjPrM4mdPoddKNDevYMn53/IfNVqKJ9NkEovoiwu80giwcPdD+Kz1Fec40/lZusF8IzTZiQ5QqGUBdPk/Pwpepu2cA/voLf5+j3YN2qYrMfxVze9Lnmeq+D4HckSD3cdZNpIkJcqBJo76Qp04Z5eRDpwgPJzz63l+D6fqGdls0ihkGgYrub4tk347DQHXC4h/DQNzOQostcLqkrrhTgPDzzAbFii4FLwotFRduNZNtBnNzn+evDh4P72e3ls5FHiJWEnKakq0WAL9w/fSyAF5VBoxY6yFhzb0oIxOgq7diG53SIcuLpvrlvnVC1VtD17xP1OUYTnfFPTG64ADptF8DcNJE1b6bioar0rB4CiIHd1kXfLPHb6qyTMHJLDsWJVUC4zkjjPnsgwarmMXSyyWFji0Owhkvk4La4o//PC/6CvaYhP3/YZdprbMSYmkNvahDfY2Ji48ZVKwsajr6/uO7aJa8ea4JLqZ2RbFmgaSkcHU/m5lQKmZZGzSlVVj4Vh6pRVG3fRwi6JRPdULo5+7iUcO3di53Lkgy4en3qGlNNCwlG/qcULcR7Xn+PDDXfiqyA2UTW7G1nmlLS0UgC/CIdnX+DUvmWaq7YQkscjrkGnE4pFJLd7w+shp+eoWJVLLAlqKJnlt3SAxdXicqON1/pdu6yCy7LIWyUAGp1hMpTFRrsaXoJtU6jkyZhFGl0RyJXqn6+VSq1Je74EsnzNzTErlaJ89CjGuXNYxeJK1sHWrSjNzVjLy1eVQ3AtHmnrHaOkqigNDXgSCR7YdT+Pjn+DJX1W/K6uE3FFOBi9Fdf5KQxJwnnzzVjz84LIl0rYqlo/RqW5ecWPPTa+4sd+jdYlPlV43tm1kBHAKhTqhMNTNCg98QSuu+9GXUehDZduuiSPR4yEVv9tG4ZoeDocSOEwkiShDgxgFQpCAV8/QVJdSbMean7y62F1LsJ6G4da0JTrrrtE4WbbNozRUax4XITzAs5bb8VcWBD3IxDH4vWitLVhzs2JgEyfD6W9XXjUh0I4b7sNt9NJuFymcuQI5uIi6Do6IIVCaFu2oJ8+jWPv3rekQi3gi9anHy6Hxdwip5dOkyglWMovYVgGi7lFUch2B/nA0AcYbhzG7/TTWfawbXeIBTmHbhk02156YhaeC2JSyCc5eWDogfokylDDECPLI4RdYe7ru4+57BxBI8iDQw/SHep+Dc7CJjbxxodP89U5fkWFkdx4vQCOLOMKhMjoBZ48/hc0OSI4TDBGz4FtE0/O8VjxW3yk/b24R6exEgmh+Dt/HjufF9M9Fy4gt7TgvO020HWMiQm63E00tA8QX5oUBZBVHD8abNn8fl4nrsTxNT1DyB2mUM5hWDoeh5fJ9CSpcgqX4sKlukiX0pxPnidejLO3bS9PjX+XX9zzcwzrYXKeRjwli86yH1SFaUeMuMdBTtWJBFtYyM0TcUcpmSVOx07Xj8uybYq64JdH5o/w0zt/uv7Y0bkjZOwSrqZWzMpMvQhemwyIuCMbXg+2rpMzChtyfCxrk+PzynL8y55Ly8Ini4BHu1SizdPCXGqqnimDbeOQVCJKgA7LD1hvCo5/JY62+vGNOD6midrbi53JkLdLUC6Lv/N6mKsppAF0nQomGLZo4pBia9H7inP8nCF4fUWTRQG8mKl7XwMk00t89ck/5BP3/htCLRt8/66C4+cUk+lQhZxZxHtTNx12EPdCAmtu1fSsJK2ZBFrv/F0Nxw/pOmFtaA3HtwMNWKkU7ne/WwSTrub4U1PI4TDq8DBWIoE5MSGe1OEQ3wtNE/Us2xYcv60NTBOlpwd1YACPphHSdcrPP481Kyz6Njn+WtSDUEsl7HyeNtvmw8G7mQ4kySOaFT3NQ/idfir5EeSGBuTubnEdqipWsSgK4FX7lPr9rVhEaWjAXF5GcrlQ+/qws1kkw7iude21xmYR/E0CORRCCYdFF9WyKLRGmXV6yJlFAi1dtKdjTE9MsHjsOQCUtnbkSESQ4UyGsCtERq4QAUotUQ7NHCKRi9EV7iGTFwXXsaURvvCD/8Z/vv0/4J+aEkGI7e1YPl+9oG6XRPFMGxp6Sy4orxVqNwxjdlYUZixLBGfOzZFr1sVnl06DLIvinSSB5gBJwpKqHftKGQyDoCuEnYpTfu45HPv2MSPnSMol7FwBY3paFM+q6s2Yw8HcvffRf3gKtbe3fjxWJkOytEEHWBIbs1QpXfeRsnM5lKYmob6skrgNi5OaT4zF14LvLoJLcb6lAyyuBpcdbdyAGF5OUXJZBZcs41XdSD6d5XKK25r3USrnmUtPi66urtMW7uK21v0slxI0uKP1z1cOhYT3t8936bikqqKEw9d008vk4oyNPk+mOIW300l71o17ahE7nUY/exa7XEbp6MCukuTLjWFei0eaHArVO9mrIblcaN3ddDcO8FHHP2fCt5NsZhmf7KI9YeE+My8aP9X0crmhQXTLrZXQYCuVYtpZvMSOJix7ub/1HjqLwj9QaWq6JCH+YnT52on6mlhOCHXK6gJ4NNRKhxXAWpqkcvSosGS5qNNupVLo586JcLmaf6HTKdLtq+tO7fMyzp8Xn6mmicKJ14va319Pfq95+62nEpJ8PuHrd5n3c7kwqdWP2dEolePHxfrU2bkyou/1ojidYgNTqSD5/aBpWOm0eFxVhY9upSKOp1wWDbquLlEAn5lZ85p2KoV+/jza8PDbNt9iKjXFiwsvciFxAZfqYjG3yD+c/gdafC18cPiDOFUnpm1yaPYQw43CrzsYbWXw0IsMLKWqz7KyDshNTSjNzfSEQnx8z8frobwO2YGmaBT0AgfaD9AduvbN4iY28VZGd6ibaLidWCpFxshTUmyxplkW7W1DWAuL4NC4cOF5HI3badRCdY6PaRLPLDLbW2EAsR7bqZRYx0MhUXgCrIUFys88g/PmmzGnpnDLMgfb7+Sx4reJZ0Sz0S6VCOPhwaEHN7+jLwOX4/j5ZoP7uu/hSfn75GSZoDtEqpTCqThp8jaxlF+iZIq9VqqUIuwK81Rygv/8g//KF2/9bbapUczYLLNNMo8c/WvO2jEOLR7B5w6Q0/Pc1n0H35/9Ae/sf+faY5LWjq4X9OpkGYKbx/JLvGPgnRwpP0k8vSA4pdtNxB257PUgaZpo2G/A8ZHlTY7/CnP8y55LWabT0UDU18TSwij3dd7Jk/b36xzfo7rp87TzQOPdeJazSA0NrxrHt3I5ykePiuyWav0A274ujn+JpdPqt3yR3/CGHN/pFNObN9+Mf/k0kt+PXShQsi/a/1oWmkk91E8Uq70bcnxN1tjWsA1VUUmX0kTcEXY27aQr1HXZ8+P3R0FVyVCgUMquKYCjKDgllbmlCcYvHGG3L3pdHH82qvLo7NeJzV4Aw8AqFIj6Gnlg4H46Bwbq51NpbISLlL318/ZKcvxIZH2OHwggh0Jovb3YpikU+7KMMTEh1paLOb5pog0MCJ/zI0fqBfAaNjk+mKkU5sKC4AmqipXLYZw+jeTz4R0eZmvRJ5oL8yaOZnGt186TsbopVEWN418sbNJqAildR2pvf1nTEa8lNovgbxJITifa9u3YlsWUGefRM48QzywghcOo6aP0ejsJ9wwRrezFpTiRgPnzx5CCQRbnLnDf9rsZqywgW27ijgrJQpyucA93tN/Gj0aexFZAkmXGlkY4nR3jAAjPptlZlNZWivt2Mm0myFVy+AMuelWTy+suN3ElSE4nans7ViwmxsQS4mbqU9xihDUcRvL5cKIx3Lyd03NiPF1WDWzTRvJ46Q10M0QDtr4gRossi7ysY+XzGJOTQuFZ9YZEVaFYJDM/idLTK1RHkiS8uJaXCbu7EWR4lZqjpv60LELuEJJDFsGJ3d2o/f3ILtcVF7vuUDd94T7GEqMUakEMVbQFOvDL7qsOsKh13vN6Ho/Dg27o5Co5TNvE5/DhlVyEFQ+x3JJoEPmidEf73vCbucuNNq5HDDdSlKj9/WCadBgewrabhJm9RNURDbfTqURQ+xrIpk4yPfoSt7fcgNR5G2XZwh2Kgmkxl5qj0Hkjju4Vci45nWhdXSKUaWRkhSSrKmpXF9r27Vd945tITfDI0b9lceRF7HQagEigmYOD99J6ThTCMYy1AS2XUb9ci0faaqXWRqqcgGkyuATmeBacFcjnqwdR/X7ougjXKZexTVOMWaoqWSPPoxOPrymAm+k0i1Mn+Oqp03w4ei+euThyUxPOO+5A6+zc8D0FQ808MHSQR058heXi5JoC+AMD9+NeTGJxqR8iVDdd585hA/qZM4LoVsREhtzSgvOWW7BzOSxdRz9/Xoy2VQN1a4ogY0o0y6zlZdSuLtTBQYzz57FWj7+tSo5/JUiP5HQK9caqz8YulZAMA7WrC3NyEkolsXlqbRXHUVWSYxhIPh9qXx9UlQhGMonS2Sl87DRNjKenUsgulxjD9XguP/77FkJt/SzoBfJ6nj984Q95cvxJcpUcLtXFYGSQn937s/zJkT/hK6e/wkPbHiJejK8JRVNCIZx33EH5mWewllaCnOSmJpx33llv7Pid/s1QvU1s4irhd/p5cPtDPGIazM0dFeIFWaa9bSv3hG9kZvQlgv3bkDxeDLcDULHicaRgEDuTQfL5yEsVlP5+kVXhdqPt3o3k8VA5erSugrSWlrCzVWswy6JtNsdHWt/L3I1u5q00ulGhNdBGWH3jjS6/2bARx/cqLmbGj3NHxwEC7b0oLjd7W/dyZvkMZbNct48CkZegmzplvciJxASnKjN0OhrJN4f52g//kGkrwaHkUZL5ZTRZIVlO8oOpZ9nSuBVVVpElGcu2CLlCVMwKAWcATdGwbZtWXyu3dd3O83MvoJsVvJqXUEXh4b4PMuvVKQbc+P3RKzYt5VCIzsUmouE2lktjay1RHA6ivqar5virC784HGAY5OwSU5UYeUnH6fCgSQq5TByv6qbL30Ew2PSGL7i80hzfrnn+m+YlHF8Jh/HZDg72vZdHzz6yhuNLTie7OvYybDbgzVVQehpROzpeFY5vpVLoExNCgVpbc2xb7CmrhfBr4fiyz4fjwIFLwjHX8xu+Go7fTZlosJXlzAguaa0C2u3yEbCEeMsulfDa2oYcX5M1+sP9/N6Pfo+z8bOEnCEqVoWdTTv59Tt+nVs6b9nwPfVE+2nsGmJu+rAQq60qgLc3D2CnhQAxl78+jp/NJXh06hssjZ8WxU5JQvZ4iOdiPHrhcT7S9n4C0SiUy+IculzYy8trwjFfF45fLGKXSigtLSKbaXm5vve6+HisUmmT41exev20dZ3yCy9gjo+L60JVkSIRHHv3UjlyBP30abRt28S5XrUGXS3Hv1zT482CzSL4mwhyKETlhmH+6Qd/SMoDircVxeOjTQrwjZmnKKV+wPLyNHJFp71pgHu33sbM7Fl0ucDUmef50MFfxZiZ4VSoRIuzgUxqkedOfQvTqdb9wiRJIl1Z5a0ry8w2Onjk8J+KkUlACgZpbOvnAwceprdl6+t0Nt4aqN2o7Xy+TpA7yi6i0Q6SikjhPXfmGT4x/GH+zPpzzi2fw2lIYOr0hbfx6Rv+FdGUgZ7LCa94ScLn8GHlcsLfueqpBYgbmqbhrUjIATdmKiV8djMZ5ECA7TSyr/OAsESppgXXPAH3dexnR2AQ595gfWzuam+GfqefH9/+45TMEs+Of78ejtkW7uLg4P3cHNhB0H/lhXQiNcGjI4+SLqVp87fx5NiTLOQXCLvCJIoJ2jxNfGDgIN88+3W8koNARQaXi8ZoBwe3HKwHm7wRyfKVxkRXP76uokSSsE0T/exZJJcLN3B/4+08Ovp1Uk6RhA7UFT1hgujnzhGItGBHwyyW42CJ6yBbqZJLvxf/OpsLORRCc7uRm5oEQTZNocq1bXHdVSpXPM+14M54bmnNhimemucx6wk+0nYP7hnx2GqPuispia7FI+2KFh3RKEowiFlV46EogqRKElI4jJXJICsipNYuFDDLZVJbO3gpc5JUMYXf4cehOEikFjCnprDzeeLkme3U2QJYS0uUn3kG+X3v21ARLjmd9Hbu5KNFicmmKbKZOD7ZSbsUIhjqwlZzyF6vULxcNIpspVLYti0UODW1evV3rIUF9JMnRaBkVYFTf4+GIYKDqudC7e5G3rULJRoVpCccRu3vF5+9oojxxNVjj6+A52XtszFTqXpQk1QNIVUu+sy0wUEx+lksYltW3d9ODoUwk0kqhw4JElj9Dsnd3Whbt1L+3vfAMJDTachkROHoDT6693JQWz8TxQRbIlv448N/zExmBt3UsWwLy7Y4unAUG5v7h+7n7079HWVjxWNztcWS1tmJ/L73CYVjuQxVMnylyYZNbGITG6Mn1MPHb/wEL4QGeSmwBafsQFI1ZkePYRTzOEsGdiGPWtSxyimUaFQEL6oqdrFIoLkL+/g8RjyO5HSKdV9V0fr60C9cEPdPy1obZiXLpBt9PHH07zY5/quAjTh+KNLKYjnO8niSni37uLXzVgzLYCI9Uf/bLeEt3NF9B3k9TzwXA0kiZeTA7WZ6+TTLC2Mk2jwk88JzfDmzSFdDH1O5WRrdUZKFJNsatjGTmaE71E22nMW0TVKFFDe23MippVNMZ2f4seEfYzw1TsQdoSeyC7/qpeEaOL7kdBLu2sKD0oM8Yn1VhGMCksNBQ+cWHuh7P6Gmvis+X73wWyoh+f0Y4+PMRhQeX3qaRDFBxi1xrjBNSPZwb8edzM6eIegO80Dfe+luGEB2u9+aHF+SyHtUpo0FsicvEAg30aF78YVCWFNT4HTWOX6tyAvQea7IRzoPMt20SN4s4nUF6W7oxxvLgiX2+bLPd2WOX90LSooi1puahcjl3k/tPVycI1NVLKOq9ZyZa+H4aksL8n33icJ69Tg28hu+Esevi0yyWcjlaAt1MpeaxuPyMxjqR8sWwO0mogVpT0ssB23OuRIsLc+hmzpRd5RUKUVPqIc/fOEPOb4khGp2VUh2YukEv/PM7/AH7/uDDRXhfqefB3f9BHEjw4XUWD0UuTvUzT/f/SESpRRSUxPpUICYVGC16eHVcPzprRHimSXBf2tqXctC9nhImjnmgjaRjl7U9vb6OXQeOIA6MPCG4vhWJrPu8RgLC5scv4rVjTMpEqFy+DBWJiO+f9Vajr2wQAVQh4YwTp3asAH1duH4m0XwNxmm8vMklXK9WNHka+bJkW8xl5rGbzeien1YlSSzSxf4rqpwe+s+ZhM/ItIzRMtUBveFFMmbW/mTk99cCT2xVLGAVYsgIU8EOVzCSiYp9rTxyPH/UyfHqCqSw0E8OcfXDv05/+K+z1xV0NYmNoYcCuHYv18ERRSLBDWND3T/pCgSlhKUSwVOHfoGP3vDT+O6KUIhEyek+NiSddGYdIAi47j5ZqHiVBTaKw6irgiL9tglrxX1NtJecYOqiiC/e+4RHeTlZVqev8Bnb/01Pvfcf+bw3BEwxeK4r/Nm/sNdn6U/2H3dN5CeUA+/dOCXeN/A+5jLzKJa0Gp6aEtL+BaKGLExzPn5DT2kakXTRDFBi7eFJ8eeZCozxUJugVg+Rlegk2Qmxp+99L/p8XUwsnyB3Q07UJfjLC4u8rVkko/2PFQPNnmj3QivOCYqy5iLi/Xubl3FL0nkIz6mSZFZmsRnKnSUQnjm4rR4vTy89SeY1mOUQl587uAaRY9j9256Uos0xnuJFxNILtcaRcnlPCAlpxO1uRmam+vjeLVRWNswhGKlsxMluv7aUA/ulOW1G3JJIp6aZ7bDYKD6viWHA7tQuKzv/GpcrUda7X1cbnxP27FDkLT5efB4xOYsGERtbkY/exa5sVGkq5smZwf8fOnY/2BeyjKSOAdAX6iPhwYOsliqYFbfX16zkRsa6qoPMxa7LLGQQyHCw3vwXfBhFqZEBkQ0SuWll0RCfXVMUEunkb1e1JYWQVJzOVBVChEvs20aWT2Hz1Boz8q455aFaqRqbSQHg6JpVtusmKZoZjQ0IPv9a/zGJadzQ//xNeolSRI+3ZKE5PMhud0ojY1XHY5SL2DH4/VpFjkaxXnLLajt7Wt/eZ3ntHK5tYohSQKHA2tmhkq5jOvgQaGAMAwkrxc9Hsfhdr8hN9AvF6vXT4CiUeTY4jH8Dj8lo4RDcSBVR+JfXHiRf7b9n2HZFgWjUH+Oiy2WlFDoLUeIN7GJ1xvevMGecgPHCyUWclPg8WCmksKGLpOhr3kbgSLYmQy2ooiR8WSSxp5hWpfKwqquFmBlmmCaGLaN0tKCFY+LF/F46rYCmxz/1ceVOH5qeY6z8dMcaNvPe7e8l+nMNJqksZhf5EzsNBW9hCVLYENI82PlcuRMcY8tWisFRMu2mFkeoynURl+kH8u2+Nw9n+Mrp7/C+cR5MmRQJIWb2m7iQzs+xGe/91kqVoWmZBO/eftvMtw0TOg6feDlUIg+934+0dTNVHKCbC6BFwftJRe+uTxG5gKSomzI4VYXfiWvF2NsTORcjX+TeG4JIxIUYaLFDAWHg++aT3F7w43MTZzkkezf85GeBwn6G4SNxVuJ48syF5oVvr90iOXsEl7VjRabhEyO9/e8k872dmFTUrX/WF3kdezeTTgeJzC7MrdtL2dWFLWX4dQ1jm85nSuNCY+n/rjS3IzS3LwhX6op3yWvd22OjCStnRS4Do4v+3xXzSOvxPF7W7bycP8HmdGX2dF/M09OfI9SNoXTVrEKSRqaezjYcDtTAY0vHvsDxhIX8DS1MZI4R1+ojw8Of5CSUaoXwDVZoyfUgyIrVMwKuqVzJnbmsrYoPaEefnH/J+nxdJBYmsSreuhoG+IPD3+ZUwvH0RQHzY4wQ5038EvuX2FPyx6y5SzjxUlmnTNUBixa5A564uBZTGGXxX3ASibJlbX61OoaNXS1GVpwSqI4fJGK/o3G8dd7zstxfN2ycP3Yj0EmI8Qxbjf64uJbluNf0jgzDGGHU52mWf0dtBcWkLdvr1vo1HDxGvV24PibRfA3GXJ6rh7gZi4vg8vJXGpaPJaJ09ezh7miQbGUZXZuBHnwnTTvuIkHtz2E59BZbGBL1klf81bG5k+LG61hgNsNlkVf0xDDzTtwBBUqhw4xq+XXkGM5EECqfpniyTkmli5cdcFpExtD9vnQenrq42fteYmHux5gWsuTS8XwoNG2WMJ9bA4KBdCXwO1GvqcHY2wMc3q6bgWgBQI8cNP9/OPcHPHEig9uNNTGAz3vwTOdQtrqwZybw4zHkQMB1FAIDIObzWa+fPd/51R+jFQpRcgZYrvSTq/a8bJJpd/p58a2G9kTGKTy/POiSKcowmOZy3vj1YumiC77bGaGUrmAXimh62UMXyu6anN88RiDLdtJLZdIF5NEa6GgyTmme6rBJufPk9zSxpnEOVLlFCFXiOHGYZp9r99Yz0b+deJBGXN5WdjdIPzb7UoFtb+fGWeJR079DbHpkXpwYkNzDw8MHqRtMo3rzCjburtR3V2XEEHJ6STU3MWDzg9d4l99JQ/IGmrjeKgqxtgYdqGAXFUM66kUVk8PamvrJZ9nTs+hSArNjb1Y7gYK2RQuVOxMlsXZc+TsMlIoJNQiqlpXt7zW5EVpbEQbHsbu7RXdcEUR9ieJhAhglCQol0kOtPDFk3/MeHYKf7ARj+rhoW0PEXFFKFhlhu77cex0mrGRQ3h1SagWqhsRs7kZ3eXa0BbFLpex83nkaBT95Enw+zFeegkqFeSmJlEEkSSsYpHK0aOwdy/W8jLG6CizjRpfm3iEeGpOnEenk4grxMHBd9CessWInCyLIJNQSDRBVikFLxeEs95xriHHbjf66dNCoVJVi9TGWdWWlss+V43cmrEYdqmE3NSE7PGAbZOaG2euMkNBsy8bRmQuLWElk2KD5XCseAqWy1CpYGezlJ94AqWrCzkQEMdrmmjd3W85krx6/QRRFLdsC0mSMG0Tl+TCtE0UScG0TYp6EcMy8Kgecnrusg2xTWxiE68cbF3HWzA42PdeHhv7BnErV/fS1XNZPn3jz/C9I18lTh4rmURtbb2E41uZjAi61nWR8ZBMInd1YS0vC0/PaBS5aiuwyfFfG1yO4+czCXbesJc/e+n/5cT8S5xJnmchP89gZIh397+Lr5/8KnalzM7W3WzLeSm/8Ay+PW2gabiVVffnambQcmYRt+Lkb0/8LSOLp9jasoPuYDdlq8zW6FbS5TTPTj3L7V2341SdNLgbaPY1v+w1XnI6CYaaGbowjZlUwTJAKYLTecXgwzV2IZJE3i1zvEHn5PwcTr8T3W1jGC5wyaiKRszOY3tcIhg2s8CMlSRIg3idc+dQBwdFJla5jORyXVNx7tXAdXH8gQFOuNP8hx/+J47PHa0Xj/ubt/Jjgx/g6xPf4cOd78ebyiG1tq7L8dW2NmSPZ0NbkMtxnTqnqynzV3F8K5PBnJ9Hqb7uJX7mul7ngXIohOXzUQh7mPWa5KwCPsVLu+lD07TXneMHE50Eig1QqbBr68eZ0uPk8gm8lkans4kSOv/3sS8zFj8vwv+Q8agebum8Bdu2MCyD/W03UTLK+BxeTsZOMZuZFcI0YE/zHgKuwIa2KHa5TEMe7m67ha9eOEmguYk/PPxlYoUY/c1bafS3YEk2STPL/zr6v/jZvT/LmeUzfPX43zMbG8VKp3E7vdzWfis/2XAzraNpIc6RZXyyS/B500T2eqsvaNf5sM/pf8NxfGNuTviEa9plleYbcnxFwc5mseNxyk8+KTh+KITk8aDLsrD7eYtx/IvtluxyeeVzXu9/db0eeomuX3UD6q2GzSL4mww1NZbkcqG0tFCSTFFErFSwsXEVdHa7e8kELXRVojvaxx27P4Lz5DnK8Tjk84QOn+HT9/wcX+CPRSG8+qXob9nGv77zV2kJiQ6cfN995C88JawOqt1aaXVHF8iVs6/5OXir4uLRrZCmETRNKlOHRafT5YLmZmF9URBJ7FY6vaYAjmFgp1K0LpZ5uPtBZjri5Co5Eexn+ilrDp7fp5EuHiXYILNFD9GQSpPzakwXF8iVLhDwRbhlsYRnoQhWHpjFfsf1O8DXU4nLZXA4sHM5KiMjIni1ra2uYK+N860XYLF6FL9YymHncph2CQyDsmKzXIyjmxWSpSRL+SUuZMboifQQkSSk6sRDziiA7OekJ8uXvvNrjOen68/ZF+7j0wc+zZ6WPdf9Pl8ONvSv0zSkQKA+RguIomUuRyazzCNL3yaeXVwJnAHiiVkeHXmUh7sexLNQbRxcZhSzJ9SzJsTOp/muOrjOSqVAkurkWGlvx5icrAfpyuPjWIODaNu3r7nB+jV/3dJmNjWFlc2KxOpAO/dtvRO/J4w21I7a04Ps8SBv2fK6kJaaP2J9rNOyoDoe6ti1S5C3YJBzvhjjmUmwLNyKi0/t/xR/9uL/4ujCUUCi1dtCb7CbX9r/i7SfLq8Umm1b+LZVbVFkt3uNH6ZdKGDFYuJgFAXHTTdhLS+jLy5iGQaSponvf7EIioLpdouxtUiEnFvhsanviAI4iLUBSJhxHpv/Hg+3vQ+H04kty0jB4MrIHIj/f5UhSLXRSDOVEqqQ6vfYmJmpXwdUm1FWVfkh33ffZTek5tISZjyOXSqh9vVhTE1hTkwwP9TCY8//HSnNROnoQPZ4iLgjPDD0AD2hnkuOCxDqM78fK5sV5zwUEv6UxSLajh0YMzOYU1PimEdGsPbswbFr11uKEK5eP0E0JG1sdEvHrbqxsamYFdyqm5JRwqW66Av34VSdOFTHZkjeJjbxGkHSNLBtOrIyD3c/yLSnQtp5WkzxZCTcT5+jo+0uZjstcopJaMt2elq3reH4di6H0tkpRpkLhZUR+GoORU3dtcnxX1tcluPPpOjd+q84o8TJShVGlkc4FzvL1099jXI5z862Pfz6TZ+h8dnz2IZBW7KFhoZOSmaSsK+RZCFen+Ta030TJ+ePky2kCDcFODV3jOniAhcSF+gMdLKzeSdjyTHixTiWbXFX911UVinKrxWrOX7OARNSjJwSw+fw0OFuwa8Ljo8sY6ZSYorwItQ5qiQx7SjwyOK3sc0I06kp9u18FwWzRJPdjCrLTKVnGEuMwbYPUAh58KQK5E0x1YUkYQPlZ58VPsK1c1/1jb5Sce7VwvVw/KVKgv859lecWHhpzXONJUb5x5Gv8YGudzNNiq14L++lfQVbkI2wWs29HseXPB6k8+fRensv4fiSponC+cgIcjTK4t5+vvbS/yE+OiXWGo+Hpp5tPDD4U/R4Gt8YHN808aZNhjImtu4RNkalEscdc4znpsTxmSYexc2nDnyK//3S/+bYwkv8zI3/kifGn6A31MfWxq3E82Lixq56cOf1PL/zzO/wpXd/gQ7DU7cRkTwerERCrNNAu6Lw8QM/xw/zZzGnbApWmaDm4OnpZ4kVYrhUFxF3hJAzRH+kn0QlJfYltk2xlOMHsz/E1WjxsYabcCdyyNEonc5mor4mlrNZ0WxYNXl7tV79ryXH14aGqDz/PJKm1Tn+ah/3i48L1nJ8SdOwLUtYp5RKazm+JCGNjGDt3o1jx463FMe/+Ptf/y7VCt1Q39fV7IjkcFhcE6r6ujSg3gjYLIK/ydAd6ibijpAoJpBUFY8nUA8xc8sO/BUJNZMn6vOh9vTQ07gFX9mmUvXeqqW3bvneGX57389xfmeetJknFGxme9seWqIrakTZ58MfaFzpHq4D3+bG+BXFxaNbdrmM7PMJgrRKJVHzzqI65sNFYy36iy8Suu8+vMdzmAtJ0ODcvka+dPb/ZXx0rk64trTu4Gdu/nl+dOybxCZOAyKBO2w6Odj/DlpH45d6SF4Dan5dViqF5PNhTE+jNDbWR62M6WmMYlEQJp8PORAQSqWLnqfW/LENA6cprmVFUTAUmXRJWKTIiGNUZZVcJc98fpHmhl68Sxnhla56iPsdfPHFLzGen16z4I8lx/jCoS/wn+/7z6+5IrwWVpfTc/g7PUSUBhHsaRTwOdy0x7Os/gZK1fTuaTNOPLu4drRQUdD9Hs6xzOFInlaHmy4HhDRtzetcrKC93hC72o3XymSQo1GM8XGsfB5teFisG6Yp1AILC2vG0Bq8Dfxg+gfM5eZWNt8OBwtWjudK57l/zz9HLkgikHHXrtf15nzxBsKuVLDicTFaXi0ap5RU/XO4rft2/vrkX3F88Xj9OSwszi6d4S9P/hU39H0S99gMkt9fV3LLkoS5vIxRKNTV2eb0NOb8fJ2kSD4fan+/SLM3DLHux+Mr64JpCpVzuUz58GFmb+ggPr0sQmGqUwK1zyNRSjLrswhJEmpTE0o4jDE6elUhSHU/QMPALpcxRkexikXsdFpYqAQCKD09mPPzqP39Yiy/1kBg/RDPi2GXy8LLr7kZY2ICO5Gg2NnMY5PfJp6aE6P8i4tInZ0kigkeHXmUj+/5+JpC7erjlhwO5FBIPG/Ng9LrxTh1SqhYaq9b3cxfTrH2ZsTFViZu1c2elj0cmTtCo7eRol6kZJQoGkVuar+JkCvEr9/x63QHuukKdW0WwDexidcIqxWj3rzONjmAYbSIoLJsFiQJ9/QiA1WO74pshYs5vmliTk+L+0tjIygKysAAjvZ21FUWZZsc/7XH5Th+8/FJmgEcDvZvvZvTDTt5b9+7CCk+hvUIjc+er/MD50tnePC+n+SR43/PgZa9HJo/TDIXoyvSy3uH3sefPPdlDjTsxDE1j97qoGyUWcovsZRfYjA6yGJ+ke5gN7PZWUpG6ZJ7xNWizvHTaeZ6wzx6/nHiy9OiwCRJhHFzf+vdtE2kkDwe1EwG2em8pABVU6PmPSqPjf8T8cwCHc3t3H3DQ/z9uX9kNDFK3sgjI9ET6uXOnjuYTE/hbWilUp7Gq7iRVBVbltFPn76kmXO1xblXA6u5t7fdSYcRxls0hQWhx4MxMrIiQGCF44/YMcaTF9laqgqy5mAyP0PaaTGpZOn0hQlp2mW9mq8nxG51YW1dju/3C0XpOhxf8noxp6exs1myboXHFp8mHXSgBvoF53e7SXkUvr70dJW7vXE5fsqTqvNXSZK4s/8e/urEX/Hi/IsYtsFibpEtkUGW8kscnTvK9qbtHJk/AsCWyBYS+WWOzx7lxMIxWkqd9XBQc37+ksBHb38/umwxl5sn4mvgVOw0sUIMSZIom2Uy5QzJcpIvH/4yHxh8gH9K/UO9sFks5RgrzzPbYjOQANnrxWepPND3Xh73P0ts7kK9ThD1NfHA0AOEO9c2H1ZfQzmHzVRhnszCNF4d2jMy7uWMEGE2N2POzLyiHF/p7BQNllQKVnF8NpgiWZfjl0pIVXHRJRzftkV+Uyz2luP4l6j5VRW5pQVrbg68XvE9rYbQSu3t2C6XaIgHAteU8fZWw2YR/E0Gv9PPA0MP1O0LJCQ6GvpIuGIM+Xtw6wq0KkheLw3RDrpD3dixtAgKCwaFGq5UAl0n9NxxbkIY5Du37EeNXnqD7GkaIBpuI56cu+SxaLiNnqaB1+Bdv/WxUYFScjrRdu3CymZXfK+qASVKZyf6qVMirGSVEhjLQlJVzNlZtJ070YaHWfbBH7zwXxjLTa8pljtVJ79z6PMMujpx1jqEtk08Pc9jU0/w4ZZ78eb0NV5wVwszlRJhTIEAit8PkoRSKmGXy5imieTziXRwScKWJCTDEEWo0VHUlpY1i3Kt+bMcmwJJoy3QwXRxHkmW8GreqlrJ5obmPcxmZgg5g8RyS8Q8LfgQ12onIV4yFhhbPrfu+xlLjnF66fRrWgRfHVanyRpD0SHGUmO4FTcuzUXFLGObFnd23MTgvCluYFU7pJw5v9KgqKrpcw0+zmXGKJTzDC6c4Jmx07Ru3cudDe/n6ZeevcTyZD0F7bVA0jThVZrLITU1YaXTOG++mcqJE9ixmBhDCwbFGJqi1MfQYvkYAWcAt+qmUEjXA03cDi8BnMTiU0Rz4jNabzLgtcbqDYRdLlOJxdZsWkKO6qSEJOHQXLwwfQiH4sApu8C28Dv8mLbG0fHnOD38Ee5uaMBWFGSfj8r3v18Po1S6usQancth5fPiey3LwvM6l8MYHUXdtk2ocNxuKJUo9ncysb2ZKTtJySzT6DEZDHRQQJBZuaEBKyk8ZSVJEptDVaXUGkGNNtY3o0pb20rQqc9XD8Jcjbr/u6oKr/RYDElRMGZmIJ8X0ynz85jpNNr27egnTqwQsepIZu0cXul8Y9vITidmtWE3G7CIT67ch+xKRbwnn49EMcFkanJNI0dpaqr73iLLKI2Nwh+vVIItW0RzoKZiqb+wJPzQVyWlvxWwunkOYt35hZt+gS89/yVOx07T7G0m6AqyNbqVT+7/JKZlckfXHZvF701s4jXGJYpRyxLcqbcXqbaRVVUkr1fYmoRCmLHYpRzfNLEWFgDB8ZXm5jUF8Bo2Of5rg40KlOty/EqFlrE4HYOD6BdOYaeT2KX5lSercvy22Rwf2/lhpqUMPzH0QUqajWZBtpzjDt92XFMJdJ+bieQsqXKaoDNIupzGsAwy5QyT6Umavc10B7uvywplNccvtUZ4fPpxEkYWW9exSiUkTWM5PsFjlW/zkcZ34E2XNrRFqTV/plkWgekOB0FngG8tPMnJpRM4FAeqpGDZNmOpMYLOAGFXGJ8rghSO0iGHxRNVp2Glxsa1gYxcXXHulcZqjm+XSpjpNFF3hIO976Uj6UFKJISwoSpgwLbrHD+lz6JK1WK+JGFpCormJFFKUjJKTGemKZcLHOcYP936YdqPTa4IHmBDBe3VolZY25DjV20B1+P4dj4vPl9VZcZRYHm+WsyvqsBlvx/J4ViXu70euBzHr/N7wOsNY9gmP5p+DofiwCU7Obl0kvcMvIenJ5/mpcWXGG4cBmAwMsi7+97J4y/+PbZRIpmLYSsdKxw/m8VKp4WfdlX9b4yOom3VyBZTNASaWS4u41ActAfa8Tl82LbNUHSIC8vn8Tl9oOvIXi9WsQiGgS5Z5BUTORhE27kTJRikLzTAJwZ3MxEfJZdL4FXcdPnaCYbW2tisDqad8Vs8Nvsky4sTYt0qlYgGWzjYcR+tE3PifuP3Y0xNvWIcXw4EMCcn67+zmuOvx8nX5fiKIhqFTufGHL+633orcfyL7ZbsVArHTTcJ69lYTHjzu1zI0SiO/fuxLestaQtzrdgsgr8Jsdq+IK/nuaH1Bp6ZfGbNyPNqT19TE+pCbccO9JMnsVaN4svhMI69e9cdTwMRMveBAw/ztUN/voYkR8NtPHTg4bd9YI4Rj2MtLQk1pseD3Ni47kZjPWRycSaXRkkYGZ6Y+C4GBk6HKPytLlAqDQ04b78dY3pajKbVRltsG9njwcyuM65qmis3GZ+Ps/p5LkwfF0VUt7v+a4FAIydOPkF0IEqHx4OVz9cDDuPpeeYGZIY7t6E0NFzTebFSKYzpafTjx4XPnaJAVe2tdndjzs4i2zZmVdWCogjCoarYlnXJzanW/Hkk99cszY5yb/fdfHfmGQxNQZZkjs29SE+4l5/a8VN85fRX6Ax0MBofpRQdItrUx4P978ebNUi5M+L1qq9TK/rXvMRS5dRl39dibpHTS6dfES/x1WF1iqQwEBngz178M1LlFOPJcXKVHB3+dm7uuJnHRh7jt27/TW6cFyovyeXCr4WEF5plIfv96F4n5wtjFC3hpeZSXcIHzjT5/ed+j5ZQO0515Ya3kYL2WiB5vStBN7aNtm1bvQCuDQ9jzM4Kuw5AOn++PoaW03OEXCH2tOwhlVminM/gkDUCuHCULXJ6HhDfhcuNeV4OZiolxgxLJXC7UZqaXpGQj/XGWreqLfQ1DTGenSJXyWEDFbMCJrhVF0a5hGEboGmkKKL09WEtLaGfPVt/XjufRz9+HMeNN1I+fx5txw7U7m7RIHC5sEolzNFRsUmKRACY39nF0w1p/vSHX2AkdgaQCHrC3N19Nx/d81EUC8zFRaRQCDkYBElC9vuRAwEC0TYx5jo7u+Kb2dxMXrNFQy42taYhV/MDRJYxxsfFuP30tCD01WYWIEZ5Fxaw29uRo1FkpxPL4bjkHF4ONXK7umGXs6qK9+q442rlCVxq+VHzJqw8/7x4nzWbnlqxaHkZbds29DNnVhSU1WYSXP9190bExc1z3dIZT47zSwd+CUVSiBfjBJwB/E4/E+kJ3jvw3s0C+CY28TrhYmWi0tqKOTm5Zk1a7aEradomx3+VMBof5cTSCRLFBBFPhJ2NO+mP9l/V32ZycSaWLpAtJPDZDjqkEN5Evj7BWStQvhyO77MdDFtRKiNLmDMzUKlwYXsjRxaEJUPGaWOVK6RKKbqCXUylp1Bl8fyZcoa7uu/io7s/es3r/cUcf3K4gaWRFwWPaGioWxNgmsTjM8x2VhjMqyKgb50CVI1X5c7PicJeOEzKyKIoCiFXmGQpiUf1oFs6Xs2LYZnkylmaPI28s/9dBKUWcX+3bdHshnU5/uWKc9lylon4KNlsHJ/qocvfQTDYdN2FotUc3zYMrHQaKx4nZizy1dkZPuK5HU/BQG1vx8rnUWvZM7aN5HIR9kWQJBm/N0KmkgFsUqUUJV1woQZ3lERsmrHcDM4K/IvW+9dMjV7Jh/1KkEMhJE3DKpXW5/jbtwuriXU4vl0NY1RaWsg7lsS+s/oZSLJ8We52tXitOP5WtYW+hkHGEheQnE5yZcHxy2YFt+QiXUzyN0f/nHcMvpedzTu5sfVGhqNbiedifP3YV+pWQyHFtz7HN00R6Fjl+CGpg75IPxXLwCE72BLdwlR6itHkKL2hXp4Ye4LZ3BxBVxjNVtCLRTFN63bj9IcItPeiNYVRgkHyXpWJ2ZfIlTP4XAG2t+3Gr/mEvUksVm/IAfX3m/dqPDb+KHErJ7LnLEt8jxOzPGY/wUcid+OemMBx002YU1PInZ2vCMevXxMbcPyLOfl6HL/mES6HQhtz/Or6+lbi+Os1z+1kEseBA0jVzCjJ6RT5DOk02sDA274ADptF8DctLrYvGG4c3tDTVw6FBPEoldC2bxe+adXAHNnrvSSF92L0tmzlX9z3GSaWLpArZ/E5/fQ0DbztybE+MUHp+9/Hml9RaMhtbbjuvFMsQKsCWSRNW6MCmdRjPHL4r3Bpbg5nzjBfWAJZpiXYRrO/9ZICpRKNipHJVZ5uktcrusnptFCMrrpZSIEANoAso3Z3kzpzdK3fb3VktmKJm0DJKiM5vciqKrr0siySo/1O1J7ea1JO2OUy+vg4+rlzogBe9eRGkrBjMQzTRO3pqXuIYVnienQ4UBoaxEjjOjennlAPH93xYSYCJ8ibRQ7s28e0lObQzI/4saEPUNJLTMbHuLP9NrKVDHta9vD+gfdzeyqMZyqNqeuEBvxi1NA0BRk2zZXiHRBUN36fLy28xBcOfYGxVeOJL8dLfHVYXaOnke+MfofF/CLTmWkSxQRezctYSgQodge7+fKLf8Lndv9rWufyAHR5WolG24kvzyA1NpLJL5FfXgBs2kJd2NksSmsrIDE6fQyX00Ozf60f4stVYdj5PFI4jNzQALKM7PdjLy6idHWJ4moqVbfSWT2G5u0UnnJO1UmjI4yVMcEEENewT/VAda9ytaEtq6FPT1N+5hnRoKqi5oe6UQDlteDiIkWLpvGv7/q/+P0f/g98jpVryK25aXBF0XMZbE0F0ySkBdAPHRK/UN0kEgqJTdLSElgWjl270M+cwapuLpAkpOZm4UNeKKD295OTKjxjHudPj/1tvQCOLJMuJHlq7Ls4NRf7b7iTsReewE4msVVVEM9QiKi/iQ7bT+Wll7DzeREkU6kwsXCWfyoeIymvTJbUGnKdZXfdH1JyubASiTq5WoMa2SwURGCSLKNVPQTtclm8F7cbY2Zmw9Ab2efDsW8f+uho/Wc+2S3uWVVViOR0rrFpWm+cW21pQbrzTirPPy9Gd8NhJIcDY3wcSdMwEgmUjg7M2dm6zZRUXeuu57p7I2Mj739gzc/u6r5rswC+iU28zrjYvkBpbNzQ03eT4786eHriaf7j9/9j3doA4Ka2m/h3t/0a3oqE2+Wlp1GcpzW2dg4/imHxrcN/hyKLwkvJLBPxNXB7x210LVYuKVC+HI4veb2CT1c5dXtGJhpqI56ao2IbaIZFq6+V2ewse1r2MBQd4seHfxy/w8/7t7yf7c3br+m8rMfxc2ZVgZjLYSGsHerHa9vk7DJytKNe4F+P48uhEMH2XuTFBrAsSh4NM2EScoVoD7Rj2yIMu2SUWMov4ncF2N64nZDuwZicBF0XPsKh0IoKvLqXwTAEX1XXL3tMpCZ45PjfE5saucgy4iC9nTuvS029muPbpRJmPA66jpXPEzdSzO60GJhNYpimmOw9cQJtxw5RCAe2urpoDrWjuFycWx4hX8lXC+A2N7beSLevg0Pnn8KwDEaXzzPdnGAra+/dL0fxKjmdKN3dmOfOiQD21Ry/u1s0bdLpdTm+0tMjnkNV8bvXCTa8Ane7El5Ljt+s63z6js/wxaNfZi43j0cTAh236iLsjpDNJbCxeW76B6QqGXY37eKRI38N2CCLPIadnXsZroSxliYv5fjVpoDU0oJj1y78+WV+rP8gP0qeYD47z1R6ilQ5RW+ol5s7buaZyWdYzC/y9NTT7Bq8jSNnvguVCi6Xnz5vB52mH0mSmDSWeeSpvxXNzerEcEOwhfvb7qEjI6/YsLjdKO3t9YnyaVLESwmxN65UVjylEWHJsx0mAzMlMZHe0YEcibwiHB9Zrovl1uP463Hyizm+HAphyzLWzMylHF+WRcZU1f7rrcbxN/L+B9b+rLt7swBexWYR/C2Cy3n6XtwhkqDuw6v19V3VlyHgi24mxK+CEY9fUgBHkqBcpvTd76J0dmLNzoofh8NoN96IncmILmvYw9dO/CWpxBxbdtzBoZG/oGwJRfT51CgtvhZ2Rbdj5fNMxEfZ2bZHPM86nm7a9u3Ypil82tJpcSMNBNAGB5FDIdSODiSnk7C/QVhXQL1Db5dKOGQNJAmX6hbjtaGQeLw6xhbs6LvmIBkrlcIuFET4HIgbraJQbI0w6/aRs0oEoiYdegBXa6sgnG63aBZUb6Qb3ZyCoWa2Tcxjl4pIihefYvPlmRc4MXNU/MKqG+auzn3cENqGP5XAdrshEKDT62egcYjR+AWcbj+yYVJILWMrMgMdOxmyo6J5cdF3YjG3eEkBHF6el/hq9YONzXRmGk3RVkgzIlRlLD3BzZ23cHbpFKfK07QSQXK7CfcO8YHWEF878lfExk5T8RjgdNIe6uS+rruYHj2GJdmUwi3Ypkmlsk4qPdevwgBxLdnxOI49e+ojbcgycjAogkiUlVHO1WNonUrrSrZB1f9w9cajkxBwfYnVZip1CTkGsJaW6gGUr5RaZPX3cQ/N/M6d/4GJwjzv6H8nZ5ZOI9ugF3LYCM/+XV03Max1AKfqxBevt17gQJLA4UA/cUKM+K3ycrMXFqgAzjvuwBobY25rhFhSBGghVQmtZQIS6UqGM8tneWDgftLBVuK5pTpBjPqbuL/9PtSnnqNSHZcHKA508tjMj4gnZlB7e5Gqyo5aQ+7hjvtxIXz5JadzZVNeayLVmmzV9yCFQlAuY8TjIri5XBZkeft2jAsX6pvUjUZ2Za8XpaNDrCXpNJ3uEA0tfcRjk0JN5HTW14uIO7LxOHe5jORwiFHJKpTOTqxaKn1nJ+bcnFj/uruRXa63bFL6Rjzh9R5F3sQmNnF5XM7Td5Pjv/IYjY9eUgBXJIUfTj3LZ/Xf4t/u/TTPH/pzouE27r3xg8RKCWKFJVLlNI2eRrLFNI5wlKdGvsV8fBKvL4zkdPKDxEt8YufDbC368eQNzHi8npFzvRy/FnJmzs+DaeKejXFw2308xpMkHHkoWnhxcVvnbRxoP8DR+aNoioYiK7T4rj0ocj2O71NWJkztfF7cPy1LFOgBvzuEVFnx6d6I4/dE+2lo7CJRTOBxB1AUFd3SOR07jSIpOBQHelW843P4CWh+OioBZLcNgQDxBg9nNAfJ3DJh1ceWnJvQyXGRc9LdjWXbl3D8bDnLI6e+uqYADhDPLfHoyGM8bLuIuK89m2YNx682KWyov0bOEhzKzmaR3G6seFzwKwQvam3p59OhX+ILz/0+WXcTjqCbBneU3lAv7+y9j3987v9DN4tIbjcVq1K1hby0gf1yFa9KIIC6f7/gclAvhpuTkxtyfEyzbs/QSYior0nY3IDgb1fD3TbA68Hxb6SD/xLt4fDsYfJ6jnf2vYNj88fIFlOC3wOpfJx7t7xrxcIGCWybne038Ov7fpnGQ9PY63F804RSqc7xO+44gDn2Pe7pu5N97ft4buY5VFllJjPD4yOPo8oqzd5m4oVlmhu2gaLgVt3c3n4LDzXfi8/WKHY28bXv/R7LSxMr7ycYJDZznkeWl/no1p/EVxTHXWvIyYEAdj5Pzlix1FmxfVyxf8yZJcHx/X7QNGGH+ApwfNxuYa0Si13C8S/LyS/i+HaphNTSUrdxkTs7Mefnkfx+lM7Oumr+rcjxN+IJbxXbl1cam0XwtwmuNx367YJrtTWxlpbWFsARygcrlYJiUYy1AbaqovX3U/7Od4Q/o2Ewub+H2PnjdGy/mfOJC1QwSetZypWiUEwUM2Syce5o2U92aRbL07PhYi2HQjgPHEAdGMCqjgJKbrfo7K76fLc372Sg+wYuTL5YD/6QnE6yZp5dvQdo9DejuAJrVBIRd4Sexi3XfC5tXQddF+NMLheUy8wPNvPY7JPE0wtg2yjJFiKuMO+P3kDrVB4lGFwJHrnMzWn1Zg+gZTLFr+//VX6Hz3Ni/qX6DXtn2w38xh2/QeOR8xipFKgqZ7eG+aMX/ifdTQMcn3+RF2NnCbujbIsO0WR7+OSWj9BQ1jDm5lDb2tZ8N04vnb6kAF7D9XqJr1Y/lIwSqqxiWCsEXBJbWSRJQrcNFMVB0sihbbsNORQiR4V82eCG/tsxW3ZjqSrnJl7ETCWYfOlZTMsQ5MjpE17V0vrL/fUGIkF1I2NZWPG4UINbFtTOW3Ucu2Y/s3oMzafLa+wZlIYGzOVloq4IB3vejXuhqlzu6sJMp1HWURJsBHNx8RJyXIO1tIS5uPiKEOT10BLqIDKT4jcO/Cr/6Znf4cTci1WrH4ud7Tfy6/v+De0lB0Z/dZzasrB1XYSYRSLC5sS2BQmEFXsOTYN8HjsWg3IZx+7dZBaPUjCK1Wu+RlBXLElM2yRdyfLxOz7FtJ0kX87hDzfR0zyI9txR9FUFcIAZ0sRmzgl/wXweZdV4Y6KYYKocYxCh7LFNEyuXE+qgxcX6ZAkAXi+S34+5sIDc2Ig5NweVivjZ7Cx2Po92ww3Y1UCgy3mEMjmJ0t6OUSjgnl7kYPe9PGY/QbKSRm5uRlLVNdZf62G9DWDtepLDYeRIBHVgQATzVgvgb9ek9E1sYhNvTmxy/MvjWm1NTiydWFMAlyWZkl7AsExemH2ezF6h1o1XUpxMnuUvXvz/eG7yWQACnjB7WvZwR/ddLJXiBCMtjOVnSGQSHF18iYXcIh9svpfbHFvoTYawPJ6XzfG1vXtFTsfcHNg2rSOLfGTrQaZ6g7yw9KII4lZUYoUYgw2DwPUVIGEdjl8sCvV5oLnO8amG09mlEtFoJx124Ko4/mrrLgkJj+phf9t+jswfIVlMUjKFWnV/237e2f9OOmMGzrPnMGWZs1vDfOlHv81YcgwrlwO9Ql/zNj51888wdDouimSl0iUcfzI1STw5u9aaoYp4bonp8hKh61BTr+HWq1Tx9cdlF5AVBWOEklnx+VDa2uocXy2r/PTwPyer59Atg1Pzx0lnYvz9U39ExarU92wOWcOruGvDlGvwchSvkqZh53LY+bywxaxxfEm6LMfHsup7NW+hxMG+9/LY2DeIlxLIkQh2sUhYC3B/1+2400XsoOMNz/Gbfc3c2XMnf3H8L/jo7o/y5cofcmz+pbqg5cb2ffzyDb9IixWg7+CXSVWyhFQ/w+UgDd88gRQKrc/xZRk8HigUsGMxfGWbg7t/gj87/3dEGtr53vj3WC4u41KcBJxBVFllZ9MO8pU8g5FBbr7vs7Q4o/QZQQK+CEpzM2dOf39NARwQr5vJEC+XmTYSbGPlHNnFIgSE97lP9YjPWdNEI6NSqQptqpO6Tj9SUOwB7ExG2Ki+AhzfnJ5G6e4W11SlUuf4V+LkF3N8yeUSU+0u1wrH37IF2eerF8A3Of4mYLMI/rbC9aRDvx2wrq1Jayuuu+5Cq450XYJica0CUpKEP3OtU14lU+rwMOVDh7BnZuo+dTmzgF3IYxkVbKdEqpyiXC5QK2TZtkUyu8RUcAGlYqBPTa1J3b4YktMplCRVNcl6aPY180t3fIbfV/4Ho4tn64GKuqbwG7d8lhfmXrgkNPFyhaXLQdI0UbQrFpFDIfIehcemv0M8swimgeT2IHm9JPU8X88f4cOD9+GNZeqJ4Ve6Oa3e7MlNTeydmOCLt/4nTuvTJIspwu4wOxq20V5wUE6JUatkTxNfOv3HjKUnGJs/w+09+3lP37spmmWaPE18IHgzzd95AXOvAyyLytLSms51spgQRGCVt6C0SnV+JS/x9bA6rM6lugThr47ZKZKCZa+w2ZAzxA2tN+J1eHlk7rt4U0HmcgvM5GbR00nMWAy/O0h7uIuzs4dEARyE7UsuR3/rMEFHQJCW6vuQHA6ikY7r2gTVsCaMo1DAsm3klhZxravqGmX+xWNoPaGONfYMXtlFp+nHNbeM7Rbd/PKzzyJ5PGhDQ6idnVfXuV8dErserhDYcr3I5OJMLI8x55hFz+v8X3f8O3TbYCE7T9AVZIe/n5aFIpJLBU0Tqq2q/yMgCGdN+V0srtgIaRq43eD3iwJ0pQKmSSDaimd5bEWJU4NtCy94SSbk8ONdzrAVBQiidfZB3qBUS0tfhZxVFMcTDK67GSzIRt3XUYpGkctl5NZWJL8fKxbDnJgARUEKBIjdvpPTpSmS+iSRO1rZVvTTcOQ8ANbyMtbyMrLHI6xYWH9kV3I60QYH0c+dQxsQ4WzdpsnHb/kFZt0VCqp5ifXXethoAyi7XOByoQ4MoA0NbRaONrGJTbypscnx18d6tiZ7W/fyW3f9Fnf23Lnu3ySKCezaPRhAljBMo87702URuNbbvYcv/egLzKRn6n9r2zbTmRn+4sSf856Bd/PY2UdZzM5jVXnZmeUzjEa2MZ2e5BdUPwHTfNkcX+voQHrXuzDGxsR9VVXRKhV2TOk07Lmfx+e+RyK/0vh+JTm+BUJ9vv0+HjO/TaKcEtZiDgdRfxMHW+/BM5uESOSqOH7NumsqNcX2pu08MfoEbf42YoUYRaNId7CbD+38EINGGO3sjwBIDvfwpdO/z1hqXChBnU5wuRjPz/AH43/Db+/5BQLffRZt3z6w7TUcP6fnqFg6Ka1CxdJX8ml0wcFzRuG61NSrOX7d2qFaDI+G2mjPVPmxomBLEkpHBzgcmHNzTGSmeHz2eyQpYKVSFJcXyXoUusPdvHj+WYyqGt42DDwODwOBPhrcjZz1FsgZBfyKmw6tAZ/teFmK15fD8Vfv1Xp0nY+39zNVXCSzMIUnr9NRcuB59iRlz9gbnuPX/OLj2SV6fV3kyhl+9dZ/S6qcJl5YJuwOsze6m4FFMSnZfF7CnM9DObGGy0s+31qOD4LDezxrOH6HqfHPtjzIC9mz7G/bh6JoVIwKtm1RqOR5fvwHDLVsJ6oFeUc8Uj3KPHJLF3Y+T7aQuvRNVL29AfJGHlYVwWuKa4BOKcxg1x4yeo5SqAVX2cRKZ1icOkMo3Ey76SdzaxdnSzMkt5iE1ShbMi5CIzMgyy+L49umiXLLLchutyiAXwUnX4/jS6oqzrXPt8nxN7EhNovgm3hbY42tiabVO9tWIiEKcH7/+opwt3slcKWGmr90NeARQJZlUQCH+u/6FFHoLJXz5GWdVn8ro/oo2BJIVIurJiFnCAcKVFPlX+7mZk/LHv7Lu/6flWBHZ4jhJhHsuKNpx4ae8tcKORRC8niQgkGsVIrZ9jCJ2ZS4ycqy8BPOZrGzWeI+H/MtbrY1daK0t6NEo1d1c6pt9hSEJ1h3KkWX3obUtHKDq5w5Uz0gmXO+AhdmT4qflwq8cOrborOtqqDr3HhvJ82riIldqaDHYkjz81AsEnS6hM9mzce82rmvqTBCztA1n6eLFS9BVxCX5qLd306qlKJsCiK3vXE7w43D/N3Jv2Vk7jhKxWCqME9ToIUP7vznxJUcpmmSXpiihMXA4AFGzv6g/jpGpcynD3yap89+k6XJkfp7iIbauL/zBrxFE66TD6wZwy4UkINBHLt2CS+4UEiMuEnShmNoq+0Z7HKZyuHD6OPja4qwdi4nnt+2L7tRrGMVmVsXrwL5GV84yw8nnuXR4//AXGIC27bxuPzc3n83H979ML0tQyJ5vXAGuzopYheLWImEIMS2LVQ2Ho+wGVm1saiNSkp+P3YuJ64506TT9NJouRmKDjKydGbV0dgEXWG6g11sd3YCgoTWzrtZHTW8GD65Os5sWes/7g6iDXVgzM9jjo1hLi6KEcNoFFQV5z33gKZxNJTnyy9+kfOJ86g2lIo5Wvyt/Lt7fpkdz0wIz8BSSZD+1Ue9gUeoY/fuNerGSChE9Bo+w4tT01dDcruves3ZxCY2sYlNvLmw2tZkdVH78OwL/Mfv/0f+xP8n6yrCI+7wynQTYEvVe3JVCBF0BpgHDMni6PwRGj0rdluSJGHZJqeXT/Nj236MxfxivQAOIEsSeb3AC7Mv8J7ud7KnHHpFOL7a2ipsKpaW6pYfSlMTfT4fH2/qedU4vuQRwpb2pQoP9z7EbMAmb5XwpIt0+trxO0PI266N4/ud/rpX+Z6WPesee+XMGSqA0t7OSGWGCxMvInk8QihQ4zGGwYWxI4z0zHKTYazL8XUrxUuLx8hn4khVUYHb4WUoPECgLOFTPdelpl7N8eOGIQK5MxkijZ080HI37jPzoCjIra3I4TD68eMY585RCHn4x9T3SBhZkZ9k22j5EqrsYDo7w62D9/L02W8B4HF4ubPrTu7rfw9fOfetSzj+g7t/gr5i53VznJfL8Vc35oLlMkMXptHHi1WOL4rZb3SOX/OLH10a4ezccYqFDC0NPdzacyexfIwHdv8421t34UkV0PNnRG7PxRwfkeuA230px7esdTl+R9nF89ksseziNXN8n7Y6IrUKeWUN86peWEW5JVVFaW7GXFwk6SwzsTjDDyaepoiBXS7T5m/n4F0PcUt0DzNyiS+99HuMzpzEzgvLn77mbXzqwL9k8Mis4PIvg+Nfa5F6k+Nv4nqxWQTfxNsadVsTp1Ms2qtIr1kqiZGraLSe8l5LWG53hXAODWEnhELYTqerT2ghNTeLginUgyaAuoKkLSMTbejEJTs5FTvO3rabqBhlxlLjKAj/u57GAd7b+y7ymTi2N/qKpRg3+5rXte24nKf8tUJyOtGqdjCVY8fIlTLYhYIgew0NSC6XSLGXJOxKhVwxg7bjlutWK2ykfqqHRkWjJLNzK59trXFhV5PjFYWUUfXuq9p7yI2NwnNueRl0nYE9g/S6WhlnXhBMyxLvyeejPzrAcNNw/XVXByT5HD66gxtvNtZTvASdQQ7PHSZejNMT6uFDOz7EP5z6O5yyk+LyHL5QI9lyhmwsw1dO/B8e2v4TLC7OI8ky5YUZtt14B7t2dZKzy/g9IboaB/AtQ4f7VmYGt5E3i3gVNx1lF57Tc+h5Dce+fddNEi4ew0bTUJqbsYaGMM6dEz5xVzGGZqVSmMnkuipkO5e76maQ0tyM3NS07rik3NT0iivlMrk4z1z4Ll8//ShziYn6zwvFDM9e+B4uS+Fnb/0kAW8YSdPEe8xkUPv6kLZsEQTZ5UJubqb85JMwOIjU1IS9uCieyLbF71gWclMTqCp2Nou/sZG7nduwd/8L/vTY/6qT5KA7zD299/Hze36G1gWx/qw+71I1LM2q5gLU0F7QiAZbSTmkupqnhtrYtJXIUTl2TIxyyrL4vOfmhKd5Msn5oTD//vuf5fDMC9XRSYmgJ4yr4uW/vvD7fP6O3yA7do6CN0VAhQ6vD29BNBM32mSu/n5buZwIXF0VOnyl0N5LUtNrP98cidzEJjaxibc0arYmdnVCajUOTx/ixNJx+qP9azi+7XLS6G7kPUPvYyw5TqGSZym/widuat9PoKocyFUEd5RYKWqZpo5DEZOfBb2IZa28rkNxgWHikDWKRolFK41ttLxiHF/2+da9J76aHN9aWhL3VpcLX3Mz26QQleeerR5QAnvPHrQdO66b42907JLTiRyNYkxOkuyrrDxg22v4PYaxIcfPO+GCc5Kg6SBXqQi1rqpSrOQZSV7gvvY76HQ21Y/drvJQW9c3DP1bjdWB1NmeOO5Mkba0hGtkHNvtRvb70XbsQD9+XFjM5PPMdjiIT4jJZGNiAq2/HzSNQLZCRbe5d98D3N66H93UaVFCdLQO8Q9T32A5PisKqIoIY01YOR4b/QYPK77r8jSv4e3M8Wt+8bNLY/UCOMBsepqnpp5ib8Muvn7s7+n2tOD1Nr9hOH6nGqmH49ZhiNyoaLiNTjUC+qqgXbcbpbmZrGry6NNfoLQ8zS53LxmpTMUHTreP2YXzENzJF1+oTpQDkseLXcgztniGLx7/U357288ROioaGnaxKDzuq6KaK3F8K5fDXFrCTCSumt/X/n6T42/ierBZBN/E2xvFoiBFFxXAURTk9nbsSoXRUz/k0clvEi8mkQBzdpaw7OUDt36c5nhchMA0Ngoi0NmJNjiIMT4OrBoxqinEJQn3uQke2Pd+fmCOETIiPHr6q+xr28utXbejyAqKIQIRlxZGGQruqo8EvZkgh0I4hodRWloIJc6iFo6Lolm5jF0qodTCNmWZQHPHqxJQoTQ1IYdFGFFIrnakayr9Ss2fzwJZJaT6kKKIxwIByk8/jZVIsPiumzglLZEqp/hg38c5OX+MJ899G72UB8uiz9/Npw98ut5YmEhN1H2uQYwqRmQfB/vfR7e7ZV3CvJ7iZT47T17PI0syhqmjGjbF5By2ZWLYK9fpaOwcFbOM0tCAUSohVSpUSnm2L1hIvjBqcx9UJDB0PFOLCCdIBahU/wMzmXzZKqSNGhFaV9dVd/jtKgncCLZhXNVGUQmFcN5xx/rJ8Xfe+Yp7BU4sXSBbyTGXmECSZLzeEKjC312RFEZzU0xMnWTY1yuU3vPzgvDH4yKsqaNDhMMkEkgOB9bCAo69e9FfeknkCEiSsDeJRtF27cJOJgVBbG6mK5XiITzsvO/zTJUWKRkloq4Ig442eh3NSJ1WXR1SbwqFQsjBoEhMn5mpF8I9C0ke2P0Q3zBPEy8si58rilATDT2IO11EP3tW2J5IkiDtDodQXhWLZFwSTy2McHj6EMKbXAJs0oUkM0j4XAG+kX6BhfPfQ1rwI/v9RJ1hDva9l07De8U1wFhYoHLokAgTqn2m4TCOAweuGN676Ze7iU1sYhNvP9RtTS4qgLsUJzd27CNTzvIXx/6CeCGOUSxwLnWBp6aeJujw869u/hRfOPT7LOaX6I/0c3rxFLtbd/Nvb/4Mx499G4CgM4BbdWOaVW5i2xRKOQhAg6cRt7qiWnWoLsKuME3OKNlCUih8FQ1JeXNzfGt5GasqdLFSKczFRbSdO+t8W62GeL7SUJqaMOfmMM6fJ6xVlfirOX7NvhDW5/ixGPP37mDi/CHu2/Iuvjv7LLPxcWzTRFIUwq4wdwy+g3DrFiSnU0zzXVxo0zThYwwbFsXrRfzmlSK61dkv+GyV39mFgrCOsG0RmFmFncuJcL9wGCuZxFGs4IglOTBlIfl8qH0dnLNzInTSsuqB5jW8HE/z1Xi7cvyaX3zGyFEsZFBljf7u3Tidbkp6mXC4jdNTh/nWhW9xR3QvHV7vq8Tx/xtT5UVKRpFQdQ1xSw5KfY34Ve8lHN8vuXhg+AM8evpr9UK4XSzS1DvMwa534ZnPYpkmKApKKIQ2NISZTjM+8jyxiTMgSSipFJFqdo6VypCWspzeMs/ozHFQRPnQLpeRHE7sSpmxxdOc351nv8cjJkRUFXNhAaWhQXhzX+ZzeTn8vvaeNzn+Jq4Vm0XwTby94XaLEaGLCuBKXx/mzAyZ5CL/ePIviCdmkaNRZL8fq1AgXknxtR/+bz66+2P4K4i07JYWUBTMkRFBaiwLy7KQOzuxFhdF0ah6s2s5fIEb33Mj0Z5t5CpZzi2d4cLSCHq5SGeoizs6bydRSdOpNoDT+aZMMZacTtTWVrplnYjqZ3lxok6AbABZpqG5h65A56vy+rLPh+PAAYyzZ9lS9NHfvJXR5fNITqfYFBkGINHfso1BGlEH26BQgOoI20vv38HnfvhbHJ55HgAFlXdtfR+/eu9vUswkCKhehpuGaW0RpeVsObu2AF4qYS4vEzMMHkkkeLj7QXyWum5Kdg01srxa9fKVo39NMb5Y//dK8rhAwSggeTzI0SgYBoGmThxR4RFnF8Rjq0x7RJhRzcqnlub+CqmQLsa1eJRKNTuijR6/hmaQ1tmJ/L73YS4uCn/Amn3Oq/A9ypUzlIwikiTjb2jlQnqcdDqFJEmoFmTMAgtyjoGjR0HTULu6kGRZTItIEpLbTeWFF5ACATEhoeuYMzNoe/eibdsm1iZNQ2ltRZJlpKamemjSRIeD2cQ8c3PT5BemWRg/jaXKnOsc5P1Nd9IT6UULhVjSU5yerdoguUJs6+slLMuCkOfzYBjIoRC9/dv4cKKV6fISOaOAT/XQ6WwiZPowJkaxs9lVH4gkEuFNE8nrZVYrECtUw36wqYd0YuN2eJnOzRIrLiOHw/XCezy3xGPT3+ETt38K52XIqpXLXUKQAaxkksqhQ8j33XdVivBNv9xNbGITm3j7IOKOrLUtRBTAb+u7i+dnn2dw7gh/e/JvSJVS7O84wP62/SSLCRYzc3z5R1/kw7t+mnQ5i6qo/Oadv4FWsXjh+UcpSxa2ZRFRA9zVczfPjD9Vfx0bm4n4KPcPf4AGdyM9kT4KpSy2YdDkjHJH+y08N/Jd2oKdtKgRcLy5Ob5h21SOHsVKp+sc3wKxLwoGkd3uV+X1ZZ8PubERyeXamONLEn1t2y/l+LEYzvvuI7N0lPL5ESZHR7m1YxBp8AYqHg23wwOWjewWoaV2uXxJAdwulTBmZjDm51G7u7Hz+br6dKPPs27luIqLVI4eFUXTKkRg5ioYhlAJB4MAazg+tk1eqawpLl/M8XOV/CbHv07k9JzIiTIrqLLGgeH7+NbEk4zFLwBwKnYK1Za4zfEOHj3yN/x09D4CnZ2vCMcHULq6SC2O8J3TX+elxGlG4ufIVrJ0NfRzX889OB0ePnTDR+jSvWunJHt66Jqc5KPbfpJpI0HeyONzh+jpGMYdz0FTaUWl7XRimybmxATZ7PKqD0QS9oW2LRo0brfIv5KqNROHQ1xnqgqVMiCRNouoPT11SyYMYaei9vdvWJB+Jfg9bHL8TVw7Novgm3hbQ25qQmlsxKyGNwDI7e2YMzNImsa0GSeerHZRy2XMQkF0RRcXiSdmmY6PMVTyiwW6WARFwbFvH3YuJwih04nzrrsof//7WNPTdQIgt7WRd0ocO/1dPtr/44y0TBDPLuGQVDKZZSbmz/Lz+3+eoK8TtaXlTd3NDIaaeXD4IR6RHxHnskrMouE2Htz6AYKhV++mpba0gGHQcOQIn7rpk3zx2J8wtnxeKPRtm/6GQT594FNEzqZANVA6O8lR5tx7dvEHx/+EdCVLW6CDhcwcJgbfOPsosUKMP7rr83ROZdFag/XXmkxNrlGAm8vL9bG/eG6JaSnNNrkRfWICpeqpeKVRSoCwO7zm37au43cGyFaDmTyqh5xdQgkGCZVlOk1fPYykNuJmVsfubMMQBUhrRSVjlcuXVWe8VpBDIZRwGCuVumRcUvL5rrkZpIRCr0rR+2L4nAFcmhtnOMqpxFmShTgyCi2BVnyuAJrDS9wuEG8KEY0VsGIxZJ9PfBa2jXniBDidSKUSUjiMHYtBNot+6BCSz4ckSWjbtqE2N9evldrEwXx2nhdnD1NILdPqbeG+vXczPfoSscmzPJZM8ZGeB5n1ZPjiiT9lNHau3uzrb9rKp2/5JXZ17a6rJiSvF/3UKbzFIlvxAl4oA/k8hjUt7H9WeQrW/DYxTTBNcraOR/WsSpFfKYR7nT4Wcgt4NC9500Rpbxfem7JMyiUzbcQJ0rrhOTaXli4hyDVYySTm0tJVkeRNbGITm9jE2wc7m3ayr21fXcwAcGPHPp6ffR636iZv5EmVUoC4ry7ll7i99y6+e+5bnFseYXx5lOVSnAZfE6likhYtyoP3/DyFQgqXqdCpNNBy86+g62VenDtSv+vd0LqXn9v5CToSFk03/TKnEmcplwpksss8d+YJmkJtHNz6AN3+TrTmjjc1x1eiUdTeXoyJCcEvq9xScrlQe3pQ1stVeqVeOxRC7eujIV9cn+O3bONTO3+WyFiuzvEBnO98J8a5c/hDLiSHE7NSZm7qNEydRg5HUAcGkD0evO4AIKw81hTAV3H8egFbkkCWr5njc1GToD2nEg21Ek8JSxRUFcXvx1xeJuqK1Dl+reDuL8/UuZmt66L4WMuoAjxla5PjXyd8mg9kGYfiYGv7Tp6afoax+Hk0WWNfx352te4hnl9mrrBIe1Mvs1Ie3yvA8WtTBznF5KvL3+fF5BnOpUfJmQUkVWU6OcGT1pPsa9nL3x/9Sz4q7cM1MlHn+EpTE45bbiGsaYQu4vhrruNyucrxhcVnPRvItkVIp2GAYYjivKqK/CuHQ4j6KmVwCPsVvOI8BT1hrLkCjr17sYtFlKYm8XwXTeKsxia/38Trhc0i+Cbe1lCjUZy33kqpXBbe4Kx0o9WuLrKpyZVftm003aZ/9z2UJZOsnmM8FMJPK81PvSRG3JJJlPZ2tOFhUTTK5bA1Dce990I+L2xXHA7wePCmzlHJZzk1fYQGLUTY20lZMun2d4JhEgm3o3X0vqnJMYjubG/nTj5quy5RmIY7t7zq709pbERtaWFHpszv7P23nDUWSJUzBDUfW5VmmpQm7P4oVCpMW0kem/0ueY/KI2e/BojQy/7GIUZjI1hYHJ47zKnCBF3utTYuOX1FyWGXSmtInqJqpAIO/qk8SbKYJJILM1zppGukgrZtmwhF3ADDTTvob93O6PwpAPK5JH3hHsbSEzQFWnBoLqiUiIbbeKD//YRM35pxMAAzlULyerEWFwUBqhGSamK9VSzWg5ReLq7FE301JKcTbft2bNPEmJqqnz/J56snx78Rvws9TQMcWThCJNBCcv4wMgr9jYNMZ6aZzM6wrXErT48/xRndwcMt76EjV1WLlUpIHg9WIoHS2oo5Po62bZsgo+m0IJ5ut9hIDgzU3/vqiYN0KU2hkMEulZjNnueJUok7QruZSyeJp+eZa3bxhaNfZmzhDNaqz/18+hC/X/6v/Jd3/y4tHT0AmLVrYx3YxSK2omAVCkjBoDi+VQHAKAp+jw+XGWeocRsjsWqIT63RYlv0RwZwoVIIhZD9/rpPIKz97qz7+uXyy3p8E5vYxCY28fZDf7Sfz975WT731H/k8NwLAGiKE7fq5u6euzk2/2L9d23bYjw5zqcOfIrbOm+loBfojwwwnhznf/zgv3EhcYFiapn+jp18avjjbF2WwUpyo6bxB3f/N07lR0mWkoRdYba7e2k8PAKlEjd2hCibYbJuP2V/Czs7biDgCHBr952EGzdWSL5ZIDmdOHbtQlIU4YdsWSDLKOEw2vbtr+r7q9m7SQ4HOzLyGo4fcgYYjm4jmjWx+816no85OwuahjkyQltXCxF/k7DNKQjxiJXPY+fzRKIddIeE1cnFSuo1HN/lYqpB5VRhmUQhQUQOM1zpoGMkjeLzoW3fftnirtzUhNzaWt+DuueWOTj4Dh7jCRJGFsnrRXK5aOzdzgPd7yJIcI3dQ3dZIRpuJ7a8LMRXq/Ye0Ug7nWoDZjqN8gpx/Gv1Ra/hzcjxu0PdRMPtlCpFNIeLiclvoskaB4cf4uj8UY6/+OfotkFo6hnubLmZ9v4fg8LL4/irpw6mvXnGUuOU9SLZfLVQrChIksR0eorbum7nwswJpiPtDCSTdY5vpNPY5TKud78btaMDuDqOX8sGiqfn64Xwmsd8NNzOsNRMf9MQY7FzYsLYsuqP90f62erqRA7EsZaXkRSlPoV8uUmETX6/idcLm0XwTbztoba347j5ZnFzqFSQPB70EyfQT5/Gt22lOOlwehm8+z186egfcXTuMCDR5GlkMDLAZ+/7dW48lkKORLCWl6kcPoy2Zw92NVjRnpgAQPJ6RRdYlun0Boj6mojnllg0dKgoyC4XaVUlGm6np+PVJY+vJeRQiIh7F6HXwa9rdWhGdLnIbYSAEBJutL6h+qhjOrXI109+i6RVwDBWRvJS5RRkoCXQxlxmFoBkKYU2dN+a4/dpqzrVliW85gFFVgh2DfDHx/4n/3T60epBSezr2M9nb/sNbjp0COfNN2+olmmJdvLpu36VL3z/dxmdP4VtW6STC9zZewc/ue9juBwevJqX7tDGxWatqwtb18UGpaZacTpROzqQo1H0kyeRQyHUDUbJrpb0XuyJDmIc+YGhB+gJ9az73Kshh0I4DxxAHRgQ6hpFQfL5hKrmDfpdCPiiDLftwdBUzi6domJWmM5Mk63k2Nq4lQOt+zk68wLbtDYeq3yHh/s+iN9EXCO1zYqqIkcimEtLKG1tSD09UC4jt7VdQgBXTxxUrMqKqh+YS01Dx23iFzWNKTnN2OLZNQVwEK99YeoYp+aP0RxoFePDG5BU2zCQNE0EAFcqqN3dYgNjmvXRVaWlhe5IGI49zU9t+2f8Df9nJc3ethlqGOJA2wGS0+dRQsE1BXC46LuzDq702b9Rr41NbGITm9jE64s722/hj+7975zKjZEsJdEcLv7Pib/laye/Qnekp/57DtXJPb33MLI8wpde+BJOxUnEHaHF28K/v+ez/HDqB5RcOcaWz/OFw3/If9rzy0SXS6DrtE7EaSWE5G3HXsxiWzHMatG1bSbLe6ODzLgsil4Nr+qmb2AvAd+rp5B+rSGHQjj27XvNPXkvDsWLLpe4jRCSuxWtZ8WWxC6XMVMp9JMn13Am98wSB4fv5rH5p0jUrAFtm6grwoNDD9Y59SU2HTWO73RyZGeQzz31GQ7PHKorrvd1HuCzt/0Ge0/MY5smzgMHNjwXajSK6667KH3/+6IQblm0nlvk4e0/xuJgEwW3gk/zbcjx/U4/Dw49wFfjcZZWBU9Gg6080Pc+/Ir7iqGTV8vx1/VFv4IFzGq82Ti+3+nnwe0P8Ujxr8ij41Rd7Gm9gaPzR0kWExi2SdgdpqyXmM5M88Tkd9ne8vI4/uqpg5xRoGJW1mRB1cQltm1TMctUygUR0HsRxzenpjDn51ECgavm+N6KxMHud/LY1BMkzKy47l0uGruGuL/lbhr+f/b+O7zR+7rzv993QQcIgCDB3qZxhlM00ow06rIly3JsFdtpjlzlxJs8ceo+/u2zTnFLXHK5/BI72ex6N5tk17tx4rio2I7tWG5qI41G0nRO4bB3ECA6cLfnj5vEkENOUZ3h+LyuS5csEARugmPpg4PzPeexg/zu7gf44vNfZmC6H8XrxSkWWde0md+95v9D7NBplLo696TnEucbcyP5XlwqUgQXP/cUnw9PW5v7H/ZqFcJhrKEhUBT3U9FYC6n0OD07b+Wv9/8t+8f3A+DX/Vimwb7RZ/jEk5/mb/d8ipZ9J1HCYeyZmdU3YBeLaOvXY09OEiqWuWfdL/DwwHdJlefcEOD3Ux9YHr6uFJdyXteFlmYoPh+jZElrVdRIhKCis7jYD9xCeEe0A4o6KAr1oQSnrRQHjv6IudIccX+cjQ0biflibtEc3I6MapVo304e7H+Q6eyke2RxISTvG32aTzz+Sf52z5/TNTLiblc/x3/sr+m+ns9E/pIj04fIlN25zn3JbTQnLm6euhqLoSUSeK+6yg1QC0cl7UzGnVFn224gXeX3c75lQDNOgaOF06TLaaL+KI7j4DUVImqAoC+MomrMFGd4qP8hHtj5wEV3hOutrRf1c102dI2AN8AbNryRnvr1HJg6gEfRmZof43tHHqYuGMMbDJDKTTPmLbK5XIeysLRVW/xZ/X4ol7Gnp3Ecxz1+GI+7x16XBMilXdNe1ev+mVKU2m1lu+rO+CuXyZfz7u+7Wq0d1a2xbTKFudoboxUhVVHcN3kL405Uvx9lwwbM/n4827a5f15KJQgGsctlArM57u55Ew/3P8Svdr6Fyqb7KFplGiNN3N55Gz8+/gNoSKwogNcH6mvdVueyuOR2tSOTajx+5silEEIIsYTi87E+1kPnVBWnlODfGlL89PSPASiaJWL+GJlyhvXx9RyaPkRD0G1+CXlCGJZBf6qfrx39V35t6zv4zsFvUrTKDMwe55g5udBUccbSjM+SkRmhks3WlnVgmni6N6GGl3/fleBSZfyLWYqn+Hzuum5NQ4lEcBTFzTi2TcuRcd7dfjPjG4LkKlnCjoeeLTdRZwSpHjni5pxQCKWhAWdu7szc8/l5Jm/eyice/wj7xvbVOuCx7WX5vvW5QfQNG86baz3d3SiRiLvosVwGv59QMknTRY6S6bDCvCv2Okb37KbgVAlrftqVGMFUHnP8FJ4tW85ZBD1fxs+ZRYbNFBOVaQzHxq/7iYR0gj6HNj1BuOzOizb6+/Hu3HnRHeFrKeN3x7p575Zf49mZAxzrvJX1TZv5pwP/F5/ux6d4qBRy4NHxe4JU5tOMdb68jL/09xTWg3g174pdUIvLfr2KB6/qIex4zvz5W2TbOIXCi874rf39vHfbuxjOj5IvzRMOxemMtOM7cgolEGDjE6f5s+2/yYmdZea1KrFAPX3RjcRPTeDU16/I+EogcN4PSCTfi0tFiuBCsDJEqZ2d2BMTBMZmuKf3jTys/ICqR3EL4IqCX/UR9UXJFuYAh30jT3N41yhNExMo0agbsqrVlU/kOKh+P/rCc3UbBg+0rWfEmqNgl8/7ab94eS4U0JcWFwOeAFubtnN4+lDtNltxA/T1bdfTGErygYc/wJMjT2AvFMqvb7+eP7n1T3h2bB/5JUcS9VCEQqXA5Pw4YC8rWO4bfZrD107QWWo/b5cGuB3hF1v0XlWlgnnU7c5dsRxT15d1EZxKneLg9EHmSnPU+2JsbeyiY9ydAe2Uy5iTkxwM5fjrI3/PyaHn8WhedvW9nmcn99Pgb2B2fhyrWqE1uYE3rH8D4/lJhjJDyxZ+vhwv9TjmqyXkCZGvFpgoTuMo8L2jD7uz9BZEvBFisSZUrUjeqaBEIlinTkEohGNZ2KPuTEc1EnE/QPP7Udetg2AQzetdFiCXdk1H/VGCoSiFYrH2+/TrAZxymUQkSaMv7oblRWeF5KgnXAvcaiyGEgi4b4QUBUIhjEOHcDIZ8HrRGhpwqlW8O3diHj+OUyjg2DZKpYI1NISlKLRu3Mh7r3k/I9VpCrpD2Buiu2UzsaZOIqH4qqcELuYDv8Ult+faHi/zAoUQQpzL0oy/zZ5ld/t17Jt4lsnCFOvj6yDjntqL+CJM5Cbwa34agg0MpAewHIt9Y/t4e+/bGM6N0pPYQLZcIlPNwllF8LMzvlMquf+d9PlQdP01OwH58+ZiCvDLisAeD0pzM04qBUBgco6NpoqdyqG2teH3hCl9+9u1ESUoClp7O56dO7Gnp2tzrQ8z7RbAHQdw3Iy1kPEX833r0rnh56EnEvAS56c7hkEoW2bjbMb9ZzsP5iTWYtdwtbqsCHrBjD8+zpCV4ml7mEcOf5O8x2GwOEaplGNH81X8QvMtFGYnuHv9L9DV0IVTKl3wPcyL+nkus4wf0UPsNBo54OmibIFRKWJUy7Wv1wfr6Yp14suZLzvjL/09dRBjXV0Xk/nJZbugsCw6Y11UjBI9/hbasgvvK88uhHs8Lynjq8eP01uwcewQSkXHeuEZ1JYW1IYG9HXrSFoWjcU6KBbxXn01emsrdjh5zlMC5/vdSb4Xl4oUwYVYsDRE+W+9tXY0reX4FO9uuo3vaAqN4SQKCpZlkK1kcc5MvCJTmXf/Z7WKXam4o0+KxeXPsfCJ6NLnigExOl+bH1Kc09LiYtEo8q4d7+IrB7/CkZkjAKiqxq6WXXzkto/wxb1fJF2ao7dhM7qqk6/mOTD5Ap/+2af55Os+gV53NZV8hmAFjgSqnJo9js1CkVlRa0cxATLlDIrefd6ZacsCa7Ce7Y3bSYaTL2r2thKJgK7jlMvun8sli3KUQAC8XqypKR4rHOUTP/0E+yaeda/Tttndei0fueVPuG5Mw5qdZa6rgS89/98YmO53x10kt/DT4Z/RP3OMxnCSHbEtzJTHGBs/xr+bBrc0XUcul4JXIB+/3OOYr4auWBc/Hvoxd6y7g4nchLsER9fBcYgH69nRfg3+YBzq4tQlO7BPp90wappu8MxmcebnsXM5lLq6WlhWw2E8bW3LAmRXrIv6QD1zpTl8uo/NyT6OWTaFuSlaAkkoFUlEkty78R7C4fWsT2zgZO65Fde8vmkzvU5jLXAvPVaMqmKcOFELx2o87r7euo6Ty+FYlvvvt3TaXcLqOOA4WP39BD0e1p8cROvqQot70RvcQN4d6+aBnQ+c+TP7Ij/w05ubUe+4o7Z1XvH53A4SCchCCCEuYDF3b6CJj77uY3z8Jx/n2YlnOTV3iuZgko5IB+ti6/jR6UfpjnVTNsuoiooCGHaVglEkV8lyOnOazlALMW8dFM96jlUyvrg8LC0uKoaBd9s2qgcPuiMqwf0Ao6UF/623MnfkeUajFfKRIGEtQFtWJTDmjkP03nKLm5mBdOXQsjwPzrKM7y5d9bhzk8/DTKXcLvCF03VqYyNaOHzRhWDF43GXgZ4j4wM4qnrRGb8Q9fP47H7+bW4vWavAcHmGXDEDjsOByRfQLZtb/Vt48IWv8e6Ou4kE46jlMuf/KS/O5Zjx1ViM8JCHe3rexE/zh2j2N1LxG1i2RcQfZUfrTuqDDVDHy874S4vVoaLJ21vuoKJYqJpOf+o4uWqOzlgXd6y7A58e4O31VxN47NCKa1aamtyO81ci41sW1ugo1ugonm3bME+eXMj48dqfs4s5kXEuku/FpSBFcCFWsfRoml0o4Pd6qddOkistFLrP/rQViPmiwBwoCmpd3ZmlcQsu5hNRceksLS5ajkXBKPDO7e+kZJRQFIWrmq5iS8MWjswc4dHTjzJfmce0TWxs4r44HdFOnhp9ktHCBJvMENvNZhzHZMiTWegWV1Z93pg/DuVzz0z76eBPa2/WFl3bei2/v+f3eWFgLxWjAJpGItbKfVvfds7Z21oigd7ejnHs2PJw7PWidXRgDg0x0h7iEz/5OM+MP4OjOLWrfmb8GT7xsz/nb2/+C1oHTY57MsyUU4SjjZiORWNzDzMHn0BBYSY/hd2w1f3/h2EwPj8KbTcSyFde9vLNpQtjlt1eKi07jvlad5FEfBHu3nQ3jxx/hA2JDdy57k5GsiP4PX666rqoD9YDbudzZ6gFRRtACYexZmYwBgbQWlpQOzrcN2FNTZhjY5gnT6J3da0I/RFfhHt77611Vcf8Ma7uuBZPp8Yb2l9HzFBprQQIFU2UdIXf2flbfMn4EqfGzoTk9U2b+b2rfpNGY3kHymKINcfGUAYHURsb3S8sziw0jFogBvfot1JXt/zFWPyztbj0aMmf64gv8rJOA6jhsIRiIYQQL8ut3bfy5ciXOTh9kHQhRdwfI+AL8a6v/RpV26DOH6VsVdBUjZLpnuoMeoIA5Iw8nckNbPZ3ALnaY0rGv7wt64R1HDAMPNu3g2GgKApqUxNqQwNDqVN848TX3OWAtg04JGKt3LPhDlqODcHOnbVMVB+Ju121zuoZP+aPoYQVlPPkFmNw8Mw88MVrbWvDd+ONOJmM28Wt6+Dz4ensXLUQrC4sHHeqVazh4WUZX21oQG1spPrEE4xua7uojD/qKZI3DcazY4RDcXKFfG0JolEtMTA/xK0N15IaPcZoxzx9dhTr1Cn05uYrMuMrPh+eTZvoOH6cu+qv5XTXAGPZUbweP7G6JP6g28zxSmT8s+fct2dVfjt5LwPddzJlz2M5DiHFR0zx02PHCTseKi0pnIUPacAtgHuvugoM4zXN+C/nwz/J9+K1JkVwIc5BTySwTBN7agoH2NrZxe7Wa2sb5nGc2vy33e3XstVJgjaMEo/j6e1F8/lQFuawvZaLIMVLs1hcfPDQ15mdGcYyTaq6TkNjJ2/d9kt0xbrIVXJ89dA/kV1SAAd3ZriSg6ZwMzOFGbojCSgoKLrOtlAPu9uuY9/Y0ys6M3a3X8e2yEYoVVYNtqdSp1YUwDVF44mRxymZJf7jtb/Ptw5/nbJVIZAfpVQt8MEbf3/V7lrF50PfsAF7fh47n699kKPG46h1dZgDAxyuD/L0+NMYtnnmlIPjoCgqT48/zeHKMK2qSlqrMFQcr20r70z0kDcKREP1zBdSVG3jTHeM44Cm0mGEXvZxyaULY862eBxT8fkuSRdJd6yb9171XoYzw7RF2vjBqR9g2AY+3f3//OLoj3BepTYoZbGDenx88ZwAHl3HHh93/2HpopuznutcXdXW1BTGwtgbSiW2afX8+XUfpj8/6M6T99WxqRKlsRjGu7Nvxb+TFJ8Pxet13ywWCiufXNPcPzuL32ea7v9eDNGLHw7q+gVnAQohhBCXwvrEerrNMMbUUcjDSGeEHc072Tf+DI7jkC9nqQ83QBn6GvpIF1OgKKyr38Avbf0VWtu3Ycdf+2Xv4qVZLC5WDx3CWtzbpOtojY14t21DjcXIVXI8/PhDpDLjZ0acAKnMOA/zQ97dehv+ctktTHu9bA0uyfewrCt8d/t1bPV24OkNoZ0jB5mp1IoCOKoKxSKVxx8nc9UG+s0RMpUscSXOlpRCSyCwam7z9Pbi7N+PHYm4Jz9tG7WuDn3zZnfsRTbL4aJx4YwP5K0iZasCto1pGbUPAxa+Acux3P0zQMEug+Pg2PYVnfHVWAzvVVfRnMnwQOQBHj71HebsfG0G9iuZ8c/uqo55POxe+PfLsoyv5HDCYbzXXQf5vDtP3ufDrlRwikV8q8xpl4wvhEuK4EKcx9IRFR3jJT5yy5/wiZ/9+ZlCuGWxu2MPH73lT2kfslBvvNHtAC+VUAIBOQ65xrSX/dxvbGMkmCRvlQhrATqMJPGyGwaGMkMLMVCpFcAVFBwc5sppWiNtBDwBnp47SDyyg/acuvLPzULXyO62a/nYrR+hc87Cs2nTqm+eDk4fXFYAB3BwsCyT/eP7SRtZfjL4Y2wFLGz2TT/PVe3XcHPnLeccM6G1tqKxsBFc1yEQwNi/H2ybdCXthmNnoVi/MNvQcWwM2yRdyVBM1DNdHCBXOdMB5VF1qkYJR4GQvw6v6ql9b8AXZkdiK6G0ed6RL+eSq+Rqxd5gxaE1oBKczbnhUdPcQOf3M9Ia4HDqceaKc9SHYvTFO2g/nXG3lC/pIslTfVFjZF6MiC/C1qatAOxs3rl6kboydeYbPAvHZJcG4cWA6fWiBIPnfa7VuqpXdDvl8zQGAiT9m8HnuF0zsRhaY+NFHa09e8GvU6mgxuNuAPb7cUol1GgUe34exe/HLhZR/H60xkbpihNCCHHZOlfGP54+gY3DXCHFjZ038zvXfZCjE4f53Zv+EJ8nQEu4RUaerEF2uex+aBEM1jKkYxjY5TIqbsZPlecWcvryppVUZpyxdpu4z+fufLJtOsb1M/l+7OnaAvLdrbv52K0foatSh97Res4cZE9PLy+AA0oohF0ocHxrA39z8C85NXoAy6NRUW3WN/byuzf+ATvbdq3IrWosht7b6+6kWsz34I63yLqzpC8m4zu2Stj24PcEwLLcpYzK0i53BU3R8KteAEJawO10r1ReUsZf2tXtFIs41Wrt9V2Z8Z8gU85QF47QnGggkq3QaoUJFcuvScZf/P/8Opp4f3PPq5rxz/Xvl9UyPoGAm9kXCty6ZHwhLkiK4EKcx7IRFabJnikf//V1n+NwcZB0JUPcG6XP10H7qbQbOAzDPVonn46uOXY+T+Wxx/BNTrLBshZCXxlIU5nLo951F3kjj1/10tfYx/NTz8FCAXzRxvqNWJZJ0Srz8MgPeE/rWwgVDPfPze1f4HBpkHQpQ9wfY1t8Ez1qA2r7ubuHli4RXOQ4DqqqUbWqZCtZTMWhaJawbYtCtcCPBn6EUSmxo3kn3Q3rl32v4vEs++TfqVTcALTQoR71x8+EY/fJakV7x7GJBWKM+qsYuSzrGzZyatLtRpjJTtId62EwM0hnQyfNvgT19QE8jsb65Cb6qnFwqucc+XIug5nB2tgPxzSx5+eJ5S3u6X4T7WYIZSFM7m2u8Imf/Cn7xvfVwubu9j185LY/Zc9M0H19vV5Oz5zgkbFHVyxnvLf33nOOkXmpLqZIrYZCtXCJZaFEo9jFIni96F1dL2kr+tlHKXEcKBbhRXTKLB6txTSxZmeXh2TLwrt7N9bIiPv10VGcXA6tpQV9wwYoFNB270Y/a86hEEIIcTk5V8Y/UhpmKDeMX/fjV7wcGtyH6VWpmhZej5/OmOzxWWsWM741OenmxCWFXXturpbxlYBb1HWy8yseoxDUcRwHrbMT6/Rp0HX2TPnd94WlQdKVeeL++EXle8CdAX4WxeMh3d3Alw79D06Xxqn4NNKVeaLBOGP5cf7m2b/l3eZ76E30siGxYfn36not4zuLnbtLnv9iMr6i5GhXokT9UVqCTeQqRSLeCDkrA4BH97GurgtKJRINHXT4m9znrVRedMZfOv/bMU0Uvx9zYAC1sZG51ij9aoqsPUMw0cQ/PvvXPDX6FHPFFJZj89bNb+WXtv4yT2ZO0ZFoZQetVGZO8cjYv0vGvwDJ+EJIEVyI81r2iSuAadIxnKODBEqwA71lHeapUzh+f+17ZC7g2mROTGAODi4PA5qG4vdjjY1hTU0RDocpVgvcv+3XsByLg9MHa3fdntzOe656D3/z9F/z9r5fZLKaYyyh09fSheLxsCEWY6Pv6hd1TfWB+hW3KQtzBy0sIt5IrQCO46CgYFoGBbPItw99k+t7bmZT89ZaF8SKP89Q6xZB1+kJtrOnYw97R/ae9aQKe9r30F3XRVlJkz48x9s33sc3HDg1dZTnJ57njZvfTF0gTne0k0RRxSlpNHZs4t6WOwhlX/wHQ7lK7kwBvFx2F6ZUq8zm8zwS/Cn367sJHB9i6q7r+MRPPs6+sX1nlg+pKvtGnuITP/4Yf7vr4zR97ydUrtrCQ2MHyHiXdz3MleZ4qP8hHtj5wCvWLXI+y5bT4HbmA+DzoXd2Yk1Oond14d216yXPx3s5C2pWXOPCoiVs213is2MHWkMDWiKBnclg9/W53T+ahqKqaJs3y1w/IYQQl71zZnylnrH6Bh7J7mPcmICgF4UzIw9ei6wgXlkXm/GVQAC9sxNzaAgnl63dVYnUUdexHvPYcTzd3WitraiJBIrXyzqPhw1t2178+76FBZvLOA4nIhUGpo7ixOOki/M0xdoYzg4zn85wKHWUjfUb+dcDX+U/3/Jhepv6at/6SmR8780x1NFR9lgOysa7eeTEt+kJBBnUdUrlHDuSO7iz+WYK0xPct/k+oqEWnGz2RWf8pfO/FzM+gQCOpnGkTeOvj/w1AzP9XLPl9fzouZ8xV5qjPdrBXHGOGztv4tHBR9k38Sw7ktt4dngvN3bcwC9ue8eyU6ogGf+C1ygZX/ycWnNF8Eqlwp49e3jhhRd47rnn2LlzZ+1rw8PDfPCDH+TRRx8lEAhw//3387nPfQ6v13vpLlisaSs+cV28PRDAs2lT7dPUl/ofInF5cCoV7HR6xbEwLAunXHYXsRSLdLV3EwsnmJob5e71v8B9vfdRNIoE9ACaovKT0z+mMZREwZ0HXvQ66O3t533uxXEfU4UpymYZXdXxaT62NG5he3I7u1p2nTUSxUFVNPa07SFfyS0rgG9ruYqh+SE0RWVv/6McnHyBLR3X1BZmnuvPsxqPu1+bmeWPbvjPfIrPLAvJe9r38Mc3fRi/oeJNtEI8xlxhlrf13kd1890UjRIhT4ibO26mJdyCr2QQUn10mGG3AO73v+gPhoYyQ7UOcGt21t14XyqhtbQwM36KsZ4tbNB1Dqsz7BtdGDNjWe5RQ8sCHPaNPs3h3dM0OQ4j1RmmR17As3Ejyln/TZgrzTGUGXpZSxtfjLMDLDt34pgmTqlU6w55uSHz5R7VvlDIXnx87WVdpRBCnCEZX7yWzpnx/X56Onp5f2D1sWZibXkxGT8RSTJbraK1t7tZcmFsSn2wgdbpCspi53ShgNLScsGMvzjuwy4UcEwTVBVF09AaG1GTSdSWluUjURSFtJkD3UMZg2gw7hbAS5naXcrVIqdGD/KVZ/6OD93wIaKJFvdbX4GMr9XV4YTDdCsRGrQOdrRfw0R1DsMx8fmCRL11+EsG7Z31hMuOWwB/CRl/cf73soyfyTB/yzX83dH/yrSZxl9XTyzcwMm5k2iqTnnuJDd03sCBqQNMFCaZKEzy+p7XY1oGB2aPMLv/v/Heax7g2OyxZc8lGf/C1ygZX/y8WXNF8P/0n/4Tra2tvPDCC8tutyyLt7zlLTQ2NvLYY4+RSqV473vfi+M4fOlLX7pEVyuuBBf7HwqxdtmZzJluibMtznLzemvLMx/qf4iB1En2jzzOUPo0nbEubu2+jdlSijvW3cF4zl16EvacP+Qsjvs4MnOEvaN7mSvN0Rlp59bOW/jK/n/g967/Az5620eXLce0HZsbO27kA9f8Bn/y/T+qPdbm5Fa2N23na4f+hb5rtwBQNcqk0mPLuiBW+/Os9/RgnjpFcznLT099jz/d/Z+Y210gU8kS89eRUOs4cXQfe659F1qskUQkyZw+x5xTcHflaAo5u4jHznHvul8ijPclfTC0dDZgtjjthsZy2X3jsmThENUqBc1EDQZJlzNLHmDhaOeSETWZinukNe+4y4zsQgFtlaJJ3shf8PpeSWvh3xtr4RqFEFcOyfjitXa+jB+B16xwJl49LyXjzzKKNTGBk8+TiLVwT8u1hOZK6D09ODm32/hC4z8Wx31YMzNYo6PYpRJqJILW2Ul1/35811+P/7bbli3HdAyDeCiBGgphmSVCwSjz6Yz7gKoKjoNfd08fj6WHOT1ykKvC9bWM/XIzvhqLweAgTqlECOhFpZcG9+c1A3g37qz9bC8n4zvF4qoZ/zCT/GziSfJmEce22Vy+BtO28Oo+5kpzeHUfk4Uzc7cNy13QaToWR1LHqJrVVZ9bMv5Ka+EahXi1rKki+He/+12+//3v8/Wvf53vfve7y772/e9/nyNHjjAyMkLrwtGTz3/+87zvfe/jk5/8JHV1dZfiksUVQv5DcWVzDAMHUJNJ7OnpFV9XE4naMb/uWDcP7HyAocwQ04VpJgoTWLZFySjREe1kPDeO5VjUB+rpinXVHmPpgsewN0xjsJGH+h9ieH7YLYAXU2AYDM+e4ieGwfbEFr7wk0/zmTv/gi/f/WUOTh8kXU4T98fpTWzkWwe+wVt638J8eR6PquEoCl879C/0xHsoFDMA7oJK217RBbHan2c1EiE2NsZd8Xt5+PT3SOWnwTAYARLhJPeu+wUieghtyZuEs+fuLT0mrIRC7tKfXA67WHS7Xs7T+bD4ZsHO5XDKZQJxA2tkBGXx392KUttm7pRKhKpgp1LEfRsBZ6Hu7SwvlgMxXxS0eSK+OreDxzSx8/nlS3d0/YIfWAghhHj1SMYXl4pk/CvbS834uUKaQKFKhx0hbKgQctwCuOOsGP+xtMCrLCw9NPr7sefn3QJ4sQiGgT07i2MYqIkE5Z/8BP+ddxK4+273uspl8PvZGvey7uQmDs4ewcJ2mzsW/tqU2LQs4+dL89iZzLI/vy8n45/3BPSSbu/ZEByZPkEmlyFWjNHX2EdT+Nz/H7IzGYzjx8krBiNkyCsGIbVCWyhKcE4FRaHYHOfg7GFyhbS7VNKy8Ok+DMfAsi1URaViVnBwT786OHg0LygKuuZBsRRylZxkfCHEBa2ZIvjU1BQf+MAH+Na3vkVwlW26Tz75JNu2bauFY4C77rqLSqXCs88+y+tf//pVH7dSqVBZXB4BZLPZVe8nhLhyKR4PTiaDZ+dOjOefXxaS1WQS73XXoS0Ju0sXoixd3rjo7ILwYGaQBw9/k1R6rBbMelq2MJAeIFPKuN9rGLUC7sj8MDd13Mjhkz/m8OQBbt90F+sTy5dcVrZU+MITX+CJkccwjAotsQ564j3cu/Eefnz0OwS8Ierw1zaRX6gLQvH50Nva6Hhhlve0vtkNqWaRsB6kgxhh07Pqm4TVjgmbk5NU9+51j58uvo7xON49e9Cbm1c89+JsQDudri1paVPqiCsh0obhvnlYuEYch0SshbZ590jqVruR3e3X8czYPuzFLnBVQXUUrm2/lq1KM4pvijYrRF2yg0EnSzU9jVf1UIcfL+7s8qUfWAghhHjtSMYXQrxaXk7GP7O88UyGPrsgbGcyGIcPY6XTtYyvtbRgp9PYpRJ2qbQs4zvz86gdHZgnT2JNTuLdtAk9kag9fgvwB6/7z3zhiS8wmB109904DpsSm1Zk/LAedEduXOg1eBEZ/0InoJ+ffJ4v7v0iA+mB2uOvi6/j9/b8Hjubd654bqdSwTh+nBG9wMMD33UL8B4PSi7Phq6ddG9ah1mGYp0HY17B8KjoCqCqTOUm2dLgvl/yqB58unsNDg699b2kirN4vAFC3hCFap4wHsbHxtwPDXQdxeulsbNXMr4QYpk1UQR3HIf3ve99/NZv/Ra7d+9mcHBwxX0mJydpOutTz3g8jtfrZXJy8pyP/elPf5qPf/zjr/QlCyHWEDUWQw2FsGdn0TdvRtm61Q2sHo8bZuvrz3nU70IF4Vwlx4MHvsbMcP+yeYRz3gjHpg7TEGlyQ7PjAAoenx8bMDQVfyzBvFNa0eUBsLPtGj77C5/nuYn9DM6eIhqI8szQk/z46HfQNS+98Q14bXfpD1x4NAsszBPctIlwfz+bSyEgBBVQAjqe3k211+Dsrvau6Jmf187nVxTAAex0murevah33LGiI9zOZLBzuWVbyoPzZe7b/U4ePPg1ZotFnEoFLZmkPpDg7rabCOw7AYpC008P8ie/8Kd87LGP89TI3oVN9zbXd1zPn9zypzR9/xBoGhnNoL1pA8+P/4jx1CAAAW+Imzpu4u74DYSRubJCCPFak4wvhHg1vZyMf6GCsFOpUD1wAHN4eFnGV7xerKkplEjkTMbXdTJXredEsMi8NkussYXNPovm82T85yefZ+/oUxhGhUIxsyzjt3gb6SB2wbEstWu6yIx/dle7Go3WvjaVn1pRAAcYSA/wxb1f5NN3fHpFR7idcTu/awVwQLMd2rdez3eOfpepU/9KTAvTndxIRbHpTKzj+PRRfJ4A3z/xPd57zQM8cuIRikYRwzJoCjUR9UW5Y/0dPHrseyQ8EfSqxZ6Gq6mramc62FWVRFO3ZHwhxAqXtAj+sY997ILh9JlnnuGJJ54gm83y4Q9/+Lz3VRRlxW2O46x6+6IPf/jD/Mf/+B9r/5zNZuno6LjAlQshriRLj//ZuRz22Zuyl3RorGZp18jZBlOnVhTAAfyKl+J8CjvUeKYA7g8yW5yhZJRIF2fZO/wkd/bcyQvhTq5h5THDpnATb9r4C8zXTzA4fZznnafZWL/R7XC2NbREAkXXV4xmOZ8LBf6zO999mo/drbspVgtkS/PU+6Jsbo2QzGZRFmctLrDTaazp6RVFcMcwzswFXKB1dtK07wTv9Oxg4obXkctMEalrpGUsR50vyczNYU7oabKqQXryKJ+4+aNMVlJkShligRj1TpDDjz/IlsbrwHF4ZOonZP1wc/1OlJbrKVsV/JqPiBogVlFX/aBBCCHESyMZXwhxOXi5Gf9843KsVGpFAdz9JgV7fh4tFKoVwI/fvIEvvfBlBiaPooRCOMUiG9bt5vdu/MNzZvy7NtxFd6SDrzzzd2SyM7WM3+Jt5N6eNy3r4L4YF8r4ZzrfS6BpTDT5OTwzRt4q4dV9oMD+8f0EvUG82vLC8kB6gCPTR1YUwR3DHYGyWAAHSDb28O9Hv8tIaYIpI0Owvg6fL8i3j3yD+3e9l2QwyVRxmqpd5UeDP+Ktm9/Kta3XMl2Y5jd3/SY/G/oZ3z35HcLBKL6qw7q6bn5n07vomLXo2vYrFKwSIS1AuxkmMl3BTkrGF0KccUmL4L/zO7/DO97xjvPep7u7mz//8z/nqaeewnfWp7S7d+/mne98J//4j/9Ic3Mze/fuXfb1dDqNYRgrukeW8vl8Kx5XCPHz50LB8KXK5VIrwzFApUJruBVdUYkH6slXc7UC+LpYDxPZcTY1bGJ89jRfHHmWz9T/Jc2xtlWfI5poYUe4nkgkwcP9D5EqzaH4/bUC+NLRLBfjXIE/V8mtKIBvT27n0z/9FM+NPUtY9aGqGtsa+vij6z7Ejv3TnF2ecJYcTa89n8edXb7sNq8Xp1AgpOtsOJ1n+uqrOOpMcMhnEgvP0z/Tz789/w28gTCHpg+xPrGBt6+/h+kjz3I6m0FrbkYJhZhc3wCaRvo42JOTTMxnUJYsxpwAdmzdQPQijpMKIYS4OJLxhRCXi1cr4zu53KoZ36lUUBYaPpRAgPSm1loBHF13F3LqOqemj/HFJ75w3ozf29THh274EKdHDpIvzS8bYeLZtOlF/wznyviLowkXC+DPJqv8xZOfImcV6U8dJ1We4yO3fYRMJcNUYYq2ujbC3uVNLZlKZuXzeTzkzeLyG30extNDVLwKPlvjrs13EwvG8QUjNIdbeV0gxlBmiKJRBAXmSnO8MPECn3n8M3hUnXfvfDd/cP0f4lF1OtV6NtkNRJ94HsXrZZPXC2hAFZjDaVAvamSMEOLnxyUtgjc0NNDQ0HDB+33xi1/kz//8z2v/PD4+zl133cU///M/s2fPHgBuuOEGPvnJTzIxMUFLSwvgLtLx+Xzs2rXr1fkBhBBXlFdjOVJYXznfFGA6NcztXa9jxEwR7Aixd2wvI9lR1sV6uL79Bo7NHObeDffwowMPY2gOR6YOnzMgL177uvZtvL+x65yjWV6uoczQstnn2xu38YUnPs+zI3vBcTA1L15F4eDYc3zq6c/xxa3/ieSRMRRNW3adZ1NjMdRwGHtu4bFVd0mOUyziOA6Hbmjn009/hAOjz9JY385YfoKWSAu/vPWXePzkj8AwODV7gq/bD3Jfx+uYPvYc9twcSjbLvOe4+1jz8zjV6qrPnzeLF32cVAghxIVJxhdCXE5elQWo+uqlFDuVQu/qAtNE8Xo5ES7UCuCKz+cW4oNBqFQ4NXP8ghk/mmjhqnD9K17EX3bNmUxtlMhEk59PP/lJUuU5hrIjpEopd0G9ojBbmCUWiDGaHWVdfN2yjvCYL7bicdVYjHAguuy2slnBMU28/hD/4fW/zz++8A88P7afPZ03cix1jHggzp3r7uQHp35Atpqlva6dsllmT/seHhv+GT84+X2OTR/lndvfyQ2DNqizGOXy6lnetiXjCyGWWRMzwTs7O5f9c3jhk9X169fT3t4OwBvf+Eb6+vp497vfzWc/+1nm5ub40Ic+xAc+8AHZGi+EuGQ6w20kwsllxwABLNuilEnx2zf/BilKvH7qdcwWZzHMKpniHDH8bgFctVEUddXuitWcbzTLy7V0uaZTLpMrz/Ps+L4zy34cG8dxQFU5OPYcR3amaaxWUQIBwF2OqSWTKx5X8fnw7NjhHlNNp1ETCZxiEapVZl+/i0/t+zwHR58Fx8ar+0iX06TLab6m/Ctv3vBmDs4ehmqFgel+zA2/AJqGGgphzcwQVv1uEbxUcueFryIciL6o46RCCCFeGZLxhRBrlRIOo4TDOPmzls/bNnYmg+/mm1GA+bEfosbj4Dg4to2iqlCpuAsiFeWiMv6rUsRfotYtrSgcro5yYPRZupvc5ZPuHRzGs+NsSmxitjRL2SxTqBbwBtwi+Lr4OvqSfated0/HdhJDraTS4+Dx4FM84Di8bec7+J/P/x0HJl7AxmK+kqFklNBUjWfGn+E9O9/DN45+nSMzR7Cxua7tulqz0DePfJ0P7v5tUFXs+fnae42zqeGwZHwhxDLqpb6AV4qmaXz729/G7/dz00038Su/8iu89a1v5XOf+9ylvjQhxM+xaKyJe3vvIRFeXvxNhJPcvektNMfa2da0jUZfgq8++T/4+t5/4IcHHmTf4BMYmuMGZVbvrnitLS7XdEwTa3aWTHm+VgAHUFCgWnXHjagqGSMLloVTraJGo3j37FkxD3yR1tCA7+ab8ezcidbSgmMYqMkkR7xpDk6+AI47LsW0LcABHI5MH8an+Yj460B3FxwVFRMlGMSamSERb6Utp9GWVYmrITcEn9W1k4i30tOx/ZzdNLlKjkNTh3hq9CkOTR8iV8m97NdRCCHExZOML4S4HGmxGJ7e3trok0VKOIxn0ya0WAytqYl4qAHHsnBM0x2F4jjg9V5WGX+xW1oJBpkrptwTns7yUS//54Wv8I7t72BLwxYc28a0DBzbZl18Hb+35/dWzANfFE208Labfp3Gzs1usbpSpS25nnAgwsHJA9iOu0PItC0KRoG5QoqnR58ioAcIeIL0NfbR19DHhvoNdNR18M0jX2dX2y761FbsbBY7n0fv7Fzxe1DjcTw7dkjGF0IssyY6wc/W3d3tdhuepbOzk0ceeeQSXJEQQqxusQPiPY6fkco0ebPozvPzJYl3bKwFs76mraxv2szAdP+Kx1iX7KWvaetrfekrdMW6qA/UMzvjLgGK+etq3dWqoqE7CuC4IV/XiYcb8V7XjqLr4Pej+v3nfXwtkUANhzEHB7HGx/Fedx2Z6j4UVcVR3ZEquqoB7vMAFIw86+q6GKhWKVQKtIRbMHqD0Ouwvb4PdQp8B/u5d/ub+Xb2GdK64b7mtk0inOS+Hb9MNNGy6vUsXQLqmCZOuUwiUM89vffR07jhFT2GKoQQQjK+EGLtUHw+9I4O999ZFXfEh6LrsHD7Wsr4aixW66aOe90TNrqyvFRUNIt8+sef5G/u/i/cve5NRP0x2rQ4fa07aEmuO+/jdzes5/03fZDTo4fIzU6wa8PN7Js7iIaKrag4joNX8+LXfJTNEioa2XKGLYnN/GT4p4xkRzg1d4rHR57g+vbr+cTrPk7XySLG5CSe7dux83nUpia0aNT9PQQC6B0d51x8upjxU7lpnIVlqYlIE/dt/yW6G9a/Aq+oEOJytSaL4EIIsZaosRj1gR3EzjPLrznWxu/f8iH+6mefWxaS1yV7+YNb/5/zzgp8rUR8Ee7tvZcH8/+XGWYJ2152teziufFnCao+FNN2i+K2zfbmHWxRmnCqVezZWRSvF6NQwHuejgxw31CosRhaayvmyZPE1te5by4WFmdWjTJxf5x02Z0fHtACZOdn6Aq1s77vKkrlHIdPPE6d7WG0/ATPJDq4702/StvxGe7XdjPZ20w57CMciJ53XvrSJaBOuYw1OwumybQ1xTcnp3hP933EWnvco62VCorfj9bYeM5OdyGEEEIIcWVRYzG8gcB553WvhYyv+Hx4ensxTpygz25ke+vVpMpzJIIJUkV3JjiOQ2e8m6dPP0Y6O82fX/UfSYzNo2RHMQmjrzLycKmIL8LW8DrMeR/m4UFSvV00BRqxcUBVUICQJ0TVLAMOfs3P+KkD3N5zG5FQlFs7b+Ntm+6lT2+l9d8OYAWD+N/0Jozj7v4frbkZLRxGCQTOOzN9MeOn0uO1fA8wPTPDN2amed/u3yCiBsC2JeMLcQWSIrgQQrwGLmaW39Ud1/KZN3+BI1OHyVQyxHwx+pq2XhbheFF3rJv3bnsXg3UHKZkV/vSWP+FzT32eg0PPuHdQFLY3X8Uf3/RHNB2epHryZG1kippIoDY04OnpOe9zKKEQ1sgITi5HHz1sb7qKg6P7wLFJpcdZ37SBU2loibRQKuexjSpdreu4OraF00eepH7egEoeB5jJH+Vb1f/Fe9b/IuGJMltIogcaL/i7WFwCujj6BdN0C/rZLLPWLCMt09hHs4xFHfLlLBEtQPtYA7H2dSi6juL1okaj0i0uhBBCCHEFu1IyvhqLobW10fLCC/zRDf8//uLpzxPwh+nnOKlSis2NW3jbpnsZnT7J725+H3U/eBJjoYBsz87C9dejt7ae9zlqGT+bZYu6md76jRwc2QfATKHgZnzHoaWuhXK5QKWUg1KR9/W8g41PjuOkUlA56j4nUKlW0devx56YcB8/ELiojJ/KTS8rgC9m/JnZWQZbjrK5HMEaHkatc5tx1Lo6PJs3S8YX4gogRXAhhHgFOZXKmW6QlxCSmmNtl1UgXk001sSWwQl32WRF46/3/BmHrxklXc4Q90Xp83fSuP8U1unTy2aG26kUxqFDF+ymcAoF9zXTdZpOTPNH1/4Bn1b+kgMj+7Bti7GZAV6//nU8cPX7KOTnuTN6DbH6Nh78yZcx81nUSAQbwDBAUZidHmJ8p01f89XYqRTOwoKc8/2uFpeAOuWyWwC3LOxs1g3LoRBTWokfnniYjNfESqVQgkEa4m3cXbmTrkg7FIsogQCe3l5ZyCOEEEIIscblKjmGMkPkjTxhb5iu6LlPFK5mLWR8LZFAq69n12yVv7rhExyujFCwyng8XoL48FRNNmh7iP30WK2ADGDPzVHdvx+1ru7iM/7hUf7ohv/Mp/gMB0eeXZ7xr3k/hfQMb7h9J1sa+oj8+GmcXA6lrg4nl4Nq1V18Pz2NunMnenPzi8r4i/keWJ7xg0FycxNgOthjY9jT0yjxOE6hgJPPo3V2SsYXYo2TIrgQQrxC7EyG9PCJ2uzviB6k3Zck3rnxsglJdj6PNT39so731Y5M9vfjlEq0jOdpIYYSaEEJxzBPDWIMDJz3+c8bkA3DvbbmZuxMhu3PTPJXW/8fjlydIVPNEg/E2aK30TJZRg00gGayrzCFmXMXdTrVKorPhxIMug+oqhR0BzuVAttG8XiwM5na9bs/lIJSV+d2fFSrBDW383txDItTrbrh2OPB8GqM5cZJZcbRGhvd+xgGM5MDPGx9lwd2/TohwCmVMPr78e7cKd0iQgghhBBr1GBmkAcPf5NUeszNfZpGItbKfVvfRnes+1JfHvDKZ/yW8QIt1Lu3x2KYAwMooRDGc8+t/EZVxU6nX3zG3zvKF3d9jCO7J8mU592MrzTTdGgSvW0TaBbkLCrZbG0EIX5/bX45qoqi6+fP+KpKIRljTMuRN4uUNYeqVa0VwpZmfEyTsKnW8j+GAZUKdi6HYxho3d3u90jGF2LNkiK4EEKcw4sJk06lwumRgzx0/GFS+ena7YlwknuVe1gXuO6ShyRzcpLq3r3Y6XTtNjUex7tnD3pz84t6LDUWw7tz54oZiFYmU9t2v4LPB5rmBtjzqG2o13X3NcvnaXzyMLcuFJs9W5swTz6J6ffj3bkT48gRwtubznSd27YbaBUFPB4UTSOkusswlUDADfCHDy8rgBMIUD1wAKpVlFiM5oiPaKZE2mvVHtP9wVX8sQTFmfEz3wvuc1sWqdw0I9Ycm3EL8E6phJ3JXPBophBCCCGEePXlKjkGU6fI5VKE9SCdkXai0eR5Z0g/eOBrzAz3L+t+nkmnedAyef+e33pRHeGvhlc74yuhEM7cHHa5vPIbfD73dfH5XnzGHx+n8Uf7lmf8U89g2TZ6ayvGkSN4tm9flvGxLJyForWiaaCq5874qspYQudb+/47qdQo+Hy0NPYwWZ4konuJmvqyjJ8IN9KWVaFuyXuZhcWnCoBlnblZMr4Qa5IUwYUQYhUvJkza+TyZqREeGvguKTMLwSCUSuA4pPLTPHT8ER5IdhHBt+xYnmMYL7tj43yWHgUEME6dwp6fX37t6TTVvXtR77jjJXWLnB38tFgMq6nJDcRLg7DP525oN80LfhiwuKHeKZXcIrOuu8VpVUVpbMSxLDfoLiy/Ufx+2owQiWQXqekhWOgywbbdQNvQQYeeQAnZaN3dmGNjmMPDoOuooRBKNIpx7BhOPu+GaNsmmMpxd+utPJJ6kpQz7wZsIFHXxO7u2/nB97+M4vefCftLiuF5qwwLRXCg9voLIYQQQohLZzAzuKKgnQgnubf3Hno6tq84uWnn85wee56Z0RNuHvV6axkf02Ru9CSDGwdQVG3ZmJSQoVxxGd+zYwfVw4eX39Hnc9/TlMsoC993PheT8fF6UT2eWsZ3DAM1mcSennYzfiTifr+qojY0gK6jhEKrZvxiawP/euR/M2LOsv2qW9ACQSrVEvdFr+ZHJ39IJV/GsyTj39txJ8H+SWyyS16MMxlf0TScJT+PZHwh1h4pggshxFnsfJ7q00+DrqO1t7uf+i90MFeffhr19ttrYXKxWD7oyzJ9dD8ASjCI1tzsBjTHIVXNMDh0gM3FhQCqqqjJpNupkMvVnveldmys+jOcdRTQSqex02n0ri6ssbEzXQ+w4vjiy5lrrvh8aM3N6J2dbhhfKEQvdmWrwSDaBbbHLz2KSTaLGo9jp9Mofn/t+tVEwj2SaBhoDQ0ERqe5b8ev8OCBf3EL4ZaFWldHQ7yN+659J7FAC45pUn3iCRS/330NADsQQO/rc4O1pkGxiLNwpLNpKsj97duZuv4t5DLTBOdLtJkhxuYK2EE/ajDoLtVRVZyFDhXF5yPsC0Npyc+z0PUihBBCCCEujVwlx4OHv8nMyPFaLsW2SVXSPDTwb7yHAPWB7bXMu5jxM54prOFhYHnG1xSVtqaN/N8XvoLPH6o9T9z282b/DlpOztby9pWQ8bWGBjxbtmCnUthzc26+N02cchk1Hn/FMr7W0IDa0OC+xg0NWKOjeHbswDhwwB174jio0ajbsX7ttaiBwOoZPxTicIvJ42NP8pbd9/O/D32Fg1MHURWNqK+Ot259O6/f/Wbq5koE81XazBDB6RLa+vUY+933dHg8OAuvpxKNuh+CLP15JOMLseZIEVwIIc5iTU+jhEKYQ0M42TOdAEpdnRvQFsKknc/XusXzyWrtfk6xiDU5idrcDIbhfr2cBSXizqkOBrFGRtxuZZ8PZ24ObPtldWwsZefzVPfvx87nQdcpxkMMxw1ySpGINUl7TxvB025IdmzbDbALo19QVTLjp1/WXHM9mYQbbnCvIZ2udVGrwSDePXsu6mdbPIppjo25v48tW0DXcfJ5PFu2uK9zoYDW0+N+SKHrtE1XeN+O9zKq5ylqNuFQnO7kBurCCex8nsoPf4idTrsfbCxwFAUnna4VwBcfC0UBwyAwMs3GaBJP3/XQ5Hbuq0qVxp4+Zk4dcmeJ+3zuHPJQiMbuzXSYYcD986AEApfNPHghhBBCiJ9XQ5khd6b3QrMD1TPZfWZ+npGeDLGF8RZLM364OVC739KMnww18ejQj4nHmmjyh3BME6dYZGZukIdDs7x73ZsJDIxeVhnfHB+HSgXHNFF0HXw+PJ2dLy7jX3/9mYzv86Hwymd8e24OJR4Hvx+toQF7ehrvtdeieL1gWW53fTJZez+2WsYvJqMcnHqBGzbevlAAPwAo2I7JfDXL1w/+C+PZcf7yxj+joaJj53JYypTbbV5X5y7xDIfdhZxNTegbNiz7MyMZX4i1SYrgQghxFse2VxTAAZxsFnNoCK2rC3CL5YvjUsKekFs4XegIdorFM50YpknYX4eiRzAHBnBME2twEAC1oQG9p6fWuXExS2XOx85kMAYH3aOAqsp4R4SHjz1MqjBDoAzX334/Jz0z5LZUSPjj9NFI8+NH3Z95eJjh6jQPj/w7c6W52mO+lLnmemsral3dmaOgPl8trF4sxedDb2vDnpnByWRqty8eQ1QCAbSmJvfNykJXi8/jIRGLrbjOpb8rp1Jxw202684vtyz3d2dZ7ocSxaJ7RNY0IRx2F/Fks3i3bkVLJolNT3OPcgcP2w5zxYUuH4+Hhvo27ml5HaF5o3Z9nt7eSz4LXgghhBDi513eyNey9tJiJgDVKrnUBE7CLcIuzY1tFR+JaAup+QlgScb3+UiX03R7N+KUy1izs+4Cxfl5ZphkJHY1W9raLpuM71SrWCMjZ+ZlgztaUFHwBAKXVcZXYzE8GzbgFArLdg+tdo3nyvhjQQPHtAhF6hcK4EteS9vExGZg7iRHC4PcsfUt7i6o+nqM/n70LVtQdB2nVDpT7FYUnIWRM5LxhVi7pAguhBBns6wVBfBFTj4PhoE5OoqTz+PYNoqq0l4NkGjoIDU7cmZ5y8LylIambjqCLZjHBnCqVaa2ttPf52W2kiHg8dOp2/T4OwgcPYVjGG6xfXwcLZF4UeHKqVTc45ELxfdiU5wHj32D1NwokaZ2dr3hF/mzJz7D3tGnUVDwonFt+7V85PV/wvWWl7xu8dCBh0jlp91QvNDBncpP81D/wzyQ7CLW1HnR16OGwy97/uHSY5PLQvtZ4fNCS2mWLuqxUyn0ri7MIXdsip3NotbVYVcqqJEI9szMmZ8hEnGPfLa1LfuZNrS18f6uzQznxyhYJcLherrqOggVTJyG84d1IYQQQgjx2gp7wu7M6bML4ICm6oSDMY7kByiOjhAol2lprCOYyhNMF7mn604eHvpBrRCOZYGq0pvoxecNuJ3WC3tvlPp6cByKPgU7V0ZtbiZXyjDmq1DKHiY6nqMrse5FLdM8V8Yv5tLcfPv9qNE6/nLvFzmW6se0DOYLc+xq21XL+Og6xoEDOPn8sozv5PMY/f2oyST6i1jw+FpkfDUcdptRLuBcGT9vFnHyOYzg4sgSBZZM9NY1L15TYd7ML/uZ9LY2rFTKfc+naSjhMGoo5BbkGxok4wuxxkkRXAghzqJ4PO4ilrM3oGsa4B5FtGdmUJqa0JqbwXEIezzct/XtPHjkW+5RS8dB8flobujits5bebI4zHxPgfpIIw8f/ye+d/y7pIspLMukN7mF37j6A9zaEqPl8Ah2pUL10UfROzvx7thx0Uft7EzG7VgIhcDjYcRKkZobRY1EuO6ae/izxz/D3tGnAAUHG0fT2Tf6DJ944tP819s+RyEzSyo76T6YaS6be5fKTzOcH3tRRfBXympb6l9s+Fx2X9t2Zw42NaEmEtgTE2gbN1J9+mnskZEz3xOLoXV2Yjz/POzateLxYk2dK1+PV27nkRBCCCGEeIV0xbpoCDcypY4sm5utqTq9fTfz/cEfUvC5udPKZIhXNe7pfSNt8wrtlQrvaryTsY4yBbtMXU8vhuowVZrBnp9386nfjzM3tzC32ibQMI81Mcf0rVfxrX3fIDU96O6zOWTS2NnLfTt+me5Y90Vd+2oZv5hLc81d76S/MML/efT/8OykO8c67AnTHG1h/9iztYzfmeFMg89ZGd/J592C74sogr9SXs2MX9fiYeaZn7Bl0w68ngBV40yh3av7aQg1ombLxPyxFY+nt7aufKJXcLGpEOLSkSK4EEKcRQ2F0NrbsUZHzxTCF+da19e7G8wTCYxjx7CmplAWgnRLfT0P7Ho/Q7MDFDWL+IatZKwCH/7JxziVHuAXeu/mwOEDnM6cpiPeha1AvjxP//RR/sdzf4ey4Ve5t289XsMA08QcHkbRNLy7d19UGHRM0w3HioLe1UWhfBIlGMTO55nTygsF8CX3dxzQNPaNPc3h4mkabG3pF1c8fsEqrbjttbLalvoXQ0sma8t3APdY6swMjuNgZ7MwM4MSi+GJRmvLPO1yGfPUKdRkEjUQOP8TCCGEEEKIy1bEF+GeLW/lW3NzzE4N1grhG9btYiBzmkouhRZqdptdZmeZyWZ5MJvl3Q1vIFR2iHX1EDp6FDXSiC+5jVw1T3S2wOzcGIrXi51KuYXcYJB6T5S2rEoxpPLg/n9irjiLEonUlknODPfzoPZN3r/7Ny6qI3y1jH/1jffxhaf/irv73lYrgIM79mUyP0lDuKGW8TvtriUPtjLjL55evRRerYzfFu0k6q1DyWS5vu16jqWOYTs2qqKioRAwHDa0bWNLpOcV+kmEEGuBFMGFEOIsaiyG1tjoBtpCwe2YUBScctldZhmJUH36aRzDAMdxQ5dpwuwsnvl5tu7ejdbSwgk1zRMnfkBfyw52d15PPBDnW/3fZCBzmlQxRXO4CV3VSdsz9M8eZWZTiYmOOkIHB90LMU134/vCkp7zsTMZ5sdOM5QdJm+ViPjqiITq8dQnqA6eJlOZX7jn0qOAjhuEbZt0eY4upxV8PqhW3eU+to3i9aJoGug64XD9q/SKv/rUcBjvnj21JUeLFNvG/7rXYRw+jOr3u7Pg5+bA53M7UUIhPH19cuRRCCGEEGKN62ncyHu3/Boj3ZPkKzlCWgDD5+H4gaNuxtd1rMHBWsafnTzNaCLDhpMz2LkcvoWMj6IQGJni3q1v5+HB75MqzLj50jKpj7Vwb9ddBPaf4uSWBLMDQ6jxOGoshlMouBdimqTSYwxlhtjWtO2812xnMhj9/VgTE7WTpuG4j9Ggyf7xfbx+4xtXfE/eyNMUSi5k/DT50AYGN9eTr+YJewO0myFCcwX3gwBdR1nDXc7nyvihdIG33vabfOfZf+E9vb/C3x38B45MHMTj9VMfTrIptpHfu/q3SWrRS3j1QojXmhTBhRDiLEtn1CkLxwXthSOEek8PlEo4xaJbIK9WIRh0Z+s5jrtx3bZ5pnqaf3jhH/hfL/wvPJqHslnmjp47eMO6O/nnQ/9MppKhI9rBaHaMZKiR2cIMRbtMbnoUTOXMxdi2G8TPw6lUOD1ykAeHHmR2YsANtJpGXaKFTd27OO44C0f9zhTAFVRUR1m4ySbmjdKeDdDQ2MXM6HHIu/PxHF1Hra8n2dlLsq6Fg1MHGc+PY1gGreFWNiY2vqiZhpeS3tyMescdqy7yUaNRzBMn0JJJ9xVaePODprlb72X7uxBCCCHEmqb4fMQ7NxLut3HsCNiwT51B8XrRGhqwSyWcatWdM21ZKF4vBd1BqatzM75p4hgGxvPPY7zwAkmPh/vbNzPecQ3FLotAOk9bBkITRexQiLwXd/SIx+OeLl3ahW3b7rLO83AqFaoHDmCNjmJnMrWM3+pt4plwGjSdkCe06vdajgWOTdQf4x/2/09S6THsvLsctCHeyj0b3kLbjIHe3o5aV4c5NeWORbEslHD4Re8mupTOlfHXh8O8J9bC0Nhh/uzWjzNlpClVi9RrITZrzTQUNcn4QvyckSK4EEKs4uwZdU616h5zzOUgEABdh8VFLKUSjsfjdkzbNhMRmy/t/SID86cpW2X8uh/DNhjNjjKSHeHq5qt5YvQJbMcNv81qE1gWQdVPyPEBSxb2qCqKx7PqNS6az0zxUP/DpHLTKF4vTrUKisL89CgVr8aG5q3Umz72tO9h7+hTKCh4VB3FdoP47vbr2OrpIDAyyJsjV/HtRJG5cro2FiQRa+G2dbfzo8Ef8dCxhxjPjwMQ0APc1HkT7+r7NTqssHsE1OtFjUYv29B8rkU+WiyGsnEjRn8/nL2cZ9Omy/bnEUIIIYQQF+/sjF9XDaAVmlF0HXI5906L40Fsm5DiBbsMto2iKBjPP481NeXeR9cJnBxhY6kNp1JBDQaxhoehoQFsm4gvgjM/D6GQ+95h2YWohD3n78C2UinMkRHQNNR43M34qkpwMk1TTyOqojJbnGVX8zXLRqIAaIrGrs4bqNPCHCoO4I2GiPhiePIlUqU5Hhl9lPdueyexjg2Yg4MYx465RXAAXUfv6sLT1wcLhf+1mvGjsSTb8C4s4ASIA6AEFDy9Gy/bn0cI8eqQIrgQQpwlV8kxlBkib+QJe8N0NXYRxkt1ZsY9huj1Lluog6LUZoYDHK6McHr+NKZtAuAsdF9nK1nKZplrWq5BH9dRFfd7LMemN7mVpDdGp7cdtTHnLtVRVbSF45Pnu87R1Gn6yyNEbPAsdKJjGKAoVKYn2LzuLnzjKT56y5/yycc+xb7RZ84UwNuu42O3/ildlShWczPdPh/vS3YxoufJl+YJzJdoCDTw2OjzfHv0h7UCOEDJLPHY6Z/gzZX49eSbCRXcjvXaVvc11lnxSiznEUIIIYQQlyenUjmT87xetMZGeoiSmNnLXGnOLVQv6dZORFtoK55pRnHgTEf20sfN5XAcB7WjA2tuDiUcRgFaMw4N7RtJK2VYbGoxDNB1EvE2umJdrGbxOu25OXf04vw8GIa7z8e2UTwetpsN3NhxE/964Kv8/s3/EZ5XeHbyWcBdjrmloY/fv/73+G/f+wxXr7+JYDhGySrTGGjAbzicOvkMo0GDSCaDubQADu5JVNOk8tOfokQi7gcESMYXQqx9UgQXQoglBjODPNT/kBuEF9QH6rm39146F0akoOvuApbZWbcA7vGgKO4IEyUWI13JYNkW+WqehD/hHkcERrOjbG3cSswfIxlKkq1kUVBYF+vhV3t/kVtySbzPPY9VX8/M9Vs4UhkhbZ2ifijD9uR2OmOdq15nRAlweOx5At4QvdH1RHJuJzgAhoHpUenLavT8eIj/esOfcXjXBJlqlngwQZ+TpOnhfSh33onZ348zNYWuKPSoKkpjI94dOzic7iejppcVwAEc26aYTzGgn2YkmWEz7nFMp1TC6O/Hu3PnmguXL3c5jxBCCCGEuPwsztZ2zjrxF+rt5d7ee3mo/yFS1Sp2IIBTKpGItnBP5xsInkq5943F3FOgtu12ZPv9tYK5k82iNja6hW5Nw06ncUyTUCHIfTt+mYdPf4/Z8ZPg8aA2NtIQSXJP/Q34hiawkhbakqLy0utUEgmsmRl3/KLH445fXDh52vjsSf749v/Mp578C/7LU3/DL237Ze7f/mtYjs2G+g3U2wGODjzH7de8nb9//h94Yeo5ADRF57q2a/nNq36dYiED3vjyAjigJhKYp0+DaaJ5PLWZ4ZLxhRBrnRTBhRBiQa6SqxWWnWq1thRzRk/zoPF13n/tfyC80EWghsM4pRLWzMyyArinr4+4fwxN1RmZH6GvsY+pwhQFo4BhGxyeOcw7tr2DT93xKQbTg9T569jZuB3KFQ4r44zf0oE3EuMzj3+EA6nDbtgFtie380e3/BE3dNyw7DoBArofVJVSJU///CmuCq3HU6yAomDUBSl7VQ5c10rIUOkgypvLEWiIUfn3f8eZOYbnqquoPvccztSU+0IsBvrJSaqKQrEvSrlaWfmCmSbYNlXbIG8WgTMzCZ1S6aIWegohhBBCCPFqcioVt7BcqZBq8HPMnHQbQnx19E7qdPVs44GdDzCUGSLbOYV/YpbWmapbALftWsbHtnEUBWd+HrWx0X2vYBhg29gzM+jbtuG/447aAkzF76dtfp53JW5ntGkPRb9KMFelraAR+MHTlG0bNZnEd8steDo6zlznYqFe11H8fndGuWHgeL1n3ndoGrtp56/v+DyHMidIVzLEtTBb6zaS6T/EPz/9N9x472/yySc/WyuAA1iOyYGpg/yX577MX93+WZxUdcXrpfh8ONksSiCwsutdMr4QYg2TIrgQQiwYygwxV5rDzuexRkfdBTYLpqemON16EzvWXY/W1IQGKMGgu0G+VHKPT+o6Cm7BuifWw+nMaY7MHKEr1sUN7TeQrWRpi7RhOzY/HPghlmHwwM738neP/xdOzh5DURRu3fIm9h1+HlSHzmgnZatCqpTi4PRBPvWzT/E3b/4bspXssk51TIu2pg2MTZ2kVMmTjZokFIVcLEDOa3Fs8hDTjrvYM+6JcnfdbtpLvtrsa7WuDuP4cbezZHEG4gJncpLItV0ElFVmFi4Uy72qh7AehLPq5Bda6CmEEEIIIcSrzc5kcCoVDidMvvTcXzMwe7z2tXUNm/i9wP+Xa7r2sK1pGzRtw6yfdjN+0/KMr/X0uEsqfT7smRmUWAylvR0qFZRIBMdxMAcG0OrrsVIp7MlJnHIZv6qyqa0NOzUL5bJ7onQhR9vT01R+9jPUN7/ZXb65pFOdYhG9pwfz9Gl3tvjCYkwlEkFra8PJZGgeydFMHYongVJXh1PQGK5kAJg3CxybPbri9XBwODZzjPHyDFu93StfsMX3A2eNfKx9v2R8IcQaJUVwIYRYkDfyONXqigI4gFMukx0+hZ3cVlu6oieTaNHoivlyXT4fv7vnd9FVne8PfJ+B9ACDmUGua7uOuzbeRU+0h5s7bqY90MinfvhntQJ4XaSRgl3h+6e+T9wfpzHYQMEs0hXtYiw3xsHpgxycOkgilFh2bTP5KW5vu4VHHYfx+VEMn44ZjpIz57kpeS3j+SkIBQBIG/M8kn6Kd9Xfgb+5GXNiwu1gqVQgGHQL45Z1Zh6irtPhaaQuOEVruHX5SBRFIeANsS7cSQcxYHkgvtBCTyGEEEIIIV5tjmGQqveuKIADDMwe50tP/zWfSXTTFHa7m8+V8RWfD2fPHlBVzIEBnHQaJ5NBbWtD37jRXRzZ0YFjWRiHD7vvJzQNp1xG1XWsiQnQdZxo1C2a53LuzO/paaypKdRQ6KwLd+eBq01NqB0dbkHa48HJ591u7MSZ9wSOYeCk0yj19UTqGlA8HmbzM0T9USg5lK0z7218uo86bx3pUhrCm1HC4eUjUTQNVBXF70fx+1e8npLxhRBrlRTBhRBiQdgTRimWqe/cRMWnU7SKhPQQ3rJJZrCfoK1hTU8v2zx+rvlyN3TcQFukjXdsfwczhRl8mo/2SDsbGzbWAvaj/d/n5OwxAEKBKKfnB2lpcBfkpMtpumKdTBQmGZofoinUxExxhnQlvWKJju3zMDZ1glsadkHbjXTGugjqAY6NvcDo1AlINqIsuX/aLjAWqLAhGMTT3Q2RyJlOj8Wgqyi12yKeEDe334qq6zzS/0itEB7wR7gpsZNfbL2LUNZcdk1KILDmluYIIYQQQogrj+LxcMyaZCB1AkdR3JEiiuI2fSgKA+lTHJk+UsvocO6M7+noQI1EsLZvh0LhTGd2Q0PtPUK1v98tgKuq+3fLOjNWxDRRFAVrfh41FMIpFt3bKxV37vhSjoOi6+4IklLJLUhXKjjFovu/lyzxBMC2UQMBOtR6Gjt7ifgiZIsZQr4wdVoMx7HxaB78qp9iOUc83ICnuRnFMNwxLAuFcMc00draUEOh2lLM2usiGV8IsYZJEVwIccVzKhWsuTl3m7tloYRCaI2Ny4rZAF2xLvrWX8fTY08zOTeJV/MwPj9GtprlfTvfQ+uUilMs4lQqF7UMpjPWuWyZ5dkyZg5UFZ/q4aru61hvFOmMdbGjaQe5ShZN1Xld9+toDjdT56tDQaE10kpXrIv6QH1tJIqi6zj1cSZmR0j467kxegtHS+NMpEfQGhpWhFeAomajNTa6Ry41DbWhAXtiArxe98inptVu15qa6I7FSAQSbE9uZzw/jmmZtIRbWO9rwX9qBMcp1h57cXP8WluYI4QQQggh1o6LzfiFkM60lcPnC+HRvTjFEvn0NJbfQ8WjYjtlJnLj5Co5Ir7IBZ9Xi8WWLbNceQfNHU1SKqG1tqKGQqiJBGoyieM4OIqC1tLiZvFq1R25Eom43eYLizkBnMVxKAMDbjd5NOoWzX0+9J4et5P8LIqmUeeLcG/vfRywx9nRspMXJp8HwKf7CXlClMwi29uvYUfzVaixGJ5AwL22fN59HcNhFK8X89SpFYtEJeMLIdYyKYILIa5odiaDcfo01RdewMlk3Bu9XvSuLry7dqE3N+NUKtiZDKcqQ/zjC/+Lx4Z+Rtl0A9+6WA+v63o9T47v5Y62dxLLZKieOIGWTKInky/r2uKBevyROLetez3fPvkdnhx9kjf0vIFcJUeumufdO9/DVw9+lYf7HyYZakRVNDLFOeq9sdoW+1oh3O+nsWcr93a9kShR6qo6WqF51QI4QDgQxdPbXuv68F53HdV9+7BTKTfY2jZqfT2+m2+uhfyIL8L2pu1sb9q+7LGccP2qx0WFEEIIIYR4NVxsxj89c4KHDn8Dw6vRnz4BhkHEF6GzdR0np/uxFR0HDdM2+coL/5vXdb+eLcktL+vaFFVF7+7GAcxDh7BOnkTr7MSxbXAc9M5OjEOHsCYn3aKzzweGgerz4entPbMc03Fwcjn0TZvcPK6qONUqdipVG6Wy4rkDATybNtFx/DhxfT3xWz/KF57+S47NHAVVpeIYbG/ZyR/d+ke1Zh3F50NvaoKzOt/VSEQyvhDiiiJFcCHEFcupVFaGY4BqFXNoyP3f116Ldfo0edXkH6b/mceHHiOkB6nzRnBwyFcLPDexn3Z/E0d88zSPVlEqFYyDB/Hfdht6a+tLvr6+ZB93bnoTXznwFabyUwD8bOin/Nr2+7Fsi28e+ebC7Q4xX4yOug72DT/JZ4pp/uKOz9S22OeNPGFPmK5YV617pacSJTGzd/kCzQX1gXq6Yl2ovgjenTtr4TbwpjdhZ7PufPCFI6Dn7XJZcK7jokIIIYQQQrzSLjbjz08O8eDxrzEzPUhjYxfrExs4NXWMrFngaPoEzYl2js0eZVPdZo5MHOCfjvwz3zn5XT72uo+xq3XXS74+LZnEnJzEHhpC0XWUhgacahV9/XrsYhHj6FG3A7xaBUVB8fsxjh7FnpvDf+edy/L52cVnp1KhOjNzzgL44n29V11FLJPhFsOg587/l0OZ42QqGeK+ONubtp/3tGrt8STjCyGuMFIEF0JcsexMxh1fsjQcL6pWsQsFd/N7qcRIqMBQZgjHsSmYRTBNwA2X2eIcO7ftIGPlMY8O4tm8GRyH6nPPodbVrThyebGawk1sSmxiPD+OZVsE9AAVs8J3T3yXD934IQ5MH+DqlqupWlXqvBGODu3HVB1mC7M8NvIYN6m3uFvsVxHxRVZ0i4NbAL+v975asXxFuG1peUk/ixBCCCGEEK+Fi834I8oMqfw02DazJw/x9j338nXToD8zQL6apcFpYlOil3du+zX+9idfANXkwMTz/Pf9/532uvZlM8JfDDUcRquvp/r00+7ccNMEVcXO5fDecANOJuMWtS0Lp1zGnpoCXccaHcU8eRJl8+ZzFp+Vs7vFF28/a1TJ0ozfDXQ3bXpJP4sQQlxJpAguhLhiOYYBhnHuO1hWLTzmzSIBTwBN8+DgoHg1cMCy3GK4gUVMCbpd0oA1NQUez4pFmbXnrlSYz0wxnBkiV8oS8UforO8hGk0uO0Y4V5qjKdhEyBsi7A2Tr+aZyU9zePoQL0y9wPVt12MZVZ6dPExYD4JZAU0jU0rz4IGv8f6bPnjO2YXdse7zdosLIYQQQgix1lxsxs973Z01RsjHvF5henQ/b+y6gzduuZt5I8+6WA+nZ47ztz/9fykaBXc3TqXC6bmBFYsyF9n5PPOz45ysjDFZmcPrD9Iaa6c72r08Y5dKKF4vaiLhLse0bbdwPz0N1SpOpXKmiK+qtc5up1DAHBlBDYfPOXpEjcXO2y0uhBBidVIEF0JcsRSPBzyec9/BcdxFNKaJEwpimVUivgiT+UlwbDRVJ6D5MY0yrZFW+sp1KNEodqnkdnXYNs5CUXwpO5Ph9OQxHnzuq8yMnUQJBFA8HhLxNu7b8Ut0N2xASyQAiPvjjOZGAfCoHqK+Oup8dTRFmkkGk0R9UfaO/wzbsQl7I2C6zxH2hDg1N8JQZuic3eDgdoSf7+tCCCGEEEKsJReb8cOeEFmfQ39qgEJmBsXr5ejws6jxOOFwPdncLN8+9E1QFPcvANtGcxQylcyKhzUnJzl9+jn+7+h3eXz0CUp2BUXXaU10c0/f27ip8ya6G9a7d/b7cbJZrFzOXTTp86F4vSiRCExNufPBV6PrOKUSdiZz3lEkMqpECCFePPVSX4AQQrxa1FgMJRhEWW2utdeLGo2CrlMI6pyePYletdjdsovmcBOgYNkWJbPMdR038paOO2k8OIze3o41Pu4G5cVFNks4lQrpyWG+tf+rzIwcR41EcIpFrKkppvuf45s/+TJzR1/Amp0FYHtyO7ta3JmDpm0yMj/C0ZkjnE6dYmNiI/OlDLbjhuTFv/clt+I1HFBV8kb+VXv9hBBCCCGEuNxcbMZv9NeTtUqUzBKK349jmig+H2a1TH2wnopZcbuwFcVtjLEsIr46FMsi5lv+2HY+T7r/IN8Y/h6Pjz9JCQPHMLBzOUaHD/PQ81/lp4e/w3xqwr3GZBK1paW23NKen8eencVKpVDq68GyVly6Ul+PU62i6Lrb7S6EEOIVJUVwIcQVS/H58PT04L3qquUheXFz/NVXoygKI2Q4NXqA2zpuwV+xuabhKu5afxevW3c777rq3Xzi1o+w43gOdWFpzWJ3iRqNoiWTy57TzmQYKU4wO3Uaxe/Hnp+vbXfHcZidGWakMkX1wAGcSoX1ifV89LaPsqtlF8qSLpSZ0gwfueVPqfOEao+tKip9Ldt5/44HODH6AorfT9jz0uaRCyGEEEIIsRZdbMafLc9xY8t1tNa1uwsqvV4AOhvX88aeO7E1DTTNLYSbJhF/lHXRbpoiLfQl+5Y9pzU9zYg9x6nsIKVKAadYdBdbLmT88dlBsuV5Tg+9gFOpoCcS+G+7zS2ELzTPoOvY+Tzea65xC+GLVBUlkcDT2+s+Lgvd7kIIIV5RMg5FCHFFU2MxvH19aM3N2JmM270dDKIlk6jhMGowSP7EGJZtMTZ2lBsbrwG/jzIWfsWDPTuLPT6JOZrCSafdLhFVRW1pwbN1qzvbz+M5s7G9VCJfzIDjoHi97nNCLSCjKOSreaw5G2tqCr2zk1u7b+XLkS9zcPogk4VJwp4wEUvn2Z/8M+/u+xXu2XQPFatCS6gZpVTm6MknsGJ1JCJJumJdl+qlFUIIIYQQ4pK4mIyfOzHG2NhRbmm6FjpvpmxX8HtDUK5w6ukf8Gu3/Cpey+H03AC6qoFpkfDF+d1rf4eGooLjqZzJ+NUquWKaql11C+flslvctm33L02jXCmSS03UMr6nuxslEsGensYuFNwGmXye8o9+hHfXLpyeHpxyGSUQwKlUsFMp9O5uME3U1brchRBCvCxrqgj+7W9/m0984hMcOHCAUCjErbfeyje+8Y3a14eHh/ngBz/Io48+SiAQ4P777+dzn/sc3oVPfIUQP58Unw+9pQVaWlZ8TY3FiLb1oE414Ng2U04OxTHANEmnUgAEDAe1oQG1pwdF10HXKXa3cGr2KHkjTyQQpbtjO9FEC45tE/YE3VC8sOCm9vcFYT0IuMs1taYmFJ+P9Yn1rE+sZzAzyEP9D3FifhI7EaF/7ADeaD3r69dzYvwQluKgNNSTiCS5r/c+WXIphBBizZOML4R4KS4m4ztTcaaseSirKH4/2bI7koRomORMhT9O/BInOovM20Wingh9ya0k0lWMiVMogQB6R4e7y0dRCDtevIqn1tjCkrneDuBXvYQU37KMrycSkEhgZzIYx4+jKArevj7I51EbGlA0DTubRQ2FoL4eTBPPpk2y5FIIIV4Fa6YI/vWvf50PfOADfOpTn+L222/HcRwOHjxY+7plWbzlLW+hsbGRxx57jFQqxXvf+14cx+FLX/rSJbxyIcTlrjuxnobGTuZKc2du1HW0pibq1TDrNl6Ht910N83bNqOeAg899w+kclO1uyeGWnnbTb9Ou89PmxKnIdHOXDm94rkSiXbaqgGgBLBi6U13rJsHdj7AUGaIvJEn7AnXur2HOnYvu00K4EIIIdY6yfhCiFfLhTJ+z8bdBIsmLZaFY1ng82HuP4SRzdbubg0N4bvpJtRAgHYlxrpAG0OVKQql0pnHVFVaox1E8NFe8QMrM74ai+G96irsTAbHMFA8nlq399m3SQFcCCFeHYrjnNWieBkyTZPu7m4+/vGP8+u//uur3ue73/0ud999NyMjI7S2tgLw1a9+lfe9731MT09TV1d3Uc+VzWaJRqPMz89f9PcIIda+xQ7spSG5PlDPfb331YrQ1tQUmeGT/K+hB0nlp1c8RmPnZt679X4CE3OMMM9DJx5hZvBIbbZfItnFfZvupXXWQNF19M5OtJYW9Pb21+aHFEKIn3OS8y4vkvGFEK+2i8345vAw5tAQTn7l0nm9sxN961bM4WGGcqN8NfMTHh/6GcXsnFsAb+jh3o1vYY/aTWvalowvhBCvsYvNeWuiE3z//v2MjY2hqipXX301k5OT7Ny5k8997nNs3boVgCeffJJt27bVwjHAXXfdRaVS4dlnn+X1r3/9qo9dqVSoVCq1f84u+dRXCPHz41wd2Eu7rR3DYITMqgVwgFR+mhFrjk3VKh1amPde9V5Gt6XITo0ScnTaKwGC0wUUrxe9pwcnl5OlN0IIIX5uScYXQrzaLjbjA6sWwAHsfN6dOe44dIXb+J3E/bx5y71MzI+iOyrNVpC2eQiXbcn4QghxGVsTRfCBgQEAPvaxj/GFL3yB7u5uPv/5z3Pbbbdx/Phx6uvrmZycpGnJcSOAeDyO1+tlcnLynI/96U9/mo9//OOv6vULIdaGiC/CtqZt5/y64vGQN4vnfgBVpWCX8WzajNHfT2g8x+ZwGMtuQXEclLAPJeHOLHRyORS/X5beCCGE+LklGV8I8Vq4mIzvmOa5H0BVwbbxbNrkZvx0iR3hOrYW292M7/OhJBcWaErGF0KIy5Z6KZ/8Yx/7GIqinPevffv2YS8snPjjP/5jfvEXf5Fdu3bx93//9yiKwte+9rXa4ymKsuI5HMdZ9fZFH/7wh5mfn6/9NTIy8sr/oEKIK4IaixEORFf/oq6j+P2EPWF35t/OnXi2bEFrbsa7aROq3w+miVMo4Cxsh/f09srMPyGEEFccyfhCiLVEjcVQAoHVv7iQ8RfndUvGF0KIteuSdoL/zu/8Du94xzvOe5/u7m5yuRwAfX19tdt9Ph/r1q1jeHgYgObmZvbu3bvse9PpNIZhrOgeWcrn8+GT/0AJIS6C4vPR07GdxFArqfT4mS/oOlpDA4lIsjZbUPH5li3D0RobZemNEEKInwuS8YUQa4ni86F3dGANDWGnlyy2X8j4aiRS6+yWjC+EEGvXJS2CNzQ00NDQcMH77dq1C5/PR39/PzfffDMAhmEwODhIV5dbcLrhhhv45Cc/ycTEBC0t7riB73//+/h8Pnbt2vXq/RBCiJ8r0UQLb7vp13nwwNfc2eCqiuL3k4gkua/3vmXzBZc6OzALIYQQVyrJ+EKItUZLJPDddBPGgQPuDPCFjK9GIuft7JaML4QQa8eamAleV1fHb/3Wb/HRj36Ujo4Ourq6+OxnPwvAL//yLwPwxje+kb6+Pt797nfz2c9+lrm5OT70oQ/xgQ98QDbACyFeUd0N63n/TR8874IdIYQQQpyfZHwhxOVEa2hAvekm6ewWQogr1JooggN89rOfRdd13v3ud1MqldizZw+PPvoo8XgcAE3T+Pa3v81v//Zvc9NNNxEIBLj//vv53Oc+d4mvXAhxJbrQgh0hhBBCXJhkfCHE5UQ6u4UQ4sqlOI7jXOqLuJxks1mi0Sjz8/PSXSKEEEIIcQWRnPfzS373QgghhBBXpovNeepreE1CCCGEEEIIIYQQQgghxGtKiuBCCCGEEEIIIYQQQgghrlhSBBdCCCGEEEIIIYQQQghxxZIiuBBCCCGEEEIIIYQQQogrln6pL0AIIYR4NTiVClYmg5PP41gWOA5oGoqmoTU2oobDr+n12Pk81vQ0TqWC4vdfkmsQQgghhBBiLTs7U6MoOKXSJcvXkvGFWDukCC6EEOKKY2cymCMjGMePg2VhTU7ilEqoDQ3o3d0YBw/ive469Obm1+R6zMlJqnv3YqfTtdvUeBzvnj2v2TUIIYQQQgixltUydSaDEghgTU6C14u+fj32xARqNPqa5mvJ+EKsLTIORQghxBXFqVQwJiex5uZQYzGUUAi1vh4UBXt2FnNoCDTNDaz5/Kt+PXY+vyIcA9jp9Gt2DUIIIYQQQqxlViaDefKk223d3Y2jKDjlMk4mg3nqFEp9/WuaryXjC7H2SCe4EEKIK4o1M4PV3495+jToOk4mgxKL4dm0CeP4cex0Gr2z073f9PSqxxWdSgU7k8ExDBSvFzUaRfH5Xtr1TE+vCMeL7HT6nNcghBBCCCGEcE95Vp9+GuPIEfcG3S1lLeZ7J5NB6enB4fz5WjK+ED/fpAguhBDiirA4A7x68CB2oQCqCrbtfi2TwQS01lb32KRl1b7nbHYmg9Hfj1MqubPEvV4Uvx81HkdRFFj4S9E0HMcB0wTLQgmH0RKJFUF6ted4MV8XQgghhBDi55Wdz1Pdvx97bs7N9wC2jZPNnsn3o6O1fA+S8YUQq5MiuBBCiDXPzmQwxsfBNFEXxp/Y9fXu6JMFTiaD2t6OpSigaQCrhtlaOK5UwOvFPHUKrbGR6nPPQaWC4vOhhELu32MxzJMnUaNRsG30jg68O3agxmK1x7xQd8lL7T4RQgghhBDiSmZnMhjT0xAMorW3o7W3Y+fztYxfy/dQy/cgGV8IsTopggshhFjTnEoFc3yc6lNPYWcyUCy6XRyNjXh37KDyzDOQzS7c2UGNx3EqFdR4HC2ZXPZYdibjhmPTxHEcrNOnUcJhzOFhnEwG/H53+7xluUF7ZgY1kcCenUWNRjGHh1E0De/u3bXgqyWTqPH4qsclV7sGIYQQQgghft4tZnxj/36swUE3e5umm/GvuupMxrdtlFgMxzCA1fO1ZHwhBMhiTCGEEGucNTdH5amnsKen3WOMC5xUiurBg3i2bQOPx70xFELv6gLLwrtnz4o5fYvh2SmXUXQdJ5tFDQZx5ufBcdy/TBMMAwVw5udRg0GoVt0HME2sdNotxi8+pmmib9qE3teHZ+dO9B07wOutbY6XWYFCCCGEEEIst5jxrZmZhRss8HhwZmaoHjhwJuMHg+gbNuDMzZ0zX0vGF0KAdIILIYRY4+x02i2AgzsDXNPckGxZOKkU6jXXoG/YgBIKoW/ciOI4bufGQjBduiDHMQyUUAhyuTNzBRfmigNniuyLYXnp15f8fTFoGyMjVH72M+zpaRzbBstCbW7Gf9NNy65BCCGEEEIIcUYt43s8Z/K9abqL7+fmUMNhvFdfjb55M06hgLJuzr5Y6wABAABJREFUXS1fn70AE4/HzfELedx9Asn4Qvy8kSK4EEKItW2xQwPAMMDvh3K5VginWkVvb8fT27tsjh8sX5CDqlKIBRhRZsk3m0R0Ly3qBsLVhVCsaeA4KHV1KMEgiqah1tejNjWha5obsBUF/H7yHpvh4X1k+g8SikKbniA4mQZVxUmlqDz1FIE3v/m1e42EEEIIIYRYSxYz/mr5HsBx8F133fnzPbhjEiMRlHgcxbbdZZhNTWeWbL6IjI/Hgzkx4RbAZ2dBVVFAMr4Qa4QUwYUQQqxtgcCZ7hCAhWU3i8FWjcfxrFt33gU5qCpjCZ1v7f9HZicG3A4Qr5dEtJm3XvcemgvrcPJ5FK8Xa24OZ24OFMWdETg1hQoY/f0ATF29ju8c/Sqzs8OYJ08CkIi2cM/6N9ByKgW2jT09jTU1hXZWaBdCCCGEEEKwPOMvzfeOA6qKGoutKIAvy/fgFq8DAYzDh7EXsrxTqaC2taG1tmLncjjlMqgq9uxs7X3Bahnfe/XVmEePotTVYQ0Pu4+vaSh+f+19iGR8IS5vMhNcCCHEmqY1NaF1dCzbCI9hgGmitbSgtbSsup19cUEOQKE+xLee+ydmx0/VjjwqXi9ptcK3nvkKpfZG0DSsiQkolVACAdSGBrTmZqzDhzEnJlCbmij3tPHw6L8zM3rcPa65IDU/wcPD/06xOX7mAiqVV+cFEUIIIYQQYo1bkfENw83PloXW3IzW1LTie5bmewD8foz+fqzJSZz5eRS/H8/WrTjpNOXHHkONx90CeCqF4vG4XeKrZHy9pwdrdBRzdBRnaYa3rFoRvUYyvhCXLekEF0IIsSY4lQpWKoWTy4Guo0QiaNEoWiyG76abqDz+uDs30HHcLu1kEt/NN5+zE2Nxph/AiJlidmqwNgPQsW0UXceemyNlGIyuS9G5axvDuRHyRpGwr452NYbvhWMo0SgYBloyyZg3w9zMnPugZxXeU/MTjHUYbFy8YZXCvBBCCCGEED9PXsmMvzTfA2CaOOl0rVNbqavDOHwYp1AAjwc7l8O7cyfWzAyKZUEwiGOamCdOLMv4iteLubig0+NZ/hyLp1EXScYX4rIlRXAhhBCX1NLFNaiq2+2xsMRGjUZRfD7sTIbqgQOYw8O1DmslHMbT24ve0YGnowP1TW/Cmppyuy98Prd75DxHEZUlATZfzZ9ZggPuXEBdxy4W0VSdjN/hR0f+LzMDh92vezw0NHXzluR1tBybcxflzM+T0yZxqlUUrxfF70cJhdyQvaBglwFQk8lVu1eEEEIIIYS4ElyKjK+cXaA2jGUZXwkE3LGGC19TYzGsyUmM555zvx6Nuh3hqoqdy4Hj4MzP42haLeODm+Xt6eklP6xTu10yvhCXLymCCyGEuGSWLq5xymWs2VkUvx993TqcXM793xs2YB47tiwcA9jZLNVDh7BLJfTubrdjpLf3op9bjcXcIFwqEfaGz2yFBxRNq41FaWrbyA+Hf7SsmI3jkJob4+HM93l36+sJjE6DqhJyPNjZrHu0UlHQOjuxhodr3xtS/ajJGL5bb5VZgUIIIYQQ4op0qTL+0nwPuF3bixnf53OL4gu0tjas4WG05uYzD+A4OIWCW/AOh93u9IU55IsZ356exnvttVSfeeZMIVxRUBsbJeMLcZmTIrgQQojXnFOpYGUyGIcO4ZTLKB4PVirlHlnM5zEHBtC7unCKRczxccypKbeQrCig627ndbGIk83iNDZiDQ1hVatoXV0AyzpMzkXx+fD09mL099OhR2ho6iY1P+l2eKiq+xh1dQSb2igPP4dP9bjhuVp1C+SKwlx1nrF6jY35GHa5TEN9A9q6dZyuTmIXR4joIerXdeIpGSQCcXo230Ag0SLhWAghhBBCXHEudcZfmu+dUskdr5JIoLa0uIs0fT48W7e6Be36eoyTJ1Hq6lCiUZxs1u3odhx34WUoBJqGXSqhJhLomza515bLYQ4M4LnmGhTbxjFN1Gj0gqdQhRCXnhTBhRBCvKYWO0NQVayREfdGxwG/v3YfZ2EDvKKqbjdGuYyzWHzWdffrpgmKgmMYOJUKjqriTE6igNv1MTeHp7l5xdb4pdRYDO/OncQyGe655Tf42dBPSednCGg+7EIBw/LT1rCOgVPP4pgFt/tjbg6qVbezxbIoqAbeq69mKD3IPvMUoboEQyeeYmR+GF3z0FnXye3tN/PWXe+kvnnzq/raCiGEEEIIcSlcLhl/Md8vjmIptTYwNHmMXH6SsCdKW1DHP1NBb2pCGR7Gnphwu9JHRtyCfKHgFs8DATxbtmBnMii6Dl4v1uioWyzXNOypKfQNG/Bdc815328IIS4fUgQXQgjxmrEyGTdgKoo7ciQYdIOuabrdIsEgiqJgzc5iT09jnDiBvnGjG5Aty50F6PFAqeT+3bLc+d2RCMazz2JPT6MEg2DbqA0NKLt34wkELtgRPmTO8shj/5Px3BhZzcRwTNriXdx/7TuopKZQPB4c28aem0MJh1HDYZz5eVAUwsEY2cIce/3TfGfwR0zNDrG9dTs3ddyIYRsEPCHag21EZvI48cp5r0UIIYQQQoi1ZkXGD4cpBjRGtTw5a566YJw2I4h/YOw1yfjKwuzwgbHDfOsnX2Zm4lRt1GFDUzf3XvN2WodHURsbsaemMAcH0bq6UBTFvQZVRWlsxM7nUYJBjKNHcebm0Do7UTs73cfyeMDrdTvYhRBrgvy/VQghxGvCnJyk8rOfYY2NAbjBt1AA08TOZt3lNMkk+YiPse4gpWieumu78Cfq6U/Oky4a1Htb2FKN0vDj58A0KW1Zx0CDQ27+MKGETZsvSTBdBNvGnp2lum8fajyOfp4FNdl8im898ffMjB7H4zgkFm630gN8t/RVfnXXe2ns7CWVncLO593rzWRwcjnqQw20DmcZCafJBnOMpYdwqiUOTR5AmVZrz5Fq7OPq4HpimQ5ZliOEEEIIIa4Yq2X8sWCVR1JPMDs95C7DrKujrq6RW6++A9VvUqxrRAlbzDdHKFU0ImqALZW6WsZXEgkIBDBHR7FnZ5ft7nkpGX/pcszZydM8pHyT92y5n4ipYqkqdjqNdfKk242ez6OEQqiFAmo4DJEIzrS7/8eanFy2EFNtbMRqbXXvJ4S47EkRXAghxEVbuuX9YuZuL7Lzeap797qjRBb5fDimiZPJUOppY9xTYr4lwg9P/oDKRJ66mSA7r76Lv/zRH3Js5hia5YBlsb31av7ozX9Iw3SZb6efZO50EfPYMQAS9W3cu+EttJyYqRXC7UwGzhOQB6eOMzsxsCwcAzi2zezYSWa3zXHPhrfw8KnvMj2xv3a/htb13J24icChEfIb/JStsts94vOhqOqyx6raBnmziLNkGY8QQgghhBCXg1cy4+d98PDpR0nNjaFEIjiqSi6k8fz00zgN9QzOD9GV3Mi/7v86J1IniHujdEbaiXnr+PCb/5DtT4+jd3Sg1ddTfuwx90E9HndB5UI390vN+I7jgG0zM3aSsW05tsbW48zPY42OuncwDLTWVtREAuPQIdQNG9xTq6q6asbHtt0RLkKINUGK4EIIIS7K0i3vi5RAAE9v7wXn4FnT09jp9LIuDioV9GSSkfYwDw//O95QhMcnjjCeHSUYivEf9nyQLzz9V+wf24eqaIT1IKrXy6HUEf7m2P/m9rabme0fWui8cEBRSWUmeGjwe7y79Y2EbR01GIRSCWt6etUw71Qq5PJzKKEQit/vzh7M53FsGywLB8iX5tliN/CuulsYveFqcplpQqqf9kqAYNGCzk4iMQhoBkog4B6hPItX9RDWgygez0v/BQghhBBCCPEKe6Uz/khlmjTuSBFMEyUQpKt1C9dvfxP/NvADuhKdfGfgexydPoKDQ6YyD6pC2a7y6ee/xBdv+zOST/ej+v21ZfQ4Do5to+g6ajL5kjK+ncu5Y1YW5Evz2GoBffNmt8humqBp7gcCxSJaZydKLAaaBn7/ygI4uGNTZNShEGuGFMGFEEJckFOprAjHAE6phNHfj3fnzvMGwFqHhK6f6eKwLLL5OR4xniHts2hta2Xi4E/B46EwO0FOrfDs+H4UwHYsTMfGU7VA0xiaH2K6oQ97fh61rs597IWt8qm5MSZ2Bln//ATW4CBOuYw5PIwaiaD39aFArSPbGhoiYJexZ2dxTNPtfInHsWZmatce9tWB4xBM5dmQyaDGm7BnZoBq7T7tNBENFGmt72Js4rj78y0E5YA3yLr4OjoiHbI0RwghhBBCXDZejYyft8tYMzOo4TD+5lbWb7iWv93/39iY28i/HP5n3r/rN3hu8jkaI03M5KawHZv5YpqOSDsHxp/jcP4UiaEh9K4u97E1zZ297Tjo69ZhDg29pIyvxWJYqVStMzzsqwPDwBwYwFEU7ImJlT8foAYCqPX1OJkMqCpqc7NbhFcU1Hgctb7+5f4ahBCvESmCCyGEuKDF45GFziZGihPky1kigSjtgWZC4ynsTGbFrOtcJcdQZoi8kSeomTQ31hFM5SEYxCkWQVUZCxnMHDqO1t1NKZfBKZfdoAvkyllaom1EPCEsx8an+zFLBWaLKSzbpGiV0BobweNBicXd+eKGgRqNkktP4+Ry4PNhVyowP481PY05MYHnqqugVMJcCM/tHU0k6ttIzY3hVKtuYT0Swc5maWhdT2d9N87INIrfj+LxoITDsKRIroTDxJId3Ny8CTXg52H7W4zNDOCUSvgCYa5p3c2e5C7GCuPo+UaivpbX9HcnhBBCCCHEamojUDo7oVh0F9UHAhAI4IyPr5rxl45OQdPcDm1VrWX8sOp2cNvZLBt3v5n/8fzfc3DyAN3RbgCqVoWiWYQSRAMx8pUc2A6WbYFpkjFyeLZuBb8ftbsbe2oKCgW0vj5mAjYntkdIWyr1IdhU9hI7OXThjF+pYDvOqhkf20ZvbsaYm8PJ52s/pxIOoyeTaM3NKB4P1YMH0RIJzOFhrMFB1GjUfQ0qFdi+Ha2h4bX81QkhXgIpggshhLggxzAYa/bzzZ9+idmJU7XbG1rW87ab30/XWbOuBzODPD78ONlKlrJZxq96Ceklrm9fT+toDlQVx7Io+BQUrxdF0/DZKo5hoAaD6IpGMtJMupJhMDMIOHhUL/WeOjoT3aBAUAuQnZlByWbRWlqwHMddZOP3E6oq4PGgJRLukh5NQ/F6cfJ57NlZ1ESiFnKDI1Pct+VtPJ7aT86pUrYrBCMxwpbOdT23MlIYJ+edIxIM0hZMEglGUbdudbtKdB18PvT2drpjMRKRJNsbtjI2dZKCXaZaLZGeHuGHhx7CxiEx+lPedtOv092w/rX75QkhhBBCCLEKxzBQm5upPP64u/DRcdwO52QS3w03rNhnY2cyGMPDUKm4WTiRQAkG3Qyu6xAO01YJkKhvY87IUvXA0ZkjAHh0L7qq49XczvKiWaQ+UA/VAmCjqW4jTMwTwTh8GAYG8N1wA1XDwJmd5f/P3n2HWVFeDxz/ztzetnd22aWDVBUrRoo9YiwxRhNbNJYoIegvMRobGntiNJrYkihqTFMTg71jbCAWQCkLwi7be729zPv7Y3YvXJbu6sJyPs/Dozszd+4771zXw7lnzrtmdBr3Lf49G5rK0ex2MAyG543hp+N/xOilNduI8U9hYeVrtAVbwDDQvF5yCkdw8n6n4mpox+jsNP+e4HBgHTMGwuE+Mb6ekYHu82EpKCC6bBmWrCxUTo7ZoqWzk3hHB0ZXF44jjsCSnf3N3TwhxC6TJLgQQogd8tsMnnvjUVqqy0Ep87FIi4XWliqeW/wEFx7zc3yNjahYDL9d8X79+7y47kXq/HXJcxQ6ctGLXBybU4S7qRPV2UnahBL0hlyzfUggwJD8kdS2VrJfwSRWNXxOka+IzlA7mmZBBzqjXVR1V3PciOPI0310u90Qjyfbomi5uWR7cxmaPxqbJwp+P/qYMRh+P4m6OrDZzIpxj2dT1YphgEWnMdrGBn810UQURySNgvQhWNtXsnbtB2ZlCpDtzePkg8+m1DHUrJqx2dAzMpKPifocPvbTCyiK+Xli439p9TelzGNrex3/XfE0F0y7HJ/D943dPyGEEEIIIfqw2YguWoRRVWUmiX0+M671+4ktX4790EOJ19SYRStuN/GaGuJr126qmLZasU2YQGzNGlQwiKbreNr8nDzuVF4KfUZ3pBsLOrpuodnfxJic0TR01TMmazTlbWtRykBHI92dRSQeYeKQA9gvmgXueojHiS5fjrWsjPZpU/jDZ7+hIlCD5vGY8bvVyoa29dy34s/8esyF5G4lxi+xZHN29lHUZLThTwTxebMoJp20qIv4hpVmH3DAGDIEa3GxuSbQVmJ8rWdRTM1mw4jFkq/rZbS3E6+uRvd6pUe4EHswSYILIYTYoY1tFTTXrDUT4G632f8vHAagecMXVNauZpyeT4s1wmdaPQ3ddRxWchjBWJC3K98mHA9TH2nmxcb/MenAeYwdNhbN4WBYlpe80Gpa6tfT1NbErKLDeTMcJj09j2eX/Z0fHHQBz6CxrnUdmgJ0jQJfEWdOOIsylUFnfRUtzRtRkQiqq4ucoWP5zpiTcX6wklh1tTl4TUPLzMQ2ahSxysrkKu4qGCQ4NJ+6fCf/qH6ezkgHabobe8RKzObjw6oPWNOwkukFh2AoAxwOwirK/1o+5oTRJ5LvLd7qXKlYjGo6+iTAe7X6m9jYsZEJ+RO+hjslhBBCCCHEzjHa20n0JMD1vDwCXhu1zgh+I4xXa6GspQ6fKx3V2oqKRNCcTvSCAhKVlWYiOB4n9sUXWEaPxpKebibS7XZKYzHOCeTzob2eHHcO2cDGlvV8q+xbfFT3MUcNmwVAMBYiw5HO0LQSMt2Z/Gra1RSuCxN3ucx4vae9yeqCMBs6KszWidGedXk0DSwWKro2ss4VIDdiM1/j94PLhZ6XR3z9etzBIKOVQkUS6Hkayl9HrKrRbPOilNnqMB4nXlODbeRILF7vVudKxWLm+2+RAE/uD4W22j5GCLHnkCS4EEKIHfKHOpMV4CoSgfhmj0YqRSDczedejT+s+AuftH5OVcdGACYW7c+5k87h2dXPEjGi1AcbqaeLSeMOAyAdOHn8qfxXPUtzMEj1qiV8q3QqzuwSJndMpObLZZw17DvERlsIGVFcuh17MIbLH6GovZvzxp5JzdgO/NEAXruXkoyh2Bd/luw5nhxiRwdxpbCOHIkRDKJnZ1M/tpDnv3wRh17CBxvfRbNYcNk9jMkeTcwaJxQPEY6F8OYU8eLq/1LXXWf2Ba+1sqGjkgsOuICyjLI+c6XZbPjjwW1Ppq7jj/m3vV8IIYQQQohvQjAIiQRaejq1BS6er3yF1o7eJzk18q1VfNtzIEUVbRidnYTyMqgrchMc68PTFWZIyIa71U9i1Sqs3/oWthFmyz+jowNveSf7O4qYnD2e9VXLSTjsfFK5mPH54/EoB1cecgV5njwz3jasjLOXUOz3ojLD2HNyIJGAnurrzsRK82lOw+gZmmb+Mx5HhcN0WmNmjJ+VhebxYLS3YykqItHWllywXvP5zHP2/GwpKiK+fj1GIEAiFDLbm7S1YT/ggK0uZq/ZbJvefys0q7VP+xghxJ5F3/Ehe4a1a9dy8sknk5OTQ1paGtOmTePtt99OOaaqqoqTTjoJj8dDTk4Oc+fOJdr7LaEQQojd5nWkJastUhLgPRxZOdzzxZ/4pH0lUeIUZhRTkFbEqsYveGLZAmYOOQLVUzURT6RWT5RllHHBQRfzvYPO49jJp3K4ZxwTo9mUVHWTVt9O67KP6PrwXYyNG/GvL6f1y89xW5xgt+Nct5Fhb6xg0mdNjCUXb8jAaGgwKzpcLjNQ7fmjIhEseXmoYJCuRIgX2z6gNdhCOBFJBtKheIi14RpCiQgkEnhsbta2llPbUmEGzT3q/HUsLF9Id6S7z1zoGRl4Xelbn0irFc3pxGvbeoWJEELsayTGF0KIAeRwgKYRKsnbIgEOeloabfUV/M9Yz7uH5fLs9DT+N9lNa76XlRs/4T91b/Bk42vUDfGaxSebxcp6Rgb2KVMoyB3G3IN/yoii8ejhKLbuIOvXfURD7VoOiOUy8/m1fKc2gxlrFYUNQbPNYUsL8bVriSxaRHTpUlQiQYYjfVOvbl0HZZh/AAyDDE82Khgk0dKCpbDQ/LuApm1Kllut6B7PplYqiQSJxkYStbUYLS1gt5un8vuJlZebRT9b0DMy0LdRJa71bNdstv64K0KIr8leUwl+4oknMnr0aN566y1cLhf33nsvs2fPZv369RQUFJBIJDjxxBPJzc3lvffeo7W1lfPOOw+lFPfff/9AD18IIfZqpVll5BSNoLWtFugJJjUN3ecjZ8hIGjU/r2x8A38sgEIRV3F8Nh9D0opZ1byK7+93BioYxJWRS6G3sM/5fQ4fE7LGElnXSby2lmCuk+zcobR21G965DAeR3M4yMktpSTuRfk7sJSWoqelmVUcNTVYhg8HwKipQR8yBNLToaciQxkGhMNYioup7qqiuWIVWmYm7vQcNJvNDFrtdkKJCEYibgbNdjtRI56s/FCBAMrhwBqJ01y3nsoh65hYfEDKtWgOB8NKJpK9sYjW9k1/kcBqxZKTQ7Yvj9KM0n6/R0IIsTeSGF8IIQaOnpmJXlhIrStqxt1oWHQrOaMnYeRl43D5KO+oZMm6Nfzr838QMSIcVHQwVx56BY72PNYvW8TzG1/jnKJv49wiQaw5HFjy85kM/HrCPMpH19IR7iDD4mFUl5OMd9eZrU2iUSzFxeailOEwekYGRiKBbcIE4hs2YNTUMHa/UobnjGJD/SozYa2s5iKewIi8MYzR8rHkWYmVl0MshmXkSCwlJebClz2LfWrp6aBpWIqKwOVCczrNgUaj5vpC6emocJh4XR2W3h7hW1yPbdIkjO5ujPb2Tdu9XqzDh0M8vtUKciHEnmOvSIK3tLTw5Zdf8uijjzJp0iQA7rjjDh544AFWrlxJQUEBr732GqtWraK6upqioiIA7r77bs4//3xuvfVW0tLSBvIShBBir5aeVcipR1zIcx89SfP6L8wAMieHTHs6M8bP5q2mj/FHuwENTdPQ0emOdVPbXUORrwinw8MZB52PZrHQHmqn0d9Ivje1X56ekYHm8aC7XHi6I5w05CieT7xGa0e9ucCM3U6W5uHEtIOwfbSMWEsLWn4+tv32Qy8owOjuxtKTmDcSCYyaGrS0NPO1uo7udKLl5qLV1xNKc6Ln5poJ9kiUIk8hdf468zHGaBSbPYEzBjnOLLraG8weiA4Hht+Px+rC1x4iEeygM3M1cWsR1oKC1PnKLuTUaRfy3xVPm73BdR3N6STbl8fJY06WRTGFEAKJ8YUQYqBZsrOxH3oo/oaPzZ8tNvKnfot/V7xAvEvny44NNAWbmFp0EN+d8D2e+eKfLK37iN8t/h2XH/gT8kdOpqG9iroCJ5mhEIbf36daWs/IIOeLKJnVYVRUx2ivM4tUDAMtKwstMxOjoYF4ZaW59lAggF5QAHl5yRg/J2rjp+Mv4H7jz2xoXANWK2gaI/LGMHfSxeTqPgyHH9uYMWAYGMEgKhQyq9OtVixDhhCvrMSorwdA83jQ0tKwjhhBvKIC1dGBslgwQiEwDOKZmWC19onxLTk5OI44gnh1NSoUMivTAeJxbKNHy6KYQuzh9ookeHZ2NuPGjeOJJ57ggAMOwOFw8PDDD5Ofn8+BBx4IwIcffsiECROSwTHAcccdRyQS4ZNPPmHmzJlbPXckEiGy2aMuXV1dX+/FCCHEXkhzOBiWN5rzD7uM6rEV+BNh3OEERe0GH0ebUWrT448oA13TQZmL3RSlFdEYaOLRpY+Q683D5fQyLL2Mnx7wEyZZhqDZ7ejp6WZ1xZgxZmWF38+QpgjnZB9F7UidULoLV3uA4rgHd6sfo7XVfKvGRhJeL5bSUhIVFeY2egLbzMxk5YeKRFCaBtEoiaoq3MV2VFcX2O00tVVxdNksPmz4iPpoG3FDJ6biHFZ2JJNKDuD+t+5EqTgqFsPtyWBMxkhsLWYbFHdcI7pkCfpRR/UJ+MtyRnDBtMvZ2LERf8yP1+alNKNUEuBCCNFDYnwhhBhYmsOBbcgQ0vRWLGVl5OaV8Z+qV9jQXsHwgnE0B5tRQFXHRtqDbRw+dBqLKhextG4pkQMvRhkGiepqurI2EllWh56bi238eDSrdZsxvp6ZaSaQPR6s48cTW7ECzWJB70mGoxSEQsQ3bMA2ebIZ4yvFmDUd/Lr0QtZNCNMZ95Nu9TKq20nmikaYUkiiuhoVjaKCQbS0NIyWFixFRQQy3VS1rKc7vQuvL4MhYSdew0qittZMuGdkkOjsNNs+9vT8VvH4NmN8S3Y2uteL0dGBisXQbDazmEcS4ELs8faKJLimabz++uucfPLJ+Hw+dF0nPz+fV155hYyex00aGhrI32IV3szMTOx2Ow0NDds89+23385NN930dQ5fCCEGhYDLQq3Fj9+SwIuTgoYWXA3ttOU5ae1uZHL+FJY3LgNAQ8OiWShOL0ZDp7GrjkJXLlbdjorHWV+1nN933ckt4+aQVduJJTcX+4QJWHJzsY4eDZEIKh4nQ9NICwQgoIhXNKH5dLOCo+fxRwDV1YVut6PS09GsVuwTJhBbswbV2Zk8RktPxzZihLmgDlAccZKdU0K7JWpWoiQS5DtyyEkrxEjEKLZkkxaBkZZcppcdSVVXNTZDI92ViT0CSimy0woojjgx2ttJNDVttUegz+FjQv6Er/fGCCHEXkpifCGEGHiay0V+RhF6Xh5+B9T463DYXcSU2ZLQZXESSURp7FjPtKFH9L6K7mgXESOC5nbjdaaBU5GoqyPR1oalsBDV3b3NGJ9EAqOry4zN43FwuTBqajbF+Er1jfHHjSNrzRoOXtMb44fQ0tPNhe97436rFS0jA2tJCYn6eurLMnih5i2aypeZT3zG42T78jlp2PEUNFpR3d3oBQUkrJtSY1paGioS2W6M39vqRQixdxnQJPj8+fN3GJwuXbqUAw88kMsuu4y8vDzeffddXC4Xf/7zn5k9ezZLly6lsNDsL6v1LnqwGaXUVrf3uuaaa7jyyiuTP3d1dVFSUrKbVySEEINTZUcl//30HzStW2724dM0MmNWThp3LFlujefeeYafHHkFQDIRjlJMzp/CwUMO5rUl/0BPRFAezayYCEdo0upYZm3GnRYAaxhPZSe+vBKKh+TiXF8NvRV8oRCa04nmcmG0tZmL4fTSNPB4zBXe8/PR09JQra3Y9tvPDKjjcfNxSasVLZFALyoCTSPNYuE7Q77L86ufw57u47UvX6XeX487LZvR9iIa/fU0xGK0NFbw/Ymn81LwRVrb67B7HeQVDcfl9FLoyqPOsDMkfSj2rSyeI4QQ+yqJ8YUQYu9gdHSwoeIznv/835Rk57Mh1klTsBmH1UmxxY7T6sJn99ISbEED4kYcMBec9Fq9YDSTZUtnSNCG8reZsXoigSUzk0RNDUZzMyoYxDZlCtaiIuLr10MkguH3m5XaxcVbj/GtVvOpzp2I8VUwiJ6Xh+Z2E/DaqI4209VaRdroPF758hX8RMy2JZqGZrfTGmhm4brnOXfkd3A3tKNnZJjtFYcMMf9u0bOekJaevtUFMoUQe68BTYLPmTOHM888c7vHlJWV8dZbb/HCCy/Q3t6e7Pv3wAMP8Prrr/P4449z9dVXU1BQwJIlS1Je297eTiwW61M9sjmHw4FDHlsRQoht6o50898vnqVp7TJUOAzhMFpmJq1djTxf9TrfGXIeI/LH8uA7v+OUyWfwvf1OJ2REcFmcZLmzebv8NWJGFHpWS9eCIdKyi6js2sgnLZ/zwfIXCEb8FGWVcuz+pxG2KGYPP4GSRCkqFgNdJ9HSglq1ygxKLZZkmxM9Lw/V2YnR1WUuphMMomdlodrbzccZNY2AHaptnQS9dtLsnRTawVH+JYXxOGfnzGBFoeLTwDr28+aQbvNi2ViLEY2C1Uq7LUA4HuKc3GOoK47QNSSb179YSLi5nnVxBeEw2XmlnDrjEkYM8H0SQog9hcT4Qgix51ORCO0Va/jv8qdp7aijraOe4QdOZ0LOfiSUQbojjZFZI1nVvMpsN4iOzWIDTeOgIQdhNzR8hp1jhx6NpyNEoqXFTCInEhCNorq6UEoRDQTMBHMwiHXkSIjHUaEQiY4OcxxbxvguF5rDgWpr23aMD2ZLFV3HOnIkiYoKqj0xXljzGq3+JpRhUKjtx9vdyxmTMQJPT+JcxeNgs9FuD1LrjjHKZkPZ7WgZGUQ//hjV09PcaG9Hz83FOmPGgN0fIUT/G9AkeE5ODjk5OTs8LhgMAqBv/s1gz89Gzy/Aww47jFtvvZX6+vpk1chrr72Gw+FI9hQUQgix6zZ2bKSlucpMgIP5eGI4DErR0lCBf8NafnXIL7htyV387ZMF5iKQdjsTcvbj8sPmUtu4Dmw2s2LPMPB4Mqjo2khExQjFgwQjfgBq/LW88OVLTB16GI+uWMBPxp9PLg40qxU9Kws9JwejrW3TAjQeDyQS6FlZaC5XcmxGWxtaZiaWnByqYi08v/4l2gw/Wof5CGRmROfEkoMp3NiBz+HD3l5L3kYzoNbdIZTFguZ0ouJxjEAAf7AD55ouiiaM5q3lr5Cor8Ya6jnObqe1rZaFy/7JhXmlpHmzv/kbJIQQexiJ8YUQYs9ndHRQFWygtaMOgIQRJ9jSgE3pVLduoMnfwKHDvkVnpJOarhpGZI6g0d/AYcWH8vPDf05ut0Gp4cC9vhUyM83kdy9N29TaxO9HdXaiYjGiy5djGz/eXKwyJ4d4XR1aejp0d5sxvsWC5vOZSe/c3G3G+CoYxPD7IRYjUVlJICeN55c/TmuwxexH7nIRjgQItNSzJhhkkmso1vZwcuFNwzDwh7tQUQ1lGBg1NajmZvN9Egk0rxejrY3osmVY8vK22hJFCLH32St6gh922GFkZmZy3nnnccMNN+ByufjTn/5ERUUFJ554IgDHHnss++23H+eccw6/+c1vaGtr4+c//zkXXXSRrBovhBBfgT/mNx853FwoZC5e095OdyzAgas6uW/Ktaye2oqfGE6Lg0zdg8/qZuzQA1hV8ymqNxB2OOju6mT0kIl0tJv9XKMuG63hdmrrP2Ns/ng+WPMGZZZcjvRNZEhrnERnJ/YDDiD6yScYvVUm8Tia241t4kRUW9umsSmFamvDn5/BC9WLaNfDaLr5vzsVDtPS0sIL8QTnHnwmzlXr8Wa6zIqSeByjqwtLbi5GT2WJikbx2jzo2TbqC100f/JF8lFKFY0mg+zWrkYqm75kkiTBhRBip0mML4QQA0fFYvhjgZRtrVVr+e64k3mW/1LRWUl7oJXDSw4ny5XF0cOPxjASpOkeMpSToV1BnPXVyacve6vAtczMTT26lUr+UZEI8TVrwGJB9/kw2tpQSuE45BCiH39stkRRyqzw9nq3GeOTk4PR2ooKhZK7qkP1tKkAmteL3tNexZlhh3icYFcr3WXDyQrYzXP39Ab3ujOxDs+CQIBETY2ZfO/qgkgELTMTzWZDdXVtsy+4EGLvs1ckwXNycnjllVe49tprmTVrFrFYjPHjx/Pf//6XyZMnA2CxWHjxxRe57LLLmDZtGi6Xix/84Af89re/HeDRCyHE3s1r85o99zanFMrvR0tLI62oFLu7jKFeL5o9j/9+8hQtjZWoYBCLxcZBB8xAs+is3PgxStOIYzA8ZxTHDjualxb/DcNupTXcTsyIoekuopEgGAbt4Xaeb36ZH2YfhdswiCxejJ6ZiTU93Qy2nU6MpiZin3+ObeTI5KKXvar8tbSF2lLH3VNZ2NpeS3WwnpEdHRS7sslOy6e1vQ6UItHcnKw8z7KmUZo3CkusBb+/fdOq8Xa7Wdlut6PZ7QD4I91f2z0QQojBSGJ8IYQYOJrNhtfmSdmWSMRoWv0ppww9ithYD0Ozy8jzFpLvyuH1pf+iqWE9KhgETSO3eDSzp3yL/GUVZgLc6USz27EWFxNbtSqZ/NYyMsximEjEjKPDYeLNzWjZ2RjNzURqa80YPyNjp2J85fenJMABM5kfi0EshnI4QNNQwSBFmUOpa68iEuhCc3nQvV40l4ssRyZD04difLEWPSfHLK7JzDSfdu0peEm2XZG+4EIMGntFEhxg6tSpvPrqq9s9ZujQobzwwgvf0IiEEGLfUJpRSk7uUJoaGze1RAFQimxrGsURF9YJw/ET4b9v/tlMJlutZi/vRIyKTxcxdb/D+O4xp9IRbMfhcLFuwyes3bCMuBEjYrEQi8TQbGaPQZtm/q/JaXFQ76+gJreLsW43sQ0bwDDMCg3MlduNpiY0n2+r4/bHg303bvbIvT9qBtTuzhAnlRzN8+qN5OOgRnc3OZlDODHjYFyNHRjNzXhzss3Et8Vi/tNmQ7NYkufzOrY+DiGEENsmMb4QQgwMPSODoe4CsjOKkjEw9CTCa9eRax3DCQcdB8Bf3rw7JcbHMGiuWcvzhsF5M8/C449iGzuWWFUVsXXrkglkLSMD6+jRJBoa0J1O8w0sFrP3dm4u+m7E+GwWf/fyWt2bfuh5grWpZSNHlUznTbUIu2bF6O6GWIy8ERM5Mf0g3M2dZusti8VM4kOyuCVZ+AJosr6EEIPGXpMEF0IIMTB8Dh8nT/gu/43GNi2OCWSnFfCdcSeTOWwiutdL5YaVZnAMaLoObjcqGCSRiPHl5//jgOwJHGGMIpiZzdr4EnzONDyZuQTineaimTYbQ9OH0hVspyit2KwWAQIqAkZP8NkTjAJmgOtwgK6bi9xsRnO58PkcUJ96LZrTaQbv8TheuwfohESCwo2dnJM1k9pShT8Rwmv3MNRbjLOyDpVrnntIzEN2XimtTRs3PfLZUyGfnVlEWd7Ifp55IYQQQgghvh6aw0HmsLGczPeSi2MCYLeTVzqWUw78AWnebFZsWLLVGB/DoKV2HdWjWhinZ6Dn5aG3tKDvtx9EowAYva1QurowDAMtLW1TZbVSm2L7XYjxta20Jikhg2xvHq3+pmR8bmhQ/eVnnDB8JuMyRxPp7sBrWBmaOSwlxlexGFpGxqZimd5EOKBnZmLJy/sq0yyE2INIElwIIcQOlWWUccG0y6kcvY7ujmY8uoOh7iLSc4qSPfL8ka6U12hWK3i9ZiCrFEFLAvvkyTgcDk61Xch/l/+LsMtKqH0VbQk/QzNKObJ4GpV1aziqdAY1tasB8DnTINwTjG5Wya1CISw5OeZjllZrMqDWXC5sY8ZQ5rKQ5cpKaYmi9SzCkxHRKbFmo3m7MNrasOTn425uZmStWR2u57jQC2Pow4ZhdHSA1Yqrso6TJ53Bwi+epdXfhOZ0ouk62ZlFnHrIubIophBCCCGE2KvoGRmM2O9wLiwYRlVHlVkM4s6gLG9kMrbd2RhfczjQHA4SlZUYwSAqGoXOThKNjViKi0nU1WEtLSVRW2uex+nc9JTpLsT4mstFwuVKaYniCcY5afgJPF/9Oh0uSAQCEImQWVDK4a6xFHxcbT7N6Xaj6yEsm8X4qq0N+377Ea+vR4XD6JmZEImgZ2ZiP+QQ6QcuxCAiSXAhhBA7xefwMbH4ACje+n6vo+8CZZquJ6spvJ6s5OOEw/JHc+H0n7GxYyNNgSbqA/UkjATBSIAiw0tN7WoSRoJsbx4llmw0j4FeWJisDgezekXPzMSSmYll6FCImS1V9IwMNIcDH/CdMd9hYfnClER4dmYR3xlxIhkJL4Yvh3h5OYmWFvT8fDAMM8AePRosFmJffIFmt6MXFKDCYYq7dS489hdUhRrwRwN4Hb6UvyQIIYQQQgixN9EcDjIKy8goLNvq/l2J8a15eVjS0zE6OjACAYxAwGx10tMPPFFba8bbXi+axYLm8exyjA9gGzOGWHn5pkS4UpTEPVxwxE+pjrfS3d2Kq62bouYY7mAChg41Y/yxY0k0NpKorDTXACooQNN1LKWlWEeNQoVCqEgEzeHAkpcnCXAhBhlJggshhOgXZXkjyc4sSj4uubmttQvxOXxMyJ8AQGVHZTJZrQiT0DWy3Xl8Z/gJeLrjaC4XzqOOIr5qlbnavNWK7vGgp6djGzMGPSNj62PKKONHU37Exo6N+GN+vDYvpRml+Hr6d1sAS3Y2sS+/TK4WD2A0NQFgHTnSrEQxjGTw7XI4yGBYP82aEEIIIYQQe65djfE1hwNLfj4WwOjoIFZeDqEQGoCuo7ndWIcPR3V3o+9mjK9nZGCfMgWjo8NsZ9ITpzscDtIphHww/P6+MX5jI7rLhT5pEpaMDDSXKyW5LoQY3DSllBroQexJurq6SE9Pp7Ozk7S0vt94CiGE2LaKhjU8t+SJlCC5t11IWcHY7b62O9KdTFZ7dCclliy8MT2l8kNFIn2C3f4IWnsD9M0fq+x95HJbwbcQYu8jcd6+S+69EELsvq8S428ev6Pr5qKTW8TyEuMLIb6KnY3zJAm+BQmQhRDiq+nyt1LZ9CX+SPde1S7k6wq+hRB7Donz9l1y74UQ4quRGF8Isafa2ThP2qEIIYToV2nebCbtBQHxlnof3RRCCCGEEEKkkhhfCLG303d8iBBCCCGEEEIIIYQQQgixd5IkuBBCCCGEEEIIIYQQQohBS5LgQgghhBBCCCGEEEIIIQYtSYILIYQQQgghhBBCCCGEGLQkCS6EEEIIIYQQQgghhBBi0JIkuBBCCCGEEEIIIYQQQohBS5LgQgghhBBCCCGEEEIIIQYtSYILIYQQQgghhBBCCCGEGLQkCS6EEEIIIYQQQgghhBBi0LIO9AD2NEopALq6ugZ4JEIIIYQQoj/1xne98Z7Yd0iML4QQQggxOO1sjC9J8C20trYCUFJSMsAjEUIIIYQQX4fu7m7S09MHehjiGyQxvhBCCCHE4LajGF+S4FvIysoCoKqqSv5y9BV1dXVRUlJCdXU1aWlpAz2cvZrMZf+Ruew/Mpf9Q+ax/8hc9p/BOpdKKbq7uykqKhrooYhvmMT4/Wew/n4YCDKX/Ufmsn/IPPYfmcv+I3PZfwbrXO5sjC9J8C3outkmPT09fVB9IAZSWlqazGU/kbnsPzKX/Ufmsn/IPPYfmcv+MxjnUhKg+yaJ8fvfYPz9MFBkLvuPzGX/kHnsPzKX/Ufmsv8MxrncmRhfFsYUQgghhBBCCCGEEEIIMWhJElwIIYQQQgghhBBCCCHEoCVJ8C04HA5uvPFGHA7HQA9lrydz2X9kLvuPzGX/kbnsHzKP/Ufmsv/IXIrBRj7T/Ufmsv/IXPYfmcv+IfPYf2Qu+4/MZf/Z1+dSU0qpgR6EEEIIIYQQQgghhBBCCPF1kEpwIYQQQgghhBBCCCGEEIOWJMGFEEIIIYQQQgghhBBCDFqSBBdCCCGEEEIIIYQQQggxaEkSXAghhBBCCCGEEEIIIcSgJUnwzaxdu5aTTz6ZnJwc0tLSmDZtGm+//XbKMVVVVZx00kl4PB5ycnKYO3cu0Wh0gEa8Z3vxxRc55JBDcLlc5OTkcNppp6Xsl7nceZFIhClTpqBpGsuWLUvZJ/O4Y5WVlVx44YUMGzYMl8vFiBEjuPHGG/vMk8zlznvggQcYNmwYTqeTAw88kHfffXegh7THu/322znooIPw+Xzk5eVxyimnUF5ennKMUor58+dTVFSEy+VixowZrFy5coBGvHe4/fbb0TSNefPmJbfJPO682tpazj77bLKzs3G73UyZMoVPPvkkuV/mUgwGEuP3H4nv+5fE+F+NxPj9T2L8XSPx/ddHYvyvRmL8rZMk+GZOPPFE4vE4b731Fp988glTpkxh9uzZNDQ0AJBIJDjxxBMJBAK89957/OMf/+DZZ5/l//7v/wZ45HueZ599lnPOOYcf/ehHLF++nPfff58f/OAHyf0yl7vmqquuoqioqM92mceds2bNGgzD4OGHH2blypXcc889PPTQQ/zqV79KHiNzufP++c9/Mm/ePK699lo+++wzvvWtb3HCCSdQVVU10EPbo73zzjtcfvnlLF68mNdff514PM6xxx5LIBBIHnPXXXfxu9/9jj/84Q8sXbqUgoICjjnmGLq7uwdw5HuupUuX8sgjjzBp0qSU7TKPO6e9vZ1p06Zhs9l4+eWXWbVqFXfffTcZGRnJY2QuxWAgMX7/kPi+/0mM/9VIjN+/JMbfdRLffz0kxv9qJMbfDiWUUko1NzcrQP3vf/9Lbuvq6lKAeuONN5RSSr300ktK13VVW1ubPObvf/+7cjgcqrOz8xsf854qFoupIUOGqD//+c/bPEbmcue99NJLauzYsWrlypUKUJ999lnKPpnH3XPXXXepYcOGJX+Wudx5Bx98sLr00ktTto0dO1ZdffXVAzSivVNTU5MC1DvvvKOUUsowDFVQUKDuuOOO5DHhcFilp6erhx56aKCGucfq7u5Wo0aNUq+//rqaPn26+tnPfqaUknncFb/85S/VEUccsc39MpdiMJAYv39IfN//JMb/ekiMv/skxv/qJL7/6iTG/+okxt82qQTvkZ2dzbhx43jiiScIBALE43Eefvhh8vPzOfDAAwH48MMPmTBhQsq39ccddxyRSCTlsYJ93aeffkptbS26rrP//vtTWFjICSeckPJohczlzmlsbOSiiy7iySefxO1299kv87j7Ojs7ycrKSv4sc7lzotEon3zyCccee2zK9mOPPZYPPvhggEa1d+rs7ARIfg4rKipoaGhImVuHw8H06dNlbrfi8ssv58QTT+Too49O2S7zuPMWLlzI1KlT+d73vkdeXh77778/f/rTn5L7ZS7FYCAxfv+Q+L5/SYz/9ZEYf/dIjN8/JL7/6iTG/+okxt82SYL30DSN119/nc8++wyfz4fT6eSee+7hlVdeST4y0NDQQH5+fsrrMjMzsdvtyccpBWzYsAGA+fPnc9111/HCCy+QmZnJ9OnTaWtrA2Qud4ZSivPPP59LL72UqVOnbvUYmcfds379eu6//34uvfTS5DaZy53T0tJCIpHoM1f5+fkyT7tAKcWVV17JEUccwYQJEwCS8ydzu2P/+Mc/+PTTT7n99tv77JN53HkbNmzgwQcfZNSoUbz66qtceumlzJ07lyeeeAKQuRSDg8T4/UPi+/4jMf7XR2L83Scx/lcn8f1XJzF+/5AYf9sGfRJ8/vz5aJq23T8ff/wxSikuu+wy8vLyePfdd/noo484+eSTmT17NvX19cnzaZrW5z2UUlvdPtjs7FwahgHAtddey3e/+10OPPBAHnvsMTRN4+mnn06eb1+dy52dx/vvv5+uri6uueaa7Z5vX51H2Pm53FxdXR3HH3883/ve9/jxj3+csm9fnstdteWcyDztmjlz5rBixQr+/ve/99knc7t91dXV/OxnP+Ovf/0rTqdzm8fJPO6YYRgccMAB3Hbbbey///5ccsklXHTRRTz44IMpx8lcij2RxPj9Q+L7/iMxfv+RGH/gyP/zd5/E91+NxPj9R2L8bbMO9AC+bnPmzOHMM8/c7jFlZWW89dZbvPDCC7S3t5OWlgaYKyO//vrrPP7441x99dUUFBSwZMmSlNe2t7cTi8X6fIMyGO3sXPY20t9vv/2S2x0OB8OHD08uqrEvz+XOzuMtt9zC4sWLcTgcKfumTp3KD3/4Qx5//PF9eh5h5+eyV11dHTNnzuSwww7jkUceSTluX5/LnZWTk4PFYunzDXFTU5PM00766U9/ysKFC/nf//5HcXFxcntBQQFgfjNfWFiY3C5zm+qTTz6hqakp2cYAzEWv/ve///GHP/yB8vJyQOZxZxQWFqb8vxpg3LhxPPvss4B8JsWeTWL8/iHxff+RGL//SIz/zZMY/6uR+P6rkxi//0iMvx3fZAPyPdnChQuVruuqu7s7Zfvo0aPVrbfeqpTatKhGXV1dcv8//vEPWVRjC52dncrhcKQsnBONRlVeXp56+OGHlVIylztj48aN6vPPP0/+efXVVxWgnnnmGVVdXa2UknncFTU1NWrUqFHqzDPPVPF4vM9+mcudd/DBB6uf/OQnKdvGjRsni+bsgGEY6vLLL1dFRUVq7dq1W91fUFCg7rzzzuS2SCSyTyxQsiu6urpSfjd+/vnnaurUqerss89Wn3/+uczjLjjrrLP6LJozb948ddhhhyml5DMpBgeJ8fuHxPf9R2L8/iUxfv+RGH/XSXzffyTG7z8S42+bJMF7NDc3q+zsbHXaaaepZcuWqfLycvXzn/9c2Ww2tWzZMqWUUvF4XE2YMEEdddRR6tNPP1VvvPGGKi4uVnPmzBng0e95fvazn6khQ4aoV199Va1Zs0ZdeOGFKi8vT7W1tSmlZC53R0VFRZ+V42Ued05tba0aOXKkmjVrlqqpqVH19fXJP71kLnfeP/7xD2Wz2dRf/vIXtWrVKjVv3jzl8XhUZWXlQA9tj/aTn/xEpaenq0WLFqV8BoPBYPKYO+64Q6Wnp6t///vf6vPPP1dnnXWWKiwsVF1dXQM48j3f5ivHKyXzuLM++ugjZbVa1a233qrWrVunnnrqKeV2u9Vf//rX5DEyl2JvJzF+/5H4/ushMf7ukxi/f0mMv+skvv96SYy/eyTG3zZJgm9m6dKl6thjj1VZWVnK5/OpQw89VL300kspx2zcuFGdeOKJyuVyqaysLDVnzhwVDocHaMR7rmg0qv7v//5P5eXlKZ/Pp44++mj1xRdfpBwjc7lrthYgKyXzuDMee+wxBWz1z+ZkLnfeH//4R1VaWqrsdrs64IAD1DvvvDPQQ9rjbesz+NhjjyWPMQxD3XjjjaqgoEA5HA515JFHqs8//3zgBr2X2DJAlnncec8//7yaMGGCcjgcauzYseqRRx5J2S9zKQYDifH7h8T3Xw+J8XefxPj9T2L8XSPx/ddLYvzdJzH+1mlKKfVNtF0RQgghhBBCCCGEEEIIIb5p+kAPQAghhBBCCCGEEEIIIYT4ukgSXAghhBBCCCGEEEIIIcSgJUlwIYQQQgghhBBCCCGEEIOWJMGFEEIIIYQQQgghhBBCDFqSBBdCCCGEEEIIIYQQQggxaEkSXAghhBBCCCGEEEIIIcSgJUlwIYQQQgghhBBCCCGEEIOWJMGFEEIIIYQQQgghhBBCDFqSBBdCCCGEEEIIIYQQQggxaEkSXAgh9iGJRILDDz+c7373uynbOzs7KSkp4brrrhugkQkhhBBCCCF2h8T4QgixY5pSSg30IIQQQnxz1q1bx5QpU3jkkUf44Q9/CMC5557L8uXLWbp0KXa7fYBHKIQQQgghhNgVEuMLIcT2SRJcCCH2Qffddx/z58/niy++YOnSpXzve9/jo48+YsqUKQM9NCGEEEIIIcRukBhfCCG2TZLgQgixD1JKMWvWLCwWC59//jk//elP5TFJIYQQQggh9mIS4wshxLZJElwIIfZRa9asYdy4cUycOJFPP/0Uq9U60EMSQgghhBBCfAUS4wshxNbJwphCCLGPevTRR3G73VRUVFBTUzPQwxFCCCGEEEJ8RRLjCyHE1kkluBBC7IM+/PBDjjzySF5++WXuuusuEokEb7zxBpqmDfTQhBBCCCGEELtBYnwhhNg2SYILIcQ+JhQKMXnyZI499lj+8Ic/UFVVxYQJE7jrrru49NJLB3p4QgghhBBCiF0kMb4QQmyftEMRQoh9zNVXX41hGNx5550ADB06lLvvvptf/OIXVFZWDuzghBBCCCGEELtMYnwhhNg+qQQXQoh9yDvvvMNRRx3FokWLOOKII1L2HXfcccTjcXlkUgghhBBCiL2IxPhCCLFjkgQXQgghhBBCCCGEEEIIMWhJOxQhhBBCCCGEEEIIIYQQg5YkwYUQQgghhBBCCCGEEEIMWpIEF0IIIYQQQgghhBBCCDFoSRJcCCGEEEIIIYQQQgghxKAlSXAhhBBCCCGEEEIIIYQQg5YkwYUQQgghhBBCCCGEEEIMWpIEF0IIIYQQQgghhBBCCDFoSRJcCCGEEEIIIYQQQgghxKAlSXAhRL9oa2vjzDPPJC8vD03TOOWUUwDQNI358+cnj1u0aBGaprFo0aLktpdeeinlmD3NltewL1iwYAGaplFZWTnQQ9mmffG+bMvf/vY37r333oEehhBCCCGEEEIIsUeyDvQAhBCDw69//Wv+85//8OijjzJixAiysrIA+PDDDykuLt7ua1966SX++Mc/SkJTiN30t7/9jS+++IJ58+YN9FCEEEIIIYQQQog9jiTBhdjHhUIhXC7XVz7PF198wYgRI/jhD3+Ysv3QQw/9yufeXcFgELfbPWDvPxASiQTxeByHwzHQQxFCCCGEEEIIIYTYI0g7FCH2cvPnz0fTND777DNOO+000tLSSE9P5+yzz6a5uTnl2LKyMmbPns2///1v9t9/f5xOJzfddBMADQ0NXHLJJRQXF2O32xk2bBg33XQT8Xh8u+9fWVmJpmm88cYbrF69Gk3TUtqd7Khlxfnnn88f//jH5LG9f3rbcCileOCBB5gyZQoul4vMzExOP/10NmzYkHKeGTNmMGHCBP73v/9x+OGH43a7ueCCCwDo6uri5z//OcOGDcNutzNkyBDmzZtHIBBIOUdXVxcXXXQR2dnZeL1ejj/+eNauXbvd6wdobm7Gbrdz/fXX99m3Zs0aNE3jvvvuA8zEfO9YnE4nWVlZTJ06lb///e87fJ8t9c79XXfdxS233MKwYcNwOBy8/fbbAHz88cd85zvfISsrC6fTyf7778+//vWvPudZvHgx06ZNw+l0UlRUxDXXXEMsFutz3LbuZVlZGeeff37KttraWi6++GJKSkqw2+0UFRVx+umn09jYmDxmsN4XgEgkws0338y4ceNwOp1kZ2czc+ZMPvjgA2DTvVuwYEGf1245z83Nzcm5dDgc5ObmMm3aNN544w3A/Oy/+OKLbNy4MeW/oV5tbW1cdtllDBkyBLvdzvDhw7n22muJRCJ93nfOnDk89thjjBkzBpfLxdSpU1m8eDFKKX7zm98wbNgwvF4vs2bN4ssvv9ytuRFCCCGEEEIIIb5pUgkuxCBx6qmncsYZZ3DppZeycuVKrr/+elatWsWSJUuw2WzJ4z799FNWr17Nddddx7Bhw/B4PDQ0NHDwwQej6zo33HADI0aM4MMPP+SWW26hsrKSxx57bJvvW1hYyIcffshll11GZ2cnTz31FAD77bffTo37+uuvJxAI8Mwzz/Dhhx+mnBfgkksuYcGCBcydO5c777yTtrY2br75Zg4//HCWL19Ofn5+8jX19fWcffbZXHXVVdx2223ouk4wGGT69OnU1NTwq1/9ikmTJrFy5UpuuOEGPv/8c9544w00TUMpxSmnnMIHH3zADTfcwEEHHcT777/PCSecsMNryM3NZfbs2Tz++OPcdNNN6Pqm7xcfe+wx7HZ7skL+yiuv5Mknn+SWW25h//33JxAI8MUXX9Da2rpT87U19913H6NHj+a3v/0taWlpjBo1irfffpvjjz+eQw45hIceeoj09HT+8Y9/8P3vf59gMJhMWq9atYqjjjqKsrIyFixYgNvt5oEHHuBvf/vbbo+ntraWgw46iFgslpzz1tZWXn31Vdrb28nPzx/U9yUej3PCCSfw7rvvMm/ePGbNmkU8Hmfx4sVUVVVx+OGH79L5zjnnHD799FNuvfVWRo8eTUdHB59++mlybA888AAXX3wx69ev5z//+U/Ka8PhMDNnzmT9+vXcdNNNTJo0iXfffZfbb7+dZcuW8eKLL6Yc/8ILL/DZZ59xxx13oGkav/zlLznxxBM577zz2LBhA3/4wx/o7Ozkyiuv5Lvf/S7Lli1LSbgLIYQQQgghhBB7JCWE2KvdeOONClBXXHFFyvannnpKAeqvf/1rcltpaamyWCyqvLw85dhLLrlEeb1etXHjxpTtv/3tbxWgVq5cucNxTJ8+XY0fP77PdkDdeOONyZ/ffvttBai33347ue3yyy9XW/t19OGHHypA3X333Snbq6urlcvlUldddVXK+wPqzTffTDn29ttvV7quq6VLl6Zsf+aZZxSgXnrpJaWUUi+//LIC1O9///uU42699dY+17A1CxcuVIB67bXXktvi8bgqKipS3/3ud5PbJkyYoE455ZTtnmtnVVRUKECNGDFCRaPRlH1jx45V+++/v4rFYinbZ8+erQoLC1UikVBKKfX9739fuVwu1dDQkDLusWPHKkBVVFQkt29rHkpLS9V5552X/PmCCy5QNptNrVq1aptjH8z35YknnlCA+tOf/rTNY3rv3WOPPdZn35bX5fV61bx587b7nieeeKIqLS3ts/2hhx5SgPrXv/6Vsv3OO+/sMy+AKigoUH6/P7ntueeeU4CaMmWKMgwjuf3ee+9VgFqxYsV2xyWEEEIIIYQQQuwJpB2KEIPElr24zzjjDKxWa7I1Rq9JkyYxevTolG0vvPACM2fOpKioiHg8nvzTW237zjvvAJv6Tff+MQzja7wic1yapnH22WenvG9BQQGTJ09OtlzplZmZyaxZs/qcY8KECUyZMiXlHMcdd1xK25beedpyHn/wgx/s1FhPOOEECgoKUqrmX331Verq6pJtWQAOPvhgXn75Za6++moWLVpEKBTa2enYpu985zsp1f5ffvkla9asSV7L5tf97W9/m/r6esrLywHzuo866qiUinqLxcL3v//93R7Pyy+/zMyZMxk3btw2jxnM9+Xll1/G6XSmnP+rOPjgg1mwYAG33HILixcv3mqrmm1566238Hg8nH766Snbe58EePPNN1O2z5w5E4/Hk/y59x6ecMIJKRXfvds3bty4S9cihBBCCCGEEEIMBEmCCzFIFBQUpPxstVrJzs7u086ht83I5hobG3n++eex2Wwpf8aPHw9AS0sLAEcddVTK/v5K8m1LY2MjSiny8/P7jG3x4sXJce3o2lasWNHn9T6fD6VU8hytra3JOdvclvO6LVarlXPOOYf//Oc/dHR0ALBgwQIKCws57rjjksfdd999/PKXv+S5555j5syZZGVlccopp7Bu3bpdmZoUW153b9/tn//8532u+7LLLgNIue6tXePOXvfWNDc3U1xcvN1jBvN9aW5upqioKKX9ylfxz3/+k/POO48///nPHHbYYWRlZXHuuefS0NCww9f23t8tW5bk5eVhtVr7/H7IyspK+dlut293ezgc3uXrEUIIIYQQQgghvmnSE1yIQaKhoYEhQ4Ykf47H47S2tvZJHm6tf29OTg6TJk3i1ltv3eq5i4qKAHj44Yfp7u5Oed3XKScnB03TePfdd3E4HH32b7ltW9fmcrl49NFHt/keANnZ2Vuds51JNPb60Y9+xG9+85tk7+2FCxcyb948LBZL8hiPx8NNN93ETTfdRGNjY7L6+KSTTmLNmjU7/V6b2/K6e6/pmmuu4bTTTtvqa8aMGQOY1721a9zaNofD0WcxRaBPIjU3N5eamprtjnkw35fc3Fzee+89DMPYZiLc6XQC9JnPrfUgz8nJ4d577+Xee++lqqqKhQsXcvXVV9PU1MQrr7yy3bFkZ2ezZMkSlFIpn5Ompibi8fjX/t+wEEIIIYQQQgixJ5AkuBCDxFNPPcWBBx6Y/Plf//oX8XicGTNm7PC1s2fP5qWXXmLEiBFkZmZu87jexGl/601mh0IhXC5XyrjuuOMOamtrOeOMM3br3LNnz+a2224jOzubYcOGbfO4mTNnctddd/HUU08xd+7c5PZdWSBy3LhxHHLIITz22GMkEgkikQg/+tGPtnl8fn4+559/PsuXL+fee+8lGAzidrt3+v22ZcyYMYwaNYrly5dz2223bffYmTNnsnDhQhobG5MtURKJBP/85z/7HFtWVsaKFStStr311lv4/f6UbSeccAJPPvkk5eXl2/zMDOb7csIJJ/D3v/+dBQsWbPNpifz8fJxOZ5/5/O9//7vdcw8dOpQ5c+bw5ptv8v777ye3OxyOrbZwOeqoo/jXv/7Fc889x6mnnprc/sQTTyT3CyGEEEIIIYQQg50kwYUYJP79739jtVo55phjWLlyJddffz2TJ0/eqeTxzTffzOuvv87hhx/O3LlzGTNmDOFwmMrKSl566SUeeuihHba3+ComTpwIwJ133skJJ5yAxWJh0qRJTJs2jYsvvpgf/ehHfPzxxxx55JF4PB7q6+t57733mDhxIj/5yU+2e+558+bx7LPPcuSRR3LFFVcwadIkDMOgqqqK1157jf/7v//jkEMO4dhjj+XII4/kqquuIhAIMHXqVN5//32efPLJXbqWCy64gEsuuYS6ujoOP/zwPkngQw45hNmzZzNp0iQyMzNZvXo1Tz75JIcddlgy0frEE09wwQUX8Oijj3Luuefu0vv3evjhhznhhBM47rjjOP/88xkyZAhtbW2sXr2aTz/9lKeffhqA6667joULFzJr1ixuuOEG3G43f/zjHwkEAn3Oec4553D99ddzww03MH36dFatWsUf/vAH0tPTU467+eabefnllznyyCP51a9+xcSJE+no6OCVV17hyiuvZOzYsYP6vpx11lk89thjXHrppZSXlzNz5kwMw2DJkiWMGzeOM888M9nr/tFHH2XEiBFMnjyZjz76qE9yv7Ozk5kzZ/KDH/yAsWPH4vP5WLp0Ka+88kpKlf/EiRP597//zYMPPsiBBx6IrutMnTqVc889lz/+8Y+cd955VFZWMnHiRN577z1uu+02vv3tb3P00Ufv0jwKIYQQQgghhBB7pYFdl1MI8VXdeOONClCffPKJOumkk5TX61U+n0+dddZZqrGxMeXY0tJSdeKJJ271PM3NzWru3Llq2LBhymazqaysLHXggQeqa6+9Vvn9/h2OY/r06Wr8+PF9tgPqxhtvTP789ttvK0C9/fbbyW2RSET9+Mc/Vrm5uUrTNAWoioqK5P5HH31UHXLIIcrj8SiXy6VGjBihzj33XPXxxx/v8P2VUsrv96vrrrtOjRkzRtntdpWenq4mTpyorrjiCtXQ0JA8rqOjQ11wwQUqIyNDud1udcwxx6g1a9b0uYbt6ezsVC6XSwHqT3/6U5/9V199tZo6darKzMxUDodDDR8+XF1xxRWqpaUlecxjjz2mAPXYY49t970qKioUoH7zm99sdf/y5cvVGWecofLy8pTNZlMFBQVq1qxZ6qGHHko57v3331eHHnqocjgcqqCgQP3iF79QjzzySJ/7EIlE1FVXXaVKSkqUy+VS06dPV8uWLVOlpaXqvPPOSzlndXW1uuCCC1RBQYGy2WyqqKhInXHGGSmfycF6X5RSKhQKqRtuuEGNGjVK2e12lZ2drWbNmqU++OCDlDH9+Mc/Vvn5+crj8aiTTjpJVVZWplxXOBxWl156qZo0aZJKS0tTLpdLjRkzRt14440qEAgkz9XW1qZOP/10lZGRkfxvqFdra6u69NJLVWFhobJaraq0tFRdc801KhwOp4wZUJdffnnKtm19xnr/O3766ad3OBdCCCGEEEIIIcRA05RS6hvPvAsh+s38+fO56aabaG5ulv6+QgghhBBCCCGEEEJsYesrdgkhhBBCCCGEEEIIIYQQg4AkwYUQQgghhBBCCCGEEEIMWtIORQghhBBCCCGEEEIIIcSgJZXgQgghhBBCCCGEEEIIIQYtSYILIYQQQgghhBBCCCGEGLQkCS6EEEIIIYQQQgghhBBi0LIO9AD2NIZhUFdXh8/nQ9O0gR6OEEIIIYToJ0opuru7KSoqQtelFkQIIYQQQoh9hSTBt1BXV0dJSclAD0MIIYQQQnxNqqurKS4uHuhhCCGEEEIIIb4hkgTfgs/nA8y/HKWlpQ3waIQQQgghRH/p6uqipKQkGe8JIYQQQggh9g2SBN9CbwuUtLQ0SYILIYQQQgxC0vJOCCGEEEKIfYs0QxRCCCGEEEIIIYQQQggxaEkSXAghhBBCCCGEEEIIIcSgJUlwIYQQQgghhBBCCCGEEIOW9AQXQgghhBCinymliMfjJBKJgR6KEGI7bDYbFotloIchhBBCiK+ZJMGFEEIIIYToR9FolPr6eoLB4EAPRQixA5qmUVxcjNfrHeihCCGEEOJrJElwIYQQQggh+olhGFRUVGCxWCgqKsJut6Np2kAPSwixFUopmpubqampYdSoUVIRLoQQQgxikgQXQgghhBCin0SjUQzDoKSkBLfbPdDDEULsQG5uLpWVlcRiMUmCCyGEEIOYLIwphBBCCCFEP9N1CbOF2BvIkxpCCCHEvkGicyGEEEIIIYQQQgghhBCDlrRDEUKIfUg0HCEYCBFPJLBarbjdTuxOx0APSwghhBBCCCGEEOJrI5XgQgixj/B3+anYUE1VRTV1VXVUbaiiYkM1/i7/QA9NCCHEIFdWVsa99977lc6xaNEiNE2jo6Pjax3L+eefzymnnPKV3qM/zrEtM2bMYN68eV/Lufek9xRCCCGE6E+SBBdCiH1ANByhtqaBSDCUsj0SDFFb00A0HNml86lIhHBzC+11DTTXN9He1rnL5xBCCCH2RL///e9ZsGDBQA+j35L+e4N96VqFEEIIMTCkHYoQQuwDgoFQSgJc0zQcHjea04kBdISiZNps2Cw7/m7U6Oigu6mZupbO5Dk1ux1nQT5DCnLwpnm/rssQQgghvnbp6ekDPQQhhBBCCNHPpBJcCCH2AfFEIvnvmqbhzsqgDZ2arhB1XSGquoJs7AwSiMa3ex4ViRCuqUlJgAOoaJRwQyO1DS1SES6EEP1ARSIkGhuJ19SQaGpCRb7e361KKe666y6GDx+Oy+Vi8uTJPPPMM8l9Rx99NMcffzxKKQA6OjoYOnQo1157bfIcCxcuZOrUqTidTnJycjjttNO2+l6VlZVomsayZcuS2zo6OtA0jUWLFiW3vfTSS4wePRqXy8XMmTOprKzsc64PPviAI488EpfLRUlJCXPnziUQCCT3NzU1cdJJJ+FyuRg2bBhPPfXUDudiy1YmM2bMYO7cuVx11VVkZWVRUFDA/Pnzd3gegJtuuom8vDzS0tK45JJLiEajyX2RSIS5c+eSl5eH0+nkiCOOYOnSpck5mjlzJgCZmZlomsb555+ffK1hGLs0nkWLFnHwwQfj8XjIyMhg2rRpbNy4cavXCzBv3jxmzJiRsi0ejzNnzhwyMjLIzs7muuuuS34eAB544AFGjRqF0+kkPz+f008/Pblve5+v7V3rM888w8SJE3G5XGRnZ3P00Uen3F8hhBBCiJ0lSXAhhNgHWC0WwEyA+7IzacNCVLdiczqx2m3omk7UUNT7w8QSxjbPY3R0EMLSp60KmInw3oU3hRBC7D6jo4PosmXEVq8m/uWXxFatIrpsGcbX2Criuuuu47HHHuPBBx9k5cqVXHHFFZx99tm88847aJrG448/zkcffcR9990HwKWXXkp+fn4y+friiy9y2mmnceKJJ/LZZ5/x5ptvMnXq1N0eT3V1Naeddhrf/va3WbZsGT/+8Y+5+uqrU475/PPPOe644zjttNNYsWIF//znP3nvvfeYM2dO8pjzzz+fyspK3nrrLZ555hkeeOABmpqadnk8jz/+OB6PhyVLlnDXXXdx88038/rrr2/3NW+++SarV6/m7bff5u9//zv/+c9/uOmmm5L7r7rqKp599lkef/xxPv30U0aOHMlxxx1HW1sbJSUlPPvsswCUl5dTX1/P73//+90aTzwe55RTTmH69OmsWLGCDz/8kIsvvhhN03Z5DqxWK0uWLOG+++7jnnvu4c9//jMAH3/8MXPnzuXmm2+mvLycV155hSOPPDL52u19vrZ1rfX19Zx11llccMEFrF69mkWLFnHaaaelJN6FEEIIIXaWtEMRQoh9gNvjwuF2YXXYCepWmto3VVHZHTa8KBItLYQtVoI2jXSfZ6vnUbEY26sVV4aRUnUuhBBi16hIhFh5OSqU+oWiCoWIlZdjnzIFzeHo1/cMBAL87ne/46233uKwww4DYPjw4bz33ns8/PDDTJ8+nSFDhvDwww9zzjnn0NjYyPPPP89nn32GzWYD4NZbb+XMM89MSfJOnjx5t8f04IMPMnz4cO655x40TWPMmDF8/vnn3HnnncljfvOb3/CDH/wguWDjqFGjuO+++5g+fToPPvggVVVVvPzyyyxevJhDDjkEgL/85S+MGzdul8czadIkbrzxxuT7/OEPf+DNN9/kmGOO2eZr7HY7jz76KG63m/Hjx3PzzTfzi1/8gl//+teEQiEefPBBFixYwAknnADAn/70J15//XX+8pe/8Itf/IKsrCwA8vLyyMjI2O3xdHV10dnZyezZsxkxYgTAbs1BSUlJn/txzz33cNFFF1FVVYXH42H27Nn4fD5KS0vZf//9gZ37fG3tWtevX088Hue0006jtLQUgIkTJ+7yuIUQQgghQJLgQgixT7A7HRQVF7CmtgWblgDMKirdYsGi6XR3B0gngdbVRUTFiAfcWAsK+pxHs9m2+z8OTdeTVedCCCF2ndHR0ScB3kuFQhgdHVjy8/v1PVetWkU4HO6TQI1Go8lEJsD3vvc9/vOf/3D77bfz4IMPMnr06OS+ZcuWcdFFF/XbmFavXs2hhx6aUq3cm0Dt9cknn/Dll1+mtDhRSmEYBhUVFaxduxar1ZpSkT527Ng+CeWdMWnSpJSfCwsLd1hRPnnyZNxud8r4/X4/1dXVdHZ2EovFmDZtWnK/zWbj4IMPZvXq1f06nqysLM4//3yOO+44jjnmGI4++mjOOOMMCgsLd/g+m9va/bj77rtJJBIcc8wxlJaWMnz4cI4//niOP/54Tj31VNxu905/vrY0efJkjjrqKCZOnMhxxx3Hsccey+mnn05mZuYujVsIIYQQAiQJLoQQ+4xELI5dGTiddhzRBBqgKwPV0UY8YRDzOLE0NaERI97SgO71ontTF7nUMzJwNTfjcLvMliiahuZ2o1ksoGnYnQ6cJIjX1KDZ7ejp6f1esbgrIoEgwe4AsXgCm82K2+vG4XHv+IVCCDFAVCz2lfbvDsMw22C9+OKLDBkyJGWfY7Pf4cFgkE8++QSLxcK6detSjnO5XDv9frpudmTcvK1FbIvr2pmWF4ZhcMkllzB37tw++4YOHUp5eTnALrf92JreivdemqYl521XaZqWvL4tx6aU2qnx7up4HnvsMebOncsrr7zCP//5T6677jpef/11Dj30UHRd7zPfW96PHfH5fHz66acsWrSI1157jRtuuIH58+ezdOnSnf58bclisfD666/zwQcf8Nprr3H//fdz7bXXsmTJEoYNG7ZL4xNCCCGEkJ7gQgixj4jH4qiGeqivxxMJogUDqI5OiMbAMDA0HYfbib2mitiaNSRaWlJeryIRjI4ObE4nRYW5OLOz0NPSUH4/idZWbIk4ed3tJN55h0RTE7HVq7/2Hrbb093WTsWqL9n4xRrq1qxj4+erqVj1Jd1t7QMyHiGE2BnaFsnNXd2/O/bbbz8cDgdVVVWMHDky5U9JSUnyuP/7v/9D13Vefvll7rvvPt56663kvkmTJvHmm2/u1Pvl5uYCUF9fn9y2+SKZvWNavHhxyrYtfz7ggANYuXJlnzGPHDkSu93OuHHjiMfjfPzxx8nXlJeX0/EN/X9p+fLlhDar6l+8eDFer5fi4uLkGN97773k/lgsxscff5xsVWK32wFI9FObsf33359rrrmGDz74gAkTJvC3v/0NMO/H5vcC+t6P3vFv+fOoUaOw9DwBZrVaOfroo7nrrrtYsWJFshf7zny+tnWtmqYxbdo0brrpJj777DPsdjv/+c9/+mU+hBBCCLFvkUpwIYTYR1hQYBiEOzrJLSqg2bAQCgTNnUrhtFsp0Ay0mhqUYaCCweRrjY6OTT1qNQ2rx0tOTi4Rtwe9pAh7LIK9Yj3a2kqzL/iGDVhLS1GBwNfWw3ZbVCRCxO+n5ssqIh2doOvQU1UX7uykdj0MczikIlwIsUfSMzLQXK6ttkTRXC703WjlsSM+n4+f//znXHHFFRiGwRFHHEFXVxcffPABXq+X8847jxdffJFHH32UDz/8kAMOOICrr76a8847jxUrVpCZmcmNN97IUUcdxYgRIzjzzDOJx+O8/PLLXHXVVX3ez+Vyceihh3LHHXdQVlZGS0sL1113Xcoxl156KXfffTdXXnkll1xyCZ988gkLFixIOeaXv/wlhx56KJdffjkXXXQRHo+H1atX8/rrr3P//fczZswYjj/+eC666CIeeeQRrFYr8+bN26Wq9a8iGo1y4YUXct1117Fx40ZuvPFG5syZg67reDwefvKTnyR7fw8dOpS77rqLYDDIhRdeCEBpaSmapvHCCy/w7W9/G5fLhXeLJ7R2RkVFBY888gjf+c53KCoqory8nLVr13LuuecCMGvWLH7zm9/wxBNPcNhhh/HXv/6VL774ok+rkurq6uT9+PTTT7n//vu5++67AXjhhRfYsGEDRx55JJmZmbz00ksYhsGYMWN26vO1tWtduXIlb775Jsceeyx5eXksWbKE5ubm3epnLoQQQgghleBCCLEHMvx+Yhs2EF29mlhFBYbfn7I/ljDoDMdoC0XpDMeIJXb8SLZLB0eaD6UUgboGsolRnO6iKN1NaU46Zf52rJ8vh97HqXv+mbJIm6YRycmjWndQ29BKS0U1LY3NdEXjhEaOwT9hMuHxEzF8acnEc28P292Vcq2BMJHWVuI1NSSamlCRSMqxidZWoqtXEwyECbe0ouJxVDS66ZowE+HB7sCWbyOEEHsEzeHANmYM2haJWs3lMrd/TV8o/vrXv+aGG27g9ttvZ9y4cRx33HE8//zzDBs2jObmZi688ELmz5/PAQccAMCNN95IUVERl156KQAzZszg6aefZuHChUyZMoVZs2axZMmSbb7fo48+SiwWY+rUqfzsZz/jlltuSdk/dOhQnn32WZ5//nkmT57MQw89xG233ZZyzKRJk3jnnXdYt24d3/rWt9h///25/vrrU3pdP/bYY5SUlDB9+nROO+00Lr74YvLy8vpr2rbrqKOOYtSoURx55JGcccYZnHTSScyfPz+5/4477uC73/0u55xzDgcccABffvklr776arLn9ZAhQ7jpppu4+uqryc/PZ86cObs1DrfbzZo1a/jud7/L6NGjufjii5kzZw6XXHIJAMcddxzXX389V111FQcddBDd3d3JBPnmzj33XEKhEAcffDCXX345P/3pT7n44osByMjI4N///jezZs1i3LhxPPTQQ/z9739n/PjxwPY/X9u61rS0NP73v//x7W9/m9GjR3Pddddx9913JxcSFUIIIYTYFZramYZ7+5Curi7S09Pp7OwkLS1toIcjhNgH9LYZUbEYmt2OiseJLl2K0b6pbYeemYn9kEOwFhQQiMap94eJGpt+fdt1jUKvE4992w/4JBob8Yci1DW1EenqRvP5MOrqsHs9FLntWNeVo3qS1ZrTiWv2bKzFxSQaG4n1LNKVSEuj2uIiVN8AoRAa4B09iqZogrjDSVosAs1NOFxOigqycdRUg1JYR47EWly8y3Oz+bWqYBCjqwubBoUuG862FjAMbKNHo2dkkGhpIfL++xjt7QSPmE7tF2vMKnCrFZRCs9uTifkhY0eRW5y68OeW92Gg+5kLIfrfNxHnhcNhKioqGDZsGE6nc7fPk/I7yWYzK8Tld5IQ/a6//psVQgghxJ5N2qEIIcQASrS0EFuxwqz0tljQs7KIV1Qkk7VYrRhjxtKdnUc8qrB1BojHY0T9YXA4zAQvEDUU9f4wpelubJatP+SjZ2TgrFpBqc9HODeLuMWC7rJi21gJqzdAz1/8NKcT6+jRWHp6tqpYDM3jASCSlUO4shaUAk3DmZ1FczRBOBCCuEEiOwNbIk5M12mIaZTkF2Dp7tqtHraxhJGSAI9XV0M4jJaRTqvTgTstC7vDhrO+HqfVas5jzxcHFr1n/gwD4nGwWMx/T/YttaS8V0q7lx69VZdfR+sBIYTYEc3hwJKfP9DDEEIIIYQQYlCQJLgQQnxNdlRZnGhtTVYu99IcDozWVjMhnp1NeOohbAgl8Dd3gZFAhRUOC5R6HXQ1NUJmNlpP8jpqKIKxBOnbSIJrDge2UaOgvBx3YwNoGprPRzwWhZISM1mcm4slNxf7hAloDgcqEkFFo8TWrUP5/cSOmI5qawOr1exNm55GKBQDmxWiEYyEQaKhAaJRgnY7gfxsPHV1WHsed94VwVjCrHaPx0k0NkI4jKeogOZoglBrN2kOG7aGZpy5ORQFglgCm1qcOAN+HDnZRFpaU5LfAM70dNw+D4bfT6KlBRUKoQIBcDjQLBbz35VChULfeD9zIYQQQgghhBBC9D9JggshxFe0tWR3bwI1ZWEzqxVLUREqEkFzuzGam83kbk9VNVYrKhpFhcNmMnzUaDMBHgyBkQAFSim6wgk2AsVpaXS3tpqVgj0V4YkddLjSMzKwT5mS8oi9bfRoVCCQ8si9isWIrVuHEYmQqK429weDWBMJ80TxOAowbHYIJyAWA01HT8QhGjXHE40Sj0TAaiW+fj26z7dLyeTea7EqA0thAVpxERGlYQsECUe6MFCoSIRoLE5dd5ghObnQ2mrek89XMOSwadSCmQjv4UxPZ8iIEizdXUQ3bCC2Zg3K7zcXAXU6sQ4bhrWkBNXdnUyEGx0de1Q1ZiASoysaJ2oo7LpGmt2Kx7HrlfZCCCGEEEIIIcS+QpLgQgixG3oT30Z3t9nKJJEAl8tM/jY3m9XSum5uC4cxurtJ1NQQW7sWS0EBWmYmmmFgKSoCXccIBDCam9F8PvT0dLBY8Gfl4m/pMpPkPbltTdNAg65oAnxeVHsnRrcf3ec1k+y9bVS2Y2uP2CubLZkYjzc0EP3kExI1NViHDye2ciV6Xh6ax4PD34Xd7SIaDIFhYNF1QAOnC6vTgRWFVlaGiscxWlqwGoaZ2N/FZLKKRNCDIewJRW0wij8Qxu200xWN47FZySvMJdrSYlaqx2LEDBeRzGwcVqtZ0R6NYvnwfUonTiJSXEgcDZvdisthx6ZrRMvLia9fj+rqMr+A0DSIRMxWNPE4luJi6PkCQ8Viu/TZ+Dq1BCOUt/rpisaT29LsVsZke8lxS7W6EEIIIYQQQgixNZIEF0KIXdTbP9ro7jZbfyQS6Hl5WIqKiLz7LppSGE1NYLOhDxmCbfRoEuXlGMEgBALYxo83E7CdnRgtLWCzoaWnYz/wQOKNjWbS2O8nlkj09LO2mi09rDZ0pdB1C0YsSjwWw2hp6anSDuDMy8Vt8+xw/NFwhGAgRDyRwGq14tIUrFuLCgbRcnKILVtmJsTjcfN9e65Hz85GDwYoyvBRb7cTCQQx/H7caT4i/iCeoB+juclMHnu9uEqHYl+70rwGdj6Z3Du/emERjRGdQDRuVmX3JKsDsQQtEY1Cr4dwIgGGgQISFguWnBwSXV2oCRMJZGQR1y1YY1E83Z3YqprBMIi73eZrurrMN7RYzDEqBbEYRnu72Qc8FkNzOnern/nXIRCJ9UmAA3RF45S3+nFZdKkIF0IIIYQQQgghtmLrjWP3ULW1tZx99tlkZ2fjdruZMmUKn3zySXK/Uor58+dTVFSEy+VixowZrFy5cgBHLIQYbFQkkmxzosJhM3nqcpGoryfy0UfoTqeZTAWIxzHq6oitW4eWkQHhMJbcXOLr1qE6OszX2+1mFXIsRnT5cggEsA4dip6Tg00p6OmJjd2B7vOiJWLYjDiapmHtrfrWNGwa5Ae7sMa3n2j2d/mp2FBNVUU1dVV1VNc0UPFlFWGP1xxHTwU3iZ4WJ3rP/yaUwmhpwWhtxeHvolhFGVI6BG9BHmWZXrJ8HnQjAeEwAHYjQV5bE7Y0X7JVy84kk1UkQmztWhQQtJlzabVa0HQdrWccugbRaBzNZkfLzDTnMBLG5nGjFxQQmT6LNVYvq1v8rK1qZFVdG6uVg8DwkaDrqGDQbH+i6+bPm19nz3sQj5NoaUm2hzH8fmIbNhBdvZpYRYVZ/b/ZmBONjcRrakg0NaEikZ34JO26rmi8TwJ8Z/YJIYQQQgghhBD7ur2mEry9vZ1p06Yxc+ZMXn75ZfLy8li/fj0ZGRnJY+666y5+97vfsWDBAkaPHs0tt9zCMcccQ3l5OT6fb+AGL4TYI+1o4cqtMTo6NvX5NoxN/1QKVV+PPnEiic37gMfjqPZ2LMOGkTAM9LQ0EvX1yQUndZ8PIxpFs9sxGhrQ8/KI19ZimzABn67w5WThj5q9ulU0iqZb0IMBcrMzcFt19JHDsNvteAPdWGurMbzubbYciYYj1NY0EAmGUraHOzupi7kY6vVhiUbNjZpmJr79fjOBH4+bSexYDKO5GXXAVNoNnWinn0R3N47MTJxFhTiLC7E31ONYsxLt4w3oxxxjzq/LZVZX74DR0YECYqtXE80uINLchtPnRXe50XUNj81KLBYjEY2R8DrQPR6wWLDbbTjaWollZbOhK0x3Ryea1WYu7hmN4A+EWA+Myy/A1tK86YsKgEgEnE4zgZ9ImNdusaA5nVhKS0m0txNdsiRlAVM9MxP7IYegO53E1q4lYXcQcntJBCNYAyE82Vk40ny79Rnblqix/X7vsR3sF0IIIYQQQggh9lV7TRL8zjvvpKSkhMceeyy5raysLPnvSinuvfderr32Wk477TQAHn/8cfLz8/nb3/7GJZdc8k0PWQixB+ttuaHCYRJeH2G7k3hLB/asDFw2Kw6vZ6vJypSWHr3Vwz0tOcwTmz2wcTrN5CqYCdfeBSVtNjMB3t2NnpOD0d2Nnp1tJpjdbnC5sA4ZgpZIYK2tYfjocWwI6AQicbSeiur0nAwybBbqV61FczrBaqXDbqMwvxDrdlqOBAOhPglw1TPuSDBEOC0Hb3yzKmaLhURDA45DDyW6YgVGQwNaJIJRWEh9ezeJvHzihqKLIImWdjAMnE4H+Uphzc7FWlkJhoGeno5tzJidSv6qSITYqlWojg5smL3Q46EwdHWjud240tIwEjrKasNq0Yl1d+O0WsiprSO2dAnBU0+nuz2I5vWaVfSA5nKDBgFDEfCkkdHRjtI0tLQ0VGen+caRCNjtZuI7Px+9oMDsza7ryQS4Moxk25REYyORDz7AOn484fRM6iMJol3B5HU4wnGK4glsyz/D6O42k+oOB7rPh23MmG1+IaAiERIdHaiePvOa14slOxvN4cCub7/fu20H+4UQQgghhBBCiH3VXpMEX7hwIccddxzf+973eOeddxgyZAiXXXYZF110EQAVFRU0NDRw7LHHJl/jcDiYPn06H3zwwTaT4JFIhMhmj6539faIFUIMWsmWJuEwkZxc6joChBvqQCm02gac+XkUZXrx+rx9kpWbt/ToTUBjsWxKiOu6meDOzjaTn5GIWVlst6NlZKBnZJi9qHvai2g9C06SSCSrj7FYQNPQPB5cHy9hVGYWoYIi4poFm8dFoNuPv7oBze1Ovm80GqMeGJbj2uYv9nhvIn7z69msDUgcwGo1k/MtLWhOJ3peHtHPPkN3u9EPOAAcDkJDhxFt60J1duH3pJGIxZPXHo7GSKR7aewOUDRuHHpGBrYRI5IJ8B1VRhuhEKqjAwBXQy0ebzaBSAwUqECAqMWKM5HAneElMxEl02Lg7m4jsexTMAxi6GYbl3gCFY9BIGjOp2GA3UY8P8NcNDMvD0t2drK1DQAWC5biYvTCQhJVVWhuN1p7O/Ha2mSrGDabw8TGjWiTp1AfiBKNxdHsdvMaDYOobqFmXQXF0RhaW5v5gp5FO2Pl5dinTOnzpYDR0UG8uprYmjVm1blSaHY71mHDsE+ZQprLQ5rdutW2J2l2K2n2veZ/6UIIIYQQQgghxDdqr+kJvmHDBh588EFGjRrFq6++yqWXXsrcuXN54oknAGhoaAAgf4s2APn5+cl9W3P77beTnp6e/FNSUvL1XYQQYo/Q29Ik4fWZCfCOzmR7DBWJmG1D6lsIt7b26e+sZ2SguVwAaFYrlpwcM7mpaWiFhRi9Ce6ODjS3G72oCEtpKZaRI7EMG4YRCmEZMQI9Nxe9qMjsN93ejgoG0bOyzES41YrmdpOoria+cSP6x0vxLnqTzHfewNbcRPfGGozetiVgvp/VSsDhol230xkIE0uYFd7+YIi6dj8bW7uIOJykDS3G4nKA1Womba3WZDLWCqi2Nuz774+ek2P23+5J2hudnahwGKO5mVh3NyoQIK5bSAA47D0Ta/YwNwyDSFc3sZIy9Pz85PmNjg6iy5YRW72a+JdfEl22jPA77xAtLye6di3xujqz7YrTac71ss8Y7rLidZvzjaaDMnBYYZiK4F78Po7330Xv6jR7hrvd2DDA4UQFApAw6Gkkbr4+GsMSDKBlZqIphW3sWJzTp+M89lgcM2finDEDS14e8S+/BJuN+IYNGK2tqO5ujIxMwhMmETj4UMIHTMUoGYqyWAhpFmIOJ5rXizIMlFJgtWJ0dRFubiFcXEJovwn4J0wmPGYccasNw+/H6En0J29hJEKsqorYqlVmu5xgEBUKYXR2EluzhuiyZbgxGJPt7ZPsTrdbGZvtJa6gLRSlMxxL3n8hhNhZM2bMYN68ef12vvnz5zNlypSvfJ6ysjLuvffer3UsixYtQtM0Orb43Sz6j6ZpPPfccwM9DCGEEELsw/aasjHDMJg6dSq33XYbAPvvvz8rV67kwQcf5Nxzz00ep2mpj4Mrpfps29w111zDlVdemfy5q6tLEuFCDHK9LU3CDheRlsbU/tAAShHp7iacm4WjoyOlx7bmcGAbMyZZQaw5nVisVkhPR8/PJ/rFF+h5eeY5PR4s2dlYR47EaGnBWlZG/MsvsRQVEY/FMNraoLMTS14emsuF/eCDMRoaUHGz0tfw+82ksNudrNiOhSPoPh8qGkXF42gWC3GnCz86RkLR2dlNc2cXzrxcMnwu1jZ20OE3F6u0WC243U7KCgvp2lCJYRgoTTMX4fT7cUZCYBgYra3Ypk5Ft1hQfj9GaalZ4R4IgFJYelqoGJrW0+4kA6OzAyJmYl5XCs3ng6FDsWZnm1O62YKivdeWqKtDhULEa2rQ8/MhHMY6bpxZGa9pqFAIx+uvMObgQwgW5RJDw+5242ltQv/sc/P6fT6zR3lHB+g6rrpqfPlldLe2m19MeN1oFgUqgcfuxNPZBBYHttGj0TMysGRkYGRkECsvx2hpIdHQgJaRQaK62rzhVivxA6bSEIdoRwC0INhs2D0ZFIz2kjAMEtU15pcXdjtGayua12tW0+fl026xE2ipM1vZ6DoOVxqFPhe2LdrWJL+YaWzc1Fqn9+MYDhNvaMDa2kpOUREui05XNE7MUNh0DafFQms4mtIz3K5rFHqdeLZRHd6fvcqFEIPDv//9b2w7sYDxYHT44YdTX19Penr6QA9lm2bMmMGUKVO+8hcCg9X8+fN57rnnWLZs2UAPRQghhBB7qL0mCV5YWMh+++2Xsm3cuHE8++yzABQUFABmRXhhYWHymKampj7V4ZtzOBw45C/+QuxTelua9G0q0XuA+cVZ3DBSe4D30DMysE+ZsimJaLOhZ2SQ6OjAFgiYC1g6HKhQyExsbtiAEQ5jrF6NJSuLSFMzsSkHYDidWDUNWyyCvbAQa3Y2Kj8fo6ODRFsbmsOB5vWmtCyxJBIY3X4sBQVoVhsJZRDAgq7r6LqOzeVCB3xOO6ubu+gObxq/oSAYiVLZYVCSk0XHF6vMpL7bxZCRpTijYVQsL3k9msNBbMMGc8HIXjYbzu5OHC4fcc2cK83pQLdkQSyO06Kh2S1YMzKxb5ZM2HxBURWNkqirM6uhIxFUZyeWzExiGzagZWaiZ2eTiMfNntyxGHy5jrTKClQ8jnXECFR3N4lYDM3txup0EluzJrmQp7Z4McN/MIovQ06CFtAiLahwBK8njZH2II5VT2CZcm5Km5ve+xmvrUXzmL3go70JeoeTRsNKtKl502cjHicajtOYm02uboFEwrw2j8fsM+73YwB+iw1fNGoumtqTbI5EY9RH7JShoTU1JZPPKhYzW+cY26jgjsXMPuGAx2HD4zB7y0f9fjYGYsSU+QUNPX3jo4ai3h+mNN2NzZL60JfR0UGsqsqc+3hPr3mHA9vQoTu1eKkQYnDKysoa6CEMGLvdnvy7hBBCCCGEGJz2mnYo06ZNo7y8PGXb2rVrKS0tBWDYsGEUFBTw+uuvJ/dHo1HeeecdDj/88G90rEKIPVtvS5OtfQuoORyonr7PVl1P6QG+5XGW/HysxcXJSvFEZSVEIuhuN4maGhIbN2I0NZFobETFYhiBAJGCIhpG7UdtWzf1tU1Ura+isiNIKJ5IOa8lKwvN6UxJgAM421txOB1mb2pdI65Z0C0WgoYiZija/UFqukIElYY/aiR7hmsWHRWPkwiFCQQi2H0+CnMyGeJzMqSlDlc0nHI9vVXBlrw89MzMnqpqL5rbjSUcotDnxGOzYtEwq9VtNtw+L/m5mcQ8XpxeD26bJTnuzb9MMAKBZAI8WYVvGBCJEPvsM6zDhpn9zhMJ80/PlwrOGTOwlZVhHTrUXFyysJB4u7kgZ/I6XS5cyz9lnC3CfhkJRuaks19eNuNCq3H/73a0SCNay2sQ6+5zPzW73UwMd3WhgkFQilA4QjwtHXw+8z0sFnPMPh9xXzpaRzt2Z087mGgUzWImxeOajt1ux+jsMsenFFgsZh/6QJBQLEFs1Sqiy5aZrXNsNvPc2/zQ6in7e1vL+Ns6iHR0YnR2kmhpwWhtw+gy29VEozGCsdQ+8CoSIV5dTXztWmIrVxIvLzf/uXYt8erqPu1/hBADKNYNHV9Ay2Lzn1v83upvW7ZDKSsr47bbbuOCCy7A5/MxdOhQHnnkkZTX1NTUcOaZZ5KVlYXH42Hq1KksWbJkp84PcMopp3D++ecnf25qauKkk07C5XIxbNgwnnrqqT7n6ezs5OKLLyYvL4+0tDRmzZrF8uXLU4654447yM/Px+fzceGFFxLe/MvcrdiyHcqCBQvIyMjg1VdfZdy4cXi9Xo4//njq6+u3e56VK1dy4oknkpaWhs/n41vf+hbr16/f6et/4IEHGDVqFE6nk/z8fE4//XQAzj//fN555x1+//vfo2kamqZRWVkJwDvvvMPBBx+Mw+GgsLCQq6++mnh809f8M2bM4Kc//Snz5s0jMzOT/Px8HnnkEQKBAD/60Y/w+XyMGDGCl19+ebvXtq2xwdZb1kyZMoX58+enbKuvr+eEE05I3t+nn346uS8ajTJnzhwKCwtxOp2UlZVx++23J/dv774vWLCAm266ieXLlyfnZ8GCBdu9HiGEEELse/aaSvArrriCww8/nNtuu40zzjiDjz76iEceeSQZjGuaxrx587jtttsYNWoUo0aN4rbbbsPtdvODH/xggEcvhNiT9LY0cdXU4PB6kj3BNYfD7NHd1YUjzYfTiKFnbPtJks1tXukMJKt2wWxnodntqNw86joDxH0WM8naIxoIUtcdZniOkaza1TMysGRmmsnizf4yqzU2UJCbR5PTQcxiRekQiCWw6To5Tiutneb7xgyDmFLYdQsGMUBLVhkbsRixWJz0NV9sGmNxMWzlqRnd68V+yCFEly83k7sbNqA6OtDKyxkycRJZ+02gW7Oi6Roog1A4it1uo9DrTKlATvkyIRZLuSbzjXqODYUw/H5s++1nJqVjMbBYzPnoqVJMdHRgtLcTXbECx6GHEjUMVGMj9PQF17KycHasxv7OZskaiwWcTjS7G10PQmAjZExIGUJyjJuNNY6G0dZmVmxnZ5uV4JpmthNpbyfuc1Jo06lP8xFN9CS7DQObUmRleemq2Wi+xmpNfg70rCziPYuJqlCIWHk5tvHj0Ww2s5J8ywWa7Xb0tDQ0r5fYhg0owyCxYQNoGon8IRgNrajeanTDQPf5zC8uDIOY0wpO83pUJEK8tpZEc7PZ693lwmhtBcNA+f3EysvR8/KwbufpKSHEN8RfCTULIdq2aZs9C4q/A96yb2wYd999N7/+9a/51a9+xTPPPMNPfvITjjzySMaOHYvf72f69OkMGTKEhQsXUlBQwKeffoqxrSdadsL5559PdXU1b731Fna7nblz59LU1JTcr5TixBNPJCsri5deeon09HQefvhhjjrqKNauXUtWVhb/+te/uPHGG/njH//It771LZ588knuu+8+hg8fvktjCQaD/Pa3v+XJJ59E13XOPvtsfv7zn281MQ9QW1vLkUceyYwZM3jrrbdIS0vj/fffT0lIb8/HH3/M3LlzefLJJzn88MNpa2vj3XffBeD3v/89a9euZcKECdx8880A5ObmUltby7e//W3OP/98nnjiCdasWcNFF12E0+lMSUA//vjjXHXVVXz00Uf885//5Cc/+QnPPfccp556Kr/61a+45557OOecc6iqqsLtdu/S2HbF9ddfzx133MHvf/97nnzySc466ywmTJjAuHHjuO+++1i4cCH/+te/GDp0KNXV1VT3tCbb0X3//ve/zxdffMErr7zCG2+8AbBHt7YRQgghxMDYa5LgBx10EP/5z3+45ppruPnmmxk2bBj33nsvP/zhD5PHXHXVVYRCIS677DLa29s55JBDeO211/D5fAM4ciHEnkjPyMDlclHc1U1tcwfRQBAVj5sJcJ+X4sIcnD7vTvdJ3rzSWW35F16lQCmiBYVEO4Po3r6/k2IKgrEE6T2JY83hwDZ+PCqRIF5VlUwaa243HruVsoJsQrEE3QbYQ1FisRitnf5kYbVV0zCU2qySPLXvuV3bog96IrViGDb1jSYcxjJyJPHly82K6YICFGCNRnC9uBBnQQHx4aNI2O1kWi143Nk4tuhF3Vt9r0KhZLuZXlrPFw/Jn3uqrY3a2mRy3GhsJK7r6Hl5JJqaUIYBgQCRd97Btv/+WKZONa/B6SS+di3WUg3N6UT1Vv/1XJ+enW0m1+P+lDGoSASVSJj9yG02LKNGkVi/HqtFR7V3ml9axONmr+/2djSLBRWLodtAX/QWRWXDiI0cicrJhVgQPRGioduKnptrJudtNnPMSkEshsW5aX5UKIQKBLAOH46Kx4mtWbMpEW63Yy0txTp6NNEPPsDo7MRSXExs1SospaVobS2oeNy8zp5rVKEQRs+c621tGFaNcCRKVyRG1OrEVjYSV20Vlro6rEOGkKitTSbCld8P+fnSM1yIgRTr7psAB/PnmoUw4kdg+2Zi229/+9tcdtllAPzyl7/knnvuYdGiRYwdO5a//e1vNDc3s3Tp0mQrlZEjR+72e61du5aXX36ZxYsXc8ghhwDwl7/8hXHjxiWPefvtt/n8889pampKtjP87W9/y3PPPcczzzzDxRdfzL333ssFF1zAj3/8YwBuueUW3njjjR1Wg28pFovx0EMPMWLECADmzJmTTEBvzR//+EfS09P5xz/+keytPnr06J1+v6qqKjweD7Nnz8bn81FaWsr+++8PmAldu92O2+1OadvywAMPUFJSwh/+8Ac0TWPs2LHU1dXxy1/+khtuuAG95/+hkydP5rrrrgPM9ZDuuOMOcnJyuOiiiwC44YYbePDBB1mxYgWHHnroLo1tV3zve99L3pdf//rXvP7669x///088MADVFVVMWrUKI444gg0TUs+7Qs7d9+9Xi9Wq1Xa2gghhBBim/aaJDjA7NmzmT179jb3a5rG/Pnz+zx6J4QQW6M5HPhyHQz3+Qj4g8SjUay6hstmweFNTYDHEgbBYIhoIIA1YeDUFI40H7rXa55rs+phzbrFr1ZNA4uFhMMBBPsmgV0uNI+HxBYLdOoZGTgOOQTryJFmctJiQfN6sfT067ZHIkSa2+noDpFIpFbeJeIJMpx2wtH4pjFogIIMrwtPd8emg61WtJ7r6GV0dCQXsjT8fjSXi/jGjejp6ajubrMVSVUVqrMTurtxxuPJSm2aG1FTpqTM3+YLimpOJ7hc4PejZWRgLSkhtnq1eVx2NtjtJCorU9rBqHicRGsrVFVhKStLHqva2iAYJPrJJxjNzdgOPJD4ypVYvEPQ09LR09LNxLOmoeIxUD3zZPVu9VpVOEyiZ3FL6/jx0NmB3eEgGk+Y7WA8HrRIBOX3Y7dZsTfUm4n64hLiBUOI2+zYxo3HqRJYm9oId3ebX2BYrWi6jp6VhU3XcAW3SMKHQmguF5bCQrScHLMPezwODge4XMQ++wzV3dMKoSfZrdls2NZ/iWNIGeFAIPV8UbMi36mbLXLWt/rxd/ccoxTezEKG5eXjXPIhluxsjObm5Lk3n4/NP6O2MWOkZ7gQ34TAxr4J8F7Rtq0+yfJ1mTRpUvLfNU2joKAgWZm9bNky9t9//37rJb569WqsVitTp05Nbhs7diwZm/3e+eSTT/D7/WT3LLrcKxQKJduOrF69mksvvTRl/2GHHcbbb7+9S+Nxu93JBDiY6xNtXpW+pWXLlvGtb31rtxcXPeaYYygtLWX48OEcf/zxHH/88Zx66qlbrczutXr1ag477DC0zeKKadOm4ff7qampYejQoUDqfbRYLGRnZzNx4sTktt71k7Z1fbsztq057LDD+vzcu5Dl+eefzzHHHMOYMWM4/vjjmT17Nsceeyywc/ddCCGEEGJH9qokuBBCfB3sTgd257arXAPROLVNbYQ2VpmJQYsFh8NOoceBJ92HtbAwtdIZ0LzeZEsUzekEwOZ2o3ljKVXjmseDraQEr8dFJB6npi2CTVP4NIXL5URzOLAWFW11XJrDgdPnwReK0R2NJxPhmkWnJRhhRIaH6s4gHWHMRLCuk+FyMDrdieWtnseYrVasQ4di2ewvlioSSU2C9j7aHo1idHWhe73oHo/ZkgOSle7J14dCGB0dyV7pvXoXoEy0tmIpKiLR2orR2GgmwA0DLTsb+4QJZvJX11O+TFA9SWGjpcVMFFut2CZMINHcTLyhwUyGK7WpGrwxgU23ocItZoV3T0sSdIvZUsBTutVr1ZxOLPn5ZusSpXAOK6NYadTHFJFwBKO1FT0rC6syyI8G0OrriJ52OhVxC4GOECrYipaejkeHYUUFNAcCRMJhdIcDIxjEHgxQlJuJXt2Ycm2Jjg6MNWtItLSYC6u6XFjLyqCzE724eFMCHDb1BjcMtIoNFBSXUO92EgluqnJ0uJwUumzEWprZ4AF/e0fPh0YDTcfvD1DhcTN6+AhsNqv5hYVSYLUSbm0llJVDQoEFcAX96J1mYty+xZcbQoivwRZPquzy/n60ZUJX07RkuxOXy7VL59J1HbXFl72xzZ+i6tmnbfFF8eYMw6CwsJBFixb12ZfRz1/Sbe3atxz/5nY0Hzu6fp/Px6effsqiRYt47bXXuOGGG5g/fz5Lly7d5rUppfrM19bmcWvXsvm23mO31cpmR2Pb0bVtT+97H3DAAVRUVPDyyy/zxhtvcMYZZ3D00UfzzDPPfKP3XQghhBCDlyTBhRBiO2IJg7r27k0JcKsVFQoRDgSoDTooqa/F3tyMbdiwZKWzCgaxDh9u9s8Oh7Hk5ADgDPhxDS8jGoqgMjLQbDYsHg9pmWls7AgSDYYgGgXA67QzPD1KpsO23epbt9eDL6awBkPEFBiajsVqxWa1EFUwKc9Hd7qbmGFg03V8/k4sny4Fjwd8PiyZmWY/6s0Sm1v2N4eev1QbBvj94Hab47RYzP7ZQ0sJDR9BwmrHarXgCgdTEv2b603q6263mcS12cxkucWC6ll8U3e7UVtWlxnGpmR8PE68vh7N58M2ciSxaBRlt5vjsVrRnE4SDR1Yxs5Et38AbRvBZkP3paH5CqH45GQrga1dq7ZZZbxmteKormZoegYhr5uYlsDm0LFbElgScRLHH0+lcuKPBDbrc67wt3VQEY8xOjudmMdJIhZD1+zYq9ZjTxQlvzRQ8bjZiiUSIdHSYi4yqusQiZCorcVaWorq7EQZxqaq+EgELS3NrEA3DKzryhni9RLNzSdusWK123F2d2Jva6E9twB/RxDQsLpd5sKvmoYGRAyDcNkIbB/8j0RDA3pmJpH8AurDCeIuNyoaBaWw2x0UFhThaKjb6pcbyc+ItFARon9YvV9t/zdk0qRJ/PnPf6atrW2nqsFzc3NTFpZMJBJ88cUXzJw5E4Bx48YRj8f5+OOPOfjggwEoLy9PLlYJZqK0oaEBq9VKWc9TQVsaN24cixcv5txzz01uW7x48W5c4a6ZNGkSjz/+OLFYbKvV4Du6fgCr1crRRx/N0UcfzY033khGRgZvvfUWp512Gna7ncQWrcv2228/nn322ZRk+AcffIDP52PIkCH9en3bG9uW19bV1UVFRUWfc2ztvmzeViUtLY3vf//7fP/73+f000/n+OOPp62tbafu+9bmRwghhBBic5IEF0KI7QjGEkS6upMV4CoUgp7e0XGbjVhaJvZwiOjKldgnTMA2frzZszoSwX7QQWZ/a8zWFZrHw5BonDqrjZih0JxOvC4HGzuDREIRtJiZANc0CBuKyrDCII61tQNXIooN+iQWbRadwjQ39bqOxdhUhWXXNQq9Tjx2K77N8snKbcM44AAzUWkzE+xbJiq37G9udHRAJIKen4/R2GgmcG02sFqJT5hIg24n1tiGisfRnE6cWZkUu71sL02jZ2RgnzSJRGtrn1YvRkcHibq6LV6gb1o802Ixq9Krq0nYbKjOToyODjSXC8PtBpsNDYhVh7CO+g7WkgiaNYHmykQbdiC4N6t630GlmqbraE4nekc7HtoxgkE0l4vYihUkHA78E6fQXdNsji2R2FQVr+n4uwKEirJxv/KS2UbFYsHo7MRwu8zFPnvaveglJSTq6/ssFppcXNVqNffZ7QAYra1YS0sxQiG09HTz89jQgKO2FldWFkZnJ7jdxDsziHrMdjD27EwCsQTxSKz3wrA5HcSsVlQ0an4Oxo6lIaqIdHWjhSPm4pnRKNFojHqlGJKTRyiuSLR2YHM6cTvtycVPEy0txFaswOi9lw4Hus8nLVSE2B2eUvOJla21RNnsSZaBdtZZZ3HbbbdxyimncPvtt1NYWMhnn31GUVFRn7YXALNmzeLKK6/kxRdfZMSIEdxzzz0pCe7eNhgXXXQRjzzyCFarlXnz5qVUWB999NEcdthhnHLKKdx5552MGTOGuro6XnrpJU455RSmTp3Kz372M8477zymTp3KEUccwVNPPcXKlSt3eWHMXTVnzhzuv/9+zjzzTK655hrS09NZvHgxBx98MGPGjNnh9b/wwgts2LCBI488kszMTF566SUMw2DMmDEAlJWVsWTJEiorK/F6vWRlZXHZZZdx77338tOf/pQ5c+ZQXl7OjTfeyJVXXpnsB94fdjS2WbNmsWDBAk466SQyMzO5/vrrsfQ+tbSZp59+OuW+fPTRR/zlL38B4J577qGwsJApU6ag6zpPP/00BQUFZGRk7NR9Lysro6KigmXLllFcXIzP50v2DxdCCCGEAEmCCyHEdiWUQm1eWWQY6JmZGJ2dqPZ2ov/P3p+HWVbVZ9/4Z+3xzOfUPHRVd/XcTUMzg4iA2BoNeUxQYpzyU0JwAJxQCVEfIyLRDBh9jENiEpHLV+Obn/Hx8RV8NUYRRUEGG5Bueu6qrq55OKfqTHtc7x/rnFNVXVU90c2g+8PVF91777P22mvvXcO97nV//TT2oX7lPh4eRgoB5bIqpCjloizlFLA6G1L2AgIpcfwA1/ORSELLRgAxS6fs+cyWS6TMBO7UFKYX0mXrxA4exNywYYGwmLQMVmUTjTZ1IUiYekOgnI+w7WWdvI1j5jnYZLWqiibOzqJ3dir3djKJ1HXYsIERYeEFUhUDlRJZreKUygx7kr4gxNS1ZR3Cy0W9HBktA7VImVIJrbUV6Thz8St1cbz2y3Y4MoKxdq26F8Ui4dgMvpNFb2vDXLERkcgtOJc4Snar9H1kGKJ1dhLs309YqRBOTSFyOURTE0IIPD9U4rRfe0aMWntSggzxAapVRDJJODGhnO65HCKZVBnquo6/d++ShUnrfRDxOFpTE7Ke+x2GBIcPo7W2Yl9yCeHYGLJaJSyVCKemwLLQe3oIBgYwAUPTKAUSP1y4VN2XkmogYe069FKRcrYZZyKvzltbkQBAEFA2LcZjcUqTBaQ7jjBNYu1tdLdkic0WcB54gHB6eu4zNeE+ilCJiDgJzDT0/OHi4phW84KVLM81lmXxwx/+kA984ANcddVV+L7PGWecwRe+8IUlj7/uuut4/PHHectb3oJhGNx8880LXNAAd911F9dffz1XXHEFHR0d3HHHHXz0ox9t7BdCcO+99/KRj3yE6667jvHxcTo7O7n88ssbudavf/3r2bdvH7feeivVapVrrrmGG264gR/84AenbzCAlpYWfvzjH3PLLbdwxRVXoOs655xzDpdeeulxXX8ul+Pb3/42t912G9VqlfXr1/Pv//7vbNmyBYAPfvCDvPWtb+WMM86gUqlw4MAB+vr6uPfee7nllls4++yzaW5u5s///M8bRTBPFcfq24c+9CH279/P//gf/4NsNssnPvGJJZ3gH//4x/nmN7/JjTfeSGdnJ1//+tc544wzAEilUvzt3/4te/bsQdd1LrzwQu69996GmH+s+37NNdfw7W9/myuvvJJ8Ps9dd93Ftddee0rHISIiIiIiIuKFjZBHC7f7HWRmZoZsNkuhUCCTyTzX3YmIiHiOKVQ9Dh0axu/vbwiuslxG8zzSmzdhtzThuR6WDEkUprAGDyFnZjA3bkRWq0r4jccx161rFNGcz8BMmR0jBULPAwG2ZeAGAWHoI7wSfbk04divEYl1JFItxGM2fhhixeMknQrm5LjKsW5rW7L9k0E6Du727Srbe2ZGCauABPTubvTOTuTsLKWuFRzqH2oI/qBEdq2tDT2Xo6ezlXS1dFJFFpcqzoimobW34z31FOHkpLoPK1cipCScmJg71jAwNmxAS6cJW9twEimCWGyRe/nIa1WdExCLQS2mpOG0TiaRNZFXxGKIWAxv1y5mzr2AnWMFEJqa9IjZyCAEzwPPZXN3C4n/+He05mbC6WlENovW0oLR14eQEr23F3/3bsJikXBiYtE4mFu2ICsV9FWr8LZvXyA0a01NWBdfjN7UpNzz4+MEo6OEpRJydla5zrdsYe+KdYxVPKQM59zmmk4qFadL+LQEHvFyken2LoZmKgjPxSiX0GxbOe4RzJg23S1ZAIIwRAPwPUhnWDEzSfjAzxffRMNA7+zEOuusY068REQ8WzwbP+dVq1UOHDjA6tWridVqQpwU3qwqgukXVQRKctXzRgCPiPht4pS9sxERERERERHPayIneERERMRRSJg6diZNEI+rgoWmifA8ml50IQdLHqXhaSVgS8hlM6y78EXIgQEMxyXmB7Bnj3JST01hnXfeAuHXC0KQSlyO2Sa6oaNrAtcRCKFB6KEjkaGDnUszUJHobhVvtgiGQVJI1sTjxB74OVo6jXXxxRidnc/4moVtN/LNKc4VYNNSKfTWVmS5jCwWcUdGlLM7maxFgAhkEKj9mQy+7+Pt3o0EFZ/ieWBZSMDbvRvr7LOXdQjXi2g2HOTmXDa61tSEnJkhnJ1V0RuGgb9/P/6hQ+D7aC0tBKOjuJ1dHD40jFuuIhIJ9O5uYtkM3S1Zkpax6FpltQrxuPr79LQqbjo7i8hmsc47D3//ftA09M5OhGlirFxJWoN0LksxCNWkR73AZjxOMhEjPjRYG1SByGYxVq7E37cPsWED4cQEmuuqlQZCNDK+G/ehnktu2xidnejbtjWidoRto7e3NyY+RDJJuHMn3pNPqg/HYko8372bFes3UXQ9ytJQYr0QpBI2q7IJvMIM5VwzhXgSgaDk+cgAdCtOOplAq4zjJ1PodhzPMBmZzKsHFohbOu1hQEUzWPIu+n5jIigiIuIkMNOQO/O57kVERERERERERETEbwWRCB4RERFxFExdo7spzeG+bpzJwwjpklq5hYNlj7LrE9actXrcZqrqs3O6xKpUhvyOp4n39tCxYRPm7qcJi8VGNAQop3NRM0DotKZijJWqeFWP5riFaeiATjrZii1m0VrWc7joUwolad1UIqgmKDou+4mxaeMmeOo3uA89hLZt2ylxhNdF6GBykuDw4cZ2OTuLSCSQuo4RSmSlrCJg5iESCYSmoTuOErx37kTOyz0VuRzmGWcctcgiLB/dYnR0QEdHwy0eVqvoXV3ovb1gGISTk/gSDk8UcMtV1W/HIRgZoSoEh6tVVrU3YScTC691agr3V79SESmxGHJ2VkW85PP4u3ahtbcTTk428seF52FUKqxetYYDjsbsrNcQiJOGztqWFNbBnXDOOYhEgmB0FH/fPrTmZjVh4PuE09NouRxhqYRmWYQjI8p5nkphrFkDvo+5cWMjPubIexsWi0oYn5lRMS3Nzch8HlmtomUyhDMzGAcP0JlrQTQ1q7gcXSOm64xMzeC6Hr47i5wt0t7WRCqdpDhbIhQ6Rd0k09ausvAllCtqLIUhQPhUQ4/xCmTSiUUC/lwHw6NGzkREREREREREREREREREPBtEInhERETEMUi6g6z2t1NOxfA8iZPYSHksTyh1CCWaZeJJQShDClUf2ZyCMMQpVxgOoLejEzwXWangDw+rfOliEXftBsJkmkwyTcHQiRk6FT+k5AUkLB1DCAYdgxW5NZSHh0GPIaSsiY1KeC6Wq5Ra20kD4fQ0wdjYKYtFqWd2a4nE4mgS0yTmu9iJBE5NHAWgVkjSNA2sSgnvN78hLBQQ84Rymc/j7d6N0d2Nt3+/EvVPItJlKbd4WCzi7tpFdfMW3GJZHVgrpCkrFWQ2S/ngGMViG3pbS8M5L2xbxb9MTyvRt1yeNxBCrQIIQ8LxcSWA27aK+2htJfHUE2w+62xKa3rwfB8DSTI/hfj5/QSzs+grV+I9/rjKk29txTzvPMLxcYKhIcLJSeWQN03l5j//fCV4x2IIw1iycGkdf2QE96GHCKenlYiezSonfGsr4cQEYbGIiMWwp6fASuCKgrp1yTjDZZeK52OlkshiCaRkfGKarq42ZCpOWWqEhkGAjiXAliGTM2WEAcKbxDBsdNtkyjvEbN6l5YIOVgw4JMbyC8RwrZaBHhERERERERERERERERHxXBKJ4BERERFHw5uFwe9iVMZIjoyApnG46RxCrwJCB9NG6DphEKpICynxG0I1ODOzVFuaSE6MEZZKcPAg/sAAAFpnCZpa2D8+zeq2LF4o8KVESknRCzg0UyamwawXYllxAqmpaAlDBzknNPrawozrU81SYjO6jj4yQqfrMwJKCNc0tHQaO5Wko5hH9xy8sTElIpsmot5Pw8Bct47qAw/APGG9nnF9IpEuR7rFg6kpdQ80VSizLoA3Ck/W7ovnuIuc842x0xYWFBXxuBKZm5trG2qCvu8TTExg9PWhT0+SnZ5GJJS7XPo+YvVqiMdBCLRMBmFZyqk+NYW/bx+yWp0TuD2PcGoKb8cO7MsuU273oxAWiw0BvN7nYGgIc8MGglrxTqamkK6LNjpC93nnMxpqOJ4PoaTi+ui6hoHE03RIJpFSMlp0WN2awfN8AiHIxC30apWnJ4qgCYQ3iWmnKTPDPU9/i/HyFDkTRDXPyuxa/qjnHLoHZxsFZM2tW6OimBERERERERERERERERHPOZEIHhERsQjpOHOCp2WhZbO/u0JWqR/cKZUX7fkgwBSyJngHCB0VByI00ASEIYYQEI+rz4QhgaYTjIyoPPGaSAoQm55kpncVoR/gBpJ9hTKEAWnboOJL1H+CIAwwzBgxz8P1fYQdQ7pzYrcxP0f6NN2npaJJtHSadD5PzPOpagaBYaA5DrGpcbR8HtJpsG1wHPA8pGUhhMDYtAn3N78B10WbNx7h9PQzjnQRtg1CYIQ10VvKOQEcGgK3HoaLnPMLxs6ylHgOYBhQi1yRxWJDLJflMsKy0Lu70bJZ/GoVWSotOJe5YgWActLXImGEaaq4kqYmNTb18xkG0vMIJybwqlX0lpZlxyEYG1tQJFNYFlLT8HbvRu/uxjzzTMLRUTUJYJrY6STxeILi1DQlLyBjmxiei+96KpMcVHa9EFRmiziTUwjTxMolEYZByrIohg4CC08E3LPne4yXp9CRaDLAq87Sb4zxPR7nrWdfRUpaGL296C0tJ3oLIyIiIiIiIiIiIiIiIiJOOZEIHhERsYB6zvL86AsRj2Nu3Pi7GWvg1wpDBkpoln5AurCbbHwVhWoFdE05nGUIYUg2bqFVKmjNzchCAWGa6NWqcuSm0wTT02DbyOYWqi2t2JZJMhEHhMqTFhpF1yduGCR0HdvQ0GVI0jKZnS0hYjHCYgkBGJk08XQC4hbFV/0PUm4FkUwsuoTTNakhbBujowMDiAPB6Cjevt1zB+g6WjZLWCgosTcM1bZkEjk5ichkFrX5TCNd9PZ2jPXriRs68Y4OHN9Hlkoq3zuZRPo+VjJBbHoSWOic19vb0ZqaVE537f94nhor2yYsFtHa2hDxODIMEYahYk3GxgjHxzHWroUgWFDIsz7O8530YT6vokvq57ZtZLFIODUFnoefSBBMTmJu2oSxZs2SzvgjHf9C1xsZ4MHgIEZfH8HwcMNdr6VSaEAm9AmLRcxZFfdiALquE/jz+o0S1Y1KGXNnP+g68dYu9HiIE88wUj3EZGUKXfqYhOBV1VjIgFG/yOG05KwVm393J84iIiIiIiIiIiIiIiIinndEInhEREQD6Tiq0ODsbMPFjK4jfL9R1LEubDUK8p1knvPzAS8IKXuBKhYoBAlTx9QXRmFg1K5J15CuSzg7g/XA59nwe3/H7tCm4IVAiKZppGMmazJxZiemkIUCslrFTsSwxkfQ0mn0NWtwH3yQ4KIXMeJJnHyJ+NgEGDEkElvX8IIAhE7V87A0Dct3mJotsWlND4csndmZGbRMFsPQCXWdOPD00/uRElKZJGsRZL2RhnD6bE5qSM9buEHXleieTEI2qyYLTFM5s2v7lmznJCNd6mI/rku4cydt6zYwgoHr+Wjd3YhYDKM4S5cBYnQEWOj+1lIprIsvxn30UcJCQY2PYSi3eiyG++ij6p1wXUQmg7F+vWpD15GlEv6+fQvekfnMd9L7mqYc6gCmuUAAR9MQzc3ouk44M4M/OKjeryPu1ZLnsCy0piY14dLUhH355UrYn/dearkc8akpLMvEdT2EUyWdSjMbhgSaRszUIfAxKmU6Q7cxTp3tHYwJiVuZpFqdQPPKGLpOUgevXFTXIwVS0yhbMhLAIyIiIiIiIiIiIiIiIp5XRCJ4REREgzCfV07cQgF8Xwl+mqbiIHyfMJ9H7+hYUJCvzsnkOT+XlFyf4WIVN5SNbZYm6ErFSFrzvjQmV4HVDNWqiiDxfaBI+ge3sPWS9zDbeiauBCtu488Umdl/kNA0EckksbZWugywpItsaiIcG4N165QAXismWR0eYcW6tRS9ANvQkGGIHwSYQpAWAndsimQyQezx7ayPxais6CFIpSkFgkqxyNjgGFLXMeNxXNNif6CzxpekSmUsQ19c0BKQlcqiSY1TgTDNheeZmsI691zcX/+acGICEgkESoTXMhmEri/dzkn0Kczn8QYG8HftIhgdRWQy2PkpVra1U21pJdANdOFjz06ijY01Mqv19vYF7WixmIo3yeXA95GahiyVCDNZnPMuxJdghD7W6Aj+/v1Y55/fyBmXlUrjHTkaeksLxsqVjWx4WYuLQdMwzzsP/+BBwsOHVX/a25FTU9gXXbRg0mK+a33B2Ok6enc3xqpVS05KCdsm1tVF19Q0w0VwXQ+9OEvWstBbsrRZOqZTxZweUwJ47dqs/gP0bFzNbCZJWc+RsU3wK3MCuG4hpYEmNFLmC2syLCIiIiIiIiIiIiIiIuK3n0gEj4iIaFAX8cLxcSXMCaGcqbaNqO8/siBfjVOR5/xs4QXhIgEcwA0lw8Uqq7KJOUe4mYaeP0Tu+L8QtTgNWa0ijATG3n5Sg09j9PSgr16NOz5BPJlGZrIIt0xs5BBidIRA09Db2wnyebzzL8SdKDTOKcOQytAwya5OmrJpJioulaqDrFRwJ/MkE3HWWBLxqwcByG7ZwuyFlzBUqBJ4HqTT2LZFxfXxXA8cn0xTksmxabqzSYxqdckxOF7B9kTQcjkVFVIX3cOQcHIS85xzQEqEriNiMUQ2iz44uOgZApYUpuHorv36CgY0TbXp+8ipKSTA5CSJtjaCoSGMNWsIhoaQtfOY55yzQLivtzN/0iCcmMDJNTPiSjwrocRqYWCv2UiH9NBiMcLJybk2jnTDL4GwbaytWxG6jj88XLtwDX3TJvX+DQ3NHRyGhIUC3u7diK1nU0FTY2DY2C95CTzwgHKRzxu/evzJcmi5HJl4nFixSDmEQOjoAuzBfpXlbln4w0MLPyQE2vAk6e40bVInJ3QmqrNqn26B1YyOTme2g1W5Vcccg4iIiIiIiIiIiIiIiIiIZxPt2IdERET8riB9H39kRBX3830l+LkuslolmJxEhuGignzzqec5P98pe8EiAbyOG0rKXrBwY6qPsOU1yObfR9v0BrQLbkL2vQVJC1pTE/6+fchiESudInFwH+nDAyQGDiCGh5S42dqqCig2N+N7fkPo1Vpbleu4vZ1qYYbZQ4dYZUrW6QF9MY3NrRk2Tg5h/T//R/VDStA0HMPEkeB4AQjBrOtTlYBhggAfcB2XCS+gtG4jM719lFetIezobBSGhOMTbE8EYduYGzci4vG5jWEIpRJmby/WGWdgrlmD0dKihNqmpgWfX07ALbk+/YUyh2Yq9BfK7J0usXuqyKyj+h/m88hKBen7czEjdRwH6XloK1Zg9PRgbt2KdcEFGBs3EvT3427friJU5rUzn7C5hWGp4wlNTRxMTBBOTlI5PMRw2cWPxRYUOz3SDb8cWi6HdcEFWOedh3nmmZhbt6K3tBD09y+8hlqETDXbRP/kDIeLVUZKDoeLVQaFTfiyl2NffjnWxRdjX345sW3bjms1hrBt7JYWmtpaaG3NkUvF0atVNVlhHDE/bhiIWAykRBsu0tO2iT/cei2trZsh1o40WtEwWd25itdseS1pO31cYxAREfH84qUvfSnve9/7Tll7t912G+ecc84zbqevr4/Pfvazp7Uv9913H0II8rXvB881z5f+nKp7uBxf/epXyf0u1puJiIiIiIiIeE6InOARERFALU+5VgRQzncPS6mKA+ZyoGmLRMKl2nm+ExwplB7PfhHH3aeuTTozi8ZBWBayUFAxFM3NsHIlwb59jQKKoERee0U3WqGstoPKDg8CZLFIUCigGZB84GeNQpKyUlEZ2mEIlgWr+kAIwlAV4tR1Hc/xQUAgBLqmYSAxMylG8mUmZYhZyIMQWDGbrpV92AMHIQyPW7A9EbRcbkERyCMLRNYxOjvRtm2by5W37UX51TDn2i95AbOuTxAE4AfMSkm56rKpJUW8JuYLw1CrFxbcGLWaQc7M4I+PExw4oLLIDQO9tRXCsBENs9SkgNvcijc1o4qc1uNbTBOh67hVh0rZIZXJQEkVLT2RnHVh2xgrVhAMDeEPDqJ3d88J4EIgmpoQtk3Y1MzQTJlAs9Hs2FzfQsmIG7JqVR/WkVn2J0h9AsPbtUv9O5VCFouNcao/w8K2SaVybE3mWJHp5VBxkIpfJpfMsqZlbSSAR0S8gPn2t7+NeRq+L7wQePGLX8zw8DDZbPa57krEKaavr4/3ve99p3SCJyIiIiIiIuKFSSSCR0Q8T6kX+ZOepwreZbOnpdhco8BluQy+j3nGGXhPP42cmmoIiiKTQe/pUQUBj9GHF0JBPP1IofQ49i/IYD5iv9baqnLTpUSWSmgrV6J3dGB0di4SgzXDxJY6rusRjI6CrhNOTyNdl1g2g10pI00TkUgQzs6qYpIAmobW0oLT1kE4PUXaMplxNRX5IVDnlpCIW1hhwGg5oDwzQ8rU0cbHAajaNsOig5XtHeiF/CkvjFmnXgSy/gwH4+NLPsNaKnXU2A7pOJSKFcrFKrOBmpyQlQrSU3n1xVkYlz5dMasxTlpTE0G9qCsqf1xOT6O1tCjHd93l7PsEExPonZ1Qi4ZZalLANy1ELKbeh0RCtec4arJH13HzeUIC9OZm9O7uE35nhW1jnXkm0nWRrlvbKNDa2pDVKmE+j7Oyj+roGLpugGkuGLP6yoXsMxTBYeEEhtbevmgSp15QVdg2FtAV66KrresZnzciImJpjqt48ymkubn5tLX9fMeyLDpPcU0TKSVBEGAcubomIiIiIiIiIiLiOSGKQ4mIeB4S5vO427fj7dyJv3cv7hNPUH3gAbw9e/D27cOvuWefKf7ICNX//m+chx7Cefhhdc4dOzA3bMA84wzMzZsxzzwTraWFYGgIkUo1xOClWC7P+flGwtSxtKWFcEtTQsORaKnUXISHYTRiRbTWVqxzz1UiKbWijzVxuS4GGz096B0dym2ra3SlYpiB33AeS9fFjsfo1EO0qUmsc89VERTxOCKbVW22t2Ns2oRXqVDYtZdVlkY2nUAI0XAPpyyD7mSM0LIoT06D66HVIlRAicrVkVGq6WxDzDxdhPk87iOPqOfqscfU/x95pBE9clyf374dd3ISr+rizRYJCwVkGCKrVSVEVx3cYpHy2CRaZyeyUsFYu1blnBsGorkZkcmgtber57ijQ7nA69Ty3UFFw9QzzedjaEI5wG0bTFPdMynVM2AY6GEAQUA4OYl/+HDjnfV27FgQtXI0tFyO2KWXYp11FubWrRjr1ikRv7YKw9d0tULDcQgOH54Ty2sca2XDiVB/Zs1Vq7BrfTLWrcPcvBnrnHNO28RJRETEQuoxUPMjkPoLZUquf9rOeWQcSl9fH5/85Ce57rrrSKfTrFy5ki9/+csLPjM4OMgb3vAGmpubSSaTXHDBBTz00EPH1T7A1VdfzbXXXtv499jYGK9+9auJx+OsXr2ar3/964vaKRQKvP3tb6e9vZ1MJsPLXvYyHn/88QXH/M3f/A0dHR2k02n+/M//nOoy9THqHBk/Uo/p+MEPfsDmzZtJpVK86lWvYrhex+EobfzgBz/gggsuwLZtfvaznyGl5O/+7u9Ys2YN8Xics88+m29961sLPnvvvfeyYcMG4vE4V155JQcPHlywf6lYks9+9rP09fUt2PaVr3yFLVu2YNs2XV1dvOtd7zqt4zY9Pc2b3/xm2traiMfjrF+/nrvuumvJMQXYvn07QohF1/ed73yHDRs2EIvFeMUrXsGhQ4ca+x5//HGuvPJK0uk0mUyG888/n0ceeaSx/xe/+AWXX3458Xic3t5e3vOe91AqlQD1zPX393PzzTcjhFA/M0VERERERET8zhKJ4BERzzOOLM4nq1WCw4fxfvMbqj/7Gd7TT+Pcfz/e7t3HLSguRaPAZc3VWo96EJaF9/TTqhjfzp14e/YQTkxg9Pait7QsFIPncTwF+Z4v1IXoI4VwSxNKoF7GaWd0dhLbto3YS19K7GUvw962DfOcc1RhxDBc4JQ9GknLoNeUrMgk6EjarMgk6CnniZWKhFNTVH/0I3Ac9GxWCZKbN4Pr4j70EIaAUEryBwfo0ULWNqdY355jXVuWlrhJqVTG93zwXHRDRy8VVUFK01RO5zAkEOK0ipnScXCfeALvwAGVoT01RTg+jnfgAO4TTxxzAmf+O6ADIahoGMdBlitgzTm2tTDEnZ1VxUpzOeTsLMa6ddhXXonR1YWWySBdl+p//zfB3r0YmzbNucFr7YLK8l4q0zxeLmLXHeu6jrAsRCaDSKdVtE1HJ7N96yjmmgliMUQqhUgmQQhkpaKuY4nrDYtFvP37cXfuxDtwAOl5GCtWEHvxi9HSaRVFUpskMUwDLZdDlsvKCV/75b7OsVY2nCxLTeJEREScfo5VvNkLwmetL5/+9Ke54IIL+PWvf82NN97IDTfcwNNPPw1AsVjkiiuuYGhoiO9+97s8/vjj/MVf/IWK6zpJrr32Wg4ePMiPf/xjvvWtb/HFL36RsXm1RqSU/MEf/AEjIyPce++9PProo5x33nls27aNqdpk9H/8x3/wsY99jL/+67/mkUceoauriy9+8Ysn3Jdyucydd97J1772Ne6//34GBgb44Ac/eMzP/cVf/AWf+tSn2LlzJ1u3buV//s//yV133cWXvvQlnnrqKW6++Wb+9E//lJ/+9KcAHDp0iNe+9rVcddVVbN++neuvv56//Mu/POH+fulLX+Kmm27i7W9/O08++STf/e53WbduHXD6xu2jH/0oO3bs4Pvf/z47d+7kS1/6Eq2trSfU73K5zF//9V9z991388ADDzAzM8Mb3vCGxv43v/nN9PT08PDDD/Poo4/yl3/5l43YnieffJJXvvKVvPa1r+WJJ57g//6//29+/vOfN8T/b3/72/T09HD77bczPDx81EmMiIiIiIiIiN9+ovV5ERHPM+YX55O+rwpRFgpKBJyZQaxaBUAwNYX0ffSODvSWlhMWqIKxMcJyGVkozMVEuC4inUYkkw1nrYjH0VpbMc86a0HUg33FFYRTU0fNc34+k7QMVmUTJ7zUfH6ERyOyJpdbNvt6OUwpSQ4dQiSTeDueQmtrwx8dVTvLZYJDhwhA5UInk+htbRCGxEKfeGcHlfEJpn+zAwEke7oZDzR80yQjfbRsBt0wSAkJMzOg6+pPjdP9hT+YnMQfGFDFVefj+/gDAxjr1mF0dy/7+fnvQLxcJJZppVh3Rge+ckUDMdsknJ3F8D1wNfTubkRHBzIIcB54gHB2Vrm9y2XQNMLJSbwnnsDYsIFg7151Mk1b4N5fKtN8RTLNoOfiTE0jhUAWixg9PcRMncGBIURLC0I3sVzoSqYxR4bQcznkjMqOD/N55U6vD8PIiJqAmldgtj6JZHR2oq9Zo9z7QQC6jhYGmIGDU3N8y2CucOtyKxciIiJeuBxP8eZTEYF0PFx11VXceOONANx666185jOf4b777mPTpk184xvfYHx8nIcffrgRpVIXXU+G3bt38/3vf58HH3yQiy++GIB/+7d/Y/PmzY1jfvKTn/Dkk08yNjaGXft+e+edd/Kd73yHb33rW7z97W/ns5/9LNdddx3XX389AHfccQc/+tGPjulqPhLP8/inf/on1q5dC8C73vUubr/99mN+7vbbb+cVr3gFAKVSiX/4h3/gxz/+MZdccgkAa9as4ec//zn//M//zBVXXMGXvvQl1qxZw2c+8xmEEGzcuJEnn3ySv/3bvz2h/t5xxx184AMf4L3vfW9j24UXXgicvnEbGBjg3HPP5YILLgBY5Ew/HjzP4/Of/3zjnt99991s3ryZX/3qV1x00UUMDAxwyy23sGnTJgDWr1/f+Ozf//3f86Y3vamxwmD9+vV87nOfa4xrc3Mzuq6TTqdPedxNRERERERExAuPSASPiHieMb84n6xWVVxD3VWlaYh0Gr+/H7lnD1pbG8Hhw+htbZgbN56Qu1e6rhLh6vEOjgOxGHJ2FhkEmJkMdHWhtbSgr1pFcODAgmKQddfzM3EUS8chmJxEzs6q+Ip0Gv00ZZ8vhalrz0hIqDtlT4b50RsilVLC7swMIp1WAqgQqjhhqYScmEBPpwkOHMA86yw6Ap8hAa6USKB0oJ+OFZ2kcnHwwdAlrghwh0cXup4BOxEnfppFU1kTn5fE95XLeanP1TPEp6YISyWEbaMV8vQ2tVBJ2BQbv4hLYrZJm6nhzVSwpsegr08VCu3uxtu/H1kqITQNWY+uCUNELEY4OTmX/W0Y6E1Ni9z7R97XFLC6p4NZfLxCAa2lg6LvMDNWQDQ1EY6MoOVSeCmdYc9lZbMEWVX3b3Z2wTvdWIExTwAHCKencR96CG3bNoSmEQwOzu3UNDo3bGIkHsOpVBurNo61ciEiIuKFyUkVbz5NbN26tfF3IQSdnZ0NZ/b27ds599xzT1mW+M6dOzEMoyGoAmzatIncvJ8zHn30UYrFIi0tLQs+W6lU2LdvX6Odd77znQv2X3LJJfzkJz85of4kEomGAA7Q1dW1wJW+HPP7v2PHDqrVakMUr+O6Lueee26jvy960YsWRHXUBfPjZWxsjKGhIbZt27bk/tM1bjfccAPXXHMNjz32GL/3e7/H1VdfzYtf/OIT6vty93znzp1cdNFFvP/97+f666/na1/7Gi9/+ct53ete17gvjz76KHv37l0QmyOlJAxDDhw4sGACJSIiIiIiIiIiEsEjIp5nLCjOV3e/1tA6Own6+5EzM3P7w7ARu2Cdc85xCchBPg9BgJbJgGEgfZ/w0CGoVMCyIAgQto1IJBBtbQS7dzdypesczzmPVtwzzOdxn3higWNYpFKYGzdi9PY+r7OHT0XR0nr0hrd7N8aaNXPRNpoGsRjouorRqEdphCFoGrJUwti/n55sDqepmQCB7ntY/fvQn/w1emcnYaVCd98ahtNpnGq1ce/sRJzu1ix2Jn0KR2MJjlUETF8swof5fCMCRSSThOPjSqRubSXWv58NK3qZbM2gGQYimcQvlRGBT2cujXZoP1gWwjRrkSlldQ5NQ4B6R8rlueda1zG3bFGrKI4z5sNwHdIyIChMU8lmlSCfTBKOjaE32Qh3D2ImxC2VcNqaSU4+jLb6jwlkCua908HY2CIBvDEG09MEY2NzRVjzeYjHIQwxD+yjp7MLt7sL2dGMadmnvUheRETEc8PJFG8+XZhHFAwWQjTiTuJH1FA4FpqmIY8Q8L35E/+1fUfLbQ7DkK6uLu67775F+3Kn+OeGpa79yP4vRTKZbPy9Plb33HMPK1asWHBc3ZF9PG0ea+yOdS9O17j9/u//Pv39/dxzzz386Ec/Ytu2bdx0003ceeedaPV6JPP6Pb/P81nqnte33XbbbbzpTW/innvu4fvf/z4f+9jH+OY3v8lrXvMawjDkHe94B+95z3sWfX7lypUnfV0RERERERERv51EInhExPOMukNYVioNR3BjX1MTwYED8w7W5ooeLhG7sBTeoUN4O3YgYjH1uelppKahr1lDsH+/ikRpbm4IvVprK2GxqATzI1junNJxCMbH8XbuJCyqTGp0HT2Xw9yyBRGP4z311KLIDFksKiFUSqx4/HmXQdy4rl27VAa1bSNqBSxPxhWv5XJYZ59NmM8TZrOEhQKiJtyG9exnIdQfw1CZ1+Uy4cAA+sY4iZEhNXFhmmr75CR6Wxvh0BCx9nZWphM4bTl8oWEAcQJi7W2nfVxFKoVoakLWYnzQdXUNvq/2HRGbc2QOfr0NWSwSTEygd3ZiDxykafV6DkmdctFBD8AolXEqLisuuRScChgG7uOPIzVNua/DEEwTkcmoPtRWPYh0GrOv74TGQXoeslQiGB7GbWohnJpV+eBxE1E9AEEZtBhaPI4XCMI9v0ZWqgTxV4LjoNm2yvWuT2poGlo9xqgWeyJr+fz13H13+3b83buVgA+IQoGkaWA0ZzEyL5zooYiIiBOjXrx5qUiU51ME0tatW/nXf/1XpqamjssN3tbWtiCTOQgCfvOb33DllVcCsHnzZnzf55FHHuGiiy4CYNeuXQsKK5533nmMjIxgGMay0RubN2/mwQcf5C1veUtj24MPPngSV/jMOeOMM7Btm4GBAa644oplj/nOd76zYNuR/W1ra2NkZAQpZUMc3r59e2N/Op2mr6+P//7v/26M53xO57i1tbVx7bXXcu2113LZZZdxyy23cOedd9LW1gbA8PAwTbU6MvP7XGe5e16PPwHYsGEDGzZs4Oabb+aNb3wjd911F695zWs477zzeOqpp44aw2NZFsG8GLGIiIiIiIiI310iC1lExPOEeqE8b/9+tNZWRDaLiMeVWK1piEwGLZmcEwotSwmjNTEbFkapLIU/Pk4wOqoiKQoF9J4epO8j83lkqYTW04Nobsbo61OF+tasmRPjl0F6HtJx8EdH8fbtw925E3fvXpyHH8Z7+mmC/n78wUHCmRm8gwdxn3iCIJ8nmJ5eMjJDFotQE+CXPJ/jEIyO4g8OEoyNHbPI4qkizOdxDxzA27dPibm2rcbOcY5aAPFYzC8+aHR3o2Wz6F1diHluatHSQiglRk+PEkRr8TV6Oo3e3t6I+tC7u9G7u7Fe9CLMtWtJbN5Err2VllyaXFsz8fXrnx2HfRCg5XKEpRLByAjB4cMEExOIWvSIfkQf5meAA8hyGWPNGiWW+z7SdXE2b2HMioNlkrQNdB1KsQTVljZGAo2wtQ3vN79BahphoaDifiYmCIeHVVxJMomwLPTOTowVK07cuW+aasLDMDAMQ63YEAItAdItIkGtqnAddE9diyiNYLZKpOc1ng9h26Bp6CtWEExOMkaJB1ITfM/Yyy9bi0wkJMHYmBLvk0nMM87AOu88zAsuQO/pwd+/X8WpLBMpExER8cLnZIs3P9u88Y1vpLOzk6uvvpoHHniA/fv385//+Z/88pe/XPL4l73sZdxzzz3cc889PP3009x4440LBO6NGzfyqle9ire97W089NBDPProo1x//fULXM4vf/nLueSSS7j66qv5wQ9+wMGDB/nFL37B//yf/5NHHnkEgPe+97185Stf4Stf+Qq7d+/mYx/7GE899dRpHYvlSKfTfPCDH+Tmm2/m7rvvZt++ffz617/mC1/4AnfffTcA73znO9m3bx/vf//72bVrF9/4xjf46le/uqCdl770pYyPj/N3f/d37Nu3jy984Qt8//vfX3DMbbfdxqc//Wk+97nPsWfPHh577DH+8R//ETh94/ZXf/VX/J//83/Yu3cvTz31FN/73vcaESTr1q2jt7eX2267jd27d3PPPffw6U9/elEbpmny7ne/m4ceeojHHnuMP/uzP+NFL3oRF110EZVKhXe9613cd9999Pf388ADD/Dwww83znHrrbfyy1/+kptuuont27ezZ88evvvd7/Lud7+70X5fXx/3338/hw8fZmJi4gTuXkRERERERMRvG5ETPCLiecCShfLa2jC3bMFYtUrlJE9MKKFQSrAs9JYWFcMxXyw9YunuonP8+td4Tz4J1apyxDY3Y555JrJWGFNfu5bg0CFwXbSmJuTkpBLj5wntiwhDvN27GyJfWChg9PXhHzyIls2qfOha/riWzeIPDKCvWDGXc74E0veXFPTDfB5vzx6CbBwnphNUAnQ3TyLTgp1pWaKlU0Nd5JcTE8rdrOtKaC2XMVatUoUKj9OJvxyNeJRduwDQWlvV9lQKY80a/MFB/KEhtPZ2RGurcqHX7ove0aGc6fE4em8v+vwCnc9ysdKwWMR9+GHCahWtowOtt7cR5YJhIJqb8QcHVTRJKoXe0jJ3r4VAJBLKNS4lxpYtEIaUO7vZV5WMFB1ljAcShkFLLkGhVEUnpOJ4xCoVgoEB8DyMtWvx9+1TEzzlMuHUFHpvL9b5559UAVctl4PRUUQqRWx6CjvVhFN1AFd1veZ2N80E8amdKhJGNxBC7W+smmhvR1+1Cr+/n10bMvzjk//CvtGnIZUijMVZ27qeGy96D+utPhK5Jjg0QFgsEk5NoWWzEIaN2JSTLUR7KuJ8IiIiTi8nW7z52cSyLH74wx/ygQ98gKuuugrf9znjjDP4whe+sOTx1113HY8//jhvectbMAyDm2++eZFr+a677uL666/niiuuoKOjgzvuuIOPfvSjjf1CCO69914+8pGPcN111zE+Pk5nZyeXX345HbXvv69//evZt28ft956K9VqlWuuuYYbbriBH/zgB6dvMI7CJz7xCdrb2/nUpz7F/v37yeVynHfeeXz4wx8GVGzHf/7nf3LzzTfzxS9+kYsuuohPfvKTXHfddY02Nm/ezBe/+EU++clP8olPfIJrrrmGD37wg3z5y19uHPPWt76VarXKZz7zGT74wQ/S2trKH//xHwOnb9wsy+JDH/oQBw8eJB6Pc9lll/HNb34TUOL2v//7v3PDDTdw9tlnc+GFF3LHHXfwute9bkEbiUSCW2+9lTe96U0MDg7ykpe8hK985SsA6LrO5OQkb3nLWxgdHaW1tZXXvva1fPzjHwfUaoSf/vSnfOQjH+Gyyy5DSsnatWt5/etf32j/9ttv5x3veAdr167FcZzjip+JiIiIiIiI+O1EyOgngQXMzMyQzWYpFApkloh/iIg41YTFItX//u8lc4K1piZi27YhTFMVkKxW8ffsUeJVLLZQAI/HMTZuJJyaUo7TWAy9rQ0tlZo7R7lMsGfP3AmkRDQ1oeVyBP39xF79avy9e5UDfHYWEYthrFuHv3fvAqdu45ymCS0t+L/5jXJwmybh+DjG2rV4jz8OyaRyr9fiHLS2NvA8rAsuwD94kLBQqA1COOc29zwl/q9cuUBQlo6D+8QTuJ1Zhqf24xbHG/usdDvdq88hlT45AfpYeIODOPfdRzg52RgHkc1irFxJULteEQQY69Zh9PQs2UZYLDac6/PvzZHUBcpwdhb/0CGC8XHCkZEFxVHNs89Wy6HnTSScikKlpwJv/36c++9X/6hPyoRhI9bF6OvDrz+DhoGxcqUS+ffvR6RS+AcOzBVtDUOC37+K/UaKguMz69Wy4zUNXddJapKU70G1Qq8F6f178XbuVCsoUim1osI0G4K7uX49RlfXSV1XPQrHHxnB37MHt2clI8LEtxzE7NMIy8KyE3Q4U9g7v4MwdbR0BrHhzfhTKh/WWLeOsLWN0tQ0U8VRbnvkUxwY2UFox/B1AycMCUPJhtb1fOCij5IiSe/ECOb+vWrchofVBJbjYF18MdZJFPwKJiZwn3hCrbSoRdVomYxy6Led/qiciIjnmmfj57xqtcqBAwdYvXo1saNNIkdERDwviN7ZiIiIiIiI3w0iJ3hExGnkeByXx1Moz1yzBi2TIahW0VevJjh4cJEAqq1YgXP//UoEDwKk66I1N2NfeGGjLSxr4QmEQE5Po61cSaDrCE3Dvuwy8DzEihUqn7xWSHBRZnM8riIdRkaUAA5zfarnmFcqkM3OuyC1X9g2WipFMDiIrFbn9lsWRm8vxGKLxNwwnyfIxhcJ4ADu7BjDh3fQtzqFaSc5lUjHwX/qKcKJiQWxMLJQwB8YULnOmqaE1mWc+Es6/ZuasC6+GKOzc8Gx9XgUvaMDbJtgeHjBvdZaWzFWr1ZxLMXiAkf1sylgLifqL4iEqTm8Za2Aazg7i17LCAXA9/EPHkT6PlpbG95TT4HvE87MgOvCli1M+VByq434EYRAAoGUlLyAZkunWpYYYe18vq+Ka1qWcu7XTqWFocrePplrzefxdu9W2euVCvrKlSSEoK8pjZPtxp9xMEoTxKr9aHt+CqauXPrZbgI/B3ggBBU7xtD+Qziux4A8wI6RnRixOKFu4AYBYS3/d/fkXkbK+0mzCT2ZY0UQEj7yCFp3N3pXF8HAwAnfa+k4BBMTOI8+SjAwoO6T76ts8kwGWS6j9/VhnmRR2shdHhEREREREREREREREfF8JhLBIyJOE2E+v0A4lkGASKdVgUnfRyST6G1tx8yRlo6zUEStFdTTslm0tjaVr2zbSgDP5wnb2qmm0vgIDBkS7t6N1damXLmGof4/P2qk5igWmYz6A0o4FALpeQ1hS1+9WolmYYgwTeUeHx9fGFtSE4nDSgWRzSJnZpQoGYZKKNa0OZduS4sq9Dk6OieOx2JK5O3uXiSgSc/Diem44wsF8DpueZJytUD2FIvgdVd2A11viKmyUFBxH0GgJiKWEA/DYnGRAA5qUsJ96CG0bduWjbUwe3vRrrpKjZHjgG2rMRsfR46MqDHSdTh8GC2ReNZEx6OJ+kv2wffVc+e66v+1yQJZqahVAoaB1tZGODWFiMVUtIum4TS34bkeQtcIJZgCvPrYhyFSCELDJJaME6sW0FpbMTdtUvEh5TKNNN1adv7R4oKWo160E00jGBjAP3xYXUetXfuMM0jmQkT+MURQQKaTSN9HNK+Ezj9ATin3etjSwtB0EaesBPpCZRaBQGo6Ukoaa7KkBCGYdQrYwqOUiuN2dmEf2I/W04N/8CDG6tUqC/44CfN5vIEBtZJk375GHFL9WQ5nZkBK9N5evF27sM4554SepTCfpzo4SAUdHzCEID42Rqyn5zlfmRARERERERERERERERERAZEIHhFxWqgLZw0B3HHAMHAfewxZqaiIEN/HWLUKY8OGo7YlLGuh4BiGhOPjhOPjaJOTGNu2KTd5Po+3fgNDRQd3eq5onhWP0dPaDpMPoHd0oLW0EE5OLhTCYzHMjRsJZ2aUyxyQ1SrScdB7e1Wut5SLIjfqxQIXoOsEhw5h1nKsCUMlumWzaD096E1NhFNThMUixubNSlyvVkHXlbBZLi9ZMFOYJkH1KE5eTRAERy8MejJIz2sUM6wXoJTV6pyrWEoVtbFmzZLC4fE4/Y+W7aznco1Ckv7hw1R/9CPCsbHGfq21Feu88/AGB9HLZTXeloWcnUW67lGjVxZc53E6eY8l6lsveQlaU9OC/TIMEag4HFkuz038GIYSY4NAvRfZrMoFNwyEbRMIgVbbH+AS13WQGl7DGS+xdY1OLcD/4Q8JOzoIx8cRloWxfr0aJ01Db21FS6dPSpCtF+0UyaQqRlkXwAF8n2D/fujuxlj7ZjSzgCZcwqJP4KWRUyrbXmgaTmsH1QOHVHY4kI1llfjN3KRTXQBHStJWBnxBKASBptc6E4LrYvT2Hnce+HwRH89TkylSqrakVPegtnKk7qI/kWx76TjMjo0zNFPFKc+tFLETcbrHxsnE45EjPCIiIiIiIiIiIiIiIuI5JxLBIyJOA3XhDGpFHoNAZR3n8+qAbBbKZfz+fpXJXRemj0BralI528cQUaXjIDs6GXZC3FJ5wTFupcpIxadz7TqYmlRudGrCvJSIXA6trQ0tFiOcmlJ9DgJ806La1kloWZhr2okVi+ilIt7u3Vhnn60iTeYVC5TFIrJcViJxpYJ38CD6qlXomQzSddFXrMDfuxdvaEi5Tycn0To7MTdvViKprisXehguWRRTy+XQx/NLD7iuIQwDXT9xp++xEKapXN7ZrMowD4IFop7W3o65YcOyouTxOP2X2z5flMaycH75ywUCOEA4NUUwOoqsFYU0Vq3C/fWvlas6mVT3O5XCWL1aXU88jqgVVq1fx5GrFurHLZUxvqyoXyt8GU5MYJ55Jt7Onap4qOsiLEu5/+NxFXkShohkEq2lRb0LhoGIx5Ugq2mIdBqEQBeCcHYWM9uCEFB2HCzDIG4ZSCFI2ybt5QL20zvwgoBwZAStowNZLBJOTKgJFsdBS6cxN248KTG2/izK2iqIRQQB4dgYYVMTWu8a9J4ehOMgaisIwmIRPA+vXEaWSkhNQ4QhK5tXs75jI/uLg6r9xsALNjSvpd3uo+ALNEBvaca94kqq7R0YQYCZSnG8T3rja1F91cCCi5ML/15bybHU+7cczswsQxOFBQI4gFOuMDQBdtMssbZIBI+IiIiIiIiIiIiIiIh4bolE8IiI08B8EUlWqypLuC6Aw5yY5roEAwPYF16I95vfLBkvsZwA3mjfcRC2TbWpBWeysOQxjuPgb9iI8ZsnkIWCEkeTSbRUShVZjMfxn3664UR12joYrng449NIKTH0GJZm09kcI1YtE+TzyNY2ylLDW7kavakVY/8e5JNPqvabm9G7utB7e8FxEE1Nyo3q+8qJalmIdJpgaIhwehq9pwc5MYFIpTDWrFkytkLYNolMK1a6HXd2nhCsa2jxBFa8hUQsu+hzzxQtl0NLp6GjQ0XE1KMkhEBva8Nct+6ortxjCa9Luq2XEKWl6yIymYYjvdG/zk68p59Ga2rCWLdOCeC1/HKRSBCOjhLs349/4ABaLod0HMxzzsHfuxdr61ZEPL7oXKCiSpaKxlhStNc0NcnR36+ypdvbVVRPezsikSAoFNTEyq5dauxiMWSxSFAuI5qaoCZ2C9vGHxiA2soDu7OL0E7SFjcYK5SJIRC6hvRcEgmbNWEF/fv3wPr1aM3NKr5nYgK9sxMtk8Ho7kZLpRrZ9idD/VkUNYF+8QECNI0w10QxniKsuOhCI57NIQcGGscY9TgiKZWzfMzkxvNv4p+e/Bd2Te1HF4JACDY0r+OGC25itmxhxyzihsas0ClKA80HAoh5gq5ylfhs4ZjO/frXImEYarIpm0XO/5pSE8JFLteoGbDU+7fcSoGK5y8SwOs45QoVLyAqMRYRERERERERERERERHxXPOCFcE/9alP8eEPf5j3vve9fPaznwVASsnHP/5xvvzlLzM9Pc3FF1/MF77wBbZs2fLcdjbid44FItJSBfnmi2meh3RdYrVYk7qorbe3o6VSeOWFzu5F56odG5arMDWzeH8yCUGAV6iSOfdcCMNF5/AHBxtiWJjNMeyEVCcmIQjQu7sJxsYoT0wwmEywIj+OXLOWcSfET9TEXzOOsWo9HatWYx/qR4YhwdgY7gMPQBhirF9PMDiIXnO2Y9vIiQlwXSXurl6tYiGKRRWlskxEjJ1poXv1OQwf3oFbngRNRWdY8Ra6Ojad8qKY9fE1N25UIr5hKBE8DNUEwtat6C0tR/283t6+KB6kjtbUtCjb+cgoHVAu5LAmJJvnnacmD0ZGVD8SCRXJkckgNE0J4ChRMxgbg1pEipyYQOvqwjtwADcIlGC+fTvGhg2LBPDGeZeIxlhKaNVaWpQAPjMDTU3qWapUkKjVCqHjEBw8iLFqFb6UyPFx9U4Igd7UhEin8Z54AmPtWoy1axFBUJswqdK9eg0jrkdTZRYtnSIMHEzbotkpYvzqQZXX7rpqfGtFRbWmpkZG+vHGeiyHlssplzqgpVJqNUA9EkXTwLLwztzKmB4j8CSU1CSB6VRpb+vAeOwRtGwW0/OxkDizs6DrhIZBLoxz6+b3MmRNU3BniBlpWuOrKZZtDEujI2WTqpaZmZ5R4nW5DJqG43oc7j9Mr1NEy6vnajnn/vyvRWG5jLF+Pf6ePcj6yhMhEE1N6p2rVpfMtq9niuM4Ku/cMMC2MVeuxBdLTAzMwxfiqPsjIiIiIiIiIiIiIiIiIp4NXpAi+MMPP8yXv/xltm7dumD73/3d3/EP//APfPWrX2XDhg3ccccdvOIVr2DXrl2k0+nnqLcRv4vUhTNZqSihbH4MgW0vzLzWNBUtkkot6Sg+HhFVS6WwurrQpouErjtXaDKZROvoUBEVbTmVjbzEOeYLZZVYAmd6HDwPraODYGJCFbU0TVzXw990BqPjU3ilA5jr1yNiMZV3HkqGy1W6xscRdQdsnSBQwqhtE05PIxwHGQSqn2E4Nx61LGhZKsEy7upUuoO+1SnK1QJB4KHrJolY9rQI4HW0XA7rnHPmnLC1wqDH4y7WUimsiy9etpDkkfcjmJwkGB9X46Lr6vkRApFOI+rFHg0DY906/L1751zhhrFgBYLQNCWACzE3vrUcaDkygnbGGXg7d6qc7rqwuQRHRmMs9TwK20bOzKjCpsmF9yGcnVUichji1Yo6irY21RdNQ1uxAueXv0SLx6FYVPnfExONaBTjycdZeeGFVMIUXqWKjsQeO4x86jdg24imJsJqFZFINK5VHMXRfDSWczubGzfi7d6tVjZoGv6hQ+o8iQSsXsNYKoefSC4Yw6pXYnthP9b6JKXSOKI8QK5jNXYyhz+cRwpBUCoRj7dyaXoTmuFRzjThCh2Z1YkTIqoVDudnkFISHjrUyJ9HCBxdp5JIkayJ4Ms59xtfi8pl9FwOWSqh9/YienrUexmLIRIJdY9cd1FsjHQc/EOH8HfvRhaLjcK8IpXCD0OMrhVzX+uOQFgWRu1eREREREREREREREREREQ8l7zgRPBiscib3/xm/uVf/oU77rijsV1KyWc/+1k+8pGP8NrXvhaAu+++m46ODr7xjW/wjne847nqcsTvIPOFM60mAJpnnaUESCA4cEAdaFkq6/oIN/B8jldETeWyJDasp5ovKEFKCJVXPDFBLJ0m2d3ZODYsFudc57EYWlNTQ8jy6+K0EEpEdBykrjcKabqJJK47Co5LWCqhx1TYgdA0PE0SnLWGZGoYKRIEeYNgeBp0HZFIqH65ropdqMWioGmqDy0tKq/6CDF3KUw7SfY0it5L8UxcxUZnJ9oyTv/5hPk8weHDDTe3BPSuLpX5PT2NDEP0Wu661tqKYdvKvVuLtlkgyi+VX61pajJCSuWenplBuq7KZ89m1YTGkdd9hJC85PMYBKoAZ09PQ4BuMG8CSEip8rPrueamidXcrCaA2tvx9+9HmCZhtaqejyCA8XHCiQnSl12G88SvCcfGEM3NqlhrUxNGZyfek0+qZ6fWf1mtqpz7EyiE6UznKY6N43s+hhDEqmWMgwdV3nsuh3X22Q1XvLlli1rBYJoUcy0EnlwggBedIb6/69tkdZNfjDzA0MEnSdgpNuTW0te8jqvOvIZWmtGlJG4ZaAMHIQzJcAgRj2Odcw5BPs/E2Djh5CRy3r2UpRJBtapWaPgLV5gs59yvr2SQMzOIZBKjr68xWSBiMYRtIwxjyYmdoB7NUxPAG7E3e/bgWRbmeedj55pxhFBO9fp5LYtYZwfJZPy470FERERERERERERERERExOniBSeC33TTTfzBH/wBL3/5yxeI4AcOHGBkZITf+73fa2yzbZsrrriCX/ziF8uK4I7j4MzLuJ2ZWRwnERFxMmi5HMaaNXhPPEEwPQ1SqsKTloV55pn4AwPobW1Y55131ExpOD4R1dQ1upvSDJsmTtVRRfiCgERTju62JmxTJxgdVQL4yEE0xsErIbUE3uFW9FWbCIeGMMJAiaWxmHKeWtYCcSsMpXIWG8YCR7swPERlJyEmjP4XolrFSHWhb3o5oWZj9PWpTGghVORCZydCCEQmg2hthdlZFYMh5Qk7eF8ILOf0r1OPQZkflaPlcgSDg0o01jQVnROLERw+jHQctM5O9K4uJQDXClNqra2NTPD5iFxORXnUiyEaRiPPWnoeQaGAbhgLxNylojFg8fPYcKsv4foVuq7asCw1AVJfGRGGaE1NBONK6NV7e5GlknKJ1wqQNsZmakqJzskk5rnnqiKu7e2EpRIEgSog6/tqDJiLBvEklCfz+EGAYRgkEjGsmN0Y77rruxJLcPjAIE5QRTN9kD5WLEVnPAd79qjs9GUmQWTFbUSgAIRhmXv2/D8kLIv7DtzHWGUUDSg7RXbn9xFzQ+4d/yfesvFPiDuoNhMJFROk6+iZjGq3WER3qkoAn1+UU9ehUlHFRcvlRS7+5YrKnuxKBlksKgGcI2JvAFwXMTxEVzrDcCqJl8mo/mgaVsxmRWdrY7wjIiIiIiIiIiIiIiIiIp5LXlAi+De/+U0ee+wxHn744UX7RkZGAOg4QqTo6Oigv79/2TY/9alP8fGPf/zUdjQiglqMwL59SNcF3yeYnFRCoecRjI1hnXsuemcnxlFc4PM5logKkLQMVmUTlBM2QVMaDeUmrjoOTkEJV0HoYCRmiY3uwMjvAs9BJDuR9h9hbLyERKlM3IzjuJ4qBDlPALcScczS7EIhFSBwoLgbzZDo0kdvbZ2LOrGfgjMuR864BKOjEIaEs7PI6WnlSs1mcR98EHPTJlX40fNOyMH720KYzxPEYlSbWvGyzRi+R1xIxKOPqgN8HyxLiZy+TzAygrF+vcrB7u3F37ULOT2NefbZuL/+tToumYRKBdHcjNHdjbdjBwCio4OwWERLp5GOg97VpcTOalXFbTAnJC8nlM5/HqXjIPP5JSMxtFQKkcthrFhBWCyCaSKqVTAM9LY2/MOHlTDuOKpgpqxNsggx9yceV6L19LSKymlvx3v6afV8lkroK1cqITwMEYaBvnIlZc3g8P5DC4o22ok4K3o6SYR+I3c97Ojk8HQJNyyiuQehXALAnYGRdAe9uZ5F7mqYW00h7ARh2UMkEwjLYqJ8mInyJKvTnQwWh7CNOSd82Skykw0xS5MM5QTr987gl8uE+Tz4vrqGtWsJBgcRmQzW6Ah2Mocz486dWAjQdSzbIj5bVFEmpqne06NMIJ30Sob5E1212JuFAxFiT4zRm0rjrugl0DQMXSeRjEcCeETEC4yXvvSlnHPOOY1aO8+U2267je985zts3779GbXT19fH+973Pt73vvedtr7cd999XHnllUxPT5M7yZ9BTkUby/HVr36V973vfeTnF1k/zTwX54yIiIiIiIiIOJ28YETwQ4cO8d73vpcf/vCHxJZYsl9HHFGES0q5aNt8PvShD/H+97+/8e+ZmRl6e3ufeYcjfucJ83nC2VmCQoFwfFyJd7U4FGrxE3JqCr2WO3yqMHWNrK5Rcn2Gi1Vc18OZLTLr+liWTntYpjwxipnYQGd2FfGhB3DOfwez6T48aWBlcrQnA8ZGJqiWy5BOw+wsViJOpwjQ9+zCamrHs2xEPE5YLCK8KShOYcXSJPURJWIHIegaIqYhzAJBqg3r3HNVgcd8Hnp7VcG93bshDPH37MFYvx7rzDNP6XicLoJ8Xon61SrEYuqaj8iSPhHKmsFhK0V1z4FG8VI7k6azZyWxdBpv7160ZJJwclJNQngeWiyG89BDyHIZraMDY8UKgpERrPPPB88jSKaoSIFXrqDlp7D6VqNVylhnnom3dy/66tWEExMqM/7ssxuRKifiFIYjIjfmCeEiHsdYuxb/wAH07m50UMJ1Xx/B2BhhsYixZg1aJoNIpdDa2gjLZcKmJoJ9+1RUTiKBSCaRpRLGunXIQgHp+2itrco5HoupnPT6eTWNIJXmcP/QAgGcMKSaLzAoBL3VWbTZWYRhUI0l8AoFRGU/uEXltK59y3BnR3GSBlaYW3C9/shIIw7G6OpGTzXhItBXrKDkKte0I1003UCTIZimysAHPE2ipTPMTo8iK6hc81qBTVkq4e/Zg8hm0QwDbXSEjrUpRmI2brXmNhcCK5WkSwQED/wcmUyitbRgrFmjhPRTLLyIdHpu1ccSBX6FZYGU6LMzpH0Ho6fnlJ4/IiLi2ePb3/425m/hSqzj4cUvfjHDw8Nks9nnuiunRPR/ofC7dK0RERERERERzz0vGBH80UcfZWxsjPPPP7+xLQgC7r//fj7/+c+za9cuQDnCu7q6GseMjY0tcofPx7Zt7BeA4Bbx/KYRreD7KrZBCKTrEqTTOOs3UrFiBFJieR7xg3sRDz8Mroufz2NMTmJ0d5/S/nhBqATwUBK4LrOuTxCEVH2PMcelpWkF1alBRhIdNL/80+ycKjM9Mg26hRA6Odtk04p2xIEDyI1rESMjmPv2IAb6QdPo7uujsHINvgTfqWKYMYxYGy2VQ2ijDyDaWxHJeZNVfhEttx6GhwkGBgjHx9X2Wh440MiVXlA09HmKd+gQzs9+Rjg2pnK729qUCN3erhzYIyOYK1cetyDpBSHDTkD18BCyWm1Ei7ihZNiT9Fo2+qpVBLt2NVz4WlubihIZG1NFDaXEffxxZKGAv2sXwaUvYWQ8jxdPIOw4srkDu7OXzphOuGeXymAXQhWhDENwXbRU6qRzz48WuSEMY04gt238ffswNmwgCALk7Czu7t3qM4mEcowXCliXXEJw+HDD3Sw9j3BsDPO881QO+rp1BLUVQMIwGjEcWmcnxWIJFzWGspZvj5QI28YLQqqJJEnfQ+g6vgRhB0hqbmsp1fE1fNdBC8eBNYBygM/PQxejI3Rmc4wE4B4+TKJTZWDHzTi2bSHKJRV3Uq1CEGBpFsK0SWKh5RLKHV8vgColwdgYZksL4cQE+ooVmE/vZEUmi9vZRWDZ6EjioY946kmCWl9lsUhw6BD2S15yyieQ9JYWjJUr8QcGFhb41TQ12ROfy/z+bYwxioh4Lpl1ZunP91P0iqSsFKuyq0jbp6/Qe3Nz82lr+/mOZVl0dnY+192IiIiIiIiIiIg4jWjHPuT5wbZt23jyySfZvn17488FF1zAm9/8ZrZv386aNWvo7Ozkv/7rvxqfcV2Xn/70p7z4xS9+Dnse8dtOmM/jPv44/uHDOL/8Jc5Pf0r1F7+grBvkV61lRxUeH87zm5EC2/NVdvWsw3/Dm9G6ujDWrFFxKceBdByC0VH8wcG5LOZlKHsBbqjEUk9CENQL64VUHQeRbEMkEtid57A77zFdqjTiS2QomS5XeXqyjNXSQuKhX5DWIb5pI/ZLX0rsFa9A6+ml6vnkp2eYqbjMOCFVP0RKCGdnCMbHkME8MdtQDuNFcS61nGORSCjxLgyPWRTzeMcjLBbx9u/H3bkT78ABJTaeAoJ8fk4AFwJz9WrC6Wm8Bx+k8uMf4x08iL97N/6hQ0e9R/MpewFupTp37VIqUTgM0ZNJSmvWU9pwBs4llyJXrwFdR2tpUQI2gBBoiQSyUFDX3tLKiBPilCuEk5MEw8MIy8IplxmeLBDmmhBAMDioIkRSKbDtk3YRB/k87q5deE8/TVAoIGpiel2QrQvk5ubN6O3tStDv71f3cHhYRXm4LrJcxh8aQrMsvB07VL+EQF+zBmGaGD096E1NGL29mOvXE7vsMqyzzkLv6UFrbUWk0wT9/XilsopokVJdn6aBaRJOTBAMDeG7Hu7DD+P87GeIQh5ZUhnkIr54lZGhS4Qx9ywHY2MLCtQShpi7n6anOE23KViX7KQv20FM1+nN9SJq7notkyHZ1k1TSzetbSvptdoJJiZUodDJScLxccJaRBBhSDgxgbFypXLQVyvE9+4m3b+f+MH96KUScmZG7WtvV9eeTJ6WCSRh21hbt2KuXq2ekfZ2RCKhCvp2dDTyyJfLj4+IiDg5DuYPctf2u/jWzm/x/+79f/nWjm9x1/a7OJg/eNrO+dKXvnSBI7evr49PfvKTXHfddaTTaVauXMmXv/zlBZ8ZHBzkDW94A83NzSSTSS644AIeeuih42of4Oqrr+baa69t/HtsbIxXv/rVxONxVq9ezde//vVF7RQKBd7+9rfT3t5OJpPhZS97GY8//viCY/7mb/6Gjo4O0uk0f/7nf061Wj3qtd93330IIRrRH1/96lfJ5XL84Ac/YPPmzaRSKV71qlcxPDx81HYAHnjgAc4++2xisRgXX3wxTz755IL9//mf/8mWLVuwbZu+vj4+/elPLxij/v5+br75ZlU35YjVrCfSn+npad785jfT1tZGPB5n/fr13HXXXUteL8D27dsRQnDw4MEF7XznO99hw4YNxGIxXvGKV3Do0KHGvscff5wrr7ySdDpNJpPh/PPP55FHHmns/8UvfsHll19OPB6nt7eX97znPZRKpaNea39/P69+9atpamoimUyyZcsW7r333mOOe0RERERERETEsXjBOMHT6TRnnnnmgm3JZJKWlpbG9ve973188pOfZP369axfv55PfvKTJBIJ3vSmNz0XXY74LaCe+ysdBxGLKcfvPCF3fjFDf//+RgE52dLKjBnn4KzDTLUmbAqQhsFUyWGvI9jouIgHfo6xejUiFsM4igMpzOfxBgbAceYK4dn2sm7joJ7ZDYRCa5wfzQBdJzQt5V6PNZGfrInD9V+0Ah90nemKQzGbI6dp+E8/jd7ZiTAMgmyW0VDDKxQwxsbUR1M2njfGsGbS23omZuFplS+dTIHVDMlVAGjpNFom04iGQQgwjLmChoah4ixGR5UIXIsWqY9BfRuapvLW50dvmCb6KnUe6ft4Tz015zgHtKYmrIsvPuo4Hw/B6KgqVIkqaugfOqTiXQCKRfB9ZKWCt2sXWns7xnE4qwMpkUGAiMfVNQUBQggSHW1MeJKZsotdKhHOVLDauunq6yOWSlL98Y/n3Ln1womA29mFU5n3C7+U6n6YJk6xSMXUiNfGRqRSmBs3YvT2npSLeL4rvo7W3o592WWY86Kl6pnUWi6nYoL27VMZ4LUsa4JAPd+ahrZ2LXLfPoyeHrz+foJYDKe9E19omIZFIpVorODRcjn8gwcbz4JIp9E1jWB8XN2Pem597f2V1SrazAxyakpFiwwOYK3qxAWk64FlE8ZaCGItGHYCkfLw4y3UPc5LTmyEIWJ4iPjwENn0xbxuy9V8b/f32LZmG/+9/78ZKg4RN+JsbN1Id9Ma/kfXlcR//iTyCNFa1t/vTZvUhFC1qnLfV6wgmJhAy2bxDx3C378fLZ1Gb2qaW0nB0kUxT4T5xULnx/pouRzWBReoiKeVKwn27UPW8tfh2PnxERERJ8asM8t3d32XqcrUgu1TlSm+u+u7/Nk5f3ZaHeHz+fSnP80nPvEJPvzhD/Otb32LG264gcsvv5xNmzZRLBa54oorWLFiBd/97nfp7OzkscceI5z3/ehEufbaazl06BA//vGPsSyL97znPYzN+/4ipeQP/uAPaG5u5t577yWbzfLP//zPbNu2jd27d9Pc3Mx//Md/8LGPfYwvfOELXHbZZXzta1/jc5/7HGvWrDmhvpTLZe68806+9rWvoWkaf/qnf8oHP/jBJYX5+dxyyy38r//1v+js7OTDH/4wf/iHf8ju3bsxTZNHH32UP/mTP+G2227j9a9/Pb/4xS+48cYbaWlp4dprr+Xb3/42Z599Nm9/+9t529ve9oz689GPfpQdO3bw/e9/n9bWVvbu3UtlidodxxqDv/7rv+buu+/GsixuvPFG3vCGN/DAAw8A8OY3v5lzzz2XL33pS+i6zvbt2xuROk8++SSvfOUr+cQnPsG//du/MT4+zrve9S7e9a53cddddy17rTfddBOu63L//feTTCbZsWMHqWPUxImIiIiIiIiIOB5eMCL48fAXf/EXVCoVbrzxRqanp7n44ov54Q9/SDr97PyiEPHbxfzc3zpHCqlhrRigSKXmnJBBQLlvNYEdY7ZcRmgCGQowdKTnIaVkVjOotHWS0HXlJH/oIbRt25YsfCkdRwlfu3c3RHZQ4qUQAjMeXyQ+6fOcQ7phIHRNxSY4HsKMoSORnquiIKBWgFBTVTTnCeielIjzzsfRDHxDx4zFIRbHHZtUMRP1PpZcyK3FLe/DaVqPmd+pMsGtZuj5IzDVO6jlcujNzYSFwiLXqkillAA+PY2byTEbT+NJiVmskg48zD17wPcRySTB0JCK2YjFVN9Nk7BSIdy9G62rC++JJwgnJ1WhwZpoGU5PH3Wcj5t5bjItkSA4smBULTdZFovqfh2HCK4LgdB1dX01UTOezTARaFR8j4whEOk0mq7jA2PxGCtTsbnjg0DFadTwNR0h9IYTGlATDWGIsWIFIm5iZ1Kg68q1fQL53wsudZ4rfj7h2BjOz36GdtVV6EdM0jRWBBjGXMb0vAkRymWYnSUslZBBQHDBhQwdGqE6sEvFbQhBLJtlxdpe0s1NjXcQIQizOartnbj5ApmebryJSaozs+pZnZ0lBHKbN4JTpvqHr8FAYk1O0GElGE214ZYmCNo2MetrWLpGLg5DswUsey1drk/SMo45TsK26cv18daz38pAfoCtHVspOkV0Tac53syq3Cri+TKOZSFrkz6NCQwh1P2s3RfCEDk+jkgm0Xt6EJqGGBrCWLUKEY83ROjGuZ9BHEkjn7/2tUP6vsp07+1Fb2lpTGLogNHZuWTsTURExKmhP9+/SACvM1WZoj/fz5kdZy65/1Rz1VVXceONNwJw66238pnPfIb77ruPTZs28Y1vfIPx8XEefvjhRpTKunXrTvpcu3fv5vvf/z4PPvggF198MQD/9m//xubNmxvH/OQnP+HJJ59kbGysMRl655138p3vfIdvfetbvP3tb+ezn/0s1113Hddffz0Ad9xxBz/60Y+O6QY/Es/z+Kd/+ifWrl0LwLve9S5uv/32Y37uYx/7GK94xSsAuPvuu+np6eF//+//zZ/8yZ/wD//wD2zbto2PfvSjAGzYsIEdO3bw93//91x77bU0Nzej6zrpdHpRPMuJ9mdgYIBzzz2XCy64AFDO/hPF8zw+//nPN+7H3XffzebNm/nVr37FRRddxMDAALfccgubNm0CYP369Y3P/v3f/z1vetObGu7/9evX87nPfY4rrriCL33pS8te68DAANdccw1nnXUWwAlPXkRERERERERELMcLWgS/7777FvxbCMFtt93Gbbfd9pz0J+K3hyNzfxvbjxBSpecp0ciylHt5ZgaEwGtuw09llavaMBpilQxC5QgPJZ6uK8HLMAinpwnGxpYUZ4N8XuUpHxHnIYvFZd3GCVPH0gRuKDENHSORwKtllsfTLchgFGGaWJpAyqAmghsQzgngQghMXdA/PIFTqSqRP5UisaIb37TQ54muSEmQdxHJtfjZGKySsGIttJ/REMChVkBxyxZkEKiM4ZoQLlIpzPXrwTQpdHSzu1ChMFMAlEM6l7DZcMZZpJ96onEfMAz07m60tjblCp+ZUYKirhPWhMNwelo5yWsO2aON83EzvzDvvAmDBvNzk48sJLgMCVPHzqQJ6k5wlMBemalgWCaGkCruJBZDCA3fMHCycczeXsJaLnZYLiOyWWShgGnooFtosZgSM00Tkcmg1Z43MxXDbHvm2a/zXfFHEo6NEYyOLhLBQa0I0GtCKoahxjEM1f+lVPfR8wibm1WBy6npObFY16kWChzeD6sNA61YhFgMp6OL4UCjVAnwKx4imURr6yCXy1HsHwBNI7duDcVylemnd6t7IyV2SxMrhElvuotKWxd5I0MaH/xZquU8ZDbiYjBcrLIqm1DxI01Ni742gJok09vbAUjbabZ0bFlybHyvgLFmDf7+/YRhqNzwYag+39mJrFRUVNLsrHLxF4uIIMDYsgU5O7tgBUSdZxJHIh1HCeCGsWBFC0DQ34996aXora1z56oJ4hEREaeHonf0+K5j7T+VbN26tfF3IQSdnZ0NZ/b27ds599xzT1mW+M6dOzEMoyHaAmzatIncvK9tjz76KMVikZaWlgWfrVQq7Nu3r9HOO9/5zgX7L7nkEn7yk5+cUH8SiURDcAbo6upa4EpfjksuuaTx9+bmZjZu3MjOnTsbffujP/qjBcdfeumlfPaznyUIAvT5P0M8w/7ccMMNXHPNNTz22GP83u/9HldfffUJR0Qudz927tzJRRddxPvf/36uv/56vva1r/Hyl7+c173udY0+Pvroo+zdu3eBU11KSRiGHDhwYMHkxnze8573cMMNN/DDH/6Ql7/85VxzzTULnsOIiIiIiIiIiJPlBS2CR0ScLhbl/s4jLBRwCjO4ho0XS6GtXI01NNgQjkQ8jlatYtTd2I1CewJltQahCUwBIhZrRIEslx/dcBQfbd8RgpSpa3SlYqo4JpAyNGYsC9MyaYvZVGZzmE1nkcUjbdtMV1zl3IaGE7Q5ZhGUq7i60YgkkWGIrFYoBoJ0LK4KD7pzBQVl0QHDJPRWYbSeA+Zid6iWy2FffDHGunWq77oOuo50HJxMjt0zVQpVr25RR+g6harH7kKFrevWY/YfrN2IEK2lBe+JJwgGBhqCs5ZOq8mJcllFpxw5ZseZ070cekcHWnu7En/n/7IqBKKtrSHEY5qIROK42jR1je6mNIdXraTSP4CsVAgAwzRImRpGMrlIuPfjFrzsFTiDg2jFWazxMayVKwkmJogJsBNxXNdDSyZVEcyaeG9pgoS5/C/ZJ8SxXHXLjLWWy6Gl0+oeplKEpVLj/olcjrBYRGtvpxpP4kzsXjjOAELgSigeHiK+bw+BbXMo08aUFxKaJmHFhaqHnkpiZdJ0r+5FMwxGJ6fwS2V1LiFA03BmigxZNquaMgjNpuq7atLK6oBkFnT1DLuhpOj6CN2ievnLCGaLWKVZYoP9iOFhtGwW6+KLjznBEhaLhKUS/v79iJYWzJ6eudUDvo8sFNBaWlRcS22SpR43otWiaxpFRuvD8QzjSMJ8HoRYJICDmjjynngC7dJLI7d3RMSzRMo8+teRY+0/lZhHrDARQjTiTuLzCuMeD5qmqRVK8/DmxTjV9x2Zgz2fMAzp6upaZIQBFojlp4Klrv3I/h8v9WuSUi66vuNt80T78/u///v09/dzzz338KMf/Yht27Zx0003ceedd6LVf/acv/pvmUitpe5Hfdttt93Gm970Ju655x6+//3v87GPfYxvfvObvOY1ryEMQ97xjnfwnve8Z9HnV65cuWy/r7/+el75yldyzz338MMf/pBPfepTfPrTn+bd7373sp+JiIiIiIiIiDgeIhE8ImIJlhVKNQ1vwyYOV3yCYhXpBoQzZXRMOs8+F337YwjLIiEk1WKRtKYx46pfKupRDpoQZAyNxNTYgjiDZQWmYxW7m+c2np9hbsVi9LZ3UNVNvNBFpE1AEAQBWSEwh6bg599g45v+f+ySMF2uXbMQNMUs1jfFGT8woKJLqtWGEBmEAWZzK2EigdHaSjgx0RDC7UScpKljrttyVMFM2DZGd7eKYKgJeuHMDLMXXUqhOAOGCajikPgBQkDRMSjkcrBmA9baDYQIPN/DuDBFvLML8fCv1FhJCeUyMgzRMpkFWdlHHefjRM/lsC+7TMWAlMuItjbCdAZv3XoCBLrrYI2PYfgewdQUWip1XA7dpGWwuquVcjaJWyoR6ibubAU9Zisx3/eR1SoyDPFNixIhs6OTSqiNpTDbu+lKxVRkh5Ss0AxG3BBPNxq52JYm6ErFMPVTVBM5triQ5AKWGWth2w0xV+/pgUOHCGdmENksRmcnQT6PuXUrlUq1tkph4S/gIpFQz47ZTCIWo9qziqmKj+/5aKYJhg5BQDA7y3S1SocpEWGAO3gY0dSkxsP3Vbu6jlMqU+1qxw8lItExlyM+Dz8IKbo+w0WHShBAoKEZKVo2nU3v1rOJJRPHFMDrEUsYBuHMDHJwUNUa6OlBS6VUbH9HB+bq1cj29iXjRupFRk9lHEk9S3y5ybawWCTM5yP3d0TEs8Sq3Cqa481LRqLUY5WeD2zdupV//dd/ZWpq6rjc4G1tbQsKOQZBwG9+8xuuvPJKADZv3ozv+zzyyCNcdNFFAOzatWtB8cbzzjuPkZERDMNYNt5j8+bNPPjgg7zlLW9pbHvwwQdP4gpPjgcffLAh8k5PT7N79+5GXMgZZ5zBz3/+8wXH/+IXv2DDhg0NF7hlWQTHuZLsWLS1tXHttddy7bXXctlll3HLLbdw55130tbWBsDw8DBNTU2AcvYfyXL3o349oCJdNmzYwM0338wb3/hG7rrrLl7zmtdw3nnn8dRTTx01Ime5a+3t7eWd73wn73znO/nQhz7Ev/zLv0QieERERERERMQzJhLBIyKWYDlBSXZ0MhIIAgmiWiWcmQFdx61UGU3E6V63Hi3wCZ58guQGl76NZ3Cw5DFTdSGUaLpOc8xkrfDQd+1qtDs/RmFRX9LpOdHuSAxDZQezfIZ58uKLEULg7d+rNto2/p49aF1d+JZF7P+6m62v/iNKXc24UmCZGmnPoTI8hDc6pgTwedEnlZFRWjMZyvEYenOzcju7Hpah0ZVNEk8ljkuQqxcVbThaNU0VJwyVYCnDUBUc1ARGIklVSoqeT+CHjFY8HF+SNjXc8RmSzd2sefXVWN/7P4SlEqLuBpdSifd1l/hRxvlEMHt70a66imB0lGoqw8jYFNXJqcZ57O5VdHe0oA8cxKtUsM4557jGxNQ1sukkpJN4QcisbuKGElkuK9HU95GxGF4IbmEKEEq4lBIXGHZdVpqS+Jo1pG2bWBBS9gICKdGFcoCfMgGcI1zxR6C1tx9VNJ0v5oZnnIF0XWQQqAKera2qGOuLL5t79mrObQCh64SOg6GpYqpuKo0/q8QiKSXoRiMCJ3BdvFwTuFVkaytBromwuQXh+xilIqKqhHYfsFuaYQkjXBhKJJLRck0ABxW7o+tMITAMi9XxBEcb2UbEUqGA7OrCvfQyvJlZdKeKnZ/G9Dy0TKbh+OYogvqpjiMRprmoSOcCNO0ZF92MiIg4ftJ2mj/c+IeLimM2x5v5o41/9KwVxTwWb3zjG/nkJz/J1Vdfzac+9Sm6urr49a9/TXd394JIkDove9nLeP/7388999zD2rVr+cxnPrNA4N64cSOvetWreNvb3saXv/xlDMPgfe973wLH+ctf/nIuueQSrr76av72b/+WjRs3MjQ0xL333svVV1/NBRdcwHvf+17e+ta3csEFF/CSl7yEr3/96zz11FPPWrb07bffTktLCx0dHXzkIx+htbWVq6++GoAPfOADXHjhhXziE5/g9a9/Pb/85S/5/Oc/zxe/+MXG5/v6+rj//vt5wxvegG3btM6LozoR/uqv/orzzz+fLVu24DgO3/ve9xoRJOvWraO3t5fbbruNO+64gz179vDpT396URumafLud7+bz33uc5imybve9S5e9KIXcdFFF1GpVLjlllv44z/+Y1avXs3g4CAPP/ww11xzDaAy5F/0ohdx00038ba3vY1kMsnOnTv5r//6L/7xH/9x2Wt93/vex+///u+zYcMGpqen+fGPf7xsdEpERERERERExIkQieAREUuwXO5vtbUd1wnQhVDuyOlpJSA5DlXXxW1tw4jZVJta8HUde3qSM9paqebi+BJsDZJjo4jtjzVE7XqxzeVcpHpLC8bKlQsytAEwDIyVK9FbWo6ZYW5fcQWiljctDAPCkHB4WDlQYzHE4ACxkSHVZm8vslpVDmLXXRRFIaWkeHiIlWdl0JIpApk8KYG1UdCwhojFsOqGX0kjI1qPxaiGIYGU2KbB/mKVWV8igNlAkszlKE1Nsz+VYOPFLyL41UOYGzYQTEws6PuxxvlE0XM5wnSGsUIZvwl03UCGIULT8IHhmTIrM1m0/PRJuWjrkTZD43nKhw7NZYWvWEFT4FCpuoSVClo223Diu65HJZbArp3P1DWyp1D0PpIFrvh5QrjW3o59+eVL5oHPZ36xRVATI8H4uMq6z+WIS59YSzPV6XxjJYU6UGKnk8RdFceiaZpyy4chslpVESsyVM8voAkJTc0UAwPfUasFhKGjZ5tJNQv0mQJmOk0ilcQqlHHDI5brhyExXadYj/6ZRyAlJS+g7AWNsZaOM+fUtiy0bFZFLBUKeBs2MRIInMNjaoVAOoGVa6W7KU0qmz5lz+eJoOVyiOViDQxDxTY9g6KbERERJ05fro8/O+fP6M/3U/SKpMwUq3KrnjcCOCgX7w9/+EM+8IEPcNVVV+H7PmeccQZf+MIXljz+uuuu4/HHH+ctb3kLhmFw8803N1zgde666y6uv/56rrjiCjo6OrjjjjsaRSRBxXDce++9fOQjH+G6665jfHyczs5OLr/8cjpq32df//rXs2/fPm699Vaq1SrXXHMNN9xwAz/4wQ9O32DM42/+5m9473vfy549ezj77LP57ne/i1WLZzvvvPP4j//4D/7qr/6KT3ziE3R1dXH77bdz7bXXNj5/++238453vIO1a9fiOM5JR7BYlsWHPvQhDh48SDwe57LLLuOb3/wmoMTtf//3f+eGG27g7LPP5sILL+SOO+7gda973YI2EokEt956K29605sYHBzkJS95CV/5ylcA0HWdyclJ3vKWtzA6Okprayuvfe1r+fjHPw6olQI//elP+chHPsJll12GlJK1a9fy+te//qjXGgQBN910E4ODg2QyGV71qlfxmc985qTGICIiIiIiIiJiPkKe7E9Wv6XMzMyQzWYpFApkMpnnujsRzyGLnNW2TXHjFsZ0C4KAcHIS6ftozc3ImRmk69Kxfg0z5SqV/gEl4hoGdiZFpyaxhg9DGGJffLESLR0HYjH09vZjioVhPo/31FME09OqXU1Db2rC3LIFLZfD278f5/77l/28ffnl6M3NeLt2gabh9/crB7FhoLe2NvKiRTyOdc45AFT27OXg2BRO+YjcZ10nls2wqruNRN/JL8n2Bwfx9+5dsM3tW82TnkHB8ZBBAEGIkU5R9gOyMYu1TQkeG8qDVlfLBS0xA39oGGTI5tYMif/9/wdNwzz/fIyVK8H3EbZN2NFJVTdPqSu6UPUYnJpRbuaJCdA0JRbWxPcVmQTJoUMY69Zh9PSccPvScag8tYOSHxJoGnoYIjMZhgeGkEIgUim0ZHIulx3ozCRoTtgndb6TJcjnCUZH1TNdF7afQTbrfBG5YsU43H+YakEVnRWJBLGmHJ1aQGymAFJS7OxmT8mjUnFVIVDbAqGBEMQNwfrmFDPlKiOFMhXXb+T0C8tE1zTaTI3VbVnsVJKy0FWW/jwhPJSShKlzaGZxQUqAlGmwOpegOW4R5vNUBwepoOMDhhDEpY9hWTj9/QwmcjhVBy2TUddYi16KtbWyKhMj1tV10gUunwnB5CTOz3++cCKt9vVBa2o67tUMERHPd56Nn/Oq1SoHDhxg9erVxI4VGxUREfGcE72zERERERERvxtETvCIiGUwOjvRtm1TGduui5yZwcxlYLqo4gFq4lU4PY3e2koQhFQQOKWyakDXEYaBMzHFcCLOCsPE1ITK2K5n8JZKyHIZenvRW1qW7YuWy2FdcMGyOcDHKvYoHWdB/ITW3k6wb59yLtfyj48srmfGY3SaGiOJ2JwQruvEclk6RYAZPrO8yqWcpdahATZs2sLuWY18sQK6hgSyMYveTJxC1UdqmjIE19zigQTSaZidxdN1MAy09naMri7MlSsRtk3J9RmeKeMUC+qadR07maArkyBpnfyXQa9YxD9wAGGaKhoHFc8hMhmEZVEfoZN10Yb5PAweIj41txy+csZZSCmRrqtc4EdknuvP4Hwni57LPSPR+0jmx32kgdXJBOXZEn4YouXz2NOjsHs3bhCgZTLEs1k6E2mG/ZAqUjnCXYe4qdOhG8jRUQqHRmjfvJGxkkulXFHHeD6mbdLWlIGnfoNr28Q3bmRVNrMgRkZKyWR1ngs8DMEPGgXONENXxzkOs2PjDM1UccpzgrmdiNOd1fC7e3BGJtGamhoxNsK2IQxxPZ+KbqHv2vWcCM56Swv2pZfiPfEEYVF9jROxGFo6/YyKbkZEREREREREREREREREPB+IRPCIiKOgpVJoqRTB6CjeyAjxmQKWaeN682JJfJ+wWMTo6SGQoYoOyOWQxaISpzUNt+rgdXRhHNgLhoG/d++CInRBfz/2pZeiHyX38Wg5wMcSqOr758dPGJ2dRy2up3d0ENu1i147RrWzhUDT0aUkNjGG7lTRzzzjOEZweeoRDPMjUQgCkr/6JWedtZViRw43DDFiMWZcn12j06xsToOU1D26QtMQUhJaFlomjRWPYV14IXpnJ0ZHB8K28YKQockC1bHxBbnGlbzJkNdGX3vTSTnCw2IRMTyk+q9pCNtGOo7KVp6ZQTQ1KUE6Hj9pZ6/0vAV57ACx6UmsZA6nMKNEVE1rjIdlmcQD9zlxEp9O7GQCo1rB+fkvFqzMoFBQkzpPPknTuecj4zpBLoVfraIHBob0aQ4ncUwNrdWinJ+itakVmtN4UqDpGtLzCZyqeq4qFbyaCJ2Nzb0LXhBScHziuk7FcZCVCjJQkw+arhHHI5YycByH4ZKLZ5hoaQOEQAYBTrnMkGHQ3NmOVvaQvk84b2IDy0JoGgGoIrHPURFKvbUV7dJLT2nRzYiIiIiIiIiIiIiIiIiI5wORCB4RcRzUxVOtkKers5thw6AihIpVAGzLpNkQjB4eJ5ieRmttVSL3vIr3QSKBsXYt3pNPqtiIeYTT03hPPIF26aUnJTgtl2EOyxeDPFZxPS2VwjrvPNyHHiJ+aGBBe6ciW1vYNubGjQuLYwJaPI49OYHlDePt2EHwohfTb2cJQknF9UnbBrOOmoQwdUEoJWEYkknGSZs65qZN6POEu3LVXSSAg7qn1bFxypkk2eSJL30Nxsawhg5jp5pwymW0XK4RbyF9H1MTxAN3WRftUrnRRx4nTFNF1cwrjCpGR+jakGM4k8Kf5/i2LJPupE2spel5K1qGxaJaWeE4iFgMva3tuJ4j6Tj4hw4tfL4dRxWN1XWErpMgJNbZSWlsAt/UMOM6YXkYZ2YQ2bqBuFnEFTOUggwzkxX8SlVFyQQBdi5JrHcVselJkBKvvx8tmVQicDaLadu0JiwEIUPFIpWaAK7rGi1xky6vArueptK7iurUNLI6FyEkYjG0lhY8z4N4XO0z5n3r1TSEriOrVfSaq196Hm7VoVyq4AcBhmGQSMSwYqf/vp7qopsREREREREREREREREREc8HIhE8IuI4aMRLSIk9MsTK9g7K3e14lTJGEBBzilTHx5QjV9MIJycRto3IZJRQrmmYqSThxCjh1BRaMrnoHGGxeNIOUC2Vwrr44kXFMZ+pYL0gEsZxlEDW3n7KivfNj2ipO09FMom3YwdUKpibN+MlkqxOxXGlZLRYoa/mBncCScrUKDk+LTGTdbkkyabF+a5epbpIAK8jPQ+vUoWTEMGl4yBGR+jM5hiJ2TgzMyqjO5vFMg1WtDURb2tZUpAO8/mF4r8QiEwGLZNBuu6cQJzLoaXTEAT4mkY1nSUQGjqS3lwKf0UPQSjRZUBCAyuVOnEBvDIKhR3g5sHKQfYMiJ96EXRRxj5zz6fR2XnUzx5ZRLWB56k/qRTCsrCTCcymDMXZAiOTu3DL4+AHhDNjOIkVNMcspioVPCtFqBtI3SBhGgS+x9BEnp7iDPLpnQhdR2tpwVizBg4exNywgWQuhzHrkIxruOk0IRDzXeLTk2j5PCQSuFN5ZKmk4lJAFfIMAsKpKXVPKxXMMMDTLOVkFwKh6yAEtm1hT0+CEFTsGEP7Dy2KVFnR00kq8+wXzoz43eN4JukiIiIiIiIiIiIiIiJeSEQieETEcbAgukNKtLFR0uk0/uFDyGIR0dSE7XnYrV04QDg6iqxW52IqUknsglCCnbZM9IamLSvWHg+nS7CuR8KcLuY7T+tOYZFKqSiJMMQPAmYP9NPT3g6JJIEM2dSUREpJ2fWIZeI0lwok3QqwWATXZaAmImpiY71gqRAC6Xlq/0n2mzDE3P00PR2dVJtaCDSBHvrExkaJZePLOsCPFMCJx3GffBKRSqlsbc8jOHwYY906zI0bVc701CxOpdrIkY4lsqwwdJqeiSg6tR12fQ6K++e2pdbAxvdA8zkn3+4RhMXiIgEc1AoI96GH0LZtO+ozJj2vkV2/9AnCxkRVkM4wVp7GC2cRlg0WaG4e08wyTium7THrBCB04kgycYtiIY8oV6jG4tiuC4kEsljE378fY9WqRkSKXqmQ3L+XxVNYIMMQrVpW73ddBLcsFY9TKqlJsWKBztBllBiOaTYKdNrxGJ26RBsfJ1y9mqHp4gIBHMApVzg8OMLqNb3PiiM84neXMJ/H270bKSX4vqqJ0dGJ09ZBGI+rlQmnoLDw7wJR7fmIiBcG0bsaERERERHxu0EkgkdEHAeLojukRM7OYmzciJ7LEZZKGOUyXe3NDBcdKqUSzM4CYCUTdGfiKuogHkdY1uITGIbKEj/OgobLRSWcbsH6dLLIKVyPoujtozo1TTKVZKxYxam6pJtzWPEYmq4Rs0wMz0PrWBz5AhAPfCzbojo6NldAVAi0VIpYRweJk9Rx5kfQiOEh4sNDjX3LRdDAEq7mWAzv6afRW1rwBwYIBwcbIqo/MIDxylcygomfSKLF4ojaJIqTL3DYcU5eFK2MLhbAQf171+fgnE+dMkd4MDa2ZFQPKCE8GBs76nNbfy9EKrUgS7+Olko1ctDLXoDrVxGmBTJE+j7C1NGpIoOAtmScuOEjPInruIzPeoiKTzaRxHfL2JrWiCupn6ue033U99NxiBVL2LBawHcAAQAASURBVLksTr4Avo8wTeTsrFpBErOxy2XCJx+nu3cl/oaNeK6H7nnEpicRoyNoPT1UOrpwBoaXPkW5QrlUiUTwiEWcKue2dBwlgAPejh2EExP4557HyKERvKEJ9N6VaMkEdiJOVyr2jAoL/zZj1r5WlMtl4vH4c9ybiIiIY+G6qvi1ruvPcU8iIiIiIiIiTifRby8REcfJUtEd9aJxwego7uHDmKOj9PauxD1zE16xhO652OVZxPAwUgjMc89FzswsFAQNQxWkS6ePq6BhcabI4YEhqjOzjaiVWDrFip5O4k7lpEUQp1SmPFvC8wNM0yCRSmAnEycxUifOsk7hmRnMoUPY7W2UDh2mpa2F+LqVjBYrFMpVtCDAHx0lb1v0OB6pWnHK+j3CshBTk3RUywzrgkYSu5SYgU9HdRbTbjupPp9sBM0it7/vI2Ix/IEBZKGAmCeYhGNjlAqzSlStid/zvUrPSBQt7FgsgNcp7lf7T5EILo/IwD/R/VouB/39GGvW4O/fv0AI15qaMLdubTzrgZSgWapgbaUMQQi6jmfYBG6JkuYxPesgXZCej4jHCMMQPx7DcEuIRKIx0QAoJzfqvultbYuLudaJxRCH99G1KsFwNo1bdRurD6xEnM6YjtY/ikyloP8g5qEB4meeiZ5OIzNpREc75rp1FMtOo9YAoRLx6++50HX84ORWLkT89rIoXglVkNfcuPGEi+SG+TxSSiWAj40hV/UxEmi4FZVzH46NQlsbrmEwXIRV2UTkCF8CXdfJ5XKMjY0BkEgkEEI8x72KiIhYijAMGR8fJ5FIYBxt1VlERERERETEC57oO31ExAmwbNE4o4zZXQBnCmQR/VATMZlGsyzlOt6yBb2jQzlWYzG8J54gLBaVsBWLoaXTyxZQnI9bdRjsP0x1fGIucgGoui6HymVWpWOIocNK/LVtJaxns+gtS2dT15mdmubwvkNUC4XGtlg2y4q1vaSbm066oOHxssgpbNvKYW2a8NRTdF3+Ug5P6xCEDA6NUS1X0GMxkraJJpWj9/DgCH3drTBPDBLJJGGxiDkywopkCrepGV/oGDLAmp7CLE0juzrgWcxMX+Qm9jy0RIJgf02QnldwFcD3fOVmXmoFAZy8KOrmj77fO8b+E+BYz/Xx7Dc3bMDbvRtj1SpAidMiHsfo7UVvaWkcqwsBeorQBdzahIOmEUgBbgkrkUBKH+lV1VgjQNOwLAt7Jr8odkUYhrq3pqn6uWEjpbFxfC/AiNnEvSp6qYTW2ko4MoK5dzc97e04uWYCy0aTHnZpFmPfXsJ8HmPVKvz+fuTMDDKfR2qaEiz7+tBSKYxa0Vd8n7BcXvCeS00j8qj9dvFMv7Yuileqb69UGjE+JzIZKj1PPXtTUyAlbkcnbqG8oF18H1mt4hoGZS8gG4ngS9JZq3VQF8IjIiKev2iaxsqVK6PJqoiIiP+Pvf8Os+w6zzvR31o7n3wq5+qIbnSjQTABhMQk0qKSRUq+1+Oxx/Zj2WPJtiRL1rU9I8rXQyVSctQoXNt67li2n3vldK0AyRpZsoakSJEEAwiikTqnqq5cJ5+z41r3j33Oqaqu6oQGQYDcvwd4uvvss/Pau7rf71vvm5GR8XVOJoJnZDwgevMZ+MrPI5sX0T0fVIJZPQkLf53wqsJ58kmMsbHh942xMeQ3f/OBHeV3o9Pu7hPAMQxUt4vfbtMbPUZOSuILF9DNJth2GvA3PY396KMHdgUGne4+ARzAbzRYvgSHtEJ9+tOvKNAwShTdKCHRGkOI2/rI7ukEtm2076f2MJ6H2trCOvcS86UynZlJGms1SoUcRuAj6220YSAMg6DdodN0ye0Sg3QcQxiiNjcxkgSv1Uyv3aDTt1h8IB92uH/P9D3+8gCWtXM/D5iGa0q5RxTft/yVTt21K3debt1l+X2w2zrmVu5kHbPne5UK9pvedNfnJmcZmKEiMOZA+BC1EVIgVYxlWOQNExfoCZkWFgxJrphjuuRhhAEKGPwTWPTvq/A8RD5Pa2OL5ZUNwkQhHAe1uoltGkznPZzLl5FjY6mwvrqKt7o69BY3pqZI1jcRQLK8jDE5iTh6FGN6GqNc3nMeubyH4zr01pt7n3PAyedwNtYImzWEYbzqxaiM15YHCYsdkGxtkWxsALA1U+EcazSCJhWnzAlzmun7DFsWlpVmV/TfObG85f0iBDpJ0Eql4znz0b0tQgimp6eZmJggesCfMxkZGV9dbNtG3i6zJyMjIyMjI+PrhkwEz8h4EHpr6Jf+OWL7HAgQfVsK4V9Dr/87rIf/FzigU/e2HeV3IQ6DfcIYMNxHoiG+ciUVwAHCEOKY+Pp1hGFgv+1t+0TDbquzTwAf4NfrdFsV7PsINBzYkXSlyWqoiAxz6LFsS3Ggj+zuYxKmSbK2BkGAHB9Hb2+noszLLyFKVazlZXShQJzLo8sVpNaYvo+II+J477UWpok2DEgSdLe70009uCdS3rMP++5zu5vlzJ2+t89f3jQhlwPDQLjunvEiXBcv9HGKBcJwv4ji5Dxy+VfoN1s+lYZgHmSJUjiSLn+VeKXWMbdyL8+NGUdMJgE3exBaR5G5GGxJ3iriWnlqL1xgZHICOV4hCUNkFGEmAvvzX0l9/ufnSZaXEbkc5pEjEMcYi4v4a+ssbTUJmq10hsHWFihFICUrSrFQriA3NxClEtb8PLrXQ+RyoDXxhQtDYR2l0L0e5sIC1uLivvFjuw4zk6MsdbsEzdbwcyefY7rgEn/8jxAnT5IsLSFHRrAffzzdZquVZgsUixiv0A8647XjQcNiIbUuSZaXUfU6L58a4Zee+Xkurb6UvkuE4MjESX7kPX+Pt9zmmdFBQLK1tWfsyHw+Hbf9bkhT7XqnmmYaQmsYQ8sgI+uavCuGYWQ+wxkZGRkZGRkZGRmvAzIRPCPjQWi8iGhcTH2aNan/cB+xfQ5j/joqun2X6+0CLm+HeVCXyqATT2sMKXYE8AFKQZKQ1GqoA7oCo/j2dho6SYjjhIOMOA4KNBx40yaOy7J0CMN+x+7oKMJ1CZVmpe3v85Eddgp3u2jLwjp8OD3uQgE5NYUoFDC0xsznUJNTtGNF4kegBWgwLYeCbWGa+4UGLSWiVEqF9D0X08SoVu/ZM/dA313LwujbcwzEbtVuE9+4kYqgA2sNrbEeemi4r1v95bVSqM1N1OrqzrZdF2NuDqPbYe74CZZvrhN0d/bt5Dxm56ZeeUiiNwkn/vb+cMzCkfTzV8kPfMDtrGOEZZGsrT1woN8AVa/jbm8y167hV0dJtIUlXaxrN4gcl14hT6/RRC8tg+9jFwuM5R2MXhetFDqKcN797tT+xDQR+TzRiy/ij08NRWlhGCg/tVMRtk3Q7eGXxsg7DjqKkKUSYmwsLbAYRhqk2+2iw3AYgmtMT9/2PL2gx2LRxR8fIVYKQ4B9cwn98c9CHKdFHQDXxf/v/z2dPdFuI6REFApYJ05gzs/ftx90xmvHg4bFDmxQkJLakUl+6ZlfTAVwSMeHYXBp9UV+8elf5GPFKabKc3vGm6rXCc+eRXU66XsqScDzMCYnMebn09kLS0vYa6vY1QnCKE7XN4zhGLZlOrsnIyMjIyMjIyMjIyPjjUAmgmdkPAhhHeQdOuHi5m07jdvNNstLqwcKm4XSweKHZxk4peKeDtFBx55TKeH5XeJbV5IyFTj6At+tWAcIx0P6wvptF++yMdntTdurjhE2Ux9ZHUWora1UfDdNQqX3+cgOOoXjq1cJn302nd4vBGJ8HFmppNt+8UWsxUUSK0cS+33PCgFo4igmznvYt3Tb6W43Fboti3hpCQbHa5ppJ+7p0/ckuN7qu6vjGN3poHo9kq0tjOPHodNJu83L5fR7SqGTBCwL4XlEFy5g7wpwvLWrWTgO0Ve+gmo0wDSR+TyyXMY6fhynUuKw6+wUTAyDXN575QL4gJHH4LGPpSGYUT21QCmfetUF8AG3Wseoep3whRdelUC/Abpv5SBbTbyVm/0dS4zZWeT6KjO5PPHCIcIkwCg4uO0W+jNfIOlfc93rIftiIJAK9N0u8e4ZGLsKT6g0eHPw3AnTRNg25tzc8BxRCu37QwFbRRHJ6irCNA88T2FZyLVVBrG0Sa1Gcu1af6GAQgHz2DGSGzfQnQ7CstCdDngetNvpWNUa2/OyjvDXKQ8aFqvq9bTQls9zzmnuCOCwMy6l5NLKi7y49gIjVzaHz9XgfarjmOTmzT2F02RsDPutb8V5z3uInnmGZGuLmUWPlUgTxgpjZiZ9X9sW0wU3C8XMyMjIyMjIyMjIyHjDkIngGRkPgl1Jp4gbck8X+BCrcqDIFfrBPgEcIOj2WF5a5fCR+QMFTqdQYHZ6jGXYI4S7I1VmqkXE2sotx7erh/s21h+5Yh63XD7QEsUdqeJ22tzO9fXWzsKBmHlrb7mOotTnuy+AHuQja1SrRM8/j8zl0JOT4LrpdP0rV1C5HMbsLL12j9GJMnGS4Asx0MDxPIfRYo4wCve+1LRGN5uIkRHcY8fQ3S4kSdpZfpew0N3sPjft+6h6nXh1FXw/PVfLQscxxswM0fnzqLU1dLudXqNyGevkSYyJiQM78QeYk5MY73nPbT2vbdd5cNH7ILzJr5rofSde7UC/AcKy0N0u5pEjxJcvp/dBKZLlZcxTpzA6HZzaJvaFc+m4bLdT0TBJoFxGCLGnWDT4/Z5ZGAdYQOwed4PnTAcB0QsvEF25kgrgu4i2t9FKHShU7/ONH6wrBHJmBtVqIYQgWV5Ov0/qX67bbcjnod2GviXPK7Fdyvjq86BhsYNxqbtdGkU/7dBOknQsa51aojgOBAH1oInulYbPlarXUUmy1zqrj9rcJD5/Hvsd78B93/vSIlCvx6FSiSBfQjlOOmvpNvkOGRkZGRkZGRkZGRkZr1cyETwj40Eon0IUj0FyHt3r7hHC9cgJxPijB4oZ3U5vnwA+IOj26HZ6BwqewnEoFAsshsHQKsE0JK4EefUqyvcRpdJOKGa1mnY/38H6w8nnmD06z/Il9gjhbrnM7KFZxNOf3RHBpUytTRxn2PE6sLbQUYQoFtksCl5ILrAha1ScCvPWHLIth0FqcLCP7EBoVvV62gVumuiVlWG4oFxYIBaS1svnGV2Yx5gZJ0k0hgAdhXQ3tyjPTe4VD0ltRaz5eTBNkl4v7c4OgvR471FkHQpOcUzSaKA2NsD3d74QReggIL54kWR1dY9vu240iF5+Ob12d+lufqVe8W9EdhcWbmUwDu7lWtzqvy7yeYTrpv7efasaHcep5YNhoJpNtOOkVhS7izH9MYdp7hGxdRiC4+DqZFgs0kmSjvl+t66T83CD9FyE5yErldQWZ3mZ+ObNVLS2bcSumQr6DkL1gb7xgJycxJiaIvz857EOHYJuF7ROwzw9L/WUj+PUHiWOHzj0NeOrx4OGxQ4LmlpTsUpp3oGUO+8eIYYzXypOCdo7z5WOIoSU6c8J06R2cp4LXpta1KJqlzihc0y128jJyeHMDRuGMxMyMjIyMjIyMjIyMjLeiGQieEbGg9D3VRbnfhGMi6kApTS6fAx56u8gKocOXC0+ICzzXpfLSgXP83Bu6RhmcpJkbQ01N0d86RKqL7Ldi/VHcaTKYceh2+oQxwmmaZAr5nHyOeK3vS0NcGs0MGZnia9dgzDEmJtLRd/lZawTJwA4a2zwS5/+l1yqXyYwTLSG41Mn+Vtv/puMyhGA2/rI6ihKhRvTTAM9tU5FHd9PO9pdF9O1wfPora4h42SPiCksCytf2OO1Pbg2yeYmwWc+g9reHu7DGB3FfuIJzKmpO96LwbZ1HKNarVRA9/103wMxX0qk46Q2LnG8r1NYNxoQx3e1OPhG4m4C7b0IuAf6tOdyGIuLJNeupRYhA6TEGB1FbW2h4xg5Pr4jhAuRjjXbxqhWEfk88dJSuu1uF9XtwqVLTD/xDlYE+I1mKnQ3Gjiey0w5h7G5MbRySfrhhsJ1UY0GutFAm2bqFb5rdsadhOrdvvFGp0MyPo4oFPA/8Qno9dLj7Z8XcYxuNpFzc+lsB/q2LPcR+prx2vKgYbG7ZwucdGY5MnqMy6svoZUCrYd5BEemHuakMwekHd+D9yJJAqbJ+bfP8Usv/RpXtl8CFCA5MvEIf3vqx3gLR79KZ5+RkZGRkZGRkZGRkfHak4ngGRkPyshjcOYjiPpZVLAFRgllHkZteRhGHeOA7l/TuHOY2N2W365j2FxYQAcBcnw87TRNEqKxCZqWQwRYHZ+ibeJZO4/+oJPWiCJKto0cr+4Ry4eBhpubRC+9hKxWEZ6Xhq8Jke7j0iU2C4JfPvv/5vLGOQRgmyYhcGH1Zf5fX/6XfPi9P4sni7f1kRWWBUrtdEfutp9IEjAMnJWbOCOT+PXGjtd5f113YpycayMMuefaxBsb+J/8JGp9fWd7UpIoRfj008j3v/+ughOmie500O122hncDxvFMBCVCqrbRTpO+vlAvD/ovt3m829E7ibQ3m35gXYqQoAQJKuryPHxYXDlbu/tZGUFVa9jHj5MDGk3rJRw5CjBQyfxR0aQtSbW5cuI5eX0ngqRhlk+/TnmTp0mPH6IWCmsQ7N4OsGo12FuDlEsooHw858ncT3CxcNEI+PITht7dQV1czkN/uw/33cTqgfPuUEq7sdXr6bd34BqNhGjo6nQH4b9i5IK+qJQAMfJgjFf59wuLPau7yP2zhYYXevwI0/+KP/7Z3+ByysvDsNYj0w9zI88+WOMru0Ug4Y2S4UCtdOH+OUL/5orm5+HpD+GhODy9rP80jP/jJ9zIiZNPcwJuHXWxYOG2GZkZGRkZGRkZGRkZLyWZCJ4RsaD0r4KS0+RbF4huX497cQsTKNH3k/4ZRPnySexFhb2rJLLezg570BLFCfnkct7r/hwhONgTk7C5CS1XsilWodOe0cEyZsGR6t5qp6ddtLevAm+PxRh2NzEmpnZI6DJQgHd6SA9Dy0EyfY2xuQk8aVLaTCf6/LSqRwXl84OLVKk7+OYJsqyuN68ylrnMu8ZXzhQAI8SRbdQJjhxCtls4DQbiNo2YmQk3VaxiKrVEM0mU6NjrE2ME1eqoBVCSpxCnulSbt+2dRCQrK7uFcAhDSrsdkm2tkjW1+8oOukgIL50CWN+Hm7cINna6l9ogSiVMOfniS5cQB49mopPprnHDgVILTZyubR4kAEc4Hu9i4GlyJ3YZ6ciBKJYJL58GdVspsUaw0AWi1hnzgzFuoFwqNptzOPHEYZBMDHFmukS2Q5qeQ2EwDQ9ph46iXX+5XS8BAFyZASWblCslDFnZ/v+5RdJdneij40RjE2wqg0CPyF2SySGhzcyyeyx41hf/hLCMO5bqDanplCNBqJahThGdTqYR48SX7uG3twcFl9ktYp14gTm/PzwnDPx8vVF6Ae0ewG+BikE7tQMece+b4/t3bMFHo0ifu47/gkv1S9Sb21SdoqcNGeonF9B5XJpMciyUjsowFxc5OLydS5//jMQ962dhEAUKhBtcPn67/Pi8fczufGfoHAEdeRvEl1nz+yKBw2xzcjIyMjIyMjIyMjIeC3JRPCMjAchasHSU6jmzaEAruMYatcR8e+D+Bb8j38c8R3fgbnL49V2HWbnpvaFYzo5j9m5qfsPQIxa0LkGcRvMAuQX6eGlAni811qlEydcqnU4hca8eZPwc5/bIxLLiQnEO96BdUtgn46i1BN7cxNZrabiW6uF7vUQpkktaqbe2FoP7UOEYWDEMdJWtMLGgSJPJ4xZafvYhkSNTxKXKlhCUPLb2M98CdVsYoyPE1+5gsjlcNZXOfTN30yQL5FojSHEbUPa7uQ7jVL3ZFGi6vW0sCEExtGjyOnp1FZFKVSjQfTCC6kvc6+HKBaR/W3qfkCdMAzk9DQin8/Eol3s870efN4X1u41GHC4Xi6XCuD9+6UdB1GpoJOE6PnnUYcPp523u4RDHUUknseGtogR0G6n2zVNgp7PqucyNzmFWLk5LGzstjQ5KNgzMQxWggS/WqatBYkGtKDT9ul5OY4//iTOxXNYDz20R6i+F2SlgjE+PjzH+Px55NQUcm4OLAtzcTH9zq5A1QMtYzLx8mtGu9nm2laDrW7IICXBtQymKwVGCx6FnHtf29s9K2gamJ48iqrXCZ55hvjiM4jZWeLz59G+jzE2htrcxBgfxzh0iEZcBx3t2De5BQi3QPkgBPWwQ7PwMNd0kdaV36Mw/g4WxzRFv4ESZZKuTXT+PPab3pQVVTIyMjIyMjIyMjIyXvdkInhGxoPQuQbhNrrT3hHA+z7VurWCuRgTPLdOcvMmxi3dl4VSgcNH5ul2esRJgmkY5PLe/Qvg7avo67+JbiynwZyGgSjP0Jr/q/sE8OFhxwktPyR3iwAOoNbXCT73OWS1ijk9PfxcWFbqhR3HCMdBDUI0+x7YVau48+dd5yn6FhUVp7LvOKJEsdL2cU3JtUaPZhBCEqN1Qtm1Ofneb6GwuQFhiLm4mPo99+0C7kUqGoRfypkZZC6XCpmGgep0UKurqUh9r2Kr1uitLUSphMzniS5fRm1vp2GEjoMslTCPHiV6+WWSGzfS7nIh0s7ckyfvW/B8rfhadgnfKkgPrRruYf8H2YioZnPoiW3MzhJfvpzanQBydRU1P491+nQqFPeFw44fEbbTTljdF7oHtjVBz8evjuKt3OzvQA33fbsCi58vEpgtWgqkZWI5LjovEUCYJNSLLjNz01iFwh3P86D7YlQqO53sAy/wWg2VJNinTmEdOrS3cBUERC+8QFKrDce+cBzo9YjOncN+7LHX5Zj8ekMHAWG7TVeYLLV6bMWgTRM6HXSc0AVu9nqogoORc7AN+UDPoab/bD3xBPHly+lMHtNEbW+nM3dsG/Xcc5TnqiTFaUAAGkMoaK/1bXUknjfJ/3HhM6zFqyghkKuXmIwafM/sCRY2n8YcfQJV+o57DrHNyMjIyMjIyMjIyMj4WpKJ4BkZD0Lc7v8ap7/uCmrEdIkPP0L36CStchm7G1KUxh4/btt1bit6D0WwXi/13o5jSBJEoYAxOpoKJFELdfk/o268hO71wxqlQGxvEY7VQHkgD/YXj6J4v01IH7W+nvpy7xLBB/YVQOqH3fdKTk9bc7xX5MjkSS6vvZwex+B/KTky/hCnJk7t2083SrCNvgDuB5B0AYXQmmbX5yIJZyaKeN7IgYJQlCi6UXLbjnBhWQjXRXe7RJcv73xeLmMePYru9TB2degfxB6xVWt0s4nI57EffzwNvBQiPbY4Rq2uYs7MYC4spH7Pnpfer3sUdl9rks1NoueeS0NU+wKpLBZf0y7h2/nb341b7VR0HPeDaRVyYSGdqdAXwAGIolQMvkX8TXaHq+7ybBe2jQ5Dkt0+7lIOrVqSjY0DjysWkqRSxTBtukIShzsd66ZhgGEQmCbuHcbDnbq3zfn5dJZBEKSzLUwTHCcdc7dsM1lbI1paGl4XpExDYcvl4X6+HsTL0A92iommSS7n3n8x8auEqtdpbddYaQeYlQqNXkg31gg0tu0gki4oTa/bI3YtOmsbyMgHpV7Rc6jqdcLPf57oxRcxjx0jPncuLdL177n2fVS3S7hwiClPMl86zMWNlwGQjofjzSC7Nzk0/SS9KOSyr0mSHiIJ0I6gE8f8xsYa/3PpOIXNP0EoiR5bfLUvW0ZGRkZGRkZGRkZGxqtOJoJnZDwIZt9L2jT3CuC5MTp/+p+zqXIEscKUksSPuNGNOFKwKbbqB3bdDkTdyPeRtW2czQ1kp512tPo+sloFpTDn57EffRSRXEVdexHVbKQil2kTT5whqBxHYzPqGoSYtMMYfcuhW9ziW30rg7C9PgP7ClWrDYPXkBIcB2GajNzY4off9P380ld+lSvtG+k6hsHR2Uf4kSd/lMnCfrEt0RqF7neApwJ4umLaPd4OQ9pxQk6GwF5Ra2CjEqp+530YYgU+U7bE87up53LfCkPkcohcbtglrBsNks1NvA984K4hdPu8q7VOQ0ejKPUKn5qCXWKlbqeFEePYMcy5uTtf468hydYWwZ/8SXo/AaREz8wSFisk2w0cyyXn3r9P8WvFrXYqYvAM2jZGtUp0/freFaQErUkcl0a7h1ICQwgkpB3Vvp+Kyq67J6DVGPi7myZG329bOM5tAy0NvwelEt1eSJwodDwoGEGUJPhBSKQStGsfWBg5MPAT+v7jqYBvnzixp3sexyHZ3iZeWUkDPMfH02717W3U1tbeZ9m2EYA0zX2WMgCq3d4Jauxv616CGr9WtJvt29pKFUpf2+PWQYC/ssJKJAjDCKH7bzgBKooJDQPHsqHXBQ0JgrhfUNV36dY/qABoxlE6S2AwS2cwdoMA1Wgg83l0t4saG2Ol3UOLHD/4lr/JrzzzL7i48TJaKwJlcGr2nfy1t/8wv/WV/4hSYWraomMQkiQJudra4srs+3i09gwiWga1ARx5Da5oRkZGRkZGRkZGRkbGKycTwTMyHoT8ItgjiLyPyOfTzmC7QOu7f4kXmwnbvVb6PSEpOSazeYdL6zVOEmJevLjHm3co6oYRydoaOgiwLY9JJ8Zot1MP6loNWS4TX7+OMAysWX9HALcceosfYDVyCLdqJOZlNnOLmKbDWMFluxcOhfC8aZBXIYlhpF3dt2Ka4LrES0t7xHpjfBzzoYdASszDh1NBpddLPbINg5MvC372zX+X826bRtiiUp3k9OSZAwVwAEMIYqVBJ3CAKC/QxCpJbWcqjww/H9ioDARw1W6TLC0RdTosOTazjU2MThv7rW9FK4Wu1ZCDju8kAdNEFgp7On9vx528q42xsVR8PWi9W0TSu3Wtv5boICC+cWOPAB4df4iVSBMuraa2M7HAHakwXcqR08nrMlhxj51KHGPWammH9i0FHGwbpCRcPMwqJnGjg9QGxDEyicklMc3V1VQoVwqdJMhyGXdinLwOMU6fxpicxJicHJ737YI9vU4bO1cmFgY6iYB+sUhAzjbptnvEeZtkexsh5b5reicfe93rDbu3Bx3c8eoq4Sc/uXMvIbXgectbSJrN9FoMxrnW6YyFWg2Rz+8bo/HqKuHTT+/blv3EE5hTU6/kFn1VCf2A5aVVwp4PLmwmG3SiDvkoj1pLOGof+pp2hKt6nZ5hE3b6Fj0Chk+8BqUUyjSR/RezgcZQCp3sCOEHdet3wpiVZpeg3UErhTAMnHyOKakwfT99f8POfQcIAuh3gweFEsHKJtJyqIYVfuKxH+ZatEVL+5Qsm0fyRa73GvT8bUR/JpE2PFAxaEUSdmmIflHR7SBU96ty/TIyMjIyMjIyMjIyMl5NMhE8I+NBsIow90Hk0lMY8wE6uUL4lr/Jla5gu9e3SBGpENEMItCacdejbThU2On2E296jJVuRKh02pHaD6EMgZVexOzcHOL69R1xL45JajWMqQIgiWfejD/zTSxRJQp7mNYmxuY5Ro4dYTuI2Wx1KRmSph+RL7gcrebxAkFvfp7kxo1UGLZt9Le8n+7UDKEw6DgWxXYT69w5hG0PxXprYYHo/HmMxUWiF15IRWDPS7u3lWKspRldl/CuD9I2LCKtWe/4FG1zjxUMQM4ysAO5t4u+jxASqUNMrB3bmT7dKNnTAZ7cuIFqt5FjRZQbohYmyDdaxI0bGLOzJP3rJl0XTBPhuojbdMIexEHe1SKfJwqCAwXLgWXGgNuJVtOlHHn7tX8Nh+027WKF6JE3YWqFpRUr3ZCg2R7a3Kh6jW6ryfLkBHOtLeTa2p7ze70EK+62UxGOQ/Anf5LOVBhg28hqFT0xyao2CKMIQ8rUFqLRINreJh4dpVDwaK5vIXM5hGVhqYSZsVGcJEIeObxP9L9dccSIQiaLHrUgpu3roWVQzjYZcyzqzRZaByRhD91oIHK59Dueh8zl0L6fzmKwrDRottNJZx/0u9WT7e3Ua75cRvV6BJ/6VFqEgnQ7WpOsrSEuX07H6sgIam1tT7FLBwGGae65f6rd3ieAA6hajfDpp5Hvf//rriO82+kR9nw6Tpv/evn32GzvWNSMFcb5n/J/gZMzJ79mx6ejiGTPn0McAaYhGbx59CAc03UwohC3toUYqQ4De299R0WJ4uZWA399Y8+yXt3iZqXEXKWCDAKU66K6XUS5nBZnAZRCuC4xMi2AGAbRZg/R81isHoWwh3Dy5ONlHC36FjoW2rARhoPu1Ybvas/Kp+PNsFHNCBEEr4vCWEZGRkZGRkZGRkZGxu3IRPCMjAelcAiOfh/G1DXE4gZbxTfTrodD8RsY5I7RDGOm8i5xEgwX6V6PXqdHqPsdd4Mp7H1P7aDrE45P4gzsHQbLlUKrMXqn/0dWuzEGebabqdhh2GMU8pNYvS6jYUKUKzCRt5hOfAq1VTwjwpiawvnmb04tMep1/A9+LxfaEfWNFsK2QWvKrsVDpx+ldPUS0fXr2H1x137Tm9IOxdHR1E86SYZiH1LSPXSYS62IThygNSityVsGRyp5Kq417IC2DEnFMSm5Ns1ddgZCSByhKZiSYngNCnu7UHf7OOt2B9VuY80XofEM1DdIKqNw9h9jjp6CR/8eyWUNvg+Fwh4h73aWFgdxkHf17TrEB5YZsCNa0WljmxZKCqRW6HqNm1HEoYnqa9IRPuhE78UJPSWJhYGvJApJcWyU3lYN2ejPXOhfX9Vo4AuBP1Ym59SHXe+6233VghVfTfsNY2wM553vJF5fx2i3UwEZQCnC6VnCbpjec9tGbWyAEGlX/MoKxZlxigWXxBRYuRye38VJojt6Zh9UHMEwsDY3mbQ8RkoeidJINGEYUW+2yKMwa3VwLESxSHzlSirS1+sEFy/uWLsYBub8PMbsLGpjI+1wj2P05CTR2hpIiRwdJVleTt8ZUZR6lrsuJAm62UT5PsbEBLrT2RFCIfWpn5nZcy7JIAfgoHtUq5Gsr7/uRPA4SdCO3ieAA2y2N3jq3FPMjs5SdIpfk+MTloXBzrveb7QYHR9FxLAdJ0RJgkDjug4zZY/y5jqy3YKR6p5t7Kbrh/sEcEjFcn99E392irzWWKVSuuDYMcIvfQldq8HiIuH0HGpkhMQrYjTqiEIB4bokmy10EMN2G3niEebzHcbG38JmrwYkaH+jH5gpGCvMMG9YkK+ic4dIgjzi68RfPiMjIyMjIyMjIyPj65dMBM/IeDWwilB5BFmBqN5FiDAVvvtdfuxy5E603vfgxUkyDLAcWnT0fbEBYmHsOGJLmYrOUhLnRliNThC2X8AWO92viYa2NUbRj2HpBnaxiHH0EDqXZyuXxzYkpW6Pwvw88tu/nW6ScKEZ01CiL4ADcUy9GXE+TnjEy2O+cBZjZARzbm4oCBvsCvDsi4BBqcKlWpdOnKCUJkgUGggSRbzd5lA5R8W1hh3QJdfm1GiJ80S0/QCBRuqQgik5WlR4W+dh8ok918sYCO6k3ZXGWAkaX4LeJggDIzeCPPrtoCNo/DH2499KcqODMAxEPt9fUT9wJ/NBIqi8JQSz64cYUch6nIbfDfBsg4kopOuHlPPuAx3HbnpRTMuPCKMYS2iKQqNsh1U/RmlNlChiJXAKJar5HNvPfIWwUKDjeBQqVURtOw0TTRJkoYCDxlcQWi6mVjjdDnaplIqsDyh8fTXsN4zRUWShgFEs7viFuy6JaSIsjRwdRYdhKoBrjSyV0ElC0ulRePFsegxjY8hCAT02etf97S6O6CAgfPZZXMdFeIp4c5vE81Ck3uOF0MeJAuzaJhw9QvzSSwjPQ3W7JDdupEK1aaKTBGHbxDdupDMH+sGrolAYdo3rdhvV6aTWF2GY/ipl6mveF+MJQ6ILF7AefhjpeWlAZqGQdpaHIfHNm5gzMwjHGXYe3467Lf9aYBoGm8nGPgF8wHZvm2v1azwy+ciBy7/ayEoFb3sb27YIwwitFJ2NLSrlImPjZZQAV8XYTYVz6Tyy1UxtplppMerWGSUAUc+/7QwWHYbE7TbBH/8xem6OYGwSZUrs7/gupBCshIpISFzTJow6RJZLwXYwoxDVL+Q55RLWhctYGv707HfzOy8/xaZsI+wRSDYYz4/ywYe+m5HGF2H8nejSt6G343ueVZORkZGRkZGRkZGRkfG1IhPBM+6bQUdpEMXoOMaIQ4wkwbNMzMBPp1y/jnyDX2tsQ6C0wJZyaNkxbAUHHENS6IscA0zDGOrkwnVTEUupoQBm6v6ketvur5CG9PmlMmGjh849jLQL4DpoJGiTWFtEKsQ0DOLFw2wbFlfX6sN9VsoFTkxIxioV2q0eTdXEdSykEGhA4KCShEa3S2d8jFK7TXTuXBq6t+u+3toh3W77dOIErVPhW6et4GitaSaKqOCw0k5YLOewDIkOAkrtJmcKgrYDEQJLWBTDa6kAPvddaZFhFznLwJYivb6miXRDaGyCkDjjj5Db+n249u/T49vwMGbWUMmTRFfSLtuB0PpqjM+DOsR3E4cR692AXrjXe70XJqwTUC5G8CqJ4LVeyMWtJp1GC52kMwZKRY+RnEIbJkttn4bf96nWmqprc/zxt9FdWSHuBKjqCGYYIEol8H1y+Rzrfkyr2cWsp5Y0jucxpQW5fP6BhK+vpv2GcBzMuTmM8fFhgcL2ChiRRsc+tG9C2EEYNspP0KHCmp8aeoIPZlvcz0wBYOjnLX2fqXKFFceit7aKkSQIISjOzVAYr+KPVEjKJaxiCdM0oNdD1+tpp61SfQ9xkdqhdLsYU1PpO3VsDEyT+OxZ1MoK9tvfngaxGkYqgne7qVXK1BRyfBxjchJLSuLLlwkvXMCcmSF+/nmIY4zpadTNm6j19T0zF+50TV9v5PIePgeL84ZlYdkm7ah94PI78Wr59wvHwZ2eZnq7xkqboRDea3dxc3lmKnncZgMlNWpiHKqVVADXet+MkuF56V3vEaXQcTycuaF7PYy4SPymx1hVBpFXRBgmutkj9HKMFgrEQhIAk+NV1jZqtKOIcn8fTjHPdN5BXFoB4Hj5Yf7cQ3+OdbNFV/nkTJOZ/Bhztsawy8TdIno7tfm632clIyMjIyMjIyMjIyPjteYNI4J/7GMf4zd+4zd4+eWX8TyPb/qmb+Lnf/7nOXHixPA7Wmt+8id/kl/91V+lVqvxxBNP8Cu/8iucPn36a3jkX18MwhvbvYBmo0Xc6eLZBuOuRbRdY6ZaxL5+dfh949AhhOMg+h69u8Xx11NQ4KtJyTZxTYkhgF3e1SAYcS3GLIG5sjz8vvA8cnkPu+8JjmkiR0dRW1vg+ziTEzg3rw69jVEKc2EB6/RpWlojTAvcAlpbuE4ZP4ooug6W42DkHKyJcTpS0uz4e46z4Uec22rjGalYnzMNWmFMmOwEVNqGpFgsEvY7r28X1LabaGCloXUaShnHMPDvBuIoIghjujmHYqs57NaVQlAumhhOB1l2kIUpmHwCrWzU2tqeAEHLcZguuKy0fXzHgSj1X7erR5lOLmBd/8/pwRgGKI3oXEf4GuuhD6GaYdoZfO0aRrV6X+LeK7HuiNH7BPABvTAh3jVL4EHoRTGXttt7BHCAXgIrQYJratrhjmAGgpofccOUzI5WySXb5EdHkOMjxFGC51q0Wx1iv0ku2Bk7Qc9nFVgcKWI+gPD1Wthv7C5Q5BOFvbGCv/J5dLc+tPCRZg5r7DjW1Svpc7exkdqKHNCFezeGRQGtcW5cY2Fqip4zSRQnyEqFzbZPp9ZC5HLorSZWocpMpYB1+WL/gFNP78FMD1lJRVHdbJKsr5OsroJSyIkJkpUVVKuFnJhALS2lY922sY4fB9cl/OIX02Vra+hGA+Ohh0i2ttDdbt/+YhNzYWGYS2CeOIGsVg+8J7JaxRgEy76OsF2HqZFJDMsi2VWQMSyLUqmAYZoUrPsbQ8OA4l2ZA1bgM2VLvNC/b7seWalQ8jzcdpuugkQYWJ5LzrXTn3eeizE5uW9Gza0zSgbkJGlnebeH6naHBRsdx9i2hVP2WFYFlEwQ3RZqOyIqjdJqdIjzHuMjFULXxTdMJiZHIE7wDIlNhBf6iBvXUP1tWudeYnFyipmHThIDstHAXWljRiGxdoA0a+GVPCsZGRkZGRkZGRkZGRmvNW8YEfyTn/wkP/iDP8jb3/524jjmJ37iJ/jABz7Aiy++SL5vb/CP/tE/4p/9s3/Gv/k3/4aHHnqIn/mZn+Fbv/VbOXfuHMXi18YT9OuJKFGstH16YUSrL4CjNb0oYT3RjADLm3UWxsbRT38uDXeUErW5ia7XMebmkIUCIpcjOnmK1ZhdAjHYUjBdcL8mQYGvJnnH4sRogXNbbVwNOZGKvwXL4HDBJv/8V3Y6TQcBg67DtDSG4otwU2HESmKmTHBLLvHp0/jCIDZMTMdBhyFiY4V4bRukxDdNxsZGiUcrrLQDem0fWyUYuRyOAa5tIrp7NFCaYUwzjLEl+wRwgDBRtACn6g0DJe/W/WsNBPN+mB9qr8hrauhtbRGVvL1+2lqjmxExNqLtYj92HN3pEZ17Ng0LLFoYXoekFoJZxDHGmcuPE4yWiNwJzKCMZ2xgPf9zoCIwJMK20+OVDjJuICoRsUoFrHsR9HfzSq07hAbDkCS3XFtIPxevjgZOK4jp9II9AjikY89PFK45mG2wd4ftMCFyHRZmp7jcDmk026AhV/DQSjI/PUH34qU9awU9H9+dxHsA4WsY/Afo8QmCkRFiITGFwJbQdnLoXviqFcgs1WGq+xLLUUAYx/2gSI1tuUxzDaMdIMoTw1kW99IdvQ8pU498pcAwEFFEoVQiKRS53k3DCmWhSHztKsK28Tc2WbEd5sbG0nX64jdag2WRbG2lY7h/vYRppsWDXg9jaorowgWcb/5mwiRBr6xgzM2hwhC1sgJxjLQsknY7Ffsti6hWS4M4o2iYOQDps0AQYD/xxG3H+OvND3zA8YnjHJs5zGpjDaUVUkgs28QwTUa8ERYri/e8rcHPuMHPJdVukywvE/V6LHsuc+0axnPP3ZddT5QoumFMGCWYiSIvQhzXRBp7Z3/cbUbJALtQYNqrc7PXI5gZYZ067bhNxS7ycHGCqH6OqFsjdmcJS+Ooiomw87jdHn6tiXbMdKaP6xIIAyyDimtS6HXSd+IuqymUQraa5DfX0uJJsYj2e+kYHRz3bTrWMzIyMjIyMjIyMjIyXm+8YdTG3//939/z51/7tV9jYmKCL33pS7z73e9Ga80v/MIv8BM/8RP8mT/zZwD4t//23zI5Ocmv//qv8wM/8AMHbjcIAoJdXqfNZvOrdxJvcLr9ruYojImDcJeaCn4QIEsletdvEFSnMbtdjPl54gsXUr9Z3ydZWkIcOYKqVFleWiUZGQXtQ7AJiU9ouKwkUyyOjL7hO8LHcg6eIWmGMZHSWFJQsk1yKNSxYwd2++Vtk8Vybld3vDsU/9pNj+WlVYJuD4RAeB5GbZupgouNJmi3SQwDVSzQ6vjYtoXl2LihT2xK1lo9cqZBJedS6/gIQw69x6NE4xoCx5T7RHBI7VsMKTHGxhCmeddp70XHJG8aNKK9ArgpYKzU4ZmtL1GLthldHuX0+DzzN83Uq3gXutcj2dpKfZJ9H2NEIer/J9xcItneTj2QqwuIye/A0aPkT84gmp9BeKMI0wBr16vNG0OLEsJMIOkC+Z393KOdx4NYdziOTdE2aYXxHiHcMCRFy8Rx7Hs6hrsR6dRy5lYGRjz9flFE3wt7Z7nGskyubDbQGsq2iQIMw6AV+Nxsa6bGx+gt39zZqJSofO6BhC/hOGiliI4eZyVUhGs1EAI1PUPiOIwJE7+TvpsftECmgwC9+SLuy/+JeWMGf/QhYkzMJMTdegnj0vOIh/4ntFXBeughjMnJ+z43Va+TbG6ifT+1KIHUoiSK6JVHiMIIWfaIr11LjylJIJcjdCGqFih++xiQI9xwiJ67mt6nXg8xNoZqtdDdLrhuGo5ZryPHx0l6PaKzZzFnZpCnTiHGxtCNBsrz0m72fD7tLk+SVPje5R0ucrk973AdRZhzc8j3v39ntoPjYExMvG4FcICiU+R7Tn8vT517iu3e9vDzEW+ED5340H2FYnZ3zdzRvk9y82ZarDEMgjDCr47ivXiW8POfJ3n/n8I3rDvOZOqEMcvr2/SuXR8W+xzPZbrgUpgcf0W+98JxyHsOetrmty48xWpzHQEkWjGeK/HnTn0viXOYrV5C2E1ncGhHYEib8sQ4QiQ4EpQUw2wF0zSHIb8ijtMx0vegN48cGVq0EMfYjz+eBq3epWM9IyMjIyMjIyMjIyPj9cYbRgS/lUajAcDIyAgAV65cYXV1lQ984APD7ziOw3ve8x4+85nP3FYE/9jHPsZP/uRPfvUP+OuAZGhzobi1mxSl0ynUShEnCWYYIj2PpNFAjI0BqaigOh38XIGg1cP010j0Gpc6q9T8OlW3ylG9Tdc6Srky9xqf3atP3rHIO/sF4zt1+1mGpHyLkBL6wY4ATupTrLtdgo1NVnt5JscqrKEJuj6YJq1GE6tcoVRyMXRMp3/funHCqOch/BBsZ9jNZwpFN9JM5VIhoxXsCNJF22Qq79CNEkque0/T3j3L5Gg1z8UkYTOM0EpjCjCcy/zd//7TfGH58wBIoXjbzNv5h+/6hzyx5qYC3S50u52KgCULsf176PoSqlGHQdGqdRPE76MK30ly0cR65Mdg9Q9SWwghwHTALCGKJyFOfbe1kd+zj3v1sb2jdUenQ9jbIghWSZIQw7DJ5apYXhqqmHNtCoUcstEkNi0UIAFTJ+SKOXLuqyOCW0Kkwuktn+s4xjQtJGl3viEESf/3lpTEiQIhCBKNNIy0dR2NQSqcd6IEqmVErZ4KYUIgPQ8rf2/CaJQo2mFML1YYEhwpydsmcmQEDh9JBfBONz3WcoW2FiR+hOoGjDs2gU6931fa/tBH/n5Q9XrqZZ9fQYc+xsbnyN94GiwrHSdK9c8rwJiZwZyZua/tQyqyR+fOoX0f88gR4suXUyE8jkk2N0mOnUSOltC93s7MBymxDlVh+/MksUZc/GW072OXj2P+qb9O8GwNOTaGOTtLfOVKeoyGkT63/WBPWS7v+X308suozU3U+jpEEcbRo0Nxc7huXwAXgz/3GTwLslB4XYveB3Gocojve+z7uFa/RjtqU7AKLFYW70sAB7jZvMxLm8+z3a0x4lU5NnUI80JEFEVgGCSVAkhJMDHFxnqNuFgarntroSZKFDdrrT0COKSzKFaA+fZlcq/wWtccyf/3md9mubGO7he2HEuw3avx1JU/5P1H/hwi8BFS4uSrSMNCIVCGROZtbqzVIE4F8LxpMJGz94T8qkOH0hkNUbTXo/yhh9LjfYONj4yMjIyMjIyMjIyMDHiDiuBaa37sx36Md77znTzyyCMArK6uAjB5i8A4OTnJtX7n3UH8+I//OD/2Yz82/HOz2WR+fv6rcNRvfAZdY1JI0v5SUssJx0R4YBUN4sU8VsFLBZdBYNcuoYU4JgHMvMFGdI2f+8w/4iurXx4uftPUm/mJd/4473Qs8O7NpuLrnW6nNxTABww6mIN2B+XZzNY3CMcn6Tk2JQWWUKlYWCjgRBGuY+PHCmUaadeeBh0nlD2bklY0hOTqdouposdkzkFpjRSCIIy5UW/z6FSF5sJhnNERpGlxN+m46tmcLpo0vCI9pemxzg//3k/1BXCNREMS8MXrn+KnPvkP+Vcf+N+ZuxwPbWKAdAwBhlmH3no6lnbN2kBrRGcVc6xNvCUxj7wd4/BfhKiObl+BsIUOA/TSV0Al6LGHoTQK9SANb70PH1sdHBy+h22j3/Umrm1doYuBQiJR5I2bzE4cIV+ewzIkM6NlViyLoN1Jw06lxClUmC7dv6h7O4qOSd5zaAf+HkuUJIooF/PI/iOrtEYClmGQs2QqnicKwzLTDtDB3RUCy3GIwpCE1M8fUrHUnRi/J/G+E8Zcb3YJE4UUAkUqgpfihJKC+MRJohfO7xxrvkCiQeQL9NodKObASH9MhUrTjZJ9RaI7MRSnez0oeJDE4DjpOIoisO2dvAK3gjE6umf9e80tGARiAuhWC3MxteDQcYwwTaxqBaGNVFjsI4sWbHwOkTQw7XzqAV4uQ7KK2Pr3OO/6Xwk/+zzJ8jJqYwNRKqX/+366L8NAdTo473wnycYG/sc/jjDNYccujoPa2kJ1uxgzM6h2G1GppOedJOA4CDe15Ph68HQuOkUemXzkFa//8Ssf5yOf+AifXfrcsEP+HXPv4H979z9k8pJFFEUYvS56do7VRBAHIcYujf3WQk03SgiaLUQYUj52GJUrEAOWANFp09vexHmFvveXe6ss1dO/8wjAsy16SUwUx6jmBlu9mxhMUqqOUPMjwijClJLYNKgHCWOjZbb8CCkEliFZ6wS4ppHmSExO3pdHeUZGRkZGRkZGRkZGxhuFN6QI/kM/9EM899xzfPrTn963TOz2syQVzG/9bDeO4+Bk/7C7Lb0ophXERFrjGAKpNSapYBYrhcwbiGCNkeoceHlMu0RgQ+Ev/Vl45sVUcNptdWGaGECS8/m5j+8VwAG+svplPvaZn+dffOtHWchEcADiZG+oolZqT2EhBpzr13GuX4e3ghmBsauQY1sWo3nBVjfENgxyloHSULBNDhVszOe+TPHUacquzc3WjtguhMA0JHnHIY4TmrkSRGA3uvdkTeF5HsZzz6FGLH7fv8gXl59GokDFgAJhAjFfvPl5nm9c5MhcDNJFyUMkGyAG4lDSD3/Tt1i1DJ5r1QNVSAsDhQX04b+CeuYnEbVUJMIw0PlZyL8V9cK/Rx76S+h2fF8+trf7nnzsIa72umyHgkTvdLJ3DJtke51jtofljaZWN9UC3YL3VQuC9SyToyMFLmq1Jxwz79gsiBiVyxPGDq0wRgpIEo2J5qGySwJ9AXyHWGvyjklHgGFaqJGRvnifvyfxPkoUy60eSkPNj+nFO+O4ZJss5i0sBXJ0FMbHIUmIi2VEL0A3m2CZJEkyFMFhZzbKvbJbnFaMoWUZWTZRjUYqhPe9u6nOIyZP7bnPtwYkpsdtIIUYWhzlTIlCEIiY1dGETmuLPDZz3ZB8Jw1yxTTxkhDbzOH3BXe0RtoB1Law81Xc9c+j2y2wU+soGl9ATl1EdTpD2xLdaEC1iiwUUJaF2t7GOnmS6PnnMSYm0uXFYtrhblkQhmhAWhZydJToueewzpwhWVkBrXfsjTJPZ85vnOcjn/gIn1v63J7PP3fjs/zkH/8Uv/Tef45ztYu9ehN/8QhBrYU5uJe72F2oSbRGJAmV0w9zueXT2NixWiu7Fg8fOoJeW963jXuhGXWGtka2adCNYmKdzmgI4gStfIq5AnU/HjpSFWyTgm2y1vFxDIPpgk0SNpFBhzCy6LqTlHM7gvy9epRnZGRkZGRkZGRkZGS8UXjDieA//MM/zFNPPcUf//EfMze3Y5kx1ffWXF1dZXp6evj5+vr6vu7wjHuj1gu5VOvQ6YtXIo6ZzNkIISm6Nm1ToIIlJqZO0ggVS1stPFNwpVunlCvz0JPfhBcEqBs30vVdF5nP43XbXIqvDgVwS1q8efZxxvIThCrCNWzOtbdYqL8IcRPMAuQXwfrGDDe9VWwRUqZ+wq4Lvo+5Sxi0N9ZwF4+T5HdsP5RKRdfpgkvJNhFoBBCHEdfWahw+chzv809z8pvexcvbUPNTMdcQgrxlcrjq0Y4UmCaO0BDFrNQjRiyTgmdjuweLZ8JxsI7PoZ79JWr5BYQKQe8URAQJWjqgQ2q9bcTab0PrGrJyGnn8+xHah4kQzFEwLBC7/LuF2CkEyL7/cd/OQXfbaOcUYvHNoAOESIVFvX4OoWJkvos89vh9iX7GxASyWt1nidIbqbK9ep2EZEeUB5IkZKsDU36Pqpd+dpDVzatN1bN5ZLJCq5wnjGIsoSkKhWuaROfOcXJiila5QKQ1lhAUe23sSxdITp8h34uHz/qASGlGPYeJoosuevcl3nejBAVsdMM9AjikgayrEhY9F7W1hQ7TjAEhjNSZxHXTzmil0gDYfhe6cYeC5kHs9nzXPY2Y/i7Uyn9F5mMolRGGhNIszH43xsjsznnfEpAIULQMLtW6tMIYUwrCRFF1LcpOjf/y3P+Prc0b5FWMsbnBaHGS7178ADNrdYyREWytmS643IyKJJ6XzixIfGy7wLRoYm58Lh0/u88vqGE/8ghx//0JpKK9ZWHNz6OTBGNigujll9MOdqXQrRZybAwxOora3gatURsbmCdOYD/+eNrxPTqKsG2MSmXYAf6NLIADPL/xPE8vP50WzLXeZSkk+NyNz3Kxd4VvEeOIpSWSxSMIz0v91g9gUKgxhCA/UuVyq0fD35s90PAjLjZ9Hp2Y5pWYIZWcIobtslAYJ+9YNIMOjukRRCHLnS20dhgtONhBnHaAqwShYanZxTEljcBnumAhG88Ni4uJ2AA1BYVDr+CIMjIyMjIyMjIyMjIyXv+8YURwrTU//MM/zG/+5m/yiU98gsOHD+9ZfvjwYaampvjDP/xD3vzmNwMQhiGf/OQn+fmf//mvxSG/oelF8R4BHKVQvR4rnQ4T5SJTBRstYzCOcd3X+EEPW0T0/DS4sdlrcr7pcOatb0fU6xCGGHNzCNtGhgFN3UAIiSlMvu3Ed/PJa5/k4oX/CjAM+Sqc/jM8GZyFJAB7BOY++A35D/Rc3sPJeXstUZIEOTKC5fewN1aHHxthyOyhOdaElYaYJopWGOMaEtsQvLSyhSEFeUMS+T5aw2Xg5KHDlG9c5bHxSVqVCpHWmIYkjlUqgAOuVqxvNekFqUjecCwKScjs3BSF0sFT+iVbiLJkxKrsJDSyM2ND6AStEqpOARovgDeHaD6P+MqPw+JfwGhvkEQGYuYt6Cuf688sUIiZE8h8AUwT5XqY5bEdO4ewAdtXuDXiU1gGYCB0cN+inywUsJ94Yl84ZiAtEmIQ+0XhJAnxdf/z3ho0XoSwDnYFyqe+anY/nmXiWftf7dbRo3DuHCO7/IkHXcCO53AUsfeZJ/ULPlzJUfXuX6pLdFpsuVUAH9BLNAkCp5DH3wpACEwpMGJF0u3i5d3UTzsIMaancQp5ctb+7ts7sdvzXXc6UJpFVT6IMGqgeujCKLizmGPH94yJ3QGJkF6Hy/UujSBCA4ZOx68ft/nd879JnLSI45i21pSKJbba6/zOtT/gL01+gEIQIPJ58rbJobEybeMowfVrOCUP7+YzmGufQXgOJAIdx+A6aaCsOwLKwTh2DPOhh4YWPjoMia9fx5iaQtfr0Gql4rnWqei9toYol5GDcM8gSDvBz59PZ+UkCcbUFOb0dNbp22cYqKlTP3wB6ftKCNBQ79Uwz94EpVLLkNHJYWHmVgaFmpxlULNMGrsyFgZIKWj1AtqjBV5Jafdo9RBPzJ/mqZeeYrWzQtB/xubKs3zooe9mxJ2gEyQsNX2KtkErjCk6JkLIvuOUJtEaaeQgTi16jKQLS7/P9Ylv5ezGy2z724y4I5yuHGcuyqU/u8vlb/iCSUZGRkZGRkZGRkbGG5c3jAj+gz/4g/z6r/86v/3bv02xWBx6gJfLZTzPQwjBj/7oj/LRj36U48ePc/z4cT760Y+Sy+X4C3/hL3yNj/6NRyu4pSs0Tob2Cmv1FiNjRSa2/5jVsXezsVXb28HYpxkEtCfGGX/f+1KvWhh6i45eXcVE8Za5x1MBfPsiQ/EB2Opu8tHP/DN+5d0/xkLzixBuw9JTcPT7vuE6wm3XYXZuahiOqaMIWalgBT7T0+M4poKRKsLzMA4dwhyt4vbDCGt+SME2MITgpbVGahecaDooPMsiDiPafkhnbAQv7JJHkevUEZZF3S6x1hfAHaH3COCQhiYG3R7LS6scPjJ/cEd43EYYJmdK47xt9h18aelP+gsGirjibXPv4IwZIZwJaF+ApAdGDpIewnUxrBgdLSGPPolYfgYK87D+cWjUIH8MySXkwilENAXOIbBL+49jzwV9ZePHnJpCvv/9JOvr6CAV0qXlHCiAD5DChO1n4dwvQvvyzoLCETjxt2HksVd0LK+E3cF3B/n8Vj2b06akFcTEWmMKQdE5WFC/FwwhuJN7iRQCbRjMTI2xnCSEiUKvrVIYGSUp5hmxDTpLy2jANg0miwv3bR8j+93OutdLO3ybTWRhDE0a1mvMzGKMju4T9m61XVFa0Qh2dZX3qzntYJVr9TWmc6m3eOIHxIaBGQRsiQ2WiorThUOpAF8oYBmSUhISdloYroUhW5Bzh9kJwnURhokuHiVxjhI98zzG6CjR0hL4PsLzwLLSZ71cRm1tpcfXaCCq1dQSBdCNBrrVwlhYQEURycYGankZOTmJeeQIwrJItreHgZr3Imzeqz/614IHPbYRbyQdHzohDUzQ/YKdAGFQ9arYb3oI4Xk4C3O4sdhTJBmQNw2U1mz3QgwhkFJimCbJIB+DVAC3pUQJSf/1Sito7YR62gUWy3cO9XQIuNm4TCPYTo+X9HgbvRpXa5d4YuJdyEEIwOAXDTlL0glDQGNoNex4ty2PXLTBZ805Pvp7P8TZzZdS260o4szkm/jxJ/8eb71iI2wb68SJN7x/fEZGRkZGRkZGRkbGNyZvGBH8X/yLfwHAe9/73j2f/9qv/Rp/5a/8FQD+/t//+/R6Pf7W3/pb1Go1nnjiCf7gD/6AYvEbSzR9NYi0Tqfexwm6/3thGGiVgE59qDFLRJjDf2QPkNJgcmQGyzDxhcH66ARF06Dk7QgtZyYf49GZJxjLjXFp+8KeTcwUZ9FJwNnVL3G202JhsCDchs41qLzy8LM3KoVSgcNH5ul2esRJgmkYeK6N2W6hPWefoGkZEikEfjKQOfSeQkWcaIRjQpgKezGA5+3sUAjM3YWNONkjgAMMJKag26Pb6R0sgptph/jR9hf53979YX7ykz/Ll5Y/M1z81tkn+Mg3/z84+vyPQm467ZQGsMqpF7i0EYaZjo+ptxHOvo9e7QLR+BksBG5wEzteRtAZFklE9RiUZqB5c//xlGbS5a8QWSjsCbJzOy08t0zPb+z7rueWcUwTnt8RwHWSoKMQumch/Cfwpo8hK69dEO/dfH5v10X+SshZBo4hdk8AGGIKgRQC17HJ51wOzYzjmzbh1haGTnCiFn7TJ28JDMC5dgHLb5KcOIExNnbPxyAcB+vEiZ1wTK3Rnc6wA/52Yt7QdiWO0b5PVCikJ7H7ZDT0og6GSAtCpmmi8xJMAxmFYJr0Sh660UJH0VCojYSJGJ/CXlnGm/mrEP0qon5uuFE9/TA89LeJn72JMT5Osr4OUTT0BkdrRKlEsr2NLJWQhw6RrK5inTxJfP06enMz3VShAMUi9vw80XPPIQoFzEOHSJaX0e02cmws7Rq/y7WAHX90P1ZESqE1WIaPH63SiToU7SJHKotUc+V7vjevFgd5t9sytX+y+wGVdxPHHxl7mCdmH+dzNwbvpsGN1rxj7nFO5Q/DehPzyBGMUpHpA/ZZsAw6UUzHD1L7JaVwyiWKjoVvyFRUJt2sEoCUWFJwtX6Vp849tdONTirKf/DEBzlUObT/hNtXuXbj47D5Kd4xOk9dG7TjGFNY5JRD/fp1tkovMbvwJJN5G6U1lmuSJApTgiUFnmVjhNvEOsa2PKbdmBVV4KN//E85u/ESWtppgKrWnF19lo999h/zS9/000zf7BCdO4f92GNZR3hGRkZGRkZGRkZGxhuON4wIru8hEE0IwUc+8hE+8pGPfPUP6OscSyWpaKR0/9r3hXDTQicxJhAnU1hCkHbLpaKRlAbz4/MstwNaYUjZMWkGMSOuxcOjmomCC8BCZYEPv/N/4TfO/e6e/c4UZ3li9nG+cu2PQCtqfgOsXV/oT93+RsR2nf1Ccz532+/v7mY1BSBF+n9fuBkuFWBZFsn5F/d4KFuTk1iVCSLLTq0tLAEi9fU2DAdTxEMbhlvDO3eObzG1sgm3eTfP8avv+wnOtrapBU2qboUzrs3R5340bVNMdtm9aA1GHqIa2l+HOKIzqVnpgZU/gzIKxBpsQ1ARPSo3/92wSCIqjyAf+cuo5//dXiG8NIN85C8jcqN3v9j3SN7NMzW2yOrmtT1CuOeWmRpbJB8u7QjgYYhqNXeCYltfRI9/HuVbmP1Mg68nLEMylnPY6IZs+9FwvJlCULBNKm4a1GdUKhhXr5JTCvvyZXSng+p0cILUIgXbTkMA83mi555DfvM335cAd7cO+IPIWQZWFOKvb6CjCK+QTwuA/e5ercGU4Fo5YpX2hTeDKC1OWQLt+wjbJm+44Dj0LIe1WpsQge6GJG0fuzLOZBDgTfww5uz6MP9A5U+imx6yqhG2TbK5iXH4cGrtovXQmz46exZRKGCdOkWkFPG1a8jJSeTCAtg25sICSbtNfO4cwrIwjh1DhyGyWISRkdTT2vfRvd4dhc2BP3onSmiFMUpr4mSN3z3/O9SDbapOar00mR/lz576Hk6MHb3PkfLK2ePd3i9YaKUIDYMtCX6iiXf91WEgjt8a6nvcUHzkPf+Aj3zyp/ncjc/2PxW8Y/5Jfuo9/5BjQYekUCC+fBlhmuQrFRbLObp+SNTzMSSsdwJUnKBqteF7VJkmQgtMAaHcK76XbBND+PsEcEjtWZ469xTf99j37e0Ij1pEW8+ypfP0nHkMrZjsrjBmFWlFEXEEWit6UQeWb3D81EOc26zT7Oc8oDXjhTxHSjbm6qcxS/PkehewGlf5hDzG2dVnwMz1g4h3LtzZ1Wd5IbjBNCPoXg9Vr2dWOhkZGRkZGRkZGRkZbzjeMCJ4xmuHDgJyrSY5FO1Od/ApIMCTFHIuhU4LtRFSmlCU8mWavSYAk9XpvgAeY0lJ0rdQ2fYjXtpq4xpi2BH+ZCFP68j7uLB9niAJcQwbrWK+cu2PCJMApEnVLUOy43k96CzOuDu7QwQlgrxt0tE69R1WO9YzhbxHvrG9RwAHkOvrTDguG9YoggD86xB1MSyHoggxussw+jZU29wX3jnEKtKa+k6urXyKdm+TQvgi7xcditTAOQlX/zMQQ1ADZ2RnvWLara1X/hDa60QT38LK1ibO1GEuNQPqfnP41RHX5tTc9zN67hcQQQOCAJ1U4cRfRwTLCNUFp4yoHntVBXBIhd7RYhUtTOKoR6JiDGliWh6jhSLWamr/opNkrwA+IKgRPv008v3v39Nh/tVEB8GOIHyAz+/tlt/NcuKg9YqOw8NjRa41e3TDBCHScVmwDWaLXrq+0e/Wvno1Fd9ME6IIY34eWSr1CyIGolJBra+/IgHubh3wt2LGERO9JisCQkAGPmXXpBUk2AISNJHS5O1pFssTdP3UliTRmm6UUJmaZqSnmVnpEtkmy6ubRIg0lNJ1EZZFGEWsmS6zGzHRtWYqsFdtzFMu8YXzJEtLmIuLGMVi2uHdF9Z1ECBLJcyjR0mWlgj+6I+wzpxBjqTPj8jnSZpN4qUljNFRlOchR0ZQ6+skV6+mtiu5HLJSwTxyBN1q3VHY7EYJfpxmCyRaYwqf3zr/O6x3N1EKujINQL1YW+PfPfdf+NuP/3UmC9X7uj+vlIF3u/b9NGA1jtGOi1EqcqPWxrYsnDBAhAHCMAnyOVaAhZyF0dgZq6K7wrvO/x6/+t6f4oXuBjW/TtWtcNoZ4fCXfx1Ofg+6k/4sGxQMjF4P99w5nF6Pzsw8oR+jWi2EaaLzBWLTIuz0mByt0IoUG91gGOZbsk1OjhZYaV3YJ4AP2O5tc61+jUcmd2Y+dXpNVoICWrdoBwEAhj1KXodUdJ2oOoqKCkxNznG4Oosje3jlgFa5QqjAklDyl8h9+n8Fw0DO/SmESve/7TdSaydhps/hIHy4P/ugFrYQYw+ht/f/rMjIyMjIyMjIyMjIyHgjkIngGftI6nXE5z/HkTe9hcs5l3bXB9KO37zQHC15mC9dSkPCrm1w4qGHOLfl0uz1sAyTVhBgGZK8JWkGaYewAGp+RDNO0H6UCmhmjpOWIonavLT6TLpzYYBKhcIzU2/jTL4IA73THkk7i/vcr4/qNxo5y8CWqXdtqDWzBZdloCNE+uBLKFTLHCs5mF+5uH8DWuPcuM7cIyZ+cJluPk8cS8xgA9ldgThCb30BZ+p95PLe3lX7gug1f43fufx/sh0sIbrXIW4zkhvng8e/k0MrvwuT74VwM+3wj9ppaGRuDub/DPrqr0N7HbSmN/ZerJETXGr41P1wx4dba7Z7AefrgkdnvhdvbQm1fh61vT3sZBReGevECUSu8lW5znnbxC6X6UaF/QKxndpD6CjcL4ADGEVUrUayvv6aiOCqXt+xBumz2w5D1VdQy2fTcFEjRxxX4JpNdOJhVkNF0O6g+9ZITj7HdCm16Gj6IWEUYxkuxTDGOndu6B9crFQ4MWLcUUCXlQrWsWOpULu6ivXww8RLSyQ3bqRfcByMVgvz0KHXRIBT9TrOjesslCv0SgWSTpuHJye4WOvQ6ARIJ7WZcGSeP//I9/IfvvjrtM0ejmmQ9LqUSuP86eJJ3Is38N/+DsKen4a4bm1hTE4iR0dRW1sEnQ7+yBje6kra1X3yJNHLL6OjCN3rIUolorNn0c1mWhSYnEyDMG0b1ekgp6dRGxtEX/4yANYjj5C0Wrjvfz/SMNBRhDE7S/Tii6hqlWBqhsQwMdE421vEV65gLiygO53bXtdEayKlhjNLav5N1jubKJ16oycaBrdyubXJi5uXGfHe/Jr4hSc67QAfCOBJoUgrVlSEoBFEFMKIbqdDUYLcWka4LnpqmnY9Jnf9CpgmrflRriuT5uzbKIU13iMiSjc+h26nWRciZyMdgVneACNHEqd+6vFLL6HabTAM4sHsGt8nGRunrQVxqwNa0+p0Obwwxcx4kUiBZUBJaPIGXIjuPLOpvWt5lChWWj3CqMeYVWSsMMlme41EJ3SkQ8nq4SZNRqqnODF7EreQFvwKUR3vy/94Z1aMAEZOowtHSJa+jDE5jjBMRtxKmsUgJJCK4Nr36SdpUhEO0dmz2I8+uidwNiMjIyMjIyMjIyMj441CJoJn7EO32+hmE/ezn+bkiZN0xiaINFgovLUVckaI7IeryUqFUeBRW9DKj+IbBmXXJE40TT9CIxBC0HdDJYwVy4GPjWbKmGS2/t/48Dt+lJ/93C/w/OozoBMwXM5MPMKH3/l3WeicTVe0R2DuQ8NQzKv1q/z2C7/JVm05/Ue6YTBameFDp7/3YB/Vb0AsQzJdcId2AYHSzORdRBEcIxXIi46JtbZKPPCrPQC79QLOpX+JOfmtrAYOQXcL4i7YZdx8jql8C3PrK8RyDGEUQEriS5doy5jfvvbbbEWbyOACWDEi3GC7dYmneit83yN/luLaH8DUB0D2O5GLxyDpwNaXoLuaejjnF4jyh1FWiXqtXxHp27AMbHgafkRzfB7jhavo5jnMxcU0jBDuavfwal3r8kGiX/lUGoLZPbtvka6eJO6UgR6639X51UQHwT4BHPrX5/x5rGMV1LP/Gr19vR/UKJClGeIjf5Gla8tE0tizbtC0qFnzXG/51Fvdoc1O2bN46NQZii+eHV53y3EOvj67kIUC9lveQvjSS0TPPz8MecRxkOUyamODxDAwDx9+dS/MAei+H7Ks18jXa+mHa8ucmV+gPVYgtGyUUhDH1LYN/tzpv0ytu0S3uUnOK3FUFxn59NOIQoFECFS3iywUUnHb9xGFAsbkJKLZQhsK6/TpdL++j261IJdLO+KVQgdBWhS4cYNkYwP6wquoVrGfeAI1Pj4UK0W5jOG6SMMYdnUna2uEM3Opp3etDqRjzSlUmSpXht7/txM2DSHScw0jtNZ0glZ6rH2DGyH2er43/TbdKLnr/X41MPpCrY4itOvRihVJotBCosMQYUriKKJt25QKBXS3S3z9GvHiLJgm1xZy/Idn/xVrrRWIW6ACpkaO8j+e/l4OPfsfkF4CMkBtnoWNCwBIZwSKf5Z4aWkoEMvJmdRHu1CgrSAO/OExaqWJtmr4QcBsYxM756E7HULPIz9957+CFaydwlg3Sgh133Ys9vmuo9/Of730+6kQrmJiZ4SJ6iIfevTPUyrszHhRfoGk9F0Yow1iJ0/PnSBSHqbQ5ApvRlpdRGmcM8rjzNSbeW7tueG4G5zfmdk3c8qvkCydJRQC79u//dW5gRkZGRkZGRkZGRkZGa8hmQiesZ9Bx2ocw5e+SK7VwpiYSK0JlEK7DrpYxNwlsljnXmYE2Hzz22n6ezsKd8urlpT0Oh16W1ssScFi5U/xtmu/wS+/9Qd4XsXUgxZVr8qZiUdYsATEY6kFSn5xKIC3gha//dx/ZuP6uT3dtRu1Gr+dxPzVJ/5G1hHeJ2+bqXftHbpwk9t19QmBMaKg/RVY/yT59Y+zMPk+eiPvJvYOYfaW8WpPYaqLqBtX0PkJmPsQ4bkthG1zYzRhq72O9EIIWunY0RECwXbzGteaN3kkN5cGnQZb6MqjKOM4Oo6Q5iiIHCQC3athNi8Rl96+K69OpwWT9EBBGETaRK3Wh8LNbh7Ex3a3zQe2DWGYCuymiSgWMQ6wE0nqdXS7DUmCsfj9EP4ytL84VAt19SQsfD/xV9IQw9ciZE7V6/sE8CFmhD7/H1Ar5/deP/8y/uxNgt4E0t37TOVHRri43SZI9FAAB2j0Is4Djx46gnXpwn1dd2NsDHN+nuTKFbRlpXYMcTwMs9RBALfzn78NSb1OsrYGvg+ehzExgXGHEEg4WBDWQYD89KcoxTHBu9/LjatpAc7oi9Xjo5MktRApRsgnASKfRxgGhlLp2I/j1M5EqdSKyDQRtoURdocFGwbjIAyR5TK608E8dox4ZQVZLCLHxyEIwDBQnQ7JlSsYk5OojQ0gLSRoIfZ0dUdCsKokoWml73BSe56g22XVdVgs5jCS5LbBmG7o4wQ+zW46dvLWIKAzLf7ESmHvep/k7XzaPd63z4njGCMIcJMQC/bZ7zwIOcvAkoIEiC2bJEjPW5LmIOgw9cKOo5jYzWF202tt6ITW/Cj/4dl/xWb9Bgszp4lNKw06tTz+aPMC/8Mj3035yn+E6hPQvJZeN6XQm1cR3u8ix9+KWkuLcu7WBvbUPG3DI44S0Go4W8WzTZJGg1Aa+F4eu/8TUfd6zNTzVK0ytWh/sO6IN8JiZWfmU6J1GhhseJD0KCQxf/bYn2YzatGJekwURzk59RjF/N5nTUcRuhXTmTrOip8QNiMgLWTYdpnZ6WMUK6MsAB9+14f52U/+NGdvPrtHAP/w43+Xsf/+YjqO63XU9vZdn6GMjIyMjIyMjIyMjIzXG5kInrEPUSyCaQ67Eq1jx9IuxGvXwDBIWq10mvi3fRvm1NQewaUYh4y4NtuDIC4BAz/xEdfCkmI4dT00DNprId7SAlOdBlNGhCxPIqtvxhy/fbja1a1L+wRwAOKYjevnuHrsEmdmHnu1L8sbltt2KfeRlUoqMA4EUiEQuRwiJxGbv4Go5kCHoDXWyn/Daj6fhliqCMImupJ61orOOqz+HlhvJdls0i72hUTVHx86ToUVmfqHt2Mfui9C8Ti6tUaStIi7q0Qvv4z3Vg+5/Ol0bAmBZxWxF/78nrC2QQuqlBKtYixDYB45ApYFhQL0esNZAiuTLi9sP01ttcGIN8KZiTMsVBbueu2G9iG+jygWSZaXSZaXUwHTNFMLixMnMOfn+3YideIbN9J12n0rA9fFfvSHMGfWUZ11kEXiTjkVwOMYWa1iTEzc3019BdzJRkTKbXR9aa8A7pa4fvr/zlndYVs+S9UY4djYccy6QRwnKMel0WzimLv84EV6P1qxplEt483MkxeC2zjGH4gwTeTYGGptLRUxhUgFZdvGGBs7sMhxO6IbNwg+9SnU+vrOuU5M4LzrXVjz87e/Hrc+E6Rd2sQxolDAC3zcaiXtrI7jtDPbNBH5PE6piLO0gTDTH69ubQunUCUc2PPsCkh0Cnm8jfqec09/I4bCP2GIOTtLfPMmNBrIXA6SBDkyghgZgb6ALnbZ6ewW8XvCwN+upddyEHhomshSiaDZxC9OU5mdOVCY1kEAL7/E3OQMPdem7YdUzAkm82NsdDfxLEkQa1T/lCbzY0wW5lBac63RJej20vd9FGHbFtOOgXvxInJuDno94nwBP1dA2Tamae4r0N0Ny5DMFFyW6ha751IIpRhxLFpbraEPt+rPHnFyLl67xYuFOpv1Gywefpz/+MJ/4uXNF0l/YAlOjj/M8T/1Ud6TeyuifQPCfmd3HINhgr+FmfcJB/tbW2VqZpbrlgdhd3gcnmMybko6W1306BhBaYSGTjDKI3jdNvl6g+8+8q387vL/tccbfMQb4UMnPrSnmGsIAYYDpRPQPAdJDxl2GI8V47LCXOUMBbOy7xoJy0KVK6yEisA2SXI2SiukkOhYsRoq3ERhGZIn55/kl9//T3l+62Vq7Q0qdolTYZWxT5xLx41tp2PzNZi5kpGRkZGRkZGRkZGR8WqTieAZ+zBGRzEXFojOn8eYmCC+cQNdr6dCT787UbdahM8+i/Et37JHcHFefpGTj76Zl7fYEcL7AvjJ0QLbm7VUjDNN1Po6sWOQ3Fgn6Vv/ygkPcflpvO8cvW2nWau1dbC/MkAc024fHDSWcTDC6QcT7hJ748uXsaZi9NY1dG4eCkcQ7cupEGIVoHMV3El04RhEu7qLO6uYBZ9wLSZPX5STg/Fh7BGxC4YNgJY2ydYm5HNEL7+MMTpKtKWxrDlovgBaY9z4JJUzdUY8h+1ef1xpkEJgCShYklJcI/j0p9M9LSxgv+lNqHqdL435fOwzP8vZrRcQ/QDPMxNn+PC7PsyT80/e9rrstg8R+TzJjRvEy8sQhqmwVihAu51+R2ss0yS6fp34/PkdARzA9wmfuUgyMwNGmeTKFSC9ZrJvafFa+IHf0cc33BELAXBLfPbR/4Gf+pOf4ws3n0EjAcHbZ9/GP3jX/5Op5iTxQNQFkBItBYaURAqUUnTjhO1mFy9fYiaMydv39uNGWBYyl0PMz+94EkuZBkqa5h3PY3fXvlaK6KWXUJube76j1tcJPvUp5Hd+523fMXueiYEQrhSiUEjDJDfWmZ6cZkWOEHS6Q2sed6TKTM7G6HSGFiFibZWpcoU1yyUyLYTrAmBLwXTBwzWniZrN4X5EoYBOEmSplD6P1SrRs89iTk8T37yZhlv2r72cnsZ++9tRtRrm4cPoVgvhecOubh0ERLV6Gn65+50pJdo0McbHUZUKsnTw+FP1Orrbxb12meOHDrPt5omU4s+f/h5+89xTLLc2ydkmvThhMj/G9578EI6RpxMmhGE0FMABwjBiJUmYbXfgE58gefNbWdm8SZgo5NgYslTCyXlMF9x7HisA+bzHgqVpFl0ajokEiAPcoEtk2/j9mQNSaxzXYSLoIFotWlaL2elTqQC+8WJ/axrQvLz+Av/6mX/NsdP/N2YvXEAMMggsE1ks9gNcd81IUArzK19m9r3vx7MkSRRjAKrToVPvoGbnaPUC8mFELYzQYYhtO0xPTrOAx/c99n07+RZWgcXK/nyLYcaDXYHqY+jeFrrbBMvAMgpYSxuE/o2hv//wVlcq+N2AXpLQ7m6RtDrDZYZbRKvcHvuaeTnCdHyY4HPXgC7QD6YehB8L8ZrMXMnIyMjIyMjIyMjIyHi1yUTwjH0Ix8F+9FFUpwNSpj60+Xza/eo4aeggoBsNVL2+t2syjqlcOs9ji4doVXNESmNKiSUF236UestCOq2628Wwcjs71hqShOTmTZKVFaTnHfiP7YKZ2/fZbvKGd8flGfuRlQr2Y4+R1OtEzz+fCo5eJ+1MbSzD5Lei+cO+EJ6GppFfhJF3QGclFYSjEDSIvIkcLzOXOIwWJtiKNhFWHlQXIW1AMVKaZ5Em5GbQQYi2R1BxCeHWia9fR7daGO/7PqT4N7D1AgRdys/8CKfe/n9wXpo0/ACQaJ1QsEweLpt4N/87vWo1Ffi6XcIvf5mNd76Jj33ipzm79pW0i7HP2fWzfPRTH+VXvvNXbtsRfqt9iGq3UwEcUhEsjsG2U8E7CEjW1yEI9grgA+IY3e1iP/YY5vw8OggQjpPaDL0GAjgc3N08xC6lIrhXIHroT3N9/GF+8r/9Hb64+hWEEOh+MO4Xlr7Az/zxT/PP3/tPcUmLEBqIAQMIlEbpdOaHKSXCsogMk5W2z2I5d09dvoPjpNfb090M7BF4b+XW0M9kc5NkYwPz6FHiS5f2dJCr9XWStbU7WjoMnomhqB6GqajbaqUdxas30+DMsQoJYI2M4GysIpeuIw4fJr58OR0LSmFdvsjCo48Szc+S2A6GEFhaEbba9JIE4+hDeEJh9HoY09Mk166hWi2S7W2s2VlkuUx88ya6VkvFSCHSQuLmJsmNG5gnTqC3thCum4bA9t+bydYWotlM7+3ARx/S92+7jZiawrJvL2gOZw8ohXvlMlPlCr1cgapw+IEzf5Fr3RVqQYecnWeyMIdnFqi6NmvdYOjVvXPRFX6jgZ8rYBcKrCpJ0Es7rNXmJmhNaJqstLnnsQLpzyt3ehpWVqhHgl4YIXI51NY2o4UcspTObKpEPdz1OqyuoMfHKU4WiE1zlwC+l2uNazwf+czl8gjLQjj2zrECcmQaUajvPO9xjLexhp6YI/ZrSNtGTk9hCYNYa8q5HMrvDnMMwjBiBTg85lF0ijwy+cgdz3NPxkNsoBoaHbnYtsWUKZD1OloIVlYvcW6rTiNsUnErnBo/haiWaN+4TBLsCOAIQaICWs11wnIR3LS4JCsVqNXS2Ri3FJCQEmN8/DWZuZKRkZGRkZGRkZGRkfFqk4ngGQciKxXMhx5CLS+nnW99n1m1vb0jpBgGOop2uibPnwfTJL56FV0ZQRQrCCFJlCKJb7ECSBJsz8Ve63eZaZ12mjsOslhE93qE585hLSzsE70WCrOpuNpe51ZGCxMsFGa/WpfldYFqt0nW11Mh1XUxxsdfFSFVOE5qBmAY4LpoHUMQoAwb0fkiovIWmH4/eJPQvIjGQV36BNo8guptIytVdLuNsnoka22KY6f57iPfwe9c+X22ZQK9y2BaVG2PD849Qb57FTX1LeheAya+A70dIHM5ksuXQSl6/9dFnHf+TcwjbYib6GKJ0fP/hEenv4fm6BEiLbGkotQ6h/fffhRO/B1UrZYKfpaFlJIXOpdSAdyyEH3xacDZ9bOcXTt7WxF8t4Cn43i/DceurnYdx+gg2Ntteyv99a0jR+7rvrxaHNjdTCosi8kFdP1pOt/0P3OxEXJ9+wKfX3q6/wWRWs70O2q/sPwFLnWv8DZzihHPZqsX9A2PZL/Ipam4FnEUoQpFRKtNkM/Rzd09HPNux7lb4N3NgaGfcYxuNIivX0dOTaFu3ty70j1YOgjHGfqZ6yAg3NjYue+7gjOF52EvzqEHXd2tFubijp+zMTmJMTlJrn/s7WabG0urBN2d43VyHrNzUxRKhbRDu1+EUZ0OcnKS5OZNcN1URJUyHc+WhfZ9pOchT55MCwi7/elbLdytDZxCNd3X7jEsJbZMMwJue/67u+5vCQot3RRMPvIIfr60J2+gFabPgL7ledFxDHFM7JgwPkno71x/HYaQJGjfJzTN+w7WlJUKnucx1+lxs+0TKY1YWMRfuYkdbDFlaMyXX0TYNvbjjxO98AKLegohDj73slclCHvU/Ca6m/r/y/JMutA006JdN4e5WB6em/A8rGPHmLVdtlybpUabxnZaSFRaM+JamLk8iTSRYWovFWnw3Tz32lc9yHjo1JuEnoXhWXh+h14Uc7UasWb6/JcX/y1LrSW6OkSjOVI9wt94899Aa5VaRe1GaWINkYa1tk+iwTMluZlZ7LdB+MUv7gjhUmLMzmI/+eRrVrjLyMjIyMjIyMjIyMh4NclE8IzbYoyOkly/ngqLtyDyeUShMBRJZKWCdeoU4TPP0HnP+3i53qO2noaGWYZB3jY5XM3Rdl2ElXqDj0uFuJ4Gjg26dFW9jm42UY0GamsLIQTWLR3h5cokHzzx3Tx17nf2COGjhQk+eOKDlCv3H374RiFeXSV8+uk992RgqWFOTT3w9gcdr0m5QnfkMEkuhxW3yQWXMJeegmaIdo9CsASJAbnDJKsNiGNUHCNmT6DUCITLJNevM3/4MH954YPcsDp0c4JC2GUeQVEHJM7j6JaA0hPoQILV3RHppMSYniZ66SbB1hb0elhPnsJW58ld+mvkbTv9rhCoZhOqJwjrhaFnLUqhOx1qvgDb3ieAD6gF+8f2gN0CoDDNvXYhMOzoHCwXjrPj6XwQ/c7oryW3djcLyxoWmXqn/ioX63W6vSY11b8uIvVIVkphSIlWGgTU/TqV9XM4b307iVLUwxhk+t2KY3Oo5HJ9aYU8oNfXEK5LaBwm3vQRtn3XcMTbHedgnVsLQcKy9ne49++FbjSQ8/PscxK/T0uHexHnhePc8bgBQj9g+RYBHCDo9lheWuXwkXlsd0d8T9bWUNvb6TZuEbFFLjfc74Hho6Y5tGNZzXnDzmsAx3OZzll37Li+0+wB4brYhQKOs3dMG/3nQtz6vPSLB6ZOiKWx5/mBfuhkPzQ02e39f48Ix6HgOBwuq50g4PEydrOB0WzAk0+mhdz1dcz5eUodzaNTj1L2Rmjs8uMue1UOVQ6ztHKOqjeOdkahvZYWG/IF5OwJlPUkej1KsxIAkcvBkaO0TIckSWgkGmmYFDyBNAz8KGG7G9CTULEkOp9HBgFydJTk1ut0FyxDUui1iW/eAClZHjX5rS//e4xiid+6+Udc3rpIMV/l6MQJWlGHy7XL/PLnf5EfecuP0Wrsvo8C5Vax3BK9OGapkRYlDCEY9SzmFw7hVquoeh3CEJHLYUxOZgJ4RkZGRkZGRkZGRsYblkwEz7gtRqWCefw48fXrqJWV4ecin8dYXMSoVvd0aetOh/DEw7xc96n5O120UZLQDjQ3mj1OjhaQ9jTO1gYkEZw4ger1hvYnamsLMTaGThJ0329ZTkxg7hJ4hONweP4Mf1m73AjWacddCmaOeWeC6vzxr1u/UtVu7xPAAVStRvj008j3v//BBQopCecXWV7fIjh7AWOigOitYjtzzBz7W+S3/hAVGIiH/j7Juf8KjdUdf3azClPfhXpxHWNhAZRCVqtUCgWq+TzRV75CdGUN4hh/1y5F/hJyYgJZrUI3DZWT4+OoTgfdaIDvgxBEX76M/aHvR5/7JfCvpYKzEFA5gZr7a0SfvQ5RlHZ9GwYkCVW3elsBHKDqVG9/KW4RAGWhgGo0djzB+yKrKBSgb22i2u3U0/lWSxTT3Pe83I4o2SXi9btr7ycs8G7cTjBtWwU6/hZYo1Rla5dIqdP/hED0f191ysjtLfTmJovFEgulHEoIEq2Jo5iV1S2SXoDyUuFWNRpw4waJa6E3N4fCsaxU9vh47xbIb3ecBxWCzEOHUO32nvEvCgVEPo/udPZ18cuJiYNF47twN3H+Ttd3QLfT2yeADwi6PbqdHra7sz1ZqSCKxXScxfHQfxzTRNj2sAhwEKJQQORyWOdfZm5yCr+aiq6GUri9Dt7tH43hudxvV/7Qu3pQnBjMqBAC23OwN1ZgbmE4s2C4TSmHwrlxh2f2buwNArahmIfZGeKlJeKLF4H0ZxXAI4VZ3r34bq41rpKoBEMaBEGPpZvnOD3zKA+3S6jyB5EjdRgvQnUKmV9EKBsxsjMGesUyq35M2G3jCFhv+SRRTN6UaK0J+t3xvUQzmrOITQurUknfC6/wXJNaje7sGL/1xf8Pm1tLjEy+lctb6fm1eg0ub1xgcewonbjL5e2LrAdLjFjT9KJUuNdWDsvOUbIMemFM392fRGu2ehGGEBweG8d+Bc9JRkZGRkZGRkZGRkbG65FMBM+4I9bcHOLbvo3w2WdTQdIwEIUCRrW6TwTRUUQrX6G2Xd+3nVgpNrshfimh+qlPoDodhGWRrK8j8nmskyeJnn0WMTqKffp0GkDY7+5U9Tr6FqFJViqMeI9SuYMY9fVGsr5+YFc+pEJ4sr7+wCJ4bDssby0R1Br9fbYRlSMEMuamdlk88kPEn3qW5PlzmEfejbUIImqjhUtcN5E1A2N8fNgRPRAEk7U1klrtwEBT3ekgbDsNwJycJJmYSNcPwzQYUYjhuPOf2UKO/xXsoxpED2FXiFYk4cdfSoVprSGK0LaNrFZ5pHKCMxNnOLt+dt9+z0yc4czkmdteiz0CYLeLMT+feuQvL6cCpJSIQgHrxAnM+XlkoYC1sIAQIl1nIISbJubCAtbp03cdn50wTj1/1U4nbBqgeH9hgfeLDgLCKIbYB605NHqYt8+8nS8sfyH9wkCnU4q3zT3BaT1OIrdZ74RsbiyBaVGuFmkqQbfVxTQlnm0j4xgdxzieg339CvStYHSvR3T+POaRI8SXLh0osB5UMLhdIUjHMcnSEuLIkXQsAdJ1MRYWSK5f39PFLycmcN797jv6gd+Ju4ncdyO+Rfy923LhOJjz86lP+O7zNk2MsTFksXjb4opRqeyM4eUl3GtXQWtEuYz98MP3dA3uRfjfzY53NQSjo8NwTCefY9JPkO02OVNiRwkDQxRh2+kz7rp3tWh5pRxUKJhe7fJDb/kBfvaTP8vZlWeGxZIzs2/mw4//Xca/sEwyNoYyLIzFM9CfZSRgOAaiRLHa6BJ0e6itLeJyCZ1oojCioyQFx8I0BHFCOnNFSBQaTPMVnWt88ybRlSuoRoOlScHGjfMgJd14V2FFCFp+Y3g+0jCp92oct3OI0giJlmh3BF8J6t0OxUIF2HnnJFrTiZL7tqXJyMjIyMjIyMjIyMh4PZOJ4N9gHNR1CRzYiTnAnJrC+JZvuasIIiyL6I7T2AVhnAyFHB1FyLGxtFO01cL51m9F1evEN2+m3uP9EEK1tkZYr+8Txh5UjHqjoe/iYXy35fdCL4gIe37a5dzvOtWtHolS9JrQrcxhLG0gq1Xii0vElyUMBEzHwX3/iWFwIOwITzqK9ntq34JRLqfBh+97H9HZsyR+/ziEQFQqmPPzRBcvktwIUbOzGOOTqT9vkqQhbmtr/QuhkeUy1qlTzJsjfPhdH+ajn/roHiH8zMQZPvzuD9/WD3zArQKgMTubiuzd7k5BaNezICsVLM9DTkykIniSpN8ZHb2rAB4lipV6naC9CUkApoNwq4RW7r6CJV8Jql7HEiItOAhBrxXxD979D/iZP/6ZHSEceNvc43zkXf+AqT96ieDMm4gbdQw3jzJNmtsNxibH2AxMumGMkfOQ6yvYlsmUoRFLS+i5uV0XVxJfvpwK1LusZHS3S3TuHPZjj+27ZrcrBOkgANtGdToYuwJQjXIZ401vQs7OYi4spB37k5OvWADfvb+w3aarIJEGluuSc+17uj+mcWfR86DlwnGwHn2U6OWX0a1W2v2dyyGLxdt2ZA/WM+fn01DPViudKTGYxeA46F7vngqH9/OuTep1rLU1ZgyTIFcgmZ/B1Ao3CTH9PIlpEJ0/z9ShI6x6LmGikGNjyFIJ27aYLrhflXF+oLVLkvDWZplffu8/4fnWeerdbSpWiVNhlfEvLGNOT6O2tzEPH75toaEbJYRhNBT7JTs1oyhWKFORNyQdFHGikYAUcljcup9zjdfX8T/xCdTmJubRo7TjHaHbE/37aBjD2S+xSouO0jAZL06hegnh6gsA+NVT6Nw4o6UK2+H+n9tKvzJbmoyMjIyMjIyMjIyMjNcrmQj+DYSq1/dOaxcCOTKSikq7BMqDOjHvRQSRlQpWNzp4oRCAxt79mdapgDrwutUaIQRybIz4m95FJ5cn1GAbBsWwB5cuYT/yyNd1t/eduNt5v5Lrcqv1RjgIO7Ws9L7otGNRBwHa94k12IuLJGtrGO96N8HYOIlK13XaTZJ6DaNQSLu7PW84hoRl7ffU3n3sponwvFSg7H8mJyZSYVtKVLdLfOUKQgi0bacBquPjYNskV65gzMykQYRxnAp8hoEgHZNPOk/yK9/5K5xdO0stqFF1qpyZPHNXAXz3db2fYotwnNS+5z4LNN3mOv71z0HQGn6mnSJi4k2EubGvalemjiLyKiKfq9Dp1onjGKdb4J+8759ytX2Ful9nxK1ymgnmLndIXJfEshGbdQq5HB3XIdGa7XaPIoqxSp6ya+Kux9hbq8jNDVAKYdtpAUGI1Cf8+edRlQpBZYRECUzbIjdZQq6voer1fdf9doUetbWFubiYBizu4kDblXabJAzv6kt+O6HbaDVpbddYaQeEYfq+E4aBMzrCtGeR08kdt53Lezg570BLFCfnkct7ez4b2r80GsjRUeTICMI0MRYWMGdn7/5e8LzUSqXTSb/bf98mGxtwQObCgxDduEHwqU+h1tOsBgOwJiZw3vUurPn59LPJSYzpaZx2m0O5PL6XRzkOpmm+6tY/u9ln7SIESaGInytSyJX5ZnsC12nCtasQRahSaTiu7jSLI9Ea7ftD2xft++Qsh9A0UHGC0pqk08FzXdy8Q9k1KeVyFLx7K5pAOhaTep34yhWSlZW0gHTpEsVvOobI5wGwgpgjYw9xuXZpuJ4pTQIVc6R6hDPTj1GVDr1OnSiJUE4FX7hcbQYcJHVL8WC2NBkZGRkZGRkZGRkZGa83MhH865xeFNMKYiKlMIOY/Ng4qlCkZXtEWmMJyJcrOJcvDbvXdK93207MOyEch1KsqHo2td4uMUoIhJBUHJN8q753JSkxZmeJ/v/s/XewZFl+3wd+zrk2febL513ZLtN+enq6MQagyAGHAEHMCAQJSYRAiUtqxQBluFitlpRWiiAlkbErBQMrSNASayRxBUmMJUQABOEJNwYYh+lpX9Xl69Xz76XPvPac/eNk5stX75Wb7upuNO4noqOr8mZef09Wfn/f8/298QbxN7+JSlOCH/lLXOqENLY6gAYpqXkOF86ep36MMPZHiXvlHz8M1jA3+zgnrKzVsGZnH2lfjoveyAkLNb+A3Fg/cHMLAWForlWS4D73HAMvx63b64TffnPsHvZmZ1g6dRprf+9IZrCsVrFGTdbuikQZZWpPFl2s6WmSmzdJd3fR7fbhY83lkPU6pCl6bw9raYnk2jXURA63vbqKc+7cePur1dWHFr0fmbgDvZuQdMEuQuEEOKWH/3iq6A+6dAZdcrUT6MEeYWcLLQQkffTOq+j6CyT+NPB4GmsKx8G+fJ2zF57gCppet0ESRXR2Q1YL5/hTpxfw/uDrEO+DZeE8/TS27ZrPxTHlXpsYAZYHUUx8e5ecrXG//gfGfZzLmVkfo5icfJ74yhWipRU2Y024N7zGWuPVqiwtLmPHRwtq93xWlCK9cwfve74HmcsdmbFypADIA2JXms2jQrfj4M9MM6NjNideJ0lI220GnQ7rM9OshF2s69fvuW7X91hanj/SHNPL51hanj+UB353/Iva2TlY1mphzc4+cPxIm03i119HVqvEN2+OnyetNbJeN+NQofBIY9G9tjMpgI/3c3ub8ItfRP7ZPzueNWEvLgLmbs4ds67HxeTMjr6G9VafKIzQd7YQjoObz7Hw3PP4jX1TJC6XHziLwxICPVFEDnt9ZuseOu/R6odIjFDuoJi1oe67FIv+ffdz/D0xGJhmnmFoxrtezzxPQqAdh8UW1Euz7G5eZ/fSt/nhF36Qn3vnF7nWvEY5VwUpOV05zb/38r/HXNF8b7r5KmDGnfVOgG9ZDO6K4LGEoOBY31EszePuaZCRkZGRkZGRkZGRkfGdkongHyUOiXFlGu5JrjZDekkKUQzhgMX5GRpBzOZ+04hsaUot73LhuY9TfuPbY4FylMX9qIJzqZDjoha8tdelEUQIBAio+g4Xa3ns3/wS6ac+Ta8yRaQFri3Jb20gksQ0sfueP8GldkCjb0RXLAu0phFEvL0PH6vnGcuL71J8fL85VojL5+HCRQJbkEZtLB2TtxRObvrIschiEffll49kIstaDffllx8pDzxO1REB3BMay7bQ9WnSUhm73URvbRmXvuPgVyvkogFJLs+dO9uEnR647lgED/cb3AFOnV7Gn5oaC0edsMPN5k3aczEFr87Cbkx+u2mcwROZ2ocy34evC8cxERBD4U74Pva5c7jPPmuiNLRGdzrGBY7Jhha5HM7Zs+++SejD0L0Ba78I0f7Ba+4ULH8eiicf+PFRISJsrhMGHdphRM6tMDM3Rf/2q+g0BnrgbCJUikqqD9Vc81GR1SrCdfFfeY0LJ5bpLZwk0RobKLTbuBvb6ELhYMZIr0d+tkju5AmC7R1EFOEMBtDYRywvI9wZVNwnevmTOHfWsLTCfeYZ1N4eYK6TyhfYCFOibm+4ExIch7DVZqNUYtW1kXc1u7xvIahSMRnZd113HYZHnju4d7FPhyHBxgYbsTgQujFu+WC/wX65RChtBCbiR/X7oBQ6iojihEG+SKHZuG8hsVgucur0Cv3egCRNsS2LfCF3SACH96YPgO52Eb5PcvOmiZmaEGzVxgbx669jzc+DUvcU7kfn5X4FvHRr64gAPt7O9raZPfIY7t1HRXgeaaXK+rXbh4oQOooIo4iNKMep06ePXIt7kXcsPM9ltCatNf29BtPFAvP1Mr5lIUSZnG2R990Hrnf0PTG6vqrZNOPk00+jk8Q4+YczIrxvv80XvuuH+QX9c+zur7H99rf4l1f+FM7Tf5H52gpT+WmenH1yLIBP4liS6byLELDZDcdCuCUE9ZzDUin3SOK1DkN6vQHr3YBYDwtWw9zzx93TICMjIyMjIyMjIyMj42HIfpV8VLhLjOtXP82VWNJXORAuWmumahVutgcM4hTfsRnE5kdvox/xNoLnnziP+9Yb41XqY5yYD8NM0ce3JZ04IUrBtaDk2OTaTRqf+m4utwY0142wIxyHslPk3A//CLkv/g692gyNzeZBk8OJTNJGENHWBUrArZ23eG372+wHTab8Cs8USqxufgmWv++hxMf3m2OFOCEIqjW29jZJ4g1QIQgb1/FY8NcolFeOHIs9P4/87GdJt7fRYWiiOmZnH1nwHeXY6iAApcgVcmw3ugRxTL1UoK00PelQPn0GtjbJlYoszU5hbW3QK1YId42YOY440doI4Y0mgV4hNxTHbjRv8IuXfpH9wT6kITpsMOUU+cHP/ACr9hJ4lUOZ2keOtVjEWlw0ERpKGUf5zAximCE9Oqe6Z4RUkcvhnDz5/gjgceeoAA7m72u/CGf+yn2LMocKEWmIHe5jWTUGccx2qqmX5giaawB4tsBvt4h3th55hsbDIDwP+8wZwq9+Ff2bv01+GCsiymXsEyeId3ZwL15Ed7tmXNAaubPN/Jkn2KhWiKIYkcuR+DmSKKZezLMdBejSFN7zC8xX8qh3LhuxOEkQQDA9S7Q+IZpKacQ9rQl7ffoihW99C/fll7Hn581bhoWgZG0N0tS4Yh0HLAt7efnY6z5y1B7HccU+1WwysFyiXv/o+5OEKI5JHBcnGBhRUilTrMMIoKnjmIJev3/fQqLrew8URN+TPgBJAo5jXOSjbP7RuGrbqG7XuJknigJwuE+E1prkjTfMbAvLMnFEozzyXM7M8Oj10GkKUprYIiHQS0tEM3MkQpL6edTOLl659IFHWvV7g2PjaADC/oB+b/DQIrhjSRZqJe60WuN1aq1RYUi9tY/fauA+99xDHfPoe0J1OmYWzHB81u026c2biKkpk2uulCk+DgbMfuVN/vLTX2D94zZdYop2jhW7TnVm+YFF7IJr41qSsmsTpgqlwbclRdd+JAFcNZsEGxusTRSOhOMg63Ui33/sPQ0yMjIyMjIyMjIyMjIehkwE/yhwlxing4COXKTX3gPLAXsanSisSoF224gmBceC5GAKdGMQ0anWqE+sdtTU8Duh5LuU/IMEcB2GdFPF5UDRHEyK65pWP+AdKXnq4lNEI+H7uJBSIYi14Pdvfon/4nf/U15b/4Z5XQqeWXiJv/3pv8XF1g6WnCHvPZqL7XFznBCnqlW27JR45ysIhs53rYicMhvyIif2XsPx6sc6wt+tyBsHAenWFjqOydUqbG3vMwgihOOw1+kxW87jWDmEbVN7+jwFNOLyJdK9PZLajFnJcU3ThCAZuss7YedAAI+a0L6ESAN2nSo/d+2X+dEnf4RCfoq87dwz5GPyWEdO1HRnZ+xEnWxaea+GrY+N3s2jAviIaN8srz59z4/34/TAiW95yMEupUqZjnQJBj1EuQ7NNVyvyELORe40jLj2uCKB0hTrxAlz/tIULMtkEd+5A0qRrK3hvvgiAlMg00rhvP4qi0lCWJ8hKZboew5pFNF5+xJaKeyFBaRXouHkyT/1HI6K8cMQsbtDGsQIzzOPutYHAq3nGefyoI9qNIi++lXkZz976J5Pb90iHc1SkBJrbg57sunmBA8q5k0uH91jSazMPWVZh7LshZRYaMZe6mFm/qiJLFpjhSFpp4NVq33HhcTx9t6DPgCiUDD7d6/mtGmKHj7LejAg3doi3dg4GK9cl+TGDSO6jkT34TFHr76KqFbR+/uIev0gqsN1SZ5+ls1UEO21QWvs2gz22iaLM1VKszPf0YyG76Sx83HriKMIbBsxvLajz+L7EMfEnS7R7hZyehqRJA9cdzHvc3J5jt7uHkmSYgG5fherFR6KZXoQ4wiUIDi4p0bLGg2sWg17dZV0c9MUHgCShNz6LhcXX0Q3GsPPdNDVh7v3HEtSzbkPfuM9GAn3g9q0KRwNC106DE0z4cVFItd9rD0NMjIyMjIyMjIyMjIyHoZMBP8oMCHG6TQh3dslXhhmeaYxOAkok0tq0Eb0GApIDF1l8cQP7lFTw3tNge+FMe0oIVIaVwrKrk3Bu7dorppNOk6OVqOFcJ2DH/fDxluNRNFdWsGRFsKyjKNwUmMd5oqH0Qb/xe/9Z7x252tmuRBoPL618Sr/+Zf+r/zfvufvYO1v4ubnPlRTsI8Tw4JKibjxh6BDSFqQhkOhaZco7tBf/TSV3i2oPvWutx8F4Th6wZISkcTGxSoEws8xaPRAmPsHJel3ejiNfXAc6sWTiKvvoMMQWSxi2ya2grtcsAhhMqKHuc83mzfHDnDalyANiPwluolkf3+Ny401Ztst3OmPs1Au3fda3S/T+QPLiE+672p5euh5q6HdAnbrGpXCLIlXxPfy1MtFvGAPa691IFS+S2H1Xug4Rnc6pGtr99hh47y2lpdJ9/aIvvQl4wze2cG7ehX9zPO0+xHC941jNQgozM2w3Y8IdluUfQcPjSMlc+UqlmqiI1N4wXUPBFbPQ3U6WK4ZGyZjP0YZ2brdRuYO0qR1u32sWA4TxbxRI0QvRwLYQuAHfZzh8tE9hpRILdG9PlpKZD4/zjIH0FGM7/lmeBpGSunBAGwbJxhgXb1B2moiHQeG2dffKY/SB+CecSWOY8Tiu5sc2jaiVEL1+2bMxTjd062t8XOmkwTS1MScjETnODY56K0WbG/jXLxo1ud5yPl51MYGen6BTSWJej0z1pfLaKUImi3WgRNRSO4RG3JOjgE6SdBBgHAcRK2G2t42jvUoQuRy2OfPG4F72Ix1dC6a22vcuPEKDUejQsk0U4jENgK+EKQ3bqA7HXStSNJukjabyHLZFEMsC6taxXnqqWMFfK9cwvXcg2tQKT5yUW78bI+KFRPXTA8GyHyeeG0Na2kJ+9QpdL+PyOeRMzPo/f1DovlxRex305PiXoyE+7QGJMk4Hmi0z8L3kdUqaeGPZ0PrjIyMjIyMjIyMjIwPDx8OhTDj3TEhtukggDjBYaL5oE7Rscbi4Ae1EBz8YB7mbjtCGHFTCOT0NGmrZUSB/kEsgCgW6Vx4ikuNPu3oYBsVz+ZstYBtyWObYek4JpaeEa7HAjhoKUk1aKWJUo0z6FLxXVqhcZoi5aFc8cv7b/LanW9COvyRbbnm8yi+vfkKV3t3OFeqEin9oZqCfZwgoWQMaR/CfXQ6FADFsBFlsE0aNsB+923juu3u4SZ8cUxtaYHC6gpJFGHZFmXfodPuolOFlfMpWTaiWkFZFoEGz/eRQQBa4ycxfrVC0Gia9UlpBCcp8atV8qWC2W48vC/jFqQDUqdGN5GkqRF6evEAsImCfTakc89rNY6SCQLI5cauVp2mxNev4z755AcTr2A/wI3/gOXWpCgpXMTUU+jGm8hgF6d/k0JUIL/2RcTqD6E6Bw7edzND434Ix0HY9/lKkBLhOOgwJLl92wizIwE7jkksacRipRC+jz9VYztWDLo9IzAql2R/j9S22aiUWZ6q4fUjwkYTIaUZZ3wfWSjg9Lp4zY5ZPybXOt3eRnW7j5yRLatVRD5PUCiy3uoTNnbHy/xKhWU/R77bJb7yOkLsIFxFwZnBtysEjQ6q3zfrHEY0iXKFFWI2XYcwDM1+Wxa56WlmWruIa1dRlkV89Sr22bPv6po8bB+A+xWJiGNEtYpcWjKZ7BNRKKPc5rFoGQQwdFeP/j6+36KJZscAQyFaj/pIbG3hffKThF/5CoPZOaJuMBbA7cVFklu3TNRNt8egUsR7hBkNk3FSOghQrRZqGDcjfB9Zr6PX102PhUaD5M4drOlphJSmKJPPc2fe5xe+8Y/Y71xH+Tla5Kg5df7sye+nqKqkG5voTgc3nyOXJiTr6+i9PVShgLW4CIMBqtFApyneyy8fO+YIz3tXRbnxuR7NPrBt0zh4VKy2beyzZ5Glkvl7pTJuEMwxRexJHrU57MMyEu4trdAwvifFsIeAVgrVbiNLPtzlOFfD51qHIcL3sWZm3p8oq4yMjIyMjIyMjIyMP5ZkIvhHgUmxbSgOl1pvU8g9QW/QBS1BJ6RRRNkzWeBJqscNDRGCmu9R7HdIRtEHN26YJoRnz8IwlxQgmlvg0k6LdsrYpSYF7A9i3kq7nKzk6SXpkWZYwnGMyD6JGArgQgIKW0Dj9bd44qUXeacNrTBlpNtXfYeLUwV+ZfNw4zUt7WE+qllfK2hBxfzQjpT+0EzBltWqyXKdECAsmYBOIAnGx4k2ebJCg6V6EKfHr/AhiYLwkAAuhCA/PcXaThNdSomTBMuyibGoz0zRarSZr5XYaXYIUgVRn57l0rLzLMzn8TbXkXfWWDp1hjtAsN8wArhl4VcqLJ1ZwSvkASg6RSOQBV0IQ2KnQJpGjA624AwFfhWNr1Vp0D8iiuhebyyAx2++aZr7panJpZ6eRlYqOKdPv6vz9B1ROGGaYB4XieJOQeHEfZ2XecfClYKwP0Dt7ZmsbOcMIhfjllI8Buj6D6FDG6vaoWsJbuuYbuMViv0qJ2fOUi7Wj277O0RWq7C1hSgW0d27XOy2jVWrIavVw9E+cYys1dDdLo6fg9YeOk3RhQIi59Hf3Uf4OXQwQEQmd1pbFkG/T3hikaW5OhvFIpHS6FwOnaY4UciCJ5HbLVSrBVGE6nTMdXfdQ40B7+a4jGzhefDEOTau3DqUAy1clziX4852gxNeF3Hrf0J3N9Ba41TrLJz8c2zMnCHY6aKTBFko4M/OsFivkNcpvuvQLxeIa0VkEOBcuYS4cX08s4Y4PlRA/E55UB+ABzX+tFZW0O029pkzpJ43bjKrwxCdJDjnzkE+b563UsnE0VQq0O0aEXmYFy+mppDFotnOMPs73dkZF0ZGjnH3E59gUKpitXomG1wpI4CnB2NZwqPNaBjHhAwd6GpvD+H7EIboIEAuLBDv7yMty7yv28Wq100zzqUluoT84iv/K/v7X4FeEykkpfo5GnGHX177NX7kwl9Gd7u4+RzzlsIKQ+KRs7rXO3BmJwnJrVvYZ89iv0uX/3GMvifEMMddSIna3zezcKpV0s1NMxtjbg57xsRSxZcuHRHA7TNnDo07Ip8nvnz5oZvDPhKOgygWyakEz/cI2h1kpWL+LdHvg+fheQ7WzhrJ+fPjfP9kc/OexZ3RezIyMjIyMjIyMjIyMt5LMhH8o8CkGGdJkBYy2OTEie/iVr9OkFpoEdLY2eXEiWUaQcxmuz8WsWu+y4Wyi/Vbv4va3TWOv6EzUzWbuC+9NHaadXJFWlst41izBBKIU43SmlYYo/RQLFea9UaH5WSA1W4h8nlKlqKSc2gNM8G1FGhlxPhaPoclQays0NzZ4+zcDFiCeKKxpn/nNjW3hFYCISzQKUZQHWaIa6j4VXAOnIyTkRMfJMLzcM6fPyRW5eIBrpUjkqNjOcBxy/jRJuTPPNJ24lTRj1NSrU2zuyAiGgTj5Z7vstUeEPT7CKUpV4polRBbkk6iWKoV2dxvEQQh+D6W72ENekRKsZFarFaqyGYD9/pVTiwtEyzPkyKxXYd8qTAWwAHTnK2naISJcVH6qYkrsB2mywtMOyWIByBN0SLudgm+/HtHRBH7wgXwfSOA7+0ZAXQoSqn1daJvfhORz7//wolTguXPH22O6U7B8hdQvZT40iv3dF46lmTet7mz2SIcCoI6FrhulXkrJf3q28iVHGLzt7hVXeCf3fky+9EuWD46f5ap3DJfeOFf4/Tik+/J4QjPw1ldRQhh7tOREG7b2KurOE89ZTK84/iIY1wUi7gbd3DzFXO/WRapkEYIVgo7l8MeDNeXpmDbpEqTv3mdlWqNoFwl1hGWsvF2t5CNhrkPoghRrRqhzfMgl8M+cWK8XdVsmjFreD/cS8gbKIg9D3tuFtf3kZ5HClgCVK/DYLBOvrNuoj60Ru1skot+jhNnPktw4c+QCBvbssjbAlen5lypJoXdLcIvfenAuet5BxEWWh8Sfr8TJososlhELi0dOcZjG38KYVzRGKETyyK5dg3hOFhLS+P8cpUk6MGA5NYtkldeGTfNlMvLeC+9hLp9G7W7izU/j263CV991RSkQjM+2CsrCN83jWmHx5veuIFYWAbbJ200TFZ/uWy+U6IIwhCbR5vRMBLMx1nZUWQKInBwnkeO9JG4nqaoVgs5NcXaVMDu+hcRDN3sWmHvXaZSnCMaCPpij1OVPO7WJmJrE06eHK8PMPdxkpj7PkmOFonutd9hSLq3h+50zD3iugjbNufkmCiSQ98TUUR665aZWVEsYs3MEF+7hvR9ktdfx/qe78Gq14/0RcC2Sa5ePVyAUco8R8N7U1WqDPJF8wwAxW4X7x7Pzv0KearZJL1yhXhtDbW/z9zHP8FWtUKUpMh8Hm1ZOFoxb2m4fJmo2UR+9rMARwRw4J49ADIyMjIyMjIyMjIyMt4LMhH8o8CEGCeUZnDqu1hvxsRvfZHy0kuU7AK6nKcyV6XUazLn+SzNV4mHESglkSB/89dN7utoyvtQPFbb26idHWStRrBygsR2WKyXsaQgTBX7/Qg1ITTHwz+qbpf+nTt0HUHuzddASpzz5zl39hyXgdYgHmfq1nIeT0wVaITJeCp5K1HMex5LpYPp03GS8KSa4Zn553l9+xVIAyaDw59b+Bhnpp4E6+DHvHW3+/wDRFarhwQLPWgyn/fZTOaI+ltjIdz1qiwUXZz+Fsx+4qHX34sSNrrBQbNFIA1D8rUqva1ttFKISolgf5gfrzUqirHfuUTliXN0BiFirk4Q7AMC2/Mo5Vys3gbCEyTYBOUq+VYT0hR56yaFXO5YF6EOQ/yrt/lzi3+Kf3brV2hwBaESUJq6V+cHTnwW2dpDOQUEeSN27m0eK4qonR0QwjiBJwTwyfekd+68Jw1DH5niSTjzV0wuf9I1szIKJ9DKJX7jlQc6L3OdFitRj0HZCFK24+DcvglRSPTJlwmSWyQLX+AX3vhZGqN7pNNB9wfs2n1+/nd+hv/d9/4HVGePbwr5qIhcDlmv437sY+PMeFksYtXr42s8Ei9FsWgEskYDkcvB9evMv/AiW8UiUa+HVS6BEEZkcyzYmRAOkwTbtrDPnIE0xU1iqJRI1tZIt7dNRNNQAHeeegph2+hul/j111Gbm0bMc13s5WWTUb62hqxUDmVkT5KkKSJJcOs5rvfXaHc75J0iVXceG6gV5jHTUobPjtboVgN77Yvke3mUWjT7EMdEhQLWiRNGMLdtI8ZORoVMxo28i/vxYeMrjjiqhUCUSiTXrqG7XWS9jrW8jHPiBMn16yTr6+ZthQLW8jL4Psk3vmH2WwgjmApB+Pu/b3K+Z2bQWpNeu2YaL1qWOeY0Re3tkVy7hrWwYIRwQPg+uSTCLVUJtqPDz7Tvk1tcIEf6SBEcY8FcqYPnf1R40Prgz0MRf7xcKXQU0Uv7iKg7jtcxn1PIzgZud5N0cAfva9fN9Yxjc4wTDVFHRWGKxfHMlwehmk2iV18luXXLxMb0+4hiEeeJJ8x9ceMGzrlzR87D6HsiuXMHWS6b+JdOh2R9Hen7Jlqo0SC5fRtZLB6KYNFhSPT666RzcwTCJklSbMfCjyNYu41VrRIUS2xGmigwDT/RGt8vsFRKxjO3RsK36nRM7v9oVoPW43tQ5HLm/oxjZC6HXFmBb3yNhfkFwlqd1HWxczb5nI/Y3IClJYTrkg6LVo8aa5SRkZGRkZGRkZGRkfFuyUTwjwpDMS5qb7Cx3SF0B+iBoPf2dZPlWyrB9DQVW+HsbBvX13AKuyiXicLwsJAz2ZArSWieOcel/T5K99gPjUOu5FoslXJc2++iBAgEjoA4ikjv3DHNsrzhD1mlSC5dohjHPPf0M7SFRaRASoEtpXEL38XdArYolZj79g7/0Uv/AX/va/8Vr22+ghASYUmenX+Ov/WZ/xjLORADXWmyyT9MTAoW8dUQr+uxonYIKjMk0sbREX60gRVU0aTG5f8QxKk6IoADxEnKdnfAlO8xaLZIR4uFQFqCYrUCL79MCsxZEtdzKNerCK1xfIG49bvooIWoTRmXp72ANWWR7pusXef8+WPdt6rZJN3eZn59nb9Ue4HN5z5BV+2R+tNMxcI4fbWPM/8iyvFBSsLlVaxSCfsPvmIieEbrarWMk3ToiBSuOxbstNamSd5g8MEJJ04Jqk8feklNNBe8Gz0YoIZ5yDqOkc0GhaYRhESxSN/12LR8kuYOonebnbzLtW6PYm4Zp3fLvC/qIvIJu9s3uHHjFZ6rzLwnDe7iy5dJXc+4RIWN7dgUiiXsiXXLahVu3sQ+fZr09m1TpPA8UArn+lVWn3uefqKAlEEpT7K7h6WTcWNPAC/n46uU5Po103RwiLBtvM98Bt3rodptIyQPRb/0xg10u43I58eO4mRtDStNsU6cMOLwPa6/bVkEpZCffeufst46iFSaK83y/af+NNv9HIWVF7Fu/P7BvhSKqHYLuQDRpdvo3YMscfnOO3if+hSkKfbKCsnt24fHT9fFPnECq/6dxdVEQUh3v0lSm8aqQa7fRbaax8ZX3O2oFvn8WAA3Lwhz3goFnBdeMCJumoLnoZOE8F/8C/P30XhrWchSifiNN7BOnkQWCiaSqNczIrLWCM8z2xcC1e8zOcrKUgnnxCrzO3ts5HMEYWhc1ULg5X3mVISdz5Pu7R0qrtyPUUwI3e6BOJ0kJrrF88y9AmaZEIhKxTRoHB5/yXEPlh9D0XFNU8990wxYdbuIchndbEKhYMRiISBJTNPXe9xnY9d0khBfukRy86aJbBm51Ntt4nfewTp5EqtUumcUifA8hOuOx1FVmyJ68mkSaWFrhbuzbZ6Ru3LVVbNJuLDI2rXbhNs749e9uVmWTp0hvX6V9W5EOAiMq7tWQ0cR8UQPDavTJr50CdXpmPgVpZCLi1hTU+bYooj42jWspaXxGCcqFeM+73YRt2/hvf4acliQSoeFtHR728TjxLEpfo1yzu9xHjMyMjIyMjIyMjIyMt5rMhH8o4RToh8H9O9sjZ1qIp9HViroJGFw9Srdoo/3xd+BQgHn/Hnc554zPziP+zFqWZCmRB97gUv7ffaCiKJj4UhBrDSdKGGdgIWyx3YnpOw7uEKQpgnJUMS0JterFOmVK3iLiyyePk2cKm62+nTjowL4cQK2Va9jz8/z3Jub/NfP/0e8KXdohi2qhWlOFp/A8pcOfX6h6H8ommLeC1EsEn07wDn1EsXwNYgaIFx0P0El61gf/7eMwPoQ9OP0iABOkphsWwTCddG93lCs0ghhMbu8wEYvotM7EGuXp0qUqyWCm9cRnVtGALcddBwhLAvXipHh15AX/3VkZe6eApbq9UjX1tBBQL7f5/SGxDq1QHJ6hQ0SklIBt36S272QQa9PzpG8EyVUfZcLn/t+8r/+K2MhXO3tYZ8+jazXUTs7RpgCsCzEaGq+636ohJMH5R2Plt8tYKa5PJvNHuEgwPLM9ewlA9IkoittKvkZZHh7tBJA0h20johhj7y/YUh8+TJBpcZGmBK1D6IUvEHM0kmHYt43++x5OOfOEV++jHXyJKJQQOTzqHodFQSob3wdf1iwWLn4JOthSJLzD9aX81moV0g3Nwln5kilhS0EftDH6nZQOztYJ0+a6Js4hkIBodQ4yxqlkKWS6QWgFMK2cc6cuW8cjnJTfvXWrx8SwAG2u7v86o1f5UdXvptw/mnyG384zhs3kU8S1Vfo/cO572p3l/itt5BTU8jZWSyljOg8bOYrq1Xc55575MKEDkN2Ovu8vXedVr9JwSkyTQ3X8liYX8TbXD9URIEDgVh1OiYf23GMmGvbJg/a942zvduFbhf74kWsuTmStTXjCr87skWIA1c4GLHSccYNlBFiHOkBIH3fRGQsLJiYj2FuvLe9yUq+QLC6SKI0Ngr3zhq89oek588TbW5ir67iPvvsA13ho5gQkgTV65nnfTDAXl5G1GrEX//6+DtP1utY9TrJ1asmfsR1WfHK1KdOsh/tmmdv4pjrUyc5UV7E+9RTRF//Oun166R37uB+7GOkOzsm/qTfN+ezVMI5fx7rmP095Nz3PJIbN0x2ueeNm6eKQsE4wgGGrm7VbJq871FsynA7DIsV8ZmzbKaCsDXxTFbqLE1NY99VaIuFOCKAIwTh1jZ3VMrcExcI37hk7rXIuPRlvY7wfdOXIYjwJxqQohRyfp7k8mXiXs8UoDodZL2OVyyO7xVh2+b5tO2D+8bzTIFsmNmudsw+6SAgvXFjPJ7f63pnZGRkZGRkZGRkZGS812Qi+EcIHYbESYIsmRgCPczeVf0+utWCMCSt5I1YEATE77wDQuB+/OPIWs2ITiOUQvg+wvdpOz57QQutoRulVH2HbpwSp5pulDKX9/DdhIW8w5Wba3iFItOL88SNJn5j79j9BHAsyULRP+JgvpeALTwP99lnEZbFwnqDBeWDzGOlU7B6gsD1x1nYecf6UAvgAFa1ivPEE8SXLyPyZ7ALAaQDqFQQ9fPI2tmHXtdx2ec6CJBhQMnzTPgxoPp9/FyOwuw0m/2YThiDkKAVjmXR6wf0LIv5EysEr34dYTumoWcU4UgPv3cDy43AbYO3es/90XGMCgJzD9m2EeGaAfzyF5lfWCT5/h/gSj8BrXEtQT9OQVo0I8Xb7ZBnP/lp7N/+F2ZlShmh1XXNvZvPG6ElTdHNJmJx0QhHHyLh5EF5x2MB8a6GqUG+SLgxfGakA1JSsI2LNU1CkmINl9ujlQApBbvwSE0Gj0M1m6SuZwTw6PC6wv6AjUaHk547fqZGIm9y5w7pzZvgeaSNhhlnhuheD3dzg5VSmajgkVgaSyn8oI/KzXM7hmivPRYkvXyOxekZvN0dM0NleF50khwWaoeirBy6eoV7EJl0L9Z66+zHbbCdYePZoYAuBc1Bk91knwWlkYUClCug1bC4Uidau6u4YlnoKCJBkMwvEbVaOOefJCc1VqdjhMPpaTMOP+I1uLp1iZ+99M/ZbKxDnIBjMzu9wp89+X0QVcaZ/DqOD+eFz8yYAsT6umlU2e8jfB85O3skv330WZPPP1w2KXqPzrEQYyGdND3k2EdKU4RIEvN/x8GaOZiNoOMYYVnYYUCh1yXd2zPfLyO3/DDDO7l1yxTXXnzxgc+vrFZxX3wRa2UFtb9P2moZh3oYGoe76yIKBQDiN980zVyHAm9BVfn8x/5V/tnrP8eeWhsfc71ygi888+epzF5EK9e4wE+fRnge6fo6cmkJCaYY4/uIeh17dvbY+KeRAK6TxLxfKTNGDQamiJCmRiiWEt1skna7qG4X+V3fZVzjt26Nc8hFsYjzzDPoxUU22gFRf3BwjYQgSjUb/YgT5dKhf8QNovSwAA7jiJtwe5fo3BOH9ztJTJFkeB/EgwBvJKwrhajVSK5cGReBRKWCxhQm47fewpqdRfd6CCnNTI9RNI3rmvslDM3fh99PwvfNMwbISuVYEVzWaveMNcrIyMjIyMjIyMjIyHg3ZCL4R4SRC03mCsa9hhGN5fy8mY4dhqA11qiBmBDQ6Rjxa30d52MfQ7XbJhd8iCiXcS5cIFJ6nN+tgWYYU7QtSo6DAkqejZNY3L51B5VqAk+xnwqeqBYQV948sq+TAkLBtTlRyR9q5ng/AXskhEw2ApPVKsLz+PBIoA+H8DzslRUjHoQhatR4zfOwZ1YeSdQ9LvtcD/NxxZ01aieXqJ89SQpM1adpIrmxOcxktSwcyyXvSHphTM6yEE4OWSiauJEowvUKLNoB9v5bUJ8y+df3PTiBNT9vsrqnp02ciesii0W0ZdGTFlutFsKyUJh8coaXfD+I6c3VqEwKxVJinzmD6nbRE8KJqNexVlchCD5Uwsnd4vYkIpcbO1/vbpiaYERdnSQgi+AVmZaSmdICO+11lPGQot0iOrKpV+dYsaceqcngceg4ZpAvHnKAj1GKsNujuy8p63TcGE94HnJqyjRNHAxwX3iB+K23UFtbRvRyTAEl9+RFvL09dBwgbJt0Zpo7rR6R5pC4HfYHrAOrxRK2UuPzgpTokQArJSKfN5Ee45Mt73v8vSjhTrdBosGyh25mLGwpsKRAKMVA5rA9gXAGCB2Dk0NPnUK730367dcO1j9s7pg89zxbfolkt2ncsXGC0+8xLzTO1Stw+TLpysp9Xc6TIjauS+vmO/xvG7/K5u4aCIlWKYSK7Z3b/DK/yl848ecZ5IsUWk0AoldeGYuu6dYWsljEfeEFI4oPo1tUq3VQiJq4ntErr4CUKK0R9Tpqbo5odoFESmylkCpBLi8bcdS20VKaeJChiAscuKN9H9XrEX372+OM68nrcaiZ5YjR9UwS0kbjoWcyCM/DXl1Fz80hm03jbk9TcF1UGJq8/CTBffFF0+Azl0OWSshqldPxNH/FFdzsNOjGAUXH50SpRnnhT4BTQmCGoKTZJN3cxJqZIX37beJOZyxA28vL2H/yTx65jsmdO6bnQqFgjnfYXBoYR88wHAusJ1awl0HQRacO8Y23Uev7hxpx6n6fZH2d6MKTxG9dOShQpKkR4ysVwv6AwPXJTexLnAyfp8mi6MSfldamYeqEo3+y+GHpw8UmYduHZ0FMrEu32zA7a87V/Lx57zD7XE5NHYj2lmVc8L6Ptbw8LlrJmRnk3t6RRsjuyy9neeAZGRkZGRkZGRkZGY+FTAT/CDDpQstZFl6pQNgxDjndaGDlcpSefgpZrdBHkzxxnvzmHcRv/sbYqSZtG/97v5f09m2i2Xk6+SKxBkeAZ0sEYtyCUmvoxAmukkSpRitNuLZG0c+jHIHtO8hmlyQNcYY/gBk6VY9zeTmWpPIIru3JXO0/6shqFTeXO1bUfxTyjoUrxSFHvZASpRSe5+K/cxmxYRri4fsMPvcDlPPeQS+8JKXfDdBK0w8CvGqe6ZxLImxsneA13sHefhWWh5Ez9r1FCh2GaK2RtRqyUiF55x3jFs7nTUTL6iqRHu4fTGRFC9AKjSBUmjSXQ7bbJns2CCAMcZ58EqLIZELbNrrfJ71+Hft7vuexCSeq2yXd3kaHoRFyZmYeuK27xe3x66OmcndlbI8apjrSxlpeRrda6FQhCk8g+1f4gSe+j39+/TcI+1totwj5M0xR5wsXf4gS/iM1GTx2fx2HlGgsUGmljLszTVGdDsL3iRsp8frt8TGoICD66ldR/b4RspIE64kn8M6dQwcB1twc1tycKXzMzIzv8b7tEe82D4l+I8L+gKA8jT98DtznnydtNtE3byLn5tCDwWEB3LaxarUjxz8SmGMhWI8FOZkHTLFo5HNPNNhCImxJqVAlp/cR8y+BCgEbTcE4Wn1/PH4B6KVlNoVL3OsjyxVTmGk2CcKQjXKRlak6YmP9vi7nI00vczluNq6y0zvIHR/N0NBRxE5nh910h3lOGHfujRuoZtM0fhwWElSjQfz229gXLhyIjaNihOcZYTaKzPkcDExfgGoV9d1/gvW1TeMgHg4I3uwMy9/7FM7Vd0yBqVZDOg7x1aumYNdug2Vhz80hfJ/k0iXsU6eIL1/Gfe65w0WgUTNLIRCFgimiFApYq6vmOY7jR57JIDwPe24OJr4HJosKx46j3knKJ+s8c1cT28nIKZHLGYdyp2MaWo5mNghhXOKNBvGrryI//WmTRT68junWlomgAZMHf/q0yQ1vtUys03CMc59dREZfhmvGzS88D8ueofmJv8hbwTbNsEnNr3LeP0HltduEG1smziyfNwK445jCR7eLnJ4mSROStTXjgs/nsW15kLV99+wgIfBReMXCodkeo+fJlYK8Pmg1LXz/6HWxLJPD7rpoIZCFgrnOYWhc+FqbrPFq1dx3U1PmHltcJFw9QWo52JZFLujjVKvYn/3swdjqeVizs5kAnpGRkZGRkZGRkZHx2MhE8I8AaiRqAFavx2KtzjoQdvuINKV8+iQ3mj36e13S4fsq+Trn/tKPkf+DLxsHVxxjLy/TzJe51urR64RDPUQwXxAsF33WusHQEc74l3LVcyBNoNPBHuaZWii0EKRam+nOwwZcMp/PXF7H8F6I+sdFywjfx8v5zAYdxNbmwZuDAFsr+u0eSAFMuMiHccC2gPyt30X0Dj43nsruTt23YadqNk12b6djGqW5LmJmBnzfiNbXruFqDZZEp8PMeDFxUwnj0E2ee57C7g661TJieRybezVND9yltm0aED6iCPywwnayuWmE3mPcivfLoIbD4vaDChyje6CYKnyrT5TPG1elUlD4BCUx4N+Ye5b9/ibdfoeiyHFCl6kMEpwnnnjXUTCyWsWJUtTmjhEmhTCNCG0bWasZwdNxzGyQICBeXye9fn0shsrpaRONsbtLmqZ4n/nMoWsyeY+n23smasF1zbbuIh2ep9Hn7Lk5pOchczkjHI8aPto29uoqzlNPHTr+SYG5t7jCoN2nXshTcysI0aIfpcRaozAxQkv5Kc4TYr/982h7KLArhZAWgg72+RdIXr9iXteaaGmZODBRU2KYk62GEU/RICSo1cltrN/T5TxZtBwThnSiDiI5iCcSjo2OExhGt/TjPnbRXJfoW98yTtpcDpIEWS6jhTBxKFKiOx2id96BXs84eqemcJ9+GmtlxRSkhseSpCkbjQ5pbQq7WjPiqWWRWhYbvZCTL3wcqzV0XNdqJopkGEMyOtfp2pppfHztGvaJE+PjHTv5u91xfr9OEoTjEH7xi+YcT03hPvPMu57JMLpXHjiOHtPEdhJZrSJs22R037p1kHEtpbnWto3qdsc53uPrOFGY0d0u8VtvmftSCJK1NTOmrc4g+19E5jUoi7Szj5Wv8Ma5l/ipr/9drrVuDwswFqdrF/h3Xvj3We0lpMPZBsJxTNROuYyOInSziVXKEV+9jA7MLAv/+Y/hTdcJd3YP9mno9PZmpsmFAxY8iw0gisyYJHx/HEHmaodoWLwYzUoa9QZh5HJPEtMD4PZt1OnT2BcumELJyooZE3o9U5gZxvTE3/Up1oKUIE6RUmBFIb6dY7lUwfNc+osrh2aBfbhDzDIyMjIyMjIyMjIy/iiTieAfAQ65tbTGb+xxolBgUCnB/AKXehG9IBoLNQCtfsBlIXj2xU/AzjbCceiFMddbA3b68SFHcRCnnJ0qolDc6UaMRNOq57BU8ulcu2HeOBSEtNYIIXBnZ3A/+UkjHgyjPx5VrMx4eI5Gy/j4viC99BpqskGpbVNKQqrFHM1+cNdaBNVSnlIYwPTn0Pw6ordphOKlZURxHpa/cN+GnTqO0Z0O1swM0dWrBy5aIZCzs+hSiUJjh6pXZq8fDHNujfCHhlrOwYoj0lSPIwSI47FjUbgu1kQO9GS8yMPwsMK26naPvA+M4zb66leRn/3sQznCH6XAcVDMgMi2x+WJojNFN06w/SlKdoJE0bAt8tUiXt6/7zofFm9/F9e2CGOBLJdRjYYR1zwPr1zC2e2Zhn1CoLa2TOPBYSNI4bqIWg0wERxqf/+ez7ptWSayo1ZDtdtGCB/FM7guzlTtkKith3FOcmoK9xOfMI5mrRHFosl8vuu9kwJzokycDxF8/9yf4Fe2fw+tm+QwJZel0gx/8eRnqL/y/wSVQmRc1SbvegDdt/Fe/JMQPmHuA9tGuR5EAXJ62oy9dzlu00mnulJH8rt1HBt3/WREiWVRlDmsbgerWCGND5p+AuA4lCvT+LZFev0W1vIyyeXLJDs7B80JZ2Zwn32WdHvb9HtQyjQVFQKiiPj6dSPc53JjETtwcwSbB+5zOT09bgwaCkG/WiR/+7a5pr2eeZZte7z9QxEew+LE6Pto7OTf2yPd3yfd3ERtbhJfvjxuxKwbDZJr13AuXrznffl+MnpeVbN5JAN9HMMjpbmGE8Xnca72UCDWUQRKYZ87h/3kk0Ykzu/DrW+i+wPS/T2wLPbOf5qf+tbPcG3ja6a4GBjx+lrc5L95RfJ3nvtP8Bbm6WtTVJaAazvoZhN/dgZvd5t0c9MUoMIQGg2W/6U/xRocygb35mZZObWCvHYFL01ZrVQJpiqoqTqO709EkNmmeHH5MqnrMShViL/3z2AlMX6vC9euQpqidnYQ09OoIEBvbJiImkYDa3ERa+iYF+UywcpJ3tlu0m0Om9oKcIoFvHqdjUGCEykz/APdOB2L8QU3+6dpRkZGRkZGRkZGRsZ7T/ZL4yPAERed1ljdLvn2Os2FRVr9ABAH06SHzbXacUp3to436CMKBdpRwnY/JFIaAfi2xJYmBmW9M+DidJH5ok+sNI4U+Fqxt7FtnL8YAUEUiwghsAd9nLdukgwjOESxiFWrwR9hEfw7icV4vzkSLeNXST/1KeJXX0V1u0bM8X3knTXOnznHpR1Bs3cghFcLPhfmKhSEJl1+HpbOI619hAsyXzsSH3AcwnEQlmUE1GLRiIRDsVTHMbJcRnz7Fc5/7vt5C2gEMaBBSGo5m3O1PI3rN5nPT4ib/T7WmTOozc0HxovcCx2GpDs7JFevIhcWsE6dMtdy2GgxuXMHWSyOr2m6vX1EAB+hGg3S7e3Hcv3vLmZIYL0XsD+Ihw1QBWDRTwWqH3F2omHlw3AoNsJ1TfxDs4lsNlicnWejVCLY3TNCsGXhujbVouCd7Tv02opivsqyk8MbNk/USWKco6nJC9dxbByj9yBfyOHlc0SpMrNEHGcsgru+R94+EB9Vs2lE06GbVScJIpczBbV6/ci6J4VJ1e8j+z3jqBeC3K7gLyx/nl2rTV8FFJwiF+qnmN39JkodONLN8fQPhNr2LtbiSZwLF9BxjOvmkP7ACJ6Ogx5lKg8dw9ZkwUlKdJIQfvnL5vmzLOMy3tzEmp424ilGdF+mwrQooKWma9ukydAFblnMTy1yzqlj7exArUb4la8cZOMPRXi9s0N8+TLOU09BHGMtLpr7c9jgUvV65vxNiLt3B9IIKQ/iMByHeL9BurNDurY2niGgowjV6+F+7GPEr7xyWAgfnpPx+jwPe3ER3esR3b49jnAZnS9RKJhs8vsUTd5vrLk50t3dQ9nZ2LYZJ4YZ6MJxDhWfhW1jTU+jWi3SvT10EKBaLZKvfQ1RrWItLqL3ryB3dxGuZ76jZ+u8mSRGANcJ45kwWkHc5drm73P5Yzuc8adpDWIGw7xvJ+8xtbTEfNhFvzNRiBACvbWFc/ltTp46RXBymSRJsG0bX4BrCcQTT4xnpeTuMStFVqvETz/LRqNDGEboyjRqZxs7hvnVk9hf/ypiehrn4kXit98+GAO1Nk0yCwXSmzeRn/o0e+0u3V4fXGc4xEsqUzU2BjGDbkTBtRkkirJrc6KSox2lbHQDTlTyH/rG1hkZGRkZGRkZGRkZf/T4SIrgP/3TP81/+V/+l2xsbPDUU0/xkz/5k3z3d3/3B71bj417NuGTkmgUM2FbCDtnftQP/9NpShSEJK++ikgSwpXTYwG86FoMEkU/ORB09oOEmbxnel0JgZ/G5KeKrDurxNpsT/d62IM+8yo6FMGhu13iS5ewZmbedXTDB8ER97CUcOYs8YWL6HzhgQ09P0is6Wnkpz99JJZj2vPwHYt2mBIrhSMlZc+imDet1r5TgVdWq7C1BXdlKY9dw1Kiu11K2xucK1SJSyVirXGEQEYDmpu7WJZFrj/RfFNrpO9jP2S8yN2MIjKSjQ2E66K2t8cxDgwGiGoV+8KFQ8K2npg5cRwPWv5umCxmNAbRhAB+QKo1e4OY+UJCLecet5ojHMmiFgJRdrGKA6R9m1xnl9X6k/RKPmnexYoj9kSD//kP/2f2Guvm+hWL1Isz/MDZT7BwedtkHqcputdDO85YbB3l/N6N63ssLc6wdvkGQas1Fl29fI4Fy4F3LqOfew7ACOC2TXLt2kEMiuOQrq3hPPUUcpQxPdzOSJhU/T7prVu4QYBbnSHsBWjLQoZ1plUZa+4JXNehns+De1DU0UodEsDN9gro/RYqinCff55CGOEFW4TDbWkhjJitFF4+h9/YM5+zbUShQHLzponWGCJ8Hx0EpLu744aCRBHlYp0fPPsD/NL6byGjNkkuh7ZsZqdX+OGLn6d6ZQPtOCYSqNM5fFKHbnAdBIicIPenzqFbW+goIGlI0rVdRKmEc/aseb+UBxE3Iweze/QesuLYCOBDNztKQRShrl8nnZvDPn+e5K23xufrXrMydJKYZ3hqyjjTtTYzh4Q4aNz8IUF4HvaJE6S3bx8ugg2F7lGjzVHxd3K5DkPE8LqPmkEyGKB2drCfWkXdHCAtG2thEauQ0Ax7QwEcDsVSaYW2PHaCFtPr16lN1aiXSighsPIuVruJ3esebjZq2+a6BgHqt36LwlNPjR3/IpfDev75e46VOgyNeN/pkBSKrAuXxLIRvkRtbyMrFVLXZce2WPmBH4D1daLXXkOkKRSL5vqO1jWMqQpcn7gXQHrwLJVqJbYHEV0FrnVQcGlHCTdbA1bKObpxSj9OH6lPSEZGRkZGRkZGRkZGxsPwkRPB//E//sf8zb/5N/npn/5pPv3pT/MP/+E/5Pu///t58803WV1d/aB377FwryZ8Vq2G6zim8ZjSCEsad6dSw/gJjStA9XpGoF49DRgH+CBRxOqw6KY0NIJowqXl4BXynJ5W9OOUuNNBWAp3ew0rjpAXLxqxI0nGjsi783EBBnFCJ0yMECoFJdcm5zz8rRmnaiIC5L0Xo4/EYkhJfO4Cm6kgevsq9qlTCNf9UE/lvlcsRzGfo5h/77flrK6SeB7p9DRqdxi3ICWyUjH74bqoS5fwXI9GKokGgRFwHAe/UmZxZQF5bSKPfCiufSf56ZMRGaJUQm1tkd65Y6JWLAtcF91skly5gpyZgatXx1nVOk0PxyLcdZzvB4NEHRHAR6RaE0wUqu7HkSxqIZC5Hvry/4h2InRjHx1F2CefpuR+kvj2gF7B4Zd2f5P9eNggcOjq32tt8s/6v8e/Xvs4uXZ7YiMakcsZ9/DcnGleeAy5YMCKTAjmp0kAmcshHYsw1aT5ImprCztNIZ8nmcwB9zxUo4Ha2UF1OkbUVQrn/HlzfziOGWe2towgvLbGfK3OZt4n7AfoKEI4Dk6asFAs4VgSXTsL5UVomxzvQwJ4bQWl6kAHPRigmk28uTmWTjpjp6xVLKLzeexe96D4Z9vYy8vIuTmir3/98HUIAiOYRtF4toSwLHQYspqb4d/8xP+e24NNeiqg4JU4tXiRwiAlUVtGAO92TVwNmALEiGIR7/ll5M4/QV171WxHCJzyItbTnyN6Y4v46lXskyeJXn8dogjnwgX8uRXCQWCypifEaNexcXc3zH6GocmFFhMzirpddKWCffYsutMxzS6Xlu6ZeS+kPCjCwiEH+YetMGrV63if/vTRGTSl0njmyd3FZx0E46x7PA/C8KCwEIZoOYt16hnU+mVQKdpKqE7nhhvMgYrHMx4QGmUVKLtFtJQM9vZhb99sd06hO10q5SKTZ01IaZoPDyN0RsL0g2bLqGaT6NVXSW7dgiRh8OQzDIIEOT2NsGzTCDUMUTs7hEKwearKnSXF1lwZpRUrdoXzlk2+30dYlhHcp6dJ0Mi7xi0nl6fXHo67HJL9aUcJaiiL32u8y8jIyMjIyMjIyMjIeDd8+NS6d8k/+Af/gL/6V/8qf+2v/TUAfvInf5Jf+7Vf47/77/47/v7f//sf8N49Pu5uwpfmcgSujxyEnJiu0OoFtKIYnQxFcAnVvE9+exPd7aKUwkdTdi00HHKAAxQdC9BEiiMuLceSlDptkl0jLupeDzyP6Pd/H91qmR/ljmOapi0sHBIxG4OIq40eveFUb4CCbXGmVjjkbh1FOAw8n7awibXAtQR5W7IzOJxh/l6L0XfHYui5eTZTQRiEiELBNAcEAstmPS5ycrryoXSEv5/IahUnlzNO2DfeQI0aZOZyxkk5M0Pwu7+LE0UsLywQzc2SWi6WTnHX1/AKDnoohDxK5MlxHMrudV3z55EQnKbGsW7buM88Q/zqq0TdLjKXw3riCeTQqSsAhkKl2tszYv7s7Htwph6MJe6/XD5g+YjJ8wCAq9DX/wl6/xa6XDaCXhQhOpuI6Jewpj/Puhuyd3PnQMybEEGbYsCdus3Zm6MdMQ0Y7XqddGvLCNfDZ/3uQpUnBFa3Q6HbIZxfZKMXEEsLNRggtMb1PRZyDt5gcNA8c5g1TBSZbeVy4DjowYD4xg2cs2eNMCnlwWeUwn7t2ywtLxMtr6J8GyefI+9o/OH4IPJ15NN/GfX6P4Kd6wfnp7aCPPeXSDZ745dGTvNi3ueEFPR7A5I0xaoWyakaVreDLhXMGOv7pkHgSDQeXYe9PeyVFdLt7UOvy2oV+8wZ3DSlEtcPzXRIt7bG7xO5HGpvD1EqIcplIypLibUyA3f+GaKoD45fa3TrDpJfxzr5OeNejmNkpWKW7+0xN7/I1lSNODrIN/fyORanK8g3vkUK5jkZrg/bNg0a5+dJbt5E12oEtTqqWMLp9il4Hbzy4cgka3bWZMDfHS806hOgNdErr8BQXLampj5wYfxeM2hG+3Wk+DxywxeLWEtLJO+8c3iFykP5nwKxgQ4b6KLDkwScnn+Za83rEO4DAu3VUHaJU3MfZ6l8DpaBRhthWcipKbMu1yWRFnefIVmtIopF5PS0OefF4n1ny+gwJH7jjbEADibTXkcRanfXbM/30c0mtufRPKn55+u/xj996+e41b6NoyXTfp0/d/4H+Ssrn+dEaQU5NUUchthSovo9fM8jCM1zk05s27Yk6V1adzL8HrfEQw5qGRkZGRkZGRkZGRkZj8BHSgSPoohvfvOb/K2/9bcOvf65z32Or3zlK8d+JgxDwgn3W3vS1fhHjJFLthclbHQDwr026f4+0fQMiWUxV3bZ3GuihaDie5wru8jf/D3TvK3fJ9fY5US5zvYgoh0d/FwtOhYLBY9UaSxLHHFp6TAkvnWL5J13sFZXSdtt1OXL6JHgkSQgBMnamhEI5uaQxSKDOOFqo0eYKmwhUIAEwlRxtdHjKVuSc+xxLnD7/EVudCO6UYgUoBFYUnCykidSB/sbKf3AXNFHcY9rrbFWV81x2Db9+SXCrT2T7bu7e+BSBdJcjq59hlq99p1dxI8QwvNwlpexZ2aOCEnxtWsIIYw4s79Pbn9//DmtFEKewTp79pEiT+7FoezeURSDlFhLS8hy2eQ0z86SbG+bbOKVFezlZSMKt1qmAeSwAaIol3EuXMA+ffp9y4P3LEnOshik6ZFlOcvCe4iCS5wqutImXlzBAnL9LnZ4BbVvYjpUp4O9egKRc5G+QsZNrOWEXgcjmI4cvK5rIh7CENXr0V8G59lnjTju+0acu34dooh0awurXmeQL7LRDQ4VqpxYMDu/iBMM2AhTYkzWtG42UWFI4DjcyXms5kxUCK5rtj8UwO0zZ0g3Nog7nbFAq/f3cV94AevMGZKtrQPBXylks0mxUiF9+03sJ57AOX360PmR0xcQL/0fUdtvotu74BRQqm4E8AmhepR3rZpN9KVL+KNtSImcnSV6801EDuxCAEkH4VdxXniS+JW3D6IrlCK9cwfrxAnslRVTHHrAfT52Hff7yJUV5MICan19HCeB6+JeKMLOJlSXEZ53EF8C6N4W7kmHsK/NeDXxTDivvsLqJz5BODdNojS2VuQcGzfnE5bLZtbE+M2OOf9PPEGytkZ88jSb2MQI6EfQj/AGMUsnHYp5/1D+vPPMMyS3b5PevDnuTSFnZxGFAoOf//nxPsnZWbzv+i7sxUUj+N+VX/9+iuMPmnkyWXxWrRaqZWZM3F3gAEApojd3kNN/FmfeQnsp086Af/e7foKf+v3/imvbDVR+kUhLTlef4Mc//jfodAYgBcWlOUTD3Os6DJH1Oo4Ox1E2YMR3+/TpcVNie3n5gedKNZukjcZ4tpacnsapVZGWZ55pz0M3Gog4ZvCExz9+/X/kN6/9JtcbVwCBY7mkUvNr13+VE9VVTosWrc6A6lSFJ+iA4zLjWOwAQRSPC3q+JSk4Nu3ocCq9bb7YyTvHz77JyMjIyMjIyMjIyMh4N3ykRPDd3V3SNGXurh+tc3NzbG5uHvuZv//3/z5/5+/8nfdj994z7hUfMogT2mFCKzL5q47nogB3dwe7UkNIh2eXppFRRH5rA+tr3z7smNzYoF6bxinmyNsWqTYu1ERrEqXxhj9M73ZpqWbTTPfudIzL0HVJm82Dqd1g/pwkpnHYMHe5EyZEyojRyYSwbguBENAJE3yVEr3+Or2LT/NmY8D+4CAD1bVtqr7DRjdkoeiRKI0Ugl6SEil9z1zRUZHgYdzjyeYm0eYWfWGReC62ViDAmpkm2dpGLy0TFUukmHPlBgOizS2SKPhQuBnfL1S3awoC/b7J/q1UxvnvxwlJ9zsvQkpEoYC9vPye7NvdjfrwPJwnnzSC3K1b4DhY7TY6TfH/5J9EdzroJCH+5jdR6+uIqSmTZTx0jKOUafJ63Dl4DI1TC67NfNFjsxseEsJzlsV80XvgjIdxUawXkbb7ALiux+LUCq60QQ1FND+FwTVo9kysSPcNSlSQBYGOTHa0nJqCJCEdDEAI8qEmuXULkc9jLS4Sf+1rY3e9KBQINjbYmFki4vCYEVs2m6lgulYn2t5H5PMmwiQMx27zKIwJ61Xs/X2spSUYFivl/DzJ7dvoMMRZXjaZ2mkKnkd86xbW3JwRA2dnjbg3dPCnd+6YuIp75FaLfB258BLR1ivo/QFwOHd79LkjsTKAmJoi+sM/xJ7WiNbvoDc3DhrCTp3Afe5fI/rmzQNhVClEmmLfIz7kyL5NuI7V+jred3830Ve/Srq9beJ6hEA4KXJmFpIYHAc5Wu9oHNYD1M4+rKwcXrlSWIMBuZvXEcNGp8K2iX0f+8knSff2jHDteRAEiFIJq1olLvlslx3StIMUFuCjY4dwELC+12K120a/9pqJfPE8M6PCtvE+85lxXnx89aqJi5kQ5dX2NuFXv4r+xCdMgXaiQDaaFXLc9fugGI9vnmcE+34fWauBECYKSinTIHiYi55uNND9CqQpztlpnrVv8fee/VHedH6cnSim5ORY9avkU8lu0mEQBXRRlNwcan8fWa/jl0sUi9PI7/meQ7MEdKeD8P2HbxYcx+NeDdbyMmpvD+uVb2EVa0SDAFmvg+MgTlX51vaX6MZdrjevDePUUuI0IIxtvmv10/wvb/1jctKhGw4Qrsupykn+xsd/nGK7xLQrEZUatiVZrORJNQSpYtixBICya+MIyUzR+WM/kyojIyMjIyMjIyMj4/HwkRLBR4i7RFqt9ZHXRvztv/23+Ymf+Inx39vtNit3iwQfIo6LDynZFiuVHDdbA8JUjd1VBSlYmJ8j2NxCNvagKfBUhPs7/8KIRhNxDmLoiK36Di6SVhgTpilKCDxLYg9/lLpSHHFp6Tge54/qbte4BS3rYAo9mCZhngfDhnkAsdb0osMCOBjRffR6urdPlMuzo8QhARyMttMMY6QQ+LbkRqtPxXM4Xc3TGbq87yZO1REBHI53j6tul+7WDhvCJej1xo47a0pTKBVonD7DbqQIe8OZBFrjOQ7zc1WSK2+T3rr1oRNsHgfJ5ibJtWvEb7+NHs6kEL6Pfe4c3gsvHHv894xHAGSt9p5Gjdyd3WudOEHcahM+9SyJZWELyKkU9eYbJHfukD79LN1ckejsRVwJ+du30F/6PaxKBWtx0RRzmk3SSvUgDgONc/ltuHZtLHTKWg335Zex5+ff1f47lqSec028vlbj4pQtzOv3E4wm73fhaKxSCCoglR6bdpnllZeRN7+MNTeNbrwJzW00oAWIlTwnBj3qTsR+qQ6WyeNGSuJqCc+bI16c5erUFEv7Cu+tt5CVCqrZRJZKpHt7BKfOEnZ7RgScxLZJyhUiezguDx2uRsx1xsJtrMHJ5cxYIs1xykKBdH0d58IFE7syvIdEPo+cmjLXWwgTC7W7e+ByrdeRlQqyUEC1Wse6io9EXEiJGAmBaUp86ZIZ3woFk+Pd6x30PbATxPZvQLBrXhPCZMrv30Ts/Tpy5uOorfb43nCeffaRimR3R175f/pPjwuQeB52fh+191toZc7doegbIUC5iELhoPA5wnVBKTPjYWJWlCgUsM+exfvkJ1FPPmmONY7RgKwmJE5EvP7rkIaAALeMKJ8HZ4aw1aabBPi3b4+vtzU9jfB91M4O7vPPE9+4YZpqTjbPHaK2t9G9nsm5nkAPBsSXLuHep8njB0Gyvk70h39omsI2Gug4NrEuS0uoZhP71Ckjhvs+0vPG1ya+0iRdPMn0jODF2ZOsbb4JCvT+NsHgDWYWXmAHj8FgF1U9i9xt4BULLJTzuK4Nq6tYc3PfUbNgGBYIh89Gur1NurGBiGPmX/g4mzmfOAjQgwF3ii32B3skw4IZ+uC7/VOrn+Y3r/82YdzlhblncdwCURLTDJr8T2/8LP/hJ/9D8mmBJE2xLYuq73O1NUDoFF9YKK0pOBanqwWqfiaAZ2RkZGRkZGRkZGQ8Pj5SIvj09DSWZR1xfW9vbx9xh4/wPA/vQ/Rj+n6M4kMmBXCAnGfz1l6XVOmxWA3QSxXr/YSFaoVgv2HiBqbKyLk5dLN5MI26XMY5d85MP/c8CsCZWuGebum7f6QKxzFuTDBCVRRBPn/QCE1K46CNIiNyDc+3hCMC+IhEa+MS63To1aYJ78oodyyLKNUorSl7NkprtIZWGHOt2edkJX9srmg/To8I4CPudo+HrbZx0A4CIx4NhfBkv8leuYaWFmFinLUmLgIsrdnuRxSXVnCuvvOhFGzeDZPxBsJ1wXWJL18muXJlLICDaRKXXL6McF28T3ziyPHLYhH35ZcPNxzlQDh+L6NG7hY245OnuXP9FmFzuL+ui1fMs/Bnf5BupcqVdkBnt4OOY1SqqJZneOKHf4Tcr/+KcbWWSvQ1rF+7TdgfIPJ50s1NXGDh7DmcK5dBKVSjQfTVryI/+9l3fTwF18a15CM1gI1TRWMQoQBP9WFwibB9ybhr05TYKRA9+y+T230dq2yhbm6PP6tLJ9GdPh4+f+bij/LPtl9jr7WL7fu0+/u0+x0+vfQyv/r2z5IM2tRLK/zAx/4kc69v4Tz/vHFMN5skloVONMeVIIXvg2thTU+j+v2xIDc5g8QKBthnz5qxI0nM/y3LxC5tbRmnrdbGDW1ZqHab5M03sZ96Ct3rYc3OGkFyaop0bQ01nJGS3rlzT1fxoYiLfp90bY1kc5N0bc2IxFJiLSyYhrjlMrrdRochdilE39g4GAuH+6XTFNHfwT1ZJKkuIHI57JUVrHr9ke+DI7MqJv6s+3tQWoTd66YY0WodiNqVJVI1hX1iCrW3d+R4R/ExI9FZJwlqYwPV6+G9/DLJjRuorS0QAmuujLReIS2egyQ0ofRCQtyB7hXwEig9QRJMRF0kCenuLtb8PAwbjBIEB00yjyMM0ROzOMbHOfz8ozbIfVwk29sEv/M7qO1t8/2WyyFKpfEMBO9TnzJFHMcxMUKdDmkcj5uwqrVd4nCGeFrB3hXTLTI1LSIH61+nXj2FqCzhlT1yi7MUctY4zx4eHNlyP2S1ilWroYIAvbU1vl/sP/wmS6dOEZ84TRJFXEk6FG0fh6PjzWJ5md+8/tt8cuWTXN6/ys3WbRh+Xc+U5vjcmT/Dd618L87EmPWUa9MJExKtsYWg5D1aM+yMjIyMjIyMjIyMjIzvhI/Urw7Xdfn4xz/Ob/zGb/BDP/RD49d/4zd+gy984Qsf4J69N3TC5IgADuAIQTOIyTsW7uQCIegrgc7lgAbCshC9LtbyMvbHPz52Oo7ydq2ZmfFHC67NiUr+oUQ3Wa3C1haiWDQuw1wO+9QClt0EPQDpk3RcdMe41EYuX8eSFByLXnz0mAqjbdk2sZRHmgNKKVCJiSbRmIgWzxJoBEGSYonjc0WPc4ffa3mAJBwEwwUpIp83wlZqssE9KcaOz1GOad13uLPXYmZ1lsrOjnFALi29Z9Ee7xc6DIm6XfoKUmnh+D5+GsPbb5nIk9H7oggxNXUoF328LAhId3buKVjZ8/PIz372IELE88bN3N5rRsJm1O2y2egROx5yenqcVx/U6my6eRqdkN2eueZSWhR9j0jB9cTizJ/+Pvyb19G+z3qrT9g/yJzW/T4hsEGO5dlZ5LAQpxqNcfzPu8Wx5LHxPiPa3T1ubF+hG7bJFabI+0v0Up/OoAPdq+SkZqZ6msHWVxHYoB2SwQ2sF76Avv3z41wCXTmJOPHnGLjLbEQWqt3j+07/MNthkyBus9G9Sdha587VnycdNBCOzf7gBr+sd/g3Pvd/QL+1Q/TWW+ZZmZpGaRvhOkb0vgvfsfHKJQKtjUg4kaPs5Xz8vV3UzjbeZz5j3OJRZAowOztE77xjnj/LAttGtduIYRST3N83jSNtG1mpkF6/jqzVDgRq7u8qFp5nmrq+/TbpxgbpxsaBoJwkpMM8bmtpCWskeOrh/TDKnYexEG6OX+KcPn2sU/e9iNIZNfhMX/l/ozevIAsFKFegOI84+echKpO88YY5X0P3tSgWsU+dIvz93z8QwIf38yg6Jr50CbW7a8RzKXFOWIjudSx/0axLpaCH1y1oIPIrIAIsdde4niSmiFQsmhgO3z8cmTXJKH9+KCQfWXyMe/yDQIch6Y0bRgAH04i034d+Hz38XtWDwTiDXnqemU1g2+ggMHn1xSLW2bPYelQMPDgnWimC/auIzm3quTL+ZgOnVn7P9l94Hs5TTxG9/fbhgoRlYQuB12mig4B6Lc/V3iae7XG6eoprw0xwhCRKE85OPcHt1i36QQNjZRdoKdnqbvPlm19mpfwkll0/FDuWid4ZGRkZGRkZGRkZGe83H7lfIT/xEz/Bj/3Yj/Hiiy/yyU9+kp/5mZ/h1q1b/PW//tc/6F1710ihOVHOkSiTBa6BtfZg7KYe/Ya1hThwWEtJajtY09PD/HCBsOXYQQkHOat3CzMPEt1GCM/DWV1FCEGyt4ddSyH+OvrWm0bAkBKnuox47keQy8+PxR1HSpaKPne6wSEhvOBYLJV8HCkRxSJumJJEMSXPuMdATPxeFxQci0Gc0I9TI6oIQT9VdKOEWu5QWeBYd/i9lid3H/uEQJekKXnLYaXko4RAKk0QRWw2WmhhEaVq3FAuqdXAtt91LMbjJgpC+r0BcZJAmrLb7hMP4x5ELoejUhYqNbzBYHzvqFYLmk3k/Dxqff3oSpPkvoKVLBbftwaTUZLSxKYtbOT0LLZKEL0eSlp0kTiWzSAIxu/Pew79VJOmKe14QLmWR3hF6vOzxHvN8fv0ROxP2B8QTk+Rm5iNcpyI915zffNtfv6r/4i9xjra92kJm6nCNN//zF9ExAqd9Big2VE+9eIJwuZVtN7HiXxkdYG49n+mf7ZNKjwsUpzWOuvthChokkxfoBs42HoJkoA/uP0GJd3BL8xhB01zfGHInvUON9e/yDlx0jQ3FQK/08admiPe2zOFkAkR2pWC4tDhvqEU/ZF7WSm8nM+8pRHbW8ipKdSoAa0QiOVlxP6+EdWHkSO62zXFCGEabKr9fWSlgm61UBhns44itFLjaCZh24dcxWmzafKVgwByOTPTIUmMqDl5DYUwsSCtFmJhwVxjpRCFOvqY8UXkcgjPR9bmoXq0GJRsbt5zRsSjjhly+gK89H9CbbwGYXvc4DNd74HewT5/HmtqyhyTZSGKRVSjcTh2ZOhQRkrj3E6SsTCvOh2E6EDUJ997C9d/mqi/f9A41bIQQuHoBL93UBgbnXc9GJCGIdbKCnJ6Gjk/b/LG72r6Kufm0FIeO4MADuf8f5CMMsCPZRg7M/n83x1pM4ovSXd28JIYp7RE3F0/XEgB3OICXhLfM8/+3SCrVezVVVPYCUMjgJ86Rbq2Rry2BpbFE4tP87/uXOKls99LLV/n59/6p1xtXgetKXtlFksLvL3zFv1kGI0jzL9P0NCLetxqXOLUzKceqml1RkZGRkZGRkZGRkbG4+IjJ4L/K//Kv8Le3h5/9+/+XTY2Nnj66af55V/+ZU6cOPFB79q7Yrsb8PZ+j93BgaBY8xyeqOUJUyPOimETy4JrHcratqVAlkssFH1810bXqt9xhui9kNUqTi6H3L6JevW/RaRN5OoqKG1cgkKiB19C2E+PP5N3LDSwWPBRaBINtgA5FLnzjoVVrVJstoj3uizUqqA0nSgdGwirns1MzuXNnc6h3HehNVd2mjyZs/B6HZMXXKmQdxxcKY6NRLk779wtFA5lSU9iAZHWbLSGmcDDa4C0EI6Nq5Vxjts2+D7JlStGSPqQ5oN3213urG0SJSmeVuwhiRWU8nmsfh/SlGB3l436FKuVKrI5FOxsG9VoYM3Ooo5bsW1/KASrzn6DO1dvQ6lIpxtAkmB5HuVyBZUkpGGMQo+btPmOzSDVxKnCkhKUIkWgpcWGtvBdlyAyohQwLr4gBOldkQGPOwqn3d0bC+AAseOSpjE3u9f5x6//v/j8+R/G93ySYMAgGkB5CZpX8Zwcuf4V+rWn2RCrBLu/i0h66CimsPoifdlGOh067jSx8FFa0ZcJCZpUSLraoVKcRwY7YNkIKemnXex5h/iqiTuxggELvs1GmJIOXcBwOFrJsSQnakX6zgnCnT2sYIDXaYGG8IUXSYslrCgk53pY/rA5Y71uns0ogm533IxTDmdrkKYk169jX7iAiGOSW7eMsGub/ZzMqNZxTLy2RvLOO6a5r2Whej0zM+E4EVoI44AebkcnCarRwD7zNDTPwfbVg7fm82YduRkoHP0OUt3uEQEcKUn9HK2dPXS+iON6D4y+mUSWZ1Hhs6Sbm+jOAOHZiKkpGAxwVlePiKhJmppxKhnlPZsIK/vMGdL1dZPPPYyiEaUS4sIyOnSwN7/C4pkzbMg6UdAef9aRPguWRu7voR3HjJ+WhdrfN4WDYpH4nXeQ+TzeSy8RwiEhXM7O4r30kjk/u7tHT/9jEIIneRRXvo5NE9J7r0wdO8vgSKNgx0FuBSzUT7IBxN11UzjQGre8xPz0Kay2wn7IhpePilWvY8/NjZt6pmtrB/FWlkXtRpO//uK/zz/81k9xZv4F/uM/8Z/Qj434f6F+gZ997Wf5g1tfQiOQSPSw4+XpqTO0+03aQXO8rfs1rc7IyMjIyMjIyMjIyHicfOREcIAf//Ef58d//Mc/6N14IHGqDsWNoBXdJCVKwbVMw8tyzqM9CHlrr0szjBn+tgSgEca80+hzoW4aSqVDYTdWeizm+rZkJu9SdA8aTr2bDNH7ITwPqfcgbQECgsMOWBGtI4I7wCpgnOYLRZ+NbsAo8jvR4EpYyAuczluo/h7unT1OL73M9VaH6XyO+VLOOEIFuFLy5nYLpRnPIq94LkkU09nepT1VoPSl3xs3YnTOn2ehWHyovPN8PkfuxCqDm7cOCeEil6PsOkRaGbcoDEVwjVaKsmNRaO4ZIc33SdbWxgJcWqkgXBdRKiHzeVS7bYQ320aUSljHNOt7XIwjT4TN7WaXWDrYroUQmkHLHG8HqLiuEaiUIuz1GUxXKQxF8FGTwUmH7/g8jQSkD1j4D3t97ly9TdBqUSgVTWHGdkjDkDaQr5QhSpFCjAsptiXpR2bWAWBEQdtCLSwQRIlxEittGskVi0YI63ZNXvVE07j3usnncdzYvjIWwAG6IuSNxtv0wy7sKJbKi+y2tvi+k5/FChNSLFy/yoLdAZ2yEbhEMkUuvIDeeRUGm8RpQlc7+HPP0g9BJSk6VbhW3hQDnAJpsklSnsfpbRqndJKQj1Po7eM8/TQkCTKXw9tcZ7VSJSy46IJ3bLSSY0kqlRLad1HNJv25WZPH3+mid5sgBF61yuz2BvL3fscIy46DsCzk9DS620V3u6itLazz501zzygyzuNGA9VsmigUKU2/AjAZ1QsLJnLit38btbEx3h9RqeBcuEBy/TpyZuYg7mL8BmGe2WIRa3YW+8QJ0kYD6+m/DBu/BJ1NI5RLibZryDN/EZzSkWuXbm8fEcDjcxfYTAXh1j62XzKu8IkYiQcxcpane3tG2NYaOTWF96lPHd+ktl7HXl01hYJhPJCcnye5cwfheUYAH8aX6E6HeD3EKZ7CCu+Qe+d/YKX2IoPac6TCwXLzePEW6g83sU6cN41LRxngSYKYmsJeXia9cwclJcKy8D/7WSN2DwbguuaZmZoycTXd7uGxN5/HPnPmUF+C4xqcfqc8qitfOI65D4YZ+HfzsM+/rFbhpovXbrPs+oTLL5EK0wDXH+zj2hXkuSce23fDKBZFp6lpdD0SwF0Xq15H5nI8ue3xn77wf+EtscdOb58lb4pV28faeJ1/+fwP8gdrf8C1xvWhgV1weuo0f/rU9/Kld36PH37qXz20vQfFkmVkZGRkZGRkZGRkZDwOPpIi+B8FelFySIgtOJLrzQG9OCFKzWtTvsPFuibWiv3AOMAtAak+LIRHSnGxXuRmazDODE+0pmBbnK4WjkSCPFZ0AKc+hXQ1xF1wSqgIuPUNSCPgsKv62OzxdBfnxs9BtItuNODWTYprv8WFp/4anTAlETnsQR+nXudyL2TS1F3xbE6Wc9y6fhuimFiZKetobfLFL10i//zzD5V37liSpdkp1h2HsN0xDe4sC69cYrFWYhDFdMOY1iACKdBxQsVzOF/x4J/8AsL3sYczENLNTcIvf9m4GGs17OVlI+QMBuPp9KJYxDl/Hntl5bELx6rZpLPfYKMbYler7A6FRruQxy3koD0ADUmckHh53ImM48ngAuG6WNPTWLOzZjr9UDwRvo997hzu009/4E1B+50eQasFgOr1yHkug9DkuqdpaiIccjmsNCVnSbqAaeV44O4uuQ5SSpSQOIDQkvTadXS/jw4CrMVFUsBVKc7aLXSaYk1Pv+dNPo+jF3aYWj5LYEE/6TPneBRyZb5y/ctEOiSKOrS7t/itm7/BD539AlVXUul/DXf3S7Rf+K8JIgfhKmR5Fp1+DNxtrFydBIikj1IBIBBSUHbmmSnOEIa76FwZlUaQpCAt6tVVVuIAZduo3V2cs2dNM1mtkc0G5YV5rAeMRcLzUNMzbLX6RDowTm/MszG4doP1NGHp5CnSy5dwLl4kWVtDNZvI2Vl0o4GoVLBXVkjW142QOXRpy2r1IDKl34diEZEkyFKJ+M03DwngALrVIrlxAzE1ZWZ0eN7hSBTbxqrXEaUS9vKyKQDm88SXL0P++7DKTUj74FaQS88gKgvHHu/dUTl6bt4I4MNeBKOonYeNkZh0lotRvwdA93pE3/gGslI5cj8Kz8N99lmEZZEOz5moVND7+2amwyhDPAwhlyO9tYPzme8D30Kv/Rb22m9TWvttdGkFsfR5kvAE8c0byOo89vIyen4etbuLyOfR/b6JiVLKzK5oNLCTBPf8+WPvhXF0SJKMo7Wib37TXEPHMee9VBo3OL27ce+DBPLJ9wPEV6+aot7kOb1Pg1tZrSKEwHnySeI33zwkhMvZWdwXXnio5194Hs65c8SXL2MJl0K8j0h7CK+CWPkurPrj7ykhq1W8l18mvn7dfGcKYQq2vm8KSGlKfb3H809+gu2SRLV2ELTQtSlWvCI/+MQX6IYdYh3jWS7NXpMvvfN7nKyfZqX8BGGSovSwj+pjP5qMjIyMjIyMjIyMjIyjZCL4B0CcqkMCeN6WXG0MaIYxErAlJAr2g5i39rpcqBfGn00nfkSOzM9KC2YKPkXXZGYnWmMLQcl7F82nBlvo5uvowR7YFXT+LLK0/EBBU3gg7/wjxP4r49fk1PNw7t9GXfsDRGHqyGdG2eM6DFGtTbj1P6HiBsL3IDVT9EX3Ns63/xvKfA86dVA7O+hej3P/1l9nxi+RYI45CUJub+2iIiNqONo4mFWrhZyaQts2qtnEmZt7qOnYBdfm5HSFfqV4RDAvuDa+JWlHMXEKjoBSv4Nz4xrqxAlUv4/q9Uwu8bBJJlGErNWI33kH1W4bkcZ1TcZwt0t86RJaa9xc7rGJxzoMCTY22IgFURQjRkUErUmThERjxLPQCJCjmBPhuiAEd7cbtWZmsE+fNud32FBPVqtYMzMfuAAOEE80kw2aLWYW59kBI4QDAk2xmMe3YNm1idLUCP1DDbzoOqyUc8TDQoBl21RESoQmBCPmra+TW1pkoejhbXrIp582xYz3Ie+858L/euUXuLT7FgpNpGIuzjzFX3jqh/mV134JDxshXfb23qC78BSVtV/H2fpt9PQLxKXn0Gt9pD+cJWJ5qDiHGoDr5swgM7o/hCTULp8/93n+xTv/GztxDxkGYNtM10/x+RN/guLODZLIOXDvCkGv4HDbC+g3XqPYvcZqaZlKZfae90Y/TomUPpxTPcz9joQgmpnFu/Q28ZtvYi0vI8tlrBMnSEsltOOQXLlinPlRBGmK2t7GvnCB9NYtU6RRauxKFrUa+tq1Y/dDbW/jnjyJyOWwl5fNjI4wHDe7dS5exF5ZQXiemdXjF0iefAYrDPHTCEfrB0ZN3b0sqNUJ2wcZ08I6eNoeJkbiiLN88nju06RVVqu4L744FoRVu026vQ2DAdbMDOnODgzjs3SnQ7Kt4Il/E1H6DCLaBmGjkhLx7YD0+i3k7KxpbJnLQb9vRNWdnWN2St2zZ8BIoFadDqrbhXye+BvfMK58KRH5vMmFTxLid97BPr2A3nwTohZYeZKkCjccnHPnji0qqmbTjLfDezVtNEy008oKydWrxhUvJcJ173nuJsVr5+JF85kkMUW1kyexH2EWiKxWcZ977j2PKnsUhOdh1Wqoev2e77Ety8R+FWqoPYWOfWRf8GdW/wz/7dd/iluNa8g4IrRsztSf4G986ifoqQo67tIM1gnTPoOowtmpU8wWq+/bsWVkZGRkZGRkZGRkZGQi+AfASOQZobSmGRohQAGOOAg92Q/isfh28P7D63OHOknOeRei9yT7r6De+gew9fpB1nXtIq2z/w63pUdPJhTdIicqJyh5E1P8u7cQl/7v0L3EZG6L2H8FzT9EXvibiPKZYzc5EiSs3C6sXzYfdWxEvnDQJGywjbWYEL3ZwD51iuTmTdzr19h3CvQGIcLzwbbGDSyLRZ/c5jAmQqmxq/R+jRqP434NQos5j2LOiBSq2yX4xtfQwwxwAPvsWdNcbNg0DswUetVoGHdluXxofbrbhaH48zgia8Cc64HlEvWM2GZN2vKUIgxCPD9HOBTBJeacyelpXJWS6x80vBs1VZXV6oc279yxD4RErTW99U2mqhVkuUAK1Io++WKerV5INwg5WcohHZtuohAILMmhZ9CVgkK7hRd1CaenSJFYKLyNm8jtbRKl3hcHOMCt5i3++2/9f9jsmvt8lGr+1s4b/JM3NT/y5F8gSUyzSNubQbgFnPITMPNdqPLLiDYI2zZiIsbBLxyHsNdnulymp6BnCZJh9S3nOczkTvAD53+MQbyGu/sKpcXnWAl7FPbvIJZ+EH2liZASnaaslRS/tP4r7GzfNPe7ENRri3zhwhc4tfLMseLkKCphtC86jk0kBxzMRBhmWKe3bpECcmGB5NYt3I9/nPDb38Y6dQpRLhsR0/dR6+tYc3OI1VVIU0SxaFyuw5iiY9Ea3e1iLS9jzc/jPPusEcE9b3y/C88zs3rafcJuzzTItCy8Qp6Fcv6B8SWjmKaRcJ1OCP8il0MUCofe/6AYiQc1Yb3f8smYrHRrC6teRweBKWqVy+NccF0qYc3Oovf7KBaJv72D2jRNgHEcZL2OfeIE0vOQ9Tppr2eu/XFIeWzPgNH3gep0SDc3jSvZ900TyVyeaGaOtFjC8Vy8bhu7HKFe/2lEe338vSMLszD7/cSXL+M+99whMVmH4SEBHDCzBvb30YMBslgkvX3bvNdxjDN+4tzpMCTd2xtHWVknT44bir4b8fpxRZU9CrJavWcvDJHLkS/kcPsxke9jzc2hgwCtFHVd5T/5nv+cje4VWv19KoVp5otn6CRlArXFr1755+z398i7FonSzBWm+dFn/jxnpk59AEeZkZGRkZGRkZGRkfHHkUwE/wC4W8hI7u4oeJfOkaQmGmUUiTLJlO9Qsu/25r4LBlvot3/ysAAubG55i/zi1/8zduUqsjKLsG2mclN8/vznOVk9ad7XfA0aryDcKTQNSIOxXV10LyNs91Au7iBO6IQJsVLYYUJhahqrv3awL3GC7nSMANFsIoRAWEYMS65fxz53Dst3OTtd41qg6EUpqtVEuB7Fos9pVyK//crB+oZ5z4+rUaMsFnFffnksgANGFBEC7XkHztZhw7Pxn9XhG0AnySML9Y+CjuNDkSY6jsjlPAaDEB3HdB2HhYrPfmATK7DTGGHb+LUqi9UCXruFnq5/IE7F74R8qYBfqYwjUbTWDBpNaDTxKxWqK/N4noNvW/Tz3tjxXxOw1QuPz45vpqjNTXKbm8du8/06J69tvcbv3/kDTtROcbNxncaoAZ3WbHTWOTd7ga+/8TuUvBkcGVIOUpLoaVQ0A42Y3GyIPztLPBKCbRtZr6A7WyRxl7pjUa8X6cQKLSUxgr0wxneneG5qhvKgA3YbXcyh4jKqD9ZCDh0EDOan+OdX/n/srF8dR/4A7AbX+AX1T/k3tM9U7tkj58oaNbi1bWS9jtrbM0K1UiAlVjp8Zoa53AiBKBaRlYp577AJrvXUUybfulZDdzpmNsYQOT1tZiqUSkYQLxRMdMtdiGIRa2bmngWeOFWs77UItncOPbODpsN6PMPJ2dp940tGY8YowsQajgUil8NaWjroOXD3ubkHD56p83D3paxWkaUS+q4CgRrm3hPH6H4fUangPv+8yR8fDExsjNYI28Z58klUmkI+j/3kkwjXRStF8vbbxqVv21i12pFCyKRArQPTxBbHQXU6JGfOsiU9Eq0o5vIM8jlUdYq8FVHqPY0ftCDqgQbR20Zv/wrUvnCkqDiKojp80BKCwDSHHMYbAeZYJ/oeqGaT6NVXDzLUeX+jrB43wvNwzp8/UiQYFzx9jwVpmdlsw1x8wXBszE1zwaugy8bJ3ilV2B60+V9e/1UGcZOcYwRwgK3eLv/bW7/AX3/xrx4upmdkZGRkZGRkZGRkZDwmMhH8A+BuIcO+WyO5S+dwLLhYL/LWXveQEG4yw4uUc++h4NZ6E5qXDwRwoFN7il+8+UX2W7eQ81V0UEYUi+wP9vnFS7/IXz79w+R329jWNiKOwVKI3Cq9i/8R7dLHiLSFKzVlGTLyNTYGEVcbPfpJSlEKbCmQpSnqs5+j4gjca78KKjIuxEoFFQRGELEKiKJlcmAvXEDmckxVK+SlRbs7IPIFjpTkNm4jfu+rY5EC1zXOz1zusYoU9vw8wvfR/T6q1ULUaiYSYCQmuK4RkUbudjCO06EoJKQ0ztzHJNSDKQJYHLgag1aHuZk6WzAWwnuDmIVamUIhh9Dg5HzyvmsEvZz/2PbtceAV8iydWeHOVcZCOIBfqbB0ZgWvkAeOd/z7tnVsdry6y8E7yfvRDHPEfrCP0oq1zh3mivOsVFcJkhChoRd02OtsIq9fActiav4Ui8ECujiFPXR7ymqVRWEdxDNFTUT3Ep5ImRU9tvYaxFqSm/sYuCVSbXL3bSEpeRYqmEEPDhzvYliPkzMzrNlddnZvHxLAAVCK3a0b3D65SbW5esT5mncsXClMJMrQbap6RnB10gR3a908O1obV/fSkhkfkgRZr+OWSsh6nfj1142gd+EC8dtvG9cujMVX5/x5IzbXaujVVROXMiGEy4UFU2i7z3jRD6IjAjiYQlOwvUO/XKBSuP/zYs/PIz/7WRO3IS3yMzax5x8RwF0pxg2PD21rMgc7lzONPI+JHnmU+/JeQqhVqyHKZdT+vhm3Wi1EoYC1sGBiQHzfxNPU6yTb24Rf/KJxcg+ba8qFBdyXXiJ+803s+Xmcp546IswfEqgnCoTimWfZ2O+Q+gmVlSVudgPaO22EayF1QD3/PKefOEPl8v8Akfm86G1jzTSPvT4wLDgGgcmtny7ivbQIURs5o1D9BdLttllWr4Nto7pd4jffPCSAA+9blNX7haxWD/LYj4lmObaXx6ivxsT3gxpErHfW2O7tHrud3f4eN5s3eXru6ffluDIyMjIyMjIyMjIy/njz0CL42toay8uPvznTHwcmRR4AKQRVzxlngqsJp/jI6V3OefiWoJOkRKmJQBm9/p4SNY/krdyya+y3bpm/qPCQMLGzcY1rnd/jzDduUvrCCfSgD8WT7H3m17jZg34/RQpQaYgli5zzQ3wUl3d7dMOYmVKO7UFELzDRG2sdi/niJzjx7ElKr/4/QEUIy8I+dRql8qj6c/jLORMjMBE3kQP8vEu8tkd8+TKyWiXJ500GsOti1esHwtdjFiisahXvpZeIL10CKZFTU6QbG8bZWquZ6fbVqhEYlBq7D5ESOTc3jlt4XMhqldz+Pq7rEEUxWil6O3tMV0qIWglshynPppjzcP13f64etVnd46A0VeOU59Hv9EiSFNu2yJcKYwH8XtwtjOswJN01x+I88wzJ7dukN2+OnwlZq71vUSgAU/4UepirvB3cQWtNKjT9uI9CU3KNw7JenOXPzXw3uY09rJfPYq+ujtdRACNohX3S8A6Wq/B238S+8hbzq3+KjchlsPY1mHkRwhRHwGwph23n4D6O0c7WN+8dg6EU3bBzVJwMQ2SzyZy02YwUsWUP3d6QO3WC2e0NxDdvDjckECsreJ/4BOFXv4qQEjUYYE1NoRsNrKkp0t1d4rffxj5/flyIsubmTDTK8B50hk0ZheeZOKI0HTuc7fn5+57/eBDcO9M6jokHATxABAfjCJfFIg6wdFfTZJiYgXBXkebuXGuEwFpcNMsmne/fwX15LyFUDwbE/b7Z5jAyRqTpOBYJIG02Cb/4RdT2tonGcRywLNTeHvG3voX/vd+LNTV17Dhw6HwOZ8/Iep1enBC22tROnzAC+CAafkChlKKdCK5FkieXP4t7+edNM0eAtH+kqCgcBx0EpLu7oBTO6TK73hpv5yKaQUjN2uP8ac3U1CzxRohz8SLxN7+JmpqCfP7I7B14f6Ks3k8eFM1yv5iwEZYQ9KLuPZcLAd343sszMjIyMjIyMjIyMjLeSx5aBH/66af5qZ/6KX7sx37sce7PHwscS7JQ9MdCRz9RnKnluN6EXpwQpUb8uNvpXc55lO+z3vcEt2o6b07QSWOTNaw14KCVQnU66CQh3digu9oCIYg6NZy576bx8n/P642U/eDAbexbNjXfZb0zYCbvUvRslip5olQjpEAUPPphwlZ3QN/1uBJ4PHXyc7jXfgksiSjOYy1/gchbMhEqWuP0AkruQQ668DzslRW01hBFuB//+NgxatXrh4Svx82kgCRnZ0neeWccGZDu7GCdPInsdNDt9thNLIpFrNVV7MXFx7qfwvPwFxZY2G+w0WUshAfdPn6+wOJU+YFZxg/LEZGOiWn1BQt6NyHpgl2EwolDcTnvNV4h/0DR+36EzSa9dpckTrClxA8jpOPgfeYz6DA0otFdxZnHzdPTT/JM/Ule23jFvKA1VqooyhxPLz3PudIpLnzsR1kauOTXOlinTx8rbDmWpBLdQG//knHuxsblmrv5G6xOP0kwdY442odGiLe/C2trDCoV3JdewnnqKXSvZ+IrlDJichRRlP5YxDyOgpU7JE6qZpP4zTdRaYpjWSxVawTFMikudsHFazWxZqcRn/88qtcz8RpSmqaIi4vYq6smn7jTMZEcvo81P48OAuTQIX1cfM+DXK/j/et2Sbe3zbX2fROTolPux4OWH3tejnHZ5lBYjT2SiUIScDTXWmt0u421uIhz8aLZV9dFFIsQx8ZtPlGEelCB6jghVHjeA89XurVlGliOPiOEmQEzFMJVu429sHDs8U/eE8L3TRHEtolDM1sGP097f2/yE+ZYhKTb79BdPE9t0IdC0URQuRUj3k/meHseOgzRUYS1NMUbpR7/9Tf/v1zb/LaZkeM4nK5f5N/9+L/Nk/OniF99C1kuo7pd1OamiemZdNtLadzilkW6v29ieB7hPH9Q6DAkbTYPij/FIla9/p7tW96xKHvHj4eWMLO2is77N15mZGRkZGRkZGRkZPzx5qGVrr/39/4ef+Nv/A1+/ud/np/5mZ+hXq8/zv36yHOc0PGxWZvu43Z6P4jKk1A9B8Gr40iUonQgTSE3jbZqqO1tdBCYafGNBoVl43AOv/wWyV/+KbYim/1gMgJBECqN51g0goR+rAhTxVo3RANTOZf1TkDFszkxVaQziOilOTqzn6GeSpheIpEzdNI6V7fb9CaiWgq2xZlagVrORAfIahU3l3ugoPW4OCJ2VKtYnoc9P28EmG4XnaZorRGrs0i1DVEJnCJKzKLakTnXjxlZrVLO5fC7XfoKUmEdjjx5Dzi2+RyggwC18RpCfwMRbUPUMtE3+UU4+aNQPv+ebP+9pNtss/bOrUNxKl65xOLiMv7OFu6zR7Ot3w+W///s/Xmcpddd3ot+13qnPQ81z9Vzt6TWZEkWnm1swAO2GXMSB4y5DkkOJIQEcgPk3gTCAU6CyTkxcHKA5OYTPpyEQw7ByDYBO5gE2RhZktHQavVY3V3ztHftqj2+01r3j7VrV1V3dbe6pdbgvN9/pK49vdPeu+r5Pet5ogw/9U3/kF/86i/x/PIzvZ/fN/oAP/3Qj3PPQky8FANtRKmEffjw9bczaphoiHAn5gEdYzcvkpn5CnrwfQRXHESphBwZAaWILl5EBQHSdYlmZtDtNsLzELbN+HCZ/kw/a+6myYDeRX9hhClnsOcc1r5P8Pzz6CgiunwZtEZtbmIFAc7QEM6990IUobUmOHsWkckgMxkQAntkBGt8fI8jfxuxnVl8E1frzW6Plpd7ud3byHKZ1JsfxfVcAj+45jGu65C5zbfSbpetqtXoLC1Rt1xiwGr5pCsV3Gx23/LC7ZgSOTaG6Osz78FuySNCoPr78YdHiZRGbtZI1bewGt3Bwa6i2xtx0wLHTufGO3iDgs7dxYzCtrEGBtBxjO0JEIKoux87uysQ0kKgQQhC0c2PjyIYOIAcvxfdbu/N8fY8MxQJQzbGs/zKk/87M+svmKGNEKAUF+e+zqeDT/PzD/4kuYUFUy577Jgp/OxeU9r3TZb76CjRlStm6FksolZWEJkM9uHDxjl/9qz5zuy+N17qcb4RuwXsyHHpZHKoVArbtneiSW6AqtWI5ubMtjW6bmzbxp6awr3vvutvW1h/ycNLx5Ic7z/EcHaAlV2RKJYQ5FybwWw/06Xp29n9hISEhISEhISEhISEW+Yli+A//MM/zAc+8AE++clPcs899/Abv/EbfOQjH7mT2/YNz37LiYuv0bb0SA8jTvwYWv9LWDmFjmKmOqv0Dz1IJTVBvFDtZesKz6O/OMJ4y0FtrSHSabaCDB2tAAtEtxUT6Et7rLYChNZYUrAVRAggiBUQUE47bLRDtIahtEug04RWmmrpzdihxvEcLqxs0Awjk7HdXerejGIubjS5x5Z7HOGvxXL0G7qeSyXsbkxBND+P3jgPc59FVa4gvBQilUKkB7FGP0TcaLwqwr3wPDzP4069Si/b17KwRrNYYpFV6XG6U6fWWqPsFLnbUgzX/xJUB+oXoDkP9/w0FI7coa26dYKOz/zs4h4BHMDfqrMITOfzr1kEgg5DHlp1+ZW3/hwv+HNstDcouXnuVoMMn1lHHhxAHD/ei4aQqRtEc9i5PV0APZRCt1poK4t94pDJzW61jOt1YQHVaJgSxU7HuGO7wmWuGfLtI+/ic5bF2vz5nhDeXxjhI3d9lNKhE71rPK5UUM0m8eIiRBGq2ewJpWp11WRQOw7xhQvGcV6rocA4cItF4/bO568pt9zOfNa+f40L+qWiGo1rBHAAtbGBfOIvGH3zoyytbxIEOzEeruswlvVwX8aqgG3ncrMTsIxL0OkW5mqN6zqMRgq7UKCTKxpxHEi3Goi1VXNOVlaM2xl6orE/MMjiZotg8xK4LnpzEy+TZmxgEG99rSfYug888PI+f250nQF4Hn6zRaveJIxiHMcmkzMrNa7OIxepFMJx8DZqpAZGzS8tUu4MPMIImc4goxrCsnAsE58i+g8gT3wMUn0ETz21N8c7iohOn8Y6fJizYouLlRcRlo22NMTKxFShmVk5xRmxycOpFPboKPHFi+hmE5HJmNLmQgHn7rtN5nyng8hmjXu9W9oanDplhsbb12X3vQG8rOPcE7DPnSMYn2Q5Fvh+YAphh4fxMmlGc6nrrujRvk84O0t07tyOAL59XGZnEZaF+/DDEKyjay9AsAFeGZGbRCz/KQQ7Ln/cPpj4COQO7PtaQ7kSf/3e7+I/v/gHrLcqCAGOlAxm+/no8Y8mpZgJCQkJCQkJCQkJCa8at5R5cPDgQb70pS/xq7/6q3z3d383d911F7a99ym+/vWvv6IbmPAa0PcA8k2/hK6dguY6BZ3h2+1BHnvmM6zWl3p36y8M8yHvftJnF8GyEI5DoLuyt9YgdgT+tC2ptAMytkQAoVK43aiEVhjTl3apENKJYzJemrUtRbTVRm61UEJQHs4TOIAfGmEkm+1FLTSjmLof9UTw14Lrup7bbcIzZwjvvoctLQgVOPky+TiHd3YNkc2h2y3iyjrEVxCLC8QD3w2NBvb09B3NBn+ludoFvy2A25MKzvwLnhl8G7/y7G8zs3HGiEROkUP9d/HDb/47HI4aWHTINE7jrH0F0sN3NBrlVmg12/j1/XNr/a06ncE+3OtlX99hhGNWaYwuNhmlDx0VukWE3dxsrcH3TSzGzUphs9OQGYJqde/P4xjyY4j+YwRPnkKvrPSeWxSLOOPjhOfOmYiM1VWIIpO17DhM9Y3w8dEPMnc4oOk3yEqPyfQoxb6RnhgIGEHRttFbW4hCYa9TeLsAs1tMKFIpE3MhhHH0HjhgPg8AUSqBbaOrVXSrRby+jkilUNUq8dxcbyiFbZtok1bLZPUXi9fNqI5XV/ctQAUjRmaaDaYcTTuV2RGj44BUf/m2heRodZX48mUi22HJTuO32qZYslRCBwFhGLHhpWl7BcKtVu88OQJGcgXsuTlUo4H/xBPIUgnnnnuIbZvFzZZ5LstCOg4a8FttFoGpXB6rvoVut1/2UMcaHkYODe2JRNlGjozgDwyxcPrCvkW1+b7yNRE1WBbqyScZ7jRobG1RyKTYarZNcbJl4cQKyJAd6CMf12Diu2DkXkRxinhlhXhjY0+R5baIrptNNloNc5vjmOvOdUHTGxzUwhZWuUw0Z0pe7UOHzHnodExZZruNKBZN5E6pZK5FzyO6eBFRLqOq1Z3roPvesEZG4DaP824BW+ULRgBvG+e92txESEkwOspSw2T97+cIV7Wa+VxoXPW5JqXprbAs1NpT8OK/go2zJs7GFujcMBz5fyGiDVDdz7ygCvOPweEfvO5n9uG+g/zthz/JldoVGmGDnJNjujSdCOAJCQkJCQkJCQkJCa8qt6waXrlyhd/7vd+jr6+Pj370o9eI4AnfIKSHEelh4vl5ogsXmMjZfP/I+7niHKOpOmRlisnUMKkLc0akcF2wLFzHJmiH5DyHRhjRy2vtPq0jJUprJAKlNUIItNYmcxzwLIu6HxEJiVKapgYdBKSiiK0gJpvJELeaiCgGd+eP+2hXmehrQc/1fBU6DKnfdZJzlSab7QAhBOWsRz51hMJ7fw23OU924Uns5/4TEKMby8iRDYLTbbQQuOn06yI79mbs64IvlZBDHrzwC6wV7zEC+OpzYDugApRrc3pjnn/5tV/npx/6IazNNVz3bkZTB8g2Z6F0zw1f86Xk7L4SWbxRHO+JX7jmdqUQzmtzjnZHRwC9+Iht8XebbfH3hvvu5BGHvxe2/i1sLe78PD8CpTcTnptDLy/vjaLoOlJlNtvtDOgSRcaxXa9TOHCAExcuoLZitG4irEuEuTX0sWMIQLiuWdmxHQO0T+ngdryFEAIhpYmiAJwTJwieew5drRp3ru9jDQ/jPPgg0eIiIpXCPnSot3pF+z7RygrR+fPGGdx1p4tSCff++3EOHrxmUKBvEN0Bxm2ePnQI72VGMPUyx6OI8PnniSsVOifuod3cMPEv5bJ5/nQaz5IsNwMc28GhjQ4CdKNBp91m0XWYKJtSUOfgQcLz5wlfeIHg7e/C31iEfJ4onUG7LiKVxm638BsNOoV+svUts08vc6hjlUp473hHrxxzGzk0hPWud3Pl0tw1Kys6m5ssXISDntdzhO8WiPW996K++lWKtSrHHn0rl6SgGSqkMB0QuVyWQ66FvLBB7A3gFod39mW/a8p1kZkMRUuAk0LryFzDSnXvL0DaFEUOWUoRnz+Pc889RAsLxHNz6CAArZEDAzhvehO6UkFkMoTPP481OEh09izOXXehtrYQ+fzOKozu6gSRy93Wcd4tYHemDuJv7YoeUwrVbiM7HQLbphXG+5ZX6jBE7x4KAEiJNT5OdOUK1lgO/dz/hqiagaW2HXOcK8+g1W/A0U8iGmd3HhtUTURK6eR1tzvv5Tk5fP3bExISEhISEhISEhIS7jS3pGD/5m/+Jj/+4z/O+973Pk6dOsXg4OCd2q6E1wnbJWU6DMk2I45e2OreEoBsYB87RhTH6DAk9cgwYusplDjKYLqIRtEMjIAogJQlyXs2rSBEKYWWAteShDFIBBKwhAY0eVvQXl5FW9KU0AlBEMWkXduI33ETIhekB9LCvoFIuR/a94k3lhDNK6DbiEwZUTqCyNxe1v1+YoaOIoKpac5t+WyGCiEEo8Usq22fpWYHz7IoyRRO/j4Ovfso2f/+iwgiUG30VgBdAfe1iNm4FXSrgpp7Eimq6GwaFRbRbeNAttNL6PVTvDjwDiOAAyDQToEg1ihLc2H9RWaDBgeBIKiz5NtMWgHW/Px1hesbRc+Ibia86nSIZ2bQXRfx7vvcisPetizjUt4dwbD7dsd+zRz7V0dHgCkTdA4exJo2Wbu3IsqK4mHkA38XtfC8yWq3Mqj0FGqhgq4tXTsMcBxUrYYzPX1tlr1SiHTaRJgEAaphHLcqitCXLxMvLuI8+CB6fR2RTpvyRri2TNOyeuWIZiMFWims6WkjgK+sGBcvRlBXm5uEL7yA86Y3weZmrygTQPT1ETz3HGp5ec/26lqN4Jln0GGIPT5ujlm3fBIpUe22cb5bFjiOcaLvOgcvN4JpO3MczyNeXEQtLkI6jcrlYLOJrlSIWy2Tb97pICcnaNca2IUcNBvorS0T4RFFBLZNdPgI/MkXEZaFNTJCvLhIJED1D9DQgiiIEFqi/RDbTZPrTxGxM8TYXU55uziTk8gPfpB4ZcU4rLvHaKsT0ql1BXAhIJcjSmVQQhChabT8fQtsZSaDc999OFGEtzDLyeERmvk0QbuD7TjkRYh94ULvPbF9vQvHufaaimPsI0eQuRzHLc3hibdxceGrILuD2ziGVJZDw49wdM0CwJqaIpqbM4MTpXqfKbpeJz53DuvoUcInn0RVKljbnSlSGtF7cxNt273HbH+O3M5x3i1gx/sVz2ptCmqB+DrDYeE4O9vSRfb3E125YopV0xVYfwGNAAEiBq26271xCh210FtbZgVYykNYtskIv942v06LQRMSEhISEhISEhIS/sfiJYvg73//+/na177Gr/7qr/Lxj3/8Tm5TwuuIbacpUqJ8H1EomD9+u8TLy1iTkzgnxpDznyIzu8KRt/3fnK01ydsug2kPpaGcsklZkkqjg+iK30Gs8HVM0TMus5JrkXdtXKWorq2jtYYoRnc6hEFAPuWgVYhSATLeBGWBsMnmR8h7L32eo2o14rm/RF38T4h61/HquMjJE8jjH0MOnLjl47SfmKE7HZrFfmormwjXpZx2WW35NCMjvvlxjPYyNKuzzGQL3HXv9+A89x/RpEBEJs/4NYrZeMk0LqNe/L9Q557eEXayI4ih9xOvtRGFOlpIauEut6LWKLuAigKk5YDlshUrvMFHIKjRqW/SsvtIX7qIyGTAcZC5HLJQ6AmT+0XPqHod/6mnkGNjIATxxYuorlBjFYuIVOq2Mo8z2TReLouvFKrV2iOEp4pFsoXcbQs6r4Q4dHV0xMstg5WlUUS6r/d8luNA7Jjiyd04DmK7nNGyrhXIpQTHQW/Ho0QRupsvjpTgeSbaqHtORT6PHBkxny+eZ4RTy9rpALAsE3fSFXtlKmUEcCHM6+9y8apqFVqtazLCiSJ0vW7iYXaJgDqO0cvL6KkpIwS2WuZ8DA0R1+sIzzPZzkKY45rLIWxTCGwNDd3Wcd5md+a4NTVlnL50hxf1utknraHVQhSL6FaLKAgQtoPluMhCoRf1oYMAgoBYaeIHHyYCvL4yluNiOS4NHRKFEcKxtxfpEIURDcdGpo1T+aaxObeAVSphXfVc4fyy+R8hdkR5f+dzbiOKSQXRNXnWslSCy5d773u7cYEiZtgopMQ+fhzRHXDtvvZlqYRVLpvjGkV7HM/Ktim22/zIw5/gV/2IS/UL6DgER3OweJy/e/ffZHBRIccGEa2W+b4b78MuRgjaaJEh3nJRzTZWFKEqle6LdktNGw1EqYSuVNBBsHPNSXnbx3m3gG3t53DvrpYAU0C5H7JUgpUV40bvRqIIz+t9t4toy3z/ag22hQ7C7jUjIAqhtUG8umq2w7Gx+gcQ9v7596pWI5ydNe71KDKP8Tycqak3VNxXQkJCQkJCQkJCQsIbn5esHMZxzHPPPcfExMSd3J6E1xk9p+nsLLrTwZ6eNiJRo4HIZEycgdbYmSoyXgYP7JX/xuHiPUTuEJGOsYXGFgovnabeDlBoip7DVhBhW4Ky51DZbNBnSyYsi9nVSrfMDZOjEsVsttqMlDI0IoutUPQyXTOO5LBVwVneQpVHkTcpotO+T3TlDPrSLgEcIAxQc2eA/wuR+bFbdoRfHUsBgFIEgJDGTee5Fs12sOdxCoFWMc1Ok8bAvZSHn4TcAeyTKUQuZ8oCb7PQ744T1tGzv4+uXN4jDIvmMnqVKaPxAAD9AUlEQVT1j8D7FrTMI2ybkpvdEUlVhJYO0k0TahulQtJ2jvlGSMqbYjAfEao0mXyeaGbGiDS2jTUygsznsUZHr81e73RMdvPWFnYYQhwTnj/fK00UgOw6MW8189hNeYxPjLAwD76UxoWpNV4+x8TUGF6pcMPHX0/ovlmR6q0gPA9ZKvVeR21umniQZvO2BPb9nM1yeNi4UNvt3rnUrRYIgRwYMG7pbWwbq1xG5nLE8/N7CglNTvwk0ewsYbfwUnc6WOPjuA8/TPTii4hWC72xgY4irMFBk9ftOMhCgejiRSM2RlEvF1ykUntd+lobQfgqtiMsRC5nYliUMs/RapkCzSCAOCbuCtHMziL7+3Huu4/wueeMEO77IATW1BTuo4/e9DPnZuzJHN/eJ4yr3Z29jDs6RbC51dsvACsIsJw0jm2ho8gMexwHqlWyB6dZFhZxdcvknTtp7NIgw9k0zmabWFkIrxvNYUXoOMaxBNK2qIzkOWtV2Zz5Q0qpEncP3s1w7pVdieLYxllNLmcE8HBvLIdAsNToXJNnvd+qBwCZz9/wPSM8D+eee9BxTDQ7iyyXzXdYp4McGkJqzYkLdX527Ac4n++wKQNKqSLHmjlKLy4RBwEin0dIiXv3ILL5ZcTairmOhEDkRuDYB9G7VhaoRgPR309creJMT5tIpe3rs/veuGk80XXYLWCnNip4uXIvExwpkek0IpXClYKMY13/mExNIYQwx7PRMO53IczQySmZ715LQhRDHKN1GqG7q2GsDLrZgHwBEUbELYnljnK15K59n2hu7poCTpHLIYTAeYPEfSUkJCQkJCQkJCQkfGPwkkXwL37xi3dyOxJex8hSCTedxurrIzx3Dvvo0Z6AJNJp7MlJZPPPeve3dJPa3Jf2Pkn/N0HxBJN5DxuNimOsQg6EJuwEjJUzpGbOYy2GeP2j1AGkBSoGDZqQRmWe8YEyk4MF4kDghG2yq8/hPv1Z1MR30JmdIjxxFzqTxRJGALi6FEzVahAu7xXAtwkDqC+jNy7csgi+r0AjpSn/tG1QGrW9Ml2b29AaaRrYAIi8HDr3LtRGm2jhAgQBslDAGhpCdkWT15VzrnkFvbmw702iuYxVbhH5B7H67uKuaINDg/cxs2YiUQSSEAeF5NjgXYzmDtNpK9qdJmuZQUrp9I4ADr0cXW3bxCsrO45C6DmNdadjjv22e973UZubyGyWuFJBZLO9yI1bddjnCjkOHpqk1WwTxTG2ZZHJpnFTNxZwrid024cP46+t0S4PEJe7ZYqtBnKzdstO9d7rnDu3I053OkbQKpfRlUrvvXq719C2m1ZgRFvd6RgRsFBAlEqIUgnLcbDuMTnu1vAw1vCweb9dJU7LcplodhZdqyGGhsztQUC8sGAiLx54wDhSowjSaePy7nQQmQxWuYw1NoZaXzeiYzYLQYCu1cC2zcoBpRBdB7lutfbsh/A8E5eztWUes+0edxxkf78R5IVAra31zpVwXaJz53AeeAAhZa9k1Boexn4Foor2ZI7bdldktMx+XL7EyNg4y9kMQdM46HUQIBt1+gZS6FbTRLQASElqZJiqtnA2qgitzXtBSsJMlqV2zPjoIIu1Ju2OEU1FKkXatRnKprgYzfCvT/1LLm2cA2GB9DjUf4wfffRHeWDkgVcs0iKTz5IqFmm4qT0OcIB0Jg22RaD0vnnWt7vqQZZKeI8+in3kCGpz05xD1zXDk1yOeHOT8rkF3hwEOCdPEp9fxT4wgDh2DABrfBwdbKGe+1302syezw/RbiPkHyPv/tvI7vWsowj78GGimRnCc+ewxsawJieRmUzvvXG74u8eAfvcOUaKJZbTKXw/QBaLyMFBXNdhNJfatxRz9zFx0mnk0BC60TCRRa0Wut0m6gxgDdwDtTOgJdHYO+iMPEIkLGw3jadzyDBGRCG6PAn934KqR1hXpdjE3c8/tf1+1trEGW1tEZ49ixwaekXeQwkJCQkJCQkJCQkJCS+FpNUy4SUhPA97YgJrcHB/ASIs9e6bab6I695NENR3nsBKoRoNWmtrjNcr6BdOoZtNRF8fzvHjIGXPMTo5NEwnk6bR6vRiDtKuzYDt0KovMG0tYteeNXnFQYiSgs7QARbWLYIzF7EPHjQuSikYzaX2LKvXYYiIm+yflEpXkKtf79YbcrVAg5TkiSh6Npt+hNxtk1PgOTZCaURmCBwPW6eJ1hRqcwGCoOdujdfXwbZvSxy9o0QNiLsCp+OaIcIuhPCJZmvY9/0Yg2f+D/7uA3+dX3kGZtaeQwsLjcOxgaP8zw/9CEGcM0qw1vi+Rqf1HucgsEdM3S6W2/5/IuNoJY735v/6PhSLxum7yxl8O1m8bsq7qei9G+37+8a26E6HxnqFZdw9pXau6zE6Moa3vHhLTnXt+0YAt22imRkj8DYaoBRyYMBck5XKbUXBbLN7yINtm2OuFDKXw77nHrNoI5+/RpSUpRIylzPxJGCyvDMZ4pkZE4fSLXrc3g+1uUk0M0N8+bLJE19ZQWQy2AcOGJG8WMR56CGiK1cgnTZxLLsHJa0WIpvFGhoyWdhdUa/Htmt725m+XYLYbqOLRfA81MICsr8ftbbWez45PEz4zDM7cRHpNPaRI2a7m00jqqZSWIODt+wM330udNd1rJvNnhBuP/cM4wODhEeOEBcyyE4D99J5RH+RpfU60fCwEfyDAHd8FLu6idh2lnePrdXXR+AHBFoxWMqCyhBrbeIybItmsMyvPvEpZle+trNh0mZmPeLTT3yaX3jrP6E8s/KKrFrwshnGD09yqVKHXSJ4OpNmeLBMRxhR/7p51reZvy48D3tsjEgprL6+nRtsG8u2kem0KZR1XRNxEwRgWb19VEsLqK3Faz5jdBhCbQ473UCkUr0i0GhrCzkygpyYMK998CD2yxC/d7NbwHYbDQ44Lp1Mjth1sMOIVNTCqbXQNxlUCM8zIvTwMKrRQNXr6I0NVDXEuvvvw7lfo118E0txlnCzjnZKkL4PuxMy+uhPkm4so50RdDVClPfpxWg0zPfhVTFSSGl6QRoNSETwhISEhISEhISEhIRXiUQET7glritAFO+G3CFozODUvs7o2EGWyBsh3C2j7T7spTWG4w5ifg7yeUQ2a/J719exH3ywFzXgPPU1jr3lrVRzZYIowrIspBcRNzYZ9f8S5/TPQNgBAbJ4N/Gb/hFLvoffNmKYbjYRrkug9DXL6oXjoKzs9XdQSnDzr9jxydZqHCu5nNts4wcxWceiGcR4jkXZteisrYPlkMvnyKwtY42MoDc3IZPZKd/b5YJ+XRVl2jmzXD4MkeWyiXTYLYSnSjgHThKtVZCH/iEPiEV+8T0/x+lOnUock3bKDOcO0wkyxGEISmHZkpwtiYMAa2LCCKNdJ/Nu4Umk0yYzfdv97TjG+SqEye0Gk5+8ubkjvmyXI76Cmcc3QtVq1wjgAKpYYqnhE7p7fx4EIUvAVLF0S051VauBEDvO+Sjq7bNaXye6eBFrbMyItbcYBbMbkU5jHTiA7EYniFwOq7//piKbc999qHodtbGBEMKcB89DFouoVgvhOGitjYBYqSDzeUiniZeX0a2WycAWwjjL19YIn34aUinU+jru/fcTPPusyQYHiGOs4WHct7wFe3AQq1DYM7TTcYw+csREniwtGaGz65i3JyeRQhCePw+ZjLmm5+d75Ybbx1kIYa6zrS06f/InZj+6znFZLuM++ij2yMhLPq7bKz3UxgZqdXVnRUkcQ/c6tQIft90i/MqXIYoQxSLu+hrjGzWiyVHi44cRS4uEUcBWfQuKRePW7u/vlSjafgfcHJ1muzdAigAin/nai1xef449vmEVgb/OxfWzvLD8HG9r7439eTlDlXxfmSnXI5vLEimFLSXYVk8Ah+vnWb9cRDfLHuitKBGAdhyz2mBiwrjErxro6GbVDHTC0AyBtp8vlULmC+hWDe8d78B//HEjhCtlCk6HhvDe+U6c7udZvLLyihRE7hawHcCr1QhffKH3mRNy/UFFGCtaYUwURVi+jxd0EGfPoLa2iObnIQiIFgaw3/vPWWrWCYM6OGlU20EtNoiABc9jMh7GaYe943o1Ogx7HQDWkSNIzzNDBNtG+f7rv/MiISEhISEhISEhIeEbikQE/wZm+w/dbcfffvEgrxjpYTj+o3D209CYIbv4e0yX3kSr/y3EfY8gfBe7uoxYWe7FH2xHFcSNBvaRI9gHD/aEPPfMi4yMT9ApFFHFIlZcJ7P1edwLvwGq+4ezBrF5mk7UJHB2FMXd2axXL6uXpRLx8gg6P3ZtJIrjQn4EUT7yih0WWSox4PukbclWLFBSsNrw6bTbdNY2QEhyhRyH0hbyibOIyUkTNXM1XVHzdSUaZKcRxXGo1SDwkSVTcIhSkB1B9R3DHh2F0VFUrUbHPoCQDsctCykEq40OotNBtpvESmE5DrKyChsbyLFBwhdfRBQK2FNTxGtrveOiWy3sw4cJn30WtbGB7l5Loq8P98EHCZ580jhoDx8mmp01IqaURtjqikKvhpv+eueqncnhr9cQ9rWiURCEtAs5vJs41et+nSu1KzTCBhlfM5528bajP65y0KqtLayxsZtuF+0V2DwNQQ3ckhlspY1Yvm+sSyZjjuNNIjKsgQG8t7+daG7OOKldF7G4iGq1kIUCul433QKplBHxuw5ovWt/1MYG9tSU2ZZugSTNJtGlSzj33IO4/34T/eE4yMHBngh99VAqmp+Hdhv72DGs6Wlot40g1+kQXbiA3T1OVl8f1tQUenAQLMscw8FB4oUFSKVMpvvmJrpW21OMqTY2CJ54Avne975kR7jM5XAffbRXjhlfuYI9NYXM55GFAvHGBvG2+B/HiGIR++hR1Po6YnWV7NQk7l13oVIOm35ILpMjRmB1o1P8eh3l+zhpiUptcr7yIhvVGuVMP4dzx0jFkqZfRcRtuDrVWUUQtam1a8C12fcvZ6iSTadYD5Qp8bzqthvlWb9sLIt4cXEnhx2TUW0fOoSIIuzx8X0/H7TwTBdGvmBEZaVBCnSs0I06Wng4k5PID36QeGXFrEJJp5GZDGhNNDtLXKuhNzb2DOReiZir66462WdQ0Qwilhod/FbbDBiFwO60GUllcObnsQYHzWdEHNOqBrRbApEeRleb6M2N3gDAb9v4E8M41fXrDhaF65oSzBMnCE+fJuoOiwDE4CBON24mISEhISEhISEhISHh1SARwb9B2f5DN1A7gth+8SCvKH0PwAO/aIS0sIbjlCh2hbTgxRcJlnaJzrbdK7eEbi5uu409PQ2Og9Utmkx3y/5E82uI1T8DOwPhZu9ptF0kUgIpGz0hpZeR22X3snrhedjTJ4jl96Iu7irHdFzk5Ank8Y/dch74zRCeR87zyHX3sy/qULdThDkPRwiy9RrOagVVKu0vgEPPBX07MR53DCePmPpOZBShFs5CYMRVnR1CDH0Ae2iqJ7xsFcpc3GjSjEz+cV4I2lGIF4ZYMxexcjlzDUQRrmPjVdZNNvPSEmG7jTU2Rry6ijUwgMznUfW6ydkdG0P7vnH4djqo1VW8976XeGGB6Nw5rKkprP5+I/R0///VipO53rmKAWHbWK5NnImY9WfZDLcopvoYyxzETxWJi3muJwFerl3mD174fSobC0YsjmP6nAIfmngTY/P1nQLSbbbLPG+0XdVnegOsHrlDcPxH0dm7CLeHCalUz0UL4P/5n5ts8EzGOGqvI+pZ/f2mJLNSIa5WsSYmjLO60zFxKNuiYKFgroP4KllU652fdZ3ZALTbxOfO7bmr9853XufIdfdda/TGhtmWmRlTHlksGgFRSpy77yaan0edPYuwbZOB3mjgPvww8fKy2ddCATU7a570qm1VGxumzPYWYlHskRHke99rXsv3jXg/NGQc6I0G0vOQ3dgoDQgpTUwSO3EqLQUrG3VW2yFRtygxnfYYLpXotCqs2cv80h//Is8vP2PiiLTmvtE38dNv+Qn6lTbipuOAtIzbvbdDMSW3AHvj1XsrMeJq1ZSj3qKr2bEko7nUdb+n7sTAVvs+0cWLZjttu3cd6UaDeG4O7+1vv/4+uGPozLAp/r36ebMj4HYHKKUSVvd7Kzx7lmhhwfQWLC8jUinsQ4fQ9bq5Dl+Gm34311t1AnsHFWGszPEOQhOR1B1e+Vt1ltMpJgaHYHkJUikIAkLf9FLEKyvoWg1ZLhuBvBuHFLbaaMC9zmBReB7OvfcSPvssepcADmbFVvD1r2P192O9nrouEhISEhISEhISEhK+YUlE8G9Awlix3goQAmwpesvK/e4fwLvjQV5x0sM99+hurv4DWUgJmUwvK1S4bu//nQMH9ohoOgwRYQ22rkB6EDJTEIeAgLCF7a+BPAhIU2SX3Rt3cvWyelkqIdJvJR48iGjNgmoj0iVE+cgrLoBfjfA8Mp5HenfJXD6HGBkm7IoYIpfbm4dt24hU6lWL8bglcgeQd/1txPhFdLMKpNGpceLCME0kcTtAa81q06cVGbFQByGbmxsMDPaz6Qsyw8NI30dvbOBmM4zlPNSTXzNCUlcokpkMcbWK9n3kyZPEFy8aEanTIVpcRK2vG2EGjLjleXjvelevjO3qa+rVQHYHOVeLUxZgpT020lV+7S/+Fec2Zoi1Rms4PnCUH3vr36PVuotRaV0zsKr7df7guf/E2uzZHQFPKdajNT5X7vB9A28jvRztDJi6QxVh271Cx2uOQ3vlWgEczL/Pfpr40E8SX7qEajSwxsYIz57tZXGr9XUTITEwgCwYp/D1RL3tTGaZySC0Jjx3Dt11fQPIoSHk8DB6bQ1rfNyI+VojczlELofs7zcieafTXdGxvDdnGBNHstuZve85cRzjCO8K4mhtYlgmJpATE0TnzpnIjHKZeHnZuNU7HeKFBRPtUqmYGJXt4Zp17bhiT9nlS0TmcvsK585ddxGeOrWTE+77pj9Bqd7+Bh2fhfllgnaHfDZHPbKJwoh2x2e1Y1HMNPkXf/rznJp7HKRAIBEyxam5r/CLKuaX3/aPODx4kotrpxCWQlsWQpr9OjRwguNyGNWo7JR2CmFy3qMIPTxMuLJyW67mrGszXcy8aiuWtsVikUqZ6KmumIuUpoNh17DoamR5DDXxEfT8Y4jmcu/nOjuCmPgosrxrtcVVzuxeb0GjQTQzgz09bc4nL89N33u9m6wQ2r69FcYE3YHHdm+FyEmctItSLdThUdIHc6w0FWf1KhucIhOVmcgWERvmfSLyeUSxCErhZjNYg329XP+rEbaNPVxAHHRgqgCkiaqSeK1uhmJzc8QrK4kInpCQkJCQkJCQkJDwqpCI4K8j9C5hdM31udhaZKW1itKKqeIUdw/eTd67eV71lh+x0vRp73Iopi2LwaxLO1J74kFeLXbn3m4jbBtyOWQ+jzU0hBgd3ZPB2ruf44BTApQR7NqAEOjI5EinNp7CLb2PKB1jjY/vcVNfb1m98DzskQPAgTuxuzdlv2x15/hxwnPnsA8d2sl3tu2e+/nVivG4ZZw8ov8BRHd+0AwilrZadBpNCELaqTTNWDGQSVFtdVDtNtoPqWxskROakfFhrNU1RCeNu7KItRig2m2U4yC7BXaiUMB55BHjhK1UEKWSycF+/nmTx9wVdBACWi1z/NptrJERxK783juNri+gay9AsAFeGfvIEaKZSk/wAkjHAWIgxa995f/gfP0KSkhAIyRc2LzErz35q/zkO36OpUbfNQOry5WLewRwMAMlLQTryzMsPPQ2jq6aAdN2dvT2++G6UTCbp68VwLf3p3YW1p8lurSAHB0lPHMGXa8bYXa7JLNaJfJ9bCGQtg03EfW2S/1EsUg8O2tKTgsF4moV//HHzUoOKbEPH6ahfeZ1jXpjnlwrzXiYoZDrQ9Vq5theuLAjonfzuG/kwBaehzU9TbS0ZNy8+TzU64jBQaz+ftT8vBmwZLPITAZZKKC6ufKqVsMqFo0A3n2NnnN9n9d5pbBKJfSRI724lN5x3LW/rUoNv2UEV6vZoOg4hJaLdixsVeN8Y944wJ28iZ5RAcQdEC7PrzzL+eYyf/eev8ann/stZtZOg5CQ8jg8/AA/+ug/oO/ZVSP+AziOcTLb9t5h5W26mh1LvmrfR7vFYmHbvWz0/W6/GpnLIafeROQ7iIE1UG2QabQYxJq6d891d40ze3ep79WFv9d53d2/D9wsP/xmK4S2b4+1NmJ8N4/bHrZg7U8RrXkAovYwL9gFfn32K8xsXCZQEbblMp2b4hNHP0bhYmC2CXAzaawr59En7yF45pl9ByAy1UCf/Y+IxWeMeG7ZyMFBuOcDBOeqJo7oNgZGCQkJCQkJCQkJCQkJt0Migr9O6GXuRhHPjwq+Ov8kf3DmD1hsLGFLG8dy+NDRD/HJN32SA6UD132eMFYsNTt7BHCAdhyz1gzoz7h74kFeLa7Ovd3G6u+/aZGcLJWI2weQfQ8gqs+YH2rdy1R2aDFSGmY5mya0di7pO7ms/k4gSyXc++/vCYja9xFS9ty7r0sB/CrCWLFY2aSzUUOtr6ODgOjAIZotHx1GFFMOmyoGARrY2qwz5NmULp4lPHXKCNkjI0Y0EsKI20Igczn8xSXajkfsuNgqJtVp4Rw7Rjw3t7MBcWyE8o0NxPg4Qgh0GL4ikQM3Q608iT71KUT17M4P+47jnPxxNHeZ+Ajfx5aSxcYFZjYuohFogdlHYQTBc9WLzG6e42D50WsGVvV6ZY8ArpXqud1xHFopC9mNfxGua2JXDh9GplI9geqaYr6gtu/+aK3QHR98c7tMp4m3tnYGDpmMEazTabRSqGbTrMTI5faIetr3idfWTPyJlIhsFpHLET7zDKpaRQ4OEp06hdrcNMWDzSbW1BRzbPLZ2T+mUl0w+xnH9PeN89F7vovpbB+608F75zuNs7cbH/JSI0js6WkQAvfYMaLVVdT8POHMDM7Bg1AsYo2NodbWTIa54xix2xwUoFuGODSENTxscsJ3cTM3+u1wvbiU7f2Ndn/ea40IAlytsRxN2vF5prZBpHYNToSDZdumTDaO2PDbfMuVp/iFu76XM/d71IImpUyZu0cfpjznw8QEImdjFQKk04DARokyOnMQvbYj6r4SruY7yUsVi6+HPTJiHMy7zoO7z3V3jagt934H6asc51e/7r4Z/Ddw2u9edbIdU7Pt2rdKpd5jrMAUcyIEss+DtS8hWjsxZY3sNL9+6vf4o5n/yobfABWDtDjnnUVakr9374/hyTLYFgULOCPMUGRz89rP2LCOWPo8ItpE5guoeoN6YYo5laKx9mWy4/cwMX6S9Bvgey0hISEhISEhISEh4RuDRAR/HdBbOh0EPDMh+K0XfpsvXvwiM7VLgCbv5pksTvL5c58j62b5kUd+5LqO8FYYE4YxBCFaa5PtahtnpRHG9TXxIK8WNxNyrofwPGTpEJz4R+gz/3xHCAf04JuQ9/40+b4xUq9mEegdYj+H+BuJViegs1EjbreJimVU1x3suYq2H9Dv2WA7gDAFpo6Do2PU1haiVDKioxBgWT1hSA4N0VKwoCyCjbqJsYgi3HSKMQ3e/feb0kBAlEqorS2zMUqhgwC48+Kcri9cK4ADonoW/cL/Tv3en+FSY4XNqE3azhIonwwCX0IkRK+OUHVF1q2Oyb2/emCVszNm/7eHBJ2OcVKnbKQTknd83JPDYA8j3OKe4cl1hbXxHPu+S6LIiGB2HqyOicHwPOTQkBGDm030dq6yZSGGhnrHe/vcqVoN/+tfJzp3rleoJwoFnBMnjJu/VkN4HnprCyGEEdJTKTpTI3z26/+WSrtqhHMhwLapdjb47MX/wife/ENkGxEyncY6cOCWzlWUTtMeHyVWLSwRkR4cxZ4aQm20EZkM8dYW8YULZqBiWb2IJWFZWCMjJsN4fBykJPja1/a4fF+KG/12uV5cCoC9TySL8Dw8N2at3aDkFXdu0KB1TCwtbGlBpClZefTYX6GvNc/bGk20LqLW0lhBG1WtYg1bOKUZxNIfIlqL6ChC2mkYfDu678PEVdkbELyuynuv4noRRcBLjpu60XnoPddVorZIpfZkkG/HE+33uteUXAqByAgEi8QXZtCDU+jMFFZhqPfeFp6Hc/w4wXPPmZig7dfJ5RBTU73nchbncYQgBKRsIFrbAxyBmypxPgz5o4t/zEarAlbKlFDrmM1OhS9c+iLfeff3kvez6E6HxVab3OAEh8eGSM/NwdYW0eIi9tiY2a7mFQiqiEwatRgwN3ofn519nMpMN0u/dJKSPcF3Hfq7HLrpUU9ISEhISEhISEhISHj5JCL464DtpdNLY1k+f/Ez1P06M7UZ6NZv1YMt5jbnmMyP8uLqKa7UrnBy+OS+y6XDToDcqiFiULEyJWqWcRNj2wjYNx7k1eKlCAj7Pq5UQqffisp8GlpnIKghUn3I0n2QmwJe3WX1CfsTtjtEjkvdj4j8rhhmd4gth7QnUXEMcTezut0h318mXV0knp83hYSrq8al2N9vsuJzObjrbhbOXyZotXcclVIStNosKsXBAwfg6acRpRL2+Djhiy/27iNctye+3klxTtdeuEYAB0DYzHoT/Ofnf5uZpVXirvCVGiryyPg38cTi1wh1hL5qMFVIGdFy98BK1WqMV2LKvsX65qqJ5UilsMdKUHuRfqfE1OaLqLP/GdE3ibj7+xCeEf11q4JaeBrL24R8kTgsoGumUDQOhhDZA4jm5b3brjS6dIyoWUL2xcZh7Dio1VUTqZHPG3GtK8jrthGRt0U97fsEp07tEcAB1OYm4ZkziL4+xMDA3tJOgE6HeVWl2qoYJ78Qe0TFytYyc8E6J/Bu+ZzWqxssri4RrDwDQR0AN1dmrD+PvVEjuuKY629wcG9ZZ6tlrkUpcY4e7YmW8pu/+ZaHeneCTDaNl0n3IlG2EV6GsLnOkdwA9488xLPLT5uD3BXCtXC5b/R+TpZOED87g97SYHXPq95EFppoO4LNv4SNP4HGHNr10J020Ab9OAIHkf8Ieis0LuQgIJqfv2mEx2vBtlh8PZf1K7WtV4vtohtrFa+vG0H8Bq+7J0pFCGTeR1/5fXTlMlprGBxC20W4668j+0/0rkWRTiO6UUM6ikzcGKCqVcJWC+vAAeTqKqMjYyz5MbHaiSFxU2WG+0b4aqtJtdNASG9Xwa4Z8lRaVdaaK6QaA+bHjkNT2sxUm5w4fBjxta+htrYIuis6LHcVEUdoP6A5fJzPzv45lc052B75WZpqp8pjL/w+nxyYeklRbwkJCQkJCQkJCQkJCS+HRAR/HbAt5LzgzzG3Nd9dtr7XAdoI6kSM0vFrNPzq/q7Ovj5EOototsnn8tSBOFboWEG7jZ3PU/CcN5w7ehvheVjeMeDYa70pCddBSEE9UkRhV9iUAppNrHwBXwvSrsOGUoiUR1Z4HIjb2EuLyEceQbgu3smT6GYTKSUqCBBC0FCaoNkyArht77igLYvAD2insqRPnkQ1m0YAV8q4ym3b3H97224SdfCyCDZA2NTL9zBrl6nHIXnLZTBd5LGF01yOC8T+TmRFp9HkbGeOI6WjvFB5kRjdE52OlA8zVTy2J89+2x2aafh8+MC38djFz7O+NotdzqFXn6U/VeTDQ28mff5JtI6R2Szx1/8N4u3/GClb6HO/AwtnwHaI19fALkP/+wierSD6+sh889/CuvKbe7LBdfEITP4N1PNbJhfbcZDlMvH6uhlanDxJtLiIrlZNJEKn0xMZhecRr6wQr63tEcC1UhCGqM1NnHLZuNqDAK2UKcvt0lC+uW+34FOHoXFld+/TVB3Au6Vz6jdbLCwsEdaeh7jFthocNGss6pjJ/iainUdmy0T1Onpz02ST9/VhTU/jHD+ONTi4R7C83aHeK42b8hifGGFhfrknhGul0MIhZ2us6kV+8q0/zv/657+8I4QLi3tHHuSnH/4Jhs8vEz7/vDneloUomlUEOA62U0fGbURjDqQDffchR0smU9xJoaWN5WwSdqQZzFZ2MvBvpyzzTiNLJdwHHtgZIDvOKx43tZ/YLlIpnIMHsaanzb+v87rbvw/oKEKkBfrS70GtG/kkuhOM2jzq7O+gTvxNk6/veWZ/qtWd5wkCVLFEe7SPGHC0wJucItWoM+U4hKUyUWsQmwiZHmZlcw0nNYzWuhv9I5HSARWihXH6u7aLyBfMdggj7tfXKzSGSpSPHCG+fNnEndk23skiYnkZ4bjMSZdqe7VboKkBAV4W6gGVzaXeYD8hISEhISEhISEhIeFOkojgrwOE4yCyWTb8S7jSJdbxvveLVUTKcsiqkM7SEu3RcTpuCmFb2EJgoYljBU4W5QcUbIvYtlCABHI2FL07KAQm/A+PJSWuJdmTeKsVsrJOob9MKZUhO9KH1emQ3axgX7i84+7OZgmffBKRSiEOHMCenkYAcWhiU4A90RMIAVISWxbR3By61TJu5VIJ+8QJrJGRnij0UqMObhu3jyvD7+KxK49T3ZwFIfFTg8QDDzLcdw/NtRlc14ZAg1ZQDxgpDHGwPMWL1RdRYYS2LY70H+VH3vyjpO2+PXn2PXdoGDJej/i+/vexeEjTSrXIbY4zqUNyS8+im3WQErVRBVlDb16E5pPQWgXbNgJ4pwMsIfivWKPfTLywjv90kdQ7fhbZuQBhDZwSInuM8OwS9sF+k+m9uor74IMmK7teJ5yZwerrQx45gnRdVBhiT031jrMOw15GO7or8itl/l9r8/MoMhEomYxxkguBSKfJ2jsRJMTGha7D0IiWqZS5/RbPaaveJAw3IWyabbFtQEOs8Os1/Mlx0tkqwZk15MgIcmoKkUphHziAPTGxr0h6K+WFd4KtRoXLqxdo+FvkUgXGxw9hRQNEcYylFIomfuSjo4jBjXn+xdt/movtCpvBFsVUPyf7jjH8haehUNh5H8YxutEwQyQpQUQQ+mhpIybfA2uPQ2fBROUAov9BdPnN6EBgHz5shh6e13Mih+fO4d5//+vOEX6nY6duV2wX3YFSvL6Oe9BGrV8y7xspzRAois1nwcIZ5MRl4rUC9sTE3lURQuB3Hd/BVss4ynGw1isM+03s558l/b77sVc/S+T2Mdv5JoJgk+HScY4NnOBc5RwACoGUZhB3rP84Q5kRaHULiGOF2jSZ+ZFlEy8s7Ay8ooi4mcFy+0DXqce+eR930W4W3e46wm2bRnhtWWhCQkJCQkJCQkJCQsIrTSKCvx6wLOLFRUrTWda3lkil8xwqHexmgu9QTJW5qzjOcGaMSxSptmLCdgc/VuTSHsO5NCnbJldwiVWaZqOF5Qc4jTquYzPWl33DusAT3hjEts1QxmXF92i3fWP605BybQb9Jvpylb7VJbTW2KOjxKmUcfpGEersWUQmg33oEEQRVlcwcio1Ey3Qal3zeiKbxclmSH/0o+hazcRydLN3dbVqXOGvcNTBfjTyR3hs+YWeAF7LTnN2cxYdPUNz+QWOlU9yevMMR8tHcJoarTXeluD+Iyd58zvfTL1ZJZ/p4+jQSfqyw9fk2evQRE3E6+sQReQyGU5ERWSjArNPm+PTqBtxueucltkcorOEbq+CZRzV7HJl01jCmg6JF0BtbRFXQ+Sh9+wcW8A5kiW8cAFreNjEOAiBNTlpjmXLuPN1s4n/9a8jh4dN4eQ2SqF9f+e8bTv4UykT5ZLNIlwXdf489uHDxEtL5ryPjzMRZunPDrC+eNFkx0eR6Qbo72dgcIpJqw/n+JFbOqdhGKLDNgQ7MRBIibAdBJoYC2nHJqO8VkMLgTU6iszl9n2dWy0vfKW5tHyGzzzxW1Q2dooN+8tjfMejH+fgyAm079NeqOCgCdwxsCxks8NRCmgrh2dlGeu4xEFghkzbIrgQvetIVavYx8Zh9SL03QNrjyPql8z1ZLvm/eWvIqp/hn3f3yD8+ovmfCtlbisWsY8c6eXxh98AvQ23wu2I7SKb7eWFE7d3BjbdjHqtdw0Cgzrh2bNmhcKuVRGqWDICeGCEcZFOEy8vEdbrLKdTjE9O0Xn8DNn3/xTt1iLBynkQkqGwwffd9/389vP/kXPrpzEf4BbH+o7x1+//PnJ6kGarbQYgygyzhOviWGYVALuEeFVtYR34AGz9Kflg51dN7eYgcxhdC0zBbDZLznntV1MkJCQkJCQkJCQkJHzjk4jgrzHa94kuXkR4HndTIlYxZa/IB49+iD88/3lmapcQCMYLE3zrwXfzVw68lWrTodYJwPWQlkVOSgRtzm5cJlYtPCtDxh6h6Oboy6bIpi3S1Qqeim66PQmvPa+1u/TlYNs2HSQD+TSkbGINVhwTV6u0Njv0TY6gTq+DUoQbGzj33gu+yaYW22JRFOEcO9bb52w2TXp6ivaV2T1CuMhkSE9Pkc1mcPrLMGWy4XvHr1y+I1EH+zHrN6mmJ9HpOQJszm7O0u5skstOMFtb4M1jb6cVNDm/cYG7c0fBj9Fakw5c3jR4kszyBaiD0+dgpXbErN6++D6qXt8pnowiI0J7rhGeXLeXYY1l7XJcR93izBS9LN5dCDrmsd3XuhpZKmGNjREvL5tIlHqdeGUFXans3GdoCKQ09+2eQ+37xLWaydFOpXbE9ziGTsdkbkcR8tAhvEIBHYbYJ04gPQ/VapF57jm+ffidfNb3qWytmGJMKelL9fHRk99N3/g9t3ROVaOBFXRAXSW4dgcGwrawLJCj0zjpfM/FTBTtK2hv553Ha2umhNC2kdksAOHZs7gPPHBHr7mtRuUaARygsrHIZ574LT753h+nkOsn1TfCqGeztH6BoLFm7mRJvL4JRvsPIy8soBwHjTmPqjtIMg5wAXGMUn1Ir4xMHYOzXwLHBWFRLzzAbHqCusiSU31M+cvYvm8GNdvne3kZtbGB/OZvphNELDU6BGon6suVgtFciqyb/CqyjW42sQ4eJH7qKXTsINNpRLGIsGywpIk367r1sTO90t/dOeTtTM44wHc/r+8jbBu/0cQvlfHOnqHx+2387/kw2rkHoXyEcHh0ZIymv0X78PvoRD4ZJ03WSfPw8Fvx2xLhCXQgQCjQilwmRbaxde2OCEFclYjCB5ieFPRvLlPZXEEHthHAPQ9rYoL+4gjTpelrH5+QkJCQkJCQkJCQkPAKk/zl+RqzHXMgUinGNhT/70d/nF968n/DtSU/eP8nkJaNY7ncO3gX36RXiClwUWRpSEUYg4pibLnCFy5+nkq7QsqWSCDtFPnQ0Q8Tdfo46AqaOZsXwyXqly+Qd/McKk1TzhR72/E/mkPv9UpcqZhoj3Z7R4jTGufYsddVru71yDgWbiZNENgoOhCEhKGPTqXxUinc2ct7I02aTZz77kM3m9eNDHBTHuODZRaAoN0xgrll4aZTjA+WcVN7xcZXI+rgahphA5EbR9vfwmZzmXbnWSj0gVukkGoS6RgQtPwmrbxPGpuh4ghj+SlSrWbveXZHGmw7jdXmJtpxjLu90UDHMRKgr4+oauP0TUFzxTzIto2TOQyhNIGyB5CxQlg2Ipc1AvnuWAIriyy70C123A+rvx9rcBBVrxOvrmIfPkyktXHad19LjozgvvnNWN1rVNVq6I0N7MlJAKJLl4xojynUdE6cQPb1oebne9eDNTWFNTxMcPo08fw8o4uS7xt5BwvDIU3VIStTjLcc+jqpWxaY49VVvGoFxykSuXl0txTTHASFmxsgHdeI/UNmKOP7N1xBEC0sEJ46tbfwM5XCmphAdvf/Tl6Dl1cvXCOAb1PZWOTy6gXuy/UjSyVy6TTTqTyduE1IhOOkyGTKyFqDqOv+1tUq9sGDRFeuoLe6gqYQJvM82w/iEQifRcsMImpzZfzbeWz9EtWNF0DbaCXpr6/zbcVHGJ0L9myPWl0lbDRY3KgTWnt/5QiUZqnRYbqYSb5vusSNBv4TTyBTKRi5B6FOoeZO7zjsPc+s8pg+SdzJI1KR+ezclUO+O1Btt0NcR6aUOLadHXf5pWVUcQBraAjtb1DaOM1Hx9/JbFBhK+wwmMpy1Bas6yZz0QqOnaaUnSJsCTICDuUc7JkrxHpXj4ltm8Gb1uhNn/zYXXz0LT/GHzz7u1Q2l2DADI36iyN89PhHk1LMhISEhISEhISEhIRXhUQEf43ZLXrpZpP7nljnlx/+x7wgVql1KpRTRU5m+zjYehLV0ayNfiv1JgQIYg0Z2+cPz3+OpcY6UoAlLJTWNPxFPnv23/Ku6XexFNoIYXH6yhkaQZ2Mk6Xs9fHNh97N0f5DNBOH3uuCeH0d/ytfMcViXUQuh33o0N5c3cYs1J6HoApuH5TuhdzUNc/3WjjKHUsymkux1ICgK+LrThq71WSoUUMsLZk72jb21BTO3XebYsGblAvmCjkOug6tZpsojrEti0w2fY0A/lqRc3KoRoN4fpmO3UJtaSCk0Vzi0PA0g4VBpOugoohQKKb7xvnoie9gIldCzl7uPc+2YLVdhBmvraGqVXQU4Tz0kHHZbm1BsYhaXUVrC459D8x/FlFfNA7RVgsxcRfi6F8lrgXIzBDQQWZzyGLRCLdao/OjKFUGv4rs60P29RmXdxj2ChLpXjv24cNEFy+arN/1dazJSeSJE4hMBgD74EHsXaKvDkPzGvU69vg49vS0cZp3s8BFNotaX+8J4HvyvbeHJEqRWaxwtPesXXH17l1DlJeI9n04e5axNz/Kknsv4frzPSHcy5cYGyjgDbwJ1cmhh26c36waDeLZ2T0COGBynOfnEYcO7c1nvgM0/H2ct3tu3xH5hefhecNcvSe6ZMPKCiKXQzcaxAsLJvZmagq0Rvb34xw7hqrViJZD7InjiMF3Us9P89jqZapbl9GtmonFEIIKHf7Q7fCx8TeTnlvZeSHLom25+Ft1ZLl8zbYGStMKY4q3IYK/kVfN7IdqNMxAcGUFJicJX5jB7n8YYS1A3D2nUYQWOUT/tyDsPtBmgKh9v5dD7jbaSDuFkBKRSqHq9Z3VIYCNiTHRExNQLJAe6EOgUaGFbx0Ev8W0XcKTq0irwWee/Q+sr80Qlw4TpIfoy43y4WPfxcEwi3Xpohlora6a6962sQYGekPc7ff2QW+YT77r73GldoVG2CDn5JguTScCeEJCQkJCQkJCQkLCq0aicL7G9ESvICBeXCQ8ehx/NWaynWM6P4jlpQhbmsboXyPVidC4RMQghBG7g2WWG+uA0SIsKWj7q3x59nGWGyvEOqYTtTmz/iL9mX6eXX6BUIUcLh9CSE051UfNt/cI4JA49F5ttO8TPv+8ERAmJnbyX32f6NIl7Kkp4y6VM3DqF2Dz+Z0HF++Fkz8Ng2/p/ei1zCvOujbTxczOyoJcijQF5GYaXcxDHCNyOaz+/lsSrNyU97oRva9m0huitBWxHgR4hbwRh7VGC0FWORwtHeIHHv4BWn6L+wfv5WTmKKVWaATwfYRgVasRr60RXbqEbhqnuK7VkIODyNFRRKGA1trEG7x4Eav/vdiHY4RqIdJ9iNGTRHNrCNdFHP9eWPo8girW6BjxwjzKKqFL7yU+v4oslXDuvZfo4iksdwNEDZREiz60PYpa2zIFkUeOGAGu3UYrheiWH+4nFvfcp1qb2IYu24V/zvHje/Z7t+NalkqIVOoakRkwGcK3cf0KzzN54197gonjJwgOvZ0YH5sQL2jgugOI4mGs4s2fK15dNY7afdCdjin6dG6/gDiu1YhXVkykSDpNNDJKPYZQaVxLkvMccl7hhs+RewnCovA8nKkphBDms6LRQK2t7QyoDh1C5nLm+lMKFQ+gaxkup/qpzP42BDuOcewUBB2qtT9n8eTbOTzXfRHLQqRSREKabPfr7bPW173taraFb1WvoxoNCMOdUtxXMZP9ThCvrJh9cV0zHAT8L7+IdfibsY8qoAN2jmjLRZ1axh6TxMvL6GYTtbra2/es7ZASO9/rIps1USlhiJdJ4a6vEt17P8taElTq6PwA9VYD1xIM5oq0qho3pSmomN/5y9+m0liAKMRae5EUp2lpzX/dWuX7J/8a5ZMm0ko+/DDxxYvms8G2QQhEuYxVKhGvmc+iXLHIyeGTr+ERTkhISEhISEhISEj4H5k3hAh++fJlfu7nfo4vfelLLC8vMzY2xvd93/fxj//xP8bt5tkCzM7O8iM/8iN86UtfIp1O87GPfYxPfepTe+7zemM7xzPe2EANDLCsJX7LiD/aj4nrglazxWLaYrqQxe40yUjwlQNa0wp3ohQcKVC6yVfmjAAOUE6V+L9f+CNmNmYYzY9y18DdvLD2IherF/itZ/89x/uOsuHH5N0CQ7lxLJntPd/LceglvHR0q4JaPY09tIWqh0SrTaIrK0YsLhRM2aAQaFG9VgAH8+9TvwCP/BraGSauVIgXFnqO222BSLfbr0peMRhH+DXXTWoYXuWYkleLTLXBt4++m8/nniRYPo/Xjmh36oyVp3h330OcufQ0lAr0pft4dOh+Uhdm9x1QbJ8X3W4bQay5KyqlWkVaFlE3QsQ+fpxocRGrrw9ZKhO3WojMBDI/gLqyYkTOY8cQxRJkfhCaV5BRA464iFaGuNLEfeQI5POoxWeRzS/AxtegUzOCYuEAYuo7kMMPES23iS5cMNfO1ecwrEPtPEQNsHOQnd6TT7wbkUrhHDyINTVlXOb7OK6twUHsY8eIzp3bI4SLVAr72DGswcFbPj/W0BCyXDarLF44xZ5vhHIZ+d77XvJz6e24lEJhJzrkqn28XRE2nJvDf/xx1Ooq2Db++76NS7OrtBwXHYQIKcmmHSbyU/QPTlKpLe8pIwRTjnlg6MhLej1ZKuGk08ihITOs2GdA1TuXWwHy+F+j2Xp+RwAHcFKI7DCqHUHUpOV1EOm0EccxAqwdG6f29bDEtXn10HXdr66a451KITIZ4suXTTTP8rIpTO2ultH1uvmMe+EFrCNHeqsY3ijucO37ZvgByELBrMaIIlCK+PwcsW2bz/S8+XyQ5TJo3XNd7/58dzyvuyLHrPASros1No5rWwz7TUAYARyJNTICjTqFOCa2szS1YHywTLZzgXOV06xXLyFcx3QHKIXQxvm/GW6wkAlZrJ6l5Wpy6RxTb76fbNPEs2AFsH4OKmfByhBFJbjsvGGivRISEhISEhISEhISvvF4Q4jgZ86cQSnFr//6r3PkyBFOnTrFD/3QD9FsNvnUpz4FQBzHfOhDH2JwcJAvf/nLVCoVfuAHfgCtNb/yK7/yGu/B9dnO8YyrVYJcAX+z1fu5LJVQXZHF9wNaMo2sPsdQ4S60lWK9o8g4Jo7AsSQZW7LRXmOxvtKrwCulisxszACwVF/ivuH7EGiklKAVy80lFraWyXlFlptXOFK+m5w7RqAUSkMrjJN88FeA3rJ91UTqNYQMEakyKlKoF/4jemvRxF60WlilCeT9HyFaVchUyggKqRSyc/5aAXybzedR1WcJl4ZMhMbmJmAEKOfIEXSnY5bZd0vUXu3M7G90tO8z6Q7yMfkm5genee+xb2OhuUJrdZHZZx5HlwoMD7yFjx7/KMXSKDrXtxPjsI8QrJW61gktBOHp01jj42a1gJS4Dz5o3NmdDvbkJCKbNeLfwMDe53TyUDIOTOH7xMtnjRM7DKFTQ7T+G2LtK6DaEHfjRjYvw+xn4IBA5B9Eb+1z7dTOwsZTENTMa0gXlv8MMfHBXj7xra5GEJ6H96Y3IVx3T/GkNTiIe/LkbQmaMpfDffRRgiee2BM3JMtl3Ecf7blut7lRzIbwPFSlgj09vTdDGxCFwnVzxG9GXKvtCOCAuu8BZjoxzUbDOIOLRXSjQb3ZZL6T5oNHP8znn/oPVL02dEtN+8tjfOejH6eQ63/Jrys8z0TZXOczoZc1fe4cKiqRy45Cfgy0QkgbLVywU8isQoUBOcvulrLq3hBPbNbwDo+wX0iMK00HxdVEy8sEX/taz00uB/OIlTmk9BGlDDrMoNYa6EaDaGYGe3oaVamYIZHr9gZIbxR3uKrVQGtUu422bSM6W5bJ7hbCHFPHMT8TwqzyKBRg1/tr9+f7NSty0gM4ToxVc2hMHyBuBVhSmvgkx0EGAXJ7hUMhg91p0AjbO+dSCPPagCVtxscf5D9c+Axu2wfXRWSzDJTH+MjxjzCdiolP/f+QrUugQxAOpKbQpW/bG+2VkJCQkJCQkJCQkJDwKvKGEMHf//738/73v7/370OHDnH27Fn+9b/+1z0R/Atf+AKnT59mbm6OsbExAH75l3+ZT3ziE/z8z/88hcKNl4+/lshSCeeuu1CdCMttGNdvHBsBvLtMXFgWcadGduMF4jhFqe84hWIWrac51jfCaqtCGCvaYQcBCOBg30E6kb/ntYI4QAqbe4bu4vmV5/iTS1/i8+f+kEgp7hk6yf/80N9mqpijo1MAtKKIK5tRkg/+MlC1GuG5c8h0E1b/C6q5Co6NnLgXvfrnCJ0CaZvcYkBvLiDLf4ZMvY3w1CnzHJubOA80zVJzee1AQmsNnXV0O4+OIiOCBwF0M6WtAwewSiVTrKiaUDu1x7mLs098QnsFNk8bgdMtQfFuSCfi+X4Iz0NYFqlnXuQIcERK2uODLJT6aRSOkksXOTTxVsql6d79bzSI2B6CxfWdbGfVaCAKBeLVVeMIzeWMMIUR+uzx8ZckLMVra8Zl3WiA4+CMa2TrMkLGaCXMc0gL0BCuImiDvUlEZm/WdeUpeO5n9w5mCnfB4U/C/B8iD38/7gMP3FDsvx6yVMJ75JHbeuz1sEdGkO99746z2POMQ/wqAVzVaoQvvEC8sWEGBZaFVSrh3HMPslQyjykW92Zod+OLcBysoSGCjr+TX2/bZDKpm0b5xCsrPQEcoD06RnPFDLMIA1BxL1Kk3mgzOTbFxw9/F/Nii1YhRc7Nc2DoyC0J4C8VWSrh3n8/qlZjOgzoLx2j2lg016Ft9z6TBiZOcqA8iXPXSC/OSTebpO65h7Fy/rrdE1cPWVWjQXj2LHJkBLWxgVWKEGu/R3z+64h02jibrSJy4v2otsTKtJDOFURBo9MDRkDW2lwvlkV4/jzuffe9roXX7TzteHkZ9+RJotVVU1iby6FrNfA8RD5vBtyZjBnMSMnVQTK736NXr8hRYZFweZk4HfWGbMJxzIqhoJu5LwSx46DCEXKZ7ooAS0IUm18sEAyOPsIXz/4Jxcilvy3NdmazrE35PBb/P/xAMUNu/b9BsLOSRbhXEFKh0t+RDGITEhISEhISEhISEl4T3rCq5ubmJn19fb1/f/WrX+XkyZM9ARzg277t2/B9n6effpr3vOc9+z6P7/v4/o5QvLXP8vZXA2tgAPvSFVNgdRUinUZks1jxCvLClxm7f5z5dh9NJakFirdMvJf/dvmP8OM6zTCFJeBgeZq3TTzKSmMJW9pEyji8XMvlUPkgz608x3prHddyiTXY0uKF1Rf4P5/+dX7m3dMgpkhbFiAIlErywW+T7YJDnAhW/wuiudr9eYBuNRH1i2ClIXsPwrLQgMxm0QvnkJPdiAbbNhmrTsnk37ouQrrQ/xC4/aACsFzIjBsH8caGEcC3t2FrCyElV7IBp701qgsv0pcuc2++n8ON/w4yDRMfgdyBnQ2vPgNnPw2NmZ2f5Q7B8R+Fvgfu8FF742ENDZl4hm2UIj23whEAx0HkbFKT/vUefg3CtrGPHUO3WqhKBYB4cRHnvvuMYzQIkFkTXXR1lMqN2L4eezndSiF0B6IOOvB7JYlEXRe6EOj2FpQi4z7dzrpur8CZX752ZcLWi3Dx38KhH4DmFUTp5G2LXTcbFNwOMpe7RvTejfZ9gueeI1pa6kVRIKUpLIxjvK5rvOcqX1vbee6uq7ylYGFmDr+149D1MmnGJ0bIFW5QAHuV8z8Uez9rtdpbCBpqKLUVJ8jhTN91x0XF7fNRDDN89L7v4bFznzNCeJe+3BgfPfZhCsMniZ3GNYMGGxjPp6j7EZHW2EKQ92zSzrW/hsSrq8RLS8RLS1hDRfTanyLSMTKfNznggO4sYE/MoXMxlm5AEIKbBuVAJPCfvABhiBwYwH3wwde98CocBzodnGPHCM+dwxodxTpwAD06SnjhArrTQXpeLwLFmpjYP47nBnn01yvOBMyANIrMyofNTYLnXmD83hOUU+NUqucQrgeBD+kiOjdNlTOMTN5LS9hYgNtpw8ICFavOrBjknl0COIAImuj1r2Ad/+Y7XhybkJCQkJCQkJCQkJCwH29IEfzixYv8yq/8Cr/8y7/c+9ny8jLDV/2BWy6XcV2X5d3i1FX84i/+Ij/7sz97x7b1pSJzObJjI6Q6MZ1ulAUYgcsaH8dLeaRbIcQh3jO/w4Gxh2hPvxt/6G60mOSu8l9npblIzV/jePkAL6ye4osv/i73jz/KiYETnFk/w2BmkCCOSNku66117hq4i+X6CkprBCCF4NTaCyw3ZpkuHWQw69KOjPCS5IPfHqpWQ7fb2OkmbAvgUYRut4y4GIQQNMDeQPb3oyoVhJdCbW4i6BiHcS6H8DxiPYxVvh/ROAdjH4CVP4H6RfNCqSF0LHBP/E+IQ0UIFNh5VDxAuBbwteGIf/ZnP8lTi08AINA8NPZm/uk7f5p3+s/C/GNw+AeNI7y9cq0ADubfZz8ND/xi4gi/CpnLmYxex9mb0ew4iFzO/OwWuglkqYS4cgX7xAkT6xAEPTFW9vfjHD5s4hBu0SG9fT3uvJBEaQ8pXEAbR/PuAkMpQVmoeoAol3ciJTZPw+bZ/V9k60UzmIka+9/+OiauVIiXlszgYdcgCdcl7t5uj41d11Ue2Q4LF67Q2aqbVTxSIiwLv9VmYX6Zg4cmr+8I74qR2zh6l+itQYi9rl9nV4z2qyoqOnkOjL6VH5SaK60tGlGHnJ1iOlMgP/xWyA0hC0PXPKwZRMYJ7jfR7Q2IfTZTWUb7hshld1Zq9QY1rRb4PnY5Ql9ZgvSwWQ3RzcoWk/chMwEs/D6snwXPgyDAKh6FgznkcAm1XKPhahZXT9EWZfKNPFP5CYrFodedK7xXCNtu4xw9amKOajVEoYD7Td+EtCzjbs9kiDc20NVqb6XYNrvLdQG2GhUur16g4W+RSxU4MGhWClxdnAmY75/NTexmA29jFSwL9+krfPvJv8nn5v+QamMeChlURxC7Wcb772K1FaO1GbCnHZv+A4dwOpdohvsPe0TQROg6nVyOaqNDqDWOFOTd/YchCQkJCQkJCQkJCQkJrySv6V8dP/MzP3NTAfrJJ5/k4Ycf7v17cXGR97///Xzv934vf+Nv/I099xX7lGvp7SzL6/BTP/VT/IN/8A96/97a2mJycvKl7sIrSqq/nwkvzeLaBr4fICwLkc3ipUzJlSOHiIYOweoM1vwT5OafoHjkPpj7LOLYh5nyZ5Bxh8LU3+Trc48ThnWenf8q773re+hP9zGaH2Opvo7r2JwYOMHbp9/BZ178PBrQgC0EEuiETcpRh9ZaA7KZXqFZrK9eeJ1wM3riVGyy3rVS6Har6zD1YFvWijvoZmhKDLvZq9rKIYopI3amUsSLHeSJfwhrf4RY+sMdATw9DOVHkMEq+vQ/QQjPCORI5PB7WDz+/+GffeGneGrhLwCFEBKEzdOLX+Nn/+wX+I33/lMO1x6H5hWTG715eo8ArrXqumI1hGegdgqRiODXIPv6sKanUevrPQcxQvTcqLeSSbxdahmePYtqt1FxDL6PVSzi3HefyXC+DXQYGuenbZtzCsQ1G5meQgYLEHe6wncMQkLpICp0iNou7tgusT2ogbg2x7lHVDdRO28wVL1OfLUADhAExJVKz4UM+7vKm6sV2qtr5vx30VIiMxn8VptWs31dEdwaHkYODfUiUdJLi2QLAzQbbfBc9C4JPJdNk23uyiK/gfv3jpA7QN7r52Tzys1jlYAwVixttfC3VtAbp6Fb6OyrmMWNIabHj2NHaRMDtrlpxN9MBjk0BMLcV6vYCODdmBX74P1w/l8gGrNoKc1HqSWR/hx6/ndIvel/4XLrII+dfYzK2SuI1TJEEf2pPj5y7Ns5OHnv6yonvJe9flWOPr6Pc+DAnm2VuRxhq3XDct1Ly2f4zBO/RWVjx63fXx7jOx79OAdHTuwpzgRT6OppxVDcwQoDGmMDzEfrNLZWeevYe3GlQ8uK8frH2STm1Po8jmUGqmGs6IQRFcDJTJjoNEvu9Av0NjzF5tA3cbGpaMY776WsbXG4nKWcfv2WmCckJCQkJCQkJCQkvPF5TUXwv/N3/g5/9a/+1Rve58CBA73/X1xc5D3veQ9vectb+I3f+I099xsZGeGJJ57Y87ONjQ3CMLzGIb4bz/PwXkeOsFwuw8F0aqfMSoidYkp3FP3w3yJ+6tdhdVukdGHirYjWOWRcA+At/vP82pu+k+cf/Dgbfpu+TD8HHzzC5VaN1eYGWc/jd1/4T3zmxc8TxEbs0Wi0ENjComwXaZ6/AOw40WUuh3WDYULC/vTEKcsUmPYiFgDVamLlJ6F60RSHyW4ecxwhCmPETQ8hYmRfn4lDiWPCKy7u4W+B+lnITJoiQmGBjmDjWURrDqb/KugYnBxi7XGeH7rCU0tP9rZJa4Ug6gnhz9fXOQw7zt2gtnPfKEL7HbPNWhtRt76CTtdeVwLS6wGrGzUQPPXUjhAOJo7h4YexbvF4bUcXvJK52MJxELaNNTBAvL5u4nWsFHH+bYhBiag/BVEF4Tjo/DSMfACsE4iabcTxbdwSWB4I21x7V+OUjCj6RqRbxKnHxgmGRoikwFYKd3X5GuftbrTvEzabewRwAJRCtVrIXI5ot8v+KqxSCe8d7+iVY8rnnuHQ+76NS3aBluP1ih5z2TSHiymcmZ3P6NfkvbirbPVmtBpN2isLsPEsBN3IL2kh0mmCrWVaVkwucxD/L55BplJEV66Y/Ot02rjKCwUTAVTuM4PFOEbKDqJ+DuwcQlogJVoI063QPkXzRJ3P/PlnjAhsWYggANumIiWPnfscH9cp+tKvr5zwl/qev9n9thqVawRwgMrGIp954rf45Ht/nEKuf29xphB4qg21KvNjWR478wesr17uPba/OMqH3vlDFPpPUK+uknJKrNTXQIArJXnPpe4H5PsnOZDaIpp4D+3UMULtIjODSARxbpILLY+2Uuz+daIZxVzcaHKPLRNHeEJCQkJCQkJCQkLCHeM1/WtjYGCAgYGBl3TfhYUF3vOe9/DQQw/x7/7dv0NeVQ74lre8hZ//+Z9naWmJ0dFRwJRlep7HQw899Ipv+53k6jKr3djj9yOy/1905RwEW5DtQ7ZOIWb+Pdq2jcs3qDF14TeZEtI49Er3EnTuxh37EQhr5LMZlP5dEF0HWLfsyrUc3jz6CJN6GI3Jp9WdDqq6iud0yFgd6MQ3dPwl7EWWSoh0mjhykNkh8OeAbr5v5TL68DsglKh6jG4HyP4+SE8g0m+HWojbr0GtILL9KPohchDhKoRdF2jcgaiOSI+j/TUg3hElLReiGtX2xs4G6e3/7IgQG50aOOw4d92SuY9WaL+DbrXRKuoKgBKhM+iVpxEdD5EqJddDF+F52CMj6Icfhk4HHQRmFUUqhT0yclti2yudi719PQJYIyOmHE9rGm6Khfy30ur/JnK2YMrJkfUl8ZaH9oVZlbLbbVy8G/LHQEXgr+8Vwov3QvmRN+Y1YVmQyRAeOMhyLAnWa0b8t228oQkmS2Wu51VVtdr1v1CVQkcRtnUD9zzgTE4iP/hB4pUV8H1SQnFyaoR6DGGcxw46ZOubRgBX6pby4F8rtO/jV6oQN3YEcDBFn+02wrKIiNGLzxHPzyOPHUP29RlH+Po6gTeOIwoI6sSVdazRUeMI1yFIB5DoKEA4XrdAVIFtMdveYn1pxnzBua657oMAtbFBpaiY81cpvQ5zwl/qe/5G97u8euEaAXybysYil1cvcF+u/5rfNeJNTS1t8dmZz1FprO553Hpc5/+58Id8MDNKrePwbYc/xB9f+BwrjXWC7uBnqjTCB499BCnqzK5dJGitEOSO0Og4OE6K8cw0G2stEBrPkki5o4Q3o5i6HyUieEJCQkJCQkJCQkLCHeMN8dfG4uIi7373u5mamuJTn/oUa7vKyEZGRgD41m/9Vu6++26+//u/n1/6pV+iWq3yEz/xE/zQD/0QhULhek/9xiOsI+MVtAyIfUG84WOX+hChQHQakM6ATBmxU3rdjN8Qd/N5+qdaDBSHaEWCH37k7yPlr3B67TRax1jS4v7+E/y9+/4W7obEBxACq+TixpcZbWic6vPGYez2XVukmLAvvSXu587B0AfQ4R+g25dASmQuQ7w8D1M/AlvriLgJQ9Oo9CRSb2Ev/wdY6ormUmKNHkPe9wlE1Lf3ReIAlI/YDkwQjhF+uq7VvnRx1wbBdv6NxmTBl1MlsHzITqN9H2VNIbxJ2DyHDsNuDIEFlg1jj6Abl1GXv4YcHkYUisn1sAtZKuGm06+oe/uVZHfkAp0Osj/DQqrOZ2c+R3WzSdxQxKtV+nODfPjA+xlfrICU2FNTe9zGWpbQB/8WnPk0IoxBRCBBFE/AiZ+A0rHXbB+Djk+r2SaKY2zbJpNJXTeCRPt+71whJToIkPfdz0orJGh0uxmUAssiSmdYCjSpWO1bEKzDkFSnhVfI429dW3DsZTNksumbbr9VKu1ZNeACTqxohTFR5BJ7Hk65hKP1Hbu2tO8T12qmJDWOEbkcVn8/wvPMbZUKul43pb35PFaxeN3tULUaVhQhdMg1Pvqu694mRreq5vsqk0FrDa0WCEE8s4T9jm83MVBegG40UZs1LJFDOwPQ2TSfTUKY/0oFXol62B3MaLXXwd+NumlErW/YgsaGf+OC74Z/7fUJ5vNrbqlpBHC7u/qjK3BH2RwrzQprzTm0mCCIB/jgsY/RDJZohS0yTpaDpWlGcyWWmhsEXgeVPkQjThFbihiL5WZMMeVS8yP8WJES1h5HeJREriUkJCQkJCQkJCQk3EHeECL4F77wBS5cuMCFCxeYmJjYc5vu/tFkWRaf//zn+eEf/mHe9ra3kU6n+djHPsanPvWp12KT7wyNy6iZ/4RamTHFbWGAyI5A8YNo9zjC9tFSoUOJyN0NtXPmcSE0J76d9eVnKA+9k47y8MNp/v6jP8ta+yJ1f5OhdIkTa1D++gK6f4BOuR+VS+FEF0mtPIvXWIf+rvgaVPcWKSbcEFkq4d5/vxHbypOwNYNuVNA+xA0PdWoVHUUIL4cMNPahCFY+h7R9GBzslaGt9R/i9NJfUNMW5ZHv5y6xxfDKfwOq3XxxgcgegtZ8Vww3Qt29dsjD44/y1NyfAxZIMGq44KHxN3NvcRJK34RqxoRnnzF5u+M/CK1fhc0XkJmsyUIeuB+y9xE99UcIW6LLZXQcIV7i9RDGikprk7nNKzTbNcp2muns2OuypO7l8Eq7t18OYVc83ROttB2lUDlLfe2rfPb0H1NtLYNlISOJGBinWlnnc7Nf5PuHv5VsW5nSzy6qViOamyM8v4A1+v3YfZugGshMP3roAWTpwGu2v42tBgvzy/itnaxkL5NmfGKEXGFvfreq1fbkL6uu4OvffS9BZ83kUQMi7SBEG2E1iHSKlp+lmLk271w4DnJtlbGpAyzCHiHcK+QZHxu6finmDWgGEUtbdYJO1RSOShc31cdoIW+yl19heuf37FkjgoMRqqemsI8dIzp/nujKlV6mvMjlcI4fx56c3DeWRYch6VYDJ5UjuPZWXC9DemsGLfqATQgC7MFBok4HXauB1oRXmsj8e/Ae6kdVFqAQEmz04wy8E7Hy30G30YFvBFu3hB59D+lO1ryEMOWkewpflSJnZ179LPVXiZx348F/ztv/c1p4Hq2ca4YbUWQGEq2WEcS9FFopWkGDlGvRiSJagYNgiqwDQgpsmUEiCKw8FI4RhgGx75vILukRKE3KtsCP0IDqfi5tYyeRawkJCQkJCQkJCQkJd5A3hAj+iU98gk984hM3vd/U1BSf+9zn7vwGvRaEdfTs76MWznbL9oycIJrLqLn/Ctnj0DhHXKkg1s5gHfkwqD9ABBXC0gMstWwCK0T4LUZzJRSaSGcZyg8zkvFwF+bwz/2Zec6lRdJLi7iHXLjyu+b1p67K9w2qO0WKCTdlRxgdJrziEJx+sisw+eiuG1IODhKdOYMzHKKWZ2hN3suskrSsmLBwhN/8+r/hytJXwOsDITlUnuZH7/0rPLD+RRMt0PcQ5A4hrvwOAoGOA5BpDi38Dv/0HT/Nz/73/4WnFp/sRldoHh57Kz/zjp/icOsCmjVoreMMDzDjHeBU9QLVwQ/QN/Ux7s2PMN2soH1B/MS/hjhEx6AqVUQ6jcjmbno9NIOIM+szPPbi77O6NgcqxrIspotDfNf4N3Nw8mSSMf4K0wyiPcV3AK4UjOZSpNtV9LnfYdYpUFnv9gvYtolwSSus0bvY8EMWx3PcFZZR1SqqZnLgw9lZonPn0I0G0dYWRgq1wG7gHFzAfXj0NRlqBB3/GgEcwG+1WZhf5uChyZ4IrX3/2gJCpVAbG0R+gEin0RsbyL4Uwp9BECIsC80moV1Db6wjshN7ooC2Xdne7GWmB4foDPYRKYUtJSkVki5cK5zfjDBWLG2sEmychnhnW4NGmqX4bqYHRvZ1pd8O2w7vuFolnpkx2drbRBHR5cuozU1wnJ4ADqAbDXMstcZNp68598JxkJs1RgpjLOeHCeorvdvcdI5RJ8Tq1AjqJsaMOCZ84QWsiQnkxAQohZycJDpzhuZjT2Pfey9CKUTTRU9+H1rFyPYcxBFoUOlJKH834wsx/QOTVGpL12S59xdGmPSGvmE/cw4MHaG/PLZvJEp/eYwDQ0eu+9hCfmAnKkkp8/uGEMS6a7IXafo9i4pWdKKd/PuUJRlMWYio6663PJSywdkJEBIInF1RdrtPS9a2yHtviF9JExISEhISEhISEhLeoCR/cbxRaF5Bby5AGIFtgRCIjIt0IgivIEbfjVqpwcoazYnjzPmCxvgnyGeHGEhPEWwGxFEadbmKmsgii8Yp5seaSEN6aAhZLqM2uvnRQoAVgmUbt5wQOxnH22wXKSbcEjKVwp42QwUdBOhOB93pEM/OmjuIgLnBe/jsxcepxuvcPfUe/v0Lv8z56gUG0qN4KNAhM7V5Pv3iH/GLj/wgQ5YNbhZ99l8Z56N0CAfeRnv8ewkL93FffZH/833/nBc2r7Dh1yinStybHeBw5zxc/jfQXECkDvL40X/Ez37pR3hq+S8hCgHFwxPfxD95x0/z1njDZECDuR7CEB0E0DVcXu96CGPF/FaVx858pieAA8RxzJXNVf4g+mN+QHuvu5K6NzJhrK4RwAECpVnaajFRX8DeWqRRcAGBygwSen2oWCGlwLEVtGIa7U20b97zOgxRtRr4/o5DeDdRRLyxYeIvXqYTfndMiXBd5A3iNrZpNdvXCODb+K02rWa7J4KrWm2vAA694k/ZaiIzBcilEJ0z0G6Z67w0CpsXscML6KXfRQ88BM4QeuSDYI8gi8Ve1IxcWaZbhfuycrtbfmuvAK5j0wMQbhGst2hl30kxV7rl572abVd8vLaGSKWILl0C1zUrALpiuO50UBsbWGNj1zxeNxrQPWdXn3tZKiFSKbz5JSZHxuh4gjjsYOsIrz6D4zcRh74bvXDeZLJbFihFPDtLDJDN4vb1Ec/NmUHF+jpqdRXnxAma//kMzkMfxZ1SEG4CGYKKR/T4FXIHDvDh8ffyWfmnVFsV852WSjEwMMVHjnyQQnbwZR+31yuFXD/f8ejHrynH7C+P8Z2PfpxCrv+6j50uTdOfH6JqV/f83I0i8jrDYGqExtwCfcND6KxHDFgCClqRefy/o970ELjmS0FeZewOlKKcstnybbaCqBeFkrUtDpezSR54QkJCQkJCQkJCQsIdJfmL441C1IC467qSFrLoQusitIwYpZa/DukxFt72Th57/g+otCrEDYVa26B4z5t59+S3ktmK0Z0O0ewVnKNHiSybIIqpSYEvIfeOdyG/8jiqahy+qt1E+B1EJkM8ewXleVjjE8hc19Fo37qzMcGIQly+jG63UY0Gan3d3KA1Ip2mLjM8NvMnVGpzWH0Z/NQApytnIWqyHrcYSRexwi2ws8xUz3O602aoOIlavYA89HfQBz9BKzXBUsfF1ynUpoWIR/BswfssRar6dYjBmjoOs/8BaqdBa2bu+/v87Jd/iafmv2qiVCwP4pCn5v6Cf/b4L/Dr7/5nTOUzqHqrK+hp2C2yXud6aIUxS4151rZWegL4NnEcs+xvvm5L6l5tbkf83Y9WGF8jgG/jN5q0pUseyDlpwtJhGrFFHIToMEBIC8sqkc2lyTlZ6BqCheOYwccuF/A1KHVbOcva94nX1ozILgTatiGK0JXKngLIGzl3ozi+7m1X377fNopUCmyb1EYFJ1sgEi2oV9B+APkB6MziSUjXnkU3quCuoJrrsFFFlT8Kl2yc48dN1MwrlAkfB1s7AnjcAb8CcYBWMegVwuIYKigg+24/g32PK16pndiQbomkLBYhDI1td/ftVz9PFO1/XHfl0MulJtlMESFihNRYh78ZnZ0iuryMe++9BFqjWi1EXx+6WoVsFmt4mHhzEzEwgG40dl5DKeNQf3GReKmEkGmII+LqKgQBMp1mbC7k4xPfzmK/TdMV5JTFBEUyKz6h/yLx3Bzuvfd+QzrCD46c4JPv/XEur16g4dfJeXkODB25oQAOkLKzfOuhD/HYuc9SbVdwpMSSgsH8EB848AGcOEvoNGktLQNgOTbFtMPoxipi5iLeXSdwUzkCpc1jhSDuWr7TloUfayYLJhtfCoErBXnPTgTwhISEhISEhISEhIQ7TvJXxxsFOwfdZe/CARqXIOy6MaVE5ktsBS0ee+7fUaEP7fSj1s6B1lQ3l/hD/3N8z9H/Cbqu447SbLTaBGGEpxUztTq5TIoj73wPucoq0eXLkBlCjB5Br18BrY1beWEecfAQIjdiogASbpk95YRbpsBMKwWOgzUxwfmtCpVW15GvYhpxaAQwFRNqRUd4ZFXYFcTabDaXofJ55KG/har5xH2HWNL9BOks+AFCrIOtCOKIZdnP1PAxHH8BoTpGAAcQ8LwfGQHcbNCebX5q/glONVeZHhpFBPNG1NN6Z2WA23fd6yHWmmbQuCaSYBvNN3ZJ3Uvl6oxq4CWJv/sR36BgTitFbJvzNp4dJpUeY7M2Z5zQ3Rz5WEEq2894dhwaG4h0GlkqoWo1hH2Drw0pbzlnWdVq+F//OtG5c6h2G4IAUSjgnDiBNTyMWl9Ht9uEZ8/iPvDAdQVl27Ju+Dq7b99vG4VtYw0MEFfWGT16jJVY4seqt09urBiRDayFx9EqRIoYYo1ormIN1oi2sr1ttIaHqft1rtSu0Fi7RM7NMV2cJn+dLObrYeluiraOzfs96piYkm5ZodXeIHrut5EP/33sof3ff1cPVkQmg242e//WUQROjF0IoByC5SLy9xEtVlGLu+I0hDDXyHWOs7Dt6557uZ1D3xsOHN8zHJC5AVStRupd70JtbqLvuovo4kVUpUK8bMRW761vJV5eJprpxvdIaUTysTHixUVIpUyB5/i4KfMslfDe9jbSnkfZ9wmefpp4ZQXCkBAQpRLO0aOEp0/jPvTQN+QqlEKun/tuInoDtMOIuh8RKI0fK2w5zAeP/jXWWwt0oiZD2SJH+w6S9/K0ZmfJuRCUSigNTrtB6uIZxNwsKIUdRYzmUmYlCpB3bepBhCslg1mXdqTQ2sQy3YlM+4SEhISEhISEhISEhOuR/AXyRiE7jSiOQ62G0B3CkUdpZ04Q4eJk8jj1Bperl1mf+RoU70HLErKvD1WtYjXqVBSs6w36hA3jE2y0Q4IwJO3YhIERWhqtDhfW4O5CAT07C1LiHHgnZL6AaBohQnc6KJXBmvhoUor5MtgWhaKFBSPMKIWq1VCLizSGQ8gdNU5/GZNzcyaGRAiQLioOjCgGEHcopkqI9cvo0/8cffjnaHuHCLSFbqyh155BUIfOEsL2CFRAe/Ru3MXfhdFv2bNN1c7mVVupTX8mAgRsdGqI0W+B1p9AYxlZKCIyaSOA3+B6sIQg6+bgOqVnAr6hS+peCvtmVMMNxd8bucatGxTMCSmRykVnh5B2ifdPv4fPx19kvbFkBG5hM5Ad4f0HPoC0coh0pxfnIUslWFlB5HLXRqLYNla5fEuCfdDxqa9XCTN5rJP34SwvImZm0JubhGfOoH0fa2IC3RXCbxS1ksmm8TLpfSNRvEyaTDbd+7cslUzu91XHW6RSONPTpLJppsJN2qU8Yahxch7p9a9jr3wVdAixMm9B1zVTnLgFZHvbOOe1eezsY1TbO5ESfbbDRyYf5kC8Dm4JSvdCbuqGxydjaVwnTdBeNw7wXQK4myqSbi9D5TLq8tOoTP/OKp0uqlYjPHfOFEhHkYm08jzkwACq+7ljj9jI+udR5y6YckmtEW4f9tAHUJkjvYgskUohy+V9VwKIXA62r4/rcKPC2N236f5+gueewz54ECYnd2K4slksz8M+eND8LJ8Hx0FtbprbbRuCwAxRcjkT49JuI6amjAA+P7/nNXWtRnj+PM7dd78iET5vRJp+yGYQ0QhjLMCPYubqHdKOxXguy1DuKGC6BFK2CfjxCgXUl7+Mu7p6zfPJoSGs4WFc12a6mOmV8poaZlBAX6pb0PsKZdknJCQkJCQkJCQkJCS8VBIR/I2Ck0dMfScyVrTsYZbqTYJmHVIpaBfIuANUx/vx119EuCXstkJVKohiEb21RS5foKN9ZP8wfj5P0DYC+IBns16pguWAlDRaHRrFjIl5VorwcgM5/AE6x9LMq03qYUA+N8YBchRe62PyBkd4Hvb4OGptzURBVI1glrPSqK0IUbgLXbLxCLl79CFOL/8laIVkx6V9aPB+7naAsI3Yuox1ZJ7YO4mubqCWnkbQgmgRohZaSITqELWW0ZlphLSN81crhFuiL1W8egtBWCA0aE05VUS1LfTAd2MdCpHlNCLXv6cccD8yjsVoboLBwjCrndk9kSiWZTHiFV9ySV0Yq56wIjH6YztqsFSfpxM1KDopxlN5JA6xcLHcIhkv/boXXPbNqO6yn/h7Pde4ffgwxDGeEDihILRsIw7uwstlSa39/9n77zjJ7rvO9399T6zcVZ1z9+QoaWSFsXBGrCOOYNYEG3u53vWCgV3WcK+BNbYXY+7PhmVhuSywkb0/luTFyPbaGLDX2SNLtqVRmjw9qXNXDid+7x+nuqd7eoKSJc3o83w89JCmqrrOqVPVJel9Puf9rcDgawjtmFxtjrdOv4ol3aKlYzI90ww4Y6jQRheyOFPja+G6cl3syUmUUsn2V4Nwy8KanMTet+9xT9Q2/ZALyzVac8tJDQrg9Aww/IIS1rfvR1eryQKM6xdhvMrVAk7KZWx8eNPimG4mzdj48Fof+Nrr6F6NcaXJe7XgYVz4GvrCEcztt8Psl9cfRHToJNUtnQ46stFhiLIs6mGTe05/ekMATvMsKwtf4Z6Zv+BdYzvIV+6Dnptg/y/DwF1XfE12up+R3FlmwxReM9oQgA9nTMy5R9AArTLRwsKGEFx7XhKAA8GjjyZhtu+D1hjDw7h33YVurcDSZ4nPJJVISqkkMA/KqIXPotOvxujrI15awpqcxNq5k/DYMeJuXQ0kAbi9axfWxMTTMk2tXDeZ0F733uhOBxWGWJOTRDMzyRVNnoc5MpLsR6GQfIbCEJXLYW3dCmGIvWsXYbmMOTGB2d+fhOaNRrLIayqVVO1kMlev+LmBrP/+DKOYk9UWi02PUCf93XnbYmspw8lyi/ONDqPZFL7W+LGmFUT0mAZmsYj7kpfgfeUrxOuCcGNwEPelL8Xsfo/bpkHPc/x7VwghhBBCCPH8IiH49SQ3TbTzPcwtnsGPZyBnoqIY18gx70OHgHpsobwIQ9nkhkcwmg20aWLMXmDk9hyjDY9myiYVR/jNFksVD1Kp7iXqSagTrG9SMAzO9+X4m3v/guWFGQBUTw8Do9t408F3sGV497NzLG4Qq2GcbjbXQvBxL0Vf3zhl0yfuwPG5B/kn+3+E/6w1x5aPkNJJSfPWoRfw87f8KEP+OWgvJpPWuoGlFLq9BO0KKmdAp5VsLGhAqoQV1sHtA68MPXugdQ4yk9zkwu3jd13sBCcGIpSyuG3sDm7KD2P0T2Ea2SfUc2ybBuOFXt6w+03co/+6uzhmjGlbTPcM8saxV9CTv/YUZtMP1xZ7TFsGS02fVjDL35/8DCudFczYJ234ZI0Ur95yN7koBOVi53cy7ObI6OhJd2x/r12rCmb9/ZedGlcK4hbRyS9jZAws7TCY38VcDcJ8Iem7JpnoHMmlSVkjBEfrmPl+dE8JpQMGTBeVH0KlLgapdi6FcjdO6BvFInY6jTE4mITgUZRM5WpN3Gigff+ax3l14U7P89eCXUgmw+ccm7HJKdTpU0nHePdKFbh8jcl6uUKOLVsnaDXbhFGEZZpksukNAfj613G1/m6jZ4ho7PVQrxM3Ghi5CWicBScP2W3EtVaydoLZQ7QYE1eXqOwe57u1h6i0K+SdPI7pUKnNEC18BbwFVjyYMb+P/QDVw/DQb8Adv3/liXA7T7YwyVT7NK18liCVwYoDUv4cVmo/xoiGwT7IFIit1oYfjSsVtNYEjz6KrlSS49ytyYnn5ggeegj35l5YXEg6v7tVJ8owupPjFewBoHcK4+abMfv6kontUglr27bkvTfNpIJk3XF7OnrtV9+bqFJZW4xVZbMYuRzmJe+ZvXNnUu/SbqPjGOW6KMvCKBaJymX8Q4eITp1KXiNgTE1h796N98UvQhhiVKtQq2FkszdkN/iq9d+fWcvkdLVFK4yISU4moqHih+hqh5Gcy/mGR8zF/xhYX7FkT0xgvPa1yVVMngfdSX7zBj5+QgghhBBCiOufhODXmZZ28O0BlHkeojaulWOxA23Po5DO09+3jaWFC4SdFs1CnnzegHKZgem9jJ2t4x5/mHBknKX5pe5CZ8mUr3KTqThME9u2MEol4nKZ9vQof/Pgn68F4FgWynFYLl/gk4f+hJ+6+19dc6EtcXVGsYhz553JYnDtNj22zZum3sY9R+5hubNCx7N47Mif8c/3vgUnN0G7cZoeO8XeeJ6hhU8mk9iWSpIMM49dXsZRGk9zsTYFAI2NJtU4ji5uAx2hb/ow6swnUI0jbDv5B/zai36RD33tt7h/9v6khxy4bfwgH3zZB9jWvxVyT64HPutY3Dy0nbH8P+VsdYZmq0KhEzJRM8jNdQgXTxLNzl6x/3o1NPVjjWsaLDZ9wrjJ/zr+aRabS6RMCP0aZeXQZoXPnPgcb93yGqgu4DXqXMjvZ6LTxjx16kl1bH+vXbMKxjCI5ueThSlXA0ulQCma/S7njTkaK4fJBTGTLYvcwgkymUEmp/4xbd9CF3NYlnWxhsAp4txyCzQaOEaGINZrC0OucoyktuCy++u6WENDMDS0VrmxWnejwzCZSp+YwOy7/HfD6sKdyjCS17L2xAq/4+EPDeOePpX0cTsOutVa6yW/FiflXjb0vtLruFpFh9G/m2Dgh1AsYUy8EL3wRWhUILLQrTKqfxrc7yM+1+GxnT38+wf+LbOqzpGVowBsLW7lh3a+mpWgSvKbaNAwslDYDbGfVKvUHr16LUpuGttMkz/1SeLyDFgZ1MBNcOwPoPwgGA7aKGEM3wq590HvAQjqqGgGp3gO7hqmbd+KV9MYlTrO3AXUmZlkMjywIQxQqdSGaWjV7f9WLqh8Hmt0dMNxWf/n9TZcoaBU0tOtFCqXQ6XTmAMDmypbrmQtwF5eTqa9tcbo68O96y6ssbFLjtHm54wbDfxDh9bqXFAKHIf43Dl8zyP1+tdDu518XrNZguVlnHT6OXmS7Kla//0JEOuYihdgGYpIgwFJX4mGqh8yXkihNYTrTohfWrFkFosSegshhBBCCCGuKxKCX2circF0obALakfA7aNdXUruCxSv2fEWPlf5UxY6cwS1OvH4CMOFQd64581kDj2GBtLnzpDN9dJstJLFNoMQUgp0TC6TIp9ycA4exD90iPN2c0MAbhQKqO7CaMvlC5xeOP64Ft4SV2fkctjT02sVE2NNxTsm38BZu0mjtkRh6E1MLv89hQv/gGo8Bp1ZyO+CkVeiT/01BB669xbCpSzRI//AyPffwYVUjlBdnA513CIjZhV75h7o/UX06f+BKj+KLuyG/BZU5PFSO+CPfuDDHK7OUfaqlNwCN2XSbMvln3QAvso2DYbzJQaVjX/0XuJGK1lkb3WC9Cr916uhaULTDnya3gzztfMYyiA2AspRnU7QJmOnCYhZCur0xzFETYKoQTvTQ7ZSJjh2jGj/zTQiTaA1tqHIOxZp+9n7OrxSR3Vyp0G0tITuXikQ12po38favp1zqRU+feS/sDz/FehUAOjr383rd76JyblHsU7/KdnSG7GyqU1hr3JdXNdlLB9uCMhgdWI8dc0amdXKDSyL8ORJdKuF0Z0YDioV4ulprJGRTe/n6lRpKp8lHh8j6uvFtAx0WMerL0Muh7V7Gmw7OfHWrSl5pgNKc2CAaGUC3e4nrPuooXehhpahuYIatImMQcLj5yhvHeT3HvpDTtXPkO8ZIGNlePOeN9Ob6qURB0zf8VGM5mlOnb6HbFxHz/0dim6oWDoAduGKtSja84hrQPEu4pMPofoGUcf+AOUtonp3Q2YYhQZdhxP/CdQ/hcqjMPPXtAp3cqFt4/uHITNB7I5j9g4x3N+Pc+4skEpOQkQRRibb3aBOAmPLQjn5x93Vv+EKBaUgnSZ45JFkCr07EW7kcjgHD2IND1/1uVYD7GhxEd3pYAwOYmQyoDXewiL1dA6dTmOqK/dLRwsLxOVychLFcdZeE54Hvo+u1/H+/u8xJycxCoVkf6MIe2rqhgvCN35/sna112qsrdTGdYvDWKPRWCoJwq92QkwIIYQQQgghrhcSgl9n1qaxnCKUDhDpEJU10JEmChXZusEPjb+eJbNG2wgZGp1iV3ES96GjeMvL0GyivvYVtr3lhzlBJgnCjeT/gHPZDNuHSmTSLqSHMe6+m+bx/51UHXQnMlcD8FUNr/7MH4Qb1KX1DEXbpieK8M/cR3yugb3/zTDwUrTpQ+0IqvoYnP4kBE107wH09n+F93fHIAyxTp5hwlzByw4RuePYYZVU7btE7l4WX/IpAiONkz9IrnEWd/6bNLIWM60FmrUVcpkR7m48QL76QDKpCnDrx4CDT+p1xY0G0cIC2vNQWRPlncNQJ1CFDLE9DJ5KahW6lR2XW6Ru/aX4UehBZ46mt4QReYRmhy+f/CpzjXkg6TUeyvRz9/ZXMug6xF4ycRtB0ns/NsnJpTqtdaFP1jLZVspSSjtP6jU+VVfsqLZtVKGwVpUDgGGgGw3qwQqfPvGHrHSWwa+t3b1SPcGnjn6Sn9zyKnKLJzAHKletW8lesojd1YLFS8WVCii1FoCbY2OEMzPoWrI/xqlTxDt3Yu/bt2GK21SKtJVM9LdjA42G2iwpEwazDlb7GE7hO6idP4qyBzB27HhWgsnVDvTgyBF0FKHLEVEtQgeZJJTvdLB27OBobpFTtRmIY9Jmip+987385+/8Z749920ARnJDbO2Z4Ofv+Hmmlv4KAI1OgvCwuVaLou2htd9/uhPw8eJi96CZGHv+GWb8GKqqAQ8sB5a+Ct4iykwli9TaRchvI8xvYTbK4re7P986i3I0gT3GXGwyMTBIbA5hpAdRqXoSeq+bytfZQWJjEPsa076r9SdRpZJMfnd/j8Nz59Y+B3QrbeLudLdx991XnQiPFhaIlpfRnQ7W1q2EZ84QnT5N+ILbmFusEHZOYI2NoTKZtRM2WWfjf85oL6mNUqaJkc8T1+tJ4F8sout1aLex9+8nPHeO6MyZZJ+PHCE+cADn5pufc1eLPBXrvz8B7O7Ud7w6Ba6T8itTQaTBUoqsbWGgcAwe1wkxIYQQQgghhHiukxD8OpOxTRxDJVNdpotppsCN0NUKZhxjtGvoSof+fB/W1DQTw0Pkqiv4Wq/VnRAE2P/zr9j1ohfTHhkjNC2cdJp8PkMmk17blpHLkS8MYGSzV9yfnHvlBRHFE3dpPYP2PIxcjnhlheDbMwQAjoO9/+XYYzfB0CtB5QjrvUkA7vtgGAT3P0Lm1bdjnfhLTHcJ1XiU6i0f5bjXQ6tuQvM0WFmy5laykyN8/rsfYeXCF5IahOJ+egl4w5ZXMr34+SQIV08uAAnn5pJKgmoVe0cJ/cBfo+Jq0tuLgjhNnH85/iMVVCaDUShgDA5y6czh2smfyMOMyqBDsnYW01F8+fRXmWvMAZrVCtv55jwPzD/IrqnvR63Mg7IxgXBkjJMNn6YyUe7FwLsZRpwoN9lnGc/4RHjdqzNTmaERNMhNpBmxxzFIESkTU4F7bob1R3+1tuS8WmS5fAyVWrdErWXhpwd5LAg45PYyMugwaRvkbXvDoniXBt1PdhG71XA9rtUw+voIT50ibjax9+5NvjeiKJmwnZvbUDXhmIrllk87isBQKNUEx8SLY5atHMM9eSxtohpfhm3vAvvZm8y99OSU9n3i5WXi5eW18dmKWVnrNn/R1Iv404f+lAfnHyD5QCaLTT62+Aj//fCfcvtNP0B+/nMA6PwO6CzB0rfRy98hqG5Z+x2Ozp4lmp1NwmnLShZ83LYNMx+jO7OodD/UHkkCcBREHgQ18Mtw7A9o7///EZz9Dso00VEEkY/SdYwMBDWNNzSCG1ow9BqM/FfR88eTq4JIAnA1+gbMkc0nH9Y6v+MmRjBPXL5AHJqEywbR+eWkt3t6mmh2FmvbNsITJ5Jj0z0+cXnzIp6X0p6X9HUPDRGePo1eWUFv2cpcqPDbLZTtEM3PY01M4FsWs40OUz2ZDUHt+v1WjoNRLCbPu9ozn80SPvxwMqm+ut3uCbsrXZFyvbq0ysRQBj0pm3InwDUNIq2JYk2koeTaWIZiV2+OjG0+7hNiQgghhBBCCPFcJyH4dcY2DUZyqXX1BYpMNoNnW+R1hNlKwfAQKpMhlcuSsc1kATHLwujpSabhOh0IAtT//iIZwNq1C/elL8VaF4Cvmh7cTl9plOXyhU339ZVGmR7c/r1/0c8DVwooleti33wzcb1+sdvW9wmPLsPOnQQPP4yultGd2YtPFscoyyI43cCc/Am0WcbrH+d4O0PT8FA6QhtZ8EK8VJu/fvSzQB7LdLs9xTErjRnuOQXvGruFvD8PqWsvXHmpqFIhOH4cVShgj/Zi1D6Npp5M1HY6KNtGL5/G8D6PMfQD6HInCaFOnMAaHt4QQK2d/OlUIVgibWWxjSHSts1cYw5FnGTg3QU9p4tTHJ5/kNuGbmGHk8Iyc6RbDWqDIzSW6km1wiWaYUTdC5/REPx05TT3HLmHlXYy6e2FEVmnyGu2v55Seow4jtGj0/SPhaQfexTCEGVZmP39NMLz3eoKC5RC2RbVzASPVWZoexV2Dt7E1898nt4tb+U1fTswqtnLVp5cOkH7RCjbRneS900NDhJXq7gvfCH+4cPoxcWkaqKnB5XJEJgm9uQkynXxI41tGphRTBR7oEOwLEzDwrEiAidDxnHAX4HmDBT3P+Vj/VSsPzmlPQ9/cXFDf0TR6Z6IsA0cO8W3zn4Dx3RIGS5aQ84tECvNd2f+nsP7f5hJgNxOGPpH6ON/mfTvNxfQ/ljyHd1oEDeb6E4nmV7O5aDRIDxxAvs2G9WpQHYIggr1oVdzZPitnA40ncijPzvAXneaHJkkg3ddlJ/8XmMolKWSE0DjE1gqwihuRxm3oKdOoJsrQBqdGsPoGdoUAq/2vxvpJqr890TzJ9FxjK5VMVP9qP678Q8fI6pWsfftIzh8GGN4mPjChbXaldVjeK3jjdYYrkvUvQrCHx7Br16sd9K+n3yP5HL4saYVRBtO5JiDg2trW2AYmAMD4DjJv/927EBlMhcn1dc2rCCK0O32Za9IuV5tOHlO8l23tZjhRLlF3Q9wLWOtFmpbKUsUa/ozjoTfQgghhBBCiBuKhODXoUvrC4quzXLbShaxKiST2es7fSPbBt/H3r+f4KGHiOM4CSS0xiiVcG67LVnk7jIKuT7edPAdfPLQn2wIwvtKo7z54DtkUczaCagcTsI6txd6boLCtsf3o41lTi8cpxK2wMzSm53AsJLpyPUBpdnfj/viFxOePYtut1GrixdqjZHJENUvU0kTRUmQFDvo1BbqxgD1xQtJiJoxUX4y8VmJq5wvn6O/px/L7QdveW3qe6U+w0zq1ewf/D7I73hChyWuVAjPniV48EH0ygrugX6i899JJjJ7isT1Gsqyk8Cpeg5rm0+wosGy0HG8KYBaO/nT1njtZQYKOZZ8m5dNvYwvnvoCp8vHQRkYCqZ7prhr7C4+d/xzvHnXm3D6XsigrzCqFcLBEZRpgGUmk6lhhNZJhQqWSXhJbcClyq0qJysz1P06eSfP1uIUpUzPEzo2q+pefVMAvtz2mW/O8/8e/p+8evvbUCpDr2sy50fs3ncz+YceSN7bVIp8thdsJ6mSyfTio7oBeBk0uKaN1jaLtfP82UOf4C3734lhXAz//VhfdoL2iVDZbBIcxjFojb1nz1oAbu/dS3j+PNHZs8ljjx0jvuUWnP37idxkm0XXJkARawcDjR3VMbwKkb3u6pOw8aT2LapUiObnk9AzncYcHHxaFvK7XHXNbmuYrYO7ONU4TsNvoAE/8iGCtJUm8hoEaLByVMIItr8H3VyEk59ITjwBqBzBgw/ivOAFeMeOYe/fjzU1BUEAqRRxp0N04gRxPI5R2IbSMDP+4/yduYs//vLHObL4MChFT7qfV0y9lH962wsoaQVRkHSrA7gpjJ5ejJFhnGIBI66hl76L9mvgFlD9txC6peTfLbHG7ARrJ+RWO7+xQ1j4HMQ1Yt+DTicJtb3zGPrvMSdeTjQzhx4bw+jrw3BdYsfZdAyvZjXAZt1inaHRvT7EcdY+bzqO13qtL638WO0f9++9F5XNXqzpWT0hvLSEvWcPwaOPXrxKSiXVTMBVK4SuN5tPnkMjiNhWymAo8KMYyzCwDEXDD6X+RAghhBBCCHFDkhD8OnVpfUHBta5YdWAUi6hUCt3pYO/bhw7DJFixbYxsFmts7Krb2jK8m5+6+19xeuE4Da9Ozs0zPbhdAvD5L8PhD8HK/Rdv670Nvf8D6Cib1BK4BVRxO8p2konWsAFWnlOdmE8e+h+UvSrZ0iSmZaJMk5tHbmWkZw8+mQ0BpdnXl9SidCsZlG0nAWSjQVytJhOj3boBAFUoJM0ghoE1NUVQb1+cXA0NMB2IfFpBMlkZY4BTAisL7gAoG5RJwx2B4VdA+vFPRGrPIzh1iuDo0WQxR61BJ2GhbjaJtcbo6VmbCkVriFvg5DH7+1GWddkAKutYTOVNWlGGKF6hlOtj3lPsKE7xovE7CSMP27BYbM7z9yc+Swz0ZvoYDxrEj54gCgKs7bvATSXhu+cnIZpSybHyNFZp84T4qmPLJ/kfD/01882ltduGsv386P43s6Nv6+M+PqtmKjNrAXgUa6peSBBrvCimWV+k4c9hGFNoHZMxDU43fHZPb8U+cQyAcXeSvqE9lGsz6OwklU6dducYoBkt7gCvDj3bCWJYWT7FUuMsg4VdG/bhchO0T4RuNlGlEkZ/PxgGRj6Pnp/HnJwkPH8+qZro9kzrVotocZHgyBHM/bcAYBgKV/nQOb3heU0ufpaxrlybcSXB2bN4X/kK8cLC2m3G4CDuS16CPTHxhJ/vUpdWpAzbNv/iZf8nv/uN3yS3LsBP22kG0n0ErSWwXIhDipaDfvBPAQ2GCTpGD9xGUC8RLyS94s7NNxM8+ihx9wQCSqGGhnBuvhndWEIPvZ6G0eQLVY8/PvwnawE4yqLaXuaLp/6BEIP3v+A9qPP3J79rpotKD0B+CMd2STXPEz36n6DWndJWJu3pNzCXu4nALa69htUTcqlKBd1uY6WbEKygPR8FxOuCal27gDUdEZ1R0GphDg2hDAO72xOuPS95Lek04blz3ZNiPZtCcSOXw7n9doITJ9Zus+IIHAeVzSYnA113Q4f5pZUfQHJFyUtfin/vvRj5PJRKKMchPHUKZduEKyuY4+NE588n+5XNoro1LY93QdDrxZW6/4ENtw1kXAnAhRBCCCGEEDckCcFvEFfr9L10clHB2kKX9tatj6v3tJDr4+bne+i9Xu3E5gAc0OXvoh/818Rb3guP/i9QoAYnUROvgM4F8KvUUxPcc/QfqAYNRkZv4fMnv0Ddr2NYBn976nPcMnSAH9r5jymYo7Rci55sEiBd2hcOJCc1oijpYq5WkyqUQgF7506MYhFrfBzlujh+lFRXaNB+CJkSijIZK5NUBShQqUHIbYGwBXYBzBS5obug95YndGjiSgXdaiWLz0ESchtZ4rHbaJd2ERk2djZFqnwco/PNZFI124c50LO2qN6VAig73U/PhU8lk/epIW7GJQiqfO7hvyU52BarxeAHxl/MTakMRl1BOg2FAr6/RC04T6W5QiFVYNiZpFM30YZJrpgnU15Gp+xNvxPlVnVTAA4w31zifzz01/zsHf/HE54IbwQXJ5yDOCbsTmhG3b+3gyZZF1qhpi9tUWv71Hty9AIqnaY4uI039vwL/ubbv8PK7P34Vi+kBhntmebura/i3IkvottL6IE+0CHNThUKm/fj0gnaJ0IHAXp5GefAgbXaCgwDo6cnWWxwdSFdpZK/whDdbpPqNHEMN5lKtXvATEOUnChx7DSZ4Hzyc04vZKee0D5FlcqmABwgXljA+8pXMF772qdtInz97+MBhvjoy/41pxqL/MC2V/LY4sOoOCJoLaO1htDjpqmXst/t/mtXJQsS675b0Vt/Af9LZ5PbHIfg8OGkxiObTU5YhiF6bg4fcF9+EH3yi5yeupX56jGOLB8Bw+qeTEr6+6tenZnKKU61F9jtFvDDDmTG0ZmduHaKYdNDff33iJcuhszh+J3MtgL8xv0Yo3eBnZwQWr1iYHytl79bSbK6zsSq1c+R7iRhdbEInke4vAy+n6xv0NuLvW8f4fHjayfBVDqNvWvXpoUojWwWc3w8+S6pVknrGLdUxKvWko501137vnCMi4HuJp6HcpykDqXLnJggXlxEdzoYExNEFy6gslnMqSmMVAqVTt9QC2OuutJ/JzzZk2BCCCGEEEIIcT2REPx54tLJRWXbyYT4DbLw11P2RGtNKoc3B+DKgLCFWvomxrZ3J7Os6QyqdxoO/2tU9SgEDc6M/DArZ/43wzt+ki+e+RLtuM251jlqnSromPn6LGeXT/MLL/iX+MuTxEHmioGMUSziHjyItX07ca0GWqPSaVQ6jbnu/c2nHHJ9vTSWV5LgshOD00sxU2JsYDvEK5A+AObFz0Nvupepvr1P+FDqIIAgQMcxpFLgebT79rMQ9eHV5wGNEeWx3S0MTxdJzX6LyC+sBWpXDaDsPIy/Ac7dAygmq1/jl+/6eX7jG3B47ttJ7zFw0+id/PKLfonRMvgPHwXD4LHdJf79Vz/IseZ52mFMFEXs7NvOe277aQr+IFtjH7tVJ9Qx1ujoht+Nk5WZTQH4qvnmEicrM9yWufkJHaecfXHCWeu1THRNet1EcYzCMA0Cw8TeswejWKSBT8OzuGXb24inXo+OA47NP0hcX+Tst/+cKPKSDmg0YJIxLz/lfrkJ2sdL2TbEMfHycjINHsewety6lUsYBlhJbzndKh+z3WZksCepZ8CFwi6oHcExYMTxMS8cJlJZdPHFUG5j9jiP+7sqmp/fFICvihcWiObnn5YQ/HKGitMMLX+NXz3403zkax/n8IX7Iamp56bRO/jl23+RUbMH7vwDiOpg5AnqRbxPPYxRKKB6e0Fr4sXF5AlX6zlsG5pN9OIitDTG9rdSX/wazaCTfOa7n/ukykiB6RJpRdVvMjm0k5YzSuC72Nk82YyNceRLGwJwAC+/Ba+6nFw11C6j7I3VOR3TIQVgZpLFJYMgea+bzY0fXieP6omI5uYwBgaILlwA30fl80Tnz6ObTexbb0UvLSUnAdrtyy5EaRSLMDODOTZG2GrBqZOM7N3PbCFPoIzkBIRlbaj+upzLXVVidqfPjVIJo7cXa/t2VC63FoDbu3bJvxuFEEIIIYQQ4gYjIfjzyOUmiQVXrDXhpl+DoZde/mf8FTS6W/UB3fF60N2KjyBZcM0YPwDH/xC1cj+4ybFvRCG0LqC9RephjdO1M9Ray90gSxNHHY4vPsh9K/cxSpagsoSTTl8xlFGuizU6CqOjV3yJadti+0APx02DZqO9lrq62TQ/ceBt/N3Jz6xVc0ASgL9x1xvJu/nHdwzX749tJ6Fdu41RLBL19HCh0iEqDKLsOsQdsG2COGAuM8bE7r3ED5zC6O19fAFUbhq2vQuaZ6BnH3ctfZnff9kvcbjVoNyuUkr3cNPAHka9LJ2HvwlxTHnrMP/+kT/kZPU0RrtNJpUichzO1k7xXx/8Q/7N3p/F+qsvEd12G8Qx/sLChunUeqcCYTN5f5UJRiqpsuiq+0+8t3qqOEVvupeV9kqSdSqF0c2jh3P95JxhWt2mCdtQ9Lg2pmkwGzpUlk/x+VP/i1pQI67ViOtlCm7IWHGSo6e+ShR3g79YYwVNhvr2MZAZgtYc2m8ndTdWATebv/IE7eNgFIuodDrpxm61kqqb4eGkt9my1qpQAIxMBiObBPvKti+pZxjCLJZItc9jnnuYMH4BYd0hPvYQKnMSe9curImJxzed2+lc/f5rLMr4ZNUay5xcOk7VmCJnOPz2q36Ho+UTVFpLFFM97C/tYfhCgHZdWo8qotkmeCugTydPsFpxFATQ7v6Oap38LqXTkM8nVUG+T1S1yRZuItP5ZvJZZN3ZE60giDGUSdEuoU8r0sySBuw9e6BaIe5UNu1/oCyIu99f0eZjFLkuKp0mihzM4QMY9QWMrEM8GhEtr6AvPIbKDxF6PVRfvpVHvXNU/CWKr9jKzlaW0r0PARAvLREvLWFkMuhmM9nlyyxEqVwXe+dOgqNHsbcnCzDbUcR0Xy9+/yBxKrWp+utyrnRViZFKQSqFtX079q5dcnJYCCGEEEIIIW5wEoKL57d1tSYbQu3lb8HhD6HSf3TZifDYKaGiaEP2hJmE2KCSOhFAGfG6cD2Z1syZya9dx6ugiKl7VbRhAkkYaZgOBAGV1jwL2XMMBP2bAqIno5R22D/YQ70nS6g1llLkXYu03cd44V3MVGZoBA1ydo6p4tSTCsChG4xmMqieHuJKhWDvfoJaGxoxKrcHI6PROkJ3Ajq6QDtXJLcnhTk2htnX9/gCKDsPxX3JP/ceYLI5w2S+kfRHZ6fAzuOvLnhnGBzNtTh+/iGU66J9H9otTJVMKJ9a/DrHR1/NHevCR+37BIuLqNlZDLNMTtfQrfmLHcSGDW4fmEkdQ9554r3VeTfPG3a9gXuO3MNicxnLUNiGYiw/wA9sfR3tMDkOBcei4Ficq7Wp15sYXoW/OfmXVPwqvfk0rmGgmx61MMJT59i2/fs5evRvk404OQZ6dvPafa9DNc/ilc9BFHfvGmDI2o5Zj+FJTkZvqFpqtTB6enBuvjnpey4W0dVq0rWcz2NOTKAcZ8Ok//p6Bu1p/MeW6JxqdRdETMJs3Wgkz6/1VU8GrelWZFzR9yDgPDX3GJ94+C+YWTxKFCST0QP5IV6/9828YvttZLP9RCstguaj6FYLa8uWJPhdWUlCb60x+/shk0n6/dedPCCKoNNB5fPoRiNZGDeKmAh6GIgz7OrdxZGFR9ftTUxPqsRUzyT73AkgCZpXj3u0uIg2s1zK1t0zLlpvuCJklWVZ2Lt2ES8+ilo6B8tfRs81MNJplN2PPvhGdOo2Hklr/t19/5ajyyeSUN0P2Na3jX9593vY9aXHkl7wTgcyG69MuNzEtlEs4txyy6YrmDJP4D3ccKLmEiqdfvzfOUIIIYQQQgghrmsSgovnt26tidY6CWzWh9qLh4grD2IUtlFrLHcXBq2Ry7hMOQPkJ16Pqh+HoAnNc91KAND9dxLH3VAlWD8hnARbU/4FegtbsU2LMI5QdLuB0dimg6EclOOQNy06nQW0Ll42IHoy0rZF2t78a5938+wf2v+0bEO5LvaWLQD4DzxAEMbJxKdlJYvaRSmis93+Y8Mnyuewd+x48h28dh6Km/d9Ndgy+voo1y9sXIgTksn7MATTpBJ236duvYcxMID3la+gUmDHX2Rq8k6G3H7m2wtJCBkH4C1Dapih/BBbixd7q4MovuIitZeaLk7zrgPJCYhypwakyDojlNsmqJiMbTGRczlfa2PqmKBWo2YtstBI6jJW6jBYyIBlEVfadDzNnjvfwM0Dd9IIA7JGkcnsCMW5vyWIXdrZaSJlYuqIdP0hzOUvEQ6+BTt985MOAi+tWsK2MYeGiHftIjx6NOmCzuXWAvArTfrHlQpRudwNwDfSjQZ43uM6GWQODWEMDl62EsUYHHzar4apNZb56wf/jJmV40R+s3tVCCzWZ/nUI58gt+9H2aId7GwPyraT11irYW3ditqxIwnBUymMoSG8f/gH2LkTNTiInp/vvnidPCaOMQYHwbLQ9Tr5gQFe7u5B3/JT/McH/tNaEN6TLvGKLXfzngP/ByNzyYmE9cc9WRugF/KjqPqFtdfhlo/hZHYQuFlUurThNa52bseVCvGJv4DyWVR6CyrTASJUqgcdLHJ+qJePf+VDPLZwdO33zLBsTlRP82+/84d89OW/SGahTWdkBMu2SdsORrWS1DhdYWJ7/RVMcaORLLjqeahUCnNgACN39RNQl66JsXa71J4IIYQQQgghxPOKhODi+W211uTSANx0of92CJucOvEJ7jn5JZZbHuChlr5Kr5Pljbf/PFO1I+AtQHE31E6g+18Iu34BHvk8ANouoJQBykmCUzT5lXt54/Sb+EpUZLRg8NDcYQxlYFsp+jJ9WBrG8yOo1iLZ/HYU1hUDoucqo1jE2bsXc3iYMNKYPb1gGGjPI+50MEZGkuDLNLF7+74ni9CZg4MYpRLKdSka3alTrZOaDr/boaxjMCyKVg7VR3JfoYD35S8Tr6ygfvytLDlvJNCKN4eL/M3Df8nc0iOgkkUIhzIFfnT/m9cWxWz6YdJz3V3ckjDEjkKGHYOMjjC6XcTrrT8BsRqgt/MRsY4BRRxr8D2CWg0da1pBa+1nfd/Hi1Jk+vsJOx10y6c9V2b3mRiVy2FtHcfUS9CcxapWyfPApuOk+hee8pUGV6pasicnH/c6BLob9F6JDsPHdTLILBZxX/KSTYtjGoODuC996dPeB3564Tjz7UUiv4lpWoz3bcG0HbywQ8p0WOosMlxPYQbnIJtFz84mof7yMlgW1vh4sgDkygrKcYjn5nBuu43gu98lnptLThZFEUZfH/bNN6PL5SQAHhpislLhzWS46e7f4ow3Ryfs0JcqsTs3xFbTJN7ejzKyG4570rWdQk2+CX3mk2tBuLXwICO33Mx86RZ8L0a3ayjTxM1mGMmlUctLxCcOoc8+CkoRVyrJiY1MBhVBYLo8XDvJY3OPJfsMSb95FBGaBqfqMzzEImNeGmO5ipHPYxsuI8OjpKrla34HhHNz+IcOJQuGrr6npRLOwYNYw8NX/VlZE0MIIYQQQgghhITg4vnN6b1YgbLKdGH4ZbB8L436Ke554P/PSvUkqmcnpEbBW2KleYG/ue/f8a4DP04+qqMNC/bdSuyMox/9JCpso+OYODQx+r8PVT+R9P8CxAFTc58idft/ZdIoUu/UOL58BFsrlNdipDDOS0dfSKe1yITTC8r9noTE32vKdbFGRsgsL+PEEZ3l5bWQUwMYBm6pSObJV1JflZHL4Rw8SPjYY+xo59g2tJsTS8eSShStuxPHim3De9jJANbOUWi1oFtT0fnJn+JIw6O8nIRuhmHxqp1vR+9Yot2cIW85bO3dQqlvK5AE2OsDcN3pEC8vEwYB5x2bydjDPHVqQ9f4pVbrQXq4eNLj3EKZsFJd+3PG3lgjEWuNymQw+vogDCkMTuD09Sb70GqhsgFKqbWPuI67E/Bag6GSKxmepisNLvVE1iFQtr2xBuTS+63HfzLInpjAeO1riebnkw7w7n58LxbEbHg1tNaYps32idv5wsyXOVc9B2hU7HOuMU/plp9gx2N/Q+TcndTCGAY6DJOqmHQa/1vfQhUKROfOQRAQnTuHfdttSYd3FCXT9SMjKMNADQ5iFIuElk1n300sLJ/gKyf+hlrlEYzl+zkRVDnRu403bH0FU5kMxra30zb6qDc6BFpjG4rcnn2YRx6FsbeBWkFFTVSqSKZvL2OVFm0zJALMENKtMq4aJDx9GtYvDqsU2vfRUYSZydLJTlHulC8ukrn6XmqNMgx8oOrVmCiOJJUvgO8HzFkW07v3XDWQjhuNTQE4QFwu4x86hHH33Y9rIlzWxBBCCCGEEEKI5y8JwcXzW/EmdN/tqIV7L97Wfzss3wtmmhkvYKV6Mrndr0JnAfJbofwYK+VjzCyfYL9eRqUH0dkyRgfim34Co7VMXFsAIw/7P0T80G9g+PcljSga4t7bsAo30b/k83/d/nN8a+E7lJuLuKZL6DWolC/wwze9hbwxgjkwfl1PLDq5HCM9GWYNA6/ZWrcoZ4bRXArnGuHVU2END0MY0n///fzsHe/l9x74I04uHUOlUqA12/p38nMHf5bexypghZgTE0SWhf/j7+BUJyLQkLYdOmFAHGtmqwGl7Ai3DebJn/9TMKfXttUKog0T4PHy8trksu8HtHty5AKf4PRpzG5v+uUmwy91aZVK0RxgMDewVoliKIWyLMyeHoqewUSUW1twUKXTGAMT0Ei+6nUYor1OcjKi+z7gg7rKBPYzxSgWMUsl4kplUyWKyuXAfWIng8xi8XsSel8q5xZQSjE6dBN/P/NVzlbOYCmTfUM30Zvto8ct8I2FhygVt9AfNwkXFzFyueS90Jro8GFwXVSngyqV0IuLUK8THDqEyuVQSmHv2YM1NLT2WWn6IbPVFp2wxV+e+hyL5ZOYUUC+uB27fJiV6mnuOfEPvHPqhcRtj+OVCs2Wt7bwZTadYvvufRSatbXJaJXNEjz8MEa7zaWN4aHnoVstIJ20vWidLNIZhklIH0WEhkuPm7k4Bd7t40eBMgyiWFNIFaEdYY2NgWliGAZRKkXHSXG134JoYWFTAL4qLpeJFhauGYILIYQQQgghhHh+kxBcPL8VtsH+D6Af/BBq6VvJbaYLZhqGXk6jfmrdg2Ns7TG56510MKj7DY4Ut5BxNFsP/wKqeRxdXcIYugk98i7ClVISBC1bWHs/jg5OQFAGu4S2t6HqELVDMulBXlLcz1K2Qiv2yFhpBpw+xvp3Y+Wu/0XblOuS7y1he7O008VkwhRIRz6pvtL3/PWZAwNYw8Psr3n8xm2/xGPhHBWvRo+dY7c5xKA5iN7WB75PJ51lTtnEhs1sPel3tg2DrJui6XXQWlPpeNRLg+Sd3mQRzq5IX7ycQHc6G6o7LNtkIdPhy50Zyu0yvY0Se/0JJo/42Hv2JIsiXkE+7ZDPZ6nXk2A76Bi8euvr+NzJz1Dxq7h2MkrfVxrlDdteRzHKbax8MHz0yhisrKCbnaQXebUfPTdCVE9htdtJz/LT8F48kU709ZTrYu/bh44iwjNn1oJwlcth79qFNTHxnPxdmB7czmBuhMhKcbZ6BsuweNmWl/GVM19jduYCg9khMoTM9O/jndvewkjl4pUCKpMhXlnBHBkhOnUKe88ewjhOFhQNQ1Q6jUqlsLZvX3vt6684WGqdZ7F2DuKQyK9TN1160qOYzbOsVM9wsvgzhOUOzahMXPcgTN73umFw3PPYN9JLJp9E3tH8/GUXjwTQ7TbaNImrNlZuBBqza0E4AJaJ7aaYTE+ya2AHR5aOAaq7TrACpdjZv43JzFYMbWDk80n1UNf6353Lbt/zntL9QgghhBBCCCGEhODieU+V7iLa+9sY4Unwy2ClUKf/DGY+QW7w9WuPs+0iW17wQf79t/8j3z5/L6AYyg6wo3cbv/ai3+cl83+FchtQPYZu/T8Y479APN+BICA8vgwUUdkxdL0OxjLpYoxju/jtEOVMMJAawkg7YLk4qV6yxR7U4wgPrwdGsUg6ncZ9Fjp51y+M17fU5kUUgSKKNPbWpJpEex5+o8F8MyCINOjVTmMI4uQfUpZNOwxAga8VjL8xWZSzy1ydgCWpHFGOk9xuxMyn5/j1v/s33Dfzje5OKW4fv5MPvOhXuOPQIdwXvhCzr++y+5/JpNk+2sfxC1CvN9FaY3RyvG3f29FOjdDwydk5popT5N38ZZ7BRU2+GdVqQ+W+DQG4Hv1BVJQjeOghjGIR6wp1Ebq7KKUOApTjXHGCfVMnOsmiiiO5FFnn2v+6MYpF3IMHsbZvT3qzTROVyyWT88/BABygkOvjdfveyudOfg7DsNg3sDcJwBsX6M/0YymDOIq4UDvLp059gR8f/CHyEckJstWJd8vC6O0lWljAHB1FTU+D52GMjm4KeNdfcdD0GxCHQDLJH0UeYWoIs3kWjaZsFjDbNTDMi+87ybbrKxVqhRRpx0oqgq5QiaPDMFlM0/eJPYUe/Eco9fcoXU/qaRSo/i24xgD2hSY/c9tP8/v3/T5HFo+tLRa8s3cb//y2n8FqaCj2bAjAYePvzuVc671/rn42hBBCCCGEEEI8d0gILp73lOti5LYQHPHR7T6c6WWY+9+gYCqcp7dnCyvVU0zufAf//v4/5tuz9wOQstOEUYf7zn+TD33tt/ijl72Prcd/HwwDVT2GNTWHT3HDtnSrhbltG/HcHEa1wsjwKLMkQavKj0EqtRYaPp7p2evJs9nJe62F8ZTr0tEGoe5gAEprUCSTrN0gPO06qOReHMumbo1Qq7fwI7BNyFkmloKwm//GlUoSHG7J8m++/GHuP3dvUg/RrR6579y9fPhrH+EPDv46U2fPYuRyVwzzSj159tkW9bZPEMXYpkE+7ZDJbH98ByA3jR78YWAvhvJBpYijIvFig3jpHMRxEjpf5v2JKxWCI0c2TAkr28acmqJqhpzy5qn7FXJunv7MGEq7WBiYpguGhdedXJ7qyTzuiXBrdPTxva7niMGeLdwyfJBbRg6zo3crDyw+yEh+BBVFxF4DLAvbzrBYKXN+vMXuTgHVXbTVXH2tqRR0OsQLC+huj7YqldDN5oYu9PVT01knB4ZF0rOUiDGSzvs4Im3n8AOFjjTE3Z7u1Z+PYwI/XFsUdVPfulJg22t1J0Yqhdq+neDIEewdP4Fun0sqolJFoiUX1awyUuqD8wG/cuv/yZnoAjW/TjFbYl/fbgIvTZCxNgXgjpFcLXA1q4vcXq4SxSiVMAcHH8e7JIQQQgghhBDi+UxCcCHYGJLGxhLG4J2olfspVO/njdM/yN+cVnTMLN+evQ9QpKwUPW6BWmsRtOa+81/ncKvB1vJhSJcgNwFhHS4JwdEaI5XC6m7LCgK29KfppLJEhvGE6iPEE3OtEH59uGgaikLKpeZdnI7VygBlUkrZOIbBdxZqLLcDup0P9KZsdvdlWWn56Go16UsGTrRPcd/5b6HiiGRs9uLU633n7uXhO2aZbI+vhZFXksmkyWTST/r167bGf6iS/HPcgHDuYi+4ZW2YFD6xfILDC4dZaa/Q6xbZNzDFxAULwhDd6RDOzXGyaPAXZz/H3MLDGEaEURgn4/Tx2h2vRYVZdOSTygwykMnQCZMJ5p6n6XP9eCfTnymmUgzktjBZ2o0mxNYx2mskYTSQcXMUC5OoakhDe6h8nujECchm0VFEfO4cGElNSLy4CKkUxtatkMlgOs6GLvT1U9P9mTEGesZZXKwlNU6Rh0EEcURfYYqxVImTHY32uotVxnGyGGr3o24To4PkfTeKRVQ6nZzsUAqyWYKHHkJXKuA4mP39aN/HOXCA8OhRdDNGx1lUxiaaOQXqNPaOHUxt3UondhjJ7MPKKrKFLG5f31WvErjW993qIreXLo5plEo4Bw9KH7gQQgghhBBCiGuSEFyIrosh6RDc9EE4/CFYuZ+p+U/xruEX8Femw0B2GKUMosin5tXRdENErSl71eSJgjpEM5Aqbd5GOr02gbwaeFpw1UXhxDNjfbgYapgopDhbg5rf7aZWimLKZndfjmMrSyw2z9IJmqTtHHlnmGoHjiw32dubRfUViFwL1Wry7fZj6xae1KDWTeMClU4FZU1fsY4CoN7xqQchfgSOCXnbImVbT6h7W3V7mHWnkyxyuG4xTJVOg+MQzc/z1eajfPjLH+a+2fvXgtPbR+/gAy/5Ve48bxItLdHYOsafH/80C41jKB1gWi6NQLPSnuNTRz/ND+94Mx0/pl07z4I/TJ+hCVIWpOwr7t/jddnJ9HQae9euJ7Rw5tMpY5ukrCyv2/F67rvwlaQmxwxAx+ScPHsG9+CmeyEHhcEJ4lPlJHAOwyRcrtXQ1SpxvY4qFNYCcSOXwx4b2xDwZ2wTx1D4scYwMrxu15v5TByyWD6OGdaw2mfoK0zxhu130x+tMJ/ZTb22nPywTk7YAORyKTLVMmpwANhYG4RhEBw7thaAG6VScrwtC12vo6MIlc2iy+VkEVatQWuiI0ewbRv7+HFSU1OYpRLm9uRqhaxjMdWTeVJ98ZAscmvcfTfRwsJaf705OCgBuBBCCCGEEEKIx0VCcCEuZ+ilkP4jdOUw2lsmZxfpbUG9XUvuj2MwV3ujk0Cz5PYkf1YKlRshMvKsjVxyMaiT/trnpvXhIlwMwqM4Oc/R45rkbItT1Rn+/OG/Yq6xtPbuDuX6edW217HS6acTZ0h3PAoLF9BhSGmo1D1Rcvne42KqBB0211F0LTY7PLrcoNK5GJKXUjbbSlkqyxXiOEaZJm42w0ghc8XubbOvD2t8nOCxxzYE4DgO5sQE4cwMZ8ezfPhLH+JbF76FVprVyPRbF77Fh7/y6/zBi/9vRk+HnMkELPsrWOkSGjBsF+0nFTKztXkqQYW0UUT7HTpRB5wcxsoyOu08pc+/9rxNATgkCzcGR47gHDiQ9Fs/w5PitmkwkksBY7xk6pWcrpzmXO08runQnymRdVIA9KZ7mcyOoMyTqFyOaHGR4ORJzJERjImJ5EqRoSHC8+cJjx/HmpraFOyvbmt1qjrnjvLWm99NuTkDYYVi3GDSdslGKaJWL1vyFifzORq1xtpz5HIptqUtnMVljJ071m5fvSImPH8edfo0xkASkLPaSx4ESejdvWpAt1pJaL/e6mdrdWHTdZ9r2zSe0tUARi4nobcQQgghhBBCiCdFQnAhrqSwjbidIzj5KAD7JvPcPnoH9134VnK/1qBsIOD2sRdyk9VNSwvbUZM/jJm2UXu2PeMLQYonZzVcvFCu49WSadfYtHALOUZLebKORd2rc89j9zC/LgAHmG8s8bcnPsNrd/wonTgmXSjArEJZFvuzW7h97E7uO3/vxvAZuH38Tvbnd0Dbu+wUc73jbwrAFbDcDtBxg+GMx9H5h6h6VYqNEn6whx2DU5edrlWui7V9O3G1StxodKsxDIxSCaNQIDx5kod7M9x74V6COEyucgDQGqUM7r1wLw97Zxg1DOoWtDEJPQ+ISSmbUCtsK0UQtGkGLdJmNxzVMcowSFWqxNn0U+qFjyuVTQH4Kt1uE1cqKNd9VibFL046u7zrwLv49NFPUfPKmEZy8qM33csbd72RXMMgXNvp7gT1hQusltHYlkV84ULyh/WLWV52W6tT1Sl29Q1gmwbR/DzBo48m21A1cu2YPfk8jWyJINLYhiKzOI+z0l47abCecl2U4yST6s3m5o2bZvLZWf25MEz+eTUoN7qfPctau/JFCCGEEEIIIYR4tkkILsRVrK+omLjQ5gMv+VU+/JVf7wbhMcQRt0+8iA++9FfY0vg27PuXKDsN/grKLWAWn52FIMWT464sMXL8OG3LIcLAJCY97+Nu3w7Dw8xUZlhpL1/2Z+cbSzT9WSwGqCgLa3gUd+7C5s9Ntz7n9rE7+OBLP8DkSoS9c+dlT5DUg3BDAL5KaU07OsGHv/IHPHbhETA0gQ7Y3redn3vhz/OC0VvJu/nL7qc5OooJ6DBEWRak0wTf/jbEMWWvnATguhvWdytitI4J4pCyV0EPTaJUmjDurhqKQgFx5AMpLNMha2cgTsJQ07QpWAqjWkH39z3BdwSCKF4Le5Vp4eQLqLnZJCA2zSS0TaU4O5rm4eWvsdIq05vrYf/wONPNKlEnh6531ibFG/jMVGZoBA1yTo6pnqkrHqsnanXSuSe1jfHCT13cjp1jqphsJ/Lm1/2AnYTK68Pu1RDZcVCZzDW3dakN3d5aQ6OBHUX02nZyQsNxMCbGMAcGrnhSTtk2KpVKuuLDcMN92vMwSqUk5E6l0O02Rk8PcbWKSqWIWy1UKoU5MCBXvgghhBBCCCGEeM6QEFyIq9hQURGGHJx3+Q8v/zgPt05T9iqUUjluSpfYsvx1lBWilAVeC5xeyE49ezsunrC40cD76leJ5+Zwo2gtAI4Bb34e41WvohE0cBWkLJNWuHlKN9Yd4jgmNAzmIsVETxGjUk4+N9//2zzcPk25XaGUKrK/tJMtRj/G+JWvEPAvMwisgZ5Uk9899Pucr50iNiKW28sEccBia4FmUOenX/BPuHnkVqb7dm34WWXbG6Z7teclIWd3Qr0nVboYgMPFhTO1RuuYYrpIp2+APm0x1DPCfPkUEBNHPrZpEcQeYz3jDKX6iAIDw8qSsS1yi8kinFeqfLmSDYsphiFxtYHpxQwPj5COV7DcZTAqfC09xIe//K+TkwxRsljp7eN38Wsv/RVezCNQGiDsjHJq8RifPv8FVtora9voTffyhl1vYLo4/YT27Vrybp79Q/s33b4+pDay2bUAmShC9fQQt1rgOFhTU5iDg094u+u7vdeC8FYLnsA0vFEsYuTzEIZES0sbg/Aowrn9dqKzZ5P7z51D1+uYIyNY27dDs4l5++1Yl3SZCyGEEEIIIYQQzyYJwYW4ig1TlQBhyMSZOhP0oTITOON9qNnPdFe27P46Ob0w/sZkcTxx3QhnZwlPn94Y+JkmKpUiOn+eaH6eXC6HYxr0pW10W9MOLwbGKctkPFfkXK3NWDGD19uHb/eT6+9D2Tbbi0V2uLc+oX1yzM23KWCpdZIjy8fJ2WotAEcHoDUPLxxmxavxF9/9r7zjtp+hLz+6Vo+y6fMMyTQ4gGWxJTPOwYmDHDp76JKNKg6OH2S6MIUamMBcqvKmra/jkyc+xXxlBj8MyaQc8qlBfnDHa3Ab88SdJk7PboYCH6NSecLVGEEUrwXgutMhXlwk9jzCdofFvgKTK19FHftzTt36a3z4S7/WnbI3AQ2GxX3nvsaHvvQh/uiuf8aW+36W1tTb+dSspmxsDGZX2ivcc+Qe3nXgXU/bRPjVbFiAkmQyHwDXxZqcJJqbw5qawrnttifdf73a7b3Wi/4E65g27GN3MVXiOFmo8+abMfv7Mfv6iCsV4r17kytmTBNlGJi7d0tvtxBCCCGEEEKI55zrLgT3PI+DBw/ywAMP8J3vfIcDBw6s3XfmzBl+5md+hi984Quk02l+7Md+jI9//OM4jvPs7bC4rm2aqly9PZ1OKix6ipB5FzRnIGyAlUsmwCUAv65ozyMulzdVPxBF6E4nWWyx1WJqfJq+/CBRZZY+xyRybWLAAPrTvRD3kXJsQIFlEWdcrL7iVbe9WvfRCSNirVEKDKXIOxZ526KYsjdWomioexVsQ+GHnQ0BOKaN1lD1Gswsn+ax2e8wHmYZKSSd5lf6PBulUnLf4hK/fNf/xW/wmxuC8IPjB/mVF72fVGBgD/RgxCY9nQw/vvcdLPhzNIM6OTvDWH6YXreA4RQwQpNUtZ4E4KnUE67GaAXRxQnw5WXidhvdbmOO9uHXvoWXm8TJ9fJQGHPf+W8mx1xHYLgQ+6Aj7jv3dQ6H/5ytUcBZr8nK2S+iRl8J9saQdqW9wkxl5rKT298Ll4bUHDiADkN0u702Af5Ug2Tluk+pf/1aQfrq81/mPI0QQgghhBBCCPGcc92F4L/0S7/E6OgoDzzwwIbboyjida97HQMDA3z1q19leXmZn/zJn0Rrze/93u89S3srbgTXnKq081B8ZsIz8b0RVyoXJ6IvtdrX7Djk3Txv2PUG7jlyD3O1BSodn5YfMZTr50VTr8Gy8/RnnbUJcbNbqXIlq3UfNS9kpeMTRDFp06AvZXMmjNjWm2NPX27D4phaQW+6RNoyabST6g+0RhkWSiniOCTnZJPn9+r4nRVmDZupngy2aVz282xt2UJ44gTDnRpfPvG3/Ovbf4mV25tUvBrFVIE+o8CxR+/j4B0/QcY2cRwb37KwyDGavdjzbRmKUiGDlSkkz285qOHhxz2FrD1vbb+CdA7CZApcB92QHzCMOrTPElg5aB5npVNmtZuc1SoXfbFHpuxVAWhEPoRV8BY3heAAjaBxzf17Oj3VkPqZcD3soxBCCCGEEEII8XhcVyH4Zz/7WT7/+c/ziU98gs9+9rMb7vv85z/PI488wtmzZxntXl7+W7/1W7zzne/kIx/5CIVC4dnYZXGDkDDoxqaDAA0Yg4PECwub7jf6+taqPKaL07zrwLuYqcxQ8WooUvRmxnHMDKDWAnDHUGTsi3Oy6xd4NJXCMRWzjQ6tIEoC8DBChyEtT6ODgIIJx2c99g0VuXWwQD0I8aOkIiUM9rIrP8GDXh3TUIACBVEcsm9wP6ob3GftNMQ+fqxpBdHaQoqX+zwb+TzF8+d5VekNfOrU37LcWIAg4CzQlxvkDVtfQ97KYpoGI7nUxa7uLsdQjORSSfWK6WIWgOox8CpQLkLPXkhf+XcorlQIjh4FK8C0Kpg9E8StGOxi0kuuFCrrgL8IUQc7tiGO6E31dLvLNQrQ6A3PW3J7QClyThqFQkcddKOR9KCvLqxpWeQuE4wLIYQQQgghhBDixnDdhODz8/O8+93v5pOf/CSZTGbT/d/4xjfYv3//WgAO8KpXvQrP87j//vt5xStecdnn9TwPz/PW/lyr1Z7+nRdCPKcp20ZXKtgHDhB897sbgnBjcBDnzjsx1/VZr1/0cHWa24s0dAPYDYHw6mNqLbxGEx3HKNMkW8jRDCL8KCaIYnQYQjdUbgcRfakUy5U69WaLwVKBfH79916Gf/Hi9/HbX/9tvn7uywRhg9hKs29gP//kwDu598Q/0J8bot/Og5HUQUV6Yzi86Ri4LtbYGBMPLPGO0ddylgqNsEXOyjBBkVxor50IyDoWUz2ZDaF+xjbXXi8r34UjvwuNkxc3kNsKu34Oeg9s2rb2PIKjRzHSTVj4LDQXSPfvx3G346cKGNkCpEKUBQQaN10kVb0XDIObrJDbx+/ivgvfIlJmMhNu2Bg65vaxg9zkAE6aKdWh2H87c0YfkeejALvVQlUqDEzsZKooC9kKIYQQQgghhBA3qusiBNda8853vpP3vOc93H777Zw+fXrTY+bm5hi6ZLKxVCrhOA5zc3NXfO6PfvSjfOhDH3q6d1kIcR0xikWMbJZ4aQlr927Uvn0QBGDbYJqYvb1XrPO4ViAcRDEXlqt0FhaTWo8uT0E9UjiunYTfscZQkEt3WGid5HC5TtbKU2Un/ZV40+T2gbEX8LHX/Bbfmb2fmZUjuFaWOAy598Q/UEiXeN22V2PECuwe4NrVLNDtwN+5k9yRI+xuZ4EseKDSFvaunWvH4NKp9g0BeHt+cwAOyZ+P/C4c+OimifC4UgErgIXPoprJCQirfJTRfXcwu3IWv/0AKAdSvThOmuGshXP678Cy2PrYb/CrL/0dPvjlj3Do3DeBGK0jXjjxfXzgZb/ClsMfQBsljMweXrzzNdwzcz+L9fnkmJgWU32j/GDpLnLI2hFCCCGEEEIIIcSN6lkNwT/4wQ9eM4D+1re+xde//nVqtRrvf//7r/pYdZmQR2t92dtXvf/97+cXfuEX1v5cq9WYmJi4xp4LIW4k6xeMjOt14k4H4hgjl8O++WbMvr6r/rxtGmtVI5dqdfxNATiAEceELQ/H6UHrJAA3nfP820O/z9GlY7imQRCE3Dyym39520/zAjZXiQzlhnj1jtdSr+zk1OKDXOiEbN39JvrtfBKAF3aB6W6qZrmaa3Xgr06+r69C0fECJ8uPUGkt0psqcFPhTiab50D7G5+8cRKqj2wKwXWQVKDQXFdF0ztF6vDHmMyP0ynuIrB7sN0CqbN/ht27k/md/5JHYpuqtlmZ/w4ffvH7mffqlDsViqki/UbMY9/9GLcO3oQbp5llmDTj/PD4FEsjS7SCFhk7w7A7zIgXElcqUnkkhBBCCCGEEELcoJ7VEPy9730vb3vb2676mOnpaX7913+db37zm7iXTGLefvvt/PiP/zj/7b/9N4aHhzl06NCG+8vlMkEQbJoQX8913U3PK4R4/rnmAqhPUtDubArAAXSnQ8o0UDrGsUxSTmMtADeUQsca0zQ4NfsIv/v13+Y3e3+H4eLYZbeRL27n5uwQ29o1ZuttfN2dAO8G4OurWR6PK3XgB1G8KQBfbDzIb37113nwwn1Y2kMpk5v6d/HLd/0sd539Y7j0HGRQ2bw920ZHrQ23Ga6Nrp3A9k9iL/09Z/f+MofbK5Rzd1K0RzhSeZTPP/pfsd1eHlp4iK29O/jhna9m+eHf4UIcQulmSA0zM/gDjGdvotNwiC4so1Ip+p2B7r5AGES0C1mcy7xHQgghhBBCCCGEuDE8qyF4f38//f3913zc7/7u7/Lrv/7ra3++cOECr3rVq/jzP/9zDh48CMBdd93FRz7yEWZnZxkZGQGSxTJd1+W222773rwAIcQN5XuxAKqpo8ve7jVbDPQWaSsw0w4z1VNrAbhtKOI4Jm0oVLPNicWjPDL/8BVDcADsPFk7z1T2KlUlT1EriDYE4FE4z29+9SM8cP5boGO0YaOU5vDsvfzGN36P37/jHzN54S/XesmT/Sxuel6jWCRa6rl4gwJiDx2FKFXg0O5f5iP3/gcOnzvEQGkH55oLjORHeeuef8zXT34OohYnlx/jrx5t85bx17A08z+hfhI6SzS8Fu25GrGTSSpuLnNSIyIJ4oUQQgghhBBCCHFjui46wScnJzf8OZfLAbBt2zbGx8cBeOUrX8nevXt5+9vfzsc+9jFWVlZ43/vex7vf/W4KhcIzvs9CCAGQMcBxbHx/46Sx1pqg0WDrRI4gleX4Uo2cY4HWEMeYUYhqtsGyUEpR8SqPa3tXq2Z5qtYvrqk7HU5UH+KB2e9AN+jXKLSOUYbN4dl7ORz/EybDJjjdEDy3FXr2bnpe5boYYzcRL45C7QLYNlrboDVnd/wUHzn0/3B49n5AY9tpyu0Vyp0Kf4nidTtew+GFhyBscXLpUbztrwS7BJlxqD5Kzu3BiiN0u50smnmZ12VZ5tqin0IIIYQQQgghhLjxfG+SkmeBaZp85jOfIZVK8aIXvYgf+ZEf4U1vehMf//jHn+1dE0I8jzm5HCM5F8fZOGnsODajGZd0Ok1Pyqbf7cFqNrAadaxmAxX4YNsoI/maLrrFZ2HvN1pbXDMMiZeXKbfLSWjfpQDCNtrKoQ2bstdExwE68NHZadj1c5v6wFcZxRHMW38KY3w3Kp1G+z6UtnE4TnN4/mLQHsXdyXqteWThMI6VJp8qgZUBK0NLG0kVTPVRegfvZFSN4szNYgc+Rqm0aeLbzaTJ9vddsfam7tV5aP4hvnnumzy08BB1r/5UDqEQQgghhBBCCCGeBdfFJPilpqen0euCl1WTk5N8+tOffhb2SAghLk+5LvneErY3SzuVIQJMIB35pPpKa+Hr3qF9bBvazcmFI5ueY+vgLvYO7Xtmd/wyMraJYyi8TtJzXkqVoBuMK2WgYj8JxYMmmGmK2RH0rl8kjnrQ5gSmMX3VM6+qZxvqpp8hnn0IXZ5Fjb+Y8sIRwAQVgdaYhgXK6IbvJk2vzta+PZxcfJB6a4G06bCc2ULv6Kt59c0/hXO8SXz2DCOjYyzYFkEmi+G66DjGdR1Ge/O46dRl9+d05TT3HLmHlfYKOgzRnQ596V5ev+uNbBnY/pT74oUQQgghhBBCCPHMuC5DcCGEuJ4YxSLpdBr3KotuDhfH+PmXvI9/95WPbwjCtw7u4l+89Bev3gf+DLFNg5FcivONBhGwNbONW4YP8ODsfZg6hMhLHqgjbhrYy34jIvB2Ep2topwqcfUYzs03Xz08tvNodytR5BLef5ri9gEwM6BcUAo/9Cmleim3VwBN2kxTXVpkqriX8W0/yG0Td6NGXkG/M0rnsSrn0hlG3/LDON/9NiOVMtELbkeXiliWddW+9LpXvxiAdzpES0sQhixE8/z13DzvmH4jxdEtoDXa81CpFObAAEa3rksIIYQQQgghhBDPHRKCCyHEM+DxLLp568Qd/OZrf5tH5h+m4lUoukX2Du17TgTgq7KOxVTWplHIEIXwK9/3f/Gb3/hNDp/98tpjbhq5g1950fsYC1K0/vYbEIYAGH19GP392Fu2XHUbKpslOnsWXauxN97C/v4DHD53H+iIZf8C24a2c0LDSH6EdqdB7Hv0O/28fec7KCxkicplQm8GgE5Vcd73mBgYwDx7llR1Bcsxr/lezFRm1ibAVwNw7fvEtRpL0RJnRxZwj0f4w2OEUYzVqZGaX8AdHkJZFspxMHp6ZFpcCCGEEEIIIYR4DpAQXAghnk5BHZozEDbAykF2Cuz84/7x4eLYcyr0vhwnlyN3/Di63eZ20+T37vw3PHzrWSreCkW3wP7cCEPn67S+/vBaAA4QLy8TPPTQNSemdbOZhMeWxdCxBX75jn/BR9Xv8ODZ+4jjiPOLJ3nFtpfzrlvfSbNR5R/1vIBt4y+gfqZO1KphFArE9ToEyWKkXrWOv3sb+f5+4uVldHcRTO15xKvT+ZeE1o2gkTym00kC8CgirtWS15PNUkuZnK0ahNUm8fIyKp3GzWYYnlsgbQCtFiqdxt61SxbdFEIIIYQQQgghnmUSggshxNOlcZpg+bu0VIEIA1O1yFSPY/cdgNz0s713AMSNBtHCwlOq8FCui71rF8GRI+h2m5ELDUYoodKjqGyR8LHT+N954Krbv2oIHgTJvg0PE1cq3PStOf7dvl/kkVsrVPwapXSJPdYYI3MdjHQ/mCE1naPSmE3qSXwf5TiQySTd4YZBlEoTz8xCHKNsm7hSWdt/AAwDY7iIlapD1CIba3TQgjhO9sn3kwDctiGVRqs0fquNkctDFKHDkE65wmwhx3RvHqPVQrfbBEeO4Bw4IBPhQgghhBBCCCHEs0hCcCGEuALdWkaXj4NfA7eAKm5HZfou/+CgTrN2hlkvhx8012527BwjtTNk3b4nNBH+vRDOzeEfOkRcLq/dZpRKOAcPYg0PP6HnMopFnAMHLk5Sd3vOo0oFZVxh+UvXBdNEe95Vn1vZdvJ3y0rC40aDgW88zEvjGIIAe98Q4fFvEKZSOAcOEDzyCGbvQHexTJJQOgjA91GWBaaJFcdJAJ5Oo7JZgocf3hCAW8MW8dE/JqycA8dlrLSFUvkkK273/e6G4RgGxYFJSu00mvbawqBoDWGI7wW03TTZ7mvR7TZxpXLN+hUhhBBCCCGEEEJ870gILoQQlxEvPUb80J9A7cLFGwujGPvfgdG/e+NjGw2C+mkuLFXxg04S4pomAH7QZrZhMJVbxL6kJiX21FOeyr6a9XUfAMGJE8TV6sZ9L5fxDx3CuPvuJzURfmm4axaLRENDSeC9Pux2Xcy+PgjDa05FG8UiKp1OQmqlwLKSQNswUAMD6ChKwuxcLvl7KoVbWcEt9uBVqujVbcQxGAZuIU+q00Jls5jT04TnzxOeOQOWhZHNYo73o8/8dwy9BHtfgpHOUAzbvHH8Fu45+SUWXRPaSbDfVxji1dteR3isAqnU5kBfayJlbrype/yFEEIIIYQQQgjx7JAQXAghLqFby8QP/wl0FsGx18JUOovED/8J6o5/tTYRvjpd7e0Zo7M0B3QnmPOFpJJDGfhYtCrH6al8fW0bUZgiCm/Gf2xpbcr4yU5lX86ldR9RuUxcLmNNTRGdP39xspkkCF9fUXK1ruxrUa6LOTyMNTmZBO6rx04psG2MTAZzcPCaz7Fat0KthlEqEZfLqFRqbf+Nvj7M6WkIAsz+fqLTpxi75VbOA14l2a4qFHCzGcaG+3F1hC7k8b/+dVQqlRwDIM5msbeEsPINjD0/BjP/L6p6GJTJtFXgJ0feyNndb6a66JGpNBkLsxh1k3PZLEY2S7y4uHbCA0hOZlwyCL862S6EEEIIIYQQQohnh4TgQghxCV0+Dp1l4koVAv/iHbaDoQx0+Tgq00fcaKzViwRqy8WfD0Oo11DFErg5aJ4kspKJaR2F6GYLvXIalV7C2v5awuPnII6f0lT2enGjgf/tbxM3GmBZtEpZzpQC6qpFPppjfMsYmVNJEK7jOFn4sdvVjWHgLS7SNh0iwGx5pJeXSY2MPO4FHq3BQbjrrmQfyuUkBAeMTAbn4MHH9dpW61bC8+eJFhZQe/aAZaEbDew9e4BkAU1zyxaIomSq+9QJpsbG8EZ3EqVS2K5LJpvGSbnEjQbeP/wDcbmMOT6+th1zqAcqD8D49ycBeOXBJLCPQwhrFM59gn3BHPGe30QP2kQLC4S2Qzpfon3+QvLaHAeCAJXNkhoeIl2/OG2v0mlZGFMIIYQQQgghhHiWSQguhBCXCmpJeLs+AAcIfOJyGSOoAxAtLKz1a5u+AjsHQQNIgnAdBCgXCDuYlonudIiWl4jrdXS1Csyhdt6KOTa2Np196VT2ExVXKgSnTyd1H4bBhYk8n3rsUyw3F0l34IXf/2Mctxep7/HoS5XYywDDX3sUHceEZ87Qtl3mYgM/aq09p+PYjKyUKaTTj3si3BodxSgULta9uC7m4OATel3KdbHGxogXF9GVytrtevX+dBpzaAhzaGhDN3mmWNy0n+vfK+15qEIBXath9gSoMELlelEnH7y4AQ1EIcqOoX4Co3McY+vrMAcHMRcWGG53mBsdwY+SrnEsCzebYTj2MLr7qtJp7F27ZFFMIYQQQgghhBDiWSYhuBBCXEKT2hyAAxgWqjQNBLD0TZTuYAwViBcbOBfmcIb34lceWQvCVytHnPwE6c4s0fISxDberT9No7gbX9mYpkmq3cEt9GDOncbMtVH+w+jlOqqw9Qktpqk9L6lA6W63NVTibx77nyxXLlDYtZ0X7H8t/+arH+XQuUMoZeBokzvG7+ADr/hVXhg5RG6K2ZU6nucnYXV3gtv3A2YbkGo0cJ9AoGvkck+543x9NcraQpZsDpivtfDk+u7ueHkZa2qKcGYGFbeIG3XMbLeyRCmI9cUfNB3iUKGixobX1ON5pBsNWjFEysROp0ibCrNaQWfSawuFSgAuhBBCCCGEEEI8+yQEF0KIS2hrBJ0fRdXXLYppWBiTB6B+H5zrQKEXValgGSbseyXhCgxiMZ/bRxA3QIdQ7MPJZBjIGCxHLn7v63DdDBfqHRbKbfyojcYgb1lMb9lBnzWD+e0/h2Cc6FSIMbYLY+tbITf9uPY7rlTQ7TYqmwXb5my0zHLlAs6OPg7u/D4+9NWPcOjsN5LXqBXasrjv3Lf48Nc/yn942cfp1b147cXk/jBMOs27fD+gFcOzEemuVqOsn/Z+ogHzhsfGMdH585hDQxiDNvqxL8HWm8FMQ3gxaMdKQWoAXemgnOKm53Ndd/PxSF09jBdCCCGEEEIIIcQzz7j2Q4QQ4vlF2XnU5JvQ+dGLt/Vvhfp9KDOfTAc3GsRLS+i5Y+iTfwXtFexHH2bSsRjWaQZT/YwPTVPsGeahisnhZY9KaHKs3GKxHZB2XWzLxTBM6n7I6WqD5dI+oumDyQR2EBKfP4I+89fQrV+5Fh2GSQCuFNbUFE0HrMkBKH+DpTheC8C7j0brECyT+87fy8OtU0TGun8laL3p+SNlbrrtmaJcF3NoCGt8HHNo6AlPWJuDgxil0sUb4ph4cZGwahFbBeJqDd3/QsiMQGYIMiNop5fY0zC4n9jdcuUnF0IIIYQQQgghxHOahOBCCHEJo1hEh0UYexvseSdq51tRky8Eo4SOU2BaROfPoTtt0Bq9dArDqBAdPUr49a9RMKGvvxcsi+VOSCFTYLy3RMa2aPghzSCi6geYhoFtmhimQd3z8FMl/PEDsFr7EYTo6nlozlxzn+NKBX9+gZo2KGPSyBbIZkuYaR/VmqXSqW76GaU16AjimHJnBTMMMEp5zD4LI9NBuR2Uo0AplG1jp1NP74F+Bhm5XLIo5/ogHIiXm5i3/zN05Rx65EeIU5Podh3te2AVoLALtr8XRc+ztOdCCCGEEEIIIYR4qqQORQghLqFcF3vnToIjR4jbRaCI5SyCNjH7+ojbbbTvJz3TUZTUhrgaVSiA56HjmEquyEylxZlaB6NbMz2QcRjKuZytdggjjbIUnh/jWhZeEBBiEgZsnMKOYggbV91f7XnUV8rMmik6lZWki9w0cQsjFHq2UZt1KKY2hriGUhjEgAatKTo9pOMyKWsJb/lst89cQaqA0bsPtzSA41hU2j5eFBNpSFsGOcfCNq+P86nW8DDG3XdfdrHOOD9CPPsw7PsQSpchaAFZomgYvWLijBef7d0XQgghhBBCCCHEkyQhuBBCXMalPdSGSqMYRpkWNLr1JFGU/D2O0dqBuANxTDA4zMlqk2YQowEFaKAdRrTDiGLaYaWdLLwZaY1SBmiNRYypw407YhpgXX1xSb/RYLbh4Xs+ynXRvg9KEVV8Xjb9er6y8l36VcjBibs4dPYbGEphGxbEAeBw+/id7C9swTn13xkp3cxcsQfP9yDUoHycaJ7+/BYWWz5zDY9293WbStGXtpnIOKTr1aSv23EwenqeswtCXmmxTqMwCLFDcORItxY8mRhXaYW9a8dz9vUIIYQQQgghhBDi2iQEF0KISwRRTCuIiLTC7OklY5sYcQ/UD4G/Aqa1cVo7N0JUtdf+WM/kaNY9YtSG5w1jTRRriq5NefVGpdBAPuXiBnXSnRlwbAgCsCxUzxhkp666n21l07RTmB0fOkkQTxyjDYOUV+JHb30PK7Nf5Nde8qt85Csf5f7z30wCcGVy+9hBPvjSD7Ct9Qg620PWqTPppOikthHEFubyDHYwz3KjzHyUWwvAIQnwl+ttVKXCZKOMUUlelUqnsXftwigWn4Z345nzdCzAKYQQQgghhBBCiOceCcGFEGKdph8y2+jgxxdDbsdQjOTSZMffAOfuwcj6xKk0ut2G3Ai67weIHlsGQBWLBEnDCFEcYxsK3Q3M22FM3jGxDYVrGYTdbWQsk/GMQ9+Fb2Ec/SpxKot/xz+jntuBb6RwOhaFOCDr2pfdTysMqTZaWLZLrq8fY3kJVBLAhws1rH03sfvMH7Lnkf/N9Ivex2H/n1H26pQyg+y1xpj67p/BC16MOv1Z1LHv4AAOoPtuh20/TbWeJozVhgAcgDgmbLVoWibtTI5sNwTX7TbBkSM4Bw5cdwHy6gKcQgghhBBCCCGEuHFICC6EEF1BFF8MwIMGeEsQdfDNFLPRMFO9k9jb3oVqzmD2z6PPLxFc8JMAPI5RxSL23r3YCpRStMKIgmvRCWOiKKlGqfsR4zmTff15WkGEbSgKtoHutKkNfh/tHziIkcpytNygthyC0QKg4Fjs6svRn3E37idJLYkyDMIgpGFbFHI5qNeTIDyfJ7IGqNz+J5j+EuPts2yxG8R9t9D67L04I8uY49Nw4j+iVr6THIjuALtavh+t/pho128RXW4d5TBCRzGxZXJJPI5ut4krFQmUhRBCCCGEEEII8ayTEFwIIbpaQZQEy+05WD4E/lppCb5TomW/nJ7iOBT3YxT3Y2QWsOzTmINtsKykvgQouDbZTkQriKh5IRnLIJuyCWJN2jIAzWLTQ0cRk4UUp+eWabR9lIL+viKVqg+GQ8aOCVH4UUzNDzmy3CBtGoSaDZPqOgxJ53O06w3CICRMZbAaDeLBIaJMhnqrg++mgDGc9CgDwTKpShuaTQCMrIOa+Q6YKYg6G46JKj+I7RiYppt0hK+zOuFuAOZljqcOgqfhXRFCCCGEEEIIIYR4aiQEF0KIrkh3J8AvCcAB8MtEy98B14Z0Mt1sDQ5i9vRs6pB2XZetholCsdDyaIYxrTCmlLIZyrlkLJO+tEM6DnhsvrwWgNupFLFhstBqJZUppkGoNRnbpB1G1PyQmh/iWhsjZz8IGXAUi/ksnSBC2yZqbIzIcug1wQtC6LaS+CgW0gXGfB9zeBicJkSLyet2S+BXkgU+V5kuqaiMld5NOgw2VKIopTBMgywR6VZj0/FUtr3pNiGEEEIIIYQQQohnmoTgQgjRZSoF3gpW6SZid4gIhYnG6MwTzn8N01+E6iNrIThcuUO6P+OSNg3G/RRepDEVpCyDnGORtpOv3vlyQKPtJ9u2bZpRTKo7XR3Emoyt6AQRrQBcy8CP4uR2tXHBTVIp2gvz9DoOKpsi41iYuNRqDdotH2Nw4/4FtoPXP4ibyUCqF1IxoMGvgpUFowjEYNigUtjaoz+bQhkGcw1vLQg3HZteM2bEb2FUKxu2odLp625hTCGEEEIIIYQQQtyYJAQXQtzwtOcRrawQVyoQRahsFnNgACOX2/C4jG1iZXs5unKKauU7ZOwsOXsQyygxteXNpE/838SuixHUwc5fc7tZ196wmOWlQtNEmQYKTbEnT14p0rZJwbUIY40C+tMOKdvAMkwUmpSpyNgmjqEuVqJYFqq3D295Gdv3KcUejUwOzwsw+vqSqpZLxKkU5sAAutMhzuzH6D+IWvoWhE1AgeUmgXhhB0bvzWQdC8c0KDgWXhQT6yTUzwQePHZ+rRoFkgDc3rXrulsUUwghhBBCCCGEEDcmCcGFEDe0uFIhOHUK/4EH0JVKcqPjYE1N4dx2G9bwMNrziCsVTuky/+3hezhdPk+sYwCGcgO8ZvsPsuINMTj0UixdR5/876ihV0Bxz1PaN9swMNJpBvIZ5poe5U5Af8Yl1Mkk+GQhzbl6h7mWh2MYKMAPImylGMmlNiyOqVIp0mOjDJsxTrOBk85hBvqyATiAZVnYu3YRHDlCeDrA2fsB9NHfRlUOg2mhlAH5XbD/lyE3meyvaVBMOxufKO2gb7llUyWMBOBCCCGEEEIIIYR4rlB6/fieoFar0dPTQ7VapVAoPNu7I4R4CrTn4T/yyMYAfNVqEH7HHUSnTtEwQv6o+XUeWrqAqSIMZaABhWYgU+I1W97Ant4+hk79LurMn6P6boWbPwh9tz3p/WsHIWdqbc7WOnTCCD+OUSgm8ik0mqoX0QpCwliTs03SloHX8ci7Nvv687jpFK0gItIaUyUT4rZpABBEMTPV1oYFNNdeuqGY6slgm8baCQAdBKhUC6NzFBVUwC5B8aa1AFwIIW4E8t95QgghhBBCPD/JJLgQ4oYVVyroVmtzAA7g+8TNJtHp0+h2m7PZJvPNZdAQYRJFHuik+/pC9Tz1sIxvTMKJPwcVole+izr+x5AZ39AR/kSkbYu8Y9IJI2KtMVDEwFyzw47eHFUvpJiyiWONraBWraNNk+UwZjnr0mcY9GRSl31u2zQ2TYtDEoCP5FJrYfnmTvOdT+q1CCGEEEIIIYQQQjxXSQguhLhh6SCAILjyA6II3W4D0AhbQEikqwRRgG3YuHaWKFZoNK3QxwlrEDTRjgOeB/WTqEsWylzbtufhNyp04iZB1MG2DDKOg50e2NAn7kfgmgrTMLEMRRhrvDCi7oXUvJBSykZHESuej2UYEGswFEEUM1uuM+06a4H2pbKOxVRP5orT4kIIIYQQQgghhBDPBxKCCyFuWMq2wb7ywpTobmd2GKKzGR559Dssei3CWIPWZN0sO3q3QagouRny5UNgKNCAjkErCCqbnjauVGi2lplbOYZfPQJxAErh5McYGdxKNtOH6tkGgGNCO4yBGEXSE24bCtc0cMzkn5cbXvJ6TBMdhgBYStHwfFpBRM9VQm3bNK56vxBCCCGEEEIIIcSNTpIRIcQNyygWUZkMqljcfKfjYPT0gGXRzFicWjpOr0qTtpKJbJSi6bc4vnKcidIINxX7yDz4y2BaEEdgF9BRBPbG59aeR2dljtmlY/jlR5MAPAzRvo+/cprZ2aN48w8RV2YByNsWxVQS1GugHUXUvYCmH5KzLYIouvjcSgGKQsqCThtlGESyrIMQQgghhBBCCCHEVUkILoS4YSnXxd6yBeeWWzYG4auLYt56K0opzlLhxLkH+f7JlzNpFcmSLESZdSzGCgO8YdtdjHztRyBsQBiC0wOZaUiPQM/eDduMKxU8IyJonIc4QAdBEpZrjY5j/Np5OlaB+OwDaM8jn3LY05ejmLJRyV4DCi+M2NOXxVoXciugkLaZyrk0azVUKoWp1Pf8OAohhBBCCCGEEEJcz6QORQhxQzOKRZy9ezGHh4krFYgiVCaDOTiIkcthZDI0jp0niiPOn3+UlwzeASmXDhEpZRMvr0Crii7dhmqcBGWiowhtlTB2vZeorjAMD+W6AOh2myBYXVRTQRwn6bWOk1FvQxFGmrg8C/PzWJOTDGRTpEyDWhDihTGmUpidDkvfPczElmlGsgViIGUo4laL2sIilPpwHJuMbT57B1cIIYQQQgghhBDiOnBdTYJ/5jOf4eDBg6TTafr7+3nLW96y4f4zZ87w+te/nmw2S39/Pz/3cz+H7/vP0t4KIZ4rlOtijYzg7NmDs38/9tatGLkckITkPWNbMPr70cUe5nWdBd2gFtSZnT3GvL+Mu6Dx+WHiyfcST/wkevu/JLzlY5QbAyxX6pQvzOHV6gDoOMbGAGUCuhuA6yQA70pia5dofh7tJX3f+ZTDWD7DUDZFEGuqMejhYeqNJn4Y4RpQrzdpaoUaGMLNpBnJpWSRSyGEEEIIIYQQQohruG4mwT/xiU/w7ne/m9/4jd/g+7//+9Fac/jw4bX7oyjida97HQMDA3z1q19leXmZn/zJn0Rrze/93u89i3suhHium+7bRv/AJCvtlYs3Whbm0BC9Ro6tO+7AbIXEUYSOYzo9JWaXGvjexZNsbjtgbNom5bo4CwFWeogwrkMYXAzAlcLOjeG2FgibKcx0Up9iDg2tPU/WsZjqydDKuESlPKZSa9PerXyOSOu12yQAF0IIIYQQQgghhLg2pfVzf1W1MAyZnp7mQx/6ED/1Uz912cd89rOf5Qd/8Ac5e/Yso6OjAPzZn/0Z73znO1lYWKBQKDyubdVqNXp6eqhWq4/7Z4QQ17/TldPcc+SeDUF4b7qXN+56I1PFKQCi+Xm82TnOGC6+H2x6jvTIMJMpA86exctbzLXO4q88An4blMLpmWCkdwpntkw4H2FNTmKOjGCNjz9jr1MIIZ7P5L/zhBBCCCGEeH66LibBv/3tb3P+/HkMw+DWW29lbm6OAwcO8PGPf5x9+/YB8I1vfIP9+/evBeAAr3rVq/A8j/vvv59XvOIVl31uz/PwunUEkPzPkRDi+We6OM27DryLmcoMjaBBzs4xVZwi7+bXHqODgHYmh19rXfY5PM+nU+wj5fu4lYjxvm34A9sJ/SYmGrfZhKOLhK0Ya8sWdL2Osu1n6iUKIYQQQgghhBBCPC9dF9fSnzx5EoAPfvCD/Oqv/iqf/vSnKZVKvOxlL2NlJZnanJubY2hdpQBAqVTCcRzm5uau+Nwf/ehH6enpWftrYmLie/dChBDPaXk3z/6h/bxw/IXsH9q/IQAHULZNdJWfV4ZBZBjYO3dCGGKcvkD6XJXM8RVSx1YwlsHsH8eanEwC8FQKo1j8nr4mIYQQQgghhBBCiOe7ZzUE/+AHP4hS6qp/3XfffcRxDMCv/Mqv8EM/9EPcdttt/Jf/8l9QSvGXf/mXa8+nlNq0Da31ZW9f9f73v59qtbr219mzZ5/+FyqEuCEYxSKWZV72PmXbqFQKUymMYhHnwAHsPXswh4dxdu7ESKUgDNHNJrrZRKVS2Lt2oVz3GX4VQgghhBBCCCGEEM8vz2odynvf+17e9ra3XfUx09PT1Ot1APbu3bt2u+u6bN26lTNnzgAwPDzMoUOHNvxsuVwmCIJNE+Lrua6LKyGUEOJxUK5Ltr8PtxPitdoXb7dtjL4+HMdeW8RSue6GBS/NgQHiSgUdBMnji0UJwIUQQgghhBBCCCGeAc9qCN7f309/f/81H3fbbbfhui5HjhzhxS9+MQBBEHD69GmmppIF6+666y4+8pGPMDs7y8jICACf//zncV2X22677Xv3IoQQzytuIc/YtM1suY7n+SjDQKVSOI7NSC6FbV7+AptLQ3EhhBBCCCGEEEII8cy4LhbGLBQKvOc97+HXfu3XmJiYYGpqio997GMAvPWtbwXgla98JXv37uXtb387H/vYx1hZWeF973sf7373uykUCs/m7gshbjC5TIpp16EVRERaYypFxjavGIALIYQQQgghhBBCiGfPdRGCA3zsYx/Dsize/va30263OXjwIF/4whcolUoAmKbJZz7zGX76p3+aF73oRaTTaX7sx36Mj3/848/yngshbkS2adAjobcQQgghhBBCCCHEc57SWutneyeeS2q1Gj09PVSrVZkgF0IIIYS4gch/5wkhhBBCCPH8JGOMQgghhBBCCCGEEEIIIW5YEoILIYQQQgghhBBCCCGEuGFJCC6EEEIIIYQQQgghhBDihiUhuBBCCCGEEEIIIYQQQogblvVs74AQQgjxvaA9j6hSQTca6CgCrcE0UaaJOTCAkcs9o/sTNxpECwtoz0OlUs/KPgghhBBCCCGEEM9HEoILIYS44cSVCuHZswRHj0IUEc3NodttjP5+rOlpgsOHce68E2t4+BnZn3BuDv/QIeJyee02o1TCOXjwGdsHIYQQQgghhBDi+UrqUIQQQtxQtOcRzM0RraxgFIuobBajtxeUIl5aIpyZAdNMQulG43u+P3GjsSkAB4jL5WdsH4QQQgghhBBCiOczmQQXQghxQ4kWF4mOHCE8dQosC12poIpF7J07CY4eJS6XsSYnk8ctLFy2kkR7HnGlgg4ClONg9PSgXPfJ7c/CwqYAfFVcLl9xH4QQQgghhBBCCPH0kBBcCCHEDWG1A9w/fJi42QTDgDhO7qtU+P/au/cou+r6/v/Pz977nH1uM2dumUvuN8iFAAlBkQahCAVt8Buri++yWkV/1p9UQfxWW1Fcla4lRWmtrXgDbVlS+xOXi9YqIhi+yE25hHALYAKEhEkmc7+dmTm3ffn8/jhhyJAAowYmmbwea501k733Oecz7xmYOa95z/sTAu7cuUQ9PRBFk/d5uXhkhGDHDmypVJslnkxiUimcxkaMMbD/ZlwXay2EIUQRJpfDbW4+KCw/1HP8LudFRERERERE5A+jEFxERI568cgIwb59EIY4+8efxE1NtdEn+9mREZz584mMAdcFOGRgPRmAVyqQTBLu3Ik7Zw7VRx+FSgXj+5hstva2oYHwuedw8nmIY7wFC0iedBJOQ8PkY75WB/nv22EuIiIiIiIiItOjEFxERI5qtlIh3LeP6gMPEI+MQLFY69SeM4fkSSdR2bIFCoX9F1ucxkZspYLT2Ijb2jrlseKRkVoAHoZYa4l27cLkcoSdndiREUilsKUSJopqQXp/P05zM/HAAE4+T9jZiXFdkqeeOhluu62tOI2NhxyJcqg1iIiIiIiIiMjhpY0xRUTkqBYNDVF54AHivr7aqJL97OAg1W3bSKxZA4lE7WA2i7doEUQRydNOO2gWtw2C2ttyGeN52EIBJ5PBjo6CtbVbGEIQYAA7OoqTyUC1WnuAMCQaHq6F8S8+ZhjiHX883urVJNauxTvpJEgmcRobD7kGERERERERETm81AkuIiJHtXh4uBaAQ20GuOvWZn5HEXZwEOeUU/CWL8dks3jHHYexttadvT98PnATTBsEmGwWxsYm54a/OFcceClkfzEQP/D8AW9fDNODPXuo3HsvcV8fNo4hinDa20lt2DBlDSIiIiIiIiLy+lEILiIiR7cXu7ABggBSKSiXJ4NwqlW8+fNJrFgxZVY3TN0EE8chnjOHUkMzUXMrLpBM+lCcqF3sumAtpr4ek8lgXBenqQmnrQ3PdTHJZC0kT6WI0mnGR8co9w/jLlxMMpXC7N0LjoMdHKTywAOk//RP37ASiYiIiIiIiBzLFIKLiMjRLZ1+qfsbYP+Glji1iV9OYyOJpUtfdRNMHIfKwsXs6xmgPLQPAJNMkvTTzFu1GHdiAjs+jkkmiYaGsENDYExtDnhvLw4Q7NgBQHzGmfSXLeXxQcJ9vQD4DXNob2zG2/Y4xDFxXx9Rby/uy0J5ERERERERETn8NBNcRESOam5bG+6CBbUg/EVBAGGI29GB29FxUAAOL22CCRDPaWVf7yDlwaGXxpokk4TpDF3d/bBkCbguUXc3lEqYdBqnpQW3vZ3oqacIu7tx2towx6+gx7qUBwZqa9ivUizTYx3s/PkvLaBSeV3qISIiIiIiIiJTqRNcRESOCrZSIRocxI6Ngedh6upw83nchgb8DRuo/PrXtdng1ta6tFtb8c844xW7re0BIXU5laHS2TNlzrfxPOLhYSrVKqV5bWTffBrV2BJi8FwXvzRBuPVhTD4PQYDb2kpxTjvVYhWi+KDgvVIsU53Tht/ZWTtwiGBeRERERERERA4/heAiIjKjDtyYEsepdXQHASaZxMnnMb5PPDJC9YknCDs7IQwBMLkciRUr8BYsILFgAc7b307U21vrsPb9Wof4q4wbMYnE5PvhgZtfQi0M9zzsxATGGOL6ejoLE5T2dk3e12/I07pkGd7WLbXNMEdHCfwMNnYwySTGT2GyWezExEvPY1x8wGltxW1rO2w1FBEREREREZFXphBcRERmzIEbU9pymWhgAJNK4S1dih0bq72/fDnh9u1TAnCAuFCg+uSTxKUS3uLFta7wFSum/dxOQwMmncaWSnjOy6aDHTBjPNXcTG8lgiCcckllokhPCPMWLsLs3gWOgxtUsRNVTGMjxoC3cBFh5wuTQbhno1qH+plnah64iIiIiIiIyBtEIbiIiLzhbKVCNDJC8OST2HIZk0gQDQ5CGGLHxwmffx5v0SJssUi4bx9hb28tSDYGPK/WeV0sYgsF7Jw5RC+8QFSt4i5aBDCli/yVGN8nsWIFwY4dpMpF/MYGKuVKrYvbcSCRwNTXk5jTTGm4gIPF+D62WsXGMcYYAsclWLAIf2SYuFwm0WBxly6jlExiXQ/PtSSWLceUiiQNZFMO/oknKAAXEREREREReQMpBBcRkTfUi93fOA7Rnj21g9ZCKjV5ja1UYH8YbScmsOUytlqtbVrpebXzYQjGYIMAW6lgHQfb04MBSCRgaIhEezvOqwTOTkMDybVriUdGaGoO2N67k0Kph6yXpdk2kEz5pLMZxnr7sWGI09REPDhYe85SCaKIqCFHct06ipWA0ZYOvGyaifEKpbCKcQwZz6ElmWRecz2Z+tzrWlsREREREREROZhCcBERecNEIyOEe/ZgjcG4LuRyODkX1x+HeBSTbiScyBDu7CLu6yN49lm8446rheBRVJv3nUhAqVR7G0VgLaaujmDrVuK+PkwmA3GM09KCOfVUEun0a3aEvxAO8JO7rqd/op8wnSHG0Jpv593HX0BisB+TSGCjiHhwEFNXh5PNYgsFANxkgmBknNGFS+itQqlngPq6LM11KWLAdQyZOMTp2oP1l77qWkRERERERETk8FMILiIib4iwp4fKvfcSddU2l/SOOw6vvopT+Q225wUIAqhvpNS8mj1rj2fcK9DwljZSjRm2t9cxVIpo8jpYVcnTctejtU7wk06mtOx4gjDEWbqcZDaH6e+DOCYeGKD68MM4jY14r7IJZWF8kJ/85gb69z4D1uIxBMDIvr38dGSID7z5YlJ1c6iWq7Wu9DCsbeQ5NkbSc0nsfZ5SWwehNZTKZWwQUihVoBxMPkfVT1DvJvFHRrQhpoiIiIiIiMgbTCG4iIhMm61UagFwEExr7vaL4vFxqg8+SDw09NLBNJjBO7FjvUSLT6OcW0p3tp6fP3crheEnSQejnLzmIr72q8+yve8pvDgE47Om9WQ+/6f/h1UTLfRl6glCCHfsBCCZb6GjvQPv8Ucng/B4ZAReJXje3fsMA93P10ayHPixxjEDXc+xr9jFsvo5dBuHYnd37TpjSLU001Yew3S+QNgxj8gCxtTqYaZutBkDEWCDABERERERERF5YykEFxGRaXlxlrctlSaPmXSaxIoVrzp3GyDq6yMeHq5tbLmfE/fhuBWKq95FDzmqxuPHu+5iIKjgWnjziX/BP2/5Blv3PIjjeOS8JI4JeHLwaa5+/JtcfeY1RLtHcerqJoPparlCdyLB/EWLcStlnEwGSiWivr5DBva2UmFsfAiTzWJSqdqs7/FxbBxDFGGB8dIoyX17mWehPL+NYGwCN45IjQxgCqOwcCGJXA4v7WNiZ0p9Jj9WwAVMIvEHfAZERERERERE5PehEFxERF6TrVQOCsABbKlEsGMHybVrX7Uj3FYqtXc8DxwH4hgTFwnSi+mhjsCFgVyWgWd+C06KuNzLWBSydd8WcAxxHBJZHycOIK7yeO8TPFd4hsWFHOTztcd2HPA8quMThMuPw9xzF9Hu3dhymbCzE6euDm/1agwvdWRHL7xAOi4TDwxgw7DW3d7YSNTfP7n2nF9fmzve24u/YzvpxkbiA84DpMYLTHiLyKQditUKNo4xjrt/WYasa0gbXvOXBSIiIiIiIiJy+CkEFxGR1/TiCJR46TLKxiUMQ7yERyqOcDpfID7ErOsgiikGEZG1mMYWvI65mN4eyGSwxSKWNOXG46kWBjELTqA48VtMVASnFqaPlgtgPDAW6xhi18PGBmMtWMtotYDTshg8D9PQgC0WIQgwjY1EviF/Wh1YB1IQFpIEO14g7O4mcfLJUCoR7g/I5y9oo7lpHoNDXdhqlXi01l0eFwq0zF3GwqbF2D19mFQKk0hgcjk4IAQ3uRzJ5iZacmmcIKY7tpQmithSESeZpCGVotHElAJwK1V8bYwpIiIiIiIi8oZSCC4iIq/JBgHVpcvZu3svlaHhyfEjflMj85cux3vZrOuJashAsUpoYyILrufjLFxGQ0MjiR2/BcchLucI27JQDjCuIWv2z+Q2BoxLPt1IjAM2ABwshsh4uG5tpEhDMk/c1Q+FAm5HB3F/P7ZYxGtPkyg9DNuuxCSSEMd4DStw136Y0n17iQcGcJqbsePjAGT29LJp1bv4Secd9IVjxBjcTJrWecex6aT/DU6WQsd8XCCVz+MkEjgnnFDrHPc88H28+fNJZlL4UUx9wqGUtITNOWwYUh4eoa9YxhqDH/Qyb3GCXCb1Bn72RERERERERI5tCsFFROQ1hek0XTt2UenrrwXgySTGdakWxujq6mXJ0vmY3l5sEBClMwy6SXonAkpRNPkYqXQdxvdpHh3B7OsiHimTWHMijuNgbECLcWjJzWWgNIabaSNJglM6TuGRrgdxXBcXB2ssEQ5rO05iWWoJUWYMG0XEo6OYfB53QSt++QkyI7/BZLIQx7VO8fGd0Pk9vFUfwU5MQDa7f2RJbTTLnPrF/OkJF9FT6aUYTpDNNdNav4BEsp6unr7ajHAg6dcxb14bmbBa2xw0kcBpaJgcBZNwHerGRkn29NDp+FSr+385sH8WeqVYont4jMV+koQ7dfNMEREREREREXl9KAQXEZHXVKoElPcH4CaTAd/FSYZASBAOU5xoIDs8QpDNUcjkKQcxzSmPKh4DExVioOw49Lop8utPJbtgPsb3SbS145faqRZ24VTH2bjsfH6+806G3TR3PXc3/+e0y/j6g//Kbwd+CxYwCU5qP4nPn3EFixJtdDW4VAoFqFaJx8ZI55voMPtwu+7BlibAABjwXAwvkJw/QXVfAlup1EayLFtGdfEy9nkpgsjSbFO0BBOQamW4DOPlIs3ZDNZaTCpF7DgMOkm8pjrSiUN/C7VBQCmTo1ooHvJ8pVKlGETkFYKLiIiIiIiIvCEUgouIyGsKgrD2ju/j1HuY4k7syNjk+agxZqJtBTsnYGRwnOL+DvB8ymNhfYauQonYcSlbqPppGletmrxvRyJJt11AZaSFXKGfCxeexXDdPEbKY+Qx/Os517BzvJuRcoF8oo6l7jw6zDwSz2xn4ZxWyk3ziGKL6zjkEs/jPXoDNqy8FIADhCHWliEREBeLOM3NROtPpbsUksBlcLwMroubSFHXmsOm0kTjE0TWkmhuoGd0nHIpqHV8j5WYCCMW5zNkkwd/GzWJBBGVV6ylcRwia//gz4mIiIiIiIiITM9R04b2zDPPsGnTJlpaWqivr2fDhg386le/mnJNZ2cn73znO8lms7S0tPDJT36SarU6QysWEZk9Eq4LgJPP1gLwytiU806unRcqg+wpP0zn2C8J40eYkxljolyhc3SMFj+EqBYMxy/Lf7NJj0VNzcxfeCatcxYz30ywOi6ypP8Zmob7oOCyaGeGdeHJLJ1YjN1XwSOGZBL79FN4N/+Y1B23kx0dIhGWsEEJ43pgHLDx/htgY5xUM7ZYJDAOvel6qmFEZAw4tbA8Bia8ZO1YFOEC49WA0kQJDhjtUg5jusfLBFF8UK2chgY8zz1kHU0igUmlcPePRxERERERERGR199R0wm+ceNGjj/+eO68807S6TT/8i//wgUXXMDOnTtpb28niiI2btzInDlzuO+++xgcHOSiiy7CWsu1114708sXETmqpVNJ/JZmIj/AFsZqDdbGxWlsxa9v5ulwgKvuvZrHep6o5c0W1nacxN/+0eVMVJeQyGWhshc300HKO/j3rwnXIRelCSutuImQ0E2SnH8upYIl3jVUe8AwxPg+fr6e1FgBOz6Ou2gRTn094c6dxHv3EjUuwtQdhx16GpJJiL3afQEaVxCGbbjzM0xEMaWufTiNjXi5HCYqQiKBSSaIoBZ4Gwfj+1hjMMkkNo6wE0WM72PCgPJ4SDFhyNdlp3wsxvfJtjTjl0MqxdJLxxMJnOZmkskEmcShQ3IREREREREROfyMtUf+32QPDAwwZ84c7rnnHt761rcCMDY2Rn19PXfccQfnnHMOv/jFL7jgggvYs2cPc+fOBeCmm27iQx/6EH19fdTX10/ruQqFAvl8ntHR0WnfR0RktrOVCmP9g3SPdlHpfLAWgLcvxA+7cZo6uPQ31/JI1yO17mvjEgPsD8KvPOufaM8twMYBOAlyfpL6pHfQTG1bqVC+7z6iPXuw1lJduJieEKrlCvg+bnMziaBKa6lA4tlnsAMDmLY2EqtXE3V3Q6VCYt06TGk7zp7vwfB28DzAQMMK7KL/lzixjLi7m0LHfHrHStgoItPawmAQU44sJp3GBiFZIopjE2Qa85hqwFixDL6PnRjHy+WoHx+FsTE62ptpbmnCa28/qGbjxTLdw2NUKlWM42BSKZLJBB251CHHqIjI608/54mIiIiIHJuOilfhzc3NrFq1ihtvvJFTTjkF3/e57rrraGtrY/369QDcf//9rFmzZjIABzj//POpVCps3bqVs88++5CPXalUqFRemt1aKBRe3w9GROQoZHyfXC7DIuNTsvOI0k0kys+RGvq/bPbOYVvPY+yfOQI2xJjat5fHep6gZ2Injen5vDA0hp9I4Hg+WddhWS5J3dgIJpnEyedrG2WuWEE8PAzj4yR37WRevoFg/gJscwumvw+/MILp6SEeHATA9vYS5XK4ixYR7doF1lJ+fARvwUdILixDPA5OjupgivDhPvz1C4g6O3FyeeJCEZNMUimWmJPLMhgU6S/vo1gaJUhkaM+10pDyeG5wGAswEeKlUtQ5wPg4AE6xRPXBB3HOOQcnl5tSs1wmxWI/STGIiKzFNYZMwiWhDTFFRERERERE3lBHRQhujGHz5s1s2rSJuro6HMehra2N2267jYaGBgB6enpoa2ubcr/GxkaSySQ9PT2v+NhXX301f//3f/96Ll9EZFaI6uqpmHlE1X4SbkS66z4Sw1sYzr4ZE5cxJkXtj4ssxux/i8toaYRytULKjmNsHYQuY6NFni0YVlYLuM8/jztnDsk1a3DnzME7/nioVLBhSMIYkhPjMDFGuGMHpq6OuLv7pREngC0UcJJJbD6P8TySq1YRbN9O8anR/VeUMPk8yeXLsRMTAKSGB/EbWwnTGWwQ0D/WyW27bmXQ1mZ/+5UybZHHO0+8kJZ0O6UITBiQsCHOeInYWvx0itTwIPHwMFFf30EhONTGvOQVeouIiIiIiIjMqBl9ZX7llVdijHnV28MPP4y1lo9//OO0trZy77338tBDD7Fp0yYuuOACuru7Jx/PHGKjMWvtIY+/6HOf+xyjo6OTtz179rwuH6uIyNFsohqyu6eLPc/9mt6xkL2jI3QmVjGx+P00pusxYRHPOeD/w9YCMcZAY7qBsdF9UC1iQ0M8Ng7FCcqVgPG2uYwuO57hjgUMFsYphBYWL6ndv1KBchlKpdoI8nSaeGgIHOelm+tCNguOg9vWhlNfj7GWxOrVJN/0JpLr1pF805tIrF6N8TzcuXPxVq7EX9DC/Hk+fnICchV+/vwt9Iz0YsOQTGmC5GA/Q/2d/Ow3/0ZTeYDc+CiJwQFca0k3N1K/8njyixZQXbwEVq7CHvAXRSIiIiIiIiJyZJnRTvBLLrmE9773va96zeLFi7nzzju55ZZbGB4enpzf+K1vfYvNmzfz/e9/n8svv5z29nYefPDBKfcdHh4mCIKDOsQP5Ps+vu//4R+MiMgsFUQx3SMjVLq3QmUMW3EwjR1USdDDfNbk5nDi3NN4ct+DGC+LdX2scTEWTmw/ifnpuYxPGEg0Q2yxpSLJ+nqKkWU4NgxUIBofIZ32afMzxIkk7WtOIj02ig0CcByigQHs009DENSCb2vBGJzWVuzoKHGhAOUytljEaWrCDg9DHIMxxNkc5fo8cVMziUQCnzHM8/8f6Z19LGxZxZP1SyhHXeTzdXjVkLhrL3G1Cp7HcGKC3vG9LC/nqTQ1E89ro7d/hLCrG6dSwVYq+Pl6FjQ1k5zpT5SIiIiIiIiIHNKMhuAtLS20tLS85nXFYhEAx5nauO44DnEcA3D66adz1VVX0d3dTUdHBwC//OUv8X1/cm64iIj87opBRGV8ACpjtQM2xlZKgEN1bC9zvBJXnP5J/uH+f2XbvgfAlLFelhPnrObyDZ+lXMmDcbGhBSfGS/pMRJbYGKLYEgUhGChZ6CkGNNYleGG8whLfJxkEGM/DaWrCaWkhHhrCePu/dWWzEEU4TU2YdHr/2mztmsZG3JYWSgmfnmpM4HoQApVxEtUh2lvXkd59O17hWSrFEfzd90Eih02vBNfFpFLYMCSemGC8OIJ9uhN/7Tq6OruIB4cw5TLWdTGJBNXxCbr6R1iaz5NM6ZeqIiIiIiIiIkeao2Im+Omnn05jYyMXXXQRf/d3f0c6nea73/0uu3btYuPGjQCcd955rF69mg984AP84z/+I0NDQ3zmM5/hox/96GT3uIiI/O4iayF62biP4gjUr8SynTCGt3T9J9887f9hW3Qx47HBd32aEzlycZLI9xgbj8GCwWD8JGEQUVefpVosggGbzVHFUK4E1KVDBgdHSNelaS6VSP72t0SjoyRPOYXq1q3EAwNgDIQhJpMhceKJ2KGhl9ZmLXZoiGjePHqNT+C/ND+cYJQgKNDrNbBgyVtwnruXXH2ytqdneRSTmsDJZIhLJYzjYKtVcoksTnOC6rLjKD/xdG0MSzJZG9eSTmPSaarlCsWJkkJwERERERERkSPQURGCt7S0cNttt3HFFVfwtre9jSAIOOGEE/if//kfTj75ZABc1+XnP/85H//4x9mwYQPpdJr3ve99/NM//dMMr15E5OjmGgPuy8JdG2MLA5BZjteYweZbWJiZS0QDP3nwxwz07sIWi+A4NKxaz4al7yQoZcEYrHHI+g5tqQT7OvvB96liiK3FGIc4DLFRTBDHdFci5qXTmOFhKg88gNPYiJfP10adpFLEfX0E27aROGDTyxcVY6gaO3XdcRWAalShnFpA1jgsCEo05+czONwJNiTq75/sPG/y6lnUehxuMEBYrUyOYjGJBNYYjO9jkrVBKGEUvW6fAxERERERERH5/R0VITjAqaeeyu233/6q1yxcuJBbbrnlDVqRiMixIZNw8XMtlP26l0aiANiYZFjBH+7DHP+/KMTwk//7VQaH94Hn1Tqm45iR327l/kqZ//2mi3Gsj5NIUOgbYLy3Hxtb4kSSOLaYRBKMwcS14NoBStWASq6eTGaE4PnnIY6xhQIApr6euK8PU1d3yHVHxj34oPPS5O7A1s7nRl/gnQvP4mf2LgbxwFSJx8ZoaZzHxoY3k+4dIe7vx1t2fK0D3RhwnNpYlgPGdHnuIZ5PRERERERERGbcUROCi4jIzEi4Dh0NDewL1k9ujgmQ9LN01KVINq/GZJrZ/fyDtQAcMI4DmUytGzyOGXpuG0Pzn2JVtYF40WIKQYDnuXj1dVS9JCaOwfPIJByCICCddLHlMgCh49U6v+GltwBhCL4PjoMNwylrNuk0iXQKSsHLPpg8uGmISiRMrXPbGFjQ9SgfXHg2L/jHM9YyRC6ZZWFuPqnd+7Bzao/tjwzhN+SpjIxODcIBP5Mmk00f1rqLiIiIiIiIyOGhEFxERF5TNumxuH0exXyeoDRMIq6SMiHJXCsm0wzAeKUw5T7G8yCXq4XV1lJ0I5Inn4zxfeZnc+zrHya2DqM4BFFMOpmgxXeZGCkxx/coDo0AkEi4tRncMKXz2pZKuC0ttfEknoet1OaWm3SaxIoVOKkkyUpINT5gJIrrQ/0KkqUXSEc7IeFBpYKZs4iss5JlW/ZAHOO0pHE6ApwlS4hHRmqd7c89y7z1b2Kf41AJQpz9AbyfSTNvfrvmgYuIiIiIiIgcoRSCi4jItCRch3yuHnKH3mw45x983Ly4iSSQyzZh/FpQnMtlWJJOUQwiKmFEOYqJLURRhO8ZikMjWGtJJhOkK2VMNovT0VHbjPLFx/Z9nMZG3MZG3IULIQgwiQROQ0PtHNCRS9E9Xp4ShCdTjXQ0NZEsNxJnFhMPjBH0BMSFCHfhwlqIfvzx4LoETz6JSSZx2tux5TJuzz6WnLCGkuMRxTGe65LJphWAi4iIiIiIiBzBFIKLiMhhsbh1Oc2NcydHohyouXEui1uXTzmWcB3yrgMkmKiGtbDagk1lYKJE0kCH7+L0jGDSaVLnnEP49NPEo6PgeTjZLE4+X+v6bmg45JqySY9F+QzFICKyFtcYMgmXhOtA6gScBqBhHJfncEqlyfEmcV8fAN7y5bVu8zieErCnDmPdREREREREROT1Zay19rUvO3YUCgXy+Tyjo6PU1x+621FERA5tV892fvLgjVOC8ObGufzZaR9kcfvKV71vEMUvhdVxTKo8gVsqTQmfbaVCPDKCfVnX9x8qHhkh2LEDWypNHpscq/IKAbuIHH30c56IiIiIyLFJIfjL6MWRiMgfpjA+yO6+5xivjJHz61jcupz6XPNML+s1vV4Bu4gcOfRznoiIiIjIsUnjUERE5LCqzzVz0lEQer+c8X3ctraZXoaIiIiIiIiIHGbOTC9AREREREREREREROT1ohBcRERERERERERERGYtheAiIiIiIiIiIiIiMmspBBcRERERERERERGRWUshuIiIiIiIiIiIiIjMWgrBRURERERERERERGTWUgguIiIiIiIiIiIiIrOWQnARERERERERERERmbUUgouIiIiIiIiIiIjIrOXN9AKONNZaAAqFwgyvREREREQOpxd/vnvx5z0RERERETk2KAR/mcHBQQAWLFgwwysRERERkdfD2NgY+Xx+ppchIiIiIiJvEIXgL9PU1ARAZ2enXhz9gQqFAgsWLGDPnj3U19fP9HKOaqrl4aNaHj6q5eGhOh4+quXhM1traa1lbGyMuXPnzvRSRERERETkDaQQ/GUcpzYmPZ/Pz6oXfTOpvr5etTxMVMvDR7U8fFTLw0N1PHxUy8NnNtZSTQ4iIiIiIscebYwpIiIiIiIiIiIiIrOWQnARERERERERERERmbUUgr+M7/t88YtfxPf9mV7KUU+1PHxUy8NHtTx8VMvDQ3U8fFTLw0e1FBERERGR2cRYa+1ML0JERERERERERERE5PWgTnARERERERERERERmbUUgouIiIiIiIiIiIjIrKUQXERERERERERERERmLYXgIiIiIiIiIiIiIjJrKQQ/wDPPPMOmTZtoaWmhvr6eDRs28Ktf/WrKNZ2dnbzzne8km83S0tLCJz/5SarV6gyt+Mj285//nNNOO410Ok1LSwvvfve7p5xXLaevUqmwdu1ajDE89thjU86pjq9t9+7dfOQjH2HJkiWk02mWLVvGF7/4xYPqpFpO37e+9S2WLFlCKpVi/fr13HvvvTO9pCPe1VdfzZve9Cbq6upobW3lXe96Fzt27JhyjbWWK6+8krlz55JOp/njP/5jnnrqqRla8dHh6quvxhjDpz71qcljquP0dXV18Rd/8Rc0NzeTyWRYu3YtW7dunTyvWoqIiIiIyGygEPwAGzduJAxD7rzzTrZu3cratWu54IIL6OnpASCKIjZu3MjExAT33XcfN910EzfffDOf/vSnZ3jlR56bb76ZD3zgA3z4wx/m8ccf59e//jXve9/7Js+rlr+bv/3bv2Xu3LkHHVcdp2f79u3Eccx1113HU089xde+9jW+853v8PnPf37yGtVy+n70ox/xqU99iiuuuIJHH32Ut771rbzjHe+gs7Nzppd2RLv77rv5xCc+wQMPPMDmzZsJw5DzzjuPiYmJyWuuueYa/vmf/5lvfOMbbNmyhfb2dv7kT/6EsbGxGVz5kWvLli1cf/31nHTSSVOOq47TMzw8zIYNG0gkEvziF7/g6aef5qtf/SoNDQ2T16iWIiIiIiIyK1ix1lrb399vAXvPPfdMHisUChawd9xxh7XW2ltvvdU6jmO7uromr/nhD39ofd+3o6Ojb/iaj1RBENh58+bZ733ve694jWo5fbfeeqtduXKlfeqppyxgH3300SnnVMffzzXXXGOXLFky+W/Vcvre/OY324svvnjKsZUrV9rLL798hlZ0dOrr67OAvfvuu6211sZxbNvb2+2Xv/zlyWvK5bLN5/P2O9/5zkwt84g1NjZmjzvuOLt582Z71lln2csuu8xaqzr+Lj772c/aM8444xXPq5YiIiIiIjJbqBN8v+bmZlatWsWNN97IxMQEYRhy3XXX0dbWxvr16wG4//77WbNmzZSO3PPPP59KpTLlT4ePdY888ghdXV04jsO6devo6OjgHe94x5Q/n1Ytp6e3t5ePfvSj/Md//AeZTOag86rj7290dJSmpqbJf6uW01OtVtm6dSvnnXfelOPnnXcev/nNb2ZoVUen0dFRgMmvw127dtHT0zOltr7vc9ZZZ6m2h/CJT3yCjRs3cu655045rjpO309/+lNOPfVULrzwQlpbW1m3bh3f/e53J8+rliIiIiIiMlsoBN/PGMPmzZt59NFHqaurI5VK8bWvfY3bbrtt8s+Ce3p6aGtrm3K/xsZGksnk5MgUgeeffx6AK6+8ki984QvccsstNDY2ctZZZzE0NASoltNhreVDH/oQF198Maeeeuohr1Edfz87d+7k2muv5eKLL548plpOz8DAAFEUHVSrtrY21el3YK3lr//6rznjjDNYs2YNwGT9VNvXdtNNN/HII49w9dVXH3ROdZy+559/nm9/+9scd9xx3H777Vx88cV88pOf5MYbbwRUSxERERERmT1mfQh+5ZVXYox51dvDDz+MtZaPf/zjtLa2cu+99/LQQw+xadMmLrjgArq7uycfzxhz0HNYaw95fLaZbi3jOAbgiiuu4D3veQ/r16/nhhtuwBjDj3/848nHO1ZrOd06XnvttRQKBT73uc+96uMdq3WE6dfyQPv27ePtb387F154IX/5l3855dyxXMvf1ctrojr9bi655BKeeOIJfvjDHx50TrV9dXv27OGyyy7jBz/4AalU6hWvUx1fWxzHnHLKKfzDP/wD69at42Mf+xgf/ehH+fa3vz3lOtVSRERERESOdt5ML+D1dskll/De9773Va9ZvHgxd955J7fccgvDw8PU19cD8K1vfYvNmzfz/e9/n8svv5z29nYefPDBKfcdHh4mCIKDuqRmo+nW8sXNslavXj153Pd9li5dOrlx3rFcy+nW8Utf+hIPPPAAvu9POXfqqafy/ve/n+9///vHdB1h+rV80b59+zj77LM5/fTTuf7666dcd6zXcrpaWlpwXfegLtC+vj7VaZouvfRSfvrTn3LPPfcwf/78yePt7e1Arfu2o6Nj8rhqO9XWrVvp6+ubHFUGtY1t77nnHr7xjW+wY8cOQHWcjo6OjinfqwFWrVrFzTffDOhrUkREREREZo9ZH4K3tLTQ0tLymtcVi0UAHGdqc7zjOJOdzaeffjpXXXUV3d3dky8Gf/nLX+L7/pQX47PVdGu5fv16fN9nx44dnHHGGQAEQcDu3btZtGgRcGzXcrp1/PrXv86XvvSlyX/v27eP888/nx/96EecdtppwLFdR5h+LQG6uro4++yzJ/8y4eX/rR/rtZyuZDLJ+vXr2bx5M3/2Z382eXzz5s1s2rRpBld25LPWcumll/Lf//3f3HXXXSxZsmTK+SVLltDe3s7mzZtZt24dUJvBfvfdd/OVr3xlJpZ8RDrnnHPYtm3blGMf/vCHWblyJZ/97GdZunSp6jhNGzZsmPylwYueeeaZye/V+poUEREREZFZY2b24zzy9Pf32+bmZvvud7/bPvbYY3bHjh32M5/5jE0kEvaxxx6z1lobhqFds2aNPeecc+wjjzxi77jjDjt//nx7ySWXzPDqjzyXXXaZnTdvnr399tvt9u3b7Uc+8hHb2tpqh4aGrLWq5e9j165dFrCPPvro5DHVcXq6urrs8uXL7dve9ja7d+9e293dPXl7kWo5fTfddJNNJBL23/7t3+zTTz9tP/WpT9lsNmt3794900s7ov3VX/2Vzefz9q677pryNVgsFiev+fKXv2zz+bz9r//6L7tt2zb753/+57ajo8MWCoUZXPmR76yzzrKXXXbZ5L9Vx+l56KGHrOd59qqrrrLPPvus/c///E+byWTsD37wg8lrVEsREREREZkNFIIfYMuWLfa8886zTU1Ntq6uzr7lLW+xt95665RrXnjhBbtx40abTqdtU1OTveSSS2y5XJ6hFR+5qtWq/fSnP21bW1ttXV2dPffcc+2TTz455RrV8ndzqBDcWtVxOm644QYLHPJ2INVy+r75zW/aRYsW2WQyaU855RR79913z/SSjniv9DV4ww03TF4Tx7H94he/aNvb263v+/bMM8+027Ztm7lFHyVeHoKrjtP3s5/9zK5Zs8b6vm9Xrlxpr7/++innVUsREREREZkNjLXWzkQHuoiIiIiIiIiIiIjI68157UtERERERERERERERI5OCsFFREREREREREREZNZSCC4iIiIiIiIiIiIis5ZCcBERERERERERERGZtRSCi4iIiIiIiIiIiMispRBcRERERERERERERGYtheAiIiIiIiIiIiIiMmspBBcRERERERERERGRWUshuIiIiIiIiIiIiIjMWgrBRUSOIVEU8Ud/9Ee85z3vmXJ8dHSUBQsW8IUvfGGGViYiIiIiIiIi8vow1lo704sQEZE3zrPPPsvatWu5/vrref/73w/ABz/4QR5//HG2bNlCMpmc4RWKiIiIiIiIiBw+CsFFRI5BX//617nyyit58skn2bJlCxdeeCEPPfQQa9eunemliYiIiIiIiIgcVgrBRUSOQdZa3va2t+G6Ltu2bePSSy/VKBQRERERERERmZUUgouIHKO2b9/OqlWrOPHEE3nkkUfwPG+mlyQiIiIiIiIicthpY0wRkWPUv//7v5PJZNi1axd79+6d6eWIiIiIiIiIiLwu1AkuInIMuv/++znzzDP5xS9+wTXXXEMURdxxxx0YY2Z6aSIiIiIiIiIih5U6wUVEjjGlUomLLrqIj33sY5x77rl873vfY8uWLVx33XUzvTQRERERERERkcNOIbiIyDHm8ssvJ45jvvKVrwCwcOFCvvrVr/I3f/M37N69e2YXJyIiIiIiIiJymGkciojIMeTuu+/mnHPO4a677uKMM86Ycu78888nDEONRRERERERERGRWUUhuIiIiIiIiIiIiIjMWhqHIiIiIiIiIiIiIiKzlkJwEREREREREREREZm1FIKLiIiIiIiIiIiIyKylEFxEREREREREREREZi2F4CIiIiIiIiIiIiIyaykEFxEREREREREREZFZSyG4iIiIiIiIiIiIiMxaCsFFREREREREREREZNZSCC4iIiIiIiIiIiIis5ZCcBERERERERERERGZtRSCi4iIiIiIiIiIiMis9f8DmHHNUtMU4hwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3505 Pre-filtered fragments.\n", + " Number of fragments excluded in both datasets: 2260\n", + " Number of fragments included in the custom dataset and excluded in the reduced dataset: 337\n", + " Number of fragments included in the reduced dataset and excluded in the custom dataset: 684\n", + " Number of fragments in both datasets: 224 \n" + ] + } + ], + "source": [ + "tsne_df = filters.plots.create_tsne_plots(fragment_library)" + ] + }, + { + "cell_type": "markdown", + "id": "61735a38-2cd8-44af-a3b1-fee0722a4556", + "metadata": {}, + "source": [ + "`tsne_df`: Dataframe containing the positions in the t-SNE-plot, booleans/integer if they are contained in a subset and the SMILES string of the fragment.\n", + "- `x` and `Y`\n", + " - fragments positions calculated by the t-SNE method.\n", + " \n", + "- `reduced`\n", + " - boolean values if fragment is contained in the reduced subset\n", + " \n", + "- `custom`\n", + " - boolean values if fragment is contained in the custom subset\n", + " \n", + "- `compare`\n", + " - integer specifying in which subset(s) the fragments are\n", + " - 0: Excluded in both subsets\n", + " - 1: Included in custom subset and excluded in reduced subset\n", + " - 2: Included in reduced subset and excluded in custom subset\n", + " - 3: Included in both subsets" + ] + }, + { + "cell_type": "markdown", + "id": "3b08e3e7-18ee-4473-a2ce-300cb4aab5ca", + "metadata": {}, + "source": [ + "Inspect molecules shown in t-SNE plots" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "3825feaa-835d-442a-822d-18c6ea7f5dbd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
XYreducedcustomcomparesmiles
037.823090-20.321964011Nc1c[nH]c2ncccc12
14.3602388.705609000N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1
255.5007292.816142000CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1
351.0664631.789376113Nc1ncnn2cccc12
438.199745-6.231862102Cc1cc(N)[nH]n1
\n", + "
" + ], + "text/plain": [ + " X Y reduced custom compare \\\n", + "0 37.823090 -20.321964 0 1 1 \n", + "1 4.360238 8.705609 0 0 0 \n", + "2 55.500729 2.816142 0 0 0 \n", + "3 51.066463 1.789376 1 1 3 \n", + "4 38.199745 -6.231862 1 0 2 \n", + "\n", + " smiles \n", + "0 Nc1c[nH]c2ncccc12 \n", + "1 N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 \n", + "2 CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 \n", + "3 Nc1ncnn2cccc12 \n", + "4 Cc1cc(N)[nH]n1 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tsne_df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "a7670012-cce0-46ab-995f-f9d274d514f6", + "metadata": {}, + "source": [ + "Display first ten molecules contained in both subsets." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "3c363f66-90ca-4b82-8d3d-e620a9681a46", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAGQCAIAAACyL902AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xT1x4A8F9CwhQEHAgqKm7cghPqxAGCo4rValy1aB2orYrriVoHtq9t3EVrNVit4iygqDiqiIqKuHCjguBEtmGG3/vj5kVIABlJ7g38vh//eO/em+RHOZz7y7m/cw4PEYEQQgghhBDCbXy2AyCEEEIIIYR8HiXuhBBCCCGE6ABK3AkhhBBCCNEBlLgTQgghhBCiAyhxJ4QQQgghRAdQ4k4IIYQQQogOoMSdEEIIIYQQHUCJOyGEEEIIITqAEndCCCGEEEJ0ACXuhBBCCCGE6ABK3AkhhBBCCNEBlLgTQgghhBCiAyhxJ4QQQgghRAdQ4k4IIYQQQogOoMSdEEIIIYQQHUCJOyGEEEIIITqAEndCCCGEEEJ0ACXuhBBCCCGE6ABK3AkhhBBCCNEBlLgTQgghhBCiAyhxJ4QQQgghRAdQ4k4IIYQQQogOoMSdEEIIIYQQHUCJOyGEEEIIITqAEndCCCGEEEJ0ACXuhBBCCCGE6ABK3AkhhBBCCNEBlLgTQgghhBCiAyhxJ4QQQgghRAdQ4k4IIYQQQogOoMSdEEIIIYQQHUCJOyGEEEIIITqAEndCCCGEEEJ0ACXuhBBCCCGE6ABK3DknOxtSUiAvr8jBnBxISQFEyMmBzEzll8hkkJEBMpnWYiSEEEIIIdpGiTvn/PILWFrC5MlFDm7fDpaWkJIC8+dDvXrKLwkLAzMzuHRJazESQgghhBBto8Sdo/btgzNn2A6CEEIIIYRwBiXuXCQQgIcHzJgB2dlsh0IIIYQQQriBEneOWr8eXryA9evZjoMQQgghhHCDgO0ASPFatQJvb/Dzg6+/hubNi5ySyeDcuSJHbt/WZmiEEEIIIYQFlLhzl68v/P03zJgBYWFFjmdnQ//+LMVECCGEEEJYQqUy3GVqCr/8AmfOwKFDRY6bmEBeXpF/x4+zFCIhhBBCCNEWStw5bcwYcHGBBQuUZ6kKBEX+8enXSAghhBBS1VHGx3WbN8Pr1+Dvz3YchBBCCCGEVZS4c13LlvDDDxAbW6aLnz2DBQtg0iTYuxcQNRwZIYQQQgjRIkrcdcCyZdCkyecvy8qCPn2geXP45hv46SfYu1fzkRFCCCGEEG3hIQ3Mcszr15CYCI6ORQ4mJMDbt9ChAyQkwLt30LVrkbOpqfDgAbRpA4hQsyYAwMaNcPs27NypvbAJIYQQQohG0Yg751hbg1QKDRvCjz9+OtigATg4gEAAjRsrZ+0AYG4OPXqAmZk8aweAp0+haVMtBUwIIYQQQrSA1nHnohMnICEB0tMr+PKICPjnH4iOVmtMhBBCCCGEVTTizkUnTgAAuLpW5LWRkTBxIhw5ApaW6g2KVAuZmfDqlfLM5vx8ePVKeU1SQgghhGgZJe6ck5AA9+5BjRrg5FTu127fDlOnQlAQODhoIDJSDYjFUL8+SKVFDt69C/XrQ1AQSzERQgghBAAoceeg48cBEQYOBAOD8r3wzh1Yvx6kUvDwgKZN4csvNRMfIYQQQghhA9W4c05oKECF6mTaty/rcu+EEEIIIdXTmjXQtSsMGFDkYGAgJCXBjBksxVRmNOLOLbm5cO4c8HgweDDboRBCCCGEVDkrVsDJk8oH//4bNm5kI5pyohF3brl4ETIyoEMHaNCA7VCqq7y8vFu3bkVGRkZGRs6ePbtx48Z169ZlOyhtO368SKXW8+fshUIIIYSQ/6PEnVuYOhk3N7bjqGZevXoVFRUVFRUVERERERGRlZXFHD916pSjo+MJZpWf6mTixCL/l3ZpI4QQQriAEnduqcxCkKTsPn78GBUVdfXq1atXr0ZGRr569UpxisfjtW7dulu3bu3atfvxxx9DQ0NDQkLc3d1ZjFb7kpLAxOTT/42Ohs6d2YuGEEIIIQBAiTunPH8ODx+ChQX06MF2KFXRq1evIiIiLl26FBUVdf369dzcXMUpMzOzdu3aOTs7Ozk59ejRo3bt2sxxPT29uXPnzp07d8CAAQblXeWHEBVxcbBgATRqBD///Ongu3cwaxbMmgW9erEXGSGEFFW1+6tjx+Dx4yJHbtz4tP08l1HiziHHjwMADBwIAvq1qEN6evqdO3eYZP3q1atJSUmKUwKBwN7e3sHBgUnW7e3teTye6jvMnDlz586dd+/eFYvFPj4+WoydVE2pqXDwIABA167g6Sk/+PEjHDwI7u46fyMkhFQlVbu/MjODxo2LHLl/n51IyosyRA6p8EKQhCGTyR4+fMiUql+6dOnhw4cFBQWKs9bW1g4ODkyy3rNnT2Nj48++oUAgEIvF/fv3X716tUgksrGx0WT4pLpo3hzmzoVBg8DMjO1QCCGkVFW1v+rXD375pciRhAR48IClaMqDEneuyMqCf/8FPp8Wgiyf169f37hxg0nWL1++LC2056dQKOzUqZOTkxOTrNvZ2VXg/fv16zdixIijR48uXrxYIpGoL3BSfS1ZAt7esGyZbiw9Rgipzqi/4hpK3Lni/HmQSqFLF7CyYjsUbsvLy7tz5w5Tqh4VFXW/6MMta2trpvrFwcGhS5cuailMF4vFp06d2rNnz7fffuvs7Fz5N+SyadNg+HBQehrRujXcvQu2tizFVOXUqwdLl8KSJTBuHHTrxnY0hBBSMuqvuIYSd664dCmBz7dxdaUtsYp36tSp4ODgq1ev3rlzJy8vT3Hc3Ny8e/fu3f7P0tJS7R9ta2v7/fffr169es6cOdevX+fzq/Lv6PFj2LABevaEuXM/Hbx/H/z8YN26qvaolEVz58KuXTBzJkRGsh0KqUKOHz++a9cua2vr9u3bf/PNN1W7syJaQ/0Vp1DizhUHDvS2tMx0d78CUJGKjqrt6tWrmzZtOn78OADo6ekVnlfaunXryt+cZDLZvXv3mKUhf/7551q1aildsGTJkj179ty8eXP37t1Tpkyp5MdxWXw8HDwIR45A797QqZP84OvXcPAgLFzIamRVi4EBbN4MAwbA77/Tvg1EDR4+fDhv3ryTJ08CAI/HQ8Rt27aJxeJeuj6FkHBA1euvunaFRo2UD7ZoAfr6bERTTpS4c8LDhw+fPXtWu3ZtB4fGbMfCRTt27Dh+/PjIkSO9vb0dHBxMCq8xXlFv3ry5fv26Yt+llJQU5vioUaPcVHomIyMjPz+/sWPHLl68+MsvvzQ3N698AFzWtClMnw5XrgAN2GmOiwt89RUsXw7du7MdCtFlqampfn5+YrE4JyfH3Nx80aJFzZs3nz9/fnR0dO/evd3d3Tdu3NikSRO2wyS6rYr1V6GhIJMpH1y2DIpbXo5zdOC2nJycvGbNmt9//z08PJztWDSF2ZvT1dWVnmwWi9kgafLkyb169apw1p6dnX358uXffvttzJgxjRs3tra2Hjp06MqVK0NCQlJSUpo1azZu3LhNmza1a9eu2JePGTOmd+/e7969+/HHHyv+k+iItWvhxg34/Xe246gqZDLw94d165SPi8Ugk4GiQQUGwvLl8PGjlqMjuqqgoCAgIKBly5br16/Py8sTiUSPHj3y8fH58ssvY2Ji/Pz8TE1NQ0JC2rRps2jRooyMDLbjJbqhOvRX3bqBpSUEBRU56OICY8awFFC5ILfdvHmTGSrQ09Pj8/nff/+9VCplOyj1c3FxAYB9+/axHQhHtW/fHgCioqLK+8LExMSgoCAfHx8nJydDQ8PCLd/U1NTJycnb2zswMPDt27dlebfo6Gg9PT2BQHD37t3y/xC6Yd8+BMC4OJw0Cc3MMDERETEkBAHw+nW2g9NN589jhw4IgAYGePIkAmBo6Kezv/6KAAiAO3diw4YIgA0a4F9/YUEBexETXXD+/PkOHTowvVnv3r1v3bqlek1iYqJIJGI2qbCxsfH395fJZNoPleiQatJftWqFPB42aoSZmZ8Odu2KQ4awF1OZcTpxDwgIYBbb7tSp08KFC/X19QGgadOmFy9eZDs0dcrMzDQwMNDT00tKSmI7Fo6qU6cOALx+/fqzV2ZkZISHh4vFYk9Pz7p16xbO1JnieJFIJBaLb9y4UbEb2PTp0wHAxcWlAq/VCYrE/c0bNDfHsWMRKXGvqPh4FImQx5Pf3iQSjI5WvhHm5WHHjgiAEgleu4Y9e8rvi126YEQEe6ETDouPjxeJREy31qBBA4lEUlBq3nTt2rUe/9+Ou0uXLhHUsEhxqlV/1aoVurujmRkuXPjpICXulZKdne3t7c10NCKRiBllv337dseOHQFAIBD4+PhkZ2ezHaZ6HD16FACcnJzYDoSjcnNz+Xy+QCDIz89XPZufn3/v3j2JRMKUvyvVGtWrV8/d3d3X1zcoKCg5ObnywXz48IGZuvrPP/9U/t04SJG4I+KmTQiAZ858StwnTcJBg3DZMvznH/lgPCnWx4/o64uGhgiAxsbo64tZWYiIL1+ilxfeu1fk4mvX0MsLr1xBRCwowMBA+VAWj4eenvLfBSGI+PHjR19fX+bhobGxsa+vbxbTsD6noKBAIpHUq1cPAHg8nqenZ3x8vKajJbqiGvZXrVrh5Mm4di0KBBgdLT9IiXvFxcfHd+vWDQAMDQ137NhR+FRWVpaPj4+enh4AtGnTpgK1Exzk5eUFAKtXr2Y7EI6Ki4sDgPr166ueSkxMNDU1LZypGxgYdO/efe7cuX///ffz5881Ec/GjRsBwM7Oroy3TN1SOHHPz8fOnbFtW/znH3nibmMjH19h/llbo7s7+vpiUBC+e8d26NzA3MlsbT/dyV68KPebZGZ+uo+amHy6j+qEGzdu0MNDtSsoKAgMDLS1tVVk3i/K37AyMzMVeb+JiUnZ834uoHalCdW2v2IS9+xsbNoUe/ZE5gE8Je4VdO7cOabCwdbW9tq1a8Vec+XKlZYtWyqG3nNycrQcpHoxffHNmzfZDoSjrly5wjzhVT1VUFBQu3Zta2trd3d3Pz+/8PBwLdyH8vPzmZr7tWvXavqztK9w4o6I164hn49Dh8oT98REDApCX190d8fatYsk8YXz+LCwIoWD1cf16+jkJP+v4eCAly5V6t2YJ9fMuzVsiBKJmqLUjHv37vn6+rZo0QIAhg0bNmXKFLYjqjquXsX+/eVbanft2vUKM9pZUYUrbRo2bCjhdsOidqU51bm/YhJ3RDx+HAFw+3ZEStwroKCgwM/PjxlNHzJkSOmFDVKp1MfHh6mLaN++fbHzcnTC7du3AcDa2rr0IsXq7MiRIwAwdOjQYs+mp6drOR5EPHv2LPOoOk5XnguWmVLijojffivvi5Vq3AsK8OFD3LMH58zBnj3RyKhIEq+nh+3a4ZQpuGvXqRs3buTm5mr5B9GyxET08kI+X/4Fxt8f1TUJ8Nw5bN9e/l+1b1+8fVs9b6sW+fn558+fnzVrVv369RVPvaysrJj5SHv27GE7QJ2naFe9e/9mbW2txtml586dYwYgAKBv3763udSwqF1pWnXtr/Dff3HhQpTJPiXuiDhiBFpaYlISJe7llJaWNmLECOYhoI+PTxn7pvDw8GbNmjFFNX5+fsXWQHPcunXrAOCbb75hOxDu2rx5MwBMnz6d7UCKGDlyJACMHz+e7UDUTDVx//AB69T5/OTU/Hy8dw8lEvT2RicnNDCQP3utWbMRAAiFQmZmsL+//71796rS0hY5OSgWo5kZAqC+Pnp7Y1qamj9CJkOJBOvWRQDk81EkwrItg6Qp+fn54eHh3t7e1tbWirzK1tbW29s7PDxcJpPt3LkTAGrUqPHo0SM2A9VlWVm4Zg3WqIEAaGiIy5blZmRklP3lixYt8vT0LH1kQSaTSSQSZuo/n88XiURlXF9LQ6hdaUG17K8wPBy9vdHaWv6NIjy8SOIeF4cmJjhnDiXu5REdHW1nZwcAtWrVOnnyZLlem5aW5uXlxSx31b1794cPH2ooSA1htrU7dOgQ24Fw19KlSwFg5cqVbAdSRHx8vLGxMY/HqzJrHAUE4D//yCceffhQ5NQ//6CXV/lqH6VSvHwZt26Vjh8/vmXLlryi21qYmpr26dNnwYIFgYGBGpqKoB1BQdeaNJHfDL78Ep890+BnffiAs2ejQIAAaGmJf/55NS8vT4OfpyI7OzssLMzb27vwek1NmjRh8iqlZ4Zff/01ADg4OOh6KSMrgoLQzk7ertzdMTa2fC9PS0szMzNj/tDWrVtX+kIOycnJPj4+zGC2hYWFn5+fln9l1K60ppr1VxgcjJMmoaXlp0fBLVrg4sX4/HmRxB0R/fxQXx9tbChxLxvFmo+dO3d+VtF2dPLkyQYNGsD/d7jUlfG81NRUoVAoFApTU1PZjoW7Jk+eDABK05S5YPny5QDQqVMnXXzUoyQ0FIVC1NPD+/c18v7p6enMMp0ikcje3l4pj69Zs6aTk5OPj09QUFBZFv3kgvv37w8aNAgAHBySWrcusmJasa5dQ7Wsg/XwIbq5oY1NvLGxccuWLUNCQtTwpqWSSqVBQUEikahmzZqKX5m9vb2Pj094eHhJr0pNTWW24FhYeLk18jn37+PgwfIko1Wrz7erkpS3kP3hw4eKHaNbtmx5/PjxCn5wmVG70qby9ldlVPIvSo6N/gqDglAkwpo1P+Xr9vbo41MkWqXEPScHW7dGAErcP6fYNR9L8vLly1mzZqWV/FAnNTWVWZ4FAJydnZ88eaKBkNXswIEDTH0h24Fw2uDBgwFAC3/w5SWVShs3bszNLxXlcuOG/In80qVa+sQ3b94EBwcvX77c1dWVeVKvIBQKOb7J2vv376dPn87Mxqldu/bOnUGlf3F79UpeTrpundpiOHEikqkSBAAPD4/Hjx+r7a3/7+PHj0xeVXjhJnt7e19f3/tl+3p37do1oVDI5/NPnz6t9vCqng8f0Nsb9fTkI5RiMVZ+gLK8hexhYWH29vbM9S4uLjExMZWNQAW1Ky0rb39Vdsy0zrIUsmulv5Ln66amRfJ1X9/iR6OUEndEvHABeTxK3EtVypqPxfLw8ACARo0anTlzppTLjh8/bmNjAwBmZmb+/v4cn/E5adIkAPjpp5/YDoTTmBsPN1fdYb561a1bNyUlhe1YKig2Fq2sEADHjWNt97vnz58HBgbOnz+/T58+X3zxBTtBlEFeXp6/v3/t2rUBQCAQeHl5vX//vpTrlcqU1bvia25urlgsZkYrhUKht7e3Wh7cJScnSyQST09PExMTpbyqAoXFa9asYf5AdOVBCivy8tDfX75Mk0CAXl5YarMqn/IWslO7qjLK21+V1/79WKuWvNHOmIGlr9WpoXb14cOH/fvvu7vLZ1UxVfU9e+J//4ul12Deu1fMBXfu4JMn+OYN11c3ZidxL8uaj0qePn3q7OwMADwez8vLq5RpOu/evWMmDgLAoEGDXr58qb7A1amgoMDKygoA7iltb0CKYvqdN2/esB1I8fr06QMAc+fOZTuQinj/Hlu2RADs1w+pZLR0Z86cadu2LdOx9O/f/+7du6VfX8ky5TJKSkry9vZmhtNq1aolFosrVriVlJQkkUjc3d2ZWmcmyXNychKLxQkJCRUOTyaTubi4AMDgwYM5PoyiIYsWoYMDnjhR5OCPP6Krq/x/nzmDbdvK20n//vi5ZlVB5S1kp3al68rbX1VMcjL6+KC+PgKghQX6+X3mPqKJdtW48QAmX3dyQrEYK9GsEBEvX0YrK3R1ZW0Yqyy0nbiXa81HJXl5eX5+fgYGBgDQpEmT8+fPl3JxYGAgs8NlzZo1/f39Kxu3+sTGxkokEi8vr4YNG9aqVcvMzCyzei55XTY5OTk8Hq+kbVO54N69ewKBQCAQ3Llzh+1YykcqxR495Cv4lme9imrn8ePHnp6ezC2wefPmgYGBpV//4IF6ypTLLioq6osvvmAi7NSpU9knTL979465/wmFQublenp6TF716tUrtcT25s0bZoTi119/Vcsb6pbRoxEAbW2L7GwwdSo2aICPH6O7+6c5c8HBGg9GqZD9s/WHhdtV586dqV3phPL2V5XHFLIzLbllS/zs/IgK91cJCQmbNm3q06cPk0Myg/cDBw7880+puhauSUiQP/vicrPSauJesTUfldy9e7dz586KofePHz+WdOWbN2+GDRvG/Hbd3NwS2duiPSYmZuvWrWPGjCm8yhUA1KhRg/k2zPGiXha9ePECStg2lTtmzJjB/B7ZDqQc8vNx+HAEwCZNkJ42lyQjI8PX15cZLKhRo4avr2/pC3QwZcqKhRTUUqZcdkFBQcykCwBwd3cvZbmeuLg4sVjs5OTEbIUBAAYGBi4uLmKxuAILAjJb5LRt2/ZdCQ+YT5w4wePxhEJhZGRked9c140ejU2aYM2aWHguJZO4h4R82mlSLROXy6i8hexstSuFlJSUS8VtDlSd21WxyttfqVdYGNrby9N3Fxf87PwI1ttVSU6cQB4PhULkbLPSXuIeHR3dtGlTqNCaj0qYoXfmq3zr1q1LL7YJDAy0sLAAgDp16mhz1cXY2Fh/f3+RSNSwYcPCyXrdunWZbT5v3Ljx6NEjpiJ/4MCB2vwD0yGRkfn168cPH86lXRxUJCcnM/U8R48eZTuWspoxAwGwdm3UtQVUtYSpDGaG9JjK4NKLtXJzc/39QywsEACFQpwzB8vzNFFtpFKpn58fMyJgZGTk4+NTuKrw2bNnzP1PsaqPkZGRu7u7RCIpb72pTCaLiIj4/vvvFbdeANi1a1dJ18+ePRsAmjVrxsqOaSwaPRodHHDdOhQKP5XBMIk7Iv72G7JSA1jegmOttStVr169atSokYWFxYvi1qOttu1KSXn7Kw3JycH16z8tEu/nF1LKgiLIarsq3ezZCIDNmiE3m5WWEvc9e/ZUfs1HJbdu3erQoQMACAQCHx+fUhLfV69eDRkyhPnFe3p6JpU+h6ISmGTd09OTSeMUrKysPD09xWLxjRs3lAryHj16VK9ePQAYPny4llc51QmHDyMADhvGdhyfw+wSZWdnl5WVxXYsn7d8OQKgkRFevsx2KJx09epVZuo8lG2HeUU5adeurzVXplx2CQkJIpGIudvVr19/3bp1y5cvb9eunaJHMjMzGzt27KFDh0p5YlksmUzGbJFTeEvLOnXqiESioKCgUnqw7Ozsjh07AsBkpaUcqjomcc/OxmbN0MlJXjirSNzZVd6CY821q9INHz4cAJycnFQbWLVtV4WVt7/StKQk9PbGJk2eGhgYcLldlSI7Gzt2RADllWc4QuOJe7nWfCyvrKwsHx8fpt9p27ZtVFRUSVcWFBT4+/szX+ysrKyOHTumlgBkMtm9e/eYZJ0pqVeoV69eScm6ktu3b1taWgLAqFGjOFvJzZbNmxEAObZrajHy8/OZr5Gr1bt0iAbs2IEAqKeHuvN4QKvS0tLGjh3L3EIkEknpf7yPHj1yd3dn/uRbtGhx4sS/WovzsyIjI7t378485WMitLCwEIlEgYGB5Z1XU+yWlo0aNVJsaVmWN3n8+DHTA//1118V+oF0EpO4I+LJkwiAzApqHEncGeUtOFZjuyqj5OTkRo0aAcDy5ctVz1bPdqVQrv5Km27evO/k5MS0EAcHh1LW5mdov12V7vFj+YJgHGxWmk3cX758yfwmyrjmY8Vcvny5RYsWACAUCn18fHJzc0u68tmzZ8waIMzQe7mmxirk5+crknUm4Vawtrb29PRkNnUv13vevHmTqeeZOHGiruwepR1LlyIAcmzX1OKFh4fzeDxjY+NiH+lyREiIvAJ7yxa2Q+GqP/74g7nTlD7KULic1MTERMvlpGUkk8nGjBnDjGucOnWqlL6xWOXa0rIstm/fDgA1atTQxELO3KRI3BFx+HCsVQs/fOBW4s4oe8ExVrpdVcDFixf19PT4fP7Zs2dVz1bDdqVQxv6KLRxvV6Xbvh0BsEYN5Fqz0mDifu7cOabiquxrPlaYVCr18fFhJi507dq1lH0cmKF3ZilZW1vb0leFV8jPz79x44ZYLPb09GQy7Mon60ouX77MDBvMnDmzMu9TxUye/GmYivuYufxjx45lO5DiXbuGJiYIgCtWsB0KhzE3wilTppR0AUfKSctow4YNADB79uyyv0SxpaWZmZmio/vslpZlxIwOdunSpZpsWV84cY+LQxMTnD2bi4k7fq7gWEkF2lUlMTtV169fv9hi1+rWrhQ+21+xjuPtqnRjxyIAdunCreWSNZK4F17z0c3NrWID2xUQHh7OzH81NDT08/MrpeykLKvC5+XlKZJ1c3Pzwsm6nZ2dSCTy9/dXV70+48yZM4aGhqCzi4JrwqBBCPD55aU4Ij4+nvlO+O+/HCqZYDx69Khv369NTDKmTmU7FG4r/UbItXLSzyr7jVCxpSVzi1Xk676+vg8ePFBXPCkpKcwI3OLFi9X1nlxWOHFHlM9S/eILLibujPj4+DFjxjAFxw0bNjxw4ECxl2k/wZLJZMwD8yFDhqg+7alu7UqB+4k7Q6mQvaSqHq4l7ikp2LgxAiCnmpX6E3e1rPlYmU/38vJiGkePHj1K2ZKt2FXhmWTdz8/P3d2dmXGvmqxrtBDi1KlTTEi+vr6a+xQd0r49AiAnd00t3ooVKwCgY8eOnJqu8Pr1azs7OwCYMmU+TYEuXSk3wuDgYKY3sLW13b9/P3fKSUvx2RthKVtaaqjwIDIyktmyPiwsTBPvzylKiXtODrZujQDcTdwZioLjOXPmFHsBKwnWy5cvmfLULcWV+lWrdqWgK4k7Izw8nFnOGwDWrFmjegHXEndEjIxEoRD5fOROs1Jz4q7GNR8r4+TJkw0aNGCey/j5+ZXy5UGxNA2fz2/durWRkZHi1sXj8ezt7WfMmLF//36176t85MiRYrse5pRAIACAtWvXqvdDdRGzFQKHKxGUSaVSZuDn999/ZzsWufT0dKav7NKlC+329Vml3Ajz8vK6dOlS+qNerinlRnj27NkBAwYU3iKnb9++mzdv1sKWF6tWrQIAKysrLlcZqYVS4o6IFy4gj8f1xB0RZWz+BMAAACAASURBVDLZn3/+WdIDc7YSrMOHDzMP1W/duqV6tvq0KwXdStwRsaCgQCKRNGvWrNituDiYuCPiqlUIgFZWXElF1Jm4a2LNxwpLSUnx8vJibkjOzs5Pnz4t6cq8vLzVq1fr6+szBZ12dnZeXl4SieTly5caii02NlYoFPJ4vJ07dxZ7QWBgIFNo9PPPP2soBp2Qk4M8HgoEyKXB6887ePAgANSsWTMkJIT1RDk3N3fQoEEA0LRpU03sVVH1lH4j1Lm546XcCI8ePQqFtrRU+/BEKWQyWb9+/QDA1dVVJx5cVNixY7h7t/LBP//U+dnhLCZYzJ3d3t5edXHA6tOuFErqr5KSku7cuaOufWrVrqSOlJuJu0yG/fohALq6IhealdoS94ULFzJZ8rfffsudpaxDQkKY9cvMzMz8/f1L+ks+ffo0ALRo0eL9+/faCWzjxo3MMH9JK1jt2LGDx+PxeLzdu9WzcqUuiotDAOT2rqnFkEqlFhYWzLi7np6evb29SCQSi8Xh4eFa/tMoKCiYNGkSANSpU6carrdQMTo3glW6Um6EUql09+7dWpuDpCQhIYHZ70IsFrMSgJbduIFLl1adNVhZTLCysrLat28PANOLWye4urWrkvorJseYNWsWK1FVGDcTd0RMSMBatbBOnTfbt7OfkvFBHaRSaXp6ukAg2LFjx/bt25kZllwwZMiQW7dujRgxIj09fdq0aR4eHunp6aqXhYaGAsCoUaOUNk7SnNmzZ//6668FBQUTJ048cOCA6gVTp07duHFjq1bjf/jBY+9e7QTFOa9eAQDY2LAdR3nk5+d/9dVXKSkpGRkZ7du35/F49+/f37Nnz9y5c7/44gsLC4vu3bvPnj07ICDgwYMHBQUFGg1myZIlu3fvNjY2DgoKat68uUY/i+gcIyOjiRMnKi2TpTXMBDVmKlR0dDQrMWjTrVuwZg38f5YEqThDQ8N9+/YZGRn9/vvvqnfP6tauiHbUrw8SyQcer+Ps2V+x3q7Uk7gDwN69e/Pz83v16qWuN1SXunXrHjlyJDAwsFatWqmpqYUnYCmcOHECAFxdXbUZ2Lx58/7zn//IZDKRSBQSEqJ6waxZs6ZM2fXhA3/SJDh8WJuhcYUuJu5z584NDg6uVatWRETE7du3pVIps+q/SCSyt7fPzc2NjIzcvHnzxIkT7e3ta9as6ezsPGfOnICAgJiYGERUYyT+/v5+fn5CofDIkSPMPDNCOMXNzW3GjBk5OTmjR4/OyMhgOxyiM9q0afPTTz8BwPTp0+Pi4pTOUrsimjBkSC1Pz5FcaFfqSdyNjY2//PJLAPj777/V8oZq5+npeefOnb179zK144U9f/780aNHzFColqNatWqVj49PXl7eyJEjT548qXrB/Pl6vr6Qnw9jx1bHoZrXrwEACu3VyHUrVqzYsmWLkZFRUFBQy5YtAUAoFLZp08bLy4tJzVNTU8PDw8ViMZPHZ2ZmRkREbNy4ceLEiW3btrWwsHB2dl60aFFwcPDbt28rE0lwcPDMmTN5PN727duZGndCOOiXX37p0KHD06dP582bx3YsRJfMmjVr2LBhqamp48ePl8lkSmepXRFN4Ei7UtuI+/jx4wFgz549qqOG586dGzFixD///KOuz6oYGxsbZttkJcxo96BBg5i1XLRs3bp1M2bMyM3NHTly5MWLF1UvWLECFi+GvDwYNQpCQ7UfIJt0K3HfuXPnypUr9fT09u7d27Nnz2KvMTU1LTzEnpKSEhYW5uvr6+7uXrdu3bS0tIiIiPXr1w8dOrRevXo2NjYeHh4rVqwIDg7+8OFD2SOJjIwcM2aMTCZbs2YNU+NOCDcZGBjs27fP2Nh4586d+/btYzscokt27dpla2t76dKlH3/8UekUtSuiCRxpV2pL3Pv169egQYPY2NirV68qnbp9+/axY8d2796trs9SL6bAXct1Mgo8Hm/z5s1eXl5SqdTDw+P69euq16xdC/PnQ24ujBoFFy5oP0bW6FCpzPHjx6dPnw4AGzZsYPYxKAtzc3MXFxcmNX/79m1iYmJQUBCTx1taWr5+/TokJGTlypVDhw6tXbu2jY3N6NGjN2zYcOnSpaysrJLe88GDB25ublKpdNq0aYsXL1bPj0eIxtjb2//6668AMGPGjOfPn7MdjrZdvgwLFwLb41o6ycLCYs+ePXp6ej/++OP58+eVzlbzdkU0hAvtSm2JO5/PHzNmDAD89ddfSqfGjRsnEAhOnDiRlJSkro9Tl6ysrAsXLvD5fBbLCXg83tatW8eOHZuenr5s2f3bt4u55qefYNo0kEph6FC4dk3rIbJEV0bcr1+//tVXX+Xn5/v6+s6cObPC76M0xB4bGyuRSLy9vZ2cnIyMjF6/fn3w4EFmkquZmVmbNm0mTJjA5PG5ubnMO7x69crV1TU5OdnDw2PLli1q+vkI0axp06aNGTMmLS3tq6++ysvLYzscrYqKgp9/hjNn2I5DN/Xq1Wvx4sUFBQUTJkxQfSxZndsV0RzW25XaEnf4f7XM/v37FWkEo27dui4uLrm5ucz61pxy7tw5qVTq6OhoZWXFYhh6enoBAQHe3ifOnJk4cCA8eKB8AY8HW7fC+PGQng4DB0JUFBtRal3fvvDll9CsGdtxlCo2NtbDw+Pjx4/ffPMNs22qutjZ2SlS87S0tOvXr2/dunXy5Mlt27ZFRKXFapydnWfOnNmnT5+4uLhu3brt379fdToHIZy1bdu2xo0bX79+feXKlWzHQnSJr6+vk5NTQkLCt99+q3qW2hXRBHbblToT9w4dOrRv3z45OVl1niWT06sOxrOO3TqZwgQCwc8/u7q6wrt30LcvPHqkfAGfD7t3w5gxkJYGrq4QE8NGlOpw+DBcuaJ88OpVOHQIAOD8eTh4EDIzAQAWLoTDh6FlS7h0Cc6e1XacZfH+/XtXV9e3b9+6ubn9/vvvmvsgoVDo6Oj43Xff/fnnn3fv3k1LSys8yTUrKysiImLr1q0fP35s2LDhiRMnmK3QCNEV5ubme/bsEQgE69atO8vNv3bCSQKB4O+//7a0tDx69KhqJ0ztimgCu+1KnYk7FJqiqnR8xIgRpqamly9ffvz4sXo/sZKY7xhubm5sBwIAoK8PBw9C377w9i0MGAAvXihfoKcHAQHg4QHv30P//vDwIQtBVt6MGbB9u/LB7dthxgwAgOXLYfRoUBq5XrcOli7VTnTlIJVKhw4d+uTJE0dHxwMHDqhObn758qWGPtrExKTwJNekpKSTJ0+OHj361atXNjY2lpaWGvpcQjTH2dl52bJlzO4WHKyrJJzVsGHD7du3A8C8efPu3LmjdJbaFdEEFtuVmhP3cePG6enphYSEpKamFj5ubGzMzNjj1HqRDx48iI2NrVOnjqOjI9uxyBkZQUgI9OoFL1/CgAHy2ZmFCYVw6BC4usLbtzBwIFTJKTcmJrBhAxRb688dzCKeV69ebdq0aUhISI0aNZQuiI2NdXR0nDx5cn5+vqaDsbS0HDRo0K5du0xMTK5fv56YmKjpTyS6okaNXr16/VqnzpdsB1Im//nPf/r165eYmDhhwgT1bmtAqraRI0dOnTo1Ozv766+/Vp27T+2KaAJb7UrNibuNjU2fPn2ys7MPMXUPhSiqZbjzZ6PYd4nPV/N/h8owNobgYOjSBZ4+hb594c0b5Qv09eHQIejdu8TkXtf16QPt28P06aDhfUUrDhGnTZt28uTJOnXqhIaGqk6QYEpo3r179/79e61FZWxsPGjQoIKCgiNHjmjtQwnHZWZ2vHhx3vv3fdgOpEz4fL5EIqlVq1ZoaOjmzZvZDofokg0bNrRu3TomJmb+/PlKp6hdEU1gq12pP2EtqZy9f//+DRo0ePr0aWRkpNo/tGK4U+CuxMwMTp+Gzp3h8WMYNAiSk5UvMDaGoCDo1g1iY2HbNnjxAuLjla+JjwctJo3qxOfDxo0QGVlMRQ1HLFu2bNeuXcbGxkFBQc2bN1c6m5GRMXjw4CdPnnTp0qXYEhrNGTVqFACofm0mhINOnDihunl4gwYNduzYAQALFiy4desWG3ERnWRsbBwYGGhkZLR169Zjx44pnaV2RTSBlXal/sR91KhRJiYmFy9eVFrhspT1IlmRmZl56dIlPT29AQMGsB1LMczN4eRJsLeHO3fAxQWKVh4BAJiZQWgorFsHK1dC587QuDFERBS5oFcvWLRIa/GWz7VrMGdOkX9K3+acnGDMGFi8GCq3f6hGbN++fe3atUKh8PDhw6q77ebl5Xl6et68eZMpoTExMdFmbB4eHkZGRpcuXXpV9R7EkKolLi5u3LhxPXr0UC1KHjFixIgRI4RCYUpKCiuxER3Vtm1bPz+/Vq1aFbvZIrUrUmFxcXGqszcZ2m9X6k/ca9SoMXToUERULWdnBuP//vtvpfUiWXH27L85OTndu3evVasW27EUr04dOH0amjaF6GiQSIq5wMICFi0CpsyHx4PvvgNdWak2PR2ePi3yLz1d+Zr//hcKCuCHH9iIr2TBwcEzZ87k8Xj+/v6DBw9WOouIXl5ep06dYkpo6tatq+XwatSowVTLHD16VMsfTUjZ5efnjxs3LjU11cXFpV27dkpnU1NTo6KiMjMzubaYAeG+2bNn37x5s1OnTqqnqF2RimH6qwkTJmzcuFH1rPbblUZqu0uqlunQoUO7du2KXS9S+06ccG/RQjpmjD/bgZSmfn04cwbWrAFv789c6ekJjx/Db79pJaxKc3GB48eL/FN97GFjAytWwN69EB7+6WBsrDbDVBYZGTl27Nj8/PzVq1dPnjxZ9YIlS5bs3r3b1NT05MmTqiU0ahcVFXXz5k2lg1QtQ7hv1apVERER9evXl0gkPB5P6ex3330XHx/fpUuXKVOmsBIe0V08Hs/IyKjYU9SuSMUw/VWDBg3GjRunelb77UojifvAgQPr1av34MGDKJWNgrizoPvJk/D4sZGzcxu2A/mMxo1hyRJQubUpa9IEZs6ElSur1Dozs2dDhw7www/AzGe+dw+aNwdnZzh4EGQybQfz9OlTZqMlLy+vJUuWqF7g7+/v5+cnFAoPHjzYuXNnTceza9cuR0dH1d0fhg4damhoePHixdfMxrOEcEx4ePjatWv5fH5AQIDqA8/t27fv37+/Ro0ae/fuFQqFrERIqh5qV6RiFP0VMw9V6eyOHTu03640krgLBIKvvvoKikvQx48fr6enFxwcnKpata1Ft29DfDxYW0OHDixGoWbLl0ONGjBnDttxqI9AAFu2wI0bcPEiAMC9e2BqChERMHo0tG4NmzfL92nSgtevXw8YMOD9+/fu7u5btmxRvUBRQrN9+/ZBgwZpISQ3Nzc9Pb1Tp06lFy0zMjU1HThwYEFBger0LEJYl5KSMn78eJlMtmzZsn79+imdvX///rx58wDA399fC8+stElP728Li+YGBguUjgsEuywsmuvr/4eVqKqJKtyuiEYp+itm5Uels0+ePPn+++9B6+1KU8sgMiPr+/btU1rEupT1IrXpxAkAgCFDPj+SrUNq1oSff4bgYKhK5c1OTjBpEnz8CAAwZgwkJIC/P7RsCU+ewOzZUL8+zJlTzE5V6pWRkTFkyJAXL1507dp1//79qqvEREZGjhkzRiaTrVmzZtKkSZqN5v+srKycnZ1zcnJCQkKUTlG1DOGsKVOmxMfHd+3addmyZUqncnJyxo0bJ5VKp0yZ8vXXX7MSnubIZNKUlKc5OcprhOXnZ6akPM3NZXMkq2qr2u2KaBTTXzF7LSmdysnJGT16dGZm5uTJk7XcrjSVuDs6OrZp0+bdu3dhYWFKp7hQLRMaCgDAvXUgK0skgj59YM4ckErZDqVkdeqAmZnyQTMzqFMHAMDUFJT2Mlq/HmxtwdRUftbLC+7fh6AgcHGB9HTYuBGaNgUPDzhzRiPR5uXljRo1Kjo6ulmzZsWuEnP//n03NzepVDpt2rTFixdrJIgSeHp6QnEJ+rBhwwwNDS9cuPDu3TttxkNI6TZv3nzs2DFzc/MDBw6oPlaeP3/+rVu3mjVrJhaLWQmPVEnUrkjFbNmyhemv9uzZozpgx6z/2KxZsw0bNmg5MA1uPDR27FgoLkEfOXKksbHxxYsXX2h6pLQEaWlw9SoIhdC/Pyufr0E8HmzaBG/ewK+/sh1Kye7dA9V2LhZDTAwAwIkTsG9fkVN16kBcHBT+Asjng4cHhIVBdDR4eYG+PoSEwIAB4OAAAQHqXFoHEadOnXr69Glra+uwsLA6zHeLQl69euXm5pacnOzh4VFsCY1GjRw5Uk9PLzQ0VKlaxszMzMXFRSaT0doyhDtiYmIWLlwIANu2bWvcuLHS2RMnTmzZssXAwCAwMNCU+ZpOSKVRuyIVExMTs2DBAiihv2J2XDIwMDhw4ID225UGE/fx48fz+fxjx45lZGQUPm5qalrSepHaceoU5OWBszPUrMnK52tW27bg7Q0//VTMAotVT8eO4O8PL16Ary/UqQM3b8LEiWBrCytWwIcPanj/hQsXBgQEmJqaHj9+XPVPNz09fciQIXFxcd26ddu/f7+enp4aPrI86tWr17Nnz+zsbGYP4MKoWoZwSlYWrFolQzT49ttvmQ09CktMTJw4cSIi+vn5FbuQHyEVQO2KVEx2dvbXX3+dlZU1bdq0YvurCRMmIOK6deu0sBCFKg0m7o0aNXJ2dpZKpaobsItEIgAoaTV7TauqdTIKvr5gZgbVZ4sJKytYsQLi4mDHDmjbFt68gZUrwdYWlixJevjwYYXfdtu2bf/973+FQuGhQ4dUO32mhObWrVutW7c+ceKEsbFx5X6ICiopQR82bJi+vv758+epWoZwwbx5EBjYvnfvF6rlCgUFBRMnTkxKSho8ePCcqjS5nrCK2hWpsLlz5965c8fe3v5XleqFwu1q7ty5rISnwcQdSi5nHzhwoJWVVbHrRWoaIjCLyLu5afmTtcfUlNOlMhpiZARTp8LduxAeDp6ekJMD//67t3Xr1s7OzsHBwcisKFlmBw8enDVrFo/H++OPPwYOHKh0FhG/+eabsLAwGxub0NBQS0tL9f0c5ePp6cnn80NDQzOLrrBjbm7OVMsEBx9nKzZCGEeOgL8/GBjA+vU1Vb/irlu37uzZs1ZWVrt27VJd052QiqF2RSrmyJEj/v7+BgYG+/btK6m/qlu3LovtSrOJ++jRo42MjM6dO5eQkFD4eCnrRWpaVBS8eQMNG0Ibri/gXg43byqvAjl6NDx7Bn5+LAXEKmdnCAyEmBjo3PmFiYlJRETE0KFD27Vrt2PHjqysrLK8w8WLFydMmFBQULB+/foJEyaoXjB//vw9e/aYmZkdP3682L21tcba2rpHjx5SqVS1WkYk+rFz5w+HD09iIy5C5BISwMsLAOCXX4pZfvf69esrV67k8/l79uypV6+e9sMjVRK1K1IxCQkJXl5eAPDLL790UOmwFO3qr7/+YrFdaTZxr1mzppubW0FBwf79+5VOlbRepKYx6Y27uzY/U+MaN4YpU6BjRyi8jWaTJqAyl7IaadkSNm/+7dWrV2Kx2NbWNiYmxsvLy9raes6cOS9fvizlhTExMcOHD8/Ozv7uu++YuSlKtm7d+uuvvzIlNB07dtTYT1BWJVXLDB7c+d49y7AwXlISG2ERAlBQABMmwIcP4OYGM2Yon01LSxs9enReXt6CBQsGqG6eTEiFULsiFVNQUDBhwoQPHz64ubnNUOmw0tLSvvrqKy60K80m7lBytUyXLl2Y9SLPaGgZvxJUyQL3rCy4cAHu3oX69dkOhWPMzMzmzJnz/PnzoKAgJyentLS0jRs3NmvWbPTo0VeuXFG9PjEx0c3NLSUlZdiwYZs2bVK9IDAwcPbs2Tweb+fOnRy5JYwcOdLKqmNKylilNUDNzaFfP8jPh6AgliIj1d6qVXD+PNSvDxJJMZtmzJpl1qjRrq5de6xatYqN6EjVRO2KVMyqVavOnz9fv359iUSiWgYzY8aM58+fOzo6st6uNJ64u7m51a5d+/bt23fu3FE6xawXqc0pqklJcP06GBhA375a+0xtOHcOpFJwdAQrK7ZD4SQ+n+/h4XHp0qUbN26IRCJEPHjwYM+ePR0dHQMCAhTPfJhVYuLj43v16lXsKjEXLlxgSmh+/vlnZoI1FzRs2LBp0+gzZ0aoFMvAqFEAAAcPaj8owhUzZ0JWFjuTXsLDYfVq4PMhIABq11Y+u3Mn/PUXLzq6z99/X9TX12chPlIVUbti2NnZDR06tH379mwHojPCw8NXr17N5/MDAgJqq3RYO3fu3LdvX40aNfbu3ct6u9J44q6vr89sE6M66D5+/Hgej6e6XqTmnDwJMhn06aO8xY+uq5KPETTBwcEhICAgLi7O19fX0tIyKipq4sSJLVq0WL9+/du3b7/88svbt2/b29sfO3bM0NBQ6bUxMTEjRozIycmZMWPGDz/8wEr8JRk5EgBAde3H4cNBIICzZyFZebtGUnFaru6rGHd34PFAIgE9PTA0BGbzkK+/htattRRAaiqIRCCTwdKloLJTODx5AvPmAQBs3Qp2dso7m1QrTZs2HT58uGo1LRfk5ubuU9pWg9uoXSkMGTLkn3/++fbbb9kOpBgc7EJTU1NFIpFMJlu6dGk/lQ7r6dOn8+bNA4Bt27a1aNGCjQCL0HjiDv+vltm7d69MJit8XLFepNa2iamqCW6VXydHvaytrVesWBEXF7d58+bmzZs/f/580aJFtra2Z8+ebdCgwcmTJy0sLJRekpiY6OrqmpKSMnr06GJLaNjl6Qk8HgQHK++YW6sW9O0LeXlULaM2L1++bNKkyYYNG5R6M2764Qdga4bD9OkQFwddu8J//qN8KicHvvoKMjJg0iQYN46N4LjEzc3t6NGjU6dOZTsQZWfOnOncufO4ceMOHz7MdixlQu1KJ5w5c6Zjx46nTp1iO5Aipk+fHhcX17Vr1/+odFg5OTmjR4/OyMiYOHEik82yThuJe8+ePVu0aPHq1at///1X6dSUKVOGDh2qurWNhjx5AlDlEtwHDyA2FurUAUdHtkPRKTVq1Jg5c+bDhw/DwsLc3d2NjY2NjY337NnTsGFD1Yt9fX1fvnzZp0+fgIAAPl8bfzXl0rAhdO0KUimodoZMtQxtxKQuf/75Z0JCwty5cx0dHS9cuMB2OKXp3BmEQli8mIWPzsyEpCQwN4cDB0AoVD67cCFER0OzZrBxIwuxkc968OCBq6vrgAEDYmJiWrVqxeJyt+VC7YrjHj58qGhX/v7+bIfzybZt2w4cOGBubn7gwAGhSofl4+MTHR3dtGnTjZxpWFpKQZhydtVqmUmTJv3zzz+9evXSThjXrsHjx9C8uXY+TUuYymZXV+BePqkD+Hy+i4tLcHCwk5OTVCq9f/9+sZdt3rx5wYIFR48eNTAw0HKEZVRSOfuXX4JAAKdPV6MNuTTK19c3KCioSZMmt27d6tOnj4eHx7Nnz9gOqng1asCKFbBzJ1y6xMJHnz4NERGgOiYTGgqbNoFQCH/9BbQDPdekpqYuWrSoY8eOJ0+eNDc39/Pzu337dl9dmBNG7YrLmHbVoUMHRbv6+++/2Q5KLiYmZv78+QCwdetW1UHk0NDQjRs3CoXCvXv3mpmZsRBfcbSU6zHl7IcOHfr48aN2PhEAIiKAx4OWLSEn59PB7Gzg8UBlL1cdVlXrf7SM2dZYdVFFhqGh4U8//WRubq7doMph1Ch5tYzSUvW1a0Pv3pCXB8HBLEWmm/Ly8ko65eHh8fDhQ7FYbGpqGhIS0rp16zlz5mhtok65TJ0KHTvCd99ByT+NpvD5YG+vfPDtW5g8GRDBzw+6ddN2SFxQSrtiV0FBQUBAQMuWLdevX5+fny8SiR49euTj41PSPDymVEyqVJzHEmpXOteuShoC03K7ys7OHjdunFQq/fbbb5nx5cLevn07efJkRFy3bl03TjUs1Jbu3bsDwL59+7T2iZcuIQAC4OrVnw7euYMAePiw1qLQrIwMNDBAPT1MSmI7FB2Xnp5uaGiop6f39u1btmOpIEdHBMBjx5SPb9uGAOjhwUZMOujcuXPOzs4mJiZisTg/P7+UKxMTE728vJjSKRsbG39/f5lMprU4SzdkCPbqhYgYGYl8Pvr5ISKOHYutWrEWkkyGLi4IgIMGYUEBa2GwpeztSvvOnz+vmB3bp0+fW7dulX59WFhYo0aNGjRowOPxnJyc/Pz8nj59qp1QVVG7onZVYd999x0ANG/ePCMjQ+mUTCZzcXEBgEGDBhVwrGFpL3HfvHkzALi5uWntE5nEfcgQNDJCxW+/iiXuR44gADo7sx1HleDu7g4Av//+O9uBVND69QiA48YpH3/3DgUCNDDA1FQ2wtJBU6ZMYW42HTp0OH/+fOkXX7t2rWfPnsz1jo6OERERWonxMxSJOyJOmYJGRhgXJ0/c09Jw/XrUfqK1Zg0CYN26+Pq1tj+aI8rVrrTj2TOcM+c2E1WTJk0OHTpU+vX3798fNGgQc32DBg0Uq2/xeLxu3br99NNPsbGx2olcgdoVB9tVfHy8YsXkhg0bSiSS0nNfVtrVkSNHAMDAwCA6Olr17Nq1awGgbt26r7nXsLSXuH/48EFfX18gEGjtvwKTuJ8+jY0a4eDB8oNVLHH/9lsEwDVr2I6jSpBIJADg4uLCdiAV9OwZ8nhoaopZWcqn+vZFAPzrLzbC0k1MITtz83B3dy/9tlFQUBAYGGhra8vcaTw9PePi4rQWqpLsbMSiifv792hpiSKRPHH/6y/5o0h7e/T1xZgYbUR17RoKhcjjYUiINj6Os8rVrjTq40f09UVDQ9TTw/btx/n6+mapdhyFpKSkKCpnmDLlnJwcqVQaFBQkEokKl//a29v7+vrGaKVhUbticKldffT19WUyb2Nj40q2K9NC8xXU265ev37NzLreuHGj6tlr167p5k8//gAAIABJREFU6+vzeLwQTjYs7SXuiDh06FAAEIvFmnjz/HxMTsakJIyNxSdP8NEjeeIeHo4HDyIAHjiAWOUSd1tbBMDivi6ScktJSdHX19fpapnOnREAg4KUj2/ZggA4bBgbMemsnJwcppAdAPT19b29vdPT00u5PjMzU3HHMjEx+ewdS+1kMpRIsF49vHGjSOKOiP7+yOejvT22aoVXr6JIhObm8vSdyeCXLdNgN5KRgc2bIwAuXKipj9Ah5W1XaldQgBIJ2tggAPJ4KBJhYmJpo6EymUwikdStWxcA+Hy+SCRS7SGzsrKYTKvwRCA7Oztvb+/w8HANVRpQuyqMA+2qfOMX5WpXNWvWVG+7KigoEIvFw4cPV32TjIyM5s2bA8CCBQsq/P4apdXEPTAwEAA6deqUmJgYGxsbExNz48aNS5cuhYWFhYSEBAYG7tmzx9/ff9OmTX5+fqtWrfLx8fn++++9vLyWLAnx9MQRI9DFBfv0QQcH7NAB7eywUSO0sEAzs093IMU/Z+dPiTsiurpivXqYklKlEvdbtxAAra2rY2Gfhri5uQHA9u3b2Q6kgn77DYcPR9VijTdvUE8PDQwwLY2NsHRZeQvZVZ8RayfOs2exfXt57zd/vnLiLpNh9+4I8KnGPT8fw8PR2xvr1fvUbTZqhN7eGB6u5i7l668RAB0cMCdHnW+r09iaIHH9OvbsKf91OzripUufuf7cuXPlKlPOz88PDw/39va2KrSPd+PGjTWRwVO7UsVeu7peuGLw0ucaFpfb1bhx4wDAwcEhh6sNS6uJe1ZWlrm5uZGREZRTnz7LVFNzpX98PlpYoKUl2tlh06YoEhVJ3B8/RkND/P77KpW4r12LADh1KttxVCF//vknAAwcOJDtQNSvVy8EQC1ODq9SlG5Lny1kP3funGKz8b59+372tlQZ8fEoEsm7wYYNkfmmoJS4I2JUFOrpFTM5VZHBM0Owivfx9sawMMzLq2x4R48iAJqa4pMnlX2rqqe87aoyEhPRywv5fARAGxv098fSM7pKfgVVZFo2NjbMmxgaGrZqlU7tSgu02660OrSh2q6Y9/H29g4LC8urdMNicoAaNWo8fPiwkm+lOVpN3BHx+fPnI0aMsLa2trOza926tYODQ8+ePV1cXNzc3Dw9PceNG+fl5TVz5kwfH59ly5b5+fn997//9ff337v3amAgHj6MYWF47hzeuIHR0Rgbi8+fY3JyiVPuCifuiLh0Kerr46FDVSdx/+KLqvOzcARTLSMQCN69e8d2LGq2aRPWr487d7Idh87SxIPgSsrMlJcpA6CxMfr6fpreEB6OqrPUzp7F0NBSAsYbN9DXF5s1+5TB166NIhEGBWFubgWDzMvDZctofkWJtDBBIicHxWI0NUUA1NdHb+/PPHkrXPRVljLl0slksosXL86dO9fN7TtFu7K2xu++wzNnsMLroFC7Kp1W2pVycU5aqQ1L7e0qPDzcx8enWbNmigy+du3aIpEoKCgot0Id1pMnT5gfJyAgoMKBaYG2E3dtUkrcpVJs0gRbtaoiyW5ycmaTJrH6+lT8oGaDBw8GgD/++IPtQNTpwwe8cgUTEoocTE3FGzfw40eWYtJN5b33JCcnq069qnwYBQUYGCif4sLjoacnqvemfO8e+vpiy5afMnhmemtQUIllCXPn4ujRmJhY5ODixbhunToDq6rUm9MoWbJE/kscORKfPSvtSk1ne9SutExz7SooKMjOzo5Jl1mfvn/v3j1fX9+WLVsqMnhLS0smgy97f5ubm9u1a1cAGD16tBpj04RqlLgjYmiovLOoAon7gQMHAGDkyAlsB1LV/PHHHwAwWLEOUZWwdy8CYJs2RcZNg4MRAK9fZy8snVXep72PHj0aMmQIc32LFi0quVKBUpmyRtefZDIte/tPmZa5OXp6okSCSgsfM2MiSre8rl1xyBANhlfFxMbGjhgxgmknI0asUNd9KikJe/fGc+c+c9mVKzh+/D3m07t373716lX1fHxxqF1pk3on3hReurF169YnT54s/Xpt1u0wGbx9ob3fzM3NPT09JRKJ6krtSubNmwcATZs2Lf25ARdUr8QdEYcOlSfumzahJutONW7ixIkA8PPPP7MdSFWTlJQkEAiEQuGHDx/YjkVtmMRdTw/Xrv10kBL3Sirv/KqgoCBmsQJmjOrly5fl/cTylimrUWwsisXo5IQ8njzTMjJCd3eUSOQP/Vq1wqZNEaBINQ4lWBVw9uzZL77oV7NmCgD264e3b2v8ExMScPx45PGQz8fevX8ICAjQ2o4z1K60prz9larMzMxp06bp6ekxRSnbtm3j7BZ1sbGxYrHYycmJx+MxP7KRkZG7u7tEIik2Lw8NDeXxeEKh8MqVK9qJsDKqcuKekoJhYZiSUuTgu3cYFoZ//CHfsuH+fZaCqxyZTMbMrdbOWrnVzYABAwBg165dbAeiNkziPnUqGht/elZOiXvllbeQPTc3VywW16xZ08LC4v3792X/INUyZe0u9fbJ06e4fj127Vok0woNxVatcPJkdHVFOzuUSuUXU4JVMczKnnXrytddEIlQQ0vUUruqVio58UYmkzk4OAgEAi8vr9K7L9bXplR48eKFUgZvaGjo7u7u7++vmMn29u3bevXqAcBPP/3ESpDlVZUT91Lk5KC7OwKglRVyeOpwia5duwYAtra2bAdSNW3fvh0AhlShOwOTuD96VGQzMkrc1aXYPURKuf7Nmzdnzpwp+/sfPHhwyJATZSxT1pr4eBSL0cUF9fXx9Wt5gvXkCRoY4NKl8msowaqMlBT08UF9fXkliZ+fmtc9DArCJk3kWbK7O7K3aU8R1K40rbz9VWFRUVEPHjwo/Rru7AZVWHx8vL+/v7u7u0AgYGLT09NzcnL67bffevfuDQADBw7U2gOBSqqmiTsiSqXYr5984bPnz9mOppxWrFgBADNmzGA7kKrp3bt3BgYGXboMSknRjT/jz2IS9/h43L8fAfDgQURK3NVNvYXsDEU5qbV1wy5dPnJjO3NlTE0Zk2Ah4oIFqK8vf5hJCVblPXqEQ4bI0+sWLdSzRej9+zhokPw9W7fGz1Ups4PalUZptL8qY/k7K96/fy+RSNzd3YVCoaKKpm7duq9fv2Y7tLKqvok7In78KF/culkz5UnrHNetWzcACA4OZjuQKsvDIxUAtbV5jsYpEndE7N8f69fHtDRK3DUiLCxMMTXKxcXl3r17FXufDx8+eHt7M+WklpaWYrG49HJS1ikSrIwMbNgQ+/ZFpARLfcLCsE0beart4oIVbVb44QN6e6OennxFF7G44gsyage1K42qtv0VIiYlJf3xxx9ubm6HDx++fPky2+GUQ7VO3BExLQ27dJGPZOjK163379/z+XxDQ8OPtJKfxmzbhgDo4cF2HGpSOHF//BgNDHDhQkrcNUVRyA4AQqHQ29s7taTNJkp4ub+/f+3atZmXf7aclCMUCRaifLuMQ4cowVKn3FwUi7FmTQRAoRC9vT/tYZKfj8nJmJlZ5HqZDJOTP1XX5Oaivz/Wri1/uZcX6kKzonalcZXvr8Risbm5uW71VzqtuifuiJiSgp07IwC2b49JSWxHUwYBAQFVb71Crnn3DgUCNDAocXsv3VI4cUfExYvRwAA3bKDEXYOSkpIUQ1C1atUq4xBUWFhYmzZtFANgd+/e1UKoalE4wUJENzds0gQ7dKAES82Skj4NmdeqJR8yv3ULAbBevSL91bNnqHhsqDRgrzvNitqVlqilv6rwgD0pF0rcERHfvZMvKNupEyYnsxxMenr68ePHfXx8Hj16VOwFY8eOBYANGzZoObDqpm9fBMA9e9iOQx2UEvePH7FRI7SyosRd427evNmrVy/mxtapU6cLFy6UdOWjR4/c3d2ZK5s3bx4YGKjNOCtPKcF68kS+pSslWJoQFSXfOZu5bZ0+Ld+Ky9v70zVM4v7nn+jmJr+yZUs8fpy9oCuE2pU2VZ/+SqdR4i735o18O7cePZQ3gNCCjIyMsLAwHx8fJycnZq43AGzatEn1yvz8/Fq1agHAkydPtB1lNbNlCwLgsGFsx6EOSok7Ih49Kr+XU+KuBUrLLDwrui4Ms8iDgYGBYpGH7OxstkKtMKUECxGXL6cES7OYZWHatMGoKATAUaOQz0fFvkmKEfexY+WL0uhgs6J2xYLq0F/pNErcP4mPx8aNEQD79/+0XqzmfPjw4dixY3Pnzu3cuTPzfIohFAp79uy5aNGimzdvqr7q0qVLzBxwjcdX7b15g3p6aGCAnN9GrTQpKZidXUzijihfEZUSd+2QSqV+fn7MwsZGRkY+Pj7p6enMssrMngzMsspv3rxhO9IKWr4cd+8uckQqxVmzsLjxB6I2Uik+eSIvlQkJwQ4d0NFRPt9Ukbi/fo3/X7Fa91C7YkWV7690GiXuRTx5gjY2CIADB2pkcOL9ezx8GL29cezYS8x2Ygx9fX1nZ+dly5adPn06U2mGUVFLly4FgLlz56o/OKKid28EwL172Y6joqRSdHbGPn3w7VtMTlbeZTMnB5OTub6mRBUTHx8/duxYZiuQevXqNW3alOkBevfuHR0dzXZ0RFcxiXtoKP77L/J4uHEjYtEad9115gyqFo3euoUREWxEU81Qf8VNlLgre/hQXvs7fDjm5anhDd++xaAg9PFBBwf5XuUA2K5dukAgcHBw8PHxCQoKKnYP3mJ16tQJAE6dOqWGyMjnbNqEADhiBNtxVIhMhiNHIgA2aKA81k7Yde3atR49eujr69etW7dBgwYSiURrO8yTKkmRuCPiuHFoZoaJiVUkcRcI8PvvlQ8OH44tW7IRTbVE/RXX8BARSFF37kDfvpCcDKNGwf79UKiMpaxev4YLF+DiRbhwAe7f/3TcyAh69IDevaFPn4KuXXMNDQ3L+bav69evb2xsnJSUVN7Xkgp48wbq1wd9fXj3DkxN2Y6mnObMgY0boWZNCA+Hdu3YjuZ/7N1nXBRXFwfg/+7Sq4ANO2LFHgQLWGKLBUuiaKJirCRRQ2wJtogxFoxRscVgJ6JJ0DcqsSVgIgpWsEVsCBYUO0als+x9PwxB2IVlF5aZneU8Pz4kM7M7R7nC2Tvn3kOKUigUcXFxpqamjRs3Njc3FzocIm6XL6NtWxw5gr598eQJmjXDwIH45hs0bIiQEIwZI3R85WBsDD8/rFxZ5OD77+P6ddy4IVBMlQ/9vNIrRkIHoI9at0ZkJHr0wN69mDgRW7eiUFVL6ZKTUa/e2/+1tETnzujaFd27w90d/y09lQJaZ9579uxhjPXs2ZOydn7UrInOnREdjcOHMWKE0NFoY8kSrF0LMzMcPEhZuz6SSqVubm5CR0EMUI0aWLQIX3yB/v2FDoUYCvp5pVcocS9eu3Y4dAjvvYcdO2BlhXXrtHht3bpwcUHduujWDd26wc0N/zXWLYvXr1+fO3cuMjIyMjLywoULTk5O/fr1K/vbES15eyM6Gnv3iilx370bX38NqRShofD0FDoaQgi/Jk/G9u2YO1foOAghFYAS9xJ17oz9++HlhfXrYWSE1au1eG18fLlu/eTJkxMnTkRFRUVFRcXHxxeUM5mZmS1atGjUqFHleneijaFDMX06Dh9GejosLYWORgN//YVx48AYgoIwdKjQ0RBCeCeTITgYHTsKHYeOnDuHpUuLHLl1S6BQCNEDlLir07Mn9u/H4MEICoKtLRYurMB7ccl6dHR0TEwMtxEkd9zc3Pydd97x9PTs1auXp6cnFcnwrHZtdOyIU6dw+DC8vYWOpjRxcRg8GDk5mDsXfn5CR0MIEYibG8aPx5YtQsehCwkJyMwsciQlBTVqCBQNIUKjxaml27cPw4dDLseyZZg9W5fv/PDh4+PHj0VFRZ04ceLmzZsFxy0tLTt37ty1a9fu3bu7u7sXtGQigli9GjNmYPhw/Pqr0KGodecOOnfG48cYORKhoZBIhA6IEMKLzExcu4bGjWFj8/ZgWhpu3kSDBnBwEC6ycqPFqYQooRn30r3/PrZvx8cfIyYGZ84gORnvvouqVd9ecPEikpMxaJBG7/boEaKjERmJ6GhUr37z+PHR3HFLS8tOnTp5eHh4enp26dKFa0tG9IG3N2bOxMGDel0t8/w5+vXD48fo0QPbt1PWTkglYm4OV1flg1ZWxRwkhIgdJe4aGT0aNWqge3dMmICdOzFyJHbtent261aEheHp0xJffucOoqJw/DhOnMCdO2+P29i0HjBgQLdu3bp27erq6mpkRN8OfVSnDmbMQMuWmm4uFB2Nu3fh5oYmTXhKoDMzMXgwbt6EqysOHAA9oSGEEEIMEmWKmurdO/8/zMywezfGjn17pFgpKYiJQWQkIiKKJOtWVujYEb16wcMDHTrYGRsfrMCgiS4EBcHICIMGofD2tRs3wsQEEyYUc/3WrdixAwCsrdG6NVxd879atKiQ8PLyMHIkTp2CkxMOHoSVVYXchRBCCCGCo8Rda40aoV49TJmCK1egtFI0KQnR0YiJwR9/4N69t8etrdGhQ0GyXq7dIQn/tm3DP/8gNRWbNr09uGsXLC2LT9y7dMG//+L8eTx8iJgYxMTkH69ZE25ucHND+/Zwd891cNDNOJg798b+/c2qVsXRo6hZUydvSQghhBB9RItTtTNmDC5eRFgY2rTB3Ln5+8xMnYqwMBw8iA4d3l5ZrRq6duWapKJFC+1aOBG90ro1nj3D06c4cQIeHvkHPT1haYk//lD3wkePEBuLuDjExeHsWTx79vbUO+/MfvToJ9f/eHh42NvblyG2hQsXLl++vEOH0OXLhxYefoQQQggxPJS4a4dL3P/5BzNnYsMGXL6Mpk3zE/eHD9G8OVxd8/suubjQAkED0bo1WrfGvXt49QpxcfkPTDRJ3JXcvo3YWJw/j/PnkZTU+uHDfwpOSaXS5s2bt2/f3s3Nzc3NrU2bNpqsTt6yZcukSZNkMtnevXuHDBmi9R+MEEIIIaJCibt2ChL3N2/QvDmaNsWxY/mJu5rFqUTUWrdGmzaYMQNubli2DF9+CZQpcS8sLy/v2rVr58+fj42NPX/+/OXLl3NzcwvOGhsbt2nT5tChQ9WrVy/pHQ4dOjRkyBC5XL5+/fopU6aUMQ5CCCGEiAfVuJeRtTVWrsSHH+J//xM6FMKLdu0wYQK++QbDh6N+/fK+m0wma9WqVatWrcaPHw9ALpffvHkzLi4uLi4uJibm0qVLN2/erFp4z9Gizp8/P2LECLlcHhAQQFk7IYQQUknQjLt2CmbcOX364PZt9OyJAwdoxt1gcTPuO3ciNRVNm8LDA/v358+4Bwdj5sy3S05tbXVzxzdv3iQmJrZt27bYs4mJiR4eHk+ePJk4ceLmzZt1c0tCCCGE6D2acS+XdevQpg3CwkDtkioDe3ssX44JE3D0aP6RM2fw22/47bf8/3V0hKsrPD3h4YF33oGFRRlvZG1tXVLW/uzZs379+j158mTAgAEbN24s4w0IIYQQIkI0464dpRl3APPnY8kSVKtGM+4Gq2DGHQBj8PTE69ewsoKNDbZvR2Rk/pLTS5eQlfX2VUZGaNkyfzLezQ0tW6L8/bUyMjJ69ux55swZNze3v//+21Jv+7gSQgghpAJQ4q6dTz/FP/+83ZkbQEYG3N2Rk4Nbt4QLi1Skwok7gMuX0b49GEPPnkUWp+bm4p9/8jeNOX8e165BLn971twc7dqhfXt4eKS1afOwSZMmEi13HcrNzR00aNDRo0ednZ1jYmJq1KhR/j8aIYQQQkSEEndCSqGUuAOYPh1BQejTR92uMrm5uHIF0dH5+7jfuAGFAgC6dLl18mRTa2vr1q1bF+zj3qK0rqqMsQkTJmzfvr1atWoxMTGNGzfWyR+NEEIIISJCNe6ElKJjRzRsWOTIN98gIQEtW6p7lbExXF3h6pr/vy9f5lfUPH6ckJRU++HDhzExMTH/PbupWbOmm5tbwT7uqvvJzJ8/f/v27RYWFuHh4ZS1E0IIIZUTzbgTIoBHjx7FxsZy+z+ePXv2WeGuqoCjo2Phpqp79+795JNPjI2Nw8PD+/btK1TMhBBCCBEWJe6ECC8xMfH8fy5cuJCenl5wSiqVymQyuVy+bdu2sWPHChcjIYQQQgRGiTsh+iUvL+/GjRtxhUyfPt3BwWHmzJlCh0YIIYQQIVHiTohey87OVigU5ubmQgdCCCGEEIFR4k4IIYQQQogISIUOgBBCCCGEEFI6StwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRAUrcCSGEEEIIEQFK3AkhhBBCCBEBStwJIYQQQggRASOhAyCEEEIIACAjA0eOID4eOTmoXx/9+qFOHaFjIiL26hV+/BHVq2PcuLcHs7KwZg169ULNmti+HcOHo0mTIq9atQrNmqF/f56DJRqRMMaEjoEQQgip9E6exIgReP4c7drB1BT//IPMTHz7Lb78UujIiFjdvQsnJwA4dOhtIp6aCgcHrF0LNzd06oT9+zF4cJFXOThg6FBs2sR3tEQTVCpDCCGECO3+fQwciLp1kZSEs2dx4gRSUjB+PL76Crt2CR0cETcHB0ybhqwsoeMgukCJOyGEECK0lSuRkYE9e97WxpibY/16tGuHBQtAz8ZJOcyahfv3sWyZ0HEQXaDEnRBCCBHa0aNwc0O9ekUOSqUYNgxJSUhIECgsYgicnDBjBgIDcf260KGQcqPFqYQQQojQ7tyBm1sxx7kK5aQk5fWDhGhj7lzs3ImpUxEZqXxq6VJs21bkyJs3vMVFtEaJOyGEECIohQJ5eTA3L+aUhQUA5ObyHBExMFZWWL0a3t7YvRv9+hU55eCgvHeRlKox9Bgl7oQQQoigpFI4OCA5uZhT3MHq1XmOiBieYcPQvz/8/dG1a5Hjn3yivKvML7/wGRfRDn2qIoQQQoTm7o7Ll5GXp3w8Nhbm5mjdWoiYiKEJCsLz51ixQug4SDlQ4k4IIYQIbdIkPH6M1auLHLx4ET//jDFjiq+iIURLjRvD3x8//qjFS/79l/Y00i+UuBNCCCFCGzwY48bhq68wdiz27cORI1i4EO++i0aNaBs/okOzZ6NuXY2uPHUKzZqhVy84OeHAgQoOi2iMEndCCCFED2zdiuBgXLuGkSMxcCBCQ/HJJ4iJgZ0dAMjlQsdHxMfEBK6usLd/e8TcHBs2wNUV1avDygpubvnjq7B33oGTE06dwo4diI3F7t34/HM+oybqSBg9AiGEEEL01rlzGDcOTk44eFDoUIi4KRSIj8fz53j3XS1e9ewZnJ3x+nWFhUW0QbvKEEIIIfohMxM3b6Jt2yIHa9fGtWtISYFCQRv1kfK4eBHt26NxY9y6pcWrfv0VfftWWExESzTjTgghhOiB9HQ4OEAiwb//wtS0yKl69ZCcjKtX0aKFQMERQyCXw84OaWl4/Bg1amj0kuPHMW4coqKUu/oSodBnd0IIIUQPWFqicWNkZSEuTvlU584AcOoU/0ERQ2JklN+f98wZja7/+WdMnYpDhyhr1yOUuBNCCCH6oaQEnRJ3oiMeHoBmQ8nfHxMnYuRIREdj0yaqcdcXlLgTQggh+oESd1LBOnUCNBtKbdti9WpUrVrRERHtUI07IYQQoh8SEtCkCapXx5MnRY5ztcnp6XjyBNWqCRQcMQT//gsHBxgb49Ur5ZUURBRoxp0QQgjRD40bo2ZNPH2KxMQix42M0L49GMPp0wJFRgxElSpo3hzZ2bhwQehQSJlQ4k4IIYTojY4dASAmRvm45rXJhKhFhVeiRok7IYQQojdKyqo0r00mRC1K3EWNEndCCCFEb6hZnyqV4tw5ZGfzHxQxJNwQU32oQ0SBEndCCCFEb7RvD1NTxMfj5csix+3s0KwZsrNx8aJAkRED0bhx/vrnpCShQyHao8RdbNLTsWEDhg9H797w9saaNXjz5u3ZTz/Fzp3KL9m4EbNm8RkjIYSQMjI1xTvvQKHAuXPKp6jEgeiCREKFVyJGibuoJCSgZUt89RVkMri6wsgI8+bBxQXXruVfsGsXzp5VflVUFPbu5TlSQgghZVTSOlRK3ImOUOIuXkZCB0A0plBg+HDk5ODKFTg75x9MSkK3bhg2DFeuwIi+m4QQIn4l1SBzx6Oj+Y6HGBzusyGVuYsRzbiLR2QkLl3CsmVvs3YADRviu+9w/ToOHRJJsx3DAAAgAElEQVQuMkIIIbrDZVVnzkAuL3K8SRNUrap49iz37l0hwiKGw80Npqa4ehWvXgkdCtESJe7iceIEAPTooXy8Tx8AOH6c53AIIYRUiOrV4eyM9HT880+R4xLJN0OH2ltZhYl/plShUCQlJaWlpQkdSCVlaop33mFOTtcuXHggdCy6VBnGVaVI3J89e/bpp5+uWbNm+PDhd8U7UfHwIYyN4eiofNzBAdbWSEnJ/9/du+HiUuTryBGeIyVa2b8f+/aBsSIHDx1CbKxAAREirMRE/PwzNm1CeDhevBA6GoF07ny/Vq2ES5eUDps2aPDq9etTIq9Njo+Pb9Wq1ejRo+3s7Dw9PdesWfPw4UOhg6p0PD3nJCa2iIraInQgOlNZxhUzaDk5OatXr65SpQoAS0tLAGZmZvPmzUtLSxM6NO2NG8dkMpabW8wpS0s2YgRjjFlZMU9Ptnp1ka927Vj9+vzGSrRga8sAtmNHkYN167IJEwQKiBChvHzJhgxhALO1ZU5OzMSEmZqyBQuYQiF0ZHzbGhwMYOTIkUrHT5w4AaBNmzaCRKUT0dHR3C/lGjVqSKX5s4cSicTd3X3p0qVXr14VOsDKYu/evQB69+4tdCC6UXnGlSEn7hERES1btuS+eb169Tp27Jivry/37axVq1ZwcHBeXp7QMWpj/nwGsORk5ePPnjGAzZjBGGNWVmzKFOULRoygxF2f2doyS0tWtSp7/vztQUrcSaWTl8e6d2fW1mzPHiaXM8bYmzfM358BbNEioYPj25UrVwDUV/nRnZGRYWJiIpVK//33XyHiKq/IyEgrKysAgwcPzszMfP78eUhIiLe3t7W1dcF8YoMGDfz8/CIiInJycoSO15A9fvwYgLW1tZz75yZmlWpcGWbifuvWLW9vb+5b1bhx47CwsIJT58+f78wtzAfat28fExMjYJyaunWLKRTszz8ZwEJClM/+8gsD2IEDjFHiLkq2tuyzz5iDQ5FMnRJ3UumEhzOAbdumfNzbm1lYsBcvhIhJMHl5eba2tgCSVSZrOnToAODPP/8UJLDy+Pnnn42NjQGMGTMmt+jT44yMjIiICD8/P8dC5aD29vbe3t4hISGvX78WKmbD1rBhQwAXL14UOpByqWzjytAS9zdv3gQEBJiamgKwsrIKCAjIyspSukahUISFhdWrV497jOLt7X3v3j1Boi1dairz82NGRmz3bpaXx1q3ZnXrssLRPnjAnJyYi0v+BBUl7iJka8vmzGEbNjCJhP39d/5BStxJpTNxIjMyYio/sdnhwwxgv/wiRExCeu+99wAUnnjizJgxA0BAQIAQQZXdxo0buSfefn5+ipJrn/Ly8mJjYwMCApo3b16QaZmZmfXq1SsoKOjhw4d8xmzwRo8eDWDDhg1CB1J2lXBcSZjSmjjRUigUoaGhX3311ZMnT6RS6ahRo1asWFGjRo2Srk9PT1+xYsXy5cuzsrIsLCy+/PLL2bNnm5mZ8RmzOnI5fvwRAQFITYWRERYswNdf48YN9O6NN28wfDgaNsSdO9izB2Zm+PNPcEVB1tb4+GOsX1/krT78EGfOQLyrcnn3+vXrw4cPb9++XatX1ajR5cmT+dre63//Q506mDwZ334LV1fI5bh4EcbGqFcPffpgi+GsGjIQjLHHjx+PHTuW/1u3adNm/vz5NjY2/N+aJ9264f593LmjfPzWLTRtikWL8PXXQoQlmEWLFgUEBEybNm316tWFj+/du9fb27t3795//vmnULFpa/ny5bNnz5ZIJAsWLFi4cKGGr0pKSvr999/37Nlz+vRphUIBQCqVtmvXzsvLa+DAga6urhUYceWwcePGyZMnjxo1KjQ0VOhYyqKSjiuhPznoxvHjx9u2bcv9iTp06HDmzBkNX3j//n0fHx/uhXXr1g1RLUQRxLFjrFUrBjCA9ejBLl9+e+rlS7ZsGevbl7m6sj592JIlLDX17dkJE5QXOTLG1q1jX3zBR9gGQaFQdOnSxbnwZvmaad58DPcd0+orNTV/xp0xFhPDJBIWGMgYzbjrq127dlWrVk2XP4I1Vrt2bXt7+8ePHwv9d1Bh3N1ZsWsunz5lQP4/ksokIiICgLu7u9LxR48eQTylyQqFYtasWQBkMllwcHDZ3uTZs2dcyTK3yQSnYcOGXMlybrF7NhANXLp0CYCTk5PQgWitMo8r0c+4P3jwYO7cuaGhoYyxOnXqLFmyxMfHRyKRaPUmf//997Rp07jFQN27dw8KCmrTpk3FxFua27cxdy727AGARo2wdCn+K9Yn/Pj1118//PBDBweHTZs2Ff7HXCojI3u53E3b2/XsiapVMXkyli4FgAkTEBaGmzfRsSPNuOudzMzMZs2a3b9/f8aMGX24/gk8Wrx4cXR09MSJEzdv3szzrXnSrx9iY/HsmfLxS5fQrh2+/x4zZwoRlmDS0tLs7OwkEsm///5rYWFR+FTDhg3v3Llz6dIlwX5VaSYvL++TTz7ZunWriYnJzp07hw8fXs43zMzMjIyMPHjwYHh4OLe2EoCDg0P//v0HDhzYr18/boUi0ZBCobC3t3/16tWDBw9q164tdDiaquzjSuhPDmWXnp4eEBBgbm4OwMLCwt/f/82bN2V+t7y8vJCQkOrVqwOQSqU+Pj5PnjzRYbSlS0tjAQHMzIwBzNKSBQSwzExeAyCMZWRkNGjQAMDmzZt5u2nBjDtj7NkzZm/Pxo2jGXd9tGDBAgDt2rUTZEOq27dvm5qaSqXS8+fP8393PsydyyQSlpKifHzHDgawv/4SIiaBcU+So6KilI6PGjUKwA8//CBIVBrKysoaNmwYAEtLyyNHjuj2zeVy+cmTJ/39/Zs1a1aQz5ibm3t5eQUHB6eojiJSAm4OYs+ePUIHoikaV6JM3LnVpfXr18d/q0vv3r2rk3d++fKlv7+/iYkJgCpVqgQGBmZnZ+vkndVRKFhICKtZkwFMImE+PuzRowq/KSkOVyTXtm1bPp9BF07cGWPBwUwmY2ZmlLjrl/v371tYWEgkkhMnTggVw8yZMwF07txZzRosEYuPZ1Ipmzq1yMGMDNaqFWvYkImhLETnpkyZAmDp0qVKxzds2ABg9OjRgkSlibS0tN69ewOws7Mrafe29PR0ndwrMTExKCjIw8Oj4GG7VCp1dXUNCAi4du2aTm5hwAICAgDM4HaU1ns0rpgYE/fY2FhPT0/uL9HV1fXkyZOav/bx48cuLi6lFrLfvHlzwIAB3C2aNGly8ODB8oWs1rlzrFOn/HpnNzd26lQF3ouolZyczNXGHD9+nM/7KiXueXmsY0cGUOKuX7insaoNcfj0+vXrmjVrAvjFYLZYkctZ4WmXr79mABs7lp08yW7dYuHhrEMHZmrKjh0TLkQhcUsGBw4cqHRcz0uTX7x40bFjRwA1a9a8dOlSsdecPXvW0dHx6NGjOrzv06dPQ0JCvLy8uJ3lOFzJ8smTJ0XWuYUv3BLnDh06CB1I6WhcccSUuKekpBR0UHJ0dAwODtZ2WnTu3Lnc3/i77757ufCKz+JERES4uLhw1/fq1UvnbbcyHjxgH33EJBIGsDp12K5dlbA7oF756KOPAIzgetDyqH599s03RY7ExTF7e/b55zwHQkoUHR0tkUjMzc119XCvzDZt2gSgTp06omz/rCo4mJmZsdWr3x7ZvJk1apQ/lyGTsS5dKvN0xp07dwA4ODgoPWMp2OVdT57dF5aSktKqVSvuc0VCQkKx1xw5coSr2v/4448rIoZXr179+uuvI0eOtLOzK8i0HB0dRVQQwpvXr1/LZDJjY2NdTVRXEBpXBcSRuOfk5AQFBXH7oBkbG/v5+b169aoM76NtITt3X+7nI3dfnTSry8jICAwMdLS3z6lfn5mbM39/Js4uAIbk1KlTXGZ2584doWPJd+QI09sGA5VKXl5e+/btAXyj9AGr0gdTXq9e5ZcIqmxVzp49Y4mJzDA+nJQPt2Tw+vXrSse5goG9e/cKElVJEhMTuS25XFxcHjx4UOw1v/32GzdzqdouR+cKSpabNGkCoHv37ocPH67QO4oRt8RZwCLAUtG4KkwEiXt4eHjB3nxeXl63b98u5xtqW8j+/PlzPz8/mUzGzXwEBQWVuQBaoVD88ssvXO8nAL9Om8aEnsAjjLG8vDx3d3cACxYsKPaC06dPdynN8OELunRh6r+GDdM0pO++YwDjffafFKNgkrukGakXL16UOjy09dlnn5UUT0xMjJ5M/5fX9OkMYB4e9LBRDW4d3tatW5WO62Fp8j///FOrVi0A7u7uz58/L/YaDdvlVIRPP/0UwPTp0/m8qShMnjwZwLJly4QOpHg0rpTodeJ+/fr1fv36cTlus2bNdPuBRttC9gsXLnTt2pW7vl27dqrL/EtV/ncgFWTr1q0AateuXVL5wcGDB1EaTfZxr1tX05CSk5mlJQMYv/X2RJkmZeXcvtq61alTJzVR6UPBfXklJDATEyaVsthY5VNpaayESbVKaNWqVQAmqCx5+eOPPwD07NlTkKhURUVFcU+ne/ToUVIn+cDAQAASiUSQtq8iKubm2c6dOwEMGjRI6ECKQeNKlZ7u4/7y5cuFCxf+8MMPcrnczs4uICBgypQpRkZGOr9RZGTktGnT4uPjAXCdb1u0aKHm+t9//93Pz+/u3bsAvLy81q5d6+TkVOpdXrx4sWjRog0bNuTl5Tk4OHz99ddTp07lpvCJ4N68edO0adNHjx7t2rVr5MiRxV6Tmpp69epV9e8jk9nm5ZWyp7KZGdzdNQ3sm2+wcCHatkVsLGiwCGXWrFkrV67s3LkzV+Ze7DW5ubmnT5/W7X1tbW3VbNGdnJzcrFmzzMzMqKioLl266PbWPOnfH0eO4JNP8OOPyqcWLMCqVfjhB4wZI0Rk+uXs2bMdO3Zs3rz5tWvX7t+/v3v37vDw8EaNGr333nuNGzdu3749N9EorEOHDnl7e2dmZg4ZMuSXX34pvIaPwxjz9/dfsWKFTCb74YcffH19+Q/yzZs3dnZ2UqlUdV/8Si4mJsbT09Pa2nrIkCEDBw7s27evtbW10EEBNK5KwttHBA3l5uYGBwdzvQmNjIx8fX2fPn1aoXfUtpCdq1DnhrW5ubm/v39JnwLL8OaEf1999RWATp066dsWexkZrEEDBjAe95QnRSQkJOjt1unCbipfXn/+yQBmY1PM1rf37zMLCyaRMG12DDNg2dnZdnZ2Xbp0uXLlSt26dQv/+rawsBg8ePDWrVsr+rekert27TI2Ngbw6aefFjsa5XL5xIkTAZiYmPz666/8R1hA/4u5+Xf9+nUaV+XE87jSr8T92LFj3KphAD169Lhy5Qpvt9a2kP3BgwcFLVpr164dEhKimvZV9L40pPwSExO5zOzs2bNCx1KMX35hAKtendHHPUFw1XSTJk0SOpBiZGRkcL0stm3bJnQsWsrJYU2bMoCtXFnM2WHDGMD0eIdy/snl8tjYWG4+q0OHDnFxcdz20gVz7QXbS8fHx/Mc24YNG7gw/P39i537yM7O5sr0LSwsdN4uR1t6XszNPxpXOsHzuNKXxD0hIcHb25sbK40aNQpT3WSAF9qWoZ87d65Tp07c9W5ubqf+27aM153gSTkMHjwYwLhx44QOpERduzKAzZoldByVT0REBABra+tH+toQbdeuXQBq1Kghsud4K1cygDVqxLKylE9FRzOJhJmb04ZKhR0/fpzbVG3AgAGFV0ir2V46IiKiojfWYIVqi7/77rtiL0hLS+Mac9rZ2UVHR1d0PKUqaV/8yonGla7wPK6ET9zT0tICAgK48WFpaRkQEJCl+tOcX+Hh4QWV615eXklJSWouVigUISEh3PI1iUQyYsSIqVOn8t17lZTJsWPHuMxMD/dCLnDhApPJmIkJu3FD6FAqk9zc3JYtWwJYsWKF0LGUSKFQcAXu/v7+QseisadPWZUqDGCHDimfystjrq4MYIsWCRGZnvr999/Nzc0BfPTRRzk5OcVek56eHh4e7uvrW6NGjYJMq2rVqj4+PmFhYW/evNF5VAqFYsaMGQBkMtnmEor5UlNTuYktNe1yKo5cLlfdgy4pKQnF7YtfCdG4Kht9GFfCJ+7Hjx83MTGRSCQ+Pj76M7OlVSE7++/jh5mZGTfgNNkknghLLpdzdVmBgYFCx1KKiRMZwLy8hI6jMlm9ejUAZ2dnwecR1IuLi5NKpSYmJjdv3hQ6Fs34+jKA9e5dzKkff8zfekm/G8HwKTQ0lCvz/eyzzzRZzFCwvXTTpk0LMi1zc3MvL6/g4GBd/YaVy+Xjx4/naotLaj2jSbucipOWlmZra2tubq46ccbti3+jck+E0LgqGz0ZV8In7lw7pD///FPoQIpRuJC9Vq1axRayF5aQkMD9Yzhz5gxvQZKyWbt2Lff4T88zM8bYkyfM1pYBjDqH8OPFixcODg4Afv/9d6FjKd24ceMADB48WOhANHDpEpPJmJERU13wo6YZU2W1bt26gjLfMrz86tWrgYGBHh4eBbshyWQyDw+PwMBA1XZOmsvKyvrggw+4J+R//PFHsddo0i6nojVv3rzY38VDhw6FGFeG6A6Nq/LQh3GlL4n748ePhQ6kRCUVsheL2wzIQLqRG67U1FQuM9u/f7/QsWhkxQoGsGbNWAmPNIkucQ01evXqJXQgGnn8+DG3b9XRo0eFjqU03bszgBXbqYSaMRVVUOb7/fffl/Otnjx5UlLJ8smTJ7XalejNmze9evXiaotL+lWoSbscHnD7jaxUWQC9cuVKABMnThQkKsHRuConfRhXlLhrJC8vb+vWrVwhu1QqHTduXEnbJFHiLgpTp04F0KNHD6ED0VR2NmvShAEsKEjoUAzd1atXjYyMjIyM/vnnH6Fj0RT3y9jFxaWkWlW9EBbGAGZvz168UD6VkMBMTYtvxlT5KBSKadOmcROZqg1Ty4MrWfbx8alSpUpBplWtWjUfH5/w8PBSnz2+ePGiQ4cOABwdHUva8+3EiROltsvhB9dWb5hKt2qu5YKLi4sgUQmIxpVO6MO4osRdCwWF7GqWM1Lirv/i4+ONjY1lMhmf+42WX3g4A5idHXv2TOhQDFrv3r0BfPHFF0IHooXs7OzGjRsDWLdundCxFC8zMzNp4EAGsI0bizndvz8DmK8v73Hpndzc3LFjxwIwNTXdu3dvBd2loGSZGzYcCwsLrmS52NVZ9+7d4+qbGzZsqLo4j3Pw4EFuveOQIUMEL0G8ceMGgJo1ayodz8nJsbCwkEgkL1Q/QBouTcbV/fv3j5evUzeNK37GFSXuWktISNi3b19JZylx13/vvfcegKlTpwodiNb69mUA++wzoeMwXHv37gVgb28v4KPYstm3bx/3oPmZXn6wW7x4MYCV77/PVPtjqGnGVMlkZWUNGTIEgJWVFW/rvtSULBeseC7o0dOyZcuHDx8W+z6ltsvhmUKh4HYoV90XjtuLqfJs06zJuLpx40a9evWsrKxidfTUi8ZVxdHfxD0+Pv7KlSv68H3SCiXuek7P8xv1rl1jxsYKT89fL18W07MCscjKymrUqBGAH374QehYykJvP5E+ePDAysoKwN9//618LjeXtWhRYjOmyuTlSzZu3CmuxkBXyZNW7ty5s2bNmp49exoZGRVMl7Zt23bSpEnciqAuXbqU1DGg1HY5ghg4cCCA0NBQpeP+/v4A5s6dK0hUPNNkXMXFxXGZWEWUj9O40jn9Tdy5H/TCFjOVASXu+kz/KwpK9fXXqwG8++67QgdigJYsWQKgRYsWPHQYqQh6WwM2evToYqtCGWNs1aoSmzFVJo8fs7ZtGcAGDz5Snq05dCI1NTUsLMzHx4erKpZIJObm5n379s3IyCj2+lLb5Qhl2bJlACZPnqx0/MCBAwC6d+8uSFR80mRcRUVFcd/onj17VsTW7AVoXOkKJe46Rom7PuN+EDRv3lyv1/CplZqaWrVqVQD/+9//hI7FoDx+/JhrIqifW9NqaMqUKdCzVdenT5+WSCRmZmaqT5afPn36iOsMXGmKFop1927+0vNmzfSrY2xWVtaRI0e4rTwiIiKKvebrr7/mqiD0cIPFqKgobnJX6fizZ8+4rFG8vwg0ocm4KmjD9OGHH/L2t0HjqpwocdcxStz1lph2zVNrw4YNAJycnDIzM4WOxXCMGTMGwAcffCB0IOWib/ucKhQKd3d3APPnz1c9y227ua2ybszHuXaN1anDAPbOO6yEvcoExu3BtWTJkmLPXrp0qXr16iW1yxFWRkaGiYmJTCZTrcRo0qQJgPPnzwsSGA80GVfClo/TuCozStx1jBJ3vSWmPjVqyeXy1q1bq/mRR7QVGxvL9R+9deuW0LGUl151FtuxYweA2rVrqz6Cv3TpkkwmMzIyuqrajKnSOH+eVa3KANa1Kyuhyld4u3fvBjBgwICSLqjQ+opy4vYZVH2Mxv06CDLQ7XU1GVfr168vTxum8qNxVWZSEFIJXLhwISQkxMTE5LvvvhM6lvKSyWRBQUEAli1blpKSInQ4oscY++KLLxQKxaxZswrvYiZSkydPbtWqVVJSEjdIBJSWljZ37lwAgYGB3ERMYdOmTcvLy/v8889btGghRHTCO34cPXvi+XN4eeHoUdjaCh1QCTp37gzg1KlTCoWi2AtUv7n6oyB4DY8bAE3G1fLly7lV7CtWrOAqSPlH46rsKvRjgSZoxp1UNIVCwe3TJNTUQkXgukOPGTNG6EBE76effgJQo0aNV69eCR2Lbhw7dgyAmnYT/JgzZw6Ajh07qm4HERYWBsDe3r5S7aVd2IEDzMyMAWzUKBG0Q65Tpw6Aa9euCR2I1vbs2QOgT58+Ssfj4+MB1KpVS5CoKk6p4yovj82cme3sPNDIyGj79u18x1cUjauyocRdxyhx10O7du0CUL169ZL2nBKjpKQkMzMziURy5swZoWMRsfT09Hr16gEICQkROhZdGjRoEIDx48cLFUBiYmJJ4zMzM7NBgwYAfvzxR0FiE9xPPzEjIwawKVOYKHY8Hj58OIDNmzcLHYjWHj58CMDGxkZetIGAQqGwt7cHcE+vlgOXT6njKieHjR7NAFa/fu7+/Yd4D1AZjauyoVIZYuAyMzO55/XLli2z1dun0dpzcnKaPn06Y2zatGmMMaHDEaulS5fev3/f1dWV27LQYKxatcrU1HTHjh3nzp0TJIBZs2ZlZWWNGTOGKwYt7Pvvv797926LFi0mTJggSGzCWrcOY8dCLoe/P9avh1QMv4TFW1hSq1atBg0avH79mpsKLSCRSDp27Ahx/qGKVeq4ys7Ghx8iNBSWlti82Wjw4P5ChFkEjauyEcPPDELKITAw8N69e+3ateMaPhuSuXPn1qpV68yZM6GhoXze9+JFODujXz8ULk1MSICzM44cwR9/oH59XL5c5CW5uahfH6tX8xlm6e7fv7969WqJRBIUFCQVRQKlMWdnZ65wX5DPdX///fe+ffusrKyWLl2qdOrhw4fLly8HsH79+sINWSqJ5cvh5wfGsGoVBCotLgvxJlgQvByZF6WOq7Q0eHnht99gb4/ISPTuzXuIxRH1t0DAcWVQv6sIUZKcnPz9999LJJI1a9YYWGYGoCAxmjNnTlpaGm/3zcpCUhKOHsWPP749mJODpCSkpyMjA/fvIzu7yEsYw/37+Pdf3mLUyIwZMzIyMkaPHu3p6Sl0LLo3f/58R0fH06dP//zzz3zeNy8vb9q0aQDmzJnDbdVc2OzZs9PS0oYNG9a9e3c+oxIcY5g2DbNnQybD1q2YPl3ogLTRtm1bCwuLW7duPXv2TOhYtGbYibsm4+rpU3TtishIODri+HF07Mh7lCWgcVVGFVeFoyGqcScVhyuhGzlypNCBVBSFQsGVIsybN4+3m546xQDm4cFsbdmjR/kHr15lANuzh/32GwPY2bNFXpKdzQC2YAFvMZbu5MmTEonEwsLCkIpclWzduhVA7dq1+fyJpKbPgJpmTGKxcyebMUP54KVLzNeXJSWxo0eZry87cKDI2ago5uvLtm1jADM3Z7//zluwutStWzcA4eHhQgeitQsXLgBwdnZWOp6WlmZsbGxkZKTP2w5yyjOu7t1jTZsygDVsyG7f5iFY7dC4KgNDm4MkpMCpU6f27Nljbm6u+rzeYHBlHhKJ5Pvvv799+zaft/b3h6mpyCYOC+Tl5XG7oc2dO5dbnGqQxo4d6+bm9vDhwxUrVvB5X2tr6xUrVpiZmRU+yBj74osvGGOzZs1ycnLiMx4diopCSIjywTt3sGkTnjzB5cvYtAnjxqHwBOK1a9i0Cf37Y9Ys/PEHvLz4jFdnPDw8IM756datW9vY2CQmJj569KjwcUtLyzZt2sjlcqHWgWiuzOPqxg14euLmTbRsiZMn4ezMW8iaonFVBpWuxJBUEgqFgssS/P3969evL3Q4Fahjx46jRo0KDQ2dPHny/PnztXqtsXH93Fzt/nJsbPL/w9YWS5Zg0iSMG4c+fZQve/kST5++/d/cXK1uUuE2b958+fLlunXrThfpJw/NSKXSNWvWeHh4LF++3MXFpWbNmjzctGXLlqGhoVWqVDlx4kTDhg25Hd8AhISEnDt3rnbt2v7+/jyEISALC/j7Y9s25eP8fnrSsU6dOkGcCZZMJnN3d4+MjDx9+jS3i26Bzp07x8bGnjp1qkePHkKFpzltx1VcHPr2xfPn6NoV4eF62iiAxlUZUOJODNPr16+trKyqVKny5ZdfCh2Lbrx+/To6Orp//2K2Ali2bFlYWNilS5e4x46a69ZtflTUt1q9pEOHt2tMx4/H1q2YMgX//KN8Wd++Wr0r33Jzc01NTRcsWMDVthmwTp06denSJT4+fsSIEfzffeLEiZ6enh9//HFaWtq8efNQQjMmA/Pttxg/HmPHomtXoUPRHQ8PD6lUev78+ZycHBMTE6HD0U7nzp0jIyNPnTqlmmCtXbtWLFmjtvMxbIwAACAASURBVOPK1hZGRhgwAHv2wNy8goMrKxpXZUCJOzFMCoXi3LlzWVlZ8fHxbm5uqhekpKTcunVLRCvklixZ8t1333311VfcphyFxcTE5OTkZGVleXp6SiQSzd/T2blBCU3rSlS4zaVUig0b4O6O777D0KFFLgsNLXKlXI7ivgmCuXDhQnZ29pkzZyZOnKh6VqFQ7N27d9iwYWJZ0Hz79u0XL16obrwIID09nTvbokULboNh3qSnp2/ZsuXXX3/t06fP2rVrU1JSuKdDfMYgiDFj8OOP8PXF5cswNRU6Gh2xs7Nr2rTp9evXL168WOxI02clrRfkVqWfPn1aoVDo/z92bcdVo0Y4eRL168PYuOKDKysaV2VRQbXzmqPFqaSCzJ49GyU0brxx44aVlZWIWjLdvn3b1NRUKpWeO3dO6VRGRgZXC7RlyxZ+guEWp0ZF5f/vlCnM0pIdPSqmxalq/j4ZYwMHDgSwdetW/gMrmwEDBkgkkm3btqme4qqn3nnnnTwhOv28//77AD7++OPFixdbWFgYQLOwiROZTMbatSvy1bAhA9jp02z5cgYwhYKdPcukUrZ0KWOMbdzIAKbyK058uH33V61aJXQgWnv16pVMJjM1NVVdMF23bl0AV69eFSQwDdG40k9CjSt9/4hJSJnNmzfP0dHxzJkzu3fvVjrVtGlTV1fXp0+fLlq0SJDYtDVjxozs7GxuraHSqeXLl3Mb1Y8bN06Q2BYvhpUVFiwQ5OZl5Ozs/Pnnn5e0zflHH30EYM6cOa9evRIiOu1EREQcOnTI2tq6X79+SqeSk5NXrVol4Hao33//vZmZ2U8//dS7d+/k5GTRzagVy9QU3t5Fvjp3Vr7G3R2TJmHxYty7J0SIFUO8+yfa2Ni4uLhkZ2fHxcUpneIWR8bExAgRl9ZoXOkVocYVJe7EYFlZWS1ZsgSAv79/enq60tmgoCCZTLZu3bqbN28KEZ0Wjh07Fh4ebm1tvXjxYqVTDx48+P777wEI2EKoShV89x00XECvUODgQXz3HQ4ehLD9XhcsWODo6Hjq1Klff/1V6dRHH33UtWvXp0+fcuNHn8nlcm59bUBAgOra05kzZ2ZkZIwcOVKojeobNmzIfTT64osv7OzsBIlB58zNMWdOkS+lOjHO0qWwtMRXX/EeX4URb4KFkhMp0f2haFzpFUHGFSXuxJB9/PHH7u7uBc0aC2vbtu348eNzc3NnzpwpSGwaKsjMuH46Sme//PLL9PT0Dz/8sKug6+B8fPDuuxpdOWkSNm5ElSpYvhxaboGjY9bW1tzzFu7vUOks90FozZo1t27dEiI6Ta1bty4+Pr5Ro0ZTpkxROhUTE7N3717Bt0OdN28e1993165dAobBP3t7BAYiLAzR0UKHoiNNmzatVq1aSkrK3bt3hY5Fa9zuJadPn1Y6LrqskcaVXhFmXFVE/Y1WqMadVKhTp05xPV/u3LmjdOrJkydVqlQBcPjwYSFC08jatWsBODs7Z2VlKZ2KiYmRSCTm5uZ3797lM6THj1lwMEtJKXIwMZEFB7OkJHb3Ltu0iT19WuRsXh7btInFxbGLF1luLmOMxcWxRo34i7lYeXl5XOlRQECA6tnx48cDGDRoEO9xaerFixfcetODBw8qncrLy3N1dQWwaNEiQWIrbPv27QBq166t/51uSjVxInNwUD64b59yjTtHoWCdOzOp1EBqkdl/yz9CQ0OFDkRrXJsLR0dHpeO5ublcsqGahOgPGld6S5BxRYm7jlHiroe4jSy8vb1VT3F1Js2aNcvJyeE/sFKlpqY6ODgAOKDUNK+0pFP/RUayDh2EDkLth58nT57Y2toCOHLkiCCxleqTTz4B0KtXL9VTwcHBAOrWrZuens5/YEoUCoW7uzuA+fPnCx1LeWmVuDPGrlxhxsaGk2AtW7YMwOTJk4UOpCz++uuvYj86vvvuuwD279/Pf0gaonGlz/gfV5S46xgl7nrowYMHlpaWAI4fP650Kicnp2nTpgBWr14tSGzqcfUPPXr0UD21ZcsWAHXq1BHjYMvMZB4eTE+mV7gNzj/66CPVU1yFVfPmzfXwc93Vq1eNjIyMjIxUNy549eoVV+8eFhYmSGyqTp8+XdKDL3H54Qf28cfKB8+eZe+/z27eZAcOMG9vprSL1apVzNubiWT/qlJERUUBaNu2rdCB6BK389JXX30ldCAlonElRhU3rihx1zFK3PXTN998w/1ckMvlSqcOHjwIoEqVKk+VyjuEFh8fb2RkJJPJrly5onTq9evXXL377t27BYmtPLKy2NCh7IsvhI7jP8nJydznuqiCHS7/k52d3aRJEwBr164VJDY1evfuDYBb+qlkxowZADw8PFQ3QhWQmgdfhur+ffbTT+ziRaHj0J2MjAwTExOZTPbq1SuhY9GZQ4cOAfD09BQ6EE3RuBKFihtXlLjrGCXu+ikjI6NBgwYAgoODVc9y++h9+umn/AemxscfP2nefPSUKVNUT3HtYDt16qRXmZkmkpNZp07M31959khYAQEBANq1a6e62fn+/fsB2NnZPXv2TJDYirVnzx4A9vb2z58/VzqVkJDAbVF//vx5QWIrScGDr7///lvoWHjy9dcMYF9+KXQcOsVVPUVERAgdiM68ePFCIpGYmpqqriPSTzSuRKHixhUl7jpGibve4nb9q1at2suXL5VOXb9+3djYWCqVxsbGChKbqv37GcCqVmXPnyvXKKtvHqTnHB2ZjQ1zdc3/ysgQOiDGWGlNrN577z0AxX6CEkRmZqaTkxOAjRs3qp7t378/AF9fX/4DKxW3jU+bNm1UH3wZpCNHGMA6dxY6Dp3iNrlauHCh0IHoRnZ29ocffghg2bJlQseiKRpX+q9CxxUl7jpGibs+69atG4AZM2aonpo2bRr3VEsf5rCzs1njxgxg69YVc5ZbgD9hwgTe4zJkXJeuYpvpXrt2zdjYWCaTXb58WZDYlHz77bcAWrRokctt0FNIREQEABsbm0ePHgkSm3qZmZncg68ff/xR6Fj48PIlk0qZqSlT6asoYmFhYQDee+89oQPRgfT0dO5xq5WVlYjmemlc6bmKHleUuOsYJe767OLFizKZzNjY+MaNG0qnXr58Wa1aNQB79+4VJLbCli1jAHNxYapLIiMjIwFYW1unKG3HSMqtS5cuJa0l+vzzz0taJcyzBw8ecD8b//zzT6VTubm5LVq0ALBy5UpBYtME9+u52AdfBqllSwawmBih49Cdhw8fch8Oxf7Y5OXLl1xjsurVq1+4cEHocLRD40pv8TCu9DdxHzFixKBBgzLF9omSEnc9N2nSJAADBgxQPbVx40YA9erVE3YHvcePmY0NA9jRo8qncnPZ4MGPnJ0HLl++XIjQDNyFCxekUqmJicnNmzeVTqWmplatWhXAvn37BImtgI+PD4ChQ4eqnlq1ahWARo0a6Xmpbrdu3Tp0eH/+/ErxydPXlwFsxQqh49Ap7rGJnjyAKpvHjx+3bduW+4GvOo+j/2hc6Sd+xpX+Ju767OLFixdLWNFNibueU9N0SS6Xt2nTBsDixYsFiY0zdiwD2JAhxZxau5YBrGlTRXa23u1OaBjUNF1at24dgIYNGwo4m8BtqmhqapqQkKB0Sk0zJn1z6VKGTMaMjZkI8yWt7djBAPb++0LHoVMjR44saYmFKNy5c6dx48ZcB4/79+8LHU5Z0LjSQ7yNK0rctfPixQs/Pz+ZTPbOO++obkDBKHEXAzVNl/766y8AFhYW9+7dEyS2uDgmlTITE3brlvKpFy+YgwMDmEovJqIzapouyeXyVq1aCbiITaFQdOjQAcC8efNUz6ppxqSHuPnC3r2FjqPi3brFAFa9utBx6NT69esB+Pj4CB1IWVy7dq1OnToAXF1d9W0LYM3RuNI3fI4rStw1lZOTs2rVKm6y1tjYePr06RnF7YhBibv+U990aejQoUL97FAomKcnA9js2cWcnTyZAaxnT97DqmTUNF06duwYt97o4cOH/Ae2Y8cOADVr1lTd6lhNMyb99PQpq1KFAUzluZcBqlmTAez2baHj0J0LFy4AcHZ2FjoQrZ07d46reevWrZvYtwyncaU/eB5XlLhrJCIiglv1xc1pqfntSIm7KKhpupSUlGRmZiaRSE6ePMlzVKGhDGA1ajDVf/jx8czIiBkZMZVeTETH1DddGjJkCICxY8fyHNWbN29q1aoF4KefflI9q6YZk95auZIBrFEjlp0tdCgVbMgQBrCQEKHj0B25XG5jYwNAXEvk//rrL2trawADBw4sdt5NXGhc6Qn+xxUl7qW4deuWl5cXl7I3bty41BbilLiLhZqmS3PnzuUeeBVbDVVB0tNZnToMYNu2FXO2Tx8GMD8/3sKp1NQ0XUpMTOQ20T979iyfIakZk2qaMemznBzWtCkD2KpVQodSwb77jgHsk0+EjkOnevXqBeB///tfSRfcvn1bH7bWLbB//34zMzMAo0ePVt1HVYxoXOkDQcaV8In7xIkT7ezs+vbtm5iYKHQsRbx8+dLf39/U1JSbmg0MDFS/V8Pz58/9/PzMzc1tbGz69+9/584dviIlZaGm6VLB7GYIj7MZCgX75Rf2/vtM9cPCb78xgNnZMVElZuKmpumSv78/+G1bq+YpkPpmTHru4EEGMBsbppebzutMdDQDWKtWQsehUwsWLAAwc+bMYs9mZGRYWlpWr17dx8cnPDxc8G2OQkJCjIyMAEydOpXP6ZgKReOq0o4r4RP3S5cucdsSm5mZzZkz582bN0JHxORyFhzMXFx6AZDJZL6+vuqXGuTk5KxcuZIrfzcyMjIxMeEWOC5cuNAAnscZMDVNl0JCQgDUqFFD8DrIgmZM69cLG0jloqbp0uvXrx0dHQGEhobyE8wHH3wAYMyYMaqn1DRjEoV+/Qxw1lBJVhYzNWVSKVNp7SViR48e5T6+Fnv2ypUr3EI9jo2NzYgRI3bv3i3I5v1BQUESiQSAv78//3evODSuKu24Ej5xZ4ylpKT4+vpKpVIAjo6OwcHBAn4mPn6ctW3LAObhkditW7eStn0soFr+/uDBAx8fH+47Wrt27ZCQEL16skMKFDRd2rNnj9IphULh4eEBYO7cuYLEVmDp0vxmTOJMzERMTdOlbdu2cf+6eSiK43Y6KnZFrJpmTGJx/TozNmZSKVN57mVQOnUqvjODeL169Uomk5mamqrZHfXq1auBgYEeHh7cb0NuIszDwyMwMPCW6rZZFUChUAQEBACQSCTFbkUgdjSuKue40ovEnXP+/HkuVeJKOaOjo3kO4M4dNmwYAxjAGjRgYWGlZNs3b94sKH9v0qTJ77//Xvjs2bNnO3bsyJ11d3c/ffp0RcZOyohrulS3bl3VpkuxsbFSqbTYPbN5U9CM6Y8/hAqh8lLTdCkvL8/d3R3AggULKjSGgt4CS5YsUT07evRoAMOGDavQGCratGkMYJ6ezIDnN2bNYgCr4MHCN253VE1+U9+9ezc4ONjLy8vY2LhgutTFxcXf3//kyZMVNLEll8t9fX25x+A7duyoiFsIjsZV5RxXepS4M8YUCkVYWFi9evW4jzLe3t53797l4b7p6SwggJmbM4BZWLCAAKa+wkXD8ve8vLyQkJCaNWtyfxwfH59Hhl3LKULqmy6p6VLJj48/NsAuGyLC7StcbNOlU6dOSSQSc3PzCl3N8sMPPwBwcnJSDUBNMyZxefmSVavGAKby3Mtw/O9/DGAi2WRfU59++ikArbo4p6amhoWF+fj4cJuHcOrVq+fr6xseHp6tuw2GsrOzhw8fztWsqvbaMxg0rjiVbVzpV+LOSU9PDwgI4BbqWlhYBAQEVFyluELBwsJY/foMYBIJ8/Zm6j8pcLk4txOOVCr18fEpdT+ctLS0gIAALsu3tLQMCAgQfEUFKUxN0yWuFMHa2vrBgwf8B6amGRPhh/qmS1yfP61+wWiLe2pXbCmXmmZMorNxIwNY3bpM5bmXgXj0iNWufa9Hj91yuVzoWHSGWwjUuXPnMiwEyszMjIiI8PPzq127dkGmZWdn5+3tHRIS8m/5qrbT0tL69u3LTavxv6svn2hcKakk40ofE3dOcnJyQaV4nTp1KqJSPDaWeXjk18a4urJSvxF///03NzsLoFu3bpcuXdL8XgkJCd7e3txrGzVqVOq2koRPapouHTx4UJDnJOqbMRHeqGm6lJycfLSCy0uzsrKK3bhdTTMmMZLLWZs2DGDFPfcyEM7OzgAuXLggdCC6oVAofH19bW1tJRIJV2EcFBSUnJxchre6evVqQECAq6trQaZlZGRU5jdMTU3t3LkzgBo1apS6RM0A0LgqiQGPK/1N3DlKubIO/76ePcuvjXF0ZDt2FLMHX2H379/XyaeIyMhIbgIPQI8ePa5QNx39cO/ePQsLC0GaLpVk584SmzERngnVdKkk6psxidRff+VXKqo89zIQXN3deoPYHEoul48fPx6AsbFxq1atZDIZ90tNIpG0b9/+22+/Vd2LSRMJCQkrVqzo0qVL4Td0c3NbvHixhi2BHz16xCUM9evX52edouBoXJXK8MaVvifujDG5XL5x40ZulViVKnaff56mdm9GLQQEsNmz2evX6q5JS2Pz57NGjXpzhS6LFy9Ws9hZEzk5OWvWrLGzswNQvXrN6dOzUlPL835EN+bNmwfemy6pcfYsc3cvvhkT4VliYiK3jTrPTZdKMmfOHL0aq7oybBgbO5Y9eSJ0HBWDWwc/cuRIoQMpr+zs7GHDhnHlhUeOHGGMvXjxgqsw5vpHcurXr89VGOfk5Gh7i+fPnyu94cCBA0t9VVJSUqNGjQA0b968bHO0YkTjSnMGM65EkLhzXr58OW3atB49VgOsShW2ahXT/rumHYWC/fQTq12bAaxjxwejR4/WYaHz8+fPP/vss+7dgwHm4MA2bKDN/gSWnp5et25d8Nt0ibN9O9u2TfmZz65d7O+/DXmfDXHhv+lSSQqaMZ05c0bYSHROLmc7d7ItW5hSve4vv7Bjxxhj7McfmepHpyNHxLGq9fLlywAaNGggdCDlkpaW1qdPH67MV3Xfj4IKY+6JkFKFcRnKujIyMg4cODBhwoSff/5Z/ZVXr17lyprbt2+v2vDYgNG4qoTjSjSJO+fmTebllV+V3rgxK7oBoy6dP1+k/L2Ctqa8fj2//wjAmjVjhrv2XRyEarpka8sAFhxc5GDdumzCBD6jIOrw33SpJGqaMRmAmjUZwIKCihxs0oSNGsUYK37JR//+4mgemZeXZ2trC0BPJu3KIDU1tVOnTtziCvVLvPLy8mJjY5UqjM3MzHr16hUUFKTztf5nz551cHAA8O67775W/wzd4NC4qoTjSmSJOycigrVokZ/v9urFNCtS0tTDh8zXl0ml+eXvwcGllL+XX3g4c3bO/+N4ebHbtyv2dqQkQjVdsrVlNjbMzq5IkQAl7vqGz6ZLJVHTjMkw1KzJbGyYtTUr/CvYMBJ3xth7770HQKQ7E6SkpLRu3Zqb3NWqzDcxMTEoKKhXr15cc3iOi4tLQEBArC7abh07doyrfBg8eHA5C1lFisZVZRtXokzcGWM5OSwoiFWpwgBmbMx8fVn5H2JkZ7OgoPx+NyYmzM+Pv3WB3B+Hu7WxMa+3JoVxTZdMTEz4XIBia8umTmXVq7PRo98epMRd3xQ0Xfr6668FCUAul3O/4YptxmQYatZkn3zC6tRhhXsnGEzi/s033wCYNm2a0IFoLSkpidu9xMXFpczzms+fPw8JCfH29uba/XKcnJz8/PwiIiLKULLMGNu3bx+31fKYMWNyK2u9KY2ryjauxJq4c168YH5+TCZjALO3Z0FBysWRmgsPZw0bvp32TkzUaaCaSUlRnuw3oL1ZRWPMmDEAPvjgA97uaGvL5sxhmzczgEVG5h+kxF0PcU2XzMzMKrTpUknUNGMyGDVrsunTWWgoA95WQhpM4h4REQHA3d1d6EC0c/XqVa622M3NTSdlvhkZGeHh4b6+vlx3Qo6DgwNXsqx5TcLGjRulUikAPz8/wRefCIjGFafyjCsJYwwid/06pk/HH38AQPPmWL0a772XfyotDbm5sLWFVPr2+vR05OWhoMFW4Zc3a4bVq9G3L5/hK4uLwxdfICYGAFxdERQET8/8U2/eQC5HlSqQSN5en5YGhQI2Nnj1CjIZCn3mBIDMTGRlwc6Or+jFLyUlpWnTpmlpae3atbOwsND8hY6OzR892qzt7Y4cQd26mDwZixejY0e8eoUrV2Bqinr10KcPtmzR9v1IxRo1atTu3bsdHR0bNmzI530ZY1euXElLS9u7dy/XdsAgOTrio4+wciW6dsXDh7h6FRYWaNoUbm4IDYVEgjZt0L59kZf8+SeqVMGVKwJFrI20tDQ7OzuJRPLvv/8W+7Pl5cuXdnr2w/rs2bMDBgx48eJFjx499u/fX3h/j/JTKBQXL178/fffw8LCrl+/zh00MzPz9PT08vLy9vYuvBhRyfLly+fMmcMY8/f3DwwM1GFUokPjSonhjythPzfoUHg4c3JSnjLv358BbO3aIld++CFr1oyx4ibs9eSRSEn9XLt1YwDburXIxQMHsvbtGWOsSRP2/vvKbzV9OjMx4SVoA7Jjx46JEydq+0+pefP23PDT6is1NX/GnTF2/jyTStmiRYzRjLu+Sk5Onj9/fkX8KC5Vx44dFy5cKPRfQMXiZtwZY1euMCMjxi02KTzj3qwZ8/Yu8uXoKJoZd8ZY27ZtAURFRameysjIsLS0dHFx8ff3P3nypD5M9R06dIhLBIcMGVLRz3m4kmUPDw/pf9NsUqnU1dU1ICAgPj6+8JUKheLLL78EIJPJgpUW9VdWNK5KYpDjyhBm3AtkZmLlSgQGIj0dZmZYsQJHjuDIEVhb4/p1FHzE+ugjXLqEJUswYQL+/RfGxpg8GQEBejctnZ6OwECsXInMTFhaYu1a/PQTTpyAvT1u3EDVqvmXDRqER49w/jyaNkWLFvjttyJvMmMGNmxAdjb/4YvbgwcP7t69q9VLZDLrvLw22t6oUyc4OGDyZCxdCgCTJ2PHDly/ji5daMZdT+Xl5Z0+fZr/+1apUqVly5b835dP3Iz7qlUAMHMm1q/H1avw8no74z57NpYtK/KSAQOQnCyOGXcAU6dO3bBhw9KlS7nN+AuLi4vr1q1beno6979OTk6DBw8eNGhQly5dCi+/480vv4SNGTM6Nzd30qRJGzduLGheU9GeP39++PDhgwcPHj58uOBvo2HDhl5eXgMHDuzSpcvUqVO3bNliYmKyc+fO4cOH8xOVnqNxVSqDGldCf3LQvYJtYQ4cYP37sw4dWL16bPjwtxdwM+7/b+9eY6Oq1jCOP71IKYMmYilVURhAoYAglxDTgjQpUoG2NBhFQ5oASUM0JEgkqV+MQYwSQCGEoMFDYkwKaI3QdmpLJyRcFFSMgiWFIpZjieApl8TSlqIzXefD9PQGHOh1d+35/zJfumbP7LfN28wza9asfeKEiYoyqammvNy5Wu/BhQsmO9tERJj9+83s2ebZZ01Cglm+vPUAZtxt1zLjboy5ds3Ex5slS5hxRzhqmXE3xtTWmkcfNYsWuWeNuzEmLy9PUnp6+m3v7fH9qrts+3YzceL3Hs9gB5f5Xr9+PT8/Pzs7e8iQIS1/jdAXED0eT2lpqSNV9U/01b1zQV+5MLiH/PKLMcbMn29mzzZ5eUYyJSXNd7UslQkdY4VQqbNnm/nzzY4dJiLCtHwmRnC3Xdvgboz59FMTGWliYgjuCDttg7sx5vPPjWQGDnRPcD9//nwoM/3/1BIMBo8ePZqbm5uYmNiSLWJiYlas2P3xx6a39wJdt655lea2bf/u3TPdm0AgcOTIkdzc3LFjx3q93rlz5x49etTpovoX+qoL7O0r1wb3kFBwb2oyM2eaUaNMQ4MxbYK7dULBPRg0U6ea8ePNzZvGtA/uycmmtLTdbdEignt/1yG4NzWZlBQjEdwRdjoEd2OaL1F31+B++bLJyjKPPWZGjzYffdRH1XbN8OHDJZ0+ffoej6+qqmrZr/qZZ6pD340ZP968/bbpie2q22lqMmvWGMlERZkdO3r4yXvEf9pe7QJt0FfdYVdftdlsxb0iIrRtm6qr9e67TpfSEyIjtX27zpzRBx90vOvbb/X88+1uHZa8ox8aObLd9ysiIrR1q0aPbv0aAxAmRozQQw+1G9myRWPGKD5ekkaOVJsPt5slJGj4cB06pORkVVfr8GHl5urPP/uo4C4IXSTyyJEj93i81+tdtWqV3++/ePHiihXxmZmKjVVFhdau1fTpeuIJrVmjw4cVDHa3sGBQOTnatEkDBmjXLuXkdPcJe0N8qBVwC/qqOyzrK6ffOfSu0Ix7yOuvmwEDTGWl9TPuITk5JjbW/P47S2UAoNWYMebkSaeLuLPNmzcPHTrU4/F0eYVxfb3Zu9csW2aGDm3dnyouzixdar76ynTpgjOmsdG88IKRjMdjbFjli47oq/Dhql1lbrVggerrdfCgJNXWKjFRM2Zo4ECdOKH/be5pk5QUeTwqLpakq1c1bpzS0lRby64yACBJFRVKS9Nvv2nAAKdLuYNAILBp06aW3T9iY2NTU1MXLlyYkZExbNiwTj1VU5N+/llFRfrii+ZXtMGDdeWKYmI6V1JdnRYtkt+vBx+Uz6ekpM49HP0BfRU+wii4S9qzR6+8Iq9XMTHWB3dJO3cqJ0cjRigujuAOINxduaJZs/T++8rKcrqUu6mqqioqKvL5fAcPHgwEApIiIyOnTJkS2pxu2rRpnX3CigoVFOjGDb3zTuceeO2aFizQd98pIUH792vSpM6eGf0IfRUOwiu4S5ozRwcOaNw4NwR3Y5ScrGPHNH363YO7369duxQdraVLlZzc97UDQC86e1Yvv6zVq5Wd7XQpndGyvXRJSUldXV1osGV76ZSUlF7dbPvSJaWlpHjlhAAABHZJREFUqbxcXq/KyjRmTO+dCn2KvnKxsAvuv/6qp56S1+uG4C6pvFxTp+rpp+8S3MvK9Oqr+vBD/f23li/X8ePyevu4dgDoLcXFWrJEy5Y1fxw/Y4ZGjHC6pk6qr68vLS0tLCwsLi6+evVqaDA+Pj4jIyMzM3POnOcGDYrt2TNWVem551RVpQkTVFamO18GHhajr9zH5cH93Dk1NenJJ9sNVlYqENCECQ7V1A1nzyoysuOb19A7kMREnTqlgQM73nvhgmpqNG2a6uo0eLAkpacrO1uLF/dV0QDQy3bv1smTrT8uXqwpU5yrpntCl+b1+XwFBQVnzpwJDU6cWJ+QMCg9XS+9pIcf7oGz/PST5s1TTY1mzNDXX3fczAfuQ1+5hsuDOzowRomJystT55e6AQD6VHl5eWFh4TffnN+//1+h1+qoKCUlKTNTWVl3WYHQ0KCbN3X//Wq7JuLGDTU2qrxcmZn66y+lpmrfvuY5HYQP+spqBPfwsm6dfvhBRUVO1wEAuGeXL6ukRPn58vtbNxsYNUrp6XrxRSUlKfKWi7KsWqWtW7VmjTZubB186y2tXy+/X/PmKStLn32m++7ro18B/RB9ZSOCexjZskV79qisTA884HQpAIDOa2jQgQPy+bRvn2pqmgfj4jRvnjIyNH++PJ7mwVDAio7Wjz9q8uTmwVDA+ucfnTihSZNuE8sQnugrixDcw0Jjo157TQ0N2rmz9d8PAGCpYFDHjsnn0969Onu2eTA2VqmpysjQwoV67z3l58vrVSCgY8eas1RLwAJui77q/3hbFBZ27tShQzp+XJMmafRobd7sdEEAgG6IitLMmVq/XpWVOnVK69crOVmNjfL5tGKF1q2TpIgIbdig48f1ySdOlwtL0Ff9HzPuAAC4QXW1CgtVUKA331Rhob78Un/8oSVLVFKi06c1bBgzo+gK+qpfYcYdAAA3ePxxrVwpv1+pqa2DGzcqGNQbbzhXFixHX/UrBHcAAFzrkUe0dq3y8nT4sNOlwEXoK6cQ3AEAcLOVKzV5slavVlOT06XARegrR0Tf/RAAAGCt6Ght366ZM1Vb63QpcBH6yhHMuAMA4HJJSVq2TOfOOV0H3IW+6nsEdwAA3G/DBsXFOV0EXIe+6mNsBwkAgNtUVqqmRrNmtRusqNClS+32BgE6hb5yHMEdAAAAsABLZQAAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAsQ3AEAAAALENwBAAAACxDcAQAAAAv8F/mkw0sCfgfOAAAA8HpUWHRyZGtpdFBLTCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuIOYG4gZGdoYMIM3MyMTmoAFisLBDaGY2B7AEMyNMAEMCGwNiBjcDowIjUwYTE3MCM0sGEwtrAitbAht7BhM7RwIHZwYTJ2MCJ2uCCBMbIycrCzMTKxsrJwe7eBNQLyPcheEh5+2dXok6gDhf2GfZTz2QZg9iX+vnd1gjaLEPxPa8/NI+v+z8fhB70569dpodf8FsiUDt/UHeaWA2w3GuA7deFoHZ6bnaB7hS3tiB2K8C9u9n/L8BbObCgsZ9SnO5wGwxAJWJNey/nREKAAABRXpUWHRNT0wgcmRraXQgMjAyMS4wOS41AAB4nH2SXW7DMAjH33MKLlALMMbw2CbVNE1Npa3bHfa++2s4VetWs2aHyB8/g/njCVp7X96+f+DeeJkmAPznc3f4yog4naAN4HB8eV1hvuwPt5X5/LlePoAQiOJM9Gd2fzmfbisEK1BS8qoEnLKwcAZMuLV+kmEOjjFntdh2pFx1wOXwx4klUxHYYaLqtZQBKJtDY62KsIsrMBryACzhEVOuWGwD3bCSDUANMCKqOqO2kbkXqwOyRuwdJ1LLvpEuZkYD0q6kViulySJKFUegN5CSuGipkVg2rjZKJ6oyt5Bc2KgBRUhCgr/kcV2eSnUt3uG8Lr14rXOvkYTlXgpp1gVvvXRZYwLaxZOw2hWSMOsySJj3ZCWMHnOS9rvfJN7dtqCPuTzevM1vTzbG0y/qHpJEKsr7lgAAAKB6VFh0U01JTEVTIHJka2l0IDIwMjEuMDkuNQAAeJwdjMsNwzAMQ1fpsQUcQaRlfZAdukTumSDDVy6Pj4/8Xriv++bVAV/PG+Ko8EGZRuM4IdQ5Y6iUYnZzUmgTaxwqiIq1tpT07o6eU3OcKjN05QaVGv3TtntRfe+yamU0pMDTNirLTPyRR/apijlCN4JYmfuAzGTk/4yLCba1DObj8/wAlfAqcTizBVsAAAEIelRYdHJka2l0UEtMMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABuIOYB4gZGNoYEIM3IzM6QAaSZmRjZHDRADBZ2CM3M5gCWYGZECMAUWIBoRoQKJAZECTcDIwMjkwITcwYTM0sCC2sGEytbAht7AjtHAgdnBhMnVwIXUwIXWwaTCBMbExcbKwszKzsbFyeHeB/ITXDHuoekOmh8bLAHcSxC2B0C3i4Hs/2f9tkfv+liB2L7KJ22Z988dz+IHbZPzL6/SewAiP3MMXF/NQszmP3h7pr9uaXyYDVrgvUOXOhfsAdszhGVA3mde8BmSr3r3T8p+SmYbZO9ZV9r7D+w+WIAUWM6MRx0zsMAAAFXelRYdE1PTDEgcmRraXQgMjAyMS4wOS41AAB4nH2SXWrDMAzH33MKXaBBX7alx7UpY4ymsHW7w953fya1tE7BzI6M7fwkRfpnghwfy/vPLzwGL9MEgP887g7fgojTCXID++Pr2wqHy8v+fnM4f62XTyAC4vCJ+cy+XM6n+w3BAWQuJlwdaEZsUsMhNjm6J8MKPBNpoRKcELmMOIl4FFyVJvGanFnagNOIR5G3uinsaGZh5DoASwTEAM2UYcezFGrkA7BGxB3O1tzpSqI20hHZImSklIKFJX0qs9kouWVMnhuLlZYkklcc1e0Zk+fSVI2jMm3sqgOQ8Jad0Iyz5c2ZkEZkahM5Jb7SElCvhqNmHtflSdSbzPvzunSZc3JXMw4gXTRN69rkLF2BOEDtfdaw1pupYdY7pmHe26JhtK1ecyHaVKm5PD4mxLtetG1121ryfP/dYz/9AfH0nQ9hCasvAAAAtHpUWHRTTUlMRVMxIHJka2l0IDIwMjEuMDkuNQAAeJwdzjEOAjEMBMCvUIKUi7zrOLZ1JQ0VH0BU6e8F93jMddFkvfbzvXCsY3Fhrc/x+vJ23rVbKL2hi7jOtrMDw1igQGrbUTDVm3QkWY8Si5nRNnQqpTJSEjHYNnY1ONu+SQ/PxGUyHFZWpSZVXp+TjJhXTo0aqAUjZ4hfOUiE1hGeRAG7+RhRMJw5LvGamv8qQVrWPY/zBxUuL4xaBfctAAAAvHpUWHRyZGtpdFBLTDIgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIxgsDtogBlsEJoFtwqESqgENwNjAiNTBhMTcwIzSwYTC2sCK1sGExt7AjtHAgdDBhM7c4IIExsDBzszEyMrCzM7G6t4GVAnI9xZrH3CBxgYHPaDOFC2PYitebUBKHYAzH54bKodTJyX5479uZDZYHZ+sZoDUHwZkvh+JPX7kcwBs8UAPzApOvPVncUAAAENelRYdE1PTDIgcmRraXQgMjAyMS4wOS41AAB4nH1SQY7DIAy88wp/AGTAhnBskmpVrUqkbdo/9N7/a02rQCO1QEYyzsTxjFFQ1t/8e39AXW5WCgA7T0oJbh4R1RlKAOPx55RhWg/jlpmWa14vkMAiPPeeeliX85axMIF2xiMzedBoIktp+cQgvoKN6XbMDtFDBm0lHRgZrGH8QiSpiMYlx75bkIVnTbTJ2kECZz07/sALwnMmIMYUihT89uMoHdaCulNxEGLtsGdOKuZUzboj+pjn3QBeIxmXPLeRkMA130ngm7tU0Dwsm5tVcoDQHCFBbLpJMDR1JEhNA5UrU9vA52t6b/y9zXLeLp3E6h/RlIYvdX6oWQAAAHZ6VFh0U01JTEVTMiByZGtpdCAyMDIxLjA5LjUAAHicXc1BCoAwDATAr3hUSEM2MWrpc3LvC/p4a8EKXkLCsJtAVK0R0QeWtiZlE/edkvDpVBJY5HBQX/oprFnd7GXwiQx9VGFuVJQPkYvks0kz/KsezfPxwK3dFj4f9nVDrrsAAADEelRYdHJka2l0UEtMMyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOIOYC4gZGNocMIM3MzMjuoAFmwAXYIAIsSAJwpRYgBiMzTAlMLzcDYwYTI1MCE3MGEzNLAgtrBhMrWwIbewI7RwYTB0MCO3OCCBMbAwc7MxMjKwszOxureBlQIyPcWax9wgcYGBz2gzhQtj2IrXm1ASh2AMx+eGyqHUycl+eO/bmQ2WB2frGaA1B8GZL4fiT1+5HMAbPFABtkKQsCIoGUAAABDHpUWHRNT0wzIHJka2l0IDIwMjEuMDkuNQAAeJx9UkGOwyAMvPMKfyDIgA3h2CRVVVUlUje7f9h7/6+aVolTqQUyknEmjmeMgbpu0+X/DtvykzEA2HhyzvAXENFcoQYwHE/nAuNyGNbMOP+W5QcyOITnfqcelvm6ZhyM0HkbkJkCdGgTS2n5xCK+gpXpoeyYDWKoJZ2kIyODs4xfiCREtD57Ds2CLDxnk8vO9RJ4F9jzB14UnrcRMeVYpeC3HyeRshXsGhX7fYctc3I1Z9PcNUQfy/Q2gNdIhrlMOhISePWdBEHdpQr1sG5Wq+QAUR0hQVLdJOhVHQmyaqB6ZbY28Pma9o3v26zn9dJJbB7RlIYvx7KY2gAAAHt6VFh0U01JTEVTMyByZGtpdCAyMDIxLjA5LjUAAHicXczBCYBADETRVjwqJCGTGHWxAXsQT7lvBRavgqzg8fOYSdRMy9zrdqRVdGfPJq4RI7HKHLS2fhOiOgUIcpeKFQv3FyEzCuw2g4fTajKpLqQfcbO25d8zP9fDeQG2ACD2ZRw29gAAAMN6VFh0cmRraXRQS0w0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4g5gLiBkY2hwwgzcyMYLA7aIAZbBCahd3BAkQzMmMqhSmBC3AzMGYwMTIlMDFnMDGzJLCwJrCyZTCxsSewc2QwcTAksDMniDCxMXCwMzMxsrIws7OxipcBdTLC3cXaJ3yAgcFhP4gDZduD2JpXG4BiB8Dsh8em2sHEeXnu2J8LmQ1m5xerOQDFlyGJ70dSvx/JHDBbDABQLilL2uonYAAAAQx6VFh0TU9MNCByZGtpdCAyMDIxLjA5LjUAAHicfVJBbsQgDLzzCn8AZIwN4bhJVlVVLZHatH/off+vml0lJFIXiCXjTCaeMQbq+pw/fu+wL5qNAcDOk3OGn4CI5gY1gfH69l5gWi/jVpmW77J+QQaP8Nhn6GVdblvFwwSWXEARDmDRJVFq/cQhPpMNSSdkBxiggPVajoIC3gm+ALIyoqNMErqEooTeJZ+9HzQhH4TkH1xUPnIRMeVYpeCrHycF7oS2wzgcO+yZk6s5u2bbEX0t82kAz5GMS5nbSFiDmu+sEZq7XKN5WLc0q/QAsTnCGqnpZo2hqWON3DRwvTJ7G/h4zcfGj23W83bpNDd/yEGGJLHRT5EAAAB7elRYdFNNSUxFUzQgcmRraXQgMjAyMS4wOS41AAB4nF3MwQmAQAxE0VY8KiQhk5hVsQF7EE+5W4HFu4Ks4PHzmEnkmbaf25GZluiunk1cI0ZilSlobf0mRLUECFJLxRYL9xchExZYNYOH02pSVGfSj7hZ2/LvmZ/r4boBr58g61VJQlkAAAClelRYdHJka2l0UEtMNSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5gZGfIANLMjExsDhogBgs7hGZmcwBLMDNiY0CUckD1MnIzMCowMmUwMTEnMLNkMLGwJrCyZTCxsSuwMSaIMLIxsrGyMDOJZwEVM8JdEJT1056B4cB+EOehmxqQ7QBj74eJA9Xsh4lD2fZIauyR9NpD1djDxMUAtBMj6DNZRiQAAADmelRYdE1PTDUgcmRraXQgMjAyMS4wOS41AAB4nH1S2wqDMAx971ecH7Ck2qp9nBfGGFbY3P5h7/t/lrBp9GFNGkjC4SQ51EDsNlxfb2xWDsYAlHkxRjwrIjITJEE3ni8J/XLq1k4/P9JyR8tO4kfkaZmnteOQ4Gz0bQgNCmcDiYEs/ZIVWKLnbu1jcBEF2Sb8AVbMWCgyQ+mZstDhGc5wQGaAtQC34ZnZzf6cDGGLWfXJ8I1pOOj6Vbqb06BKi5eqp+eoVDUvodKIB72fC9R6pedo9BbH0erKnstyv9l+D6nXv8K5+QBjGnlT/DEHwQAAAGB6VFh0U01JTEVTNSByZGtpdCAyMDIxLjA5LjUAAHic80s2zEsGAkN/hRoNQz1LEwtTMx1dQz1THWsDPTMTS1NDSx1dAz1zIF8XIQCW14Urh8rD+OjKUU2DyMLUguQ0awDBExw/9aUw1QAAAKh6VFh0cmRraXRQS0w2IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAHYobmBkZ8gA0syMTGwOGiAGCzuEZmZzAEswM2IyYEq4GRgVGJkymJiYE5hZMphYWBNY2TKY2BgTRBjZGNlYWZiZxOOAChnhtnpOUnHYnhutCuJMUum0V/UUWgJie05aYvfQbdl+EDvv9rT9CPa3/Y3m+qpI4vZI6sFsMQDyAya02rXjwAAAAN16VFh0TU9MNiByZGtpdCAyMDIxLjA5LjUAAHicfZFRCsMgDIbfPUUuMInR1vq41jLGqIWt2x32vvuzWHFaGCYGon4k8VdAtLu/vT/wM/JCAGBjOefgpRFRLBATGOfLNcC0ncd8Mq3PsD3AsmP0I3ne1iWfKAhAsrPKkAOUuFuVZI5gAiUxcacGqLkgSk0JVJKcQz38AQ1X5HtlB+7eJLtEOtrJRu/+ULJR0dZDNrg5+INaSb9xDb7oF52KTIZDFzFMjPLk6F15F2+gL9MbDltmNBxUj1I3jvv85ZyLL77YbuplDd6lAAAAZ3pUWHRTTUlMRVM2IHJka2l0IDIwMjEuMDkuNQAAeJzzSzbMS05OzjNUqNEw0jM1NzQx1jHQsTbUM4AxDfSMjQxNjCx1dA31jCwtDUx0rIEsQ3MLU3NUIUsjkJABkjRcFm4GTESzBgBVlRmFFU7SowAAALl6VFh0cmRraXRQS0w3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4obmBkZ8gA0syMTGwMGiAGCweEZmJzgPDZHMAKmBmJYXAzMCowMmkwMTIrMLNkMLGwJrCyZTCxsSewc2QwcTAniDCyMXOws7GyiJcBNTDCnRMaqurw0G3ZfhBn9apX9pZ9yaogNlTcHiK+ys6y7/FiiPjVfTD1oaFf9yP0ah1gjjBXRRK3R1IPZosBAPiHMSX0fFtpAAAA93pUWHRNT0w3IHJka2l0IDIwMjEuMDkuNQAAeJyFUltqxDAM/Pcp5gJr5Eec6HOTLKWUdaBNe4f+7/2plCVVQsHVWGBbk7EecVB7n9++H/i1ODsHUGMxM74SEbk7dIPx9vJaMa3Xcb+Zls+6foAFpDgzr+ty328CKqLvhiSGS/CRmdIA8rSZfRoxIfiNlw7hP7yExQQbeln0yKen3qUh2AlR4jmUUvpmikWZwfP/zF6Z0ZeyMRuPDyfJhiKfsmwQb3U+DeA5knGps41EEa3ximT9lRiytVHRWbPkgGIdyeK9lZ3FBysui7OVkNWPiR7T0vP+j8ne/QDyTIO7j833gwAAAHR6VFh0U01JTEVTNyByZGtpdCAyMDIxLjA5LjUAAHic83PWsPXXTDZMBgFDhRoNIz1TC2NjYx1dQz0jS0sDEx1rQz2QgLGOgY41TBIuZ6BnbAyT1DXQMzE0MzMzR9ILZFkaogkZ6ZmBVRkgSSNk4YbAhDRrAFftIhyrn/ggAAABBnpUWHRyZGtpdFBLTDggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRg4GDSDNzMTmAKZZ2B0sQDQjM5tDBojBzMgOkWGGqYBL4GVA1HIzMGowMTIlMDEnMLNkMLGwJrCyZTCxsSewc2QwcXAmcHJlMHExJnCxJogwsTFysbIAHcLGzsHJxSreBzSAEe7ebf8e7JeNl3QAcaT8tu3XkMy3B7GndioeMPTesBfE9jDkORBldmw/iH38puP+Xdf+gdmbE9bbPeuqALNv+D62v/x0C5hdwmnhoB90ch+Irb5RyUH6bgfYzEVveu2raw+C2ctPCNtc2PDbDsQWAwAhTz0bAV4rOgAAAVN6VFh0TU9MOCByZGtpdCAyMDIxLjA5LjUAAHicfVJJbsMwDLz7FfxABG5aeGzioCiK2ECb9g+99/8o6SCRAwiVPIJEj7iNJojxMb///MJj8DxNAPjPZ2bwLYg4XSA2cDy/vi1wur4c75bT+rVcP4EIiP2Oz2fuy3W93C0EKxwo1VxrFeAkVtTNmHAb/SrDKYjKytn8v4lYbQOiwAIHTpkVmeHghFaw0YCp4ZITGWZs4Txry6IDZg6fGFkyWzDN0HgUvbhPTOJJSo4rVj28DYjViV53zY1kK4yEyyh2cyKnVrO3KDyKCWMeEG0jZmUs7K6xGOsoRcItNGGrTX2TiYryiEhbMYiGHJKoUW4yIJ6X+UnUm8zHdZm7zBzoYqpDumQa6LrEzL35foDSO6yO2vuojta7pQ7rPVEH7WvXWIh2RWosj9yIb4ayr25fS5zvz9330x8xQp0faVCGRwAAALJ6VFh0U01JTEVTOCByZGtpdCAyMDIxLjA5LjUAAHicHY47DsJADESvQgnSxhr/dm1F9HQcAFGlzwlyeGxcPvnNzPt58Od8fY/zkKOP5XbdN6bla60hpDlNx17ExGQOUKrmikJCLgYZGwgxEcg/5ITzKMEtvFV0mEg2y0QWA6mJq7ebq+xSq3N5/E1jrapdKJZ79JOmCryRm2AOJswUb4sRNafqmKd1NJAQgGurJXvoeFw/LhEwrKs7C1wAAAEDelRYdHJka2l0UEtMOSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABuIOYB4gZGdoYMIM3MyMTmoAFisLBDaGY2B7AEMyNCAKIALoGXAVHLzcCowMiUwcTEnMDMksHEwprAypbBxMaewM6RwcTBmcDJlcHExZjAxZogwsTGyMXKwszExsbOwcnFKt4HNIAR7t5t/x7sl42XdABxpPy27deQzLcHsad2Kh4w9N6wF8T2MOQ5EGV2bD+Iffym4/5d1/6B2ZsT1ts966oAs2/4Pra//HQLmF3CaeGgH3RyH4itvlHJQfpuB9jMRW967atrD4LZy08I21zY8NsOxBYDAFhvPUolPAuNAAABUnpUWHRNT0w5IHJka2l0IDIwMjEuMDkuNQAAeJx9UktqAzEM3c8pdIEO+trWMsmEUkom0Ka9Q/e9P5UmJE7A1B4ZW/P89HmeIMfH8v7zC/fByzQB4D+fu8O3IOJ0gtzA/vj6tsLhstvfPIfz13r5BCIgjjsxn7G7y/l08xCs8EJztVqrAM/iRcONM26jX2U4JFBZ2Tz+u4jXNgBKMvJsrMgMLwFoBRsNkJqUPJOjYUty02aiA6QlJ2aWzJ5Id3QeRS/BibNEkmJ5xWuE9wGwBjDqrtZItsJIuIxitwDy3KpFi5JRXBhtAPQNaMpYOKixOOsoRcItNGGrTWNjREV5BKStGERHTknUyZoMgMd1eRL1KvP+vC5d5pzcxdQw6ZJpWtclp/XmxwFK77CG1d5HDWu9WxrmvScaRo+1ay5ED0VqLvfciK+O8ljdYy15vj332E9/LaedHXnN0v4AAACqelRYdFNNSUxFUzkgcmRraXQgMjAyMS4wOS41AAB4nB2Oyw3DUAgEW8kxkZ7R8nuA3EOa8N0VuPhAOI6Y3f1efF/3Jdccy+t5H0zhEbGEtLbpOpuYmOwFKtWKbCTkYpB1gJAbifpDLjivFtzSR8WEidSwKlQzkJq4+rgVbbfaneH5N421q06hDPecJy0V+CA3wV5M2CU+FiN7Ttcxb5tooCAA91Yr9tT1eX4P4i9uWvWWDgAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Draw.MolsToGridImage(\n", + " [Chem.MolFromSmiles(smiles) for smiles in tsne_df[tsne_df[\"compare\"]==3][\"smiles\"][0:10]],\n", + " molsPerRow=5,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "4641d174-dc32-4700-9424-c6947c4e28c6", + "metadata": { + "tags": [] + }, + "source": [ + "### 2.2 Comparing single custom filtering steps" + ] + }, + { + "cell_type": "markdown", + "id": "0352839b-651a-4386-ade2-d46cf5c6fd16", + "metadata": {}, + "source": [ + "Read in file where single filtering step results are saved." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "9e736d0c-f313-497f-82cf-931743a99989", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
smilessubpocketbool_painsbool_brenkbool_ro3bool_qedqedbool_bbbool_sybasybaretro_countbool_retro
0Nc1c[nH]c2ncccc12AP11110.5659001130.950959704.01.0
1N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1AP10110.7471850117.682659NaNNaN
2CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1AP10010.656515010.611823NaNNaN
3Nc1ncnn2cccc12AP11110.5638031128.754427188.01.0
4Cc1cc(N)[nH]n1AP11100.4888541115.727015NaNNaN
\n", + "
" + ], + "text/plain": [ + " smiles subpocket bool_pains bool_brenk \\\n", + "0 Nc1c[nH]c2ncccc12 AP 1 1 \n", + "1 N/C(=C1\\C(=O)Nc2ccccc21)c1ccccc1 AP 1 0 \n", + "2 CC1=C2/C(=N/c3ccccc3)N=CN=[N+]2C=C1 AP 1 0 \n", + "3 Nc1ncnn2cccc12 AP 1 1 \n", + "4 Cc1cc(N)[nH]n1 AP 1 1 \n", + "\n", + " bool_ro3 bool_qed qed bool_bb bool_syba syba retro_count \\\n", + "0 1 1 0.565900 1 1 30.950959 704.0 \n", + "1 1 1 0.747185 0 1 17.682659 NaN \n", + "2 0 1 0.656515 0 1 0.611823 NaN \n", + "3 1 1 0.563803 1 1 28.754427 188.0 \n", + "4 1 0 0.488854 1 1 15.727015 NaN \n", + "\n", + " bool_retro \n", + "0 1.0 \n", + "1 NaN \n", + "2 NaN \n", + "3 1.0 \n", + "4 NaN " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "saved_filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\")\n", + "saved_filter_results.head()" + ] + }, + { + "cell_type": "markdown", + "id": "fe71904a-3035-4ed6-8667-617988dd5997", + "metadata": {}, + "source": [ + "Analyze which fragments in the chemical space are rejected and accepted by the single filters." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "4ff74927-95df-44ff-9d27-c243b7e39e06", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAakCAYAAADJC83RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfr/8ff0nplJrySTQEIChCq9o9jQVVm766pb3Oo26+oWd9Vdt7iufl23KbqWtcsPO0pROoICgUAIySQhvc1Mprfn+f0xm5GQUBQQ0PO6Lq/LZGaeOTMTyIf7nHMfhSzLMoIgCIIgCIIgCIIgCIIgfGbKkz0AQRAEQRAEQRAEQRAEQTjdiSKbIAiCIAiCIAiCIAiCIBwjUWQTBEEQBEEQBEEQBEEQhGMkimyCIAiCIAiCIAiCIAiCcIxEkU0QBEEQBEEQBEEQBEEQjpEosgmCIAiCIAiCIAiCIAjCMRJFNkEQBEEQBEEQBEEQBEE4RqLIJgiCIAiCIAiCIAiCIAjHSBTZBEEQBEEQBEEQBEEQBOEYiSKbIAjCUfr1r3+NQqE42cMQBEEQBEH4UuvPZN3d3Sd7KEnXXXcdZrP5ZA9DEISTTBTZBEEQjtI3v/lNNmzYcLKHIQiCIAiCIAiCIJyC1Cd7AIIgCKeL/Px88vPzT/YwBEEQBEEQhM8oGAxiMBhO9jAEQfiCEivZBEH4wurfSvDxxx9zySWXkJKSgtVq5ZprrqGrqyt5v+eff56FCxeSk5ODwWCgvLyc22+/Hb/fP+T1DlRUVMSiRYt4++23mTBhAgaDgZEjR/L4448PuF8gEODmm2/G4XCg1+tJTU1l0qRJ/Pe//z1xb4AgCIIgCMIX2P79+w+b8fpz2iuvvML48ePR6/XcfffdALS3t3PjjTeSn5+PVqvF4XBw9913E4vFko9vaGhAoVDwpz/9iQceeACHw4HZbGbatGls3LjxiONbt24d6enpLFq0aFCuFAThi0msZBME4Qvv4osv5rLLLuM73/kOu3bt4he/+AXV1dVs2rQJjUZDbW0t5513Hj/+8Y8xmUzs2bOH+++/n82bN7Ny5cojXn/79u387Gc/4/bbbycrK4t///vffOMb32D48OHMnj0bgJ/+9Kc89dRT3HPPPYwfPx6/38/OnTvp6ek50S9fEARBEAThC+lIGQ/go48+Yvfu3dx11104HA5MJhPt7e1MnjwZpVLJL3/5S0pKStiwYQP33HMPDQ0NLFmyZMDzPPLII4wcOZIHH3wQgF/84hecd955OJ1OrFbrkGN74YUXuPbaa7nhhht4+OGHUalUJ/S9EATh1CCKbIIgfOFdcskl/OEPfwBg4cKFZGVlcfXVV/PCCy9w9dVXc9dddyXvK8syM2bMoLy8nDlz5rBjxw4qKysPe/3u7m7WrVvHsGHDAJg9ezYrVqzg2WefTRbZ1q1bx8KFC/nJT36SfNz5559/vF+qIAiCIAjCl8aRMh5AZ2cn1dXVlJaWJh/3ne98B5fLxa5du5L5bcGCBRgMBm6++WZuueUWKioqkve3WCy8/vrryUJZbm4ukydP5q233uKKK64YNK7777+fO++8k/vuu49bb731hL1+QRBOPWK7qCAIX3j9IavfZZddhlqtZtWqVQDU19dz1VVXkZ2djUqlQqPRMGfOHAB27959xOuPGzcuGdAA9Ho9paWlNDY2Jr/XH8Ruv/12Vq9eTTAYPB4vTRAEQRAE4UvrSBkPoLKyckCBDeD1119n3rx55ObmEovFkv+de+65ALz//vsD7n/++ecPWInWPwF7YNaDxGTtjTfeyK9+9SueffZZUWAThC8hsZJNEIQvvOzs7AFfq9Vq0tLS6OnpwefzMWvWLPR6Pffccw+lpaUYjcZkj4+jKYalpaUN+p5Opxvw2Iceeoj8/Hyef/557r//fvR6PWeffTZ//OMfGTFixLG/SEEQBEEQhC+Zw2W8fjk5OYMe19HRwWuvvZbcUnqw7u7uAV8fnPV0Oh3AoJwYiUR4/vnnGTVqVLJgJwjCl4sosgmC8IXX3t5OXl5e8utYLEZPTw9paWmsXLmS1tZWVq9enVy9BuB2u4/rGEwmE3fffTd33303HR0dyVVtF1xwAXv27DmuzyUIgiAIgvBlcLiM1+/gQ6sA0tPTqays5N577x3yurm5uZ9pPDqdjlWrVnH22Wdz5pln8vbbb2O32z/TtQRBOD2J7aKCIHzhPfPMMwO+fuGFF4jFYsydOzcZvPpnJPv94x//OGHjycrK4rrrruPKK6+kpqaGQCBwwp5LEARBEAThi+pwGe9wFi1axM6dOykpKWHSpEmD/vusRTaA8ePH8/7779Pc3MzcuXPp7Oz8zNcSBOH0I1ayCYLwhffKK6+gVqs566yzkidPjR07lssuuwyv14vdbuc73/kOv/rVr9BoNDzzzDNs3779uI5hypQpLFq0iMrKSux2O7t37+app55i2rRpGI3G4/pcgiAIgiAIXwaHy3iH85vf/IZ3332X6dOnc9NNN1FWVkYoFKKhoYE333yTv//97+Tn53/mcZWXl7NmzRrOPPNMZs+ezXvvvXdM1xME4fQhVrIJgvCF98orr7Bnzx4uueQSfvnLX3LBBRewfPlytFotaWlpvPHGGxiNRq655hpuuOEGzGYzzz///HEdw/z581m2bBnXX389Cxcu5A9/+APXXnstr7322nF9HkEQBEEQhC+Lw2W8w8nJyWHLli0sXLiQP/7xj5xzzjl87Wtf4/HHH2fcuHHHZYtncXExa9asQaFQMGvWLOrr64/5moIgnPoUsizLJ3sQgiAIJ8Kvf/1r7r77brq6ukhPTz/ZwxEEQRAEQRAEQRC+wMRKNkEQBEEQBEEQBEEQBEE4RqLIJgiCIAiCIAiCIAiCIAjHSGwXFQRBEARBEARBEARBEIRjJFayCYIgCIIgCIIgCIIgCMIxEkU2QRAEQRAEQRAEQRAEQThGosgmCIIgCIIgCIIgCIIgCMdIfbIHcKqRJInW1lYsFgsKheJkD0cQBEEQhNOALMt4vV5yc3NRKsUc5qlK5DxBEARBED6tT5PzRJHtIK2trRQUFJzsYQiCIAiCcBrav38/+fn5J3sYwiGInCcIgiAIwmd1NDlPFNkOYrFYgMSbl5KScpJHIwiCIAjC6aCvr4+CgoJkjhBOTSLnCYIgCILwaX2anCeKbAfp3zqQkpIiwpcgCIIgCJ+K2IJ4ahM5TxAEQRCEz+pocp5oGiIIgiAIgiAIgiAIgiAIx0gU2QRBEARBEARBEARBEAThGIkimyAIgiAIgiAIgiAIgiAcI9GTTRAEQRA+J7IsE4vFiMfjJ3sowqekUqlQq9Wi55ogCIIgCEMSOe/0dTxzniiyCYIgCMLnIBKJ0NbWRiAQONlDET4jo9FITk4OWq32ZA9FEARBEIRTiMh5p7/jlfNEkU0QBEEQTjBJknA6nahUKnJzc9FqtWJF1GlElmUikQhdXV04nU5GjBiBUik6bgiCIAiCIHLe6e545zxRZBMEQRCEEywSiSBJEgUFBRiNxpM9HOEzMBgMaDQaGhsbiUQi6PX6kz0kQRAEQRBOASLnnf6OZ84T07CCIAiC8DkRq59Ob+LzEwRBEAThUEROOL0dr89P/BQIgiAIgiAIgiAIgiAIwjES20UFQRCADl8H1Z3VuMNubHobFRkVZJmzTvawBEEQBEEQhGMkcp4gCJ8XUWQTBOFLb1v7Nh7a9BD1rvrk94rtxdw05SbGZY874uOb3E1UdVTRG+ol1ZDKmMwxDLMNO4EjFgThRPj1r3/N0qVL2bZt28keiiAIgnCciJwnCAJ8fjlPFNkEQfhS6/B1DApeAPWueh7a9BC/W/C7w850bti/gfvW3EdVZ1Xye2Myx/DzWT9nWsG0EzZuQRASRGFMEARBOBSR8wTh9HY65jzRk00QhC+16s7qQcGrX72rnurO6kM+tsndNCh4AVR1VnHfmvtocjcd17EKgiAIgiAIR0/kPEEQPm+iyCYIwpeaO+we8LUCBWaNGZPGhE6lozPQiTfsHfKxVR1Vg4JX8rbOKqo6hr5NED4rb9jLzo6dbGzeyM7OnYf82Tye3n77bWbOnInNZiMtLY1FixZRV1eXvL25uZkrrriC1NRUTCYTkyZNYtOmTcnbly1bxqRJk9Dr9aSnp3PJJZckb4tEItx6663k5eVhMpmYMmUKq1evTt7+xBNPYLPZWLp0KaWlpej1es466yz279+fvP3uu+9m+/btKBQKFAoFTzzxBAAej4dvf/vbZGZmkpKSwvz589m+ffuA1/b73/+erKwsLBYL3/jGNwiFQifgHRQEQRBOFpHzhNPN5531RM47/kSRTRCELzWbzgYkQpdRY8Smt9HoaWRP9x7qXHXs9+xnybYlNLgbBj22N9R72Gu7wq4TMGLhy6rB3cCSbUt4afdLvL3vbV6qfumQP5vHk9/v56c//SkffvghK1asQKlUcvHFFyNJEj6fjzlz5tDa2sqyZcvYvn07t956K5IkAfDGG29wySWXcP755/Pxxx+zYsUKJk2alLz29ddfz7p163juuefYsWMHl156Keeccw61tbXJ+wQCAe69916efPJJ1q1bR19fH1dccQUAl19+OT/72c8YNWoUbW1ttLW1cfnllyPLMueffz7t7e28+eabbN26lQkTJrBgwQJ6exN/bl944QV+9atfce+997JlyxZycnL429/+dkLfS0EQBOHzJXKecDo5GVlP5LzjT/RkEwThS60is4ISewltvja6/d00ehrxhD2J29Ir8Ef8bGndQrOnmR9M/sGARrep+tTDXtuus5/QsQ/FG/bS6G7EF/Vh1poptBZi0Vk+93EIx5c37GVZzTJ6gwMDf2+wl2U1y7h+3PUn7HNevHjxgK8fe+wxMjMzqa6uZv369XR1dfHhhx+Smpr48zB8+PDkfe+9916uuOIK7r777uT3xo4dC0BdXR3//e9/aW5uJjc3F4Cbb76Zt99+myVLlnDfffcBEI1G+b//+z+mTJkCwJNPPkl5eTmbN29m8uTJmM1m1Go12dnZyedYuXIlVVVVdHZ2otPpAPjTn/7E0qVLeemll/j2t7/Ngw8+yA033MA3v/lNAO655x7ee+89sZpNEAThC0TkPOF0cbKynsh5x59YySYIwpdaljmLGyfeSDgWRkLCFXIhyRKlaaVcPupyOv2d5Fvz8UV9vFf/HtvbP1mGPCZrDGMyxwx53VEZoxhmG/a5butrcDfwyIeP8Mf1f+QvG/7CH9f9kUc+fOSEr3QSTrxGd+Og0NWvN9hLo7vxhD13XV0dV111FcXFxaSkpOBwOABoampi27ZtjB8/Phm8DrZt2zYWLFgw5G0fffQRsixTWlqK2WxO/vf+++8P2KagVqsHzIqOHDkSm83G7t27DznmrVu34vP5SEtLG3Btp9OZvPbu3buZNm1g0+qDvxYEQRBObyLnCaeLk5X1RM47/sRKNkEQvvQCkQCjM0dTZCuiMqsSvUpPljmLJduW4HQ7GWYdRlegi05/J66Qi2xzNlnmLIbZhvHzWT9PNsXVKDWMzR5LeVo5FZkVbGjegCRJdAW6sOqtXFh2IUW2ouM6dm/YS21PLe6gmzf3vcnbdW/TF+5DqUjMoezo2IE/4ufWGbeKmc7TmC/qO6bbj8UFF1xAQUEB//rXv8jNzUWSJEaPHk0kEsFgMBz2sYe7XZIkVCoVW7duRaVSDbjNbDYP+FqhUAx6/FDfO/DaOTk5A/p+9LPZbIcdsyAIgvDFcjrnPEickFrXXcfLNS/z9r5EzlMpE783Rc774jhZWU/kvONPrGQTBOFLrzvYzRu1b7C3Zy+v7H6F2t5a/rP9P+zt3UtMiiEjA9Dua2fpnqXUdif6CHjDXixaCz+c/EMeOfcRHj73Yc7IPQOD1sD6pvW8sOsFPmj8gFxLLp6Qh2U1y47rTGeDu4G/bvord668kzp3HS9Uv4DT5SQQDRCTYgC4Qi5e3/s61V2HPj1LOPWZNeZjuv2z6unpYffu3dx1110sWLCA8vJyXK5PetBUVlaybdu2ZP+Lg1VWVrJixYohbxs/fjzxeJzOzk6GDx8+4L8DtwTEYjG2bNmS/Lqmpga3283IkSMB0Gq1xOPxAdeeMGEC7e3tqNXqQddOT08HoLy8nI0bNw543MFfC4IgCKe/0zXnAWxr38YdK+5gV88uXqx+kTpXHa6Qi0g8Aoic90VyMrKeyHknhljJJgjCl55BbSAmxegKdFFoLSTHksMKZ+IXhoyMWqkmRZdCOBZOzHQGOmlwNyT7JrhDbnZ27gRgRv4MuoJdZBozOdd+Lr3BXhrcDRSkFNDqa6XR3cjorNFHNa7+vhuBaACD1kCHtwNvxItNb6PEXsLS3UtZ17SOYCxITIrR6e8EIBgNAmDUGFEqlLhCLprcTUzJnzLguqKfx+mj0FZIqiF1yG0EqYZUCm2FJ+R57XY7aWlp/POf/yQnJ4empiZuv/325O1XXnkl9913HxdddBG/+93vyMnJ4eOPPyY3N5dp06bxq1/9igULFlBSUsIVV1xBLBbjrbfe4tZbb6W0tJSrr76aa6+9lj//+c+MHz+e7u5uVq5cyZgxYzjvvPMA0Gg0/PCHP+Shhx5Co9Hwgx/8gKlTpzJ58mQAioqKcDqdbNu2jfz8fCwWC2eeeSbTpk3joosu4v7776esrIzW1lbefPNNLrroIiZNmsSPfvQjvv71rzNp0iRmzpzJM888w65duyguLj4h76UgCIJwcpyqOU8KBpH9fuRQCEmroS3uZrunBovOQkVGBQAPbXqIelc9Z+Sekcx5MSlGX7gPu96OSqkSOe8L4mRkPZHzTgxRZBME4bTX4eugurMad9iNTW+jIqOCLHMWcHRBI9uSTXl6Odvbt7OwZCESUvI2k8aEWWsmw5hBi7cFSASy/uAVjoWp7qrGprNhN9gxaAykksqHrR/S0teCVq1Fp9Lxg8k/oMPfcdRLvfvDnTfspSytjMc+foza3lrSjeno1XpyTDksKluUnH3t3zYAEJfjSLJETIqhVWkBUCqVA6574C/wVEPqCdviIBwfFp2FC8suHPKz+0rZV05YeFYqlTz33HPcdNNNjB49mrKyMh566CHmzp0LJGYXly9fzs9+9jPOO+88YrEYFRUVPPLIIwDMnTuXF198kd/+9rf8/ve/JyUlhdmzZyevv2TJEu655x5+9rOf0dLSQlpaGtOmTUsGLwCj0chtt93GVVddRXNzMzNnzuTxxx9P3r548WJeeeUV5s2bh9vtZsmSJVx33XW8+eab3Hnnndxwww10dXWRnZ3N7NmzycpK/N1w+eWXU1dXx2233UYoFGLx4sV897vf5Z133jkh76UgCILw2XwRc57k8RBYtox4fX3ye3ZHEWWzRvPjdXeRY8nh6jFX0+ptBQbmPEgU2iLxCAZlYrueyHmnv5OR9UTOOzEUsizLJ/xZTiN9fX1YrVY8Hg8pKSkneziCIAyhP1D5o35CsRDP73qe3V27kwWnYnsxN025CZvedlRBo7qjmuruah77+DH29e7jmjHX8OqeV9GpdWSbs4lJMXZ370aSJex6O/efdT/r968HoNPXiUKhYKVzJaFYCE/Yg0apIUWXwryiebhCLtp8bZSllXFWyVmMyhjFmKyhm+ge+PqWbFtCb7CXkekjeXLbk+zuTjT/NKgNGDVGQrEQRbYiFpcv5tmdz3L9uOu554N7cLqdyfvp1Xp0ah0FKQXcM/8eVKjY07uHUCyEWWsmEovQ4e8gLsdJNaSe0BMqv+xCoRBOpxOHw4Fer//M1xnwjwmNmULbF3t2+oknnuDHP/4xbrf7ZA8FOPznKPLD6UF8ToJw6vui5zwpGCTw0ksDCmz9FI4i/l9ZlL9s+xtFtiIWjVg0ZM4DsGgtmLQmkfNOAccr58GXK+t9UXOeWMkmCMJppaa7hmd2PEOrr5ViWzGrG1fT5m3DYXfgi/jQqXQ0e5r58/o/c9XoqyhMKcSoNtLmayMux4c8BrvAVsDqptV8fdzXicQiaFQaJudPZm/3Xqo6q0gzpCWD16LSRYnl+QoVGcYM8sx5LK1Zik6tI8uUxdqmtaQZ0+gOdLO3dy8Oq4NGdyM9gR5yLbk0e5qx6CyHnU088HShSCySLLDpVDp6gj3Jo+ebGps4p+QcpuRNoc3bxkUjL2LpnqU43U4UCgUKhYKClALOH3E+rqCLhzc/zNa2rQDY9XbmO+Yzo2AGLd6W5KlFR9ricLy3IDS5m6jqqKI31EuqIZUxmWMYZhv2ma/3RWfRWY56G4ogCIIgnG6+DDlP9vuHLLAByM4Gpk8/n18Ee2npa2Fe4bwhcx6AUqEUOe8LSGS9058osgmCcNrY17OP+9fdT70rEUysOivb2rdh19tpdDdSnFrMjvYdtPvaiUpRMkwZrG1cy5VjrqQgpYD9ffuTAezAoGHRWThvxHnJ2VCVQsWUvCkEo0EKbYWEY2EqMioozyjnkpGX0OxpRqvUsqxmGcNTh7O8bjmSLOGwO6jIqCAQDeAJe9jYvJESWwmd/k7C8TAapQZf1Dco/B3swK0GfZE+FChQK9UEogG0Ki1KhZKYFEOpUOIJe1jTuIYJORMYnTmauUVzmctcZFlGr9Fj1pgZmT6Sv334t+QR7yqFCk/Yw0rnSiKxCJPzJ9MT7DniFofjvQVhw/4NyRO7+o3JHMPPZ/2caQWfzxHbgiAIgiCcGr4sOU8OhQ77PmiiEpFYBJVChS/iG5TzZkmzkJExaU0i5wnCKUgU2QRBOOUMNYsGsGb/mmTwAgjHw0TiEVwhF8X2Yvb17KPd105cTpxAE4lH2Nu7l/9W/ZcLyy4kw5hBu78dGHwMdpGtiOvHXZ98XovGwqLSRXT5u5LLtTVKDe83vo9BbWBV4yp2dOwgNyUXjUpDNB7FF/ERjUU5v+x8jBoj/oifcdnjsBvsPL/zeVwhV7KnxuFmEy0aC9mmbMLxMGmGNLwRL9F4lL5IH5AInWatGZ1ah0lroivQhUFjYGnNUq4fez3usBt/1I9NZ8OsNbOuaR2NnkZUShUqhYpQLERcjhOIBtjn2keRrYhwPIxJY2JV/apD9jw5OHgBQ84YH40md9Og4AVQ1VnFfWvu45HzHhEznQLXXXcd11133ckehiAIgnAcnao5T6/W837j+5g0JlY2rGR3927yrfnHPecpjrCdMKySUSqVhGIhbHobwVgwmfOuGnMV7qCbqBTFrreLnCec1r6oOU8U2QRBOOkO7L0BsKZxTTIchWNhVEoVM/JnEIlGGJc9jkg8gk6lI8eSQ35KPnq1HpveRnegG6PGiC+SeKxepSfXkouEhFVnxag1kk02XYGuIY/BHmp5dpY5C2/Yy66uXfxlw1/Y2LyRRSMW0RPoQa1Uo1Fq0Cg1yLKMTqnjyjFXsrxuOVWdVcTkGJWZlagUKn4+++esbVqLWqnGrDUfdjZRrVKzoXkDwWiQkekjKbIW4Yv6cKgcxKQYaqWaUDxEviUftVLN6MzRVGZVMqdwDm2+NtwhN3EpTo/Uw37PflxhF66QiyxTFjJyMpxC4pCEqBSlMruSP6z7A/v79idv6+95UmIvYUvLFnZ07ECr0mLVWdGpdcn7He0WhANVdVQNCl7J2zqrqOqoEuFLEARBEL4APmvOyzJlkWfJw6AxnPCc1+huZKVzJU/teIrKzMrkoQfReBSD2nBcc55XHUNV7ECqdw66TeEoYl3vNsxaMyPTRhKKhyi2FzMuaxyzhs2i3ddOMBZM5LygyHmCcCoSRTZBEE6K/kDT4m2hM9BJUUoRPcEednTsQKFQYFAb6PR38nH7x7R529Cr9FR3VfNi9YsYNUZUChXfnPhNRqaN5M19bzIyfSRd/i5iUgy7wU6mKZNwLExPoIf6cD07OnfQ5GkizZDGorJFhzwG+8ATrOx6O+nGdLZ3bGeVcxUftX2EJ+zBG/VS21ubCHayxLjscbT72plTOIe3696mrrcOhUKBXWfHE/LQ4e/gpeqXmDVsVrK/2lDhr/99ebf+XYanDseoMbKzYye3zbyNp3c8zRt73wBFIjBNL5jOrTNupamviXHZ41ApVGzv2M79a+9Ho9IwzDoMtVLNdyZ9hzZfG5F4hJgUw6w1E5fihONhILGlYGLORJ6ueppWbysmrSk5lnpXPX9a9ycuH305rd5W2n2J2WGdSodFa8GoNSaD2NGeptWvNzT4ePIDucKuT3U9QRAEQRBOHQfmvA5/BxmGDPRqPR+2fYg75MamsyEjs37/evZ79qNX69nduZsXd7+IQW1I5LwJ32Rk+kjerH2T8ozyE5bzVjasJNOUyfO7nqeqswqH3ZHMeQqFgpHpI3EFXcwcNvO45Lzn9/0/Lpw/DzMMLLQ5CqmdUsQPXj6fsdljkzmvMqsShUJBVWfVCcl5V46+kiy1lV+O/gHqqISs07LDu4/Xm95FRsaqs4qcJwifgiiyCYLwuevv+dDmbWNn506sOisNngam5E3hbx/+jagUZVz2OC4su5BOXycj00fyeu3rydOcvBEvxfZint3xLIsrFjM1byqBWAAZmXA8TIYxg0srLuXxjx+nL5zYYqlVaVEr1bhCrgFbEQ60rX0bD216KHl7RUYF+z37mV04m/19+5HkxJHvKoWKcCxMS18Lr+x+hW9M+AYb9m8g1ZhKTXcNerWeNGMa+Sn51PXWoVPrWN2wmvNLz0ev1pNqSD1k+GtyN6FAweqG1fSF+/BFfLxb/y7njDiHP5/9Z/b17kOtVKNWqrl/3f1olBqqOqsIxUKUpZfx8HkP83H7x4RjYSxaC/t69zEibQSF1kIC0QDesBeT1oRVacWitTA2ayxxOc6W1i1kmDKISTHCsTBxOY4CBVt9W1lUmli553Q5CUQDyS0KY7PGYtaa0aq07PfsR6vUMiJtxFFtJ0jVpx72drvOfsRrCIIgCIJw6jkw5+3o2JFscVGaWsq9a+4lKkWx6qyMzhzN+JzxWHVWXt+byHkWreWTnFf1Sc4LxoMnLOflpeRh1pgH9DTrz3mv1bzGotJFNHmasBvtg3JevasevVr/qXJeTIrxzdU/4bIRX2HWtEWoonG0RhOtcTfP1r7CtyZ863PLebvDu5lirUD37poBBb8ZjiLK5nybf9U+h1qpxulyipwnCEfptCqytbS0cNttt/HWW28RDAYpLS3lscceY+LEiQDIsszdd9/NP//5T1wuF1OmTOGRRx5h1KhRJ3nkgiD0O7DngyfkwW6w837D+7R4W4jEI0zJm8La/Wup6a7hxfiLzBg2g0g8wirnKoanDk+c3NTXjEljwuly8s+t/+Q3c3+DRZ8IGv6InzZfG5taNtEb7MVusFNsL0atVJNuTE8GjIOXvXf4OgYEL4AUXQpVnVUUWgtRKBQoFUoA2n3tFNuLkzOGH7V9xBl5Z1BoLWRUxig0Kg3dgW4a3Y2JwBPxAhCKhijPKOcrZV85ZEDpC/fxcvXL7O/bT4ouBZ1ax56ePTz+8eNUZFQwzDqMLn8Xrd5W+sJ9XDbqMupcdbiCLsrSynh488PEpThb27Zi0pgoshVxz/x7WDxyMWv2r6Er0EUgGiDNkMaYzDFkm7Pp8HegVCR6f/gjfmRkYlKMSDyCLMu4Qq7koQt1rjqUCiU55hysOiurnKvoDnQzMn0kADOGzeCaymsGNMgd6mSpMVljGJM5ZsitBP23C4Lw5SJyniCc/g7OeQaNgTZvGzU9Neyx7UnmvEg8wpbWLQRjQc4ffn5iFb996Jx399y7sWgt1LnrTkjOa+5rpjKz8pA5r6qzivmO+TisDkZnjkatVNMd6KbB1UBfuC+Rl5A/dc57yPcP/iLH2d6xHQWKk5Lz7jzj5kEFNkiccpquUFA+ophfbLiHHEsOKdoUZhfNFjlPEI7gtCmyuVwuZsyYwbx583jrrbfIzMykrq4Om82WvM8f/vAHHnjgAZ544glKS0u55557OOuss6ipqcFi+exHDwuCcHjesJfqrmqa3E2olCoyTZmMSBuRbKZ6oEZ3Y7KpakSKEIgGaPG2ANDkaeJMx5kAyMjs6tzFecPPo6Wvhb5IH1a9le3t20nRpWDT28gwZaBAgT/mJxaMMb1gOm/ufZO+cB9mrZlsczYGtYGxWWPZ2rYVtVJNp7+TsvSyQcveqzurB818RuIRILE9MxQNYdFa8IQ9bG/fzk+n/5Tndj7HtvZt5Fpyqe6q5o6ZdyQOHYj4cYfchONhUg2p5KfkE5filKWXsbBkIRad5ZBHpPcGe6l316NVaonGo8meGDIyu7p2MWvYLCRZorqrGr1anwxNM4bNYG3TWva59jG/aH7yMbu7d/NM1TN8c/w3me+Yz57ePYSiIaJSlEZ3I+F4GEmWcIfc9AR7kCQJo9ZIriWXmyq/zYLs6aSrUpBzNVxbdjn3b3mQdn87hbZCVtSvIBgLMjx1OD2BHoxaI+ua1qFX6blx0o1YdJZDnix156w7uXPWndy75t7kbRqlhgvLLmTh8IW0+lrpi/Qd8uj4A7d7HNy8VxCE04/IeYJw6jqWnBeX4sTlRP8whUIxIOcFY0H2e/ajVCrpCx865/miPpo9zcwtnntCcp4r5EKB4pA5T6VQ0Rfu40dTfoQr5BqQ86w6K1adFaVCOSDnScEgst+PHAqh0OtRmEwoDYZTJueV2Ev4x7y/UGkZDgVBOPMs5L4+AsuWQSCQuH69kxnTzmd46nBa+lqIS3GR8wThKJw2Rbb777+fgoIClixZkvxeUVFR8v9lWebBBx/kzjvv5JJLLgHgySefJCsri2effZYbb7zx8x6yIHwpNLgbeOyjx3h97+v0BHuISTEKrAVcXHYxZxWfxcS8iQPuf2Do0Sq1hGKfHGMeiUdQKhOziAoUAIRiIdQqNVadFafLiVlrJkWXgl6tx6A24I/6MaqNFNuLWfLxErQqLcPtw3GkOiiwFGDWmdnSugW1MvHXXTAWpKa7Bq1SO2Bc7rB70GvTqhL36T+906q3olAoyDHnsOSjJeRYcvjmhG+SakhFlhOzghmmDHqDvRjUBqw6KxISWpWWiqwKxmWNw6KzDDoi3RfxoUTJ7MLZ9IX7GG4fTrO3GQmJVEMqRrWRQCyAWqEmFAshyRI6tQ61Uo1WpcWgMVCSWsK6pnVkGDIwaoycO/xcVEoV/ogfX9iHjMzMopnk2/J5/KPH+aDpA0amj+T9xvc5u+RsJuRMYFPzJmRkJEnivwv/SeH6WuQVb/zv84BsRxG/WXALf9z+dwrsBTT3NdPS10K9q564HCdXmQskenw0uhtJ0aUc8mSpe9fcyyPnPcIj5z3Cvp59dAe70aq0bGzZyGrn6mToHOro+IO3e8AnzXvHZY879A+rIAinLJHzBOHUdGDOc4VcSLJEniWPC8suZNawWYzNHjugSHJwzgvHw8SkGDB0zpOR0ag02PS2Q+Y8tVLNlIIpJyznAbT6Wjkj7wwUrQNz3tcqv4ZBYyA/Jf+QOU+SJc7IOyOZ8ySPh8CyZcTrP8kpquJiIgvn4I/6T3rO06v0rLro/8Hb7+F3rvhkjA4H5q9/Hd+TTyYLbSZJTZOnCV/Eh16jJxgLipwnCEdw2hTZli1bxtlnn82ll17K+++/T15eHt/73vf41re+BYDT6aS9vZ2FCxcmH6PT6ZgzZw7r168/ZPgKh8OEw+Hk1319fSf2hQjCF4g37OW5nc/x+t7Xk8vTJVmipruG/0b/mzjdSWumLKMs+ZgDG8Fa9VYMAcOA66UZ0rDpbQSiAdRKNXq1nt5gLzMKZvB23dtIsoRNb8NmsKFRaihIKaA0rZR/bP1HstmsWqlmljSLj9o+wh/1Jw8mCMVCROIR8ix5+CI+vGEvbX1t7OzaSU+whxsn3ohNZ2NL6xZcYRd5ljzGZY+jqqOKb034Fh+3f0yuJZcJORPY07MHT9iDJ+Shy9/Fzs6deMNebplxC2/sfYPVjauTr2ts1lh+NPVHlKSVDDoivd3XztbWrfQGe1nfvJ6LRl6EK+Si0FpIVUdVoq+HtZBQLIRWraXEXkIwGkSpUJJqSKW6s5rmvmZ8YR92gz1xvHw8yuaWzbjDbixaCwUpBVR1VlGWXkaRrYgLyi4gx5KDUqFkZ+dO1u1fx7WV1xKVouzo2MF9M36ZKLA5GwZ83rKzAcsKmF85nRfrX+PDlg8pSyuj1dtKIBpApVCRl5JHRIrgi/podDce9mSpnR07qciqYGf3TvQqPZtbNtPub0elUGHRWjBoEodfRGKR5IzpUNs9IFHYe2jTQ/xuwe/ETOcp4LrrrsPtdrN06dKTPZRBTuWxfZmJnCcIp54Dc54r5CImxQhEA+zu3k0gGqDT30lvsJfK7MpkkeTgnKf365MFsKFyngIFBpWB6fnTh8x5+ZZ8SmwlPLXjKfZ07wGGznndgW4i8Qj+iB+9RY875KbD1wFAfW894ViYK0ZfgU1vQ5ZltrdvT+a8HR07aOlrYeawmUiyRK4llz09e2j2NuOJeCiyFtHc18yWli1D5rzx2eP5zsTvUJJWghQMDiqwAcTr61G/I5E1Oeek57xlF/4X3n6PuHPgFtG400nw7bcxXnghgeeeA8CniJKfks/mls1oVBrMWvNnynlapZY1TWvoC/ehU+lQKpVoVVosOovIeaehUzlLnQpjO22KbPX19Tz66KP89Kc/5ec//zmbN2/mpptuQqfTce2119Lenjj1Litr4B+6rKwsGhsbD3nd3/3ud9x9990ndOyC8EXV6G5kd9dueoI9yQJb8jZPoh/ZlvYt5KbkJmc5C22FpBpS6Q32olPryDBlkGfJo8XbQpGtiKrOKux6O0W2IkpTS5mUM4lXPa8yY9gMZGTafe2kG9OJSTGmFUxjWv40fBHfgAJbujGdXV27mDlsJmub1hKNR+kJ9NAT7CHHnEOxvZg1jWsIxUPc8/49bG7djFKhRJZlZgybwY+n/pjltcup6a5hgWMBqfpUugJdzBo2K9HHQo5RmVVJNB6l3deOUWNMBM9YgD+u+yP3zL+H80vPJxANYNQYKbGVYNFaku/ZgSvYtrZuxel20hfuo9HTyALHAkLxEB3+DmYXzqbD38GYrDHU9tRiM9gwaU2olWpGpo+k2F7M0t1LiUkx0oxpuIIusi2Jo+tdYRdKlETiEVp9rSDDspplXD/uegxqQ6I/B0qa+5pRKpSsaljFzGEzOW/EeVxefCHyqmeG/MxlZwOTZn+VlxSv44140al1KBSJ2WhP2ENqNBWtUotZY6Y2VHvInx2NUoNGreHxjx6nw9/B1PypbGzeSFSKJoN8jjmHktQSGtwNTCuYRmVWJVtatmDT25iWPw1P2MPenr3JGfJ6Vz27O3dj1BiH3IorfH7++te/IsvycbveqRCYhBNL5DxBOPX057z+FWwHZr1GTyOhWAh3yJ3MFxadZVDOyzXn0hPoIc2QluyB1p/zjBpjsqg0Y9gMANp8bQNy3tissUSl6IAC28E5Ly7F8UV8NPc1k2XKosRewnv179EV6CIYC/Loh49S1VmFLMvY9DYm503mslGXsbVlazLnpRpTafG2MDFnIjIyFekVSEggQ3egmxRdyiFzXjAaRKVUASD7/YMKbP1kZwOOmeNOes6rTBlB0Ll6yDHGnU4UZya29OIoZOn+d9CpdUiyhDfsJRgNfuqc1+prpSKjgr5wH63eVvb37U/2u7PqrHT6OplWMI0Zw2ZQ211LpikTm96GTqUbkPVEzjt1iJx3eKdNkU2SJCZNmsR9990HwPjx49m1axePPvoo1157bfJ+/f/Y6yfL8qDvHeiOO+7gpz/9afLrvr4+CgoKjvPoBeGLyRf1EYqFiEmxAQW2flEpijvoHtB81qKzcGHZhcnVXJmmTOY55uF0ORmbNZbNLZvJT8mn2F7M4vLFdPo7uWzUZSzbs4yytDLOyD0DX8SHXW/nnOHnUJpeyms1r5FqSEWlUCWX1/sjfpbXLacyq5JzR5zLR20fJbcd7OjYweWjLufOlXeyoXkDKoUKhUKBTW9jXdM6+sJ9XFx2Mfevv5/y9HJ+NOVHlKWVEZbCmDVmOv2dvFL9CjJyYgZWY6DYXoxVb0WlUNEV6OLd+neJSTFyzbkY1AaKU4uT71m/Ln8XDe4GvGFv8v2rc9UxIXsCW9u2EowF8UV8mLQmphZM5fJRl+OP+LHqrKhVav7+4d8JxUOoFCp8ER+js0YzLGUYjZ5GxmSOQaVQ4Y140av1+CI+iCYCc38AjsQSvUjSDGlUd1fzTt07uEIuvp1z4WF/OWhjsN+zn3xLPjJy8u9ZSZbQqDQU24sptBXS6B76H74apYZzhp9DdVc1b+17i9GZo9nWvg1XyDVgW4kr5MLpcuKwOWhwN/Da3tfY072HcCyMUqHEpDExPX8665vXE5NiqJVqArEAS7YtSRYyYeitCMJnF4lE0Gq1h72P1Wr9nEYjfFGInCcIp57+nAcMmfWiUhRvxEtvsDeZ9Q7OeemmdMrSyhLZwFrI2/veJj8lH4PaQJGtiPNGnIckSSzds5QRaSOYlDspmfPOLD6TInsRK+pXHDLnjc0ey6LSRWxp3YJOpUvmvJ9M+wkNrgae3fksVR1VqJVqbHobrpCLt/a9RU+wh0k5k3i26tkhc94Lu15I5jyTxoRWpWVk+kjiUnxAzgPINedyQdkFAMihEIcjhUKHzXmhaIgFuTMZpk4n4HNx1+jv82bzKvb6m45bzrul4KrDf/DhMApHEU3Ty/j9yzdTmV2JRqVJbu39tDkvLscpSClgX+8+ugJdyfctJsXwRrzs7dlLo7uRmBTjuZ3P0eBuQKlQ4g660ag0zBg2g00tmwBEzvsciJx37E6bIltOTg4VFRUDvldeXs7LL78MQHZ2NgDt7e3k5OQk79PZ2Tlo1vNAOp0OnU53AkYsCF98Zo0ZvVp/yJmM/qPYD24+W2Qr4vpx138yC6UxE5fjfND4ASWpJXT7u2n3t/PolkdJN6ZT76qn0FbIvz/6NxEpQrYpm4m5E6l313PfgvvIMeeQoksZ8Bw6tQ4ZmQ3NG1jgWEBVRxWNnkb6wokmq63eVtbtX4dGmQgNRo0RdzjRxHZL6xa+PvbryVNFl9Us445ZdzA+dzyQaMbqsCcKP5mmTAxqA7nmXLwRL6MyRpGiS+Hc4ecSjoUpTSulM9CZPMr9wG0U/qifUCyEzCfvn1Kh5NXdr3JG7hlcUn4J3oiXImtRYhtmPJLY/uDv4KGND3H5qMu5aORFiQbBBhvnDD+HJR8vwel24gl5kJEZlz2Or1V+jS0tWyhJK8EX9WHRWThv+HlsbtnM4vLFqJVq9vXuIxKLJBrkajWH/dyVej0mjYlrx12LJEnkp+TT5m1jb89eZg6byaWjLsWiszAyfSTjssZR3V2dPLFLkiUm50ymN9hLk6eJrkAXerWevnAfMjK+iA+dKrE6TpYTXxs1RvZ07+GV3a8gyRIxKYYCBXmWvES/u/QKdnTuoDy9nNqeWrRqLVadFb1ajwIFXYGuAbPsp7NDNVI+kebOncvo0aPRarX85z//YdSoUTz66KPcfPPNfPDBB5hMJhYuXMhf/vIX0tPTgcEzkrIs88c//pG///3vtLW1UVpayi9+8Qu++tWvJp9n165d3HrrraxZswZZlhk3bhxPPPEETz31FE8++STwSYFl1apVzJ07l5aWFn7605+yfPlylEolM2fO5K9//Wuyl1c8HueWW27h8ccfR6VS8Y1vfOO4zrwKx4/IeYJw6unPecCQf3f257yuQNeArDdUzgNY3bCaG8bfwD7XPmLxGHEpztI9S6ntraXQVshjHz32qXPeltYtLCxeyPb27QNyXre/O7k9EhiQ8wCqu6pZXL6Yza2bD5nznC4nqYZUUrQpWHQWbHobVp2VNGMal4y8hHp3PXa9ncqsT7bLKvT6w76nEbXM0j1Lh8x5MSnGWGMxqndWIdU7MQEm4BvFDiILr+T93q38e+u/jznnyfoj/J1oMPBUUQ/u1hVcM/YaNEoNRbYiPCEPw1OHf+qcB2DSmPCEPYNyngIFcTlOTIrxm/d/Q6OncUDOUyqVrGtaR0VmBSqF6guf8+Dzz3oi5x1/p02RbcaMGdTU1Az43t69eyksTPzD1eFwkJ2dzbvvvsv48Ym/ICORCO+//z7333//5z5eQfgyKLQVUp5RztbWrTR7mwfeZi1Er9ajVWsHFJb6WXSW5Oo2b9jLkm1L0Cq1fND4QWLZO4kZrnZfokfXfs9+vjb2a9T21BKIBdjUsilxqmdnNRWZFRTbiwf0b+jfTmDT2xInLB0QvGYOm4kr6EoeYa5RadCoNISCn8w++qN+7AY7kGiG2+prTR43nmXO4qYpN/HU9qeIxCO8V/8eLX0tfG3s11has5TmvmbK0spI0aVQ56rjh1N+OOR2WbVCPaDA5rA5aOlrISpFWd+8nqsrr8aut7O5ZTPKNiW9gV6qu6uZkDOBbEs2S7Yt4aLyi6jpqWFs1lhWN6ymLL2Mi0dejE6lwxf10e5t5z/b/8MFpYkZVosmcfDCm/vepM3bRk+whx0dO1AqlMxzzOP1va9TG2pmrMOBfFCvDgCFowiPKoJVb+X/7fl/jEgbQXegm0xTJl8f+3VGZ46m0FZIg7uBd+rf4dJRl/LIh4/wUdtH6FQ6rHorE3In8PLulymwJlaTRKXEttsCawGd/k7USjVqhRqlQolRY0Sn1rG2cS1t3jYi8QhalRar3kpXoIuoFOWHkxPv76iMUbzrfJcuXxf+aOKI+lxzLguKF9DqbR2wovJ0NGQj5ZISjBdcgPIEzyg++eSTfPe732XdunX09vYyZ84cvvWtb/HAAw8QDAa57bbbuOyyy1i5cuWQj7/rrrt45ZVXePTRRxkxYgQffPAB11xzDRkZGcyZM4eWlhZmz57N3LlzWblyJSkpKaxbt45YLMbNN9/M7t276evrSzbFT01NJRAIMG/ePGbNmsUHH3yAWq3mnnvu4ZxzzmHHjh1otVr+/Oc/8/jjj/PYY49RUVHBn//8Z1599VXmz59/Qt8v4dMTOU8QTj39OW9Hxw46/B0Dbzsg5wGDst6hct7qhtUDcl44Fj6mnJdhzCAmxwblvA5/BzEplsh5ysE5T5blxNZHlfaQOe+xjx5Dp9bx1r63qOutI9+Sz6WjLuWJbU9gUBuw6W3Uy/XIyIzJGoNFZ0FhMqEqKSFeVzf4DXUU8kbL6kPmvNmZk1Fu2Y10UP6S6p1o3gHXcC9qlfqYc97+aDc5DsegnmyQOPzApQhjMNtYuvMt/FE/OeYc+sJ9DLMO4+Lyiz91zoPEQWaHynkalYZANMDmls2Dcp5Nb2Ns1lhGZYzCrrd/oXMenLysJ3Le8XXaFNl+8pOfMH36dO677z4uu+wyNm/ezD//+U/++c9/Aomq549//GPuu+8+RowYwYgRI7jvvvswGo1cddURlsQKgvCZWHQWrhh9Bd6wlxerX6TT3wkkgtfFIy+mMquSdn97chXXofT3KcsyZSWDF0A4FsYT9mDWmtnWvI0iWxGbWzcnb+/wddAb6k2GoYMbpVZkVHDDuBto87WxsGQhGqWGrkAXy+uWM71gOkCi3waDZ2gPDouxeCz5/96wF1mSWeBYwIvVL5JlzmJ24Wy2tm1lX88+ZIWM0+Vk5rCZZJoyEyv07CVYdJYB2yiseiuphlQ6fB0U24qZWjCVV3e/CpAo0mlTWNGwArveDhI09jXiCXlo9jSjUWlYODwxc1vTU8Pk3Mk09zXTHUjM3GpVWux6O53+TgwaA3aDHYVCQbopned3PZ/slVJkK0Kn0uF0OXEFXdw+83Z2ePaSP3c2acgDDj9QOIroWzCFO9b+mlUNqxiXPQ5PyMO2tm1YdBZMGhPzHPOShzu0edt4t/tdLii9ILnV1a63Y9YltmK4Q24KUgrQKDVsad3CdeOuozfQS6u3FaVCiUFjINWQylzHXG587Ua0Ki1RKUpcjqMMK1GiZHHFYt6tfxcFCj5q+4jd3buxaC047A68YS+tvlZW1K9gduHsQSsqTyeHbKRcV0fgtdcwLl58Qmc5hw8fzh/+8AcAfvnLXzJhwoTktj6Axx9/nIKCAvbu3UtpaemAx/r9fh544AFWrlzJtGnTACguLmbt2rX84x//YM6cOTzyyCNYrVaee+45NJrESsoDr2MwGAiHw8nVTABPP/00SqWSf//738mZzyVLlmCz2Vi9ejULFy7kwQcf5I477mDx4sUA/P3vf+edd945Ae+QcKxEzhOEU09/zvNH/CyrWcb+vv1IsjQg5+3u3p1o3n+YrHcic973z/g+LZ6WQTnvxok3EpNiiS2f/1s1dSCFQoFJa0p+fWDOAyixl3Dl6Cv510f/IsecQ445hyJrEcvrluN0O7HqrMwtmku2OZuYFPtkJZXBgvGCCwi89trAQpujkPqpxdzz6s+AoXPeCEM+svPDId9D2elk1tRzuHXNL4lIEXQq3WfOeSs6NvC1cy5EddDhByqHA85ZwBN7n+XZnc9i0pootBaypnENBo0Bs9bM2sa1OGyOT5Xz9vftp93Xzuxhs4fMeYXWQvrCfdwz/ReckzsbbQxiGiUr2jfQHnPxnvM91Co1TpfzC5vz4ORmPZHzjq/Tpsh2xhln8Oqrr3LHHXfwm9/8BofDwYMPPsjVV1+dvM+tt95KMBjke9/7Hi6XiylTprB8+XIsltN/2aggnKqKbEXcPvN2FpYspN5djxIlVp2ViBSh3d/O+SPOP+LS7f5fiv19P/rF5TgqhWpA74YDReIR9KrEsvxx2eP43YLfUd1ZjTvsxqazUZFZgVFjpLa6lk3Nm/BGvMnHapQaphdMZ8P+DQDJZe4Ak3InDXgug9pAjjmxPanB3cCymmXs6dqD3WDn1T2vkqJLYUreFGq6axIr0+TEa4pIEXRq3YBeJf3v2fXjrqe2p5Yzcs9gT88ednbsZOnupUSlKGVpZVw5+koCsQBapRadWkenr5NQNERPsAezz8zU/KnY9XY+aPyAUDxEd7CbLFMW/qgfnVqHJ+QhPyUfXUhHfko+WpWW80acR5e/a0AfC0j0smjyNNHqa03OKi9+8+v8aurtTJ17GeqIRFSjZE33FlZ+9Ffq3fUEY0F2dOygIqOCUZmjcIfc1PbW8lHbR2SbsukN9uIJeXCFXLxTN/CX3TfGf4OoFGV7+3bmO+bTG+wl15LL8rrllKeXM98xH71aT6ohFVmWkeIS5enl+KN+nC4ncTnR4Hi+Yz4b9m8gzZDGrMJZPL3jaQC8ES9Ol5NCayG9oV52de2iPKOcnkAPHb6O0/JUqsM1Uo7X1SH7/XACi2yTJk1K/v/WrVtZtWoVZvPgFap1dXWDwld1dTWhUIizzjprwPcjkUhyRdK2bduYNWtWMngdja1bt7Jv375Bv+NDoRB1dXV4PB7a2tqSgQ9ArVYzadKkU2IrgTCQyHmCcGoqshVx64xbWVS6CKfLSVSKYtFaiEiRRMFDZ+ErZV85bNY7kTkvy5yFO+Rma+tWXCFX8rE9wR4sWgvjs8YP2M4IiQw4KmMUgWgAGJjz4JOs1xfq49U9icnPFF0KE3MmUu9KrFxzhVwEo0F06sTWywOzntJqxbh4MXGfl4DPhUsKsKz5XX7z6s34o/5D5jxVZODrP5hBUqJSqjCrzPSF+z5zzpMkiRfrX+eycy9EHwc5HELW6djZt4/Fz8zkB1N/QIO7IbElU6WnLL0Md8iNN+Kluquaqo6qT5XzPmj8gHZ/O8FoMJnzUnQpfKXwbIp1OcihEOm2XOSWFsIvLYdoFICrHA7aZs3ktb2vUWQr4sOWRAHywJznDrup6amhIqOCTn8nVZ1VFFmLTsttoycz64mcd3ydNkU2gEWLFrFo0aJD3q5QKPj1r3/Nr3/9689vUIIgYNFZmFM0hwnhCQP6bxTaPjntxxv2sq93H43uRkLxEJmmTEZljCLLnJVcNdbf96OfSqFCpVAlT+bsPwK+3+jM0WRbPpnxyDJnDVlAKU0rpTStlL09e5OFtgc2PMBds+/i9+t+z9bWrUTiEYwaIxUZFXzvjO/xwq4XgETwmjFsBiPSRiRXaPUGe4lIEeJSPHnoQE+wB5PWRDAaJC7HE8WhAxoEHzy7ZtFZmJA7gVRjKnEpjkljYnTWaHQqHSqFimxzNlnGLFKNqQBEpAhqpRpJlqjtrcUVdHHTlJuYmj+VrkAXBdYC1jetx6Q1oVFqsOqsFNmKGJk+klR9KlPyplBoK2Rj88ZB749OraMsvYya7ppEwFWAWWfmx6tvo8BaQFVHFQqFgoKUAmYMm5Eo+B3QCFmn1hGMBXG2OVnVsIqpeVNxh9xEpMiQPy9GtZGClAL8UT+bWjZRnl7O9874Hu/Vv0ckHmFv916MWiOSLDEmcwwv736ZiBShN9BLRUYF1V3VSEhkGjOpd9XjsDmIxCOJgxeUiV/e4ViYiBSh3lVPOBYmGAtS56pjS+sWZg6byeS8yadVADtSI+Uj3X6sTKZPZvslSeKCCy4Ycovegb2yDrw/wBtvvEFeXt6A2/p7ZRk+Q2iUJImJEyfyzDODT8LNyMj41NcTTj6R8wTh1GTRWZiSP4Up+VPwhr3JrFeRXpHMet6wl6DXjSEqQziCSm9AaTajN1tPeM7LMmUxJX8Km5o3JQtt/2/P/+Mn037Cdyd9l8e2PUZdb13yNPgpeVO4asxVvLrn1QE5DxiQ9WRZRqVQISPjDXuTWc8XSWS6mDywKHZg1lMaDCgNBlyaAO/UrqZH8nPd+OsOm/NiGiWHE1ErMGvNqBQqbHrbZ8p5ChRcWXQB+nfXEn3nH0T77+QohCnFpJvSaelrwR/1E5fjRKXogJzX4G5gnmPep8p5Y7LGYNfbyU/JZ3v7dhrcDfx15j3krNmF7FwHQIjESjrj4sUEXn4ZolFkp5McZH42/gfsj3QOynkxOUZLXwt94T4CsQAN7ga2tGxhVOYoJuZMZHja8MO+n6eak5n1RM47vk6rIpsgCKe2A/tvHKjB3cAq5yqe2vEUzZ5mZGRMWhOzC2fz9bFfpzStlFRDKgoU5Jpzk1sJ+mcHcy25KBQK2n3tyWtWZlby7YnfxqAa+Jd2k7spMcMW6iXVkMqYzDFUZlUyLX8amaZMvJHESZ4WrYVtbdv47bzf4gq6cIVcpBpSicajbGjaQK4lF61SS7G9ONngdWfHzuTsoFapxaQ1ISMTiAaSRR5Jlkg3pqNSqIjEItT31pNpzhyyLx0kZoivqryK2p5a2nxtqFVqcs25FNmKEqc2/W9XhVapRYECi9ZCd6CbBk8DvcFeWrwt7OzcSYYxg1RDKvXuegxqAzq1jmg8Sq45l5EZI5PhcahxhGNhIrEI+Sn5jEgbQZO7ie+f8X3eqXsnGdYC0QA6tY7KrEqe2fEMSoUSb8RLJB4hFAvR6k0M1Bv2Eo6HqemuYZh12JCvOU6cRSMWsaF5A+6wm6rOKnZ372Za/jTGZo1Fp9JR1VVFh6+DVQ2raPe1M7doLlvkLTT3NZOfkk9TXxMp+hRGpI5AqVDSF+qjJ9hDTIoRiAZQKVQMk4cl3gNLLjnmHB7a9BAATpcTp9uJw+rAG/ESioewaC2MyRzDMNvQYz7ZjtRI+Ui3H08TJkzg5ZdfpqioCLX6yDGioqICnU5HU1MTc+bMGfI+lZWVPPnkk0Sj0SFnObVaLfF4fNA4nn/+eTIzM0lJSRn0GEiEwY0bNzJ79mwAYrEYW7duZcKECUcctyAIgjDYUFmv0d2IOSyjf+eDZD8xCVAUO5DOPyfZj/ZE5bxCWyEVGRWYtWa6/F2EYiH0aj1Ol5Pp+dN5YOEDtHhbkivXYvEYW9u2UmwrHpDz+l9Lf9Y7MOdBYmWdSqEi3ZiOUqFEluVPcp7WPGTG+jQ5b33vds5zFA1o1dFP4XCwtntrcmwGteEz5bxzC+ZhfG/d4H5szkaGo+De6b/g1Ya3DpnzugPdaFXaT5XzqruqASiwFHDlmCsZnTIc+7sbkQ56nXGnkzCgmzqV8Jo1AMjOBubNuZS/1f13UM7rPyAr25ydzHlRKYpdb+eqMVcxNW8q7f52QrEQ6cZ0RmWMOmVzHpw6WU/kvGMnimyCIJxQ3rCX1c7VPLXjKVr6WhInO8XCSD6JrkAXnb5O7px9J2eXnM1zVc8xKW8SHzR+QHegG4s20cy+w9fBtyd8G2/Ey9yiuZi1Zqx6KwaNgVZfKzW9NaTqU1Gr1Px+7e+p6qxKPv+YzDH8fNbP+eqoryZnJvulGFISx5A7CgeMtyKjYsjVeAfOUBq1Rupd9VRkVFDVUUVLXwvF9mLafe10+jsxaUxUd1fT7mtnat5U4nLiF8dQJwZZDIlVbQc78JAEq96K5JFw2B1E41EyTZn0BHtIM6SRY86hwd3AzGEzicuJo+UtWgs6tY5ie/GAbRwHXlOlUKFVaQnFQiiVSvLN+UiSxFv73qI0rZTJuZMpthVT764nEovQ3NdMp6+TTFMm+1z7AJKr6yDRi68r0JUoyKl0iROsZJm4HE/OTueac3EH3RTaC8kyZxGMBZNhOEWXQmVmJa/UvMI/t/4z2Wsk3ZjOO/veYVTmKKbkTWGYbRi+sI8p+VPQq/QE40EsOguT8ybjdDmTY4hLcWYVzgIZ1jatBWBhyUI2tWwi1ZDK3z78G+2+dtRKNYXWQux6O3fMuoNpBdMGfRYn2+EaKatKSlAcMAN5on3/+9/nX//6F1deeSW33HIL6enp7Nu3j+eee45//etfqFSqAfe3WCzcfPPN/OQnP0GSJGbOnElfXx/r16/HbDbz9a9/nR/84Ac8/PDDXHHFFdxxxx1YrVY2btzI5MmTKSsro6ioiHfeeYeamhrS0tKwWq1cffXV/PGPf+QrX/kKv/nNb8jPz6epqYlXXnmFW265hfz8fH70ox/x+9//nhEjRlBeXs4DDzyA2+3+3N4rQRCELzpv2Iuvrwf76p2DDkyS651Ib7yDetE5XFt2OZLPx5Vp8/ArY3zQvYXn9y0l05R5XHJef79bs/aTIlOqIZUx2WMG9IvrX4k3KmvUoJwHn2S9cCyMO+hmVMYodnTsIBwP0xPooSy9jI3NGzGqjezu2k27v518Sz5fGfmV5PMcuNrPrDVTaC08qpz3/L6ljJ91FzkwqCfu/hllbK99nkJrIY2eRqw66xFznl6lZ37uDIo0mSgjUdDpMCmNRA6xJVF2NlA0dSR7e/aSa8nF6XYOyHkAI9NGMs5Wzr9n/hFtTCakgnU9H/HknucIxoJHzHllaWWkhJRI9YMPXYBEoU03deqA72mjMhbtwJwXjAaJSTFmDJuRzHlRKYpGqWHWsFn4Ij5+/M6PafO1EYgGSNGlMK9oHt+Z9J1TMufBqZP1RM47dqLIJgjCCdXobqQ70E2zpxl32E1cinNG7hnkpuQSlRIzcFtat5BhzCDHkoOMzCXll6BSqkjTp5Gfko9KoeKFXS+w37sfrVJLhjGDAmsBy/Yso8XbQkyKcXbJ2by+93U6/B0oUCRP7azqrOK+NffxyHmPDDpO/uBgBYdejQcDZwcDkQC1vbVMyJ5AXIrT0tfCdeOu47ldz9EX7iPPkke9u56ClAJKUkv4+4d/58GZ9xB9/c2jPjHowEMSeoO9yS2v04dNZ3redPa59nHl6CvZ1rGNlfUrWV63nMl5k5mUO4ksU2I7RZoxDW/EizfsHXDwwut7X0eWZZ7e8TQ1PTWk6FIotBayq2tXcktmfwFuU/MmGtwNhONh8q35TCuYRlyO44/4kWWZUCyUPM3rzdo3OctxFmeWnIkvnJhdjMQiiRVj0RBzHXMJxoJMy59GqiF10OexvW07KoWKHHMOaqWaVEMqNd01mLQmegI9hONhyjLKKLAUYNaY2dK2hU0tm1ApVFxYdiFatZaClAI6/B10+Dtw2B0Y1AaW1y1nbPZY1jatxWF38G79u9T21pJpyqQv3Eejp5FQLJT8WTnVZjqVBsOQjZSTPz8nsB/bwXJzc1m3bh233XYbZ599NuFwmMLCQs455xyUyqG3uvz2t78lMzOT3/3ud9TX12Oz2ZgwYQI///nPAUhLS2PlypXccsstzJkzB5VKxbhx45gxYwYA3/rWt1i9ejWTJk3C5/Mlj3b/4IMPuO2227jkkkvwer3k5eWxYMGC5Iznz372M9ra2rjuuutQKpXccMMNXHzxxXg8ns/nzRIEQfiCa3Q3kqu0flJg02jQTZ2KKj8fYjFQq1GE46jDYQLPPA/RKCZgUXEx553zfzTLHhQoTomcB59kPU/Iw97evcwomEFcjtPh6yAaj1KWXoYr6EKSJZxuJ5IsoVKqsOqsBKIBeoI9gyZ1Uw2pXFh2IUW2okFjOTDnFdoKuX3TPXxj7DVMn38NkYAXtcHEdu9e7ljxQ1whFxNyJnDl6CsZZh2GQqHArrfT7m1Hr9aTZc5KXvOdfe9wcf5Z6JevRXZ+ciKk+sorGXqTZ4I2JrO5ZTMXlF1AujE9mfMgUWB74ZzHsK/amiySaYHzih1Mn/snfrP1L0wbNu2wOa/B3UB6RHeYEZD4uTlAr+znj+v/OCDndQe66Qn2UGgrTOY8gLHZYwnGgqyoXkGdq45MUyYAfeE+VjWsIibFyLPknXI5D06drCdy3rFTyCe7K9wppq+vD6vVisfjOeSyREEQjt7G5o0s37ecp3Y8hSvo4rzS89iwfwONnkbyLHlkmbMYkTqCC0ovQKlQ0hvsJS7HCcVC2A12zh1+LlnmrAGzgiaNiUc/fJQ1TWuS2z9/MPkH3LXyLux6O6mGVIKx4IBxPHLuI5xfdv4xvZb+I+h7g7009zWzrzexmqvEXkJJaglZpixa+lqIxqO0+lrRqrR0BbrY3r6dX065jYv3aokPMXOnKik57IlBB752rVKLRqWh3dtOs6+ZaCyKUqFEq9ISJ066IZ0VzhU8u+PZZK+MCdkTuHnGzVRkVCQDXpO7id+v+z0ft32MSqkiHAvTE+whz5JHXI4zJW8KHb4ObAYbwWiQLa1bqHfVs7hiMUt3L+WikRcxp2gO7d52vNFEv72P2z6m0FrIdeOu47GPHyPDlJEMZsOsw7hi1BWkG9IpsBUM2Q+twd3AS7teAuDZnc+iUiRmyux6O72hXuJSnEJbIYvLF6NT6fjH1n9g0pio6qzCFXKhUWo4I+8MJmRPoNhezN7evYzJHMO/PvoX/oifM3LP4Nmdz3L5qMt5asdTya29/b1VRmeOprmv+bj8rBwsFArhdDpxOBzoj2G5/1ArIT/PAtvRuvLKK1GpVDz99NMneyjH1eE+R5EfTg/icxKE42tj80bKIlaUT70AGg3GxYsJb9o08NTK4mJ0M2cSb2oivHr1gO8HzpuLwWwDGDLnxeU4Px73HS4Zdi4+bw8xrYoPurbwp48eTm7jhOOT8+CTrLejYwf7evehVqoZnjqcNEMa+ZZ8tndsR6/WE4qFiMmx5ImmLX0t/Hbeb6nurqbN24Yn5CEiRdCqtFh1VnIsOYnTR4fIP0PlvEA0QEyK0eRpwh/xo1VpCcfDZBgz2Nyymf9s/09y1d3ozNF8Z9J3qMyspDK7EgBfXzfy0jeT23f7Ga+8ksB//3vI199x5dmMfWEeFRkV3DTlJrr8XbT6WglGg5yTP495O0KDVixCYmtw38IZ9BE+bM57be9rXJ69EN2S5w45hgPHqHA4+G+xi9vW/mpAziuxl1DvqmdkxshkzusJ9nB2ydlIssQT255AqVCSZkxL5rz+9+qOGXecsjkPTo+sJ3Le4fODWMkmCMIJZdaYMWoSTewn5kxMFtgqsyoZmTaSTFMmMTlGTU8NI9NGJmcAVUoVaqWa+t56bphwA0W2IgpthTS6G2nsa2Rlw8rklsBwPEwgkvh/d8hNqiEVpUKJAgVxOY4SJZ2BTpbXLSfHkvOZTx06cMax09eZ/H4wGqTQWkhzXzMPbHwAAKPGiFalTd5nVvpE4m8vG/K68bo6Il43+kP8Ah1q1nVM1piB2xE0ZgxqAze9fRMbmhMnpva/Dw2eBv7+4d+5febtpBnSsOgs1PXWUddbR5uvLXlNpUKZ6D3XuZPRGaPZ07OHFF0KOpWOCTkTmO+Yz6xhszi75GzSjeks37ec1/a+hlVvpSvQxYjUEXxrwrd4dMuj9AZ7sWgtyQBY3VXNe/XvccuMWw4ZMNfvX8+qhlVIskQwGsTpdia3Q8SlOI2eRqYXTCcaj7K7ezed/k5K00pJN6aTl5JHXIrTF+5j3f5EE93/bP8Pv57zaxw2B0qFEofNQa4lN7l1t/81Jz8HKfF9V9jFqUppMJzQU0SPVSwWY+/evWzYsIEbb7zxZA9HEARBOMHMGjMyibyjmzp1UIENIF5fT1iW0Z955oAiW7y+HkVgCkv2vcqFZRcOynkAL56zhML1e5Hfexb7/x73VUcRk89+nCuXfwtvxHvcch58kvW6/d3s691HTIqxp3sPRbYiciw5PL/reWTkQTkv1ZBKV6CLSDyCWqFGr9FjVVnxhD3s7NxJMBYccNL8wc95qNV1leHKAcXH+9fez3vOxEFR/Tmv1dvK8zufxz7JnjwcQhUIExmiGBZvbkblcAzuyQYoix2EdEr+feG/h8x5Px/1XWTnq0OOU653YohOx5oxdIGtP+etqFuBIargUkchOBsH3U/lcBBvbgYS22Q7Z4/hmZU/YnTm6AE5T4GC53Y9x60zbk3mvAxjBmqlekBvvwNzHiSy3qmc8+DUznoi5x0dUWQTBOGEKrQVkm5Mx2F3kGPJYUXDCobbhzPfMZ/X977O3p69KFCgVCi5sOxC5hbNpdhezKaWTaQb02n1tbKsZhnnDT+PTS2b6Av3JVaI+btQKVX4I34MGgNGrTH5i1SpUNIT6CESjxCX48SkGKFoiBX1K2jta+Xc0nOZXjB90LL9o1FkK+L6cddT21PLppZNAChQ4Iv4MGqMyec/+IQsTUwadK0DRQN+1ta9hzfixaa3UZFRMeQJWgc6OJS9UfMGH7d/DEC6MZ0OXwf+qB+AJk8T5ww/h7ic6FPmDrsHjTHNkEZ1VzVZpiz0Gn1yJVk4HiYuxZnnmEdVRxVxOU69q54xWWNYULKAZk8zerWecCzMjo4ddAe6cdgd+CK+/4VvmZgUo95dT21P7ZB9SRrcDbxe8zqukIv9nv2cVZw4BtzpdiYekzOBXEsu1469ljZvG4VSIYXWwmRD3q5AFwCSLKFTJU7BOrvkbGq6a3iz9k08YQ9Xjr4Sf8RPlikLWZbRqXSJ01T/R6X838o5nX3Q+ISjs3PnTqZPn868efP4zne+c7KHIwiCIJxghbZCmjpqKXA4UOXnJxvWH2yoog6AKhKjN9jL0zuepjKzkhZvSzLn/XbanYkC20EN8mVnAwXIfKP8am5d+8vjmvMgkfW+P/n7OFIduINu9Go9doOd7kA3MvKQOU+BAp1ax9I9S6l31aNWqlEqlBSkFHCm40xS9Cnsc+2jtrf2qHMeDMx6q+pXUdVZRSQeGTLnnVV8VnLbqBwOD3m98MaNidWGCsWA9iWKYgfhhbN5fe+zROKRIXOeFT2H2wInhYJHzHndwW4e3bmEyfMfohAGFNqUxQ60555DLOAnVjqMd9vX8dKme3GFXHgj3sRz/C/nBWIBZhfOpra3lrf2vYU75Ean0nHjpBvJMCWKbWqlekDOg0TWEznvsxM57+iIIpsgCCeURWdhrmMukiwlC0DzixMFttqeWlQKFTEphkKhoLa3ljpXHd+b+D1WOlcSjUcpTSvl47aPybPkscq5ijpXHVdXXk1UihKIBkg1pOIKuXC6nYzKHIXT5aQn2INKqSIeSxTYJuZMpM3XxvK65UzJn8LrNYl+ZP2ruj7La5qQO4FUY2qyj0a2KRuVQkVlZiX17voBM2cKFKDTHuaK4JED3LHiDkzaRFPTYnsxN025iXHZ4456XL2hxHHzNr1tQPDq1xPs4eHND1OaVopNZ0ueVtofXHRqHX3hPsxaM+NzxlOZVUksHkOlUCUOU9BYuGjkRQSiAUwaU7LXSf+KukZPIxIShdbCRIFNa6bB1UBMjiHJEk2eJt6rfw+tSjtoxrbV15rcYptlzuLd+ncZnTmaqflTiUkxzio+i7HZYxmbPZadHTtp87Xhi/pQoMBhd+B0OfFGvMSkGDqVjixTFpmmTN6sfZOxWWOpd9fTE+gh25JNg7uBibkT6fB1JGejTRoT6cZ0iqxFjMkac9TvuTDQuHHjCAQCR76jIAiC8IVg0Vkwp6QRWTgbQ9/hun0BkcG3h9WJbaKBaACtUstb+95K5rwzs2cgr3p76Gs5Gzlv6tn89ATkPIAscxbziuaxrGZZsg+cEuUhc16RrQh30M3Ozp1AYsLVqDEms8dL1S/R6e/EbkgUeD5LznOH3cSk2CFzXm+wl0c+fITRmaNJ0R2i71k0SuDll9F883rCYR+qaJy4Vs02Tw0xbw3T8qdh1poxqo0Msw0bkPNUspHY0FcFwKeI8F79isPmPLVSjUal4fqVN3FD+dUsnHYu2piM2ZLG3uB+8tQhvLoAHzR9wPO7nj9izntn3zuMzRpLnasOb9hLu7cdu8HO+JzxeMNevjfmBs7Mno4mKhPXqqn2O6nMqjzq91wYSOS8oyOKbIIgnHBFtiIuHXUpRfYi7AY7mcZMNuzfQIG1gOa+ZlTKxDHcChR83P4xEhKReCS5Ii0YDbKuaR2bWjbhsDvQKDWUpZWxr3cfrpCLcCzM09ue5hdzfsG79e+ypXUL4XgYtVLN2KyxfGP8N7jng3vwRX3Md8xnT/eeRLP7Qyzb/zSvq7/Jrj/qR4mSHEsO/9z6T3Z37wZApVAxJmsMQY0Si8MxdB8LRxFvt34wYBtjvauehzY9xO8W/O6oZjoBUvWpKBSJVYEHBy9IbGF1upxUd1ZTkZmYQVUqlcngIskSI1JHkGXKwh1043Q7iUtxJFkiw5jBzq6dKLoVg5r39s+yFtoKeWn3S8ntqw2uBuJynHZfO7F4jOkF01EqlDy942kWlizkjLwzkuE3Gosmr2fWmtFatbR6W2nyNKFWqrmk/BLGZo8FErPm2zu2k2vOpdXXijfspdBaiIxMRIow3D6ciswKHtz4IAqFgqgUZWTaSBQKBReVXcTW1q2Jwx9qXmdr21YMGgMWrYWWvha+OeGbSBx+1aEgCIIgCJ8otBXiDXtBMTh7DHBw03RHIas7N9PobqTOVUeaMVEU6895ujhDHqQQb24mvHEj2hhMzJl4SuS868ddzzNVz5CiS6Ev3IckSwSiAa4Zcw2PffwYXf6uZIENPlvOs+lsyRVyQ+U8vVpPXW8d1Z3VTMucgLLYMeQpnor8fKq9dTy77xVUChXBaJBUQyppxjRcIVfyoIb+jNaf86RgkEBJMfG6IU4ndRSy1bPnqHKeXq1HrVSzZM+z/GPXE8iyzC9m/4JzR5ybLOqldKQcVc7r/zfDyLSRyZ0Tw1OHMypjFLNSx5O3thp5xZvJ555TXIyxUPTjFE4sUWQTBOFz0RPsYXPLZpbXLacyq5IdHTuw6+2Up5ezp3sPacY03CE3AP6oH71aT64lF1fIhQIFkXjihEqny8merj1cOeZKXqp+iQ3NG1CixB/z89zO57hr9l00ehrxRXykGlLp9HUmgxcktj4ChGKh5PeOxcFbNkeGRzI8dThOtxN/xI9FayEQDfBe6xrOnD2FDGQ4YNuDsthB3dRi/vrud9GrBzbYrHfVU91ZfdTha0zWGMZnj2d3924OPtNmQs6ExFJ6tQ532E2WOYsfTvkhD296OHFowv/6kaUaUhmTOYa/b/k7nYFOJDmxMu28EeeRY8mhuquaZTXLhmzea9FZmFUwizWNa+jwdRCTY8kC2+KKxezq2sXj2x6n1dvKlrYtnFl8JleMvoIiWxG5llwMakPywAqtSovWkFj9Z1AbKLQWDnieGcNmoFAoeL3mdVp9rfiiPgxqA2fknsGI1BHU9dYltwjIyMnPurWvlTlFc0g3pnP56Mu5uPxi3CE33rAXf9TP63tfxxv2cuOkGz/z7PfhiLOGTm/i8xMEQRhaT7CHHl8LZcXFA7Yh9lMVFxM78PuOQpzThvOvdb8kHA/ji/iQZfmTnDf6SpQGE6avf53QypUDtqGqHA6MixcTN2s4b/h5p0TOc7oTE5aF1kIaPY3JQluqMZVdnbvIT8lPtuHo92lzXkVmBZVZlazfv37Q76Px2ePpDnZj0ppwh93ozVY4/1yib7w1oNCmcDgInjWd7yy7gs5AJ76Ij4KUgmTOc4Vc9AZ7h8x6SoMB3aJFhF57bWDxzlGIa+5EHl7xA7oCXUeV89RKNWZt4iRXg9rA8NThA4p6nzXnFVoL6fB1cE3ZV8lbtQPpoK3G8fp6Aq+9dtgDx46FyAmnt+P1+YkimyAIJ5w37GVZzTKa3E1kmbKwaC0oFUpcIRcoSMxWqnXUdNdg1pqx6CxY9VbqXHVUZFSQYcxI9tzyRrzs7tnNyIyRzC+az6iMUcTlOGqFmkg8Qk1PDXetvIv8lHzK0svY2roVjVLD6MzRGNVGKjMTBy4U2YtI0Rz/mSyLzsKYrDHJLYcbmzfy9r63yTJlcfume1k04kxmTT8fTUwiqlbSKfv46rLLMevMWNXWQddzh91H/dzDbMO4a/Zd/Hn9nylIKSAvJY+YFKMgpYAJORP424d/IxKPYNEmQsy47HHcPO1mVjWsojvYjVapZWvbVt6tf5cbJ93Ijo4dKBQK2n3tfND4AVPzpgKJ7QiHmh0enjac22bcxqNbHqXR00g0HmVGwQx2de1CluVkM9pANMDe7r08/tHjXFB2AQaNgan5U9nYvHHAybAGtYEZw2YwIm3EgOcpshWRZkhjTOYYWn2txOIxcsw55KXk8WL1iwOaER94LbPOzO6u3UzNn8qL1S8O+T7Wu+qPefb7YBqNJvG6AwEMp2gzW+HI+rdI9H+egiAIwic5z9nr5HuzriUHBhTalMUO/POn4g16UF96Dikp6TxT9wq/X3YnDruDqBSl0FpIV6ALb8RLdXc1X838KhmWTEJvvD34IAWnkzDQOXsU//fh/50yOQ8ZPCEPWaYshlmHEZfiyLKMXq1HoUj0bDvYp8l5WeYsfjb9Z0TWRChIKSA3JTeR8ywFjM0Zyz+2/INoPJrMefrUDAKLzkIRCEI4jKRRs65nG09+cBvXjL2GqvYqZIU8KOfBobOexmbHf8FCIn0eIgEvQZXEdm8tD6/4AYFo4KTnPKveSm+wl0wsQ67ig8SBY7Lff1wPFxA574vheOU8UWQTBOGEa3Q30hvsJSJF6Av3oVFqmJY/jdreWgCseisftnyIzWBjbNZYGl2NtHpbSdGlkG5M5+zhZ/N/m/6PDGMGOnWiWf22tm2UpJXQ4m1BlmXiiji9wV42N29mbNZYuoPdhKIhciw5FKQUUNdbh81gY93+dezu3k1Zahk/mvqjE/7azZrELF1/Q9xXGt7kzx8/kuyD9pOpPyEux5NbAA5m09k+1fONzhzNTVNu4j/b/0Odqw6tSku7t51VzlWMzxlPh7+DQDRAg7uBNEMa7zrfpTfYC8Curl2JLZruJsxaMw67gwZXA8NTh5NnySMUD6FSqIjL8cPODpell/GN8d8gzZBGo6eRkWkjeXzb47T72pFkCaVCSaohlV1du6h315NjyaE70E1pWikKEkW9iBRBq9RSbC/m0lGXDrmq7OCg229R6SLWNa1LbjOARPAqS08Uc60GKygO/R5GpMhxmf0+kEqlwmaz0dmZOJXWaDSiUBxmEMIpRZZlAoEAnZ2d2Gw2VCrVkR8kCILwJdGf87xRLzet/Tm3TrwJx/TREA4TVsPG3h386D9noFFpmJo/lVnDZnHfhvtI0aUQjoVx2B1kmbJYXrecDGMGAAXaTFR9PsKHODAh7nRimjn2lMp5Vr2VImURTpczOTmsV+vRqDRYddbjkvNK7CV8d9J3eXrH04kDFlRq2r3tfND0AWOzx9Luax+Q857e+2Iy59X11lHvqqfJ3YRGqUn2Ohsq5wGHzEI2WzZV4S6WOt9K5ryuQNcplfOUkeig6x1IDoU+1ft+JCLnnd6Od84TRTZBEI6r/uaovmii8X2htTD5S1qr1CIjs7VtK/Mc8/BGvNT21hKJRxJNSrPH8/WxX2dvz16uH3c9Jakl1HTXsKdrDxNzJ/JB4we4Qi6yzdlsat7EHTPvoN3XTnVXNZ3+TkLxEBmGDK6pvIb1zesxaU1kmjKp7q5GrVJTmlrKy9Uvo1Fp6An0kPJxCna9nSZPE+6w+1Od9nS0Cm2FyWPd5zvms9K5MtlXAiDTlMn8ovnJkHCgYnsxFZkVh3xfhwokDe4G/rn1n0TiEVq9rTT3NSfDklFr5Lbpt7GjcwcNngZmFsxMBi8gGXzmF89n/f711PTUsLtrNzIylZmV3DX7LrJMWbT6WpOh8lCKbEV4w17eq38PgFZv4vUpFUrGZyea0erV+gEzkft691GSWsKi0kVEpAhmjTl5uMKn0T/7OTx1OEtrluIJerDqrejUOlINqUzNm5o8hGMoWqX2iK/vs8jOzgZIBjDh9GOz2ZKfoyAIwpeRFAwi+/3IoRAKvR6FyUQgllj9oVVqCcaC3LflAaYXTGdZzTJqe2sZlTEKo9bIuKxxXFJ+Cbs7d/Ptid8my5RFT7AHq87KpuZN5JhzqHfX4w65GaZJh+DhCyHqmMTItJFfupz374/+TSQeocXbMiDn6dS6o855G/ZvYE/PnkPmPOCwWehUz3lRWcnhjhxT6PWHufWzETnv9He8cp4osgmCcNw0uBuSp232SzWkMjFnIpBYsWZQG/CEPTyx7QlmFMxgXtE8imxFqJVqskxZbNi/gVFZo/BH/Szds5SYFGNSziRGpo+kzlWHJEtoVVo0Kg3vOd/jh5N/yBPbn6C6qxoFCvrCfby9720uHXUp/oifcTnjyGzKpNHTyArnCowaIxIS/ogfpVLJw5sfpra3lpgUQ61UU2gr5NsTv/2pTns6HIvOwoVlF7KsZhmt3lZmDZuVDF6VWZVUZlVSkVHBsppl+KN+IvEIOpUOo8bIhWUXkmXOosHdwEu7XqLeVZ+Y+VNpKbYV89VRXx10PH2brw13yI1CoWBi7kTKM8oJxUIoFcrkdtqoFKU32JsMRAcakTqC9fvX0+huZGrBVEamjyQux4nLcVY4VzBz2ExC8RCFtsJBjz34dV879lp2d+9Go0wsuVYqlFRkVNAT7EluDY5KUSbmTCQ/JZ/eYC+1vbWMzRo75PHvn/Z9n5I/hYqMik9C6//CHEBtb+2AGdB+BrWBYnvxEV/fZ6FQKMjJySEzM5No9PAzrMKpR6PRiBVsgiB8qUkeD4FlywZsBVWVlDDq3LN4T6U9ZM5z2ByolKpkzqvIrOCjto94df+rqJVqLFoLV425iie3P5k4+VxnSRx6oD78P1WVegMXlV902Jz3101/pd5Vn2yK77A7+NaEbzExd+JxeU+OJueNyhxFS2c9o0xFqKMSMY2KXX4neZnFnzrndfg7WFR4FtNTx6GLQ0StZEPvx/y39lW8Ee/R5zxPI9Pypw2Z81p9raQaUg+bhU71nLe3ZQcjih3IQ2wZVZWUoDCZjun5hyJy3unteOY8UWQThNNQh6+D6s7qIWflpGAQ2etNzDBqtaDVojAYTkhzzwP19+M4sMAGiZ4ODe6G5GxYWXoZH7Z8iCfs4Y3aN8hNyeWMnDOw6C28WP0ida46rtddj16tJ9WQijfsJS8ljzdq3+CM3DNYXL6YQDSAN+IlGotS21uLAgUTciYQiUVQK9W0eFt4cOODKBVKHsh8gGernkWj0hCIBpKzfTOHzeT9xvfJs+QlT4gCaPI0AfCrOb86bjOdB55OdWAI6J+5s+qtaFQa2nrbCMVC6NV6yjPKseqteMNenq16lp5AD8WpxciynCgyKjWsqF/BZaMuGzAD6I/4afW2JrejhuNhjBojmaZMmvuakw2BATTqgf0GVEoVhbZCVjespjyjnHZvO/tc+5JbXeNSnNmFszl/+PlHNds6Oms098y/h62tW+kKdOGL+NjXu49ILJIMXoXWQmp7a9nUvImLyy+mJ9hzXLdqHtywuN/BDXXhk74gh9q2cLyoVCpRrBEEQRAO6XA5DyDu9UIgkFxNhtGIynLifm9BIl8eXGCDRH8r1Vtw9vQ5vNb07oCc9+a+Nym0FjI+ezwmnWlAzrPqrWiVWtRKNSWpJfSF+yhPL+fskrMBMJhsxPc2onI4BvVkg8RBCs/VLyPFmjF0ziuYyTt17zAqYxSNnsZkLqrpqaGlr4U/nPkHyjPLj8t7c6ScN1pfSPG27cTr/1/yMbNKSjBeUPipc94kcxnKta3IzqUA6IFzHEVUTL+Vy975xtHnvPRy2rxt1LnqUCgUyUOwZhTMoCytjGHWYezq2nXa5rz01HyCZ2ZheI8BhTZVSTHGCy44of8uEjlPEEU2QTjNbGnZwp/X/5ma3hpUChU6tY7StFJ+PPXHjNYXDp5hdDjQzZ4NdjtK6+DG+sdLfz+OodS76llYspBNLZsAcNgdKBQKMo2ZzCmaw4bmDSzft5y4HCfLlEVBSgH+qJ+bzrgJo9ZIo6eR0tRS9Go9nrCHcCzMx20fI8kSmeZM9vbspTvQjT/qT/Z806g0aFVaVAoVCoWCqBRFrVSjQoUCBQ6bg/cb3ifXkotWqSUiRYDEwQprGtewq3PXcd1OcKgQ0F+cDMVCOOyO5PdDsRDLapYxe9hsYlKMlr4W3qh9g0A0gCRLFNmKOHf4uezq2MXUYVOT12r3tdPqa02uXgtEA+hUOlSKxAxyii6FnmAPALnmXFINqcnPzaA2oFQqKbQV0h3oTq6qUylV6NV6wvEwTlfiNK0GT0NyrP1HvffPtnrDXhrcDbT6WonGo5Snl1NiL+Gl3S/R4G5Aq9PSF+mj0FrIzGEzWV63nKgUJRxLBMMTsVXzYIdqqDsibcQJLbAJgiAIwuF0dDci+X2URa3EdKms79nGC7te4MZJNzIuexzx3l6Cr78+oPCkcjgwLFqEKjX1hI1L9vuHPDUUEoW2UQsXsM6QeP7+nJdtzmZB0QLeb3qfdfvWDcp53570bTKNmRi1Rrr93TS4G/CEPQDs9NUzrr0Lw5QphGHQ6/XNn8KDL57N3XPvHjLn5VvzWbd/HSNSRyTzRb+qzipWNawi35p/3H7nHyrnHa44GXjtNfxnzzrqnCcFg6jfWTWo6Cg7GxgG/Gz89wmopE+V87SqRKFTp9YRiodo9DSSYczg3fp3k9c/HXNeoa0Qr8FL8Nx5mGLzUUaiqA0mVGbLCV94IAiiyCYIx8nR9lI4FjVdNdz9/t1UdVYlv6dWqhO/nDvr/zdLdtAv8f+dwKQZPRpNefkJ+8VyuFmp/lnF/lm+3V272dq+lQ5fB/+3+f+ISp8sqe4KdKFVaWn2NqNWq5mQOwGtSsv2ju3J+wRjQewGO1tat7C3Zy+5llzcITdGjZE0Qxr+qB+zJtG4P82QRnlGOR+2fEhMjiWvEZNj2PQ2JFkiKkWJS3EUCgUxKUZ3oJs2XxvesPeEF1wOV5z0hDx4Qh5kScZusDM9fzqNnkY2t2xmS+sWvGEvRo2RUVmjsOgs1PbUsrdnLyNSEyc0GTSGxOo+lZpQLMTozNHJJf2phlSKbEXJLQ69wV6seitKhZJMUyZxOU6JvSRxjf+FMJPGhFlrJhgNUmgtxKAxUNdbN+Co955gD+v3rx+0QmxW4SwuHnkxFp0FSZIIxoK0eFuSwQsgEAsccXvC8XSohrqCIAiCcLDPI+eFXT0Y3nwf+YAiynmOIsbP+iYPbvkHD866l+hBBTZIZL3g669juPjiE7ai7UiN4tWR+KCc1xfuY8n2JXT6P+lRdWDOc4VcFA0vYmr+VHZ27GRL2xYA3CE3/9j1BHdO+RH5m7aizc9HN3UqxGKg1+PSy1z8xjWUppUeMueFY2EyTBlEpeignCfLMu3+dmp7ao952+KRHKk4aY7NOeqcF/d5iR/ixEzZ2cC5s7/Ksq41wJFzXlSKkmpIJduc6D8lyRIWrYUscxbhaPgLk/PExKlwMogimyAcBwf2IgvHwnhCHqwGKxeVXURFRsVx+QveG/aypX3LgAIbkCwKVZiKBixDP1Dc6UQ3depxP676QEealTJpTMlZvgxTBm/VvcXOzp0DCmwA5enlaNXaAdfsbyrb//42eZqo7alFiRKj2ohOpWN89niCsSCReAS9Wp9chWXT2bho5EW4gi729OxBiRKFQkG6IZ2y9DLave2EYiH6wn2YtCYi8cSKNkmWWLJtyYCZuxPhUMVJlUJFriWXF3e/yFu1byUb2zpsDi4uv5hXd79KTU8Nrd7WZEhs9bZS21vLTZNv4q+b/8rqhtUAxKU4k/Mnc1HZRXzc/jGphlS+UvaVZPg4cIsDMvQEejBrzezo2EGbrw2VQkWmKROH3UE4Hua5nc9R21vL5LzJfHP8N6npqUluC97RsYM39r4xoNdZMBZkTeMaXEEX/qif3V27segsOF3OAZ9/uiGd80vPF4FIEARBOKV8HjlPCgaJvv7GgAIbJIonOcCciqkog5Eht07C/1Z6BQJwgopsR2oUr9DrB+W8elc9siwPuN+BOQ8GZ702b1sy53317ev4/YxfMzYlFV08SNSgYEPPWp6v+3+YdebD5rwMUwZlaYfOebIss6llE6nG1BOa845UnAz5Pfxnx3+OKufFgv7DXisFHa6Q64g5r9vfTTQeRalQ8lHbR/SF+8g0ZZJmTGNt01psehtPbX+K8TnjRc4ThM9AFNkE4Rgd2IvMHXJT012DN+IlHAuzq2MX54w4hwWOBZSll33qa/f35PBEEkvn41IcWZaRkVEqlMn7xaQY6mj88BeLxY77cdUHOrAQdrCDZ62yzFncNOUm/rLhL6zbv46YlJh5LE8v55vjv8menj0DHnNgU9k9XXsIx8J4I14KUgrINGUyLmcc//roX2xu2YxGmdgmWpZWxrljzuX5Xc8zIn0EF5RdwCXKSwjGguhUOoqsRezu2k1dbx1KhZJwPIwUljBrzThsDixaC3WuuuTM3fEIBEP1WEnRpAx53wxjBivqVxCVoihQJFcDOt2JcD05bzIbmzcSioVo87UBid4bs4bN4pEtj2DRWrh6zNXJAx1a+1p5fNvj/GL2LyiyFQ14PQdvcZBlmdtX3I4r5EKr0pKiTcGmt+GwOXh739tcU3kNH7Z+iEFtYN3+dUwrmEZ1VzWtvlb6wn1DnqAVjAXpC/dRbC+m09+JJEmUppUCiZWOOeYcFpUuYpht2DG/z4IgCIJwvJzInJfsrRYOo9DpUOflE9/fDAc1TZedDUyf+RU4Qo47kTlPYTKhKikhXlc36LaDG8n357yHNj3E3p69yV0XB+Y8YMis9/hHjydzHsDfqh7nWxO+xZ82/IlNLZuOOuflmHPwhr3s7Nw5ZM4LRBInoh7PnBfyeZB9vsTn+b+TVzVHKE6G1Rx1zpO0mkNeB8BDiEWli44q5z2w8QHW7V+HP+rHrrdj09sYmzWW9U3rGZM1hu9O+i5tvjaR8wThMxBFNkE4Rv3b/cKxMDXdNbhCLroD3cSkGF2BLioyK7h/3f38fObPGZ42/Kivu619Gw9vepiuQBdOlxOz1kxpWinzHfN5s/ZNNCoNauUnf4SjauVhrgao1SfkuOp+BxbCDj5dtH827UDjssfxh7P+wMdtH9PoacSgNqBVa9nTsweLzjLoMf1NZdc3r2dfzz7GZI2hL9xHd7CbrW1b0av0XDX6KlAklq3Xu+p5YtsTnFl8JkqFkk5fZ2IbgQwSEmqFmqn5U+kN9bKnew9KhZKoFKUktYQrRl1Bd6AbSBzc0OhuHLLPxqexrX0bD216iHrXJ1sGiu3FfG/S98g0ZQ7YSgEgI+MKuchLyUOj0qBAkTytyul2Mr1gOgaNAYPGgFqV+DnINefSoG9gW/u2Qc+vVWkZZh1Gt7/7iNsjA9EA2eZsrh5zNaFYiCxzFh+1fkR1VzUN7gaG24fT5G6iwFqASqlCrVCTa84lFosRih064MflOMNTh7O8bjlb27Ymvz8xZyI/m/ozEbwEQRCEU86JynmH6q1mXLyYwMsvDyq0qaMSWI+8muxEURoMGC+4gMBrrw0otKlKSoZsJD8uexy/W/A7qjur6QwkMphKoWJPz57kVsWhst4FZRdQZCuiLL0MrUqLXW/n6aqn0al0nyrnNbgbOLvkbFq8LWxp3TIg550/4nxqe2oZkTbiuOW8UG8X0TfeQjpgO6ey2IHq/PNRlZURr6kZ9BhFsYNdvvqjznl+tYyh2DHgOZIcRazs2Eh+RskRc55erWde0TxsetugnNfh78Dd6ObasssYkXcORklNSkoG+ZoMPPGQyHmCcBREkU0QjlH/dj9PyIM34qU70I0CBZNyJ5FhzMCmt6FAwY7OHWSZs45qpqzD18HDmx7GE/bgC/swaU1Y9VY6fB14o17GZ49nc+tmzFpzckVbla+OeYeaYXQ4kHw+VAUFx/fFH+RIpysdLMucxTkjzhnQ52R0xuhDPsais5BnzqO+t56NzRsBmFUwC6fbya6uXUBiW2qOJYdoPEpcjlOWVsbbdW9T1VlFq7cVpUKJP+pHo9Tww8k/5CtlX2Fq3lTicjx5vLzdYE+eMgqH7zd3NDp8HYMKbJA4EOJvW/7GbdNv4536d5LFyXAsnCx0aVVa0oxptPsS2x1k5GQQK00rRafSkWvOBSDTlIlWrU32ZPNH/bT72lEr1aQZ0tCr9bjD7iOOty/SR6OnkTZvG56whxJ7CT2BxGlQgWiAbEs2b9e9zZqmNSgUCjbs38C0gmmMzhyNUWMEEr0CS+wlWPVWzsqdRaVlBJqohKzTYj/jZt7v2Ig/6ker1OIKufjPjv9Qml56XA+bEARBEIRjNVTOi0kxNEoNY7PHkm3OJhKPsLl1Mxad5ah+j8W93kEFNvikj65u6lTCa9YMuE2h1yEZtIc+bdPhAKPxs7/Qo6C0WjEuXozs9ydPNlWYTIfs95tlzkq+H/1Zr8hWdNh8aFAbCMfDfNT2EZDIefWu+k+d8wD29uzl/jPvZ23TWlwhFyqlCq1SS21PLXOK5tDqTazIOtacF/J5BhXYAKR6J6E33sBwwQWEYrEBGV1Z7KBnzgTeqn7sqHNeij4F5VlnoehLrPKLNzcT3rgR8vPYP72M/6z/Bd9L+d4RxxuWwnjCHpbXLR+U8yRZ4s0Ln6d4oxPZ+Q4AMjCm2IHi3IU0e5uBI+e8NZ2b6Qv3oVfrCUQDPLXjKZHzhC8NUWQThGPU30siIkUIx8IoULCwZCFrm9byXv17jM4cTXNfM22+NvIseUzJn3LEa1Z3VtMV6KLZ08w+1z6i8ShmrRm9Ws8ZeWcwPHU4H7Z+yIScCeSYc7DqrJgtaegWjSP8+hsDZxj/d7qoym7/XE7TOdTpSsfrMYW2QrZ3bCfXnJs41UiKolPrgEQfszRjGj2BHnqDvcjIeKNeOv2dKFFi0Vowa814I14UKHit5jVumX4Ldb11GDQGgtEgZWllVHVWJZftw7GfglTdWT2owNav3lVPq7c1WZxs9bbS4mtBhYoGdwMABSkFBKNBGj2NxKQYChTkWnIZlz2OEnsJRbYiGtwNvL73ddRKNQqFgrgUJ82QRrGtmAZPA2atGbVSjU1nO+J4bToberWevJQ89EE9Zm3i9bd0tJCfkk93sBun24kCBZDYIhCKhVi/fz2laaUUWArItmSzumE1/5z7ACUb65Gdzyevf0axg5K5l/Hgrn+z37cff9SPK+iiurP6U4WvJncTVR1V9IZ6STWkMiZzzKeeJT0e1xAEQRC+uA7Oef0Ftv6s1+5rp7mvmV2du9jTtYcbJtxw5B5fgcBhe6vppk4d8D1FsYOwVk1Er8G4aNGhTxc9Qf3YDqQ0GD5Tf9+jzXrHM+f1BnvZ3LKZbR3bGJE6AlfIxQLHAopsRbR6W5NZ71hznuzzDb26jEShLRoOJouTsYAfnzJKU7Sbn39wC6FY6KhynuTxEDvolFJVcTG6b93A83XLeGLtHcjIR5XzzBozNr1tyJz3+5l3U7yxHtnZMOh1qN5+j+mzJ/KB5YOjyHlf5cFd/6amp4a63joKrAUi5wlfGqLIJgjHqL8XWaevk7gcZ2z2WNY2raXR00iKLiV5XHWXv4ulNUuPqkGuJ/L/2XvvwCjuO/3/NbO9Sbur3rUrJIFAdBDdGIwr7kkcJ3F86d0pl9zlkitpP/ubq8ldnEu9XC7FSezEBWwMNjbFYLpNE0ggrXqXtvfZmd8f6120qCAwTlz25X+snd2Z2dmV5uH9eb+fx4vL7SIYDxJPxFFQCMQCaFQaDvce5vqa6/n+Td/n+fbnGQwOohbU7O7azdnRs7xv812YY9cnVxi1WtBqEQyGN2Vc9ZUkdVl0FlZXrkYQBLa2bEUQBNSimiJTEWpRjT/qxx1xJ2PcRRUJOZHsAgwOIisy/qifQDyAUWPEarByuP8wz7Y9S3VuNSatiUgiklFguxopSJfqHvNEPVh0FqqsVbzQ8QJj4TGKTcWUmEvoC/QxGBxkdv5s6vLq8Mf8lJhLWFW2ipaxFk4OnKTEXMLT557GbrDT6+slnohzfuw8CgqFpkIWFS9iLDyGw+agobDhkufbUNiA0+ak3d2OTW8joSQQBZGEkmBuwVzODJ1Bq0qaFps0JkwaE6IgEogHyDPmcVfDXfzL/n/hfbV3vya8OjL2L7e7sAF11VW84HqBDY4NyLI8oy67FC93v8yDex/k5NBJZEVGkiXmF83nq6u/ypLSJTPqGB2/jxSNhY18be3XWFmxcsbnkiVLlixZ3r5crPOAtNZLeZdCsrOnL9A3I4+vS3qnSRdSMgWHA++1y/jt+T9i1pq5o/4Oyu68M+nl9lo3GUbjn6XAdrn8pXVegamADm8Hx/qPMRYaw6Q1IQgCA8GB9PGuhs5TotHpt0ciiEUG/KLEL9p+m9Z5Nr0trfPmF83nn1Z8lUU59egk0BotHPU2c2joBMvs8xG2vzQhpTTR3o68bTuWxmSRzGlzzkjnpQqZ1bnVyIqcofNuLd+Asnf7pK9LtLVRc/3Gy9Z5ayrXsL97P76Y75LnliKr87K8lckW2bJkuQLGG9jb9DY2OTYhJSROD5+mwFjA8+3Pk6PLoSq3il5/LxatBQEBb9g7re+DP+rn7MhZYlKMams1erUen93HgZ4DRBNR3GE3Zq0Zm97Go82PohWTxq+pFb7B4CC/bPl9UtwVFv45L8ll4Y/6OdZ/jCN9R0goyTAHf9RPoblwRmme1dZq8gx5NBY2MhoeJSJFqM+r58zIGY4PHEcjJo1h5xXOw26wc6T3CE6bk7kFc/FEPOnR23Nj51hSsoRcXS6z82ezuW5zxo14Kj+5y+VSq4qp7SnfF5WgQhREbp99O9vOb2MkNIKiKJwcPIlOraPaWs1Xd36VQnMhS0uX8qsTv6I8p5zHmh9jNDTKLXW3AElPj7HwGC63ixUVK/j4ko/PaAWxyFzEp5d+mn/b/2+cHjmNrMhU5lbSWNjIBucG/unFfwLAqDFSbC5GFES0YvIfGaluzgJjAe9x3IKy50+THkNpd/Gu9ffyi7O/xeVxcU3VNdh0thldz7bRNr61+1u8OvAqCgqSLCHJEgd6DvCt3d/i79b+HbV5tdN+j7o8XROEF8DJoZM8uPdBHr754exKZ5YsWbK8Q/FH/XR4OugL9CElJBYWLSRHm5NOWSwwFnCo99AEnacVtZf0+Ip6x1DrdNMeX7BaMb773ci2XPaMHeOw63FiiRhj4TGeaHkiqfMsb96xOzkcJuZzEw+4yVOL9AeG2Ta0jTxj3ttS5wmX+jxf2z6VzvNH/fzDoi+Qv/tVFNfj6dctc1RTumYjYiQyocCWQnF1sGj1rcwpmDNjnWfRWVhaupRwPIznjIcuXxeVuZVYtBaM8vTlAVVMQq/WU2Iu4d3VM9N5vf5ebpx1Ixph+uCGFFmdl+WtTrbIliXLZTKZgX2NrYZPL/s0S0uXcrT/KPMK5xGVovT6ezFpTDhsDiRZIlefO6Xvw5mhMxzuP8yRviPk6nIxaUxsO7+N8pxyNjo3srN9J9FElEJzIVJComWkhRXlK9IFthQXi7tLrSL6o37OjZ6jz9+HRq2h1FJKdW71VUlZmowOTwf/9+r/8fjZx3FH3EByHHKjYyOdns4ZpzxZdJa0sWu1tZqnWp4iHA8jyVKyKJRTyfLy5exy7aLEUkLLaAtlOWUYNUb8UT92g51b625lefly7pxzJwuKFmDUGHHanDPyk7scGgobmJ03m3Z3O3E5jkalQSWoiEgRKnMryTflc6DnAN6ol1JzKRqVhufanmM4NMz8wvksKl7EUHCI8pxyzo6c5fEzSQE2EBzAF/GxsmIlOdocBgIDCAg83fo0a6vWssGxgWgiSrG5mFtqb2Fh8cIZnW+HpwOXx8VG50aWly9HVmTsejs9/h78UT9F5uRqsiiIxBIxyixl5OpzGQgMcKjvEJ2eTra3bSex8OvTHiceCmDRWnj2/LMsKFpAvil/Rud2uP8wL/e8jKIoxBIxREFEr9aTUBIcGzjGSGiEMyNnpv0enRw8OUF4pbcNneTk4Mms+MqSJUuWdyAdng72d+9na8vWdIqiUWNkRdkK/n7d3/NS10vo1XqKTEWT6jyY3ONrODCMNSoQf/oZlPLyab3VpLNnifV080wDPN+3l/Kc8vT2y9V5cjiM4vf/2SYcZK+X0GtjjSrACDQ5qqledwc/PffI21LnCWYzKqdz0kKY6HTgV8scn0Tn+WI+Pr/gE6wqWIKyfSeJizrCFFcHZQAbr3ktEmFyrBj42OKPXZbOe3XgVUZCI2xwbMCgMSAick3VNWiM04/OBgWJFzte5OlzT/Mf8/922ueO13n1efWYdZcey83qvCxvB7JFtixZLoOpDOzb3G08fPhhHtr4EAICuzp3EYlHKDQVIiAgyRJ1eXXE5TijwVEeP/M4Vr2VhoIGisxFHO07yvde/h7PtT/HSDgZnLDJuYn7F9zPL4//EkmWaCpvotffy8bqjYxFkqN/qZW8i0mJu5aRFn514le0j7UjiiIWnYUaaw3vmvuutI/Xr0/8mn1d+whLYSCZULm5fjOrKlZd2lPkMvFH/fyp+U/4435WlK8gLsfRqrQMBYfY3bmbhcUL6ff3X3bKUypwoTKnkq3ntqIRNQyHhvnFK78ASPum6FQ66vLq8Ea85BpyubP+TuYUzMm4Qb/edKnJGAgMMKdgDsf6j9E61gqATW/jOud13FhzI/99+L9BSEaqS7LELNsshkPDGDQGdrp2ctvs23jk1CO4w27yDfnU2mvTgl4URGpsNfhiPoaCQ+jUOmx6G8f6j2HSmgCQZZloYvpRhhT+qJ99Xft40fUiB3sP4o/50Ygabpp1ExqVBk/Eg1VnZSg0lE4sbShsIC7H6fX1IgpiuvAbUwvTHiuskpN+IGo9oiDyQscL0wpef9TPUy1PpbvmZEVGQSGhJIhIkbQA80a9l+wkGIuMTfp4CnfUfalLlSVLlixZ3mak7oFPtz6dLrBBMnX75Z6XMWqMvKfhPRwZOILdYJ9U5/W5++j19fKi68W0znt14FVskhbDC0dIuFwkenow3n03UZjgraZraiJy7Cj9a+fxy31/j8PqmHCeM9V54wteGcdYtw5sNsTc3Kt6/eRweMLxIFksKgKWz1vA0bFTbzudp4klUK1ZQ1RRMj/Pmhoi163hO4f+BUmRMnSeL+bj31Z+k5LD59FfoyIwTaeaXryO6QaMJa3qqum8Hf0vcbujesIIKCQLhrtHjhFLxJLH1YjTHmu8zgPY2b6TRSWLsjovy9uebJEtS5aLkMNhlGAQORwmrhHpkcY44WvBbrAjKzIu9+TGpu3udpqHmllatjSdhBSTY2hFLbn6XNwRN72+XkLxEM3DzUDSO+Gzyz7Lz1/5OR3eDkbCI8lzUGR2tO8gEAvwxRVfZCQ0wurK1RzpO0IgFqDIXJSxYppCSkhYtBaGgkNsP7+dR08/yqnhUwwFh5AVObktMEQkEeFjiz/GY6cfyyiwAfQF+tjashVFUcgz5F3VjrYuTxcqUcWR3iO8MvBK+vGq3CrWVK7BqDHiDrsnXQEeP6I7vkCZwqKzsLhkMT9/5ecTVq52tO3gtvrbuGvOXahE1VVdvbwUg4FBvn/w+3R7u1lbuZYbZt1AVIpi0BiIJWIc6TtC80jy+6AVteToc3j63NMsK13GjvYdFJoK6fH1oCgKwXiQDy38EE+0PMGB3gNpvz5PnYd7592LoihEpAjuiDtdYDOoDeTqc2ds6tvp6cQX9dEf6McfS6ZXxeU4285vY0npElaWr2Rz3WZecL1ALBHDbrCjU+sIRAPMyZ/Drs5dzC2YS31ePc8N7OP9DgfKZObOjipeHDyAVW9lYdFCynLKiCfidHg6poyeT41Z1OfVA6Sj7iEZG5/6OVeX7Kob/z0aP/qTChKRFTmdznsxMx1dzZIlS5Ysby3SOi8SAb0eIZFAiYQR9AYEjUAsEcsosKUIS+F0R/p1jutoGW6hL9CXofMO9hzErDWz07WT5uHmtM57+PDD/HD5t4ik7ofxOKE//hHdihXJkANJQrTbiSsyIzEvo6vq+crevwfI0HqXo/O+vPhzE4zy4UKCqWbePDRz5lzVjjYlGJx2rHH5mjt4oW/fpDov4fdP6zP3ZtV56aTYnp6MzxO1Gtnvpzfq5sTQCSBT5/1D01co2XsKQ9MKZK932mPI0Sii0zFpuILgdNAa7iE3d2Y2MZfSeQ6rg9j116F7Tsg4nqrGifbGG1ky1svSOQ0ssc3DYrZP2ZE5XufNL5xPmaUMURCzOi/LO4JskS1LlnFMtuJX5KimflUdH3nu89w2+7Z0CqUySeP2SGiEo71HaShoSAoeZMxaM4FYgF5fL/MK5/Fix4sEYgEScgJ32M0z557BHXIjyeNMbgUBRVF4qfslnHYnr/S/Qn1+Pf3+fjY6NyLJEqsqVmW8xh/1Y9Fa2NW5i8P9h6nMqeR3p3+HTW+j2lpNr78Xf8xP62grCgqnh07T7m7PKLCl6Av04Yv6Lnul8VKEpBA723fS4+vJeLzT2wldcP/C+xkMDk4oCE02ouu0OXmg6YGM1vhKayVfW/u1DA8GAYH5RfO5qfYmen296DV6TDbTVXtPl2J8sujRgaMA6Q6000OneWD5A+hUOtSiGlmR8UV99AX60Gv0eKNeynLKiEkxFBTWVa5jb9deXB4XOpUOGRkBgcHgIEf6jvDNa7/J4b7D6FV6JFnCHXFTY6+hxFIyY1PfQDxARIpkfLcgKcAO9BygdbSV+xfczwcXfBCD2kAgnvwu9/v7+ccX/5FoIsrBnoNsdG7ksfYt3Hjt97Ajg6vzws4cVbhWzuKHLzxAU1kTMTnGsf5jNA830+Hp4K45dwFg0poyxl5SYsqis7C4eDGH+w5nnKOiKCwuXpx+fup7lBr92da6DYveQo4uh2Uly5hXMI+W0ZaMoAtImuJOJQCzZMmSJctbl7TO6+5OdpK98MKETrL33byZp1qeSltajCcYD3Jm+Aznx86zvno9h/oOEZEiBGIBDvYcpMBYwNeXf5kqTQHqmgSSRkV/wJPs/InGMncWjxPduzf9o+H++/nwka+x0bmRhJygxFJCji4n3R1+uTpPDgSmLHilEkyVYPCKkkKnQg5P1JTjMcgiMTk2QeclxsamTky129OPTabzABYWL+SLCz+NVdYmi3RqPUSj8Gcoso1Pih3/eaao/vhH0zpPQCAQDdAf6Ge+pRbF9XuE6zahBCa3kkkh6HS41y/FBhmFL8HpwL+hiRN9L/CBqmUzOt2Z6DyAO2+4mWLx5vSYsRwKgdtDvqQFVLxHvQgxqoIVKybtyAxuXMkPt97D8rLl+GN+Tg6d5NzYObp93W+YztvaspWh0BB1eXVc77yeuQVzOTd2DpHk9y5FVudleaPJFtmyZHmNqVrccXVQCXx07gdwhftpGWmhLq9uQnEqEAvgjrp5+MjDqEU1dXl1VOZWMrdgLiIi3oiXbee30eXtIhQPAckC0Hn3eSRFmjD6KQgCKJCQExg0BsosZXxx5Rcxqo1UWisZDY/yVMtTjIXHiEpRZEXmYO9BNCpNUvDFA0iyxEhoBEEQKDIVMRwaxh/zE5WiDIeGictxTBoTkiylb/7BeBAFJb2Pq0lKWAgIaFXadLs5JAttGlFDqbk0oyA01Yhuu7ud/zz4nzy08aGMjraVFSt5+OaHOTl4Ek/Ug1lrptfXy5ee/VI61WhO/hw+ufSTzC2YS0SKMBIewRP2IAgCFTkV1ObVXvHq58Udd8Oh4QnPiUpR9Go9alFNUArii/oQBAEpIVFgKkAjakjIiWQhTZEZCAxgN9ipsdWw5dwWBJJFWIAScwnllnKebHmSdzW8i2N9xwjEAzQWNnLH7DuIy3Furbt1xu/HrDGnz20ydCodReYiAtEACSWBVtTSG+zFHXHTH+jHoDEQl+M8c+4ZVpSvYMfQfgobc1i69k7U8QQhUeLp3l386sWH0YgacnW5/NWCv6LD08GayjXEEjF+cPAHrK5czUAw+b5TJskpMXVy8CRfWvkl/u3lf+NAz4F0wXtJyRK+uOKLnBg8kU4LS41FPHvuWSqtlezp3EO3r5utLVt5oOkBfnPyN/QH+tPfxcbCRr627mtZn44sWbJkeZsxXufp1q4levDghA6chMsFz2zjwXVf51O7vpyxLRAL0Ovv5ejAUQ70HEAtqrmm6hrWVq5lLDSGUWPkwzXvxr7rGIrr5fTr7A4H37jmy6DVTnt+gl7P3639O0LxEGaNmWuqr2F72/Yr1nlyZPqCF5J06ZTTy+RS44OKdqLOS3eCTfJZhLduxXDnnRkdbeN1njvqJl+fz5q8hchP78jYh+BwELzlejoTYwyFht4wnbdWdE7/gmgMX9SHSlSBAlaDFbWoRh17bYEvGiXR0zO1R5/TSVyR2Lz1vXx//XepWDEHtSSj0htwixFe7t/FzbU3XzWdZ9aYWV24FLusQ4lFEHQ6lESC6P79JM6du3BeDge6tWtJDA6iLi/P6OBL9PQQjgZRi2pydbl8aumn6PB0UGQuesN03tOtTzMUGqKprIk9nXvY07GHB5oe4BfHf8H50fPYDXaiiWhW52X5s5AtsmXJ8hrTtbjj6mDjqlt48PR/k2/MJyFndr7EEjFydbm4w8lVT0mWaB5upnm4mdbRVm6ouYGXe16mz9+XLrBBsg1aQMAb9ZKjyyHfkJ8eGQUQBZEiUxE6tY48Qx6BWLLo1eVNpgB9aOGH6PR00untZDQ0yrnRc/ijfrQqbTrBR0HBHXZTmXvhZiLJEmpBTetoa7KL7DUsWgsOmwN/1I9erZ/xiOFMUYkqbHobnkgyldUdcaeLGzm6HBJKgg/M/0CGUBjfCXYxqRHdi5OUbAYbVdYq9EE9h3sP88rAKxlF0fNj5zkxcII+fx+eiIdnzj1Dr7+XQlMh+cZ86vPqec/c99BQ0DAhJGI6c+HJOu7e1/g+ArHk81MoioJRYyQQC+CL+mgebiaWiJGjyyHPmIdRY8SgMaBRaTCoDezv3p8slOktaEUtBcYCVKIKi9bC7PzZnB4+Ta+/l15/L1q1ltk5s7EZbPT6evnM8s/MKGkqRSrWvcRcQpe3Kz1KAMnR09vqb2NP5x5ydbno1DoGA4N0eDq4d969rK5czd7OvUQTyX8M9DT3sL97P59a9in2DB6idbSVHF0OESnC4pLFrKtax/Ntz/OToz8hJsfQiBqWli5lWemyZJGZpMFzyiS5ylqF3WBnLDzGyaGT/PWqv8YbSfpyWPVWSi2lHOo9hElrSqeFnRo8hS/qw6K3pAtskFwt/c+D/8kHF3yQAlMBWpUWq85KY1FjVnhlyZIly9uQ8TpPVV4+adcRJIs7zk0bMx6LJZKFkvKccnzR5IKdJEvsdO3E5XFxY82N1JuqXyuwdWQe1+WiAIXgDdeinaaQIggCDRSiaAUEUUQwmSh9HTpP1l4iyVGtTo5lXkXGxCgWpwNlkrFGHNWci/RN0HnjO8EuJuFyQSgElswCUkrn5cXzqNQWojy9Y4I1heJykXhmB94VlfzD3n94w3Tejht/O+01UXQazoycQVEUDBoDi3SLMGlMFz4fnY7ogQNTevQZbrqJLm8358fO84uzj/DqwKsUGgspNBcyyzbrquq8HF0O/7vxvyjYc5xY+3ZSS+Epr8BQRwfE48CFsWP9ddcR/OlPJxzHVHkXn2/6PM+3Pc/Pjv2MaCKKRtSwpHTJG6Lz+gJ9NBQ0ZGi9lM6z6q3E5BjVudXML5qf1XlZ3nCyRbYsWV7jUqt5Gknmpa6XuG/BfbSOttLl7UpvK7eUc53zOv50dmKMdbu7HY2oQZKljAJbij5fH6U5pXgjXhYUL+D4wPF0+EFTeROKotBQ0MC/H/j3dCrRRudGXux4kc11m5lXNI9APEDraGu680wtqhkJj1CVW0W7ux1REJESF9rCy3LK0KmTHUm9/t50y7g/5sfldtFU1kSOLmfGI4YzxW6w01DYgKRIdHu7seqsKCiYtCbq8upYUryEuvy6jNd4op5p93nx9g5PR7rDz+V28Vz7cxQYC7i+5np2tO0gLsdZULyAc2PnGA4Nc7jvMIPBQSpyKgjFQ7jDbo70HWEwMMgGxwaqc6uZWzSXsBRO73f8+0mtvk3VcecOu7HpbYiCiFpUI8kSJrOJYCxIY1EjA4GB9DUQBIF2dzub6zYjK3K6cKsW1ezv3s+XVn6JKmtVOlxAIClQArEANr2NUksp50bPkZATVOVWIYoiw8HhyxJfFp2F1ZWrEQURlahif/d+/DE/alHN7fW30+PrQavSpsdXArEAbe42tp3bxv3z72c4NMzJweQIhyRLVOZWUmouxZHroC6vjmgiSrmlHEmW+Of9/8zZkbPEE8nE1VQ8eyAW4KOLP5o+p/HmtrfV35b+HI70HQGSq671efUoKNxad2uGD0tqLCJHl5MWXSkC8QC/O/07Fpcs5gtNX3hDzJCzZMmSJcubgwydJ0lTPxEQo3FKzaVpbzYBgUXFi6jLq+Plnpczntvubker0rIsbyGKa8vkx3Z1EI4EMNx0PWzbMTHsYPlygj//OcTj6YJG9PnnMd100xXrvH7ZS9kUiZcqhwM5EEBVUTH9RbtMvEQQNjRhhoxCm+CoZuiaBUBwgs67lP6+ePt4nQfw8ep3I09RpFPaXZSsaqTX30uZpYweXw/xRJxQPESvr5ebam/CaXVSl193xTqvLdJHxTRJsc3+5PMNagN/u+Tz3Fp+HVbBgF6tQ735FpRAAFV5+QSPvpSnmxwM8mzfLvIMeZSYS+jUd6JT694QnfftlV+nYM/xCd5vqYKabsWKjOL0VMVRAK3Bwr/v/HdaR1uJJqJpDXyg5wC+qI+PLf5Y+rlXQ+cBE7TeeJ1XnlPO+qr12QJblj8L2SJbliyvcanVvLhaJJqIcqTvCF9e8WXicjzZKq6zIggC/2/f/0v/kb8Yi9ZCrb2WDk/HhG3+uJ8POD7A8+3Pk5ATXFN9DdFElBJzCesq1zEQHOBQ7yFEQcSsNROMBzk2cIxrKq9ha+tW7l9wf7r1O0VEitDh6WBlxUokWaLH14OMzIKiBcwrnMcs+ywGg4PcPeduBASO9h9NF9qseis31d3E0pKlV90wtspahdPmxKA2UGuvxR/zIwoiFq2FGlsNC0sWTniNVWeddp/jt6dSiVICKSJFUBQl7fm2oHgBR/qOUGAsICJFSCgJOjwdVORWICsyg8FBgrEggViAl+SXsBlsnB4+zbmxc/T4e5Kt/uMYv/o2Vcfd3q69fHzxx/n5Kz/n9PBpAERECkwFfHnVl/n+ge+nu/p8UR82vY3ZebM5O3yWz6/4PF3eLvIMebjDblweF4OBQdo97ZRZymgqa8LlcdHj78FpdXJ84Dij4VHWV62/UASbwcivP+rn3Og5+vx9aNQaSi2lbHBsYH7hfO5uuBtv2ItJZ0Kv0vNc+3PpfUNydV9KSJxzn2Pb+W0sL1nOHfV3EEvEMGlMaFQajvQfYXHJYkRBxG6woxbVeKPedMFOI2oQBTG9mtrp7SQshYlK0QnvI5Uwll5pvoS5cep3Y/xo8nhUggqtqL3qo9FZsmTJkuXNRYbOU0//TyDBYODv1v4dfYE+pIREQknwXNtzvNzz8gQvK0hqJ0N8+lFJTUzi/Qc+zXev+UcqN21EjEkgyyRcLkJ//OOEDiF1eTmhLVsw3n13hs4zqA3cX38Py2xzMckaAkKcJ7t38ETHsxk67+WRY9x83TqMzzNpuqjKZruqoQcAFbkV/PrEr5nfVE/tNU0IsRiSRsWpQBvNfbv58OIPT3jNpfT3+O0X6zwAVXz6gqkQi5NnyKPH10N5Tjk9vh5ODZ1CkiW0ai0/HPkhX175ZU4MnbginfetI//Gr275AZGnn55QPNVvvoV/fOZ+LFoLW259BOfLbSh7ngEgAeB0olq3DsONNxJ+9tmMAlaqi80V6uMf9v9/5OpzOTF4gpbRFmbnzyYshZPBUzPUeWG/B5MkIMbilBlM3Om4mQVFCzJ03rWWBcSe/Nmk+0j5+E0gNlFfiU4HvYqX4eAwKlGFQTBk6LweXw+BWCBj0uP16jxgUq2X0nnjj5ElyxvNW7bI9tBDD/G1r32Nz3/+83zve98DkiNY3/zmN/nJT36C2+2mqamJhx9+mLlz5/5lTzbLWwLBZEJVU0OirW3iRkc1Owf3Y9FaKLWUUptfm7Fq9GL7i1MW2CCZBvWppZ9iMDjIicET6cfnF83nvXPfyy9e+QXfWv+tjMKd1WBla+tWurxdtLnbGAoMca3jWgpMBcTlOAICcwvm0u3pTrd+l5pLOTd2Ll04OtxzmFm2WdxWfxuz82fzXNtzNA830zLawqsDr7KweCH3zL2HDY4NCAhoVBpGgiMUGgqvehcbJFfPUitUOrWOEkqA5Ephqu37YhoKG3DanJMKG6fNSUNhQ/rnc6PnODt8NpnqqtJi0Vpw2pyEpTAqQcX8ovkcHzhOXI4jyRIJOYEgCOQZ8jg5dJJgLEgwHiQuxxERGQmP8Gr/q8xeOZunWp5iU82mjLFPuLD6NlXHXWVuJT86+iNWV67mOud1hKRkN+OpwVP8x4H/4Hrn9fT4e/BFfWjE5PV3eVwgwr/s+xdEQaTH14PT5mR+0Xy+veHbbGnZQiAWYG/XXkotpcwtmMuq8lXs796PTW+j29dNnjEPnVp3yZHfDk8Hv3z1l7zgegF/zI9KUOGwObhj9h2sqljF9UXXp597oOdARoEtKkWRZImxyBhmnZlwIsxvTyXHJlSCijxDHp9a9imO9R2jfawdl8dFWAqzsnwl66vXY1QbiUiRjGKaVqUl35CPoijkG/MxaUwMh4Yz3odFZ5lx11nqd8Out0/YphbV2PS2y0pfzZIly5+HrM7LcrURTCb0t96KaDaDSoXxgx9MFrQOHEgXuCBZ3BCMRhotF8zRX2x/cUKiZca+FQGzxU5iymeAyWzjc8s+x6mQi56Em9XmOYT/+8eTPjdV0Iju3YsSDKbvZY5cB19d+BlK9p5GcW0FQAd8xOng/Tf9gi/t+8e0zjs7chbLCg03XXctuti6pLeWSkUMiWEilObmTnrs14NFZ+Gm2pt4quUpngvvST9uN9i5Y84dkxdKjMap/cgcDjAa0z9frPOMGiMJjWrC68YTVwvo1Dqseitd3i76A/1pnReX4xwfPM7p4dPs7dzL0rKll63zbq++kdD27Wgn8SULPfssH577PgwLPorz5fYJo8SJ9nYiKMSuW4fpxk3oZeG1wAYdcRX8oeNp/ufMbyi2FKd1XlVuUp+3jLSwsHjhJfVLp6cTXSiG8fmXkV67xjGSaaGzb70tQ0dLPT1MviSZesIkBU3NRZ7SjmoG1s7jX478J7fU3cIfTv+BQDwwQeeJgki+IT/tX/x6dV6puRStKtP3cLzOA7JaL8ufjbdkke3w4cP85Cc/Yf78+RmP//M//zP//u//zv/+7/9SV1fHd77zHTZt2kRLSwsWy58hXSbLW5ru6BD6jSswKHJmi7vTQfeqOn628wHWVa3jY0s+NqEt+1KFoLlFczkxcIJ75t7DexreQ0gKYVQbGQ2P8rNjP2NRyaIJhbsDPQcIxUOcGTlDj7eH+xfez1OtT9E83AzA7qLdzMqbxUcWfwR/3E+1tZp75t7DD4/8kJNDJzk7cpa6vDqqrFWsq1rHE2efwB/zY9QYiUrJTrlDvYdoG2ujqbyJsyNn06OodsPEgsTV4nJXqIrMRTzQ9MCU6aKpa9bh6eBg70GaR5pRi2ocVgdmnZmlpUvxRrx0+7oZCY5w46wbKTIV4Y/5CcVDKIqCrMj4o8muurg8TmgLKs6PnSccDzMQGGAoMITZPvEGHYgHpuy4y9Hl0OZuozynHIfNAUC/v5+j/UcZC4+xumI1j5x8hISSQFZkjGojm2o28UTLEzQPNzO7YDaj4dG0f90u1y6uc17HktIl5BnzKM8pp22sjT+d+RMllpJk+q0UxhvxMrtgNjm6HF5sfzFt0NtQ0ECRuSjtO/Kbk7/h6dan0apfE6tygoHAANvPbwcgz5CX/mwEBFxuFxEpgl6tR6/WpzsRVYIqI7xDVmRWVaxKfo+lECbFhF6tJ1efy1BwiKdbn2aDcwNbW7emC54mjQmdWkexpZjTQ6c51HeI2Xmz2Vy/+YqLvqmxiBxdDnPy53Bm5AyQFF6VuZU0FDZcVvpqlixZ3niyOi/LG0IsRvz06QldXca77053kqUTLS/6Pl1K580unA2yCtHpmDBqB0kTfsVk4NqSa9OPST09E56XwWsFjXDAQ3NklGprNV9f/tcU7pzE963dhX4H3NZwPY+cfxyAR67/KVX7W4lv+TkpZSM4HQQ2NOHRJCid/uhXzOXqPJXFgmHz5qnTRV/7LCbTeQlVgnORPhY5HBc82TQadCtWoCovByDPIPKpeR/mF2d+S4enY4LOS8gJhkPDRBKRK9J5q+wLUM49SXRcKMB45i+7GQDFdXzS7XK7ixF/HSW/X8eCogUEogGuc16HXqOnyFzEmso1E3QeQFgKoxE1FJgKONZ3LGMaoTq3GkgW2EbdfSw61D+xwNfWnu6UTHU0ytpLlAYu6gBVOZ0MiSGU++9GFZOIqWH/2HEeefmb9Af6UYkqVlWsYqdr5wSdd2LwBAd6DrCgaMFV0XmCIHBm+AwVORV0+7ozdJ5OrUsHJWTJ8ufgLVdkCwQCvP/97+enP/0p3/nOd9KPK4rC9773Pb7+9a9z113JWOBf/vKXFBUV8dvf/pZPfOITf6lTzvIWwB/182TLk/T4elg5bzFLV9+BKp5A1mo4HXShyB6+e913aShsmNT34FKFoEprJTIyEhI/PvLjjH/oryhbwRdXfnHCfs0aM2PhMQYDg2x0bswosImI5Bnz2N+9H5fbxfsa34c36kWWZT6z/DNsqtlEVIqSUBKcHjrNi64X+cPpP1CWU0atvZZcXS6to60EY8lkyw2ODQD0BfrY172PzXWb36hLDVzeChUko9kf2vjQhTQnnTXjs0iND2hEDWpRzbLSZezq2EW3rxsRMR244LA52Ne9j/KccmKJGLFEjEJTIXE5jqzIaRNWSIrELm8XCSWRTvLyRD14Isli1XjMGjMOq2NSAR5LxLDpbRSYCtKP2Q12Si2l+GN+YokYoiAiKzI6lY7FpYuJy3EGA4Po1XoUWUl7rwXjQYbDw3hjXs6PnWd723bC8TC31t1KeU55xvnnGnJZVraMb+/5NufGLgi/WnstH170YQ73Hcaqs3Ko9xA6tY5uXzeheAhRSI67dHu7uc55HV2eLuYWzeXVgVfZ0baDdnd72u/CrrenR4BtehuKoqRTam0GGzX2Gp49/yzF5mK0Ki12gx2VoEJSJPr8fVRZqzBpTNTYapKryoKY/N7KCQaCA6gEFe6Ie8rgi6nwR/10eDroC/QRTyR9dZaXLafQVMgfTv+B/kA/Fq0Fu8FOiaVkyi7KLFmy/PnJ6rwsbwRTJcgnXC6ioojpIx8BQDAaJxTYYOYLfsGbr59gwi84HKhuuR5TTn7GPi8ZOvBaQWMk4Wd//368US+fq3n/BIP/FEpPDxuvu5cV9gXY9VbYuYfEJMU4C2C/8/bpj/06uVydp7LbMdx5J4RCKJFI8tqM+ywu1nlrKtZQa6pkhX0+Ogk0mxoQ+gaIvvAixttuI3rwYHr0UgRudVSzZO1DbHz8jnRH2sU6LybFrkjnqePytO9Nm7ig46Z8zmsNYuN13su9L7Omcg2/OfGbSXVeqbmUdVXr+PkrP2dv5950wFeFpYK7597NqaFTVOZUstYyLyPtdjyJtjZifg96g4FXB16lf7iD1Y7qCQU5SBY9E+MKw6LTQc+aOTzb8TTPtT+HVqUlFA+ldR4KdHm6WFi0kAVFCybovD5/H2pRfdV03kbHRhYULmBd1TqeOfcMoXgIu8GeLrBltV6WPydvuSLbZz7zGW655Rauu+66DPHlcrkYGBjg+usvjDbpdDquueYa9u/fP6X4ikajRKPR9M8+n++NO/ksb1o6PZ30+/tpGWnh0dOP4o6409tsehvf2fAdbqu/bdo/zpcqBFVbq8kz5FFjq8HlceGP+rHqrBSbihnwD/D7kd+njUxn2WdRZa3CoDGQUBKUmEtoG2vDqE62zNfn19Pubscb8eKJeNKjqn2BPv7Y/EeC8WDaLBTg+prrsRls6ecHYgHCUhgFBZWgIppI/g4Y1AZydDmXbaL656DIXDTlOXV5uhAQUAtqNjk34Q67sWgt+KN+ZEVOi7J2dzuFpkJ0Kh0rylfQ7+8n35hPh6cDnUpHQkkOejitTprKm3is+TGseiuSLFFtrUZWZLq8XRjUhnTbe2plzKKzTCrAC02FNJU3ZYwf6NQ6ZtlnEYwFsevtFJgKSMgJZtlnMbdgLqeHTuOP+dNiSq/WE01EGQwMUm2tToo/JdktFpfjvNT1EpvrNlNqKUUlqtCr9SwtXcpPjv4kXWCTZCk93vmt3d9idv5sZufPRi2q6fJ24Y16ERDQqrQIgoA74ubM8Blm589Om/12ebtYV7UundzkjyW93GblzWKjYyN6tZ6wlOz6i0pRgrEgZZYyRsOj9Pp7gWTRUSNqWFi8kPKccvRqPR2eDgRBIJaIcW31tczOm83xweMsLlmM3WBHkqW0Ie6l6PB0sL97P1tbtqYNqw1qA6srV/OB+R/gG+u/MePV9SxZsvz5yeq8LG8E0yXIJ9raUFatQrTbJy2wpbiUzgMw5RUTuONmCIZQIlEUnZagWuGU+yRj/bszdJ7JZJqy803ldIKiQG0NT3Y/R0SV1CdCLD7huQBoNMl0yp0voW5vR3fvvYSmeL9yuwtNJA5vssk5lcUyIUU0xXidd/Osm3lP1c3k7D6GttiX7Fhz+8Ceh+mjHyHy7PYJo6eKq4NS4KtLv8gDu74yQef1+HqozK1EUqTL1nmCXsd0CLpLJ7jG1QKiIGbovFA8hEbUTKnzJFmiy9eVUWBL+cz94OAPksWlWjvq+HRDzBAOeBnSxvnPg/9Jv78f59rvUPLaNUu/B6eD2Ka1hONx4mW3ElbJ7Bzcz+92/w33zrsXT8QzQectKFqASWtCQZmg8+ry6jjYe5BlZcsoMBZcVZ23qWgTK8pXZLVelr8ob6ki2+9+9zuOHTvG4cOHJ2wbGBgAoKgo8x/hRUVFdHZ2TrnPhx56iG9+85tX90SzvKlJjckF40GMWiNxKU6nt5OR4AixRIwqaxW1Yi2heIiW0RbcETfH+o/RUNDAopJF0+57ukJQCgEBnUrHaGKU4dAwvzrxK17qfomoFMVusFOWU8Z98+/jWse1bK7dzKmhU8kuOFkiqkSTfm16K6cGT2HWmdMpSZIsEU/E8UQ8LCtdlmwRD4+mUyq9ES8FpgKMGiMalYZ8Y3465bHUUoosy+Tqc2dsovp66fJ0cXLwJGORMewGO42FjVec+NMb6E13Itbn1bOrYxfF5mJurbuVR5sfxagxYtaa2XZ+G/+w7h9Qi2q2tmzFarAmU01Ll7CkdAkutyudlvlY82OYNCZWlK3g+fbnub3+dlweF2PhMbwRL4XmwgkrY5MJ8Bp7DU+0PJFh0gtJQbC4ZDELihfwAT5AQk7QMtrCI6ce4c7Zd7K8dDnrqtehKAqiICIKIqcGT/Fyz8ssLlmMJ+zh+prr6fEmAxnOjp5Fp9ahU+tQiSqi8Sguj4uGggaMGiOReITFJYtRq9Qc7TvKnPw55OhyWFC8gGJzMT2+Hg71HkJWZFRC0t8kIkUIRAMZZr8Hew/SWNTI6srVoIAiKDhyHTx25jEA6vLqmGWfhazILCtdxqnhUxlGtIqi4I16OT5wnDtm38Gnl306OeIaDzMUGKJltIWDfQdpKGjIWEmeqbHvvq59PN36dFp4QXKkYl/XPvQqPZ9Y+olsimiWLG9Ssjovy9VgMp03O26d/kWRCOGtWzNG5ybjUjrPH/XTGR5gIDRAscZGuWJH9PpwCjZax07ys+ZfYTPYuG/+fWxwbMB64waEbS9kdKel0kajR4+ivm4D3//tGt4///1IcnIcb7Kz061YQfTgwQvFpUukp14q0fNqEPCNpIuNgkEPRgPmi7r5ZkpK53V6Ovnntd8mZ/dRDEuWZnSsQbI4qVu+nJDLleGzB8mi0T3r7+GY+3SGzivPKefc6Dk+uvijHOo9dNk6z2Irgik8nUWngxFCJGQJ61SjxE4HPrXEN9d/E0/Yw3B4mGWly9CpdCwsXsjt9bczFBzK0Hmp6ZW4FOf+2e9llX1BsqNOrwetBikcxCirURtMqBCYrtdO0oicHDyZ1nlf2Pf33N/wXlatuR2tBDE1dMfH+M7znyYux6nLqyNHl4OsyHxq2afSdibp65zSeYPHqc+rZ3XFapaVLiMUDzEUGKJ5uJkdbTtYUrqEYnNx+nVXU+ddbidllixXm7dMka27u5vPf/7z7NixA/007dXj22gh+Yt+8WPj+bu/+zu+9KUvpX/2+XxUXOU46yxvHlKx396Il1JLKTvbdxJJRHhPw3vY07WH1rHWZDePqOX22bezybmJkfAIDQUN+CKvb/U7dex+fz8Hew8mO9gCA4SlMGPhMRRFQUFBURR+dfxXCAgsLV3KPQ33oFFpqM+rRxREfFEfQ8EhJEVKe2MZ1Ab2du3FH/MzFBxiTeUaDGoDZZYyev29BONBFpYspNRcSn+gn2A8iKIoDIWGKDAWUJ5TTkJOpDu53mhj0Je7X+bBvQ9ycugkGlHD/KL5NOQ3ML9oPgWmAuYUzJlxJ92ZoTP86vivONJ3BFEQKTEn/Sp8UR8toy3cM/ceDvcdpmW0BQGBiBShfaydoBTE7XHT6+8lHA8zJ38OCTmBP+onKkWZnTebXH0uJZYSBoPJlUVfzMe11ddiM9iotddOujI2mQAfH0eewmlzUpZTxunh01TlVvFy98sc6j2EUWPEaXMSkSJ878D3GA4Op59/a/2tfHLpJzkzdIY+fx+b6zfz5NkncUfc1OXVpYMOVpStoM3dxr3z7iUQDRCTY5i1ZvwxP76Ij1A8xH8c/A/y9HkE40Gah5upzK3kzjl3sqVlCwoKVblVRBIRVKKK0fBo+rwlWUqPLQsI5OhyqLHWUGgspC/QR/Nwc3pFsSKngkJjIREpko5uT/09ztXnEogFODF4gttn34434mV72/Zkt6e9JiNgAWb2nez0dOKL+jKEV4qwFKbd3T7jldIsWbL8ecnqvCxXg8l0nifq4X/W/FtmcWq8b5ckIdrt6JYtQwkG4QoTN1PHHg2N8gHHHRTtOonicqEH9MAHHFWs3fgDPvj8Z9I6b1nZMgzXLqJi7RoIRy4Y5qfSRqUYX1j0KQJCnL1de9llnc3Nk4zzqcrLM4pNl0xPvdSo6uskODqAnBqbTV1rhwPJE0LQ6TJGQS/FeJ0HsCR3Dtri0cyi4msk2tuJKko6NOJi9AkVBo2BWCLG7LzZ+KI+JFni3Q3vxqK1kGfMuyKdJ996K6EtWzIKbaqaGoIbV7Dt/B8AqLzuHvTPKZkdYo5qOlbM4vo/bKbIXMTK8pX0+HrQOXUMB4YJxoKsq1rHvu595Ohy0Kl1RKUoGlHD6srVLDLPwhZRIWi1IEQRdAbkSITQH5+DUDJoS7P5FiSnc9JOTsHpoDXcgzt6YYInLIX50alf8CMu6Lxbam/BprdN0HmlllJGQ6M4bA7cEXeGzvNGvVgNVs6NnmN5+XL8UT/bzm/DqrNyTfU1EwImsjovy9uJt0yR7ejRowwNDbFkyZL0Y4lEgj179vCDH/yAlpYWILnSWVJSkn7O0NDQhFXP8eh0OnS66dt8s7y18EeTI2yTGYCmCh3FpmJ2tu+kL9DH7XW382LHi5g0JgA0oob7FtzH7o7dbGndQqmllG3nt9FY2EiuIZeFxQuv6JxSxx4Lj9Hl7WJO/hx2de4CBd7f+H6sOislOSXoVDo8EQ8alYZwPIzNaOPs8FkMGgPH+o8B0FjYiEbUkJAT1OXVEZbChKUwalGN3WAnEAvQUNhAsakYm8GGVW/l5lk389193+VI3xE0ooZYIkZjUSPvnfdetrZsZYNjAwPBgTfcGLTL05VRYNvo3Mjuzt08fe5pSswlrKxYiV6t54GmBy55rf1RPy92vMjZkbPk6HIIxULJ0UopSiwR48zIGeYXzafX34usyOhVemx6G386+6e0r5iAQFlOGXq1ntq8WjY5N+GL+ZIx7kqym2ssPMYfmv9ARIpQn1dPrb12xjfwLk8XpwdPU2gqpDK3knx9PjaDjUprJaPhZDdjn7+PddXryDflU2IuweVxcWLwREYYw7mxczxz7hnuqL+DhsIGrnVci6IofGX1V1AUhZgcIyEn6PB0sL1tOyIiVoOV35z6DUOBIUbCIwTjQT626GNEpSh9vj7GQmMsK1uGO+Kmy9sFwLLSZfQH+7nWcS3heBiz1kxCnnzUQEHBF/VRa69lZcVK+gJ9SAmJEnMJtXm1NA83s9G5kZ3tO5FkiZHQCLIi47A6WFWxirHwGCvKV/BK/ysUGAsoNBVSZCqaUGCb6XcyEA9Mm/Ibk2PZ+PYsWd6kZHVelplyuTrPrDHTFulnQarQkBqtvLgL6jWj/Ss9p9Sx1xQupWjPiYm+Vq5OHILI/9z432zrfgGNSkMoFqJcVUDof345+Y5dndy2+jZ+3vknwlKYX579HYvWfodSQZi0KypFoqdn6sTOmhoEk+mK3udMCPhGMgps011rlX36oK2LdV4gFkAryROLiuNIJbNOhpcwc+xzkovooRHUohqTxkSXt4vfnf7dFeu85qFmKtbNoWLDWnQSqI0mBJOJ0egQZm3SY/kPXdvIb7Bw7fp7UKJREhoVT/e+yNf+dBu+mA/fWFJ7rihfwf+8+j/8/dq/xxf1UWIuYXPdZoaDSb3YG+glGo9ilETyVDmE92ybEBhhvv9+Ar/8JYRCRLfvwHjvvURQMr4zKqcT7U03ILrPkK+fvMPwUjrv9PBphkPD3FBzAwk5wfHB48iKjCiIVORUcH3N9agEVVrnFZuLszovyzuCt0yRbePGjZw8mRmd/aEPfYjZs2fzt3/7tzidToqLi3nuuedYtCg50heLxdi9ezff/e53/xKnnOUvQIeng1+f+DX7uval/QlKzaVsrt/MLNssvBEvKkGF1WCl0lpJaU4pheZCfnTkR9xYeyOBeIAaWw27O3Zzzn0Oq85KfV49ezr3YNKY+M+D/8lDGx/KWMGazHyzNq82Y+Wr09OZ7mLyR/3Jlv9EDLWg5sbaGzk7epb6vHqeOPwE593nsevtNJU3ISLy2eWf5ezIWT67/LP87NjPODl4EkVRuKHmBpx2J06rE3fEzfKy5XR5u1ALavKN+QwHh+nx93BN1TVYDVZ+dPhHFJoK+eD8DxKX4xg1Rjo9nfzf8f9jYfFCFJQ/izHoycGTnBxK/i7PL5rP7s7duNzJm35/oD9ZAPL3TXqtL6bT08lIaITR8CgOqwNFUZBkCY1KgyfqQUAgmohi1prxRDxc57yO/kA/g8HB9D4SSoJub7LgZtAYGLINcbj3MAd7D+KP+SkwFmDSJsVoqbmUHF3OjIuQ4zv2UjQWNvK1tV/DorNg0VnSCVy9gV4OdB+gzFJGp6eTTm8nJq0J82umKRpRgzfixR12o1FpcHlcaFQa+gJ91OXVUZdXx6PNjzISGgFgQdECvr332xztP0q1tZpQPLmiKcsyxZZivnXttxgNj5JnyGNt5VqePf8sYSkZotAy2sJgYBCVoOLMyBmWliydMlXNYXOkPWkaixonbN/XtQ+HzcH8ovkggFpQ44/5OTV8iqayJjq9nSSUBJIi8UDTA+zp3JPR8Xc530mzxoxePfXqvFbUZuPbs2R5k5LVeVlmwpXovIqcCrpigyy76UZi255FXVY2eReUy0V461YMd96Z0WV1uTpvnrkGxXVs0vOX212Ymur48ZEf8x/rH6I4rsMoQOjiJ47rtDOoNHzSeQ+LbHN4tG0L/9X8Cz629j5K169AFZMwmHIRxqV7A0QPHEgWt157XylUNTUYb7112pHY100wlB5/nTDG+hpTXeuLuVjnJZQEcY0I4enHYScblxUc1RzznmV7+3aWly3n0eZH31CdtzJ/JVWGqgyd9+SZJxlO+PjjmT9i09s42HsQnVpHkboorfN0oo6zw2cZCg7hi/no9nVTFayioaCBPV17GAoOAfAhx92En9k2+bV99lmMt91G6He/g3ic0COPwIc/gFbZgNqf/LYlenoI/+RnzKsoR3PLTTw5LoF9PNPpPAGB82PnOTN8hvmF81lTuYZQPJT29tWr9Lg8rqzOy/KO4y1TZLNYLMybl7miYDKZyMvLSz/+hS98gQcffJDa2lpqa2t58MEHMRqNvO997/tLnHKWPzP+qJ/HTj+WIbwgGQawtWUrKytXUmQqQiWqePb8s+zp3EOZpYwcbQ7d/m52nN9Brb2W65zX8TPvz5hXMA9f1MdIaASLzoJJa6Ld3U7zUHO68HMp881qazWQ6TMgisn0Rq1KS1N5E7s6dzG/cD67OnZx3n0egLHIGG1jbeTqcvnewe9x86ybefb8s9zXeB+qBclW9/3d+znYc5DHzzzOYHAQh9XB3XPuZmX5Sk4MnaDQXJg8H60BRVHo8fdwevh0xjXTiloEUaDWXktlbiXrqta94cagY5ELN9Y8Q166wJYiFcJw8bWejEA8gFFjRFZkwlKYQDSAQWOgPq8eWZbxRr2IgkgoHmJxyWLubrib3R27M1KeBAQUFDwRD+F4MgxiVcUqVKIqnbwJSeF1a/2trKpYNaNrNL5jbzwnh07y4N4Hefjmh6m0VqZ9I6qsVbSMtCS99xJRFBT8UT9xOY5KUGHUGNPee4qisP38dvoCfWhVWjSihhXlK6i116b91MKJMP2BfgqMBagEFbm6XGKJGGuq1/D9A9+nw9OBJ+pBJahYU7mGe+bew0+O/oRefy8dng5y9blc67g2GbAR9fLppZ/mh0d+OG2q2nhSaaTnxs7xQscLQDJEpKm8iWJzMSvLVrKoZBF1+XUZprQ1tporNqutslZxfPA4pebSCaMEBrUBp82ZjW/PkuVNSlbnZbkUV6rzHvM9xkcXfZTfBHzcd9PdCJI0bRcUoVDagP9KdN6ljOZ1Ejxxy6+YdbADxfU43Htv5hMm6f4yAxsdVTSs+RI7hw/xivsMT/m6SSgJbpx1I059GXqH44K3WzxO6I9/RLdiBbo1a5BEkPVaDLl5b2yBDVAiF4JGLtVxNv5aT8bFOs8X9bFr6DDvLdgw/UlcPA7rqMK1sobfHX+YYDxIjb2GVRWr/mI6D5J6dzKdF5JC3Fp/K0+fe5qTQyfRqrRIspTW+e6wG0EQUEsJIlMkzSZcLoTrrrvwQDyONioR3/0SsYteI7e7kJ7Zzjdu/Cp/t++bl63zUqnz+3v2Z+i8ImMRC4oXMCtvVlbnZXnH8ZYpss2Ev/mbvyEcDvPpT38at9tNU1MTO3bswDLDmf8sb206PZ20u9szhBeAWlRjNVgxqA1oRA09vh7y9HkUmYro8/dRaCpklm0Woijij/np8fXQOtqa9kerzK2k1FKKVqUFSEd/X4755vhVFYvWQo42h3giaR66p3MPJZYStrRuQSNqUBQFtahmODRMgamAo31HuWv2XQwEBnii5Qlurr2Z7W3b2de9j1JLcjU1z5iHKIgc7jtMWAqzrGwZZ0fOAslVn0A8QJG5iJbRCzd3ABmZfH1+Ou1qsptcykA4EA9g1pqnfN5MsesvjAbE5YkpWTqVjgCBjGs9FWaNGZ1ah9PqJCbHkkUnUcss+yxKc0pZkbOCams1d82+i4rcCtwRN33+Ppw2J+fHzqNwIVZdUZKdfCjQ6+/lmupr+EDjB/DFfKhVakrNpVRbq2f83sd37E3YNnSSk4MnM4IeLDoLt9XfxosdL6JTJQVfKv1Vr9an2++rbdU81/4cz7Y9i1pUoxbV5OhyMGqM+GN+1lSuIRAN4A67ScgJIlIErUqLSWvik/M/ya+P/5rjg8fJ0eUki6yCQPNwM3868yc+uOCD5OpyqbJWISDQ5+8joSTo8/URK4jxvnnvYyg4hFatpdhYTG1+7aTCa3wa6frq9ZwcOslIaISEnOD82Hkqcip499x3TyqEXo9ZrUVnYXXlagRBmPQfRO+e++5sulSWLG9hsjrvnc2V6ryGggYKTYX85JVfsLpkOU5h+hHFVCjAleo8Rau90IlWUYFgMIAoooTDIMtockzYd76YHie9eLRzqu4vXJ2UImKu07C36yWWli5lIDiAWWOmI9pP8bVLsDLO8yseJ9bTTb8jl+cGX2Z99XrmGconfc9yOIwSDKJEIgh6PYLJdMXFuIy0zdcZwHCxzhsIDPC1fd/kpns3op9iHFZwVNOh8qH+wK2IsTgxtcC2vl38y5Z/oLGokRJzCcFY8C+q8yCpdy/WeQklwez82fzvq/9LmaWM5uHmtM7LN+QjRKN8dtb70cdnEF4xLlUZQNTqMgI2xpPo6iIfEz9pejA5yqrTMEwQnTk3vWg/nqzOy5Jlet7SRbZdu3Zl/CwIAt/4xjf4xje+8Rc5nyx/WQLxpMH7eNSimqayJvZ07qF1tBWjxsjh3sPU5dWxybmJfn8/p4dOIykSZwbPYNaYWVi0kAJTAd6IF5vBhl6tT/pzvYZVZwUuz3yzylqF3WBnLDyGVZ+MfD/Qc4BPLv0kGpWGQCx57iIierUeu8HOcGiYWCJGMB5ELaqZZZtFt6+bQCxA62grGlGDQW3g/Nh5fFEfsiJznvM4bU5iUvI6pDwOOj2dFJmK0qOlCSWBSlClV+90Kh1hKcypoVMUGAsYCY6kV2X3du5N/3/KbHVTzSbsBjuVuZWXfTNrLGqksbAx7ck2njJLGSatiYgUScaQq7T4o/4pj1FlrUIQhGSHWuduTg2dIibHOD92nrVVa9nk3ETLSAv5pnwqciqQFZk2dxtrK9cSl+PJLjoBVIKK2rxa3tPwHqwGKyaN6XXHfY/v2JuM8SazKaqt1dw862ZcYy5aR1sZCY0gyRIJJYGAwCz7rGSS6GsF1FSBMBALEIwFOdh7kDxDHltbt3LPvHvwRX2U5ZThDrsJS2Fydbkc7T+KTqVDJahQUNCIGnQqHaeGTvGuhncRS8Qyxmn9UT8WrYWfvPoTOjwdwAUxU26dXKyn0kjVohoBgXJLOSvKViCKIrFEjDJLGfHExALr1aDaWk2eIY/GwsYJ3iFZ4ZUly1uLrM7LMp4r1Xn7evbxfPvzeGNe1j16E933vTLtcVKhAFeq89qiAyx9371E97+MqqyMyAsvZI5sOp0Yli8n1NEJ8fiE0c7pur8Ul4s1q27hD21Ppm0+Ujrv581/oHFeHcvX3I46LiNpRPaPHefne7/KnbPvnKDz/HE/ObocajUlRLdszTDGVzmdCDdfj2w2Xv6902RESHXVXSqAQadDDoenLOhNpvP8MT+rH7uRl9+9He1zQsZ5i04HHStrec+We1lTuYb9Pfvp9HSmO8Xq8+q5a85d2PX2dJfZlfJ6dd5AcICq3CoGAgNpnVebV0swFsQb8ZKrz03rvISc4P81/T2V+1tQtvySCGD62MemP8HxXpSOaiIX/e6kea1zMrxtW8a1tL02WjwZF+u86txqPtP4EeaZa1DHE4h6AyreGC/MrM7L8lbgLV1ky5JlPGaNGa2ozXisLq+OvZ176fP3UZ9fD4Beref82Hnyjfno1XoebX6Ujy75KADd3m5cbhf5xnzMGjNOu5OodGElyGlz0lDYAFye+WZq9SqVLjoUHGJe4Tx6fD0UmgoptZRSYCxAFEQkWWIoOIQoiKhFNcXmYrRqLQ2FDSwoXoBKUFFlrcIUMtHr7wVIt5jLikxcjuOP+TM8DqqsVZRYSmgobKBlpCVjFfj2utvJN+azr2sfZp0ZKSFh0BiISlF2dezCHXGnr13qtefHzrO+ej2HVYcpzSklGAsmi4cFDZdMBa20VvK1tV/jwb0PJj02bA46PZ00FjbitDnp9CQ9uopMRXR4Omhzt3Fb/W3pkYzxWHQWNtdtZmvrVm6vv52KnIq0B5tdb6fH14MkS+Rp8ygyFyWvXW4VW1u3Mjt/NotLFiPJEiaNiRJzCQtLFs441fRSjO/Ymwybzjbp40XmIj68+MMoKDzV8lQ6oMFhdXDH7DswaUycHjqNgIAoJEePi83FnHefx6w1E5fjdPu6GfAPsLhkMccHjyMgEI6HCcQD6cJbVIpi0pjQqXUIgoBWpUUURAaCA+lziUpRZEVmp2snObqc9OOTreL7o36ah5vp8nQRk2NU5lRi0pnY27WXhoIGHjn1CJ3eTiBZTN3TtYe/Xf236e/W1cSisySLuZN4xGXJkiVLlrcmU+m8PZ17cHlczCuYhyiIaFVaXB4XReYidCodLreLocAQ9y+8n10duzjubWX2VKEADgcYjcCV6zxQiO59aWrvt4sTMMePdq5YkUyKnAaNJKenEsbrvDxjHi8NHebnzb9O67yIFKEip4LZ+bM5MXgCX9SHSWOiLKeME4MnWFfUROTgkQkhCon2doRnttO5roF+aeyydJ45J5/gLdeTeHrH9AEMDgfx5makvr6kT1xu7oTnTKfzftn+OE1NC6ld34QmrqAyGBhIePnHl/6RsfAYvz/1e5aVLWNJyRJERGrttdy34L6M7rLXw+vVeU+1PAUK7OrcxVBwCIfVQVN5E4F4gMaiRl7ufjmt87669AvJAtu4MA3F75/22ip+f/IHRxWdq2qxRNxMdsZT+ua1tRHasgXj3XcjGgxT6rwDPQf4t1XfpGp/a4YXoeh0EL/1VjTWya/D6yGr87K82ckW2bK8baiyVuG0OXF5XISlMAICBcYChkPDCILASHAEk9aEL+rDoDHgDrupy6/DarDy1NmnWFe1joqGCkLxEHfMuYNj/cdoHm5GQQEm+hJcynzToDKgU+l4sf1FPFEPVr2VO+rvwDXmotBUiM1g42jvURJygvaxdvKN+ZwZOYNG1BCX45RbylEUhVJLKWeGz/Cbk78B4K8W/BUqQUW7u50cbQ4xJYZaVGPWmpFkiRxtDtW51ayrvuCvNl78qUU1w8FhEnKCm2pv4tHmR9nbmVwxjUgR5hXO41NLP4VZa06v3nZ5u4jEIzhsDnJ0OSTkBHnGPH578recGz1HZW4lgXggfY0ulQq6smIlD9/8MKcGTxGVo+zu3M2h3kO84HqBaCKKw+pg8azFGDVGenw9PNXyFB9a+KFJV6iqrdXcv+B+OjwdnBo+RTie/OxDUgidWsfCkoXs696HJ+phyD/ETbU34Y66aR5pZl/3PrQqLasqVnFL3S0YNcbL+9JNw/iOvQnbCqcXBtXWav5m9d+wuW4zLreLuBzHqreiyApbz21NhzukYtJNGhO9vl5ydbnp5Njdnbv52JKPETgSoM/fhz/mx6A2YNKakiMKioJVbyUqRTFqjZg0pmSSqHLBS8Yb8ZKjz8ET8ZCryxS/41fxzTozPz/2c7a2bsUdcTMnfw4dng4+svgjWLQWWkdaUYkqau21BONBtCot7e52fnPiN3xl9VeyK49ZsmTJkuWSTKbz8g35DAQGKDQVEpbCRBNRArEAKlFFj6+HJSVLKDYXIysyz7Q+wx1z7mDH0D7m3fxReObZCamMhs2b00b8l9J5efo85hmdJAYHUSIRKvQGPjXng0iRMLH23eiammaegBmPp5+r//hHp70OskZDsbmYprKm9DjeZDovHA9Tainlptqb+Paeb3Ni8AQRKUJCSbC0dCl/vfKvqTeUI7dP0TXX7sK+dhHv3/7ly9Z5prxiAnfcjBSKYGhsJPzss5mdcg4HuqYmQn/8Y7LIOK6YczFT6TxvzMvO/pc4YyllX/c+7AY7Q/4hNjg2MBAcoNPTyf7u/Wmdd8ecO7AZrl7B5/XqvFQgwp2z78Qb8yIiEk1ECcfD/Ozoz0AgrfNuLL0GZde2jH2EnnoK8/33J6/txd/jW24hFvQx9oFbea7/JX6883N8pvGjvNvpRG7PDLGa1jevrQ0lGKQjOjilzruhdD1V+89NSNOV211Et25Fdfe73nAfwCxZ3mxki2xZ3jZYdBbeNfddRBIR9nfvRy2q8cV8BGIBCkwFdHg6KLGUYDPY6Pf3E5bCROIRRkIjCAjsaN9BVW4VOboczo6e5Ssrv0JcjicLZDprOlknxXTmmzm6HBaWLOSnx35K83Bz+nGnzckH538wnfR4ZvQMN866kd0du7m59mYAzo+dJ0+fR42tBo1Kw4cXfZhTQ6e4vf52DBoDFp0FWZapzKnEHbnQii4KIjW2GmwGG0vLlk4oXKRa1Pd278UT9lCVW8V/HfovXhl4hVxdLgoKOrWOLm8Xvzn1G7666quoxeSfiDp7HQ0FDTzvep52dztz8ufw8KGHaXO3UZlbSSpHoN3dPqNUUEh2tFVaK/FH/XgjXopMRfT6e9GKWjxRD0+2PEmppZSNjo2MhkfTIxlTffaNRY18QvcJnmp5Kp1alPJjaSxsJBQPYdKYaB5u5o76O9Jt+CpRxVhojF3tu5hlm3XFPhGTvb9Ux96E1Kl1X7vkSqpFZ6GpvImm8ib8UT9dni56/D2E42Hq8urSXWGiICIKIipRxSz7LBRFwagxolVp+d9X/5fVFauZXzSfXn8vdXl1rKpYxQvtL2DQGFBQkqOm8SA15TU4rA6iiSiReCQ5rizH0IpaHDYH/qh/wjnG5BhDwSH29+zHHXazsmIlQ8Gh5Pjza+m5UkJi2/ltaaGYZ8hjYfFCQvEQfYG+aT/XLFmyZMmSJcVkOm8kPIIgCBjUBs4Mn8nQebIs44l4kjYZcgLFoPBS10vk6HI4NXSK/775XzEnVGkfMozGjKTL6XReibmEby3+a+JbnyUwSaEuZjRe0o8svd1oxHjbbQgWC8RioNGhcjozilIpBEc1R7zNNBY2UptXm7HtYp2XkBPYDDa+s+c7dHm7kots6uQim8vt4hev/IKNK//1taXkyUmEw+Tqc69I55lz8iEnaTsRuG4VBcImlLExUKtJ9PSkC2xwoZjDFMWYt6vOm1c0j3lF89I6r8vXxfNtz1OfX8+5sXNAUufpJvsqhUIEfvlLjLfdhnj99UnPP50OdDp+0vwrvn3wnxFFkUAsgEbUsLXrOW6//t/RPQeJtonfralIhEPsGNoxpc5bmFOH4npq8te2tU/7uWbJ8nYlW2TL8rai2lrN55s+zybnJvZ17aPQXMgL7S/Q7e0mLscZCAxQmVuJiEhcjiMIAqF4iFxdLna9HXfEjd1gx6A2MBIeoTK3ctKCFUxvvrl51maO9R/jzHBmFHa7u50fH/kxt8+5HXfYjSRLHO0/ysKShagFNQ8sfwCT1kQoHiLPkEdCSfCv+/+Vk0MnERDQqDTMK5jHRxd/lCN9RzjQcyDtCVGRU8Gdc+5ko2PjpMLHH/XzzPln0sJkODTMyz0XWtFD8RD+qB+1qOZA9wF6A73cN/8+QrFkQfD59ud5/OzjyS67nHJcnqSo7PJ2sdi4OOM9XioVdDydnk46vB30+Ho4NXQKb8SLJEvIiow77GZR8SI8EU9GctdUjF8ZDMaDBGNBnnc9n4xBj/rwRryYtWZEQWTHsR3c3XA3B3oOADDLPmtGx7gcUh17JwdP4o66selsNBY1XvaogkVnYW7RXCqtlRzqPUSltZLnXc/T7e1GLarRqXTMK5zHzbU3c3LwJHmGPAAkWeJnr/yMe+fdy2PNj2HSmPj6uq8zEhyhdawVURCRFTlZ/F3wQU4OnaTd3Z723UskEnT5utjbtTfd0ZlCeO2/MyNn+NGRH+GOuBEFkYqcCm6tu5U76+9kb9de7EY7Zq2ZUDyESkz6wHV5u6i2VqMVtXR4O+gN9BJPxCk1l2Y9NbJkyZIly5RcrPNy9Dn0+Hp4ufvlCTpPUpJp3JIsoRE1WPVWBgOD/Pf6f6XOWIEQjIHegGC3ZxTXUkyn8/511TeIX9QJB8kOtfDWrRhvuw0EYcI+MzAkC3sTupE0Goz33ktUEEi0taWfLjiqGVw3n7aeHbx33nsn3Csv1nk9vh4aCxs52n+UAmNBhs4TBZHjg8dRdNOPpsY14lXReY+1PMYDFe9B9eijUz7vkkb+vDN03pnhM9zbeC9/OvOntO9ZXCNO/sJQiNDvfofx3nsJPfIIOKo4v6aWnzf/mkA8gFVvTeu8exvv5SMvfoF/Wv1VKtevxCxrUOv0KBcFJFyMRwnzXwf/a0qd92772mlfHwv52dN2NKvzsryjyBbZsrztsOgsmDQmfDEf+Uo+Ro0xnWKZUBKcGjrFBscGcnW5FJgKWFC0gIgUQaPSYBAN7O/ej8PmYEf7Dlxu14SY9vFMZb7piXh45PQjEwoTAN3+7rTBaWp1NGVkf3zwOAuLF1JiKaHMUsZXnv9KeoRUFMRkEuRIMz879jP+ft3fc1fDXbhDbkRRpMhYNGXaIyRFTkp4AQRjQQSSq79DwaF0UmVcjmM32On2dvPDwz+k1FKKTW/D5XFxx+w7eOLsE4TiIUbDo5i15kmPdalU0PGkBI9KUOGNeBkNjxJLXDBnHQwOMhgYnODDMhWplUF/1M+DLz3IUHAovX9REJMdYF2woHhBxnG0ojYjHexqkerYm4rBwCDNQ83pkeLp/E4sOgv3LbiPPzX/ibvq70IQBeKJOA6rg2A8yEBgAIvOQl1eHe6wG2/Qy/yi+YyERlhXtY7K3EpOD53m40s+jlatTRc0R0IjHO07mvSveS0M45WBV7hn7j30BnopMZdMWMW3G+wEY0Hax9oZCAzgj/kRBZFiUzE7XTvZVLOJfd37uGnWTYiCSKmllFgihkpU4Y/50av19Af6ebX/VZ53PQ9cCFSY6vctS5YsWbJkGa/zjBpjMrF9Cp2Xb8qnsbCRsfAYwWiQE+/bi/Ls84Rdz6b3lx4TtU90rJpK5xWprASnSmp0uRA2bUI6c2Zqz6yaGsI5BvQfup/wxcW6eJzQI4+gv+EGdJuuQ4qGkTQqhhQ/QSHOp5d9etIixcU6TytqCcQCU+q8kdAIpwLtNDqqJ4z6AeCoYkf/S5MmwV+JzpM0KlTTPO9SBb8UbzWdl/D7IRSasmNyPBadhbsa7koGWM29h6gUJSSF8KniFNU4J+1AUzkcJHp6EBwOxtYv5tenfz6lzvNEPOwaeBlv1IvdYOfjc+9H6O2d+nvqdLJ35Mi0Oi+y4AtMd1XH5CAP7X0IyOq8LO8cskW2LG9LUjf0cDzM+ur1RKQILo8LRVGIJWIYNUZUogpZltPJnKIgMhgYJFefy8rylZwePo0kSxMM3i9mMvPNx888PmmBDZJJWGpBjaRIbHRuZGf7TvoCfRjUBurz6ymxlHB7/e2cGjxFl7cLrUqLrMgZ+2geacYX83FL1S0zXg26ePUuR580steoNEQiEXLVuURikbSJvUpQEZEiqEU1Y+ExRkIj7O/eT1N5E3qVnlA8hFlrRqfSTRBgqQTWmZASPKKQ7C4cL4gAFEUhFA+hUWkme/mUdHo68Ya96Z91ah1qUY1WpaXT28mqilVoVUlBZ1AbcNqck0aNv5G8OvAq/3nwP2l3XxBNl/I7qbZW87ElH6PT00kgHsCsMVNlrWI0PMpTLU+RUBJU5FagVWmxaC3c2XAn4XiYc6PnkmM1CGxv245NbyPPmMeWli1EE1He1/g+8gx5BGIBEkqCsfAYw8HhKVfxZ9lnYVAbeGXglXQ3ZLmlHE/Ew+nh06yuWE23r5tObyeFpkLGwmNYdBZiiRgGtSGdIDu+eDdZoEKWLFmyZMlyMSlNMxwa5pa6Wzg9fHpSnTcaGiWhJDg/dp6X37sT5dnnp+w+M9x555QdbRfrPKmzc/oTjMWQhoaSvmyvHSOF6rXUxrPRXmbJ1kmLG8TjRLZuxfTJT2KodCTPY4bXJIVRa8SgMUyp86KJKAeGXyFvzTWUQkahTXA4ON9Uzb9t//BV03nH/a00TVHQExwO3EKUwhnv9a2h8xJjY4S3bp3c+2+Soi5c8KC7WOcZb20gtGVLRnejyulEe+P1+GMBjhdHeOTV7yPJ0pQ6z6wxY9AY8Ea9jIXHaA/1MrumBtFun/R7OrB2Hr898O1pdd623t3c56gC18TfCcHhYO/I0fTPWZ2X5Z1CtsiW5W1J6oauKAo93h6Wli5lTeUaIlKEcDzMiooVfGvXt8jR5VCWU8YNNTcQTURxuV10e7vZ1bErbY56cUz7TLiU+Cg0FnJz7c10ebqYXzSfQDRp0puKYrfoLGmvNFmR08mhKWx6G2pBfVk3pwmrdwosKV1C21jyZi0gpFMmHVYHA4EBYokYCgoGjSFpru/vZV3VOvr8fTitTgLxQFrApBifwDoTUrH3bWNtlJhLiCVi+KK+5LbcpBhaXLKY/kD/BBNZf9R/QYRozVTlVqWvSSAeIFefi0FtICyFUYvqpK8IMBoeRa/WJ0MwXltVe/fcd/9Zb/aDgcEJBTaYmd9JKkmsw5MctezwdlBqLuWeufcwEhzBH/ejFZPF2TZ3G3849Qdax1qJSlEEQWCWfRaFpkKea3+O0pxSBgIDjIZHKYmV4LQ5GQ4Oo1PrCEth5hXNm3QV3x1289C+h9Cr9OQZ8wjGgxSbiznSf4SIFEGr1qISVBzqPcTdDXfzcvfLKCjp73RZThk52hx2de5CUZS0OL6S37csWbJkyfLOIqVpEkoCf9TPDTU3EIwHM3Tel7Z/CavOyrqqddTaa1mQU0vEtXvS/SVcLgiFYIoOo4sR9FMHIqS2G2+/HSUYRH/jjQiKghKLIRgMCCYTosFARVSE/tHpDzSDEcoUF+u8UCyEgMC8gnkMBgczdJ4n4mFR8SK6vd18qvUrfHzeB1m+8mbEeAKd0cL+0Vf4zgsPEIqHsGgzr8mV6rzfnX+C4lUfpRJgfEHP6aB/zVy6fS1cl18x4fVTab03u85L+P0TCmxw6aIuTK7zyi3lzL7jVgyROEokgqLTMqwE2T+0l/955X/SOk8lqqix1UzQeW1jbfzVnHvZVLyaRDhEQqsmhjqZ6qrVYti8GWKx5PdUr6dTGuFzL/w1KkE1rc576Mi/c83tj1KJkPG5ik4HPavn8F8vfoFYIpbVeVneUWSLbFnelqRu6MOhYdY71rOzfSfH+o8lfdAUifq8epaWLmVH+w7aPe0Um4tRCSr+eOaPaFVaZtlnZexvfEz7TGgobMBpc04ooMAFcZLyX5iKXG0uDpsD3MkuL0lOeovk6nKZlTcr7bs1U1LXJDVKcKz/GPfNv4/HzzyOt8uLSky22c8rmMdNtTfx0N6HCEthwvEwbslNvimfscgYiqLQPNzMjbNu5MzIGYLxIHq1HkVRKDGX8MEFH7yslM5UIla7u5193fsoMhVRmVtJsbmYTc5NnBo6xcHeg6yqWJXxug5PR9r8ViWosOqtqAQVReYi8gx5GDQGdGod9fn1nBo6xXBwGEmW0Kq0zMmfwwbHBlSCimJz8V/EH6J5qHnS7wdc2u+kw9PB/u79E7rLUi34qe+VP+rniZYnGA4Nk6PLQdEqBONBjvUfo8fbQ3lOOfV59cwvnE9VbhW/Pvlr/FE/1dbqtDFyRIpgN9iptlZTba1OC92gFEx2NEohZtlnIcsyKjHZ/QiQkBM0FDQwGBxkZ/tOFhQvYGHxQkwaE6IgkmfI45u7v5leHVeLavKN+ejV+sv+fcuSJUuWLO8sxmuaweAgtXm1PNXyFCcHTyIpEgWmAuYWzCUhJ3ii5QlkReZ/Fn972n3OxBMsjdE49YidwwFGYzJRcRrDd4vOgmQITnuYSxXzxnOxzovJMXa07eDjSz5OIB7g/Nj5pPUIAouKF3HvvHv51u5v4bA5+MaB/4dBY6B1tJX3NLyHF1wvvCE6757tH+ELCz/JxlW3YEiIqA0mdg0f5Bf7/p7PLv/shNemtJ434k0noiuCwoKiBeTqct/UOo9QaPIuRS5d1L2UzqsurwbAEvXz6qlXM3ReRIrQPNxMn7+PEnMJ9Xn1OKwOvjjvY1S8dBZ5yy9RASrAUOMkcWNyskUwmQiaNHR6RgjE+hgKDqESVDPSefds/yhfWPhJbll3N4aESFwj0iONct+2+9Nhb1mdl+WdRLbIluVtyfgo8z5/H+uq1rGwZCGBWIB5BfMYDY0yt3AuraOttHva0av1qAQVWpWWQlPhBPFwuT4OReYiHmh6YMpRwJmYxTYUNlBgLECWZRSSxr1qUY2AQJGp6LJWESHzmqQE2ONnH+eDCz/Iu+e+m5HQCAklgVVn5SvPfYVYIkaxuZhALECHp4Nb6m7BH/WjVWkRRZHDfYe5Z+49LCheQKe3E7WoRiWoODNyhm5fN6srV8/YbyHVGm/RWAhKQbQqLb6oj0ebH0WSJQxqAyXmkvTz/VF/RoEt35jP6aHTSS+W4VMUGAooyylDluVkXL2cwKKzkJATqEQV5TnlVOZWsqB4wWVdw6vJpfxMptruj/rZ17WPp1ufvuSoZaenk4HAACatCUmWiEpRTBoTpZZSIlKEVRWrqLZWE5fjbG3dSlSKolPr0Kv1nB87jyfqocfXw7qqdYyER3DanLSNtZFQEhhUBhJKArPWTCAWYJZ9FmqVmhxdDlW5VbSPtXPDrBvY17WPbl83R/qOoFfrWVi0kEp7Jcf6jmWMn6Q8Q4rNxW+Yb0qWLFmyZHl7cLGm6fP3sax0GcvLllOeU04oFqLMUsZPjv4EWZGTRSL99J5fl1PQUlksGDZvnnoUcKYdcUbTJYt1M+Xia6IVtYSlMC3DLXxi8ScIxAMMh4Ypt5TzyuArfHv3t8nR5/zZdd7ZQAft4T58UR+to62T6jy4oPW8kaR/2JNnnyRHn0OBsQCX20VTWdObWuddqmg71fbXq/N0ah1WvZWwFGZ1xWoqcyuZb61PFtgu7qprayf8zDOoy8uR+noJbVzJU+efSlp7XKbOe/Dwv7Nn8BALixbisDs41ncsXWCDrM7L8s4iW2TL8rZlfAJRIB4gEA1wtO8ouzp24bA6WFm+Eo1KQywRo8BYkE6yDEvhjBHIS/k4TNXGvrB4IQ9tfOiCqb3OSkPh1Kb2F1NkLuJzTZ/LKNRFE1GcNiefa/rcjPcz1TUZC4/R5mnDorFwZvgMx/qP8erAq9TYaygyF+EOuyk0FdLr68VusNPj7WFVxSrmFs6l2FLM3IK5LCpaxNGBo+zp2JMhBErNpQiCQJ4hb8Yrh7Pss9BpdBzpP0JYCqcfT63cjY+qH2/uazfY6fX1srdrb9LsFigwFlCeU85XVn2FHxz6QToJFZIprNXWan5w6Ad8Z8N3rug6Xg0uNVI81fZOTye+qG9CEAFMHG0OxANoRS0RKcJIaARJltI+e+6wm7AUps3dxlBwiOfbk+EDlbmV+KI+9Go9alFNX6CPuBxnX9c+moeaWVe1joFg0gC3qayJg70HMaqNBOIB8jX5zCucx6LiRZwcOkm3v5vGokZWV65Gq9Kyvmo9BaYCXu5+OZ1Q1e3rTp+/JEuoBNVfxDclS5YsWbK8tZhK5x3sOYjD6qDGXsO75r6LWCJGOB5mMOEj7woKWnI4jBIMpo3rU+OeKrsdw513ztjUfjKuVrFusmuS0nn5+nwO9R3K0Hk9vh5EUXzT6jy4oPXyDHk8efZJavNqeanrpbRe2eXaxdfXfZ3DJw6/KXXeTEaKJ+P16DytSstnGz/K9SVrUccTGMxWzoa6yMc4ocCWIuFyoVuxgujevRgUhWuaVvBc356szsuS5XWQLbJleVuTSiDq8HRwLnoOq8GKIiQ9xrp93TQUNCDLMtFElKUlS5lTMIft57dPaM2eysehZaSFX534Fe1j7YiiiEVnocaaFHXV1mqKzEWv6+b+egt1010TgEpPJbs7dvOjIz/irjl3scm5iZaRFjbXbmZL6xb2d+9nln0WFp2FfGM+d8+5G6PWSIm5hGprNR2eDra0bJkgBPoCfWxt2UpjYeMEH7XpzusD8z+AXqWn3d1OTI6hFbU4bc4J1398i7lJY2JL65Z0gQ1AVmRcHhcut4tCUyHzi+cTS8TSHXIHew8iydIlI+gvJ/nzcpnJSPFkBOKBdKv+ZIxvwTdrzBi1RqJSFEmWkGSJYCyISWtKB0mcGz2H3WhHq9KioBBNRDk/dp4ae006hMIX9SVHhwPhdKCHWqXGH/UzO382i4oXMRoeJd+Yj6zIPHPuGSApppqHmyk1l3Jr/a0sK1vG6eHTDAYHcdqcmDVmtp7bmhZgFq2FFeUr/uy+KVmyZMmS5a3JTHVeWArTGR+h/DILWnGPm+iWrSTaL9yrU8EFYm5u8jWXWQi7mKtRrBvP20HnwQWtF5Wi5OhzeKnrpQytF01EGQwMYlAbeM/c96RHRd8sOm8mI8WTcaU6T6vS8vsbfk7V/laUF59JP3+Rw4FmXQ2xqXYIIEkAKO0u6tav4DmyOi9LltdDtsiW5W2PP+rn1YFX+fGRH9PubscdcRNLxJhXOI8PLfwQ/qifO+fcSZW1Cn/Uz+KSxRkG71P5OJwfPc+3d3+bA70HkOTkzSlHm4Mn7GE4NMz1zuuRkCi1lFKdW33FN5PXW6ibjmprNS+JL2HVWzkxeIKW0RZUgoqwlExlvan2JkwaE92+7uS1sNdm+Mj1BfomXWkbv22m4it1Pp9Y+omMRKUCUwEjwREO9BxIdwqObzGPSJEM0QVJD7uEkmA0PMrhvsMUmAomPd50I5tXkvx5OVzpSLFZY0avnnp1dHwLfpW1CpPaRI29hk5PJ9XWagpNhcTlOCWmEqqsVWxp2cLKipUklEQy6EJR8EQ8ROIRZGTUojoj2XW88LPoLESlKFa9FavemvQM1OdyTfU1JOQEkiyhV+vJ0eWwqmIVFp0Fs8ZMQknQ4+uhxFzCF1d+EV/UlxTRuhwa8huyq5tZsmTJkmXGXI7OA2Zc0PJ4BlBt2YHcfvGIXRuhLU+h3bSJuCIR1CgYzNbXVTS4GsW6yXir6ryUXgAIxUMUGAvSHWwpREEkEAuwt2sv3b5uTFrThOP9JXXelXYpXqnOe5djM7VeLaoVK2HpMlCrSfT0ED1wALUsTF9kU18oCahiUvr/X6/Oq8ip4OfX/5BCwYwQjYFeR1SrotA6MeAiS5a3E9kiW5a3PR2eDn585MecGTkDJMfwFBT6/f08efZJ/r+N/19aeE0W0z4Z/qifXZ27MgpsoiCSq8/lWP8xDvYeJN+Yz2h4FK2oZW7hXJaULGFW3qxJ93V+7Dydnk4iiQiFpkLmFszFqDHS4elIjusl4pSaS6+qcWtqzNWoTsbc+2N+8o35HB88zoGeA2lfk7kFc8k35pNnyKPSWpmxD0mSsOqs1Nhq0Gv0yZutSs9IeISW0RakhDTF0adm/Apsh6eD35/+fXo0FJLjoTfPujlt7pu6/im0Ki0CAgBGjTHdeTUZU41kvp7kz8thsk7FGnsNgWhggthMUWWt4vjgcUrNpROE78WjzRadhWsd1/LqwKtscGxgd+du9nTuwWawMb9wPltbt3LXnLs42n+UGnsNHe4OTFoT/pifuBxHkiUq7ZUo8oVrqFfr8Ua96Z/DUpj+QD9PnH0ine61snwl8wrnYdPbKLWUphNzU+dvN9jxRrxEE1F+cPAHtHuS19mitbDRuZG7o3cTToSJJWJX/Xuf5a3FdAnCWbJkyQKXp/NgZgUtf9RPwu9HaJ9ixK6tHWG5D+mRRzA4HUQ3rWVIM0RNXs2k+5pM5xWZi97QTqrUmOsdOSu45a5nQaUiFvAREGJs6X6e7b27yTfmT6vz5ITMZ+d/jE0la9AraojFiGjgucH9/Lz512+Yzrut/ra0XohJsQwPV7ig9YwaY3phdTL+0jpvsi5F2aCjNdqPt6f1qum8MyNnuKv6ZmLbniV6UUHPePfdJLq6UDmdGR2Z45+T6OlJ/5zQZpYHrlTnhWIhbim5Bt2OvSjjzsngdBC8+QaO+VoZiYxc/Q7CLG8p3q46L1tky/K2x+VxpYUXJNusU5wYOoHL47qsVThI+iUMBgYzCjx5hjx6fD2MhEZYULyAHl8PT7Y8CSSLB2ur1vL5ps9Tn1+ffk2Hp4MXXS/yq+O/yig0rK5YzW2zb+MPJ/9Ah68DuChVaBKj2cv5I9Uy0sJvTvyGvkAfy0uXk2fI49TQKULxEA35DcwumM2Lrhdpc7fR7m7HF/WlwyPGr+5ZdBZq7DU83/58uptMq9Iyv2g+ayvXUmouveS1vPi8C4zJFc3R8Cj9gX4KTYUoipIWVMOhYZ5te5Ybam5ge9t2zDozNr0Nd8SNVqXFprcRTUQBCMaCNBY2MhgcnHDc6UYyX0/y5+UyvlOxw9PBEy1PTCo2U5+5RWdhdeVqBEGYNHVqfAu+P+pnd8du1levZ0/XHkLxECWWEvxRP13eLrr93bzQ8QJNpU2sqljFro5d9Af60aq0qEQVBcYCNjo34nK7MKgN2PQ2BASiUhRvxEtcjhOIBVBkJe2vIskSe7v20jbWxi11t7CyYmXG9zBlzLzLtYv/O/5/6e+9WWOmLq+OE4MnONJ3hLkFc2kZbbnk9z7Lm5fXK5w6PB1sbd2KoiTT0vxRP3ajnSXFS8jR5uDMc74thFiWLFleH2+UziuKTr1IB6RH7OR2F9odCq2LcpMJ9jPQeWur1nLv3Hv5zcnfcHb0bPr503VSXc7f1IvHXEWSxRRzUxP6P27lwxXlXL/qm9y17YPT6ry19sXoNCGiz+0mMq5QcqPTyaJ1D+GfPkti0vOeic57quUpPrTwQ2m9UBC+MJEwXusFY0EWFi/M0E3jr+WbQeeNL+p2eDp46szkRcXXo/P+evFniD27fcJoasLlIgqoq6rQ3LAJ+dntKK6OC+fmcKBraiL0xz8CIDgdtIaTBbeoFMUT8TAWHiOWiOGP+VGL6hnrvKBvbEKBDZK/L8rTzxJeYuf7h78PXN0Owix/PrI6b2qyRbYsb3sC0ekjooOxifHpl1pZDMQDGSN0ADq1Dm/US5G5iE5PJ3Py56S3+WPJP0K/OfEbvrL6K1h0lmQ3nGtXhvAC8Ea9PNf+HMOhYZaXLU8X2SZLFYLkH7jm4WaeaHkCb8SbjjS/+Kad4vzoeb6777u0u9sxa8z89NhPuW/+fQC4I26qrFUc6TuCKIisrVyLP+bHprfRPNzMfx38L/7pmn9Ke3T1Bfo4MXgiw9Q0lohxaugURcYiSpdOX2RLRbOnxIYn4sEX9bG6YjWHeg9xqPcQqypWsaxsGSOhEUxqEwuKFjAUHCKRSKTNfe+ecze7Onfhi/jSBTab3oYoiHxl1Vf44ZEfXtZI5pUmf74exiemjmcsPJYWm6nPvNpaTZ4hj8bCxmlHm1Or5nJU5vn25zNWggUE7AY7p4dOs65qHUf7jzK3cC6rKlZh1BixG+wEogH6/H0klASLShZRnVvNsf5jDAQGiMvxdKfjH07/AaPWmDHe0BdIJoelzHnHU22tpjK3EoPGwOz82Zg0JlRCsptSq9ISiocwaAzp0dTJvvdZ3txc/LsNE/8hMR3+qJ+trVsREPhD8x9oHm4mHA+TUBIsLV3K55Z/jm3t23jvvPdmi69ZsrzDuRKdFwl4UQIBlGg0HWagN+de2Gc8QJ4mh2lrSONG7BRXB3PX3M7PZqDz/DE/uzp2MRQcYlnpsowi22SdVHI4TMzvIRHwUqTR4g2HeMr1AmatedK/qVOOub5WcEmZ3JcrCv+y9jv8tPn/JtV5NsFIfreb6OnTE4s37e0UAWV33jbdFbqkztvfvZ9iczEfWvQhxsJjRKUodXl1CAh0e7ppKGrg7oa7OTl4ktNDpzkzcia52JeIYtPbGA2P8qlln+LxM49nWIe803SeQ1tMon3XpMdNBRv0B4fY3wCr195JgWhBJSskXB3JAls8jsrpxLNhGX88+ROiiSg9/h6KTcU0FjbyyMlHiMkx8ox5aa13KZ0XimiIu7ZMek6Kq4MF1ywnIkXQq/VXvYMwyxtPVudNT7bIluVtT6GpML3ycjFqUU2BMdOvayYeDWaNGUVWMlJzEnICRVEwa82YNCaGQ8MZ+5Vkib5AX/pm1OnpZCQ0kiG8Us8LxAJ0ejtZX70+Y9vFqUIdno4JMd8GtSG9inrxTdsf9bO3e2/6vSkoDIeG+b/j/8fHl3ycXn8yYap1tJXb62/HZrARS8TSqUJH+4+ytXUrQ6EhikxFdPu6ictxikxFeKNeFEVBEARsehtGrZHh4PCUN8uLxUZUShrYRqQI+7r3scm5iSUlS9jetp1/fPEfkWSJUDxEnb2O9857L2ORMRp0Dcwrmsdnmz5LvimfM8Nn0jfsOQVzuHfevVRZq3go9/LCI640+fP1MD4x9WLGwmMTRMxMRpsHg4P0+/spyylDEAQURUFBQUBgMDjINdXX4I14kRUZFNLmtZtqNqFX61lZvpKR0Ai9gV7iUhy7wc6SkiWcHT2LIAiUWkp5/MzjDAQHyJPzUBvVqMULt5WIFMkIqRiPN+olLIXJM+RxqPcQnogHWZEJxoMUm4q5f/79vND+AmpRPeF7n+XNzeX8Q2IqOj2dKIrCY82PZQgvgCN9R/jjmT/SVNbEY6cfyxZfs2R5h3O5Oi8yNkz86W0ZRSjR6YBbbkJvTz7XrDFzyttGk6M6o/MnxcUjdgDquDwjnQcwGhqlw9PBNVXXTNg2vpNK9noJPfUUifZ2BEALNDodODbczf+2/3FSnZcIBKYec32t4ALJQseqDe/nbKVrUp33mZr3IVoskxr3Q7LQZojEwTzp5kvqvI2OjRSbiik0FfLDw8nF0FA8hFalZUXZCr608ks00IBFZ2FV5Soe3Pgg/3f8/+j0dqJX6ykwFVCZW8mi4kWsLF/5jtZ56vilx3b3j77Cj079gqfM27lh1g005tbS2DgP/awaAmKc06Fuzg7uZ0XFCo71HaPWXpvWecPh4WRRMzRKkbkorfWm03lEo9Oejy4hEIqFUItJ7Xi1OwizvHFkdd6lyRbZsrztaSxqZEXZigz/NEgKrxVlKzJuXjP1aKiyVqFRadjo2MhO1066fd2oRBWCIFCRU0F5Tjk72nZk7EMtqtGK2vTNKBAPEIqHJpyvoigoioKsyJNuT6UKpf7AaURNhmdDWArTMtKSbp8ff9Pu9HTiCXvQiBrmF87HpDNRmVvJ3IK5nBs9x67OXVzvvJ7b6m/jV8d/xenh02hUGnQqHfMK5/Geue9Jr+5FpAgRKUKXt4tCUyHV1mpkJWmULyCgoEx942Wi2BgIDHC47zAjoREScoKqnCqO9h+l29fNSGiEfGM+AK1jrTx97mn0aj0Lihdg0VmotlbzmWWfyTDSHe8PcbnhEVea/Pl6mO5azWQ7ZLZtB2NBzo2d44WOF9KpWyatCVmRURQFURDxRXxU5FSwsnwllbmV6FQ6BASC8SAbHBuwG+y81P1S+nPK0efw21O/Jc+YR4m5hJgUY2X5SoxqIyeHTmLSmjBrL6htvVqfEVIxHqvOit1g52j/UQaDg+l0U4CB4ABtnuQYwvPtz6PWqjPStLK8uRn/u+2NeBkMDBKWwhg0BopMRTMqlgbiAaJSlNaxVmRFnuC3c37sPGsr13Jm+Ey2+Jolyzucy9F5kYB3QoENkiNs8ae3wZ23ozfnUmWtYmf7TqrXraMIph2xSyFpxBnpPEimoE+l8yDZSSWHw+kC23iUdhdm4JqmFTzXt2eCziuNitNer9SYK4DPN8I3d39zUp2niklwidqNEpk6BfNSOk+WZWbZZ/Hs+Wc51n8srfNiiRhnRs7w4yM/Zk7BnLR+m1c0j3+45h+m1Xoz5a2q8+CC1mv3tDMYGOTE0AmiaoHJs0qTKDkWRtx+7pl7DwIC/pifPFsZEYOBX7T/Lv05FZuK2dm2k9HI6KQ6z6w1E5WiqF/zbZtO5wk63bTvI6omQ+fBG9NBmOXqk9V5lyZbZMvytqfIXMSXV3+Z/3j5P2gebiahJFAJKhoKGvjiyi9m3JRn6tFg0Vm4q+EufnvytywtXcrqytVJ03bHRgpMBfzb/n/LMNy3aC3o1Dpy9bnpm5FZY8aomXhLFAQBQRAQBXHS7alUodQfuFxd7oTnhKUw3oiXQnNhxk07EA9g0ppYV7WOLS1bGAoNYdPbONJ3hLHwGKsrV1Njr+Hhww9zavgUAkKyQ0+lcHLoJGEpzFdXf5UTQyfQq/VoVVpkRWYgMEBCTmDSmtLjmuPTjyZj/Hl5I14O9BxgIDCQLtBp1Bo6vZ20u9vTkeEpurxdJJRExh/d8Ua6r5crTf58PUx3rWayfXzbdiAWYGf7TprKm1hSsoQB/wBOm5OzI2cxaozoVDrMWjMalQaHzUFTWRO+qG+CaD01eCpDIEfiERoKGjjQc4Bt57ZRkVtBPBHHoDFwXc11nBg8kX5uqbmUHF3OlEmhDYUNFJoKGQoOAcnx1VRghdPq5NX+V7lx1o3pm65BZcCkMXFq8NTbzhz17cZYeIzhwDD+mJ9DvYcYDg2nP8dCUyHrqtZN+F292NdDKybHhlOLDhcjCiKheChbfM2SJctl6TwlEJhQYEsht7tQAgEw52LRWbh9zu38/tTvqZlXzvI1t2PFiAE1iY4LI3YpBEc1hzynZ6TzIPk3bCqdB6+FNwSDkxrVQ7LQVrd+Bc/BBJ0na+2oprtg48ZcY2qm1HkJrRomzxNII+inTsFMnZdWpWVV/mKqKm5FrP8kcbXA0727OOFtQRRFdnXumqDzALr93RM6m66W1nsr6jy4oPW6vF3sbN+J0+ZEI2o47mtl1VRdl04nMaOW9dXrL6nzBEGg2FLMkf4jk+q8Qz2H0vfzS+k8wWxGcDpQJvl9ExzV7B46RJ4hL70/taimwFCQ1XlvAbI679Jki2xZ3hEsLF7It6/9NicHT+KOurHpbTQWNk5IUbocj4ZqazWfW/45zo2eoz/Qj0alIVeXy6v9r+KwOjIMbuvy6qjIraDEUpK+GVVZq8g35uO0OjNGCdSiGpveRlVuFaF4so26Lq+OHF0OsiJTn1dPgamAHm8PC4sWEowHubXuVtSiml5fL68MvEJcjqeNf8fftM0aM6WWUh47/Rh2g51VlavwhD3k6nN5ZeAVjvUd49rqa5MiVU6gUWlQuPDHr3W0lUgiuWopIKARNemR2fErEBenH01G6rw8EQ9d3i4GgxeCJBRFIZ6Io6AQjAcpNBWm/cREQcSsNSfHat/AP7qTJX9eavzgYi4nNSyVxjTZKIHdYJ/2Wl7ctj0cHMYdcbPt3DbunnM358bOcfOsmwE4O3KWfGM+ZZYyikxFfHHlFyf8HqS4+PoaNAZe7n6ZltEWEkqCfn8/9fn1+KI+jvUfo7GgkW5/N5U5ldxaf2s6zn0yisxF3DjrRvZ17aNltCUtruvsdSwvX87jZx5nXfU6VIIKi9bC8vLlbD+/PeOcLsf7Icufhw5PB22eNvqD/RztS3YpqkU1BrWBhJJgJDTC8YHjLClZkv7edXg6eOz0Y7S724nJMbQqLctLl2Mz2NKLDuPJ1eUSiocwaoyXLOZnyZLlncFMdZ5yiRG28durrdV8etmnOTd6jpOBXnRqHStzG1H6eicU2AbXzefQuUcozym/pM4DyDPmJX2r4iEMagP3z34vq+wLUMdlBL0ei60QJapgvPfeZOeZWk2ip4fogQPpY6tiSc10sc4bjgUpm8mYq6OKp3tfnFLntYZ7WOLPTb5mkpFRVU0Ngsk05bU0a8xoVVr+ynk35p0HUVwH09v+ylGFe/1N/KbjqSl1nlpUv6GdTW8lnQeZWi+l8470HWGjYyP/cuy/+MXG/8L6QmbXpeB0oL7lRvQ5eczLyZuwz8l03v7u/ZwdOTupzmsoaKDT20mpufSSOk9vziVyw7WIzyqZ5+SoZnT9Yh74/SY+vfzTqAQValHNTbNu4qWel9J+vKnrktV5by4m03kqQYVRY0RWZIaDwxwfOM78wvnptOVOTycjYz1UagoojeWQUNQMKTEKTYVvW52XLbJleUfQ4engmXPPkKvLJSJFaB1tZTQ8ypLYEuYWzk0/73I9Giw6C4tLF2c81lDQQGNRI482P8pwaBiL1oJVb6XEUsLt9benb0YWnYX1jvUoKBmmuLm6XFZXruaO+jt49NSjNJU1sadzD/2BfipzK9MdY56Ih/859j/0+HsIxoLo1XrWVK7hmupr2N2xG62onXDTrrJWcXr4NEtKl7CldQuvDr6KO+zGqrdi1ppZW7UWX8SHVW/FF/UhyRKiICIIAnq1HpPGhCfsAWA4NIzT5sSsMbP13Nb0TXGy9KPJqLJWYdaYOdhzMPkHFgGVoCKhJHDanMQSMVSCClEQ0/tVC+r/n73zDmzjvM//53DYi5vgJkFK1CK197ZlSZYsT9mO7cZJkzSjWU3StM1oVpPaTZrV/BrXTuskjp04jrcs76lhSdSyJEqUKIoE9yYBEBs43P3+gHEiuCTbsiPJfPSHTdzhcDjcve/zfsfzIAgCFr1lwhL1C4V32mY6HOej7TccSTemsUREh983Y2FkS0byt4jGozx47EH+cdk/0unr5O8X/j0GrQGdRodG0DAzZ+aETk4jr6+syHT5u4grcQyigWXFy9CLenLMOZh0Ju6YfQeKrODMdFKWXnbO7KNdZ2dp0VJWl64mEo9gFI10+7t57vRzxOQYFp2FDGMG1027jhZvC4FoAG/YqwZiIlLkvLUfLnW8EyL/fh5jIiQXAHqNnmxzNj2BHtWNNhaPoRf1FNmLONR1iPkF8ylJL8EX8fHQsYeoaa+hOK2YbHM20XiUZk8zq0pWMdcxl/2d+9WxIc2QljDN0JqIxqPnDOZPYhKT+HAgWeHji/goSy+jy99Fk6eJsrQy5jjmqMG2c7Wwjdw+Fs+Tt95MdMhNwO8mqhU47m9kt+spiuxF58XzbHobq0tXc1vVbTx24jF+ueJH5O86juJKONKj02G44w7Cu3alVLKJTifmrVvVKrq4Xjsmz3uh8QXMVywkgwnaXJ2lNC2t4EdPfC1RRz4Gz9vRs4/yipvJzlpFBFICbWJFBeZrr0VjMo17LUvTS9lYuAbbqzXII4N0rhYyEbhq2Uq+Nw7Pg/dHG204LhWeB6lcbzjPe+b0MywsWMjT7a+ycGkVlVcsRyspxHUiYYOGgsyccY85ikcr0OHrSOikoR3F8+6svhMB4bx5Xm2gmdCCTGavWYwmFkPWaTnkPckXn7gOT8SDRWfBoDWwpnQNnrAHSZYmed4lxvMgsT7wR/1oNVqK7EXUdNTgzHAiiiJZpiyMoRiVuxuRXa8AIAIl5U5uv/paXmp8iZ2tOy87njcZZJvEZQ9fxMdzDc+RaczkngP3cKz3bEvbgvwF/NsV/8aKkhXAhdFoSAq0VjuqafG00BvoJRQLoRW1uNwujFqjOuBlmbJYXLCY8oxyegO9SLKEw+JgVu4szDozhfZCfn/k9xSnFTMtexo6jY5MYyaHuw6zo2UHg+FBdBodOZYc+gJ97G7dTSgWYn7+fHLMOaMmbZvBhllrZnvDdnr8PVj1VgJiAFEjMhAcYF/bPtaXr8cb8WLRWTDpTOg0Oqx6KyadiYHgAFa9ld5gL3ElTvtQO3aDnc8t+Bw6rY64HKckrYTZjtnnnAxthoSF/eGuw4SkhNilUWskz5bHkoIl1PbUkm5IJ92Yjk7U0ePvwaA1UGQvosReMmGJ+l8b56vtNxJl6WWqY+pYeiPjYWQmMun8JAgCMTnGGfcZXml6BU6DWWfmL1sexKGxYZV0xPv7ESyWMYnyyKyrL+KjyF5EXI6zsnQl+zv20+lL6AFqNVrK0sq4Zuo144r0jiwVL88sR1ZkVaNFkiX0op5cay4rM1cyP38+V5RdAcDvj/yelqEWwrGwqvsnIxOSQpekVsM7QZLIt3pb1arWnS07WVmyksWFi8+LeL7TxcC7QXIBIAoia0rXsLt1Nw0DDSgoavB8QX4iwL9xykZ8ER8NAw3UtNcw2zGbnS07U5yKD3cd5hsrv8GDxx7kVP8povEovqgvUfUx9+P0Bfu4ver2y554T2ISk5gYyYWfL+KjIqMihevpRT3Li5fzLyv+hWXFyxCsVjTlzjFbRjXlTgTruZN3GpMJo8lELN1Gl6cFMW5hccHid8zzHFYH8zJmwNPPER8WDDMsXUpk587Rjp7D3EFjHe20xvrG5HlGjZGbn/9b7pi6lWuXbUYnyVitmUiiiMfnxvrx2/n96Uf4xbPfw2qwkmHKGJPnReNRftf4GKtyFjFv4zrMsgaiUTAZEW32CQNsyXOZZS0n8vbCeiQUVzOlaxYz1zEXf8yfwvO0Gu37po12IfBB8zxI5Xojed7e9r0U2gv52b6fAXD3urvxhD0U24sZVALjtl2O5HkhKZQIqllymOOYQ01HjcrzNIKGsvQyrply/jyvNKOUH9b+ge/21qo8T0DApDNx9ZSrmZc3j/l58zHrzfzx2B8/9Dyvyd2kdjCVpJUwMyexLj2fttm/Bs/b1bKLZk8zkiyhoFCZVZnC87bVb+O2ihsxv7xnVKBdbnIhPP8q/7Xhx/zb/p9cdjxvMsg2icseLZ4W0gxpKukSBVEtjX+r+y3+c89/UmwvpiS95IJqNNgMNiRF4qHah8Y8Vroxfcxs1rLiZernCAjYDDbiSpzGwUZK0krIMGUgakTCsTBphjRO9Z9CJ+rIteQSiUdQUFhevJwrnVeOOSjFlTidQ53qwjeZNbIb7LQOtaLX6KnKraK2pxaTzkSOJUedzJcULiHdmK4eq8PXwf6O/cx2zKamowZJlt7xgL66dDWZ5kymZk3FF/HhDrk50HmAUCzE5qmbybflUz9Qj0lnQqvRYtfb2Tx1MytLVl60g+75avuNhXejNzIyE5ljyVGt7TWCBp1GByQywo9t+j2OnceQm1xEgSjDMtJpqfp+I7OuMjJl6WUU24s52HmQbn+3qisjCiIDoQF+sucnVGRWjGrRGc/q+5PzPslv3/otJ/tPIiCwvnw9DqtDNVAotBdyqPMQu1p34Q67z56b3oYzw8npgdPjunVdDkgS+VZvq1rVmgxEPXXqKT5S9ZFz2pu/lIRRHAABAABJREFU28XAO0VyARBX4kTiEcrSy1hYsJCYHEOn0eGL+Hjm9DPE5BhGrZEWTwudvk6K04pHBdgAjvUe49nTz/Kd1d/h9MBpeoO9mLQmckw5WPVWKrIqLtoxYBKTmMQHh+TCb2rmVO45eA8n+k6gETQoioIkS5zqP8Vdu+7i15t/nZibrtk0pruo7ppNGK2jdW7Hw4XgeaYo+JPnodNhWLoU7fTpiHl5sHTpqBbRuMuFYeVKwlVTqUxLH5fnNbmb+OH+n/CLI/fQF+hDI2iwG+x4I14euP4B/nTmCXoDveRYcibkea3eVn7Stndsnmeae85rpI3GmahBVwoF+PtFf8+2U9sYigwlWkTDHmblzHrftNEuBD5ongepXG8kz5MVGavOyrcWfY3NBVdgVXT4rDFckW621W/DqreO2XY5kucpKEzJnEIsHuNA54EUnqfVaBkIvjeep9fo+acFX2Zh+kyMcQGtyYJgsbCja9+HnuclA2xJrvdcw3NkGDNYV76OkrSSCdtm/5o8b1nRMkLx0CieZ9VbaR9qxxRTRleyvg3F5cIYXXpZ8rzJINskLnv4Y35CUkgNsIWlcIp+2Ftdb3Gk54g6WbxbjYaR2Ru73s6v9/96zAHv/+37f3x0zkcx68zE5URprEFrUCeoZFl00nmlcbCR2Y7Z7GvfR01HDVOzpnKs9xgFtgJm5MygYaBBNUGQZAlZkccdlARBIMOUkVI5FIlH8Ea8FNmK8MV8fGPFN3jg6AP0BfvQi3rgLGmsyKhQM7I1HTXE4jFebnoZRVEwaA3vaEC36Cx0B7oZCA2wuGAx9791Pyf7T6LT6OgP9dMw2MA/LPkH+kP9BKIBdBodZr2Zqpyqi7aKDcbW9pNkiYgUIa7E6Q5044v4LtjEMTITadVbWVK0hJr2GorsRQyGBjGIBr656Gs4dh0blcGPNzYSfOYZzFu3jspMD8+6hqQQnUOdnOw/SV+gT800JvfrCfRwou8EtT21KeRrIqvvA50H+M7q7+AadBGWw9x/+H5eaHxBve/WOdeRbkjHE/ag1yQcSGVFJiyFafe2U2gvJC6nKjO/3+XyHySSRH5mzsxRgSh32M3JvpPjtlIMdyCr7anFoDWg1aRO++daDLwTDF8AGEQDgWiA11yvqa8lNXdm587GpDXhj/nRaXXYDXbahtoSrseO2WSZsojJifZSg9aAL+Ljqoqr3vP5TWISk7g8kVz4haQQJ3pPjOJ5oViI0wOn1bnJmJkDN16P4vejRCIIBgOC1XrOANs74Xm/2PsLbpl5C1mmLMw6M76IT+V6zzU8x52z78RmsJ1159TpMG/dSqSmhsiuXeqxRraIAoSQ2Dl4nOtyrxvzPC8UzxsIDmCIQ5kuByUS4bPOW9kzeIQHTv35vHneRMYIAIpBT6acyUdnf5StM7fii/qw6W3My583brXUxYDxtOKSXK/D38Hx3uMXVLh/ONcbzvNkRabEXsKXZn6CnB1HUV55AgA7MLfcyZQrt/L7psfH5Qrny/NK00rfE89rcbdQbSlDfOF1ZNfDyCQSvZpyJ3OvWoGoEfnWoq+xzrEcvaQQ02rY2XeA7a2vfCh4HkBlVmUK13OH3fQF+rDqrWP+fhcDz3vy1JOEpBAwmucBCJHohMcUY9JlyfMmg2yTuOxh1VnxRXxjBtgAFBRava0pQY93qtHQ7Glm++ntaAUtCgphKVHqPCdvDm1DbSkinjqNjqK0Iu4/fD/bG7arr8/Onc3nF32eRnejWhZt1Vnxhr1qpUenrxO7wY5WSDy63rCXqBQl35ZPt78bUSOiF/Vjalj4Ir5ESW9cYrZjNoOhQQaCA+hFPe6QG6veSqG9EE/IQ1gK859X/Scdvo4xA41VjipeaHiB+9+6XzUrgETLYLY5+7wH9OGEoX6gno/P/ThRKUpQChKX46Qb0znUdUgVw03iYhdATV5/SZYIxUKEpTCSLCFqRPX13x353QUTcx1L5yPPmsdHZ3+Um51bSFcMEIliNtkIPvubMY8Rb2xECQRgjPaP4VnXHEsO/7HrP5AVWXXQrcioYHnxcl5zvYZG0DAYHkxxh1IUBW/YO+q4ESnCqb5TnMw+SYGtgJ+++VN6g70q4QcIxALU99czPXs6h7oOEY2fnay9ES9Li5diNZyd9D+IcvkPEkkinwxEjURYCjMYGhzVSjE8o5xjzqEv2Kc+n8mKhZGf8V4x/Hlu9jTz6QWfJiyFOdpzFINoQJKllHFujmMOFp0FvUaPTqNjXfk69rTt4RXPKygoGEQDiwoWsbp0NbMcs859ApOYxCQ+lEgu/PwR/7g8zx12p4x1RmsavIOqtXfC8wAaBhqQFZn7Dt6XIlOSHAPbPG3MdMxUg1CGpUuJ1NRM2CKaDL55CGLTjw7cyKEQSjjMNelL2HzdK2A0cMLXxCdf+xKNg43vmOd5+zoQnn8FxfWG+hmbnWXMW/UjvvLmv54XzxMsFsSKCuKNjaO2acqd+LVx6vrrUnheX7CPyuzKCY/718ZInifJEpIsqfeeKIg8efJJ0oxp7xvXy7PmsWnqJjYUrGFp9lykF14adf8oTS6swJolS3m5c+e4bZcjed6Pd/9YTWpCwvV9edFyXmt+9zxvXvpMxOdeH7Nt0PQKvHjd4+heegPllWfVbTc6y1i79vsMaM/WQ16uPA/G5nrJsWUk17sYeN7nF32e/zn4P9R01IzJ8wA0RtOEJsUBjUSXv/ey43mTQbZJXPZIDggKChpBw5LCJRTYC5BkCZPWhDvsxqwzn3e//8hMZo45h+cansOkNfFi44u43C7iSpxQLESWOYtbZt7CM6efUYNRVblVPH3qaQzaVHHdY73HuOfAPXx24WfVrGxpeilppjQURaHF24KiKPiiPjxhD5WZlbR6W3GH3RTZi1AUBYveQml66SgNi2ZPM0e6j3D/4fuZlTOLInsRmcZMFuQvQC/qafY0oygKNoONK5xXMCVzCjaDjcqcsUmOL+KjxduSEmCDBNnoD/aTZ807rwHdZkiI/z5w5AGaPc2c6DuBw+Jgdt5sjnYfTWlZGI6L3WVmZu5MimxFHOg8QI+/R/09RUFkRfEKiuxFtHpb2X56O7fMvIW+QN97tisfqfNh19uZqs8n8sz2s8LJt9wy4THUjPo5cO20a4nFY8SUGKIg0hvo5dWmV0FI3AM6UceTp57EYXGQbkpHQKA8o5yIFEEn6gjFQtQP1FPXV0dICjG1dyo9vh52t+4mzZiWCOApCqJGJBANsLNlJ59a8Ck6fZ20eFvU88i35jM/f76aLfugyuU/SCSJ/PDg4nAkidRwrZaRGeXkYmz48zk803kuYenzzRiPXAA09Ddwy4xb+Ns5f4ugSbgRS3GJ+v56MkwZdPo6yTZns6RoCe6Qm9q+WnwRHw6Lg7l5c8kx5xCIBTjacxRnupOKrIrRei8XsEpgEpOYxKWJJM8zikbiShydRseigkUU2AuAhBZpq6f1vLnDeDzPpreRJViZbatAG5OJaGHv4FGuq7yOJ049kcKJ5uXP40+1f0oJsMFZrvfT9T8F3g5ClZcjFhWlVLANR9zlwrB0aWJ/ZxknAs3Mdy5L2Uf2elGiUULPP58SaJnidLJn6wv8w57v4I14z5vnyaEQmhdeRR7hUKq4mskHPj7ztvPieRqTCe3mjSjPvoA83MShohzvFYt5sunxUYlUuHR43pttb6IoiSBuIBZAFEQWFy4mGA1SaCuky9/Fm61vMhgcJCpH3/O8NZzrBaUgs4ylKM+9hLjES6Rp7PZVpclF5dqlvMxoDd/xPuOmGTcRjUeJyQme1xPo4bkzz6nJ4nfD8xYZpoyphZg8R3twJcGRjriuZrIEAcumK4HLm+fB2FxveMAs+ftdLDyv0d3Ip+Z/ijuq70BBSeF5eq2eTGMmQ6KEtbISrcOBWFSU4pYc7e7mhN/FIfdxNBoNs3JmqWvyS53nTQbZJnHZw2awsbBgIYsLFlNoK0SvTbQgReNRrDorBbYCso3ZdPo7R4mP+iI+Wj2tBKUg/mii7fTVplcJSkHSDekYtAZkWWZW7iyeOPkEx3uOJ9qdzFnE5TjReJTeQC8zs2eqRMusM1M/UM/8/PmjzvVY7zFCUkglFzaDjRum3cCzp59FkiW0Gi2dvk7yrflsmrqJZ08/i8uTCOolA1afnPfJlIHRF/FxrPsY9x++n5K0El5qfAmNRkOzpxlv2Mtsx2y2ztyKy+3iC4u/cF5ZoBZPCza9bVRZ9ys9b/LLI/cSkSLn5Qi1t20vP3nzJ4gakTxrHjE5ht1gpzqnGl/E965tzj9ojJycKjIquL36dpq9zbg8ZwlFdW4110+/nt8d/h1bpm/BF/Hx6/2/RqPRqPu8F7vy4ZlIORQi+NhjKc5kaCce8iNaODVBe0NyUi/PKMflcXG4+7C6TSNosOgsTMuahk1vo8heRH+gH5fHxfaG7TQNNmE32CmwFTA/fz7FacUqsTbpTARiAZUc6EW9GmhTUAhJId7qeovNUzeTbc5Gq9Fi0VsSFQvxuHqc96KRcrEiacYyvLoviQxjBjmWhGvY8AXJSLdZvVbPjOwZnOw/qbayaPWJe+FcwtJHuo/wi72/oK6vjrgSRxREZubM5KvLvjrmWDEy2BuX4zR7mtnTtof9HftZXLiYoz1HERAIxAIsKVxCtjmbKkcVvz/6e2RF5qYZN3Gg4wBd/i50oo6Xml6ixdvC7VW3c6jrEP3BfvXz3svzMolJTOLyQHLh92bLm6woXsHWGVvp8nUxEB7AqrPSE+hBK2qxGqyjpBrkUAglEECRZVAU4pEQYSFK15CL3b0HEQQBWZaZkzeH+dZKsnYfQ583mFgsRiRuyV5L2GogLsd5+vTTaqDNbrBzpPvImOd7rPcYnf63xeRNJkzXXIPc3z/mviokCZyluK9YSKE+njKXyaEQcbd7XLMEnnuBf133Vf7t0M/Om+cpgQByWzuGVatGLYwj+/axfOVmGnGf8zh72/by870/Z335KtYtuwadJKMxGNFYbGxreWHMoMKlwvO2ztxKb7CXmvYatV2uOream2fezCN1j+BMc3Jl+ZU8fepp3mx9k1xrLvDe560k10vheQsWjP8GnQ6L1swXKu7AKk9seAUJrgfgcqfyPEh0rMxxzHlXPE8THR1MTcHwRO/b+oTJe88U1yGHQtT31V+2PK/J3TSK6w3neXCW611MPM+qs2LUGnno2EM82/AsiwsXs7t1N+6wmxnZM2gbauNH6/+J2HMvjGqF125az1cfuRJvxMuR7iPkWHJYVLCI9qF2tSr0UuV5k0G2SXwoMCt3Ft9d/V12tu7kwdoHOdV3ClEjIiAw2zEbi86CTqPjVP8p9UFOtgaYtWZqOmoIxoIc7z1OX7CPDGMGlVmVFKcV44/6afe1IwoiV5VfxavNr9I42Ihe1BOWwszLn8en53+ak/0nickxQlKITFMmkfhoKVhREAnFQoSkkKrlMDNnJi63i1k5s4grcYrtxbjDbt5wvcGV5VeSbkjHmeFEr9FzVflVo4RIWzwteMIeDFoDu1t30+JtQSNocFgclKaVohE09Ph7+M7q74zSVxgvkxCUgmx0rEB3ZEdKWfdHnGUs23g/Pzl2zzkdoVo9rdy16y5qe2tHbTvWc4zvrf0eO1t2viub8w8SR7qP8Ov9v0YnJrSlovEoM7JnoNVoWVu6luumXUcwGsSoNdIT6OHHu39MeWY5eo2eV5texaw3U2QvUo83GBq8IHblSiCQGmAD4u3tiE7nKBIOIDid7Bl4i9e69pBvyx9zQktO6oFogK8t+xo/3/tzlYDJisysnFl8afGX6PH34PK46A/2s6dtD62eVmRFJhKP0OHrwKq3Eo1H2Tx1M+FYmGJ7Mc2eZrr93ciKjN1gR5IlrHorrZ5Wvrjoi0zLnsYLZxJaba+6XuVw12FyzDnML5hPy1ALGaYMvJHRrQrDcaHK5T9IJM1Ynql/hmJ7sdpGkGHMYEnREqx666gFychMdeNgI5+a9ylV8zBJXM5l6NLj7+Gnb/6U/Z37STOkqRqSLo+Le/bfww+v/OG4mc7hVcF5ljwCsQAL8hewu203Rq1RdaM61X8KjaBhWfEyytLLyDJlsadtD02eJqw6K2mGNHxRH23eNh448gDrnOsS2ow6M6FYiJ5AzwV5XiYxiUlc2ihLLyMYCfKtVd/ie298j71texE1IpIsMSt3FrfMvIVf7vslW2dsZa1zLWXpZcheL8HnnsMwf35Kq6YeWOIso2z1Dfxvw8MMhgZZHl9A1u5aTAsWjqmb9tEN1zEYHmRX6y4kWcIgGkbxPIvOwjcWfoVNBWvJ1aapwQ7BZEKwWCb8fkpmOmdWTiXXZmd2enHqtkAAQa8fc26HRKDNIV41iuepAcZwGMFoTAm8KJHIhBpxUTnGzLzz53kHOg9wFz9Xt83Lm3fJ87wefw+fmPsJNpRvIBALYBANKTzPqrfycuPLdPo7MevN6vHeF543XhJVp8N8881EXnkdfVPTOQ2vIMH1DnYeHMXzAOY65vKlJRPzvLahNuJynLAU5rpp19Ef7CfLlEVcrx078GA2Y77uOjRpaVg+9jEwmRA0GkIvjAjKVFRQtWE1Jq1JDWqOxKXM835V8yuGIkMq1xvO8yA1+Hyx8bxWTyslaSV8ecmXebnpZRxWBwatgYbBBu6YupXocy+MahOOu1zEn3+Rf5j7Ob6799+RZImOoQ4iUoT1FeuJxWOXNM+bDLJN4kMDWZF54tQTdA51JlrSZJmYHONQ1yFCUojvrv4udf11bKvfxkdmfYRt9dvQa/TsadtDTUcNK0tW4vK4VJed0wOnUVDIMefQ5G5iY8VG/nD0DzQMNgAJHQKLzkJ/oJ83XG+weepmOoY6mJkzk+M5x2kbakMv6onGo5i1Zm6vup1cSy5mnZna3loMooGdLTvZPHUzCwsW8vSpp6nprKHQVshQZIiwFOYN1xs4LA4sWgtbpm2hcbCRQ12HUkp9/TE/vqiPHHMOrzS9ol6LLn8XACatiW5/N0ORIfVaDe/z90f99AX6SDemc13ldTisDnI0dnQv7kAZSehczZQCd2383jkzSbU9tWMG2ADe6n6LTm/nOW3O/9qtYz3+Hn69/9fkWnJThErzrfkU2gvJMefw4LEH8YQ9qoaZgIAkS3giHs4MnmFmbiKIqhE0mHQm0gxpY2psvVOM1foZ2bcvQZohhYwLzjK6Vs3i52/+K5AQjx5rQktO6pF4hNreWr62/Gv4Ij68ES9phjRK7CXsbN1JujFdzV42e5qRFRlRI6JBQ5G9iBZPCy6Pi3RjOp2+Tna07OCGGTcwL28eR3uOEowFicQj6DQ6rnReSbO3mR/u/CG55lzebHuTnkAPxfbEIuPMwBnyLHlsq9/GfMfo6tDhOJ/qyosRc/Pmkm/NZ0XxCp6ufxpP2EOOJUcNsI1ckIxss4nJsRTNQ52oI8+SN6GhS4+/h33t+9jRsoMiexHtvnZ8ER+KktBoafY0c92061hTtmbCZ67Z08x9h+7jL3V/YdOUTTxx8gnsBjulaaV0+DqQZImhyBD+qJ+y9DKqHdX8qfZPlNhL8Ef9iSpdvQ2NoOFY7zHybfk8XPswOlHH8uLlLClcQoev4z0/L5OYxCQufRi0Bv730P9S21NLujEdSZZQUGgabOLRukdZUbyC/mA/2+q38ZlZH0fatg1tYeGYWmiKqxkHsLhqDi937GSW1Yk+r39c3TTdywJzqqZjn2rHG/aysGAhj5x4ROV52aZsXt/6DOmvH0B+4zkUwM/ZYIdgsUyQBCvjpZ695GWVotfqeb3p9ZS2rqxwTDVFGBfhCENCQP1T9noJbtuWkowTy8sxbd4MGg2CwUD41VfH1YhL27wJvTWHiXC58zytRsttxtu479B9+KN+/FF/Cs8z6owc6TmCBg3BWJAWT8v7xvPGS6Iali9P3LMjk64TGF75Y/5xeV6WKYtn6p9hZu7MMXmeoijE4jHSjGkc7jpMpimTTl8nj514DJZ9i43lTpThLaNmM9aPf5zQCy+o525YtQqpvX30vdfYiP5FhY/PuI17j/9uzGtyKfO8u9fdzcnek2yZuoU3mt9ARk4JsA3nehcbz7tn/z0qz9tWv03leQArs+cjv/js2G92tbBu2SbE5d9hc+FaiESJaTW0SQN8fc+3mZs/95LleZNBtkl8aNDua6e+v56wFEYv6gnEEmRDQKBhoEH9ezA0SF1vHYOhQRwWB13+LnxRnzqZyIqMJEv4oj4iUgSNoMGgNSAIAvUD9ernCQgJh9CoH5fHRUVmBY3uRjSChtVlq/nDkT+QbkjHrDPzqfmf4sFjD9LkbiLbnI0/6qc6t5rPLPgML5x5gb+p/hu+vfrb/PeB/6bZ08ziwsWqMcA1lddg1pr5r5r/otHdqDpYTsuaxj8u+0fsOjs2vW1MzQtIuFAZtcYx+/y7/d3sbdtLX7CPuBxnd+turii7gu9Wf2l0gO1tKK5m8jSbzvl7DIYntuMejAxOaHNe31fPwe6DeEIebAYbelGvBiU/qJLiut46dKJulOujqBHp8nVxqv8U8/Pn83LTy2oLiU6joyq3irgcJ8ucRcdQB56wB2/ES6YpkwxjBtOyp52XbsZEGNPRKxYj+PjjGJYuxbBhPYHgED4hwr7BY/x5/12IgqgaDZi0plET2vBJPRKPcLDzoPp3X6CPYlsxGaYMBAQKbYWIgogoiKq9fJ41j86hTmJyjAxThpqNPNpzlC5/F19b9jXuO3QfhzoPAXBL1S08fvJx5ubNpcXbwqLCRezr2IeCQn+wH4fVQUgKISsyg6FBdFqdWnI/Eucql7/YkTRjWVS4aMIFCYx2m4UEATvVf4pMU+Y5s4FJUeF5efPUTORQZAi9qCcux1FQ6A308lb3W3gjXlaUrFCfueELIr1Gz8n+k7QPtavnADAUGaLF20KeNQ+zzoyAwJmBM0iKxJnBM7R4W7DoLDgsDjxhD1a9lYbBBmp7a6nKrWJ58XJqOmrY07aHuBxnYcHC9/y8TGISk7j0car/FK1DrWPyvNP9p7lm6jUJ+Y+YH8XvJ97UhGHJknG10BRXM4tXXs+rnbvRxeSJddOampi9bAtHPafwRDzkWnKZnj2dE70nMOvM/HbjPaS9th+5vWNUC2assRHdjBkYr91CePuzKQERTbmT0FUriLiPoNFoOOzayyxLGVpNGpIicti1l7U5i9BpDGOelwqjAX+sB3hbTmJEgC35HULPPotu1iy0ZWXEe3rG/q4uF6KsTPx5vHeeN+juQgiGKIyIKIYcWgN9/Kn1T2ycsvGi4Hkt3hZea36NqtwqdrXuQlZk4koci87CF6v/jvX5K/lS8S0ExTivd+/jv47dh1lnfl943phJVJ0O7bRpRHbsGPP98cZGFJ9vlOFVkuuN5HmDoUGmW518u+rzGOMaog44PHSKbae2EZSCyIqMRtBQYCugfagdUSOqPM8ddvPVN77BG1ufIVdBXUOYr7suJcAGnPM5W7P6Zu5ldJDtcuF5AKtKV03I9S4VnuewODBI451FAkW6bD7SaFddcQEynU4eufp+bn/x05csz5sMsk3iQ4NIPEIkHkEv6tFqtOg0OiDhOhVX4im6EMly46QrJKDuD6AoCXIhyRIxOUahNRFQGI5sczbBaDDhahVyY9FZmJkzk7AUxqqz8rVlX+MX+37BlsotPHTsIVxuFza9jRZPCwoKrze/ji/q45srv0mrp5UqRxVfX/Z1drXtwhPyYNQaERAwiAb+VPsnzrjPqHbtAHvb9/KDHT/gJ1f9hHRjOvmW/FHXRCNoyDHnJKpiRvT5+6N+9rTuodPfmagk0WoYCA1g1BqJBIYYrRB1FueyawbINGZOuD3DkDHutoMdB/nBjh+kZEhnZM/gU/M+xXMNz3Hn7Ds/kEynJ+IZ0wkoIiXuM2/YS4YxA4NoQFESxht3VN1Bo7uRQlshR7qPEJJCasanJ9CDVqNNCIZqJrrC58a4jl6xGLGOdjqmO3ih/w1+ue+X6qRo09twZjgTWcuwd9SENtakDok254rMCna37+ZAxwEGQ4N4I16WFy+nPKOcur46ZGR0oo6eQA82gw1REInGowRjCWJ2qv8UNe01XF95PVunbyUSjzDHMQetoCXHnMOtM2+l0J54zsLxMN6IlxxLDtnmbLUsXkFRS+7Hcp261HQ6xoLNYKM0vVQlOC3ellGZ/bHcZuH82nCGiwqvLFmJVW+l2dOMRtAQlsKIgoggCABqFVqy6nEgNJDymb3+XjxhD/Pz53Og80DKGDoUGWJWzixEQeSk9yR9gT5+sPYHNHuaAdAKWnoDvWSaMnFmONXAayAaYH/HfiqzKmkYaKDL34WCctGLZE9iEpN4/zEYHgSFcXleOBYm25SdCLJF3m7llCZeAWpjia4HDAYITLCv2UxRWgnftn420X6pM/Lwxt/wxZ3fJM+aR6ZiQmnvGLcFU1tWhjYzE+na9cT9foRIlLhey+lQO8faX+KqsqvQhcJMecuL4npafe8KZxmRjTLamDxuJZzodNIr+9Rxciw5iSSSJguhZ5/FfN11BP/85zH3U6LvL88LDvai3f5ySkK33OmkcMMGnjjzIndU3/FX53lmnZlmTzOrS1fzevPrGLVGREHklRufomxvA8oLjwBgAm52lrF4/X38zcuffX943vAk6tKlIAhoMjORBwYmPMZYXQ9jcT29qOdvy7die61GNS8wAMudTp697hGufOI6tQPh6/O/xPKsuZjiGvRmGzsy93Oi9wS9gV5WPbqZp2/6CyVrFiLG4lisaaPv2XM8k+mCeVRC9XLieQAWWcsMMQ8lFkYQjQhyasjmUuF5JWkl2GwTjwM6nZ7oKIMVF5ko/PPCf+D/6h68JHneZJBtEh8a5FhySDem4wl70AiaFIv3dGO6WpILZ8uNjVqj6s7SF+yjNK2UFm+LOvhoNVr0Gj055hwqMiqYkjEFb8SrVodF41FK0kqw6hPCu78+8GsgkVW9c/ad/NfV/4Uv6mNny05m5MwgHAuTZ83DH/XT5G7iYOdBWj2t5FoSYqlTsqbgsDpSshvd/m6avc30B/uRFZkccw4GbUKE1x12U9dfR1VuFUadkTfb3lS1FTSChiJbEcuKl1GSVjKqz7/X30unv5NMUyY9/h4EIRHQGwwPEhTjEwfZxqqiGoFqRzXVudVjthJU51ZT7age8309/h5+tudno953sv8k9791Px+f+/EPrKQ43ZA+pmjvQGiAEnsJsx2zseqtxJU4Rq2RK5xX0OHrSOiHhRNBolZva0rGJyJFKLGXoBN1Y3zi+UNjMmG+9lqCzzyTEmgTnE4G187n67v+Fb1Gz4aKDbzU+BIxOYYv6sPldlGaVppwwRoxodkMNjZWbOSPx/5Ip78TvagnzZBGVW4VTe4mAtEAfcE+hsJDKCh0DHUAiexch69DzXIC5JhzcIfdhGIhUBLPWlgK83LTy9R21/Krzb/iqVNP8djJx5iaOZVjPce4qvwqts7cypMnnyQmx1AURX0GIZF9rXJUcfe6u88KFBvSJyyXv9QwXiv39dOuZ1buLPV7jiVMO1bV20gMN48wiAbK0ss43nscAQFZkREQEAWRaVnTiMajhKVEwLPZ08yOlh3oNXocFgdhKawuQA51HWJF8YqUMRQSC9+YHCMQDVCWXsZrrteYmjmVW2bewlBkCE/YgyiI9AX6CEthytPLaR9qx+VxsaJ4BacHTqtJhYtNJHsSk5jEB49MYyZROYpFbyEUC6XwPEgkPw1aA/6YH8HwduXXOQyBJJ0GvUbPmXAnWabysXdKtryNcPYUnU7u2/IT3nQfpzCtCM0nP4kSDmNcvx5laIjgtm0QDBJ3uRJBrZtvJj09D58pWSkySFpaLh8tXcTgYCcZbxxGGcPtU/PqTuIbN2DatGnMc9BtvprnW57mtqrbEu85l5O4JBF3uRCuumrcXd5Pnhf2e4lvf2FUx4TicmF4CZasmnNR8LwiexHxeMKEIjm33b3y+5TtPTPqd8LVTAnwxdl/x/+eePDC87zW1rNGAQB2G7HmZkS7fcJjCPqx2fySwiU8Vf8U3nCiTXR9weqUAFsSistFOQrfXvx1frT/P3n5xiep2NeE4npe3Wejs4zKax5i87Zb8Ua8/OXM0/zhyB/41eZfcZN2yegPP8czqTfbLmueN1Yrt6bciXz1OiImnWqgcSnwvLgcRxC1aCZIACBoRr0OibFt6ZpbuPcS5XmXTJDt7rvv5oknnuDUqVOYTCaWL1/Oj3/8Y6ZNm6buoygKP/jBD/jNb36D2+1myZIl/PrXv2bWrFl/xTO/+DGW3gFwWdjnDkdVThUbyjfwUtNLBKIJm+24kmi5XOdcpy7+M02ZzMydSW1fLQIC+dZ8Wr2tHO0+yoaKDWjaEhVdNr0Ng9ZAeUY5SwqX4I/6WVq8lI6hhM7QHMccovEogiBg0pmQJAmdRpcIDqBwou8E/cF+bq26lUZ3o+o0BZBtymZO3hyOdh/FHXbjj5ytKBpZWt8w2EBEiiArMoW2Qlq8LSn6asd7j1NsL2aOYw7fW/M9Hj35KJ2+Tqx6K7mWXErSSsbs8w/EAtgNdnoDvZh0JrxhL96IF0/Yw2PNz/HpkboKb0OsqDingC9ASXoJ31r1rVHmB9W51Xxr9bdGGTgkUddbR/1g/ZjbTvafJCpFP7CS4pm5M6nprBn1uqzIDEWHKM8oZ23ZWhYVLiIiRUgzpvHEySc40HmAbn83ywqXISCov1lJWgmZxkzWla8jGAu+5/NrUzz0L3dStnYJkYCPkCizq+8gT735r5zuP01Jegldvi7m5M1RWwJ8UR8KCgXWglETWrOnmZebXqbAVkC+LZ+wFCbdlE6JvYSGwQYGQ4N0+brQarQU2gsJRAPMyZtDp6+TZm8zOlFHhimD8oxyZuXM4oz7DDnmHCLxCAPBAcw6M73+Xu7Zcg8/2/czzFoz3oiX3kAvNoON0wOn6fZ3s6RoCbtbd6MRNIiCSJoxLUUQdnjJ/eWEka3cNe01uMMJd7fDXYfZULGBa6ddq7pBTdSGMx6GiwYf6DjAR2Z9hDODZ2gYaFBfn5Y1jeumXcfx3uOUpJXgjXjp8ndh0pp4telVdSwLRAMYtUZWl64m05TJn4//mZUlK6GVRLICgZAUYkbOjIR+Ue0j5NvycVgc+CN+TvSewKA1IAoiiwsXMytnFn+s/SOQyK7KioxRZ2S2Y/YlPz9NYpLnvZ/4sPC8akc1BdYCDKKBVm+ibTQZaFtStITq3GqO9R4j05SJYLUmqoAmNAQqY7/nBOUZ5QhGIxGz8ey+w9wPBb0eORBAW1REvL1d1UeLu1yEXniBFVdfTWj79lHBL+vHP47/gQcSgbamJpRAAEymMcduRTGMDtwktzWcIXLFSrClY9hyDUI0hhIJg8FIrzzEcy1Ps6Fig/r7njNAlgxyjFOt9n7zPMXvHyWSrm5zuSi5cgWnY33n/PwLgYl4nj/qZ65jLmVpZXxr1beQZIlrspahvPLg2AdzNbNu+TVsb3nlgvK8wRUVzLp6I9Hnx3BvXLcOcepU4g0No94rOp0wIsiWTOR5w15K7aUo9kTnzlz7VKSm8duqb1h+DQry2wG25lHbncD3l36Df9n9PWLxmMrzbtj06KjjTfRMJu89h8l0WfK88Vq55SYXwvOvcGheGvk5ZZcMz7PoLYR8HjKXLBmlBy06nRiWLEHxjm9aJkalS5bnXTJBth07dvCFL3yBRYsWIUkS3/72t9mwYQN1dXVY3h7of/KTn/Dzn/+c3//+91RWVvKjH/2I9evXU19fj812af0wHxSGD6ZWvVUNBMTkGHE5zkBwgMHQIGmmNG6YdgMzc2Zecjd5EiXpJfz9or9HkiWaPc0IgkBMjlFgK+CmGTdxZvCMWmbrsDq4btp1bD+9neXFyxE1Inva9vCa6zVWlqykOK0Yh8VBnjWPLGMWj596nMNdh1lfvp5mTzMzsmdwvO84O5t3MjVrKjpRRzgW5sYZN6pVOKJGxG6w0+ptpT+Yat3eH+qHgUT5s81gQ9SI43yrRJYtrsTJMmWNCrABxJU4j598nNmO2TS5m6jKqWJWTmJBMtsxmymZU+gP9LOvfR9WvZUcSw6Zpkz0ol41eRgKDxGOh3GmO+kY6mBb/Ta2fnQvmcN0FWCYW9E4tuAjsax4Gb/e/Gtqe2pxR9xkGDKodlSPS7wgMTmMbM0dDl/U94GVFDusDjZN2cSbrW+mEMgMYwaLCxeTa86lN9BLd6BbPbehyJAqxvxC4wssKlzE8uLlxOQYVblVRGIROn2dLCkcI7v3DuCL+Hi6/ulE0EvQ8mDtWdJnEA3YDDbq++uZkTODioyKFN2NfGs+H5390VHiwyPL0gG8ES/hWJiIFMEXSWgX6kQdb3W9RVVuFS6Pi0/M/QTXVl6LXtTj8rio76/nuTPPkWXOUs0QtBotLo+Layqv4Wj3UQ50HGBh/kLyLHl0+DqYkT2D3kAvFr2F6dnTqemowaA1YDfYsegtXD/tegCO9xy/rBaNw9HiacEf9bPWsZSy4lzEKZ8iptXwSs+b/PLIvQRjQX5z6Dd8ev6nicQj416DVk8rtT21DIYHyTRlUp179pkbLhp8vO8407Ons3nKZpiSqHI168wEYgHq+upUPTUAETGFeEFChNwddrO/Yz+fmv8pvrD4C0RjUfIseRTZizDpTAxFhnj+zPPUtNdwa9WtHO0+Sl+wj88u/CwOq4O4Eken0TEQHGBP2x61GtmkM5FnzWNZ0TJmO2a//xd/Eu87Jnne+4PhPC/dmE5ESowNkXiEsBTGF/Gpz9n6ivVkmjITLT6X4NhZkl7CN1d9k7t33U0kHsGZ7iQQC1CRWcEd1XdQ11dHmjGN66ddj9GahnzttQSffz6hy0bqAlBT7sS/bhkW/xluLViEISrjHewkZ8N6lK5uNBYLkX37xnTeDD7+uBpo0+blEXr22TENBEIvvJDSkjlRhZkYjTNRE50SCvF4326a3E3kmHNQeDs4kjeXO6fdii4cQ2pvTwTYDIax5STe/g7x9oS+kmA0jgp2iBXl7zvPU1t5x4EQjWK1XDw8zxP2qDxPtsxjfIYK6ZhYUbzigvK8BRlVRJ5/flSVWdzlIvzqqxjXrSP8dnViEmJ5OYZVqxCG/Y4jeV7yOwHEgoG3Z/uxkaWx8cnK21F2PTTmdsXVzBXLNlNgK6Ais0Llecd9jUwfcY+NZ9IlVlRg2HINp3wuhgaGLkueN1Ert+JqZtbKG/iPQ/ddMjwvzZiGyWIn+Ps/nW1lfluLMt7eTvDxxzHffPP4F8Sgv2R53iUTZHvhhRdS/v7d735Hbm4uhw4dYvXq1SiKwi9/+Uu+/e1vc9NNNwHwwAMP4HA4+NOf/sRnP/vZv8ZpX9RIDqbesBebwcbDtQ/ji/oYCA4QiUdYWLCQxYWLqeuvIyJFiEkxqh3V5JhzKEkvuSQzocuKl1FoK1Qn+3RDOkX2IqLxKLNyZqWU2Zall/HxOR+n1dNKtaOaj8z6iOp25w65OdZzDEmWuGvXXXT4OlAUhZN9J/nsws9yZvAMsiyzvmI9kizxevPrqiDq4sLFnOo/RTQeJcucRZunjenZ0zneexwZWT3X/lA/68vXY9UlHATHw8zcmUzLnEabr00NsOk0OhYWLGRW7iysOiuKomAUjWgETcqk+Xrz6zR7mlNImUbQMMcxh/5AP3V9dfijftxhN850J8uKlvFo3aOU2Ev4ypvf4Y5ZN7F27W2IUQmMBgzpOWiso+3Ax0KPv+dsqbcxnYWFC88rK5VuSMegNaDVaNVWsZTtpvQPtKR4Tt4c7l53N384+gdavC0YtUZyLDmUpJVwdcXVvNT0krpvUkfPprchyRJWvTU1uGXJR1Ik8m357/k7JLX1vGEvRl1q1toX9ZFjyVFb9ewGO7dV3UY0HsWitXBN5TVUZleOebzx4A170WgS1aDJDK837KW2t5YCWwGPHH+EefnzmJI5hYHQAMFYkBwhB0mWEBD4m6q/oWGwgTl5c3i9+XV0Gh0n+k6wvHg5x3qOcbLvJIX2QvQaPdOzp/M/1/wPLreL4rRijFpjQu8j2Es4Fk4YdShxMk2ZXDftug9MIPn9xOm+05weOM0nK27B8upe5KazmfWPOMtYtvF+Hm17nl0tuyhPL1erOUdeg71te8euKlj1LZYVL2Nm7kxV60SSJZ6qf4pNUzZxuOswjYONWA1WtIKWNGMaVzqvpNOXaClXUOj0dyLJkmq+Epfj+CI+2rxtfGzOx9QK4orMigTx0ppo9bbSMdTBGfcZZjtmc6TnCAW2Al53vc6ZwTN0+jqJK3HMOjNF9iKavc1UOaqIxWNsqNjA7VW3X9RzziTOH5M878JjOM/LNGXyyIlHGAgO0B/sJyyFme2YzTVTr+FV16tEpAjzMmYwIzsPqb2dsC0DvS2NgEa65Hjef2/+7zF53pSMKSk8T5OWhvn661ECAYxXXw2KghwJE9bCiWAzT574P74w/WOkv7RXrc4JAYYtW8Z1GY0AhqVL1eDbhCLuI1oyJ6ow05ktEwbZ4nrtKJ6nF/WUa3OQntxGZLiLaGUlxs2bCD/3fEqgLVlZEnz8cUSnE3loCG1REYZVK4kKCkExTmusj0qjhvO5A8J+L4rfT3ZE4sr0eQgWC8bz4IhqK+94MBgoTZ/Y2fRC4p3wvLheO2GQLSjG8UQ8F5TnVRYUIY9TZRZ3uVDerrIcHuAQ7HY0JlNKsHQinhfTaSaUiemV3OjCMJH6llkR+dLiL5FuTOd433F0Gh03PXsndR/dh/jCK2efp1iMyKFDGLZsZsDXh14CjdFAjxBmb+uz+CP+y5bn5fsnCmWCXlIuKZ4H0CUPkV9UOOY4qCl3EvcNjXodEpXEXbL3kuV5l0yQbSS8b5cWZmYmHmeXy0V3dzcbNmxQ9zEYDKxZs4Y9e/aMS74ikQiRYRmToaGxf+jLEcnBNM2QxsO1D1M/UM+UzCk0RZqw6+0c6znGQHCAysxKMs2ZvNz0Mvs69hGIBlhVsopcay7lGeU0Djaq5fiXwmBXkl4yYQZtOGwGG7McZ9tQevw9fPPVb9LkbmJmzkyaPc0c7TmKgIDD4kBBoX2onecansOmt7GseBnusBtZSQTPXB4XV5ZdiazInBk8QyQeoa6/jmsqryGuxKnrq1MzBjNyZnDjjBs51X+KzZbN456jw+rgH5f/Iz/f+3OO9yYmreumXUdtby17Wvdwqv8U/pifLZVb2DpjK82eZmJyjIgUoaa7hmxzNkX2IprcTciKTJY5i7q+OubmzWV+/nz2d+6n1dNK21Abj9c9Tom9hFWlq3ii7gmicpTGUAcRKfEM3TzjZqrOg0AlXW3GEi1NlkCPh5m5M6nMqkSSpRSjB0hMIovyFn3gg3GVo4rvrPnOmLoIeq1ezQwKCKQZ06jUVuIJJ9zHXG4XvqiP8vRy0kxp6EV9Svvuu7WvT06+UTmKXUzV5NBqtGf1zEQ9BtGAK+hCr9FTYC1gVu7o1quJWnAFBNJMaSgo2PQ2IlIESZbwhD1UO6pp9bZiN9gJRAM8feppPrPgM8zLm0e+LZ8MUwaKonCs5xjVudUMhAYQFIFwPAxx2N2ym5m5M5mVM4uoHCXLlEW6MZ2f7P4Jq8tWc6DzQGKSj/oQBIECawHrytfR6etkMDSoirVeihN0Eq+7Xuf7b3yf26bciPmgD3kMrZdSYM3Cpfzh6B8ISmdbUIZfA3fIPYp4AdT21nLXrrv49eZfU5JekmIeEZbCPHP6Ga4ovYI7qu9Qn1kBgU5fp1oV0uJpSSzu/N1IsqRqQhpFI59Z8BkOdBzg8ZOP0+3vRqvRMiNnBlumbmF16WosegsPHHmAkBRCURL30OGuw9w661Z2t+3mZO9JQrEQNr2Na6Zew61Vt+IwOZiTP+eS/l0nMTEmed57R5LnZZmyePTEoxzvPU55RnlCOxaBbn83T5x6goqMCr4198uU7jmN4voTABFAqignuG4Z285sU3WpLjeepzGZUtwVh/O8z1V9gozXD40ac0WbLSVoNRxJ4wAV5xBx5+1781wtmFpbGprycuQxPldwlvGHhkfZ1XsgheetcSzF/PKeUe2tSBLKkA+uvgpLfL3arpWsLBGLijBdfTX+Bx5AcDgIzijht2f+ot4DN1vSztmiFh7sI/ZsanWVptwJ12zCmDlxgEywWhMaVGNIkghOJ5hNFy3POx1qp3ocORXBWUZDqJ18W/4F5Xli9Bz3mCSlVlxWVGC6/no0I6p/J+J5p0PtzCkvH7vKylnGtvZXuL54w+htw6AzWYkMRugL9Kk8r83XxvQ/LOaJax9k9lVXQiSKYDQwQJCbHt/CosJFtHpbPzQ87/6VP2WipyOqTSTKLyWepy3RkrPxCrQvvp7aSuwspXPlLGwGK1ZnWco2odyJsGk95TbrJfu7XpJBNkVR+NrXvsbKlSupqkoM8t3diayNw5FaCeNwOGhpaRn3WHfffTc/+MEP3r+TvYiRHEzDUpj6gYTGlSp4qBEJxoIc7z3OlqlbeOzUY3QMdTArZxbusJtmbzPtvnZO9Z3iturbGAwO4ov6sBlsHOs+RpYp65J9KCbCcLFIu8FOjz9hb66g0BPooSKjAp2oQyNosBqsiBqRGVkz6Av0MRgaTNhZ60x0DHWgE3UUWAvY176Pew/cy00zbuLqKVcTlsLoNDo6hzoZDA5SYCvg0bpH2VK5ZVxSu7BwIV9a/CWmZk0ly5TF7rbdCdvsWAhnhhNITOL/c/B/+MyCz9DkbsIb9hKSQoiI9Pp72d26m5k5M9l+ejst3hbyLHncOutWCmwFuENuStNLmZIxhfahdp469RRZliyMWiPphnR6pMR1OB8ttOGuNsPR5G7iF3t/wdeXf51ALDAu0XBYHerkcHrgtJpNmZY5ja+v+DqVOakVWB8UxtNFGC5MGogFmJc/j10tuxgIDeANe3FYHGQYM9g8dbNaJZr8zvX99aNMBvJt+ee1wEm2zOo1eoYiQxTbi1V3LI2gwaq3otVoKU0rxaq3UmQvItuczaaKTbR4WgjGguhFPe1D7bjDbmwGG1Mzp9LsacYf9eMJe/BFfciKTK+/l4/O/ih72vbgDrmpH6hHQUEv6rmj6g4eO/kYxfZimjxNaDVavBEva0rX8Ez9M/QF+zBpTfQF+4jFYwlCNdTKlIwpnHGfISpHOdh1EJ1GhyRLfGzOxzjee5zpOdM51HUISZZYVbwq0RojJFphmz3NFNuL6fQnCNgHJZD8fuB032m+/8b3qemo4f6VP0V57bkx91NczUxfPR8As9ac8ix6w15O9Z+i1dPKwoKFrCldQ3+wn23121SiVttbS21PLSXpJczNmzuuqHDKYmDYImMgOECGMYMefw/BWFAlYJunb6Y30Mve9r0MRYYwaA2EpTCt3lYeP/k4nrCHm2bcxLdWfYuQFMIf9SMKIqJG5K3ut5iXN49VJasIx8LMzpvNQGCAXFMuK8tWvv8XfxJ/NUzyvAuD5DgQkSKcHjyNrMgqz0smqN7qeosfLP3W2wG25pT3xxubMCkKN67dxIGB2g8dz1ueOQd5mJOninMFzoZvP1dbpcGQqCBbuTKhgTbO/hqTCXHzBnjuxZTgk+Aso2PlTB5//X8x6UwpPK/SVITs2gU63diupuXl9KxbjGKFbMGCUF6GaeYMJFGgY7AN6cYrqfU30tv5eor4/7m4XtjvHRVgg4SuVOzZ5xnadAVN4Y5xeZ7RmgbXbBp1DKHcie6aq7Fn5E58Td8nnA/PC0pBxM0bUZ5/ObVKsLwc+ep15CkeFlWsuqA871zVc8ONBJItl/WhNvxe/3nzvMHgIHM2fStRcTa8zdhZyuDaeTz58m/IMedyg7MUXKPHY8FZxnMdr1PXVzeK5/UEe1jy5ytTeF6+NVHp92HjeS93v8kdE1zD3QNvAZcez6MSSq6YTf661YSDXuI6kTd6D/DQm/+KqBH5hwWfZc7aJeglAVmvJWzQUJCd/4Fc//cLl2SQ7Ytf/CLHjh1j9+7do7YlXR+TUBRl1GvD8c1vfpOvfe1r6t9DQ0MUFxdfuJO9iDFc4D4JraBVBaWTDpxaUYvL7UJAUM0B/NFEz7ZRNOIJeegL9hGMBolICQHzbFM2y0uX/1W+1/uJ4WKR0Xg0xapYQSESjyAKYsI1Lx7DIBrIsmSxsGChGoAQNSJWg5WpmVNZVryMN1vf5ETvCf5Y+0dyLDnIikwsHmNu3lwcVge1vbXElfg5MzVVjirqB+qJxCPkWfOwG+w0DDRQ016DICQMHPJt+USlBFGKyon/ppnS+MOxP+CwOtjdult1hPFGvGw/vZ2vLP0K9f31uDwuwlIYo9aIM8NJRUYFOZYcitOKGQwNEpNj56WFNpzADockS8TiMer66uj2d2PRWzjee5x5efOYlj0tZd+JJoeLETaDjVxLLiGfmwzFQFXhjQhGIx5NhN74kBrUjsQjNHuaCcVCCILAf+//b/X3ABKBUyl0Xlm7pAV7RIpwvPc4q0tXs7NlJ21Dbdj0NnQaHSuKV/DpBZ8GEuOBVtTy7Jln8UV8VGRUcM+Bezg1cIoMYwayIlNsL+YT8z7BM6ef4UTvCXXsKE8v52T/SW6YfgNVuVW0D7UTiAXoD/ZzeuA0SwuXEpbCVDuqKU0rZU3pGn60+0cc6jyE3WAnx5zD7NzZ5Nvy1Qq7q8qvQnAJNHuaeVtahmXFy7h+2vX8fO/PWVa8jMNdh7lx+o0c6DxA/UA9ejHRzFBsL+aLi79IT6CHuBL/wIww3g8c7ztOTUeiNVQbi0+4rxxOOHAm3fMAREHEZrDxi72/4GDnQZo8iWdvbt5cPrPwM/zm4G9UAuaOuNVjjWceMd4iQyfqEAQBi96CzWBDK2gx68xY9Baa3E10+joJxALq6wDtQ+1IikRPoAdP2EOGKYOZOTMZDA7SF+xDkiXq+uoAKLAWIMUlQvEQGaaMd3oZJ3GJYZLnXRgk5+RgLIiiJAbSJM9LanbFlThzbFNRXI+NeQylyUXuFcs/lDxPG5PH3ukc7ofJ7WJ5OZr09PFF3J1O0OnQFhUR/NOfEEtKMG/dOq7eWdxqpnVNFQVXrEAKB5F0Im/07eeLf7maoBQcxfOSFU6GpUvHbm9tasKmyLSuqeJjr/89Lo8LrUbLPy34MuvzVmCRRZZkVOPWhHk6OJCoMIdzcj3F7x+zCg0SgTZ9ZBU17TUT8jxjZg7ceD2K348SiSAYDAhW63m1m/41YDPYmGEuTVQmxiSU1asR1q9H0WhQALcQpjnSjlbQXnCeN1H1nFheDlmZWD71KQSjEZ9W4sGGPzMYGnzHPO/Rtue5ccsmdOG1BP1uNEYTR4bqefToPSzIX8DBgVpWr/00WWhS9JoFZxmty6dx7+tfZU3ZGnU9uaFiA1qXlkZ34yTPe5vn/fTw/2PJ1b+jAlIDbc4yWpdX8n+7v33J8Dyz1sxnZn2cjzivxaroiADN0R6e7HiePn8fdf116rH//cDPKLAWsLp0Nd2Bbm6ecTMF7/G6/rVxyQXZvvSlL7Ft2zZ27txJUdKmGMjLywMSmc78/LORz97e3lFZz+EwGAwYztX7f5kiOTgHomeDbCEpRI4lB71GjyRLaDVa1WLabrCrTjiiIGLWmnFmOHns5GNsP71dPca8vHlkmDKoyKq4aIMe7xbDxSL1op6B0ADODCcud2IyETWial+sE3XkWBJFvxmmDBYULEBAoMRewqYpm+j2d3PXrrv4wqIvICkSO1p2IMkSvYFeFhQs4GNzPkb9QD1Ts6YSlaL4oj52tuxkYcHY2mUDoQHafe282fomO1p2EJJCONOd3FZ1G6+6XqXFm8hKJBcjydZAEZG2oTaqcqt4pekV9XiCIDAYHmRH8w4+veDT7O/YT/tQO32BPvqD/TQONpJryeW+g/fx8TkfpzfYe176EsMJ7HAsyF/Ay00v0+Xv4q3uRKamKreKzy38HKIgMiVrSsr+l5KD5LGeY9gjAplvHEZxNau6KvbycvTrV/LAmSdQBAWz1owoiGRbsnGH3RztOYqiKOqCyKg1EpfjmLSmc2btbAYb1027jm312whJoUQ7pqOajRUbybPmoRW1rCpeRUVWBZCodPzdkd8xGBpkauZU7jlwD8d6jwGJe8uoNdLkaeK3b/2W9eXrcbldiSx0eikrilew/fR23CE3iwsX0+RuYkrmFB6ve5y6/kQLdFyJMzt3Nh+t/ij1A/UMhYe4ZeYtZJuzyTZn0x/sp7a3lvsO3Me/rvlX/nziz8xxzGGdcx3heJgiaxFLipbwf2/9H6JGRJIltZ0535rPtOxpSLKEXtTTG+jlpcaXWFSwiO5A9wdmhPF+IKmPIiAQ1U6s1aHo9WyduTVFU8Wqt/Jw7cPoRF2KgcqR7iMAXDftOv58IiG6nWF498ErT8hDZVYlp/pPcWbwDHMcczjQeUAdE6LxKAaNQT0HURCRBImhyBBt3jaeO/MchbZCPrfwcxzoOIDL4yIkhQBSWkOGu8hO4vLEJM+7cEjyvKgUVef+JM+LxqOIGhGtRnvOAH444OVfXvkX9e8PC8+TdJox95nQ/bC8HMFsxnz77cTb2wm9/jqma64ZZX4gOp2Jlszf/x6CCW4db2wk6OkjEDeMy/OebH5uFM+7dtq1Y/K8ZIXTRLpwiquZ7DWL+PSCT3Ok+wifrbyD7B1HUV55Rt3H7HTyqQ0f4f6GRzDrzeccg89lXBDwD/K9N74HTMzzjNY0uEiDaiMRHxxE9nqJ7No1Wqx/8yYyY3oyY7lgMhLQxNkdOEJXoOuC8LznG57HeeWVWCEl0CZWlGPYsgVdemJu90V8/OHIn941z9tWv42B4ACLCxezrWkbbUNtbJqyibX5S1mQNhO9pCBFo3SvqSZv/Vr8Q/1IOg2nQm3saHmGG2bcgDvs5omTT3Bt5bX8/sjvmZo5VXVaLbQWfqh5HiS6y6544lq+t+QbXLdsM9pYHIstkydbX+DXL3+OGdkzWFW66qLneRadhWevewTn3jMoOx9DAfRAebmTr2/6HL9t+Mtlz/MumSCboih86Utf4sknn+SNN97A6XSmbHc6neTl5fHyyy8zb948AKLRKDt27ODHP/7xX+OUL1okBee9ES+zcmZR11fH7NzZtHhbUBSF66Zdh1E0MhgexKa3kWnMJNeci8PqOCt+qChMy57GE6eeQCuk3kZvdb/FPQfuYVrmtMuOfA0XixyKDDEYGmRN6RogcV01goaj3Ue5c86dRONRtBotnrCH0wOnGQgOMCtnFj/a9SNMOhOlaaW0eFv4xb5f8KMrfsSdc+5MGCu8Pbm2D7VTkVHB/W/dz8n+k0BCC2Vu3txR2mVJcWNJlrAb7GgEDRadhUA0QIO7gc8s+EzCBVIKk2XOIt2QTq+llyxTFrIio9PoiMkx9XgaQYNWk/hdQ/EQZwbPsHX6Vna376bL14UkJ6pPXmp8iZgc44GjD/Cz9T87r9aR4QQ2ifKMcl5peoXTA6cpsp1dVB3vPc69B+8l25yNw+q4JFtTevw9dPQ2UfaWd3QrTlMT+pcVHJXpfHXnN3CH3EzNnMotM2+hyd3EiqIV/On4nwjGggiCgFajZcA0QFFa0Xll7Ya3MAyGBonLcawGK2atOaUtFVIFb0NSSCVeiqIQiAYw68zIskxfoI8iexHLipYB0Onv5KlTT7G8eDktnhYW5C9Ar9Vzqv8UN8+8mbiS0NEwa824w27cETcajYbrp13Pa82vqZWLnrCH8oxyNlVuYvvp7awvX0+WKQtBELDqrXQMddDkacKsNePBg0VroSy9DIfFwbGeY+xp20NciaMRNBTaCqmeWo0gCJf8ZJ1pykRAQFZknu14jU+O00YglpfjFWOJ31k5u2AOS2G6/F04LA60Gi1WvRV/NHHvHOk+wq2zbgUSeobVjup3fZ6heIgHjz5IVW4Vy4qWMTdvLk3upoS5y1AbJq2JQCxARIqgQYMUl4grcWx6GzZ94j4cDA1S017DnXPuZEnREo71JO7Bkbogl+I4MIlzY5LnXTjEfT4IBjGFw3y+7Fb6lQB72vZwuOuwyvN0Gh0hKcTGio3Iet2Ex/MLsZS/Pyw8b8/gUTaP0AqCt90Pb7+diEYg3jjMUMDpxLB4MYE//EF1FwUISRLGa69FiEQSASidDsXnw//AA2qALYmhoX7+df9/nxfPM2vN9AUSFSGfXfBZ3GE3cTlOjiWHDGMGHfFBppSXn7O9VYzFOTN4hi/P/gz2l95EHhE8VFwuDC/BtWs3YLWfu034XMYFMe3Z4OXlwPPiPh+Sy0XsxInR1YKNjUSefQ5t4Vnhd9HpZOM11/C1hh9cEJ730dkfpc3bhrJxJZnyOrSSjMZoQrBYxjU2eK88L9nquypjLrk7jyE3Pa9+jlhZCVetJa7XYomLTDMV02Xp4u6DP6c30IvD6qDL18W1067ForMgKRJFtqKEEduHlOdBYu0VjUeRZIl/2vWv/LPwHWx6G7/a9Cu6JQ+fXfBZ8qx5nOg7cdHzvB8s+2YiwDZi7FSaXGheeJXP3vC3LCxceFnzvEsmyPaFL3yBP/3pTzz99NPYbDZVmyMtLQ2TyYQgCHzlK1/hrrvuYurUqUydOpW77roLs9nMHXfc8Vc++4sHScF5l9uFzWCjzdvGmpI1fHnJl9lWv41CeyGvuV6jYaCBsvQy8mx5uENuPj7n49z/1v3YDXacGU4iUgSdqKPL10W2KZu1pWtZXrwcvahHVmQyTBn0BnrZ177vknCjOl+M1ANbXrycPW17WJS/iJk5M4nJMbJMWVxRdgVFaUWJds2OGmZkz+CpU0/xzOlniMkxYpEYLd4WHBYHLo+L7kA3UzKnEIqGeKnpJQxaA9Ozp6cE2CBR/dHkbuJXNb/i7nV3q+R2+MSp0+iw6BLiuYFogEA0QLevm3sP3cuSoiXs79gPwG2zbqNmsIawFGZL5RZi8QQh1AgazDqzGmiz6W3ElTjeiJcXziTc35LOMjaDDVEQcYfddPg6zksPbTiBTcJusNMw2IDD4kgR84QEAXOH3DR7mukP9KtupDNzLt720OGo661jlqUMZSxdFxITzvLlW4jLcQQEGgYbeL35dWblzuIV1yvMccxhT/seVUNnIDRAl68LvWYin6ezGK/seySGkzlfxKf+v6zIKCjoNDoUFLwRLwPBAbwRL+6QG2/ES9tQG5IssbFiI1aDVW1T3X56e4L0K/GE21BGBUsKl9Cv9PPIiUdweVxU5VZRkVFBaXopcSVOuiGdiowK7t59NzE5xu1Vt3N64DRfWfIVpmROYVnRMvwRP0atkYbBBh44+gB1/XWEpTCxeAwFBX/Uj91g5xPzPsGyomUX9dhzLsHjGdkzWFy4mN2tu/nu3rtYs3X7qDYCsaIC87XXYlc8pBnTGAwNotPoqMiswB/xU5Wb+P1j8RiiINLsbVYJWCgWSrhOrf7WeQuFjwUpLpFpyuRw12Gqc6s50XeCPx//M/Py5lFoK8RmsOGLJu4rQUhUNhanJVr2bAYbiqKQZ82jydNEx1AHK0pWMNsxe0xdkElcnpjkeRcG8cFBQtu3pyz2rU4nf77mPv5x779hNVp5zfUapwdOU2gvZGrmVGrcx7hinHYznKU83/HGh5LnPXDqz8xb9SPyIWWxKBYXI6fbMW+9GcXnQ/Z4EKxWpFOnCD7+eEqADSB+8iTC6tUokoRgNOK/995xP1/Sac6b5/UH+8m15CIrMl2+Lu49dC8LChJdATnmHLbO2ErulRvJiU683FP0euJKnDRZR3ycNk/F5cK5YR3m9MJzXsOJjAtwlvJa776Uly51nkcwiMZmG7OyERIJVcOSJWf/drkIP/ss39nwNVY+uvGC8LyZuTPPud+F5nnrC1aTu+NYalBWp8Mwfz6R51/G/vbr6cCNTierr3uUf3/rv1BQ6A520+xuZkfLDgC+vPjLLCpYdFnyPDkUQgkEUMJhBKNxVPCzKqeKpUVL2d26m4gUIducjaIohONhpmVPwxfxoRf1XFN5TcJgz9d+0fO8a4uuQtn14pjHiTc2YghFLnued8kE2f7nf/4HgLVr16a8/rvf/Y6//du/BeCf//mfCYVCfP7zn8ftdrNkyRJeeuklbLbL48d6rxguOG/VWVVXw6dOP8XJgZN8delXuffgvUiyxMzcmfgiPkKxEAPBAbQaLZ+a/ykOdh5EkiVm5MxAFESc6U6qc6ux6q08VPsQ7UPt3DzzZt7qegubwUZ1bjXFacWXhBvV+WK4Hpg34mVTxSZ02sTENHKA0It6egI9KIrC3va9KccZigxRklaCRtAgKzJLi5bii/io7atlMDRIVIqmBNi0Gi0GbSI72ORuoq63TiUfwydOrUbLgoIFHO0+Sq4llxZPC5VZlUzPnq6SF0VReKj2If6m+m/o8nfR5m1jfv58VpUkSpBlRUYn6kgzpJFpyiTTlIlW1KZ8hlafOnyM1wY6EsMJbDLQFo1HcVgcVOVWcbDzYMr+Oo0ORVH44c4f0hvoVV8/XzfSvzY8EQ9azcTtDkIkplYZDgQH6PB1sKhwEX3BPhYVLErZV5Ilss3Zahv3e0UyyNMf6MdhcSAgpBw7aWAgakQGQ4O4Q25C8RB/rP0jlZmV3DnnzsTrYTf5tnzMWjObp2zmpcaXiMQjGEQD3ogXX9jHtdOu5aXGlxLfMzSATqNjdclqnq5/mh0tO1TTkGumXsNtVbfx7OlnMevMmHQm6gfruXrq1SmTryfi4UTfCaLxKBpBo2p16MVEJd3I7GayivdiIfDNnmbVkSyJkWOloij884p/RlIk9rbtZe3j1/Ldpf/MLSuvJ1NjJaqFM9EeshUPpemlfGLuJ2jztNEb7OW+g/eRZ8vjNddrAORacpnjmANAJJ4wDKnKqeITcz/xnogXJDKpK0tWotPoeP7M8yzIX4A37OX0wGm2ztiKRtDwUtNL9AX6UFCYkjmF66dfT0VGBe1D7dj0Npo9zSgo1HTUkGnOpCy97JIVMp7EO8ckz3vviPt8owJskFjUR599nu9f/U986tUvI8kSs3Jn4Q17afW08qP9P2XWht/ggFFukGeWOKk7uYfp2dM/lDyvPtKBcf1S8sWNaKLSqEVyPBAg+PDDmG+5ZdyWTAAlGkVbUoIcCiFWVKSKx78NwVnGnsGjwLl53vTs6bQNtaHT6GgcbKQ8o5zp2dPxhDz0BHtUh1EFhZtKNpI+jjOkUO6kIdxBpikTTVRiwsbhc7SBJjGecQHOMjpXzuR7T92Usv+lzvOUcPidmWGQeCYz2HBJ87yssCZhrDEM4+n/KS4XmcjMKq7g23t+yJTMKXxi7ieo7UnoTsvIlyXPk71egtu2pTx7ycSoJi2xNsi35/ONFd/gh/IP2du2l8HQIBa9hVWlq/jS4i/h8riw6+0oKGqHysXO8/TneBz8vkG8uuBlzfMumSBbUrB1IgiCwPe//32+//3vv/8ndAliuOC8gqJGmwHqB+rpCfSwvWE7oiCSZc6iN9CrluTG4jGun3Y9V5ZdiagRyTRl0jbUxp62PYSkEDtbd+LyuFhVsop97ftweVwUWAsIxULYDXaAy8JiOYnz1QNLkiKb3oZe1Ke4M0Eie1SSVoJFZ1GzwZunbOaFxhcSTpR588gyZ6kVPv6oH5fHhSRLKUGt4VoE2ZZsOnwdpBvTKbQXcrT7KAW2Arp8Xezv2I9O1GE32KnrqyMUC2HVW8m35VOaVkqsMMYzDc/Q5k2U/WrTtVj0Fq6fdj2uwbEzdEmM1QY6HkYaFwCcHjjNwc6DKW2rADNzZnJ64DQutwuL3kI0HiUQDVATqOGuyF3cve5uVVfs3eLd2qefD9IN6UiMreuSRFSbmLwsOgs/X3M3mwvXYsfAl6fcyZlwB4IgkGXOIhqPkmfJY17+PMKx8Hs+t+FBnogU4Uj3ETKMGfzN7L9hjmMOR3uOIiCQbkynL9BHTE4YcvT6e1lbupYNFRvY07aHoBSkY6gjMbGKelq8LbR6WunwdSDJEsX2YrZM24I34qU70E0kHqHYXkyhrZB9HfsotCd0OAQEjFojoiBysv8kG6dsxJnuxG6wI8nSKH0SSZbIMmXhDrtV8XOtRotG0GDT21Ket2QV7/AKyr8mgU+2/gyvTChLLyMkhXi+4XlmZM/AH/XTG+hFURR+dMWP6PZ34w65sRvt7PTV8p+7/5M7Zt9BOB4muz+bW2beQl+gj0g8wn2H7qPN14bVYGV69nTVUfhE3wkqMipoGGygOreaRYWL3jPxgoSeht1gx5nuRCtqseqsLClcQqevk33t++j2d/ONFd9AEAR0Gh1mvZnDHYf52Z6f8dkFnyUcD6tC7HB5zReTOD9M8rwLgGBw/GoalwubvH5cnnfnK5/n/zb8mvL1Z9vNXJEefrj7O+g0Og40H5jkeWNACb89F5/DDEHQ65Ha2xGMRkxbthB64QXi9fVntzudeK5cyO6j96DVaM/J82p7a5mePT2xX9gziudF4hFcHhdDkSH+0Pg4f3vlVuyQstgXnGX0rKpmd/tL3FZ1G0J44qDOudpAh2OkcYGkE3m67WW+9dRNKesPSOV52eZs7px2K8sz56KTZISwDq+nh7T09xYoeT95nmA0nlOHTr0/dDoMS5ciFhVBJMzhm1+9KHneQHCAn676Ebc6r0WJhJF0ItvaXuHFMy+qPO/vC24cxW4n0v/D1cKtq7dyfOgMHUMd7G3by8YpGznee5zStFIGQgOXFc+TQ6FRATZIVHIFtj2Ne/1SjnlP0xfsQ0AYxfNQ4Jsvf5MNUzckCiCQLxmel2bPmfBYkk5zWc0XY+GSCbJN4r3DE/Fg1VlR3v5XZC9KuESFBpAVWS0rjSuJtrUsUxabp2wmx5JDOB4mKkcptBWqLYF2g53FhYtpdDfi8iRIXZG9iF2tuzCKRiJSBG/ES4+/R21hupQtlt8NkqTIoDUwN28uR7qPqBNC8hqLGhGXx8XBrkQFV6Ypk40VG2kcbKTJ3cQrTa8QV+JE41EqsyrZNGUTR3uOpgS1kuLGg6FBrHor2eYEATOIBix6C4e7DuOL+DBqjQRiAWx6GyatiaAUpHGwEaPWiC+aICBXOa/CqreiETTYDXbsBjuZpkyMucZRbZ5JlGeUn1ep+nAMJ7A9/h4ePfEookZMCbLpRT3TsqdxeuB0wkkn6qd9qJ2wlCAeHb4Orqq4Cl/M964n0PGqiTZWbESKS/hivhRC9k6J2szcmRx27WXFGLoukCDW29tfw6Kz8PINT1JR04T8xrOJ7w8sLS+nfM0/8ZEXPkVciaMoCrtad/HdNd99V983iZFBHoPWwLTsadT31/Po8Uf5ytKv8Mt9v8TlcWHRWYhIERYXLua2qts42H6QLHMW9x66F5fHRZGtCI2gYX7+fJ5veB532E1ZepnqSnXGfYbgqSBXT70af9RPRUYFbd42Vpespiy9jIHQAIKQ0B2LxqNY9Bbm5c0jz5qX0JZ4O1g9Up/EoDVQkVmhVuUmYdPbcGY41Yzn8CpeSAQ0A9EA3f5uvGEvd19593m1Ol9IDG/9MWlNVDuq+dOxP9HqbeXqqVfz1Re/SvtQO9Ozp1PTUcPcvLl8bsHnuHvX3fhiZ7/rUHSIUDREhjGDn7z5E0JSiMWFi9nbvheT1sQbzW+wtmwtESlCk7uJbn83sx2zmZ07m2+u/uYFIV7NnmbeaH2DQ12HONBxgJqOGvKsefzd/L/jsbrH0Gl01HTUsLN1J1mmLIrsRRzvPU4sHkMn6ugL9VGZVUldXx0F1gIMooHitGJebXpVfc4KLAVYDVaK04ovW0I2iUm8V6gBn/EQTgQCxuN5x7z16PKsVOYlxkO9J8gcx5xJnjcBBKMROIcZgtNJrK7urCZXRQWmLVsIrl2O19NLQCOxvf01/u3BL1FoLzwvnreocBGn+k8xFB4ak+dBQmIkyfPuHuriOxu+RrqyDsJRBKOBfiXA7u5dFNmLEvqfWnncNk9NuRPB+s7E5YcbF/T4e3i+7bVRidThPC/dmM4vlv+Qgt0nUFzbUj47fM2mRODuXWCiqvEsU9YoTge8s4Cc2Yx8DjOMeHs76HSYt24lUlOj3gsZXHw872+q/4Z51qmU7mlA2XnWdfhjzjK2rvsR395/N92Bbj5TdsvoQMJYFX3DAotGRcu/zPgMu/sP0xLpVuVndJpEgPdy4nlKIDBm9SgkKoblQBWfePoTTM+ezltdbzEzdyZ/v+Dv+eW+X9If6kdWEu7G3oiXUCxERIpcMjzPvsLADeNoCAvlThrDXZRnlF/WPG8yyPYhglVvJcOUgVVvJa7EkWQJb9iLVW+lxduibneH3BhEAx+b8zG2nd5GXV8doiByoOMAelHP99d+nyucV1CSXkJ1bjVdvi4MYiK7paBgFI2q6KJRZ1Qtv2H04Hm5I0mKPGEP10+7HgCX24WsyGSaM0k3prO0aGnKxD8YGmRXyy4Odx3GG/ECCZ00k9ZEs6eZ5888z80zbk4JatkMNjZWbOSPx/5I21AbAgJ51jxm5MzAbrDzcuPL5FhyVOKlF/X4Ij5yzDm4Q24QwKg1cvWUqzk9eFq1ED/ecxy70c4cxxyqHFWj2jzhbJbovZRjO6wO/nnlPyMgcLD7IFJcQiNomJE9g43lG/lFzS+QFTklwJaEO+QepV1yvhhJQJJocjfx4zd/zOKCxXQHErpA2eZsVpas5JXGV2hyNxGVo+hFPeXp5dw86+YxiZrNYMNhdVCYW87gWoFMUnVdhHIn7cun86tt3+HfV3yXKTVNo/RQ4k1N5AKfnfVxvvnmDwhLYbwRL/93+P+ozKp819d9eJAniXRjOnPz5uINe7Hpbfx0/U+p66+jL9hHXI4zEBrgqVNP4cxwYo6bafO2oRW0iIKIqBGJxqO0DrWi1WiRFVm9jyAhnIuSIP0tnhaqcqsS4reBLg53HaZhsEG1da/MrmRTxSYqsypTWqbtOntKK0CaIQ2j1khpWikKiuqILCBg09vItyYcCIdX8XrDXlq9reqz0OxpZp1zHQPhAZYVL3tX1/LdwB/zIwoihbZCytLL+Nmen1HXX8eWyi38+fifOdF7Aq1GS7OnmZK0Eg51HuJ+8X5un307vzn0GyDxHJu0JjqHOjlQdyBBkuMRytLKEAURT9iDL+rjyZNPsrBgIYsLFxOX41xVcVWKs+x7QY+/h98e/i2d/k7yrflEpESLcIu3hd8f+T1XV1xNRVZFYgHfcwxRI9LsaabAVsBQZIg8ax5t3jaK7EUUWAvYNHUTGaYMfr7n57R4W/BFfUTjUWbnzubziz7PGy1vsHnq5suiJW0Sk7jQSAZ8xoXRMMnzLjAEiwWxoiJhhrB1KxFIdZcsL8eweHFCq+1txBsbCW1/ht1zbPz9q19hIDiAgoKAcN48Ly7HKbQVUmgrHJPn6TQ6DFoDGwpWU1q2lTwxA21IQNApYDBAKEyOycrHym7AHfYQ8nmwZReP2eapKXeiu2ZTImj2LnE+PO/z1Z96O8DWnPJeuclF7Nnn4cbr3/E5jMfzBkODPHTsIZzpThoGG4AEP6nIrKBhoIEef8958zzRZgOnE01m5ti//5IlBB97bNxWyouN52kiMUqPNaCMDBi6mrG9JrBxxlruPf47jvpOs2SkluPIis4xAosOYKuzlK6V17LTfZjyjHI6fZ3A5cXzzpX0UCIRhiJDiapgewFvdb3F/Ufu58YZN3LfofvU/ex6OzpRx0PHHiLbnE1Mjl30PO/7e+9m/rV/pAQBRqx7AuuW4vY3XvY8bzLI9iGBL+JTK3CO9R5DFETCUpiStBLWlq0l15KLIAhcUXoFe9v3coXzCrbVb6OuP0G88qx5eCNemtxNfP+N71NoTVS0VWZVcmbwDGXpZQkNAVM2Zp0Zf9SPgoJG0GAUz5K+S9li+d0gaa+dnOCvrbyWiBRBERRmZs2k2ds8yg0QoC/YR6e/k/n583mr6y26/YlAj17UI8kSCwsWMhAcAKA/0M9geJDXXa9j0VvIs+ah1WgpSisi15zLw8cfpi+YaONLN6YTi8eIxqP83YK/49WmV6npqKE4rZi9rXsJSkFWlazioWMPUZ1bzSfnfZLdrbvVwF1UivLVZV+lx9eDL+oj3ZDOzNwLo3cwN28uP7/659T21NIX7MOit+BMd9Lr70Wr0eIOuUcF2ADMOvMo7ZLzxVgEJCJFqO+vJyyFWV26GqvOSjAWxCgaeaLuCbW1Oon+YD8zcmZwZvAMfcE+rDorBq0BnahjS+UWytLLmO2YTa+/F/f6paTLa5DDIRSDnuZoD99+83sUpxXz0fIbib/xxzHPM97UxI1r7uAr0jfIMmUltPa8Le/qOycx3kLIoDWQa81FL+rZ25HQhujydfFK0yuEpTDlGeU0DDawZeoWRI2IgIBBm1i4haREps1oNFJsL2Z69nS6/F2Igog34iUSj1CaXsqZwTMsK15Gsb2Y+9+6H5fHhSiI6EU9Bq2BzqFOXml6heXFy9VnI9eSS1AK8tNXf6oSqercaqpyqzjceVhtq4nEIxRYC9RrD2f1AsNSOIV4qb9hqJ+7dt3Frzf/+oJk/M4HNp2NQlshfcE+6vrqeK7xucTrehsnek8AqG1A07On06Zpo7anlpum3aTqqczLm0fDQAMWvYUmdxPz8uYRiUcw6RJaQd6IF1mRiRBhX8dZoellxcvUAH4S76aVptnTzOvNr7Ozdaf6moDA7LzZ1LTX4PK48Ea83LXzLr6z5jucHjidmBsUhW5/NzOyZ7ChYgN72/dypfNKKjIqKLQV8tM9P6XF26K6LQMc6z3GPQfu4bMLP3vZtxhMYhLvBnIohHSOapoBJTjJ8y4wNCYT5muvJfjMMwQffxzD0qUYli5NbEtLI3by5NhmCI1NVK24cUKe1x/sx6wzA1DXV8f209sxikYcVgeDoUEqMyux6W385vBvUnieP+rHprexfcvDFOw+ieKqIQpEedsBdckS9ZxEp5OMLVsIvfEGgTV6TkXaKd58BdbYOohEEAwGBKv1PQXYkjgXz1ueOTelgm045CYXit+vVsadL8bieZDgevt79lNkL1J5Xr41n6PdR3nN9RoOi0PlSefD88TMTNDpMG3eDJKUCLCIIogi4TfeSFzrCVopLyae97nrn0ZxPTvme+UmF8tXXM//abQcHqxjzlU3Y3rlrJbjyIrO8QKLuFooQGDlFYt4vGk7cSV+2fG8cyU9olpBLXjJt+aj1Wip7anlxmk3IiCgoDAtaxoxOYagCLg8LnLMiWrOi53nBWIBrnryRv5j5Q/YvOZWpHAQszWdU8E2IpFO/t/+/3fZ87zJINuHBM2eZh4/+ThWg5UMYwbusBuj1kirt5XDXYf59qpvU9tby4YpG8g0ZZJnzePPnj9j0VqwGWzkWfM43nscjaBhf8d+jvUeI6pEybHkkG3OJs2QRv1APWcGz5BrycXlcWEQDaQZ0tTJ4VK3WH63SIpUjnRPqeur40DXgVH7e8IeZEWm2d1M/UA9cxxzmO2YTUgKIcsygViAna07ebbhWSqzKtEIGg50HGAoMkRPoIf+YD9ajZYNFRt4tuNZtlRu4alTT9HsaaY6txpvxMvcvLl0+jrZ276XInsRZp2ZAx0HUBQFs87M1VOuZnfrbn535HfcUX0HR3uO0uJpUau63q3AsS/io9XTSlAK4osmAr9GnZECWwFlaWVqC+nwiSDXlktpWin9gf5Rx6vKrSIYS7iRnq/xwnCMRUC8YS9hKYxJZ6K2p5bHTyayz4W2QrwRL7dV3cZg8yAxOYZJa+KWGbdw1+67ONl3Ui3tnpY1jdurb2f76e18fM7HsRls5FpzwZqLL+LjgSO/YzA0iCiIbJiygYgUwSprCU1wrhZZpDKrErPOjFajfdffOYlzLYTiclwlpslnt9XbiiRL9Ph7cFgdmHVmrHorWeYs9KIevahHEASWFy1nKDKEP+YnGo+iFbSYtWamZExhdelqHq17lJr2GqZmTsUT9mDRWVLeH4wFafe1q60BmaZMriq7iv/Y8x8pVZQn+0+SYcygIrOCkrQSZEXGqDViN9hZXrxcbe/Va/QMRYaIStFRuogAZq2Z2t5aantqPzDylW3J5mDXQYyiMUXoORQPISOjQYOoEYlIETSCBp1GhyRLhONh8m355FvzWVGyggePPsiasjXY9DYEBACCsaAqiq0RNClaZ1W5Vfijfrr8Xepr52PAMBLJ6oAkOUpCQUGKS8x2zOZI9xFicoygFKTN28bVU64mEA0QlIIYRAOBWIAnTj5BUArS6etkWtY0mtxNvNb8mloBrNVoMWqNxJU4x3qPEZJCH8qWtElM4lyI+32EX3xx7GoqpxPT5s3cd+r3kzzvfYAmLQ3z1q2jHATlwUEiO3aM+754KMjzDc+PzfNadvLIiUe4ZdYt9Af7ea3pNYYiQ3T6Oun0d6LVaHld+zq3V93O7dW38+DRB2n2NDMlcwr9wX7uWvE9CnefTHV+JHFfRHg7+LFrF3GXi9D27RjXrSP43IuElxRxz+lnhs0B53YTHY73wvN0kjzhsc+pezYGxgs0ecOJAMRYPO/KsitpHWqFGO+I54k2G9hsyKEQoVdeSZhbvN0qaVi4EEE3sebdxcLzdNLE+pg6SWFJ4RIOdB6gO9DNDYs2MX3NYnQxmbg1DdP8+YS2P0O8sWnCwKLiaibvypXElfhlyfNiRt2ELrvb219L4XkaQUNMjhGOh8mz5lFgK2Bd+ToeOPIAq0pXqfrEcOnwvDf7DvKfh35FUAry6fmfZlrWNDxDng8Fz5sMsn1I0OnvpMPXgYDAlMwpxOW4WgaNkqiYuH7a9QgIWHQWQrEQU7OmIgpiwvHybfeXpBjrQGiA3S27MelNlKSV8Ldz/5aHax/mUOchtlRuURfLCwsWkmZMOFReP+16NSJ9sbm/vN+wGWyjBgqLzpLytyiIpBvTicfjpBnTyDJnkRfJoy/YR6O7kWAsiE7UMRQZ4qryq3jxzIvU9dVx04ybaB1qJc2QhifswRtJtAC/1PgSc/Lm4LA6+MKiL2Az2JAVGbPOTFgKc8+Be5iWNY08Wx4vnnkRSZaQkWkYaGBmzkyCsYSYvUVnoWGwgbTcs9nDwdDgO84yNHua2X56O2atmZqOGtU0I9ucTXl6OVumbWF58XIAtp/ejlbQqqXht866lZAUotPfqRKcqtwqPjb7Yzxx6gngnRkvJDEWAYnKUYxaIyf7TqraHAbRwKKCRWgEDeFYmDvn3JkQ+dfo+UvdX6hpr8GqP3us+oF6Hq59mNuqbhs1SYysbkxmmgT9xFbtgt6giksncT7fudXTSm1PLYPhQTJNmVTnVlOSXpKi7zISmaZMrIaz38egNTDbMRutkJgy9KIeWZaZnTubcDysamIMRYZYV7YOWZF5s/1NXG6XKlRbmVnJnLw5LCxcyD8s+QcapjRQ11dHvi0fb9irVkQAZBgzSDOmoRf13DzjZkrTSznYcXCUHqAkS+xp30NlViVTMqaQZclKcfhNkopcSy4Oi4O6vjqi8cTvG4knyPpsx2wGQomq0MHwILU9tXT6O4nFYxRYC5iaNVW9jkEpiD+aaPPMNGe+J+HkvkAfYSmcaH0Y5tybrAjRCBqV2MTkGEadEa1GS0VGBVunbyUYC1LTXkNMjpFlysKZ4VQzt683v87nFnyOvkAfx3qPodfoWVy4mNmO2aq2STILOlErzUTPeMNAA6f6TlGWUUYgGsCgNaiLAlEjqlVp68vXs3HKRrKN2TxV/xRHeo5g1J7N7tqNdvK0eQwGBzmlnEIn6hCS/97W6TOIBkrTS9FpdMiyzPTs6ervN4lJTCIBKRSAWCy1mkqSQKsl3t5OyO9l45SN583zvBEvXk8vBVETt2ddwY2b1/Js++v8654fcqXzynPyvLDfq4reJ4NOF6Ia6mKFxmSCtx1Hk1BGGgUMF72XJAwZdn60/Dv89uQfaWxL5Xlry9biDXu57+B9bKjYoPI8X9RHWAqri/KHjz/MV5Z9ha8v/zrzM2ZRKKYjxmSMRgvB538z5rnGXS612i75tyCKKE0uKtcu5WX+OjwP/cTGCu/EeCGJ8QJNkXgkhefB2xU6ubPJNGUyI3sGMjLFtmIePvHwO+J5w6sb442NapDJ/LGPTfz93iXPk0OhROVcJKI+b5jN75rnxXUThwdEo5kDnQeYnz+fHc07+PPxPyMIAiatiZUlK/n2qm8zZevNxP0+CAQnPJZeUj5wnnei50QKn8u2ZFNuKkQXjqHIMoKioESjCCZTipPwO0VTsAPr2gWkQ0pLrVDupGFxKT984ispPM+sM6MTdVRkVHDzjJsJxoK82fomkXiELFMWpWml+KN+zHrzZcXzkhJWM7JnoBf1xOU407KnEZVHB0svJUwG2T4kiEmJMnVP2EOXr4tZubMozygnJsewaC0YtAaqHFXsa99H/UA907Omc7z3eMoxZEVOLJgRyDRl8uTJJ+kP9bO8aDkl6SV8cfEXkRUZQRC4c86dqh308MEQLj73l78Whk9+oiBSYCvgmfpnONJzhCWFS3CH3HgjXhbkL2B3627C8TC5+lymZEwhEA0kMoRRnyoaKukkZEVGVmQkOaF1cbDzICVpJexp28MVZVcwK3eW2oI2N28uBtFALB5DkiU1CyIgqBUzvqgPg9bA6YHTTM1MBBsMooFqRzW+iI/H6h4j15KrBm7GQ3KA12v07GnbQ01HjVqllKy8216/nagURa9N6Ey92vRqQseLhF7c9dOu56bpN9HibcGsMxOMBXni1BNqC+M7NV4Y+RskodckBni7wU5fsA+DaODmmTfzwpkXONx9GJ1Gx8ycmehFPd9a+S31Pk6WdkMiYNow2EAgGqDF25Jy/8PY1Y2C1jChaHJYSBWTPZ/vvLdtL3ftuova3lr1tercar616lssK16WEuxLIrlQ8kdSs7/pxnQWFCzAE/YQlIKIGpHbq29nR/MO9Xdq87axecFm/uPN/0jJ+OpFPT2BHp469RRz8+ZS7ahmfsF8AFVPJiIlrMZFQcSgNWDT25iaOVUlruNlcyVZoq6vjvXl61ladHbRMJxU+CI+PjXvU/z2rd/S4esgLCUCgzNyZvDR6o9y78F7kWQJk9bE3bvuVr+PSWtiQcECFuQvICyFebXpVbr93cjIVGZVUp5R/q4qOiGRXdcIGqw6Kye9J5mSMYVGdyO9gV5m5czC5XaxoGABUzOnImpEqnKqMOlNyIrMQHiApYVLqcyupNpRTY45h3RDOt1SotI0LIXp9Hdyw7QbuL36djJMGexo3sGhrkP8pe4vWHQWonKUTFMmOkE3JgEHxs0kNnuaqemooa6/TtVz7PJ3kW3Oxqg1EpbCaitQl6+LBncDxbZibpxxY6IS4+3rC1CeXs6asjXUtNeQZkojw5ihzh0CAtnmbErTSjk9eJr+YD8LCxbyUO1DXFF2Bd9c9c0P1ZwxiUlMBFn/dpVMLDZm5YhmxpTz5nkWnYUbCq9C/+IOZNcuooAGuL7cyaY73uCNgUMT8rzwYN+Yul68B/H6SxFJvbZkRdNIbSqAv3OWsunq37Hi0Y0EpaDK85LtuCf7T3Kl88oUngekcL02bxufqLiFgjdPoSsoRDt1KoIC5ltuUYOskX37UltWRwjUJ/WjxKj0V+N5/7Hi+9gvoPECjM3zANUVty/YByS47YYpG9hWv435mTPZlLUUJRLBYLaRWZ2QV4nJsfPmeWNVNyKKF5znyV4vSjRK6PnnR1Wvmrds4YZpN/BU/VPviOc1hNtZ4nSO1mQjESAaEEJUZFbw4pkXVUOUZDdC/UA9Dx17iH9a8U/YcnKJ0TvqGMNhsNipypkCfDA8Ty/q2dexT733MowZ/NeKHxF7+VnEBQtGtbaKFRWYr70WTdo7TxAMRYf49bEHuXnhFqasnAuRCEFNHFekm+/s+DqCIPDjVT/ghuINGOICIVHmoKcOQRBG8bwkN0ref2PxvNebX+dA5wEeO/lYgovFw6QZ0jCJpouW50FCP3Je3jxO9p+kL9jHwoKF/PbIb1lWtIzvrvnuB6qjdyExGWT7kKDAVoBG0NDl62LDlA3sbdvLjpZECbtBNBBX4hTaC7HpEhNEljmLpUVL2de+b9Sx1patxRfx0R/q54qyK/jLib9wZvAMokbEbrCzqmQVX1z8xTEfipHuL0k0uZvetXj9pYrhFU16jZ5Xm16ldagVm95GIBZgUeEi/FF/QhDTVkCTpwlnhpNrpl6DoihcVX4VelFPpikTWZFVS2sARTlbNqzVaPGGvZRnlNPt7+apU08RjAV5q/stzFozK0pWcPPMm3msLuEgJAiJLHeaIQ2zzoxZZ+aq8qvIs+VRklaCUWvkZ3t+xuHuw5i0JgxaQ0rgZiwkNTEcFgdd/q4Uh6BkkLDT30l/sJ9cS24K8YLEZPLIiUdYVLAIu8HO82eeV7e9F+OFkVVlAGnGNPJseUzNmsrrrtf52OyPUdNRgyRLzHHMYSg8hKIoHOw8yMPHH2ZJ0RJqe2uRFZm4Eken0RGSQsTlOO6wm1ZvK7878rtRwZiR1Y1yKIRh9eox23wMq1bxdNfud/SdWz2towJsALW9taouxXitzMny+5HE1KA1JIwc7IU4rA6a3E2sLl2tTvqzHbNxh9wMBAfIMmUhKzIaQYOAQEgKcbTnKG1DbVQ7qgEotBcyL38eO1sSWg/JFgmT1sSKkhVqFRmcO5s7cvtwHZaYHKN+oJ7PLPgMG6dsxB1yk2nKpMvfxb0H78Uf81OdW4075E657wZCA/zlxF9o8SSMYV5xvaI6Wp0eSBiEvFvdCKvOil6jJygFGQgOsLp0NQCPHH+Ef1r+TwxFh3j+zPM0DDQwEBygOK2Ya6ddSzAWxGF2YNAaiMaj9AZ6icVjrK9Yn/LcNA02kWfNo8ffwxMnn+BYzzEi8QhphjTyrHnsaN5BWApzZ/WdE57nyFabJKnVaRKZyM6hTq4qv4o3mt+gy99FujGdgeAAVTlVLCteRqevkyJ7EQoK3YFulhUvQ6vREpbCaDVagtEgh7sOE5WjlKWVoRN1zHHM4Yz7DBmmDDJNmdQP1DMQGmB69nS6/Qk3soOdB/nF3l/wk/U/+dDMGZOYxEQIaBWMI0XIk3CW8kbvfoqFwfPief9z1S8xvLRjVDBAbnKhfVFBqNZhtBnHnPPDfu+oAFvyve9WvP5SxfCKJm1BwbjaVEUIfGfJP/OPO7+l8ry4HE8Ivr8dJBrJ8+As19tUdCX5e09hXLgIdDrCr7wyOuCydWuqNtwIgXrBaMTymc8Q12tZIC/gP978jw+c533zzR/wv1f+gjS4YMYLY/E8gBxrDldar+TFMy+yIH8BK0tWsrdtL39Ydw9Fb55E2XVWG262s4x9H3mZlY9uYig6dN48b2R144XmeXIoRNztJrJz52gzhbfbgAtvvPEd87wDg7XMXn8rllc1iQBx8jzLyxE2b6Bn6CR5ljz8UT9ZpqwUnhcLxmgbalMDN3GTIeGuOobLplhRjmg9y53eb543LWsa2eZsnj71tHrvbS3fQvrrB9EVFY9tStHYSPCZZzBv3fqOK9qsOiuKovBI49Mc7jxMtaOanS076fJ18Y2V3+Cm4g0U7T6JsiuxprED15aX479yHo3uRpXntXpaORE9wU0zbuLN1jdH8bwufxcPHXuIvmAf3rAXo9ZIriWXFxpeoHGwkX9Z8S+IgjhK/zuJvybPM4gGpmZNVQNsSZ6nETSc6DvxgevoXUhMBtk+JJiaNZV5jnlYdVb2tu1VMw8G0UBxWjH7O/bzwJEH+MbKb5BpylR12v5917+rBExAYHHhYv5x2T/yq/2/YkH+Av5y4i+c7D+plo8ORYZo8baM+1AMd38ZiXcrXn8pIxnkONhxkINdB6nOrWYgOMBQeIjGwUZm5c5iWtY0ZubMJCyF0Yk62ofa6fB18Ez9M0TiEdKN6cx2zKY/2I9Nb8Mb8SIICW2mYnsxA8EB1patVcUrj/cepzKrkhxzDn3BPk72naTfnKhIPNB5gFxLLo3uRqx6K1MyptDqbeXxuscx68x8ZNZHeKnxJY70HAFQP2d44GasgTA5gCfb40YiOfAHpaDaFjoW3GE3N8+8mZXFKxOtxhfAeGGsQNNAaICvv/R1Vpetxhv18kzDM2jQoBN1WHQWpmRN4UTfCdqG2v4/e+cdIEd5n//PzPa+13tXO/VeUQGBGhLFFBeMsY1r7NiOS2I7zUkc+xfbcVxiO9ixMdhgjCkGBEggAZKQkEASqqe7k3S9193bOrs7M78/Rju6vds7nYQQEOv5B7S3Ozs75X2fed7v93moyKgg15FLX7gPURAJxUM68c2yZyEgTKjtQrTZICMD08yZKW0+SjCI4nWTSwlfXPLFtL9ZiURGecHU9NSMEtiSGO5Lka6VGcYmpskV0ExbZlrS9qcTf9ITRYGUST2hJAhJ59OettZvZVLGJHqCPXSFujAIBlxmF+UZ5awoXsGRziNk2DMo85QxPXc6lRmVacePdKu9I0lDXIlzvOc4LouL5888ry06nPOrmJEzg79e8tf89MBPU/a1O9iNX/LTF+7T20QCsQCNg42UecrwR/1YjJZL8o0o85ZRmVHJruZdXFtxLS83vkx1TjV3z76bMm8ZhzsPMyNnBjE5pqcB/+7o7yh2F1ORUUHzUDMfn/txVpatZPvZ7XQEOlIEzzl5c8iyZ3Gq9xQH2g9QnV2N0WBESkgEY5pX3p7mPWyZsmXc/RzZapMktYXOQqZkTWFf6z5O9p5kTv4cpmVPw2KwUOQuosxTRl1/Xcr5j8Qi9IZ6EUWRgfAAzUPNROMaCcu0ZXJ24CyVmZX81aK/4hcHf0FHoAO7yU5fpI/p2dPZNHkTvz/2e+wmO7IqU9Nb8xc3Z1zFVYwFm8uL79qFeFQ1NZ2xoozmZZP5l5e/yMrSlRPieVuK1yI/d3/6L2psYs7yG/nSnn9JO+erwWB6DyIu3bz+vQy9omloaGxvqrZ2/nrTJ/lC9ccgGgWrlQE1xPu3fYI3u99My/NicgxBEChxlzDVVow534gSCBA/eTKt4DLch81QUYHc1qb/3VBRgeL3E37kEQyVlazccAOfG2oFrizPiyQifPfIT/nHDX+LR16rtT5ehuCFdDzPF/Hxkzd+wg1VN/DC2RfItmezOHu2JrCNSDdVG5vIFgS+tuCv+ft9//aO8DwYzfUQRQSLJW1lHJwT8sJhXK68i+J5TrMTyWYmJ43PoGizofpr8Et+4oom2I7keYqqEIwHtaTc089z83VrcaGmjAuGykqU9dexr+cQXpv3ivC8zy/6PI2+Rv3aSyiJc2EbWzEsXTZ2KMXZs6ih0Kh28AthPJ63rng1JXtrUUYl6TZgVxWyKh28cPYF7p59N3Py5rCreRcDkYG0PO9o11Hq++txmB1aCMI5nqegcLznOIc7D5Njz9F9tUfineR5jb5G7EY7PeGeUTxPFMQr7qN3OXFVZPsLgcviYmXZSqwmKwc7D5Jjz9H7590WN2cGztDsb6Y31MtNU29ia/1WuoPd/Nu1/0ZPqIchaYgMawYZtgxq+2r1tMVTfaeAc61yqoqiKsTkGIc6D3G0++iom+JCBp5vxeDzSuNy+cq5LC4cZgfXll9LJKENTnaTnSFpiMdPPs6s3Fn8ue7PHOs6xlBsCH/Uz7Tsadwz9x6ePPUku5t3c+PkG/UVToNo0AZHVyGrylZxqvcUGydvpMXXorfw1fbWMjd/LvnOfBJKgkgiwuYpmynzllHuLef+N++nKqOKm6fdrMc2y6rMlilb2Nu6F6/Vq5tVJjHeQJgcwK1Ga8pnkjAIWsmw3WjHJI5tDGsWtVLpayuvvejjPB5GCk3dwW7eN+19PHvmWU2cOOcbEpNjGEWjJqrkzkRVVcwGMwXOAqKJKFJCIqJEEBFZXbaaxYWLqeuvozKjErPBTKuvlel5Y5f+ix4PpurqFFJjKClBtNlYlbEq7WcUv5/w00+nrBIaqqpYeP01elttOgxKgxc8LuNVugFpSZvH5sFldqWsYifhMrvw2DwpJf4GwcDiosU4zA5O958mz5FHa6CVf3/13zGJJqZmT9XbMr+45Iv8+MCP07aaj7z30vmwyKpMQArwgZkfoMJbQTAeJMOSQYG7gH0t+1LEQSkh6ea5cSWuk0nQhDYVVfeLGMtYeTy4LC5un3E7UTnKgbYDLCpaxIycGbzS/AqqqrKreRftQ+1k2jLJtGXyZuebCIJAfX89q8pW0TjYyG+O/Ibvrv3umOeoyddEZ7CT4z3Hicva/ieF4mgiitfqZUgaGtezZaSJ+fDfWumtpKa3htahVg52HARgWvY0itxFyKqMw+TQKmPNDlC0UIfrK69nV/MufFEfefY84kqcHHsOU7Kn0B3oZsfZHawuX82nFnxKI+pSkOUly+kN9fJYzWOYDCa9kkNW5ffUnHEVV/F2wmVx8XLwDM6FORQvnYo5ATEj7OjaxyN7vkHDYAOlntIJ8bx4OIRhnO8qNmby48XfIh4KgDf1bxcyp78U8/p3CnIgAOHweVHDbtfM7S8Sos1GYmAAy5o1GCefq9COxcBgINHUhCEvD+n5bSnzuL2ighdveozrn75tFM8TBIH2QDuVGZWsKluFGEtoPm8wruBiWboUQ1UV1uuuI/SQlmZuqKjAtmEDwQce0N7X0ADbXuRPG3/LdU9sueI8T1VVmqTOlLbAy4F0PG9G9gy2nd2mJzRuKb4edc/29PvV0MiWpRv5J+E7RJQITpOTX6//OTeV3oCYUCAWI242EA76x61svxSeB2NwvcpKbBs2gMk0Kr1W3+9zbcBj4UI8L52w5LQ4ybRmpt2ey+zSWkdFs87zftvwGGuWLKP6umuIh4MIFiuvDR7lF9s/AXDFeN72M9tTvMKkhHQ+bCMxWhgejgsdx7THYhye9/HyW8dcjKCxiXUrNvNM84s8eOxBvrv2u3w659Nj8ryWoRZ8UR9Hu44Co3meX/JT7ClO+1XvNM+LJqLIisyiokVpeR5M7Hnl3YirIttfEMyiZk5e6CrU27jC8TBnBs5oaS0GK8F4kJl5M7mh8gYeOvYQr7e/zrz8eQiCQJO/CUmWKHAWYBJNhBJaRUrSuNBsMGMymPBYPKgulYHIAE2+ppTS6YstBX634nL7yoXiIf7n4P9wpOsIRtFIXIlTnV3N11d9nR/s/QFWk5UcRw4dAU3sOtl7ElEQuXXarexp2cPOxp18Yv4niCaiFDgKNCN1FXrCPczLn6eJP+cEBAEBBG2SdJqdDEYHicQjGEQDkUQEX9THjzf9mH3N+/jO7u+Qac/UPUACsQC+qI8se5a+yjAcYw2EyXYHAYECZwEt/hZdhDGKRixGC4XOQrLt2bit7rTbsBlteKyeC6YlXQ7kOfOYUzCHB449oCfeCJwXpZv9zczOm019fz1/t+Lv2NW0C7fZTV5mHqF4iDl5c9g0eROffvrTRJQIZoOZadnT+MqyrxCMa6alY5nmpzNPHgtKJDKKdIG26mZRVb409zN8540fpv1shiVjQt8xVqXbWCh0FrK8ZDn7WvelCG0us4vlJcspdBamlPjLqoyiKjxb/yxem5edjTuJJqI4zA4SSoK6vrqUtszvrv3ueXF7nErGsXxYZFXGIBpYW7lWP/4nuk/o3hDD35dcwTeJplEPBQkloY+pl3pNlnvL9RAIX9THs6efJcOaQUyJMRgZxGFyIMkSdf11FLgKaBtqw2F26MbYwXiQmp4arq28dtQ5SgqZFoOFSDyirzRKskRcjuMwOxiMDmIxWMatWEweo2QSnF/y0xPqIcuWxYuNLzIrbxYrSlfoFXcOo4OByACHOw/T4m/h7OBZfFEfVZlVrC1fS+dQJ8vLlnO48zAnek/o85C90c4t024hz6kRsraBNvIceSgo/PHkH/WHtuFjjkEwvGfmjKu4iisBo2BkZ+detp/dnsLzuoJdY/K8hsEGvjHn85jjivbQb7OhGgyExnlwN5itlIRtYLAh+3wYvF79bxcyp78U8/p3AvLAAJGtW0entG7ejCEzvcAwHgSrFUNp6ahWTuvmzVqb2sh5vLGR6LPP8sSmB7lj28d0nueL+nCanazIWUCh4EGU4toxlSSt2ma8fTCbMRYWEt29G+fHPoYaj6MODWkCW/j8gpzc0MD0G67/P8/zlpYspcCUwZrcxWSIDlz2DFi5crR/3TlYFQO/WPsjrsmZT4GrEDEUQXr+hZTzaauqJLjhelrUQUrcJW+Z58E4XK+hgci2bXqFYjoIVmva14fjYnme3WhnWvY0qrOr9WILQLfTKHQWYjKc93uNyTGO+ev472O/wmvzcrz7uM7zgCvG85LdP8PfFzNqPG9k+/RITOQ4pkM6npdly8KaEMb9nEUWJszzUCEUC+lBDyN5ns1oo8hZREAKvOt4Hmii3Vg8Dyb+vPJuw1WR7S8IM/NmcqDjAGcGzoz6W64jlzxnHk6Tk4AUYPvZ7ViMFlaUruBnb/yMw52HsRg0YpRMEYnEIggImAwmXGYXvqgPGzYafY20DbXRG+plX+s+smxZ+g18saXA70Zcbl+5Fl8LP3rtR1q1yblqGQGB2r5a3uzU2gQGogOYRBMWowW7aEdVVdqG2siwZTAvfx4xJYbL7OLGyTfSH+nn98d+z96WvUQSERJKgpWlKzEZTLgtbvySn+rsarqD3TT7mxmShjCKRs4MnOFPNX+iwFlAQk1Q21eL2WgmHNdM7o2iUS9FTnqDjMRYA2GyJH1r/VaWlyzHIBpSUqdK3aVsmbqF5SXLicvxUdeIzWhjavZUClwFKSsuwyPgnWbnW0p7HIlANECWLQuzwczS4qU0DDQQU2IMRAaQZImEkmBy1mQGI4PcXn07mfZMAlIAu8lOi7+Fz279LJFEBK/VS0JI8Hr76/z0wE/50OwPUdtXmxKdfbG/I1lFucBagZrG5wK0kvNN19zKdxgtss3KnaX7ol1ulHnLWFO+BlmR6Qx2aumZopECZwFrytdQ5i3jZO/JlM+oqHQEOyj1ltI61Eqm7fwDTCQRGdWWOZH7K3nNPXbyMRoGG/Q05UpvZQqpSO7z0e6jFDoL9TYCg6Bd8xnWDLLt2aO2bzVZ9US9kauAFwOXxcX8wvmc6D6By+LSBbG4EicS1+6PuBwn35mPJEt6wm0oHiKhJGjyN/Fy48ujKmmTQmaZp4xSbymNg+cfAiRZwiN6yHPkkWnLvOBK9vDo93xHPr6Ij9ahVoKxIDW9NSiKoi2yGE0sK1rGjoYdOM1OGgYb8EV9AJwdOItZNPOJ+Z/ge3u/R3+4PyVeHuCJU0/w5WVf1sa1gnlasnH/aWblzkoh8qA9tE3Pmf6emDOu4iquFC6W5+U58vjM5A8S2bqVYGNqK5f9Qx8i/PDDo8QGQ0UFidpa/aHeUFGB7aabdKFNcDoRL7N5/ZWGHAiMEtjgvM+V7dZbL6qiLRr0IzQ1pW3lFF2utH5Vye9zq+tYXLRYmwcNFlaVrmKyuQDpma1Eh1e+3X33BYUCNRbTz1skkdB84sYSZ6TY/3met9A5lWUN3ag7teo1iTH86wBMJnKzSrn59ZOYQoPgUZDSteaebcDw/A4GlxSxo2GHzvPS2XqM5/GVUkVpsYx9jTQ0YFmxAtKcR0NFBdjtF39gLoBSbym7Wnbx0bkf5cWzL9I61IpRNCIgkGPP4a7ZdzEYTRVj3w08LykCJ7meQTCws3sfH6goR25rGzuUoqoKweG45OM1kue5LC4SJpGx6zkhalAnzPPMopkid1GKRcxwnheTYxS6CllWsuySeZ5JNPGRqe9nVc5CXKqFgCCxf+AY39j7rbfE85wmJzajjXn589Ja3LydzytvN66KbH9BKPWWcuPkG3m15VUOdR7SX8915LKybCUVGRWUecv0m7Yyo1IX2EC7YU2iiZO9J8lx5HBD1Q18csEniSViNPmaONp9lHxnPnX9dVRnV9Mf6edw5+GUGyTPmccXlnxhzCqw94K3zuX2lTvafZRXW1/FbXHrHg+huLYa2Rns1JJbgp1ku7Ip8ZToK9FdwS7C8TC5zlwAPYb8sZOP6QIbaA+jyWSnQlchcSWO0+wkHA/jj/oRBZEyTxm9oV48Fg/BWJCuQBflnnL2tuwlx5Gjeyz0h/uZVzCPYGx0e9yFBsJybzn3zLmHFl8Ls/Jm8f4Z7ycYC2Ixaaub5d5yfbD/uxV/x0PHHqIj2IFZNOOxeihwFaRMmsMnhCSGC1dvBQEpQFeoi5O9J2kcbOSTCz7JE7EnONFzAgEBg2BgauZUtkzdwoPHHkSKS3SFuih1l7Ju0jr+8ZV/xCSa9FZcWZUxikZq+2qJJbQWw4HIAFvrt3JD5Q1sP7t9wr9jeBXlw8t+yHjTfqboZFburNHpoqu++bb5G7gsLpaVLENRFYakIaKJKFajFbfFzfKS5bgsLsyime5gN4FYAEVVMAgGEkpCb89MtpUkIasy+Y582oPtF020C92F5DpyiSQimEQTXptXb50cvs8rSlcgCAJb67bSEezAYrSQZctifsF8KrwVxOQYJe4SWodaybBmUOYuG3VNvhUky/NjSowhaYgSTwl1fXWoqEQSEULxEAORAX1s7Qh0EElECMaC/MuufxlVSZvcXmegk5un3sxTdU+lCG2lnlI2TtqI3WTXj0G6leyR0e+94V7WVq6lK9iFP+onZozhtrppHWrFIBqYnTubjkAHs/Nm68QLNP/P/kg/AgLHu48zKXNSyvcoqkJdfx1+yU+GLYMKbwV5zjxcFhefFj/NfQfv04U2o2hkadFS/mbZ37wn5oyruIorhYvleV+f9bn0YlJDAxJg3bCB6DPP6K8bKiqwLFmiCRDJ954TnpLG4FanB27cmDZd9FLN6684wuEL+lxxESKbGIoguFzpt3mBNjWkKBajhVxnLpMzJzPNVUH4scdGVzU1NSF4POOmVw73YZPPnsWyePGYXyuYzaNe+7/E85RIBMuL6QMDhvvXJWFZvw7puedRGhsxLFmqvzcd5IYGpqxZwosdu3n+9PN8YvIHkJ7ZOsrWY6zUypFVlPY77hj3twhG46jzrlddXkJ784XgsrjYNHkTW+u3srBwIQsKtQR2r83LqpJVVGVVcaL7BMFYkN5QL9FEFFStou2d5HlJEXht5Vo9bO63px7huut/Tu6+GmxLlowOpUiep4v0Y0uH4W2YRwKnWV5RPsr/D4CKMl7uPjBhntfsb2Z12Wo6A50c7T6qb6bUU8qK0hWEE2FdULsYntcZ6KQ/3E+hs5Afrfw3SvbWoW57CtBcAjZWlDNl4wNc/+QthOKhS+Z5AN9c+c1RYW1v9/PK242rItv/IUxktWdx8WL+c/1/8sCRB2j2N2M1WMlz5lGRUaFPbLp5aTyqC2xJKKpCnjOPJ2ufJM+RR3ewm9q+WixGC3fOuJMHjjzA1Kyp3DnjTl5uepmYHKMj2JEyKc/NnzvhUuB3Iy63r1xfuE/3EHCYHVqiZ8yOIAg4TU6CUpA7pt9Bhi2DYEw7t4ORQV5uelnruZejejVNs6+ZhsGGFG8pgEZfI0uLlnJr9a28ePZF/XVREJmcNZklRUt4pu4ZEkqCuBLXBFWjCbPBrBvYKqrC4zWP87cr/pbtZ7enEPiJDoQui4sZeTMueEymZk/layu+NuaKS4uvhZ+//nPtGjZqrbROs3NCxrMTQbOvmUg8wpTMKdQP1POrQ7/ipqk3cdOUm4gkIhQ4C1hUuIj/2PsfBGNBKjMq2dO6h95QLxsmbcButOtEIqEkcJgcuC1uJFlKaaE0CkYeOvYQophaGj3W7xhZRZkwpX5uJCwONz/b9DOOdx9nUBokw5LBrLxZb/uEVe4tJ8uWpZ8/s6i1kncFu2gbaiMSj9A21KZPphnWDNqH2jGVmFhStIQybxkJJaG3Oi4qXESjr5H+SL++EvmK+gqbp2wek2gHpABb67fiMDloGGwgrsSJyTFMook3O95k4+SNeKweSj1a+ENyn2flzqIj2EFCTuA2u2kNtFLTU4M/6md91XoybZlUZFRQ4i7Rr8kWXwvHu48zEB0g05bJrNyLP8bJ9hizaKa+v57VpauJxqMEYgEcJgeiIFLhrWBV2SoePv4wsiozM3em7rnXMNjATw/8lH9e/c90Bjtp9bdyqveUHm6zumw1K0tWElfimEQTJZ4SCl2F2IzjE8fhrb2gEeGuYBdz8+dysuckA9EBvS1IVmQkWUJRFQRBINOWqRFpQbsPAlKAcCKst5/r2xz2ubgS59nTz/L4qcd1Mplly6Iqo4pGXyOhWIgcew6z8ma9Z+aMq7iKy4kLcb2L4XmmuIw0jlBgW7eO4D3vIxsHBrOVRG3t6AofRhuDWzNz4NabUYPBy2ZefyVxIf+li/VnEqLS2GKa0Qh2O/abbkJwuUCSwGpFHRoi/PTTYNHa1JI8Tw2E0lY1Sfv3Y7/99rHTK0eIo+PBUFFBwpjazvZ/jeepoRDyGJ5YSf+6JISKcpSCPJStz2ovXEgYBQwx7T2zPVNHCWwwdmpl2irKCbQy2rZs0VqGJekt+QdOFElBdSTP64v0EenRFpfPDpzlza43Ae36bRhsYEXJineU5yVF4Nl5swlKQSRZYv/QCWYum0SRScRxw3WYBQNCLI5ot+sVh5eT5wFsb32Fsms+RCHAyKCa5VP49jN3IcnShHieUTTyTP0zfHj2h1nlX0VfuA+TaMJhdtDh7+Cvl/z1uPdKOp7XEehgUuYk1lasZU3BMk1gSxMIUgn8+4p/4jtv/Odb4nnLSpa9I88rbyeuimz/R5ButSfbns2Gqg1EE9EUMjY3fy5V11aNObElB4F0xuWVGZXU99fTF+5jKDZEb7iXqowqusPdtAfa+Y8b/oMmXxNvtL+hR/8ORYcISIGUGzzPmfeefUC6HL5yw0my2+LGbrITiUcIx8MYRaNeZh2QAtw+/XZ+uP+HHOo8hIiIisr8gvl8fvHnsRqs9IR7Uohz0ox9OBJKgv3t+/no3I/yjZXfYDA8SP1gPY0D2oT2StMrKCh6Yo0gCMzJm0NNfg3Huo/p28l35WMz2/je9d+jtq/2ogfCiyn7T7fiEpACvN7+Oid7ThKMB5FVmX2t+3CanSwpXkK+M5+ByMAlpT0ORzAeJBgLcvO0m3mq9inqB+p55OQjCAiUekr52oqv8UTNE2yYtIEjXUd0ITKmxJBVmRxHDqIgoqiKbgCbrE50mV30hnsB7TgbRSN2k51ALIDZYEZAIBwPp/0dI6so9w0cZdMYK2HJ8vZSW/Y7Mkklz9/wsUlKaP5i0XiUW6bdQjAWpNHXSHeom2x7Ntn2bA53HuZA+wFA80L78tIvY1dEPlS0EasskDAZOBY4Q78aZGv9Vu6Zc0/aa6jZ14xZNNMT7OHlppc5O3CWhJJAVmUqvBVkO7JxmBzsbNypr4q7LC5m5aWu1AekALNzZ6c3BAZea30t/erbym+yrGTZhI9XspVBSmgVw693vM607Glk27PJd+ZjNVrZ3bybHQ07CMfDLCxcyF2z7uKJ2icArcW8N9zLk7VP8tsjv6Uqs4qGgQYybZnU9dcxJWsKuY5cZFUm25bNpKxJ9IX7LnhtpAt1sBgt/Hj/j5maPZW4EqdhsEG3DsiwZlDqKaU/3E9vuBen2ZlCtlxmF6Ig4jA5MBvMWmDIOeKV58ij0FXI1vqtJJRESvv9yPNyFVfxl4iRXM8gGKjMqKTcW45BNFw0z5uImHT3ri/y4Oofk+eLjtlaCKBGUhf3rE7PezZF9EL+SxPxZxreHihaLChjBD7Ivb04P/pRIs8/P0oYc370o8TFVO+kRK8//RfG44QfewzHPfdg27QJEgnUaBQ1FkNua0srjgouV9oKKMuqVYRNBn628WdXnOcpkQhR/wDOUIjPVL6fHd17+dGR/8FisFxWnnfBa99iRv7wHQhWK/sHjjHD34l+NV9A9AKQzdp7pthLMBaBZckSPU1UbmtD2r8/fWplmirKC7YyulyXpdLqYpGO5wEEY0Hq++rZPGUzvqiPRl8jveFeilxFZNmyONJ15B3leSNF4OQ1ezbej1N8+3neQGQAq8nK3+3/N26qWsd1yzfjxIxiMvCnpmf5xbbvMRAdYG7+3AnzPH/Uz6/f/DULChaQ48jBarQyKWMSBtFAdU71uPuVjuf1R/rxd/jJseewLHMOauNT6T/c2MTaZRv5ujSkv3SpPK/UW/qeFtVG4qrI9n8AASnAC2dfYEbODPrCffiiPjJtmRQ4CvjJ/p/gsDiwGDU/teFl1mNNTslBwGoYTSLcFjd1/XWA1v6jqAoJNUGePY8cew7heJhSdym5jlzq++sxG8xEEhEeOPrAuKsR7xQuxevhrfrKJSejgBSgKrMKk2Diw7M/TDgWpj3Qzpudb2IxWJBkiRuqbuCh4w9R01sDgIKCiEhtXy1/PPFH/nX1v3LjlBtTiHPSjH0kkisMuXm5zMiZQU1fDaf6TtF6LqbdaXYiJSQ8Fg9VGVWUuctYV7mOVWWrkBISFqOFAmcBq0pXUeYtoyqr6oLHN93vvtSy/yZfE4+ceIQ/nvgjVqOVMwNn2DhpI59Z+Bnq+uuwG+16u+ulpD0Oh9PkxGgwMhAZ4LqK69g0eRORRAS70U57oJ2+cB+ZjkyGpCHWT1rPYGSQk70n8Vg85DpzKXAV8Eb7GxhFI0bRiMvswm1xaymjRu38GAQDFoOFva17qe2rRUUloSTId+azadImAlJg1O8YWSX5QO0jzFv5bQogRWi7XOXtASlAk6+JjmAHcTlOobOQyVmTJ7x6PLIE3R/1IyUkavpqCB0PsWnyJgajg8iKzB3T7+B3R3+HQTTo6aTLipexPm852buOoDZu1be7qqKcvtVzeanvjTGJdjAexG1189ujv6Wur45QPKRXFx7pOoLdZOfLy75MZ0/nuKvi4xkCt/haRhEv0BLYvrPnO/xs088mTBiSrQxP1z1NJBGhrq9OT3zOtmfjMru4a9Zd+CQfiqIQiAV4ovYJpISE0+TEarJS319PZ6BTa03ureVTCz7Fwye0qrfdzbtRVIXJmZO5bfpt9IX72DJlywXPpdPkxCAYyLHngKAlvzlMDsq95dT113Hj5Btxmp0klAQmURPZ7CY7vaFeLcRBPi/6T8mcQkyOcU3pNQSkAF6Ll7gpTjQRxWPxsKxkGS2+Fl20vpT2+6u4iv+rSMf1smxZWI1W/vv1/6bcW47FaLkonndBMcmi8bzX+o9wS+YK7UWTSUupLC5OEQ1UWUbx+9O2v72TuCRPL7t93LbLC/lc6UmQXV1ahZrHA0Yj9o98RGtHHGasb6yoGCWwwbk23Oefx7plS8r8NO45i8dRQyEtCMHhQG5vT+sDB5rvHqqKacYMrWrr3LlUgkEMGRl4PB5u9N44/nEagbfK84YnaBqALJOJj6xfx93vex/9/i4SZgNNUjf7+g6/ZZ53oWt/kCi/aH0Ug2BgctZkbE6v/je5rW381tzKSuojbThMDjIsXqJtr6UI1MN930aKfenEP2n/fuy33fa2tDJebp4H0Bvq5VjPMfySfxTP+82bv0FA+IvneQORASozK3n4zBM8fPoJVpatxGl24na4+Zulf0NciV8UzxMEgcHwIC+cfUHneUOxoUvmebn2XFwWF7879ju+WPb+cT9vTqj6/1/leedxVWR7jyGlAsrsxml2crL7JLn2XH516Fcc6T5Cq78VRVVYULiAr6/4Orsbd+tneiJl1slB4FD7IeYXzNdbRi0GCyoqiqowPWc6kbjW+76kaAmPnnyUp+ue5tqKaznafRS32c01Zdfw59o/U99fzw2VN4y7GvFOYCwysL5qPQk5QSAeSEvI3oqvXEAKsLdlL1ajlQJnAU/VPsXpgdNk2bM42nUUj9XDpsmbeOHsC1orl8nGy40v4zA79EQcURCRFZn9bftpC7axqGSRvv0ybxmVGZU0+hpHtYwWOgtxW9z6Cs1NU2/CbrLz59o/0zrUiiiI5DvzubbiWubkz+Fw12Gy7FmoqLrXwqZJmy5pIEw3CcPErsfhnz/Ve4rB6CDl3nK2TNnCa22vsf3sdrLsWXQEOlhRsoL3Vb8Pl+mtXWPJBxCAjkAHhzsPMxgZJNeRi9lgJibHsJqs5DvzOd1/muk507m27FpynDkc6zrG5xd9nv81/C9vdLyBKIhIskShq5C/WvRXemWg2WDmhbMvcKTrCH5JW5m2Gq0MRAZ4/szzLC5erCXBDsPIKslIIsKX9v4D90z/AMuvuZks0YXV6Ukx1J3oA0ZACnC6/zQdgQ7MRjMei4f6/nqeP/28HgZgFs0sLFrIxkkbybRl6iX4Y2FkCXpMiekTa7O/mcHoIPvb9gNa5Hg4HqbIXUSJu4SYHOOzMz9O9q6jaUvUs4G5K6alEO3hvzUSjxCQAtT31evmsfrnUTk7eJb2QDteq5f+SD+n+09jNpgZjAwiCALhRJi4HKfAWcDkrMn67xl+HI93H09r1AoaATveffyiVuXKveW8f8b7qempYaB0QGuRseUQiUewW+zYjXZ6Qj08duoxXBYX03Omk2nNpNBViCRLzMufR7m3nEJXIU2DTTx47EFy7DkUugqpyKgg156L1WRFRWVD1YYJ3ctl3jKqMqt4tv5ZAjHteNrNWuXtqtJVNA42srNxJwEpgIrK7ubdfH3l13nwyIO4rW66gl0MRAaYkjmFLVO3UNNTw9ev+TqPnHgEl0Uj2eF4mGJXMStKVvDYqcdSvv9i2++v4ire60jH884OnKUn1EOxu5ifv/Fztp3Zpi1yKgmWFC9J4XoXw/PismFcMSlq1CpNTodb8RUK2CZPxrJgAdKBA6NEA+PUqYSffx77zTe/I1U16TCe6DPc0mDk3GhwubBt3jx2uug4bXhKJEL8zBksS5cier1Etm1L9eIaYawviOK4/m+CJOHKOB82IDgcGKqqkM+eHfV+Q0WFJpKVlGjnoKICMTMzrThjWbKE0EMPYVmw4Ly/nMmEcfJkxEtoM3yrPG9UgqbJpAlLBw4gb32W5CczKyqYsvY2fCb5ovdxOMY7jkJFOds6d9MV7NJ53kz3JCYlz70sI2ZnI2ZljT62lZUE1i5hX+NTfGbKh4hu2zau79tI77u04l88Tvjxx7EsXYpt3TrURCIlPOHdxPMAzYON9Dwv6fld5i27ojwvEAsQCfiwBySUSISE2UCX4qc22ESeI+8d4Xk+ycfmyZvJtmfTGehENIgUOgvpC/XxnVe/w+SsyczLn4dBNFDmKcNpdtLka6LUU/q287yuUBerSldR4akgIMQYL085YdL89a7yvFRcFdneQ0iSBX/UT4GzgGx7No+efJRybznPnX6OYz3HyLRlUp1TTW1vLfvb9vP/9v4/vnnNN3m943V9OxMps076E3ltXn6w7wec7D1JQkkgCiKLChdx67RbeaPjDWbnzeblppeJJqLkOnMJx8P0hnvpDfdiMVrYPGUzDx1/iO5QN3fNukt/kH07UoIuBmORgTZ/G7uaduGyuBiIDOCyuGgYaGB2/uyUVbhL9ZWr6a3h2fpnKXAWsKdlD/UD9bgtbiwGC5MzJ+MwO4gkIvz3pv/Wq7UEQSCaiBKTYwhCqugyJA3pE85AZABFVVhWsoyB6AAH2w/qraOFzkI91Sl5vOfkzyHfmc+SwiV0h7tRFIVSbylZtiy2nd1GXInTFeoCNFJ6Xfl1l7zSkG4STmIi12Py88mJuyqjioMdB2n0acSlxFMCaPfI3ta9bJ6y+ZL2M4nkA8gjJx7hjfY39PZds8HMXbPu4g8n/oAv6mNt5Vo8Fg/RRBST0cQrTa9wuOMwj5x4hE/M/wR3zb6L/nC/FqMdGaTJ16R53iUkjIKRIWlIj6o2CAY9AKA33EuBs4DBqPaZ5LWXrooykojwPyfu54WMSr679rs4nOeTMCe6qtzka0pJpJ2eMx2LwcLJ3pMMSUNYjVaiiSht4TY6g530BHtYWLiQmBIbd4V65EqzWTSnpJUNr3KKJjT/MZfZpYd5TLYVoTa+knbbamMTpWuW0CaG0/7WfEc+cSWOrMopxAvQf084HkZExBf1caBdS+RzmV3sbNyJL+qjIqMCWZGZXzCf6pxqzg6cRVZl/Th6LB5kRSYmx1BRUVUVQdCCMUwGE4NSarrWhTCR86V2q7T6W+kMduIyu8i0ZbKjYQeTsibx2MnHEASBqdlT+fqKr/P8mef1lMHq7GpKPaV620BvqHfC93PS57FxsBG/5MdpcdLib+FQ1yHWlK0hw5pBQkkQjocJxUM8f/p5bp52s97mahAMOMwOTIKJ6txq8px5TMmaQk1PDa1DrfglP+F4mMdOPabf40lcqP3+7Uyeu4qruNIYi+cNRAeYlz+P504/R3ugXed5ceJpud5EeV5ACmAfR0xS43GeX/UrsFrpV0JYN24k+swzaUWD6M6dGIuLkYMBaobOvuP35Fg8LyAFeKPtDVRUesO9WhiPwczu5t1smrxJH2sNmZnYbr31fMLjBH2u1EiE+MmTGIuLkV57Lb3AIgg47r0XgQm0LZ5rM00KJN3BbpavvxbDdlIEomSbpyEjQxc5DZmZYDKdbx+NxbTfYTYT2bYNwuHzKbHJqqhL9PF6qzxP80g7z20sS5dqAtuI46c2NuJ6CTJvvfmS9jMJ0WbDvmUL4WeeSTmOQkU5gbVLeGjnF3QD+ExbJjmmDBI1+5CGiYDWjRuxbtwIiQSyFCVsVDgtdfHC2cdYnbcUa1AiPE5yrOWaa1AVJbUCdKwqynicRFsbpkWLMA47R+82ngcax0piJM/rDfcyPWc6Re4i4MrwPIto4aOVt2F//hWCw85HVkU5lStn8o0932ZGzowxeZ7VaOWLcz7DDfkrMCdUYiaBFztf5cdH73tbeF53sJtNkzexq3kXtb21ZNoyefj4w1iNVhYXLua/XvsvKjMr31aeB9Ad6qYj2MGRkjquqyhP9Y47B7GyEtlq4bc3//Zt43kXm8z7bsFVke09giRZ8Ef9FLoK6Qx08stDv6R+oJ7PLfocJ3pPYDFYGJKGaPW3UuYto66/jv1t+xka1iedxETKrF0WF2sr11LuKed4z3F8ko9cRy7Hu4/zi4O/oHWolQ/O/CAvNb6Ex+JhctZkEkqCHFsOgiDQPtSu+1LV9NYQiUc40H6A7lC3/h2XKyXoYpGODKiKytTsqTx49EG6Q93E5TiiIFKdXc298+8ly5b1lnzlAlKAP9f9mY5gB1WZVdQP1AOaUNbkbyLXkctAdICEktDKgYOdeoJMQklgMphSKptEQcRr9XL/kftpGGygrq+OSCJCiauEW6tvZU7eHM340uIYleqUhN1kx2vzYjQaU8jwPc57xvRyuRRc6Hqb6N+TE7fFYGEwOqi31SY9n7xWL26L+6ImlrFQ7i3nmuJr8EV9xGQtFnxIGuKJ2ieozqnGbXGzIH8BJZ4SHjz2ILV9tbgtbpwWre3212/+mmJ3MaWeUhp9jWTbs7mt+jYmZU7CZXJxuOswpwdOU+wuRkBARcUv+RmMDlLoKkRA4E8n/8TayrX6tZfnzOOLS77IgfYDDEQGcJqchOIhGgcb+cyiz6T85omuKgekwKhEWrfFjT/q50jXEbJsWYg2kb5wn9ZyHAvQGexERR13hTogBYjEtIADs0FbMfVYPVhCFjKsGVRlVlHhrdDPZ64jVyM01vOtRknj4LFgjCuYLKb07QrhXmbmziTLnsWQNKQL1MmkU1nRSFSyNbMqowpFVdjZuFNvoW4cbGRq9lS21m+lrr+O68qv04XngcgAOfYcgjHNGzAS14x+RUHEJJqwGC24zBO/ZyZyvgBeanqJHEcOtf212E129rXuozPUSXeom3VV63ii9gleb3+dH772Qz676LP80yv/pB1L0ZBCfCfaatPsa9bGdXsOrf5Wsu3ZmEQTuY5czgycYXnxchYXLeZU3ylO9JzAY/HoiajXlF5Dmbcs7XaT42d3sJtv7PzGRbffB6QANb01/Lnuz/ijfjwWz6hWuau4ivcSxuN5BsHA4qLF1PfXI6tyCs8D0nK9ifI8LGC76SaIRs+bppvNWgvj6dP6ex0VFQjr149bdWVZupRgYIDHWs5XKrybeJ5JNDE5czI/O/gzuoJdKTzvnjn38Nzp57h79t0pFW0XkyKqRCJEnn1WPxZjedjJDQ2o4TChBx/E+elPj7tNwWIZJZDYjDa+MOfTrLn+ExhjCUSzBcxmBJtt1MOnYDSiSpJW/TTMyN1+882X9cH1rfK8kWKjobh4zOOnNDRiisbBmfbPE4bo8dC/dhHC8pkY4woJk8i+gaP8ftdXmZQ1ifmF81mQv4BlOfOxv7A3NSghHif69NOIlRX8eYpENBHlhvxrmCRkMW3S3ZhNVujtG/f7BVFEHRwkvONF7LfdjmizaVWUW7Zox0NVIRYDgwG5rw9jWVmKyPtu5HkWo4UcRw459hzKvGUpPC/LnqUJlo4cfRtXguctypqFa2c6wbaJAuDDM2/n317/flqeV+As4NH1v6b8tTOoLz2nf/ZDFWUsW/+/tCm+cfd/5PGayPmym7SuhZreGgqcBTrPM4tmLAYL03Oms7tl99vK86KJKKIg0hXs4tWeg1Qtex/ljLSmqcS+5SameDxMYbRn7uXgeWIwjPrcCxNO5n034arI9h5BkizkO/LZ2bBTF2kEBCRZQlZlFFlBFER6wj0UuYqwGW1EE1FdkU72W6uo9IX6ONFzQhdVxktNqcqqoiqrioAUYMfZHQxJQ5gNWnlzQkmgoiIKIjn2HE4PnKY30qvvd3IFI2nmPsM5Q/fN8lg92E12djXvYiA8cFEeAG8V6QaeMm+ZLpa4LC4kWUIURI52H+X+N++nMqPykoy3u4Pd1PTU0BPuYXr2dGZmz8Qf05IKJVkiHA9jNVpxGB3E1Ti9oV4GotoA7DQ7WVayjNdaXyMuxzVjfEFAFESWFC3BYXLQGejUBTajaMRldVHTW0OOIweL0cKK0hVpBacLraa8FUPZkRieqPNW/p7jyNF8npSYnsbqET26QDMrdxYeq+cte3Uk0Rvp1cvchyPpkbeocBGn+k/p/xYQ8EV9hONhBAQCsQCryldxtPsoXcEuFhYuZHfzbordxVTnVGMQDJwdPMuMnBlIskRWPAuDYEAQBDoCHXQFu9hat5VZuZrp+5GuI/zkwE+o7aslFNNK42fkzOAry7+iC7JJTHRVOV0ibUyO6SlNCSWhf5dZNGsVW+fu+XxHPr3h3lEr1Gf6z7CndY+WLKlqnhYKClOyplDhrWBx4WJ2NOzgoWMP0R/pxygauWP6HSwuWoxBPB/rrphNpIa8p8JgsxOOd4/6rcmxzigYWT9pPTvP7mQoNoSqqtp4qcgsLVpKk6+JEncJGdYMwrEwFqNFF9gAPTFzMDpI42Ajavl534lgLEhACjAvfx57WvboK5/J5KSFuQuxGCyjQl/GwkTOF0BnoJOOQIfm02ZxMRAdwGqw0uRrYnnJcvIceXQFuzjcdZiPzP0IoJFpk2hKIbYXuuf033nuXpJVGYdZ8/dMtq3Jqkw4Eea1ltfYMHkDN025icmZkynzlk14PL+U9vsmXxN7W/bybP2zeouLzWhjavZUgMuSPHcVV3GlMR7Pc5gdBGNBnZcM53nJsdsv+TEbzKzOW8oUWzFOxYTc16eLJ7LfD5HIeSHNasVw7iHF4PUC2kONEAjCGNVqin8M0/0kEgkEh40pmVPelTyvKrOKXx7+Jad6T43ieb879js+NOtDl2SoLwcCWsWbJGG9/nrNGH9EEMQonPu7qijjtuyqNiuPnUgV2O6Z9gFmOMoZCvRhsbuxOm1pk1uHe5zp2xz+gHoZq0HeKs8b1SZ5gQTPi014HQuHfTX8+MCPR70+nOfZ4irKGEmkSkMjt19/L4kdL6HseBoAGYhVVWFbtw5MplGBE/pvSApoZxuQgwFEmw3F70fx+5F27x7V4muqrEz5/NvB80DrOhAEQTeqFxBo8bWkBAaMx/PyHfn84vofkYsTQzyBlLWcHd17aQx3sr5qve4TDleG591beitKY3rBVm1sYtHKW9PyPCkhMd1VRckrJ0YHjDU2U4mA+/pFl5Xnzcybyen+0xzpOjKK5wHU9ddx96y72dOy523leZFghO5QN6WeUlRV5SM7Psc/Lf1bFq28FbtiwOHMwOzOmJAwf6k8r3+gnSmvnkUZOReNkcz7bsNVke09guQNoKLSEezQy2xtJhsWg0X/myiIWtmsmiChJKjMqCTDmkFPqIcSdwn1A/Uc7z7OzNyZHOw8SK4jl5k5M/n+vu/rPedm0cz0nOl8fvHnKXQVUuIpwWVx0exrpj/azy8P/ZLFRYtZUbKCSVmT9FLj3lAvqqpiNViJytrkZxJN2jYNZqbnTmdr/VaeO/0c+c58WodaybHnsGnyJl5reY3pudOv2GpnuoFHQeHMwBmCsSCRREQvZ7UZbRzrPkaTr+miRbakKNLk03r+W/wtFLmK+PCcD3O06yi94V4kWSISj1DoKmR23mzq+uq4ddqt7OzYCSp8acmXQIXDXYd1I/15+fP42xV/y77Wffijfl1gW1K0hN3Nu3nu9HPMyJlBKB6iYaCBj8//eMpxHb5inmXLQkpoYl9cjvNK4yvcNv22y0qEhyfqjEQyln68tq/hyYtz8ufgNrsRBZG4HMdisBBLxCjzlukrOBOdWC6EC5UwWw1WWiIt+r9FQWR69nRkVUZWZaxGK3ajnaHoENmObE73naZuoI4mXxN+yc+6Set4+PjDRBNRPeYcNFIXjAWxmWz4JT/1/fUklAS/OvwrGgcbtcRSmyZ094R7uO/QfZR7y1MmqomuKqdLpDUbzPq9m/T9sRgsRBNR3ZcxJsfoCfVQmVGpJ6cC1PXV8R97/4OGwQb9mmwPtGMz2TBgYHb+bF488yKZ9kwybBlk2TXj7oAUYFHxIjqGOvR9qw23MKuyIi25FSsrOBFqwuXOTvmtBsFAoauQnQ07ybJnMT1rOk0DTXSGOvXK2hx7DkuKl9Ab7qUyo5Jp2dOY7qoiQzHzueLbiBtFPdFMkrVWHVmVU0rce0O9vNzwMv963b8SToR5vf18S/7CwoV8cckXefHMixS7iyf0wDbR85W8380GM3E5npLcKSUkLAZtFXlIGiIcD+O2uKnOrqYiowKnWbsvkvfchTB8lToux0koCYyiUb+Xi1xFzM2fS4GjgGsrrkWSJX1hJxwPT3gMuZj2++TYZRJNtAy1ICW0RaZQLITcI7OgcMFlSZ67iqu40hiP5/mjfmxGW3qe563UqtKtXm4uXItj5z6Uhj3EgBhgmDED23XXpW8JvfFGUFVdiGv2NTNNzSY0RrXaBWGzsafvEF958SvvSp4nJSTq++vH5Hnvn/n+i16kkwcGRh/bykqtRXMcgUXwesFkIvToozjvvluvgNO3ca5l93SsSxdIbEYbP1rxbQr2nEhJ+0tUVaJsuSmlskP3OGttxbJyZUpQRfzsWUzV1Zf1AfWt8rxRHmkXSPCcSMLrRDARnidIsXHfY4zEiLW2pbwmnz1LZPt2rOvXE926ddRnDJWVKIEAajCIZeVKBFkm0doKJtMogS25vZHCwuXmeQICdpOdcDxMQkmgqAone08SiAaYkXteYBuL57ksLtbkL2NT/iqEcATBZgOzjBqJ8BHrCvrLHez1HaPF13JFeZ4pAeqorZ+HMa4tko7kef6oH69iRh1jPFQbm3DEl0yYb0z0fHUEOsbkeaja8+rl4nmAntAaTUQJxUJYjBay7dn4o35NP/CUcFv1bThcWRyWGonLcbLELKY7ppPHxMaQS+F5HyzcgNK4I+320ibzvstwVWR7jyBJFpI3f1JMMIpGekO9zMyZyYneE/r7jYKRqdlTcZvdHOk6wsHOgwxJQxS7irlt+m20D7UTV+J4LB7+Zde/0OrXqjeSbXivNL/CQGSATy/8NDsad3DT1JsIxrXKjbgSZ2/rXgBWlKwgEo/Q7G/GarTqJbpImk9WZ6ATgI/M/ghHOo9Q01tDZUYlCSWBy+zi7OBZnjv9HKvLV9MZGD/95XIiHRmQEhKDkUHiSlwXEgBC8RAqKr6o76K+ozvYrav2ufZc+sP91PfXE5Nj/PLgL5mTP4cna5/EarRiFI10h7o52n2UZSXLONx5mEJXIUe6j2Az2vjSsi8RkAKa9509l1l5s+gOdiPJkj5xTsmawu7m3XolTnJFqiPYMeq4Nvua8Uf9ZNoyebb+WW4uX88tRRu1hBiLhYHBDlz5U9/qYdYxMlEniWQsfX+kf9yqOpfFxaqyVfzkwE9o9jWTmZ/JvIJ5dAW6mJw1mUgiwomeE9T317O4aDGNvka6g93MzJs55gA+ER+nCyXJ5rvyaRlq0ZOSLEYL4XiYZn8z4XgYu8nOnLw53DHjDoakIZ47/RxWoxWTaGJf6z6+tvxr1PTW4Iv49O1Oy57GmvI1NPmaqOurIxALUNtXS+NgI3ua91CRUaGbzCeRLp1noqvKyUTahJLQBYveUC8mg4kyTxnheBijaCQSj+CL+rAYLSSUBDsbd9IX7sNpcrKocJF+XB869pB+vBJKggPtB6jOrmZ+/nxe73idpsEm9rTs0by9zE5KPaX4oj4UVcFhdvD+me9HQNBNv82bZxPb+mwKARMrKwisXUrLwJtMlt30hfr01VZRENnZsJOOYAc94R6ybdncPO1mTvWdYjAyiNfm1f13Ct2FfHX7V3lmy8MUvHQEtbERy7nkvI+Vb+ae4i0ExAR7+9/kx0f+B6vRqlcGRxNRfJKP0wOnuWP6HXx87scJxUI4zA4CsQAPHH2APGfehB/YJnq+kvd7QkngMDmQFRkFbaxSUJBkCbPBTKY1kyJXER+c+UFkVU4hXjdPvVlvITndf5rWoVZUVcVr85Jtz6bMU6bfk2bRTDgWZkgaIhQL6WO8STSRbc9GVVRm5s3kJwd+QleoS5+bkiuUIyssx8JE2++TK8EWg4WuYFeKD8tgdJBij9aifbmqWa/iKq4UxuN5kizRF+5jZu5M6vq0FtEkz/NH/fzNvM9yY+YyLMEoLFmKXFSsJ1haZs0aJQLBufTKZ5/FsmQJ0rZtmj9VIgzxsSuE5LY2DJWVKZVRSRgqKsDr4Ye7fvau5XnhWHhcnheOhy9qkU4OBNIf24YGIs89N67AInd26i2lwd/9DscddyAYDFqlocUCNhsGjwdfW70+7t8z7QPnBLam1O872zBKgFFDIeTWVj08YFRQRVnZZX1Afas8T7TZsG3apB9Pua1t7Aq/Ki29s+Ps0SvC82TZOG61FZASZpGE3NCA7YYbRv0OQ0UFthtuQAkEwOVC2r9fPz/2D35w7JbsEcLC5eZ5NpONzqCWXDmc560uW81LDS/p83k6njcrdxZfm/VZ3C8dIPLUL1N+q2XJEhJ1deRmLafcUkD1pOqJ8bzrlnKs82VuKaimt6dX90fLsGXwbN2zE+Z5PQkf5+u7ALtdS/11uUCScNhtPLXlIf5277+m8LyYEkOMpRfJkxDiMYKG8LjvGXk+LvR3k9GkH9uRPA9ARLwsPM9lcdHka+JU3yl8UR9D0hDRRFTTC9zFOs8zCkamZE/hF2/84oryvAuJ25ermvXtwlWR7T2CJFkwiSatHNSew7qqdbT6Wzndf5r3z3g/Qo1AbV8tmdZMLEYLBtHAlqlbeOLUEwxEBugN93K6/zQ94R4+t+hz1PfXE0lEONR5iBx7DmbRzGB0UG/xPNZzjEgioveKX1NyTcoEpaoqr7a8yu3Tbwc05X1d5Tp6Qj3Myp3Fxskb2XZmG7dNu431k9bzdzv+jrr+OrLt2fSEevBavVRnV3Oq7xTrqtbhj/qxGC1XpAIhHRlwW9zEFa0yamQyZzQRxWFyXHC7wyf1/nA/nYFOwrEwBqeBo91H6Yv0MStvFs+feZ5/v+7feaPjDVr8LfrKkdPk5NZpt/K55z7HvfPvJZKI0BXq4mDHQQBur75dPzZD0pAWLZ4xmWx7Nlm2LEAbxI52HdWJuVk0MxAZoKa3hnAsjE/ykVAS2E12nj39LP+x9B8o23caded5rwGhooLwjRnYs3Ivy/EGzePsY3M/NsrrDeD+I/df0Ivq1ZZXWVy4mEWFizCKRmblzuKp+qc41n1MN9O3Gq0oqsJv3vwNtX21LChYwFdXfDVlAriYiPkLlTibBTMGwcCUrCmc7j/Noc5D9IX7sJvs5DvzqciowB/10+RrwmVxIasyKioBKcDy0uUoqsKt027FbXFrlaLhfkwGE02+Jk70nCAQC+iVQ5m2TO6Zcw+SLJFpzWQoNqSHjsDodJ6xVpWDsSAiIu2BdnrDvVRlVJHvzOe1ttf0gIfdzbu5cfKN3DLtFl5re42B8AD9EW3flhQuId+Vz59r/6x7kK2btA7QJsZk+14SCSWBrMr85shvyHfmo6oqMTmG3WQnoSToD/eTZc/iza43ybRlEoqHWFq8NGUbkS3rkINBBCmGbDZyOtJO2+ARTg+c5lTfKaSExKGOQ9hNdt43/X00+hr1ttODnQfZ4NjAwsKFxOU4VqOVEz0nMIgGnq1/ln9c8rdU7m/QHlqGpZklCa8JuLainMXr/ofnu17V98lqtFLuLSeWiPFy08vkO/N178TOQCcCAmbRPOEHtolUAYAWYnJm4AzRRBSjYGR23mwSSoIidxGTMicRjAXZ07yHNeVrWFS4iHVV69L6KyY9fl5qfIkWvxanXuIuYfPkzczIncGR7iMklAQGwcDq8tVsO7ONPGceqqpS21eL1+pldt5sBqODPFX/lJ5qnefMwygaaRhs4CcHfsJ3136XPGfeZQsoCMaDSAkJFG1lNMeeg6IqVGZU6lXB2bZsfbwOSAGafE10BDuIy3EKnYVXtGXtKq5iohjO85xmJ1vK1vHpijsRYjHiJpFdPW9Q5inj0ZpHafW3YjFaaB9qZ/stj1G8txZ5+/0kH/WGJ1gKLtf46ZXXX69XyZRvWA0G05j7KO3fj/PTnx5ddVVZie3GG3n/9k+xp2XPu5bnOS1O4oo2D4TjqQ/G4XhYG5suUP0xfCxbaCwf+9g2NGBduza9wLJxI8Ff/hL77Rp/xu8n9L//q+3j5z6HIft8gJHb7Ob9VTczdWYJeaIHcWkcubhEF1H17zt7FjUQQB4a0h4+BWHM8AC5sZHIc89pSanDkkvfKt4Kz3MoRiLbt2MsLsaydCkYjZhmzUqbzmpZcQ17mrfyX0d+fkV43plQB7PGEZflpiYSbW1pffhUSTr/mxIJsNkQ3W7iNTUgyyRaWlLPz0W0yV5OnjckDdHj69HsaNLwvDum36HbVqTjeUuy5+Lc+RrySAH4XNCHZfFipH37mL9uHT1qgMKcipT3jeR59ZE2TnS+zJLiJfzx5B/pDHRyqOMQg9FBqnOqKXAV0BpoJaEkLsjzNpfewLqKco3n2e0477lHu66GHfeqigr+vPEB/ti2TX/NLJrBYmE8KCbj28LzCp2F1A/Up/A8RVW0tFerJp69FZ5XllHGwoKFPHfmOfxRP+snrSdLdDLXNQVDPEFYlHm17xBHfXXvGM+LGhTGno1AtZxP5k1aM/kkH16rl+k5Fw4jfLtxVWR7jyBJFva37WfjpI08ePRBZuXNwhf1UddfR4Ovgbtm3cXds+8m256NzWjjcNdhnjj1BJ3BTgyCQV+xO9Z9TIujzp1JQArw4VkfxmlxMhgZ5Knap1K+NxjTqgEGIgOYDCYyrZnMzp3NsZ5juvfQn07+iTXla/jwrA8zJXsKH5n7ESyiVmXwjWu+wfTs6TxZ96Q+sKuqVoGTrAwrdhdrvgDnVuquVAXCSDIQlIIsLlqc0vYFms/W/IL5eK3ecbc3clJPPowWu4uJJqL0hHsQEZEVGZPBRG1fLVMyp7C6bDUmg4lYIkZ3qBu/5Of26beTY89hWfEyHCYHKioeqyeF/CV9j3Y376bJ14SqqmTbs7lv9Q/xqGbNzNZmJSTKfO/Yz9l2ZhsvN70MwNLipcTkGO8r36QJbKOisxuRn9tG9Nab0/p8XCpcFtcoYn2i+8SEvKj6wucNZPMcefzx1B+pyqiioKoAj8XDYHSQ0/2n+c2bv+H26bfTH+nnUOch/uu1/+J7N3xPnwAuNmI+WeJ8sueklpprsGhx1xlV2m/qcVHprcQf9bOvbR+iIBKKh5icNZkVJSv4z33/SVSO8rG5H8NqtGIxWLi24loOdx4mEo/gsXiIK3H8kp/ZebPZ1bQLs8GsC2yLCxdT5C7ivoP3sbNxJ6AFVkzPmc5HZn+EJ2qfIJqIjmp5SPeA0RXson2ondl5s/n+vu+TUBKsr1xPiaeEW6fdSm+4l2A8iNVgJa7EmZo9lQ1VG2gZauHswFkkWROz/lz7Z+KK5hHYG+qlM9jJPOYRjAc1UjICboub1qFWMm2ZuC1uLUo9HkFFpSfUg8fqIcOaoQWOJEavGnq9+QRs2uQdig/i8mRz7OROuoJdmA1mjIIRt9VNXV8dT9c9TZG7iCNdRyj1lFKVWaUnHuc58jAajPz3G/+tb3tj4WrUV54Hxksza8KxU2DByhm0DGntwdU51SwsXIiUkOiP9Ov3FsC0rGncPv127Cb7hMv1L1QFkLwu75p9F22BNg51HCIqRPWKxkxbJj/Y+wPKM8r55IJPsq5yne6rOfyeC0gBjncf55ETj7C7ebf+XSbRRHewm2dPP0umLZPDnYeZmjWVSCLC6+2vU+IpYVLmJM2HrmAeoViIFn8LM3JmcLDjIGaDGa/FqyXnmjVqkaywjCQiE37guRAcJgc59hysRitVchV1fXUsKlxE21AbASlAgauAmr6alFaXrXVbU7zbVpSu4MOzP3w1HOEq3lVIjgFvtL/Br1b/EMfO11Lm5lsqyuheuQGLaKEsowy/5Geqo4ziV2tHe9Y0NiIBlpUrwWDA/sEP6q2CcltbqkBzLr1SPnuWDHUdEYM8dgVRcTFRZExbNmGTEnrVlWq18uvTj7KvfR/w7uZ5CwoW8GbXm3rgUBLz8ueRY88Z96FwJM+bX37PuN+v+nypAsu5468Gg9rxHyGoGKqqEBypC7qTzQWUHj6E3HCYpLxiqKzE+YlPoPT3a55e586p4vMR/sMfAK0iarzwALmhATUaRQ4ELpiYejG4VJ5XbchHrq9Hrq/X9z/4q19hWboUy5IlKccv/Ic/cO0d1/MPkX+7IjxPCvuxXHMNEowW/JYs0SvYLEtTFwgBsFgITC7GEEtgd3ugvUs7R/E49g9+EGnXrtT3X0Sb7OXkeV2hLpoGm/BJvrQ8D87ft+l43vLMOSktzMMhNzTAihVYFiyAeJyszgEUc2ZKe/NInuf25LDYlcEfT/4Rf9Sv87zOYCen+09ztOso07KnaSLiBXjejvY9VC29i0pU7EuWjRLYQBszef4Frr9+Gf/rbwI0oTVolHGO0c4qVFbQmhhgmnfOuOdsvPMFo3leubeczVM3a77F4X5UVJp8TeQ4csiyZfHi2RcnxPOeOPUEU5xl3HXN9zHGFd0K5bGzW1kSXwKq5vPrsri4IWcZrpf2ozQ8AYAduLWyghUrP8JLfa+/IzyvQ/EzrbICdYxW4vpIGw5fGF/UN6ZIPtEqu7cDV0W29xDKveXIssy3z3ybvkgfz59+nmUly/jAzA/oMcPJaix/1M+RziP0h/sBzSsqCavBSqmnlJ+/8XOCsSD72/djFs1My57GvfPv5dETjxJTYsiqjMusqeVeq5eGgQbsRjt/teiv+OWhX/JGxxsACIJAQkmwsGghx7qP6R5GGyZtYGnxUk50n0BRFUyilo6ZTH8BjYCVecq0IIVzXOdy+WlNBMPJwI6zO/jgzA8Sl+Mc6z6GioqAwOy82dw9++7UnvgRGDmpSwmtZSvZXpdpy0RExChqKZ5Jf6PtDdsBbdXCbDDjtrgZiAzw6MlHmZU3i65gF3Pz5nLnzDtZUbJiFDE42nWUHQ076Ap2Ue4p5+mNv0N69rkUPxVDRQX/uvnLPNH5Eq+1vaaXAluNVlbnLkbd8Xza36Q0NGpE8DKKbOlwKYlU0USUYCzIK82v0BvqZWnRUl5oeAHQvBoSSkI3c63prdFbKS81Yj6SiNAZ7NRLqTuDndT01rCidAVlnjIePv4wayvWYjPZtICAc8EgB9oO4La4SUS1ai6jaGRO/hxebXmVcDzMlMwp9Ef6sRltZNuyOd1/musrrudw12Fy7DlUZFRw9+y7+cnrP+H0wGk9klxVVU70nODBYw+yZcoW6vrr0qbzDH/A6An18HrH64iCyIH2A7q/lsfm4Wj3UZp8TYRiWsuMQTBQ4a1ARMRj8SAi8svDv9SDD9wWzRNPQCCSiBCSNE82p8mJx+pJMeOG8wEoGdYMlucs4DN37tKqM4wiT7ft4I9n/kzrUCtLipbQG+lNayLrsri0NL3eOk4PnEZWZNwWN3ajHb/kR0DQxkhFZnrOdCLxCBajBZvxfDtM8tgNhzlx/t/jPZCoDY1UXb+GDZM26CuFDYMNfOuVbyEK2nEKxAKUe8rxWD3U99dz7/x7L8qbbKwqgOGfn5o9lW9e801eaX6FNzvfJJqI6r/zK8u+gqRIeK1e3SR3OJIPiCbRxMGOgxzrPgaAx+ohIAWwGq2Yo2YkWUJVVbqD3bQNtRFTYtT01uC2uNnVtIueUA+CIJDvzGcoNqSfYxVVD4BIoivURUewA1EQmZQ5CafJyam+UxdMLEu3Gtrka2L7me3sbNrJ6b7TzC2Yq4dlDElDtPha2HZmG4uKFnFd+XU8Xfc0x3uO0xPq0bcdSUTY27IXq8HKpxd++mpF21W8q1DuLScDG8LT29MabRcIIpuvvYFj/jpUVaXYmInSuDfttuTubmw33kjkuedGCQMprW0WC5xrkxdlBWs8gbh5c3oPt8038tO63+mV0xsmbWBpvsbz+qP97wme96FZHyKuxDnerfkQq6jMyZvDR+d89KJ53vBKirQwGtPOKcZp0/S/J6El9W1J8UlTIhGkZ7aOqqCSGxqIbNuG8dycZaisxHnvvQDYP/ABzYutrU3zYRsP0SiI4kUlqF4KJsLz1JFtyokExONjzsmWBFeM51U7ygn/7/04PvIR1JGC3/AW0ZGiaUUFqsHA5/f8IzajjQxrBuuKV7PkI+8HSUI1jr5+xm+THS3CXi6e1x/pZ2fTTur76tPyvCFpSL9v0/E8Y/zcvXNuLBnuASi3tYEkIb3xBtZ16xCdrrTG9Umed6r3FLtbdpNrzwVVW1g2G8xMMU9BURRUVI51H2NK1hTiSvyCPC8UD3H9k7fwD4u/xl97PONW9uaL61J4Xk+wh8E1C/Cqqt7xYFm6FENFBYLBwDyLBSEGjF/wlvZ8jcXzXBYXy0uWE5NjHOk6wmBkkA2TNpBtzyYYDVLoLrwgz7MZbdxVfhO5u4+hNp5vWf9ARTnXrPg3nmzfQTgepiPQwb3FH8a1c/+oxRq1oZFcVWX2cs0+6ErzvPuP3M8Tmx4k79y+6Kgop23FNH5w6KfcNfsufnfsdzT7m1O2P7LK7p3AVZHtPYbavlp2Ne8ix56D0+xkXv48IokIP3/j59T111HkKkIURLZM3cKq8lU0HWkCtGoss8FMTI6xrmodT9Y+yfGe42TZssixa+aJJ3pOEFfiLCpaxDP1z7CgYAFlnjIsRgv3v3k/VqMVSZaYmTOTv1r0V6io+KN+PT1quMAG50lUMB7EarRS5tFWXmVFxm6y621uRa4iZEXGY/VclFHj5Ua+M5+nap9iw6QN3DH9DsKJMHajXfPE6q1lddnqMT87clL3R/3YTDZm583mSNcRZuXOwmK0kO/Mxxf1saBwAa1DrfpKakJJ4DA78Fq9HO85To49B7fFTYY1gzxnHh1DHWTaMlO+s6a3hm1nthFNRHGanbxwyxNIzz6Xvi1g67Nct341fVP7eKruKer767mt+jYs41elo0rS+G+4DLiURCqjaKQv3IeqqqiqmiIiJ8Us0MxcZVXGJ/noDnbT4GvQV6rNBjNnB84SV85XTqUjggEpwL7WfSlJhqAJo4IgMCVzCjNzZxJJRNh2ZhuCIGAUjbrX2OSsydT31+srfzn2HPa37ddaaPpP6QJApi2TxUWLWVy0mJl5M2nxa15vvZFeTvWd0j/bG+5FEARdaPvInI+Mmc4D5x8wXm54mW1ntmEUjUzJmoLb4ibXkYuqqrzU+BLdwW7iynmD1Te73qTJ38Q/rfwnLCYLmyZvAqAn1MPRrqP6cXOZXXhsmhBb5i2jwFVAJBHRE29BM9gtdBbyzwu+TNYrb6ZM+J+sKGPT2p9x947Pcn3l9bT6W9OS4CZfE6+3v05cjvN4zeM8Xa+leImCyLTsadw27Taa/c0EYgEKXYUUu7QK0mZfMxajRQsFsFtwW7VYd1EQEQSBmPH8w+CF2jTEWIKlZedXqg2CgarMKtwWN1UZVaiqyumB0/SEeugMdlLkLuKBow9c1GpauiqAkZiUNYkmfxMPHnkQFZVrSq/hlaZXqO2r1Y3RB+YOUOwt1lcQhz8gOkxaUqGsyiSUBP6oH7fFTTAWpNXfqpEffzO94V56Qj16Ne2QNKTvQ0yOISUk7EY7siLr45jA+eM5GBmkL9zH32z/G0C7DhYXLeary7+qXW9yfFRiWZIg+qOaZ19ynpiTN4fuUDeRRIQ8ex7FFcW82fUmu5p2oaKSac2kxFPC3674Wxp9jfRH+smyZeltdcMRSURoGGy4Go5wFe9KGCLSmA+BSkMjhqXVfPWFr7Jl6hbe510x5nbsN900qq0ThlW5LV1Koq0NwWbDcc89RHfuPC9o2O3Y77gDcd06jQdYLIQNcorABu9dnrdx0kbunH5nCs+r6a1hZdnKMT+bjuc1SJ2UjJMMKre1pX1dDQQwVFYiOJ1alaHHzbHQWaZYRYY/iqqBQNoWRdDOY7JySm5o0FstE21tOO+5h+DDD+NIinljwWq9Ir5GE+F5wkjB4AIVXQ6n1uZ6JXjeHd6VEI+jhsN6pWBaDBdNKyqwrFxJUA5zoP0AoPG8iBzB6vBgs9iYYxy9iC3t36/ZVsCodNGRImwSI3keaDx5es50pmVPQ1EVXm58me5gNzEllpbnKSjMzJnJpIxJtAXaUngegNvq1u/bdDwvYRLTWm4kj4Vp5kzktjYEQE0k0hrXN/maeK31NdqH2vFLfp6vf55tZ7chCiIm0cSCggXcPO1mDnYcZFLmJIrdxWRaMy/I84yikVA8xDf2fou/Kr9z7PMHIEkpPK/Z18yDZ/7ENQsWMmvNYrJt2US3bRv1+2ybN2PIzEy3xTHP13go95ZT7C7mN4d/g4pKoauQx2senzDP21xyPbm7j6fpVGqiCJW5c6s5GTjDy00v829zvozSuC/tfqht7cx2r+ON217AnFCRTUb29r/Jw6cfJ5KIvL08z1XMB7Z/gs/M/CjXLt2EVRFxurMwKOAJDvAvc77EgKjxuaRFzHCk86u+krgqsr2HEJACDMWGuK7iOswGM8XOYk4PnmZ3826a/c36w40v6uON9jcodBWyoGABr7W/RkyJkWHNYDA6SFVGFfcfvR+AVn8rC4sWcrLnJD3hHur66lhftZ7JWZPZMnULj518jK5wl24onlASHOk+wpHuI5R5yrit+jYOdx0eta/DSZTT5CQYC/K+6e9DFEWOdB3BbXFrq7DuYrZM3UJ9fz0FroKUctkrjTJvGctLl7OzYSedwU59BajAWcDayrXjksKRk3ZMidE52MmiokX0RfqIyTGqMqqIyTH6wn38/cq/5yev/wSjaMQkmpBkienZ01lQuID/eeN/yHflU99fz+qy1RS4CgjGg6MeCJt8TfSGe/X24GzROWYimNzYiEddx/1H7ueWqbfwQsMLNA42ImaPTdABBMvlSW8aDxP1KBj+nnAsTIGzgK5gF16rVxfVACq8FXQMaSRJFEQMggGTaOIbO7/B8e7j9Ia1svfq7GrunXcvdf11OpFIRwSbfE0p7WZJdAQ72Fq3lb9a+FdYjBacZifV2dU0+DRCLCUkgrEgOfYclpcsZ0buDJwWJ/mOfAqdhbpQmMRAZIADbQe4c/qdrCpbpfuX5Kjn7VrjSpx8R74ePmAUjWRYMiYk4PgkH1ajlY2TNrK3dS9vdr7JyrKVZNuzaRxsRBCEFLEyoSSIJqK81v4aUlyrzByIDFDsLmZhwUIePPogBtHA8pLlFDoLgdRSeJtRS8SLKTFK3aV8f9W3yXrlSNrqjGJB5F+XfZPjA6fxWD2j7qckcZiWNY1/fuWfU1ZPZUWmrq+O3S27ybPn8Uz9M2TZs/jD8T8wPWc6n1v8OY51HaMv0seCggXIqsxds+8iFAuhqApnoh3kJb06LkDqVUuqO0RyBc5p1sa4nQ079bZ4AEmW3rbVNLNoxmgwkmPP4bnTz+mreMmquqTJdNLT8GD7QWRFJs+Rh81ow2Qw6XNGTI6BoF2z+c588px5TM+ejl/yMxAZoD3QTlyOMy9/nkZijRZ8QR8xq9biXp1TrVfFheNhTAYTiqLgsrg4O6AlxdmMNqKJKLubdyMlJO6dey/bzmyj1FMKAtp/QSdeLouLPxz/A3X9msl7kauICm8F11ddz+TMyTxZ+6SeziwlJBYULOBQ5yFa/a1My5nGwY6DlHhKWFG6giNdR1ICEkAbo6+GI1zFuw0BKQDR8Re3zAlV53nh6gRjMaYLebFZVq7ENHMmiZYW4seOpb43HCb8wAMYKioI3LCC+2rvH7WNqzwvxr8f+hG/3Ph9eP7FtMmtke3bUz6jv75zJ5bFi4m+8gqWBQtQUXmm5UVud3hSeN4FBbBhC0NJ0U3as4fItm3YN24kUV8/flCF0YhguJCl/1vHRHieoBhT0kXHreiqqCBh0ObrK8Hzbr1m9YX3KSma3nEHGI1aqIEg8GTjeb/j4TxvafFSlEgEeXiiKkA8Tvjxx7GuX49l3TqUaATVasbsybxgGqxP8mEUjVRnVzMzdyYvNryI0+wk257N6YHTgCa+JbnecJ4XjUcJxUNEE1HKPGU6zwsnwlRnV7OsaJl+36bjeS3xfhZtWD+2B+D27ViWLkUJhXSuNfz6TvK8XEcuzb5mXmp+SU8/lRUZAYGuUBcPHX+ITGsmb3Roz7m1fbUpPG9x0WKqXZW0fewEFtUAsRiSSeDa/OV8edc3UK3jl5yNTK0NxoMIgsDe3kNUZ0wh+vzzYxQzbMV2662XtfX6rfC8SdYi1HMWM6PQ2MySaz9ER7yfxYWLUzo6UpAUTbfvIHfYGHJzRTmLV36bT7385bed5zX6GvmPQz/mq6F/YP/7X8T94i6UxiaS9ZzeygruW/2ffOW1fx7lpw6j/aqvJK6KbO8RJFXf/a37ee6MNmCvq1rH3Ly5PHTsIRRV0b0lJFnieM9xKrwVlGeUc6jzEDElhiRLzM2fq61AxCPYTDZicoyGgQay7FlUZlQiK7K26qEo/Oe+/2TDpA10BDqQFRmbKXVwb/Y3a+kmIybOkb3lZd4yPFYP/qifm6fezIaqDYTiWkqd3WRnTu4cVpSsGFUue6XhsrhYVrIMRVX0cvFkkt7ykuXj7tvISdssalWDT9U+xYKCBaypWINJNNEf7mfbmW18ZftXeP/M9/OhWR/CKBhRVAWr0cqLDS8yI3cGkUQEURA1g+9zGE7wmnxNxJU4Je4Scuw5eG1erex/PEgSX5rzWYKiFu5QP1BPvxDBnRQYRkCoqEC2X6AVYgJIJtt0BDowGU0Uugop95Trx3OiHgXD39Pga2BV2SqOdx9HkiX8kp88Rx52k51lJct4pu4ZzatLNDI1ayodgQ4aBhuwGC16atKpvlP8+s1fc8/ce7TAkDFW1zuCHaOI1/C/DcWHyLRl4ov6uG36bTxe8zgNvgb6I/1MypiEy+Litum3EYqFKHGX4LV6yXZkU99fP6o1ZTA6SCQeSTkmLvP5684oGvHavHqyD0C2PZuJIMOSweYpm3nkxCOc6NGSiCdlTgIVMmwZdAe7sRqteptPvjOfrkAXIiK7W3dT31/PkDREXI4zK28Wn1v0OY51H2NN+ZqU4zZWKbzJH0RqHLsVc9aKmznqq0NAGHU/JSsI+iP9vNn1JsXuYrxWr+73k+vI5fX217lj+h1UeCto9jXjMDtoD7Tz6IlH+czCz9Dib+FQxyGmZk/FKBp5uellOgIdPFv/LHvv3E6JIIxLoIWKCprjfZRIXlwWF93BbvpD/ZzqPYXVaMUgGPREqiSSbcNvx2papi2T2XmzcZgc7GnZg81oQxAEbEYbOY4cnfzW9NZwoP0Ax7qPcWbgDADFrmKur9CqBjsC2rUtIDA5azKiILKjYQfFnmIaWhroDfVS7C7WvS5m5s6kJ9xDli2LhJJgV/MuPjzrwzxmeIz+SD+heIhYKMac/DksK17Gf+77T8wGM9FEVG8x2N++n0/M/wRHuo/wxKknWFi4kJgSY0HBAgYiA3gsnhTiBeCX/HSFuvjD8T9w77x76Qppiz8CAoWuQhoGG/BFfboZ8EBkgM5AJ63+VuYVzKOmtyb13FxEKMVVXMWVQJLn3Z63lvFilmJGgWgiyvGe4xz2n2LNGJ41xMZPZhNEkeADD2C/+eZxq6VyxHVXeR7peV5ntJNVT27h12t/TPW6GxBjcVRZRm5sJPi732HfuBHh2mu1c2EyoQYCqJEI1uXLUSMRjPn5hB9/HNuHPgiMFvIE8zkONlYLnmmELfg50S0ZaCE9/rhWpaiqo0RAy5IlRF98EduNN17q4dShRCLab4tGtX02mxFsNl0UmijPs2/ZQviZZ5DPnh27ouvcvg8M9V0xntelDpFTVTVulZnt+us1Ye0cVFTq5W5+cPinKdtL8jwA0WbTfvPTT6fcg0JxEU2Z8KUdHyOSiPDPq/6Za/OvveB5yLBksKRoCQORAX7+xs9p9jezZcoWUDWu2BXoQlVVzAazbvmQ5Hl7WvdQ31dPf6QfRVWYkz+Hzy76LCe6T7BxykamZk/Vv2csnmf0R4g+MzpNF7RqS8uSJSCKyM2aWDRc0EryPKfJiYLC2YGzOtcbjAyS68ilM9BJXIlz54w7KQwUMhgdTOF5HYEOlnlmkhUzIr20C2nYOXpfZSXL3/8i3bKfrHHEWyUaRYhEEG025ECAhcZyzXvRakU0mgilqU6Fc9dDOHxZW6/fCs+73buC8Z7g4pEgP9j3A9ZVrUMyQjr5djyf4kJB4JlNv0cOBRlQQ5TbCvjWa9+97DwPtGrVf1rydxS9emp0ZV5DI8Wqyj3TP8D/nBi9GDTSr/pK4qrI9h7A8PLPPGceuY5cekI9tPha8Fq8TMnSfJ1EQYv09Vq9+KN+/JKfadnT+MLiLyAjYzVaSSgJnBYnlRmVHOk6oveyn+o7hd1oJ5wIc6d0J8+cfgabSat2MAgGeiI95DvzR+1bJBGZUG/5yMnVIBpwWVzcPPXmd6xtIB3KveVk2bLG/T3pMHKVzmP1gF+rPGoPtHOs+xiNg418fvHnqemtocBVQCgeYmfDTnY07CCuxPnAzA8gqzL1A/X6dqfnnPfZShK85PVQnVXNyrKVPHlKU/p/s+x74/84s5n3GWbhK/DyowM/IhwP81zrS3x07W04XhJSSLpQUYHvuoUEoz1Md48t4lwozSWZbLO3Za++wlDoLGTz1M0sL1mulzhPxKNg+Hua/c20DbUxJ28OCSVBk6+Jj879KHta9vDHE3/EYrCQZctiQcEC7p13L/+x7z8ATaTKtmfTF+7TCVgsERtF9IYjnRE/aKKE1WjFH/FT5CrCJJpQVIXbpt+mmfoLms/LtKxpBKQAgXgAp8lJX7iPUCw0qrIGoMRdgvHc6mzy9zb5mlhctJjGwUadPCZRmVE5yottpM9Bjj2HvlAfbpub7kA3x7uP60KaUTTSE+qh2F2MlJAIx8MYBG1VO8OagYBA61ArZwbOYBJNWtugSTNgPdx1mBsn38iCwgUAHO8+Pm6CYyLmZ7z6DFNCZUrWFLpCXaPGhOSDR1DS/tsR6GBq1lRMoolpWdNYULSAcDzM3Ly5XFN6DU/XPU1cjhNNRKnpq6Ej2EGzv5moHOX+I/cTk2OsLF2JJEvE5Tj/7+h/8+nF9zDPOxXLrJlI27anEt6KckLXL2N/1x4wW4ipMX5y4CdYjVY6Ah20DrXisXgo85TR7G9GURVK3CUp7ZWXezWtzFumJWomJK0VS5UxCAYsRovWwmv1kGPP4c91f8ZisKQYFdf316OqKn+z7G843n2cQCxAgbOA/nA/ZtFMa6CVtqE2bp16K3az1vJV4i7BbrTzauurvNH5BoqiEE1E8Vg8NPma+Naab9EeaGcwOqh7vXzgsQ+QULVKkUgikmI0HogFcJlddAW7UFEZiAxolgMJiaghmkK8QFu5VVSFMwNniCQiWAwWfVteq5euYBcGwYAoiMiqjJSQdI9Lt8Wdsi2b0UZlRuW7au65ir9sDOd59ZFW5o+x+EVFOS/37Nd4nuTn/to/sPT6H2B7xYQpL++8CGOzIVyg6gWTSXsovECbPFHpKs9jbJ7XF+7j87u+zqy8WQxGBvn9mp9CcTH2/HwQBBKnTqUETTg//WmC992XuvFz1TXDhTwlEkE1mTBMnoxlwYK0LXjGqVO185j0BBtejS1JWotjLJY2fEH3Eoun5zhJyIEAhMOagGa1gt2eUq2j+P2jRCJDRQWWVasgI0M3t58IzxM9Huy33YYaCqGGw6iSpAkzafY9dscNbzvPA43rnRpqJHP9tYjbdhJ+/HEtjOFcq67o8YDdjmA0IhqNqNEoEYPCVv9e/m3b90el2A7nefrnb95IeLAbNSqRMInsGzjKA3v/gUgiMiGeV+bR7q8sRxaHOg9R6i6lydekt0oO53l+yY+iKhgEw2ieZzDhtXp1o/0jXUe4cfKNzM+fj0MxEu/tIREJoZhNREzqqPOXiKUuNKY9nmYz0v79o/zlkjwvrsR1H9+OQAczcmawumw1n535Maod5ZjiCqLVxqFJNXx6xxcJxoI6z6t2VeLtHEI6eXJ0tVlDA/kCyOtvwLZxI5ERFWnJ1N94bS2iw4EciYz2paysTPWzHIHL3Xr9VnhexKCOK7JJBs3Sw2a00asGyUwT7jCeT7HS0Ih9aCnhPzxKNvCxijJWve8pVj++WT+Xb4XnJZQE31ryda7NW4o5oZLjKUDa8+u0+6I2NrH8mpv5nxGvp7t3riSuimzvAQz3gfBYPawsXcne1r0YDUZUVEwGE73hXu2BL9ihK9xmg5mEkmBO/hwePPYgZwfPYjaYmZ07G6NoZEHhAg62H0wxqJ2fP5+ecA+oIIoiJoMJo2jELJpHGR2CphBPtLf8QpPruwUT+T3pPjOcYFqMFvKceUTiEZaVLNMNSKW4xJnBM+xv249JNGEymPQHRafZicfi4QhHAE3kyHForYLDV9+S10NCTXC6/7TentYjD+EeZ3VGHRrC4HLj2LmPL839DI+c/jMZ1gw+9+rX+cLCTzFt1ULEeALFZKQ+0s6rjX/muorrxvzNR7qOjJvmEpACPHbysRSBDc6X36uqSpYtK6Wi7ULHPfmeMm8Z9x+5n5q+GgyCgTxHHibRxK3TbuWGyhuQFZlcRy6z8maxv3W/3u8PYDVayXfmIyUkZFVLek1nyplEoasQs2hmMDqoT3A2ow2nxcmZgTOc6jvFnpY9OEwOij3F3F59OwXOAkq9pWm3uathF++rfh97W/fS6m/FIBo0byuTnWtKr8Em2lLEy0xrJl9Z9hXuO3TfqGP9uUWfYyA8QCIcIlO1Ikgx4qKMP9zDru799IR6GJKGWFGyQq92NYpG4kocURDpCnaRbc9GFEQybBlUZlRq14towG6yk2HN4FTfKQQEJFnCYrCQtNwajA4iCqJmvi9HOdlzktfaXiOhJNImOI4swR8JuyODno4etkzZMuq4JR88vDYvFoNFb8O8Z849nOw9ye+P/Z5gLMihnEMMSUOsq1pHriOXFxteRFVVgrGg5jtmdevl9p3BTgBm587maNdRvtT3dW6Zegv72vbxzcVfZuZ1K0hEIihmA0cDp/nxK3/DjZNvJCJH+NkbP6NhsAGjaGRV2Sp2N++mI9BBX7iPUk+p/nrShwUu/2pacsx5uellHObzRNVmtDE1eyoWoyZC+SN+cp25KUbFdrOdLHsWBzsO0hHo0IyN4xFiiRjTcqbR29XLLdNu4YFjD3C6/zRxJc7K0pUklAQbqjawsmQlRe4i+iP9OM1O7EY7df11HOk6QtuQtsp7z9x7CCe0hwuzwYyIiML5yk23xU1FRgUBKZByf/qj/rTeGsnrCrSHKLPBrD+8JNunBUHAZDBhNmjz1aTMSXitXr2iMHl8VpSu4I4Zd7wr55+r+MvEcJ63r+8wFdfeTAakCm0VZTQsreRvHtuIoirk2HOQVZmdfa9z5/r1RJ59NuWByLp587itgmqy6mYCaYZXed7EeV5ChPj+/WNzMVke9VqPEhhVZaWGQhCPY129mujOnWlb1KI7d+otoqM84CwWzZxdEMZ8UIbxhQF5YGCMAAzNf0qJREYJbMl9kwDTzJmYqqtTKtoudNxFmw1sNm3bjz+e2kqZfE9lBTGrkZ9u/Oll4XnF7mI+P/uTLPbOwBhXSJgM7Bs4wgO1j2A2mKnpr+Gnb/yUe6o/wPIVm7DKIk6XA+vIFs5z/3+4YRc98hAzc2dOmOdZTVbuq714nheTYxhFI5UZlYRiIdxmNwiaDYTJYBrF80o8JXpRxng8z26ys7n0eq73LsA6BLLchdzYSOycYGytrCB8/XIGbAP6dXshnie63QR/9zsMpaWj/OWSPM9mtOkdHAbBwPyC+Xx55icp2HMStfGQ/v5lFRU8vfkhbt/2MWRFJhgLMsVWjAFSKtiGQz7bgFMGxdePdeNGBFlGjUTAYkENBAj+9rfYb74ZVRCIjrjuQRPqJFXV77mRuNDvv1i8FZ63f/AoG8aochYqK9jWvovPLPwMT9U9xS8O/oJdt21lUjLcYaIwGM6L/I3NVAH/vPTrfG3PPwCXzvMcJge3l6zH+uKrqDue1b7qjjvG3RWrLKb8O/k8+k75scFVke09gZHl4yWeEtaIa4gmovijforcRdT21RKKawl/SUFjcuZkqrOq+frOr/N6x+v652t7a7l3/r1sP7udKdlT6Ap2YTfamVswlzun38l9B+8jEAsQV+KEY2EcJgc+yYfdZNfSlM6JQherEF8KqXkvYSTBNItmjnUf41DHIcq95ZhFMzW9Nfz9yr/nO3u+w8GOg8TkGHaTnZm5M9lQtYETvScocZcQjAVZUrwEp9k5avUteT10Bbs4PXCaPEcexe5i7n3pi2y98fejjI4NFRXYNmzQ2kJuvBGloZHb1nwIySiAoHlEPHr2aXKduaN+01jtVC2+Fl44+wJz8+ZyQ+UNhONhVFXFbrJzsP0gBc4CekO9NAw2pO2R7wh2MCQNXbLx+EiymyzzTx6r4UR1ZBULaA/pyfjpfEe+fmzTrQ66LW4mZ0/mePdxFFVBURW8Vi9D0hDl3nJC8RAOk4NQPERtXy0Pn3iY76797phkLsuRxStNr2AQDczNn0tciZNly6LEU0J9bz0Ws4Vv7PxGCtGaljWNLy75IgPhAa1q0OKl0FXIrpZdbM5fjWvnq8TOnXMDMKuygrLr3sdf7/kGg9FBovEoGyZvQFZl8px5elhET6iH+QXzmZo1lSdrn6TZ34xBMGA1WllTvoaZuTP5wb4f6K3iMSWGxWAhLsfpDnazp2UPb3S8Qau/lQJXAdeWX8uB9gNpExwFhyPFb2U4DJWVRCxG7p59d9rjlqwgsJvsrChZwd7WvSwqWsSRriO82fWmvhDQE+rRAkUEgcWFi1lQuIDj3VrAi6zK+upoEmbRTCgeQlZl2obaaB1q5WjXUe7c+hGmZU3jg7M+yKMnH9W9XKKJKF2BLv3cJJQEB9oPMCtvFmvK1tAZ6mRe/jxO9p7UH7jg7VtNK/eWs2nSJhoHGukIdmAWzXisnhSjf49VqyKwGC1MzZ5KXV8dFRkVHOw8iICAL+ojz5lHd0ircuyNaALbYzWPcbL3JCKiZjpsMLG/bT+CIDApYxK/P/Z7WodacZgd5Nhy+OLSL3Ks+5guXubac1lWvIzX2l7TDYiNgrYwtLhosWY2LgVQUbWK0HMJsR6bB4cptVnOarTitXrJc+bhi/owi2ZyHDl0BbuYmj1VbyNxmB2UecqYkjmFSZmTdLPkZIVjXI5T4CwYVWV5FVfxTmM4z4vJMR5qeorli+Yz9dziV8wo8FjTs/zjY5/XuR4CVGVUsaXg2lFCCEB0+3bsH/qQ1to2osooyQkAlHMm/GP6dtntE/4dV3memV/VP8JnN38ovTh1440Ef/e7lNdMmzbwfPNTo6qs1GhUE0INhvG99c4lHVqWLNEqbNDmVEwmjMXFqBdqGx5DGJD9fhS/H+t11yGYTFolm8WCajBobZEmE0jSBYMZRprbTxR6K+W59tEkkgEA0z0ekrPqW+V5M2xlVJ08htLwlP75TRXlLFnzH/z9G/+PNn8boiDy+7o/cV/8t6ioVGZUal6raRrtrhTPq7juNu6rf5i9LXup6alhw+QN9EX69MVoRVVG8bwzA2e0hWKzc0yel2HN4IG1/035a2dQnv4tyVq84cnEakMjth3QtqKKTFvmhXleVRWqwYDzYx9DcDhG+csleV40ESXPmUd1djVZ9ixW5i4+J7A1pbxfbWykHPjq/M/zn4d/RpYtC0MsARcozFUGBgj/6U/aPlVWavfNH/6QkhArxOMXvOdG/b6LHCsnikvlea/1vsmcaz5MwUjhrKKMlmVT8HW+whO1T1DXV4eiKqx6/EZ+ve7nzF26HpdqBouFhCiMLxQJQmplX2MzNy1dzzfFf3lLPO8T0+/GtmMvyvD9vsBikMeTy7dWfYtBaRCvxcv03OnvqMAGV0W29wTSCR0JNYEv6sMn+bhj+h3U9tbq1Wweq4fVZavZMGkDBzoOcKD9AAbRQKGrEKfZiaIq7GjYwbLiZSwuWkxPqIdcRy6DkUHuO3QfPeEeBARumXoL8wvnUx2vZm7+XPwxP4qi4JN87wqFGC7crnilMZJgZtozGYoN6SvUCRK0DrXy880/53SfVoWWYc1gavZU+oP9zM6dzXVl12EyahVu6VaCk9dDTI4RioWwmTSjyTODZ2gf6qBgyRKE66/XWgWSqzMPPKC1hZwbpIRYnP5Iv27CH1NGk7CxvCuafE3c98Z9hOIhukJd7GraRTAWxGP14LF6uGXqLZzsOYndbE+73SSiiehbMh6f6Kr59NzpVGZUppCZJIaLH0k/nOF+IU6Tk1JvKWvL19Lqa6W2vxaDYKAz0EmOI4fbpt/Gb4/8FkEQKPeUo6D5vJzqOZX2OgxIAV5qeok8Zx4H2g5wsOOg/rdZubP49nXf5scHfkzDYAMCgp7q2Ohr5BcHf8E3r/kmpd5SAlKA+4/cz4KMmbh2Hkgbu+1W4f3Tb+F/TtyviZCq5neQZcuidaiVHHsODrODA+0HmJkzk39e/c/0hnvpDffqyZE9oR5EQdTj0M2i5q2lojIYHcRqtKKoCoPRQfySH1EQmZ03m5remlEJjhcizE7P6JStJJKi6rYz2/irxVrQxBfmfIpSUw5iLIFqNrG3/02+8PLXAKjrq2Nh4ULsJjs5jhwGIgPaPRbuT9mu0+xEkiX6wn0EpABxOU5fuA9ZlfFH/awuX828/Hn6IoXX5h0lGieUBDW9NQgI2Ew2St2lKf5fb/dYmefM4+PzP57W62Z23my6Q936a16rl7n5c8myZbG/bT8zc2eiKAqBWIBsWzaDkUE6A51k2DI40XtCD0ZQVIWEnMBqtHKo4xBz8uYgq1p6oKqqtAXaODtwlmnZ0+gMdlLiLmH7me38w6p/4Nu7v82hzkP6sVpavJSvLPsK9x+5X0vMchbq39Mb7tXHj6lZU6ntq8Vp1sY7i8HCi2dfZEXpCuxmO3+9+K/ZfnY7PcEeXGYXTrOT+fnzuWPGHTxx6gn6wn0YRINu7Hz7jNv1qsqruIp3G0byvJgc45Xu/fyi9366Q93cMf0Ofnbs1xgEA7l2rWJhVdkq1letx5ogfehRPE744YdxfupTkEhoKaFmM+rQkMYJ4nGt2q2gAENWFuo112gVSOcqVfSKpcvoMXQpeK/xvL5oH4+2b+eOm7YgRCVUSUKwWMBqBYMB5wc/qFWPWSyETSoNSj8fmPmBUdxFsFpRJ9DOK1gsWDduRB0cBJMJQ3Extk2bCP7mNxAOY1m5cmyz/hEte0kofj+R557DsmAB0VdfHd0KuvJc2uYEghneSgtdSvvouXbVdALNW+F5W0pvYOrehlGtcmpjE1nAV675HJ968QuE4iFsRhtTsqagqApNvqa0XqtXkuc5gWvmL2RX8y4iwQio2nzdFewix55D61AroiDqPO/vV/49ncFOwvEwkURkTJ73iel3U/7amVHC1vBkYmnPHtSGRkrXLJ0wzxMnwPO21m+lwFnApxd8mlnuKSxwTUHaNlabYCNrlq7nQcej2jnNssCIStFRGCbWyA0N2u9Zvhxp1y7tRZtNGysvAm/3WHmpPO9zu/+O+677L0rW3YAgxREsFuKqjC3cxbqiVXx7z7f1pNJwPMwvjv+GN7veJCbH+NjcjzHNVcE9FeWQprrNUFGB3NREoq0tpbLPlIBFhYveEs/78eJvobzwZMr3yW1tGKqrscyZg+Byac+4Vivq0BCRY0c5ETxLeWY5a7xrLu/Bfwv4Pymy/fznP+f73/8+nZ2dzJgxgx/96EesXDl2LPe7HelSeZIPu76Ij6AU5F+v+1e6g90EY0FiiRj72/bzp5N/0spJDRaqMqtoHWqlydekb6M33Mu8gnmsKVtDKB5iWvY0ClwF7G/dT5G7iBfOvsAPX/shTpOTKdlTcJqcfHz+x3Gb3FTnVr/jAtvIdkWjaGR12WqWlyzHYXboK1TvZMXCeELQrNxZqW8eXUiWFsnrIbkSFYidN1p9sXMPd5xxol4gTl4+t7rXG+5lbeVamn3NKe8dy7si6RsjiiKNvkZeb3+d/ogmXMQTcTZVbSLHkcPJnpOUZYzvwWI1Wt+y8fhEVs3znHl8YckXxmxtzXPmpfjhgFbK3BPqIRQPsVRZSn+knylZU5hXMI/ecC92k50jnUd4+PjD5DnzeKnxJVr9rWTZs4jJMXojvWn3JdkSlO/MZ035GgbDg8wvnK9Hj58dPMuQNIRBMOAwO2gcbNTPb11/HbNzZ7NpyiZCUoiByABTCotRxgoTaGxM8SiIJCIEogG9vTFZDZFQEgzFtKq8493HCcQDxOQYNqONWbmzKHIXUdNbQ7Y9WxN+zU5dXAlIAWRFIzSKqtDqb+WO6XdgM9qQZIkCZ4GWlncOEyXM6VDuLeeuWXfR5m/jdzf8AvW5F1Aazlfo3lxRzqz3PcPKxzYSjAdRFIUsexb3ztPSjYKxIOur1lPiLqF1qBWX2UV5Rjn1/fX4JT8V3gq6Q92a552iBcg0DjYyL3+efr2sKllFi78l7f4l057m5M+hKrMKRVUochUxI3fG2z5WjjXOABzqPJQyd1iMFgyiAa/VSzAWpGGwgY5AB3mOPELxEKIgEoqF9FSvuBInw5qBrMpYjBaGYkN6lXOBs4DuUDcJJUEkESHTlkmJu0RvlT09eJrvXf892gJt+KN+bCYbdpOdR048wpA0RKGzkLWVa/XwBY/Vw/Sc6Vp0vaeY3x39HfX99fSGeznVe4rqnGpWlq7kv177LxYULOD6yuuJJWI0+5q5Y/odnOo7xd/t+Ds9Ra3IVcS1FdfSH+nnN4d/w5apW7CZbO/4vHAVbx1/CTwPQBAE7pn6AbYUXMfdN91A3CRSF25lZ8ervNL0Co+ceITr500be8PxOGo4jGC3g6JoY64oYr/lFkSPh8i2bUS3njcqN1RW4vzkJ0FVwWZ7xwW29zLPM461T8OOqRtwU5D2bYLDgdLSguj1jvv9qiQR/u1vMVRU4Pz4x0m0taEMDGgLq3DerF8U0wsfI+bfZAuosagIaWTbq92OZckSTQAcGrpwe5zR+JZb6JLto+PhUngewEB4gHzRM2Y1ntrYRPaKOTrPA80nrCKjglJ36aiwI7jCPK+hkZmrFur/jiQiFDoLqe+vT+F6CSVBXX8dec48itxFtAfaiSaiY/K8DYWrUF9+Nu13ym1tWK+/Xvd/dJjcWIzn0ynfKs+7Z849tPnbKBEzUJ9/AcOC0X7gw+FQTTrPK7HksEmZOm4qrTwiuEBuaMC6ejXSrl0YKioQMzI0AWcciB4Pzk9/CjWmCVcjfQrfDlwsz7Marfxi9ffJfflNIiMqakuXLCFyuI49tz/H2iduIRwP47V6U3heTInxy5MPsHb9/1ImiKOF9mTlbDyeUtmX4cnjq8u/ekGeN8c7jTsKricS9BExKLzQuYev7/kWkzIn4VBGBLoA0qlTOD/4wbQVwo7Nm8FXhyuYIB5oRbTZJnzNvZ34Pyey/fGPf+RLX/oSP//5z1mxYgX33XcfGzdupKamhtLS0nd69y4J6QxlPVYPVZlVFLgKeKnpJZp9zZwdPIsoiFiNVuJKHLvZTqY9k+qcaj15bTj8UT99ob4U76hwPMys/FnsOLuDSCJCdXY1AgL94X766OO1ttf45jXffMcfULqD3aOI15KiJexs2Mmu5l0UugqREhJlnjI+Mucj72j7wuVun0heD/ta97G8ZDn7WvcRiAUwikZe7NjN0hVfolQgZVVu+IAoVFZQHzkntqkykUSEzy3+HL2h3gv6qOjpP2annvYIYDfa+dqKr/HYqcc4eOAgha5Criu/DlmVUVRFjwtPotBZiNvivmJmyHPz5/Ldtd89vxo+opR4uB9Oq7+Vgx0HafI1IckSTpOTM4Nn8Fg8OM1ODnUeosBZQG1fLdFElDtmaD4BfslPiaeEjkAHdX11dAe7sZvsKW0JkUQEg2CgP9JPs6+ZjZM28uCxBznRcwJRELlzxp0c6TrCosJFnOo9RTQRZWHhQnLsOcSVOAbRwN6WvUzN0lKeDLHxV7iN8fMeWCoqayrW8ErjK8zKm0Wlt1ITW2xeVpWsotXfyouNL6Z8/nDnYe6efTcvNrxINB7FZDARTUTpD/eztmottb21uq+CSTSxrmodLzW+xK5mbUUwuZJqM9uYmz8XmBhhHgsui4uprnLCjz2WdtW5Evjh6u/y72/8gEmZkyj1lPLoyUeJJqI4TA7KveV8fvHnefHsi3QFu4jJMeJynHJvOcuKl/FM/TNYjVaiiShmwczkzMlk2jO5ffrtVGVU4bQ4066YGwQDuY5c2oba+OWhX7K3dS8ACwoW8E+r/4n+UD9D8aG39YFwrHEmXaKby+Iiw5pBb6iXwcggMTlGR6CDyVmTaRtqw2F2IMkSoiCSacukwluBL+ojw5rBYGQQq8FKpj2ThJLAZXYxLXsaFoOFSZmTUFRFb5XtC/exv30/fslPtj2bLVO30Bvq5d5599IebEeKa0LmQGQAj83DsqJldAQ62H52O6qq6qKoJEvYjXYGogM8VfsUfZE+2gJtDEY0P8oidxE/eO0HTM2aSnugHbvJjlk0My1rGg6jA4vBgqIqtA+1c7L3pD6GXq1se2/iL4XnmQ1mvrf0n/C+dBD1hT+gopH22ZWVzF/3CT5QvIETgTNahdQ4UGUZ0eHAkK2FGCXa20FRiGzfntZzKLJtG/bbb3/HH1D+knkeaHOlqaoKJRKZkGggNzYSefZZbFu2EPzf/z3/pngc6c03sd18M0jSBYUPNRTSkyBTfKfsdpz33ENk2zZ9XywrV47baqwEgxhKSt7ikZgYLobnJf/9StMrfLn8Q+NuV5WiKSnufslPQklwuOswn1n4mVHtp1ee552v3FJRWVu5lp0NO3Uri0pvJQ6zg9l5s1EVlW/t/lZK8FY6nmeVhTTfBJhM2G+7TfMIHCG6yOd8+uAy87wlo1szh8Pq8PDoGxrPe7j+Ca677kc4srLGTKVNtlSnQFWxf/CDCF4PcaOAyWAf956Lnzyp3xvJKja5r++iRcWLxcXwvNX5S8nbdXxUBWSyGtFcXEzl/ga+ufjL/L+DP6IyoxJ/1E+GNYOByAB2ox1FVbjrxc+wa8uT2JcsSR+cAnq1raGqCqMnk8nGyWPyvOXFy7FGEkjPbEVpaMACWID3V1aw6e69/OD4fQQECe+I3+i45Za0tghyYyORrVuZs24dofvuO9/aPIHqybcb/+dEth/+8Ifce++9fOITnwDgRz/6Edu3b+cXv/gF3/3ud9/hvbt0JBXsFl8L4cT/Z++8w+Mq7+z/udP7jEa9ayRLsi333o1tmo0NMSVAQkmWbHrbZDebsJtNNsmSsr9sCSkEkrCEJJCEagwYbGOMccXdsmzJlka9l9H0duf+/rjMRaPqSotPnjwPnqJb5t73nvf7nu85QUVpc7z7OMX2YnY37yYuxUEC4rJZu1pQc6b/DJUZlUq7zlCUpZUhSqIi8/VFfMTiMYKxIBathY2TNxKX4kTiETQqDW3eNvxhv/L5C5Xwj+aHcL6TzprumpRJbkV6BbubdyMIAqd6TuEecCNKIvvb9nOq9xQ/WP0DZubMPK9tvJ+RTMealDaJDFMGrV7ZLyISj/DV3d/mu4u+xdyr16D2yWql5ICoKizAu3ohOxvkh4zT6GRDxQayLdnn9Nsl2zuTCTBJ3DXzLp6ofoKeQA/77niNGbZJqCIxBIOBLtHL7xueptXbSl1fHVmmLDZUbmBJ4ZJ3tVg73jEmj2swPMiBtgM0DzYTESMICMQTcfxRP40DjczKmYVOpSOWiOEwOGjxtih+XSCruVwOF22+No51HeN07+mUh14ikSDfls+BtgMsK1qmEK/kd7UqLT2BHg53HMaV5qIsrYw3m99kW8M2QPbCyzBlkDsnF7WgRtRpGGkd+g6SisU8Sx5I8grs0qKl6LV6yhxlSkuwVW/lePfxEd8Px8O8Wv8q5enlzM6ZTUJKEIqHONh+kEPthzCoDagEFTa9jakZU9ndshuT1oRKUFFgKyDbnE2rt5WHDj6ktEBcLJITgFHfczeyctF1/JfGSDQR5WDHQSXVEt5Z5f3ErE8QjAeJiTFq+2rZWr+V7e7tGLVGElKCNEMat1XdxutNr6Nr1TEYGVSMhb+88Mt8ZeFXlHYPQCmwVaRXsKl2k7I/RzuP8m87/o2vL/46hzsPA/I9dz4FnottlUo3prOqZBXt/nbiYpxcSy5atZYd7h2E4iGlVUCURM70nWFR/iImp09m4+SNNA824414Od51HIvOwuyc2dgNdtr97bT72tGpdVRlVjE1ayr1A/WUp5fLYTwqrULiDRoDapU6ZZxJPm+Odx1HQiLbkk0wGmRrw1ZOdJ8gzZiGChUHIwd5/vTzrCheQb5NTtZaWLCQ3kAvvtg7RrpGrZGD7QcpshcRiUfQqXWsLV/LnpY9bHNvozy9nE5/J2snreWWKbdQ21fLptpN4xphX8H7F38rPC9LZcO5bf+ohTBe2UphQQHZrTESxZpxCx2i243KagWjEV/Eh0YNGpUKTVERhjVr5A9Go6BWE6+vJ7Jnj+KjdYXnvbdQ2e2g02Fcv57QSy+lKtFGKRqIbrfcnhl8J9FSXVaGae1a+Ro4B7WN0t45rE3VdOONcoGtqwvTHXcg2GwgCGirqkgMyoousbVVTo4sKEC/YgXqtLR3tVh7LjwPZAXb642v0+HvIDrBTDiuVaXwPJD5mk1vQxAEHj366HvK8ySdDqPGSJohTeF5K4pXKP7ZC/MXKj6kz556dkSy/Wg8z2Aa6XEHb7eJ7h9lTHq70MGG65FMxot+rg7leWJr65gFL1Wpi62duxWeF46H2d6zn8WZc8hYtxZVXIRoFEGnI1ZTM2YqKFotwf/7P+VvcsNa+Z4bRTU12j0X2rwZzZAkzvMt8FwOnlepySPkHkONmPSV27WLW5feyMPVv+dY5zGseuuoPG8w4oUnnht7BzSad47ZYmeaxT4mz+sfaCe8vWbU9merBNfOXsmZUCsLXK6UrixhAm/K4WVhsb6e4AsvYLrllvdswehDVWSLRqMcOnSIb37zmymvX3vttezZs2fU70QiESJDZKFer/ey7uO5YKybzaq3Ytab2d64ndM9pzndd1qOXxYEbp56M3+plg26003pzM+bL98g3nb+fdW/c7D9IHV9dco2pmVO4+YpN+OL+vDH/DR6GtnTsoed7p1yX71KxU/3/pTmwWYMGgNGrZFlRcu4qvgqgrHghMmSSfgiPho9jZztP4sn7CHdmI5Ja+Kt9reIiPJ5P99JJ4An4kGr0jIjawYmnYkMUwYtgy3U9tbijXiVhD9REvFGvBxoPQASlDpLPzSTKqveyoKCBUzJnKKQ2TZvG9vd2/nOvgfQqrTcO/kOljhnosl3EL9jHSGdClErstq1+oKSv5LtnTa9DZvexvKi5eRb85mcPpk8ax7/NPXTxF7aQsS9U/mOw+XiH9b+HQ+c+AX/vPSfybXkpmz3UpDx80Vym4FYAJPOhD/ix663o1VpqUivoHmwmSJbERadhWxLNj3BHoKxIGqVWomhLnYU44/65ZRYlZzCW+4sZ1rWNOr66uTWyyGtvCC33r3ufp1CeyEmrUkhXiCrFvpD/ZQ4SmgebGZd+TreaHqDPGsec3LnoFapybXk0hfqY1vDNqqyqqgLtTJ9nPSgM6FWStNKWVm8ErPWTI4lB1/Uh1alRa/Rp/wOw9MvBQSseitn+89ypPMIWaYsLDqL7NsW6CGeiBNIBEgzpKFz6ihJK+FY1zFUgoqK9AoGQgNKsbK6u1ppgbhY9dBE/i7GhIaPTP4IuZZcDrQdQEDAprcxEB7AF/VxsOMgWpUWlaBiZvZM5ubMZYd7B56wh3giTq41l7WT1tLkacIb8TItcxoalQZvxEvDQAM/2/8zfrjmhykr5olEgt8d/R2bajcpZFwtqAnHw+xv2483+s5zpT/Uf84FnnMdZ8dCbW8tjx9/nIb+BlQqFVa9lTJHGYsKFrHGtQZfxKe0PwdjQQpsBZSklbC/dT+3Tb2NXx/6NdXd1WjVWiJiBKveysemf4x9rfu4ecrN6NV6fBEfdb11FNuLERAUP5DB8CB2o51lRcsocZSMeqyHOg7RMNBAbW8toXiIRQWL2Nu6l9k5s5mVPQuzzsx9s++jN9RLKB4inogTE2No1VqW5izFrDMjJkS8YS8CAjq1DkEQmJ83nz0te2jwNKBCpUwqWrwt/PbIb7l31r2c7j19wcErV/De4cPC82BsrpfkeXfmXY84ytgOQ0zld+0i/PpOzNdfT+jll8ecEGoqKhSel4aJa3OWgkZDeNu21O+UlmK69VakSOQDwfMsOgv3Tr6D5RlzsQcNRLu70Fht77kK71IiqQpSWvACAaRIZKSaJIloFMsXvnDBqhqlvVOjAa1WDlYoKJC931atQjAaSXg8CGp1iqoN3m43/sxnQBAQjEZlu4lQ6ILaBy8GY/gxMlQAAQAASURBVPE8g8ZAXJQFBD9f9f/IsuaOWaQWXCXs7T9GpjFT4XkAFc4KZuXM4mjn0REto+86zwu3sbRoKeXOctSCmhxLDoORQTmcwVGaEvRzrjzvgOckS0fZpnpIIWk4RLcbYyTOQ3WPXrRSfCjPU9qdSVWmCaUuBq6ax2M7v57C8wbCA/z57HMKz5uRPYOFmsnEW1tHLbCpS0tBr0d/1VVEdu8m0eAm9uLLsPEmjBs3QjCohH6MVagbHoZwPgWey8XzqgpvHf+LbxfRtXGJNl+b3M48hOe92fwmGydvxKAxcMJfz/JhRa8k1KWlqDIyxjzW4TzvzhXXkXAfGXWXJLebmStu5f6j/0nl6m/g2PFOV9ZE3H+098X6+gsOXrkU+FAV2Xp7exFFkezs1OpvdnY2nZ2do37nhz/8If/+7//+buzeOWGsm+2rC7+Kw+DgpbqX8IQ8FNgLMGqMVPdUY9aZafO2cd+c+zjTf4ZwLEy7r512fzvFjmK8ES9zc+eyxrVGvoF0VtIN6fiiPkRJRKfSsbt5Ny/WvUiaUW4h2ly3mfqBt1fM4rIEeX/rfiRJYnHhYh7c/yDd/m7MWjPxRByNSkO3v5sH9z/IA2seINuSzanuU7g9bn524GdUd1fLk/JogIUFC/nqwq9yovsEETEy5qRzvOJLmj6Nq0qukiWo4X5lYh8TYxQ5ZOPx3mAv8UQcCYmpWVNxGB3sbt3NuvKLn+i/nzBUPryjYYdiuh5PxHmo+lHFkwvgOyu+w6qCVRe8raRvjFal5WPTP8aRziN0+bvoC/fxcddHiL20ZdQVLl5+lc9cfRfPtLzCooJFBGNBDrUdIhgPsrNpp9J2qlPrKHWUXlaT8qTx7WB4kDxrHtsbthMWw3jCHtp97ejVev5+7t/zh2N/4MzAGcrTy4mIEblNTmPArDPjj/oZCA0wN28u0zKnoVPrSDOkYdAY+PmBnzPJOUmWXkcGcRgcyrb1Gj0GrYE8S947CXFvH3eaIY232t5iQ+UGXm98HYvOwszsmext3cve1r1KK0GhrZBbp96Ky+HiWNcxXKtXY4EUMqQuKyVx3Ro0/rN8evan5Tjvtn1sqt1Eq7cVURJJM6SxvmI9fzf776jMqBzRBmnWvuMVUuooRa/R0xPsocBWgElrYn/bfroD3XgjXqWlcHnxciRJNvCVkFLSPHtDvZdEPTSRv4vZIkfUb6rdpLQzBqIBkOBg+0GOdh6lN9hLriWXQDTAlKwpfLTqo1xVchUGjQFvxIs34uVPJ/5Evi2fHY07mJ8/H6PGiD/mp93XzuGOw2SbszHqjGRaMqntqeVA24GU1W4JCVGS2zi84dRJfX+of8ICz/BWqSSGFvrGW+k823eW7+/8Pvva9ilFJqvOSre/m95QL6WOUpYWLmVq1lSiYhSNSkNfsI+32t+idGopuxp38Z2V36FpUC42GtQGQvEQp3pP0ept5XDnYXRqHRqVho2TNzIndw5n+88C8nU+OXPyiKTfoWjyNNHh61CIF8hm71qVlmlZ0zg7cJZ5ufNo87Wxu2U3bo8bFSoSJKh0VlKWVsa8nHmIiJztP4tOraPL34XL4SLPlsfrTa8rCkaNSoNNbyMSj9DqbSUal6/LiwleuYL3Bh8Gngejc73J6ZP53PzPsbt5N56QB010AgPvtydJ0olqEkuXoikokCd6o7T0SHodu5t38mLdi9xcegPx5mZiJ0+OqpKLAIZ1a3nwzfc3z2scaOQXy3/EpP2NSG45FTLE+6NN6HIgWWwTRZHA26qb0SAYDEpr8IVASYjs6sL8d38nhy+Ew0iA2NGBkJaGJi9PDs5YuRLh2mtJeL0En39ebjd++WW5IBiPI3Z3gyDIxbih7YWX+Tcaj+clpARWnZX9d2zH/toBpJ1/RH/LLUQkKbWI4yqhdekUHtn5j6wsWcldM+4iIkZw6B1ISLx89mWuKrnqPed5ov8s15ddTygWYnfLbp6tfZZmTzOCIFwwzzNqjfSvnINz2DYnRHjse/18kMLzYjGCTz+NftEiZXyTnA4ODJ7iR7u+QSgempDn5ZWlU7hixegtpAsWEH7lFfRLlmAuL0fy+0EUEcIxSCSQYjEEsxkpHldCYUbFMOXnuRR4LifPu7foRnRjfhMlAMJuy+BXN/yKwchgCs9r97Wzu2U3Nr2N3S27eenGv+DYISDWn/t9PBrPG2pjMxoiQS+PHXuM508/z0NX/y/rr7kPXVxC0Iz0aRuKseYGFxO8crH4UBXZkhCEVNGgJEkjXkviW9/6Fl/72teUf3u9XgrfJf+A4RjrZmv3tXO8+zg7G3eytUH2TIqKUQqsBWyo3MCbzW/SMNCAK83FgTbZCHxa1jQSUgJJkiiyF9HoaVRUaTa9jagkTzKcRidatRZvxEu7v50iRxGheIh2f7vio5WQEmhUGnxRHwOhAVq9rfQEe2gabEpR6lh1VlQqFae7T9PqbWV/634ePfqo0qpq1BjJseRQ11fHL976BV9f/HW6Al00ehpHTDpHSwAauhJaaC8k7A4rk6/JGZPp9HdSYCuQ0wBbDygFNpDbAJ+sfpKbJt/0gW4TCvsHUYWjqOJxpGgUwWBEZbUqqwfnmrB0oUj6xhztPMqjRx5lf9t+xITI7ubd/MvkzxBybxr1e6LbTZbqavpD/RxoO8AfT/wRs9ZMd6Cbva175evZVoBFZ8E94CYshvnKwq9c8t8oaXwbiAZYUriEdl87iwoW4TA4UAtqHj32KDU9Nbx05iUqMioweU3o1DrK0sro9HdS11fHnNw5uD1urDorFekV/Orgr0gzpjE9azrbG7ZTZC8i05RJfX89wXgQo8aYErVt1BjJNGdi09tIN6ajElQICMqK/56WPczLm8fs3Nm83vg64XiYNEMaUTGKIAh0+DvY3bKbJYVLuHnKzdT11FFw9XzSpZWoonHURgMhnYq/1m+iw9/B5IzJ7G/dz+uNr9MV6CIcD5OQEgRjQZ4+9TQRMcIX53+RSemTUoyDJSSFeN0y9Rb6Q/2Ikkirt5VsczZfnv9lAmJAkaYPhgfZcnYLJq2J3mDviHNv0pjOqbg0EcaPiC8lbNBypOOI0kqo1+gZDA+yuGgx+1v3K8X3Tn8nfeE+Xj7zMn888UdWl6ymK9CFTW9j3aR12PQ2arpr0Kq1tPnaiMQj+CI+Ms2Z7GzcybGuY1RmVOIwOBgIDbChYgMv1L2gFNqSSV0ANoON7mB3yr5OVOAZ3io1FA0DDaOmmiXhi/h4ven1FOIF4Iv6qOurQ6fWMck5CU/Ew7HOYymJqZPSJmHWmdFpdTx86GGeOf0MFekVSoKq0+hkQ+UGvln2TXxRHza9jUUFi5icMXnCpN/hxz8YHiSWiDE9azrFjmLMWjP/uOQfaRlsodXbykcqP8Kfa/5MT6CH5UXLKbAVkJAS2HV2DFoDzd5mxIRIljmLe2bcw9Onnub6SdejVctkTCWoMGvNmLVmMk2ZtPnalPMAoyd3X8EHAx9Ungejcz2DxsCc3Dn86M0f8Wbzm6hVaj5esI5xSyVDU/KkBPH2tlFVJuqyMgaEiMLzFjiqUMVNY7feNDRAPP6+53kbiq59u8DWmLr/74M2oYuB6PPJxusKzzMgDOF5mMb3i8JkuqjtJxMipVCI0KuvvrMdrRbTxz8OkiS3rg5XsN17L/7HHpOLC14voVdeQVNURLylZYRK7HL+RhPxvKdPPc2NJdfJBba3r52UIo4AosOOAEyKx9m25jH8KpE/NjzLb2r+wIL8BVR3V5Ntzr7sPG9Z0TI+OeVjSMEgmrVy+6MUiSAYDET1ap6of5Y2X9sInhcRIxfF85oHm9kmxrjm6uVkCKtRRWNojGZUCWmUMz4EBvkcXCzXG8HzYrEhrZilBK5fyWO1T+KPyjxqIp7382OPcF/5R6lYsQKWLYNwOHUhAmDxYtlrrqVF9p0bfo2XlWG65ZaxW041I0sqExV4LifP2913hKvHsxFobUVVWsr2rn18evOnR+V5/7riX/FFfWSaMukSAuTdcut5KVJH43l60/jzOp3Jyu1Vt2PX2TnuqaU91kexvZi12cvGHfekMVJlLzZ45WLwoSqyZWRkoFarR6xmdnd3j1j1TEKv16PX60d9793GWDfbqpJVPHTwITTCOz+XRqXh7MBZXqh9QVEGOQwOdGodBo2BSDxCoa2QteVryTXn8oUFXxiVzNxUeROd/k5lQhoVo/ijfmx6G5Ikyb5UgoAkSejUOsXwfmgaThK+qA/3gJuoFOXXh35NVWZVihecWqWmO9CNWlDzav2rXDfpOp6peYbPz/889QP1yqRztAQgSG2z6vB1sLt1Nx3+DgD8UT8OvYNOfyevuV9jQf4CtjduB8DlcNHqbZUjq2MhTvee5kzfGebkzbmYn+tdR7i/B7XXT+SNXSMH/rdXEs4lYelikW5M52D7Qdp97eRZ84iLcRYVLILw+Gk8QiRKKBZSisLrK9bzfO3zeCOyyqfVK7c2Auxu3s26Sesu6W/ki/g42HYQtaBmVs4sfvTmj9jV/M6EZF7ePP5x8T/y55N/prq7mmvLruXV+ld59tSzLMhfwMenfxyLzkKBrQCVoKLN10YsHmN9xXpZCt1Xy+SMyczKnSVf++2HyFZn44/4U8iX3WBHp5Hb2irSKzjVe0p5T6PSoFapCUQDCAjU9tUqarCkrN+qs+IecNMT7GF/236MGiO/avgV7f52jBoj5c5y/DE/SwuXohbURONRwvEwDQMNcnKQ+p196Q320uRpYlfLLrIt2SnGwW3+Njp9neg1eoV4gRyW0e5vZ0bODK4ruU75W13+LlxpLtq8bSPOfXKF1B/zX7R6aKKIeIvdzg9W/0Bpw5IkiVcbXuVQ+yEC0YBCRmZkz+D52ueZlDYJgLgUZ3/bflSCiqWFSylPL6fIXoRJayKWiCFJEmnGNJoGm1iQv4BQPERtby2zcmYhSRL1A/XMy5vH3ta98u/19oR/Xt48bLqR/iYTFXg8Ec8Fv9/kaaLL3zXCewXkcdoX9ZFuTCdoDSrHkfSrW1O6hlA8xKqSVXz8mY8DKAsuEhJ9oT7+7+j/8e0V31b+bdQYz9v426K1IEoiiwsWU9dXx/O1zxNPxMmz5hGIBrim7Br6Qn24B9zcPeNudrfs5ljnMfRqPesr1vOXk3+h2FFM62ArNoONmdkzFQXqXTPvYmb2TAwag5Im2+ZrU3wkrToroiS+a8ErV3Dp8EHneTA611tVsorfH/89wVhQTndWGdnetYfbXSUwrIgEI1PyBLUa04YbxxwXa/y1Cs/TxBIgjm+mLoXD73ue9+0NX0Ta+dyo+y/W1yP6fR+4IpvY309icJDIrrF5ntpqHdMvyrh+/aVJOdTpCG3alPL39YsWkejtHVMBGXrlFUw33kjwySdJDA4iut0YrrqKyM6dw/+6/J36eiSf75K3cjV6GjFrzUxKm6QUrZML7kmet9BYjvTKU+98KVnE0Wox3Xor6kCIyBtvKMepBj5ZWsratY/xtT3/xtKipZed53X6OpmkzSH+wkvo58wZ4YWmKnVxw+oV/F/w6cvC81p9rXSIAxQXVCp/S/T5xi10dCfeGS8uhutdDp537XO3UHPHm/Cbx0dsT798uXLP6ZcvH913rr6eSCIh+9INW8wYLbUUJi7wXE6e93jtX7jquv9B86owqpdj5MgRxOuu4r9evAsYned9bt7n6A50o8pUoVfrzzvQYjSep49J3OsqGbE4ArJ69Omml3mt4TXWV6xnS/0WjFojZq2Zvxr/yuPrf05484sjx70bbsD/+MjfVV1WhmA2n/P+Xmp8qIpsOp2OuXPnsnXrVjZu3Ki8vnXrVm666ab3cM/ODb6Ij0/O+iQSEt6wF4dBliQHo0Gqu6uZnTNb+axKUGHSmjg7cJbryq6jK9BFriWXf1z8j2RbsklICYxaI5IkUZlZiVVvHTX616q34ov4MGjkgcCoMaJRadCoNORYchAEATEhR/omEgkSJLDr7SOIl3IMUR++iI+z/WcptssTGAkJo8ZIKBYiLsXJMmXhi/oIRoMc7z7OL9/6JZ+Z9xll0jk8AWgokqsjXcEuGgYa5LhpSSIhJShLL6PR00hNbw1Li5YCcoFtUcEidjTswKq34gl7eKvtLaZmTMVpcr7v20aTrRR2SU9mm5fIaORm2IrgRAlLF4vTvacxqA0sL16OSWsiFA3JShjD+JMYSa8j05TJQFhOBJQkSSmwgWy+GogG0Bl1hOIhhVhfDHwRH2f6zuD2uAnEAogJkVxLLv+x6z+o6a6h0FaIWWcmISUIRAM8duwxbpt6G9satlHbW4tG0PDN5d+k3ddOIBagO9jNa+7XsOvtTM6YzJ+r/0xJWgk5lhyuKbuG/S372Vy3mRNdJzjVe4qytDI2VG4gEA0o5CXXmsvywuW82vAq982+j98e+S2nek+hUWnIMGXgcri4qfImWgdlxZg/6pdVUQLKSqhGreFM3xliiRh7mvfQ7pejsUPxEE3eJvqCfYRjYVYUr1DawlWCCglZ7aFGrexPRIzgCXmUVcekcXB1VzVP9T9FKB7CYXAQiUcIxoKyykmtw6pNJfLJAu9DBx+itq9WeX3oCilcGvXQRBHxQ82PN9du5nTvaQDlmLUqLXNz5mLWmcm15MorzjobJo2JGytvpNHTiC/iY1/bPswaM1q1lulZ0+XzIEaUFpBQPMRgeJAsSxalaaXkWHLeKbIhsDB/IV9f/HVO9pxELajJNGUqZD8qRvFFfGOqvYZ7p5zP+/6YX1FzjYaYGMOsMyvPhP5QP2JCxKK3YNKYKHIU8crZV9CqtcQSMXlya3AoCdValVY5jmR4xvmi2FHMzOyZvNrwKoc7DuONyL5qGpWGRk8jOxt3MjVjKlMzp7KlfgtujzzuXeO6hjeb3ySeiOM0OskyZ6FWqWkabMJld/HrDb8mEA3QG+qVfQE9zfQEe5QC25SMKTgMDlaWrPxAqpn/1vFB53kAWrWWT8z6xKg8L5nQC/A/Rx9i8XW/pQhSCm3DzbfVZWVoLbIP2VjjoilsUnheXKsGYQL6rze873nemAmIb8Pv7WNQG3zf8zzFrywUApWKRH//iAn7cJ6ndjpT/aIMBlnhdikKbIAUDKJfuBDmzlUUP+rCQhjWUpmyjw0NCMkgDeXgxm8Nu1StXGH/IJLfjxgOka81sSxrPl967R95q/0tcq252PV2RElUeN7qhT9mNE2WftEiEj7fmIXEHOAT0+7g/t3fu+w87x+mfh7Vlu1o8gtGLfokGtxYgJULF3HUc+pd4XnjFXi1667nidrHlNculutdDp4XDflHbaEc6jU3ke+cftkyGPL+WKml6tJS+oQQxveI5/mjfg76a1mdPIehEIJOhyQICCoVpptu4o3O/agFtfL54Twvlohh0BguKc/70cH/4eqNz5KHBO6mdz7sKuHMwhLuf/oLLClYovA8o1ZWiQZjQb64+1/44fX/gi1xLVIkAno9HiFCZ6CdLGca0uA7/ojKwsR7uNDyoSqyAXzta1/j7rvvZt68eSxevJiHH36Y5uZmPvvZz77XuzYhTDoTP9zzQ/a37ldeW1iwkM/N/RwalQZJkrDqrArx0ag0WHQWBJXAhooNuNJcdPu7aR5sRpRERamWvLnHUhoUO4o51nWMIlsRxfZiDnUcQqfS0eCRV1ptehuFtkIElUCRvYgiWxGljlLl/aEodZQSiUdQC2rMOrl6rEKFVqVNaUlSCSosOoucjOlrRUy8oyqYaPXDH/OTePvBPbSCX9tXy7zcebKvV1opd067k1ZvKzvcO8iz5XG86zgGjYGeYA9d/i7+cPwPl6Ul8UIwmgFyKB5SVno/6/ooaquVyFjkZljv/7mmhZ4v9rbs5cH9D7KlfgvBmJxeNS9vHhsnb6Q11kfWOCtcHXEPe1r3sKRwCWsnrSXbnI3T6JTTkyRRMZ5PQqO+uOGp0dPIH47/gTca36DB0yCb2lty+erCr3K65zSlzlLcA25l8g7Q5mvjY9M/xqycWawrX8e2hm08ceIJgrEgA+EBcsw5XOW6ir+e/Ct1fXXcO+tefrL7J0zLnsau5l2YNCYaBhpw6B0U24sZDA/yRuMbXD/pejoDnco9WewoJtuSTYunhf9Y8x80e5rxRX3y6qdKxwu1L1DqlIs2rd5WPGEPvcFe1Co15c5ynAbZF68/1E+zt1kx4wUIx8JE4hHa/e0IgkC6IR21oFYmbjExhiAIygNUr9Zj0BhG3HfFjmIyTBkICDxd83TK/T49azpLCpeMOOezcmZx/7L7mZE1g95QLyaNKWWFdLQH9YUGX5zrilqeNU+e/MVDqAU1WpWWa8uuZU/rHrY2bKXYUUyXv4v5+fP56qKv8kLdC5ztP8t9c+6jK9BFl78LT8TDmf4zXO26mnm589jfth+tSosoiQxGBrEb7BQ7ilmcv5iF+QsZCA+QZkhjUvokhSgkfWEGwgNUZlTSFega1wz8Ylq/LVoLUkJSVFzDUWgrJNeSO676rNBeSHl6OWf6ztDua6cyXV7NDkQDpJvSldCdoc+Y84FVb6Uqq4pnTj+jFNs1Kg3Ts6ZTlVlFPBEnw5TB5PTJvNb4Wsq+dwe6afW2cqDtAGadmd5gLzmWHJBAI2i4acpNFKcV87P9P0OjlheMIvEIrjQXX17wZWbmzHxfjPtXcGH4IPO8He4d/OCNH7CjcYfy2lCel+xKiCXkpPfbX7mPr876LDevuhNbQoeQkIscyZal4ROJscbFoTyvNd5Pls82tiKltJSQRnrf8zxBP75KxK+K8YfjT79veF4iFJILadGo3AZqNIJWS+iFF1L9ylyuUdvShvM89TmmhZ4vxP5+uR102D5pq6pI9I9eGFUQicghAp2dcgLpBEoeQTeua9Q5IdzfQ+zFlxWDdDWQW+rif5f9gM++/k+c6DlBo6dRUeq0+dqQVoy+XXVBAcC4hcSqhde9KzzvqqwFJF55DvXCkcqpJKQGNxVXLaIl0v2u8bxkgVcKBkmEQmDQ0Z3w8UTtY8oC5HCu937hed+d/uXRfcqG+qnFx1f5otVg+sxnIBIGvQFBryf8yisp96pQ6mJw9QIeq3kci87ynvG8bHP2uOcww5RBeXo5bo97BM+z6CwYNUZKHCWXlOcBHOs/RfaqpZhWrECtNxJTwyOnfs+/PP0FArFACs9rbm2m2F5Mi7eFHEsOvcFevjj/i1xVepXsbbrvZ3T4Orh36h0sWXYTBlGFxZqOwe58z5XMH7oi2+23305fXx/f+9736OjoYNq0abz00ksUF7/3bSHJQSYYCyIg0OZroy/UR5oxjfL0cv53//9yqP1Qynf2t+5n7aS1VDgriCViuNJcKRJ+laAix5zDDbNvwGl0npcnThJWvZWlRUvJNGXy//b8P4rtxayvXM/mus20DLYgSRL+qJ+Nkzdyz6x70Ak6bpl6y4gBOalYselt8kpMPML8vPkc7TyqDPxJzMqZRU+wh8aBRix6i7IfMPHqh0VrochRRJohTVFFgUzEeoO9hONykSGZpmrRWTjedZzZubOJxCMsyF9AujkdnUrH/rb9WHQWrDorGaYMegI972rKZZe/i+ruan7x1i+o769XVo/WuNYQFaOoVfIKgzoahwnG/ctt7tjsaeaBXQ8wEB5AQFCKY/X99exw70AtqfnU9beh3rJ9xAqXcP3VPFH7e6w6KzmWHB46+BDXll6LWlDj9rgxa81kW7LRquRVmTxLHnmWvAveV1/Ex1Mnn2J3824GwgPEE3F0Kh09wR5qemsoTy+n0dPIYGQQAUFR5XjCHk52n2R50XIeOfQI/eF++oJ9SEhIkkSHv4N9rftYVrSMF8+8yMrildw7614yTZkc6zpGjiUHp9FJWAwzEB5getZ0bHobLqeLZUXLUu5Jq96KSW9iW+02+kP95JhzePXsq6xyrSLTnIndYCfTlIlRaySeiBONR+kN9ZJlykItqKnuqSbfmk8kHkGj0yAgYNbKqqtWr7wKbtAY0KlkSpFpyqTeU6+ohUxaE7mWXPJt+QgII+47q97KmpI1fGPbN1Luc6vOiiAI/PKtXyrm10NR5ChiXcU6pUCcJHXDi/4wsSfPpUB5ejlLi5ayu3k38UScOblzeLP5TfQaPTa9jWAsSJoxjZbBFrxZXkRJxB/zs7NxJ4W2Qta41uCP+jFpTKxyreLpU09T01ujEIZsSzYd/g5mZM8g35afUrTyRXwEcgL0BfvYUr8FrVpLvjWfqBglEh/fIPhcWr/HSicsdhSjVWtZ41rDdvf2FAI2JWMK6yvXT3h+p2ZO5drSaxEQ8IQ9BGNBKtMrsegsTMmcwmrX6jFTQ88Veo2ebLO8ICBIAteUXcPhjsOc7DmJmBDRqrUU24px6B2EYiE0ag3p5nTafG2E4iFZsS0ZsegsRMUoJ3tP0hPqwRfxXXZF7xW8d/gg87z/3P2fvNX+FhqVRikeJXleWVoZLd4WZufMpnlQnpAHY0EeeOu/iGs1rK9YT4E+E5XViqai4rxSGofyvB/s+0/+c/G/UTGaEXhpKcYbbuCM2P2+53k1wUZmj9V2VOqiPtyO0+B8z3me6PNBNErC50tpQdQvX068tXXUsKgIjNqWdrl5njg4OEKllNyn0KuvYhiuVBsOgwHjunWQSBB6+WUMV189vn/cRRbZwv7BlAJbElKDm3xJ4u7K2/hs6+6U9zxhD9W+htETOycqsAAOwciSgiWXnedp44lz2idtLPGu87xkgVfmcE+NakWUPAfvJ573Sscu7iwrTTHvB1L91EbxVhsKldE0IlhEs34tqquWE/QPENHAMd8Ztp54CIPGQFSMXhTPS6Y3t/vbiYkx8ix5lKeXXxKeV+wopiqrCkmSONJ5BG/ES2V6JTq1jjxLHjdPvplZubMuGc/TqXQ8ce0jFO2pRXrxTyRNhlSlLq5eshKWCFyft4IMlZWBqiCbWrfxvX0/RqvS8sOl32V9wWqMogqHIZtEKDSC59UzwNTcqZjeJzzvQ1dkA/j85z/P5z//+fd6N1KQHGR8ER/FjmIePPAg1V3V2A12BkIDrCpZxU2Tb+JYxzE6g50pK3fVXdVUZFQoLUzF9mIkJOKJOK40F+sr1lPkKAK4YJPJEkcJZ/vOkpAStPpaqdBW8A+L/oF4Iq74eCwpWMKsnFn4Ij6kJomNUzbK0uJ4UFGsSEhMz57OlMwpvN74Op+a/SkePvywIuM1qA1MzpjM7VW3893Xv4vdYGd27mwQ4NWzr5JnyyPTnEmGKWNU8/ShqyPrK+RC4FAC5gl72FAhy7aTyYfeiJd5efP47LzP8sSJJ5iSMYX6/npZeaQ1MT1rOpUZlRxoPYBFb0FAQKvWXvaUy6OdRznQeoDfH/+9EvFt0BgosBUQiAV45ewrrCldg0VnQdRpQBr/dr3c5o4nuk5wovsEmaZMLDr5QR2OhxEEgZreGlaUrGD9ix/nFyt/TNnVqyESBb2OGn8D39v+eZYXL8eut3O04yjV3dWkGdJYV76Ol868hNvjpjvQTWV6JXmWPDZUbrio897kaaJhoIFQPKT4UwyEBwjHw8TEmJycFOpHq9IST8QREBAEgYQkt0SXO8t58MCD5Fnz0Kg1dAe6lRa5E10nmJU9i3xrPtmWbPa07OE192vKuUk3pbOufB0N/Q1kW7JxGBzY9fYR9+ZwTxoJiQxTBhqVhs11m6nurubWqbdS3V1NMBZkbt5c/B4/k5yTmJoxla0NW5mSMQVREtGqtMzKmYWYEBElkTxrnhLJ/ciRR7h+0vWYdWaeOfUMbo+bWCKGRWfh+knXs6xwGR2BjlGl4J3+TiRJUpRFGpVczPNFfHgj3jFNWUscJWO2p491/EkMLTwlf8uLmRBZ9VbumnEXBrWBhoEGCuwFHO06itPoJMeSQ4evAwkJnUlHVIxi0VnkiV1ogKNdR6nrq0MlqAjGgiwuXEwwFlQKbDq1Dikh0TzYTKGtkExzprLdpJJyd/NuqrKq+MPxP2DRWahwVmDWmWlMNFKRXqEc42hj93iFooli32+eejN/OvEn5uXNY2nRUqJiFKfBycycmczInjHhebTqrdw35z7MOjOnek4RjocxaAxMyZzCndPuvCR+ZhatBbtenmRUpldyoP0ArYOtZJmz8IQ9nO49zfTM6ZQ5y+gL9hFLxMgyZeGNeNFr9KgkFSaNCW/EiyfsoTvQTX+on0ePPqoQ+CtFtQ8nPsg872D7QWVMSXK9453HqcyoRJREgrHguDzvQj2skjwvKkb55v7/4L6pd3H92msxxCWkaBT0eoKaBGqnk/yI/Ly7FDwv05zJP8/7KuszlhJpbkJjMjPJLKssugJdI/bzXHneC02vYl/8EVzD2o4EVwnNiyvYdPYvvNb4WgrPe6vtLVmFi0AkESHPmsfHp3+cyozKEftxKSD29xN/u8A0vAVxwra0RYtGvH7ZTbxDofEDMVavHlcBGddpgATxl19GdLuJnzkje1wxSqrjihWymu8iIPn9IwpsynvuRq5avA6tSisHCgzheTu69jD5mrvQvJpIbVkzGCYsanmkEN3B7svO89SGtwMsJij6JHRaHtnz7vM8mJjrvd943i9O/JaP3vwC6ldIUWomfD5ZgdnQILdGj3ONxwxa1ENeS3K9QDTArw/9moSUwKa3UeGswGF0UGArUI7xfHleo6eRPS172Fy7WbGFMWqMLC1ayl0z7rokPO/GyhsBOaCrJ9BDOB6m2F7MvTPvpSq76rx+h9EwlOd9puoTcoFt2MJIoqWVCtVyilpySOx8BYBM4D5XMVff+iIqQS1/b5f8ngQE31ZxZ9svT+fWpcCHssj2fsPQQcblcPHggQcVxdpgeBCLzsKxrmP0BHv4uzl/x3/t+y9FXSMgsKNxBw9veJgX6l6gYaBBUYaUppXy2XmffYd4XSQC0QBrStdg0prwR/3EE3GCsSA7m3YSjoeVCaFVb2V9xXo21W5S9iUUD5FrzaXEUaK07uxp3sNfa/7KDeU38MlZn8Qf85NpzKRhoIFvbv0mIiK3Vd3G6d7T/Prgr8m2ZFNkL6I0rZQVxSt4s/nNlELb8NWR8SaAcTHOatdqBsIDiq/AwY6D2A12ugJd1PbV0h/qpzfYS1laGZtqN3G86zhOo5M5OXPoCfZctpRLX8RHfX8933/j+ywrWsaxzmNy8pAgEI6HafW2Eo7JK2Q9gR4sOgt1oTYWBNLGHvjfBXPH/rD8kOwL9VFkL6J5sBmQ1ZSesAedSsfGKRv5l/0/5IW6FwD5YTA/fz4fmfwRvBEvg5FB0k3pGDQG9rXuI8ecw/y8+SwtXIqgEqhwVlBkL2JJ4ZKLOuf+mJ9oIqqoAnVq2ectmfRUaCtEr9HLCje1joSUQCWomJwxGUmSGAwPUuYsw6yVW9GSwR8RMYJKUBGKh5iSMYV9bftoGGhAp9Fh09swaAxIksSxzmOsKl6lpPiOtmo/3JMmEo+wsHAh/7v/fznadRRREvlrzV9ZWLCQAlsBGcYMPjbtY9T31/Oa+zWMGiOxRIxSRymzcmfR5GkiKkaJJWLY9XZyLDmoUOEecPP9nd/nrul38a/L/1UuNCZiiAmRTHMmoiSyoWLDqOfbE/GktBckk7GGvj8WJjLCn8iT53jXcQ51HBqx+nld2XXExTi+mO+cCVmJo4TPzPsMTZ4mzvSf4ariq1ALavxRPwaNgTZfGz2BHiRJwqAxMCt7lpzYlT4ZjUpDRIwQjofxRX3MyZ1Dp7+TDn8HaYY0IqIcMjMndw69gV5l5TGppPRFZaKakBJ4I17q+usocZRg0Vk403cGp9HJ8e7jRMUo5enlo650Jv9mk6cJt8dNo6eRV+tfVe7BJIbGvpc4SvjSgi9xpu8MHf4ONGoNeZa881KflThK+ML8L1yQQvpcUOwopjStFLfHTaY5ky53F1q1VknPzrfmY9AYKLIXYdFZiIkxVCoVpc5STveexqazIUqishBUllZGPBEfVyF4BVdwOXA+PO/z8z/Pj3b/CIPGoHC9XU27eGjDQ2hUmneN5530nqUp3JnC876y8CtszNh4SXje91//Pt9e9A0+NfnjiK9sQ9z5B5I6LHVZGZ9cdyuP1j+VUmg7X55X01ODasVUCtesQB0VGSTEy+2v88bxn1PdXZ3C816se5HavlpMWhOzsmWV3dn+s7R6W7l/2f1MSp90Sc4xvN0aGg4T2rxZKZaN4G4TqaaGvf9u8DwpMn6AFfE4+jEVkOt4sPZxPu+6XXkvsns3ptxctFVV8nmIx0GjIeH3o05Lu+h2ron2VxeX/cm0aq2S8Dk5YzKReISnW1/FPFnD8mUfgUiEkDpBIN7GVJ9xTK6tKnWxvXPPu8Lztnft4QZXybhFH8HloiMx+J7xPBif610Iz8s2Z3Nn+Uascc05p1jCufG8Jk8T/3H0Qf75mi9gF1dBLC6rKQUBdX4+4W1biezbh+mWW0YtDOvWXsfZYBtTLXbgna6ZNxrfoCStRFHzDuV6SNAX7DtvntfmbaPV28rLdS8rBTaQx+HdzbsxqA18Zt5nLgnPm2hR/GIwlOetzJyHtOX5EZ9JqnYTw69xdxMuQYV26lQiH8AU6StFtncBQweZcDyc0hIaESPYDXZUgoqDHQe5e8bdSsrM0M8gcdlbX8w6M8+dfo5jXceU12Zmz+STsz/Jc6efSzFgHHpTJnvwdzXt4kz/GUodpfzuyO+YlzuPmTkzOdZ9jJbBFjZUbuAHu35AdXc1ETHCVUVXcab/DHa9nT0te1ikXcTxruMYNUbeaHqD26tuf0fWP8pNP9EEsCy9jBNdJ/jhrh9S5CjiyeonAVg7aS3dgW6FsJl1ZtwDbhJSgt5gL73BXsxaM/6Y/5KnXCZXPNIMaWx3b2da1jTC8TBatRaNSoNKUMkTxrf9fJOTxzd73sJVupEc5ygrgu+SuaPT4AQgISVo87WRZc6i0F5IQkrgMDgU09S/n/v3LCpYhCcst7DpNXq8EbkNz2FwEI6HKU0rJRAN8Fb7W8zInkGWOYu4FKcivYJry6696MHdorVgUptYVbKKP5/8Mye6TpBhymAwMkiFs4IH1jzAkc4jnOo5hVlnJhwPMyVjCrdMvYUdjTu4a/pdygTIYXDQF+oDULzP9Go9Zc4y9rTswWawoVVpcTlcdPg6CMaCBGIBriu7jmgsOqZh6HBvDKfRKRuVth1UEoJjiZiSgGpUG5mXN4/t7u3KSlk8Eef2abdT21vLG01vUD9Qj1pQY9AYmJM7hwpnBXNy5/B87fM8euxRhOOCYiAtIfHtFd9mSsaUMVVJF2PKOhzDJe9iQiQSj6QkcvmjfnoCPUTECLmWXKUtGcBhcBCKh3j8+OOU2EsIxUN4wh7sBvs5tR0MJYLHrPIYl0UWWrWWNEMasUQMk9ZERXoFW85uUdqETVoTRo2RmTkzUQtqzvaf5WrX1Zh1ZgKxAFq1Vl7t7alhYcFCIFVJGYqFUKNmQd4Ccq25xBNx8q35JEjw3KnnEASBfFs+jx97XFmdHH4sw9stzvadpa6vjkWFi9jVtAu9Rq+Ymg+NfbfqrRc9dp1vauj5/u1bq24lLIZT/DqsOiuuNBe51lwQ5ACb7kA3J3tOMndgLvNy5yEg4I14Uwpsy4qWMRiWjW+T5umXa9+v4AqG4nx5HpDC9aJi9EPF89wDbrZ+5Bmm+s3Et2wdNbCJl17hkx/5GGcDLRfN876w61/H5XkWnYWmQbmN1x/1p/C8hoEGJXnxUkwsE4ODBDdtwrBmjXzc8+aN/sEJFEpD33+3eJ4wUQqvRiOnhl53HUIiIXvLGQwE1QkerH1cLsgMTZqPxQg+9ZRcYHvbP05ls6EuLLwkxzKRL5+k1xET5Wd7TIwxJfMdnlfuLOeRo7/jUeFPdPg7qB+oJ8OYwUs3/YUpo6nvSktpWVrJf266HX/Uf9l53ptqPfNW/IicvacxLFw4Yn9wldC+fCqvte9+3/A8SPWYjifi+KN+pftFp9axLHM+FcZ81FERlcqIaJ/Cm9G3AFiRtZD59imour0kALG1lci+faiLipR03fFwLjxPlES+d+S/qLKVsSprEbqQREyj4o3eg3x09TpM/giIIoarr4Z4HMnvV8I//N4+vLp3uEqS6/WF+ihLK0vheTq1DofBwQ73DgKxwHnzvObBZqLxKE6Tk+qe6hSeF4qHaBhoUDjOB4XnaeOjxY2Mr+pNNLhRLxyp6oWRPpXvN1wpsr0LGDrIjpbWJEkScSmOSWNSiMxQLMxfSFVm1QWZ2Td7mjnRdYL+cD9Oo5PpWdNHXRFt9jTzq4O/4kz/mZTXj3Ud49Ejj/LJWZ8c04AxEo/Q4GnAorMQiofwRX3EEjEOdhzEoDXw7KlnlZaI+fnzuaPqDjwRDyWOEv50/E/sadlDLBFDo9Lg7ndT7ixHr9HTE+iZ8KafaGAocZSwvnI9p3tOK68lTUCjYlRRqSTTaEAevIxao/LflyLlElJ9wlaWrARkpZeEREyUDTO1Ki2CINAb6KXQVqgMqFExyuMNz7IiaxGzrluDWVK9TW6MqKzWd6WKPz17OtOzpnOi+wQJKUFPsEd5L8OYwfKi5YTiIQKxAKtcq9jVtAt/zE9YlCfBTqOTlUUr+Y83/wOdWofOKHtINHubafbKipwN5aOvtJ0vih3FzMiZwS8P/pKanhrsers8iZdkJd7u5t3cNvU2/DE/cTGO3WBXVKMZxgx0GtmPoLavlkJ7Ib6oD3/UjwoV5c5ydBodBbYCVIJK8UK06CyYdWYiYgSrzkqBvQBREtEIGg62H1T8spIYvuqp0+gY9A8iIRGKhdCpdRhUBkVlpxbU9If7CcQCOAwO8mx5fKTiI3QHuvndkd8RiAVk9ZqgIp6Ic7TzKBIS6yvW83zt8wiCXLkVBLlwZdPbUKvU6LVjk+qLMWVNwhfxcbzrOHX9dbR722nztVHXV8fi/MUcaDtAVWYVYkIkFA/R6GkkGA+iV+vpCnTxZtObbJyyEUmSeK72OY52HiUqRpmWNQ2dSqeklp6PaqnYUYzT6FSIjF6tJ5qQJ7s9gR5un3Y7gWiAPS17mJE9gxsm3YBarUZMyMENC/IWsL1xu1LcUc5VxlTlN00qKeOJOFMypjAvfx7+qJ9WbyuhWIiWwRbMOjOrXatxe9x4I94Rq5NjtVu0DLbQFejicOdhBsIDFNmLONp5lCJ7EXaDnXgiTru/nc21m9FqtORZ8yixX5x32uVEiaOEryz8Cvtb99PqbUUlqLDqrEqBPhgLcqjjEIsKFrEwfyHF9mLeaHqDGVkzsBvsill8u7edk90nFeNemNhc/Qqu4FLhveR5fm8vBIJI4QiC0QAmIxZbxojPXQjPs+qtFDuKOdN3hv1t+zHrzFh0FgKxwLg875dr/pvy3W7UixaNG9hkDMfeFZ6XVPUklSZDeR6Qkrx4MUiEQgQ3bZJb0ZYtk18co5g2bltaWRkqpxPzJz8pK3neJZ6HcWwVl9rlQjCb0U6ejBQOE9OpOSm28krdTqVg7DQ6URmHFb5isZQJtOWzn71kxxLWC6jH8eXrFAf52uKvEU+cO89b+/xt/GT597jxuuswJlQkIhFCmgRPNm7myTf+GZWgQq/R4zQ6WZO3jBJdFtpYArXHR9icwGB5pxB0MTxPq9by81OP8d3rv0k8KiFdvRK9sJpw0Edfws9L7a/zo2fupzy9/D3necmE3GjAR4IQXf3NPHb6SWbmzGRP8x6+u/hbzLZPxq63Ed3yKmLDHuW7s1wluNZsRJDAvuMtwg1vKu8NDQE5H9XSufC8J6uf5McH//cdnmcwEJNExCeeGPPviuV3pvym/phcbB2N5yXDvpYVLaO2r/a8eV5dbx3eqJdQLDQqzxsID3C86zht/rYPDM9TD3iJjfaB81T1DsXl9qm8GJxzka21tZWCt1NXruD8MPSGtOpG3gCCIDAQGiDTnEm6MT3lvYX5C/nequ9RkVlx3tvd27KXB3Y9wInuE4CsQKrKrOIbS75BtiWbQnuhckOe6DrB4Y7D5Fpy6fB3KMmRAGf6z5BrzU0hfkMr7t3+bmp6a8iz5LGmdA16tTyYCwj0BHooTSulvr+exsFGGj2NAHT4O/jY9I9R3V0t++yYs4glYsQTcXxRH7nkXpIJklVvZUnhElSoFL+BXEuu/GDTGFAJKjRvR9knvbmSRYokLjblMomh6hazVpb8dwW6mJU9i6NdR5WVJ7Wg5lTvKT42/WPEEjFlMh8Voxz2VFOYXXZJ/JDOF0WOIu5ffn/KNQVyAtG3VnyLsvSylM9PzZw6YvU5GAtSZC+6qIf5ucCqlwMWegI9CAjoNDqiiShGjZF0Yzo/OyC31D1V85TccplWSqGtkAJbAUsLl1LfX8+a0jUEY0Gqe6qZnTObYCyI3WDnmtJrqO6uRkyITM2cSn1/PYIgICZEKtJlv62F+QvZWr+VY13HlN90auZU/mHxPzArZxYwkgR0+bvINGdi1soKqagYJSyGMajl6zRBApvORqYpkwJbAXdNv4tcWy5ur5s2Xxv+6Mj75UzfGaw6K1nmrBRPG5vexuKCxfjCvnEDJs7FlHU8NHoaeerkU+xp3cOZvjP4oj4KbYWsKF6BL+Yj25zNruZdVKZXsq9tH+2+dqWd40zfGcqcZdR019AV7MI94FaIvJgQafA28HTN02ycspG+UN85T5CSHhTJ8ctusGPUGEkzpLGyZCXHu45zU+VNymLAbw7/htO9p9GoNIiSyKzsWdwy5RaePvW0cm8aNUZK00qV+9KitaBT6ZibOxdf1MfTNU9zrOsYXYEuNCoN2eZswvEwZp2ZO6fdyRPVMqkbvjoJqQoZf8RPIBqQw1uM6WjVWsrSyjjQdoDmwWZcKhd9wT48YQ+PHH4EkENE1leuZ0nhksvmL3mxsOqtLCxYSE1vzYjWEoPGgFFjJBqPcqb/DEc7j3JVyVU8VfMU3YFuciw5nOo9xZSMKdw+7Xb8Eb8yZk9krn4FqbjC8y4c7xXPC/R1knjxVaQhRRHB5cK7dg1teCmwFVwwz4N3uN7pntPU9NYA8phyW9Vt8qLgGDzvnyrvk1t/xlJxvY1LMUE6J56nGp/njZa8eCGQAoF3vJ7eVoWJra0IdvuI4tWYbWlJ1doEqp3LAbXdjnH9+hHhB2qXC+P69agdDuU1DVBht6A321N4nhBl/LADk+mS7e/+nmO4lk8jB2Booc1VTNvSyRzpO8wrZ18hmoieF8/zq+Lcf+jHZJuzqe2rpb6/Hn/Mj0FtoCK9ArvBzo8X/CvpO48gNryCCIjIarfwDddjcMr+rBfL826behsak4U3+vfwT6/+0wiLCHjveV5SuZm87k3AOlcJs5f/gN+d/QuPrnmQ3F3V6ApaiI4S9CG5G8nsnEa85iTiMH+94SEg56paulCeF130Te5wlaReS29DKHXRHOuhImuG8ppepacyo5Kz/WdH8LwMUwaNnkaseuuF8byCBUTiEbwR76g8T4WK493H2de67wPD8xJ2DYmyMlnJPBTnoeodjsvuU3kROOfqwbRp03jwwQe5++67L+f+fCgxdJA1aAzMzZurtBLo1XpiYgwJOS59cdFi/nTznxgID5BmSGNa5rQLIl7JJMhkMSTpr7a3dS/ff+P7fG3J19jm3qa0WfWH+5GQCMaC5FhySEgJxISIWqVGJahSJvDNnmbebHoTnVqHXWcnLzePYkcxOxp3sL1hOx+b8TGmZEzhVO8pGj2NrChegYTEgbYD3D3jbk71nkKj0uAwOPBFfWSZs5iZPZNTvacAlJjtSzVBKnGUYNQYqempod3fjkVrYXLGZI51HSOeiOMJe5RYYLvejifsUaTNF5tyORRJdQtAMBZkWtY0/lz9Z76+5OsAVPdUIyF7Qk3NnMrVpVdTmlZ62frkLwSLCxfzi3W/4ETXCQYiA6Tp05iePbo6crTVZ6veylcWfoVNtZsUgqFX6zFpTdxYeeMlbYsZDA9SmVHJtKxpCIJATIwxGB7keNdxookoNT01FNmLKHeWU5VVxeyc2dj0NrbUbyGWiOEecLOoYBFz8+biNDrRqrToNDr6gn1MzZyq+EUV2AoYDA/KHnAqHeXp5Wyt30p/uD/FU3B3y27EhMhPr/up0pYylATo1Drafe2sKF7BgbYDSgFHQkKv1rOieAUmrYkyZxnpxnR2NO7gcOdh8q356NV6dGrdiFbzYCyITq1jfcV6TnaflOPNVWoyTBnMy51HkaMo5YE8WlrlhaQ0Jv/Oka4jOAwOVpWsYm7uXCw6C/6In2AsyKzsWZzRyoW3M/1naPO2IUoiLoeLRQWL+OPxP1JoL+SjVR+luqcaQRAU42KdWlZBNngaiMTl1pTzmSAN96BYX7GeRk8jDQMNiJJIb7AXlaDiqVNP4fa4lZZWKSHJBXEkVpWs4uWzLysmtLdV3abcm8WOYqZlTeORw49wQ/kNPHfqOQYiA+hUOrQqLZF4BLPOzOGOw6wqWSUni0XiSEhEE9GUY/HH/ETiEULRENNzpiNKIt2Bbkw6E40Djfijfu6acRfbGrYRiAYosheljNdJVZskSaQb09+3K53D74ckbHobS4uWEk/EmaWbxWB4kIb+Bm6afJNsYC4IDIYGiUtxegI9yvGN1b5zBWPjCs+7cLwXPM/v7R1RYAOQ3G6El7fBqhk82vDoBfG8Ln8XzQPNnOg5gSiKzMqdpfC8dn8729zbWF+xnmdPPzsqzzOIMo+baPJ0qSZIE/G83mAvedY8Ovwdo/K80ZIXLwRDi4aSz4fa5ZKLabfeOjIAIBYjcuQIxhtvlNvSzsN/6nJC7XRivOkmCIWQIhG5hdRoRD1K0W9UlaEeuVC3ZQuanBzUBQWyEsVoROVwyMmUlwi9oV5+uPuHfHHGp1i0fCOamEhMI/BKxy7+8c/XcOe0Oym0F15ynndH+ca3C2ypC8ZiQwO8uIXwxhsxWOwfep4X9nlwbts/Mt3V3UiuIPC5VfeQ/tohEu5G1IsWj9kSqLZaiYwRYDE0BOR8ivIXwvP+99ivWXLdbymClEKbUOoidPUSMo26FA6lUWvY1bSL+XnzU3ieWlATFaNYdVaOdhxlZfHKcXleMB7kmrwVVBoL0MYkwhqJw4On2dK6Q7ZNGsbzAJwmp2Kz8UHheSqjEdOGDQRfeCGl0Jbw+1GPVnxDLlyLvpHqcHh3fCovBudcZHvggQf4whe+wHPPPcfDDz9Menr6xF+6AiB18tDqbeVLC740InVqYf5C/n3VvzM9S27Ju1gkkyBBVrAFY0FFJn+48zC+iI/+UD9bzm5hdfFqjBojN1XehFFrxBfxkWZMw6a3EYqFsOgsuBwuXm94nXZ/OyatiV3Nu/jTiT8RS8QwaoxMyZzCJ2Z+gmdOP0Obt437Zt/Hb4/8llO9pzjaeZRF+YsoqSqhKrOKO6ruoNXXSiQe4c7pd9I82Myp3lPEE3GsOitWnfWSTJCSBpLJxJp7Zt7DlvotDIQGWFe+jsHwIE2DTXjCHubkzEElqJAkiZ5gD4ORQYrsRRedcjkUSXULwI7GHdwz4x5+f/z3/HTPT7l92u3cOf1OBAQq0iuYnz9febi93zyFihxFF2XCbDfYmZoxlb5QH76oD5vehtPgxG64tKu2doOdur46vBEvGaYMGgYacBgcVKRXUNNbg0atoa6vjtO9p7m27FrF0+Bey70c7zouF+PEKA61gz+f/DO9wV5caS7iiThLCpewrnwdM3JmsKl2U4qvmE6tIxgL0h3oTtmfeCLOvrZ9nOg6ofy26cZ0VpWsot3fjlbQ8mbzm9wz4x7EhEh1TzUJKYGAwLSsadxRdQc/O/AzJCRmZM0gy5JFf6ifLFMWdoOd9Gg6faG+FAKWbkonzZDG5+d9nmNdxxiMDKJVaTHpTEiSxKKCRcrDeKK0ynMtgB7tPMqD+x/EF/Vh19t5s/lN7Aa73I4z2ERFegVzc+fSHezGqDGy2rWa3mAv5c5yNCoNrd5Wnjv9HGqV7H+mVWvxR/2E42FC8RB2vZ2B8AB6tZ6IKKfewfkX5YdPDmZkz1DGi1A0RJO3ibq+upTvaFQaElKCdl87FekVTMuaRq4ld4SRrVVvpdBeSFSMolVrGYzIPmGiJIIAYTGMOq5mMDJIOB7GPeCm2F6MP+ZHp9KhU+mo7qomEAvgjXg51nmMa8qu4XdHf8e+ln3oNXrMWjMZpgxm5czipTMvUWAtQKVS8bl5n+P/jv1fyj47jA7EhMjOxp2UpJVcUHrXu4GxDHj7Qn3KJCXLkgXIv/fSQjlN69X6V+Xnx5AC21Dz9Cs4N1zheReO94LnEQiOKLAlIbkbyV2z/Jx5XqYxk/V5qxC7ukiEQzj1BgYSar77+neVsXoozzvVc4rPz/s8p3tPj8rz7LZM4kzcEnmxE6Rz5Xl9wT7m5s4lISWIJ+IpPG9N6RpC8dAlKcoPLRoGN23Ccu+9hLZskX3Jli6VfZ4A4vF3tw30PKG22+EilHRqpxPj2rVyUSQcBqsVyesltH07pmuuuWQqPYfBgdvj5u+3fimF5xVYCwjEApeN5821VhIf0vI4FGJDA7pACN5uGy1xlPDpqnuR/H6kSISgKs76wmu4f/e/c7Dj4AeW5/1s/8/47vSvjJ3u2uAm9+o1hJP3/ngtgefYLni+Rfnz5XnBWJDbX7mPr876LNcuvZF0tRWVwUBAI2GyOsgexincHjfBWFAeU9+2CYgmooiSiE7UEUvE6Ap1jcvzgvEglbp8VNu3k3DLRUgDsMRVTN7i2/hM6z/K1+DpTRRYC2jztXFN6TXkWnPZ3bIb+GDxPJXdjumWW5ACgZSFBW1Z2Yjim7qsDNXaa4hJEuqyUsT6hpT33g2fyovBORfZPv/5z7N27Vruu+8+qqqqePjhh7nxxhsv5759qDB08hCMBfn59T+nzddGX6jvolYyx0IyCRLkyX2ywJbEYGQQvVpPniWPL7z8BfpD/Uof+Y+v+TFvtb/FC7UvoBbUpJvS2dqwlWVFyzjZfZLTvacx6Ux8bt7neKHuBdp97RzpOIJKULGhYgPBWJDeYC/3zroXURIxqA04DU5lVcQX8dFa18pr7tcochRxpu+MUmCrSK+gLK3soidIww0kITWZ0B/zMzljMm6Pmx5/DwatgcWFi+kP9SMg0BvqpcBacNEpl0MxNGElFA/xzOln2FCxQTFkLbAVsKhg0SVLEXs/whfxcbTzKL858htFuQgwJWMKarX6kq3A+CI+ugPd5Fpy8Ua8SJKEUWNkMDyIgMDK4pUEogFsehuuNBfpptTJ5KGOQ3T4OjjaeZRYQjbLdRqcFNoLcRgcANT31VOVXTWiKFDTU0Ozt3nEPQco5B7ka/SZmmeUxESTxsSM7BkcbDvIrVNv5aOqjxKJR5RE1NN9p5mVM4tGT2NKQdIb8bIgfwH7pH3KNhJSArvezvKS5UzPmk5ZehkF9oIxVZFd/q4RxAtS0yrPhXwl/063v5siRxE73DuIilHO9J2R26R1Zmr7apGQuKr4KnY27cRpdHK08yiv1L+CgIBVb0Wv1pNlzmIwMpjS5pNlziLbnE39QL1MKvQOTBoTOo3uoidIQ8nYvtZ9ymrhcKgEFWqVHMZwQ8UNY/49f8SvBIJY9VYl2UyURAQExUtMo9Lgi/qQkDBrzWSZs2gcbKTJ00SGKQNfxEdpWilvNL1BdVc1GpVGScAFONF9gmtKr2FO3hz6Q/08deopiuxF1PTUoFFpWJi/UA7F6K+n0F5Isb2YSc5JuBwuBqODxMQYeZa8UROvLgdGW0Ufem2NpYAdL/1qZs7M95Xi94OKKzzv4vBu8zwpPH6yIpHoOfG8dGM6m2/4I4mXtuIfUgwrcLk4ffcBVj/3EU71nkrheS+ffZk2X9uYPC8RChEsK524JfIiJkjnw/O6/d1oNVqWFC6hK9CFmBDpDfVi19kJxUNjJi+eLwSz+R1FRjCI/7HHMN14I8LVV0M0iqBSjakK+zBB7O8fveX0+usJbt2K6YYbLnpy/F7yPF1YYryykDAk9TTmGSD+wmZF9aYF8kpd/Pqan/JK925lHz9oPK9hoAFTQj3uZ4XIENXdeKrWc2gXvBRF+XPhecFYkAfe+i8eMv4f317xbTaWbGSsrfojfroD3eg0Okxak8zzhnRdCAgT8ryrchajem37qMmaJcDHK25lU9MrXDfpOqZnTccXla/7/lA/8UT8fcnzRJ8PgkGliIbJlKJgVRmNI9t+jcZRi2/JcSJxy61jvvd+xXmZTblcLl577TV+/vOfc8sttzBlyhQ0w26Mw4cPX9Id/DBh+ORhPvMv27aSSZAgG+6qBBU5lhycRifXll5LujGdLFMWz9c+Tzgeps3bRlVmFRsqN/Dbw7/lZM9JjFojKkHFQHiAivQK/BE/15ReQ0V6BVExSruvnckZk9Fr9DR5mjjedZzbq25XJo8mjQmdWkcoHlLSMpPnYUnhEiRJwh/18/dz/x4kWeVRkV7BjOwZFzUIDDeQTKI/1M8r9a8oBunb6rfx0pmXCMVCSEhoVBqK7cWsKV2DLWBjZvbMS9puNDRhZXfzbkLxEC+ffZk8Sx4bKjewsGDhBRfYhq/mFtvl/R7+2ns98Wz0NPLrg79OKbABnOo9xa8P/pqytDKmZ1/8Cn+Tp4k2Xxt3Tr+TJ048IbeIGOwQhgxTBrdMuYVnTj9DubOcNaVrMGlMKd/tD/UzGB6Ur11kEjJr8ix+f/z3skJNAqPWSGVGJV9a8CXFZ63J06QkxCbTYofDrDPji/j404k/EY1H2dG4g4SUoGmwiUg8wm1Vt+E0Ojk7cJat9Vtxe+Tk26gYZVnhMtZOWktfqE8J6+gKdLF20lqcBidn+uX2S5WgotRRyl0z7qIsvWxEYcPlcKVcCzXdNaP65CWPPZlWORGSf8eslc2x3R63MsmRkLDr7UTFKO4BNxsqNtDua8dpdBJPxMmx5BBPxPFGvLJSLazHYXCQZkhjXt48jN1GLHq5iJk8H6XOUqZlTiMqRXnu9HPjhrucDyxay6i+Skm8TaF49tSzoxaKANLN6dQP1OONeHEanbg97xAoFfJ4PDVzqlKwEwSBWTmzsBls/PKtXxJPxDFrzQRjQT4565P88q1fKteUWqVGo9agUWnY5t5GpjlTvo4SCcqd5dgNdux6Ow6Dgy1nt9DibaEqswqj2kiBrYBmTzOPHHqEaEI2BU+2vI6WeDUakuNNu7+dwfAgFp2FAnvBhMa7E62ij4fxzM8vZzLW3xqu8LyLw7vJ8wTD+EmQgsFAZXrlhDzvN6t/RuLlURJA3W54+VUeXv0/fGLr53F73ArPA1m17Yv4uLtsI9qIKE9+AiBKPtRWK6YNNxJ84QWCTz+NftEipeVL5XBctILrfHje5rrN+CI+edxUaShxlHBd2XXY/XYK7YUsLlh8ybjRiHaoYJDgk0+idrnQr1iBymi8YBXXB4XniT7fiAIbyNdTaMsW9AsXXpJEwPeS56HTjbtvwtvvezydqF94dWQ7ZYMbw1aoWOLi28d+8IHkeQAJnXbcz6oM7/zG46laEz6f3BbYMHL/1C4XCb+P+LUr+fPZ57Dpbe8bnpdhzmAgPEAwGiTdlD6C52WaMifkebdkrxpTDYi7ibWL1/Hl1/+JTHMmbzS/QSKRwJXmothRjEVnuWw8D+SC6snuk3QHuzFoDErxbrwxZswC+/r1qJ3OMb8HYxTfzuG99yvO29G9qamJp59+GqfTyU033TSCfF3B+wNDkyDVKjVltjJ6A73cNOsmnj39LL858htuKL+Bx48/TpY5i9m5szHrzHQFujjRfQIJCZvOBkBMjFHiKGHL2S1sc2/jUMchHHoHiwsWc03ZNext2Uu6KR1fRB70p6RPIS7F+e2R39LibVGUKEMnUyWOEtKN6ZdFfTDUQDKJSDxCb7CXk90nyTRlkmHK4GD7QWJijGNdx1Ja+w51HOJby76FWXPp+7yTCSvrJq2jw9+BRq0hz5JHiePCU2FGW83VqDSKEXEwFmQwPIjdaOcjlR9haubU94yEuT3uEQW2JE71nsLtcV+SIps/5keURHwRH3dMu4NIPEKHvwOj1kg4HkYQBG6ZcgsCAqF4KOVhnfRJSPrnAawqWcXvj/+e6u5qCqwFuNJc5FhykJB4tf5VBsIDdPm7ON51nGtKr6E0rZSanhpMWpNy/YOs2HM5XJzpO0NPoIeD7QcJx8N0BboUb4WGgQa2s52anhoaPY2kGdOIilGCsSDHuo5h0pqYlzePzkAnIBennQYnn5n3mVHvp3MpbHginnHP50TvD/9cPBEnFAuhV+sVRZ+AgPT2/5ItoCatCY1absGcnzeft9rfIhQPoUKFmBApSyvDG/GSY82h09/Jsa5jiiFwgbWAT835FA8deoiD7QeVfZieNZ37l9/PtKxpFzz5KHYU0zDQoHhLDkWyTbEn2MOp3lPo1XrebH6TGytvZGbOTOVzuZZcWZnYfpD15et58cyLNHjk38ColUnQNaXXkGPO4e/n/D0LCxZS11vHM6efUQy544k4bo+bo11HybPl0Rfqw6a3oVVp6Qv1KeOWJElMz5rOH47/gS31W5iRPYOGgQYW5C9gauZUPGEPeo2eiowKGgYaeL3xdVq8LWSaMtHoNGMmXo2GRk8je1v28nrj6+xp2YMv6kOj0jAzeya3TL1lTOPdS7WKfgWXH1d43gcEZhOCyzVqy6jgKuHxs09T7T07Ic+bbisj4n591E2IbjeV11yNN+Il3ZSOmBBZkjmH23OvxaoyoDNZCW3anJIgOnRCNZ4y4WJwrjzvrba36A/10+XvotXbSkSUFUb7W/fz6bmfxqF3XHI+pLRD+Xzycet0oNMhGI0XfOwfJJ5HMDhqIQXk60m4+upLEnjxXvK8H8+7f/xwB61cgCYQGrOAkmhwk7N0Jmf7z34geR5ATcDNbFcxuJtGPQ/S4KByniL79mG+917C27ePKMCorNZ3PAuHFNrUpaUY161jc+t2vvXXu5Wwlg8Tz9PERna9pJzHWFzhz+8WzwN5UfThQw+zq2mX0gpb6ijl7pl3s8q1alSeN26BffNmjBs3XlJPxvc7zos5PfLII3z961/n6quvprq6mszMzMu1X1dwkRiaBNnh76DF28JtU27j2dPP0uHrwBfxEREjiAmRnkAPx7uOc8/Me+jwdSgPnVgihk6tozKjkq0NWwlEA+Tb8hEQ8Ea87GvbR5ohjYqMCkKxEMuLlpNlzqI72M0LdS/g9rgZCA2QZkzDoDGMmExdLvXBcAN0T9hDfX89hzsO44/6WV60XDG83FCxgSJbEY8ff1zxdjrYfpB9LfsujWfKKLDqrYovxMVitNXcSDzC/s791HTXMCdvDnta9igrdU0DTdxQcQNLi5aOu5Ix2orp0AE5Gdd9vsTZHxnfnH6sFr3zRdKfS5RExQ9LEASOdR4jFA9RmV5JV6ALi9bCiuIV1PTUYNaZ5ePUyseZ9M8DMGlNVHdXY9VauXvm3bR6WxkIDaBVa9nbupd2XztZZtkranfzbj41+1P85shvqOmpwaKzyMXnjCl8bt7nKHGUsLNxJ3qNnhZvCwW2AqXABpBtziYUD9E82Ky0Ftr0NgLRAAPhAZoGm5icORl/1E8wGsRutJMQ5If08PtpaGFDo9JQkV6BTW9TfKysWqtybfQF+9CpdRi1xpTCIIBD7zin8578nEalQUyI2A12tCp5pVNCVtQmU7C0ai2TnJMIRoMsyF9AbV8taYY0iuxFSJJEvi2flUUr+Z99/4NBa+DLC77MksIlhOIhTBoTk5yTeOjgQxzsOJiyDyd7TvLQwYdYWbySZu87SVxOo1MxAJ8IVr2VGTkz+My8z6QoL61aKxunbKTT38mPd/9YIUmFtkJMWhM5lhylUBSKhfj0nE/zf8f+j7gYZ2H+QhYXLEan0ZFvyUclqJjknMSp3lNY9VacBieHOw+nJhu//TvYdDa6/bIvUm1fLYX2QrwRr6xqE9SUppVyqP0Q7b52lhctZ2b2TKZnTceqs9Ib6uWmypswaU1KjH2btw21oFZWyWH0xKvh8EV87G7ezQ73Dva37VeIVzwR51jXMdQq9ZjGu5dqFf0KLi+u8LwPDiy2DAI3XIs4Il20BPfiSTyw6X6um3TdhDxPCEfH2oSMSISpWVOJx+P85frfYogD4TCCyUzoxRcnnlBdBvXBeDxvIDzAJOck8qx5mHVmbplyC13+Lva17mNv615iCXlxta6vDrWgZkrmlEtfaLuEqovLxfMm4nET8cCxMGEBLRJBuAQT7feS523t2MW6FctHtkEnFYsmE02eegoiEwR/RKPj8rxksJNWpSUYD9I02DRCkDAez3vl7Cs4DU70Gr2SBKxRaTDrzEqAVBLny/MAdnW/hWPxKkoRkIYEBahdLvQLFxLctAnTjTcSEQTEhgakYBBNQYGsao3HQaNBbG0l+NRTAJg/8QmkhQtT3uv0dfCVHd9I2YcPE8+La0d2vAxFVCOgFtSU2Es40nGEQDTAqx95liprKUQioNdzNtTGZOdk7inbiDmhgXCY70z9An1SgPte+4oyXp4LzwP5mhpeYAM5bOzxY48jIHDL1FtGjgcTFNgJBuFKkW0krr/+eg4cOMDPf/5z7rnnnsu5T1dwiZBMgjzccZiD7QepSK/g+brn8UV8SpKNhATIEnu73o6YEMk0ZaISVJi0JhJSgmxLNq81vkamUX5dJagQJZGB8AA9oR7K08opsBfweuPr/PDNH3JVyVU8Uf0EGcYMJmdOpsPXQaY5E41K865MpoYaoEfiEdwDbqXA9qk5n2JH4w62NWwjHA+j1+iZnTObby7/Jj/a9SOC8SBqQU1/uJ/6/vr3vT/a0NVctaDGorMQUoVYVrRMabWbkT2DnmAP1d3VnOk/Q3+on021m5R2iuEYz+ckHAtTpHaifWVHStT2uUbOZ5mz0Kg0KQ+YJDQqDZmmSzOhGx6bDrJB7qycWWhVWublzVO8wh4/9jghMYROraPUUcqGyg1kmDKIxCMYNUZC8RCBWACtSsun532ap089zeGOw0qRotRRysL8hWw5u4V7Z93LptpN2PQ2PjbtY+g0OuKibMiebkqnPE32Q9BqtIpxrZgQU/Y9nogjSZKiABMlkXgijl1v5yOTP0KRXb4mC22FmLVm9Bo9z516DrvBPoJcJAsbQz0bWrwtqAQVhbZC6nrrKHeWIwgCdoOdmp4a7Ho72ZZsDBrZYLY0rZSpWVPP6bxPzZpKaVop3f5ufFGf0gqaZ80jFAth0BgQEyJWnZWT3ScZCA2QbcnGprcxK3sWhzoP4Ql7iMaj9AR72HxmM2nGNHpDvZwdOEuGMYNMU6YSgqBRadCqtMQSMWUfkolckzMmp+zbRNf9cCTVtmVpZbg9bgLRAOnGdB4//jh7W/emXMMt3haeO/0cC/MWKmObSWuitq+Wu2bcRVyMy+MmIt6wl95gLzOzZ3Ky5yRWvZWbKm+iw9+RQvhBJtbLi5ZT7Cim2FFMKB6iO9hNTIyhVqmJiBFmZs1kknMSv3rrV9wx7Q72tu7lcMdh2QNPa8ZhcPDtld/mp3t/SqmjlLgUp9nbjFFjVNL1khieeDUcTZ4mvBEvHf6OFOIFb6vuBtx4I95RCVxy9XvoJCCpwBMlkQZPA8G6INOzppNmTHvftUD9LeAKz/vgwZyeg/8j60j4AwQDHnRGC080PMcDm+4nEAuMyfNK7CV8Y86XuS5vBWqjadxtSHodUzOm8r05Xyf64ssE3p5Eme68c9T2Lrj8E6qxeN5AeICqzCryrHk8cvgRTvWcwqg1kmZIoyqzilum3MLTp54mISXwR/2E4qEJJ5zvNYbzvExTJv6onxVFK7DoLWSaMlnlWsXZvrMc7Tp6TjwvMThIcNOmVNVQWRn69TdQE2qmw9/B1oatBONBHHoHeo3+nAsYE5rTv13Qu1i8lzzvoROPMm35ZPKrqlIKRgm/Dxx2VEYj/j4/oi5j3Il2TCN76SR5XoYxg3+e/xWWps9BG5OI61S4I52cDbay5ewWWdE27HcYi+eB/LztDfaSY8lBTIikGdOo7q5WElOTHOBCeF7DQAOekIev7PoX7pn8UVYuXkuRLgshEpULZ08/DbGY3C6+ZAmGNWsgGh0zYRRA8ngI/vWvyr9VpS4OOns/1Dxv38Bxri91IY2meHQV80LrNqqyqqhIr+BPx/9EzV17kbZsI+x+TflYscvF59d/nNCWLQTOnFFeN7tcPHfDY9y944t0+DuAiXkeyNdUk6dpBM8DudDWG+wdddycqMCeCIXYUvfi3wzPO+cimyiKHD9+nIKCgsu5P1dwiVHkKKLd345GrWEwMkg8EcegMSAIAn3BPiqcFbR6W9k4ZSMDkQEOdRzCqrPSPNhMTIzhNDqVyb7dYGcwPIhBY1A8p0KxEJMzJ+MNe5mTOwdfRE4UVAkqekO91PXW4UpzKd/Ta/TnLEmeyCB7LAx98A6GB/FH/fSF+rip8iZ2t+ymy9+FIAgkpASReIQzfWf4c/WfuXfWvTx27DEEBAwawznv53uJ5ECpFtRY9VaerH4SMSFSP1DPYHiQ+fnzWVG0gqOdR1lWuIyXz75Mi7dFIR46tW6Ev8doPicNAw18f+f3+fuqe3AdODZy5bq+nuALL2C65ZZxFW3Ts6ezKH8R+9r2jVDsLMpfdElaRSE16W3oseRac7mp8iacRif/u/9/FW+8JNwDbsJimDuq7uClsy8Rioeo7a3FrDWzqGARhzsOK8QrOXFp8DSwu3k3WeYsJblsV8suPjbtY7zR9Aa+qA+HwYFKUGHT27iu7DrMajN5ljw56luVahyr1+hR8U4xW0AgGA3yqTmf4o8n/kj9QD0Og4OoGKUqs4ovzP8CzULzqOQieQ1XpFekEK90YzqBWIDXm16nfqCeG8pv4DNzP8OhjkP4Ij7ZUDjYrbQbnGtRPNuSzZcXfpkH9z/IQHiAVSWreM39GsX2YiXlbVrWNKZmTuVo51EWFy7mdO9p9rft5+sLv47L7kK0iQSiARboFxCKhzjSfoTJmZOpyqpiU+0mgrEgd1fcxgxLOStmVKBZaOLltp38z7GHCEaD6DV6vBEvwVhwxLntD/Wf14TKqrfKrfdvX5dP1zzNruZd6FQ6tCotCSmhBBq0eFvoCnYp302uNp/uPZ3yNyPxCFqVlnxbPpOck5TP+SI+7Aa7Qvg1Kg1VWVXsb9vPw4ce5qqSq9jXuo8ccw451hxcaS4cegdTs6ayw72DZUXL2NO6h/5QP2JCxKQ1oVVpiSfi/PKtX8otAyoNgiST+qgYVVprkgVVnUo3bkqrPyanvI5WJAd5ohCOh0clcA69I2US0B3o5tapt/KTPT+h3ddOVWYVLd4WJqdP5osLv8ixzmNKa9f5rE5fwYXjCs/7YMJiy2Cf9yxb2raQbkznh2/9FEmSMGlNo/K8kz0neWH9nyjaU4e0YzPSHXeM2/pWH2rjn2d+HmHQh37ePFi0CLG1dcJEwHNpCbzUPK/AVsD07Ok8VfMUjZ5GREkkEo8QiUc40HaA6dnTWV68nP2t+xUuO9GE873GUJ6XZ83jhdoX6Ap0UdtXy2B4kDm5c5iZMxNP2MOSwiW8WPfiuDzPnNCMKLCBzONCL7yAZ34O/7n/P2Xzfb2divQKcqw5AOdWwDCZxr2eLqZtdijeS54Xiof4yu77+fdF3yJHpUenkjCZLOCwEO3vQhcOkClY6RJ9FLhKUlReSQguF691yUEGAgIxMcaz636PY8dBJPef5fMFTHG5KL9uJQ8PtiCK4giuNxbPA7mItLluMzmWnBSe543IRSBP2MMk56QL4nk/2/8zjncf5+qyq/l19WP8Tv0ntq95nMgTT6R+IRYjsnMnkT17sPzd343/x4dYEwguF10rZvCTbV9gXcU6drp3yh1HEh8qnnfK52bmsvXkSlLKdSK4SuhYPo2DB7ewrnwdO9w7ePqG3yNt2TamelhTUIA4pMgmut2EX3yRB6/9Ibdu+QQwMc8Dee4wFs8DCMaDo46bExXYE3otX3r+S38zPO+ci2xbt269nPtxBZcRyZvJrrenyIOPdB7h+knX4wl72NOyhzm5c2jztrHKtYqDbQc51n0Mo9aISWMiz5JHoa2QnU07SSAn2mSYMnAaZRPDJ04+QZu3DQmJLy74IlMypnCm7wxdgS5K0kroDfai1+gV88WJkOwFb/I0KekpxY5iPj330+dkkJ188LZ6W5XVj8npkznVe4qWwRZ0Gh1atRYxIZIgwcmek9w14y6K7bJiJMOUQZo+7QLP+LsDX8RHKBqi1dtKqaOUJ6ufpD/Yz2BkkIHwACpUNAw04I14mZU9i+2N25mbOxe1oKZlsIU9LXsYCA+QacpEQmIXu3A5XHT4OlKiyiPxCDXdNbR4W/h/8/4Fyb131P0R6+snNLPNtmTzj0v/kf/e+9/U9NQgSiJqQc3UzKn8w+J/uKQKx6FJb8P9Kw63Hx5BvADFs2DdpHXKd/tD/ehUOjxhD5tqN6EW1AiCgCTJ5MusNdPgaWCNaw0xUb7WStNKearmKXxRH2XOMpoHmxkIDzAYHuRg+0GWFy1nTt4cZufOptXbil1vZzAyiE6tIxgNkmXJosheRNNgE4IgcEPFDfzhxB842X0Si85CMBYkGAuyt3UvWpWWj834GKd7T48gF5nGTBYVLCLdmI4kSWSZskiQoMxZRkyMkWvOJcuSxc6mnbxQ9wIOg4NYIka2OZv7Z9+v7Pt4xq/DMStnFg+seYCa7hp8UR83lN/AYFi+JuNSnP5gP+2+dlxpLmp6apiSOQWNSoNeq+e52ufY2/rO9TUvbx7/sOgfeK3hNf7ltX+hw9fBto3PUbavAcn9jPK5m10lzL36V9y4+WPKayatSXl4D8XFTKgSiQR6tZ6B8ICiRATZADzNkEYi8Y63xkQTgOGhKsWOYnKtuQrhd6W5FMJckV7BwfaDOAwOrp90PRExgjfiJRKL0OHrYFr2NALRAAc7DqJGzc2Tb8ZhcBASQ1h1VqVFJNmSW+4sp93XjjfiJRANYNAYMGqMlKaVjhv2YtFaMGgMI9qJk1ALagwaw6gEbmrWVFYWr+TV+ldpGmzi2tJr2VS7iZqeGrQqLc2DzaSb0tnXto/w7jBfW/I1xWvvfFenr+DCcIXnfXBxPjzvZtcNFO05o0zogps2Ybn3XkJbtoxofRPWXoMh2I32lZ0Eh6qeXC40k1NVJMMx0YTrcvG8cmc5vz/6e5nnqbRISCRI4I/JyrWZOTPRqXVkmDIwaU0TTjjfSwzleeXOcl6oe4H6gXq6A90Kz2sabKIv1Cd7S/WcmpDn3VO4fkwFotTgpnLFfA51HAKgL9SHN+plvjAfo8Z4TgUMtdWKcf36sc3PHY5Ldn7eS55XZC/i3/f9mFgixq9X/j8M214n4XajAuJAVqmL8DXL6LtqLukIw1q6XXhWz+PZnf8kL34JAt9e8I23C2yNKfsrud1oXoHrl1/Fc01bgNRC0lg8L8OUQYYpg6tLrh6V56Ub0/nc3M9RkV5xQTzvh2t+SE13DYORQVYWr6Q/1I9aP849H4shadRjBxyUliJYLOjvvZuWWC+vde3lzUM/5UjHETr9nZQ7y2nwyHOaLIvctvth4HnbGrbx55N/5ruLvsnCZTfJ7Z56PXWhFjY3PE2mKVPhedNtkwiP45+ZDJcZ/rqDawHOiefBO4uiY8GkGWPcnKDAfirQiNPo/JvheVfcbP8GkFzx02l0KQaPsUSM7Q3buWfmPTR5mpCQuHPGnbzufp1CWyEL8hegVWuZnjUdlaBiV/MuOZpdShATY0pEcU+wB0/Yo6z4nO45jV6jJ9uSTdNgE2JCRBBk9US5s5yoGMUX8Y15E43VC948KPfdf2fldyZ8ACQfvAfbDnKi+wRlaWXYDXZO95xGRCQUDylJhzq1DjEh4ov6yLfms6J4Bf6In3Rz+rjbeC+RbOnUqeSiTCAW4GjnUaZlTcPtcStqvEg8wqneU6wrX0dXoIulRUsJRoMU2gqx6W2YtCa2NWyj3d8OwIL8BRztOMrUrKlKhPlgeJD+cD99oT7U0dg4e3VuK9ezcmbxk2t+8s7q9dtqnMvRQjyW71+7r30E8UoiFA/R4e9gTt6clO92h7p5vfF1VIJKudbNWjM5lhzafe1KdDeATW+jw99Bob2QZk8zwbhsSuyNeClxlGDRWXjN/Ro3Vt5Is6eZY13HONV7imAsSCwRY3nRcopsRexu2Y3b4ybdmC63chrsWHVWOb1XayIUC3Gy5yTR+DtEIEkuGj2NvNn6Jq+cfQWdWseJ7hOsKllFaVopL9e+zBcXf5Eufxe/P/Z7uoPdSJJEd6CbTHMmnpAH96CbzWc3U9tbK5NABLIt2Xxp4ZcmnABlW7JTfs9GTyO/O/w7nj39rHJPF9oKWVG8gv1t+7l58s08cugR+kJ9iroAYGbWTP5n3/9QmlbKmb4z/Hj5994usDWmbE9yN1KExDfmfoXHTj/J1MypSJJEq7cVnVqHXW9XCscXM6HKs+UhIaUQL5BVYRISeba8lNfHmwAMx1CyZtQYSTems691H8X2Ysqd5bT6WjnSeYTjXceZnTubjZM38nTN0/QEe3AYHNj0NlSo+NS8T/FMzTOc7DkJyIWvyRmT+dcV/0ptXy2laaUU2Yt4vvZ53B438URcSZ26req2cclNsaOYY13HyLXk0jzYnDI+a1QaXGkubHrbqAQu25LNksIl/PXkX/FH/TiNTk71nqLEUUKaMQ0BgaVFS1lSsARPxEMwGiTHnENPsAdREs97dfoKruBvCefD824svBpp6xC1STCI/7HHMN14o2xKH4siajUc952l+sxz3HrWPKpyQuzoGD8R0KhHPeIdGZeL5xXZizjZfVLheTadjXgirvC8aDyKQW1gRfEKvGEvLofrkqbIX0oM53l9oT6Odx1XFHxDeV5PsIeVxStZnbuE63JXoIrG8Lui9BCkxlfPK2dfUXjeR+yLGK9BWBVL5Xm9wV66/F04DA6yLdnnVMBQO50YN26EYFDxfMNkuiym5+81z/vneV8lbcchEsPukUSDG/1WaF9eSdvCfFwrZpMIh4lqBE76G0j46ljjWoNBY8DtcbMwbRqS+6+MBsntpmj10pTXArHAuDzvT8f/xDeWfoNQPMQfjv+Bdp/8+w+EB0gzyK16SwqX8HL9y5eM58WiwrhFllAiSvSaZehflVILsKWlGK+7jsSgh6BBxQvu7Xxn7wMU24upyqqSOx8KFrO3VQ7ai4vxDxXPyzRlsrNzP4+eegKVoOJ07+lReR6RkQXFFIyhLpYi4XPmeSAvihY7ikfwPJDDDzJMGaOOm2qrFcP6GwhvfnFkuMXaa/jnlz/BsqJlfzM870qR7W8AyZv6pTMvcd/s+/jtkd9yqvcUGpUGm8GGP+Ynx5JDb6iXF+texOVwkWHMIJKIoBJUuNJctHhbMGgMBGIBNCoNDoOD1a7VWPVWGgcaERAU74I3mt7g4zM+Tqu3labBJrRqLUX2IiqcFdw0+Sb8MT+NnkZUqPDFfCN6sU92nxxBvAB8UR+7mnZxsvvkORVkrHor8/Ln4fa4qempoTK9MsXoOxgLkm2WvafybfnkW/OJilH+e+9/k23JpnGwkX9e+s9UZlRe2h/kIpE0we3wdeCP+JmXP4+B0ADxRFx5KFh0Fiw6C13+LiVGuivQxea6zTR6GmXyqbfRFehS+vQBVIKKgfAAtb21zMqZhV4jG6VHRfn/om4CE9eJvDjexvCH87sNrWb82HGNeuRxljpKmZE9g2BMJrsqQUVMjNET7MGis1DmLJOj3YGElCDNkIbD4KA/1E84HsYb8XJd2XXsbd3Ln6r/RMNAA2+1vUWOJYfPzP0MA+EBImIEh96BQWNgVs4s5uXNoz/UT0+gh2xzNt6IV2kDMWgMpBnSUKvUKfeKRWtRrpFwPMz8vPmc7jtNjjmHva17qe+v5ydX/4Sf7P0JRfYidjbvRIUKu95OZUYlGpWG5UXLeeTwI+jVetp8bQBYdVZUKhUP7n+QB9Y8cF6/X4mjhC8s+AJVWVVyUVCM4o142d+2nyxTFhnmDFp8LZi0JortxXgiHsSESL49nydOPkGuNReAdXlXIe3cMvpG3E1cu+QGdnbuY2HBQl4685KibjBqjFRmVJ7TCt54sOvtLC9azmvu1xgIDyivpxnSWF60HLt+pCfh+QS8DCVrZ/vPcvvU2zHpTMQTcSY5J5GmT2N3y24Oth9UJofLi5dj0prIs+bhjXhTCmwCAipBxfHu4/y15q+sK1/Hz/b/jLl5c7l35r2oVCryrflMyZhCeXr5hMTLqreytGipHLigUo9IF904eSNLCpeM+Xe0Ki1VWVWUOcvQqDXMzpktt1/4u9g4ZSM73Dtwe9xYdBb6Q/3YdDbWlK6h3deOKInK5O5CDbmv4Ao+rDgfnhcPBdAN/wPBIMEnnwRg8KNrWfryLfJi0IankbaOPvEPv/IKlk99aqQC7u1EwHA8xtmeUwxGBt81ngegUr1jJB6Kh8gyZ2HSmMi35ZNpzkStUvPTPT/Fprdxtv8sxY5iKvXvP5738pmXmZs2jQpjAXemryKihTJjPr879ScgleeZtWa+PfurZOw8irRF/h3TgPRSFxkrZ/Nk+Enlbyd9wMZCQjuS/4TiIXxRH9lkn3MBQ221vqcm5+8Wz1ueMYeE+y+jbkNqcGNZPJXvHf2lzPPiA0QiERwGB6ZhPM8ojlWSliFEU4s+Jq1pTJ53pu8MP776x2x1b8WitbCjaQcqVOg1esrSytCr9dxYeSO/Pfxb9JpLx/PC/kG0K1aMGQjxfOvr/LHuKX5z7X9jCy6TA1QcDsSODvy/+Q3EYqiB+1zFXHXLZq56egPXlF1Dp7+TeCJOIBYgS8iixFHyoeB5DQMN/HjZvzPTWoEmJhLTqtjbf4wHDvx0BM9TCSpUhgk6wcZIAhf0Bv5j9X+cE88DeY726bmfBhiZLjrrblaVrBrz7xzw1+JcOQ3XNWsQIlESeh01fje3/GEJy4qX/U3xvCtFtr8RlDhKuHvG3bR4WvjB6h/Q6eskLIZxGpxISOxp2UNCSiBJEvvb9qd896qSqyh3lvOt5d/CF/EhSiJalZZANMCjRx9lcsZkrDr5wg/GgkQTUf568q98bfHXWJC/QJb4DjRQP1DPv772r2SYMjDrzGyo2CD7Bw0z8uwOdo9qtggyAesJ9pzzcVv1VlaXrkaURHr8PczOmc2hzkNoBA12vR2r3oo37KUkrYSGgQZFfaRT62gYaOCPx//IPy39p/fVjd3kaeJs31mavE2EY2Gavc3cPOVmqjKryDBl0G/pV+LcbXob2eZsPGEPXf4u0o3pGLVGssxZBGNB9rTsodherAxq3oiXXEsu3qhXln4LaoLRIBmmDHItuRzwnGSlqwRG8ZdQl5VdEjPbdwN5ljzyLHnKyu5o7w1HsaMYV5oLCYma7hqlKKZRa6h0VjIrexbpxnSmZk7F5XChFtTKtRoVo8zInsHe1r24PW6mZU1DkiQi8QjNg8388q1fUp5ezpGOI9T115FuTOf6SddT3V3NnNw5lDnLaPe1IyHJClIEpXBn0VnklsBgD06jk2JHcYpRskpQyf5vah1HOo6QZcmicbCRvS17ybO+c5xF9iLqB+rJMGXgi/o41nmM6dnTlTYeX9SHe8BNIpG4oPCSbEs2CwsWEk/E8Ua8hONhpmdNVwzwk9J0o9aIVq0lEo/gi/hISAnUgppoIoouLo27jUy1ndUlq/HH/KQZ0+gOdAPyBMEb8XJ92fUXdS8HYgGWFi5FQqJ1UG5R0qq0FNgLWFa0jEBs/HTcc/EfSpK1QCzAX07+JeUaTTOk8dGqj7K1YSvZ5mxZXapSc/2k6zFoDNT111HXV6esSCeRbkznUPshri27llgixr7WfexrlROUf7HuF+cV8JI0Cp6WNY0bKm7AE/JgN9gpTSulxFEy5vlNev3lWnPRq/WUO8t59Mij9AR6WFq0lN0tu+kOdBOKhRAQMGvNtPvb2d6wnRXFK+gMdGLT2jjbd5ZdLbvwhDyyvygCr0uvs75i/YfKy+MKruB8ca48b6Iii9WWzr+s+Be0Ki3aWGLsD8ZiJPr60FZVva1CkRMexdZW/L/+NeqCAkrXXc/PmjYTiAXeFZ63v20/0VgUl8NFy2ALdr0dm96GJ+RBo5bHxSZPE7nWXAwaA62+1vclz2sZbGFD3ips2w8guWWjeD1wp6uEVVf/ivWb76A32KvwvO8u+hYZO4+NUHknGtykSxL3Tr2Dh6ofBWBP/zHWuVwp7YtJqEpdHBo8RbG9mKbBJuV1tUpNQkooHOODgHeL52lj4/MSTUw8J563onz6mMpPAEn3TmncaXQSE2Nj8jy9Rg8q2O7ezmrXauV7Fc4KWrwthONhJmdO5ljXpeV5BoudhAjaadOGBUL48ZnV/PbNPxCKh7hr2+e4d/IdrM2/CvW27SPVsO4myoB/W/QNNjdvo9xZztVlVzM3by4uh4v+YP/7lueJPt+ECs4kz3NpMkm8+AoJt1wEVwOrS13Muv53/P3r/6DwvMHIIE6jE9GgHVcpKLa2jvq6YDQyxz7nvM7DrJxZ/GT592BOkEQ4DHo9QS2Ybc5xed5AaICnGrejV+upSK/g/u330x3o/pvkeVeKbH9DsOqtTM0emR7T5e+ixCEXmZK+aUnDw+lZ07HqrTx3+jl2t+ymL9iHIAhUOCv47LzPUuwopjvQzZzcOVR3V8uFOiQQ5DaFZUXLeLL6SRoG5AE035rP2YGzsjIqHmXjlI30hfpSerEN6vHVUHq1ftz3h6PEUcId0+6grreOOXlz+OVbv6S2r5ZYIoYv4mNK5hTWV6znt4d/i91gT+lDb/e3v++kq82Dzexq3pWywrIwfyEmrUlZYfNGvEiSRCgeYmXJSpo8TWRbssm15JJpzuR413HiUhxf1KdI4gHq+urYULGBN5reoNXbqqQtfXXmZ1mbuwIhEkW4wUzo5ZcR6+uV76lLS+V00UsUWT8cl3pFo8RRwvrK9Wyu3ZxCwPIseWyo3DDqID5c5j0YHiSaiJJjyWFDxQYEBIrsRQoBreuvYzAsTzokSSLHksOOxh3Y9XaCsSAJKYFVb6WmR/Yuq8yspK6/Dm/Eizfi5fXG15mdO5uD7Qex6qwsLljMntY9SEgp12hZWhk6jQ6n0clNlTdh1VuVommnv5MDbQdoHmxmWvY0QvEQOpWOvlAfCRLK3ymwFdDibaE/3E+xvZhANICEhCRJBKIBrHorKkGlXC8XGgqSLNAMl9UfbDuY8jmNSkNICmHUGpEkiU5/Jy6Hi+gET6ywOsF3dn6HPGseywqXsbhgMYDykE56qVwozFozbb42FuQtYH7efMLxsPK3W72tzM+bP+Z3j3Ye5Wf7f6aMhYASLDG8LcMXkdUcQ+9xkNs8zvSf4RMzP8H8fNkjZ2hbQo45B7vBntK+n2ZIo8RRwomuE/ij77T5TM+azv0r7r+gBOW+UB87GnekeJA0DTZxY+WN4yYWn+g6wb7WffiiPu6ZcQ/z8+bLE4ycOdT21mLX29GqtBg0BsVXqt0vF5czTBkkSPDAmw+knMM8Sx5rStewuW4z98689301Ub6CK3i3cS48Ty6yjGXGXsJf3Jv55pvfocJZwY1rl4+/Qb0eTXa2rGYbYrgNbytZXtrCnVffyG/qnnhXeN7snNl0+buYlzePF8+8SMNAA76ID5veRnl6OS6Hi+Pdx1OSld+PPM8oCm8X2FIn05K7kRzga7O/wBdf+7rC824sXIO0c/Oof0tyN7Jk2U089Pa/Hzv9JEtX/ZQ0QUhNF3W50C9fwfVmM9ff/CqSWk1fzMPNL91LPBGnNK1U4RiXAx9UnifqNOMWxxI6jdJ2Nx7PO5q9kHnjhCQ0x+TCc5LrJbtQRuN5akGthIFoVbKibyjPK7QVXjaep7Lb0U6ZghQIKIUmdWEh1Z1vKe27oXiIh6ofZbFzJo4x/AFxN7Fh0XW83LKDiBihN9DLE9VPsHHyRh4+/DA5lhwWFSxiYcFCVKjeFzxP7O8f24vQ6Uz5bCIUQnrp1RFtxlKDGyfwH0v/DaPFQSAWULiyQW8lesNaoi++POo2QltSOz2UbdtHqu8mQmJwEDa9nDJGWMrKMG3YIFf8h+EKzxuJK0W2K0hJimkYaCDDlEFvsJdyZzlfWfgV/mfv/1A3UEehrZA8ax5iQkStUtMw0ECBrYDq7mr6w/0sL1pOIBYgLIYpthczM3sm2+q38dsjvwXkiW5FegVZpiy6g900eBqIxN/pL0/2Yhc7iil1lNLgGTnwljouTAZs1Vv5/+ydd3wchZn+vzPb+656l1ayJVvuVe64F7ApsblAApdC2pF6d8ldkrtc+V1CLuVyd0m49JBCEkggEGNjMGCMjRvuTbIsWb3Xbdrd2Ta/PwaNtVazDQYDevLJ54N3V7NTdmaeed/nfZ55ufMAyHfkc6ztGP3hftLMacQSMb538HuY9eZhRo96UX9TJU/5JT8NnoZhD9+PnnmULyz6Ar86/Ss0ggYpLtEf6md6+nQ2TdrED4/8kGkZ01QV4ubJm5mcMpmNkzaSbk4nGAlS219LLBGjsruSSSmTmJYxDV/Yxz2FmzG+sJ/gX36ifJlOh3HDBiWOOxolohMRbTZE67VfxEfbxqFEy6gx8lrba3jDXvVmd9pwmqUFS6+qo3Hl8tLN6fQM9JBmSmPbtG0EpAB94T4MGgN2g33Mcbdr8V64vex2IrEI9Z56xQ9GjuMwOFTFmN1oV4lQiikFKaaY2Q+iwdPALUW3EIwGefTMo/zTin8iLsc503lGkY0LIuXp5Ty48EGK7EXkT85X18OqsxKIBDjScoRAJICMjE/yYdAYSJDApDUhItLqa6XEWYJZZ6bF14KAQFyOo9focRqd+CN+YomY6mkDEEvEcBqc135gX8dIsvqhkfCDiMQj9AZ7mZ4xnVMdp1jlXsX+7uNscxdCfeOVi0VwF1E5UI9JZ2IgOsDzdc+TZk5jUd4i9YHKHx1ZOXG1KHQW4jA66BjoUF/zSkohdawOf2egc1iBDZTU3u8f+T7fXPPNpI7x4O+rLK2M6p7qJF8Zv+RnVtYsFuQOJ3pOg5M8ex5up1sNFYkmonQOdOI0Ocm35fP11V/HZXAxI3PGdRXYBkeRr0wgvtK0dvBa1Rvq5ekLTxOKhtCJOvU4H2o5xObSzYrPJwkMWgNSTMKqtzI7a3bSuQCwqWQTvz79ay72XkSKSer2Nfma1C7ozfagPIEJ3CwYyvN+feEx5iz/OtkwLM2uddlUfrf3i0zPmE48Eee1/rOsKHaTqBtBOVFSQshmRB8JDyuwDSJeX0+GuFb9943mefNz5wNQ1ltGnj2PvlCfmgy4p24PJzpOvCN4njNhGFFpBsoxu3XZnbhMLvpD/RQ7i7HKwwaAQafDsGgRmrw8TKKOv6x7BESRUMCDVWvDsHw5VFSoaqN4SwvB3/8eTV4e2rw8Yi0tpCxfzr67nqF6oJE0V65qOP9mbOO7hec19bUyudiNPMI5gruQV3tOXBXP+8dX/5Vnb38cw+7h52V84yqi0Q62Td2WlFQ5Gs/TaXRY9VZERJp9zcN4XoLEDeV5osk0LAStLL1sGM/TRuNX/mkSjHERl8nFwpyFPHr2UQKRAJGEYpcSjAZ5qe4ljrcdZ0HOAtIsacDbx/Pifv+wAhtcTv403XVXkqJNHhgYM4Bk1ob1GDKyhr33St8pMpaWULZuNYIUQTboqQ428rXnPszPVv03qatXgyQhGAxgMl1fgS0UGjWBOPjMM5i3bkU0mcblefub9rO2eK0akqgTdQiCQLYtm8kpk0fkeX849wfW597CkhmfQxtNENNpONh3iucb91KRV/GO4nkTRbYJAMlJMR7Jg01vU3zJPA10BjvV8cKhEv7Hzz/Ot9d9W0kLDLSh0+godZRi1VlxO9388OgPKXBcfogLx8I0e5txGV2kmlLpDfUqccxDEIgGmJY+jftn3c9vT/82iYANzoJPSpn0hrZ1WsY0JbnR00goFuJo61HsRvsw4mXSmnAYHTdV8tTgGGC+PT8ppjsYC/K9Q9/j7xb/HammVAaiAxh1SmKgLMssL1xOMBrkfPd5FuUtYk/9Hp6rfU6VIJu0JiryKjjZcZKu9i7SzGksyFnAJFc+xhf2J19oo1HCO3agcbvRTZuGLi0Nzdj3yavGYCdk8AE+Fo/hMrm42KuMwQ2qc3KsOQiCQKopdcyORoOngR0Xd6AVtEpnLuxBFERKXCVU91YTiATQiTrWlawjxZhCgbPgqnypBkcyA9EATd4m0sxpdA90J3Vgi5xFfHL+J1mcv5iT7SeRkTnedpxL/Zew6q3k2/PxRXzKuCSy2m3UiTrm58wn356P0+hkaf5SLvZe5FT7KW6dfCvbyrepwQfBaBCLxjJMuVDoLERAIBAJIAgCTqOTWDyGKIjkWnOVdE+nm0Mth7i7/G76Qn2c6z6HjIxeo0dGZln+MnbX7VYMgOXLake3y015xnClxBvBlYV+AEEQuNBzgc9VfI6HX3uYl+tfRopJrFn5b6QIYjKhdRfSuWImO6p/R3+oXy1KdQQ6yLRkku9Q9uWgX931dstHS5IaqiIcCZVdlcMKbIOo668bNpYx+MDnNDqZnTVb7abrRT0Oo2NYZP0gZmTOINuazdmus8Pem5M1hwW5C66rsDYUQ0eRr8TgA7TVYOVg80F2VO+gwFnA0xeeRitqybPnkWZOY1LKJGwGG/97+H+5b+Z9GLVGbHob2bZs0kxpVHVXsTh/MemWdPSinorcCkKxEHWeOtWbZRCDyuvlhctvqgflCUzgZsNQnlcttWJct4hszQaiwQF6E34O9p3m//Z+kSZfk/o3X9r/NfZt3Yn+BZKuuZqSEkJrl/LXzz/A00sfHvuLw8lm3W8Fz5uUOkkJ3xrC85r8Te8Ynpcnjf145hLN/O+G/0UQlPADo8VB0mCvTod561akI0eQ9u9XX9a43aRWVBB85LdIeXkYKioIPv00DAk7GEwplPbvRwJ006YxOS0NTfza1IWj4d3G81JNqYi3TkJ+dncyV3YX0bhkMj/b9+VhPA8UxdQ/L/wS7yvcSKLg/YTEBBe8l4guSGf6ygrESIyEXstpfw3GgQaWu5NVpWPxvHRzOiTA7XRzuOXwMJ43mLr7dvO8qFYc82/s9jQyLBnU9NbgCXtYmLOQQCQwnOdZM0GANHPa28bzCAZHHOOE11W9wWCSR+F4QXGayMghBmXpZXz62U+PyPM+9vIXFAuQrDc20j1WATB+6RLywAANUueYPK/IWYTdYOfVpldZU7yGSCyCw+hQw0NCsRBZlqwknifFJe5z30nK3uPI9X9Rv/NWdxFzln+GfX0n3lE8b6LINgEVI5nR1/bVYtG/7rOlJWmUNJqI0hHoYEXhCgw6AyXOElJMivfHszXPcrztOGUpZUk3lWgiSiAaUDsOZq056YSx6qzYDDZWuVchINAT7CEYC2LWmkkzp41ptngtGKqmcRldHGs/lvQQPGigmW3Lvqn8JwLRAJ2BTlYUrmBf476kQlu6JR2TTkmryXXkqt03gMqeSl6ue5lHN/yUQn0G4rS/RzQYickJOkPdPNv6Mn+u38nMzJm0+dp439T30R/uZ7VjDvG6fSOuyyARE3S6pM7G9WIkhYxNr4wqe8KeJO+4tkAbO6p3MCNjBjMyZ4y6vB0Xd2DSmnip7iWafE3qA/rUtKl8ePaHudh7kbgc52THyWGx0aP5Zw0liBpBQ44thwPNB7Ab7Goi61DvmaUFS5mZOZPzXec5lXeKZm8zcTmOgECaPk1JZXS6KXAW8P7y95Nnz+Ni30X1/IrGoziMDopcRTx+/vGkAkOxq5gPz/7wsG3vDfUyM2smuy/tVsJHRB1eyctq92puKbyF35z9DUsLliI0C2yv3s6XlnyJFFOKGrhQ31fPtIxp1HvqqeuvU9O0ZmTM4BNzP3FDQiuuLPTrRB2haIhvv/pt/nHZP9IV7CIai/JSz2ssumUOWauWIEZiYNDxStcxvrn7U7hdbrKsWdR7FKITjoVVv44saxahWIiHXn0Ib9irJlENPVZXg2vpcg9ivLGLK98f+sBn0BqGqQf0op5znedUT0ur3opZZ6bAUcBXl3+Vh/Y/lETA3sho6JUYj+D0hfo43XmanRd30hZoI8umdGJjiZjaRS92FXO09SgeyUNvqBef5MOit3Cx5yINmgYKnYWIgkiePY8UU4rqYyPFJTZN2oTT4CQUD2HSmvCEPext2EsgEripHpQnMIGbESPxvJ1VT/G/R/4XQLURGLzPBKNB/tzyAtMqJjFl1RLsGBCNJnoJ8ZvqxzncchjZOIKKaiiMycWZCZ43NgLRAFFdyvBwiiHQGi0Ua4vV+48loSVYUqLaeBgWLUI6cmREVY0EGJYtQ5OZiWC3Y/nAB8BgQPb5CG7frhQDXk8pnOB5V8fzMNhIbNtGxOfB5+smKMbZ132Mx498A5fJhdvlVnnetqnb8Epevrnwn8jYdwZ5z+MAmIG0Yjfty6bxoX1/qxaRil3FfHPNN4dt+1g8b172PI60HGFz2WZ2Xtyp8rxUUypaUcvMzJm0+9tJzUh9W3le3KhHHEUpKxa7aYr1MSN9Bia9iWAsyLnOc2hFbRLPk+ISXQNdJBIJ8ux5bxvPG69oduX74wXFCXo98Z4eEqEQMb2GPiGMVwiTb8+/4TxvvG1JhEMc6DswJs9zmVxoRS0Xey9S7CpWeV5Nbw1eyUtnoJO8yXlJPM/n7ca299VhI9NyfQPZwJylUzG+g3jeRJFtAmNiqFxYK2rVUdJBAmbRWfBIHjYVbVJJyuAstoxMa6CVYlcxNX3KKEEsoXRZYokYxc5iDFqDekMdKsMtchaxtXzrNV3grheTUifxj0v/kd+d+R1tgTZVLZJty76h/hPXA6vOitVg5UznGWZkzmBpwVIi8Qh6jR6f5CNBgnm584aRiIXZC/lc2YdI7HoB6Yo5/pyKCj7YnM7aFd/imL8ai87C91/7PgaNgbsci8f0miAWA0lSOxtXysOvBSMpZARRUAuJQ73jQCFgbYG2EcmXX/JzrPUYnpCHF9tfpCfYgxST1N9tVU8VL1x6gfk58+kY6BgWGz2af9aD8x+ktr8WnagjxZhCaVop26u30+Zro1/XT8KeIMWcMmx0zmawsSh/ES6Ti9+f+T31nnqqeqpUab5G1PDQvoe4pegWHBEHNX01VHVXYdKZCMfCTM+YzuSUyUxNm6reVAf9vK4kQoMkNhaPMS19Gg/OfxAElFE8gxWz1sznKz7PH879gdlZs3EYHUQTUaS4hBSXeK72ORblLeKVhldYmLuQO6fcqXZGVxWtYmrG1Os+xuNh6AOgX/Kzt2Ev7yt/H1/f/3XOdJ7hrql38cT5J9BpdBg0BgocBXxw5gfZXr2dmv4auoPdrC9Zj1lnpsHTgIyMRtSQ78inxFXC9w9/n2a/8nsafMACko7V1eBakqSAcccurny/0FlIiillRMWYVtRS1VPF0baj6ijpoF/Fyw0vs7l0Mw/f+jBnO8/SL/W/odHQkaAX9XQFuhRlnUavklhADato9bfS7GtmY8lGsm3Z2PV2LHoLPcEeDjYfJBAJEIqFkGIS/eF+nqh8gm3l2/BLfjxhD1adFVEQkzrHckJmXtY8Hjv3GOe6z6nrMy19GndPuxuHwTHmg/LVhE5MYALvRYzH84xaI8f7z5GXUUKqMx+AupbDeCTF+7HSX0fpGGbcXYnL41sTPG98WHVWLnpbmDHKCKKmpBiDw8Ui02Xj/rjfj2nTJkI7dxKvr0eTl5ekYBuKeH09pg0bCL30EtqsLDR5eUphzWTC+sADBP7wh+SUwvcwz0s3pbM2dzmOuJZbLXOJ67VcDLVwuPfkMJ4nmkwYTSYaNT6V53UNdCmqMi7zPJvexo/X/o9SYBvBjyt7SFDF1fC8+TnzeXrL78jVpiiqUaOBzriP/c4T9AZ7WVu8Vgk8SUTxSl76w/34JB9up5uTHSepyK14W3leZJ0F/QskF9rchdRWuNnyxJ2kmlP56JyP0jXQRbO/GV/Ex2r3asWH2ttIQk5g1BiZlDqJSa5JbxvPG7dodsX7gsWCZkhhfCg0JSXEmpsJ77jss2grdiOsruDRM4+yafKmG8rzZMPYjRNBq+M26zxWzJtBS6yPmoGmYTwv3ZyOJ+yhI9AxjOcZtUb6Q8rvcCjP0yb8RMYYk5+0ZgUaZ9qo63Wz8byJItsExsSVXklGrZEsaxZSTMLtcjMne86wRDmrzopFp6jfDjYdZGv5VgBq+mqIxCPKRS+1jCX5S9Sb7Ugy3Gu9wL0RlKWV8aWlX7pmsne1J/SbZeha6Cwk25ZNKBYa5tVU7CpmWd6ypOUOkoiHKv6ZxK4XRu1q6vPyyN5/njXrl/PgK1+kyFmkGK8nBhjTgUOrBYPygD1e52M8jKSQGWpgOlTBpb4WH/5ag6eBA00HkGISBq2BHFsOBo1BLfQOotnXzLycecO+fzT/rAZPA4+ceoR8ez6vNr3KorxF7G3Yyx/P/xGHwUE4FuZS/yUW5Cwg35E/jNCB8jt7YO4D/P7c7ylLK8MfUYoKz9c+jz/iZ0b6DB49+ygtvhbSLel0DXRh09voC/VxqOUQn13wWVa7V+M0OCnPGPm3NkhiMy2ZrCxayc9P/py+YB9mnZmEnKA8vZyt5Vt5cP6DNHobCUQCuIwu5uXM47enf0tVTxVt/jbWl6yn2FVMsbNY7fQP+oC8FbHaNoONGZkziMQiNHubMWlNmDRK8qheo8eit+CVvPglP1nWLCq7K9GIGvbU76HQWUhZWhkWnYVMSyY59hw0gibJY2PwHJqdNXvEY/VmYiTPuUEUu4qHjWWMNq5g1VnJtedyvut80vk/NJ1pkEjeVnbbm74dDZ4Gqnqq8IQ9qpH0UBLrk3z0hnvpD/Zzz/R7eOTUI9T11RGOh4nEI6x2r+bvF/89Dd4G5mXPoz/cz8n2kwA8XfU0FbkVLC1YyuzM2UxLn8b83Pnqb8tusvNszbNU91YjIKgPY+e7z2O7ZOP7G78/6u/wWkInJjCB9xreKM97/3MPcOqeV9A89+IwM27drRv5Q/WvgQmed7UodBbyaNN+3KtXYyV5TFcsdmPYvDlJTTZotm5cuRJtXp6qPBsLCa8Xw7x5I46TWu+9l+j585c//B7leYdbDvO9pf+PjJdPER9yDBYUu5m08k4ebXj6unjegpwFuA1ZyPVHR9xHcn0Dt679EJkpBePyvDxbHj9Y8g0Su3YTGnLuuYqL2XbrRp7vPozb6aZroIu4HGd29myernqaQy2HONt1lqX5S5UEe1dJEs9LhEJJwQWCxXJDgs1sBhuNxj5Cq2aiXTQVXSyBzmTlj/XP8J1n/glBEJTCYKifTEsmZq2Zr8z/W9ZlL8M4VUA26Dnrr+Vg9wnsBjsGjYHOYKe6/LeS52E2j5n8idmc9JpoMmHesoXgM88kB8mVlGBYtozg73+f9Hm5rh4rMLOi7IbzvF7/6D6DGrebWGUlwv792IFp7iLMi0v4+91/r0xAvc7zGr2NaAUtxa7iEXmeRtCwsmglm0s3q9dJIRIZc90McTC9g3jeRJHtXYY3+wF4pBl6railNLOUz1V8bsTuUqGzkExLJmWpZVT3VvNk5ZMsKVjCLUW3AEoa4ubJm0nICfxR/w3tXl4LrpXsjXRCl7hK+Jv5f0NACtAv9eM0OsmyZHGs4xg9Az1vOIp4tOSjHGsO9828j5LUEvWzQ0lEKiaCY3gFDPpvuIJL+VbF1/ir5z7Kpf5L7Grfx0eLi0eczde43ST8fsTXfRzG6+KMh5FGvewGxStvsDvZPdCNKIjoNXqseitp5uSOhl/yc7D5IDsv7sQreekL9VHVo8TR31J0Czsv7iQuKwZyWlFLOHaZMA5+/0j+WQICaaY0dtXsYtPkTVj0Fv5U+SdmZMwgHAsTjAYxao00eZsQELAb7DiMDpXQNXmaONt5lr5wHxa9BYNooD/Sz2PnHkMURNLMaeTaczHpTfQEld+JQWMgz55HQk4QjAY523WWcCLMXVPvGnM/DvXzevT0oyQSCTxhD5c8yk28zlNHT7CHryz/Cr87+zt0oo7ZWbPRCBoW5iykIq+CaDxKRW4FFXkVSefllV4qwDXL8K8FRc4ijrUeI9eeSyQeIZqIKiPN/jZEQfHyqO2rZUPxBlp8LXQPdNMR6KCmvwa3083ivMV8/8j3uX/m/ZxMnGRmxkxlP8bDeMNeApoAfaE+sm3ZN9TnYaTrKIyuRhzc9ivHFWRknr6gEPuhBXa4nM50o4jkYOfcG/aypngNL9W9RFugjVAsRGVXJZNSJ7E0fymhaIjZ2bP5zsHvcKL9BAIC2dZs8h359AR7eOTUI2ws2ciOuh1oBA1ritewv2k/wViQvU172du0l59v+Tn5jvyk317PQA+3ld7GuuJ1iKJINB7lUMshqrqriMajNHmbmJszPKL+WkMnJjCBmx03I8+b/dgtPL7xF5S/bsaNwUjCqKMu1sPywuUTPO8a13HT5E38pWYXMyvKKF25CE0khmzQo7Xa0Dld6meHmq0L69apBTPzvfeO+R2C0Uh4796RTdp37sRQUQG8t3nene5NZLxyOqnABoriKgWBZQsXsKf9QBJ3GOR6XQNdOPQObAYb/7HvP4gmoirPK00rRRdNctAbBnNCy6riVaO+P/idG7KWkdi1e/hxrKsjsnMX627bxG8bnubPVX9mdtZshRukT2dG5gyi8Sh2g52lBUuTzvGE1zvM9F7zeqqkeB0m+uOh0FnIE61H+c8D/0kkHmFW5ixq+mrQiBqV513svchdU+/in+d8gZxXzyO/9Iz694vdbjIXreOnF3/PsdZjzMuex8mOk4SjYXpDvYoXsT2XPHveDeV5GptNSfgcLV3UNvzaJzocmLduTSpoIooEfvzjJJ/EQch19ZSuXMQLbftuKM8LRAJkr946rMivcbsVH8cnn7y8TvUNFCHzH4v/mV9XP5bE856teZZIIjIiz1uctzipwAYQ043t0RfVioxU6r1Zed5Eke1dhBv1AHzlDP1YKhpQCMLq4tXE5Tg/P/Fzqnur2duwF7vBzmr3apYXLr+hUuS3AiOd0KIg4pf8/OOL/8jk1MnU9tVS5Cwi3ZyO2+mmL9RHb6gXf9jPSvfK644ivlqvgNqeWsrTy5mSOmWY8fAwvO6/QShM+rHT3Fd6N1U9VXz72P+y9s4nKRCE5E6L241h+XJEq5XAr36FpqQEwWK5pu24EiONyOlEHVPTpnKu6xyt/lYaPY3IyGRbs1leuJx6Tz2Z1kz1993gaVDj2q06Kyatcjlu9DbyauOrzMmaw7H2Y9j0NgQUw+DB8IfBEZaR/LMsOkUC3R3sJhKPkGHJ4M9Vf2ZGxgysOit6rR6DxoCMzEB0gO6BbhxGBzadjUPNh4Z5J2RZs/jMws8gooxODwaKDEgDxOU4CTlBJB5RiSIoHd4BaWDc/WjVWdGJOrSilgQJQrGQUtjTGghEAmhEDQdbDnKy4yQzMmYgI6vjfqF4CF7/SqvBmvSb8kt+Hjv3GFXdVWr6V7pFGYO4Fhn+tT4gpppS1XTQ9kA7a9xrkvwIB0du75pyF72hXho8DWhFLa2+Vv5y4S+UpJRQ01eDjExJSgn7m/ZjN9gpcBTQ7Gsmz56HSWe64X5e13odheEPhIdbDhOX40QSI3f7Bh8m3gwieeVxisQi6rnZ5m9jReEKZGTCsTDxRJw8Rx41vTWkm9OJxCNUdlcCSoCF2+XmYu9FeoI9nO44zeTUyfQEe7ij7A66Al18ZflXqOqpotnbTCASIMOSwXOXnuNDVuX62OBpYEfNDn5/9vcEo0FEQaTIWcRtk29jesZ0/nD2D/gjIyeKXWvoxAQmcDPjZuZ5q/98u8rzPjX/UyxyLWIq6de9Tm833m6ed9/M+2j0NHIp2ofVaqXQmTl8OZEIxpUrYcUK0OnQvN4Ujbe0jK6qKS5W0kRHa7zW1SGsWfOe53l35K4l/vyjo+6jOWtWsKf9gModruR6bf42bpt8G9vKt/Gn839SeV5vqJeIVhhzP41XzLTqlETWLI1z7Aa6L8D8lBmcTzs/Is/rDfUyEL3MK682VXI8vNk8T6fRMc0+idy9Z0kM8+uqpxiZVdMW843X/osCZwGvNr2KRWehwFHApf5Lqj/YjeZ5mpQUTHfdBcHg5aKZ2TxigW0QVyaxxlpaRiywqd/xeiDCjeZ5v6p7klsqFqlFfqvFSaLyglJgu3L96hvZtOwO/vXwQ0k8ry3Qxp1ldw7jeafaTzEldQoOgwO/5Fd53qX+Sua7C6G+cdi6Cu4immO9TGO4LcjNyvMmimzvEgyaf+pFPZmWTPUhWEC47pv8UIxkljsWipxF3DP9HmZnzabB00A4FibNnMa09Glv2sz424nKrkq6Al1YdBZiiRhaUYvD6OBY2zG6BrqYmz2XBTkL1PGmDEsGpamlSDGJFYUr2Fu/l6UFS6+7EzFeN7bB08ATF57gicon6An28LkHPjD2Agf9N7Ra5Pp6blu0ka9rv0MgGmDd0+/joaX/wr1rP4EYiSLodMhaLXJ/v0K8srOVDtd1SMn9kp/avloaPY1IcYmytDLafe00+5RwgHpPPQtzF5JmTqOyu5Kp6VMRBZFUU6qS6CSISQWeQf8OUBJXs23ZzEzMJBANoBE0zMuZR6O3kWxbtkrA0sxpbCrZpN5o9Bo95enlXOy9qI4uyMiEYiFEQcSoNSreFZZ07EY7mdZMqnurMWqNhGNh9Bo94XhYDRL48ktfVklXLBFDI2g41naMp6qeUsb7Lm7HrDMrZtNyjAxzBpNSJuF2uZHiyihEX7CPqu4qHKbxu4iFzkKmZUzjWNsx2vxtVPVUAcpYX5o5jVDssmF8sauY3lDviMu5koy81voaj597nP5wv/qay+iiIk/peF/Nb7nB08AT55+grr9O9fQqdhazbdq2UR8Qh44yxRIxjrQeUf0ITVoTGydtxKqzUtlTyYn2Ezx94WkSsmLeXeIqYW72XB479xgLcheoBTmv5KXJ20SWNYs8m2K82jnQCV3csPFXuPbr6JUYPCZ6cWS/jMGHiaslkp2BTi50XUAWlES2wQJypiWTlxpeoifYc3ndLZl4wsq4VFyOJ43etvha0Iga4nKc7mA3Oo1OfZDKseXQ7G2mK9iF8Pr/IvEIc7LmsOPiDnqDvUxOnczB5oPMzp7NZxZ8hmA0SE+wh0ZPo9LlPv8ER1qPEIwGmZ8zn1x7LrFEDH/ET4oxhSUFS0gxpoy4jdcaOjGBCdysmOB5by0quyqp769XVcSxRAy7wU6Tr4mLvRffdp6X8HoJPfvs5YKITof53nuRAOnwYSVdFIarajZtItHdPfaXR6MYN216T/M8c1xkrOFYY0wg05JJobOQJk+TWmAb5HkJOUFdfx01fTUsLVjKC3UvoBW1aAUtB3tPcseohv/F4xYzC52FfLz0HoTQOOO7oRBlKflqWMNIGMoXwt6+cVMlx/Pku1E8b7Ihl2Dd9hH/Xq5vYNaiDfgkn8JFEnGV5+Xb85mSNoVMSyZt/jYQbizP09hsSSmi14rxCqxxvfK8drU8zy/5qemtocPfgcPkoD/cjxSVsBlttPna1PMQknleJB7hhbZ9vPD6cj6X/1doRvF5BBCkiMrzREEkEo9QllbGMzXP0BvspdhVzMHmg7hdbj614FOsKlrFoZZDavH7ifNPsLNmJ/+95P9RjJAUfiAUu+leMYvmcDvTRvjum5XnTRTZbjJc7xhAk6dJTdcZvPkAqiF2k6eJaZkj/TRvHGwGGwtyF7Agd8Fb+r1vBfrCfbT52/BH/CTkhGrS7TQ66Qn2YNVbea72OS71K+qvroEupqVPo9ZXy+GWw3xgxgcwaA281voajd5GZmS8eYaVfsmvPJS2HFEfkisDDWMaE6tdz5YWQJl7H7zoDkQH+Pzef+Q/zN9hUd4ivrH4a+QJqWA2Y/3IR67bq6HB08DL9S/z29O/pc6j3NTtejuri1ezdcpWQvEQPQM9dAx0MNk1GYvOQjgeRifq6A5285vTv+FrK76WNB4Xi8UoTy/HYXAgIyNFJQQEDjQfwB/x0xvq5e5pdxOQAqwvWY9VZ0VKSOys2clAdIBYPKaomvRWluQt4WDLQWKJmEKaRA0lKSXqWIPT6OTPlX9mdfFqBiID9IR6iCfixIU4OkHHLYW3cKHnglpgGxz7NOvMmLQmTrSf4KNzPqq+btVbafW28sDcB3j0zKPsadhDJK4olqanT+fj8z5OrjV33P0ajAZ54vwT5NhzkpRwoViI/nA/doOdSDyCTW9DKyq3AI2gId2criqTXCaXqlIDpRjzatOrSQU2gP5wP0dajrCmeM24XTW/5OfXp37Nnvo9+CN+NIIGg9ZAfX894XiYz1d8fsRr3ZWjTLFEjMruyiSvhcMth+kL9XFL0S1YdVZicgwBAY/k4U/n/0QsEcMb9lLiKqHAUUCTt4lgNMitk2/lWNsxOgY6qOurI8OacUPHX98oBlUAUkzCpDUljYzmWHMQEJK69SPBL/lp8jTRFmjjmepnmJU1i0dOPcK5rnOYdWbm58zHYXCwpngNOlGHLMtqB37Q22Ro0IE37CUWU0I2ekO99IX6cBgcmLQmChwFZFgyONd1DhERGZkESgLYz47/jEZPIzOzZqIVtczJnsNAZIBHzzzKF5d8ka6BLrWjWtdfh0bQ8P5p7+eVxlfY13Q58XhTySbumHIHU9KmjLi91xo6MYEJ3GhM8Lx3BjySh1RzKnV9dXglL6IgYtAY6A31UuIqwaa3sat219vC80ZUHEWjBP/wB4wbNmBcvRpZkjCuXQuyrEwr6HQgCMiyrHqsjQbBaARBuCl5XiKe4FPTP8KSlNnoYzJhjczLXUf45rHvqUrCN4PnoR/b1454nG3uLdgMNvY17ONs19lhPM8n+fBKXtLN6SrPE2WRNfkrMGbokOQriqDFxYi3bhh3X+uiCdi9D9asHXsdtVp0sQQpphS8YW8SzzNqjdgNdpUvdAY6Efy9jPXLGM+T70byvNjrzyej7pMYtPhbKEstG5Hnne86T6OnkSJX0U3N88YKRBCK3VwMtYzL80A5FpXdlfzx/B9p9beyrngdDx14iNq+WuZkzSEUC5FhyeCOsjsYiAwojWZG53lRvYjtnnsQbDaQJDAakxKJJS0qz4vLcXJtueyq2UVtfy1zs+aiE3XMyJiBRtTQ7GlGg4ZGb2MSz4vEI/yk+vfMLZnGikUb0MdkIlqBc4FLeHqPsbJw5YjberPyvIki202EwTEAv+RnUsokJdGp7ThaUUumJZPS1NJRb9DBWHAY8YLLhtgzM2e+FZvwnoBf8tMeaKfF36IWQQD8ET9Oo5NsazYuo4sMSwbbpm5DSkjoRT12g51mbzMLcxfybM2zHGk9gklrIpqIKtHLy7/K4vzFb3j9Gj2NagfJrDNj0BrYuuN+Ltx/BHY9n+yz8Pp8vXT8eNKcvWBI7qSkmdOYmzUXg8aA0eZEYx093eVq4Jf87K3fm0S8QPkdN3oaeabmGYqdxbT4WwhHw/giPowaI680vEI0cVmmPDgiNljgcZlcXOi+QIuvBY/kQURkc+lmHlzwINU91eTb82n1tZJrz0WWZS72X6Smt4YnKp+g3lOPXqPHZXRR4CjglsJbKE8r50zXGfUcXJy3mN+d/R0lKSWUOEuo6qniiconWFGwgluKbiESj+Ayusi0ZNLqbaUv3Ide1KtdcKveSjwRJ82cRn+on3RzOoWOQhq9jdj1dialTOJk+0lkZJxGJ7IsIwgC/oifQ82H2Fiycdx9W9lVSYu/hTRzGpNck7jQc+Hy/o0GcRldlKWWYdQamZk5k5MdJ5Me3AaN7H2STyUhlV2VwzzABtEf7qd7oHvcrtqp9lM8feHppEKdVtQSM8c40HSAWyfdOqKnFow/ymTVWZFlmb5gH2e7zlLbX6tuazgeJt2cTqYlkyMtR8iz57E0fylul5sWXwteyYtG1Kid3isTw24mDPVkHBp+MviQHYqFxkzKG7zHCAg8VfUUS/KXcKz1GBuKN3Dr5FvRCBpiiRgHmw/yixO/4P6Z9xOX46Sb03EYHWwp3cLFnosYtAY8YQ/VPdXIyNwz/R6+e+i7nOo4hcvo4v3T3k+WNYuOQAcBKUBCTpBA8aCZkjoFWZZp8bUQl+OEo2GkuKQemyxrFj7Jh91gp6avBqfRSSgWYkraFM52nqXV34rA5VGbjoEOznSeYWn+0hG3+VpDJyYwgRuJCZ73zoFFb+FUx6kkRe+gkr3F10KRs4i/Lvsr1qz4H+VhUCdwylfNN4/+9w3nefLAwMiKo2iU8I4dmO+9F8FqRRBFYu3tiBYL0oEDGObNI7hrF9a//utxTdrHGnG7Gtwonrc8ZQ6Jw7uR658GwATcXVzMB9+/n75wHy2xPp6u30W6Jf0N8bzgrM+jG8OTOF5fj2nqZAD6pX50om5EnlfoLESr0ZKQE9j1dj5S/gEsLx4m2NKCYdEiDIsWKUVQrZa434+kGX/fyoEAibp65IV+dUR4xHVsaUE3cya3l93OweaD6pgtKNMNSwuW0hvqxWawUdlVSYnGNWaRbTyV1Y3keeN9d1QrMCdrDrV9tSPyvJ5gDzk2JZH3ZuZ5owUiCMVu/KsrONO2Z9xE5MFgkL9U/4WznWf5zMLP4Jf8bJ68GUEQiCViHG09ypqspax3LkAfl0lk6+hIeNEIGiq7KpN4nlFrxGVORXp51zBlrPVDH2Jg78s81/ZKEs9DVqYcRESkmEQ4HuZ4+3Hy7HlkWDLI0rv48tRP4JBNiAkTtxdtAOBY2zEeOf1I0vP17KzZLM5bTEVuxYjbe7PyvIki202CQbNBv+SnNLWUfY37ePrC03QEOhAEgRJXCX817a/YULKBJQVLhv19QArQ5GtCiknE5bjaPdCKWtoCbQSkG2f2+F5DTW8NNT015NpyqfdcvtjEEjGavc3cNeUu0i3p1HnquNhzUVUTrShYwcfmfoxHTj2CjIxO1KkPi2e7zvLQ/od4+NaH33CnMxANEElESMgJZVTL10xXpIvm/iaK1qxBrqhA0OuVTmY8jhwKoc3KUufsNSUl6GwOPjDjAzR4GjBoDGhEDTaDjc9WfPZNmWtv9DTSE+xJIl6iIFKeXk6uLZcWX4uioBk0wNXqMWlNzMuZx+GWw+rf2PQ2uoNKgWfQDBcBtBotGkHD5tLNvNL4Ck9feJpcey4Hmg+g0+j4+NyP89CrD/HgggdV4gUQiUfoD/cjI/NK4yt8eemXWeVehcPgoMXXonY/z3ed5yOzP8L5nvO0+9s523WWlxpeYkHOAqamTeV893mKXEU4jA48kjKGN9gpNWgMOI1ObAYbqeZUvrzsywCYdWZkWeaJqieQZZkcW46qkgxFQ+xr2seFngtJ4RYjYVAWfb77PHdOuZO2QBsn2k+o7xc6CtlavhWNqGFm5kwmpUzih6/9kIScIM2chkVnQStqk0iIR/Lgk3zk2/NVj4yhcBqd46qnLvZdHKaEiyVi9AR70Ipa2gPtY27XWKNMhc5C9jbuJc+ex70z7uUP5/7Amc4zCIKA0+hkWcEypmdM5/na59WkS5fJRWV3JV0DXaSb05NGMK8lPOCtSlsdxFBPxr5QH/FEHKvBillrpsBZMOp3D95j+kJ9WHVWmn3NTE2fyuGWw/z69K9pD7Sr+2Vp3lI+Mf8TPHr6UV5pfAWDxoDNYGNO1hzun3l/UrrpX5X/FU9VPUVVdxV6jZ5IPML26u18fN7H+cO5PyAgEE/E0Yk6SlwlbJq0iTMdZ4gn4mhEDanmVFJMKawoXEE8EUeKSVzovcDOizspdBQyJ2sOvSFl1OBi30XsBjsJOaEWoJ1GJ03eJloDrSMer+sJnZjABG4EJnjeOwd+yY837MWmtyUV2WKJGKFoiHnZ87g1azn6M/uQ9zynvr/RXcTCW3/D3c99FCku3TCeN27KZyyG7PEQPnEC4/r1yF5vEs8LvfqqYtK+c+ewxutoJu3XihvB8xKhEOx6AXkko//nnie1ooJUXTbTSj5KWAcvdhzEaku5Lp73l4bnuX/DXYSee25YYWGwKS0W59PgaSCeUKwSRuJ5PsnHgpwF/Oi2H2HWmSm3FCHX7wVISnZVl/+Jj4Bz7H0rS4rPcnD7dqwf+YgyNjzCOkonT6K3WEgVDaxMW8C29JWKR7PRQGfcx2MNzyTxvIMDTdzqLkoa1VOPXbF7zDHWG83zxlJ44S7kqOc8n17waX5+4ufKc9AVPA+UIvkgbmaeNzQQIREOEdOK9IkSXsLcN/O+Mb978D6jE3U0e5tZV7yOUDTEj479iDZ/m6oye+HOp8jcf4bEnj8o3wnkuotYvUIZ3T7dcVrleT9Y8S0iO3eNHJTy3HNoNq3nG7+anczzOs8QjocxaoxJPE8ravn6gi9TsK9KHZdOAEvcbqat/gyLqte9a3jeRJHtJsHgA9PklMm8WPciz9Y8S+dAJ3E5jizLVPdW87uzv6M32IvL6GJqxlT1pB+IDuCNeBVSIHnVZWpFLWnmNFxGFxrxKlojE7gqtPnbON9znvUl69l9aTf1nnpkWUaWZQqcBdw15S6eqHqCJk+Tmoxj1Bpp8DbQ5m/DJ/lIM6cR18WTDEfPdp3lbOfZN0y+rDorelGPRtAQiAfQiTqcRie6WBzZ4yH4pz8p3h1btyIdOTJMqm7esgWrw8G/3vKv12TSfi0IRAMEo8Gk11JNqeTZ8hAEgaOtR3kl+gr+iJ9QNERJSgm3l97OvOx5nGg7QSQRYWraVPRavSqbHrwBlqaW0h/qpzy9nAPNB6jpq8GoMZJmTmNvw15EQWRvw141dXNooRQUAibLMjV9NfgjfjXNs8HTwPO1zzMjcwYuowtRFFmWvwyb3qYkGIkiWkHL87XP43a5STGlEIqGmJI6hTNdZ1SiLcUlPGEPS/KXYNKZONZ2DIBtU7dxsuMkPaEeEnKCWCim3mC0ohZREOmXksnLSBiURUcTUXZc3MFHZ3+U1e7V9AR7MIgG0i3paEQNW0qVMYfXWl9jx8UdY3qtOQ1OLvZeZEXhiiQzWoB8ez53lt055k2/0dOYpD4ailgihhST0Gqu/3ZkM9jYXLqZHRd3YNPb+Ndb/pX2QLvq/9Xqb+WpC0/R5G0iISdIN6eTkBOEY2FsehsGrQGHMdnv7mpMZWt7a9nfvB9PyKN6I+2O7mZZwTIEQVCCJgQNKeaUN5WUXWtCHly+x4CiaJyVNYvqnmqerXmWek89Fp2FuBzHE/agETX88sQv1d+EFJdwCA4ONh/EorPwhYov4DQ5MWqNOI1OznSewawz0xfqwxvzEowG+b/X/o+NkzaytGApx9qPoRN1NHoa+fGxH3Pn1DuRkcmyZJFlzWLnxZ2E42Hy7fnoRB3xRBy3y41f8tMb7sVhcBBPKPfCod1Nu95OLKGcJ7F4bNRtv57QiQlM4M3GBM9756DR00ibv21UnvcfS/4Zwwv7RzBhbyBFELhn0l08VvvUDeN546Z8vu6zG790CTkQIPj736tvaYqLMd9yC6LDgenOO6/JpP1acCN4nuwfRcHH62OXy5YR/O1vAaVosMFdRGR9uVpkGcTV8LxGqYOYHEObl5esNmtpUYuVosHI9uqnSDWlMjNDmQyAyzzPorcw2TkZnUbH6c7TbJu6DSEYQR5jvw0W0MaCMDjuGwwSePRRLB/8IHIgAKGQuo7SyZOYN21CNJkw9fUivHCI0BC+73K7+dytH+L71b9Wed63j/+UOcu/TjYke2K5i0hsXDPmGOuN5nmjKbzEYjfhdcvpb9jJnuo9NPua6Q/3J/E8UHjtUBsUuH6et1fey7ridUTjUVoDrUTjUXKsOUxOnfym8bzBQAQNoANyX///eBi8zzgMDqakTcET9nCq4xT1nnrMOjNSVOKzsz5Bxr4zJK4omsn1DaQDulkWNk3apPK8An160m9nKOL19ZjjMh+d+9FhPA8Un7ehPO9by/4f+QcujBhg4XgZvjz/C3zt0DfU19/JPG+iyHaTYPBED8VCtAfa6Qh0KMRryKW4rr8Of8TPma4ziKLI85eexxv2Mjl1Mr6wjyxrFimmFAKRAL2hXvWiNillEimmkU2hJ3DtEEURb9jLyw0vMyd7Dqvcq7DoLDhNTqLxKNFEFI2gIdWUSk+oB52oI9OaiS/soy/UR7YtG1EQk7qjg7iaIsp4KHQWUuwqpravFk/Yo8ruI1oB5NdP+WiU4JNPDpOqi2lpakT3GzVpHwtWnRWzzqya2xq0BkxaE1PTp/KDIz+g3lNPljULUNIja/tq2VW7i88v+jweycPivMX89ay/pnOgU5VNB6IBpJhEk7eJQkchk1Mn84dzfyDDnEE4FqZzoJMECRJygkZvIxW5FYSjYbWQNRQJWZE8S/HLZKfIWcSCnAWc7jhNo1ch4Kc6T1HTqyRXCgjMyJhBOB5mUsok0sxp7L60mwcXPMj/Hf0/TneeRkBARqY8vZzPVnyW0x2nAZIKhYAaX38lXAbXuPt2qGw6FAvxRNUTlKaWkmZOUw1ky9PLsRlsdAY6qe2tZVHeIqKJKHqNnq6BLk53nE7yWivPKKfAUZBkRhuJK4a2Fp1lXCl2IBrArDePqoTLtmaTY80Zd9vGQpGziA/N+hCNnkZCsRBHWo6QkBO4XW7q++spcBQgxST6w/0UOAooSSnhpbqXKE0tJd+Rr/pPDGKk8dehD7wyMj86+iMavZdTkFJNqczKmsUrDa9Q3VtNg7dB8eFxFKjjuTMzZ74t4wlDyaRZZybdnE5cjtMb6iXdnI5W1GLWmYkmorhMLvY37afYVYwoiOTYcsiwZBCNR+kL99Er9RKIBPBKXhJyAp2ooz/cr1z7RI1iepuI8ItTvyDHnkO6OZ0nKp8AYFnBMpxGJ7dOvhWDxsC+xn0gKAlzDqMDi86CLMv4JT8yMhd7L3Lb5NtIkMCgMajJqnaDndLUUiw6C9FElGxr9pjbfyOvZxOYwNVggue9c+ASzNyftxkp6ONvSz9MVbCBV7uOYdabicajTDUXkqg7NOLfynX13LnoVp5qePaG8byxVD0at5uE34/sfb0YK8uY7713RJ73Rk3ax8KN4Hmxbu/YX3qFwk+ub8DwgjDswR3G53k1fTU82fg8W1o1IyrOhGI3Xk2UvlAffsnPgwse5OGjD3Os7ZjiCRyXWJq5lE8v+DRnOs+oPE9IjH38hXH88gAEqxVxMDjB62XgZz/DsGgRmrw8ALTTp6O32RBNJuJ+P/H6BoXrz59/uQh3+DA8+xz3rr2dlmg/5RnlZNuy+cKBf+ZD5fewZNkdaKMJYjqR8wMNzDON7VH3VvC8KxVePiSqg83UdOzjYMtB+kP9TE2fSm1fLfn2fEpSSvhL9V/UxvFggukgrofn5VhzWFawjGdrnuV813kavA2UppaSakwl1ZLKgpwFbxvPg8v3GaPWSIophf5QvzqxoRE1WHQWtuStQd63a+QF1Dcwe/ldnJGaVZ535Xl1JRLh8Mg8b9KtOI1O9tTvUXnelrzVyPufH3E5cl09mxbdytdQztV3Os+bKLLdJBg80f2SHykmIQyak16BaCKKT/Lxcv3LZFoySTen45f8mHQmNpdu5kDzAYL9SgJbKBpClmVSjOMbJE7g6lDdU40v7EMURZq9zfQM9LC2eC2vNLzCpf5LOAwO5ufMxy/5+di8j/FczXNEEhFlpEtvZVrGNLKsWXQFu5idOZueYA8nO05iN9gxaA0YNAbOdZ0j3ZxOz0AP/qj/mqXJNoONbdO2EY6HCdYG6Q31kpATHOw9Sb5u/mUfjmg0iThoSkowb916o3ZdEgqdhWRYMliUu4hXm19VOn46CxsmbaC2vxab3qaOWCbkBHqNnja/4hf20JqHMOlMTEmdwvqS9dgMNvySn1AkRLOvme6Bbiw6C/6IH5/kU/08BjtsToMTT8gDgN1oVwp0keRuliiIaiFiKCanTmZK+hTa/e2c6zrHhpINJOQEtX212A12AtEA87Ln8emFnyYhJ4gmolzqv8Qn53+SUCyEP+zHoDUgxSTq+uuQ4hIpphSVQM7InMGMjBlqWMJQzMiYwYzMGePu26sxkB3E+a7zvNTwErsv7b58bByFavd+0Gtt6DIruyvVz16tFNuqs+IL+9g8eTM7anYMU8K9WQa0QxVe6ZZ0tldvp83fxvKC5SCAYYqBTGsmRo0Rjajhzil3Ek1EhxXYRjKVbfA0sOPiDrSCFqfJyUt1L1HvqceoNarF9dOdp4nLcbKt2XQHu1mct5izXWc53nYcg9bA85eeZ1HeIu6Zfs9bbrg7lEwatAbVNyYhJ+gKdqETdUQTUYwaRSEx6NtRllpGs6+ZnmAPGkGD3qfnbOdZcmw5tPnbsOltyCQrzARBQC/qWV6wnFRzKu3+dv5mwd8wEFFIq01vw2aw8fSFpylJKaGyq5JgIki+PZ+FuQs50X5CLTzEEjHq+upYUbiC+2fdT01fDQICOo0OKSYRTURZkr+EyamT39L9OYEJXCuuh+dlWDJINaXiC/uw6C1snLSRuv46ApEA4ViYQCQwwfPeZMQ9HhzPHyBeV4f59dfmFbvJXLKBdU/fxUB0gPvvWjemd5VTMFOeXq7yvKqeKj498wHWZC4hU+sk3tOjWHZIkqoiu5ZwgdFUPRq3G8Py5Uoj9fnXH2TjcYJ/UEbC3uk8T6sdWSmlQjv8sTZRV8+ti29TH9wHcTU8709125mz9KvkyAmov1xoEdxFaG5dT0u4CUDlep+a/ylFdRr2YtaZKXIWcabzDBa95XJD2CIhuN3DRl6V5brBYh72+pUwWh1w2yaiO3cphbbX+bxY7EZ32yaMKUO2KRIhev78sHFS89atBJ98kgxxLR5NNInn/fjcI/z49c8O8rwMa8aY6/RW8byhCi+/p4FjrWfxhr2sKFyhNLwFgSmpU9AKWoKxINumbiNBYliB7Xp4noxMk6+Jl+pfIsOSkcTzznSeQZZl9tTvYUn+kreF58Hl+4yAoBanekO9qgI6mogqwRljQJbCnO25zPMwjheUYiAcCyfxPLPOzNritTxf+3wSzzMnxi49uQQzKwpXvCt43juiyNbQ0MB//Md/sGfPHjo6OsjJyeG+++7jn/7pn9DrL6s9mpqa+PSnP82ePXswmUx84AMf4Lvf/W7SZ25WFDoLSTOnkWJMwaK3UJZaBgL4wj7Ft+D1Bw69qCfVlKr6JdX11+EwOhS1lCWTLaVblNjdSy9g1pnRilrWlqwdsUDzVs+Yv9NR21vLtw58C4vOwuqi1Txb8yw5thyOtB6hydtEmjmNySmT0QgamnxNvNLwCrdNvo1GbyNxOU5paimHWw5zruucmkY1KWUS28q38fi5x0k1p9Lia+FA8wF8ko+l+UvV+flrTcIpchbx+YrPs654HWc6zyjeXjoz3gwHKanLh8e6l5Rcdzz79cBmsLEkfwkdgQ6qeqroHuhG0AtIMQmLzoJFb8Ev+YnGo2hFrUrApJhEi09JGJqVMQubwUaDp4HHzj1GOBomHo/TF+qjL9TH0oKlaEUtOlGHRWfBJ/lwGV3k2fKo6ash05KJFJdYkr+Ewy2H8Uk+QOmo2vQ2FucvZlrGtGHrPdR4/kLPBZbmL+WuKXeRYVYIyCr3KqZnTudc5zlAuaHV9NWoy5CCSlLPHVPvYGXhSgqdl8+7AmcBX13+VTUKfhAzMmbw1RVfveoRk6uRTfslP3+p/gv1/fXYDXZ1+xu9jdAEs7JmJXmtvREp9qBnWoY1g5VFK4kmoklKuBWFK970a89Q77JANIBVZ03a14PrNehTNoihRU9Q9lODp4HHzz9OpiWTw22HybXlsqdeSX+16q1MSplEz0CPen7OypzFyqKVHGg6QG1vLR7Jo3gbChr6Q/3EErFRU7ZuFAaTSftCfXjCHubnzGdvw160oha9qFeuESix6wk5gUVnwaa3UdlTSTgWVs27BUFAI2g40HyAhTkL0Wv1lKWW0R3sRifqWJC7ALfTTUlKCcdaj7Gjegf1nnrSLel8YPoH+POFP3Op7xKxhJIEvKpwFR+f+3Fqe2spcBTwcsPLeMIedb1NWhNWg5ULvRd4/7T3s69xnxrsohf1FLuKuXva3RP3rnc43is8L9OSyZKMedydtYbYPCWR7ZmWF/m3w/+pjtYl8bwL22n0NqIRNLhMLrJt2SzIWYBf8mM32Hm5/mUSJEbleTDB9a4FcY+H0Pbtw7yH5Lp6cmWZry74O35w5mfjpnN6CPGb078BlPv3M5v/gPPlo8gv7iQOBEj29hr0wzVv2aKqzMaDqurx+5GDQXj9HIjV1CAdOKAsc0hq/Dud522v3s5Meylzi93IdSMHNsRHSaC0yroknnMtPO+rrz3EtilbWLH8LiwJHTGdiGC2kJ6ahbnzslJxKNeTYhL1/fVMSp3EltItSdzDak9j4Lb1xHfuTiq0CW43mtvWY7FfXbCYMSUd7roDORBAliQEgwHBalUKcK8jEQoN82sDhf9LoKjbwhEKs9+9PK80rfRN43nBaBCHyUFcjo/I80RBpN3frqSuvw08Dy5zve5gNzMzZ/JyvcKpbAYboWiIOHGkcao/Ua2YxPO6En6cYwSlNErd7KrdhVln5gPTP8ATlU9wtussVr2VstSyJJ6nN4+9Pyz2FFYUrHhX8Lx3RJHtwoULJBIJfvKTnzBp0iTOnTvHxz/+cQYGBvjud78LQDwe57bbbiM9PZ1XX32V3t5ePvShDyHLMj/4wQ/e5i0YHzaDjWUFy9h1cRc+yUeztxlvxIvT4GRa+jQqeyopchbhMrmw6W1859B3ONl+kimpU9SOaNdAF90D3czLnsfsrNkUOgsV030Znq56mnA8TIYlg2np0wjFQiNedG7WSOO3G37Jz/7m/dT116EVtSzJW8LSgqVMSZ3CI6ceYVbWLMpSy8i2ZiPFJXLtubT52xAFkQyr0ol+quop+kJ9zM+Zj0FroD/UTzQe5dWmV1lXso6SlBLOd52nJ9RDLB5jT/0elhcsp2Og47qScGwGGxV5FWRaM9levZ32QDu/8DWzKmspszauw5gQIBJROqivy8rfSoRjYXySjzvK7mBL2RYSiQTZ1myKXcVc6r+EKIhqcdmsM5PvyEenuSxXD0QD+CU/vzjxC15tehUZmY/O+SiVPZW0+dvoCHTgdriRkcmwZqjHo6qnirnZc1mSv4THzj7G4rzFxBNxOgc6lTFfcyqZlkzunX4v5zrPcaHnAv2hfgLRAC6jixkZM0Y0ntcKWrQaLQPRAUWNaElXixpDYdAamJI+hSV5S0Y8lovzF/PwrQ9ztvMs/VI/LoOLGZkzrtnDZTzZdKOnEU/YQ2+ol0JHoZrAJMsyzb5mbp18K+uL1yet4/VKsYPRIJNck2j0NjItYxpWvZX6/nqsBisr8leMG+ZwvRjPu2w8gjbY1cywZDA1bSr7G/dzqe8SToOSeNk90K0oULUGpqZN5UDzATxhD1adlWWFy3i6+mkGIgMEo0E0ogazzoxZbx43ZetGYOiDQ1+oDxkZjaChyFlEq69V8Rt6PXrdK3kpTy8nFA3hl/xKFzcRRRRESlNKMWqNivpWZ+BS3yU+Mf8TBKIBSlwlHG07iizLHGw+SCQewag1Mj1jOsvyl/HbM7+lpq8GvUZPT7CHNn8buy/tZm72XP5h6T+g1+gRGy+f9za9jVuKbsGiU8yWdaKO+2fdT/dA96iEegLvTLxXeN5HSrZdVp+8jo+7C1m9dSe3PLmZTGumyvO+ffDbnOk8AzIsL1xOd7CbjkAH7b52ipxFnO06yxeXfJFwPEypuYBAexNyWEIwGcFswmpPU4sTE1xvfCRCIRL9/SM+SAJQ38DWW+6mJx6gJtQyarFHcBdxIdhEeXo5/aF+PjntQzhfPjbMTH5ooUPav5/4pUsEn3kG89at16Row2Qi4fUOV7WVlGDatAk5GEQ3ffo7mudtr95OZXcluy/t5udr/huTLMOQ/akpLsawcKFSsBwBOpOVBTkLVJ6Xa8/lI1PuZWnqXIS+IMFAKy2xPk54zmPT20bkeR16Ca0QR6vREgx76OzyXDfPs6RmEbjzVhgIqgUyLOarLrANwmh1gHX0ouyoKbQovz/DokUIJuMEz7tKnjc9fToHmw/SE+oZkefJyFh0FuyS/W3heZDM9WJyDFEQmZ4xnUZvIw6jg4ScYHf7q3xoFDUl7iKOeSqTeN4f6rfz+ds+PCz8QON2I2xax8eeuYfStFKW5C3hN6d/w8W+ixg1Rlr9rTR5m3j+0vMqz/NqImSOVigvLsavib9reN47osi2ceNGNm7cqP67uLiY6upqfvSjH6nka/fu3VRWVtLc3ExOjjLz/V//9V98+MMf5hvf+AZ2u/1tWferhV/ys69xHwPRATZN2oRO1HGw+aCSFOiDJXlLWF64nDXuNTxf9zwn20+Sa8vFpDNR3VtNf7gfjaDBqDWSZ8/DaXJS31/PjMwZ/LHyj3QNdNHmb0On0TE3ay7TMqbhDSd7G9zMkcZvNxo9jfjCPsrTy7Eb7ARjQeZlz1PIauntZNmzeKX+FV6uf5k6Tx2pplTSLeksyV9Ck7cJq85K10AXMzNnsq9xH0atYsSfkBPE5Tjritfx69O/ps3fRnewG5vehlt0M9RD9FqScIZipBtM3GFF+zYf40A0gFajVbZ5oJtIPIIgCJSllanjm8FoEJPWRJoljbnZcwlFQ+rfW3VWKrsrOdJ6hEv9l/BJPpo8TUxJm8KsrFm4nW7mZs/l2ZpnafO1YdFZMGvNLMxdyMZJG2nxtbCqeBXlaeUsyl1EX6iPmKykQmlFLb85+Rvm5s3lkZOPcK7rHHaDXfUH+Oryr7I4f7G6Lg2eBs50nMET9uCP+LEZbLiMLm4pvIVXGl8Zs4M2EgqcBW/YGHkoRlIyBKIB0i3ppJpSKXQUsrRgKQk5QZYlC71Wj17UIwgCfsn/hq4HpzpOJY2uSjEJt8vNZxd+ltlZs9/QsjsDnZc7rkYn5enlmHVmanprlOudVkeOLYciR9Go3zMaQfNLfs52niXdnE4kHqHd384TVU/QF+qj0FFIMBokw5JB10AXHYEOil3FbCndgtPopMhZhN1g5/bS2/n92d9j1BqJxCOKJ1yoH6veOm7K1o3A0GtBbV8tZWll5NpzebbmWXW0w6Kz4DA42Dp7q7rucTmuErW7p91NX6gPp9FJibOEBdkLkGISX1z8RXbU7CDPnkdFTgWPVz5OKBpCiku0+9vRaXVU91YTiARINaVi1VuJJWJoBS0ukwu/5Cfdks5fz/5rxc+ut4GF+Qup6a2ha6BLVQ3HWmJsLt18zdfBCdzceC/wvEQoRGznc0kFNgDqGykB/vuWb1Ifbld53on2E+hEHYvyF3G28yztA+0qz/vQzA/hdrn5/bnf8/DybyHseinp4UcodhPYtJ7nG54fVgCY4HojQx4YgHAYw/LlirfVEKN76fBhiEYhEuGpC0/x8NGHee6OPzFJlocZxHffMpsv7bgXWZZJM6exLnsZ8ot/GfE7Bwsd6r8vXVLW4xqLYUO9qoaNn6amXtf+eDMwyPNafa30BHuIJWIqzxuIDiDL8rg8r9HTyIXuC+yp30PXQBePXHqC9BIbtyzeRL4+HU1ChkgU6fhx5RhdAU1JCRGjgS8u/qLaYFqeMgfNc3uI1v1c/Vymu5DyxZP50EufIc+ed8N5ntWeBm/iJSsRCg07/uOm0AJBjYxwE/O8uN8/LJwjqIeQ34MlJiBGomhNFjTW0YvIbybPu3XyrTiMDoqcRaSYUvjl+v+jUJeBPi4jaWFX6yv8+Nwj+CP+t4XnwWWut69hHyWpJWRaM3nu0nOqQvQ31Y+zZeMjpAoCiaFFWHcRncun4+09jifsSeJ55yMtZK9fikteA1IEwWigaqCeB57agifswaA1sKxgGRf7LhKIBDCYDCPyvFZdLxkb16B5bk9SAVgsdhNcu4TtDc8RjoffFTzvHVFkGwler5eUlMsmr4cOHWL69Okq8QLYsGEDkiRx/PhxVq1aNeJyJElCGpLk4vP5btxKj4HBbolWoyUYDbK+ZD2r3KuUpDdBw8LchSQSCToHOpWUHBny7HlU9VSpCXCDke5eycvLjS/z0Tkf5aW6l/jJ8Z+Qbk5nTvYcTradpCy1jNq+WjLMGcTkGHqNHk/YQ1yOX3ch590Mv+SnLdBGtjWbA80HONp6FK/kpaG/gXAszPKC5fz8+M+52HtRMYFPL6eyu5JoPMrx9uOsKlqFQaN0tV5tfpW+UB9STCImxzBrzWrBbm3xWn516lfKd0b81PfXD0vquZoknJFwPWmENxpWnZWOQAdHmo9gM9owa80cbjnMyqKVaAUtUlzCH/HjMDhwGp1U5FaoN4hBL4Xdtbu50HNBHQGo7avFoDVwqPkQf6n6C5+t+CzFrmJmZ83GH/GjFbRY9IoqJhANsMW9JcmTYbBjuvPiTmZkzuCRk49wquMUMjKesIeEnKCqp4qH9j/Ew7c+TIGzAL/k51THKX5y7CdU9VSpy5qaNpW/WfA3vH/a+9/WjsxoSoZ52fNwGBx8YMYHeKrqKbZXb8ftctPsaybDnMGnF36a/U37Odd1jjnZc67LyLUz0DmMeMXlOPX99fz8xM/59rpvX/My/ZKfJk8TbYE2nqx6khZvi2pQm2fL466pd/HomUfV62KONYfNZZtZkr9kVOWGX/JT2V1Jk6cJjaghy5JFXI7zo6M/IiEnaPA0sLp4NT7Jh8PgoNnXTLo5ne5gNy6jS+18/7Hyj3QGOkk3p9Mf7md6+nS+vPzLfP/w9wlGg6rP2RtN2XojGHotONt1lkxLJp9e+GmCkSDRRBST1kQ4FibHmsOn5n2K8oxyNYXVqDUqXX05Dii/o8FlHWg6oIZOeCNKwuhg8mEkEVHHJxKyEj4iCiIWnYX1Jes53n6cR88+ik7UYdKZmJY2jTvL7+T/Xvs/KnsqEQQBnajD7XKzoWQDOy7u4EOzPjRRIHiX493G88ZSlVDfyIfXfxK/JsbLPa+paYjZtmza/G20DygPa0N53mutr/Gt5f8P8bmXhqfE1dUj79rN/CXT2RsJJPE8uP6m3bsVfsmPNhRAn5qKdPRosl/tEP8qvxyhO9iN2+nm1Y7XKFy7FRtrIRolqtewt/s1/m77X9Hqb1V5nl0eZ5RZk5wKezWFkZEwqGq7mWDVWfGEPWpAlEFj4HDLYW4pugUNGqKJKP6IMvo8Gs872X6S052n1XOiuqeaKhJ86/j/4gv7+P3mXzLNWkzKujVE4vGkc2xwRNbqcJCOEgqQCIUIPvHE8HOxvpFC4IHy+/ifUz96R/G8hNdLcPv2YdtuWr9+zL8THA5+Vv0oBq3hpuJ58HrRMBhUxl2HbpfbjXnzbbDnELEq5VhEAE1JMeYtt486bp0IhYj5vUSDA8T1WjyiRJPUdd08r9BRyK/X/JCiQ5eQ64+r3/NhdyGrN/6ST+/7x7eN54HC9QqdhZzoOEGmJZPPLPxMEs/b0/MaWzatxxJbjTTgI6bXUB/p5ETPUbqD3aPyvK/v+zqhWIi52XP5c9Wfr4vnOY1OPrnow8xct4qAv4+gGGdf9zF+vusjZNmy3jU87x1ZZLt06RI/+MEP+K//+i/1tY6ODjIzk+WtLpcLvV5PR0fHqMv65je/yb//+7/fsHW9WgwtnsTlOLV9tQSjQVJMKcTlOJ2BTkRBxKA1oBf1OIwODFoD3rAXraB4GSS4bGRY21eLKIh0DHQQS8TU4twnF3ySl+pe4lL/JWZmzqTR00iePY/bJt9GbW8twXiQRm/jO1aa+WZjsEARioTYXbebs11nMWqNLMxdSKOnkWZvM1pRi12vmN6HYiE0ooY8Wx6BSID9jfspcZUwJW0KkXiE7oFuYomYqpjSaXRYBAsaQUOKKYX1JevRilp8YR9nu87iMrnoGuhSL3YjJeG8U2E32Onwd5DvzOdk+0k6BzoBeLXpVT48+8NsKdvCpb5LpJvT8YQ9tPhaVH+6wQ6hjKwW2EAxXH+q8ikW5i5kcf5iNIKGpQVLicajhKNhJSXRmoFZa6bAWTDsN97oaSQQCeA0OcmyZlHsKqY0tZQWXwutvlbsRjtaUUtvqJfz3ecpcBbQ4GkYRrwAqnqq+NHRH+F2ukcNLBhJiXWtMv1BL4m2QNuwGPHBouFISoYGTwP59nz+Uv0XfJKPeTnzCEQCanfu8fOP4zK6aA+0s7NmJ2vca9g2bds1jRhVdlVS119HOBZWu9iDONB8gJPtJ9k4eeMYS0jG4PkoIPBU1VPUeeoU1afLjSfk4VDLIZq8TdxWehu7apXkpLZAGzuqdyDLMqmm1GHHvMHTwK9O/ooGTwMmneI7Vuwsxm600x5oZ1r6NF6sf5H1wnqiiSgD0QHOdp7l1sm3crrjNFPTpzI7czbHO45j09nIyMhQfRBfa3uNSCLC3dPu5mcnfoZBYyAUC5FpyXzDKVtvFIXOQhxGB22BNtoCbUnvpZhS1NGOE50niMQjDEQHGIgOJH1maIFaI2qYnTUbb9hLljWLdHM6Bq2iCgWw6C2qybsoiMTlOLOzZnOq8xRnO88yM3MmzT4lzUpOyJzoOEGbv0016wXoD/cTTyjK34kCwbsb70aeN6x4otNdTgSMxSCRwNzayeai5RxsOojL6CLDkkGTt2lEnlfTX8PilJkk6v404vcl6urJWDabX578JZNSJvEvFf9AgS4dTSRGXK8lIrwjHwHedAzeVx5wbyP03HOj+lcZN2zgmZbdBCIBfr76vyk8WIO897cM6q6EYjdTVsykN9irFtgATCY7EqNDuKIwJhiNb97Gvc1It6TjDXuxG+wcbz+exPM+NPtDbCrZRE+oB4vOMirPiyfiST6dQ3lebn4uL7a9yiVnK1a9ldKlxUxZewuGuIBoNI0YJjFqsVunw5BXwMcmreWO9BVEdALRAT84eUM8LxzwXvZNe11hZhxjxHMk+CX/qMqtRCg0rMAGiioy1tIyegptcTFPt77I3sa9NxXPA6VoGK2tHRbYAMr5GNqxE2NFBcGqy8cjfqlu1HHrkYqQrmI3rJxHT7CH0tTSa+Z524q3UHSodtgYOPWNFCDwt3P+5qbneUabgzjw28Ynhz0nDH7mRvG8cDRMJBFRmkhDFH9tgbZ3Dc97W++w//Zv/zYu8Tl69Cjz589X/93W1sbGjRu5++67+djHPpb0WUEYnjojy/KIrw/iK1/5Cn/3d3+n/tvn85Gfn3+1m/CmYWjxJBQNYdQaebXpVTU2eHrGdAQEvrjki+g1etIsacpNPBEjQUJJ4RB1FDmLaPY1IwqKgbWIiCiIlKeVk25O56mqp6j3KBesYDTI5JTJBGNBdtXuYn7OfM41n6PJ28Qjpx55z3t2DC1QpJpSafI24TK66A/3I8sytX2K0WXHQAdTUqdAk1Ig7RzoZFHeIgKRAJXdlUhxSX3A14gawvEwZq0ZKS4xEBlgbvZcLvReIJqIcqjlEKfaT1GaVsq90++lprdGTXdxGB3vqvSwur463jf1ffz0xE/pDnarnlA5thz8kp+fH/85/7ryXyl2FY/qpWDWmSl0FKrnSUeggzx7HgeaD+AwOFhbvBZBVM7/FFMKK4rGNl4diA5g1Vs523mWCz0X2NuwFwGBeTnzWF64nMfPPY4oikTjUU51nGJq+lQaPA3DiNcgqnqqqPfUj0i+hsrrBzFSAuhYaPA0cLD5IDuqd6g3UJPWxNKCpdw38z4GpIERb5wAdf11VORVKBL5QDtdwS66BrpwGp30BHtINaVSllpGo1dRJ9X01fDLE79kS9kWTDrTVZlneyQPsURMJV5aUYssK75fsizT4mu56nHUoeejVWelzqPst0HVZ6Ylk1AsxJmuM9w97e6kv20LtOGTfMNu2H7Jzx/P/xF/xM/JjpM0ehvVER+H0cHWqVu52HdR8SkLe3E73dR76kmQYOfFnXxh8Reo7K7EG/FysuMkRo0RGZk5WXOIy3G0guLRNy19GisLV3Kk9Qg5thw2l25+26+tV3q0DeLKMZer+Qwo9zCD1kCGNQO73s6U1CnYjDacRqcaovAPS/+B6p5qBqIDWHQWpmdO57enf8uC3AXY9Xb1AcxmsLGrdtewfRRLxDjdeZqVRSuvW9U7gbcWEzzvMpKKJzod5q1bkY4cGaaaMqSk8JnpH+XZ2mfxhX3EE3FiciyJ5zX5mtAIGsRIbIRvugxNJMaMjBn8x4J/IHPfOeT6F5XXAVNJMYktqVdttP9uRFIjKhYb1Y8tXl+Pfv06/t/ub/G1ii8pBbYrHq7lunrSZfhaxT/whVf+EQCz1kw4EUE7hmk4icuFU01JCYLF8uZt4NuMnoEeNk/ezH8f+e9hPC8gBfjJiZ/wteVfY3rm9FF5ntVgVbxD/a3AcJ43O2s2bf423C43PaEeymbPRDcGpxhRKTjkfIzv369OcYrFbhK359Hkbbounhfu6x7mwSgWu+HKBNAx0OhpxBiKYn7hILHXf0NDlVtyNDqqQjb83HNYPvkJgjufTfbfchdSt7iE7+39IlPTp940PA9Qi4aGiooxz0dh7drhr48wbj1aETJRV49Tlvn6kq/xaM2frornVfVU8anpH2FTzi1Kw6JYC2s1yF4vaDSXR8vrG1i55j60zrETWW803iqel2ZOY1XWYubYp3DnnYvwEmZ/9zGO9Z1jSvqU9yzPe1uLbJ/5zGe45557xvxMUVGR+t9tbW2sWrWKxYsX89Of/jTpc1lZWRw5ciTptf7+fqLR6LDO51AYDAYM46QEvRUYmvxm0pp46sJTauHAbrAjxSS6g9280vAKeo2eednzCMfCGLSKMkJGpsRVwvLC5fzq5K9U/6kmXxN5tjxa/a1Mz5zOoZZDqgdCX6iPMx1nSLekIwoi60rWqcW8Cc8OaPY0k2HJwGlwEowGKU9XxqY0Xo3a6RAR1a5NujldJftWnZXjbcdV/5S+cB93lN3B0baj1PbWIsUVOfWcTEWe/ZvTv6F0filN3ibyHfl0BDo42X6S5YXLeanuJW4rvY1lBcveVceiX+rHH/Fj1Vm5Z/o9RONRNKKGVl8rT114ihxbDue6z1HsKh61k5FmTmNt8VperHuRRm8jx9qOsaV0CzaDDa2gxaxTotCvxh8DlKLdy/Uv0+xrVhJ+UW4EZzvP0hPsYWHuQo63H1cM4hNxZcTS4R5zmQORgWGvDZXXD0Vdfx3fP/J9vrnmm+Mq2vySnwNNB9h5cWdShyoUC3Gg6QBGjZFbim4Z9e/jcpxgNEh/qF/tRFl0FoxaI23+NoLRIOtK1iHLMuFYmBZfC9W91eQ58rDoLBxvO44oiKSYUpiRMXIwg9PgVJsBOlFHd7CbcOwywQ3FQpxoP6Gu51gpeI2exsupTeYYkXgErahFFET8ET9Z1iy1gzaY0jcU4Vh42A270dNIMBJUfz+A6pN4quMUebY8ZmXOApSO7KqiVeib9LhdbmZnzabd306OLYcUYwpOo5MmbxO9vb3kWHMIRAJoRS3FrmKqe6sRBZF/XvHPNHubr2sk40bgapK5ruYzkHwP6w31cseUO/jlyV/ij/hp8bWQkBNMTZ/KlLQp+CQfRp2RIy1HONN5BqfRiUbUMC97Hme7ziK//r+EPDxmPpaI4ZN87ypV77sZEzzvMgSLRVWVGBYtUh7oR1FN5W7axPyc+XQPdNMWaMOoMRKOhylxlbCscBm/OP4LREEcN+VS0sLSjPlk7js73Hh/DOXHewVDeV40HGL0Ui10elqw6C3cmb8Bef+zI35Grq/n9qVb+AJgEA1IcQlvxEdORcXwVPfX00XlkKKFe6vTP98K+KN+vBHvqDzPZXLR4G1geub0UXmeWWtmc+lmeoI9VPdWJ/E8WVbuE4MBBFfD82TD8PHd0c7HRF09wWeewb1i2rC/GYqReF444B1WYBtcZnTnLrjrjnEVbX7JT09fC6WvXho2Ej54/hrHGgmNRpEGfGyfEqVi8SYMMQhrErzUeZgv/2kTOo2OZYXL3lKeN7hdo3G9eMCvFMTmzRtz3yCNrA+9sog61pi+XN/A5KUzKLQrAoaxeF66OZ3fr/sJxYfrkPfuYvBb1JTgJ55Ak5enjpab4hqM7wGe97uzv+Nvyu6n8OBF5PrX0AFpwPuK3Sxccj/fPfuT9yzPe1uLbGlpaaSlXV2SSmtrK6tWrWLevHk88sgjiKKY9P7ixYv5xje+QXt7O9nZ2YBikmswGJg33ol6E2Botdkb9iYV2AodhWoHp95Tz+qi1RxqPsSywmV8acmXaPI2IcsyXsnL7trdGHVGVhauxKq3kmfNY27WXNoD7ZSmlHLaepravlrsBjsBKUC/1E+ePY9GbyOdgU5um3wbr7W+Bkx4dnQFu/j1qV9T1VPF5smb2d+0n1RTKvOy5xFNREnICbSiFm/Yi9PkpD/Ur44HDCbxzcqahVFjVKTehhDritexOG8xPsmHVtSi1+j59elfU5Zapnjyvf5Q3uBp4IW6F9gwaQNOo5OpaVPfVSo2UG7M1b3VHGg+QDQxglmtqMET8oz5G5yaPhWb3sacrDksyV9CNBHFqDFy26TblCTdjGmq3Hk84uWX/HQGOukOdlPsKkYn6si2ZhNLxPBKXuo99SwrWMbRtqNMTZuKKIj0hfpwO91oRW2SRH4QWlFLunl4t3JQXj8S6vrrqOyqHLfI1uhpxCf5hknAQSE1df11zMse+9qnE3RIcYlARCE6kXiEeEIZTfaEPaSaUtUkyFRTKjpRh8Pg4OHXHuZM1xn0Gj1Og5OytLJhJsEA5RnluF1u+sP9w4jXzMyZtPnbON1xmilpU9TEY2/Yi9OokDZZlinPKCfbmk2zt5nTHacpchWRbc1mjXsNeo2evlAf57rOEZfjqpplsLg6FEatcdgNOxANoBE16vUWUFM3ARq9jVTkVqidTVeni3tn3MvJ9pO81voa1b3VWHQWPjb3Y/glP/0hJQ22N9Srjn3rfEr4wsHmgxxtPcoHZ3wQp8E55nF5K3E1fo1X+5nBe5he1PPUhacw6810BbuwGWwYNAYCkQANngbsejtH245y15S7eK72OfrD/QgIHGs7RpGziGgiSuB1HymDRnlQHQq70f6uux6+WzHB8y5DNJkwb9lC8Jln0OTlJSnYhiJeX48Qi1HbV8uSvCWUpZWRkBNIMYmugS5eqH2BBAnm5czDI0bIGjUlrpCXOg6yPnsZ8t7nR/6u6zTaf7dgKM9btvlJxooIiOmUe74mGh9zmTZZzwdnfBCdqCMSj1A50IDzbABDXp4ScjA0UOHECTQrVxD56L3IJhPWd5mq0KqzKg3BUXieKIhqwWW0e0yBs4B4Y5w7p9xJ10AX/ogfo8bIGvcajBojc3Pm4na6r5rn9cX6cV1xzox5Pl66RP6aFdfM8+RAYHjIyetI1NUjBwJjJoOCwvMKdOkkXlegjrRuwuvNxdEg67T898n/o95Tj1VvpXugG6fRqdg/RHlLeV6mNVNN85RlGSkmMRAdIMWUwoKcBWgFLSWSBRFAO06JYpQGw5Xj1uN5HAqSkoI+Hs/7ydrvKwW2cVKCB/9bZ755CkQ3kufdX3r3qMrePFnmQwvv4ZmLz7wned47wpChra2NlStXUlBQwHe/+126u7vV97KysgBYv3495eXl3H///XznO9+hr6+PL37xi3z84x+/6ROnBjFYSX6m+hmmpk1FI2qQYhKt/la10huKhTjZeZISVwmJRII0cxqNnkZa/a14JS8zMmeQbklnUd4ifGEfGo2Gw62HlYe7mR+kN9TLrMxZROIRqnur0QpaRFFEr9GTbkmnN9SLLMvY9Db0Gn2SB897CZ2BTtV/waAx0OhtJNOSSb2nHikusapoFdnWbPrD/coYYv4KCh2FanKggIAUk7hjyh1MS5/Gn87/CZPWxMqilTx89GFeqHsBgFkZs5iUMokNJRv48bEfq+OmLb4WjFojgUiADGsGkUTkbd4jbz7KM8qp6a9R49uHwqwzIwoiNr1tTLmwzWDjw3M+zGPnHqOqu4pwLExUGyXPkcetpbde9QW6uqea3535HVpRS5O3iWg8SiQRYVHeIs53n6cr2KV64kxOmczd0+6m3ddOiiUFi87CotxFHG49nETAtKKWRbmLRhwh8EieMddnvPdBKRANJTNXIpKIoBE1I8bLg6LuSzGlUJJSokbUa0WtWmS6o+wO7Ho7FXkVaESNcq0QRJ6sepIzXWeU74hHkJE523U2ySR4EJnWTD678LP856v/qZoZg0K87ptxHz8+9mPcLjc1PTWc6DyBN+wlxZTCk5VPcrHvIsFoEKveyoqCFbxv6vuYkjaFw62HOdl+UlGNhXpxu9ysLV5Li68Fk9bEJNekYUq2HGuO0rC44vdg1VnVouIgBASiiSgWnQUZmfaAkva3v3E/DoODXbW76Av1kW3NxqAxMBAZIBKLoNfoseqt6LV6PJIHrahFJ+hIM6dh0BjIsGTgCXvoCnYxN2cu5zrPjdjFfSdj8B52rPUYx9qPoRW1SnFTf5ls1vbWUpFXgV7UK02LnHm0+ZVx3o5AB9PSp9Hh76DEVUKKKYVmXzN6UU8koezj8rRyylPLOdRyiGxb9pjJsRN45+C9wvMGUyATXV1jfk6ORChxliAgKCb7Ta/SG+wlFAsxJX0KK90rWVe8jpfbD7J+5RJSGZ5y2bJ0Kl/60wZO3K74Uw7zgHu90COPogh5t+NKnrer7RXucxdCfeOwzwruIgJamW+s+QZWa8oIS7sMvdlGvaeemt4auoPd1PXV8YvV/0PewWrkIYUcwV3EpUVu9jc+SV+4j42TNpLBWz/GfCNR6Cwk1ZyqqC6vgEFjQEDAZhif520u3cz26u1oQhqi8Sh+yY9ZZ2bbjG1MyxxbZTaIQZ5n0pm4c9lacoeeM7Gxx64NMa6Z5413Xl3NeReIBsiJjH1tkyOR0X3XSkrwaeM3Bc+r7KrErDOz4+IOBAT+XPVnlecl5ATzs+fz4IIHKbRNRw/EW1rQjDFmLfv9I27vlePW43kcSlquiudNMmYj1x8ecRlDU4Lj9fUYli8natRR9R7geUtSZyPXj+wLKtc3MG3V4mvieQICs7JmMSN9Bi/VvYTD6Lguv+qbAe+IItvu3bupra2ltraWvLy8pPcGx4M0Gg07d+7kwQcfZOnSpZhMJj7wgQ+o0e/vFNgMNkpSSgjHwmo63lCYtCYEBJ6peQaNoEErapmfM59sWzbplnTeN+V9NHgbeL72eY62HaXF18LklMmsK1mHRW+h2FVMq68VvUZPOK48oMuyzNKCpVzoucDL9S9zvvs8AMXOYmZmznxLt/9mQWVXJc3+ZkxaE72hXg63HGZL6RZAURMGo0GKnEUUyAV8cv4neejVh2jwNGDWmzFoDEzPmM5Xln+FVxte5WjkKFvKtlDXX0eTp4l/Wf4v3Db5NnySj3xHPjsv7uSRk4+gETVEY1GMWiN6jR4Bgckpk/GEPdT11RGKht6xF5qRkGnNpCK3goU5CznYclB93awzk23NptBRiF6rH1cuXOQs4tMLPj2uzHkkdAY6qemp4XtHvselvktsKNlAf7gfjaDBYXDQ6mtlQc4Csq3ZRBNRluYtJd+ez+GWw5SnlwOQYcngi0u/yH8f+m8quyvV9Lfy9HL+dvHfjni8xlMyXY3SyaqzYtSOTh70op4UU8qYXgsBKcCGkg1E44ofoNPoREDgbxb8DTW9NTxy6hEavA2YdWZSTCk8uOBBnr+UrIgYbACc7TrL2c6zw8YJZmfN5oG5D7DGvQaHwYEoivjCPjoHOrnFfQsd/g46g52q9+GTlU9S21+rEi+f5KPJ18Rj5x+jyFHEhZ4LOAwOSlNLudh7kfr+esxaMysLV+IwOLir/C4ePf2o+v051hy2lG1hSf6SEaXvOfYcjFqjWrAUBZHeYC+lqaWqmevuS7tZkLOAVe5V7KnfQ5opjVAsRIOnAYA6Tx0Lcxdi1Vup99SrhePJqZNZVbSK9kA7nrAHk85EiimFF+texCf5CMfCGLVGThtOs7Rg6dvu0/ZmwGawYdKbyLPn0eJrUffhIBIkyLfn83LDy/zwtR8yNW0qF3sv4g17KU0pJSEn6A318reL/5YXL71IgaOAFFMKAgJmnZkZGTP45oFvEkvErio5dgLvDLyXeJ5oMiGPoxyL6sRhPC/PkUcsEVN53p+r/szRtqN8JdjH9255iDXL78IYFwiKcZ5v28fDuz+OR/IQ0TKmB5xu1qwbvMU3J67keQ8d/S+W3v44bkgqtAnuIgbWLuFvdn2EC70XsCzRcK+7aLjhOYrfVk24lW+u/ibNvmbq+uvId+TzzdM/ZGHBLDZUbEQXk4lo4XDfGb6y/R5+vPnHOMPOdyXPsxlsLMhewOL8xexv3K+GeBk0BlLNqczMmIlG0FwVz7uacbaR4Jf8XOi5wLcOfIvqnmrWFa/jrmfv54tzPsPapbejiyUw2p1jLkNjMl8zzxPGGeUe7314vREoa9GM8RlhiEJ2aKFtcPy4WWq7KXieR1ImU2RZ5s9Vf07ieQAnOk6w4+IOUqZYmOsuQjp8WLlmccWYdXExpttuZeCll5LWQfGoGz5uLVgsaIqLRxwZFdxFvNKlTG+Nx/MS46X+Di3UajT8peE5+kJ973qepx+7Pk3A30+aKW1cnucyupBlmTxHHlNTp/L1/V9XC9rX6ld9s+AdUWT78Ic/zIc//OFxP1dQUMCOHTtu/ArdYJSnl7O5dDM7Lu5IKrS5jC6mZ0zHE/IAiqdSPB7nYPNBQrEQG0s2cqn/Ersv7WZN8RpOdpwkz66Q1SZPE4FIgJmZM+kMdGLSKRchp8HJpJRJFDoKefrC00zLuNwR6gn28NSFpxRPuLj0rqrEj4dBJYpRa1TjiJ+5+Azzc+azonAFMzNnohE1pBpT+fHxHysmxKLSYbPqrJzqOMW3Xv0Wn1rwKX5+/Oc0+ZrQa/SqeeqU9Cmc6TxDMBqkwdNATI4hxSVsBhuesAdREPnHZf/IY+ce47W218iyZqmjpEMvNH7JT01vDW3+NnRaZSztnaTsmJU1i2+s+QbfOvAtznedRyNqEAWRQkchD8x5gM5g51Wp0a5G5nwlTnWc4pnqZwhEAuyp3wPAhd4LZFmz6Ah04Iv4SDWlEolH6An24DQ6Odt9lvr+esrSyjBoDUmjqN9e9+3LSaEGJ+UZoxPl8oxyil3FI46MFruKKc8oH3f9C52FnO48TY41Z9jIqElrothVrK7baOTUL/l5ufFlpRObMYNIPEKRs4g9DXuo7asl3ZLOx+d+HIfRgRRVxjeLHEWkmlIxaAxKFLjOhBSTaPQ20i8NbwzYDDZsehv9oX5+ffrX1PQpYR6Do/BbSrdg1VmxaC0YtAY0okJcByIDSDGJQDRAIpFQ9ntqGVa9FSmufF+Bo4Dy9HLsBjur3auZnzsfs86M2+GmPdCOVqMlx5pDkXPkc8JmsLG6aDV7Cvewt3Ev4VgYQRBUld+87Hnq+W4z2DBpTaSb09nftB8ZGZfJpZKoZ6qf4Z7p97DKvYrOQCcOowNv2MuxtmPcNfUuSlNLCcfCStG8v472QDu1fbVqsUgQhBHTT9+JGHxg0ovDvW9STal0D3QzEBmgNLWUBk8D64rXYdAYCMfDrClaQ8dAB/sa9hGOhSlNLcVpcCojLCYH26u3q6qI8ZJjJ/DOwXuN5wk225jqkxe6lMbT1fC8FHMK/3XyYb6d+D4p5hSmZ0znhUsvYNErio7d7a/y8Q0bRvWACz37LNy2gXPBuvc0z4vEI9y2/f18ef4XuHXJraSIVmI6DW1xD//08t9yse8iGkHDt49/n2Wbf08e8rBiXO8tc/jGoX/DbrDz/unv51DzIYLRIBd6LrC9ejtfiiveVU6jk0xLJp+t+Oy7nueVpZfx7yv/nW+++k0quysRENCIGia5JnH/rPvpHLhxPK/B08DZzrO81vIaL9YpI5cXei9g1Bj5tyP/yX9qjaSaUvny/C+wZpTC6aA6arZp9jXxPMFqVYITRhgZFYvdCNbxxwkLnYVcbD3D5GI38gjLGVw30WTCvHUr8sAAcjisppiKJhN5kkioIfS287wcSw5dga5ReV5XoItmXzMvtu0ndcltFB6E4JNPYli0SFWJiQ4HmM0E9RBetRjL8iXD0laH7WuTCcOWzYSeeSZ5H7qLaF46haaGZ9g4aeO4PC+kSTDmcO+Q8daAJkZldyUtvhYu9SvX+Hcrz4vrxykCGw1XxfMsOguZ1kzseju/P/f7JPXrtfhV30x4RxTZ3muwGWw8MPcBLHqLOgJn1BqZmj6Ve6ffS5OnicqeSo63HweUtK35OfN5YO4D/OC1HxCX4/SH+ukIKJH2Fp1FnXl+9uKzlKaWsrJoJRW5FZS4ShAEgf85/D/kO/LpDiojGna9nSlpU3ip7iXybHmqlHtQGfNuqMSPhUElUaopld+u/zFl9mKEWFwx2jQa6JWDfOHVf2Jt8Vou9l5EJ+oQBIFIPIJX8hKIBDBoDMQTcZYXLicSj2DVW0kxpXCs7RhxOc6UtCkcaT3CXVPu4smqJ5WHe2MKnQOd3LfoPho8DZzsOEmaOU1Vgwy90IRiIR498yj7GvbRH+4nLscpcBSwdepWlhcuf8cco8X5i/nWmm9xrOMYnpBHGVXW6ukMKh6Bb/bNyC/5afA08ND+h8i35ydFwx9qPsRdU+5SjXkTcgKzzsyWsi0UOgo513mO2Vmz1QLbUJPdTGvmVV/8M62ZfK7ic6Omi17NcmwGG0sLliIIwojpondPu1tdt9HI6eAYxk+O/4RDzYcAxU/wSMsR5mbPZdOkTfz2zG8523WWeCLOtvJt1PbVUpJSwguXXiAux9Fr9KSYU5iTNYcUQ/IYzaDXSro5nYMtB2n1tzI7czYaUbkldwQ6eLHuRTZM2kAwGiQmxzjZcRJP2INBY8BhdCDLSqhLm78Nv+Qn05KJ0+hEFES0ohYBgUxLJqmWVHW/zc2ZO2w9RhvPnJQ6iX9f9e8KMeytUYNLSlJKWFe8DhmZImcRhc5CGj2NuEwunEYnVd1VlKSUANDsaybNksbRtqOKClUQ0IpatKIWt9NNPBHntdbXyLBk8PSFp3mp/iXcTjfrS9ZzvP24WiyakTFjxLGTdxoGzXGlmIRJayIUC6nvFTmL6Ap2oRE1VHVX0eRr4mDLQdLN6czMnIlrqotdl3YpoRTRIJ5OD9PSp1HZXYlZa2Zy6mQavY2qinO05NgJTOBmhjiO+iTVc5Z52fPeFJ4X0Qpo83KRRilOxuvqMEViPFf7HDDB85AkBKORuEake6Abraihtr8WnahTg3bu3HkfD854gNuX3Eaaxk5EA+cH6jjS+CxT0qZwtO0ovz39W+6achfPVD+j8rxQLITdYMeoVbyT3ys8ryKvYmSeN3BjeB4okwrPXnxWsWAJtKjBZEdbj3J72e2caD9Bb6iXhJzg+ZZXWLjmb3HsEZMUT1eGUVwLzzNaHXDbphHTRXW3bRo39AAUjpaWkkdobSamF0kqEl2p3BJNphG9FW8WnicgEIgECEQDI/K84pRiEnICv+Tn/c8/wJfn/S0rl92KNpogpg1SHWrGEctkoW0htte360okQqERC406p4uBLeuJ+f0kwiGiOpHT/hrOtb/C7WW3XxXPe6blJT4+yji5xu0m3qKMygpuN3+sf4b/PfK/FDoKWVG4gpMdJ9+1PO9iqIUZoxSBcRfyp4YdHGg5MC7Pm5I6hQZPA/X99cN4Hly9X/XNhIki202KsUbgCp2F/NT2U852naU/3I/T6ESv0VPfr/zAdaIOq86KVlA6dAatgbgcx6wzsyB3gSrHDMaCtPpbyTBnUOwqJteWq6p3TDoTVT1V+CN+grHL/kbvldTR8oxyZmfO5qH5X0E3EEJ6dldSB9hSXMyvNv0vv254mlAsRDAaJBJXfNPSzelKyo5GR5O3iW/s/wY6UYdW1LKtfBtbp26lpq+G8vRypmVMQ4pJPLzpYap6q+gL9WHVK2OAT1Q+QUlKCQORgSTfsrr+Os53nedE+wn21O+hydukSmr7Qn34wsoY2j3T73nHHKOy9DJy7DnXNQpwLWjwNLC9ejtOg5PXWl/DbrCr6VSiIBJNRHnqwlNsmrSJ5QXLMevMLM9fzvzc+QA05r956zc7azbfXPPNq+6KjoQip9JtnJExg7ZAG7F4jGxrNpNTJ1/1uhU5i/jA9A9QYC8gHAujFbVkWDKYmTmTn5/8OcfbjuM0OgnGlURiURQ53n6cWVmzON15mmgiSvdAN96wl3xnPkdajmDRW+gN9lLZXQkoKbAyMsWuYqwGK6c7Tqs+d8fbj5NhzSDHloNRY1SLnqFYCMLgMDq41HdJkaVr9WojwKK3IMWVIo7D6Bh13GTwmPeF+tAIGiXhSNCQac0k1ZTK1PSplKWV8ZVlX7mqZKVsWzazMmfRHeympq+GLGsWkXiEB+Y8QKu/laruKianTKbZ10yqKZWt5Vtp8jbx/mnvJ9eey6n2U5i1Zuo99ey+tJuKvAou9FygLdBGW6DtHU2+Bsn2QHSAitwK9jfupyytjOqeakKxEDnWHFYXreY7B79DljWL0x2nASVswh/x0znQiUfyKOreRIzeUC8mrYlIPEI0HqUuUEdFXgXH24+rqg8YOTl2AhO42THozzbSQ+EyxzJ+uvkyz0szpTHdMQlnwsCCim8T1Yk0RXr447k/EpfjSTxvWeEy3ue+lVUZi4gGA4Q0CeTwOP5PQ96f4HkKNMXFZG3YgP2VvTy+4Res+fMdDEQHiCaiaAQN/3zwP/i587d8cMYH+Ze9/wIoSZhby7eybeo2avpqCMVCbCrdhIDA9zd+n+reajxhDxa9ZYLn3SCeB8p9/+WGl2nyNdET7AFZ8RbTaXREE1G2V29nacFSVrtX4zA6WJ6/HHtaDuZt20Y8H68XxpR0uOsO5EAAWZIQDAYEq/WqCmyDKHQW4jf5CW1ahSW2elzl1ki4WXhegb0Am942jOeZdWY6A51kZWVh0BoIRoP84MxP+aX+d4DSPJ6dNZsPpn1w1G1MeL0Et29PKpKKxW4SG9cgmXRkOLPwmyzq768gYzLLS9deNc/7S8Nz3LXmh2QIYlLRVE0XffJJhGI34bVLqTv3U8xaM43eRvY17mNK2hRa/a3vCp43WMg0hcN8wv1XVA00MLBmERaSi8CK52Qx//bEZ4DxeV48ESeaiFLnGZnnwdX5Vd9MmCiy3cQYSxpdklpCSWoJDZ4GDrccJp6II8Ul8ux5dAQ6aPG3MDV9Kue7z9MT6gEg05KJSWfCZXTR0N/Apb5LiILI5JTJ5Nhy6An1JEXp+iOKqaRZa056gHkvpI5mWjP5esVX0NS3IJ0/P3zEoq4Odj3PbWtW8oVoEJfRRXewm4ScQBAEsm3ZdAQ6EBAQBRGLzsKWsi0cajnE7ku7mZI2hWZvM2WpZWycvJEfHvkhlb2VaAQNBq2BZfnLcJlcNHmaKHAUDHuAHLzwDyVeg6jzKN5vNb01wxQ9NzOuZxTgWuCX/EnFFlAK0g2+BnLtubT52hAExfT+ePtxmnxNrChYwfzc+epNeLT1GyuOfCxc2RUdS3E1GmwGGzMy31hnrMhZxMsNL+OVvFh1VrxhLxa9hVMdpxAFkXgijiiInOs6x4rCFRxoOkC2LRspJpGQE5S4SlhWuIya3ho8YQ8Hmw9yvP04Bq1B6dgXrSSeiDPJNYk9DXvoDfWiEZTRYBmZdn87B5oO8PmKz1PiKlHl9bFEDIvOQnugnaUFS9GLerSiFoNW8TIxaU2UpZWRbcsecdzkymM+GKpQ56nDprdR6Cgkw5qhjuZcbbISKN5itX21BCIB8ux5mHVmMkwZvG/5+7AarOhFPVJc4nuHvseR1iPEEjGi8ShT06byrfXfYm/dXmRBpiy1TB0bjcXHMbe4STCoBq3tq8Ub9pJuScdhcHC0/SiJRAK9Ro9P8lHkLGJx/mLiiTjxRByrwUqzt5lIPEJ/uJ9sW7aqLojGo1zouUAoqqjeBlVwbpdbLYKD0oGPJWJIMQmtXqEwIyXHTmAC7wSMpj6ByzwPIOrpR3rmGeJ19ZgAEzDD7Wb3XX9m7VN3qgn0hY5C/rPin8g/cBG5/ndoX/8sf/3XY6+IMdkfaoLnKTwv9PzzGBcupOjQIf5jyT/z9/u+ioCg8rzOgU4QlMAcu8HOHWV3cLDl4Ig87+EjD0/wvBvM8+DyfT+eiCuFNVFHq6+VImcRDZ4G9Bq9quRq8jaxefLmJJ432vl4vTzPaHUkpYj6JT+118Hz3mgx8s3ieRd7LxJLxHix7kWOtR27Jp63v3E/X1zyRSanTqamtwZQmmQpJkUdl2XJumaeB0rh58oCGygprsKuFzk+x0F2etEb4nmZ1kx2tr/CpFn5rFz3MfQxGUGvJy4K9Hs68N29jl1te/nuY6spdBQm8bzSlFKavE1KQu07iOc1e5oJJ8I0eZoIxUJsyFyK/vm9xIcU0yaXlCBuWodn43Jc8TVoYwlCYpxfVP+B7z/7bziNThwGx7g8zy/5cRqdwMg8D67Or/pmwkSR7R0Mv+TnYPNB9tTt4UjrEax6Kx2BDpxGJ/Oy5uEwOOgJ9dDsaaY0rZQMSwZ6jZ617rUEo0GmZ0wnLscRBIFwLJxUTBvsiObZ8+gL9dHqbyXdkq6mxL0XVAOmKCRsthGTbUAhYOnr1jAzcya1vbXk2nKVm5QoohE0TE6dTKu/FYvOwozMGbzS+Ar1HmVZbpcbjaihN9TLj479iCnpU3CZXHQFuzjbeZZwLEyLr0XtDF0Jg8aAX/KPGCcOMBAboD3Qfl3bfb1E4mZHo6dRNf+36ZXt6Q520zXQxeLcxRwVj9LsbQZQfVHum3nfuNs+GEeuFZTEpnAsjMvkYln+MialThp3vfySn8ruSur664glYtj0NiKJCDW9NerN/kaPhAyN5RYQKHAWMBAZQCNo0Gg0RBNRpLhEJB5h+4XtfKbiM+hFPXaDHZ2oo3Ogk9+c+g3/svJfON52nI6BDvrD/WhFLVnWLOKJOPWeetLMaVh1VrIzsknICTSiBr/kx6g1UtVTRTAaZOOkjext2EuDp4GEnCAcCzM5ZTIbSzai0+iIyTF6gj3oRT0Oo4NsW3bS2O4gmjxNnGg/gVlrJistC7vBzmstr5FiVpKM/BE/MvJVez10Bjo523mWnmAPU9OmKtfPuELitRotBtHA1Iyp6jI6A5185aWvUNldiU/yISDgNDo51n6MwMEAS/OX8rOTP2PTpE1U5FZwpvMM2dbsG3qc3ww0eBqo7K7kuwe+y6nOU6SZ0+gL9VHsKuYDMz7AL078gixrFlvLt1LXX0dvqDdJEdPma8OkN9Hka0pq6oiCqHruTUqZpPjXhTz4JT8WnQWb3oZX8qITdQCqgfZoybETmMC7BR5PB5pndg/zdpLr68kW4N8Xf5XP7fkSpWmlfGbmx14vsA33Xhsrqa8x0k19f/0Ez7sC8bo6hDVroL6RdYs3kWnJVO5dgkbheSmTafe1Y9FbmJk5k72Neyd43tuM/8/ee4c5cd+J/69RG9WVtvei3YWFXZZelm5cwGDjhlMcp9mJY3/T7pJLLpd875dL7pu73F1yTxInuctd6l0Sl8SOY2wMwaaYYprpsLC996JeRtJofn/IK1i2sNhgA57X8/h5jEYajWYlzUvvz7uMuF62JTvZC7k/0M/SgqUAdHo70QpaBEGgIq3iXfG8eCiE4vOhhEOYDCIVumz64waeangRUSfeWJ63+pv8/tTv0Wl1V+x5dUN1eCUv68rWIWrE5KAonUZHpjmTdWXrrtjzavtrWZ06F3HJEliwIDk1WTp4EKLRxITLFffyrSl4nk/y0TjcSLu7ndLUUspSy9AJOmLx2CjPM4/yvL/jRO8Jenw9hGPhcT1vbelalhctp26w7obxvG2N2yiwFfCDAz+gw9fB52c/hu74LuRL+hbKTU2wFXI2bUpmVr5y7kV+df4punxdU/Y8BQWtRkuGOWOM58HU+1VfT6hBthuYVncrL9e9jEfy4Iv4CEQDFKQU0OZpY1fbLhyig6qMKr6w6At0+boIx8Ic6znGl7d/mSX5S7hv5n34JB/usJs7y+/kdP9pzg+eRyNoSDEkekaUpZbxx9o/Eo1HSTWmsqRgCTnWnPdF1oASDl92rLcSlni4+mF+dfxX9Ph78Ef8CAjcWnIr68rX8eShJwlEA+Tactndtjv5uJHeBA3DDTQONXL/jPt55uwzFNmLWFqwlBZ3CxaDBbPePOpLBkg2tNdoxo5EH8GgNaDTXvnH++LSuhFulv4sF/9gMOgMzMyYycnek6wtW8vBzoOUOkpZUbgCraBlds5sbiu5LZlFMBE+ycfL9S9j0pnY0bxj1ACCPW17+Nryr1GRUTHhY88NnOO52ud4peEVegO9xOIxiu3F3D/jfqqzq5PNkt+Nsp2R6V3t7naKHcX0+How6ox4JA9mvRmj1ojFYMGZ6uS3p35LiaOE11tfR0HBLtrxSB52texiYd5CKrMqWZS3CIvegj/ixyt5ybflo9MkpKzJfaEH0bzseZSmliJqRaSYxJb6LSzMW8jK4pXElXiiWSyJZrEL8hewxrlmwiEO7e52pJiES3LxvTe+R/1QPUPBISRZYl7uPD4+++N0N3Wztmwt25u2J3+8XK7Xw4neE3x///c52nOUqqwqMs2Z2EQbNQU1zM6aPa5k1/YnAqcjqe4mvQmv5CXPmoc/6qemsIbZObMRFIHN9Zu5p+IepqVPuwZ/2auHT/LRONTIjw/9mEZXI5nmTIZDw8TiMd7sfpN4PM49FffwzNlneL72ee6feT9DoaFRGTF6jZ5VRavQoKFxuBEFBQGB8rRyVhStIFVMZXb2bM4PnKfTm+hxEogGKLQXUmgvxB9JfI61gnbSybEqKjcDPsmH7PcjjNfvhkR5zrqVD/Bvd/wbXb4ulqfPR2l5bsz9kpP6BGF0zymnE2H9HTz0wkYGg4Oq542HlCilNcY1hGKhpOetKVnDHWV38NPDPyUYDaqed50w4noCAnqNnqHgEDUFNRzsPEiJo4QVRSsQBAGnw8l9FfcxPWP6pPt7p56n9YeIv/KXMZ+7rJUr+WLFJ3my7jc3lOftaN1Bfko+xY5ilhUsIxANYBftpIgpFNmLxnieRW/hP279AevzV/OPMz6LzZbBn6QormwXK4pXXJHnjZQqxkMhJD0c7X2DadYS5G2vErnk/Jo3bSL4/PMQjaKLxi/rea3uVna17OLp00+TYkwh05yJIAiUpZZxe+ntzMkZO4V5xPNGgrYTeZ6iKLxw/gUemPnADeF5L9e/zMyMmfz7G/9Op68TV8jFnbmrUHZvG/cxclMTSiCQzAJ9O54HiQzq9eXrk948UnV0Jf2qryfUINsNzEhtt6gV0Qga0k3pAMzMmImoE1lTsoZcWy6vt77O+cHzGHVGGoYbkBWZJlcTT59+mg/P+jDtnnbqB+u5b8Z9rC1bi17Q0+HtIM2cxmvNrxGNRwFwhV0c6jzEh2Z96H2RNSAYjSjS5H1MFFHP9/Z/j4dnP0xZWhntnnZsBhtVmVV8ZftXyLRk0hfoG7USKWpFsixZHOk+kvjbaTSE5BCyIidXQMvTyllesJz+YD+QSKeGC180ZalllDpKOdl7MlnWO0JhSiF6jZ48a96UX+tI+ddTZ57CE/ZgF+3JVO2bpT/LxT8Ymoab+NS8T/HL479ke9N25uTModheTIqYwoqiFSzOXzyl19rmbkMn6NjRvIP+YH9y0mVEjiBqRXY07yDPljdmX63uVva3JxqB/qXxL/T5+4grcYw6I22eNl44/wIeyZPs1/Vule3YRBtV2YkJw/F4nGWFyzjRewK9JtHHJBAJUJpfSv1QfXLlSSNoktOq3GE35wfP84vjv8AreYkrcRbmLeRjsz/GiqIV/O/J/8UreZPP53Q4mZE5g2fOPMMtJbckenyEhtjXsQ+jzkipIxF802v0SHGJN7vfpDKzcsy5GFllNulMWPQWfvbmz6gfricYDSYnhh7vOU5MjrG+fD0v1r3InJw5hKIhJDnxGZ+o10Ofv48fHPgBR3uOcqvzVva17+P11tdZmLeQQCRA3WAdywuXMy933qi/88j+RnrvGDQG7BY7Xb4u/BE/nd5OTvedJsOSwcfnfJzilOs/k6Dd3Y4r7OKNjjeQZIlMcyZDoSEsegs6jY7jvcf54KwPAolyJimWOLcXB7hnZc/i58d/zrT0aSwrXEY0HkWv0TMQHKDb1015ejml6aVEYhFa3C2EYiEUFKwGK/fNuA8pJnFLyS3k2nIpTCmccHKsisrNQJu7jTxp4kALej3pxjTuy1qNkhIiHTPh8e4XjRJ8/nksn/oUgqKgRCLEDXoaQ118/K0AG6ieNy5iwoUMJhvfufU7tHvaMeqMzM6ezde2f031vOuMEdcbCA4k+oPprWxr2oYz1UmmOROT3kRFegW3O2+/7EIqvDPPGxruomJ/85gyRrmlBQnQV1XxkPMeflH/9A3heYUphfT6etlUuYmfvfkz3ux+M3kNn5c7j2/f8m1+9ubPkp5n0Vs4+MFXKXqjAeUvTzMyb/wDzhKWLHuCh199nBxLzpQ8b7yea+vvvovYgXMTnl+xpgZp715i+sR36ESe55N87G7ZzdOnn2Za+rRRnheRIwyFhhgODbMwb+G4nifqREw6E3Eljl1MeJ4v4qNuqI49rXtYXLCYh2Y9RLbl+g8StbvbMelMtLha2Nm6M+l5htjYbNuLUcIXrjxvx/MgUS68IG8BZr2ZhfkLMWqNpBnTrrhf9fWCGmS7gYnGEsEvvVZPvi2fNk8bXsmLUWtkjXMNGaYMhoPDnB04SyASwBVyJZpWphQmA23hWJitDVvpC/SRYkzh1aZX+Uj1Rzg/eJ7ytHJyrDl0eDuSz2k1WFmSt+SGvwhPCbOZeGfnxCUWpaWc8jbiCrt4rvY57p9xPwe7DhKVo0gxCWeqk7P9Z0kRU8i15pJhykAQEn07YvEYQ8Ehcqw5CAiI2gv9UFrcLdQU1LC1cSt/v+rvKbQXJlKQL2mM//DshxkMDbK3bW9SwApTCrl7+t2UOEqmvCI5sqpp0Bo43Xs6WbaQZ8tjdvZsdBod4ViYN7vfHHOBuZEYmYQzHBomGo9SN1THJ+Z+gkgsQigWoiy1jOrs6iv6IvdH/UTjUVrcLSwvWs7+9v10+bqS/aNmZ81mQd4ClhQsST5mpF+IXqOn29vNYHAQBQVZkZOThNs8bYRjYSKxSPJ5rjU+ycf5wfO0ulsJRRMT0P5m6d/ww4M/ZE/7HjLMGfT6e8m2ZrMwdyGvNb+W7C2TIqawqmgVBzsPYjaYSTelJ3upnew9SVyJ8w8r/4ESRwlPLHyCwdAgAgKd3k6eq30OvUbPx+Z8DKPOSIG9gIHAAAVvo4neAAEAAElEQVQpBRQ5ihgKDVGTX8Petr14JA9vtL9BTWENFoMFq8FKpjkzWcaxu2U366ev50DnAVJNqaMEUa/Rc7TnKA/Pfpg2Txu3lNxC0/CFjLqJej3U9tdSO1BLVVYVBzoO0OvvZeP0jRzoOsDu1t0UO4rZ1riNjdM38mDVg8nP3cj+DFoDBSkFSDGJNk8b/oifTHMmOo2OZ88+iyAI/Pn8n/no7I+Sacu8rjMJgrEgnd7OZGBypAxAQUmUU2h0yV4bI/eH0QHuIkcRf7v8b/nnvf/M1satydurs6r5xqpvUOQoAuDxhY+ztHApp/pOAYmshPOD57Eb7dxbce/7IgCgouKP+pENaWgv3aDXIy5bhm76dBSvn0z0yN19aApSJt5ZNIri8RB4+mm0TifGu+5iS9MuTLrRPahUz7uAtrQUxecDZzGbO16lIdTBvrZ9aDVaDBoDJaklquddZ1zsep3eTrIt2Ty+8HGCkSAKCrOyZlGZWTnl1/hOPO+hvDuRm18bd79ySwtiTQ1ZmnevPNsn+fB5BrBENRRFDBQ55lG95nt8dc/fs7N15xjP29GyY5TnLStchlbQcqb/TGJQgTUn2Q/yze43eb72eVYWraQgpYDB0CAPT3uQojfqUS4pMaSllWLgH5b8HRaDhVkWJyZZS1Arc2D4BL/uPMSi/EVJzys3FxIbp+ea1paCdMltI4ycX8FZwhvDiSFLE3lem7uNweAgKcaUcT3PrDfzeuvr3D/j/nE9T6fRkWnJJBgN0upuxRfxISBQYCug29/NDw/+kDxbHuvK1lE3XHddZ40GY0F2NO9IZu6NeJ50mYiRYLwwCfSdeF6Hp+Om8Tw1yHYDk2fLw6QzYdQZOe8/TyASwKwzs7xoOSd6ExPsfFEfe9v3kmnOZFHeIjq9nQwEB8i35WPVW2lyNdHqacXpcNLsasYtuen2d3Og8wBx4lRnV7O8aDkROZJsZu2RPO/1S39X0Nps4HSiSU9HgjFTp7R33sH9/7OAWDxGliUr0YjW0w7AM2ee4d/u+Dd+euSnvNL4Csd7j2MTbYRjYSrSK2hztyEIiea5zlQnXsmbKJd768drLB6jIqOCNFMaaaa0URfvESoyKvhyzZdZVbQq2avIbDBj0VlIN6dzduDsZXttjIiAJ+whx5pDm6cNX8SHXqOnNLWU52ufJxgLoigKBzsPUpFRwcPVD0+YGn+9MlJKOC9nHq82v0pUjoIOzg+eJ82U9ra/zOW4TIe3g/yUfN5of4OlBUvJsSb6f+m0OvySn2M9xyhxlCSleaRfiF20J//eAkJif4qclN9oPJqU6mtdttPqbuXVplf5xbFfUDdUByT61t1Scgt/VfNXfLj6w/ikxPvCLtppHG5kbflaQtFQsgm0K+yifriehXkLaXG1YDaYKXGU0OXt4kTvCTwRDy+cf4GKjAqah5vxRrwoioLD6Ej01LIXE41H+bvlf4dG0GDUGTnVe4rTA6f5wcEfAPBg5YOc6j/F8+ef51bnrVgNVuLxOMWO4kQ/O6ONwcBg4jwqSjLAFlfiKCjJyaL3VdxHeVo5sXiMuqE6iuxFE/Z6cEtuZEUm15rL1oat1BTUsLd9Ly3uFgSExMj5iI9mV/OoTIDKrEpKU0tpdjVjNVgJRRNlRnbRjjPVSYurZdSI+8ahxus+k8Av+TFoDcl/j/zIkONyolyCRLnECGadGYPOMOaztbRwKT/d8FNO953GJblIFVOpzq5OihckVtuXFy1ndvbsd2UanYrK9YhVb6Xe00l1qfPC5Da9PlH6eegQ0uuvJ++rdTrRVVRM2ntN7kyU5sgtLYS3bOGRtR9IBg9UzxvreaZ16/Dv3klzTSnPHPhHHCZHMqjwmxO/UT3vOmK86db+qD9Z9fN2Xe9izzvSeYSvzP88y9PnY9VbMGh0REIBQopC2O9JTg0d8Txt5DKlyLFYcrLvtfa8NncbukAY246DKC2tjHTKyix18us7f8zWvr14wp6k5zUNN7G2bC3BaDDpeW3uNswGMwBN7iZSDClJz5MVmWZ3M6JOpG6ojubhZv7f7C+jtLwy7vEonV3cc9djhF/ZSrz5BQBSgDtLnfSsuINHdnyBZUXLsBqsfKH8o+jGC6ZdrtQbcK1ZyO/2fm3Snl7+qD9R8j2B5wG4w+5JPc+oM+KTfAQiAQQElhcup8PTQZu7DY2godffiyfsue6zRv1S4jOz3LAcuOB5L3Xu4DFnMbS0jXmMtqwMwWIZdZvqeWqQ7YZmWvo0lhctT0x30YooKMzLnceBzgMU2gsR9SLONCeQyHbzST5qCms42XOSeTnzSDOnkW5K5zMLPkOmOZP/PPKfROQIWkFLf6CfcCxM/VA9MzNmMi19GnElTropHVGXaMZ6M3wALoc2LQ30eowbNiDEYigRCUSRxlAX39jxWYbDw5Q4SlhVvIrnai/0QfFH/QiKwHdu/Q4bKzbiCrkoshexuW4zL9W9xLT0aYhakWJ7MbeV3savjv0Ki8GCXWMnrsSpSK9gw7QN1A3VMSNjxoTHV55eTrY1OykWQEIsei+siE3Wa2NEBHIsOfT5+/BFEk12q7Oq2dGyg8HgIFpBS7GjmFAsxN62vXR7u/nS0i9RlVV19U70NeTi/iMjfZxEvUi+NZ88W97b/jIfKb2wi3aKU4qpya/hD2f/QHl6OQc7D9LqTkwtXZS3iF5fL4/Mf4QSRwmpgpnPlX0EfTTOB3Nv509t2/jukR/gCrtQUFCURJBNr9FjM9iQFfmarub4JB87m3eOCrDFlTiukIudLTuRZImv1nwVf9TP9ubt5NnyGAoOcar/FHElTpopjcHgIEsLluJ0OBNTdQUh2bcm15qLL+JDVhJDAva07mF29myKHcXJFHKv5MUX9tHqbcUb9jI7ezZvDLzBS/UvJY9zYd5CXml4BVfYRbYlm4HAAFaDlW5/N43Djdw57U5SxBTMBnNyYuWIHOk1enKtuYljEgR6/D1sb9qOzWDjo7M/SpGtiMHgIGa9ecx7wSE60AiaRG8kRSY/JZ/X2xI/bEcCohpBQyQeGTWRL9uazReXfJGfHv4peq0ebZaW6qxqStNKmZY2jb979e+SzyEgIMnSdT/RT6vRIsdl5uXM43jvcaLxKCadiVAshFlvZlbWLIaDiT4/pY5SMswZrHGuGffzVeQoGiVbE/FuTKNTUbleKXYU87v2vRTesgqHoqC0tCZKoA4dQu7sRFy5Em1BQeLHpk6H3N+P8fbbCe/ejS4n58I2kwnBYCDw1FPJfcstLThYS+1ALVaDlb+a8zhzbNPQRGKIFtuooMHNzFjPiyCIIlEN9AQG+GNmK7/b9T3Wlq29aT1PQMButCPFJA50HKDN3cYTC55gVvasG8L1L+0zpxW0lKaWUuIoQavRvu0f7hd7XqmjlO/V/APp+05hWqBBen03obeCsgYgVlZKfOM9aOx2QrEQ2ZZsFNEw+RPodGAUSTOlXXPP6xlspfKN1jFZZUpzC8K2Haxcu4L6QFvS84ZDwzS6EpM1HUYHg8FBnA5nopebvwcNmmSP1BHPE7UioVgo6XkWZeIwg1hTg/TKtrEDXZpbyFEUPjnzw+zvP4rVYEWQIuPvRDd5GENOsXB+4Ci/Xf0kxpiAIawlrg0lG/SPYNVbMevNE3qerMjoNLope15+Sj6ri1fz2ObHEISEh454Hlzf05u1Gi0mnYlILMK8nHm0uFsw6Ux8++C/cOumlymDUYE2bVkZ5o0bx5xTUD1PDbLdwNjExA9ET9jDiZ4T2EU7eq0es87Mx6s/zg8P/ZBwLIxX8uKW3DgdTh6e9TAV6RWc6jtF7WAtdtFOm7sNo87I+mnr2Vy3mR5/D+Vp5cSVOMsKErXUvzz2S9o8ifvNyprF0Z6jfHT2R6/bdNeridZmw2eAX59I9LHINGeioHBb6W2UppXS4mphd+vuZO86SKTEVmVXkWpKpXG4kf89+b+c7jvN4vzFPFj1INPSpmExWIjKUY71HCMvJY+4EkeOyxTbiymwF9A43IjdaL/shXfky6nP38dPD/+UZnczcSWOzWBLpsxPtGoykp4+kgqfZcniTN8Z7KKdhqEGzHozToeTweAg7Z52gtEgx3uPk5+Szz2xe1iQt+Dqn/CryMgK7oh4yYpMb6AXKSbRMtzCxoqNtHna3tZkrTZ3G82uZubnzmcoNMQPD/wQq2jlYOdBWtwtaAUtff4+TvaeJMOcwdaGrXx62oex/2V/MuXdCnzCWcLKe//A+hc/gDvsRhAEilKKMOqMOIwOVpesvqaS2+Zuoy/QlwywyXEZSU6MbA8HEoH2Olcd1VnV6DV6zvSfYWPFRrQabXL0+0hJZLY1mxfPv4hBa0iWvxp0BvSyHofRwYyMGRzuOszRnqNAYjw6wPyc+cSJI8Uk7EY7Cgp9gb5Rx5lpzuS1t8ouiuxFyf41Bo2BRn8jKBCRIwQiARblL6JxuBGD1oAkSxSmFDIYHGRW9ixa3a3sbd+bHCvui/j45JxPsr9zP3ajfcwPlcqsSspTy5OreRd/zi16C3I8kTVn0CRk+uKSj7k5c/mrJX/F/578X+qH6glEA/h7/bxw7gXWTVvHC+deIBaPodfqkyVb1/NEvzRTGp3eTh5f8Dj/dfS/ONF7gkxLJsPBYWZkzODxBY/zcv3L3O68nY/N+Rjzc+ffED/QVFSuV2yijfXT1vPzY7+kuCybW5fdTYE5B3lkkMGhQ0h79ybvr3U60RUUYLzlFsI7dozZZr7nnmQzcABFCmM1WPmv1d/HtuMQSsuzAMSBaKkT7lqPMS3zXX3N7wUTeV5cidMVHaTEUXLTep5RZyQqR6nOqub80Hl6/b1A4vv+1eZX+fjcj1/Xrn+p50HC9c70n6FusI6NFRt5a73tirnY87K1dtJ3H8NQUJgIcl86wbepmeBLLxG7+3ZeqnuJPe17SBXM3F1aOqbMERKfx7jPx7BNO+7kzKtJm7uNIl0GSsvucbcrzS2YY8tJM6clPe+u6Xfxl6a/UDtQi1bQYtAayDBncNe0u3j85ccx6oxjPE+SJXItuWg1Wo72HMWLhHmCY9IWFIz6fhpFSyu3LbuLHd37AZANunFL5gWLZdLMXR1alp/wIDf/lggQ4aKgkP3CAkKxoxiT3kSqKRUY7XlaQYtOo0On0U3Z89o8bdQP1k/oeZfu43oizZRGRUYFezv28tj8x/jF8V/Q6e1kODjMLc9v5Gd3/Ig7b/0ocjiIxZqG0Z42boBNRQ2y3fCUOEq4d/q9aDVaInKE2VmzybPl8fszv6d+uB4NGqoyq8Cb6AFxqv8URp0Rd9jN9LTpbGvcRpzERT/eFmdR/iLeaH+Dh6ofIteaS5unjTc63kgG2ApSCojFY+xv349Ra+TxhY+/L35EXTz6ujeQEBCtoKUivYLB4CB9vRcCApfWnC/KX8Tf1PwNQ6EhfBEfNoONDHMGpWml7GnbQ2lqKTbRxvnB82RbslnjXDOqJn2y89vn76O2v5bhcGLCX8NQA4e7DlOdU02qmEpEjpBtzcagMdDubk82Ox3BqrfiDrsJRoMc6TrCgrwFDAWHiMQjCIJAvi2fwdAgFr0lUaagNxOKhujydfHzYz9PBlauJy4eTR+KhjBoDMkJNZnmTEKxED3RHohDk6uJhqGGcYMrl8Mf9SMrMt2+bmwGG+eHzrNp5ib2t+9HQyIgM5IV6pf8zLZXIL308hjZUlpaKQX+76Kv8P8d+A7T06dzb8W9rCpaxeyc2df88zWSJm81WMm2ZKPX6onHE+WVQ6EhAAKRAN/a/S3Wlq2lcbiRrY1bqcyo5I7SO5AVmVRjKiliCr8+8etEaaaiJIJPKETkCOWp5Ym+a7M/hl6j50DnAYLRRL+u+Tnz+cyCzyDqEgNcRhoxX1o6cbH0yHEZoy7R/8FutGPSmQjGgkxPm86JnhM8sfAJagdqOT9wnjP9Z5iTM4eytDKcDifHe46zpmQNe9r24JN8ROQI5wbPkWnOpDfQO+aHSrY1mycWPsEL51/AmepMjha36C3kWHMIRoOY9CbsRvuY4/ZJPna27sRsMONMdbKlYQspYgpNrqbkIsbBroNkW7OTn6PreaJfsSPxw7DF1cJj8x8jFo8RiATIsGTgMDpAgc8v+vwN26RWReV6pMRRwrrSdbzc+DK1Tb/nH6Y9fiGb7dIf+i0thLZtQ19Zedlm4ACCaOSv5jz+VoCtddT9480tRLdshfvvfV9ktF3vnueRPFRYS3ii9EPEwyEEo5FzgVZ29OzHYXS8bc/TCBoqsypxhV2EoqGk5/kiPprdzZjPmq87138vPG95TiVKyw60NUsnDA7JTU3I/hqi8Sg2g41DgydYdev/IUUQkJsu9IDVOp2IK1ci2FOwWgzviudlRicPhAhSjG8dHu15c7Ln8I81/5dyYy66aJywVqEjNsSywmXs79g/yvOC0SCiRmRJwRKWFy7nQOeBSUsML4c+Fk96Xn3okpJ5Et9j4ddfR1yyZGypt9OJ6c47Cb322tjvwaYmgi+9hHnTpmRwyCbamJM9B1ErMid7TtLztIIWu9GOXbRj1pun7Hl9/j7K08qpH64f1/Mu3cf1RLGjmNLUUkw6E6d6T/HonEdRUIjGo9iNdvJs+ZyOdDIjZwZm1fMmRQ2y3QSIepF2dzvd/m7mZM/BG/ZybuAcRq2RsBymdrCWfFs+BSkFKCiUOEqIxWN0ebuwGCz0BnrRCTq6/d2sKFpBJB6hy9vFppmbUFDY07aHYnsxFoMl2Y8nFAvR7Gq+btNdJ6NpqInT/acZDg2TZk6jOrN6ShOGRkZfX1o3vq5s3aQ15yWOEtJN6ePWm5elliVvN2gM6LV6gtEgFr3lsqntJ3pP8OShJxkIDBCMBvFH/HjCHv7P4v/D/574X/7S+BdEnZgYiZ23YNzyzkxLJl7JS5YlC0mWePr00ywuWMyc7Dm0uFpIM6VxsDMxzMEjeRC1InajHYPGQJOradJx2O8Fl5YMdHo7CUaC3Fl+JxnmDE71n6LX14uoE+kP9PNa02ssLVxKt6/7inskjFwg/ZFEkMqsN6OgJEdPC4KQ7AkWU2JMNxUgN48vZkpLKw/f9lEy0wrIt+UzLWPalM7rSClDt7+bqBwlz5rHtPRpVyRsVr01GTBqd7dj0ptIERPNs3OsOeRacxEQON57nFRjKquKVxGIBpDjifJPo97I32z/G0StyLdu+RaSLHG67zQIEJWjVGVW8XD1w/T6eznTf4YPVn6Qj8z+CIFIAKvBilFn5GzfWbJt2djExKr87OzZNLmaSDWm4gq7AJLSA4mJnZmWRHaFqBMpcZSQYcpgZ8tOGt2NNHuaMevMFKQU8JkFn2FLwxaO9xxPlsSXppayqXITfzjzB+JKnOHwMOnmxHTm8dL4s8xZLC9azuqS1ZzpO8MtJbfQ4elINKo2OpITnS8t+Rgp04FEMHBl0UpqB2pJNabS5mljWeEysj3ZrCxeid1ov+YlI++Ui3+Etnvbk7drtVpWFa+6ro9dReVG5mLPk6t0k2aByM3NiEvG9veCC83AIfFDVDGKLEmdjdLym3HvH29uQfH74QYLst1snucNe/mnxV8nd9fJUcHQRc5iMpfexUdf/T/MzJz5tjxPq9Gi1WhpHGoc43nhaPi6c/33yvPi4VAim+oyfcAEKYJZb+bO8jt5vvZ5bm+6j68v/BKbbnsUQzQOBgOCTg+iiNZm43JH4pN8hHxuLDEBTSSKzmRBa7VdUfaQVW9Fjk2ezicYReoG65KeF4vHuL/gDlJ2HiLevBsAEzDdWczv7vgZH331CfZ37CcqR9EIGmZnzeaxhY9xqPMQ31v1HYr1GSBFMVXZiXd2If3lL8kMWm1ZGRqHY9Ljiet1Sc87MnSKxXd9LFE2qigQiSQa7Ws0BDdvRlywIPG9NlI239mJIsvIDQ3j7ltuakIJBOCic5hqTGSxfX3F1znbf5ZVRavo9HWiKApGnZEZGTOm7Hl72/cSioVwh93kFeaN8jzguna9iz1vODRMpz/RxzPNlMaKohXX7XFfj6hBtpsAs87MbaW3saN5BwICGeYM3GE32dZs3GE3oViIDm8HmeZMClIKEBA40n2EYCSYKPfrI7FqFwNFUFiQu4C/Wfo3CBoBo86Y/JK7lEg8ct2mu07EntY9fHffdzk7cJa4EkcjJDL9vr7i66wqWXXZx49XN24TbZetOZ+o3vzt1qH3+/vpG2znu/P+Fn00TlSv4Vyglf85/yx/Ovcn8qx5tHnaiCtxgtEgLa4WXm16lbk5c0fJxWBgkOWFy2l1t5Jny6NxuJF97fvIMmdh1Bnp9nUnewgoikIoFsJpdCYn/rS6W9nVsovKzPc+c2W8kgGDxkBbsA2P5OHFuhfZ3rQ9mRFVkV7Bh2Z9iNdbX2dZ4TJ6A71XJJIjE6z0Gj2yImPWm5P/D6AlkWJu1psx6UyXbYAbD4XpC/axYfqGKQlgq7uVvW17eb72edq97WgFbUKOSlZdUSl3piUTu9GORtAkpwmPBFD0Gj0ri1aSbkpHr9ETiAZodDUyGBikL9DHmz1vckvxLRTZi2gYbuCbu77JE4ue4IOVHyQUC+EwOqjJryEWj+EKu0gzpfFfR/+L0/2nCUVD6LV6VhSt4HMLP4fFYMGsNycv4Ed7jrKkYAmHOg/hCrsYCA5QbE/0BixPK8dqSMjvYHAQgJ2tO/lD7R+AxHs125rNtPRp/NfR/yKuxAlEA2SYM+j0dtI43Igcl1lWtIz6ofrkZLURLv1eK3QU8lrra8nG0Y/Nf4ytjVsZCAwg6kQyzBnJpsoX/+3G7MdeSIqYQllqGXVDdRTaC7nLeFcywHatS0auBhP9CL3ej1tF5UbmYs9rlnqYQ9bkD5gsEBCLJTI97r4brSOVqMdFdOJ7o0jS2zrm94qb0fOscT0GRYNcUIjU2ZUMVtDSRgnw2epP8atzv39bnneg8wCzs2cTjoXH9bwef08i29uS+b72vJhemwiyXa4PmEFHpjmTPW17iMQjWPQWfnDiP3ny5H8zK2sW83LnTTnQ1+ZuQwxGML92gNhbmVqJksdSzG/1f5sKmZZM3uzbz0qnE2Wc0krBWcK27j18dM5HOdN3hjZPGzUZc7HtOET80vu3tGF8NTEZ9ETFOSRZYlraNPKsefgjfv666lPot+9JPk8I0JSWYnn8MxCWEEQx2SRfW1Y2KsPv4uOpD3dhNVgxaA18qvyD4PES3rt3zHAS8733EnzuuQufibfQOZ2TnhMlHB717yJHETtad3C6/3RyIu3b9by7pt1Fv78fWZGpyKhItCe5KMB2vbue6nlXBzXIdhNQ5ChiV9uuxMqDEmONcw0v1r1Ij68Hq2jFYXSQakxlXu48UGAgOJAcXHC0+yjT0qdRlVlFLB5jXek6qrOrqcqq4kzfmWSq7ngYNIbrNt11PJqGmvjX/f/KGx1vJANHAJ6wh3/d/6/k2/KntNJ5PWAMRVl2zE38rf4pWmCes5jclZ/jX07+FDku44/40Wl0mHQmRJ1INB4dIxe+qI9uXzeFKYX81ZK/SgbW3GE309On4w676Qv0MRAcQNSIlKaWsn7aerY2bKXD20GJo4T/OfU/lKaW8sUlX2Ruztx35fWPTAsNxhIZfFpBi6zIyZKBkUCX3Whnfu58/nj2j4npWSjJZvhNriZeqn+JW4pvSfbruJKg8chqz/72/XjCHortxbjCLqoyq2jzJKYJaQQNWZYsMi2Zl22AGxf1U26G6pN8vNr0Kk+ffppm94VUeFfYRawldkWl3IOBQRxGB5tmbOLZ2mdxS27grTKZjAqqs6t55uwzzMmZg1FnZCAwgM1g41T/KVwhF4c6D7F+2noAGoYb+PGhHzM/dz7V2dU8sfAJ7EY7z519jg5PBwc6D5BpyeSu8rsQdWIi+1Ly8NuTv+XLy7/MgH+AhuEGUo2p3OG8A42gwWqwMhwcpiClgAdmPMCR7iNIsoQUS3yGQ9EQi/MX8/c7/z4ZVLYarNgMiSlv+9r3UZ5WTpOrCUVRqMys5PzgeZrcTSwvWk44FqbV1UquNTd5Ti79Xrt4Za/b301foI+a/BpEvUiBtYBcW+64AjLe96PdaMdutFNoL2RN8RpMBtMNJzA3a5NaFZXrlYs974yvkTm55ZM/YJJAgCYtDdM996B9K5NEEMVJd3W57dcTN6vnxYAYb/XV27RpVF89Wtq4Y+kGft/w3NvyPEmWsBqseCPecT1P1IlUZFSwtXHr+9rz6kMdzHaWIHd2TtwHrKyU+lAnCgrd/u5ELy/Dhc+iSWe6Is/rHmim6kDHmMDYSP+3i0seJ2MwMMhg3If/thqsO5TRpeHOYjqWz+Czz93FiqIVzM2ZS3+gnwX2SpSWP42/w5Y2cpZWcWbgDE8sfAKH0cFzZ5+j2JiNfl/bOKXnzQRfeQVpw62c8ZzGPeAm3ZTOkrvWw5atiUCbXo9YU5PoVacRmK+JYtFbEn1/23uQzp4dWx7f3DymBD7J5b7XjKN/314LzwNYW7oWg9ZwwwWrVM9756hBtpsAm2jj7ul3J/pIeHpBgQcrH6TV3YokS5h1ZrIsWaSZ0whFQwyFhlBQ8Ek+THoTXb4u4kqcstQycq25yXTzYkcxJ/tOkmfNo9vfPeo5TToTpamlN1Ta6JmBM+xr3zdKvAAkWWJf+z7ODJy5IeQrHgqh2bZj7AW+pY0cBFaULaQl3AMkRsQbtAYq0isSQY1L5MKqtyb6Tfi7sYk2ih3FZFoyKXGU0OZuY335egrthfT6ezHpTMTjcX536ncIgkCxvTg56arZ1cyTh57ku7d995qvdLa6W3m5/mUsegutrlasohVFUbAYLGjQUJFRQcNQA9F4FFEnYtQZaXG3JDMyFUUhy5KFQWegx9eDSW8i35aPBg2DgUHO9J+Z8iCEkRKR8wPnyTBn8OsTv2ZZ4TIAOrwd5FnzWFq4lCJ7ETqrbeJVu1In9aFESvZUBLBhqIF2d/uoABsk/t7tnnYahhumvFrri/ro8/cRjoUpTy1ncd5iovEoOo2ODm8H2xq2YTaYWV28Gq1GS4cnId2xeCJTIqbEePr006wqXsXq4tUgwLyceczNnktZahm/PvFrml3NmPQmmlxNnB04i6zI2EU76eZ0XCEXX1jyBb63/3sc6zkGkMw8+Ouav+bW4lsZCg/xatOr1A7UUpFekZzq6XQ46fH3JEqa41G0ghatoCXDnEGTq4mKjIrkebEarInUd28n+bZ82rxt2Aw2avJrONR1iHZPO0adMSlSl2LSmajMqKQ/0I9VtOJ0OClxlEz6PhlZBb941X2EXFsuC/MX3hCypaKi8t4yyvPcvRy3NVA5UUP1sjLiPt+4+9E6nSgaDbqLSrUEqxVNqXPMlD8ATakTwXrjLKbe7J43Xl89AENMedued1/FfUTlKNPSphGRI6M8T0GhNLUUr+S9oT3PqDWSakxFr9ETioQ42HkQq8E6Jdcb8by6wTrCa0th50FM4/UBKytDvPsuTjU8MyozfgST7kLv1ql6XoEuHaVlz7jbxyt5nAhf1Ee7p52t8RjTlxSRt6zqrSoYgVe6Xue///Jp/FE/3b5u1jjX0OnrRBeVJ91nmsbCJ2Z/YpTnPTjzNpSWzePeX2luIeJz095fz6rMhejDCsOafmwb7sAavxOA0Natyfe1HphTWoq49g5QvOMGNWH88nit04ni800SDC1LZtNdzNX2vDRT2hW3cFG5eVCDbDcJF6d2BqIBqrKqEiO+L/oiTzOlUVNew8Gug5zuO03dUF2y+XhFegUPzHyADHNG8v420cbyouUIgsDLdS8nA20mnYnlRcv5QNUHbqgvjqHgEJIsIWpFluQvQdSJROQIFoMFRVEYDA6OKn28uLHqpRfjt9vv42qgBALI48gwAC2trKxZh3foALOyZqERNJj1ZkTt+M3kL744NLuaWVW8ip8c/gkAz555llcaXuGxBY8xFByibqiOUkcpg8FBFuQtYFnhMva27UWSJbSClvqh+gl7tI007nVLbhxGx9suLx0pFTBqExlVtYO1vN72OsOhYcx6M3nWPO6beR+VmZW0uduQFZlILJKQMK0Rp8NJmikNr+RFVmT8kh8U+O2p36LX6CmyF/Fmz5ukmdKm3CDXJtpYVLCIGZkzKEsro8Xdwh3OO0ADFp2F/JT85MpVfONGgi9tRm668MNIKHXiu3UJrzc/P+7faDy6fd0EYoFxt8XiMXwR35RXa616K6JOxBPxcLj7MBE5glfyJoNo+bZ8UgwpOB1O9Fo9doOdktQS3GE3GeYMjDojgUggWRqRb8unPK0cm2hL9qqIxCNoZE1yFDqAR/JQZC9iReEK/nTuT2gEDW2eNiJyBJ1Gl8i4jfj4t9v/jeO9x9FoNGjQJBtSjzAUGkpO/pSVxECEkVHsOkGX/Iw3DDeQYc4gIkdwpjpJN6czLX0aT51+ipXFKznRe4JlBcvGTeMf6YvT7Lrwd5tK9ualvS1GuBHKBVRUVK4vLva8YCyIsGEt2q2vjm6oXlaGacMG4oODY35gap1OxCVLEDSaUfs1Wu1w13qiW7aOCrRpSp3o71p/Qw09eD943sV99ZL3Fw1v2/NMehPzc+dza8mtbGvahk7QMRgcJMuSRUVGBcsKlrG7bTeKokzqeVejR+zIfq6m53nDXlrcLeTYcjg/eJ7G4cbkgKWpup5NtLEwfyE+yYfvjqUoMQ3i2tsR0UAkgsZsRrBY0JhMrJ+2nl2tu0Y93qQzUZFRMeFgp/Ho9nWTQ96k97m05HEiRgKtETnCC61beebMM2M8z2qwkm3NxqgzUuYow2hJmXSfYa0yxvP0sfikj0nDxP31RpS/vJy8Le50Et+4EenlsYPB5OZm8Hgv2wfv4u0j33PBzZsxP/ggkkZzyXdkaWK66CXBSdXzVK42apDtJuLS1M6RC9DFKaoAh7sP8+FZHyYcCycbtht1RrQa7ZieEyMrONVZ1XT7u4nJMXKtuTdkZN4m2hC1IreW3srhzsN0+7vJNCcawtpFO3dNv4v/evO/sIk27p95P1JUonawNtnbYeRi3O5u59uvf5ujPUeT+16Qu4B/WP0PU+r38U653EVVlDV0ejupG6qjIKWA/JR8IvHIuI02L704tLhaeGzeY1hFKyadicHgIB2eDhbmLeS20tvQa/RUZ1ejQcOBjgNoNVpERLQaLbF4jP5g/5jjebsXrvEYuZjPyJjBloYtHOg8kLyoxeIx2r3tPF/7PMxMTIX0SJ7ERCDRTqoplS5fF/VD9UTiEQAKUwpxGB2c6TuDIAjk2nIRERkODV9xg9wmVxM/PfLTcV/nyD40dju6++5Bcg8gSBFkg476UCevNz9PRB7/bzQeep0+OYRkPDSCZsql3CMZq2nGNAAMWgOpxtRksGvk8x6MBdletx2H0cGx3mN0ejuJxWOc6jtFtjXR1PVI1xGK7cXJ75uzA2cT+9QkfgAoijLquUWdSIoxhabhJkpTS4nIib9LLB7DK3k50XuCk/0n6fH1JOX0UkRt4u9VbC+mzZMQbg0a7KIdb8TLgtwFhGKhxAKCQjIIV2ArINeay8OzHyYQCbBp5iYW5i0cc/77/H1j3r8w9exNtbeFiorK1eJSz4tv2oQSCKCEwwhGYzI7Qzp2DF1BwZhm4NLx45jvvXfMfo1pmXD/vSh+P4r0Vt8kq/WGCrDB+8fzBIMBceVKpIMHEQryOew68448T9SJnB04y7qydaSZ0piRMYN0czoDgQEOdx9OZIlrJ/a8Vncrb3S8Me6C/JX0iIWr73kO0cGK4hX84ewf6PJ2sX7aekQSPnGlrtfkaprYZ01zgcQ1f0P5BlqGW+j2d2PQGLAb7aMCe1P1vJigmfQ+l5Y8TsRIoFVAIM2YNsbzUsQU8myJnmqt7lbqh+p5VmPmIWfJmNJPSPRMa5Z6mZO7eJTnRXWTH68uLhC5ZH9KSwu43eNm5V544OThCsHhwPyBDySybnU6FI8H8733Ire3o9xxC9HVixO9JUWRiKjDekkvO9XzVK4FapDtJmaieuqRkgNJltBqtEiyhMVgYeP0jeN+IdhEG9XZ1VRnV78bh33NKE0t5UNVH2JLwxa6/d2kGFLwSl4kWSLHmsOe1j0EY0G2NGxhX/s+bim5hdXFq2lyNRGNRxkODVM3UMcvT/wSr+SlNLUUnaAjGA1yvPc433792/y37b+v+Urn5S6qOpOJVGMqi/IWIQgCgUiAPGvehCsq410cMi2ZFNuLeaHuBbwhL+FYmO6BbubmzKXL10VEjjAQHMAf8ROVo8km91qNNtnvD975hetSRrKzgpEgfYG+UatGETlCiphCu6ediBxJputnmDNYWbyS3a27kWQpKdMABSkFifJQRzEnek8wEBhINtSfat+MK32dRqud3piLzV2vvO1VrzxrHnqNnsKUQjq8HaO22Qw2Sh1TL+UeyVhNEVOYmTGTc4Pn0Gq02HQ2iuxFVGVWJSehTU+bzq7WXbhCLjZM20DtQC3FjmJa3C0IvQJ3T7+bWdmzuL30dmyiLRnosxvtBCNBSlNLk0I2suoejoWxiTYGg4PIcRmdRoeCQiweIyJHcIfdeMIesqyjG31LMQlv2ItWoyUiR7jNeRtnB87ikTxkmjPpC/TR6+/loVkP8Z9v/icDgQFSTal0uxNTmBfmL+S/j/03eo2euTlzkWQJk25s2UVtf+2Yv+sIza7mKU3YVXtbqKioXAs0JtO45WLm9esJvvTSqJJCbVnZuBkcIxit9htuiuilvF88T4lEiHV2Yn7oIZoFFz/Z+SVWl6x+R55n0BloHG5M9OQK9tPpSwwJupzn+SQf+9v3s6V+y6jWMqFYiP3t+6+oRyxcfc/Ls+XR6elEK2gZDg2P8jyYuutdiedlW7N5dP6j7yi7Kc+ax6neelZNEOjSlpWOW/I4HiOB1pfrX2ZGxoyk69l0NjLMGaQYUrCJNvQaPSmGFM70n+FQ5yGWbHyGUhj1/EKpE/ctC8g2GcZ43hH3GdZNdLylpcitY28HIBSa8Njlzk4Eu33S0s9YTw/Syy+P2SY4nRzPlvj+sR8zK2sWok7kwZkPkn/J/VTPU7kWqEG29yHv14j79PTp3F1xNztbdwKJLBpvxEtlRiXzcubx1JmneGTuI2gEDQ3DDSzJX8J/HPkPHl/4OA3DDWgFLd6Ilz2texgMDSb3m2pKZVraNI73Hud0/+lrL18Wy4S9vXCW8GrvGwSjQWZmzCTXlktJamJVbbILxHgXh2xrNjMzZ3K46zD72vdhNVipyqpiX/s+DnYexBP2IAiJCbQOo4NsSzane0+Tac4k3ZxOsb34qly4LmbkYh6NR5Np7hcjx2UMWgM6rY48Wx7zc+cTlaNYDBaMWiOd3k6OdB0hLIdxOpysLlnNDw/+kAdmPoAgCGP6aEy15PJKX+c7/QyWOEqoyqrCqrfycsPLyUCbzWBjVXFiuuiVfJ5HMlYzLZn88ewf6fH3YDPYSDOlYdAYmJszl25fN17JS1+gD4DNdZuZnzufB6sepG6wDp1Gxz0V9zAjfUbyM3BxmUpEjnBn+Z1IskSbuw2jzoiiKOTZ8si35XOk+wiKkgiujQTa4kocu2hPrkhDYiCDSW9ClmUGQgPU5NeQYc6gzd1Gob2QadppWA2JXhpdvi42122mOrOaNSVrkBWZopQiLAYLz597flQJx0SryyODICbicttVVFRU3m00djvmcbLcptIk/Ubm/eB5WqcTubMTuaWFsAADi/P52NyPsXH6xvfE89rcbXgl75jezZAItDW7mq9ooufV9rxlhcvY1riNmZkzx/U8mJrrvReed27wHEO3zCOd0YEuTakT8e67r+jzXOIo4RNzPkGHu4O/X/X3vHj+RQaCA5h0JhQUvJKXW523srtld9Lz7nzxQf5u4V/zodUfIBr0E9VriBr1GEwmpqWXAqM978jwaeas/BDZKNDSNup4tWtvR/rlr8c/uEsz1UaGIBQUQCyGkJ6ONj+f8M6dyA0Nybtpy0oZXDWXSDxKziXBPU2pk+FbFvCTA9+iLK1M9TyVdx01yPY+5f0YcbeJNoaDw1RmVPJQ1UPIJHpDSVGJU/2nyLPlJX90u0Nu4kqcU/2nCMUSKywOo4Mz/WdwhV2j9usKuWimmTxr3pht1wKNyYR5vN5ezhK6V1RS1/Qnfnb0Z8iKzKfmfYpbS259201qg9Egvz/9e5pdzWwo38DPj/6cu6bdxfmh83glL3Elji/io9hezIZpG9jVsovpGdM5N3COI/ojaNDgk3wIgkBciaMVtIg6EZ0m8dVzpReukYu5SWfCrDeP2mbSmVhWuIyClALyrHmkiCnsatlFl6+LodAQra5WHCYHj8x/hLrBOjo8Hexo2YHFYEFWEhlUl07TnWrJ5du5QL+Tz6BNtFFTUIOiKHxu8ecIRoJE41Hsop1FeYve1g+AkX1WZVaNksJQLMS2xm3Iipz8LADEiXOk+wiFjkK2NWxDEARWFK0Y9dwXl6kAxOQYH6j8ACa9Cbtox6gzMhwcxmpINDUeabQ8wuzs2dhEG3nWRF8SraAly5LFs2eepdndjM1go26wjpr8GtySm25vNzqtjvrBem4puYXagVpcYReFKYXUDddRaCvk3un38nrb61RmVCZLOCZbXXaIjknP2+W2q6ioqLwXTJTldjMzmecd7TlKljkLs95MeVpiOmuOLYdXGl65YTwv2W/q+UQP13hzC9NWL6Ywu/xd9bxpGdPY07aH0tRSjDoj/YF+XCEXWo12jOdF4pErmuh5tT3vf0/+L5VZlRN6HkzN9d4Lz1ucv5hDnYeYvrKColuXo43EQBSJW8zoHalva5+V2ZVAwq9GXM8jeRLlrb7uUX+rsBzmHw5+l5PeuqTn/evt/8rH5nxs1D4v9rzft25myby5zFv9AUyyhpA2jlsjYQ7044hGGQ+5s/NCUFmvx7xpE9KhQ6MzcUtLETesJ75mNUgRAtoYhz3n+butn2A4NMy3ar7OLSvuxSgLmK2pnPDW86czv6A8rVz1PJX3BDXIpnLTc3FjW7tox6A18JuTv8EfSVxYDFoDaaY0qjKr8Ek+zg2cQ9SKzM6ezbbGbfgjiQuOFJOQ4zJGrZHFBYsx6oxE5AgGrQEpJhGMBsk0Z7KreRduyY3daE/2PLAYLFOeWDkVEqvUDxLyDBEJ+ojptbREejk8cAhfxMcDMx8gRUxh04xN72gC7MjKnU6jI9eWy562PWSZsyi2F7O0YClyXMakM9HqbmVr41ba3G0ICBzsOMiMzBkUO4pxhVzoNDpEnYgrkpCwkYb5V3rhGrmYv9HxBtXZ1bS4Wujx92DSmfhg1Qc50HmA0/2JoR5d3i6sBiv3zbgPWZZp87RxbvActQO15Fpz2d+xn4KUAiw6C7c7b2dezjx0gg67KfEeGQ4NT/ncvRcX6JHss6udkXqpFJ7pO5McVnBpOaUgCBi1xgu9Rt7q63bpcV66muuTfDx1+ilyrDnsbtvNw9UP44/6OdJ1BAAFhfm58/nMgs/Q6e3k4dkP85emv2DQGNjasDUZYHOmOhONiKM+drbsJBqPkmpMpTfQy/Pnnmdh3kJqrDWUp5WjETSkGlNxmBx8feXXp3zeKrMqKU0tHXcFuzS1lMqsyrd3olVUVFRUrgqX8zytoCXbmk1VVhXesJf6oXr8UT/LCpexqXJTcgjY9eh5cY8bZdiV7KsXfP55uChY4cCE+B54XpG9CHfYjdVgRYpJyWnzOo0Od9hNujkdo86IQWOY8oIlXH3PA/CGvTw679Exntc03JScuHo53mvPa4gOYrVYKXbkX5X32MWud6bvDAc6DgBXz/NaJQ9PnXuKkBxiRvoM7shfSeoEpaSx/n5Md99N6OWX0eXlIR06NHaybnMzoS1b+J/ifp5p/DNnB86i1+hZmLeQ2dmz6YwM8FTXVlKNqcwzzWNuyRJSHTmq56m8Z6hBNpWbmlZ366ieCGuda+kN9DIYHEQjaNBr9MTiMXr8PRSmFFKRUUE4FqbAXsCxnmMsK1qG1WDFHXYTjAaRkXl4zsNsrttMl68r+Tz5tnw+WPlBmoeb2dq0FYvBQvNwMw6Tg00zNzEcGsZutE95YuVU0JhMtHjd/KT2JxzqPDRqdTXVmMqSgiU4TI539BwjK3PT06dzfvA8HsmDoBHY1rgtmXFk0pow6AwU2YuQZAmNoKGmqIbfnvot87Ln4TA6ONF3ApvBRkFKAcFokMHgIMsLl7+tC9eIdJSnlmPSmtjZupNpadM42n0Ud8hNob0Qo85It68bBYU/n/8ztztvx2FyEI1HcYVcLCtYxqGuQwSkAP982z/z9JmnOdl3MjlMoDqrmm+s/MaURebtXKCvxsTVdyMj9eJSgGxrNlmWLPoDicbHxfZiBoIDQOKcTdS3cbzAXbolnThx7ptxH3869ycem/cYH6z8IJ6wB4fJgc1gYyg0xF3T7qLYUUyeLY83u95kV+suqjKrEBDwST4UFCJyBI/kIcOckZw0Go1HOdCZkMYHKx/EJ/mYmTkTi95yRect25rNF5d8ccJmx283e0BFRUVF5Z1zOc/TCBq0Gi3dvm7ybfnc5ryNcCzMjIwZnOo7RX+gn/Vl6xkODV+XnqcEAgT++McJ76MzT60v10RcqeeFY2FErUhUjvLUmacQNSJZliwURaE/0E++LR+NoGEwOEipo5TS1Kn3iB3hanqeRWfh43M+zh/O/oGj3UcRBAGAmRkzeXzh48zLmTcl11M97+15HiTKht8cPkPW7auw7hBGTTHWlpViXr/+Qom71zsqg+1ilJZW7ly6nj80JbLmVM9TuZ5Rg2wqNy0jY8Avbjra5m1jRsYM/JKfhuEGrAYr/oifEnsJZWllxIlTaC9kddFqfnvqt3y55sugJFY3k5Mo+88km7aPkGHKwKQ3UT9cjyvk4uzAWcKxMIFogOfPPc/9M+5nKDR0xRMrL0exo5jKzEqsBisDgQHCsTBGnZFMSyZF9qJ3lMUGF1bmUsSUZCPZXn8v09Km0TDcgIJCSA5hE20YtAaqs6pxGB384OAP6PJ2cafzTr62/Guc7D+JFJMYCAxwqv8UudZcHpv/WPLCdfEqtNVgvexqsE20sbhgMTMzZ3J/3/2JkoBT/0uaKY2+QB+xeCwph3VDdawrW0epo5RwNNGLw2qwUpZaxsfmfIznzz1Pr7+XfFs+siKjFbS4wi5+fuznlKaWTunieqUX6CuduHql5+dqcmkpwMqilext34tJZ2JF0Qq2N21PBCVXfWPMdOKJuFjohkPD3FF2B+6wG4vBQpopjTxrHrm23FErjzbRhslgIt2UnuwXMoJBa0AraIkrcWLxGCliotn1CHqNHqPOOOWpXpcyN2cu373tuxdkWXRQmXXlsqyioqKicvWYiufZDDai8SgFtoJxPc9hTARmrlfPm7Q/W1nZlJvfT8QVe152NemmdL73xvfo8nbx6fmfxpma6HHbH+incbiRswNnicpRFuYv5ANVH8Am2t5Tz9vSsIUubxeF9sJEtqIiMxgc5IVzL7C0YOmUzpPqeW/f82RFptvXzYvyDuYvq6JszVKMMQ16swWdzZ7sLacxmYgNDU26X0NMUT1P5YZADbKp3LSMjAG/mOHQMK81vcasrFnMypqFTqtDQMAddvNG+xssyltEUUoRW+q3kGZOY0bmDIZDw0zPmE5NXg1He4/y48M/ZlHeIpYXLScaj6LX6NEKWn508Ef8463/iEW00O3tRq/V0+fvo9nVjBSTks9/JQ1gL8fFF8aLpyVdyQSjyRhZuYvIETxhDxXpFZzsPZnsB9bmaUNBIc2URr41n2np0xgOD9M83Mx3bvsOvzj2C47vOc709OnJlPx/vvWfCcfCyayxS1ehpZiEXqPnjrI7SDOlUWQvmvB1jEzGfOHcC7S525KrziP9VkYIy2H8ET/F9mIUFGZnz6YioyIh0wNnyDRnYjGMFtUrHcww1Qv0lU5cvfT8QOLvezVXyy/HpaUAj857FCkq0RvsZUP5Bqqzq6csXjD6fTscGmYolJAqnVbHneV3TihIVr0Vu9GOSWca1R/OK3kpthcjKzJ9/r5EM2ZPW/L2UDTEzMyZ7+gzkW3NVmVLRUVF5TpiKp4Xi8dINaXS6+8d1/Pm5cxjKDQ0yvN+dfxX/GjNv7EyYwHaaAzZoOOkt4FPbn2cv1/993yg7B6mGfPRRWUieoFXe/bjjV8bz7vQn+2lUYG2y02LnSpX6nllaWUMhYZGed6bPW+SKqZSYC+gKqOKb676JqFYiPK0coodxe+5550dOEumOROdRofOcOGnb5unTfW8t7jWnicrMr2BXg7GI2RX3Ev6BJ53ucm6sl6HK+RSPU/lukcNsqnctIzXaDXDlMFAcIDX214nFAuRYc5IZsWIWhGD1kAoFmJ+3nz8ET8KCkOhIYZCQ4SiIUw6E3Elzq62Xcl9GrVGZmbOxJnqpN3Tzh/O/oEefw8aNExPn86akjWEoqFJj+udcC2nxY6s3G1r3MaW+i08MPMBdrfuZkfzDiozK6kprMGsM1NTWMPult3JTKLv3vFdXq5/mbAcJj8ln7qhOuLEOdx9GJ/k4yvLvoJZbx6zCu0Ou6kbrCMUC9HkamJjxUYOdx8mz5pHfkr+hCt7DtGRbLILiUa+dtGOR/IAJPtJDIeGybPmEZEj9AX6iCvxZL+4WDyWXOEcadx7pYMZpnKBnuqEKp/ko2m4iV2tu3CH3dhEG6JWxB12Mxwavuqr5ZfjapcsvJ33bbGjmFxbLqFYKPk+Aagfqufu6XczGBpka8NWunxdZFuyqSmo4c6yOylxlLAof9FNP0FZRUVF5f3EVDwPSLreeJ5XO1DLgzMfpNndTCgawmawse3eP1J6sBml5bnkfpc7S3j9wZexilZSdhxGaUmUqYnAplIn/ltv5TfNzxGRr6zR/1S4ltNir9TzonIURVFGeV5RShGd3k5c/S5O95/GLbn5yrKvYNKZJvW8Dk8HfzX3cSKRPqT4EDqzdcLX9U49z2F08KnKj7IsbQ66aJyYXssbwyfwRXxXfL5Uz5sab8fzJsvc1JQ66YwNY9KbVM9Tue5Rg2wqNy3jNVq1m+xUZVVxpv8MOo2OiBzBqDUSlsNUZlTik3z0+HuIK3EyzBmjLuj9gX7mZs/FrDej1WiT0xB1gg6bwcapvlNIMSnZEypOnPqhekSdyOMLHqfd046oE6+oAexUuZY9G+bmzCXNmMZwcJh2dzsbyjcksvQCfSgoaNHS5e3CJtq41Xkrfz7/Z9JMabxY9yKQEKPKzEpqB2qJE+dM/xmGQkMszl88ahVaiklJ8RIQ8EV8NA41sq1pG1pBy/T06eTacnm4+mEqMipGHWNlViWzs2fTF+gjHAvT6++lLLWMdk87OdYcAtEAedY8HEYHywuX0+1LjJp3mBxkmDOIxWN4wh5i8RhxJY5G0KDT6MY0gL0aTBa4sxqsiFqRzec34wq7GAgO0DjcyObzm4kpMebmzOXeinuTZZZXc7X8veBK37cXr4yadCY8YQ+ReIQ8ax53T7+bXFsu91bcS7u7HY1GQ7Y5m2kZ09SVSRUVFZWbkKl4XiweS7rezIyZozxvIDjAzIyZGHSJzPr+QD+3564kZ+exMQ3alZZW8gUBfWUV0qXbmluwAauX1PBq955r4nnXclrslXjeLSW3sKNlB1a99R15nkln4u/mfp68fWeJN/+F8FvHoi0rRbz77jHTM9+J5xWmFPKTlf9C7t4zKC0vJve5wVmCsn7BVT+fqudd4Eo9b+LMzcT7Yp5Jx8+sP1M9T+W6Rw2yqdy0XNwPYITGoUYeX/A4Pz/2c84PnicUDWE32pnjmMMHqz7IKw2vJLKlDDY+Ne9TnB86P2qfOdYcZmfPZl/7PiLxCAAphhRiSoxCeyG9/l6kmJQM3MWJ4w17icQSafgjEzdvNIocRXx28WcvpH3LMkad8UK6vzENm2jjl8d+CUBMiSUf65bc4IWClAIGg4PE4jF8kg+baBu12usJe5KrzmmmNKanTceZ6uShWQ/hMDqw6C385uRv6PR28o0V36A8/UKpQLY1m79Z9jdE5Si723YTjoVpcjWxqmgVH5v9MUSdSImjhExLJoOBQXxRH1a9lRQxhe2N2zncdZih0BAROZLc5/yc+eg0uuSxXi0mmkBlNVj5xOxP8I97/5EOTwd9gT58ko+KjAo+s+Az/PfR/+ZE7wkANk7fyFBo6Kqvlt8IXG5ldEnBEpYULHmPj1JFRUVF5VozVc/zST5Wl6xm08xNPH/ueYrtxXT5upiZMZNPz/v0KNcr0KURHWcCIkC8uQXtkpoJt02/pYajb7Mn1HvNlXheNBYlpntnnvfozIfJ23uW+KVTJJuaCb/0EoGNa3E4cpK3vxPPS8PyVoCtddRzKS2taP+yk/imB69KVuAIque9MybL3NSjep7KjYEaZFO5abm0HwCAVqNlS8MWPjP/M8TiMQKRABaDhRRjCh2eDh6d+yiyIqPX6jk/dD7ZBHYEV9DFl2q+BMDetr1ElShxJU6OJYcN5Rv41fFfMRQaItOcCVLiGEpTS+nwdWA32a9Kn7T3issFN870nUHQCBTYC9AJOvQaffL8uSU3zlQnAKFoiDxbHn+q/ROusIs8ax6iTmTAP4BVb0Wv1TM/dz5bG7eyt2MvBzsPElfiLCtcxt8t/zt+cfwX7O3YS7Y1e9S5nJszlx+t/xEn+07S6+vFrDdTYCvAmeYctcJ16WrXp+d/mg5PBz3+nuRts7Jm8eFZH+Z3J39HtjV7wmlK43G55rUTTah6YMYD/OTIT6gfqifPloc77EYraDnTfwaAe2bcwzNnnqHF1ZLs8TeV1fL3spnuteLdmLaloqKionJ9M1XPMxvMCIqAW3LzhcVfoNvbjcVgwaAzjHE9IRKZ6OkSxGITbtJF4+8Lz8u3579jz1uTtZj4y0+Pexzx5hZkvx+fyXdVPC8jrCHa8stxn0tuakb2+64oyKZ63rXnWmZuqqi8G6hBNpWbmkuFwaK3EIgEaPe2J+/jiXjo9neTZkrjttLbePbss2Ma6UIiuyrbls1fmv7CEwue4NF5j+KL+Eg1pmIX7Xx1+1fRa/XMy5mHoiSartoMNuLEmZ01m3m5827I1c2LmSy4cfFqm0lvYm72XOqG6lBQEBDQa/SEY2E2VW7i1aZX+Y83/wObwUYwGqQ6u5rPLfocR7qPUJFRwe9O/Y5efy95tjwqMyqpHazlYOdB/mX/v/ClJV+i3ds+bgp9tjWbtda1V/SawrEw68rXcf/M+wlGg5j1ZoLRIH86/yfCsTDd/u5kkO1yIjOV5rUTTajS6/Q0DDcAICsyQPLcne4/zcbpG4nFY4kfDdHAlCYoXQ/NdFVUVFRUVK4VU/U8SFz/agpqePbsszS7x/bMSjOloTNZmDTMppv4p5PVlkaqI+vtvpTrgnfL88IBL/pJjkOQIlfN84RIdNLtsVAgeSzxUGjS3neq56moqEwFNcimctNzqTDYRNu4F6R7K+4l25o9ZlX04u1ppjT2dexjV+suagdrAVhfvp42TxvZtmzcYTcROYJeo6fL10UsHuOOsjvQarQ3/cXu4tW2YDSYyAQ7/TtqBxLnSVZk7p5+N3m2PH56+KeY9WZkRSbDnEHDUAM/Pvxj7iy/E1fYRX+gn4KUAmoHakkRUyiwFdDp6+Rg50GkRRJGnfGKUugnC45JMYmtjVsBxh1+EJMTq9bjiYxVb2V18WrkuEy3v5tgNEiRvYjy1HIGggMYdAY0aDjQcYB0U3ryOcebUNXubcegNRCRI2gFLUCyYW8sHiMUCxGLx5AVGbPezKriVZOuVF7abHiE96KZroqKioqKyrXianqeVrRN2nhd9nnHPQZtWRla6819Tb2anhfSxpnsbMkGHf7o2AXviZjM8+KGycJ5F7bHPR6CmzcjN18IjGnLytCsX4uMgjGqkB+G/1P8QXzaKNt796MIiup5KioqY1CDbCrvOy6XDn+57fdU3EMkFqHF3UIoFmJX6y4+Wv1R8qx5vHD+BZpdzWgFLZmWTDaUb2B50XJqCmpu+gvdxb1RZEUmEA3wcPXDhKIhBEFgbvZcjDoj/3fX/yXTkokgCHjDXnr8PeSn5NPp7aQsrYzB4CB20c75wfPEieOW3BTZi+j0dQLglbwICJOm0DcNNXG6/zTDoWHSTGnYjXYahxvxR/wYdUZOiidZXrScEkcJebY8TDoTrrAr2UtkhFxrLunGdF48/yKt7lbMenOi/NfTwUBwgJO9J0k3pfPUmacYDA4i6kRa3a2kGlO51Xkr25u2Mz93PgtyF3Bu4ByLCxYn933phKotdVsA0Gl0hGNhHEYHrpCLqBJFK2ixGWzMzZlLVWYVMzNnsq99H2WpZWPeVyOi2epuRa/Rk2PJYSA4kFw1hYSANQw1YNAabqryAhUVFRUVlXfqeeM1XteUOomsXUVPaJhsZzG0tCW3actKMW/ceFX7el2PXM7z5mTPwaA18NVXv0q2NRs5LqPRaPBLflJNqaM8b1f/IT50yXkcQVPqpD7Uid0+cVbglXheQKdgLHWiNLeM2Y/gLGGYEP6BdszbdhNvvrRHXBNs3Y5h5kyCL7+cvN3gdHLfhnWs/tM9lKSWXHee54/4CfncmH3SVZ9Iq6KicnluuCCbJEksWbKEkydPcvz4cebOnZvc1t7ezuc+9zl27tyJyWTiIx/5CN///vcxGAzv3QGrXJdcrqfTZNtLHCU8vvBxlhYu5VTfKSBRcjgjYwbfuuVbhKIh5LhMpiWTHGvOZcdV3yxc2htFVmR8EV9ydTgcC/PsmWc53HUYBQVINIetSK9gIDjAYHCQweAgoWgoGVDToEFBSYqDgEC6KZ2+QN+EKfR7Wvfw7de/zdGeo+g1egrthZj1ZtaXr+fF8y8SiAYocZQQi8dIn5nOtPRp1BTU8Ofzf04G2DSChvK0cj4x5xP8075/on6oni5fFxE5woLcBXx+8ed5s/tNFuUt4j/e/A9i8RhROUq7px132M1gcJC4Emd29mwOdB5AkiVMBhMzM2dO+F6ozq6mOqua0/2n8UV8OB1OBASi8ShVWVV4JS+zs2Zz34z7ONl3EkmWxpRSXJxt1+XtotvXTaYlk/Xl6/GEPfQF+pAVGXfYzaGuQ/QF+pKPVcsLVFRUrgdUz1O5GrwTzxtpvB7xuQn5PcT0GhpCXdR37yY/JR9uXUCWsBpdVMZgtqKz2d8XwYvLeV6aKY0/nfsTnd5OhsMXsqscooMZGTM41nMs6XnfOfAdFj3wIqUwOtDmLCaydjWn2l/ho8WLxj2OK/U8k81B4LalmBVl1PADwVmC65YFnPHWM1tfiHGcIBwkAm3i4sWjb2tpgVf+wm/X/Yzb/3TvdeV5Wo2WT5Zuwrx1N/5LsvLMGzeisdsn+AurqKhcLW64INvf/u3fkpeXx8mTJ0fdLssyd911F5mZmezbt4+hoSE+8YlPoCgKP/7xj9+jo1W5WbGJNpYXLWd29uwJV0Lfj5Q4Sriv4j5O953GJblINaZSnVVNqimV7+3/HlpBmwywwYWJVEX2IvoD/VgMFiAxeKB2oBZBEZKp9HqNnsX5i8m2ZLM4f/G457lpqCkpXgBZlizaPe14wh68kpdlBct45uwzdPm6GAwOUuooZWXJStaXr08OP5AVGavByvKC5fz6xK/Z3bqbbEt2YmqszsiR7iP855v/yZ1ld2LSmzjZd5KFeQtRFAWP5CFOHL2gp364nludt+KVvAwGB5GiY2VpBJ/kwyf5+Oyiz/LU6ac4P3geV9jF/Nz5OIwO1patpdffi1FnpMfXQ3laOQOBAZrdzWRaMsm2Zo8qG3CH3dQP1dPmaYMBaBpu4paSWyhIKeBk70naPG0szFtIvi2fgeAAXsmLVW/lWPexUeUOKioqKu82quepXA9oTCaMJhNRu5UudxsawcRC+0LV8ybwvCJHEaf7TjMQGBgVYIOE67V72sm15SY9z5nq5PYX7ufvF3+FDTXrsCg6gkKMo57zFITb2TBtw1X1vPPKefrmWJm94l500Thxg46DrlMEh4/x48M/5o8rfjL5Cx9n4IXc0kLJ2tun5HnxUIj8mJlnl/+I4XiAV7p38eTJ/0563h1ldzAQGCCgD9Dl7aI8rRxXyEWLu+WKPa/cVIB1xyHkvj7MH/4wgs0GkgRGI7LbjaLRoLW9f9/DKirvBjdUkG3r1q1s376d559/nq1bt47atn37dmpra+no6CAvLw+Af//3f+eTn/wk//RP/0RKSsp7ccgqNznqlMPRvNn1Jt9/4/ucHTiLIAgYtAaqMqv4+JyP0+3vJsuclVzFG8EtuSnTlrG0cClROYor5OKj1R9N9vlINaYSjoWpKajhm6u/ybzceRMK7un+00nxAjDrzXjCHmRFHtVUVkDg/OB5zgycYXrGdBSURKAMBY2gYSAwgMVg4fXW14krcQRBQFZkwrEwBq2BE70neGDmAwSjQeS4TFSOEo0nJs1ejCQnpkMpioKCMm4fuYtXJbWClvm581mUt4hsazb9gX4MGgOtrlYCsQDzcuaxr2Mffz73ZzLMGZj1Zqqzq/niki9iEAz0+Hpwh92c6jtFMBokrsSJxWO0edoIxUI8e+ZZnKlOgtEgOo2Of3vj32j3tOOTfCgozM6aTaoplTXONVfj7aCioqJyRaiep3K9oXreaCbyvC8t/RJ9gT6GQ8NjPA9gKDjEPTPuGeN5X9//bf5F/CGpplRyrbl8c/U3mZsz96p7XlyJ0xkZoGOoP+l5Le4WZmTM4GjPUSKX+0U80cCL8OU979JebzbgodJSNm3awrNtW9AIGnp9vXgkD7OzZ7OvYx9/OvsnzAYz6eZ05ubMvSLPe2rNT1D6arF+4hOEtm1LZN29hdbpxHTXXcQ9HjWjTUXlGnLDBNn6+vp47LHH+POf/4zZbB6z/cCBA8yaNSspXgDr1q1DkiSOHj3KmjXj/2iUJAlJkpL/9nrHb2iqoqIyOXUDdXxz1zc52HUwGWwyaA0EIoFkCeK5wXNsmrkJRVE4M3Am+diilCI+Ne9TvNLwCgoKok7k4eqH0QgasixZWPQWqrOqKUsvm/QYLm3+OnIcI9lzoVhoVDZdMBqktr+WTEsmvYFeALIt2bzW8hq3l96efHwsHsOoNRKSQ4iCiIBAMBJE1ImIOhEAraBFQEjuW0BA1IpoBA1WgzXx3yV95C5tWisrMh4pMQXNFXJRaC/kR4d+xOn+0yzIXcBTp5/Cqrdy17S72N+xH71WT7OrmScPPckjcx5hT9seDFoDdUN1yeeNylF8kg+/5KfZ3czK4pWsKl7Fjw/9mKM9RxG1IhaDhWA0yKn+U/zgwA8oSy2jyFE01T+9ioqKyjtG9TwVleubyTzv+/u/z6bKTRN63vSM6Xxk1kd4tenV68bzvJKXwpRCALZ2v84nJ+gRp3U6kTs7xz8g4+SeFw+FxgxTAIg3NyO+CguXVvPZHV/iZO9J5ubM5benfotVb2VjxUb2tO3BE/ZQP1R/RZ5niIH5nnvGBNggkX0X2rIFcfVqMBjeF2XOKirvBTdEkE1RFD75yU/yxBNPsHDhQlpbW8fcp7e3l+zs7FG3paamYjAY6O3tnXDf3/3ud/n2t799tQ9ZReV9hU/ycaTnyCjxAojIEYZCQ4neHXEZQRB44dwLrChawT0V9xCOhTHqjFRnVfNa02usLFlJqikVu2iftPx2pOlrX6CPcCyMTqND1Iqkm9NHBbq0ghZBEBipUDVqjUTjbzWYNdpQFIXh8DAL8xcmm/mGY2EALHpLch9eyYtNtKFICoqS6BFnE234JT/LCpbR7G7GpDPhMDpwh93ElTgV6RUMBgfJteZSmFJIipgypo9cm7ttjDCOECfOloYtnB04C0CKmEJfoI8++kCABbkLaBxuJCpHOdx1mDtK72A4NIyoFXGH3eg1ehQlIbLp5nRSxBRmZ80mw5SBV/ImV4IlWcKuubCaeW7wHKf7TqtBNhUVlXcN1fNUVK5vLud5R3uO8pHZH5nQ81xhF63u1il7XjwUQgkEkENBIjqBbtlNb8x1VT1PK2gxG8xoBS3/79C/sfK+5ymDMUMtxOUrCD799Jhj1DqdtEn9k3qeEgiMCbCNIDc1k7V0Fg1DDciKPNbz8hZwoPMAPsl3RZ6HKCKYTGMCbMnnbWlBuP12lEAA1CCbiso14T0Nsn3rW9+6rPgcOXKEN954A6/Xy9e//vVJ7ysIwpjbFEUZ9/YRvv71r/PlL385+W+v10thYeFljlxFReVi2txtDAWHxpRLQkLA+gP9ZFoysRvtxOQYWxq24JUS2QTT06Zj0VuYnTubhqEG7p9x/6SlGSPllbUDtRzoOMBAcIBCeyGri1YzI2MGKwpXsK9jXzJtP8OcQZ+/j8rMSoZCQ0TlKEbRyNzsubza9CorilcwK2tWspmvXpMY5R6KhliYt5CzA2cJRoNIMQmbaCPNmMa09GlUZ1Wzs3knD1Y9yK+O/4qIHGFa+rQL00VLb+WN9jdYUbSCW0puYVnhsjEiOV5ZwQh6TSJLTSNoKLGXoNfqyTRnIiAwGBwky5LFid4TBKNB/BE/HZ4OrAYrdjERMJNkCVmSEWMiRdlFHOw6SDAaJBANkCKmsLRgKRpBg6zI6DV6un3dDIWGEBBwSa4rfg+oqKioXIrqeSoqNweX87xYPIaiKMzPnT/G8wxaA0sLlnK783bODpy9rOddWl4JkOMsQV5RSXOo+ap5nqgTCUgBFucv5kDnAVY/fzf/UPN33Ld0A7qojM5kxq9XKDVZ0RYUjCm71G1Yx6c2f2BSz1PC4clPrCShETSUOkrH9byR9h6ukGvKnlcf6mShfvzhYBc/rxIf+7dUUVG5OrynQbbPf/7zfPjDH570PiUlJXznO9/h4MGDiKI4atvChQt5+OGH+Z//+R9ycnI4dOjQqO0ul4toNDpm5fNiRFEcs18VFZUrwx/1J5vZjsfJ3pP84M4f0DDcgE6jw6Q3EY6FybJksWHaBoaCQ3R6O7Eb7aNWAUcy1vxRP1aDlUxzJpvrNtPuaeeN9jfo9HUSV+LUDdYRjobp9fXy4eoPIysyb3S+Qa+/l+np0ylPLWdd+To2n99MZWYlDqODTEsmJ3pP0Oxq5venfs9Xl3+VR+Y+Qqu7lXZvO/3+fr6w5Av8+NCPOdJ9BAWFiByhLK2MLyz+Aid6T2AVrWgFLV9b9jVCcohoLIpVtCJqRULREPdW3EueNW/CldpLywouRpIlLAYLVZlVtHnacIfdDAQHADDpTOg1emLxGAatAVmRiStxZmbOpD/QT4GtgDZvG9F4lMqMSlYUruCHh37Ibc7b0AgaDDoDp/pO4Qongmk2g408Wx6VmZWJIKGY+nbfCioqKipJVM9TUbk5uJznxZU4cSXOR2d/dJTnyYpMYUohtzpv5dzguct6Xrm5kNg45ZVKSyt5gDA9ctU8zxPyMBgc5OHqh5FiEsd6j/HNA//E944+ybzceTyx8AmyhCyOdG5jw51rSInfkejBZhTxaWNs6dnN3y7/W0ocJRN6nmA0TnpeY3ot09Kn0TjcOK7nSTEJvUl/RZ53YOAYC0srJv+DiiKCOpVZReWa8Z4G2TIyMsjIyLjs/Z588km+853vJP/d3d3NunXrePbZZ1myZAkAS5cu5Z/+6Z/o6ekhNzcXSDTJFUWRBQsWXJsXoKKiAiSCRRo0zMqaxZn+M2O2T0+fTmFKISuKVtDmbqPb102XvwspKnGm/wyyIidHwI9ISqu7lefOPkezq5lIPIJBa2B+7nyaXc0MB4eTAbYR2jxtLCtcxvf2f4//uOs/6A/04wq7sIt28qx57GzdSWl6KXqNni5vFyd6T7CqaBVHuo+g1WiTE6Gqs6t5XHyczXWbOdB+gE/M+QSfmPMJpJhEvj0fnaBj87nNrJ22lmO9xwjLYbp8XaNeb5opjUfmPnLZCWTFjuJk+cKlpJnSyLHmcKDjAO6wG2/YS7opneHQMFE5SjAWxGF00OJqYVnBMnIsOVhFK4qi8MjcR7CLdnr8PXT7uonIEb6x4hssyF3AH878AYvRQpYlC4/kQSNoiMaj9Ph7UFBYWrCU6uzqt/M2UFFRURmF6nkqKjcHl/O8qswqShwllDhK+Nyiz3Gq7xSn+k4BJIcQ2I32MZ63uW4zPb4ePGEPkXiEf577VcQJyitpaWXFsrvY9Oqnr5rnne47zYGOA3yk+iN8ZsFn0Gq0mPQmNIIGn+Qj35aPK+zix7W/HHM4aaY0Hpk+uesJFgvasjLkpqYx2zSlTk746unx9eCVvGM8LxANUGgvxBv2XrHn1eeupMjpHLdkVOt0okSjaFLVBVUVlWvFDdGTrahodG8gqzWR/VFWVkZBQQEAa9eupbKyko997GN873vfY3h4mK985Ss89thj6sQpFZVrTLGjmNeaX+ORuY/w6xO/HiVg83Pm88SiJ5KrfLOyZzEre9bo1ctL+nL4JB+/O/U79rfvJxQLJfdlNVg51XeKbEv2uCUL0XgUt+SmzdPGQ9UPJff1wvkXsBqspBnTiMgRZmTMYCg4xGvNr5FmTsOgMYwq3SxxlPDI3Ed4s+tNTvafJM2YRpo5jR5fTyLYlz+fuqE67q24l0Ndh0YFyS4NFl5Mn7+P2v5a3JIbh9FBZWZlsnzh0n2sLFrJsZ5jAOTZ8nCFXVRlVnF+8DwpYgpt7ja0Gi1V2VX8dc1f859H/pO9HXuJyTEqMioQdSK3FN/Cid4T9Af6sYpW8mx5ONOc/PL4L3lg5gMIgkCLq4W4EiccC5NtyebReY+q/dhUVFTeVVTPU1G5vpmK540MubKJNpYXLWd29uxJPW9z3WaaXc3UDdYlXS8WCjBZ3qk+Fr9mnmfQGejz9xGRIwgIDAQHmJ8zf0JPG8/1LvW8qswqMjZuJPjSS6MCbdqyMrTr17Jt7zeIyBEKbAV4JE/S82wGGy2uFtJMaWSYM67Y8x7c8nHe/NAO2Prq2Omi69cjqEMPVFSuKTdEkG0qaLVatmzZwmc/+1mWL1+OyWTiIx/5CN///vff60NTUbnpsYk27pt5H8+ceYb7Z9zPh6o+RDCayLQqSy1jWvq0MSIyEnAbj4ahhjEBNgCNoKHd006WJQuNoMEu2tFqtMhxGa1GS6Y5E51GN6qkwSbaWFawjOfOPceWhi3J23UaHRnmDGwGG3ajfUzppk20sTB/IacHTtPsHruqmmZKozKzksrMygkl8mJO9J7gyUNP0uy6sK/S1FK+uOSLPDL3kTH76HB3sGnmJk72naTN3UYsHuN4z3HWlKxh44yNnO47zZzsORi0Bn5z4je81vIacSVOkb2Idk87vogPn+RjQd4CagdrOTtwFqPWyLLCZaSb03mz+02WFy5nbdlapJiEqBNxiA6sholLWFVUVFTeK1TPU1F577jantfmbqPH1zMqwAYQ02smPxCD+K56XpGjCJtoG9fTLn29E3neX9f8NbM2bUIJBFDCYQSjEcFioc7Xyt0Vd3O45zBNw03E4jF8ER9ritdw74x7OTdwjpmZM9+W5+m0Ou7f+kl+tOqfKVt7B0gSgmgkptPQrwTItWdOfp5VVFTeETdkkK2kpARFUcbcXlRUxMsvv/weHJGKispIiUDDUAM9/h50Wh151jxKHCWXLZu8lG5f95gAG4BX8pJrzUVRFEodpdQN1RGIBgBwOpycHzzP7c7bKXWUjnpceXo5906/l5M9J6kbrkMraBF1IjaDjYqMCnJtuWMmQkFCwKaygjlZA19IrGxeKl4Aza5mnjz0JN+97btj9hGIBWh1tzIrcxYbp2/EFXZh0Bro9nbzte1fQ6PRkGZKIxQL0e5tRyNoiMiJstr+YD8AtQO13Fl+Z6Ks1N1Ch7cDvVZPPB4nFAtxovcEoi4hrACVGZXJqaoqKioq7xWq56moXH9cTc/zR/14wp4xrvfG8Ek2OEtQWlrHPshZzCtdu94Tz5ssYAiTe94PD/6Q7972XbIzRveO9A/7J/S8r27/KhqNhs8v/vzb9ry+YB8f2/7EGM/77KLPkjvhK1FRUbka3JBBNhUVlesTm2hjft78d7wfvU4/7u31Q/WsKl5FOBqmL9CXmAwVDeB0OFlasJRTfaeYlzMPk25sCvzMrJl8a823+P2p39Pt78agMWA32sm15U5Y3gkXSgqmkq02EbX9taPEKyJHCEQCxOIxXCEXJ/tOsta6dtRj/JKfbn83ZwfOcrj7MO6wG3fYndy+tGApUkxKStdIg+GRsfYAsiLjj/hxGB1AYlU3HAvjMDmoHajFrDdj1BnJMGeQakylNLV0XAlVUVFRUVFRUblanmfVW4nEI2Nu/5/zzzBv5XfIEwTizRf1E3MW07SklJ/v/hL3Vtyret5bqJ6nonJ9ogbZVFRUrjvyrHnkWfPo9nePuj0Wj9HubufT8z9NNB5lReEK7EY74Vg4OWHqD2f/wILcBZSll43Zb0VGBV9d/tUrFqnLrWBeDrfkJhaPIcUkonKib9zIJC6toKVpqImTlpPMyZmTfIxWo6XZ1cyGaRvY1rgNmyFxjO6wm2lp01hbthZv2Mv8vPk8X/t8skedgJDch4CAXqPHarBSaCukw9uBSWfirml34ZN8dHg70AgapJhETUENH6j6wBWvRquoqKioqKioXAnFjmLyrHk0DjeOuj0UC/EvJ37C19b8NeKyWZjiWjDoOe6tZ1vz8zgdzuvS83wRH0/MeoRlaXPQRmUkLbzau49/P/5T/BG/6nkqKu8z1CCbiorKdUeJo4S7K+7m5bqXRwXa8qx5bJi+gS5/F5vrN2PQGFBQiCtxNIIGAYFIPIJLck2473cqUm8Hk85Er78XUSsSjoUZCAwQjAWTohSWw+xq2UWONYdsa6KcIM2URp41jx0tO5ifO59MSyYWvQWH6EBWZHJsOVRlVnGm/wzT06bT4e0gHAvjk3ykiqm4JBczMmcwGBxEjstE4hFSjanUD9dTkV7Bp+Z/irgSRyfoSBFTmJ87X13dVFFRUVFRUbnm2EQbD89+mE5f56gMsDxrHiuKV7CjZx8/OvgjULghPG91+gKEw6+htLwIgBX4sLOYRWt/zurn71Y9T0XlfYYaZFNRUbnusIk2lhUuQ1EUvJKXcCyMUWckRUxhWeEyzvQlplpdXGogK3Ly/1PF62csuU/yEZEjTEubRpe3i15/L8FYEEiI49zsuTQON/JGxxvMz52flK9iRzHl6eXEiXO67zTHe48ne4xMT5/OxukbybJmsbd9L4/Of5RgLMiBzgN0+jqZmTGT6YbprClZw/am7aSaUim2F7O6eDWiTuSFcy9g0BkAKE8rpyClgOkZ09+zc6SioqKioqLy/qIio4JvrPgGezv24g65MeqMCAiEYiGK7EVE5NHlpNer58VDIbTbdiJf2keupY0y4Ce3/juHh06qnqei8j5CDbKpqKhcl5Q4Skg3pY+b8i8gUJ1Vzen+02MeV51VTXV29XtwxOPT5m7jdP9pPjXvU/zu9O84PXDhmOdkz+GhWQ/xnT3fIRQL0e27kLV3cTNem8GGJ+whEo+QZ83jo7M/miyT2DBtA/va9rGubB0PznwQKS5hM9jItGRyfuA868vXsyBvAVpBy5aGLexr2Eeq6YKcGjQJCbt06paKioqKioqKyrWkPL2cbGv2GNdzhVw3jOcpgQBy89jppAC0tHHXmo/whZ1fUT1PReV9hBpkU1FRuW6ZKOW/yFHEN1Z+g3/e+8+jBKw6q5pvrPoGRY6id/MwJ8Uf9RONR6kbquOJBU+wMG9hMjOvy9fF/3v9/xGSE9O1JFka9dipNOMdCUYe6znGb0/+lh5/DwICg8FBcqw5fHr+pzk7cBaAxuFGbKItOWXKpDNhN9pJM6WpJQQqKioqKioq7zrjuZ5NtN0wnqeEw5Nu9/uGkxUMV8vzTDoT9zs38JH8O7ELZvxChDP+Jjo8HarnqahcB6hBNhUVlesKn+S7IBsGK8X28RvWLi1cyk83/JTTfadxSS5SxVSqs6uvmnhN9Tgux8jKYTQeJRwL8+ShJxkMDia3CwgIgkC6KZ10UzqQGAVf21+LW3LjMDqozKxklnXi/iI20cbqktXMyJhBbX8tg6FBYvEY0XiU84PnicgRmoaaeHzB47xY9yJdvi5MOlNyrP1kU7dUVFRUVFRUVK4WN5vnCUbjpNslXWIa6NXyvLqBOmaZS9Bv30186wvEATOwpNTJb+74CV878P9o8bSonqei8h6iBtlUVFSuG1rdrTx39jmaXc1E4hEMWgOljlIerHqQEkfJmPsXOYquyWrmlR7HZBQ7ikkzpTEcGsaqt7K2dC3bm7ePCrSlm9JZW7aWopQiTvSe4MlDT9Luaac8rRyL3sKOlh0sL1w+qpfHeIyUXPzy+C+pH65HJ+iIxCPYRTv3zriX+sF6vrz0y3jDXrQabXJlUxUvFRUVFRUVlWvNzeh5gsWCtqwMualp7EZnMS937ryqnicHg+i27Sbe0jJqm9Lcgvk1gX9a903qfK2q56movIeoQTYVFZVrzlRWC9vd7ext20tciVOZWUkgGmBX6y5aXC2E5TB/teSv3hVJ8Ek+fnfqd+xv308oFkre/naP4+KeG+3edu6afhfhWJguX1di6pNGR35KPg/MfACHycG3Xv8W7Z52FuQuYHvTdlrcCYl65swz3D39bj4595PMzZk77nMd6znGt3Z/i52tO9EIGgDsoh29Q88L517ggZkPIGpF1pSuGfV6j3Ufo9vXjV6nJ8+WR4m9RBUyFRUVFRUVlSnxfvY8jcmEeeNGgi+9NCrQJjhL6F5Ryda9v2N1yeqr5nkZIS3KJQG2EeSmZrKF9eSpnqei8p6iBtlUVFSuKVNZLTzRe4J/2fsvbG/eTlyJAzAraxYfn/1xNtdvZig4xKHOQ1hFKymGFKwGK03DTaPS7Cdb+bscF8thQAowFBwiGo+Ouk8oFmJ/+342lG9gft78K9r/SM+Ndnc77rCbBysfxB/1448kZDTNmMb83Pk0DTfR7GpmRsaMUeIFMBgcpM3dxpOHnuS7t313zOvt8/exo3kHp/pPIWpF5uXMIy8lj1g8RoohhUAkQCAawB/1Jx/T6m7lqdNP0efrQ6fVIckSmeZMZmbMJN+Wj8PkoMhepIqYioqKioqKyrjcCJ4XD4VQAgGUcBitTmCG1cl+9o+6zzvxPI3djnnTJpRAgFgwQFin0BLtZ1/fYT5c/eGr6nkfTFs16bFc3COu1d3KH8/+kQWps1hsLUcTiYFkoKu/GZcSJMWYonqeiso1QA2yqaioXDN8ko+nTj/FQGCAFGMKETmCqBXp8nXx1Omn+MLiLxCMBnny0JOcHTibFC+AM/1neOrMUzw691F+fuzn9AX6qMqsoiK9gv85+T8MBAcw6hJ9MEpTS/niki9OuPI3Ga3uVjbXbWY4NIw/4qfF1UK7p52VRSt5s+dN4kocKSYhKzKBSIA2TxsGreGKe3jYRBtV2VXJ8zJek9tjPccAsOgto8RrBEmWaHY1U9tfm5Svkb4e/YF+vJKXW0tuZVb2LHa27OR0/2m8YS+d3k4W5C1gRfEKtGjxST4ahhrY276XdFM6nd5OXm14FUmW6A/0U5lZyaPzHkVAYIe8g3sq7rni8gkVFRUVFRWVmxuf5OPZM89SZi7gg7m3o4vGiem1HHaf4dkzz/LZRZ99zz0v7vEQ3Lx51ATQtc4SKpd/m68e/DYfq/ggy9LmJI89JhhGBeUEoxHBYkFjMk36PBqTCUwmtGQQkXxo3X4W5C14x54X9ntQ/H7MoSCfKLoXo96EotdDNDrm8QBxgy7peQc7D/KJsk0Yt+9DaTmcvE+es4T0tSt5qXM3O1pUz1NRudqoQTYVFZVrRuNQI5FYhDe736TD25G8vTClkNuct9E41Ig77KbZ1YwgCGMeb9KZ2N22m15/L2uca5iWPo3D3YcptBdi1pvpC/QB0OxqnnDlbzJ8ki+5+uqL+HCH3WgEDfVD9UiyxIz0GRzqOpQ8NlEr0h/op8nVhEVvIRwLk2pKZUXhCsrTy6f8vBNNTXWIDmDs9KkRRK1IMBrELbkBkn09ml3NzMmeQ5G9iCaliV+f+DXnB88n91mZWUm7p52DHQepzqrm1yd+zZvdb3Ki5wRdvi4cRgdLC5aytXEr2dZsTvefZmvjVj5Q+QG6h7vZXLeZR+Y+oq50qqioqKioqCRpGm7igYK1ZO85hdLyYvL2tc4S+latpWm4CVfIdVnP6/B2UJpaypycORzqOES2NZsiexGyItM43Pi2PS8eCo0JsAEoLa0UAL++/UmMr+27cOx6PeaPfITgc8+Neoy2rAzzxo1o7PYpPe/V8rzw8ADRLVuJNycCciIglDoxPfQQwaefHhNoE5xOeuIeXjzxB97sfpNbc5Zj3L4XpaV1zOsXtwssXTOPZ5teVD1PReUqowbZVFRUrhnDoWF2tOwYFWAD6PB2sKNlB6uKV+GRPAAYtAYMWgMROZK8X441h25fN3dPv5tTvac43XeaXa27ACi2F7OubB3Heo8Ri8fGrPxNhVN9p9jZuhMBgRO9JxgKDbG8cDkpYgq51lzumXEPNQU1pBhTCMfCbD6/GZto49kzzxKJR5Ij0ve07eFry79GRUbFOzpflVmVlKaWImrFMdsyzBloNVogIWl9/r5kgA0SJakv179Mib2EhqEGDBoDkXgkIWpeqMqqIi8ljwOdBzDqjGSYM7ij7A6OdB/hUOchDnQeoCqriuM9x8kwZ9DuaccfSZSWDoeGaXO3jSuMKioqKioqKu9PrHE9WXveHDeIkw0M3L6QlrcCRhN5XrunnVRjKvNz57OlfgtPn3k6uX1mxkxudd7Koa5Db8vzIj73mADbxceYKq0keNGxizU1SHv2IF/S80xuaiL40mbMmx68bEbbZFyJ54X9nlEBthHizS1ICIjr1iK9vCV5u+Aswb1mAc83b0Gr0ZJhzmB9/mqU7c+OeyxKSws5t60AVM9TUbnaqEE2FRWVa0YgFhgTYBuhz9+HR/Kg1WgJRAIYtAbSTekMhYaSAhaLx6jKrOJ0/2mC0SDppnRWF68mx5pDJB5BI2hYV7qOP9T+gWA0SIe3gz5/35QEzCf5ONV3Cg0a6obqGAoNodfoMeqMrCpexeGuw+xu3c3Whq30BfqoKajhW6u/xX8f/W+a3c1kmjPRGRJfoc2uZn5/6vd8dflX39EqYLY1my8u+SJ/PvdnnA5nspQgw5zB/Jz5DIYGKU0tpTKrktr+2mSAbeRcnR88z8zMmeg1egB0woWv+MKUQnKsOWxt3Eqfvw9X2EUkFsFsMLOpchPP1z7PkoIl7GvfR5YlC42gGSXCF/dyU1FRUVFRUVHJ1tiIXxJgG0FpaSWTWy7reUadkXVl69jfsR8pJo3yPIfo4JacGj5f/jDxcAirMZ2w34PRevmMMp/kQ/Z7GJs/dxGh8Kh/agsKkPbuHfeuclMzst/3joJsV+J5it8/JsCWPJbmZqTVSxh8aB2GmEJMp+FcqJ22rp1sa9qW9Ly/LvowxkmOR5AuZMKpnqeicvVQg2wqKirXDAEBm8GGL+IbdbuoFZEVmR5fDxUZFWyYtoEefw8WvYU+Xx8n+k4gyVJitU8n4pN8zEifwYriFTxX+xwHOg/gDXvp8fewrmwdq0tW89uTv8Ujefj6jq9PqW9Hm7sNAAUFd9iNXqNnWeEyJFliV+suevw9LMpfhC/iw+lwcrb/LK+1vJZM8ZcVedT+uv3dV2UVcG7OXHKtuSwrWsYfz/6RweAgWo2WwdAgJY4Svrjki2Rbs3mj441Rj+sL9FHiKCEqRzHqjNhEG7F4DL1Gj6gTMevN7G7dTZ+/j1g8ltim1ScFb0nBEmLxGABmvRkAo/aCmln11nf0ulRUVFRUVFRuLnRRmcgk2+VwiGWpc9i38c8gSSCK1AU7+MzOv2YgOEBpaiktrhayrFn0+ftYV7Yu6XlROcpTa/+LsoMtKC3HkvuMljrhrvUY0zInPbY2dxvZegOGSV/AJT+FY7FJ9xkLBdBPeo/LM1XPCw6Nn4E3QiDgZs0rDyQ9b2XRSgaDg6M8L6rXTH4w4oVXo3qeisrVQw2yqaioXDPybflMT59O/VB9MtBm0BiQFRmnw0muLZcfHvghRr2Rbl83/oif0tRSHp33KCd6T7C+fD37O/ZTnVVNVI7yw0M/5PzAeWJKjDRjGhXpFTS7m2l0NfLxOR8nGA1OqW+HT/IxGBrEYXRQU1DD9PTpBCNBtjZupSKjgh5/D6WOUjq9nQQiAfrpJ8OcQaurNbkPraAdtU+DxnDVVgGzrdmsta5lTvYcavtrE9O1RAeVWRema4309RhBp9HR4+9hevp0ZmbOZDAwiE/2EYgG6A8kjr/T24nFYCEQCRCKhkg3p2Mz2Ghxt1BTUJPYr9HB9PTpGLVGIvGEOqeZ0ih2FF+V16aioqKioqJyc6AzWSYOsun1pNgzCG15hfBF5ZelpaXseeAlvnTgW6wvX8/L9S8nM+8v9rwnb/neWwG21lG7jTe3EN2yFe6/d9KMtjSNBYtOj/6hhwCQOzuRDh5M9jHTlpYid3Ze8oIm/2kcN7zTEFuCqXieII4tKb2YmF6DoiiTet6uvoN8wFkMLW1jHv//s3fn4VGW9/7H38/sM5lJMtn3ZBLWEJBNA7IqIirihh6XapVal1qr/VVP1doetXVfelrb2mNta7X26KnaKoKIiBsoi+x7gCRk35NJJrMvz++PKSNjAkpZAuT7ui6uS55l5p47KB+/89z3V3E42BdsAyTnCXG0SZFNCHHMDE0dyrjscaio+EN+QpEQFr2Fpt4mphZM5fXtr+P0O6lrq0OjaNAoGra2bkVF5eczf45Go6HYXkxtdy3D04azz7mPRGMiPf4eunxdRNQIYzLHsKNtBxOyJ/CXzX8BOOS+Hfuc+/i87nP+vu3vbGndQkFSAVVdVQxPHc60wmm09LbgSHZQnlfOGzveAMAVcJGekI5BZ6Db341eo8cb8hIIB0gwJJBkTCLJlHTQbwHjuokeRkfSTGvmQQuF+/f12L9ktMffQ64tl5W1K5k3bB67O3azt2sv4UiYouQiUswpOOyO2BN8Rp2RTm8n6ZZ0DFoD6ZZ03EE3w1OHk5mQyeiM0bR720kxp3Dx8ItlM1whhBBCxNFabWhLiglX9n3qyjRnDt53l/Td36yqisDiJfx63sPsCTUzNmss29q2UZZZFpfzzs2eivrx0n7fN1JVjdrbCwcpsvk627AtWUGwupr9CyK1DgeW+fPxvPkm5OXQe3Y55k/Wxt0Xrq9H63D0GTNEGw64dSoJ/bzfsch5itWKptjR75JRpdjBxp4KkkxJh8x5D615gkkXvU4+xBXalGIH/tnTWLLn/yTnCXEMSJFNCHHM2Iw2rh1zLSatiaquKgKRAJ6Ah4KkAkamj2TxnsU09zbT4++J3WPWmdnVtovKrkpe3PgiPf4evmj8gqGpQ3H5XcwdNpd3Kt4hokbQarQkmZLISMiguqsaX+jLvTX2d2Y6kMvv4rPaz1i8ezHt3nY0ioZmVzPJpmQiagR/2M8tE2/hN2t/wxs73iAUCaFRNETUCMFwkDZ3G4XJhaxpWINGiX6DmJ6Qzsj0kaSaU1FRWVq5lGA4SI41h6GpQ+nwdrCwYiGd3s7YOFLMKUfcLn3/vh77mx/s7tjN9MLpbGnZgj/sZ86QOcwMzURVVE7LPI0kYxLevV5MOhMV7RXkJeZR31NPp7eTzIRMJmRPoKqrivkj55NjzcEX9pGgT4i1nRdCCCGEOJDGbMYy7yI877xDuLIydlwpdqDNy8O3aFG/94Wrq1GdTnY5N/P4F09T46yhMKmQLl9XLOeZwofcTQ3V33+HzljDgK8W96qr8SsK+u8u4Lltf+Kp/53Gskv+QXFEjRUJ/atXY7n6avyKEtcwQXE48MyaTEekh43HKeeZrEkw9/w+zQ8Uh4Pus06nrekTvjvuu1+b8857+3IemvwT5s/6NhGfF73FilevUONv5sJhF0rOE+IYkCKbEOKYKkou4paJt8S+4fMGvFR0VNDubsegNcQV2AAURWFG0Qxe3vwy29q2kWRMIsGQgF6jp8pZhUo0TGxs3ohOo6PGWUNFRwUmffzWrl9dTgnR/Tl6/NG93JKNySToE+gN9KLT6vAEPXR4O2h0NeIJeAhFQmgVLSoqWkWLQWsgGA5ywZALqOuuo76nHpPOhDfkpdvXTVlGGU+ufJI6V7TRg1ln5rKRl9HibontdbZfp7fzqLRLH5s1lsdmPRZbamA32rllwi30+Hui36bqrbHw5PK7WNOwJnZft6+bUemjCIaDZNuyKUkuYc6QOYfVtUsIIYQQg5smKQnL/Pmobjeqz0dQp7Chp4LTvZ5D3+j1MsY2hFAkRLu3nRFpI9jUsgm1Nprz/Fr1kLcfbDnl1zUMCAQ8vLbnLdo8bQTUCPqRpRjPKI/ux6bTEa6tRZefj3HKFIIalcZgJ9vdVVg8+3h588vHNeeZUtLh0otRe3tR/X4Uo4mwxYDL18rY7LHfOOftcFUyItjIkMwhpFgzsQEZ0efbhBDHgBTZhBDH1FcfoXckO9jevp1EQyLhSHzzAI2iQafRYTfbWV2/Go2iQVEU2jxt5NpyybXl0tzbzOzi2VR0VOAOurHoLcwonEG6JZ3S9FJ2d+ymIKmA0ozSPmPp9HbS5e3CoDWwt2svnmA0AIYiIWwGG8NSh7G3cy8Lxi2ATbC5eTNhNUyCPoGRaSO5ecLN7O7Yzbxh89AoGlwBF3XddXR4OtjbuTcWvAC8IS+1zlrWNKxhQs4EjDpjn7EcjUYJh1pqcCCb0cZFwy+KfduaYc0AiC0TkL04hBBCCHG4XH4XNT1f5rx0Szoba3dwesGIQ9+o06EPRtAo0c35O7wdZCREGyCc4ziHD1tWc/VB9hPTFDtQrH236HD5XSg+7yHfNuLzxnJemdWB79U/HfRa8y0389udv6HD00F5XvmA5DyTNanPstjSxLQ+10nOE+LEIUU2IcQxs8+5r99H6KcXTqeuu44Sewk723cC0QKbRW+JFdpcfhcaRYM/5CfFlMLWlq2cnns6vpCP3kAv7qCbRGMiqeZUzik+h6c+e4pJBZP4j9L/IMmUxPrG9ZRllFGQXBAbS6WzEoPOwM72nfT4e2LvadAa8If9tHvaOaf4HJ5f9zwXD7+Yq0ZdFWvSkGPN4T8/+E9WN6xGQUGjaBifPZ5rR1/Le3vf6zdEuUNuunxddPu6Y2HnQMe7XXpRchELxi74suh5wDegQgghhBCH41A5rxMv1uLiuGWX+2kdDsL19QTybbGct7t9N6fnns6e8B56g738fM2TTLnkDQrRoB6w9FNT7CBw7gw+a1pFaXppXM5bWLGQb+fN41ALTTUmcyznaQLBQ1wJqs9Lsb1Ycp4Q4rBIkU0IcUy4/C4WVizE5XcxIm0EgVAAV8CFzWij1llLeV45KeYU2r3tbGnZgk6jQ6NoKE4uZmTaSNo97Zj0JhLUBIakDGFv516+aPiCYanDmJo/lZKUEkamjcTlc/Fp7adcOfpKPtn3CavrVmPWm2nubWZ0xmh+Mu0nlGWUsbBiIQaNgSRDEnaTnR5/DxE1gifoIUGfgEbRkGHJYHzWeIrOLqKpt4lIJEJFewUtrhZ2dexidcNqAFRUFBS2tGzhFV7hohEXodf27Thl0EY7qe7v0vlVA9Eu3Wa0HfG3qkIIIYQY3L4u5+XmTcY8dy7eRYviGgloHQ6M5eV4169jkbIWT9DTb84bkjKEXf4GItOGkz59Aqawhl4lwLLmz3j53W9T013TJ+d1ejupD3VS4Cjq05UUQHEU0aMN8Yuzf0FTbxOYTH2uOZBqMPDKVsl5QojDI0U2IcQxUeOsweV3MTx1OH/a+KfYE2sAI9NGYjfbmVY4jf8+97/5aN9HtHvbsegsGHVGTFoTUwqm8PG+j3H5XQQjQYamDEWv1VOQVMCQ1CF0ebv45apf0uZpY1rBNP5v2/9R31NPijmFLGsWre5WtrZu5dEVj/LorEfp9HaiVbTk2HI423E2H1Z/SE13DaFIiLAaZnjacEZnjmZD8waC4SD5Sfn8c9c/WVu/lu9O+C47du3AqDXiD0c32lUUBVVV2dy8mWtHX4tK371Devw9FCQWYNAY+pyTdulCCCGEOFl905xnvugiIl1d4PVG9zyrr8e/cQMtZ5by5Bv/SZevKy7n5SfmU2wvpsvbxZOfPRnLeVtatsRyXrG9ONaR/sCcB/BJ82rmTJ9CBsQV2hRHEa0zTmNp3Qd4g17yk/Kp8jWSd5BuolqHgy2uvZLzhBCHTYpsQohjojfYS0lKSZ/gBbCzfSe/WfsbhqUOY2TGSPKS8vo82p5qScUT9LCmYQ3tnnbaPe2U55Zz84SbCUfCvL7zdbp8XRi1Rsw6M1tbtwLRPTLyk/LJteXS4Gpga+tW9nbuBSCshglGglR3VXOO4xxMehPeoJckYxKtnlZWN6xm/sj5dPm62Ni8kVxrLmOzxxIMB+n2d5NqTqXT24kv7EOraPGH/dgMNgw6A82u5j5zUNddx3+M+g9aelvilgxIu3QhhBBCnMy+ac7LTM5EMRpjjRH0Y8ZgSEigpXU947LHsbJ2ZSznjc8ez2UjLyOiRnhj5xuHnfMANBoNP1h5HzeVXcfp0y5FGwgRMehZ27WVF1bcx0XDL6I32MvG5o1s02zjvvNvgyXL+jxtx3nncNFL4zHpTJLzhBCHRYpsQohjwqq3EggH2Nu5lwxLBnqdHjWiotPq8Aa97Ovax47WHWRaM/t9tH2mYyYvWF9gW9s2unxd2E12ytLLGJY+jMUVi+nydWHQGOjydeEL+2L3+ULRAtje7r1kJmTS5mmL72CqgkVvYX3zetwBN22eNkalj8IddJNjzUH5104eCgojM0biDrrJsmah0+jQa/WkmFNQFAUFBUVR0Gl0ZFuzSTYls7tjN429jUC061R5XjnTC6eTYk6R/TGEEEIIccqw6q0YNAb+Muu3pCoJqD4fislEF15u+/THdHo6YzlPYzaD2Rx3/9TCqTxrfZZtbdvo9HRiNVopthczLHUYn+779N/OeQoKdpOdZ7f84WtzXmFyIf+14RnuPvd7JKtno/gDqEYDu3prWPCPuRh0BiwGi+Q8IcRhkSKbEOLf4vK72Nu5lxpnDb6wj4yEDEalj4p1uixMLmRD0waKkouiT3/5fXT7uml1t5JlzWJ42nA6fZ2HfI9h6cMYlj6sz3GdVkd+Yj6d3k5OzzmdUemjKE0vRato0SgaRqaNpCSlhERjIgoK+Un5uINuWt2ttHnamFU8i+VVy9nVsQubwYaCQo41h1nFs2h0RcOTUWekILEAT9CDXqNnaOpQNjZtxG62Y9FZCIaDmPVmhqcNZ1zWOOxmO6PSR9HY20goHCLbms3Q1KGxkCX7YwghhBDiZBHxegm5ugl63IQNOro0PsxWe2yD/8LkQkbqs/EuWoz7gKfAzA4Hr879PXPeuZJWTysuv+ugBaeS1BJKUkv6HD/eOe/dxk/448Y/xnJegj6BYDhIgj5Bcp4Q4rBJkU0Icdj2OffxUfVH/HXzX6lyRrtG2Qw2phVO4+YJN1NiL2FD0wbaPG2saViDJ+ghrIZJNiYzIm0Etd217O7YjYLCztadjMwYeVjvb9QYObvobFRUXt32Kp6AB0/QQ7u7nRvG3sC21m1sbtlMkikJg9aAJ+jhmtHXsLllM829zTS6GpleOJ2pBVMxaA2E1BCo0OhqJKyGY++TY8thcv5k6px1FCQV8Nsvfsuu9l1E1AgGrYEhKUO4Z+o9sc5WozNHMzpz9NGbaCGEEEKI4yzS3Y1n4cK4zqB2RxGdM8ezxd2MI9mB3uPDu2hJn/3MwtXV+Ba/y9/O/R/+Wv0WyyqXMT5nPEXJRd/4/SXnCSFOZlJkE0IcFpffxcfVH8cV2ABcARcra1ai1+iZUTiDFza8QFFyEdnWbPZ27sWoMeINeanrqSPJmESSMYneYC/3Lb+Pn834GRNyJnzjMYzMGMn65vV8WvMpZp2ZLn8X80fOp93TzvuV7+MJeQhFQgTCATITMvnHzn+wt3Mvj5/zODpFhyvowqq3kp6Qzus7Xqfd097nPfZvWGsz2ijNLKU0s5RhqcPY2rKVLn8XdqOd0ZmjY8FLCCGEEOJkF/F6+xTYINpEIAXYMyGFvR17uSjlTPz9NAyAaKEtXXMu8wvO49XqhXT7u7m89PJvvITym+Q8o9bIjyfcyfnZM9AEgyghEyVFc+mI9NId6JacJ4QYMFJkE0IclhpnDe2e9rgC235GnZEVNSsYnTmaamc1re5WZhTOAKCqqwpU6PB2MCl3EmWZZaxrWEdEjfCnjX8iLzEvttT062RaMxmSMoTfrv0tLe4WQpEQu9p2cd+0+6jrrsPpc5KfGF06sKVlC0adkVX1q3i/8n0uHXEpozJHxV7rwmEXxtq+73ewDWsLkgskbAkhhBDilKW63X0KbLFz1fsYMmU0y7s3oPp8/V6zX6Szk4z1m7jr/O9yzQffY2zWWMZlj/tGY/i6nOcP+fnj2f9N9ortqMvfjt2nKXYwZN489AeskJCcJ4Q43qTIJoQ4LL3BXjxBT7/njDojTa4mXH4Xeo2eiBrh1a2vMr1oOjOLZhKOhEGBoqQiXtjwAjOLZrK7YzcWvSW2Oe5+Lb0t7GnfQ4unhYgaoSCpgNL00lgg6vR2YjPYGJY6jG5/N96glxZ3Cy3uFna276QgqYC67jo0igaDGm2t3uZuY0XdilizBYCi5CIWjF0gG9YKIYQQYtD7uuKZNhjC5XehmEyHfiGdLlqsW/I+D5x5F9XOmrgi29ft7XuonHfDiKujBbbqfXFvGamqxr9oEdr5l0ebLSA5Twhx/EmRTQhxWKx6Kxa9pd9z4UgYrUaLzWgjokbwh/yYDWY+qPoArUZLgj6Bdm871425LtaJqSfQQzASxOl3xl5nc/NmPqj6gHf3vEtRchGpllRW1a+iKLmI2Y7ZjMwYid1kp7anlnpXPcX2YlRUEo2JmHQmtIqWYDhIWA0TUSMoioKqqhh1RpxeJzXOmrgNavvrbiqEEEIIMdh8XfEsqNNgM9rowovZ4eizJxuA1uEgXF8PQLiqiuHnnMUub33s/P69fV/b9hp5iXmkWlIJRUJsat7EzKKZjM8ef8icNy/vbNQVS/sdX7iyCtXtjutmKjlPCHE8aQZ6AIdj8eLFlJeXYzabSUtL47LLLos7X1tby7x580hISCAtLY077riDQCAwQKMV4tRUmFxImiWN4uTiPufMOjMl9hKcHiepllQ0ioZiezHJpmQUFBRFYah9KAatgbKMMtY0rAEgEA6QbEwGok+wLaxYyAdVHzApbxLrGtfxmzW/4fdf/J6fLP8Jd71/F+sb1zM6YzQTsicQUSO0u9vZ1rqNvR3Rdu46jY5AOPrvvoqKgsKwlGF4Ah5MOhO9wd7jNl9CCCG+Gcl5Qgw8JSEBbUnfjp8AiqOIdc4dGLQG7lx5P6a5F6Atjs+DWocDY3k5/tWrv7zPHyDdkg58ubfvW7ve4v7T7+anZd/nttzLuLX4SjT+IA989ABr69ceMucZQof+DF/3NJ4QQhxLJ82TbG+++SY33XQTjz76KGeffTaqqrJ169bY+XA4zNy5c0lPT2flypV0dHRw/fXXo6oqv/nNbwZw5EKcWmxGGzMdM1FR+3QXHZM1hpFpI/nnrn8yrWAaK2pX0OXtothejFlnJjcxl9NzTmfR7kWsqF1BKBJCr9GTn5RPaUYpADtadxCKhEi3pPN2xdvsat+FRtGgUTSEI2HWNa3j+fXP84uzfsEDMx7goU8eoqKjApPOxOI9i/nVeb8iokZ4v/J9AHQaHUNThzJ36Fz2dOxhaOpQrHrrQE2fEEKIfkjOE+LEoDGbscybh+edhYQrv9ybTXEU0XXWRAJdG9hQvx6H3cE1y2/jlfN+iyYYQnU6o0tE6+vxvPkmBINf3msyMcoa3Q+3xllDt6+bX095hJSP16NWfx67boGjkLMm38vzm/7CAzMfOGjO05r7X1Fx4PsJIcRAUVRVVQd6EF8nFApRVFTEQw89xI033tjvNUuWLOHCCy+krq6OnJwcAF577TVuuOEGWltbSUxM/Ebv1dPTQ1JSEt3d3d/4HiEGowP30vCH/aRb0hmVMYo9HXt47ovnaPW0Mix1GGnmNBRFIc2ShtPn5I0db1DRUYGCgklnYnLeZO6dei+pllQKkgr4sPpDllYuxaQz8eyaZ9EqWkKRECrR/1QlGhMZlT6Kn03/GecNPY/Kjko2t2ymw9tBWA3T7e0m05pJtbOaLm8XScYkQmqIhp4GZhTNwBvycv1p18teHEKIo0ryw79Pcp4QJ56I10vI1U3Q4yZs0NKl+DHb7HhCHp5f/zxfNHzBsNRhXFlyCZPcqQS3b+9/6WhxMaHzzqZBdVKQVMD2tu1EPB5Gr64n0l93Ukch74wIk2bPPWjOu6BgFoWf7kCt6uf9SkqwzJ8f25NNCCGOhsPJDyfFk2wbNmygoaEBjUbDuHHjaG5uZuzYsTz99NOMGhX9VmTVqlWUlZXFghfAnDlz8Pv9rF+/nrPOOqvf1/b7/fj9/tjve3p6ju2HEeIUYTPaGJc9rk+nqHZ3O9MLp6Oi4gv5MOvNZFgyqOupY8meJRQlF1GeWw4KFCcXMzFnIltbt6JRNCQaE6PLRtXoElKNookrsO2nKAo13TW4/C5KUkvIsGbw0uaXUFUVrUZLvaueouQikk3JdPu6GWofSmFSId6Ql3nD5kmBTQghTiCS84Q48WjMZgxmM4Z//f7A/6W8puwaChIL8IV87HbXUJo3lOTU6fghrtCmLS7GcMF5vFn3Lp3eTuxmOyXJJZSa84lUr+j/jatrmDblYt7rWnPQnPdu3XJunP0fGJdFmx3E3q+kBMu8eVJgE0IMqJOiyFb1rzbSDz74IL/85S8pKirimWeeYcaMGezevZuUlBSam5vJzMyMu89ut2MwGGhubj7oaz/22GM89NBDx3T8QgwmBckFBPYFYq3Su/3dtLnbyLZm85NpPyEYCUaLbzozzb3NPL3qaXyh6N4ZOdYcLhpxEUmmJIxaIwpKXIFNp9GRZEyKNlTQmWMNDGxGW6xF+/791mq6a7DqrVww9AJUVBL0CdJNSgghTkCS84Q4uRQlF/HRvo/o9nfT7e/mhd2vMit7GmPPn4MpHIFAEIwGOvFx92c/Y1fnrti9sxyzGJ1/xSFfXxcKf23O+8OeV5kzZQZlc85FGwihmEwoCQlSYBNCDLgBbXzw4IMPoijKIX+tW7eOSCQCwP3338/8+fOZMGECL774Ioqi8Prrr8deT1GUPu+hqmq/x/e777776O7ujv2qq6s7+h9UiEHEZrRx0fCLSDGnxI6F1TCekIfRmaO5dOSllGWU8fftf+e17a/FCmwAjb2NvLH9DcpzyxmaMpTTc0+PndNpdGRZs8hLzCPdko5BZ4hrYLC/RfvlIy/nvCHncfnIy7ll4i2ckXcG5XnlsZAmhBDi+JCcJ8Sp6atZLxAOsKR+Oc9X/R8NpgAVRhd/rH2LH674SVyBDeCTmk9QjYb+XjYmYtB/bc67aNhFDMsdgzEjC11eHtq0NCmwCSFOCAP6JNvtt9/OVVdddchrioqKcLlcAJSWlsaOG41GiouLqa2tBSArK4s1a9bE3dvV1UUwGOzzzeeBjEYjRqPx3/0IQoh+7A9CNc4aeoO9WPXWuKfIGnsbaext7PfeZnczvYFe3EE3P5v+M17a9BKVXZVoFA0uv4tEYyI3jruRXR27KEuPb8cuLdqFEOLEITlPiFPXobLe6vrVqKj9Zr1QJMQXXds4s6Q4rrHCfoqjCI8eKjsrJecJIU5KA1pkS0tLIy0t7WuvmzBhAkajkYqKCqZOnQpAMBhk3759FBYWAjB58mQeeeQRmpqayM7OBuD999/HaDQyYcKEY/chhBD9OlQQCoaC/R6H6BNrFr2FTl8ndd11TC2YyuT8yXhDXtLMaVgMFnZ17MJmtFGYXHishi+EEOIISc4T4tR2sKxn1VvjVip81ZK6j5h83o/RvreccGVl7Lim2EHg3Bm8vef/JOcJIU5aJ8WebImJidx666088MAD5OfnU1hYyFNPPQXAFVdE1/Sfe+65lJaWct111/HUU0/R2dnJ3XffzU033STdo4Q4weTYcjDrzHhD3j7nzDozRclFzC6ZTa2zlk5fJ8sqlxGMBPEEPQCkmFO4ePjFsvxTCCFOAZLzhDi1FCYXkmxO7vecWWfGpDdRF+lixPz5BFxOvL3dhPQadnvr+WT337AarJLzhBAnrZOiyAbw1FNPodPpuO666/B6vZSXl/Phhx9it9sB0Gq1LF68mNtuu40pU6ZgNpu55pprePrppwd45EKIrxqaOpQpBVP4rPazuEKbWWdmSsEUhqYOxWa0MSoz2lVubNbYgy49FUIIcfKTnCfEqcNmtDEtfxoralZQ1fXlklCzzszwtOFk27LJT8pHYzRjMpsJJllpcNagVSxcNOwiyXlCiJOaoqqq+vWXDR49PT0kJSXR3d0t34wKcQztc+7jje1vUNVVRSASwKAxUGwv5opRV8jygEGgpbeFHa07cPqdJJuSKU0vJdN68H2VhDjRSX44OcjPSYjjp6K9gr9t+RuNvY0YNAaSTElk27K5ePjFkvUGAcl64lRyOPnhpHmSTQhxailKLuKWibfIE2oniLDLBR4Pqs+HYjKBxYLWdmx+FpuaN/Hsmmfjvt0uthdzR/kdjM0ae0zeUwghhBDH1/C04fznlP+UrHeCkKwnxPEhT7J9hXzDKYQYTNp620j2K/gXv0u4ujp2XOtwYL7wQrQpKUf1/Vp6W7hv+X1xoWu/Ynsxj816TL7lFCclyQ8nB/k5CSEGk1hhze9HDYcJV1fjX70agkHJekIcBnmSTQghxNfa1LyJxKAW80cb4wpsAOHqaryLFmG+9NI+33K6/K4vv5U2WClM+ubfSu9o3dFv6AKo6qpiR+sOCV5CCCGEEEco3NmJd9GiPl+iWubPx/PmmwfNekeS80CynhBSZBNCiEGopbeF3639Hb874yG8Xymw7ReurgaPBw4IXvuc+1hYsZDW3lZsBhtarZZ0SzrpCekYtUZQwaA14PQ7QYFca26skQUQPX4IX3deCCGEEEIcWtjlwvvee+jy8jBOmgShEOh0hOvr8a9fj3HSJPwrVvTJevtzXrevm2RTMsFwELvFToYlg9GJQ8nSJKFRQVFV1EAAxWxGsVrRmM2x95asJwY7KbIJIcQgtLN1JxkJGag+3yGvO/C8y+9iYcVCapw12Aw23qt8j9L0Uv66+a809zZTlFxEljWLLm8XozNH83nd5xTbixmXPY5rx1xLUXIRycbkQ77f150XQgghhBBfw+vFOGEC/jVr8K9YETusdTgwlpeDRhM7tj/r7c953b5uUswpvL3rbYamDmX99vX88az/JuWj9Sjjx+Nbsyb+6biSEizz5qFJSgK+PstJ1hOnOs3XXyKEEOJUE1ADrK5fjWo0HPI6xWSK/XONs4YmVxMRNcLy6uWkWlJZWbuSfc59dPu7aXG3UNFeQbu3nZW1KylJKWF3x242NG3gje1v4PK7KM0opdhe3O97FduLKc0oPaqfUwghhBBisFFVFf9XimEQXaXgX7MG5YAnz/ZnvRpnDZ3eTpJNyby5400STYmsrF3Jt4bNp/DzPegyM/t/zcpKPO+8Q8TrBZCsJwY9eZJNCCEGmX3Ofaiqyuzi2bRF3Ngdjj6BCaLfdmKxxH7fG+yl29dNoimRup46yjLK+KDqAyJqhIgaIRQJ0RPuIceWw97OvZyZfybrAuvwh/xUdVVR46yhLLOMO8vvZEvrFro8XSSZkghHwqxvXM9NE2+SPTqEEEIIIY5ApLsbIpF+sx38azuQfz3JdmDW6w32AkRzm7OK4WnD+aDqA87LmUHk4yVo/7XEtN/XrKxEdbvBbMYf8nPRsItocDVgNVgJR8L8Y9c/yEjI4I7yOyTriVOeFNmEEGIQcfldrG9cz583/Jll1cv41epfsff69WjfW95/d9ED9mOz6q0EIgEC4QAAwUgQAJVok2oFBVVViaiRuPOhSIhAJIA36GVV3SoeXfEom5o3EQgHiKgRJmRP4P7p90tLdyGEEEKIIxDxevEsXIjxzDMPeZ3q9fbJela9FQBP0AN8meMMoWjOIxQ69Gv6fLGct7V1K+FImEA4wGlZp3HPlHsoyyiTApsYFKTIJoQQg0hlZyW/Xv1r9nXvw6K30OnrZMhLE1h40WuMmT0LjT8AJiMBgy7W0n1/l6kubxezHLPwBD04fU6GpQ4jMyGT5t5mTDoTKipZ1izSzGkoKEzMmcgQ+xB6/D2kJ6Rj0pv42Yc/Y0fbDkw6E2admUAkwK6OXTz52ZMUJhVSkFwwwDMkhBBCCHFyCrt6CFdVQXn5Ia/TWK2xrqIRrxfV7WZ4MJmfjLoNTSTCPUXXophMfG/Etwlp/lUy0B26dBDSa3jiwyfY0bYDvUaPQWNAq9Gyu2M3v1r9K353we+O1scU4oQmRTYhhBhEqrqq2NK6BYveAiqYdCa8IS/n/OMiFBSemv0UvrCPBWMXAPFdplLMKSzevZgqZxVJxiTquusothdTmFSIO+gmyZhETXcNm1o2UWIv4d3d71LprGRO8RxcPhdrGtbw4b4P0SjRJQoGrQG7yY4/7Gdr61a2tmyVIpsQQgghxL/LG21iEK6vR3uw7UBKSlASE9GYzUS6u/EsXEi4rg7L/PkEPvww7p7hxcWYL7gA77Bhh37N4mIqfPWS84RAGh8IIcSg4gq4APAGvSSaElFQ8If9BMIB/GE//rCfi4dfjM1oi3WZ2r8J7tsVb7OhaQPhSBgVlTNyz2BE2giaeptwBVxsbt1Mp7eTsvQyxmSM4dOaT2npbaHaWY0n5KHD00EwHERVo8sOAuEAXb4uDJpo84Uuf9eAzYsQQgghxEnPEM1U/tWrMZaXR/dcO4C2uDjaCdRsji0tDVdVYZw0qf+mBlVVeBcvxjR9OqHm5oO+Zs/Z5SxvWCk5TwjkSTYhhBhUUs2pGLQGAuEALr+LBEMCSZokImoEvUaPI9lBYXIh8GWXKYhuglvdVY0v7MPv8TM6YzRrGtZQ113HuKxxzBkyh22t29AqWgLhANXOavKS8lBVFZffRTASxGqwohLds02raIFoANu/p5vdaB+YSRFCCCGEOAVEdJrY02aeN9/EOGkSxkmTovupmUyQlIgmKQkA1e2OLi0FtHl5B29qUF2N6najy8oCjQbTOeeARkPE78ejDbG0dTVf7Pwz+Yn5kvOEQIpsQggxqIzJHMOZ+Wfyed3nBMKB2Oa2Bq2BiTkTGZM5Jnbt/i5TEN0Ed39DAxWVZFMyq+pX0RvopTyvnE3Nm3h588uoqGgVLVnWLBIMCezt3ItRZ6TD00GaOY2xWWPZ1rotbkwRNcLojNGMzhx9HGZACCGEEOLUFDRqMU6bhp9ocWx/4UzrcESP60H/r2tVn+/LG7+mqQGhUFwRrvPaC7nyw++xt3MvRclFjMkYQ5IhSXKeEEiRTQghTgktvS3saN2B0+8k2ZRMaXppvx2cCpILuGfKPTzx2RNsb91ORI2gUTSMyhjFPVPvidsrY3+XKQCL3hLbYwOiHacUReGM3DNYVbeKsx1noygKGjRE1Agd3g7aPe1kWbPQKBoUReGFDS9w79R7eXnLy3EBbHTGaO6Zdo/s0yGEEEII0Y9vmvOsiWm4g2F0o0Z9+QSbTkfY5SKQaMGamBa7VjGZvrzxa5oafPW8NhCmxlkjOU+IfkiRTQghTnKbmjfx7Jpnqeqqih0rthdzR/kdjM0a228we/a8Z9naspUufxd2o53RmaP7hJ/C5EJSzCl0ejsx683MGzYPm9GGRtGQZc1ieOpwVFXll6t/SYengyH2IVQ5q0AFq8GK0+fEZrDhSHYwxD6ENk8by6qWce3oa9FpdfQGerGb7EzNn0pJasnxnjYhhBBCiBPe4ea8UemjsAwtJOT2oPr9KEYjZKXEFdgAlIQEtCUlhCsro00Nhg5Fl5WFNi/vy+JcfT2h5mbC9fVx94b0WsJqGJvBxvDU4dw48loeGvNDjGG4Ys451IbaWdnyBVaDVXKeGHSkyCaEECexlt6WPsELYHfHbp5Y8QR3TrqTX6/5NXU9dej+1YJ9fzCbO3zuIV/bZrRx0fCLWLR7EQmGBCJEeGPHG3R6O7HoLaRaUrlw2IVcN+Y6VtWvYkzmGHoCPdR119Eb6CUQDjA6YzRTC6eytWUrFe0VNLga+LD6Q4rtxZw35DwuHXFpbA84IYQQQgjxpSPJeWOzxx7ytTVmM5Z58/C88w7+9euxXn893vfei1sWqnU4MJ93Hr0vvfTljY5CljZ9SiAcYGL2RH46/k4SPliNWr3yy0scDtJnzSaUYJIn2MSgI0U2IYQ4ie1o3dEnePlCPrp93XT7ulnftJ419WtQFAWrwUqCISEWzO6ecjdGnZHCpEJsRlu/r1+UXMQVpVfw7JpnWVa5jHZPOxE1Qo+/h0A4wMralRQkFZCekM7ft/+dc0vO5cJhF9LoaiTdkk55Xjm/XftbdrfvZkL2BKYXTCeiREg0JGI1WDHpTP2+rxBCCCHEYHe4OS/Nksa5uTPI9OsJ1NWiNVtQEhLQmM39vr4mKQndJfNQPG68S5f27S5aXY33vfcwTpiAf8UKFIeD7rNPZ+26J1kwdgHfGXkNCR+sQq3eF3efWl2N7UPQX3rxUZ0PIU4GUmQTQoiTlMvvosPbweiM0Ri0Bpw+J3s699Dt66bD20GiMZFWdyutnlZMOhOKohCJRLhkxCUkmZLY2LQRg85AVWcVY7LGUJRc1O/7NPQ0sLllM029TbHmBwDhYJiK9gpOzzmdZFMyXd4uGlwNrK5fjdPn5Kyis8hPymdb67ZoQa5uJWa9Oba/26j0UZyRc0a/e4oIIYQQQgxmEa+XyZZhLJ35IhgN+AiztPETnlj3q35zXoIhgd9Oe5whmnQUvQH8ftRgkEhrKyQnx7qKftWOnkrSfFqSqqr6PR+urkZ/ziycRSmsbN/Ag/+4iEZXI2cVnUU61j4Fttj4q6pRe3vB2v/7CnGqkiKbEEKchPY59/HKllfY0LSBD6s/BKA4uZjpRdN5p+IdzDozqqpi0BrwBD0Ew0Gm5E3hqtFX8ccNf2Rn+06SjEl4Q15Gpo3klom3kGpO7feJtrqeOrq8XXEFNlVVCUaCOH1OtBotBgy0uFuIqBGsBiv5SfnMLJpJjbMGVY12HDXrzZh0plgDhVAkhNPvPC7zJYQQQghxsoh0d+NZuJDwAYUvrcPBpdOmMeqcYVy+5AYC4UBczvvFnP9imK0I75IlcU+kaR0OzOefT8Tr7feJtrqeOtLJOeR4unrbOGvJZUTUCEatkdGZo5lZNBPV7zvkfarff5ifXIiTnxTZhBDiJHDgprbplnQ+qfmEVXWrMOvNpFnS6PJ2UdFRgS/so8ReQiAcYFrhNHQaHdeNvo6C5AJUVeWZz59hQ/OGWKHLZrCxs30nz697nhJ7Sb/t1c06M1MKplBsL0av1dPY08jndZ8TjAQBUCMqKaYUfjT5R+xz7kOv0RMIB/AGvSQYEjDpTOi1enQaHUatkdOyTiPdkk6iMRGD1oDL7zroclUhhBBCiFPdgTlvvL2U1GVr4wpsEH2izA+UjCrlgUn3sr1nb1zOOzdnap8C2/77vEuWYJ43D/opspl1ZvT6hEMP0GjoN+eF9dpD3hYx6CTniUFHimxCCHGC+2pXqTNyz+DdPe8yLmsc3pCX8txyVtWtwhvyUttdyw1jb2BxxWIqOipocjURDAfZ0rqFO8rviLVU12l0BMIBegO9TCuYht1sZ0vLFhRFoTAp2oig1llLp6+TJXuXsLZhLTvaduAJeihMKuSSkZfwz53/JC8xD7POzLbWbVR2VTI6czQ72nYAUJpeSpo5jdL0Umq6a9Br9Jxbci4ra1fyyb5PyEvMo8vXxZqGNXxr9LcYnjZ8YCZYCCGEEGKAHJjzzDozr878XZ8C237h6mqMkyZxpu40/lG9OC7nPVD6fQJfKbCh12OcNAltXh5qTw/hcBglIQG3JhSX81rspVzkKITqmj7vqSl2sLRpJf+34//65LwtvZVMdxT1u2RUcRTxWcdGPtu1XnKeGFSkyCaEECewr3aV8oV89Ph6MGqNfFLzCTqNjuyEbAqSChiRPgKLzoI36MUT8rBw10JyEnPItmbT4Gxg6d6llOeVs6ZhDVaDlVA4xLxh89jSsoWqriqaeptYvGcxmQmZTCucRigS4p1d77CrYxeBcIDx2eNZ37SeKmcVKirzhs2jMLmQ0VmjaehtoDfQS6IxMTb2YDjIBUMvwGF38NfNfyXFksLK2pU0uBrIS8xjaOpQ9nbuZXfHbup76vnJ1J8wJHXIQE21EEIIIcRxdWDOM+vM/GrKwyR4QngOdVMohFYN98l5qu8rSzf1eizz5+Nfsya+Y2hxMcbzzyPsdfPnjX9mW9s2Pq/7nDPO+R1ZEFdoU4odBM+dwYYNv+w356Wn5NE7y451OXGFNsVRROuM0/jVivvwhryS88SgIkU2IYQYQC6/ixpnDb3BXqwGa59Onwd2lQpFQrR72slJzKFuVx2d3k4cyQ4URaHB1YBWoyXFnEKCIYH1TetRUalx1pBtzUZBwRVwUWIvYVvrNrxBL5PzJrO6fjUNrgYA/CE/K2qiIWxzy2ZmFc2iILmAOlcdbrebDk8HN42/CZ1GRzASZHzWeEw6E3s79uIP+5mQM4HTc05nUu4kkoxJlGaUkmnNZFTGKMZmjaW6q5q/bf0bw9OGo6pqrFMpQFVXFSvqVpBpzZQlBUIIIYQ4JUS8XlS3G9XnQzGZ+nT6PDDnXT/iKrJXbINJkw/9ojodvQTxR/xxOQ+TMe4y46RJ+Nes6bt8tKqKwLtLGDZqFPeOvZ3bV9xLg6uBGz74AY9M+RmjZk5CEwiiMydQF+rg46q3cQfdB815Lr8L9/kzsQRVvO5uQnota7q28MK/CmwgOU8MLlJkE0KIAbLPuY+FFQvp9HbGjqWYU7ho+EWxTp8HNgbwh/yEIiEMGgOp5tTYfXaznU0tm3AkO0g2JtPa24peoyeshlFVlYgaodPbSSAcwGa0oaLiDXnJT8rno30fYTPaSDQm4vK7UFHxBD1sbNrItIJpfFD9AWXpZQTDQSbmTGRj80Z2te9Co2jY3LyZDEsGQ1KHYNaZSTAk4PQ5GZE2gjGZY2Ihyma0MS57HP6wn8yETHa07+h3PpxeJzXOGsoyy47NhAshhBBCHCf9Ni8oKcEyb16s0+eBOe/MlNNQq98mnJeP1uHoUxyDaBODsKuHd3s+Qqto43LeLncNjgPu0+blxT3BdqD9y06zV6zi28Ov5H+2vcjEnIk8uu6XsZw3PHX4N855tnQbq+tX83LFy5LzxKAnRTYhhBgALr+rT4ENoNPbycKKhSwYuwCb0UayMTl2LqyGAah2VjM5L/otZzASRKfRodfoyU3M5WzH2fz0w59i0VsIq2EMWgMAmdZMqrqqWDBuQWx/tbAaRqfRkWvNZXbJbFx+F8Upxeg0Ouq66wiEA1S0VzA+azx5iXmsbVyLy++Kdi5FRavRUtlVicVgIc2SxpqGNezt3MubO9/k7KKzuXzU5bFiIYBVbyUQCRx0Tkw6E73B3qM0w0IIIYQQAyPi9fYpsAGEKyvxvPMOlvnz0ZjNcTlPF4w+3e9fvTq6zBPiu4QWF2OcOpXtwXqe+fh3WPSWuJx3wwff5/P5S+Dd96L3hULRGw/Yl41QCHQ6wvX1EA6jVu/jzDPnskhynhBHjRTZhBBiANQ4a/AGvUwrmEa7px2nz4ndbCfVnMq6xnWxb/pKM0opthezu2M34UgYf8iPqqosrFjI7OLZFNmLyLHlMDFnIjpFx8c1H3PZyMui3UMVSDIm0epuxaA1kGxKZk3dGs52nM11Y67DpDPh8ruYkD2Bv275K3s696BRNITVMCXJJfzHqP8g3ZJOMBLEbrbz3t73KEyOLmcNhANoFA0hNcTCioXMGz6Php4G2txtOOwOqrqq4oqFAIXJheRYc9jbubfPfORYc1BQsOqtx/tHIYQQQghxVKluN+GeHhJuuw0lHI4uFzWbUTUa3H//O6rbDWZzXM4L6BQSAIJBPG++iXHSJIyTJsUKY6TYWVS/nIXVS5lZNLPfnPezDU/zrSmXMGL2LBQ0B9+XzeFAX1YGej36UERynhBHkRTZhBBiAPiCPk7LOo0nPnuCHW07SLOkYdaZKUgq4Pqx1xMIRb8JzLRmcuO4G3nqs6do97QD0OBqYET6CCJEeH3H6/zgjB/w+MrH+c7Y7zAlfwobmzeyt2MvETVCMBxkSMoQLhlxCQVJBfiCPnRaHR2eDnISc0izpLFozyL2dO5Bq2jRKBo0ioaeQA9L9izhomEXodVoaXY3oygKkUgENDA2aywV7RWcnnM6YzLGUJhUiKHYQKu7lcrOSjItmaxvXE+uLZcUcwql6dF9O7415lvUu+pj+49ANHjNKp6FN+SlMLlwQH4eQgghhBBHixoKYb36aryLFvV5Gs161VWokehTa5nWTH4x+X5UtxubwYa2uDj69FswGL/U01HI+okZ7HJV4w652dt58Jy3y1vHZx2bmJUzlcI55/a/L1t1Nd6lSzFOmoRqMOAJeiTnCXGUSJFNCCEGgFFv5Ncf/5rVdatx2B3Udtfi9DlZ17iO6q5qvn3at3GH3KDCytqVTCmYwjkl56CgoFE0JBoTeXf3uwTCAdrcbYzLHke1s5oWdwv1PfV0eDrwh/yggLvZTTgS5sy8M6nrqeP03NPZ0LwBk9bEmfln8kHVB1gNVnoDvYTUEHaTnbzEPFbVr2JS3iQ6vB2MyxpHfU89Bm00iKkRldOyTmNzy2Y2NG2gLKOMvZ17KUwqZHrhdPZ27mVn+05SLalsaNpAsb2YO8rvYGzWWH4y9SesqFuB0+vEpDOhoOANeZk3bJ5shiuEEEKIk55iNOJ9551+mw54Fy9GX1aGoiioqkpqnRP/0qUAGOfPx6+qcfcpxQ6apo7if754Ao2i+cY5z6KzUJR7LuFFi/sdY7iqCuPUqWzuWSc5T4ijSIpsQggxACq7KllRu4J0Szr1PfU4fU4guu/a9tbtGLQGPqv7DJvBhtVoJdWSyv9u/V98IR/DUoeRZ8vjmjHXUJ5XTlgNc/eZd7OhcQOL9yym09uJL+RDq9Fi1plxBVwsr17OkNQhFKcU4w66+bz2c1bVreKH5T8kPymfISlD6PR2EowE8Qa9tLnbUFCw6C0AtLpbcXqdWAwW6nvqKbGXsLNtJw09DdhNdvwhP3qNnrqeOpZXL2d6wXR2tu+M7RVS1VXFs2ue5bFZjzEkdQiZ1swvu6rqrbHlCUIIIYQQJz2/v9/GBQDh+npM55xDxOVC0WjQ5eaiu+km3H/725fLRKdNJaRR8Goj7Au00BRspjS9tN+c1+Pv4YPqDxiSOgSH3YE35MXld/GrNb/i0jmH7lSqaBSshgRa2yTnCXG0SJFNCCEGQKenk2A4SKIxkX3d+2LH9Ro9F4+8mA+qP2DJniUMTxvOno49jM8ezw8n/ZCPqj9iW9s2drTtINWSyrjscWxs3sjWlq047A4Kkwtpcbeg1WgJhUM0+5pj+2ok6BNIMibhC/n48ZQfs7drL+6QG7POTLevmyRjEnqtHm/QGw1oARd1PXXR8Fb1AZeXXs7O9mjgshlttPS2kGRKIjcxl3Z3O6mWVJw+J/uc+7hw2IXkJ+bT4++Jfbaqrip2tO6ItW+X7lJCCCGEOBWpfn//J/61R5pv+fL4rqMOB9Zrr6X3xRejy0RXrCDwnavZFW5hY9tGXH5Xvzmv0dsIgIJCgj6BZFMyPYEeStNLmV0yG59OxXTIcQYo1Gfwxo43JOcJcZRIkU0IIQbA/m/z9ncM3W9S3iRW16+mILEAvVaPTtGRbE5mb+denl/3PDOKZpBgSGBNwxo8QQ8pphQWjF1AjbOGht4G9Bo9WkVLp7+TcCRMKBJCq2i5rPQytjRv4bPaz+jwdtDqbuX0nNNZMHYBKeYUvmj8AiD25Jon6MGR7KCltwWdVkeWNQu9Rk9+Yj4TsydiN9vZkrSFWmctm5s30+XtIsGQQIm9BH/IT64tl++f8X38IT+j0kcB0BvojQtjQgghhBCnIsVo7Pe4cdKkg++R9u67WC66CM9rrwGgDYRIsR4854UiIRQUAC4deWlcztvdsZsJOROYNucMcvfv8/YVWoeDcH09+hyr5DwhjiLNQA/gm9q9ezcXX3wxaWlpJCYmMmXKFD766KO4a2pra5k3bx4JCQmkpaVxxx13EAgcvI2wEEIMlGJ7MeOzx6NVtCgoGDQGphVM49ySc5leMJ0z8s7gtMzT8If91HbX0untpLanlmJ7MdnWbOYNm0eOLQeb0Rb7tvDMvDMZmjKUTGsmqeZUdBodKirleeXs7thNQ28DZr2Zqq4quv3dNLub+fWaX7Ng7AJGpI3AarCi0+jQaXSMyRjD1WVX0+ppZVzWOMZkjmFLyxaquqoIRUL0+HtQUMiyZVFsL2Zs1ljSLGkEw0EyrZkYNAYeW/EYtyy6hZ9/8nP+sukvLN69GKtRukoJIfqSnCeEOKUYjWgdjj6HtXl5B19GWl2NJimJhJtuIuGmm0jUJTBcSSchojtozgM4I/eMPjlPURTWN67n4bVPYTz/vD5j0TocGMvL8a9ejcmSJDlPiKPopHmSbe7cuQwbNowPP/wQs9nMr371Ky688EIqKyvJysoiHA4zd+5c0tPTWblyJR0dHVx//fWoqspvfvObgR6+EELEGZY6jB9O+iF/3fxXmnubmVU8i9X1q3lr11u0udto80RbpM8omMH2tu34Qj6sBiu72nfx0uaXiKgRMiwZfJLzCVeOuhKTzkSCIYGry66mqbcJnUZHkjEJb8jLmflnsqpuFU29TVQFqmJPz0XUCDvad+AJeviP0v+gN9BLMBLEZrBh1Blp6W0hy5qFN+SlubeZyq5KfCEfl428jHWN62h2N1PRXoGCgt1kZ2jqULp93QxJGUK1sxp30I1G0dDt76a2u5ZsazZ/2fQXyjLKyLRmDvBPQAhxIpGcJ4Q4lSgmE+bzz8f73nv9PkV2MGoggO/jj+M7kpaUYD7vPCzAnWNvoc3Thk6jI9WSijd48JynKAo723dS6WvCMWoUxkmTIBQCnY5wfT2eN99Ek5/Htt5KyXlCHEUnRZGtvb2dvXv38uc//5kxY8YA8Pjjj/Pcc8+xfft2srKyeP/999mxYwd1dXXk5OQA8Mwzz3DDDTfwyCOPkJiYOJAfQQgh4tiMNkqSS5hfOp+bJ9zM/279X7Jt2Vj1ViraK1BVlU5PJ0srlzIpbxL13fXRdu2RCMmmZILhIFnWLL5o/IK9nXuZmD2RBlcDI9NHcuvEW9nWto367npcARcmnYlqZzVpljR2tu+MjUGv0TM8dThbW7eSkZDB2oa1NPY2YtaZGZ42nDxbHucNOY9397xLMBIkMyGT/KR8Pqv9jCV7l3CW4yz8IT/Vzmp6Aj3s7dzLmMwxTC+YzncWfgez3szw1OFUdFTgDrpJT0inrqcutl+HEEKA5DwhxKlHYzbj8fRinD4dzbnnEunuBqLFt0NRw+G+S0krK/G++y66vDyMjY388oKf80b9e7S72wlHwriD7n5znlbRkpmQyT+rF3Nd8aUkfrgatSq+eKeeN4uPtjwnOU+Io+ikKLKlpqYycuRIXn75ZcaPH4/RaOT5558nMzOTCRMmALBq1SrKyspiwQtgzpw5+P1+1q9fz1lnndXva/v9fvwHbEzZ0yPryIUQx8fw9OFUdFbQ5mmjJ9BDsjEZq8FKfmI+zb3NtHvaCakhJudPxhP0YDVa8Ya8pFnSMGlNNPU2UdlZSTAcZKh9KKvqV7GjbQednk6uG3sdI1JHsLF5IzqNjoyEjNgTbqFICLvJToI+gWpnNXqtnlZ3K9MLp6Oi4gv5sOgtZFuz+aTmE5KMSZSml2LQGihNK+Wfu/5Ji7uFN3a8waS8SUwtmEogFECn0eGwO+j0daLVaPEGvbS4WxiaMpRObycaJbpDgdPvHNiJF0KcUCTnCSFORWGriYqeSoapeRgSbdH90xQF7cH2SCsuPuRSUuOkSdGmCO8u5fzzz6bW30JvoJdqZ3WfnKegMCJtBFVdVUwrnMbLVf9gRvkkhs2chDYQImzQ0ar28s7Ol7DqrZLzhDiKTooim6IoLFu2jIsvvhibzYZGoyEzM5P33nuP5ORkAJqbm8nMjK+Y2+12DAYDzc3NB33txx57jIceeuhYDl8IIfplM9oYlTGKd3a9w+d1n8c2jy1IKsAddOMJeVBUBQWFPFseDrsj9uTa6MzR7HPuIxwJEwgH6An00NDTQK1aS4u7hfHZ49netp1zis9hV9su9Fo97oAbvUbPsNRhpFvSCathTs89nfzEfKq6qmh2R/9b6Q/52dS8iYuGX0QwEqS6p5q9nXujg1ZBVVXSLem0edpYUbuC9Y3r8YQ86DV6bhh7AwVJBWgUDRqtBk/Qg81oo9vfjU6jwx/2k2xMHrhJF0KccCTnCSFORTajjZFJJQQXL8Gz/wkyiwXrDTfgXbIkfkmow4H5vPPofeGFg79gKAREn2xLDs3mN7vf5rzi8yhNL8VutrO3cy96jZ5cWy4p5hTsJjsWgyWW85Y1fsoy4nOeL+yjvqdecp4QR9GANj548MEHURTlkL/WrVuHqqrcdtttZGRksGLFCtauXcvFF1/MhRdeSFNTU+z1FEXp8x6qqvZ7fL/77ruP7u7u2K+6urpj8lmFEOKrXH4XO9t2kmhKpNhezNDUodiMNvZ07iHbms2MwhlMK5jGjKIZnF18Nm/ueBNXwIVOoyMQDuAJeghGgqhE/zsXVsOoqkqjq5G6njqae5v5+Sc/R0Xl7jPv5qyiszg993R6/b18vO9jegO9ZCRksGj3InJsOWgVLQDdvm68IS++kA8Ag8YQG3MgEiBChKLkItIsadHGDUq0EJhsSqYkuYQeXw+O5C832A1HwtgM0W9wi+3FlGaUHt+JFkIMCMl5QojBLOL1Elr8HpEDlmji8dD7l79gnD4d8y03Y7r+Osy33ITm/NlEnE4IBg/+groDno/xehlqKeD+D+/n3d3vcvvpt3NO8TlMzJmIRtGwu2M3Xb4uyXlCDIABfZLt9ttv56qrrjrkNUVFRXz44YcsWrSIrq6u2J4bzz33HMuWLeOll17i3nvvJSsrizVr1sTd29XVRTAY7PPN54GMRiPGg7RYFkKIY6nGWUO7p53Paj/DG/JS3VWNRtEwIm0Euzt3EwwHOSP3DP6+7e+MyRzD+UPPZ0fbDvIS8zBpo3t6hCNhSuwl1HfXo6pqbLNbFRWD1kBlVyW7Onbx4qYXuaP8DvZ07GF46nCsBiu9gV5e3foq2bZsFBSmF06n2d1MIBLt1mfSmej2d5NkSsKsM+MNeenx95Bry2VT8yZSzCkUJBWg1+jxhXykmFOo76nHG/Iyq3gWy6uWU+2sxqwzk56QTrolnR+U/0D26RBikJCcJ4QYzFS3u/+mBx4PnpdeovnqOdy26n60ipbvjV7A+ZFhaB2OfpeMah0OwvX1Xx4wGDgzZSw/df6CMVljeGTFI7Gc1+XrkpwnxAAa0CJbWloaaWlpX3udx+MBQKOJf/BOo9EQiUQAmDx5Mo888ghNTU1kZ2cD8P7772M0GmP7eQghxImkN9hLj7+Hjc0bmVU8C4Dqrmp2te8iz5bH2OyxXFl6Jd3+bjY0bUCn6Gj3tlPdVc2MwhmkmlMx681MzpvM6zteR0UFwJHsQI2o+MPRfYj8IT8VHRU0uZr41ZpfAVCWUYY/5MekNxGKhGjsbYzdb9AYyLHmRPcOAYw6I8PThlPRXsHujt3cMuEWgpEgS/Ysoc3dhlFnJN2SzoTsCSSZkljXuI5QJMSlIy4l2ZRMYXIhiYZESjNKJXgJMYhIzhNCDGaqz3fI80mYuG3ibXT7u/mkeQ3DhxUzdNo0/NBnKamxvBzPm2/Gfg+gC0W/WJWcJ8SJ5aTYk23y5MnY7Xauv/56/uu//guz2cwLL7xAdXU1c+fOBeDcc8+ltLSU6667jqeeeorOzk7uvvtubrrpJuk4JYQ4IVn1VvRaPcFIkOVVyxmTOYZp+dMIRoLoNXoSDAmY9CZ+98XvqHJWodfoY9ekJ6Qzf+R81jSsYdHuRQQj0eUFjmQHc4fNZWPLRuwmOxANTwCeoCf23uFImA5vB4VJhUTU6P/E7l82UGwvJjcx98v9OYBkUzJjs8ai1+hxJDvIHZXLucXn0untjLWR39y8mY/2fUQwEiTbmk2yOZmLh19MYXLhcZlPIcTJSXKeEOJU9HWdRDEaMPFlznu/6n3uHv8DLp19PjbNueDzR7uN7tsXLbAFg9GC27RphPbsIZibEH0ZyXlCnFBOiiJbWloa7733Hvfffz9nn302wWCQUaNG8fbbb3PaaacBoNVqWbx4MbfddhtTpkzBbDZzzTXX8PTTTw/w6IUQon+FyYVY9dFuonU9daxvWh87ZzPYKM8tx6w30+ZpAyAYCcau0Wv03Dz+ZtIsaVxRegW9gV4AQmoIRVVo6GkgFAmRn5iPN+jFpDNh0Vtir6/VaImoEdxBNzMKZ+AP+SnNKCXXmkthciEd3g7aPG10ejtj92TbsmNhyuV38eKmF2Pna7prSLekc9nIywAozy2P7TEnhBCHIjlPCHEqUhIS0JYUE67su2RUcRSxzrkTS6I9lvM8QQ8/X/MEP1/zBGmWND6fvwR1Xy3avDwsl1wCOh0RlwuCQQIN9SzXdUjOE+IEpKiqqg70IE4kPT09JCUl0d3dLd+MCiGOuYr2ChbtXsRbu96irie6IbfNYOPM/DOZWTSTBH0Cf9z4R6q7qnEFXLH7bAYbI9NHcsuEW6hor6DN04Yn5KHOGW14UJ5XzvrG9ZyeezprGtZg1VsZlzWOf+z6B12+LjITMglFQpTnlZNlzSLFnMKCsQviwpLL76LGWUNvsBer3kphcmHc+X3OfSysWBgX0FLMKfKtphiUJD+cHOTnJIQ4noLOLnzvvBPX/EBxFNE+cxzrXRUYtcaD5rzy3HKem/Y4SrcLvF7Q6QjX1xNobqJp8nD+32f/xbjscZLzhDgODic/SJHtKyR8CSGOt70de9nSugWn10kwEsSsM6PT6piSP4Wqzip+/unPSdAnoKISioTQaXQoKLiDbh6Y/gATcidQ46yh09uJJ+jB6XfS7evGFXDxyb5PsBlszCqeRWVnJflJ+dGOU94u0hLSsBqsRxSYvi6gCTFYSH44OcjPSQhxvDmdzeD2gt9P2KCjNtjObncNk/ImfW3Oe2jGQ0zNOh3V7Sbi8xLQwW5vA+s6t0b3cpOcJ8RxcTj54aRYLiqEEKeyIalDyLRm9htiTDoTDruDqq4vlxrsb2hQbC9mZMZIbEYbZZllsfMHBqKzi85Gr9XjCXoozy2PBayjFZi++t5CCCGEEOJLyclZuMz7s5kTq8XKBTkXfKOcNzx9OBqzGcxmtIAeGOJPRm+xSs4T4gQlT7J9hXzDKYQ40Wxq3sSza56NC2DF9mLuKL+DsVljB25gQogYyQ8nB/k5CSFONJLzhDjxyXLRIyDhSwhxImrpbWFH6w6cfifJxmRpky7ECUbyw8lBfk5CiBOR5DwhTmyyXFQIIU4xmdZMCVtCCCGEEKcgyXlCnDo0Az0AIYQQQgghhBBCCCFOdlJkE0IIIYQQQgghhBDiCEmRTQghhBBCCCGEEEKIIyRFNiGEEEIIIYQQQgghjpAU2YQQQgghhBBCCCGEOEJSZBNCCCGEEEIIIYQQ4ghJkU0IIYQQQgghhBBCiCMkRTYhhBBCCCGEEEIIIY6QFNmEEEIIIYQQQgghhDhCuoEewIlGVVUAenp6BngkQgghhDhZ7M8N+3OEODFJzhNCCCHE4TqcnCdFtq9wuVwA5OfnD/BIhBBCCHGycblcJCUlDfQwxEFIzhNCCCHEv+ub5DxFla9c40QiESoqKigtLaWuro7ExMSBHtKA6+npIT8/X+bjX2Q++pI5iSfzEU/moy+Zk3inwnyoqorL5SInJweNRnbjOFFJzuvrVPj372iS+ehL5iSezEc8mY++ZE7inQrzcTg5T55k+wqNRkNubi4AiYmJJ+0fgmNB5iOezEdfMifxZD7iyXz0JXMS72SfD3mC7cQnOe/gZD7iyXz0JXMST+YjnsxHXzIn8U72+fimOU++ahVCCCGEEEIIIYQQ4ghJkU0IIYQQQgghhBBCiCMkRbZ+GI1GHnjgAYxG40AP5YQg8xFP5qMvmZN4Mh/xZD76kjmJJ/Mhjif58xZP5iOezEdfMifxZD7iyXz0JXMSb7DNhzQ+EEIIIYQQQgghhBDiCMmTbEIIIYQQQgghhBBCHCEpsgkhhBBCCCGEEEIIcYSkyCaEEEIIIYQQQgghxBGSIpsQQgghhBBCCCGEEEdIimxCCCGEEEIIIYQQQhwhKbIdYPfu3Vx88cWkpaWRmJjIlClT+Oijj+Kuqa2tZd68eSQkJJCWlsYdd9xBIBAYoBEfH4sXL6a8vByz2UxaWhqXXXZZ3PnBOCd+v5+xY8eiKAqbNm2KOzdY5mPfvn3ceOONOBwOzGYzJSUlPPDAA30+62CZj/2ee+45HA4HJpOJCRMmsGLFioEe0nHx2GOPcfrpp2Oz2cjIyOCSSy6hoqIi7hpVVXnwwQfJycnBbDYzc+ZMtm/fPkAjPv4ee+wxFEXhhz/8YezYYJuThoYGrr32WlJTU7FYLIwdO5b169fHzg+2+RDHn2S9viTn9SU5L0qyXv8k60nW64/kPMl5MaqIGTJkiHrBBReomzdvVnfv3q3edtttqsViUZuamlRVVdVQKKSWlZWpZ511lrphwwZ12bJlak5Ojnr77bcP8MiPnTfeeEO12+3q73//e7WiokLdtWuX+vrrr8fOD8Y5UVVVveOOO9Tzzz9fBdSNGzfGjg+m+ViyZIl6ww03qEuXLlUrKyvVt99+W83IyFDvuuuu2DWDaT5UVVVfe+01Va/Xqy+88IK6Y8cO9c4771QTEhLUmpqagR7aMTdnzhz1xRdfVLdt26Zu2rRJnTt3rlpQUKD29vbGrnn88cdVm82mvvnmm+rWrVvVK6+8Us3OzlZ7enoGcOTHx9q1a9WioiJ1zJgx6p133hk7PpjmpLOzUy0sLFRvuOEGdc2aNWp1dbX6wQcfqHv37o1dM5jmQwwMyXrxJOf1T3JelGS9viTrSdbrj+Q8yXkHkiLbv7S1tamA+umnn8aO9fT0qID6wQcfqKqqqu+++66q0WjUhoaG2DWvvvqqajQa1e7u7uM+5mMtGAyqubm56h//+MeDXjPY5kRVo595xIgR6vbt2/uEr8E4Hwd68sknVYfDEfv9YJuPM844Q7311lvjjo0YMUK99957B2hEA6e1tVUF1E8++URVVVWNRCJqVlaW+vjjj8eu8fl8alJSkvo///M/AzXM48LlcqlDhw5Vly1bps6YMSMWvgbbnNxzzz3q1KlTD3p+sM2HOP4k68WTnNc/yXmHJllPst5+kvWiJOdFSc77kiwX/ZfU1FRGjhzJyy+/jNvtJhQK8fzzz5OZmcmECRMAWLVqFWVlZeTk5MTumzNnDn6/P+4xyFPFhg0baGhoQKPRMG7cOLKzszn//PPjHukcbHPS0tLCTTfdxF//+lcsFkuf84NtPr6qu7ublJSU2O8H03wEAgHWr1/PueeeG3f83HPP5fPPPx+gUQ2c7u5ugNifh+rqapqbm+Pmx2g0MmPGjFN+fr7//e8zd+5czjnnnLjjg21OFi5cyMSJE7niiivIyMhg3LhxvPDCC7Hzg20+xPEnWS+e5Ly+JOd9Pcl6kvX2k6wXJTkvSnLel6TI9i+KorBs2TI2btyIzWbDZDLx3//937z33nskJycD0NzcTGZmZtx9drsdg8FAc3PzAIz62KqqqgLgwQcf5Kc//SmLFi3CbrczY8YMOjs7gcE1J6qqcsMNN3DrrbcyceLEfq8ZTPPxVZWVlfzmN7/h1ltvjR0bTPPR3t5OOBzu83kzMzNPuc/6dVRV5Uc/+hFTp06lrKwMIDYHg21+XnvtNTZs2MBjjz3W59xgm5Oqqip+//vfM3ToUJYuXcqtt97KHXfcwcsvvwwMvvkQx59kvXiS8+JJzvt6kvUk6+0nWS9Kct6XJOd96ZQvsj344IMoinLIX+vWrUNVVW677TYyMjJYsWIFa9eu5eKLL+bCCy+kqakp9nqKovR5D1VV+z1+ovqmcxKJRAC4//77mT9/PhMmTODFF19EURRef/312Oud7HPyTefjN7/5DT09Pdx3332HfL3BMh8Hamxs5LzzzuOKK67gu9/9bty5k30+DtdXP9ep/FkP5vbbb2fLli28+uqrfc4Npvmpq6vjzjvv5JVXXsFkMh30usEyJ5FIhPHjx/Poo48ybtw4brnlFm666SZ+//vfx103WOZDHD2S9eJJzosnOa8vyXpHRv6ekqwHkvO+SnLel3QDPYBj7fbbb+eqq6465DVFRUV8+OGHLFq0iK6uLhITE4Fo55hly5bx0ksvce+995KVlcWaNWvi7u3q6iIYDPapyJ7IvumcuFwuAEpLS2PHjUYjxcXF1NbWApwSc/JN5+Phhx9m9erVGI3GuHMTJ07kW9/6Fi+99NKgmo/9GhsbOeuss5g8eTJ/+MMf4q47Febjm0pLS0Or1fb5Jqa1tfWU+6yH8oMf/ICFCxfy6aefkpeXFzuelZUFRL/Fys7Ojh0/ledn/fr1tLa2xpahAYTDYT799FN++9vfxjpyDZY5yc7Ojvv7BGDkyJG8+eabwOD8MyKODsl68STnxZOc15dkvX+PZL0oyXpRkvPiSc47wPHcAO5EtnDhQlWj0agulyvu+LBhw9RHHnlEVdUvN/ZsbGyMnX/ttddO2Y09u7u7VaPRGLchbiAQUDMyMtTnn39eVdXBNSc1NTXq1q1bY7+WLl2qAuobb7yh1tXVqao6uOZDVVW1vr5eHTp0qHrVVVepoVCoz/nBNh9nnHGG+r3vfS/u2MiRIwfFZriRSET9/ve/r+bk5Ki7d+/u93xWVpb6xBNPxI75/f5TcrPT/Xp6euL+m7F161Z14sSJ6rXXXqtu3bp10M3J1Vdf3WdD3B/+8Ifq5MmTVVUdnH9GxPElWS+e5Lx4kvP6J1kvnmQ9yXr7Sc6LJznvS1Jk+5e2tjY1NTVVveyyy9RNmzapFRUV6t13363q9Xp106ZNqqp+2aJ61qxZ6oYNG9QPPvhAzcvLO2VbVKuqqt55551qbm6uunTpUnXXrl3qjTfeqGZkZKidnZ2qqg7OOdmvurr6oK3dB8N8NDQ0qEOGDFHPPvtstb6+Xm1qaor92m8wzYeqftnW/U9/+pO6Y8cO9Yc//KGakJCg7tu3b6CHdsx973vfU5OSktSPP/447s+Cx+OJXfP444+rSUlJ6j/+8Q9169at6tVXX31Ktu0+lAO7Tqnq4JqTtWvXqjqdTn3kkUfUPXv2qH/7299Ui8WivvLKK7FrBtN8iONPsl5fkvMObrDnPFWVrNcfyXqS9Q5Fcp7kPFWVIlucL774Qj333HPVlJQU1WazqZMmTVLffffduGtqamrUuXPnqmazWU1JSVFvv/121efzDdCIj71AIKDeddddakZGhmqz2dRzzjlH3bZtW9w1g21O9usvfKnq4JmPF198UQX6/XWgwTIf+/3ud79TCwsLVYPBoI4fPz7W1vxUd7A/Cy+++GLsmkgkoj7wwANqVlaWajQa1enTp6tbt24duEEPgK+Gr8E2J++8845aVlamGo1GdcSIEeof/vCHuPODbT7E8SdZL57kvIMb7DlPVSXrHYxkPcl6ByM5T3KeqqqqoqqqejyWpQohhBBCCCGEEEIIcao65buLCiGEEEIIIYQQQghxrEmRTQghhBBCCCGEEEKIIyRFNiGEEEIIIYQQQgghjpAU2YQQQgghhBBCCCGEOEJSZBNCCCGEEEIIIYQQ4ghJkU0IIYQQQgghhBBCiCMkRTYhhBBCCCGEEEIIIY6QFNmEEEIIIYQQQgghhDhCUmQTQohDCIfDnHnmmcyfPz/ueHd3N/n5+fz0pz8doJEJIYQQQogjITlPCHG0KaqqqgM9CCGEOJHt2bOHsWPH8oc//IFvfetbAHz7299m8+bNfPHFFxgMhgEeoRBCCCGE+HdIzhNCHE1SZBNCiG/g2Wef5cEHH2Tbtm188cUXXHHFFaxdu5axY8cO9NCEEEIIIcQRkJwnhDhapMgmhBDfgKqqnH322Wi1WrZu3coPfvADWUIghBBCCHEKkJwnhDhapMgmhBDf0K5duxg5ciSjR49mw4YN6HS6gR6SEEIIIYQ4CiTnCSGOBml8IIQQ39Cf//xnLBYL1dXV1NfXD/RwhBBCCCHEUSI5TwhxNMiTbEII8Q2sWrWK6dOns2TJEp588knC4TAffPABiqIM9NCEEEIIIcQRkJwnhDhapMgmhBBfw+v1ctppp3Huuefy29/+ltraWsrKynjyySe59dZbB3p4QgghhBDi3yQ5TwhxNMlyUSGE+Br33nsvkUiEJ554AoCCggKeeeYZ/vM//5N9+/YN7OCEEEIIIcS/TXKeEOJokifZhBDiED755BNmzZrFxx9/zNSpU+POzZkzh1AoJMsJhBBCCCFOQpLzhBBHmxTZhBBCCCGEEEIIIYQ4QrJcVAghhBBCCCGEEEKIIyRFNiGEEEIIIYQQQgghjpAU2YQQQgghhBBCCCGEOEJSZBNCCCGEEEIIIYQQ4ghJkU0IIYQQQgghhBBCiCMkRTYhhBBCCCGEEEIIIY6QFNmEEEIIIYQQQgghhDhCUmQTQgghhBBCCCGEEOIISZFNCCGEEEIIIYQQQogjJEU2IYQ4As8++yyTJk0iLS0No9FIQUEBV111Fdu3bx/ooQkhhBBCiGNo5syZzJw5c6CHIYQ4gegGegBCCHEy6+jo4Pzzz+e0007DbrdTVVXF448/Tnl5OevXr2f48OEDPUQhhBBCCCGEEMeBoqqqOtCDEEKIE4nH48Fisfzb9+/cuZPS0lJ+9rOf8fOf//wojkwIIYQQQpwo9j/F9vHHHw/oOIQQJw5ZLiqEGNQefPBBFEVhw4YNXH755djtdkpKSvD5fNx33304HA4MBgO5ubl8//vfx+l0fu1rpqenA6DTycPCQgghhBADYfHixYwdOxaj0YjD4eDpp5+O5b79VFXlueeeY+zYsZjNZux2O5dffjlVVVVxr6WqKk8++SSFhYWYTCbGjx/PkiVLjvdHEkKcBOT/AIUQArjsssu46qqruPXWW3G73VxyySUsX76c++67j2nTprFlyxYeeOABVq1axapVqzAajXH3h8NhQqEQ1dXV3HvvvWRkZLBgwYIB+jRCCCGEEIPX8uXLufjii5k8eTKvvfYa4XCYJ598kpaWlrjrbrnlFv7yl79wxx138MQTT9DZ2cnPf/5zzjzzTDZv3kxmZiYADz30EA899BA33ngjl19+OXV1ddx0002Ew2HZGkQIEUeKbEIIAVx//fU89NBDACxdupSlS5fy5JNP8p//+Z8AzJ49m/z8fK688kpefvllbrrpprj7ExIS8Pv9AAwbNoyPP/6Y/Pz84/shhBBCCCEE999/P5mZmSxbtgyTyQTAnDlzKCoqil2zevVqXnjhBZ555hl+9KMfxY5PmzaNYcOG8ctf/pInnngCp9PJE088waWXXsof//jH2HWjRo1iypQpUmQTQsSR5aJCCAHMnz8/9s8ffvghADfccEPcNVdccQUJCQksX768z/2ff/45q1at4pVXXsFms3HWWWdJh1EhhBBCiOPM7XbzxRdfcNlll8UKbAA2m4158+bFfr9o0SIUReHaa68lFArFfmVlZXHaaafF9llbtWoVPp+Pb33rW3Hvc+aZZ1JYWHhcPpMQ4uQhT7IJIQSQnZ0d++eOjg50Ol1sb7X9FEUhKyuLjo6OPvePHz8egEmTJnHRRRcxZMgQfvKTn/D2228f24ELIYQQQoiYrq4uIpEIWVlZfc4deKylpQVVVWNLQr+quLgYIJb7vu71hBACpMgmhBAAcZvgpqamEgqFaGtriyu0qapKc3Mzp59++iFfy2azMWLECHbv3n3MxiuEEEIIIfqy2+0oikJzc3OfcwceS0tLQ1EUVqxY0WevXSB2LDU1tc+9B77egUtQhRBClosKIcRXzJo1C4BXXnkl7vibb76J2+2OnT+Y9vZ2tm7dypAhQ47ZGIUQQgghRF8JCQmcccYZ/OMf/8Dn88WOu1wu3nnnndjvL7zwQlRVpaGhgYkTJ/b5NXr0aCC6SsFkMvG3v/0t7n0+//xzampqjs+HEkKcNORJNiGE+IrZs2czZ84c7rnnHnp6epgyZUqsu+i4ceO47rrrAOju7mb27Nlcc801DB06FLPZzO7du/n1r3+N3+/ngQceGOBPIoQQQggx+PziF7/gvPPOY/bs2dx1112Ew2GeeOIJEhIS6OzsBGDKlCncfPPNLFiwgHXr1jF9+nQSEhJoampi5cqVjB49mu9973vY7XbuvvtuHn74Yb773e9yxRVXUFdXx4MPPijLRYUQfUiRTQghvkJRFN566y0efPBBXnzxRR555BHS0tK47rrrePTRR2PLB0wmE6eddhp/+MMfqKurw+fzkZWVxcyZM3nzzTcpLS0d4E8ihBBCCDH4zJ49m7feeouf/vSnXHnllWRlZXHbbbfh9Xpj3eQBnn/+eSZNmsTzzz/Pc889RyQSIScnhylTpnDGGWfErvv5z39OQkICzz33HH/9618ZMWIE//M//8PTTz89EB9PCHECU1RVVQd6EEIIIYQQQgghxLH04IMP8tBDDyH/CyyEOFZkTzYhhBBCCCGEEEIIIY6QFNmEEEIIIYQQQgghhDhCslxUCCGEEEIIIYQQQogjJE+yCSGEEEIIIYQQQghxhKTIJoQQQgghhBBCCCHEEZIimxBCCCGEEEIIIYQQR0g30AM40UQiERobG7HZbCiKMtDDEUIIIcRJQFVVXC4XOTk5aDTyHeaJSnKeEEIIIQ7X4eQ8KbJ9RWNjI/n5+QM9DCGEEEKchOrq6sjLyxvoYYiDkJwnhBBCiH/XN8l5UmT7CpvNBkQnLzExcYBHI4QQQoiTQU9PD/n5+bEcIU5MkvOEEEIIcbgOJ+dJke0r9i8dSExMlPAlhBBCiMMiSxBPbJLzhBBCCPHv+iY5TzYNEUIIIYQQQgghhBDiCEmRTQghhBBCCCGEEEKIIyTLRYUQQojjKBwOEwwGB3oY4jDp9Xq0Wu1AD0MIIYQQJzDJeSeno5nzpMgmhBBCHAeqqtLc3IzT6RzooYh/U3JyMllZWbLvmhBCCCHiSM47+R2tnCdFNiGEEOI42B+8MjIysFgsUqg5iaiqisfjobW1FYDs7OwBHpEQQgghTiSS805eRzvnSZFNCCGEOMbC4XAseKWmpg70cMS/wWw2A9Da2kpGRoYsHRVCCCEEIDnvVHA0c540PhBCCCGOsf17c1gslgEeiTgS+39+steKEEIIIfaTnHdqOFo5T4psQgghxHEiSwdObvLzE0IIIcTBSE44uR2tn58U2YQQQgghhBBCCCGEOEKyJ5sQQgAtvS3saN2B0+8k2ZRMaXopmdbMgR6WEEIIIYQ4QpLzhBDHixTZhBCD3qbmTTy75lmquqpix4rtxdxRfgdjs8Z+7f21zlq2tmyl09dJijmF0RmjKUguOIYjFkIcCw8++CBvvfUWmzZtGuihCCGEOEqONOf19rSD24Pq86OYTWAxY01MO4YjFkIcC8cr50mRTQgxqLX0tvQJXgBVXVU8u+ZZHpv12CG/6VxVt4pHVzzK1tatsWOjM0bzk2k/YXL+5GM2biFElBTGhBBCHMyR5jx3RzORxe+jVlfHjikOB+6555KQmnXMxi2EiDoZc54U2YQQg9qO1h1xwUtBIUGfgIpKQ08D6xrXMb1wOjajrc+9tc7aPgU2gK2tW3l0xaP87oLfyRNt4qhy+V3UOGvoDfZiNVgpTCrs98+mEEIIIfrmPLPOzPUjruLMlNPQBSMkuAJEtF40ZnOfe3t72vsU2ADU6mrCi9+n95IL5Ik2cdRJ1jv5SeMDIcSg5vQ7Y/+soGAz2qjprmF723YqOipY37SeFze9yD7nvj73bm3Z2qfAFjvXupWtLf2fE+Lfsc+5jxc3vcgbO9/gvb3v8caONw76Z/Noeu+995g6dSrJycmkpqZy4YUXUllZGTtfX1/PVVddRUpKCgkJCUycOJE1a9bEzi9cuJCJEydiMplIS0vjsssui50LBAL8+Mc/Jjc3l4SEBMrLy/n4449j5//yl7+QnJzMW2+9xbBhwzCZTMyePZu6urrY+YceeojNmzejKAqKovCXv/wFgO7ubm6++WYyMjJITEzk7LPPZvPmzXGf7fHHHyczMxObzcaNN96Iz+c7BjMohBBioByY88w6M7+a8jAX7ICkv75NwmvvEP7Dn/G8+SaR7u6+N7s9fQps+6nV1eD2HKNRi8FqILKe5LyjT4psQohBLdmYDEQLbHaznRpnDa6AC62iRafRYdFZ6PR2srBiIS6/K+7eTl/nIV+7y991rIYtBhmX38XCioV0euP/zB3sz+bR5Ha7+dGPfsQXX3zB8uXL0Wg0XHrppUQiEXp7e5kxYwaNjY0sXLiQzZs38+Mf/5hIJALA4sWLueyyy5g7dy4bN25k+fLlTJw4MfbaCxYs4LPPPuO1115jy5YtXHHFFZx33nns2bMndo3H4+GRRx7hpZde4rPPPqOnp4errroKgCuvvJK77rqLUaNG0dTURFNTE1deeSWqqjJ37lyam5t59913Wb9+PePHj2fWrFl0dkbn8O9//zsPPPAAjzzyCOvWrSM7O5vnnnvumM2jEEKI429/zrOb7Pz1nN+Tu3IHavW+uGvClZV43nmHiNcbd1z1+Q/52qr/0OeFOBwDlfUk5x19slxUCDGolWaUUmIvoam3iVZ3KxUdFV+eSyvFHXCzq30XRp2R8txyyvPKY+dTTCmHfG270X7Mxn0w0oTh1FTjrOkTuvbr9HZS46yhLLPsmLz3/Pnz437/pz/9iYyMDHbs2MHnn39OW1sbX3zxBSkp0X8fhgwZErv2kUce4aqrruKhhx6KHTvttNMAqKys5NVXX6W+vp6cnBwA7r77bt577z1efPFFHn30UQCCwSC//e1vKS+P/rv30ksvMXLkSNauXcsZZ5yB1WpFp9ORlfXl3jgffvghW7dupbW1FaPRCMDTTz/NW2+9xRtvvMHNN9/Mr371K77zne/w3e9+F4CHH36YDz74QJ5mE0KIU0hpRiljM8fy6MR70bs8eKqq+r0uXFmJ6nLBActGFZPxkK+tGA99/liQnHfqGqisJznv6JMimxBiUMu0ZnLLhFu4b/l9uANuImr0m5kRaSO4ctSV1HbXkpeUhyfoYVPTJkw6E6dlRf/yGJ05mtEZo2NLRvUaPadlnUa6JZ1EYyJmg5kvGr7AordQkFRwzPdTkCYMp67eYO8RnT8SlZWV/OxnP2P16tW0t7fHvr2sra1l06ZNjBs3Lha8vmrTpk3cdNNN/Z7bsGEDqqoybNiwuON+v5/U1NTY73U6Xdy3oiNGjCA5OZmdO3dyxhln9Pva69evp7e3N+51ALxeb2wJxM6dO7n11lvjzk+ePJmPPvqo39cUQghx8sm0ZvJw+X1EFi2FA/4uQa/HOGkS2rw8CIVAp0MNhQh3dqLd/3daggXF4fhyyeiB9wCqxkBDaxXdio/8xHzJeeKIDFTWk5x39EmRTQgx6HkCHsoyyhhiH8LGlo2YtCYyrZm8uOlFqp3VFCQV0OZpo72knd5gL1nWLDKtmdjNdm4/43Y+qv6I3kAv+Un5/H3739ncvJny3HIe+fQRMhMymVU8i4/2fcSFwy6kKLnoqI7d5Xexp2MP/pCfBz95kK2tW9FpdGiU6G4A0oTh1GDVW4/o/JGYN28e+fn5vPDCC+Tk5BCJRCgrKyMQCGDuZ6PoAx3qfCQSQavVsn79erRabdw5qzX+8yiK0uf+/o4d+NrZ2dlx+37sl5ycfMgxCyGEOLWYg9BbXQ2TJkUP6PVY5s/Hv2YN/hUrYtdpi4sxTp0Kej1amw2LPoHwnHOhuwcUBcViwffJJ3H32IodKGeX88qWVzh/6PlHPedBtENqbVctD3z8AJubN2PQGtBqon9vSs47dQxU1pOcd/RJkU0IMei1e9tZvGcxY7PGsqdjDxkJGSytXEq1sxoFBRWVRGMi1V3VNLmamJQzCW/IG9s3wR/24wv5qOyq5P9N/n/4Qj46PZ20e9tp7G1kedVyphdOZ2HFQhaMXfCNv+n8uu5C+5z7eGXLK3xW+xlXll3JJzWfoFW0mPVmTDoTOk30P/H7mzBI+Dp5FSYXkmJO6XcZQYo5hcLkwmPyvh0dHezcuZPnn3+eadOmAbBy5crY+TFjxvDHP/6Rzs7Ofr/lHDNmDMuXL2fBggV9zo0bN45wOExra2vstfsTCoVYt25d7NvMiooKnE4nI0aMAMBgMBAOh+PuGT9+PM3Nzeh0OoqKivp93ZEjR7J69Wq+/e1vx46tXr36oOMQQghxclL/tTwsXF+P1uFAl5eHf80awl9pahCuqsKvqpjnziXS3Y1n4ULCBywv1TocGMvL8ezbB8Fg9LWrqrECY8qHH/WcB7CpeRPPrnmW6YXT+bTmUwB0Gh2JxkQMWgMgOe9UMRBZT3LesSFFNiHEoGfWmQlFQmxu3sy5JeeiVbQsr14OgIpKsikZs85Mg6uBiBqhw9/B+or1sb8EvSEvq+tXU++q54vGL5hZOBO9Vs9lIy6jrqeODm8HiqIc1n4K+5z7YkU8vUZPSUoJm1s2o1W0ZCZkUmIv4a2db/FZ7Wd4Q156fD0AhNUw3mB0416L3hJ7ou3AJgzSGvzkYzPauGj4RX02xE0xp3Dx8IuP2c/PbreTmprKH/7wB7Kzs6mtreXee++Nnb/66qt59NFHueSSS3jsscfIzs5m48aN5OTkMHnyZB544AFmzZpFSUkJV111FaFQiCVLlvDjH/+YYcOG8a1vfYtvf/vbPPPMM4wbN4729nY+/PBDRo8ezQUXXACAXq/nBz/4Ac8++yx6vZ7bb7+dSZMmxcJYUVER1dXVbNq0iby8PGw2G+eccw6TJ0/mkksu4YknnmD48OE0Njby7rvvcskllzBx4kTuvPNOrr/+eiZOnMjUqVP529/+xvbt2ykuLj4mcymEEGJg7N87zb96NZb580Gvj3sa7UDh6moIBvG8+25cgW3/Ob9OF30NRYktMw3X1zPMks+yxk+PWs4rTS8F4Nk1z1LVVcXYzLGxe0ORED3+Huwme+yJtgNzXsTrRXW7UX0+FJMJJSEBzdc8kSQG3kBkPcl5x4YU2YQQJ72W3hZ2tO7A6XeSbEqmNL2UTGsm8M0KSlm2LEamjWRn+07er3yf+SPnMzpjNGE1TKIxkYLEAtY2ro3t1+b2u2N/+fUGelnfuJ6SlBIm508mLzG6T8fntZ/z5o43cdgd+EN+puRPQatov9F+Cgd2F9Jr9AxPHc6fNv6Jne070Wl0ZFmzyLflc+HwC1FRAUg0JcbuD6thImqEUCQU+5ZzfxOGA0PdfinmFC4aftExWeIgjp6i5CIWjF3w5Z9nvZXC5GNbINVoNLz22mvccccdlJWVMXz4cJ599llmzpwJRL9dfP/997nrrru44IILCIVClJaW8rvf/Q6AmTNn8vrrr/OLX/yCxx9/nMTERKZPnx57/RdffJGHH36Yu+66i4aGBlJTU5k8eXIseAFYLBbuuecerrnmGurr65k6dSp//vOfY+fnz5/PP/7xD8466yycTicvvvgiN9xwA++++y73338/3/nOd2hrayMrK4vp06eTmRn9b8OVV15JZWUl99xzDz6fj/nz5/O9732PpUuXHrP5FEIIcfiONOepej1ah4NwdTWeN9/EcuWVh3w/NRCIL7AdsBebYjCgqmq04LZ6NQSDaB0OkkaPwqA1HLWcNyx1GN8a/S0aXY1AfM6DaKEtEA5g1kSLZ/tzXr9P4JWUYJk3D01S0teOTQys4531JOcdG4qqquoxf5eTSE9PD0lJSXR3d5OYmPj1Nwghjrv9gcoddOML+fi/7f/HzradsYJTsb2YO8rvINmU/I0KSjtadrCjfUcs4MwpmcOLm14k3ZLOmMwxeIIearprgGgL+F+c9QvWNa0Dol2eDDoDn+z7BF/IR7e/G51GR5IxiWkF03AH3TS4GhiZNpJZxbMYlT6K0ZmjD/n5trVs442dbwDRBgwvbXqJne07ATBoDJj10SfvipKLmD9yPv+77X+5puwa/rzpz6xrjI7LrIsuGTXqjIzOGM0zs5+h1d3Krs5d+EI+rAYrgVCAFncLYTVMijnlsJY4iMPj8/morq7G4XBgMpkGejgnjb/85S/88Ic/xOl0DvRQgEP/HCU/nBzk5yTEie/AJ7ECeoVPWr/g2c3P4w1Fn9Q/3JwXbm+HSATve+8Rrq7GcvXVeF599aDvb73lFnqffz76mwP2bztweWls6eibb0YLbcXF7Jk6FJ0l4ajkPK1GS1FyERcOvbDfnAdgM9hIMCQwrWAaL5z93+hD0QIhgQBotYQqK/F//nl0fCUlWObPlyfajhHJef+eUzXnyZNsQoiTSkV7BX/b8jcaexspTi7m45qPaXI14bA76A30YtQaqe+u55nPn+GasmsoTCzEorPQ1NtEWA3T6e3ss2dGfnI+H9d+zPVjrycQCqDX6lFR2d2+m4qOClLN0c41dpOdC4ddSGFyIRubN5JuSSfHmsPbFW9j0pnITMhkZe1K0ixptHvaqXJWUZRURH1PPR2eDrKsWdR312Mz2g751NiB34IGQoFY8DJqjXT5unAFXCiKQm1NLeeVnEd5bjkLdy/kzjPu5Ndrf826xnUoioKiKIzOGM3dZ97N0qqlvLXrLdY3rUeraEkyJTG1YCqn55xOS2/LN17KerSXmkoreiGEEELsF3Y68b7zTtyTWFMcRRRPe5gffvZTgMPOeUpCAp7FizGWl6Occw5oNGiLi/ssB4XoU18YDLGn13QjRuBbvrzv/m3V1fgB46RJ+FesIFxVRca0cby6972jkvOMOiMNPQ2cVXhWvzkPQKNomFYwjT/P/G/ocuFdsSK+EFhcjOXyy/G88QbhykpUtxu+psgmOU+IIydFNiHECedgf8Hv7djLE589QVVXNBQlGZPY1LwJu8lOjbOG4pRitjRvobm3mWAkSHpCOitrVnL16KvJT8ynrqcuFsAOLCjZjDYuGHpB7NtQraKlPLccb9BLYXIh/pCfUemjGJo6lLOLzqa1txW7yc6i3YsoSSnh/cr3UVFxJDsYkzUGp89J2B9mdf1qSpJL6PJ24dK40Gv09AZ7v3ZjXJveRlZCFioq7qAbk9YECrgD7mhHKUVLMBJEo2jo9nezomYFZZllvLTlJW4ceyPfP/37uANuUiwplCSX8OG+D/nnzn/S6GpEq2jxhXy4XW7er3yfHl8PDrsDNah+7RKHo73UVFrRCyGEEIPPwfYMCzudeBcu7FPQUqv3kQ18t+xafrzivw4752nMZiyzZ+N55x3ClZVfPp32r2Wf+2lLSjDMPZ+GQDvZ11yN/9MVaPPy+i3GQbTQZtzfsRTI0CSion7jnKfVaBlnL2XnNavQRwB/AExGAorK/1Uu5OG1T9Ib6I3LeTePv5nfz/oVuVo7+lAEs81OuLqG4Pbt/Tdy4MtC4P4GEAcjOU+Io0OKbEKIE8pX/4L3h/zoNXrmDJnD1pat7O7YHeua6Q/7CYQDdPm6KLYXs7djL829zYTVaAeaQDjA7s7dvLr1VS4afhHplnSa3c0AfQpKX90Dwaa3ceGwC2lzt9Eb7CUcCbOjbQcPfPIAaeY0PCEPW1q3kJuYi0FrIBAO4A15UVCYXTwbm9GGO+hmbOZYks3J/H3b3+nydcU2qD3UU2M6rY61jWvZ3bGbBWMX0OBqIDcxl1RzKiE1hFlnJqyGaXQ1kmBIoM3TFt38Vom+9ic1nxAMB8lIyKCqs4q6njpa3C3otDp8IV9sfpw+Jy3uFkakj6CivQKT1sRHVR8ddM+TrwYvoN9vjL+JWmdtn+AF0opexLvhhhu44YYbBnoYQgghjpKD7RlmPv98Ii5Xn0LRfmr1PsadOfffznmapCQs8+fHFffMl14Kfn/s9+24ufOTHzMt6wwu32OJjmXixPiBHLA/G6EQitWKcdq06P5soRBXOy7ij7tf/dqct7llM3eNvpVCNQn/e8sIfOUJtGunzeGMC8fyWddmvCEv6ZZ0zs6ewoW5swi9t4xwVRURQL36ajQ220HnLVxVhbG8PPrPBh0rJOeJE8ipmvOkyCaEGHAuv4t9zn009zbzz13/pNffS4Y1g1AkREV7Ba6Ai/qeeqYWTGVU+ii0Gi1GrZFsWzZ5iXmYdCaSTcm0e9qx6C30BqLByqQ1kWPLIUKEJGMSFoOFLLJo87Rh1Vv7jMNmtPUJRJnWTFp6W/jd2t/x0b6PqO2upXhoMe9tf48saxZJxiTyEvPwh/0YNAYuGXkJyyqXsb1tO6FIiLKMMnSKjp9M/wkra1ei0+iwGqwHfWrM5XextHIpFr2F4uRi6rrrOKf4HFbWraTd045W0RJWw6Rb0jnHcQ4GrYHRmaMpyyhDRcXpdZJtzcYdcOMJeLDoLbiDbrp8XWQmZKLT6OLaYIfVMKhw6YhLeWLlEzS5m2Ln9u95UmIvYV3DOra0bMGgNZBkTMKoM8auO5yuqfttbdnaJ3jFzkkreiGEEOKUEfF6o09RhcN4lyzp27WzshLv++9jmjULy9VXf9m1s7ERFAVtdjaEQpgsiTx85s94eO1TuAKuw855GrO573JJmy2WQx/+9GFW16/mJ2XfI7x0cfS87oD/XT5gf7YDu5NqHQ4sV19NuLaWjOFDgb5Fvv3257wriueR1x7Cv/3Tgz6BVlJaitc+iv8qv4c5WdPQRCIQUtGeeSZMmkS4rg7CYfi6LdZDITTFDt5vWskzG38bOyw5T4hjQ4psQogBsX+pQMjTi6pXcPa0sLd7b2xTfqfPSZe3C6fPidPnJC0/jY/2fcTftv4NvUZPojGRBeMWMCJ1BO/ufZcRaSNoc7cRioSwm+1kJGTgD/np8HRQ5a9iS+sWartrSTWncuHw6L5q/Tmwg5XdZCfNksYXTV+wvmk9zb3NdPu78QQ9hCIhGl2NbGnZQqollU5vJzMLZ7KschmVXZUoKCQZk+jx9dDibuGNHW8wrWBabN+N/sIfRJ9w6/Z1k2PNYXjqcNrd7Vw47ELcQTfLq5azv1dNpjWTKQVTSE9IZ1zmOFCgpquGpz57Cr1WT0FSAaqq8t0J36Xd004gHCAYDpJkSqLb140/7AdAq2iZkD2BV7a+Ql1PHYnGLzfyrOqq4unPnubKsitpdDXS3Bv9dtioNWIz2LAYLLEg9k26aR2o09d5yPMHtqIXQgghxMnF5XdR111HviYVi6rBu2wZppkzo09VTZgQLaLV10efAAOM48fjW7o0/gm34mKMU6dGmxQEgwB8x1HIzEvf4nuf/Oe/lfPCLhd4PLGn1wJGLa9V/hOj1siGpg3RBlbBA76MrK+PdSY1TprUpwEC/Gt/NkVBl58Pvmi++rqcd1ruMLS6CP6DPYHW3IzpvPMYFw4zVpuLoqpE/H48r78OHk90fhwO9GVlRLq7D/3DMJtonjaax5ffjl6rjx3en/OuLruaTF0S/1V2O7pgBNVoYItrL4tql6GikmRMkpwnxGGQIpsQ4rjrb6nAaY4iUqdM4N7l9+IOuhmVPoqpBVOJRCK8NPv3FBjSUfx+Xpj8OFt69vCjlT/lf7f8L/NL5zMpdxKekAcVFX/YT7olnStKr+DPG/9Mj78HAIPWgE6jo8vXFdvT7as2NW/i2TXPxs6XppdS111HeV45oUiIiBoBooWpYDiIQWtgfdN6FoxbwOf/n73zDmyrPtf/5+hIOpqWvHdsyUmc6YQkkD2B7AENtKwy2gIdt4vblkvv6IaOX7ktlC5uoZRxoSUtDQkhIQOyExIgy5m2bMd7Sbbm0Tq/PxQrVrwSSCj0ns9fscZZUnwev9/3fZ6zu7EZbJxoP4FBa0h22bncLgxaA2/WvMmykcswaA1kGDMGFH/+iJ8MYwZ/Pf5XOoIdABxvO84dFXfw6KJHOdN5Bq1Gi1aj5bF9jzGjeAabqjYRjAYZlTWKx5c+zrvN7yJHZax6K2e7zuK0OymxlRCMBvHKXsx6MzaNDaveyoTcCcSUGAcaD5BnySMajyJHZWJKDAGBg76DLB+5nI5ABy63i0AkQCQeId2QzoTcCVj0FvSinrNdZ9Fr9IzIHNFnnKA/j70MQ8ag35GeKHoVFRUVFRWVjxc91h+T08cxQm8iuHs30uTJiQCB3kU0hwPT6tXEmpr6L15VVyMrStJTDABXLWUI/Hzuw9y54d5L0nmxzk6C69b1SQm9c+kqnq9bl9R5Ya2QfF7euzfRvQaIRUUpHWwXHqs0dSqKQboonRf2eyEm9fsaTCYsd92V6Pq74Fgtd92F75lnIBAg5nIR3LgRafbsZCHwQsSyMjpNAkteuhmbZEMQhBSdd1w+zlTbGKQ3dhCvPv/+mY5Syufex5OnX0Sr0eJyu1Sdp6JykWj+0QdwKTQ0NHDHHXeQmZmJyWRi4sSJHDx4MPm8oih897vfpaCgAKPRyLx58zh27Ng/8IhVVFQuJB4M9imwQcJro2jXcf5r6oMAVLmreKfxHf73+t9S8NZh5N//D6FnnkX+/f8wZl8dm1b+BQGB3x/8PUuGL+HuiXdz3+T7uHfSvTjSHexr2EdnsJN0YzpTCqag1WjJMmUxNmcs0XiUWk9tyv5bfC0pBTaANCmNI61H6Ah0IAgCGiHxK7PZ14wz3UmeJY9htmEcbj7MtKJplNpLGZs9llFZo9AIGlxuF96wF3/Ej4JCKBJidPZoVpWvGtDXQi/qWVO5hrquOkRBJK7ECcfDPP3e0zz5zpNUu6vZWbeTF468QKO3kbgSx6QzEYqEKM8s5/H9j/NWzVs88fYTPL7/cdaeXEtpeimrR62mxFaCTtQRiATQaXSMzxlPniWPFn8LOlGHP+KnxddCe6Cdhu4G6rrq6Ja78Ya9iXFYUU+Tr4nOYCcGrQGbZGObaxtPHnySp959in/f+u/8ct8vqfHUJM+n1lNLXctpCiJGysM2CiJG6lpO48xwMj6n/4j78TnjGZ/b/3MqKir/vKg6T0Xl409vb6+RxiIEvR5tXl6iiHbhmKjLhbxvH1qnc2BPMZcr4X/WC8VVQ7E285J0Xszr7VNg69l+5LXXWV64IKnzXm98CxznimSRCIE1a9AWJc5lKDqU4EXpvIAYSx1F7YVp5UqCr7/e77EGX38d08qV5x+rrkbQ65OFtt6IZWW0zB7Py7WvEY1H+9V5nxvz6T4FNkhc46zthxhtcfKnQ3/il/t+yb9t/rc+Oq/GU8OayjW8fuZ1Np3ZxMYzG1lTuQZHukPVeSr/Z/nYdLK53W5mzpzJ/Pnz2bBhAzk5OVRVVWG325Ov+elPf8qjjz7KH//4R0aOHMkPf/hDrr/+ek6ePInV+v6jh1VUVAbHK3upbKukzlOHqBHJMecwInNE0ky1N4rfP2BKk+KqYdX0JTzIfyEg8Ms5jxB9bWO/IoMNb/DqyhdZ8eot+KN+lJDCPaNuxR6XEia2ej2vD3uLp46/wITcCRxsOohWo6XV30p5VnmftvfK1so+K5/hWBiAs91nyTBk0KpvpUvu4lDzIR6Y8QAvHn2R423HaTY0c6ztGN+a+S3cITeBSABPyIMck7Eb7OSYcxAQKM8qZ2HZQqySdcAEVXfQTVugDQGBSCyCSW9KXBsUTrafZGbxTGJKIoTBoDVg1pmRYzIzh81kZ91OzrjPsKB0QfI9x9uP8/yR5/ncVZ9jgWMBzf5mOoIdBCIBaj21yDEZDRq65W7a/G3E4jG0ohabZCOmxNAIGvSinqvyr2Jm8UyeP/w87cF2SuwlbKneQjAaZHjGcDoCHZj0JnbV7cIgGrh/yv0AWGSF9DePovT6DIsdDiKL5vLvs/+dH+34UdKzQ6fRsbJ8JQuHL6TR10h3uHvA6PjeY70XmveqqKh8/FB1norKR5dL0Xm1ntqkeb4YjoJGHrwDzOWCOXMGP4BotM9D+qhCniUPo9Z4UTqvp/NroGNIV65ndNZouhq6+Pk7T7Bi9atkIKC4aiASQd6xo08R60I0NhsWu+midN6Wlt3caZjZbweaMFiQgcuFcN11KY8pHg/xcBjj0qUo0SiEZaJ6LRubd3Gg6mVyTDkD6ryF+bOIb13f776Uahczpy9jeMZwGrobiMVjfXTeNtc2nj30LNWe8xraaXciCAIPzXqIR3Y+ouo8lf9zfGyKbD/5yU8oLi7m6aefTj5WWlqa/LeiKPziF7/g3//93/nEJz4BwDPPPENubi4vvPAC999//4d9yCoq/yeo8dTwh3f+wJbqLdw9+hauzZ2BMaRB6/HSEpLJzUo1NR0qPtwQ12A32AlEAlRYhyO73ur3dTGXi1HXX0tMiZGmS+PTZTcibdqRUsz5pNPBwkX/w+ff+gYA/rCfbrmbQCTAreNuBc7fxF0eFzePuRmj1kiNpwZfxIfD7iDblM2RliN8ZuJnsEpWhEaBfEs+T7/zNMMzh7PAkShoiYJINB4lx5LDyfaTGLVGbJKNOPFEOEHOeCbmTsQqWfskqPrCPjRomFMyJ+HTkTeBE20nCMVCpElpFFgKaPW3YtAa8Ef8xJU4klaiLKOMjmAHBq2BsowydtXtItuYjUlnYsnwJYgaEX/Yjz+c6KSbVToLSJjR7qzbyYS8CWw8kwhZGJc9jr0Ne4nGo0TiETKMGQTDQQqthbzX/B77G/YjiRK3jruVQ82HcGQ4qO+up6G7gWp3NTElRoGmAEh4fNR6askRbRg2bk/5TAAUlwvdRnAunc8TS5/gTMcZ2oPt6EU9exv28qbrzaThbn/R8ReO9cJ5896JeRMH/X6pqKh8NFF1norKR5Menbfu1DrkmMzXJn6eyQYn+pZOAv4ohrSMRKDAOXoXt2J6LYgSBIOD72SoDrF+Or60RhMLShdgkSwcaDyAVqMlGo/SHmjH2+hlZflKvLIXU5ikB5v5vvsgHkcJBiEcTvGFU0Ih7ppwF4IgEIvHuGH9p7l71C2smLEMc1xLTK8latQgDTSW6XQSNegvWuc9e+IvzJ4/g+Fz5iBD6jbD4cGvhyyn/mw0Esq2YcvKAs7rPIPWwOmO0+hF/YA6zxAT+tnBecxxLXVddfjCPgw6A8FoMKnzIvFInwIbQLWnmmfee4b/XvTf/Hrprwn7u8nEhDYSIyQqnAyeZatrK+FYWNV5Kv+UfGyKbGvXrmXRokXcfPPNvPXWWxQWFvLFL36Re++9FwCXy0VzczMLFy5MvkeSJObOncvu3bsHFF+yLCP3+kXV3d19ZU9EReWfCK/s5cWjL7Klegu/m/dzSnafQtl8fjVM53QgL1+GlJ6ZfEwwGAbdZkCIYTfYKU4rRhhCZAiyTHFaMQuL5/YpsEFiBc6uKNwz9la+vev7CAhJA9c2fxt76vZwqOUQckxOpFRpDXTL3eRZ8vjV/l8xJmcMklYiR5vDqY5TTC2ayqxhsxAQ+EvlXzBqjbjcLmJKjCMtR/CH/Xxz5jdZf2o9b9a+mTyOCbkT+Jdr/oWyzLI+EenNvmYONh6kM9jJ7vrd3FB+A+81vce4nHF0BDuw6q3MK53HqY5TdMvdjMocRTQWxWl3Mj57PP979H9BAJ/sI92Yji/sIxKLsL9hPx7Zg1VvpTitmCOtRyjPKqfUXpoYF/C3YNFZ2Nuwl8Mth3lgxgNElSiHmg9hlax4Qh4qcitYVb6K7735PUrsJZztPotG0DC9aDrvNb3H2w1vU55ZTqO3kUAkgCiIFKYVEo6H8UV8lMTTiA+wEqu4XBgj8who4xxtP4pBNLC/YT/N/mZEQcSqt2LUGWn1txKOhrl/yv1YJWu/Y72QKOw9tu8xHrn2EXWl8yPA3Xffjcfj4ZVXXvlHH0ofPsrH9n8ZVeepqHz06NF5PQW2lxb94ZzW+zsAESBeVoZpxQo0NhuQavh/KljPNXpn30TPCxHFgT3FHA5i9fUpjwmOUg54Ktl5dif+iJ+JeROp766nK9RFNB6lKK2IUDiE5AsR3LINacIEBKsVQiEwGtFkZuJ74QVob0/6wilGAyfqTnD7+NuJK3GePfwsO1rfZn/nYXyyj5gSw+V28c6ntsGGjX280vRLl6C3pV+SzvvW3u/x+fH3cO2ShRhiJIprej2Dl70A6byXm+h04jHAC1Uvs0q36pJ1nmRKG2RH4BMiFKUVsb9hPzpRh0VvSeq8Zm9znwJbD9Weauq66hhvKiWw9U1i1dXEAB0w3uGgYN5yfvjuL2nxt6g672PIR1lLfRSO7WNTZKuuruY3v/kNDzzwAN/+9rfZv38/X/nKV5AkiTvvvJPm5kTqXW5u6n+63Nxcamtr+9skAI888gjf+973ruixq6j8s1LrqeV423HuHn1LQnS5alKeV6pdRNa9hu6mm5KrnILZjFhWRqyqqs/2BEcpezoPYdaZMevNQxbkkAzcO+leCjT2PgW25DG4apg6axUaQUMoGqLYVszUoqnIMZkT7Sd46r2nONxyGFEQCcfCTC2aypev+TL3Tr6Xqs4qri64mq2uraQZ0mj0NQJg1ptRUGjxt6CgYNaZAQhEA/xs18/44YIfsmzkMgKRACadiTJ7GYWWwuQ1672yebDxIC6Pi265m9quWq51XEucOEdajzA6ezSn2k9RYi8h15zL5ILJzCuZx/jc8Ww4s4HnDz+PgkIsHiPTlIk76CbPmoiu98geNIKGcCycOG4F1p5cyz0T70kK4EAkkU4VioXYUr2FWcNmsXTEUsw6M/6IH61Gy1s1b1GaXkqOOYdgNMie+j3cMPoGartr8Ya9SFoJQUjIwS65i4xIBnqNPrGP4OBFUk04wlPHn6HF38K0omnsrd9LJB7BHXITjUfJt+RTllFGjaeG6cXTqcit4EDDAewGO9OLptMld3Gq4xTReGKMpNpdzcm2k2SLaSh+fzI5TDCbU1bZVa48v/zlL5NJuJeDj4JgUrmyqDpPReWjR4/Oc4fcfPvqB/rVerGqKgKvvopp9Wo0RiMl9hIyjBl0Bjt5q2UvZcOLyTZkDVxEczpBo8G4aBHBTZv6povOnk3ghReSjwmOUppmj+ORNx9g1rBZ7KzbSTQeTU4q9Oi8iWkjCG/ZhnHevD7+ZqLDgeWWW/A99VTCFw6IL7mWSDxCZXslZr0ZUSPSGexEIXEvSzek0+hrZNJL89m8+hWyhOsSSaIGiYZoJ43ek8zMzLpknffQju9SYi9BURSKbEXcMe4Ork4bNWjRkXP3V9HpRFh0LbNems+9k+59fzqvbT/XO0r7fK4AOEp45exGJK1EXInjlb0EI8GkzgvFBp5O0Wl0jElzDuDD7CIDhallE3j80JO0+lqZXjydmcNmcrr9NDnmHOwGO5IopWi9anc1x1uPY9KZ+h3FVfnwUHXe4HxsimzxeJwpU6bw8MMPA3DVVVdx7NgxfvOb33DnnXcmX9fzx14PiqL0eaw3Dz30EA888EDy5+7uboqLiy/z0auo/HPii/gIRUNcmzsjpYOtN7HqahS/P7mKqTEaMa1YQeDVV1MKbYLTQf2MUfz09Xuw6C0MSxtGlxDBOIjIiOhFPjXuU9DUQnyQ40zDwIqRK/BFfNR6avnDO39gXsk8Htlx3idCERSyTFkcbDzIIzsf4fZxt/PckecYnTWa+6fcT2laKQa9AYvOQqu/lddOvQZAkbWI70z5BsX6bISQjGKQaIl18bWd/4475KbAUkCOOYdie3HymvXQ5m+jxlODV/YmE62q3FVMzp/MwaaDRGKRpLDJteTy+SmfR4kr7GnYQ3lmOaOyRnGo5RCiIOIL+xiXO45hacOo7aplXM44REFMduj5wj6IJARzjwAORxNFsExjJifaT/BG1Rt0hjq5o+IOXj/zOiW2Eo61HcOsM3O26yxajRZnupNoPMrZrrMUWYtQUJK/Z+NKHJ2ow5nupMRegqh0D/y56HQIRhOfK/0ExrhIXK9DnnAvj7z9aNILzx1y43K7cNgd1HhqePXUq5xoP4EcldEIGsw6MzOKZrC7fjfReBSj1sg4cymBl19OFekXrLJ/nIkHg//wAmI4HEY/xGiP7Z/gWqt8uKg6T0Xlo0ePzgMG13pVVUmtZ5WsrCxfmezmeurMX1hSdC0Vy5f3TfZ0OjEuXUrc7UYBDNddhyAIKLKcGCE1GBC0WoS7b8fn7SCq07C78xDP7PoPApEAm6o2MSFvAstGLONY67EUnff9cV9BmDBh4ACB9esxrVxJ4MUXiblcSHGBxcMXp+g8BQW9qGdy/mTMOjMlthK0Gi2vN+3kz5V/Tl4bZ7qTR659JHnNerhUnffFq79IvpiJGI2jXby43+KgcfFiAKT7PseZYD2f/fuN6ETd+9Z5LreLrZ/4OyUo4Dq/YCE4SqmbUc6P13yDirwKdKIOBSVF57X6W7HqrXjD3pTr2+O9Zo2KA/ow46rh2hnLeDj8KKc6TlHrqSUaj/Li0Rep8dSgETR4gh50oo6Zw2ayr2EfkFjQfvq9p5OFTOjfWuTjzD9a66k674PzsSmy5efnM2bMmJTHRo8ezZo1awDIy8sDoLm5mfz8/ORrWltb+6x69kaSJCRpgPhkFRWVQbHoLBi0BvTRwVcyLvRh09hsidb8czcQRdJzIlDHm017+OLVX6TN30azv5n7tn2N55f8BjZs6iMyNEuu58G9P+Q/5v4HaQYjg/VMRXQa/lz552TMe4mthM5QJwebD6JBg07UYdaZ6ZK7kGMyh1sO87lJn6PEVoIgCGw6s4mvT/86VxdeDSR83JzpTsKxML+b/VPiG95AdrlAp0OaNo2C0lL+POMXdCgBOjUhLNbM5Apb7zEKf8RPKBpKrpICaAQNfzv+N64uuJpPjP4E3rCXUlsphWmFtPpaaQ+2E46F+cnOn3DruFtZPWY1dsmO3Whn8fDFPP3u07g8LrpCXSgoTMybyKcrPs2BhgOUZZbhi/iwSlaWDl/K/ob9rB69Gq1Gy6mOU8hRmUg8gl2yoxE0tPpbicQiWMwW6rrqUFCIK3GyTdmYdWbunHgn8XicorQimrxNnOo4xaxhs7h57M1YJSs+k4wwcgT63LxEMlg09f/2bgABAABJREFUmvA/aWpCLClB3rgZWy/xdaujlKnLnmPZ2k8RiAZQFAVf2IdJZ+JE+wn+evyvxJU40XgUAYFCayF6Uc+YrDEcbj3MPaNvRb/xrb7pZRessn9ciXd19VkR/jAKiPPmzWPcuHHo9Xr+9Kc/MXbsWH7zm9/wjW98g+3bt2M2m1m4cCH//d//TdY5P5gLVyQVReFnP/sZv/3tb2lqamLkyJH853/+JzfddFNyP8eOHeNb3/oWO3bsQFEUJk6cyB//+EeeffZZnnnmGeB8gWXbtm3MmzePhoYGHnjgATZt2oRGo2HWrFn88pe/THp5xWIxvvnNb/LUU08hiiKf/exnL+vKq8rlQ9V5KiofPXp0HnBJWq/UXso9E+9JdhsVGgoIbtyIdtgwDNddh+JLFKJi9fX4fvc7xOJipGuuwf/00xCJJIpJS5bwZvMexhVPpjJUzff2pHakSloJBYUDjQdY6FzYR+cRki8pQECMxJhWNA1I6DxHesJ7dn7pfP587M+caD+BSWfCqDXyqbGf4rbxt3G09SiZxkwWD1+cHGG8VJ0XjARZkD+TUn0OmpAMehHkIL4//xnTypWJY5RlkCQUrxffM89guHk11j+VJ3XevZPufd86r0vu4vY3Ps/do25l+bRFGGICtrQcnqv6G57GLdwx4Q50Gh2l9lK6Ql0Mzxie1HnDM4Yz3zGfnXU7k11zcSXOnGFzcAfdxEKDe/HponEEBGJKjGg8yvff+j61XbUpOk+j0bCrbhdjcsYgCmLCY06rxybZMGgNCAi0BdqSXXwf9462f4TWU3Xe5edjU2SbOXMmJ0+eTHns1KlTlJQk4pUdDgd5eXm88cYbXHXVVUCiCvvWW2/xk5/85EM/XhWV/wuU2EsYnT2amE4c9HX9jX1qjMZkd9vRlqOsca0jz5zH9trtybFMf9jP9WtX8/v5/03Z9dciyGEUSUelt5pP//k6JK1EZWsl03MmoXE6+sSPAwgOB8d81SnCa9awWXhDiVW3+LleK52oIxQ8LxCDkSDpxnQAGn2N+OTzK5MmnYlPV3yaIjGD+IY3EgJOp8O0ejXyvn3JBC0jMOzcjbH3NesZo9AK2hTh5bA7aOhuIBKPsLt+N7dX3E66IZ39DfuJnI1wsuMknqCHKYVTKLYV86dDf2LV6FWcaD/BVXlX8WbNm5RnlXPjqBuRRCnpl/GnQ39ixcjEMVh1CUPe1868RpO3iY5gB4dbDgOwcPhCNldtxmawMbVwKttqtqETdQQjQSSthE6jY2TmSHLNudgMNv5+4u+MyBhBa6CVXHMud064k/E54ymxl1DjqWFL9RY+vXAl4fUbUlLFDMuXI+/Y0Xd101WDE4UHp3yN7+x9GI2gwaQzIWkldtbupMnbRDgWRi/qsRlstAXaiMQjfPmaL2OVrFyfN4vYumf7/Q72XmX/OBIPBvsdufiwCojPPPMMX/jCF9i1axednZ3MnTuXe++9l0cffZRgMMiDDz7IJz/5SbZu3drv+//jP/6Dv/71r/zmN79hxIgRbN++nTvuuIPs7Gzmzp1LQ0MDc+bMYd68eWzdupW0tDR27dpFNBrlG9/4BsePH6e7uztpip+RkUEgEGD+/PnMnj2b7du3o9Vq+eEPf8jixYs5fPgwer2en//85zz11FP84Q9/YMyYMfz85z/nb3/7GwsWLLhi10rl/aHqPBWVjx49Ou9wy2HC2sGdwi7UelbJyrjccQDE2tvxnTqFNjeX0ObNfTvLqquRAfNnPpMIJvB68f3xjwz/xHVUtlYyJmcMznRnik+XVqMly5RFtimbSDzSR+fFJX2iaDUYvfwao1oNunP/zrXk8qWrv8Q21zZeOflKwt9Mb8GsMye6wKpeZ93pdYn9KHHeqn0Lm8FGqb30knTenRPv5IbC67Bs2UOw1/3ddOedEAgQePHFAa/1/ZPvvyw6T6vR0h5o5zt7H+b7wk8ozyzne/O/h9Fi55WjG/CH/eRZ8+iWE0mgN46+Manz1p1ax/D04VR3VtPsb0ar0ZJhzGBS/iReOPoCkSG+MxFtQufpRB2BSID9Dfv76Dy7wc6E3AmMzR5LuiGdN1xv0OZrwx9JhHoVWAq41nktjd5Gaj21ye/cx5F/pNZTdd7l5WNTZPv617/OjBkzePjhh/nkJz/J/v37+f3vf8/vf/97IFH1/NrXvsbDDz/MiBEjGDFiBA8//DAmk4nbbrvtH3z0Kir/nFglK7eMu4X6ljNkDODnIJaVIZjNg26np7VeQUkW2ABiSoy2QBu3b7yPEx0nuHXcrfztxN+Sz6dJaXSGOjFYbLBsCZH1G1IKbRqnA3HpItqat3PTmJvQaXS0BdrYVLWJaUXTsOgs5/fda9VDp9ElfdYAjFojoiZRSOxJjDrdfpqfT36I4DmhKE2bhrxvX1/heMGNsfcYhc1gI8OYkeiMszuZVjyNvx1PnF95Zjlp+jS21Gwh3ZBOV6gLOZoIaKjvqkcn6lg4fCGHmw9zsuMk0wqnUd9dT3ugnUg8gl7Uk25Ip9XfilFnJN2YjiAIZJmzeOnYS3QGO5G0EqX2UiRRwuV20eZv4xszvkEsHsMrezmVdoqqjir0Wj3IUJhWyE1jbuLx/Y9zuOUwP539A6ZlVBAPBYnqRE4Gz6LX6JOmv5PTxyG/tqFP+IHGah1kfKCWJdMW833hJ6RJaeRZ8lg6fCk/3v1jCqwFVLmrCEaDaGQNGjSsHrOaN6rfQEBA9nczmPQI+brwGWIfS8Ncxe8f8Jp9GAXE4cOH89Of/hSA//qv/2LSpEnJsT6Ap556iuLiYk6dOsXIkSNT3uv3+3n00UfZunUr06dPB8DpdLJz505+97vfMXfuXJ544glsNhsvvvgiOl3iz5ze2zEajciynOxmAnjuuefQaDT8z//8T3Ll8+mnn8Zut/Pmm2+ycOFCfvGLX/DQQw+xevVqAH7729+ycePGK3CFVD4oqs5TUfno0aPz/GE/O9vf4QZHKbwPrdfT5SYWFaUsuvUmVl2N0t1N4H//N/mYJhKlM95JriWXr0z9Sh9D/DHZY/jS1V/ibNdZPjn2k4iCmNR5J0fdxliTc/ATPNflKjgddGpkCs89XOOpYU/9Hsw6M8FIkBxzDiadiamFU1l/ej0uT0LXBCNBim3FdAY7UzqpLlbnTU4fh3nLbmIXLBLHXK5BPdkOd5/mxWMvXjadpxN1CU84exGzhs3iQMMB/nrir5j1ZkrsJWxzbcOoM6LVaNl0ZhMOu4O1J9fS5G3iaOtRimxFlGeVI8dksoxZmPVmWnwt7Ox4l+UD+r2V8lbb2+RZ8qjIrQAYUOdtr92OVtTicrs43n4cq96KI92BV/ZS113H2pNrqcit4FjbMRRBodRW+rHsaPtHaj1V511ePjZFtquvvpq//e1vPPTQQ3z/+9/H4XDwi1/8gttvvz35mm9961sEg0G++MUv4na7mTp1Kps2bcJq/fj9J1NR+bhQai8l05gJmT6EDW+kFLmS7c1D3BB6Wut7vC2S7xdEREGkJ2apx+C+h2g8ikFMrJwaMrLhxlUoPh+KLCNIEoLFgsFiI8+bx8HGg7hD7uR7G72NzCudx5s1byba0gUBjaBBq9EytXBq0l/CqDVSnlVOhjEjJTEqGAumjEYMKhwvuDH2jFGc7jjN1QVXc6LjBEdbjvLK8VeIxCOUZ5Zz67hbCUQD6DV6JK1EOB4mGo/SEezA4rMwrWga6YZ0ttduJxQL0R5sJ9eciz/iR9JKdIW6KEorQgpJFKUVoRf1LB2xlDZ/W4qPBSS8LOq66mjwNhCMJlr73258m8l5k1kyfAkGrYG4EqfOU8eZjjO4g27+tvRZnHurUFzni565TifSknQ6u934wj5GGouIV/dzTaLRvo/1Il1j4nOTPkc4FsYX9nG8/TiHmg+RYcxgdNZoKtsq8YV9LHAsYM/ZPWQaM5ldMpuwlkGLbB1xL9/d8qOPZQT8hSPXl/r8B2XKlCnJfx88eJBt27ZhsVj6vK6qqqqP+KqsrCQUCnH99denPB4Oh5MdSe+99x6zZ89OCq+L4eDBg5w5c6bPPT4UClFVVUVXVxdNTU1JwQeg1WqZMmXKR2KUQCUVVeepqHw0KbWX8q2Z3+JE+wlijhx0m966ZK2X7HIb4v5/4fNhrYAhlnjvxLyJPHLtI1S2VuKRPdglO2NyxpBryUVA4EznGeq66pJa8bNbvsrem98YtFileL0ITgfeBVPpIkQhpGi9aDxKlfu8f3BFbgUt/pbkz72N/zuDnclOqovVefmatH6nMOS9exPTEYKQOjbocCAsvo67X15IMBK8/DrPXcdLx17i69O+To2nJjGSKRoYmzMWT8hDOBbmYNNBDrUcojPYSVeoC2/Yy4n2Eyn7K8soIxKP8NsjTzN5/n+TDymFNsHpoHvBNZysfBqL3sJrp1/DqrfSEezoV+d1BDootZfydsPbAHjDXlxuF/nWfGo8NVS2VVJgLeDd5nf5+4m/s7x8OTOKZ3zsPNr+kVpP1XmXl49NkQ1g+fLlLF++fMDnBUHgu9/9Lt/97nc/vINSUVFJrBZJVuI33TygUadX9hL0ejBGFJDDiAYjmnNFsJ7Wep0m9RevpJUQNWJSMGk1539laQQNFbkV5FnPr3gYLDZaCFEZOIXH7cEetDOGMUzMn8gNo25gq2sr3rAXURDZUr2FOyruAOBM55nkNkZljuKzkz6b8H/IGoPNYCPfmk+JvSQlMUqv0adEqA8lHC+8MVolK5MKJpFhyiAWj2HWmRmXOw5JlBAFkTxLHrmmXDJMGcn9aTVa4kqc052ncQfdfGXqV5hWNI22QBvFtmJ21+3GrDej0+iwSYmxhVFZo8gwZDC1cCol9hL21u/tc2ySVqI8q5yT7ScJRUPElBiSKPFu87vkW/I53HIYQRAosBZwdeHV3DHypnMFtpqU7cSqq5Ff24Bt7Fjudq5GDA1wTbSD33pkEV499SqZxkymF01nf8N+yrPKEwI/HqMorYi67jpyTDlUu6tx2B2EY2HeajvAqgFWTAWnA1e4FbvBzsYzG8kwZDDMPmzQ4/goMVTS7pBJvB8Qc68OhXg8zooVK/od0evtldX79QDr16+nsLAw5bkeryzj+1iZjcfjTJ48meeff77Pc9nZ2Ze8PZV/PKrOU1H5aGKVrElf2oG0nlf2cqbzDLWeWkKxEDnmHMZmj00Uwc4lyw91/0953lHKu90nceSNSj7U04neU2irbKsEYETmCBY4FrC9ZjvukJuYEkNA4Ku7/oPHlv+gb+CCw4Fx2TLcITcnpxZxuHFrUhP21npmnRlREJMhT4FIIEWr9iz09tA79OBidJ5F0dPvQGskQmDNGsz33JNIEj3nyRbWaZj7txXIUZlhtmFXROeZdWYafY34I35iSoxIPBHOEIwGcTW7sOgttHhbEkW3eP+OyCatieK0YnwRH1/b9R/cNeYWZsy6AbOiRRZhT+d7/Hj9p2kLtJFvzWd60XQOtRwiw5BBfXd9is473HKYPEseipLwBe65/sFokFAkRJfchaIopBvTybPkEY6FcbldWHQWMo2ZH6uOtn+k1lN13uXlY1VkU1FR+WjT22etN7WeWiyygmHj9uToYJxE4SO+bDHWjBxWlq9kV90uCiwFyZFRq95KniWPzmAnBq2BZl9zYj+ChikFU7j3qnsxiuf3917ze/z+4O+TCUVajZYSewn3Tb6PuybehVlnptpdTTgeRq/R0xns5MfX/Zgadw1u2U2alEY0FuV4+3FyLDlAYvVvVfmqhJF/L/FkM9ioC7eR37NCOoRwHOjGWGov5baK2zjdcZomXxNaUUuBpYBSeym1nlpoPL8/yS9h1VtpD7RT01VDZ7CTBm8Dx9uOk23KJsOYQbWnGqPWiKSViMQiFFgKGJU9ihGZI4BUQ169qGd+3kwqbCPQxYBwmLik55Rcj8PuYMPpDeyu300oFiIYCVJiL2FS/iTmp01C2bKh3/OJuVxI06Zh2boX8dp59Fdmi9XXD7yy7HTi08a4YdQN+MN+ttVso9nXzLzSeaDAiY4TFKUVAZBuTGfp8KWkG9ORRIk/nXyJKbMepgBSxlkERynd86/mC39fTSQWYULeBMw6M6OzRuMNewnFQlj1VsbnjP/IFt56/kDpncjbw8WMZF9OJk2axJo1aygtLUU71B9MwJgxY5Akibq6OubOndvvayoqKnjmmWeIRCL9rnLq9XpisVif43jppZfIyckhLS2t3+3m5+ezd+9e5syZA0A0GuXgwYNMmjRpyONWUVFRUelLf1qvxlPDNtc2nj38LPVd9SgomPVm5pTM4a4JdzG5YDKmFSuIVFUN2lkWq69P/OAopXVOBdpg7UXrvDsq7sAgGlJ0niPdQZMmQP6qVRAMJlJLJYmAGOPxU8/ikT0pOg9SC2UaQUOJvSRZzIOEvUiWKQubZENBobqzmhxLDha9JUVj9TCYztN55f6LbACRCIrXmxyf1Tgd/HVEkNOdp4HEpMVQOg9Ajsp4Qh58YR/Z5myGZwznbNdZ7p9yP29UvdFH5316wqdp9DaiETR4w17CsTChaIhGb0KQdsvd6EQdJ9tPMszWv2aKEWP5iOXsqd+DR/bw26NP81ug2FrMreNvxWCxs6hsEQICZ7vPssW1hTZ/G58c90n21e9DLyaSLbUaLbOHzWZU1iiMWiNGnREFhbquOlASHncCAvnWfPIt+Ty27zEi8Qg6jY7PTPwMaVIabYE2QtEQWaYsxmaP/cjqPPjoaD1V531w1CKbiorKFcUre/F1d5D+5lGUC0SVUu0iuu512pctINOSyYTcCeSYc3jt9GsEIgEyjBnJ195ZcSdd4S4WD1+MzWDDorcgaSUafY2c7DxJtjGbv574Kztrd9Id7k6+r66rDoDvzP0O90+5P5l0ZdFZKLGXYJWsjM0Zm3K8IzNH9nkN9BUuD+79Ps8ueQJxwxuDFo4Eh4N2/OSShVf2nj8GvYUSW0lytfNCepvnSlqJYbZhCAhEYhFyzDl0BDvIMeXgTfNS1VnF3NK5SR87q96KpJVwpjtTxGPPNn1hH58ZfjNZghXFF4BQKFEorKrG2dJC9twpuIvclNpLqfZUE46Gqe+up9XXisEyuJEt0ShKtQv94iUoTmcffwl5715Mt92GrNGkCAmxrAzdsiX89ejveOHIC0mvkSxTFhvPbGRszlimFk6lyFbE4rLFzBo2iyfefoLDLYe5uvBqWv2t3Pjap/nO1Ae5evpSTHGRqE5kZ8c7vLb/R0RiERaWLWRfwz7OpJ3hqfeeotmXMOotsZWQbkjnodkPMb14+oVn9A9HYzRiWrGCwKuv9rlmFzOSfTn50pe+xJNPPsmtt97KN7/5TbKysjhz5gwvvvgiTz75JKKYGoRitVr5xje+wde//nXi8TizZs2iu7ub3bt3Y7FYuOuuu/iXf/kXHn/8cW655RYeeughbDYbe/fu5ZprrqG8vJzS0lI2btzIyZMnyczMxGazcfvtt/Ozn/2MVatW8f3vf5+ioiLq6ur461//yje/+U2Kior46le/yo9//GNGjBjB6NGjefTRR/F4PB/atVJRUVH5Z8cre3nT9SbPHn42aer/wFVfZHHBXKQoaCMG2jsayDBloC0tRVtSQvC111LHIJ1OpCWLCfg8xEbeQWPMw+lADTpRd1l0HgDnkhm9spc6Ty3Tiqf1fQ3ntZ4clXmn6R1Wla8iHo9zouMEHYEORmWP4kT7CUSNyMaqhPdTkbWIVaNWUWIvSe7jQq3Xn86Lx7UDF1V6FR1Fp5O6GeUcOv0iJbYSartqsUm2QXVeZ7ATr+xFp9GhFxPWI1nGLPxhP6+cfIXxOeOZUjClj86rdldT11VHgbUAl8eVnKLoocRWktieKCHHZBRFIabEktMmBZYCPEEPJekl5FpyEx1n0RAGrYE0KY3yzHK2123n7yf/jlajTeo8X9jHS0dfYmbxTK4ru44WbwsLnAv43YHfsdm1mSkFU/DKXtwhN6OyRlHVWUVMiTG7ZDYosLNuZ7LAtmT4EoLRIP+66V9p8jURiARIk9KYXzqfz0/5/EdS58FHR+upOu+DoxbZVFRUrii1nloKNLY+BbYeFJcLMSTzVvtbvNv8LpAwg5V0EoWWQgqsBRi0Bl6vep32QDsAvrCP8bnjWXtiLQ3eBqLxKIuHL2btqbVIooSAkExz8oa97KjdwbHWYyxwLhgydah3GtaF9BYuXaEuOoOd3PLGffx41n8y3FSMcfx4gq+/nlpUcpRSN2Mkj+3+Ef86/V/ZWL0xxSsjw5jByvKV/fpG9DbP7Qx2YjfYMWqNjMkew6T8SXQGO5laOJUtri28WfMmm6o2cU3hNUwpmEKuOTFSkWnKxBv24pW9WCVrcptudxNZgpXQpk19RiikqVPhrQOMnuzkWNsx9tXvo8ZTgxyTKbIVIZauHvQaotMhzZ6NEIlgmD0bZdYsYi4X8t69EIkgDhuGmJ6OafXqPiMnjd2N3O/4JHfnLCaqE9nbeYj/2P1DzHozHYEO5JjMhLwJFOQUsNm1mbNdZwlGg+yq28XK8pW83fg2D+78DoXWQrrkLqYVTcOoNbKvfh8T8iaws24njnQHW1xbON1xmhxzDt1yN7VdtYSiIR7e8TBPLH3iI7nSqbHZ+r1mH2aBDaCgoIBdu3bx4IMPsmjRImRZpqSkhMWLF6PRaPp9zw9+8ANycnJ45JFHqK6uxm63M2nSJL797W8DkJmZydatW/nmN7/J3LlzEUWRiRMnMnPmTADuvfde3nzzTaZMmYLP50tGu2/fvp0HH3yQT3ziE3i9XgoLC7n22muTK57/+q//SlNTE3fffTcajYbPfOYz3HjjjXR1dX04F0tFRUXln5xaTy3tgXbqu+qJxCP8ffnzjOzSIyppoERB1hJvbyaWFSVwbuxLmjYNadYsBK0WwWjEq43y7OmXk35nOo3uH6Lz4LzWO9F2gm65m511O5nvmM+qUasoSCtAROSlYy8l/MHOrTmKGhGbZCMQCdAR7Ejqth4G0nqDFVWMS5YQ8/vQjxnJ7s5DPLTlX3CH3EzKn8St425NLLwKAumGdJq9zRi0BnItuUmd99fKv6LVaFl7Yi2nOk+RJqVRYiuhyl1FeWY5x9uOoxf1hKKhFJ2Xn5bP2w1vs7x8OVmmLBRFSXoml9hKmFc6jyZfE9eVXYdP9iVGNKPhxGRAJMQ8xzyC0SDTi6aTYczoU/Ss8dRg0pnIteSiF/UUpRXxXvN72A12itOK6Qx1ki6lU5ZexraabdR11RGIBFJ0Xl1XHc50J+5gYjHYqDWyqWoTABPyJhCMBtlyfAvV7mqyzYmxwm65m20124jGoxRaCz+SOg8+GlpP1XkfHEH5R7vCfcTo7u7GZrPR1dU1YFuiiorKxbO3fi/lYRuaZ/884GtCt93AW/JJNIKGzmAnMSVGKBoi3ZjOkuFLyLXkpqwKmnVmfvP2b9hRtwNv2EtcifO5qz7HD3f8kHRDOhnGjKSxaw8/ue4nfGrcpz7w+fSkix5uOZz0ciuwFLBq1KqEP4W/O7l6G9Fp2NKym1+891uMWiMPzHiAWk8tc3OnMdJYhBiOEtNrqYu0MbKwYkDfiJQV0XMipUfEdYW6yDXnYtAaiBEjy5jFFtcWXjj8QtIrY1LeJL4x8xuMyR6TFHjRjg5CF6wk9yA6HGiLinCX5fGDo78iGAlyoPEA1e5qVo9ZzeT0cdxTl9dv4VQcMQLD3LmEtmxJLd45nRiXLAEYUCyEOtsIr9uQul1HKS2zx/PZbV/FF/YxtWgqC0oXIMdkfrD9B4zKHMWR1iO4Q250Gh1XF17NmKwx3DnqU+QKVgxRgQ7Fx+bmXVR2V/PHQ3/k1nG38syhZ4gr8eTqKcC4nHHUd9fzxJInWFa+7CK+DRdPKBTC5XLhcDgwXGH/tI8Ct956K6Io8txzz/2jD+WyMtjnqOqHjwfq56SicnnZW7+XTWc28ezhZ/nXq77EZ4tWIe/Y0VcDLF5M3O0m8PLLEIkkHw8snYfRYgfoV+fFlBhfm/h5bhy2GL+3k6heZHvbAf7fO48TiASS+7hcOg8SWu93B3/HnrN7ko8NTx/OrJJZfGvTt5hcMJmitCIUlGRyfUN3Az+Y/wMq2ytp8jbRFepKjK2KemxSwt+3J330QuLBYL9FlRpPDetOrUOv0WPQGpBjMtmmbPY37OdPh/6UHG0dlzOOz0/5PBU5FVTkJZI6j7Qc4ddv/5r3mt9D1IjIUZmOYAeF1kKi8SjXFFxDW6ANu9HeR+f95dhfGJM9hq9M/Qpt/jYafY0EI0G8shetoGVy4WRernyZbHN2sgA3zDaMW8beQpYxi2J7cb/n+V7zezy842FQ4EjrEVweF7mWXCbnTaa+O1GkHZk5ktvG3UZ3uHtAnTc8fTgT8yZytvsswzOG8+Q7T+IP++kIdrCobBEAT737FBpBQ6YpM6nzeq7VQzMfUnXeB0TVeYPrB7WTTUVF5Ypi0VlQ0A/6GkWv52TjSUZljkoWj0SNiFajpbqzms9M+gyl9tJk+EBtdy1ba7YSiASIxWPIMRmtqCUWj+EJJfw1NIIGAYGYEkODBkEQ2FS1iXxr/geK9u5JjDrQcID3Wt7DoDUgINDsayYYDfLjPT/mP/kRJp0p6SkBiaRUOSLz5VF3YfDK4E2MZ8ZO1zPC48GQHiHmaUkKLEwmxHNpOv2tulolK/dMvCel+GbUGvnK619hT31CFPZch5quGn779m/5t1n/ljSBFSKRgWPCz/mqKSEflW2VSKLEpPxJLHAsYPaw2cSUGPExM9Bu7Jt61V+BDRKhCMHXX8e0enX/BTZfF5H1G/oW7lw15AKfG/Npfvneb1k6fCkn20/SEmhBEiV0oo4sUxaFaYXE4jEisQj3jbyN/O1HiZ+tR5o2jeKiIu7JXkyszMLYtDKOdp9Jjj5ohPMrcrF4wgvCLbtReX9Eo1FOnTrFnj17uP/++//Rh6OioqKicoWx6CyYdCbiSpyby1Yhbz5XYNPpkKZNQywqgmiUuM+HkJaG6eabCfzlL3BOhwiBqTx95m+sLF/ZR+dlGjPZuPJlDFEgFCI9vQSlu5ubWvP55Ce3oI3GEUIyikHCJ0bZ5tpGljnrA+k8OOejNu42hqUNS446mvVmmrxNhONh9tTv6aPzMowZtAXaCMfCaAUtBp0Bm2ijS+7iTOcZyrPK2V6znXA8jN1gZ0z2mGSQw0CexqX2Uu6acFdK8fEnO3/CZtdmwrFwUuc1eht56ehLpE9JJ9eSS64ll0ZfI9Xuapp8TcntaQQNVsnK0dajBKIBTnScIE1K66PzFpUtIseUw+6zu9lQtYF8S35yf9cUXcNLx16iM9iJVX/er7iyrZLN1Zv55sxv9nvtW3wtPLbvMVxuF/6wn+lFiZFNl8fFgaYDOO1OuuVuxueMpz3QzvGO4/3qvG65myOtRzDpTLxV+xb3T7kfp92JIAhkm7KTHs4aQYOCkqLzIKH1VJ33/lF13sWhFtlUVFSuKCX2EupaTlPscPQ/Muoo4fmqv/HDXT9kZflK5pXOw5nuZF/DPrJMWTT6Gll7ci1Lhy9lX8M+uuVu9KKeNn8bokbEH/Zj1BkhDsMzhlPjqUEjaOgIdBCOhYkpMZx2J23+Ng42HqSxu5ElI5d8oGhvq2RlSuEUjrQdSY425JpzkzdyjaBJSUI16Uw8OOVr3FKyitD69QR6r+6OHo352msJvtpP8tXy5YgZ533p+juO3sW39SfXJ0dus0xZtPha8Ef8QMKzZPHwxUn/CiXcfyJUkmiUqCFxPnJMJhaPMd8xnyMtR4gpMarcVSyZtYDxCxeinGvJjtXXo/j9/frSAcSqqlC83n6FpOLz9RtjD4CrhuULbscVbMSZ7iSmxMi15HKi7UTSkLct0AbAt69+gLwdR4jXN2BavRp53z7kHTuSm7rF6cA9/36eO/wc0Xg0mVwLiXEPgHQpffBrozIgR48eZcaMGcyfP5/Pf/7z/+jDUVFRUVG5wpTYS8gyZeFId2BBR+hcga2/e3BPR5s0ezby1q2Jx8JROoOdvHT0JZYPu55cwUKxOJzXlrxAsX0Y8sZNRPPyEsW6YBBMJsyz5xBctw65l94wOBxMXbKQB/Z8lzmOOR9I50GiwLWtZhtdchddche55GLSmYC+Og9AQEDSSrxy4hWq3dVoNVo0goYRGSO4b9J9/OrtX9Eld2E32AFwpjv5ytSvMDFv4qDH0VvrbavexpHWI4Rj4X513vXO65Njo5FopM8xZhozqWyrJNecOBdRSOie/nRetbua4ZnD+VHJjzjdeRpFUegIdFDvracz2Ikj3YEv7Du3mK4QjUep9lRzuuN0v/5zla2VVLurkbQSvrCPjVUbqcitYFrRNKLxKNc6r+XdxncTKfK2InSirl+dF1fiSKLEtKJpVORWcLbrLLvO7sIdcqMX9Xzuqs+RacoEQBKlFJ0HCa2n6rz3j6rzLg61yKaionJFsUpWLGmZhBfOQf9GIuwgiaOE6mlOvvfyV1BQON15mip3FV+c/EW2urYSiSXaxt9tepdCayHbXNuocldxe8XtROKRZDiCO+Rmc81mrndez466HbT4WxA1IrFoosB2w+gb2Fi1kbNdZ5laNJV1J9ehKMoHiva+0C9NQEAURCpyKqj2VCcLbiadiT8veorhXbrEeOYFBShpwgSC69f37fxyuQiuW4fxxhuTHW1D0RnqRFEU7AZ7ivDqoSPYweP7H2dk5kiyhmplNxrp1gT5xbwfU6rLATmC3mRhRtZkauQmTFoTJfYStJKVeFoait+f6MCLxwfdbNzjAZ0OMT1V4CjygPlaAAhymBtG35AUmjvrdpImpdHka8KR7sDlduENe7k2dwbK5vUJAb9vX5/rGq92YVfg8fn/j2A0yA2lS7CgQwmHCWlhe/sBKnIrBr82KgMyceJEAoHA0C9UUVFRUfmnwCpZmeeYl+gQDyfGQKVp0/q9B8eqqwlu2IBhyZJkkU1nMNPsbeYbFZ8n963DyQW3gtmzkfedQJo8OaVYJ82ejVxf369uYsMmvjrnc/zgwKMfms6DRIGt1F6KJ+jhaOtRIFGIM+lMTCmYwi/3/zLhD2bKTr6n2l3NY/se45FrH0l2tA2FR/YQjUcH1HmdwU6eePsJxuWMo8BagKRNpNJ7w97EtdNKdMvdWPVWrsq/ivG544nFY0haiVZfK5IoMWvYLCx6CyatiWH2YVglK9cUXpPoMOyqpb67nhJbSaLAprdQ464hqkSJK3HquurYXL0ZvajvM4HhkT1AIjHUZkiEUBxsOkg4llj0HZ87nmxLNp+u+DQ+2YfL7epX50XjUUZkjMCsM2M32NlcvZnyrPLk82e7z2LVW5lcMJkWXwsKSrLT0qq3MiZrDONzx1/CN0GlN6rOuzjUIpuKisoVp8Reglf20nn9VIzhqeijCh4lwBvNu/jWmlWEYiEURUFA4N3md4kTJxwLJzvSgpGEsf2+hn040h3oNDrKM8upclfhDrkJx8LsrttNkbWIRcMX4Zf9BKIBTDoTwWiQzkAne87uIRKPsMCxgBPtCTPbWk/tkAa5g9EzOlrrqcUf8aNBQ741n98f/D3H248D8MDELzJs9ynEadOQ+xnPFKzWgTu/XC4IBOAii2wZhgwEQUAjaPoIL0gU/FxuF5WtlczNnzZoolXIImEPm7BteZu4K5GeFQFMZWVMWbECzbmULjg/5hAPBok1Nw95nMFXX8WwYgVBkzYpfgVJGvQ9kjmNiXlFQOL79Gbtm1zrvJYt1Vto8jVRYitBQSFNSYxuiEVFKavnvVFcLm5aeB9CMIS8eUdi1Z2Ef/GCMicmh+rTpKKioqKicrGU2ku5eezN4EmMDg52D465XAixhD2D6HAQ0SjMyJ5MzluHiLtqkq8TixL3/AuLdUNt23n9tTT6Gj80nScKIuNzx3PPxHt4/sjzpElpdMvdxJV4cjH4QOMB8i35yY75Hqrd1VS2Vl50kc0u2ZMdcv3pPIPWQFVnFZWtlUwpnMKk/EkICJzqOJX0MB6ZMZI8ax7uoJuz3WcRBZFgJEiGMYNTHadwh9zJoIYejdbTTVdiL+Hl4y8nbUpq3DXElBjNvmaisSgzimegETQ8d/g5FpYt5OrCq5PbsEv2lOPUmrSY9WbCsTCKojA6azTzSudhlax4ZS/R2mi/Oi/TlMmNo24kEo/w+4O/T0wlyNHk88FIkIl5ExmZOZIXj77IwaaDyDEZu8HOxNyJXF1wNXEGXxBWUfmgqEU2FRWVD4WOYAcvnvkbr5x4hYrcCv7wzh9IN6QzzD6ME+0nyDRl4gl5APBH/Bi0BgqsBbhDbgQEwrFEcpHL7eJE+wluG38bf6n8C3vq96BBQ1gJ817ze3zd8XXea34PSZGwSlZqPDXsb9hPJJ5YXZVjiY6pUDSU9JH4IFw4sjlKHsXwjOG4PAnPieVZM4lvfhqmTOl/A0N0cCmh0EUfy/jc8VyVdxWt/lZe+NT/UGEdDnIYDHqqgo282rAVSSvhkT2DJlppFl3HKzUbWH5ckyJ4ITHyGXj11X691TRGI0p6eiJ2vr9QhHNx9DGXC8XtxhdS6DB2UGovRbBY0Dgd/Y6MapwORMv5QqNVsrJ85HLWnVrHnJI5KCSSr+xGO9a0bGSAaLTPdnojBILIO3f2XQmvqh7w/C4HatbQxxv181NRUVHpn45gBwYlhsXpHPIerMhyMs3c3d3OzKyrUDauT31RNNp/QW2IbSMnOqM+LJ1n1VsJRAK4PIlOqhJbCbVdtSmFNlEQ0Yv65Hhmb3o6vC6GMTljqMit4O2Gt5lZPJOitCKi8Sg6UYdeo8cdcmPWm/HIHqySlTsq7sAgGsgx5+AJeYjEI6Qb0hmXM47fHfgdvogPX9hHcVoxS0csJd+ajzvkpjPYydqTa/sENVglK7OLZ7OjdgctvhaiSjRZYFs9ZjXH2o7x1HtP0eht5EDTAa5zXsct426h1F7KmJwxONOdVLsTC85ajRaL3gIkRmevKbwmpag3kM4bnz2ejVUbMelMyVFQBSX5WZfYSmjxtTA5fzK3V9zOqlGrCEfDKILC2e6zrD21li65i/un3P+BfPsGQtUJH28u1+enFtlUVFSuOF7Zy9qTa6nz1JFrzsWqt6IRNLhDbhCgPKscSZQ42XESi96CVbJiM9ioclcxJnsM2abspBeDN+zlTOcZSm2lzC+dz9jsscSUGFpBSzgWptnXzK/2/4qitCLKs8o52Hgw0fmWU45Ja6Iip4JRmaMoTS8lTXf5O5askpXxueOTrejR+nr8ANoBft0O0cElXEJC0TD7ML4777uM0xcT27AJ2fVW8rkSp5NvLP4sdxSvICYljkVjs2Fcvpy4253wOdFqidXXE35jK6uvX0rojT/0u59YVRWK39+vt5pot2NcuZLgq6/2CUWQpk4lsGZN4oFQiEyTnR++81tWlK/AordQsmwxrH89pdCmcTrQLVuCwWJL2c+FZsA9qav6uJZoWdnA1/scgsEwuHfcAOf3ftHpdAAEAgGMH2IMu8rlpWdEoufzVFFRUVE5r/NuLVyCNHUqDPE7UpAktEVFBNasIfzJhegi/XQWabX9F9SGuL+LkoGNi57HLci4xcEXMt8PF+q8vfV7ef3M6+Sac0Ehmfo+zDaMWDxGpikzEZIlJDzbLqR3h9dQ5Fpy+caMb7Du1DqeevcpttdtByDPnMei4YtQUFAUBas+UTwqtZdyw6gb2HF2B55gYtT07Ya32VS1ifum3MeR5iMogkKzr5nttduZVjgtua/OYGe/nYDDM4fz4MwH+c2B31DbVUskFmFm8UyOtR1DURLbAghEApxqP8VT7zzFivIVmHVmvjjli/z6wK+ThTY47013YTffQDoPYHf9bnSavt8xo9aIzWCjM9iJN+zlf4/+b7/Xsdpd/YG7HC9E1Xn/HFwunacW2VRUVK44tZ5aOoOdhONhuuVudBodM4pncLLjJIqikCalsbd+L5nGTK7Kv4pady2N3kbSpDSyTFksGr6IX+37FdmmbCStRDAa5GjbUcqzymn0NqIoCjEhRmewk/31+5mQO4H2YDuhSIh8az7FacVUdVZhN9rZdXYXx9uPU55RztemfY0WXwuVrZV4ZE+ftKfLQU+RLFZf32+Hl+L1Dtr5hcl0SfublDaK4N/+1q8PSmjDBrKKiog2NhJfkQd6fZ9iWA+RWCzhqTLQyOUgHXai3Y5x2TLi7e0JgXyueBdYswYiiY5CtFqUkMz2uu3kW/Np8beQb8nn5uUrMcpxFFlGkCQEi6VPga2H/lJXAUwrVhCpqhr4ujqdQ3rHXUoH4cUgiiJ2u53W1tbEMZpMCIJwWfehcuVQFIVAIEBrayt2ux1R7NuNoKKiovJ/lR6dJ8oRAi+/gvnuuxGdzn71hehwEO/uRt6xA8FRypaW3SzKn9PndbH6esTS0v4fH0Q3RY8fR96xA4vTSfayZcS8XggE+k1vvxxYdIluLAEBm8FGqaYUl9uVXBx2B91MzJuIL+zrE0TgTHcyJmfMJe0vz5JHt9zNqKxRlNhK0IpaQpEQr516jSxzFgvLFhKIBKjx1JBpzOS1M6/RGewEoKqzigZvA3WeOqx6a9LrbHjGcAqthYRiIURBJKYkxnkH6gQszyrns1d9lkxjJrVdtYzKHMVT7z1Fs6+ZuBJHI2jIMGZwrO0Y1Z7qpM7LMefw4IwHafQ2JnS3ZGdMzsC6eyCdt7J8JbvqdlFgKaDR1wgkCmzlWeVIWgmb0ZbwABmAcDx8Wboce6PqvI83l1vnqUU2FRWVy4pX9p5fddJbEuao525keo0eBYU99XuYXjSdrlAXZ9xniMQiZJuymZg3kU+N+xRnPWe5e8LdDM8czsn2k5xoO8Hkgslsr92OO+Qm15zLvvp9PDTrIZp9zVS2VdLqbyUUC5FtzOaOijvYXb8bs95MjjmHyvZKtKKWkRkjWVO5Bp2oozvUzfa67TR0N3C8/TjReBStRkuJvYT7Jt83ZNrTxSKYzYhlZch79yaStiBFGMpHjmBcvpzgugHSRc8Jwf6ua79t7oHAoB5vPYWzwKuvYly4sF8BDIminDR16sDnNUSHnWA0Iu/fP6DnW6y+HmF0OXrxnIeaINLka+K5U3/pM55wqWhsNnSjR6MtLU2ESvTuqCsrw7h0KfGOjsGP/xI6CC+WvLw8gKQAU/n4Ybfbk5+jioqKyv9F4sEgit+fLFoJZjOBaKL7I6bXIkYi+J9/HstddxF8/fW+2mbxYnzPPIPocKBduojWyic5FTzL1AtS6OW9ezGXl/cpqA2kpy7smI+dPZss5qXoAKcT47Jlg6a3Xwol9hIyjBm0BdpY4FjAVtfWpD8YJP54//787/OHd/8waAfXxeq8ytZKjrcdJ01K40znGVr8LcTiMSLxCAadgemF0znSeoSarhpmFc9KFtggUQhs9jWzwLmAPWf3cKLjBMfbjqOgUJFTwX/M+Q9yzbnJwlVPAbE/Su2leGUvm6s3A9DoTbxHI2i4Ku8qvLIXg9aQovNa/a1srN74gXVeqb2UTGMmwzOG88rJV+gKdmEz2JC0EhnGDKYVTuPd5ncHfL9eox/03N4vqs77+HO5dJ5aZFNR+ScjHgyieL0J8aPXg16PYDReEX+pC6nx1CRTmHrIMGYwOX8yADaDDaPWSKO3kaffe5prHdcy3zGfUnspOo2OXHMur51+jVnDZtHib+HlypcBmJI/hVFZo6hyVxFX4hh1RnRhHZtdm/nyNV/mj4f+SGVbJQIC3XI3G89s5KaxN+EL+7gq7ypyzuZQ21XLFteWRMIQcYZnDOeFIy+Qa8nlWNux5PHWddUB8J2537ksHW29vc8Ca9YgTZuGNC3Rjq+x2xGsVjRGI8ZVqyAYTHRwGQxgMCCeCxeo8dTwputN2gPtBCIBzHozmcZM5jnm9YmnHyqls2f0IlZV9b67tcSyMgSzecjzNi5bluiU60cEywcPcqpIy/6G/UzOn0xRWhGdwc4BxxMulZ4wBtNNN/X5YwAgPlgH4UWc3/tBEATy8/PJyckh0tPRp/KxQafTqR1sKioqHwmudBf+QMS7ugisXdtn8WrskuvZLOo5FaxnvNOBUu3C98wzmFauRLjuuoT/rMEAej3xtjYsn/40kcpKwps2M3xkMb8+8hQV1/8/jG9wvtAWiRDavTuxENl7wSwSQT54EMO116KEwwiiiBIK9emYl6ZNQ96+vf+E03XrMK5ciWi3f+Br0juFtNHbyOxhs5MFtorcCipyK7BKVorTijnScoTOUCcZxgzG54xnmH0YcGk6rzPUSX13PcFokFJ7Kc50JzElhklnwh/2Jxav4xE6g53JwldvRmSMYPfZ3dR21TK9aDqjskYRU2LElBhbXFuYNWwWjb5GMowZyfHMgc77zgl3crz9eHJ0UyNoGJM9ho5gByfbExYwkXjkiug8q2RlatFUxmSP6Xek9HTn6ZROtx6MWiPOdOeg5/Z+UXXex5vLqfPUIpuKyseQgVrf+xU/DgfSnDmQnp6SCHm56fHj6F1gg4SnQ42nJrliVJ5VTmewEzkm8+qpVylKK+LqgquxGqz8pfIvVLmryDJnYTPYsEt25JhMYVoh60+v5+qCq1k9ejXReJTuUDeBSIDTnacREJiUP4lwNIxWo6XB28Cjux8FAX655Jc8e/hZ9KIeOSYnTVJzLblsrNrIfMf81PMIe9lRu4Njrccum2DV2GyYVq/uU+zpKXzGu7oI9iNaTStW4Ddo2ObaxnOHn6Nb7kbSSsTiMUpsJUkR1rMaGA8GUc4ldg1ILy8TQa8f9KURqxEcJeCqPX8uI0diXLIExe8n2tHR51x6I6anY1yxIuH5Fgolx0blgwcRrpvHp16cS4mthNOdp9lXv48bR99IR7Djsrbw9xTbLkRXVoYmI6PvSvi5634li9KiKKrFGhUVFRWVARmsiPZe83s8tu+xfruiLlcXfn/Eg8E+GhMSi3biBlg0Yy4bG97CsWA1aQjEqqsJvPgicEGXWSSC+c47k3YUM6ffyN72d1nbuJX0cSZmz/skuoiCZLSgD8dRwmG0hYWJ7vpeFhT+Z55JbOvuuwn8b1/vraFSSONuN4IkXZb7fe8U0t7Fnh59duEidJW7iip3FSvLV5JpzLxoneeVvTT5mqj31id9iIPRIJIoUZRWhFlvRhKlZNiXTpvqKyVqxERCe82bjM4aTZO3iSp3FYIgoBf1xOIxZhbPpDyznGG2YRxrOzZoV9243HH8cMEPOdh4kLZAG76wjzOdZwhHw8kC25XWeQONlM4cNhNBEFh3cl3KSOnMYTO5eezNVyT0oAdV56moRTYVlY8Zsc7OAUcLg1u29BU/LhcyoBs3Dt3o0VeseNDjx9Ef1e5qFpYtZF/DPgDGZo9FJ+rINmUzr3Qee+r3sOnMJmJKjFxzLhPzJtLqb+X66deTpk+jtquWkRkjMWgNdMldALhlNzXuGnIsOZzqOEV7oB1/xI8vnLhxS6KESWdCK2jRarRE41FEQUQjahAQUFCIKlE0aNAImmTxLRqP0h5op8nXhFf2Xrab8EDFnsFEa2DDBoTr53OtbRKLp0/EYLIS14j4u9sJiwpveyo50XaCq4uuTrzH5yXmcg3qRRarrz//gF6PWFbW70gnjlL+XPsawkiBuTNXoI8JmNMyMQh64ufa4GP19ch79yIOG5YoTJ0r4saDQWI+L9GgH0WvR0y3IYbNxIMBGD2SqhIDN704F5POxKxhs9hUtYlIPIIcTXThXYkW/gvR2Gyg12NcvhzC4cRquMGQ7CxUUVFRUVH5R3Cg4QA/3/1zTnaeRBREJK3EyMyRfGXqV8i35PcpsEFCZz227zEeufaRK9bRpvj9A1tMVFUxduG17NIf5I/Va/jmknuh0z2wL2uv0KdMjZVbxt1Cu7+dXWd3cbT7NAA6jY5/GXUX5lB4wGIZJEIU+mWoFNJzkx+XK+RooGLPYIvQ606tY3bxbE51nKIir4JoPEpjdyPvNL1Dg7eBzlAnJWklXFN8DQCnO05zuv00hdZCXB5X0vNLjsnUd9dz4+gbkbRSsohVYCkgw5iR3LdRa0Sj0VBiL6E90E4sHsOZ7iRNSkMQBKx6K+3BdjINmRxuOYyAQFugDZvBxsrylcmuOq/spcZTQ6OvkUgswuis0ZSll/Hy8Zep8dSgl/R0h7spsZX8w3Rez0jp+JzxNPoaicai5FvyGZE54ooW2FRUQC2yqahcNvrzqLjcf6zHPJ4+BTZIFNKC69YlVgkrK/u+75wX1+VOTOzNYKtSPQaqPat8rf5W9jfu53THaX61/1fJFTeALFMWgiDgDrnJMmYxLnccelHPoZZDydd4Qh6avE00ehtp6G6g2FaMN+wFINOYiT/sx6K34Eh3kGnMZHT2aN5ueJuokhBcAgKiIJJlzEq0yMdj+MN+NIImeSxxJc7T7z2dIiquBAOKVp0O6aqrkF/bhK3X8zqHg7SpUwn8ZQ1LiwoIFqYni4HRoJ/wIF4lxoUL8f0hkRgqlpUh9Bpl7V1oExylNM4aw6MbP0tHoAOD1sAry57F+sabBKpTt2lavZrAmjUEXn0V0+rVEA73KRpGnQ6C183khFLPxsqNxONxlo5YSoO3ISm8AALRwJDjCZeTgQqfKioqKioqF3LR3qgfgJNtJ/neW9/jSOuR5GM9C4WP7XuM+666r0+BrYdqdzWVrZVXrsg2hMWENhxL6rygEEWzd++A4QSK15v8WTJbmZbl4GjLUQ40HQASyZT3jrgV4fWtKNOm9dlG6o61/S8uDpFCilZL3ONJdLNdwUmPgRahRUHEqDXyh/f+wJrKNYRjiXCwYbZhzC6Zzd+O/4199fvY07CH0TmjsUpWGr2NHGs/xtIRSznTeQZ3yJ2Y4hC12CU7y0Ys40T7CSBh11JqL02OsnYGO7EZbGgEDTnmHGJKjFJbKfXeehq9jehEHe3+dtr8bVh0Fmo9tehEHc50J/Xd9aw9uZZ7Jt5DR7CD3Wd39+kQm10ymxtH3YhVshKPxwlGg/9wnXdhEqyKyoeFWmRTUbkM9Dum6XRiXLoUBOGyeKLFg0GUYHBQU3vhuusG3kA0etkTE3sz1KqUWWdOWeXLMGUkzVZ7GJ01ms9d9TlOdJxIuQn3mMp2BjuRozJ1XXWc7jiNN+wlqkSJxqKMzhpNJB4hEotg0BoIx8JIooRdsnPDqBtwB92c6DiBBg2CIKARNMx3zOdE2wnCsTD+iB+j1ogoiJSll2HVW6lyVyVFxZVa9RroM5GmTUPet6/fgqrc8/yOHZi2aAgumZ8QNXodRCKp3m+9VpHj3d0QiaSORBqNKaOsUZ3IjvYDPPjG/VS7qwlEAvy/2T+iZPdp4q6aQY9FCQb7BA0AKNUujJtBmZJLMBJkWtZEZmZeBXKY8CSBzS27+MV7vyXLmMWykcvUFUYVFRUVlY8Uvcf95KhMZ7ATo87IshHLyLfmX5aCm1f2cqD5QEqBDc532J/qOEW9t36AdyfwyJ4PdAyDMWTgkcGQovNiA4U6nQs+gFQP1B6t1+Rt4prMCeRuP4ziqiFWVDR4CrsoIs2Z02dxMe71DppwGquvRywqSi4SXqku9oEWobNN2Wyp3kIgGsCgNSQ6y5QYLk/iHK4pvIZdZ3dR7a7mdMdpJhVMQqfVodVocdgddAQ7MGqNROIRNIIGSSth0prQCBpsBhuryldhlaxYJWvKKCsKtPvbMWgNVLZV0uRrQqfRkWHMINuczbvN77KxaiMZxgy65W4sOksyDKHGU8PhlsOsP7U+xessGA2yo3YH7qCbQCRAXVcdklbiTOcZIBE0EI6HVZ2n8n8GtcimovIBGXDcr7qa4Pr16MaORZOZ+b480ZLea7KcaIcXBNDpzrfbX8hgpvda7RVJTOyhdyHsQvpbtZqYN5GfXv9T3m16l9quWoxaI3qtnhMdJ7BK1qQ4gFRT2RNtJ5CjMt6wl+K0YvLN+UzOn8yT7zzJ/ob96DQ69KKe8sxyloxfwkvHXmJE1ghWlK/gE5pPJL0rjFojE3MnUt9dT3uwnWg8SiASYFLBJD415lO0B9oBLptBK/TvpTfQZzKUl0hPeIJS7cIcXQCAX6tgdDqIV7v6vFd0OomOGo7xC/ejtdpSxGTvji4tIPiNCAjElTh6Uc/K4utQdrw25LEQDg84SqJUuxgzdyqjJnwJe6MHMWKAuBbiWu40zGDxqusRLBaK7cX9XzwVFRUVFZV/AL3H/TwhD4dbDlPXVUc0HuVg40Hmlc5jdPZoZhTPuOTO9946zyRJ3Jy9gJkrX2FT03Z+8d5vCUQSqZ3ReBQ5Kid/Hgi7ZH+fZzk0PWnp/aaG9xMYJGZkYLzxxqTuQa9H6e5OFNgCgT4eqD1a76l3nuIa+1gU198BkA8exHLPPQRfe63fgl1w2zYM06ejGzs2ZXEx7vdjXLo0sfg3QAATnAuCukyTHv3pPJvUv/ZXUGj0NVJgKUBASE59ALg8LqYXT0cURERNIn0dEuOfK0eu5I+H/sjR1qPnt6Uo6DQ6uuVu/nPOf1JqL00pZF04yqooCo/tfwx3yI1e1JOmTyPdmM6E3AkcbDxIpimTWcNmUeuppaarBkeGg0ZfI42+Rrrl7j5hApAotHXL3YzMGsmR1iMoIYVccy4ai4aYEmNk5kiWj1yeDHtQUflnRi2yqah8QPod99PpkKZNQywqQtDrURSFmMcDev1Fr5T1673mdCbH8/ottA1UsHE4iPt8iMVXroDRuxB2Ybpo74JZb3ItuSwesThlBGNc9rgUs9geekxld9fv5kzHGcbnjqdb7qY92M7BpoMYRAO3jbsNALPezJnOM/zxvT9ynfM6NIKGVl9rYlxUgThxlLiCpdDCvNJ5CAh4w160Gi355nzSjenJlFEYfBT2YhnMS08cO5bYsWOpbxjKS6TX85pw4rtgtNoJL5yDdqMCvbvOHKXUTB/B1zd/lm/P+jbzc+YzGIFwgOEZw5mUP4lQNIRduOA72+v7TTSKYLEgzZ6NMkSSkiWuRSdrkI9VIl9wHfIz5yBKWYOfs4qKioqKyodMz7ifHJWpbK1MFth0Gh25llxyzDmcaDuRHP+72HHNgXRB4dSp3FKbyfRFf+BTGz+bLKzFlBh51jyc6c5+R0ad6U7G5Iy5PCfdD5oBLCYGCwwSrVaw9gpn0ukw33rrgLYqpfZSVpSvIE0+r2elyZMJvvEG2qKiPh36wc2b0RYWIvQ3GhqPE3e7MS5blujkDwZTApikyZMTepqhR2EvhoE+z5HLl1NoLaTB25Dy+lA0lPy+pBvTqe2qTZnuiMYTUxqBSACtqE1en+PtxznVcSplW5JWItOYSaO3kXZ/+5DjkQatgWlF07DoLYSiIXLMObzb9C6VbZW0+Fto9jVzdeHVBCIBrJIVDRoKLAVEo1FC0YGvVTgWJseUAwopHZkVORXML51PujF96AupovJPgFpkU1H5gPS5Met0CU+sfftSuolEpxPjsmUXtVIW83r7916rrkZWlOR4Xm9EhwPBaOyzytiTLiqmp19xQ/eh0pUGYiCz2P5eV2gppLqzmr31ewGYXTwbl8fFsbZEkUoSJRx2B6FYiGg8SnlmOa9Xvc7R1qPJlUB/xA/AsfZjfG/e99hUtQlJKxGMBBlmH8apjlMpK4of1KB1wM/znJeeceVKgqFQ6urwUJ9VL0GpNZ5fPd7cto/YqDgzZ61CG4kREhW2tezl+Z0PoaBc1CiJpJOo7aqlydtEl9zFDyY8QFIWDfT9djjQTZgwaKelzmhG3rhpwBFY4/LlqkeaioqKispHip6Ftq5QF+6QO1lgW1i2kJ11O2nobqDJ18TY7LEcaz3GZyZ9ZsiOtsF0gQzoi4oo3XOab0z6Mt/f9xMAyjPKmZA7gRxzzoDpolfKj62HodLSB33vRfqgJkYgNfTkn/d09sdOner39YZ58wi+/vqAY6GG669PhEKdWxjUjR4NkLJg/UEnPYbSeXesvJEnT75AZ7ATvahnbu40xphL+XT29SiSngOFc/nX7d/G5XahoCAgkGfOo9hWTGNXotuth0gsQnlmORpBgxyVcYfcyRFRrUZ7UTpPjsvElTibqjbRJXcxPH047YF2fBEfgUiA0dmjkSMyLxx5AUEQ2Ht2L9OKpzEuZxwmnQlIeAWWpZdh1BkJx8LoNXrMejORWIRVo1Yxt2RuchQ2EAnw9xN/Z2TmSNUfTeX/BGqRTUXlA3LhjXlAL61z46Omm24aWowEAoN6r0mzZ8MFBQ7j8uUEjCLm1atRvN6E+NHrQa+/LJ5wF8vFFszeLyX2Eg61HKLAUpBINYpHkLSJZClREMm15NLka6Jb7kbUiPiiPlr9rWgEDSatCatkxRv2JrrXZC/HWo+x/vR6itOK6Za7mV40PaXAdlkMWof4PJHl86I1GESJRiEcHtSDpCclVCxzIlqs1HhqWHdqHZJG4o9H/sgv4hGMWiOZxkw6gh3JBKqLGSUpsBTgtDvRCBoMQQN73YdY6ihFcdUM6hUX3LABw+LFhF59tc82BYcDQdT2uxIt95gjh8NDHltv6jx1HGk5QkewgzRDGsNswzCIBoptxRft9xHp9iAEQihy4o8FxWhAl2a/pONQUVFRUfnnpWehLRwPJ/XBhLwJ7KzbSW1XLeNyEponGo/S6Gu8OC/XoXTeucXU267/HIc9JzFoDVznvA6TzsTEvIk8cu0jVLZW4pE92CU7Y3LGXPECWw9XOjSoxF7CqYbDjHA6UKpdQ3f2w8Cppy4XRCIpi4Lme+5JXSTsZ9T1khni8zTKiVCIs11nKdakI2zYTKx6B5pzr5npdLBu+Yt8afuDeGQPw2zDyLfkc6bzDKvHrqbUXpqi8+JKHDkmY9QaGZs99pJ1nkVnwag1ck3hNRxuPYxFb0FBoaGlgaK0IrQaLUfaEp1ooiASiAYIRUPsPrubkZkjKbYWk2fN4/Uzr1PXVYcoiEwvns7k/MnJrjq7wc7h5sOc7DpJVWcVxbZimnxNl1Rkuxw6r2cbnaFOMowZjM8Zr46sqlxx1CKbisoH5EKPikG9tKqrh/R9iJ0rkA26T40G8733JjzYDAaiei2Pn/wTGo0mkYaZU/q+z+fDwit7CXo9mKMCmnAErdGMaLEOWQy0SlZmDpuJIAisO7kOQRDQarTkmnPRarR4ZS+ekAeNoEFAIBKNYDPYaPG3oKDQLXcTjAYxao1km7Op665DI2hIN6YzMW9iShv8YKOul8JQn6cSCiHm5hIHghs2JMRiT8cYfVNCpalTCaxZg8bpwLdgGsc7j7Lu1DoyjBlUdyfCCnqMc7NMWUzMm0hHoANHuuOiRklK7aUsGbGENZVr8IV9PHnsWSbO/jEFDPH9rqrCuPB6THfemTKWEW5uRl4wDXM8TrS+vk8HXM8ItHKRRTav7OVg40F+vOvHvNf8HtF4lGg8yqS8STww/QG2121n8fDFQ3YSRDs7kNf19WoRli9Dm5F5UceioqKiovLPTY/nbKuvFVEQgYRp/ebqzaRJacjRhB+uVqNFr9EP6eXa4mshY6jxRDGxH7Hbz7z86Wxp2MnOszupbK9Mpp5/WEW190tPYBfhMEo4jGA0IlgsF6XzsjKKCF6Xi3EzQ6eEDqEdFN95yw/R6STaO6RskFHXS+FidJ5VymWU1UHg5Zf7DYjK0mp5fO6PMcVFTHEtYa3A0YxqTKIZnceL3R/i9sKlHPFVoShKcmT0/ei8EnsJm6o2MWvYLPxhPx7Zg07UEVfijM0eS5Y5izWVazDqjNgkG2adGY2gwRfxYTPYuGX8LTxz6Bn0op4x2WO4uvBqdtft5vkjzxOMBEkzpJFnzmNOyRzOdp/l7ol3827Tu0Rig9uK9HC5dN6es3t4eMfDKaOr43PG8+3Z32Z68fSLOhYVlfeDWmRTUXkfhHxdKD5fIpDAaMSwbCmh9a8lCm1DrLgNdiOOud2JDjRJGnQbgiQR7+xEybDzdvdx3mrZSziWEBnvJw0zHgy+r9b/90tVRxVpEQ3GN3YQrU4UOMIkurJMK1YOGRBRai8l05jJ+JzxdAQ7CEVDlGeWc7z9OIeaD6EXE0MG43PHk2nK5EDDAZzpTsZmj8UT8mAz2OgMdFLTVcOs4lmU2EqYNWwWnxj1CSKxCN6I96JHXS+Gi0nkggv8/fpLCc3IwKeEcHe3E/7kQvZ2HuZo5VP4wj6K0op4ufJlOgIdLBu5jM3Vm3F5XLQH2qnurGZa8TTum3zfRYnyjmAHelHP1QVXc1XeVUTiEfZ1V2KvMLJIP/htI+7pIvC//5v8WXQ6iVw3C62iIbhx46BpqYpBz1DUeGo43XGaR3Y8wsGmg4Rj4UTHndbAO83v8OieR3lgxgND/j+IdHv6FNh6jie0bj3SDSvVjjYVFRWV/6P0LhAZw2G+4PgUh7POUN9djzvkJhKPkCalUWIrocHbgFVvRdJK2AwJ/TKQl+vh5sPsrd/LZ4pWDrp/oZcGm5Exkfc8x4FEGNP70Xm9vW8testlSUMdjIjHDZ4u5O3bUxeyeopaQ+i8EnsJXqOX4JL5SEiDpoQOOep5rkgnlpUlbCmiUbTDh19Wvfu+dF5vdDqMkyaT99b+5PMScI3TiTRrFIE//BEhEkEAJjpK+fPiP/DJ1z9LZXvl+9Z5+dZ83qp5i3G547DoLWQaM5mcP5kiaxH/vfe/0Yk6JFHCoregETToNXo8IQ81nhrqu+o50HAArahlQu4E9tbvpUvuosnXRDAaJMeSw9uNbyNqEsXi3x74LVMLpyKJg/99A5dP59V56voU2CDhFffwjod5YukTakebyhVDLbKpqFwioc42Ius3EK8+LxqiI0dgWLYETSSWGPUbhIFuxLHOTuJdXcg7dqAdIq5ciUYJHnib3ZPs7G1/N+X5C1dQW3wt50cKDHbGZKeOFMQ8HuJud7LzKHrqFNHWVkxLllxyGurFcLL9JNVNx5n5bhfx3ub8QKyq+qKj1K2SNdlyXmovZe3JtQQjQaLxKHElzrC0YVxTdA1vut4k35rPyY6TFKYVYtKZ8Mpe7AY7i7MWc03RNawes5qK3IorJzj1+kE/z7goEmquRydoUz3NLhhx8N+ygqvWLkEhkSIVjAYptZUyvXg6afo0mn3NCAisP7We2SWzWeBYgByTybPksWzEMibmTRzyUL2yl3Wn1mHRWRAEgc5QJ1a9lc5gJ+vr93DV5HIu5VsRq65G+0YM08JFBAYZ55Bmz+aov4bhsnnAz6En4S3blM07ze8QV+IoKMSUGKFoKCnAvLJ3yE4CIRAadLRDCIQg7RJOVEVFRUXln4J4Vxcxt7tPgai8rIznF/+WZ6tfQUHhUPMhGrwNmHXmxAidrThpX9Gfl6vc1closinPug5BEDAsX05o48Y+PqaiwwHxeNIaQluSl/L8peq8Mx1n2HF2B56gB4PWgIDAm8qbLB+5/JLTUC8Gj6cZQ1UD0WPH+i5kVVVdks7r0QO6lSv7Bi44nRgWLCBy6tTAGsvpRLBYsHzhCwjWoacl3i/K+9V555BmzULev79PAa4/L2bFVUPaVvju9IfYWP/mB9J5w2zDaPG3oNfoCcfCtAXaSJPSMEtmtII2mTSfbkjHpDdR7a4my5hFg7eBRl8j2aZsdKKOA40HKLAWEFfiieOOxwhEA9R11TG9eDq7z+7mOud1bKvZxtSiqR+KzjvScqRPgS35XOsRjrQcUYtsKlcMtcimonIBg3V1hXxdfQpsAPFTpwlFo+huXIVO6Rs+0INYVkZ9pIN3ju9IEUIt7bXYa9uJnBMksfr6QUcFlWiEptnj2HjiOWzGviWPnhXUg40HefKdJ3G5XWg1iZtlriWXL0/9MhPzJhLzeAiuXdv/OOKGDZhWrbqsgsQre3nxyIvc77wZxfWXfl/zfqLUewIXhqUNY93pdeg0OtoCbTz97tMASXNiSZQYmTmSrlAXNqONG8tvZHT26Cu6mhvzeglu2JCIi6fv52lctgzfU08lIt+HSI/1a6Kk6dMoTCvEke4gGo+iETSUpZfRHe6m1d+KpJVIN6TzTtM7mPUJj5F4POHdcTHUemrRClp21u1kX8M+vGEvOo2OJcOXUGQt4s3W/dxwzp/tQnp7xaXgqkWQBx/nEESRDbVbWWmyDCiYehLe9JpEx1vvFK6YEkv+3CV3AYOnwiryEKMdQzyvoqKiovLxZLCurngwSOTMmaQe602sqgrxdfjMDbdz3FvNmc4ztAXasOqt2A12JK2EL+xDg4YGbwNtgbakzot1dhLpLzH+ttsIvPBC8p6f1HmRSNIaIjbipj7ncLE672T7SX6y6ycpIQkFlgKudV7LulPruGvCXZdVA3llL3GfH9FqTUkRv/A6XqrOSwYudHUR7+xM2lH4n3kGoH/NfC5w7Er7Eod8XURe34BhIJ23dCm+p58eWOeZTOjKy5G3bet3+z0efb1RXDWMmjWBh5sOApdX5zX7msk0ZNIaaEUv6hlmG8aYnDEEwgEyDBk0+hqTxWSjzsgtw2/kO+O/gjGmQdbC389uYk3V+sRxohCPx7HoLZj1ZtxB96CFscup8zpDnYNeB7fsvqjrpaLyflCLbCoqvYh3dRFYuzZlJUnjdBBeOJejwRqmGMr6FNiS7612EfN52R+sZtzCOeg3KinbEcuctM+ZwBe2fI1gNAgk0qD+5ep/IT8iobFaz9+Y+xkV1GRkEKmsRH7nHXzzp/Jvb/6QUVmjUo4hGoti1Vtp9bey8cxGnjv8HCfaT9AR7CCuxLHqrWg0Gh7f9zi/nP8TeHXDgON72qKiSxZBQ1HnqcNqsBK/CO+KC4l5vQmBcq74icmUiIY/h1WyMil/En949w99Vq42VW1iZflKPjH6E4ga8bKOgg5JIEDs9GkCNTWpo5/nBKISiUAgkDjHQdJjcZTyav0WVpSv4JWTr7C3YS+RWCSRGDrSw63jbkVRFELREO6QO1lgM2qN2Ay2i05I9UV8KCg0+Zrwhr0AROIRNpzZwOSCyTjsDsILr0d6Q0j5vyA6nUjXXJMQjv2hH3wUNKzTkG5IT/7fGOjYgOQ4joCQ8ryiJMSXTbLR7GtOOecLvWE00hCjHUM8r6KioqLy8aPGU8Pak2vxhX3My51OPlnEGhroMhjp0sjkaWypeuwCYlVVGH1Bxocz+NlV/0Zb3Mdz1X/FH/HT7GumobuBitwKfrb7Z0TjUZzpTh6b/Qis68cuoboaGTB/9rMoHR3nw4DeeQdp0iQCa9YgFBdxKphYvNKLeubnzaTCNgIpLhCpq2W4mME1mRPYXrudQCSQovO+M/c7PH/4+ZQCG0Cjr5Et1VuYUzJn0ILH+6HOU0dRWAvR2KCv60/npVixnFvkNljOLyRrjEZi4TDygQN9rmVgzRoMixZhXLw44f/2IVifJM/F5yN+6jQBV/86L+52D6rzTCtXEu/qGnwn/UzJaCOJrrHLrfOmFU5jZflKtrq2Eo6FyTBmIGklgpEgo7NH8+u3f83Y7LFMzJ3Ik/P/m5Ldp1FcG5Pbv9dRwuL5jzL75aVoNVryrfmMyR5DgaWAImvRFdN5XtlLjacmEYoWi2DRW4grcTSChv5Il9Iv6nqpqLwf1CKbiso54sFgnwIbJIpn2o0KrhFBxudkIw6yDdnfzX/t+C+MWiN3jb6FuXNuwi6YEA1GtrTs5dE3H8AdchOKhojFY7iDbl47/Rr3FqyAaOqNpE8a0t13E26ox7tgKjvb32ZywWSi8fM3Xa/sxaq38mbtm7zd9DbD0obxcuXLZJmyKLWX0uBtwBv24nK7iMfj4A8MmsYkTZs2pJHrpRKIBthes51V2XMYLMfpwpHaWGdnn2j0nkRVMSMj+dgw+zC+PfvbKR4MWaYsnl/0JE4pH+QQ6AzIek2vtbErS/IaXvB59qAtK8N0880pSZvSrFkp6bGCw0HtjBFs3fcXWvwtuDwuJFEiThwBgRZ/CwcaD/C9+d/j7ca3MYgGovEo7pCbsowy8q35F52QatFZCEVDKd8tSAiwvfV7qeqsQhAEbly0lDzNUpRQiKheRBEEAk8+1W8HXuJCKAN7qjidRASFbDGNiN9PqLUJbTjWRyT3iCmrZGVS3iQONh1EQEiubAqCwFW5V2GVrCmpsMnRn9270eblIRYVgU43qMeLYlKLbCoqKir/TPSMovnCPu523oR1617i1duTz9sdpShz5yAMYfsR7+wk8JdEN77V4eDryz/Dnu5KdtXvItuUzVfHfBb72C+fXxSMgH+gol11NcRiye2lhBsVF9G9YCpvVa9BL+q5p+wmsmQd8uubU7b3SaeTaYuf5qbX70nReUdajtDoa+x3v42+RhSUQTuB3g+BaACfxohJO/jC2oU6rz8rFo3TAcuWYMjITj4m2mwYly/vqwmLitCes1NRYlGIRYlH5A+nyCaf6yAbQOeZbr455eeYy5Wi8wSrNSWcoV+0WqTZsxP65VwBT7EmJhdK7CWXXefdUXEHd064E6PWiC/iS/7NcqDxAB2BDvbV7+PxBT+jZPepvpMNrlqKgR/N+E/W1m6iydtETIlR7anmTMcZWvwtybFSs96c0kn6fnVejaeG3Wd3s+7kOloDrYzMHMlC50LGZo/ldOdpNGgIx89PVIzPGX9JKacqKpeKWmRTUTnHgGakAK4aZs9YRlgrMNjtOqpLrJYEo0F+e/RpfsvTONOd3DLuFr6378f4wj4avY0EIokVLQGBM+4zREs0oAzx39FgwLtoFl2EWDpiKR3BDtaeXEtnsBM5KhNX4uxr2IdO1BGKhvCGvSgotAfaEQSBXHMubYG25ONKaIi28mh0aDPZS8Qn+2gPtrOtZS83O0qhv5HDC6LUY15vHzEFCZESXLcO4403pnS0TS+ezhNLn+BIyxGCsSCrcuchr3+NgGvt+X04HOiXLaHa10YgGqA92I4n6EEQBIrTihmROaLfLreLMQ6+sONuyGuo06WIa9Pq1fiJEL7nU4QC3aCX2Nt5iF++9Q3GZY/j3eZ3E4Lj3GpeviWfQmshfz/5d24acxPvNL6DL+JjfM54bhh1A5F4hBUjV1x0116JvQS70Y5W0/f7qNVoMevNZJmzOOWr5azeiF6jp8HdQAZmxhcVDjhGGj19+vzIbO8OT6cT46JFxDs6WJU+A8FoxP/Ms8jnVn17myT3JLwdaTnCA9Mf4NE9j3Kg6QCRWASNoGFS3iS+Pu3rnO0+m0yFTY7+nDyJNHky8r59CRHck96qKH2Kt4bly9CqoQcqKioq/1T0jKJdXzDnXIEtVVcorho0s2YPnWbZ6/mesJyKJdfy6+Zf8+z8XxFavz6lCGa69dZBN6dEwnR/ainZ9kJ0egNKMIjlvvvwaqOsPf03wrEw1xfMIb3Ji9zfGGt1NcUofG3i53n47UeTOs8tu9FpdJh1ZqLxaHKc1B/xo5DofL/Y7qeLxSf72NFZyQ3C2IE9yi7QeQNasVS7iKzfADeuSuloEzMyMK5aBcFgoutNkkCSCL7xBrHjx8+/7lxa+OlYKy3+lsum8y70wLvGOGLwi9LP98mvhJM6zxQOE6uvH9TTTTCb+6azOx08vuARXm3cxtIRSy+rzsu15OKTfcSUWELn+Rs42HiQ1kArOeYcGrwNOPR5KK4D/e/EVcuK2Tdy3OfiTOcZbhp9E0fbjlKWUUY0HuWxvY8xu2Q2zf5mMowZycTc96PzvLKXXXW7WH9qPa2BVqYWTmV77Xa212znK1O/wtOHnuZMxxkyjBnIMTmRLjrn26ofm8oVRS2yqaicY6iuLV00zj7fEeYP4EclOEo55D3d5/FqdzUt3pY+BTZIeA0ICOzqeJeVDC5IglqFjKhETliHxitjNudyz8R7qPXUUttVS0egg9Mdp/HKXvSiPpmwqaDgDroZZjt/M4nGo2AYIuHHaEwRQZcDUSNi1Vt5/vQaps16hGJIKbRpnM6+UeqBwKAG9QQCYE0VFunGxMreMG0m8vrX+i3QsX4Dxutn8NKZV3nt9Gs0+Zpwpjsx68wUpBWwetRqxuaMTZoH94yYdAbPezz0FgbQf8ed6a67Bg+x8HpTjksGuH4uvz/1LC8ee5Gy9DJ2n93NipErSDOkodPoyDZlJ6/lqKxRVLZVUt9dT0N3A3qtnlFpo0g3ptPQ3cCXrvnSRSVN9WCVrMwuns3bDW9T11WXHCXQarTkWfJYUraE7bXbsUk2JK1Ei6+FGk8Nc0vmMmXpZ4i89nrfjsPFi/E98wxEIkjTpmGYOzdRhLRYiDU14fuf/0nxozHfdlvCZyUSSTFJthqtrCxfydqTaznSeoQHZjyAV/bSLXeTY86hxF6CQWNgTumcpNhU/H40VivavDzkffv6H8mePRtB1IBeQjEZ1AKbioqKyj8hPV1bI41FxKv7dhwBxGpqEGy2QY30L/QejblcmGIaHp/1CKH1fVOrh0KRJDSKESEcISxAp06mS+mi2FjMHRV3UOupxaHYEQkM6HMWr3Zx7fRlPMyjQELnWfVWqjqrqPZUJ7uWrHorjnRHIgDKaL/o7qeLRdSIvHTmFSZNq8Axe3Zfj7KyvjpP8fkGtWJRfD7oVWQDEPT6hN1GNIqi0RCrriZ25kzKa3oKoGnXTeO+rf9Jg7eBPHMeBWkFFKUVsXj4YnJNuQzPHI5Vsl6Uznuv+T0e2/dYygjuwzO+wzinA6Wfc0jxqtXpkKZNQywqIi5qiQhRNnce5HbHSuS9ewf2lbv+eoJbt/b5XsWrXdgFgXtuuC2lCDkU71fnXVN4DVPyp2CTbLxy4hU04QEmF85hw4Az3UlXqIvvvPkd4kocrUZLib2EJcOXJD3kLkzMvVSdV+uppVvuptHXyJjsMWyv3c7Z7rMAPLbvMe6ccCd2g51wPEyprZSK3Aq1wKZyxVGLbCoq5xiq4yii1fBfe37Eayv/jHWrkHIzFZwOvAuu4ZdvfaPf9xp1RqLxaEqBrYfG7ka2NO5i0vgKSvoVJGXoliwivPENwqdPE+71uHnFCsbljsMX8XGq41RSQGo1Wtr8bTjSHZzpOING0BCNnW8LL7GX0BzvJncQUaBJT7/sbfYZxgzKs8o52X6Sr+/+T+4s/xSzZ65EH1XQGIxozBasFySaDlX8vPD53iLp26PuIzhIgS5TuI61J9fSFmhjdNZoDrUcwhNKpG/tr9/PfMd8FjkXMSJzRB/hBanCwBSm3467wCuvYPn0pwleILyToQfPPtvnuMT4HFr9rQyzDcMT8qDVaNl9djcPTH+AYbZhiBoRSSslvSp8YR8ZxgwK0go43XmaWDxGia0EjUZDm7/toopsF67efvnqL5NpzGRbzTbkqIyklZhfOp+67jr0oj5peusL+6hyV/GZ0bcT3rQZXVFRHz+S4ObNiS6yHTuQd+xALCoiVl9PtL6+3wJoaOvWFL+S3ibJPSEXPcdaaisd1F9PCYUgGkUsKuo7xtEz2rFjB5YvfQkxK2vI66SioqKi8vGkp2tLDA88Dirv3Yvh3s8iZWb0W/CQpk4l8PLL/bxRxi4Z+h0LHbRLyelEaWjEsm4dPWrG6nQgLJjKc4efY8mIJYzLHUe0vn7I9PoCbTpZpizaA+2U2Esw6UxkmbLoDnfTHmgnGo8mx0lnl8xmTvGcy+5N2zPC9+De73P7yJu4/vq5GJRrIRwmotcQlEQsF+o8efDJiguf788/uWcS4MLgqJjLRZZwLQ3eBorTiokrcfY37Gd77XZ21e2iIreCDEMGd068k2012wbVeYFIoE+BDeCn7/yS/7n+F+g3gdJfkNiaNee753u66QE9cJOjlMgIDWJRUR8vZrRa4n4/aDTETvddxAeIVVVjDEXgIhoSP6jOs0pWuuQu2nxt3DPxHizWzEH3F9NreenYS5zpPIMgCOg0Orrlbo62HsWkM3Hb+NuS++2dFHqpOs8X8RGKJv73pElpyQJbz3MvHnuRSfmTKEorYl7JPLXApvKhoBbZVFTOIZjNA6aC4ihlS8tuuuQuHtj9X/y/639EFtcm29TbCfKFrV/DF+7fUyHDmMGIjBHUeGr6POeNeJk1bBY/OfwEi4rmnRckkTBxSUdnPEjaxjeIX3CD7d3hY9FZMGjPFwlD0RDH246zsGwh8XicGk8NceJMyJ1ARU4FFXkVbGvczW2LVyD5ghAMJQsi0ZYW9IuuR7TbP8jl7JcSewnOdCdGrZGuUBdvtexlT9s72Aw28q353DPxnj7vGar42fv5Hr+VpEgaaiQ2JFPjqWFszlgOtRyiO9SNTqOjK9TFO4F3GJ09mm9v/TZfvPqLVLZVkmfJ67OJHmEwmux+BbRUUUFw40a0/RWfNm5EqqjoU/yJyTKeoIclw5egF/VMy5pIoZiBIIe5bu4UXqnbyB8qn2N8znhcHhf13nqcdieHmg/REexgXsm88+LoIvxWznScYcfZHXiCiQKjgEBUiXJHxR18YtQnaPQ1ohW16AQdb1S/kdw2QDgWJhqLMtE6kvjpDcgDCEFpypSUn/stevWcf3U10tSpKY/1LqZaJetFGzULBgNKINCvafBA21dRUVFR+eejZxQtptcO7K8bidDqa0ExGihcvjwZliNIEpHjxxMFtn68RwWDIaGl+iHZpSQIfewSpNmzE+mivVCqXaQhMGP25GQCqKnnXjYIWkXDnps3EpdlNHIYRZKYPu9RvH43SihIRKfhrda3ee3sFj49/tOUZZYNur33Q2+dt7VxF6/Xb0Ov0Q+u86TBJyt6Pz+Qf3LPJEC/wVGyTKYxk0AkQIu/BX/Yjy/sS+q8Z488i81go95bP6jOa/O39SmwARRYC7jjjc/z1as+z1Vzb0YTiRLViugkI/FtexNd/LNnp3bTn0Nx1aBs3oZh2VLk9a+ljoM6HBiXLEksMg7CxeiXy6Hzqt3VGLQG1pxYwysnX8E6R8ftA0z3aJwOmhQvTd4mgpFgYuxUPO/T53K7iMQieEKe5EJwb716KTqv999A4VjfJHtREJNppZfbg1BFZSA+tkW2Rx55hG9/+9t89atf5Re/+AWQSBz53ve+x+9//3vcbjdTp07liSeeYOzYsf/Yg1X5WKAxGpGWL0N+dV3KzVtwlFI7YyS/2PhZrHormaZM9BYrxl7dQXpfCznmnH6LbM50J1a9lS9M+QIt/hYOtxxOPleRW8EtY2/h6Xef5vvzvk8kHmGr5x3skh270c66k+u4z3FTnwJbDz0dPiX2Eg61HKLAkuhkqvHUUJRWxNqTa5lSMIWbxtzEiIwRbK7eTE1XDcfaj/G9yd8kvuENAhes0iqLFnA4VMMULn9XT+828N438AxjRtJboQ8m06DjlphMyZ9Pd5zmRNsJwvFw4mY+1EisQUqurrmDbrQaLd5wYtz24Znf4RbnSiIBH2m2bAiFOOmvTREJPfgiPpRY/ytsPcWkgVYhLyw+AciiQrYlmycPPsmfF/+Bgu2VSRGTCXzO4WDl8udZ8vebsRvsjM0ey/9n770D27jv8//XHfYiwE1xAxSpTcmSLGpLkaxlyZZX4tiOV9yMOs38fjvS9ttmtPG3TX9pmyb5ZjaxncaJR2Jr25I8JEuWrL2oSYJLFDcBYgOHu98fEE4ECQ7ZcjyCx/9YOOBwuAPxee55v9/Ps7B0Iftb95NtzKZ1oJVccy4GrWFMv5XzPef5zt7vUN9dT1yJoxE0OLOdrKlaw87GnTw882FuKr4JgANtB1KuW0SKIMkSfeE+dJI86vskRS7BWUk8y4Kmb/QkLUGnw3zffWoYxDv1BxQsFuSWFsQxROMb7T+YQQYZvDtkeF4GNxo2g42HJn0CfSiG7qpPWnKNSQpngrOS0/5GZucvQGO9FqwU9/mQWlrSCmwapxPBbGHERKWr9gTWz34W4vFrgQhaLf6f/OTaPgeNEyJJTDflUuUq5/JAO9XWcuSWlpH5UE0Ngl5PePPwrvm8ujqCL+yAWIw7XU7W3vIdmuXed3gWR8c74XmC1YrocqYdGRVdTgTrNR4T9/vGDO0aCsWQ6MqKy3F8ER+BWICYHEuY4cej9IX66Ax0crH3Ila9Fat+OG/yx/x4Ip6075tlyOJc7zl+de4ZDuZPAeBCzwWOdx7nyzM/x11L7sOktRAfobAoX7hI67zJeBe4mLF6NYTDoNej+HzEzp5NfB9GwVj85UbxPKvBSkxOfFfjSpx/fOsJFt31IpUIKR18grOSziUz+O7h73Nr9a08e+bZlPsjvUZPgaUAURAps5eRY8yhO9j9jv0BB98DDeXoWlFLtjFbTSu90R6EGWQwEj6UItuhQ4f46U9/Sm1tbcrj//qv/8r3vvc9fvWrX1FTU8M//dM/sWrVKs6fP4/NdmPboTP46KHJ08Rr7te4e+1qLPFVKJEwgsGIX5T40tYH0QgallYs5TNzPjNs/K7QWsiX6r40rI3cle3iS3Vfoiq7ik53J/dOu5dPTP0EQSmIWWumN9TLz4/+nJsm3ER1XnXKfg+0HSAYCxIPjRx1DRDye6gP91LpqOTeaffyo8M/4lTXKc73nqc6p5psUzZT8qaw7eI21pQuZ0XhfLINdti9J615rvCyQvm6j92AM5oeQ9vArTrrqG3gGpstfZJUMl306t92k6eJg5cPUt9Tj07UMTV/Kp3xAbJHEejapX4URUEURP550T+wrngZOkmhILec+I6dyHtfUJ9/t8uFtPrz/OzS7wjEUquKVp0VQTcCyRmjg2rYdmclrVIPR9qP8NjUT1H8Zv2wKqHidlMowPc/9l3e7j1BQ18Dvz/7e0qySjDpTISkEN6wl8n5k8kyZPFa42uqQe/U/KkUWgvVsYH/Pvbf7GneQ645F7POTFyO0+HvYE/zHhaVLVLb9yER1OHudxOWwhi1RoxaI6IgYtPbiGqHpOMOgeKw431wI297zvAxJLLGGEVWYjGCzzyTGAG5//537A8omkzoqqqQQ6FxmzBnkEEG7y8yPC+D9wKy14t2805ijY0kpTKNy4X1s58ldvYs0dYW+hbXUmJQhvG88XCRuCyPvM4kU60H2RJIbW0pAtvQccLk/idu2MBJ73mqK0ox5KQfYzUuW0Z41660FgyDO7zkRjfGXVDxAeJ5Rqsd1q9Lmy6qW79O9Rtr8jTh8IUZlW0M4VQap5Oz/qaEJ91VETQpFCkoaAQNcTmOKIh4wh6u+K5QnTs8yMCqs+IwONK+ZbJ7avBEic1gIyJF+Pq+b3Ko7xT/WPM5skY5bCESpe6FFVy4/yDZv74W1GW+7z7iTU2j8peYUceJ9qO0+9rRaXUU24qptFcCqDzv9abXEQSBfHM+Bq2BywOXebPlTdZMXEOLp4VphYlCxWg8TyNo0Ik69b19UR8P7XqcH6/8T8qWzkYTlYhqYX/fCX7z1j/SH+onrsRZWLaQ3e7dxOU4Fp0Fm8FGtjGbk50nefvy28womMGGSRvesT+gzWBjUfkiBEHgbPdZyrLKaB1oRStqKbeXM7VgKgatISWNNIMM3mt86EQ2v9/PAw88wM9+9jP+6Z/+SX1cURT+4z/+g7/7u7/jrrvuAuDJJ5+ksLCQ3/zmN3zuc59Lu79IJEJk0Kz/wMDAe/sBMvhAwhfxsbNhJw9VbCS2bUeKp4bW6eSV25/jgO8sNXk1I/pbzSqaxRMrn7iWOGRwMLVgqvr86UXTkZD4yeGfcLYnkX6kFbXML5nPVxd8ddh+rTorfaE+wlqF0W7/e+I+9l9JjLLKsswX5n2BVVWriEgR4kqcM11nON5xnL+s/XOqDjSivPwHDPfdR3CESqDS6CZbWXsdZ+/6cT1t4HA1SerOO1NSOzGbVYEtOSaqE3XoRB2Lyxfz+7O/54X6Fzj34NtoduwaRoq1t67hB0e+S4W9gv9Y9G0K95xCeX07hiVLkA7tRE4jQGpfVvj8uvv5r3NPqqRKXbSjpCdB15FShrOSy4unsKl5C5f6L7F20VKUN15O+zK50c3E+et46O3PqKa8Mte6yewmOzeX3My393ybi33Xuuiqc6r59E2f5lD7IRwGB0evHCXPnEfrQCvBWBBRSCTktnpbucV1iyooHu84zisNr9DY36j6XeQYc9TRkMPeejY4nSnVTCBRmV+zhqAcQRuTWVW4EMOVXoTSslE7FJNGwXG3m4goYr777tHP4+BzEwqhhELXxnyuhniYNmwgtG1byki4ml56g/0HM8ggg3eGDM/L4L3AiGOGjY2Etm1DN306+jWrsBgEKq35afcxFhfR2O2jC3FDvMgGdyAZ5s9PO06YTFJ3rVvJf9b/nK9M/jTGdesS4lw0CqKI1NiI4vePGhI1uMPrg8jzjDn5cOdGFL9ftWIRrFZVYEvyvPuK1zJ8nmAQBnGqJNf72uZPIskSOlGHrFzjSU6Hk9aBVjUgrDSrlJ5gD7mmXHLM17oYkzwv35KPK9s1bGRUr9GTbcwm35Kf8ppiWzG+qA+dqBuzEBnTCggIaGJDCq+SNHIogtOJae0a/u34j3m96XVCUqIoX2Yr4+5pd3O66zTlWeUcuXIEX9THxJyJXPFdUYMOzvacxZXtosRWAozN87KN2SiKoqbUZpuyKbQUsrfrbV5veh29Rk8wFkQjaOgP95NjyqG+u55ZhbOYWTiTmBzDpDVh0BjoDHRi9pvRa/T0h/vTjuGOBl/ER5OniXZ/O7F4jGJrMSudK5lZMJOlFUvZdnEbwViQHFOOKrCNODGTQQbvAT50ItsXvvAF1q9fzy233JJCvtxuNx0dHaxevVp9zGAwsGzZMvbv3z8i+XriiSf45je/+Z4fdwYfTCS7eS77L7O6cNGwZES4epO/dRsL77wTjXX0H+dCa+GIIlylo5JcUy5V2VW4Pe5EspPBQZGliA5fB7/r+R0GrYEKewUTcyZS4ajApDPxasdbfGKEgAKcFbzUupOwJg5Au7+dF+pfIBALcLj9Wqz2p6fcnxDYkh1RY3RXCZHhngbvNzQ227AU0SQu9V7CH/FjN9pZO3EtbQNtTLBO4NHJ99HhvUzx0kUYV69GARRBoVcOcrD7LUqzSvnu0m9TuOe0em5G9QpzuzH7IywrnM/O9j2pi7aBtORa9vlG9PoTXU6CWUZ8964nolV4s+coh84+hSfsQZIlTHFx1HNikECn0XGk/Qi3VN1CkaUIjajBqDUyt3guPz3yU1Vgk2RJbfv/1hvfYnLeZCbnTcakM3G25yzeiBcBAb1GjyAI9If7Odt9lllFs+j0d/L9g9+nxdvC0oqlanKTL+rjYu9FJuZOxKOE8K1cge1Vrn1Xr458Rt58E2FLoyoWS04nGlsWpvXrE6LXEPNi1Sg4ed4HBR+MBdnrJd7fT2RPaqdmUkwz3303SiCg3iAJFktGYMsggw8QMjwvgxsJORRKrB+SNOaYYWT7K+SOUdAZjYvAVSFu40YIhRJikdGIotdDNIrU0oxiMBDRiyhmExaLJZFW2tg4JvewxDVE41HCA33o4lqCzzyT8hzzxz8++okYwvs+iDzPaLUPSxFNoqGvgcmWSgyiHtMIo74alwshNxfTI4+AQU8/YV5yv8Si8kW8ffltArEA2cZsBqIDuBwu6krreL7+eRxGB5d9l1nhXEFDfwPNA81Y9JZh4ozNYEs7tWLRWdhQswGNeM3pz6A1MDFnItnGbMxaM0e951iTrhAJ4Kxgy+VX0Wv0hEU5teNNq01NQx/i7esJe1MENkmW0Gv1/ODgDxLHX51DXIlTZC1SUziTPE9WZLoD3exs2EmFvWJMnrfSuRKj1khICtHh7yAiRdR7GU/Yw2XfZSDR2acVteg1eqblTyPHlINJZ8Im2HB73OSZ87it5jZOdp1kbvFcckw5SLKUMjkxGpo8Texv3c+W81to97cDYNKaWFS+iE/VfopVhauYXzp/3J2UGWTwXuBDJbL99re/5ejRoxw6dGjYto6ODgAKC4eM8RUW0tzcPOI+v/71r/O1r31N/ffAwABlZWU36Igz+CDCF/HR4mmhL9zHzsadxOIxiqxFrKisTfEnG4y42w3B4KjEarwQEDBoDPTGe+kOdvP0yad5s/VNIlKEHFMOJVklPFj7IB9zfowN1Rv41fFfsXr532JXZHAP+i47K2icX8V3N/89j970KJIsqSaiNxffTLOnmd5QL7IiM9NWg+J+9tprx+iu+mP4U8W93hQSil6fED50uusSPpo8TdT31PNc/XO0DbSxoGwBB1oP8OpdL1G+/yLKnm3EIDEa4qwkumYpOo2WdY55CKaZiCYTSl05wc7OxDUea7wzFGZWTg12e8GwRXukKrdu4kSCmzcP6aByEVy5iE3tr4ACPcEe9rTs4dDlQ3x86sf55wX/h6LsUoSPf1wlU4PJJIDWZOGmopsQEKjvrlfb+HWiLpEqailkYs5EekO9BKNBZk+YjVaj5Uj7EabkTSHLkMX0gulMsE6g2dvM25ffRlZkNEKCKEpK4jtV31WvEsqDlw8yo3AGi8oXgZIQLZ12J8+ffZ7NFzbz8JRPsnDRRnSSgiO7iMiOncQb0wjXgLaqCuPatSh+PwKJEdF4W9uwdDAYn7GvHAoRu3SJ2Jkzw8XyQUEhmRTRDDL4YCLD8zK4EfBFfLR6WykTsxG27yLe2DguEep6CjojQQ6FIBZDiUZRFAUkifDLLw/rQNKvX8dlTZjiW28ltG3b2NwjEiYiRYhqId6cJq30errm+XDxvGZPMxOw4jraj+J+kmT8w+BEUU1pKYZ58wi8vJ3IxxbwtucUkiLRHeqmzF7GlPwpagfVxb6LHL1ylOfrn8eiszC/ZD7FtmIOtB3gzsl3AomieYW9YhjPG2lqJSSFhqXQl2eVs27iOvrD/XRKHqKr1w9LIBVcTnwr6jBc3sXfL/17rsgDFA4qrA9Oph0qwoouJ02VBr520+NMMpWjlWTMthx0iAQDHkSjiU7FR+tAK7Iic7j98DCeZ9QZickxTnWeGhfPA6jJrWFizkRkRebm4pvpD/enBA4oisJAZAC3x80E6wTyLfncP/1++sP9NPU34Yv6ON5xnJq8GhxGh/q68YQS+CI+9rXsY+uFrarABhCSQuxr2YdRY+Rzcz933Z2UGWRwo/GhEdlaW1v58pe/zCuvvIJxlIVBEFLbcRVFGfbYYBgMBgxjpNpk8OFDsnI5tFulydPEpvOb0It69jTvod3fTo4ph5mFM8dMony36YPJ977iu8LBywcTHWz+DkJSiL5QH3pRz7zieUzImsDFvouYdWYm5U5iddVqXu19G6U6zPJFt6GJSsT1Wl5o3s4///6rCIKASWtib8tefFEfXYEuFpcvxqQ1UWIr4bLvMkI0tWI5apz8H8GfKt7Xd63jK2n0W1mJcDWuXG5pQVdVhWhPX9FMwhfx8br7dXZc2oHb40YURAbCA/zD/L+mfP+F4YlHnV3kiFZC27cTHkJ4rQ8/jP/JJ8dFVA0STC9Nv3iPVOUe2kEVM+p44exv6Ax0ohE0VDgqmF4wnal5U/mr2j/HtGsfoV0/SznGwfH0gstJjxDAbrDTH+5nUt4kQlKIgcgAi8oW8cypZ8gz52HRWyizlaHVJEIdBsIDBGNB/v3gv5NrzMUXTbTcF9uKuXPKnWw+vxkFhZqcGux6O1E5mmL2K8kS9d31QEIwzjJkUeWoosBcQLu/nR+f/iVPXq0o/m/7Y8MEtiSSnQOBn/0Mw/z5aCdPJvjUUyOe9vHcECiBAKLNNvLIzA24gcoggwzeG2R4XgbXg7F43pzs6ZQdOHxtPdDpUncwJGRAzMnB/MlPokTfeYeX7PWmjKQalixBamtLOQb1PXv7KbbbUfQixtWrEZSRUhOuwmDkeMdxXndM5tYOLaa6upTxwVF53SALBngfeN6g4zCtX4//6afR5OUlrBrGwfM6e1uYss+NPITTxd1uIoKA5ZFHkM6dU/mRKS5jnVvIV9/4PzR7m5EVmSxDFnUldayrWseKyhVU2Cv4WOXHiMQjnOw8SUeggzsm3cGz9c+ycdJGcs25I4o0I02tDPWhy7fk81z9c/QEewD4bfNW8qbaWLh4IzaM+IUo+3uP8XfPr6d1oBVXtoumiiYmLP4MRSRsQUYaFRVcTvqXz8Emx6i1lCBc7ZZEMKB4vUibdkAwSKmzkvsX3saDux4nIkXS8ryYEqM/0q/ueyyeV99dr3aOFduK6Q324sx20h/uR5Il9fd4IDLA/NL59AZ7KSwoRK/Rs6txF0XWImYWzUwJWIDxhRIku/EGC2xJhKQQjf2N4+6IyyCD9xIfGpHtyJEjdHV1MWfOHPWxeDzOnj17+MEPfsD58+eBRKVzwoQJ6nO6urqGVT0z+Ggj7vEg9/dDKARaLdKFC0hdXRjWrmH7xe30hfootBSqP9BLypbwWtNr3HPz8tF3bDBwvOM4s4pmXfcxJb0k+kJ99IX6aPG2MCVvCq83vw4KPFL7CLMmzGLrxa2cdZ/FG/ayq2EXE6wT+LM5f8aZzjM8f+55HrvyOAAzCmZwrucckKiqhaQQISmEVtSSY8rBH/UztWAqRZYisk3Z6E2pC9eI/g5/BH+quNebIrCNZPQr5uSAXj/qsTR7mukJ9tDQ30CWIYtgNIhZb2Z10WKU13YMe7759tsJbd+e3vNkxw7Mt9+eIKpXxzeGIklUdUPMuMf6vIMruYLNhsZuRwOsq16nfi8C0QBvX36bv6j9DKZd+4albA02L5YuXya2ZhlXvGf5y0V/iaIo+KN+GjwNRGIR2n3tTM6bjMPk4L+P/TedgU68YS/+mJ/P3PQZIlKE9oF2+oJ9zC2ZS2+ol7aBNvQaPStdK+kJ9LDcuZyOQAd6UT+i2a9ColpZnVPNgrIFtPvbkeISE6wTqM6tRtvtZVTpWpIgFlOv/bsVfpVweMxugHcrlmeQQQbvDTI8L4PxYjw8r6a4FNl9jVcIg5PKR+Eepg0b3tExpfN8U0dAdToMixahmzKF0MsvD3/P9euR+/pGFck8QoSQFOLJc7/lpkX/RPGBI+hKS9XxQSEnB+2kSYR37x4mbA22YPij87zBj7vdhLZuxfLxjxP4+c8Jbt6E+e57xuR55dpcZPer6d+rsRGlri7lnMqNbiYtnav6H4uIeBUvBy8fxKg1UmotZUnlEtr97QSiAaqyq+gP9fP82efJMeYgIFxXCmWLp4VTnafoC/eRY8phRsEMyh3lAGyo2aDyPI2o4cenf8nBoptoHWhFr9HzVutbdPg7iCtxLvZdRCNqEEWR5VMXcOuqxxCjMTBZMd15J3I4hN/Xh6QTuRBqQw5eYWHOzGG8dnDhWHE3UQF8eebn+dobX+dEx4lhPM+qt5JtyE772cbieWe6z9Ad7GZN1RricpwTnSeQFTmRHJpVxuqq1WgEDRd7L5Jvzqckq4RCS+EwgW28oQT+mJ+wNDKPi8rRcXXEZZDBe40Pjci2cuVKTp06lfLYo48+yuTJk/nrv/5rXC4XRUVF7Ny5k5tuSsQQR6NR3njjDf7lX/7l/TjkDN4HxD0eQps2pSUYkR07qJ09iVeDPVj0FuaXJkxgV5Us4bb8xaDVjkpwJI3A9/d/nydWPpFSwUprsm61ppCGZk+z2kLui/iQZCnhWSBoWVu9FkT47v7vcqn/EpAwGq3OqeZIxxHkIzIrKlbwhblf4BfHf8GpzlMoisKaqjW4clxUOaroC/cxr2QeLd4WtIKWPHMe3YFu2nxtLKtYhi7LjjzY122wv8PixUgiYDRgsOe89/5UoZB6jkcz+o2Q8DgbrevIH/MTjAXpDfXidDhVsckYT9/VIIzW5eR2I9xyC5EDB7A8/DBhRUn/PTp2DP04K8AjVnI3bECTk5OSwBWSQlzxXWFp3lzkxt+OeIzaVStorLJxoGUHoijS5mujJreGHFMObzS/QVxJ+PPNLJzJt/d+m2Mdx6iwVxCMJQYsZFmmyFbEtz72LXpDveSacllSvoQtF7YQjAVZWLaQY1eOcbLzJCZtwq9t7oS5ac1+AZzZTjXgY0bhjJRtUX1g2PNTMKhrUOrqetfBBILRiBIMjvmcDDLI4IOHDM/LYDwYL8/Txa4a3F/tHhO02sRzAG1p6aghA6Y771TDDGB8PE8JBIYX5yRJFfRkv5/QjvS+v6GtWzEsWIBp7dprzxnS5a+Xtby09ile63iLn5z7Hx5ecC/Fmmw0UQlTlh2t2Uho6zb0g4Q3tFpQFNDr0d//yfeF5w1F3O1G0CRGFeMNjcT9vlGPxx/zUxg1j/5+aYprmui1x+JKHDku4w17CcaCHGg/wOSCybxQ/wIX+y5SZC1CK2oT5vmulYSk0LhTKN9qfYvv7P0Op7qu/XbNKJjB3y75WxaULUjL8/It+RzrOEa2MZtIPGEVIwgCWkGLN+wFBf7hrX9m+sZpFIg2NL5edHErAa3Cf19+kXA8ITJ9ffoXCG0bvXAc/O1vUdxN3Pax+3m2dD6dgc4Untcf6seZ7cSV7XpHPE9A4FLfJc52n6W2oJbF5YsJxoKqt69RY8TtcRNX4kiKxJfqvsSe5j0pY7XXE0pg1VlTUlyHQi/qr0sgzSCD9wofGpHNZrMxfXpq66fFYiE3N1d9/Ctf+Qrf+c53qK6uprq6mu985zuYzWbuv//+9+OQM/gjQw6FCG3ePKJgoy0tpcZUyjlbMXua9rC/bT+/W/MLKt6oR3a7CZjNWB9+eBgJ0jidmNatY9PlV2nsb6S+q14V2cYyWU+2wQ+uqohiwsxer9FTV1rH682vs9K5UhXYAPrCfTT0N1BsTXhEbJy8ka2XtnLvtHt5ZOYjmHQm9rfu50j7EZ4785wqMt095W4WlC7gZNdJCqwFAJj0JlrCXZiXzSZHUa6NUMZiRNtaueK0s6f3KDMKZzDfVHLDrsdIUAalvI1l9MsYYxtWnRWzzoysyISkEP6In0AsMLKQEhl9JJhIBGIxAr/5DZYHH0yQ6quV8nhbG5FjxzCvWzcugjpqJXfLFkwbN6Kx21N8I/It+ej7Ru+06vZe4VT0AtsubqPd345eo0cn6ri5+GYm501WjWdD8RBX/FfIN+ejFbVkGbKIxqMsrlzMfx74T5o8TXgiHjSChsXli3lgxgP89MhP6fJ30R/qx260s8K5gsb+RrwRL4/PfZwfHf5RCgFzZbv4Ut2X0o5NHO84zpXuJhY5K4eP7ZL4GxHz8rA89ljKqM+7CSYQLBbklpb3dRQ6gwwyeGfI8LwMxsL18LyAKGEd1LGmdTrV4qJ28uTRuccgD97x8ry0XdJarVpMNMyfP7rwtGoV/iefxHz77QirViFotYR27BjW9bZ+yRLmF85hZ9dbbPI0EVfirJ24lqxwFuZFteS8fgRl0GsEZyVXlkx/33he2u2DzpUUCqAb5blWnZX4GCFQ6Ww+4rprIQTJ8UW9Rk9YCqOgEJbCPH7z47T72gnGghi1RgQEQlKI22puG5fg0+JpGSawAZzqOsV39n6HH976Q8od5cN43vaL2wGIxBPBAbIiq8JRWAojyRI7Nj5H9mtHVf82CTC6nDy26l5+cfF3yMhopXiK9UnK579aOE4iEhzg3un38vOjP1d5XiAWYIJ1AovKFvFGyxvviOe90vAKTZ4mgrEgLQMtaEUt5fZySmwlFJoLmVk0k4m5E1PCB6qyq95xKEGFo4ITnScothYPGxk1aU24sl3jFkgzyOC9xIdGZBsP/uqv/opQKMTjjz9Of38/dXV1vPLKK9hugFl9Bh98pK0iXkXS/0kXU+jwd2A32PnrOV+hYv+Fax4PwWAKwSESSZi0RqM0Btv56elfAaj+VOM1WRdNppSqik1vI0ufRSweoya3hj3Ne4grcfSiHgVFjcfuDnaTb8nHH/WjKAp6Uc8LZ19gXdU6Dl85zKmuU+piUmgtRBREDrUfIiSFuLnkZnWc1KqzMhAd4Gdnfkfd1FksXLwRbUxG0ons7zvBL/b+Dcsrl+ONeDnddZoKe+pil0xg9cf8WPXWYduvF8Jgb5yxRvvGENkqHBXkmfNwOVxE5Sjt/nY0goYXW17m4XTizli+PCYT5sc+jWg0JcQYu10VfHS1teivJ4lyjEouoRAM8SKpdFQSi3UxWi+WaDSy89xOdjTsQCtqVQHNorcQlIIsLl+MP+KnP9RPXI4TlsLoNXosegufr/08vz7xa050niDLkIVeTCRM1XfX8/uzv+ehmQ9hN9ipcFQgINDuayeuxGkfaCeaH+X+6ffTFehCr9VTZC6iOq86LfFKppF2BbqoXflv2HaTci0ElxPtrWvQ5ORATk7q5zOZ3rFnmmgyJbz8cnLel1HoDDLI4L1Fhuf9aWNEnqfToS0tRTt5MvZolHU58/ESInfdWiJHjqAtLUUwmVR7Ak1R0ejvc1UEuh6el664F29rQ1NZmRDK5s4d/cNFo2gKCwn+9rfDvdyS+7sqJjqmTSVbayZgzk+M+71Lngc3lusJY3CtwedK1o8msSV43tm240weqWA3xG8OAGclb3tOU51bjbvfjYCAKIhoRA12g53aoloWli2k0lEJ8I4Fn1Odp4YJbOq2rlOc6jyljo0mUemopK6kjlOdp+gP92PWmZFkibgSRxRE4kqcR6fcT/ZrR4Z9XqXRjeEVuGPFOrJFy9j2F4PEzoAg8fSJp7l7yt3kmnIptBaqwmK7r52IFKE2r/a6eV67r50HZjzAUyef4nTXaQDO9ZxjlWsV906/d1jnG/CuQglsBhuLyhchCELadNGPT/t4JkU0gw8EPtQi2+uvv57yb0EQ+MY3vsE3vvGN9+V4Mnh/MeZiI0n4dRK/OPYLyrPK+Ztpn0N5OTUCnWCQ4G8To3qGzzzG5cBljg6c57/P/o8aj530p7oek/UKRwU5phz6Qn04jIkkogNtB/j83M+j0+hASfgIiIgYtAZyTbl0B7vVtJ4sQxa3T76dYDSI1WDlROcJbHob53rOIckS/qgfWZG5xCVc2S6iUuJ1SY+DZk8zRp2RJ8/9lh9Lv1SPMSyF6Qn2sExZhrvPzVutb2HVWVlSsQQBAQWFvc171U68iBRBJ+pYVbWKHFMOeeY8egI9+GK+8ZMyk+lap9FYKacGA3IoNKIwYjPYWO5cjoLC9kvbOd11mrgS5z+O/5i1G5+nSBBSvM2UaHT0kWCjFqNjCPl+h6LMmJXcEbZrrDY0VVUpI5NJCM5KLoYuqwKqQKI664/6CUQDHLp8iFxTLlsubOHe6fcyEBmgJKuE/lA/ISmE3WDn6JWjGLVGtIIWURDRiloMGgOnu05zz9R7iMajdAY61ff0RXzY9DZ+evynNHmagGtkptRRmvK8JFHtDfZi1BpxOpw8uvtLfLL6Tu5c9TBmRYsSjRLTazjrbWCixXjDyZBot4Nenxg1To72XPXCywhsGWTw4UKG52UwGGl5Xhp/NQtgdTrRrr8VjcWaSOaG8XOPqyLQ9fA8wWIZtnZHjhzBMnFi4h/j4Dvaq6OeQpZt1E47w/z51GqraO3tum6ed6T9CGtKljHN6kIbjSMYjfi0Es9c/AOdgU4iUgRv2IvdZOeuyXcxw16DLhy7vu7ywTxvCDROJ0o8YWshOJ30EECO+EbkAjaDjcLccvwrC7G+KlyzPQE0LheGxYsJPnONy4suJx1LpvM3Wx5gcfliZEWm2ZNIH84z5VFbVMt90+9L6XZ6p4JPX7hv1O2DwwQGozq3msn5k2nxtpBvzqfNlxAJFUWhOrcal6EIxf162tcqbjelupXIL++GQZ1q6SCYTInAj9JiXr6yl/ruej4x7RMEY0G8ES/eiBd4dzyvOqeaZ04/Q2lWKRuqNyCKItF4lFxTLvXd9VRlV91wnlfpqCTXlMuMghnDPOIyAlsGHxR8qEW2DDIYjDG9loxG9vbsodPfSW+wl3hodO+m7oErfOHw/yEiRVBIpD65sl1MLZgKXJ/Jus1g4/ZJt6vpol2BLqYXTKdtoI0CSwFajZa6kjqaPE1IskRXoEsVQG5x3YJW0LKvbR8GjYFiazE9oR4GIgOquahZZyYYCyIrMjE5hi/qS/E4qHBUMME2gZAU4nzPeUJSCEmWCEaDfH7u5ynPKqfd105pVimeoIf/9/b/Y23NWjad26QmVwLqay/1XWJuyVwC0QCubBfdgW4MWgMnDCdYVL5IrQ6mg8ZuT3hvbdkyZhpW7MwZpPb2UROoKh2V3DP1Hqqyq6gtrCUWj2HT29jdfZDauklUL090MGpMJs5ErjDl1rWwbfhIsHHDerSO3FGv5/VgzEruCNtFkwnzbbcR3LyJeMO1ir3grKRraS0Xeg5xpuuMWpkFKLIWcbHvIg6jg7gcp3WglQ5fB7MnzOZE5wlEREKxEP6YH2/ES0lWCWEpjFbUotfokRUZvUaPKIh0BDrU94xIEWRFZrd7N1mGLPXxoVHpvaFeNp3fRIu3he5AN56whyv+KzxY+yCvNb3Gzfmz0Ox8g/CgqmyVy4l4qxPeA0L0brrhMsgggwwy+GAiHc8bydtVcbsJb9uObupU4m438ba2a4FPY3APzAkPsOvhedfW7s2q0GaYM0cVlMZ6TyUeV4U10yMPj34iJAmtkvCcG4vn9QR7WFy2mK9O/wyGmJLobjIYUPq9BDZtgmAQjcvJxhUr+I/6hO9vSAph0pr4bPX9SH94iUhjmq7wUVJBU3jeCOmigrOSvuWzebV9H/5mP7dPun1E7ljhqMBn8tF7yzx0kdloYzKKXsul8BU0UgsTH7xH5XkXw220hFqYYJ3A707/jptLbmbOhDnkm/NZ7VrNwvKFN0yIyTHmjLp9pDCBwfcEC8sW8nrz63QFunA6nNSV1iXCDkaBXhYIud0oPt+o3yk5HMawZjVnbSH+ffu30Gv0aAQNVwJX1OfdCJ73SsMrTM2fyjOnn6HZmxA0S2wlzCycSVV2FXWldaN+nncCm8HGjMIZaTvlMsjgg4CMyJbBRwbpqohJaJxO+owyPzn9K8w6M4IgENHCaLfhOpN1mMA22JdgPCbr6PWEOi6jRCIUGo18esr9HOs9S4GlgGxTNkcuHyEux3n29LM8ctMjDEQGuNR3iZgco9RWysTsiWyctJGjHUeJy3EUjYJOq8Omt+GNeMnSZxGVo2hFLVa9FUmWyNJnUWmvZGnlUpVIDF7QtaKW7kA3sXiM9XPX81z9c+xtThC7sBRmesF0Hr3pUWRZpt3frnY6GTQGVlWtQifq8EV9lFhLeObMMzx35jnK7eX4Y36KrcUIgkCuKXdUEqPJycG0cSOEw+hmzCD08supZveD07BisZSRjHSwGWzcNOEmjncepy/Uhz/mxx/z0x3s5qytmH2t+8gx5dDmbcPtcfOLlf9JzepbEuTYYKBb9rPl0nM8MPOBG1cFG6OSO5oIJNrtmO++B8nnJRr0E9UKdCgDNAYuc7j9MJIsodPoVJ8Ri87C5YHLZBuzE11qopb9bft5dNaj+A/7afe1MxAdwKQ1YdabMWgMKIpCtjGbYCyITqMj15SLVW9VgxMAvGEvWcYsPGEPdkMqoU5GpV/svcibrW9S313PwbaD9If7mZI3hZOdJ2nob+C3a39B5b4LxNOMPSjbXkG+Z/RksQwyyCCDDDKA9DxvVG/XxkYMdVdv8AcFPmnKytBNm0bolVdS00CTwURXx4/H5Hk6HZhMKs8TjEYMt29ADEeRe3oQHA6kc+fQOJ0jp7q7XJhuvRX/008n3tPlJKbXjPCGV6HVIhqM1Nnq1I6sdDzPH/WzvGI537zpq4S2bCUwQgKl3NpGTsc0/m7qnxN1+lEMesJCnOy9x4kPTTpvaBhXKqjK866mq2MwoOi0dPa1EdqwmLf7T3Gl7RWyTdl4w142nd/Eo7MeHbWjjZwSfnn8lymm+RpBQ/0QnlffXc9dU+7igdoHaPe14zA4yLfmc773PAvLF45+bq8DMwpnMKNgRtqR0RkFowtAgwMR7px8J96oFxGRSDwydtPAVSuV4KZNWD/9aUJbtw4XM9euTVzbT97FpzY9jKIoWPVW7EY7V/zXRLZ3y/PO957n/un3c6zjGBpRQ3VONYFYAL1GT7u/nRfPv8jU/KmZDrMM/uSQEdky+MggXRUREgQmsGI+i59fh06jw6A14Iv42Nt9mNudTtVUdDAEl5O4Uc8/LP0HPBEPDoNDTdZRnzMOk3WptZXoli3XjtHlZObaW9gn7aM/1M/Z3rOsnbiWVxpe4ekTT7PSuZINNRvQilrmFc9DFES+vefbnOo6hYCATqPjE1M/gd1op9JeSW+o99q+BZGq7CqyTdnMLZk7bEGrdFRy68Rb2du6F0/IQ3lWOT849AOOdRzDbrCjoGDQGmjxtvDC2Rf4qwV/hVFrZM6EORy5coRp+dN4telVmjxNLKtYxutNr3Oh9wJlWWVcnVqk3d/OlvNbxiQXkKh0Yrfji/i4sNDJjFtWIPR51JCBpMAGqSMZI2EwwUwSsEJLIe2+dmYUzCAYC2LRWbDoLfzFnr8hz5zH0oqlnOs5x4XeC9Tk1LDYs/gdjw2k+3wjVnI3bEh8/lEgmkzoTSb0JFr0FU8YXURHKBaiJrdGrRaKgqh6jbiyE950eo0erajlyRNPsrhsMTMKZ6gppIvKFvFq46uYdCYUFNXzb1r+NJwOJ5F4hHAsnBhXlqPoRT3ObCe+iG/YMQqCgB0D905YjWRfRGTyZ9jVuY9Nza9Q6ajky1Mfo1SyEGzckfYzxhsbx7yuGWSQQQYZZAAj8LwxOs1Stl/1ZANAp8PyZ3+GoCjqKCRmc0qq6Kg8T6fDfP/9hLdtSxHqJJcT89p1BF98EfMdd6SIa2qq+/xEur1ot6PE4wmBzesFZwWN810cuPQCD7icKXYXSWicTuI+H5e1YWqKalO2DeV5MTnGZ6vvI7Rla1p/t9COHZjvuANkmcjBg7DFjf7qdrPLhWHePILuJpWLqa8dRyoopPK85CRHu78draClw9/Byc6TlGSVcIvrFvpCfTR7mkflYOl43gTrBIp1uTxx018iRiUiGnit6yBPnf8d9m47SyuWcrbnLC9deImanJox3+N6UO4o52+X/G36dNGlfzvMjy3d55leOJ3phdPxRXy0eFpoGWjhqPcsdSN40AlOJzHd1SCIYBC5uxtDXV0i5CApZvp8+J98EoJBBvw9XPZdRlEUpuZPJSSFmFYwjS5/17h4XtLvWFEUtIKWBWUL6Ap04Y/6KbGVUGGvoDPQyfZL29XCb64pl1lFsxJjqSHvDT3nGWTwYUFGZMvgI4VEB9DdRLx9hAJeBKOR3zS+xD/9djmBWCAxbmkrxqKz8JMzT7Lolh+RgwzuZnUfgtNJz7JZnOmvpySrJK1gBWObrBsWLyL4m1TPN7nRjbBjF2sXL+etnmNIssSRK0eoK63DorMQiUfINmZj1VvJMeXwN7v/hrM9Z9GJOkRBRBAEXjr/Eo/OepT5ZfPZ07RH9YQoyyrjzil3stK5Mq1JqS/iY9ulbSox6Q318lbbW+rIYTAWxBfxoRW1HGg9QEdtBw/NfIjGvkZWu1ZzvOM4JzpOEJNjCILA4fbD5JpyafG2MNs8W32fdn877f72cbdwN3ua2dyyE1fZvYjPPTfi88b03CO1MhiIBQhEA+xy76Ir0MVAZABv2ItVb2Vx+WJeaXiFiTkTqe+uBxJEYnAK7I3A0EquYDAkOtzGENiGwmawMa1wGuWOct6+/DbljnJ2uXfR6m1VOw2nF0zn1upbOdV5CpveRlyOE5Nj/OzYz7hv+n08V/8cVp2Vv1v6d/QEerjQdwFREJEVmSl5U/jUjE9xqusUjf2Nqu9ePB6nZaCFvS171Y7OJExaE39d+zg5u4+olW4r8ElnJQ+s+yl6QUdk+w6YM2fUzxYN+tjTcIRYPEaxtTjjqZFBBhlkkMGIGMrzFItj9BeM5IUWiyHIMggCQk5OirimvtcoPM+4di2RvXuHBTHIjQnxyjB/fuK9B3XQGebPV0W/eFsbisPOQNxPZN0SgmKcHe1v8H83/R0AizY+hxNhWKedYekS+o0y+UZd2vCCwTyvy9+FVdaldLANRtztRly9GjkUwrBgAfHS0oR/XSxGvLGRiKIkxnHTdAqOlQo6GM2eZi72XaRtoI3jHcdpG2gjLCU4XZO3iZrcmkRC/Dg42GCeF5SCTNKXIG7fjex+FgA9cLuzklkLv8W9Lz/2nvO8BWUL+OGtP0wEGUT6yTZkM6NwxpgC21AM5nm/OvYraletw7RTSGkEEJyVhFcv5kzfGeYkRThRTPGkG4qoVlB53kO1D/HLE79kffV6ugPdY/I84ep/7j43Pz/6c/rD/YiCSLm9nIdqHyLLmMX2i9spshZRYCmgN9SLKIgoKLR4W6jJrcGsN9PkbeKy/3KG52XwJ4WMyJbBRw6iycSJ3lZ2tO5gct5knjr/LIFYAIC4Eudczzk+5vwYDoODX1z6HRNryliycD2GOMS1WjZf3s1zu7/ItIJpuPvdLCpfxKdqP5XWK2Ikk/W4KBD86c+GVf8gMSZXsWIxBxDUCOqkkb1Ja8Kmt2HRWxiIDNDkaUIrpv6ZxuQYvzz+S35+28/ZULOB/mA/oihSaC4cMQUIEiRncIt9MBZUBZquQJeaVBmTY6p49uPDPybXnEuBuQC3x80dk+/gxXMvIisy/qgfi86SMl6YhBQfo7I8CEnCY7bYGU1GE/T6UbZeQ7Iy6Iv4+M6b36Er0AUkRgpEQUx0gLXAzKKZarAEgF7Up6TA3igkK7kjIe7zQTA4YiV9MGwGGw/OfJDf1/+euybdhSAKxOIxnA4ngViADn8HNoONmtwa+kP9eANeagtrE6bHFcsot5dzpusMn53zWfRaPd6wl7gST4huvRcosBZg1pmJK3GOdRzj3mn3ctl/mQnWCcOi0v9s6qfIfu1IGh+cJpTtuxCWL0/cHNSN7sXRJwd4Yu8TwDWj3ZH+3jLIIIMMMshgMM9bVbyU2pG6vlwuZN/w7hy46vtaX59IG012mOcM99gakecpMvHNm9PuO97YiGHxYuJut9oFN1So0lRV4Z1eyVNNL/Av+/5l2D7WvvRxvrfsCTau+gzaqAR6HXGtBg9RTDY7BWlEiqE8z260j1mgVEIhgk89pZ4T8913q5MEyZCFdBgrFXQwBgtbgwW2JHxRH0faj/DorEfHtb8kz5NDIYLPPz+8y9DdRDnwlVmf55y/SX34veJ55Y7yUUW1Tn8n9V31ickYo4Op+VNH5Oo2g43bJt/Gi5depm7JTMpXLEKIRhEMRppiXWy/+CwhKUTp0jsoZHSvP9HlpE8I8Y3l31B5nlbQJpJMRXFMnpdjyiEQDdDia6HD34Ev6kMn6piaP5WnTj7F0vKlPHvmWe6fcT/+qJ9yeznBWBBREAlLYSx6C+5+Nw6Dg13uXUCG52Xwp4OMyJbBRxLJRXQgPMDtk24nLIVxe9woikI0HsWqt2LRW/CGvHz71DPIioxZZ6bT34ndaGdDzQbOdJ9BkqUU48+ROtqGjrtFmhvTCmxJ6GIykiKx0rWS3Y27afe3Y9KamJQ3iQm2CWyctJEDbQfQilq122gwYnKM3lAvK1wrxl0NGlq9sxqs6MTE+GxfuA+71k44GibLkIUv6kMjaAjEApRqS+kL9dET7GF/637qSuswaUzIiowkSxi1RmLytc9q0pqYYJ0wrmOCa9dK1OpG9zATxXHvExJk0xvyqv82aA2q0X+zt5mFZQvRa/TqMbuyXSlpU38MxPv6Rh4nTUP2IVHF/cycz9DiaSEoBfFH/GhEDRpRg1lnprG/kTJ7GXqNHpvexp1T7yQUC3Gx9yI9oR4EBF5ueBmH0YFZa+a3Z35LsS1RWZwlzKLYVky7r52+UB/dge4Ro9KX5t+M7E5fPY273bB0aeL/RyGAgtPJ3p4j6r+HGu1mKp0ZZJBBBhmkQ5I7vNF5gIm33Itpp5IyXqdxuVQ/tqFrUIrvK1dHJ7dswXTnnSN2tKXleaNBIyJ1dWGoq0s77WC+7TZaIpeJxqNpeV4gFuCHJ3+O1mzh7ql3A4mbtvxR3jJdl9aY/l6DQpjibjcRSO1eSzOOK7icBLQKltH3rCJ5rWQ5EbI0VGTTiTqseisxaXTD/6FQAoFhnYQq3E2sXLiextA13vJ+8LzjHcf5/sHv09h/7TiTHs+zimalfU2lo5L7Z9xPi6eFBqkPP340sQTPK7OX0djfyM8uPsPC2jnMdRRQMGMa0R2p/oKC00nX0lp+W/8kvz71a5XnNXubyTfn44v4xuR5E3MmYtKaON5xHIfRgS/qY1rBNE52nKQz0MktzluQFZk2bxslWSV0+bsos5chCiI6jQ5v2Es0Hk0R7zI8L4M/FWREtgw+kqhwVJBjyqEz0ElpVilrqtYQiAUIS2FkRU60d7/9Q851n+Pm0ptZU7WGSDyCu99Nq7eV15teJ9uUSAVKGn9ej6fAWMmSGqOJh2c+TIunhdrCWlUoSUax2ww2GvoasBvsyIqsJocmkW3MpiSr5LoWp2HVOwVq8mpo87ahE3VoBA1aUYtOo6PCXkGHv4NYPIaCgklnSpjr+y6ztGIp7f52JuZMxB/1q0IVXKtQVedWj/u4ktdKCQTSk9GrZDid+bAcCqEEAijhMLJex5W4hxPe89gMNmRFxm60Y9Ka8EV9RKQIOo2OPHMegWgAk87EQGRAPeaPT/v4H3Wxj/t8wwQ2GJvsQ6LSWWLIJR4zICgW4hotF0Jt9AR6WF21GkiQVlmRaehv4NnTz3Kh7wJxOY6syFRlV5FjymFvy17WVK3BpDPR6GlEp9FxxXeFAksBsiITkkJML5yeNirdKumIpj26q7jaeTia2bN27SqW9XewcOl/sr/vOE+e++07+nvLIIMMMsjgTwtJ7tAX6uOXl55j9ZJl5C+ZRZHogEgEwWol8KtfAaijmoLBgBKJDPN9havrUzAII6y7QzEWz5MMOswbN6IEAhjXrk14v0WjCCYTgsWCaDJRFhHJN+enJMQnkW3MxqgzjplgORhDeZ437MVDGONoqaZDOv2Gda8NEekEl5PQLQsx2xzjPq7ktTrXfY4KewXN3mYGIgOJbfaE6LW0Yik9oZ60r/dFfLQNtFEiOjDHhMT1NRpRoqOyEExx8X3leZ3+zmECG0BjfyPfP/h9nlj5xKgdbVqNls1nNtPub0ev0WM32Mk15abwvA4lzIGuvShTYfaC9ehiMlGtwCHPafae+in7W/erPG9P0x5WuFbgCXvGxfP6Q/08se8J4nKcmtwagrEgVp1VTaE3aA0YtUbebn+bT07/JPtb9yPJEtmmbALRABNsE8jSZ/F68+soiqIWuzM8L4M/BWREtgw+khhsjto20EaloxJf1EcgGiDXnItJayIQDRCRI7zZ8iZF1iI0goYXzr6AXqNnYs7ElP1dr4+DYLUijjC+ILqcCFar6r8wEqYVTGNJxRL2Nu9FFEQkWUJRFOwGOyucK0asgI2EwYQU4OiVozw661FeqH+BN5rfQBAEFEVhev501lWv44m9TxCSQoRjYfqlfvIsefSF+1AUhTNdZ7hj8h2c6jpFLB6jxFaCL+Ij15zLotJFBGPBcROZ5LUibCD4P79J9S0ZFIJgfeyxlNfJXi/BTZtSKnfZzkomLZnOV/b9Pcsql+EJe6hwVHCk/QiesAdZkREFkRxTDisqV6ARNBRaC98ff4hgMC3phbHJfszTj2bzKwhXv18aYIbLiXPFWl5qf5VP1X4Km8GGL+LjxfMv0h3sxqq3ggKiKNIy0EJACjCneA7T8qdxeeAyD0x/gO2XttPkaaLIWoSiKLj73YSlMDmmHCodlVQ6Kmn2NOOP+ZF0Y6Sfca17YJgfjckEgkDwZ/+N+epNzq3OSm5a8k98Zd/fvye+KRlkkEEGGXx0MNQEf2vLLjSChoeq7sbxxkG0paVoSktTRjUtDz00qn/VeLxfkxiT510V0sYKbPpY5cfYfmk7JzpPpPC8ibkTKbQUMrVg6riPaSjPi8pRvvjm1/n1hh+m75q/mkA5DFe71wSXk4tCH9YH78Asa4hqBc4Gm9GF25kUs103z2vztvF2+9sUWgopt5dTZC1ilWsVp7tOc/DyQW5x3jLstU2eJnY27OShio3Etu5I8ZczP/jgqO+blZXHbdW3vW88r76rfpjAlkRjfyP1XfUjimyXei/xL/v+JeX1yYmXg5cPqkmsSZ738qWXicmxRECBqCUSj2A32FWed6brDI/Pe5wTnSd48sSTFFoKx+R5ASmAUWMkIAcIxoJMzpuMTqPDrDMjICCS8GfrDfWyq3EXM4tmMrNwJla9FVEQyTXl8s03vqlOu2hFLXnmPIxaY4bnZfCRR0Zky+Aji8HmqP6YH2/ES3N/M3Elztmus9w26TZeOvcSjZ5GjFojGkGDXqOnwJLwpRqM6/VxMFrtsH4dsa3bUwiY6HKiW78usX0MFFoL+eyczwKJ0UdJltCKWiocFXx2zmdHXJhHQrpUphfPvcijNz3KJ6d/kp5gD3EljsPg4C93/iXReJQiaxHBWBC3x8266nX4Ir5ENc1op83XxirnKmYXz+bty28TNAUZiAzwz2/+M+X28lFb4Yei0lFJbMCDprQ0rcGuxukE87VrIodCwwQ2SPiBTRAEvn7z13ir5yj+iB9/zI9JZ8KgNRCX42hEDaW2UhBgccXi961VfUyflBG2y6EQkc1bhhF7pdGNFaitm6RWB5s9zXT4O9CIGvrD/UiyRFyOo9PoaPW2sqZqDT3BHtp8bWy+uFkV2Kqyq7jQdwFPxEPbQJtaYXZlu2joayCuxPHlz6FuhHRejdOJdPFiSmdi8romQkEWE/zNb1K6CBR3ExOAh6d+kj0dB98T35QMMsgggww+OkjH83Z1vcV9t95K7JVdw7vjx+g+G3O0chBuBM8DmFIwhW8s/wY/O/oz3P1utKIWAYFCSyFfrPvidXG9oTxPL+q55L/ElXA3hcuWqQmUgsmE7PWqCZTDoNUiOCvpWDydrW27mVE0I8HzpATPu9B74R3xvL+Y9xfkmHPoCnSh1+gZiAzwXP1zSLKEK9s1TFBMppLeVbaG2LYdwzv/m5pGtqNwOWmVet9XnueJeN7Rdl/Ex97WvcMEupAU4nzPeUxa05g8T1ZkOv2d3OK6ha5AF5Ii8avjv6K+OyHsuRyuMXmeSWMirsRVMS+uxNFr9CiKQoWjgrM9Z1lfs559LftoHWjlcPthLDoLMwpmUJ5TztH2oyl2MpIs0RPsocha9J7542WQwQcFGZEtg480kuaoAEfbj/LS2ZeIK3EmZk9kds5sDFoD0XiUfHM+/aF+biq6iZAUGjYCOZqPQ9jvRfH7E+mRRiOCxYLRaseYkw93bry2zWBAsFrHTbwAZhXN4h+X/eM1w1SDg6kFIxumjoXBhLQv1EeDpwGbzsbZ7rMcvXKU4x3HqcqpotBaSH+onwJLAW3eNnLNuXQHullTtYZbqm5hTvEcDFoDdcV1/Ntb/0ZDf0PK+4ynFX4odFkOxA0bRvYoG9TVNZoPh9LopmTBVHZc2sGX53+Z/zr4X7R4W9TtZVllVOVU8btTv6PCXjHuFNQbjbHI/Ejbx/rsNcvn0xBLiKj+mB+NoKEn2IMkJyrTScITjUdpHWglx5jDI5Pv41szv4pegrhewxtdh1Qy3e5vJybH2Neyj/quepZWLKUj0MGbXYepvGq8q4zidaN2sAGiwwFaLf4f/zh9KIi7iUVL7qQt0v1H903JIIMMMsjgw4fBPK+rp5XZeieBgV4sq25BUBSMa9YgKApyJAIGw+jer2bzsMdhZOP6G8HzAOYUz6E0q/SGcL10PM+hd0AkSHj37kQow5IlSG1taQU2jcuFku3gwqIqzvrOsGHShhvG88od5ayduHZEj7Kh+0l+hgLRRijNNVPtKARhiB9ZJVcWT+NfD3+fry382vvG8xwGxzva3uxpxhPypN0WkkJ4w161C2wknqcTdYmUz4EWrDorWlGrpqxGpAjHOo5R4ahQPdPS8Txf1EddSR0HLx/EorPgj/nRaXTUldQxrWAap7pO0eZrY0bhDBaVL8KkNbF24lrMOjNvtb6FKIiUZZXROtCqHr8kS2gEzfvij5dBBn9MZES2DP4k0ORpojfUy8yimfSH+zHpTLQOtDI1fyqyLBOJR5g7YS5T8qfw8qWXU4w/R/NxiPX1Im3dlhqx7nIh3XorhMPoDAYEe05iZOAdotBa+I5FtXQYTEjLPeW80fQGPz78Y+6acherXKs433OeDdUb2HxhM/tb9zMxZyIWvYUsQxYbajaQa86lJqeGCkcFhy8fHka8khirFT4dNDk5mO68c8y0zbG6wHSSjNvjptnTTImthJtLbiYaj6qV04OXDyLJEu3+9lHJ1/UkQl03zOZ3RPbH+uyaqITVmqgOWnWJlv2kL50kSwSiAXQaHSatiWx9No9Pfoj8N06guE+o+7jHWcmypd/ki2/+LSEpxEBkgJAUIuQPqRHvgiDws4vPMG/6TFau/BT6GOiMZjQGI6Ht21URbWhym9TWNmooiEXW/tF9UzLIIIMMMvhwQ/Z6MW9/XeVjYRJdZbHVy9nR9Sa+qI8p8hQWjbOYl8SR9iMpXWaiIFJmL+Peafdi1Bqx6C1UZFe86zXrRnK9oTzPGFYIPPMMhoULMa5ciRIIoJs+ndDLL6fyV6cT07p1HIs2YbQ6uKP0jhvO82YVzeKJlU+MS1BUxwnDkfQ7i8UIvvAC5k8/SnuwMxEqphPZ33eCJ/f9PSEp9L7yvKkFU3Flu9KOjKbr3EvCH/Nj1I5ciI3KUbULbCyeZ9aYueK/Qo4pJ9GFhoJZZ6Y/3E8lleo+0/E8rUaLL+Jjct5kbiq6ic5AJ1pRS01uDf9z8n9UUa++uz4lzOFA2wE6A524sl1YdVa2XNyiCm02vY35pfMzPC+DjzwyIlsGH3n4Ij6OdxznJ4d/QmN/I/3hfqLxKNMLpvPorEfxRXzcOeVOKhwV+CI+Zk+YnWL8OZKPg+TpJ7Jl6/D29cZGwlu3Jsz6AwHo60NxOBBsthHFNl/Ep447WPVWKuzvnrCNB5WOSvaJ+8i35HO66zTne8+jFRIJnL9Z8zMKNVkQjoJRT48SYEAbZ3L+ZPX177QVfjRobLYULzI5FCLe06OKboLFMmYXWEybSCL1RX0c6zhGy0BL2udJ8eGpWUm8k0So64HGZsN0nWQfxu6AUwx6KhwJgljhqCDblM2kvMQIaaWjkgJLAREpQklWCR933Ub+G8dTEtkAcDdRQGJ088enf4lOo1M3DU4FM+vMnPc3sb5iFdpoAPr6kfV6jMuWwcc+BtHoMKF0rOPPsuVilzRIbW3q9X43InUGGWSQQQYfbYxkISE3utG9AlMWV5OTXax2zoynmAdwtuss33j9G5zqOgWAKIi4HC4Oth2ksb+Re6bcQ1+4D42g4ebim7lpwk0jcrf3k+dJzc0QixF54w0i+/er3eXGj30MVq6EWEwNhACYWzxXff17wfOGCoq+iI/TnaeHnRt1nNA4yphvLEZciXPPrs9g0Q/PO30/eV6htZAv1X1p3J17SVh1VgQEiq3FKcmcSRRbr32Xx+J5VdlVfOuNb7GofBFxJY6AgFbUEo1H8Uf9CIKghp4lMZjn2Qw2IlIEi95CjpyDgEBICvFA7QN4I140goYCc0GKUGrVWYkrcdoG2phgncBXF3yVgcgAESlCliGLqXlTyTHlpL3mGWTwUUFGZMvgI48mTxM/OfwTzvacBRLt2QoKV3xXeOncS/zzyn9WFyubwcaMwhljtpbLoRBKv2d04/rFiwk+/bT6WDKyXbSnjhGc7znP0yefprGvEVEUsRlsVDmquG3SbcTiMS77LxOLxyi2Ft9Q49Yk4TNoDIRiiW6lqXlT6Qh08OLcJ2HH7pT2/Cynk8ING1L24TA4cBgcVGVXYdQZkWQJo8ZIT6iH873nx2yVHwvpwg00VVUJEaqqinhDmuqqs5LdnfsB0AraEc+XSWtignVC2m3vJhHqepCuc082GbgQuYK37UJa4iFYLCN+dtHlRGu9ZkZsM9hYN3EdZzrPsMK5gjea32BP8x6yTdnUFtRiLb9juMB2FYq7iYWLN7LJWowiK+rjRq0Rb8QLgF6j54uTHia+dQfRNCOjkWPHMG/cmCKSjXb8GpeL+OV2lP5+NKWlKAMDYDKhZGejcTiu69xm8NGAHAqh+HyJvw+9HvR6BJMpI7xmkEEGKiSfd0QbBbnRzdQ1qzE4itTHhhbz0sEX8fFa02uqwAaQa8rlYt9FJFlKFJl6z/Nc/XNAIg30zsl38tCsh6h0VKbsaySe94lpn6BEkz0uwe+dIMnzJhvyrj0Yiw3zvjXfdx/BZ55BcDnx1lZRyLXnv9c8r8nTlOIVDJBjyuH2SberQQ5dsg/HKJ3/F4NtxJX4sG0fBJ6XrnOvKqcKf8TPgbYDaXlehaOC15tfZ6VrJbsbd6cIba5slxpuBWPzvO0Xt/PIrEdo7GtkXvE8zvWcS5lIiEgRynPKR+R5kChYX+y7yI5LO9THiq3FrHStJCSFuLX61mHHn2PKwRv2EolH+MHBH9DoSZxnm97GStdKFpUtoi/URzAWxKg1csJwgkXli4b97WTw0Ycv4uNi70Xafe3otDqKbcVU2is/9KJrRmTL4CMPt8etCmyQaLNO4mTXSdwe93X7NSiBAIRCoz9pyFhfvKGB4ObNmO++W71BvNR7iW+/8W0OXD6gtl3b9DbaB9pp87Vh19t5o+UN4Nro6qdqP5V2EbqeKun5nvP8z8n/4Yr/iurB1uJp4eNVt/Fg9T1IL+8a3qHndhPasgXTnXeqBLDIWsTs4tm8UP8Czd5mICG81BbWcuvEW8eVijX0uPPN+fQEesgWzeS29GGoq4M5c9Sk0ciBA4R27LjWBTZYrHFW0rKwhv94+TGyjdkIgsDyyuUcu3KMkHTteiXPZXVuddpjejeJUNeLwWS/ydPEprO/S0s2k9dcNJkw33Ybwc2bUz67psqFYcMGdI5s9TFfxMehy4dY6VrJa02vEYwFmWCbgC/i41zPOTSxkSu8AIa4wJqJa3CZSri/dB16SUFvtnHK18Af3NtYU7Yc4eVX035XIoC2tDTxtzJIEBnx+F0uTGvWoMgycVkm+Pzz6lipxunEdPvtGaHtQwY5FEIJBFK6UK9HHJO9XoLbtqEtLEyIrn4/mEwI0SjBgA/FZvrQk7AMMsjg3SMWDIy6XQoGGD3yYDiaPc30BHtSHjNoDfijfnLNuTR7m1OS6PvD/RzpOIL5jJnPzf2c+ts0Es+LxCIUSkZCm/6Qvps9J2fYMb1TnvfEvL/DOIpIFW9rQ3A6ubJ4Gv9x4P/yjeXfUDnOe8nzekO9XPFfocBSgKIo6DV6BAS6g91sOr+JR2c9yu2Tbmd7w04eXn8H0a3bh50r/fp1PHn4X7DpU8/DB4nnDe7ca/I08eL5F0fleTaDjQ01G9hyYQtLK5aioBCWwjhMDpaWLaUqt0p97Vg8LxAL8Hz980zNn8q8knmE42H6gn3kmfOISBEmWCew0rWSC70X1GTbZNcZgCfsoTvYTSgWUgPYANr97exu3M3SiqVqCEMSyQCO192v89SJp2j0NKIX9Vj0FjVYoam/iQlZEzjbnbg/K7YWIwgCuabczLr+IcK77dBt8jTxm1O/oTvQjU6jIxQLqWPbTruTaYXTPrTfh4zIlsFHHv7I6BHRgehwcjZSmEESSjgM2jH+fNJsjzc0qKKDL+Lj9ebXU4gXgDfi5XTXaToDndwz9R718ZAUYl/LPowaYwqBk0Mhoj4Pcb+XQp0ebyjIJverWPXWlEU7icGx4BadhX0t+/jq/K9yZ8ktGHe9iSbfR2SEinDc7UYJBjkdbCYkhTjafpQmTxMDkQH1OdF4lBZvC33hvmEprUMxuIKp1+iZnzuLXItAqazDYjYTFz3EOzrQVlaCLKOdMgXtjBlI586BJGG++27ifh9+Xx9RLRzxnuW3J/8fNxffTL4lH4vewh2T7yDHmENjfyNROYpe1OPKdo3qB/FejEeMhWSK1mDiBdAX6lPJZvJ4Rbsd8913jylgNHuaGYgOYNQaedX9KpH4NV8TnahDGCNpTW+2ssq8ANvuA8juferjs5xOipc+hEUwEG98Lu1r4243hvnz03rIiXY7+rVrEPr6EfT6hLDW1IT/5z+HWAyNy4X5nntUoS0p8A4WqDP4YGOkLtR03bxpXx8KEdy2DcPs2UQOHkzpvNA4nRhXr+ZI6zEK88ozle8MMvgTR1yvue7tY3lx+WP+YRwmLsdVT6sOfwc6UZeyPRwL09jfqIoOI/E8X9THV2d8Nn1iZpqCpi/io767nhfPv4g37MVusGPQGoaJM0kM5Xl3bnuQ1za+SHhrqsWJxuXCtG4tXYEe9mS18qt9f09YCnOm6wzdge4bzvMA+oJ9ROUoS8qXcMV/hRMdJ+gJ9vDgzAfpC/URkSLU5NYgINDqaWVq4VQ+Of2TNAy0YV05j0LNLQmPNqOBLtnH7849xZziOeRZ8mjxtHxkeF6lo5KHZz58TcDQWalwDBcwxuJ5yyuXc/DyQW6puoX6nnpmT5hNia2E8qxyWgda0Qga6rvrOdtzlsl5k3Flu9jt3k2uKRdf1EeJrYTawlp+d+p3ROUoueZc1S+u3d+OgnLNO28QKh2VlNvLMevN1BbUEogF1PubQCyATtSxrHIZpzpPoRW1tPvb2XJ+CzMKxp4myuCDgdG6UMfDy3wRH7+v/z1RKcrBywe50HuBUCxEXIlTW1jLp2Z8ijM9Z1jpWvmh5HkZkS2DjzwKLAVoRW0KwUlCK2rJN+enPBbu604byc76dYkkKRK+UtKFC6Ma1ye9LYYiKTo0e5rp9HcOOy5JlvBH/WSbslEUJWVbSAqlELjBN7ICoAdmuJw4V9zNrxpfGLZoD40Fl2QJs97M/RUbUHbsStwQz5kzytlM3Pw+3/Q8hZZCmr3N7GvZx8SciQgIaqKRRtTQF+wbVt0ajMFkQ6/R85DrLrJ2v43iPgRAQKfDfP/9RE6fJvLaaynn1rB0KZDoihJNJry6oLovV44LSPzQ31ZzGxWOCoptxWMSlcF4p4lQ7wbJFK106AsNP5eiyZTSIZYOnYFO3P1uSrJKMOlMaEQNsiIjCiICAnu6j7DBWZl2ZFRTVYXGZEO39eVh33HF7aZAAHHxQoYPaAyCJI3owSYFfIjt7UitrcPGfOKNjUQAw8KFRN5IdHIOFqgz+GBjJH+kdN28I0EJBNAWFhI5eDDtTWh4504mr1rGz848m1J0yCCDDP700C9EyB5hLROclfQLEbIGPTYeLy6rzopBa8DlcKmjbhpRg6IoyIqM0+GkN9Sb8l5aUUtUjqqiw0g8D6DaXErE/XLazxN3uxPJnzYbTZ4m9rXsY+uFrSmhXJPyJgGMi+d1+Dv4z3O/4pE192BXVkMkDAYjflHil80v0RnoJMeYw/LK5Ry5coQjHUcIRAM3lOcB9AR7ONh2EE/Yw7nuc0zKm8RAZICHZj7EDw/9kMb+RoKxYKLoWjKfry34GlOZis1gY0r+FJo8Tfz4/PPDbuoXli1kQ82GjxzPGxxgMRLG4nm9wV7yzflU51RTnVONrMgICLQMtFDpqGRizkSOXjnKxJyJaAQNoiDyZ7P/jMPthwlEAziznWy5sIXuUDfZxmx6g70UWgvVjrawFL7mnTcE3ogXAYE2XxuN/Y2EpTBmnRlP2INRa6Q72E15VjktAy2q0DZWUEUGHwxcj2A8Epo9zcTiMXa5d6UIbAAnO0/yqvVVVlet5vkzz38oeV5GZMvgI48ZhTOYXzJ/WCVRK2qZXzI/5cc87PcOE9gg4ekR27od7tyI0WpHsFiQuroSvlMwrDJomDeP4AsvpD2epOiQjMIeCkVRVBKXbnuSwI10I6s0urECy+rms7N9T8qinYwF14k6agtqyTXn8vikT6H3hQgm9zNWh55RnzhXUphoPEokHsHtcVNkLVIJJjIpRDMdBpONZYXzrwps186jYf58Inv2jDiKqJs+Xe3eGhxZn45gjYeoDMY7TYR6NxjtXI1nO6SO50V1AhZZy1ttb3FbzW30BHtUM9qIHEGn0fHLc7+hduG3qRBE5DQdR0oshn+Erkal0Y1+1S2MOjRtMiFYhhsRAwgGA1qXSxXRhiLe2Ihx2bKU7WMlq2bwwUDc7xvRH2m8YqkSDqMpLR3mHaTup7ERo7wipeiQQQYZ/GnCZMumb/lsciBFaBOclfQtn43Zds1GYbxeXBWOCgRB4O6pd/NC/Qs0ehqJSBEcRgcuh4tSeykvX7omktn0NgQE9KJeFR1G4nkAQiSa9vEklHBYvZHViboUX66QFOJ8z3lmFc0aJs4M5Xl2k53lFcvRaDTcs/0R3r78Np+e+Wkqsit4tv5ZTnaeREDApDMxo2AGn5j2CWLxhFXDjeR5ESnCiY4TNHubicajdPg7qHRUUp1TzU8O/4TzPecx6RLrQjQe5WzPWX5y+CdMyZ+idhiOxfX+FHgeXBvRa/Q00unv5FTXKfIt+Wl5niiKBGNBsk3ZnO85r4oYOaYcFpcvxh/x0xnoVPddZClid8NuesO9FFmKiMVj3FR0E9nGbA62HcSqtxKRImj1iXsFh8mh+loPhcPgQCtqafG0qGEKyeaBsBSmO9DN5PzJXOy7qO5vtKCKDD44uNh7kXPd54jJMTSCRk2nNelMCXF+HLzMH/MjiAKN/Y3IijzMV7FlINGZ+mHleRmRLYOPPAqthfzvRf+bf3/r36nvrieuxNEIGqbmT+WrC76aMh6g+P3DBLYk5EZ3whPIak/4Sq1bR3D7drSlpYmkJklCyM5GiUSI7N+v+kkNhqaqShUdrDoriqxQllWmRltDwohUEATKs8oRBXHYPpIETgkERryRVRrd1Cyfz05SF21/zI9Fb2FpxVI2nd/Ep6fcj/aVN1K61+JtbaN26A2Iic9l1BrRaxKCmyRLKYvu4OMcCcnj0mv0zLROJO5OvZke9QY7OYo46Gb9eoW00fBOE6HeDUY7V+PZnm48b6rTyUvrf813T/6YyXmTOddzDrPOjFVvxaq3Iisy36//b7638TtYowwbPZVG6MZMIiSFwVkJ6TrhnE7E7OwRO5YEqxV6+kfdP7J87f91OgSzeVjSbGZ89IOFJk8TDl8YYZTnRAIDmPPyUh4bOqKv0+thYGCEPVxFNDrmTV4GGWTw0UeBtYCTgQ7O3mRn2uKNaGMykk7kTKCJEoNCpbVAfe54vbgG+2LdOeVOIlKEkBTCme0kKkX59clfE5MTfMimt+HMdiLJEq5slyo6jMTzIJEEPhoEo1EVqeyG4SP2ISmEN+ylwFowKs+LxWNc8V8hz5xHWApz99S7qcmv4dcnf82R9iOqCKgoCqe6ThFX4vzVwr/iaMfRG8bzALqD3bg9boKxIAICCgqSIpFjzmFf6z5KskqGdfy1+lqHeaPdKK73YeR5cG1Er8Xbwu7G3biyXehEHREpwpS8KZztOZvC8wwaA0srljK/ZD5T86YOEycPtB1I2b8gCBTZijh85TDbL26nNKuUgcgAlY5KNtRsYE/zHlUMcWW7WFq2dMQOo6kFUymwFBCOpxZIBQScDifufjeVjkp1fza9jWJbcSZ19AOOJk8TBy8f5FzvOXKMORxqP0RPsAej1khciVNgKWBpxdJhf6dDR/TNOjOxeExtLhkKURCJxWMfWp6XEdky+JPArKJZfPtj3+ZU5yn6I/1kG7OZUTCDckd5yvOUSGSEPQzfLtrtmDduHOaLpUQimFatIhSPp/cjuioKVDgq0Gl0rHSuZLd7t0rAtKKW2sJaVlWt4lzPOUxaEw9P/iQLc2aiu2o8b7Hko4SimO+7DyQpJRRANYuPJsjK4EXbqrNSbCvm2TPPYjfY2Vi2mvirz0NdnfqcyIEDmO++e3iHntOJsG4Vr3YmhC8BAZ2oU8nj4AqESWtKIZrpYNVZ0Wv0POK6G4M/THDoE6QxqlmS9J52NqVLhBocUT4exH2+caeGJdOY0o0S5JhyRj2XI3Y1ut2UCLCiZiF55oSoca7nHHnmPEpsJRRaCnl83uNYs/LS7XbEUc8kusN9+BdU4YQUoU1NgB0lqMBotSP5xwgP0V+9Cbk6OhzauvUde3xl8N4j2XVxX/FaRrt97JMD9Hha1N/fdCP6wgjG34MR0ipj3uRlkEEGfxqoLazFYXBc43lCNjPKZg/jedfjxTWSL1anvxO7yc7m85vpDnQjICDJEgvLFqb4gI3E8wCaol2UJguaOh2G+fPRlJYmuI/JBEYjuVErX6l+GDEa44GSW7kQamNryy4OXzlMTI6pQV6j8bwZhTPoDnaTb87nyJUjHG0/ysKyhbR4WzBqE2mhCAlxxaAx0OnvVM/BjeB5kDDP7wp0EYwFVSFNURQMooGIFCGuxBEQ1MKyKIhY9Va0ovY98UZL4kbwvLG8/Qbj3fA8SB3R6w500x/u53D7YVY6V3Ks4xh3TLoDBWUYz/vqgq8O+ztIYuj6adKZ2N+6n3M954grcTr8HdTk1tDkaSImx1hXvY4OfwfVOdV8qvZTKSEMQ1FoLeSOyXdwoO0A53vPAwmxdkr+FOYWz+WF+hdYPXE1GkGDTW/jril38XLDy9e89TR6XA4X90y750PpyfVRxODuWofRwaH2Q2onZCQewaQ10R3o5kTHCWoLatXvR7oR/ZXOleSYctBr9ClegoBaWBAE4UPL8zIiWwZ/EmjyNLHt4jbsBjthKcyF3gv0hnqZE53DtIJp6vPGMoIfuj2tL5bJhBwKYVq/HqJRlGg0IcDZbCldNzaDjfU16/n1yV8zrWAa80rmEVfi5JnymFowFZ2g41j7Mf5j0T8xYe9pFPdLiRfqdGjuv5/w3r2pgoPTifnuuxNjqrEYcb122KJd4ajgVNcpZk+YzbaL24gEfVgY0r0WixF84QUM8+cnOvQAsrK4EGzh4T/cxqOzHgUSVUlXtgurzsqWi1vUVvBkotNohrPJY1lTsgzb7oOQfJ/BGEewxFgi0LvF4ESo60W8ry+RfjrO1LBkGlM6E9GNkzaOei7H6mr82JK7eLv3JH8+988xaA3oRB2iIDI1f6rqP5MOgsWCpqoqNcE1iSmTyLLkUIYBcVkpwuo1KAJIgoLB5hhXh5mg14/aNZmEce1aIkO+73B9Hl8fdlwPkX8v9zEakl0XF0Jt1Lqc6buCnRW81LqTsuhEyh3lI47oR15+GcunPz3y98PlYlf3oTFv8jLIIIM/DSQ7fGRZ5tMTP445rgFPmHikE4xGNFeLMdfrxZWuc8pmsFFoLaQmp4Z2fztSXGKCdQLVudUpa7XNYOPTU+9H8g3wF2X3IBt0nPE38nbPSZqj3UzcsJ7wjpcxzJmTGvBytbBku7ruKYABmOGsIG/xXdiNdna7d6MX9WPyvFOnTtEb6iXLkEWJrYS6kjqiUhRvxItFZ8GkM6EVtdj0NrSilt5QL76ID7gxPM+qs3Kw7aCaHKoRNMSVOK5sF60DrdTk1SAKIlpRi17QoxW0CIKARW8Z1/V6t3g3PG883n6D8W54HqSO3yavRTQeZfOFzcwtnkuOOee6ed4w4U+By77LaEUtOnQsKFuATqMj35KPUWtkWcUysg3ZzC6ZPa4Os7KsMm6tvpWlFUsJS2EMWgP9oX5ebXyV6pxqrDorsyfMZkHpAhr6Gzhy5QjB2LWyu7vfTTge5st1X/7Id7R9mHhekaWIPHOeKrAJCESkCBpBQ7GtmIOXD+LMdqLRaDBpTXz/4Pdp8bYwNX8qWYasxBj61XTbBaUL2NOyRxXc7QY71bnVlNnKuOK78qHleRmRLYOPPHwRH9subiPHmMOPDv2Ik10n1W1zJszhWx/7FovKFwGJETZxhJtD0eVMjLiNA4PFt8QP3hk8vak/eE2eJnY27qQsq4zqnOrELLvWRE1ujSr81eXNwrz9NeKDuoTG8iozzJ9P7HIbLbHuYYu2zWDDrDWz7eI2Ov2dxHWJxK1h3WuxGJG9e9G4XERWLeZTux7FF/XhCXuw6W10B7uJK3H6gn08Uv1xvlb90NW0JyMRnYBiNY+5GNoMNqZZXUTcu4iXlg67mY63taFxudKKRxqnE9nvR1NWNq7r8cdG3OcbJrBB+tSwwRjLb2QkjNXRFw+H2HRhE1wAs87MsxueplC0YZV0xHt6Rhy7FE0mzLfdRnDz5lShbcokLCtXodm6lfAQEdGw/tYRBa/BnnGC0QgGA4Zly9J2TRqWLgWdDusXvgCyTHjz5vSfraEBxef7SAciJIl8i7eFmtwasgxZ7Gnew+LyxcwrmTcu4nm9NwPvBMl2/jc6D1C18hOYFBnczdee4KzEvaCK72y6l68v+Tq+iA/tSCP6sRiBp5/G+tinCW3bnvL9E11OOpbO4Hzry3xy+ic/8sQ7gwwyGB3J7gpZlvnipAcJbdlKYIQC143y4rIZbMwoTCQhql3rHX3EjUG1a132etFu3okwiMfMdbmYd+sjyFYzWoMN0/r1hDZtSulo006ciBIOY6irI15Scm1Kwd3MBKB0Uh6zJ8wm35w/Js/LMmSpHWT94X7euvwWK1wrkBUZX9SHTqOjyFqEWWdGkiW0EW0Kz2sbaCPLkMXn53wenVZHXI5Tbi+ntrB2XDxvScUSjl45SlSOYtUnOHSRrYi64jq2XtzK1Lyp3FxyM56Qhw5/BwatgdKsUrSi9j3zRrsRGK+331C8U54HqeO3yYRPQUiEUbzV9hYlWSXsatwFwBMrn8AT9nDFd4XTXadHHLscKvyFpBB6jZ5CSyEzCmdw8PJB2n0JP0BREHFlu1g/cf2Ix5v0i0uOe+Zb8plZNJPnzjzHic4TaidjdW41t0+6nen501lasZRALMDmC5sRSHRUakUtAgKBWIB9Lfu4deKtzC6ePeY5+rBiMEfTilpqcmsot5czNT/xezWesdk/Js/rDnazrGIZe5v30uRpQpIlFBQqHBXMnTCXzRc2s2biGjad38Tswtm0eFuoK6ljT/OelI7eg5cP8vdL/p4KRwXne88Ti8eQFRmj1sjUgqloRM2YYv4HFRmRLYOPPJo9zdgNdlVg0wgaFBLz38c6jvHd/d+lLKuMckc5Rqsd1q9Lmy6qW78usX0EDF1YKuwVNPY38p8H/3PYD95X6r6CS5vP58vvgXAYTEaCYpz/vvQcb7e/zbSCaQmi5IvgH3IDOqZX2eLFhKdXU2N3pP1RkpG54ruCgsL29jd46KqnVkr3miSB0Ugsy8yf7fpzQlJIDYpwGB1Aorr4hZpPEdm6jeAQMmvesCFRdh0D2micCOlHVCMHDiTSRQUh5QY7KcBoRvH7et8RDKbtvoHU1LB0eCd+I2N19MW0Imadmf89+4vcP/FOpB07iTc2EgWijD52KdrtmO++GyUQIBr04VFC6Axmwlu3phd6t26DO25Hl+VI2ZbOM05TVYXp1lvR1dYmvneyjJCbixCPJ7y5ZBnMZpT+0b3bPsqBCEkin46gvHjuRe6dfi+fnP7JUUcp3unNwPUi2c4fjUfZ0fUmvooe1sxfg16CqBZe6zrItzbdSyAWwKhN+A25IuaRdxgM4vF0YbnjNgyhCFIogKTT0KX48AsxHr/58Q8l8coggwxuLJLdFV+b9hlCW9KvTaEtWzBt3Eih/Z17caXjeeZAbMSu9dDevRjmzUNYuRIiiUKkMjBA5LW9WNavTzw5FkusizpdggcN7mhj+JQC7maWLN6IzZ7PCueKMXleRIqgETVE41F1ZNNhdLCsYhkX+y6SZ8rDrEv8Dg/leQCt3lZaB1qZVjCNfS370IgaanJrruvGfWnFUix6C8vKl9Hma6PZ08yh9kMYtUbO9p7lrxb+FT878jO8EW9iRDTsYVr+tPfMG+1GYLzefunwTn3lBo/M5VvyE2mfoV5EQUyEpYk69Bo90/KnMRAe4OWGl5mYMxHrFSs5phxun3R7Wq4wWPhr97czs3Am/qifQ+2H6PB3IAqi2m3YG+zlX/f/K1U5VcNGUJPdpEO79JZWLOWeqfewvHI5wViQ6pzqxHigAnHi5Fvyudh6kQu9F/BFfdfO01WvQ1/ExxX/les+Xx8WDOZoWlGrcr1tF7eRbcxmpWsl5fbyEa/f0H0MxnvF8+JKnEg8QqWjkgWlCwjFQ+hEHYFoQiyNyTGseittA210Bjupya0ZJrABXOy7yEvnX+KvF/81lwcu0+5vR1ZkrDor2cZsJuZO/NDyvIzIlsFHHv6Yn5AUUgW2sBRO8ZU4duUYxzuPq4uFMScf7tx4zYTbYECwWkcV2NItLEatEZ2oo8XbkvLcUCzEVF0J4a3DK61f3PAg/3X+aTVFJa14MIZXWQiJPX2nub3g9pTHk+RQlmXyzHn0BHv4v4f/nSW3/0711EoSO02VC2nVMh7d9ef0hxMCR5KAVmVXMTFnItW6QiKbRyGzI3RrDYYqDg0ZURX0epRolHhzM9rycoxLlyZM8K96dAlG4wfah2ss0UcOhwhGfDds4RhtrFNwVvJmz1GeXfMLJnr1SNtfGX7Nxhi7THZmShED/3P4J3zRdV9KB1vKvtxuhGAYsq49NpJnXLyhgdC2bZg2bkzcgIjisJsV44YNiGN4cwn6VAew6/HC+6AjSeSn5k8dRlD6w/2c7T47Ylz64ASyU52nMGgT1eHBGOtm4HoweOxEJ+p4vnEzf7n37wEwaAxY9BaCsSC1BbWYtKZEspQhe9R9yjoNDYE2phVOI5nR9+G8khlkkMF7hWR3hTmuSeFVgxF3uyEUArv9HXlxpeN5n5v0IMLOfel50I4dmNasSXiJDhXg1q5Vg5uSfMEwfz6RgwdHnVJIcjRdTEZW5BF/8wfzvEAsQJYhC2/Yi6IomLQmGvoa+LPZf8Yfzv4hJbV0MM9zZbto9bZyQDlAX7iPl869REyOoRW1SLI07ht3i85CR6ADTVBDaVYp+qCeyuxKKhwVDEQGsOlt+KN+Hpn1CGEpjC/qw6a3cdOEm5hROGPUfb+fSHrFJQMhkqFqOo2OWDzGZf/lUTvI3gkGr7FWvZW60jpOdpzkocn3snbCUkyyyN9Oe5xeIcDnXvkygpgY4ZuUNwlgRK4A14S/CkcFJztOcvDyQboD3WpHGUCFvYLOQCdnus9wqvNUisg22C9uMPpCfexp3sO90+6lN9BLV7CLnxz+Ca2+VpWPrHSuxG6w44/60Yt6FBRkRSYshWnztlGSVYJWk8pd3uuxyD8mBgu2Q8Wo/nA/3YFurHpr2uv3fvI8g8ZAIBrgD+f+QEgKqTwvJsdUngcgyzJZhixaB1rRiTpmT5hNnimPiBzBoDGQZciiJ9DD7OLZzOaj062YEdky+MjDqrPii/jSCmwACgot3hZ8g0QPo9UOo4hqg5FcWLxhL7mmXCJShGAsSFyO0+RpYkreFE51nVKf/1+LnxixCyi0ZSufXvdx6iOJH9e0HUpjeJV5CGLTpy6gSU+6HFMOiqIwJX8KfaE+PCEPt2++n7+c80XWL9yARdFis+VhtOfQE/fxpXlfSktAJ9ucyB7PO+7WSiJFHLo6ogpg/vjHCT73nPq8oXEUlscegzGEl/cTY3WWKQY9vzz+y1GrUteDkcY6NVUuwquWMDPYQcWbF9DUzScy0jVraEhJa00Hm8HGPdPuQfBERz0eJRJOSYeaJBSM6BkXb2iAQAAMBkKbNw/7Tok2G3G3e1RvLgaJbNfrhfdBR5LIJwnKUISlMH2hvmHx5oNvCPPN+XQHE2Q5z5ynjpkMfY93i8FjJ02eJj4z5zOEpTDnes5hN9rxRXzUFtTy+M2P09DfwMzCmQiWkUf0cVawq2M/2Y4iphVOG749gwwyyIBBHT7XEV51PV5cSZ4XjAa5o2It5bp8hGgUm2AZUdTTFhUR2rZtRAHOeLWTLckXxpOonoSkE3HgSHlOk6eJnQ07WTdhKbflLmTDbTtQDHrqfY18csdjSHqJClMFU/KnMDV/KnWldSytWDqi0FjhqOBE1wmePPFkyvtIskRPsIcLvRfGdeM++Ka8baCNEluJKqJ0+DoosBbQ5GlK4ebdwW5q8mpG3e/7DYfBQVgK0xPsIRaPqVMykAgP0Apa/nD2D9iN9hvG9YaOdpbby/m7WV/G8eoh5N2bADACdmclT636IV/Z938ISSHO95xnVtGstFwh3XvcM+0eGvob1OsE4HK4WFi6kFebXkUURPrCfSk8T1EUvGHvsP1FpAjnus9xvPM4xbZifnHsF1zqv0RMTqRKakQNnrCHCz0XmJw3mSNXjhCNX+OY3oiX+WXzKbGWqI/9McYi/5gYzMHScb2k/97Q6/dB4HmP3/w4/+/w/+N4x/G0PA+g3FFOfU89OlHH2olr2dW4i4t9F4GEv+PsCbOZXzr/I8fzMiJbBh95JBd4BQVREKkrqaM4qxhJljBpTfSH+zHrzGMuPL6IjxZPC0EpiD/qRyNoyDEnRCtfxEeOKYcX6l+g0ZP40deJOrQaLV+a9yXO9pxVfQgcGEettFriGpUwChbLMF+ylJCCIRCclZwJNDHbuSDluLdd3EaBuYAnTzzJ9ILpVDoqyTXlYjfYMWqN7O06xP7uo0wrmMaXy7+MaDBRgImCQbH3g6EEAokx11EwnhE+0WRCe+salK07kAeLMGOMgb7XgQfvFrLJMKqhv18j44v42H5xO49OuR9dOJaSUPtOxmAHj3Uq4TCKQc9J30VevvAbPlN5T0LEmDN31H2Md+xyzPNvMPCHc09TaCkkx5zDxJycUZNw5b4+BIcjvWgrSaMm3prWrAFdosfpnXrhfZCRNH0eTDoHI0mkBnu1DK0oJ0X35M1RkbUopdI5lrH09VSMB4+deEIe/nHZP9IX6qM31ItFbyEej3O+5zzZpmzafe2IokjZulUI23eiDE4XdTrxfGwOu45+j6pQFS6Hi5r8mrTjWh/WUYIMMsjgxiDJ89RwqqFpnVfXnbHWLtU3VJYRFCURXGUyESJETIrxWPW9GF7Zi+J+OfGChx4acV9jiWbC1fUvyfPGk6gOicJSOp63s2EnD1VsJLZtB6FBa2CN08nJ+9/kL/b9LYFYgGkF06grrcNmsKkBDumQ/A1PeyhXu7fGc+NuM9hYWrGUJ48/SZOnCZPORKGlkNqiWnwxH5qQJu3rPuhpglU5VeSb82kbaEMrJAIjArEAkPB7DsVClNhKuOK/wr6WffQF+1Rfunezbg1eY7MFM/aXh3dSKu4mJgAPT/0kPz79S0JSCG/YS4G1IIUrjPYed025i2g8SkxOCIidgU62XdqGRkxcL51Gxx/O/YFCSyEOkwMBAVe2i4gUQafREYqFON97nvruekJSiOquai57L7OzcSc2vY2+UB9xJY5eo8cf9fNq06t8bu7naPe10+y95uU6wTqBuRPmkm/JB/54Y5F/TAzmYOm43mDBLHn9Pig8LxgL8r013+NC7wW6Al2JwBIFbIqeR8vvwBgXsRlyKZz0SQbCAxxqP0RIClGWVYZBY2BW0axEom3bfvTaxKhz8p78w87zMiJbBh952Aw25hbPZV7xPEpsJei1egxaA9F4VI06zzPm0e5vH2Y+6ov4aPW04o16OdFxAovewhtNb9Dh70BGpia3BpPORG1BLb889ktaB1qZXzKfXHMucTlONB6lydPE5NzJnO4+DYxDyIhEqChKpKiIJhPCrasRt72sdnpEDhzAfN99Ca+ywf5WLhe9y2dToo+n/DA2e5rJMeXw5IknKbeX8/Kll9GIGlq8LfSH+6ktrOXB2geJy3Hunnq3+vlHu5lVwmEwGjEsWTKMxCbFk/EIYW+1vsX33voeq1xLWLlgPTpJRjQYEbKMI44/aqqqECyWMff9x0Snv5OLPRfpDHYiKzL55nwWrl9HdOv2YaKQsPYW/v7AP7GiagUL7TOQ/rCJyBCfspH80cbC4MCN052n2dyyM7HP6FXyPkYXpKDVjhqEkFzU763YgGUUEbGPEKVZpfQH+1mWOwdp5+7UzzjUY0arhegI3XFabWKceNMmzLffjrBqFUSjCAYDiqIkboau3qy8Gy+8DyqSJt16jX7Ytmxjtko8B9+QDE4gA9Br9UzJm6KK/REpglaf+C6MZSx9vOM4//7Wv1PfXa+Ow0zNn8pXF3x1xIrxYL+ZZKX1bM9ZjrQfYV7JPE50nlANjeeVzKPCXsGtS1ZgqpuEXlLQm21sb3+Dv//dLcTkGAIC7f52HpjxAEeuHKEn2KO+12g+MxlkkMGfBpLdFbKkQTNjBsYlS1D8/sR46FVuInV0oJs1CzkUSlnfksIaoog8MIBoMhF+5ZUUfmV2ufj82vuJ73wNZfAaM1oi/RiiWbKrTjSZMK1fj+zxjP4htVo0Tie6taspkTuH8bx1E5YS27YjbZGJbTv49qqv84z7pXHzPH/MT7Yxm7+9+WusLFyIXlKIaUV2de7jP47/mLgSH1fy51utb/Gv+/4VjaihyFpETI6RZchiRv4MfBHfsPFCYFhi6gcBQ3mew+jg83M/zw8P/ZB9LfsISSEAZhXO4t5p9/Jc/XOUZZWxwrWCl869xL6WfWrh+t2uW8k1Nt7Tg3+kZHl3EwsXb+THJJIfY3KMLn8X3oh3zDHWZLqsu9/N0Y6jKdu0opaZhTOx6W2UZpXSE+jB7XGz5eIWGvsayTJkUWwrZvaE2ZTZy4jJCX6WFNN0oo6QFMJhdKCgIMkSoiASjUc5fuU4G2o2kG3MJiSFKLIWoSgK0XiU+u56zDozZ7vOvmMvvA8qBoexDOV6g3keXON6HySeB5BrzuUXR3/B707/jp8s//+o2H8Bxf08AEEgr8rF//rY55h18mm8ES86UcfHp32co1eOctl3GQGBM11nKLQWcnPxzbQNtKndrR9WnpcR2TL4k8C0gmn8w9J/YE/LHp4+9TTnus+hETUICNQW1mLRWdCJOs71nFP/kJs8TWy5sIV8cz6/Ov4rLHoLDX0NdAe7yTZm48x2cqH3AmVZZey4tIMccw6T8yazu2k3DX0N6DV6wlKY2RNm8+lZn06kpsjjEJ8MBuq767HoLVTYK8BqpmXZdKpvWYnQ700QxpYWtGVlGOrqVIFLslkQTTK1jtTETX/MT1SKYtAaeLPlTZq9zYiCSJG1iDJ7GaIg0uRp4m8W/426MI1kXpo8N4LRCLKM1NaW1qA3cuQImEcxNAdaPC18Z+93ONV1ikPth/gO31O33Vx8M0/f+iPY9vKQ8cerAtQHKPDgRMcJdjXu4sVzL6ot3pWOSqblTeMvVzxOkWYFQiSqjm3c+9tl5JnzeLz2MWy70/ivjOGPNl4MrlbG9Vo0jN4FqXE6idXXJ1JlRxD6kov6rxv+wBfXP5RWRNSvX8fvW7cnfMRsLibsPZ2SjgtXPWYEActDD6HEYonU3njqGLf63M5OzI88gmixENq5E8Ps2cN8azQuF+bbb08ZBUqHD2NAQqE1YdK9+fxmyrLK1O9YtjGbutI6rHrrsBuSoZXqhr4GHrvpMX5x7Bec7TmrEpfRjL7Dfi+K388En8A/zvgS+3qP8tT5Z/FH/bg9bn709o/49opvj0lmKx2VrJ+4HqPWyLziebzZ+iZGrVFNo7rQc4ELPRcSyWLnN5NryqXF20KDpwGbzkaxrZhIPEKLp4WnTz7NhuoNGDQGjFojoViIzkDnqD4zGWSQwZ8GKh2VxLq7MS1fntYywFBXR2jHDnSTJ6OrqkK02xOBPNu2YVy6lPDu3WhLS4m0tQ1flxsb0ezYhb6khMjFi+rjis834po6Zke+waAWtQSTCXy+kRPVXS4EqxXdtGnEDBpqs2pTtvtjfmq05SkdbCnH73aTK9zCA7UPjJvnZemzWFO4CN3xN1B2bVWfc6+zkgVrfsH/d/InYyZ/DuZ5Q3Gy8yT/uPwf2dO8Z9gxDE1Mfb8xEs/L0mfx2dmf5RbnLfiiPgwaA52BTv5t/79R4ahgSt4UdjbspN3fjll/jRP3hfpuyLo1FqfRxmQEBLIMWVzovUC2MZtDbYd4yf8SLoeLe6bdk1a4aPY0c7j9MF9b8DW+99b3UoS2WYWz+GLdF+n0d+L2uOkJ9rC/dT8tnhZkRSYSj9A60EpcjhOWwtw+6XZ6gj3kmfOQ4hJ9oT6i8ShZhiwkWcKqt9I60Mpf3PwXTMqbxLaL2zjReYKZhTP5wds/IBALMKtoFoevHOZU1ykmZk9UfQHT4UaNRf4xkeR53z/4fQYiAyrXG8zzIFV8vhE8r9PfibvPzXff+i6H2w+TZ06EoMTl+HXxPAAREafDyfdXfJfKfReRh/L+hkZsisI35v8NX33j68wrmcfe5r10BjopsBQgyVIizdjbhqIorK9ZjzfsJRANfGh5XkZky+BPBrIi8/tzv6d9oB270Y4sy8TkGEeuHCEkhfiHpf9AfU99olNn2r1sOr8JvahnZ8NOzvacZd3Edexq3KWm7Lj73VTYKxAFkXZ/O7c4b+GpE0+pc+YRKUK2MZtOfyd7mvdwa/WtXB64TFATH1XoCGkUzrSfwaA1qK+zZOUQDEQRBvmUDYXh85/hUt8lDl85nNLqa9VZ8UV95Jvz1WhvWZHVSG6zzky7r53uQDeF1sJhLcj+qJ/uQDdnu8/S6mnloVkPUanNR9iRxkD/qkGv6bbbxhzLO9V5Ki3xAjjUfojXe46wetD4Y7pRyvd7dKzTn/jhf6XhlRQPBUmWONpxlI2b72dK/hQW5c9hbfEycuMGtq/7H44OnMelLyTm3pJ2v+PxRxsLgzubLoTamOFyjjp2aairS3SWMbLQp7apx3z817mn+NTqO8lmFYQjYDQQ0ir8pnUrESlCgaWApflzUbb9Pv1nbGxEqasj+MwzqhG0prqa+KAbGMxmdJMmIbW2EnnjjcQNUDpj6MZGgps3Y1q7dtRz8kEfMx4Js4pmMcE6gUVli3jp/Et4wh7yLfmqwDb0hmTomE1MjnG+9zwPz3qYqBRFp9FRZCka0eg73NetJiwbSXi83O6sYOaCb7K/421WFi3EGBcw+yLImtCoYnCTp4mfHPkJz9Y/y7qJ6/j92d+TZciiwl7BFf8VjDojl/ou4Q17Kc0qpbawlkZPY6LAoCS8eaLxKL6oj6dPPo1eo0eKS+xr3ce8knnUldRx2Xd5zHH/DDLI4KMPUadL6+2Z5Cba0lJEqzWxXmzcSGjTJrQlJYRffVX1PRtxxLOxMVHYHITgpk1YH3kEqaUF0WZTi56yz4focKRyPbM50Y1ts6md23JvL5HXX8e8ahUahwPDkiVEFGX4+jxvHuHXX8e0di1aQUe8szMl2MdusENg9CIT4QjdQmDcPC9PtKHf8QbyUK7qbqICeGLdN8a8+R6N5x3rOEa7t10dO/PH/Fh11mETJeoI77u01HinGI3nnew6ydMnn0YQBPa17MMf9aOgICAgCiJGnZHjnccREQnGgjR7mjHpTNgN9nH5o42FsTiNpBOx6q20+9qx6CxMK5jG682vI8kS7n434XiYL9d9eRhv9sf8ROIRTnWd4msLv4Yv4sMb8ZJtzKbIUsSRK0ew6C0UWArQaRIBb7IioxE1KIpCLB7DbrRz9MpRckw5tPvaee7Mc8wonMEXbv4CPz78Y4KxIJF4BJ2oY6VzJc3eZr6959uc7z3P8orlbLmwhUg8glbUcr7nPIvLF9MX6uN17+vU5NZQ312f9jOPp7vyg4hkGMvZrrNsqN7A602vIyOnCGyDud675XlJX7uFZQt51f0qlY5KWgdaCcVCalptk6eJ2yfdzrLKZaPeWzV5mvjR2z/i2fpn2b3h+fQeu4Dc6GbDoo08X76IeSXzaOhvUMMRArEA3rCXw1cOE5Ei6LV6BASiUpS5xXM/lDwvI7Jl8CeDNl8b53vOE5bC6DV61TtBQOBi70X1332hPuq76ukL9VFoKVQX1WTLs6zISLKEL+pDQSEmxyiyJGbfz/eeV9/PpDXhMDroDfbS5G1iXsk8bAYbTzX8gT/fcH/aSqtx/a0se3Ejzd5mZhTM4LNzPsuOSzt4YMYD6LQyUpWLeEP6KudrXW/zz4f+TU05mpQ7if+14H8xKW8Sji6HevyDkYzkNmqNqoAyuAW5w9/BW61v0R3sJi7HiStxzHoz/2vSo8OJ11XE3e4Ru5IGoy88fERgMHrCPSnjj0Nxvvs8hzsO4wl5sBls6DV6VZT8Y7UU13fVE4gFhpmURqQIVr2Vhr4GNm34DdmvHUZ5fXtio9nMXQ8+COEww6/INbzbrqvBZsNvdB7AueJurK+iprgaly8HWU6kuLa1XRvdvIp0Qt/gRd0X8/H/zj0FgEbQUGwr5nzPeQ61H8KsM9Mf7udO+zXPmLS4Ok6jJrGtX09IktS/C/PttxPasQPD/Plj3wA1NIAsjypgj9Vd+UFG0qT75pKbR70hgdRrn0RMjnGu5xw5ppxRq4Fhv1cV2FLQ1s4U7TKc7hzkVxPfZRkIDul6HCx860U9Z3vO0jbQph4DwEBkgGZvMzW5NXjCHgothbj73ciKTEN/A83eZvJN+WpEfJ45j95gL/6onyu+K5zsPMnMwpnsb91PXI4zt3juuHxmMsggg484wuGRQ3aS4QGSlFgvgkFVOFPXlXH6oqVAUYjV1xNvbVV94MSrQprpttsIbd9O/PJlrA8/TGjHjmG8z7R+PbHmZnTV1Yi5uRhXr06kqcdiCVsESUIJhdBNT9xchv7wh2H7qNmwgbhp9EAijAb8sU5gfDzva6PwPMXdRIGwfvT3Y2ye1xfpGzZ2NhiSpx+l36OO/UoXLiB1dWFet+6PljA/Gs+z6Cxc9l1mZuFMYnIMWZGJK3EmWCfwmakPsq5kOV8s+zhBTZzXOg7wnyd/gllnJtuYzaS8Se963RotWV50OekTw9w7/V4u9F5gIDzA6a7TGDVGAnKAkBRiX8s+bp14K7OLUxMdk1wvEo9wuP0wkOB5OlHH0w1Pc7LzJPmWfPrD/cwqmsXEnIm4+93E5BiiIFJsK6ZtoA2NqMGkNSU84SJeXm18lQ2TNnB/7f386viv0Ipa7p1+L78/+3tmFc2ixduCWWem3F7Om61vYtFZKLQWEpJCagCDjEy5vTytyDbWWOQHHYPDWJZULBmV670bnjfY1+6mopvINefSOtCKJ+xJ8XHrCnRxrOMY3oiXReWL1Hur0XieXlJG/YxCNMZrTa+RZ86jM9BJkbUIb8SLVW9VeV7yGM92n6W2oJb9rfs/lDwvI7Jl8CeDSDxCJB5Br9GjFbXoxIRZuoJCXImnmE0m243DUlj9wUk+H0BREj8ikiyhF/XYzDb0op4CSwGKoiAIAnqNnsu+y5i0Jmx6G5f6LvHToz8F4Nenfs3225/FpqxOpGEZDPQqARb+bgUX+i4A8FrTa/iiPr6++Ou0eFqYVjgN+bbb0yRIVtGzdCb/+uqX6PB3qC3Ub7W9xTff+Cb/turfmFs0lws9F1LOhyiImHVmck25ia6Yq4tq8kfMH/Wzv2U/7f52bHobolYkrsQJxUJEAj6GO0Rdw3gEohzj6EmP2YbsEbcdvnyYb77xzZQK6ZS8KTx202Nsu7iNB2sf/KN0tHkinrQmpb2hXsqyyvjnRf9A9mtHUJJt0zodlvvvJ/zKKylJYekg6Ec7w2NjaArVU41/YO3i5VToFyPFZDR6PfT1paS4DsXQ65huUQfIN+ezr3UfOaYcsgxZ9IZ6CcaCBESJUa/CII+4uNuN3NeHoa4O4ZZbEjcYFguG+fMR/n/23js+ivvO/3/OttmqXfVeVgKE6F10ML3ZGJc47qlO9V3KJZf4colTfbnfJd9c7tLjS5w4LontYAMG44LBgMEGTBUIkFa9t9X2NvP7Y9hBK60kwCXG5vV4+GG0uxrN7O7MvD7v9+v9eun1mG+/HcFsVkIOIsnLk3I4jGnDhuHTRa8yP7ZksIk2ih3FKsGpd9cPUXAO/uzjuJQxHNnrTdqFjBc4By+6BqoeG0LtCX+zw9tBX7CPGbkzeLPlzYRraH+oH71Gj81g43TXaTp9nXzvuu9R11unvECA/mA/+bZ8SlNL2dewD1D8YM71nGN+wXxC0RCt3lZk5Pe9SfY1XMM1vPsYzTIgrjSDAfe3gYWzUXxLMSUqh+KNoFhTk6ISP3gw0UKjtBTThRTRYUN5tm1DXLwYORBAm5aGJElJeZ5pwwYCzz03bLCPeMP1IzaZOiTPZfG88D+Y50V6uglt3ZZcdb99O+aNG98TRdtIPG9c+jjVZywqRTHqjKSZ0tiy4THy9lYh73wSABNwi7OEOSt/w50vfkZVZxk0b4/nDZssX1pKePUSur3niEkxHj/xuNrkshlsOFOdeEIeAtEArd7WIdtNxvUyzZm8XPsyoViIXFuuyvP6gn3Uu+txGB00eZoIx8JoBS3dgW5yrblEpIiajikh8bdTf+Mnq37Cg0seJBKLMD13OhpBQ4Y5g1sn3kqju5GYHCMqRXGH3GRaMskwZ6jjj1aDlYmZEznbfTZpuujV5sc2HCySjgptDnIkiKA1IkiJ16a3w/OqOqrU985isGA1WKnrq0MjaIjElEJpPOAiKkXpD/Wr45rdge4ReV5YJ4x4XFqjmVJHKTqNjlAsRDgWVr+TcZ4HSlH3TNcZFhQuoN5df1XyvGtFtmv40CDTkonD6KAv2IdG0CTEhTuMDlWSCxflxkadEQEBm8FGp7+TYnsx9e56BEG5iBj1RuxGOwaNgeLUYgQEtXOXac5Uk1PeanuLHGuOuv2j7UfZ+Pxd2EU7X5j9BX748g+RZAlRJzI9ZzresJfa3loOtRyioa+BLItiljo4QVIwGmmKdPPpF79IY3+jarov6kRiUozeYC8nO0+yqmwVG8s38kbzGxxtO4ogCOg0OtJN6VQWVFJkL1Ln/OMXsQ5vBy3eFtJMabR72xEEAVErEowF8WtjI5KvSxnLm5w9mclZk5OOEkzOmszk7MlJf6/d285P9v9kyO+d7jrNw289zL3T7n3PJMUO0ZHUkF6SJU52nuR/534f+aWn1MfFuXPVsZRYQcHIqqvRyP4loMRRwn0T70X2+pBCAXxClAM9x9ne+AoPjPkE6bqRlV2DP0ebaOOe8o8Q83oRQmFiBh1nA03UBptJEVMAaPG0EIqFEBDY1X6A253F4Kofsm2t00msqSnxwUhEKfplZGD96EcJPP/8kHCPhMCEJPurTUvDtGkT+P0J4zQfhAIbXPTRCUVD3O68gSzJBq3dRE1+hAHHOTD9aSTV22AMt0gdMSmvpoaY18NW11YMGgPZlmyC0SBmvZm6vjoOtx5mQeGChGsooKaW+cI+ShwlvFT7EpMyJ/HU9Y8y2zERbSRGVK/lxda9nOo4RZo5jZZ+Zcw9GAuqpsnA+84k+xqu4RreewgjBREAmEzqPVe9vw1s9ozkW1pWSsRmQSh1qknIgs2mKOQWLRrWyiCwdSum1atHDOURVqwgsG0b5ltuScrzBIsFqb9/5G2Ehm8y6detYXv9s3x00keB9z/PC3rdRLc9P+LY79u11LhUjMTzzvecZ2HhQuYVzqPN10abt43PTfqEUmAb5EmFq44i4ItTPsXvTv2ZopQi9Fr9kO1eLjR2O7obr0fr9SEFA/g0Ed7qr2bbof+iydOEzWBjVdkqdtbsJCJF8IQ9qt2NN+JFp03ONSvzK9lcvRl30I1dtCMj0xvspTS1lDea3yAUU7iCL+wjRUzBorcgyRJ6jV5dI2WaFbWbP+InKkUJx8LIyJzvOc+fjv6Jn6/7OZvPbOap008xNm0sx9uPU2wvZu3YtWw+vZmwFEaWZTSCJqEg6XQ4eWj5QxfTMEXHsGORVyMktxv/c88l8F9NqRNpzXJCJr0aoHGlPG+gb52oFSlxlHCy4yQCAjIXlWjl6eWEY2GC0SDukJu6vjp21+8ekee93L6f25wlMPj7D+As5m912xibOpZ5BfNAVgr9PcEe2jxtGLSGBCVkTI4RkSJXLc+7aopsDz30EM888wxnzpzBZDIxf/58fvzjH1NeXq6+RpZlvvvd7/Lb3/6W3t5eKisr+cUvfsHEiRP/gXv+/kcyXyuLpPuHeiC8G5iUOYlVpavYWbsTX9iHVtAq6UhGB8udy9EIGkDpAkzImsCJzhMICNiNdpwaJzU9NSwsWoimUUN3oJtUYyrFKcXk2nKZnj2dTn8na8espcXbQkyKMTFzouo3MC59HHpBj16jV7tJMSnG2e6zdAe6qe2tpcXbou5rhimDqTlTOdZ2jN5gL97QRYns4BHKI6dfoy/YhyRL5NvyqXfX0x/qV58/2XGSwpRCKjIr+Pbib/PEqSdo9jRj0VvItGRSZC9K6HrEO1gnIidIEVPo8HVg0ptwB92kmdI42naUp8Tn+fQAojkQl5r+WeQo4oFFDwwxxZ2cNZkHFj9AkaMo6e9VdVRR3VOd9LnTXacJR8PvmaR4QtYE9jbuTTCkj8Oit2CMaRIeG1ioGM0fTQ4E3vb+SW430QE3ahFY4CyhZOHdBIFY3UgLiqGfo+R2o9vyIsKF7WmBqWWlTF69jEZ3I9Vd1XT6OzHpTOSn5PNc/U7mzXsAJ5qERLbBHnAqdDowm7Hefnvyrn9tLSFZTjo2qi0vhwtG0vHrliYr66q/bg1E3EcnFA3xT+X3Enl+R4LRtarYS1PUAyON4QyHYRepo4xRRQM+TDoTL9e+rF7LfGEfRp2RxcWLSTOl8cTJJ1hYtBBto5ZgLIhNtNHt76Yis4JZebP4e9Xf+XHlv1N6oBbZ9ay67VudxczdtJn/Of1Htp/bjoCAXqNHkiWMeiNTsqdcVWa415Ac13jeu4dkvlbAB47nYTKN2LwSrFZCBw6gLStTmi9lZQmFtWHvy2VliOvWQiSCfvEShJWriCKBoFVU1gYD2oICYgUFasJ6HLGmptEVdqGQ4lN6oXCUzCoj1tE+4ibkYICAwwzrV2KKyKpXaofkYXv9s6wqW3VZPO9v4jbu+wfxPNnrHXXs970KMhqJ59kMNjItmeg1em6ZcAv+sJ+1WUuQtz+afGOuOpbPX8/W+pdYXrocf8T/tvcv3ngLx8I8f/Z5avtqsRls5Kfk09LfQllaGa5eF1Nzpqqjn3G7mzxrHnnWvKTbcwfdFKcUI6coRZcsSxbTcqYpHs7+ToxaIznWHELREEuKl9DsaeZ4x3GMOiN20c6UrClMzprM2Z6zZJgy8Fl99AR6CEaDCILArzf8mv868F+YdCbcITcdvg5soo3G/kaePfMs68et569VfyUmx+gP9qPT6NAKWkpTSwnHwrj6XGRaM5mVP+sDdf+XAoEhBTZQ/MyE7S9xeLqd3MwSNfXzSnjeQN+6N5vf5LaJt3G+5zznui96Ipenl3ND+Q2c7DhJkb0Id8hNq7d1VJ73x6onmLf0JxRDQqFZcJbQuGA8P332OyxxLuG3h37L6rGrOdd9jiOtRzDqjOoo9ZLiJfz5+J8BZXrhauV5V02Rbffu3XzhC19g9uzZRKNR/u3f/o1Vq1ZRVVWF5cKF/j//8z/56U9/yh//+EfGjRvHD37wA1auXEl1dTW2D4iK4Z3GwIup1WAlJsW403kDwssHiA24sWrHjUO/ZiWaqIQQCl+VhKzIUcTnZn+OqBSlrq8OQVAirfNsedxUcRPne86rMttsazY3lN/A1rNbWeZcxiuuV8i35dPma+OG8hvItGSSY8nBoDEwLXU8YljCqTGxcMbX2NG8hze7j3Os/Rh76vcwJm0Mok4kGAmyqWITfz/9d0XBodEyr2Aejf2NdPm7Eva1K9AF3Yr82SbaVNluMjhEBzE5RropfUiBDSAmx3j69NNM6ZlCbW8tFRkVjM8YDyhGm9NTJ6APRog2NSEYjVgsFjaWb6S2t5Zj7cfQCBr6g/3k2nKZWzCXZ6qe4UjrEW6+63XSZBKLJ5eZ/jmvcB6/WPcLTrSfoDfUS6qYyuTsycMSL1A6MFph+PfDE/a8Z5Li+PfErDcnpE6lGlPZMG4DFlsqCTRwYKEiElH90eI+MYLDQfTMGfxPP431vvve1r4Nd6OWXXXkA64FY0hra8VUWZm00GfasCHhcxxue7GaWrQvwJI5cznWdkx9/EjLESZnT+brB77Pjxd/lwmrViD4AiAIxOrqhqjR4so28w03IPX1jdixFxcuhIEjOWPHYlq1isDmzYnKt2FSUq9GnO08y4mOE4RjYe4pu5nI8zuGHRtiwxpO+muHDQNp6GvgRPsJeoI9pJnSmJx18ZwTrFalYzp4YTWKslIy6BOIF4CoE+kN9vJG8xt8csYn+cKcLxCNRpmTP4cGdwNppjRErcgzZ55hd91u/mvJDy4U2AYbbddThEBFoZO/BHuYljONnmAPOdYc5hXMY0r2FK7h6sc1nvfuQFVFDPAME7xe5AsG+/GikLasDNOaNYSlCD0EcAtBClMKr6qFjdZuT67mKi3FtHYt3kcfRVtUpNwXbDZl1G77dsWXDeUaqt6XFy1C0GoV6wZRVMZCz16w3bhgYRDcuzfxnnMhYX3g/U2cOxd5NJ/aC82NEQtH4sjKMVk08Fz1c9T21pJpzlQVKVOypygJj74uDjQdUO8LN5TfMCzPe7rqaY62HuWWu/Yl4Xml7zrPu5Sx3/cqyGg0nnf9uOt5oeaFi9Mx9pH33YGJBYULaPG0UJlfOeJrR0O88dbqaUUn6KjtU76LcbVaipjCue5zlDhKKEstU4tsoEz3rC5bneBhPDgQo83Xpj5n1Cvvd3z00x/10+JtoSClAFefi/tm3scN424gKkWJSBGOtR1jT8Me9Fo9GjTkWHPoDnSTZkoj25zNW21v8UbzG8zKnUWOJYdmTzMVGRW0elp5o/kNvrPkO5zsPIlG0JBtyabOXcfs/Nm4+lxqwBwkJuJe7TjbeZbsiAGGKTDLrjomLryR/zj8Gz4949OEYqEr4nkTsiZQmlpKbW8tJztPMj5jPOvGrIMxSgCBRW/BE/FQ1VmFWW9GQFEmatGOyvPum3Ufb7pPE1gwhvzFMxGjoDdbecL1HL9/+X42jt/I8fbjWEQLz515jnVj1/HZmZ+lK9CFqFW29deqv2IxWCi2FCNJ0lXL866aItuOHTsSfv7DH/5AVlYWhw8fZvHixciyzM9+9jP+7d/+jZtuugmARx55hOzsbB577DE+85nPJN1uKBQiNOBi3t/fn/R1H0TEL6buoBubaOPxE49z17hbsLz0OrGBMk+9HnHGDEJbnh/a2duwnnPhVvrD/f+QdMfLxbzCeeTb8tWbvUN0UJBSQDgWZmLmxASZbYmjhHun3ktDXwNTsqfgDXnRarREpAj7G/ez4/wOfrHoxzh2vo7sqiN+u7+x1MnCxZ/iC699g1Vlq5CRean2JdUQdU7+HM50nSEcC5NuTqfN28b4jPGc7DiJhKTua1egi5WlK7HqlQTB4TAhawLlaeU0ehrVApteo2dW3iwmZk3EqrciyzJGrRGNoFFvmgatgVJdJtG/P0dokCQ5dc1yPj3j0+RYclQzzMb+Rp6peoaQFKIgpYAv7ft37ph4E0uXfhRtOApGEdGRicZ6aQWNdm/7Ram30cGs/FmXJPV2iA5EnThshLfD5HhPJcVTc6aSY82hMq+Sdn87kiRR5ChiQuYE9JKOyEBT2sGFikgkQZFlvv12Qq+9dsld4pEg+3zDdoJlVx0pCyZRP6eU4jcOYSgoUAt9mIxIjhS0Dsclby9WU8v4pfMw6pSzQJIlNSmoOdLMl1/9Jv835yHSNr+C+eabiTY1JRbYSksxLluGHAyisViQekY2Sxa0Wqyf+QyS368SbamrC7Gyklh+vrpoHC4l9WrDLtcuHnz1Qc52n8Ub9vLFko8SGqEIaQpH2XFeuWcOJqCvN76eXFWw6AHmFc7DaLXD+rVDwg9iHg/a0tKk3wFtWRldso8WbwtRKaqGr8SkGJ6Qh0Z3I/dMvQdf2IdO0GHSmJiWMw2toEWDhmAkiKvPxbSUcmTX9qTHJbvq2DBvLb+0/h/LS5fzcu3LbBi3gdsn3f6+vudcw6XjGs9756E2Rxobk3uGDSgKxWpqCDz/PLqCAuzNzWiWV/Lo8UdZ5lxGNBbFE/FcFTxPm5aGaeNGCASQQyFFnSuKyIEA1rvuSmgQa+x2zBs3Ivt8GNesQZBl5HAYwWAg2tRE8JVXFB/VQYmlcTX1cOOMA9XW2oICYi7X8Aq70lJkjwcYeQQzZNCMqNJrj/UP4Xmg+PvW9dVR11dHWVoZ4WiYfQ37KLGX8MnpnxzC856uepqoFKXIXjSE50minoZIJ+OMmpH9Vi/gSnnepYz9vl2OdDkYiecBHGg+oBamYgYdw7eBwa+N0RfqI9eW+7a5ajzAwh10q0WwODxhD5mWTDr9nUTlKKmmVD466aOEY2EMWgNz8ucwM3dmwrk8MBBjMEIRZTInzvNiUkyxyPH34I14+c2h37C3YS+TsydzquMUH5n4EbIsWbhDbqJSlJ5ADxMyJ3Bzxc2kGlN5sfZFNIKG4+3HWVi8kBPtJzjddZp8Wz7OVCdaQcuDSx6kpreGVGMqKcYUGt2NpJvSERCUoA45Rk+gR/ULez9fl0ZDnOc9UvljhncqVIIFXqt/jVJHqTq1c7k8L9uazT9V/pMafrC5ejNrx6zlRMcJGtwNysjvhUmuZc5ltHiUkXIZeVie1+5tZ7ylhPGmQnShqNI40GnpiXnZ3Xuc19rfpM3Xhjfs5a22txibPpZmTzN/P/N3NlVs4njbcTr8HRSkFOAJe5idN5t5BfNINaVetTzvqimyDYbb7QYg7cJYjMvloq2tjVWrVqmvEUWRJUuWsH///mHJ10MPPcR3v/vdd3+H34eIX0ztop3HTzxOdXc1a/KWXExBvABx7tzkXhM1NQS3bKG3soAXW/YAV0dHochRNGIHbSBsoo2J2RfHUNq97Xzz5W9S21vLZyd9nLRdh5EGzZ3LtS7SZYl1xcvZ036Qbn83acY0ugJduPpcLCtZpno5mPSK7Hb9uPXE5BhVnVVqx6Ais4JNFZs403WGdZZ1w+5jtjWbr87/Kj99/aec7DiJXqPnhvIbONFxgv0N+znTdQZvxMuGcRu4ueJm6vrqiEgRlmTPxfzi/sTPVa9Hn1+A1hOiWDDwhTG382LrPj7+wufUxJcyRxmLihfxTNUzhKUwNYFmQlFlAXNLxS1MuoQiWzw6OplpaVwCPRwmZE1gXPo4olKULn9XQqFtctZkZufMfs8vxgMTgQZjoCntiH4vF5RcA9WAUiBAzOshGvAhGfT49DImq+OSjm+0UQpdROK2lz/Jd+c+wPLsYmVcxaSjIdLKOHMmgynuaNuzSnoqMis43n4cX9hHVIpiE20sKF7A7w7/jtgCzUX13vz5GK+7DiRJSU8TBIjFEFJSlHGZUVRTgtGI9/HHMa9dqygJBqnwBioJkqWkXk0423mWB199kIPNB8mx5iiq19AoKXLBiwWFnkAPW89uZW3ZWk53naaqs4olxUuYmDmR56qfwx/1c6LjBD967Uf8Yt0vKHIUYUzLhE0bkb3eC4tUI1GzAU1JATy/M6la8GjfCWVxdyF8Je4JadQauW/mfbzZ/CZPn36aVm8reo3yXdkwdgPzC+fztXlf4y8n/4JFGvlzT9fa+Ke5/4RZZ2b9mPVMy512VRKva7g0XON5bx/x5siwnmGDivVdMIcAAQAASURBVEIDU5xtQMXsUn6878fMyZujFm6uBp6ntdthsII5NfnSdfBoZszjURM8xUWLkEOhIe/biB6V8RTTARjJHsK0di3eP/xh1OaabDEhrl9LeNv2IdsQ1qxg3p/nMKdgTgLPC0VDHGw7SKY5k/L0ch5+62HO95xnas5Usi3Z5FhymJ43nQPNB9h6diuyLCMjMyZtDAsKFyTleQC3WOyjjqi9HZ43rKI6frypjve8cTYSzxtoQH820MTkYcZsBWcJ5wJN5NpyVZsWT8hDXV8dLd4WIrEIedY8xqaPvaR7W7zIEpbCpGhTEp7TaXRqSJssy1j0Fhr6GghLYfKseSwoXDDkeEayWun0d7KybCX7GvdxvP04/aF+IrEIWZYslefZjXaCEcUv9flzz/PPlf9MWVqZGg6h0WjQa/Sq4i4iRYgQYV/DPioyK5iYOZGwFCbdlE5eSh7fffW7LC5ZzN6GvUSlKK3eVlLEFPKseSwvXU6Lp0UttL1XXszvBgbyvKh+pBIthHVKAdUfvThq3BPoYZdrF3eXbkIIBJkVy+Xvy35Ht+zjlu0fo7G/cQjPm5YzLcHXLlVMZdP4TTT2N3K8/TgAAgItnhbsRjsbyzdS31eflOelGFLYd+sO8vZWEap9gfiVQut0krpoEWsy56GZoIQqpBhT1CkGu9FOpiWTQy2HGJc+jgWFCyjPKOfuKXeTY8kh15rL1NypVy3PuyqLbLIs85WvfIWFCxcy6UKkdVubcvPPzk68YGRnZ1NfP9R0O45vfvObfOUrX1F/7u/vp7Cw8F3Y6/cf4hfTYDRIdbficZUsenckMiHVupi64jqaM7voDfSSZlKMqdNN6VftSTESBiayzE+bijTANygBrnrWz9/Avs5DzMibQV5KHsfajuEJezDpTTT3NzMtZxqz82bz8wM/p7qrmpsqbmLNmDUEo0H0Gj0t/S30+HvIs+Xxt6q/sWHchmFJ7az8Wdw/537Gpo8l3ZTO3sa9Smx2JIAz1QkoysVfHfoV9828j9reWsaZCpBcAz5XvT5pp3tlqZNjd+7lB2/9N7Is09TfxOYzm0m3pGPUGXGIDtqjilfIpXihDYyOHogGdwN/P/132j3tdPg7hsib4xjYgTnbfVbtppSnlfMvC/6FcZnjRt2H9xIJJsahEPpp0xRD/8HJYWvWAGCYN08psCUxPjWWOvGvmE+PqWfUDuhooxSSXkc4FuaFplfplry0+drIMGewtmwt9X31+CN+DFoDTf1N9AZ72Zi5eMTt6YwmvjD7C8zKncXrTa9T3VVNm7cNb9DL5KzJ7Os+yo3OYmhqQZuXhxyNDlECaMvKMK1YQbS2dsSuv9TXhzhlyiUtGuHSUtDerzjZeZKDzQcB0KBRjJLFURLJjBdLpFpBS1SK8uDuBznUckgds5iWM437Zt3Hbw/9Vi20nWg/oZ5vRqsdkhTMpVtuSerjZPYpXhqtnlb6Q/3Iskw0FmXd+HV0+Dp4vel1+kP9iFqRUCxEg7uBp08/TV+wj3Vj17GhfANmq2PEwwpqZao6qvjUjE8xI2/GZbyL13C14RrPe2cQv/ZdVlHogq1BrLaW6csW8h+eFsamjSXNnPah4Hn4/ep9RVtQAMnuH6N4VMaf1zqdil1BEnsIdDrFry0aRcjJxrd8Lt2hDopNye/tNtHGwc4q7EsmUbpqBXIwiCyKnA808eXt95JtzR7C89xBN4FoAKPOqBbYVpWtYm/DXl6qfQmz3szN/ptZUbqCXGsuvoiiNm73tQ/L82B0rvd2ed5wimptaSni+nXoHCNpfd57DDSg90f9aNetRt7+4pDET2nNcnLkPmaXLcIm2qjrq2N/4362Vm9VR/BMOhMLihZw15S7Ri1kx61RDBoD/aH+BN84jaDBarCi0+goTClEr1EM8+M8r9PXSbOnmYnGYnShCHIoxGyjk5lT78fj7iKqhWP9Z3ni/GYC0QA2gw2r3qryvJ21O9Fr9BxsOqjyPBmZc93nMOlMFKQUMCl7Eg+++iDt3nYiUoRcay5LS5YyNXsqu/t3MyZ1DOd7zxORIhxuPYxO0BGTY9wz9R5OdpxkfOZ4DrceJipFmV8wn/EZ45GREbUidX11FKYUqu/be+XF/G5gIM97sW0fdwwTGCY4S9jb/RYAZp1ZPWaH6OCe4hsIPJuYPmxxOtm18e9c9+wmtdA2kOclKxwXOYqYkj0laZhCt787Kc97aOF3yNtbNdRO5gIf10+cyOz8iXgrbkSWZRrcDRi1RmRkNVSkxduCq89FcWoxdb11LChccNXzvKuyyPbFL36R48ePs3fv3iHPxRNN4pBlechjAyGKIuJosuQPKOIXZ1/Epz6WNHp3FDLR39/JHU/fof48t2Au31v6PZaVLntndvR9hIGJLLqINPwLAV00hqgVsRqsjEkbQ4qYQqevk5l5M5mSPQWzwYwkSSwoWsCrda/ylxN/IdOSiSRLRGIRpuVMI9uazYmOE8Tk2Khy6EnZk6juriYUC5FjzVG9GA42HUQQBHKtueTacglHFRWMNpz4uQ6nWJRqXaTJMjOdE/newf/EqDPiTHVSllpGpiWTQnshPYEeIlLkkrzQBhYq1fdKo2N6znSePv00bzS/wbH2Y8iyzLScaXxr8bdYULQg4fWDOzDv92QhjclEe6yfc14XXf1djF86mcIVS5WitijSK4SoCtWiE3ToY3rSPRZSXtg31E+t1oXpJWhaUEaaKW3EBY5gsSimzgNInvqcs4TXe4+zoHABn575aUC5Hui0Orad34Yn5KEstYxfvvlLznSfwS7acU/9LPc4S4YmZqEsJKJNjVjEMeTb8pmcNRlfxIcgCBi0BpYWL+XN7uMsXnofuZ2TkTweIqdOXfyu6fWqV5Cs1RJta0vwyBn4d0zr1uH9v//DvHHjJS8a3yvvlncD8dENAYFgLEiKmMJJbw3jR1BEdkge9WerwcrjJx5XEpWli75AR9uOAkoH/olTTwDQG+oddX+SGXID6LV6orEoWkFLni0Pi96CWW/GYrAowS6eFnUBZ9YrqbZN/U1E5SjukJu+YB91lg7GlJUSqxk6kiqUOqkNtTE+czxj08eOup/XcHXjGs97Z6Be+y6xKAQkKImNEVhWsoxfHfoVm6s3q49/kHleQlPmQjFsCEZRW2vS0rDedx+yVossyxeDFQYH9jid6KZN5URlAbvP/xWrwToiz5uQOYGnq55md+xNTnWewh/xj8jzwpLyf4PWwOmu08zKm8Xehr1qwrMsy+ys2cmM3BlUd1Xj6nMRiUWwGCzD8jxgVK73TvC8oYpqEcFqRX+JliTvNWyijQqzMhVAJIq8eDHCypXIGg0y0CsEqQs1oRN01PXVEYwGebPlTV6te5UOX4e6nUA0wL6GfRi1Rj4z6zMj8rx4gEUoGuJkx0kWFy9mT/0eGvsbsRls6DX6YXmeJEncX343gS3bCA7iWfb16/H++c9UpqWSM/9T3PaCMlZ8qPUQqeZU5XtmzcVutBOIBPCEPCwtXkp/uJ+JmRNJMaSg1Wg51X6KBncDFr2FdFM6nb5OZGSMOiNajZbVZavRuXTU9Co8VUZmfuF8NpZv5Kev/5R5hfM40nqETeM3caTtCGe7z6ohdYUphXxxzhdp97UTk2PvmRfzu4GBI7r/deR/qFzzB8ogsdDmLKFh/jh+v/ffKHWUIupEtcj2iTG3Eti6LWnTObjteZ5a+0cqn1wOXBrPGy5MYTietzBjJrEXtiXdVpyPp2GkN9BLqimVqVlTCcaC9AZ7CUSVkDedRkdRWhEphpQPDM+76ops999/P8899xx79uyhoKBAfTwnJwdQOp25ubnq4x0dHUO6nh92xD0SwlIYX9hHqikVm8GGIAi82nGQ25zOROPpUciER0gcXTrQdIAHX32QAlvB+05V9HYxMJElqtcM/0IUpVCmJRNQIoo7fZ14wh72Ne7jcMthOv2dFNuL+fLcLyPJErvrdxOVonT4OpiZN5N7pt5DdXc1Y9PHEo6G8YQ97Knfw6y85J4W3YFumjxN7GvYx+763QSiAZwOJ3dMvgN/1K9+xhaDhdLUUqRBvhEjdbplVx03L72NV1r30+nrpMvfRU1PDVmWLH5z6DfcO/VeOvwdl+QvMbBQGUdZahnbz2/nXPc5Ms2ZauLS602v8+1d3+Z/1/4vFVkVCb8zknT//YZjbcd4qfalIaa5a8asYXbebM73nEej0WDWmdEKWm7LWzW8n1qti6Klc0eVxmtMpoRRVfXxUie+FfOJdL7Otxd/m7L0MkBROv7h6B/oCfQwNm0sv3zzlxzvOI4sy3TGOvnZsV+xaO0fKRWEIZ1l47Jl+B57jEjVaVJWzedU5ymmZU/jrZa32FC8gjV5SzBEZTQxAW1BPrj7EwpsCQpKsxnrvfcSeOkldAO94oxGNKmpBPbsAb//4qJwQIFuoDqAC0bT74S/3T8SaaY0BAQkWSnqd/m7uHPHfRz56C60O14aUoTUr1vD49WPqI/FlcqTsiYNCVA52naUj0z8iPpzqnjl6oA2TxvFjmLO9pzlfNd5pmYrSWbxTnw4FkbUiOo+aAUtUSFKf6ifRncjz59/nuMZx/nJuu8qI6kDvrNCqRPPskqOt7ySkIR8DR9MXON5bx9xnlcgZpJbVprI45JcMwWrFfR6xT+sqUl9qSCK/OXEX4Zs/4PM8xKaMhfuJ4OV1aNZP0Sqqi56slVUYFq/nsC2bUObRhs28IhrM6tyF/AvKR+DYAhNn4+YGbRJgjwul+f1+fsS0iMzzZm8VPvSxWMVBEKxELtqd/HpmZ/mjeY3aOpvotvfTae/cwjPq+6uxibaRuV67xTPG05R/X5ErKcHye1OqtAX160lLWIgLZIFJiM+TYw9niMYNAa+NeMrjDMXIoRCyKJITaCZbxz4PrW9taPyPJtoU0dVA9EAx9uPMzl7MqvLVpNjzUGn1bGocFFSnveViZ8etjAT2LYNy6234vv97ykG/mPhd3EFWnj+3PO4g27m5M9R0iY9rUzMmsifjv1J8f+SQavRsrBoIXdPvZsf7/0xZallTMycSIY5g2xrNr2BXp6qeooby2/kzyf+TEVGBStKV+CL+Mix5LDCuYInTjyBVqOo8GfkzuBo21EmZExgZu5MgtEgRp2RLn8XL9a8yKy8WYSl8HvqxfxOI+67rRE0BKIBlj69gQfnfpMb5q1DF4lhS8ng6frn+cWLn6Uio4JFxYsSCnPmmBbfCD696cJFi4V3g+cZY8M3uQCIRpGDQZ489SRlqWV8btbnONB8gEA0QHVXNYFoQB0BDkQDHxied9UU2WRZ5v777+fvf/87r776Kk6nM+F5p9NJTk4OL774ItOnTwcgHA6ze/dufvzjH/8jdvl9ibhHgqvXRaoplWJ7MS39LRTZizjZcZKq/lqaFtxOPjJcUKyMRCZwFrO16ZUhDx9oPsDJzpMfOPI1MJFlf88x1g2j7NGUOmmK9mA1WOkL9nG2+yzd/m4mZk7k6aqnMelNFNuLcfW5+H8H/h8/uO4H3D31brxhLzEphklnoqm/ibLUMh5+62FOd50GlAvxtJxpQzwt4iEWUSlKipiCRtBg0VsIRoJ4I15SxBSerX6WaCxKj78HQRCYM28qBQONzEfpdNsxMTNvJq2eVqJSlHZfOztrdhKRIjxy7BF+svInl3RRHFiojMOkN3Gu+xwxOYZeo0947nDrYY51HKPAXnBVXnTbve08V/0cO2t2JsS/h2IhXqx5kZreGvJt+Ww+s5mm/ibGpI3h1rWLRjTO1YQjeIXRpfEDR1WlYICoTkOPJoSbIDeW3zis4W0gGuB4h+LJEFdWhmNh7n35i7xx64sIbo8yQnNhARLcvRvzDTfgf/pp0qTriEgRGtwNPLbqNxhe3IM00OfxjjtAe/Hohigo/X68jzyC+YYbEFJSIBRCSElBCgbxPvII4pQpiLffri4KhzPz1k+ahLZ8HOa1667q0IOKjArm5M9hb8Ne/BE/eo2es71nKX1kOq/cvIVxq1YqygujEbcQ5lfVjySok30RHyliCqFoCJ1Gh9VgVf0VAQIRpYs4OWsyk7MnX/F++iI+Hj/5OLPyZrGwaCHTcqZR21tLujmdxv5GTDoTvoiPUDSEBg3RWJSYHMNmsGEz2DDpTIg6kUdqnubjN96BKRgZ8p29a8pdV+U14BouDdd43juDOM9r9bTy3wt/hLhgIVJPz8UE52TXzNJSzLffrow1PvWU8pjTSUQLjf2N2MWhhY4PKs/DbFY5b6ypKamyOnTggBJUpNEkjgQ6nYiVlYon6AXETp8mABivv14ppFwYtZdFkb/UbeHO4g1Ent9BIEkBTpt2MfQqGc8z68yK8XzYS4oxhc1nNqPVaHEH3ciyzK0TbkXQCBgEA3qNXlWigbKg12mUZaCgETjfc56bx9/M3qa9dPg60AgaGt2NKs97+K2H+dyszzE1Z3SPpA8bz4t5PERdrkSFfvy5mhpC255Hl59/sfDqdLJ2/XqiGTGiz+8g5HpBfX2x08kTa3/L1w/+4JJGIAeOqvYEeohJMayiFbPOTJGjaFieN1phRtBqMd9+O7GmJmY5svl/b/2S+YXzqe+rZ2buTGUbBjOnOk6xbuw6No3fRCASwGKwUJFRwdmes1j0FoW/NO7lRMcJ2rxtBKNBiu3F1PTWMD1rOlm2LGRZpsRRgjvo5qXal5iRP4Pp+dOx6C3k2fLwRXxsq97Gme4zRGIRZGTK08u5bdJtmA1m1havvSq/N3FMypzE3IK5Ks+LSBG++toDfI1vsbh4MZ+d9Vnao24+M/Mz5FhzONV56mKaLSQfaR8AOaQ8/07yvFWlq/jG9PvJECxoEBjxm6rTgdGISWfCJtrY37Sf2ybeRqevc9Tv7NWMq6bI9oUvfIHHHnuMZ599FpvNpnpz2O12TCYTgiDwpS99iR/96EeMHTuWsWPH8qMf/Qiz2cwdd9wxytY/HBjokWDVWznXfY4T7SeYmTeTj039GK3eVnbU7OCp00/x1elfZOOC6xGj0K6Jkjp+AeJLiTHemlIn5+aU8NDmf2Fp8VLmF87HoDUgyRKpplQkWUqIC/8gnDQD/cAeOfME0xf9gFxIKLRpS0vRb1jHVLMBsy2Ng80HqcioYPOZzWw5u0Ux+gxFqHfXk23JxtXnos3Xxpi0MQTCAXbW7kTUiYzPGJ9QYANF/VHbW8vPD/6ch5Y/pCq5Bt449Ro9Fr2i3LGJNl6seZG1Y9fS7e+msqCShv4GznafpcPbwZNrHsaMrBi0jqJYjOgFNbEwnixjE21oBS29wV6aPc2XRLYHFirjCEVDyMhkW7ITzDzj6A/2U9dXR5evS02pmpD5/h0PHYiqjip8EV9CgU3Uivgjfly9LjQaDTaDjXZfO+nmdCUQw5zCSNb2FosDgzRKxP0FxMf7tIAeyL/w32AMJHOe0MVxQxnFp1Gv0fOZiR8j/PyOpCq7UDSqqCOiEmmmNGamTsKwcw/SoGANjcOB5Lm4/aQKSr8f/xPKCKP59tvxPfYYxjVrsN5xh5L8ZjSCKGJcvXpYX7bAzheIrVmu+OG8j+EJeS56XyS5VsqyzNcXfJ2oHOVA4wGK7EX889TPcGPRalIFMz1hN01SN5nGQiRkRJ2IL+JDr9FTllZGTIoxKUvphEdiEbSCljp3nVpoM+lNSurU4gcuORAmGQQE8mx5HGk9wuSsyZzqPMUTJ59ges508m35isFz+EKCniAQk2MU2gtBgAxzBiWOErxhLyc6TlCVX8OMvBmjfmev4YOFazzv7WMgz/vspI+Ts+c4/qZmxAULMK1ZQ7SxMfk1s7aWEKArLIRIRCkWLV7EYfd5ClMKOd9z/kPD87Q2G6YNGwhs3XoxsODw4URltcmEJjVVaWJ5PEh9fQhWK9EzZ9TQnYGInT6NsHgxcjRKxKjnSH8Vu9sPcE/ZzUSe35H8HrZ1K6ZNm1RFWzKe1+XvojynnF11u1hZtpKeQA8z82ZysuMknrCHOncdN4+/mVZfK3dOvlMJzkEpsJn1ZjSChlRjKpmWTGJyDHfIrfI8ULiew+ggJsfo8ndh1psvSTH0YeN5+P1obLbkYgSU80usrLz4s8tF8Pnn0U+YkPSz125/kX9e8im8mqE+2ckw3HjfYCQU7UYrzAQC+B9/HK3TSdqkCtp97eyp38PqstVYRStppjRaPa2c7jrNkbYj6u/l2/IpzyjH1efCoDXwbPWzNPU3cevEW5FlmYgUQa/R0x3opr6vnl8f+TUA9824j7EZY7ll4i2EpTBWvZVMSyb7GvbxH3v/g7M9yqho/PpT11fH9nPbeWjZQ+97FdtoPC83JZdvLPgG35e+z4HGA2SYMxBCApOyJ3HP1HvYUr2F0tRS1o9bj4xMk6eJnkCPyvMYxRJFEI3vKM8733Oep1Y/jLz9JfwXAmKGTZ93OpE8HrSZmSrPO9N1hub+5qvec200XDVFtl/96lcALF26NOHxP/zhD3zsYx8D4Otf/zqBQIDPf/7z9Pb2UllZyc6dO7ElkVx/GDHQI0FGVhc8B5oOcKTlCD9c/kOerX6WdHM6T7u28oczj5FmSlMXY79d+XOKls1HG45isjqoC3ew6i/LWD92PTbRxqMnHqWpv4lbJtzCW61vYTfamZg5kUJ74VWRRnWpGOgHVh1qxrhyLrna1WjC0QQjcBHFB6Pd144sy7ze9HrCdvpD/ZSnl/PpiXezyjEbi6xDthlIKTXwQvNuwtFwQoFNp9Eh6hRfmdreWqo6qlTyMfDGqdPomJk3k2NtxzDpTPSF+ohKUcZnjFfJi16j52DLQR6peZqFlbMZu6QSvd48/EWyrIyWmDvhb+gMiZePZOMByTA4OhpA1IlkW7KZlDWJQy2HEl6v1+jJsmTx/T3fT/CtuNSUqkvBaDfAt4O+UB/h2MWSmUFjUFIXdUaCMYXk+MI+glHl3zbRhk5nIDbCKIpWa0Av6Ic8dyWIH3uXr4tsSzYCgmKufwECiq+aVqNlefY8Yq9cJOCDx46E1FQEUWT9mPWkBYXEYA0U1Vpgxw50+fkX1bGX4hUUiRDcsgXrF76AbsD4mFSQT2zr1qS/FqupRRtZkvBYfITq/ULg6/rq1ESyOAZfKxu9jfzuyO/4cuWXic2JcV36LEwv7UPa8xwARqC8rAzz9ZPQ2O18fNrHaexrpMPfwW8O/QaraKXR3ci5nnNkWbKYmj0VUJSUY9PGMjd/Lh+d+NG3RbxAOU8XFi1Er9Gz/fx2ZubOxB10c7b7LDdX3IxG0LCzdqfqyTImbQwbx2+kLLWMc73nEq51B5sPkmZO+0DcL67h0nGN5719DA5nki+EM4VefZXQvn1Y7rorwX9pIGK1tRiXL0ebl4fk8RC2Wejq7qemp4ZbKm75UPE8bVoapk2bwO9HDoUwrVoFkqQ2eeI8DyDm8+F//HHMt946rOUGgBwOcUjTikEyUBdsJSbFyNLYEhRsAxFzuRRrhAvf7cE8b3zGeBr7GxEQ6Ap0qTyvL9BHu7+daCxKIBIgIkWUIKxogAmZE1hUpIyaSbKExWBhTNoYrAalaKLTJvK6wVwvvm4YDR82nicHg5fne8jQwlvCcy4XJatWUC10vyP7l4znjVaY4YKPZczlghde4udL/5MnajaTa8vFrDOzbsw6dtbsJBQLIWpF3CE3nqCH68uvZ9u5bTT3N1OeWc6+xn1sqtjEyY6THG45jEFrQECgPKOcT07/JK2eVmRk8lLy6PZ3Y9AaEoovWo2W873n1Z8FQUCv0WPWm2nsb8Qdcifs9tXI8+r76tlxbgdfrvwyoVkhPCEPqaZUTFoTL9W+RGVBJQjK2j2uXBzI85YvmotppPF1vUZNFX07iPO8z1Xcjbz9pQRlr/VTnyLwwguJ6fNOJ+KiRRCJIITDHzqed9UU2eIxxCNBEAQefPBBHnzwwXd/h65CDCyCRKXEi31YCtPmbeNY+zG0gpZUUypd/i40goZ8Wz52o53DPafQF8ylOLMYUbQhdPbzkUkfodvfzWvnX8PV52JR0SIONB2gub+ZTEsmvrAyqgSMatx/NeFS/cDipMhmsGHQGhKKLRa9hf9Z+BB5e08hv/QI8QGv8rJSCpZ/hOdadjE9Zzrp5nRicgyH6MAb9uLqcxGVogmf50DDzwxLBs2eZhxGB2nmNLLMWeTZ8mj1tPJG8xvotXr1M3GH3bzYsocXgWXFyyi9bhYpspygWNSWlWK+/nraeo6NeKzJxgOGw+DggjRTmjoKMXCcAWDd2HXsb9qPq9dFhjmDu8s/wvy0aeijEkJQj7uvHbvjym+gl3IDfDtwiA41PQeUm2Q4FlYfGziyEZNiLCxaiOz3XxxPaWq6WMgCBJsNJIlQ9NKUbCNh4LGHoiGOth0l1ZjKnVPuZGr2VI61H0MjaHAYHXT6OtHH04f1esQFC9BXVBB44YXEsaOyMqzL5yIFwwx2LYyr1mKNjYo6AEZVUA58fnBKaCQ4tBs+EJoB4R7xEara3lpVielMdXL/nPuZljPtPb8uxb/vA5UJJY4SAtEA289tpyKjAm/YS7uvnZWlK6l311NszMH44l6kQSPqsZoa/Nu3Y1q/HnMoxJiwlVQN3Fy2AY0g8INpXyXi9+LXxtjVfoAtDS8iIPDNxd9kXsG8d+R4yjPKebPlTXJtuei0Oqx6K5X5lbR4WjjQdIA2bxvfWPCNiwTZYOZI8xF+sv8nfGbmZ9BpdAn3pQ/S/eIaLg3XeN7bx4jhTJEIsneU8bNIBE1aGtrCQkSTiXHSOO6Zds+HkudpbTa1wDUS1PvSKPcyWRTZcVppUuk0OkWBEhz5Pj7wnjeY553oOMH4jPEEo8GkPC8UC2E32vFH/WqDtiKjAkEQeLb6WVo9rQiCQH1fPQUpBWws34irJ3nBL473gudZDBbCMcUz+qDvID8K/YiHlj+k+opdCd5tnicYjcihUThZ/PsxoDkp6PXKSGZLCwgC2tzciz6JaN5VnneX88YRfQXlARMHsdpaxi24kdcbX6fT14lBa6DeXU9DXwPNnmaiUpTClEI2lG/AHVKaa6FoiFm5s7iu5DoONR9iTPoYbpt0Gxo0GHQGWj2t7G3cy8LihVR1VmEX7QSjwSEjsjIyudZceoO9asiNTqNDIyhTIFH5g8HzJmRNoN5dz4GmA5zpOoM75CYqRdWx71AshIDArRNupdPXSSgW4jeHf0Ojp5HP7/kaj6//NcFhfB+1aWm8vfKagjjPG2cuIjBgxJlIBKm7G11hIcYlS0CSwKCscaLnzikNnjvv/NDxvKumyHYNbx8O0YFVb0VGuUgVpBQQioboDnQjyRIOowOAmBxDp9GRbkpn3Zh1ZFoyCcaCOIwODBqDejKMyxzH+rHr2Xp2K64+5aQuSCngYNNBHEYHPYEeNIKGdm87dqOdnkDPqCaeHzTESZGoE5mWM42jbUfVQts3Zn2JvL1VQzzdYjW1WBBYtmwB//vG//JS7UvE5BjhWJhx6eNYO2Ytx9qPJZCdeMJQXD7sMDo42XESi8FCipjCsdZjeEIejDojvohP9UAy6Uyc7DiJUWfkrO0sz3Y+y8oZi5m25Fb0ERlJ1NMQ6WScUUN5ZvkQ+X8cpamlTMiacFnvzeBCpU6jJC4dbj2sPjYjZwa3TriVr7/4dfJT8vl/87+vFCVdz6mv0ZQ6Ca5fqyRRXSYG3wDj6An08NSpp1g9ZjW+iC+h63m53dAJWRPY27hXjVaPG9hrBA3ppnQyTBk09Teh1+i5ecLNnOo4haTXEfrLY+qIz5BCVmkp5WtXXPbxjnTsok6kPKOc6q5q/nbyb3xp7pf49Zu/5oaS1azLX4IQipCTWghLlqhKh8COJGMuNTWYZAnt6hUM6evGO7mRCP6nn0acOxfBZsO4YQMamy0huCB04MBQE+5BnVdBHF0iD4kjVMFokA5fB76wj7q+Orr93Xx+1ueZmT/zPe2oxUd/tIKWwpRCcqw5/K3qb7R521hYtJAvv/BlmvqbqMio4I3mN5iSM4UX1j2OvOXRoRvT6xGnTyewebPaRTTr9Wy8/XZCe/cSq30SI2ADbi91cuuqX+ITBQodhW/7ODwhD1WdVWyu3kyju5EjbUd4te5VsixZfGrGp3i66mlFOdt8kD0Ne0g3pVOQUsDJjpNEYhH0Wj2dgU7GpY+jqrOKPGseolak0F7Iq65XKTXnUajLQIyCzmxJUJBcwzVcQyLSjel8dtLHmZ82lXSNHc0FT6XQgQPKCOPgQtBgNbLRCDqdeo5d43mjI35fGjEMobSUjli/+nNUitLmaUPIHPlaNvCeN5jnTc6aTL27XvXdHMzzQLEYGcjzCmwFVHdWs7BwIUa9EVmWsRqspIgppJnSMGYZ/6E8L82sTM809Tep6v5mTzMrylbgiXiuSNE2Es97rvo51RtqIKcDLk/1ZjYjjfL5x5qahveRLS1FXLgQ/+OPq6PG7zbP+7eDD/HTDd8eEn6gdToxrVmD95FHEjcWCuENe5mRO4Pt57bTG+ylxFGiftfO957Hf8bPmrFr0Apa9bs5IXMCRfYivGEvMsq4aCQWIdWYSmlqqaJis+Yp6jqGJtfaDXbK0spw9boSlJQ2gw1nqpMUg1LgH8jzBATuLf8o12VVYojKCJKRlk4XRqv9PR0tvVSeNz5jPG+1vsXE7Il8dsZnOdZ2DG/Yq64XBEHAF1Y8bf9z338SiAaYkz+H15teVz28FzyzjmfX/4UMzSrkUBBBNCKYTGjfAcuUwTxvcMMbAK2W0O7dhHbvTroNQRST8ryXa19Wz7M8Sx5W0UqhvfADUXi7VmT7ECHHmkN5Rjn+iJ+YHCPXmktPQDHn1wgaLDqL4uXQfhINGj4x/RM8d/Y5qjqryDBn8Fr9a6SIKTy49EGuc14HQLo5nTxrHhUZFaoZq8PowBP2IMkSkiypI3HAJZl4fpAQJ0V9wT42lm8EwNXrQpIlri9Ygfzqc0l/L1ZTg2nhdFUGrRE0mHQmxYPg/HZuqbglgezYRBury1bzh6N/4GjbUbSCViVUy5zL+Nupv5FtzVbTnAxaA3m2PGRZVlJtBOXmO79wPm/1VHHG4yIQDdDkbiLFmMKtRhNGrZF7ptyjdE76G1X1VVzO/3bl2AuKFvC/a/+XYx3H6Av2YRft2EQbrZ5WUowpfLzijgsFtrqE35NqXUS2bYdNG5UkqsvAQI+TgegL9vFG8xtkWbLwRZRRznjoxMu1L3O+5zxhSVGjlTpKuWXiLaSb0pOSsmxrNjeU34BZb2bzmc20eRWfIYvewoLCBeRac3n85OPML5jP4ZbDtHpbOe2rY2xBAcRiyQtZtbVotr9I8AqOeaRjdxgdTMuZhjvoxi7aeWb9I8jP7yS2SxnJDKEQP21x8Yj+I3KtMgYqlDqVf8cxcIEXiaiFtEhV1RCJ+RAT7gspoQNHAWalTcY++G9cgKbUiWBVvAnjI1RRKUqrp5XuQLfaTdvXuI8N4zZwtP0oX1/w9ffsxu6NeNFr9FRkVKDT6Piv/f/FiY4TbKrYxGMnH+NM5xk0goaa3hrK0sp4q/Ut/N4+koXUDwmPiD82KOUMlM9GvxPyb7n1bR9DXV8d+xr2se3sNlq8LYDiuzM+YzwnO07y5+N/Zk3ZGkpSSwjGghxvP45Wo6Wur448Wx79oX5yrDk0uhspSCkgz5rH2rFrSTWl8ss3fsl/VH6LwldPIrvqiN9FtGVlmK+//n3vtXcN1/CPQKVjInKPBW3UDNGAooix2zHfcgv+p55KLASNEBwz0HT/Gs8bGYLFgras7KJ/GyQWLUpL0a9dzWPViUULGZn6cAc5I6iJMJvVnwfzvEAkQIqYQqoxNSnPi/s1xXmeLMsEogGWOZdR566jP9yvBCigUZRGaWOw6W3/UJ4nyVJCgS2O3kDvEC/iS8VwPA8U65Vdrl30BnsJRoOY9WZcNhdH247S6mm9ZJ6ntdnA6USTlpb08xcrK/E/9VTSezVc8ESUZfW+HX/s3eZ5+/urmH39WoyhGIRCoNcjezxKgc2fOCkQ0StTF+FYmIb+BnQaHZIsqaPIgMIDZMVmxC7a6Qp0UZ5eTqAvwL7GfTS4G5CRkWSJsWljKbIXUZJaQmlqKS2eFtJMaRQ7ihN4Xq41F4fRQbG9GBmZqBRFp9EhIJBpzlTXQnGep9fo+X/zv0fR/rPILz1/8bhLnXiWzcVj8rwveV6xo5jjbcd5+OjDbKrYxG8O/waAcWnjsOgt9Aq9PHr8UTLMGUSkCCX2ErSClr5gH56wh95AL+P/NAtQ1ow/vO6H3DX1Lt7ukSbjefFR4oEYLXE5oJWxi/YEnvfT/T+l3l2PJ+whHAszJWsKn5/9eV6tf5V1Y9dd9aOk14psHxJ4Qh6Oth+lL9jHK65X6A32ohW05Nhy2DhuI5OyJ1HdU81X536VPx79IxnmDJ6rfo6qLqXAVp5ezvG244SlMA+++iD51nzGZY7Dqrei0+po8VxcYA2cj9cIGozai524wR2KDzoGxmv3BHq4ftz1ivmrIJOhtREb4XeFcJgZuTN4q/UttTBj0BqISlFm5c2i2694NXT5uugJ9vCK6xV8YR9lqWWkGlOZmDURf9iPTlASBXsCPaSaUglFQxTZi7hryl389vBvaXA3UGgv5PWG1/FH/SwqWsSjxx9lctZkPjH9E7xa/yrHO47T6G5EI2jYOH6jonYUdGSZs5iQ9c75HVRkVVBgL7hIYvRWjFojRp2R+WnTEhRsAyHVupQxmMskIskWA6FoiLPdZ9FpdJztOcsL518gJsdIM6XxxMknWFi0kLM9Z9UiTZe/i4rMCs73nKfT34lVb0XUiei1ejaM20CJo4SpOVPJseZQmVdJR6CDTl8nRp0RnUbHH976A2VpZYzPHM+B5gOkm9P5t4M/4qm1D6P1BIb1eLnSYx7p2EEptmZZsyi3liA//yKx2mHI4IIFI24/GgwQWrEA00vKvsLQm7A4dy6hAweSGv+GBOGiCfeFwsrJ/nP87MDP1C671WDl98t/hhkSCm2aUif69WtVYhofofJH/AkFtjg8YQ9bz25lw7gNivfFewCb3saYtDHsb9xPVI7yct3LAKQZ0zjVcQoZGS1augPdOFOdWAwWfEI0aZEtWXhE0kCJC5BqXcS8ngRF2OUqNOMdcr1Gf5F4oXRcu/3dqjlud143j514jH9f8u+c7T6rdLNlmTZvGxUZFawqW8XrTa+zzLmMstQy8m35/Nf+/+KGktWUvH4uidK3Bv+WLZhvvvmaou0armEApEAAjdtD6NQpQoOUKeKiRYgLFhDatw/zHXco19f8/OGDY7ZuxXTDDWgdjms8bxRoTCbM11+Pf8sWVaEtzp2rPGe30xZz89ig1GeAcCzMt9/8D36/9iew/cUhaiLD+rWcDTZRYFCsIqo6q9h2dhv9oX7KHGWEpBDj08fTH+pHkqUEntcf6mdC5gTumnIXv3rzV9T11WETbbT52ujwdTAhcwJ/PvZnIlKEWXmz+NzMz/GK6xWyLFl0+Dr+YTyvN9A7pMAGYNabh3gRXyqG4zqhaIhGdyNWgzWB52nQMDl7Mi2eFpU7XArP06algV6Pad06iEaRwyEkgwGtaCSwfbvCZUa4L8dcLvV7E8e7zfNkZH579nF6Aj0syJxJ5eGeIfdcAJzFvNpxkExLJoFogFA0hNFopDClkPEZ42n1tqIVtLhDbkKxENnWbArsBTT3N7OqbBW/PfxbXH0uNIIGUSuiETR0+bvYWbuT7y79LkfbjmI32tlYvpGa3poELz+jzshdU+5ia/VW2nzKWigUC1GaWsr9lfer34f4Z3X3uI8oBbYkDXmrLONbuxRb5ntTZLtUntcT6KE0tRTRI3Ki/QQ3VdxEhjmDYnsxy0uX89Spp6gsqMTV5yLTrEztmPQK/3GH3EiyhKAR0Apa5VhlCQmJc93nEvzt3imeVxtqpXBQQW3YJsOFps0nXv0yS51LE3hevbseb9hLTFJWw8c7jvPLN3/JZ2Z95gMxSnqtyPYhQV1fHVuqt9DqbWVM2hhiUkzt0DS4G1g9ZjVTsqaQackky5JFp7+T6u5q5hfMxxv2cqj5kBK7rdXzRvMbHO84TlgOk2nJJNuSTXl6OdXd1bR523A6nLj6XIhaEbtoVy+A8Q4FvLsGpO83DIzXjhOKYkcxJk9oxMhjD2G2n9vO1OypTMmeQiAaQJIkfBEfexr2sO3cNsalj0MjaHiz+U3cITfne8/jC/sw6UysKlvFsfZjSLLEjNwZlNhLyLJkEYwF8Ya9/Pbwb5Xuib0Ys97Mm81vIssyZr2ZNWPWsLdhL384+gdum3gbTe4mMs2ZtPnaONN1BlA+z3Vj113W5+YJeWh0N+IQTGRIJjShMILBAAYDgsmExqTEO09IKUMOBCAcZrw+hcpVSgdY0uuHpHbFMaofRhIkWwy4g240aDjXfY7ClEI6/Z0AmHQmDrQfICbHKE8v51TnKUw6E7dW3MqP9v6I052nVWl3eXo5t0++na1nt3Lv1HtVRVv8XIh7ZLiDbtaPW08oqninrB27lpgUIybHuG/P1/j9rO+NuP9XcswjHftApEki4SQhGHAh3n3FyGMMIR3875lHuG7WPCYuqUQbiaKzOjDNmEFg61ZiNTUjE87aWsSVK7BOmoRgsdAV8yQU2AC8YS+fevVLPFD5VaauXIYQCiOIIoLVqhbYpECAlY6ZVM77KSEdbG7YyQ/e+P8SFjxmnZneYC8NfQ3vWZEtw5LBrjd3KcQ0eHHBGogFlJF+FMIUk2J4Qh60gpaX2/dzV6lTLVqqSGa4PIoJczTgIx5vcSV+Nee6z3Gm8ww51hx8YR+iTkSn0WHQGrCLdix6C039TUSlKP6on0Z3I2vGrMEX9ikeQVolBfWZ08/gj/pp8bRQnl5ObW8tr9S9ws/mfAf55R1J/3aspgbZ54NrRbZruAYVciBAaM+e5E0LwLRuHfqJE0EUERcvRiOKIy74CQY52XHyGs+7BGjsdiVp1OdDDgbVcIQzHhd/PfvXIa/vC/YhyRJnus4w5pGZPHv940xeuRwhFEI2GDjprWHz0f/G1efi1om30uXv4pXaV1S/q+5AN2a9md11u7llwi2c7zmv8jyHyUFfsA+L3sKv3/w1Nb01pBpTmZozlcMth2n3teOP+FWed7jlMA9rH+Yrc7/CU1VPsbh48dvmeQ19DfijfjxhjzLCqjeSZ8ujxF6CTbRhE20UO4qp66uj2duMWWsmx5JDT6AHAUFNNQeYlDVJVeddasDWQAzHdfqCfVR1VpFjzUngecfaj9Ed6GZpyVIOtx6+LJ430MdPua/+DUmS+MTKW7EsW6aoxUZCkvv2u8nzYlJMve/v7ThEyeIbyYbEApWzmIb55Ty271sYdUYluEAQqMyv5GjbUbKsWVgNVrxhL5nmTCrSK1hcvJgXal4g1ZhKf7CfnkAPKWKKEqRx4T+Abn83ESnCpvGbKHYU44/4EwpsAMFokEePP8pN42+iJLUEX9iHQ3QkFH49IQ8GjYH+UD+LMmcgv5A8EEt21WFOvoR4V3C5PC8e6CBqRTUN+GDTQXqCPUSkCCliitok9kf8aviJRtAMOWe8YS+t3lb1sXeS5z1w4Ic8uf63hLdtv3i/iUQIHT6MacMG5TsbVvh4UAcbtt3J6e7TjMsYl8Dz4pNeOo0Oo85ITI5xvOM4gWjgA2E9cK3I9iFBi7eFFm8L7qCbBndDwgLTorewqWITS0qWcLL9JK/Wv0qOJSfBMyEOSZaISlG6A93srd+LyWCiyF7Ex6Z9jMdPPM7hlsNsGLdBvQjPypuF3WgnzZTGxvKN2EQbdX11PHXqKWp7a4dIsa92aehwSBavLUk6tGVlxGpqlAcGeqMA6SaBH8z/d/7v9F+oaazBH/Gj1+rpD/WzonQFL5x/garOKm6quImG/gYsegvRWBR/xK8k+dXsZGrOVJYUL6HZ08ym0nWMEXORgkHCeoGbCldjw4ghKuERQjzX+DLfOfAjznWfY0LmBPwRP839zaSIKdT21ZJuTk/Y/8u9AMbjtm/MX47t5b0EBifQLF4MqakAxHp7hywWtGVl6shLskKbkES+PBoGepzEEZbCxOQYRp2Rdl87AKJWZHbebCrzK9WiZWlqKQaNgb9W/ZWDTQexGi6SmfM953ni5BOsH7ueQy2HmJU3K4GkJiu8tnhb+Oupv6o3Sm/YS6fkJWWE/b+UY27oa+BE+wl6gj2kmdKYnDWZIkdR0mOPI82Uhi4iEU6yPRWSNKw0XCh18lL7fn5/5Pf8Tv4dgiAwLm0cn5zxSW4cfyOWC4sRyTfyWFE0HMSUkwvAqdoDSX1ivGEvD+z/Lt9Z/B2uK70ucRfdbvzPPUesthYLYAE+4Sxm6abNrPj7jfgiPqZkT6E7oKhCdVodHV2NWKICmnAEncmCxmhCCgaJBrzIBgOdeGkMdeIwOd7WorHT14k37MWsNyckusUVIVpBq5IpjaDBE/bwjb0PcuvHj2LYSUI4SdKUsFFMuCWDUmIbza8mWSexrq+Og80HqeqqIsWYQqe/E51GR4Y5A6POiE20kW/LJ8uSxcrSlawes5oMYwabqzdztP0oRt3F/U0xppCjy6HH38MZ+Qx6rR4BAXEkmS8QC/jRjvySa7iGDxfC4WFH+ONJztqcHGJdXfj/+Ecs99474ubkUAh3qIO8sInb069j07qlbGvaxbf2f59lzmUj8rz6vnq6epoo0meSF04hJus423ycjLSC99QT6b2ExmQaUvgv1BQm3Ge1ghaH0UEsFiPTkslbrW8h6kQ+uuMT9If6E3jevy74V9xBN7859BtWla1SeV58RDfO9Z6qeor7K++nxdNCujmdwpRCTBkmzvWcQ6/VMz5jPJIkEYlFaPG0qAqXOM/LtmRzuvM0gWiAFm9LwmL9Snje1rNbMevMHGw+yP7G/QSiATLMGZQ6StlQvoH5hfMB2N+4n63VW2nxtmDUGbl1wq30BntxB930h/qRkZmUNYl7ptzDM2eeAS4veCGO4bhOf6g/geeBMuZ4w7gbyLHlMCZ1DKWppRTaCnn81ONvi+dVhRqx6q2MFzNG3tkk9+1L4XmekIeApw9TRIZQGK3RhMZqHZXnWcWLxyMIAr879zhzJk2lctEm5FAQizWNl9r28+u9D6jfi/5QP0uLl/Jmy5vMyJ3B7rrd1PXVIQiCamvzwKIH1GM/1XmK/JR83EE3MfnijT3OGUStqH6/DjUfSsrzgtEgj518jO8s/g6bKjYlPBcvHmVZssi2ZA8NfBkETTjCqfZT+KN+vGEvWkGL1WBFEARa+1sxi2YkWUIn6Egzp73nPK8/1E+6KZ2tZ7eiFbRqSEi6KZ1ie7GyPYOZXXW7+OzMz9Lp6+R4x3EMGgNz8ucwJXuK6mEXV7u90zyvN9jLvbv+iT+s/2+M4RgEgyCKyB4PgZdfpnX2GP5p7wPqGHEwGqTUUTqE5wkICIJATI4RlaJUZFRg0BqISTHKM8oJSyOuQt73uFZk+5AgEo0QjAZpcDcQjoVZULiA/JR8IlIEg8aAL+yjoa9BlRbHQxAGQpIlJdkFgTRTGn8//XdkZP530X+w1DKJT2euBZOJkBaO+pW4Za1Gqyq34qbxjx5/lH0N+9STDxSfsmAsyD9X/vMHttM5GANHDGINDUO8UXTAp5zFrF3zBxb8bTX+qJ8sQxZjUsfgC/uUDmHYoybo2EU7GkGjFkI1goZDLYrPxsfLbiVvzykitYo/gRYodjoVn4inn8YUifApZzHX3byNtc9+RPVd2XLDE0xJGYuUsRKN0Ui71M/T9TsoSy/DE/LwRvMb1Lvr1cLNcIhf4GemTsL28oGhI4gXOu36SZMUT4tk3fiamiGeFep7WepEsF7+iMrgcV4Ag8ZAuimd0tRSdtbsRNSK3DLhFnac38GRtiPoNQppNeqMPLDwAZUQxLuvWkFLMBrkaNtRljuXc7TtKCc6TgzpFg0uvMYTlAZKst/sPckKZ0lS+f6lHPPrja/zo9d+xImOE+pjk7Mm88CiB5hXOG/IsQPqQkkTHVklJAcCFxNQB6XRNi+YwL/+/cYED8B2Xzubz2xmWs40JmdPBpMJWRqZDOlMFvXfo3WwBz8vBQJqgS0BrnpKgW/N+RqPn3+Guybfxa8P/Zqy1DKWps9E9/wuoheOJ8yFAnBlJeGnn4ZIhFRnCeHFU/jdsT9RkFJwxelk3oiXFEMKRp2R0+7TjEkdQ01vDR2+DiZmTsTV62Jm3kzGpo1Fq9EyOWsyJoOJlzoPwgSZVcvuQhOO0E+QVm0feYO86UbyxxCcJRzoOUY6XegF/bB+NckWWAPHB0Ah3PFQjy5/FznWHKJSFG/Ei6gVafW0cq73HIW2QjZVbKI/1J/wHS91lLKkZAkHmw5iN9lJNaYqScw6YcT3ryvmoaPt6BUZYV/DNXwQIYdHXpDIwSAxt1s1rR4cJDMYgigyZXcTUtMBhLlzsRYUcFvqIm6/4yBBHRz1Dc/zjIEI4/bWILleUl4DjC11EliR/Z56Iv2jMZBjuINu8mx5bKneQk1vDdeVXEeHrwN3yM3M3JnsbdhLMBZUeV7cKP5012mWOZcl8DwggevV9dWxv3E/a0rX4DA5CEQDCAjMzJuJQWOgxdNCV6BLLZQICAp3jIVAgFxrLt6wl1sqblH/XZFZcUU8z6AxsL9xPwebD6pG9V3+LnQaHVurtxKOhkkzpakFNlAW4X+r+hvLncu5qeImgtEgGkGDP+LnmTPPKIv0KwheGPwZDOY68wvns7NmJ6A0U1eNWcUTJ5/g9KnTTMuexomOE9w28TbGpo1F1Ipvm+fFenpG9K0aGPQEl8bz6vvqsYZkjC/sQbqwXQml2WlYv5aN5Rt5tvrZpDzPG0psdJr1Zg73nOTllr2c6DjBTeNvwmKwJHDTRncjd06+E0/EwwvnX1ADUQxaAwatgeruav5y/C98bcHXmJQ9SQ1bA0U5F08YF3UiNoONXGuu+vcvl+cNLB55Qh4+Of2TSf3CBiJm0HGgeTcv175Mi7dFTSn1R/zcOuFWHn/9cbr8XYxLH0ehvZDS1NL3jOdNyZ6CSW9CRsaZ6mRu/lwC0QCuPpfKjeLncDAapMXbwo3lN3L75NtJNaWyq24Xb7a8yVOnn8KoMxKMBbGLdkxa0zvO81x9Lu7ddT93j/0I89OnQaAPLCLuhZP50YEfJ6zxh+N5Wo3SKtVr9EzPmc7prtN0+juZlTeL/zv6f8wrmMe3l3ybeYXzLvu9fz/gWpHtQ4I8Wx6geEBsqtjE642vs7teSQARtSJRKUq2JZuClAsqKnM6cwvmcqDpwJBtLS1ZiifkQUbmz9f9L8Ft2/ANmr+eO8A0dyDOdZ8bUmADCEQD7GvYx7ox6xLmxz/oUEcMAgECg6KXAXDVU4DAv1d+na/ueYDxGeN5YPZXmWR18uWS24noNPRogmw+sxkBAZvBhjvkRpYvdiLXFiwj97VT6s03jnhhSy1aueopAx6Y81Vq/c3U3vsW8o6X8Lt2qb/jcDr53Po7+eiL9/FK3SuY9WYMWkNC4SYZ4uar4/IKiNWO7EchGAzDd+NraxEXLoABRbbB/luXi8GqMoPGwOnu0zy460EA7plyDwebDxKVokzNnkp/sB+toOVQyyEeP/k4lQWVnOg4oXgiIOCPKsEiAgLBaFDtlI7mL1DiKGFD+YYE4vm7qj8z87r/jzRBSBgRvJRjbuhrGFJgAzjRcYIfvfYjfrHuF8OOMttEG1IgkKi0HABtWRmSx0Nwx45E/xmHg4ZYN3c8d5c6VqARNAgIBKIBjrUfo7G/kcnZk5HcbmKNjcMTzrJStNaL79VoHezBz8s+39ACWxyueu657g46Ym5+fejXpJnT+P68b6F74dVRzxPZVUc2MGfSVA73nLxi3wir3ordaMcf9tPt72Zx8WIAnjz5JF+b/zX6w/1sP7+dc93n6PZ3U2gv5Pry6/GGvTR7mhGMRjwhD/ub9pNhzuBLyz6JlYvedKEDBzDfcTshQUh8H5zFuOaN4du7v87U3KncPfnuEfdzsKdL/FzOseTgtDtZmjOXByf/M9GAj6BWZl/3EX514g9kmjKZVziPFk8LBSkFyMi0+dqYVzgPnUZHMBpEp9HhD/s50nqEsBSmxF6CXqtnavZUdrTs5h5nMbjqh+6Us4Tnm3fxWseb/OfK/3zHvIKu4RquZoxWNEOjgUBAfZ2s1Y644JeCQaSmpmHTEOeuX5+U5wU8fZhf3D/kWirXujC9BIG1131oimxwkWPU9dXx2MnHsIrK6OyhlkMsKV7Cq3Wv4upzkWfLo7avFmeqk/Vj1xOTFEV9XI0U5xhxnheOhVWup9PoSDGkqF5n285tIxgN8lbbW5h1ZmbkzmBp8VJeq1c+Q0EQsOgtFNmL6A504wv76A/188PXfsiq0lV8auan+PFrP+Zw2+HL5nnZlmxava0JSZDxZnCLt4UufxcaQZPQbAGlaPD8+ecpshcxIXMCO85ftAt4u8ELybhOd6CbL+34EgAzc2eysGghu1y70Gv0FKcUoxW0SLLEuZ5znO48zYaxG9hRs+Nt8TzBZEJcvDh5OEI8XfQCLoXneUIevP3dpL56MlHdjnK+RbZtJ3vTxmF5nifkGaJ0E3Ui2dZs8lPyybZmU9tby+LixWpxZ0r2FILRIDmWHLxhL+mm9ASeF/FHaOxvVIp/opWa3hrGZ4xnf+N+PGGPqoayGWwsKFrA2PSx6t++XJ43MNghIkWo7q5mQkoZjmS2Ghfe02apTy2wxcOwJFmiLK2MPx3/k1pAOtt9FhkZk870nvK8G8pvIBQJkWvNRdSJStBEXwOnwqe4qeIm9jXsU8+d2p5acqw5tHpbefT4o3T6O3EH3Rh1RrIsWew4t4Oanhr+dcG/KmOpcvIRgZF4Xr4tn5b+FlaUruDVulfVYJKYFMOmt9Ee6+MXNY+p23amOpmRN4M5BXNG5Xnne88jakXGpo9VC2zjM8bT5m1DI2g41XlKXa+MVOB/v+Jake1DgrHpY6nMryTLnMXrja+rnYd4hG7cdPI7S75DmimNI61H+LdF/8YPX/uhWmgTEJiTP4evzvsqP3/j5/xp+S8JJikMxU1zjRtvQGd3JDzX4mkZUmCLIxANJMyPv98R83jA71f9NzCbFT+Gy4TGZCI2QkFAdtVx77I7cdizWZ+7BPNL+5Bqn1Gfzyx18sjyX3D/3m9SaC9EEAS6/F0AFKYUUmEuRna9nvwYBhutuurZMH89IR3IO15K+tmGtz3Pt+Z+iVfrX1V9FQYWbpJdCOMXcG14ZJ8ootHRPSt0egyf+RRyKDTEf+tKMaTbKMcYnzFekbiH3Ww5twUNGvRaPWmmNArFQjSChsb+RpypTrIsWXT5u9Br9IRjYdUfId2crsaSjzZ2YRNtzC+cjyzL9If6VeJ2sL+KlRtWYgxJwx6zFAgM8YKp6qgaUmCL40THCU60n6DIUZR0lBkGKS0HFNriIQQYDOiKihL+psZk4tDJ3er4Zfy9jCMqRfGFfBdVZo2NyY1Sy0qRVi9jf8dhdSxzQtYESlNLk44SJOtwJ40YH4hQmFAsxA3jb0Av6JlodSLV7kn60sHnieyqY87CjbzSsg9RJ16Rb0Sxo5hcWy71ffWsKlvFzpqdVGRWcPeUuylJLeFIyxEmZk4kHFNG6j0hD38+9mcKUgpwpjqp76/nE9M+waLiRbxQ8wJ/rH2aJZVzGbd0LrqIhNnqwGcQaL9uKuL8STgwYTRbCcUi2MNu7q24jd+fepTrx10/4n4O9nSJn8t9wT7+c963EXe+hux6AhFlHHdjqZN1Gx7j2ZZXaPY0J3z+gXCATl8neq0eo9ZIX7BPHVcSBIG63jqKU4v5/OzP84e3/sDS+Q9SjJCg5BScJdTPH8dPX/gkFr3lioywr+EaPogQbLbhGyOlpURra9E5nUStJrRlZfj++lest9+ueGQmMar2PvzwiGmIA8MRBsISFVQ18GDItS4s0WVv/2DfIwxMOXQYHUzIvLIAAJtoU7iArIyIxRU0e+r3MDFrIuXp5UzInEAwGkSv1dPU30Szp5nXG1+nydOEw+hgSvYU6t31Ks9r7G9EEAQKUwpBho9O+ijNnmaePv00tb21jEsfR6Y5k05/J8fbj6PX6Fk3dh0v1r5IliWLdl87Xb4uEGBqzlQlGTp9PNNzp/P93d+n2dOMRtBcNs8LRoNDwoXgIheIe7UNB4PWwJy8OVTmVSrv+yD/rSvFYK5zsv0k8wrmodfq2VmzkwxzBlvObUGv0ZNpzsRisKjHf6L9BCtKVxCKhd4Wz9OYTJCain7SJIVTRKOg0yH5fAipDgyf/JjCqYbhtoN9DmVZJl9jH1JgiyMenGDLyU+6TyOp/DaWbyTNlJa0OLerdhfukFsdZRzM8yRZoifQwyt1r+AOuqnMryQmxdTgAlErUp5ezoKCBRxtPUqqOfWKeN7g4lBEirC5bjt3X7cJO0MDsYIrF7Gv5ZWENPRANKCMaWv0HOo4xOSsycp7HfYoIS9B93vC8/RaPd6Qlz9dmJIYkzaGur467p5yN1Ozp7K7fjc9gZ6EgufU7Kmkm9M51naMs91nsRiUcfJQNIQ37EVC4kTHCY60HlF9tZNhOJ7XHehm0/hNPPzWwzx6/FGm5kxlfMZ40k3pTMuZRl+wjxZPyxXzvF8d+hWuPhdmnZkOfwcTMiawbuw6Hj3+KGa9GY2gSVivXG24VmT7kMAm2lg3Zh17GvZwqPUQmeZMdX4+RUzhfM95+gJ9dPo6uaH8Brae3Uq7t53vX/d9Onwd9If6STWmkmpK5UzXGfwRPw6MCQq2gYi5XBAIUifXJUhs9Tp90tfHMXBm/f2MWE/PsMQ0WWd3NMiDorIHI+jrx+1ux3RyL1KSxJxs4AtTPsVP3vpfShwlTM+djs1gY/249dgwDO+tpdcjmM2Yb79dvdlnm43oBC0h17akvxJzuZiwcpl6AYxjpAth/AIeM+hG9lHS6UaVemtMJkwZo/havE2MzxjPF2Z/gZ8d/BmFKYXoBB0ystqtc/W5mJQ1CVmWMWgN5FpzCUaDBKNBJCSQYUnxEubkzaG6u1rxb9Ma1PHJ4VDiKEmMiB9AaobDQN+xOLRlZcxasRCz3jzs3+wN9Y76Pgxn5qymOiYxnreb7NgMtqQk2mawYTfZE1RmCWlsF76DgRQTt73wKQDKM8pVuf4/V/4z/33wvxMI2HAd7tFUHaLFxqKiRThEBynGlNE9vgYZEusikuoXMVyC10gYSG47vB3cVHET2dZsXnG9glajZVfdLjXSPs2UxlutbyEIAme7z7K4eDGuXhf/d/T/eGj5Qwld6nZ9mOKsYkTRRmtfHXvaDzInpYK0148TunDtSAVuc5Ywb9l/czbcMqJny2D/pPi5vCh7DsadryVVq+hfhGkLxtMX7FMUEwYLSIrZ78rSlZztOctvDv+G052nkZFxGB1cV3Id15Vcx67aXSwsXsg90+7hZKCO6KJy8pZWIoTCeIUIL7Xv42cvfBJ/xI9RZ7wiI+xruIYPIjQmE6a1awk8/3zi/aC0VLGGeOopdOPHU+tvZvz11+Pfvp1IdTXGDRsQwmG1iSOJevrdXWj8/lHTEAkGkdxuNPaLxQBNeGRn8dGef7/gaNvRISbs8fvNlYypt3haiMQiVOZXMjl7MqFoCAGBkx0nMeqMbK7ezPG24/SH+3EH3YxLH8fG8RvZfGYze+r3sH7serSClpreGvJseTgdTgrsBWwYtwG9Rk+Du4HeQC91fXVKqELnGablTFNG+GNRWrwtLC5eTIY5g3xbPn85/hdkZCZkTODWibfy/d3fVwLONHqOth0lx5pzRTwvnpw+GPHkQ7POrI4PJoNBYyDLkvWuG54XO4pZM2YN//PG/6gJjTpBp46FDuR5DqNDTXAdyPMWFi2kMq+S+v56cq25mPXmYYUEcWjsdvQVFQm8SltYiMZkQkfqsL+XzLg+FAvxzdKPD3DRG4rRghNGmmgAkn4OVtFKmjH5WsdmsKm+WvF9bfY0Myd/DhaDhXPd58iwZNDQ18AP9/4QvUZ/xTwvWbBDOBbmz66/s3D2bGasWIomHEUQRXq1Yf505klE3cU1RkyOqWrQeMEw/n9QCobvFs/TaXXsa9xHg7sBh9FBmimNw62HkWWZcz3nVJ73p+N/4qHlD/GZzM8k/Yzq+upo6G+gL9jHsbZjAOi1eix6C8FoEIfRgTvkpsBekHQfR+J56aZ0nj3zLM5UJ1NzpqpNX0EQ2Fq9lZVjVmLRW66Y59038z5VFTc7fzadvk6eqnoKvVafcN25lPXK+xFXR0XjGt4RVGRWcLT9KHm2PCRZUv0OzvecJ8OcQbY1G2/Ey6TsSawsXclfjv+FN5rfYHrOdKX67K4jFFMkrHqNfnSlSDjM9sbt3DXlLvVinWfNI8+aN0QmPvC59ztiHs+QAhsMiL3ftOmyFG1SIIAcG9nlO6iVuL5gBfKe55Nvo9bF/OvuonPaPRRYC5TOmiDQ0t9C1DRM6UCvx3zzzQR37RpCyPVr1hAaIclTCIWTkqjhLoTxcYezgSamlpYmVe1pnU4krxeNKI4wQliGYLEMefydhk20oRN03DX2FlbnLubfx36asF5ge/NuvnvgP/CEPeRYczjbfZZ/XfCv7K7bTbYlm2/O/goL0qdjkXSIlhSerH2O/3fk5xi0Br4379+YoMsl2tQ0tFg16G9fKrkczncsVlODKMt8adpn+dGbP036u6ni8GRuIJKZOY+EPGse8wvnq6MBcdgMilIvz5qXeO2IRIYs4nwfvV4lqtVd1Qly/YeWP3RRWTBCh1uwWEYcdzU7MtmUqxjonmw/eWkF4AGI6jUYNAZg9ASv4TCQ3AaiAbZUbyHbmo075FbT4UKxENXd1eTacmnqb8JisKjG2N6Il6qOKq4rvW7IdybuqbE4ew7OPdVDff1cdRQB4rIZzMybOWwnO37tjqsly8N2/mnM3YgaPVFX8sW3XOsiY8FUnj79NDW9NfQF+yhLK2N5yXKFQPaeAxSFdfw+tOP8Dtq8bawZs4aIFKGpp4lsSzb7A4d5aO9Dwy7arsQI+xqu4QMLnQ79hAmIlZVq0yLW1IT/qafQFhTg18boD/WjyZqAac0aAlu2ENq7F/MNNyDYbMjBIBpBwGZNw6fXj5pSLIfDRFta0FdUqPcznckyYmjOQK/N9yvave1DCmwAtb21/Pzgz3lo+UOXpazyhDx4I170Wj2/PvxrGt2NRKQIJr2JT03/lJJo6e8m05KpKkNOd51GI2i4ZcIt7G3Yy8uul/nUjE8xMzATQRCYmDERq2ilpb8Fr+RVeL1GoxqKIyjFEKvBSm+wl0BESTR0B93YDDZ+uPyH1PfV09jfyMNHHsagMyDJEt6wV1VqXQnPExDItebS4G5QOYBOo0PUieRZ88gwZ+AwOpKuBUw6E6Wppe9JOIZNtCFqRSVgIXMSeTZl38KxMN2BbiRZUnne5OzJOIwOUgwpjE0biy/iY1LmJO6YfAff2/M9zvWcw6A1YNFbWDd2HcFokDRTGkX2oqRN0svlVcMZ17sDbnyaKOYRfvdSghMuh3eCUigdnzGeiowKTnedvrgdgw1nqpM8a15CqEJMjiHJEtvObsNhcvCy62V8EZ+alnmlPG+4YIdwLMxR92mmO+divvD+17SfVDzKjBcbAlpBiyAoKsS4/1j8/6B8b98NnleQUoBeo/jhmnQmlefl2/Jp7G9EK2gxaA2XzPOQwRf2KR6LKMXXSCyCxWChN9iLSWci35qPJ+QZkefFlZKBaABJlohIERo9jTCgZ27SmXA6nGTbstl6disN7oa3xfNAETY8eepJ9XozsMAGl75eeb/hWpHtQ4QiRxHTcqbx8FsP0+HrUB/PsmSxqHgRdqMdq96KJ+ThhZoXEHUiC4oW8Is3f8GR1iOIWuVCHU+LG00pIsdibMxbRqO7UZX4JvOdAmVhfn359VdHuqjfP3KCl9+vRnhfCqIeN5LLNXxhqbSUF1v3si5j/ojbMUkabqm4he5Ad0K4hGfSx1k3yBQdGHkM5ILX1nAdbHmYm/ZwF8J4N2f7ue2ULl+O7cLfUY/xQrqo9kK6aFLPigtjigMLU4Ol828nBWgwplvHoN/fjLzjcQwXHrvHWcyCG59m8dPriUpRxqaPpTfQy20Tb+PWojUYX9yLVLtF3cZtzmLmr/szgqChcN8ZYlv+j3iur3o8dvtlH0d8VBlZHnbMWKqtZd3CTfyIoUW2yVmTlfCBdwHFjmKWliwlJsVo9bYSlaLoNDpyrbksLVlKsaMYwTNyZzWqv3iDDUQDQ+T6l7K4GW3cdeD3qNhRzNnm44xNcp7AUENiwVnCG32n1ES9t7MgiJPbk+0n0Wg0+MN+UowpRKQIgYiSyhaJRcix5hCKhZQRFUnm0xPvZlHGLNIEC4H2FgSLJWG0JO6pUaLPRna9kPyPu+oo0K3A7MgfsZM9WC2pBQy3385Iy29tJEptby19wT4AanpqMGgUX58t1Vuw6C0J9gCyLPNm85vcNuk27KKdiZkTSTWlcq77HJOzJicQeVDI74TMCVdkhH0N1/BBhdZuB6dzGKX9ev6n+s+sKF2BFAgQ2LKFWFsb1nvvJbBjxxCPKPMddwzbaItDDgaJnDyJrqRELRporTa0ZaXEapI00wZ5bb5fUdVRlXRkDZRC2+WOqdf11XG87Tjbz23nbPdZ9BolXS8YCdIX7ON052nybHmEYiFEnYhZY0aWZVo8SvLmnPw5yn1QK7K4aDE6rY6/Vf1N5XlRKcqiokXoNXrsRjt9wT4qMipo97ZT766nP9SPXqOntreWp04/Ra41l6gcpaqzitOdp9VFsFlvxmwwE5NjQxa6cYzG87ae3cr8wvloNdqEdNGilCKuL79escVAxhvxJqwFTDoTC4oWcOvEWxP4z7vJ83qDvTT1N+GP+BmXPo4sSxanOk+hFbSEpTBRKUpvsBdJkqjMr8SZ6qQ/qKSShmIh/v2Vf6eqqwqH0UFUiNId6Obl2pfpDfQyK28WYSmsmuZfKc+Tg0FMRpGbClfzuOs5fBGf+hq70c7B3hMsG4a7XGko2GgochSxu2E3H5v2MV6seZHG/kZ0Gh0CApnmTO6ccieRWOK1Q0amxdtCkaOIxv5GMs2Z6nNXyvPi37mnTj1FbW8tYUlRWpU6ShOKR5BYBI4XeEWdiElnQtSKRKQIk7Im0envVLZtsCHqxHeF54kaUfWwS8bzIrEI4VgYX8RHVIpS565jl2vXkHH1OM8zaAzkp+QnWMSEYiHsGjvZlmzCsTB5tjzmFc4blucNVEpqBS3F9mLVf82oMyJJEjbRhsPoINeay3Nnn8NqsL5tnpdmSsOkMzE9Z3pSi5t3c73ybuNake1DhvmF87l36r2c6jhFMBbEqDWSbc1OuIjET9rS1FK1wAaoXgSnOk+RackkNE4YOSXH5cLa3IS8eqH6+HC+UyliCvML518VZrijKfhGVfgNQtjvJXbgQHJvKqcT/ZpVcOZxshx5aG+9Ve1Mhw4cSCDABrONKPDUqacSwiUeOfME85f+Fw4S/Qm0JSXDj4HU1iIuSAwYGLhP1f6hZuSjXQhLHCXcNeUuGt2NyGsWkiGtRBMKIxgMYDAgmEwXCx8GA6YNGyAcRg6HFeWXzZZQGEkmnU8zpV1xCtBASIEA4ot7iA1R/yjhEA/O/QaHu09xffn1/On4n1iVtwRx52tDRnlx1VMsaNBPmKCO6sURq6nBv2UL0Q0r+FP1Xy/5OAaOKptvvXXE40jTWJmcNXlouujiB941fwObaGNe4TwkWRr2HA9GpGEXYYKzhP09xxIei8kxciw5NHubL4toN8p99C4cw7jlS9GFowgGA7JeTywSRmpuVnxPLBZsJhsZaQUEVmRjemnQeTIghTe+f+2Lp/DGuccpSCngpvKbMAclYr1tyriV0QhGo7LYvQzERxHCUlhJcrIXUt1VjYxMIBrAF/HRE+hhRs4M7p/wcTJ2v4W84zlklBRUTakT1q/FmJaZsD1CIycO6qNKwutwnexhU1pHQVSvVYkXKB4s3YFugrEg7qA7gWDHU/JkWaY30ItBY6Cxv5EiRxEz8mbwGc1n+M2h36iFNp1Gx9z8uXx53pev+bFdwzUMgt+ih7UrscQECAVBNOLXxvif6j+j0WgodhQje5SRffNHPzqkwAYKBwgJAsbVqxU7CRjCO+LNh5jLRWDbNsy33ILmwn3cfP0Nl9TgeL/iclMOR0NjfyNdgS56gj1qwzpeLPFFfESkCDIydtFOob0Qo9aIN+KlzduGP+JH1IlkWbMYmzaWIkcRvzn0mwSep9Po1ATPgpQColIUq8GKP+LHHXSjETSUOEro9HViF+14w15aPC1My5nGvoZ9ZFoykWQJf0QxaK8sqKQ3MFSxdik8796p99LQ18Dk7MncNvE2vGEvol5RsZU4StT7dropnclZkxUD+liUXGsuY9PHJtzX302e5wl5aPe10+ZVfKqeOf0Mn575aSQkTnUohTatoGVO/hzur7yfnx/8Oed7z9PubedfFvwL57vPc6rrFFEpSiAaQKvRYhft9AR7aPW2IiPTE+hh69mtrCxdyQs1L1wRz4vD4XTyT+vu5efVj6jfHVEnsr/zMAtXfg7DThK82YS3GQo2EmyijXVj17H17FZm5c1iZt5MZTTR5GBx4WLK0svwhDysK1xOkS4dbTiKYDRhx8hxd7WqbEw45ivkeQAF9gKKHEV4Q160Gi2pxlS6/d10eDswGUzqduJF4OWly9Xwg3ihyR/2c8+Ue3j85OPYDDY1XTTXlsvG8o30BnrZU7eHnmAPaaa0UdN2k2HgyGkwGhyW5zkdTrr93aqPuTfs5bu7vztkXD2+vXp3PUuKl9DqaeVY+0X+XGQvYkHRAvxRv3qcyXjeYKVkTI7R4mnB6XCSY83BqrcSlaOc7znPuZ5zFNoLafG0MCV7yjvC80ocJTyw6IEhYW3v9nrl3ca1ItsHCJfSJbGJNu6ccueIo0GqeWkkqBbY4pBkiWxrNn8/83fGpY3j/vX3EBzs/zFwURqJYI8paaTxfbkS36n3E0aNvR8t4WsQonotQiSS1Jsq1tqKDNzpSiP0ysPq72idTsw336y+x/Exyvq+Gmp7axM8IQLRAJ9/7V/5xpwvU3HdfCJ+L1G9Fr0wkosDCDrdkCKq1qlEgv90978kvPZSL4Q20XZJypPRpPQNfQ388o1fUu+ux6gzkmnJxGqw0hPoueIUoIFQPMOSqxVx1fOx6+5glrOZH+/7Md6wlw0Fy5Bf25H05VKtC23l3KTPxWpqwLdA6T6Ldow6IwICnf7OpMcxZFRZN/IlXLSk8It1v+BE+wl6Q72kiqlMzr58YnC5GHiO+6N+SsRcUmURwRsmFG4jqpERFy4iJMlDAg96l86k6twTzMidgagVCUQCzM6bjavPRXegW+1Eviq/yoZxG4Yl2p6Qhx3nd3BTwSqiO18h4hpaOPM98gjaoiLM119PsaMYj8lDYO11WKLL0IQj6EwWNEYTUjCI4a7bkQx6umQf7eFO7plyD8WOYsy+CIGtz75tf8b4KIJBY+Bs91mWFC0hGAniCXuw6BUDZqfDyQ/mf0spsCXxZoxs20504zpO9dfQ6G7kdOdpAs7YiKMkGuPIC97hUlpjTU3DNllwFrO/5yhppjTFh0dQvE08IQ/RmGKKrG5flolKUSIxZZFpE20caD5AX0Dxc7t+3PUsdy6nLLUMV58LX9hHpjmTydmTrxXYruFDiWRBNwMLVzbRRp2+m+dqh+d50U43oIQlDKvMr6lB7u1VEw8H8g5tQUFC8yFWW4vs8aj37VH9PN/nuNyUw9HgC/kIRoN4Qh4sBouiGAubEQQBq96KWWdm7Zi1iDoRb1jh8L2BXnbV7VK8lWLBhEb4YJ4H4OpzMTd/LjeW38jLrpeVNFJBQKfRMTZ9LHPy5vBc9XPK9VaK4I/4STemMz5jPO2+dkDh+Edaj/C1eV/jj0f/yNH2o+r2L4fnTcyeOOp7YhNtTM4evmj3bvO8+r56ApEA49LGcbbnLP6on98d/h0bx29kw9gNGHVGpmRPoSfQw8NvPUyWJYtzNefUwB2LwUKmOZOoFMWkNyV44EalKMGo0nA3aAy8XPvylfO8+OMuFzy/g9tX3MDvz15MITXrzTTJbvLWXYcpshRCYbRGE5p3IBRsJMQLqkN4XiBMrKsLo1ag4o1GpLOvqL+zwVnCkuUfwxvyYhWthGPht83znj/3PFnmLB5+62FOd50mKkXxR/xMy57Gl+Z9iRO1J9QC28Ai8JTsKWpRzmqwIggCbZ42vrP0O0iShE6jU8+5kx0nkxeARkjbTYaBI6ft3vZhed7i4sVsrd5KKBZiUtYk9XtV21vL/xz8H76z5Du0eltVnqfX6vlb1d/46KSPsqh4EV3+LgwaAxaDhRZ3C/dX3j/iuTIwpTWOmBzDE/aQakylrq+Ocz3n8IQ8CIKAL+xTfarfCZ6XbkpnXuG8f8h65d3EtSLbBwTJuj0Z5gzWlK0hGA0mFN5GM7mMXwSSGZeXppZytvssXf4uGj2N3L3rizyy8qcI/Z5E/48LxR+AkM/DXxo2J3RsLnf+/93CaGQ1KczmERV8mEda0ioYWBBNw0KOswTZVTdEWSZu2EB0x84h5uIxl4sQyshntKVF7Q57u72qSedAeMNeHjz4EB+b9jEKUgroDfQyzzyekY5UDoUQKysRVqxQEj9FEUmv49GGLXx7ybc503Xmsi+Eb1f27wl5eKP5DU51nMIb8RKTY+xv3I/VYKWyoJIca86o6U6XgtHUiBZJy9bqrawZs4ajbUcRR7bUG9HXJuTv5+G3HiYcCyPLMqWppawbu44OX8fQ4xg0qjxSoSNeeC0yZfxDblLxczw+augfVIhn7lx0xcWJRWWPh0NdJ/jTsT8BijfGV+Z+BbOk4Y78tRhjAlG9luOe83TLXrae3cq9U+9N+h2q76unMn3qhfTLJOePICDOn09o9278W7ZgvvlmbCZb0m1pbTb0KB05C1BMubIdt3tkf8aNGy9Z0RYfZQhFFcXwGy1vMD5jPBnmDHKsORh1RvbU78Ep5iC73ky6DanWRazfzWe3fpZx6eMIxUI81/git1+4vgw5rkvwOJSDQdDrEefORVtQAFotgtkMsRj6yZMVFcyAz1ZT6qR2bim/eu0BOv2dWA3WBLJl0BkoTS3Fordg0BoIRAIq8ZqdP5vClEKeqnqKqBRla/VWVTkx0mLsGq7hw4IhQTd6PcY1a9AVFFxUfVsso/I8tRk4Wpr3gHtX/Lpp+djHiJ45k8DzAKS+PgRRVEMQLtd36t3ClfCOy005HO3vGvVG0s3pAPgjfnQaHb3BXvV1X13wVX715q94o+UNNCiplTNyZ/DFOV/EqDXS4e9IaIQn43lRKcqB5gN8bNrH+NeF/0pvoJez3Wdx9bno8nexq24XEpKaTKjT6AjGgqwZswa9Vk8wEkTUiRi1Rtp8bfxk1U8+0DzPG/HiDXvZOH4jz555lpreGoKxIE+eepKilCK+tuBrvFr7KqXppcp47YXEVBkZi14plMbHagWEhPucTqPDqDPiDXuxG+385fhf6Ap04Qsr438ljhI2jNtAl79rVJ43EDGXiyzNioTH0kxplKWV/UOECqPxPGNlJX5XnXqdkF11pLwisHTiXP5lz7cAhef9c+U/s/38dhr6GxC1ohooNr9w/qg8L82UxsNvPcypzlPqmCXAsfZj/N+R/+OOyXdQ1VWVUNActgicO/Shhr6GIQU2GD1tNxkGeshZRSvH2o4N4XmvuF7hldpX8Ea8TMuZxp2T7+SZM88AqMXZv5/5O388+keV59X01tDl7+JnB37G7PzZZFuycRgdlKeXo9VoqcisGHG/vBEvWkGrKM8E5e/otXpErUhFRgX+iJ/Xm15XH083pZNjzaHb3/2O8rwiR9FVXVQbjGtFtqsc7d52TrSfoL6vnokZE/GEPXT4Okg1pZJryeXnB36ORbSostyB8uThbk7xi4BRO1SRlSKmUN1dDSiy0FZvK23+DuyPbx5+J40G3EH3O9J5eicxXCpj3CdrOGhtNkwbNgyfLjqKH1u8IOoJeShLK6NNa8S8bA4pu4RETwVnMZr8PGJbtybdTszlwrh6FYZ589TCoFVvVU06ByPeYcgwZVCRUcER1+ssGG7x7XQSa2wcUvSLfvJOljuXU+wopiy9bMTjHO64r1T2X9dXxxMnn+DJk09i1BlpcDfwowXf5n8rv08k4CVm0FEXamd/15ErSgEaiNHUiDpJ4KtT7uORmmdYPWY1ZusoppwjKM7s1gyeWfRLwjrY3rKb/zz8c3qDvdxQfsOQ4xhc/AsNN2b8Do3leEIe6vrqaPEqqWh51rwh4xwjYdhghgtFYl1BgaqSiGP2PZvUdNJ5BfNYnT2fjN1HkV0Xz4OlpaVEVl7Hs62vDEu0vREv5YbMYf3IYrW1GJcvJ7R/v6LY8Pkuf0EYCIzszxgIwCUW2QamUAWiAaq7qql319Pp6yTDnIHNYOPOyXeSKgwqig0sgEWjoDXx4Nxv8mzdDvJt+fz21J+ovO6/cQIMONcv9TsiGI3Kd+zgwYTrgdbpRJw7F/2kSRiXL0fu6wOjkTYxzL++8iV6Aj2kGlNVwgswLm0cbd427p5yN4daDtHmbVMTsCZlTeLj0z7OK7WvqIuZFm8LLd6Wa8W1a/hQY6A3E0ajkgYaCinNQZMJWavF++ST0NUFXDy3bXb7sDwvHgwzWpq3eu8aeJ0Jh9GNHYtu/Hhktxu0WsWzUhDUhsX7RbF2pbwj25rNP1X+07DpoqOpaAfzPEmSyDJn8fnZn6eqs4q3Wt9C1IpEpSgLixby5MknqeqsAkBCQoOGM11nePLkk3xvyfeUpPgBjfBL5XknO05yquMUjf2Nyu8arISiIeyinbLUMubkz+GxE4/R7GlWt7G4aDFrx6x9X/C88z3nWTtmLZ+d9Vmqu6sx68zquOvb5XlWvRWdVkdPoIfVY1YTlaKKGb8hBVevizNdZxC0Av2hflaPWU1voJdTnaewi3bGZ47nVOcpbAab6kdmM9hIEVPUAlHcn2zbuW24+lx4wh51ZK6lsYUufxc3jr9xVJ43BMGLhfHBxvVXgneb5w32d5ZqXVQuvMjzZufN5mjbUXbV7VILwLIsYzfaEQSB2XmzR+R54WiYEx0nCESUccs45xAQeKvtLW6bdBtaQXvFhdkT7SeSeoXByGm7yTCQ5/UEehiXMY7j7cdVngdw4/gb0aAhIkXwhD08c+YZYlKMmTkzsZvstHnb0AgaZuTOIBQNkW/LVxJbzRl0+jo52HSQEkcJy53L6fJ3cfOEm0f9LG16G3m2PF5xvYIn7KGmp4ZWbyuLixaTaclkZu5MUk2p+MI+9Bo9aaY0DFoDvrDvGs8bAdeKbFcZ4h0if8RPKBbi90d+T01PDavHrOa/3/hvWjwtlDhKlOju3Gl8Y8E32OPao37SlyKzjl8EDjcfZkbuDHVkNJ7CI8kSEzInEIgE0Gv0NEa7cQxTrMFZzLamV7HoLbiD7rfdeXqnMFIqo3/LFrqXz+ZIn2JmOthoEkCbloZp0yaV+ApGo6JwG6XA5gl52NewD6POSK41l2fPPMu5nnPk2/JZ5VzC6vnXY5MNeIQwb/SeZF1gZBIRCHixZeeoPxc7iilNLcXV5xoySpBnzSNFTFG72flZpfQsFUiDhM9usAeV+nhZKaIjk/QrkJ8Pl4x0qbL/+O+f7jxNb7CXsWlj2XbDk5S+XoP8wl9VRV6a08m45TfTpx9NWjYyRkymvKAcszU3s2TuXF5qeY1JKWMYEy+wDlB0hg4cQFNYQMzTn/TvaJ1OOF2N/QIB+Vipk0/d9QadPU0YLXakQQugIcW/QWPGgtGIYDYnKDIvVa0pBQLEvB6iAR+SQY9bE2F3+wG2VG+hxduCSWfikxPuojBmxSB3ozNbR1V+DjdqCAoBE+cOHaMVYwJzC+YSjoX53KRPkLH72JBrS6y2Fv1OmVvWrqYq3JhwDPFjnaovQhMMMxJdlb1elQDKgQCxrq6L53MspnismUyqcfDg91EeRQUy2vODUeIo4baJt1HVUUVPUY8yImPKJBAJYBbNmHVmDLIVVTui12O+5RYkzwDVscfL6lgZ8+Z+i/lPrmJs+lh+Xf0oH5l1A1Oum4cuIhPRC8gmE9ZLKQCKYvKAlAGF0uCJE+gKCgi99hrRuzZwy8Rb+NPRP5FiTKHN+/+z994Bct3luf/nnDN9Z3Zmey+zq96tLqtavbjg2AZssI1DC+UXIJCbhHDDJSHhXkhyCSSAAWMMwTZgwEVWsS03SZZkSba6Vivtzmp735md2Zk5M6f8/jiao53d2eKCC1fvP7Z22pkzpzzf533e5+k0wGTuNG6afhMtoRZunHYj0/Ons33qdnqjvebC42LfRU52p/vxKer46YbX6lr9qVUK58XVOAscfuI7nzbOvyuJ4CPPR8nvx33nnUQeeQR6e00cMx7ZlQqGUYPB8b11W1vTPncU0b5smZlcapk+HbW5+c01LP4INWYiYzzEweaDdEW66BnqwWqxUuoppdpbnYZDFhQvmHTK4cjPHYnzLvQZPlSiIIIAt8y4hRebXiSuxMmyZ3Go9RBOi9P8fFEQUTWVw62HaY20sqRiifn+bwTn3Tz9ZlxWF4/XPU7LYAuiIFLsLuYG/w3ML57Pic4TrK5cjY5uemptn7L9TY3iv904r9pXzU3TbuJQ6yH2Nuwlz5VHe7idlRUr+bOZf4bH+tYa9sPV4weaD5jecIVZhdgkG4qu0BPtYVnZMi72XWRWwSxuqLqBAncBzaFm5hbOpcxTxu/P/57LocvIioxiVdhUu4lFJYtoHWzFbXPTNthGz1CP6ePnsDjwOXxc7L9IT7QHVUvHqxM1eUWHk61TtqapUyerHgzLYS72XaQ93I7NYsNr91LfV8/ui7vNAAqbaGNx2WK2Tdk2bkJqqt4UzlMwcd6K8hX84OgPGJQHsVvsJvkSi8R4rvE5lpUvSyMih3/XWNIITIgn42ZIgLld6CS1JO3hdnwOH32xPvpj/ZzpOsNAbABBEIgqUZJq0vQDBEbtx/64gcW+MP8v2FS8Epuik7SKPNd5kP84ef+Yabtj1XCcF5SD3Dj1RvJd+XSEOxAlkVJ3Kb1DvfzLgX9hat5UFpUsojCrkKSWRNVU5KRMV6QLt83NivIVfP2FrzOveB6lnlL8OX4KXYU4rA5iyRjXV1w/qcCG/Kx8DrYcNNbpoctG2Ieu0TxoJIf6vX4eOf0IWbYsoskoL19+mb9c9pf8/vzv8dg913DeGHWNZHsfVapDFIqHuK7kOh49/SiBYIC1VWv53bnfcab7jPnccm85h1sP878P/m++uuqrvNr+qvnYZNj8lKeSz+njX1/5V872GOaeoiCypHQJt864laPtR5lXNI9vHft3vnX931OJDoGrhviCv5ruNfP50q8N5dNH5n7EvMD9MVKC3kiNe1NoaEBcOY8fHfsRFtFCla+KTy36lGk0mSrJ43lDKaIA53rO8XT905S4S9jfvJ/6/nqy7dnYJTsPX/wdT17eS6GrkA/O/iD5OWUoNpHM+U5XttUqmTec/lg/mq6xomIF/fF+jrUdM0cKUumtw8Ml5hXNozvSzcCm5eToa5ESKlaXG8lmJ7ZnT9oYiKl6eZP+Dpnm/VM1meMx9fqUx8U90z9kEGwjyBc9EMDzPOTeesub2s5UjZlMOcJvcN6GtRywHMXvLEM59xzyCKm866476bMrCIi4avxo4xjqY7ViLStHisQoseZCTEXr6UWz+a4qKzONKieTyPv3G0rKW29NI3onq9bM9Dx3jZ9Fq2bz40gHTouT7678JiX7z6AHHjGJq4mUnxN2ZDON0drtlGWXATDVWYYeeDHjS9VAAFckRrWnZMzvkPWpT43/+WAoMwBdURj68Y9x3XYb8eefH6UMtK9aRfThh6+aftfW4ty4MeN7pkqYSCUyoiajAujrb8Pq96MHAkY4idVK8uzZUYvunLzV/Nu6f+He3Z/iUOshTnadpNJbaY4NbJ2ylUIqJt4oWR5XrZciKVNAWkqq7L64m1tm3GKOP0iCRJYtC6tgZeaimRS5i8zrVuNAI0fbjtIX76O+rz4NJDstTkrcGeY3htUfM3nuWl2rd7pS14BIIsLnZ9xL/Old5vk3ZiL4lfH0rA9+kKEf/MD42yTUuaLXa4YMZVLmp+5P433ucKVKfN8+7MuXo8VjnH8P4LxMuEMSJMo8ZTzT8Ay/O/87hhJDZvr1hpoNrKhYkaa4KnIXvWHCaSycV+WtIhQPUeGtYCgxxDfWfQOAvlgfSdVYQIuqiCAIae83KBtNuhRB0hHuYEHxAvrifRxvOz4uzptfPJ9idzHLSpfRFe1C0zQqfZXkOfPY07CHpJakc8gw/s915rK+ev2b9rp8u3FebU4tx9qPEQgax12F17hfNQWbONhykBun3fimtjNVKRLyp6/9lJbBFvPeY5NsfGTuR3jkzCO0DLYwNXcqLquLuBLHarHyYtOLvNbxGjbRxqaaTXx5xZcJySESagJZkanwVtAcaiaajKLpGh6bx/xNU2EKqWAKh8XBQGyApmDT1eNuAksaISuL5Z6rxNVk1YNNwSb++9R/m4EZswpmYZfsnO05y6BsJKbGlTit0VY6Ih10R7pHJaRmqjeD8zSbxcR5KbJL0RQsWjotMRAfIBQPmcrNkd+1OKsYp82Jqqtp2AEwv49VtCIrMsF4kIZgA09ceAKPzcO+wD6C8SD+HD+qprKwZCEzC2bS0N+AqqvmfvR7/fx6ywP4D11Cf36X+f4f9ldx/Zaf0qZlbqKPVZP5vboiXWyfup2XLr9Ec6iZWDLGhb4LZNuzWVq6lB8f/zH5WflUZFewumo1exoMT+iZ+TPTcN7wJNrxqmeoh2x7Nn2xPsKJMLpuKAqtopWWUAuyJlPqKU0La/nRsR/xqcWfosBVcA3njVHXSLb3SaU6PKF4iFJPKee6z7HzojE+ta56HWd6zmCX7Ki6yqA8iN/nB+Bw62HzBj28JiOz9tg9bKjZQLW3mtPdpwnKQQqzCjnddZofHvshLYMt3DnnTnZd3MXrHa/zv1d9g9Urb0KXZRIWgadan+Py2WMMJYc413MOWZEJxUPU99cTlsNGB6W3noWlC99yStAbrQlvCrLMpf5LiIJIR7gDAYF/WPsPb8loOyyHefzC47RH2qnNraW+vx4wAFRTqInCrEKC8SCqpnKp/xIdkQ5Kpn+QMn9VGnlplr+aHiLsPvEUjQONXOi9QEyJUeGp4NaZtzK/aD5W0UqWPWtUqlOqnFYn3WI3HckB3C43Vd5CPHYPrltueVsNiyc63ib7uMNidPiuz1uAHng643O1xgDWeBLeYmq56PXi2LQJfenSMf0GbYrOX866j+RTuzIuQOIC7J4S5cHzD/O5eZ9g8/q7sSsCNocL5ezZq+81jlJAzM0Dmw3R6TRGlW+6yTh+r4wO6YODyCdP4ty4MZ1gm0CtmVI5jPU8vTFAka7zkam34bJlXSHYmsZ9r+GfrYfDCGONyV4ZPRJ8PiMh9cq+TXR1Uh9rvfr9ExN0t2JxctzusRMwVRWppiYjoZ5SaUjFxSagHXMx2dCArGlpYw9qQwP6xo3jgmHdMXmSbTIqAIDfNDzJ9hvWkIOOZdo01PZ2g+BavDhNQSm/vJ+NW6+SgJIomecPpBvwjleTBtBX/qtaLWZS1qrKVWN2UVNeLlW+Kk51nyLQERgFvFZWrjS7yyMrLIc513OOxy88Tigewmv3YrfY37bkuWt1rd7pSl0DIokIH6u5DWckke5xdEUtmqnUQABBTVfETCbpPOWb5rz5ZojHzYRkpa3tarDSBJ+bIthT/x8VVQ63HX7XcV4mXFGUVcSh1kMcaD6AJEoGsXUF50mihI5OnjPvTS/gxsN5l0OXKcwqNAmd5lAzHZEOs4GraApWyYrAVZItZSw+kiCxiBZWlq/kM0s+g67r4+I8l9WFz+nDYrGkLVDvdd/7tgaQvd04zy7ZGYgPYJfsyKpsej75HD6y7dn0DPW85fCbal81N1TdgKIpJNQENsnGoDzI7+t+z8yCmSwrX8b8ovn4fX5+ceoX1PXW4bK6yHflE5EjPBd4jrq+Oiq9lQSCAXwOH7dOv5WFJQvx2rw0hZr43bnfUZ5djoCAjk5IDjEQH6DUU0q2LZvfnP0Ng4lB87h7I5Y0k1UPhuUwj519LC2RNtueTSge4kTnCfKceYhOkd5orzFynAinJaRmUiKmSN8pYt74O3kEDhT81dTHro4nW0UrmqZhk2wIgmASPKlyWpxYJWvG79oT7WF5+XIWFC/g5csvm2RmKtG+IruCiBxBxVgbR+QImq6xL7DPHKEODASYnj+dnfU7udB3gfXV603iuSPcwZaydZQ8f2L0tFbgMlUIFO1YP/73H1aT/b1cVhfdQ92c6zlHlbeKk50nGYgP0BvtxWVxsbhsMXsv7eXh0w/z6UWfNkm2N4vzIskIPoePXEcuBa4C4kqcuBJHFERcVhc9Qz2sqlzFuZ5znO05iyAI2C12wvEwt8649RrOG6OukWzvk0p1eIqzitnXuO9qBwABWZVRdRVN1QyJua6SUBM4LU7iSpyQbKRIpUwNdXR6h3o5033GvNk2B5s53XU6YzRxbV6tGcf8XMNzDMqD2CSjq6Boiikzf/TSH/jGkf9N22AbcdUAdx+b/zHAuFmWuEt48MSD1PXV4ba6cdvc+HP8CILAQHSAKXlT3jFmeiI5dsJi7FdREEnEEhxpPcK57nNv6obeFeniXPc5uqPdzMqfxZz8OYQSIbbUbkFWZaLJKA6LgyxLFkk9Sc9QD/1x4wJ8Od6JZfVciiCdaPNX07NmHi1yDx3hDpNgs4gWPA4P53rOUZBVgN1iZ2XlyozbPWE35W0c95joQj/ZxwuyCshx5GBTxk9GncziYjIl6DpDIzzDhpdos0MwPKbSR2sMsHHlB0ioMgu9M9DiMQYtIl7NRuLwYZOsm0gp4LzxRnA6M8a6j5VkOZFaM6VyGO95BJq44fodSIKE3rob++rVV72/hhE6wxUTwxVl9tWrR5NQ440e7djGK3U/v7r/bFakzFtmlMWCICfQhRHf4QqJhyTh3LLFMOcfQ6Xhvu8+nFu2oKsqejQ6qcVkqoYefRT3Pfdk/k127CD2wgu4tm6bFEE9GRUAQHOomS82fI07Z/8Zt9lsGVVsqQRA15U1d7Y9G6topSDLCG9IJWZNpiZMS7ZYwOVCKCgg61OfwpWQ+c26H6A7HVizfRO+v8fu4aPzPopDctA40EhCS2ATDdPcO2bfkfGe0BRs4mDzQZ648ASBgQCqruKxeUxPj/ea/+e1ulaTqdQ1YFPpGjz7jhjE+fAaJ0AHroynD/dO0zTU3l6zSaaGQhCLmUQaDocZzCL5fMAV24DubsScHKTycuPaMsHnjnx8d/tL/PuRf3/XcV4mXJEKkIkkInjsnjScd7z9OKsqV70pW5OUb54jHuMfZ/8lfbM+wdMdL04K57ltblZUrOBQyyGSatIkG0RBZHnZcmblz0ojSCyixTA812Re73id2YWzWVC04E3hvLfTvuXtxnkJLWGmsXpFL4VZheb6xOvwvmVPtlQpKBxuPTzq7ymPvDVVazjfd978t64btjnd0W4EBMKJMGuq13Cy6ySdkU4aixrZ37Ifv8/PgqIF+HP87G/ez+yC2ciqTF4yD0mQqMiu4EDzARJqIs38vSnYxGtdrzFv3QIqNm0AOQF2G716hH4xQiVXsd5k1YOZEmkTaoKkZgQFKJpihjKAMTIqCEaYQ1FWEQICzcFmMzBgOOl774wPs308f+fWq41TocZPeP0yDjRetaNx2VwUugsBiCmxtG2cljuN8uxyosnoqO+aWtP2Rfv40oovYREtnOk+gyiIxJU4Vd4qPrnok7zQ+AJbp25lZv5MRER6oj0mwQZGyJ+qqQzEBwgMBNCrr64vQvEQbkUcFZ6VKj3QhBiNEXaHJ3Vdm+zvdbHvIic6T5DvyscqWRlMDJpNgZNdJ7m3+F7yXfnU9dUhiQZKfis4L3XuOS1OsmyGj3ssEqNrqMscF97XsI8vrvgiqq4STUYp85SxoHjBpPzo/l/FeddItvdJpW4mOrrZIQNDiWSX7OZjKZJNEAQUTaEmp4YcRw7dQ91UZFdQ31/P6a7TzCmcw7GOYxRmFTKnYA7feeU7prGjTbQxq2AWn1/6eUo9pVR4K/DYPVwOXqYv3sePj/+YpWVLWVmxkil5U0ypcc9QD5qmkW3PBhniqiHTBdhYs5GjHUdpC7cxEDM6U6e6T/Fy88scaz/G7bNux9vifceY6fE8t/BX8UTLs3QPdRv72OJEEiS6o91v+HNOdJ7ge0e+R1OwiaKsIppDzZR5yvjo/I9ysvMkPdEeZFUmloxR6illXtE8LvRe4NYZt7KvfR/oQNUaXp8lsnDFNuwKJK0iJ8P1FAgRjrQdIRQPmcBrWdkyXr78Mrsu7mJ2wWyGkkM09jfy5wv/PG2/propsiLziWl3Uih6DDNVh4O+WJSwc3I3jMnW8ESdkZW6EYwnBx7unTG/eD6qdfxL14TEwGTLZhs/SdZiMcztx6liSw4faSlE3bcbMC66ak2NSYRMRilAIoHa10dsV2bFXGznzlGjohMRjanHJ3qeVdGwiNJo7y9A8Hpx3X676T02UlGWFszQ2op9+XIsM2YQ37cvczz97j2sv/56nmp+FoC6aDPzJlCiWefNS/8Ow0g8ACEnB+vs2ekpplcUiVJ5Ocnz55EPH8axZQuWsjJcH/wggtcLioIeiaSRiaMWm6EQ+tAQjg0bECTJVH7qqkrkl780Hl+9ZlKE9WS7/KF4yPTLiD3zDJby8lHfTT5+HPvy5eiJBHMK55BlzcKf48dtc78ho2QtFgNRHF8N2NmJ+2MfI7Z79yiyT8xA/maqal81n1786UmpKlLXLlVTea3jNXNR0B/rZ1AeZHXlaoD3jP/ntbpWk63UOT7NWY4W2A8jvYzGCdABYzw96777UNvbiT722NXR9tmzca5fP2YzAF03iTh9aAjBamXo5z+/6vXpnkANMWy7RK+XHxx44D2B8zLhjmgySkyJEVfiaSbpKZynqMobJm8yNb/cfj9377iZ+4/dT8NAw4Q474vLvgg6vNb5GhbRgkW0cF3xdXxt7deQFdkkSIbjvBRRMLtgNme7z46J80LxEHnOPGTFIPuSapIXAy9OyhD9jdTbjfOybdmIgkhSTWKX7CSUBFW+KlOpM1mVzkRV6i6l1F1qepKNfCzbms2F2AXzb5IgUZ5dTo4jB1VXcVgcuCwuQvEQhVmFXOq/RH1fPa2DrfRF+7hz7p10RjqJK3Fe73wdAL/Pz8yCmTxR9wRT8qYwKA8SCAYYiA3QG+tlV/0uvj/QYAYBgHGMbvBv4NOLP23us8nihkyJtDbJZq7RUn5ZAgIuq4to0hjf1HSNsz1nCcfDzC40CLaRqriH6h7lutXfpITR/s6ODRvQo1FjYsHhIOaxc6T3CDbRZp57g/FBPjD9AzwXeI7mULOZVFntq2bHtB10D3VTk1OT9l0lQaLUU8q+xn34nD6copOVFSvZVLuJhJIgy2YERP3rwX9FkiR6oj282vYqd8+7m+srr2fblG1U+6qRVZnWwVaKsoqQRInmULM5rgyQ0BKIiavWOZlKk+OTxhuT/b3aw+3ElJjRAFAT6LqOIAhpo+SRRMT0Sn8rOA8MYlvTNJJa0lQS5rvyCcVD2C12St2l/P3av+ehkw9xOXiZLFsWFtFiBsGMtFPKVP8v4rxrJNv7pFI3k9TJH01EjQSPoU56hnqYUzCHMz2GJ1uuI5doIsr0/Olk27I50XmCYx3HGJQHKfeUc9us22gbbCOpJfHavXzjpW/QEjJu1il59ouXX6Q/1s+nF3+a5wLPmUmHYTlMUktysOUgACsrVhJLxrgcumx06WxZNIWa8Nq9XFdyHZIkMadwDguLF3Ki6wSCIFCTU4OiKXhsHgblQc72nGWTvIloMvqOMdNjeW7hr6JhWQ3f+P0XTGn6UHIIHR1JGFdTM6q6Il1mMlWhq5C+qDGLnlAT/PjYj5lfPJ8/1P0Bh8WBRbTQNdTFya6TrKhYwWsdr1HqKeVE1wmcFicLyxZyLN5AXIlTKBay2L+KrkgXiqYYknNHtpHUI4cpchfRGelMS24ZuV8vBw2T1r+cfi/JXXuIDQOHnivKKN6YndS4NTJRJ1WpG0FfrG/cbqvH7mFN1Rq+d+R7XA5e5njoHJuu+FKNLKm2Fl1VULq6EMYIo5hsGIDgdGJfs2Z0eqffj33NGuNmNMHCB0XBvnAh0UDAXPSojY3Iun51/HACpYDW328QKOOYyxKNpnkETkQ0ph6f6HlJi0i2Ow9iakbVlH31aoQr+26UKi4VzLByJc6tW4nt3WuoI8ZU2DUyb8sW7DONLnW2LRvHjfOJP5XBL2j5crRoFDQNNA3XnXcaHVNJMlWBamsrrttvB6sVef/+zGq2J580Sbn43r24br8dtaMDcfi+vEImMsIrx3gjiaGf/GTM/TdZVeVku/wpoLwy7zrsHvuYZuSIIqrdyr9u/FcE0RhTGQlqUmO9ejyOYLMZx7IoGr9nImEQpi0txv7R9Yz7D4djFMEGY5O/Y1VqrGCiuhy8TEe4I6MHy0B8gMuDBgB8u1QO1+pavVOVOsdTY/Jqa2tak2fkv4eX5PeTPHfO8OesqSHr3nsZevhhiEaxz507igSCK+fo009jX7YMec8eXCkrgmTS9PoEMiuSh31uSqki1dQQl4xr1HsB52XCHQ6Lg0F5EE3X0hbTKZznsDreEHmjhsNj7tvE07v5yYbvsuThdZPCeV9c8UXCctjAea5C5hYZEyWvtr3KzdVb+NtZn8KpScREjSpHEd898SOTDBkL54XiIXKdufzu3O+42H+RhJpA0zWm50+n0lvJ+prJj7pNVG83zsstzuW6kuvoDHcyNW8qMSXGme4z1PfVs7RsKYFggK5IF3OK5mRU8U0W51X7qrlx+o3svLAzjWhLedw5rA4cFgcCAh6bB5fNRXu4nUAwQDQZxW6xs6BoAR+a8yFC8RCPnXsMl9WFpmu8EnuFlZUr+cCMD2C32JmSNwWraCUYC3Kw+SBT86ZiES00DjRyuus0bYNtZDuyOdJ2BH+On7AcNom2mBKjcaAxjViYLG5IJdIqmoKsGNNPPUM9WCUrVd4qoskoFtGC0+qkI9KBRbSgaAr7Avvojfaytmotzzc+z4LiBaNUcTElxhcPfo37Zt/JunUfxqWK2JFQA00MPfRQmr+zUOOneFkFU6dsQUAgkoyYARZJLWkS3ykCMMeRQ0yJUZBVQE93D1nWLERBJNuWze5Lu+mMdNId7eb68uuRRIlHTj9Cf6yfqXlTqe+rx+fwsahkEbvqd3HzjJvZ27CX0z2nua7oOk52niTLlmVeE1wWFxuqN+CyuswJMJtoQ7GOv/bTrBYiycn5sk3297JaDPJTVmSyrFnYJBtRJWo+TxIkfA4fOY4citxF4+K81Fhvy2ALuq7jc/rId+WbBHdTsImd9Tup8lXRMNCA1+GlbbANn8NHlbeKVZWrKHIX8dCJhzjTfYb8rHwsorHuaRxo5HtHvse3NnxrUpNe/6/hvGsk2/ukUh0eq2jFKloRBZFPLf4Uey/t5WLfRT40+0MI5wS6Il2GOWFiCLfNzU3Tb+L3539Pf6yfnmgPF/su0h3t5nNLPkd9Xz0xJcbxjuMUuAqwiTYG4gNmd+FU9yliSsycFV9VsSoNFOm6zoHmA9w+63bAYN4312yme6ibPFceq6tW8/PXf868onlMyZvCr878ivq+evJd+XQPdeNz+JiZP5PzveeJJCKIiNgt9neMmRa9Xly33WbehGOSxm8CT/FXv79plFlkibvEUOhNUMO7dH3RPjrCHUQTUSS3xMmuk/TGeplbNJfdl3bzz+v/maPtR2kONZumqm6bm1tn3MpXnvkKd827i5gSo3Ook2PtxwC4febt5r4Jy2FKPaU8deEpTnSdoDy73BwB3ly7mdbBVmRVxiba6I/1c67nHNFElKAcRNEUPlS1g+SuPWMvjm+6CSkn523a2waQuW/BfaO6GAAPnnhwQi+qA80HWFq6lCWlSwgSJ7JhNe7nDe+wVEl+P/YlSxh64GeGQizDKOVkwwDgil9NTg7WOXPS1EJaJIKUk4OeTKK0t4+v9GlqQrmi4hpOhqiBAPbVq2H//omJOpsNITubrE9+EmTZ9GKLPvmkQa4xmswZNyG1tgZVTZLoasfidBn/bhi9/UKNn2PBc9ziLUfe/8zY46w7dmTcBsAAWKp6dWRz0aJxv6ogJ5hTnn7+O2++GW1gwFANWiyo7e1gt5M8coT4E09c/V5+P86tW5EPHjQ/O/rYY9hXrsSxcaPh95FMosfjpppt+Kiufd26MYME7KtXp4HF1N8RhDHHaEkmJ62qnIwKAAzgf6n/Ej6bF/nQwTGVbI5168CdxXL36GQvGOM8SJGmySTxZ54xHxueYIvVguB0EdNkOuUQxfbscYMRUuTv22VcG1Ni5DnzsIgWfrLp+8x21+C2ZOGU7Iai0mYlIerEruBiLRZDj8UgkUBPJMy02LfiMXmtrtUfo1LXANVmQbJajXH3K80JtbExXRk8xvg7GE2cuK6TddddDD30EILHM+45KmzcaPprOjdvRhfT45Ym87kpVdwtu+7hWPux9wzOG4k7gvEgVd4qzveeH/Xc4qxi49o0wYhVGnljsYy7b2ds2kh5dnkazvPYPNw641b++tm/5iNzPzIuzgOY7ahCfa0OPWDc62zAh/zVrNjyAB/a+3EsogWbaENWZIShGGrQSL2f7sjnk9Pu4rMv/TV1fXUMyoPmgvVY+zF+dPxH5LnymF88/83s2oz1duI8i2hhbuFcnqh/glNdp8yFvcPiQNM1fvb6z6jrrWNRySK+svIraWqaN4LzPHYP11dcj67rDMqDxJW46el1fcX1ROQIkiAxLW8aF/sucrzjOMF40PSGmpE/g1A8RCAYwG1zo6Mb6aSawnXF1yEIAg6LA6/Di6ZpnO45jd/nx+f0IQqiSVjlOnMpdBUiSRKuWS6y7dnous7exr0mIZzQEmnEwli4IXWutYXb6In2UJtTS7G7mEOthxiIG2mYL19+mR1Td/CBGR/gUOshBuVBuoPdiILIstJlFHuKebzucVTd8C28Y9Yd5u86UhUXU2K82HmY75/8CQ/f8F9k/+IPGY8PvTGAf81iLsZ6WVO9Ju0xu8XO/pb9BGNBk9SMKUZC5q/P/ppLfZfY37yfgfgAS8uWUpRVxNnus3gdXl7vfJ2tU7byleu/QlJLIiBwoPkArYOt7KzfyaKSRRxuOUzDQAOLSxdjs9g42n6UQDCA0+Ikx5lDtj0bf46fHGcOHZEOALwOL3XRyywfEVyWqpS/XG7O+Mb9E/1eMBrnlbpLqeurozvSzbyiecSVOAk1YYxvOjxYRSsbajawrGzZmARXaqz3+cDzNIeaUTSFiuwKbpx6I1U5VSwuWcyuS7voj/UjCRLLy5ejaAp5zjxaB40AjOcan2NL7RZeaX2FHEcOfdE+itxFaURbyk7p7cZ5CPDx6z6OVbTSNtjGdSXXGWPk8TB5rjyyrFnma1LWTEE5iM/hY1bBxEnQf+y6RrK9TyrVITrcephtU7bxi5O/4EfHf8TqqtVU+Croj/Xz7Q3fJqbG6Ix04nP4eL3zdX5//vd0RDqQBMlUZp3qOsXFvovMKZxDWA7z0bkfxW13MxAb4Im6J9I+N5IwLub9sX6skpVcRy7zCudxqvsUmm5IS3979resq17HR+d+lGn507hnwT3YRTudkU7uv/F+ZuXPYm/DXoLxIIApRU39uzy7HIfFYX7WO8lMp0x/AQ7U7+Z8JECxu5iGgavERG1OLTdNv2lUzPbIGul9oes6db11lGeXE1fidEe7ETFi2a2SlbreOqblTmNt1VqskpVoIkr3UDcDsQG2TNlCgauAFeUryLJmoaPjdXjTwF9+Vj6vtLyCKIrMKpiFrussL1uOVbLSF+1jffV6+mJ9eB1eGgca2XNpDy80vQAY0dk35V6PPA441ONx1HB4UiqUyVamLsaZrjOT8qLqjfaafy/KKuLjL3yBj06/g+UrdlBqycWigdrUlBZMMFJNM9kwgOEler1YZ840VFPJBLqcQPBmk5DAZstC8PmwV1UZC5CRhMWwJNJMMeYyKok/vxOrZWyiS5o5E9HnGzUqKvn9uO+9l8hDD0E0OorMGTchdclSog88CMkkyrSp2LZuQd+9Jw1ECDV+hjYsp1odwKLq4x4rqf09FqGUNg470ciTzTb69T4fgt1uLGxkGev8+YZ6YOTvGAgQ27s3ndBMJpFffBH5xRdx3XEHgstFdJjP3vBts0ydSvy558YkEx3D0kSl2lqc27dDIoHS2jpKTea67Tbk119HyMpiMjWRCiAFVD4y7yO0hluxSVbERYsMJdvhw6YPk1RejmXmTASrFUeGNOAU6RR7+umM+08GHJs2jVIkDv9+rrvvpl0Y4IsHv8bjq/5r3O+lx+OTTj9L28YMCoSmYBNPXXiKfYF9PHDDf1B6uB7nYivyy/vTDeL9fnxr16KK/WiDg8gvvzwqLXa8VNxrda3ejUpdAzpDPcy46y7kl19GPnjQILiXLQMMVa1jxw6EZBJdltFleVQgD1y5h8uy0RyQJFx33pmxCQAYjRuM+yAWC3oslq5cSymSly/HvmoVgsViJCdLEno0ivvP/xzd4eBXTU/yWtdrwHsL5w3HHbvrd7PBv4GkluRi30VTJeT3+dk+bTuSII27KBxJ3rjuuGP8D5fjaTgvnozTGelkIDbAhpoNZNuzWVSyiBxHTkacp8Vi6LueGa3aDzRRJQj85w3/yv7uoxS6CvnzmttI7txDZMTY6i+3/SdzfrVylCKkcaCRI21HKHYXv62L0bcT5/36/K+pzamlpLYEr93LQHyAi30X+dnrP+P2WbfTF+vjeMdx/u+h/8u3N32bInfRm8J51b5q8px5NAWbCAQDROQIRVlFOCwOcp25nOo+RY2vhlA8xCutrwDGZFG+M5911ev41v5vEVfj3Dv/XrLt2TgsDjbXbuZA8wE0XSPXmWuM4qFz26zbeKnpJZJakixrFjElxtLSpZRll/H9I9/nQt8F065mWdkyPjL3I/y+7vfElTg20ZamhsqEGzojnbQNtjGvaB7feeU7KJrClpotVHgruHXGrfREe4gkIzgkB0ktyfT86Wyt3UrnUCdNA00E5SDH24/zeN3jJDXDI7BnqAfAJE5TaZ/DK9ueTctgC9akNu7xocsy7XJ7eqIqMCVvCkXuIi4HLzOUHMJldaFoCr8++2v6o/30Rnup9FaiaAotoRYu9F5gduFsGvobqPZV0xPtoSfag9fuxSbZ+O2535rvXeIp4YWmFxAEgWl509hZv5PmUDMCgjkmG5bDHGo9ZCZzpl5XnF+NuuU6xD370sZhBX81sU2rON/2HHf5MzczR9ZkcV5KXRk+FaYr2sVAfICeoR6uK76OzbWbaRts429W/Q1zCjKrOMNymKZgE4+eeZSXL79sfpZVtNIV6eLpi0+ztnot6Ea4g91ipy/Wxystr+DP8XMoeohnGp6hyF1EjiOHwcQgCTXBQHwAn92HrMhYbFexfFAOvmGcNxYhl8J5T198mhJPCXbJTnl2OQtLF3Ku5xwnOk/QFGwioSZYV72OL6/4MhqaOTmWqjcyyvrHqmsk2/uoqn3VqKrKNy99k6AcxCpZOdl5kmXly5hTMIemUBMuqwu3zc1gfJDTXafpi/UBRkJRqhySg0pvJT84+gMiiQiH2w5jE23MyJ/Bxxd+nN+c+Q0JLWGaDIblMD6Hj8b+RlwWF59d8ll+fPzHHG0/CmD6vy0uW8yprlPIqgHYtk7ZyvLy5ZzpOoOiK0zLm0bPUE/aTHkwHmR1xWpiyZh50X67fBbeaFkkC+hwffn1rKxYSVJLYhWtBljUrzw+Ro1MjJEVGZtkS+t2iYhYRCPdKakmUTSFvY17AaNrYZNsZNuzCcpBHjv3GDPyZ9Ab7WVRySI+OOeDrKxYmQb+Uje9M91n6Ix0YhEsVPoq6Y324rA4jBSttkOUecq4cdqNWEUrhyyHiCtxBuVBhCvAesySZRDFtBHEP0a9mUSquBJnID7AP776f+gZ6qH9ntNEf/zTjK8frqaZbBjAyErEIiR37U4jocQaP+zYhrWsjMhPfkLWPfegL1s2ZhJpppFQm9NFLNxL2K7h3Lweae9oos5xww1je7Ht2YPr5psN/zGXa9T7D1drarEYKEnUQDoRqdVfRAbaV8+m+IaVOBURbDYSkk4o2W8oOOPje1LoCaOrOaZ6LvXdrVbQdVx3322ko45Y8Ek1NeiahhaLjSY7nU40AFFEVxRj0blo0aj3UBsbzQXpqLJYRhOBI36XcRUfokjWxz9uEj8A0aefzkzKCQLO7dvRJzINH1ZjqQCGn/fT86fz1VVfRVAEQ4HX2po5SCIDkZRaINqXLRt/9HhEuteoiscpOXaGe2d9GOwTzJXb7XiHotydvwkcdtrUAXY17xszsWwsBYL9xh3svribpJbkC/M/TemBc9jKy5EPH864/7XZs9F6e0epEmH8xda1ulbvZlX7qlEEH/EnnzKPW/nwYewrV2KZOhVUFWQZ/YrSbbj32qiSZayzZhn3jxH3leGeoNjtV8NikklElwvntm3pY+DJJEprK9YF8/n+hV8SlIPAFZxXbOC8vljf+wLniYLI4pLFrChbQVJPGlYgOthFO1bJOuZrM5I3EzSNdJttTJz3h/N/YFreNBoGGlhfvZ4Pz/3wKJw3HmbRGwNMWTmPpbM/iVMV0SNRpE2b0lTuaiCAtPs5frf9F7zUdpAdZeuwKaDYJF7uOUZQjrzpUK83Um8W50USEV68/CI9Qz0sL1vOM43PAMa4XCoRVNEUzvWcM7/Hm8V5DQMNYy7Uq73VPHz6YTb4N+C0Oo0kWNHKQHyAk10n8dg9JGOGn5VNsjG/eD4Hmg/QH+9HEiX6Yn04LU7ynflc7LvIRv9GLg5cJJqIsrBkIXfPu5vvvfo9LvRdQNM1M1H1VNcpVF3lpmk38WLTi9Tk1IxSWg7HDd1D3bza/iqiIHKk7QiKpmARLXidXk52naQp2MRQ4qoFjt/nR0TEa/fSF+tjX9M+6nvr0dHJthueeClF2aA8aGKSmpwaAsHAqCAFj82DZhv7HALAZoNEZuN6j91Dla+K8z3nebn5ZQpdhaAb4SB5zjzzt9fROdV1ipn5M4kn46YIQlZkVKtKtivbTA5OrVEFQUBCwiJZuBy6TI4zB13X0dHx2D34HD4joERysHXK1jQV5s9e+xnTF1Yzc+UtSEkFzWblyMApnj36f/jIvI8QTUYnrdiaDM4z1ZWazrGOYwzEBphfPJ+6vjp+dMwYE3fb3Hxgxgeo8FWkkVgpsssqWjnWfoxTXacAQ5UXlsM4LA5scRuSIBFNRmkPt1OQVWAG6GXbs3m9w/AOVFTFTDRN/cY6OqqeLjqxSTYONh9EFESm5E7BbXVzvvf8mDhvLEJuS+0Wnm18lqSWpDy7nDJPGQdbDnK07Si/O/87LILhV7m2ei1nus9wOXSZw62H2d+8Py3MAt74KOsfo66RbO+zquut46XLL1HgKsDv83ND9Q3ElBg/P/lzzveep8xThq7r3DLjFpaXL6cl1EJCTSAgYJMMo8nNtZv5Q90fON19mjxnHgWuAgblQc50nyGpJVlStoSn6p9iUckiqrxV2C12Hnz9QRwWB7IqM6dgDp9d8lkjijoewuvw4rK60gg2uAqiIskIkUSED8z4AGE5nCabn5IzhY21G3mm4RnmFM55Q2kob3eVuEsMfwtdwW11I2oiVtFKJBEhmoxS4h5bDjwyMSYUD+G0OplXNI8TnSeYWzgXu8VOsbuYYDzIotJFtAy2mJHeiqaQZcvC5/Bxuvs0RVlF5DpzyXflU+Quon2wnVxnuoF411AXr3W8Zo6ZFroKaRtsoz/WT6mnFFmVOdp+lOMc51L/JW6dcSu3TL+FJy48QX1f/cSeXU6naWj/x6w3k0hlES30RnuNG6SuT0gY6vE4XZEu3JHxgV6mccd4JETy6d2jpOJaY4Dk07uxbNkKySR6NJqmkBq90emXW6mmBu1cHbYUMTJ1CuqWG7DpG7DKijnSSDI5PvGzadOoWPfhlVJrJjrbSPzsl5m/d6CJqg03kNzzDPFhnbrSqVOxb92EYFONjn0mFQSG4XbqszJ6HTocaYEEmdIw5ePHcW7ciNbXh26xjALBWihEsrkZS3Ex8T17xl00CnY7WZ/61KiRWi0cRsjOTldpDP9dEukjEKP2UyKBpfJqkpLa2zs2mG9sROvrQz58OGP661g1Gc+KKXlTULq6zJHjjMm0I4iktAXiBCO7E+0HLBb0QBOr1txGWEjiGMevSY/HER+6etxV+qv5xJYP80T7PmRFTkssG0+BID+1k1s3bubn8d+yvmgF+tMPI40YwR5eKU+9Mc+dcRZb1+pavZslxOJXzwGr1fSVHKmylWpr08myke+Tm2soVsdQ5tqXL0dpbUVwOsm6917i+/YZ55PVin31ahzbtiGoqoED7HaikpZGsMH7F+fp6NgsNgRNMHFeOBEeF+dlIm8m8sk7Fb40Ls7Ld+XjtDrx2D0ZcZ4ai4563+FVasklvvu5NPXaSJW72trKvNztTDnciP7yXvN5t/mriG/azJHQ2XE/4+2otwPnDRcLqLpqjqtpuoaqq4QTYeKREBYlOS5eyYTzhnsoD6/UQv1zSz7HnMI5xJQYey7tQRAELKJB2M4qmMW0vGnU99VjkwwSucBVwOHWw1R5qxiID5jJpLnOXJaWLWVp2VLW+tcSS8S40HeBnlgP53vPIwoimq6R48hhID6AIAic6T7DnXPuZGXlyjGTGFO44YXGF9hzaY+5/2YVzGJG/gw0XeOFwAt0RbpIaAlzsun1ztdpCjXxD6v/AQ2NOQVzmJIzhdZwKyc7T5LUru63bEe2SQbdPvt24mrcDD8Aww98VsEsWpQ+Zo6RNir4qwlKCboihjpr5Nh4U7CJQy2HaBtsIySH2F2/mz0NexAFYz22Y+oOfr7hP3GpoqF0dzoIzorzr6d/RDAe5ELvBRaXLqbaV81H5n2EocQQmq4xu2A2h7IP0RHuQEDAbrFjES1m4IMoiMiKjN1iEO3Ly68q0850nWFAHuCwPMBLymE6Ih2c6jxFOBFGQCDPlcdDJx96Q6qpyeC8al81jf2NnDt1jmpfNb87/ztjtDgZM6xP0GkPp3sxDhd8ZFmziCQipq9ZKB4i255NNBlF0wwiN6EmuNh/kaHEEAOxAZJakkF50CDStKshiiE5xOyC2ZzsOmkq/1JV6CrkTPcZ/v75vwcMwm1p2VK+cv1X6Ip0kVSTaThv+DZKgoTb5jamvYa62X1pN7nOXAasAywsWchvz/2WS/2XKM8uJzAQYH7RfMKJMN1D3fzZzD8jGA+SZcviXM+5jOfF8FHWd6OukWzvowrLYQYTg6z3r8cm2Sh3l3Nx4CL7m/cTGAggIppx0sfbj1PiKcGf4+dC7wUSWsK8aNfm1PLgyQcBaAm1sLhsMWe7z9Id7eZC7wW21G5hat5Ubpp+E4+dfYzOaCcCRpy4oimc6DrBia4TVHmruG3mbbzW+dqobR0OotxWt3EDlMN8cNYH6Yv1Gcl4SoyOcAd9Q33U5tZS4il5Q2kob3dV+apYXbWafY37zNl1i2ihxF3C6qrV44LCkV24hJagY6CDJWVL6I31klAT1ObUklAT9EZ7+fvVf8/3Xv0eFtGCVbQiqzKz8mexqHQRPzr6I4o9xsjqyoqVlHhKiCQjo25G0WSUnmiPAdIsBkjrjnZT4imhN9qLKIjYRBt2i51gPEhSS/LgiQf5wPQP8EzjMzTGOygfx0tMaW3FUvXHB8KT9SgY/pxowiA9U6PR+iTUNH+37+/4X3P/kvEGxDIRj3okktGLAQyiDc0AKxOB7eEx5pLfj2P9esMUNvU5Fy8hKAq9m6+nrKCc6O9+h9rQgMXvH/+7JRJIJRP7QYxHmNqXL0fZ+1w6KLJacS5ahLznWfTiYtNzTPL7yZo+3TTVlmpqDIXalTLVc8MN9e12HFu3ZiaDrqi+7EuXovX1GSNII0BwinxxbNs2pqovtWiU9+9Hl2WiP/952mJDKipCvKJmdO7YYS4+0363EV5EI2v48aGGw+jR8RdAKMobDgCYdF0hwsZNpr1CJGmAPjiIfdEiWLbMSAu0WsdWwEyUKNraClYrxVlFRF94wfCN2rNnFHnq3LaNyM9/nvZ6PdCEZe8LzFju5/8c/y6V3koQoNJbiWtIHpe0zIut5M+n3IElfkUdOJ5KcBIKwsmGUlyra/VOlXYlrTpFEqDraENDJE+fzkiky5o2yu8TjPNPGBFWkvbaKwS9dc4clOZmkqdOpanW5OefR37+eSS/n/Cmldxf9+Co9/h/Dedlul6M51dn3b6Vv935YSyCBas0Ns6ryK5A1dSMOC8xwSpNv3KPGV7DVe7RRx/Fvnw58d27R5Megcs4nxOZv3EM5ffbWG8HzkuRamCM97YPGiEFoiDitrpZk7uQ5B+eQG4c3cQbTkRnwnnnus+NIthS1TjQSGe4E7vFjtvmZmb+TBqDV5/bG+0l15HL9RXXM7twNm67m+KsYgqzCpEEKW0Etj/Wz5HWI3xw1gdZXr6csBzmdM9pVPmqMsgiWtB1ncKsQpxWp2FW7/Bxz/x7JjxvgnIQi2hhZv5M5hTO4dnGZ3Hb3OS78rnYf9F8/xRhqWgKcSXOobZDxJNG4m5ciVPlNfy6fnHyF0SVKDPzZ7KibEXaOOMXln2B7VO2G0EJkoVSdynl2eV85/j3+NryL+JHh8Blc9sEv5/B9UvZdXmnmf45fO2UIl8Kswq5HLzM85efN9NPVU2lMruShzf8gPjTuxgadsw7/H6+eeNf84mXvkyOI4fy7HKGkkNYRAsvNL1Ae7id9sp2fHYf5Z5y8l355Dhy6I/1E1fjWEWrsR+ScbJsWWTbrvpvd0W6ON9znvM95w1fPbuX012n6Y9fPY5lVf6jqaZSv1XK9kfXdZxWp+HDKNkQBZH+WD/NwWYqfZUcazuGqqkUZRXhtDixSlaTEEuoCSRRotJbSVOwicZgI3KvTF+0j0jCGNm83H+ZeUXz6I324nV4SagJ7JKdX536FZ9d8lmSWpKeoR6iyShWyUqNr4Z11ev4hxf+ATAScONKnJcvv4ysyHx8wcfZc2lPGs5LiVJSo/mPnH6EC31Geq/b5mZZ2TJWV60mqSYZiA2QZctC0zUsooU8Vx7Ng8080/AMxe5inm18ltWVq1ldtZoz3WdGjcQDaU2hd7qukWzvk0pJKw+3HGbXpV0AbK7dzIKiBfzq1K/QuDoDL6syp7sNY82qvCrqeuvMvy8oXkCJp4RYMobT6iShJmjsbyTPlUdNTg2qphpdD03j3175N7ZO2Up7uB1VU3Fa0zv+l0OXsUm2UTfOkbPlw2+uMTWGJEpE4hGSWpIpuVPYMmWLKRF+t4AXGJ2FFRUr0HQto/npeNs2sguXiqd+ou4JFpUsYp1/HVbR8Erbc2kPX977ZT4050PcNfcuLILRTXFYHDzb+CyzC2eb0c2pGwyk34yagk3Ek3GWly8noSTwOX24bW4KsgqIJqI0hZpMP7akmqQ13MpQYghFU/A6vNglO/90/N/5xfbvjep0D/cSc3/iE295v45KMLTZEJxOc0xrsh4Fw5/TGGxkTdUaTnedRlZlzkcCTB2H4GpO9tA40Mgr/SfZPkaHTaqtzeifNZGaT5FjiDX+ccF2Woy504lgsxkk1QiSQw80kaPfkKYIm2gcb7LG+oJ97OdlImrsy5cjHz+OPeX7NcJzLOuuu4i//DL2668300VTNdzr0KxkkvhTT2X8fLWxEZYtA7sdtakJ67x5aY+nFARChgWF+R6BgOFLNozQTC02sj72MZTTp43RKsC+du1VX6NEwvB4270LpbFxbHKpthalowPB4zE8zXbuzOizl1ZXVHKZ0l/fapn7fDwy6Qr5GX3ssXTlX00NrrvuIprhGJT8ftS+PpxbtpiG68MfS10b7MuXE9+zB72xkcjly7huvhlh40YzmAO7ncgDD5gqwuGlB5qYtn4lJ7pO8Pvzv2dx6WISWoJPl9w8/peOx3EcOIpl62aSMP6o1kRhIkz+3LlW1+qdqIyj0jU1ODZsIP7kkxlfowYC2FetMgJ0Uq+5cp5ORCILokjkoYdw3XLLuOPjBeLmaziPMa4Xw/zqHJs3o8fj6A4bp0IXufNXK9kyZQs3TjfsOlRNzYjz2sJt1OTUAKMbtq1qP6U1fvSWVtN3c3gAk9rSMnqbuBpoAeM3YvTGACXS5snsunHrncB5ITlEUVYRLquLFRUreOrCU9gkGxbRwt8s/iKWvc+jNo7fgBsL5423EBcQiKtG4mt/rJ+PXfcxHj//OCe6Thgptck4M8pnsLJyJf2xfiqyK8wUTEEQ0kg2MNIRY8lY2n452HIw7TlWyUqeKw+HxTjmSt2lkzpvcuw5LCtbRn+snx8c/QGXQ5e5adpNoEO+K5/OcKc50ioIAsXuYjrDnYiI7G/ZT31vvUmQzy+ez2eWfIYzXWfYNm0b0/Onp32Wx+5hYenCtL8NyoP0RHu4Y899fH7eJ9m2fAt2VUC3WXmq9Xm663+F0+LEzdXU01SlyBe31Y2GRkN/A+XZ5fgcPgZiA7x8+y7iT2dussZ3Ps1/bv8WDzY8Rn1fPcfaj5FQE6yuXI2syui6zqYpmzjbdRZFU1hStoS9l/aiqApZ1iw6wh1GYF/latoibYTlsDk+XJhVyJG2I8b+deQY2xMfMNWAKfXiH0M1levMNfd76nPAIN9SAgtJkOiP97PvxD5OdZ3iUv8lAMo95Wz0b6Ql1EJ72CCk85x5NA40kuPMYVAe5ETnCTbXbub1ztep660jz5VHz1APM/JmGGPO0T5kVSapJfnx8R9z33X3UeWtonuom2xHNmWeMm599FY0NGySjbgSN0dJD7cd5hMLPzEK503PM76P2+ZOI9jAIMwDwQCtg618ZO5HsEpWJFHCKlrNAJmwHDYUdrqBfXujvVzoMxSMKcXo8PLZfW/b7/FG6xrJ9j6o4dLKIncRhVmFdA910xxsxmf3MS1vGn2xPkO5JNnwOXyE4iFCcohZBbMo9ZQCRiKPoim47W5qcmo40XmCpJbEaXFyvvc8LouLqBLlg/IHeeriUzitBgsuCRLdsW6K3cWjti2mxCY1Wz78xmm32Cl0F5o313drbCBTpcxPx/s+mWpkl87r8ELIiKRuC7dxqusUgYEAn1/6ec71nKPEU8JQcojnGp/j5aaXiSpRPjznw6i6Sn1/PWBczPOz8s3PSN2MUsdDdXY1N1TfwIOvP8iuS7vId+XTNdTF8rLl3DXnLn516lf0RHvMLoYoirQOtpJQElzou8CFvgv0D3TgyZBOmOr66ROMjanhMESjpkE5LleaWmfMBMM1ayAnx/SLmoxHwfDnXA5dpnWwlflF81E0hee7jzBz+0dh197RhOGO7Xz52U8C8FDdo1y3+puUQBrRZvpXZRgdm2ghPigkGFg1m5L9enoKI4aqC4fDIDJ0HSEnB1VNmqEDmUpMKOZrXbfdhh6Pj6uQG+nFNtI0Pumw0hhtI0dykVXjT0tjHa+k8nKAMdVn8eefx75mNUm3kwE1TFfXJdoj7STVJKXuUqbmTU33lploBBFj7FTp7sY2AgSnFosTEZ6CzYZj0yaUCxdMpVYqmGH4IkN+7jnk554DIHrnzRzs3c/WTTdgwYp19myDXBoeFlFTg33VKtTLl40k4p07DRVcefmk1Ytvt2oq5X83HplkX77c8FUaOeLU2IhsseC66y5DEZdatIXDiHl5iFlZaKEQ9qVLYeXKNP+81LVB8vuv7tNolOijj6Z9Rta992Yk2Mztlw3/ls5IJzo6/bF+IqIyPii5MqYqaCpijbF/xyJFtXAYYOzfZ4zF1rW6Vu9GjTkq3dhoeH2OU4Ik4brnHtA0g3zXNHRFGdX8GFVWq3GOTqT6jMvXcB7jeI4mkyRaW3g8u4WH6h7l80s/z2/P/Zal5UsZSg7xzKVnONp+lHAizO2zbk/DeWBgvYKsAiCddAjLYRqibegrZzFFWI28f/8o30370qVjq5InafeRwhxj1USpfe8UzmsKNvGxBR9jf/N+fn3m19glO3nOPKORXbgEpfFnGbffbMCNg/PyHHn8xZz7uD53PpakhmKVeKX/BA/VPYogCDQONJpTQ3Elzvap29kxbQfBeJC5RXOZXzQfl9V1NcU2FqQ8u5xTXadMMiZVFdkVaR7P1b5qRERWlK3gQv8FJEEyxxnB8IWbVTgr7T0ymcYD5GXlcbzjOJXZhlopNdbaPdRNeXY5smKQlZquIQkSOY4cBARaBlu41H8Jq2Q1pkPQaQ42c6LzBOur11PmLiOajNIUbBoX50mixJKyJVzsv8iTl/fy+8DTRBIR+mJ9JNQEd8+7m/lF8znfe37U2HiKYE5qSRKqgRfbw+3MLpjN2qq1FNpz0Zcvh8WLR3vxBgJkKQLne86T7cjmcshQ0KVSQqfnTeeFwAts8G+gyltFvisfh8VBS6iF/lg/giCQ78qnIruCwfggTcEmc3zYYXFQkV1By2ALA/EBuoe6qfRW0hHpMJ4vD5rf4e1WTaX87wQEClwFqLpqHh8emwevw0uBq4BnG55FFMW0QIr6vnp0XedLK77E6a7ThBNhyrPLqRmoIceeQ0u4hYHYAE6Lkztm3UFCTVDqKcVr8/Ja12v8+syviSVjJLQEuY5c1vnXUemtNMaboz1c6L3An834MyLJiEl2x5SYOR4PEE6ER+G89kg7siITl+JpBBsYykqnxcnZnrM4LA4kQTJ94Eo8JdT11iEIgjHyKxkCBItoIa7EDf/oEZXp3Hkn6xrJ9j6o4X5fXoeX1ZWrOdhyEItkQUfHKlnpifbgsDhoj7TjtDgpyCowI6QXlSzioZMP0TDQgE2yMa9wHhbRwqLSRRxrO5ZmULuweCHd0W7QDVLGKlnNePCRRodgMMSTnS2f6Ob6XqnJfJ9MrxkJMIvcRcSSMVZUrDANSOWkzKWBSxxuPWyEKqDjsDiwaEYggtfu5QQnyHHksKx8GW6bAbiG34xSx0NtTi0Pvv4gQTnInMI5uK1uKr2VRJNRfvraT5lfNJ+T3SfR0ZldMJv2wfY06e2UnClIDueYHU4Yn2BS+/tRAgHD+0hR0GUZrbUV/H6k3NyxFw1XOovWOXOwzpyZ1umcaL+nnlPlq+LBEw9yrvcckiBRlFXEk50vsXbzKnLZBLKM4HAiuFzsaX/ZjCyPKTG+ePBr3Dvrw1y/6hYsSQ23JxdXTtGYBuhWuxN1jIW64K/mZLief3/9B1feczsOVcTnzcbi8WZ8z0Rn+9hjeoDgdKWTly4XzhtvNImdVEl+P84bbwRZRgkGzbS3kSbXYo0f3/pl7O15kY3rl+PRtVESfsUzOjQBRRl/FLGxEWHzJn7bshtVU43uYccx8ya5snIlH533UdOQdSKyUszOJnbgAK5t20btt9RrhQlUfXoiQfShh0aPiIyz2MjxFLL58GnUpx5gCMBqxbFlC47169GDwavk0sMPG95IspxmSD6WetFMlh3xHd6uSqkdkw0N4xJ9GX8/qxX7woXI+/ePUs04N20iWVeHlJdH9PHHje937Nio7ydI0vgbONFvZbfhz/ETlsPEFYOArIs2M3+slN1hpKWUULCsWo186BD2ZcsyJvuK+XloWVnY83JH/z7jLLau1bV6N2o8s/YJX6soiDk5oxKDHTfeOO7Yt36FiJ4w8dnhuIbzGNtzVPBX07F6Dg8d/BoxJZYR5wG4rC6y7dkmzgPSsN5I0iGVsnik/zjl9U60NzAuDIDdblyrJ0hRHu/edLLzJE9eeJKh5JA5Onag+QA3T7+Z+cXz33GcZxWt3DrjVjbVbELVVAqzCplbNBehb2jc98RhHzfoZplvNvL+JvTAE+bftvurWbTmX/jiwa/RGe4kLIep8laho1PXW4esynx11Vep9F31aU19t5caX+KG6huwSTZaQi1IooSsyLisLlZVrsIpOtPIy1xHLl9c8UXuP37/qOCFzy35HP3RfpToELm6A0FOkBRVQtFuXuo6TEJNYBEt1OTUMJQYMsYdBWM80CpZ6Yx0ku/KRxREcpw5VHgrEBCQRAmHxUGeK4+6vjrDl0w1fMkkQSKmxAxyRNA51X2K092nJ8R5bqsbt82N32dYFcmqjKZrWEUruY5cFpcu5kLfBbwO76ix8RTB7LQ48diMv0uCxMKShfzVnE8SH9EwHI3z4iS0hEnQDS+rZMUiWNh1aRdRJcqB5gPMyJ/BktIluG1uemO9BONB9jbu5baZtxEIBszfob6vnjVVa3j58su0h9vpjHVSm1tLRXYFa6rWmCo3ePtVU6bSsfkgU3On0h5pN/fR9Pzp2C127FY7SS2JXbTjdXhxWpzElBgum4s8Vx7H2o/RHm5HQDAmmlSFSm8lPZ09/MXiv+CJC09wpvsMkiCxomIFiqawtXYri0sWU+4tJ5qM4rQ6cVlc9EZ7aQ410zrYaoyxOo1rS0JNGOOriGmTddn27FE4T07KWEUrQ8nR56xVtOJ1eMm2Z5PUktTm1nKi8wQJNUGBq4Az2hkApuZNpTfaa44Hl2WX4bSkn9up0JJ3y48NrpFs74saKR+v8FawTlxHXIkTiocoyy6jrrfOPGBTJpRTc6cyK38Wf7vvb9MuAnU9dXx84cfZ27CXafnT6Ix04rK4WFCygA/O+iD3H7sfTdf40vzPcHvVdpiSYEhUOBNp5P4zPzff/40yxG8G1LyfaiTAtIk2TnWd4nj7cap91dhEG+d6zvH3q/+ef9n/LxxrPwYYCUqrKlbx4dkfRlZkI50HLY1gG34zSh0P3UPdxJQY/bF+84I3I3+G0TWK9pFdZbD6M/JmsLV2Kw+89gDXlVxHtj2bzyz+DG6bm7poM3PGUDeNp/RQQyFQVZLnzo1apFsqKw2SSB7HX+lKZ/HNGo+PJDXbI+20R9rpHOo0uubF1eZzXdZ0AimmxPjRmQf50ZV/f33N17nBaTx/ZHdwiqsCZfeeqwv5EUSDvnUDP33pr5AEifvP/JwfXQHTX1/zdW4ovCHjtkdtOla/Hz0DKSLOmonNYiP2hz+kf9bMmThvugkSiauqQbud2LPPop4z5NH21atRWltHkS1aYwA3MOf6Kfyk/hEqawu5YeWN2BQd1WKhWelFGLzAvJFjtBbLhAoHNRbjgdcfoCnYRJ4zj61TtnK0/SgxJcbB5oM4JAefXvxpPHbP2CoAjGMNmw3Xjh2Z1YRXXqtr2qSUYyNHRASnM2O3X6zxQ3tn+m+RTBLfuRPJ78cykmS8QiYPf26aelFREHw+lLq6NA+YTIrDt6NErxfrzJlYqqtHLbCl2toxiTD78uWZFYqNjcSefRZLRYXx+2f4finScbgP31g11gJf8FfTnOwhLIfNRkNIDvFS12Hmbb0Pafdzo8m/LVvQ+vpw3Xkngs3O0C//2/CYEwQc69cjbNtm/j66w06vNsRTgT+wrGABM7dvQ1JU9ETCSIb1eK4RbNfqPVXjKV3HU2xKtbUIXu+o8x8gvncvrrvuykhCO7duJfLww9hXr0bIysJ1553mZw03in+j164/dZw3PLFbj8fR7TZeH7zAI3X/TVl22Zg4D2B+0Xzumn0Xqq6a6fMFWQUmwTaSdIgkI3SEO7i9eAPa3t9l2hwTS40sye8Hh4PgxmW0Ry4w403gvJSSqSnYxJfnfYYaR4kRMmW306dH6Yn0kBsX3lGcB2RUR8YibeO+l2KzYL2yDRlx3s5dozCZHmiiSBD4n8v/B9989TsmlkwFZ9T11tHQ35BGsqUqLyuPF5teRBIlFhQvIKklyXPmUeGtoL6nHrvN8AkeTqjNyJvBF5Z9gf5ov6EatPso9ZTyUvNL3Fi8Fs++AySubKMEzK3x419/G/fXP8zB5oOc6z7H1qlb6Y31miSlpmt0D3WzsGQh0/Om84e6P3Ch94Lp6bV1ylbmFM7h/xz4P6aaEh364/2mn/PrHa9ztP3opHBeaqoHYEHxAkLxEAktYZKk1b5qZubPzEi+p14bV+IUuYuYmT/TGOEsXErJ/rOoI2xeRuI87A6ckjNtrBLAY/PgtDhpDjVzOXSZ+UXzudB7gbreOrKsWSwrW0auM9ccNYwrcSLy1XW3oikcaTvC3KK5rKtaR8dQB/MK51HXV2cKKOCPp5pKKW+n5E7h8QuPE4oZgYN2i51cZy5l7jIuB43Gud1iZ3r+dC70XsCf4+dYxzEEBILxoCH8iMV4vfN1emI9fGDGB3j07KNc6DXUZEk9iVWycrj1MIIgMDV3Kr86/SsGYgNYJAsFzgK+sPwLnOo6ZSoEC12FrChfwaHWQ2aaq0UwBEBLy5bisrhG4byeaA+bajeZCaapKswqZGruVPpj/cwqmEWJu4R7599LbU4tPdEeVE2lyltFqaeUtVVrCcthlpQuMTwZbW4Wly5mbeVaBuQBfHYfswpnvasEG1wj2d4XlSl1R9EVgvEgQTnIbTNvo763nu5oN3bJYLLXVq1l65StHGk/wpG2I4iCSKmnFLfNjaZrPNf4HCvKV7C0bCndQ90UZhUyEBvg/uP3M5Qc4okbf0XNoQb0Fw0PIxew3l/NnDX/wv934KuUeEredYYYJpaxv9M1EmDmunIZTAyaSkQFhZbBFn5w4w+42HuRgfgAOY4c5hTMYVrBNABWVa0atxOcOh4SaoJoMkqxu9hIV9JUZEWmylvFdSXXsax0GUtKl+C0OHmt/TVqcmu4adpNnOs5R3uknfLscl5MHKJ6/W1kI4xaoI+l9NBCIZRLl0iePZt5kb57N86bbpp4PE5R3tII3WS75rMKZ1GTU5PR1Hb4TTFTpPT/N+WjWOrriV4BiyOJhlA8TF1vHVbJSrW3Gg0NURAJyaGM2xyWw/ym4Ul2rF+L73k9jdQS/H4cGzcRe+qp0fv1/Hlisozz5puxFBUZ3eORPlsT+K7U3LCSnmgPzwee55+OfocCVwFZtiwsooX5RfNZuP2v0XY9Y3622tqKVF099g8AYLeZ3jaD8iAvNr3IdSXXca7nHDElRuNAo2nkPJYKwDzWxum2m699/vm00ALzPTIox4Z7tGmyPMqDTPBXY926Gfkn44+YpJXTObrrP2IU1XXPPaP868ZLf32rlfK/c91+e9qYsJCVZSxuMtRECkXH2rWGP90VQjOTqbpUVjYu4anU12NftWrUAl/wV5PYvIZ/eunL6OiUukvTjHlbtAFqb96BvS8I8TiCz4fa0UHkpz+9uvCvqTFMvX/3O7iiJozv25e2LVn+am5Ys5gvvfIPrKtax+2zb6d6GPl+ra7Ve6nGUxPJhw/j/uQnjdHvEYpM5/btRsBKJqIjmST68MO4P/Wpqw0Cmw19cJDIww/j2rYto99mSh0ilZf/Ua9dk62JbCne6RrpOVpojeLP9b8hnLe4bPGE2MVtdRvqkMTYyvdMlbrnfOPEd40RMslG+RvEeU3BJp44/wSP1z3Ozh2/Qt/zHHLgafPx7CtWHO8VnCe43Yg1/owhVWKN3wj7YRycNwZRqDcGqF6zhJbBFmRVxmlxMi1vGpqu0RfryzgeGJbDPN/0PEXuIo60HkkjWucWzuWb67/Jfxz5DxoHGhEQyLJmoaMTCAb44bEfmuq4sBzmwRMPsihnDp59R0YpGfUrDdRVCxfz0uWXiEVioBtpq52RTgpcBbQMtiAKIkfajjCnYA5fXfVVWsOtxJU4siojKzLBeBCbxUZnpJM8Vx46OpJoNOgG4gM4LI5J47yRxGihuxDITIyOrNRrd9bvpMRdwp9f9+f0RftYljMHPbAn42uG47yImGRByQLO9543xzs9Ng/+HD+CINAUbCLflU/DQAO90V5UXcUu2TnecZzPLP4Mp7pPAeBz+ijMKkz7HEVTONdzDgEBp9XJ9Lzpaf5ff2zVlMfuYVn5MmYVzBp1LqQItlT5HD4WFC8gz5nH4dbDzCmcg6ZphBNh3DY3MdUIo8lx5nC25yySICEKIj67j2giisPi4Hj7ceYVzjPVq4qu0BpupaG/gRn5M8xR2b2X9vK1NV/jmy9/k+Mdx819tbx8OV9e8WUePPHgKJyn6iq5jlx2TN3B0faj1PfV47V76Yx0sq9xHzo6swpm0RRsIteZy3XF16GhkWXNon2w3UhodvrYXb+b3livOWU3lBji9tm3s8637o/yG7yZ+pMk2X7wgx/wne98h46ODmbPns13v/tdVq9e/W5v1puuTKk8NtEwGAzGggwlhvj6uq/TPdRtSLqVBEfbjvLYuceYljcNm2ijNreWlsEWmoJN5nv0RHu4ruQ61lWtYyg5xIz8GZR4SsjW7dQeakQb0TVIdXV+tPG7ODy+d51gO9F5Ii1y2yJaWFu1lusrrifLlmX6FLybowrjAYS5hXMzvmaiTnDqeHBanLhtbsKJsPmY3WLHY/dwtO0oBa4CdtbvRNM15hbN5UsrvsSei3vIdmSbc/sJNcHPG3/HJ7bdTR7b0hboGQm2K6MB9mXLRi+uXS7D/NzjQQ+FJh6Ps1je8gjdZLrmRe4i/nLZX46KZx9+UxzuewgQiofoHuomWRoxLpIjiJRUKWU3UpZdxvOB52kJtZDnyiOhJvj4dR/PuC2Xg5fpGurivwOPc/2ShcxYt4wcZw6SqqPH44jDRhFHltrYiNbfjwDoyeToRdUEqjMxoRCOh03Ze0r5qmgKA/EBdFXFMtyfz2pF8HjGJVICcheqdnWMvHuomw/W3kL1jE9iVTQEhwNVv9pVHKkCGO9YG7X9Xi+urVvRh4Zw3HQTgiwbqiVZTvMKG1nOrVuNdNHiYrI+/Smig/2EhQT7e4+zdqAT1ziju8P3qeT3I+T4QLKM6/Mler24P/1pQzVlt79jC8JMYRPalW0apR6c4FjR43Gss2djnTNnlKebSWiePIFl20akPfvGDEfg4EGyPvYxw1NKUSA3hwtyG986+DX6Y/2UukvZULPBNOXNdeZS4a0gAWgeO/aBfpQRo6pwxVNO100SNJMqTw80UQj8xYL7eLHzED977WfcNP0mnFbnu35fuFZvvf7UcN64St/ycrRgEMe2bcY1LpEAUURpbCS2dy+OlSvHfuNkEj0aRXC5DM82hwNBFMn64AdHEdNwNe3Z/alPGeOG7zbB1t+fbpVwZZyf8nL0ZPIN3UP+WPXHwHlgYL2TXSfRbOOrhgW3m6xPftKwRbDb0RMJDveeojfaS6G78A3jvBQeGkwM8m8rv4G+57nMx8nTu7BvmSA04R3CeQ63F3ZsI/n07jSiTazxY92xDYfbOwrnAcYYZmxo3MWwGo+aOA8MnzB/jp/K7Epy7Dmjnp+ydCl2F7Oueh0D0QEWli7EbrEjKzINAw0MyoNIgkSWLYvAQMDE8Rf6LjCvcB7bp21nSB6iP9bPtNJytMDYDdQ5axab/44pMUrdpWkjjkNJI/TsQt8FHBYH5d5yQnKIuBLHaXEyt3Au1b5qXut4DV3X0dHJceTgsrrQdZ2wHE7DeW2DbXx4zodxWpzIqkyJu4SwfHUd8lbGxqt91dw7/16ag830RftoC7eRpU+smnfs2MHdL3yeHGcO98y9hyWlS3i24Vk6I8aYryRI5LnyWFa2jF0Xdxl+d5pBSKbCFRaWLKQoq4iVZSvxOr0Zm/NV3ip+uObb2JIaXyq7A8HpRLNZCFo1CtwFE27nW61M50ImjsBusSOJEj6Hj0giQuNAoxliOLdwLj6Hj6HEEA7JIFBznDmUeQzfPbvFzmBikISWwGFx4HQ46RrqQtEUYkrMwGnDRmUvDlzk2xu/TWu4lVA8ZIyWWl08euZRBuXBjDgvpf68b8F9fP/V77O/eT8DsQF0dOYWzuW2mbfx8OmHWVC8gMWlxvHdHGxmat5Ungs8x/OB500+o9RTyurK1XQOdb7ncN6fHMn261//mi9+8Yv84Ac/YOXKldx///1s27aNc+fOUVk5WtL7fqjhnYFQPESBq4A8Zx5l2WVIokRnuJNfnfoV53rPIQqiGXCw2bKZHGcOMwtm0jjQSDAeTHvfUDxE71Avlb5KPHYPYTlMT6SHeY4qtNZj2FevTksySo0RlFu3I7nzM2/sO1Rdka5RBNuysmXsa9zHS5dfotRTaqq67pl/z7s6vvB2j0+kjodXWl7h+orreaXlFcKJMBbRwpTcKZztPkthViFNwSZ6oj0AHGg+QEJJ8KlFn+JXp3/FnMKr2+O2uXF6fEiTuBiZvjGLFqU/4HLhvvdeYnv2mGDMvnr1uH4wWiSCVFHxFvbE5GtB8QK+teFbV1WPI6TEw30PW0ItHGs/RlOwia/P/f8YD7oPCQr5LuNcCMkhKrwV2CU7R1qPsLBkYZoRrtvmJqbEjCCRoW7u73qIB9b+X5K79xK/ss9cd9yR/gFWa1qimGC3Gx5cmfbbBL46SavAOv86Xgy8yNyiudT4aoybsNPHmoo1CBF5NJHochkpos8/P9rzattm/unlL5sdzyxrFn/Y/kuqD11CDxw2nyvW+Inv8OHINQBIxuTRSZbodKIBsSsqPteddxJ95JExny+43UQeegii0SvppCpCaQn9wSZycorJcuZcGfAdo67sU6mmBnXzOn584RFunH4jZZk88mprsa9cSeRHP0obtXLeeCNqb+8bJhVTFY+E0CMRdFk2X+9wj++xk6qx1IMT7X/B4SC2Zw+OjRsNY+3ly0EUEZxOdFGgPxHiqbIeHnj8NvZsfxhXikQbEY4AoAeDRH/7W6TaWiwfuAkEB/fOv5e2SBtyUiYwEKAn2oPT6mR15WrO9ZzjucbniCfj/M3MT6DuHD9NFhjbVzLQxOK1d3C07xS6rtM22MbZnrPmNTTlI3Ot3l/1p4jz0s7V5uar130wGlfhMPFnn0W9eHHUa/UJUo51VUXMykLKz0eLxdCSSQRJwlJZiWPDBuNJiQRIEkpDA/IrrwC8+wRbODyKYHPddhvykSPEd+40nyfV1uLcsQMpZzTh8U7VH2NM1mP3sLJyJaHwAJ4xLCYkvx+lrs68Bgr+apJb1vLdV/+LKblTzOe9EZxn4iEdZnlqkAMvZHyeGgiAKI2pIHuncZ4jtwBuveXq/dJuR3C7zfvlcJyX+veLTS/y+Sl3MR4NGBM1E+eBgfUUTaEv1keFt2LU+GkK5/XF+rgcvMy2Kdv4xalfcKb7DKIg8sHZH+RE5wmWlC7hfM95VF3lq0v+ig1F12NTdBxZXpr724zQLAwP0vHKkrxKgOnobKjZwL7GfeaIY42vhixbFvOK5hFJRPjOK98xRxwBXu98nY/N/xjl2eUG8WJxEE1G6RnqYUPtBup66kycZxWtbJ2ylecDz/PS5ZcATMWc0+ZkQfEC4K2dDx67h0pfJfua9uG2uom5NMaLKNKzPdzzwufpiHTQEekgpsTYPnU7swpm0R5pR1EVhpJDPPj6gzxV/xRJLYnD4kDVVG6ecTNHWo/wh7o/MJQcYsAzwJPCk9w++3a+sOwLpuIQoNpbzQNr/53Yzp1ERkxS5L6LOG+s5F6P3UOOI4eeoR4GYgOmV93p7tNMzZtKta/aEOJINpOIK/OUkePIoT/Wj8viMvkEj83DjPwZ2CU7U3KnoOmaOSrbG+3lcNthQnKIfFc+N02/iZ6hHj5+3ccnxHlD8hC3zryVmfkzkVUZl8VFT6yHR848wqA8SEekw/S0rM6p5t8O/RtzCufQPdSNy+rCJtqYmTeTbHu2oQh9j+G8PzmS7d///d/5+Mc/zic+8QkAvvvd77J3715++MMf8q1vfWvU82VZRh7msTM4ODjqOe+FSnUGzvWc4/ELj9Mf7SecCHOw+SBzCuewoGQBF/ovmKkspZ5SJEHiYv9FpudPN2Wcw6s2pxZVV7kcvIzb7uaVlld4KfAS82Z/AfcVIJNpjCDlSfRmRzUzpeK8Ubb5XPe5tA7DtLxpHGw+iCAY6TKBgQCqrnKk7Qjne8/zzfXfZH7x/Df0Ge/lMmf0c6aQ78o3PdlkRabIXcTqytXsa9xHta8aTTdGGLuGuogkI9Tm1mK3GKbkmXxAxitT9j+C0HHdfLNBsHV14frwhxGys0EQsM6ejRYyRidTJK1UXo59zRqknJx3tPtc5C4a8/hM+dyF4iFebXuV5lAzsirzdNuLfHwMcCv4q3mm8wBJ7aoSqsxTxoyCGRxsOcj1lddT11uXdtPTNI2y7DJebXuVb1//dbTdz6R3iIfv12ELipHnoaWqapTHmNraOqbCSqjxczHWhqqpbKrdRFJLUuoppTy7nGpfNR67h1gyg6dJNMrQQw9hX74cx6ZNaPE4OOxcjLXwtX2fIakmEQWRbHs2f73wL6k+dDHd1w3DEy759G6UW7bjzn7r5Pxwg/DxvnNq8TE84VKXZZw9SWY5SphdaixAhsZaINTUMOSyEL7nVg72vc5Dz34KgH65ny8s+wKuW29NG2FSWlsNwm/4bxIIENu5E8eGDQw98IDxvpMYj01VvL8nY2eeHdtM0nKi0kUR59atxtjOFU8yrNbxE2stFiPVMBxOSw2Vamq4vHI63zrxPXbW78Qm2QjJg/DI42NvgMVy9Tu7vcxxe5lTNIewHOZU1ylkVUZAoC/ex+N1j3Op/xJumxuP3UNfqBPfeF9uolREIDYU4tEzj9I11MW2Kdu4beZtXOi7wJMXnuS+Bfe9653Oa/XG608V55lK31iM2NNPp1/3a2qwL11KtKlplGJXDQTGbWipVwKKtEQCdWAA+dAhnBs2IFVWEn8uXaUk1dQYo+dX9tebHdUcmXL9ptRm0Wjato3pJdnQQOypp3DedNO7SrT9MaraV03YmYe4oxRt1zNoI0bv45tWE44FsZRuJ2kReannKELHi5Rll71pnJfCQznOHIR4hlTw1NRCdjZoGq7NW94zOM/h9sIY5MRwf+v+aD8vNr1IR6RjQpx3qP/EKG/fMk+ZIWAINvL0pafHxHmrKleZBBtghgD0DPXwWsdrTM2byreW/j1Vr9SjP3d1HHdqjeH5a5NsqDYL48UM6TYbTouTHEcOIiKqprJ1ylZiSgyn1VCqTcmdgsfu4YXGF9IINgEjffSHx37I9Lzp3DL9FmJKDIfFwdH2oxxvP45Dcpg4b3bBbA60HDD3Ryp5syvSxX8e+U8+t/Rz5me9lUoRooVZhbw6cJrt/moYgS3BwEO/b32GjkiHOXrbHe3mbM9Z3DY315dfj8fu4ZlLxnOskhWn1YmmaywvW87JzpMMxAeQRIloMkogGKAz0klcjfOFZV9Ia87fWLyG2FM7M6o6322c57Q4WVi0kK5oF5quUemtxGV18ULgBWJKDB0dURANayFdRVEN4sxhcVDXW0ckGUHEWCdeV3wdXofX8LoOt2OTbMwumM2swlk0DDQwNW+qEbooWs1jyWFxIIkSN027yVxrTRbntTS08ETdE6z3r2dp2VJqHDVUZFeg6zoDcYMc1HQNu8XOya6T1ObWIisyNsnGtqnbeKXlFZ4LPMeU3CnvOZz3J0WyJRIJjh8/zt/+7d+m/X3z5s28cqUzN7K+9a1v8Y1vfOOd2LxJ13jk1ZG2I9glI/mlM9LJ4tLFtIfbqe+rZ0X5Cg40HyDPlceS0iXGCTLYzjdu+AbH2o9R33c1MnxOwRz+bOafEU6E6Y/1c7LrJE/XP02Ju4QsTw7ynmczy8MB544do0Y14er4XaqTAQah1hRs4lL/JYLxIHnOPFxWF0fbjyKrBojLdea+YbY5KAexilbmFc7DZXOR78qnJdTChd4LDMqDVHorsYgWVF1lUB7k1dZXQYea3Jo/mUWVx+5haflSZhbMNEnLtsE29gX2cbT9KC6bC5vFhqzIZuyz1+blE9d94k0nf6Vk/2prK9K0aViKipDKyxHsdhw33GBIp4NBBElKU7WBAd7dn/40CAKC02kCr3fDbyVF9A4lh3DZXETkCF67F6toZVreNJpDzVRmV/Lbhie5betPM/inVdO6cgYPPvdZPjrvo9w3/S5W5MzDruhgsxKfo1EfvUwkkR5aktSSvBh4kQpvBTX2EuLDPE4gnTSyL1+OfPx4+gjnFaVQ7JlncGzdSvypp8zXjpV0Kdb4Gdp4PVNEC4s80xHlBILTgSaKRJJDqLEhsHvG9jRJJkm0tvBqqcpLXYeZmT+Th04+xEB8AKtoJceRgyPfwY6yG9Bf3Emm0hoDyME+erXIW+4qDfd3eSPpngBYLOjBIHo0itbcjKWyEuf27cR27Ur73kKNn6YVU/ncs/cxJWcKvbFe4kocHZ2DzQfZPmU7C0sXwpXjVO3sTFNWDC81EEgLIFAbGog+9dS4SWdgdDZHAi+4Slpy6y0TdjrV/v7RgQh+P85t24zja4z9pl9ZMKEoVxXNGIqa2s5O/nnJV830r9ORBlaPpbKoqUHMzx/zux5qOcS+wD4zTGd5+XLO955nVsEsZuTPmDBNdiL1JkDCIqDpRtpVy2ALD7z+APcuuJe63jrTR+ZavX/qTwXnQeZ7n2CxZAwxGD4iPVK5OaZn27DroGXqVJTLl0mePYulvBylpWVMX1UZcG7fPnpUk2Eek7m55t+0WMy4Ll8Z3xccDnRg6JFH4Mq15I0sOlOlx+Npam7B7R7bSzIQQI9GGUJBczn+ZHAeGFgPuwftiu9mNDLAgDbEK/0neWjfZwknwmk4739c/z/eEs5L+f7aJTs4hl2DrVbsq1ZhnT4dbXDwDeG8d8M/eTjRq9ttlEg55DvzkUQJRVXoj/VPiPNaVs7gq0/czicXfpI/X/DnKLqCVbQyp3AOr7S8wqmuU2mWLZCO81xWl0mwAdgkG/2xfqp91TSHmvnnlf9A1auN2MorkJavSMN5ynMvs2XZWupjrcwdI7hCqPFzMd7GysqVTM+bjsPiYNfFXTQFm3BYHIYHWX8Dd829i+n26aM8irOsV8dVu4e6kVWZQXmQMk8ZXZEu4kocVVNNnDcldwqvdbwGLoNYmV80n75oH41B4/1m5M9gf/P+t6wgShGig/FBIokInavXUgxpRJtQ42dg3WIeeunLCAhk27MZiA8QToQ51naMlYWLUZO9yGofq92zuX/Df/CFF/+G092nKfGUUOIp4XjHcRaVLMJr85J0JhmUB81AhxTOSx2namfn2HYu7yLOO95+nJ+89hMCAwEsogUBgSJ3EXfOuZMN/g3GlFq0B5fVRTQZpSK7gmXly3i943W+tPxL/PDYDznWfgyLaEFWZTx2D3fNvYsDzQe4dcatOCwOwnKY+t56qrxVCAim71soHsLr9LKqcpXZsB9ZE+G8hGJY7OiCzs9P/JxAMICOTp4zj001m1hevpz+WD9DiSEEBGySDUEQWFK6hFdaXqEx2Gikmr4Hcd6fFMnW29uLqqoUFaVfuIuKiujs7Mz4mr/7u7/jr/7qr8x/Dw4OUvEOSZsz1Vjk1ReXfRFVV0koCUREyr3lOC1OzvScocRTQm+0l+srrsdusRNPxmkPG2mLVb4qBuVBFpUsYoN/g3EC2TzkOfIIJ8KouoqqGURU6vkWDTPBZmSpgQC6ovD9I9+nO9JNljULRVOwiBa6I918/8j3+ZcN/0KRu4jz3ecJBAN879Xvcab7jJk8sqB4AZ9Z/Bn64/1IgmQakY5km8dTvOXYc1hXvY7AQID+eD+iIDItbxpJNUmlr5JzPefojfaiaIpholg4C5/Tx8HWg2yfuv1PakxouCz7hcYX0sw4LaIFi+3qaZ7vyn9LF5uUb4x8/Dju++4jtmvXKJWVY8OGUcALroYiuG67jYSaQO8OYpNsGU3sR4L4t7NSx1soHqLUU8q+xn3E1TjBeJD2cDt2yc4nF32S/z7531wcuMjfv/otts1cz5IV28jGTlzSOdR/ku8+/wUckoMPlG2k4KUTqI0/JzbsO8xfs5qy2tt5sOExU6Ztt9hxWB2UuksN/5QRNZw0kioqkMrKMirZ7MuWIebmGh4+w0eLBMHw7UkkQFUR7HZ0UcQlScR27jTHUlPv4926leizL5LctAmHLyejp4ngrya4fgkHAo+j6ioX+i7w0Xkf5Xj7cfrj/dhEGy6bC++4AxdAQubJC3vfclcpzd9lZPqlJIEoogYCozzaRo7VSH4/Ym4uJJM412+AtQrY7CREnZe7X+UTT9xOriuXF5peYEmZESASSUaQBAmXJpHs6UaQDWWYLggZ00tTNdL4WW1omDBxTY9EMirswABgeiQyZsceQA0GRy2Q4UrXdc8eLJWVGQnc6O9+h+v22wEQ8/KQjx8fdfyVrl7Ndb5Z/Muxf+Ngy0F23fwbfC8IqA0ZTLXHWFRfDl6mcaCRmBLDIlqYljeNYncxW2q3sLh0Mac6T9GtR/CNTL29UmKNHz03B1HTx1Tx4K9iZ+vzZhdeVmRaB1tJKMb5ODK5+1q99+tPAedBBq8xrqRIr1+Pfdkyw5JhmE0HyeSYSZIkk6BpY57PJJMINhuix5P2HuP5f6IoxPbuHVO14bz1ViSPBzUYBE3LSMa5774bXVGMkfEnn8y46BxP8SZcCXTRwldIDFnGdeedoxJQU6UPDeFwOHi47nFWV63+k8J5cNVq4djgab7x8lXS+O3GeSmPp4H4AFGLkYautrYa2OS110AQsMyYAYqCY+1ahM2b0QYHiT7xxGic1zmAFo+hEqejr4lfXvgNMSWWsSn/dpYWChF98sm0+0JOjZ8tq1fylwe+iqIpY+I8lyaB3c6h/pP86/NfoCCrgLreOl5pfQVFVSj2FBMIBgjFQ9Tk1BCSQ/gcPvNzhuO8lPctGARbjiOHo21HuWn6TbzY9CLLcubhXGQbE+fN9nh5sOkP+NdvwANpmECqqUHbugE1comttVtJqkn+8eV/5LWO11B0BXRDjbiweCHfPvht/m7V3zElb0qaR7GOTjgRpsZXw22zbqM/1j8uzityFbG2ai0xJca8wnnU99enqfiiSpRIMvKWFUQpordrqIvy7HJ+07yLNUuXMWPdMixJFdUqUR9r43/v/x/ElBgem4ehxBDocLrrNJ+dcQ8l+8+gB/YSv0LUL/T7ObDl12g2G63JXn57eRdOq5OOcAcXei+k4TxFUwgEjX2d0BK4bW5myON/l3cD553vPs//evF/cbr7tPk3j82DKIo8dv4x5hbOZWXFSmYVziKhJrCIFvqifRxtP0rNrBpeCrzEP93wTzQFmwjJIRySg5gS43zvedrD7RxsOUi2PRu7xc6tM25lYclCLvVfAozjfEbBjHEDLSaD82pyajjTc4YXml4gEAwYhBkaA/EBjrQdodpXza0zb6W+rx63zU1XpAu/z09pdikvXn4RAQFREN+TOO9PimRLlSAIaf/WdX3U31Jlt9uxT9Qtf4dqpM9YqtrD7ZzqPsXzjc/zfJNhvJlQE5R7yrlp+k0caD6Aoil0hDt4te1VACNNRNfQdZ1KbyVNwSaaQ804LA6y7dkkdOPgy3Xm4ra7iSvGxUFWZbR4jPFKj8foifZwOXQ5rYOTOrHruutoHWzlSOsRHjzxoDmqmufMw26xs+fSHnqiPWyt3cqLTS/y2SWfpWGgIY1tzpQANFzxVuGtIB6Ic7DlIIFggBn5M+iMdFKeXc51xdfxauurJsEGxhjgo2ce5ZYZt7zr8tG3Umo4bJAzw0a/BI/HBKWTTdJ8s5XyjUk2XCK2a1dGAK6PZ97f0IA2OEjymb04li4jlmn0YwSIf7sqLIe52HeRI21HyLJmcV3RdTSFmlhevhyfw4ckSDx48kHO9Zxj18VdTMufhmvQkMTvbnmer73yT7isLpaULqFxoJE8Vx5fvu7z5L/0Omrj6O8gAzmzZ7O2aDnPtr9sPua0OCnIKkBwZLjxDiONhOxs4mMscmTAsXUrzltugURiNNlZW4t91SqGHnjASF4caz/v2YNj2TLknTuRbrs9zdNEiUcZEpLUx9o4EHjcJAqTWpL6vnrumH2HCUjcVjcu3UeGwRKzNKuF/lj/W+4qjTIIHxZKIU2fhnPzFuTW1lEE26j00dZW0HXkw4dHKb1u2L6VIncRJztPYpWstIXbkBWZpJrkl5t+SNkLJ4k2Pn71NbW1ZiJfJqItk/HzRIlregYSdrKPa7EY2sDAuIto+6pVRH/xi1GPSVcWVFJtLUpr62hFzZXj7yNbbqNHGyTbnk2XMETpbaPTTcfr4EaSEdNY98ZpN9ISMoJ5CrMKOdB8gNc7XmdN9Rqk5TXUoEPgaoKW4PcTvGEJx3oOALB+63qEPXp6p99fRcOyGr779P8k15lLYVYhbWFjJDp138qU3H2t3h/1fsV5kMFrDMDlwrluXcagkbRrS4YRacnvR4vHUdrbMyq9pNpaoxGQeu0kxqzHvY8HAhCLoSaTaIODyC+/nPn+8vTT2JctQz5yBPe99xJ56KG0RWcmIiSNnLfZwGodpbgbtU+GVWzXLu7YvpUfX3jkGs57k5XyMjrRcYLPvvTXPLDt37E2tyOfPIlj7Vr0RIL4SNVkTY35Gw/HeSkCIQu40V/NwlX/xJde+Z80DjTyvSPf41sbvvW2K9rikRDKiOMKjJCAYuAzc+/ja4e+OSbOC8VD7Ji6A5vFRqW3krLsMh6ve5ywHCbPlcd1xddxpvsMRVlFNPQ3EFWiOC1OczwXruK8bHs2ec48REFEQDAneF5peYXFpYspcOYh7x8jWAID59038y7UoQjCxvXYBZFkPEpM0jgXb6Ol+wAXei8wNW8qZ7vOcrj1MJIomUEFvdFeXut8jQXFC9jfsp8id1GaR3FbpI3OcCd2i90k2GBsnNc91M2uS7vQ0dF0LW2NBuCyuIgkI28Z6w03828dbKXAVcC5cAOvDZwlx5nDvKJ5PHTiUXNaxG6xE4qHWFG5gkU5s68QbE1j2q4U+v18cft9/Obsb0bhvLAcpiCrgFNdp/jpaz9lev50fA4f/3PGX4y7ze80zgvLYV5oeiGNYAMD3wQGAobiC4GgHORk50lTSQYwJWcKWbYsXHYXuy/t5v8e/r9My5tmJqjmOnO5afpNfG3N1wgnwhS4ClhevpwZ+TPeUKDFZHDe0vKl5EQM77jVlaspzy5H0zW8Ni/5rnwcFgf1ffUUugq5b4Hxm633r8cqGYEYFtGC2+bGYXG853DenxTJlp+fjyRJo7qZ3d3do7qe78Ua6TOWqhuqb+BHx35kSLevlEW0cGngEk9deIrl5cuJJqOUZpdik2w4LA5kRaYiu4JtU7dRklXC55Z+LiNpdcv0W4jIERwW4+Jgk2zodtuobUgruz0tDSdVqRM7oSe4//j9zC6YbRJsTouTYDyIJEp4bB6Otx/nrrl3car7FD84+gM+vfjTJtucKQEIoD/WbxJkHeEODrYepCPSAUAkEcFn99EZ6eT5wPMsLVvKvqZ9APh9floHW4kmo8SSMep667jYd9EY93ofldrfjxYKIe/fP8pwPQVKJ5Ok+VZryCEilRSiPpV5PI6JbiqhEFpjAGHDxvFBfDRqjuO91UqRtnU9dTQPNnPvvHv5+otf51DrIZOIXVy6mK+s+Aq/PvtrznSfYXPtZp5peIY/nP8DS8uWcve8u3Hb3JRnlyMKIm3hNuZ5pqA1GsT2yJACLBYEt5tpWjbPDtsWr8OLzWKjWxvEl8kXK5lEaW3FOmvW+NJ0XUepr8888tPQgKxpBll3Rb0w5vts3Ija0GguflKeJme6zvDY+ccyv05XcVqcaQAqHgmNaYAs+Kupjxk3vrfaVRrLzF+qrcW1bTui14tzuF+a3U7y3Ln0BdkV4IWuY1+0CJYtM9URamsr1sstHPnAriuvt5EQ4Q9Nu0lqSapeqR+VvDx8f49c5Ep+P7qqMrImSlybaFRyvMf1oSGIjd8sESRpVJphioyUX38d57ZtRO6/P+Nr1UAAp6aT1JL0xfqwS/Y3HGjhtrpxSk62TdnGo2ce5Uz3GVxWF6WeUgbjg2yq3UTrYCt/9+rf8V8b/o1pK+ciyEmSVpGL8Tb+Ze8nKcgqoG2wjZ9k5fOVRZ9n3roVJKJhbC43u9tf5heH/4klZUtoD7fTFm4zxwk8Ng+qro7Zfb1W7916v+M8YJTXGAzzNR1jsW1eW0ZcNyS/H/ua1STcrrGvizfdhJ5MoqfGqycxZi3YxseBuq4Tf/ppHBs2THx/udLQcd18s7noTCWVjyLxh41ZoSij8E7GfcLV5oDa2IgzqV7DeW+x8px5HOs4xqX+S9y8626e2vIQjuJi1I6OMceMY3v34rr5ZqKPPmrivOGlB5ooBe6e+UF+fPYhGgcaOdd97m0l2ZqCTXgiCpZMymYMddC6DR9jcfFiXu96fRTOu2P2HWTbspmSO4VoMkprqBWPw8OW2i0k1SQ6Oi3BFlZWrjTWOO3HKZKKiMiRNJIthfMEQWBa3jTO9543H7OIFiRRYigxhISIPC7O01D+cPU8SWKMScbXL+Xbx7+H0+JkTdUaEkqCjqEOFE0hoRqkRoow6432omoqwVjQJL5Svllnus7wWP9jGXFZJpzXFenCn+OncaAxzdsNoMZXg91iN9/rrWC9kWb+nUPG9T7XmcsN1TdQ5avim+u/aY4g67rOM43PcLz9OJ+ruRM98MRVnGe1Yl+8GJYvnxTO++m5X5LUkrQOthJTYlzovcCC4gUkrdK4XrbvNM67HLxMb7Q342PhRJi4EqfIXYSiK+b3SKXPbqjZQEyJsblms6mKFQURMMIz+mJ9/PzEz/nM4s/QPdSNWCDitDjfcKDFZHBeYCBAPBnn7nl3c7DlICc7T2KX7Nw47Ub2NOzBaXVibzL2w7yieXx68af5Q90fuGX6LSwuXYxNtFHoLnxP4rw/KZLNZrOxaNEinn32WW699Vbz788++yy33HLLu7hlk6uwHOa+BfehozMYH8Tn8KGjE01EOdN9hrmFc/HYPIQTYURBxGV1cWngEltqt2CTbHjtXr6y4isUuYvQdA2n1Ymu60wvmI7H7hkzUjksh8nuyqbUXUo0EaUl0UvJOBeSiKSOItjM75AIE5bDXOq/RJX36oFtES1ElSiKqhiRwskI0YRhSH6q+xQxJWayzSMTgIZXqjvSFe2icaCRfFc+um50VGrzamkKNnGu9xwrK41Ie7/Pz/Ly5bzQ+AIeu4dgPMjRtqPMyp9Friv3PT9OYI5SxGIgimj9/YYCZ1iNnP2fKEnzrZYQiWITLFjvuGPUOAswKQAPZByXHF4TdYAmU2E5zLmec5zpPoPb5mZJ2RI21mzk3w//O2e6jVFrr92LqqsMJYZ46ORD3DHrDp5rfI4LvRewCBb+dvXf0h5uZyg5RHe0m+cDz+O1e5mRP4NoZAAvjB1SUFODd+tmbJLNVIKVeEpYXbGa3U0vcM/2W2DXnlFdeue2bWgTmHNr0ag5/pOpzLGgCfZz6vGR+zvVSYwmomwtX0eltQAhkUC32+hQQ1SOuHE53N4Jx03h7ekqmQbhYyinJI/HJGiV5uZ04iv1W7366mjFyJUxSfnw4fT0Or+fD65Zj+qwIu/9acZtUgMB7KtWwYiRD+eOHUR++ct0EhZA19FisTHVXmN65GGMSgrusfejHo9PeB4KdvvVfRiLIdhs6IKAIIq4brkFtadnzPFXAD1xVQ39ZkBMla+KRaWL2HNpj+lZE0saIwUtgy0caD7AkrIlVPmq+My+L5mjGxv9G7kcvIyiKTitTgqzCpFEiR+c+Rnl2eX82Yw/Ixrv5lDva3idXjrCHfRGe03gNTN/Jj6Hj7XVa9+XKpf/1+v9jvMAdKsV96c/bV67dFU1x9wzVepaLvn9kEziuuceBElCs1pISnBm6DJT3HMQ7Z4xr4taLIbW3GySUYLXO/aCsaZm4uuHrhvXz1Wrxv+yqQCFK4RbirwbHmAz6vumxqwUZeL7G6OVyros87czP02fHONy8PJ7nkx/L+I8WzTB/5r1eb5e8wkzLEePDY6PORobEVJptWOUHmji+pU382MeAgx/5bejuiJdnO46TcNAAx/Ou2Hc50aHBthYu5HD7YdpG2zj1uptPHLDD9DiMRSrxKsDZ/jvU/9NljWLGfkzuP/o/VTnVFPsLmZ+8XxiyRg763dyuus053vPU5tTy03Tb2IoMWQSWymc90zjM3z8uo/zwOsPcL73PBbRQr4rH7/Pzy3Tb0GOjU9EaUPRjIq8bB0+NOsD/OjMg+bIp0NymF7UgiAgIZnbI6syDotjFPGVwnmhuDHyKisy0WSULFsWec68UefOcIK3K9Jl/n34uGmq3irWSwX+jaWcGh5mtvPCTup66wCwJLW3hPNWlizj++d+ZopEYkqMUDzEA5d+w1/ceGdmn8p3AedFkpFRgRzDK6kmyXXksrl2s7muVjUVt92Ny+Ki0lfJ0bajOCSDCIwkIvgcPoLxIGAkyaaSWP+YOO8TC40Ao5+f/HkazktN6TmtBrmn6zotgy3o6Pzrpn8lmozSFm6je6j7PYvz/qRINoC/+qu/4u6772bx4sWsWLGCH//4xzQ3N/MXfzG+zPOdqIlSNV02F9965VscaT1i/m1Z+TI+s+gzWEQLkUQEf47fVJGlJJJZ9iz+btXf0RZpI5aI0RxqRtXVUYlCYzHQqZhwi2ihM9LJI4En+cq2T8LuZ0dfSG68kfPRBmp8NabR5fCq8dUgKzKSIJFlM0KXraLVPPCBqyyz3UOBqwBVV5EV2TyBJ+p+RJIRNM14j+GdlAt9F1hcshibZKMmp4Y759xJ62ArLwReoDS7lFNdp8iyZWG32NF0jb2X9vKBGR/4o5uvTqZGmsLOLphNvmofPUoxxpjEyNn/8ZI030op/X3w9F6GxhndUFtbx046q6lB7ew0EkgnUL1M1AGaqJqCTfz3qf/m2YZnuRwyRs1K3CV8cfkXDXl97lQaBxppCbWYara2cBt3zb2LBcUL2D51O881Pscjpx8hmowyEB+gOKuYdf51/Pbsb6nvq+dzU+4Cxkk9a2wksecZ1i4zRkZT52SVr4oidxGBwTbKdmzGlQTkONgd6FaJ5Lk6LFOmTLh/9AnUSqiqkQA2Xl3plI3c3x67h1um34Jb1rHufRk9sNd8rKLGj3VHBYy4eTlyC1Bu2Y4c7IOEjGa1pI2bZrpRv9kUuskqp0Z+rzF/q0AAbfbszF36lHJiggWlYLEYi2dZNjqQDgexF16AaDQzCTuOb9lYpKVY48e6Y9u4ZriCw4FSXz/+ItrlGncfahOcf0mr9IZT64aXx+5hat5UHj37qJl6ZREtzC2cy5zCOSTVJMWuYpaULTFtEgAqsyvpGeqhI9LBkbYjuG1ueqO9FLuLQTeS3bZO3Uqxp5jvHfme+ZisyPhz/Pzl0r9kfvH8awTb+7jeyzhvouuZ2t9PPMMizbFu3YTv7dy+jaA8SN1QgJdaD5vX1OHn4FjntOh0Yq2tRczNRX7lFezl5dhXrx4dflJTg3PHDnRVHV+1cYVkZ6Ix3OGPJxIIV9I/JxyjisdB08Z9jmC1mh5twzGRYLdTMuikBCd63EY8EprQPPydKC0WM+7ZiYQxBup0gtVK7Kmn3lM4T+3vJ7nz6XQP15oanJs3o/VnboCbJcvpOM/jMYhWhwN9cJDok09iVa7+rj677y1vb8rL+nTXaXqiPWy8cRHj5ZhHSGKVrJS4S/hfi76C67mDaC9ftZLY6q9i1vV/x+bHb6O+r557F9zLtw9+mzlFc9jfvB+XxUXjQCM+u48qbxWheIiXm15m65StdA51jsJ5LcEW/nnDP9McbCacCBsqN9HGUxeeYvXc2eO72Y4x2q0HAly/6hZ+hGEfVJRVRGekk0pvJYFgwEx+TzV4U4b1I4mvlGLshcAL/PLkL811ncfmYU3VGhaULBjlm5cieM92n+V453EEXRg1bjoS6020/h2rJqucKvWU4rQ4iSkxFKv4lnBeyezZLMqZw8nOkwiCgKqrhOQQreFWfnTxET5104cR5eS7jvPcVjd2i33M9bg/x8+swlnj7sPCrEKm5k0lEAzQHm5net50AIYSQ7htbpwWJ9W+6j8qzit1l6JoCgOxAfN1KZzXOthKe3s7xe5i2sPt7zuc9ydHsn3oQx+ir6+Pf/zHf6Sjo4M5c+awa9cuqqre3U7WcI8xq2ilPLvcSLwEfE4fU/Om8h9H/oPj7cfTXnek9QjbpmxjWu40EIwLVZW3Ch3dDBxYWrqU9TXr0y9ibzBRqNpXjYjIN176Bu3hdv4xGeVzGz5GkbQR4jI47OhOB5I3F1eyg9tm3cbvzv0u7cROdTKy7dmG94Ais7RsKUfbjqbJqAUEFhQvMKWdNslGmafM3NaJuh9uq5tKXyU5jhwG4ldPSkVT6I0aKYCyIptpqm6bm1Ndp1hWvoyucBdhOcwrra+g68Y+nJI7hUpvJVPsJYgx+R1NueyKdHGm+wz/dfS/aOhvIMuWhU2y8TeLvsjqE+Ex/ZAyjaW9Hcqv8So5GETe+fTYBMSVbVI6O3GsX09c10elXNq2bUHSBWK7d2NftmxcEI9r7A7NRBWWwzx29jEONh80VZc20Ub3UDfnes4xJXcKgWDA7NikvHyC8SBnu8+yunI1Pzn+E/rj/fRF+9DR0XWdjkgHh1sPs6pyFU9ffJozkQb+f/bOO0Cus7z6vzu97sz2XmZWq7KrasnqvTdbbuACxoABJ5AACaHECRD4giEhHx+hh+oCNgQJXCRLtiVZVrNkS7J6W2l7rzM7vdy53x9XczWzOzu7klbGgI7/sXb6nbnvPe95nueceRs3oiksRF1QkNSOHifHYl0d01ctw2bLSzonrXorBq2BX134X/oCfRSYCzjccpifLvxP1KWloNEML1Y6HIhtbahz08d7C3Y7kkaTfrPk86GurEQwm4fcnq+xE3npBWKDHiulST6yZOTQE/Py4oVXUo6nJ65JI3ryjAEEqzVpLFJdUjJsQt1InYHCqlXpX8tkQp1zld57Qh58C2/DvnA+oR2vphzrTZdAleiRFyd0gsWiHPPhknkFs5loV5c8+snQBFHjhg0jrm2qQcctEepKJwG96oY9j9QqNeW2crp93cSkGMsqlnG0/Shnu88SEkNc6rvEYzMfo9xWToenA41aQ7Y5mw5fB9FYFF/Yh0lrwqKzEBbDnOk5Q3egG0/Ic9M7PW7hT4f3Ks9LWs9MJkx33okQiRDr6pLPT72ewM7U/kvSokVpn1tls6HOyUUXMmDTBFhuWn7NPE9ls+EXIkgrFhOLqVCp1BjWr5c38qEQkl5PzKhDbctC7OkZdv3Qz5mjjDFJHk/664vn6tSDYDBcDTUYaYzKYBhRZJMiEfzPPTfkNWPBoPz3eFeJw0G0z41gMsmi35U0VEGnA50uKQXzZkD0eCAcJubxJPnX6Rctkn0vRzEOq3zmm8zzRLc7dWBOXZ2caj5CpxoGQxLPGxKG8cgjuH1yB9RY+MclelmLkohOpWN35yHuHyaNE0c5L7XsxE2If7rt7zG+dmAIv6G+kTIEvjLnC/z9659nSfkSHpn+CLmmXE50nqDAUkCWMYugGKQ/2M+UvClk6DNwZDlYWLZwCM8z6U3svLBT4XmvXnqVZY5l5JpzqQt3UjPMe1U7nUM6GpV1xWrFFA7zyprf4FFHOdR3ir5AH1PypsjWPa56NIIGk9bE3JK5bKjaQIO7IWU3klFj5O22tzFqjUzInqAkVJ7tPjusb15c4HVmOXnxwov0BnqV2wZzvZE8tscCVdlVLChbwIGmAxzsO8G9FYuum+fp585loWYGX+r7KgOhAeXztnvbCeQHuBBuZ3JBsmilWbUc3aKFhLanGPm/QZ7nCXlocDXQ5m1TRKmq7CrK7eUIgpByPz4lbwqfuO0TI/Kdcns5NXk1SJLEOx3vMBAaYEL2BHRqHUWWIu6ZeA/TC6ffVJ53vuc8H5vxMabmT+V8z3l8ER/Z5mxaPa1KYIJKUPHNBf/GxpLlGEUVdkM+sUDgPc/z/uJENoBPfvKTfPKTn/xTvw0FiR5jWpWWcns533/r+xxtO4perVfM1DdN3MSJ9hN0+DuSOrROd55mfM54GlwNSEhJnV7FGcXU5NUAo1f8h8Plvstc7pc3VIdaD3Go9VDS7V9d/FWW2ZZRZi9DapS4e9Ldcmtx1I9JY0Kv0SMhMSV/CpNyJ7GnYQ8fv+3jRMUoZ3vOohE0aFQaJuZM5P6a+/ny7i+TacjkPxZ9ncXWKYSaGtGYzIwzl5JvzqfT1znkPSZWRzaO38jWi1uThDZX0MUd4+W27S5fFwOhAQZCA8wpmcODkx/kmZPPsKR8CRISb7e+jblEzWRNCQXkEHhhaDXxZqVcekIejncc53jncX57Sp5TFwQBg8ZASUYJNeYKxLoXUj52uISxG+38GgmCPziqcRb9zJn4nn0Ww/LlGNesIRzw0iv56IgNUCVFUW+XNxn+zk4sjzwyNAI+ftxvQOBMTLRRC2r0arnK5g17iYgRjFoj/YF+dGod0ViUmBRDrVITk2LEiFGVVcX33/o+RdYiNGoNXb4utCotEhKnOk8xPX86FfYKKswlRI8cJzSo5XxwFVofhcklyefmYO9BCYm7KzeiAgJ7915N8xokVqqdTvSzZ+PfsgXzhz+sjP8M9oOLeTygVhPcvRvj2rXDHueYzyeLWiku/tebfDRSmz+M0pMHhnSFpPpbug3SEA+3dKbfIxmCq9N7ciR2bcQ7KY+2HeW5JT8YeTRqmM8Q98hTOmRcHsRgBNRqeRNTW5v0HuJrlmndOvzbtycnDhqNqDIzUdvt6T8nI3jf3XEHljEQQS1aixJK4Mh08Hbb2zQPNCvJdiB3Kcwtnosv4iMQDVBuK8cX9hGKhjBpTZg0JgZCA7iCLrp8XfQF+vjV8V8pBP69QrZuYWzxXuN5SeuZyTT8tW3tWryNjbLnaALE+vq0RZV40elGed7bPcnJlIMR53mC2Uxo586UiaVxz0a1w4H/xRfTf9anngKtFsOaNXJhs6lJEbvUEyYgXrgw9PMmFH2GF/orr6aOJr7munV4n3xyqIVDwr+HiIaLF0Nm5pgVduKId65Fr7zekACHNAWfPxXPIxBInzq7fHnaDumoTkMoFlF4XtLjr3jzGVcvHjP/uMFe1v3Bfv55/7+x/oP7sUpScjK1o5y6uU7+bctn+MzczzA3aypS/TOpn7i+gRVz11JsLSbfks/B5oPsrt/Nqa5T5JpyyTZls75qPXV9deRb8rEb7Nj0tiHnZiqel2PKQaPSsPXiVr7z5nfYc+9WKqVYcriP04Fm7SpCP/vl1ScbZl0xOBysWLealur388vjsm3C3JK5RGNRymxlrK1cSygS4o7xd6QUS852neVs91nl3/FwBmBE37yRuN5oPLaBIV1u5pjmmnieVW/lg1M/iEFt4HD3ce7OXTzsfUfkedEoGimmCGw6tQ4pJtHkbqI0o5Rcc3JxO871PlRyB7Yb5HlKs4yrGYvfgkFt4Ej7EV48/yJt3jZAFkUXlC3gg1M/qOyDE/fjOcYcllUsY1LepPSfk6udjAAZhgy6fd0Eo0HKbeU8Mu0RavJrRnyOkTASz9OoNJzpOkO2KZs5JXMIi2HKbGWKxY5Fa+H59b+m4s1apH3yRI0E+K9w0XzbzenoHQv8RYps7zUkeoyVZJQoAhvIi5nNYONE5wm6/d189LaP8p1D30FAQEJCQOD1htf56R0/5aWLL900k1OAgdAAayrXYNKa8Iblxc4f8fNG4xsEo0HFO8Gqt7Jx/EZevPCiIvgFogEKrYVU2CuUts2DTQd59tSzbBy/kYenPQzIItnFnot86bUvoVar2X3PCxTtP0ts+6+J1+fUlZV8ZP19/Ory5iShbXB15NHbHsWsM3Ou+xzBaBCDxsCk3Ek8OPlBomKU5Y7l9AdlISVDl8Guul2UZJTQ6euk0dXIT5b+F843L6MLdBJoOfqupVy6XB2o/CHGhSxUF60j6vNxoecC4ViYYDRIy0CL7CmQDoMuEsN1Io0lpFD6CqpgMKBau4o+dzeuTYt4qWUH3971Parzqrlr4l0MhAaYOsFJIH6c/X68Tz0lV+VWroRQSB6fMJtv+HjHE210ah2zHbPRqrQEogEl6ak0oxS9Rk80FkWn1hGTYgiCwKScSUiShDvopjKrErPWTI+/B0mS0Kl1hMQQKkFFIBrg09MeI3vPO6OqQqcixoO9B8WYyPripQS2Xe0WjCeNxsm2ymYj5nIpAp7kdsu36fXEeoYaoAoqFeKlS3gbG5OOM3o9kseDFA6j0umG3VzcSPLR4M2gJ+ThdOdphUhNEPLSC08eD4FXXhnS5aZfuBD/s88qAuZoOt8SPdzSEqyR/ARFMW13B6EQWK1JnZSPTHwAtceX9mn9Xhe14SaqsqtSkuCUHX9xH6KGhqtdk4lrls2GadOm6xrFjWMk77sbRbm9nEJrIYFoAKvWSvNAMyBfF8tt5UzKmcS4rHEc6zhGp7eTSCyCO+gmz5xHnasOo2BElEQlHbsys5JoLJpE4P/U4wK38NeBRI+xdCEG8QAA/29/m3Rb6NAhLB//eMrunxstOiVitDxPZTTKQv1LLw0ZfRLWreJssIlx69bAjleTr+NX0jBjAwOywBaJYHrwQUL79yf7H1VWYly/ngAkCW3Ken5ljUkb5iBJSeP5kkaD91e/Ar9fHoVNENTSjY+FAO3kyWgnTRqztU10uZCiUYIvv6xcv4cIU6PY7Cfi3eF5I3i4RiLoFy8eZsx4Pd+/8AyfdLz/Ks8bBLG+HjurxyxV1BVyoVPrmFEwA51ahz/ix6q38lLbHvKn2Jk6bz3qiEhYI/By2x6+8fznGZc1DkmSIJQuDx200RiTciZxqPUQdf116DQ6MvQZGDQGJEniRMcJlpUvIyxdFQMGYzDPC0VDzCmdw38f/m+Odx5HlESWbNnAV+d+kTvmrsEiaTFZMjnUd5KBxldZV1KsCIXp1hW2v8rsuTWcKZ5DcUYxgWgAo8ZIu6edsz1nqc6pHtZTayRfvJFuT8f1ApEA7Z72pGmmOPoCfZzsPMnR9qP0BfpQC2pyTbnklRhh54GkAu9oeF6FvYLHZj0me7ZK2uHf8Eg8T6NBpTdSbiun3dtOpiGTkCiHCd5WeBs9vh7ltxvnensb9vJI3pq0TzsSzxvc8ReKhnCH3JRnlNPl71LuF4gGONB0AIPawGOzHuORaY9c9xQbjK4ofiMYDc8bnzOe413HFZ43EBwgx5RDnauOJxZ8VRbYUgSOpesQfC/glsj2LiCx8ywYDQ4ZCZUkCbVKzZH2Izw89WFFvY0jJIZA4rpaIptcTZzqPEVfsI8sYxZT8qZQZi9LeV+zzszz55/nROcJ5W/T8qfxkRkf4fnzzyd5JySelL6IvIHc17iP2r5anHYnv3znl8wqnMWMohm80/EOWpWWSnsltX21VNgq+My8z7CxfBVF+84OadUWL1+Gl1/hI3c9xCVf87AnfYW9gk/d/qlhF4bK7EpOdZ7im/u+SYG1gOcvPg/AunHrWJg3C+ebl5HqG1DPnZe2mjiWKZcRVz/ql14lVldPfBjyo45ylt79R1b98W4isYg87qqRI8+HRcJFYjApvVkQ9OkrqDGdlmcaX6TEVsKpzlO4RA//MO8f0Gv0DIQGZK+G4CBS4/cnbTbMH/4wmoKCG36vFq0Fk9rEsoplSlpotjEbd8jN+KzxPLHiCd7peIfzPecxaU0Eo0Fqcmq4t/peXm94nQ9O+SAGjQEBAbvBrrTCa1Tycder9WwsXo60J3XCapIp8zDEeLD34IK8WQiRSDKBikSSfpuWxx5L9mnR6xFbW1GXlg6tkjscqLKz0S9YQGjPniGbOgDzI48gXRmVTYUbST5KRIOrga0Xt6IRNEhIBKNBSgvWp31MzOVK2eU2OMVztBfauFdRLBAYtjsi5vEM3znhcCAFAsnCZ0J3h3/LFswf+hBwtZMyEouwJPd2GGHf0h/z8i+7/0WpTiaOUAzb8TfMSFHimnWtiZ+pMBbPMRwSE8RC0ZDi0WnVWZmaP5VsUzZqlZqZhTM53HqY012n6fB2ML90vrKuJApsC8sW4g66gashOTfS9XMLtzBaJI7xjSbReQgiEYjFkpORR2lbcbN43mCRPapTc8Zbxytnf0GJtYSPvPU99t/xAgZJQHK5kLxeBLOZ2MAAgsWC+b77wGIhuGNHyrU88PLLGDdtgpUrhxXxRyP0R7q78P3ox5je9z6lQ3Bwl9housbSdZpcC0SXi8CLL2K4kqzKrFmp7ziKzX4c7x7PS39NlyQJsaUFw5o1CLGY7C1nMOBXx/j+hWdkQWYwzxv8GqEQ+QVjM9qdpc9SeF68G8YddFOVVcXjix7nkX3/wOGWw5h1ZoLRIJNzJys8Txr/4bTPHdEIVGZVcrD5IBmGDLQqLQ67g3ZPO/6IH1/Ex5rKNYQjqf1mYSjPyzJm4Q17OdJ6BIPGQCgawhfx8fl9X+bzfBmj2shPNv6EX7zzC/RqPTMX/wf5gkCsrn7EdaV65XKePvm0Yn8Sx78s+pdhw+pgZF+8a/HNa3A1cKDpgHJtNmlNXOy9SLG1mGgsSiQWQaPW4Av5CMfCFFoKERDQqrTYDXYyBROG1/anTHAfDc+LC36xQAD/dfK8mMfDAe95VjpWYtaZ8UV8aNVaBkIDnO0+y5ySOcr9G12NuINufrPqf8hSmZAefRRUKtl7MRZDbG5W7GPS8bxUHX+dvk4a+hs43HKY6txqavtqMWjkfVggGqCuv07hODfKc260Q3qk574RnreheBnSGy+nfO6ROgT/1Lglsr0LSKxupFroBEEgGoti0pgUwSoRc4rnUJNbc80mp282v8kT+57gVNcp5W9T8qbw+KLHmVc6L+m+Ta4mfnzkx9T21Sb9/UTnCX71zq/4yPSPDOudEIqGqHPVYdFZCEQDeMIeIrEIR9qP4Aq5aHQ3crH3Ig9OfpBfn/o15bZyGt2NfKTsrqFeCFcgXr6MMRgZ8aQfaWGosFewccJG6vquErxILMK6oqVIe66ctCNUE8fKAyMWCBB6aevQ8bv6RpzAv8z+J77y5jdQC2r2dL3FvY6KIco9yGRLlZWF+SMfkQlnfDN9kyGZDOm9V4x6FpQtwBfxscyxjH2N+/BGvARF+fhlGbNQGUfhwzIGKLeXM7VgKj868iPOdp8lQ5+hnHu9gV4ONB3gfdXvwxv2Eo1FsRlsqFDxesPr5Bhz0GlkP4ILvRcotZXiCXvwhr2oUFGVVSVXNElDRrVaBJPpagrcgBsxEkKbYVfuMrjqWa7NHdkMOhS62sHldKLKykKVkUHg5ZeHrdAbVq4ktGdP6idUqdKwT7j0AAEAAElEQVSS6htJPooj6HWT4RV5OGcVPlWUvT1HeOryi9ybv5zrGc5JNUZzLRfaYccgHQ5UGRkYV6+WO+iam9EvWoRm4kQEUZS7JQwGTPfdh/+FF5JSROOI/369ES+iJDKjYAaxgB+xbSDtiM3BvhNDqpPxYkHaFL5hRopiwQDbL2xFq9FSZC2iwlbxnu3oihdsjrQe4ULvBXQqHTaDTal8+yN+jrYfZW7JXOYUz6HcVs7exr1MzZuKzWCTk6sjftoG2jjTdUYx7oWRQ3Ru4RbGCknXrlEmOiciPm6emIw8GtxsnqcyGvGootSGmzjcKIdyZRmy8EV89Ph7aPW1U9w0oHiLmR58MMknzfTgg2k7lgmFknwsU2EkoV9tsaKuHJSIOpjXjaJrbCy4XiwQkIMM6uuvfs/DiGliS8vw14U/Ec/DaEzL81SZmaisVqRgkIhOzRmxhVcuvqE0B7ybPA/kFM8dl3ZwtvssVr2VgdAAEhKX+y+zr2kfd4y/gwVlC4iKQ3leU6Qb57DebRW81X+GkowSVIKKLGMWja5GOWxOZyYkhsjQZVCcUUxYDKMSVOxt3DtE4B7M83QaHW6vGwmJQCSATq3DoDIQk2KoBBVqQU1fsA9fRDae/+H5p/nKxi9gCMVGFi/D4SECW4Y+A0EQ0gpl1XnVODOdSZNScYzWN88T8lDbW8uJrhO0Dch+2xd7LzK7eDbuoJsmdxMWrYWijCKae642T7R52tjbuJdHZzzKkyee5H/mfwupflvK17gpPK+u7qp3Y0UFgkqFZDSQ1dfFhb4LeMPJHKI6pzrpOw3Hwnx1+mcJvvIKsVmzCB06NKTD03TffQSOHEnL8wZ3PDa7m7nYc5GBsCzs1eTVUNtbS5mtDJvBJgcFBPs52XmSVm/rXzTPS7vX4ub7VN4IRi2ytbS0UBKPpL2Fa0I8Irkv0IdVl3wC6NV6ImIEb9hLrjmXbGN20u1ziufw9WVfZ3zu+Gt6zSZX0xDiFZNiHG0/ytfe+BrfXv3tpBPyVOcpjrUfo9BSSLtXrtLEUdtXS6G1MEngS2xr7fJ2cbbnLEWWIlY4V6BXX0krROBk50k2VG1AkiTaPG047U4AiixFGGOqtJ9hLE4cq97K/NL5WLQWVjpW0jzQTKGlEIOYcCEaKap+jAhBus0y9Y1smLuGL/PvAPzP6SdZtuZn5KjUKcckxto7ZDTQZtgRNm4gOCj8QO1wYNi4AY0ti8m2q/511bnVQ7oMhTA3LewgEVa9VamQVedWo1PpECVRIUPfO/w9vrnym2w+u5lILML47PGMyxpHSUYJC0oXcLnvMiucK/BH/JzuPs2Mghn4I35sBhurnKs43XWakAZSNqRf8X4Jvv76kPE+YeMGNFnyOZ64LgDyuKw5vf9fXBBTO50Y16+XR2SC6b3yhoPa6UTs7U1KMR2cjKczm687+Qjkir5w+TJWqxWiIiaNlruEGm5b+ASX/G3MGk5ITmX4m4gUG6ZrWS+SuiMCAaRoVPYJ/P3v5e/vrrtQrV8Psdiw5s3ep55K8lVK7Fi0aC2UZpTy2zO/5dPjHiZ06JDsB8TQMVPdujU8teMRYGh1clSfK8WxiOm0/Nfr/wXIa+3GCRuZXzp/zEyGxxpWvZVZxbM41X1qiHeLQWPAqDESjoap7avleMdxllYsZfPZzXT5uiiwFHCu5xyTciZx/+T78Ya8aNTymj5SiM4tJOMWz7t+CGbz1e6IkTp8B3EKZSR0FF6JibjZPA+ucr3z3ec52yP7NhVZinhfzfvQqrTs6jzIAx3ZGONj9IOFo3ehiClvqO8kcvny1dcezOtG0TU2Flwviedd+R2ILS0INtsQ7jPsdeFPyPPUNhvGjRuHhB+k+o1qgPE2C3qz7U/C8wAu9V3CpDVxW+FtxGIxREmkP9DPQGiAN1veZGLORJ499WxKnrejZQ8fWn43FklO64xDcDoYWD6bo6f+h2xjNtW51VzuuywnTcZExmePx6KzcHvR7Wy/tJ1DzYcIx2QBbLDAPZjndXo7yTXnYtbKHVJhMUxQDGJQG+T0RWJk6DIU/6r3V78fjcnC3r6DLDWlbzqQBq07GfoM5pXMIxQJJQllqZI+Pz3n00qARByjtSRqcDWwp34P7d52uv3daFVaLDoLC0sXypMiYpDmgWYWly3mQPMB2jxtiDFR6c5y2B2c6joli45RKf1nHEuet2kTqtWrQaUisGNHUqfrTIeD/1nxf3nsjc8pQptRY8SZ6UzqWKwxlBN8aRuasrLU4+h1dXKxe8M6fvfqx4HUPM8b8crjoUE3YTFMRIwwr3Qe/oifafnTKLeVExbDNLmbcKgc9Pp7UaHiZNdJDrUc+ovmef2Sn3TzTTfdp/IGMGqRbfLkyXz/+9/n4Ycfvpnv5y8Sia2SBo2BmUUzldADm8FGf6AfCQmn3cm8snk8e8+z9Af7yTRkMjl38jULbCCTqUTiFY1F8Uf8xKQYh1oOcbrzNK/Xv66YQ/cF+5CQ8Ef8OOwO1letx26w44/4MevMmDRXL4pNrib2N+5Hp9Zh09koKiyi3F7O6w2vs6tuFw9NfYhJOZM413MOi87CrvpdTC+YTp4pj/sm3ceJzhNc7r+MT4iS7lI7VidOhb2CbGM2+ZZ8nr/wPBatJem501YTx5AQjHRx0EVlYdKgMVCVXcWAXqLsJvohXQ80Wdno77oTwR9ECgUR9AYkkwFNQodWHCm7DPVg3LiRaH09Kqs1yaRf43CMqffdQGgAX8SHL+xTvDp0ap3srxALcbb7LGW2MsZnj2d20Wxq8mowaAzsuLyDSCxCfX89c0vmMrNoJlnGLLQqLTqNjl5/L9W51bhUYWwpWs7Teb8Et25Df9edaDPsSetCX6APUachNpCm48nhQFKr5c6Alha8//M/qMvKMCxOY/AKEI0OaY1XO53oFy1ClZGhHPOY203k0iXle5H8fmJNTegqK9MmH6WC6PFAIABA5OzZZLHR6aRy7VpMehMtC7IoQUgiuDjKUa1ZSejnvxr+M6XYMF3repHYHRFzuwkdOCB3CUYiiM3NoNUmJcEpny2Fr9LgUZ5yezk2vY1mdzP1kU6mlRSlHjP1DHDGcxmtWkswGkRCIhwLJ3VgCTpd+g8y6FioHQ7qQu3Kv9u8bWy9sBVJksg2Zr9nK52Dz4c4MvQZcidCLMp03XTcQTd1fXVsmriJTEMmgiDgDriJSlG6fd3K5xtufOcWhsctnnf9SOycGClxUzAak7zEMBiuWWCDG+N5swpn8etVPyZLMCv8IqS5WnwUPR6kSITSsIFPFmyCivdTF+zgi29+jTZvGzvrd7Jx/Ea+e/wnzFvzC8rfOoKupAR1aSnamhoCr74qr/vvUhFTZbOhnTQJTUWF7Gs6iNeNxPNiXq+c6n2DSOR58d9B6NAhTPfdJ/vEkSCoRSJyiMSddyqddO8FnqfOypLHeAOBq79RoxF1CtEvHc8L7NiBpqDgaiCT0YjKbh9TnucOuTnbfZawGMais+AJe7DqrFTnVnO49TBnus4My/OCYpD/ufgsC2fOonrxbZhiakStmrpwJwebdjA+ezzF1mIlkMwddMtevyodlVmVvFz7MgOhAUVgAzjVdYon9j3BD9f/kDJ72ZDrmk6to83TxuLyxbzV+hbBaBABgRgx9Go9i8sXY9FZmJI3BavOys76nbzd/jbF1mLq1O2UpvkNd8c8zCqahS/sQ61Sk2PKYW7JXJY7litC2eBxToPGwAn9CRaULbhmS6JObyfnus7RPNDMy5depra3Vk781pkozSjlnon3YNabmVEwA7PWzKX+S7QOtCJKIg67g3kl83j21LOU2kq5Z9I9RGNRgiqJjDTf91jyPP9zz6HfuJHoII4Ksuhq3QWfmfkY33j7/yphA++reV8Sh9KEIgTr6zEsXUrojTdSvgexrg51RORbc/6Vzx74VwLRwBCeJ8ZEjnccR0LizvF3cq7nHN2+bgxaA92+bgKRAB+c+kF21u3EF5Yn3rJMWUo4w18yz3OrIxQNM1HzbvhU3ghGLbI98cQTfOpTn+L555/npz/9KdnZ2SM/6BYUxFslm13NfH3p1/nuoe9ypO2IIrDNKZ7D15Z9jSl5U5iSN+WGX68vePXHG5NiCvGKwx1y0xfoY8elHSwvX45RY2TThE1k6DOYmDOR/z783xxrPwaASlDxwOQHiEpRevw9WHVWTnSc4GfHfkZQDGLUGJmUO4kPT/swfzj/B1oHWnl0xqP84p1fcK7nHDmmHJrcTahVaqbmT2VR+SIONh+kV/CTfxNPnMHVmurcaqpzq2lyNRFDpyR5pesyGUvD4ZEuDtaMbL6+7OtUZVVxe/HtVy9u77FZc22GnbRXwREgqNVDhZfKSrQJHVU3Ck/IQ7e/mw5vBwA5phwlRMMT9lCSUYJWraXV00p/sJ+NVRsVoviI5RFOdp7kZOdJwmIYu9rO7878jlgsxs9WfJfy/DyEUBiVwYywwSET+kHt6Om8XwR/UDl+Zfp8/tb5ANGAD5XRTOjwG8MngW7YgPeXv0zqnhIvX4Zly9IeC0Gvl6t5Ho9M4nU6eeMTH01C7mAT+/tT+7plZaHLz0dVUDyqYy/29RHYtg1NcbEyQpR0e10dge3bya2pwW2Hd2YX4Fw0jWggQFgDW1t2oz33ax4pKUpK20p8T4O73G50vRji+6PVIoli2g5B1erVw47yWPVWckw5lGSUsL/rbSxzFlAJyb8LRzmX5jg40HmC+v56ym3leCNedCodOpWO052nyRRM5DT3p90cJh4LtcOBYcMGvv763yl/M2qM3FmxhtVZc9F09iCaQn/yTdxwGM6AtzfQq5CyPEseIHepLShdQFgM8+rlV4nGokkCW2JIzi2MDrd43o0hcR0xbtiQFGID19+xNhxGy/P2Ne6jBDsP5a/iwbsWyemeGg2BrVvxDRptEtevR/L7EXQ6xJYWgq+8olgUFDkcPLvuxzy06285132OT876JOd7znP/K4/yz7P+kSW5WRjEAFbMGDdulAUnQRg+NfUm8LxyWznm++5D8vnQTp0qdyKPwPP0ixejzswckzUxkeclJq/6N29Gv2ABhrgfXzT67o6BXiPUNhvcQCedOisL47p18m8gGASrFWlggMCuXZhWrRqTLr04z3OHZB9Os85Ml6+LLl8XvYFeCq2Fo+J5Zz11XPa38rszv6M/0E9NXg3BaJACawGTsiexdtxadjfsTjLv16q0hMWw4tebiFNdpzjVeUoZG62wV/CJmkeUQqVfFWVj6SoeP/A1jrQfUUZFJ+dO5qHJD/Gzd35GMBqkOqeaPEuefN0z5fHVt/6TJ9d9D7a/OvQ3vHEDdrOObyz/Bk2uJlQqFfmmfKpyqpJM+g82H2TbxW1KUiXInamCIHDH+DtY5kzPJ+M43nGc7x3+HjmmHLbVbqO+v55p+dMIRAKc6TrD6a7TXOq7xMNTH0ZAYKVjJf2hfibmTESFipaBFl648AIqlYpGdyNWnZWwGObltj182FGemvuNMc+LaARikoSYEMiSCKm+njkrl/D5+Z+n0FKYMrBACQqJpQ+rk0IhCved5pHqB/jJ6V8l8bxANMCJzhPYDXZmF8/mN6d/w6HmQ2jVWsxaM85MJ5NyJ7G9djsl1hJaPa2scq6i0FrIgeYDgOwXbTfaEWMibzS8QUVmBeW2sQsvGEtcK89TGYywbhXqHTsRLyfvG98Nn8obwahFtk9+8pOsW7eORx99lJqaGn76059y55133sz39hcHq95KdX411fnVOGwOTnefvuGOteGQZbg6dhaNRZOIF4BNL3fQFVmK+NT2T9EX6KNloIWl5Us50XECu95OTW4NakFNtimbA00HON5xnFWOVWy7tA27wc5n5n6GzWc20+Jp4Z32d1AJKu4Yfwf+iJ8efw+PTH8EURIxqA1kGbKUqogn5OFk10l+cupJvrTw7ygcFLM9FifO4JQWkDded064U4kkFtdnKSRY6TJZtAhBrZY9tQwG1JmZ1/0eBiNpnGQQVE4HblWEh6Y89J6NIh4LDGvifvky/pdexHTvfWOyYDa6GhElkQnZE7jQewFJkjBqjASjQdxBNwtLFxKMBsnQZ1BkKcKiTx4rO9p+lHZPO8c7jhOJRZhdPJuvzfgc0Zd3EEwkN1VVGDdsAFFUqtCSP32SZDylNeZ243/5ZTT5+WhKSiDqxbhsOYHXX0c/Z05SUpuk0RBzudDPnKmYqMYRra0d3sS1shIhI2NETxspEBi2ayuEXJUejdgrejzKmIl+zpwRjaZLD7xJ+6xs/ubg47xy+RUEBKx6K3aDnWUbfk0ZAiSuDU6nnC6a4PkzVhfaxGMUbWlJOsapIIVCaMqH75TK0GdgN9gxa83csfUhvjTrs6yduw5tNEZYI7Cn6zCf27KRf1/+73jCHiQksoxZfGD8fTilTGLeABazkZi3We6OJEURYO1aJFFEc8XPSfJ4CO7ezSbHWn5y+lcYNUa+u+DfKdx3GmnbrwkDYa0Ww/r1aEpL5YTacBjBaJT9994FstLp7bxaLTfYqc5Nrpan6oyw6q1p06+mFUy7aclYf024xfNuHInriPHOOyEYvOGOteEwGp4niiIPlW4g8OKLV5M2lywh2tycugCybRuaKyEBaocD0733KmE78RTDJxb/C3+7559o9bQm8bzL9FNdWI3Rkk8sEJA7Rw4eRD97NiFJSj0SeZN4XkVOBQC6jesRXANyZ7VKJadAX+F5Ma0GtFrU5rFb+5J43uAE9XBY5pejCLP4c4fY15d65HTtWvyvvYZpw4YbPuZjzfOmFUxjZuFMjnccJxQN0e3r5t/2/htVWVX83ey/Qy2olWvM6e7TtHpah5xzcfSH+pX/j7j6ib60VfZ5nTsXW0kJNoz8bvmP6Zf8WAQDWlGCcAS/JoZU/TC/ubgZm+GqEDkQGmBc9jgefeMf+Mriz+FctUJOR9Xr6JG8ZJh1WPVW5pTMSTLmT0SDq4GtF7YmCWxwtQtqSt4UpuSP3OTR6e1URktLMkq43HeZkowSLvZeJBANYDPYcAVd1PbVEhSDvNH4BpsmbOJ4x3F21+9GjIlY9Vb0aj355nylq67cVs4Tb/9flt/9POUIY74vhOT1+UjLISaEbaQzLtJERDaM3zDs7Yqn8QgTB4JOh1TfwPyFm3hGaybPnEeDu4FGVyPZpmzOdZ9jaflSdjfs5nTnaTQqDQKCIuQe7zjOmnFrmJI3BU/YQ5evi75AH9FYFI1Kw5ziOext3MvlvsuU2kopt5UzLmscDrsDd9hNRIxQZCkaNtl0rHEzeF7s3vveU5Ndo8E1BR84HA52797ND37wA+69914mTZqEZlAr+LFjx8b0Df6lYnzu+DEV1QZjSr7cEXeq6xSSJGHWmvnSrM+yvng5BeY8dIIWMSNAH34eqrqXrx/6D2pya1hYtpCv7PkKwWgQo9aISlDRF+xjfNZ4SjNKmZw/GYveQkgMcbn3MlMKpqDVaGl0NXKy8yT319yvGFGbNCZ0ah2BaAASLNDiPmmSJLG37xgzFkzCuXwhmoiI3pyB1mq7oRMnVUoLyGlzL154kY9M/whWvZWwz4OmpCR5fKu+XhExzI8+CmMosg1rxFnpRL9xI0779b9WqmouMORvf+qNZ9TjTmOCXEfU40Y3BoumN+LFG/by4JQHee7Uc7R722XCEoSSjBJWVa7ihQsvKD6CiePQcQNSd9At/3aBD1e9j+jLKaLTa2sJRKMYN21CZTYj+XwIupESOQ2y2Pjyy+hvu43Q4cNXxSitVk7tyshAUKsJ7No1xNctcdMDEDp4EMsnPiF3v6Xy7zMa5fHNdIl14XB6X7dwesNdBX7/qL14iEaR6htYtHoVP9dbKbAUEI1FGQgN0OhqZPHmDfzb3H/mwaUPYMeAEBURm5oQm5ow3Xef/By2DPx6Fa92vkl3Q/eIyXqjhWAwIKnSe0YKej2Rxgb5vkZDUqgFwMSciRg0BgZCA+g1ej695wvKbVadlWJrMeX2ctQqNSB7Unx/4Tex7j5ErG4faiCA/J2rCwvRVFRgXL1aSe6Lnj+P9+c/vyoGXjHv1U+bxt06LfMXT8enilB48PxVsqrVysdOqx3aZXMNPkCxQED2OAmHkcIhYnodAxoRg8WWdo2JV79T+b5ML5ie9jXThdzczGSsvzbc4nljh7EU1FJhMM9TCSoKLAXkm/P52rzHmW6twpRnTD7XtVo048enHm3SatGUlKCtrkbjdIJajdjToyRUg3w9cK5aAYBOraMv0MfKipW0elpxhVyc7ZZ92/It+ZCZiXbiRFCpMCxfLqfuhUKozOYb7uAaLc8LRsPoXC40OTkQi8mbXY0GSRA47joHRj2zc2Zf9/sYjCE870qCurqy8oa7GP9ceF5isS3p71esFvRz5oxJIuBY87xCSyH/c/R/ON11mjxzHkhg1Bo52n6Ub+3/Fv+x8j8ot5fT6GpEr9YTjAbRqDSohKFcIVMv83mXqwP1S68Sa26ROynjfO/KtThTqyW07zX8CcdqrdPJ3GVP8HT9H5VAiU5fJ+vGreNwy2G+f/qXytiqM9OpjDCOJGy0eduGCGyDbxuNyHa266xyDY+IMv+w6CzU99cTI4ZNb1PEx3h6arYpGzEmUmApIBgNMhAawB2UO23tBjsalYYPT/8wOo2OT+39Ig9PeB/L52/AKKrIyMhBNOrHnOdZtBYkhhHHrvAprd5EtLFR5s0Gw9CRaYMcCAcj+BBeuYZqoxIzCmeQYcjgR2//iGgsil6txx/xMz5rPF2+LoqsRXjDXnRqHb6Ij9aBVupd9RRaC9nbtJdYLIYj00G5vRyLzoLdYGfHpR00DzRTk1uDUW2kJKOEJlcTPzv6M8KxMBqVRhl5HZxsmg6d3k7OdJ2hy9+FQWNQxLs/Bc+7mUn3NwvXnC7a2NjIli1byMrKYtOmTUPI1y28N1BmL+PxRY/zxL4nONdzjs3rnsT5diPGAguh115XFnQzcI+jgrmb/pdvvPPf1Lnq8Ef8SEhk6DKQkIiKURyZDg63HOadznd4p+Md7Ho7c0vmsqZyDXvq95BtysYT8qASVEzKnkRUivKLd35B80AzGpX8G0k8yeI+aXFy0KYNUJ5bjn4MyMHglBaQF/oefw9nus6Qa8olx5TDdF05umE6beDmmCmOJo7+WpGqmqtRaXBmOrncdxl/xI876MZmtHHXhLuozq0ekYSlInNjQdwiI3R5Rfy+4S551wSL1oIoiXhCHh6Y/AChaIh2bztGrVzltOqs3DvpXgQEAtFA0sU67pOQ6LPh1BcSjCcexZOI4j4jGg1SOEzM5cL/m99guvfe9L5qJgOSx4MmP3+od1skQnDrVgwbNw4Z3YSrnWX6uXOvCnNXRJbhflfDVpQ3bkSdJXdCSCOIaCPdrtwv0XdwFEbTACp/kF8t+S6fPPDPvFb3GqFoCLVKjTvk5n/rXiCokTjafpQvz/4CxeNKEcJhJJ2a5mgvA4FO/nPXfw5J1vvXxf/K7dlTr/s8E8xmYj5feg8ft/uqJ9ugUAuQ15yP3/ZxDjQfYGPVRrbVbqPOVYdZaybXJIfc3DnhTgrMBXz8to/zgap7ydh5GLEuxXeu0WBYuhQJQJKQgsHkLsErYRuJgq0NyHI60c+ejb+1Df3MmWgmTkRsb0/927p8Gf9LL2G69960xynmdiP29w/pfDQ6nfhXzqfP2JfSCy2x+p2Iuv46OYhkxTf/ort4/5xwi+f9eSCR573T8Q6VGZW4g26eXvkjbLvfRqo/iDQo3VM/dy6SN0Xqboo1BK6E7KxZc9XLCBBCYWYUzKAmtwZBEPjG/m/Q6L463pXI9bSTJl1dh3U6OZ1yjLrVEzmPTq1jdfFipmVMQBUVkTr6EI0B9O1dqCwWgnv2DClYzVi8mLBh7Ez44/hz4XmDg47GrDMksdg2CGJ9PcLKlWMSeDHWPM+kNXG66zQAOpUOR6aDAksBEhJalZYj7Ufo9fdysvMkq5yrmJg9keOdxzFpTco+B1A6wjwhD/gCxOrqZT++BL6nnzuXmMeT+lpcV4cdWDJnLq+17ZX/JolkGbJ4bNZjKTt9RiNsRKLpu/Oj4giF0StwhVzK/xu1RvRqPTEphoSEgIB05b94mEOBpUAJeri96HYOtRxSeF4kFmFc9ji0ai3fPfxdPjT1Q/QF+miP9vPHzj2YtWYm6Sbxf1//vykTlCfnTb7uvUq5vZymzlpKHY5kX+Dh1sJBvFk+aFGMa9cSbW0d6rl45TH6RYuI9cudjRkZuRRZivjD+T8QjcnHW6PS0DzQzGXXZSw6C76IvE+KxmSLJlESAZAkial5U3nm5DPsuLyDqflTqeuvY3bxbKpzqwlEAswqmkWprZTLfXK6bstAC1nGLDQ6zbDJpsPheMdxfnr0p+xr3Icn7AHAaXfy8LSHWeZYllKou8XzknFNzOlnP/sZn/vc51i5ciWnT58mNzf3Zr2vWxgDzCudxw/X/5Cwb4D83cfQFpekNGSnvoEiJB6d9QGevfQH5aITiUXQqXWMyxnHa3Wv4Qv7KLOVISAwEBrgcOthsgxZjM8ZTyASYFHZIvLMeXT5u3jp4kvUu+rpD/STaczEoDEMOcluVvdBopkkgCvo4nLfZY61H8Mb9rKobBE9/h4ysnVUD+MJJzgdBHRwM7LpxlKNT6zmqgU1uaZcIrEIzQPN1PfXU2orZcvZLcoC2djfyIbxG1hQtmDYSkbaEYwrj7lecibq1Dd0+2iRmOgU9+sQBIETHSfINGQSzA7S6evEoDEwp2gOu+p2YTPYZGKqlS88OlWC3Bf3XTCZMD/0kOzDEAzK3Y8tLUSPHpW7iBYsSPJhGRzlbdywAXWGnairCfWVkZxUUFmtQ8/TBHFP0OlQl5TIr93ZCVe6rtQ5OUkPSaooDxIHY263/LhY7GrL+zAYreB8LYEicS8xwWBA3P4qX13+T5zvOU+FvYKwGKbMVsbSiqX875n/pcndxP9eeoGoFFV8UabmTeXpk08nES+Ay/2XyY7q8W/ePMT3b7SdWiqjEex2jOvWpUwXNa5dK6eLxj/roFALgIHIAJf7LzO/dD5atZZMYybRWFQJ4yi0FDIuaxznes5h1Vsp1mThH6bLU1NQgNjejspqxb9lC5aPfjTp9mHDNurqCKnVmB96iOCuXahLSlL/tuL3v3w5bYdBLBAgcunSsBsD005oXuAky5g1hMAlVr8Ho66/jrNdZ5O8Y95r3Rl/LbjF8/68EOd5p7tPc7TtKHeUrboisKXuKFYPkx6bbg0JvPJKcmHHYGBC9gTcYTe/PfVbjrQdUXgepNhQ3YTug0Sep1PreHTc+8kKaQi9vB2xpQX9ggVoqqpQ5+ZCJIJh6VKipaWEDh5URl9DgHbyZGKmsfdFe6/zvJjbPcS6Y/A18nrX4REFtFAIYQzGZcea58XFDavWysPTHqZloIX+QD9atZYGVwP+sJ+ijCIAnjn5DJ+d+1m+e+i7XOy7iEalQZIkpuRN4YsLvkiZvYzTnacpCcnb7MF8L34epuN5c/R6Zkwcj5cIGlHCGtai8oSozqhM+r0mChsalYbx2ePJ0GcQFsO8cukVsgxZ6DV61Co1gUiAYDSIWWdGp7762Y0aI4WWwlEdd7vervy/O+hmesF0JYFTQu6oteqsTM+fji/swxV0YTPY+PD0D3Ok9QgOu4MKewUhMUSZrYxFZYv41Tu/IhANUO+ql7u7NHq8ES/OTCffPfzdITzvTPcZfnLkJywpX0LTQJPy98F7lXSw6q1YMrKJrFmM9pWrCbPpwssCW7di3LRJ6WiTgkF8zz0nJ5VarWhrapKmo2IeDyqLBe+TT6KurMSnkTjWcUwR2EAOvLPqrNj1dvoCfVh1Vi71XaLUVoqAgEaQf0MV9gqOtB2hw9vBorJFTMufpgRk9Af7+cTMT/CTIz+hJq8GURI50HwAo8aIWWvGrJO97FIlm6ZCp7dziMAGUOeq45kTzyAgcG/1vbd43ggYtci2du1a3nrrLX7wgx/woQ996Ga+p1sYQ5TZyxCjPXjr6lHPmTvspp76RiYvmw/A7KLZNLobMWlNxKQY+ZZ8djfspjKzEk9Y7lYTJZH+YD89gR6WlC+h0FLIpf5LHGo5RK45l9+d+R1Zhiwm5k6k3dNOrjkXjUoz5CS7GbBor0pjoWiI+v56RWD72G0f4/WG19lZtxO1oGbPvS/hHOQJh6Mc19KZNPSeZXHGCMmNf2LEq7lqQU2RtYgdl3ZwoecCeo0eg8bA+OzxrK9az7H2Y5zoPEFtX+2QcYpEpBvBeOHcCzxUdS+ZgoHgy9uvS8DoF0JkOiqSj/cVCI4K+oXQjWQqKEiVYGM32FnhWMHi8sVISHjDXg42H+Qb+7+hXPCcmU4+dfunyDHlEIqGMGqM8iiBXg9arSJWDKlUzZlD6M035YShPXvwPvss5g98QO4YCAQUMS7wyisYV69GMJlkMWM4DB61TFdZW7sW7y9+gbqwcOh3EK8op+lS0C9ciNjcnN6cerSE2GRShDXFaFoQhnQQ6OfMwb9li9xGH4sh1tdTrFnFsopl+KN+tCotgYhcdSuyFrGyYiUVmRVISGhUGsUoWKPSoFVpicSuVmg/O/1vyNt7AnHQb2y0nVpxqGw2YoEAxjvugFBI8VWKud2ywJYQQAFDQy0sWguRWIQLvRdQC3LSly/ikw36LVZuK7yNM91nsOqtbJqwCcGbolvwCuHWTJwoj+zqdLKPWjSaJGCmE2w1BQUEd++W7ztr1oifO90GSfL50ot0dXWULZ2TksDFq99GjZFHJj7A/KxpaKMSOpOVxkg3p9wX2XZxG067kzea3lBCS+DaiPMtXD9u8bw/T5TZyxgIDfDq5VcpUmcmd2UM7kKMRhE7OoYUQNKtIWJdnexlhrx+t0Z6eeHCC9Tk1bCrbtcQngdDN1RjjUSetyR/LvY2N6EzZxBbWpSR+ODOnUMKXab77sO/ebMitOnnzh2T0cWbicE8b1fdLmr7alEJKrRqLROzJ3Jf9X0caj7E0Y6jI/K89N64L+Fds4jjrnO8Vvca/qgfu96OXqMf9To8YlHuSmH2RjHWPM+sNaNVafnErE+w5dwWjrUfQy2oESURp93JgpIFbK3dyiPTH+FU1ymeO/0cjy96nAZXAwOhATIMGahQ8XLtywSiAaKxKMXGStktZzCnS2WnMQxPMzmdMmfa/FuIRIbw7biwkejN1TzQDMhdUj3+HgosBTQPNFNhr+DNljfp9HVSklGCRWdRxgirsqtGddyr86pxZjqp66/jZOdJVjpXcqT1CJ2+TgKRgJLGOq90Hk8ef5ICSwGtA630BfqYUzwHi85CWAxj0BqU72dy3mTGZ4+nwj46npdtzOb1hteZmDMx6b2l+92nQrm9HE/IQ2D9MoyRpRAKozVY0voJEwgooSCCwSCPhD/3nMLXSODL6pISWWC7ws/Pei8kF/CBkBhizbg1OLOc5HflU2QtojfQS0SMoFFpCIpBpuVPY3z2eH5w+Ad8aPqHONh8kGPtx5Tf7fjs8ZRklNDgamBCzgSikvz7CkQDdPo6MelMShFkcLJpKpztOkujqzFJYIujzlVHj78nLc9LFHvj4rMoifK03EX/Xw3PG7XIJooiJ0+epGSYKtgtvHehbJpG8EgSQmGeOvEUD01+CHfITbdPnn2XJIksQxaVmZXsqt+FQWMgGA0qC0UoGuI7h75DWAzT7evm4zM/zqScSZzrOcfFnos4Mh24g24MGgN6jT6p1TgdvAM94PMjBUMIRgOYjFgyckZ8XFJ1K+jGG/bSG+hl04RNHGg+QKe3E0EQ8IQ9LN1yB08s+ArrF9yBRdLRL/nZ0fYGbRd+zezisfPpuFmIL5S5plxeuvASh1sPy0ak/ZdxB91c7r/M2e6zVGVVMbd4LtsvbVcuvgGPC5MnhBSLIUgSUjiMRqdmZuZk3ggfUrwgAPwRPx903I3dGyW4b/uw5GwkAcNozaRv6W1kQZLQJjgq6Ft6Gybr2HngDZdgE/eu+Odd/5yypflHb/+If5r3T7xW/xqBaIALPReoC7XjXLPmqliR+NmvVMQ1CWujfupUgoM6oOIIRCJoa2rQlJWBVpvaYH/QxihtZW3HDjkQYd++Id9B/NwfqdNJP2sWmnHjkK5spMSWFkKHDqEuK7sms1m11Ypx40ale86/ZQv6+fMxrFyJ5PEoz+3fsgV1SYnszRKQ/VAIhSixlRCTYgTCASw6C/6on2xTNk8ef5JpwWnsa9pHo6uRfEs+U/Km0OhqZP349bxR/wb+qB8kWJE/H2nntpTvb6ROrcEY3I0QaWxQRkRTIR5qAcnrkCiJSgqZSlAhIFCcUcy4rHHKb1KM9iQ/WQrCrV+0SB45DgRkYZcrpC/N2p60eR7F2F+6DZIUDI54HVGHo3iFoQTOrrcnBzHUv6DcVukoRzd/Avft+AjF1mL+Ye4/0B/oJyTKHaTXSpxv4fpwi+f9+cIb8WI32NFGko3Yh3QUazSpkzZH4aGpdjoR1q5kyTNzMOvMLK1YSl+wLyXP06g0o+J6Ta4mTnWeoi/Yd01eS4nr63hjCaorn0W/aFHaMbwhdgvR6JiMLt5MJPK8XXW7uNh7Ea1ay4XeC7iDbi72XuRgy0E2jt/I/NL5bLu4jeaBZsJimNreWtnzKerHG/aiFtTcbqxM4417GVVgFt8++G0aXA3Y9DbGZ4+nwFoAMLp1OKHYNhhqhwPBaByzzsGx5Hn+iJ/7a+7nWPsxRWCTZJMGOn2d7GrYRZ45T/EbyzRm8oO3foA75KbCXkGHt0NuPvD3sKdxD/NK5pE3PgOno2LotTfFtTgtT+Pq73Yw346fZ+OzxycJbPHjs/XiVgosBawbt46qrCoqsyoRYyKesAcxJlKVVaX4uo0G+ZZ8Pj3n00r33N7GvdTk1nDHhDvo9HXSH+yn3dOuCGwLyxbS7e/mcOthZhfPxik6FZ7nsDmSeV7+6HieXqNnIDSAP+JXfG3j6Av0jdiplQir3pr02aONQ5NNE6EkijIo6CQSSS5iV1ZiWL0ay0c+okz7mIImbAabIuxqVBpmF89mX+M+jrQeYWrBVJpcTRRZi8g351NhryDTkEl1XjWv17/O4orFHGg6QF+wDzEmYtKa0Kq09AX6eP7888wvmy+HJkiyEbpaUOOP+PGFfYrIplPpkooUqeAKuZK67QbDH/WnFOrsenuS2Nvl6+K+6vv4z4P/SZunjZrcGhrdjVRmVv5V8LxRi2yvvfbazXwft3AToWyaRthgBdUSpRmlvHjhRdaOW4tVZ8Wit1CSUcL5nvPU9ddh0Bj4t7lfYlPpaoyiiphOS1Okhx2Xd9A60IqERDASpHmgmbKMMupd9VRkVtDj71GIl1Ez8sXV19tBbNurSRVZweHAt2E15uyCtI9NrG61DLQo1Y+J2RM513OOZnczOo0OrVqLL+Lj3w5/i38MPc43V3yTp088Tbm9nDnFcxTj0vcqYoEA0zSljC99P5JeRyzgp95VT5O7if5gPypURGNRTnSeYFbRLHY17GJm4UwMGgMPO+7G9Np+YleM9xMv6lOcDhzL7+XJui2ExTChaIh5uTMpj2WAFEtLzkYSMPIseZz0dXBuho2ahZvQRGJEtSrO+Boo1ktUXIltHisMN5KcrqX5cv9lOrwdCnHrC/TRS5CqkiqCw0R9xyvi8YCAYbsCrhhLqwsLifX3Y37kEaIXLgxJDI15PEmdZWm7DOKvzdDvQDCbMT344NXx0rIyEATUhYUgigh2O4JGI4+2JnabOZ1Y/uZvZP+vQICoy4VwRXAaKRVNnZWF8e67k4IWYqGQ3D1RUIC6oADTfffJQt7Ro2gK5PNZ0Bt46cJLvNnypvJc/7zwn/nD2T+QY8zhtbrXuNx3GaPWyKW+S3KoSiTA1gtbqcqqos5Vx0BoAF1USvv+bmRDJejTV+gTb09VZQcotBayacKmIb5lg9OHUxHu+OY4NjBA5MIFJbhFsKQhTAmbZ7GlBcFmG34DVFmZtsNATs/1D3s7gKjTpCRw1XnVfHraYxTuOzO0k7W+kTIEPjPtb/jnA//Gd978Dv84/x850nZEucu1EudbuHbc4nl/voifc5J+UJfEIEFNbGlBXVJyNVH9ymiTMIIhv5CZCWtXMumZOXT5u8APPf6eYXlejiknaawsFd5sfpMn9j2R0mtpXum8tI9NXF/V4ShcWeaGHcO7gsSuPAA0mpvivztW8IQ8BMIBWgZasOgs1PbVEhJDNA80KzwP4FzPOeaVzKNloIWZhTNRC2qa3c0cajmEXqNnV90u2rxtGDVGnpn7bbRpXlMVjnK0/SgAvYFeBsID3C7cjlFjHNU6PLjYpvw97mk1xoEgY8XzpJjElPwpfGvft1ALagRBUILjCiwFHGs/xv019ytm/xn6DA4NHKLIUkRdf51cTPP3olfpKbIWUWYv4+Xm3Ty66n50ba6k626qa/Fou0khmevlGnOZWzKXbGM2OpWOz8/8DIvyZmGSNBCOENIKXA6386NTv+RCzwV0Gh2haIgCSwF/O/NvyTBk8E77O7zZ8iZ55jxqcmtG7ECdXjCdb674phK0YNVZCUQCdHo78YV9GLVG7pl0D93+bs52n2VS7iQ0Kg1mrXlMeF7elb2CSWtSRJpEjNSplQ4j2qck3D58oF3q6Z5yezmF1kJF2HVkOhRhdFzWOI62HWVO8RzmlswlLIYZCA8QioRo97QzOX8ynpCHo+1H0Qpa7pl4D3aDnYAYwKqz0u3rRqPScKH3ApmGTKqyqmjztBESQ4pgZtQYcWY6U/rmJiIulg0Hk8Y0LM9bUr6EVy+/SqO7kdXO1bx44UXOdp9Fq9LS5G4i05DJ0fajfxU875ab7V8BlM1bGo8kwVHB264zfGj6h9h5eSebz20mJsUot5Vzz6R7qMquora3ljff/yrlB2uR9m1XHjvV6eCZlT9i+R824Yv4aPO0kWfOQ6fWISEhxkSMGiNqlZoJ2RNAkOe9h1vEvQM9QwQ2kOflxW2v4r1r/YgdbfHq1pHWI5zqOkVlZiU2g43z3ecREeWYab2NsBhGp9YpVZ1iazGLyxfjDXnJNmenfY0/JRL9NOI1nIedDlas+QVzfrcSAQGDxkAoGiIQDcjmo+YCFpQtYFbWFAr2nkJTktqjT6qrx8JV01V30M3y/LmEXnsD/QjjZqMRMKbmTyXfnC9fnGMu7Ni5zTHvXTXDHKnC7gq5hhC36BUPsWERjUKcrF/DKEBSYihgWLMGdVERmtJSAq++Kl+4R9FlEEf8O4i53bKf2CDxTL9wIf6XX8byvvcRbW5OXfFvbibmdstV01S+conGrymgtlqTWuYFt5tQUxOh119P+tyJY6NNkW56A71KpyyAVtCyrnQ5d5WtJuQbIKJV8VLLLr765hN0+bqozKzkUMsh5pXM482WN8k2ZRMawdbvRjZUolGX3mfOqEu6qKarsg/GYLKWknBHIvLmeMECjKtXE9i+ndC+fUqHW8qNZYLoHTp0CNN996U26E1Iox0OgtlMrKlp+GPgdNIU6WZ83tQht+Vb8lmaezvh+p+nfG6pvoG7l7yfc546XCEX/rCfAnMB3f5uxfg3TpxvmmH3LdzCnyninV1NkW6ciUbe8TVj7lz0ixYhaDRop00j8PLLSeuLYePG4S0DnE5iOi2LN6+WBbYruNB7gercaupcdUk8LybFKDAXUGYbviOtydU0RGADONV1iif2PcEP1/9wxI62+Pqq6R8A8Yr9wkjXyoT7qB0OYl4P6tLSkR/zJ0CDq4HNZzYjxkS6vHK6X1+gj0xjJn2BviSeB/LEQXFGMTMKZuAP+ynNKKXAUsCWc1uUVMlANEBAHUsrskW0yWmZPf4eOr2d2A128i35oxIwUhXbhqSa32RcD8871HKIcdnj6PZ3E41FUQkqIrGIcrxVggpBkLuEwmIYtaBGrZZHSkPREHq1nnml89jftJ/avlou913mdNdpvnr7Fxi3YT2BK1YrKa/F18DzQOZ6Da4G9rfs55VLr2DT2/jvhd+gWlNE6LW9BBOu0VVOJ/+w4ON84NXHEIMiNoONbn83b7a+ybH2Y4qoatVZWVS+iE/M/MSISZD5lvwk3t7gauBMzxkOtRyiPygb/ZdmlLK4fDGHWw/z/ur388vjvxzC85DgaPtRNo7fqDRzBCLyuO1wPC8qRqnOrUaSJFoGWtCpddj0NsWzd6ROrXSQjIb04WXGZA55LUEnicUBo8ZItjGbQy2HKLeVMyF7AnX9dVzsvcju+t2Myx7H3RPvZsvZLXT7u7Eb7Jh1ZtSo+disj/GHs3/gTPcZ+X0JaibmTORfF/8rF3ov4Mx0UmYr44ULL1Dvqk9KFx1N12J1XrUcDOFuGjIy6rQ7yTHlpBTq8i35zC+dz+/P/B5v2EuWMYtzPefkjjxjJgICC8oWsCi2aESe95fg2XZLZPsrgLJ52749ecQofrvTQefiqfx03z/TG+jFYXfw8RkfJxSTvQpWOlfyev3rrC1ZJgtsg7oQpLp6KqQYX57zBb60/6vsbdzLB6Z+gCZ3E6e7TmPQGLDoLEzMncidE+7kUPMhXAEXZbYyVCrV0JPH5x8isCmvVV8PPj+jMe6y6q3MKp5Fvaues91nmZA9QTmJQSYk+eZ8DBoDxRnFFFuLCYth/t+b/498Sz4N7ga+uOCLTMiZcK2H/KZiOD+NWF09xQh8bd7jfPnNf8eis9Dp7USFCmemk131u9h6cSvr580jVl+Peu7wHn1SXT3TVyxlfGUJBIOYBT3RkpIRuyFHK2AMvji/2xipwp7q9hE/m9FINP6dXMsoQH09IZUKyyc+geT3I4ki0XPnCB09in7mTPQLFowsICS8nmAwDO+5UldHSJKwPPQQgZdeQj93bkoioYwlpDLB3rYN4113XRNZVkjIwIAcuMCgsdEN6/ncax/HpDVRbivHFXKhV+t5oGIjll1vIu3+PfEMuEcd5Sy9dytLt9xBljGLAkuBEiiQJ+Rx3HORNcMEmozUqTUS6sNdODesI7xtaBiCbsM66sJdTCRZgEwk8Z3eTo60HsEVcmE32KnOrU46D5LImt8vi2cJKbbxMd7Qnj2o8/LQFBejX7gQQatFPW2qbPqd+J07yollWK4SxkgE/+bN6BcswLBypXyfaFQmhdaRzb9VRiPaykpUWVlDRbor6aK5Ru2wREgbiZEup9YoCjx54kksOgt9gT4ydBmscK6gzdOGKIlk6DJGZdh9C7fw14b45u2VS69QvHo1+ldJEtoirS20VGbx92/8M0/O/U+yZs9GWLFCDvUxGBD0elTZ2YQkaYj4LqxZwQd3fZJuv9wpEe+KeLP5Tb68+Mtc6r+k8DydRke5rZz3V7+fYx3H6PR1puR5pzpPDRHY4jjVdYpTnadGNTZq1VuJ2TRE2jplj8/RJOFqNErqX5vGT8jXzHjj+JEf9y7CE/Lw9PGnOdpxlKgYZXbxbALRACExpFh5WHSWJJ5Xk1fDy7Uv0zrQSoOrgUA0QJ45D0/Yo6Q+AhzofYf1gxMVr0BwODjjHSq0BqIBPGEP+eSPWsAYXGx7t3E9PM+itZBvzqfQWkiTu4lANIA37CUmxcjQZ1CZVUmjSx4nNGvMZBoyydBl4A668Ut+HJkO9jftp95Vz+S8yVh0Fr4y4x8p3HMCb8vLsth9pSMtZrPSGOqiYPUyzKxCSN+EP+S3Lel1vHjhDwSjQW4vup3lRfOZMKAndCY1dytF4kMT3s8vzz1LljGLTEMmvzvzOyy6q9+nJ+xhX6O8L/jqkq9eE0+vsFfwqds/xe1Ft7O/aT+BaEAJySuzlVFkLaJ5oDmJ54kxkYgUkcdHowFlFDccCyMg0Ont5Pai24fwvAp7BXNK5vBy7cvKtJJRY2RCzoRRdWqlw6VwB1UbNxDYui1FJ+YGasMdTMSe9JhEaxHR40EaGCDa1ZVSXE4svtb11/EfC7/GNOt4NBGRiFbF/p6j/O7yC5zrPsfxjuOU28tZVL4Ik9ZEobUQX9iXJLAJCKhVak53neb3Z3/P+qr1fO/w95hZNJNHpj2CWWumOKOYCnsFVdlVoxKq8i35fGLmJwCGpotOf5hlFcuG53kqLTV5NVRmVaJRa5hRMIPmgWY6vZ3cPeluXq9/nXpX/bA8z6q1jiqA788Bt0S2vxKobDZMmzYh+XwY1q6VzcbDQWJ6HV0xD3+/67MEogEkSeJw6+Gkx65yruLvaz5KvioDCgKwajXSwAD+F1+8av5d38iGeev4F+HrhGNhfn/m93x+wedZUrGE0oxS6vvrafe086O3foRWrWV/034Wli0kGouiUWuSTh4pOLT1NxGJ8/Ajwaq3sty5HFES6fZ2M6NgBkc7jqIRNNj0Nqx6KwPBASoyK6jrr6Pd206prRSdWkddfx2/OfkbPr/g8+8p9Vz0uIcf2ayr4+GlH+Brh7+FO+gmQ5/BrKJZ1PbW0untJNuYjT5eDBuhaqbzBok+9xwAPuQLjGbChOseNXsvIdG4dTCcmU6q86qH/H3wOF8i1A4HgsWCurgY04MPosrOHnLftKMAly8T6+uTzVOvPJ/pzjvl7rZ9+0bsMogndca/A8nnG/43Ul+PFAymNcIfaWwBv/+aybNCQkwm8PsR9Hq0NTVgMrGjba9S+TRqjWjVWh6reQTr7kPEUowWVgJfmfsFXml5g6qsKlZWrmRm0UwcdgeuoIveJXNk37+65GKCfuOGG+p4coVcfL9xGx9cfTeZrIJgCAx6+gnwP+efZkH5gmEfe7zj+JBoc2emk0/P+XRSxTh+nMS+PqItLcN2PaoyM1FlZyviWJe3i4b5FdjnVKGLQlgD21r38Mzv1/DW+14luO1lRWgL7dlDtLFxaBz9KKCy2UCnSwqEwKAnpFNhNBnJG2at9IQ8GLXp+idAb7SgUWnwR/yYtWbavG3sqtvF4vLFhGNhnKZi/H8c3rB7tKEWt3ALf4mosFfw0JSHaHG3YFu3iIzoUoRwBJXeQJfkVXheSCXi/80gb0mTCdOmTRjWrUMQRaRwCFGn5ZjnIo/+7wryzfmYtWaCkSD+iF/u3BFDnOg4wYOTH2Rq3lSOdRxDjIm4g25+duxnAMPyvL5gX4pPcBX9of5Rf+5E8T/WK3tfpuUpWZmIq5bwQvt+fnH219xedPt7jucdaz/GH8//UbkuXuy9yAM1D7Cmcg0Nrgb6Lf34Ir4knneh5wId3g60GVqMWiN55jw6vB3U99dTbitXOkSeOv9b5i79NllC8jVScFTQsmAiJzv347Q7qXMlFDKudChmGbNuSMB4N3E9PC8+zjc1fyoaQUN/sB+7wU5IDDEhawLT86eTbcymOreaGQUzsBlsyvOLMZEckzzyaNPb8Ef8fGnWZynaf9UiIfF6Ljgq6JxTxCf3fI4fLfkvynvEtF3iYsI0hbqykn4hpIgQKkHFopxZqMM6QsM0KcTq6rlr/h38+1v/hUalochaxLnuc9Tk1RARI2jV8vXZE5Y7iK4nuMSqt7LCuYLJeZOVUdL3TXof1XnVHGw+qNwvzvOC0aAy9aQW1ERiEfSS3I0mXfnPH/EP4Xl9/j68ES+Zxky6fHJ3bVzUW1u59obOZVfIxfebd/DRde/DLKohFAS9Ab9a5PsXnmFu6dxhHyv29Q0/Jp3AteLFV4cml9i2V4jVy+uxGljldHD70q/ynyd/zNLypVj1VuW880f81PbVcrFXTrQV5FgNYlKMPHMexzuOs7pyNZFYhEMth/CFfTy++HHmlaQfv0+F6QXT+dKCL7F+3Hp6A71YdVacmU4qsyqHPb6ekAdPyEOhtRC9Wk9VVhVPHX8Ko8bIaudqzvWcozfQm5bn5Zhz2Fm3E61Ki01vw6AxICDQ7e/+s/NsuyWy/RVhsIl3/Ms3eDsptBZS11+n+GnEK5XzSuaxNnce4W3b8Q1aNCyPPJKUsmcQ5dZ1CYlJuZNYkDuTGosTn6ePmQVOXoru4vXwADa9jcv9lwmJITZWbSQgBpIMDwXD6OfhR4MKewUPTH6Aiz0Xua3oNn709o+40HuBSCyCJ+RhUu4kNo7fyC+O/QKbwZY0h97mbXtPzYd7Qh70gfQjmSZRxUBoAEmSKLQUcsf4O/j5sZ+Tb8mn0FJ41bNlNBXfBIj19QT37pW9Nl5+ObX/wBhscFO1CJtjmjEdDxts3BpHXPRIRSzSeS8Y169HCgZRZWZeNTgdfN9rGAWIhynEO8qCr7yC5WMfk73TBl+816zB+/OfJ30H0SsbjWERH+sd7jcwwnu9EV+zVNVtk9aU9G+NSsOinFnEdrw49Am0WvQlZfzdpJU8WLwOUauhPebiM0e/yLpx63jq5FP82JDJP874FMsXvw9dRCKm13Ix0EJmuJ1qrt9r0aK14Il4+PH5p4e9PRU6vZ1DfmsgGzB/7/D3+OaKbyb95mKBAIFt21J3PQKGtWsRbLakcyDPksdrda/xuVc/hyvoUv5uN9h5YNff8MNV/0G2sBqupKRiNCox9NeMcFgmkoO6ycx33AEplud4VfJjZfekHcMIiiGC0SBltjJ0anmdavO2odfqWVexTk7LvQFPyFu4hb90WPVWJuVNGvL3RJ53sO8E6wenfF9JyBMcFTzndPHF/V9lfNZ4Pnbbx3DYHGg1WrJN2ZzqPEVMiiEhUZlZSUVmBeW2cv7j4H9Q119HWAyTacikwFJAo7txWJ6XZUgv7l+rJ25c/FddubaosrNTdtvqFy3ipZbd/PfxHyt/fy/yvCNtRxSBDSASi/D0yaf59JxP0+3rRkJK4nnrxq3jvw7+F0UZRRRaCsk153Ky8yQGrQFP2KN0sYEsRnzn9E9ZXDOH5cs+CKEQUa2ao+5zzDLn8WnnQ3y66B4wGugRPdy7/cNEY1GcmU42Tdg0JhvcVDwPGNPxsOvheYPH+dxBN+FYmAJLAXeMvwMBgTJbmWL7UGAtYPOZzdS76nEJLkRJxKa3UWYr43L/ZdYXL0PakzqISapvoGyhnBppkjSorKbUVg5Kuuhm+d9XuN5Z7wUAOrwdvNX6FtFxPpBUqV5KgSocoS/Yp0zuxH8X3rAXm8GGSpAfH41FRx1SlwqpplUGdw5qVBoiYoQefw81uTV0eDtw2B30+K+GQBWYCxgIDaBVa+nx9fDc6ee4Z9I9PH3iacxaM7NLZjOzcCYqQe6WFRAUz7zrhUVrwRVy8Z0zPxv29lQQPZ4hAhtcCSjbuhXj3XcndbTFAgGkl18llsKyxw58ZMGDjC+emnQOWPVWCswF2Aw2XEGX8v3ZDXacWU6a3c0ICPz78n8nU5/JlPzRBcmkQqpushZPC3ajPeV5Gb//qc5THGo5hCfs4ZFpj7DSuZJtF7cRlWSvR5WgQqfWDcvzGlwNbLu4TRlxByiyFCndbu+ltXok3BLZbmHIhSjHlEOPv4eqrCp+sPg/hoxGwdVUQ9OddyppezqTlTWVa8i35PNvMz+HavtuYvUHsAJW4GOOclat+il3bn2IPHMezQPNCCoBrkxwxg0PK8wFCGla2TGbhvx9JFj1VmYWzwSg1FaqEJgcUw7RWJTvHPwOJp1piNGjTqW7IQPNsUajq5HxuhH8sPQGPj7z4/jCPrxhLx3eDsJimGkF0xAlkXcGLrDU6Ujr0ad2OJKqZnGIFy8SmzUL7aRJGFaskM361WqEjAyF3N4IBi/qOrWOR8fdj7Dz4HWPh3lCHhpcDbR524iIEXJNuZi1ZsLRMH8/++/pD/TjDrmx6+1U51Wnrdxdi/eCcl+Ph5jLld6cHoYIXomBBkQixHp7FaP7xPFBKRjE8olPJL2PEUdbrwjVw/4GxmgseLRIVXHWRmND75jgayfu20f8iNodFfx82Xd5tvFF2j3tdPu6+dirn6LIWsTs4tnkW/KxG+ysNa29ofeZmGg3GOkq/OkMmOv664ZUjEfqRDSuXZvyN2fX2ynJKMFhdyBKolIZPtZ+jDm/W8EP1/2QDRM2jOajDothR5EHdZPFz7veQC/Pn3+eQCSAr2gt9rhlQUsL+rlzFaNywWplgBB5pjzyTHKC27iscehUOirtlWQZswj2tV6p26bGez0l8BZu4U+FRJ731PnfMmPRv1PI0JTv1oXV/GbP55icNxkxJnKg6QB/P/fveebEM7R721lWsYyB0AB2o527Jt7FK7Wv0DrQyqGWQwBKgl1tXy0lGSXD8rwp+VOYkjcl5cjolLwpTMmfcs2fMamQrFZjWL0aYjE5kEilItrbSyMufnr6yaTHvRd5XqK1SRwSEv996L/58pIvc+fEOznafhRf2EeLu4VzPecoziimMrMSURIREJiYM5FiazEfmPIBIrEIRrURb9jLpf5LuENudjS/Tl/MR5u3DZWg4vHJnyK4bVtSQd3icLD37hd5sXMv80vnj4nNR6rNu06tY0reFFo9rQQiAQwaAyf0J1hQtmBU42FjyfOuxUu1wl7BY7MeY17pPA63HEatUnO07SiX+y9j0VkwiulFLyEcJkOfgTocwb/5xWQrh3AY1GqkQADBloH5Qx9K4pymoAl30M2RtiN4I16iWjXERg64ExBQqWShw26w4w17ESWRaCyqiB4alWbEcdtrRSqeF41FefH8i/zrkn/lqeNPMbdkLic6TlDbV0u2MZvJeZPp8nVx76R7+c2p3xCIyOO7bZ42NCoNF/sukm/OZ27JXAqthdgNdjwRT5p3MTKul+fh9w8fuFJfP2QCJB3Pk+rqmbxmNfoUv7nheF67p13x375RnucJeYacozA0ATQVz9OqtMr3fKz9GDV5NayuXE2eKY8iSxGCIGDUGMk356fkeT85+hOaBpoIRUPK52saaFK63d5La/VIuCWy3QKQOikm35JPRkyHP82iIVy5GKgrnUQNOh5f9DjjzKVE//jC0MWmvpFy4DPTH+N3l18AGFJx8Ea8WPJz8G1YjZgiXVS9YTXmEUIPRkJNXg1ltjIaXY0EogHebn2bDEPGEIHNqDFiM9huyEBzrOGNeInostKKY1GNimXly+TQCUnErDXjCrrwR/yc6T7DGx2HqFpwP0WHLmJK4dGndjrRz56tGPEPQSRCcOtW1A4H2poaVDk5qGIpBJFrRKpFfWn+PEw7DyAO8teSN/QvYrr3vrQdbQ2uBg42H2Trha20edsIRoOEoiFmF89mTvEcWj2t2Ay2a5rzVxmNxD9tfFMvRqPy6Nwg4U0h/UYjks83/Mhnoqip1Srig6DVYnrwQfk2jSblCKe2pgZ1TvI54dFE0VQ6ES+nHi+VPB7UDsfV5DlBSHpfg9NNBz8e07UL3emQquIc0SSQU5MJ0513ImRlERzUzQdXKsIILLltDj9U65S0qTZPGx3eDkKi7C9p0VpuyEx1uMTQLGNW2gr/aAyYkz7PCGKRFE7tbDYlfwqFlsIx3bgOee10AuCVbrKGUKdy3pXZy3j+/PNoVBqWFy5gXa0GXXk5xrVrCbzyStJvWut08Nrdf2DVH++hOKOYkgxZgMsyZtHsbqbSZCfdkXkvpwTewi38qZHI8y6EWjGsmkuheg0Rv4/emIeDfSf4xf7HafO2KdMM7d52VlWuYlHZIvRavbIRyjXn8vszv+f3537PSudK5TWC0SCuoAtBEJQNeyqeNzl/Mo8vejx1uujix6+7+yIOtd2uBKTEYiJeIcIr4kme2vdbAtGAcr/3Ks+TYhKlGaU0DzQrf1cJKqJSlN31u/nEbZ8g35yPK+giJsXINGaiVWnxR/yc6DxBMBpkuWM5Tx5/Upkwqe+vp8haxOrK1bQMtPCPMz5FuTZXLtRZMhEbGoYUV+UunG2sWLeCvoTjdr1IxfOiYhQk+NHbP0ItqJVNdHxDnm3MTnuNvhk8z6q3Um4vV7hCk7uJHFMO3b7uIdzBqreyoGwB47LGcaD5ADOLZtLh6SAaixLWCKQzUVEbjBRYClAbjIqVQ2jPniH30z32MYxXClJxGDQGBkIDXOq7hFpQs7VlN49Zlw+7P1A5HbzUshMJiWA0iF6jZ2HpQl6texW1oEaS5K4oq07+7KnGaW8EqXieRqWhJKMEb8jLw1MfJigGWVO5Bp1aR4engzpXHeX2cmp7a/GEPVTnVuMOutEl8LxOXyetnlZC0RCTcif9yXjeiLxt0O0j3V8dTj1R8m7wvHjibirECyUWvSUlzyvJKCHHlEOFvQKj1shbLW+xfvx6wtGw0i0pCILsEylJSTyv0dVIp7eTDm+Hcg0ClAm7ReWL3lNr9Ui4JbLdgoJU7b3Rxsb0DwqFlK4ii81GMSD29BBKYToOQH0j6+eu4Te1W9CoNGToM+gNXB1ti5885uwCvHetl0MQ4uNNZtMNC2xxJJqRZxoyOdJ+JKm6EjfQLLQWvqf8JyxaCyfdtcxanKKl3OFAv3gxLiFKmb1Mqb6BHO++5ewW8s357K7fTYWhkIeW3kNMMKBfvRqQCAW8RHVqNDoT/p/9Uu5SS4UrXU7xTitBqx0TP6RUi/pEUxmxur0p7y9erkP0eoZ9TU/Iw4GmA0rbcTQWpcffQzQW5WDzQcSYyKyiWXT4OlLO+Xd6OxXROdGkXjFeb25Gv2AB2kmTCDz/fNpOO7XVSiwWk0cBBhtLO50Y16wh1tuL6aGHEEwmgrt2DfHi0kyYAFpt0veidjiGCF6ekIfnav/IJ9bcJ6eLDn6ttWsJvP66EoLi37IF84c/jDRnjtIhJ1itqU2w4+miN8HMeLDQj8mIyukk1tGB5ZFHCOzYIQc1DFf5q6+nZtE9CjGWkCu2oahsFK1VaQlEAzyx/wncQbeSRHWtZqrXUuWO41oNmEcSiwSdDrGnR65w63RIgoCgUlFizuVfF/8r/77332/KxhVGJoaxYIADfVfPuwJrASBXrL/x9n9x29onKe2TCOzcKQc3JPzuxJYW8g6e42vzHueV1j3A1crxgLsbqbsX82OPIVx5H4LBgCSK+H7/e9Q52X82npC3cAt/KqTiedvO/ZH/Pvzfyr/j0wzxTY475EaURNZVrFM4xenO03T4OvCEPBjUBgwaA2JM7r6KxCKYtCbZiy0Nz5tXOo8frv8hpzpP0R/qv+HxpsGIF7nUQG/vJV5tfWOIwPZe5XmesIcVjhXsqt+VJLQ57A7unXQvueZcjBEjDrtDee9nu8+y5ewWWgZamF4wnZ11O6nrr2NK3hSseitT8+XUZ2/Yyw8WfRP1zv3oCrxyN3FvH6qsLMyPPILv2Wev+i0jcz2zqObJui037IeUiudZdVa21m6leaCZmtwa5e9t3ja2XtiaVji4WTwv3m3nDrrJMmaRoc/gtbrXkCSJfEs+Fp1lCHfIt+RzW+FtBKNBtl7YSru3nSPus6yuqkJXUDAkxCjc2cF5fzP1/fWctF5i9jATPCqnY8gkhCfkYcflHSwoXcCRtiM0uhv5f+/8iKUb51M9zMipZ8Uczr61h0emPkJJRglVWVUUmgtpcDVQ76pHEASsOiuLyxfz8ZkfvynhZIN5nllnxhP08MS+J/jIjI9wvPM4zkwn57rPMbt4NtPypxERIxh1RnxRH4dbDmPWminKKKLF3YJKUCEhEY1FiUkxdCrdn4znjcjbBt0+0v0lvY7TnafpC/QhSiIWnQWT1kSZreymFiiAEbvF+gJ9nOg8kZLntQy0ICCQacxEp9LR6G6kvr+egdAAZp2Z2t5a3CE3uaZc5b3Ged477e/gj/jZNH4TJq2JgBjAqDHiCrrY07AHMSa+p9bqkXBLZLuFtBhx0TAah4grI23C9FHQq/VMy5+GVnXVCHtwG64lI2dUKaI3inHZ4/jigi/ym5O/oc3bhk6lw2awUWgtHNF/4t2OGC63l/Prpn1UFBeSWVOTPDro8YDdRq49k1yuVrw6vZ1Mz5/O707/jkJrIV+f9XnGHW5A2vOM0hWidjrRrF1Fa7iL821HWFZSkvJiP2SM9EoH11j4IaVa1FXh9N4K0YAvZRS9J+ThSOsRWj2t1PbVotfoCUVDyqbBE/bQ7m1X/AzilZm48DqcSf23FvwbtsZu9HPnolq9mmhLyxCfNEhtxK4Yxm/cKI9/ut2oMjKItrbi/fnPIRJBv2gR0ZaWlOPZwV27FI82SDBTHSR4Nboa6fR1IsaiQ8dL29qIXLyIccUKAq+8cvX2WEwewYwLWFot+kWLMKxZgxCLIUUistA9KCVprDF4AxjYkI1mwHf1GA8T1BCHJabllfW/w6wxohM0BAIePEKYC4EmBoQw3zv0PZo98oYlvsECrtlMNVGkHw2u1YA5bchGZSXR5maCW7de/ZvDIYumO3dy+7p1/Gj9jzjZefKmbFwFnS7t7SG1RKunleaBZtZWrqXQWkiGLgOzzkyPv4dP7fsSm1f+DKPFQujw4aHBDnPmsEIf4WD30aTKsUbwoS2yDfGqUzscWB5+GAkprcg/3GbqFm7hrx2DRX6DxkCBpUAZ16mwVbC4YnHS+uiNeDFrzXKHlKueqqwqzvecV8bOVIJqVDyvzF42ZmtTOvy58bw8Sx6NrkZmFc1iQdkCwmIYnVqHWWtmRsEMKrMrkx6TyPM8YQ8FlgJ21u/ErreTaczkYPNBHJkODBoDywrno9m5H8PMmSnXYPNDD+F76qnkQmsoOIQnXQ9S8TxBJShCYmL3CshCW5u3LaXIdrN43idnfZJL/ZfQq/WU28ppcDWw5ewWavtq0ag05FvylbCiwdyhwl5BtjGbqXlTqXfVU9tbi371w0Re3j60cLpuFR/79Xz8UT/bLm5j+6bfky8MDWzSbliHwZJsjdLoaqTH30OGLoOa3Bo+dfun0Kl1HPVcRJdroWLdavTRGFI4TFADB/tP8Vbt/9Lt76Y/2E9foI8dl3awvmo9/7L4XwiLYVSCinxzPjV5NTf12jiY553oOMEHp32Qp08+zcnOk9w96W62nN3C8+efR6vWUppRykdnfJR2Tzt9gT7ean2LtePWcqD5AA2uBiRJDk3IMeVwe/HtfP/w92kaaALeXZ6HyZR2ymhwQTw9z3Ny0lPLMxd/z4WeCwSiAcWX7PWG19k4fuNNLVDoVDq6vF2EY/K6ExcrAULREJ6QJy3PO9h8kFxTLu6gmw5vB/3Bfjaf3cx91ffJhRmNgf5AP6FoKInnSTGJafnT2Hx2Myc7Tyrnbk1uDffX3M/EnIlpv7/3Gs+7JbLdQnqMtGik8KMajR9UTW4Nc0rm0OaRjQ1HasO92ZiQM4HPL/j8NVUtGlwNbD6zWTb7vbIQOe1O7qu5b0i1JD62cKPG/Va9lXVV63i+djtTbRMYb7SiDoOkV6HJK8FmTzYLjpOIOUVzsOltPDLhAVlgG5TYKNbVwfZXKa+pQZc7kdaFIYqIQf3VTsb4Rj5pjFSjUfy9btQPKVULsKjTpF2kYrqhEluDq4EDTQcIRUPEpBi3F99Or7+X2r7apPtFY1GC0avvOU7+hjOp7w/0kymYCJ09i6a4mNAVT6lhPRhSCI8qoxExGiWwdSuakhJCgwS1tKme9fUYV69GU1mZMhZ88OfoFj3YBqVTKp+9tRXDqlVyilwohKDVYly/Xg60qKuTxxZ27yba2IjpjjuSDPLH6rc8GhizcomGxavHaASvOLNKjzkYJnR4L6H6elSADZjrdBBZvYSfB36u3DcQDXCh5wLTC6aPyeYhHa7VgDldyIZ+4UL8zz6bdP94IIKmpAT/Sy9RfO+9lN6gJ0cqxNxuos3NacdRzvub6Pf388DkB/jV8V9R1yevj3mmPOaWzOWxWY9hUOsIHX5j2GCH/DWr+dtZf5uUYqXV6Am89FJqf9Bt2zDcccew73u0ya63cAt/jUhVBNCoNGh0GpyZTmYVzxrChSxaCwaNgQnZEzjSdoQ7xt9BjBhNriYkJIqtxX91PG+sxLjEcbV2T7tivl9kKeL+mvuHCGyDed69k+6lwl7BtLxpuIIuOn2dBMWg0mUy216DtqBPLqylKujt3p1U0ANAL/P6G/VDSsXzEseJNSqNMgYYR1QcOjZ3s3heg6uBXx3/FaUZpbR72znddZoJ2RM42XUSm95GMBqk09vJ0fajLClfAjCEO1j1VnLNuXzn0HdYXbyE0MvbhxStxfp6xO2v8uW5X+DbR7+HKIncte2D/NvcL7Fs6YMYRBVqgxHBYhkisCV+DqPWyDLHMrZf2s7exr1Kx+iUvCl8YPIHmJo/lVgoRme4m3xLPo/OeJTtl7ZzrP0YgiBwqOUQGfoM3lfzviTx+93kedMKptHibqHd045VZ1XWFo1Kg0lrwh1y0x/op8xWxvGO4wDsqttFub2cyXmTMWvN5JhyyDZl0x/sxxO+6sn2bvI8tdUqB8MNly46iK+n43m+FXN58fwzisAGJKVwxgXDG/VeS4UGVwPnes7hCrqU8IFEsXIgNEBvsDctz/vs3M/iCXvQq/RMyJ7A4dbDADx/7nnmFM9hQdkCDBoDC0sXsmH8BmWdzDBmsL12O2e6zygWThISF3sv8lrda2wYP/znfS/yvFsi218Yxrridq2LBqRX5wWnA8lk4P8s/z/0+HrwRDyjIjrvBq6lauEJefj1yV9zoOlA0vhBo6sRX9jHCscKegI95JnzmGKsQNixM8lX7FqM+wejwl7BB6d+kEZXI5cjfVgsFsrt+UOOXyKJmF86n71Ne3Esy0eq35/yeePjn9l7DvF0eTeR0ggfWvYQGQG5kiC2tMgC25XqptrhIObxoLri43CjfkipzEabIj1UDk5BuwLB6cCjFpP8LjwhDwebD7Lt4jbcITfukJvTXacpt5WzpGIJ2y5uUwyFNSoNBo0Bd8gNXCV/qUzqjRojP1/6/whte1k+TnPmyAR0hM4qxbPN7YZAQBa0DAZ5RE6lGiqAjZDqGQz6MFdUpr1P/HMccp1i/brVsP3VoWPF06Yh9ffje+65qw+84gUXH99TZWfLgRYJxEp0uWSh4zpDKK4LoauEe6SwDsLhlBuHWF092lfhe4u/SZ7GhiEC6HUEETnqOs2hnuM33Ux18JjESAbMqUI2UKnw/uQnKUe54+dvaN++m5KyqQQeNDfLPn4MHUdxL5/NOx17mV44nW8f/DbH2o+hETTMKp5Fu6edzec2c7zzOJvu3Z3WIFglwVSTA1XCmiaEQmkfI4RCKW+71mTXW7iF9zrGegN8PSmM5fZytGotD055kOdOPcdLF19iVtEsZhXOItuYzapxq5ieP/2vgufFA7TqXPKxM2lNDAQH2BPbw8bxG0c9opaI0Y6rpeJ5AgL3T76fk10nUQkqJunltFmVoCIshtFEYukLenV1Mg+4ArXDgV8t86Yb9UNKxfMy9LInsk6twxf20e3vVhIILToLOaZBnrM3iecJCOQYc9heu511VeuQJIkjbUcotBQSjAbxR/wYNAZ8ER8CAt2+biw6SxJ3aHI1carzFF2+Lm4vvJ1VBQuQtv0m9cGob2DJ/A18/cpvKyyG+fy+L/N3t/8dC8sXMrdg7rDHMf457AY7L55/kQNNB+gPXE2jvdR3iS3nthCOhanKruL3Z3/P9ILpdHg7mFEwg+kF0wlGg7LQUbYwSWCLuPoJvTQ0Pfxm8rxwLEy5vVzpRKzJraHV06qknV7svciG8RtodjfT6eukwdVAbX8tDruDuSVzOXzxMGW2MgxaA1XZVZzsPEkwEqQ30ItKUCkerzeb56mzsjDefTf4/Vd5W5oJkFQ8r5cAvzj3DN2+7qR1B2ShTUK6aYJh3DPRHXSzwrmCXXW7aPO2EYgGONt1lnHZ41hQuoBAJDAiz5uaN5VTXae4Z+I9rB63mn1N+/BH/exp2sOh1kMsrVjKCseKpDWtx9fDhvEbWOVchUqlIiJGeLPlTc50ncEf8dPoamRG4Ywh7/u9yvNuiWx/QYhXdgZCA8rieS3pPMPhmheNYdR5ldOJdsM6HFnyBfPPeWNT21vLsfZjykiERqVBLagxaA385vRvCIgB1IKaamslk8/XEhvcOZZinPBaMBqieKnnEtW51UzMnki2MZuHJj+EJjI0sSoJ0ShSfT2r565hxu9X8P/e+RE7Nm2m7M2LyZUWhwP9okWoLBa8Tz6JurLyhv2QUpmNHu07jW3JbHIYmoLmWjqLt7rfZpZWUn7fDa4GxfzWorWgElRk6DNodDeyv3E/MwpmcKT9CFadlUJLIcKVrMLEEZZUJvWPTHyADH/saghIXAwbRQqn2NeXWqRet26Ix9pIzyfq1GlvhyujJmY5nfGjb/wDX5z3d0xctQJ1JApiDLG+Hv+WLZjuuiv5gZFIEuk2P/oo6sEC24svjmo0Nh2utRCQKN4qQQ0MEngqnehvnw2CMKwQE6urp2LhIvw/f/rqmLTDwaLFi5hSNZEjAxcUon6zNoKp/JDSISktD4i2tAzvlQjK73K0XaWekIdmVzMBMUCHt4NAJEC2KZua3Bpy1NZkgS8WU0i3f8sWWZBNGEUO2y08deFJsgxZhMUwZ7vPAlBkLaJloIVObydiTORCzwWkYQSxOKRQiMDOncpvqsHVQMkIH2m457zWZNdbuIX3MmJuN5FLl+Q072gUye8n1tSEtrLyhjbA11oEsOqtbBy/ka0Xt/LA5AcUESLXlMtyx3KFn/w5n1u1vbUcbD6IWlBj1pqV9MUMfQbPnXlO4Xm7G3bT4elgct5kzvWco9BSyMaqjeRZ8th6cSuPTHvkujvarofnHWw5SOtAKxX2CloGWhgIDVBoKVQEC0mvA3/6gl78WiIX1Dfw/QvPpE9WvIbPNJjnaVVabiu8jW5fN+90vEMoGkJCotBSyKLyRdS76sm35N90nmfWyqNu3f5uZXzSH5G96SxaCzqNDr1ar4ywxQWQuOD1ZvObST5ZbZ427nz/m6STJVOlqPuj/hHFzDjP06g0uEIudGodJRklRGNR5T2f7DrJqspVhKNhJuRMQK/RI0oiHb4O5XncITe+iE/5t8vVgfqlV4mlDBu7eTzPrrcr3bPNA80sdyxnb+NeZYxYq9ZS31fPvyz+F97peIe3W99GrVLTMtDCyY6TLClfwnOnn6PMVobT7mR/037MWjNltjKa3E3KqHWPr+em8zy11ZqUIjoSBvO8upZDhMUw4VjqgKt4Z+a1CIapuF6OKQdnphNPyCMXQnQWwtGwcl62edpYXL5YCcoQYyIlthJqe2vJNeWOyPPWV61nV/0uLvVdYppuGl9Z8hUu9V2i09vJmy1vYjfYyTJm4Ql5sOqt8nldu5VnTz2LP+JHJaiosFewoWoDk/Mm89yp55K6FBPxXuV5t0S29xiut0KZWNmJt3fC6NN5RsI1Lxop1Pmb2W78bqPR3aik3cSRa87FrJEv0iaNiVfrXuXDizYh1W9P+Rxj4WM2HBpcDWw+v5nNZzfT4+8h35zPfdX3IWpHOOWviDy66JXkovAAq56/mycWfIUHV34CVTiCoNUiaTRI/f2ywFZYKFe4ruNzeEIeLvVdotHVSFAMkm/O564JdymLvgoV+3uOo50UY9a8deiiEmGNwMHed2itf55x2eOSfBbi/h0gE5VCSyF2vV02wpWi3FZ0G5f6L3F70e3ML51Py0ALOaYc1lWuUwiBTq2jOreai70XFW+P+VnTIFG4iIc/pOusqqwEjSa1MFVfrxj5Jwpb6Z5PcDjoF0Ij2hRa9VZmFMzg5dqXOdV1itueXQRArimX/zP/X1lWOgdd4QqMmfa0z5MobsUCAWL9/dc0GpsK1zJ6oyBxZD0SSRZ4AJXdjgT4fv7zocLhYASSq4Lx8URrTTVms4bNZzdfs0Huu4kRu0Wv/C5H01Xa6Gqkr78Np74QvzdEpqqA3a43+cU7v+DHi/8T/xuvJFWyTQ8+ePXBgwRZAOnh+8kyZNEb6EWr1irdCnajnUZXI+FYGOHKf5I+lZNiAnQ6xMuXEb0efKoom89s5rOVH0z7EOHK2PpgXGuy6y3cws3G9U4cxAIBxP5+ImfODCnaqLKyQKe74Y62a9mIVNgreGTaI9c0fvnnhHZPOxqVhvr+eoXrmbQmZYNq1pp55fIrnO06S0iU/evGZ4/nUt8lttZuZWnFUoqtxTdtRG04njejYAb1rnrml8zn7ba3cQfdzCmZQ5O7iXJbOV2SlzxDXtrnVmVlYX7sMfxqke9feAaVSnXdo76j4XkGtYHnLz5PVVYVoiSiElRkG7PJNmajElTvCs+TkAhEA6gEFQaNHOaRa84lw5BBviWfC70XMGgMBKNBdGodakGtCHdNriZFYIvGoqgFNTEphleIpBXZdEYrqytXo9fo6fP38Xbr2+QYc0YUMxN5XvNAM62eVkD+feaZ8hgID2DUGBEQsBvs2A32YZ8rLuh5Qh4ingGEYYLrbibPSxxZj8aiHG49zJT8KSwoW4BRY2TtuLWoBBU763YyPms857rPEYlFqMqqotvQze/O/A53yM1AaACdWocYE3GH3LR72nlwyoMcaTvCzrqdbKjagK3d9p7mefHvQ6dK7X8b78wcbVfppd5LvNn6JlatlV++80vO95xHEAQqsypRC2rWjlurhCvEE4vtBrsiyIaiIdxBN72BXnkU2pQ7lOcZ7DS6r/K8eNfsqspVvNP+Dmd7zpJtyub1htdx2B18cOoHWV25mm0XtmHVWanKrmLzmc0cbj2MP+JnVtEsijOKicaieMIesgxZzC+bT5YhK+VnfK/yvFsi23sISmphwsZG5XQSWrWII57zVOdWD2tqmFjZScRo0nluFgar838p8IQ8dPo6+ftpH2dF/nx0UYmIRsXrXYf597e+TYGlgAx9BnX9deiiUtrn8nr62N93mCl5Y2dY6Ql55MWq5TA9/h5AbkN/vf51vjzjs6idzpQJjYmhBiqDUWm390V8/J+3vs22pl3kmHL4z8VfxxgGTCYsH/nIdYunDa4GXq9/nWdOPKOMWVh1VhZXLOaj0z+KVWvlbPdZhdgc6DpKUAyiVWnp9ndzouMEX1785aS26Wg0SnVuNTa9DQmJUCREj7+HpoEm2cQ5JvKN5d/ApDEhxkSm509HREQXjFCqzoKoGTLKGDe5iC1N29ldv1tOSIvEkrrMxJYW1E7n8J1VTifG9evlUIjhhKm6OvQLF0KCWDHs812pJod0Q6ueg9Hp7eRnx35GoaUQrUqrVK97A7187o3HsRlseMNedtz7ApMrnYiX65RRUSX9ymhUvPYAJI9niEA1GCN1T3lCHp46/hS763fjCXtQC2r0Gj31/fUExSCfmfOZlAR+yMj6FYFHGVnPykLs6ZE7vEboBEx1e3zMcpIxg90coC/Qd80Gue8W0hrlXjl/R+oqjQUCiF4vRRjJPtSApiiMuaoKgA8Xb+SRce9DbGsj1Nw87HOkQlSrRhAE8kx52PQ2jBojZbYyzFozgiCgQk4BixGjW/JiSzP2Kw0MAPL6eDbQS11/HS6CGNI9xphaWLzWZNdbuIWbiXhqYV+gD71az5T8KZzuOk0oGiLHlJOWC0iBAKG9e4f1MjRu3Piuc65rNgf/M4JWo6XF3UIwGkQtqFEJKlSo6PB24I/4KbIWUddfp3ClLl+Xko7Z5evCmelEq9byVutbNLobbyrPM2lN/ONtn2JD8TKskg610cQFfzMnyxbiDXuRJAlTpQmNoOGk+wITSh1pvTUDJg0NgQ68IS8rnSuvWzwdLc+r7a9lZuFMSqwlSTzv6RNPjwnPC8fCbKvdhi/iIypGMWqNWHQW5pfM52DLQaKxqCyOqdRUZlWiUWlocDUwJW8Kfzj7B5Y7l+ML++gJ9CDGRKxGKxExwpLyJVj1VvY27OVU1yliUgx/xI9Ja8KoMbK1ZTcfc5Qn+RvHITgq+G39i/zynV8CUJVdxYemf4hlFctGPNbD8bxgNEi3v1vheWadmZKMEhrcDbiDcqJjvDPJoDGQoc9QBL3a3loKAwLpoo1uFs8bPLIejUU52302yVPrdOdpWcxG5LW61/CFfQSjQWwGGwPhAVSCCl/ER0VmhdLBNiFH9oyMi9D9gX5sBtt7mufFR6pD0RBGjTFpZLTIUoSAMKquUk/Iw6nOUzx1/CkWlS+iaaCJuaVzub34dqw6Kxf7LnKy8yT7Gvdxx4Q7lE6wuIedXqPHFXQpvnBiTE449Ya9STyv0FKIVW9N4nmiJFJsLWZ77XYu9V9iWv40DGoDc4rmoFap6fB0EBWjvNX+Fo4sB4FogLr+OtSCmvtr7ueNxjfY27RX+SzrKtexaeImJuZMTPlZ36s875bI9h6B4nczSPyI1dWhe1UiOEXPZ45+hi8s+ALzSucNeXxiZWe4295tke0vFc3uZjYVrcC88yDSzm3K39/nqOC29U/zHyd+iCRJfHn258m3F6N+3/uUyO7QoUNJ41494gCfevlTcvTyosdTfrfXikZXo1JBMmlN6DV6BkIDfGHCp9G3dqFeuFAWcRL9FhJCDdSVlWitNh6a8hANrgb0aj1qlRqr3sonZn1CTn29QXhCHvbU70kiXiC333d5u9jftJ9MQybd/m7yzHn4wj60Ki2vXH6FSOzq8YtXl+Nt05nGTM53n6dloIVILMIXbvs0n5/0MQyiiqAmRlOkh1+c+TU2g43lzuVc6r/ExrxFiNtfJZBANosdDv5h3UdxB90cbj1MVKtCbGhRBMrQoUNYPvYxAjt2DOmsEiwWohcvQiQyIiER1OpkohuJEDp6FMOKFXLFMCHuPbDjFewb1494bONt0za9jTxzHnaDHVfQpRzfLCGLCdkTuOhrZObGOwjteAX9jBlDU8YSPDikYHBUo7HpcLz9OM+ff57+4FXfEI1KQ9QU5UDTAdaPW89tRbelfOxII+uK+DSCZ1tSMm4iolHUCZ35N9sg93oxrFFuPF30nXfSdpXGCzma4mKiHR3oZ80CrZbgzp1DRGLTfffh37xZWa/SHVuV08HOzgN87Y2voVfreXjqwxRaCuUqqCgbU8eQBeKJ2RP5Q+MrfGTtPah37BoqJq9di/epp+T3q9Nwvus83oiXb5/8Md/Y8AWCKdJFDRs3cCncwUTsQ97btSa73sIt3CzE/W76An2YtWZmFs3ktcuv0TLQgk6tU8Z0huN5hMNpfQkJpx4vuoXrQ9wKpNvfrfzNoDGQaczEZrChU+u4veh2Mg2ZhGIhdCp5lLTZ3cwdE+7gxQsv8nbb2xg1RiKxyE3jeTmmHF7c+CyVh+qQ9lzlpFOcDsqXL+Xxw99Eq9ZyovME68etR5REfiuJfHDjnYS3bR9U2L+SZpmRw+Qb5HrvBs9zhVxoBA3rqtbxQM0DnOo6hU6t43enf0eeOY/lzuWc7Tkrd1ed3Uy9qx6dWkemIZMyWxlLypdQnVPNya6TcnKoOZ95JfP4zanf4Av7+JtZf0NtXy2bz25mcdlillQswaAxUG4vp66/jlZ3K9MKptEf6ker0hKNRbHoLIgxkRxTDt8++j2W3fm/jBNUSamhgsNBw7xxfHfrV8kz5yFJEpIk0eRqwqwb2XpltDwv35xPVXYVWaYs9jXuY8vZLTQNNKEW1GQaMllcsVjpUGrztJGjLUn7ujeT5400sh4Xn5BgSfkS9jftxxfxIUkSMSlGrimXuSVz2duwl5KMEhaULmBCzgQONB8gLIZp9bRSZC1SXu+9yvMSR6rjwQ2J6aKBaGDErtK4fdQfz/2RImsRHd4OfnLkJzS6GzFoDFh1VmYUzmBy7mRlFD7XlIvNYOOO8XdwsecigPLaBo2BByY/wNMnnuZU1ymF5+Vb8un19xIWw0N4HhK0DLSgQkUsFiMoBjnafpSSjBIy9Bn4Ij7mlsxFJag43yPzvIk5EznVeYpWT6sy5g3Q4evgZOdJFpQuSPl536s875bI9h6B5POl7C4CkOrrmbZgIzmmHL61/1t8f933h1TDItEI0VhUiVyPVw/i6Ryp0nlu4fpgw4Bl5/4hPmtSfQOVwOcXfpp8XRYZuw8T2v0L5Xa1w4Hp3nuV8ADBUcGuzoMAnOo6xRP7nuCH6394w5VOb8RLOCYveEXWIpoHmglGg6wrXooaC/7nnkM/f74s5Hhl0hIPNVCXlWG64w4sNhtfXfLVUfuzXCvi8eOJxEslqJiaP5WFZQt55uQzcuxzoJ9oLMrtxbfzgckfYLZ/NgeaDyiPseqsdPu7sWgtysi0QWvgX2b/E+8rX4fWG0TQmUEUsYbD5JnHc9ucr+ONBdjVfoBlpYsRBwUDwJUNy/ZX+dK6v2dPyVwko5FoVxfGNWsI7NiBWF9PrLcXTUnJVV+qK8cxLqRqHI5hR9jiEHQ6DKtXIwBSOIyg0xE5exbfU0+l9N4S/EFGmheNt0Wf7jrN4vLFGLVG9jftVwhYua2cD037EEsqlqC1Z6JauzZ1amOCB4eg0xG9dCntaGy67ilPyMPFvotJxAvk5K8efw8alYZ2b3vaz5VuZF0Rn7Zvl8UmQUgWkZ1O9LNnJyfjJkKjQRxUvh2t38W7mcIFg0bxAwEEnQ5JEBBUKkybNg0vsCUUcuKm1jGPZ8joGcgCfAiSxpmVLstBx1bldNCxaArf3P5h/BE/fYE+njz+JJ9f8Hl+e+a3RMQIVp0Vf8RPZWYl68at41DLIb61/1scfWgPOcIqeRRbr0fyeGSBze9HcFTwWscBal219Pp7yTJmMfN/l/PKps3kqFYjhYIIegP9BPn03s9z/5T7mZg7tMp5Pabut3ALNwONrkb6An1oVVpmFMzgK69/RfH8EgSBysxKFpYtHJbnSSOIaCPdfgujhyfk4UzXGeaUzCEkhmh0NyJJEhExQoH1/7P33gFylff19+eWmTt1Z7b3MrPqHVRWHQTqEggM2EDAuBEnJokTx91JHMd2/HPsvHHsOLEdxxg3sA3GCHUQCAk1UJdQ3d77Tp+5M3Pvff8YdrSrbUIWIIEO/6Cddqfe85znfM8pYJV3FQICtb5aznefT7vZlpYt5RM3f4LHjz2OIAiYRFN6sfh28bx/WfCVlMB2CSfVa+vIAB5b+Al+cfa3lLvL2VG7gxXeFdzuuR2zOwf97juRQqFUKZOijNhmeSV4O3keAshSKgt53YR1vNLwCs+dfY7ijGKOtB3BJJl49OZH+f6B7/OpuZ9KC2yQmuzoi/VhYPBKwyt8cdEXWeZZhktx0RxoTrvcgvEgx9uPU5JRwq3lt2I1WfHH/CS0BN/c/U1mFcxiSdkS6n31aLpGV6Qr7YhTJAW3xY1JMvFnL3ySP2z4DYW3LcacTLm+f1u3kV/s+QKFzsL0mi2hJ3ix7kU2TNww5ufjcnne7d5UsHx/I6ogCBQ4ClAkBYtsoTvSnXZ0mWQT+3qPs3aEsjHR633bed5oI+v94tOWC1u4a9JdaLrG+d7zZCgZFMWKyLfnM79kPs+dfY6YFiOuxbGb7fRF++gMdwIpkXwgLpfnXe1SwbEwsPikN9qbcpEpDmyyjTJ32aiP3b+ZYxJNOBUnvpiPY+3HqPXVokgKqqaiRlWOtB5hadlSXm54md+cSuWg9Y8hPzzjYfY17ku76O6ccCd/PPNHavtqB/G8zy78LE+ffpqYFhvC8050nCCmxSiwF+BQHGRZs1havhRN11CTKmd7zrL5/GbKXeVMy59GT6SH8dnj0++pbugYhoEgpEaeG/2NtIRahhVFr1Wed0Nku0YwZlC1Gufl+pcZnzWeo+1HKXOXpb/04UQYs2wmqAbTDTqQ2j3IseWQacmk0FH4Nj+D9w+ydIX4CLvJRl09E1fdjr79pSEnqf6RDmX+fOLNTTQunMj3tn8sffnJzpOc7Dj5J5Mvh8mBWUzlRYS0ECbRhNvixqIJYCRTbqlXXkHdty89IigVFGC7914EtzsdnvxW81neCkKJUDrYMtuajSIrmCUzi0oX8asTv+JY+zHy7flIokRci/N6y+tousajNz/K6y2vE9fjTM6ZjFk2p23T/blPP7rlu2S+fIjES7/EdM89Q106Hg/OqipWnROxFSuER3EGODSZuyffDYC+pgCtszMtrAkOB+rvfjficxQsFvRodFRnlaFphH/6UwAcjz2GHg6N2PgFYKhjB9r326ITeoLdDbuZkT+DW8pvSYc2T82dSlVJFU7FeTFrbQSBP53BYTannE9VVcOPsq5dO6qw1OBrGLQrNRD9mwOy9KedjkSXC9uGDRjhMJY1azB6e9NOQAwD9fDhYYVLyeNBCwY5j3/Q34fLu7hUUEOW0fv6UqO0skzy/HmSnZ0IK27Dr4fJ1M3IcR3Rar2q4tuVjOIP2shJJlOjwTD6OHNV1ZBRYsvKleiSSCjQjWaS6NCDPLTlo7SF2jAMA5NoIpqM8qPXf8TKcSupKq7CF/MRjKcWrT869CPumnwXcT3OQy/+JT++5bvk7Dk2aJxG8HpoWzyVJ/b+A55MD5mWTDRdo95Xz6RfzE1fL0PJoMJdQYY5Y9SNpLca6n4DN/B2oH9BV+Gu4OkzT7OvaV/K5aEnMQyDcz3n0jlDw/G8Wcro3OBPbfi+gYto8DUgCAJH248yKWcS80vmE01GcZgc1PnqCCfCbK3eii/qS4/qWWQL9f56WoOtKVeHrmMz2QYFy78dPG9p7hyMHZuHvZ5eW0fZ0jk4FAdlchnziuexrGJZetTM4nDBVRLVLsXbxfNCiRATsifQF+1jSu4U9jbt5ULvBSyShRxbDrvqdyEKIrvqd2EYBn7VnxbY+hHX4hiGwYXeVLZyP8+r99WzvXo70/Ons7R8KS6Li2Mdx9jdsJsGfwO6oTMtbxqyKBPX4mRZs9h4biPZ1mxm5M3gaPtRAFRNxRfzYTfbKXQUUhNt4betz3Hv5Hs52n6Ub77+7yO+bn1q34iX9eOt8LygGuRw22F21u4clCPtNDuJa3GsspUGXwNFjiKeOvEUNy35Kwq5tGzMg7h25bvO8yrcFTw842GafE08Nu8xznSfQUCgJ9JDR6iDvU17aQu10RfrI9eWi81kSxcFZFoyybXnDrq/4XjeQEEtw5yBgMCB1gP4oj4ssgUBgV3GLlZ4V5DQErSEWkhoCYocRYzPHn/VxLcrHcXvF+Zciiudmdaf2SeJEmpCRRZlZhXO4o/n/kg4HkYSJXLtueTb82kNtrK9ZjuP3vwonhYPZsmM2+LmdPdp/Kp/EM/7wcEf8MFpH2R63vRheZ5bcTMhewJZ1iy2XdhGTItRmlGKSTSh6RqeTA9BNUhADaR5nmEYxLWLG0YZ5oz0OfJ643k3RLZrBGORo7gsUNtXy6LSRXSEOjjXfY4Xal/ALJpxW934o34emPYATYEmjrQdoSPckf5Rm18yn/HZ49+hZ/Leh5zQGG2/WNHFiy2Ul0Crq8O04naetpzju9s/lm4B6sflnFzHQrm7HG+ml+reanwxX9p2H5cFMAZ85YcJL3c89tif/PiXA4fJgcPsSIUC+xsIqAGcZifiBJHDbYdTu79C6mRtlsyompoOlPWpPhaULODDMz9MR7gjbZsOJULckj+fzJcOodfVoSxZgnrw4Ij5NeaSksFlBsNhgKglulwYqkrkN78BQFmyZGQBzesFWSby+9/jeOSRtPstffmbeWKhX/wi9e83nWBCcnTHqaCMvYgaaJtO6AkOtx3mcNthILWrc/+0+9MkQAtdXtaamJ2NsnAh6r59g917FguCzYYwhuATSoSwmW2UZpSm26IGotBRSJGjaJhbvjX0i096NEpk27aLI5UmU8qFlUwOeR+UpUvoMid4pWZ7+u/D5V0Mysw0mbA/8gixLVuG3t/8+RCKkLF7D/GmZoT586GkBHp7MdxuBKfzXSmAMS4t7hjjswZAMpl63S4ZJRa9XmK3zePntU/jUlyEE2HiWhxBEJAECZNkIq7HefzY4xQ4Cjjfcx5JkJhdOJs5RXPIseWQY82h0d/I8mfv5m9n/SVr5q/CZshoJpmGeBff2vsPRJNRzvecZ8OEDcSNOIqkpBu3MpQMJmRPwG6yk9ATY24kvZ2bBjdwA5eD/gVdNBmlrq8OSZBSiwcuZrdeyvO212xHTap8uPIeRENIF5BcGj8hVVYivIVyqhsYHb3RXgKxAFmWLKp7q0lqSSblTkoJ+5kVzMqfxZ6GPZS6SlOB+Yko+Y58ArEAwXiQ4oximgPNhOPhIfd9tXneWNm/eizGgeYDAEzJmYJ13Dtz/nm7eJ6aVNMlDuOzx/PkqSfJs+URS8boCHego6MbOg3+BqqKq4glYmlHzKDXxUiNtqnaxWbqCncFc4vmcrz9OA3+BkxBEwYGLcEWJFFCRkaRUi2d47LGkWPL4WDLQYJqkE/N/RQ/fP2HHGo9lMqK01QW5S/isbmPcaLjxCChcDRkKpljvrZvhec1+BroifSwuGwxCT2BWTLTGe7kePtxzvecJ8+eRygRYmruVFaMW8H/O/ZfrJpyKwsXb0BO6BiKGb+UoNRhG/WY3ime51ScTMmfkhYP/TE/Rc4ijrUfI6gGmZw7mereakozSil1lWIz2ci0ZFJVUoXDfFFUG47nDczMlASJCdkT+NWJX9EV6Uq74IocRSwuW8yWC1t4o/MN6v31TMieQLYlm2x7NnOL5jIjf8a7lvXWv5ljkS1ohoZmaAiCQLGzGM3Q0pypJKOEw62HKcoooiSjhOreajrDnWi6RluojZn5M3GYHelNg37xayDPSxgJfvfG78hQMobleRnmDHwxHy/Xv5x29rosLuwmO4ZhEFSDGBjvWZ53Q2S7RjBaoDWecp5v3gmkdi3cFjcnOk5Q4aqgM9xJd7gbzdBoCbbwRtcbLCpbREughVA8RL49nzXj1lxzwY7XKzSfD5LaqNfRVXXUy4PhPg70HOW2itvojnRztP0oGUoGiqygSAqnOk+Ra8ulO9ydrlV+K9Zkp+Lk3qn3EtNiRKoj9ER70A2dfT1HKTXNueKRv6uJcnc5Fe4KBAQCagDd0NPV4wYGsiij6RpJPYlu6JilVHW6KIj86+3/itVkZVL2JFZWrkw7smbKpUhOgWhdSgyQSkpGdIX1h91jHi3iFQTLYDIqOJ3p7+moJQXr1mFEoxCJEHriCWx33omwfDmoanosTu/sBL//YvaZ1YqWUEd3vtnGFtneim06EQlhuoysNdFqhcxMTJMmITocaYeY7vNhys4eUzRymBwEYgHWj1/PpgubBhGw0ozSq97yNCS77M1WUsuqVVhWrQJVRTCb0U0SpwLVbK15Ob1zlmXNGpJ3kR61bG/Hdv/9CFlZxC4RTuFNAVcUsSxfjmXFSgRRJLp9+4hZd+8kBm7k9OerDefsG3Qbh4PYrl1DnqdeW4sTg1uq5lMTaU4vViA1DiSLMmbRzJKyJeQ78lGTKi6ri0AsgNvqJhQPsbhsMVurt1KcUczXD/4bX0x8leXe5cwrnseRtiPpMQWTaKIj3MHM/Jk8PPNhLvReQEDAJJlQkyoJPcHC0oU3NpJu4JpHf6ZQUA2iyAqCIGAYQwWShJ4gz56HPS7wl5UPICY1DFUFs0GyvR311VeRSkrS8RNSaSnimhXvmfb2dxs+XzvTTSWMz1/JRyvuZmf7XvZ2HmZ/836212zHpbjoCHUQUkOsqlxFQ18DiKnQeZNoYnbRbDIsGZS5yjCL5red5xlj8JikKeW0s8pWvJneMQPTrxauNs8LqkGi8ShNgSa6wl3YTXaC8ZQLpt+h1e+kcitufFEfAgIZloyUQBcfPBooCiI2k41c22B30/js8UzKnURbsI1TnadYVbkK3dCp7q0mQ8kglAgxu3A2j817LH3uS+gJavpq+Is5f0E4EcYf82Mz2ahwV3Ci4wR2sz3NK6bnT2d63nROdp4c8ppdbkndW+F5baE2djXsYkfNjovvjauclZUr2VGzg2A8iMPkwKk4WVi6EMMw6FMDPNPxcrocYXHZ4jE/m+80zxuYXdYabGVp+VIMUmLqpOxJyIJMT7SHr97yVV5rfS3taIPheV7/mGVQDTI+azxmycz26lQ+YIY5A1VTkUSJmBbjeMdxqoqrmFs0l1sqbuGPZ//IiY4TGIbBS3UvsbB0IfdPu/9daS/t38wRSBVRmUUzHaEOTJKJWDKWyliTUnxQEiVybbkcbT+KL+bDYXZgkk2pz0Csj2Mdx5hXNA+byTYszzOJJmYXzqbIWTSE5/XGellcvpjd9bsZnz2es11nSepJSjNK0zyvf4PpvcrzrguRrb6+nq9//eu89NJLtLe3U1RUxEMPPcRXvvIVzANOLo2NjTz22GO89NJLWK1WHnzwQb773e8Ous61iv5FYXjjRvSBo1ueCmqqPHztmb8GoMxVRrGzmGMdx9hevZ16fz3Z1mzsJjtFziI+ftPHicQjzMpPNYP0RfsG7ZIOxDs9Y369Q/P5iG7ciFxSMqIQIng8qKbR78dPjF8cTzmYxmWN494p9/LbU78l25ZNc6CZvU17CagBFpUuojXYimZob7luusJdwaerPs0K7wpOdJxAN3REkw1/nous7CVDhaEBQs87AafipMBRwNLypQTjwVSltFnAIllwmBzYzXYiiQgJLYEsymkCZjfbOddzDoCZeTNTAtsAh5HtvvsuPshYTp1kEiMYHFXUEmy2ISOC1vXrU860c+culh4sXowgihiGgeh2I2VmphovASIRIk89NeT+HZ/8JI7HHhs0RmjKcCOsX0ds0/Dh7nKG+7Je38uxTQfVIFEhQUZzyyjC68UMDtHlwjR58qDXQiotvazPTLm7nF0Nu8hz5HFrxa0k9ARxLVXtbjfZWVq+9Kr/9gzKLhshL00Cxjks3GlL7ZA7TI4hLWp6NIoRCKC1t6ddicr8+aOP2M6bh9beTrKhYcj1BmbdvZOL4oEbOeqBA9inT0drbBzdjWm1jjhOqtfWMWnZQpriqUa93Y27USSFhaULKXYW483ycqjlEJvObaLR30iWLYsHpz3IH87+gZreGpJ6qiFuWfkyHr35Uep99RQ7i3mp7qV0roxVtjIxZyKyJHO25ywfmvohdjfsTgd+m0Uz3kwv902978a56zrH+4Hn9S8KX2t+DVEQmV04m1AiRCAWoCXYkl7ETMmdwrq8xYiJJNGt2wbnS1ZW4vjEJ9D9fvRAAPuf/zlH/Kch1sA8ht/Bf6dzI69nJHx9SM/vQK+to9+3s87rYd7SRznTdYabCm5KOZoEmcZAI0KTwNKypSSMBJIgkWXNYkf1Dt7oeoOavtSm+dvN88KBXkSvB712OE5awb7e41hlK4vKFr2jv5VXk+f1O4w0XUPXdboj3fQIPSwqW5Re7NtN9vTYWYmzhAu9F8hz5JHQUgv0A80HCKip5mqzZMZpdrKgdAFT86YOWQ+tHbeWbTXbiCajnO0+y6LSRdw96W7ybHkALPMsY1r+NE51nEo/34Se4ELvBQDUpEpdXx3jssdxx4Q7BvGKMncZX17yZf51z78OEtqm503ny0u/fNmjxJfL8zZf2ExdXx0ZSkb6+Tf4G6ARZhbMJNeWmxZeK9wVZFuzL74Ww3CikfBu8LyB2WWjHe/c4rmjXieoBjnUcoizXWdZWLaQ/z3yv3jcHp458wyRRIR8ez5VJVWYRBOvt75OT6SHaDJKMBbEbU3lhbWH2hEEgbZgG/6Yn6SeHLFN9e1E/2ZOV6SLOYVz2HxhMyUZJdT21eIwO1AkBd3QUWQlPT4bioewyBZMoomEnkAQBOwme2pjwKRgls0j8rzXml/jxdoXafA1YDFZeHDagzx9+mlOdp7EYXYwMXvi+5bnXRci29mzZ9F1nR//+MeMGzeOU6dO8eijjxIOh/nud78LgKZprFu3jtzcXF599VV6enp45JFHMAyDH/zgB+/yM7g8NBk+/Esn4Vo4HSmRJCpqbGvbw69e+W+iySgLSxeydtxaznSf4YnjT3Cs7RhTcqfgj/nxq346I510hjuZkjsFq8lKgaOAhJ5A13X+cPoPBOPBdEW8jp62xPbjrZ7g309IZ1fV1aE1Nw/vYPJ6Cd2+gAvBGmZ6PYOahPoheCo4G2lkSu4U+qJ9JLQErza+yorKFVRmVfJG5xt0R7tJakleqnuJJWVLaA+3X1HdtFNxUlVSRb4jn43nNtIWauP/Ak0sK1jEzNUrsOgCxOMp0v0ujLCJYmp3dcPEDdwx8Q50XSfPkcfSsqW80vgKAkJaILaZbMwvmY8kSOnbhxKhIa28gmNAvsIYDi1kmchzz+H4+MeIDiNqWdevh3icyB//OGSRY12/HpYvHxQ8rwsGbUkfxzv24PQ5mZs9fUR3qlRZieByDfuay1nZKHfdiRCJpcPdDZvlsgW2foxlm27wNdAWrKOqPYB1hKw189o1g47xSrLAACKJCOMyx9Hgb2Bq3lQcZgd1fXU4FAdLS5dSmV35lu8Txl48Xs7xjpZ7ofv9RLZswbJ0KfaPfYxo/3jonDmjH1gyiWnCBNSXXx72Yq2mBiMYvKLX8kpxqbvP8PkQnc7UWDVDf8usq1ah9wvFIyADhRm5MyhcWIiBQUlGCfua9hFLxtKNXnaznen505lfPJ9fnvglF3ovYJZS7o7WYCs7anZwc+HNfGHRFyh3ldPkb8JmtmEWUzk8JRklg3Y7H575MF3hrre8ALiBaxvvF54HEFADdIY7CcVDNPgbkASJKTlTON19mvkl8/mryR9DSCSJ7himlKemhuj27Sjz5pE4dw65ooISWyFtRoA/nvkjvdFesmxZTM+dTmV25eAx9zfxbrlpr3Xo0Sjq85uGiFVGbR25Bnxhzqc55j+LSTTRFemiJKOEpkAToiiiqipFziKeOf0MvdFe5hTNSW90v908z5nrRL9zw9DW6UovyVXLcPtO8c3bvnlV86IuF1eD5/U7jE53pVpCH5z+IG90vUFLsIW2YBsVrgoMDPIdqTyp/rbC2UWzWVSyiCdPPsmCkgVoukZHuANJkMi2ZZNvz+fBaQ9yquMURzuOktASJLUkNrONbGs2K7wrWFa+jJ5oD5qu4VScyKJMb7SXC70X6Ip0UZlZSY4th+7I4HOlIitMyp3EwpKFw77mC0oX8MO1P+Rkx0n61D4ylUym509/y1l9l8PzookoftWPx+0hmohiYKAZGrIgs6h0EQuKFww6xivNAnu7eN5YhpDLOd7RrlPvq2frha1UZc/kO/P+ATlpcO+tC0mYJeZlz+SLr36VjnAHpzpOMSV3Cm6LG5fiojKzkkk5k/j8js/THm7HZrIRTUZT4pSaMWab6tuFgQ6/pmAT+Y587p18L5svbKY11Joa9RRNZCgZVBVXcaTtSKosUVJI6AlEQWRC1gQUOVXeUemuJMeaMyrPU2SF+cXzmVM0h18c/wXne89jkSy0BFto9DeyvWb7+5LnXRci2+rVq1m9enX6316vl3PnzvE///M/afK1Y8cOTp8+TVNTE0VFqZnvf//3f+cjH/kI3/zmN8nIGL6ST1VV1AHjfYFA4G18JiMjqAZ57txz+GN+nIqTZ888S3uoHQCrycqn5nyKlZUrCcQCnO46nWq8cZVgNVk513OOvlgfkiBxRj5DsbMYQUgFQc7Mn8njxx7nQu8F3uh8AwRYVbmKpeVL8ccGB31fyQn+/QIjHL6YXfXm6Jkyf/7FbCpZJmo3U/XbW8i35/OjW77LOMO4JDi0gq5bZvG5TQ9gGAY5thx0Q0czNFZ4V/DE8SdoDbbSFenCaXbiET0MzBC90rrp4XZ6NJcD+V1+jx0mBzazjdmZU5li9yAnNAzFzLRF4/kyOhd6LxCOh7HKVmYWpCzEZ7rODLq9EQwOdgrJctqZ0z8SN5JLTWtuRiospFePoaxbgT0hpMYILRYMSSLZ2EjixInhFzmbnsd2z71IOamK+2Ptx/jJ4Z/Q4GsgqSeRRZkJ2RP4xpovIG3lEuI7tmvQlOEes0X0rWA4khJKhHi18xDeRR+guDeM5dZbYenS1AitIBCT4YD/NDfZb/qTfg+OtR9LjzT050R6Mj389by/ZlbBrCu+b93vJ1Fdjeh0plyJkQh6YyOy1wuJRFoAxWxGsFrfsoisBYPoPh/W224DUUQPBC5+1sYasXU4xiyzGbPs5m3AIHdfOEz4179GWbQIy/LlqSvE4yCKJGtr0f1+kKTR789iZUpOKQB5tjx+8PoPKM4opqqoit+e/m2qWVRw0hpsxSSbONdzjlA8RLY1G4fZkfquCDKZ1kwCaoCeaA8rx62k3ldPo7+R8VnjOdt9lkA8QJGziIMtB0k2J1k/Yf0VLQJu4NrF+4XnbTy3EX/MzwenfpBnzzybHlMXRTHN8+yCCSMSHLWUhEWLUGbPJrpjB3krVvDP+7/DhZ4Uz4vrcWYXzubnq35E5gsHrhk37bWOQeUwl15WV8eMWz7I3+3+Er6oj3xHPm3BNrJt2SwoXcBrta+xsnIlnZFOZuTNYHfDbiyy5R3jeaM5t1fnlvwpL8ufBIfJgSzJtARa6I50k9ST1PvquXPSnUSTURoDjWPyvAZfA2e7zvJS3Ut0hjtZXLqYSTmTmFkwE0+mh9lFs9lyfgstwRbsJjs22ca84nmsHreapkATy7zLmJIzhfnF8+mN9pI0Uu2fsijzUt1LhJNhnjv7HA2+BjIsGTjMDkozUll79065l6n5U4HheV6Fu4KHZjzE4bbDg4S24cYRL0WZu+xPLsAYiJF4XpY1C4/bw4SsCejoqEmVElcJZiHl/u0XMq9Fnlfvq2dvY8r1GUvGsMgWjivHmVM0h0g8QkuwBZNsoshZRIWr4i0/Tkeog0Mth7i3bDXuKKjbXiQ24Hf3Ya+Xhfdu5pan1xPX44TiIbyZXkoySsiyZuGP+fnC4i/wlZ1fQRAEBIRUe220D4fZMWab6tuF/nXfK/WvcLj1MOMyx/H3C/8+PXqpyArtgXbmjp+LmlRTDbmGhiiITMubxn1T70ubcLKsWUzJnwKMwvMUJ3W+OuaVzON873lC8RCKVXnf87zrQmQbDn6/n6ysrPS/9+/fz7Rp09LEC2DVqlWoqsrhw4dZtmzZsPfzrW99i6997Wtv+/GOhf42EEj9UH5g8gdwmp34VB+xRIxydzm1fbVk27Lpi/UhCAKlGaWc6T6Trkvu/4L4VT8vN7zMx2/6OFurt/LToz+l0FHIvJJ5HG09iiIrnOs5R4mzhHAijIBAJBFBluQrPsG/lxFUg8iRILI8emlAxwOr6Qh3EFAD/NkLn+QTUx7mQ0vuxm6YEBUrL3bs40sbP0hLsAU1qZI0kthkG5FkhNmFs1nuXc7Pj/089ZjxIHV9dUOaei63bvpSXOnO1NuJcnc5H/Hei2PvUawzlVRos6qSZ83mj2t/yY7O/TQGGsmz52EYBme6zqRLHPoDS42OwQHCht+fbsAcLTNNqapCPXoU2x134Biwm69HoyROnybxxhupkcCRFjk1tSSDfsxWKx2hDn5y+CfsadgzqLmp0d8IwNfv/AqOOO/aqM7AINd+ZFmzmF04O50Pkzz1OupAp4PXi2/ZHDZXb+ZYxzFmF82+oiDXjlDHEOKlGRp1fXX89MhP+bcV//aW71OPRjFCITAMEqdPD3ZoeDyImZlojY2ou3al/6YsXQqZmSM6N/RoFD0YTAlzihlMZgRBQH3lFeSSEpLNzSgD3GtpAbe5eVDzJrKMHgyCyQTDZC0NhPAujbf1u/s0SP2O7dqVfq0GwvGXf4kuiUhe77ALz0szHDVDw6W4qHBVpEcNFGtqIRNNRtPjE7qRCqUWBRG7yc7KypUcbjvMr07+CpNowmqyMjVnKksrlvLfr/03p7tPpwNzPZkeVlWuYtP5TTwy85Ebm0HvcbxfeZ6QMXtsET4WQz10CLmkBBIJfnrkIs+r663jOwu+SiFOjNmzoapqSFFCujn6hsgGXOR5o0GLRWgONJPUUrliLsVFa6CVY+3HuGfyPejozMifwauNr9Ib7X3Hed6VOs3fTpS7y5FFmQs9FzAwUCSFlngLO+t28sisR7Cb7HSEO0bleUfbjnK84zid4U4AqnurUWSF/U37ee7Mc3xq7qdSZRSFswjGg8iCjN2cOjeFEiHu8NwxKIcuqAbZdH4Tp7tO4830crD5IHOK5pBvz+dQ6yGSepJYMsbjxx5nVsEsbiq8aXSeJ8AXFn6BgBp415w3o/E8m8nG+gnr2XxhMx2hDlwWFyc6T2A32fnA5A+wrXobp7tOX1M8r/9+D7cd5oXaF+gKdyEgEE6EybJm0RJooTPcyaG2Q0CqjGD9xPUsLF044jRWUA1yuus0jb5GJFEi25pNUk+iRcM4m3tQ3zg9dFO9thYvBj9b/d9saXwpJehe2MILNS+w3dhOW6iNCdkT+PaKb/O1XV8joAYQBfGqtan+KXAqTircFRQ6Cwknw+lR5oGocFXwuUWfY3bRbHqiPTjNTiyyhd5ob3qEfeB350p53gPTHuCvJn+ELMGWKpxTLMwo9HI6q5Hv7f/ee5bnXZciW01NDT/4wQ/493+/WIHc3t5Ofv5gy2xmZiZms5n29vYR7+tLX/oSn/nMZ9L/DgQClJaWXv2DHgOXnlQNDH585Mc0+ZvSrphCRyH3TL4Hq2TFpbhQZAV/zI8spLIMdN4MJRTgQs8FREGkM5I6KXWEO+gMd/LJuZ9kZ+1OLvReYGb+TN7ofIM8Rx6rKlfRHmwnaSRp8Ddct9bMq43+E9dDxeuwjeaM8nrZ2PwCST1JQktgEk1869D/x3+d+F8+MusjTMiewJPnnqLR30hST6Z30kySCbtgT2d5rKxciSzKBGIBTnaeJNOamWp7MVJlC8PVTV+vMCV0nPuOYbt12bDtm2vXr+O/ffXEtfigk8PAHULNfElzlyQRefrpiy5DTUu5dDQNIx5HtNsxRBFBFLFt2DBE7DLCYUSn87JGAuOREGbgjc43hhAvSBHoF2tf5I4Jd3Cb97Zh70MLBiESSQtw2GxIb7EhLqgGqffV0xpqHVIj3u+cGEi8ILVbXu+rZ1XRLbhffn2o06G2FjfgqSjkf47+H1urt3K753bunXrvWxonP915mtq+WmLJGD2RnvRoiG7oHGw5yJG2I6wZv+ay769/9EkuLibZ3Dxic6xl+fK0cNT/N9O0aZgmTx7yng87TuX1oixenBbR1D17YP789OXqgQPY7r0XTCbUPXsGFxt4vcilpRiaNqqTcqzSjbcbo5Xt9DcVmqxWpDvvHGYMaagbM5QIocgKeY48cu256UVOP+xmezrkXRRENENjVsEsjnUc42THSWbkz6Ap0EQoHsLQDY60H6E12Ipfvei47ov1oekpR8iNzaD3Nt7PPI/CDZcVd9Bf4GPEU264gBrggXF3c3/lXUS3bCFce3FcXfJ40kUJ/UKbHosyulf1/YGBPG+010MzSUTikXS4en8I/p6GPVRmVqIZGtFElK5wV5rnAciijN1kRxREsm3ZfHDKB4kkI/iivvc8zwNSLqrsCSmRJ9yR/ltlZiVzi+ZiN9tH53m6ls5vAhAEgWdPP8u84nksKF0AAszMn4nVZCWWiFHkLCLPkYdNtlHmLhuylmn0NSIKIrvqd3Gw5SAv1r4IpEoDHpn1SLqlM5qI0hxo5qbCm0blebvrd3PPpHtG5HkdoY6LuWkWN1Nyp7zlBsQ/heeVu8rZWbeT4+3HSepJLvReQE2qVGZVsqdxD5F4hBdqX7hmeB6kvpNbzm/hyVNPpgsUnGYn5e5yTnScoLavlo/e9NG0yNYaamXTuU0YhkG2NXvIe17vq+fnR39Ova8eq8lKXIvjcXtwW92sy16IpDlQR8mfvWnhHfyP/3Feb32d8z3nKckoIdOSiegUUZMqL9a9yFeWfoVnzz7LyY6TRJNR8u35V6VN9U9Bfz7bpZ8NSH3HxmWPS42cK870ZyicCKcvv9SNeSU8b4V3Bf8089PENm8mfMk6b/a6dcS02HuW572rIts///M/j7m7+PrrrzNnwGK3tbWV1atXc9999/GJT3xi0HUvrWcGhq1tHghFUVAU5S0e+dXHwJOqw+zgyZNPpoM/IdVatKdxT0qZzqwg25ad2iXTk+joqRYO0USFu4KWQEvKhaGpyIKMKIhMyZlCaUYp5UoBP138HcxJA0GxcNh/msfPPslrLa9R7i6nI9RBo7+Rx489/r7PZxt44mpIdFHZ3jZidlVy5S388/9NQTM0YloMu9lOSUYJp7tOp+vBs63Z6WYam2xD1VTC8TA3F97M2Z6zJPQE+5v3c6ztGBNyJvDAtAe40HOBImcRrcFWXBbXO9YK9U7ACIWwzJg5RGCD1Osb3bSZv7zjIaI2ecTAUkMQBgkZWnPziK2iUmUltnvuQRplp1ePRi8WJoyxyIlJBt2+erqj3UOIVz+C8SBdka5hL9N6e4lu2jRsFpw0wL0xGup99exr2semc5toDbUCpAOOH5rxEGE1POzJFaC2r5Z7828j9ibBHHJ8tbXcd+uD/ODE/xJNRrnQe4GfHfkZd0y8A6vJellFKT7VR1JP0hPpQRREeqO9xJKx1CIFgbPdZ/FmepmYM3HM5zowf0+pqhq1OXa4vynz5w9xblya6TfwuauGcXEcHAaPHycSaK2tJBsbh935jG7fjlJVNXze2ZvOOuFddhwMaWB9E5cKaJdTIAGDz2ECAh6Xh1Wlt7IwaxZWXcRkdTBuXQlP127Cr/qxm+xMy5/GL4//krnFc8kwZ6QXYE7FydbqrUPOP0k9yfGO49xacesVuz1u4J3FDZ53EZfL85ILZaipGTPuAIBkEi3Djt1kZ8+9W5kctBLdvHnEDYj0pgEQQCXoq7/B8wbyPE/FoJiPfgieCk6FU+cJzdCIJYfyvEg8QpY1C0mQiBkpJ6JNthHX4szIn8G5nnOomsozp59JObcw+NDUD72neV6Dr4GElkAURVZ4VxDTYsiCTHOgme8d+B5LypfwtVu+xrT8aSPyPIfiSK1tgi0AtIfaKckoYW/TXlyKi1kFs2gNtuLJ9JBlzWJpxegB+5FkhK3VW2kKNFGZmcoJExAIqkFeqn+JQnshh9oOEdfinOo8xfT86VfM8waOUfajvwF0VsGsy3oN/1SeV1VSxWstr9EX6yPLmkVfrA+3xU1bsI3uSDd/OfsvqfPVXRM8Dy5+J2PJ2KCG0mA8SHVPdSrrzVc3qO0SUkJbQA0MEWaCapDfvfE7gvEgR9uP0uBvQNM18ux5uCwuHlx+25hFaeYk3Fx4M78//Xs8bg8myYRTcaLICq3BVrZXb6fYWUxrsJW149dyvOM46yesf9d/Wwfms13qchwooF1ugcSlPK/UWYrT4sRtcWM32XGanXx+0ec5130Ou2zna3M+i1UTMIJBLCtWYAQCRDZuhEgEra6O2ObN/GTlfzD3qVvT9/te4nnvqsj2V3/1V9x///2jXqeioiL9/62trSxbtowFCxbwk5/8ZND1CgoKOHjw4KC/9fX1kUgkhux8XosYqDbHkrFBxCtDyUBNpoSankgPBfYC5hXPI5KIoMgK0WQqyLIys5Kl5Uv56ZGf4jA7sMk2GgONlDhL8MV8fHfBV8nedRSjbmv6vm/zlDNh0Zd5+MVUFohFsiAg3MhnA5oDzXygdBV5ohNiccTbKzBiKrLHc3HxbbHgtwr8y6HvYjPZsMpWBEEg25rNzrqdSIKERbbQF+tjw8QNvN76OtU91ahayk59U/5NzMifwS+O/4IJcybQ6G+k1FVKe6ido21HWVK+hJ21O1k3Yd1lVWhfTzBUFaHfNTYMtLo6iMWwW9wj7mQIopgeD9Xq6kYeEb3M9tSkSUyPBY+W6YannAuxFl5vPcGk7Emj3qciDV3cacHgEIGt/zlHN23CevfdYzragmqQvY172Xx+c5p4AUSTUfY27sUiWbil4pYRb68ZGmIsPupj2LVUQGosGaM50JwaM3eVYDfZOdx6GFEQybJmMT1v+MBet+JGTaoICPREewjHw4PajnVD5/Fjj/OVJV9JNcVeUmSQsJiojbQQiAeYaSq7KIaN1RwbH+Z5JZNDRrBGy+DpF+b6kf5syTJyQQHyhAlIeXkwf/7QUazaWli8GBIJTFOnDspu1INBxHehaGQ4XK6AdjljSAPPYb6Yj39b8E8oO/Zg1P0xfZ2bPR7yFj3M/zv+QywmCwebD3Ki4wRuixtJlJhdOJuTnScx3vzvUhINKQIWUAPvObfHexU3eN5FXC7PS0oitLenzm2CMGQkXqmqSjnSAKxWtrbt5qvzv0jlgVrE0WIOBvymCV4PZyONHG459b7meU2+JvLsebgVN4d7T5FxyxxyETAGvoaecloWT+EPJ39Mnj2PuBYfluftb9rP383/Ow62HOSNrjdQRAVVU5mRNyPN8/5yzl/SG+0loScodBS+53leKBEiaSR58uSTxLU4uqEP4gCnu05T769nWv60EXmeTU6NO3ZHujnXc45DrYe4Y8IdOBUnhpE6T+Tacy8rBw0gpIboCl8UxSyyBbNkThWSRDqZUziHw22HUSQFAYGN5zZeEc8bOEY5ELV9tXz/4Pf51u3fGtPRdjV4Xl+0D4tsIc+el3ZVWmRLyh2YAFmS31Ge1/+8+gUds2jGJJmIJCI4zA5C8RBnu86Sa88lrsWRxZRZBMCv+sm0ZgKQ0BJDjiWWjA0RZhp8DUTikVQDpr8BIF3+cKz9GGExiVO2jPo+SBYr2dZs3IqbxkAjCS3B+Z7ziIKYasfMnogkSiiyQm+0lwenP3hFo7dvBy5XQLucWKGB57CeaA8bJm3gZ0d/RjAepDnQjG7oTM6dzNLypXxh6l8Q3bSJ0CWbzI5HHiH0xBNpoS2TlUMe573C895VkS0nJ4ecN4PDx0JLSwvLli1j9uzZPP744+nGmn4sWLCAb37zm7S1tVFYWAikQnIVRWH27NlX/divNgaqzf25A5AiXuWu8vQOjqqpCIJAva+eJaVLmLJwCg3+BgzDoDfWy/bq7djNdm4tvxW72U55Rjk3F9zMbUWLyNl1DP3SHbq6BkoReGTi/bRGulk7fm3aKv1+z2cbJ+Whbt1M9JIfCMu6dfT52vELETY2PMcTZ59imWcZfdE+kkYSt+ImFA8hCiIzC2ZikSwE1SBhJcxy73IWlCwgoAaQRRmzZOaJ408wMXsivdFeZFHGm+ml3lfPC7UvsGrcKtwWN5NzJr+ndjcBBEWBqDr6lWKxUXNjBIcDdedO5JKSi0LGm8IbS5YgyDKC1XpZOWh6NJo6kcsytg9/GK2xMbXrz2DBTvR6aF40mX1tuwkmgoiiiNftpdY3VKzxur3Dv29vnlyGg1ZXB5EIjCGyNfgaCKiBQcSrH9FklNq+WmYXjv7bJyijjyxKioVMayZNgSayrdmYRBMuxcUPX/shJzpPYJbMuBU3E3Mm8uUlX06NbgzAlLwpeDI9HGk7MoR4zcifQXekm5MdJ6nprWGGzZNylTU1pXPOJGBcRiZntTDxZAhMJpT58xHcbmz33ZcambpE4ALgkvMDALKcGskdgDFzj5JJtPb2tNga2bgR+4MPEnvppcEjosOMYgmSROzAAeT8/IvvpSwjFRSMmdf2TuJq5fgMPIfNzpyGZcce9Es+40ZdHSUCLB+/hL3dh7il4hbOdJ1BMzRC8RBH2o5Q5iojoScIxUOYJTOKpKTdwP3IsGS8534P36u4wfMu4nJ5nkUXMWbPRj18GGXePFi0KJVj8+bvXf/vjOTxoGc42Hx8J1+b9bfoe565rOZjyevFf9s8Xql9hrgWf1/zvM5IJ08ce4IGfwP/eeu3IZ7AWDQPy8rlJPQkHZEunmvawRPb/4Nbym9JC2ROs3MQz0toCVwWF5qusdy7nFkFszCJJuJafAjPy7XnoumpvKP3Os9zmByE4+G0uNYfDt8PURDTgstIn8Eydxlag8Zdk+6iM9xJMB7EIlm43XM7FsnCzUU343F7LivmJqgGCcQDaa5tGAZlGWUE48H0yJpmaJgkE1Nzp6ZNB1fC8/rHKIdDbV8tpztPjymyXQ2ep0hKakQyFMdmsvHP87/EHSW3IyU0ErJArxBjV/2ut53nXei5wM1FN1Pvq2fT+dRoZzgRpi/aR7Y1m2l50zjfc556Xz0JPUG+PZ+V3pVIokRvtJdTnaeICymhNkPJGNa9bJEtQ4SZUCKEJEppgQ1SLqz+FtsX2/fxgHnuiJvqotfD8807EQSBQDxAX7SPXHsuwXgQu8mOT/XR4G+g2FmMVbYSUAOUu8pxK+5R35d3Elcrl3vgOcwsmnn27LPYzDY6I50pZ5+kEIqH+NvJHye6bdvgtdmb56/oiy9iu/NOIk89BYChxt6zPO+6yGRrbW3l1ltvpaysjO9+97t0dV3cgSgoKABg5cqVTJkyhYcffpjvfOc79Pb28tnPfpZHH310xMapaw39avPO2p1MzpmMJEqoSZWWYEt6Rz+WjNHob8QqW2kLtTEpZxJxLU5rsJVwIsz0/Onk2nOZXzIff8yPKIocaDnAX1bej163fdjHNerqWbtgDc917SagBjAMA6fZiVkyp2ez32/QgkHUTcOPXMQ2b6b3lul8YudnqPPVUewsZmnpUspd5fhjftxWNyE1RFJPsmHSBqbmTuX5c89jNVlZVrGMH77+Q16ofQGAmXkzGZc1jlWVq/jRoR+hGamK8eZAMy7FhdviZn7JfN7oegO/6r+iLIdrFYLDAUZk9CspyqhCiGi1Yluzhsjzzw8WPfqdayME3V+KhK8P9flNQxwDUmEhcllZevdfz3DwbNMOGltfTgmlkoxZNPPwzIf55fFfDiJgXreXh2c9zLiscUMe72o0T4YSIWLJka8X1+NIojRqHgMm86gjSYIg8MTt/8V/nvkZup4KMX3mzDOc6DyRegwtjoHByc6T/Ouef+WHa384aKcz35HPX8/7a76151s0B5rTf5+RP4OHpj/Ejw79CE+mB6dhSgtstnvuQT14cND76fF6UNasQbj3XtQDB0YVuCSvl+Ql7jTJ40EPhZAuyWG6VHQbAlke5I6US0qI7dx5WaNYRiyGnJ+fKkUg9XlPVleT7OlBWbWCeHtLys35pnvM4ri8z+q1jP5zmNwXIF43/DivUVvHiiX38i+vfZt4Mk5vrJc6Xx2ZlkzKXGU4zA7ag+1UZlaSZc2iKdCEWTQT11OL1Sk5U5iSPYX9zfspdBZeUaPYDVx7uMHzLvI8IxpNN5gjioh2O9G9e4fmRq5dwxN1fyRhJC6eM8ZqPna7kVfczi8uPIEiKTjNzvctz+sIdfDjQz+mwd/Ab1f9H+X7LmDUHQEgBgjjx+NatpANpSv4UOFKHBk5PDzxg7zQuhu7yU5QDZLUk9xScQv1ffUsq1jG+b7zLKtYxr/t+zcu9FygK9I1LM9TNZV8Rz5W2fqe5nnl7nKybdlpJ9JA9DvFnIpz1LEwp+Jk/YT1bDy3ESkqkdASBNUgNpONe6dfbP8cC+e6z/HrE7/GoTho9KfcSHE9zriscWkxSxREMi2ZTM6ZzKpxq1JFClfI83yqb9TjGetyuDo8r9xdToWrAkmQ+O+l/0b5vvMYu7ekr1Po9bwjPK8t1JYunRAQePr005zoPJH+3ZtTOIdPzf0UhY5C/nDmDxxtP0pvtJeOUAdl7jKWe5ezo2YHDrODxaWLafBdFM0gVX6QoQwVZhwmB5quDfqbKIgk9AR2k50fnXyc29cupTBrmHgPr5fqKg9///RavrzkyyhyqjHTMIy0414WZXJsOSiSQp49j4SWoCfag0Nx8HLty39SFt+1iP5z2KGWQxxqO4Qsyilx03xR3FQ00GfPHsLl+53YwoDztaBY0AwtzfMEBGYWzGR67nR21u7EZXFdt6/ddSGy7dixg+rqaqqrqykpGVxF3R+wJ0kSmzdv5lOf+hSLFi3CarXy4IMPpqvfrxc4FSc3F95Mji2Hk50nh1zudXtp9Deyv3k/ALIgM7d4LsUZxeiGzgcmfYB6fz3bq7fzesvr1PvrmZIzhQxGzyNxGmbOd5/n5bqXeaPrjfRjzcifcfWf5PWAMZxGFStupyXQwsz8mTx686P812v/RZ2vDkEQSOpJbiq4iS8t+RKv1r/Kce0490y5h5MdJ2n0NfJPS/6JdePXEVADlLpK2Xx+M48ffRxJlEgkE1hkC06zk4dnPsym85vY07iHXFsqYPKtZjlcy7A4XCQT+qgijxEMImZnj3o/lzvyNhw6Qh3Egj4yXzg4eDyEN4UTQUBZuYJwIsLe3mO0BLqp8dWQ1JPphX2WNYsydxkCAt2RbiLJCDbZRo4th2UVy4YVAMYSd8YUf0gRB8soFnezaCbLmjVqHoOo2FCWLh0+N2zJEpLnzuNubODvl/8FZg0csh3BMIjeHKDHCLOl5WV+8sYvSMQTnOw8ycmOk0PGCWYVzOIv5v4Fy73LcSkuRFEkEAvQEe7gFs8ttAfbyROcqay1JUtQDx4c8nnQa+uIb92GacqUUQWuZGsrypIlRH7968HPZelSpMzMIZ+JVPi/F61m+PZMPRiERCK94JUnTx41C65fjJW83pTDbs+eNKkI/+pXCJ4KrKtWEntuI3rtYHck69Zgycod9r6vJzgVJ8mkn9EGkZOxCDV9NbgUFwtLFgJQ56tLuwpagi383YK/48WaFylzlZFlzUJAwGayMT1vOt/a+y2SevKyGsVu4PrADZ53EYLFMrjB/E0Hr1JVBckkYlYWzclevv7qF9lVv4s6Xx3/NP2vcTJ6zIHk9ZI8e5bOimx+fPjHwPub553uPE1TsInPzPpUSngYOOlhMmGdPRvxhd2YBryWEz0VWBcu44PbP86knEl8cfEXOd5+nOn503GanSRjSRp9jXzrtm/RFGiitq92WJ5nEk3YZNt7nuc5FSdzC+eyoHQBexr2pMsdFEkh25bNjLwZSII05ljY5Y68DYegGuRs91m+vffbnOs+x5yiOdjNdtqCbbgsLvqifdxUcBN59jzy7HlMzZuKw+ygJ9LzJ/G8sZxMl+N0uho8L8uaxfqJ68nQlaGfc1L8yg18aOFdvNiyB2+ml7PdZzGLZpJGMl1kAPxJPE+WUvnKhmHwhzN/4Hzv+UGREEfaj7Dp/CZKXaX0RHvQDR2P24NhGKmm0dbDrBq3inxbPuWZ5Txz+pn0bYscRdwx8Q4Wli4c8l6Uu8spyijCIlvSgqUgCATUAOOyxqGj871TP2WCvYwPLt+AQ1iOEVeJSjp/bHmZr2z+M0KJECc7TlJVVEWGkkGDrwFFVDAMgwp3Bbd5bqMt1IYv5sNmslHhruCfX/nnPymL71qGU3FiNVspySihOdCMLA6WkwwYlsuny8lWrgSTCcuqVegYvLLqt6CY2d97nP1dRxmXOY5v7PkGST0VDXO9vnbXhcj2kY98hI985CNjXq+srIxNmza9/Qf0NqPMXcaXl3yZf93zr4MI2PS86Tw882H+edc/p/+WNJIcbDlIJBFhdeVqavpq2FGzg9u9t3O0/SgV7gp0Qycm6dhGeUzBYmFP4x7KXBd/OLsj3Tx79tlUVoim4jA7LisE872AsZxEghrnc4s+h0k08fXdX+dIe2r302l2Uuws5mTnSb534Hv89dy/5lenfkVToAmb2caF3guc6T7DpNxJnOg4QSQRod5XT9JIomoqTsWJL+bjdu/tHGw5SFJLIosyipwSSS/NcgiqQcKBXmwJEOMJJKvtunLFyJmZWNevH74AYPVqort3Y1u3bsz7uZKRt2Ptx3j+3PN8uPSOIQJbP7TaWnpVH3978GvMLZlLXW8dDsUxiHj1E717ptxz+QTQZhu9edI22rc1hXJ3Occ7jlPkKBoySmCVrXgzveljGJWcZmZimjZtSG4YiQTq3r2QSJAbWwLxOOrBF9Hq6hCAHOARTwVr1v6CT+/9B871nKNP7RtynE7FSbGjmLPdZ/n+a9/nQm8q5Ll/ROqeKfcgJzTiMGJpRf97oVRVDX9ZXR3WVaswL0iNMTg+8YmU4Go2g9mMYLUOK7qKVivK+vXDuhiVJUsQMjJwfPKTKceZoqRb/EbEm6NY1jVr8AW6ME/8CJooEFZVrI9+HEkHo7sXS9V8tOKS9JirXltHYvNWuHvDdfPdHQ1jicRxWaDlE2fJk1yp92mRhYAQ5x9f/zaLyxfTGe5kd/1uYskYE7In4FbcqREWq4uN5zamXRFjNYrdwPWDGzwvhel500mapcHnhwGCm+TxoK66lY/t/Gtu997Oq02v4sn0sKvzNT7o9YycS+r1YrntNiKv7GKv86ID5P3M83yqD1mUWVGwCOPFjYMuU+bPH3aRaNTVU4rBZ2Z9is/v+SfiyTifuPkT/PzYz+mN9jI5dzLt4XaOtB/hQ9M+xP6m/UN4nmZouC1upudPv2yed7rrNI2+RiRRIs+ex/js8deNs2Ni7kS+duvX+Nar3+J01+nUqJ4oMS5zHA/PfJiOcMdljYVdychbva+ekx0nea35tXSLaGe4k3un3Itu6HSGOylwFGA32ymwFzC3ZC5nOs9cFZ43JW8K3kzvsCOj3kwvU/KmjHn8V4vnLSxdiDtsYNT9YtjHMWrrcFVN4GuvfI0Hpj/Aqc5TLClfQlANEtfi2M121KRKvb/+inlesaOYzlAniqwgiRLT86YTSURQkyqhRIjOUCdNgSZy7bmUu8rpDHfSEmwhx5ZDcUYxVpOVOyfcyaKyRQDMyJtBW6gNWZIpchRR4R7e1e5UnNxWcRsvlb/EroZdaaEtQ8kgz57HnKI5LKtYRmuwld2B40iCxObzm9nTuIe2YBuVWZWEE2EMweBXJ3/Fn03/M24tvzXlADZShQyHWg9x9+S7mZQziQwlg5reGjItmVRmVlLTlyqWeitZfNcD+oVxszg0dkYwjFGNKoIgYHvgAdRXX0XbtIl+iX2V10PVso/zkZ1/nRbk4fp97a4Lke39iAWlC/jh2h9ysuMkfWofmUom0/NToZNfWfIVvvbK19LZaQICVcVVfPzmj/OD136QDrpsD7UjCiJ2k50X2vdy/witSaLXwx8atqUD+gEyzBlMypnEztqdlDhL0lbu/h2T97prYEwnkUVha/VWNkzcQGe4kyJHEYIgENfiBNQA4UQ4FaSaCDA5ZzJxLY7D7GBhyUL2N+9HMzQm5UziYMtBPjD5A2w5v4WHJt7LqsKloKrYnVns7NjHtw/9Jzm2nEG7BP1ZDrFkDFNYxbHzAEZdHRqgcf25YqSsLKx33okRjaZyZxQFIxhMCWwrVlz1gPj+KvR/3fOvlGaUIqijCycZKHz9tq+zrWYb2faLrrpLQ3bfCgGUnM6RxcX168csPeh/vEVlixAEYdjWqfum3ndZxya6XEglJRg+X/pvht9PZPv2i/liJhOxPXuGXXDkYnCHZwWCIJClDG5F7S8ymKblUFSynkxsPHXhWeJ66jXvCHew9cJW1s1fiAhjFxqMcrmRSFxsjr3kM6NHo2jd3cM6HU3uTCJ3rESOxpHjSQSzmbhocDzcQJ5QSlnBxY0Hrbt71MMTMjNR5s1D0xI8tO8zRJNRJmVN4vuLvk5881Zil7zXA8dc9do6jFAI3gsim92OVFk5qLW0H6LXQ3m2l9jzmwbVuZs9Hv5z3dfY1XuM7TXbU2HFiQi+Dh9Tc6dyuus0NtnG+OzxNPgb0rv7IzWK3cANXOsYiedZ3LloI54f1vHoS381hOf92+H/ZN6an+NBSDtv0yUHTicYBuFX99BcVcn/vPJ54AbP63cSKbqIsmRJarT/zY0mweFIbYIMh7oGls5fTSQZ4XjHcUKJEDMLZhJJRHApLryZXvY17eOXx3/J3ZPu5vlzz/OByR/g2TPPEowHcVlcWGQLlVmVtARbqOurG5HnRZNR/u/I/7Hp/KY0Py/NKOWuSXex3LucmQUz3+6X6aqgqqSKb9/+bQ61H8IX9aUiaWQzHeEO1o1f97aIuh2hDrac35KKYAk1p1uIVU3l6dNPc0v5LSwuW4xLcTG3eC5et/eq8rx8Rz5/U/U3I7aLXo5YcLV4XoW7gkSwidECWhRNSG9gheNhXmt5jXxHPkfbjiKJEvmOfGbmz7xinpfQEoTUEKFEiKPtR/HFfCiSgsviwjAMvFnelCkkGaMl2ILX7UWRFZJ6SoQuc5XhtrrTz/fmopuHPIeBhQoDNwzGZY/ja8u+xhPHn+BCzwUEQcBhcjAhZwIPTHtgkMh7quMUmdZM3BY3LcEWLvReoMBRgEW2cFPBTbSH2mn0N1LkLKI70k00GcXj9qTzBUsySvjqrq+S0BOUu8pZWr6Uo+1HkUX5srP4rgf0lyCoSRWrbCWajKYvG2tD2oCUwHZJtIteW4fLMHhg3N389MyvBrk4r8fX7obIdg2jzF02bJPL0oql/MT5E052niQYD1KVPYtSUxbxSJibFv87+3uPcyHcSKGjkCdX/5RJ9nIENY40zk6yuRl14OLZ6yF423x+/8JfMC5rHMF4kFxbLlaTlTPdZwjGg0SSF3+W3zeto2M4jTq1ILd5biMUDxFNRokkIsS11I9Kri2XhJZAEiQafA18c883MYkmZFHm3in3cseEO+gMdTItfxqrvKuQRZm/m/oJJH8QojGQ7WgXmlnbbuKmVf/L3+79x0E/XgCBeICOnkYm7a0b4sK6Hl0xktuNrijpkU8xOxvbunVXXWCr99Wz8dxG3Iqb11peS+3ej/EraLY5GZedwyOOR65oVGEkSFlZWO++GyKRtPiDzXZZAls/KtwVZFuzmZ43ndZQK0ktSaGjkPHZ49/SsQmiSPjJJ0e+giiOuCtFXQO3z1+Dy+JimXsWyZYWBKsVkkn0N4U7o7kZ24EDfKikmFtv/S6rnkvtBkuixKHWQ3x88p8x1+sZM09otMtHEsZ1vz+V91Zbmx67kjwedElKlW/YbLjc+QStQS74GgglOnCIDiYWD22GGk08kjwe0HXUw4fx3TqbWQWzcCtuPjPtEwixOJYlS2BAhfmwOW7qGEUg1yg6Qh2c7jyNP+7HJJrIseYwfc0K2Mqg10rwerCsXUts67YR8i63sGDtKr7hqyepJ+mJ9mCVrcS1OAktQW2olqqSKg63HabAUZBelA7XKHYDN3A9YCSeJ2VlYdlwJ0I0lnbSJhUTTzVuozvSnd5ANYmm1Ii2nuRD2z/ONxf+E7fd9gBCIpV1Y8gyqqYS0aJsLw+x/fgPsZltTM2d+r7neVPypjArfxY5WcXE9h8fnB3k9Q4psxkIc9JAEiQylAwafY18c883gZRw9//d8i1+tuS7GDEVxZ7B0qVVdCR83Fp+K2e6z+CL+bCb7eiGTqOvMeWUuSQwHlI876lTTw0S2ACaAk388ewfiSQiFDgKrptF58TciRRlFF1VHjUS6n31vFz/Mo2BRroj3WCkssVMkglREFE1lVebXqXOV8fMgplsmLiBcdnjrjrPm1Uwi2/d/i1Od55OZXMpbqbkvbV8qavF88bi0wlZIKEn6Iv2kefI40z3GSZkT0ASJZJ6ks5QJ36Xn1J3KQebD+JQHJQL2bD1hbRYYgM+5KkYlufl2nMpyyjDaU5N7EDq3E0MbCYbHaEOCgoKUGQFURCJaTGSRmpjVRRE3Bb3qGPF/fw+Eo+wuuRWirCitbQQtjmQHE4m5kzkS4u/NOb7W+4up9BZyMz8mXRFuugMd9IWbOOPZ/7In8/5czpCHRxrP8ZNhTdRklGCWTSzwruC1lBruin1oRkP8dtTv6XB38Duht1MyplES7AFWZQvK4vvWoQWDKbWK2+ej6yCwCe9H+JUsBrN0DjZcZJoMpoynSijR1QJhjFEYOuHUVfPsoXr+H+HvzeI58Hl5RheS7ghsl2nqMyupDK7Mr2AjL/5YXUCqzweFtz+Af528sfQt+5ArXsxfTvJ68X+yT8nHOglLCQ4EjhLY8uLZNuy0zPw/QjGg0CqPnvgAub90Do6mtNIXLOCRb+cj1k286m5nyKSiJBpyaQr0oVu6AiCQKGzkPZQOwJCmgzfMfEO9jfvZ0fNDibnTqbGV0NVcRUf9dxDbNMm1Et3rKuqKNx/iEcm3c+PTj0+6PhkQaZMzsaoe2nY478eXTFXq+VwJATVYDqzor9VyCSa2Nb6Ch/2lENdw5DbSJVeBLsdGH2XsH8n761mwklOJzid6dvrPh/xSJBeIYZfiFGaUTomiXIqTqbnT2d6/vQxH28kjCUeGdHBIm9arHpz59+bkYUny0vy3DmM3Nwh5QADXVt5uw0em/4JPr/nH9NZHz8/+xSFi/4aT19w1DwhLRgc9vilysr0+zQQejRKoro6NWY6ezZCZiZaayuRJ59ML5z63YPOrKwxf9NEqxXbHXcQef75Qa9V/yhWbO9eLKtX0R6r48MzP8wEKZ/o80N/Qxwf+xh6VxeI4kXHRCIxJjG5VtDvBq3urSagBlCTKuFEmN+c/A1dkS68bi/3T7ufOYumMWXl7UjxJElZpFdUsSU1tAsXhr1fra4OezK10OzfHfVketANPb3DntATJPUkalJFNqcozHCNYjdwA9c7ZJcb3jyFV/dUc7jlML3RXiZmT6Qz3ElnpJMpuVM40XGCuBan1FXK/77xC37yxhMUOAqoKq5id8NuDAwWlCxgT+OeGzxvAPId+Xyj6kvENm8dKvrX1qIaxqBNkIGIy1DoLKQj3AFCaqIkx5bD1jt/j/dADcb23wCgA7bKSrxrVvDY/n/nRNcJJEFCkRWWe5aTac2k0ddImatsyEaBLMic6TozSGDrR1OgiXAifN05O65Wy+Fo6Od6mq6lhDXRREughQp3BfW+esySGUEQMAwDzdAochSlnUyjHd9ILqmxkO/IT4/9NvgaONd9jtNdp3GYHdhMNspcZe86z8NTzpaWXciizKnOUywtX0pSS6bcW/k38RfTP8qKgoXYdROiZqVBi9LYfoHSo4eHbPQbdfXkMZTntQXb2NOwh88u/Czjs8enHWWxZCxVxAUU2AuwSJZBzk6rbGVizkQKnYUjjhV3hDp4uf5lJCQeHX8/5h2702V/SUB/c8LHmZU75uevv0ETQEenureacDxMqauUYmcxLrOLh2Y8hN1sT5UqGBrfefU7vNTwEpFEBJNoYnLOZL698tvsqt2FIRhMyJpAo78RWZSvqdbR0RBUg6nvjZyDSU2mYpQUBSMaJfzb3yLl56NUVTHxaBNfXfH3HA1dIKElcCgOkKTR87bHcLqZkvoQngeXl2N4LeGGyHYdQ49GLzo0BsCoqyM/sRR1545hiUNs8xZalkxhR/urBNUgboubWDI2iGRphobNZKMko4TeaC8twRZy7bnp9pD3g2tgf+A05bdXkSvehhCLg0XhQrSZB59ehaqpyJJMUksyI38G1T3VFDuL0XQNURSRBInx2eNpCbZgN9mZnj+dVxpeoc6Xej88mR5MgomHK+7C8PtR5syB+fNTYekHDqRdLuaSEhZmZfGjAcflzfSSZc1CUkcfrbtSV8yVEolrHQ2+hnQorNOcej5dkS5+3XaUJbd+Fw8MEtpErwdl/foxxTLd7yeyZUu6SdIIBMBqxcjMRHK7xzwuzedD7+uDaDQ1pnKhmYyOdoSlc/jViV+xZvyat31sZzTxSJk3D7QBzUwm07ANoJLHg3XdOvRQCMvy5aCqYLGknVvqwYMoixaBpvFXk1fwiYp7UKwOVD1ORIvxbMM2kuVLGLdmJWx7YdDvmuCpILHqVkwm25CignST7CXvk+b3QzSKlJ2dIgaBAOFf/QopP3+QQ0GrqyO6aRPWu+8e1UUYC/nRQyE0NYZp1QrM+nLEeBzBZMYQBARBwLpmDZLTyRyy0YJBos8+O6xjK7p5M0pVFZEnn0w7JmJHDqcad69x1PvqOd11mu/u/S71/np6Ij0k9ATT8qbxZzP+jJ8c+gm1vlqeOvUU6uS7eZVDaUdMMZBsGCpmD4KqMi5rHLFkDF/UR1ANYjfZcZqd+NWUUw5I53WM1Ch2AzfwXsG57nP858H/ZE/DHiyyhY5wB5mWTCZkT2B24ey047Ml2MLxjuO4LC4KHAX8/vTvuWPiHQTVYHoxe4PnDYY1AaERHBUDy2wGwVPBzo4DKZ6XNZ62QBt2s53Pzf6blMB2SSyLVlODuEXn/pvuxqk46Yx0crLjJHW+OiQxJbhd6mLr53mjNktq8St2drxXeR5c5Hr59nzMkplGfyOd4U4WlKQyW5sDzUiChCAITMyayEMzHhrzudf76tl0fhOyIGNgEEvGyLRmsrh0MeOyhzaLXorqnmoOtR4aJHL3RHood5fzcv3LrJ+w/l3jeXjKqa7y8K8bv4CqqcS1OBvPbuSvqv4Kh9nBvaWryN51DGPHs+mbVEyezJTlt0O2OoTrkUiglJTx2OQVfKhoJUmzxItte3mt5wTnes4RUAOsqlyFIirU+mrTonOBo4C7J99NWUbK2dvvDHNZXBQ6CweN7faj0dfIsY5j1PXVYRbNLMi9CdOOV9CHKXe4nAmfoBqkureaRl8j3kwvlZmVyIKcGlmVZBRRYXLe5LSw3RHq4Es7v8TpntOpcWQEHGYHR9qP8B/7/oNFpYv436P/y0rvShaVLcIf819WFt+7jXpfPS/XvcyHy+8k+vzmISYQxyOPEHriCdSDB5FLSkhufYGF99yT5uHJxkaUqqrhS9WqqlJ5yaMgIac2VQfmsl1ujuG1hBsi23UMLRQc0W4pmM1ozc1Dcib6RRyv5TaePPkk90+7n45QB7dW3Jr6YfE3IgkSFtmSyozIrOT3p39PQk+QacmkqqSKAkfB+8I10BXt4rnzz/G/R/4XSZB4ZNYj/PjQj1E1FUmQiCaj7G7czZ9N/zN+dvRntIXaCMVDCAjcVnEbq8at4vsHv084EabQWciuhl3p+7bJNr4x5/Mkt2xDvSRwvV8A6Cd48gCi25/lYBJMaIYw6vFfiSum3259aUPReyGfZeCCwSybmZwzmePtx1lZuZK/2PVZHpn0IVYuXIeigcXmwuTMwOTOHPU+9WiUyJYtKDffPLzodOedIwptQTWIElaJb9oy5CRkqaqC3YeYOXvSOza2M7ClNRb2ExN1mhN9lBx4HaWgKL0rNVIgtFZXR3TrVkyTJxMbEEyePiH/5jepMott29DefJ1UUkJe3qpVPFqwDsPs5Kna5zHGGyxZsB5z0kC0WKmOtZJDkCmZpZjuuXdY12DaDRiPI1osw7pQBxKDgQ4Fra4OIhEYQWSL9XaR2Lw13Qiqkhp9TKy8BZ8cpjK7cuiNxmgoFleuxP7nf44RCKAeP45l9SpM17jzNKgGqe6p5gcHf0B1XzVW2Ypu6JglM4daD6HrOndOvJOn3niKWl9tOtB4oCNmzDECRWFG/gzOdp2lOdAMQDiR2kUudZUSiqe+x5IgjdoodgM38F5AUA3y6xO/psHXQDAeJJwIU+4qp8HfwK6GXbjNbj4848OE4iESegKzZOZkx0l+98bvyLHl3OB5Y2Cskqsh8JRTXVXB1zZ+gXnF81hRuYIfvvZDIokI64qXYezePuzN9No6Kuev4WfHfkaZq4wFJQvYUbODDZM20Bftozd2kXMN5HmjNktK5itydryXeR5c5HoCAibRRE+kh/kl8znQfIAKdwWLyxYjCAIet4e7Jt7FhJwJo95fUA2y6fwmrLKVnbU7BxUQ7G7YzRcWfYGJORNHvO3prtP89MhP2d2wm55oD0k9SbmrnLXj19Id7sZlcb2rPG9b2x4e+8OGVPGJyYHdbMeT6WFb9Tb+asajZO86Olg4ttmw33or0U2bh+VYut+Pun8/2p499D+bD3oqWHv737OtehvxZJxN5zYxp2gOi8oWYWBQmlGKw+ygLKOMqflT+Zz7c8OOdQbVII2+RtSkSp/ax/f2f4/9LfuJJWMk9STnHjwwbPY4jD3h0y8sPXnySTIsGeTachEEgcrMyhHzD093nqa2rzYt2lpNVvyqn0JHIaFEiPml85lRMAPDMHih9gX+Yek/XPPO06AaZOuFrXzUe++Q9xje5PrbtmG7804iTz2V5tJGOJyeRhLMZsK/+tXFbNABGkTkmWdw/Pmfj5rbezRwDiA9dfRWcgyvJdwQ2a5jJKPhkS+Mx0d0m9juuQc9nuB8z3nUpMqpzlPEtTj3T7+fmwpuQpEV1KRKVnsWL9a+SEJPjVX1xfo42HyQD0370PvCNeBW3GmCk2vPTQdcAuiGTq6Siy/m4zt7v8OfzfgzKrMqafQ34jQ7mZo7lc/u+Cy59lw6wh3pGmJIVZf/5fSPobw4NPRxSE5TMklGZg6frvr0oCyHoBrkTPMxJo1SZvFWXDH941+/OfUb/DE/LsWVbrp6r+SzDFww1PTW8PGbPs7/Hf0/dtTsYGbBTKojzXQ2b2Zx2WLm5U28rOdqhMPI+fkp0WkYUTtZW4swefIQl1W9r56e3hYm7q0dseLaVFLCJFsZO1pfecfGdvpHdnWnwtazz5GhZGBeOIW8fWew3347sZ07R28AralJOd8ueT7Rbduw33cf0e3bh3XXRrdtQ37zfu/2eqhfMJ67XvgoFa4KPnPTp5hi9+CImoh2tKbac3NyBt3HwNw1+6OPDhHYBh7HQGIwECMttmIh/yCBLX392jrMOwS6F5TTEmzhpsKbBn1mxlq8GbFYyjIvCFhvuQXGEM2vBTT6GumL9bGvaR+qppJtzSacCGM32ZFFmaPtR/ngtA+mr9+f8zTIEWO1jt6sa7Vy58Q7iSfj1PnqiCajGBg4zA7umnQXalLl1opbKXQWUppROmKj2A3cwHsBDb6GVA6TnkQURLKtqVD2yTmTscgW7plyD76oj/859D80BZqYlD2JBn8DBY4CknryBs8bA2OVXIkZGdgeeACSSYwsN6djjWxtfJG/mf83zMifwRd2fCHN88xJY9T7MiV0NENLTzRMz5/OpvOb+Lv5f8e4rHEk9MQQnjc5dzInOk4MGRktzSjFbrK/JWfH+4HnwUWu1xXpwpvpxWFysK1mG55MTzpzemL2RJZ7lg+/QXYJGnwNyILMztqd6RHtDCWDuBZHkRR21u6kyFk05HWr99Wzt3Ev+5r3sb1mO33RPnRDxyJbaPA3sOXCFhaWLuSWilto7W5913ie3ZnJorJFnOg4gc1kQ02qzC+ez9H2o1RlTsOoGywc2+68M7VZOgLHUpYuHbYky7ETvr/sO/QaYXqiPbza9CoW2ZIqOJAU+qJ9NAeb06/xpa9Fv5vQKluxm+z86NCPqOmrIRQPpeMkxuRdI0z4BNUgu+p28eSpJ5mUM4lXG19ld/1u5hTPIaEl6In20BvtZU7RnEHvc7+TVJGV9KajS3HREmwhGA9yruccexr2MK94HndNuou+aB9BNXhNf8ea/E1sKLoNOZ4c5GAbCK2uDmH58tQ/3iwkG/TaW60jrhUkjyc1ETOMq1LwegjePh98J/jm7d/EIlnIsmS95RzDawU3RLbrGLrZNPKFdjvq7t0jLuCVNauxm+30xfo40XmCvmgfnkwPL9S8wH1T7+P11tdZXLaYAkcBTYGm9O0dZgdVRVXX9A/E1cKUvCm81voaE7ImoKOj6xdzTGRRxqW46Ah10Bfr4+nTT3P3pLs50HKAhJZATap4Mj280fkGGUoGhY5Ccqw5CIJAhpLBbNcktNrnhn3cQSMKVgsRk8Ddk+8edB2n4iQ/u4zQ7fk4djJIaBO9Hkzr1lx26UH/rqZZMnOy/WR6bKHIWcSM/BkABNQAL9e/jCfTQ4Xr+lzU9jfh9EZ7SegJzvWc45FZjxBPxokmo1RmVjI9f/pb+iE3YrHUieTAgRFFbbmiYlDWXH9eyANFq9FqXxzmXi9+BsR4auHzToztBNUgZ7vPUu+rT2dkWCUrJyP1VC4az2RZQi4pGdPmPVwDqFZXhyBJIzpvB37m9do6yg2Df1nwFZYVLcIWikMoBrKAVnOWREc7ieW3cibejM1kY5ytlOSAYgNhlJKG4YhBP0ZabBmh0BCBrR96bS0zli/j7hc/wXLvcu6dem/aCTBmQ7GiEHniifQ/02OvrmvXzRZJRmgONKNqKaKaJrYY6QawaOJifl//aNpAgVtyuUZv1nW5qMDFJ+d8kgWlCzjRcQJIuRLOdp/FZXGxYeKG94UAcAM3EEqE0mHaxc5iGvwNBNQAk7In8ezdv0BJGhixGI898CEiosaHX3iMN7rfgHBKiNEM7QbPGw1jlFzpfj+Rp54CTzm/rwxxIdrEqw2vIokSZtFMRWZFmucxhku3fwQKoM5Xx/yS+RxrP0YoHqLcXT4kb8upOLl/2v2E4+Eh7aJ3T76b2z23XzZfeb/wPBjM9ZoDzeTb8/nknE8SiUcwMJiWN40puVMu+/mFEimXaJ2vjkVli9jbuJeWYEv6/Dcjbwazi2ZTVVKVvk0/zzOJJpr9zQTUAAapDLhYMpYW2haWLiQSH2Yz6m3CSDzvI7M+gppUiSajyKKMw+TguXPPYU4O3fwTnM7L41iXwKirZ/GyB9jRd4gSVwld4S5KMkooc5fRE+1hfvF89jTswa/62de4j/ml81O5Z2YHubbc9LjurrpdrJmwhv3N+3Fb3MS1ePq9iMtXNuHT4GugO9JNtiWbnfU7afQ1cvfku9nftJ8Xal7AZXHxSv0r3D3p7kE8r99JKosyufZcIokI9b56gvEgAgIlzhJagi1878D3KHIWsbJyJSc6T1zTrlEXFpw7X4UlS0a/Yr9g+WYh2UDOezk8D8B2zz3Egz6iIT9Jk8j5aDOv1DyNw+x4T/C8GyLbdYywbGDxejCGWwAmk6P+CCaSKi7FRV+0j9ZgKx63h9q+Wnyqj65IFyc7TuK2uJlVMIv7pt6HbugktASiIKZ3PN/ryHfks3rcaiyyhZfrX06/Tk2BJoqcRXgzvbxQ+wICAnn2PGp9tTT6GwF46tRT/NuKf+OHr/+QLdVbONp+FKfiJJaMMTF7IvpYIwrJJJLHQ9ShUK+2kEfpkKuUu8sJWoOE19yKLQFiPIFktSFbbYjxJMnm5jFD+PuJgD/mp8BRQIM/NZJiEk14M738/o3f0xXpIpqMMjF7ItnWbNZPXM/C0oXX7AliOOjRKLawyicL7yQsapyJNPBKxwHOdp9NV7RfyY+5YDZjBAKjj1Bu3ox8951p0bM/L0SKj56pRzKJZksJWm/32E69r54Xal7gp0d+yrmelE07Q8lgWcUyPjbrY8QlAU2NEt+zJ+XUGw0jNICOmRE4QPQymlu4Y92fE928hcgwo7TRF14mdnMeW9q38NfjHkJ+U7xT5s8fe/wnkcB2330ImZkoS5agHjiQek422xUdtxyM8OD4ezjQfXSwE2CMxZsRCAz6m1ZTQ+T557ENyLW41hBSQ5iliyJrQk9gla1oupYalyA1LgGkdqdlBbNsHvLdkrKysG7YANFouqkKqzVNvCC1wFxUtogZ+TPekTa6G7iBaxEOkwOXxYUz5uRs91nC8TBTcqaw5wObiG7aROiS38en1/8fi8PtvNb6GpqhXRbPm54/naXlS8m2ZWMSTQTUAH2xa99xcTUwWsmVdfVqQk88AZ5yaud7eWr/v+C2umkJtgDw82M/H8TznmnYwqMjlCgJngpe6tyPIinpTYqknmRa3jQm5UwikogMuQ2kmiU/v+jzrJ+wnkZfI6Iokm/Lp8xdRlANcqD5wJiZau8XntefMxdOhKkqrmJPwx5CiRCtoVZaQ61XzPU0XaMp0ERxRjH7GvexoGQBBY4CMpQMZEkmpIY40naECndFWvTs53kuxZXOlRJICUCaoaVFzoSeSK+p3m2eZzPZ6Ah3sLdpL3n2PEoySpCG4yJjcblRLjcnU8/5i4u+iCiIWGQLJ9pPcLLrJP9x4D8AuHfKvZzoPMEzZ5/hNs9tOMwOdF2n3F1OUk/itDjpDnejGVo6C/GOktsxJyHDmoWyfh3q9h1DWoFHm/AJJUJEE1Hsip2a3hoWlS5if9P+tOs0oSXwq35q+2oH8bwpeVPwZnqp7avFIlsIqkHC8TACAotKF9Hkb6LB14AgCLSF2vDH/Ne8azRLV4jX1cEIYmkaipLiuM3Nw5aPXQ7PE61WLFYrCZeDFl8DkmDjzgl3vmd43g2R7TqG1ekmsnwh1hcY3O7iqSCpjr7QDIV83DnxThJagj+f/efk2nL5n9f/h7gWRxIkfDEfcS1OhpLBs2eeJduWTa4tN5354c30XlbY5/WOmQUzKXAUMC13Gvtb9pNvz2d3w25aA61EEhEEBCrcFSwtX8rTp59O3y6UCCEYAt+47RvcMfEO+qJ9lLnK2HhuI8+fex517j+O/sBWK/La1fzg3BOsGbdmxKs5FSfO3Is/RLrfT+S5wWUYozlk+olAgb2AjlAHwXiQpJ5ket50Xqp7idZgKybJlF4wt4Xa2F69HYtkIduafV38CA4cJQSQgJmVXmas/ihNeh+lrrEbPIe932iUZFMTYmbm6COUtbWovi7ak31UuCuIJqPk2/MxlDEcYRYLjYlOsqxZb+tuTlAN8lLtS2niZTfZ+cKcv2V14VIsmoAk2LHZszBrJuKQOqGOIh5pzc3DPs6YGYEDxDll/nyiW4ZpfBtQCDLBWsBLgKBebCmSSkrGdpCZTER+//v08doefBDR4QBVRZflIQLX5WQbLs2dw+7Og4Ma+dKLt23bkAsKLo4RW62IGRmEfvnLIfej1dQMyrW41iCJEpqucVPBTRxtP4o/5ifXnpsSjUWJaXnT6I304nV7uWfKPRgY3DnhzmG/X5LLBZfh2nsn2uhu4AauVZS7y9MtlhbZgoHB9g1PjzwSv2kTL971Byb9Yh43FdyEJ9MzKs+LJCKc7znPwpKFXOhJtf4m9EQ6d3ZR2aLrSmi5EkhZWVjvvjuV6RmLIVosJGWRbl8H6j0reaZhK796+QesrFw5Ks8LxAJEly/GtlMctPkteCroumUW33v+fuxmOy7RhW7oTMyeyNrxaznXc45JOZNGPD6n4qSqpCrtlKr31fPHc3+87Ey1y+F5kiiRacnEKlvpinSx5fwWzKIZq2y9Lsa0Ls2ZkwQJb6aXCncFkihd8QZN/4itS3FRnlHO/OL5/O6N3zEuexwHmg9Q76unOKOYuUVzaQ+289GbPzqI5ylSaozQKlvTawYDA8NIiWx2kx2rbH3HeR6kYm96Ij28UPsCsWSMr9/6dawmK4faDiGLMoZhsLV1Fx/yVMDAWJqxONEolydNEme6zxCIBZiRP4N9Xft4/vzz6cvnFM1hy4Ut9MX6yLfn0xXuwmF20Bpqpbq3mtXjV5OhZGAz27DJNp5d+ws8+2sw9lwcaU16vdgefIDIby62yIteD6xeTl20lRKTOORz4DA5kCUZNZkSCIszinml4ZVB1xEQiOvxQTwv35HP31T9DT987YeYJBNSnsT0vOkUZxRzS/ktPLrxUQRBSN++X2C/ltub5YROHDCCwTEbQpWqKtSjR4ctH4MbPO+GyHYdw6k46bX2cnZeAaULp2JK6giKhe2tu/mArCOOctu4DOd7zlPdW40/5sciW1gzfg0bz22kLdTGuKxxeNwe9jXtY0ruFF5tfJUXa1/EIls43XWao+1HRw37fC8h35GPzWTjje43aA+1s6g0FdSpGzo3Fd5EXV8du+p3DXL4Tc+bztT8qWRaM6nureYXx3/ByY6TzCuex71T76Ul2UuR1zPsGJrk9aJlOPjB2Z+jyMqoJ14tGIRIJOXesVjQmpvRmpoGX2cUh0y/Pb3fCp9nz+Nkx0kylAwu9F5AkRTKXeV0R7tp8DcQTUY52n6UImcR2bZsbqm45U95ad92jNTAq9XUIm17EdfKRTT4G66oWcsIh4lt3479kUcwhhmRHHTdWIyNLS+xdtxanj/3PLsbd5Mp2Fg7ghNV8ngI2WXOdzUM26h0NdHga6Aj3MGF3guMyxrHL5f/D8WvnsbYtS19HXHCeIzVa5AqKy+OxnJJa5DXi7J4MZEnnxz2+Ri6ftni3KiiZf8obSK1kaCZZaT+C5NJDE0bnRgEg4PuSxUE5NJS1FdeGVaQFhyO1HdymFHX/uM2F7sxiynRdODIh5SVhXXNGqKbNg3NxlyzJt1wOhBvOYj7HUSWNYvmQDOfnP1Jfnz4xxxtP0pXuCvtev501acxdIMNEzeQoWRQ5i67LoT4G7iBaxVOxcmdE++kJdBCNBHFrbixaeIgB9tAaHV1ODSBD077IDV9NWPyPE3XmJwzmYSeYF/TPhr8DamcpEwvFa4KBEG4bjbU/hRITidBMzx+7HepzQNbbprntSS6qXBXXBbP+/beb/MP8z7HuqpVZIp2NJPMqXANjx/6N3LtuWTbstF0jXJXOSWuEqp7q3FZXKPyvI5QB6c7T+NTfbgsLk51nGJ/836SehKXxUWuLXdUd8xYPM8kmtASGrPyZ3Gm+wwd4Q4AXBYXh9oO8Rdz/uKaFlr7nXoDRUfN0DjVeYpz3ee4Y+IdcIWRpw2+Bmr7arm58GZ6oj18b//3cCgODjQfSLXDChIdoQ6Otx8nx5bDxnMbB/G8KblTSOpJcu25dIW7MDBIaAkEQWB85njy7fnIkvyO8bxzPecQBZE8ex4WyULSSCIJEp3hTl5ve51pedPQdZ1TnadYN2EdmxpeZMHCL1HOxViayxFfhoPgqaA+0YGaVHFZXBgY6c9aP3Jtubz4ZoxKmass3a5rFs1Uh6rTk0OSIPHsXU/i2V87tM23thYVSH7kAcL+LjSzxLHAeYTu1zjZeRKXxTVEkC53l2M32cmxpfJ+B37PJUHCJJmQRXlYntfPfX5x/Bec7zlPOBGmwd/A+e7zrBq/imfPPEtST2KSTFjli2uwa7W9uX+dGNm4EccjjwzJ3+sf+TQ0DcHhwLZhwzU7ffFu44bIdp2j3F1Ok6+Jn1T/nrgWZ0beDA773sAsmblzJNv6m80dCT1BU6CJuBZH0zX0Bp25xXPZ17iPj8z6CHn2PJoCTbza+GqaeJVklGCWzNT21fLrE7/mc4s+d92Rr5qeGk52nqQ32kuWLYvpudPHDD/tJ7obz22kPdwOpH54J2ZPpDvSTUf7xRPF9LzpfHnplylzp2qo5xbP5e/n/z090R6C8SBOs5OAEMe0bg3JLdsHhT5KXi/GqtvSAttoJ16tt3fYEYf+dtKBi/eRHDIOkyO9m/16y+vMLppNd6Q7fYIpzSilO9qN3WTHJJkQBIFoIkpXpItfHv8lk3ImXXO7nP0tk0YshmAyIRcXp4THS8QMraYWW3whP6t5dtiT7lgwYjFIJAj/5jc4Hn541OvGZYG2YBt7mvaQ0BM4zU4Odh9jyW2fJAMGia2S14u+ahl1yU7Wjl/7tn+/+m3yk3Mm8+GJH0wJbANJi8mE5ebZxLZuRZk7F1XXiTzzzMXWIFJCVLKuDtHhQCopGX7s5je/wbZmzYiV3pFnnrn8g04m0e2p09f5aDPT+8VKWSb8+9/jePhhopuHNl+lx38GQKutRalKOQSGE6QtDhfJtWuJDXN//cetPbAelyUlzA0c+dCj0dR3dKyCkwEY04n3LqLcnVoY1vXV8ejNj5LUk4TiITIsGWRZslhUtui6Ox/cwA1c66hwV3DH+DsQBIG4Fr+scG+LbMFpduJX/aPyvGA8yPjs8fzfkf8bwvNaQ61sOreJ6XnTh+SFXet4t3nersAJcmw5eB1eTrfXUuYqw2qycrb7LPn2fJZ5ltHkb0pnTI70u3ms/RjfP/h96n315NhyCMdTC/iq4io6w524cRPTYuQ78jGLZhp9jUzNnzroPsbiebIoMzFnIn2xPqLJKDaTjWgiiqqp1HfU8/QbT/PJOZ+8pn7b+0dD+/mLWTRjEk3k2nJTY3vxILqRylGu89VxrvvcFfG8UCKEZmi0Bltxmp2c7TnLPZPvYW/jXsQ3rQz9IlVIDQ3heZIgsWbcGl5reY2j7UeJJqMktAQTsiewYeIGbiq4iUm5k94RnhdJRHCYHVS4K6jrq6NZbUbTNVRNpTKzkqSe5Bu7v8Ftntuo7q1ma/VWpuRMYUfHPhYumM3E2xajx2L0mA1y168btl3Uuno1ut8/RIQTPBXEVi7haOvLiIKYLty4dER2oLil6Vq6fM5lcWE32REFkdOdpznSdoTnV/8Co+7QsM9Xq60lvvRmPvLaFznWdoxMayYfnfVRcm25tIfbhwjSTsXJ/JL52Ew2ZubPxCSmMs8lQcJlceFSXGQoGcPyvKAa5KX6l7CZbXgyPWy+sJmOUAfjssZxvjflEj7QcoB8R/6g9dK12t4s2O3p5s/QE09gu/POVM6eqoLFgmC1Irnd7/ZhXhe4IbK9B6CYFBp9jbSGWpmZP5NALMBjL/09M+/bSjkMEtoEj4fgbVX8y+aHCKgBcqw5NAWaSOpJWkOtLC5bjMVkSWdFJPQEZ7rOUO4qx262D8rjaQ29c204Vwu763fztVe+xuG2w+m/zS6czVdv+SpLK5aOetsKdwUfnfXRIflAqypXcbLjJH1qH5lKJtPzp6eJV//tsq3ZQ25nUZzob1ZpG7EYhmKmT1CpV1tYM27NqNZ2LRgkun07cknJkHpk9fDhYRfvyUgYicGtjLn2XAJqgDx7Hqqm8uTJJ5lXMo+Z+TOp66sjy5rFgeZUmYM/5scsm8m0ZOK2uKnprWF/037GZY+7IifY24FLR0NhZOERwFDjlGSU0BxofssZCWkxJBIhcfbsiG4nPOUc8p/GH/Pji/qwmWysHreaZ04/w4qaD/CZWZ9izZIPYNNkJKuNiFnE6nRxszJG9hlvOhlVNeXgisdTGXxO51vaVXKYHBQ6CqnurebWvCqMnYObpAbmzUXq69PimmA2YxgGgqIQ/vnPIZFA3bdv8AlZUUBRCP3sZxCJoB49grh2FUk1gpI0MFns6Urv/vdGqqxEHOsEbrFwPpoSp/d1HWbaqgewheOgG9g2bCBx9iyW5csRRDGdBaH7/SmBLTJM9s0AJ+JwgrRos2GaNm3YKnKhpJgL0WYUWRky8mGEw5dV9tCP4XItriUMXIQ2BhrTf5clmRXeFdfEb8AN3MB7EQN5njBzdCFeUBQUWeF4+3FUTR2V5312wWc50n6EpJ4ckee1hlqvK5HtWuJ5TsVJZWZl+u/9JRaRRAS7yT4qz+sMddLR3ci3bvo8poROwiRyJlzPd4/8F92RbpxmJ7888UtkUSbPnsecojlMzZs65H7G4nmSKCGJEtU91UN4Xk+khyNtRzjUemhIs+K7hUtHQ5sDzagJlbsn383L9S/zauOrdEe6EQSBYmcx90y554p5Xr8QEoqnRCqbyYaBgSy+GfYupMY/RUEkaSSH5Xnbqrdxc+HNbJi0gSxLFsUZxYzLGnfZzdgdoQ4udF+gI9KBbuiUucreUnFD//OwmWw4zU7OdJ3BF/NRklGC2+JGEARsJhvheBhJlHi95XWWli9F1VREQcQf87O38xC3vrSKhJ4gx5bDcs9yfrDq/+E2VqZEf7MZIxgk9MQTSKUlaZ6X4oFm2o0Qp3qO0uhrxKk4ybJmMSN/BjV9NWRaMtOlHv3iFoDdbCfXnguk2juLnEWc7T7L7sbdRBNRtOjwOYb9iIWDtAZaWTt+La+1vEZvrJdsW6qdebhxzcm5k6nz1fGlxV/ijc43WFq2lOZgM4aRajefkT9jWJ7XP44NKTFwSdkS9jTuIZqM4ov5KCotIt+fz5LyJWmR7u0eD/5TIFqtg5o/I089BVwf5VzXGm6IbO8B2GQbt3tvZ2ftTgQEcmw5hBIhlj69jm8s+kdWL1iLOWmgmWVOhWrZduz7tARbiCVieDI95NvziSajSIJEti2bJWVLeGjGQ5glM2e6z6R/5C6FWTRfs3bX4VDTU8O/vPIvnOk+Q4aSgW7oiILIme4z/Msr/8KPnT++rJ3OS0VFp+IcRLYu93ZwsUq7H3kwbMnBEESjKDffPGybpVJVBeLQYeGQmCB+SZBxd7ibRaWLqPfVU+Qsorq3mlcbXyXPlpfOYOvPEDAwUJMqpa5SusPdnOk+w+G2w+yo3YHX7R3UuPNuYMTR0FFcQyEhTl1fHUXOItrD7W9JNB6426Pu25caoTSMwRZ6TzkNCyew6fTP0UlVt1tlK7sbdhPX49hNdv771M/48RtPMC1vGjcV3nTZBFDr7UX3+1H37Bm8m/gWT4S59lxMsoksaxZ2fegpYdDoZiKBumcPypIlJJubU0LRkiUX3WuRSPqEDG/ubN5xB7YH7icuCzQkunj61I8JxoME1AAui4t7veuZ9rFHMCeNdFFH//MY6PIceJ8Rh5lXz72OWTJzf/l6hG0vDSlIkHJySLa3IxUWYqjqoOMagkvKGi51iohWK6bKyqF14x4PgdvncaD2D+lQ5YHv3ZijnwPEvfT7do3b7kdahF4Li68buIH3KgbyvJjMqONaqizQ5G+iO9o9Js+rzK4clecBJLUxSnquIVyLPO9K84Ys0QQLj/jQ634LpPJkb/KU853FX+WHZ55IObik1GZXJB6hrq+OF2peYFbBrLfE8w61HmJK7hRiydiwPE8SJPY17eNw6+F3necNNxpqFs0oFoVfnvglbaE2qnur044of8xPRk0GVcVVV8Tz+ptKTaIJzdCwmWzp/weQkJBFGZvJhlW2EtfjQ3ie2+LmQu8FavtqU+OY6Cz3Lr+sc+bx9uO8WPsifzz7x3QDcKYlk/UT1vPxmz9+2e9Frj2XWDLG+KzxVPdWMyV3Cs2BZhoDjZhEE1Nzp3Kk/QgLShZwsPkgDf4GZFHm9dbXOdR6iGUVy6hwV3Ch9wLdkW5erHuRDYEHKbAX8PEpD3F7wQLEzEzsH36YRCxCINLHyWA1zzVsRxZlSl2lzC6YzdoJa9PiMsDhtsNUlVRxsPkgfbE+uiJdlLvKiSajjMsah8OcEjm7wl2E4qmCif73fqwm0bgM53vPo6MzPX86siinx09h6Lhmf/bhpvObyLXn8sk5n2Rr9Vb6Yn2UZ5STZcsaluddej+lrlLWjV9HZ6gTzdCYmDMRt8U9SGB7u8eD/1SILhe2ASaQsUr0bmB43BDZ3gMoc5fxcsPLLC1fStJIssyzjOfOPUdLsIW/3fUFJEGiyFnErRW3Ek1EsZqsRBNRnIqTur46sm3ZZFoz0QyNWQWz+NisjzE5bzJBNYjb6h72Ma2yFZfFdc3aXYfDyc6TnO89TzgeTgtHAIqkcL73PCc7T45Jvq4F6NEoRjI5YpulClhuu23Q3yWvl1ORRly+2CByEUwEaQ22UppRyqerPo1VttISbMEX81HhqiCux+kMd9IR7kARFabmTWVG3gx21u2kI9xBJBHhdNdp6vrqiGkxPl316XfkxBFUgzT5mohqUdpD7UQTUVZnzXtLriE8FWxrewVZkrGb7UgR6S2JxkN2e/pHKBcvJikatCZ62dL6Cr9++UcsLl+MTbalQ29bQ63IooxsvvgTbJWtlx2GqgWDJOvqSLzxxtDPwFtsqewOdyMg8JGZHyFpkoZeYZi8uYHC22gZbdZ162gRgvyu4Xc0+ZvY07gnPZJU5Cyipq+Gp049xbLyZXxu8efoCnTh6/KRbc2mat0a2Lx1yDi1vmoZ/3r8B4iCyPqyFbhfeh19uO+BIGBZvRqjr2/0sgavd0hZw3Ajm5eSjn7naavaNmIb0lijn2J2NvaPf/y6IzDv1ZDaG7iBaxUDed7Gtpf54EiNmOvX8/mD3ySpJy+L5wEUOYuwylaiyeiQx7XKVgodhe/Y8/xT8V7ieeK2nUPPWXUNFCEws3IiDbEOQvEQJtGE1WRFkRUSemIIhxiL5wFYZAtH40eH5Xk2k41gPMir7a++4zyvOdBMsejGlhBAVbFaFD5Quoon6zYSToSBlHvIIlvYcmEL2bbstLPMbrKjyArne86zqGzRFfG8fvf23sa9+GN+yl3l9MX6mJo7lQZ/A6IgpjPOcu25V5XndYQ62HhuIztqdqQFNoC+WB+bzm/Cbrbz2NzHLuu96A6ncgWLncX4VT8nOk7gU32pceicidxScQs/O/IzOis6ubnwZjrDneTb82kPteOL+TjYfJA141MlbBd6L9AT6SGZmSTHnkNxnhfZbBm0yW0B5nrKyVnwIdZt/BCSKF3keaEuLvReINOSyQrPCkRBxGF20BvppSSjhA9M+gCvt76OqqnpIoJYMsbc4rl8a8+30A2dSCLCK12vc+8IsUh4ynml6zUMDOr66rhr0l3U99UP+i0bbv1a4a7gkZmPpFtq/37B35PQEsT1+IgbisPdj8viSotqK70rMUvm625T8lITyA28ddwQ2d4DcCpO1k9Yn8qR8LeDkapArvfVo2oqNtlGnj2PLFsW0USUnmgPBgZBNYjVZEXVVKKRKJWZlZQ4S9LEy6k4WVK6hD0Ne6jtuyheWGUrE3MmUugsvGbtrsPBr/rxx/yDiBeAqqn4Y378qv+y7+tK8j6uFoxwilgMJxik/z7AySZ5PFjWrOGVMz/hNttg8c1hcqTyJkKtOBUn5e5ycuw5VLgraOhrYFHpIkozSumL9WGVrBiCwZMnn8RutuNxe9IkJ5qMsrdxL2vHreXmopuHHNPA/Iyx6ubHQr2vni0XtpBny+NnR3+Wbl1buPgHjDpo1y8WmUwoq1aiF+azyt+KYsugwwhglsz0hHs41Xnqso+vX3iJB30kIiG6jShnI6f5h33f4HzveUqcJSwsW0iZq4zVlavZUbuDhJYYcj/9ojVcZhhqJILodI78GXgLLZXBRJCEniCWjHEiWM2tHs/gtuJLXF7YbAjmAc2oicTgjLZkEsHtBlkmYjfxx2N/pLavFqvJSoO/gVgyRjgRJqknKXAUEEvE+IvpHyE7KlGmeFCsJtRoCF+wC/vaFTj01SQjYUJigjciTZxu2pbevZ2VMZ5k3citriQSaM3NJNvbUy1IDM2Ds9x2G+EBOW0jjWwOLBkRLBYEi5U8Z96oztOBbsdLIVVWImRkIN0gMTdwAzcwBgbyvHM95/g9AneuXYU1aaRH4hMmiR9deBJZlpES0mXxPIDx2eNZVLaIvY17BwltVtnKorJFjM8e/2485SvCe4nnacOUIgFQV8/S+at4pv0lBAQSegJFUpiYPRFFVoZwiLF43sLShbgVN9Nyp5HQEoN4niiIeDO9BNTAmDwPrh7Xq/fV80LNC3y4fAOJzdsIDzhvu71ePrPu4/xfzdO0hlvT+V5JPYlu6AgIuBU30WQUVVXRDZ3mQDNm0czU3KlE41EONB+47OPrHwU+23WWHFsOjx97nIWlCwFoCjRR5ChiQemCq87zTneeJpwIDxLY+tEX6+NM15nLduUFEynB0uP2cN/U+9JlJ7Io0xRoYtuFbST0BJFEhHJ3OSbJRIGjgAlZE1KtsyYr1b3VTM6ZzC3lt5A0kswunM3NBTczLWM8kaefHrrJXdeAB/jinL/lG699l8rsSr6z7zscbz+e+pxhMCNvBp9Z8BluK7+NnlgPL9S8wOmu00zMnohBqoHV4/bQ4GvgZOfJdPOxJEj89PQvuWnJt6l887HS8JRTXeXhp698DoAcWw7Z1mz2N+2n0d+IRbaMuH4dWDLitripcFeMmTvd73Yc6K7sR5Y1i/HZ468LUe0Grj5uiGzvEQwc4QknwkzNm8qehj2DfsizrFnMHzefAy0HONlxknM954gkUjPtE7Mn8oHJH0g3q/RjXPY4vrDoC/z6xK9pDbViFs24LC4KnYXXvN31UjjNTlRNRZEUqoqrUGSFuBbHbraDkarS/sPpPyAKIlbZyvzcWTiS0hCr7J+S93E1YMRiGKo6+pUSCWz33QeyjB4MohoJ4lp8yI7LwJNDbV8tt5Tfwn+9/l8A/PaN37LpwiY+PPPD1PvqOd9zPm3jnlM0h3+Y9zk85nzkhEbSJLGv9xid4c4hh1LvSwXn1vbVEtfjmCXzFY+X9o8K5NlTAptP9dEUaKI32ktIiI8qsmmZGYQfuJOszEIS23agb9qM+83LPB4P5sWT+WXds7ze9jpZ1qzLDsgVrVYsVisJNYgp0Ms8ZRovLP8lhmKmR4gSlXRKXaU4FSdm2czL9S8Pun2/aD1SEOxwMGKxYR1mQ65zGXCYHGCk2ri+uPer/HbVTylDT5OWQS4wmw3HI4+ghy4hiG+OkfbD9sADiFlZ6ayKuB5H1EQMjPSYRVJP8o/zPs/dpSuQghFEq4votm3E3iTTFkD3eEisX8PjHVuGtFABJCLhUUvDjETiotPu8OHBGYYWC6LLlcqLS+fBeYcd2RypZMS6fj1SVtaIj3+p2zF92+tkNPQGbuAGrh1cyvNOxuqH5Xn3TL7nLfE8p+LkoRkPYZEsF8/Tohlvppf7pt73nuV5ZsnMxOyJqEmVQCIwSHS5FnjeaLBoInEtzrS8aYiCiM1kQ5GG5xBj8TxFVqjMrOSuSXexo2YHkNo4zVAymJgzkYUlC9nVsAvDMEjqSdpCbcMe07nucxfXCpIZl5JaK7zVsoF+nveB0lUktmwb6tavrSW6aRMfv+M+fnD2Cf5/9u48TqryzPv/59SpqlNrV/W+0E13VUMDDc2u3YCggIqsxqCJ+5rEJJMxk/ziPJNMJokziSaP2cZM8kz2MbujJIoggqJsCqgoyNpA7/teXfup7fz+KLvophdAIQrc73nlNXYtp05VN/SX69z3dXlUT2oln0k2UZZZhl6nTxWMvWEvmqZhMVj4w8E/4E53p7Yhnm3Wsyt2rii8gsnZkynNKKXOU8d1rutAB1a9lXFp41IrlM5XzvOoHiLxkSd1QnJ119muyhsotPojfjr9naw/vh6v6iWWSObIcfZkn7hQLMShzkPUeerItmSzrWEbedY8qnuqybRkMitvFn859Bc0NCZmJItHY/Wepa6B5fNW8E7ZUV448QI6dNT11aWK4I39jfSr/fzw+h/yTvs76HQ6dOhSg0cGBCIB2gPtFDuKU7shQtEQi/+6mm/P/zc+ec0niYYCBKQY2zr38n83P0CBvYDZebNR9Aod/g4qCyvZ376f+YXzR/z368CQkcGLStzpbh6qfIiZeTNH/WwH96odXGi7GLaFCheWKLJdQk7fwlOeXT6sbw7AG61vcOu0WwnHwqlGnia9CVknj9hzYlLWJB5e8PBF34Mn35ZP5bhKMiwZvNH8Bq3+VrIt2fhUH3ML5tLkbeKbr36TiVkT+evy3yGt34z/tF5X8oplfO+17w0JXpDsK/DI9kf4hf0XF/xKp2QyoY3UvH0QTVUJPv10qkeb6vOM2Gjz9F8ONX01fG7u57AYLFgNVnpDvSiywh+v/wWZkhXCKpgVErIMDU3IOjPEYyDp+Zg0lbBz6LYSn+rjD+/+YdgV8ve7vXSgaONUnHQEOlIFNoDnm1/hU6NN1HW5eK7lFTzhPm7b4xw28lurq2McGovnzOO1rn30hnrPuUGuIRDG8uJ2ErV1711/gyy3C8PK5ZjeO0aJs4QVE1ZQ11s3pGg9ELzOthmqZDKdsdB6tlMqi53FbGvYxqSsSciSzCc3f4ovzniQpfNWYIpLhCxWjOVuDC+B6cpKQi++iL6wcMyeQAm/H7moCH9PMgAadUYUWUHTkp+M1WDl5ZueZcLeOtQXfoWycCHq7t3DjqfV1RHd+CLTKyfx0khFNoMO47BbTwkbQCosTK20kwsLU4MLEn19EI9jufFGNMVIvy5CRNFjO62XXdznG1Zgg+SKuNCGDZhvugnZPvrPiOhtIQjC+XKhcl6Js4QH5z542eS8QkchS11L+c+9/8l9M++jpq+GaCJKhjmDJa4lwwps8PfPeWPRjAbqPfVU91RTlFZEjjWHSCLyvnNesaOY+yZ+gq9O/kwy55mMdMS9/PjgL3mj9Y3k6iFZTq0WO93JnpN877XvDdv1EoqFzjlLDeS8HJ2d0Bg7NhIeD/dPuIUfHv4lWkJjatZUYlqMw12HaepvIkHyPGfmzmR+0Xz+fOjPHOs+RrYlO1VkO9esV9NXw0/f/OmIhRj7ec55TsU5ZAjJ6Ux601m37BkotHYFu5iUNYlMcyayJBOJR9Dr9OTb88kwZXCs5xhpShpvtb5FqbOUdFM6bf428mx5yWFH7TArfxahWIhcay7FzmK0rrFXh+pjCTLMGVR3V1PiLCEQDWDQGdBIFm13Nu5kf8d+2nxtqc/odJF4BG/Yy1Xjr4JGaOhvQNErGGUjf63biGy28OdDf6axvxEJCZ1OR7opHYPOgMvpYnb+bJq8Taydspa5BXOHff4d/o5hBTaA2r5antj7BI8tfWzMFW2iV60wElFku4SN1jdnYMuBGleRdTJqXMVqtLK6bPWofyFcCj14HIqDf1v0b3xr+7do9beSZkzDq3opTS+lNL2U37z9G65xXcPivPmkv/rWsEJMvKYGbeMmbp6wms5AsqGlXtITjAZp9beyr23f36Xfh2S1kmhsHLPHlGSxYLntttQERO3uT4x6RWW0Xw6z8medWq7/woupsKNccw1ycTHq4cOop/XgsmZlJXuJvFdAONFzYliBDc68vXQ0A1ftfBEfBtkw5KrRv+/9HkvXbsQFQwptcmkpkesX8fzOr/HEvP/AnBOFuVecmsa6Zw9Eo2h19Uy7+gpe60oG67PtmwEQ9vcT3biJxGnbOxK1dUQ3boKbbsRkSxZvcm253D/7/g921ctiITFWn7FzmFI5sA3p9abXqRxXSZu/jb/WvcALza9QnFac6u3zxasepMLsIF5XR7y5edQ+bMrChcjp6ejM5lQAdJgcBCNB3OluDncd5utXPkzpnloS7/0ZGzJc4TSJ2lrKrqnkpdNuV2Mq+73VVLldwz53AMnt4q3+I5Qunkv6NkYcEBJ8+mmkokIOVhbyUusObp5yM+NOP1AwOPbW7GAQxiiygehtIQjChSFy3lBnm/NerXuVl2tfpthRzM/e/BkPzn2QE70n6A31crDjIJ2BTiZmTPxQc95orQYkVwnHgo3k2/O5ouAKNE2jL9RH5bjK85bzANJdLv5j+Ve46q8rafe3E46FmZY9DYNswDdoiJZP9bGzaeewAkUoFqK6uxqz3nxOwwZSq7PCZ9ixEQphee/3qkE28LkrPsdP3/wpaMktghoaJc4SFhQtYFfjLmRJJhqP4ov4yOfUBeFz6ZF2toWY85HzynPK2dW0i6K0omFbRtNN6UzJnnLWLXsGF1oDkUAq6w2cqyIrHOs+xsy8mcnPSPVxuOswK8tWsrtpN4peodHbSJu/jRsm3MD8wvksdS/FrtiJm8b+PkXk5A4Gu2KnN9SbWhGp1+lThbbeUC/94X5ybDlDnqvGVLxhL93BbpZNWMb2hu2smLiCHGsOdqOdNn8b7f52fv3Or5mdP5u+cB+esIdQOMTJ3pO4091kWjN56vBTTMuZhhpXMeuHZ7EjnUeGfV8H1PbVcqTzyBm3jV4Kf38K55cosl2GLteKe5GziINdB7EZbNw7415sRhuesIdAJMCfDv2JaCLK/PHzWTnuGrQdm0c8RqK2joVVK/h0+xdSt6Wb05mYMZETvSdSY6gvpIFJh7qMjJGLHJWVBH73uyFb4BRnNpm20adNjjZN696Jt6A+u37Ia+gnTiS8dXhD3nhtLSpgXr6ceCCAZLXS4e8YsZkyJAPYaNsORjNQtLEb7all7gMC0QAr1n+Ch+c8xB3XfBJTXIfZ5qRPUnmj+wDfn/ctjFt3ERy0rF12ubCsXUtw3TqIRtFH40OOebZL8TW/f8RCDyR/ZjS/HwZ9/h/0z6Bst4PLNfLPwPvYijjQc6Q0vZRnq5+lP9SfuvKqxlXmFMzh+caXmFZ8V/IJI/RhQ69HcjjQpaWlXnvwNpVIPMINE25AjavD/4ydYeurHDl1v1E2UpU5k4nmQvTROMp1c0m0tKJu3pz6mZdcJfRdM5tHXv4CVqOVz8+4n2uv+xQ673v9DN8rPktFhfiWVLK9dt2oV5fPtG3nbLflCoIg/L2InDd2ztNJOk70nqByXCXPVj+byimyJBOOhekKdNEd6k4d98PIeZbVq4dPTHcV07RgMjvqn+Pt1reZnDWZXGsuJeklrC5bPWYh4FxyHryXKza9xH9f8wOufnoFFbkVVORWsKF6A2a9mUxLZnL7nqcBT8gz4muGYiH6w/3nNGwgtTrLNPKqphS9HlSVtVPWEo1HqffUc23ptSxxLeFQ5yF0ko7OQCcvnnyRAnsBxY5iDkgH0Em6YYc62x5p51KI+aB/BnNtuayZtAaLwTLidNHbpt12Tn+eB86n0dPIlOwpvFTzUrKfn16h2dtMvi2fpe6lvHjyRTQ0IokIz1c/z5z8OSx1L+WK3isw6Axc576O60qvS732WAVhXMW83P4642zjGGcfx5utbwKk+q0NsCt2IolTW2NlScZsMBOPx+kKdTGvaB5HO49yQ+kN7G7ezZstb9IV7GJR8SLeansLm9HGnqY9TM+dTml6Ke4MN83eZpr6mzjSeYTSjFIUvTJqzvOonjE/uzPdLwgjEUW2y9TlWHG3K3YCkQBvtLzBFeOuSE1MUmSFBUULqPPUYdabsWqGMY8jv1eI0Uk6JCT6w/3Ue+oZZx9Huin97/FW0DkcYDRiXrEiuQorEkEymYi1thJ85plBBbb3Ci5jFNjGfJ2Qeip4GQwoVVVIOt3oUzxrayEWw//znyOXuqm87mpi8RjheJiElkCWZBS9gl6X/KtHL5/bX0EDRRuj3siE9Ansb9+fus+sNzMjbwYt0W5+37wRd7qbpo4mWnwtLM6fj+Xl14ifvjrxvWmsSlUV6s6daMahS/PPdin+mbZujnT/B/0zKGdkgMGQ/BmIxVI/A5Ld/r62Ig6MLz99+5GGxrPHnk32Uhu8heW0PmwAtgcfHPLag6+eAsTiMW4pv4Us+bSfx9OHK5xGU5LfF6Ns5G73x0nb+gZaXTKshUgWl02ffoCu3mYSBpnnml7iB8+sYkr2FCZmTmS/5xjHA41UZc5kmr2UWHE+sYk3czzUzPbaddiMtlGvLp9p287ZbssVBEH4exI5b2jOu7LgSuo99VgMFiZkTAAgz56HUWfEH0kWWZymZCuKgULah53zLDffTNDTTSToJ26UaU14+J+jf+ZX+35FTItBIzw490Guc193xpU2o77O4Jx3mnhdHTOuW8pNU24iGAlyoucER7uPsqhkEa81vcaycVdTZi7ivtzlfDx3Mds73+RXR35PgkQq5w1MZjxbAzmvM+HD6XYPzZvv5VC5pAQ0DclkokxvYV//EbbUbGFL7RYyzZlU5FTw1OGniCaSDfYHLhqmm9KxG4f/nj/bHmnnev8H/TM4I28GebY8Kgsq6Qh2kEgkGO8cT3l2+fsqmNsVO1NzpwIwM29mKuuFIiGqe6pp9bVi0J36N1BMi7G3dS/uDDcv174MwKqJq4a89mi9Z3VuF/6l8wjXP8/kzMnYjDY0TUOSkp10Bwpt03OnY5SNFNgKgGSBLceaw1OHnqLWU4vdaKe6u5rKcZUc6zlGvaeeNCWNrmAXTx16ijkFc5iUNYlsSzYG2UAsFiPHksOx7mPodXqm5UxLFdhGy3lOxTnm53am+wVhJKLIJlzyBk87Sjels8S1hL0te/FH/PSr/RhlIxnmDKZmT8Wn+ghIMcb6dSubLey7YweTLMVIqoqmKFQH6vnVsb9QlTWLUHsrmprsvdSvi9IYSY5A/yATNUeiM5uJdncR/M1vkze8Fz4sN998amWR05ksyL1PqVU6BkNye+Devch5eWM/572CUrymFoOm8YUZn+Ibrz+Kolfoi/Qh62SyLFm4ne7UL9WzNVC0eeHEC9w+/XaafE3sbd6LWW/mE1M/weGuw7ze9Dp+1U8gGsBmtPGxyR9jum0CWt0zIvggNgABAABJREFUIx4zXleHUlWFzu2iOd6LO92NUTYm+5Sc5VJ8SRn7iuuZ7n+/ZLv9jFsVz9XpodCn+nCYHPSGegnK8TF7sY20JXKkq7k2KZ3B6xvjZ9j6qtlsZJgzmJM+7b0C2/BVlIlNL/K34k7+cvJZDncdBmB38252N+/mtmm3EYwG6Vf7kSaYmVo4lRZPA7JkYU3ZmrGvLlssY79ni2Xk5wmCIAh/F2fKeXqdnhxrDlNzpuINeznecxx/1M/8ovmsLV+LQ3HgCXtQYyot/S3MzJuJQzm1mluRFUKxEHmWPIqdxbxa+yoe1YPD5CDdlJ4arnAhct7etuN8ecuX6Qp2IUsys/JmcWvFrcS0GA7Fwc2Tbz7rrDKSM67GVlX2NO3BE/ZQkl5CV7CLaDzKAxM/QUZYj6TpQVKwmRzclncdV+bO5hMv3pfqA1hgKzin8xvIeZtqXuL+lWtP9UQdlENPb/9QuXw542Z9kR2NO2j1tRJLxJhflBzYABCKhFhSsoTpudOJJWI4TA6MspGa3prUxNUz+bAKMbm23PddQB3L4KznU30c7DpIXIuTa8slx5qTGmRW7CimK9gFQEVOcjXj6UbqPdulBfi/b/0YX9RHQktw78x78Uf9vNmSvEAqIVGRW8F9M+6j1dfKHdPvYHPNZow6I5tObEoV2FzpLnyqD3/Uz/b67UQTURJaIjXQ5fSc50p3kWnN5OuLvn7WqwjLc8pxp7tHXKnoTndTnlP+wT9w4bIjimzCJa3eUz+kJ8L1rutpD7TTH+5H1smY9WYi8Qjt/naK0oqYlDWJzW07uHe0Pk9TJlOQNo6MjRtR6051iSp1ufjxqkcIbn6RyPETqdstrhLyllzBH6qfxWa0nfOUpTPRmQf9A3+klUX/8A8f6PgDq3SUqirUvXuTQaeqauwnDVoNlqit45pFnyCuxWnsb6QwrTDZhFlvYcXEFe/rsyhxlnDX9Lto8jTx2JLH2NOyB0VWeK3pNQKRAJ2BTqbnTmdX467UKqx/LLrljMetnzeRO194gGA0SEVOBV9b+LWzDsuSzYZulJ8ZnduFZBtetj19VHh5dvkFCVIf1ODVaL85+TT/uOouQhs2jjxpc5SC7umFu0QoNGR7QWoCKKNsfXU4uG/mfej7vETqRu7dptXVc8O85fxvzfph90UTUcKx5D8kbAbbOV1dlu12zKtWjT5d9DwXOQVBEISzd6acNzB1s93fzjj7OJa6lhKOhZmcNZmDHQeJaTFWl63meM9xdOg42HmQb179Tb6z6zu8NCjnLShawL2z7+Unu39CR6gDs8FMbW8tTrOTtVPW0hvqxWFynPecl2vNZV7RPPY276Uv3Me7ne9CZ3LbYGVhJU6z8wMd/8xDFoy0+9sx6o3EEjEUWWFu5gyyZAehHZuG/V6cuHw5/zL3S3xj93dYULSAO6ffec6FxxJnCbdOu5Uabxulq1eT8HiQDAbCr7468hCiTZsoWLSIf5nzJb6x5zt0BjqZXzSf473HMctmvnDlF3jq8FPsa9uXWkE1JWsKD859kFl5s866R9q5FmIuxpwHsHD8QnY27sSsN3PV+KvYUrMlmYsXfW3EwSkwvPesVVVwZbjoDfUSioUIRoM8dOVDtPvb8arJab5+1U93sJu7Z95NsbOYAnsBb7W8xav1rzI1eyoSEj7Vl9y+Go/Qr/aTZckaccvvB8l5ubZcHqp8aNTpoh/F75nw0SeKbMIla2AM+OCmow3eBmbkzqA31MvR7qM4FSdqXMXldFGWWYask1mafxWm8Tmo2un/4HejX7qY8MaNI/+S37ABQ2Eh6qAim1ZXj/MVuOrKK3il/bVznrJ0JmP1QjiX5vejem8Vz+DG9GOuOnK5QBvaa8GckPlS1ZcwGUzE4rHUL9xJmZOGNM4duOJk1BkxyAaC0eCoV4btip3y3GSgKXGW8FbrW7T72jHIhlQPsIEgVd1TTcI49l91AYuef9jyfzDpTVgNVvrCffzy7V/iTnef1S9Xk80BK5cPG36gG5guetp23XMdFT7487EZbef9avmZDF6NdkBtYOrqlZjVKJqqJlfpmc2jFthGMmx7wXs93kzLlmFetoxEJILObB4yhdOu2InF+hl9oD0YY8kmumlKstn1AIPOgElvOuupXqeTMzIw33QTBIOpq7RYLKLAJgiC8CE6m5xn0VtIaAmKHcWUZZaRIMF4x3gWjV/E5pObmZw9mXpPPfvb97Ni4grun30///f1/4uiU7hr+l1EE1EMOgNqTOW7O7/LkpIlZKqZ9IX6mFswF3/Ez7PHnmXNpDX0hHrOe84rdhZTnl2OzWijK9BFOBbGpDeRbc1mvGP8B1rFBpxxtfa7vpOE4iHsih2jbKQit4JSc37yYltHB5Zbb0Wy20FVwWQiEQhwi3sNtcEWbphwA2VZZcD7y3n27Pdu0+kgFBq9VUldHdK117I0r4rHjfbUcKxMcya3V9zOc9XPJYusaeNQYypxLU53sJu/Hf0b8wrnndXHdK6FmIs55/mjfu6fdT9qVKU92M6KCcmefKMV2EZy+lTbdn87GeYM8m35FKUVoWnasK2vdsWO2Wgm05xJx2kT5Y2yEVmSSWiJC5LzZubN5LGlj50qiipOynM+mkVR4eIgimzCJWtgDPhgXtXLnw7+icpxlczOm41e1iMh0RPsYXv9dr406/MU7qwm2Lx1WFP3hN+PLpoYMlFzsIFth6fT6uqZePUVvMK5Taw8G6P1Qng/ze9HMrCKJ9F9qgHwqKuOXC6UhQuJnTgx5BjdcS/fePUb6GU9FTkVPDz/Ydr97anx6oOvQnvCHqq7q0k3pbPUvZRWX+sZrwyPd45nX9s+ekI9tPhaAFL9VgYc9Ndyhcs1bJshJJvkb2rfiU6nI01JS91+thOFBpgysuGmG9H8/lTxSbLZhhXYznVU+OlX6SE5oep8Xy0/k/Pd32ek7QUDRTV5lOec6Yp73KCnL9SXbMbc34BX9VLsKCYUDTEle8rZT28dwYXYmisIgiC8f2eT82KJGOnmdFq8LWyv305VYRWLXYvpDHRSllVGg6cBnU7HmklrmJAxgXZ/O7ubdg9pxK6XkvklrsXxRr38+dCfafW1AjApcxLXua9LraI53zlvcLHCZjy1Kv6cJpKPYazV2rrl17H2d1di0CUvYI6zjWNuwVykSJR4Rwe2e+4h9OKLI67ynpAxIdnLlQ+e82SHg5jHM/YbUVXkaJxiRzEaGtNzpjMpcxJOk5PqnmpybbnodXr0gy66NvQ3nFPOO9tCjMh5Se9n+IPNYMNhcmDWm4cMThvIc3EtToe/44LkvAu1NVe4PIkim3DJGmlakENx4Iv4eK3pNUKxEFmWrCFXS4oN2Wh1WwCGbb0EsN5779gvOsqUREM0gRpTUfTKOU1ZOhtjFSvOBzkjY+j7GmGypOR0Em9rS25Zfe21U491FfNCyzbGpY3jSNcRXql/BaNs5Cvzv4LVYB1yFVqNqVR3VxOKhQj5Q+xq2MUXZz7IOH0Ght4w0Wgnsm3kpv5OxZlqsgsQjAZxKA761X4AXm1/Hfc1nyRTAu20lWatV03lyde+TiwRS13hHBjQcK4ThUw2x5ApoiMZa0JVZ6CTxr5G3mp5i95wL+nmdDRNoz/cj81oQ5EVPGEPvaHe8361/MNw+vaCMxlr5abO7aI51ovZYKbF10KuNZeqwipuKL2BEmcJV4y74qL+rARBEIShzibnAUOyXjwR55kjzzAtZxrN3mYALHoLtZ5aekO95NvyMciGoUU2nR6HycH+9v10B7pJaIkhq+WNspHPzPkMvaHeC5LzLvS0WDkjA1bdgDkSg3AETTFwItTMozv+Pxa7F2PRW6gqquJI5xFmF8xGU1Usa9YMK7DBqZ0dH1u5nJOxjjFz3it1r7B60mr6Qn1sOrGJynGVTMyc+L6GEKEoaDoDcS2e6pPXEehAJ+nItGSi1+nPS847m0LMWDkvFA3hUHXE/e3JC7ImE0Wyjc8XfAzNaKQz7uVPdc9dMjnvXAt3xc5i8u35hGKh1M8KwPGe46wqW0V3qJtNJzaJnCd85Ikim3DJGmlakE2xMTt/Noc6D6HX6YnEI5hkE+F4mFm5s5DUsTajnUUD+1GmJCaMBvrD/eTYcs5pytLZOtdixbmS7PahxY1B/d9ktxvT8uUgSUMmm+Iq5mSli6+u+wIGnYHCtEIavY0c6jxET6iHK8ddOeQqdH+4P/XL1Kw38y8zv0DBrsOp7ZdBkiv0zKtWITudQ86vPKec6bnT6Qh0EI6Fafe3U5peSmN/I3m2PPpCffzyxJ9Zu2Al05ZdjxyJIZlMNEd7+Ket/0Q4FubeSbeyOLcKY0wjqtfxSsfuC/K9Gi3Q2Yw27pl+D/+67V851n2MXGsujf2N5Npy+fjkj/OTvT9hUtYkbpx0I72h3vN+tfxiMPrKTTfKqlXMMuv5b9t/0+hpRKfTkWvJZWLWRHFlUhAE4RJ0Njkvloilst6UrCn4VT9pShpqLDmkaUrWFIz6ZC/ZaCJKujkdq8GKXqcnnogjSRKyJKOTdHhUD0Z56BRyDY2avhp06C5ozrvQ02I1q5n/PvFb+sP9OE1OIrEIU7KmICGh6BVKHCWMs4/jyf1PsmzB95EMhjGnkpqjcYrTi0fNeRISvoiPkz0nebHmRdSYymtNr+FOd3NHxR1Mypo09KBn2NaqRSKcCLey1LWURcWL0NCwGqy0+9sx6U2EY2H6w/3EEjESWgKdpEOv02PWn//sPFrOy7fl8/vF/0V448Yhu2JklwulspLg7/+Ao6iIh5bfwxPVT16WOW/wyk2z3kx/uJ9IIkKBrYBVZavIt+dz46QbRc4TPvJEkU24ZA2MAR+8/Lrd386Dcx7kl2//kmPdx5JXlEwOZjhn8ImpnyCgi5E2xjETRsOYv+Tjzc3DbpdcJRwNNhBJRN53r4AP2xm3pToc9BJCuutmUFUSRgO/P/kM31r3BQLRAACFaYVY9BZiiRg+1YddsQ+52jv4qvH9U+6gYOdhEqdfIa2pIbR+PeY1a4YU2nJtufx/8/8/ovEo2xq2EY6FqemrYdH4Rdw1/a5kQHSWUOwsRhl0lcvkj1OUVsRD5fcz/vVqtJc3pu77hKuE+MRJqXM9X0abQPXxyR/nP9/4T072niTTnEmdpw6f6ktNdVo+cTl/PfpXAFaXraYn1HPer5ZfDMZauWkAKgsrqSys/LBPUxAEQbjAzjbn+VQfV5dczdopa3nu2HMUO4pp8bUwJWsKn5r1KY71HEs9v9BWyNTsqbzT/g5qXCWaiGI32lNDkToDnQSjwdQFWkgOIfBGvBd1zhtc3OgJ9aRuH9iWWuws5u3Wt0lT0vDrYtjCI+/cGKCpKnYlb9Scl2HOoCyjDFe6i9um3YbT5MSsN/O7d39Hs7eZr131NSZknmr9MeYQouXL8RMlyzKOB11VQzJbtjWbYkcxb7S8QU+oh0j81DnMzpuNXqf/u+W8n1z12Kh9nVXeGzK2cyds2sxtS9fwq+N/vixz3plWboqcJ1wMRJFNuGSd3nQTIBaPcaD9AJ+Z/RliiRiBSACr0UqaKY3eYC9ho0S62z1ic1W5tJSeuI+MlcuJbBw+Ucm0ciWBzZuGPslVTPOCybzS+AIFtoLz0j/jw3Kmbam14RZerHkRSPYv+ffX/p1oIpp6vizJZFmyCEVDFNgL+OuRv9IX7qPAVoCiVwipIa6dtpAFmbPI1aUhVUWIFxai7tlzanUcyTCS6OtDUpQhW0dn5s3kP5f/Jwc6DtDua8disFBoL8SV4Rr1CleuLZd/q3wYx+bdaHX1Q+7T6uqRN28jtHxx6nuWCIXOuC33TM1rR5tQpdPp2N++H7vRjklvwhP2IEvJ7mSHOg+xumw1kXiEur661BX4s7lafjbnfLG50Cs3BUEQhI++s815FqMFSZPQJI2HFzxMTW8NJr0Jo97IsZ5jqaySYc4gEo/w5Xlf5vuvf5+329/GjBm9Ts94x3hm5M3gZ2/8DK/qJduSDWryHIqdyZ5QF3vOO1NxI5KIkGPL4X9qnuEfXbeOeSzJZCLe3s7ceB5XTPkcCaOeHxz6ZWpI1ez82Ww6uYmdTTvZ07yHhJZgftF8/mXBv/Crd37Fzqad5Npyh3yWw4YQKQoJo4GoUY/Dlo2DgmHnkWvL5VOzP0VTfxNt/rbU7dNypnHrtFv5w4E/kGvLpSK3Aji7AQTvN+c5MRE4i77O8dpacq5bCpxdzvuwhyZcCBd65aYgXGiiyCZc0k4PDHaDncWuxWyu2Xxq+Xqkn3A8nLpSl1gzftQVW41qC388to5br11Ftu5aCCf7KfRJKndueYDFBfNZPvcGlHhy7Pnb3qPsOP5nFpUsYkHRgot+OfNYxY3BQcBsMDMzdybVPdVoaEhIWIwW2vxt3Fx+My/VvMSv3vlVcoR3xM+c/Dk8fcNvMW7ZgVb3NwZancouF5a1awmuWzek0MZ7haPTzyXXlsv1tuvP6T1laGZio4QerbYOa2wJAIn+foLr1w8pwA5eyQdwsuckO5t24gl5MOlNSEhs07axqmxVqnntaBOqApEAaUoamqalmgUPfHYJEoRiIWKJWPIfDdHAWV0tP5tzFgRBEISL1dnmvMErskozSpOFOc/QRvM3TroRn+pjR9MO/uGKfyAQC+BTfWRaMsmz5vHozkexKTZm2WahaRrTc6djN9qxGqzMLZjLFeOuuOhz3ljFjYGc51E9RI3y6Ds7SkuJNTcT3rDh1G0uFw+v+gwHOw6i0+n4w7t/oN3fToG9gPKsco52H2VP8x6++9p3+VLll2j0No64VfL0IUQyYDjDewrHwiybsIybptxEMBrEYrAQjAb567G/Eo6FafW3UpFbcVYDCD5IziMcHvtEB/c/DqtnlfM+KkMTBEEYShTZhEveSIGhwF4w6pW6sVZsFak6DHoD33n7PznSfQSAipwKMkwZLCpexPbGXfz26J+QdTKSJFGeXc7NU25mRt6Miz54ncngbRvBaDB5hfDgHzjSdQSH4sCrerl56s2UOEp46vBTTMyYSCAawCgb+bhrBcYt24etJhu2hH6AXo92prAyyFhX+XSR6JjPldQond1NWDZtG7bCMV5TQ/D59fRft4A3e9/lcNdhssxZLMmfT77OgT6aQDZbqO1rI9OcmXrNkSZU+aI+jLKRSDySWsGW0BKpnjIm2UQsESOuxbEYLCwqXjTmlcpEKDSswHbqnJ/HsnbtRb+iTRAEQRDONeeNtWLLp/qwGq28Wv9qKueVZ5dT11fHvbPuZUP1Bo51H0PWybT4Wsi35fOpOZ9iavbUyyrn/frE//LZVbcN377pdqMsWEDwz38e8tyBgQi/WfWfPLzn3+kMdFKYVpjKiEVpRTR6G9nTvAf1ChWT3nROWyXHWrWvxlQ2nUzuNBlp+IEaVTnYcZA/HfoT/eF+HIoDRZ/swdzma2Pd4XU8OPlOlKjG+LDMnXk30EuIXx//CzqdjoqcCvY27z1jzjvj8IbBfZ1Nyhlz3uChEoNdKkMTBOFiJopswmXpTMuQR1uxNbA1IRKLUOepIxQLcbT7KMvcy4jEIyx2LWaJewloyea7FdkVlGWVXRa/5E7fthGIBrij4g50ko4caw52ox2P6uHzGz5PMBZEQ8OpOClyFLG84Bq0bS+MeNzBS+jhVO87w/Tpo55LTU8NBzsP0hvqJcOcgcPk4GTvSfwRPya9iQPKARaMX0CJswS92cpY4y4SRj0GNTriFmKAeE0t2oIZfOb5z1CaXsrPr/k+JTuODSkYTnC7kFe4YdDPwekTqho9jVTkVHCg4wDhWBinyUlfqI+oFqUip4JoIsrMvJlMzZ7KlOwp7GrcRWl66bCfrVTQDAZRKiuJjxs3fMttTQ2az0f8EttGKgiCIAhw5pw32v0j5bzjPce5znUde5v2Mit/FleXXI0aV3GanEzPmT7qRMxLzeCc1xXq4r9P/JkHVn4CczSenJSpKKDX4//FL4buPnhPvK4OcySGy+nCaXJS3Z3c7eBRPRQ5ilKP86peJKQxt0rGPR4Ih1MTOjVZRvN4IBJBCwZJNDZiKC1F53BQYC/ArDfTF+6jO9hNLHFqxViaMbmDoN5TT541D5vBRpqShtVg5Vj3MToDnTwy68tENm4iOKiYaHW5+PKKB5jzlyWkW9K5Z8Y9HO06ypWFV6Yec3rOi/f3n1VfZ9ntpo/wqDlv4MJxvaceg85AnjWPrmBXahcEJAttJ3pOYJSNl9Q2UkG4WFx0RTZVVamsrOTAgQO88847zJw5M3VfY2Mj//AP/8Arr7yC2Wzm9ttv5/vf/z5Go3H0AwrCOSpxlvDg3AeZVzSPdzveBUitPDLoDRTaCsm355/X8eoXixJnCfdPuR0CQbSwimQ2gcWMpig8/trjhOPhVIEN3pvA1A/K2P1zU0voByYwqe+8g9FqHfGhO+p38Mj2R9jXtg+DzkCRowiLwcLyCct57thzBKIBSpwlxBIxMqdkYrXZkUvdxGuGF9F0bhebWrdTZZ005kAMIhEsRgu3l62lZPfJYSvyErV1SC9sIXHzzaMWssY7x/O1hV/j0Z2PcqDjAC6nCwkJd4abVRNX8VLtS0zPmc7HJn+MAx0HUOPqsK0UI24PHWXLrRYMEqutTRXgBiZ0GpzpY71TQRCEC0rkPOHDNlrOSzeni5x3Ws6LRcPELGZseXlEuzqR/P4RC2wDNFUlEA3Q4msBiWSvPE61yZCQyDRn0hHoGHWrZLy3d8QBCEplJcFnn01mGpcLXUYGGI1MzJxIVWEVzx57NlVg00k6xtnHUZFdgSRJ/GLfL3i1/tXUYIQrx13J3dPv5p8qPj2sDzMkC4a8sJm/rf4DV/55MS/VvkQ4HmZK9pRRfyZkh2PU4Q1KZSXBdeuQ3W6MK27g58d+hy/qG5bzBm8PbfG20OprJduazfIJy+kP99PY30hvqBdvxMs77e8QjUdp9jbTG+rFYXbwsUkfozy7/LL7uRWEv7eLrsj2z//8zxQUFHDgwIEht8fjcVauXEl2dja7du2ip6eHe+65B03T+MlPfvIhna1wqbIrdhaMX8D03Omjbke4HIV7u2Dji0OLPG43LF9KT6iHHEtOqsA2wKN6iBnlMY8rOZ1YbruNeHMz6jtvY1m+YsRiVU1PTarABpBjzaGxv5H+cD9e1cv8wvn85fBfaPG10B3sxu10s7BkIbrl16O9sJlE7anQo3O7aF4whQf+spS3bn5pzCJbTK/DqTi5Pv8qtG2bR3xMvLZ2xD5ycOqqpE7S8Y2rv0F3sJveYC8Ok4PecC+1vbVc676WUDREm6+NCRkT6Ap0UeupJduaTa4td/TtoaNsudUiEWLNzakCXLymlvDzzxNYfT1OZ94Y71YQBOHCETlP+CgQOW9k4d4utI2bhuWl8MrlaKEARtPYK+IlRcFsMFOeXc6RriOgO9Uaw6AzcOW4K8m15nLluCtH/JzjHs+wIhUMzzoDXxtXLMeelSxCDQw/iGtxbEYbwUiQuePm8h87/oM2fxtqLLlNNRQLcaD9AL9O/Jr7ClcPWcF2+muWXH8tAE39TajR4Rc/BwzkvEgiwtTVKzGr0dQqPGSZRCiI5f77aYh08lrjC4x3jqcv1Eedpy6V83yqj2cOP0NtX21qhWWTtwmdpKOmt4YFRQsw6U0c6T5Cs7eZEkcJOdYcyjLLaPO3YTVY2de6j3pPPZWFlaJnmyBcQBdVkW3Tpk1s2bKFdevWsWnT0CmOW7Zs4ciRIzQ1NVFQkJwu84Mf/IB7772X73znO6SljfxPZFVVUVU19bXX671wb0C45IjpN6eE/f3ETiuwQbK4JG+Cj89ZwdbW16jIqeBg58Ehj9nW+QZrXSXDVoBBMrz1o6ISIK18IpZ580ZdDXaw82CqwAZgMVjoD/cT1+Ic7DzI6rLVxBIxJCSOdR/jUNchyrLKaAg3EK0spOyaKgxRjYAuSlvcw5K/LMUf9bOpdTv3uoqhrmH4i7qK2d71JtFEFGNMG37/ICP1kRutae2y0mU8fehp1ISa7CESUZmVN4tdTbt49uizZFmysBgsVORW8FDlQ0zW5Y6+pXWULbenh9JEbR26YBif+fyOsxcEQTgbIucJHzUi550S9vcT3bCJxGlFp0RtHZGNm1Cuuw7NYBhzS6RmNNIX6uPOijtTfXvTTemEY2GqCqv4xtXfYFb+rNEzSDg84rFheNaJ19VBNEKHvwMNjbkFc9HQ0Ek6ugJd1PTV0BPqYV/bPnIsORh0BsKxMEbZiIbG/rb9EFZHfK1T55O836AzoKGN2Efu9Jy3nsE57/f4o37MBjP+iJ/pudN5veV1/nr4r1iMFjItmczMm8lDlQ8RioTYWrcVWZKTW5mjIULREHqdnnpPPdNzp/Na02uUZZYhIVGRW8EPd/+QY93HsBqtBKNBpuVM458X/DMvnHiBu6bfJbKeIFwgug/7BM5WR0cHn/70p/n973+PxWIZdv/u3buZNm1aKngBLFu2DFVV2bdv37DHD3jsscdwOByp/xUVFY36WEEQRqcPhEcv8tTWcqVzGif6TrB2ylqmZQ8NrK+0vUbshsXo3K4ht+vcLsLXLeR17yFCmWnY8orG7Bt2evPXhJYASK2eC8VCyFJyKAVAMBrkSOcRLHoLL7Xu4Kc1f+LPPa9wx7YvsLllO4FoAA2NR9/8ATWVLnAN3bqgc7uoqXTzf/c9gcVgIaKXxvyMTm96O1bT2r8c/AsFaQWsr17P9177HjsbdvLwSw+ztWYrKyeuJJaIYZAN1PbV8rM3fgahs5taldpyu2cPkAyhcmFh6mEBfx/1nvqxjyUIgnCeiZwnCB9tMZ93WIFtgFZbhybr0AJ+zCtXIruG5jnZ5cK8ciV9wa4hfXsfW/oYP1z2Q7679Lv8avWvWOxaPGbhR1PPUPSKDe0/oqkRjnQewWqw0h5opyPQQUJL8HLdyxzqPEQgksx5gWgAu2JHr9Ojkwb989ikjP16JoV0Uzomgwmb0Tasj9zZ5LyX617m2zu+zbb6bamct3rSagw6A/3hfo73HOdHu39EV6CLVl8rgWiAjkAH/qgfi8GCGk9uwY0lYjR5myhMK+S+mffxszd/lmovotcl19Uc6jzEL976BRnmDBo8I1w4FgThvLgoVrJpmsa9997LZz/7WebOnUt9ff2wx7S3t5ObO3SqT3p6Okajkfb29lGP/dWvfpUvf/nLqa+9Xq8IYIJwjhKhEFp//5iPUaIa+dZ8njv2HFeNv4o1k9YQjoXJtmRTnlXON/b+Xz511Z1MvG4JSoxUM3672czqvKFhbWDZfUegg3AsjF6nR5EVMi2ZSEipolqqoPbeAjOTbCKaiCJLMnaTHU3T6A33Mnfc3NTErHAsWayyGq1IkoQePV7Vy9XrVvHNqn/hY/NWYIhppKVlctjfwL+89nVO9J5gfuF8XunYze2jrHiTS0uRTusj1+BpGBa8Up8pCTae2MjhrsMApClpdAQ66KADJJiTP4eTvSfRS3r+aeoDyImxV9EN3nJ7en+2waE0qItT52miIrdizOMJgiCcLyLnCcJHm0/1EQv6x1ydEQ8GiFnMsH07pqVLkWQ5NVxJi8cJbt9Oy6wCbpxyIw7FMeb2W5/qo9nbzDidE0tUgve2VkrKGYpe+qH/tA3pNXq9I+c8Ra9gNVrRS8kp7t3BbuyKnXRTOpqmoaHh1UVRxliZ1xTpZmrOVByKgzQlbVgfuTPlvOePP8+JnhPEtfjwnFcwh93Nu/GpPt5sfZPrS68nEo/QF+rDE/YkV89pGgadgTQlDYfiYHrOdLLMWfgiviE7OwYuOgNU91QTiUXOaXqrIAjn5kMtsn3rW9/ikUceGfMxb775Jq+//jper5evfvWrYz52YHXKYJqmjXj7AEVRUM70F7YgCGPSAoEzPkanKEzInEAwFmRv81761X5KnCVcXXw1zxx9hqtLrub5xpe4afJNTCscfWvGwLL7I11H2N20m65gF0WOIq4efzWTsyZzVdFV7GralVq2n2XJosPfQXl2OT2hHqLxKCbFxMzcmbxU8xJXFV/FtJxpqYlZBp0BgFA0xJXjruRQ5yH8ET9qXOWfd/4bP7b/PypyKvhi5Rf51f5fcVvFbYRiIfa27MVsMHP1gm9RiDRk66tc6sayevWwVXhjBRyDLrlKTSfpKHGUYJANZFuykZDoDnaTY81hf/t+Hpx6D4WvHSNeGBh9i4bbTezYsSE92YYYCKWuErZ2vI49LXvU8xIEQThbIucJwqWhwdNAnlEZs8iWMOrpM0RxXlVJePMrQ3Y36NwufEuqeKH2GdaUrRlzC269p56Xal7i7uIbiW58kcCgXGO5556zmtAJyezzPzV/o4/giDlPr9MTjUepLKzk9abXgeRkU5vRhqZpVORWsLVzDx9buXzY8APZ5cKw4ga+9uo/4lAcrCpbxfyi+cMKhmfKeTV9NegkHW6ne8ScF4wG0ev0qUEHNqMNh+IAQI2rxNU4iqzgTnezp2UPwWiQQDSAw+SgsqASJIhrcYyykRZvCz2hHiQkfBHfmNNbBUH4YD7UItsXvvAFbr311jEfU1JSwre//W327NkzLCTNnTuXO+64gyeffJK8vDz27t075P6+vj6i0eiwK5+CIJxfWjhMvLl5zCIPBiP3zbyPEz0nONBxIDmRVUoWs3KsObT6WnGYHEOuAg6sWBsYP55tyWZ99Xoa+xt5vfF1mn3NJLQE1d3VhKNh2n3t3FpxK3EtzuvNr9Pub6css4wJ6RNYNmEZ64+tpzy7HKfJSbY1m/3t+6ntq+WP7/6Rhxc8zH0z76PeU0+jt5EOXwefv+Lz/Pdb/82B9gNoaJhkE9NzpnP/rPs51HmIWXmz0Ov0/MuCfyEYC+JVvRwM1SMvmUW+7hoMsQR6sxXZZh9xm+tYAUeNq1iNVqZmT6WxvxFP2ENXsAsAs96MQWcglohxbd4CtK0bUJtbsKxdiwpDg6DbTWLZEiJbt4/4OgOhVHKV0LZwGj/b/ADfv+77Z/utFwRBGJXIeYJwafBH/dSEe5gySv9cyeUiZJAY7yyi099Jx6IpFCyehxyJkTAaOBxsZFvtM9iMtrPKeWuLbiD6wovDMmXw6aex3XsvoU3Di14DEzrhvXYeVS6efPUJpuVMGzHn9Yf6afO18cDMBwDY374fk2xCJ+kY7xzPZ+d8lkxzJk81v8iKGxaTlrgOLawimRT8cpxnW7Zw27TbKM0opcRZMuKKvDPmPIOVsswyTvaeHDHnqTEVgzm5Yi2hJZiSPYXOQCcuh4v8tHwmZkwkTUmjLLOM4z3HCUaCGHVGDLKBA50H6A31IiFhNVoZZx9HeXY59Z56nGbnqNNbBUH44D7UIltWVhZZWVlnfNwTTzzBt7/97dTXra2tLFu2jKeeeorKykoA5s2bx3e+8x3a2trIz88Hkk1yFUVhzpw5F+YNCIIAJLd2qnv2jFzkcbkw33ADksWCXTEzu2A2GZaMEZv93zjpxlRIqffUp6YoRRIRjLKR2fmzqe2rpTfYmyqwDWjob2B+0Xwef+1xfrbyZ3QGOukL9+FQHBTYCnil/hXcmW4MOgMt3hb2t+9n0fhFvNn6JrJOTk2Eqsit4EHlQdZXr2df8z4+OfWTfHLqJ4nEIxTYCwhHw2w6vonlZcs52HGQFl9LchT9e7qCXXQEOrhv5n2Yz9BQtthZnNq+cLoMcwZ5tjz2NO+hX01OR800Z9Ib6iUajxKMBXGanMjR97Z6RqME161DqapKNv6NxUCvJ2DRU/H7KjbftI6iWGzIRDDZ7UZ//bU0eZvYJHfy5JbPcGXBlWKrqCAI54XIeYJwabAZbPz15BaKln4S21aGFNokVwmxG67BbHcCkGPLIRgL8sezyHnrq9fT5mujP9xPJBFhdt5sjvccJ6f4EyNP9QwG8f/P/2B74AGIRJITOhWFhGKk19dB6GNLiOhhY8s2/vTqT5hXOG/MnHes6xgv1rzIqrJV3Dn9TnToMOqNmGQTvoiPCRkTeKfjHX5y5NfDTiXDnMGNk28cs4fcmXJevj2ft1rfwqt6h+W8QDRAkaMIb9hL1bgqCtMKsSnJol2BrYATvSfYWreV+r56fu79OVOyp/CV+V+htreWE60nyLUmJ5LKOploPEqbvw0NjXmF87gi7wox9EAQLqCLoifb+PHjh3xtsyX/giktLaXwvYbd119/PeXl5dx11108/vjj9Pb28pWvfIVPf/rTo06cEgTh/JCsVuTx40cs8iR8PjAYhqzkKnGWcN/M+05dvTytL4dP9fGHd//Aa42vEYqFUs+zGW282/EuudbkqoV0UzqyTiaeiCPrZKwGK/6on4b+Bm6ruC11rL8d+xs2o40MUwaReITJWZPpCfbwcu3LZFgyMOqMQ5b0D5zfiZ4TvNH6Bha9BaPeSIe/A6Ns5IrCK+gMdnL79NvZXLN5zBA5WIe/gyOdR/CoHpwmJ+XZ5antC6cfY+H4hRzoOEA8ESfHmkNvqJfy7HKqu6tJU9Jo8DSg1+mH9ieJRodtCfXf/XEyLBncsuk+vj3/6yy85jbUoA+D2cqm1h38n9/Nwh/1IyFRWVjJHdPvINcmVoUIgvD3I3KeIHy0FTuLcZqd/OTo/3Dd3EVMu6YSXSRGwqjnZLiNPDmGe1DuOZuct756PbV9tVR3V6eyXpqSxmuNr8HUMYY5BYNoPh/64uLUsf527G94Qp5kv7F48sJsaXrp+8p5cS1OOBompsUodhaPmtNGynrnnPPaDxCIBMi35+MJeVI5z67Yqe2rJcOcQZYliy/N+xL//dZ/s7NxJ1mWLLyql2xrNqvLVmPWmzEbzPSF+njq0FNUFVaxp3kPyycuZ2vtVmr7akloCWKJGOPs4/j07E9Tll32/n8YBEE4o4uiyHY2ZFlm48aNfP7zn2fBggWYzWZuv/12vv99se1JEC40ndmMZfVqgs8/P6TII5eWYl61CtnpHPYcu2IftSfHiZ4TwwpsADpJR2N/IznWHLIsWbT52ghET/WD86k+JmdNxmY8tTzfrtiZXzifZ44+w8YTG1O363V6sixZ2I12HCbHsCX9dsU+dNWdZ3i4KnYWU2AvGDVEDra/fT9P7H2C2r5TPUrc6W4eqnxoxCDa5GnihtIbeKPlDVq8LcQSMfa37WdxyWJWT17N4c7DTMuZhk+fwOlyoY1wxVdylfCu7wRe1UtnoJOvv/5tbp12K3859Bfy7flMyJjAHdPvQI2rKLKCQ3Fg0puGHUcQBOHDJnKeIHx47Io9VSx6qXUHz4SfJ5KIUGAr4M7pd+LOdI/4nNFyXoOngTZf25ACG4BRNtIX7kNSxs4igy8wXsicZ1fs2BX7mAXDAe8r5024gTda36DB00AsEcPf7uea4mtYM3kN1d3VTMmaglE28j/7/4fNNZuRJAmb0UZDfwP9aj8bjm9gZu7MVM470XuCOQVziMQj7G/fT2VhJUtcS4bkPLNhePsSQRDOr4uyyFZSUoKmDZ+kN378eDZs2PAhnJEgCDqHA8vatWiBQGqalGS1jtiL7Exafa3DCmyQbEibb8sHDcKx8JACm8vporqnmpgWY3za0FUREzIncGPZjRxoO0B1bzWyJKPoFexGO5OyJpFvzx+1N8WZrsaOFSIHdPg7hgUvgNq+Wp7Y+wSPLX1s2DGa/E2c6D3BzNyZ3DT5JvrCfRhlI63eVr646Ys4TA6cipOn+hu4/ao15JMYOtXUVczJShe7W14i3ZxOfX89OkmX6uvRHeymP9yPoldSo93Ls8qxGoZOQBUEQfh7EzlPED56zpSHzoU/6qc/3D8s63lVL0VpRcT0ujEHHGiKcchtFzLnwZmz3oXKeQ/OfpBQPESjtxG9Tk8oFiIcC6PGVQAOdx3mhgk3iJwnCB8xF2WRTRCEjyad2Qzvo6h2OoPeMOLtx3uOs6h4ET7VR641l2A0SG+oF5fTxbzCebzb8S4LSxbS4m1hRv6MIc+dkjOFby3+Fn9894+0+lsx6ow4TA7y7fmjbu8ccDaFtLEc6TwyJHhF4hECkQCxRIy+UB8HOg5wve36Ic+JxqIEo0EOdx3mjdY38IQ9eMKe1P3udDcxLUZci/PpbV/ippIVrKxahjWhJ6CL8Xzzyzyy7h+5e8bdOE1OIHlV1ygbybJkcbjrMBaDBZPeRJYli3RTOu50t2iEKwiCIAjCiD5oHhpgM9iIJCLDbh/IeXu73+Gq5ctHHHBgXr6cxnAnLjKGPPdSzXk6SUckHiEcC5PQEsg6OfWYhJbAH/GLnCcIHzGiyCYIwkdOga2AAlsBrf7WIbfHEjEaPY3cOeNOAJaVLsNhchCOhVOTRLfXbWde4bwRjzspaxIPL3j4vFyFPRce1UMsEUONqUTjUTyqh4SWSIYlSaamp4YD1gPMyDtVGCywF1DbV8uasjVsOLEBuzF5jp6wh4kZE1kxYQXBaJCKnArWHVnHwzu/zlfQKEorwqt68agedOgw6AzYjDaK7EXIUrJv3bLSZXhVL03eJnSSDjWmUlVYxS1TbxGNcAVBEARBuKCKncUU2Ao42XtyyO0DOc87LkJbpIfcRYuQrr0WVBUUBS0S4bivngPBGlz5k4cd91LOeQPDvvrD/TgVJx7Vg4Qkcp4gfASJIpsgCB85Jc4SVk1axYbqDUMKbQW2AlaUrSAWj7H++HqMOiMayWXxOkmHhEQkESFdSR/12OfrKuy5MOvNtPvbUWQFnaTjn2Z+juUFV2OMaUT1OrxylF0Nu8iz5aWGDkzMnEhFbgWHOg9RVVSFQ3FgNVhxKk4UvUJ5VjlOs5ODnQcpyyijydtEOBamxddCeVY5klciPy2f7mA38UScgrQCFo1fRE+ohzZ/Gw/MfoCElkAv6UlT0pidP1tc3RQEQRAE4YKzK3bumH4Hzb7mISvACmwFXOO6Bo/qYdWrt/L56fezNHc+hliCaFzH1o7X+fH+/+bxax8f89gfZs4Lx8J0BboIxoJISACE42FerXtV5DxBuEyIIpsgCB85dsXO/KL5aJqGV/USjoUx6U2kKWnML5qPhERFTgUHOw+mnhPX4gBU5FRQkVvxYZ36MD7VRyQeYWLGRHqDvfz8mu/j3lOLtn1z6jF5bheW+VdwoudEKnzZFTt3Tr+TZw4/Q01fDc3eZhJaAne6m7un301ZVhk+1ceOxh3cP/t+grEgu5t3E46FOdJ1hOtKr+PuGXfT7G2m2FmMXqdn88nNPFf9HGlKGtU91QBMyJhAYVohZVli0pQgCIIgCH8fk7Im8bWrvsbOpp14Qh5MehMSEqFYiKrCKoocRTz65g95lB8Oed5HOee1eFto97cTjAUB0NCYmTuTk70neb3pdWbnzxY5TxAuA6LIJgjCR1KJs4RMc+aoS/6/tvBrPLrz0SGFtoqcCr626GuMd44f7bB/dw2eBg52HuSBWQ8gR2LJAltd/ZDHaLV1jNMSSIuH9pErcZbw4NwHxxy6sGLiCnY17GJZ6TJunnIzakLFZrRh1pvZeHwjwWiQhJagL9zH5prN6HV6FP2pqVxGXbJ58OlTtwRBEARBEC6kCZkTyLXljphzLsac94eDf+Bg16nznZE7g9um3ca3d3ybUCxEq29oGxSR8wTh0iSKbIIgfGSNteR/XtE8frripxzsOEif2ke6kk5FbsVHKnhBcoJWNBGluqeahybeRWL9b0d+YF0D+UsXDbv5TNseBoqRb7e9ze8P/J42fxsSEt3BbvJseXxq9qc43HWYdFM6pemlBKKB1JQps96Mw+Qgw5whthAIgiAIgvB3N1rOuRhz3mfnfJa5BXNTOzBafC38x/b/IBRPTlEdmAo6mMh5gnDpEUU2QRA+Ujr8HRzpPIJH9eA0OSnPLk8trT/deOf4Cxa24j4fBINo4TCSyQQWC7L93JvFDlw5jCaiEB4ergbTR5NNbc/lM4BkQLu65GomZ03mSOcRukPdxBIxookox7qPEYlHqOmp4cE5D/Jc9XO0+Fow682psfZnmrolCIIgCIJwPnxUct65Zq3RDM554ViYJ/Y+QXewO3W/hIQkSWSaM8k0Z76v1xY5TxAuLqLIJgjCR8b+9v08sfeJIU1w3eluHqp8iJl5M/9u5xHv7SW0YcPwsfGrViFnZIzxzOGKncVkmDPoDfWCYhzzsQaLLfUZ9IX6eLTqX3Er+UjdQWKBdiSLdcxC38CWi1+/82uO9x5HL+mJJCI4FAc3Tr6R493H+fK8L+MNe5F1curKpghegiAIgiBcaB+VnHc+z2NwzrMZbFzvvp4ttVuGFNoyzZlcX3o949PGp167sb+RCRkTsBqsbK3byoKiBUN6to1E5DxBuDhImqZpH/ZJfJR4vV4cDgf9/f2kpaV92KcjCJeEs7liV9NTw9b6ramQEogGeLX+VcKxMO50N48tfex9XWE8V3Gfj9Df/jakwDZAdrkw33TTOa9oq/fUs756PVdmzGDqnkYStbXDHiO73XDjch569Z/pC/Xxx6X/j8SmLedU6Hu77W2+vvXrvFL/CjpJB4BDcVDiLMGkN/HxKR9nccniIdsSEqEQcb+PWChAwmjAJ8fp0fz4I36sRivFDhHOBOFsiPxwcRDfJ0E4/y6mnNfh7+CrW786pMA24P2ex0DOsxlsmA1m1h1ZR4uvJTndU6dnXNo4bpt2G3Py5/Ct7d+isb+ROflz2FKzhTpPMudlWbJYVbaKe2feO2qh7/3kPJ/q40TPCVp9rRj0BnIsORh0BgLRgMh5gnAOziU/iJVsgiBcUGdztXB/+34e3fEoW2q3pB4zLWcad0+/m/XH12PSm3ir5S0yrZmkGdOwGW3U9NZ84CX+A3yqL9V0dq6+ZMQCG5C8PRgkrqqpbaSS1YrObB7z+CXOEu6beR9N/U1Iy8uQX3yZeM2pz0MudWNZvYZdPQeo7avl/13z/WEFtoHXD23YMKTQlwiF0AIB4qEgxVIaa0qWsb99P2WZZRSkFRBLxEgzphGIBAhEA/ij/tTxEv39BNevJz6o6Gdzu7EsW8LGvnc52XsSh8nBmklrKHGWnOvHKgiCIAjCJe585zyH4mCCko8upH7glh0DBue8nmAPJr0JvU5PLBEb8rjavlqOdB7BYrCcGkZgtJ2xEDWQ8xo9jXjCHm4uvxl/NHnB0ma0kWHKYHb+bGp6a6jtq2Vy1uQhBTaA7mA3DZ4Gntj7xJBC3wfJefWeep4+/DRz0qdxpW0CukiMRMxAe8LLyf6T1PbVipwnCBeAKLIJgnDBdPg7+PlbP+f6cVczv+Ih9NEEMYPM6737+flbP+db13wLgCf2PsHhrsNDnnuo8xB/OvQn7p95P798+5f0BHuYnjudSZmTePLAk3QFuzDpTcAH22pQ3V3NH9/9I63+5MSn2dP/dczHa6EQgSefTH0tl5ZiWb0ancMx5vPsip3ynHIAEmtvRgsEhhXqelp7ku9HySdct3HE4wwU+rDbSfT3Ez15Ep3djhSLkabXc6/5Km66YyUPbv8KBzsP4g17afY2M6dgDlcVX4WMjE/1EfJ5sGx6lXjtaYW82lrkFzVWLb+Wp6MhGr2NrK9ez30z7xNXOgVBEARBSOnwd/DTN36KSW+iqrCKSDyCIiv0q/389I2f8u0l3wbOPufNLZjLQ5PuQX12/Xlp2QHDc15PsIdmbzMLxy/krba3SGgJ1JhKXIsjSzLtgXZ+u/+3yTYf78kwZ5yxEGVX7EzNnQoMLeoNnhj6dtvbAFgN1iEFtgFqXE0V+nJtuR8o553oOcGe5j3cU7oW05ZdaHVvpF6nxFVC/vULeT6mipwnCBeAKLIJgnDBVHdV809TP0X+zkNodc+lbl/hKmHWwk9R3VVNXItT21ebmoQ0mFlvZlvDNtr97Sx1LWVi5kTeaH2DIkcRFoOFjkAHkLzyePqVv7Nxsuck33vte9T11aGTdASiAbQz9E3DOPT+eE0Nweefx7J27RlXtA3Qmc0wwmOdijP5H+rYAxK0cDi5zbOvj+jhw8OCaEbGQhbnz+O56udwKsmVfo39jexp2kNFTgW/3f9bPpF37bACW+o91dVh8YWZlz2LRm8jvaFeGjwNY06/EgRBEATh8nK08yg51hx2NOygyduUur0orYhFxYs42nkUDe2MOa/J28SUrCk8WHY7Oq8fZe5cqKoi3tyMumfPiCv5z8ZIOS/XmktNXw1qXGVy5mT2tuxFkiQAjDojgWiASDxCrjU3NSVUQmLD8Q3cM+OesypEjTYxdCDnjTRlFECRFYLRIB7V84Fz3lutb7EkbwGmLTvR6uqHvI5WV4+yRWLeYpHzBOFCEEU2QRAumDxDOnmvvD3iL/d8QFoym8O+kwBYjVZMehPhWPjU8215tPpaWTNpDYe7DnO46zCReIQ8Wx65tlwWFS+itreWdzvfHXLl72z4VB87m3ZS11eHxWBhf/t+ekI9HPSeZLLLNWpPNs3nG3Z7vKaGiM+D6SyLbKMpzynHne4GRRnzcZLJhBYKoe7YMeKWUhW489pb+Kdt/4JH9YAXpuZMpSCtgN3NuzHpTcjR+NgnEw6Tp5xanTd4+4EgCIIgCIKaUIcV2ACavE3saNjBouJFBKNBYPSc19jfSIGtgH+b/SV0L+8gnpuLXFgIsRiyy4V10iQCf/rTkJX8Z2O0nDczbyYOxUG+LZ81k9dQVVhFmimNYCTIGy1vYNQZeeH4C0QSkVRhsMBWwFL3Uho9janVau/HQM5T5OE5L8uShayTgWQx7oPmvCxLFsvHXY225akRz0WrqyNv6VWpr0XOE4TzR/dhn4AgCJeuAtkxrMA2QKurJ0+XhqyTCUQC6CQdhWmFqS2gALFEjIqcCk72nqS2t5aK3AqOdR/jF2//gp+88RO+ue2bHOo6RNW4KvrD/TR5m+jwd5zVuTV4GvCEPFgNVo73HKcn1INBZ+Df3/oB8vLrkV2uIY+XXS7MN9xAcP36EY8X8vfjU4cX4M5Fri2XhyofoiXWO+z1B58HFgtEImP2jrNiRC/p0UvJgFiUVkSeLY+tdVv5zTu/waOFxj4ZvR5Jjaa+HBhRLwiCIAiCABCLx4YV2AZ0+DsIRUNnzHkljhK23vQs6Tv3o8yeTay5meCf/0zw6acJ/u53hLduxXr77WAwoIXDhP39Z3Vuo+U8RaewoGgBtX21bKvfxg92/4DPbvgs/3vkf/n0nE/zx4N/pNZTixo7tdqs1d/K1tqtBGPBD/R5DeQ8u9GOy3kq52VZspidN5veUC/udHeyvcgHzHnPHHkGNeAd83xEzhOEC0OsZBME4YIxxmCsUk4iHMJqsLJi4gra/G3YDDZ8ER9vt71NOBZmUuYkDLKB3x/4PZ+Z8xkOdR5Cr9MzLWcavrCPNn8bbf421h1bx8zcmfSr/Xx161fPqj+bP+rHpDehoeEJezDoDMwvmk8wFuTKp6/j10ufYMZ1S0FV0RSFhF6H/3+eTF5FHUHMoKPlPCy1n5k3ky5/F8rKFagbXxi5J4ndTqyvb+wDRSJkW7OTgVKvYDFY2Fa/jQ5/B7FEjBdbt3Of2z1k6MHg14k3N8OkEoDUCHhBEARBEIQBJoOJdFM6feGhmUSRFTQ0OoOdlKaXjprzrsi/gs9PugOt34t+9mzUN94YceVW+JVXUKqqwGAg+rfnYOVyTBnZY57baDkvnoiztW4rHYEOKsdV4o/4KU0v5WjXUV48+SKKPrnKLK4NXfHf6m/Fr37w1V4z82aSb8tn/vj5PH34abqD3cg6me5QNyXOEh6qfIhcWy6x3saxD3SGnBdLxIgazrCeRjEAIucJwvkmimyCIFwwstky5v2SycSPX/0xJoOJVl8r/ogfV7qLO6ffSXV3NSsmruCpw0+xYuIKgrEgG45vIBqPEtNipJvSmZQ5iYSW4Gj3UW6ddivBaPCs+rP5VB+xWAynyUlVYRVlmWUEI0E2ndzEpKxJHOo6xK0vPkBhWiG7GndhNVj5/qJvc1tuLtoIVxUlt4vjoWZkaez3e7aybdlgA91NN0EwOOJ0LclkGvMYQTmBpmkEogE6A51kWbJo9jZjNVoJRAJ8960f88nbtmPRtGGFPKWyktC+fTS4rWSYM7hx0o2iGa4gCIIgCEPkWnOpLKxkb/PeVKHNqDOioTElawo5lhx+vHv0nPfg5NsJb9qMeelSEpo24oU/SA5lUq66Cs3nI1FbR3TjJrjpRky20YdOWQ1WMi2ZXDnuSsqzy4nGozx77FkmZk6kPdCOy+mi0duIL+Ij4UvgNDlp6m9ClmRkSSYcCxNPxLEarRhlI2a9ObWd8wN/brZcrrddz4zcGRzpPIJH9SR7q+WUp7LrB815oWiIVzv2cIurGOoahj1fcrmoj3aJnCcIF4AosgmCcMFIVityaSnxmpph9+ncLra0v4ZH9dDU1YRO0qGTdBzqPATAv1/z7/hUH5XjKtnesJ0caw6VBZW82/kuXtWLJ+xB0zSm504ny5zFOPs4nj7yNMCY/dnqPfW83vQ6zx57lv3t+ymwF1DbV8ukzEksLF5Ih78Dl9NFVWEVzxx5BgmJQDTAf737K5at+hMZaEO2wEquEvqumcOWk//LNcXXsKd5z7Bx70OmTJ3FKPgBst0+au8RyW4f9bOV3W5e7d6Hw+QgnohT4iwhw5yBK91FgycZtDoCHVz1zAp23bKJ9NBVEA6DXk+8uZnQ2/vgumswav1i2pQgCIIgCCMqdhZTnl2OzWijK9BFOBZGlmT6wn1cWXAl/3v4f0fNed9d+l30mg79kiUk+vuRbDaUhQtR9+yBaHTYa0myTOC9lh2J2jo0vx9GKbLtb9/Pj3b/iN3NuymwF3C06yjFzmJumnITBzsPjpjzcqw5GGQDUTWKGlfxhD3EtTgmvYmyzDImZEwgnoif15yXa8sd9YLwB815il7hkb3fo2rN0xTBkEKb5HbBDdeKnCcIF4gosgmCcMHozGYsq1cTfP75ISFBcrtQr1vIf75wDw39DXjVUz0jzHozx7qOUdNXw6/e/hWBSIA3W99kctZkPGEPK8tW8nz18yS0BLJOxmFykGPNwR/xD2mm61E9w87Hp/p4rfE1Nh7fSGegkwxzBl2BLpwmZ3KEe1zlwbkP8pM3fsIzR54hloihk3QktAS+iI/Pbf9nvjT7c0yYPw1DLEFUr+PVzj08+fLnmJo9lY5gB309fYRjYdLN6VxVdBV6Wc/66vXnPAr+/X62stuNb2kV7S1b+dSsT6FJGjNyZ+BQHIROhjDpTVR3V1OYVkizt5nZf7qaR+Z9jbXFy0mEQxinTMB45RxMNgdpFLzv8xMEQRAE4dJmV+ysmbSG9dXrsRmTPb2avc0ATMyayHPHn6Pd3z4s5wUjQSbKOYQ2bBi2mt6ydi3BdeuGF9oMhiEtO7RRJrF3+Dt4Yu8TNPQ3pHJeri0Xo2ykpreGf7ziH/nBnh8My3lxLU5dXx2TsibRE+xBkRViiRiyTsYgG4gn4hdlzrvhuZuTOW/p3cmcZ7GhtztEzhOEC0gU2QRBuKB0DgeWtWvRAgG0cJioXuJtbzWHm18iQWJI8AKQJImrS67mdwd+R3VPNXajHavRSjAapC/cx67GXczIncE77e+g1+lp8DRgMVgIRAJDjjMwJn2wBk+yoDfQF8RqsGI3Jq/eBaIBPH0e2n3tBCNBYokYacY0/q3yn1lVuARLQkZSTERMMo/s/h4t/hYi8Qh1fXWUppdyXel1/O3I32jynWoA3NTfREJLoKENOY/eUC/rq9d/4KuHp3+2kslE1GSgL9jCzPyZ2Aw2ip3Jq6k+1cfelr1Ash9If7ifqdlTicajHPHVMDnayoTcCWSc5XRWQRAEQRCEEmcJ9828L7WSKxQJUd1TTXegG6NsHDHn/XX5k8MKbHBqcqZSVYW6c2fqdtnlQvOedpxRJrEf6TxCXV/diDlvc81mbim/JZXzZElGQ0OWZIw6Iw7FwcenfBxv2EtXqIsECWr7ailNL+Xa0mtFzhME4ayIIpsgCBeUT/XR4D21hD7bks07jUdIM6YRTwxtKquTdOh1etLN6exp3oOmaRhkA13BLmKJGNOyp1HjqWFS1iSO9x7HH/EzNXsqqyet5ljXMcqzyznec5zxjvHJyUyn6Q310hfqwygbOdl3kmA0iE5KNoU1681MyJhAdU819826D/MhM/+54DtM2FuHtnPzqYO4ivnawof47oH/wq7YuW/mfWyv305Nb82Q4AXJQLe7aTfzi+anGukOPpeG8zAoQWc2g9mc+loGykfYPjH4anNvqJccWw5AqheHaHgrCIIgCMK5On2rpMvp4nD34TFznjku4R9jcqZSVZX6Wna7Ma9YQaKvL7WdVFdUiGQbPg3TpyaHYo2W82bmzaTZ28x9s+6D/XCg/QBxLY7NYKMit4LlE5Zz29O3MSN/Bvn2fLIsWSLnCYJwzkSRTRCEC6beUz/iEvpFxYto6m9KTnPqPgokg5fFYEkFMJ/qQ42ryJJMjiWHzmAnrze9TllmGWWZZdw9/W4cJgdOk5P/2P4fRBNRlriX8InyT+AwOdjXuo9pOdMY7xyfOpcaTw1GvZGj3Ufxqt7Ua+p1ekKxEN3Bbq51X8sv9/2SJxY/zsQ36kkM6r8GQF0DecDUwlK+/vq3mZ47ncUlizHKxmHvPxKP4Iv46A/3p8LOYP7oB59SdS5Ov9o8+AqoIAiCIAjCuXi/OU8Lh0c7JACS0YjlllvAbEYyGvH/5jcQjWJatgzrffdBNIoUCBOPg+xwDDmXPFveqDkvrsUZlzaOH+7+IavLVnPr1FuJa3EmZk6kpb+FL774RYKxINsbtqfyqMh5giCcK1FkEwThgvCpPtZXr8en+picNZlILBlE7IqdRk8jlYWVZJgz6A51827Hu+h1enSSDrfTzZSsKXQHu1H0Coc7DzO7YDZKn0JvqJdGbyN+1c++tn2smriKN1veZFruNGbmzWR7/Xb2NO3BbDDT7m+nIqeCry38GtNyprG+en1yK4DRQbopHa/qJaElCEaDWA1WdJKOHEsOs/NmU7qklGlWN4na10d+c3UNrK5axtf5NgfaD3BnxZ1EEpFhDzPKRmRJHvE+AJth+FXYC82u2D/wVVVBEARBEC5vHyTnnWlyphaJoL71FkplJYE//xkAy9q1qHv3Et6wIfU42eXCvGoVQashVewbnzaePGvesJwX1+IUphXicrr49pJv0+JrIZ6IU91dDcDP3vwZcS258k5DQ0ICEDlPEIRzJopsgiBcEA2eBnyqj0mZk/j1O79OXckEmJI1hXRzOguLF/Kj63/Eq/Wv0h3qxqK3oOgVTLKJBeMXsK1+Gxoab7W8xYSMCRSlFTHeMZ554+dh0Bn4w8E/0BXsYuH4hTx16Cmavc1kmDPIs+XRGejkYOdBHt35KI8ufZTeUC+yJFNgL2CJawmv1L1CQ38DsUSMuBZnUtYkKnIreLv9bSRJYqlpKiNHpiRjTEPTNEx6E7JOpi/QN+wxakzFle7CqBt+9TPDnCGW7guCIAiCcFH6IDkvZpSRXa5hPdkguT1Ul5GBvrAwNQBBWbgQde/eEXu4hTZswLh6ZWo1XWN/I6snreb56uc53nucWCJGMBak1FnKstJlvNPxTuocn9z/JK83vc4d0+8gHAvjUBx4VS/heBhJkkTOEwThfRFFNkEQLgh/1E9pRim/eec3dAe7KUwrJJ6II+tkuoPd/PSNn1KWWcaUnCkUOgqHLW3PtGQSjAbZ27KXmBbjWM8xKsdV8tm5nyWeiPP00afpC/ehyApmvZmDnQcBCMVCFDmKGGcfR4uvhYOdBznZexKAuBYnmohS11fHta5rMRlMhKIhHIqDzmAne1r2sHbKWjoCHQTl+Jh/QSaMhtTYdZvRhkk/9KqsWW9GJ+n42OSP0eptHbJlYKA/hli+LwiCIAjCxWgg5/36nV/T0N/A1674Mktz52OMaUT1Og55aunM7Bwx50WsJiyrVo04XdR8ww1oodDQwQeFhUO+HixeV4dJPTWJ1CAb2NGwg4XjF7KsdBm+iA+HyYFf9bOjYQcfn/JxOgId7GzYSWVhJTqdDqfJSTQeRY2rKHoFh8mBIiupgQYi5wmCcC5EkU0QhAvCZrARTUQJRAN0BjrxhD2p5rNpShqZlkyOdB4h15Y74tL2a1zX8EvbLznUdYi+cB/ppnSmZU+jLLuMjdUb6Qv3YdQZ6Qv3EY6f6u0RjoWRJZmT/SfJtebSFewaOtlKA4vBwr72fQQiAbqCXUzNnkogGqDAVpDaHnAs2MiMUjfxmtrhb85VzPNNL9MT7GF+0XzmFsylqrCKaDxKq781uS3V5CDfns+CogVkmDNEfwxBEARBEC4ZNoMNo87Ik9f+lEyDg9ALLxB/eWPq/mtcJWgFUbCNsoVRAfOaNRAOo6lqclqooiS3ksaHDkwgFhv7ZFQ19Z8SEtmW7DPmvGgiik2xMc4+DkWvUJFbQb2nnn61H5/qI6gLEk/ERc4TBOGciSKbIAjvi0/1EfD2YomCLhJFNluQrFZM7008KnYWc7DjIGpcxW604zA56A/30xnoRJIk6j31eMKeMV+jLLuMsuyyYbfrZT1FaUX0hnq5ouAKpmZPpTy7HFmS0Uk6pmRNoTSjlDQlDQmJIkdRqtjXFexiqXspW2u3cqznGHajHQmJAlsBS91LafW1ArC9Yw/Tb7gP+cWtxGtqTr24q5jG+ZP4+Yvf4/rS6/nn+f/M1JypADy84OFRQ5bojyEIgiAIwsXCp/o42XuSBk8D4XiYHGsOU7OnplbxFzuLmWLIJ1ZXT+jwrmFbObW6enQvbiV8042pbHg62ekc8faY15vcTtrcjFJVhTT4cQYDSlUVcmFhsvim1yNZrakdDGeb8xS9wjjbOHyqj0ZPI3dU3MFv9v+GaCKK1WIlGo8yK3+WyHmCIJwzUWQTBOGcNXgaMARUbFv3oNXVEQfigM7tgpXLiVpNvN32Ni2+Ft5ue5uEliCuxck0ZzI1eyp1njq6g93EtBhHO48yJWfKOb2+olNYUrIEDY0/H/ozwUiQYDRId6Cbe2fey6HOQxzoOIDD5MAoG/FH/Hxy6ifZH99Pb7iXVl8ri4oXcdX4qzDKRmJaDDRo9bWmmt5G4hGaEn1MXrsWLRAgEQ4R1etoivXwbu9BHr/ucabnTk9NLwXRbFYQBEEQhItfvaeeV+te5fcHfk+tJ7mi3260s7B4IZ+Z8xlK00sxBMOENmxCqaoasbcaQKK2jnB/L+2xPkqcJWf9+pIkoVRVgcGQ2iY6UHQbGIAwZDtpaSn3rfg4v6lZR2ug9axyHkCBvYB5RfNo8DTgCXn40fU/oiPQQb/aT6Y5U+Q8QRDeF1FkEwThnPhUHx09jUx+rQ7ttFCVqK0junET9YvK+e6u7zLeMR6X08XJ3pMosoJP9VHnqcNmtOE0OekMdPKT+p/wwKwHmFMw56zPYUrOFPa172NHww7MejN9ah9rp6ylO9jNlpotBGPJJf6ReIQcaw5/OfQXjnYd5etXfx2TbEKn02Ez2Mi2ZvP0kafpDnYPe40McwZFjiJ0ihnMZmTAAExiHJMKp3/AT1EQBEEQBOGjx6f62Fa3bUiBDcAX8bGrYRcGnYGri69mTcZ81Lo6mDt3zONZ4zKbml4j05x59lsozWYSLS1EDx4kXleXKq4lpk4deQBCTQ3hDRu5d+XH2Rc8gSRJZ5XzBlaiicKZIAjnk+7DPgFBEC4uDZ4GxuszhxXYBiRq6yjQOaj31PNO+ztcXXw1EzMmEkvESGgJesO9VORUsHzico52HWXj8Y388eAf6fB3nPU55NpymZAxgXc73uVk30mOdB3hv974L0qcJRSmFZJjyWFqzlQyzcm+bxoab7e/zVstb1HnqWNq9lSm5U4j15bLqrJVZJgzhhxfNKwVBEEQBOFy1OBpoDvYPaTANkDRK+xs2ElvuBct/F4/XP0Z1mzEYsy0l6WGUJ0N2W5HX1BwqpgWjRJctw45O3vUVXPxujokrw9jNCFyniAIHyqxkk0QhHPij/rJjVjGfIwUiaKh0RXoYuOJjczKm8XVxVcnl+hLUOIoYXPNZkx6E8FokHpPfWoIwoAOfwcnu0/So/bgV/2kmdIodhZT4ijBrtjpDfViN9opyyzDq3oJRAJ0BDroCHRwtPso4x3jafA0AOCUnQB0B7uxK3YaPA2pq5YlzhLum3mfaFgrCIIgCMJlzx/1E4wGR7xP0Su0+drwqb7kgAIg3tyc3Mo5QvFLdrmI19fjmlLGi563mJU/K3VfIhQi4fOhhUKgGInLOny6KCabA7tiP1XEGxCNovn9jCkUYrw9W+Q8QRA+VBfVSraNGzdSWVmJ2WwmKyuLj3/840Pub2xsZPXq1VitVrKysnjooYeIRCIf0tkKwqXJZrARN45dn48ZdEhI9If7ybPl8UbrG/z+4O95rvo5fv3Or+kIdDAzbya7GndhkA1E41E8qif1/APtB/jTwT/x07d+ypP7n+Sl2pd45sgz/PXIX9lWv416Tz3ppnQavY282fom0URydHuakoZJb0KWZKLxZKFv4P8gGQ7DsfCQMetwqsdGVWEV03KnieAlCILwIRA5TxA+fDaDDYth5Iup8UQcnaTDrtjp0QLILhfqnj0olZXILteQx8puN0plJeqePUhqBDV+agJoor+f4DPPEPjVr5LDpbw+5L5+0qN6ZH+QRk9jctro6c60ak6vR47ERM4TBOFDddGsZFu3bh2f/vSnefTRR1myZAmapnHw4MHU/fF4nJUrV5Kdnc2uXbvo6enhnnvuQdM0fvKTn3yIZy4Il5ZiZzFHm/cz2VWCVlc/7H7J5WK/7wTZ1mwkJJq9zWSYM3A5XZj0JtKMaWSZs3j89cdTxTGjbMSpOIHkCrb11es53HmYTEsmr9S9Qr0n+TqyTmZB0QI+N/dzlGeVMyd/Dvva9tEV6KLJ20RZZhm51lz0Oj2R+Kl/eElIlGWUEYwEKbAXYDPYLvTHJAiCIJwDkfME4aOh2FlMliULt9M9bMuoWW/Gle4CDf5x51f508qfEX5hE8F161CqqpLDCgDJZiN2/DjBdeuSK9AUhexENpBcwRZcv554U9PIQwzcbrJuuA7NZBq2Qi7e3IzsdhOvHb6VdWAwQnxioch5giB8qCRN07QP+yTOJBaLUVJSwiOPPMIDDzww4mM2bdrEqlWraGpqoqCgAIC//OUv3HvvvXR2dpKWlnZWr+X1enE4HPT395/1cwThcnNquujuIYU2nduFZ/EVfG7Hw8zIncHOxp30BHtQ4ypWg5WJGRPJt+fz23d+SzgeRkKiPLucxa7FfPWqr5Jry+XV2lfZ1rCNFl8L2+u3U+epQyfp0EnJ1XF2xc6qslV8uerL9IZ6eWT7IxzvOU5PqAdN0/jxDT/muWPPsaV2CwktgV6nZ07+HFZMXMGJnhMsm7CMNZPWiKuYgiCcVyI/vH8i5wnCR8to00WXupcyI28Gbza/Sbo5nRM9J/jD4v9CFwqntnfGm5tR9+yBaPJCqux20714NmZnFrm2XOLd3fh/+lOUhQuJNTePvM3U7UZdsQSnZCa0YcOpxxgM2O6/n9CWLUOeJ7tcKJWVhN7ex4nKYsrGTRc5TxCE8+pc8sNFsZLt7bffpqWlBZ1Ox6xZs2hvb2fmzJl8//vfZ+rUqQDs3r2badOmpYIXwLJly1BVlX379rF48eIRj62qKqp6avmy1+u9sG9GEC4Bxc5ifGYfgeXXYImCLhJFNpmRbDba+4+TZkxjb8tepuVMI8uchRpXmZE3g+5AN79+59fEtBgGnYECewHXlV7HNSXXcLTrKADeiJeuYBdpxjTqPHXIkkwsESNGDAAlrlDdXU2tp5Y1k9bwC/svONh5kJ5gD1Etiifk4ZbyW6gcV0lPuAenyUk0HuVEzwmWT1zO/KL5IngJgiB8hIicJwgfLSXOEm4uv5mZeTNp8DSgxlWyLdlMzZlKKBairreO15tfpyyzjN09+5n1Tjfm2XOGTf6UXS6UFcup9bxLqLWefFs+FfHkija5sHDICrbB4rW1GCNXI+dnYF6zBsJhNFUFo5GE349p+fJkf7ZQCPR64s3NhN7eR+iaK8k2G0XOEwThQ3VRFNlq31sS/K1vfYsf/vCHlJSU8IMf/ICrr76a48ePk5GRQXt7O7m5uUOel56ejtFopL29fdRjP/bYYzzyyCMX9PwF4VJkV+zYs4eHmMmGyawsW4lX9RKOhTEbzGSZs9h4fCP59nz+qeqfCEVDaGjkWHN4rek1frznx8QSMdzpbj4++eNISEQTUXSSjlgiluqpNkCSJLoCXfhUH6WZpZRmllLvqWdb3Tb8Oj8t/haKncVMkCdgM9gwG83k2/IpcZaI4CUIgvARI3KeIHz02BU7s/JnDRlWMOAfrvwHXBkuPCEPxwMNTLlmKWzbg7GwMLllNBYDsxnNYefHR3/L5prNxBIxzHozv7v6PzFC8jFjSIRD+FQfdqcTgEZPI4ZQkEybBS0YQLLbSJhNxNUwWnkZ4ekTsdid5IqcJwjCh+xDHXzwrW99C0mSxvzfW2+9RSKRAOBf//VfWbt2LXPmzOG3v/0tkiTx9NNPp44nSdKw19A0bcTbB3z1q1+lv78/9b+mpqbz/0YF4TJiV+wsGL+AaCJKv9pPu7+do91Hubb0WlaWrWRK9hTmFMyhN9TLz/f9nP3t+4klkkGrtq+W15tfJ9uSTZqShllvHlJg0+v0OBQHOkmHQWdITQ+F5FXXteVruWHCDVzrvpa5BXNZM2kNN065ketLr6cit0IU2ARBEP6ORM4ThEtTri2XxSWLkXUyLb4WfnXyLxyck0egbDwJkwLZWRyX+3hw+8NsPLExlfNCsRDbu95EdrvPOMQgbtAPyXnjneOxZeRwXOrlbbmd6ngHkXQblmIX1rxCcrKKRM4TBOEj4UNdyfaFL3yBW2+9dczHlJSU4PP5ACgvL0/drigKbrebxsZGAPLy8ti7d++Q5/b19RGNRodd+RxMURSUkabXCILwvp1pXPqrta+ytW7riM99te5VHp7/MB3+DuYVzWNHww7CsTB6nZ48Wx6l6aWUZZaNOSVUEARB+PCJnCcIl66Rsp7RmYui2DnUcYidHXup6x/eb+3XR/7AFdd8n7wu37DBBgN0bheHg43oLOYht4ucJwjCxeBDLbJlZWWRlZV1xsfNmTMHRVGorq7mqquuAiAajVJfX09xcTEA8+bN4zvf+Q5tbW3k5+cDsGXLFhRFYc6cORfuTQiCMKKxgpBH9Yz6PFkn0xPqAQm+cOUXGJ82nhZfC5IkoWkaebY8KgsrafY2i+lRgiAIH2Ei5wnCpW20rOeP+gnHwiM+JxQL8dj+n/CFGZ9i8soVhF/YNGRaqOR24V1yJdtq/8qasjUX7NwFQRAulIuiJ1taWhqf/exn+eY3v0lRURHFxcU8/vjjANxyyy0AXH/99ZSXl3PXXXfx+OOP09vby1e+8hU+/elPi+lRgvAR41Sco96n1+kpSivieO9xWr2t5NpyybBkkNAS5NvyMevNNHubcZgcFDuL/34nLQiCIFwQIucJwqXFZrBh0ptGvV8n6ehHZV3bVqzTLUxfcCP6aIK4Uc+JUDN7av+KzWgTOU8QhIvSRVFkA3j88cfR6/XcddddhEIhKisreeWVV0hPTwdAlmU2btzI5z//eRYsWIDZbOb222/n+9///od85oIgnK48pxx3upvavtph97nT3czKn8WC8Qto9DTSG+7lpZqXUj3e+tV+MswZ3DjpRtF7QxAE4RIhcp4gXDqKncUc6DhAga2AVn/rkPvMejPudDfTc6czPXc6R7qO8P+qn6I/1I/D5EDRKyLnCYJwUZM0TdPO/LDLh9frxeFw0N/fL66MCsIFtL99P0/sfWJIoc2d7uahyoeYmTdzyGN9qm/U/m7CxSnu80EwiBYOI5lMYLEg28X3VLh4ifxwcRDfJ0H4+6j31PN60+tsqN6QKrSZ9WYWjF/AXdPvGrJKTeS8S1OHv4MjnUfwqB6cJifl2eXk2kbvoSkIH2Xnkh9Eke00InwJwt/PkF++ipPyHPHL93IQ7+0ltGHDkGbHssuFedUq5IyMD/HMBOH9E/nh4iC+T4Lw9+NTfdR76mn1txKLx8i35TMxc6IooF0GzuViuiBcDESR7QMQ4UsQhMtJIhRCCwTQQiEkoxENkCQJzOYLsrIs7vMR+tvfRpwmJrtcmG+6SaxoEy5KIj9cHMT3SRCEy0kq54XDJIwG2uIeDvRXY1fsF2xlWYe/g69u/eqobWEeW/qYuKguXHTOJT9cND3ZBEEQhPMr0d9PcP36IVO9ZJcLpbIS9eWXMd9ww/lfWRYMjlhgA5K3B4MgimyCIAiCIAgfyEg5L8PtYsrCCh7a9TXy7fkXZGXZkc4jIxbYAGr7ajnSeUQU2YRLmiiyCYIgXIYSoRDBF15AP24cSmUlxGKg1xNvbkbdtw99Xh6hDRtGXFk2+KqoZDIhWa3ozOZRbx9MC4fHPK8z3S8IgiAIgiCMLREKDSuwASRq68hH4oGpd/Jf7/6SJ/Y+MWxl2ZAeeUYbxY5kj7zRbj+dR/WMeW5nul8QLnaiyCYIgnAZ0vx+lNmzUffuRd25M3X7wEo2dLrk7aetLEtdFW1qQqmqQi4qQopE0LxeEsEgxOMQj6OFQtDbi+Z0ItntqWKbZDKNeV5nul8QBEEQBEEYm+bzDSuwDYjX1nLdkrv4L345bGVZvaee9dXr6Q/34zQ5icajpFvSSTelE4gE8Kt+DLKB3nAvEhJXFFzBrPxZQ4ptTsU55rmd6X5BuNiJIpsgCMJlSEskUPfuHbZ1M15XhwqYlixJPm7QyrLUVdGmJixr16Lu24c8bhzhl18eNsRAqawkuG4dRKPIpaVYVq9G53Akp4i6XKP2ZMNiuTBvWBAEQRAE4TJxpp0BppiU+u+BlWU+1ZcqsGWYM3ju2HNMzJzIrgO7aOhvYJx9HFOzp9IZ6GRqzlS21GzhD8Y/cNPkm7h75t2UOEsAKM8px53uHrUnW3lO+Xl7n4LwUaT7sE9AEARB+PuTDAZM116L9e67sX7mM1huvTVV4IrX1YEu+eth8MoyLRAgXluLUlWFuncv+ry80Qt1e/eiVFUlv66pIfj88yRCIWS7PTlF1OUa8pzUdFHRj00QBEEQBOGDMRrGvFsyKqn/HlhZ1uBpoDfUi9PkZN2RdaSZ0tjVuIvavlpC0RBe1cuelj3EtBi7GncxI28GfeE+9rXv45nDz+BTfQDk2nJ5qPIh3OnuIa85MF1U9GMTLnViJZsgCMJlJt7bS2jDhmGrz2z33IP/ySchGEQLhYatLBu4KioXFqLu3Jkstg3aajrkNerqUkU2SBbatEAAzGbadEGsy5dgi8ugqsn+bRarKLAJgiAIgiB8QDvqdzDDVDLmzoGITgOGrizzR/0AqDGVWk8tk7Im8XLty2iD/q/N18bkzMkc6jzE/KL5AISjYWr7amnwNDAtdxqNnkZa+lu4uvhqVpWtIteSSzweZ1LOJFFgEy4LosgmCIJwGYl7PMMKbJAsioVefBHLmjUE//IX0OlSK8sGBhqQSGC57TYkiwUMhuSwhDFIRiPKwoWoe/ZANEoiHGJH3av8aPePONp9FAmJSCJCRU4FX1v4NebZ513Ity4IgiAIgnBJq+mp4ZHtj3D7xLXcvXA5Kgxv6bFwIXs8x3Cnu/li5RexGCwc6jhEd6CbXGsuOnQYdAaiiSgAEsmtpbIkU5RWhFFvxJ3upjCtkLkFc4nGo8S1OGpM5dUxcp4osAmXC1FkEwRBuJyEwyNe1YRkCJOuvRa5tBRdRgaywzHi+HfZ7caydi1I0ojHGaBFIsSam7GsXUtw3TqCujjffPWbvNv5LgBG2Ui6KZ2DnQd5dOej/HTFTxnvHH/+3qsgCIIgCMJl5GDnQfa17aOhv4Erls+kbGp5cmfBwBR5n492YxhZZ+axpY8RioX47f7f0hvqJRaP4VN95NpzuXv63ZgMJnKtuXQGOtHr9IxLG8ex7mMc7TpKq6+VjqIOElqClRNXYlNsnOg9wc/e/JnIecJlTxTZBEEQLiOaqo79gEgkNaRgtPHv8dpaVE1DqawccytCvLk5NUhBWbaMo2ob+zv2o5OS/d4i8Qh94T6cipODnQc52HFQhC9BEARBEIT3qTfUC0BPsIdPbL6fz1c8wA32hRiBCOBLj5NtzWa+cwo+1cdTh5+iN9SLLMlk27PZ17aPZ6ufJZaIsXD8Qtzpboodxeh0Ouo99Zj0JmKJGDPzZtLkbWJHww6C0SDudDfTsqeJnCcIiMEHgiAIlxVJUca+32RKTgHl1KCDkcTr6kBRUoW2wQami6p79qQeqxtXwK6Ot4jGo2ialnpsJB5BI/l1n9r3vt+XIAiCIAjC5S7DnAGAhkaHv4PvvvUjrt34Ca568Wau3fgJmiPdqULXwKADAKfJyXPVz/F229vEE3EyzZmUZZYxOWsybf42ekO9NHoa0Uk6yjLLmFswl73Ne4HkVFKLwYIv4hM5TxAQK9kEQRAuLybTmKvPGDxN9Azj3zVJIpFmQ7n+OiQktN7e5FaE5maC69ZBNJp6rOT1cV/pWh5//XH6wn3Ikpy6L6ElAEhX0j/ouxMEQRAEQbhsVeRUMCd/Dvva9qGhEYwGU/fNyZ/DtOxpqa8HBh1ActhBXV8dalxFjavMzJvJzsadtPnamJE3g2vd13Ks+xg6SUc0HuVE7wnMBjMmg4mElsAT9lDiLEFDI6ElRM4TLmtiJZsgCMJlRHY6kwMNRlh9Zl61CtnpTN0mDSq4jaRebSP7t5N5YPf/oSXYTvDppwn++c/JiaODCmwpm17m7dt2YDFYhtysk3RU5FRQkVvxvt+XIAiCIAjC5a40s5RvXv1N5uTPGXL7nPw5fOuab1GaWZq6zWawpf47GA2mimEAOdYcqnuqafG1oOgVjvcc5zfv/IbfvPMbfrv/t9T11ZFpycQT9hBNRIkn4nQHupmZNzO1cm2AyHnC5UasZBMEQbgExH0+CAbRwuFkccxiQbbbAVLTQQfuk6xWzGvWQDiMpqrJLaQm05ACG4BktSKXlhKvqRn2epLLxcaWbVw57kp2N+1mU/Z2bneVoNXVD3vs4P5sjvBV/Oia7/L5rV8Ckk1xp+ZM5f9c9X9Enw5BEARBEIQRdPg7ONJ5BI/qwWlyUp5dnprW6VN9NHga8Ef92Iw2ZuXP4herfsHBzoP0hftIN6VTkVMxpMAGUOwsJsOcQW+oF4vBkuqlBqDTJVesDeS8aTnTcDld1PfXA9Ab7qUn1EOeLY9McybxRJxfvf0rvnH1N/jdu7/jUOchQOQ84fIkaYM3TQt4vV4cDgf9/f2kpaV92KcjCIJwRvHeXkIbNgwb0W5etQpJlodPBy0tTQ03OJNEfz/B558n3tiIMn8+ercbEgkwmQgSZU/Pfu564VNMyJjAljVPo724dehrvdefbWD7qOWWW/ClKfy181XCsTDjHeOZmTtTBC/hoifyw8VBfJ8EQbjY7G/fzxN7n6C271S+cqe7eajyIZwmJ681voZX9RKOhTHpTaQpaSwYv4ASZ8kZj13vqWd99XoMOgOhaAir0UokFsFhduBVvXhCHn6w+wdkmjNZPWk1Oxp2UNtXm1rFtmj8IuYVzsOV7mJzzWY8YQ9LXUvRy3qR84RLyrnkB1FkO40IX4IgXEziPh+hv/1t1B5ryqJFBJ98cvh9pW4sa29GZzaf8TUSoRCJYJDwCy8ML6AtWkit1keRrYDES6+gz8tDLixMjoo3mZAUhcCf/gTBZE8Qy2234dGpPNm5mevc1zEjb8YHePeC8NEh8sPFQXyfBEG4mHT4O/jq1q8OKbABxBIxiuxF3DnjTn759i/pDnaj1yU3qRXYClg1aRWry1ZjV+xnfA2f6uPd9nf57f7f8mLNi3QFutDr9Lgz3Nwz/R5avC1sa9hGq6+VWXmzKHIUocgK0USUxa7F1PbW8r9H/pcMUwaudBd6nZ6JmRNFzhMuKeeSH8R2UUEQhItZMDhigQ2SUz2la68deqPFgmXNGiS7nURnJ5rJlNwqOsaqtkg8Quy0AtvA8VWgZOpU6G0heuIE8RMnhjxGdrlQ5sxB3bkztW3UOz6NJ/c/SW1fLd+8+pup7Q6CIAiCIAjCKQc7DnKw4yBxLY4sySh6hVgiRn+4H0/IQ21fLe+2v4skSdiMNsaljeOLMx9koqkQrbUNv9kDFjO2tKxRXyMYDfLHQ39kd/Nu4ok4aUqygNDp7+R/j/wvVxVdRb49n6PdRzncdZh+tZ93O97Fne6mIreCZ6ufpa6vjjrqONBxAEWvkGnOFDlPuGyJIpsgCMJFKu7xQCKB5ZZbUlM91T17hg4dUNVT/22xYLvnHkIvvjji1lI5I2PE19ECgWEFttQ51NWhVFWNfo7v3Z/aNrrvLbYqh/BFkv1DjnQeEeFLEARBEAThNCd7TtLmT073NMpGOgOdHO8+jhpX6Qv3kaak0R3spjPYiUlvIsucxW+XPIH5pdfQ6rahAXGSfXQDK6/Hmpk34usc6TxCTW8Nbf62IcMPdJKOZm8zFoOF8uxy+kJ9RBNRfBEfil6h2FFMOBbmWPcx4ok4Jr0JDQ29Ti9ynnBZE0U2QRCEi1Dc4yG0fv2wYpll7dpU/zMAFCX5/w0GrLffPqzABslCWGjDBsw33jjiijadGhn7ZGKx5OsYDCNOFZWMRvSFhQT3vUXjlW5+vPk7yaclYnhUz9m/aUEQBEEQhMtAdXc133vte/SF+ni1/lUA3E43S9xLWH9sPWa9GU3TMMpGgtEg0XiUnyz5PuaXXh82hEqrqyO+cQv+j60YcUVbT6gHf8Q/pMCmaVpqaigkBxh0BDpIaAkkJK4suJKVE1dyvPc4ep0eg86AhjZkgILIecLlShTZBEEQLgKDp0rNTi8n86U3RiyWqYBSVZXanqlFImAwYFm7FnS64VtLDYbkSrPCQjSPh3g0imS1DunVJltsWG67LVlMG2nFnF4PkjS8wDdAUWgZn8ZW5RC/eOVH/NPMz7I0dz6WhIzVnkFnTxNmm/Os+oYIgiAIgiBcagbnvGxLNltqtlDvqSfDnEGWJYu+UB/VPdWE42FKM0qJxqMsHL8QRa9wV8VdjHeOp9SUj1b3yojH1+rqiPv8HAq3U+woHpK5MkwZLBi/AHe6G4NsoNXbyutNrxNNJPOcrJNxGp18ed6XqffUJ1eqqT46A50Y9Ub0kh69rEev06PICjPyZpBlycJuTL7Gwc6DlDhKRM4TLhuiyCYIgvARN3iqlPn/Z+/O46Mqr8ePf+7sM5nJvi8kk8iO7Bp2EJB9UdEqrqC1WrXaWq21q/19rdrN+rXf1q1WrbZqXYtsAoKICKggyL5kD5CEkG2S2Wfu749Jhkw2UJawnHdfvmruvXPnmSdITs59nnN0Zl6f8Nfjbt/U2u2Yp00j6HJhmjoVz6ZNmMaOjby4Ofnm2bQJz7p14cPavDyMs2ZywFdBphKLsmxVu4YHLQk1bWYmQYcDtb4ef3l5OMHX+tr9nkNMX3w1Fr2FN6e+SPZn+1BXLQFABUy5dpyTR1FjriE7NvvUTZwQQgghxFmubffQSzMuZen+pQxJHYLL7yI/I58NZRtw+V2U1peyYPACFu9dzO7q3dS4a/D6vXxd9TU/zrmxy/dxO+t5++B7xJvjmZo3lUAgwFH3UZYeWMrnBz9ne9V2nD4n2THZXNH3Ct7b/R65cbkYtUZ2VO2goLaAi1MuZteRXQCoSSqJ5kT6JvWlpL4EvUbPlLwprCtdx6rCVWTaMimqK8KgMTCr9yxGZY06oY6nQpzrJMkmhBBnscrGyogE21OjHyXK6cfZxWsUoxFjfj6Nr7wCPh/WW2/FvXgxtGmCYBwxAs+mTe1XxBUU4PlgMRnTJsKKNZ02PDBNnYomPh6N1UrjCy+AzxdRn01rt2OaNZOtB1eQG5vLdT2vCCXY2m5jKCzCvArKR+cRb46XJ51CCCGEuCC0jvMA3H43De4GjFoja0vWotPoSItKo0dMD/ok9cGis+DyuXD5XXyw9wNizbH0TujNEecRnBo/UV28l1+vZd/RfQDsPrKbmb1m8ub2N9lzdA8aRcPw9OF8cegLCusKUVG5ss+V9E3qS05sDruO7MKoM5Ibl8u+o/vwB/34Aj5m9JyBPc7Oq9teJd4Sz6eln1JaXxoab2Ifqp3VBNUgi/cuRlVVEswJEueJ854k2YQQohsFXS7UpiZUtxvFZGq3VXNX1a5w4HVLn+tIW7cDRozs8p6qx4PzjTeOfe1yhf7f4Qh1+GxOqmkzMyNWnbUWKCzE0jgGhg3DWVzcbgtooKgI85Qp+A8fJlBaGj6vmIxYFixAYzKBxYLWZmNW1Cz6JPYhT41DXfVKx2MuLKLHhBGU1JUwIGVAl59PCCGEEOJc4PCEGgA0+hqxGqzttmq2jvP8QT/VzmrSo9Mp31POUddR7LF2FEXhoOMgWo2WeHM8UYYoNh/ejIrKEecR7HF2nD4n649uYWquHbWwfdd5xZ7D+uotfHjgQwDizfHY4+z0iO1BmaOMgw2h+//g0h8A4Av6GJI6hIP1B9lUvolyRznegJdgMMj9I+7HorPQN7kvKdYU+if3Z3DqYIpqi3ht+2v0SugFEE6wARxqPESDp0HiPHFBkCSbEEJ0k2B9Pc5FiyK3YublYZk9G01zA4LWBWNHxQ9CLfovgcysiGRZa1q7nUB5eeTB5uYHzkWLIruL+v1dD9DlwvPll+22gIbH39CAxmLBuWxZ+Fi9xscH1Z8y/aLppFhDQaTNaGNI2hD85eU0dfF2Wq+fRqWx6zEJIYQQQpwDiuuKWbR3ETWumvCxeHM8c3rPCW+bbB3nefwe/EE/Bo2BeHM8de7QuThzHFsrt2KPtRNrjKWqsQq9Rk9ADaCqKgoKDo+DRz//I+OveBfTSjVi14Biz6Fq3EAefPcKVFScPidBNUiNs4Y1JWsYkDQAX8DH0LShrCtZx9bKraiqSr+kfuEVaRcnX0yUIYoYUwxVzqrmOC/UNbQlzvMEPMSb4zlQc6DD+XD73TT6JM4T5z9JsgkhRDcIulztEmwQ2qrp/OADLPPmoTGbiTXGhs/pfKGngZ6NG0O11KBdd1Fjfn6o+UDLsdxc0OvR5uYSKCyk8ZVXsMyZgzJ5MoqihC5q1fygdXMD9PpwjbeOKCYTTa+9dmwVmz2HtVWf88rXr1BYU8itQ2+NqL2hmExdzknAoMOqtx5v6oQQQgghzmoOj6Ndgg2gxlXDor2LWDh4ITajLSLOC6ihTp5FdUWMzByJoij4g370Gj16jZ6M6Awm2ify2LrH+OvEP3G9fS56XxDFaEDV6tjdcID/FC+j//A8Bl42Cp0/SAMetjbs46WN/8PE3IkE1AA6jY6y+jJMWhN7q/cyNHUomdGZfHn4SxweB0mWJIJqkGhjNCV1JUQbo0m0JLLp4CYO1BzgqPNoh3GeVW/FoDF0OicmnUniPHFBkCSbEEJ0A7WpqfPmBQUFqE1NYDbTL7lfuP6FV6eEam34fDjfeQfjiBGhBJjfjxIbS+DwYZyLFh1LmAGamBhUvx/ztGmhFWyFheGtpKZZs9D26oVx6ND2zQ/sdnS9e4Ne3+GKN63djv/AgVYJNjslo3ryxOr7SLWlcqjxUEQQCaBERaHNyyNQUNDufkqunVLfEXolDzyZaRVCCCGE6HYldSW4fC7G9hhLtbOaOncdceY4EswJfHnoy/C2ydZxXiAYwOP3oKoqi/Yu4vLcy7HH20mzpjE8fThajZYvD3/Jvlu2EONWoc4BOh3+ggL8FRX0HTmSXhd9hykfXE2yNZlBKYP46vBX9Ersxfaq7RTUFqBRNATUAENTh5JkTSLJkoRG0fDdfjeSY0jBEtTi12tZXbmRD0pXcNR1lEV7FzG792wONhzkSFNoe2pHcV52bDa5cbkU1RXh8rsi5iPdmk60MVoaXIkLgqKqqtrdgzibNDQ0EBMTQ319PdHR0d09HCHEecpfXk7Tiy92et5y263oM7MAWF+6nj+s/wMze0zm2gJbu8YBAPTMo2J0f7ItafiXr4zcgpqbi3n6dFSvFxQllBjT6UBRUAwGXEuWdLr1VJeZiTYnB+err4aPa3LtBKZMoK6phqigFp9OQ7G3krcKP6CsoYxaZy1/n/y/ZOjiUTxeNCZzuD5bsL4e5weLCBQcG5+Sa8c1eRQes4EesT2+xWwK0f0kfjg3yPdJCHEmfFn+JdXuap7c8CS7juwi0ZKIWWemR0wPbhl8C6mWVIZmDAWOxXl7ju6h3l3P0LSh1HvqybBlsPnwZn5w6Q/4xepfcPvQ2/nl4PvQr1jb4U4Gz+bN6Hv3pjYjjlcL3iE7NpsGTwNv7niTj4o+Qqto0SgaYkwxZEVnEWOMIT8jn7v73kz06i9QW91Tsds5NKYvz+79Fw2eBuxxdg43HqaqqYqCmgLyM/Jx+V3M6T2HeHM8/ZL6kWJNobiumNe+fo31pevDibZ0azqze89mVNYoSbKJc9Y3iR9kJZsQQnQDv17b5fkmxc+6vR+E63HcPOhmjrqO0jR5FNaPFIKtitoquXYOj+zL2vJPmV8QQ7Btt9DCQlxLl2KaNImml18masECml54AYCo732vwwQbhLaiGseOBZ8Py/z54RVz/sOHqPbU8+TuF9lcsZkth7cwIHkAB2oOMCRlCMtmv4F/6Ye42gSA5lmz0MbHY5l3NYFGB35XE0GDniadisUWS4p0mxJCCCHEecCoN/K/H/8vG8s2Yo+zU1pfSp27ji8PfUlZfRk/yP8BBxsPRsR5Vc4qAsEAGkVDtDGapfuW4g14OdJ0hCFpQ7jIkol+5Sftu8I3d33XZWaisdmIVQ38dt1vmWyfzODUwXj8HkZkjsDhcaAoofpte4/uJUofxeNjHyFm9RftYke1qIh0BS7tPYhbV3w/HOdlx2QzPns8B2oPsOvILhIsCWw5vIXcuFzuzb+XwamDuS//PmZcNIPDjYfRaXWkW9PJic2RrqLigiFJNiGE6AZl/mqS7dlQVNLunGK3s+7oFu7+6EdY9VYOOg4yMmsk8/rO4/ufPMh1fa9k3NirsWHEp1Mo9lZy2FfBjPQJBFe92+H7BYqKUD2e8PZSy/XXEygrA7e7y3EqGg3+w4fxfPwxAJb58/EsXkJCrp38XoP4YN8HxJni8Pg96DV6/jT6/+Ff+mGHAaBr8WLMV16J1mZDYzajbz7XVbt5IYQQQohzTUFtAetK15FkSaK8oTycTNMoGvLi81i8bzHrSte1i/MWH1hMj5geZNoyuX7g9eRn5hNQAzww6gGGGuwE1nQe57XEeDpvgLdnv8a/971LvDmeyqZKbEYbBx0HqXfXY9QZiTPFoaoqPY0ZBIvWdHhPtbCI/JEzI+K8g46DrClZw8iMkew6sguDNlSDrbC2kKc3Pc3jkx4nxZrC0PShp2VehTgXaLp7AEIIcSHacOQrCkfkodhzIo4r9hxKR/Xkf796lgZPA3HmOOLMceyr3scHez9gTq85/H3Xq1z/8d38u/ojdgYO8emRL9lasZVojJ2/oV6PYjCg69MHgkEUqxUlLg7FYulynKrHgzYtDYjsXKoWFjEifhAxphiGpA3BpDORZEmin63jrqfQ3KTB6TzxSRJCCCGEOAfVOGvwBXxEG6OpcdegNv8vPzOf9WXrKakr6TDOu6rPVew7uo8VhSsobyhnSNoQtBot2yu3dx3nQbh5lerxcOnmGn457EdEG6PpEdMDnaJjcMpgJudOZnjacNJt6USbolGP87DV6CciztNr9Bw4eoBYcyxZ0Vk0eBrC1xbWFrKratepmD4hzmnnzEq2ffv28eCDD7J+/Xq8Xi8XX3wxjz76KJdddln4mtLSUu6++25Wr16N2Wzm+uuv549//CMGQ+ddToQQojuY9WYmvTuXJ8c/xsgRUzH4QWsycTBQy9++/hvDM4bjC/qoc9dRUl9ClD6KwrpC3H43+Rn5bDq4CafPSbwpnoWDF1JSV4JWtdC+RQGg12OZNw/3mjXtarXpMjPR9upFYN++di9rSappU1M77FxqDmpxeBxsrdhKnbsOi96C4vVhHDsWbVYWitkMGg2qywXBIIGyMlSP5zTMphDiXCdxnhDifNKyNbKlY6heo2dE5gim5E3h68qvyYvLQ6fRnZo4r4XJRLC2FrW+HrWoiARUBo7vS5IliS8PfYmiKFj0oYerTp8Te6wdr77rhIBHR0SclxeXR0pUChm2DO6+9G48fg/9k/oD0OhtjEi6CXGhOmeSbDNnzqRXr17hwOqpp55i1qxZFBQUkJqaSiAQYObMmSQlJfHpp59y9OhRbrnlFlRV5S9/+Ut3D18IISLkxuXSO7E3f976DHdU72Fev3lsLN+IWWemqK6IBHMCRq2R2b1ns6t6F02+Jo40HSHWFEtQDTK712xSranYjDZsRhsDUgYQdLlwdtC90zhiBJ5Nm9pv4SwsxLVsGebZs3H5fB0W0XW+8w5RCxagy8wMJdiau4mi1xMfl8aua9eheDyoRiP1uNFpowhmZaGJiQl1M21zT/2gQadvUoUQ5yyJ84QQ55PcuFyGpg3F6XNi0BjCcd7r21/vNM5zeByMTx1BZlYi5n53gdeHRrGgCepaxXm5Ec2jWmjtdhSLBY3fj/PDDwFQi4qJHj2QhUMWUtpQSml9KRoltJFtYPJAZvWaxYaabVyea4+o9dtCseewseZrcuNyCQQDOLwOgmqQ7NhsEiwJvPTVS6wrXYfNYKNHTA/MOjPDJww/vRMrxDngnOguWl1dTVJSEp988gljx44FwOFwEB0dzapVq5g0aRLLli1j1qxZlJWVkZ6eDsAbb7zBggULqKqqOuEOUtJ1SghxJjg8DpbuX8qr214lSJA91Xsoqivi0vRLqWis4IjzCAA943sSY4phfel6BqcOZv7F83n2y2cJqkGSLckMTR/Ktf2vxaQzYTPa6KVLxf3B4ojkluWmmyK6g7ZlvfNO/AcPorFaw1sNAuXleDZuRJuZiS4zE8+6dcdeoNdjuf56POvWRa6Ma07MBQ4fxl9a2nHH0txcdFfOwWSNOQWzKMTZQ+KHb0/iPCHE+eabxnlbDm/hs2s+pK8+Hc8n6yIfUublwbRJlKl15OqS8S5eEpEUa+ki79u9OxSvtTwQBeq/M50tHKLMUUa9qx5f0IfNYMOoM1LeUE6lo5LH8n+G9aON7bqLlo3uzYg3J+P0OUm0JJIdk01FUwWX5VyGL+BjReEKsqKz2Ht0LzaDjTRrGhenXMwfp/yRFGvKGZhlIc6c8667aEJCAn379uWf//wnQ4cOxWg08txzz5GSksKwYcMA2LBhAwMGDAgHXgBTp07F4/GwefPmiO0GrXk8Hjytti81NMgSVyHE6Wcz2siLzWNev3mYdWb+9sXfSLOlYdFZONx4GFVViTXF8nXV18wfMJ/smGwMOgNVTVXEmmLxBXykWlP54tAXHKg5wPC04Rx0HGRY2jC+P/sGqGsAlwt0OjjOs5RgfT2aqCg8GzdGBHWaXDv66dPwrFwVcb1x6tR2CTY41t3KNGECnrVrO3yvQGEh2sZGkCSbEKKZxHlCiPPNN43z5mZPo1eDEc/Ode13HhQUoF2mctH0aRz11KOZcRk612jweLBGxRLctYfG55+PSK6FGQ0UVBQQa4plw5ENHGo8hFlnJjs2G1/Ax+zes/nZ548xJm84k0bPxqYa8OkV3i9dwefbnyUpKonS+lKOOI/gD/oZnDqYGRfN4NZFt+IJhP5uTbelU9FYQVJUEmUNZeyq2iVJNnFBOyeSbIqisHLlSubOnYvNZkOj0ZCSksLy5cuJjY0FoKKigpSUyP+Y4+LiMBgMVFRUdHrvxx9/nN/85jenc/hCCNGh3km92Vuzl2pXNVajFQUFraJlePpwtldup7iuGICgGmR4xnBy43IpqCkg0ZKISWvicONhCmoK8AV89IzryYbyDew6souqpiruHXwH8VGJqHV1odpox+F85x2MI0aEO1NhNlFp9PH63lcYPLAPvfPnovMF0VusWPTReBYv7vA+gaIiGDeuy/eSumxCiNYkzhNCnI++SZx3dc4MtH4Lns6aRxUWQk0t1o0b0c+YRqGxEZfGTYrGTfTBgx0m2BR7DmuqNmHQGjjkOMS47HGoqDR6GwmoAXJic9hzdA99E/tywFXOrgOv0TuhN6uLVvPWrrfQaXSMyBzB2B5jcfldGDQG7HF2atw1aDVajBhx+pxcFH8RHr8nvBW1zlN3uqZUiHNCt3YXfeSRR1AUpct/vvzyS1RV5a677iI5OZl169bx+eefM3fuXGbNmsXhw4fD91MUpd17qKra4fEWDz/8MPX19eF/ysrKTstnFUKItmxGG/2T++P0Ofms7DNWF61md/Vuthzegj3WzuV5lzMxZyLTLprGmKwx/Pvrf1NUV8TuI7vxq36K64oJBAN4A14avA0cbDjI9qrt/PPrf7L60Hr+sPdFgglxBCoq0NrtHY4h3DHU58Ozbh3O11/H+dZbOP/5KsaAQpOviTcL/svNn/yQ6zfcz+O7nkV1u7r+YMcpQq4Yj9MdSwhxXpA4TwhxIfsmcV5UUBd6yNkVv59AURG+pctJCJp5d8+7lHmq0MyYgpIbGecp9hwqx13Mp1VfkhSVBEBFUwWVTZUU1Rax/MByal21+II+9tfuZ2P5RrYc3sLeo3tRVZUkSxK+oI91pet4e9fbvLXrLf6z6z9UNlWiVbQoKOi1egxaQyh5qNGi04TW78QaY0/HdApxzujWlWz33HMP1113XZfX5OTksHr1ahYvXkxtbW14/+vf/vY3Vq5cySuvvMJPf/pTUlNT2bRpU8Rra2tr8fl87Z58tmY0GjHKL3xCiG7g8DjYfWQ3Rq2RcT3GUVxfjE7REW2K5uuqrwmqQXrG9+SdXe+QF59HblwuO4/sJNoYjTfgxelzElADqIR+yQyoAVRV5ZDjEBWNFdyQMwfPhysxZGRgnjYN14cftusuarz00oiOoa1pvaFgz6A5ljQzaA2oxuN38tPa7R3WZNPk2lGs1m86VUKIc5DEeUKIC9k3ifPG5w8kRnec+EgX+tU9UFRErDqZysZKfvbRz5iQM4HZY6aQOGYwel8QlzbIisPreHfdw+TE5PDfPf9lcu5kDjkOEVADeINeANx+N9A+zguoAbJjs1FRqXHVoFE0KCjEmmLJi83D4XGQE5tDSX0JAFqNFpvBhoJCblwu/ZL7nYbZFOLc0a1JtsTERBITE497ndPpBECjiVx4p9FoCAaDAIwcOZLf/va3HD58mLS0NABWrFiB0WgM1/MQQoizSUldCdXOap798lnG54xnf+1+9tXuQ6NoyLBlMDRtKNcNuI4dVTvIjculwlGBP+hHq9Fi0poACAQD5MXlUV5fjqqq4VbxI5OHErdmM8GiIjz79+NZvz60HTQ/HwDFZAKdjqaXX+64hgcQMIR+RMSYYjDrzLj8Lho8DRz015DcSRJNa7fj378fY34+Hmhf423mdGl6IMQFQuI8IcSF7ETjvD3Ve9CZLCgaG9rc3HY1b6HVzoMWbg8GrYHCukIGugfy3RV3s2DwAgpqC3B4HMSaYrHH2Xln1zuk29JRUBiXPY6KpopwUs2kM1HvqW8X52XFZLGtchvx5nh6xPRAq2gJqAFijDGUN5Tj8ruYnDuZ1UWrOeo6ikbRYI+zk2RJ4gf5P5B6bOKCd07UZBs5ciRxcXHccsst/OpXv8JsNvPCCy9QVFTEzJkzAZgyZQr9+vXjpptu4g9/+AM1NTU88MAD3H777dI9SghxVmr0NdLgacDld/FR4UcMTBnI2Kyx+II+9Bo9Rp0Rp9eJWW/m71v+Tu+E3myr2kZRbRHjs8eTYE7ArDczMnMkb+16C5VQgwN7rJ08QxrBojXH3qx5O2gLy/z5BMrL0WZmdrribJ8rFMwZdUZ6J/Zmb/VeHG4HXzcWMHvmTFxLlkR2v2ruLtqyMs40dSrmqVPxe1wEjQaUqChJsAkh2pE4TwhxPjqROM/j9zA/exYxH31OU3k5lnnz8Khql/EVgGo0hBsPePweCmoL8Pg9vLz1ZQAGJA/A4/dg1pvxB/0cajwUjhNjTDHkxuWiENpq3zbOm9NnDt6Al2X7l3Gk6QhBNUj/5P6MyhyFSW/iy0NfElSDLBy8kLy4PPyqn2hDNP2S+0mCTQjOkSRbYmIiy5cv5+c//zkTJ07E5/PRv39//vvf/zJo0CAAtFotS5Ys4a677mL06NGYzWauv/56/vjHP3bz6IUQomNWvRW9Vg+AL+hj8+HNEef7J/Vn6kVTefGrFymqK6K8oTwcoCVFJTGv7zw2HdzE4n2L8QVDq9HssXZm9ppJwO1E39Wb+/14Nm4MBXOKErmNNC8P3YypfF3wdvhYrCmWSfZJjMsONTWoUd3EjhuHMnkyeDxgMkEwiOp0Yrn6ajSxsSg2GxqzGe2pmS4hxHlK4jwhxPnoROK8Hwz6HvEffYXanFRraURlmjAB1R3azhkoLw8l2Jp3HmjtdnY3FaPXhO5t1IW2xDt9zvC9A8EAR11HyY7JJqiGVgS3bA9Ns6Vx7YBr+bT00/D1beO8O4bewfSLpnOk6QhajZZYYyw6rY6DjoNMyZtCfkY+PRN6YjPaTu2kCXEeOCeSbADDhw/nww8/7PKaHj16sLiTjndCCHG2yY7Nxqq3khWdRVlDZDFum8FGmjUNi97CEecRIDJA02v0fG/o90i0JHJNv2to9DYC4Ff9KKqCRwumrt5cpwOfD9fmL6mfeAmmCflYVT0Giw0lKgqN2cyNUTdSUldCo68Rq95Kdmx2RDAV1Nfj/OADAgUF4WPavDwss2ejiZEVa0KIEydxnhDifHMicV6GNg5/6x0FzTsPwg9CP/888kGo3Y4y/XJ+9uFtWAwWsqKzcPlcmHQmLHrLses0WoJqkCZfE+Ozx+Pxe+iX3I8Ma0Y4nsuLy+syzosxx7Bo7yJqXDXhY/HmeOb2nkt2bPZpmDEhzg/nTJJNCCHONzajjUm5k3D5Xby/5/1wAGYz2BiVNYoJORNo9DRij7NTVFuEw+sIv9akM/HF4S+4Y9gd7K3eyxHnEZx+J2V1ZWyr3EZJbhWD7Pbwk9HWWup6KPYc6sYN4bXCd7EarCwcvBBzq+DKZrQxIGVAp+PXxMRgmTcPtakJ1e1GMZnCCTohhBBCiAvZicR5isfb8Yt9PpzvvIPltltRVRXcblSjgT3OEn658g4GpQ5i86HNjMsex6aDmxiRMYImbxPZMdnUumvx+D3EmeK4NONSYkwxxJvjGZU5KiKJdrw4Lyc2h4WDF3aZiBNCtCdJNiGE6Ea9E3ujVbTY4+zUuerwBX2YdWZ0Wh2jskZRWFOIw+MgOybU5ckf9KPT6FBQQkv40XLToJsoqSuhxlWD0+ekzlPHvqZSel9+GaZVoBa2quuRl4th6hRqXTXsTQ/wadH7WA1W5vae+62CJo3ZDJJUE0IIIYRo53hxnuLuoriHz4dfDeKPs1FSd5QaVxnOoJPrB15PvbueBEsCa4vXkmxJZlLuJApqCrhz+J3sO7qPWlctiVGJWA3W8OqzbxPnHS8RJ4RoT5JsQgjRzS5KuIgUa0qHTwpNOhP2ODuFtce2CrQUus2Ny6Vvct92AZDD46CkroRifzU50y8jTp2G4vGGV5o1afwcCR7BoLExJ26OPJUUQgghhDhNuorz3I31aHLtBAs7bkKlWKM6jfMafY1MzJmIXqvH6XOSn5Ef3sYpq8+E6D6Kqqpqdw/ibNLQ0EBMTAz19fXSrUoIcVbYWrGVpzc9HZFoy43L5d78exmcOrj7BiaECJP44dwg3ychxNnGXXME35JlEYk2Ta4d/czpmOKTunFkQogW3yR+kJVsQghxlhucOpjHJz3Orqpd1HnqiDXGSpt0IYQQQojzgCk+Ca6ci9rYiOrxoBiNKFYrJqs0kRLiXCRJNiGEOAekWFMkqSaEEEIIcR4yWWNAkmpCnBc03T0AIYQQQgghhBBCCCHOdZJkE0IIIYQQQgghhBDiJEmSTQghhBBCCCGEEEKIkyRJNiGEEEIIIYQQQgghTpIk2YQQQgghhBBCCCGEOEmSZBNCCCGEEEIIIYQQ4iRJkk0IIYQQQgghhBBCiJMkSTYhhBBCCCGEEEIIIU6SJNmEEEIIIYQQQgghhDhJuu4ewNlGVVUAGhoaunkkQgghhDhXtMQNLXGEODtJnCeEEEKIb+qbxHmSZGvD4XAAkJWV1c0jEUIIIcS5xuFwEBMT093DEJ2QOE8IIYQQ39aJxHmKKo9cIwSDQfbu3Uu/fv0oKysjOjq6u4fU7RoaGsjKypL5aCbz0Z7MSSSZj0gyH+3JnEQ6H+ZDVVUcDgfp6eloNFKN42wlcV5758N/f6eSzEd7MieRZD4iyXy0J3MS6XyYj28S58lKtjY0Gg0ZGRkAREdHn7N/CE4HmY9IMh/tyZxEkvmIJPPRnsxJpHN9PmQF29lP4rzOyXxEkvloT+YkksxHJJmP9mROIp3r83GicZ48ahVCCCGEEEIIIYQQ4iRJkk0IIYQQQgghhBBCiJMkSbYOGI1Gfv3rX2M0Grt7KGcFmY9IMh/tyZxEkvmIJPPRnsxJJJkPcSbJn7dIMh+RZD7akzmJJPMRSeajPZmTSBfafEjjAyGEEEIIIYQQQgghTpKsZBNCCCGEEEIIIYQQ4iRJkk0IIYQQQgghhBBCiJMkSTYhhBBCCCGEEEIIIU6SJNmEEEIIIYQQQgghhDhJkmRrZd++fcydO5fExESio6MZPXo0a9asibimtLSU2bNnExUVRWJiIvfeey9er7ebRnxmLFmyhPz8fMxmM4mJiVx11VUR5y/EOfF4PAwePBhFUdi6dWvEuQtlPoqLi7ntttuw2+2YzWby8vL49a9/3e6zXijz0eJvf/sbdrsdk8nEsGHDWLduXXcP6Yx4/PHHueSSS7DZbCQnJ3PFFVewd+/eiGtUVeWRRx4hPT0ds9nMhAkT2LlzZzeN+Mx7/PHHURSFH/7wh+FjF9qcHDx4kBtvvJGEhAQsFguDBw9m8+bN4fMX2nyIM09ivfYkzmtP4rwQifU6JrGexHodkThP4rwwVYRddNFF6owZM9Rt27ap+/btU++66y7VYrGohw8fVlVVVf1+vzpgwAD1sssuU7ds2aKuXLlSTU9PV++5555uHvnp8/bbb6txcXHqM888o+7du1fds2eP+tZbb4XPX4hzoqqqeu+996rTp09XAfWrr74KH7+Q5mPZsmXqggUL1A8//FAtKChQ//vf/6rJycnqj3/84/A1F9J8qKqqvvHGG6per1dfeOEFddeuXep9992nRkVFqSUlJd09tNNu6tSp6ksvvaTu2LFD3bp1qzpz5ky1R48eamNjY/iaJ554QrXZbOo777yjbt++Xb322mvVtLQ0taGhoRtHfmZ8/vnnak5Ojjpw4ED1vvvuCx+/kOakpqZGzc7OVhcsWKBu2rRJLSoqUletWqUeOHAgfM2FNB+ie0isF0nivI5JnBcisV57EutJrNcRifMkzmtNkmzNjhw5ogLqJ598Ej7W0NCgAuqqVatUVVXVpUuXqhqNRj148GD4mtdff101Go1qfX39GR/z6ebz+dSMjAz173//e6fXXGhzoqqhz9ynTx91586d7YKvC3E+Wvv973+v2u328NcX2nxceuml6p133hlxrE+fPupPf/rTbhpR96mqqlIBde3ataqqqmowGFRTU1PVJ554InyN2+1WY2Ji1Geffba7hnlGOBwOtWfPnurKlSvV8ePHh4OvC21OHnroIXXMmDGdnr/Q5kOceRLrRZI4r2MS53VNYj2J9VpIrBcicV6IxHnHyHbRZgkJCfTt25d//vOfNDU14ff7ee6550hJSWHYsGEAbNiwgQEDBpCenh5+3dSpU/F4PBHLIM8XW7Zs4eDBg2g0GoYMGUJaWhrTp0+PWNJ5oc1JZWUlt99+O6+++ioWi6Xd+QttPtqqr68nPj4+/PWFNB9er5fNmzczZcqUiONTpkzhs88+66ZRdZ/6+nqA8J+HoqIiKioqIubHaDQyfvz4835+7r77bmbOnMnkyZMjjl9oc7Jo0SKGDx/ONddcQ3JyMkOGDOGFF14In7/Q5kOceRLrRZI4rz2J845PYj2J9VpIrBcicV6IxHnHSJKtmaIorFy5kq+++gqbzYbJZOLPf/4zy5cvJzY2FoCKigpSUlIiXhcXF4fBYKCioqIbRn16FRYWAvDII4/wi1/8gsWLFxMXF8f48eOpqakBLqw5UVWVBQsWcOeddzJ8+PAOr7mQ5qOtgoIC/vKXv3DnnXeGj11I81FdXU0gEGj3eVNSUs67z3o8qqpy//33M2bMGAYMGAAQnoMLbX7eeOMNtmzZwuOPP97u3IU2J4WFhTzzzDP07NmTDz/8kDvvvJN7772Xf/7zn8CFNx/izJNYL5LEeZEkzjs+ifUk1mshsV6IxHnHSJx3zHmfZHvkkUdQFKXLf7788ktUVeWuu+4iOTmZdevW8fnnnzN37lxmzZrF4cOHw/dTFKXde6iq2uHxs9WJzkkwGATg5z//OfPmzWPYsGG89NJLKIrCW2+9Fb7fuT4nJzoff/nLX2hoaODhhx/u8n4Xyny0dujQIaZNm8Y111zDd7/73Yhz5/p8fFNtP9f5/Fk7c8899/D111/z+uuvtzt3Ic1PWVkZ9913H6+99homk6nT6y6UOQkGgwwdOpTHHnuMIUOGcMcdd3D77bfzzDPPRFx3ocyHOHUk1oskcV4kifPak1jv5MjPKYn1QOK8tiTOO0bX3QM43e655x6uu+66Lq/Jyclh9erVLF68mNraWqKjo4FQ55iVK1fyyiuv8NOf/pTU1FQ2bdoU8dra2lp8Pl+7jOzZ7ETnxOFwANCvX7/wcaPRSG5uLqWlpQDnxZyc6Hw8+uijbNy4EaPRGHFu+PDh3HDDDbzyyisX1Hy0OHToEJdddhkjR47k+eefj7jufJiPE5WYmIhWq233JKaqquq8+6xd+cEPfsCiRYv45JNPyMzMDB9PTU0FQk+x0tLSwsfP5/nZvHkzVVVV4W1oAIFAgE8++YT/+7//C3fkulDmJC0tLeLnCUDfvn155513gAvzz4g4NSTWiyRxXiSJ89qTWO/bkVgvRGK9EInzIkmc18qZLAB3Nlu0aJGq0WhUh8MRcbxXr17qb3/7W1VVjxX2PHToUPj8G2+8cd4W9qyvr1eNRmNEQVyv16smJyerzz33nKqqF9aclJSUqNu3bw//8+GHH6qA+vbbb6tlZWWqql5Y86GqqlpeXq727NlTve6661S/39/u/IU2H5deeqn6/e9/P+JY3759L4hiuMFgUL377rvV9PR0dd++fR2eT01NVX/3u9+Fj3k8nvOy2GmLhoaGiL8ztm/frg4fPly98cYb1e3bt19wczJ//vx2BXF/+MMfqiNHjlRV9cL8MyLOLIn1IkmcF0nivI5JrBdJYj2J9VpInBdJ4rxjJMnW7MiRI2pCQoJ61VVXqVu3blX37t2rPvDAA6per1e3bt2qquqxFtWTJk1St2zZoq5atUrNzMw8b1tUq6qq3nfffWpGRob64Ycfqnv27FFvu+02NTk5Wa2pqVFV9cKckxZFRUWdtna/EObj4MGD6kUXXaROnDhRLS8vVw8fPhz+p8WFNB+qeqyt+4svvqju2rVL/eEPf6hGRUWpxcXF3T200+773/++GhMTo3788ccRfxacTmf4mieeeEKNiYlR3333XXX79u3q/Pnzz8u23V1p3XVKVS+sOfn8889VnU6n/va3v1X379+v/utf/1ItFov62muvha+5kOZDnHkS67UncV7nLvQ4T1Ul1uuIxHoS63VF4jyJ81RVkmwRvvjiC3XKlClqfHy8arPZ1BEjRqhLly6NuKakpESdOXOmajab1fj4ePWee+5R3W53N4349PN6veqPf/xjNTk5WbXZbOrkyZPVHTt2RFxzoc1Ji46CL1W9cObjpZdeUoEO/2ntQpmPFn/961/V7Oxs1WAwqEOHDg23NT/fdfZn4aWXXgpfEwwG1V//+tdqamqqajQa1XHjxqnbt2/vvkF3g7bB14U2Jx988IE6YMAA1Wg0qn369FGff/75iPMX2nyIM09ivUgS53XuQo/zVFVivc5IrCexXmckzpM4T1VVVVFVVT0T21KFEEIIIYQQQgghhDhfnffdRYUQQgghhBBCCCGEON0kySaEEEIIIYQQQgghxEmSJJsQQgghhBBCCCGEECdJkmxCCCGEEEIIIYQQQpwkSbIJIYQQQgghhBBCCHGSJMkmhBBCCCGEEEIIIcRJkiSbEEIIIYQQQgghhBAnSZJsQgghhBBCCCGEEEKcJEmyCSGEEEIIIYQQQghxkiTJJoQQXQgEAowaNYp58+ZFHK+vrycrK4tf/OIX3TQyIYQQQghxMiTOE0Kcaoqqqmp3D0IIIc5m+/fvZ/DgwTz//PPccMMNANx8881s27aNL774AoPB0M0jFEIIIYQQ34bEeUKIU0mSbEIIcQKefvppHnnkEXbs2MEXX3zBNddcw+eff87gwYO7e2hCCCGEEOIkSJwnhDhVJMkmhBAnQFVVJk6ciFarZfv27fzgBz+QLQRCCCGEEOcBifOEEKeKJNmEEOIE7dmzh759+3LxxRezZcsWdDpddw9JCCGEEEKcAhLnCSFOBWl8IIQQJ+gf//gHFouFoqIiysvLu3s4QgghhBDiFJE4TwhxKshKNiGEOAEbNmxg3LhxLFu2jN///vcEAgFWrVqFoijdPTQhhBBCCHESJM4TQpwqkmQTQojjcLlcDBo0iClTpvB///d/lJaWMmDAAH7/+99z5513dvfwhBBCCCHEtyRxnhDiVJLtokIIcRw//elPCQaD/O53vwOgR48e/OlPf+LBBx+kuLi4ewcnhBBCCCG+NYnzhBCnkqxkE0KILqxdu5ZJkybx8ccfM2bMmIhzU6dOxe/3y3YCIYQQQohzkMR5QohTTZJsQgghhBBCCCGEEEKcJNkuKoQQQgghhBBCCCHESZIkmxBCCCGEEEIIIYQQJ0mSbEIIIYQQQgghhBBCnCRJsgkhhBBCCCGEEEIIcZIkySaEEEIIIYQQQgghxEmSJJsQQgghhBBCCCGEECdJkmxCCCGEEEIIIYQQQpwkSbIJIYQQQgghhBBCCHGSJMkmhBBCCCGEEEIIIcRJkiSbEEI0e+SRR1AUherq6i6vy8nJYdasWWdoVEIIIYQQ4kyQGE8IcbIkySaEEEIIIYQQQgghxEmSJJsQQgghhBBCCCGEECdJkmxCCNFGWVkZV111FdHR0cTExHDjjTdy5MiRdte99957DBw4EJPJRG5uLk8//XQ3jFYIIYQQ4sJ25MgRvve975GVlYXRaCQpKYnRo0ezatUq/ud//gedTkdZWVm71916660kJCTgdrsjjh8vxnO73fz4xz9m8ODBxMTEEB8fz8iRI/nvf/97Wj+nEOLsJ0k2IYRo48orr+Siiy7i7bff5pFHHuH9999n6tSp+Hy+8DVbt27lhz/8IT/60Y947733GDVqFPfddx9//OMfu3HkQgghhBAXnptuuon333+fX/3qV6xYsYK///3vTJ48maNHj3LHHXeg0+l47rnnIl5TU1PDG2+8wW233YbJZAofP5EYz+PxUFNTwwMPPMD777/P66+/zpgxY7jqqqv45z//ecY+txDi7KOoqqp29yCEEOJs8Mgjj/Cb3/yGH/3oRzz55JPh4//+97+54YYbeO2117jhhhvIycmhtLSUr776ikGDBoWvmzJlCps2beLw4cNYLJbu+AhCCCGEEBccm83Gd7/7Xf785z93eH7BggUsW7aMsrIyDAYDAL///e95+OGHKSgoICcnB+Bbx3iBQABVVbnzzjvZsmULW7ZsOfUfUghxTpCVbEII0cYNN9wQ8fV3vvMddDoda9asCR/r379/RPAFcP3119PQ0CCBlRBCCCHEGXTppZfy8ssv8+ijj7Jx48aI3QcA9913H1VVVbz11lsABINBnnnmGWbOnBlOsLU40RjvrbfeYvTo0VitVnQ6HXq9nhdffJHdu3efng8phDgnSJJNCCHaSE1Njfhap9ORkJDA0aNHO72m9bHW1wkhhBBCiNPrzTff5JZbbuHvf/87I0eOJD4+nptvvpmKigoAhgwZwtixY/nrX/8KwOLFiykuLuaee+5pd68TifHeffddvvOd75CRkcFrr73Ghg0b+OKLL7j11lvb1XcTQlxYdN09ACGEONtUVFSQkZER/trv93P06FESEhIirunodUDEdUIIIYQQ4vRKTEzkqaee4qmnnqK0tJRFixbx05/+lKqqKpYvXw7AvffeyzXXXMOWLVv4v//7P3r16sXll1/e7l4nEuO99tpr2O123nzzTRRFCV/n8XhOx8cTQpxDZCWbEEK08a9//Svi6//85z/4/X4mTJgQPrZz5062bdsWcd2///1vbDYbQ4cOPRPDFEIIIYQQbfTo0YN77rmHyy+/PGJ755VXXkmPHj348Y9/zKpVq7jrrrsiEmQtTiTGUxQFg8EQ8fqKigrpLiqEkJVsQgjR1rvvvotOp+Pyyy9n586d/PKXv2TQoEF85zvfCV+Tnp7OnDlzeOSRR0hLS+O1115j5cqV/O53v5OmB0IIIYQQZ0h9fT2XXXYZ119/PX369MFms/HFF1+wfPlyrrrqqvB1Wq2Wu+++m4ceeoioqCgWLFjQ4f1OJMabNWsW7777LnfddRdXX301ZWVl/M///A9paWns37//THxsIcRZSpJsQgjRxrvvvssjjzzCM888g6IozJ49m6eeeircjQpg8ODBLFy4kF//+tfs37+f9PR0nnzySX70ox9148iFEEIIIS4sJpOJ/Px8Xn31VYqLi/H5fPTo0YOHHnqIn/zkJxHXXnvttTz00EPcdNNNxMTEdHi/E4nxFi5cSFVVFc8++yz/+Mc/yM3N5ac//Snl5eX85je/Oa2fVwhxdlNUVVW7exBCCCGEEEIIIcTp9Je//IV7772XHTt20L9//+4ejhDiPCRJNiGEEEIIIYQQ562vvvqKoqIi7rjjDkaPHs3777/f3UMSQpynJMkmhBBCCCGEEOK8lZOTQ0VFBWPHjuXVV18lNTW1u4ckhDhPSZJNCCGEEEIIIYQQQoiTpOnuAQghhBBCCCGEEEIIca6TJJsQQgghhBBCCCGEECdJ190DONsEg0EOHTqEzWZDUZTuHo4QQgghzgGqquJwOEhPT0ejkWeYZyuJ84QQQgjxTX2TOE+SbG0cOnSIrKys7h6GEEIIIc5BZWVlZGZmdvcwRCckzhNCCCHEt3UicZ4k2dqw2WxAaPKio6O7eTRCCCGEOBc0NDSQlZUVjiPE2UniPCGEEEJ8U98kzpMkWxstWweio6Ml+BJCCCHENyJbEM9uEucJIYQQ4ts6kThPioYIIYQQQgghhBBCCHGSJMkmhBBCCCGEEEIIIcRJkiSbEEIIIYQQQgghhBAnSWqyCSGEEGdQIBDA5/N19zDEN6TX69Fqtd09DCGEEEKcxSTOOzedyjhPkmxCCCHEGaCqKhUVFdTV1XX3UMS3FBsbS2pqqjQ3EEIIIUQEifPOfacqzpMkmxBCCHEGtAReycnJWCwWSdScQ1RVxel0UlVVBUBaWlo3j0gIIYQQZxOJ885dpzrOkySbEEIIcZoFAoFw4JWQkNDdwxHfgtlsBqCqqork5GTZOiqEEEIIQOK888GpjPOk8YEQQghxmrXU5rBYLN08EnEyWr5/UmtFCCGEEC0kzjs/nKo4T5JsQgghxBkiWwfObfL9E0IIIURnJE44t52q759sFxVCCCDgcIDTiep2o5hMYLGgtdm6e1hCCCGEEOIkVTZWsqtqF3WeOmJNsfRL6keKNaW7hyWEOA9Jkk0IccEL1NTgWryYQFFR+JjWbsc8axba+PhuHJkQ4kx65JFHeP/999m6dWt3D0UIIcQpsrViK09veprC2sLwsdy4XO7Nv5fBqYO7b2BCiDPqTMV5sl1UCHFBCzgc7RJsAIGiotBxh+P496ivJ1BRgb+khEBlJYH6+tM1XCFEG4888giDBw/u7mEIIYQ4C1U2VrZLsAEU1hby9KanqWysPO49JM4Tovuci3GerGQTQlzYnM52CbYWgaIicDqhi22jsgpOCCGEEOLstKtqV7sEW4vC2kJ2Ve3qctuoxHlCiG9KVrIJIS5oqtvd9XmPh6DL1eG5QH1916vg5EmnOMUcHgc7KnewsXwjO6p24PAcf6XlyVq+fDljxowhNjaWhIQEZs2aRUFBQfh8eXk51113HfHx8URFRTF8+HA2bdoUPr9o0SKGDx+OyWQiMTGRq666KnzO6/Xyk5/8hIyMDKKiosjPz+fjjz8On3/55ZeJjY3l/fffp1evXphMJi6//HLKysrC53/zm9+wbds2FEVBURRefvllAOrr6/ne975HcnIy0dHRTJw4kW3btkV8tieeeIKUlBRsNhu33XYb7uP8fSCEEOLcUuepi/jarDNz54CF/HPcU/x75JMMM+VKnCfOKmc61pM479STlWxCiAuaYjJ1eV51u3G+8w6W2bPRxMREnnS5ul4F53JB29cI8S0V1xWzaO8ialw14WPx5njm9J5DTmzOaXvfpqYm7r//fi6++GKampr41a9+xZVXXsnWrVtxOp2MHz+ejIwMFi1aRGpqKlu2bCEYDAKwZMkSrrrqKn7+85/z6quv4vV6WbJkSfjeCxcupLi4mDfeeIP09HTee+89pk2bxvbt2+nZsycATqeT3/72t7zyyisYDAbuuusurrvuOtavX8+1117Ljh07WL58OatWrQIgJiYGVVWZOXMm8fHxLF26lJiYGJ577jkmTZrEvn37iI+P5z//+Q+//vWv+etf/8rYsWN59dVXefrpp8nNzT1tcymEEOLMijXGhv/drDPz1OhHSVu3A7XovwCogDMvT+I8cVbojlhP4rxTT1FVVT3t73IOaWhoICYmhvr6eqKjo7t7OEKI0yzgcOB6770Ogyit3Y4uMxPPunVo8/KwzJuHxmwOn/eXlNDU/DSlI1ELFqDLzj4dwxbnGLfbTVFREXa7HdNxErsdcXgcvLT1pYigq0W8OZ6FgxdiM56ZbrhHjhwhOTmZ7du389lnn/HAAw9QXFxMfAfbZkaNGkVubi6vvfZau3MFBQX07NmT8vJy0tPTw8cnT57MpZdeymOPPcbLL7/MwoUL2bhxI/n5+QDs2bOHvn37smnTJi699NIOi9iuXr2aK6+8kqqqKoxGY/j4RRddxE9+8hO+973vMWrUKAYNGsQzzzwTPj9ixAjcbnenBXG7+j5K/HBukO+TEBeWysZKHv7oYYpqi7h74HeZsiOA2lHMJ3GeOAknG+fB2RPrSZx38nGebBcVQlzQtDZbqK5Gm6caWrsdY34+no0bAQgUFKC2aYKgtPpLvSPHO386SHHe81NJXUmHQRdAjauGkrqS0/beBQUFXH/99eTm5hIdHY3dbgegtLSUrVu3MmTIkA4DL4CtW7cyadKkDs9t2bIFVVXp1asXVqs1/M/atWsjtinodDqGDx8e/rpPnz7Exsaye/fuTse8efNmGhsbSUhIiLh3UVFR+N67d+9m5MiREa9r+7UQQohzW4o1hXvz76V3Qm+GRPfuMMEGoTjP74iMmc7GOK+0rpQle5fw6rZXWbJvCaV1pWd8DOL06K5YT+K8U0+2iwohhF6Pvl8/TJMmodbVgU5H4PBhAocPY7n6avD7QadD9fsJ1NQcK3RrNqO124+tgtPrMY4YgTYzM/S1RoO/qgpFo0GJiop4Ono6SHHe81ejr/Gkzp+M2bNnk5WVxQsvvEB6ejrBYJABAwbg9XoxH+fPdFfng8EgWq2WzZs3o9VqI85ZrdaIrxVFaff6jo61vndaWlpE3Y8WsbGxXY5ZCCHE+SXNmoY9zk4sXf/ManTUUBasZFDqoNCBsyzO21C2gcfWPcb2qu3hYxcnX8zPxv6MkVnykOhc112xnsR5p54k2YQQwunEvXgxlvnzcb71Fuj1WObNw7NpE561a8OXaXNzMY4ZA3o9WpsNxWDAPHUqwfp6UBQUiwX32rV41q079pqWFXGrVmGZPr19vY+TFHS5UB0OVJ0OdxfFec1z56KVuiHnLKveelLnv62jR4+ye/dunnvuOcaOHQvAp59+Gj4/cOBA/v73v1NTU9PhU86BAwfy0UcfsXDhwnbnhgwZQiAQoKqqKnzvjvj9fr788ksuvfRSAPbu3UtdXR19+vQBwGAwEAgEIl4zdOhQKioq0Ol05OTkdHjfvn37snHjRm6++ebwsY3NK1eFEEKcP3ZV7eK9Pe9xTepkErq4zqF4WVX4EanWVFKsKWdFnAeh0iaqs4mhgVTeuuxZ9jqLue2j+6h2VrO9ajuPrXuMv874Kz1ie5zy9xZnTnfEehLnnR6SZBNCXPBaOowGysuP1WHbtKl9wqqwEI+qYp45k2B9Pc5FiwgUHmsLr83NxTxtGurEiagt54uK8AC6zEycH3zQrt5HV4IuF2pTE6rHg2I2g9+P6vWimEwoUVHg9YbHYL3jDinOex7Ljs0m3hzfaZ2O7NjTUxMmLi6OhIQEnn/+edLS0igtLeWnP/1p+Pz8+fN57LHHuOKKK3j88cdJS0vjq6++Ij09nZEjR/LrX/+aSZMmkZeXx3XXXYff72fZsmX85Cc/oVevXtxwww3cfPPN/OlPf2LIkCFUV1ezevVqLr74YmbMmAGAXq/nBz/4AU8//TR6vZ577rmHESNGhIOxnJwcioqK2Lp1K5mZmdhsNiZPnszIkSO54oor+N3vfkfv3r05dOgQS5cu5YorrmD48OHcd9993HLLLQwfPpwxY8bwr3/9i507d0rjAyGEOM8cdR2l2lnNqsr1XGvPgaLi9hfZc/jw8Ce8v/d9RmaMJClgah/nNSfUnMXF4PMBnFSc5/A4KKkrocnXhMVgwef34Q16sRqsZMdkYzPaOtylkGe3s/bKRYx/b0440ba9crsk2c5x3RHrSZx3ekhNNiHEBa+lpoZn40aM+floc3K6Tlj5fO0CLwgl4VwrV6LW14NeT9S112K54QZ0mZlos7JCdd2amk5oTMH6epxvv03j88+jNjXhLyoiWFeH2tBAsKYG3+7dBOrqCDS3uFaP05Ja9XiO3dvlIlBdjb+8nEB1daet68XZw2a0Maf3HOLNkU8R483xzO0997QVwtVoNLzxxhts3ryZAQMG8KMf/Yg//OEP4fMGg4EVK1aQnJzMjBkzuPjii3niiSfC2wImTJjAW2+9xaJFixg8eDATJ06MaPv+0ksvcfPNN/PjH/+Y3r17M2fOHDZt2kRWVlb4GovFwkMPPcT111/PyJEjMZvNvPHGG+Hz8+bNY9q0aVx22WUkJSXx+uuvoygKS5cuZdy4cdx666306tWL6667juLiYlJSUgC49tpr+dWvfsVDDz3EsGHDKCkp4fvf//5pmUchhBDdx6wz4w/6eWrrs5SO6oXSXHOqhWK3UzqqF09tfZayhjIStNaO47yiIjybNmEcMaLdcW1m5jeK84rrinlp60u8t+c9dh3ZxX92/If3dr/HmqI1rCtZx6K9i3DVVbdLsLW8n7psFS9O+t/wsVpPbfjfJc47N3VHrCdx3ukh3UXbkK5TQpx7Khsr2VW1izpPHbGmWPol9SPFGvoLNrwazO0OrwBr+4TRf/Qo7iVLQkGMXo/l2mtxdtAlp0XUwoU0vfTSsQOtanQoBgOqqoYCsY0bwecL1UWbOpXGF18k6uab0bXU8uhE0OXC+fbbBAoLMU6YgLZHDzzr1rWrtWYcO5ZAaSmejz/GescdND73XKf3tN5xB9rU1I5X4HXWul6cMqei6xQce+rd6GvEqreSHZt9xrqKdoeXX36ZH/7wh9TV1XX3UADpLno+kO+TEOeegMMBTmc4lsNiQWsL/ew7kThv86HN/GL1L9hdvRuL3sIfx/2WPGMaBj8E9Vq2Nxbys89+g9PnBGDbNR/D31/pdDyW+fNxvv565LFrrsH51ltE3XbbceO81l0k063p1LpqWbx/MWUNZeg0OlKtqfSI7sErY/6E87nnO72P8Xu30efNMQD8dfpfmdm7k50WEueddqcqzoMLK9Y7X+M82S4qhDjntA6ovHqFLVVf8PS253D73Zh0JtJt6Vzd72pGxw5Es3z1cQMNRVUxT5uGa/nyUCKrzb7/thSD4dgXreu3tanRYZk3D+c774Tqoq1YQdSCBaHg8DjUpqbwmHU9e+JetarDp5gewDR1Kp7161EDgcjivK1o7XYwmQhUV6N6vZjGjoUJE/AXFOD57DMCBQXfeIvDqRKorweXK7Ql1mQCk0lqx3XBZrQxIGVAdw9DCCGEOG0iymWYTLiWLu2wPAeqStDpDNXTdYYSZB3FeWatmduG3MaLX73I7urd/Ld4OS9tfYkkSxIDUwbi9DnDCbY4Uxx6fxBfVwP0+9sf04V+rVaNhvbn2mjdRTLaFM2rX79KWUNoZ4IGDQ6Pgz1H9xA8zi4FxeMF4JL0SxiVPBRvZQVKfQPG/HwCGRnhh70S551bJNY790mSTQhxTvHV1eL5YHFEsDXankPe2Ef56ee/ZW/1XmZkTWSkuRfm2iY4gUBDiYrCuWQJxvx8lMmTQaNBm5vbbpsAhII3DIbw6jVdnz64P/qo0ySYccSI0Cq0wkLU/Hzcq1cf92li262fXW5dDQSwzJtH0/vvY73uOlwtK/JaxtvcXTTY0IDn448jz+XmYrn66tCquZYtDscJvk7kifGJkm6oQgghhGgtUFeH64MPQqv5x44NbXnsoEaua9kydJmZ+A8exLpwIY2vvQb19R3GeVmxWXxc+jG3DL4Fr9+LXqtHRWVf9T72Ht1LgjnUDiHOFMesXrPQW6xdJ9l0kb9Ca+12AuXlaHLtfO3YT4LeSU5sTqcvb90l0ul1crjxMFpFi6IoeAIePIFQiQ/VqO9yrlSjgUvSL+HFy/4XZfFKXIWR8VTLw96W+PdE4ryIVVStasN9GxLniQuVJNmEEGedzhI5dXUVaD9YQbAwMthSi4pJBWb3nMKvht5P7oYC1I9fw9l8/niBhsZsxnL55Tg/+IBAQcGx1WnN2z5baPPyME+fjhoIYLn+ejyffBKqwdFBMg5CSbCIuh1+/wk9TVRMJoxjx6LNygoX1u2U1xuqD9K3L42vvkrUd76DotGEnhgajWA04i8vx/fVVx03cuBYIvB4dd1O5RaEQH19p3VGpBuqaLFgwQIWLFjQ3cMQQghxCnUW5wXq6nA1N40C0GZmRuwSaK0lxvKsW4dr6VKibriBphde6DDOsxltzOg5g0V7F1HjqkGraMnPyMflc5Edm43H76FfUj/6JvVlds/ZHPLXEp9rbxdvwrGEWuuvjfn5ODd/QdOkEXxY8DbWI1YWDl7YaXLKpreRGpWKoigoikKDpwFfwIfT58Qf9GM1WIkxxrC7sZiebXcptJQoyclB9QX498S/4Vm2nEBh1w974fj1e4vrisNz1CLeHM+c3nO6TBp2ROI8cSLO1zhPkmxCiG7X8tTM6XfS35SNunRFm0ROLkybjM/lQOkg4IFQom3OZdejX/MZapuuUScSaGhiYrDMmxcR9JmvvBI8ntDXBgP+sjIan3sO46hR+MvKQoHD8OGRA2lVnw2/H010NJbrrsO5aFH4yedxnybqdPibAzhd795dT55GEwo0R47EkpmJotWGWs0D/oICtFlZaIzGzlfDFRZizM8HiwUlKopAZWW7midBlwvV5QqtkmtbBPjbbkFwuaQbqhBCCHEBaNstvW080fIQM+hwRMYGHW3LbK35fKCoCLWxscs4Lyc2h4WDF4ZXadn0Nmb1msWRpiPh2lcBNcDv1/8eFZWfjrqHDDUIRSXheyj2HFyTRxP0+7Dm3oDeZCGgqtT6G3knq5rinS8SUAN4A15K6ko63fKn0+r4/NDnaBQNuXG5BINBUqwpmLQm/KofvUZPk7eJu9f+hDVX/heWLCNQWYll7lw0MTGhOM/vJ1hcHGqsdYIPe1WDnjWFa9rVMHZ4HBTXFfPvHf+m3l1PjDEGoy7UFKzGVcOivYu6TBp2SOI8cQGTJJsQolu0BFx+ZyM+bQBt0IdV1RNc+mG7J4eBgkK0Kz8m7vLLUefPDwVVOh2BQ4dAUdCmpYHfj6K34s/MwlN+MLQCrE3CS4mLA0JdRDuqjaYxm9snvmw2Ag4HrvffDwcx2vR0PGvXhs633jLQRX0264IF+PbsCR/r7Gli0OUKbZNoDoz8BQVo8/JCK+za0Obl4S8uBr0eTWxsqKZcm1bz+v79Cda0bwUe+aZBrAsWhN+39evNs2bh+ugjjIMGdR7EneAWhNZadzv9NueFEEIIcfZyeByU1ZeRpYlDWfMpxoEDUeLjO31g51q6FNNll0XeRHecX1Vbn3e5QvFes47ivI5qXbVOMj227jE2lm9kes/pXP7+lfx0+A+ZN+5qfK4m/HoNqw6vp2zPSyzZt4SdR3biD/oZkDwAnaLj9mG3U15Vjk6jw2qwRmwJbTsvHxZ8iEVvQYOG9SXrmdFzBquLV7PXsRetoiWgBkizpjE5bTJ/3Pk88ydeSbYltX1ysjnOQ6/vfOdDcyJSa7fjVn385pPfhE/lxuVy+9Db+ariKxQUNpRtAELdWHsn9ibWFAuEEm1dJQ07InGeuJBJkk0Icca13XaoBbJyczHPmEFwuAnyRxAoLw/XUUOvxzh0KO5ly9oVvjWOGRPq8NQcXIS3hi5ahGXOnI4bElx/PUpUVIdji+hgZTaDXk+wri4yIGz1ZDVQXh5uOGAcMQLPpk0dL41ftiziaWJnDRDUpiYCZWUYx45FsVrRZmai79u3wwSaccwYlKgodD16oAYCGC+9FGdFRbj4b0vDBdOkSV19O1ASEnAtW9bpkn7jiBHQ3Ko7QqskptrUREBVUazWE1rRphiNJ3VeCCGEEGenlm2Hw+IGkLV1B+YJE3CtWoVpwoTQ6vlhw0IPS1vFeoHCQmgdr+j1KFFRXTZ1ar1tE53uWEIpL/fE4jyTCa9RyxsF72HUGtlyeAv1nnqcPicOr4NfbvgtS0o/orCuEK2iZXz2eDYd3ERBbQEKCjHGGBrcDVQ2VfL2rrcZ22Msu6t3A2DVWzt8/5K6Eurd9aRb07EYLMSaYkmxplDjqiEQDKCioqoqGbYMesb3JMOWQaIxtvOtlytWRKzga0enC29pra6vjji17+g+Hlv3GDcNvIlady1R+igCwQAmnYnDjsM4vU7SbemYdCa+rvwab8BLz4SeJ7SiTeI8cSE7p5JsBw8e5KGHHmLZsmW4XC569erFiy++yLBhwwBQVZXf/OY3PP/889TW1pKfn89f//pX+vfv380jF0K0CLpc7ep6QXMR2yVL0DXX32hdR63T5FVhIR5VjQguWraGtiTYOmxIoNFgmTev3djaFmhtKbhrbLsltNWTU8/GjaHVaxy/dogyeTIQWoHWWfCnejztV8Pp9ZimTsU0aRJqXV04MHX++9+hxgXNbeS1PXtivfXW0Mo1ny98HdB5kJqbixIIdLmkXzNlCkGnM/JEZ6v2OqjR1jagxWIBs7nrbqhnuPuVEKL7SZwnxLnP4XGE63r1Ss/ENCgD16pVGIcNCzWKavPAsHXNXNXlinhw6V67FmN+Ph5ot9LemJ8feh3HEm7azEyUXDtNk0aiavy0TQV1Voj/5hlz+VfpYoJqMHRM0eIL+DBoDWw+vJlZvWZRVFtEtCma3dW7MevMpFnTyIzJpLiuGJPOxMfFHzOz10xMOhPx5niyY7M7nJ8mXxPx5nje3f0ude46AmqAXUd2cXXfq/lB/g/YfSSUpEswJ/Dsl88yKmsUVyWOo6mrsh+jR0MH8ac2NxfFakWXmYnznXfwXjcDf9CPx+8hoAYIBANUNVURVINUO6vZX7MfraLF7XfTK6EXPWJ68P6e9yltKOWS9EvQKBpG9xjNjQNvjKjRVtlYya6qXRHbUBMlzhMXsHMmyVZbW8vo0aO57LLLWLZsGcnJyRQUFBAbGxu+5ve//z1PPvkkL7/8Mr169eLRRx/l8ssvZ+/evdhs364rihDi1FKbmk6odkTrOmonUvi27TFl8uTOE0cdbG8MOBztA6+W9217/1ar1/D5wonA4z6V83iOJaG6aHrQrlupz4d78WK0dns4CRnWsqpOr8c4bFiH3UX1F1+Mcfz49kFqbi7GESOOWwi3pYZK646rnSY+29Ro66qzlHnWrM67Th2nTsep7HIqhOh+EucJcX4oqSsJF87Xev0otlh0qamdP/ikVc1cjSacVGuJwZzFxRhHjAjFWQYDajBIoLg4nJhrSbh5tmzB378XWy9J49MD/2FOrzkR2xs7ivNaxsDS5cyaOpHHlccBqGisIDcuN9yEYHvVdibZJ2GPtTMgeQB6jZ7KpkoKagpo8DQQVIOoqLh9bvom9WVu77mdrvYyaA28s+sdyhrKwltLfUEfb+x8g35V/ciOyaaqqYrKpkpqnDUE1MBx4zRFo2mX0NLa7RgvvZSml18OPXi157CqYj2VjZX4g36cPidBNYhBa8DhdeAL+Lgk7RKqnFUA9E3sy4byDRxuPIzNYKPeU49Oo2N96XpMWhN3DL8Dm9HG1oqt/HnDn9l1ZBcBNYBW0dIvqR8PjXmI3icR553KLqdCnGnnTJLtd7/7HVlZWbz00kvhYzk5OeF/V1WVp556ip///OdcddVVALzyyiukpKTw73//mzvuuONMD1mIC4bD40DjdGH0BMHjCa1WMhhQTKZ2iY/jBQoRWzFbEmgnUvjWYsEyZw6KzQYez3G7crYbh9PZPinXUlC3vDwiweTZvBnrLbeEtnA2J9o869ah69u3y/dUzOZw8qnTJJHf3+WqsrYJxZZVdV1uVV2+HNOUKZhnzAC/P/TZNRr8JSWgqnAiS/oVBdO0abjXrCGwe3fXic/mJGbA7++6s9SVV2KeOxdcrlAiz2QKjcXvx19e3mnyLFhfj+/AATQ2W+jzOJ0ES0vR5+V94y6nQoizg8R5Qpy9gi4XqsMRbgSFToeqKCiq2u7ndOtaZAGDLvSA8QQelmrtdhSDAfeGDegyM0PvA+EYC4goUxE1fz6qz0egvBzX5i85PLIPP1x5OwC9E3u3r4nWUZzXagxx6uX0TexL/cF6tlVs4/5R9/PGjjfYWrGVKH0UDo+De/PvpdZVi9PnpM5dhyfgIdoQjVlvxqA10DuxN1PypmAz2jpNEtW6ajniPIKCQq27lszoTCw6Cy6/i73VexmdNRoFhaK6IqIMUcQYYzotMdJC9XrRD+iPYeqUUBweCBAoOpaI1OTaKci38/D782jwNKDT6ogxxhBQA2gUDQatgSFpQ+gZ35MnPn2CovoikqKS2FaxjV4JvYg3x3O48TBmnRmdRkdhbSEldSUkRSXxx/V/ZOPBjfiDx2L19WXreeyTx/jz1D8T3zrOMxpRzSb2eyuoK9/XafKsuK6Y9aXrafA04Pa7MelMbDNuY3SP0d+4y6kQ3eGcSbItWrSIqVOncs0117B27VoyMjK46667uP320F+mRUVFVFRUMGXKlPBrjEYj48eP57PPPus0+PJ4PHhaFV5saGg4vR9EiPNMaV0pqQEz3iXLI5aya+32UKcorzci8XG8QKFdkVu/H473Gr0+MukFWObP7/IlLcFb662MUd/7HgSDqC4XeL0ozSsoPBs3Yrn66tBKsMLC0IqxVavQZWYeSwLqdBAMdr00vjnp2LYmHTR31po69fiFYFslHFvXI+kygC0sRAG0iYmhr2tqCFZXo7Pbca9Zg/HSS7scd7C+Hucbb4S+pzNmEBw6FKWjGm2tqG73cbeh4nSiTUkhaDBAUxMoSqj5Qpt5ab39NOhyEaitxbdzZ7sno5r4eDAYZEXbWWDBggXU1dXx/vvvd/dQ2jmbx3YhkzhPiLNThzGL3R6uHetcsgTL5ZeHf063rkW2z1VOvq1vqJPkcRjz82n6978xDhuGNien4weArRJu5jtup9JTjSY3mU+jy3l5/S9weB14/B4chxzM6T0Hh8eB0+dkV9UuxmjsXb6/6nZzy6BbUBSFQDDAS1teIs2WxneHfpd4czwWnQVvwEuyNZm91Xsx68zEGGMIEkRVVYamDWVwymBsRlu4Jl3Lir5GbyOoMKbHGBxeB0PShrDv6D50Wh1Hmo6Qak3FFwxtT7UZbOi0oVg43hzPtsptVAUaiO4qTnM4cPdIJSYpFYCq6jKUnpnoc66iAQ/F3ioe3fg/1Hnq8Af9+II+4s3xuLwuMmwZbD28lc8PfY5JZ+L+kfezrWIbMeaYcEIroAY45DhEj+geAHiDXhp9jVRUVrRLsAH4g342HtzItsptTM6bjMOkobTuKDXuUlbuXkllYyUBNYBBayA3Nper+18dfi+Hx8FnZZ+xZN8SDjUeCt8z3ZqOoigkmBNkRdtZ4GyOpc6GsZ0zSbbCwkKeeeYZ7r//fn72s5/x+eefc++992I0Grn55pupqKgAICUlJeJ1KSkplJSUdHRLAB5//HF+85vfdHpeCNE5h8eB3uXDu/Ljzov9jx8fkfhQoqI675bZtogtoImPJ1hf32USSLFYIhJs0GZLZwevURWl862M06bR+MoroUCv+R7Ot9/GOGoUpgkTUPR6POvWEdi/P/LGFku7ZF/4nrNmoY2N7bwmXUEBrmXLME2Y0G68EZqTkG3rkRxvtV/Q46asrpic2BxUpxPn669jmT+fQGEhzoqKzsfdPBfQ/D1dujS0xTQY7PL9FJMptCW3C6rHEwrely7FNG5c+22yRG4/BVAbGsDrxThiBIHMzGMFk5u3nJhnzZI6H2eB//3f/0VV1VN2v7MhYBKnl8R5Qpx9Oo1Zmn/m6vv3x3jxxRFlIrJjs4k3x1PjqmFt5UaGJVyM9jg/lxWTiabXXgOfD395OdqMDPylpRG7CCKut+ew+sjnPPTpr2nyNTE4dTC17lrq3fX4g34yozNpdDeyrmQdKw+s5OdD70ODiaibbwaTCbWhAeeiReFGUQCYjOwp3cMNF99AUA3y6tevYtKZaPA0cKjhEAE1wFeHv+LB0Q+yZN8SPi75OPzSIalD+N6w75GXkBdRkw5CW0+/OPgFR5xH+LTsU67ofQUbyzYyMGUgvigfWo0WvUZPQW1o62mqNZWiuiKSLElcknEJb+98m3Fvz2DPTZtwL25TEqS5adjrB96jpsDJHP0ccmJzKHQfZHnBcqx6K//3xf9h0Vm4f9T9NPoa2VaxDZvRRp27joEpA5nbey6PffIY6dHplNaXoqoqg1IHUVRXRGFtIb6gj4k5E3H6nBxyHMJisGDQGLDqrRTWFLZLsLXwB/0cdR0NJxxNWhObD2/ms7LP8Af9mHQmFEVhZ9VOmnxN3D/y/nCCsrCmkFRbKtmx2dR76tl3dB+HGg+xeO9iLk6+mItTLj7On1xxukmc17VzJskWDAYZPnw4jz32GABDhgxh586dPPPMM9x8883h6xRFiXidqqrtjrX28MMPc//994e/bmhoICsr6xSPXojzU0ldCb2UeFxdrFZSJk+OqH+mMZuxzJ6N84MPIhJt7ZJGzcdUnQ7P5s0dF77NzcU4dixoNO2SM60bEnRULJdgsPOOmsuXY5kzB+c770Tcw7N2LZ61aztfJed00vjKK0Tdckso6eXxhJ7E6vXQnJQ6Xk06Jk/uuklBTAzWO+/EX14e3gYAHLfNvWIwsmjvf1g4eCGWlpWBLYm55nFb5swJNWdo7uiqOhyhBFurILSlEYJv167Ox9nS2KGrxJ9eH3oCvmgRuowMVI+n6xp6DQ24VqzosmByy9Zdqdd2enm9Xgwt23g6ESPbdsU3JHGeEGefE6mjq1itEbVubUYbc3rPCSeant33L+7pc0uXsQ2m5gSYRhPaTRAMosTEYB44ENfSJQQKjo1BsedweOwAHv/4fsb0GMOnpZ+GVmcFfNwz8HZmZEzAqurRmaP49OhX/CH/F7iXLKGxTSxovfVWgrW1BEpL8VdUUBlowBf0sat6F1GGKLQaLTWuGlRCiYQ4UxxOv5M/rP8Dj058lJm9ZuL0ObHoLbh8LixaCxBZk67R28jmQ5spqCmg0dfIIcchpuZNRafVsevILtKj0/EGvMQYY0iNSmV4+nAGpQ7CHmtnWcEy3tzxJioqJfUl/G7HsyycdA3J2imoHjeK0USN6mTWonlsPryZn439GYv2LmLh4IXh1YROXyh+cwfcfFT4EWN6jGFGzxlE6aNo8jWh0+j4uPhjesT2IMGSgMvvYtPBTVzZ90q+OvwVGdEZlDeU4wv6UFDwBDwoKOTG5ZIdm01hXcd/NgD0Gj2p1lT+seUfHGo8RH5GPutL1+ML+qh114br3dW4anh/z/tMzJlIVmwWL299mXd2H/tdICs6i3HZ49h0cBOHGg9R2VRJf9dFEuedRhLnnbxzJsmWlpZGv379Io717duXd5p/IU9NDS2PraioIC0tLXxNVVVVu6eerRmNRozSQliIb6XR1wj+jrtkhnk87VY9aWJisMybd+wHpF7fLmmkzc3FPG0aqCrGUaPA78d0+eUoihKu31Wv8aEz29AdrWv/vq0aEpgvv5xgbe2xrpzvvIP11lu73MrYkmwK32PqVFSfL7TdNRA4dnGr+iDhbaOqStO//hXaDmm3ox8wAH1zvbbjNhmor+80oWiePh0CAYJOJ7qsLLSZmeFrAocOdfrEV5ubC4pCjauGkroS+kXnoc3Li0zMOZ0433gDAMs11+B8663Ox+jxgEaDafJk1MZQzZNAeTmejRvR9ugRbuwQcLs7Dqr1eizXX0+wvj60/TY/H44zLy3XttauYLJeDxoNzrff7nLL6bmsOxKIEyZMYMCAARgMBv75z3/Sv39/nnnmGR544AE++eQToqKimDJlCn/+859JbN6S3PaJpKqq/OEPf+DZZ5/l8OHD9OrVi1/+8pdcffXV4ffZuXMnP/nJT1i3bh2qqjJ48GBefvllXn31VV5pXk3ZkkxZs2YNEyZM4ODBg9x///2sWLECjUbDmDFj+N///d9wLa9AIMCDDz7IP/7xD7RaLbfddtspffIqTh2J84Q4+5xQHd3m7ditr82JzWHh4IXhmmSF/iPkdVYEf+ZMgo2NeD6O3BWhzctDk5iIee4VNDmO0uiowa/X8FnNNl5Z/wucPicrClYwKHUQc3vPZXz8UGLXbEZd80H4HtNuuQV3m4ZQ0PxAdckSjPn5+MvLMc+aydeOvUy7aBpWvZWqpiqW7luKiopBa2BY2jCi9FFkx2Sj04Ripw8LPsTtD33m3Lhcbht6GxBZk+5I0xGKaotw+o89rCyoLWBY2jA2H96MWWdGQWFBn+sYlTCYWMWCxmjCb1OZaOnPLwfcwzsly3js8z9RVFfEDz59mMLaQnYf2Y1fDT3IjDXFMiFnAi6fC0/AQ0ldSXg1odfvBUKdSvdU72FlwUpq3DXcOPBGlh9YTnZMNjuqdhBtjKa4rhidRhdu+LD7yG6+f8n3qXXXYtAa6BHTgwZPA/ZYO9f0vwab0YY91k7fxL7srt4dMb96jZ6bBt3EzqqdLDuwjIAaoGd8T2rdtXgCnvDqN3/Qj0FroNZdS0lDCUsOLKGwtpC+iX3RKBrqXHUcdBzkk5JPuDjlYopqixhu7X1ex3lw5mM9ifNOvXMmyTZ69Gj27t0bcWzfvn1kZ4faI9vtdlJTU1m5ciVDhgwBQlnYtWvX8rvf/e6Mj1eIC4FVbwXdcX55MRqPFa9tRWM2h1e3OTwOGoOxJNy6EI3Xh9pcy6vxhRdCnaOal8OrTU1gMIDFgu/QQTZpislMzqOfKbnj925pSNCnT0TSSGu3H7/2Wcv55ntoe/VEnxla/RBwOMJbWy3z5uHZtCmc5DGOGIFWryfq2mtRg8Fw84fwdtnj1ZfTakNbU0eMwDxlCqrXe2w+nn8efD4sN910bOXZ5ZeDoqDodGhzcvCoavuVe2PGoGo0QCj405jNmGfNQm1qCq/Ka0mS4fMdf1WcyYS/tBTP2rXH3ic3F+vtt4NGcyzI0ekwz5zZruOpafp0POvWYRw2LHSgJTn5LQTKyzFNnhxKcup0qIEApvHjUYcNCydVPRs3RmxlOVd1VsvvTASWr7zyCt///vdZv349NTU1jB8/nttvv50nn3wSl8vFQw89xHe+8x1Wr17d4et/8Ytf8O677/LMM8/Qs2dPPvnkE2688UaSkpIYP348Bw8eZNy4cUyYMIHVq1cTHR3N+vXr8fv9PPDAA+zevZuGhoZwUfz4+HicTieXXXYZY8eO5ZNPPkGn0/Hoo48ybdo0vv76awwGA3/605/4xz/+wYsvvki/fv3405/+xHvvvcfEiRNP63yJb07iPCHOPidUR7c5id32WpvRFu7uGXS5cL7/frtatoHyclwrPkTfs1eH5SI8wSDmWbPY7C7iNxsit30bdUZUVL489CW/vPRBYtd8iVpUHDl+g+G4D1QDRUU4lywhe+oYMpJzAahsrMQeZ6e8oZzLci7jPzv/w57qPVj0Fsw6M9f2v5brL76eHVU7SDAnMO2iaaRYQ8n+1jXpmnxNuAORiUqNouG93e9xSfolXDfgOiYn5WNZ9RnBwrfxNl+jtdux5uejeWcp383K5MabP2ezYy/bKrdR7azGarRS765HRSXeFE/P+J5oNVpUVBp9jdiMNmZcNIPPD37OvL7z0Gl07Du6D4/fgy/oI9YYi0bRUNVUhT/oJ8oQRY0r1Mk0qAZJjkpmRq8ZvLnzTeJMcaTZ0mjwNJBuS2d2r9lkx4b+Xk6OSuaeS+/huS+fY1/NvtD3Wg1yZZ8rqXPV4fA4OOI8EvpeKEpofN5GjFpj6GtVRUHBpDPhC/h4b/d74XsE1ADp1nQuir+IGGMMfRP7Mv+iqzCXVaHJz4fzMM6D7ov1JM47tc6ZJNuPfvQjRo0axWOPPcZ3vvMdPv/8c55//nmef/55IPQf7g9/+EMee+wxevbsSc+ePXnsscewWCxcf/313Tx6Ic5P2bHZHK2pwtZV7TOfD01cXJf3Kakr4e29b3N5+jgGbiwn2DbQKizEtWQJulbF/bV2O5dNn8Knjh30S8rpuv6awxHxtTE/P5Ss60qblQ9+nQZ9878rzckjf3HxsY6een1kwq3l/Zp/MLY4oZp0zYk9fb9+uNeubb+Cq7gYbUrKse2smzZhHDEinJxrG8A6X38dy223AhBtiCZYX9++wUCrrZdBh6PLVXH+8vL2wXBhIa5ly0LdQgkFCa5FiwhUVBzbhur1hoNw96JFkJ8fenHzOLvaStK2Vh8QnnP3Rx8RKCsL/fuKFe2SjC2fq/W25XNNV7X8zkRgedFFF/H73/8egF/96lcMHTo0vK0P4B//+AdZWVns27ePXr16Rby2qamJJ598ktWrVzNy5EgAcnNz+fTTT3nuuecYP348f/3rX4mJieGNN95Arw/9l9b6PmazGY/HE17NBPDaa6+h0Wj4+9//Hn7y+dJLLxEbG8vHH3/MlClTeOqpp3j44YeZ11zT79lnn+XDDz88DTMkTpbEeUKcfY4XswQdDjSqeqxMRCfUpiYC+/YR2Levw/PGocM6PB4oKgKvl37J/ciNy6Ww9tjPQJ1GR6IlkSRLElm6xHYJNuDYA9PONJ8PFhYRH5wUPpxiTeHuS+5mTdEa3t/7PpVNlVgNVqL0UaFVYAXLWbx/MWN6jCGoBllbspYYU6hRQOuadDpFh8Kx7ez2WDsHGw7iC/r4rPwz/nzZE80JtvYr7Vqv1DetVDENT+axdY8xMXciV/a5EqPWGGo+4KjgzZ1v8qMRPwol2PShumZLDyzlsOMwR11H+bryawCmXDSFVQWriDHFkJ+Rz5riNeg0uvC2VwWFi+IvIs2ahsfvwWawkRGdwfrS9QTUAJVNlWw4uIGh6UM56jrKor2LOHD0AMPShjEuexx+1U+qNZUofRR/+fwvjMoaFf5MwWCQrJgsqpqq0Gl06BQdGkWDSWfCoDXgD/gpbyjH5Xdh1plJikqi3l3PiKwRbCjbwH/3/JfbZ1yDb9P5GedB98Z6EuedWudMku2SSy7hvffe4+GHH+b//b//h91u56mnnuKGG24IX/OTn/wEl8vFXXfdRW1tLfn5+axYsQKbTTqQCHE62Iw2as21GGZOx7tkWfstANOno5xAt8eWpfW9zJkEi7pu8d76a5avxD5pKFqbDXNn2xBmzQqt/rrmmojtopZ58044Mafk2qnReMig1ROmsjKibrwRd/PrjSNGHEu4tR53mx+MJ1qTTmu3h8bbQaKrpd5csH//Y+85fHhkm/s2fK4m4s3x5FoycL7XSRFjRSFqwQJQVTQ2W4er4sxTp9L49793+B6BoiJwuwkaDBFBQss21JZ7mMaPD13fklgrL8dfUdHxNtnmjqaNzz3X7v1az7lx7NiO579VoOpurKfRFAg/bT6XdFkXp1UtnNNl+PDh4X/fvHkza9aswWq1truuoKCgXfC1a9cu3G43l19+ecRxr9cbXpG0detWxo4dGw68TsTmzZs5cOBAu5/xbrebgoIC6uvrOXz4cDjgA9DpdAwfPvys2EogIkmcJ8TZp8uYZexYNFYrrrVrw2UiOnNC2047e63XS4q1B/fm38vTm56OSLT1S+rH3ZfcjdELHd7heFvFW53X+Y+VNimuK2ZD+Qai9FG4fC6So5Kx6C3kZ+SzZP8SiupCsYbL5yIrJosaV024HlrrmnQxphgSzAlUNFWQE5PDiKwR4dVavRN6k61LIli4rMOhtY571aJieo8bTqw5li2HtnDUdRSz3kycKY46dx2JlsTQqjZzPIlRiby5801qXDUYdUZyYnMwao0U1RZxpOkID4x6gEAwgMPjYF/0PgpqCtBr9NQH6smLz2N8zni2Vmxlfdl6eiX0wuP3UOcJvcdF8RdRUlfC/qP7+bTsUw47DrO/Zj9bvFvw+D0E1AA9onswu/dsDjkOUeeuIys6i7KGMrZWbmV2z9nUOGs45DiEVtFiM9pIs6Uxrsc4tFotmdGZFNQW4PK7ONJ0hCF5Q9hUvolDjkM8Of4x/MtXdhnnBZ1NHD3qwmyNPSc7kHZnrCdx3ql1ziTZAGbNmsWsWbM6Pa8oCo888giPPPLImRuUEBe4HrE9cHgcaGZPI8oTBI8HxWgMbRNt3ip5PC1L67Xerjtktg3CAoWFpF0eWg6sjY/HfOWV4HSGaxhgsaC12QhUVbWrMeZctOiEOmoquXYcE/Opx01amydMLfXIALStVtm11fYHY7gmncOB6nKFtoMWF4dr0mntdozjxnXewbO5Vpz11ltxL14cOnac7ZZuHcztPRe924ensx/ghYWozavLOlsVFzx69FizhQ4E6+vRdJIchObtGc0/hMPNKTZvxjhsGJ4tWyK3kphMKEZjqMlCq/pzLVrPeZfz3xyoVgUdPPLRb7k3/14Gpw7ucr7ONset5Xe8X2BOUlSrFQrBYJDZs2d3uEWvda2s1tcDLFmyhIyMjIhzLbWyzN8iaAwGgwwbNox//etf7c4lJSV94/uJ7idxnhBnn4iYxe0OlQDR6VAVBVQVy8yZx431TmjbaSeCxtDOg8Gpg3l80uPsqtpFnaeOWGMs/ZL7kWJNwXekqsMkm9pS3uMEHqhqTMdKmLQ0bfAH/RTXFaOihrpupgwKb38EIraCttS9HZAyIFyTbv/R/VyacSn7avbxdcXXvL/7fXxBH70TenPjwBvR+QK0qvLbXqu41+gHs85Mo7eRNFsade46kqNC5VJiTDEkRiUyMWciR5qOhBsvtIg3x1NaX8pBx0FcfhcAXxz6gmGpw5ieNx2T3kRQDVJUU8TLX73M3ZfeTUVjBSoqveJ7MS1vGrXuWr44+AUxphimXTSNGlcN9e56XH5XaGWaIfQ9rPPUhVamBf1sq9jGRPtEPin5hM2HNjM4dTDjc8aj0+iIMcbgCXho8jZRUFvA+tL12Aw2+ib2ZdeRXTj9TpKjkvm68muSopIYlTCEQOGbHU5TOCHp9mBauxHn5FHUmGvC21rPFd0Z60mcd2qdU0k2IcTZyWa0wXGeGAVdLlSnE3y+UOOC5ppsWpstvLQ+YNCh7eomHQRh+lZPHrU2G4FgEEVVQ4EghL622dpvd2jpqHnNNTDlcoJuF6rRgEPx4w+4CF41k4BBxz5XOV8fWs2NA29EdbR5wtR6PF110qT9D8aWmnTB+np8BQVoMzOxXHEF6HQEGxvRREdHNlhoy+eLuGeX2y3zcjHGJhJvjcHf0bbL1vx+AhUVnSatLDfd1PXrAbzeLk+rOl14rC2NJdBoMI0di6LXE3Q6Q0m94uJQnTjosFNs23EfT5G3ilhTLB8e+JB4Uzxx5rhwUWarwUp2TPZZ++TzeL+gHPcXmFNo6NChvPPOO+Tk5KA7gVp6/fr1w2g0UlpayvjmVYxtDRw4kFdeeQWfz9fhU06DwUCgzX8PQ4cO5c033yQ5OZno6OgO75uWlsbGjRsZN24cAH6/n82bNzN06NDjjlsIIURI6zq6nXF4HByoOUBJXQnugJvkqGT6J/UnxZrS5bZTTW5o22lHtLm5VGtcpDd/nWJNweP3sL1yO+WOcpx+JxcnX0ymNQltXm5EF1JofqC6YEG7bvJtH6i23u7aujuoRW/B7XcTUEM/f+o8dSiKgk6jIxgMYtAY8Pg9GJvrE7duemAz2hiaPpR4SzxaRUuiOZFLMi7BoDFgM9oYlTkKozGaYy0ROtDqZ6xTG8BqsOLwOvAGvCSYE0i0JJIVk0Wv+F7MuGgGKdYUNpZvbHcbo85I78Te7K3eG/48Rq2Rryq+ItWayrbKbeg0OrKis8iIzkBBQVEUyhvKyY7JptxRzr6joa2+Dq8Dl89FnbsOb7DjeM+is5AVnUWTr4lNBzdxccrFjO4xmjpXHTPyZuAKuMg2ptLLnIni8VCHmxWHP2Vr3W6+PPQlmdGZlDaU4gv6sBlt9Ensg+p2dTVTAChWK+ZhwzG7tRxV/FQ1VlHVVHVOxHlw9sR6EuedPEmyCSFOu2B9PYHaWjyffNKuc5R5xgxs8fHM6T2H0pqD9My1oxZ2/MQxoi5Xc5MBjd6Av7w89INHo+l0y2iH2x3S0ghEW/m4+kuq3dVEG6PxB/zsrt6NLxharRVvjmdu77nYjDb8R+ojxhSR2DqBZgEd0cTEoO/bN6KLkDYrC43ZTNDl6rIWCs3NDKDVqjBoN8eW2bPRWGPaj6ODzqia+HgwGNAPGIDrww/b1W1TbLYunwoHystR8vK6nAv8/tD2zuaxtq6zZ7zsMjQWC43PPhvxkpZknHHECBSDAdXrRbFaMY4dizYzE6WDJe2tBWxRfP/dH+IL+BiWPoye8T0ZFt2HXrr4UIdcnYmjNVXUmmvpEduj6/F3gy7r4hynFs6pdvfdd/PCCy8wf/58HnzwQRITEzlw4ABvvPEGL7zwAlptZKrcZrPxwAMP8KMf/YhgMMiYMWNoaGjgs88+w2q1csstt3DPPffwl7/8heuuu46HH36YmJgYNm7cyKWXXkrv3r3Jycnhww8/ZO/evSQkJBATE8MNN9zAH/7wB+bOncv/+3//j8zMTEpLS3n33Xd58MEHyczM5L777uOJJ56gZ8+e9O3blyeffJK6urozNldCCHEhKK4rZk3RGl79+lXK68tRUYkyRDEuexy3DLqFYenDOozDlFw7NROG4fS5yMy1R9Qm0+bm4rp8DAcayyj1VBJtiKbWXcsTnz7B9qrt4esuTr6YX4z7BZfMntNhnKcYDKF6sS5XqOmVwYDa0BBKsDmdx+Kk5iRiS6LM4/fg9DrpGd+TPUf3AGDSmggEAph0JpIsSfhVP/uO7iPNmkZiVGJE04MWObE5zOs379hDPb2V7NhQsud4cV447rVns6R8NaOzRrO2ZC0l9SX4Aj78QT+94ntx29DbOmy8YNKamJY5gSx9IorHizrAgEMbYNWhddwx/A5WFqxk48GNeANealw1pFvTmdN7DhvKNpBuS6eoroiAGoioK5cdk41W0bK3ei89YjqOlwIEmNVzFhvKN1DnqWPXkV0ApFvTuSTjEuakT0RduhK16FMAkoEb7dmMGnEzv2qs4Op+V7OtchsjMkeQYcvA4/eA8TgJKJuNppdeCu+2sObmEpx6GfFuDcleC8GAlt2OraQk9DhrV7idLbGexHknT5JsQojTKuhy4TtwAN/OnR3WK3MtWYJ51ix6mFLIsEWhTOuF+8PlEU8j29YrQ6/HcvXVEU0GLNdd12lNLtfixZjnzg1td+igJfa0+Gnh6x0eB70SerULhKB9oiwisdXVSjK7HZp/IHXalruDJ8THq9/mLyw81qCgeQtpeIsnoR/WSnQ0mla1DMI/wEtLO27UkJuL8dJLaXzlFYzDhoWaRLTaLqrW13daO63le6Tv16/LufDv24c2Jwf9gAER21GDjY1obDaCVVXtXte63pzlmmvwbN2Kedo0/OXloU6lY8d2+p6aXDv/Ll6EL+BjSt4UFFVhWtJIgstW4mp1vc1uRz9zOg6P46x70tnpn4U2vxycCenp6axfv56HHnqIqVOn4vF4yM7OZtq0aWhaJX5b+5//+R+Sk5N5/PHHKSwsJDY2lqFDh/Kzn/0MgISEBFavXs2DDz7I+PHj0Wq1DB48mNGjRwNw++238/HHHzN8+HAaGxvDrd0/+eQTHnroIa666iocDgcZGRlMmjQp/MTzxz/+MYcPH2bBggVoNBpuvfVWrrzySurr6zscpxBCiG/G4XHwcdHHvPr1q+Gi/vcPuYtp6eMx+kHnM1F99CDxlvhQp3ivh6DHg0+v4eumQpYf+A+HHYe5Y/QtpI8bjs4XQDUYqFAbeGnr0zh9TgJqgBEZI3hz55uU1pdGvP/2qu08+smj/G3G38joJM4DoLkzY9DlQtXriZo/v/01HEtS1bvr2V+znyv7Xsl7u9+joLaAgw0H6Z/Snz3Ve9Br9awuWh3uxnlNv2vCyRuHx9FupXxLp9XWTqROr2K3UzqqF8+t+j6N3kYGpQ5iVNYo4kxxDEwZyGX2yyJqzbbsDnF6ndzW81qMK9ahFh0rBB+fa2fGxLH8bc+rDE8fTq/EXuw7ug+3z015QznlDeV8Vv4Zs3vPxqAJbdXVaUIpg+yYbMb0GIOKilFrxBPwoKoqATUQvibdmk6dq47suGxSrCm4/C7cfjcmnYloYzST08egfLCiXZMzikrIBSZkjmRr9W7K68tJjUpl6b6lfFL6CVnGJG62Z0NRSbt51Obm4t+7N6KcSaCwEO1ylfhWOzP62O00TkrBYT774jw4e2I9ifNOnqJ2d1W4s0xDQwMxMTHU19d3uixRCHHiAtXVBGtqcL7+eqfXWG6+GcVspukf/wBCxUu1djuKThfaVqrThWqn7d0bOj9+PP6ysohVVlG3307TCy90+h7WO+5A26pjzbcRdLlwvvNO5BOmltVgublooqJC4yxsnyD0bN6MecaM9l09T6Atd0RizmAAvT60VdTrRYmKCm2DaH3P3NxQINvUFKqPZzBE1Mdr2aLq27Gj00SYrrPtotdcg/P990OfOScHCHVb9R84gGfjRrSZmRhHjkSxWFC9XnC5wgk6f0VFqPbaV19hmT499DS5TTCsulzg9XbY6KBF1Pe+B3o97tafu1V314jkX24uRSMv4toPb6NfUj/2H93Pe7NeI3nNV50nRGdNwxqf3On7fxtut5uioiLsdjumk1ju32mS9iwzf/58tFotr732WncP5ZTq6vso8cO5Qb5PQpxaOyp3sPzAcp7f/Dy+oI//zvoXveoNaG3Rxx6iORxoEhNx/utf4USINi8XddpkyoK1GLQGlhcsp9pZDYQSNduqtlFaV0pQDeIP+pndezY//+jnROmjsBqteAORWxX/Ov2vzOw986Q/j8Pj4KWtL/F15dccqDmAXqNnQPIAoo3RpFvT0Wq0vLnzTT4/+Hm442F2TDbzB8xn4ZCFuPyucE23FvHm0I6NnNicDt+zbZynarV4mxy4NQGqVAfP7/onKwtW4vA60Gl0jO0xlnl951HjriFKH0WGLQN7nD2cbCuuK6apoYasj3egdhDrKPYcvhyezMpDnwCwrmQdO47soNHbyDX9r+H93e8TpY/i2gHXkhGdQSAY4JDjEEecR3D6nEzNm4pWo6XR00idpw6v34vD68DtczPBPgGX38XsXrOJN8e3W8FnrG/C9UznMV7NjbNZXrOJNGsai/ct5nDTYXZV7cIb8LJkzpvYNxyISLS1PBxuqWvclmX+/IjfQRS7Hef08aQmndrVbKcqzoNzI9aTOK/r+EFWsgkhTivV7e64XlarrYoKhIrnXn01gcOH0aalhZb1m80oRiNamw3L3LnHfuDo9XjWro2833HatKseD/6DB1GMxm/9w6rDJ0w+H/7ycvT9+6P6/egyMtqt/mr5wa+6XB2fX7YMy9y5nY6po5Vuwfp6nB99RKC0FOOoUaGOnaqKYjLhLy8PJalaAlm7HfPMmQS9XjQxMWhiYtBlZOD+4IMO369tJ9cIOl34M2vtdvD5aHrjjXDDBvP06QTr6nB/9FG7ZJd5xozQ97n1Z231uQI1NbgWL0aXmdlFfbk80OvB5Yqsj9dmJV/LllJvrJX7l99ClD6KZEsyqwpXkaFLCHeF7eizW7ydNJw4C5xIXZzu5Pf72bdvHxs2bOCOO+7o7uEIIYQ4zRp9jTh9TlRUHhp2H321aXh2rsPTdrX72LEYR4/Gs379sVIVNQ56xyWhWKzcMuiWcELG5XWx7MAyiuuKCagBfjj4Tq5Mm8KsucPx67V8cuRLntr2DE3eJgJqAK2ipdpVzabyTUQZok6q9lZLd9DqpmoO1BzAF/TxVcVX5MTmYI+z85MVP2FY+jCu7X8tQYLoNXqOOI/w7p53GZ4+nMqmShQU9Bo9eq0eVVWpaqyK6D7aVkc/23UJCVTVFbNq36f0SejD4JTBeAIekixJfH7wc+5cfGd4a+uA5AHcOfxOBiYPZGDqQHJic3C69fiKOo7z1KJiBkwYwd/rXiXWHEvfpL74VT+l9aXEm+LJjs3GHmsn1hRLUU0R+2v3U1xXTJ/EPlzb/1qK64r5uPhjkqKScPtD9YF7xPTgpoE3kWhOJCs2K/w5W6/g21qxlXSHhq56vlqCWrJjstl7dC+ri1djj7WTak1Fq9Fy//pf8d3+NzFmzBUkamzog6AYDDT985+dN+Vq8zuIWlSExddx3bCzxdkc60mcd2IkySaEOK0UkynU8KC1VquO2m1VHDMm9MQp/KTz2EqvgN+PEgh03F3neG3aDQYUrRbfzp34Dx/GMn16l6vHOtO6y1awec9/oLycYEMDik7XaYdLALze8PbGFlq7HePIkahuN4GGhnadUY87jlZPutDpcC1a1PGW2SVLMM2aBS4XGrP5+B2KOkiManNzUaKjibr9dqC5u6rBQNQNN4RW1zkc+Hbvxl9c3H4MhYW4li3DMm9eh8nEgMMRrqcXKC/vuL5cS6Hi558PNYloq82WUtfmL6m9bDh/G/lbjH4wRkVzcUxPlOM0ZsBzejt1ns927NjBqFGjuOyyy7jzzju7ezhCCCFOM6veikVvIagGuSZvLp5V60I/u9vWfQV0AwagTU/Hs2FDZCyUl0fU7NkkRyVzpOoIFU0V7KjaQZIliRVz38HkB9xu4uKyURsauLo8nqGT/8akd+fi8rsIqkE8fg8Hag7Q5G3i4+DHzOo1q9OVY8eTE5vD3ZfejT3eTp2rDpPOFG6W5A162XRwEzuP7ESjHNs6l2RJoqKpgvd2v8e2ym34g6HPnBWdxZxec5ibMRlzbRN+T80JxXkt42idfIzSR/G7T3/HqqJVeANe4s3xaBQNhxyHeHPHm8QNjyPFmhJa0Xach894Pew5uodoYzRGrZHcuFyGpg5lXPY4hqUNw2Kw4A/6iTfHMzJrJDqNLtQxtHIbmw9tps5dh81gCyf6dh3ZxarCVTw4+sEOE4mVjZU8velpHrn43i6TbIrRxK7yXRxyHCJKH0WCOYGqpioc3lBzjJ+t/w3Rxmjm9J7DbRd9h0yftcuu9x3VTNZ4u7hedEnivBMjSTYhxGmlREURLC2NWJlkHDGi4/pphYV4VDV0vjn4ChQU4PzgA8wzZ4a2WhYVhZM8rR23TXtDA+5Nm9D3749xyJDjrh7rSssTJsVoDK9qM44di65v365faDC0/8yVlWhiY8OfrfWYzbNmoY2PP+44wveqqOi0+2agqAg8HlQIjf14S9nbzIvWbsd8+eU0/uMfEQlQ84wZuFasCG/ltcyfj2fNmo7HUFCA2tBAwO9vH1g6ncfG3ra+nN+PJj4e/8GDoNUSdeONx200gdmEcfo04leuIrhvf/jwDfYctP2sodVwnQRliunsfHp4Lhg8eDDOtkl1IYQQ563s2GwSLYnY4+xY0YdWinfxMNU8bRqBysqIe4RivUVsHmTjd5uf4uZBN+Pxe1hzxfv4li6nqU18FDVtGvaPV/PL/J/wwCc/Z0jqEMobyvlg3wdM7zmdvLg8Fu9bzC2DbvnWK9pSrClclnMZi/YuCq9OizXFolE0WPSWiASbTqNDq9Hi9Xv54tAX+IN+dBodGkWDy+/i7t43EVy2ot3nOF6cB6GVdS2rwdYUrmF71Xa8AS+JlkQqGytp8jUBUFpfyuW5l2PSmUIdXY/z8Fkxmog1xWLWmVFQ0Cpaplw0he2V28PdVOPN8UzKncSnpZ9S7aymvKGcREside467HF2Gr2NRBuiMeqMeANedlXv4tPSTxmaNjSiThzArqpdFNYW8lnNNmbYc1CLituNSZNrZ7/rIENTh5JsSWZf9T6qXdXY4+wU1Rbh8DpCCdWAB7POzLamQoJRuaS01Cduo13TtJbjEud9axLnnRhJsgkhTiuN2Yw+Lw9NfHx4ZZK2k3pf0PFWxUBBAcG6unZJqNZfOxctwnrLLaGaaJ21aXc6Qwm8jRvRZWaiNjWd1HLsiNVkHk+oM+hxEn1tWebMaddavmUeXIsXY77yyuM+6WyhHu+ppduNa+VKzFdeGXqC2llQkpuLYrEQdcstYDCAooCqglaL9c47UV2uiG234a28TicEu95qGayvB6cztL20VWDZbmVdq1VpAFG33ILObkcbF0fQZMK3e3fnc52bi8tqRFmxiuD+/RHn1KJiXEuXYZo+HbWhAV3PnqETXi9otQSqq1Eslq7nUQghhBBAKAk0wT4h9EXzw6uuHqa6li3DMmcOzjfeiDxXUMjICTeFkz6L5/4H39LlHcdHy5djyc9nhpLDv1KHcNuQ23j0k0dp9DXi8Xv4qPAjxmWPo6SupMOGAycqJzaHhYP/P3tvHuBGfZ//v0YzuqVd7a69u7b3ktYH+AYDa3yC7wsbx9BgQgAnhKRJS/JN06Y52qZtvvBN+/22aZrkRw6SQC7SQAnGxgfY+MDGBmwO49t73/chraTRMfP7Y1ZaaXXs2tgk0Hn+SVaaGc3Mysyzz+d5P8826vvqGQwPIhkkbi25ldOdp+PbSAYJl8VFsb0Yb8jLgKxxvZgY98Ty/0DZtfeq8Lw+uY+IEsFlcSUJbDH0BHr4wRs/YGbhTHIdDgwjGltjENxuWqK9rKlcg8PkYGHhPCpMRZjCKquvu4UeIUg/QUpztbHPyrxK6vvqqe+vp2mgifLc8rjA1uJr4VLPJfxhP0aDkdKcUs50nmGFZwVziucknTvAk+ee5obF32YCJAltBo8b/4oFlFpN5FnzaPW1kmPOwRf24ZW9lOeWo6ISUSJ48jzMKZ7D7079jh8Fuvjuom8zQVWSjpdSmhb/HM+ojfQ6dLxf6CKbDh06rjkMubl4VRn7unWamDHauF66DLdAYPjtixcxL16MLAjDIpHfT+DAASyxz5BlMJtRvd64wBY7dkzIG3VkcizXNsJNZt2wIT72GEMsE803VOyQCMHpzO4+8/thjORrtFVLzOb4McWiIs0duHNnSmmCedEiBp94IinTzbx4MagqwVdeSSlqiN0DJRAg2taW/rOHxkYEhwPV50MNBIj29yMOHWc0Z51gtcZFuXTCbfz8Kz14l1UhyX5MIwS2GKI1NVhXrUJxuQi+/PKI/SsxejxZz0WHDh06dOjQMYwKVwW3lt5KJKQ1qY+2mCqsWJH2Pbs/wncXfpu9HUe5zl5GIKEVc+QxDCtX4sbJvy/9P3xqz5/HxxblqEyLrwUVNf7a+0GikwzgH2/7R/7f0f/H+Z7ziIKIUTRSYC3gwRse5Hfv/Y4ccw4D8gCKquAP+5lmK0eufTnjdVwOz3OZXXGH3EiBDcAiWajuqeZMxxlu99wO69cS2rkLNUFoE9xu+pfdzL3P34WKyu9WP0H5oXOotbuJsfPcykom3HEHhiEXYOwelLvKeebsM/Eig2ZfM9U91fjDfkwGEwtKFzDJOYmmgSaONR0jz5JHmassfu4AgUiALx35Jg9Mv4dbF21CCkcJSwaiFhOF+UUUDX3mwrKFCILAjvM7aPG14Av7sEpW5hbP5bpx19E80EyjtxEgfrwFizZhVUSMVjuK0Uxg38GkqQWDx413WRXhSB/lXH5kjA4dY4UusunQoeOawyt7efL809yUN4dbcqaNnp+WbhQw4TX5yBFsEyZgWbEC1etNKhFQR2kyjR8nEhl9ZPIKIObna04xv1/LSjObUfr7UXp7h4W+RIxW2HA5QqDVGrfGJ+WgDDV7qT5f0jHF/Hysd96pnassa2UBoNWgJyBaW4sMWNaujY/vpstWM1itqHl5qQ6zTGMjic2qNltWFyAj3GWG3FwwmbBu2AChEGoohGCx0COG+PmZp/jcxDuz3iplcBD51VdTV5azXN/VgDKK00/Hnzb0358OHTp0pMIre9lTvYctpWvI9XjSL5YmIgv3mXD4Pabf5IHgKPwoFCJaV8es5lb+a+3PWL/94wyGBzGLGscMRoI4jFffsXTTpJv47trvcqbjDH1yHyaDCW/YS+dgJ96Q5riq76+PC21CMPvC8uXwvOmF05ldNJs3mt9gYelCSnJKiCgRjKIRk8FEb7AXu8ked41Z8sfD5k1EfV6igQCq2cjFQDP/8fpjBCNBvnLjX1J+9ELK6GYmLuQ0O1lcupjD9Ydp97Xjlb1xgW3L9C2c7jzNz97+GS3eFmYWzqS6p5rP3/J5KlwVTC+cjifPQ01vDYFIgMff+zmPDx3Xk+fhseWPJY32VrgqKLAWMKtwFi2+FiLRCBMcEzCJJp479xwO0/DvNvF408dNJ9+az80Tb2b8vAl4FtygCXlGgYOdb/K7w19lYelCPnvTZ694lDgbdJ7w4cbV+v3pIpsOHTquOer76ukJ9DBl4gQGf/YzbFu2ZB5VTJOfIHo8ya+Fw/ifeQbbxz+eIqiZFy/OKtbEj2O1Itjt7//i0kB0OuOrkpGmJvxPP62dV7prHi0z4zKEQDE3F+uGDSj9/ciHD6cIWuaqKjAak44pKAr+vXtT3GyOhx5C6e7WRiibmpCPHUOIRsFo1LLVMozaii4X1o0btYy5oWNmHBsZInGWVasQDIbMLsANG9KOUqRrX7LIXhwmB1GThJjlXgkWS2YHYZbru1KYTCYMBgMtLS2MHz8ek8mEIAhX7fg6ri1UVSUUCtHZ2YnBYMBkMv2xT0mHDh06/mQQ43kmRYhzjaxIw31iHE2trWPKormj5qOq0ShiWRm2CRNwn3qXE1sP4BJsGOQQ6mwT/YYwVlfB+7msjIiXCwDHmo7xxqU3KLYXU2wvpqGvgSJ7EWW5ZUSVKFiuHs8rchTxlQVfYceFHfzsrZ9xqOEQAMX2YlZPXo2KiqqqOE3DnKkt0sv2+u30BHq42H2RPdV7uKH4Bj5/8+fZNHEl6v5n0n5WJi40uWAyX134Vf6/N/8/qnurMRqMLChdwOnO06iqSptPm2hQVIUWXws/O/kz7ph2B3ajnc/f9Hl++OYPqekd5pyePA+PVD2SkuEGmqg3q2gWs4pmxV/zyl5yLbkYDanfMatkJdeSS0+gh365n39/+9/TXltNb837HiUeCZ3nfbhxtXmeLrLp0KHjmiNm1xdDkXiovW3LFmRVTRnVMy9cmCSciW43lmXLCB48mHzQcBii0ZTPko8dS99M6fFgXb0apbsb2/33o+Y6ueCrZ0pk0rDrbIxtT5eDGHmSjx3Ddtdd2nklCFpqKHRZDq5RYTRmdGjJioJl9WqUYBChvx9MJvzbt6cIf9GaGgK7dyMNjXuIbreWPSfL8VKKbCuvosuFdf16lK4uzTHocmUeG6muRu3rY/C3v0WcMQPrxo1aQcMV/j6cZicbp22koaeZKR530ohE/Pw8nlGz467GKHEiDAYDbreb1tZWWlparuqxdXxwsNlslJWVYTAYRt9Yhw4dOv6HIM7z5DD+Z/6A/YEHsi6mqiNiQ0bmZxkjKlExNX83cftoXR2RpiaMc+bgWHIb4q5dyAmfZ/N4sK5fTzTkvaY8L+aW6/R3sqB0AaJB5GjjUTr9nQDUhzqYeBV5XrGjmAF5gOvGXUd5bjmSKBEMB3nxwouMs49jVeUq/GE/dX11FFgL2H5eE9hAExKmFUzjTOcZ8q35PFi4JutnZeJC08ZN49M3fJoiexHVvdVcV3AdP3v7Z7T52lBUBYNgIN+aT21vLU0DTUxwTqB9sJ1CeyFfXfBVWrwt9Ml9uMwuphdOTyuwZUKM5x1pOMJEx0RafBqnskpWpo2bhlkyk2vNhSz6VkgJXZVR4kToPO+jgavF83SRTYcOHVcVSiCgheAPkRnBbifHlAMw7C5K0x6JJCE4HEQuXsT+4IOofX3xEdDB3/8ex733EhjKU4t/lteLWFlJtLp6+ASGjm1ZvRrrqlVaGYDRSLS1Fd9PfzqcMzZlClPWrCHwhz+kuLis69eP2vY0Vgh2e/wc/c88g3nBAixLl2oij8mEYDaPycEV9Y6RJPr9aUktaKKjdfVqfE89hThhAtZVq7JuGyugiI+Lrl6tjaAytgw1+fXXiVZXY7v77uw3SRS139Hp0wSCQc3pWDR2wjUSsREDw7rJqC+OcOkNNaIq3d3Zz/8ajBKbTCbKysqIRCJE0wjEOv60IYoikiTpK9M6dOj4H41ReV44zOBvfpO1jCp8/jy2T34SwWDQxj6bmjSBbYij+Q0RlJ4WCquqkvN3GSHIhcNY1qzRCqRGLhg2NqIMDCAfPnxNeV65q5x8az49gR6avc3MmzCPhaULCUQCWCUrskUaE89r97XHR1BdFhfTx6cXn850nOFs51lyzDlc6rlE+2A7USVKWAljMVq4ddKtnOo4RV1/HYtKF8UFNtAEqjZfG8s9yznWeAzvjTJ5Wa4tGxeqcFUgCAInWk4A0OLVhCWDYOCG4hvwh/yYRBNGUXOciYJIx2AHe2r2sG3utvc1qhnjeZPzJ/OH83+gP9BPriUXs2Qm35rP/EnzeavtrYz7mwymazJKrPO8DzeuJs/TRTYdOj6ESEdwYpkJSiCA6vVq75lMmpBjtV6TfKmU8+rvT3FGiZWVTNmwniJ7ERcCTcyKuYtGtEeKHg/S9OnIBw5ANEqkqSlORsyLFxN4+WWkkpIkUS7a2op1zRoCL76YTFxKSjA4HAT278eyciXB3btTyJdUXJxCeGDIxbVzJ9Y777wqK50GqxXbHXfgf+EFzU128CDywYPJeWSAddMmCATiLaVYLPFSgGhPD5HaWgxOJ0QiqLKM0tQEbncKSRytYVTp6dGEuOrq7G4toxHBZsO2dWv8fiMIoChY7rgDFIVIU1PK9y/ddafN2EuEIGDbsgX/s89etVFNp9kJZifKXXel/FuBIYE208pyZeU1GyUWBAGj0YhxtFEaHTp06NDxPxZe2Ut9X70WMG9yUJ5bniRKjFWQudq4HJ7ne/JJbBs3aiUHsgwWC5hMKJ2dGKdMIdLcTHDPnqRgetDC6duVAabZSvH/8vfY778ftaoqKX83UZATFCXtgqF5/nzkQ4fS87wdO7Bu3Ijocr3vexJzVsUcYzFnVb41nzWT11DuKtfO586NCP4gqhxEMFtQbRbEHO3z32l7h+3ntzMYHiQUDWEWzbza8Cobp21MaugE6An20DTQRCASoMJVgSfPQ1SNYjPaGAwNcqn3EmElrJ2LN9VRNadoDsebjlPXX8ex3ndZ565IyWQDrUiqTRmgt6Mt5fsXu+57Zt7DYGgQX0hzhRkEA9PHT6c32EtjfyNhRfsdzZswj5KcEnoCPfQEeq7KqKbT7KSqpIrp46cP/1sxOuL3+2LPxSSnWwxWyYonzxPf7mpD53k6QBfZdOj40EHp7yd86dKw4OL3ozQ0YKysBEglP2435iVLIC8vqRHyqp9XIJB+9LC6GnnHTrZu2MxvLz6He9kyHCqoCaRHcFdQv2AqEKHEXZEy8hlrqYqmaYuUpk5NFd8SCJiwbFn6cYVszVc1NZfV9jQaDLm52rhlJmG0v59AGtJqu+MOVINB+52fPp0y/iqVlRH1euNioBIIoI62ciYOJ5UJmfIGhooKgq+8krr6u24d8t69BF94IeVcY9+vRBHYuno1SFL2DL6hkY+xjKJeLtLltgFZ2kmHruUDEKV16NChQ4eOkajrq+NIwxEG5AGCkSAWycI75ndYWLaQClcFb7e9zfeOfy9trtXc4rnX7Lwuh+floLnP/E8/DaS6z2x3343B4UAsKUl6BgseNwPLqjhQ8yxqEcwqLUH1+7MWWmVaXByt4VTp7UUwm6/K877CVcG2udtSxJ6YMFXXV5c0tgmaCLdx2kaskpWXa15mf+1+RIOI0WAkrIQpzy3nQtcFih3FcQHVK3tp9bXS5G0iFA3R5msjEAlgFs2U5JRgN9kxi+a4uGWUkoWeqBqlwlXBvtp9zBg/g39583tMW/YfeFChtj6+ncHjpv/2W3jy/NOEoqH4uVa4KuLnEbvWzddtRkUlokToCfRQ3au1jcbOoTy3nIs9FznedJzN12+mO9B9VUc1R7a/xjCynRQ0gW1h2ULunnH3NSk90KEjBl1k06HjKmG0VcerASUQINrbmyq4uN0Y8vNRentTyc/QqJ9x5kyM119/zcQDdXAw8+hhdTXOyBrum30fjf2NDNw+h/zbbgE5hE8I83L7Eb67exsAX5r7Of5s+T14ZRn7ujVYFVADgcyf6/dnJFGQJVtrlOYrVZZRAoGrdr8yiT3ZSKt/1y5NpFJVzDfdBPPnx0sIojU1BHbtwnrHHcPn7PVqomQmh9bIAgmTKXXclqHV3xMnkCZN0gKME8TLwN69WBYvRp03b/hcElqoCIXwv/giUlERYkkJ6sAA2GxY16/XHIcJnzWSdMfGU6/FqOZIZGonFZxOXWDToUOHDh0p+CB4nlf2crj+MM+eeZaGgQZEQcQsmSnLKUMQBAwYUgQ20ILcv3f8ezy2/LFr5mi7HJ5XuHYtalbjQwoAAQAASURBVE9PRvdZjLNaVqxAEEXUcBhZgrcHLnCw5llC0RAH2l5j5uoHEBQx60KdkKlAarSG06HJj6tVcpRJ7PHK3hSBDaAn0MOOCzuomlBFl7+LqklV9Mv9XOi+wOvNr/Nqw6uc7z6fJLJd7L7Ixa6LTHJOoravNj7WJkdlmgaa2Hz9ZsySOS5iTXRMjI+ygjYmqaBQlltGT6AHVVV5+MCX+eKcz7Fo4UZMUTDbnLRG+3it7RD5lnw6/Z30BHrYfn472+ZuozvQzY4LO5AECRWVYCRIga2AB+c+yO/e+x1HGo/ESwnKc8tZVLaIvdV7CSth5IgmiF6LUc2RyNROOqVgii6w6bjm0EU2HTquArKtUMVWfa4GVL8/vfU9lpm1YkXa/WL5Wle7MTHp3EZxH6nBIM5x45heOJ12Xzt/u+9rnGo/FQ+GjeG52l3k5BZyruscd11/FzOLZhLt6sp84FGcWxkFm1FGGAWjUStoSHBoXQtkJK1GI+YbbtBGWkc4E+OjlUMrsUgSotOJGgxqLsC7707NMPF4sK5di+/HP9Z+rqxEGDHKmvgZYkkJ8rFjKSO91tWr46KnkJuL7a678D/zjDbmGQgQ2LMH8403Ih8/nrzvlClY167VstAykG4ikWs6qjkSmYRPHTp06NChIxEfFM873XGan7/1c2r6hp/fkkEiokTYcX4HxbbiFIEthpreGs50nLl2Ittl8Lyo10vw2LGMYf9Kfz/+//ovABxf+AJSURHn2t/jpRatLdMf9vOZKVsRdu9nsKkpfVmWx4N15UqNA6VbXBwtqkKSUPr6NDfbNeR5sebVkRAFEatk5alTT7Hz4k66/d0Mhgdxu9xsvn4zz519jjdb3mR/3X6mjptKkaOIFm8Lp7tOs27KOi71XKI32EsoEkISJVxmF+unrOdc1zlA+35WuCqSRllzLblIgkSBrYBAOEC5q5xmbzNfOfwNTKIJg2DggTkP4Ha5qe6pxiga8eR5aBpooifQQ11fHQfrD2KVrOyr2Zc0ijklfwpbZ21FEiUURSEQCdDsbY4LbAD+iJ98a/41G9UciXTtpDp0fBDQRTYdOt4nEleoTKKJpUXzmWKZhBAKoXplOqKNWB2uK1o1Scpes9lQZTktYQEyvh5HJHLVGxMTMWoQfsL7RY4iHql6hH9/7d850niEiKKtNl4/7noeuuEhznWfS3oIJ5YHjITi9WZvsBLTr4BGm5qytlapBkOSQ+uaOQAz/E7M8+cjHz+eUVCNjVYSDMZHWwWTCYxGDC4XxunTk1xoitcLBgMYjVrlfWwk0mpNGmXFZARFJZiuoTRN66h58WLMCxdqWXqhEFJRUfrzvniRgKIgTZyY2Xk4JPrpTjIdOnTo0PGngpFOJDki0xPo4ULXBer76nnwhgepyK24Ip6X6I6zm+yc6z6XJLABRJQIXf4uJINEh78j6/H65L7LPoex4nJ4nuh0Zg77X7MG35NPaj8nLKzFCgRava3cUjCHokPvxrPC/Lt2Yf/EJzROEwyC2Yzq9RI4fBjrsmWYlyxJiX8YjR9Gm5oQS0quOc/LNBo53jaefTX7CEQCGAQDg+FBAGr7tGu4ZdItHGk8QsdgR1w8NUpGJIOE2+WmO9CNVbISVsIYBANmyYxNsmEQDORactk0bRNOsxOn2Zk0yooKXYEurJKV9zreo8XbglE0kmfJY7x9PG+1vcWe6j3kW/MZkAdwGB0U2Yto8bXQ4mtBEqQUgQ20DLQXzr9AKBqiob8Bs2TmUs8lQHPQhZQQ46zjWD91ve4k0/GRhy6y6dDxPhFboTKJJh70bMGx7zhq7bCIYPC48a9YQI+157JWbkaGy9q2bs2coRXDiEr0JEjSNR3DyyaEpXMnzS2ey7+s/Bfean2L+v56rJIVk2TiXPc5nGZnnBxAanlA/LhuN4acHKxr16aWHwwRucDhw1jXrdPeTyBakfZ2bb9du1L2My9ZQuTCBYCrFsQP6RtCM/1ORssSiY1WIknDQp3JhO3uu1OuKfHaHA89hGCxJJHJkY6uaHv7qK2j5sWLtabRcBjjtGkQjaKGw9nPu7oa88KFkOZ9cSgj7VquJuvQoUOHDh2Xi0QnUl+wj3fb36WhvyG+QJhnycOT72FB6YLLcrXFste8IS8CAjnmHAQEokpUGw0VDPFtI0oEOSKjqmrWY7rMrsu+vrHicnmemJ+PdfPmOO/BZEIdGNAENr8/JQM1ViDws5M/4xbXDNTa57UDGY3Y776bYDq+VlWllVwtWoRxxoykfF5lcFDjfzt3pt1PPqG1Yl5NnpeukCLHmJN2WxWVFl8LpTmlKb/X2r5abi29FckgYTfa4+LpRMdENk7dyC/e+QXvdbw3fCxVxWgwMiAP8HdL/o4KV7LoO3KUVVVV/vP1/4z//eI0O8mz5jGnaA4nWk4wzjaOO6bcgS/sQ47K5FnzUFSFSCQSP+90GJAHmF44nVMdp1CDKkX2IgwOA1E1ytSCqWyYuoEyV9mV3l4dOj400EU2HTreJ2IrVEuL5uPcdxyltlYb9Zs/XxMhIhEsQZEuInit3jGt3qTN6YpEtGambMjQZCO63Sg+H2Jp6Ziv63KRUQjLEiRf5ChizZQ1SSu5M8fPTAqLjR8/Vh7Q348aCKCGw0Sbmog2NyO/+Wba8oPAyy8jTZoEkOrsGtRWDFNImc+X0nx6NRyA0Z6ezPXtM2YQPX06eYfRskQikfhKrHHGDACtRTYUyu52DIUw5GUrbB+9oVQwmYg0NSWPg7rdGOfMQfVlD7MVRDHFQSi63VhXrx5dRNahQ4cOHTo+YMR4nhyROdNxJi6wGQ1G5hTPwWF2cK7zXHz8byzjml7Zy9HGo7x48UW8IS+1vbU4TA48eR7WTl7LH879AZNkQjIM/6lmlsyUucrw5HnSjox68jxML5x+9S58BK6E54lOZ7xESgkEUI1G7Fu3Zmwmr3BVcMe0O8iRh/muef58gvv3Z3T2S+XlCOlGQxUFpbcX6/r1KAMDEAjE+aF84gTmefO0yAquDs/LVEjx+Zs+T6G9kI7BZBdiMBKMf1/G28fTONCIoirD16dEmVk4E1/YFxdPK1wVnO06y4XuC0nHMktmCqwFtHhb6BrsGnU80iJZqCqpwm6yE4wEKbQX8lbrW5zuPE2Xvwu7yc7JtpP87K2fMc42jqXlS3Gancwums2l3ksZjysZJApthaDCqY5T8ddnF87m9orbybNm5586dHxUoItsOnS8T8TCO6daS1BqD8ebGUdmUjk9HoR1q2AMIlvU5011EkkSkZqazNb3oVXEkauMMWeWmJd3zcfwRmvRzIRMYbEpx7daiQ4OoobD8aYp29atyAcPEr1wIe0+lttuS3GxxSBOmYJl5UrU3t7h10pLGfzJT5Iq5d+vAzDq9aYIbKARxFiNfCAYTF4dHu13ZbFoK7EnT2K8+eb4y2o2NyNjI5KjiV2qoqS/ll27MuYCxveNRtMLoi+9hHXNGj0jTYcOHTp0/EkhxvP6g/30BnvjAtuqylW82vAqbb42mgaamDF+Bqc7TvOpGz81qqOtrq+OnRd2IkdlfLJWpOCyuKjvq8dmtLGwbCEH6g7gNDsxCAacJidLypcwu2g2j1Q9krFd9FrlscVwpTwPxp6Dqo1AGogxkdGc/ZYVKwjs3p1xLNSydi3R+nrEiRMhEsE4XRMiEzNh3y/Pa/e1Zyyk+OGbP+SrC77Knpo9SSPHZpuZYkcxgXCAucVz6fZ30+prRRREBEGgNLeUqQVT6fJ3xcVTuyKxOu8W3t64m7DRwNGet/nJe0/RPtiO0+xEMkhjGhmWFRlFVdhbvZd+uZ/JeZPp8nfhDXnJs+RR31/PlIIpAHQHuqnurWZh6UKONh7Fk+8BNEGtMq8Sq9FKKBrCbrRjN9oJR8Nsum4TS8uX4o/4sUgW/GE/z597nqkFU/V8NB3/I6CLbDp0vE/EMiTEkOY8ypilVVOD+OJelLvuGpWMRAKDKa9Fm5qItLVpwgoQbWwcdssBBpcLwWzWyI/Xq5EfkwlMJs3h9AGJF5cTJp+UOTdGoibY7SgNDcNuqNEcX5B59PHiRdSbbooLdrERgkSB7aoE8fv92d1lsjxMWgMB1EgEQqGsLaGEw9pK7IIFCIqC0t9PtLcXFCXNpwxjTETSZMreUFpXl/5aqqsRVq1K3Tfm7HS7EUQR4/TpqJEIaiBAtLER+dgx7Z4vWzb6uSV+Xn+/1g4mywgWC6rJhBCNjpnwpzsGFguiPrKqQ4cOHTqGEON5TQNNRFWtbGlO8RxebXiV3mAvJlGTgyJKhBZfS7yFMdvkQquvFW/IS1N/EzV9NSiqglk0Y5bMzBg/g1mFs2jztXHDhBsosBZgkSwsLlsMaHEbjy1/bHgs0exieuH0ay6wxXCteV65q5wLze8yxeNGrXmfPK+2FoJB5IMHgYRR0UQn/lXgeWc6zmQtpGjxtsRz0Vq8LTT7mrFKmjhV26e5GG+ruI36/np6A71Mck5CQOBIwxG2zt5KMBKMx8hQU0PsbNe5y5m9+DH+4cS/0u3vRkUd08iww+jAKlm5ZdItvNvxLg6TAxWVZm8zk5yTkESJNm8bRtEYL96IKBF8YR/jreOZkj8Fl8XF7ku7aehvwGa0saR8CVPyp8RddS6Li3fb3uV8/3mqe6opzS2l1dd6WSJbQ18DZzrOUGoZT6k0DnMEJJv9snheQ18Dp9pP0RPsId+az6zCWfrIqo5rDl1k06HjCpBIGmwWC/dP+zOiQ+OHWVfcampGzX0I+vqRTFaku+8etrUfO6a1Rm7Zoo1GlpVhXb2awJ49KUTBdscdiIWFV/eCrwHCfb3IL4xozoyNHGQROQxWK8ah/C4ZRm+PGsXZFSNvosejhfH+4hep5/M+BcqxNHKJRUUooOWp1dQMOyJJDvKNnacaiWijDr//PeKEYsyLFiMfOoRUUpK10AGbbdTzFazWtCHCotuNddUqfE88kflaZBnr6tUo/f0ARFtbESdMSG0qHSK6kfZ2HA89RPjsWdQEcTMblEBAazJNN367fj3+3buxLVs2ar5b1hHe/PwxnYsOHTp06PjoITHGwmlysrpyNd2D3bwjvANoofWvN79Oea7Wzgias8dkMNET6KG+rz6jQ7/d107XYBfBSJBiZzE2o41329/FF/JhFI2c7jzN6srV3DPzHo40HqFpoImK3Ar21+3n7fa3442mH5SodqWI9vUReOGFy+Z5TrOTcfklBFYUYX2Z983zVK9X++xryPNGc4/1yX04zU7KXeXsr9tPT6AHURBZ5l4WLxHoC2qCaYWrgqXlSwmEA1w/7no81kmMD5nw79meKibW1lOCwIYpK3imZgeFjsIxjQyXu8rZW72XRWWL8IV89Mv9GEUjKiqTciZRaC/k2TPPIgoiTpMT0SASUrT7rKLy8I0P85+v/yc55hxunnQzswtns7dmL2+0vEEwHCTHkkOxvZgl5UtoHGjkwbkP8lbrW4SjY+N5XtnLiZYTfPf4d/mnm/6G0gPvodbWEWPTY/keAbzW+BqPHn40aXR1VuEsvr7469xaeuuYzkWHjiuBLrLp0HGZGFlIACBVVuJYv47g1KmjrrhlE1wCPZ1Edu5Crkn+o9+2ZQv+Z5/F/+yzmFevwlBWRmD3ntTGzCtsw7ySlcb3g57eVow7XkKpGeH2G+P5G3JzwWTCumEDKErW9qhR27BcLhyf+5xWQiBJOLZtu+r3YayNXOrgYFxgM8+fDwYDlmXLQBQhHEaNRIjW1eEbGmcV3W5sGzfif/ZZBJOJaG0t0VjVPWnEufXrtXyU0RAKgSAk5dUJLhfR1lYt1ySLGKaGwwz+7Gfxny0bNmRtSZVKSgjs3o1xxgyEMQiASn8/SiBAcO/e9COrO3diWb581O9RtL8/+wjvpk26o02HDh06/geirq+OHRd2IAkSKirBSJB8az5/NvPPqMjTMrHG28ZTZC+i2duMoio4TU7Mkplci/bcyNQo+W7buxxrOoZkkAhFQqiiikk0saBsAUcajtAb6CXHnENJTgn/dea/iCpRJjknkW/TFn56Aj1jcsqNRKJo6DA5KM9Nzb69moj29aH09GCeNw+qquILxmPleeWucrxWL4G1t2PG/CfP81xmF1bJSlSJElbCGEUjoiASjAST3GWxEg1REBlvG09EibBmyhoEtKKLC90XONd1jm8d+BZG0chz637JxMOnMc4vxZ/BrUdtHYsXrOdY99t87qbPjUl87Q50U5lfyVPvPIVkkFhQuoCynDJuKL4Bt8vN/z36fzFJJsyimRxzDqIgYjKY6Av20epr5UzHGXZd2kWOOYfZRbM5VH8IOSLT5msjEAlQ6CjkjZY3EA0iAI+/+ThVk6owi+ZRz62ur46L3Rd57PBjbHavpeLoxXjLbAxj+R419DWkCGygZcU9evhRfrDuB7qjTcc1gy6y6dBxGUhbSID2H/vgzp1YN9yBkpDvlQ6ZyEBHVyPWXa+kCk9DYoR5/nzkpgZqXApF8gBSJmv8iJakdI2WiUJLtK9PO+ehQNjIhQtEOjqwrV17TZoeL3RdYELUhqVqPsy7KcmtRzg85panxHEF28aNqUG8Hg+WZcsIX7iQ2dlVWYngdCYLT9dCXMw2ful2g9FIpKEBwWzGfPvtiMXFSc4v8+LFRJqaMgpV5vnzIVZWEA5rYuz8+Um5Z4LLNSZ3Vuw7LpWVITi0HBrMZlRZxuBwaLl/WcjuyFFSg9M5alOpfPgw5vnzCezalZUwxc7NunJl1vFbQRRH/x4FAtlHeAMB0EU2HTp06PgfBa/sZceFHVgla9xhFMPB+oN84eYv0OprZSA4QKe/EwCnycnUgqmU5pZiljQRIZbjlojq7mrOdJ7hbNdZHCYHExwT+O9z/02+NZ8bJ9zI7KLZvN32NiU5JYSiIc53nac8t5ywkrywNdIpl67RMlFoudR9icONh+kL9GGRLAgIHFAPsGHqhstqQx0r0jrYEhaMx8rznGZnXAg0/onzvFxrLqFoiBOtJ+Kv5VnyuG7cdeRZ8jBJJnZc2IFZNFPiLEE0iLxU/RKtvlbsRjvzJszjvskf488Kl0FQi69QjBLyiy9qhWo33ZT18/MFOw/MfoC5xXNHPVev7OVIwxEO1R3CZrRRaC/EIlqIqlE6BzuJKBGmjptKm68NAwYUVSHPkofNZMMf9vNex3vx/DaLZMFqtHKy7SQTnRPjxQ1RJYo/4qehv4FbS2/laONRVnhW8ErdK1SVVGUUeL2yl+3ntzPeNp6TbSf50cL/g3pgV9ptR/senWo/lSKwxd/rOMWp9lO6yKbjmkEX2XToGIFsrq60hQRDiFbXoIRDGMaNy1px3hTu5uTZw0lE6ETLCSaELCkCW/zYtbUYVy7nD7aLvHPxab455aGs1xBzy0V7erTq8hFEJzYOF+3rI7B9e9pqc/+uXdg2bbqqjjav7MUuqwj7X0lakUskX4TDl93yFA/i9XpR+voALcNu8MknAdI7u2JW87E4u94Hol4vgV27hrP00ow3+p54Avx+7TWPB7G0lGhT0/B2iSPII5prkSRNDBOE4Q8d0Y4K4PjCF8Z0vjE3nbmqKp5Vl1jmEXfKqWrK/TTffHO8qSuOMbSkAghGI+ZbbkENBDISpti5jWX8NvF/024zSoPqaO/r0KFDh44PJ7K5uur76pEEKUVgAy1b6/lzz/OFW75Ai7cFX9hHp78Tp8mJy+LCLJnxhXwYMNDsbabT3xnneW+3vc0v3v4Fvz/9e9oH2xEQWOlZyedu+hw/evNHnGw9yZLyJQTCAeaXzKcn0IM7z41X9mIypJYRxZxyJ1pO8JOTP6G2txbJICEgUOQo4i+r/pK5xXM533We7xz5TlJe2ETHRJZ7lrPjwg4emPPAVXW0KYFAisAGIxaMDx/+SPG8dl87j7/xOLdV3IZX9nKhRyvi6g50E4qGuHvG3fzzoX/WXG2qyuyi2ZTmlGrfHbOT/kA/X5v9eSIv7sGfcP62T35y+O+CUUZmIyZtrHMsqO+rZ0AeoMnbxOlOrdneaDCydvJaynLLeKX+FRaVLuLNljfp9HdSllvG9MLp2CU7N0+8mZ+c/AkzCzWBV0UlokS0/41GEAXNuRb7XwCbZGN20WzKcsswCAbq+uoy5rLFnH6x77wpoma9lmzfo55gT9Z9e+XspggdOt4PdJFNh44EpBsFNXjchFYt5b1AHTcLpVn3D/t9vOk7x8xVSzDtUUfkUHjoWjKHP9/3JQKRAKC1Qf3FzX/BE289wTcnZxfOgkEfb/WeJRAOYLBkF74Ckoq5p4vQjhezjsMFXngh6xjfWFYaLwcBbx/OfZlHB2PkK53bbzRHXtzZJkkpY4DyiRNY77gDQqGk/a818QK00oOLF/HX1aW4y6JNTSg9PXGBDbTcPllV4/cCGBaqMjTXih4P1nXrsN1/f3JF/ZA78HJCfeOEJVEcG+mOi0axrFuLEo0ihMMYLFbUaJTBJ55IHSUdLUtl6P1YY2xsrFUNBBDM5iSRO3ZuYx2/TdwuluNGKIQaCiGYs48sjPa+Dh06dOj48KGur47t57fjC/lYPmExU8zjEXt9ROQeBKuVcmkcb0jmFIEthvr+et5sfpOwEuaOqXfwesvrBCPas6nN10bzQDOzi2bzr0f/lYgSifO8H7zxA3oCPbQPtgNozY41e/GFfHxt0dc423WWO6+7k2NNxwiEAxQ7i/HKmlMoNoIKEIlGcJqcdAx2sOfSHn717q8413WO7kB3fGzVYDDwn8f/k39Y+g/8+t1fpwTyt/ha2FezjyXlS7Jmx10Jsi5GD7nXIf1zPOjrR/X54kVEgt2OxTF87X+qPO9Mxxku9Fygtq+WxWWLWT15NYFIALNoptXXyqn2U/HviEk0sbjoZubnzeFTxevwCSGstlwiL+5JdeIlCEjR1lYsGzZo15PAIeVjxxBKS2gIdzK1cPaYztcX9hGMBIkowzwvrITZdWkX8ybO45OzPsl4+3jWTF6DWTRjEk3kW/Pxyl4O1B+gJ9BDf7CfaQXT6An0IBk0HicMLfbmWfIYCA1gMpgwiSYEQeBSzyXq+up4p/0dOgY7+Nj1HwPAbrInidwx8Tj2nQ9JCQvIaZCN591dtJxwlY//e/I/8Yf9KfvmmfPGdL906LgS6CKbDh1DyDQKqtTUIu1RqZ0SYEbJBIxZjjFoiPD3r/w9VsnKA9ffw9Ild+ESbIgWKwc736C/610eX/AYYihC2GjgUOcbvFT9Er3+XsJGQ9bzi0gGOgY7WO5ZTk2olamVHqLVqURGcLtpCrYzOVAw6jjcaEToclcaR4M9IhDJck7m+fMRKz0pgtDlBNSL+flYN20abow0m8Fi0ZxJfj9YLCh9fciHD2NbufKqj8SOFAPj9zCNuwzAdvfdqcdIIKJAXIjK1lwb2LkTKcHxFnMHym+9pY3+jlEsjROWkeLYiPN3fOELmIqKAU2cVsPhtFlt0aamrKOy8feHnHvRmhoCO3bEryUx3DaeXReNZj2mGo0mCYux5lX56FGk4mLNBWi1Zh/h/YDaeHXo0KFDxweD2CiaL+TjU5PvpkA2Iu/aQ3BEfum96zaw/fx2eoPJThdfyEezt5l9dfs42XoSySCxtHwpi8sWIyDwesvrWCUrM3On8FDFFoxhhYhRpNXXRygaIhQdDugXBAFVVXm18VUq8yt57txz3O6+Pc7z+gJ9uPPc5Jhz4iOoXtmL0+TkQP0B3mh9g7KcMp458wzjbOOocFXQ7G3GG/JS21uLoiicaj+VUSxs8bWgombMjrtSRAKDo2wQSbvwF+zpJLxzV9JEh8HjhvVrseSPT9o2E89TBgYQJAkUBVVRUHt6EBTlqvO8keO5sbHhsBLmRJs2LjoYGsRlcbGxfBUfd9/BQxM2EDUZsVmdGPcfRb34BwDyAPvDDzOYjhvHeJjRqBVIHT+eOoJ771Z6LQrjLcYxOxIdRgcWyRIXx2IIK2GONR2juqeaT93wKW4oviEuwNb11fFex3v4w376g/0cbzrOcs9yTrSeoMffg9vlpj/YT6G9EJfFxdnOsxQ7inGaNUH4+vHXYxSN2Iw2znef5z+O/QdLypfQNthGvjU/XuYRG7N2mp3cWHwju1sOcr+7HGrrU64jLc87dCiJ1/2Zx8P8Nb/g3r0PJ5VTzCqcdVktpzp0XC50kU2HjiHEQ+fTYShU9B3vJW52V6QEcAII7grODGqvByIBHn/v5zzOz/HkefjErE9QZpvIhBM9qLXPx/e5011O723reK/zPV7reYe1GR4kgttNp+Bn2w3bmOCYQLmrHNsdM1LyKQS3m9bFM3CoRs3RlO16RxuHi0RGdQxdLgyh0VuFzBs2JAlCUa83e0D95s0pYf5ibm48Tyva05N2JNa6Zg3+/fth6SKMiooYiUIojGC1IjgcaUWp0Qoi0omB9ocfzn7BmZxeCU6ymBCVtbl2hDAXra1FNhiwbtp0WSu5gt2ujTtnE8cqK+kmQE3TMTzWSdhePID5llvSbi8fO4Zt61ZkQUghh+aqKuSTJ7GuWYPS3Y1t69b4ymzsWhLDbWPnNvj73+P45Ce1Ueg047eBQ4fibWFKIED40iXC589jnjdv2AVos+F44AECu3enF2/1PDYdOnTo+EghNoq2cuIS8loGkE+fTrtoxYu7eXTxN/jzA1+Jvx6KhhiQBxAQMInaKFtEibCvdh+1fbXcM/MeDtYd5N8W/BOTXj2DWvtCfN98t5tvLf0Kf//mvyAZpLiDSBAEDBgwS2bmFs8l35rPQ/MewmlyYpfsLK1Yyp7qPfQEepAjMoqqcLz5OEbRSDASxBvyoqLS5e9CEASK7EV0+jvjr/fKvRgNRuxGOxElEh8nHQwPxgsd0mXHvR8opmxL0YDFgnUEzwv6+lMENtAWucM7d8HmTUmONkjmeUoggOrzIR84kPo8X7uWzq5mTvsu0hfoQxAESnNKmVIwJa0oNVpBxNttb/O9499LcgfeO+tefCFt+xhMoonvL/4O5T0KYtAAUQuEJZSebgw33YS/rm54YTLDgnaMh0klJVppRLopEINAzp0bKXSMnbOUu8p5p/0dJjgm0NDfgDfkjb8nGSQm509mknMSoWiIY03HMBlMNHub447JQnshzd5mXrzwIvNL51OZV8nqyas53nSckBLiZOtJciw5XD/+ekpzSmkaaOKu6+/iVMcppuRPwWq08kbzG6hoo6CJZR7lrnLyrfmcaj/Fl2/9Mj9844csvvXruCHp76PEVtg4z8vw77kUlc/MuJ/vvfMj5KistYsu+bqex6bjmkIX2XToGMJori1jROHn535D6eIvU4yAmvAf8pi49Yfzv0rZr6a3hiLRxYSD76WKc7X15GNg44xV/PbSc8xc8NeUDr0eP7bHTeeS2RxofY13298l15rLndPuZPr46di3bEEdHCTk9xIwKOxte5Unj3yTJ27+3yCNMlI32jic1TrmEcOxQrLayVq0npuD0TXCvu33Z3fk+f0wQkSKkaQyqQDDzpfSC3Qvv4x15UqUgUHkQ4dSVrKt69aBwYBgsWgP8TSjxIkuq0xioDowMKqTKy0SxDf52DFsW7ak3y4RI/LPotXVWiHCZYhsBqsV2x134N/1YvocuUoPg8vn88TZXxKKhvi8ZyvRmhr8bW3pRauSEgw5OVjWrkUIh1HDYQSTSaNWqopx6lR8P/1pnGzGHHhEo0nXoQ4OIo4bp53bCy/g++Uvsd99N4IoxleyVbMZolFsa9YMj5gODmJwOpGKi5NdgH4/viefxLZxI8LKlRAbIbVadYFNhw4dOj6CiLm2plpLMEBmblFTQ+XK5UmvCWgilkEwMCAPJL1X01tDm7eN+6bePSSw1SW9r9bWMh6Ve+Zs5o2WN2jobyCiRBAQKLAVoKoqOeYcKq2TKJXGYZQVLEYXJnsuE+duo76vnvr+err93VzsvohX9lJoL+QbN36J/7zpHxDkEKrFTE2wlftf+hxd/i4iijZWWt1TTU1fTVzYc5qc8aw3l9VFuav86tzcIQxKKhaPGzVNxrDo8UCeC9HlSr4/Pl/GTGKlphbV54MRIlLSoqfJRKSxMYVPRWtrCezaRc76tfzd/r+j2dvMBMcEynLLGGcbx8rKlThNznhuXmyUuCcwnOWV6LJq97WnCGwAvYFe8ix5GARDXER9ZM5n8ZCHfPow8kh+uWYNtnvugUhEO+cMC9px7mcyZV5gra7BGgzDZWilTrOThWULMQgGRIPI0cajeENeJIPEvAnzuGfmPbzb8S4n204CmnOvrq+OxWWLqZpUhcvs4rnzz1HbW8szZ56hMr+SO6bcwadu/BTtvna2XL8Fu9HOgDxAd6CbYCTIN/Z/AxUVURCpcFWwyrMqySmaWOaxcdpGtp/fzqmOU3z+ls9zMdSKsOR63CtuxxwByWZPjhIZ4nmZ/j0rNbXcu+w+VIuJitwKLR9OF9h0XGPoIpsOHUMYzbUVlgwcbzrO78ftYv5NNzD79vmIoQhRk8S73ku8Wr8jY4tNqbEgrfsNNPK1cMld/Pris3zt9Ue5o3IVt9+6FnNEWxGsC3VwofN1dl7cGV9tqu+tZ/3U9SwsW0jFuAreabrEa42v8fx5zSUXkgSi9VmcSB4PKmR935CXd1VLDwBEhxMxw5irWOlBzEkVN8Yach9DIkn6+nUPE8jw0JWKi4k0NGRc+Qrs3Ilxxgwkt5uoLKcP8k1wWWUSA/27dmV2Xa1di+8Xv0jZR/R4ULzDK4uEw1reyLJlWe9FOlfcWEd+E1dvc8w5eDasg0AI0+pVCCqoIRksFk75LrHn0n/Fx16E0JBsmiharVihiXtmM0gSvp/9LCl3Tpw2FcuKlQRfTJ8ZKAOWFSvSXkc8/HiIXCNJGHJzM35X1WBQG09J5wL0+/E//TSgjb+K48aN6V7p0KFDh44PH2KuLTEUgVE6eQQ5zJKyJbT4WjAZTAyEBmjsb2RR2SKONx9P2d5mtDHP6UlysCVCra1j7uLNzC2aC0DnYCdWo5VCWyFWo5Vfr3wc60tHUGpfAkAGIpWV2O+4g5lFM/GFfVzovoAv7CPPkscvbvsPorv2Jgk4ZW43BzdvZ+lzG7WJB6ONcbZxDIQG4sJbbJx0cflilpQuuaqlBwBWpwv/igVYXyZJaBM9HliznKDNmBK7crlFRGkXPUcUaMUQra3FEo7S7G2mLKcM0SByoO4AwUiQo41HmVU4C5fVxf2z7+fVxleTBDZIdlmd6TiTIrABHG44zMM3PswTbz0RLxK4vfhW5JcOpeeXu3YNR2K43UizZqXn40Pcz7JwYfb7cwU8z2FysMy9jNmFs9kyfQv9gX7sZjulOaXsubQnKa/NF/JR31+P2ChS5NDckvfOuBejaCSqRnGYHPT4e6jrrYuPJ1e4KpAEiadPP835rvNIBgmDYMAb8nK26yx2k527p99NT6An7gCMieAVrgq2DYnLvrAPh9FBuas843c1xvOy3yOZLn8Xt5XfpgtsOj4QfGhFtscee4yvf/3rfPGLX+S73/0uAKqq8o//+I/8+Mc/pre3l6qqKn7wgx8wY8aMP+7J6vhQID4ml6YVFHcF+9qPElbCvN78OkvLltJuCuETtP/4m205HG44nPRQSoQxrJBtUNKhGsk159IT6GFv80F2NrzMBOcEFpctpi/Yx6H6Q0gGCYfJgSiIhJQQiqrEm6Fi+Qqg5UDsaNrPJ9uKsGVrtHzqKWxr16Z/f926lJXGqwHNJZWmhj3B9j0SYw25h+G8lZ5Ajxa2igHb1q0pIbGEw1ouF1lWsofGLwM7dmBZuTJLq2z1sOCTBubZswns2YNUUpJSehB4+WUsy5YR3LFj+F643VhXryZ89iy2T34SVBWDw0GkqYnwuXOX7Yoby8jvpe5LHG48TF+gD4tkQUBgvxphw9QNVLgq4tu91/4eLzS8lLRvWBKI954liFYx2O6/H/O8edr9FkXNHSkIoCjZHYojCFPidcTDj8cAwWJB9fvHQMCubv6gDh063h90nqfjaiM2ihY1SRDNvq3BYuGvF/51/A/97sFudl7ayfHm42m5XomzBGswe7auOQJdgS5mF80mqkQptBeysHQhM3OnYH3lOMaSEsQRPCHW9J7I875d9TWiu/amCjhNTVgaWjm2aQdqMIhqNnPrbf+Gd7AXNRggbDRwsOMNXmzcxydnfZLKgsrLu4FjgNPspMfaQ9PCSspuG16Mbgh3Mt4YoSyNUHI5RUSZ8pNHFmglQpWDFFgLCCthznWfIxQN4Q/7ebvtbWYUzuC3p35LvjWf5oFmJjgnpHx+zGWVmOmViLLcMh4/8TgLyxaywrMCf8SPA1NSU+jIc41HYtTWEnzpJazr1hEYsfAout1YV65EHYW/XCnPiwzxvFVFq+Lbvdf+XkpOX1gJ0+Zr0woQbPnsrd7Lvpp9WCQLBsHAovJFeGUvD934EBbJQlgJYzfaQQVf0BcvfTCLw7/H3kAvg+FBOgc74yJb4uiy0+wccyFHnOdlQdSkSR5XO4NQh45M+FCKbG+88QY//vGPmT07uUXlX/7lX/i3f/s3fvGLXzB16lS+/e1vs3LlSs6fP4/zg2gR1PGhhsFqxbxhPfILO5Ie3oK7gvoFU/nunk/jNDmZlDOJKeOmUOQoim/T7munLLcs7QqXJ8+DZLVlFdkGCPKZGz5DWAlrQapmFxbJwsu1L9PQ30BtXy0dvg5ud9/OePt4wkoYSZCYMX4GjX2N8XyFQnshbw28xT8ce5SFm/+A5803MCeKO1YrYaeVrp4WLP39yY2RCaTuWgoOI51I6bLNkmCzZQ+ot9niPwe8fWyduAYxFMFuz0Npbia4Z0/KKKL/2WdHFV0AzcpfWwuhrEOuw01WaRBzUEUvXkz7vmXhwhQhUOnuRj5wQLv8rVs1QXTjRgwlJRhnzNBGMtPkm/mffTb5s7O0inplLw19DfTJfXz/9e9zoftC3MrvznOzunJ1XMQd2foUgxyReb3vNLdnyhKcMpmI00a0uTm5DXVISMRoTFuWAICixDPaIh0dVzy6LNjtKA0NGEYRja92/qAOHTquHDrP03Et4DQ7WTd5HW2+PnK8QlY3PzZb0h/67b52nj33bFqBzZPnwZ3vxu6Vs2p3dkcef7f471J43pqCW7DMy0c+fRpp2jQtBiEY1Nz0c+agDg4m8bxKyyTk2l3JB09oHx+5cDeuqgr/s7shHGazx82aFY9Sr3Rf0T0cC2JiZn1ffXwxemrh7IxOJMHhwOBxpx0ZNXjcCI5h8WWs7aVJMJsxS2ZUVSUQDhCIBAgrYQwYCEVD9AZ76Rjs4GL3RZxmZ1K2Wgy+sA+X2ZX2c3PMOVT3VlOSU4I7zw2AOgpvTMrdvXgRZcECfCsWMN6wSmvINJtRvV7CZ89qJoAsGbnXmueFoiEC4QCKqhBWNM4WVaMEI0GsRiu5plxuK7+No41HeaftHaJqlFxzLlajlY3XbeR3p39H80AziqogGSTyrfnMGD8DAYEp+VMYZxtHRI1c8ehyjOdl+/d8IaAtQl/tDEIdOjLhQyey+Xw+PvGJT/CTn/yEb3/72/HXVVXlu9/9Lt/4xjf42Me0WuAnn3ySoqIifvOb3/DZz372j3XKOj4kqOurY9fFXVx/k5upi2/EEI4QkQTqQh18cd9fIAoiS8qX8Jl5n0kS2ACKHEU8UvVISlaDJ8/DI1WPIDlzM7rkBHcFp3w13Oi+Nem477VrLT5nu87S1N/EA3MfYPuF7ZzpPAPAvOJ5ePI9fPrGT+MNe6lwVXD39XfTNdhF40AjK567k3++9RtsLJ2DXYnSJwbZ17KfnY37+M+qf8ICGRsvxVlXr849HS7HiSQ6nVg3bMjcLjr0h5XS349t1wGNfNlsGDZuRJg4Efu992pkZWAA//btyMePayH6OTmoiSOZ6TA0fimYTFk3EywWMJvTP+BHc1D5fPh///uk12xbtybvP+QQs23div+ZZzDPn49l+XLUvj6QJAS7neDBg0mCVcwdqEYiRNvbkyrtm6O9/OH8H7CIFt5uf5tX6l6hwFpAriUXVVVp87VxqP4QC0sXxjMyACrME/ic+8+GVqaNvOu9yG8u/jeVCz5LOULySLS7HPn2W+HFPUn5hTCUk7J3b9oV5/h9CYXw//a38d/z5YwujyyokDweVFm+IpKqQ4eODxY6z9NxrVDXV8eLl16kJ9DD/5r+EI6ystRFK48H6/r1KYVKo/G8IkcRPqUro1gkuN2odiu3T7g9/lqM51lFK/LpE1iXLk2NlhjKiLV2DbCleDkzc6YMxzQkIGP7+AiHl1JTi+VlKF97e8oxriYux4lkceTC+rVp20WN69fGSw/q+upweYMI2Q42gnOJbjdnBmuJKBFUVcUgGOJCUUxwiipRREGkT+6j1dvKlIIpKYd1GB24XW48eZ6UBfVQNESeJY/x9uEW1LAxu6txZLxHmCjXP3UzrfefQn7qqfjrMd5n27Il4+TJoCHCxZaTtHhbMEpGJjknYTQY2VO9J87z9tXuQ1EVynLLMEtmmgeaebXhVVZPXk1DXwMzijQ3sIBAbW8twUgQi2SJuyfH2cYhCiJGw/Cwr6Iq5FvzmZI/hSONR5CjMoIgIAkSYSVMv6+fs11nqZpYRY2tBjkik2vJZTA8yHud75FryeVk60nmTZzHI1WPXNbo8siIkykeN+b8/NR75PHgXV7FwepnyLfmX/UMQh06MuFDJ7J94QtfYP369axYsSKJfNXW1tLW1saqVcOWV7PZzNKlSzl69GhG8iXLMnLCrP/AwEDa7XR8tBEbMzzTeYbH33ycTn8nAgLjbOOYMX4G/3T7P2GTbEwvnJ4isMUwt3gujy1/bLjW2+xK2l4LbN+elEcmuCvwLp+PGKjnaONRXBZXPIC13FWOaBBp97WzwrOCXRd3Uddbh02ykW/NJ9eSy2uNr1HbW8u9s+6lX+4nHA3z5Vu/zLrudcgRmS7Vx1+9+W2K7EU8c/YZwtEwk/Mnc6jrTdZnch953PQKMoXX5lZfEcT8fKybN4PfnyQWxQW2xPGBLK2Rjm3b8P3qV2A0Ejl7FiE3d0zjl6okjSrQGKzWtGJgpkDbOEYQrZSxz4T3o01NcWecWFw8LM4ZjZoj8aab4o44weVCjUYJPP98yn0oWr8WOSLjMrs403GG0pxSGvobqOmt0cZsBYHG/kZWeFYwGB4EINjTiX33wSQCPN9dgXvJF/mro//Atln3UrXkLsIBHyFJYH/7a6wPDmLKEixtXrgQ0om8CfcgWltL4MUXsW3ZMiahTenvx//ii0hFRYglJagDA2C1YsjL034/L7445lFlHTp0fPDQeZ6Oa4EYz2saaOIzk+9B2L0PX1Oz9uysqgI0p30itxiJ0XieI2ccg+tWoe7cm1yO5XGjrF7GgZajOLudKTzPKEhI8+enCGwwnBEby/Cq9HiQ1lWmOMEvp31craklT11zZTfyGsGSPx42b0L1+eJlRoLDERfYYr+/rRPXkG3ZU3A44vdGdLuR1q3mSy/cQ0SJYBJNKKoS39btctM40Kg1sQZ6Kcspo8vfRYG1gHxbfny7mDjjNDvTCq2F9kKqSqqSHHDvDtYwK8Pierp4j5ZwD/6wn0FCmBP5ZiQC4XDGyZPIoI//eO8pjjQcIRAJALC4bDHdgW5Mookbi2/kdMdpIkqEyrxKGgcaCYQDCILA2a6zePI8THJOArTm1L3Ve6npraFxoFG7dks+FXkVePI85FnyUFU13lKbZ83D7XJjNVoZDA1iEk2YRTOiINIb7CXfmk/TQBNGyUjjQCPhaJiuQBdluWUU2YuwGq3cPOlmxtvGc6j+EJV5lWMS2ur66thxYQeSIMVbck/ax7OudAW5GzaghkIocpCw0cC7gzW8Uv0MDpODTdM2XfUMQh06MuFDJbI9/fTTnDx5kjfeeCPlvba2NgCKikY4jIqKqK9PFRJieOyxx/jHf/zHq3uiOj40iK2ENPuaOdt1liMNR2j2NscfwoP9gzQONDKzcCafvvHTGQW2GIocRRm30cYk7yLi7SfsHyRiEunEz49P/4zavlrC0TCBcICKvAo+c+NnmDdxHotKF3G04SjlueX85r3fEFWjuMwu3HluTnWcIhwNc7brbDzvoDfQy3+f+29sko0dF4fHBTZO20h/sJ8Cm5ZJ8dPTv2T6wn9KqcQWPG68y6pollsp1HpO/2QgOp0ZWzJV7/D4gG3jxhSBDYbFGvsnPoHa3Q2iiFRWhqGgAFkQMo5fim43am+v1rQ5crsRAk1aMdBiyehiHEm0Ro59jnw/1jQlQ7I4l8aR6PjzP0/bdhqtrYWdu/jzdffxQusBbim5hb5AHznmHF5vfh1FVeIE6WznWeYWzyXo609ZYQYtyLkIuH/mx2kKddLVfZQ91Xto87UhR2Q2Fi5J+/uKQTAYUsTLdKOvsdy70dyPSiCA/8UXMd94I/Lx46kjqhs3Xt6osg4dOj5Q6DxPx9VGzNks+b3cM3E13UU+ig6dijuvk54TlZWjNnln43kA9oJifHeug0E/alBGtZh4s/cMP3/1a/hCvrQ8LxQcxGjNGTUjFoZEtxdfxLJ6ddJY6KgRGCNzTuVRxhn/CLA4clNaRGMI+gb4rOfjiFEVdcjtn5izC0OcqasLx2c+Q1SJ0i/INA7U8LvljxMN+glJAntaD/Hlg1+nyF5EVUkVz5x5BpfFRauvlaXlS6npq6F+oB67yY5ZMpNvzU8SZ9IJrZX5lfzh/B+SShNeaTvKvNUPEdq9Z/R4D3c525texiSa+F3183xm8Z3DjqwY18sweRKZUpoksEWUCP6wn0N1h1hduRoVlRsm3MDc4rnU9tZyruucdh6CiKIqdA528lL1S5TnlvO949+job+BJeVLOFR/iMaBRq2ooPMsc4rmsLBsIRbJQiASiPO8qBLFZXHRF+yj2dsMaM4+ySBhEk1MHzedCldFfDy0pq+GwdAgKz0rCUQClORo+ciJ7aLZ4JW97LiwA6tkZV/NvnjRAsD+2v18deFXmVY8Lf73nWC1sHHqxqzFCTp0XAt8aES2xsZGvvjFL7J3714sWZwhgpBsIlZVNeW1RHzta1/jy1/+cvzngYEBSkv/tMQFHVcXMcIV8fsIG6L0+zuo7qtmUB6k2FFMga0Ak8GEP+znfPd5wkqYuv46TrWfGlVkGw2Dhgj1ahfNkWYGfAP85r3f0DHYQX1/PXJEJt+az7nuczQPNPMvK/4F0SByx9Q7MEkmphVMi1fH9wX76PR3YpWsmEUz/rCfiBIhqkbpGOzgvln30epr5a22t1BUBavRitPkpDKvksHwIGbJzBcOfZXPzdzGooUbyMVG1CRyIdDEwZpn2Th141W625kRHuhD8AdR5SCCxQomEwQCCCbTZQkfSn8/Sl9f/GchS413tLYWolEMhYXIb7yBfOQI5oULsaxYgWAwoPT3a9s1NWkCW0kJ1jVr8D35JOKkSViWLYPlyyESQbDZ0p5nOjFQczGmlj1Ybr8d1e/H/sADqKpKtLY2TrwsGzYglZRoY7BD2WTysWNa09Ty5SAIiB5P2mwSsbISVVUxz59PtKQkiYTG7oM9DLfkXM+jhx/lQvcFynLL2Hz9Zl44/wIqKgARNUI4Gkb1+dKOv4AmtK1Yfj9/eezvaR1sZWrBVCbnT8YqWcnPKSZrup8oIpWUYF21ClWWUWU5fu9HZrWNJSdQHRxEKirKODIT2LED25YteouoDh1/gtB5no6rBa/spbG/kVJDHsKul+PPSTMw+f778Wdoex/rgs5on10faKPN30aJeTxOOch1YhHfmv1Fdrcc4qdnfpnC8ww2O2pglGdcYoZXTQ2WVauSF6nStIsnYcT7H0QOaUNfA6faT9ET7CHPkke5q5xgOIjVZKU8d+yih9Lfj8sbRj60j+CIRblYzq5YUjK8ODplCuYVy8hXjFiPXBpehAW2etysuf91PvPK/+KZM89gN9pZULKAirwKDtYfZOtMTcArchRRnlueVpxJJ7RunLYxXrwFmtDkDXmxT5qkOSUjEQSXi2hraxLHiS1um5tf5ptLvkl7qI9Oc4j8GTMwz5+PYLNl5HoGj5u6cAdfvuHzTLOWIYWjYDbTJQwyrWAaL9e+THVfdTwnzSyaU3iexagVFZxqPxV35x1vPs6solksLFsIKgQjQZaUL+G5s8+l8LxVnlWc7jodb5wH7b/JA/IAtX21FDuKyTXn8vC8h+kP9lPfXx+/P4njtTC2UoL6vnokQUoR2ABqemv49bu/5q8X/vVljSvr0HEt8KER2U6cOEFHRwfz5s2LvxaNRjl06BDf//73OX/+PKCtdE6YMNwM09HRkbLqmQiz2Yx5lFYbHR8ueGUvF7svxrMJJjonUpFbgdPsTKn9FoFZHjfXr1rPj0/+mHfa3wHAbDCz6bpNrPSspCvQxdziue/7vOr66th+fjut3laONx9nxvgZvNv+LoX2Qq0N02Dilom3MCFnAoFwgJNtJ5k+fjoqWlDrma4z8WNNN03XmoGUCBbJglWycrjhMIFIgGAkyNttbzNt3DQ2TN1A00AT14+7ntaBVtaVLeNm10yMYQVZgh1N+9l26K948IYHaexvJKpGP5DMgkhPN/KOnanZEmvW4Pv5zxEnTNAcYrnpVzRjiI2JxkY9ABilCp5QiMDe4VYu+cABrWTAZsP28Y9jMJkQPB6k665D9Xo1ga2oCOuKFfiefBLbpk0a6bkMoSZd2QNmszYacv48GI3Y778fsaQE2+bNGAoKCOzenRxe7PHgeOghwmfPMvjkk4geN8Z1a2DX7qQRZNHtxnzzzQw+8UR8XCJdrT3BIOMPv8NXbvwLHnnlb2jobwDglom3cLzlOFPzp5JryiWkhFDD2e9pNOhnYdnCuG3fZXWxpHQJkpAhp27oPBFFIkNOPbGkBP9vf5vxM8byB4EaDGYfmbkKf0Dp0KHj2kDneTrGCiUQQPV6teepyQQmE4LVisFqjXOteXkzKT32ZurzJ6A5frDZsG3ciOB0arzBYkEdGBg9sD4LYp/d7e/mPvedFO9/B2Xo8+3Afe5y1q17iicu/Y7+YH+c5ymRsLbQmA0jRLLugTa8t82lfNVK7T44nJkX3ka65j+AHNLXGl/j0cOPcqrjFAIC14+/njlFc5hVOAtf2Mc7be+wsGxhUoN5OiiBAOFLlwifPp0+b04QsD/4IJFz5zSeYzRiXbqUSE0dcpp9lJpa8hB4dOHf82LZIqJKlHfb3+V0x2m2ztzKf535LzZN20SBreCyRJoKVwXb5m6L54Q5jA7s9nFEWl4b5iRD0R62u+4CIGg3sbvtVb72zHoaBxrx5HlYVrGMfzrx73zphj+nEBGnANb161OiLgSPm97b5uGMykw92YtSczL+ntPjRlwwh799+W+pyKsgokSwGq3U92kC10ieF1bD9Mq98f0jSiSe/ywg4DQ7Kc0tTcvzApEAkWgEd56b3mAvESUSX/QYkAeYXzKfvmAfdqMdFZXDDYeZPm46hY7UUJqxlBL4wj5U1BSBLYYWX8uYHHE6dFxrfGhEtuXLl3Pq1Kmk17Zt28Z1113HV7/6VTweD8XFxbz00kvccMMNAIRCIQ4ePMh3vvOdP8Yp6/gjoK6vjl+9+6sk6/REx0Q2TNvAutJlSC+8lEJA1JpapD3w5blf4IE9D2MymPjknE9ysO4gL1x4gYnOiey6tIs5RXMYZx+XIrglhm86TI60q3OxLImeQA89gR4a+huozKskEAlQ31fPg7MfZO6Euey8uJOztWfpD/ZztPEoJc4SHpr3EKfbTzNvwjxOtmoPUckgxcNHp+RPIRAJxK/XIlmYlDOJs51nudBzgXtn3ouiKPzbgn/CtPcgau3O+Hl92l3Bx1b8gG+8/hiLyhYRUkLXPLMgPNCXIrDBkNNo925sGzfif/pp/C9sx7blrqyONnVwkGhNDdFJk+IkUhhNQDEa0zvd/H78P/859k9/GhUQ0AoP7J/4RJLYFm1qwjii8W606x127FlQcxxIOS4AbGvX4o9ENPHH78f/299iXrwY+Y030uey7N6NVFKCWFqKdcVKUEHadCfIMmogoJUcxNxwQ4Jaxlp7sxm1to5lizdrArSqMBga5Cvz/oJpi/4Fh2okYpLAYkWIilmv0WZ3scixKE4sYyu/keZmbcyW1LBec1UV6uBgfOXZPH/++y4mEIb+SMqGa9mcq0OHjiuHzvN0jAUjF0th6JmyZAlRVy67Lu6iJ9DD1IklKLVpFlwkKWt2q3XDhpRdLpfnLSq8iaJD76KMdMzV1lOAgWnTyvm/57/PzfmzGR8UsRpADXrHlBEbg2C28G/v/ge51lzunXkv16kOzLfcgjzkik+6N4kxFB9ADmlDX0NcYBMFkdsqtObJ/bX7meCYwK2lt4KquVILrAVZOac6OIgh24RCTQ1qVVWc39i2bCGwe7fm5M+wj1JTg+f2BVglK/6In6UVSwlGgvz3uf8m35KPgHBZLZSJjr18az6zCmdR5irTPitxkmFo5NPgcdO5dC7/cPyfeav1LcJKmHxrPv1yP8dbjlNsL+Yv93+Ff7rtn8ix5FBmz8W+ZQtRnxeft4eI0cCFQBMRXxM3vtmeMmmg1NRSqqr8w/y/5bE3/o2SnBICkQA2o42OwQ5WelYiR2Vuc99G22AbDpODPHNe+vuPilf2ckPxDRTaC1N43rGmY3T6O1lduZqoEuWd9ndQVAWDYKA0p5RVlasQBZGmgSbG28bjyfOQa0ldQB/rAr/D6IhH5KSDyWAakyNOh45rjQ+NyOZ0Opk5M1mVttvtFBQUxF//0pe+xKOPPsqUKVOYMmUKjz76KDabjXvvvfePcco6PmB4ZS/PnH4mSWADbVVjx/kdrMu/VSNlQytJYkmJZt92OkEU+XgkxOL7TnCi7yzffv1fudh7EZfZxbSCaRxvPk59fz3fO/49Hlv+WNwmni58M8+ax6LSRUwumBw/h/q++riF3Ct74wGskiCxZsoaMMC/Hv1XLvVeArSg0akFUznRdgLlhMKy8mV84aYv8MTbT3Cq/RSSQeLflz7Gukm3kYuVQTHCvLyZPFP7AqhgNBjjq0QCAtOcFYSfez6F8Km1deQh8Ikb7sJiz+WmSTdd88wCwR/MOs4prFih/f/qGqI+b3aRbUgwkY8d01YGjUaUYDBrjTfRaNbzUwcGEHJzCb78clqiKr/1FqYxrgBncuwJG9Yj5RckO9wUBbGyctTwYsvKlYiTJqH09GjjI1YrSq4Tg8WC/4c/zLhfPPTYZsN2990IBgP2++/HbrWy92N/4GtH/5nvzP8mk46cja+IimiE3LhhPZEMjWkGjxvB4WCmY1LKe4LRyGCGsF7/s89iv+8+Bn/1KwiHiXR0vO9iAsFuH9Wl9kGMyOjQoePyofM8HaMhqeQoAbHFJOPMGczOncZ+fxfG8FDA/UjO53Bgu/vuzNmtO3Zg3bw5Xn5wJTxvpqMStfYk6aDW1lI1fw1PrfgB7tdqUPc8B1u34t++PVn4i513RQWCwYAaDmuLcMeOIZaWUi23JvG8qNVE6OQJTCUlSc9bVBVMJkz33gMWM+bc/GueQ3qq/RSnOjTBfFbRLI42HqW2T7vXrb5W5IhMd6CbHed3MKtwFrOKZmU8lhoMXlbeXDwy5Kabsu4ihhX21e7jYs9Fih3FSAaJiY6JLPcsJxAJjHmiI9GxF8Oswll8ffHXubX01iSepwQDDCDTEO7i64e+ikWy0DjQSCgawiSaMIpGantruXnizeyv3U+nv5OLPRc53nScSTmTmOicyPam7fF21C9NeQCl5lj6+1Zbx33LPkG3qrVvRqIRDtUfoivQxaScSXhDXt5tf5feQC/uPK01NV1zKoA7z82MwhlpI3MEBC71XOJs51lmF85mUdki/GE/giDQG+zFIlqo7aslqkaJqBEeqXqEQ/WHkvLrRubeZUO5qxyX1ZX2PatkJdeSe1kCqQ4d1wofGpFtLPibv/kbAoEAn//85+nt7aWqqoq9e/fizBCWruOjhfq+emp6a5IEthhafC3aOIDRqAXHpwlFN1dVkf/sblaXljB91Y94cN9f0j7YTk+gh2JHMRbJQk1vDWc6zlDkKMoavnmo/pAWvjluGpCcM2AwGLQK8WiYTddt4kDdAZaUL0l6sPnDfs52nWWiYyLHmo6x6bpN7Ly0k4/P+Difmvsp1k9Ygu3loyivvACAE7jdXc70xf+L6nAHb7e/HT+WL+zDGAwjZ8zUquWm27dSLfR8IKGgqjyKkyhh3DMSGMSYZdO4YBIOE21pIdLQQLS9PfMK9Zo1SfltaSFJDP7mN9g/+UnUQEAbLRkShuS33sK2du2YCGo2x15wx07Md27EmOPSjjV0PNsddxBtb89+YFlOyRwT3W4sa9diXroUceLEJPFY7e8HUUSw2SA3F8cnPkFg166k/cvcbn6//qcE9+1PEdKi1dUEd+/BtG4t8ou7UBPeN3jcGNevjbd/Je3X00OksTGjaChWViI4HNjvvz+pgOD9FBMYrFbUvLz37YjToUPHnyZ0nvc/GzH3ejrEFpOmWp2cc05k0BDBkY7zGY04PvWp7Nmtfj84nVfM86RwNEXci/OIY8cYLzoRj7wRL1+INjUhFhVpkRQbNyKsXIkgSQR2707hqratW8FgwG3ShJlQNIQv7KPG34xt4WzyD5xATdhHcFfQungmh7pPMqtoFvOtqQtiVxs9wWEBZbxtPLv7die9L0c1ntfia6HF15JVZBMsFlS/P/sHJo7SxjjkKBl1IUnl8zd/nhZvC/6wH4tkQUAgEAlwx9Q7xsSHEx17iTjVcYpHDz/KD9b9gDJXWZzniYC3r45jF98iENEaPmOuL8kgoaqaiKsoCkvKl/C7937H9gvbEQ0ieZY8VnhWcOd1d9LsbSYcCWMRzYhbt6Z8v2KTDD5vN995VXP53jjxRv583p/z+InHCUaC9AZ6GQwPMsExgaXlS5H9/Xy/6p/weXsIiipHe97myXNPM8E5gUeqHkkrsMXaSFu9rdxVuYHlRQuwRAREq41quZU3u08xp3gOkwsmJ7nfKvMqk8ZqL6eUwGl2srh0MYfrDyf93WSVrEwbN40JzgnXPPJGh46x4EMtsh04cCDpZ0EQ+Na3vsW3vvWtP8r56Pjjwhf2EVJSszSskpVPT78Ph82F+vGPg8GAVFKiWe8zjNRNUhW2TvkYXz/yj3jyPKholdUAfXIfcHnhm4mrKjmmHDwuD/tr9/OFW77A9vPaqpRW427EaDBiN9lp6G9gonMivpAPVVUxGUw8e/ZZvnHzX2F76Wg85yOO2nqKMfDeLAl3njveIOQwOkYfkZNl+oV+3ut4j/G28XQNduENe8kx5+CxTsIYDF+1NkbBPIqTKCE7RzFlk9g051KsuVOcOBH54EGAYaK6YoVGuMxmMBpRo1GijY3ZRRiXC8e2bZoYk5sbF3yMs2djuoxrH9Wx5w9CTvLrhtxc1FEy5VRFSRXumpq0Mo+Ghvg9gIQxkWeeQSwt1cTHF15IK/yFdu7CWlWF/+y51PM9f57w4ltoXjKDibcvRAxHkaw2RIczvcDm9WrNptkEz3XrEPPzIT8/+R4kiI5XAtHlwrpxo/b5V+iI06FDx58GdJ6nIxGjcplIBGPYQEN/A6eMBdy2ehXyiRNII9xdoz5nhz7nSnkeZvOwuHfsWFxsE0tKsG/bhipJ+Jua45vHm8OPH8f/9NOYFy8m0tSUMYNMKi3F0djI0qr5vNRyCIfRwUBogJ+c/h1V0+eyYNEmpLBCxGjg9b7T0HuOjxXdjk0RiXZ1aZxIlpN4HXDVmrfzLcPP9Yia6kIzi2Z8aKJkJJrdpSbY7SgNDWMfpR1afI02NWWdapCtVm4rvA3gigWfRMdeynsdpzjVfio+NhpDhauCqklVnGo/RW+wF5vRFi8uMwjaInxJbglPvfMU5bnl8YKCfrmfiz0X+f7r32du8Vw+PfnjRF7ahzxibDoxgzckCfGMtFPtp3jynSfZNmcbTouTfGs+FsmC0WBk5fhbcR58E0Oxn7ySEghG2FKwhDvXrsNrhvGO5IICgHZfO987/j06Bjv4+fLv4dx3HPXl4TiaWR4389bfiyU/dd/3W0owuWAyX134VX797q9p8bVgMpjIteQywTnhmkfe6NAxVnyoRTYdOhLhMDowGZKDY62Sle8tepQJh99j8IUfxV9PFwafNFJXW8/6+Wv4f7bvYxSN8YccgMvsAi4vfLPcVU6+NZ+eQA82k41+uZ9AJIA/7KfAVsB423hyzbmIgkhUjTIYGkQUxHhbT445h43XbcQf8nOLaxZK7ZNpP1OtrWXOgvUc8WmBpbGMA8GbnVCGJIHazlp2XdzFgDzAwtKFdA52cr9nM+Hdzye54MTKSqxr1mg/GI0QDA6H+dts8RGLTFBtlqxkSfV6ARDcbroYRJG9GR+YBqs13tyZNE7g9+N/+umkbe3btoHZRKStLWNOmHX9esS8EbkUV0gyR3PsZXpfcDrjwuFIiB4P0bq6lNfN8+cjHzqUnpAzLB6rwbGN6qZDyO/lL478VfxnT55HW8UfEtmSgqjNZqSSEqSyMgIvv4xUXo4lduxQSCs8qK+PB1VfbYgu1/tyxOnQoUOHjj89jDruL0l4hSBPvPUER8ddz+2rn8LscKZML9juv39Mn3OlPE8WVc1x3tSUfnqi0pPMQcPheDapef58hBxn5tiImhqNwxw8yNTbqjgxxPPq++qxGC08ee5pHo/8HNA48HcXfpsJh99Drf01ISBEak6b7d57kQ8fTs6583gwrFtFtxjiUs8l+uQ+XBYX08dPT+tqSsSsolnMKpzFqY5TmEUzAgKCIDDROZEJjgkYBAN5ljxEg4hZNOMdhecZKysx5Oen8rbKSqzr1hINhbBWeoZ+bwKi2z0sXKbZx3bHHTgSirWuVPBJdOylQ2KZQCKmFEzhuvHX0dDfwHjbeJq8mkioqiqePA9yRGYwNIgv7ENAKxEodhRzsecikiDxd7f8NYWH3iE6IgImifM1NfBy21GMohEBAaPByMWeizjNTi52XySqRumX+1k5cQnOg29imTcv7ZRP/saN8Z8Ti+XCShgBgfum3o1z3+txV2YMak0tkRf3oGzZck2417Rx0/jrhX99xQKpDh3XGrrIpuMjg3JXOZ48D7V9tZoNG4HPzPgkEw6fIjpyBC5TGHyCUGNVDMwsnIkcGRaoPHkephdOBy4vfNNpdsbrvTt8HYgGkaXlS/GGvLT72qnpqWG8fTznus5hNGiiniiISAaJFZ4VSILEkaYjmEUz0dxbyRZDb4woeEPepIwDRZEyCjcGj5s+Q4hgJEhlXiW+kI/DdYf50g2fw7nveIpjLlpdTWDvXixLlxJ88cW0ocHiCHdS0vnluBA2rCeYqV30ySfBXUH7klm813uG5oaX2DB1Q8YGqnjeRabA+6GRDcxmlJCMdfVqAnv2JK9sWywIeXmpAtv7wGiOvUzvDwuH25NbQz0erKtW4XviiZR9Rstxi4vHY3A0ZnxLVJN+TlzFtweVtEHUlhUrkI8exTxvXtqMO6m8/Jo1fb5fR5wOHTp06PjTQqJ7fSREt5uod4BXlffoDfRyuOEwckTGMCJeAbTnYtbma5sNuHKeZ4kK2rN38eKUeAfQMmdlRU3moEOh+ADWBx/IfiOGuKoUVuI8r9xVzgTnBAKRAOe7zhOIBHjguns0ga29A9s99yQ3qcoy5sWLtc9Nt0hXU4P64h7emCnxi3NP45W9qGgi0CNVj6SUgCWizFXG1xd/nUcPP0qXv4tpBdO0jK5AL/3Bfi50XyCshLlp4k30Bft48p0nR+V5mEyY161DiIRBDqFazHREB/j/zv6MsBJmadF8brZMR5BlrY1z584k4TJ2HCEn56qJPomOvXTIVCaQ+F1ZULqAA/UH6BjswO1yU1VShT/iZ1bRLF5rfA2DYADAZrTR2N/IOPs4JlsmoaYr9WCI8y1aRG2JiR/t+wsmOCagqAo55hwskoXeQC9RdTibeKq1BGMx6b+nQxmFti1baJDb+dW7v+JQ3SF6g73kW/Np8bXwv+d+BbX2v9KfS3U1IW8flmvExd6vI06HjmsJXWTT8ZGB0+zkrhl3EYwGOdp4FMkgcVPudKI1z6fdPkl8iCEhw8FodSBH5LiLLUYsYit4o4Vv5lvzMYtmXql5Jb4CeOe0Ozk/7jxTCqaQZ83jRPMJxtnG8VLNSzx4w4MAXOq5RFgJU+QsYnLeZDZN28TJtpNElSiqqBI1iVlFNsVopCK3giUVS+IrOomOr0RyavC4aV88izXPbGQwPIg/7GdO0Ry23bCNctN4lNo9wwdOyBcRbDaC+/ePKTQ4HaT8Asx3boy3bmI2ExUNtPU2E9x8O6/3nuJC3XYudV9iYdlCtp/fzra527KudCqQSr7T5bEMBf8bLBYUOQg5TqrlVp5/7/d8/pbPX7VVsFEde7bMIpwmHN5FxDuAEAxqZQ2hMIrfH3deJmGsocAJo7hpkcElILgrONrzTsrrLb4WAt4+hF0H0gZRq4OD2v1//fX035WdO7Hdlb1BVocOHTp06IDMXEZ0uzEvXszZaCs/OvwLynPL+dWqH2EXLfjSPIPjLidBSFkcsm7YEOcvo/G8STmTmGnzEG1vRw0GKbVY+fPr7ycy0K85xsa6AJYAweMmbMre6B3jqg5nPnkurfwgJtzsuriLj1WsZ6p1EnlYMSyIYnC5tFKhNO59pbc34zkqNbXcuGAj3+qtoyy3TMt+661JKQFLh1tLb+UH637Ae+3vIRgEfnryp9Qb6ukY1BaapxRM4eaJN/P8uefHzPMGDRF+/vZvkkLz7UY7f3ndA1h8MnT3oEoSkbo6zEuXYjCbUWUZwWxGGRggcPgwtvXrs9/by0CiYy/lvVEKHSpcFWybu436vno2X7eZ/lA/BgyElTCDoUF+euKnIGgj8qC53AyCAUmQtMy/LPCpMg/s+wJNA03kWfOQwzIdgx3kWfIosBfQFeiKC21iKJL9e1pdTdTn5ZkLz7C/dj8N/Q1ElAjjbOO42H2RSGAw67kEfP2Ecx26w0zH/zjoIpuOjxQqXBV8seqLrPSs5EjDEXIZ5Y/3BHEiMddBcLsJmAT+bsnf0S/34zK7mF6YbJHPFr45ffx0KvMr+cnJn3Cm80z8PU+eh21zt+EPayGuZ7vPsmbyGvZW7+WX7/yS5e7lbJi6AckgccvEWzAIBv750D9zquOUZvcWjcx0TmZThqZHwV3BWX89N7lvTXmgGXJziWxYQdQ3H0EOgdnMC80H+Jtn1mMUjdiNdiyShYb+Bp49+yz3jVtB/DE+Qqyybd2aNXw4FhqcDcYcF+TA6fbTHG7YjS/kYyA0wENTt7LFsRo1KMM0E72CzC+rn42PZGRCOvJtnj8/dXXO78f/5JMI7gpenA6Pv6eNVUzOnzzqZ1wOsjn2LBvWI+W4su5vsFoxDYlPSiCAOjgIBkN64W6UgN/Y+6rXm3313mzGdv/9mtNzKDzX4HHTsmgGTx75Zso+TqOTXMwYqqpg3rzk4F2075zi82X+rtTUoA4MEO3vRw2FEKxWBIdDF9106NChQ0daxNzriteLEvAjmEz4ifDEpf/mn1//Vzx5Ht74+Muou15GWTgx/UGGxjPtn/40gqpqzx+zOSXyIhvPmzdxHl+Z8TDhHbuShLyYUBey2UZfABsJdzk18z0cu/Qsn8jA82JcVaysRHQk86wKVwUPTbkH+YUdRGuOEgRs99yTIrDB8EKXJRb/kQGGcJhcSy5DU4sASSVg2VDmKqPMVcbp9tOs9KzEF/LR4mtBEiTafG3svLATFZWbJt1Eb7B3VA6W6ADrCfRgEk18bsq9CLv24R/xOxCLiggcOYJUXJwkIKm33XbVXO6Jjr2UdtElX0/JY0t3PTOLZjKzaCZe2UtDXwMDoQFernmZaeOmcbHnIgAGwYBZMmOWzLjz3CgmKetiu88Q5mzXWaySlWAkiIDAN2/5CpvLVpODlVWTb+b0YC0H248RNUngzf49jQQGUVGZnD+Z68ZdR8dgB76Qj0nOSRgs2e9lWBJ4q/kNwmqYcDTMRMdEphRM0UU3HR956CKbjo8cnGYndqOdgdAAEZOY/Us+JD4k5lMI7gral8zktfbXUVBSatoTkSl8c1rBNN5oeYOznWeTtq/preGnJ3/Kluu30OxtJqJEONF6gqqSKuxGO1E1SqGtELNkJt+az9/u+1vOdp3FaDBiEAwIgsBXX/0Hbtr8ByZBEgET3BX03HYjk8xqWuLjlb08df6/4iuAEx0TeeSlRzAIBsbbxhOIBPDKXiSDxLHGY0SMhjinShGrRiGOo4YTJ55X2EvbYBsDwQG+Pe9vUHbtJZBAlhxuN4+se4BToYZRjzWyKl2VJKIZVufU2joWLNrE40M/J459XC2MdOwJZguqzTKqwDYSiaOP5g3rkXe+mCRcRb1eLa8tjZiVKB7L77yDdd26zCvaPT34f/1rxMpKHA8/jKKqnPPX8zeHv5nS2ptnyeMrsz9HeNeeFCeA46GHUAWBwO7dmOfNy3ptSn8//t/+dnj/WEFBQl6KDh06dOjQEYPBauXMQDXP1D5Dkb2I35/5PSdbTwLwH4seRd31MtGmJoRsYko4jNrfz+Bvfzv83EmzOJiJ533h+m2Ed+7KPGL3Z3+WNYIBQM3NIfyprch+L35DlN0tB/k/278BwMJNv8dNqtPOXFWlNZ2nKfJRAoEhgW14H8HpzJ7FqiiYb7sN+ciRtE75iCTS0N/AjbYbk16PlYCNBTGe1zTQxNttb9M00JQ0hnux+yIRNTImDpboAMsTbAh70k9VyIA0VDaRiMvhp2NBzLF3qv0UvXIveeY8ZhXNGlVgGwmn2cmMohmAlqdcZC/iqXefoqa3BskgIRkkFpQuYKVnJWf9DcxxV6TkoAHgrqBD9TK7cDYXei7gMDl4evVP8bxWjXrgOVQ0vXROpYfZa7YRJAqRNBMSCYhKIncVL8eQv4SwJPB672kmF0xmsnkixnAUy4jF2RgEj5vXet7mRO9pDtUfAjSBemHZQu6bfV/G8WAdOj4K0EU2HR9JxB7UDeEuJmdaDfR4EBwOpM98ipAQpae/E+Xja9jR/Aq/f+V/MaNwBmc6z6TUtI9EuvDNjsEOnnznyaTChBjq++sxiSZyzDlMdEykxdfCua5z8fppX9iHSTIxIA9Q11cXbzWNYTA8yPLn7mTv3dtxr1yuhdmbRHoFGZszjwpHYdrzrO+rT7LY+8N+JIOEWTTTMdiBZJAwikZC0RAF1gLO+uuZ7q6A2rpUK/kozqlRw4kTEGvk+suZn0LZtTctWeLF3Vy3IftqawwxQeps+3tM9BmyrvZJYQXQHvq5ltzkdrCrhJhjLxOiXi/4/WMujzDmFxDdvBHR5yMaDKCYjPQbBfIrNyDv2Jk6QjMkHoseD+Y5c/D96lfY1q5Nal5VvV6U3l4QBDAatdy93buxbdmC1eBignNCyir+F+d+jtz9r6cdEw3s3o3lttu096qqLut+Raur8b/wArZrFJarQ4cOHTo+/IjxPAGBClcFb7e9jaIqTHe6kWv3Y168mGhr65haKbXnznZsW9LHF6TjeeNxMJhFvDKsXk2kuztrm3mn4Oepumf5zpHvpLy/5vm7+belj7Fp5WeQQhEEkwlVEBAMBmybNqU9T3VwMHWxbQxNqoLDkVIGBoC7nJfaXiWspIowsRKwsSCRW40U2ACiapTjTcfZNnfbmI4Xc4BFu7rwZZmqiOfuJuBy+OlYEXPsZcLl8rxp46Yx0TmRmyfdTH1fPXJUptBWSLGjmH11+zjc8Trly+7EtV9ArU1cbHfTd/tNPPnu4zw872FMkolZOVOoPFKNMrIkoboGcfc+CrZsQZXkrE2sUmsn+Tt2aC8Yjdy9dSvyq68SrdmPAvhJLZQT3BV0LpnD/97zGZZ5lsWPF4gEONJwBIto4bM3fVZ3tOn4yEIX2XR8JBF7oJ/oeY+8pVWMS7cauGgRrUo/67b/GYIg0B/sZzA0SK4llw1TN3C68zSQWtOeDiPDN587+1xagS2GQCTAxmkbmZw/mT+c/wP9gX5yLblxB9umaZs41nQMySBhEAwoqpK0/2B4kONd71A2YypO8yQgq44DkLJC6DA7MBqMmCUzPcEecsVc/GE/xY5i/urGv2CqpQTTkjKkxUtASf78rNXoCaHBY0GskWuSlJ/kYEv6vNpa7OHM9zMdfGEfUVN+VpEtYjTExc0JzgmUu8ov6zPeL6I9PQR27Ljs8giLIxccufExUlswiCBEsW7aBLKMGgyimoyE1Ci+gA/TQw9iiCrg9WNbt254pHOITItut7biW1ERJ0nR6mrUwUEmj0u/in9L7nTCNcfSX1dtLSxZov3/Ub4rsT9ykvYf+my9uECHDh06dKRDjOd1+jtZXbmapoEmznaeRRzKqxJLSvA/80z6hskR7ZqgiQ5Rnzfj4s5Inhepr896fmowiPH665EqKgjs3JnMQYeccw1yM6FoKCPP+8G7P0Wy2dkyfcuY7klal9ZoWawmEwan1sBqXrAA+eBBQJuOaFgwjX/Z+QnMojlJaEssARsLYjyvoa8Bk2hKEtnKc8vp9HfiMDkIj+KoGolRXWmRSNKisFhZiWC3X9ZnvF9cKc9zmp3cMOGGeJSJL+wjSpS7p99N12AXbREf0ppFWEILMYTCqCYj7/gu8eu3/p2IEmFP9R5cFhdr5lah1Lyc/tyGuJY4bhzWjRu180xcqK30YF64KGnaIFbWkdY9KAgYHvgEvXIvBzvf5Pnj/4xZMjMgJxeTBSIBanprrmpEiw4df2rQRTYdH0nEHuitvlYOiicpnJvLrbd/EksEBJOJiGTgd7W7+NKBrzK9cDorPSsJK2Fqe2tp7G/kQN0B8qzDrUCJNe1jwWgrfC6zC6fZSVVJFdPHT09bQV3dU02uORdFVfCH/UkELM+Sx6ScSZe1ApTi0lJh6ripNPU3YTQYEQ0iTrOTHXc8TcVrF1EP/iZe9z6y7j5jNfqI0OCxIJaxQV8o+4ZpyFRMZFKDQRSTkdZoH+/0n8dpdmIz2rgQaGJ2BiejwePmfKCRucVzmeCcEG/o+qAQ9XpTiBeMvTwi2tdH4IUX0hJ3cdw4AFr66nFgIrr7ZSK1tcTucOKKo1hSoo2fnDgBQKSpKU6ilGAAkfSr+CZZJSsdNpmALN8VjwfzLbck/ZGTiKs90qFDhw4dOj46iPG8nkAPl3ou8fCNDzPRWADRIa4UicSz12INk4LRiBoOE21qSnVtoWVPGcf4+aM5ogSLJe6st911V5yrCBYLgt2OwWqlVNbiOmxGW1qeZzFaRm2wHO2cRstiVb1eiEaJ1tRgXbWKtiIbJqud5xp2c+rsaxQ5iuj2d8f3GVkCNhbEeF51TzXlueXU99czIA9QnlvOorJFnOk8w5LyJXQFutLu75W9NA00McngwhYWQJa1+zjEMzLCYiFaV6dda2wk+ANcvHu/PO981/nhBU7RRK45lwnOCWyctjE+WlrXV8fbbaf42bGfcbbrLBE1AircOOFGvnnjlyhQbPiznGOM54kuVzxuJfY9jaDg//FPk/6dZC1JqKmhd8FMHjz8vwhHw/xD1VeZmzONaNBP+HoDR3ve5slzTxOIBAgpoase0aJDx58SdJFNx0cSieGoDf0NBGzjOV1/icHwIONs48iz5vFPx79DT7CHVxtepSSnBFVVefbss5hEE5PzkzPYLjeva3rhdDx5nqQRuxhGrgBmqqCeUTiDxeVa4K5BMBBRIqiqSq45l2XuZVnr09MhkZACnGw9yba523j2zLMcrD+IIAh84+a/ouK1Syk5Dyl194nEdfFiBFGMjzIQiWgZYZchtFW4KojI7Vm3GUkelf5+/Nu3J4lMee4Kpi2eyZeOfJMFpQuwSTbmr3+QQJryAev6DRTIdXxi3CfiwuYHCr8/a05KtvKIaF8fge3bU4nbiFHLUnMh/heeybjiaH/wQY1gm0xYFixAjTnbSksB6FX8nK8/TL41n7LcMqbnVA4TMNPoj4/YdybxjxwiERgqOBj8yU/St6VybUY6dOjQoUPHRwMjQ/DPdp1lWeW9RC9ofCXuYAqH46KAbevWJFfOSCimsUpsaCN/Y3T0J+aqjryG2ytuZ9elXbzT/k4Sz5tcMJkie9FlOcYEuz2lZd2/fTuOT31Kc9ON5EFr1uB78klsmzYBGq/6Q9t+3u47x57qPYyzjmO5ZznXFVzH8kkLKRJykMJRBMFC0NevuerHiApXBXdffzd2k501xjXkmHMIK2G6/d1cP/56jjcfZ4V7Rcp+dX11vFT9EveXbyK8c3fSiK5lw4bUVvmE6zPk5SFYrRhnz44Lmx8o3gfPu9R9ie8c+U5KVEcgEkhqYi2wFvBmy5u0+lqxm+yoqkqhrZBfLvs+yq6XIE2DbSJG8jycZuqjbfiCPmZFxqdytFEymXOwcNf1d/FnZWuxvXyEaM3T8ffWuSu4YfG3+dKRb2IymK5JRIsOHX8q0EU2HR9ZJIaj+sI++uV+6nvriapRzrSf4Y5pd/D8ueep6auhY7CDmYUzMYkmCu2F2IzD5OhK8rqKHEU8UvUI3zv+vaQH5OWsABY5inh43sOAlqcWUSJIBolyVzkPz3v4slYRIZWQAvzh3B/YdsM27pl5D13+Lu4r34x6KJWApq27D4cJt7dhnDv3iqzwIyFcBmFVAoFkgc1oxDx/PmJJCZ4wPH37D9nTdpjFExcS2L0HqaRkWOAZasAM7N7NnDvuuCwx8GpiNKdWpveVQACltzczcUsYtUybzxLbrqYGYeVKgq+/njJKbZwxA2HKZPZ3HGN73R6WuZcxLmpGePm1+LbmxYuz/r4iFy9qDjmGRL2hP3LEykqsK1YQaWpCLCnJmFXzQY906NChQ4eODxdG8jyrYojzFSWNgytbfIHgcTMoqYz1ySM6nVg3bMjMf8bILa4vvJ5v3fYtfnLyJ9T21iIZJAQEiuxF/GXVX14W10vXso7frznUly5NyWL1PfkkYlFRUmzDhpLlnPHWMM42Dneem6gS5T7Pnai79qLU1MYd7AaPG9avxZI/fsznN2XcFNreaRvTAjRoDrbt57fzsdLVhF/cTbSpSeMeJSUanzMasa5dmyogejxYli0j8NJLWNeu/dDxPK/s5XDj4ZT7FIgEON91HqtkjU/X1PfV0+ZrQzSI9AZ7iSgRnlr1Q5RdLxGtrSVaUpL5O++uiPO8mJPQk+ehuqeaqBpl6uRPpkaujJLJHJJUbh1/A7aXjxIdMUWi1tYxAfj0zPuoC7R+4BEtOnR8kNBFNh0faSS6xE62nOT5s88TVaNMzpvMjfk3YpbMhKIhQpEQVZOqON91nk5/JyZRs6CPJa+r3dfOmY4z9Ml9uCwupo+fTpGjiLnFc3ls+WPD75ldTC+cflmEaW7xXP5h6T+8r2MkIpGQ9gR6qO6rxml0crbzLCdbT3JPwW2kNd8POdfEB+9DXbYI5BCKScLmyCOw/cqt8Im4HMKaJB4ZjZoAePx4koV9jbsC2yQ7gxcvEr14Mf2HZllFvNYYy6hJOqiDgxAIpH0vvs0QcRuN4CkDA+mLC/buJbxyCU++/DkCkQDz8mdie+lo0u8l28hwYtZN3MEGGFwukCR8TzyBbdMmzIsXp+7/Rxjp0KFDhw4dH04k8rxoRwehmNN+8WKtTXvXrvhzTj52DNvWrcgGQ5L7SfC4CaxYgM3pSvsZQV8/qs+HGhtTtNuxOHIR8/Oxbt58WaH26TBv4jxKckquCtdLbFlXAwHUSATBbEYNhQju25e2rdT/7LPxjNSc0nGsmbKGeRPnYZbM3FG6CvXFvSmxG0pNLeGdu2DzpjE72i53ATrGVQsNTgJNTWm5nv2zn027kDr45JOaC2vp0g8dz6vvq6cv0Jf2vUAkQH+wPz5d4wv7EAWRLn8XEUVzmU2zlSPXajlsmbia4K6gY8lsnnz16wQiAcJKmCMNRzjToY3utg22cc7fwKwRkSvZhGqDxw02O7MZhz9DDpxaW8fS27dys9Oslx7o+EhDF9l0/I9AXV8d3YFu5hTPoTfYi9VopXGgkenjp6MoCoFIgCJbEY+teIz/PvPfSQHv2fK6TrScSFp9NAgGSnNL+fiMj2ORLNhNdm6adNP7epAUOYquWFRLh0RCWtZXxsG6gzz+5uN87PqPYXfkZd4xHAZB4LzSgd1up9w1EUPflVvh02GshDVRPDLPn498/HjKeai1dWlz3DIdJx0yCahXBZfh3EuEGgyOud31SkcuozU12NXhNqgy4ziU2j3JGyWMDFtWrEDt6wOjEUN+PoE9e+IjBvLhw0nOxkhTE/j9+J95BvPChVhWDI2HhEJgMIDViiF37CMoOnTo0KFDh9LfT6SxMf5clffv1wSGjRsRli+HUAjBaiVkFqleNIWJS29BDEWImiQawp2Mt5ooSsPVAj2dRHbuShIaDB434TUrOBtqwma0DUVOvD9ucDW5XuJ4qtLfj+L34//NbzAvWIBl+XJUnybQxLLpxNLSeEaq7fpPMik6ian5Uyl3lSP1DhBKk2sLmtCm+nxwGWOjl7MAHY9pCcoZuR6BQMaMMPhw8jxf2IdFyszfQkooPl3jMDowCFqJlzfkJaJEEIIJGccjcgmJRBDy8nj84m946bVvEYhoi7YD8gCBSICALxAvbjvQ/hoVy+7CCfHvv3zsGLZ7702ebEH7N2Fcv5bi/PEaz8sCl2BlvKs06zY6dHzYoYtsOj7y8Mpe3m57mx+9+SNqemvoDfYSioaYWTiTbXO34ZW9bL5+c9ypVplXmbaIYCTOdpzlWwe+xamOUwAYBAMel4fjTcdpGmjiazd9mYKok7C3gaAjH1OOK607xyt7GRzowRYGQyiMaLXFV0mvJZRAgNKIg825t7Lx3mMYRAlBUTF4PEQbG+Pjl7GVQcXnxegaR5V1+MEYCfZk/YwrCa8Xnc4kYU4JBIh2dSUFBieKR9lCWBklFDebCPV229sZV1svNw8vHa501ESwWIhcuJCZuCWMWgp2O6LHk3ZkVPR40jZ7xt/3DvLAdffw+Hs/RwxlyOAYyrqRPB7tZ1UlfOYM5oULMSxbFl/1TxRK4/c8HEY+cgSi0aTvmWC3E+3pgVAIdeiPIsHh0J1tOnTo0KEjLeIREo2Nya4dvx//008PO6Rzc7ECHqtZ43mCxvOmFs5Oy/O6e5ox7tiHWpvq4hJ2vUz01jJe7DiAKIjcPPFmbphwQ9rjeGUvl3ouUd9XTzAapNBeyIzxM67qAmo6KIGAlrUaCmnP3IMHkY8ejfM7sbgY2113IdhsDD71FGJZGbYRPM8vd2b9DFWWL/u8RgqKXtnLe+3vabzb5KA8V+Pd8ZgWizkz1xulPfXDyPMcRgcCAhMdE2nxtaS8P9ExMf43S7mrnDxrHtPGTaO+r54KVwWCdcQ1J+QSApgffohvHv1nZoyfgSAISAYJozicRxhrfw1FQ/yi5hnmz5vLnNsXEPJ7CUsC+3qPUlxVwoxlixHDEUSLxtNif7eM6uAzmYl6ve/bAapDx58ydJFNx0cedX11/OjNH3G26yygNXuqqLR6W3n+3PP87+X/O2kUNFMRQSK8spdX6l6JC2wABdYCLvZcRDJI/GL596k4ehGlVqtCl4FIpQfbHRuTXDr1ffUYB2Uc+46h1tYSBaJoK0LK+jXURbpo9DYSjoaZ6JjIlIIpV8VePbI0wMDQ2MD8+VpI6qJFyIcPJz2URY8HqcKdFN57pVb4pHNJaAhNbN0CCPf1Ir+wI6VB05oYdpslhHW0Vq1Mq4jtvvYU4gVQ01vD945/j8eWP3ZVyHFa557FAuEwkaamlPsBmnAW6ehIyjtLvCbrhg3x7Q1WK9b169MTvLVr8f34x1nPb0H+HLY7JqKYjKm5HAlQQyH8v/998rW53RhnzsR4/fUp5y9WVhJtaEg7+iFWVmJeuFALp44VMST8gaTjfxaUQADV74dwWBNthxwaOhnXoUNHDBFvf5wnpBTtSBIU5Cc9P8bK86I+H1IGt75aW8vEhbP54Rs/BLQ20M3Xbeb+ufdT4aqIb1fXV8crta/wy3d+SU2fdo5Ok5PF5Yt5eN7DTHBMuCZOqkSeZ//MZ4bfGCG4gFYIIZaV0XPbjdQMXGS2dXb8PcFiwXzbbUhTpmgvhEIgikSqq5GPHkUYReQC7V7GF68TRDTQAv4PNx6mL9CHRbIgIHBAPcCGqRvihV0dipcihLTH/jDyPMVq5oLcSn/ThZT7AZpwdqD+AMs9y9lXsy9JaPPkebhv9n3x7Z1mJ2snr+V0+2mWuZdxsP4gp701TMlyTy74GwAQBAE5IlOWX4aqqPFtLJKFfrkf0H53/+fN71I1qYrDjcnfm4mOiayfup6NEzYmnX+6Ao7EzxdEkcBzz73vLGcdHw38sRYhrjV0kU3HRx61fbVxgQ00m3UM73a8S21fLbOKZl3WMev76unyJ1eNmyUzvpCPv6v6G8qPXkAZ2dBZXZPU/OiVvbR3N3Ddkdq0q6Tqzt303DKRx157DNDy4RaWLeS+2fclEbiYSKUEAkRMIj1CkH4hSGlOaVpBLqU0IHZ+TU1aUHBpKcE9e1Jz1mpqUnLWQmbxishN/FzSNISKlZUIa1fSGe6l4KXXU3JAotXVBHbvjq8OZhud9G/fjuPTn77sVcQzHWfSBvOCRsDOdJy5av/xT3TuZbofiQKTwWrFtnYt/l27knNIrFYMeXmILld8XyUQILAnffFDpLERsbQ0vcttKJvFXFrA6smr8RsiuDI54oa2HYlobS3m+fPjJQwxxIKZw9XVaUc/otXVyKqKecEC5IMH468l/tvR8eFANgF9TPv39xPt7UU+dCgl1Nq6fj2C1ap/H3To0EHYP5jwQ6qIJD1wH8aCcZd1zPq+eopkJes2QmiYT/YGeznRdgLbaRufvemzOM1OvLKXA7UHkgQ2AG/Iy+H6w8gRmapJVfzmvd/E30vnpPLKXhr6GvBH/PhCWgZXvi0/RZyJYSTPyypEeTwI+fm8PMPIjw78FROcE5IEJqPJglpWRvDll1P+O2y7916ijuylYHV9dUmFW6A5tRaXL6bH38O7He9S31/Phe4LRJQIEx0TWe5Zzo4LO3hgzgNsnLaRXdUvsa1kY9rj+7dvx/HAAwR27/5Q8Ly6vjq2n/1d0v3It+azcdrGOLd3mp1smLqBHRd2sKR8CSoqwUgQl9XFktIlVBZUxvf1yl7eaH6D5Z7lvFL3Cv6wn7868ve8sP7XiEPlB/HzcLsxrF3FZ/+wmXG2ccgRmQmOCSz3LOdC94V4s+2APIAc0RyKLd4WJINEi68lXsAWQ4uvhQF5IF7CEEPaAg6GG20D6f7GuIIsZx1/fLxfnpe4CHGp9xIRJYLdaGdJ+RIemPNARnfwhwG6yKbjIw+f7Mv6/mBoMOW1TCG38WOGfUkNpABRJYqKyrqJS1EP7hl5SG2bhObH+r56yqQC1Nr9abdVa2qZuvSW+M+BSIAjDUewiJY4gUsnyjg9boRlVfzq3V+xdsraJEEONLKVIpYklAcYnM7MjZRD4xdRWUYJBJAlBdv6tYR27kp5kBv/f/beM06O8sz6/lfn3D05h56RNJJGEUmMskA5CwwYhAk2tnFg7cf2s953bT/22uu83vXa3nXCAXDCXmCNBRJCJAVQAATKWZNz7J7OoareDzXd6p7u6RkJDBLM4ccHTaeq6uqqc5/rus5Zvxa/Dka6NI4o9l28iHqHTMm6tYjlFVBRiaayEiQpPv4ZPX8eolHF3DcQGHkksqgIwWi8bGNiV8g14mNjefxKkOl4DBeYVHY7pi1bRr2xyT4f4rlziOfOpX6gVovlE59ITeVKMELW1dzOKtMCrLtfR3/99YRkOYVkx3xc0iIaTTsyrLLbEUqKEZ96Ku3LxPp6DCtWENq/P97NlvjbGcfVj7EIxhlfHwgQuXCByMmT6QX/7dvRL10KDsd4h+M4xvE+h6jL1Gud/vHRvLi8ES+5OlvG9w1rkrurgpEg9QP1ScmPvf7eJIEtBlfQxcmekyljicM7qRpdjTx97mmMGmO8qykWylWVVZUkzsS3y+NKuvZmEqIMG9bzw1O/wRV04cxycr7vPCe7T9Lj6yFLMJHbMjDidTgkCJhuuWXE4xNLB00UlHp9vRzzHuNU7ylWOFfgCrpocbdw3+z76A/04w17ESWRSkclLa4WphZM5Y5pd+DyujFUVyFeHHYs/X4Ce/di3LIFgsGrmuelOx4A/YF+tp3dxkdmfSQuKFQ6Krl35r2j2tc0uZoYDA9i0Bh4seFFQmKIc5xjyu/r+OvGPzBt1QoYWss0hrr4zZH/ZGPNRspt5bQMtqAW1JzqOcXp3tNMzp1MVVYVLzS8QI4xB0/YQ4G5gPll8/nL8b8QlsLkmHKS/OKC0eAl77wEqOx2dGvXIPQPJBV4ZVEcMYzsSrycx/Hu4a3yvMQixLn+cwSjQQKRAP2Bfp4+9zT9gX7unHYn80rnpVzjrgWMi2zjeM8j35yPRqWJp+4kQqPSkGdKjh8P9vcQSWNymxhVbtFa0Gv0VDmq4uRJrVIjyzK6kacXgUs+Zd6Il4Jw5k4v1TAvrEA0ECdwU23VaUUZub4BCzCjriblpi0FAkguV/KHxAS2V19VbnBz54JWm+LJJra2Ejp4ULmoPvooAAIQnDIZzfrVaCMihMKg11Ef6uDhN/6Du2fePeJIRlJC6DCI9fUw4EJdUaGMrb70UvwxtdOJfskS5fgMjY6ZNm9OrZgNT6m8jJu2Q+94S49fCTIejzQCU6Kx8YjvmSmFNBLBO9iLvnZqSpeb/4knUJeXozZa0W5/FrG+Hn9jo+LdsmoVsscDgGCx4Hv44bgQlgKNZsSR4WjQn3nbvd6kbja4Mo+/cbzzuBzBeCTIPp8i+I8UrFJfj7BixXiH4zjGMQ4GhBBZzkol8GgYBGclA0KIRLlsLF5cFq2Fc942Zo3wvjgreaFrf9KfNCoNYSmclPzoj6S/14XFMGExnPbxWCeVSWti29lt6FS6pLHBQDTA2d6zGDXGFJ6njLm6k4cr/X68jzyihECsXKncs/V6XAS5c+dH6PR2YtQayTJmsaxyGW92vYkn5OGB6jszX4dHKX7F0kFjaB9sZ3fTbrp93YiSiCRJ1Lvq+cL8L/AfB/6DiwMX48djaflSvrDgC0xlKla9VSksbxqB661apSzqL6Pg8m7wvOHHIxH9gf6UjrCxjDXbZT2fct6BRdbwuQ/fTUgM0RscYEfbS9z89F2U2kpxh9x8tu6zgCLeCQg0DzZT6ahkQvYE3uh4gwnZE1ALalSCio9d9zFeb38dX9jHpJxJ/PXMX+kJ9JBlyKLP30eBpSDe0WbQGC555w1D1OchMrReiEHjdGbcn3Ged23g7eB5sSLEhYELcYFNlEUA3CE3LYMtdPu7efzk4/HmkmsJ4yLbON7zmF4wnfkl8znYdjBJaNOoNMwvmZ80Khr0ulMENkiNKq9wVCAIArdMvYUnTj1BvaueUDSEw+AA/djM9i1aC6KoyvhcSZf6E40RuEyijFzfwKQb5vNc+96km7bsG9a1NySwodVeeq+ErrYkryynU3mukFy5lU+fIRoMsm0q/OLEQ/G/T8iekLa6FX/dKDdSwWgk+OKLaVvKQ4B22rR491ZSZP0VtiwnYmr+VKqyqtKOElRlVTE1f+oVvW8mjHY8xkI8ktq2dTolrTMD+iUvPnuUigOHkNJUouRIBG/s75EIgsVC8KWX0BQWoi4tRQ4EMG3dqnwnBw8miW1qpxPJ60Vdlj5Baiw+LpqqqiSR7UrTUsfxzkL0pumWjT02xo5EORjM6LcIQCg03uE4jnGMA6M1i/4briMbkgQxwVlJ/w3XYbJeSk4fqxdXhaOCfc37qFy+DMeLw9/XSfPCifz42Y/G/2bVWREQ0Kl0ScmPw6ceYpBkCZWgGvFxV8gVF2UKzAUpBviBaAB30I1eo0/ieU2uJgq0OlKY6FAIBEDkvq18+IUHeLX9VdxBt5JOqTVi19tRC2q21GzBE/IooUdjLBynQyIH9Ia97G/ZT7evW3kdMlEpysz8mfzgwA9ocbckjSKe7DnJL1//JVPypsQ7DN9Orvdu8LxMnHgsj8cQt4nx+ykUNYgNLYQOHiQaiaB2Oimvq+OetkKWbPoTXzzwDTq8HWQZszjbezYuYmQbs1lcvhhvyEuXryv+3oXmQl64+AJ9wT4KzYUMBAZYVr6MLEMWh1oPYdFZCEVDaHQaii3F2PS2JF/rRKTleW8hqGIcVw/eDp4XK0JEpSiSLMXPzRgkWcIb9tLkakoRoK8FjIts43jPo8BSwD8u+kf+88B/cqrnFKIsohbUTM2byucXfD5pPED2elMEthgSo8oT/RJunnIzoWiIQDSAM8tJl+Qhe4TKZ2LyY4WjgtOtR5g8YvXVyVFPakt1jMCNJrrEEiETb9pyMIjY2hr35ohFouvnzk3YUSm9V9aQuKWvq0v5LLmhkYWLt/CLNNs5Eka9kapUI1dP0/h9jaWza6wosBTw2brPjljp/nuYcb7VEIl0bduGjRtHHKUVnJXs63mDl7tf44dbvoMlTAppTYlhFwT0c+aMKMD6n3gChkiefulS1FlZI5JfwWIZecx3yOctnloKqGtqQK9PSZod72C6utDoasThCY5gUa0g5BvElJvsjzQ8aUzQ6ZAz+C0CcbI+Xvkexzje38i35HPM18np2XZqF29BE5GIalWc9DVSopeptOTHnztWLy6r3sq6ievYfv4Zaq+fwKRl81BHRDRGE+f8rXxt/9fjXVdWnRVnlpOoFKUqqyop+THXlJs09RCDw+Cg1Fo6YqebQ++I87dY2uNwxDyGk8SsiBdRFHA6nSl+v6Dc+9skF4c7DtPn70Or1iIjI8sy7pCb19tf57aptwEg6jRKGlcGZOImiRyw29tNt7+bqBRFGPpPq9ZSZCviwOsHcDqchMRLSaUatYYWT0uKN9rbxfXeDZ6XiROP5XEYYUQvgYPFuXppKVUHLvLxqXezveUF5pfMZ2ru1JTR04OtB5PeXxAECq2FvN7xOs+cfwaNSkNNbg12vZ2Nkzayt2kvoixSbClmU80mFpYtHLHDSLBYEKqcyAnrqoz+gBMngsEwzvOuclwpzxs+om/SmjBpTciycv0ZjlgRIrE7+FrCuMg2jvcFZhXO4ps3fpPjXccZCA2QZchiev50yh3lSc8bLYo88fGR/BK6vd2EVpdjeE5IEuzU1VVJ44tWvZWCnHK8KwqwvJBcJVVVOfGtWMCPd38ejUrDpJxJ2PQ2JFmiJqeGPHMeciDT5W2IHJF80xYMBkIHD2K69Vak2lrURUWoCwsRsrLQL1midCMJQkZxi/nz0z6miVwyCDZqjElEMx1GSx/KOOoII/p9vV2YVTiL76747qUbgt7B1PzLS/26nIjyjMcjQZxNh5HatoPPPotp61YlhTSRkFVV0bBgAi8e+yWfW/g5LLb0htAp5FkQRhZgVSrM99+PIIqg1Y5qSm+w2BHXr8/oCaeZPFn5W00NxtWrCTz55BV7P4zj74+Y38zW4rWpXRQJiGgEWlwtlDmULkexvz8lnMSwcSMIQkaz7vjY8njlexzjeN9jRsEMHHrHJZ4nZDG97LoUnnc5XlyVjkrumnEXTa4mGiODWAwWKhz55Hhl7p93P0+dfYoeXw8CAlEpysKyhdxWe1tS8uMNzhuQkVPSRReXL2Zx+WJ+f+z3GDVG7p18BwuzZ6KJSAgGA9asfIKRIJ+beC+qcIQPlaznXKCV7c3P83rH60SkCDqVcqVN5HkWrYVj/cfQLppMKXJKZ9/F+VUc6noDUEb9olIUlaBCEAT0aj06tS6eLHku0Mocj33k6/Ao3CSWDlo/UE9/sJ+oFI1PlDgdTnp8PZTbyxEQkGQJg8aAJEvIsoxD70Cj0vxdvNFieKd5Xux4pBsZzTZmZ+TMkGFELyaszZ9PaN++S4XofftYsuxWJpXOSPkdxDBc2DNqjexv2c+Z3jPIyBRZi5BlmZAYQkbm31f/O1EpSnV2NZWOyowjfAaLndDa5ah2vhhfD/m3bcPy4Q8TeGaYl/PEiUoowlvw+BrH3x9j5Xn9ko+OvovxkI50I/ornCvIMeYwIXsCJ3tOJr3errfHixCjNW1crRgX2cbxvkCjq5Ed53dg19sJRoOc6ztHX6CPOeE51ObXxp832gjb8MfT+SXEEqUC627EHF2OKhxBYzSjtlhTRIdsYzYt4RZCq64nW16GOhxFbTAS0Kt4ueMVsvRZlBeUs7dpLx3eDsrt5YiSiFlnZorFiXOkLrgqJ+cCrSk3bcFsVlI/gcjJkwSffjr+WHwcVBylbDnCCFdUq4wmxlJQE4lmOqiMRiUhdNu2tCLLqNuRwe/r7UKBpeCKq5nphINMEeUjpjEN95ZLgxFHhyMR/I8+ivnDH0auq4v7rmGzcbz7RT4z/zMppsuJGC78CZDRm4VQCIzGsUewCwLa2tr0nnClpQg6HZZPfQqMxhSBLfaZ7xdPrssh8n/P98iE2GjTuUArM6qcabuC1U4nms4+rGUF8W0a/juBIYH4Qx9Cv3SpIhIPTxddswbvI4+MusgbxzjG8f5ALMXSE/JQ6aikw9tBvaueSnslMwtmxkWGy/XiGonnFVgKmJQ9SUldFKMUWYqYmDMxhffkGHO4vvh6qrKq6PYpnVwF5gJq82vp8nbhdDj5XO3HKNp3Arnhb8qLtFr0d94J+/Yh1tcjA3pgurOC3MUfwG6ws791P3aDPYXnVTgqONR2iP8+/TBzJ0xn6YL1qCMiolbNy31vcODsH5hTNAd3yI1Za8aoNaJVabHoLGhUGvoCfWhVWgD2dB2kqvpWcnOWpF6Hx8BNrHora6rX8P1Xvo9WpUVAQC2oKbeXs6B0ATvO72Bx+WIkJNQqNd6wF0mSKLOXYdQax/R9vVW8kzzPqreyuWZzSvhBtjGbLTVbRvWcyujdOySsxTHE1XNUVooK0wtskEb4k6HN04ZOraM6qxq1SvFpC0aDnOw+ybziecwqnJVktZMJbfIgrroy5qxaiWpQ6UaKnDmDfv58hFWrIBxW+IjBkCKwwfuL540WujcWjBbo8lYxFp6Hs4K/Nu/EZs9HrVZj1Bj5yaGf0OxuZmreVGx6G2ExTCgawqKzcM/Me/jtm7/lWNcxRFnErrezrHIZq6tWs/38dhaVLRpVgL4aMS6yjeM9D0/Iw47zO8g2ZPOz13/Gye6T8db4ucVz+foNX2dR+SJAaW1WjXDRUFU5EUaJKo8hZtIKsQveSVy9yRe8dLHmiTHea0xrqMmp4eEjD1NmL2Nq3lScDidZxix6/D08fe5pvrrkcxSR6hUSWLmIY627Um7aKqMRw9rVBJ/aPuI4qGHlysw7l2aES11dTbGpkOfW/pmQVkC2mMZmUBmNoiktxXDDDfGutJjIop8/P+M4YSa/r3cbIwkHo0WUX6nfSMaOvkgE2eXC/9hj8T+ZPvEJVmXNxRLVIvb2jvgZw4U/abin3/Dt8PmQI5ERu9iGR32j16PKzSW0Z0+q0Lp0aXy7xO7uzN4PHs972pNrJCJv2LiBgFk3pt/a5S4GrgSxdv49XQepXvFBzJDczZvQpaguK0W69TYlrTidcBuJ4P/jHzF/4hMYN2xQzuNQCEGvRxocVAS2oqJRF3njGMc43vuIdVd4Qh6qs6r5xeFfcKzrGLIsY9AYWFi2kH9c+I8sKFvwtnlxWfVWphdMZ3rB9PjC9vn658fE8xaULYiLOz9Y+k342w7EBB6nnz+f0N69qdfGhiaKgNKaPJaULUGv1afwPKveSom1hB82/5DfHvkt2cZsun3daFVaHAYHWcYs1lSvocJeQaOrEaPWSJ45L97VVqWvwqRTfOLCYpiHLj7Okrx5zF6zApOkgnAYjAbUVtuYrr1RMcr1xdeTbcpmYs5EApFAvPDtCXvo8HSwqGwRroCLgBBAp1U66YxaI5NyJv1dvNHeDlwpz6t0VPKRWR8ZNTU0HUad3kgsgg9x9YhWxbnuE1TY03/GcOEvEA2gU+uoyanBpDNxovsEvf5eQBnfm1cyDwmJKXlT0r6fJ+S5tG86C3mmPI51H+NXB37HmrIblG7NfDOyLow72klZ4QSseuv7nueNFLoXXLucdgYps5WNeo6MJdDlrWI4zzPKEjQ0XXqCs5KGBdV8b9tX+OKiL7Lt7DauK7iOZnczdSV17G3aS8tgy6WnO5x8+4Zv88PVP6TR3chgaBCdRkePt4ft57czp3jOqE0bVyvGRbZxvOfR5GrCrrfHBbZgNBg3V9zXvI9v7/02P1j9A2rza5WKwYZ1aS902g3rMlYUht9YKuwV1A/U8+NDP0654D0w9wHaBtswaU2IkqLa6zX6OCGLJUUJCJfGDnRWXmp4iY9M3crS/MVstMxFllS0LJ6CcWEtuqgSJ3/Ucw6j5zx3zbgr/UUpFM44DiqoVCOLW9XVSN7kuXi104l+3jx8v/1t3I/LtHGjUnYdBXIwqKSHHjwYD1uIbVvo4EFMd95JSBCSO7vG4Pf1rmMk4YDRI8qvxG9k1I6+BGFU7XRCMIjukUcJA2Eyt+MnCn+jGtEDob17FVFk2D6MFPVtXL8e7YwZSgVWkhBychBEETkUQh4cRAyHUxNxh+G97MmVicgHn96Od9Ui+ox9GePNr3QxcLmItfOHxTA7u19m04pl2OpSuxSJRBSPyyHBdUREIsgeD4GiHMySCQKBeNXbcu+9CNbU7uBxjGMc7z/EuismZk/kF4d/wWttr8V5XiAa4I2ON/j+K9/nJ2t/Qrmj/Iq9uC6H53167qd5o/MNcow5mLQmPCFPnOvtOL+Du2fcjVVvxRgG77DCrrq0NMn3NAkNTSxdfBPHI60srVyaludJSPjDfkxaEypUcbN6d8iNWWdGQuIjsz7CrvpdyjiWWhn8KreVs2rCqiR/pMaBRvY17aM2v5ZXml9BrVIzKWeSsnA3zhr1u/FEPHT6OukL9HF98fX85s3fcLH/Ig6jA41aQ6unla8t+xo/OvCj+AI+KkUps5b93bzR3ha8BZ43ltTQdBgr11NXVSGYTJjuuYcuyce289uw6CzxIv5wJAp/7d52ZhbMxBv28krzK/QH+lEJKlSCCo1Kw2BokD8e+yN1JXXMLpqd9D4jicpLK5YiyzIDQRfP9B1iS9kqcjCSHwqjcvkRDdL7mudlCt1TPfMCvdcX83z98yN+fzD2QJe3iuE8z1PRw9oF69BGJMIaeKn7EP+67XZ8ER8WnYXWwVa6/F1MypnE3qa9dHo7mVM0hxxjjjLyrtbxStsrfHLuJ5lWMI1GVyPt3nbyTfmsrFqZtjv4WsG4yDaO9zy8ES+BaCBFYIvhWPcxXm9/nXJ7OVa9FUN2Hty85VLLrl6PYLFkFNjS3VgMGgNalZZmd3PSc1vcLext3suB1gPsurgr/vcZ+TP49LxPc3HgYjxFxRvxEoqGkGSJ/S37+c+F/0rZ/rPIDY8TH5ByVtC2aAordt6BVqXFmeXkk3M/mXJRipHDmlDmi5XU36/4sw0Xt4aEGHQ6NOXlyH4/cjSK2NgYXzjD5S3c44QhEol3r+nnz0fQapEjEcSmJjTl5RiWLgVJAt2QA4BWe1X7M4wlKVQKBN42gWA0fztxKMBA7XRiXLcO78MPJz1ntHb8mPAnBQKjfo7Y0JCUMgqZo74DO3Zg3LJFGTVVqVLEINPdd4++/7pkZ4i/91jkO4pRiHyOsJJfnH08LswnItY5SDR6xYuBy0Hi2IlWpSXkGcD/56dGfH78+8kASa/ljY43WFa57D1dxR7HOMZx5YiJM4FoIElgiyEiRdjfsp9jXccod5RfkRfX5fC8+oF6fnzwx2ydsZXv7fsex7qPxR+Lcb0WVwtTC6am5wujFLQ0EZGwFB7xmr9EO4m9W/7GjraX+OahH2DT23DLbgwaA7mmXM73nseZ7eT22tuJSlGC0SAGjQGb3sbi8sVkG7OZ7ppOi7uFg/JB+oP9/O3M34hIETQqDVEpOuaFe2xRHpEinO07y72z7iUcDeOP+omIEcxaM292vMk9s+4hHA3jCXuw6qzU5te+bd03fw+MhedlmhS4EoyF66mdTvTXX4/vd7+DSARblZMPL7+Fh+ufSCriD0dM+KtwVHCs8xgHWg/gDrnRqDQIQxb3FfYKunxdNLmVtMdEkS3WTTrcb64/0M/epr3cXns7/YF+JqjzCT29Hf84z4sjU+ie3NDIpGXzeLHzlbTfX2xtV++q53jXcfQafVJKLyQHurxVDOd5j118iq8d+A6BaAC9Wo9ZZ8Yf8TMjfwZGjXLeS5KETW+j09vJiqoV7G/Zz/Ou55GRERBYULaA60uuZ1nlsnh38HsB4yLbON7zsGgteEIeZGRUgoq6kjqKbcVEpShalRZf2Ic75E6KBzZY7DDGOfjYjcUddJNjzCEUDeGP+BElkUZXI1Nyp3C8+3j8+dPyp/HIkUcw65J9hI51H+Nnr/2MT8z9RJwwWrQW3EE3NoONW6s3Dglsjckb0NBEKQJfmP1pfnL0QTQqTYqHRaw1P9uYTXXukoz7o8rJQbDZMo4tSoAcieB/6KG07zHWhXsSYYhE4pVb09at+B99NP684XEUlgceyPi+7zZGrTbqdPifeOJtM3PN5OdmXLcO2etFM2UKaDSKwOZPTTMbS+R2/HPSJFvFxgAB5HBYSYeSZQRBIWfGlSuRw2FQqYhevEho/36IRJTt9flAryfw1FOpYlAwiNjZmdEAPzES/p0Yi3wnMWr1NhiiP9CfEm+e2Dlovueet/YZY0Ti2EmjqxFT9cKMz4+NDI/43TqdnPQ28OjZR5mcO/nq7WgYxzjG8a4iJuQMBgcRZRGtSsu84nlxrucwOGgcaGQgOBB/zeV4ccV4nj/s56aKtZRr8xDCYUSthjcHz9Be0M7hjsNJr7EZbPzp2J+SBDa4xPX+fdW/AyPwhVGSlaNaFQ4cSX+T3G78u3ahnzEDo9WKMaTmoxNu5+7Jt3P3Cw/gCXvQq5UF+LySedSVKknxI40tVjgqONp9lEeOPpL82VKUXn8v5/rOjWnhnrgoj0gRzvSeAaDAXMCO8zuYVTgLvUYf/ztAj7+H64quy/i+7zbGwvO8P/3p22rcPyLXq6rCuHZtfNIksfAt1zdgAZbVzee59r0pXGE4rHort9beSr2rHhkZSVZCzaocVSwsXciLjS+iElRK80LXSQLRAKFoCG/ES5YhC4vWglatJRAJ0OXrwh/xc6bnDEe6jrAoezahNHY173ueN0roniqiiO7DuV6i8J9nyqPH34NGpSHXlItBk3x+vl0BIsN53qfnfZqfv/5zjnQewW6w4wl5kppGAMod5ZzqPcXMgpkcaDnA2d6z8UKIUWPkbO9ZHj3x3uN54yLbON7ziN3gNYKGDZM3sL9lP7ubdiMg4DA4qMmtocRaQru3PcUXIVYVlAIBIloVHaKL9qhCFDSChmxTNrIs4wl5yDZm88SpJ+LpUVqVFo1aw2ev/yyne0/HE5VMWhNn+84yo2BGyrYe6z5GIBqIE8YKRwV2o51QNMSKgoXIz29Pu49yQyNrF6zjN6f/SIWjIsnDIuZJl2/K55Gjj2CdpmVZhnFQwZbgszGC4CL7fDCGKt5oUBmN6NevJ7R9e9L2SF7vFSdtXhUwGDIKB4LBgNjRgf+ZZ5TRylDoLceVp/i56XREW1rw/vKXmG69Ff/DD2O67ba0AlsMYxVbjOvWIfX3px0DBKXiKPX3g06npFINpV3Fj0FVlbJNjz+ujA729yM4HOm7rTSaS+PEkEqq1qyJV/3fqbHIdxKjEnmDQjwT481TOgdHC3QZ5TMup2KcOHbiF8A2/Fqj1Sp+i04nst+PABg2bUJsbkadlXWpY1WlQtJp+N3Bb5FlyOJs71kKLAUpvn5vZ5fAOMYxjmsTMZ6nV+vRqrTcNPkm9rfsZ0/THhwGBwaNgRJbCVmGLDwhzxXxvGAkyEcn3o5+1z7khmcBUAF1zkpmrn6A+/o+izd86Tps09t4vf31tNt7rPsY7d52YKjYOOw6GetISndPFJyVnPQ1cp1zQdI++HftwrhsGYGdO1Puk3/e8Es+uucLeCNeriu6jrrSuvgxGElwaXI14Qq40j4WlaKEoqExLdyteitLK5byyJFH4h5wBeYCJmZPZFH5ojg3TsRYkjbfdYzC89DpQKuNTwr41y6jPtgWHzO+0hG4JK4XCCgTJQ0NSC4X/j/9Ke1r5PoGJt0wn+dI5gojodJRyQenfhBBFvBEPKgFNV2+LnZc2IFapcaqs6JT63i1/VV6fb30B/vZcX4HrYOtqFVqymxlzC2ey8yCmbza9iqesIeJ3RO50TydwDjPS8FooXuS9pJcE/v+hncOWnXKPsdE8EJLYVJH22gBIpcTmJDE8yJ+frjmh5zrO4cn5GFL2SqyMYIMQt4NiKEgKr2Jgpo7eEiWeL3jdYqsRQgoacazCmdh1BoxaU0caj1EXWkdJq0pZSz/WhwZHRfZxvGeh1VvZW7xXG6fdjsv1r/I7KLZbKrZhCRLaFVaenw9PHr8Ua4ruo4zvWfiM+/pPKTyqpxEF9dy93OfosxeFk9AmpE/g4fefIiWwRbml8wnx5SDKImExTCNrkYm50zmRM8JQBlnANCqtSnbqhbUBCIBAtEAJ4aMSm+uuZldF3ehi8opz0+EPgpLK5Zy3+z7ki6MTa4mso3ZPHL0Ecrt5Xzz0A8ov/GHVCInm5IPS4pK5z0Su8jJweBbXrgD+Po6EZ99EV1JiZIoGo2CwYCUZcNUXX1FSZvvBkSPRxl3jEaRw2EEvV5JTt25E/H8+fjz1E6nElH+/POYtmwBWU5JzXwrVc9EPzext/dSemxs9GSU6rig0WQcb4iJN/q6OsU/L51QW1WFLElIHg+gpNimkKH6+qS4eTQa5filgdjairq0FP+2bZg2b76URqXXI8uy0h0XGyN4Cx4pVy1MpoxEvltSjnNivPnwBDLZ48m8GDCZRvz4K6kYJ/rNSJuzL/2Otdq492Ki35C6uhr94sX4/vCHuFCrdjrRL1nCfRNvY/PTH8IX9jHHOgl5x3Nv2+9lHOMYx3sDse6KAy0HuHvG3cjISTyvyd3Eq62v8odjf6DX38sNzhsum+fdMykmsCVfR+WGRgzPCXx1wRf5yv5vxkWjkBhK4XlmrZl/nvs51hXfQL7Gful+u3418o5n45wsdPAgpq1bFduOxPuss4KBG+dSohOTeJ7s86GfMSNFYIOhUKvtO/j+qn/h0Ya/ccvUW+JcLlPRwhvxYtfbmVs8lzxTXtw/qdvXzdHOo4iyOKbkzwMtB/i3V/4NtUpNoaWQiBTBprcxKXsSi8oXXXHS5juNtDxvwwYCzz6bludJHk+c44gXLyIErmfnxZ1AcsjZlSDG9cTeXnw//SmAUkTN9JpQhG5vN+6QO76+GOkYe0IePGEPg+FB9jTtYTA0GH8sx5jD9SXXY9AYONJ5hF5/L/tb9lM/UI8kSxg0BloGW5BkiV5/L2X2Mk71nFJ8/4Kj8LwE25hYEVfyeIicPo3sLCcaMmB6D/K8TKF7grOSc4G2+L9jXC/mQxmDTqNjSu6UeFNHKBpCo1M4/2iBLkc6j/CfB/6TUz2nEGURtaBmat5UPr/g8yOObA/3Fcwz5VEgGok8+xzMmZPksQ2QW13F/Tdu5eev/Rx3yI1WpeW22tt4o+MN2jxtCAhc6L/Azos7mVc8j9bB1ni321v9vbxbGBfZxvG+QG1+Lesnrsemt/Hk2Sf525m/IckSKkHFrMJZrKxaiUlroj/Qz7az27i/9l6iaTyk5PoGCmWZj9XexX8d/RUyMnmmPHZe2Em2KZvJuZN5vuF5LvRfQK/WExJDXFd0HffNuo+zfWeJSBGMGiPZxmwEBHRqHWExDCgCm4xMtjGbnRd2Isoi2cZs1lSvYWbhTDSGzN1bNlsu/7jgH+Mx9TF4I17C0TB6jZ6Xm1+myd3E2r/dxj/P/Rxr569DHwWD2YYtuwjV0IhsYguyN+ylx9eDw+BgS80WavNryTUYkPr6rnjhDuAd7EXavgu5oYFQAkEBJSE1ctP6K0rafKch9vcjud1pu7WMa9Yg33ij0vWn1yN7PHgfeQT8foQbbiD4zDOphPhtiitP6kobEtcyVcfVTieRU6cI7ds3onARE2/8nZ1Y7r1XIZeJgsfQPkuDg6iGSM6IZKi+HsOKFcq5Eg7DCKJs6NgxzB/6EIJKRWDXLvTXXZdy845t72gt99eica7aalUE2zRCl3b9Wh49+0hK1X/4fvq3bVO+rzQdDsaNG9NWfUWPB6LRt1wxVtntGDduRA4EQBAIPvdc2nM+JMuYP/xhZJcr3h0ZOnCASTWT+Od5n6fQUog4dL0Y/tq34/cyjnGM49pGpaMSo8aIXW/nSy98iVM9p5BkCQmJafnT+Picj/PEqSeYWzz3inieQ9KlXH8SX1O65DrqSuo41HaIqBSlwFyQxPPMWjPbN/+FqgMXkXfvQAa8DBUZNm6g6YYZWBfPRgiHCaplnmv9Gyqnmg1LPoBBVCHrtDRFesi32pjhSE5Wl4NBBKt1VP/OD834UFycSycwqqqcSGtXEDJqsWlt2Aw2+v39PF//fPw5FfYKVlevxh1wj5r82exq5jv7vpNkmRLDGx1v8NP1P73ipM13EiPyvCFBLR3PM23YgLq09NKbhEK0DraiU+sIRUMZ/dHGinQ8Ly20WjQWK1+Z9mnMkoZISMW5tmPkZpem7RhscjVxrOsYN02+iYgYodXTiiiJqFVqKu2VrJ2wlnZPOxFJKYo1uZtQCSqiUhQZmbAYxhv24o/4mZI7hVxTLrmm3Hjn/XCEDh/GfOedStE0oDQiiJ2dRDs70c+Zg//ZZwlXFfHokYf4VOHmsR+TawQjhe4Jzkpcy+fxcsOTQHKH5/COxIv9F/no7I/ymzd/w+ne03GBKlOgS5e3i4b+Bn5w4Ae83v46uabceCBfg6uBn736M765/JtjGuEsEexI7j4MS5cSfOmlNDyvHpss893FX+cr+/+V+aXzOdR2iBZ3C/nmfERJRK/W0+5p57X219g4cSMDwQF8YR9dvq635ffyTmNcZBvH+wYalYaXGl+iw9OBVW8lKkURJZE3O98kLIb54sIv4gq56A/0I3u9I0ZJ09DIioUb+E74h4SiIVSCinZvOysrV/Lw0Yc5368IRoFogGxjNl3eLvY27WX9xPW0DbbhdDhZP2E9Lza+iEPvQEbGrDWzbuI6Smwl+MN+Sqwl8bTRZy8+y/oJ6xnwezA7nWlJnqrKSdhg4GL/WQ53HE5q9bVoLXjCHvJMeXGi5Iv4+OqBb/NVvo1Ja2JJ+RK+uvSrTLPYk1qQBwIDXJdVy+KqO9BFZWS0nG87TthRgf3YUcxr117Wwj0JPv/IhLWhAXx+VEW5I46sSoEAsscTH41Ep0MwGt/Rhbbo8RBtaBixWyuwcyea4SlhWi36JUsQRHFkQjwGf7TRkNhJGBPXMrXjJ3qqjSRcxMmL36+QyM2bEVasUKq7Q/5aUl8fgkYDJpMirGSA7HLhf+yxOFFVT5yYVBHGZMJy551Em5uJnDypHMthAlvi9hrXrh3zMbmWoM7Oxnjzzch+H1IgCAYd3ZKHR88+gl6jT6n6p+xn4ve1ciVEIhnHPmPda8bVqzNXjH0+JI0m429OcrsVr736ekxbt454XRXr65Hr6vA/9piyz0PnJCoVK20L0aq1yA1/S//at+H3Mo5xjOPaRyga4o/H/0izuxmb3kZYDCMIAg0DDTxx6gmuL7kef9SPN+K9bJ4nhMIZP1sIK8b+GyZuwB10s8q5iv3N++M87yvz/pHqA/VIw3x1xYsXCT29naKNK3mq6TkePvIwYTFMk7uJYDTI/xT8jfkl8+nydfHFhV9Ep9HxUv1LSWNduQYD8lD3+IgIhugRfPGx+3RhRFJ9A8Izz3NophmbPY+/nvorOaYcck259Pp7AUVQye3N5QerfzDq4vt41/G0AhvA8e7jHO86zoaaDSOOrF71PK+hIT3PA0X0SgiwCKgkzvWeQ6VSYdQYCUQDo/qjjYZ0PC9pG7Va9AsXoqmpQR70YEKH2NqKcPAgE8tKCawswGP0pAgX3og37p9305Sb4oEUdr2dfHM+x7qOYdQaKbIUoRbUCAhKB5RKrXjxIlBoKaTJ3cTp3tP0+Hp47ORj1K5/iMo022javJngCy+kFKoNy5fj+9OfEEpLOO1TOrfkt2GK5mrEpdA9H1IogE+IcsbfzMsNTxIWwykdnonTC5AaLKJVayk0F44Y6HKk8wg/OfQTFpYt5MWGF6l0VNIy2EIgEkAlqJBkiUZXI5trNrOscllGcUtyuwkMXU8y8TypvoGVi7bwI1Me5bZyXmt7jTxzHoIgoFapafe080bHGwTFIGpBjU6tIxAJMLd4Lm2etrf8e3mnMS6yjeN9A0/IwxsdbyheaSoNoajS9aISVJzsOYnMpXHM0TpitFHFCDQqRYlIEQpMBahV6rjABoqZo8PgoM/fR6O7ketLrseqt9Ll62LL5C2U2kr504k/oRE0fOy6j/Hnk3+mz9+nhCbIItPzp3P/nPs503uGYDRIRf4EVBuKkXbsQkoal6qCtav45qvfY37ebBZmz0QTlpD6+ugKBqlwVODodsQrTomIRXIbNIZ4VSTWghwWw3yy5kOUvHwa+dlLXnAznE56l+XhX3wd7H4JY12dsnAfElqiOg3nxW4mk9l8VB6hbXws30G6Cqy6qgr90qXgcLxzo2N+P6pRqsf6+fMv/SFhXE5dWJjxrUcTqEZDYqhEorjmf+IJ9AsXYly9GjkYVEIKhnmqQXrhIom8+P34//zn5P169dWk72TUxKhYh90QUTVu2EAgIQnTtHkzgZ070c+fHz+WKUQ2YXuRpLfUXXk1Q221gtV6aYxb8rJuwrq0Vf+0CWRD35e6ujpj11ei38mo6WmhEIFhAR5J40d6PdHmZsSWFuUFoyTmJT4uNjQQAgzLl2PyeYhE33tdiuMYxzjeXhzvOk7DQANRKYpGpYlPCsjInOg5wZqJazBpTIrIdpk8T9KlWnwkQtLp+NmS75MtmCEYRNAY+cu6X/MPe7/E/pb9bCpbgbTrj5d8KUtLk3xNjVENN02+iYnZEznffx5JltCpdUSlKBISH5n1ETwRD99+7tspY13/tuRfyRmDf6c30qUcj2GWAomQGxqZsmA9/3jw29xQcQN/OPYHpuVPQ0AgJIYUfztLCTqVLu3rE9Ef7M/4+EBoYMTH0vI8p1PheVlZVy/PIyHpM9bJ5qzgmfbdqARVfO1xtvdsShLn5WIknic2NCTxstCePUnbZrrlFvxPPIHx+f0E1t2YwiESE2FjgRRqQY1BY+B/Tv4Px7qOUWwrps/fx5ziOUzInkDDQAMRKYJKUFFsLabD26GY8BtzaXQ10h/oZ/O2Ozl392sEt18KP9DPn5++eFpfT1CW0S+/kaZsgb+e+QN2o51uaRDHe5TnJYbuSSEP2a4Iyy3L03Z4JgaKxBD7vrKN2Rm7vrq8Xfzk0E+oH6hnduFsckw5tAy24Aq6knzcun3dvNn5Ju6Qm0Xli+Ljmol2QlXGEkw7dl/6nY7C8wyiCl/ER6evk3ZvO3nGPOwGO6X2Uk50nSAoBuOffazrGHUldexv2c/c4rlj8hO8mjAuso3jfYNQNITD4MAVdKESVEkR7w6Dg0DkkqgxmgllRKMClO44nUqHVq9Fr9aTb86PJyrq1DraPe0YNAasOisX+i/w4BsPAoqnwaZJm/jx2h+jU+l4+OjDaFVabHobDoMDb9jL3qa9eMIevrT4S/giPuViqbci3Xpr0ghlQAf/75Vv8anJd1O070RSt4fgdKLbtIF5hfM413suaR9UggqT1kSOMYc8c178phq7iC3On6cIbMOqrnJDA7nINCydzOmqIIt0IUz+KJJeyzlPA3u6DrLcuXzU70MYoW18tO9gpApszOdLO20a2smT35FKpxwMXpZwkEQmhpGy4RgeV365GJ5CleRpFokgBQIIWq1ilBtJFWAhVbgYKT5+RJLU2JhR9BJbWy89t6EBqb8fw7p1yvZEIghmM/r58xG0WkxbtyKYTKDVjry94fCIo5Vj6q68BmDVW6lwVMQJTpO7KcVbJVPa7Kiehgl+J6NVhAW9PqnrkXA47aIoRuhH8wREo0lZgAoaDUZbNl5vd+ZtuUar1+MYxzjePvQH+wlLYcw6M4FIIInngRJIpdfo8Ua8l83zTvrqmT+CbxJTJlNkKyTw9HZ8w+49v9z4b5wItWDXOuDjH4/bI8huN/7t28HvV8b/Z8zAqrcyv2w+tfm1KSOU/oiff9n9LxxsO5gUFvBKyyt8+eV/5ZfL/n1U/84YzxutKGGWNXjDXoxaI4WWQmRksgxZyjiuwR4/hqMh25C52Jqlz0r79xF53lDxRTttGtopU65Knhfrwg4dVtJm1VVVXJjv5F+33Y5apabYqiTeBqIBREkc6R3HhBSeF/M0W7IEwWQiuGvXiMcwVrQ0R1P5ejoBJ8+Uxwv1LxASQxRZi2gfbCckhjjfpzQXOAwOWj2thMUwOrWOTm8nc4vn0uJuwRPyEJWiuEIufn36D3x06ZZLXfVms3K/nzv3klXEwYNK+nxDA7rVq/jn3Z8mx5SD3Wjn0YZtfG7jfYSe3v6e5XkpEFL/lJjyebmehqe6T1E/oJwXZp0Zi85Co6sRlaAiIipCqVqlBpQiw2BoMD6u2Rfo45XmVxgMDRKMBplUtjn5HBuF5w3KAaocVSwpX0KXtwur3spAYIBefy/ukPvS26g0nO8/z/LK5TS6G5GRU7r3rnZcMyLbd7/7Xf73f/+XM2fOYDQaWbhwId///vepqamJP0eWZb7xjW/w4IMPMjAwQF1dHT/96U+pra19F7d8HFcLbHob1VnVXBy4iC/sQy2oFeNWg4NKR2X8gpJtzEawWEZMt8RZyQtd+7HqrOg1euwGO4IgUJFVgYBAf7AfrUrLqqpVZBmyyDJlMRgaJNeUi1alJSJF6Av0car3FN2Hu7lv9n280PACHd6OeDddrjGXmYUzebPjTZpdzZTbL/msJZrbA7xW/xLz82YrAltrG/olS5IqpFJ9IxOmTmVLzRZebXuVI51HEAQBjUpDjjGHutI6yu3l8Tn/2EVspnUicsMTaY+l3NBIxYqlfOXcN/lF+CGm5k4l35Iff3xMF0KzCWGE8VfB6QRz+mqU7PFkHDkzLFv2jo2OCQbDqNXwxO1QJ4wUjOaPJgtp7qqXCZXdjnHLFsXjQhCU0d5h3X9xASSNcDVcuFAZjZdErETxxulM22EWr6wOM28ePp4ahyxDJILvr3/FcscdBHbsuOztjY1WjjUN81pDzC/RG/ayOG8euUYb4cFmfBY7aotVqYSSJm12jJ6GiYsvWa3OfI6qlWumePEiciBAYFhKMCQT+tHOebGjI20wgraqisp1a5A2byL0zM6U715dVXX1Jw6PY1SM87xxvFVkGxRhoDqrmmZ3M8FoMC60OQwOavNqudB/4Yp43is9h5m35qOonlU82OIFgcpKhWu5B9GUlirFo6FrVKxLe9ratWmLP5Z778X7yCPx58W6jIebigMcaj3EwbaDSLJEnikPvUYf98k62XuSg+6TLMjg3/lM09+4Y9odwOhFiaBaJhAJYNPbQAB30E2JpeSyed70gulMz5+edmR0ev50phdMT/s60ZuB5w11jl1NPE/IylKCB2Ii0RtvYFyxAmlwkHBNFRv+vAhfxAdAub2cUDREeXY5Fv1bFw1Udjuamzah9vqQggEGVRHeHDzGLHUNhlGOIYAqnL5oWVdSx5Nnn8QddGPX25GRGQgOUJVVxattr9Iy2EKZrYxAJMCswlm0e9ppHmzGorNg1pmpzq6mNr+WvU17UQtq1Co1/oifr+7/FhvuXI3ttTexLF6ayvMSC3ORCMKgh9uqN/Ny12uAYndzQexm0vuA543kix0b/0xM+bwcT8PEVGC9Wk+lo5IT3ScQEJKmumpyagiLYYLRIO6QW/Hq6z7G9nPb4+nIt2cvI5F9ZeJ5OCvY0b6HYlsxrzS/QttgG3aDnUZXIxqVhkJLIX3+PoqsRbQOKkX4kBSKFxWu+sThYbhmRLY9e/bwwAMPMG/ePKLRKF/5yldYvXo1p06dwjxErv/t3/6NH/7whzz88MNMmjSJb33rW6xatYqzZ89ifY/88P4eSJcu5FNF3xPxuYmYXjCdHGMOITGETqVDEAQiUgRPSKnuGTSGeAXAYLEjpekEEaqcdCyu5dfPfYpJOZMos5dRZC1iXvE8OjwdrJuwjm5/NzPzZ/JKyyvsbtqNWWvGF/ExM38mN0+5mb+e/isRKYIoieSb88kWzLy06Qm0UZmwRuCp1uf5+sHvcb7vPFVZVbjCLiJi+psgKBfLhdkzkVt3pE/uczrROJ1MzJnI15Z+jT+f/DNtnjbMWjN55jzK7eVJVY9YBUsbkTIeTzHg56OzP8rh9sMYNAZk5HhYw1guhBZbLr4Nq1PMzAWnE/WG1ZhtuWlfN+pYmCS9c6NjJhNSJuGgupqARYfxEx+HYAhBUMUfG80fTVCpUt7vchHzSdCUlBBtbU2f8inLaccw1dXVKcKF5HYTeOYZNMXF6K+/XhFyjUaEIbElBZEI/ieewPzRjyJIEnIkghwMph1PBYXMRhsasNx5p+LjdTnbW1MDej1ib2/8WqbKz39PmeHH/BL7/H18pPo2sncfRm7YD0AUkKqcsGGd4u1BqiAfg+jxjEhOExdf0TNnMK5bR2BYQIfa6cS4bh2RM2fif5PD4VEXRf7HH894zosdHSOOjYR37ERbW4tp61b8jz4aP3cEpxNh/er31Pf8fsU4z/v7IV1aOPCe5Hm1ebWc7DlJgaUAp8MZFzfK7EpYgN1gv2Ke91T7bq5bNo3spfPINmYRefa5FL41vBCkKSxUChAj+HmZNm/G/+c/j+ot2e3rRpIlSqwlNLmbkhIfbXobbd42/EUzYcMqjBFZSXI06OmWPDzT9DdWV6+Of78jdaUD4KzgiaZnONh6kGUVy/jY7I/xSssr5JnzsOls9Ph7sBvsY+J55Y5yvrzkyynhB9Pzp/PlpV9OCeqKIRrwZX7jaPSq4nny4GDcgy02Iur9zW8gEiHw4Q+Sa8rF51b2SZREiixFrKhagUnz1kcbY4JMWAyz49wO6l31WHVWnlv5+8wvHOq+0xiTeV7s/dxBNxW2CmSbIrrkm/PjYlqPvwebzsZAcIBCSyGNrkbunXkvGyZuQJREtGotuxt387+n/lcRfXRW/BE//YF+gtEgD198nC8tfYDAU+mDlZLS54GF2TM52PMmakFNVVYVgUiA10InletW4bV/3UpEjOd1eDro8HZwrPMYnrAHAYE3O95kVfUqNtVsiqd+phPkQRkJPdV9Ksm7MSbOJaYCv9b2GrfX3s6F/gvxrkRQBLbNNZs50X2Ccns57pCb3kAvT599Oi6wAUS1yWuVkdY2grOSlkWTeenVJznZc5J2Tzufmvcpzved53Tv6bivX21eLXOL5vL7Y8r5q1fpMWgNzCiYcc19z9eMyLZz586kfz/00EPk5+dz+PBhli5diizL/OhHP+IrX/kKH/jABwB45JFHKCgo4E9/+hOf+MQn3o3NvuoxUrqQf+UidjfvptPbSY+/B4vOwuaazUiyhFpQk23KvuYIWbmjnC8t+VLSzV6n0jE1byqfqfsMReYiyhxl8X1K7ASRggEiGhUdkpvuSB/fWvEtvCEvAgJ5pjweP/U4RzuPsqRiCYIg8OTZJwmJITwhDwXmAnJMObzS+goVngquL7meV1pewaKz8JXZ/wfHi68hJVyIPu6sYPkt21n6xAYsOgt5pjzC0siGuw69A01EGnlkr6GBwPbtnFtUxfMtLzIldwqTcycDMKNgBhOyJ9Dr6+Vg68E40d5csxmVZ2RhD8CvFvnbib/hDXuJilE21WwiEA2wadKmMZ0XnpCHVnEAx7qlmCPLEEJhZYTUbBpRYIMxjFHqdG951HKsUFut4HSiys5OFQ6GEsN+ff7PdPkUH5QHqu8kvmVDAlRiXLngcBA9c4bQm29i2rLlLW1b4riFvq5uZC+zhgb0ixdD4kKhqgrjxo1JwkXi+4nnkkePTffcM/KGRCLIbje+Rx9Fv2RJWrEPlMVJ9MIF1BUVSAMDmf1Phm/vxIkYV68m8OSTyRXREVJSr0Wc6znH8e7jRMQIWyrXkrP7jRQDbam+gcj2ZxhcdyP1wba0C2exvz+l40xdVYVxwwbU2dmK4Da0mAjt24e6sBD90qWXfBf1euRwGMnlSjqnRq3063SYP/IRZK8Xw6pViuegLCMYDIidnfifeALTrbcmecckIibUBV/eh/yROwl53YTV0CEPMsVy7XqwjOMSxnne3weJi2aHwUEoGsKisxASQwSjQTwhD0ExiFbQsqp6FYFoAIPGQIGl4JrkecNFnTjPu/7KeJ5aUDM7awqGsESZYQpSVE1QJxLa+WyKnUY6gUCdzhQ/4fnCypXxf2cSjix6CznGnBSBDWAwNEiHp4NtZ7dRP1BPnikv3pEyo2AGm2s2p/A886ZN+J/ahngxoTjirOBCnZNvPPEZJmRP4M3ON2n3tuMNe9nduJuJ2RPZWLORRWWLxszz7Do7X13yVdq97fgiPhx6B9MLpo8osAGj+t+h0bxjFgGj8Tzjxo3KlMDZsymvFZyVPNuxj4k5E1lYtpCIFGFmwUz8YT+BaCDjMRgLEgUZjaCh3qV8l56wh4BaImPpSaNBXV2F2nLpe0wMPgPo9HXGHzNoleMdjCrnaFAMolPraB1s5UjXEfLMeTx64lFm5s/EZrDhCrrQaXS4Q248IY/SpRToI9uYzVbnZuQB16g+d2qnE8FsxugP0uhuZF7JPBpcDUn+19nGbDbXbI77hV3LSOR5pbZSVIKKXRd24Y/60amV5hB/xM+Dhx/k49d9nJAYSsvzjnQe4cHDD9Lkaor7U1Y4Krh/zv3MKpzF1PypVGVVUT9Qz4meE0zOncz6CethgtIpaNaa8UQ8nOo5hUlrQhiaV3UFXEkCG8D+/qOsd1ZeuhYmrm2WLAG1iqBW4Jm23fz7C59hVfUqjnUfY3rBdLad2cammk1MzJ5It3/IEkSG/zn1P0o3pKUaSZBYULqAGQUz3omv4G3FNSOyDYfbrcztZmcr8/4NDQ10dnayevXq+HP0ej3Lli1j//79I5KvUChEKGFxMDg4mPZ570VkShcyPCeRN9VKm9zGgZYDLKlYwlde/AoqQUWeKY8yexlVWVWsqV5DVIziiXiuiUrogrIF/HT9TznedZyB0ABZ+qyMN/tYJ4ga0ALVlODpPMJDRx6i2d3MlpotfO+V73Gh/wLF1mJ+dfhXfHLuJznXdw61oGZi9kQAnqt/DkmWaHA1sKBsATnGHO6puR37MIENgIYmqoFvzP8yr/Udw6gxZmzLn5o/FamvNzORq6+nevkiVIIq6ab5UuNLNLoaaXQ1Up1djSRJRP1eqvXFGGQ93HOPQhqH/BFiEJxO/rdpJ22DbSwsW0izu5kmVxMPXP/AmKKeG12NSTP9Bo0Bm97GoqxFVGYQ2ADQ6TKb26tU7+jomDo7G7RajOvXK9XVcFjpCLVaURmNrJu4Lk5azgVamVlVdek3F4lcIuJOJ5rSUqLt7aP7Zo0BScbGo/mJyDKmrVuV5xkMqLKzUTscI7/fMIgNDSNWxRO910bs3quqQn/99fiffx7L1KlI/ZnNgAW1GssnPoHk98eJttTbq3RDlZRc8vMYISX1WsNLDS/x9d1fp8HVQIeng5N3vJx63RiCVN+AJriInRcUwSKRgIoeT/qRzvp6Atu3Y7zpJtRWa5Kvnf+xx9DPn6+kkw155SV6poCy0JAMGYRtrRZ0OmX0Q6tFEAQwGhVRtagIVU7OpRH3TIhGkeobCIbncc/BL7K0Yil3z7j7qr7njOPKMc7z3jpii2Z30E22MZu/nPwLff4+ev29BKNBZhbMZOOkjew6tYt5JfP42u6vEYoq4zl1pXVMzZv6vuZ5HZ4OfrHs33HsOoDc0EjMxc109934hwlsMaQY4Y92XUs4NzMJR06Hk5qcmrjAoFVpmVs8l0JLIVa9FbVKjUFtGJXnRcUoJ7tPYtaaqV0xj+zlSwj4XLjlIE+1vsA3nvgMRdYiFpUt4onTSiLrwrKFWHVWjBoj7YPtZBsze63ByDyvtqB2VHHJp5ExJXKlBKidTiSvB3VZ2ajb8HZhNJ5nWrcOfzSa3BHprKRjyTS2v/59zvae5fXw65TZyrDqrJRYS8ZckM6EWFCZO+iOi2AxPNf5Mnckih+J++N0Inm9mDZtTuJGsfdLh1AkhFalxaBRPkeURNQaJU20Oqs6LvSpVCoOtR7ig7UfpN3TjjvkJipF6Q/0MzVvKndPvxunrgDJO3rog76ujuCePdhWLeeuGXfR4m4hx5iDgECPvwdRFukP9Mf9wq7m69JoGM7z9Go9k3Im8cVFX+QHr/wAf9TPQHAAtaBmX9M+qhxVcV/ERJ7X5e3iwcMPsq9pH57wpcThZnczAP+y7F8osBTw2brPxsMPnjz7JOsmrON493Ga3c1oVVoEBOwGO8udy2n3KL95YcjGJipFCUVDiLLIj978ObU3/iflyNDQpHxYJEKkrZXgtIkcdJ/kZOtJanJqsOgstAy20OdXxNa+QB97m/dyY8WNnOg6Qaevk2JLMZ6wh+tLrueGyhuw6Cxsnbb1mvxur0mRTZZlvvCFL7B48WKmTVNaJDs7lRtKQUHyAr+goICmpqYR3+u73/0u3/jGN/5+G3sVI9OimYYm5ixYzzcOfZ8NEzew6+IumtxNTMufxrm+c8jISJLE0c6j3DzlZvr9/XjCHrKN2VxXeB01eTXp3/cqQLmj/IqrR4mJLFPzptLsbuZo11EA2j3tFFuLaR5s5mzfWbKN2cwunE2nt5NsQza9ASX+XKPSMClnEvOzZyA3bE/9EK0WfWk5D0xZRSTkJ6JVYTKPLDwVWAroCgaTiFo6+LwuKh2VNLoaiUgRQtEQhzoPkWfKoyanhj8e/yP/OvefqNh7FqnhWfxDr0vxR3BWUj/fyb/+9fPUldZh0BriYwM9vp5RRTZPyMP+lv1JM/0AxZZiBEEgx5iT8WIqGI3oly5NP3K2ZIkyJvgOCyqx5Md0SPRM8Ef9qNavhmeeS/Y0q6rCuGYNCAK6BQvi2y8FAkrHTziskDqjEcFiGdP+JVXERzOcF0X8jz4ar8oOF9hS3m8YQgcPYrn/fqWaO2y/9IsXK+N9MKzCtRjUGlQ6neI/J4qYP/hBZVxmlO0VDAa8jz6Kad06gi+/nHIeJJ6vo43gXO0413OOr+/+OofaDlFiLUGURXSjrNmE8KXO1/5AP0+fe5p11euoiJoz+hni94PVmtbXTjLqiRi0SDueTdst2B/1YEi3KNJqMd15J8EXXkj15VuyBKJRxLY2DGvWIMgyGTF0XphlLd9b8T0m5ky8JonXOEbHOM97exBbNOcYc3js5GOc6D5BVVYV7pA7vlD90/E/scK5gucbno/zvJ7BHg61HkIjaN7XPO+T0z5C9kuHU7qGGW1UMVFYG+3eMxTAkM6iIRGVjkpunnoz5/rO0eBqYHPNZvY07eH19tepya3h14d/zdqJa7llyi0j8rxHjj5Cub2cl5tfjntqbZ2+FVEUafW04o14uXXqrXT7unni9BOExBBatTaJ53kjXppcTWlH1GJ4qzzPaHXgX7kQ0/OkSRddoqTIX0U8b7gHalSn5k33Gf7t0LdwBV1U2CsotBSyqnoVZbYyphdMj++/J+Sh0dVIu7ediBih2FI85ntbTGQJS2FsalvSYz868gtu3PAHCiBJaIt1rgtGY8oxHB5mEYqGcAfdhKUwff4+PjDlAxxqO8SxrmMMhgaJiBHyzfksqljErw7/CrvBTjASREZmx/kdfK7uc1RlV+ENe9GqtKhUKtYXLUUOBEfleSqbDe9vf6sEdS1byCNHHqHD24FNb6PYUsyKqhW0e9rjQtto5+TVjHQ8T0bmza434Shsnb6V37z5G0RJRJRFPGEP/qg//vpEnne0+yhFliLunXkvvf5etp3dhj/qxxP2sK9pHye7lVH6WYWz+O6K78ZHSrP0Wdw8+WZaBls41nUMAAGBdk97fMS+z9+niPjeTqJSFFEScYfcfOzFz/HDZd9lwg11hP1eAiqJ7W0v8T/bPsgK5woWlC7gTN8ZvrDwC/jCPgZDg6gFNRqVBoPGwBudbzCvZB5mrZlJuZMA5VpRZitjQs6Ea5bnXZMi2z/8wz9w7NgxXn755ZTHhGFm4bGkx5HwpS99iS984Qvxfw8ODlL2DlZH3k2M5megiUic6T3DPTPu4VzfObRqLaKk/LgDkQDNg82YNCZcARc9/h78YT+haIidvp34wj6uK7nuHdqTdw6JiSw2vY0ub1f8MV/ER0SKoBbUBKNBIqLiuza7aDZF1iKOdR4jEA1Qai3lXN85rHKazo9Y5PahQ4ixDicgWl2NlGHsrSC3gqjYlfaxGMIa+PkrP+f+OfdTP1CPO+iOj4X85s3fcLNzHRX7z6UffxAEuHcrPf5enut8mf989ttK9VRnpcSi+IOIsjimtKlGV2PKTD9At7+b413H4z4P2cZspuenVp9VRiNkZaGdNi0+ZolGg+T1osrKSisQvduw6q3kmfM41X2K5z2HmL2yjsLVqxCCIWW0VadLITyS2404MEBo796U8YSxjEAmVsQzGs5XVyE4HFgeeOCSH2PXCfwRf3wUYCA4wJa8pSN/WCSCK+RGs3EVltAqpKEOFLG9HSIR1KWllz47EiHa3o52+nQCzz2HeP5S27+6uhrjypVE6+tH3t6qKiSXC/2MGcrvpLU1NezD40G/aBGh3buBMfj4XcU40XOCQ22HAJBkCYPGQHiUO7ecMC6tFtREpShf3/N1fjvnW5lflyDUD19QxLo8hqcbx8IULF5QL1lMSJaTvjfDmjWE9u0bOSWuthZCIXy/+IXyPWboXoh1RJosDq7LnZD5IIzjmsY4z3t7ELsnh6IhzvWfQ5IlJFlCQFAWSbLIse5j3DHtDs70nomb6QP0Bfro8CodFe9XnrcweyZSQmJ7HGNJSka5X6kcjswBMh4PQpUT34r59IW6qTCm9zqz6q0UmYu40XkjH3F8hOfrn8fpcKISVPQH+pmSNwVPyMPPXx+Z55l1Zl5ufpkmtyJK9/h7aHG3YNFbeOzkY1j1VkVYU2mx6q2U6ktTeB6kijHD8VZ5nlVvpd/YT9viiUxasUzxCNbpiKoF/Do1dkf6VNJ3EyqjETEaRRBFNIEg82xT+f2qX3Bg4BiSIFFsKabSUZkkGDS6Gtnfsj/pWBk1RhaVL+KuGXeNOgIZm3LRqXQMhgYps5XRMtgCgD/i558PfZvbpm5m+Q13kKUyoTIYE3y3L+LvS+Z5Vp2Vcls5h9sPE5JCnOs7hzesjEzrNXrmlszl1im3MrdoLrvqd6FVaTnUeghv0Mv0/OnIyJzvO49RY6TUVkptQS3f2vst2gbbiEgRiixF3HXLWtBJiKPxPLc73i3v97mYmD2RybmTkZHRq/U0uhops5XFj9tY1h9XK9LxvNiI5ptdb3L7tNsBqLBX0OfvA8CkMcX3OZHnvdr2KhcHlGL3rMJZ3D/3fh58/cG40Nbj74l/boGlIKUxotxRzoyCGWnDFAwaA5NzJ9Ph6WAwNIiAQJWjimJbMb84+VD82hI7X3RqHa6gC1fQxdqJa3m9/XUKzYVMyZuCO+CmL6DsS1SKcrbvLMWWYiblTKLT18nissXXrGgawzUnsn3mM59h27Zt7N27l9Ihc0mAwsJCQKl0FhUVxf/e3d2dUvVMhF6vRz9KjPd7FaP5GcQWcsGoUpWIxfoChMQQVp0VZ5aTx08/ztPnno6/bnbhbOwGOyX2kjGNDl5LSExkCYthtKpk3whREunx91Bhr8Ab9qLX6Mk2ZnNz5Xqq5hSiDkdRG00sL1qIpE/1nBjRV20MY28qmy2jke2Ott3Iskw4qnS5xHzedGodp3tP89/zv4n8fJrOOpRKYu+CKax9Ziv+iB+73o4zy4mAgDfspdRWSutg65jSptq97SnES6PSMLtwNk+de4o3Ot7gePdxZFlmVuEs/t/S/8ei8kXJ+2q3o50yJWmxry4ru2pHAo90HuGXr/+SZYXzWZg9E7XbQ68hgtpsIddsV/xg+vqQ9XpQq5FFEbG5mcjJk1d0LkCysfFIY5qqKif6jRvRDBHWmHePJ+ShOquan732M870ncGut+Oe+UnuGWH0QKhycmzwHMdbz/Opqq2KqFdaijo/HwQBfV0dDAmiquxspGAwWWCLpbSVliKr1UQ7OxUfOVK7FY3r1+P97W8xbdlyab/ShH0Y164l9MorSvflO+Td8vdAbHRDQCAshrHpbTzbsZd7nBWXWvMTIDidNEcukSiLzsKjxx9FJahG9Soci5fhSGEK2mAE758eTfIYjPnmBEcJRBCKihQhtr0d44YNStrYsPTaWBrtaN0e47j2Mc7z3j7E7sn+iB95qFNUI2iISlFlIkFWAo4C0UAKz4tKUQSE9zXP04wQAJWxcFVVhWAyYdqq3AsDL72UNIIff57TiXHjRlyBAc7UlbLnwv9g0Vkyjr1NL5jOub5zhMQQJbYSsiJZnO87z/Gu4wiCQJGliCJr0Yg8b92EdTxf/3z8/WRZ5vn65/nS4i8xNW8qnb5OdGod/og/zvGH8zxRFkflem8Hz4uFcDW4mvBKXiwqZVTZfpV2tYj9/QR27kRTWKgU/Xw+9EYjy3Pm4jdpaHI1cbr3NJWGIrIkPQRDODQCa/MXc0vusrjnaX2og399/T94/OTjfGLuJzJ28cSOUSga4kT3CZZWLGVv015aBluw6qyEoiF2te3husoF5OcqhYVMPC8YDeJ0OPnYdR/joSMPEYgE0Kq0aNVaCswF9Pv72XFhB0vKllBkKcJusBOIBPCEPNxQcQOD4UFq82qx6WxK6m3XSRpdjdj0Ngr1hbgCLggGkUOhMfG8GFQGIyd6TnCu71z8+lRmK+Mfrv8HunxdYzonr2YkjujGeF4wGkQjaojKUQLRABX2ChaWL1S6kR1V6DX6uMiWxPMSCk5HOo8AsLlmM38++WdASRMdDSOFKfT6epmYPZGGgQb0Gj0F5gLqB+qpcFRwsf8ibZ42ZGSichSikGPM4f7ae7nduQmLrKWuehLnA23MKZ7DnsY9NLgaCEQDAEndiWMN0Lvacc2IbLIs85nPfIa//vWv7N69G6fTmfS40+mksLCQ5557jtmzZwMQDofZs2cP3//+99+NTb5qEUscKdHlUjxC14BQ5eR8sI27pt9Fub0crUqLSWvCH1HaU9WCmprcGv73zP+iEZJPozc73+Rnr/2Mmuya9xz5Skxk0al19AX6cGY5aRhQbhBqlZqjnUdZXb2atsE2SmwlfLjqFqwvHEJquCQCzHZWEl45ASZOgPMX4n9P8VUzmTBt3oxgtUIohDw4iBiNpo2pbgl1Y1gxH6MkpaR1di+bwekTv6Y2vxazzqyklvpdFFuKL+1PNPOolh0jk3Mn4w66GQgM0D7YzoKyBTx26jHWVq9lQvaEMV0UI9HUQIXqrGqeufAM5/vOk2/Oj59nB1oP8LWXvsZ/r/tvpuRPSXrNSIv9qw1d3i5++fov+VztxyjadwI5oSqurqpCXrUKyeNRAgKGurDUxcWorNaRTWHHMAKpMhoxJSSnJY5pSioVPrUIFgvaIYEt0fB2YvZEfvbazzjWfQxZlukRe/jR0Z+zZN0jOBGSzi+clXQsruVAy7P4I36iAS/hEbwBAcwf+QiCSpUksCUJZSYTlnvvJfD882hKSy8JNgYDqqwsAnv3KmON0agiSh8+nPw8jUZZ2LzwAvr584m2t1/Toky2MRuL1sKX5/1fNpWtQBuREXVqQpOy0L+kgfOJHjBOQquXsPP8X+J/C0aDnO07y7T8aUTUZPYz1I5iNp0BUsCf5DEYg+m22zK/MBpFdrnwP/YYaqcT7axZytiNx4PkcgHE02jV5eVvi1/hOK5OjPO8tw8xnheWwvjCPnKMORg0BrRqxRNx46SNSoq4Sou/1E+FvQKdSodZZ47ff2VZZkrelPc1zxuenBdDvMAjCKnjjNdfj+93v0vysQ1Eoxg2bEAYStgWDAZk4IjrLC92vMxW52b+0fZhCIZQuXyIJtLyvL5AH62eVl5pfoU9TXsIRAM4HU7unH4n/qgijAmCMCLPi0jDEr0FgZAY4sX6F/nUvE9xsPUg9QP1DIYG6Q/0p/C8AnMBQTE4Ktd7u3jeSIv9qw2ix0Ng5070c+akLfqZNm5kMnkghhAiWmRZRA6HsZocBF54ATk3VxHm/EEmGHN45Mb/4ptHfjzqCKRVb2VzzWa2nd1GIBrgWJdiKL+meg2FlkI0ag1LypZQnVMNjM7zzFozLYMt/O7o75hXMo+fHPoJAgKTciaxpHwJ3pCXkBiizdOGO+Smw9NBbX4tvzv6OyVoRFbWQYvLF3PfrPv4xeFfcF3hdUzJm4Jdb8eut4PBgP+xx0bmeQ4H3kcfVXgeynp0T89rTM2dypyiOXF/v15/L89dfI65xXMJS+FrWpSJeRyqBBVhMUwgGkCn1lFmKyMQDVBmK2NizkRebX2VMnsZy53Lk4S5RJ6nETQYNca4eHWk8wgfrP0gAFWOqrd0nNo8bfz6jV9Tbi9nduFspuVP43DHYQRBiIex6FV61Co1Jq2JbRv/hPPABeS9jyMDOmB6lRPDpk1MnjuZBWULRhxNvVZHRBNxzYhsDzzwAH/605/429/+htVqjXtz2O12jEYjgiDwuc99ju985ztMnDiRiRMn8p3vfAeTycSdd975Lm/91YMjnUf4yaGf0DDQQJ45j68v/EdKkZHrk2N26+uquPt/NyMIAp6wh0/P+zR7m/bS7G4m25iNTq1Dq9bS4elQLpppPqfF08ICFryTu/d3R2IiS4yELKtYBiikViWoCEpB2j3t/MsN/0KJNhfTM7tTF7UNjeifh+CqxeijUYh1ByX6eMTEhp0701Y/1dmXjGc9IQ9/O6skfU6bMZGa+WvQRWWiWjWn/U08e+JXPHbqMaJilH5/P4Ig8MGpH0RQCegEHVqVlrBm5HEbALPFwfyS+fT4e4hKUbp8Xey6uIuIFOHZi8/ynRXfGdNFsdhanHQDADBqjZzvO49WrY1X22M43HGYYz3HyDZl0+PrUdqXrwHz5RhOdZ9iWeH8IYGtMekxsb6ewK5daBLEVbXTiaasDFkUM77vWEYghyenRTUqulUh3Pgps5clHb9Ew9tANMCxbuXGJ8kSETFCWAxz13Of5FPTPsLtyz9E0OcmrIFnO17mJzvuJseYw8aJG0dNBRP0+vg4KaTp3vT78T7yiCIu22wQCiHYbEjBIN5HHkE/Ywb6rVsRLBbUWi3qkpK0pFZfVwd6Pbo5c65pUWZq3lRe+eCzyvmz75lLDzgriK5ehvbGJUiBABqjmeZoL9vO/4WgGEQtqMkz5RGMBpmcOxmT1sTTLS9w00h+hkuXIpjeQkqnNqELLqEzUbCMUl1OGLsSGxoIPP00pltuQZ2fj2C1Ivt8CCYT2hkz4qOp43hvYpznvT1I5HlZxiwq7BU0DzZTYivhRNcJNk3axNGuo+xp2kNEjGDUGvGEPTxw/QNxnqdVa8kx5qBX69/XPC8lOS+GSITA4cOoNqzGEhWQXC4Ei4XomTNxP9BEiKdPw+LFeH/1K0ARDjzL69jXdYjP1txLZMdOAmPgedvObiMqRbHpbagEFSaNiX5/P96wF5vBxpNnnkStUuMOupFlmdum3pbE8xKnL1SCCo1Kuf4KKoEL/Re4bcpt7G7aTX+wH5WgosXdEud5T59/ms8v+DxziuaMyr3ebzwPvx9NYWH6SZSGBgLbt6MpKUniefq6OgLPPotx5UoCzz+fwmG+vP4fOB4a2WsyhkTf3/5AP6IkYtFbMGlMlDvKL4vn2fQ21IKaC/0X+NCMD3H/dfcD0DLYwuOnHqfQUsjGiRvRapTzyKQzcbL7JOsnrufmyTcTiASw6CzU5teyt3Evr7e/zoaJG+Ldk76Ij7uqbsJaUHCJ5w01EcR53m9+ExfYVFVV+FYu4PyF/+Fg60HO9J0hIkaQkanJqeH2abdj0plYV7Hu2jhPRsC0vGnML53Py80vE4qGyDXlMhgaxB10s7RiKRadhQWlC7h/zv10ejrjo9vpeJ4kSRRaCun0dsZ/f4FIgCpHFXfPupsJ2VduteGP+GnztNHmaUOv1itBLEOiuVFrxKgx4ov4CEVDfGPBlxSBbdi1U6pvIPT0dsy33MKi8kUjjqa+F3DNiGw///nPAbjhhhuS/v7QQw/x4Q9/GIB/+qd/IhAI8OlPf5qBgQHq6urYtWsX1hGMKt9vSDRztWgtnO45za07P8z/nfUAm5dtRRWJMEiQvzbt4ifb/4Uyexnl9nJa3C0YNAZq82oZCAwwKWcSxdZiVIKKMlsZF/ovcEPFDSwsW4hOrUOSJbKMWagFdVJc+HvhR5OYyHKu7xwLyxayv2U/84rmMTVvKhEpQo4xhxsrb2RK/hTE3l68I4xKyQ2N+PzTeLLazQdX3INF1iIkdJKYNm9OEdjg0kLUePPN8Upn4o3zfy7+jefqnwPAYXDQ7etm3cR19Pn7qCuto3mwmXN952hyNXHLlFvo8HXwoekfYk/3a9zqdCZ3KQ1BXV1NpzzI8w3KjTKWLGPVW1ELasJSGHfYnfK6dJiYM5FF5Yt4pfmV+A0gFA2h1+gpthbT7etOer5KUBGMBPnpqz+l199LWAqjU+uoclRxa+2tV31styvkYmH2zKQOtkQMTyITGxoIPPsshhUrMr7vWEb7IDU5rWTo/+FI9LPwhC4lEskoZNiut/MPMz7Gjfl1CKEwPlWU59te4YmG7QSjQVoGWxBUgpIKNlLSaFUV0dZWVIleX0PeSMM70WILFdPWrfj+9CcMa9diufPOeKoXej0IAsHnnkv7GwkBhrVrk7zrpEAgrZ/Yu4nRtilHsGB8+VXE4Yu8hib0z72Mdu0a5HwHBosdk0vEpDMRCUYot5eTI1i4vqCWDzgWEtYI7Ol5jWZhkJLa2hQ/Q3VW1ls6FiJS3DctsTNxNJ81yeNBThBdxYsXEb0eVDGPwnFR7X2DcZ731jGc58VGCecUz+GeGffQ5evimQvPcLb3rLJAs+Yxo2AGHZ6OOM9rcjeRZchiXsk8EHhf87xHzvyZ2Uu+RRGp5vHadWvQZ+Ug9vbif/RRTLfdNmLCOwCRCOaPfpSIRuCNwbPsqX+Ce6pvIbLj8nmeVqXFrDXT6++lprCGlxpfYlX1KvoD/cwpnsOJ7hN4wh4a3Y3cMvkSzzvXd466kjr6A4qIplUrwlueOQ+7wU6UaJzngcL1HAYHoizGO4jG0gnzfuN5cjCYOomSALG+Xin8xf49xFE0paXKiGlpaZI/rdjQADt3Ubn2hjF9/lg7/kbjeVqVFgTFEsgVcOEOKZMrrpALURbjPK/YUky2MZsOTwene0/zRucb8feakDUBX8RHm7eN2YWzOdB6gNbBVj4w5QNIssQPjv6cf9vwFYLbt+P/85/jr1NPnIhx3TpMH74XIaTwvIhBy6GW3Tx5+knO9SujorHrT6OrkWfOP8N3l3836Zz0hDyXRJur5Lo02jYV2Yr450X/zDelb3Kg5QC9/l5sehvLKpfxmXmfISSGWF29mukF0+Pjvu6gmxJrCftb9lNkKaLH10O7px2T1kS5vRxJlohKUSRZoiqrigp7BTdW3viWjoWAQIW9gk5vJ/fOupcefw8X+i9g09sosZZg1VvjiaabSlci73s27fsk8rxrpVv1SnDNiGzDqx7pIAgCX//61/n617/+99+gaxCJZq4ycvyH8M3XfsD3D/+Yb6/4Nt97+XuIskiZvQxX0MXZ3rPkW/Lp9Hby2brPcsf0O9CpdGQbs2kebOa/Dv4Xt065Faveyh+O/4HWwVZunXorRzqPKFHdebWU2cuS4oWvdSQmsrhDbtZVr0Or0SIjp6jwo3UbaSPKea0SVCADKhWGTZsI7tyJkGlcsKEhngQIyTdOjUrDnOI5HO08ilFjxBVyEZWiTM6dTK+vF1fIhVal5Vj3MTbXbI5XG9VZJtoXT6UI+VJnHYoxvmnTJs507U/6DI0u+fIRFUeJPByCVW/lrhl3YVAbqB+oJyyFKbGWUGguxKa3caH/QtLziyxF9Af6ebHxxXjVFaBhoIGgGOT/1P2ft3wD/XuKLw69Y0RflziiycdOrK+H5cszer6Marw8RsT2faZUQHX1nZwLtHLe3xx/XEDAoXfwp9UPKsEYLyg3zQLgQxOruXX1gwQDHoRwBJMlC7PBhnbjRqSBAQgE4qJZtLMT48qVeH/9a6XLaUiQUdntSIODSdsk2O2Ybr0V/+OPK8cmEiH41FNYHngATYJHk+jzZfyNCNKl4y653fi3bUubjDlaiMTfC+m2SVVVRWjVEl73nGFq3lRyoiqi9SPsY309+gEXoWdfRdq0KV7RbnY3Y4+osb3wKnLDX4g5cNzqrKC1IMBfpdNcr5qGWaMhy5GN9m3wM4wioq+rQ6qtTarmhw4exHTrrUr3XLp00UgE/7PJRMzr6cet9b8n7hfjGDvGed5bx0g872DrQQ63H+Y7K77Dk2eeVDqZdVb6A/3sPL+TKXlT6PH38IE5H2DL5C2YtWbyzfnjPK/7FGdDbRhWzadIvQZVOJrCEeI8b5R7sqzXczjaiE7S0RjsQJRE8lXWpA62RIzG8ybnTlZEDwR6A71xnucKuOjydxEVowQiASJSJM7zVlat5FzfOZ658AxN7iYMGgOTcibhMDjYUrOFE10nkrZhONcby28Urk6e9/cUXwSDQbHwyIThPG+owBraty+p0Bp//GI9WfKat2X7Yvve6+ulwFyAgIBWfamoLyCgU+tQq9T0+fsYCA4QEAP88fgfmZQ9ibtn3k1/oJ+B4AC5xlzyzfmsn7CeXRd3ERJD6NV63CE3nqCHVdWr+OuZvxIRI9Tk1fBKyyvcMe0OlhXUMS9rGvootLiayFu3CrOkQg4GEPQGAmqZ/zrzCCurVjKtVBFd1MrGcWHg0vkiCELcwqhlsAV36FKRrtHVyOMnH4+fc1eDUBsTxfoD/WhVWiodlRxuP4xKUMWDPzwhDzvP7+TzdZ/n03M/zWBoEJveBjJ87aWvsWrCKl7reI1P6D+R1Ln4+2O/53z/eQRBwKQ1cb7/PHq1HrWgptBSSLevmym5U5ieP53q7Oq3fL5rVVoWly9Gq9Ly3MXncOgdZBuzOdd3jlum3IJKULGrfhfdvm50oywJ3w8875oR2cbx1pFo5hqVks/+sBSm09vJ0a6jqAU1WcYsev29ANS76lELau6acRc3T7k5/hqb3saHZ3+YFncLOy7soMHVwJLyJRxqPUS7p50sQxa+sE+5UADbzm7LaOh6LSFdIks6jGa4nmMv5I5XHcjPP0zs9qyursZ0552KCWoGJAp4iYafueZc2jxtOAwOsk3Z5JvyKbYW0+Hp4NW2V9GqtfHvxB/1o9foCUVDhMQQPzzxIBtnrmLu0lvRRWVkvY7mSA+TDCoKLAUp7f8xGDVGiixFKX8fCZWOSj4x9xNxwqMW1JzoPsGu+l1xI+YY5pXM40TPCaVzzmTl7poPsjB7FtqohKjV4HH3YM2/8nPqcsWXyxXkpuZPRerrzbwRMXKeMGZHNIph9WrEjg7kwUHURUUKSTMaESyWpCTIK8XwfY/5JUxedQOPFtdxqP0QKkHFV+v+KTl5VqtFv2gR2ilTUD/7LPrYsdNqUd95J4FhaZLqqioMy5cj9fcrvl1DfjbS9OlIgdTzSdkYHfpFi5IWLsNFazkczrh/scelQCDlO4ahEIlt22DLOiy23FGO1tuLkbZJqq9H96KKyoWT0bq96GQTuiED7dDBgyljSESj8TAMzU2baPK1YJZiAtvwMfUmKgQ1Z6fp+Nyr3+DLS79MYX7h27I/okFH4KV9mBYtJpj4uZEI/scfR79wIYZlywAZdDqQZKLnz8fDKZJ2Sat6T90vxjGOdwqZeF5EiozI897ofAO1oGbrtK3cVnvJR3Gc542d52UMQ3A66RRd7LywE1DEq+rsagheOc873n2cybmTCUaDaXleSAxhN9iTeF5UjtLt62bjpI1YdBZUggqb3oZNbyPbmE2Rtehd53kanYawqHgJ9kg9DJ4f5MbKG1OCES4HiUJHDJlE4csW5EwmGE1kSyfCxoQ3UUxJSRdbWxHCqd52l4vEfQ9FQxzpPEKWIYsPzfgQMwtmcrTrKCpBhcPgoMen2MHMKphFv7+f5ZXLWVm1kv0t+/FH/XR7u0EGg1YRT5tdzbR52ohKUcpsZWys2Ui3rxtX0EUoGmJu0VzWTVjH52s/RukrZ5EbLhXUJGclzTfM5r9OP8SbnW9ye+3tuEKulJRQGZkiSxEDwYF4krRGpUElqLDqrIrJPsp39odjf4h3T8bOocPth+nydfGZ6z+TkmL790aiB55WpY0HTRzrPoZdb+emyTdxsuckReYiphZMpcndpIzF9p7BHXIrATWyrKQ6iyGePvc0t029Tela87ZzsPUgOrWOFcWL+das/0vE7yWglni2Yx/Pte0l25jNl5Z+iVlFs96W/anJreG19tcoshahU+vo8nYxt3guB9sOcrD1IJ3eTv550T+jVqlx2PIyvtf7geeNi2zvI2Tps5hTOEcZJxIjzCqcRa+/V5kBF0M4DA4ARFlEo9KQY8xh/YT15JnzCIpB7Ho753rOMSlvEqDE/C53Lufpc0/T7mlHr9ZT6ajktbbXsOgsDAQH0Kg1dHm7sBvs9Af6RzXxfK8hMeFxOFRVToT2rpSFsHjxIiHAuHJl5vdOEPBiCUOxC7nD4OBE9wnMOjM2vY2jHUfxhDwYNAZ8ER9WnRWjRpmfP9F9Ao1Kw9Tcqcwtnss5XxOdkQH0Gj2t7a1EpAi3mu1p2//hUtz4xJyJl3VshrcIf6buM/T4ezjccTj+t+sKr2NLzRa+8sJXKLGV8J8Lv0nxyyeRG7YlHcfgBiuG7MwX9HTIKL489RT+tcuoD7bFSZY5KI0oyKHTpRXfCiwFdAWDCCON4g51dKUEACS8v37xYvx/+lNcjIj5tbwVjLTvcn0D2ufgRzd+j8+99M9srlzDRyfejjrXDfMXILa3oy4uRhoy+k1cUOjnzye0d2/q6Et9PUFZxhA7pyMR/E88gfljH0P2+VJSVGNdTpqaGqKnTsX/Ply0FkZJDIw9Lno9accVY9um8fo5FjjGjIIZGd/v7YTs8yG2tCjEuqwMwWJBEARlHNZspnTHDsT6evxDz1c7nZhuuSXV72eIuIsXL6L3+CiI6jBrjERG6o6or2fz6k9yvXMppY7StM+5HHhCHk71nGLHhR18eNGtGNN170YihPbsIbRnD4O3r+fxiy9wX0th+nTUKicXgx1UZVWxu2E3VaZiyjS56KOgMZmvihHfcYzjasU4z3vnEeN5I6V4q6uq0KxbzZ/P/i7+t6gUpdPTiZCX+VqWiedNz59Ok7sJX8SXlueBElIW43lqlZpyezkLyxYSlaP4wj7sejs6jY5GVyNNrqZ3nedlm7Lxhr20DrYSjCr3kjZPG290vIFZZ2ZW4azL+nxIFjoS0R/o55nzz/CRKXeiDV4KpPBoojxy+i+c7Tub1A11W+1tlOnz0/I8tdUK0WhGkVVsbU3dOI0GtFpUOTmEXnstxZdNM3PmZe9vpn3Xa/TU5NZwtvcsj514jM/N/xw/OvgjGl2NmHVmgtEg80rmcdf0uzjQfIBcUy6/euNXNLgaKLGWYNPbmJgzkafPPs1AcIBKR2X8XLswcAH/GT+bJ29GLajj5+YDM2ICW/JxkRsayRUEPnD9erq8XQgovtDDU0LtOjvV2dU0DDTEO3OBePqtTacI/Of7zsfPW2/YS7unnWA0iCzLdPu6mZQziXkl867oHLpSNLmacAfdFFuKKbWV8tS5p8gyZnFj5Y3UldTxl5N/4WjXUYqtxZi0JrKMWXzyuk9ytPMo3rA3LkYLgoAvrHid/dsr/0YgGmB6/nR6/D08tvYhyl45g7z9LxgAK3CP08nWNT/Br1dR5ih7y/sR43lPnn2SFncLb3S+we7G3eSYclhUtogyWxmzimbx2MnH+P2x3xMWw4R9Hu5zVozK816ofyEuZhebi7HoLSme0dcqxkW29xFMOhNHuo5wuOMwakFNMBpkQvYEPjDlA8oNTGNWvBy6TqBCxX2z72PbuW2c6jlFrimXfU37sOltfP2Gr3Oj80YA7AY7uaZcKh2VRKUoJo0Jk9aEN+yNx8MHxUuLruEVivc6hic8xv9e5cSwbh3+B3+V9nXixYtE1qzKnASYYFJu1VtZU72Gh448xJHOI6gFNQaNgVJrKcudy3ns5GMUWAriaU46tY5iazGyLJNrysWqtzIQGuDFhhd57sJzhKQQc4vn8sC8B7jQd4H+QD8CAssqlhEWw3R5lchsnUpHVZZCPt7qBXFR+SL+e91/c7T7KK6gC7vejlVvxRV0YTPY+MiUO4cEtsak10n1DUS2PwM3b8FgubyxP9nnG1l8uXgRTXABb3a8STAaZGXxEpx7T6cKcs3NiAMDhIZ3byV0wxXkVhDatIHI0ztSR+bq6uLJn2lNcy9eJCRJ8bECSO/XcrnItO9yfQMVq5bzvxseQd6xi9BLv760zVVVqCsq0qafZvQkaWhQSGjMnysSAUFQjtsInmrGdeuU7i2U4ymYzYgeD/j9Csm1Wsf0G4kGMleYdd4gNoNAt7ebfEt+xue+XZBDIWVBdvgw6pKSuLecfskSoq2tIx6TxPMghbgPuNA99hjarVvJVP+W3W6KisbekTASGl2NvNL8CtvPbafd286rra/y6A0/JVOESlAlo1Fr0K1dg/js80nnoFDlxLdiPgPei/zs1Z/xvbr/R9luJTAkdhd5t0d8xzGOqxnjPO+dRyLPi6d4D43/CXY7HVEXfz77u7gYEYOMTFO4m8Ir5HmBSACb3kaWISstz9OqtFRnVyPLMtnGbGRkHAYHB1oO8Os3fk1YCqNRabi++Ho+Pvfj9Pp6UaF6V3meJEtJAlsMoizyk0M/4bsrvnvZabaJXnaJ0Kl1bCleTvSv2wgldd472bBkGTsv7owLjR2eDu6s3Iz/qcdH5HnqrCyMmzYR2L49ie8n8rxExO7fhjVrRvRfDu7YgebmzZfNbTPtu8PgYFbhLNxBN1adlX9f9e+c6j1Fr78XURbp9fey88JOim3FBKUgTe6meEiGWWfGG/LSPNiMRqVBkqWkzsd2bzvhaJgiSxHtnnZ6A71MsziRGw6k3T65voHaGxexomoF7Z52so3ZVDgqknjeEvNUKhZ/m6+9+n0GggNEpSgalQYBgTxTHlPzpyqf7WmPd7C1e9pxB92IshIgFvAG6PX38uDhB/mXZf/yjiUi+yI+SqwlvN7+OoFogL+c/AsDwQE+PvvjPHriUU71nEKr0tLn76Mov4hjncf4zZHfcPOUm/nl4V8CMCl7EmatmQFhgD8c+wO5plwiUoTJOZP5/KxPKwLbsHWR3NCAbheYb97ylvdhOM8DxV9xSt4Ujncd53DHYSZkTaBxoJF8Uz7bzm+jylE1Jp73w/0/pMndhCfsISyGmZE/g0/P+zS7m3azfuL6a36UdFxke5+gy9vFLw//Er1GT5Yhi4HgAAaNgQv9F9jXvI9/WvhPnOw5yf+d/395+MjD5Jpy2XZ2G6d6FeJVk1PDsc5jhKUwX9/9dUosJUzKm4RFa0Gn1tHpVVLAQmIoiUioBBUG9aVK3PAKxfsBiQmPidWv2OjcSHC7u7GuWwXPPJfS5WPcsAEp1jESChH1e8lVqVlVvJRwNIxJa6I2vxZ/2I9G0GDRWegP9JNlzCIUDVFuL+euGXfx4OEHcQVdRKQIAgJ6jZ47pt/BH479gVfbXkWSJe6ecTcd3g72NO0BoNhSjDPLSYmlhGJr8duaBDMlfwql9tKkpJmINUKVo4qF2bOSOtgSIdU3IHu9cLki26ieeRIbchagiUjk6AoI1m9Pec6I3VtD3XCmW25BZTSiz8pBe+utyB4PkssFKBXw4J49EImMKlAN9+wY7tdyuRht33URWRF+6lO70kKyrIxyDkds9GHY2Gts9EH2+dAvXUpIEBAvXkSIRjP7Dg75scWIrBwIEHj66UuvMZmwfPjDBJ55Jn0C79CxGS3xFCB79xsMrJoP75DIJhiNBF94QUmWTRBXx3oepCXul+PTN+zcudzxmFiFXKvSxolXIBpgR8ceNqZL40NJrrZbc7j3YB7hlx9SFqNDZtCyzcoR33lyBJFaTTGP3vDfqF96JSXwYfjvahzjGIeCcZ737mEknvd6/3F2nN+R9jVhMczXXvsev173H2l5nm7DOs4FWynVKR3Hp3pOsf3cdgZDg1Q7qglJISbnTGYwNIgkS0k8bzA0yNS8qdw14y5+/trPaXQ1UmIr4WDLQfxRP3fOuJPfH1U6Tg60HkBE5EuLvsTFtot0ejvfNZ53sudkisBWYa9AJaioH6jnVPepyxZIRhJ9lxXMx/JCamFTqm8gH/jI1K387PhvAbhvyl3kdHpQ1dXBnDlxThM6eDDpfqTOysJ0yy2IXg9eTz+SToPFnEPgmWeS+H7s/h06fBhjbS3Bp59Ou41ifT3qK+C2o+27XqMn35KPTq3jQNsB+gP9dHg6eKHhBaJSlFJbKWd6z7B+0nrMWjMqlQq7wa50SUaVjiqDwUCZrYzJuZPp8HagFtS4Q25cIRcrqlZQZC3iSOeRUT2JNRGRdk87doOdm2tuxuSLJPM8IN/p5Nfr/oOtL3xSSa8UQ1RlVfGZus/Ez4dY4qkv7EsS2GJQq9Tsa9rHye6T75jIZtKa2N+yH1ESOdt3loHgAAA5phyOdR9DQEDm0gisXqPneNdxPjDlA+SacqmwV7CiagWPn3ycutI6GlwN5JmGpnYEWF20GPn59KFq6dZFbwfPA6WzrtfXS6mtlPqBeupK6nj81ON8ddlXGQgO8LOl36d8/7m0PO8NzzmCoXb+69X/osndhDfsRZSU7+pY9zF+9trP+MTcT7wnRknHRbb3CU51n+LiwEUEBCZkT0CUxHgbNLLyg9k0aRN55jzyzfn0+Hs423eWhaUL8Ya9vN72OqIsolVrebXtVY51HyMsh8kz51FgLqAmp4azfWfp9HbidDhpcDWgV+ux6+3xi1msQgEKGTzVfQpXyIXD4GBq3tR37KL3biBdSp48yqibW/Iz+5E5/G3To8xYtQJVOIKg0yMPDuL9/e8xrVtHIGFxrgHmOSvJX3gbdz33SRaXL+Zo11EkWeK6ouuotFeSb84nKAbxhr08ePhBLg5cxOlwIskSZ3vPIskSJq2JtRPW8nLzyxxuP8zHrvsYJ7pPUGItodPXSadPIdqekIcFZQsu6wIY9zOTZQRJQg6FlJRMnQ5hKE3Qqrcy1VaNHAhAOIwcCfObxT9AlERErXZEYfJKPMpG88wzyGrsv1duYKrbbkv7nIyiyMWLihnu0HcfOw8EvV7pbmxuVm5Ac+eOnhYaTXURHU0oy4TR9l3Q6Ubu8mtoQEg3zjw0+pB27NXpRDtzJoLJpCxGPB7lO84AORLB8sADCGYzcjRK4G9/SybEfj/ehx/GdNttqNasiS9uMJkuCWyBAFqNHjlDwqXY2orc0EiWvCzj9rytGBIYEzvTYn/PBEGnwzTk0ZY4OprY1Sa2tmZM9BRbW5NGbS/XrwYg4HGxtXgtmojIhqUL2d9/hEfO/Jnfn/0frlv8TYpJTuMTqpywZjnG5/ciDf09cb9VVU6mrF0BO19Aqm/AtHUr/gxdpom/q3GMYxxXH88Let3IXq9ynx8Sna60I+daQDqeZ9KY0j7XFXQhyRJnes8wYYjnTV+1AiEUQtbpOOG9yJNHfkyDq4Hbam+j19/Li/Uv4g65Odd3jr5AHyatiT2Ne7h16q1c6L8Q53kOowNX0IVZa+YXr/2CiwMXyTJkMSF7AjvO7UAimee5gi7O9CgeUC/Uv8DSiqVvied5Qh6aXc34o348YY8ywqo1UGwtptJeiVVvxaq3UuGooNHVSJu3Da2g5QbnDbiCLprdzfG0ywp7Besnrud8n5K8meg5OFaMJPpONJQgN6TnbnJ9A0uXfpCf8VuKLEWsL71B6VAbJoTGLByG8zyV0Yhb62fb2W1IksR9q27DvHw5hMMKT5Ik5EAATWGhUnDPgLfivzua4C1KYvy+n23MptxeTrO7GVESqXfV49A7EAQBm86GSaucyzq1DkEQqCup40jnEfIt+Vh0FrxhL3mmPK4ruI6ZRTPZOGmj8r3Jmdc66PXcPPlmKhwVmMIQ2PbXtF19PPMsD6/7b17sfRWH3sHU/EvrRk/Ig1ltxqaz0eXtQiWokkQ2p8OJJEl4wh56/D2XexivGBExQk+gh1JraVJhItb5KyCgFtSIkkhIDMUDHfRqPR+a/iF6/b0caj1Ef7CfiBTBprfFvTbP953HmpvZVijx3LkSnne+7zxnes5QaCnEF/ah1+jRqDTo1DrsBjs2nS3uyeeP+mlxt/DtRV+jYv/5EXmeaelkTvQe48XGF8k2ZuMKutCoNBg0BkRZ5Fj3MQLRwHvCemBcZHufIHZjcgVddHg6qM2vpSqriogUwawxI8sy0wqmcaLrBLubdlNoLkzyTIghFgncF+jj5aaXseqtVDoquWvGXTx55kmaXc2scK7g5eaXQYC5xXOxG+xkG7PZUrMFq97Kkc4j8Yj5GKqyqvhs3Wff0Vn5dxuj+bUd6D+idJbtvI/PzfoU9zblxRet+iVL0o4Wyg2NlAMPzPgoPzj8X8wsnMmyimU0uBooc5RRk1XDQGiAHn8POcYcsgxZmHVmdl3cRVSOIsoi5/vOMzVvKv6InxJbCWrUHGg9wC1Tbkn6rMu9AEpuN/4dO9DPmaNs+/CxyaVLISsLQBm/HNYdpq6uvpQ4mUZoG82fKx0yfQdqpxOxsfHSH0bqEhpFFJH9fqRAIKnrJl3VG1HM8C7pP380oQxAdLshEIgvdDAYUNvtmfe9uhpZyDT0B0hSyqhmbPQh7dhrQwOBZ5651IFkNCJ2d2f8CMFgQJ2rBBKIXV3pu978fvyPPILlk59EU1GR9FA82KGlRRH+ZDnV+y2hG0wVjnK86zjt3nYiYoRSaymTrU60/pBy/IxGEEXFN81ofEv+YPHQhuHnzyjdaJJBT3Dv3iR/k+H7ETp4EMv99xPYsWPE/dXW1gKZ/WpGqiRKbjemZ3bHf8N2YL2zktlLvsXnXvl/fH7/V/nM7PuZtfRWLLIWWa/Dq5HRhYNoz59Pv1/1DZg8IfyxzsnErshFi9BMHPICCodBrUaWM1fHxzGO9xvebp7nDrlxu7opiRi5I+cGblq/jOc6XuYHh/9rVJ4X7O8hsv0ZpIROaFWVEzasuyL/1GsViT5qoHikOQwORFEkz5zHmx1vxnneYGgQf8SPVq1lMDTI/7fo/8MddPPL13/J6urVNA82Y9aakWQJSZbwR/yoBBWPn3qcz9R9hnZPO3nmPCZmT0SURTq8HWQbs5lrmIsn7GEwNDgiz4uNrLV72+MCF1w+z2t0NfL0uacxaUwcajvE/pb9BKIBck25VDmq2FizkYVlCwHY37Kfp88+Tbu3HY1Kw7LyZcwsnMn0wun0+/vjKaNalZbTvacBJa39rX4HMQijBCcZRIHbpt7GPc6bU+6lkGzhkI7nJaZAngq1YNFaqJJNRH71UNL7mLZuzbgdY+G2npCHRlcjDa4GvCEvBeYCphVMG3HfQRFYLPpLIpxeo2dGwQw0gnLcjRojsiwzI38GQTEY/z4GQ4PcUHEDr7W/xnVF17GncQ+NrkYEQcCoMdLoauTLli9Tk1vDdcXX0d3bgqHKiZwmJV2ochLUqZiWq5xfomsEnodyvC2SJimADy6JRwa1gUVli3AFXdQP1GPQGAiJIZwOJ+smrONI1xFAEQlPdp3EH/XjDSuBHBad4onbMdiBSW9CkiU0goZsU/ZbSqENS2GsOisRKULHYAfVWdVcHLgY7/xVCSqiUpQsYxbekDf+O80x5vD0uadRC2oikrLeyTHmUGGvwBv2YtKZON17GmFm5nND0mnxhBQfu8vleY2uRg61HeJU7ylsBhs9/h40Kg25plwMGgMWnYUSWwmbLJtYO2EtW2q24LQ7qZBtSA2vpN+e+gZyllxHX6APIfafICDKIlEpypTcKejUOkRJpCa3hrCU+Td6tWNcZHufwKF3EIwG6fB0sHrCag60HIiP/4HiDVHuKCcUVVTvmDluIiRZUjqQEMg2ZvP02aeZnDeZHx/6MfmmfFZVrcKgNYAMH5j6ASVGWKXGorXEW827vF0pAhtA/UD9FfstXKsYya9NcFbSu2w2/7n9btwhN3OK5igtwbsvpfJk6p6ioZEVCzfwHemHvN7+OuX2cl5te5UpOVP47dHfotfoKbYUk23KxmFwYNPb2HVBSXtSo0aj0qAW1Og1ysXbbrCzsmql4v1hzKLF3cKUvCl4Qh5ebXuVJncT0/OnZ0ztiZnsa0pKCB08OCJZ0U6bhio7e8Txy5Asp3b+MBQiYbn8EZWRvgN1VRX6669PGsUbMTlsFFFEDgbxP/FEio/U8Kq32N9/Waa5w/1a0kHs709pu4+PUmZnp9/32GhmhlFmADkQUMYduGTyHDp4EPN99408+nDxIqLXEyeiEZM+o9AnJIwzjta1N/zx4cEOKV45BgPRCxeSusFkvY7v7vsa7d52jBoj/73ku4pfy5BIF3zppVTh9wr9weIC6bDzJ36etbamjtx6BjkVaOLMVJnVy+/CIqoRQuGUrjYiEaT+frS1tcr+Jozs+p94AnVpKdHWVmSthjaxJy0Bh/QLrBEDMxoaKQLunXoHPzryc3558mHMGnO8KyLXlMtHCzaQkTLJMsS6VWNdkbfeClotweefTzn2mvVr3lcL9nGMIxPeTp5n1pq5qWQlul17kOr3EQHUwLoqJ8s2PcrjLc+OyPOCXneKwAZvzT/1WoVVb2VzzWa2nd2mGKBbi3nq7FNcHLjIjZU30u3rjvO8l5tfJigGydflMyFrQtzz7nTvaZY7lxOKhrDr7agEFXBJDFUJKhpdjbza9ir3zriXP5/8cwrPUwkqGgYaFJ4npPI8vUZPrimXW6fcSpGlCG/Ye9k8L1aw0al07G/Zz6G2Q3Gj+l5/LxqVhqfPPk04Go6vIWIjaFEpyp7mPUzJnUKhpRCbzhYXHPa37icqRanKqor7b13pd5B4r5N0mbnbgOzn/+z8P3zi/lvwZejq18+fPyLPGx78EOnpTvFLzZRKOxZu2+hq5EjnEX75+i/jYqRGpWF+yXy+uOiLafc9Joh7Q8njpA6DgznFc3AFXfijftQqNVunb2VP4574d9XibuFD0z+EJ+Lh2QvP0uBStlun1qFT6zjbd5Y/HvsjX1z0RUW4MejxLK/DKpNUHBSqnARWLsRkdcT/drk8L7FIqBbUlNpKubHyRmpyawhEA5g0JoLRIFEpyuH2w5Tby9GpdRxsO8gL9S/Q7m2Pp5T6I35um3objx54lF5/L5NyJlFmL6Mqqypjt1cmWLQWbDobBo2B19pf46bJNyEg0O3rpjavlsaBRpZWLmVyzmQ6fZ0sKFuAUWtERsaZ5WR+yXwC0QANrgayDFno1Lq4CB6VorzhPsO8EQRMnJW80LWf/k4/tXm1uIPutNuYjucljomCIqyW2cpoGWyh199LoaWQqBRlMDyIWWPGE/Jw3neeTl8nU0fheUZRFd8XtUoNKEL67MLZnO49TY+/h7nFc/ntkd+yoHQBX1v2NRaULbjsY381YFxke59gav5USqwlmLVmDrQciF8UAQrMBZztO8sjRx7hvtn3Acq8+PzS+RxsPZjyXjdU3oAn5KHYVsz/nPwfTveeRqvS8nLLy9j0NgrMBbzQ8AI/Xf/TlBvyqe5TKQJbDFfqt3AtI9bRFPNvCKol9vS8xoMv/h+uL7kef8RPg6sBk6hciGJeV4LFgum225J8IRK7u7TRS10eGpWGWQWzeKnxJcrsZexr3sfB6EHe7HwTAYGFZQv52JyP8cvDv0SSJUJiCFEWMWvNlNvLuThwke+9/D3yTHlMy5/Gp+Z9iu/v+z6HOw9j0prQqXVMz5/Ol5d8ecQLYcxkX19XN6rflKDTjVzJqq9Hv3gRDGs/1m5Yd8WkfXhXmazXIYoR/L99JOmYjpQcJno8o47mjcVHSjAaFb+yYe+vrq5Gv2gR/kcfTXrfRM+xdBDd7hSBDRJCE7ZsQT2Cj4zKaEQKBDIKYJLHQ3DnziThSuVwXPIKHAGxEdFGVyPPnH+Gm5avwCrLKWbCxvXrk4/PaOOtwx5PCXaIRJLOPdPWrcPa2KvY1/N6nEjeO/kO8vceQ6xvGLFz9K34g8U7CYcR7NDBg3FhKbRvX0rS7LQ1ayjR5tAuufCGfdQeakxZzAIEjv7/7L13gBz1ff7/mp3Zvnt7vbe9Uz1VUK+ACqghgSkGbIqNDXbsJM7XyS/52vnG38Tf2Im7ncQtcYAYG5tiMKgLkIRASCCh3nX9dL3s3fbd2ZnfH3M7ur0tdxI90eM/LPZmZ6d+5j3P53k/z1GsK1YS3po+bEMsL6ds/c0Zt3O0p0vGwIzGJhYt3cQ/y2EKrAUsqlhEu1c7nr2BXoKigpjxoAh6+01cFal4vUnps6Ade7ZsJ/QuTKGv4Rr+O+G9rPN+tupHmHfuTfLkVBsasaoqplqFH775w5R1nurzpRyT4Or9Uz/OiCuamjxN/Pbkb3GYNS+kQ+2HuKHqBvY07aHR00ips5QGTwPuHDfrJ64npsSwSBZdjaSoCgICTpOTwfAgkVgEVdVeuMeq82YWzmTTlE2c6j5Fu689oc7zhDxUuio52nWUXx7+JTfX3Mzn5nzuiuu8uMl+kb2IDl9HQhKkrMiE5TDtvnZ6A70YBEOCx1N8mRPdJxgMD1JXUJdwXca7Xa72/WCkqizuAxdWRaxp/ENxV/NazyGNdB6HLcd46zzR4USsrSFWf/kZmq62HE9t6w17Od55PIFgA+1YHrh0gB+8+QO+s/o7SfseJ8S9YW+S0s0smSlyFFGWVUaRo4iGgQaWVy3XyZ2ZRTMJySGK7cX4Ij7yrHkYBAMCAkE5SDQQpXWolWZPMw6zg83nN+M0Ocmb5WDm0tswxVRUk5ELoXZsiofJXD6nV1rnjQx2iKkx2obaKHQUUugo5EzPGWwmGw0DDbx58U3KnGV8YuonCEaDOsEmKzId3g4UVaE2t5b/Ov5fFDuKafQ0cr7vPCoqVsl61f5gVdlV1OTU0DrYSlV2FS+df4l5ZfMwG8x8Y/k3uDhwkadPPc3LDS+jqiqVrkpunXwr4WiYEkcJZslMJBahxdPCqcgpPjH1E7zR8oZ+7/z85OPMWv1dzLtIHHPd1XQum87Xtz1Ioa2Q26bcRoGtQG8DH43RdV78uBbbiylzltE+1M6qmlXsadqjB5PElNhV1XlBUaEsq4zZxbO50H8Bs2hmYt5EnWCbkj+FTl8nBsHAqZ5TfGvft1I+Zz4OuEay/Q9BkaOIh697mFebXk2Y2SyyFzGzaCaH2g9RaC8kGouSa83lnY53+Pqyr/OP+/5Rf9AJCMwvm89XF32Vn7z1ExaULtAHdRUVVVUZCA5Q5izjcMdhjnUdS7opxvJTuBq/hQ8LCSmHo3ygrgQGq5Wz3kYG5E5qxWKWO2ewePkPeLnzTbwRryZVzsrL6HUVfzGNk0KypA1xFVkVoMKs4lmc7jnNjvodNAw0MClvEgW2AnoCPbzT8Q5Wycr6ievZVb+LIkcRnpCHClcF90y/hz1Ne5iYOxGb0ca8knl8c+83ueS9pKcNAZzoPpFxINSLlDFaK5FlGMt/QjJievRzWvue2YzgcLzrl+wkVVlXR3JLajSqq6GMq1fSPtCKwWKhJdrH9WtWIm7L3Io4lo+UwWqFnByM06cnqI+UYBBDTg6Ohx9Oe63pXncjiDJCocyhAsEguFwpfWTi25NJ6YbJhFRZmUzOdaZ+iMchmMwJs4+P1T/LTQsXc/3qlRiGhh/0qorS1weqipqdrSnabLZxp+3COPzqRlyLYm0NwVVL+JeXv6R/tjh3FkqD5sd3Jb5744V+fLdtvawIHFavCQ4HoVdeSUkshbZtw1lejvlSG4a1qzHfOoPw5i1JSkxhxY0gGrCsXo06NJSkZiMaJdbYiC2zYDHJ02Ws4+pQjXx92dfxhDy0e9sTfFHOBJqZNeoFY+Q2x1pakId9CsMHDmB/6CFUny8j6f5uTKGv4Rr+O+G9rPNuLV9JbOtjqX+osYkVi9bxfw/8U8o6bywPqXfjMfVB473yD3aanQgIoGoto3EFzWvNrzGtcBqT8yZTV1BHSA5hFI20DbVxyXuJN1vfpM3bRrYlm5lFM2kebKbCVYEgCLQOtSIIwrjqvHN959hRv4M76+7k+bPPYxAMeEIeBkIDzCyaycPXPcy/v/PvTMmbwnUl111VnRd/UY8rh0Yj/iyIe7Wlg0k0Mb90PgtKF2jHfZT/1tVitKrsVPcpYjdeT54gJCqB3FU0L57IH97+Z4rsRWMSPwaXS7MxYXx1nu3WjYl1VTRK+MgRLBtvJRoOajVVmtp2tHG9qqoMhYcSCLY4ZEXmdM9pTnef5qaam1K2/KZT+cWVbrnW3JTk3O6G3QyGB/VWxpHPeVmRUVSF/mA/rza9Sn+wn4HgAGF7EYO+EOf6ziEgMClvEj5vA2+3v83MopnMLJqJ7QrrvNHkUEyN0RPowRv2IgoitTm1OEwOFpYtxGa0YTfZ6Qv2JaRkBuWg1qZtMHKo+xAzCmdoxzriJSyHGQwNYpbMV+UP5jQ7uXPanfz2xG9ZP3E9Wy5s4e1Lb2OVrPQH++nydVGTU0OFqwKTaMIb9vLYkccozSplSt4UmjxN3D/zfmYVzWJv8176g/0JhOesoln0SxEiy6fhWjobQyRKVDKwt+ct/nXXF4jEIjR4GvBH/RjF9AFgo+u8+HHtC/Zx+5Tb+dWRX/Hk8SeZVTyLKflTyLPmMbt49hXXeXErpM1NL/OVhV/hRwd+pAlJJBvdgW7q8utYN3EdTx5/EpvRhkEwcKL7BCe6Tlwj2a7how1BFSiyF7GiegVRJYrRYCQgBzjUfoioEsUiWogoETZO3sjm85vp8nXxjzf9I4FogP5QP7Iik2fNwxv2Eo1F8cuJceSRWAQVlXAsTCAaoMPbQZOnKUFiO5afwtX4LXwYGKsN70pRacih4uAhlIbLL/J31rhZuPgv+EPbTvb0vM2aW25O63UV94UI79vI0VKoAAEAAElEQVSHMGkigtnMwU9sx65IxEwSzdEe2obaaPY0a2a7PWeZXTxbk/zGZFqHWrln2j1UuCpYXrkcf9RP40Aj/7Tvn7AarXps9q2TbuVo51GKHcX6ABhHpoEwXWtcEiQJxvCfMFitWId9ut4vmLKykSdPQiosSkrIDHd20FBhIttsRYrGuC5rEmJ7N+KiRRhuvlkzsTUaEWw2MBiw33svWCyoQ0OXfbjS7ZvLhXHq1ATCTBzD90v3HRutBLvllsutdykwnheddIlp+vak2C5VIGORpAqJs4+RWARFVYjsfBmlrU0nklO1ZVo3bEh/340iuMcsjPPysD/8MILFQqcyxPONW/UYeiAxEWss372rDKAwuFzYNt1GzOfDvGYNBlEkuHUrYnl5xtAJ88KFqPv2oW7bRez2TSnPEUDg2Wcxz5lD4Jln0m9EOJTRsyVuYh7HWMdVMRnZfmI7fzLzs5TmL8EkqygmI+eDbRzznGXWmtsQt7+SSAq63ZiXLtVeNvbv10jmaBR1OIU3Ez5OL+zXcA3vN66mzvve6u9xnWMCUljWxhCrFRXwZ3h+GGUlbZ03lofU1finfhh4r/2D272a1+eCsgXMKJpBWA4jIHCy+yQWycIL517geOdxhiJDDIYGmZQ3iU1TNvHC2Rd4rfk11k9cjyiI1A/UU+YsY3L+ZArthdxYfSMxJUYoGsIqWdPWeZ6QB6fZyfpJ61nlXkW7t53VNatpG2zjR2/+iHpPPWbRjNFgvKo6L/6ibpEsOjE3EqKgTf7aJBtOU/oJaZPBRKG98H03PK90VfL6wOtULa2jZuUKDJEoisnISW89D+18hP5gP3m2PHoVL450NU1NDaokYX/ooRF+oWryj41AprpKIift91IZ14djYWYVzsJoMOqE10jE1NiY4oVUKr+RabKpzoPD7CDXkvpdx2ly6r5aI1Vmiqqw5fwWugPdLChbwDOnntG37cVzL7LSvZK7p91N2RXUeemCHZxmJ2E5zKTcScwqnoXD6CAoB9l+cTsO0+XvxNSYfr7ix2/kcZQVWfcFS5fUOhaqs6v50/l/ysW+i9xYfSPhWJjt9dvpD/XzRusbNA40kmvLJc+ax+GOw6iqStNAEzdW3UiTp4n/Ov5ffHvlt3m04NGkcwTw2NHH8AQ97GzYyZGOIzrhZRbNZFuysUiWlKR3HKnqvPhxzbPm8cezf8Sd42ZW8SwisYgefLH53GZWT1iN3WhHEATsJjsocGTgNDNvuQNx+8uJday7ival0xgaOEZnoJPeQC+PzHlEV8XNK5tHj7+HZ08/i1E0Jow7A+GBqzr2HzaukWz/gzCtaBoH2g/wVvtbSX8rtBdS5CjCYXRQnV3N6prVPH3yaQRB4D/e+Q9Odp9EURXsJjtLKpawuGKxbo4JoKoqDpMDo2gkz5qHKIjk2/LZfH4zD856UB+s6wrrqMmpSdkyerV+Cx80Yl5v5ja822+/IkWbEgzCtpeT2ivUhkYqgKqJRfzb8f/gltWPEdu8JfU2Db94i5MnYb75Zgq2aC1i8bmF6ho3n73xbn5/6ve0ezVjW4fZgcPkYCA0QDAaREGhxdPCtsg2Flcs5ueHfo434sVusmOVrMTUGL6Ij0gskjC7ORLpBsKE1rgMrZWKz4fBbE5P0tTW6gTC+wmD1Yp59WrCW7YmqwbXr6P2lVdQz5wFIGY0Yr7vPgCUQIDAli04HnyQ4PbtKYsEub0dwWRKa5qfTlk2ErpyTVEI7diRdDxj9fUEd+xI6V8Xx3hfdMazPQnrNYhJXm1wWdmHQUzyAZlkLUdp3Deutkzr7bePS0E6VrCDkJWFOLxfA12dujdEHLLx8gN+LHJ4PAEU6RBPIlOCQQLPPqudyzlzMn9pmPSLt14ZisuSzlGst1db13B0evptt2acyY6P3SOvuXTHVahxc8J3kb+c+QXKXj+NMnweRWCauwrXkus4N9TA9KlTMc+fn6iue+opxPLyyypOGJuU5+Pzwn4N1/BB4ErrvJ0XdjLPPongS5sJjRyva2qSFPIjoZpM1OTU4LK4eKPlDfKsefpYITgcGGrcKVtGr9Y/9YPGe+0f7A178UV9GEUjPz/8c1oHW4kqUaxGK5+77nMc6zpGX6CPAnuBrgw503sGg2Dgzro7eb3ldV5pfIXPXf855obmYpWs+CI+LvZf5F/f+lcGQ4OscK9AVmSyzFkMhAZS1nkqKm2Dbbx0/iWWVCzhH/b+A96IlzJnGdmWbBRVueo6L97WKiBQ4iihZbBFV6xJBkn3icu35ZNtyabUUZrUMmqVrNTk1CS99L8fcJqdLMqZgWH7K4QbL9fWE91V/HrVz1j+7DrKnGUsfvoWLjxwKDXxs24dwVdeIXbmspJMrK2FNStpUQeoyKpI2WI4nrpqpGrNbrKz48KOJKJnMDjI3ua9zCqexaH2Q0nrEAVxXOKF0Sq/sWCTbEzJn8LU/KkJKjqnyYk7x02pozQhVAG0jqd2Xzt1BXW81vwa/qifLHMWAEE5SMNAAy+ce4HPzP4MtnHWeZmCHUqcJcwtm6sf/5NdJ4mpWgt2HKIgIgyHfMX9x+L/D9p1azKYgLGTWjPBaXZyXel1mlLt6GPkWfOQDBI9/h5sJhuRWIRzfecoc5bROtSKZJCwGW30BfoIysG0asSTXSfpD/bjMDqIxqIJirJwLIyKykBoAKtkZWbRTA53HM5Y58WvuaAcRFEVokqUVm8rjBCeWiUr7mw3Rc4iNp/fTMtgC/UD9XhCHmpza1lZvZIneI6a2WVMXLgWk6wSkQS2t+/ln/6wkYl5E9kwYQO+iI9L3ksATMmfwu9P/V4fb0YSbAA55vTk80cZ10i2/0GozK5k/cT1vN7yekKiVKG9kGVVy3DnuKnKrsIb9rKjfgdVOVX8/NDPeafjHUBjxf0RP2d7z9Lua+e+6fdRV1CnxQibnQyGBrFipdHTiNPk5EL/BfJt+bR4WphWpCXZFTmK+LMFf5Z2dvBj4ccWCGRuwwsE4ApINtk7mFa1ojQ0csOS2/jhsZ/RO9hBVob1CBYL1vUbCL7wQrIpeUMjOcCXZjzMtw/9kCpXFV2+LpoHm/FFfLop7ovnX6TEUYLdZGd60XTO9JwhJIfwR/3YjDZsJhsxNZY0AMaRbiC83Bq37TIBkyJdVBxOF03nTWa79dYEYipVm+TVpj2OhBIMEtq6VScJ4og1NhLeshVTeTlhNJLNvHAhSl8f0VOnkMrLsd11VxLBFv9ucPNmzAsW4P/d7xJM869kP0Yq12z33pte8VRfj3nx4gT/ujhEt/uK2xvHC9HhIPDKy0gjCZO4CvDIO9g23YZDSSxWxIhGqoynLVPMzx/X/TVWu+vI41uVXcWxrmMJRf/+/mOsH35RzGRM/F4RvwleZ+NRfMb/GYoS7GpHsNsTWkvi6rqM2+52gySNOZOdoJaMt60ryuV1Go2Yb7kFyopZoCqoL+9J/r3GZioQENesJvTrf0+5W/HJAkNWFvbPfhbBbkduakq//TU1H4sX9mu4hg8KV1rnPTLp3tSThg0NaYOGcFfxfMsOVFXlaOdRmj3NTMidwIJyjdC3OFywfm3KdNF345/6QeK99g9u8jRxvPM42y5s43zfeYwGIwICoWgIT8jDmZ4zlDpLCcfCmCUzNoMNVVVp97ZjkSzML5uvta2JZpZULGHLhS3sbdqrq6/NkpkmTxNV2VXIiozD5LiiOi/egfJu6rx46+Hm85tZXLEY0SAmpItWZml+U4srFqOi4ov6EsIPrJKVJZVLuGvaXQnE1PtZ54k7XkUZ7cnW2EwN8I2Ff81vL/yBpsEmlJiM5eabEUC3KlEhiWADrVYRt6kMLCjj5YaXddP80a2emVIrmzxNPHvqWRoGGogoEabkT2Fn/U7qCusSAktcFhdNniam5k1NItkkg0RdQd37Il6ozK5kb8teHpr9ELvqd+nEkIBAga2AT838FNFYIjkfkrWaJMucRetQKwW2xNCiiBJJNOEfR50Xv+ZGHiuTaKImuyaBPIJEEjhe65klM1bJilk0E1WiTC+cTk+gR1u3yYlZMuvJye8F8Tuyi0NAIBwLE5JD5NvyicaiFDuKCcfCRGNRIrEIUSXKQHCApsEmdjfuTmpXj5OukViEHGsOLrOLwfDlgANFVShzlmE1WvWW3HR13kilpCiIVLmqdP81ySARlsPkWHPItmRT7CjmpfMv4TA5aBhowBPyAFDfX4/JoPk3fuHlP8dutNPh69C3R1VVDrcf5r7p91GWVYbT5CTXmotVsnJd8XWc6D6RdMxmFM5gRtGMd33sPwxcI9n+h2F++Xy+f8v3eeLoEzQPNmMRLRQ5inDnuPUBKc6MW0SLTrCBxoobDUZkRSbbnI1VsvKZ2Z/h0tAljnYe5VjXMYodxYiCyB11d/BK4yvkW/OZWTQzYRtmF8/m2yu/fdnn4j3yW/igcKXpN2MhEsgsQTbJKmE5TMw4hprGZoNwOL0peUMjG5ds4nvv/CsOk4NANIA37EUySFS5qujx9+Ayu/BFfLR725ldPJtD7YewGW16XHxfoI8F5QsYCCbPZI41EGqtcZtQ/X4sa9YgKIpWrJhMYDIhDCt6tJ02Yd2wASIR1EhEK6yczkSCLU2b5NWmPSYcK78/rXFznAjQf7O8XP881taGo64uIwkrrFql/bu+nsC2bVjXrCH40kvj2o+kZMcx2hgFSUoiKHTZ/bs8RulgsFqxrV1H4KWXkkz74+TWhFgF/1/do0gxFSIRBLOFQKb9GQ78QJaR29quqNA2zpiBZcUKiEYRTCZUoxFVUZA7OhCMRgS7HafVyZLKJboEvt3XzhNnf8e85d+mCCGtMbGexBqJEBsc1K5niwUslis+viPHjbGIsYSk2UiEyBNPYKhxw/q1etpmXF2XdtuHE3QZ/t10M9lJ19wIb0Lz0qUEBBmTI4vo9p0omzdju/deAhmCEYwxGMOZEVVRiPX0YMzKwlhbqyUOp9h+6WPywn4N1/BB4krqPGM0RjjD88q8bFniRI27moaFbp557ZfcPe1udjftJhKL8MK5F6grqNNf2Cy5BXD7JlSf7z31T/2g8F77B7cOtdIb7KU/1I9Z1NS3/qhf//+oEkVFxWV2UeGqwCJa8EV9dPo6CUQDmCUzhY5CJuZOBKDF05Job2CQuOS9xJySOUwvnM7Z3rMfSp1XnV3Ng7MepMXTwoyiGXxy2ifxRXyYjZqKrTq7Wr9G8qx5zCicoRnQx2RKHCVMzJuYSLB9SHUejc3cuvAWfn/xj8wvm48QU/D/4hfa34zGy36hZ5K90EAjqSfduIBd7a+x+fxmVtesZkf9jiQVUarUSm/Yy5PHn+SNljf0c5xlzqLB04CsyiwoW5CQClvkKGJKQaKqLJ4u+heL/uJ9ebdymp2sm7iOzec3M7d0LnNK5xCSQ2Rbs1lesZzavFq8YS8WyaJP1s8unk0kFiESi+jKxpGwilaK7cVc8l0aFxE5EuWuciqzK/GFfYgGkRxLDn2BPrp93VhNVn09cRJ4Zc1KPfwgTjQFIgEemPkAT518CqfJqaeLljhL2DR5EwPBAV5reo3+UD+51twx03ZTYaQSMSSHqM6u5kzvGVRUgnIQf9RPf7Afd7abvkAfXf4uAtEAvoiPv9/790nt6nF1XfNgM9cVX4dVsrK/db9OtFVnV7N2wlpmFc3K2P470icZtDbadm87NTk1lGeV44/4ybHkcKH/Am9fepvyrHLave3MLJqpE2ygiXH6gn2EYiEGggMUO4p1ki2ehqyqqjYuRbxa6Ep2JdXZ1Xxt2df41r5vJRBtMwpn8LXlX/tY+rHBNZLtvxVSzZIASZ/NLp5N7U21adns+CCQyphUURWKHEUc7jjM9MLpnO45jUWyUJZVxn0z7qNlqAV/xM/bl97GaDDSF+yj29+NN+xNGCiLHEUfG1JtNK40/WYsyEYRIcPfYyYj/7bi+xTY8jHde6/22ahE0biaRunry/hb2YKNjZM30jLYgkk0YZbMuLPdLC5fzPNnn0dWZKJKlEA0QIGtgFlFszjedRzQzv07He/wV4v+isePPs7RrqP6esc7EI639XCs5XxDvfDi1qTks3eT9jgSV2Kan/DvaFRPz0yLER5SUkkJcn291kY5Z05CWmyq/VC93kQSdaw2RpsN66ZNEAzqLzpYre8bwRZHkueIyaSFOAy/cEmKQujV3QQvXADAvGyZpqoyGrV/j/TB6+pCqq1FDYU0vztJQj5/Hrm7G9vatWkLbSUYJLBzJ9YbbkjdurtuHb7HHkMsKcF2661UZ1cnFf1eE5TdvhFrIIwaDmuJp7GYRvxarQh2O2ow+J74M44cN9ISY6PCNEYSbkpDI9Et2xA3bUQIRUBV9RQznRSLKwstFp0sczzySMbtSpkmGk9q3bcP2598kfD2HZdfVsYKNxnDl1BwOPA//jhieTmG3FzEoiLEoiIs69dDVCPdVbMZxW792LywX8M1vJcYWes5TU7ybfn0+Huuqs4b61kniCKD99+GSVbBbKJTHWJH6x5W165mgq2cTy35DlJUwWCxEvR6Euo8i8P1sQ0lea/9g/1hPyE5hDesWXDYjDZsERuCIOAwOrBJNtZOWItZMuOLaOdxIDjA7qbd2I12QrGQrqY51XNK94kaCckgsbNhJ4/OeZTXml/70Oo8p9mpd6+MtdyMovSk3Ydd5xWIWXxt2dfoD/YTDQUu/2GcfqFxhb7JYOKVhlcwGoy4zC4skgUBgZ5AT8rUygt9FxIINtDCIGRFpmWwhYm5Eylxluh/y7ZkMzV/Kt9Z/R0aPY34I34KbAXMKJrxvr5nxQnV+BhjMpgwikZ6g70Eu4PElBhm0UzDQAOtQ63E1JiemHtT9U3k2fKIxCKYRTOCKrCkagltQ22c7TlLjjUHk2jitebXWDdxXRIRGYc37GXrha0U2gr51ZFfcab3DLIiE4gGmF00m68s+gonGk7oBNtIEnhm0UydlHOYHAiCQKe3k2/c+A0URUEySPo9d7L7ZGoCKEPabiqMbDnt8nVxY/WNhOQQg+FB7EY7BsGAO9vN8qrlbDm/hbAcZnrhdAJR7fprGGjgXw7+C9+44Rt0+DroC/QxEBzAH/VzpPMIM4tm8ucL/xxBEHAanZRmldLr7yXHkrndcqTCLo64mnUwNIg34qVtqA1v2IsgaCmysiJjEAzkWnM1v0VB87Dzhr3IMVn3BDWJJsJyWBt3YlFMookiRxH/8c5/UGgrRBAE8qx5LKpYxL+t+zdOdJ1gIDxAjjmHGUVXTmR+lHCNZPtvgtGGmKIgUptbS8NAQ4Lh4ciZk3T99/FBIJUxaU1ODef7zusR3N6Il5Ac4pXGVzjRdYJlVcu40H+BxoFGvBFt9ux0z2nqB+pTzth82LgS+baOK0y/Get3c7FTnCZGXJg4kRx7Hte/dgi58aCuABmZKCpWVuoKIXUMgi8iwSNzHqHF08LpXq0doifQw6tNr2IxWhAEgUgsog/2c0vnsrxqOWFZa2GwiBY6/Z18/+bvc7b37BUPhFd1vEd9/61LbzHTWIGptS2ZkBkmqK4m7XEkxiRKR5Jbo4musTyi4n83GjFOnZqSAIqf29H7MbooHE8bo8Fqhask1d5Nm0acKE05Ex0ni5qaNMLmwAFsd96Jwekk3NZ2WQFnNOL47GcJ7tyZmmzatg3bpk0pt0n1+zHPnJm+dXfrVmwbNxL43e/0gt1pTVP0p+lIjA0OZvZn3LRp3IRmgofcSLXYsGpSsNuRz53TPZJGE24wHOHeN4D/v/7rclunOtz6NXxMR35PrKwcs9VVDYV0JaFYXg6iqKlmYzHUYBBDTLki4jdiNCCkGe/Emhrk8+f15NMw6GTle9EedA3X8HHH6JaeUmcpb7S+QZY5S28ju5I6b8xJQ5OJB179c12BEI1FWeleyUMT7qRk30nUxj/qy4o1NSgbN75rhdF7jaupO94L/+CRv2sxWsiz5QEQiAaQDBIDoQF9ua8u+So/e/tnvNX+FgYMqKhcX3I9X57/ZSyihe5At65CdBgduk/UaMiKTH+w/79PnZeuo+AqU71HYjwT5nvO7qEmrwaPECKhsh+HX2jMJCEKIi6Li+dOP8dt7rWsLVyIUVZQzSZ68bO9dU9SamW7tz2BYAMYCg9RkVVB61Ar3oiXEi6TbLnWXF0BeDVtde/mfMUV8KPfQX0RH+d6zzG7eDazi2ezpHIJMSXGLbW3ICBwuP0wuxp2AZBlyuJvl/8tPzzwQ97peAeHyYFBMDA1fyoPX/cwWy9s5f6Z96fcpmZPM7nWXH515Fec6jmlt1kCHOs6xn++85/cN+M+TveeTiA005LAJckftXhakgg2GDttNxVGesg5zA5Odp9kbulcLJKFQnshFsnCq42vsrtxN+FYmKkFU3lg5gP84ewfAHRy9vmzz/P40ccJy2G+MPcLNHua6fZ3s/XCVr1d9o66OzjVfQqXxTXm9vmiPkRB1Fp4Be13jKLW0r6ofBHn+s5xtPOo/nm+NZ9SZyl9gT56Aj04TA4U9XJYmEkyMTV/Kqqqkm3OJmaK6df0tIJphKJaAnG7r53N5zbrCtnK7MqPNak2GtdIto85unxdnOg6QbOnmWn50/BGvHT7u8m15mKRLJzqPkV1drUuy+0P9qecORmJ+CBgMVq4vuT6hJbRLHMW5/rOUVdQRzCq3TB2k52V7pXk2/KpyKqgyFHE8srl1A/U64x1s6d5zN/9oJEqqSedfHskRKfzilIO0/2uN+ylNreWTtGCbcV8snYnx4gbVt+EvG1n0gtprLGRsCBgfeTzSHaH/gKayexdqHHTEu1hUuFMCu2FvNP5Die7T9I61ApoRpOiQSTPnKe1lmS7OdJxJMGYdnnlctZOWEtVdhW1ebUZ9zPdfl/p8R75/d+d/B2/P/l7XrrpP8geTqFMCia44453nTiY0TR/VLterK0NweW6/LnRmDld06spRM0LFxLcsSNjWuxoUk0wJRbWY7UxvhtiQhkcJLB1K1KRlrCqDg2B1Yqak4OYnT2+dYxuNRzG6ERcolFi7e2EDxxI2A/zwoUEd+1Ke4yk8vK0hbYaCiE4neNu3Y2vRwkGNTVivFXZatWMvFMdy2Awsz9jMDhugjPJQ25YLSa63ZgXLiTW3Y1x2jTE2hoIR7SwgGGCbSTZbLBasd1zD4EXX9SIusWLsaxapV938e+NJOczQbBY9MTX0feaecECFG+i4jkT8Su4q9nd8xbzVy/BuktAHU2czp+fQBrGGhvHVL5dwzX8d0eXr4vT3afpC/ahojKvZB6t3lYGggPYTXbWT1jPs2ee1byFJPMV1XlRo5jxeRUafkuwSlZmFc3CH/VzR816Sl8/leRlFWtoeE8URu8lrrbueLf+waPrPEVRKLQV8ifz/oTTPac50nEEs2hGVmSWVi7l9yd/z+me0wAoKBgwcLb3LL8/+Xv+4YZ/YP2k9fq5rMquoianhkZPYxIZU+ooxWHSgi0+7nXeizf+ktRUooarTfWOY6x6eXv7XsJqmKHwEF3KELXxMI9hm4lYZ2dGv9DzwTYKbAW83PAy/3fOX1L+xhnUxhf1ZbLc1Ty06g5a5MS2XKNkHL06zvedZ3nVcl5rfi3BK2+0cf2VosnTxObzm5EECRWVkBwix5rD0oqlTMibMK51jG41BOjx93Ci+wSekIcZRTM40HYA0Fok24a04+KP+gnLYT4x9RP859H/5EDbAbLMWTqhf6zrGP9x5D94aPZDSURkHL6oj4gc4UT3CYJRrd0yTrIJCBzpPMInp38SURAT/N68YS9NnibafVrib6mjNKlVOY4TXSdSeoVB5rTdVIgr6uLHqza3lnO953CanUzJm4JFsnDP9HtQFAVf1EcgGuAPZ/+AQTBwx9Q7MIpGPCEP+bZ8vjj3i7zR8gZPHHuCEkcJX573Zdq97UgGCV/Ux/aL27mh6oZxXR9Oo5NSZymvNr6KN+Klvr+eDl8HSyuWUuQoYk7JHHKsOfgjfowGI7nWXE11G/aRY8nRjznApNxJtAy28PD1D7O/ZT/tvnaC0SCD4UHmls7lkTmP8MSxJ/Tl233ttPvaP7a+a5lwjWT7mMEb9upeDJ6Qh6dOPkWXv4vFFYv5yVs/4ZL3EtXZ1Vp0d8ls/mbJ3/Ba42sJZzrBWDIF4oPA1gtb+dK8L/Fvb/8b73S8g1k0o6IyJX8Kt0+5nf2t+zEajMwrncfTp57mhbMvcJP7Jg61HyLXksvSqqW8cPYFzvedZ3XNagZDgxl/94NEqocCaLMv3X2tFIWMur/SaENxADE3d9wph6N/942WN7BIFkocJfzx7B+50H+BMmcZN7tv4JbFt+JUTXiFCG8NnGRNNAzpXuIbGghFAghOC81dJ/FFfWSZs5i4YT3hzZuJ1V8uDIUaN8FViymwmnCanfo5thltvHD2Bb0AK7AVcJP7JmYXz+Zc3zmWVy3XH7zZ1mzWTVh3VfLzdMd7PC8DI79/pucMA6EB7Fl5hHe9lpZ8sW7YcMXbOBJpTfPdbs1D7eWX9c/CBw5g+/Snsdx8s6buGRzEun49wS1b0rYowhgm/8O+b6NJNUymxKJulD+WIEkINluC4my8ajQlGET1erXlbDaCu3Zhvv76lOSKdf16UNUxlW0pWw1H7aO+3tJSwnv3JiwznmM0stBO2FejETUQSPldHSMIHDUYJNbTA6qqkZ+jPGCsGzaALCccx7HI3Cslew0ul9beGx9XzGZUoxFBVRErKjBYrUS62hEam5AmTECqqUGwWpHb2gg8++zl9nG3G8eDD+J74gnCe/cS3r8f+0MPoRggUFVMbOKdqFYrjvEQgGZz6sTX4XvNMkxUxpGO+BXc1XTfMIttJ35JdfFk3LetA38AS0RFDYcvk4ajkgzVayTbNfwPQ6o6r9PXiaqqLKpYxI8P/piQHOJsz1lCsRALyxcm1XrjrfOead7OfRkmDR/e+78wGowsrVzK9ovbOdl9kv9d94X0nqXvgcLovUK6umMwNMgbLW/Q5euix9+DUTJS6iyl2lWdUIdcrX9wqjrvXN85JIOkESQCbJqyiT1NewjJIexmO2+2vYlVsuq/bxAMxJQYB9oO0OZrY17FPF1x5I/6WV61HH/Uz4G2AzrRVuoo1YMF/jvUeYYxlGaqORMFNzbS1XmC241vxQIef+XP6A50s7JmJVvbXuVzqz6J7RUBqbSM0N69mOfO1RLRSZ7k9K1YwN76Z7BKVlaXLhsm2JoSVeGyjDUskZNdk7BdpY7SpORVWZE5eOkgN1bfyE3VN2Ez2RJawMerRvOGvVzou0C7tx2H2cHepr0UO4rZ27RX/z1ZkdlxYQdfXvBlsi3ZVLoqM563VK2G8ZCD1qFWllQu0T+3m+wc6TzCwrKFLKtcxmBokAJ7Aed6zyGgKSxHdl+9dekt7q67O8HLbOS+BqNBBkODhKJaQNvI76qoRJUo7d52si3Z9AX76A/2s79lP61Dreyq30WnrxN/1I9FsmihG3V3aVYhUa9+HPtD/bqfmKzIKKqCKIiYRBOiQUybtpsO1dnVfHLaJ/VxZcPEDRQ5ighGg9iMNqqyqzh06RD/vP+fuan6JjZO2ojD5OB833mOdB7h5YaXybHm4M5x87+X/m/2btlL/UA9By8d5I66O6hyVVHiLGFG4QyWVi4dV2BDvj2fN1rf0N7TB5sZCA2gqArtvnYaPY24XW6eOvEUdpOdQDTAa82v8WcL/oznzz5PliWLTl8n/cF+JuVO4tbJt9I62Mp9M+5j46SNnOg6Qae/E9EgoigKTxx7Al8k0Ytcjo3l1PvxxDWS7WOE+IyDVbLS4e3gxXMvcnHgIvdMv4ffn/y93osOmgnkgbYD/NMb/8TXln4tKc59dAz0aFRnV3P/zPtp9bTyg9U/oN3XjjfixWF08Hb729T31+MwOajJqWF3025CcogCewG+iI+B0AADoQHMRjMbJm3gNyd+Q5e/i0/N+BT9wX5ODhNCVyMjf6+Q6qFgEk3c776d7FffJtL4qv75aEPxOESn84pSRAFO95xmy/ktlDhK2Neyj/P958kyZ2EWzfz2wnO82LyDQlshd0+7m/ycMgiN/RL/+NHH6A/2E5bD2gPLUcCjNz9EPquJhYIoJiN+ScXmzKZoxLGeVTyLYkcxC0oX0BXoQlEUKrMrybPmsb1+O1ElSqe/E9Bmy1ZUr7hqf4dUxzuOsV4GRn4//uBGljMriMbyhRoHDC4X1jVrNB+wEe2ovieewDxnDua5czWyxWYDUdReUuLEjM2G7a67MNx8s6aKMptRvV4Uj0dLnx0n5NZWkCTd20uwWrGsW6cREaEQWCyoQ0OEjx1DrKnBUFBwVeEQo5ez3XsvUlFRWnIluHUrUlkZcnt7RgPitDPNw4Wm4HBgu+surfVCFFMcgDHOoyzrROTofTAvW4Y0dWrGr49sF1FlGfnECeS2tuR9rq8n+OKLSCNIP7G2Fusogilp/WO1Do+CMjhIMN35Gj6vRpOFUGtrAiE5ssU43moZ3L5db4eNe8h4TDI/bdPaDtZMWEMhFWNvVDg85r2WlvhdtgxFFAhLAl3qEB2RAb5x4zcujyNZEOvuxv/442l/fqyWnvcree4aruHDQLo6z2a0cefUO/nDmT9wrOsYudZcyl3lXOy/mLbWG0+dl2fN4+JQOzW3rscQjurenWGjgaFYgP9Y9E/6s+aRSfdy745HkKKxjOtVQkHOfETrPFEQKXOWsePiDp6Xn9dCBUQzpVmlLKtcxsLyhQmKq6vxD05X51W5qhgMDVLhqsAf8fP3N/49AH3BPqKxKDElhiFmQBASXXqHwkO6QqzD28FgaJCYGuP64uv56yV/jT/qRxKlpGAB+HjXeaf9Tcx3V0Fjc9KyQo2bASFM4VVt6WUYXC76Vs5DWDwdKaogGw3s7z/Gk3u/Sm1eLdeVXsec4jnUFdTRK4Tpn1fKfNcUYvv2EWhqwrxkyeWJpkgEDAYwmTjlu4A37CUai3JX8SrUxj9ctnAYPXFZU4O0fr1e51VnV3PfjPvo8Hbgl/1EY1EMgoGh0BB1hXXMK5uXcI7Hqx5s8jQlBCosLF/IpaFLvNH6BkPhISyShZAcojfQS9tQG/YjduaWziWiRDIqEVONMxbJgtFg1K+/60uuxyya9VZQs2TWwzzCchjRICIrMpKSSEsoqkJvsFdvjx69r8X2YqwmKzE1lkCwxbchJIcwGoyE5TCekIfz/ec51X2KQ+2HaB1qxWly4s5x44v4ONJxhAt9F1hUvijhnqjMqtT9FAVBQBREVFTCsTA2oy1t2m46jOd81RXW8emZn+bnh36OKIhc6L9Ah6+DSbmT+Mzsz/D82ec52HaQ7+//Pn+x+C/4xp5vEFWiHOs8xkBwgKkFUxkMD+rhKmOhx99DljmLvmAf3ogXVVUBLbU0EA0QVsKUOksTwlp+ffzX3D/zfvJseVgkC6IgYjfZMQpGps6Zqo8jldmVvNP+Dl9/9etJylvQVNIljhR9uiPwca3zrpFsHxPEZ3jiBpq1ubWc7z8PQI4lhxPdJ3RmfSg8hDvbDcCBtgMMhYeS1jfSfDEdnGYndUWJvhNnus/wcuPL7G7aTZe/i3un38urja/iMruYmDeRmBKjwFqAIAhcGryEocKAoiqc7jmtk0Dn+8/jDXtxmV2c7z3P9aXXf+BebakeCssK55O9+22UUS+UcUNxbt/0roy2vWEvL5x7gXZfu37+DIIBu9GOrMoYBSOhqGaAWd9fT7uvnTlTH8kYioDJRH+wH0/Iw7nec0SVKAjwn2d+Q1lWGZPyJjEzZyaFaQrcAjGLfMcUVKk6YeB60PFgWsPkq8FYxf54/26RtBduv99Dpq15r9Qvqt9P4Kmnkj6PF0j2hx4CSdKIkZHXTSBA4IknEN3uBGLG/tBDOB59FCRpzIAEweEg9OyziOXlWG+/HdHpRA0GCW3dmqw4WL8eQZISCbZ0rZqjTINTLifLmVVkDQ2YFywgvG9fyvaguCpOSOVbkqbQtN1/f/KyY/meWCxaoEKKfQgfOIBx9uzMrbsGg/7vWGPjuJRz+n/X16OuWpXZn/EKQlDGc74AQpu3jN1+S2I7LKAdpxFdKON5BsA40pR9Pu1aEISEBFK5/RKmOXMwulyYgSxgYorvC05n+tbs2lqENBMZ8bbe4JYt70vy3DVcwweNTHVeMBrEaXJysvtkUp0HqWu98dZ5kwsmJ3x2vuc8NeShbHsV/4ixzel28/LG5+gYupRxnQFDjAOXDnwk67wiexGvt77OK42vIAiCrqjIt+VjQHse5FnzrrreyVTnxdQYOdYcgtEgfcE+Wgdbafe160mBsiLrPkhxGAQDOdYcXjz3Ig0DDXqdNylvEo2DjXT6O1nhXsHs4tlpt9lmtJFtzUaSpATS86Ne573QtJ2CRffihgSiTXC78a5YwKVwx/gmisbAO57T/Pjgj5M+j7fvxtM8v/X6t2gYaOC3i36AHTRLhz17CO/Zk/A92113MSu3luiE9TQNNiEM16PmhQtTT1w2NGgersN1Xl9Q87l65swzNA40oqgKLrOLZVXLmJw/OeEcjVc96A17efbUswmBCpFYBIfJwY76HeRZ8zBYDfQGenWyqnWolTmlc9IqEeOquE5vJxf7L+I0O8k2Z2OWzBQ7itk4eSMvN7xMp6+TtiHNYuWT0z7JhNwJFNgvixacJieKomASTQiCoBM8cbjMLoyiMXVbaqCHheULmV08m9eaX9MJaotkIcucRUVWBb6wjxgxhsJD9Pn7MEtmXdXpjXhpHGhkcv5kzvWewyJZWFh+uc7r8HZQnlXOtIJpHGo/REgOEVIv10RXmjB6JWrPzec2c7H/IrOKZtHp68SAgYaBBoyikcUVi3nx3Isc7jjM/bMu186iQdTvHxh/neeL+si2ZJNryaXAVqDtpxwiIkcoc5YRlIMsrVzK6Z7TnOo5hcvsotJVyVBkiE1TNo2plpuYN5EllUuSAj2skpUllUuYmJeqOtSOl8EXQN2682NZ510j2T4miM/wFNmLaPe1U5ZVBmg95+FYGBUVWZURVIGoohk/2ow2vQ8a0E0NzUbNs+Nk90n9YdviaeFE14mM0cTesJezvWfJtebiMDno8ndpvfOoGAQDBbYCzvWd08IQYtogFO/TNotmShwlPHb0Mc72ncVhdOAwOXDnuBEEgYHAABPyJnxgs52pBp6ptiqUhjdSLq80NKL6fFeVlBX3U+kOdFOXX8f0/On4o34ev+UXzM2uQ4hEiEoG9vUe4vtH/o2mwSZWVK9AFEQ6lUFK3e4E76I4BLebdsVDWA7rhdeCsgW81vwaWy9sZVrBNBRVYaV7JXdOuzOpwM2kcnK6XO9pW+9YA/14/15gLyDHkkNYIiPJdqUJr1e7HsFiQRkYyKj0GUnMqOGwlpxYW4vlppsQJ04kNpywORKjDeDx+4lFIgRHEWzx3whu2aK1L49AxlbNES09KZeTpDFVZILJpLVKjAqaGHldxVNDR/uspSw0m5qSls0Y7OB2a+2UwSAoo8z3h5VyajSKdd26pOOmt7zGYtgffBDBZkMVBIhGdWXd6ARfIOmY+H/3OxwPPJC61Wr9eoK7d2Nbs2ZcM27jOl8w7vZbQE+yFd1uYt4hzitaW0M8MWs8GE8ISGDrVuz3348Qjept9lgs4yqA0rZmZ/AVVAYHiV68SPTUqZSqw4+aL9Q1XMN4kKnOs5vs+GV/yjovnjw3GB7EJJq4oWghU2yVZEXMxHp79cmz2ODg5aTp4Xt0dDCLN+ylVHASGmV3ANoYE9qyhey1q1DSKIwMNW62tO/lBwd/8JGs80ySRmCGY2GyLdmoqla/BqIBtl/czrKqZVdla5KqzhuMDLKmdg1RJcpAaABh+H9t3raEOs9hcrCoYhFvtr6pp+8JgoBBMLCwbCHubDdvtr6ZVOfFiYJ3Ot9hWcWylHXeWKqZj3Kdp6gK61/8JH8z9yusWbQWuyIRkaAp0s3+hufYOGnje7LdYyXFOk1O9rXu0735ZKMh4/JIEkI4zLb6bcwumg3Dba1jTeLh9xP1eMg2qBQYsjTTeEs2MTWGKIic6TnDy/UvU5tTq99D41UPNnuaaRhoSEosHQoP6S2a/sjldkuTwYTNaENRFYrsRQgItHha9MCAkao4d46bZk8znpCHSXmTqHBVMCVvCtsubNPUXooNi2TBIBjo8nWRa8nFaLg842eSTNTk1kA/BOVgwjZeX3w9lVmVBKKBpH2Nv9P2Bfr4i0V/gWSQONl9EoNgICSHqHJV8fk5n2d3w27WTFxDXUEddsnOhf4LrKpZhUk00e3v5ljnMWJKDG/Ei1E0Xu6YQWst/8PpP/DVRV/l2298mzdb39T/Nr9sPl+Y+wWePflskoI0HcZ7vk53n6bT30lNTg0qKpJBo2tUVeVUzymWlC8h35aPN+IlENHG/yxzFkaDUScwr6TOi997VsmK3WTHLJkJ+oKEYiHavG0U2YtwmVzcN/0+eoI9eoLtzKKZ4yIZnWYnn575aSyihYaBBiJKBJPBRE1ODXdNuyvlsWvyNNHXf4lJr9cniV8+LnXeNZLtY4L4DE/85o8z1VajFbN4uSUpPgMgCAIxJUZtbi05lhy6/d1UZFXQ5GnCG9H62QEK7YVML5jOd/d/Vzd2NBlM1BXU8eX5X6bUWUqFqwKn2Umzp5m+UB+/PPxL5pfNZ0nFEqYWTOWW8htZlj8HS0wgLML29r383Zvfoi/Upw+kGyZtoNyczw/m/R8MkSiK2cjmtlf5+hv/wKH2Q9xZdyeuVtcHlkA6MuEljnjcdjrIoczKo1Q42nmUnxz8CU2eJorsRbQMtlCTU8OPl/4j0vbdmoR8GBvd1cy/5T+Y/7uV1HvqiSkxnjz/LP/rlkeQdpBAtAluN6xdyYvnfsNgaJCgHKSuoC6h8JIVmXAsTMNAQ9IMia6aaW1NSuiM1tcj1daOOxVxPEh1vOOIPwgyyYHj3w/LYWYVz+KN3iPcli6hsLaGqMVIiubDK8dYSbImE/T1ZV6HKGphCOXlemBCrL6ekKpiWbmS0KjW11QG8Ep/v0b8ZCBYCAQS2pfHVCAN/z3VcrG2NsTq6sz7ZTIhuFzY7rxT9x4brcZK8Odqa8O8cCHSlCkpC019WYNBJ1vCBw5gu+++RJUUGglpWbEC/29/i+Mzn0nchxFKOQC5txfzggWaqiscBosFwWLRAhXOnElYPtbYqLX6btyINHUqUk2N1uo7NETgxReTlXWDg6h+P5aVKxFEUb921VgM369/rf192bJx+RON93xlxGhi1GzWrqdly+g0hXi9YecVGSUrwSAYDIg1NSmvPbGmBsHpxHH//ak9CIeTQceCweXSAkvG6R0YePFFzAsWpCe3P0K+UNdwDeNFpjpvMDSIVdKu56Q6L6cWq2Ql25LNptKV2F/Zj9Kwj7gxgThtGtYVK9JOBoz012z2NDNFzU9QsI1ErLERe8zA8QVuaiFJYdR/4xx++/r/xmFykGXOosvXxeutr39k6jx/xE9MjRGWw7R72/WJ4Hi7kz/sH1NxNRqp6rwyZxmfnvVpjncdp3WoFVmRicQilDpLmVk0k5cbXtbrvNebX+crC74CqkaYSQYJySBxXfF1/O0Nf6t1OKSp8wBC0VDKOi+umhkMDZJnzSMoBxkKDTEUGuLFsy9y25Tb3tMkv/HUeZm8w0bXeaFoiCJHEf9w8Dv8wPRTqrOrqXBVYBEtlDhLEtRQ7wZjJckWOYoSjO/f7D/O+nTPxOEALGHKZPa17KMv0MeM2RNxuqvHnLhU+vsJPPMMArDcXc3EZf/EV97428vKMyVCw0BDAgk8XnWgL+ojoiR2eAyFh8izaom3cc8xAQGr0YooiHgjXmRF5kzvGfxhP9MKNYJttCpuZChDw0ADk/ImIYkSfcE+puRNISSHUFQFu9GOzWjTiew46vvreXTOo/zm+G843XtaT6qcVjCNz8/5PEe7jnLrpFsT9jWerPxKwytkW7OxGqwsqVjC6trVROQIdpOWmv69N76HKIoMhAYotBfS6Gmk0F7IgdYD3DntTpZULGFZ5TJMookp+VN4veV1LJJFF6dElAj9oX7O9J7hE1M+wYMzH8Qf8WM32fFGvHxzzzeZVTJr3MT8eM+XJ+wBhoNKBBFVVREEAUEQMApGomoUX8SHWTSTb89neuF07EY77hw3DpPjigMxJtgr+NMJn4ZQmICosL/vHX5z4TmGwkMU2gtxGB1Uu6r517f/lUveS/qzKR4EE1fjZkJ1djWPzn10XOrZ+Nj1yZLVKI0vp1jbx6POu0ayfUwQZ5njF3YgEmBS7iQ6/Z30+HuYXjCdkz0nEQSBXHMugUiAiXkTcZldnO09y7GuY7za+ColjhLWTlpLi6eFqBLFZXbx93v/ntZB7YFtFs0MhAbY07yH/mA/j859lJcbX2bj5I34oj7NY0CJ8kbrG9iNdr42+08pfO046o4t2nYCn3JXsfgTL/DV/d9AFEXmlc7juwu/geOVA6iNl5NK73dXsfgTL3HTH25lMDxIIBr4wBJIRye8AJhsDjI9Ao2WK7uRu3xdejJVoa2QvkAf5/vO8+DkTyJt35NMEDU2UQz8fNWPefzMU0wtnMrhjsP8TPo1n7hpHSUrlyJEZESLBew2WkM9hGNan3yWJUt/WBY5ijjWeQzJIBGOhbWHRLCf0z2nCUQCeMIeVmfPIdbamjY1UKqqItbfP64X5PEg1fEGrfC6bfJt2EMKgRefTSsHdpqdLK9azk8O/oRmTzPb5DB3rf0hsW07k14aTGvX8Ovzz1LqLOX6kutT+ouMt79/rCRZNRgcu6VRELDde6/mVfXss/rHsYYGuPFGpPJyLf3R49EVVEkG8ONQliUlkY5DhZduufCBA9gnT85IMMpnzyK3tWFetgxh+NglqbHi/lxLlmiBETt2IBYXp96g4WXtn/scgsFwOVDEbMY4fTrmBQsSvPH8v/0tlpUrQVFAUbDde69GYoqiTpjF2toSCTTAds89hEYkliYo62w2HA8+SHD79qTz7XjoIaJnzyZvtyji//d/T3ucx5uANt7zlREjrkWxpgYsZkzr1tKvBumIeNk4aWNCUZMQdmEyad83GLTzGYnoRLztjjsIq2pKMlj1egmNSoWFYYXliBaYse45g9U6PjIyfo3NmZN5ueHjfkVpsddwDR8iMtV54ViY3kAv0wunc673XEKd1+ntxO60U24swPby/qRZf/OMGUnPMLisgjYvWEB4+3ZNUSoHIDoG4R8Osfy59fzfhf+bO5ZswK4YGSRELwH+fs9X2deyD7NkJiSHsEgWpuZP5UzvmY9EnWeVrHjDWiLyyES8kBxiIDSASTKNu8UK0td5kViEXx76JbOKZnG+/7yuCuryd3Gs6xjrJq7jTPcZphZO5WjXUaySla8s+gresJeQHKLQVsiMIq2j5FTXqbR1XlSJIhmklHWeSTRxaegSla5Knjr5FEc7j+pKpcl5kyl1luIJeZhZPPN9O95wOQGzL9iXUVU3us5zmp16yJpFstAb6OX15teZUTSDjZM38vzZ56lyVb3rOm+sJNlgNIhFsmCVrDw05V6WFczFWlWg1Qkja9bhxO3w4cNEp9bQ4+9hf3A/N1TfQPaqxVjDY9SKI57famMTJcCDdffw85OP6Z9HlEgCUTNedaDD6MBkMGmT73KYmBrjSMcR7ptxH9MLp9Pl60IySFpiZMRHnjWPDm8H2y9up9PXyc21N/Nqw6vMLp6dpIqLhzLMLp7N9MLpHO08ypmeMzR4GjjZcxKHyUGlq5Lz/efpC/bhNDu5s+5OrJJVJ1sK7AVYJAsDwQG8ES9OkxOTZOJ413FcFhcF9gJ6unuwG+0YBANZpiy2XdxGp6+T7kA3i8sXIxpEnjrxFP3BfibmTeR833myLdnMKZlDl6+LN1rfoMnTxMLyhXxt+df41Tu/4mjXUcyimVxrLqXOUr4474sJJvwmg0kP/fvma99MOr42o6bSGy8xP97zFVdXhuUwdqOdQnthQhCG0WAk25LNrKJZuF1uvrfqewgGARU1ibwaWedhMhGTDAwJESwO7d1KGRxEfvFFpOFrOQtY63YzfcnX+fzuvyDHkkOHt4OnTz9Nu7cdl+WyAKNhoIGfHPwJ3175bYocRWMGcDjNznGRkc2eZjq8HSg54598jquJPWEP2ZZs6grGDql5v3GNZPuYID7DIyBQmVWJQTDwyNxH2HFxBxf6LvDJaZ/EcNpAh6+DMmcZ/ogfh8nB+onrefrU0wyGB+kJ9HCEI7QNtfGl+V/ifN95gnKQwx2HKbAVYDKYGAgN6IXH8e7jBOWg3iu+tGJpws3yN3O/ohFsSWRRMzUI/N2Cv+bul+7nX276Ls5XDyQVfjQ2Uwv83YK/5kKgBQOaGeYHlUBanV3NZ2Z/Rh8QRMmImkm1JI59u4x8qNtFlVWly/h530VEg8ixrmP0BntZXbIU9ZWXUq+gsYmbV3yKP9/9/1GbW0tQDnLJe4nf1/8RgDun3sn0okkAlJvN1ObW8vTJpznadZQSRwlnes9Q5apiw6QNNA5o+2EymOj0dbL94nZ2N+0GYMGiH5Cbrm1v2NjevGyZpsC6wnCHdBh9vOMPArsiEXj22YxeVH6DzOstrzO/dD7zSucxL3cG8suvYiwv11rkRpAvwR07CJT185lXv87K6pX81dK/SphlGW8YgP63kUmy4bBGRhiNGhGhKMjt7emVPm43saYm5EuXkCoqLhNnceN/SdJIp1gMJRgktGNHUrqi6HYT6+pCmjIF++c/r6uxdHXVcJDCaBImUzy9WFtDLBYl0tWOZLUlLxeNaiqx++/XFF8pCsk4ERgGTQ1BGkIpGoVY7DJxtWBB8jIjlhUMBsT8/MR9qalJbCc0GjWF2759hF66fC/F01/Db7yhr0834R9OaxUslkSyaEQLh23jxiSCDYbviW3bktoxRbcbBCFJDTqy1XS8rcuZz1ctgt2u/zvlMjU1CA4H5mXLkDs7sd58M2Lu8AsZUESiYiHlfTCsehOiUUI7L3tgxI+h5aabdC/BOBlsf+ihzMEIgQCKolzRPZcJ6jChKphM2D/7WU0pqqqakjAcBqOmnhYsFpTBQWIDA4RfS0wi/rj4eVzD/yxkqvMuDV3iaOdR7qq7i131u/BFfPgjfloHW6nOruYTUz9BqeRCbUxWCQtOZ8Z7VFi1Sn/eVq+5AURjymX19Zkt2I12/vPMb+hRhnj8yOMsq1rGKvcqTvWcIhwL4zQ78YQ8uiqvzFmGL+L70Os8T9BDVXYVZ3uTJ0xKHCVaQMEYLVbjqfNmFM1g28Vt/OOKf+Rg+0FaBluwGW2E5BBOk0Ye/dWuv2JC3gSCcpBOfyeH2g8B8Trv8rGRRIlT3ad489KbCXXezbU3s791PwJCyjrv+pLrGQwNcrjjMMc6jyUYw5/rO8dTJ5/iltpbrircIR3S1XkAjw2HdI3ESC8qIKHOMwgG+gJ9LK9aTm+gl4m5E7EarZzsPsnXXvkaZVllHOk88p7UefEk2VPdp+gJ9GAWzVRlV1GbU0uLpwWjwchPl/8zeXuOojY+g2+4hjMvWaJNCkYi2nP/8GHMixbxdNM2BEHgK7O/yJrc+ajBMDicWDZsSF/ndXQk1RIbXDaePP+M7h1oMiSSwOnUg/F77ZL3Ej2BHmpzail2FPNm25sMhC6nYf774X/nS/O/xPGu4wyGBunwddA82EwkFmFB2QJeOv8SUSXKnqY93DP9Hv28jlbFyYpMTI3x5PEnybXmUmwvRlVVbEYbMSVGf6CfKlcVp3tO0zLYgiiISff/jKIZOgnbE+gBNK/EpZVL+f2p33Ox7yL7WvYxEBpgftl8iuxFnOo+hcvi4kjnEdZMWMNfLv5LokoUAYHXW16nbaiNzec3s2HSBnY27ATguuLrePrU07o6MRKLIBkkmjxNPH/meT4141Og8fC4LC5MkolsczbfXPR11pTegElWiUoC29pf4zfnn6XAXjBuYn48ak+4rK482nmU+oF6fnTjP3Nd1mTEqIxqNnNk8Az1A/V8dfFXWVS5KO3vpavzspcvYyDajWIJIL60M+n9RW1spEKAby7+Oj85pk0WHO44jEnUWp8lm6S3sDYMNHC6+zRBOTiuAI7xICgHNZ/AMcQtiknbhriaOBVJPh6V3fuFayTbxwTxGaLtF7dzZ92dfGf/d/j54Z+zrGoZFdkVeCNefnjLD/XBKduSzZHOIzx/9nl6g72IwuXmuePdx7nQd4HphdPxhr18esancZgdDAQH+OPZPyb8ri/iQxREBAQ8QQ8iIrOLZ3Oq+xRrSm9A3bMt5faqjU3MWrmMX2z4BWtyFxDe8svUO9bYzIaFt/Czht/pD5Erleq/G4xk1QMtjdosFCQrNhYsIBrMnAqZajDb4K5mxvJ/5ltHf0J3oBsDBoxRJfNGhcLcMuEWKlwVuCwu7EY7Kiouiyup+GsYaMAsmakrqENVVRaWLcQsmen2d7O8ejmeoAeHycFzZ54j252tf082GsY0thdWrkxqQXy3SDWLEevtHdOLqjnWSW+gV/+8qnglyvlXCJ9P9jMDWDNvLf9H/kcOdR7ih2/+kO+s/g5FjqJxhwGMhqAoRNvaMDidmjefJKE0NyPV1CDk5mKuqtKumwxklDlOLqVLmKqtxXbffQR++1u9ABPdbsyLFmFwuQhu25asrnrwQXxPPIFYVAQ2W8I2p/W6crsxz5tP4FePaSTQxo2Yly7VlEojt7+oCCUUwnrrrRAKXW5ZHaW0izU26v9ORyiNvNYy+qzV1KBKyY2+ejuh16upkez2xDTXYcQaGwnu2JEQAEA0eplEu+uu5I0boRAcz8uovq21tVjXrYNIBLmtLSktzPHww1q7pTHzC6u+j+P0Jkt3Ti0rVqD6/Yjl5Rjr6ogJpGyZThcYEN/HMGC5+eYkRWJ43z7E8vLkIJDwGAnIoRDBnclFXKZ7Lt1sqDI4SGjHDm1dwy85olvze1ICAWKtrYQPHEAsL8dy883Ily5d8227ho8NMtV5E/ImkGfNY2bBTJaUL6HT30kwGqR1qJVANMCTx5/kgcKbk1dqNILBoKmpU0wCANo9bDQilZaSJxtRJSmjijkkqfz7xn/HbDDT6evkFxt+QbGjmL1Ne4mpWvLoSPNyT8hDRVaFpvj4kOu8XfW7WFO7BlmRudB3ARVtO93ZbjZN3oRZNGdU2I23zospMYyikXN955iUO4kbqm7Q/J6iITp9nQwEB1hZs5JCeyEWyUKOJSdlnecNe9lRv4McWw4zCmcgKzILyxZiFI30Bfp4aPZD9Af6sZvsSXWeSTRhkSwcbj+MWTITjSQSO82DzYRjYU53n35PFR+p6ryTXSfH9KICEuq8InsROxt24g176fB1MKdkDkc7j9Lt70YQBOaUziEkh96zOi8oB+nwdTAUHiIkh+jwdXC65zRzS+cyJ3ca+XuPXhYLxOuKffs0+4qbbtLIMZeL80o3Pz3xK35/y6+o2n8eddeTAAQYfp7fe6/2HB1Z5w1P4IUPHEiqJX6x4ns8uvcviSkxanJqEq6PVOrBTl8nl4YuMbNoJt/d/11kReaWGu2d4vYpt9Pt78YX8WGSTKBqoSpfnvdlGgYa2NeyD3eOm0tDl3SCzSSa8IQ8xJSYTpzG0z5HIsucRetQK/m2fBAgz5bH2d6zqKpKl7+LuZa5VGdXY5EstA21kWvLTSBf4gTthb4LdPm6yLJkEZJD/OqdXzEYGiSqRKnKrkLul2kdbOVc7zmmFU6jvr+e6uxqegI99AR6cJldmEQTz5x+Rl+3rMiIgkhMjVHsLOY3J36DzWhDEAQkQcJu0tRip3tOJ3iylThLuLH6RqoMuQjbXk145/1MTQ1/cttLKEoMrOObTB1L7Rkfe+Lqyu/v/z5fnfEoNW/Wo7bt0mqe8jwqHPO49eYVdJF6HPWGvQS9Hmzb9qSt87KmTUMpNRNN8/6lNjTiXjSNLn8XQxEtVCfu3xeWw0imyxRSf6ifE+dOjCvQYeQ2pqrzmjxNvHTuJbZc2EKFuYC1aX3Jq3ml6wClijuJYINkld2HgWsk28cI1dnVrHav5qu7voock7mu5DrCcphcsxblfqb3DE6TE4fJwVBoiBNdJ+gLan5RBuGyUadFtFDpquSnb/8UX8THgUsHMBm0fvSHr3+Yp08+TUSJEFNjZJk0I8XnTj/HduN25pfO597p9/KfR/8TU+buNRyqidum3qa9gGZYzq5IBKNBfdC+Eqn+ewnBZCbw5FO66mVkQRp47jlMn30o7XfTPdTVxiaqgLtnbOTpU08jGSSdeU8H2STycsPLvHXpLQLRAHNK5nD39LtZUrEkYZBq9jTTNtTG2d6zdPm7UFWV8qxyuv3dWp++NZ83L71JmbOML83/EoqicLTzKCE5xP7+Y9yRlX72A9Daq0ZFyb8fGI8XlW/Ug2Qs/zyTrBXOckzmdM9pvYgcbxjASCjBILGBgaSXddHtxpCbi1RWhu8Xv8D+wAOoo1oaE9o+h8mctMb/9fWEAccjj6AGAqihkNb+qKrp1VXbt2O76y4MWVkpFYcjva6UYBDkKLHGpoTtEu12Ar/9LebFi7HccIPWfmnS7kX5wgVidgtSOEzgmWeS1h9HPM01rRorTmQNv/BZVq3SyErQX/jE8nKst9yi7dOm25KL4EiE4N69WG+4QQubSHceh5NPU0KSkonAke2+YxBGRKPYH35Ybz0BCKQyCG9oILhjh5Ys29b2nnqTxZdRhoZQBzXfEMFuJ7R3b0KIhlhbg3TrxoRZ+/gLonnBgsz+fkqaiYBULctmc/JnIyCYzVhXr07wq/M/8wwMDqa859IZdT8w+W6kl3bpBFtKorqmBsfnPofS1weqilhSoqkGUu3nx8DP4xr+5yFTnVeTW8Ml3yWcEafux/bWpbeoH6gnEosQkUY9r4fvk1AKNbLtjjsuPwcslsT7KUPbvHXDev7l3K91z6A1E9awsHwhB9oOYJJMTMqbRI+/R0/5i6PCVfGRqPOMghGXxcXi8sUsKltEVI0iCiKiQSTfno/ZkH48u5I6z2FyEI1p4RQ7G3aiolLqKMUkmsgyZ+EJe9jduJu32t7SEkKrV3DPjHtS1nmne05zsO0g3f5uYkqMsqwyuv3dmEQTdqOdt9rfYnLeZB6d8yiiQSTLlMVrLa8xFB7CIlkIySFyrblkZ2Xrflc2ow3JoNXe8XP5fuJqkkfjCYdx0iumxOjwdQAgIurKvPeizvOGvexv3c+W81sS2vJKHaUIgsAnCm8iPKyESlpnQwOxlTfRTD/1pk6+uv1rfGX2FzSCbVSnT0Kd5/cjmM1ET58m1t6O3NKSspZwqgr/a+6X2N97OKVJ/Ej1YLe/m7fa38IgGDh46SCyIiMZJFxWF8e6jtHY38hQZEgjlwwSlVmVmEUznpCHiBLhZM9JzveeR0Uly5yFQTDoAXsBOaArE2tyamj0NCaEFERiEZwmJy6zi75gH/fNuI8mTxP+qKa4HQoPIQkSm6ZsosPXQdO5piTypS/Yx4FLByi0FfLTQz9laeVSAtEAgiCQb8sn25KNKIgoqsLxruNMzZ9KKKpdG6C1V8aMMbJsWcSUmLb9w/sqCAIiIiE5hEHQFLWSQcIgGLBKVqxGK0ViEUbRyJoJa5K7bVLVedu2IZWXI7e1YRhnnZdO7Tn6vM4uns0/L/0HnDv2obRdSlnz5NTWoNxamFDnxWuoe0vXjBmUJYSjRFMuoUGSYwSiAVaXLuOOO1ZgklViRonXe9/hqYt/0M+/STSRY8nBIBjItmTjMDo403uGcCycEOgwehtH13m31N7CroZdRJUo5VnlvNlzhOlL7qUcFUbcS4YaNwM3zeXAhd8zTYhwsf9iAs8RR1xld41ku4Zx4WzvWY52HgU0/7RPTvskvoiPH7/5Y+o99ZQ5y1BVlU1TNrGwfCGtg61EYhFNTi6aiMQi3Fx7M8+ffZ4T3SfIs+ZRYCtgKDzEye6TRJUo88rm8dL5l5hTMofa3Fr+9a1/pWmwian5U9nXuo/pBdP503l/iisrP+O2ZvJ8GgmjzUG7t53phdOvKA3lvYbgsGOoSK3uMtS4ERz2tN/N9FBXG5uYt+wTeqz1rs793JXGtF9wV/N672Gm5k/FF/FR6aqkyFFE+1A7udbEwbvL38XBtoMMhgexSBZyrblc8l6iL9BHsaOYcCzM2+1vc0o6RZe/iyUVS9g0eRN/PPdHnjj7O+5cfUvm42G1wgdAso3Hi8oRSyzIZaOYMdggImrbbRAMxFTtIRHzekGWsT/wQMp2S0hN+KnBYFK7GVyeDbKuWwfRKGogkKzyGYlhMiejgnCYnDIUFBB47jli9fXYP//5jOoqwy23ZHywx72uIp2XiPznr5MXkGVtVnbvXsJ79yb+zWjEPHkigtmcMXVTGCZa0qmxsFgSiZERvyPW1OB45BHk1laiZ84QO3c+qQjWze7nzye4fTvmuXPT7m98e+yPPJJ0jhWvF8HlwrJhAwanE2QZweG43O47FmFksWiqwWFkVGEOFzHhffsSvMnGwni8yQxWK+GhASJPPaW1h7a1pSBtGxJm7RNeEMfwMyMSSf15Cv9B1evNqHpRQiECTzyR8JnjgQc0orS5GTUQ0BMQ/QZZL7yyzdl8dsJd2GIihEIIYYFoWZkW1pKOqG5oILh9u0ZuPv00Yk1NIpkwetvH6Zd3DdfwQeJq67xXuvbzSXe1/jKS9j4ZfnaZFy5EbmtDsFgSfCoJBPA98QS2jRsRVq/WxgOzmYAYSyDYINHzyRfxcduU2/CGvQntkRNyJrBuwjq2Xdz2odd5Uwun8tuTv8VldmEz2QjLYcySmUAkQEN/g962mApXUud5Qh7mlM6hdahVV9DIiozdZCfbks3F/ot6nZdvz8dpdmas8wZCAxhFI0WOIi55L9Eb6MVmtFFgL6DD10HDQAPtvnaqs6q5MHCBz173WbZc2ML6ievJteZS6arkQv8FmjxNmEUzLosLVVUpcZaQY855T49xKlxN8qhkkOgN9CIg6CmwccTUmN6u9l7UeU2eJjaf25xAsAG0+9rZfG4zt7syT0r3ebtZ9uImNk3eRCAaYGXRYtSXt6RcNl4bSVVa4Jfc3o55/vzk+iu+vY1NzFt9E/Nql6ZVWcbVg7sbdrP94nZt/QaJuoI6puRPQVEV9jbtpX6gPuE4Hu08SvNgMxXZFUgGiekF05mQM4E2b5vu+RdHvjVfJ4PunHYnoVhIDz8AyLXkUldQx/Si6Tx25DFePPei5iVoyqIsq4zPXvdZtl3YRl+gj0A0wGB4MIF8iZvdF9oLeeLYE7iz3exr3sf2+u268f/Mwpl8euanebv9bSbkTqA8q5xcSy4X+y/iCXk413uOxRWLmZ83m7bPnMSsihCJEDYK3FS8mP+193/jMrt0gk1RFVRVJabG8Ef82v1rL2Zh+WVrkPejzhuvN1mOYiLS0Ih52bI0k/OJdV78GPYH+zGEM9FnaPWvM/17LWjvWr9Z/QuqX7+QYPl0m7uaBcv+H195429xmpyc7jnN11/9OqARbvPL5vOXi/+S9qF2BoIDXOy/CAJUubRxP76N8XTlkByi29/NtovbyLXmMmAc4PqS63nm9DP8+viv+aelf8/yhbeQhRm/ILO3+y12vvn3HLx0kGWVy5hbMpfj3ccTWuLj+CAmEdLhGsn2MYI37GUoMqRHD5c7yrkwcIF9Lfto9DRiQJtx8Ea8HG4/TImzBHeOm3O954goEXIsOQyEBqjNqeWxY5qRZutgK3PL5nKq+xTdgW7O9Z7jltpbmJg3kVsn38q289to9DRSk12DQTAgKzJHu45ytOso0vQYG9J5UY3wEMrkNSS43bzR9w61ubWUOEuuKA3lvYbF4YL1a4lu2YbScHkwMdS4Ma5fq/09DcZ6WTNEotTm1BKJRfjxsZ+zbtNz2F8mgWgT3G58qxbync33c2HgAg6Tg4l5EylxluCL+pJmAgLRAD2BHvJt+Vglq1akedspdhTTH+zHKBopd5YjKzInuk6wvGo5jx97nE2TNrGzYScXQ+2UZ/ASk9vakCZMuIIjeHUYjxdVlSHRx+CY9zwL0hCVuKvY2r4Hk2hCQKDAWsDN+QsIPv982nbLdL5mAEQimT2nhtU9Y7VBCg4Htrvu0jzdMkANBhHz83WyajzteOOBmm496YIb4qTYrlcIZ1BBiDU1Ca2qCa2dcUN9sxnLmjXpiZFt27S00G3bUu5T/OVGWLlS+/4ob7RU+xp4/PGkllpDVhaCwaDNHMf3yWjEdu+9hBmbMBpJwoV8g4h+f8bt0K+NFOmv7xZSJEaEsUlb1e9HAdShIcxz5sCCBQgOh6YqTEE8AWkTRWNtbUmfB158Mb3qZe1afI8/nriO4UAEy8qVyG1tGKdPx/fLXyJWVmJYuxpfxEe2OZs/nXw/wc1bElIO49cegpB+n4eLXtCurbCqJrYPj8B4/fKu4Ro+KLybOu9HR3/Oolt+pbkvNjZlHhsaGzEvXYpx+nTNu3D0mBcIEPjd7wCwPvoI3zr786R1jCTLqrKrcFlcDIYGubvubvqCfSiqQlAOIqsyDQMNH4k6r8hRxJ/M/xN+cvAnHO48rH8e9+/JpHi4kjqvN9DL15d9nZ+89RNkVcZhdCAIArOKZjGndA6/O/E7WoZa9DapeCve6DovFNUCGXIsOVgki17nZVuyERCIxCJYJStGg5ETXSe4oeoGnjv7HP955D+5fcrtNA40cmP1jZzqOYXRYKTQXkg0FmUgOMCkvElc6LvADVU3vPsDOwbG60U1cplAJECJo4QuXxeF9kKdVAOtvbd9qP09q/Pafe1JBNvIv8nGzHn1slFkccViphVOw2F2kE3mibJYMIDI5YnJWFdXxuXFiIxtHPeMJ+xBMkhMzZ/K9MLp7GrYhcPkIN+Wz8X+i4RjYSySRSfaZEUmqkQ503MGOSYTlIMEogGqXFXMLZnLfx37LwJygBmFM7ip+ib9vq3OrubPF/w56yaso8PXgSRKlDpKKc8q5w9n/kBfsA9REGkdbEVFpc3bRkyNMaNwBuf6zuHOdjMYHkxQMDZ7mvUJNrvRzitNr2A0XLbbEAWRocgQT554klxLLm+3v02ps5SzvWf58vwv8+zpZym2F/OFKfeTHVQJv7qX8Ihr4RM1NSz+5C5e6z/CjMIZHO86rrVom11aG7sKk/O1QBD9PHm9qIHMVkHva50XVcZd53kNMocuHSKmxCiyF6GaM79rIEl41TCSuyohJVqHuxqPEmDCmw0oo9614sEcX5r1OdqjfXxj9zcALVgmJId4rfk1wnKYB2Y9wOYLm6nOqeb5M8/jsriYUzJHJ9icZidPnXiKc33nAHCYHCwoW8CyqmX6OIUA3z70A76tgmgQafQ0IgoiD8x6ANBazM/2nmVe2TxO95xO2o14iMSHgWsk28cEcWnlgdYDbL24FYCba29mdvFstlzYQqG9EFVVsUgWokqUU92ncGe7qcq7bPAajoWZXTybEmcJwWgQq9FKJBahob+BPFseNTk1xJSYNuuhKHx///dZWbMSg2BgIDSA1Zj40Hji7O+4+ZZfYNopZPQQSus1VFNDbM0KCgONfK50Ztoo3w8SltwCuH0Tqs+nmdybzQgOR0aCDcan1vvKwq/QF+hj+8XtzP3tjfzgxm9zww13Y5JVQqJKQ7iDf33j7zAYDNQV1BGWwwkPmJEPoyZPE6FoiIXlC4nIEbKtWhtAgb2AQCRAo6eRDl8Hbd42bRYQlUAkQDQWxWVxYRbNfPPQ9/mvdT8muGVrSg+6wHPP4ah697PNSQmGJhOC1Tr29THiOnJCgo/BC03bqVz2WUoQEnv13VU0LKzh+5v/jhxLDoqq8NObvkd41D7CiHbLjRsJ/O53CcTwSKjpVD0j/m67914QBKTJkwm98krS8Yz7ZQFjq6WGPbx0smq4JTDt8mNce3GTZpPZmlIWno4cHJcK4tIlrOvXJ83cpVRjRaMJIQUJ62xo0Fpt03i76S83w0RhRkLT7dbabLl8ju0PPYR84gSxS5cIv/lm4veiUQJPPYVlzRoMublY16/X/MpGE0br1xPcvRvbmjVEgj6iW7YhLshM9iWkhb3Hqim9hTRT6uzwtTQ6WESsqUny/9P/5nYT6+vDsmIFIRJ9BuXeXqxr12r+gPHPAwGCe/ZgWbcOQZa1YASzGcFiwferXyUoCOKINTYiiGKSh564VeWGBQuZkTOZ4OYUbbjxa2/JkswHZ8QxGUm6Jexnmvv9Gq7hw8K7rfMC0QCf3PEw31jwN6xe8WmEWGZiQDAYNMXacHBN2uXCkSSCZLSH0GivIdEg4gv5yLHmsMq9CskgkWPN+UjUeXGTez2JzpxNXeHYSXRXWud9dcdX+eT0T3LfjPswCAYC0QBWycprza9hNVr1Ou+S9xI1OTVAirZJQTNqf/vS20zOn0xdQR3ZlmyskhW7yU67rz2hzvNFfMwsmsmFvgs4zU7ean+Lu+ruosPXwcX+iwnpordNuY3eQC9D4aGrP5jD8Ia9XOi7QLu3HaNkpNRZSrWrOu31Ecfo62jkMg2eBpZXLeedjnfItmTTH+ynyF6EzWhjUcUidl7c+Z7VeVE5vepHQKBLGaI4zaS04K7mfKiV+2bcR3+wn4qsClRzZi/WiARxCsTgciGHghmXF8aoG0E7B2aDmdnFsxkKDfHTt39K82Azt066FVTItmTT5esiGtN81gRBoNhRTKe3E0mQ2N6oJYl2+DqIxqLMKp7FF+d9kbO9Z3n4uoeZWjg14fecZifXl16f8NlQeIjB8CAm0YTT7CSmxHCYHLiz3TQMNDAxdyIljhIEtG6TkQrG+LXvjXjJs+VR319PeVY52ZZsBoIDFNoL6fJ10TbUxt3T7qbUW8pAaIB2bztPn3yah69/mEpzIc62PsKpvFgbGigW4NY1N1PpquQHb/6Ao11H6fR1oqJyffH1fGHOF9jdvJvSrFJs/ijBzZtT1g8J+LDrPEAO+Hms/rcc7zquqcaAYimb1ZlC2bxD/LZjDzctXkolQqLoo8ZN3w3XkScrqcUMaETbjas/Q/njM5FVWSfYYmoMFZUDlw7wues/hyfkYVf9LuaWzqXT38nxruOE5TCF9sIEgg00VWqjp5G2oTY+NeNTGEUjokHEaDBilax0+bs0n3hBQFa1YxJVogSiAbLMWUnbWJNTQ11hXcZj937iGsn2McBI+WeRo4hCeyHd/m5aB1spdhTjMru4OHARURAZDA9iEAzk2fIYCg9RV1Cns/IWyYKsyDjMDj21JKpEsUpWzvSewSbZCMgB7g7fzUsXXsJqtOr9793BboodxQnbFZSDnPQ3sXQMDyHI7DW0lLIP7FiOBxaHC8Yg1UYjs1qvmle63uTZs8/y5flf5nTPaUqcJWxv280T537Ha02vEZAD3DP9HkKxkO45kWPJId9+uSU3/jCKXw/VWdXcVH0Tjx15jK0Xt5Jvy6fL38XCsoV8asan+M3x3wCgomLAgGgQaR1qJSJHONN7hgk5E/B5BzCnSOiMq5TGemDEvF4tdXP4nGKzJRAuaRMMly+HnBzdR2A8XlQjfQyaB5t5rf8d5i2bQflNCzHLAorZyM6O1/k/Ox/RZeALyhZQZSxIUMMkbP+wmf1oYjjh/I1RWKuhkN4mKk6ciGXlSp1QM7hcWqtkNKolIObkoA4fg3QEkSoIidHzdntmdZXNdnn5cFhr85VlLSDAZEJubSU0TGSkWk/4wAFs995LSCBBwSlWV2dUQVhvuQXjtGmoPh8xWdYInUhE3wbB4Ug4nmORlfEiIlURrJ+D4UIzfOCAprIjdUhJ4LnnErY1blJsu/fe1C0ZwwSg5QuPEN3zOuYFC7SQg3AYzGZUr5fgK68g5eejBAJEt2pq11hZ+bjIvoR9eI8QH3PSKhHRiNAEQmwYsYYGwpKE7b77tFaw4Xtf8Xox5OVhsNvx/eY32O+6C1atglBIu44lieCrryKVlWm+d7IMViuGrCyip09r18swaWd/8MGUBFsc8bFlpIderKGBSTcuwBYTx7xnMyLDMYHkiaBruIYPG1da58U9iuJ1Xk12DevLbqTQ4IRQGCQLGJM9akZCjUS0e3SM+8VgsYzLQ2i8XkMfBVxNoubV1Hn+qJ+dF3fydvvbeCNe7qy7ExVVr/NAq/UK7AVAIungDXtRVIUJOROodFWy9cJWTvVo9h/Z5mxW1ayiLKsMo8FIVInqdV7jQCP59nz6g/0MhYaIxCKsrV3LmglrGAoNYZbMoGqkRoG9YEy/tC5f12VC0pJNXUEiIdnkaeLJ408mtA6WOkrZMHkDiysW6+b247k+Rtd5bUNtzCiawVBoCKvRilWy8nrL67x0/iVsRtt7VueVOksxGUwMhAaIqTFEQcQsmTEajGSZs9jS+gprli6lRE0kHQw1bpQ1K5lpNWI1WvV96yNESY0btSF5mwR3NR3KELUj6jyD1Zo2pV6zq3HoRvH+qB+byUZUjhJRIjhMDiyihe3126nOruad9neoyq7ifN95jKIRySDR7e+m0lVJJBZhMDyIoiqIgkiOJQcBgdahVloGW5AVmWJHMYqq0OPv4WL/Re6uu5sOXwcH2w5iM9ro8HUQiUUodZQyMW9iwvkTDSLzyuaRbc3GF/ERkSP0B/s53n0cRVWwm+xMyZ/Cmd4zSW3j8WvfaXISiWn1Yru3nWkF01hcvphJ+ZMIRAOYRTPTC6czOXcyPzv0MxDgZM9JugPdLLJPQXSSoGBLuBbqG7DLKzjVc4pPzfwUn5A/QV+gD5vRRiAa4JlTz7CwYiGCP0hws6bOj5V/tOs8AJ8hSn+wPyGQ4odHfsb0FT+mhBShbMuWcVHt43t7/4X2SB/rF6xi4o0LsMYMqCYTmy/t5tk3v8Ev5/xDxt+Vg0F9/HCanChqop+vL+LDneOmfqCeOaWXbUoGQ4NkmbMSCDbQlJVWycqpnlNYJAuiIBKJRVBRsRqtWnKsICAgYBa19wFP0MOiikVYpcT7ejzq5Pcb10i2jwHiElrQ4oSXVS7jjdY3NPPUkEe/EC2SBX90WC0TALvJjqzIzCmZwxPHnqB+oB6TaGJm4Uwkg8Sc0jkcunQowaD2+uLr6Q50gwoGg4Eefw9Vrir6An16alQcNTk1TC6YPC4PIRif19DHFenUWIK7mo5l03nijb8lKAcJR8NcHLjIgbYDGA1GVLRZaUnRjHJdZhdHOUqOJYcF5QtwmLSHzsiHUfx6qM2p5bEjj+EJe5heOB2H0UGlq5JANMB/vPMfzCqaxbHuY4Amge70dmoyYkcRX5z7RRwmBxFRhTRECmR+YMT6+5EbG3VvKzUcRmlrA7cbMTc3fcLTsBrFOH06xqlTExRtY10fcR+DquwqHjv6GC80a94ToiBS4iih2FnMN274BoqqUGQvYkbRDOgbY2YpGs2cMmgypS1+Rj9gYxcuEIrFsK5bh2CzpVxnrKcHy8qVhF59NfnBt3AhgiQRPX368nENhdKrqzZsgFCI2MAACAKCzaalbqZosQu8+CK2jRuTiCmhvJwGoZ+9bg8rFq7DJKtEJIECNTMppgwOJnjQjU5T1QvaYSJ1zOJDktIWwfFCY2Q7Z+C557SwhhtvBFVFDYeTwybiiLfKjjEbSChE7PRpAqeTJecA5nvvhWhEJyPHS/bFydD3EvExJ1pfn7EATEmUGo2Yr7+e8L59SQo36+rVRM+fx7Z2bUpV5shzPPJ7UkVFok/fOLwWdYw4L1JUgdgY96yijLvoBY3sdjz6qEY8WywITuc1gu0aPlJIVefta9mXsc7rDfRiN2kTEp+tvZPw5i0ER9wTlg0b0lsxjFT8pmgDH7kcNtu4PYTGu9zHEe+mzgOwGW1kmbP0Og9IqPVGkw7NnmaCcpBL3kt0+jqxm+wU2YuozKqk29/N/tb9FNoLWVi+kH0t+5icP5kubxehWIgSRwk1OTXkWnMJx8K82vQqs4tnY5bMei0f707J5Jd2rPMYL557EX/UTyQWwSyaeb3ldTZO3sis4ll4w16ePfVsAsEGl73MVFUlz5qXoGgb6/oYXefFu3Hidd6q2lUsKF/wntZ5WeYsJuRNYF/zPrwRL6B5mk3Jm4IgCJzvO8/2i9t5sO4eFi/dhBRVECxmnDlFCf7U8X17vel18lcvw7xLSLivBHc1XctnUmjKS6jzCAaxrl5N8OVdxOovL2+ocSOtX8PRgTMc6TyiG8vHCfnJ+ZN1hc+SiiV0eDvIt+VjFLXrLhqL0uHtoMBegKIqFNoKqXBVICAgGrTxJM+Wx8WBiwjCcNfLMJEVjUU5eOkgRoORC/0X9PM7r3Se/vmSyiV8euandSLVYXToyrVzvecIE8YkmrRrwORkXuk8zvWdw2VxJbWNx1uKTZJJF4eIgsj1JddzY/FC5mVPR4oqRI0Cp3yNXIh4uW3Kbeyo18KNfBGfFoo2Rpnn9fby3JnntDZjWwF1BXXsatilqzwXsABzRCHQ+DGp82prOBloAbRnh1WyEpSDGAwGfn7uSVbMWsLiGz+FNWbQAv6EKG8OnOT/7v82D85+kD+e+yPf2f8dRIPIovJFyIrM6prVNPQ34DfIZGfYPsFyWWEZVaIYBAMGwaCPebnWXLxhLyqqntoqIOCyui7zFcOfWY1Wciw5uqelrMpMyJ3Akc4jRGIRyrO0gEeAiXkT6Q30kmPJYW7ZXIodxayZsIbllcuvSJ38fuMayfYxwOhZpgpXBTcabsQX8eEL+6jKruJi/8WEC9ZmslGWVUZdfh1/88rf6L3rDpM2G7J+0np2XtzJ5PzJdPg6sEk2ZpfM5u66u/nFoV8QkkPMKp5FeVY57hw35a5yREHknY53iCrRjwRD/FHDaDWWajZxZOgcT519krKsMkwGk2YOuezrfGvftzjUfgjQEpSWVizlnmn3EJbD2mwASgLBNvJhFL8euv3dBOUg/cF+2obaMAgGpuRPwRfx0RfoI6tKk85OyZvCugnr+Ne3/pVphdMIySHqBzQZ9vlgGzPSzLZlaqeKDQ5CLJbobcXwy3ZZmaZwC4fHNAu92nS/0a0HMTVGm7eNgBxg0+RNCYVqzJ/Z60KwWPTCa3Sk9ARbBfK2bZgXLNAesKNJsVGqKeLLyHL6l3hJIrRrV6IayGJBMJuJ9feD15ucZDp1qtaOF4tdVg2azQR37SI2TAilNcCPt9jNmaMRU8PpuYrJSGdskBa5l1ebNrOnaQ/ffOu7DIQGsBvtHL7zZa5EfzCyjTS8bx+x+voEQ9aM3ns1NRjy89MWwfrLza5dWNes0fy/2tq09Mg9e7CsWkVglPfXSAhWq6a0G0vhZLZmDHjQyOQR5GM0mnBMkWWE7Gzks2cvk43DZOh4zHCvFAaXC+PUqUjV1RoJO/L6rK1FEFO3i2UMDti1S7veDxzI2Co8kryLNTRgWbmS8P79+j6rZnNmxWZsxKTNiPNidbhAGSNwRZK0ttXt21MS1bGODq2Fe1hpN1phew3X8FFDqjpv/cT19AR60tZ5dqOdsqwybi1bSThFe3Voxw5NvauqGZ9dcmen1h6uqikncq7dO5dxtXUewKyiWdw37T5iagyTaMIT8lBgL9AJttGkgy/qo8PbwdSCqWyv304gGtDrvJAcQjJINA82s2bCmoQ6L6yEdVuYvmAfxfZiciw5DIYGKXQUJuxPphCKFk8LRzuPcqL7hK4m8Uf8VLmqON97nmJHMT3+HhoGGhIItjjafe0MhYeSfObGiw+qziuwFbCzYSfzS+cjCALtQ+2EY2HMopnq7GoK7AW80fIGBsHAk+ee4RfRx3US4RvLv8FNWTcl/d4811TC23Yk1XlDNgPtnnNUk5PU0ihOnIhl1WqU1SCHAghmM0GzgcfP/Z6tF7cSlIPUFdTRONCIUTQSkkOc6z1HdXY1DQMNhKIh1kxcQ2+wl+lF06nOriamxOjydzGndA6Vrkr2t+7nRNcJ/RpcM2ENs4tn829v/ZsuuDAZTITkEJ6Qh1xbLioqA6EBmjxN+CI+AtEAM4tmcrrnNG+0vIFFtPDo3Edxmp06UQZaW/ZgaJCIEkEURIrsRVRnVzM1f2pKhWv8fG+9sJWllUvZ3bgbp9nJV6Y9TNnrZ1Abt+rLFrmrmbjkdn5y6j+ZVTyLE10nKLIXETNJkKgHSYJfkKnvr0dFpd3bjkWyUJdfx/Hu44D2TkZ4BGn7Ea/z1DUr2XtG81k3S2Ym50/mXO853Dlu3mx7kwNtB/CEPBQ5igjLYc72nmVK/hTWTlzL7079jnO9mppMVmSMopEDbQcQBIHrSq5jc9srfHpEmM5ICO5q+oUwi8oX8WbbmwgIxNSYrmZbUL4ggXCzSBYGw4P0BHq4bfJtHGw7qK0HAafZqVsh7G7cTZGjCItk4XPXf47djbvpDnSjolJXUIfL7OKGqhvwhr3MK52HQTBQYC+gOrv6I8dJ/Lck2X7605/y3e9+l46ODqZNm8aPfvQjli1b9mFv1lUj1SyTrMr0BfsIySHurLuT833n6fX3YpK0ePAbqm5gTe0aDrYf5O32t5mcN5nWoVaaPE0AnOs9xx11d7C6ZjXd/m4K7AUMBAf4xeFfMBAaYO2EtZzqOcWbl97khXMvUOIoYXrhdP5i0V9gE21MLZz6kbiYx2pX/KAxWo1VaAzgznXrM9QyMq1Drfx0w0+50HtBN7SdXjCdSQWTAFhatTSjnD5+PURiEQLRgC7tjikxwnKYKlcV15Vcx4LSBcwrnYdVsvJO+ztMK5zGbVNuo8nTpEuK93YdwL3iDrIQkgbudLJ6ZXAQ+eLFJCIIhl/Sd+7EeuutY3sTDKu0rhbjbk2x2cZst4TUkdJ/OuHTSOfPExgmBc0LFui+ciMfsKORbr+UYFBTmjU0ELtwIWlbrOvWEdyawlfkzBlC4TDWDRuQioo0leBon62xTK4XLtTbJgH899zKg2/+L90k99E5jyIrMt6IF5Noohsvrhp3QgvpyG0drRZK+J34fw8bsjLswZfRe29EBHkqGFwubOvXE/J6MK5dg0UwENq2jVhj49gJl+EQtvvuI9bUlHE5Od7ySHLAAwBWK6pllDfKiGMKYPvCFzBOm4ZUW/uBjEnxMcd2551J7dZqmmCGjNdKQwOG1aszhn2k8ihRfT49rdC8YAH+55/HcdttKZWV1vXr8f361/p/x68lsbYWkzMbJRwe8zzJnZ2Y58/XghyGfR6VUAiDzaYl2O7Zc/k747zGruHjg/8JdZ7L4qLJ04Qn5ElZ5y2vWs4q9yqcMUlXXSRg2G/S/vnPo3o8CGYzaiymK4HjL4fmOXPw//a3WFaswLJyJcRimgfUR4ScHqtd8YPGe1HnzS2bO2bt4jA6dDJuZJ0XkkNMK5iGzWRDMkjcVH0Ta2rX8E77O4gGkam5U7lvxn3sadhDti2bnkAPK2tWcnHgYsL6UxF7cTR5mvjjmT/yX8f/C6vRyoW+C/giPlwWF2+0vMG5vnMUO4oxSkYiSnrVe0gOjdmOmgkfRJ2nKAruHDegJWQ6TU6isSgOk4OoEqXH10PbUBvhWBirZGVS3iQUVaEv2JcyuVAJBolu3ora0EB4VJ1ndLtZvG4d4VR1XrwTYsMGTEXFeMNenhxW8sVJzCxzFmd6z+A0OalyVeGL+nTlXbuvHVRQVIVOXycFtgJah1oRBIGDlw4yNX8qD856UE8MNQgGrEYrDf0NXPJewiyZybflow7/zyJZCEQDWCQLiqro3n0NAw0srVwKaLZBDQMNOpE6mhiNk7rxa22sVOHq7Grun3k/rZ5WvrXyW5hkdZhga0pYTm1sohyVjbNv5vf1f9QUm3KYTmUIp1dIey0YatxsubSb3kAvMTWGWTRzuOMwX5z7RZ1ky7ZmI1iSPYVH1kyOj1Cdd9bbqLfXgua9N7t4NnnWPA60HWB64XQURcEb8VLiKCEkh2j3tpNnzeNc7zlEg4igCjhMDvwRPxbJwuH2w8wsnMk/vvV9lt/2HFWMDurT1LvffPOb/O3yv+X/vfb/ONxxGFEQUVSFhRUL+ctFf8ljRzXyr9RRqvvwuSwu6grqyDHn8Nalt2gbaiMU09JFT3Wf0q+9poEmmjxNrJu0Dk/Ig9FgxGF04I/6MUkmtp3fRm+wF8kgUemqZCg8xMbJG3VV5UcB/+1Itt///vd85Stf4ac//SlLlizhF7/4BWvXruX06dNUVlZ+2Jt3VUiVymMymLAarbQOttIX6OPvlv+dNuMZ8RFTYhxsO8iW81tw57ipyKqgdagVT8ijf98T9rDlwhaqs6vZMGkDwWiQKflTKHGW0DjQyGstrxFTY/R4e7Ab7eRYczjbe5YCWwF/teSvPhIeG7H+/sQXOKMRyy23QHk5ajSa1h/ug0SmAmFG4YyU3xlLTh+/HqySVVMmDj9gQZvFcJqdvH3pbQpsBWw+vxlFVZhRNIO/WPQXbL+wnQJ7AS6L9rIZiUV4vOE5Prf2fvJYm9FXD9BbQM0LFiQ/wIxGzfervFwz6x9He+C79S8YT+uB6HRi3bAh9cv+8MzTSD8cu9HOPdUbKRZdCOEwfP7zAMgXLhBrb0duaUmbVhhHuv2Kp2TqsNmwbdyI4HRqLY2ynJ7caGhA8XgQDAbUaDRZJThWK+Sov8vGy+lS/qifQnsh33r9W7pk/lnJyi9v+gEuVU14uIo1NZjnz09S8AFgNCLYbJdVRJKEqlz2aBiP914mGKxWbFYr4YE+VM+gfgwyJlyuWaOlixYXY1m3FmNdHcEdO8ZUJY5WbYluN0JONjHJoPmwpFF/GkQR1e/X1YaCJBHr7b2q/b0SpGq3Voa3KUk9OMa1ooTHJshTQZoyBUB/gfc9+yz2u+5CCIf1IBk1FtMItsHBhOMeJ8KIRAi9+qrWIr11a/rzFI3C3LnE2toQcnIwAErfCMPjEeMRskysvx9FURBisQ/9uXAN7w7/U+o8ALNopsffk7LOO9B6gM3nN3PLjAzPwGhUI9uzXRCVMTidGKZN0+4L0FvsxfJyDA4H/ieeQH7gbkzZOR+JOu9o51F+cvAnNAxo44BkkLih6gYWVyzGbrLr6Zwf5ra+H3UeaNfEsa5j5FhyCEQv+1uqqDgtTo50HKE30Eu+LZ/tF7cztWAqv9r4K052n6TF04LVpI1xMTVGu7ed+6bfh4Awpl9evB4aigyhqAoX+i7QF+wDtICAP5n7J+TZ8zjefZwKV0XGfbBIloztqOPB+1HnxdEf6KfT14lRNNIX7KPL10W3vxurZKV5sBmnWSPcyrLKeLXxVUDzCXPnuKnMqiTHnJO0LWPVecI467zW8CX6g/0JJGacTPFGvLpCaKQPVlAOUuoo5XzfeZZXLee15tcIySFkReZi/0UskgWTaOLgpYPIioxkkLhr6l3MLp7Nkc4jqKpGsDlMDi2hUlXxhr3ElMvyMEmQyLflM6dkDuFYmBJHCd7w5feQd+vN6DQ7qSuqo8nTRLZfRR0+7klobGb28jvYacnhkTmP8PTppzmWd4xvzvsbzHl5ye2dNTU0LKrluy/+rZZUq2jHLh6ucH3J9RTZi1hStgTBkoG0ralBFUVUnw+sFmIWIxETNHed1NWR79eYlKrOqzBUJD07zJIZ0SCSbdG88RoGGmj3thNTtITXsBxmKDKEaBCRFZk8ax7lWeUEo0HMkpmhyBARJYLFaOGBl/+ER6c9yMpFa8k12MFkYlfXfr09/t/f+Xe+s+o7tHnbGAwNYjVasRvtHGw7SDQWpdRRysqalbR723WytS/Yx6vNr3LvjHt54tgTPHP6GW3/MDC9cDp3TL2DF86+QLGjmIHgAAKawrTIUcSxrmPsa9mnC0ZWuFdQ6izFE/Tw0rmXWFK5BItoocJV8aE/w/7bkWw/+MEPePjhh/nc5z4HwI9+9CN27NjBz372M7797W9/yFt3dRg5MzAYGqTAVqD3Ld9UfRP1/fVsPr+ZT064jbvLV2OW4YHKWzk+dJEjntOUOEqoH0hu0VJVbYAWEJhfPh9v2EuPr4c8Wx5ul5vV7tXIqkxYDiMaRC4NXaLL33XV0u/3EjGvN4lgs91xB+GDBwlt3qwvJ9bUYNywDnNO3oe0pe+9R0n8etjfup/FFYvZ37ofb8SLZJCYkDuBU92nKLQX0jrYSm+gFxWV11teJyJH+MLcL3Dw0kHN+HYYDpMDqzMbcRyDkV48zJmT+IcRxz9OPpmXLcvo86L4fIgVmQu09wpibi7W229Pq3qM++HYjXb+dPKDyNt2EEhhFCqYzYT37h3TCFVuawObDUGSEgglVVG0tsVoFGy2JGLIdtddiSsbRRQIZrPmzZDquI3RCjny74YaN31CiE2TN5FtzWZ5xXJOdJ/QCTbQirUv7ftrvrboq5QunYVRVsl1FiKqAv7HH09W8A1fA6Hdu5NbiNev0ZJ7effejPFZYvPIazAQ0FLyNm7UAwsEqxVlcBDfE09AIECsoYGoHMGclYN1/XqIRFAiYTCZiJ0+k1KVGFdtiTU1xG6+kV+ee4r1k9dTtH4t0S3bEoMiamsxL1mC75e/1Nejq7aefBKGU2KvVFX1blQc6dSDYx1/wTw2QT4ScTWaWFycSD53dKB2dOB/5hnEyZOxrl+PEA5jv/NOTREqSaiBAPaHH0ZBJRqNEN2mtYD6Wlqw33MP6tBQylAWAGQZsbwcweEg9PLLWqvoMME2ejyCYc+5W24hsGULttWrrynbPqb4n1LnRZUos4pmsaRySeo6r+JWjnsvolpMGdetmI1cULqZXjodb9iL5BtEaGtDLC9HLC7GduedCfeWEI58JOq8Ll9XEsG2oGwBrzS8wt7mvZQ6S3X1/gOzHvhQt/f98KJzmp0sqVxCljmLqflTdT+impwaTnWfIhwL485x0zjQSE+gh97mXgLRAF9f+nV2N+3GZrrsD+WyuKjOrh7XS6fuD6hqPnJxgs0m2firJX/Fs2ee5VD7IYodxaxyr9JbxAxCYtBGqaOULHPWmOql9wrjrfNG7ueepj10+joxiSZOdJ9gIDTAkool+CKaQizLnEXbUBtTCy4naw6GB5EVrZuo0lWZGFT1HtZ52RUagTfSzN4kXv53vF5zmpy6D5eKysqalbzS8AoHLx1kbulcanJqkAwSM4tm4ov4+O7+7+rflRWZP57/I5+Z/RkqGit0JVNIDtHl62Jl7UrO9pxFNGjWE0aDkTUT1vB6y+vsadoDoCvmrCYrs4tna9v0Lu+HOCH6QMHNGZezxARmFc3i6VNPE5SDHOk8wjtD51haPE/zLI5EUCMRZJPI4xee5Xtb/x4EyLPlISKyqnYV+5r38fzZ5/FH/Qw4B3hReJG7p91NWSrStqYG87Jl+EfVeeb1a9lVv4vBiFbn5Vpzr0hV9W7qvHTJvU6zkxxLDj3+HgaCAzpBe6L7BBPzJuLOdjM5bzIm0aQTcWXOMnIsOfQH+7FJNt0D9O8P/jM/sxdyU/VNOuEcV1f2Bno5cOkAg+FB8m353Dr5Vnr8PRQ7i7lr2l0YRSOeoIcqVxUCAk2eJl5pfAVv2EvLQAtratcwIWcCoVgIq2TFE/Lw1MmnGAoPUeQoIiSHsEgWanJr+PHBHzMlfwpne89iFs2snbiW/a372VG/gzJnGe2+djZM3MBtU25jT/Me1k1c96Eq2/5bkWyRSITDhw/zN3/zNwmf33zzzezfvz/ld8LhMOG4KTYwNPTuo6zfD8RnBk73nOaFcy/QPtROl68Lk2jCZXHx+zW/Im/PO6j7dujfWeGuZuYNn+DS0CVeb309aZ21ObVYJAu+qI8mTxP7W/ezt3EvdYV1xNQY33vze7QMtmCRLFiNVpZULGFp5VLdE+RqB4XRD6SrUhUEAgkDXyaPIeWlLXjW3UBR/gfzoP8gUJ1dTZ41jwk5E8i35euebGE5TJGjiGWVy9jdtJsJuROIqTEkg8RgeJCoEk0osjK1C6SC3gYpSYmFgSiCwYBUWYlUVYVYWopgtWKcNg1lmFyIe1yJ5eWYly9HzMn5QNUkotMJKeTcSjCIW83mzyruxm7PhuZWYq2tCcvoqqalmkQ+rRHqCJWXo7ycwM6dyW24wy2Ito0bk5RXCeRFOqLA7UaqqrpcxMW3sa1tXGbwYk0N0VtupM93jlU1q/TCu2WwJeE7cWn3F1/5CpPzJrPCvYLpTOB6rwuxvDzpdzLdg+qWbcib1uEYYRB8tdCJ3uFESh2BAIHf/U7/T9u99yb8N4AcDLC9/6A+XtmMuURaW5AyqBIVk5EtUxUe3/UIAP3hfv58wZ9jvH0Tqs+HGg5jsti1l9Snnko8J42N/P/snXecG/Wd/t+jXlfa3ot27V173Y2N19244IqBACEQEkISkjtyd8kl15Jr6SR3v7tLQnJ3QLgEkqMEuBDADWMMbthgG/e+q+29SKteZub3x1iytNJq19gmkPh5vXjh1Uij0Wjmq+f7fD+f5wls2oT5rrvw/fznymMjvOoyYWQVB1xKTIqR2bEQVoNuzWpUscRZgxFBq818rWjUCI6qtNHtI1uFE6vLTHfemXoAsUCLtWsVk+cR6cOBBFHWdM89l+4Xtxt5eDgpXCPdvmNVdaLTCXPmAGN4zm3dqhzvOL+D6/hw4Y+N5w0FhtCqtZi0plF5XrRcnfF+bo8O4hV8cZ63zDoDc4YxD70eX6Qf+P3yvFO9p5LGvtrcWva27kUQBE73ncY55ESURQ50HOB0/2m+u/y7zCiacVnv8WFHjOvlm/N5/uTzdHm7kGWZM/1nmJgzkYUVC9neuB2H3YFapSYQCTAYHEwS2C6X58XaO7ON2agEFYvKF1GWVcbk/Ml0e7vJNeTypblfospehc1gI0uXReNgI76Ij8HgIOcGzlFgKuCWultYUL7gA60mGY3neUIeOrwd2PQ2Zd4T8rK3dS9d3i4EBKJSNF7xt7dtL3NKlN8SV9BFqbUUk1Y5n1qVFpWgotJWyezi2eRK+lTrjqvE8woq18XneDERbTg0HO9O0qg0qASV0tmiNTIcGkaFClESWTNhDREpQqG5kEp7ZZzn7WzambSYKiCgUWn4r4P/RV1uHbfW3UogGoj7/R3qPIRBbUAlqMjSZzElfwrHeo/FW0cNGgPlWeX0eHv46YGf8qUbv8SEnAlX/J3HBFFJpyW9s6yCiEbgYNdBxej/4rlo87Txu+BAwnhVwRsXXuPX55+nz9dHWFQSWRdVLOKdjncIikH0aj0D/gGcLifd3m6CYpAvz/syphGibbS9Hf/TT6fwvPCmLXxqzcf46SmlPXIwMMjLZ1/mgZkPjHkurgbPM2qMzC6cTY+/B0mWqLBVYNKa2OncGRdfVYJKaTmXRaJiFKvOikFj4Ez/GbwRLypU9Ph6mFU0C5vBRqe3k05PJzq1jin5U6gvqMfpclKXVxf3fYsJbQaNAbVKzS21t6QkNze7mvnd2d/Fw1EayhrYdG4TUwum4sh2cKLvBC+cfIGFFQuZWTQTm8HGJ6d9ElEWGQoMxZNf9Ro9x3qOMSFnAgICc0vmsq9tH02uJuW6vxjo0jjUyBPvPcH9M+8f93dwrfAHJbL19/cjiiKFhckEoLCwkO7u7rSvefjhh/nWt771QRzeuDEaqRkKDHGo8xBGtZG6vDryjHkc6znGZyZ/gtw330vbs54H/OWyh9jXvo9zA+fi26bmT+Vjkz+m+C+pdOxt3cumc5sothTT4+vhlXOvXKp+iyoltXvb9iLLMjdV3TTuQcET8tDsaubC4AW8YS8bipeh3fZmev+vy6gqkIPBJJFH0OmUiX9ZWYpZuex0khtZRbi3B4016w9mUmXVW7mx7EYm50+Ol2V3DHeww7mDdzvfxaAxYNAkV6QYNAbunHzn+yrhhkttkGJXF6Z77yW0a1dKpYh+8eJ4y9dIAcryxS8qKZgXPbrg9+Or5wl5aHO3Ua7KRtjyOmJTE2ogyCheXFyKgQfSGqGi0SBYLPEqL8ntTqniExsbCUmSkiJqtaaKAAlCmb6hgdChQ2jKypLeQ2xvJ/DaaxjWrCH4yivx144q/NXUYFy3DikawVg/iXDARyjgRfT7eLn9Ze6sv5M6fR31BfVUZ1fH72mz1oxzyIkn7KHX10tIDPFmz34cNXeSl7s49X2qqkZtoZWanIRcA/RL3iteVYoJveMVFRMxIHr48YEfE5WilFvL+ZM5f8IcS03GMKpe2cOLzk1oVVpEWWR/+34ayhrIMeQQlsJYjBYmS6akCtpEiE5nSgBBolfdaBhZxRFD01ATPznwEx5e8fCYk93I4ADRTcktl6pqB6Y1a5Xri/RpWS53L6a1NyNvfT1t+qjk8SQFRMTazUae80yBFmnTh0e0oY7nO1aXlUH4YjvNxcnLWP6EwsqV4/oOruPDhz8UngfpuV4oGkrieQO+AU70neC+2jtH5XnRN97EuH4doU2bU+5n1dpV/Orko2ys3RjnefmTrcwbJfAIRxW7+w9SWVj3e+d5rpALo8bIzdU3o9Po4mmAZ/vPcrT7KBW2Ciw6C/dP+gSL827A5jf8wfE8ULheQ1kDU/Kn0OJq4UjPESrtlQyHhjnYeRCr3prE466U58XaO40aI7fU3cJjhx5jV+sullctp8nVxMrqldTl1RGMBPn10V9zqOuQMvHOraPAXMDfLvxbii3FSe/7+/DV84Q8tLpaGQwOsr1pOz3eHs4OnI1/tvnl89F2aNFpdBRZi+j3K5WA7cPtqFChUWmQkWlyNbGxbiMPzn6QQCSAWlBTn19PntqKausOxBH30dXiecHXtrN63lJead0eFzVibaCHuw6j1+ipsFWg1+gpthazpmYNg8FBnj3xbLxAwqKzUGwp5t5p946b5w2HhinLKqPQXEiOMYc+Xx/ZhmwMeQZmFc1ie9N2ur3dGDQGZhTOYMA/QJNL2d+kvEnsbt19xd5YMaH3jL+VaaPYcwjVDi4Euzg3cA6VoCLPmMfh7sNU2io51HUozvO+OOeL2HQ2VjhWMBgYZDg4TEgMkW3IpsfbQ21eLe6QmyJrEcFIcFSeVyfpM/I8m7Qq6bHBwOCYFcFXg+cd6jzE44cfxznkRKPSICBQaCnknqn3sMKxQulS8/fFxaryrHLmlc3jva73+MuGv+S/Dv4XBzsPolFpCIkhrHor9067lz2te7h90u0YNAY8IQ/n+s/Fq9Fivm/uoBub0caiikVpK2XTpQ+HxTDBaJDa3FqGAkOcHzzPp2Z8Cm/Yy2OHHqPZ1YyERL4pn3UT18VDAH1hHwICOrUOQRAoySrhzZY34+8Va5tWq9Sc7j9NOBoe13dwLfEHJbLFEEtIiUGW5ZTHYvj617/OV7/61fjfw8PDlH9ALWzpkI7UTMqdxL3T7uXpE0+z9cJWQLlIy6xl3FJ3CzfapyE7/y/t/mRnM0XLF7K6ZjUrHCuUG0hnJdeQiyfswWawoVVrGQ4N0+ntpNJeSVSM0uHpiO8jKkXjBpiuoIuBwABPH3+aXm8vZq053tff6+3lkQOP8P0V36fQUsjp3tM4XU5+8s5PONF7gr+f+zXUR99AHEESR6vsyLQSKhiNo67+pBNI5KEhAs8//wdpgJ1Ylr2zaSen+k6N+twcQ84VDTaxhEhkWUmQHEkeurvjXlSGxYth1SqlGuXiZDqwZQumO+5Qkqp6XejUOiUtJ52HRk7O+z7OTIgZ396QPZXy/QfHnaAIgCRdaoEdYYSqdjjQlJWlDUIYuX/9okWKB9sIJApl6vJy1KWlaa9x/bx5qHJyFL+tix5x6rIyEASlFVIUFQ8snQ5ZpUKWZULbtsXJoBGY76iiZsl6/n3/j/nq/K8yIXcCfzHvL+Ljj4yMJ+yh2l7NHfV3xNO9ftH4AjcVLeSGdWtRR8WL1VGGsUMswiFePrvtileVYkLveGPV469zVLFv8AjBaJB+fz/tw+14I15+ctO/kDcaiXNU8XLb6wyHhhkKDNHn76PUWsobTW/wXvd71OXVYTfY+Yeqz2Q85nTnZqzzNbKKIxFNQ02c6j2VkXxFXUNpEwelJieBrVuVqtM0xN7/4ouIn7xdMZ9dtQrZ74dgUNne2YkUDCrJoyMm0PpFi5QV3oTHMo21Sb41FxdMBLs9Od310CHM995LcMeOlO/YsGKF4r1pMsXvudjkZUx/wov33pUEr1zH7xcfZZ4HqVzPoDFw3/T72OncyQ7nDiCZ5821Tx2d550+g3/xfHqWTqdi1QrFA1GvpzHQwS/f+3fKbeVJPG9377tMvukerLIEzpZLO3JU4pxfw6MHvs/Xsr72e+d5Ofoc7qq/i8cPP8573e9Rm1tLv7+fLH0Wfzr3T/m/U//Hzxb/gAkHmpGdvwMgwB9u0EmM6/X5+vj54Z+P+rwr5Xkxf0CVoHCHldUrcQfd1ObVUmwpxhVwkW/Kxxv2cmf9nXx21me5MHiBzec3U2wt5nT/aRrKGvBH/BzuOExQCvLE4Sdo97TH2x0vt1LnchHjeTqVjl0tu+j0dsY/kyRLOIecDAYHqcquYvOFzUzImUBYDDMcGmZqwVTUKjUl1hIGA4NU2Co4O3CWXS2KV3WJtYQ2TxuPzPs2UtOmtO9/tXjeFKuNvcZD6NQ6Pla1nlpjKdqojHHKQwyro1zwtxERlQ6VwcAg39n1HY72HMUf8SPJEnmmPGYXzeZf9v4LX1/09XHzvPbhdgrNhfzF3L/AJ/qIilHyTHl0DHdwqk/hHhathXOD55JaFP1RP96I94oriGJC75s9b1O1/E6skMTRVNUOhpbN4Qe7/4aopBzb4e7DWHVWfBFfCs/70twvkWfM47OzPotWpfjvCQjkmHJwBV2c7T/LrOJZGXneN6ruz3jMcjD1ux4r9ONKed7p3tN8881vcrz3ePwxq86KSqXihdMvMK1gGgvLF1JfUE9YDKNRaRjwD/Bu57tU11fzlvMtvnPTd2h2NeMOuTGoDQSiAU73n45XdWbps9Br9Nw+6XZmF8/mwqASoKLX6JmUPyljoEWLqyWePqxRaajNrcVhd3D/jPs50XsCAYFpBdMIi2Fea3wtLtYKCASjQU70nCDXmMvd9XfT6GrEorPQ4+3BYXfEKzIFBFSCKl5tGYoq30PMr/xKgleuFH9QIlteXh5qtTplNbO3tzdl1TMGvV6PXq9Pu+2DxmiKtiPbwbfe+lYSgdSoNFwYusArZ1/hodKPZdyvLiqzoXYDL599mVA0RJY+i7AcjpeQd3u7lchiICSG8Ia9Stx3yE0wGoxfwFq1FovOQre3mz5/Hy3uliTT/diNfab3DO3D7RxoP8AvjvyCQ12HAFhVtAj5jc1pj3FkVYHkdqdUOSQSJ0mnTd8ONJpAcrHC4XJatT6MED2euEF+TNwQrNb4Zxm5SpWI6uxq6gvqr+j9Yx5P4uAgobfeurRBq0W/eLFiKp9GNLPcfz/eJ59EbGxEGh4m8to2DDfOIzDKdxh49VWMt99+VSvaPCEP5wfOc6DjAGatmRnWCYjOMdI4R0AOBDCuWaOU/2cwzldXV6etpLq0I1kRB0YioUJOyMoiuG3bqNe4Yc0ajLfeCuEwgc2bkwnaRdHD98QT8cTHkfuRnc0UACunLmJ3224KLYXMLJrJwyse5lTvKTq8HXR7utFr9HHiBcrEb1vHTgSjnoayS+co0N1BJkhazVVZVYoJvWJjY2o1odGIYLcT2LolSewUHFV0Lq7nF7u/Qb+/X4kqV2kpzSrlP977Lz7X8HEcslL1Gq+QraoiopJZL7oRgMdP/YpCcyEt7hbmRucSiAY423+WmUUzxwzwSLd9rNekSy0b73YpEEAecmU0V9YvWoT/qadSj6vaQWOoixtNeQRf25K6j337MKxejWHpUsX4V6NBsNtRWa1YvvCFcbeHxQUukwnzvfcih0LILldcYIt2d2PauBE5EEgrBvqefFLxj/rCZ9AZTKirq+OTF7TajOeOi7/5Vxq8ch0fPD7qPA/Sc72bqm7ivw/+N+FoGFESUavUl8XzhGAQvxH+6diPaXG3YNAYyDfnU2GrSOF53rCXHx77T+odNaxoWIM2KhPRwLauPfz7pm8xrWDah4LnFVuL+ae3/on3ut8DiAskA/4Bfnf2d3xr/tcvCmzNKe/zUeZ5Pd4ezvefT2r9qs+vjwsW15rnxTyeDnUd4qljT9Hn6yMiRXi77W0+N+tzZBmy+Le3/41jPceIiBHsBjsrqlfwhRu+wMGOgwzqBnmn4x3+9/j/UpdbxyvnXuFE7wkMGgNlWWVYdJbLqtS5XPR4e9jZvBO1oGZy3mSMWiPuoBu7wY5aUPPi6RcZDAxyrPsYt0++HYfdgUFjoNJeSbunnVZ3K5PzJlNoLiTfpNxDvz39W7xhL/mmfGYVzVI+j5he1I/jKvG8T0z5BPpABNXWHUhNSkt8BLDUVDNxxXyeuPAbxaev5yT72vahVqnjVT39/n4Odx9mZtHMy+J5oizS6e1ketF0Vletjh/Xzqadce4hy3JKUItJY8Ib8V4x10sMgvll0wssnddA7bIG1OEo6PX49WoePvBDvGFFQBElEavOys0TbuZA+4EUnvfbM7/luZPPsbxqOa3DrRRbivnE1E+QY1REtrrcOro8XYTF8Kg8Tx7jN0QYmTxP+tToRFwJz/OEPOxs3pkksIEiLjmHnErFFwKukIuj3UfjlWQAE7InYNaZMelNbLmwhf/Y/x/U5tZyqu+UIj4ac7il7hb+Yck/4Al7yDfl01DWwKS8SZcVaOGNeJUABY2BDbUbaHO3cW7gHJX2StwhNx3DHayduJbdrbvp8/WxYeIGCswFSviG1oJBa8Cqs3Ju8BzFlmIemPkAvzn5G5Y7lmPWmQFFD7HoLBg0BgrMBfEiIavOSp+/74qDV64Ef1Aim06n44YbbmD79u3cfvvt8ce3b9/Orbfe+ns8svFhNEXbpDVxqOsQNxRfMvpWCSpMWhMXhi4g6jQZv0idycqKghXcWHpj2pvDE/LE2wp1ah1alZbBwCAWnYUsfRYCAla9FUmSkJDQqrXx8uJExG7ssBzm0UOPMiV/Coe6DmHWmvnOgn+gTKukvYyG2KQrbRsRycQpHPCOPoEcIZCMbB0TGxuRPZ6PRJtQ0iqvTocsSUobZkIseCIpLbQUJq1SxRBbNbwaZMZnUKEWLqUZxTwl0OtTBDa4KJpt24b53nvxPfkkstuN1OREWLEy43eI35/WW+Ny4Al5aHG10OHpoMvbRY+nh7c73uaTUz/J8HA/5kwvjlXDJIguCAKIotIS29CAoNUiSxJic7OSunrxeYJGgxwKoV+8OKV9GQCVCuliumLKOYhEiLa3o62vz3h+BFkmeu4ckViaYuL2hHaFTK1zsrOZuYtv54XuHXFCFPNTONFzghcGXxh1FWjkD5dgsYyauik4qjgXUH74rnRVaaSZf+yzJd4H2lvWx/3SwhqBTZ1v8qu9/4Qr6IoTrzsm34Ev4sOoNfLfZ/+Xj8/ZSNn8yZTbyohuez2+32zgU9UOVq7+OX+x5+/xR/y4Q4rPYCAawB10E9Fm9kSSRTH5sZoaBHPGqw+73v6+t8s+HwQCo25XDkKVkjwqVDvwLJ/Hsc43mJc1yvUXiRB89VXF8+55JRHK8qUvXXaghWAwgFY7aqWaft48QocOYViyJGOSr88zyP2Hv8IvV/8E9WtvKj44d9yRMXRF9njG9R1cx4cPH3WeB+m5nklr4kTviXhFjVFlvCyepzdnMbOglprsmnHxvFA0xFff+joWnQWtWhvneVqV9n3xPFBa8DQRMeXYEnE5PO/84Hk6PZ1xI3Zv2Itdb8cb8XKy7ySL8m5Adr6Q9n3ExkZEr+cjIbLFeIo34sUf9tM23MYvj/wSp0sZE7MN2Wyo3cDnZn+OKnvVB8Lzco25vNP+DoFIAKPWiF7WM69kHi3DLew/tZ8+Xx+iJFKeVY7NYKNpqInd6t2sr13Pe13vsad1D01DTXFBCiAYDdI+3E51djU6tW5clTrjRSLXaxps4sLQBRrKGvjmW99kT+ueeOvnnJI5/NX8v+LlMy+jFtRMyJlA+3A7vz39W24svZG7p9yNWWdmYs5EfGEfLa4Wsk3ZrJmwhpAYAhnaXG0srFiI0WzPfFBXgechS3T0NTNh9zmkFJ7XhFGWWTqvgUZ/O12+LqJSlLCoiBoxwazf348oibgCrivmeYkCb6K3G0C1vRq9Rh/f15VwvZFm/ts7d7GdS/6ClfZKvrnsm/EW5HA0zM6WnRzqPIQv7EvheSatiY9N/hg2vY3Xm16nNreW1xtfR5REen29eMNetCotE3Mn4g/744UmcInn9YgucjLwPLcqnPRYjjFnzNCPK+F5La4W+v39abd5wh6C0SCFlkKicjQuFsbSZ1dUryAQDXBz9c18a5dipRALLpGRGQgM8Msjv+RP5/wpvb5eVPkqjBrjZQdaWLQWjGojayes5dkTz8ar1+ry6nAH3Sx3LI+nhN4++Xb2te3jDecb6NQ6bp10K3vb9mLUGON2AdMLp/PFOV/kt2d+y9oJa7mt7jZ6fb0UWAro9HTS4elAkiUm501Gp9GN6zu4lviDEtkAvvrVr/KpT32KOXPmMH/+fB577DFaW1v5kz/5k9/3oY0JT8jDAzMfQEZmODiM3WBHRqbX1wsoFSRWnTVOemLq7blAO9NH8ddQ19SgtSol86PdHLGY8BJLCeFomDsc6/nrSZ9DCEcIawRe797LoyefRJREKmwV5JnyUohX/DOEPXhCHi4MXqDSVolZa+atO15lwoFm1CWZW3hiVQUp8dcJiK2ESmO1+VwUSEZrHZNcLgS9/kPdTpB2lTf2eZqbL7VIjVi1TVylcoVc2PV26guunv+F4PWjM5jRXmzrQpaVyfCyZRkrZ+RFixQxThDivm2ZcKWtXM2uZrac38IU6wTq9cVMM+Yj2bTc7ljHn73xNWY0fCezyHYx3GG0lELD8uX4nn8e/fTpqMvLsUydSmDbtjHbl9U1Naiyswm8/vqlqriR7bJr1yKNYc4t+f2o0vh9xBAXm8dondNExHgASiJiK4mhaIh7HBspUFkhGAKDgQHZj8VekPR8g8UGaVI3BUcVruVz2eN8CRh7ZW88UNlsmO64Y9Q2I4PFBhbl3j7QtJPHTj4JKKuzWpWWm2tu5nTfaTZd2ERNTg3dnm7ODZzjr2f/OcX7z6SMP1KTkxIE/nLWQ2xpf4O3294mIkVQC2oC0QBPXPgNf7LhntQkqli66K9+demxmmrkNSs443VSrho9YvxKqhXki+2dmRDVa+PnUAoGiGpUDKpCuAly3/T7oGcw4+vjY+z7FKsEs1nxFRzh3QiXVvE1ZWUIY3yOfGsRP2v4Lnu638V0Qx7zVi4nEg5jXLeOwObNKeOncc0aArt2KYLsR2ACfh2p+CjzPACtWstnZn4mLc/zR/xY9db4BPZa8Dx/2I/NYOOGkhtwDjlRq9Tx1sCYz9Pl8LwYNCoNoTFmFZfD8waDg0SkCHmmPGRZRpIlanJraHY10+HpQB3J/NvmHR7ArfX/XtPlxkKsrXEwMIg37OVQ56F4qmz7cDsRKcJQcIhXz72KWWfmS3O/hFVvveY870z/Gaw6K4srF2PSmgiEAwSiASRJ4mTfScqsZUzOm0zbcBstwy2oUNHmbmNy3mTyTfl4Qh7WTliLTq1MdNWCGlEWcQVd+MI+dEalbXSsSp7xoNnVzAsnX+D84Hnah9sJi2FuqrqJ5089z/Ge45RllZGlzwIUX6cnjz7JXfV3sb9zP/2+fjSChr9b/He0ulvxR/x4Qh72tu7FqrcyOW8yj777KFXZVRSaC5lZPJNANMCr517lhuwprHNUQbqAoHHwPM26NQQ87oyfTfb5qTdVEHRuS7+9yUntsgaOuE5jUBvQqDSIsoggCKhRx4W2kBjKyPNilX6haAh/xI9ZZybXmJsiUCQKvD3envjjie2mMVwp14sFwYxWOZVosL+zaSdn+s8AmXnenJI5fKXhKzx74ll8ER+fnPZJenw99Hh78Ef9hMUwq6pXYdFbUnjecy2b+PN1n4bN21K+S936dTx+9lfo1DqWFjYwyVSBRdKi8YSQJM2oXONKeJ434o0HcqRDRIyQY8jh5pqb40ESoiRi0VswaUxU2Ct4t+NdDGplTPaGvdgNdlxBF6CEfESkCAaN4X2LVZX2Sm4ouYGtF7bGxXYZGVFSQkb2t+/ns7M+i4DAL47+Ir6wsKB8Afta9xGVohizjGTps5BlmbbhNmRk/t+q/8dgYJCFFQvZfH4z73a8S7+/Py6wfX7W5+nx91xW4Mu1wB+cyHb33XczMDDAt7/9bbq6upg6dSqbN2+msvL3nyyZuFpl0VmotCWXWZp0Jh7e9zAH2g/EH5tXNo+/nv/XaFQavGFvPK47Rn5UgopTnkbmrL+d6OZtSVUJ8cqOMSYSsZhwnVrHvKx6snceQnK+G99+r6OKZTc/zuPnnuHTMz9NMByk2l4d751ORLW9mlA0hFpQY9aZ+e7Cf6Tea0bdMB/Uakz334+g1YJKpfj8GAzIw8MEjx2NT9TGEleUSXXmsl1VdraSVJcQSz8S/pdfRnP7RmVC/ntGivm/wUAg3SrvKO2wI9swRqa7XC1EBwdg0zZ8aRI1xxLNCAQIHTyIYe1aom+/jWbSpIxPv5JWLk/Iw5bzW7i1ZDmWHQeQnZdS52zVDn608DscGjjFOkdlsifNRairqxFsNsyf/SzB7dvTphQGZVlJjXzySfRA6O23x2xfTqy2Mq1fj+zzYbjlFsVDJxRC0OuRNRoip0+jmTAh8/nR65HHqla62F6XEXo9AkIKIbLqrdxWdxuFopHIpi0EEj6b9aJvHiNuQ0NOPtFb1xFyDUA4hKTVcC7QwR7nS4TFcNof6vebQjfeyqlEEqMW1MwomsGe1j0IgoBZayYiRpQkJU8n87KnITb9Ou1+xKYmFq/8HP9y8Md8rv6TrChcgC4qIxgMnPO38UTjCzxwy12oEr5LDAYEvR7LffcR9fvwqiKc8Lfy1ulfxM/HaAbBV1KtIBgMRM+dG726rrr60nk2GlEDWqD04n8AUcMY11YsNfR9ilUqoxFNWVlSeEdSYnE0ipCdTRQZVe1EpHPnU/ahdjiInj6NefdullQ76F86kUOBJhY7FgNgvO22S+OqXo+s1YIsY1q//rrA9hHGR5nn7XTu5Lu7vsvO5p3xxxJ5Xre3mznFc+jydl0Tnhd7j9iEs9vbTZu7DbvBTqG5kLmlc/n87M9fFs8DZUImyRKvtL/Og5PrMM2YhWC1KvYW75Pn5RgUX9bEipmzA2eZUzwHnVqH2pD5M5uNWYgeP0GN+0PB8zwhDwGPC3NUQBWOoDaYGPB2xFveYm2ZJ3pP4Al5mFE0g4OdBwEYCg5xuu90UgveteJ5b7e9zSMHHmFb4zaCUcUIfk7JHG6fdDunehXP31xTLm3utrhIJggCMjL9gX5aXC18dtZneXjPw2yYuCGeXG7Wmim0FCJKl6odx6rkGQuekIdfH/s1e1v30u/vxx10I8oi88vns7d1LzOKZnC05ygt7pZ4pU6Hp4N7p93LjMIZLKpcRFgM8/TxpwlEArhDbgpMBSyrWsbzp57nwsAF7p95Pw/veZjZRbPZ07YHk8ZE01ATj554kqmLH6YSQbGauIi0PG/9eoRIBCkUAr2eQSHAP+z9e74z86tkvIqjUVTDmSvC1OEoucZcur3dVNgqcLqcRMQIKkGFTq0jLIbjhvXpeN7Guo3sdO7kV0d/Fb/frTorSyqXMLN4ZopvXkzgPdl7kkPdhxBkIaXddCTXG2tcHA3jrZy6HJ7nCroUb7LAAK81vkZ5VjnLHcvxhryYtWaWVy/nZ+/8DEmWMGlNiJLIcGiYNncbj5x9ij9Zfx+miAChIOgNSEYdIYOW1RNWJ4Sp7SY2wmXyiLwSnmfRWtBr9KOO045sB/UF9RnPYYG5gIm5E3G6nHR6OqnLrQMUMdqis2DUGKmyV71vscqqtzIxdyLPnnw23u6vVWmZnDeZG0tuxBfxUWguJCSG4uKegEB5Vjl9vj7ah9vp7Oyk0FxIl7eLIksRyCBJErdNvg2AGYUzONV7isHgIAa1gSJrEUa1kZvtN/9eBTb4AxTZAB566CEeeuih3/dhJCFxtUqr0lKWVcY77e8AYDfamZg7kR8f+DGHOg8lve5A+wH2te1jbc1aGl2NeEIeKm2VyMhEpSiObAdrJqzBYM9HylDZMRaq7FXkqSzIv9ucUpKMs5kyQeCfb/lbbPZCTvac5I76O3jx1ItJN3ZsJSNLn4VNb+OuinUUqbIUMqXXKy2akkRw165LEz+tFsPq1ZiWLEXs70c2GhUPA612VAN5wWAAHQgOR9IPWwxqhwNpeDitZ1tsu9jVhaa0FJXXj39gAAwG1Dq90u//AaZcih4PRCIpFTCmT31q9FXe0fzCrrGJd2TYldZIXWxqIiTLGNauzbwDjQbR6UT2Kq2+sseTscWOdF4W40SLq4XptjqsOw6kXM9Sk5MyWWZ39TBNDbOohiShTUlIVfzMTHfemfF7kMNhTHfcgWC1oi4qgoYGxbA9oUVUdDox3nwz2unTk+5JldGIFA7HxVT94sVEu7sxrlqFurxcETEytLyJXV2o8/MznwiNBrG7O6UtML6fmhq8apGoHE27SlWqzibw8m8vyzfPkpVHv+Tl5bPbklY1Y2X+iT96Y3nyXA0kkphzA+coNBfyetPrTCuYRqGlkH5/f7wtyxgVMra0qyNRHr/p38l76wjy65cMj+c4qqhfeRNBkwZrdnb8ccUH8DTDwWHkUIDJpkomqQqprbqTc4F23urZn9EgeKxqhdGSeQWzmWhvr9JySZpgiPXr0I4x6VRZraNfNxlSQy8HcqIwn6Fq1LhuHeKkyajM5rhwLHk8qKxW/L/7HfrFi1GXlVEWhOKsGqRAAJXRqFyb13gMv47fDz6qPO9f9/4r73a+i0aliYtHMZ53c/XNvNH8Br6I75rxPBUqvvXWt+j0dFKbU8tfNvwlUSlKMBrEorOwpmYNNbk14+J5AgKhaIgbS2/k3Y530Wv0/OzYE3z5U++mTTo1bVjPO/1Hsegt1OkL0h1iHILBwDTLNKYVTEvyHIpKUfr9/eSb83lv+CzzHFUpnmyx95POX8AiiqgdGqKDbmXhQ6eDSCRuwYFOl5R2fi3Q4+3hTN8ZHJp87DsPEk04LxOrHRQvv4NfNr2oCFoXBagWdwsLyhck7ScYDV5zE+9WVyvf3/19hoJDiLIYb9VtHGxkp3MnC8qUYzJqjAyHhhFQxDVZlhXRVWsmS5/F7tbdnOg9wdySucwsnMmRniP4Ij56vD3UZNcAV8c/7vzA+XhyYUSK4Aq5CEQC8fa/9uH2eCphDK6gi1N9p7i5+ma+t+t7aNVaBv2D8QqbLm8X+zv2s6hiEZvOb2Jp5VI+PePTlFpLOdJ9hEKLkroZFIM8uPMv+d7Cf2T6TQ1YZC06kzWF5zWHeuLjQpG5iL2te1nmWEZpVinOcA9TRqtQTUzQzgBZr0MX1DEYGGRawTSlpdvlRCNoMGlNNJQ1sH7ieprdzWl5nlFj5N3OdzFqjdTl1sUTKk/1nRrVNy8m8FbnVPPy2ZcZCAzEt43keonjYuJzrjSBdOTxjJfn+aN+7EY7oYEQkiyxq3UXp/tOx8fb2txa6vPr2da4jeHQMDq1TklQHWritkm3gcWCdgRfC4c85AhmhC3b06bNZvKIHIvnxdKbO72dRMQIJZYSJuZOpNJeiSAIacfpaQXT+MLsL4wpwlfaK5lSMAVZlnmv+z2GQ8PU5dahU+sosZTwsUkfY2bxzCsSq9QqNZW2Svp8fUiyxE1VN/F2+9sMBAYYDAxyuv80n5/1eaYXTOfswFl8YR955jw6PB0EogG0Km389ykshjnZf5K+QB+ekAer3nrNFhuuBv4gRbYPGzwhTxLxqrRX8sg7j3Co8xB6tR6T1sTckrncOulWjnYdpdvfnbRy99ihx3j2zmd54fQLNA01xX9kq7Or+ZM5f0KFvQIYf2XHaFD7Q4TTRbqjCBO6oHJMFfYK5BaZ2yffrpQWR/2YNCb0Gj0yMjMKZ/Cr5T9D3LINbwKZMGzYQOTUqSSBLTapSoxFVtfUYLr3XiWpboTQFmtNshiN+NbfjLjptSShTah2oF+3jsCOHRhHm2BeFKhC+/cj7t6dcByvE/yAUi49IQ9GXxh52EMoUXSMYZztsIm41ibegj+Y2TsiEskomsV98S5WX/lffhnL/fenb5fcsOGKBE5vxEutsQxplGAD2dnMsobVzHlhFd+Z//esa1iNLioQ1sCAEGCCEXRlJZlbLbVaVCYTgT17UlrSRraIytEomqKipJeP9KRRl5XFDdtDu3Yhtrcr16UsJ5+fi5WD/hdfxPyZz8TPbWIFUEyEELu6UBcXoy4vJyRJqffCwoVkaWVuqb0l/Y+o3/++fPPGKvNP9/nj+00gJEDKhDLdY2NNkBJJTOtwK13eLvRqPR2eDgQEJFkiGLk46coAldFE/tZdSCMmdbKzGcsOFaY774w/1uxq5tfHfs2hzkM8svhhsvYcQHa+E98+rdqB4+LkKpNBcIxAxCv+XEHEYD+o1QS2bEn2Z0wYs0xr1+LfsiU5NMBoRMi2o7Fnp32v5M+a7H0Xf4+rKIImjln6hob0YTZtbcgeD5ETJ5Lvs+pq9A0NmG69ldD+/UnCXPQPNF3wOj68uByed7DzICpBhT/ij3O9n737M56/63kkWaLb133NeF7jYCONQ8r9fLT3KEd7jyZtr8+rpya3ZkyeN61wGpPzJ/Nm85s8OPtBomKUU/2n+M3aX6YIbBBbmNnEhNVL+ZejP+Pumlupq6lGbEyziHSR51UY8/jG4m/w/d3fTxLaLDoLX573ZX7yzk/In/81HMjJC2UjeF4oiecdSP0dXLIEsrOv+njhCXk40n2ELRcU24pZZ1JDGuQmJxZg6bwGzvafRa1Sx7dFpGT+a9AYrrmJ9/Ge4xzvPU6+KZ8sfRbDoWEMGgM6tY6zA2dZWrWUaQXTCIkhonIUjaBBJagwao3U5tZiN9hpdjXT7VWCSZ478RxfW/A1AI70HCEQDRCVo1fNP67T06nsU4oyFBgiFA0RlaIY1AasesX4PJaqGEsglFA8hUVEur3dlGWVoVFr6PX1olVpkZE53nOcmYUzKbWWUmgpZF/bPt5qeYuTvScpMBdQYC5gQ+0G+v397O59l92977Jmwhoa8hxJx5c4LoDSKpdnykOr0vLquVf597f/nTfveJVahFHDtPQNDaMuuAoOB85QN/9z9H/YULuBZ088S1lWGQ1lDUSlKBW2CtbUrCEUCY3K8071nuJU36n43yHx0lLjWL55Y3G9kZ8/hsHAYHyBEUipckv32FhCz3h5nkljAhlKLCUAFJgKUAkqso3ZDPgHUAkqHNkOsg3ZBKNBsg3ZhMQQhbpCSq2lKe8b43qfLrslRWCLYWS30UjEeF6s4s/pctLn78OgNnCw6yAvn3mZTm8noIiiCysWct/0+9hQu4FXz72aNE7nGfO4qeomJhdMzni+4FIlI0CWIYs+Xx/BaJBKWyX3z7ifKYVTxtzHWLBoLeQYcygwF+DIdvBu57t0ebsAJQm52FpMp7eTfHM+NoONkBiiwlZBWFQWYWVkzFoz3b5uXEEXvb5eBgOD/OLIL66qUHstcF1k+wAQ64UGKMsqixMvUAYzm8HG0Z6j9Pn7+Ozsz/Lv+/89vjoU+3+Pr+ea+i8AyGmiptNtt+qt8bTSGBEMRAMUW4upsldhEzWIW1LTclRWa9KPxKiTqsbGeKpOYivRyLYIc24R3tvWgc9/qT3LbEKblYf/5mUEAiGMq29GECWlrU4UEdvbETs7iba2xt931OO4RimXLlc3JlFNcNMWDCtHMf8fq8VvxPYPwsRbDo3R3uF2K94T27ZlTN6MH7vfj/fJJzFt3IiwciWEQghGI5jNV3y+LVoLau8IgWxEK1qlJYt/bvg7vvvO/+Nvw/8cj5deM2ENDrsD8yQNH88gsOobGgi89tq4WnrTCaApnjTRKJpJkxTh5OI1kZSeieJFJrlccQFPdruVbTod0sBAynuoS0oQLBZ8v/hFcgrnxYRG/zPPkPu5z6Gxpx9HxtPSMxpGlqh7Qh6O9xyPr8Ytz5qV2ZPH40m9li6mpiYK8OMVfRKNfs/0n8EddLOofBGn+0/T4enAHXLjJYI+U3WlKKUNdoCLvoMXSZQn5OGFky+wt3Uv90/6BLYd76QKc01OLDLMmFnHsd5jhMUwE3MnpiWS4/ZnTByzbDZMt976vqteYGzvuytFYlLsaAEd+oaGtAsRYlMTIUhrHP1RTxe8jo8eLofnPTT3IX6w9wcYNIYkrjfgH+DHa398TXnecGiY1TWrMWlNeMPKBNYf8fNWy1sEo8F4+99YPK/f30+RpYh9rft4+vjTbKjdwKdmfIoZtloCzjfTvrfodGKXVvHgxHv4TetmylbcjRkhY/vr/PL5/Gzdzzjec5yh0BDZ+mymFU6jwl5Bha2CU32nUC2pp3zFEsxRFUIofNk8LwRop05FO3nyVRsvLgxc4MLQBX564KdU2iu5sWIqsnNL2ufGfLXyzfm0ulvj4pZWdSklOduQzeT8ydfcxHswqFzDA4EBKm2VtLhbGA4NE5EieEIetCotn531Wd50vsnR7qNIsoRerWdW0Sxum3Qbw6FhwmKYUnMpBo0Bf9TPv+37N+6eejcfn/pxoqJSKbS4cvFVua61Gi06tY65JXO5qfIm/FHF0zDXmEtNTg2uoAutOjltelLuJILRIKFoiIm5EzFrzfT7+5FlGZ1aR1SKohJUBKNBJudNZn/HfpwuJwaNAbPOjEalIRgNsrd1LyurVxKVFa6ZTgBNHBcAQtEQ88rn8eMDP+ZIzxFEWWTpi+tp/sxRsubNS+ZnF3leaP9+jF/4PKEtW5P9bqsdDC27gQvu41wYuMDelr3cN/0+SrNKCUQDGDVGujxdnOo/RX1e/ajXzpUkXEIq1+vx9nCw4yCukAudWkeruxWLLvXcDAYGOdZzjENdhxgMDKIW1NgNdgRBQKvS4ov40Kq0uIIubAbbuASV8fC8Tk8nNTk16DWKABdLnfWGvNTm1qLX6Nnfsp+VjpWYdWblONRahkPDvNv5Lg1lDfHPG+N6u5p3cX/B6ozH5ve6OB9uHZXnjaz484a9DAWGqLJX4XQ544nTgWiAva17MagNfHHOF7l/xv2Xlfg5EuNZFL8SVNorKbYWE4gGsGqttA23xbeZdWYqsiqoyKrgDecbtA+3ExJDLKlYQq4pF6fLSZYuC1EW4+nYNdk1RKVoklD7+24LHQ3XRbYPAInl3cFoMKUlVJZl1Co1B7sO8qnpn4qrt4mw6W3vqySy1dXK8Z7jDAYHyTHmMK1gWnxFdCQkXebLQUiIL068KX0RHwC7W3ZzfvA8cyc5kvyb4hhRFZQp9VBsbMR4881YvvSljJM7S1YeZKW+3mYvBDv09rdheG1nUim26Z57CL311viO4yqlXMYQcQ2hfuU1VLFkzVGETbG9fXxVYYzfk+VKIejHqJQzGPA++STme+9FXrRIqVgbQRbUNdVJx47fj//ZZ+N/6r74eYxX4VxX2iuJRHovPTBKK9qDjkpW3P5bVv72Nhx2B3fU38HO5p1MzpvM40f+hw3lK0Zv2ayqynjdxISx0QTQkQKVYLEgiGLydx6JJL2H5YtfTPYY1OsROzpQl5WlpIzGV+hVqpT9JCGDUDZWdeR4qyebXc3sa9vHq2dfja/G3bDgP8jUECy5XGmr3GKpqbHPc7mCSuwHX6/RU0ABWrWWbEM2ESnCwaHjLF+yOH0F7OLFhALpjcBjiH2nLa4WmoaaiEgRlubPRXI+n/75TieTFqzn8eYX+NXRX8VXJxOJ5KgVf6P5MyaMWVda9QJXXjkz1r5j1XKjVY1mHJ+bmtDPm5d+2xgrx9dxHVcTl8vzgBSu935bXy6H55l1Zl468xJHey5VsM0onMEDsx7gpTMvJXlkZeJ51fZq/ue9/2FO8Rxmlczive73lCqgoo2ZDzYYpHD3MW68YTpPXPgNn1/zKXJZk5HnVdgr0n6emtwaanJrON5znC/t/gf+37S/wvyssjB7uTxP39Bw1caLs/1n+eHeHzKraBZ72vaQbcxGG5EzvkYdjmLRWajLq0Or1uKP+Onz9wGX0kXvmXrPNZ9MxnzwJFmiw9NBobmQClsFkixhN9jj5vgP3vAgDWUNuIIu7AY7eo2e4dAwoixSaavEG/FSnV0dT3p8w/kGZp0ZnVrH/LL5V004LrOUcUvtLTxx+AlO9p0k15SLO+hmYs5E/nHpPyr+g95uzDpzXDRL5HkxodtusMdbHtUqNQaNAYPWwETzRN5ufxubwaYEb2TX0O/vp9/fTyAaiIcJjGYMP7K9N8eYgzfs5WDHQQwaA6FoCF/Exy/OPM2D7WVpPYJV5WWc9bUQXlhDzoIpCKEIEY3A1q7d/HbHn7OhdgOzi2fzu7O/46ljTyEIQtLr/37x348aYgJXlnA5Eke6jyT5i80uns3+tv18c/7XmZVVhzocJapVcdB9mucuvBRPm9SqtNgNdn539ncc6T6CQWOg0FyIVWeNBypcjqCSieflm/JZPXE1/7bv3+jydCEjY9KaqM2tZUnlEtxBN6FoiEPdh1L2W59Xn/SdtrhaaHG1UJpVitaYudBhSPLy92/8fVqeN7LizxV00eZuo9fXy8HOg9Tl1nGs5xh2ox2DxkAgGqBpqCneBXE5iZ/pcLmpoZe771hSbCgaIt+UjyiLWHVWphdOJ8eUQ1gKM69sHlKbxPHe43R7u1lYvhCDxsBwaDhJYFtUsQh3UAkMGQwMZuwE+X3jusj2ASBxdSPdQCcIAlEpikljihOZRMwrncfU/Mu/gN5uezupzF6SJabkT+FvFvwNhZZCym2Xku1aXa0c6t7H8lGM4FXVDgRL+jL1UDREk6sJi85CIBpQEgjTYWR11hiph3I4jGYML4KxYLTa8a9cgOl1Lq0AjXzfsY7jKnmdSYEAoVdeVY5j0cVzlCBcJiK0f78iCqlUKau8xnXrIBJBM2GCQkpjk+lrDNlkyCj8CTnZWB54ADkUQmWzEdi7N+XYDevXEdi6Ne3+M11jlwur3kqvwYXmol/LaKvYOFuoEVS8fNvz7Ozex87mneQZ89BpFD8Cv2eI/OXLCY5s2XQ4EFSq0Q9Aq0UwmTB9+tMIajXSsBsxEkKbZY8/JUWg0mjGrhwLhS5VcDkcqHJyUGVlKSmKo6zQG9aty7jPjEKZyXTFvnlBrxu7T2aFYQqLZk9h3+ARnjzzLFGtOuPrBIMhrTdjOk/CyxFURkbD69V6wlKYEksJ3ZEhBnRR7FOmoJ8/X6msVKmQg0FkkwGNSkAcyy8ShViLssisollIAX/G4zGKKoZDwymrk7GxOWMKXwZ/xmhr6wfmOXQliFfLjZamO8b4nGn7tfapvI7riOGjwvP+6+B/cX4wOUTkaM9RfvHeL3hg5gMpHllWvZVKeyXnB85zoOMAZp0Zi86CL+JTFia6lIqVFncL5wbO8di872c+YL0e2dnM1KVz2dt3iKZgBwVlqWPY5aDKXsWGug3I+oR2/8vkeUSjV2W88IQ8/O+x/6VpqIna3FpASV0NazKLbOLFRe4iSxFV9irml85nIDDA3fV3U2GvoD6//gOp1phWeMkHT5KluNAHkGfMY3HFYgLRAL6Ij5scN7G7ZTfeiJegqJy7HGMOd02+ix8d+BE6tS6eIhrD1fBhS4RBY2B/+346vZ1Y9VaGQ8PIyAwEBjjWc4z1E9eztGopUTGKzWBDhSqF550dOEu5rRxP2IM37EWWZaqzqzFoDJRllSFJEln6LNwBN9mGbFxBF0atkSxdFqVZpYTFMCpBxa6WXSkC98jqNp1Gh9vrRkYmFA2hUWkwqAz8y8GfsPK2/8MBSXMwVbUD3Yb1eIbP8s97vsn+9v2oBFWSkCYhcUvtLbx09qUUgS1Ln4UgCBmFsitJuIzBE/Jwqu8UWy9spdBciEFj4NzAOSw6C48u+zcq951Ddj4DgBpY5KiiZvFf8ELbVl5vep3Pzfocvzz6S1pcLYTFMGExTIWtgiZXEy+eepHbJ9/OQGBg3IJKJp53Y9mNeEIeHpj5ABcGL5Clz6I+rx532I0/4iffnI9BY2BH8464uANKm6bNYEv6Tn0RH6VZpTx/6nkOD59h0SgekYKjin2DR0fleYkVj6FoCOeQk15fL76Ij1N9p5hRNINuXzcyMvlmxYt5KDjEsZ5jdHg7KLGWUGWr+tBWdMUWbA52HOTswFl0Kh02gw29RpkD+yN+DncdZmX1ShZWLKTEUsKull1ML5iOzWCLVzZ2DndysvdkPKABUoXsDxPGLbK1t7dTdoWCxx8rYhHJg4FBrLrkG0Cv1hMRI3jDXvLN+eQac5O2zyudx7dv+ja1+bWX9Z4x89IY8YpKUfwRP2+3v813dn2Hry74Kq87X4+X3x7vOc7f7/s2z6/5H8ogWWhzVBJdvQxrglF2Yllrr7eXU/2nKLGUsKJ6BYyS/JlSnTVGS+TV8Biz6q0MGgfpXzoV++LZCKEwhqwRbWUfwHHAiMnyRXFtVPP/SITQoUMYb7nlkknvVW7Vulxos+wIG9YTHBF+oHY4MGxYj8ZmT3r+aG1m2tWriESjSWXvqmoH2vVrr2oC2NGhM8xatQRbYDGCSoW6rAyxrCwplACUVo3KRbNwhVyUZZWxsHwhjYONrKhegaTT4Hv6aaU6LxRSqr4uVufJ8iik+WLVXHDnzpT2PmHDejQ5yj2e2CoHSrutKjuzV1asmjRmBi/o9cjBMbzyopm98hKFsnRG+sYNG1KCOcbrmye6XAiNjZitVsxRLcgabhOmMHvR9/EJUbIzVWv29aV428WRZsJ0OROkxAqNwcAgja5GQpEQre5W/sfTwfKiRczOriC0ZWvSd6iqdmC65x78zzwzql8kKMS6PKucZ08+y19M+FTGYzFa7JwfUCa9I1cnx/W50k0etVp8jz+uHNc19By6WlAZjUiQPmjhMlvnE3GtfSr/0HCd571/fFR43uGuwxRbiunyduGPXFoAOD94nmJrcUqFUYzrnek7w6l+xbepxFLCXVPuQqvSIiDExQxZljnuaWRyhnFd9igCpCaiGPxfDY8xq97KgvIFuIYHyap2KNxi5LgwjnHkaowXLa6WeLW2Wav8HnR7u9nT/x53jJZmXlODbDSyZsKaq96qdbmosFek9cGbVjCNry/5OjW5NUnPr8+vT9tm9qUbv/S+EhMvF2f6z3B24CxT8qdg0BiQZImwGKbZ1cy/7/t3Hl75MP93+v8IiSFqc2uZkDMhhef5I35O9J1gVtEs/BE/NoONVdWrONF7AlESmVY4jRZXCwFRCVeYlDcJi87C3JK5bLmwhf1t+wlL4fh5+sbibzC/fD6QPC6A0kqZb87HrDXHq/wiUgRRFln78l18fe5X+dSK+wj6PAh6PZLRgNWkwzPoodfXm+TZF8P5gfNYdBZKLCX0B/rjj2fps5hfNp9QJJQklPV4ey61pBvs1OfX8+V5X+bHB378vr6vZlczbzrfpH24ncHAoOIdqLOwqHwRiwvnXhTYmpNeIzubKRVU3L30Ftrd7RzvPU4gEkAQBAQERSy8SLGbXE2EokphwuUIKqPxvPZhpZum2FLMgvIFuENufnTgR5zuP41WrUUlqJiSP4U7Jt/Bi6eVQBKjxkhdXh3F1uKkikWVoGLLhS0UWYr4+clfUzr/q1SN8IgUHA48K+bx5M6vAOl5njfiJRQN4Q4qQl+WLova3Fr8ET8zCmdQaatElER6fD2YtWaGgkOoUHGs9xj72/dTYilhQ90GFpQv+NB6lFn1VuaUzuF43/EUjz6DxhAPOBAQONt/ljklc3j+1PN0e7vJN+dzpv8Mk/Mmc/fUu/GGvGjUyph+rX0qrwTjFtmmTp3KI488wqc+lXnCcB2pSFTUDRoDN5TcEDfDtRlsDAWGkJGptlczv2I+T3/saYaCQ2QbspmaP/WyiRdcMi8FZWXTH/EjyYrZ5+Huw3hCHgYDg2y9sJXllcsZDg+zqnoVz7VuZumceUxbNh9tRCKqU9Mc7sXjucDyAmV1ptXVyp6WPejUOmw6GyXFJVTaK9nZvJMdTTvYUHIT5jQkK7R/v1LCLygGnxlbIq+ix1ilvRKPMYdTfad4qfEllhctYF5Cms9YrZlXknKZiMTJckxcy2j+v2YN6g/ZpFiTk4v+to0I/iByKIigNygVPgkVWjGM1mZmyMlHfWvCPgwGZKMhqcrramCWdSK6197Cn/Djni6UACBPZeUzMz6DQWNga+NWIlIE55CTTlsdk4uK8D35ZJKfm7qsDFSqtKJAJu+X4Kub0N+2EW2WPdVYXq1GGiNxVVarMd1zD2J7O95HH0VdUYFhyZKM50EKhdCuWwObMwdMiIODo4ppxttvT5tiORp6vb1khQTUw97UNtbqamrWrCECqBss8fEg8T1jHn7qi6b9KW0+aSZMlztBSiyPr3BV8PLZlxFlEVEUEeUo4S1bUkxspSYnIQT0q1cTGhnWktCyXWmvxKa30eZuoznSw/RRJlc4qmgKdWHUGomGosjIhKVwEpGM6jJX/KX4MyZMZOHaeQ5dbYwWtCB5vRlTTiVP+jaYD8Kn8g8N13ne+8dHhedtrNuIUWskEA6QbczGqrfij/gx68yKIfhF9Hh7aB1q5XjfcURRZGbxzDjP6/R28rrzdTbUbuC3Z36LRWdhh3MHM4tm8qzzZb637m/T/96sWYP3yScBkHW6UVvs3g+q7FV4jLmo1pUibH4thdeNxfMkr1dJ9b5CeCNedCqlessf8TO1YCoHOw9SZati3sLPpCxiq2uqMd1yCxabjQKu/P2vBjL54I3EaG1mM4tm8oMVPyDgGSJb1qMOi2hNFjTWNP4uV4Dh0DC9vl7OD5wn25BNp7cTi85CWVYZbcNtnOo7xaTcSRRZi2gobWBKwZQUntdQ1sANJTeQY8xBq9Ki0yhpkvX59ZRaS5WkRWsJ7qCbsBRGp9JRk1PD5vObFQ866VLb9/He43x/9/f52bqfUWGvSKmo0ql1dHo6WVK5hHc63iEQDcR9GSNShLe691OUW8mhrkNYdVZkZGwGG6XWUsw6czztNRH+iB+NSsPdU+/mQMcBfGEfapWaPFMeDWUNLHcsjwtlI9s54ZKYdrm+3z3eHk73nqZtuI3NFzbT6mrlExNvZ13JUkySBoPZhkFnQmx/Mu3rxaYmKhcu5M/qP8MLbVuJSlECkYDSEYUS/KFX6wmJiqE/XL6gMhrPA2VRotPTqYQKupriVVUAJ/tOohJU3DHpDt7rfg+bwUaxtTgpNRWg399Pj6+HZZXLeOTdR3it6TW+2fB33NKwGn0URJ2a7d17oXMnWrUiIqXjeaIkcqT7CDIyG2s3cqb/DP2BfvRqPX2+PgKRAPdNv4/Xm16Pn58cUw7DIaUDoNPbyatnX0WWZXKNuR/airaR90MMWfosFlYsjAcB5Vvy6fP3sW7iOnKMOQiCgDvgJipH6fP1xT/f1fwNuRYYt8j2/e9/ny996Uu89NJLPPbYY+Tm5o79ouuII6aot7na+Payb/Oj/T/iYOfBOPGaVzqPb930LaYVKKXaV4qYeSkoA0mMeMXgDrnRq/WUWEr40pYv4Y/6ebvtbSxaC8Wrfsj/nn+RQ52HEAQBX9jHgvIFhKQQ/f5+rDorR7uP8vjhxwmKisI/OX8yn5nxGf7vzP+xuest7l23PpVklZWhstkw3nKLEkQQCqGdPl0xeh9hbn41PMZiKS2xdJr6/Hrq8+tpc7chrM1GtfV1xMamS62ZpPowXWnKZSISRYBEcS3J/D8cVp53Fcz/rxW0Wfa0PnjjheR2w5BLaWOTZJBkGHIjycJVq7SRAgEM23chjlg9G83HSmswMrWwCoD7LfdzrOcYp/pOUWUuQb+4lNCu3UnPj1WSGdevJ7BpU3JbrMOR0ftF8AcvnT+dTmn/DYeRBYHg7t1KeEQ60XX9erz/8z+K31Zsf42NcNNNmU+GwUDYakTYsAZTWIJQEMFgREgQykSPJ0Vgix1v3Ei/cHyrz0e6j9DV18yqvHkEd+9Oa1gf2LIF7ZQpYLViWLECeRTD33TtkCM9CeHKBZWRxq8zNOWEm0b3AYvetBDNFx7AIKrSVpha9VbyTHlU2CrY3fsu5nkLqYGUCuEL86rY23sI55BTWamURe6dcAeztVVEW1tBp0Ol1YzuCzjSnzF2nfzqV8nHfPE8BtwDOD2ucSV1/T4wWtCCtqYmbcqpcd06kKQUEe6D8qn8Q8N1nndl+CjxvB+u+iHvdr6bwvNkQWbAN4BWreV473F+c/I3tLhb0Kv1STzvdN9pHprzEGf6z3C6/zR5pjxa3a2oVWqOBJqYc+tG8AeU6m+9HtnjUQQ2vx+h2kFbtD9lwvp+MJLnVdoqMd95J7LPp/DLrVsVL88MPE+/ZAnq7OyrMl5YtBZsBhtGjZGdzTv59PRP89Sxp3jh9At0+7r5szmfZ/pNCzCKavRmK2rLB2P3cbkYzQfvcpAb1SGTBaEgGEzIQy78u3ZjWrXqqnA9T8hDn7+P4dAwgiCgUWsQJRF30I2AQIWtAp1Gx4WhC7R52thYuzEuuMR43rEeJXTIrrbz3MnnGAoMMaVgCsFokCJrEZNzJ7NmwhreaH4jSYTRqrSExXDcxy0Rx3uPc7znePz8Vdmr+MKU+5G9XuRQCL8qyobyVXxj77c42HUQtaBGrVJTn1fPZ2Z+hh1NOzjRd4LanFoKLAUMBgYpMBVg0SriYftwe5LQlm/Op8pexcenfJxTfadodbWiUqkoNBUyMW9iXCjr8fakCGygJIj+5MBPeHjFw9xUPQafvIiYWJdnymPT+U10e7rZ+bGXqXr7AvJb2y49sbo6dWE7IYRMEARqhXw+X3sP2y5siwtrBo0BT9jDUHAIu96OSWNCp9FdkaAykucFwgFahpU293To9HRSYi1hWtG0UStMB/wDlFhL4t5hoizy17v/kb8TvolVZ8WsM+MKuvjWsm/FeZ4v4kOn0uENeXn17KvoNXoGAgPkGHKYUzqHp088zTsd7yDLMladlZqcGurz63mt8TVqsmtodjezqmYVxZZi9rbtBZSWdLvRjiiJvNX8FlXZVR9anjda0MJAYCBJfLPqrVi0FhaWLyQshnmt8TWiUjRJYLsavyHXEuMW2R566CHWrl3L5z73OaZMmcJjjz3Gxo1jGJxeRxKseiv1hfXUF9bjsDk40XfiilcyR0PMvBQUw12z1szfzfkKa0qWoovK2G2F9MpeHtrxlxzsPEh1djUllhL+fN6fxw1EjVojQ8EhJuVOYigwxE7nTibnT+ZU/ynyLfn8cOUP+a93/wun28l7Xe+hElTcUnsLrqCLn5x9kntWbqRAtQpVKJxS/SIJAv4dOxBbW5XUw4vm1Sq7/ap4jI1MaQHlhtxYtzFeNh1ZdTPc6FYm9yoVhhUrFJP4i6QQvR51hnTJy0VSe2BisqbVCuEwqFUIubkfWnHtakAKBJDD4ZS0QLXDgXHtWqRA4KoQTqU1d/QWykThRu1wII/wsTjUdYgbsqdieG0P/vZ29IsWYVy9WhEI4VIlWVUVxvXrQRSRAwEEnW7sFNaL25MSI7Va9AsXYly6lMCbb6KfNy+euIrBgHAxVCJRYIshev786JU+NTVosmzo9EbI9EPk92duOR1n+EeMxH1z2l/ACB+7kfvUNzQQ2r8f/cKFSvvlaEhoh1RXVyvpognPv1qCSuKKZ7S9ndT4mUvw+1wckFq4ffLtoz4nS5+FWlBj1pq55dV7lfG3YS3aqERYI/Bm3wG+9uIGvrv8u3jCHvQaPf/S8I8U7jpOoOnRS59v4sRLwuuIij/jmjXIoojG4YhPZAM7dqCfPj1V6I1GCfmGebnzZdaW3cTUrAmoIiJyOIxgNCJYLB/IZC9dq0riannaClijMWPK6bVMQP1jwnWed+X4ffI8laCiyFKESWtCkiWyDdnUZNfw7be+zYneExl5Xl1uHa6gi9ebXmdy3mScLidmnZmH5j7E5vObOdB+IInnbbmwhQ5PB/fPvB9RFjGoDeQYcpKqXyQu8rxEAby6GmHdzdRaTFc8OcrE86ryqgDQ37wKIbgEJAn0egxr1yqT/XBYWejT6a7qeJGYpHe2/yz/d+b/uKX2Fu6ecjdRKUpYq0LKtmG5ii2TH0aMWhm/Zg3+7dsxrV9/xee8xdWCKIvU5dZxduAssiwrYQJiCHfIzcLyhYSiIcw6MyWWEiz65CqoQ12H6PJ0caT7CBEpwoyiGdxQfANHuo8Qiobo8/XxzV3fZGLORP7sxj9DLagZDAwiSiKdnk6cLicqQYVKSPXnHQoNxf8dcQ0RfeXV+O+3FiipdvDoqn/jzYGDtLpb0amV6sd/3fevCAjcVHVTvKoHlIq9OaVzeK/rPXRqXbzV1G6ws9KxkhtLb8SqtzKvbB7zytKHAZ3qPZXWdw0Uoe1U76lxtfIminVlWWU0Djby8MJvKgLbyIXtpiZCsnxpYXuUEDJbdTVPrfxPFj2/hrKsMrKN2ZzqO4UkS1TYK8gz5XGT46YrHjMSed7+9v34wqn+mDHEKs4aMnhG2g12TvWdYt3EdZi15rhfnoAyp9CpdfFKQ0/YA4IyRrmCLjad38R73e9h1prxR/w8NOchXjz9YrxNWavWIiHR7+/n3c53WVq1lKn5UxkKDSFJyuNRKYpGpWFe6Tx2teyicbCRcls5lbZKJuRMwGF34A67iYgRSiwloyabXm2MxfPSVcBa9daMKaczimZcswTUa4XLCj5wOBy88cYb/PSnP+WOO+5g8uTJaEa0qhw+fPiqHuAfKmrza68q2RqJRPNSs87MC2t/SfXbjch7X1dWENRhqtDx8qpf8kLrFv5p3/fYOGkjA/6BeKKK3WAnz5hHRIxQbClme9N2djbv5GDXQex6OzdV3cQnpn2CF06/QONgI8d6jnH3lLvRqDQMBgY5PHwWnVpHIBrALtmpN9dTiHJDjFaxcDWIzsiUFlCMJM/0naHL28W90+6l0FSIXZYIvPBCfEVFdrvjlTSh/fuxfOELV3wsiUhph7qYrKmuqUa/YQNae2Y/rkyQAoGUc+lTRVNWeH/fA5IcDCqVi+kqprZsUTzorobINk4fq1hrYmKIQcy/obakDMmpkAB1YSGBbdtSj/v8eQLRKIaNtxB8803EpibMDz6Y8a0FvSE5MTKRdOzdqwiAgoDs9SJYrUTPnlWqyC4KfCMR2rcPyxe+EF+xjyFRfErntZYo5o4ZuDBOv7MYidNEJFBlkqmAaFSp7Fu5MuPTBLsd0z33IJjNRM+fR2xtxXTnncpGWxZ+vYrXet6mr7lvzGS98SJj66lWS05OKRvEEiItzaO2O5dmlZKlz2I4NIxeo+cv3vyb+DaL1kKFrYJKe2XcY+XeiR+jcNexFHFYPH+eAKBfsgTh5puR3W4Ei4XomTN4f/7ztCEM+nvuST1ujQZRL/BAzZ3khbSENiXfh/HrZRwVBlIgoFQjRyLIodC4AxYytarMLJqZ8T0zpZxeywTUPzZc53lXDx8kz1Or1NRk1dDqbqVb7ObL875MIBqg09OJWWdmWsE0zg2c42P1H0vL86JilCJzEdsbt7PTeYnnLa1ayuLKxYTFMIe7Dsd5HigTyMHAICurVtLh6cAVcnGqT/FtK7QUfjh4niTh//Wv0S9YgKa6Wlm4ujheRc+fRztlylUV5BPboYwaI+6gm/OD5ymxlHDf9PuozXv/10O6qj3gQ8fzMlbGb92Kft68q5Lk6o148Ya93DPtHp45/gxd3i5sBhvuoJuyrDJW1azid2d/F/eLTmyHjvE8d9Adb78rthTz6KFHOdF7ggJzAchg1Bo51HWIH+z5Af+05J841nuMfn8/dbl1eMNeVIIKk9aERpU8RmbrFT7vcnWjfuW1JA9iULyADdsF1FPUPPHeE/FK1LAYptpezYm+E6x0rKTb1w1Aj6+HtRPWkmPIoWmoKd62Wp1dzV1T7sKqt44pbLhCroznc6ztMSSKdRFR4R/rS5ch79qW9vmJC9uj2qk0NVGIzGM3P8J33/lXwmKY+vx6SqwlfG7m55iQM4ETPSfY1bLrqvE8i9aS4p8Zg1alZUbhDGRZ5ldHfzXqe5ZllVGbU0sgEiDXlIvTdelzWbQWjBoj9fn1cZ5n0BjQq/RMzJ3InrY9gFKF7HQ5lRCZoItiSzEWnfLawcAgre5Wmt3NlNvK2de+j2A0SLGlmNq8WoxaI3aDna0XttI23MaU/CkY1UbKsspodbXy+KHHCUthNCoNRo0xbbJpJogeD7LfjxwMgMFASKdCNhkzjjFXwvMypZxeywTUa4XLThdtaWnhxRdfJCcnh1tvvTWFfF3HhwOJ5qUbKlYqAlt7R9oVhNuqHcy59Tc8evZ/Fc8AlQ4ZGa1ai0WnTAb3tu/loamfZV3pTcihIGGNwGtdezgycJpCcyGuoAtPyINKUDE5dzJROcoT7z1B23Bb/Mdn5E12rSZGiSktoEQhnxs4hyiJRAeilFnLWFI4j6xBxd8qtHtEK6DDgenee6+Jn8+1IJ1JFVEXoa6pxr9iPi9feBlPyIM76MZmtHFb3W3jSqlKR+YSXzPW9lERCmWumAqNkkx7mRjLnysm3Ijt7YTeew/TrbfGt8V8EtThS6uIgtV66bgTSt1jLY5EoohtbUCGMAsuVs2ZDIheT/z7Gkk6Eq9FVbUDaeVSDHKGcTYSUX5Eb7sFYzA1JCOT11qsUnPM8zVOv7MYSYtqVUpVaCYk/HZkOl/RM2cI7d6N+sHPEJpQhiocQdapaYsOMBzo4V92/EuKQfM/LPkH5uZOf9/32chQiji0Wkz33kto62uEMoRaAITFMA/NfYi9bXvZMHEDm85vosnVhFlrpsBcgN1g59a6WykyF/Hg7Ae5uXgx4iu/SHs8YnMzqlWrkP1+kGVkr3fUlmQgJQxBPW0aQk4O2YDY0kJohE8eKK3H/ldewXTHHRnPk+R2Iw4NEdq9O9VLL0PAwnhaVa6mIfZ1vH9c53kfDSTyvC5vF23DbUTECN9d/l1ePfcqPzrwI26ffDvbG7dTmlXKrOJZCLKQludV2ivZ7tyOL6yk5QkIuENudrfsxqwxk2/KJ9eUiyfkiScnT8mfgiAIfG/P92hxX2qFT+R6Hwqed++9Cs97663489UOB/rFi8cORHgfGK0d6krEr3RVexqVhursahoHG/FH/B8enjdGZbywcuVVSXK1aC2Isogn5OETUz9BKBqiy6t4nAajQaw6K3dMvgMBgUA0kCSQxHheop+aSWviRO8JAHQqHY5sB0WWImRkNCoNx3qPEZWiDPgHMBeZmV00m8Pdh/FH/Fh0lnhF27SCaUwrnIYn5AFfIEVgi0FqamLm/A2EoiGyjdmExTD+iJ8+fx8WnQX5ovN/zBA/EA2weuJqIlGF8yVeV+MRNjIljI5newyJYpxRa0Sv1qMbI7w3BnVZ2ajcRWpy0rD0E9xVfxeBaACTxoRZa0av0fOVbV9J4XnfWPwNphZMfd8ic6W9kqahJibnTeZ0/+n441qVlrUT1nKs5xj/efA/uTB4Iek9Y6EWcPk8b3rhdE71nmK7c3u8UjE2R+7396PX6PGGvQgoadSJlgCyLDOjaAbPnHiGsBjGZrDhj/ixG+zcVncbL5x6gTklcyi3ldM42Mju1t20D7eTY8xBo9OMmmw6GkabO+jWr6U1MJRW5LzO85JxWb8ujz/+OF/72tdYuXIlJ06cID8//1od13VcBcTMS+1+GXnHL9EvXpx2BUFqclIiS2yYs5LnLvwu/qMjyzKiLFJhq+BfG/6JCQeakXe+HH/dpx2VrF78JR4++gi9vl4WVyymwFxAr7+XV869gtPlZCgwRLYxG4PG8IHdZIlmkqFoiHMD55BkiRO9J9CqtNxSupwSdTZyllImrCkrU3yNLlaEiE4nIZUKzW23YODqk8OrSTqTKqISIDY2YZJlNixZxT+//X2GgkrpestQC+tr17OwYuGoKxmZWjByjblKgMTZlxRCp1cimOMtGmOsjshjiGhjbR8vRhVJGCHc1NRgWLuGYF83gl6PYDZj0ykCgajTELecjx2XyZQ2aTR66FDcd2LUMIvqaozr16POshNoTfYqzEQ63IHpbBk8yrrRosGrHRx2neGQ84TyHZRVxbclrSiPEAclt1sRwiQJtNqrEv4RI2n7Bo9ym3rauLzEBLUa49q1adshYwEIAMOeAb57/ucUWAoAmF4wnaeOPZVEvAAahxrJjerxv/BCeq/HcVRqXao6fRmx8dI+9KtXp4hLkBpqAQphbxxqZEH5ArRqLdnGbKJSFF/Ep0xkraVMyJnA6f7TWPVWDFGB1Gbgi+/b0EC0tRVVdjb+F1/EfN99mT9AooA5bRrGZcsIvPoq+oYGVImC8QiIjY0ZKwykQIDIhQspYRaxc5ApYCFdq4pRY+Tm6pvRaXRsPreZAksB0wqmkW3M/tBVZ/yx4DrP+2ghxvMOdx3mYOdBphVO4xdHfsGB9gPIyOjVemRkerw9iJJIfX49YSmcwvMKzAXscO4g35SPWlDHJ/iDwUG6fF1Myp1EjiGHBWULKDQXYlAbcIfdPHv8WQ52HozzPPhgJlSZeN5QcIgbS2+kpGQ1uNsJnTiRdsyOjVfCNQiEuZpVF4lVe2pBTb4pn0A0QLe3m+ahZqbkT2FPyx7ODZ4jKkV//zxvLAEtFFJsUq4Qicmd7pBS6S8IAke7j5JtyCaYG2QoOMTKksVMMTsQuvsIGDxJPC8WUgHgiyhzAqvWyqdmfIr24XaGAkNo1VqaXc34w35Ks0oB+NWxX/GVhq/wo/0/4szAGbQqLaAIMX+78G+psFdwoucEZaHM02xtVEKURQQEsvRZyJLM2tq1VNgqkGWZClsFroCLruEumgab2Ne2L+V7SBQ2NCoNtbm1ZOmzCIthtl3YRo4hB71Gj1FjJMeYQ+NgI2adOd6iCoogl5hAmgmJYpw76GZm0UzCGmH0FwBSlgXTpz8Vb6McDdGAD+eQkwJLAd6Il+rsan504EcpPO9k30n+++B/s7RyKa3DrfHHx3uNgnKPTi+azhfnfJFHDz4aF9rmFs/lWM8xrHprkvg2MtQCLp/n2fQ2zg+dT2oFFhCw6qyUZ5Vzuv80doOdcwPnKLOVoREuXT9V9iqOdB1hXuk8djbv5HDXYfr8fWQbsqmyV/HV+V/lP/b/B3W5dYiyyN62vRg1RsxaM2adUjSSLtk0HTJVo7JpC9pVC/EYPSm87DrPS8a4RbY1a9bwzjvv8NOf/pRPf/rT1/KYruMqosJeQdTbjo/Mk3mcLcy6aSHPATeW3EiHpwOtWossy9zuWKcIbCMn+M4WihD4zI33cLLkAheGLrC/fT/55nyeO/kcOYYcJuVPosvTRb45H41Kc1l9/+8Xiekz7qAbURLjAtup+95G2rId3whlfqQxp9jYiNrrBcuHK91zJBTvsfQeC1KTk5xFs7iz/k72tOzhUPchzg+eZzAwyMtnX+aBmQ+kDGjpWjAABgODPHXkKRaWL+TZk8/S6+tFq9bS4+2h3KYkYo22z0RcrYqpsTBaUmHMLF0OBNBMmUK0vR3fo4/Fv3dVtYPK9WsothRzLtDOtFgKrV4PWi3me+8luGNHqnHyvHmEDh2K+054n34a8yc/iez1QiAQF+MCr23DsGoVWr3xkudXNPMSoCYi8eSZZ7lp1U8xbifpPhQcDqI3L2Pv+WfxR/2p30FsRXkUH4y4x9nvfofl3nvTBy5cRvhHfUE91dnVPHnmWWYvmo5j8WLFaHq09FCHA1kU8T3xBKYvPAiDQ2kDEABMFjuLKxcrO5GV6HSNSoNWpSUiXWqZ/MrMP6Fg19HU0ItxVmrFoFSd3knU4ybi9yHq1GjUhqRU0aT9jwi1iK0wnx04i1pQkr58EcVHpSSnhPqCeo52H8Wqt3Jr3a2oommO6aIwqpk0Ke4hpC4vJ3rhwqiiqKraQcRuRX//pxB0OlRGE4FXLpKlOXPG/NyZJkiyz5dZpLvYFpJOqIutfhs1Ru6f9AkW5s4iS9bjIsD/tWzlZ6d+hj/ipz6vnj+b92cc7T5KSFTE7cshztfx/nGd5300UWGvoNPbiUatVCsc6zmGQWNAEAQG/APU5tTidDkZDAxSnlXOyb6TKTwvNumz6+14wh7UgjqewidJEnaDnQdmP8D5gfMc6jrEyd6TTCmYwo6mHSk8Dy7P4+n9YDSeNxQcYkr+FEqsJQS8LrJKSpIq2BKRabz6MCFWtacW1JRYS3jl7Csc7DqIQW3AordQn1fPwoqFVGZX8tzJ5z70PI+LleVXinRJhXaDnRWOFSypXIIgCEzSlcLW14k2vRF/XSLPC0VDGDVGAtEAZq0ZrUrLF+Z8gRdPv8jhrsPx+8Bhd7CwbCGvnn+V+2fez/He4zxz4hm+sfgbNLuacYfc2Aw2VKjYfH4zgWiAqBSl1FiTUVaKXBSnRFlEo9LwxTlf5MmjT3J24Cw2vY2h4BANZQ18peErHO9RhKaR323cpiPBm6ttWOms0Kg09Pv7KbIUsbN5JxtrN/KU7ykuDF6gLKsMi84Sr3gb770a43lNQ00c6znGyuqVHHSfYn2GFPV33acp0GXjILMtznh5Xq4xl53NO5mUNynp9Zmu+3SosleRa8ylJrsGp8uJL+xDr9bznwf/k9P9p5PEMEgNtbhcnucJeZKEXYCQGGL1hNVU51RT3FtMeVa5EqIgKtdEUAwyo3AGtbm1nOw9yaHuQ3R4Osgx5JClz8KgMTAUHOKxQ49RYC4gKkWJyspxB6IBenw9mHSm+CLIyGTTtBijGjVXWMm5NEJdjOfFxN48Yx51eXW8dOYl3ut+D0mWkGTpj4bnjVtkE0WRY8eOUVZWdi2P5zquAeI/eGNM5sVQkN0tu1lUuYhQNMT5wfOUZZUxx1aP7Hwh7WtkZzOTlzXwudceIiyG6fP18eAND8bLb8/1n8OR7cAddCu96Br9uPv+W12tHO85zmBw8LJ68BNXt8JSWCnvDgxw4J43kLZsH7UCY2Ti5NWqqrpW8IQ8aPyejM+JBLx8b/f3uLn6ZhpKG9hyYUv8xzfgcWHyhJAlCUGWkcNhNDo1N2RP5a3wfsLipTL6fn8/B9oPYNVbef7U84Bi7F6bU4sgCHHvgLFWRzCZrkrF1HiQqTU36HUT+e3vUsr4pSYnbNrKXRs28tyFl3AsX44FpQXUsHo1wTfeGPX60ZSVKVVigH76dIJpvOcAguEI+nnzLp2HMdpVIloVs4tn8/Gtn+W2qrXcMn8duqhMSAOvde3hrbf+io/Vf4wz/WdSvoOYYJLJByMky+inT09NuTUaU7zbxkKhpZC/mPcX/OTAT/jynm/wufr7WL9mFUZJSAqN8L/4IuqyMvSLFxM9f17x9pJEZI8HldUK0aiy/WI4glBWxv6h43z7rW/T5+vj+4v+maWly1k+53sYTFaCYpiB4BDbu3ezqmgh8uujCGFjVGqNhMpoRGc0EqNEkZbmjM9PDL0YOQGIpZDlm/JZUrkEGZlb626NkzQpEEiuvkwnjGq1Sov7/v2KsEtyUh6OSpoaqrn7NzcRjAbRqXSc+nhCyMg4WqMyTZDkYHDM3xGi0bRCnV1vx6gx8qOF36V49wlk52+Vx4HPOipZtfoJ7tz6APs79hPcG+SrC77Kwc6DwOUT5+t4f7jO8z66iIlOvrAvqULlve73WDNhDbtbdzOtYBpnB86m5Xk6tY5iSzGlWaXsbt2NQWMgGA2iVWkx6UzIyPzo7R8RiAbo8/VRZa9iWdUyBoODaXmeRqUZF9e72jyvLKuM6YXT+c3J37B60dz3PV59WOAJeWh2NdM+3M7EnIlsPr+ZdzreoTSrlMahRpwuJ52eTvZ37GdZ1TJuq7uNxw8/TttwG2ExzPmB8+jVevxRP96wNy4adXm6ktIy4YPjeWN5d14OMrXmjofn/frc8/GQCn/Ez91T7uZw1+G4wBar6Oz19bKjeQcF5oJ4im+2MZufvvNT3CE3NTk1dAx3MBQcot/fz5stbzK/bD4FtVlUj9aF4HBw0KV4GAoILCxfyFPHnuJE7wmyjdmYtCYEQeD8wHkeO/gY906/lzP9ZwCSvofYfVabW8uull20uFuISlFkWcaR5+DVc69SZClizYQ1tLpbubv+bqwGKypBRbGlmOmF0y9LDE/keU1DTexq2YW3eDY3rfwclh2q5PPtqKJ78VRePPtrzvSf4dc3P4a+pjqpQyDxfMR4Xou7hRJrCbOLZtPqamV97XredL6JP+oHGfQaPcOhYfwRf9zvLIZxXaMJsOqtir9loZL4/Kujv+LC4AV0Kh1alRZJlpRAAwTCUjgp1OJyeZ4n5KE6uxqny0kgGkCj0nBj6Y3sbtnN0e6jTCmYwpGuI0zKm4RaUFOTU4NVZ6W+oJ7dLbspthazs3knucZcZGRMWhNalRarzsqxnmPcPvl2QtEQgqyIt2pBjT/ixxf2xUU2nUqXtEiRDmOOicEQXk2qUGfX25PE3sl5k3np7Euc6juF3WBnSv4UWtwtfzQ8b9wi2/bt26/lcVzHNUSsdW6sCVZYDfdMv4c3nW9SnlXOjaU3YtKZMEmZX6cKK6sLfb4+ZGSCkSBtw21UZFXgdDmpyq6K95rHzBfHwtttb/P93d9P24Of2A+fDomDXq+3N776MclUSdCZ/joWnU4MK1eiLiqKV9HIV6mq6logVup/T8kadBmeF9YInO4/zbqJ6+j2dnP/jPux6CzcVbEW0/Y9SLNnp4gv06odOJbfwS+bXiQshglFQxzvOU6Lu0VJx7mI4dAw5wbPUWWvIt+UT6GlcMzVEbXVinHDhtE9wq5ysuporbmy15vBJ8OJMSRx3/T7aHO3Ia9ehBYjOrudYIYqJn1Dw6VAhQxVo6LTCRcTdUMootNohFRwONjVd5BsQzYHOg5wvPc4/33iF/T6euPkL9+Uz4baDfHXJH4HgtmshAbodKjLyhArKkAQUBcXgygi2GzKMUuSsv1i6AeA6YsPIoTDRLu7kENhZIMeyWzEMEZ158yimTy84uG4Ae+73nPMs08BrweVxYq6qAjTnXcieTwQiRDauxe0WlRqDcFTp1Kq3kz33EOrapivb32APl8f22//LTX7m5BffwEZCFx8Xtm8edzdkouuNDtjMuiVTKgE/RiVmCO2X443z8jqy7TCaCSC/5lnMKxejWAyYVi+HFQq5EAA2Wzk0bNP86ud/8mPlv6A2bZJqMJRBFCsAvbvR2xvR7DZRp8A1dRkrDAQDAbFFy4TNJq0Ql19QT1/MeOLFwW2ZuXBhBbmOlng8Md3Egh58XmHsFkKyC4x8VaPIvhfLnG+jsvHdZ730UVMdBpp5B2RIuxo2sG90+7lYNdBfBFfWp43OXcyOrWO5048hyiL+CI+bHobE3ImYNFZCEVDqARVnOc5XU76/f2j8rw8U96YHk/XhOflTmJCzgR+eeSXvNz+Ol+uuld5QRovVbG9HbTaq1ZBf7UR43lalZYLgxfIM+VxtOcodqOdVncrQ8EhVCg+YE6Xk4XiQvr9/dw/4370Gj2BSIBzA+fwR/y83vQ6nd5OjBojSyqXcKT7CHV5ddgNdoAPlufZ7Vf1PI3Wmjsenhf7fR4MDCJLMtMKp/GD3T9ALagRBAFZljFrzRRZijjafZQ76++Mm/1n6bPYP7yfKnsVra5W/FE/A/4B9Co9JdYSKuwVbG57g8+tuhvj64LSFXERgsNB75JpXGjbQrW9muHwMNmGbI71HMOkNWE32BkKDMVDGU73nyYcTWY2se8h35hPQ1kDucZcJEki25iNLMvkm/IpMBeQpc+i0FKopE8ONRKKhhgIDFCeVc53ln2HLk8Xb7e9TVAMUmAuYEr+lDFFt5E8z66349HChbkllMyvRxuViGhUvDN0nHMtr3K89zgalYbjvkYql8wkV5JSujJ6l0zn69s+S7OrGb1GT6u7FYvOgi/sY/P5zVTbq2lyNTEcGo7bhpi0pnglVLpz836QY8hBr9YzFBxKKjbQqXVkG7LjoRYxXA7Ps+qt3DnlToJikL2te3FkO9jVsgtX0EVdXh0HOw8yt2QuwWiQEmsJE3Im0OvrpdPTyfSi6XQMd2DVW9GqtayZsAa73k5ADGDVWenz9SHKIt3ebrIN2UzMmUinp5OQGIpX5Bk1Rqqzq6m0V2Y8B2NXo+qxCKlCXX1BPUsrl/Ja42u0uFtYUL6A032nKcsqw26wI8kSG2uVxHJXyIU/7KfIXESfXzn2PzSed93N9o8AsclbpLExw2S+ineGjrPp3CYcdgd5xjxCUghREtEYjYgZ9h/SyLiD7vikv9PTSYG5AJ1aMdYVJRGjxohapaYutw4ExUNgtEG81dWaQrwgfT/8aIgNeucHznOg/QA12TUIocxph/LFtj6iUWW1TffhbB+Ilfp3ebo4MnyWeQ4HcrqyXkclr7S/jgoV+aZ8fnfmdzS7mvnilM9g3bEfTVl52uomucmJBVg6r4HtnbtwB93xH5vEdCZQCJgkS3jCHgopHHN1BECdk4Px9tszpl1ea4zHG86qtyZ5VEQveoiNilgIQuzfYzzX/9JLCukvL0c7bVqKJ5lQ7cC3ooH+lk1YtBZ+ctO/sKpoIeqwSEgDWzrf4ocHfxQ//zHEvgPJ7VaSXBNFq1h76AsvYNq4keDrr6f4xpnuukv5w+MjuGtXyvbg+jUYcjL7NBVaClPu74haDQOD8XMju934t22DSAT9hg0EN29J73UmQOMsO8d6jvGvi7+jCGwjW0Fj1ahlZahlIaPIdiUTKtGoy7hCLxp1KT+ql+PNE6++9HhAktILtZEIwVdfxXTPPfifeUZ575pqzi6o5uenfsWmjc+RteMAsvM5ALwktMS//DKmW29VRDeSq+AS02hHg2A2I7W2ZvTak7xe1OXlKdsKLYUszZ9LxPlz5YHESr39+zHdcQfS1u1onE5iMu5IwT9GnNOlKV9tT6XruI6PEmKi07HuY0lG3hqVhixDFkPBIU70nmBm0cy0PG9izkQiUoQWV4sSICArvG1awTQMGgNnBs4QiAbiPA/g7MBZ6vPraXI1JfE8SZYoMhdRYRudp10rnldhq+Bk70kkJL65/wfcV3c3ltpa9LNnEzqkJKrGhDa1w4HKar0mIVdXikSeZ9fbydJl4Q17CYthLDoLrqALAQGDxqAIoKhwZDvYdmEbWrUWURJpHGrkoTkP0eXtosvbBSjtY/6wH0/Yw9n+s8wsmoleo/+j5nmJv8/72/czIXcCff4+olIUlaAiIkXo8/ehU+vQqrUIglIlFBbDWHVW7AY7g4FBQtEQerWe+eXz2dO6h/OD52kcbORg50HunXIHS5fdQ8g3TEQr0BLuZyjQTONgI8uqlmHQGtCrFXHOpDHhi/gwaowIgkAgEkjheaB4xzW7mtnTvodtF7ahU+s42nOUFY4VVGdX8/Sxp/mbhX+DP+rnf4/9L52eTkARi0qtpQiCwO623RzuOsyhLuXesOqsLK5czBdu+MKYSZDpeJ5Ba+DpE0/T6+tFp9YpIu2A4hX48fqP88R7T9Dv7+eTk+5kwYINaKIiZksOLzRv4r3j/x1vdfdH/ESlKL2+Xqqzq3mn4x1uLLmRt9vfJteUS1SMUp9fjyzLtA+3o1Pr4t6BwLiu0dEwKW8SZVll9Ph6kh4Pi2HKsspSWlTh8nhelb2KL8/7MusmrKPV3cpwaJipuqmYdWZ8YR/nB87Hxe5PTvskQ8Ehcg252PQ2opYoFq2F+2bcx4unXuRk30lAqViblDeJby37Fo8eepTq7GoqbBX87uzvcLqcSemisTTajBijGnVADlCZnSrUFVoKWVC+gOdPPo837CUUDTE5bzKdnk4G/APcNuk23mx5k8bBRmwGG4OBQbJ0WayoXkGnpxNRFuM8730Hr3yIcF1k+yOBymZDO3ky6spKgps3J02QVNUOepZM5/HdX0eWZQ50HEh67ecmf5KaakfaFSFFnDtBWFQigqNSlF0tu/jk9E/S6m7lRO8JDBoDFp2FSfmT2Fi3kYMdBylU27D5JTRhMWWSdLzneArximFkP3wmWPVWZpfMRqvW8sLpF5D1+swvEIT4pBUurrpt3HjVV92uFC2uFi4MXKBluIVTfadwLPkmhQIjSrSVtrFvvfDnlGWV0efvo9PTSXV2NQtyZyI7N6FumD9qtZXc5GTmimXU1pRBMIhv8ud5q+9dmgKdVNoqk5LERElEkiVyjDljro7EoLZa4QMkWyMhjHEtpNs+pjhjNCLo9ZjuugshO7PvhJJIGlHOv1aL5oFPo1m1HF1oMei0BIhy0HWSveeew6q3clflWrTb3kxqg7zfUcmSW57j/h1fUlax/H3x72DUQIyL7aGmjRtTBVatFk1pqZKk2tGR3ty+qQk2bSV4+8YxK9pGQptlJxiNENmzJ+laVVU7UJeVjup1JjU5aVh+Pyc/sYdKSxmhXU+kfZ7odKKfP1+p2nuflVpjwRnupXr9WsKbtqSs0OvWr6Up3MskckZ9vejxjDnpiFVfRjs60C9enFJ5Edq/X/Gpi1VNXhTHzOEufrb83y8KbM0p5yYE6G+4Af8LL6BfuBDDypXKxmhUGYOt1jGFKpXRiLamBlVeHlJ9fby1F40GyeNBlZeH2m4fdT/aiETMVSWxUm+0UJ6Rgr9Nb0N0uZCGhuJeh9Fz54j29mJau3ZcoRbXcR1/qIj5C2Ubs3nknUdwDjkvdRBojcwumk1/oD8tz5uSPwVHtoP7Z96PP+JHlER0ah0alYZHDz2KRWtJ4nmgVKL945J/5MLQhTjP02l0VNoq+Xj9xzncfZgeXw8qlSplknSteB6A6mKydSgaYv7zN3P8k/sIbd+J/oYbUn1JL/K8D5snWyLPi4pRbiy9MV7VJEoiMjIWnQWLzkKPt4eyrDL6ff10ejqpz6+n2dWsCHBiiH1t+6i0VcYnrwPBAfKMebhCrrjX20BggDxTHsWWYoaCQ3+0PM+itVBoLqTYWkyru5VANIA37EWSJXRqHXV5dZRZy7i17lYKLAWoBBWuoAtQfNUc2Q72tO7B6XIytWAqgiDQOdzJ/zv0CHvL57OyeiUDngG6vF30+nrJNeQSkSIYMVJkLVISUj1dyMgICGhUGuwGO2qVOs7zQPGvyjPn8dzJ5whGg8wtmcuZ/jMUW4p5u/1tzg+c54crf8h253YsWgs7W3aiQoVeracmp4YcYw7ZhmyeO/kcFt0lQcoT9rC7Rbk//nnpP1+2p2KFvYI1E9akTTotsZbE7Wp+fupX/Lf0C0LREBtqN/Czd3/GmglrUAkq1IKaiBRBQKDH28PckrkUmgvjgQIFQgFV9irmlc1j8/nN8SpWo8ZIXV7duCq1MiEUDfHg7AeJvBvhWO+x+OPTC6bz4OwHCUUzi7fj4XmxcSsiRVhUvkjpAosGKcsqo9XVik6j4/zAeQLRAM4hJ7o8Hb6IjxWOFYQiIX5z6jdxgU1AQK1S0+Hp4BdHfsG6iev4yYGfcEPJDdw/437MWjOlWaVU2auYmDtxXEJVpmpU7fq1RNXBUfejVWmZUjCFmpwaarJreObEM3gjXhaULWB/+356fD1EpAjDoWHMWjOd3k52NO1gSeUSun3dZGmzuDBwgd1tu3EFXIq/KAJvym+yoXbDR8qz7brI9kcE1UUfBM3tG1F7vcihEIJeT6/s5c93fIVANBAnZIlmj2d8zZTfvBTda6RMjjsXTeH5w/+G3WDHH/Hjj/gJS2GeP/k8f73wr1latZTyrHKcQ066PF08cfgJHln0fSp2nyfkfI3YUJWY/JcYWZwOif3w48G0wml8d/l36ZU8ZGeqQmluTnpMdDoJvPrquI3SPyi0ulvZ3bo7nhi6cdMneWLVf1KyYDrqaBS/IPJK+w5+8NJfo1FpmF2seBqYtCaC0SD62Fc7RrWVzhskelF01AG3VztoX7AOT8jDDueOOAHTqrRUZ1dza92tH5lVBsFiQTWKcKyqdiBYUlfBxkosFXQ6fL/8JeqKCqUlIsNzY8ma8Wqe13cSSqxic1RRungK+9r38YUp96N77S2kNMEjDuCfG/6WsEZFjjEn/h2I/f2jBmKITifCypUpAlusqkhdVpbZ3L6p6X2Hghhy8uH2W5ETxh/BYiEyMJDxdUZfmKJntqGOVdmNAsFoJPjWW2n9ymKtKldyL7tCLh5p2cR9N99ONqsgGAKDniECPHrmKRZWLhz1taPFoRs3bECdkyrMCUYj0fb2lAlhLKRFlZOD5U//NC6OTcLGcMSI7NyT/v1jLc2RCKE33yTa0jLqe2eCymZDlmVCb72Vkt5q3LBhVKHLE/IgaC5VwajLyhRvucWL0UyalFHwr13WwDFzIRM1hQRefjlt8Ih/yxZMt976oRqrr+M6PmhY9UolSm1ubVIrl4zMvrZ9SLKUludZ9EpblkVnoWmwCUmWFB8frQFf2IfD7kA3pMOoMSoinCwSEkMc7T7KPVPvYXrBdA53H0aURNxBN48ffhyARRWLiEpRNGpNkrH1teJ5Wy9spcfXw9SCqVwYuMBAYID+4S6KiorS+5J+RHjeuYFzfGLKJ1jhUCo+hoJD+CN+3EE3WfosZhbOpMXdglqlJhgNYtQaKTAX4Av78IQ9SRWI5wbOsW7iOva27qV9uD2ehKhWqVlUvgh/2M+SyiVxfy/44+F5lfZKiq2KT5lG0DAUHMJusBMSQ9Tl1OGwOTjZdxKbwUZDSQMD/gH8YcVCQZRE8kx5bG/ajk1vwx/xI8syEhKyLLO3bS86jY5njj/DcGgYh93BmglrlOosYy7Iiq/a2+1vAyCjBJJ4wh5uKLkBnUYxh4lxvT5fXzzwQSWoKLYWo9PoeK/rPaWiSwU7nDtY7lge/3y1ubW0DbehUWkosZZwuu80UwqmEBEjaNVKQqonrFQQvd/gknStpPUF9exr25f0PI1KQ0AOoFfrUQvquLiml/Xxzy8j44/4qc2tZWXNSm4ouQGH3cGgfxBvxEu2MZteXy+gVGkOh4ZZU7Pmiq7R4cgwjUONfHHOF+Miq0Vnwagx0jjUSFV21aivvVyeB7CrZRed3s743wXmApZWLqXAVMCKqhXcVndbXNy26q20Dbfx03d/ikaliae12vQ2quxV7GjawS11txCRIuxv348v7OMbS77B/LLM7ffp0KHyol21kFxhZZzr9ogegrKLifaJaV/jCXnwhDwUW4vRq/UUWAoothRj0pqYXjidE70nyNJnxRd+YkE5nd5OZGTyTHlISHx/z/eTRNoSSwkrqlfw6rlXuX/G/R+ZMei6yPZHCIPFljRBNnh7KLYWx9Np8kx59Pv7iUpRphVMI8eQw5+89Vesn7iSxfPXo41KCHoDEb2Gf3nn3+j2djO3ZC7He48jyRIyMo5sB2ExTKWtkkfeeYSmoSbCYpjvzv8HKvadS620SEj+yzFknvSN7IcfD+aXz6fd1Y5+/TpCmzantMDpb7xRSTIcgcs1Sr/WiJngxogXgD/i5/6tX+BrC77GpnObeK/7Pbq8XciyzJSCKaydsJZ/3fevFFoKKbYUI+svuriNwwQ9EXKTkwoEvr/ya4Snf5kLoU5+69xMXV4dq6pXXbUUsXStYMD7bg8buT/0erShCOqly2DRYqXK52J1kKpaWaVJV6U1ZmJpMIjlC1+IH1va5yYka8LogQSys5li4P76TzArqw6p6eX0H87ZwqpVD9Cm8lI+sTz+wzOm79iINoqk4xhPAuUVhIKMHH8AAt5x+meMdc2qVIjnz+Nvbkbf0HDJJy/mvzNWG+8YsGgteCIe/uvMU6NuT4dMceiBV1/FePvtSSudUiBAYNOmUUM2DGvWINhsKfeAEAonTKVSIRgMmD/zGWUF32hE/T4qv6RAgMArr6RWSTY2Jk1WE++7qE7DOW8jg8Eh5sVMoEXxkrBbVJTxPTURiXsnfozgK6OfE01Z2YdqrL6O6/h9YmQrV4+3hyp71ag8r8BUwCPvPEKbuw2tWoteo6c8q5wHZipemI1DjcwpnpPE82qya6jKrqLSVskP9/0wzvOyDdkUWYpocbcQEkNsmLiBgBhIMra+Vjyv1FrKmb4zTM6bzMtnX6ZpqAkhHMnsk/oR4HkRKcJTx55iY91GKm2VNA410u3tRpZlii3FLHMs45dHfolVZ6XYUky+OV9pvdMqFfiJgmpUinJh4AIVtgpmFc1iIDCARqWhbbiN8wPnyTHmsHrCam6quolOTydtw21MK5x2VXleulYw4H23h43cX74pn0H/IKVrViJsfT3JDy0Tz0v0+jNqjLiDbsJSmCJLEbfU3oKAQG1ubVzw2KjeSDgaxuly4hJciLKITW+jwlZB41AjVr0VnVqHc8gZ9zYcDg0Dio/em81vMqt4Fo2DjTx78ln+asFf4Yv4ONajVFCpBBWzimbxZ3P/jCx9FlPzp8bfe3+74p/b7e3mnY53aBtuY0rBFALRAGpBjTfsZSAwgFaliGdlWWW0DbcxGByk1FpKWAzHxVdv2KukowpKFWhUio47pC4d0rWSpvNoDIthBoODTMiZwIB/AIfdQb+/P769yFyEP+JHkiX6ff08c+IZPjb5Yzx19CnMWjM3lt3IDcU3oBKUalkBIe6Z935h0VqISBHOD56PPxarVoxtT4fL5XmekFI1mHifgxKycaD9AOtr17OkaknKPTAcHI5XpomyGBcne3w92I12BAS+u/y7ZOuzmVY4viCZkfCEPLx09qWUBGJQRN4ia1E8yKHF1YIv4gNgd8tuzg2c4+32t+Ni7d8s/Bt+tP9HdHo76Q/0oxJUFJoLuaH4BrzhZO6/tmYtTx59knMD5whFQ/HP1zrcGq92+yh5tl0X2a4jJSnGoDFQZCmi3FrOn8/7c372zs/o8nbxs2M/55v+h+Ovm1YwjQdveJBnjz9Lt6+bm6puYjg0jN1o57ZJt7Ht/DY6hjviPwQGjYGbixcj79yc9jhiRGda4TSmFUxL20owreBSAszlosx+MTHtto0I/iByKKgYlUej+J56SmnBSoMPU/JUzKC1PKs8XnYNEBSDfG/X9/inpf/EZ2d9lqM9R4mKUYaCQxzpPoJKUDElfwqiLPLe8FmWVTsyGu4nVVslQGxqQu+Zh/zMM0yodvC11V9kUB2+egKb253S5qiuq8OwbBny8LCSBOb3I7W2Km1rY4gEktuNf/NmNIWFqMvKlH0YjQg6Hf7nngO/H3VNNeYHH1TK083mjG2QiZ5ZcjCIoNOBTodgNKasUsWeG/a48HuGMJvtyB2disB28VpTV1WNXsHjbGbBoltRRzI5IoI6HKW+sj7psTFbW0e0SSRNQMaTQDlW6/VlItOKc+K1KHZ2ZvQDkwNKO028FXcENLW1V3SciYl2I5GxjWaMOHT8/qS2Gtnny1iJaFyzJq3ILBgyfy9BLViK338bxZjHdnEMl8LhlPt4YrUD17I59CwppRAQ7HbEzk70DQ1pKwoSYbHmoIqq8GY4J/qGhg/VWH0d1/Fhwnh43lBwCK1aG29Jax9uxxv2XjbPA+KppW3DbQgqgZixb8zY+lrxvAp7BRX2CuZXzGdB+QKaXc3YsgrAHcj4ug/T2DEaz5OR+c3J3/CnN/wpP17zYw53HVY81iJ++v39hKIhZhTNQJRFBAQm5U2i1FrKJ6d9ElES0av1eMNeLgxdwBfxERbDBKNB3CE3rqCLdzve5VTfKYZDw0SkCO91v8fHJn2MZZXLqM2tvWo8LxbokPg7qlPrmFYwjQ5PB4FIAIPGwFH9URZWLByzPazZ1cyr515FI2iQkXEFXagEFTXZNWxyNbNy0SIqly9CG5FQG4wIFktGnpfo9dfl7UKjVqq+qmxVKYJHlb2KL875IvPL53Og/QBqlZpDnYdoHGrEorNQllWGKIkEo0EsOktc8Eo89qVVSwmLYdwhN6d7T3PPlHv49IxPE4gEMGvNeMIefGEfK2tWJr3WorXgDro52HkQb8SrhABc9IXTqrVYdBZUqGgbbqPGXoNJa6J9uB0BAZVKhU6tw26w4w17EWWRqBSNJxNrVJoxg0suF/UF9VRnVydVKAmCwMtnXuYv5/8lWy9sZXHFYg52HuT84HlyjblML5yOL+JjTc0anjnxDIGIUlnW6elEo9JwbvAcheZCGsoaKLYWYzfY8UQ8GY5ibHxQPC8mCtfl1XG2/2y8HRxgKDhElT31egPINmQnCZGJ0Kg0FJmLWF+3PtNHHBOxMSgdYmO4RW+J33d2o52tF7biCrooMBVQk1ND42Aj7pCbn737Mz4363PoNXoGAgPoVDoiUoRTvadYWL6QfHM+OpWOeaXzCEQDNLma6PZ2Jy0MxCqvF1cuvqJQiw8a10W26wBGL+893XuaDm+HUtKpIanF4HjvcYaDwyypXIJeq6fGrvT555vzef7k8zx/+nlWVl/6UQhGg2giUsbjkINBKsoq+Mbib6RPnVryjfelyidCm2WHLOXfUiCA2N09qsAGV2aUfrXhjXjp8fbES/ljBEwlqCjJKiEqKzH2dXl1hKNhAtEAE3Mnkm/Kp8Xdwsm+k7zVvZ+JC++mZP85TOna6qqrMSxfjuz3Kyb4o3hByU1OVNveQFw+m2ZX8xX3yaf1EdNq0c+aRfC111LKr1U5OaDTjVrRJgUC+DdvVgyP0/iwmO+9F9+TTyI2NhHctm387SLhMIFt2y4dp1aLYc0apZImHE6qtFMZjRiMRtwmFVvb96PVSUy7ZwPaiERQLSPL4YvF3glISEEzqDTIWXq4mA6Z7jpNJ3h5NFE0o8Skqx0OZI8nWWBNqPAaM4GyunpMUeRyYbDYYP1aIpu2JAlt8SrTLVswfeITCDk5ijApy2lbBrnoxTMaBIPhisxUR8a1x5DYqpsOY03gRm4f8/nhUaIdzCaEUYJQBIcDzKY0L7o8jHlsgUBK4AYo44Vdltk108K52TbW6HRx3z/94sUZffTUFitSf/+oCYGh/fvj3nLXcR3XkR4fFM9zBV0IghCfsI+sLPFGvEwtnHpNeZ5Vb2Vu6Vzmls5VeF64O+PzP0xjRyaeV5NTQ1FWEd3ebibmTkzieRpBQ4u7haM9RwlGgyx3LOeXR36J3WAnGA3SNNREibWEm2tupnGwkbvq70IQBMJSmHxTPmrUnOk7g16jR5RE/j977x3gxl2n/79mRr2stL0XaV3XNe69dycOIQUSEkLLtXyPu98d1+AKHASuwH3vS4CjHRDgSDgSAo7tuCVx7NixE/du73p7b+pdmvn9MZa2abXrxClO/Pxlr6TRaKSRnnk+z/t56vrqePbis/QEe1gXX4ckSW+b5yULHQb/fsYTcVDge29+T3VgXb+ILrGUIAgCucbcUX9bfREfO67uwKgx8lL9SzR7m1MX6FPzpvKp2Z/iheZ9JJQEOcYcPj370+P6ve8L9fFay2up/ZQECWe2kyp7FZIoDeEOAUo77AABAABJREFUVr2VpRVLmZAzgcMth5lbMpdOn7oPrrALs9aMJKrHbnB5gVlr5u8X/BUfrdyEXPExQpJMS6yPfzn+f4cILgALShaM2EeDxoA34qWuvw5JkIgkIpi1Zsw6M/mmfJDBYXdwtPUoD9Q8QF+ojws9F1BQiMQjGDQGlpUvY2/9XiRBQlFUV5tVZ6XSXjmk+OtmYLjQDwMlDAk5wfyS+Wyr3ED5gjyEaIy4TuSsr47vnvkxLZ4WfFEfNfk1eMIedJIu1SraFeiizdemhuznT1UnDm4Bnpf8nNsNdmYXzU65JnWiDpvBhiRKabfzTi1QpNu30dAf6udA04HUeVdhr+BA4wFAHV2dmj+VKnsVJq0Jf9TPxb6LnOo4Rau3lQZ3A/mmfGryalBQKMsqI8eYw8TciZzqOEUoHmJ20WzyTfnE5Bg6SUd3oJsL3RfU0d23UWrxbuO2yHYbKaSz9w6eoR8+YgDgiXhIKAk2V21Oqfvnu87TGejEF/FhkAwYNAYSsrqMGR2UyZMOSaKzuHwx393yXc51ncMVcb0t22smiEYjSnb2OxaUfrNh0Vqw6C2c7TrLjMIZLK1YSjQRTbX46CQd80vmE4gFUjXSwVgQraDl3478G/nmfF5ueJkqQzGfWHUviqBHv2EDoBAJ+YnrJPRGG+Hde0jUDlilJacT86OPEvjVr4Y4nZT6BvLXLOPn10dA3s6cfDqHzGjjlMkRMeOdd4464qEEAmgKC0d9fPjll9XtHzqUdlyky981cDFisFOTX0O+lDUgBGq16JcuRTt1KqE9ewi/8ELqsYMzBkE9t2YVzeJIyxH+5sS/EIqHeGLhlygz2gkM3rHBjYujZHENFtrS5Yr4Ij6ern2eP9h4nyp2DB+NHtQumhJYB72nkaNHMd13X/oGSqcTzShjFm8Xw/Pa0OsRJQ3B/3kay0MPEdq9G/2iRWpwf3IUVJIQjEaQZZRQiJjFiJAcRxwGqdpJl+zlydd+hCfsSTVRDc4JGg9upK49ibEu4IbfPub9dToSvb0ooRCCTociCAiiiMlsJrR1A4mde4cIbYLDgbR1A+asvHG8wswY176N4jhTGhqZuewj5GUVEdo1MLafbBfN1Hiq6PUZzw30+vfVd/Vt3Mb7Ee8Gz4vJMUxak5rFJmrI0mfRFxrI3UxeJN3meenxdnlek6eJecXz2F+/H1fYRb4pnwgRZhbOBNQL5D+c94f86+F/xaw1U2GrwB/zU2wp5vt3fp/P7/o8kiihoHDNdY0FpQvoDw+M+r4dnpfOIWPVWdlRu0Mdd8yflvp7u7+dHVd2ZBQOmtxNaAQNL9W/RLu/nUg8kvrcXuq9xL5r+5hXMo/OQGfKgTN41CwdzzNpTSmBRRIkcow5ZOmz2HV1F+6Im0m5k7AZbCO4Q6GlkDnFcwjHw+y4soMOfwcF5gIMGgMrrSvZPHEzja5GHprxED2BHr6x4EsUHDyL8rLaBG4C8pwO/nPZ1/jzw3+fEtqc2c4Rgpcv4mP3td0sLV/K8fbjNHmaMGqMNLob2VC9gZVVKznefpw7J9/Jrqu7+P2V3/OFxV8g25iNVtRSllWGw+6gxFpCo7uRBncDgiBg1VlZUbmCx+Y+dtOci4MxXOi36qyIgsjXDn6Nn619Evsrx1EaGlEACZjrdPDddf/C3p7XCcaDHGs9hllrpiSrhFZPK6IgprLrZEVGJ+oIxUN8/bWvv+953mCxSK9R88sGQyfqON91nv5QPwklgUVnwaQ1UWF7Z40ow/ctHRJyYsh5V2QdiPzwRDy0elspMBegETW0+9qZUTADX8THPVPu4aWGlzjffZ7a/loq7BVDxEtZlpldOJsDjQc43XkaWZGRBIkSawnrnOtSAvCtgtsi221kxHC7cHLEIDkrXWWrGjEz7o/5MWvNKCg0uBuYmDORy72XSSgJXmh9mc85KqGhieEYTnSStv93GpLdjnHbNnWWfljWVvICbzSMd7XkZlURJ0NZQ/HQCHuxM9vJyoqVVOdWp/52uvM03z72bVZVrUIURFZUrGBr8QrKDl9GOfBzko+WnE40m9YTkiNEdu4kMWxsL1FfT1hRMD/yCPErV4buVCSalrzcKNKtAmXMUWlogFEcPb6ID03QhybT4+vrVfdTmudPHrfh7UjfWfjVlMBmuvdeZL+f0O7dI0W8QRmDyc9PsvntjqI7mCDmE9m5i3iZdwjxH0tUTIqCMHquSJO7ia5AFwk5jqasbGguWXs7ieZmTHffjWA0Yli/XhXtRHFgDDMWG9FAqcRjKHo9stn4jghsSQzPa3O7OzF/5CMDx3jevFFHQQGURz6OfvNGErv3DR05djoJrVvKlw5/lQaPemyTTVTADV883EhdOzBmHTqmoQ6zjCUb1dXEW1oID2pjTTr5Ivv3Y9q8meBHtkIgkCqXwGy6KQIbAHp9xn1LZEyFA21cRh9Xho5+xmIEn3suJZ4K10ewhays1PmjSFJmwX2M7+qw3zNQuHHdbfpOfpZv4zZuFdxsnheX44iC2mQ4q3DWkBG54eNWt3neSLxdnrdlwham5E3h2UvPEolH6A50c7nvMs5sJwaNAaveyqHmQ1TZqzjUdIhXGl/BH/WjoLC4bDHf2fodfnL6J6ntx+U4/qgfd9j9tnleOoeMIAopt97gETFQhbZ2f3takS2ZXeeNeqntr1UdeMrQeI0WbwtzS+amff7ReN5nZn8Gk8aE3qJPCVfPXXyO2v5aBEGgN9jLHcV3ACO5Q5LnzSyYSYO7gbNdZynNKuW15tf4sxf/DL2kpyyrjP9c9S+qwJamUbtYUXi05uN8//xPcWY7+fzCz48QvJrcTfQGe8nSZTEtfxqPz38cnaQjmohi1pnJ0mdRbC2mJ9DDWudaookocSWOL+LDFXbhCrn47aXfsrxiOV9a/iWicjSVlTWtYNo7IrAlMVzor+ur4xvL/gn7KydGLJDK9Q0Y9inULJvIf/s66A/180bbG2yasInDLYdpdDeiKAqSIJFnymN+6XyePPYkzd5m4P3N8zKNpWpEDZd6L/Fm+5up74Bk+P8rja+ojazv4AJFvjkfWZZp97ejk3QpsRJUAU5WZLxRLy3eFjZVb6LYWkyWLguzzkxvsJdDzYfIN+XjCauCmzvs5kLPBa70XmGdc12qwGXbpG1snLAx9Z5kGbI41XGK052n8Ua8qczA7kA32YZsPjnzkxnfv3Si+Tv5WR4Lt0W228iIdDP0GlGDRqfBme1kXum8ER94i9aCQWNgcu5kjrcf565JdyEj0+xu5psnn2TLR39PqSAOCSIdD9F5JyHZ7WrW1g2E6ze6G3n2wrNq2K+srjI67U7um3bfkNUSt7uThN9PSUQkocvhqruVXzYdYvPEzTdsvR8tlLXEUsLDMx8eQry6/F0pAjG/eD47a3fy2ZqHVYFtePFEfT28uJfstWsJpMnFAvViVgmFQBl2EX29SOHtzsmnXQUaI6g+3dhco7uRw82H2ZyzCOtYQfeDbk8+/+DjNny7Qb8LLQNimH7RotEzGAa545Ih8MZwmEm6XOKNTSRaW0m0tg5x8IwlKho2bECurkq1cqYTCZLvQ0/Ch21YO2USksOBftNGEucvqKN3iQTGjRsHxmCTDZQtLUMceZC+mOKdOm/t9iISkc6BYzxGXpxZ0IHLi1hTowqoSXHR50MSNfSEelL3TV7AzC6afVNE4kzIVIduvPPOEfXumUo29MuWEfzVr4bcf3D4f0rcLc696a9D9ngI7dqFfv58IrI8zHXmJLB2EaGYD12GbZgs2enHXQeJp6ZHHkEcJLABCPF45ryT0UZogXB/z4hRZNHpgK2bVQflbdzGhxg3m+cpKJRaS5mWP42FZQtp96nNeWONW73TeCd5Xl1fHYdaDuEOuTFoDAgIHFAOcOekO991nqcoCvfW3MvZrrNIgoRZZyaSUB1erd5Wii3FxOU4h5sPc811DaNm4PUfbT3KrrpdTMyeyEsNLwHqZ8Gis+AOu982z0vnkBk8TmzRWfh09UMsyZmFJiYT10rEDCN/95M8LyEnkBWZ+aXz6Qv2jeBtGlFDOD6wgJp8/kw87+nzT1OeVU6Hv4Pz3eeZnDuZs91nselthONhugJdnOg4wcrKlQBDuENSaO0KdHGx5yIaUcNTp58iJsewGWy4w27KbeVU6QpRGo6lPUZKQyNb1j1KYU4FNQXpRYLk+2DUGlntWM2LdS9ysOlgyjE6o2AGn5j+CWYWzsSZ7Uydg3OL5/Ji3Yuc7DiJRWfhYu9FiixFfHbOZ4eI3zdLMB4PJuROoCiqJ9FwIO3tSkMjFauXUGGr4HTnaQBeqn+JSnsl0wumY9aayTPlkWvKxRV2DRnJfT/zvNHGUi1aC6VZpVzovjBEZG/3t6fC/5OC4dvNXkuHZMZhpb2Suv466vx1KbEyz5RHaVYpda46XEEXH5/+cX56+qfU96vfjwWmAhaVLeIvF/8lvqgPvahncu5kXm97nZgcI0aMF2pfIKdFXWyJJCJDPlfBaJBJeZPI0mehoNDmbeNY2zFMWhOeiGdEUcJgjCaaf37h55ldNPumH6fx4LbI9gHDzb4ATjdDD4y6ugKqOq+VtDw440GePvc0L1x9gXkl85hXPI9cYy5teHHcczfacOxduVAfL0SjcdztUr6Ij1+e/SWHmw8PWWVscjcRiAZY61iLJ+Jhbd4CzN4ghKLqxX5tKzO6OnGsWMPva1/k4ZkP3/AP13htzGGfmy/P+DyamIzRYiew7CvMs09DafhN2u0mGhoyZtMBEAohlZSk/is4HbTLHmBse/FYSOveGSuEX5KQPZ6UCOSL+DjScoSdV3ciVcW5N2d55sdf3/5gF+XF7osjiJeAQJ4xDy8RchnksBujiVMJh5E9HmJ1dYhWq1rccP05TffdR/DZZ4c6eLTajNuLhAOYq6oz3if5Phx1n2PL5g3wYpo8u83r8Xv7EQcLcNfzrpLilJiTM6LBMu7qJ7xj51CX2LDR2JsNJTzQZDpWWQfR6Ei30/XXZc3J4fll3wWduhonIxNW4pxwn+do7+l3PExVysnBeM89EAwONN2aTCOIVxKpko3BzbiiiP/73097nibD/yOHDr0jTXmDMxOD158r5ZI0Guk1yPy07tesLFzErNHKKZxOZEUdKc0E0WRSRbPrr6HR3UhZeER64RCM1ngb9ntGCGygrpDHdr4I99x929F2G7cUbgWet37CemYXzqY30Isv5hvXuNW7gZvN83pDvWQZsmjztnGp5xKSIOGJePCFfaxyrGLH1R08OuvRd4zn1fbWUmAuwG6wk2XIosxalgqFV1AQBCHVGCkKItFElGgiik1vo95VjyRIaEQNekl1gcmKTG1/LZsmbALUTC+DxpAS4t4uz0vn3snSZ6lB+wY7X1/wRYoPnUdp+H3qdsnpRN5WlpbneSNegrEgJztPUmmrZFXVKvbU7SGcCGPVWREQMGgMeCKeIS7KTDzvxboX2TxhM4qicLz9OMWWYqKJKD3BHkxaE7FoDI/koSfQg0VnSXGHRncjBxoO0BvsxRPx4Aq5Ui6qTn8nxZZiquxVTM6bjGaMQiuTrGG1c/WotyffB7vBzvbL2zncfBhXaKClsq6/jucuPUdUjlJpr+S3l37L7KLZdPo7uaPoDmYXzSYcD2PQGJhXMm+IwHa+6zw/P/NzmjxNGDQG8s35VNgqbmjc8kYhRmNkOiJKJMyG6g20eFroCnTR6G6k1lWLw+5gSdkSdtbupCKrAoPWwMTciZztOks4FqYv1IcoiJRmlVKWVfa+43npznMFhd9dVps9h2fztfvbUVDeMcFwcGaiJEisqFyBgkI4Hsaqt1JgKuBM1xnyTfksKFvAE4ee4GTHSTSChnml8+jwdfDspWc53XWamQUzOdd9jo9O+ajqPGw+TDAeBCAYC1JoLsSkHXD3Nbob+fXFX7Onbg/ZxmwUFCpsFXxl1Vf41blfcb77fKqUZzhGE83rXfV8+9i3+cbab7wnjrbbItsHCGmbGW/CBfBoYbmjfWCteit3TrqTHVd38PHpHyccDxOMBck35bPGsWbgS+HWyS4cgdq+Wk52nEyNRGhEDZIgYdAa+J/z/0NMifH/1XyW+M4XiQxf0Vi4EA6eYObcyW/5S3IsG7Ps8ZC7/9iQsc8/cjrRz8wnaDKpLTfpMMbFLxpNyv0lOB3EN6zihdpnMjfujBPp3DsZRRWnk3htLfHrbjDRqNr6d1zZQbu/nacuP8OGdavQjdGgOtxFma623KxVLdA7217m0UkTQZIGjkcGCHo9CZcrFfA++Ln1y5ejX7qUyIEDAw6eBx/MuL2ELn0Q6mBU2isptZayLHcOYjyBZuVKxI0bkVFIKAkueK9xzy8Wcvy+fQypTBg2hml5/PEhF24xVx+RF3aOazQ242vw+cZNQGCow3H07C4n+vkLQBRHCGyj5XjpFy5EOnOGFStWsCx7NolohERv7zsq+EtW65B2qbEw/IIw3tqaWQhPlpKMsykvdbEuCAixWGqUEpMJQaMZKvDJ8sBvS5qRXc1nHiSaiPJq11GmbngYaU9iSCyA5HCoJRZP/Qrls5/NKJYqgkDo+mcqIMbZfmU7f1Jxf8bXMppwp/j9aVtrQRXaFL9/yIjybdzG+xm3Gs97L0d13i5q+2o50nJEdYNpzan2xSx9Fk9feJpQIoSAwK7aXbjCLmYVzuJS7yWKLcWsqFzBgYYDLK1Y+o7xvEZ3I7+59BuOtBxRSyYUmJAzgXJbOR3eDhx2By2eFrwRL8WW4pTYVmGrIBgLoqCgFbWIgohW0iLHZWRFRitqCcfDOOwO7plyD7OLZlPbX3tTeF46945W1DKneA73OrZeF9gahzwmUV8/hGMM5nmiIFJsLWamPBN/zE+Tp4mHZjzEC1dfoNhanBLahrsoM/G8vmAfcTmOUWPEpDVh1pqx6qxoRI16nBSZWCKWEkCSQfuvNLzCL878gnq3em62+9pZ71xPTX4NoXiITr9avtEX7COqybxoNFa+V6W9MpV55Y640Uk6yrLKiMtxgjGV35/tPsv66vVIosTkvMmpcdrOwEAJiCfiGeJkPNN5hr9/+e+HZH1lG7JZWKZGq4x33PKGed4YjfUJrURDfwNfWvElTnWe4s22N5FEiQ5fByc7TrKyaiVPn3uaSnslDruDw82HU/llzZ5mdJJOfX8DvZzvPv+OOvNulOcNP8+Pth4loSSIyund+Uln5o0Ihr6IjxZ3C6GE+jkMxULkmfJwZjvxRXzqQojOQjQeTZ2Xwz8rtX21zCicQUJJ0BPsodBSyJVeNT6oxFpCq7eVbn83CTnBld4rbJm4hZcaXqKuv45Zuln848p/pK6/ji5/F6+3vo7dYCfHmIMvojoPt1/ZTl+oD3fEzTXXNRRUkbu+v567p9zNT079ZNQyiHSieRL1rnoudl+8LbLdxlu36KZtZiR5Abwd0733ve2Vzhv5gFbZq3h01qM3FBp5K6HJ00RtX+0QW3K+OR+zRv2RXl20GP2+10bND9KVlTHJWMa1WPqK5LeDgc/CyFy1yK4XU62ao12sS6O5UJKi1NQpCI89SrvsZnvtMxi0hrc8AuKL+Kjrr6PJ3UQ4EabYUszcbZuwxEWIRlGiUaRpNchtbYR370nts+R0ol+4kOCzz0IslnLuJPM7BAS0kpZ7dn2SZzf9N8aXhBEXJcZN6kqtbvFi9fj09qKEw6y3zyMy/dM8dfmZFIlSUAjFQ3z7zA957KHD4FV/3DKKgNXVKBoNkYMHR/0cGNatI3LgwMDfW1uRJk9CU1A4okEx2tmJS4gki3FHhVVv5dOOjxLesZPwMGFP2LSOT+z5A3xRH1dCLdwx2ns9LB8x7PcguT3jGo3NhER//+hW+pyc9A8anHMxLLsLQLTbUYDAj3+M6SMfGfLQjBl3Gg2GlSuHNNdGeeedeW8HYzbgXRd9M90vJayFQmpZgCQR3jlUPJWcTowbNyJ7PCRaWlJlGJlgk3WsL1nBq11Heb5tH1GHj7WLNlGosWNCS6KxcaC4Q1HUDDkYKT4vXAiKon6mfD5a6KXD1wFaTWYX4yiC92gOt/Hefhu3cbNxm+fdGujwdaARNTS4GlJcz6Q1pS5QzVozu2p3cc11jbgc50zXGSblTqKuv46DTQeZUTgDBeUdcc8kHSfusJtOfye9wV7avG2sda7lYs9FtFotS8qW8Kb4Jp6wh4VlC2n2NFNpq2SNYw0Xey6qC8MaAwklgSiIGDQGSowl6CQd0/KnMWP1DOJynNr+Wqx6603jeYXmQj4y+SN4I17a/G0Eo0HumXwPq+13oOz8ddptDOYYg3meRWfhXNc54kp8IDMufzoPz3wYV8jFWudacgw5qayq813n8cf86CQdNfk1XO27msqBS/I8URDJM+XhCrlUwU2JYzfaudp7FaveqpZMiFr1+a9/5uv661ICW1yOIwkSsiLT6m3lat9V1jjW0OptVYU6UcvBnuN8dJQmcMnpHLOIw6q3ckfRHeyq3UWLt4U2Xxugfj4LTAV4o16MGiMCAsXmYpzZzrTZX4OF0y5/Fy/WvTiitdIVdnGs9RgWnWVcgvFb4XmCxYLodKRdEBOdDjCZ2ThxI/vr9zMpZxKXei4Rl+NU2iqx6Cz85sJv8EV9+CI+9JKecDxMXI7T4evgwRkPcrz9OPvr97N14lZsHSNLK95PSLoUdWL6hcOkM3MsV2mS68WCfhKSgkZJ8K9H/pWzXWfJMeVQYC7ApDGxddJWAtEAXYEu8kx5uMNqnlkSkXgET9iTcgUWmYvoCfbQHegmz5SHPqInz5xHvaueiBxBQEi5ZjdUb+Bkx0ku9l4k15TLK42v4LA7eHjmw2yo3sDOKzux6qzoJB0dvg6a3E3EEjGWVSxLicZaSYtRY2SdY53ampsG6UTzG7n9ncJtke19hEZ3Y2p1Ry/pmVE4g/Pd54nEI+SZ8phRMHqoYcLvG7XRLXGtnoTf966PY95waOQtAl/El6qL1orqqpYoiISiIVo9rRRZiphuqSZRfzzt45NjXbq4whXPFfqCfRnf2xtFupbOwc+tRCJDAvSTkBwO4rW1GNasIawoaS9+wydPEJ83k+ZQP345zJaJW94yqW50N45Y+SswFfDs5p+Sc+DkiOB6y+c+h9zXB5JEorU1JbDBgHNHTsj80fRPszT3DsRoDJPZjiBoSKxdjn7dGhKREH4hRlAnIGoC5BhzkPxe5F17hzzfFqeDOcue4M8Of4lQPKSSJlHi7xf8FdFdu9GVlSE5naM7q5xOdFs2QSScOUdqGOJuN8YNGwnt2DHCeWW+804iuswjBqCuIIZ3pHGcNTQg7d7Przb+kDW/3cax3tPM2fII0ov7huZ+OZ0Im9cTEOMk31XF74fQjdWTp9uv4cQruV+hHTsw3nNP2pXOETkX111Ug0lbordX/SwME1oyZdxpiooIv/zy23bmvZvIWIgwyJk5GkFPuWBaWtRGTlkm0d+fKrggGgVJIn7tGqEDB9DPmoVUVYXZ6QS9Xm2cPXo0rUAvRKLMPNbKxHUf4zX3Gf6/V/+Zb4pP8vKdz8Ivtw+5r+LxEDlxYmQxR2srkRMnMKxahenBB1GCQSYac1hfsoI4SvrG2+uu0JS7dPh+jbFCPtbtt3EbNxO3ed6tA61GS6unlXA8jCRIiIKIiEinv5NgLJhqZhRQXUndge5UO2Z3oJv5JfPRiBqu9N58ntfkbqLD10GLtyXlXIomohxpPsLE3Imsr16PP+pnQekCookoiqJgqjahETREE1HWOtZytPUoJzpOpLaZb85nTtEcrHori8sW44148cf8zCiYcVN5XpYui9XO1cwunE2rt5W6/joONR9i9ebfZtxWkmPE43Fq8mvIM+bRG+ql0lZJf6ifiz0XU+LK1b6rPDDtAcpt5eQac7nUc4mjrUcJxALEE3GMWiMWnYUlZUs40nqEuBxP8byp+VNpcjfhiXhY7VjNzqs7WeNcQygWoifQgyiIZOmzSMgJllcux6q30uhupMXbgiiIqRFck9aEN+LFE/GkxDmLzkJCTtAe66N16TpKkYc4vkWnA+2dW8Y8j7v8Xfzo5I8othSn3Iigupx6gj3YDDb8UT9mnZkCcwHbcrax4+oONIImNf6Xbcxmefny1Pt6sfsi3YHutM/nCrvoCfSMKRi/VZ5nsNhg6+a02anarZspysmnt8tHJBEhQYJ99fvwR/0EY0FyjDl4o15EQSQQC1CVXUWVvYpWbyuT89TMyN5gL4XmQlwhFzaDjf7QzWnLfSeQHKmOxCMYNcYhI6MllpKUMzOTq3S441kAip0O/t/ar/F04w7C8TBHWo7wWttrTM6dTGV2JUXmIqwGK+VZ5XjDXgRRwB12p3LhErLacOqP+ikyF2E32tX2T1FKuSEFBJTrUzOl1lJerH2ROlcdswpnoZf0LChZgFbS4gq6mGgqZ9rEh8gKG5CMJtYUL+FY6zEemv4Q+xv2c6h5gLu7J7h5ZOYj5BrTZw0PL++50dvfKdwW2d4nGDwHbdaamVsyl33X9tHqbUUn6VIrEH+99K9ZXL54xOPjoUDG7cdDATKnPd3GeNHkbsIdUpX+q/1XU383aAyIgsik3EmI0Tj65ctHuJFSF6jxOD1CgCcOPkFUjqrVy8u/mPa9vVGMOSoWDqvOjzTjc8HnniPe04P+rjvB7VaFlev7Hj55Au3G9Riy8pj+NpsKfREfBxoODCFeAI9NewT7KydG/kDX1xPavXvUttCkc2d5zh3IR/eiNDyv3qDVYti4Eam4GMXlRjIaQQe/rnuWmUUzKZRsTDp8bcTqmVLfQDHwmZqH+O65/0Yjaig0F7K1dBXKnqeJtLZi+dznCO3ePcJZJVgsxK9eJRINYYzKmQ/EoLB2yeHAsHo1oRdeGJWg5Nx9d+btAQSDGYW9mvVrmJw7mRxjDrLFhPnee4l6XQT8LqIagfP+a7x29nvkmnJTK31KJDL2aOxYLqsx9otgcFSL/Vg5FynxabizMEPxRcaSiXE6895tjFqIkGwXPXVq1AKZwS4Y/fLlRE6cwLhhA8gy4f370zrZQi+9ROLq1SHPY7r33gFH2qC/Jzo60JaWYQgJbDTO5NDd29nbcQhtfGTbaHD7diyPPkpo9+4RYrLxzjsJ7d9P4tKl1N/nOx0Iq0KIFgvaadOGCHOyz4dosSCHgkjZ2SOea6wVcsFyC+cW3MYthds879ZCMgpkcA6QQWMg25iNzWBDJ+lYWLaQbEM2kYS66Jqlz6LF08Jdk+9i+5XtnO48jVbU3nSe54/58YQ9+CI+iixFBKIBekO9uCNuuoJdVNgrmJI3BX/Ez/mu8xi0Bs50nWHLhC0klAQxOcY31n6Dn535GY3uRvSSHkmUsOqt/OnCP70pYuBoPM+gNXC46TDl1nIqbZWYtCbmFM9BNGT+vU1yjGxjNpd7LtPqa6Uv2IeiKNw9+W4+Nu1jnOk6g81g41z3OV6pf4UF5QtwhVxqgcXFZ2lwN6CTdGQbsqmwVbCyciU1eTWc7T6b4nmLyxfzg+M/QEDgj+b9EbX9tTx78VlWVKxgZeVKrDorZbYy6l31dAe6aXQ30unvpCfYQ0JWj61BMlBsKaY70E2FrQKDZEBWZLJ0WUzKncSZrjM8e+lZPjnpAbYs2oguDnGtxNVQCzOEIOVkLi5KjsfZ9LZUJp877AbUsP8cIYfJuZMpNBemBNJVlatGZK15I162SSrPS46djoZwPDx2Jt/b4HmGnHy45+6BFvBhBV9J8QkFVlau5FDzIXXsWVGQFZl8Uz6LyhZxsPEgFbYKllUsY0reFA63HCaaiNLma6PEOpAp/U4XIbxVDB6pHtwwnGwXDcVDGV2lozme5foGTIoMZRH+34n/x+KyxXx9/df59tFv0+5vJxwPk2/Kp9hSzGfnfJarvVdTz23QGPj49I/z8zM/51z3OfSSnkdmPkK5rVwdf05EkRU51QY6JXcKKNDqbUVERJZlIokIb7S/wcScifxs7XcofPlkipfJwEKHg5+s+X98cv/jdPg7Uu3VAgL94X5ebXqV6pz0mdTpynuScGY7qSmoeRvvyFvHbZHtfYImdxP9oX60opY7iu7gH1/5x1QWhCAIVGdXs6xiGf/y2r/w5OYnR/wAavRGRu9WA1l3m3rdLPSH+jnScoSFZQuJJCL0Bnv523l/zuaSlRgSIuasXCw6C5EjJ0dcQKYuUA0GXu18JTVzf677HF8/9HW+u+W7b5vcjGukTJYxP/aY6lBCHVMMPvccUkUFpvXrEW02wlpp4MeuZjLaBXNvWkB4sn58MPESBZGNxStQ9v8u7WOSDsDhSDp35FAIXtw3YL8flMcV3rEjdX+z08lfbv4s25v3MbGoBrl+f9rnk+sb2LLuM2hMFmx6G63e1gHBIBZD7usb6sSBIUKq3lEJmswZd4LRiPmTnwS9HkWnRYhEMhOUUAjGGGMcS2QVIlEem/MYa51rseqt1PXV8R/H/4MmdxNxOa6GIGv0VNgqUit9Gr2exLXGDKOxmccb5FBIHU98G/udKeciJT69+KIqNgnXx4MzCYNjNdfeaK7ZsBDyd6qda0ghQiiEoNOpmWqiiOnuu0ddAR/scJXKygCINzWNyAuE66L2nj1oSkuHiGzJMefBTljJ4Uidl5GjR1N/twEPOKrQOgtG/jYFg/ifegrTtm2IGzakRldRFFXYGySwgXouisuW4f/ZzzBt26YKY5EI6PWIioL/Zz9D98hDaQWGsVbIb5ce3Ma7hbfL8+LazJmct3nezYMv4uNC94UUz2vyNKEoCrFEjCJrERudGxEQaHA1sKdvD7Iik1ASrKhYwefmfI6fnv4pOkmHSWsiEFPF0ZvJ8yxaC1E5SkJJEJfjROUoBo0BRVHLDhRZod5VTyAaYN2EdRxvO06lvZK99XtZ71zPxuqNVNorqbRXjjuH70YxGs8ryypjSfkSnjn/DJ3+TlwhF3E5Tv6mLO4aZUEkyfOSpQcIpNyFd0+9m4NNB3nh6guUZpVyuvM0GknDhuoNfPvot/mT+X+SEthAdfy5wi4UFF5tepW/Xfq3rHasHuB5kpYiSxEd/g7OdJ2hLKuMVZWrMGrVpldX2MVTZ55idtFs1latVVtgJSNZ+qyUUB5OhOnyd5FrykVWZOaVzOO/tv4XJq0JRVF47vJzSILEr6/9nl/V/RZJkIjJMfpD/Ty56UnK7eUZj21y/O1893lWVK7AqDXyWvNrKaGt0lbJJ2d9cgjP+97x7w3heb6oj7gcT/E8u96ON+KlPKucFm/LiOestFVmdk/dBJ5nsNhGzUhNik+7anfxkSkfQVEULvddJkufRUm4hEJzIYvKFvH7y78nnAgTk2NYdBZcIVfKoWfQDL0+Gu8o92h87p3ieYMLEfpD/aqLTG/BpDFRYa/I+ByZpploaGLroo387eF/QiNq+MnJn9AdUHPU/FE/Zq2ZFm8Lvzj7Cx6oeYBXm18FYNukbfzu0u+od9UTjAXpD/Xzs9M/4wtLvsCzF59NFY0EY0Gqs6vZPGGzWj6RCFNkLsKit5BjzGFN1Ro+PeVBCl49gzwse1FpaCBHgPur7+JS7yUUVPHUbrAjCiLN3uZUfttwvJXynncDt0W29wmSJ3qVvYpnLz3LkZYjaEQNcTmOoihc6btCTI4xMWcipzpPUWGvGLi4k2Xk1raMAfEBjULmCf/bGC8ScoJgPMipzlPMKpzFV+f/DdmvnEA58CKA6hJpaxs9h2vjRlxG+Nap7w65/Vz3Oc51nXv7Itt4RsrKygj87GfoFy1CKitDKirCdN99CHZ7Kosq04/d24U/ptq8RUEk15iLXqNHJ+mwKGMULwzD4NKCRG/vkB+WUfO4rmfTbZ1WgxiDjJQgEuWeqfcA6thDwp8gdZkjSaM6oUAVvuOXL4+ecVddTezSJSKvqj9ilscfvyn5UWOJrKLBxMemfyxFEE50nOBQ06Eh+YLJsGCjxkiTu4kJlnJiXZ0YRsnRMmzdmnG8QQkExizVGFMcHgOizYbp7rtRAgEMW7ageL0IWu2ox58xni/d/gwX1NBokF0uVfzUaIhfvUq8uxtl3Uq+ef779AR6sOlt6DX6m5oBciMNeUkMIbfxeEpoG1XUra9X89GG/72hAeOGDUhFRSmXa6K9nXhz84htKQ2NCO1d6d+DYJDIsWND3KmmBx8kcfFi+v1paEQqKiL4zDMjbhOcDvrFCKWjvPaxVshv4zbeDbwVnpe8iAvFQ2iicaodVSOC4UE9B27zvJuHJncTgiBwqvMUU/KmsKhsEaF4CIvWQoO7gUAswIt1L6qiqaQllohh1plp87XREehAEiX0Gj29wd4h271ZPK/SXkmJpYQzwhlkRU6NjAoIlGeVc7nvMhW2CvbV72Ni7kQsegsVmgoWlC5gddXqlFhyozl8N4LReN7i0sX8+vyvOd15mkJzIZIoEU1E+T8v/SVzPraXUhgitA3meU3XM9Um5U7CFXIxo2AGR1qOUNtfi0EykGfK40DjAURB5HDLYRRFwRPxpAS2JJIjtLX9arbyYJ73atOrzCicwYrKFdgMNk53nuZg00GaPE3IiszMwpmp89agNdAf6ifflM+y8mUcbD6Yes/DCbW9c3bRbKKJKFf6rnDf1Ps41Xlq1LFMAFfENeptSSTH32JyjINNB5lZOJOVlStT5RzT8qexsGzhDfG8moIaYudjrKhcwcGmg0OEthkFM8ZsyX03eF6VvYpHZj5Ci7sFxxKHmscnx+kL9tHl7+Jwy2E6/B0EYgHsejuLyxanigKyDdnkm4dmeqVz5g0WzrJ0WQgIHG0/ijvkxqAxICBwkIMsKFnAC1deoM3fhk7SYdPbKLYW3zSe91ZH8ccSMnXXzQLZxmwONR+i0FxIf7ifsqwyCswFROIRZFkm35zPPVPuQSfpsBvsXOy9iCfiQVHUwpRQPMSTx57kgekPMKNgBu6wG19UXZz4/vHv85GpH8GutzMpdxI5xhx21+4mnAjzvcVPoDTsSb/v9Q1sWrSZf5CfANTm4VJrKZ6whwJzwajFB3Dj5T3vBm6LbO8TJE/0UDxEg6sBSZBU4sXAqE29q56l5UvpC/YRc7uIvLCDRH09pgcfJLxnT/psKIcD3eZNKNa398V2GwOYbK3if1Z9ByESxWyxo+/sJ9Lamro94xhaQwP6DRv4l9P/xpqqNfQGeznRcYKYrI5ejefHdSyIRqM6crV9e9pctciJ6xkcaRoCLY8//raffzywaC1YdBZKraU0eZrwRrxYdVZknUSmtfqo1UjfJ+7ErGixWnMx2HJS4s7wH5Yx34dFi0DOPM45uM2zyl5FWOMhXu1U82/GaD5FFIkcOYLpvvvU83JYxpxxwwb8P/6x+v9kjtYY7qpx5UcNLgoYvl8OB6LZnCJKTe4m+oJ9LKtYRkyOoZN0dAe6OdN5hqt9VykwF+CP+VUxYuN6wnv2oR3s3jMawG5Dkz1KacF1KOEwSiCQObjeZErzyBvDYPFJ1mhUZ9uCBUTSZAwKen3G0orhzrwhGRdaLeZHHyW8a1facyy09xWmTnLyRusbfLbmYZbnzUEbU8CfIKzxvCfizhByO6glOCNGuU8iEib0m9+k/m968MGUWDwckT17MDz2OeTdu1HqRx6r4HPPjfl8oLrkDJ/7DPLuPUNEBsHpwLdmIR7Co4ps8M4uGtzGbYwHN8LzuvxdXOm9wp5re/BFfMwqmoUr7KJg7UKsLwtDziXBUYVvzUKyrPZ3+yV9YNEf6scb9pJjyKGuv454Is6U/Clk6bOoyq5iduFsDjUdotxWjuAViMQjlFhL0Epa8ox53DXpLjr8HcwunP2O8Dyr3sonZn6CJk+T6uy6DofdwcKyhRxuPoxeo0cURNp97ZzsOAlATV4NxgnvTgzCaDzvrkl3caLjhFoeIKh5djpJhzfqZdWzd7Lnge1YF09Ly/P8MT+ReIRmTzNlWWVMK5jGL8/+kgJTAeF4mK5AFzLqWOa5rnOscawhHAunHH6DISsq/4skBhYvq+xVGDVGrvVdo95dj86vikbt/nYkUSLPkEcsEUNBSeXCgfp5WVaxjHA8TIu3JVUmMatwFlsmbuFy7+VUjlaTu4lMyNaPjD0YjsHjcTE5xomOE6l8PWe2k49P//gN87zpluk8vuBxvvvGd5lROIOlFUuJJqIUmAvYPGEz0wqnZdynd4vnWfVWagrV8b8cYw47ru4g15TL6c7T+CI+ZhbOpN3XjlFjpNxWjklrSjWkWnQDolq6XLPBmZmSIDEpdxK/PPtLeoI9KRdciaWEzZM288ShJ4glYoQTYSblTkIjaAhEAxxoPMDmCZvfM3FnLCEzodVg0VnUz7GiIIqqu7Suv46eQA9xOY7NYONCzwXyTfm0+9rVUVBFIZqIIggCkiCpiwtKjP+98L9k6bO42ncVSZCYVzKPpeVLyTXlkm3MxhVycaHrApIooVW06MegnlZFFYkFQUiVLkzMnUi5rVwdF86Ad3LR4K3glhDZGhsb+epXv8rLL79MZ2cnJSUlPPzww3zpS19CN0g1b25u5vHHH+fll1/GaDTy0EMP8c1vfnPIfd6vqLRXkmfKIyEnMOvMTM2biiIoeMNeWr2tKRIWk2Mszr8jJbAB6oXJ8Na9QTlgSiiENS99I8dt3BgSbjdZu18bIpjEh+cUjXHx2u5q4nvHvwdAdU41WyZu4Y22N9SVT0nPxZ6LOI2laMOxESNo44Vkt2Pctm2IyybR2krk5En0ixcTfPrpkY/JEJh+s1Fpr6TKXoWAgDfiRVZk4nKcy8FmZjgqhwTBJiE4qqiNtHHWfxW7wc7qbAeiXj0mCY8HYfho4FgiQjyuCmWjOJ0ER9WINk+DxYZ81zaCL7wweumBw4F+6xYEWVHPy2efVc/LhQuHnJeyxwOx2FA3XjSamaCM4zMwoihg0OONd945JHS2w9/BgaYD7L22N/W3SlslG6o3sPfaXnxRX+rC0JCTD3dtRfH7iUUiCFnmcbuBBIOBwNNPp3K4xtqvm4EhzrZNmxAUBSUaVccrAUEQ1OO0a9fQfLNB70cSqYyLlhb0y5ejmTKF8EsvpXerCgKm9eu5TxT5qGML0V27SdT/b+o+8Won8l3b3vX20sEO16RAPFrDcAqjjNvGdZqhOWeZzrVYjKC/n8ZlE3GsWY4US2A0mCEaQ/H7Md1338CYdSZyGIvhj/o5OTeH6Svno4klUHQ6asNtnG1/mYdnPjzGEbiN9zNu87yhPM9usHOm8wyVWZX4Y37aPG1E5Sj/ce5HTHFWsX7JNrLQExBjnPHWkZ3oZal+8nv8Cj8YuNJ7hfPd53nu8nOsqlyFK+xiRukM3mh7g33X9mEz2Oj2d+OL+thYvZEmVxOiJKYuyk+2n+TlxpdxhVUxLR3PO999nnxTPr2BXnwx31saNZucN5l/WPEPqUZISZBwhVxc6r3E8srl7KrdhSiIqZwto8aIM9uZceTvZmI0nueL+FLlAAlZHXeVFRmdpEMQBI73nUMrakfwPF/EhzfiTTWVakQNU/OnEolH6A2p7jEBgWxDNmVWVTQQEMgyZGHVW/FHh44GioKISWsa0VhYaCnkM3M+w7MXnuXVplfZNGET4jWRnmAPFbYKmj3NLC5bzB/P+2P0krrwmVAS9IX6WO1YTSAWwBVyoZN0zC2ey4WeC0PaWWcUzmBGwYwRLZ6gOsZmFM4Y89jeyHjcjfC82UWz+dqar70lN9B7wfOSDcfN7mZmFs7EH/GnXKSxeIy+UB//tPKfeKP9jZSjDVSBbXiuWTIz0xfxMTFnIjpJx566PcTkGFm6LCKJCJIoEU6EOdJ8hE3Vm1SXpimXnbU7ebPjTWRFxqQ1Ud9fz2fmfOY9aS/NNM2Eo5LftewlFAth1pmRRIl8Uz6nOk/hi/gwaAypsXNJkDjccpgFJQswaU0pURrUcyfZlDu3eC4l1hIi8QjZpmxMGhP76/fjjXiZWzKXyz2XUQSFeSXzeLPtzTFFQK3RzPSC6fiiPkRBxKqzYjfYKbYWv2vfXTcLt4TIdvnyZWRZ5gc/+AETJkzg/PnzPPbYYwQCAb75zW8CkEgk2Lp1K/n5+bz22mv09fXx6KOPoigKTz755Hv8CsaGVW9lWcUy9tTt4WzXWXoCPXijXux6O9Pyp3Gx9yKyIlNhq6BckzdUFEheCKVxJgHoaqZwtPXoiB/x0bKEbiM9Em73CHcYpMkpGiMgfnCuSn1/PW/q36Q0q5QWTwtd/i6W2mcS2/17Iuns8jdwYS7Z7cQ0AgFXN3IkTKK6GOP0SRBSR8WG/ACmERbeSVj1VoosRayoXIEv6uNy72UEncDrvaewLFqEAwEGj8Q4KmleMpmL3vpUvocz28n0wumpunDN9cbP1LkxxvuARpNyxyR27xnyfIKjiv5VczBbcwj7PQNjZtfPE9O996L4fMgej9rMGI+r+XZGI0K2HY09GzkUSv3QjWhyra5GM306lscfH3LeSTZbZoFsnO//WEUBoBKKnbU7aXA1YNOrTVQKCs2eZl5veZ25xXPJN+UP+VF7q26gmEGLVFyUyuES1q1LZWopsRjCO/S5G89YZSrfbJTvQTkUQvF6U42ckWPH1PNntJa/+np1VNViIbrnpRH3S1yrf0/aSweXJkSOHsU8YwaJ5uaMbszEIIfu4L/XRtrJX7OQLEEgcW1Q9p1WmxpBHywo9xDlJ5d+RSgW4q9m/jGl+14f6ux0ODA9+CCCyTT6eLXTSUAncsZ9hcM9A4146cjybdx6uM3zhvK8UmspJztUsabB1UCOMQebwUahuRCbrZAjgUu4Qi6c2U7aY32Uapycvz5Kd5vrvXXU9dXxr4f/FYPGgF7S8/srv+dTsz/FsdZjxJU4U/OnIgkSsiLT6m3lSMsRVlSsIKbEyDXm8vyl5wnG1cbDpMg2nOe1els53HIYb8TL0vKltPvaSSiJtxQpMCF3Ag/oH8CoNdLl78KR7SAWj3G66zQWnQW7Qc3ZMmqMLK1Yyv3T7n/XvitH43kaSYPNYMOoMeKNeIklYqkL9mxjNlpJmxKOkjyv0d3If5/8b1o8LalMNYB4Io5Ja6JUU5oqpfBH/VzqvYQoiBRYCoglYiwpX8LR1qN4I15Adc5ZdVYWly9mWsE0uvxdA8KSwU5Nfg1/OO8PWVy+mPPd5/nCki8QjAbpDHSSa8xlddVqphZMxRfxkWPMUXOzrgttoIoQAgKlWaVMyJkwpJ21wl7BF5d/ka8f+voQoW1GwQy+uOKL4x4lHs943FvheW/VDfRe8Tyr3jqmy25+6fyB7DStZURbri/i43jbcS73XGZJxRJ+dPJHOOwOnrv0HMFYkEJzIQvLFqIVtbzZ/ia9wV5CsRATcyayr2Efb7a9Sae/EwUFi9ZCT6AHnUbHny38s3edm4xWkIWjksbFE/jOji+j1+jpD/Yzr2Qe4XiYcDxMlj4rlS05IWcCBo2BLH0Weq0enUZ1lx1sPohe0rOkfAml1lKcOerExv76/TS5m5hROANP2EOdSxXCj3ccZ3rBdBaWLqTIUsTn5nyOiE4atYxKcjoJ6CUm5kwckpd3q/K8W0Jk27RpE5s2bUr93+l0cuXKFf7rv/4rRb727t3LxYsXaWlpoaREbQ/51re+xac+9SmeeOIJsrKy0m77/QJfxMfBpoNoRA0F5gJ1Rt7TpIZbeqHMWkaZrUxtBgoFhzw209ia6HRQH+3kfO95fBEfuaZc5pfMZ7KuZET7yFsRcj4skEMhZJcrYyh9Mvw70/shOKq4HGymJr8mtdLV4etgWcUyFpUtYpK5AstLx5CHC3nXrr2lC3ODxUZn3MX2djU7RCfpWF20lFmb1mOQBYhGVdJttb7rpFsURcw6My/c9QwFkhXCEQSDkWuRDn7t9LB28RakWIKYVmRvx2u8evI/+GjNR1OP98f8JDyelCCVaG3F8thjhF58MfX/TK6wRGsrxGIEYkH21QjMW7IVfVxdjYtqoNRQiBQRCe0aep6ITgds3YyhoADBah3IRczLoTXWxxstR8nqzmJmwUxK0zVBjnGeSTk5GO++G0KhVH4URuO4BbbUdjIUBYA6QhCKhfBGvFTnVOMOuZGRUw1Bc0rmsKBkwdv+UWt0N3Ks9Rir1y7BuP/wkEyttyvuprt4BG7ogjKTECd7PAR37cKwfDnmT31qwL02b17mHZMkUJTRhbhr11B8vne9vXRwaQKJBKLVqmZIMsyN6XRi3LKF0N69Qx4vORwIm9bx4uWnkJF5dMPHKRI3k0jEkSZNQj9nDpFjx0YUvmRNm8jsotkQjlB86DyJYZlSiYYGIqKI8a67MG7dSmjnziHHTnA68KxZwC+u/C/ltnKq7FVIopSWLN/GrYnbPG8oz7vUe4mfn/05F3suMiFnAp3+Tt5sfxMFhQNNB5hRMINKWyXltnL0kp6uQBetvlZ8ER82vY2rvVeZWzKXcsF+m+uNE76Ij0Mth6h31aMRNayoXMHVvquIgojdaGehZSHVOdVoRS09gR6q7FW0edsQRZFIJEIkHqHeXY9db2deyTz0Gn1anneh+wK9oV7iiTgvN7zM8orldAY66Q/1p0Lob+Q7rdBSyDrnutSYG8CEnAlMzZvKiqoVRONRiixFTMyd+O5f8IsiAB+d8lEUQS2OKMsqY1bBLM73nCfPlEcwFky57SZkTxjScOmP+fFFfDxz/hlea34NBYXP3PEZGt2NXO69jD/qx6AxoJW0WHQWDjcfRhAEREFkTvEclpYt5elzT7O4bDEJOUFXoAtJkMg15VJoLuSh6Q9xuuO0Os6biBGKhxAFkdeaX2Pb5G0srVjKzMKZNLmbCMQCzBYGxn/r3fXMKJiRaoJMHnuAYmsxd0++e1TnzeLyxXx3y3c513UOV8RFtj6bGYUzbjirbyxB7IPA89KVC5hlzQ3xvEz5Zo3uRnZc3YHdYGdT9SaevvA0oVgIm96GRWchFAvRFejifNd5ZhXNYsuELdgMNsqyylJi+r66fRg0BkLxEOFEmFZvKwcbD7JlwhbmlMx5S6/77SDJ9SIeF5Ggj5hWYE/HIb784qeQkSmxlqCTdDw++3F+efaX6CV9apx9cu5kHpj2AO6wKjhX26vJM+ZRvKQYBYWyrDKOtBwhHA+nmlv1Gj2LShcxs2Am33z9m7hCLrIMWUQTUS50X+Bs11lseht/v+LvMVrsSFs2Iuza+4HnebeEyJYOHo+HnJyB2dzXX3+d6dOnp4gXwMaNG4lEIpw4cYLVq1en3U4kEiEyKEzc6/W+czudAckGEUmQeGDaA+yp3cP/N/tPWFWwAG1cRmu04NfI1PqbCRsVBpstRxtbE50OEhvX8F9v/gsXei5wofsCUTnKD9d9m/JLQhqHxVsTcj4MUAIBdewyE+Jx0GpBkjBu2kRoz56hXyCOKnpWzuavdjyIoijkmfKQFRmj1siswln874X/5YGF61AaTqXdfOLaNXU/bvC9GdxSk1zFSdgsaN7jLyyb3sZfTP0ssV27CQ363JY5HDy8+X6WPLeZy72XsRvsLCxdyCdnfZLLvZdT97NoLRAOD3zmYzGUeBzttGmq4JlIoJ0+fcT7MDgLSqquJqrXUVEwkcuhLhRBYbl5DqZAFLmpmVCa5kW5voHYzhfhnrtVZ5fRyOstr/P1/SNXJf9+xd8zfwynVDpINtuYLaI3gnRiVHK1vTq7mocn3c+inBloYwqC0cCVQDM2o52J+lKiLc1IRtNbcj8km8B2XNnBz8I/49GpH2fJ0rvRJwT0piw0thzEt5iTJXs8xOrqEK1W1UkYDCI3NyPm5hL8n/9JjUJK1dWqC9Buv6HtJ3w+4vX1GFauRPH7ESyWcbskBaMRopn6nsffXnqzkRQV462t6ijz0qWqGxPUfRZF4vX1yP39aAoL0c+dm8rfi1iMfP/qrwgn1H13KUFK85xIgLBpE5EXXkjr9BX2wtzl07DGNSj7dqbdr8S1a4RDPpokL857tqEPRQj6XcQ1IldCLRxv2YNZZ6beVU9fqO+GL0Rv49bDB53n/e7S70goidQY3cbqjWyesBlv2MvFnouc7jxNpb0Sf9RPh7+DUDyEJEi0eduYUzyHXXXqOODmCZv51flfUddfl+J5Mwtm8qMN3yH4ysHbXG+caHI34Q17qcmvIUufRUJO8OD0BzndeZqjLUdZ51zHU2eewh1yU2gppMPXQa4pl0Xli3ij/g2WVyzHorNQk1/DwaaDGDSGtDyv3ddOT7AHq86KQ3TAoKiw/lA/Te6mGw48T8fz3g8XphatBX/MzyuNr1DbX0tcjjMtfxr31dyHL+ajy9+FK+zKyPOa3E1c6rnENdc1vBEvze5mpuRNYWbhTHJNufz5oj9nT90eWrwtLCxbiKIoVNoq2ThhIy3eFlY7V1OTV8Oi0kX0h/qJK3H0kh6NqFHH2qJedtXuosndRJYhC4vOQpGlCJPWRJGliEJLIdMLp/N6y+t87eDXRrrPln/xLR37CnvF2y7AGIx0YpQ/5lezx2yVOLIdaAQNkUSEMlsZBtFAsaWYvlAfL9W/RKGl8C21Y76TPK/R3cjhZtX1GY6HsegsFMsWhH2HRiwcvBWe1+Xv4ljrMXKNuSSUBJf7L7Pz6k78MT8TcyYSjAUpMBfQE+xBQWF64XSeOf8Ml3svc0fRHbR6W5meP52/W/F3fPvotwnHw0iChIKCK+yiw9/xll73zYBoNHKm7wz7WvZRaC4ky5TFF5d9kZgcw6gx0hfqo9XXyn019+HIdhCJRzBqjVi0FtxhNwklAagusmQGXoGpgCfffJLSrFIWlizk1xd/TSwRw6q30uBuYEbhDHxRH1E5ioAqdus1erSilllFsxAFkTNdZ3DmOD8UPO+WFNmuXbvGk08+ybe+9a3U3zo7OyksHKrmZ2dno9Pp6OzsHHVb3/jGN/jKV77yju3reJG0RSaUBOFYmJ+u/Tbml15H3rcjdR+T04F9/QpO9p5j4eDcqsF5bMuWERYSdMT68Uoxnjn1n3zv+PcothSzoGwBp9pPsTh3Non659Pux1sVcj7I8EV8aII+NOMYP0yOk0UOHx7I4QKwZbGr4yB/vf0B2nxtROLqbL9BYyCWiHGx5yIPTHsAbVzJ+BRv9cL8rbbUvJOYoC8m8rvtJLq6MH384whWq2otNxhQAhH23/sCv27YToG5QK3q7r2cWmlJBpYqXUMDhBW3G9FiIXL0qHqxr9WiX7IEw7p1qnMI1WkYfO45pIoKTHfdhcVmIx+1aVEOhYhdH1uSiovVC5BFiwYyo64LN3J9g3qeWGw0u5tH2P5BbRH72sGv8d0t36UiLz2ReqfqvwdjSGD/dUjV1UzbvJ5XjTl8f+W/k33gBHL9gPix0OlEv3wawZ/9itAgsepG3Q+N7kZ2XNlBu7+duBznWye/w78pCSRBwpHt4B9W/AMzLGPnjwyGL+Ij7PNg98eJDRNBJYcD/fLl6JcuJXLgAKB+p4W2b8e4bduoBEwOhYj7PMSCARI6DTq9Ca0MsXPnCG/fDoDp/vtT9x/LJYksj92y9R5nSAkGgxoxcOBA6lgNhuWP/xjsNvy+fuJGDVdDjbx6+SjRhCoeDg8NFhOJUZ2+Sn0DlWuW4Q/3Zdwnn7eXr537N2YUzGBR2SK+dvBrXHMNuECddif31tz7li9Eb+PWwQed5/kiap6XRW8hEAsQjoUpthbz/OXnWVm1MjUOZ9VZ6Qn2EIqHUo8VBRERkdq+WjzlHk51neK/T/33EJ5n0prIlnWZ3bS3uV4KvoiPdn87xZZiDrcc5s22N7EZbGy/sp0CSwGfnv1pfn3x17R6W4kn4gRjQWx6G23eNk53nubeqfdi0BiYWTiT15pfoz/UTyQeIa7EydJlEZfjXOy5yCdmfIIX617ktebX8EV9NLgaEBgayD94TOpG8H7kefnmfFwhF53+TiblTsKkMRGTYxxqPsQfzf0jzDozrrCLXGPuqDzvVMcpLvdeTo161vXXodfoeb3ldTp8HXzmjs+QZ86jJr8Gb9SLTtRh1qmudn/Mz12Ou4b8VvkiPnZc3cHFnos47A7eaHuDeSXzKDQXcrz9OHE5Tjge5rlLz7GwZCGFlsKMPO/rh77Od7d8d9Rj/27wvMGB/UnkGHOYWzwXk9bEtsnbsCo6FufMwixLhDQKZ7xXOdt/lR+f/DETciZwR/EdOLOdNzyy/E7wPFAFsBMdJ9hXv4+eQA8CAo9Mvh/t3oMjF/PGwfN8ER8Xey7S7G5GEiVyjbnE5Tg/Pf1TFFmhwd3AWudawokwNr2NFm8L+aZ83GE32yZtY07RHI53HkcjaqjJqyEUCxFNRDnSeoSoHOX+affzgxM/QCtpU2OXGum9lVksWgsJJUG7v512f/uI21dWrkQraTnWfgx/VM2zCwiB1O3DeV5CSWDT26iyVSEIAmatGb1RFayTLlBFUa9jkxluWlHLhuoNnOg4wW8v/RZZkTHrzB8Knveevvtf/vKXxyQ+b775JvMGjea0t7ezadMm7r//fj73uc8Nue/w5hggbaPMYPzd3/0df/EXf5H6v9frpby8fLwv4aZhcI3w0oJ5mPe/PmJkUKlvQL8PNHPzaFo8kSqEgZa1WIxIazMNZTqevPRTfn7m5/zz6n+m1adm6nQFuugOdPOH8/8QKZo5ED4a9BGP6G9p9fhmIfnD9XDpVkxjtEnGsq3Iu/enbh88MiU6nRjvsNPsaU5VbEcSEQLRABW2Cq72XWVi7kR0pszH/O3WX7+fIIYiJLq6Rg1Jzb7zTmRZJpqIUttfm7pt8Gx+QhcYulFJGigaGFQAEr96FRQFzZQpSJMmYpk5M60zSwkE0JSWEtq9m/COAYFbcjgwP/ooSjCoCm0aDaCOQZzrOpc2wBZUAnau61za1comdxO9/a1UaPMpiWaRUDRcbTtLXk7ZDYV7yqEQSigE0aga7G80IlgsiEbjQGB/GieD9CI8su6jWPYdITEsGyFRX6/mDC5ZkmqNfCvuh+QPeziutnv9eO1/MtlUiRCJouj1BMTM7a7DkTwfP+u4j8jBNETrej6iYd26IcJRoqEB2eVC0OtH7HtyJFRTWIiurAyCETDKKEYjia6ugTsOEtkzll4sXKg6Bm02TI88AuHwQPHIdaFWcjjGFOHeaWQKx5WqqxGsVrRGIx5tMC15H56PMWIBYHg+m2REm11CQqsdtXDBL8TYVbsLSZA42jKQn5NEvbue5y4+xz1T73nLF6K38e7iNs8bwGCe54/6ictxfn3x13QHutULt+sOKrPGjFEykmPMSY3OaQQNsiIjM/CdKSsycSWeEuQG87zddbsJB7xk6qNWxnLnf0iQ/F0JRUPsrd/Lue5zGDQGSrNKkZG53HMZu96ORWchGA2ioH7esvRZ+GN+DjUdojq7Gm/Ei91gTzX0xZU4Jo2JaCJKibWEq31XcWQ7yDXm8heL/4LavlpOd54m25hNd6A75RwZ/Dm51dEb6GVByQJ0ko5dtbvoCqi/qQ67g+rsauaXzkcn6jLzPDkxJLReEASev/g8C0oXsLh8MWadmVlFs9BJOsKxMCXWEgosBZg0JirsFSOuZZrdzYiCyIHGAxzTHmN//X5AzX97dPajqZbOWCJG3/WFobfK8xrdjTx74VnqXfVE5Sg6SYfT7uS+affdkJDli/hodDfS7m8nlohRYilJjf8mA/sH/0aD6opsdDfisDtYZJtGwcGzKA27AbAA6xyVTF26lbNdZ7nmusaV3isYNcYbHlkezPP6gn0oKCiKQkJJ4A67udZ/bVxlDoPR6G5k19VdPH3+aVq8LYC64LA09w6UhlFMIhl4XqO7kV+c+QUV+kKW5c1BG5ORBBP18Q76g/1Myp3E3oa9bNFsISbHCMQCnOs6x7bJ27Ab7RxsPIhFZ2HftX3E5ThlWWXYDXZKraVoRA2ReIRp+dNYXbWaN9reIBgLUp5VTomlJO2+vluotFemMgOHI8eYk/oM/aH+D8fF8/wxP3qNngJLAfnmfGwGG5NyJ2E32DFrzdgNdv5y8V9ype8K4XgYs9ZMTX4Nh5oPYdQYkRWZc93nUo7uDzrPe09Ftv/zf/4PH//4xzPep6qqKvXv9vZ2Vq9ezeLFi/nhD3845H5FRUUcO3ZsyN9cLhexWGzEyudg6PV69PpMNOTdweATYaqpErnhcNr7yfUNzFy1mE0vPshfz/k8sxZtRBdXiGoEdra9wv+++n2MWiOCIGDQGNAIGkRBpCavhvKscir1ReRYC4ik3boKvxDj6dM/veHVjA8aBv9wNcV6qO7swLhwYdoL6/iGlXS7WygcZdVYrq9n4ZpHmZAzgdq+WiKJCAklwaScSdw16S5+ceYX5JvzCXr7+YSjamjof/J53sX2z3cDSjiMadu2EQIbqMc3tGMHf3zXw4RMmlFt+IooDhE+E62tSGVlaQtApOpqdAsXZhSIFFkmvGdP2v0Jv/QSmkHblqqrke66C2808+iRK+Ia8TdfxIchFGPSa9eQG1SCJwETnQ5C6wrxGX3jIjiyx0PC5RohOCVdZ0osltHJkLd+PYEMAf6GlStTIlvyMSFPHw0+97hWY2PxGHE5jqIovPyR51Fe3E/k+usF0DscJO68Eykncy03DD0ftQmGjBgP2e9R/s71kdnBzg05FCK4a9eoWWLmhx4i8NRTEIsNda8Nb3OG1LkZ+M1vMN9/P+Hdu0eG+997L5ETJ9AvWfKOhQCPF6OF4w7PTxnvGNKQBQCtdsDVO2SxQS04CD799EihzVHFWX9tyoVwoPFA2t+fenc9kXjkA3Uh+kHGbZ43gME8z6gx8vzl52nyqBMJWfos+oJ9XO69TLYhm+rsanJNuQRjQbWBUYkjIKAVtVTZq2jxtqCVtIiCiFEypnhevimf5y89z6XeS0SkzPujxOPIHs+HOptt8O9KrjGXZk8z2YZsXGEXsiLT6e/EF/HRGVCdWK+3vK5OnMTDmHVmyrLKuNhzkUgiwpvtb/L4/Mc51HSI8z3n0Yt6IokI1dnVQ3jef5/8b0xaE3OK57DasZravlpKrCW0+9qxGWy3XINeJvhiamOhJEqsd64nnAijETS0elv59rFvs6xiGf+w4h+4o/iOUX9jLHoLk3In0RXoIhwP0+nvpCyrjMMth7HpbcwvmU9MjmHRWcgx5rCiakVGbhKMB3mx7kVavC1UZ1cDaiupL+Lj5caXKTYXc7zjONFElEu9l5jlnqXmJmbAaDzvl2d/yeHmwyknKkCDq4FwIjzuUPxGd2NqHDPpRkoWWTw882ECkUBaEQWg3lXPw5PuI3ffGwOmjNSONFEK/MEdj/LXh/6BUDxEf6gfT9jDkdYjlFpLb4jn9QVVQbI32DtEFG1wNXCi/QRzS+aO+Vph4JwMx8MpgQ3AF/VBJHMMRzqe54v4eO7ic9xXvpHS1y6h7BmY2pjlqOLpjT/k66fV4pxWTytT8qaoI8sCtPnaaPI0YdKZsBvs5JvzMWvNiIJIlj4Lg8ZAu6+d3mAvJztPUu+q565Jd3G59zJ3TbrrPb+GtuqtaTMDhwto4+V5g3mXJEisd6xnV90uZEWmyaM2/pZnlVOTX4Msyxi0Bk52nGRn7U6sOit6jZ7ZRbM52nL0Q8Hz3lORLS8vj7y8vHHdt62tjdWrVzN37lx++tOfpsI0k1i8eDFPPPEEHR0dFBcXA2pIrl6vZ+7c8Z3Y7yUGnwhjOc3EaIzpBdP5Vd1v+fO2N1Iz31Nyp7DOuY4fn/wx0/OnoxE1WA1WHpvzGHE5zj/P+yvM+1+H4NWMRQlXQ61vOYD1g4RWTysrChZQqcvHEBPQrqkCWcawZg2IIorHA3o9HqPAPx//Jl9wPpx5g9Eo1TnVLCpbhDfiRSNqiMtxnjn/DD2hHnSiji8e/mdWPbCXUpSBcWDe/fbPdwOCwQBabcYyCcJhzAb7qHZhQRTRDxI+R3UYjeP4yaEQgiyPLkoNKreAAWfXgtV3ZHyd2frsEX8L+dyY9h1J61Y17ofQ5tVjnndyKESsrm7EyOTgfTNs2JBxG4w1fiyPdJpFAl7OBM5wov0EoiCSY8xhRkH6wN4SawmSIPHdNf+K8uL+UcVU4z33IFmtI8Yq8k359AZ68cV8hGIhOv2drC5ajCgI6vjmMIdYCuny0DSaEW4rJRBAU1hI5Nix9MLqyy+nWoNTny2NBk1R0YBDS6tF0OkI/OpXSIWFmDZvHihIGLa9iCCgX74c8brT8L3G4CKETJmB4xlDGuyM0y9alPaYyvUNRBDQb9xAZMegbDZHJXULq/jbvY8xq2gWCTlBTFYb59JBEZQP1IXoBxm3ed4ABvM8T9gzRGCrtFXS5msDwB12E46HWVC6gLr+OjXcXTIQToSpzq5mReUKfnLqJ5RaSzFrzUiixGNzHiMQCzA5bzK/Ovsr9JKe7a37ecxRNfLiGlIcMHL48Ic6m63F3UKBuQC7wU4oFlIdN4r6HugkHf6oH42oISEnUBSFAnMB0UQUQRDINeWy99peJEGN/pAVNVC+OruaWUWz0IpaoonoCJ4nKzLuiBtvxMupjlMsr1zOS/UvsXXSVpZVLPtAcW6L1oIiKDx97mmiiWgqcD+Jy72Xafe3cwd3jPobY9KY2DRhE7FEjKNtRznefpy7Jt2FVW9FI2jINeWmBLaxGgh9ER/d/m56g72UZZVh1BgxaoxoJS3eiJfuYDfziudxouMEJq0JURDZfmU70/My//6l43m1fbUjBDaAUDzE4ebD4wrF90V8HG4+zM6rO4eM+yW3YZAMrKxaOerjE0qCXMWY9jsAgIYmZq2Yr7oA42pgfyAWYErvFHoDvTfE8xSUEQKbTW/DF/Pxo5M/oiyrLFXSMJjr6UQdWklLMBbEorMQiAYIRUNY9VZWO1ZjkAz0BHs403mGiAYynh1peF6Tu4mpVqcqsA07DkpDI/kI3HfHXfzk9E/YcXUHfzz/j9GJOkqsJSyvWM7Z7rMUW4px2B1k6bJo9jaDAlf6rqARNRg0BibnTibHkINJa8IdcfOZOz7D1Lyp74tzebwC2nh43nBnXL27HgWFJk8T/qg/FW/Q6G4kx5DD4ebDbJu0Db2kxx12pxbdPyw875bIZGtvb2fVqlVUVFTwzW9+k56entRtRUVFAGzYsIGamhoeeeQR/v3f/53+/n6+8IUv8Nhjj73vG6eSSJ4Icm/m3JqETkOju5FyazlPrHmC052n8YQ99If72VO3h2n50/jsnM9i1Vk53nacJk8Tfz3385j3H0VpaCTS2pZWiBCcDqIbVvLq1f8B3noA6wcFpYINDr2J0rCHKBBlYBwscvIk0tpV/PDSL/jZpadZWbWSkCSTaT1Y0ak/Ir+/8nt6gupn+I6iO2jztzE9fzr9oX5MOhN/+fo/cU/1FlYt2kSBxk5MK6AYjVg+aKvNJhP0Zf6sEw5nzI0RzGYi+/ejKSsbGA+9LryxfDmCRqOOT44R2h9zu4i8sEMNec+E+FABPHHtGmUb1jGjYEbaUYIZBTPS2uTNcYF4hvwqc3xN5v1AFYhEq3V0kfLaNQQlc8afMJa7I81Io2gw8oNXf8DZ7rPoJB12vZ3JeZP54vIvsrh88ZD7TsydyKKyRUw2VQ1xsA3Zz4YGCAZpTPSx/cp2/FE/y/Lnk2u0Inq6KDNn0RgPcM3XziOOj1D62iUCDQMOl6RDLPjccwNC27CL82SbrHbmzCF/V8LhUZ2PoLr5UrmKsRjB7dsxP/QQ4ZdfHuF6M23bRvC55xA3bBj9PamvR1i1Ku1t7xUytave6HaSzrixjml01WKkP/w0JkVDIhImrIFzrfvo9ndTaaskLsfpCfSwuGwxucZc+kID3xNWnZVZhbPeF+T1Nm4ePmw874UrLzA1byqSKBGJR2jztaUybCKJCIIgpHjeR6d+lN5gL33BPjr8Heyp20OJtYSP1nyURSWL+Pcj/06dq46eYA8P1DxAX6iPKnsVT575IRvvepoqQRy1/IdY7EOdzdYd7Oap009R76pneeVydtXuosBcwIyCGciKTJ4pj55AD96IN+VwiyVU15Q/4k8FescSMfJMeehFPcF4kO1Xt6uPDfaM4Hn55nwScgKdpGNf/T42TtiI3WBnat7UW/6icjgq7ZUcalZ/C5JjtskMOr2kRxREvGFvxmuNCnsFrzS9wqYJm1jtWI0r7EIrallQugCNpGFSzqRUdlSm34UrvVf4n7P/gyRKNLga6A/1U5pVyqTcSfQEe/BEPIAqTOklPXOK56DICv2hfvRa/Q3zvHZf+wiBLYlQPDSuUPwmdxPeiDdtnlYoHqLeVc/c4sy8VYomyGTdMCREFpcvRpZl9Bo9l3svU5ZVxn++/p83xPN21+2mNd6a+rtNb2Nx+WIudF/AHXZzsfsihZbCVJunoigEYgFcITWTb3rBdOr66wjHw/z+6u/RilqOtx9HVmQm5k5kQ/UGXuk6ysedzrSL4aPxPH/MzyzrRJSG59K+fqWhgRnL78Fhd9DgbuDHJ37MF1d8kbNdZ3mp4SWuua5hkAw8PPNhck25nO0+S4G5AHfEjUbUqKYJSUOhpZCyrDIURUGv0WM32DO+L+8mblZe4+CFooSS4GrfVXKNuXQFurAb7OglPXqNnhZvCyXWEvLN+ZRklVBuK0cSJHxRVVydkjflQ8HzbgmRbe/evdTV1VFXV0dZWdmQ25IBe5IksXPnTv7kT/6EpUuXYjQaeeihh1LV77cKrHornbp+TKOsPgqOKk56LmHUGNFJOg43H2ZB6QJkZPqD/XxixifQSTpcQRfPnH+GbGM2GlHDXWXrUA7tUTcyfNQpHidhz+J04BotvW8QT8Sx6qzoJB2BWGDEPnwYEPZ7EF7cP8JplMx80pSVEd29F71Tj07SsaJ8BT4pTrHTgVKf3iFYG+3g8fmP8703v8fe+r0AyLLM1LypbKzeyPePf18NqPS186cvfwGb3saTW54kElcJd5mvjJr8mox13bcSJKuVRGCMz5den7HsQTQaMW3eTPCFF4aKHuMM6fdFfPg8PVh3v6a+10lBZTSkKb+QonG+uPyLI0JxZxTM4Isrvph25U+Mps+kGu/tcD0DK57Z9apEoxlzt9BqMwf4D98vp4OdHQc5230WgGgiioIyJPx38Ou16q3cO/VexDEs/ko4zPZGVWB72PER7C8fR2k4krrd4XQwYdMGEvteGvG9mDwnk44zyekknuaCMnLqFLph49aCwYAyVtPgoGOsnzt3dJfa9X0Yq5xECYcRsrJIdHWl3GOYTEjWW5tMwIAzTh4kkKSDWZaI7H2F4PX3UgDucVSy4IG9/OXr/0S7t507iu4gGAti1pmpsFUgKzKfmfoQawoWYYxDorMTdDoEo/FD68L5IOHDxvOqc6oJx8OpPLXBiCaitHhaMGqMmLQmznWdY2L2REoKS3BmO/nYtI+hl9QFkqfOPIVFZ6E6u5r+YD96jeoYAJiaN5Ul/7uR5k+ewrxwYSqjNFn+k1yUeK+ajt9rdPm7+MHxH3Ct/xruiJs2b1vqQvtc9zmWli/Fme1EK2mxG+ysrFxJVXYVvogPu8GOL+IjLsdZWbWSRlcjq6tWU+uu5fH5jxOIBajrqwPS87xIIkKxtRijxojdYGdR2SIu9FzAE/F8oHieVW9VHUD6LPpD/ancOb2kJ9eUi1bUYtAaMmYvWfVW7px0J9uvbE+dLzE5RlSOsnni5nEJk5e6L/HPr/4zV/qvsLpqNZ6wB5PWRIevgyp7FbnGXLwRL6IgkmfM447iO1hcvhhf1IdG0iCJ0g3zPK1Gm3GfxhOK74/5hzjDhiMqR5FEKWPultZkziiyeQjyy7O/BKAmv4bH5jzGL8/88oZ5Xn+wPxX6LwoiucZcyrPK2V23m0m5k3BH3KnSCQGBZy8+y9nus6nFhXnF8/jzRX/Ozqs7udx7GWe2k0JLIV3+Lmr7ahEQ8EQ8fHT919DtVdLm4abjeRatBW1ojPzfSJS1jrUcajpEsbWYZ84/gy/io8JWQSQeodXbSqu3lUm5k3CFXLT6WlOOzAk5E5hbPBd3SHWnKigEY0Gseiuv1L+CO+LGbrB/YM7r5ELRq42vUp1TTTAaJN+UP8SRlpATVNgqeLXpVQ42HcQf9dPgbiDbkM20gmnE5XhanheMBdFKWqbkTsEoGXn+0vO39LG7JUS2T33qU3zqU58a834VFRXsGBRWfqvCnJWDb+1iLC8x5IJScFThXjOf77/2JV5vfT319+cuPZdq9fjFPb/g1aZXicaj7KrbhYDAtPxpZA2Pv43FhogSoQfv5ieX/4c2XxsXei4AUJ1dzezC2VzouoAv5nvHWnHej1D8/hECWxLJsUHl0CG2Lr+HotxKvvPGd+gKdPH0hh9RrihDMtVEpwNl01qOXHseBYUvr/wy90y5h55gD+W2cnZe3clPT/0USZQwa8xEE1GsOiuPzHqEHVd3cKj5EPmmfMw6M85sJ59f+HlmF80GrofejzHq9b6G2ZxR5FF8PsTc3IybGO/I23A0uhs50HCAdfa5qfd6rNbIRGvriL8LBgOL8xbz3S3f5VzXOVwRF9n6bGYUprfWA2iMZjLJThrj2Nl7gsGgFjFkus8YuVvodOhXrEgf4L98OfHagSBiwekgsn4Fv3n1L5lVOAu9pFerwLVGIvEIl3ovpQ3/nZo/FcE1RnipXk9/qJ81RUuvC2wjx2iV3fvQlZYSqa0b8fDkOSlVV2PcsgXZ68VUUDAwTnrqFKbNm0d8JgSzeWwHxyBhVXI4RndoJceJxygnEa1W5P7+1HhzsgjBOM5suvc7RKMRxWTKfJ+EMmo+zB/O+BRfPvoN/mrpX7G/fj+Xey9j0Bj42vy/pfDgWRL1PyMpzUsOB/oVKyA7+0OdK/VBwIeN59Xk13DnpDvZcXXHEKEt25Cdym4dzPMEhCE871DzIaLxKNuvbk/xvPXV67HoLMwtmcvF7ov0h/rxxXx0BXsoenrPqPsS1Qhc+RDyvIvdF2nxtSCIAtFENDWGCNDgbiAux+nwdTCzYCaPzXmM77zxHRrcahtoXIkzp3gOf7vsbznTeYYZhTOw6qzEw3Ga3c18Y803aPY00+Zro9BSOITnxeIx8k35KIoyLp73brRTvpO4o/gOlpUv41TXKWRFRkBAEiXichxnthOdpBsze2m8I2/pcKn7Es9deo4DTQdSDtF8cz7dgW5MWhP+qJ9p+dPINmRTYClgYu5EJFHCG/EO5MJpLUwvnH5DPK/EUkKJpSStCy1521iwaC0YNKNzCp2oI8eYkzF3S6O3IVU7SVwb6f4SHFXsaj3AZ2d/lmJrMaFYCJ2kFlHcKM9b61yLQWOgwlaBXqPHE/YQjAdZV72OTl8ndr2dJncTiqLw20u/5Wr/1ZTABnCy8yS/vfTb1Phvp78Th92Boih4Ih46/B1snriZXzZu54/v+gS4vRAKjcnzKu2VRKKjt0+D+h2499pe5pfOZ3XVal5ueJlwPJwqqJEVGVfYxYu1L/LQzIfYYNhAl78Lm8FGX7CPVxpeYeOEjZi1ZjSShjxjHk+ff5omTxNX+66mPuuDz+tbGVa9lSp7FWVZZXT7u0d8xpPn1zXXNbIN2SwpWwKo36uKouCsclLvqh/C80AV3505TgrMBXzl4FeIy6o8fKseu1tCZPuwwaq30m/u5/JSJxUr5yPG4shaDc3xPnRSlGBs6IV1slVrg3MDdf11nOs6x7KKZUzKnaR+OSATlmQyXfYIBgOHmg9RYVO/OEVBREDgW0e/xVrH2pSNM/ll/l6HOb7TUCKZqiFIuVuyFD1fPfhVTnaeBGD97+7hiSX/yKold2KURSyWHF7tOc5Lx7+JJEnU9tdyqusU99fcz/nu8wRjQRrdjSgoOOyO1HjB/dPv50zXGQLRABpRg16jiqT1rnq+fezb/MvafyEvoR/RHCk5nWjv3II+O7Mw9X6BZLVivPNOQjt2jBB5jJs2ETp4ENPWrWNu50ZG3uRQiITfR5Y3yNa8JWijAz/yY7VGBp8bajcfXEZRYa8YlWwNh2Sxjkp6pGonkmVs4iiYzcjNzaOLgtf3TTQaM4uQ2dlop00b0saa8HnxmgTECeWEiu7CL0TZ2fYK5499lQvdF6jOqWbftX3ElBgGyUCOKYc7iu5IGw5s1VsJGSIZxcugRsGsMVNjrhriYBuMIaOb6Y6HwZDKFhKMxtTr1c6ciW4U0VU0GlGyszMfw5xsTJ/6FAm9FmVMh6HCOV8d1Q7HCKEw+VpjFy+qjrtBY67Ds+ludWRsLnU6SXR0YP7c5xAkKfWZVBIJAr/5DasKVvLpOz7NwcaD2PQ2vr70H5mfMxP2vjyyJfe6g1A7fTraqVNvrQWG2/hQw6q38tk5n8WsM3Op5xLheBiDxsDU/KlscG7g7176uyH3Hw/Pa3Q30h/qZ2bhTDp8HSRk1TW0t+M1Hh3lO0lwONjd8Spt0b4PHc9LjnvpJT0GycCi8kUYtUYemvEQJq2JHEMOa51rkZD4+qGvc7zjOAoKVp2VEmsJBxoOEI1H+dycz/Gz0z9Ti8vyp9IZ6ORk50k+OvWjWHQWrvRdSfG8fHM+OUY1u6kmvyYjz/vG2m8QiofYfmU7zZ5megI9hONhKm2VfHLWJ2+ZKJdCSyF/ueQv+cqrXxlwgSVUp+Xn7vgcXcGucbnRbnTkzRfxcbn3MrvrdlPvricYCyIIAq81v8Y9U+/hWOsx+kJ92A12jFojxZZi5pfN52rvVSx6S+r9SI6iwo3xvCp7FXdOvnNIYQGoAttdk8cXil9pr+RM15m0Yp1RY8SZ7UyJjZlESNNd20ZcLwiOKrpXzsLiOsPx+u2cPnUaWZG5e8rd1PXX3TDPm1U4i1ZvK784+wtq+9Uyj2Te5H0191Fhq6DJ3YReo0cSJWYUzCAYCxKJR/DH/HT7u2lwN7CgdAGVtkq6A920+drIM+VRmlWKUWtkQckC1levR6u3IhtM4+J5Vr2VhDWAMMqkkeR0Ihv1fHX1V8kyZCEJEo5sB6+3vM6lnktU51SjoCCJEr6Yj9dbXsegMSAIQsq9ZdQayTflczx6nFxjLr+7/Dv2N+ynyl7FqqpVvNn+5pDz+lZ0ZQ1HMp8tEo9g1BiHjEZX2iq51n+NCdkTyDXm0uhuZL1zPXpJjz/mZ41jDX3BPg42HsSgMbC4bDFGrZEiSxFmrZlfnf9VSmADbtljd1tke58i+eFtcjfhl4JYtBam2mdj1Vv50vIv8ZVXv5KqmRYQWFi6kD+Y9wf86MSP0IgaRER6Aj0pQvBS5+s8MMoIquh08Num3Rg0htSKallWGa6wizpXHcvKl6Xu+2EpRBgzq+q6u0XWa+kOdFNiKUEQ1NXQf3j9awRiAUqsJXxx+Rep7a/FoDWQpc+iZlINTZ4mXm99XQ0rVWBR6SJ21e3i1cZXea3lNeJynI0TNhKNRzFoDCNsuPWuekI+F8H9b4y86KyvR35hJ+4tKynMuzWyPaScHIzbtqGEQmoQv16P4vOpAtv69Tf1wln2eFJEQ0Jt9DQ98ggp2TrNKLWYmwt6PaHdu4eE67+dMgo1v2rbmM2OY21DW12NmJMzZtFDJhFStNnwVBYghEJIUUjo4PmeI3Rf9rL96nbOdZ1DFERC8RCP3fEYTZ4m3BE3M4tmcqrjFAklQU+gh1Mdp/jT+X86ZNtJp6UUCaPbupXQzp0jxEtpy0Z2dh5QFw/GKW6ng2Ayjfp65VCIRG+vOhal0yGLAvGgH0GvRzCbMW7bpgq96d4Lmw3yQAskensz7l7CauYrB/6Gb6/+OnaBIYRuuFA7fMw1mU3HB0BkG625VHA60G3aiCRKaT8LlkceIRDwcKrzFF3+Lv5z6dcoPnQe/aIAwTEKST7MuVK3cWuiyl7F4/MfT3th/FZ4nk7SYdVZ2VO3h0m5k1jjXEOjq5GYRiS4bjHG/UNd9oKjitalk/n73Z/mM7M/k/r7h4Xn2fV2AMxaMx+f8XFeaXiFl+pfQhAEJEHi7il348x24rA76Ax0UmwpRhREIokIvoiPYDzIma4zauZT0SyCsSDZhmwWli6kydPEm21vMjF3IhOyJ/DlVV/md5d/x5GWI9S76vGEPSwoXZCR513ovsD5nvNc7LnIsdZjKX5+rO0Yl3ov8bU1X2NW0az34tDdMOaVzuOb67/J8c7juENu9fOq0dEV7GLrxK03/XPW6G7kcPNhGlwNasGIoo49aiUtkUSE5y89z7KKZaxxrMFmsLG8fDnltnJ2X9tNrnlgkXo8ZQqjwaq3sqR8CYqi4I14U0J6lj6LJeVLxrVNq97K0oqlCIKQtl30/mn3p7aTSYQUbTaCm1chhBYiReMkdBqeb95Nd+OOETzPrDHfEM9LOi2jiShX+q4QiAWYXTgbSVTrjbsCXbxY+yKxRAxfxIc/5udU5yncYTd6SY/NYFPdTTnOVAFDm68Np92JXqMnLsfRiBoqbBVMyp2Uer3peK0v4qPZ3Yw34qU/3E9MjmHXq+OG2XfdReSFHUONCdd53gSbjQml6rE733WeEx0nmFU4i55gD7X9tRRZilJiUIG5AE/Yw8ScibR4WwjFQ5Rkl9AV6CLPlMec4jn859H/JCbHuNSrLqDMK5lHbX8t9a76VDbdrY7B+WyheIgrvVfUY2EpYWXlSp468xSFlkL21e9DRuZI6xHKsspYUbkCvajnVOcpmtxNhOIheoO9TM6djE7SUe+qZ0reFJo8TUNcnLfisbstsr2PMdoX5oqqFfzQ+kPOdZ/DE/FQbClGEATOd5+nwFxAb7CXNl8bU/Om8skpH2Nd4RJ0CdBNKiO2ew/yoAs/wenAt2YRv9n3R0zImYAv6iPflI9O0tHsaQbUuuvB+DAUIggWC6LTMeRYJZEcGxScDhqjXYTiIYKxINGEOgCYb8onloghCRJN7iaeOPQEJo2Jj0z9CL+78jtsehuekId6Vz1Ou5MHpj3Aeud65hTPwR9VxwFkReaZ889g1al5FsPzKrIV/agtmEpDA3JgLl2Grlvmy0iy25H1+tSqlJibi2nr1psrsIVCI1byABKNjUOdTINGqaVqJ6Z771NFg7vvHtUN9lbGdt/qmOvwbaDTYbzzTohGUaJRdTtW6w1tx2i189Nrz9Mf6seitfDDEz/kc3M/x+nO0yiKQpY+i0giQk+whwpbBW2+Nv56zueZnTUJbVwhphF5re8kWknLG61vYNabqRRy4cV9A8fbZMJ0//0IGzaQCAdRdDrO+a5xz1NzuW/afZRYS4hpRTKmmBjTj00MdhQOx2BhNXX/pOD1y6cRy8tg6+ZxvRdjObR2dx6mwFLALxt/x8qFi5iydhk2XRZCPK4KfHo95kcfVQXlaBQ0GgSLJTU2eqtkIw0eX8rSZWHRWWh0NVKkzaZEsqGLg2Q0Ybz7bohEkMMh4hqRfjGCSaMh9MKOtLl2oZ07Md51J43uRv5o+qcpPnReXRiaNz/zDiWP723cxi2GG+F5oihyvut8ahSn1ddKlb2K/lA/oiASl+OYdWaWVy7n4Un3syB7OvGiAEExwWVPPZ1TFZYt/yhiNEZcK/Km+wL/sPvTBGPBDyXPqymowZntRFEU9tTt4UrfFRQUtKKWbZO2UWmrpCfQQ6G5kGAsSCCqDqrHZHXcUxIksvRZNLubeeLQE2hFLfdPu5/fX/39AM9zD/C8jdUbmVcyb9w8ryfYQ7OneYjAlsS57nO8WPciRZaiW4bnTc6fTElWyVsa+bwR+CI+tl/ZjlbU0h/uRytqafO2UWWvotHdiE7SEUlEeL31dRrcDdw58U7mlc7DqrfyqOXRUffvrYztJvPe3s5rTm5jRsEM2v3txBNxii3FTMydeEPbuVGeV9dfx4KSBcQL4sTlOFpJS44xB1EUOd52HIPWQF+wj4s9FwHINeXySuMrTMmdQkJJcKrzFL3BXiRB4nj7cfLMeVRkVWDVWVO5keF4GMJg0pro8neRb8onz5SHKIiEE2HiirqwKgoi1dnVGR2PyUIFAYHnLj5HvbtePbeyHeSb8vmzRX/G9PvuG5PnJU0uAGsca1INz7V9tWys3sjlnssU5BZQYi0h15SLTtSxxrGGjkAHDrsDnaTjb5f9LVd7rxKMqxljE3ImUNuvxq+kcwK+H5GO513rv4Yn6kEraskx5GAz2PjYtI/RE+hRMxflBBa9Ouobiodo87ZRbC1GURT1PY2FOdh0kI9O/SiN7kbicpzeYC9GjREBgUgiQpOniSXlSzjRcYIiS9GQxYdb5dglcVtku0VRnVtNdW41pztP88MTP+RQ0yFyjDmc6z5Hla2KafnT+Mq8v8K8/wjKkZcxbduGEEugWb4CYcNGZEmkP9THm64LNLftJ9ekNnsk5+MH2zRNGtOIH/9MIaUfBBgsNhJbNqLs2pPejXLiTRoXVfN6z6nU6mVPsEfNmxAEiq3FdPo7ERAQBZEl5Ut4s021C+eZ8piaPxWDxkBMjvGTUz/Bke2g0d2IO+zmmusaqypXUWmrpM3XNqTuPLUfY7QFKeHIW1b836v8j5vVcjgalEAgrTCZGhEVhCG3i04H+jvvHNMNllbEGWfxQnKbSZFO7u1F0elQBAFBFMcn1t2E4zZ4RUpAoMJeQSAaQBIkJEkikoigETWc7TrLOuc6/s/UT1Fx5ApKw0DOz31OBxFHFYddZ9H0Jyg/HRg6nhQMEnzqKQRHFc9PivAfp76LJEqYtCa6A90cbj7M+pIVOB2V0NA08nU6HYQthhGWf6namdb9J4dCKD4fst+PYd06SCRQQiESLS1Ejh4d4iKL7XwR7rkbQ17eqMco7PegBAIYNm4kvGf3kFFf0elA3rSGuVqZCSXT8Mf82PQ27JJ91FFo/1NPQTCI5HSmxkaFMfLc3g9odDeyu243ZVll+CN+QrEQCSXBlqIVWF46qopl1++bPA+0eXlogVLUwoJR21cbGlIlGUtyZqE0/F69IU3hyBBoNLfEsbuN27gRJHleo7uRn5/+Oc9ffp4sfRbnus9RaaukOrua+2ru49fnf01dfx1ltjJEQeSr8/+GgldPk6j/HzSAAchzOulaPpvHXvvr1FiPXtKn4kc+jDyv0FLIH879Q7Zf2Z66ANaKWj4969PUuer41uvfwqQ1MSl3ksrzjNm4w24EhBTP6wp0gaA6DVdWrrypPE8v6ekJ9KQtxwDoDnS/ZZ73XuX53qyWw0xocjfRH+rHprelDAPdgW4Wl6mtmK3eViRBQlEUJudM5uGZD4/pBmt0N6bNPBvPWHVym76IjxZPC15PDxrFiyYqq/EW4zj2Vr2VGYXpW0zHixvheSurVlKdXU29uz6V0z0xZyJrHWtxh9yc6TxDk6eJ15pfQ6/RY9AYWFW1imJLMWadmdr+WootxRSaC5FECX/ET3egm0NNh/jCki8wMXeiWmYgCITj4ZSolW/KpyavhlmFs1Lj6+lce0kkr1e6Al0pJ9mFrgvkmHJo8bbgi/pocDUgyzL/efQ/1XHDvNHPl+T2puZNZWftThRFYUbBDFwhFzaDjZUVK/n07E/jjXhTomlCSfAvr/0Lrza9SigWwm6wU2gp5N6p9/KNQ98gGA+ywbmBBSULONl5MuWgfT8j+XkPRAPMKpxFm7eN+v56TDpVDH324rMUWYq4t+ZeFBTunHTnkPNm37V9+CI+eoIjS7CcBifhmLoomhw1dWQ7UoUyoC5kxOU4kXgEjW6A/90Kx24wbotstzC6/F18+9i36fJ34Yv6MGgMWHQW6t31TLZUYd7/OkpXN5ZHHyW0e/eIC728O7dS19qCJEqE4+EhJCvPlMe/LflHppiqECIxMOjplr083bCdQCwwZkjpBwEnvVfRLqqkeOlM7BgxGK1E5BgtoV72lPXwvX3/ysMzH2Zm4Uzq+uootZaSkBOIoogkSEzMnUibrw2z1kyeOY899aog0e5vx5ntJBgLcrT1KJd7L7Npwia2X9lOpa2SpRVLafY2I4kSucbcIYInqAGQY7UFxbXiW1L83w6ReL9jVKfL9RFRHn2Q3sVT0cdBZ7Kiz7KjtWdn3GbKHdfSgn75cqSyslSuWezatXHlRCXcbnXULRYDnQ4lkSDR1YVoNhPZv18Ncn0XQt2TwcLN7mYq7ZV0+DowaAx4ImoLVzKseLKlioojV0eMniv1DRj2QcWyCVRZC1Eafpn2eZSGRhYt2phqrsox5DCzYCZ76vZw0nUB3dLplCGMGGuKbVxFwqhF2bwac3wNYjSGxmhGsox07WVyr8U7O1Oiln7RIvX+9Q0ofj9Y0h/ncH8PsZ0vItc3ENVq1XHipcsQJAnBZEqR5CygnHIAEj4foeefT+/Y2r0b86c/rTrcEgnCx45h2LgRxigMeK/hi/hUgc1axn8c+Q8aPY30Bfv4x4V/g+XC6yObX69dI/jCC6msPBg771KJRJiQMwGjLA1sp7VVzXJLI5JLDgey349UXv72X+Bt3Mb7DL6Ij2cvPMuJzhO4wi40ogaLzkKDu4GjrUcpsZYwIWcCj85+lEZ3I9sqN5B34PSI7x25vp4CReHRmo/z/fM/BUAraTFpTZRlldEf6qfN10a+OR+LTuV3HwaeF46GKbYUs6ZqDTE5xsyCmZztPsu1/mtYdBbMWjPhWDjF8wrNhciKrAoTgsTEnIl0eDsw624+z6u0V2ZsltRJurfE897OwuCtgOR1jEFjwBvx0hfsY1HZIo62HqXKXsWyimUoKFTZqrh36r1MypuUcXtJZ5wn7KHIXISCQjgeRitqOdx8mFxj7pgL0XV9dZzuPM2K3DkY971GtL4hVX71bh778fK8RncjeaY87p58N7OLZqMVtXQFuvjOG9/BN9tHvjmfsqwyPjHjEwRiAewGO2atma5AF6VZparQGR50HTGI53kjXjZWb0Qv6ql31yMJEnqNniJLEQ9Mf4C5xXOZlDdpTNdeo7uRZ84/w4XuC7T72onLcQrNhdgMNhpcDWyo3sDea3vxRX0oKGOOGza6GznScoTfXf4dLZ4WpuRNodBSSKG5kPtq7mNm4cwR+9Dl7+LvXvo76vrrUBQFo9aIL+pDDIgcajrEf9/93/QGe1EUhV9f/DWrKldRU1Bz89/Ym4jk5z0QDTCjYAb/dfy/ONh0MCV8zSyYyR/M+wN+ePyHPHfxOe6Zes+IeIHuQDerqlYBcM01MPlRnV3NqspVCILAhJwJhONh3CG1dTaZe5dnykMrqjMtyTZiUL8T3+/Hbjhui2y3MC52X6TeVY9e0qtFBYLAzMKZ1LvqWZwzC6VhB6aPf3yEwAbXL/R27OQzm+/nn0/+X5aWL6XZ00xXsIt8Yz7/d9GXSby4l3DD/tRj7A4Hn9/yKD9v+v24QkpvdfSGeznZcZIn33gSRVH4zB2f4QcnfkA4HkYjajBqjBxrO8YnZnyCn5z6CR3+DvxRPwICa6rWsHHCRr597NsEYoHUKGkSoiBS76rHG/ESTURJKAnC8TAXey8SioeYmDuRafnTcIVceKNeIgn1wjTZsKKx2ka96BQcVRzpP0NhzvjCWZNIfrEOrwH/oOSzZHS6xGJEEhGeatnOtPxprMpZhW0cq8NKIECipUV1wh07NqR5UnI40FRVjeoyk0MhlFBIzaYaLgYtXw6CgKa4eIRI8U7CqrcyrXCaun+yzJLyJZzuPI1W1BKOh4kmomwtXY1ycHf611TfQO7Smfh8vdgzPI8uPrBqbzfYOdVxigWlCwjGgnx01yf56zmfZ/WSO9HFFUSDkbpwO3n4qbFUwCjXfamVeVkmvGfPqCH5mrIyIseODRQ9XMdo4k/Y70kJbID6WTl6FD0gVVWpOWqADEPfo2Awo2OLaBT/j36kOtu2bgVZft+XHjS5myjPKuc7b3yHOlcdRo0RWZG5q2wtyqH0n4nEtWtD8tLGyrsU9HpmFs6EQfeLHD2K6b771OzB4efKihVI2dm3Sw9u4wOJJncT9a56wrHwCJ7XHeimJr8GnaTjpfqXEEWRiZPLUBqOp92W0tDAypX38xvTdgySGtydb8qnOrua31z8DTE5pmaKlS2kJr/mQ8Hz+iP9dAW6eKP9DRRFYXbRbI61HUvxvFAsxNG2o2l53uqq1ayvXs933/jukMiQJN4uz6vOrqbSVsmxtmMj9rs8qxxvxHvDzo5RYzPSLIjcqkiKwwICvrCPJeVLONJyJDU2qBW1lGSVcPeku5laMHXM7TW5m/CEPZRYS3ip/qURJQYTciawsCx9KZMcChH1urD5QqyzzcHQ1k+kZWhL/bt97MfD88qz1Hy6elc9JzpOoBE1mLQmck25dAW6WFaxjP86/l+caD9BTI6hFbU8OutRtkzcwqGmQ0MENhjK86KJKNsvb2dB6QKWVixFQaE8q1ydnMmqVIUtS2Fa114ycy2SiPD0+afZX7+fFm8L4XiYuBwn15jL0vKllFpLea35NWYVzeJ4+/GUiD2aKO2L+DjcfJjfXvotF3suMq1gGmatGYvWgoAax2TUGEeIfanrcI0enaRDQMCmt9Hma+OF2hdYVL6I3XW7WVS6iE/O/CR5pjxM2vf3Ymry876kfAnfOvItrrmuIStyKi/vVOcpEGDb5G08c+GZVHHF4HgBu97Oyw0vM6NgBisqVxBNRNFJOvqCfbzc+DIfm/YxZhbO5HLPZVq9A+dDf6ifzRM2p0ZEJUFdbE1+J94qo/FJ3BbZbmEkvyy0kpZSaylNnibq+usoshRhlEUABKs144WeOSGx/ep2XCEXn1/4eeJynC/O+TMSL+5NK8yxazePbLsHwy0stowXdr2dYDTIpJxJeKNe+kJ9qVXFuBynNKuUNm8b/3743/nEzE9QnVNNs6cZq87KtPxpfGHvF8g359MV6BoyU66X9OSb8tlXv48CcwGiIKIRNCnFvsHdwKKyRey4uoO/W/Z3TMqdhCfiUcM7C2pSXzLaO7cgv7BzyEie4KiiY/l0Xr3wY748ZdO4X6scCqHxeHk4bx0JnYaroVZe7TqaIo0fhHyWTHlaotNBW8LN5NzJLCpbNO4vciUcVkcOjx0j0do6ws0Wb2hAMBrTOq1idXXELl4cvTFx2jQ0EycSOXDgXQt17/J3cbH7In2hPhJKgj9b+Gc8+caTHGo+RLYhm/5QP1mMIZJEosS0Usb7RDVqU57D7mBh2UKevfgsn7njM6na9n869g3+nzGHf1jwV6wwzWeapgRdwkJz11VyjLkYo8qQMRei0dSFg+nBB0fNK0yG5EcOHUq52FL7PYr4o/j9Q7MZtdr0ouqw1egxM8Kui3rJLDL91q20uBvf147RQCxAMBbkSMsRIokIucZcArHAENE0HYYcC6MxY9MsRiPbJm+jub+NicnR4FiM4LPPol+yBMPKlSDLqmiu06U9v27jNj4o8Mf8ROVoWp7nsDuYWzKXWDzGrtpdtHhbSMz6u4zbE6JRcg25VOdUo5N0LCpbxHMXnyMmq6U+rrCLNm8bfzr/T2/pRbXxYjw8r9nTzH8c+Q8enPEgzhwnzZ5mDBoDMwtn8jd7/+Yd5XmfnPVJLvVeGmjlRBXYVlSuUEXWG3B2+CI+NB7v6L+PwxZEblUkM7V6gj2scqziQMMBpuZPJUufhazITMqdxOrK1VTnVo9re/6Yn3xTPi/Vv0R3UBW2s/RZRBNR9JKeN9rfoCa/ZsT5MtgxqLv+t/igVvHBRVrv5rEfD88rtBQyr3geLzW8hCRIqVKVxWWLEQWRM11naPG0YNVbcYXUceZfnP0FT6x9guqcas50nUl91tPxvL5QH6+1vIZRY6TSXkksEcOgMTAxZyLusJtyW/nASOb/z96Zh0lR3/n/VVV9H9M99310D5cDAwjIcKMicgiowWzEaNSsuXfNbjbJbrKbzbEmJpvs/hKzyW421ybGJCaaRETEW0AUlHtgOOe+7767q6/6/dFMM830XAgKWq/n8Xmkj+qq6p7ud72/n8/nfW5sTX+wn22nt2HUGNGKWp488SSRWARf2IcoJK55+4P9vNr8Kp+t+Sy7WnaxpHQJABpRgxyTRzWlh1qMT/SeYLVzNXvb9pKhy+CxY4/RNNhEobWQGypuYE7BnJTOnqHrcI2oId+STzASpNndjDfsRUDAKBnp8nXx//b+P4ozillTuYb6wforujtoKLivcbCRl5teTuo8s9aMRtQQi8c43HWYv5r5V8D5ue3DxwtU51czI2cGB7sOjth+dV41U7Kn4Mx2Eo6GaXQ1JkcYFJgLmF80H5PWxILiBYlUW0NWynfi1YRqsl3FDH1ZGDQGTvpO4pE9AAwEBlB0577Sx0vrC8s8s/Y36KIKelMGW9teIE/MQB7DmDPKsbT3vdeoyqvid8d+x8bpGznUeYh4PJ68L8+Ux7Tsaew4swOtpOWJuie4fcbt7G3fSyQWQY7KODIdHO85ToY+EQm9oHABze5mMvQZybLbuBKn1FaKW3ajl/TJlcxoPIpBY8Cqt5JvzudG540j9k+fmY1r/Uri/vkoIZmoVuT1gSPsPP4zPrHgExP+QkqXuFntcFB6w21s70qUCHtkD6f7T6MIiRL7q1F8j5Z4KFU6UdbehD4+yKaiTZM6NsFgQCopSVbaxL3eEY9RgsERSZeBrVvR19SMawYlt/EODHU/1HmI3oE2rjGVc402k4hWZL+rjs/WfJYt1VuSszuMFvuY2wlrBF7ofI27RpmtJjgdnA61sWXWFto8bTxR9wRaUUuBuQCdpKPMVoY/4uePa39J4e7jKI2PAxDXaincsgX5+e34Lmhz0S9bRqy1NXHDGAmkAIJOlwhgsFpRPB7QahFLSxAs6UvkLqxwS5qqFy5CXLAaPe6MsGGmXqyxETESYevZK7ti1KQ10eZpS35PDQlbeRwlMfxcSDYbxg0b0s+q27AByWajAhvZxmzE9VNQtj+f+DuJRJB37iTa1vaeaWtSURkPi9aCTtSl1XkLixYiIuKP+im1lZJlzCJybgFjNAJCjFebXkWn0fH0qaepKanhmtxrqCmpSVYbeGQPvf6Rs3Tei0xE5z175lkUFP5Q9wc2V23mtebXkEQJnaijIrPisuq8WfmzeOjGh3j27LP0+HuS70+Pv4fPLPzMhHXe0CiQu3NuYqwlsKDPRWO886rVeZA6e6zD25GslgKYnT87bdvfWFi0FiLxCI2uRm6ouAGL1oJWoyUYCWLWmYnH4pzsPcl1JecDekatGLwgVXw474TOO9BxgJ8c+AlnB84iCVKy+utvFv5Nis6z6W3UD9Rzc+XNybmNsXiMwdAgJq0Jd8idTP3MNefiCrmIxCM8X/88G6ZtIN+cT1+wDwFhVJ3XF+ijwFKASWPiWM8x5hXO43PPfY5bZ9xKh7cDo9ZIgaUASLwHRRlF6EQdrza+yvWO62n3tGM32AnHwkktopcSaaSZhkw2TtuII9PB8rLleGXvmO2GvogPj+xhTv4cXmp6iQJzAbtbdtPoakRAwB1yc7z3OHnmvJTOnuGmnUlrwh/2JytdbXobceI0DCZaYrt8XbhD7iu+O8ikNfFSw0vJ5OKhc6ugJN/zuBInGEkYY0OjpoaPFyizl/Hl5V/mW7u/lbJAUJ1XzZdXfJkye6LT6hMLPsHi0sUc7U6MjxEQaHW3YjPYuHX6rVd9NbVqsl3FDCUj9fh7sOqs/P3cT7OmcDlWdBgMGYhOR8qFXDqUWJy83z6b/PeHHBVIxZExngHxUJCA7L0ivxwuJfmWfD698NP8+M0fc33F9QQjQW6Zegu9/l50Gh29/l5iSgwhLpBnzqPB1ZBMZP39sd/z76v/nR+99SO2n93O48cf546qO5LzN1rdrQiCQLmtnGsLr+XRI49i1pmxiTbiSpxCayELixfiD/vxRkYaN8l9zCmn25BYlXLJLoqyHXx32i0YwxBtaxt3oO1oQkBpbMQugO0aA9946wcEo0Fm5s7EprexYfoGlpQuuWJXYdKRbCWUZYzr1yfSCIeSOM+dnyoKJ7/hcwPZ9UuXglZL5PjxREXbokVIJSWIVitKOEzM6022AiYDGObPH3vb0WgigZJxWl0vASd7T2KVBSoPDKA0JlaejMAqRwX91+eRnZNNu6edPa17OGIqZa6jYsT8LQAc5WxtfZGv7X2YRXc8g/OC2Wo4KuhaPot/3n4fXf4uFEXBbrCToc9gTsEcApEAX1r2JeZmXkPxq7UpJsyQKE1nbsnx+HnROs6QfCUcJvDHPwIJY8d01xZiGRYMo8xju7DCTSopGSGOh+9LcjXaZBqzYku5wJBVZPmKrxiNxCLopfPnIxKPYNQYebrtJT42iqmaLvlVyspKJI8GgyiynDjHRiPSMOPMqreC3kp8AmlgKirvVcrt5TgznXT4OhKLHOdS2JaWLaXb381van9DSUYJu1t2k2vK5aDnJOtGW+BwVPBsx6u4ZBfhWJhuf3eifbG3DoPGwA0VN2DSmrAb7PSH+un2XT0J5RfLRHReXIknKlXM+dQP1NPubQfg/w7/3zui8+YUzKHAUpDUeXa9ncqsSryyl71te8cNqBo+U2w8LTEQ9/Hwrn+/KnXe8NAuq86aTD18u0mmBo2BgeAAzkwnpRml/Pzwzznec5xFJYuS5nZRRhFl9rLk38toQVswchF1iMut8070nOArL3+Fve17kyF3Q9V9vzz0S76w9At0ejvZ07qHImsRA8EBzg4mkjUNGgOiIFJgLiDXlMuZ/jN0+7sxaUzYjXasOiuDoUFEQeRo91GaXE00DDTgCXtG1XlaSUtfsI+z/WfRaXQ8X/88cwrmsP3MdgZDg1RmVmLRWRKzxgcbONh5kE0zNmE1WInFY4nrL0FAILGwICKSoc/AF/bhCXv4Y90fOd1/Gqveyvop61nlXDXq95lFa0EraTHrzdQP1DO/cD47m3cCCXMppsQIRAK4Q270Gn1Spw1dhzcMJt7rmBJDFEQURWFe4bykwTa0n0MG+5Ws9SKxCIOhweRsziGdF4vHEsdy7nwbtUacdmeiVVajG2GILS5dzI/W/4ja7loG5UEy9ZlU51cnDTZI6LylZUuZnT/7sqcOvxuoJttVTL4lnwdrHuSn+3/Kwwv/mfLXT6O8sj1xp1aLYcsWlEh4zAu9Ebc3NiGsvnnM143rtPxg3w+4e/bdV9UP8MUwt2Au/3bjv7G/fT+P1T7GivIV7GnZQ4unBbvejkbUUGGvYEX5Cp6oeyL5PF/Eh6AIPHTjQ2ycvpH+QD8WnYUlpUs41HGIa3KuYe2UtchRmXZvOwatIblCXW4rJxAOsKxsGd3+7nGHDw/NL4BzVWlPbR1R6TNa5cdYQkBpaGR+zVr6g/1U5VYhCiKdvk6eO/scBskwoWGvVwKjDfk1rl+fqDIjzTytiWw3GCT47LMYVq5EM3UqoRdfJNbWNm4roRKPY9qyZdTKqSQaDYhiWpPiUuKVvQR9g1TuThNm0NhENsDqhWjtFezv3M9rvW9RceNt2F8m5fGi08HZmgq+9efPE4gGWP7EOh5a8hU2LrkFKRIjy1bAsx2v8rknNlKcUUx1XnVylkeuKZdeXy8n+k9g0BhYnbmAWEPqd9OY5tYw0Rpraxv7O6+tLeV5sihiuPlmYn19aQ0cwWJBqnSeTxMdp1JuaDVasloTFVs7dqApKDjfRmw0ImZk4Hv00dQnnjPzruREv3A8jFFjZF7hPA52HsQdcpNrzuW7+x/hxlv/wBSElM9E8nOf5m9LstlgAtVolzt1WEXlSsaqt3LHzDvo9HVyuv80OknHtYXX0uHrYEnJEg52HqTUVsoD1z5AIBrgyYZnuHb5P1KImJru7CinZcl0jp/ch6IoyYulcCyMQWPgAzM+wK+P/ppjPceAhA6ZXzSfB2seZG7B3Hfn4N8hrjad1+Rq4i+n/jLhgKqhVrgCcwF7+g6xYpRFMsFRwd6Bo/QGetl+ejs6UYdRY7wqjNZ0oV0WrYXl5csTpsDYBZ6j4pW97KjfwZSsKTjsDn6w7wcc6znG5qrN7Gvbx2stryEKYqJKsPpuPjrvo1TYK4gHg2Nv+AId8U7ovJebXk4x2OJKnP5AP9F4FF/YR6+/l4pzOs8VcrG5ajNP1j3J6YHTGDVGOrwdzM2fy7qp6/jUtk8hCVKiVTBEsuIsrsTJN+Xzh2N/YFr2tEQr6Cg6r8xWxsuNL/NWx1vJ/cw15fJiQ2IWeCQeodffi0VnIRwP0+HrIBAOkKHPQCfpcNgdDIYG0Wv0BKNBMvQZhKIhHJkOMnQZiXAFSY9G0jAYGiQSi3Cs51haQ7rcXo5eTMxVG3rt5HsjSGhEDZIgEY4nFr6HdNrQdfiP3vwRWknLnPw5XFtwLUXWIlaUreDjT388abBpJS1GzXktc6VqvXA8zPSc6cTiMa4tuJbDXYfJNecyEBxItIsqMapzq1EUJZkuumla+i6gMntZiqk2Gu9E6vC7gWqyXeXMLZjLV2q+iHnHTuLDfzQjEQK/+x36W9anb81xOjGuWUO8vz8xw6itDXnvXohEUDyeMS9SG+RO9rTswSAZ+MSCT1wVRsvbId+Sz4qKFdS76nGH3KydshYFhbgSZ17RPBoHG3m16dWUL+XqvGpm5s8k05jJ2YGz/PrIrznYeb43fWHxQr645Isc6DxAkzsxhymuxCmwFLDWuRZPJNEOYDPYxiyXHZqt4JJdzM+cSdYL+yY10Ha88nRtNI4z04lX9nKo8xCCIHCo6xBF1iKyTdmsrFg5mVP5jjPWkN/gtm2JIfi7d19UupPi9xM7fRpl/nwEiyVh9CxfPmYroXHDhuRQfv3y5WMnJnq94PePalJcKppdzZRostNXppEw0jLiyzBptfztlLsR5DAxtLhX1aCNLoRwmJAYxyXK/MPOL+OP+NFLemLxGP+4+1/5b/svKLeX8/c1f49fjDEzbyZvtL1BMBokpsSYVzCPv5r5V+g0OkRBRK/RI4XTGFnjmFtD98t792K+915CL700oh1RX1OTmIUyjFh9PYrLhf93v0v7OTBYbMTWrCX47LOJ7Y1TKZfSGpmVhXHdOoLbto0IxTCtW5ecyyI5HASkRBv+lZzoZ9Fa6PB18DcL/4Yfv/VjDncdxhVykaHP4N8OfZ//uOmb5Ak3oosqSEaTWnWmonIJqLBXcPfsuzFoDHhlL4tKF/HzAz9HFEQaXQn9MTN3Jq2eVjKNmbzU+yaGKQI3Lt2EMS7iUUJs79jJvz35ebKMWVxXfB2dvk6mZE1BJ+lYWro0xWAzaAyYdWYaBht4ZN8jPLzq4avCaHk7XC06z2awcaz7GG+0vUE0HsVmsJFryh2zBW3oYj4Sj/DvB36Ac+X3KEZJrXZ0lNOzYg5fefpDdPu7AbAZbOzv3M8nF3zyil5QHx7aJQkSuaZcgtEgnb5OXmx4kcqsSs70n8FmsE16Flazq5m+QB95pjyi8SjHeo6xtHQpb7W/RZOrCQBBEOgL9HFm4AxbT21l/ZT1ZArjXGAP0xFjLUZdKppdzXT7ujFoDOgkHVnGLPSSnnAsTDQeJUOfQZM7MXssHo/T5mujx9/DxukbicVjuEIuQrEQVq2VpsEmZuXPora7lrgSJxKLIAkSWkmLBg01JTXsa983rs4LRUMIQqr7OfzvKxaPJecj6sSE+RWNR8kz5+ENe/n4vI/T7G6mxd3CruZd2I12tKKWtVPW8lLjS+xs3olBYyBDn0Ftdy0zcmbQMNiQ9nNg1VuZUzAHjaTBprcl0y0lQSJDn4FZZ0ZBSe7HcJ02t2Aun635LL8+8msaXA0EI0Fa3a00DDSwbto6tp7cSkyJpRjlF27jSsKitSSqmQP9fGbhZ/if/f/D0e6j2A12JEHi2sJr+fR1n8amtWHRWyizl73nfYCLRTXZ3gNkYyTQMNIQIxJB/stTtH14A6ZVi8iTbgZZRjAYiLa14fvZz5KDN6VhwzgDW7di+ehHE6mHF1ykiutu5ssvfYpgNEjDYMMVW+46FvX99dT21DIQHCDLlEV1bvW4A1CHz3jo8ncBiS/f6dnT6Qv00d3VnXzshT3n1xVfxz8s+gf6g/14w16sOivZxmyq86tZWbGSM/1naHY30+ZtIyAHaHI3oZE0ZBmzuHX6raN+eR3uOswj+x6hydVEsbWYtYuvIzzJgbbjladnZuTz2PX/hTYSR9bAsx07+c7+79Mb6OXRI48mI66vJJKtoaEQglaLprg4Ma8rktoGnVL9dBHpTkmDUhDO/x2N00oYHxxMmmrjJSaKGRnvyFB3X8RHcXgMc1GrJUNnJbh9R7IyQgL0TgcDK6/lB2f/jwxDBqf6T3HP7HsIx8Ps79iPgEBciTMlawr3zL6Hdm87BzoOsGXWFu6efTf+sB+DNiH4TvSeoNBamPysK3rdyP0Yx9xK3h+JoAQCaEpKEu+vJCGazUTq6kYMG05yzqAb9XMgCMntCSbT6OboBavR8WAwscAxxlyWaFsbxg238MNTj5JlzLqiZ1AMlfA3DjbyqQWJ3wFfODGYOMuQRW52KRZVbKmoXHI0oobGwUY6fB1MzZpKTInxQv0LdHo7iROnrq+OYmsxZq2Zw12HkUSJba0v0O3tpsHVQJe/C42gIRQLsaxsGdtOb+PBmgfpCfRg0ppSDLaSjJJkRUfDYAN1PXVX3O/8eLwXdV6OKQd/2E+zu5ma4hp6/D3YsROKhci35KMTdbS4WpLJkUNYtBZcIReBSIDeQC83/fk2PjfvM2xZsZlIwEdMp+G1vgP86PmPE4wGMWlNBCNB5JhMU3cTTxx/4opbUB/eGhqMBNGJOvSSnqlZUznRd4JWTysaUUPDYAMtrhYWliykw9sx6VlYQwblYGgweVuRtYhXm18FEvOqJEFCURTCsTCd3k52t+5muqmCaqcjNTTpHKLTQTDDCB/ZgsGcgdZqe0d0nkFrIBgJkmfOo8nVxGBoEI2gSVSCRYLkmnJ5aNdD3Oi4kbMDZzk7cJbT/acps5WhlRKVaAe7DmLSmnhg3gP87ODPONJ1JGG0xSNMyZzCAwse4IWzL0xI59mN9hFG05C5BSCJEgZN4hrFZrBh1prJMeXw5pk32d+5n8qsSto97WQZsvjmqm/S5e3CoDFg1Bnp8fXwgWs+QLOrmcNdh7Eb7JzqP0WRpYguf1faz0GuKRer3sqGaRuw6q0sK11Gq6cVOSYnDG29DZvBNkKnDVUJmnQmZuXNotXdypmBMwyEBrDoLNSU1FA/WM/y8uXYDAmtfSVrvaHgkKGW1uFaL9OQybLSZRMODXm/o5ps7wEEOTzm/VI4TMljMwD4w8ZHWXMsRjxNcujwYZyhmEz8ltUYI+fMBL2OBrmTL7/0qeSPTTgevmLLXUdjV9Muvr7z6xzoPJC8bX7hfL668qusqFgx5nMr7BXcP/f+EX3jayrXjNlzXmGvINuYPWq/+byiecwrmpciGsbrSe/x9TAw2MGPF38TTYxzxoGEsHx5siLxQqIBPxI5KbdFDFrEUYSA5HSi6R4gZ9szydvudZRzw61/ZDDqx6kvwNTrIeiPIZjNo860eidJ2xo6SpoTkFIdNdl0p6RBGYnA0P+PV201vIXgwsRERQG9DrQ6RJNpQqIr5vUmwk2Gz5izWicl2HSijrhOgzjK/fpFi5B3PJfaekSinTgLuHPRbdzw+DrC8TBvtb3Fxxd8nC2ztuAOubHqrSwoXIAkSli0FhaVLOLx449zpv8MUSUx9NmiTYiQoRjvLGMWGot1RBLsmG2glZUIViumD34QNBoEozHxdwCYNm8mHgiMan4CKQZeus+BYDYT7ehIbGMoXVRRUhch0qxGjzeXxXjzzYSrp/PDU48iiuKYF1tXAsMvQs8MnEneLgoiq52rr+h9V1G5mglEAqxyruKlhpfIMGRQklHC7479jnxLPq6Qi2A0SKsnEf5SklHCdcXX8Vz9c/T6exMJe90kjKMoKILCjJwZLC9bzozcGTx39jmKrcVoRA1mnTlpsA0xlKB3tfBe0Xndvm5+fvDn5JhyKLeVE4qGUJREdZ075CbTkMkfjv8BQRDIMmaxoGgBM/NmjthOrjkXj+whz5xHXInT7e/mi7u/wqHBumRrXp45j25/N56QB51GR5Yhi3xzPoPBQd5oe4Nrcq9hQdGCK8JsvbA1tM3ThhyR+dCsD/HTAz/lWO8x5JiMKIgUW4uZmTuTVxtfZWnZUrr8XZMqDhgygQKRRJuiVW8F4bwZJAgCCgqiIGLWmnGH3LiCLupi9RSuXEi2oowYqyGvXk47AziLnOgn8JvZ4+sh6B0kU9EjhWNoTRY01oxJ67w2TxvzCudxuOsw7pCbsowyMvQZAMzMnUmnrxNJlHir/S1WlK9InkN3KBHY8dVXv0ooFiLHlIM75OZDMz/ElllbCEaDTMueRomlBIvOwpQFUyak81aUrqDb182hrkPJ68reQC/ltnIGQ4OJFlNzLgB6jZ45BXPY07KHXS27CEaC9Ph7KM0oxaKzcLLvJKudq3mi7gl2t+ymxd2CIAhUZlaydspa3mp/i3AsnAzASDcTrcxexivNr7CweCEv1L/AguIFyLFEq3e2MZvZ+bMptBaO0GlD7dhDlNpKuWXqLfT4eogpMWpKamhxt6QYbFey1huu8waCA0mtl2XM4vqK669Yc/BKRDXZ3gOMV40U0yYGtuaYcliSNZd44xPpH3euskeqdGK0ZlLnqWd3624eP/542sfrRN0VW+6ajvr+er6z5zvcVrGW/1nyMLqoQkQjJKqz9nyHYmvxhFY6L/xxtuqt4/acT6TffDI96YZglOXGKuQdL6QkwY5lKPnECOELAisaAu3Yb6zBCilGm+h0oF+2jMDvfpf6wm0dzJBWIr+xm1jD68SB8LnHc8s6DFm5E9r/t0uKUD039Ncc10w6zenC6qjJpDsJZjNSZSVoNETr65GczolXWw1xLjFR3rkTzb1384Mzj7Fp2iZmGcf/HMQGBoi73SPCACbb+qqVtJz2tzPT6UBJZ7Y6KkY1qJSGRgqXzqEyu5KTvSdp9jTz/b3fZ0rWFHLNucwrnMes/FmY4xrCXhey38tnKu/iWH49TzU/h0bUUGorxWl3UpVbhVlrTl50xDduJPD01uQsNHnvXkxbtiALwoj5evplS/H/8pfnKwqdTkybNxPr6kLetw9NScmE57TByM/Bhcm0gSefRL9oEfrlyxEkCcGUvjVyvM9TOBykTuzmJudNV82g19EuQq+GfVdRuVoxa810eDtYUb6CClsF+ZZ8NKKGgcAAFn2ivUdRFHJMOeSYcmh2NROKhhAFkddbX2dW3ixm5s4kGo9ys/Nm9FP1zCuah1VvpTSjNHkxm47hCXpXOvX99Xxj5zc40XciOdRdFERO9J3gGzu/wU+sP7lqdN7R7qPoNXqePfMsze5mjBojkihRaClkbsFcorHELC2NqMEv+WkcbOSF+heYWzA35fu4z9/H0tKlNLmaKLIWcXbgLAByVGZq9lT2d+ynOKMYOSqjoBCOhim3lydbZHVSYqj5kyeefEdn9KXTecCI2Ws6UYfeoOdnh35Go7uRbn830XhiwdMdcpOhz2BK1pSkwTKZ4oChqh6tqKU/0M+CogVoRS0xJTHeQSIxr6sko4Q8Sx6ukAuDxkAkHuHTu/6Re6vuZMmyW9FE4kS1InWBZg6e+d2oM6wu5Gj3UTJkgaxXD6I0NhEFooBU6cS0cdOkdN5gcJDbZtxGu6edImsRbZ42WjwtTMuaRqG1kF8c+gX3zrmXfW37aHY3oxE1vNXxFvs79rO8bHlS5/UF+tjfuR9POGHcziucx2rn6ovSeXfOuhN/2M+209sYDA1ypOsId1QlZlAaNIbk8H0UcGY6+ZeX/oWoknhvRcTkPi4oWsAvDv2CXS27UBSF+YXzuXPK7dxScgOmuIR2gYWjvrOc9p1vkb7wczBUxbbt9DZuct6EIAjMzp+NJErkGHIozihOq3XSfZ5sBlvSVJtfOJ/VztVXlV5Sdd6lQTXZ3gMMXewPr/pI4ijn6baXMGgMLChagC6qjLs908ZNiEYj5WI5R7qPUGQposPXkfIYo8aIM9N5VTnadb11fHPhl3C+UY/y6vlE1Y84ylm++EvU9dZdFSWw8WAQfUsn8vHjI2d/jWIoSU4nxwIt2FyhFIHnCXv4S+PLXF+zmJmrVuDx9BIQY+RY8oj/3+9GGHWjJTzGGxqJPPMs3H7rZa9oG1rF9MpeKrMqCUfD7GnZw13F64hPIs0pnbkymXSnIeMlUl9PtKMDfU0Nca93zGqrC19vOAEpRjg2serQmNdLtLExkWY6yvy3iba+BiIBTvoaKVi5gGyFlIo1weEgOs7A4HgoxLUF1xKPx2lxtyDHZHSSjqrcKj4y+yOYQ3ECW59IGmNG4DpHOTmLP8QtWz+EJErcMuUWvrfs6xjCCkrXADFDAEwmTJvvIOp1EwkGkEwm4nEF/ZqbEZVESqig1xNtbSXw29TPaqyhAVlRMNx0E/Krr54PpIARsyn1CxeOmNOW7nMg2myYNm+eVNLleJ8nncnKohzH2Cf4CuS9OqRWReVKpdxejs1go8vfhVt2J4fwt3vbcYVcSIJEkbWIBUULEBDIMmURjASxGWy4Q24OdR0CYErWFOJKnPlF85MXTBcm5A3HmemkKq/qHT3Wt0NtTy2nB07jD/uTSX4AeknP6YHT1PbUXhU6zyt7afe289zZ5zjZdxK9Ro8oiAQjQbp8Xbza9Cp3zroTSMypCkQC6CQdkXhkRIWON+Klw9tBaUYpn635LEaNMfm5qbBVAIk24UPhQ+hFPbMLZjM9ezovN76cTHDUSbp3dEbfaDqv0FKYmMkle5Pzu2wGGwaNgW2nt5FrzkVASFaW6TV6TvefZmnZUjRCYnj9ZIoDhqp69rTsYV/rPjZfs5na7lpm5s6k2d2MKIjkmfNYWrYUi86CSWNCQCAYDRKMBvmfY7/kf4ZtryqnijxL3oR0Xrevm/aeBioOuUfMzI3VN0xa593kvIlmVzPrp65PhAoEejFoDHhCHp47+xwNrgZeaniJeYXz6PH3kG/Op8vXhSvk4kDHAa53XJ/UeUMtupPReTeU38AXln2BXl8vZwbOYDfYqcqt4otLv8iGaRtodbcmTTWz1kxUiSbeL52F0/2neaXpFUKxxMJBIBLAmemk0dVIOBYmz5yXmMtmsOMOufnpDf+J4416lN3PJc/BIkcFc1ev42dnHyccC6f9HFTYK7h3zr2TMpfG+zxlGbOuSr2k6ry3j2qyvQe4sMpiCMHhoGflbA4f+H9snLaRLFPWuBd9ot2eXBkZitYVBIFtp7YljTajxsjSsqV8cOYHrypXu9xYQMXOupED3hubcQDSyol/mVzMvI9LheL3I1qtaY0cGGkoSQ4HxvXr2Fn3v9xoujHlsRathXAszPMdO2nO7mJX8y78ET/fnfUPaNK0nI41cyze0Iji80Eak2344N6hH9aLEWlDA269spfp2dP5xaFf0O3vRitp2WBdwJg/dUOtnFothjVrkAoLUVwuTHfdBfE46HQoweCoKZPpEG02tNdcg6aiguBzz6EpKsK4di3Bc+EGQ0iVlcmkyXQITgengwkDbkICMBAY+zMwidZXs9aMHJN5rPEpCirt3LB4PdqoQlgjsK3tJTbFBhMJo0OYTJg2bUKwWkGWsZhMfKfmK3z+ja8xv2g+OknHgqIFzC+cT4k+l8ATT4xsmTz3N/dPC/6Ox04/yQ+XPETo6WfwXVCVadywAV1eAZrREmJvvpnQtm3pz8HwcxOJnK8+W7Qo8VnQaBBMJvy//nWKQTdaylfM64VAIGmwodeP+xkZawHkcqeJqaiovHe4sIWnP9DPX838K5pcTcgxGZPGRJ45jyxTFkpcYUr2FKZlT+N0/2nMOjM20Ua5rZxN0zdRlVOVskA6lJD3yL5HUow2Z6aTB2sevCJaBCeKW3bjDrlTDDYAOSbjDrlxy+4Jb+vd1HnNrmbC0TBnB86ioCAgIIkSbjlRmdXqacWsTfx+KCjJai29Rj/CwLFoLcSUGB2+Dqx6K+X2cnLMOVTYK2gebGZJ6RLsejuzcmcRiUVQBIXfHPkNGYYMREHEmelMpqKONaPPK3tpcjXR4esgEotQZCliavbUSV8njKXzRETKbeVsmb2F4z3HkWMyeo0++dy4EkcQBOx6e2KunCwTV+K0edrINGRyh3MDU8Q8om1tE1oog/OtwFOyprCzaSf/Mv9z/Me8L6GEQigGPZ3RQf7YvB29Rs/ayrU83/B8cpbYcIwaY7K6aSI6r66njpnmCpTGp9LeP1md1+HtYErWFE71n+KPR/6Y2IYSwxf2kW/OR0AgEAlQbi9HK2kpsBQwLWsamYZMjFoj7Z52Sq2lzC+aTyweY0npEhYWL5yQznvoze9RmV3Jd1//Lke6jiQ+ZyhU51XzhSVfoKakhnxL/ogqxSxjFvML53O6/zSikBhqIiAgCRI6SUd/oB+zzkw4FkYraRnwDPDNJV9JGGwXXOspjU0YXxRYWbOIA4PH0haJXHit4rA7xv38Dp9hdiFX8uw1lcuParK9R7iwyiKqkzjua+C5lu04shKVEqPNOhpiaK7RcIZ+XKrzqunwdRCNRSm0FF7UD+e7TYU2d9QERRqbKbvpev5U9ydEQUQn6ZiePR05KuOJeJKl6la99W3N+7gUKKHQuLO/BJ0uOZ8q7vUiR+S0KzfDfxwaBhtYWb6S/3rrv3ArIdLaseO8riLLI24bGtybTrxPtu1gaPbBjJwZ/OLQL3DJLlo9rQwEB/AJkTFNtliWHeGBezFrjMTdbhSfj1hPD1JR0YhE0Mm0XIpGIxiNGNeuJT44SLy/H8OqVbByJUoohGizIWQk5meY1q0jEI2mmuFOB94ba9jZ8OSEf5An8hmYaOtruT1Rsdrh6eChQ9/jX2NhPLKHaDyKXtJj1WfwQYcjUeFmMmG5916CO3aknC+rw8H/3fIDqn+7jEg8wozsGRg1xjFnktHYzN033M2nZj9A6Omn01ZlBrdtw7hpE8Gnn06bEBt3ucY+uOHnKBIZYRCb7rlnhMGWLuUrNjAwMqH5nAkoZWWN+vKjLYC8E2liKioq7y2Gt/D4I35m5s1kd/PuFFMly5jF2sq1vNj4InfOupNQNEQgEsCkNWHQGNBKWqZkTxmx7bkFc3l41cPnLzD1dqryLm4x7N3EqrMmjBdJT01xDXpNIkHRrDODkjAbrgad54v48Ef82A12egO9CIJANB5FJ+kIRUPkmnIJx8LMypuFKIiYtCb0UsJsmqjOA3j8+OPoNXoqMyu5bcZtPF//fKJlNB5OhD7kTGdJyRJebX4VRVHQa/RpZ/Q1uZp4vfX1tAvyd8++e9KJnqPpPKPGyIHOA7R4W/iHxf/A8Z7jxJQYRq0RraTFprcxNWsqGlFDMJqYgesJecgyZHFLwUpyXzlMoHFr8rUmqvWseis1JTUsME0luG0bgWFaIMfh4O83fJSgWYdVb0Wn0bGnZU9KF5BRY2R6znT0Gv2EdZ5LdqERx96vyeg8m8FGIBJAEiRiSixF58WUGFOyphCMBjnWc4xGVyO5plxebX6VAnMBp/pPkW3K5tqCa/nLib+goDArb9aEdN66xes5NO0E289sR0SkcbAxaYK3uFvwyB7+8+b/5IXGF0YYVQPBAY52H8WkNSXntTW7mxMmppIwCQUEMo2ZaAQN0XiUNYUrUF7ZnnZ34g2NzLhhCSV5lSOuYS/2WuXCBZAhrvTZayqXH9Vkew8xdLEPiTd2ms2C3mwbUfIan+RFn1VvpTq/mur86nfqUC4LuiiMtIDOEw8Fue8v91FiK2GVYxU/2PcD7p97P/WD9UTiEbKMWdzouJH/euu/8MgenJlONIKGQCTAoa5DfH3n1/lf6/9e9pVOwWBACQTGfIwSDhP44x8TSZU1NXiigbQ/7Bf+ONQP1vOpBZ8irJfSByKMM3NMZzCl/Lvb1z3iRwu46LaDoYuJcDRMt787KbwAtrW9zAOO8tRY+nMIU6cSIIz25V34GlLbBaXy8hFtnJNtuYx5vQkjaJSZX8bbbwfOm+Fhr4ugz01UK3I62MbOhiex6CwT/kEWDIa0huaFj5kIQxWrGlGDVWfFG/aSacgEoDijmDf7jrB8+ScoFMCwsGaEwQbn2pSf2c6rm5/mnhc/nRjUbC9H6R27asASESAUGrMqk1BodAE3GlptIglUp8O0ZUtiW21tKaEgksMBkUji/qHKtmGVvMl98HpHGGxD+xbctg3j7bcjWUd/zy6mzVRFRUUlHRe28FTlVqVtbdJpdGw9tRU5JiOJEnJMxqwzs3HaxlF/Y/It+VedqXYhhZZCaopryDJl8Wbbm3T4Osg15eKVvSwoWkCrp5WvvvLVK17nWbQWFEWhwl6BgkIwEuSfr/s864pWoo9BXKfluL+BH3p+SJYxizxzHhpRMymdZ9KaMGvNDAQHyDZm4wq6uNFxI8XWYmblzSLXlEuvv5c3O95EEiQkSSIaj2LUpP52eWUve1r28MzpZ1JGywSjQfa07MEgGSaVTjqWzospMSRRYl/bPmq7a8nQZ+CW3ShxhelZ07HqrbR52mgYbCBOHICa4hrumf5X5Lx6iPiItsuJa72xtEBo2zOYbr8d9KmVb3859RfcQTc2gy1psE1U59n1dqKjRlIlmIzO2zR9E9tOb2N6znSyjdlIgpR4HYMdmz6Rmnmy/yQZ+gz2d+yn0l5JpiGTTl8nBZYCWjwt0AXXFl5LMBok35w/IZ2nicbJMmZxqu8UFfYK/BE/WlGLgkI0HmV3y24Odx+m09uZUpU4nHAsjCfkYVnZMmiBZnczeo2eTEMms/JmUWGrQKfRkWvKHXcsUgZ6su2lKbe93WsVdYaZSjpUk+09zGj91O/Xiz6tyTKmyeZSglzvuJ5XGl/hxYYXKbeV8+O3fswnFnyCMwNncIfcnOo7xc6mnfQH+5PPyzRmMjVrKoe6Dr0j8z4Es5l4S8vos7+cTgSTCdOWLcTa2ggePEBLTfmoP+yj/TiYN00dYcbGvV4kpzOt6SE5ncQ6OhEzzseR1/XUpZ3zAmO3HYzG0AqtN+xNlIYPWzX6xr7vsGrzMzggxWiTKisRb74Rtj8/MlX33OyudKEIk0obDQTGNooCAThnxIhGIwajkYjNQrurGUkwsWnapsn9IJtMxMdL25xEK2KFvQKjxsjxnuM0uBqIK3GsOitZxizcITcPH/4hn132CaqNtjGPM0e8mbtm38UNFTdg1VuJGSZgBI6zEjtipfacgSaVlIAkYfrIRxIm35CBNpT+uW9f6lzCYaEgUkkJ+pqaEQEhls98ZuQOTOK9HY3hCyAqKioql4rRdN779aLPprfxlRVf4Ws7v0aHr4MMXQYe2UNlZiWVmZX84uAvrgqdN1R9ZtQYKcso4/9W/Rcle06gvHq+QmeZ08GeD+7gb3Z/CTkq48x0TlrnXVt4LVtPbaWut45Xm19lMDTIlllbkASJQ12HaHI14Qv7iMajhKKJ+auiKOIdFqLV7GrGI3tGzG6GhNHWMNhwUYme6XReOBbGprcRi8foDfQmk3C1kpa/rflb/uON/0gENdjKiSkxKuwVLC5djCUijtrJMmGtNwktMFT5NpoJPhGq8qo42PgGSx0Vaff9YnTe0LyxTdM30eZpQxTERDUaCif7TjK3YC6RWASv7OV473FumXYLb7S+gV6jp8XTQqevk7VT1rKkZAmrnKsmpPPCkkJMiWHVWxkIDqAoCXNNI2qSRttAcAB3yE2eJS9xbIJErimXSDxCNBbFrDPz4dkf5qlTT7F+6nryzHlYdVY6fZ10+br4+aGfc23htXhlL2HN2IOERcPI9/lSXKuoM8xULkQ12d6nvB8v+gSzOX11FoCjnCebt1NoKUQURM4MnKGmuIa/nPpLsuTcbrBztPsorpAr5amDwUEaaKDIUpSMob6ciEYj2spKxKys9IPca2qSc6akykqkdauZZjGN+cOe9sdBD8aNG4n39yeMEI2GWGdnYubYjh2p87EciTRSIhFCnkEavPWU28pxyS6i8ShyVE6sQAoSeo0ejZj46knXdjAWQ8LTqrMm06OGCEVDrH3qDv5xwd/x4es/hCEmYrTYGRRkTJFwykD/4aQLRRhioqX44z0u3f1v5wdZslrB4Uj/GbjIVsR8Sz4fnffRESXvNqON+UXzebrlBWaV3zP2RmSZO665I/lZG3MmmcORmIWnT79yOUTKSu0EDDT9okUj2n/hXLWdIGD+6EeJ1tWNMNhGE6wX896qqKiovNu8Hy/6Su2l1PbWYtFauG/OfVh0FlwhF/6wn98e+y2ReIQlZUuueJ1n1Vu53nE9Cgq6iJIw2C6cMdXQSJEC31j8z0R1EtcWXjtpnWfVW7lt+m3JlmKz1kx1XjWBcIDDXYc52XcSBQWDZGBe4TwWlSziD8f+gF7Sk23KptxWji/iwxf24Q/70+q8cHxigU5DjKXzJEEiHAujk3Rk6jMpshYxr3AekViEJlcTG6ZtIBKPcKjjEIIg0O5p57dHf8vfln5wzNecyO/4O63z8i35FOc5GbheIAtS3v9Euujkdd7Q/nxM/7EUrdfmaaPQUsgq5yp2nN2RbBl++tTTzC+czyrnKq4buA6tqGW1czWrK1dPSOfhKOfFrtcpthRTbC3mrY63AJJJr8P3KxwPJ47tXIjL9jPbOdJ9hLgSZ17hPMLRMHdV38X2M9t5q/0tegO9rChfwf7O/Vh0Fva27mVm3ky64h7yR7nWG03njXctMtlrFRUVUE02lfcRotFIaPVydM/HE5VOQxUxFRXERPhAbJBGuZsTvSfo8nURVxKl5r5wQhzIUZlYPHZ+e4KIgICCgifkwWF3JNvsIJECermqBUWbDXQ6jOvXQySSTFpU4nEUvx/TbbeBRoOYlYWUnXPxLxQKEXj00ZSbNNOno62qQl9Tk2yzi7W1Efjd75BKStCtWc3e1r20ulqJxWP0+HuSZemhaCgRh23KwaAxYNfbJ7U7QyXvR7uOMiVzCoe7DgOJH2Wrzsrcgrm0R/p4tO0ZnJlOWrtbafe2869TPz72hkeZbzbRUvzxHjeZ1NKJImVlgVab+AxEo4nPgMGAYLVe9Ocs3Wq3gsJfTv4lEVk/3nHq9Skif9SZZOdSPZVgEOLx0SvyHA6UWCwp4MY10O67D2DUcI5YQ0Nitk1Hx4RmscG7896qqKioqEweq96KP+znzfY3ua74OkxaE96wF72kZ2HRQppcTZi0JqZkJebSFVgL0Im6i9Z5Xtl7/vdy2Ey3S0GFvYI7qu5AGBgk9uwv0z5GaWxk9urrsRSWXfTr1A/Us+NsIpRp/ZT1/Lb2t4ngoowS5hbMTbQcCxKDoUGeOvkUg6FBbp5yM6+3vs78wvl4w148sgdf2IckSvjD/hSdpxN1F5XoOZrOW1C0gFn5s7Ab7WToM3il8RXave30+HvY2bwzOUf6iboniMQTA/aDYnzMmb0T+R1/N7TA7PzZ9Ph6GFy9iExlJVI4htZkRmO1va3riQu1XjAc5FT/KTq8HWhFbfJxUSXKvo59OLOcvNjwIgAbpm6YkM4TnQ58qxYTanqaGdkzsOgSLdCCkKg0GzLaZufPRifpKLIUAZBryuW5+uc40n2EaDyamLMYlZmWNY3fH/t9MuyiN9DL48ceZ37RfKbnTCfXlItW0rKnZz+z196N9NwrEx6LNN61yGSvVVRUQDXZVN4HDBdBPd4elNkmqpduoMhSRPT5F5MX5NkkBph+f+m/cdsz9zA7fzY7zu5IroQGIgHcITdzC+Zi0yfmKwwN2A1GgxRbilmUcy3B7g40cgRi8ZQ2tskM058IotFItK8P/y9+MepjzB/96Nt6jXQrcwKMmegoKgIaUcNDrz3EvPx5WLQWjnQfwWawUWAuIBgN0hfoY2npUqryqia9T0PzLuwGOz3+Hg50HkASJDZN30RdXx2vt76OT04MDbboLNw24za0BiOjxgRotQh2e8psrlhbG9GenomX4ptMYxpFmExpnvT2kazWcVsVJ8uFK69e2YvNYGMgOEBAio19nGnES7r2dEUQ8P/kJ+gXLSLa14dx/XqC27ePDBZYu5bgnj2JZNZt28ZMt401NKAMGb9joEQik2uXf5feWxUVFRWViTFc52UaMrnRcSP72vfhC/twy240ooY8cx4z82biCXk43X8aX8THktIlbK7ajE1vm5DOyzXmUm4v59WGV+kP9dPj7yEaj+IKuYgpMbKMWWyavmlSg/7Hwqq3Eo4OEhzjMbqxf/LGZahKRyNqKLQW8kbbG+Rb8nnixBMAGCQDNoONXn8vs/Nn0x/sJxQJMTN3Jt967VtoBA05phzCsTB93j5KbaX4w376An047U6cmc5JJyxejM6LxWMoikKHt4NoPMqS0kRgA8COjl3cO8nqphG8S1ogz5IH59ooLyXDtZ5X9lLbW0tMiZFvySfPnEePvweAcls5vYFeAKrz0s/nTqfzehU//77/+3gjXuJKnPvm3ocv4uOt9kQ1m4BAdX4198+5nw5vBx+e/WGeq38OBYXGwcakwebIdOCVvWg1Wmp7ask0ZqKX9AQiidnUb7S9wRttb7Bl1hYCkQCOTAcnw+0smITOq8qrwpnpTNsy6sx0XtS1ioqKarKpvKdpcjWllETf7LiZL77xRe5wbOCjrYVpIp4bqSTO07f+nhwpg/s+sBaN0cxxSyP7+2t5ufFlvrryq3zztW/yQuMLyeetcqzikeXfQtzxEuGGRsLnbh/exjbZYfoTQRhnO+PdP+7206zMjTdwXwnL/Pf+/+Zk30lqu2r5ysqvAHCk+wiKolBgKaDCXsHH5n0sOeNgslV/Vr2VFRUr+PZN3+bFxhcxaoy80fYG/rCfHn8Ps/Nn81rLa8kqrC/OeCC9ONJqMd11F6GXXhrR/mrYcMuE3yfJak0aQWkTKNMYYRdGhVflXplJbsOHJv/i7B/52w33ENz2TPrjHMVAvrA9PR4MIpWVIe/di2nzZoK7dmFYty5hkIVCoNejeL0Ed+3CtHp1UsDFe3vH3tlzJulYCAbDpNrlL+a9VVFRUVF5Z0in87r8XbhDbiRRSqZudvm6KLYWs8qxilA0xIycGdR21xJVomyctpHT/afJNmZT21ObVuctLV3KA/Mf4Idv/BB3xE3jYCO+sI8SWwmbr9nMQHCAgeAAW09t5f6591+yijbJOLZ5M9794zFUpTMtexon+04mTElBk6zgC8VCCCEhMX9LiaGX9NiNdv59z79T211LOBbmzll3sn7qeraf2U6ru5VSWykCAguKF/DBmR/EqrdOuupvsjrvRseN5Jhz6PX30uPvYUnpEk4PnMYoGTFZM+lZMZtcRbnotsv3i84DWF62nN0tuzFqjCwrW8bz9c9TnVfNl1d8mTJ7+qrJC3WVWdbjyHIwEBwgGA0SiAR4cOGDdPm68MiJNF+f7KMv0MdH5n6Ecns5RdYidjbtxJnpJM+ch4CAV/Ym2ldjYWJKjLgSRxRGBkJE4hFC0URhgEljmpTOy7fk82DNg6Omi16J75nKlY9qsqm8Z/HK3hHzpZo9zczJn8Om0tUou9JXY9HYTNWyFQR+db5NstrpYPrqxHD6f3/939GLeu6ZfQ+ReAStqGVj2c0IL+xEW1yCVLMopSJKPnAgOVh/UsP0J8CYM68mORQ1LelW7nS6sZ+j03Gk+wjZhmz+et5fY9QY+cSCT5Chz0BRFLSSlpgSSw6sjbvdBLZuTTW5Kisxrl2bPMbRBNDCkoUUWArY37GfP5/4M1pJm4yqHypFP9V/ikA0gL2mZsT8MsOaNYn35YIgh1hjI8FnnkF7+60YLBOrPJSyshIpooFA0izEZEorvCYbFX45W48nwvDWgiNyMzM33oJRjqDIMoJeD0bjqAZbOoa3FwzNUVNcLgSzGcFoRIlEELOzMd1y3ugUjUaU8VaKz/3NXapAiOTzJvHeqqioqKi8M4yl8waCA5zoO4FJYyKuxCm3lTMtexpx4pTZylhRtoLnzj7HjNwZNLmaONx1mNum38bfLvzbtDovGovyrd3fYlXFKjwRDyatCaPGiC/s4y8n/8Km6ZvoD/YzEByY1KD/8bjcOm+oiidDn0Eknhij0BvoZWrWVM4MnEm0W8aCidRaSUd1fjWSILG/Y39C59X8NbmmXGJKjG+t+hYiInJMJq7EuSb3Gsrt5SOMUDkqJ+Z7Va4my5hFma1sVMNtojpvTeUanHYnoUgoGZqQbczmruq7+NOJP/GL0C/4mzkfY8myW9FE4kS1Isf9TcyXZCZaJ3Y5dd7lbD2eCBe2kH702o8iR2S6Al2sn7Ke6vzqUQ22dFyYatvl6yLLmEWhpZDSjFIURaHMXkZVblXyOK16a7KKsdvfnbI9naRDEiREQSQaj5KhT4SaDKEVtRg0hrQJuxNhbsFcHl718HlTVG+nKu/KNEVVrg5Uk03lPUuzqzlFeAF4ZA+/rf0t/zL1gbGffEGbpNLQiOFFkarr5/BW+1sEooHkfQbJwL/OehDjfGvagez6mhoQz6+6XMpB6aPOvLrI4fcXkm7lTvF4Rjcxpk4lKCkc+9BucqQM3AT5Y9M2/mnvt/FH/FxXdB1fXflVjvUcY1buLOLB4AiDDRJpT8Ht29GUlBDt6BizzbbMXsaBzgP0B/tp97YDJOetDHHUW891h13oSkoSIQfnTFDBYCCUJikVIN7QiOLzwQRNtqHzNV775mSjwkczIS9l6/FEuNRDtC8m5XjMiw2nk7jXm6yOu1SBEMnnX4bWXBUVFRWVi2csnVdTXMO8gnlE41EyjZm0e9rZ2bSTRSWLuMFxAz3+HqblTKPZ1Ywoimyavgmb0YYoiml1XnVeNaFoCE/Ew6NHHqXT1wnA9OzprHauTlbRAJMa9D8el1vnDVXxPHXyKVrcLUzPns6BzgOsKF8BJCoFFRSyjFkUW4pZULQAOSpzd/XdrKxYyZ9P/pkDHQdo87QRJ86CwgV8/fqvU9tTy7zCeSOMUFfIxam+UwSjQc4OnGVF+QrC8fCYbbYT0XlyTCYQCVBuK0dBYXbebKZnT8dusHOq/xT5lnz+59gv+Z8Ltv1Vsy2ZajkRLofOu9CEBC556/FEuNQ672JSjsvt5TgznTS6GpOBJJD4u67KraIv0MdgcJByWznN7kSybbmtnGAkyDW514yasDsR8i35qqmmcslQTTaV9yzpRI5Nb0sMaUVmzJqYNC1nsfp68m5YikVnQRKl5ABPjaghx5iF/PJr6QeyA4Ybb0zedqmHo16MWTEZpKws2LAWYzgKoTBxox7DLesJPXPBDK2pUzGuXUPgmWfIPTf3wg58zFHOjZufYcWTt/BWx1v86M0f8Y/L/pFyezmK1z/CYBsi1tiI4frrkUpKiHV3Jwb7WyyjDi0dSrICCEQC2PQ23LIbgFe6Xse57ENk7zyEMswENW3ZMuaxj9caezGMFRXe4++hZbCF/e37GQgNsDhnHgUvHyB2wRyRy9F6/G4w2ZTjUS82HA70K1YgWi1IJSXJ6rih1FjRZkPIyLiqz5WKioqKSipj6bw9rXuSF+k5ppxkZUwsHuOJuieYlTeLNk8bkGgva3A10O3vptxWPkLnSYKEQWvgzMAZ+vx9CIKQUkWlk3R8fP7HGQgOoNfoJzXofyJcbp03t2AuclTmf/f/Lx+u/jBbT2/lYOdBKrMqqSmpwaQxsah0EXU9dcwrmsczZ54hHAvz7T3fpq63LlH1k1tFXW8d+zv3819v/ldS5w03QuWonDTYADp9nZi0JpSIwrNnnqWmuIap2VPTmiTj6Ty9Ro9Nb6M/2E+mIZNwLEy3vxtREMk2ZaMRNYRjYfxhP9F4FI2owawzX5bkyMnovExjJoqi4A65segs6CU9rpDrsrQevxtM1riz6q3cMfMOQrEQe1rO/w17Q14emPcAe9v2suPsDtq97eSb81lUsoi1lWupsFdwXfF1V/W5UnlvoZpsKu9Z0okci97CvMJ5bGt7mQcc5YmU0QuQHA5ibW1ptylFYkTjUULRENF4FAUFq86KQdQhp6nsgnPVNOcq2S5JC2caJmtWTBbFbOR/zvwSd8iN3WBHQmLTTavIE1cjhGQEg4GgpBB45pmRg2Ubm6kEvrbon/jqGw9zqOsQ/cF+rHor0V732K8bChH43e+S/5YqKxOzL+z2lMdV5VUxO3823f5uQtEQXb4uKjMraXG3UGApYDA4yE/P/I7NS29h1pqbkcJRBIOBWGzsicFaw6UfZDuaoLPoLNw7+17++dV/5mTfSfLN+Sy+4UcjDLYhLnXr8dVC8mLD601cbOh0oNMhGI34xSjChrWYwnGQQwgGI4La1qmioqLynmQsnXes5xgaUUM0HiUcC2OQDFyTcw0+2UeGPgM5mlhEuybnGnSa82Mw7Ab7CJ1n1prRilpcsgudpEOOyhgkA6FYCAWF+sF6RETcITczcmdcVLvaeFxunVeVW8Wcwjm4Q24+NPNDhKNhAtEAAgJ6jZ4KWwXF1mJ+dfhXxJQYFfYKHq1NjFVxyS7wQElGCX2BvhSdN9wIdYfcSdNEIDHn7ezgWV5ufBk5KrOndQ/OTCcfrv4w03Omp+7fODrPH/ZTYC1gbsFcVpSvSL5vXb4uDBoDvrCPNk9bSsWhQWNISdO8VExG57W4W8i35POBGR/gh/t+yPSc6dw6/dbkjL9L2Xp8tVBhr+CzNZ9l/ZT1dPo60UgaiixFVNgruNFxI7fNuI0WVwuiKJJvymdqzlS1Ak3likM12VTes5Tby5NzG4bo8nXxifmf4NGjj3Ljkn/DCSlGm+R0ol+4kMCTT6bdpsZgZE7+HA51HcIf8ROJRxAQCAY9jBzDeR4lGERyTnzA6pXG8NkK/cF+AH52+ndkGbO4dfqtlNsLMPT2EBjFEKKxmU2L1vJD009xy27coYS5Ntmqvlh9PcGtWzFu2pRitOVb8vmHJf9AJBbh1eZXCUVD1A/Ws6JsBffMvichEO0VlNvL0Q9b5Yr43EhOZ9pquoTZ2k7MbJzwXDYYf37aaFHgH5jxAX7w5g84O3CWbGM2ja5GpEh8zNe6lK3HVxOjXWxYAdRVTBUVFZX3BWPpvJ8e/Ckn+04SjATxyl5WVqxk8zWbeerkU5Tbymn3tnNNzjU8cO0DnOw/mXx+iaVkhM4TBZFAJEB1XjU9/h4GggPkmHJAhlAsRKYhE0/Yg81oe1vtau8m6XQeMEznlXOw42BydpsgCGgEDVElsVjpkl04Mh0AKTpvuBEajodTtjstaxpVOVXkm/OxG+wYNUZ+ffTXtHna+PKyLzMl+3xL6GR03vDzn2vOpTSjlBcaXkgx2CDRctrh7aDb1z0pk+ZS6jyv7E2md66buo4/nfgTABunbaQ/2H9JW4+vJqx6K/OK5qW9r6akhpqSmnd4j1RUJodqsqm8Z7lw6CZANBblSNcRPjL7IxzynSGydCpTb1yOJhonqhGJ6nXw4msQiYzYnlRZyaAY5nOLP8f3Xv8eB7sOYsSITtLhEyJkjLEvitlEYN31WN7BGVqXmvFmKwhyeMznG2ICHtmDTtRRYCngT3V/otJUgnO0WPVRKgpjjY3EBwcR9PoUUTO3YC4/WPcDjnQfocvbhUlrosRagiPLMap4MlhsRNevG9n6em6WXuDJJ9EVFyTnso0nrCYyP220qHBRFDncdThRGakx4Aq5CI/zDT0Rk/LdDk1QUVFRUVG5HIyl8z4+7+NE41H8YT8mnQlBEVAEhS8s/QL1A/UYNAZ0Gh0n+08mB/5nGbMIx0bqPI2oocxWxpyCOfz4zR8TJ05voJcMfQYV9gpm5Myg3FbO+rz1l6WK7Z1iPJ0XjoeT88s0ggajxphsnRUQ0IraETrPHXJTbitHFETcATcWrQWtpGVe4Tx2t+zmxcYXOdR1iLgSZ0npEv5p6T/xs0M/Y3frbvIt+SmG2cXovHxLPvfNvY9GVyPHeo4lb5+VN4uPzP4Ifzr5J6Zmna+EGi+A4FLrPEmQADjWc4yN0zYSjoVpHGxMVlpOpPX43Q5NUFFRGYlqsqm8p7lQMFi1Vm5w3MBz9c8xEBygxdMCDF+pKyW+fj2BWCztgNkWuZ3anlo+c91n8Ef9eGUveeY8gjoRm6MiJRp8CNHpoDbQwLTi2e/UYV82xpqtMJ7hI2sS6T93VN3BC/Uv8LNDP8OitbB90x9wXhirPk5FIeeMowurmfIt+dxsuXlSxxT2e9FcEIgQa2tLvHYkkpzLNp6wGivEYfj8tNGiwv1hfzKBNabEAMZua55A6/GVEpqgoqKioqJyORhP5wG4w+6UiqzKrMqEMedKHTR/6/Rb8cpedrXuStF52aZsCswFfGv3txLtqJZ5xJU4Jq0Jq86KoiiYtKZ3dEj95WIsnTfc8DFqjUzJnkJdb13ytpgSG6HzREHEqkukRn58wcfZ27GXKVlTeOrUUwQjQTq9nVTlVHGi7wR72/by7T3f5u9r/p4WT0vaVsmL0Xk+2cfGaRv50MwPEYgEMGlNBCIB/nTyT4SioWR753gBBJdD5w0ZlHHiBKNBovFowhyO+CeUlHmlhCaoqKikoppsKu950gmGImvRqCt1Yw2YLZVFzDozrzS9Ql1fQlhU51Vzqu8UH7n+A2QJAsqwqizR6SB880py9cJ7flVprORHHOXs6NjFB2d9kApbBY8ff5ypWVPxhX1sePpO/qXmC9yy7DbyNTaEWBxBb8D/f/+XtqIQAI1mUq2SY63yCTpdSiLsCPR6evpaMT376qjCyrB6NXAu4OKmm0BRIBwGXWLOS/TMmRRTMF1UuDfiRSfpCMfCyZXNb+z7Djd8YCuVkGK0iU4HmvVr0lakJSvXgkGUaBRNcTGx1tbkuXyvhCaoqKioqKjA5HXeWBVbXtk7QudV5VbRONjIfdfex7ZT2zjZdxJJlBgMDWLQGHhwwYPMzJ35ntd5w9tzA5EAd1ffzW9qf0Ndbx02vY1AJJA0Mp888STOTCeSIBGMBOnydfHY0cf43KLP0R/qZ0/LHlrcLcSIEVfilGaU0uJpYW/bXuTr5MQctUm0So6l8zL0GTx79lkAovEoclQmpsSQBAm9Ro9VZ6W2u5bfHvst7pAbm96GXqMHoNPbyaOHH2Vt5VqmS7koo4V1XTAnd6I6L67Ek7MDDZKBaDxKTIlh0ppYUb4i7Wdq6FgHggM0uBrQiTokQUoad++V0AQVlauZq85kk2WZmpoajhw5wqFDh5g7d27yvpaWFj7zmc/w8ssvYzQaueuuu/je976HTqcbfYMq70vGS7sZdebTudaEcDScjJc+0XeCMmcZf2x5lprr5jJjZQ3aSJy4Xousk7Dassh+H/zIjZb8KDodhFYvx+E+ji2Ux6e3fRpBEPjqon/k1tKbMcZEZA082fwsmZmFOIxFzNRXoi8tHWNWWhva2aNXBtb311PbU8tAcIAsYxY2g42zA2fxhX0YNAaO6I+wtGwpFfaKRGLpKC2rgsNBH36ssmb0FNT6epSFCwk88QSmLVuQX3sttXLM4UC/fPmI510YFd7iaqE6r5oj3UcIRUPYDXYGg4OsfHIDP7zxe6xd+UHCAR+S0YRHivBq/RPcbb57/DYGpxPLAw8QOXECec8eiEQS++z1ElPbSFVUVK4wVJ2ncikYT+eNdn86nXe6/zSrHavZ17qPawuvZWXFSuSYjN1gZ3be7FETMd9rXNie64/4+XD1hxEFkTxzHmatGZPWxEef+igdvo5kAqtdb+ea3GvY3byb22fcTou7hTZvW7KKyyW7KLWVJl/HI3sQEMZslZyMzhtq36zrraMv0Ec0fj70qiqnChGRJlcTBeYCLFoLGfoMzFozJ/tOcmbgDDdX3sx3936X7836PGP1AEQDfiRykv+eqM6LKBGq86qJxCPMLZjLzNyZXJN7Da+1vEZlZmXKZ2t45Vq3r5sWdwu55lzWTVmHO+Sm299NTIkxEBzgTP+ZxEgbtY1UReUd56oz2b74xS9SVFTEkSNHUm6PxWLccsst5Obm8tprr9Hf38+9996Loij88Ic/fJf2VuW9SIW9gk8s+ASLSxdztPsoQHJFqj7UhqyBQmsh5faS94W5NhzRZoNNa5H8ARRZRtDrwWzCoNfzZt2bhGIhBEFg5+ZtTNnXhLI7sbJoBe53lBOcvpRf1T/J7X+5k+N378WiKGlnpcmHDqEbpVVyV9Muvr7z6xzoPIBW1FJqK8WkNbFuyjqeOvkU/oifCnsF0XiU7GuysVpsxG9Zi7JtB0pjahWiYd06/APtGHUZyGMdeDSKftEi5N27U/YXEjPkZEA7a9aYRlaZvYwvL/8y39r9LY50H8FhdyAg4Mxy0ir38Fcvf5JZubP40KwP0TrYSlyJs6t5FwuKFpBvyR+9jaGhgeCOHWhnzsS0efP5NthAgGhDA/LevRCJIDqdaG9ZiyErd6wjVVFRUbmsqDpP5d1mNJ2XacxEq9FSYik5p/Pef6ZFhb2C26bfRm13LYPyIJmGTKrzqimzl1HbXcufTvwpxWCDRChCk6uJfEs+vrAPk8aEKIggQiweQ+F8+6SAQLYxm25/96itkpPVefmWfD694NN8fefX6fJ1ASAKItcVXccHqz5If6ifXx/5Na80vUI4lpgvvLB4IR+Z/RFyTbn88tAv0UgaolppzHMTlOKEZe+on4mxdN6GqRt4oeEF5hXMS+g8TysCQorO88repMHmCrmo7amlzdMGvVA/UM/1FddTklHCse5jDMqDHOk+Qq45l/5AP66QC7vBzqy8WUzLnva++9yqqLzTXFUm27PPPsvzzz/Pk08+ybPPPpty3/PPP09dXR2tra0UFRUB8B//8R/cd999fPOb3yQjY6yx9Coqk8Oqt7K0bCmz82eP2o7wfuRw12H+3xv/j7reumQpflVuFR+Z8xE6fB2UWkv56qJ/TBhsF86va2zG/JLIDUuW8Li9nIWPr+LNO18iO7QMQqHkrDT50EFM69anNavq++uTwgsgz5xHi7sFd8iNR/awpGQJvz/+e9q97fQF+nDanSyvWE5ztB95+TTKblyKGI5gMtmIt3cQ+N+fYopEkLZsGfvANRqkkpJR205jjY3oFy1KO0cOzrd4XieU8sRNP6Ut0s9bA7VYdBYGQgM0DDSwtnItU7Km8M1d36TN20YwEiTTmMncgrk8WPMg1ZqS0avtzr2+vHdv0gxUwmGibW1J4y3e0EB423b61y6jOK9y7ONVUVFRuQyoOk/lSkHVeekZTef9/eK/p9vfDQopBtsQ7pCbnKwcTFoT8XicqtyqxDw38XzLpFbUsrB4IfnmfBYWL0x7ni9W55k0Jj48+8OEo2H8YT/Z5myO9xznUNchnjv7HF3+LuRook01GA1ypOsIP4//nM8v/jxHuo8wp2AOu3r3c/soc3IFRwUN4W60Ln/aCsmhFk9REPnXlf9KX6CPgcAANoONgVCi6mz91PVU2it5aNdDtHvbicajWHSWpM7TCTo6vZ1Jg80re4krcURBpNXTSjAa5PFjjzMtZxr7O/azpnIN33v9ezQNNuGW3SgozCuYx+eXfJ6qvCp1ZpuKymVEfLd3YKJ0d3fzsY99jEcffRSTyTTi/jfeeINZs2YlhRfAmjVrkGWZAwcOjLpdWZbxeDwp/6moTJShdoNFJYuYlT/rfS28enw9tPfU89XqB/nTih/zxKqf8rGZ93Co6xC7mncBIMdkNpevTxsQARBvaMShy+fu6rvJMecw89FF/LTtL7Tpg/TiJ1o1FdOtt406tL+2pzYpvABMWhPukJuYEqO2p5ZsU3Zi3kU8xsm+kxzrPUa3rxt32M1fmnfwyNlHOR7tQH7+BeRt287PMWtrQ3I40r5mMgU1Gk17f5JoNO0cubjbTeCJJ/D96Ef4f/5zQv/9E/JfOcTm0jXUdtdypv8MckzGrDVzoPMAoiDSH+jHpDUhCRINgw3836H/QwkExn39WGMjUklJcp9jjY3I+/YlQh8ApbEJxe+nxdUy9rZUVFRULjGqzlO5ElF13nm6fd1897Xvsrd9LwPBAbyyF3fIzeutr/O9Pd8jEA4gx2Sq86pHPDcWjzE1ayrReJRWdyt3V99NVW4VoiCSbcwmFA2xqGQRX7v+a1xbeO2oVWwXq/M8EQ8n+07S4GpAEAT+cuIvPH36aWwGGwe7DhKNRdGKWkLREDpJh4LC4c7D+CN+NKIGRVH4Ue3PqK9xgOOCfXNU0LNiNnt69qedI9fkauKXh3/JEyee4Nmzz/LMmWc4M3CGBcULONx5mLqeOjSiBrPGzP7O/UiCRK+vN5kw2jDYwCP7HqE/2M+u5l2JNtb+M3hlL8FIMDFjLh7DI3tocDVg1pq5rug69rTuYV/bPgZDgxi1iQXeg10H+Z/9/8PRrqN4Ze/FfhRUVFTG4aqoZFMUhfvuu49PfvKTLFiwgKamphGP6erqIj8/Nb45MzMTnU5HV1fXqNt++OGH+frXv36pd1lF5X2HPhhh+WEfSuO25G0fclSwePVP+OXZPxKLxzgzeAabY+wUUikcTZnzYTPncSTcSnVeNUXZpWM+d3i6EiRWR+H8qmowGkQSpOS/A5EAdT115JrPt0hOM5YQb0ytSJP37sW0eTMypG1fDTz5JKY77hhz39BoRiSwjpVUJW/bxk2Ll/PA85+htqeWGypu4OWml6m0V3LL1FvY07oHraTFqDHyL3P/DiU4jsmnOf91P7TPcL7KLblPcoja7lrK7GVjb09FRUXlEqHqPBWVK58DnQd4qeklQtHzC4Y6SUemIZN97fu4a/ZdnBk8w+ZrNqMoCsd6jyUfNy1nGh+d+1G2n9mOHJfTznOrzqumMnvsSvpLofMUFDp8HUiCRCAcQEHBH/Fj1VvxyJ5EK+s5orEoVr2V/mA/2cZsrn9yI/+66ItsWrQGbVTBaLaxo2MX2/Z9k1XOVSPmyA1v8bzwOH5f+3tKbaX8eP+POdJ1hBXlK5I6b+P0jexq3oU75MakNXG0+ygNrgaO9x7HYXfQH+zHG/aSb87HLbuRYzJ6KRHWoBW1rJ+6ns888xkUFOSYjE08vzh9vPc4rpArbXqriorKpeFdNdm+9rWvjSt83nrrLV5//XU8Hg9f+tKXxnysIAgjblMUJe3tQ3zpS1/ic5/7XPLfHo+H0tKxL+RVVFRSiQeDiDteIj6iBbSJMmDl7EW80LELq86KFxn7GNsymm2srlw9ZlvGUNl9t7+bUDSERtSgl/Rkm7IREJLiShKkxN//uc6FDF0G/1rzj2wouRFDTMRksdMvBCkelpglhdOYVZEIgSefRL9oEYabbkIJBkEUiTU2JmecDVW7XTiTDRJmXNznQ7rgu0Xx+8cIVGggd/EsTvadpMJegVbSkmvKxRv2cqjrENcWXMuZgTNsmfkBbME4saamMV8/1tYGgGAw4P/Nb1KTW4dV4UU0IoOBwbT7pKKiojIZVJ2novLewCt7aRhsSDHYAMKxMIOhQex6O4qiUJ1bzVMnn2JZ2TI2Td9EKBrCoDFgkAwc7TrK8orl5JvyMeqMl0XnGSQDkXgESZCwGqwoisJAaIAFxQuSOm/oGPQaPWadGY2QSPfsC/Rh1VvJNGSiKAoKCpnGTMpsZRzuOkxZRhkWvYV/3P1V/kn4GpWZlSwsXohbdmPVWcnQZ4yowBtKAU1HnDhPn36ahsEGSm2lI3TegqIFvN72Oh7ZQyASIBAJsLB4IX2BvuS57/J1kW3KZnr2dMKxMLPzZlOZWUmrp5VwPHz+tc6ZkZCYR+cNeyeV3qqiojI53lWT7W/+5m+48847x3xMRUUFDz30EHv37kWv16fct2DBAj784Q/zq1/9ioKCAvbt25dy/+DgIJFIZMTK53D0ev2I7aqoqEwOxe9Pm84JQGMT1Us2oJtq5czAGc7I7Sx0VKRtGZUqK9HbslhkLB71tYaSlep663ij9Q16A72U2kpZWbaSGTkzWFa6jNdaX0NBwRfxkWPKodvXzfzC+dxXeQdZrx5A2f1ccnvFTgeGjWXcOv1Wnjr1FDGdhrSjbSMR5N27kUpKCDzxBJYHHkBua0uaVfLevYl0UVFMSVeVHA70K1YgZWaOmCOXrn10OEI4TFVuFc3uZlxBF72BXiCRvLVmyhqO9hxlafZcCIXOV9sJwsh003OVa5LTSbShAf3SpWimTk08IBxGMBjQr1yJ3NHOS92vU5yjzmRTUVF5+6g6T0XlvUGzqxmDJn0nQjgWRkEhrsT5yNyPEI1H2X52O4PBQURBpMxWxprKNeSac+kL9HHL1FvGbLu9WJ1XlVtFf7CfSCyCQW9gbv5cXqh/gWXly5iVNyuZjKoVtQBoRA2RWISakhpeb30dSOgri86SMAzzqwlFQtw/935+cegX7Gvfx6KSRWQZssgwZLDauZo3298ky5jFhmkbWFK6ZMRxjWVkaUUtjYONTMmcwtnBs2l13itNr+CRPQwEB/CEPFTlVtHj66HF3ZIwDGMhcow5zC+cz/f3fZ/1U9bT5euiIrOCmqIaECCmxNBJOto97fQH+xEQsOqsY6a3qqiovD3eVZMtJyeHnJyccR/3yCOP8NBDDyX/3dHRwZo1a3j88cepqakBYPHixXzzm9+ks7OTwsJCIDEkV6/XM3/+/MtzACoqKsD4ZpExLlJqK2VZ2TJa3a2w7lqkHS+nmkGVlZg2bkwxomJeLwQCKKEQgsFA3KjnhfoXaHG38HrL67R524grcU71nSIUCdHl7eLO6juJKTFeb3udLl8X07KnMSVzCt9Z/o2EwXaBuRdvaETeto3SzXdw/9z7CXpdSE5n2gqzZEVYJELkxAm0M2cmWi2j0UQwQ0sLmrIyDDfcALEYgk4HOh2C0Zg2qOHC9tER51Wno9ndzGBoEG/YS7Yxm/5gP3JMptffi1VnRR8TEq2gQ9V2S5ZgWLUKxZcQdrG2toTBVlqKcf164i4XiCKhF19MbX11OtGuvYndu7/IN2feNuZ+qaioqEwEVeepqLw38EV8iIjMypvFsZ5jI+6fnj2dCnsFFfYKvrD0C6x2rub0wGkEBEw6E56QB3/Ez8ZpG1OMKK/s5Uz/GTq8HWg1WoqsRTx3JhFEMFmdt2bKGrae3EpVbhV2g51ccy6Huw7TMNjAY0cf4wtLv8D9c++nydVEi6cFd9BNp7eTv57710Ai1MEgGRLGoL2MT87/JA67g6O9R/mnpf9EIBrAI3uwG+xk6DPoC/RRU1JDaUYpFfaKtMbhWEaWHJMpsBZwqPPQqDrPbrCjoDA7fzad3k5O9J1gRfkKrq+4Hp2kIxqP0u3vJhwL8+VlX2Zm3kzebH2TaDyKN+Jlf8d+BATMOjPF1mKqcqswSkbsBvuoc+9UVFTePlfFTLaystTZQBZL4gursrKSkpISAG6++Waqqqq45557+O53v8vAwACf//zn+djHPqYmTqmoXGbGM4vMliws9iyseitVeVUAxO+4A8XvTxpogtmcarANDBDctm3EDLSPrL+Vf+j8RlJ4DdHsbmZJ6RK+u+e7/PiWH9Pj72EwNIhNb6PIUoSTTJTGnWn3L1bfgOL3Y83Jwaq3Et+0icDTT4+sSBs2y0zeswfLJz9JcPv21MdVVqKbM2fUcIaU82Y2I1VWpjx/CNHp4Ij3NP9a84+sK1qJLgqiwcC2tpf55z3fSKR6iRIWSxax0+dbReWdO5HfegvzXXehyDJSQQGmO+4g1tZGtKUF4nEix4+PaCuNNTSg7HiBb6/5GsXqPDYVFZV3EFXnqahc2Vi0Fppdzdw/935+efiXKUbbrLxZfGrhp5JplVa9leUVy5lbOHfMZNYmVxO/Ofob9rTsIRgNAnCT4yYOdR3CqDHS7m2flM57uellnNlOtKKWdk87h7sOs6JsBW91vIUkSskZZNX51XxC/wm2ntrKyd6T7KjfwYZpG7h79t2IiOg0OgySAW/Yi1bUsrxsecpctd5AL1nGLG6dfuu4RlX5sHEkF5JlzEIv6RPtsIKGM/1nmF80H3FQZDA4SCwew6q3km3M5r659xGMBCm1l+IOuTFoDBzvPc6OszsosBQwGBzEpDWRa8olw5DBTw/+lEXFi/CH/TS6GonEInT6OqmwV/C3NX/LNbnXvK9DPFRULjdXhck2ESRJ4plnnuHTn/40S5cuxWg0ctddd/G9733v3d41FZX3POOZRXGTgYwLfsxFoxHSVHdBooLtQoMNzoUObN/BZ1c+wG+P/5ZMQyaSKBGLJwwns9aML+Kj2d3MluotQGKV9M8n/8wU87wxj2F4NZ5os2HavBnF601UfnG+ImyoPVQqK0MwGhOPG8MsHE63r5u6njpcsgu7wc7M3JnkbNw40tCrrERYt5rZ/l5uOBpC2Xm+vfUeRwXr7trJju49rChbgU5nINrVhb6mJhnMoJ8/n9BLL404f6YtW86fxzTEGxopENePeZ5UVFRU3g1Unaei8u5Rbi8n25zNqb5T3D7jdj4080MEIgFMWhN6Sc+MrBkjTJuhZNZ0eGUvTxx/IsVgAxgIDXC6/zSOTAdGjRGtpJ2wzrPoLGQZsgjHwszImUF/oJ8XG14ky5SFTtSltG5W2Cu4f+79nOk/w5sdb2LSmNBpdHT7uokpMUKREFElSqm9FKveyv1z7x/TMBziQp1XlVuVbFMdbrRlGbNYXLyYAx0H0IgaCq2FyFGZJlcTxdZiVpavZHbBbFY5V9HuacekNfGTAz9hf/t+ijOK8cgeskxZrHWu5anTTxGJRWj3tmPT21hcuhiv7OWtjrdYVraMNZVrCMUSqal2vZ18c75axaaicpm5Kk22iooKFEUZcXtZWRnbtm1L8wwVFZXLiWg0YkprFjnRb9iA1p45uQ0GAqMaQbHGRspWryLHlEOntxN/xJ+8zyt7mZEzA4vufHm+VW9lSckSIj4Z7RgveWE13pAJKOj1aU2wlNbWUUy14RzuOswj+x6hYfB8G6oz08nfLfo7ZqUx6rp93eTuPEjsgvZWpbGJHEEgXhakNd5L0OYmY/585AMH0JSUoF+0CNFqRd69mxFEx0kgZfzWXxUVFZXLjarzVFSuLKx6a9Is6vR24g65CcfDFFmKuHv23eOmgl5Is6uZhsGGFIMNEmml3rAXRVHIMGTQ6m6dsM574sQTPHPmmeTtGlFDjikHq86KzWAb0bpp1VuZVzSPLFNWwgRzpZpgt06/NWmkjWUYDjGaznuw5sG0Jt2ZvjPcfs3tHOw6SLOrmWg8ikbUUGApoCq3iseOPsatM27FF/bxu9rfsat5FwaNAYvOQrO7Gbfs5sXGF5lbMJcz/WfoC/RxdvAsC4oXEFfiSKLEqf5TKfs4JWsKclwe7+1RUVF5m1yVJpuKisqVR7L6a4JVXWMxbiCAHCYUDaUIL4fdwan+U0SVKGUZqa1HU7Kn0C+0IzgdKGkCGqTKSgSz+bIdV7eve4TwAmgYbOD7e7/Pw6seJj8ndXC33a0lPEqYhNLQyIYlG/lJ4x+JaQUCjyeST6WSEohGUcLhtM9DM/5X/nitvyoqKioqKirvP4aqvyZS0TUevogvJf1yCI/soTSjFI2oIRAJTErn3TrtVo50HuHUwCkkQUKv0WPVWZmeM51Ca+Go1VuX4rjG0nmP7HuEh1c9PMKkc8tuDnceZk3lGkxaE4OhQXSSjg5PB997/XtcW3gtwUgQQRBocjdh1poJRUOEoiHkWMIoO957nLVT1nK2/yyBaABREFEUhZgSo9vXjUVnSSSoign9pxN1auCBiso7gGqyqaioXDLGagGdDOMaPQY9+eZ8ApEAA8EBHHYHi0sWc7Q7EQ/f7mlnTuGclKdkZxUT2bgReds2YvVjBy5cyNs9rrqeuhThFY6F8Yf9RONRBoODHOk+ws2Wm1Oeo4nEGcUqAyADAw2uBk4GW5lbUpxSuWb+2MfSPifW1oZgsyXnt13IWGajioqKioqKyvubiVR0TQSL1oJO1I24/XT/aVaUr2AwNEiHtwNf2DdhnXdN3jV87Yav8djRx+jwdaATddgMNgqthSlVaZfjuC5G50mixIn+E0zNmspbHW9xsPMgrpALgKlZU1ntXE1dXx2VmZXE4jFC0UQLqyRKyW3ElTi+sI88Sx70JKr3dJKOHFMOx3qO0R/sJ9OQSa45l0xDJs5Mp9oqqqLyDqCabCoqKlceJtPoRpDDgVeMsbhkMWsq12Az2AhFQ8mEqZ2NO1lcsjjtZrX2TKTNYwcuXA5csotoPIoclYnEIrhkF3ElnijnFyTq++s5Yj7CnILzgnG8fQqIUZx2J91RF61Lp1OCAo3NACheb9rzJ+/di+muu9CvWJGc3zbERMxGFRUVFRUVFZW3S7m9HGemk0ZXY0rLaDQepcXVwl/N+it0ko7VztWT0nnTc6bzhaVfuCTVdpPhYnReljGLIksRLzW+xNz8uWyctpH6gXrkmEx/oJ/anlqmZk2lOq+aJ+ueRCfpiEVjuENu7Ho7LtmFgIBRa8SkNVFqLUUSEnPr1lauxSt7aXY3E4wGkaMyi0oW8cGZH1QDD1RU3gFUk01FReWKQ7JaMW7YkDZd1LhhA2/0H2Dr6a3oRB0KCnEljiiICAiE42Ey9aPPgLtU1XaTwagx0uXrQi/pEQWRv5v7qXOJoQoRjYhHivBa82sUWArItyTaRscLk8Bk5sPVH6a2p5Z/fuvbrHGsZNWitWijCi6dTMH6tbB9R+r5KymBcJhYdzeGm25K3BgOgygiWCwTSkRVUVFRUVFRUXk7WPVW7ph5B6FYKCX8oMhSxPppiQCmp04+hVbUTlrnXapqu8kwXOeFoiF6/b0EogEEBABCsRCvNL6SovPK7eVMyZ5CnDi13bUc7j5MdV412aZsCiwF3FhxI5nGTGp7anFkOnDLbhQU2r3tVOVUIXgESm2lBCIBXCEXRRlFrChbQX+wnx5fD38976+TJp9Nb2Ne4Ty1ik1F5R1CNdlUVFSuSKSsLIy33w6BQLLqDJMJyWplujid6rxqantqk4+PKTEAqvOqqc6vfrd2ewRe2Us4FmZq1lQGAgP85Prv4dzbkJIYWuB0YFpyHWf6zyTF13hhElZ7JjbZy66WXXxkzkd4ePfD/PPr/4ZO0iEgcMvUW/jO2n/FGr8JIRRGMOiJ1p0g8MQTEIkgv/xyyn6a//qvISvrnTkpKioqKioqKu9rKuwVfLbms6yfsp5OXycaSUORpYgKewWDwUFm5c266nReu6edLl8XgWgAAAWFuflzOTtwltdbX2de4bykzhseJmHVWZNhEgbJwJZZW5iWMw3vOZ338fkf5+HdD1M/WE+GPoPeQC+rnKu4c9ad7GraxacWfAqtpOW5s8/xzJlnyDRmUtdfB0BVThV5ljym5Ux7186Risr7DdVkU1FRuWKRrFawjixrL7OX8eXlX+Zbu7+VIsCq86r58oovU2YvG/Gcd4tmVzO1PbX89bV/jRSOJgy2CxNDGxopVuIIN6TOFxkvdMGqt7J+6npea36NO6ruQBAEgpEgVr0VRVG4+c+3U2wt5p7Z97BcmIkxXeLoOdTAAxUVFRUVFZV3kqGEz3S3X4067ze1v6G29/z+zsmfw5ZZW3ho10MEo0E6vB0pzx0vdGE8nfet3d+i2FrMsrJlNAw28ErTK2QZs5JBB0aNEZsh0aWgBh6oqLxzqCabiorKVcni0sX8aP2PqO2uZVAeJFOfSXV+9RUlvCCRoBWJRzjVf4oHp95DfOsv0z+wsZnCVSuAxKpoUnDpLJTbyrHm5KR9WoW9gmxjNgc7D/LokUfp9HUSiUdocjXhzHRy56w7ebHhRQzlAtc7HcQnma6qoqKioqKiovJOczXqvE/O/yQLihYQioYwaAy0e9v5t53/RjCWaIcdSgUdofPGmBs3UZ2XZ85jZflKzg6cRUHBqDEyPWc6eo2eLGOW2iqqovIOoppsKioqVxQhnxvF50OR5WTllsGSflZYmb3ssomtmNebtlV1sgytHEbiEQjJYz5WE4nT5GriieNP0DDYQDgeRifpcNqd3DHzDirsFWmfZ9VbWVmxkhk5M6jtrqXN04ZG0qAoCj2BHmblz+LQYB3zbvwQNgRiDZNLV1VRUVFRUVFRuRR0+7qp66nDJbuwG+xU5VYlWygv5HLqvMnsx1gM13mhaIhH9j1CX6Aveb+AgCAIZBuzyTZmXzad1+fvo6a4hjxzHoPBQWwGW9JgGy9dVUVF5dKimmwqKipXDKGBXiLPPJtSbSU6HXDLOgxZue/YfsQGBkYNXZAmObes3F5OljGLgeAA6EfG1Q9HYzTzm6M/Z0/LHgwaA99a9M849YUghxFCeiIeF9oM+6jPz7fkE/K5mCrkIMhhIlqRF717eKrpWW6ZdguPNvyZj677MNmse0fTVVVUVFRUVFRUDncd5pF9j9AweH6xz5np5MGaB5lbMPeq3I/hOs+itXCz82aeb3g+xWjLNmZzc+XNlGWU8Zujv2FPyx4i8QhTsqZg1Bhp87bxzOln2Dht45imYr4ln5N9J9l+djtNriY0goZwPIxNb+MD13yAbn83d866EwHhHU1XVVFRSUU12VRUVC47E1ktjLpdaOQommXL4abVKB4Pga1biTc0EnnmWVxrV9Ikd55vn7xMgiHm9Y4w2ABijY0Et23DePvtk6poGz7Y9ri/iZlOJ/FhlWRDSE4nbjGcNNgeW/XfxJ99nlDjM+cf43AgjmH0Bfp7yHx+H8qwff+w08kD639Na6iHl7v30hBqJ69kUfL+eDBIpLeHaNCPotMR12vRRwWEYZWEqgmnoqKioqKiMhoT0Xn1/fW82f4m07KnMa9gHv6In1eaXqHF3cLTp55GjsooKJdd53X7ukcYbAANgw08su8RHl718KQq2obrvBZPC7dMu4VQNES7t524EkcjaijOKOYD13wAOSYnDbb5hfN5vv55Gl0JzaaTdNT11vGx+R8b1eg72HmQb7/2bV5reY1FJYsotBYiCRI5phyO9x5nZu5M/BE/i4bpPK/s5WDHQTq8HWg1WvJMeWhFLf6IH7POfFnPtYrK+xXVZFNRUbmsTGS1MDYwQChN5Zjl3nvx/epXicq2wAJ2NO5AK2qpzqtGJ+kIRoNvq8R/iHgweD5cQKtFU1JCrK0NIpGUx8UaG1ECAY4FLpiXNo44GRps2+puRVg3DWnHi8Tqh7dsOjFt3MTu7tcJRoP857J/I/7s8xMy+pJtrUD8+edTDDaAWEMDwWe2UzhzJndXbKQh3n/+uN1uAtu3o8nPR1NSAr4gGI0IOh3+3/0OAoHz7aS29C27KioqKioqKu9fJqLzDncd5lu7vsXzDc8nHzMrbxb3zbmPVk8rz9c/z9mBszgyHZdF5w2fgdYf6MegMaARNUTj0ZTHNQw2UNdTh0lrGjkbdwytN6TzWlwtuEIu7qi6A1/Ehy+ceH6WIYt5hfOo7a4lGA0yI2dGisEGEI6FaXY3jzD6hgzMUDREXX8d7Z52NldtZnfzbl5sfBEAvaSnKqeKhcULsWrP72eTq4nf1v6Wbm83GklDKBrCqrMyNXsqGlFDi7sFm8HGpumbRm1VVVFRmTyqyaaionLZ6PZ185P9P+Hm4pUsqX4QTSROVCvx+sBhfrL/J3zt+q+Ro5hGrxzbsQPTpk0Efv97xEgUrahlevZ0/nv/f3Nm4AwFlgI0ouZttRpEXIPIT29LnVPmcGDavJnAk0+OMNrioRBuuYdpxhIkb5RIuAeXxY/dXjDm61j1VqryqhLb2HxH2sRQsU8EwKkvTKlgu/C8EAiA1ZrS1mrasoVYayv65cuRSkogGgWNhlhbG/LevegXLUJ+5lkqNq3HK3sJel2YXtiNft585H37kIclj0oOB+a77sL/q18Rq68n8PTTmDZvVivaVFRUVFRUVJJ0+7r50Zs/wqAxsKhkEeFYGL2kxy27+dGbP+KhGx8C4JF9j3C893jKc4/1HGN/5378YT+tnlaKrEWXReed6jvFY0cfo8OXSPbsD/TT5mljedly9nfuJ67EkaMyMSWGJEj0BHrYemorHtmTDDA4oj/C0rKlYxpRVr2VmfkzgQuCDYa1bJ7sPwmAWWtOMdiGkAQpafTlW/JTDMz5hfPpD/Rzk/MmGlwNGDQGZuXNwhPy0OZpo93bzo4zO1hSvASv7OVM/xl2t+wm25hNm6eNF868gD/ipzfQS3VeNR+99qPkm/Pp8HWw9dRW7p97v1rRpqJyiVBNNhUVlcvGqd5T/N3MByjcfQyl8ank7esdFVy7/AFO9Z4ixzR9hME2RKyxEeGmmwAQ9UamZk/lzY43cWQ6MOvMtHva0Yiaiy7xd7m6kJ5+fkTiZqyxERkSxtQw8wmtFslipnpnG0rj+dtFp4PIxo1o7ZkTel3RaIQ0hlWRpYgiSxHIYwckKKHQyLbWWAzT5s1pDTPT5s0QixFrbEQfivK/p37LXxXchCa/AHnfvrQGZ+jll5PHH6uvR/H70+6zioqKioqKyvuTEz0nyDPnsat5F62e1uTtpRmlrChfwYmeEygoNAw2oBFHXnbKUTk5u8ysNTOnYA77WvdRnFGMI9OBHJVpdjdftM4723+W7+z5Do2DjYiCiD/iJ9+cT5unDVfIxYMLH6TV00qGPgN/2M9vj/4WURD504k/0R88X/lfZClKhhdMxIiy6q3Myp814vYhnTeUMjqcDH0GWkkLgEt2jWhrjcajVOdX0zDQwLbT25AEiXA8jF2fqPQbCA4QiUc4O3iWHQ072N+xn8Odh2n3tmM32FlcspjtZ7ZTZC2itqeWZ88+ywerPgjAQHCAZldz2n1WUVGZPOK7vQMqKirvXQq0mecMtqaU25XGJgp3H6NAm4kSCo29EVlGcDp4feAwfzz+R071nSIWj1FkLeLu2Xczv2A+WlGbXPmbKF7ZS8znG2GwDRFrbExUhA3DsGYNwe3PjmjJjDc0Im/bRjwYnPDrp6PCXsGG6RtArx/zcYLBAIFAijkm2GyjGmbyvn0I59o9lVAIRVGQIjGkkpLRDc6GhpTjH/d9UlFRUVFRUXlfIcflEQYbQKunlV3Nu5DjMi7ZBYBZZ8agMaQ8LhqPEolHyDXlcl3xdTx35jmO9hxFEiSC0SC5plw2X7MZo8Z4UTpvd+tuGgcbMWlNnOw7yeGuwwwEBlhatpTnG57nzyf/zOee/xwfe/pj/PbYb/nq9V/lmTPPcKT7SEoraYevg22nttHkarrocwXndV6OMSfl9gx9BtOypyFHE+abXW+nrqcupQW3wl7B9jPb8Ua8xJQYoiCiETT4wj66/d1MyZpCobWQI11HUBSFHFMOqytXMzNvJm2eNt5oe4NZ+bPo9nWTY8qhxd2CL+xLbt8X8aGionJpUCvZVFRULhtFko3YBQbbEEpjEwXi9SiasQ0lDAZ6Vszm31/4G26eejOPHX2Mrae3Aom0pvmF81lUvIhtZ7bR6mml29c9oVXOZlczRfI46wzR8wJLcjiQSooJbduW9qGx+oa3Xe1l1VtZUroEjxzF6HCkNcAkhwNMJpSBgRH7OlZF4NCxKHotvzj0C9bftBh7VBp7h4Ydv2AwjPFAFRUVFRUVlfcb0Vh0hME2RLevm2AkiCRK+MN+9Bo9JRkltHnaCEUTC3caUYNZa+bGihvZcWYH84vn83zD80mdJyIyv2g+91Tfwy8O/2LSOs8VdGHWmjnVf4r+YD9aUUtJRgkHuw7iC/swao0UWYro9ndzqPMQr7W+xmBwkGg8ihyV0ejOXyp3+Dro8HVQnV990edrSOcZJANrK9fS7G5GEiVEQcSsNeORPTgznVTlVfF66+spz43Go5zsO8mc/DkYJANxJU5USei0UDREgaUAp93JCw0v0OHtYDA0SDgaxqQzsblqM0/WPUlNSQ2vtbxGnjkPURAJx8LJ7Vu0los+LhUVlVRUk01FReWyoYvCWLVd8VAQtwUMYxhKIQ3c/PgHuHv23RzrOYZG1DArbxZe2Uunt5NOXydPnnySuflzcctuvvTSlyY0tyMYDYI+fUrnEEJWFoZ770HR66nzNpAz0MJY4/8vRbVXhb0Cr+zFsOEWQtueGREGYdywAclqJRYIpL62b+wVSMXnQ3I4OBvqIBqPsqNjJ58su2PsndEkfiKkykoEs/niDkhFRUVFRUXlPYlBayDTkMlgaDDldr2kR0GhJ9BDZWYl66eup9PXiUVrwRv2crDzIKFoiJKMEgosBfT4e5hTMCetznur4y3yTflck3PNpHVetjGbmXkzKbAW0OpqRSNpcMkuTg+cRkAgFAnhC/uozKykL9BHs7s5+fyYEhuxzWgsOuK2yVJhryDbmE22KZtHjzxKp68TAQGP7MGR6eDBmgfJt+Rj19tTntft76bCXkGTq4kZOTOS7aFaUYteo8eis/BG2xsMBAeIxqNE41G0kjY5+62mpCZZnWfSmgAwSIkF1CxjFuX28rd9bCoqKglUk01FReWyIRlNY94vGAw8uOtL/Gzdf8CzL4wwlAwbNvDLhidZO2UtgWiAbae3EYlFiCpRsgxZTM+eTlyJc6LvBHfOupNAJDChuR0uVxflsQy0kgbB6UwJPUjiKOeg+wQ2wYg+IGDXmTAbxp7Dcamqvax6K+jBePvtieTQcwEJmEzJVFFMJqTh5qRmnK9zgwFp/Rr+5cVPohE1fHv/97m/6sOp2xiG5HAQa2s7ny6qzmNTUVFRUVFRGUa+OZ+akhr2te1LGm06UYeCwjU515BnyuP7b3wfg9ZAh7cDX9iHI9PB3bPv5lTfKW6bfhvP1T9HSUYJja7GtDrveO9xGlwNfGjWhyas85pcTTx96mnq+uqoH6inN9DL1KypODIdnB04CyTMrhZPC96wl7g3jt1gRyNoiMQjSIJEKBoiFo9h1pnRSTqMGiOFlsJLct6seisrK1YyI2cGdT11uGRXYrZa3vkU1aq8KpyZzmTLqEbU0OnrJKbEWD91PW+0vcGJ3hP4I356/D047A5O9J3AqDUSioYIRoJkm7Kx6qw0uhpZVLIIEZFMQybTsqdhkAyE42GyjFncOv1WNfRAReUSoppsKioqlw3BbEaqrCRWXz/iPtHp4PmuPbR6Wln2p1v42Q3fp2r1jQhyGPR6ogYt+32nsRls6DV68s35LC5ZzJGuI7hlN4OhQeJKnNn5s8kx5lBsLeaPdX8ESElmupCIaxDp6efRNzQS12oTYQGKkmo0OcqR1q5mxouvorR3YNq0CcFkBVEkNMrxSJWVIIpE29pSEkMB4sFg2jTR8ZCsVrCmFz2S1Ypxw4Zk+EGsrW10w6yykqjNyn8e/19C0RBmnZlufzdLn1jHmx98EZ7dkZqu6nRiXLcOAN3ixarBpqKioqKiojKCcns5VblVWHQWev29hKIhJEFiMDTIwqKF/OH4H3DJLlp7WxEFEVEQOdZzDIBvXP8NPCEPxRnFNLmaRtV5JRklWHSWCes8r+zlN0d/w962vTS5myiyFtHh7aCutw5/2M+ikkU0uBpYVLKIJ+qeQEDAH/GTZ86j29+NM9PJ0e6juEIuYkoMg8bAtOxpLCpZhE7SsbdtLxadhXJbedKYSkkTveC+sci35I9qFOZb8nmw5sFk+IFH9lBsLcYX9uEKubhl6i3cWHEjgWiAXFMuM7Jn4I/4GQgOENaF0Wv0DAQHyDXlopN05Jpy8YV9zMiZQWVmJWsq11BgKaDMXqYabCoqlxjVZFNRUblsiEYjpo0bCTz9dIoxJTgdyKuX84Pt99LsbsYje7jxT5sAMGqM2PQ2Hr7pYX528Gf4wj72te+jKrcKV8jFuqnr2HoqMatDEiVsBht55jx8YV9yxgeQHLQ7nHgwiPz0tvNhB5EIgSefRL9oEfply/ApIeJ6HZ3hfsrOGWyWe+8luGNHwrwaMuXi8dSqO6cT/fLlRGprkQoLUTweMBpRMjMRBIHA1q2pJtZQdZhtrObT8ZGyss5Xu8ky2jlzCD77bMq5Hnqtk3I7kXiE6TnTOdV3KjkXZdZvl/DH9f9H1eqbIBRCNBgT5ugo5p6KioqKioqKCiQqsjZN38TWU1ux6BIzvdo8bQBMzZnKU6efosvXhUf2JJ9j1Bg50XuC+sF6fnX4V7R6Wjk7cJZp2dPoD/azbuo6nj71NAoK0XgUZ6aTaDw6IZ0HcKb/DHta9iSrtHr9veRb8snQZxCIBKgpqcEb9vJY7WNE41FEQSSuxIkpMfwRPyvLV9Lt66Yv0Ec0HkUSJcpsZczJn8Prra8TU2KEoiEyjZksK12GRtKw9dRWBoLnZ+VmGbPYNH0TFfaKt3V+5xbM5eFVD1PXU4dbdnPHNXfwZsebhKIhvGEvAAWWAm6dfite2Yteox+h8waCA+Sb85lfOJ/6wXruqLqDeYXzJpXSqqKiMjlUk01FReWyItpsmDZvTlZyRTQCBz2nON72AnHiKcILQBAEVlas5NdHfs2p/lNYdVYy9BkEI0FcIRd7WvdwbcG1HOo6hEbU0OxqxqQ14Q/7U7Zz4SwLgJjPO7I1NBJB3r0bdu+md8ta/v3AT/nO/H9CObMD05YtRFtb0S9aBAsWgEZDrLMTTVkZ+mXLiEsiQSmGptcDsky0uRn51VeTmzZs2ECkrm7Ea8bq6wk8/TSmzZvfdpXYhdVuw8/18Kq5Ulkky5iYQTe3YC7ukJuZuTOJxCI8Wv8nPjD9A0zJmaKKLhUVFRUVFZUJU2Gv4P659ycruYLhIKf6T9Hn70Mn6dLqvBXlK3js6GPU9dVh0prwhD0oKPjCPva07mFuwVz2tu9FQEBBQY7JE9J5XtlL/UA9Pf4eMo2ZZBoyseoSGskf8XO85zhNg01cW3Attd21HOk+goKCJEjMyZ/Dpxd8mrODZ7nRcSNaSYtH9tDt6yYUDeEJe3i16VU6fB3J12t1txJX4igoKfsxEBxg66mt3D/3/rddJXZhtdt1xdedr5rTWii3J6rmvLJ3VJ1XaC2k0l7JmilrVJ2novIOoJpsKioql5URrZIGLUdbT2HWmonFU4fKioKIRtSQacxkb9teFEVBK2npDfQSjUeZlTuLelc903Omc3rgNL6wj5m5M9k4fSMne09SlVvF6f7TlNnKqMqrStl2k6sJuzeEMMa+WhRtYpaFz4VFq0XMykLeu3fErDh9TQ2B3/8e/f33EotFYXAQubZ2RKumaLWmn/dGwmh7u2mk6RCNxrTbHL7aPBAcIM/y/9m78/go63P//6/ZMplJJjtZIJBMIiCbhqUSQEBFcWFT0datVuyxWvWox662/VX8tlVrN4+telwq1XqqPUoXFsUNFVBBFlEEBckGAUKAbJPMZDLL/fsjZGTIBpKQhLyffeTxMPd9zz2f+STQi+u+Pp8rHSCyF4c2vBUREZHjdfRSSXeSm60Ht5IQk9BunJfiSOGjio8IhUPEWGIA+LjiYwqzCympKWFY6jCKa4ppCjUxKH4Qs4fPPqY4b8n2JbhiXDhtTnYcao4TnTYnVrMVh9VBQWYBMdYYFm1exOyhs7nmjGvw+D2kOlOZkDmBH7z5A97b/R5Wc/PebGcNPItrx1zLos2LGJQwKCrBBs2Juw92f8DkwZOxW+1R56p8VZTVlDE6Y3SXzrfL7mrznorzRHoPJdlEpNuEa2vbXCq54JIreOvAh+Qn5/PZwc+A5sDLaXNGAjCP34M/5MdispDuTKfSWwxHLRsAAQAASURBVMn7u99nWOowhqUO4/ozricxNpGk2CR+8e4vCIQDnJd3Hl8f+XUSYxPZuHcjo9NHMyRpCB6/hyXbl3D1wIuI6WC8hj2GvOQ8Gq2QWljYvPTyqMRZqKQEPzRXtzX6aWyqJSE7u7ka7mjBjrtQdUU30uNx9NPmI5+AioiIiByPlsTW0Uslp+VMY3ft7nbjPJvZRkNTQ2QPt5Y474PdHzAsdRjD04aT4kwh0X58cV6Vr4q85DwMjEgFnTfgJT4mHl/Qx0DXQAYnDqa+qZ4/b/4zoXCIQQmD+NGUH/HAmgdYs3sNQPMyUZMlUuk2M38msdbWza2aQk14mjzUNtZGklpHqg903Pm9qynOE+kdlGQTkW4R9vlaJdiguYKLV15jxqVzSHIkcdB3kE/2f4LVbMVsMpOXlMeItBEc9B7EbrWztXIr4waOw17dvIHrrrpd1Pvr2bhvI7OHzmb9nvWMzhhNQWYB75a+y9rda3HYHFTUVzAmfQw/mfoTEmMSqfJVscNXzhl57i/3ZDuCJS+PVHsy33FfSZMFLHmpbSfOaE602QsLCdljqA8ESG8vmdZJx8+u6kZ6PNp7AioiIiJyrFoSWx6/h9PTTqcp2Jxwctld7KrZxcTsiaQ4UtqM80amj+TpTU8TMkJtxnm1jbVs2ruJWUNnHVecB1Djq+FrA7/WXGFXW0bYCBMIBchNyuWsQWeR7kznDxf+gT2ePYTCIbYf3E5pTSmb92/GbrHjD/kxMDAdXvvwccXHXDfmOprCTa3mIMYSg8VkafMcQLwtvvt+AO1QnCfS85RkE5FuYTQ0dLhU0lxfz5QhU/jDzD/wdunbHPQdxGl1YrfaibXEMmXIFN4pfQcDgw17NnBaymkMThjMkMQhTBoyCZvZxvNbnueA9wBTh0zl75/+nfK6clIcKWTGZ1LZUMmWyi3cv/p+7jv3PgDe3b+W/Blfx2kYGCWlkfFY3G7sZ52Fd9GzEAhgy8/HfOGFYLNBINDuZ/zEs5MP9n3IrTlXtP05O+n4aYqLO44ZFREREekdymrK8Pg9DE8dzp8/+nOkYg1gRNoIkh3JTM2Z2m6cV5hdyDtl79AUboqK8wYnDKYwuxC7xX7ccR7AQe9BymrLOCPjDCYPnow/5MdhdVDnr2P7oe1kxGdgNpkZkTaCZzc/y/vl73PtmGtpDDaSaE+kzl9HY6gRk8mEYRjEWmOxmC1UN1S3mgN/0I872U2MufU6iRRHipZoivRTSrKJSLfobClkvecQnngrI9JHkJ2Y3aq0PdWZijfgZd2edQSNIJ8f+pyJgyZyy4RbCIVDvPTZS1Q3VmO32HFYHWyp3AKAL+hjcOJgBrkGscezhy2VW9hVswtoLutfuu9tXCNjmHz2PJJw4sBKqLQU7+LFkYRaqKgI32uvYS8sbLeajcQEbvnXVXgDXv5j9PVtJtP8a9fivOYa/GZzmx0/T7TpgYiIiEhPqA/Uk5+Sz58/+jPbD21ngHMAdqudUDiEp8nDos2LGJY6rN04b4BzAIFwgDW71uAP+fn80OeMyxrHFSObH1y+/NnLxx3nAditdqp91TQFmzjoPUidv470uHQCoQANgQbsFjv7G/azumw1E7MnYrVYSYpNIhAK4A/5sVvtJMYmYrfYIw0N4mPiWy0XdVgdmE1mLj39UvbW7Y1aGtqyD5qWaYr0T0qyiUi36GwppN8K2/dvISM+o83S9nPc5/BU/FN8euBTqhurSY5NZvSA0QwbMIzl25dT3VhNjDmG6sZqGkNfJvRa9vfYWbuTjLgMDngP4Glq7rhU5asiFA6xpOw1/ufTRTw37WGMv/67zfGFioqwT5kCbSTZLHl5LPriJcpqyijILGC3UcPQuXPxLVsWnUwbMgRLcnK7HT9FRERE+qJ4WzxNoSZ2Vu0k25VNaW0pHr8HaN7TbH/9ftbvWc/03OltxnlTc6cy0DWQTw98SpW3inh7PHnJeQxLHcaq0lVfOc4zYSIrPou99Xsj+74lxyZTH6hnYPzAyDLQQDhAvD2e3KRckmOTOSPjDEpqSqj11+Lxe2g0N2IxWyjILGDCwAkUZhcSCAXYW7+XGHMMibGJZLmymDJ4CimOFO2DJiIRSrKJyFcS9vkwvF4IBDD8fkyHu1paXM1BhSkuDnM7+5/hzuHVPe9gj0+ktKaU3KTcNt9j2IBhDBswrNVxq8XK4ITBVPmq+NrArzFqwChGDhiJxWTBbDIzasAoxmSMwW6xYzFZyIzPZFL2JFYUreCA9wAz8mbwVvFb2IJGG+/6JZPViiU/PypxZnLnUjZ5KI+9cQtTh0zlR1N+xOkDTgfoOJmmpJqIiIj0ER6/h51VOymrKaMx1Eh6XDqjBowiIz4DgJykHDbt28Qg1yA8TR6SYpMwYWJ/w36cNidVvio27ttIrb+WKUOmtBnr5afmk5+a3+p4V8V5u+p2keXKwuP3MDB+IDPyZrDX09wh1G61Myh+EB6/h331+7h5ws08sfEJSmtKcdqcBMNBRqaN5EdTfsSo9FEA/GDKD9pNpmkfNBFpoSSbiBy3cG0toepq/KtWRS2RtOTl4Zg1C2+cjc2Vmxk6YxIOIwwlZZFrTO5cSibl86tl1/Lbmb9lddlqUh2px/XEz262c17ueRgYvPDpC3ibvPgCPiobKrlx7I1sO7iNTXs38bOJP2D2oPOID9mwN5q5+rTLqAzWUddUx1mDziLRSKH9HdfA5HBEJc5CMVbKA4fYUr2FX537K8ZkjGFI0pDI9ebDiUYRERGRvqq0ppS3S97mrx//leKa5v11XTEupuZM5Tvjv0N+cj6b9m2ior6CndU7qaivIGSESHWkMnrAaEpqSjCZTJgwEQqHWLZjGd8681vHHOt1VZx3oOEAn1R+gt1ix4SJvZ69hIxQ5H0GugYyafAkymrK8Aa8PHzhw5TXlVPjryHZntwqzlNTARE5FkqyichxCft8BHbuJLB1a6s9yELFxfiWL6dx5jTuX30/Q1OGcuZpwzm78ELsQWiywuv73uPR1x4kKTaJyoZKPtn/CTmJOUzLnXbMYxiRPoKNFRtZVbYKh9VBrb+Wy0ZcxqGGQ6zZtYZ9nn28cdk/yV9bjPHuK5HXWfPcnDZnDrb0EZHPEj6qUq1FS2OCIxNnViCfTPIHjfoKMyciIiLSu3n8Ht4peScqwQbgafKwpmwNNrON6TnTeWrTUyTYExicMJh9nn3YLXY8fg8lNSXEx8STFJvE9oPbMZlMpDnT2FWzi1EZxxY/dVWc5/F7+PTAp+xv2N/qPVoaExydOCvIKviKMyci0kxJNhE5LkZDA2aXq82OmdCcaEs0zqe0ppRDvkM0Bhv5zcY/srN6JyZMBI0gs06bxeiM0Xx24DNW7FyBw+ZgeNrwyBIEaA6MIiX5MfHkJH5Zkp8Rn8FpKafxpw//xP6G/YTCIbYe2MpPpv6EffX7uP2Mm5oDryM6iAKEi0vwL1uGZf4VmB0OzA4Hzjlz8C5dqsYEIiIi0u+V1ZRx0HswKsHWwm61s7psNWMyxlBSU8J+z35un3g71b7qSJxX1VjFpOxJjM4YzdMbnyYhNoGdVTspyCiIutfJiPNcdhdzh89lyfYlVPmqItepMYGIdCcl2UTkuBiNjRAMdnxRox8DgwMNB1j+xXLGZo5les705hJ9E+Qm5vJa0WvEWmPxBrzsrt3NtsptkSRbaU0p/9j2D4LhIImxiQTCAVwxLoanDmdU+ihcdhdVvipcMS6GpQ6j1l+Lt8nL/ob97K7bzeTUAozXX2tzaKGiYoyGhkh1mjkxUY0JRERERGjuGuoNeNs8Z7fa2efZh8fvwWq2Uh+o51+f/YszMs5oFec9tekpUp2p7K7dTcgIRSW5SmtKWbZjGSZMxJhjaAw1EmeLY0TaCEZnjO7SOC83KZcFBQvUmEBEThpzTw/geCxfvpyJEyficDhIS0vj8ssvjzq/a9cu5syZQ1xcHGlpadxxxx00NTX10GhFTk2m2FiwdpKfj43BhInaxloy4zNZv3c9f93yV/69/d/8+aM/s79hPwWZBazZtYYYSwxNoSZq/DVA85PNl7a+RGFaAddmX8KlCYXMzziPARYXr+x8hZXFKymtKSU5NplddbtYv3c9oXDz/hoJ9gTiY+Kxd5IDNBobo743OxxY0tKwZmdjSUtTgk1EpAcozhPpefG2eJw2Z5vnQuEQZpMZl92FYRg4bU521e2iuLqYpV8sjcR5O6p2kOJI4WsDv8aWyi2EjTBBozk48/g9LNuxjBhzDLmxWVySVsg3UqZzUepE/A21vFX8VpfHeS1LQguzCyNJPBGR7tJnKtkWL17MTTfdxP333895552HYRhs2bIlcj4UCjFr1iwGDBjAmjVrOHToEN/61rcwDIM//vGPPThykVOLKS6O8K5dWNzuNpeMWvLy2BOsYkDcAEyYKK8rJ9mRTG5SLrHWWBJiEkhzpPGb939DMBzEYrZgNVtJsicBUFRVxFU5s0hcuQGjZHXkvlPcOWQVXsD/t+HX/Af/wci0kYzPGs/GfRvZV7+PKl8VOw/tJM4WR9Bm6fgzxMZ26ZyIiMiJUZwn0jvkJOWQ5kwjLymv1ZJRh9WBO9kNBqQ6UzEMgwPeA+ys3smQxCGkOdNwWB0UZBRQXlvO4s8Wk+xIxhXjIiEmAWhejmo1WTl/wETS3v0Yo+QfANiBse4cKqaO4eN9HyvOE5E+y2QYhtHTg+hMMBgkNzeX++67j29/+9ttXvPqq68ye/Zsdu/ezcCBAwF48cUXueGGG6isrCQhIeGY3quuro7ExERqa2uP+TUi/U1H3UVtF1/ItStvZXjqcFbvWs0h7yH8IT9xtjiGpgxloGsgz338HP6QH4ChKUM5L+887jn7HjLiM9i5ZysZb20k3HJfmw17YSGW7GzAwOOw8GHNVoZkDOWg9yD3vXsfH+//GLvFji/g4wdTfsD4lNFM3HgoqqtpZIz5+Tjnz1e1moh0KcUPX53iPJHepb3uojPyZnBm5pmsL19PsiO5zTgvy5XF8x8/jy/kw4SJYanDONd9biTOW1u+FrM/wOnvlWC0tb+vO4f3xiYyJH0oVb4qxXki0iscT/zQJyrZNm3axJ49ezCbzYwdO5aKigoKCgr47W9/y6hRzV1qPvjgA0aPHh0JvAAuvPBC/H4/Gzdu5Nxzz23z3n6/H7/fH/m+rq6uez+MyCnAnJgIMTE4Zs2CQACjqQmT3Q5OJ5s9O4gxx7BuzzpGp48mzZGGP+TnzMwzOdhwkD9/9OfI3hsPnr2QuYMvIC5sxdIQopFaMiwJUQk25/z5+Netw7+6uarNAkx25xK+OIGRuSN50vUkWyq3UNFQQbI9mUR7Ir6Qn9CF52J7/V3CxUckAdXQQESk11GcJ9K75CblcsXIKyjILKCspgx/yM8A5wBGpY/CF/RRUlXC++XvtxnnPbHhCRpDzcs1s+KzmJk/k/Pd57Nh7way4rOIMccwOCYFo2Rl229eUsaoKXP5uKaYucPnKs4TkT6nTyTZioubn6AsXLiQ3//+9+Tm5vK73/2O6dOns2PHDlJSUqioqCAjIyPqdcnJycTExFBRUdHuvR944AHuu+++bh2/yKnI7HBENpU90rCYYcwaNos6fx2NwUYcNgdpjjSW71hOliuLuwrvIhAKcOmgGTjefI/wm38nBIQAc54bx0UX02CzQSCAvbAQ/7p1rZalGiWlWFa8TfiKK8hPzSc/NZ/SmlKWbF/CZ4c+A2Drwa1cOGU6oy+ciaUpqIYGIiK9lOI8kd7HZXcxNmssY7PGtjp321m34U5xU+OriYrzBjgHcPvE22lZKDUkcQgb9m7gNx80bxHisDq4fMTl5CVP7fC9rcEwBxoO4PF7FOeJSJ/To40PFi5ciMlk6vBrw4YNhMNhAH76058yf/58xo8fz6JFizCZTLz00kuR+5lMplbvYRhGm8db3HPPPdTW1ka+du/e3fUfVKQfcdldTBkyhUA4QK2/lor6Cj47+Bnn55/PrGGzGDFgBHNzLmxOsBVHJ8/CxSU0rliBvbAQAEt2dpv7vjVfe7h71GEt3aOuGHEFF512EXOHzWXYoDOwp2eqoYGISA9QnCdyasqIz+Dc3HOxmC2ROG9i9kRGZIzgtOTTKMwuJDshm79/+nfeKXuHYLi5U4Ev6GPJ9iWYO9kzLWizYDPbKKv5cjmo4jwR6St6tJLt9ttv56qrrurwmtzcXDweDwAjR46MHLfb7eTl5bFr1y4AMjMzWbduXdRrq6urCQQCrZ58Hslut2O327/qRxCRNnTWLt1XsYem4raTZ6HiYuxnnw2rV0Ow4/ZR7XWPEhGRnqc4T+TU1VGs9+n+T9nj2cNuT+uktqfJw4aabZyVl0eouLjVeZM7l+3e3TQGG6kP1EedU5wnIn1BjybZ0tLSSEtL6/S68ePHY7fb2b59O2effTYAgUCA0tJScnJyAJg0aRK/+tWv2LdvH1lZWQC8/vrr2O12xo8f330fQkTa1FEgZByxP06bLGYs+flg7fivKHWPEhHpvRTniZza2ov16gP1NAYb23hFs8Ulyznr4p9hefXNqESbye2m6pxx7K/+iP0N+4m3xXfLuEVEulOf2JMtISGBW265hXvvvZfBgweTk5PDb37zGwCuvPJKAGbOnMnIkSP55je/yW9+8xuqqqr4/ve/z0033aTuUSK9jKmTqoKgvbnhgeHzYWnnSaclPx9TXFx3DVFERE4SxXkip5Z4Wzyx1vYfhBqGwa5wNXmXzSVYWwV+P6EYK7sCB9l4YC376veRGJtITlLOSRy1iEjX6BNJNoDf/OY3WK1WvvnNb+Lz+Zg4cSIrV64kOTkZAIvFwvLly7n11luZMmUKDoeDa665ht/+9rc9PHIROZopPh5znrvVnmzQ3PwgsnGtw4Fz7ly8S5cSKiqKXKPuUSIipxbFeSKnjpykHD7e/zED4weyt35v1DmH1UFech6DEwcTa3dREaxmSfnrVPmqItekOFKYN3xeZJsREZG+xGS0tH8RoLm1e2JiIrW1tXoyKtKNGqsOEFj+alSizZznxjbrYmJTBkRdG/b5MBoaMBob1T3qFBHyeMDrjfxMcTqxuBRMS9+l+KFv0M9J5OQorSnl/d3vs2z7skiizWF1MGXIFL55xjejqtQ8fk+7+/hK37W/fj/bKrdR468hKTaJkQNGkhHf/h6aIr3Z8cQPfaaSTUROLbEpA+CyeRj19Rh+Pya7HVN8PLHxia2ubalqk1NDqKoK37JlUZ1jLW43jtmzsaSk9ODIREREpCvkJuWS6khlTPoY9tbvJRgKkhWfxdDUoa0SaGpocOrZXLGZR9Y9QnH1l1u+5CXnccfEOyjILOi5gYmcBKpkO4qecIpIfxKpEvT5MMXEYAAmkwkcjm6pLAt5PPj++c+oBFsLi9uN47LLVNEmfZLih75BPycR6U+OXA0SjrGxL1TDx7Xbcdld3VZZtr9+P/e8dU9Ugq1FXnIeD8x4QBVt0ueokk1ERDoVrq3Fu2RJVGMJi9uNfeJE/G++ieOii7q+sszrbTPBBjQf93pBSTYRERGRE9JWnJeS52bE1DHcseYnZLmyuqWybFvltjYTbADF1cVsq9ymJJuc0pRkExHph8I+H95XXsE6aBD2iRMhGASrlVB5Of6NG7FmZuJbtqzNyrKovVNi4slJbN475Vj2zjMaGzscV2fnRURERKRjHcV5WR98zrdHXsefPnmKR9Y90qqy7ETiPIAaf02HY+vsvEhfpySbiEg/ZNTXYx83Dv+6dfhXr44cb6lkw2xuPn5UZVlpTSlLti/hkPcQZ6dPINeViCVUS8jcQLjBC+EwhEIYPh9UVWEkJWFyuSJBmCk2tsNxdXZeRERERDrWWZx3fnwMf+KpVpVlLXFebWMtSbFJBEIBBsQPYHbmdGyvvUPoqIZlpotnYrjiovbZS7IndTi2zs6L9HVKsomI9ENGOIx/3bpWSzdDJSX4gdjzzmu+7ojKMo/fw5LtSyivK+emoVeT8f42HOPN+N9ZSf1RTQzsEyfiXbwYAgEs+fk458zBnJjY3EXU7W53Tzaczu75wCIiIiL9RGdxXtzMmZFjLZVlLXFebWMtKY4U/v35vxmaOpRUcxyWFW8TKimNule4uATTK6+xddIQsga4yU3KBWBk+kjykvPa3ZNtZPrIrvyoIr2OuacHICIiJ5/JYsFeWIjzyitxXn019qlTwWYDDu+NZm7+v4cjK8vKasrY59nHWalnkrHqE2Iys9oP4Natw15Y2Px9URHepUsJ+3xYXK7mLqJud9RrIt1FtR+biIiIyAkxGUaHe+Cajvi+pbKsrKaMKl8VSbFJLN62mITYBNbsWsPk1LEYRyXYWhglpWRbU3l568t4/B4AMuIzuGPiHeQl50Vd29JdVPuxyalOlWwiIv1MsOoQja++2qrhgXP+/Ej1meHztaosqw/UU9tYy1lJozBK/o2lcFLUEoQjhUpKIkk2aE60GQ0N4HCAxYJj5kwMv785iRcTA1arEmwiIiIiJ8hzcC+x3k72wPX7gejKsvpAPQD+oJ/immKGpw3nzeI3iQkaHd7L0hSkuLqYspoyRmeMZlfNLvbU7mF6znRmD5tNhjODUCjE8PThSrBJv6Akm4hIP+KvrSKwbHm7ywfshYXNiTOzOVJZ1rLR7ZnhDP6/MbcTb40jbLM1b6LbAVNMDPapU/GvXQuAYRiEqqrwLVsW9f4tVWwiIiIi8tXV1uzH9MqbcMSDzrZ4rWHykvO4q/AuBlgSCB08yJnhDPLzr+ELXznP2JwEwgEAmqymDu8VtFkIGSH8QT9vl7zNHz74A58d/AwTJprCTYxJH8NPpv5ECTbpN5RkExHpR8y+pg6XD9gLC7Hk52NOScGSmNiq/bsTMOXl4Zw/P7KktD1GUxPBPXuI/4//AJOJcEMDjatWtZng8y1bhmPePCyJiV3yOUVERET6G5O3EaOkhFB2dvt74ObnUW0J8uCMB0kL2fG+/HJznGez4Sos5GvuXDbOWorHHOCOUd9mQFwmlry8qBUQkfdzuzlk8jE9dzpfVH3BY+sf45PKTwCIscSQHJvMlsot3L/6fh695FGGJA3p9jkQ6WlKsomI9CeNHS8fACJNCsI+X1SCrUWouBi/xULsBRd02MQgVF5OqLgY32uvYRs5EktWVocJPnw+UJJNRERE5CtpWQbqX7sW5/z5+CF69UBeHs45c4lvifP++WWCzTl/flQ3UjuQ53ZjL0yFiRPxH7XPm8ntpnhSHvete5CBroGMHjCazfs3YzY1P4RtCjVR3VhNkj2JLZVb2LJ/i5Js0i8oySYi0p8c0cigLabEhOYuoIDR0NDmU0sAa2YmjW++iX3ixNYB3JHdRWlOytknToTDgV97jE7Oi4iIiEj7THY7BkAggHfxYuyFhc175AaDYLUSSk5sM86zFxZ22I3UOmQI1uzsyH67/vhY/lq0mAeW/ozsxGzykvLwNHkIhALEWGIwmZqXmDaFmjCaR0S1v/qkzIFIT1OSTUSkHwk7YjquPouNifwfg9FB1ZslOxv/6tV4S0qwT55M7AUXYFRXNwdw5eWRBgoRwSDEx3c4NpPd/lU+koiIiIgAhjMWkzu3uRtoIBDVoMrkzsWYexEtj1uPjPNa4rq2tGwn4n3hhcgxz/WX88CGP2BgEAwHqfJV4U52EzbChI0wFpMlcm3YCAOQbE/uug8q0ot1vKGOiIicUuyJKcTOntXcOfQIFreb2NmzsCemRI6ZOqp6O6LpgSUrC8Pnw/vSS3hfeKE5SDsywQZgtWJ4PK3e98j3x+E4/g8kIiIiIgAkJmVguuQCTO7cqOMmdy6mS2aSmPRl84GoOK+TZlZHnzf8jWTEZdAQaCBshDGZTBzyHqIgsyBSudbCbDIzJn0MYzLGfKXPJNLXqJJNROQUsL9+P9sqt1HjryEpNomRA0ZGujiFPB7wejEaGzHFxmJyOrHNm43d1wT+RrDHEnbEYD0iwQZgiovDkp9PqKio9RseToi1LC+wdrTBbl4eYY+HxpUrif/Wt/CtWNFmd1E1PRARERFpraM47+hzowaMwj73ouYmCH5/8xJSZywJSdHdPaPiPGsnaYGjzvstsKt2F5nxmaQ6UgmFQzy96Wl+Pv3nPPfJc3xa+SnQ3PxgVPoofnT2j7Qfm/QbSrKJiPRxmys288i6Ryiu/nL/tLzkPO6edDcjrAPxLVvWdlIrM7PD+5odDpxz5uBdupTQrl3YJ0/GmpcH4TDExhJ3881gGPjXriVUXt7uBruxM2ZgstmwZGZS/+yzOOfOxXT++dDU1PwU1eFQgk1ERESkDe3FeXdMvAMzZh5e93Cb5woGFnR436g4r7y802ZWEe4c3qlcR8gIcXrq6Zw95GwuGDSNB8f9CEsgyJUXns+u4EHWHviILFcWBRkFSrBJv2IyDMPo/LL+o66ujsTERGpra0lISOjp4YiIdGh//X7ueeueqODKYXXwrdOv4tLciwm+sqLdgCl21ixMhoEpLg5zB0s1wz4fYa+XxldeiWqEYHG7sU+bBk1NeF9+GWiubLNkZ0c22DUlJtK4cmVkPw9LdjYAJpcLIzYGW3JqV02FSI9S/NA36OckIn1JW3EeQDAcZLBrMJNzJvPc5uewW+1Yzdaoc9+f8n3sVjs5iTm47K523yPs89FYV43VbKFpxeutY72WZlaBACa3m9rzvsb9mx8hbIS5IO8CxsUPJe3dzc37wB1mznNjnXUxjpQBXTshIj3keOIHVbKJiPRRYZ8Pp8fPL06/jYDNzOoDG/m/on/zu8n/jyHVBrZgGP/RCTans7mSzOWC+nqMmBjClZWQlBTpNnW0plATwaMSbPBlxynbqFHNy0ZXr261aa7z+usJ7dgBEHXO4nZjHTWK0HArsfGqYhMRERE5UtjnI6k+xONn/n9gj6GREG/sW82jnzzNIe8hqnxVTBg0gZrGGixmCw6rg/iYeKbnTCc5NpmP9n1EjDWG4qpizsg8g9yk3Dbf50Cojvs2/JL1e9Zz44hruKDwEmxBg6DNjN8CA6wm+PocvOYQaw5uYuE/5rKvfh/uJDffGn5VqwQbQLi4hODyV2m8bJ7iPOl3lGQTEemDwrW1eJcsIVxcTEvPznnuXC6+4L9JbLLg/3QV1qSjujg5ne3viXbxxYR9vjYr2oz6+lYJthYtFWq4Wj8hteTltVlFd+TrgvX1oOBLREREJKIlzju6qmze1KmMmjaMr6+4EW/AS01jDUXVRcRaYxmSMIQbx97I8588z8f7P2ZwwmAC4QAj0kZw84SbSXWktlnRtq1yG0VVRRRVF3HPe/dxz+HjZpMZh9XBjQU3ctB3kFd3vgqA3WLHFePCneQmNyYdo2RV25+huARDcZ70Q+ouKiLSB4Q8HkL79xMsKyN08GCrwAvAKCkl9s33CB882HzObo8675w7t1WCDZoTXr5XX41q5X6kcDvHI9roSGVxu3HMnIl/7doOX2f4/R3fW0REROQUt79+P28Xv80/P/snZRXb24zzQiUl+Fevxl1tYsHp1wBEkmbBcJAbx97Iv7f/m7LaMlIcKdgtzXHgZwc/44kNT1BaU9rmex/yHaK+qZ6wEY4cMwyDQChAfVM9BgbJjmTMpubUgT/kZ+SAkcweNhs6ieMU50l/pEo2EZFeLlRVFdW8wHn11e1XlhUXY584EQDD44naxNbkcrWuLLPZInulGXV1hEKhVnu0WePiibn66sg+a6Hy8ubkWSBw+AIrprg44m66CaOmJnJNuK7uy2vaeD9TTAz22FhCVVWYHI4O94UTERERORUd3djg2WkPd7qC4Irkizlk1BNjjuHGsTeSFZ+F1Wzl7ZK3MTCIscQAkBKbwukDTmeAcwCf7P8Ek8nUao+2lNgUpgyZQl5yHjaLjb11e3l/9/sEws0xnMVsISkmibsn3U1pTSlWs5U6fx1ltWUEUs7q8LPZYhwEDlRiiXcpzpN+Q0k2EZFeLOTxtOoO2lblWJTD571LlkQvDz36aaLN1twRdN266P3S8vOxz57FzkAF2aYkTCvebLVcwTl/Pt7Fi7FkZxP2eDDKywmWl2PNzo7cyz51avOS0ZbXtvd+LQ0UkpPb3RdORERE5FSzv35/VIKtMdiIuSnQ8YuCQaxGmG0HtmEYBvWBejbu3ch3v/ZdbGYbmCA+Jh5fwMekoZPYuHcjbxa/SWVDJV9UfUGKI4UL8y8kFApxqPEQr+x8hQ/3fMiWyi14A15yEnO4dMSl/POzf5KXnIfdYufTyk8pqi5iTMYYth3YBsDIASPZUl/ENHduqz3Z4HBX0s8+w796NZb8PJxz5irOk35By0VFRHozr7d19Zm1k+cjLee9XuqffRb7xInE3XQTpqOeINoLC/GvW9d6+WhREf6lyxhEArz+dtvLFdatI/bCC7FPnYrZ5cK/di2hkpJI91CAYEUFjlmzsOTnd/x+JSX4V60iUFRE2OfrbEZERERETgnbKrdFEmzBcJCD3oMErJ38E91qpclqYtmOZSzZsQQAb8DL2vK1zMibgdPmxB/0Mz5rPKt3rWZX3S4sJgtWs5Udh3awtnwtD699mOLaYp7c8CTvlr2LP+RnwsAJOGwOimuK+WD3B1x2+mVcNfoq3MluguEgdqudvOS8SBfTQCjAgJRs6mdMwuTOjRpiS1fSlm1DQkXFeJcuVZwn/YIq2UREelDY58NoaMBobMQUG9tqqWZb+6SFysujloEeyZKfR7je8+UBrxfviy8C4PzWt6JeZzmi6qzVexQX46w/G8aPx1ta2mrZZ6ikBMfMmQS2b8f/3nuR86ZYO84bbsAcGwtOJxaXC+f8+YQ9HgiH23+/w8sfjIYG0HICEREROQV4/B7KasqoD9QTHxPfaqlmjb8m8t/+oJ9gOMiW+iLOy3MTLm4jznO7CXnqWFz7OkGjeeVCbWMtu2p3MbBqIF8b9DXeLXuXsBFmYMJA1uxeg91iZ0DcAA55D/FRxUcApDhScCe7GZI0hN2e3eyp20OsNZa/Xvw0BQnDsAXCxMYl8lHt5yzb/SblnnKaQk2Ew2HuLrwbp9XJiPQRZMRn4PF7aLj4HJwBA3vAwOwPECovx7t4cVT8GCoqUpwn/YKSbCIiPaTNzlH5+TjnzImU05tiY1u9zr92bfOyS2jVJdR+1kSIjcWSn0+oqCjqHCYTjlmz8C1f3vy6zpad+nz4N2xorkBrIzkWrqrC/847zfusTZ3avHTUMKi3hHDGxRIb3xxEmg/vtxYsL+/4/YLBdpsviIiIiPQlpTWlLNm+hCpfVeRYiiOFucPnkpuUC0CSPSlyLmSEAHh73/vkTfo6bkyttuuwT53KZ8G9/Pqth7GZbdjMNkwmEyEjxN76vQxNGcq4zHF8sv8TzJgJhUOkJ6QzPG04a3evxcDAG/ASNsJUeat4u+xtRg8YDQb8aeqDDHl/B0bJPyPvOT7PTfbU63jMCGO32kmMTaTSW8nFp11MRnwG0Nx8wTXAxdrytQwLJmB54aV250RxnvQHSrKJiPSAsM/XdueooiK8S5finD+/uaLN6WxdtRYI4F28mNgLLyT2ggswqqsjzQa8L78MgP3iizDPmI6tKYzZbgeLBQMIV1djnzQJ0/nnYzKZOh6k1RqpMGvvvP2cc7CNGIHvtdciiTgLEMzPI3zU3httJQyPvl+n14iIiIj0ch6/h9Vlq/nOaVdjC4SaVyw4HASsZl4qW0GqIxWX3cXI9JHkJedRXF2MxWQBoD5Qz0X/vpL7p9zLpeddjyNoghgbfrPByoObuGrpt2gMNpJkTyLVmYrNbCM7oXm7jn0N+5ieM51rxlyD1WJlX/0+Uhwp1DbWMmf4HEJGCKvZyu7a3cRaYtl+cDvjMsdx3bArGPL+9lZ7qxnFJWQC54yZxH9//D/srNrJIe8hiquKuXHcjZFkIUC8LZ6QYcXSwbwozpP+QEk2EZEeYDQ0tN856ohyeovLhWP27FbNDyzZ2Vhyc2l45hnwelvdw79kKQ3fuoIfbLqfX4/9Ma7n/tHqGvvUqe0vO3W7CbVUnrVR8WZxuzHFxWGKj/+ysULUZyiOThYCpri4VhV2R94vXF+PZfDgNudEREREpK/YW7eXawbPwrdsGf6jVh1cM3s2O+v2MnzAcDLiM7hj4h384YM/sPXAVsJGGDNmHDYHK8rf5hcfPsS3x36b//fu/+Ouwruobaxl/sj5mDDRGGwkTJiGpgb8IT9pzjQMw+DzQ5+zZvcaznOfR5wtjpykHBZvW8yKohWYTWZCRohxmeMYED+AAc4BmE1m5g+5COPN/23zs4SLSxhVeAl76vZwoOEA7mQ3e+v3smT7EhYULIgsf81JymHHnk8YmufGaGupa34+pri47plwkV5ESTYRkR4Q8NZ3et5CWvM3ZjOxl1yCKRjE8Psx2e2E/X6CDZ42E2wtwo0+Nu/bzHr3p5zfxt4e/rVrcV59NX5TG8sRJk5s3ksD4KinjuY8N5aLZ9L49mpip0zB7HLBhAmRajr/2rUQCDQnC2trCdXVfbk/25w5eJcubbWU1T5tGpbkZLV3FxERkT4vzzoA39JlbTZ78i1fTv7s2ZFj8bZ4rh5zNYe8h2gMNpIQk0BTqIk9nj0Ew0GcNicmk4lN+zYxLmsc2yq3sbN6J2aTmbAR5rSU07hmzDUMcA6gvqmei0+7mIO+g+Qm5ZLlyuLvn/6douoiLCYLZpOZFEcKAIu3LeaKEVdw24jrifeGaT+ihERTLDPyZlDZUElRVRED4weyce9GBrkGkeJIYeSAkWTEZ5CWko3v/AwcbxKVaGvuLjpHcZ70C0qyiYj0gCZrx0s1Gy1hVu54hXOSxxF+9fXWe69NnIglJqaTexgc8h3ip+/9gjGz/5d0jgp4srMhEMA+cSJMmQKNjV8uOz28Wa3F7YZAAOfVV0MwiCkpieC+vZgMC9Yzz6TxrbdaJeic8+dHXh+uqsL70ktY3G4cs2djSUnBOX8+hsfTvHQiJgZiYjAd3rdNREREpK8z+5vaXCkAENq9G/x+Qvv3YzQ2kmOPJ2hL54ltT+Bp8nD24LO59PRLea3oNap8VfgCPr428GvYLXaKq4s54DtAfVM9/qAfTNBQ0UAwHOTswWfz+aHPGZU+ivtX38/57vMpyCzAH/RTmF2Ix+/BZDLh8XvYfmg7cbY4Hpi6kMSV66G9rUEOqzF8/P3TvzM4YTDTcqaxs3on2w5sI9WZyqZ9m8hLzuOOiXdQkFmAx+HBd/G5xAXPw9wUwOqIwxLvUpwn/YaSbCIiPaA0UEmOOwdKylqdM7ndvHtwI/s8ewmvO9TmU1A/NCfa8vMIFbWx7NSdwxsV7xFni+Og9yAz/nEpq77+KlkXXIDZ74cYO0ZdHd5//7s5iTZ/Pv4NG9pM5h3ZHcp59dX4ly0ndvZs/Fu3tj+2lmYJVmvkuG/ZMhyXXYbF5VJnKRERETllGX5/2ydsNpzz59P4xhtRDymz3W7+dvHjXPPWd3mn7B2Kqor4xphvMCZ9DCEjxPcmf49NezfxyhevcMjXXPFmMVtwWB3U+etYVbaKc93nMj1nOqFwiN9e8FvKa8tJc6axv2E/LruLPZ491DbWYrfaSY5NxjAMhtoHES55m1B2drtbiODOYXn5SvwhP3s8e3in7B0KBxWy7cA2YizND3yLq4t5ZN0jPDDjATLiM6I6qIr0N0qyiYj0gJ3e3YQK88nHFLXJrMmdy67JQ3n8g//HI4X3EXrr1TZfHyopgUmTcFx0cfOeaEfuc+bOpWzyUB5aei2V3kqsZisr5r1E8soN+I5KojnnzsW7eDHexYuxFxYSO+M8jIbmBQNHt18/cp82s8vV/hPaw80SovZ1axmz1wsuBV4iIiJy6jLZ7W0etxcW4l+3rs2HlLz6On8475f8x8o72e3ZzZ66PYzJGMNHFR+xZf8W3MlucpJyOOA9gMVsIRgKste3F6vZyrzh83i75G1q/bWEwiG+qPqCc3LOYUzmGPKS86j2VVOQUYDNYsMX8OEL+vA0eSLdPtvtXJ+XR/mU01n8zp/JTshmf/1+SqpLuOi0ixicMJg6f13k2uLqYrZVbot0HRXpr/pMkm3Hjh384Ac/4L333qOpqYkxY8bwy1/+knPPPTdyza5du7jttttYuXIlDoeDa665ht/+9rfEdLKkSkTkZMtJzOF7b/yA64d9nUmFFxITBEtsLHtC1fxl218YkzmGuHAnf0W3VJfNn4/R0ECT10ON4ePNivf56ZKrOOA9QDAc5P9N+imnrStt1THq6Kozf/luinLiMFlg0HufwxHXt9qnrY1mCEcy2e3EXnghJsPAmp8PMTEYdXUYTU3HOVMi0h8ozhORU4rd3mZlmCU7O9KN/WihkhIGWs9ncvZk3i9/H2/AS0psCgsKFlBWU8ae+j3YzDZSnamUVJfQEGjAhIkJWRP4cM+HpDhSCBkhGoONePwe3il7h6TYJMZljeOx9Y9hMplw2pwAeANe3ElummyHEwKHO9fbCwubu8oHg2C1Uhdv5ZKXzqeivgKnzclpKacRDAcZ5BrEbWfdhj/oZ9SAUQDUN9VHJd1E+qs+k2SbNWsWw4YNiwRWDz/8MLNnz6aoqIjMzExCoRCzZs1iwIABrFmzhkOHDvGtb30LwzD44x//2NPDFxGJMix1GDePv5n/2/p/3PzmncwfOZ+15WtJcaRwoOEAB7wHuMX9DaJ6MNlszRVi2dnN+6OlpBCOsWJzOMDhIOi38/h7v2HVrlWkx6djtVjxBXzMG3wBxupX2hxHqKQE+wUXUJObwmv7VvHwigUA3Dvxx1w28zuYqqpb7dOGzYapk2o0U2wsvtdea7X81HHERr8iIi0U54nIqcQUG4vj4sOrDdrpJt/m6/xN/HDUd4gZcTM0BTCbnJjDVkZnjCYnKYf3yt5jb/1e3MluqnxVBEIBTks9jc8OfYbJZCIvOY9VZasie69tqdzCJcMuYVT6KHbV7sJsMgNwRvoZzB42mw+qPuaCluZYgUBUAtDkzmXF6SEGugaSEZeBp8kDwJDEIaQ6U1n00SJW71qNK8bFkMQhOKwOJpwzoWsnUqQPMhmGYfT0IDpz8OBBBgwYwKpVq5g6dSoAHo+HhIQE3nzzTWbMmMGrr77K7Nmz2b17NwMHDgTgxRdf5IYbbqCyspKEhIRjeq+6ujoSExOpra095teIiHwV75e9z776fVT5qlhRtIKKhgribfG8v/t96gP1/GH6g9y4K7O5Au3wHh5HLzGw5OURe8kl0NiIyW6nxuznZ+//ks8OfkZtYy11/jpWX/QScS8ubXcc9huux2c1oNFPMMZCSdN+PqnZzkVZU0l668Po4NBmw3nFFYQ9HgJt7MnWMibbyJE0LlvW+pzb/eW+bCKnEMUPX53iPBE5FdUfrCQ2GMbw+cDnA6sVU2wsDYsWtfua+Ftuaf2QMj8fx0UXAUTFeU2hJuoa6zg//3w27N3AgYYDAJTVNu/3a8JEQWYBd0y8g4O+g9T6agmEA7hiXNitdsrrytnv2c/9E+8h/q11GEe8p8ntZveU4RT+/Xy8AS9pzjRyEnOoaKjg3NxzCYQCvF78OoMTBrP90HZcMS6y4rMYkzGG3878rZaMyinneOKHPlHJlpqayogRI3juuecYN24cdrudJ554goyMDMaPHw/ABx98wOjRoyOBF8CFF16I3+9n48aNUcsNjuT3+/EfsTFlXZ1KXEXk5EiMTeTTA5/isrv47OBnNDQ1MChhELHWWALhAH/8+EmmXfQMp2EiJju77T08iotpXL4c6+HlB/a8PH53yX0s3vMau2p24WnyYIpte1+QFpYwmJ/+KwAxwOl5bs68eC5Nb7+D/ayz8BtG5H0je4ns3t3u3h2Oiy+m/skn23wv7csmIkdTnCcip6Jd4YPUeg4wPnkETWvWECouxj51arsNBix5eQTLy1vHekVF+F55BWt2Nva9e/nvS37J4r2vU+GpIBQOETJClNeVM8g1iM8OfIbVbMWECavZSpozjUO+QzitTj448AF76/fisDrIScohEAowZ/gcfrj2F0zLP4sLpszBZcQQsJn41643+HDL/zAgbgC7andFtiApyCzgktMu4cYlN+IPNf/dOtA1kIr6CgbEDWB33W7tyyb9Xp9IsplMJt544w3mzZuHy+XCbDaTkZHBihUrSEpKAqCiooKMjOg/zMnJycTExFBRUdHuvR944AHuu+++7hy+iEibhiQNYdWuVeTaM3n14r9hC4QJxdjYWLuNhR88wNYDW5m2eBZ/n/0sMwYMJ9TBHh72w63XQ8XFGK+s4PyLprErZT8fVXzEvlAtp+W5MYrbDuhoagKbLbLHm1FcQuCVFdiys1vtz2FKTo4sJWhr7w5TfDxGQ0PkXm1p2WRXRAQU54nIqWlw4mDeLHmTdys+IOO0JM6dPJdMWzKOM8/E98orUSsFLG53pw8pW/bQbVr+CvNnX8K2xt3U+evY37Cf8Vnj2bB3A0mOJL439jYuzJqGM2whbLdRGfbw+p5VTMuZhoFBfVM9ISNEblIunx/6nNPTTqfYt5c/7nye4anDWVmyksWfLcZsMlOYXcjUIVPxBX3EmGOal6k2VmExW7BjxxvwclrKafiD/shS1Bp/zcmYXpFeq0eTbAsXLuw08Fm/fj3jx4/n1ltvJT09ndWrV+NwOHj66aeZPXs269evJysrC2gO0o5mGEabx1vcc8893H333ZHv6+rqGDx48Ff8RCIix85ld7Eg/woCy18lXLwqcvxcdy4jL3qGez78FbX+WiqCNXgaquhwa+8jGhGEi0uw+M7iw4oPOSP9DFbseoerp88m1TCimh9Y3O7mSrWNG3HOnx/VSTSSuDtqfw7nlVd++Z5HnWs5bzr8j+L2mGJjOzwvIqcGxXki0p+57C6m5Uzj9aLXuePtH+AL+jg97XS+N/YOrrpoLrEhMPyNYI8laIbwgQMdPqRsifVCxcWYvY3U1R/A5ognNzGX89zncdB7kP+e8ivy1hZhvP3lXrwJeW4yz7uMvxQvpinURGV9JdsObuMbo75BIByIfN8ibIRJcaRwyHuI93a9x6Z9m2gINGAz27ih4AYGJwzGhAmbxQY0L0u1mC1YzVb8IT9J9qRumU+RvqJHk2y33347V111VYfX5ObmsnLlSpYtW0Z1dXVk/etjjz3GG2+8wbPPPsuPf/xjMjMzWbduXdRrq6urCQQCrZ58Hslut2Nvp8WyiEh3Cvt8BJevaN5s9kglpWRgMG3IRJaUvcbznzzPeVPHktLRzazRf52bmgKU1ZTxr8/+xaWnX8qKiveYPeNcMpumgq+xVTMDfzAYeUIa0VYHUWsn/7dx+Hy7SyHcbnA6O76HiJwSFOeJSH/m8Xv4pOITDMPgnJxzKKsrw2qy8uz2v/HjNf8fgXCAsZljCRthnpn6O7It8R3f8MgYLBAgx5rGgpXfY8qQKaQ703nk3IfIW72d8FHd5I3iEuKB6RMLeWPvKprCzZ3eG4PNKwsSYxNxWB3N1WqWGMJGmNykXAzDoLqxGtPh/yXFJpGflI/H7yE3KTey95vFbMEV48JEc+OFkekju2oKRfqkHk2ypaWlkZaW1ul1Xq8XALPZHHXcbDYTDocBmDRpEr/61a/Yt29f5Inn66+/jt1uj+znISLSmxgNDe13nCopY/7UyxmSMZQvDn1BjCMOS15em9db3G5C5eVRx4I2C3X+OoqqiyiqLuLtkreZm3423uf+3ubbHbnkNKKNhFqovBxLfj6hoqI2xxH2eDD27cM+cWLr/doOdxdV0wOR/kFxnoj0Z2U1ZVQ2VPL0pqeZkTeDnTU72VG9A7PJTLYrm4KsAq4efTWfHfiMOkuAUI2nw4eUUbFeTAzmuiDFNcWckXkGS7Yv4fKLz2n94PYwo7iEYecU8gYQY25eGxFrjaXWX4vdamd42nC2H9xOnb+OwYmD+Xj/xwxwDsCd7MaEiZARItGeSHldOb6gj/PzzmdlyUoO+Q5hNplxJ7sZ4BzAf078T+3HJv1en9iTbdKkSSQnJ/Otb32Ln//85zgcDp566ilKSkqYNWsWADNnzmTkyJF885vf5De/+Q1VVVV8//vf56abblL3KBHplTrbm8weAgODq3Jn43pnY6smBHB4yefEic0VaS3cOWytL8ZisgDgD/opqy0jpo3CtChHVK61lbgDCFbux3bxhfDqa1GJNovbjX3qVAgE8L72GgCxF16I48ILMfx+THY7OJ1KsIlIK4rzRORUVB+oxxvwEggHeKv4Lc7IOIOpg6cSCAewmW3EWmMJhoMkxiZyz5r7+M2kexk2dWqbDymPjPUsbjcATdbmpfLHGudZmpovSIxNJC85DxNfLrVPik2iILOAWEss5+efj81sY8n2Jew4tAMTJkalj2Jy9mRibbFs2LuBsBFmQcEC8pPzCRpBEmISGJk+Ugk2EfpIki0tLY0VK1bw05/+lPPOO49AIMCoUaP497//zZlnngmAxWJh+fLl3HrrrUyZMgWHw8E111zDb3/72x4evYhI2zrbm8xnDjEuaSRJb3yIUVKCt7S0VROC4N69UXup4c6hfMoIlu14gQPe5lbudmvzUqmgzdLxvm4tSz3z83Fccgm+11+POm3Jz8d58SWYExOxzpvX3ODA78cUE4NhtUIggBEM4rziCsxJSZhcLswOx1eaGxHpPxTnicipKN4Wj9PWvEVGIBxg476NUedHDRjFvNPn8dzHz7Ht4DauXLGA74/7Ty674GJc5pnQ6McIhQiVlkZivZaHmsH9+3nL+z5w7HFeKKY5zstyZfGN0d9gza41UeezXFnMGz6PnKQcTks5jcmDJ1Ptq8ZitpBkT8JqsbLHs4eZ+TOZOGgiQ1OH4rLr4anI0UyGYRg9PYjepK6ujsTERGpra/VkVES6Vdjnw7t4cZtLL03uXN4bm8g5A75G0xNPt30Dmw3Lt6/nYP0BTE0B/BaD9w59RHnTAbxNXl7+7GUy4zMZOWAk/97+b/568VOctbEKjtqrA5oTaLEzZ2IymzHFxWF2OAj7fBgNDRiNjZhiYyPHI+OvrcW7dGl0RVt+Ps45czAnJp7w/Ij0JYof+gb9nETkZPH4PSzetpjnPn6O4pro7T5cMS6m5kzlmlHX8NAHD1FSXYKnyRM5n5OQw4o5/4d5VzlmlyvSxT3s8WBOS6PEqOLS5deS6kg9xjgvj9qZU6g2vOQk5eCyu/D4PZTVlFEfqCfeFh853qK0ppQl25dQ5auKHEtxpEQScSL9yfHED32ikk1E5FRkdjhwzpmDd+kSQkVfBl8mdy5V54xjkN3AaPS3f4NAAHNjEyWmGiqCFXh9XoJWEweqD/BJ5ScMThjMpMGTWLdnHYWDCnm5aBmZk28gB6K7jLaTGDM7HNBBJZo5MRHn/PkdJuJERERE+iOX3cU57nMwMPjrx3+NJNpcMc1dR28afxOl1aV4/B5yEnMwMAiGg1jNVkyYuOatW3h6xh9JCtsw/H6IsWEkJ7Bsz7s89snTZMZlHlecF5+YyKCjxjc6Y3S7489NymVBwYIOE3Ei0pqSbCIiPag5UXUFQU8tAW8DoRgL1SY/TlcyufHp+Cr2dPh6k93OuZnnAoe7WO3/hDBhRgwYQUOggXdL3yXdmc6MvBnsOLSDv5ctZ8H515BhOo+YoIHF4TyhxFhniTgRERGR/io3KZcrRl5BQWYBZTVl+EN+BjgHMCp9FBnxGVR7qzEwqA/UR17jDx1+wBqATzxfcG5edJxXEaji8hGXn5Q4r7NEnIi0piSbiEgPMzscxDgckX00jixANsXHY85zt9ktypznxhT/Zbt3l93FlCFTOCPjjMhTx/Nyz8NmseENeJk4aKKeQIqIiIicRC67i7FZYxmbNbbVuZHpI8lLzqO4unX3+LzkPEamj4y6j+I8kd5PSTYRkV4sNj4RZl1MYPmrUYk2c54b26yLm88fRU8dRURERHq/jPgM7ph4B4+seyQq0ZaXnMcdE+9os1un4jyR3k1JNhGRXi42ZQBcNg+jvh7D78dkt2OKj28zwSYiIiIifUdBZgEPzHiAbZXbqPHXkGRPYmT6yDYTbCLS+ynJJiLSB8TGJ4KSaiIiIiKnnIz4DCXVRE4R5p4egIiIiIiIiIiISF+nJJuIiIiIiIiIiMgJUpJNRERERERERETkBCnJJiIiIiIiIiIicoKUZBMRERERERERETlBSrKJiIiIiIiIiIicICXZRERERERERERETpCSbCIiIiIiIiIiIidISTYREREREREREZETZO3pAfQ2hmEAUFdX18MjERERkb6iJW5oiSOkd1KcJyIiIsfreOI8JdmO4vF4ABg8eHAPj0RERET6Go/HQ2JiYk8PQ9qhOE9ERES+qmOJ80yGHrlGCYfDbN++nZEjR7J7924SEhJ6ekg9rq6ujsGDB2s+DtN8tKY5iab5iKb5aE1zEu1UmA/DMPB4PAwcOBCzWbtx9FaK81o7Ff78dSXNR2uak2iaj2iaj9Y0J9FOhfk4njhPlWxHMZvNDBo0CICEhIQ++0vQHTQf0TQfrWlOomk+omk+WtOcROvr86EKtt5PcV77NB/RNB+taU6iaT6iaT5a05xE6+vzcaxxnh61ioiIiIiIiIiInCAl2URERERERERERE6QkmxtsNvt3Hvvvdjt9p4eSq+g+Yim+WhNcxJN8xFN89Ga5iSa5kNOJv2+RdN8RNN8tKY5iab5iKb5aE1zEq2/zYcaH4iIiIiIiIiIiJwgVbKJiIiIiIiIiIicICXZRERERERERERETpCSbCIiIiIiIiIiIidISTYREREREREREZETpCTbEXbs2MG8efNIS0sjISGBKVOm8Pbbb0dds2vXLubMmUNcXBxpaWnccccdNDU19dCIT47ly5czceJEHA4HaWlpXH755VHn++Oc+P1+CgoKMJlMbN68Oepcf5mP0tJSvv3tb+N2u3E4HOTn53Pvvfe2+qz9ZT5aPPbYY7jdbmJjYxk/fjyrV6/u6SGdFA888ABf+9rXcLlcpKenc+mll7J9+/aoawzDYOHChQwcOBCHw8E555zD1q1be2jEJ98DDzyAyWTirrvuihzrb3OyZ88errvuOlJTU3E6nRQUFLBx48bI+f42H3LyKdZrTXFea4rzminWa5tiPcV6bVGcpzgvwpCI0047zbjkkkuMjz/+2NixY4dx6623Gk6n09i3b59hGIYRDAaN0aNHG+eee66xadMm44033jAGDhxo3H777T088u7z8ssvG8nJycbjjz9ubN++3fj888+Nl156KXK+P86JYRjGHXfcYVx88cUGYHz00UeR4/1pPl599VXjhhtuMF577TWjqKjI+Pe//22kp6cb3/ve9yLX9Kf5MAzDePHFFw2bzWY89dRTxrZt24w777zTiIuLM8rKynp6aN3uwgsvNBYtWmR8+umnxubNm41Zs2YZQ4YMMerr6yPXPPjgg4bL5TIWL15sbNmyxfjGN75hZGVlGXV1dT048pPjww8/NHJzc40zzjjDuPPOOyPH+9OcVFVVGTk5OcYNN9xgrFu3zigpKTHefPNNY+fOnZFr+tN8SM9QrBdNcV7bFOc1U6zXmmI9xXptUZynOO9ISrIdduDAAQMwVq1aFTlWV1dnAMabb75pGIZhvPLKK4bZbDb27NkTueaFF14w7Ha7UVtbe9LH3N0CgYAxaNAg4+mnn273mv42J4bR/JlPP/10Y+vWra2Cr/44H0d66KGHDLfbHfm+v83HWWedZdxyyy1Rx04//XTjxz/+cQ+NqOdUVlYagPHuu+8ahmEY4XDYyMzMNB588MHINY2NjUZiYqLxP//zPz01zJPC4/EYQ4cONd544w1j+vTpkeCrv83Jj370I+Pss89u93x/mw85+RTrRVOc1zbFeR1TrKdYr4VivWaK85opzvuSloselpqayogRI3juuedoaGggGAzyxBNPkJGRwfjx4wH44IMPGD16NAMHDoy87sILL8Tv90eVQZ4qNm3axJ49ezCbzYwdO5asrCwuvvjiqJLO/jYn+/fv56abbuKvf/0rTqez1fn+Nh9Hq62tJSUlJfJ9f5qPpqYmNm7cyMyZM6OOz5w5k/fff7+HRtVzamtrASK/DyUlJVRUVETNj91uZ/r06af8/Nx2223MmjWL888/P+p4f5uTJUuWMGHCBK688krS09MZO3YsTz31VOR8f5sPOfkU60VTnNea4rzOKdZTrNdCsV4zxXnNFOd9SUm2w0wmE2+88QYfffQRLpeL2NhY/vCHP7BixQqSkpIAqKioICMjI+p1ycnJxMTEUFFR0QOj7l7FxcUALFy4kJ/97GcsW7aM5ORkpk+fTlVVFdC/5sQwDG644QZuueUWJkyY0OY1/Wk+jlZUVMQf//hHbrnllsix/jQfBw8eJBQKtfq8GRkZp9xn7YxhGNx9992cffbZjB49GiAyB/1tfl588UU2bdrEAw880Opcf5uT4uJiHn/8cYYOHcprr73GLbfcwh133MFzzz0H9L/5kJNPsV40xXnRFOd1TrGeYr0WivWaKc77kuK8L53ySbaFCxdiMpk6/NqwYQOGYXDrrbeSnp7O6tWr+fDDD5k3bx6zZ89m3759kfuZTKZW72EYRpvHe6tjnZNwOAzAT3/6U+bPn8/48eNZtGgRJpOJl156KXK/vj4nxzoff/zjH6mrq+Oee+7p8H79ZT6OtHfvXi666CKuvPJK/uM//iPqXF+fj+N19Oc6lT9re26//XY++eQTXnjhhVbn+tP87N69mzvvvJPnn3+e2NjYdq/rL3MSDocZN24c999/P2PHjuXmm2/mpptu4vHHH4+6rr/Mh3QdxXrRFOdFU5zXmmK9E6P/n1KsB4rzjqY470vWnh5Ad7v99tu56qqrOrwmNzeXlStXsmzZMqqrq0lISACaO8e88cYbPPvss/z4xz8mMzOTdevWRb22urqaQCDQKiPbmx3rnHg8HgBGjhwZOW6328nLy2PXrl0Ap8ScHOt8/PKXv2Tt2rXY7faocxMmTODaa6/l2Wef7Vfz0WLv3r2ce+65TJo0iSeffDLqulNhPo5VWloaFoul1ZOYysrKU+6zduQ///M/WbJkCatWrSI7OztyPDMzE2h+ipWVlRU5firPz8aNG6msrIwsQwMIhUKsWrWKP/3pT5GOXP1lTrKysqL+/wRgxIgRLF68GOifvyPSNRTrRVOcF01xXmuK9b4axXrNFOs1U5wXTXHeEU7mBnC92ZIlSwyz2Wx4PJ6o48OGDTN+9atfGYbx5caee/fujZx/8cUXT9mNPWtraw273R61IW5TU5ORnp5uPPHEE4Zh9K85KSsrM7Zs2RL5eu211wzAePnll43du3cbhtG/5sMwDKO8vNwYOnSocdVVVxnBYLDV+f42H2eddZbx3e9+N+rYiBEj+sVmuOFw2LjtttuMgQMHGjt27GjzfGZmpvHrX/86cszv95+Sm522qKuri/o7Y8uWLcaECROM6667ztiyZUu/m5Orr7661Ya4d911lzFp0iTDMPrn74icXIr1oinOi6Y4r22K9aIp1lOs10JxXjTFeV9Sku2wAwcOGKmpqcbll19ubN682di+fbvx/e9/37DZbMbmzZsNw/iyRfWMGTOMTZs2GW+++aaRnZ19yraoNgzDuPPOO41BgwYZr732mvH5558b3/72t4309HSjqqrKMIz+OSctSkpK2m3t3h/mY8+ePcZpp51mnHfeeUZ5ebmxb9++yFeL/jQfhvFlW/c///nPxrZt24y77rrLiIuLM0pLS3t6aN3uu9/9rpGYmGi88847Ub8LXq83cs2DDz5oJCYmGv/4xz+MLVu2GFdfffUp2ba7I0d2nTKM/jUnH374oWG1Wo1f/epXxhdffGH87//+r+F0Oo3nn38+ck1/mg85+RTrtaY4r339Pc4zDMV6bVGsp1ivI4rzFOcZhpJsUdavX2/MnDnTSElJMVwul1FYWGi88sorUdeUlZUZs2bNMhwOh5GSkmLcfvvtRmNjYw+NuPs1NTUZ3/ve94z09HTD5XIZ559/vvHpp59GXdPf5qRFW8GXYfSf+Vi0aJEBtPl1pP4yHy0effRRIycnx4iJiTHGjRsXaWt+qmvvd2HRokWRa8LhsHHvvfcamZmZht1uN6ZNm2Zs2bKl5wbdA44OvvrbnCxdutQYPXq0YbfbjdNPP9148skno873t/mQk0+xXjTFee3r73GeYSjWa49iPcV67VGcpzjPMAzDZBiGcTKWpYqIiIiIiIiIiJyqTvnuoiIiIiIiIiIiIt1NSTYREREREREREZETpCSbiIiIiIiIiIjICVKSTURERERERERE5AQpySYiIiIiIiIiInKClGQTERERERERERE5QUqyiYiIiIiIiIiInCAl2URERERERERERE6QkmwiIiIiIiIiIiInSEk2EZEOhEIhJk+ezPz586OO19bWMnjwYH72s5/10MhERERE5EQozhORrmYyDMPo6UGIiPRmX3zxBQUFBTz55JNce+21AFx//fV8/PHHrF+/npiYmB4eoYiIiIh8FYrzRKQrKckmInIMHnnkERYuXMinn37K+vXrufLKK/nwww8pKCjo6aGJiIiIyAlQnCciXUVJNhGRY2AYBueddx4Wi4UtW7bwn//5n1pCICIiInIKUJwnIl1FSTYRkWP0+eefM2LECMaMGcOmTZuwWq09PSQRERER6QKK80SkK6jxgYjIMXrmmWdwOp2UlJRQXl7e08MRERERkS6iOE9EuoIq2UREjsEHH3zAtGnTePXVV3nooYcIhUK8+eabmEymnh6aiIiIiJwAxXki0lWUZBMR6YTP5+PMM89k5syZ/OlPf2LXrl2MHj2ahx56iFtuuaWnhyciIiIiX5HiPBHpSlouKiLSiR//+MeEw2F+/etfAzBkyBB+97vf8YMf/IDS0tKeHZyIiIiIfGWK80SkK6mSTUSkA++++y4zZszgnXfe4eyzz446d+GFFxIMBrWcQERERKQPUpwnIl1NSTYREREREREREZETpOWiIiIiIiIiIiIiJ0hJNhERERERERERkROkJJuIiIiIiIiIiMgJUpJNRERERERERETkBCnJJiIiIiIiIiIicoKUZBMRERERERERETlBSrKJiIiIiIiIiIicICXZRERERERERERETpCSbCIinfjb3/7Gww8/3NPDEBERERERkV7MZBiG0dODEBHpzWbPns2nn35KaWlpTw9FREREREREeilVsolIv+T1ervlvqFQCL/f3y33FhERERERkd5LSTYROeUtXLgQk8nEpk2buOKKK0hOTiY/Px/DMHjssccoKCjA4XCQnJzMFVdcQXFxceS155xzDsuXL6esrAyTyRT5AigtLcVkMvHQQw/xy1/+Erfbjd1u5+233wZgyZIlTJo0CafTicvl4oILLuCDDz7okTkQERERERGR7qUkm4j0G5dffjmnnXYaL730Ev/zP//DzTffzF133cX555/Pv/71Lx577DG2bt3K5MmT2b9/PwCPPfYYU6ZMITMzkw8++CDydaRHHnmElStX8tvf/pZXX32V008/nb/97W/MmzePhIQEXnjhBf785z9TXV3NOeecw5o1a3ri44uIiIiIiEg3svb0AERETpZvfetb3HfffQCsXbuWp556it/97nfcfffdkWumTp3KsGHD+P3vf8+vf/1rRo4cSVJSEna7ncLCwjbvGxsby2uvvYbNZgMgHA4zZcoUxowZw6uvvorZ3Pw845JLLiE/P58f/ehHvPfee938aUVERERERORkUiWbiPQb8+fPj/z3smXLMJlMXHfddQSDwchXZmYmZ555Ju+8884x33fu3LmRBBvA9u3b2bt3L9/85jcjCTaA+Ph45s+fz9q1a7ttTzgRERERERHpGapkE5F+IysrK/Lf+/fvxzAMMjIy2rw2Ly/vK90X4NChQ20eBxg4cCDhcJjq6mqcTucxv4eIiIiIiIj0bkqyiUi/0dKwACAtLQ2TycTq1aux2+2trm3r2LHcFyA1NRWAffv2tbp27969mM1mkpOTj/n+IiIiIiIi0vtpuaiI9EuzZ8/GMAz27NnDhAkTWn2NGTMmcq3dbsfn8x3zvYcPH86gQYP429/+hmEYkeMNDQ0sXrw40nFURERERERETh2qZBORfmnKlCl85zvfYcGCBWzYsIFp06YRFxfHvn37WLNmDWPGjOG73/0uAGPGjOEf//gHjz/+OOPHj8dsNjNhwoR27202m3nooYe49tprmT17NjfffDN+v5/f/OY31NTU8OCDD56sjykiIiIiIiIniZJsItJvPfHEExQWFvLEE0/w2GOPEQ6HGThwIFOmTOGss86KXHfnnXeydetWfvKTn1BbW4thGFEVam255ppriIuL44EHHuAb3/gGFouFwsJC3n77bSZPntzdH01EREREREROMpPR2b8URUREREREREREpEPak01EREREREREROQEKckmIiIiIiIiIiJygpRkExEREREREREROUFKsomIiIiIiIiIiJwgJdlEREREREREREROkJJsIiIiIiIiIiIiJ8ja0wPobcLhMHv37sXlcmEymXp6OCIiItIHGIaBx+Nh4MCBmM16hikiIiLSHynJdpS9e/cyePDgnh6GiIiI9EG7d+8mOzu7p4chIiIiIj1ASbajuFwuoDlITkhI6OHRiIiISF9QV1fH4MGDI3GEiIiIiPQ/SrIdpWWJaEJCgpJsIiIicly01YSIiIhI/6VNQ0RERERERERERE6QkmwiIiIiIiIiIiInSEk2ERERERERERGRE6Q92URERE6iUChEIBDo6WHIcbLZbFgslp4ehoiIiIj0YkqyiYiInASGYVBRUUFNTU1PD0W+oqSkJDIzM9XcQERERETapCSbiIjISdCSYEtPT8fpdCpR04cYhoHX66WyshKArKysHh6RiIiIiPRGSrKJiIh0s1AoFEmwpaam9vRw5CtwOBwAVFZWkp6erqWjIiIiItJKn2p8sGfPHq677jpSU1NxOp0UFBSwcePGyHnDMFi4cCEDBw7E4XBwzjnnsHXr1h4csYiICJE92JxOZw+PRE5Ey89Pe+qJiIiISFv6TJKturqaKVOmYLPZePXVV9m2bRu/+93vSEpKilzz0EMP8fvf/54//elPrF+/nszMTC644AI8Hk/PDVxEROQwLRHt2/TzExEREZGO9Jnlor/+9a8ZPHgwixYtihzLzc2N/LdhGDz88MP89Kc/5fLLLwfg2WefJSMjg7/97W/cfPPNbd7X7/fj9/sj39fV1XXPBxAR6SYev4eymjLqA/XEx8STk5iDy+7q6WGJiIiIiIj0K32mkm3JkiVMmDCBK6+8kvT0dMaOHctTTz0VOV9SUkJFRQUzZ86MHLPb7UyfPp3333+/3fs+8MADJCYmRr4GDx7crZ9DRKQrldaUsmjzIl7+7GVW7FzBy9teZtHmRZTWlPb00ET6nIULF1JQUNDTwxARERGRPqrPJNmKi4t5/PHHGTp0KK+99hq33HILd9xxB8899xzQ3LUNICMjI+p1GRkZkXNtueeee6itrY187d69u/s+hIhIF/L4PSzZvoQqX1XU8SpfFUu2L8Hj11J5OfUpMSYiIiIivUWfWS4aDoeZMGEC999/PwBjx45l69atPP7441x//fWR647eL8UwjA73ULHb7djt9u4ZtIhINyqrKWuVYGtR5auirKaM0RmjT/KoRERERERE+qc+U8mWlZXFyJEjo46NGDGCXbt2AZCZmQnQqmqtsrKyVXWbiMipoD5Qf0Lnpe/x+D18uv9T1pav5dPKT09KteKKFSs4++yzSUpKIjU1ldmzZ1NUVBQ5X15ezlVXXUVKSgpxcXFMmDCBdevWRc63bPcQGxtLWlpaZN9UgKamJn74wx8yaNAg4uLimDhxIu+8807k/F/+8heSkpL417/+xbBhw4iNjeWCCy6IVJ3/5S9/4b777uPjjz/GZDJhMpn4y1/+AkBtbS3f+c53SE9PJyEhgfPOO4+PP/446rM9+OCDZGRk4HK5+Pa3v01jY2M3zKCIiIiI9Bd9Jsk2ZcoUtm/fHnVsx44d5OTkAOB2u8nMzOSNN96InG9qauLdd99l8uTJJ3WsIiInQ7wt/oTOS9/SU/vvNTQ0cPfdd7N+/XreeustzGYzl112GeFwmPr6eqZPn87evXtZsmQJH3/8MT/84Q8Jh8MALF++nMsvv5xZs2bx0Ucf8dZbbzFhwoTIvRcsWMB7773Hiy++yCeffMKVV17JRRddxBdffBG5xuv18qtf/Ypnn32W9957j7q6Oq666ioAvvGNb/C9732PUaNGsW/fPvbt28c3vvENDMNg1qxZVFRU8Morr7Bx40bGjRvHjBkzqKpqrv78v//7P+69915+9atfsWHDBrKysnjssce6dS5FRERE5NRmMgzD6OlBHIv169czefJk7rvvPr7+9a/z4YcfctNNN/Hkk09y7bXXAs0dSB944AEWLVrE0KFDuf/++3nnnXfYvn07Ltexddqrq6sjMTGR2tpaEhISuvMjiYicEI/fw6LNi9pcMpriSGFBwQJ1Ge0lGhsbKSkpwe12Exsbe9yv700/6wMHDpCens6WLVt4//33+f73v09paSkpKSmtrp08eTJ5eXk8//zzrc4VFRUxdOhQysvLGThwYOT4+eefz1lnncX999/PX/7yFxYsWMDatWuZOHEiAJ9//jkjRoxg3bp1nHXWWSxcuJB//etfbN68OXKPlStXctlll1FZWRm1JcRpp53GD3/4Q77zne8wefJkzjzzTB5//PHI+cLCQhobG6PudaSOfo6KH0RERESkz1Syfe1rX+Of//wnL7zwAqNHj+YXv/gFDz/8cCTBBvDDH/6Qu+66i1tvvZUJEyawZ88eXn/99WNOsImI9CUuu4u5w+eS4ohObqQ4Upg3fF6/TrCFfT5CBw8SLC8ndPAgYZ+vp4d0Qo5l/73uUlRUxDXXXENeXh4JCQm43W4Adu3axebNmxk7dmybCTaAzZs3M2PGjDbPbdq0CcMwGDZsGPHx8ZGvd999N2o5qtVqjap+O/3000lKSuKzzz5rd8wbN26kvr6e1NTUqHuXlJRE7v3ZZ58xadKkqNcd/b2IiIiIyPHoM40PAGbPns3s2bPbPW8ymVi4cCELFy48eYMSEelBuUm5LChYQFlNGfWBeuJt8eQk5fTvBFttLd4lSwgVF0eOWfLzcc6ZgzkxsQdH9tX15P57c+bMYfDgwTz11FMMHDiQcDjM6NGjaWpqwuFwdPjajs6Hw2EsFgsbN27EYrFEnYuPj17q3FYDo46aGoXDYbKysqL2d2uRlJTU4ZhFRERERL6qPpVkExGR1lx2l7qIHhb2+Vol2ABCRUV4ly7Feukcdjbsbk5IxsSTk9g3EpI9tf/eoUOH+Oyzz3jiiSeYOnUqAGvWrImcP+OMM3j66aepqqpqs5rtjDPO4K233mLBggWtzo0dO5ZQKERlZWXk3m0JBoNs2LCBs846C4Dt27dTU1PD6aefDkBMTAyhUCjqNePGjaOiogKr1Upubm6b9x0xYgRr166N6lC+du3adschIiIiItKZPrNcVEREpDNGQ0OrBFuLUFERdVUVPLzuYZ77+Dn+95P/PSmNA7pCTlJOq2XBLVIcKeQk5XTL+yYnJ5OamsqTTz7Jzp07WblyJXfffXfk/NVXX01mZiaXXnop7733HsXFxSxevJgPPvgAgHvvvZcXXniBe++9l88++4wtW7bw0EMPATBs2DCuvfZarr/+ev7xj39QUlLC+vXr+fWvf80rr7wSeQ+bzcZ//ud/sm7dOjZt2sSCBQsoLCyMJN1yc3MpKSlh8+bNHDx4EL/fz/nnn8+kSZO49NJLee211ygtLeX999/nZz/7GRs2bADgzjvv5JlnnuGZZ55hx44d3HvvvWzdurVb5lFERERE+gcl2URE5JRhNDZ2eD7oa2Bn1U62HdjG5orNFFcXs2T7Ejx+z0ka4VfTU/vvmc1mXnzxRTZu3Mjo0aP5r//6L37zm99EzsfExPD666+Tnp7OJZdcwpgxY3jwwQcjyz/POeccXnrpJZYsWUJBQQHnnXce69ati7x+0aJFXH/99Xzve99j+PDhzJ07l3Xr1jF48ODINU6nkx/96Edcc801TJo0CYfDwYsvvhg5P3/+fC666CLOPfdcBgwYwAsvvIDJZOKVV15h2rRp3HjjjQwbNoyrrrqK0tJSMjIygObOpD//+c/50Y9+xPjx4ykrK+O73/1ut8yjiIiIiPQPfaa76Mmi7mAivY/H7/lyz7E+tMRPTr7QwYPUP/pou+drvzmP61fdFfneYXVQkFnAtWOu7dYltyfaXbRF1J+FfrD/3l/+8hfuuusuampqenoogLqLioiIiEjHtCebiPRqpTWlLNm+JKqzYoojhbnD55KblNtzA5NeyRQXhyU/n9AR3Skj59y5vF/1cdQxX9BHbWNttzYO6Eraf09EREREpPfSclER6bU8fk+rBBtAla+qTyzxk5PP7HDgnDMHS35+9PE8N/umjubZz19s9ZqmcFO3NQ4QEREREZH+Q5VsItJrldWUtUqwtajyVVFWU6aqHmnFnJiIc/58jIYGjMZGAlYT2327+e/Nf8IX9LW6fmD8wG5rHCAn5oYbbuCGG27o6WGIiIiIiBwTJdlEpNfqbAlfX1niJyef2eEAhwMAn9/Dml0bODvnbPzFfvbW741cl5ecx3VnXHdK72smIiIiIiInh5JsItLluqpRQWdL+LTET46Fy+5i9rDZLNuxjGk50zAwaAw2kuRIYtrgaeSn5nd+ExERERERkU4oySYiXaorGxXkJOWQ4khpc8loiiNFS/zkmOUm5fKtM7/VrzpzioiIiIjIyaXGByLSZbq6UYHL7mLu8LmkOFKijqc4Upg3fJ4SJHJcWjpzFmYXMjpjtH5/RERERESkS6mSTUS6THc0KshNymVBwQJVIHWzsM8XaRRgio3FFBfXvK+ZiIiIiIiIHBMl2USky3RXo4KWCiTpHuHaWrxLlhAqLo4cs+Tn45wzB3NiYg+OTEREREREpO/QclER6TJqVND3hH2+Vgk2gFBREd6lSwn7fD00MunLbrjhBi699NKeHkabevPYRERERKRvUyWbiHQZNSroe4yGhlYJthahoiKMhgbQslE5Tv/93/+NYRhddr8bbriBmpoa/vWvf3XZPUVEREREupoq2USky6hRQd9jNDae0Hnpf5qamjq9JjExkaSkpO4fjIiIiIhIL6Ikm4h0qZZGBVeMuIKLTruIK0ZcwYKCBapi66VMsbEndF5OrrDPR+jgQYLl5YQOHjwpy3nPOeccbr/9du6++27S0tK44IIL2LZtG5dccgnx8fFkZGTwzW9+k4MHD0Zec/SSTMMweOihh8jLy8PhcHDmmWfy8ssvR73P1q1bmTVrFgkJCbhcLqZOnUpRURELFy7k2Wef5d///jcmkwmTycQ777wDwJ49e/jGN75BcnIyqampzJs3j9LS0sg9Q6EQd999N0lJSaSmpvLDH/6wSyvsRERERESOpCSbiHS5lkYFhdmFjM4YrQq2XswUF4clP7/Nc5b8fExxcSd5RNKecG0t3pdfpv7RR2n485+pf/RRvIsXE66t7fb3fvbZZ7Farbz33ns8+OCDTJ8+nYKCAjZs2MCKFSvYv38/X//619t9/c9+9jMWLVrE448/ztatW/mv//ovrrvuOt59912gOVk2bdo0YmNjWblyJRs3buTGG28kGAzy/e9/n69//etcdNFF7Nu3j3379jF58mS8Xi/nnnsu8fHxrFq1ijVr1hAfH89FF10Uqbb73e9+xzPPPMOf//xn1qxZQ1VVFf/85z+7fb5EREREpH/SnmwiIv2Y2eHAOWcO3qVLCRUVRY5HuotqP7ZeobMGFc7587v1Z3Xaaafx0EMPAfDzn/+ccePGcf/990fOP/PMMwwePJgdO3YwbNiwqNc2NDTw+9//npUrVzJp0iQA8vLyWLNmDU888QTTp0/n0UcfJTExkRdffBGbzQYQdR+Hw4Hf7yczMzNy7Pnnn8dsNvP0009jMpkAWLRoEUlJSbzzzjvMnDmThx9+mHvuuYf58+cD8D//8z+89tpr3TBDIiIiIiJKsomI9HvmxESc8+djNDRgNDZiio3FFBeH2eHA4/dQVlNGfaCe+Jh4chJzVJnYA3q6QcWECRMi/71x40befvtt4uNbdwsuKipqlWTbtm0bjY2NXHDBBVHHm5qaGDt2LACbN29m6tSpkQTbsdi4cSM7d+7E5Yr+fWxsbKSoqIja2lr27dsXSewBWK1WJkyYoCWjIiIiItItlGQTEZHmKqijkjSlNaUs2b4kqltsiiOFucPnkpuUe5JH2L/1dIOKuCOWDYfDYebMmcOvf/3rVtdlZWW1OhYOhwFYvnw5gwYNijpnt9uB5kq14xUOhxk/fjz/+7//2+rcgAEDjvt+IiIiIiInSkk2ERFpxeP3tEqwAVT5qliyfQkLCha0qmgL+3wEPbUEvA2EYqxUmxtxxCeTHp9+Mod+SupNDSrGjRvH4sWLyc3NxWrtPIwYOXIkdrudXbt2MX369DavOeOMM3j22WcJBAJtVrPFxMQQCoVajePvf/876enpJCQktHnfrKws1q5dy7Rp0wAIBoNs3LiRcePGdTpuEREREZHjpcYHIiLSSllNWasEW4sqXxVlNWVRx1o25fc9/gTBZ5/HeOovJL++Fm/Vfj7Z/8nJGPIprTc1qLjtttuoqqri6quv5sMPP6S4uJjXX3+dG2+8sVUiDMDlcvH973+f//qv/+LZZ5+lqKiIjz76iEcffZRnn30WgNtvv526ujquuuoqNmzYwBdffMFf//pXtm/fDkBubi6ffPIJ27dv5+DBgwQCAa699lrS0tKYN28eq1evpqSkhHfffZc777yT8vJyAO68804efPBB/vnPf/L5559z6623UlNTc9LmSkRERET6FyXZRESklfpA/TGfb29TfqOklJR3NrGnspj99fu7ZZz9RUuDiqMTbT3RoGLgwIG89957hEIhLrzwQkaPHs2dd95JYmIiZnPbYcUvfvELfv7zn/PAAw8wYsQILrzwQpYuXYrb7QYgNTWVlStXUl9fz/Tp0xk/fjxPPfVUpKrtpptuYvjw4UyYMIEBAwbw3nvv4XQ6WbVqFUOGDOHyyy9nxIgR3Hjjjfh8vkhl2/e+9z2uv/56brjhBiZNmoTL5eKyyy47ORMlIiIiIv2OydDuv1Hq6upITEyktra23eUnIiKnorDPF2l+ELCZ2VT7Oe/uX0tTqKnVtVeMuILRGaMBCB08SP2jj7Z739pvzqOIas7NO7fbxt7bNTY2UlJSgtvtJvYElnYe+TM6skFFb3P11VdjsVh4/vnne3ooXaqjn6PiBxERERHRnmwiItK83POoarQz8ty4z5vPX4oXRyXaUhwp5CTlRL7vbNN9ayBMTbimy8fcH7XVoKI3CQaD7Nixgw8++ICbb765p4cjIiIiInJSabmoiEg/195yz3BxCa6V65ieURg5luJIYd7weVFNDzrbdD9oM5NkT+rSMUvv9OmnnzJhwgRGjRrFLbfc0tPDERERERE5qVTJJtKFQh4PeL2RpVw4nVhcrs5fKNKDjIaGVgm2FuHiEsZdMAOL00m8LZ6cpJxWXUVbNuUPFRW1er3JncvWhlLGuSd1y9ildykoKMDr9fb0MEREREREeoSSbCJdJFRVhW/ZMkIlJZFjFrcbx+zZWFJSenBkIh3rbLmnLWhQmF3Y7vmWTfm9S5cQKvoyWWdy51J1zjgG2Q0y4jO6bLwiIiIiIiK9kZJsIl0g5PG0SrABhEpK8C1bhuOyy1TRJl/JydjovrPlnp2dBzAnJuKcfwVBTy0BbwOhGAvVJj9OVzK58eldNdQ+T72G+jb9/ERERESkI0qyiXQFr7dVgq1FqKQEvF5Qkq3H9JWOjEdrqxmBJT8f55w5mBMTu+x9OlruacnPxxQXd0z3MTscxDgcxBz+Xv0Vv2Sz2QDwer04+sDvnrStZSlsy89TRERERORISrKJdIHOltt1dl66z8lKVHW19poRhIqK8C5dinP+/C5LFH653HNpVKItMk/tvI/H76Gspoz6QD3xMfHkJLber02aWSwWkpKSqKysBMDpdGIymXp4VHKsDMPA6/VSWVlJUlISFoulp4ckIiIiIr2QkmwiXaArlttJ1zuZiaquEFVxZ7NhHTSI0O7dEAhEXRcqKsJoaIAuHHvzcs/5x1Tx5/F72HZgG//a/i9qG2tJtCdit9pJcaQwd/hccpNyu2xcp5LMzEyASKJN+p6kpKTIz1FERERE5GhKsol0BacTi9vd5pJRi9sNTmcPDEo66prZHYmqE9FmxZ3bjXP+fLyLF7dKtJ1IdWR7y2fNDken81FaU8p7u95j+Y7l7K3fC4DD6mB42nAAlmxfwoKCBapoa4PJZCIrK4v09HQCR/08pfez2WyqYBMRERGRDvXZJNsDDzzAT37yE+68804efvhhoHk5x3333ceTTz5JdXU1EydO5NFHH2XUqFE9O1g55VlcLhyzZ7ffXVT7sfWIvrKMt92Ku5IS/IC9sBD/6tVR575qdeSJLJ/1+D0s2b4Em9kWSbAB+II+th/cTkFmAVW+KspqyhidMforja8/sFgsStaIiIiIiJyC+mSSbf369Tz55JOcccYZUccfeughfv/73/OXv/yFYcOG8ctf/pILLriA7du341KSQ7qZJSUFx2WXgdcbqRDC6VSCrQf1lWW8HVbclZRgLyyMOnY8zQjgiMo1w6BxxYpjXj57dMWbDx/1TfU4rK2r3XxBH7WNtaTHp1MfqD/msYmIiIiIiJwq+lySrb6+nmuvvZannnqKX/7yl5HjhmHw8MMP89Of/pTLL78cgGeffZaMjAz+9re/cfPNN7d5P7/fj9/vj3xfV1fXvR9ATmkWl0tdRHuRruqa2d06ragLBiP/2VkzgqMdWbkWt2BBh8tnQ57ayH3bqnhz5uVxw3nzWV6xqs17NIWbAIi3xR/T2ERERERERE4l5p4ewPG67bbbmDVrFueff37U8ZKSEioqKpg5c2bkmN1uZ/r06bz//vvt3u+BBx4gMTEx8jV48OBuG7v0Xx6/h0/3f8ra8rV8WvkpHr+np4fUL7R0zbTk50cdP95EVXfrrKLOnJpK3Le/TfxttzVXmx1jV9RWy1DD4Q6vN3yNePye9pevFhcTv3IdX0sZw8D4ga1eH2OOIcWRQk5SzjGNT0RERERE5FTSpyrZXnzxRTZt2sT69etbnauoqAAgIyMj6nhGRgZlZWXt3vOee+7h7rvvjnxfV1enRJt0qdKaUpZsX0KVrypy7Kt0YfT4PZTVlFEfqCc+Jp6cxBxtLn8MjqdrZk8xxcVhGT4ca3o6luzs5so1q5VQeTnBykpMCQlYvsJ4I8tQbTbshYWYYmNxXnll5N7+tWujGyrExFBWU8YIS2a7FW9GcQmDzilkRt4M3ip+K6r5QV5yHvOGz9PvpYiIiIiI9Et9Jsm2e/du7rzzTl5//XViO6j6MJlMUd8bhtHq2JHsdjt2u73LxilypJaN4o9MsAFU+aqOqwvj8STq2usc2Z8dS9fMnmR2OHDMnIlv2bKoBgctjTO+6s/PaGwEmw3n/Pn4161rde8jO5da3G4CFqhvqscIdLx81RoIs9ezl2k50zAwADgj4wzOyDhDCTYREREREem3+kySbePGjVRWVjJ+/PjIsVAoxKpVq/jTn/7E9u3bgeaKtqysrMg1lZWVrarbRE6WspqyVgm2FsfahfF4EnUn0jlSek7I42nVmRaamx74li3DcdllX6mBhik2trkz6bp1bd67pXNpsLwc+7SpbKj9AldCKiZLx8tX410pXHb6Zc1VlbZ4cpJUVSkiIiIiItJn9mSbMWMGW7ZsYfPmzZGvCRMmcO2117J582by8vLIzMzkjTfeiLymqamJd999l8mTJ/fgyKU/66zL4rF0YTyWRB20sf/WYS2dI8M+3zGOWk46r7dVEqxFqKQEvN6vdFtTXBwWt7vDe1tPPx3rqFEciAmwuWYbOUk5kYYRbbHk52OJdzE6YzSF2YWMzhitBJuIiIiIiAh9qJLN5XIxenR0xU9cXBypqamR43fddRf3338/Q4cOZejQodx///04nU6uueaanhiySKddFo+lC+OxJuoi+2+1IVRUhNHQ0KuXTPZnHXYXtdkwgNDBg8e9BNjscBC2WDq8JhxoYqOrlk/2fMglQy+JJMycc+bgXbo0qjNrb2sYISIiIiIi0pv0mSTbsfjhD3+Iz+fj1ltvpbq6mokTJ/L666/j+grLrES6Qk5SDimOlDYr0Y61C+OxJuo6TNQcw3npOe12Fz28n1rj6693ugS4vb34TE5nh+8dsFtJjE3nupyvRVWk9YWGESIiIiIiIr1Jn06yvfPOO1Hfm0wmFi5cyMKFC3tkPCJHc9ldzB0+t82mBcfahfFYE3XtJmoO6+y89CCns81lne3up3Z4CbBz/vzmarUO9uJrWfp5ZEXakdc4ElMZ7chuc1i9vWGEiIiIiIhIb9Knk2wiLXpzR83cpFwWFCygrKaszY3iwz4fhsfTPPaYGIiJweRwRMZ/rIm6zpIppri4k/BpO9abf049yeJy4Zg9u1XzA0tublRH0CO1LAEOw5cJNpsNe2EhluxsCAYJVVVhTkvT0k8REREREZGTwGQYhtHTg+hN6urqSExMpLa2loSEhJ4ejnSgJWED4Hv11T7ZUbPNCiS3G/u0aViSk6PG7/F72k3URd2vvWRKD8+FOp92LuTxgNcbSUIaTU00PPNMu9fHffvbmGJjqX/00cjS0qMr31rmmJgYJThFupHiBxERERFRJZv0SS0JG+ugQQTLyztdTtcbtdsNtKQEP2AbPRrbiBFRFW2jM0a3cacv9dZ9tDrrfNqbf04nk8XlgiP2kAwdPNjh9abY2Mhee8eytNSSltb1gxYREREREREAzD09AJHjdWTCxpKd3Sqp0CLSUbOX6rAbaEkJ5vj4rzR+s8OBJS0Na3Y2lrS040pehX0+QgcPNicuDx4k7PMd9/u35Zg6n0orLUuA29KyBLhlr72+/GdBRERERETkVKBKNulzohI2wWDH1/bijpqdji0YPKnj787lnOp8+tWYHY5O91MLH/6+L/9ZEBERERERORUoySZ9TlSywNrxr3Bv7qjZ6dis1pM2/u5ezqnOp19dZ0uAWxJxoarW3WePpDkWERERERHpXlouKn3OkcmCUHk5Fre7zet6S0fN9nS4FNDtJlxff9LG393LOY9l2aO0r7MlwObERMxpae3OsTnPjcfacaWbiIiIiIiInBgl2aTPOTJh41+7FvvEia0SbUcup+utWiqQjk6MtHQXteXnn7Txd/dyznY/ax/4OfUVFpcL++xZmPOi/yyY8tzUnTeRF774Jx6/p4dGJyIiIiIicurTclHpc47ep8q7eDH2wkLsU6disloxORy9oqPmsYgsBfR4mpcCxsRATAwmh+Okjv9kLOfsrZ1PTyVfNO2jemI2w84pxNIUJBRjZYevnHeLF9MUaqKspqzTDrUiIiIiIiLy1SjJJn3SqZSwMTsc0MPjbqkOPHJz/RZduZyzN3zWU1ldUx1v7F3FG+2crw/Un9TxiIiIiIiI9CdaLip9Vmf7VMmx03LOU0O8Lf6EzouIiIiIiMhXp0o2kQ6Efb5TolruWJxK1YH9VU5SDimOFKp8rTuNpjhSyEnK6YFRiYiIiIiI9A9KsskpYX/9frZVbqPGX0NSbBIjB4wkIz7jhO4Zrq3Fu2RJVNfNSGVXYuKJDrlX6q/LOT1+D18c+oK9nr3YrDYGugaSm5iLy+7q6aEdF5fdxdzhc1myfUlUoi3FkcK84fP63OcRERERERHpS0yGYRg9PYjepK6ujsTERGpra0lISOjp4cgx2FyxmUfWPUJx9ZfJsLzkPO6YeAcFmQVf6Z5hnw/vyy9HJdhaWPLzcc6ff8wVXmGfr8cbG0j7SmtKef6T53lv13v4gj4ABsYPZPbw2UwePJncpNyeHeBX4PF72F27m0RiSQnbsQbCmPtQQxCRvkjxg4iIiIiokk36tP31+1sl2ACKq4t5ZN0jPDDjga9U0WY0NLSZYAMIFRVhNDQcU8VXm9Vwbjf2adMgOfmUrYjrKzx+Dy9vfTkqwQawt34vy7YvwzAMUh2pfa4CzGV3cbp9EN4lS2gqLqbp8PFTvRJTRERERESkJ6nxgfRp2yq3tUqwtSiuLmZb5bavdF+jsfGEzsPharijEmwAoZIS/KtWESgqIuzztfPqtu8XOniQYHk5oYMHj+u1vU1v+SxlNWUUVxdHJdha7K3fS52/jrKash4Y2Ylp93evqAjv0qV9+ndHRERERESkt1Ilm/RpNf6aEzrfHlNs7Amdh06q4UpKsBcWnlhFXBdUJfVEY4dQTQ3h6mrw+cBqJbhjB8HKSpwXX3zSK6zqA/U0hZvaPd8YbKQ+UH8SR9Q1uqoSU0RERERERI6dkmzSpyXZk07ofHtMcXFY8vMJFRW1OmfJz8cUF9fpPTqtdgsGT6wi7nBV0vHsDxd13x5o7BCqqcG3ZAmhkpIv39Ptxj5xIt5XX8U5b95J3TMs3hZPjDmm3fOx1ljibfEnbTxdpSsqMUVEREREROT4aLmo9Gkj00eSl5zX5rm85DxGpo/8Svc1Oxw458zBkp8fdTyShDqGRFCn1W5W64lXxLVUJbUj5PEQ2r+fYFkZof37CXk8QM8sJwz7fPiWLo1KsMHh5bPr1mFNT+/ws3SHnKQc8pLzcFhb/zwHxg8kwZ5ATlLOSR1TV+iKSkyRryKyFHzPHgKHDuKv2Iun9AvqK3ZTX3ewp4cnIiIiItKtVMkmfVpGfAZ3TLyj3e6iX6XpQQtzYiLO+fO/8nLKDqvh3G7C9fVYBg/u9D5ftSopVFWFb9myVlVjjtmzIRw+6csJj2n57EmusHLZXVwx6goaQ42tuovOGT6HyYMn97mmB9A1lZgixytSHbt7N8758/G/9VbU3z8mt5uGWTOJS83swVGKiIiIiHQfk2EYRk8Pojepq6sjMTGR2tpaEhISeno4cox21exiy/4tVPurSY5NZkz6GIYkDenpYTX/o3Pp0qhkR0t3UcsxdhcNHjqEcegQBINgtRIqL8e/di0EAgDE33YblrS0qNeEPB58//xnq6qxlvePPfdcGp55pt33jPv2t7FmZx/rxzwmwfJyGv7853bPO6+8EnN6eqvPcjJ4/B6+OPQF++r3YbVYGRg/kNyk3D6ZYGvR5u+euotKNwn7fHhffplQcTH2qVObm5q08fePye3GfOklxCec/D/n3U3xg4iIiIiokk36vNKaUpZsX0KVrypyrKi6iLnD55KblNtzA+OIajiPp7kaLiYGYmIwORzHVBHXWHWA4CsrovdNc7txzp+Pd/FiLEOGtF2V5PW2+Q9caK4aM82c2eH7dsdywk7v6XD0WIWVy+5i3MBxPfLe3eVEKzFFjseRlaqW7Gz8q1e3fV1JCTR44agcVE80YRERERER6WpKskmf5vF7WiXYAKp8VSzZvoQFBQt6vBrJ7HB8paWXjfW1BJa/Sri4jT3MgNiLLsKWn9/mP0Q7XWJqMp305YSdLZ81JyfrH9Vd7Kv+7knv5PF7KKspoz5QT3xMPDmJOT3+91uLqL9zgsGOr/X7o77viSYsIiIiIiLdQY0PpE8rqylrlWBrUeWroqym7CSPqOsY9fWtEmwtQiUlmAYNbPcfoJ1ufG8ynXBjh+PVUTMJx9y5WJKSuvw9RU4VpTWlLNq8iJc/e5kVO1fw8raXWbR5EaU1pT09NOCov3OsHT+/M9ntkf/uiSYsIiIiIiLdRZVs0qfVB+pP6Pyx6okKkqOrPY4WbPQS095JpxOL293unmw4HJhdrpO+nFBLGEWOX1+o2D2yUjVUXt7u3z8mtxvinJHvj6l7sv5+EBEREZE+Qkk26dPibfEndP5YtLXnW4ojpdv3fDuy2uN4z1tcLhyzZ7fbXdTiav4HeU8sJ9QSRpHjcywVu6MzRp/kUUVrqVT1Ll2Kf+3a5u6i0Kq7qGXWTOKOaHrQ2dL2sNeLpbsGLSIiIiLSxZRkkz4tJymHFEdKm/8ATXGkkJOUc0L3b6kgqW+q54KB0xjmyMbSFCQUY2VX1R5SHandVkFiio/HnOduc8moOc+NKb7jBKIlJQXHZZeB1xupGsPpjCTYRKRvOFkVuycqqlLV78c+6xLCgSaaGr2Y7DEQ54xKsMExNEQJBSmr2E5sfBIZ8RndOHoRERERkROnPdmkT3PZXcwdPpcUR0rU8RRHCvOGzzvhBFhZTRn1TfXckDefM9aWE/PXl3GWVZDkgzOCA4it8XbbnkGx8YnYZl2MOc8dddyc58Y262Ji49vfENzj9/Dp/k9ZX7uVz0wH8GWmYMnI6LEEW2N9Lb6KPXjLivHt30tjfW2PjEOkLzoZFbtdxexwYElLwzpoELbUNOyZA3HlnkZ81hDij0qwQcsy07w279W85LQUi6+Je966h80Vm7t59CIiIiIiJ0aVbNLn5SblsqBgwZd7ptniyUnqmj3T6gP1TM8oxPXWOsLl5c1LoNatw796deSa7uyCF5syAC6bh1Ffj+H3Y7LbMcXHd5hg66nlre1prDrQqkuqOc8Nsy5u/nwi0qHurtjtSWaHA/uFF+F/9dVWS9vtEyfiXbwYa/YlFFcX88i6R3hgxgOqaBMRERGRXstkGIbR04PoTerq6khMTKS2tpaEhISeHo70sE/3f0pGUwwxz7yAfepUguXlbTcTyM/HOX9+j2/g7/F7WLR5Ubv/GD/ZG6Q31tcS+Oe/213yartsXocJQxFp1l7yfN7wed2eZAv7fN3arMRTsRvbti+wZGdDMAhWK6HycvwbN2IfPx7TiOFUew4QirFRbw1R7NtDRlwGQ1OH9njDhyMpfhARERERVbKJdCAnKYfQnj0AWLKzoyrYjtRbuuD1tg3Sjfr6NhNsAOHiEoz6elCSTaRT3Vmx25FwbS3eJUuiOoB2dfWuzwpGeTnGkX+/2myRyuHQ6tW0/M3qcrsxzh7JPat+wfiB47nujOt6pEJXRERERKQt2pNNpAMuu4u4+KTmb4LBDq/trEveydDbNkg3/P4TOi8iX3LZXYzOGE1hdiGjM0Z3f4LN52uVYIPmhwrepUu7bD9KhyuJwIXTMLm/3H/SXljYnGA7qnLYKCnh/2fv3gPbqu/7/z+P7pIlS3acOHGc2JIhKSGBFAJxuIRA7ndY6Fpou5a1XfstLevafre12/dX2Fr4bqXbvu16Y+1o162MjayQOwQoIQSSllsIBBKwZSeOYyeOLVuy7tL5/aFIsayb75bt9+MvfM6RdCRLCufl9+f9rnrpHT5St4VDpw7xxDtP4A15R+Q8hBBCCCGEGC6pZBOiAI3OgNbpBF3+j0vBKXljYDgN0tt97Rw/dxxPyIPD5GDB9AXD7n2kGI3D2i8mvtFeaihGj9rbmxGwJeWq3h3K79tmtNFs7MS3YiGzV95MyN+DyVpBLEflsOpu4oYbt/BI9Jc0djWOeYWuEEIIIYQQuUjIJkQBaiCAcelS4l7vxWl32XuyKSUl43B26YbaIP3Ntjf54e9+iF6rp9RYSjgW5ndnfse6y9Zx9cyrh3w+itWKxuXM2ZNNsRbPVEQxMoK+7tSgDr2phHhLC8Gnn4ZIBBjdQSFiZBWqzu2/fzhLS2scNXjN5ZzynOKs5jxX92ow5DleH40DEI6Hx7xCVwghhBBCiFwmzHLRhx56iOuuuw6bzcaMGTO4/fbbOXHiRNoxqqpy//33U1VVhdlsZsWKFbzzzjvjdMZislCMRvzbt6P6fJjXrUPrcqXtT11EFkF1Tklcx584P8JX5n6Me+vuZnXVcgxaQ6pBerblZe2+dn74ux8yo2QGx9qP8Z9v/yf/8+7/8Mujv6Th7DsE2s4kBj50dAx6eZjJake/cX1immgfGpcT/cb1MvRgkgl2nifym6cI//RnRH7xK/w/+QmRd97Bsm0b6PXAyC81FKOnUHVu3/0jsbTUZrRxZeWVrKpbRYm1PO+xEV3if18MGkPBCl4hhBBCCCHGyoSpZDtw4AD33nsv1113HdFolL/6q79izZo1HD9+nJKLFUR///d/zz/8wz/wi1/8gnnz5vHtb3+b1atXc+LECWy24plAJiYWpaQE7dy5hF54gdChQxjr6zEuXZro0WY2o6moQFME76++VSQKYACudrlYvOEzxK2WnP2bjp87jl6r58XmFzndcxoAi97C42t/Ts3LJwnv+Bnhi8cOpQrJVD4d7tiaqm5SjEYUq1UCtkkm6OsmsntvRtVizO0mxMUeWxeX/xXLoJCJoqvrLNpACDUYQjGZiJkNlJXNyjhupJfmKiUlaOvqiDU0ZOzrX707lKWl+WjyVMEqzlpe7nwTs86Mq8w16tNVhRBCCCGEGKgJE7Lt27cv7edHH32UGTNm8Nprr7F8+XJUVeWf/umf+Ku/+iv+4A/+AIBf/vKXVFZW8utf/5rPf/7zWe83FAoR6tN8vaenZ/SexAQifZQu0ZjNWDZvxr9zJ7GGhlRQkAqcxilga7jQwLFzx+gMdHJT5XVUPf9mZhVJYyPavfsp2bYNb8h7aTKhwUqNPTGZ0BPyUGosTQVsAF9Z/AVqXj6J6m5Kv7+LVSmWbdsG9H5Ivo90yfeRvXzKvo8mu3yTZGNuN8b6+vTji2BQyETQc/4M2r3PoV5cpq4CWmctPetXUTp9duq40ZgC2v+7L+N++3yWB7u0tBCT1Q4b12cEt4qzltabF/DfRx7kxrk38pErPzLqAyCEEEIIIYQYqAkTsvXX3d0NQHl5YkmJ2+2mra2NNWvWpI4xGo3ccsstvPzyyzlDtoceeogHHnhg9E94AhmNi7WJTmO3Y9m2rWiCxxebXuSBAw/w2tnXAPj9tmfyVpGEvR4edf93Wq+2cnM5W+ZvwWF0EI6F026zsvIG1Gd357y/gVSlyPtoaik4KbbfdN5iGBRS7Lq6zqYFbEmquwll77N0bV5DWdmsgks1BxqKZzPQ777BLC0dqEtVsL2ooSCqQU+b6qWp9xT/Z/n/4fJpl0vAJoQQQgghisqEDNlUVeWrX/0qN910EwsXJiaKtbW1AVBZmT4NsbKykubm5pz39Y1vfIOvfvWrqZ97enqYM2fOKJz1xJC6WDt9GuPNN6Otrk5cHOt0RBoa0F9xxZStRNKYzUWxvK3hQgPfffm7fHzenfz8pofRR+NUWGei3nwzocOHUw3m+wr4ujOGIXQGOtlxYge3z7+dGSUz0vYZomrecyhUlTKaF/1i7OWqguyr4KTYPtN5i2VQSLHTBkIZAVuS6m5CGwhB2cgv1exvIN99eZeWulxcUAKYQ95Bh2Imqx36LC2vA+pYMKj7EEIIIYQQYqxMyJDtS1/6Em+99RYvvfRSxj5FUdJ+VlU1Y1tfRqMRY6GLwylE7e0ldvo0lo98hHj/pbOqStzvl3BknDV5mvjR8r/H/vzvUZ/ZAUAQ0DqdWLZtw799e0bQFtVnn3HSGejEF/Kx/rL1HDp1iGPnjgGXmornUqgqpdBFf9zrJd7dDaFEjynVYEBjMsl7axwUWhre5Glix4kdWasgax21qW35JslqnU5iLS2J/y6iQSHFTg3mrw5MVg+O9FLNIQmHMd50E6F4PG0Cs9blwrtyKY8e/xVWgzXjfSOEEEIIIcRkMuFCti9/+cvs2LGDF198kerq6tT2mTNnAomKtlmzLjWEPnfuXEZ121QV9HVfaj5/8WK6f/N5NRjEePPNoNcTeeed9IslpxPNtGkEjTppWj9OmjxNxIN+7Id+l9kvLUuDeUhc5J4MtOS8z55ID/XV9Ty08iH+7ei/0dTdxBs977HaWZvxGDCwKqSCF/0eD/7HHrt0n04n5vXriYfDspR0DBVa0usNeTMCNrhUBXnP4ntSlUm5emhpXS7MGzagBoPor7pqSvd3HCzFZCRfTWmyenA0lmoORloFdH19ov/exQromNdLU+9ZwrFw1veNEEIIIYQQk8mECdlUVeXLX/4yv/nNb3jhhRdwOp1p+51OJzNnzmT//v18+MMfBiAcDnPgwAH+7u/+bjxOuagEO89nXPxqXE7YuD7R9+YixWRCN28ewaefTgvYoE+Is2EDWMfqzEVSMvDYVnkbqvv1rMf0bzCvrXOhrF/DweOP5rxfqz7xy1xYuZCv3fA19nywh7OhLoKr12N+VkkPTAZYhTTYi/qY201g716Mt9wCBoOEMGNgIEt6m3uaMwK2pM5AJ82eZhZWLkxtyzVJVtsnlI8HAsQ6Ooqit2Gxi5mNaHOE3Yqzlpj5Ysg2iCmgo3KePm/qfdQ34E+qu+djqf/O9r4RQgghhBBispgwIdu9997Lr3/9a5566ilsNluqB5vdbsdsNqMoCl/5yld48MEHufzyy7n88st58MEHsVgs3H333eN89uMr6OvOCNgA4o1uIrv3wh1bU5VpSkkJeDyXAja9HmN9fVpvttyLb8VoavYkAg99JJ73OMVgwHLXXailNl73nuTIyf9krmMuDZ0NxNRY2rHl5nJqHDWpn8/3nqfZk+hh+LMPHueWpfXMW1GPNhwlZtChms1YB1Bplveiv8/Swb5ibjfKqlXEfF6O9zTk7f8lhm8gfbx8EV/e+8i2v38Prb5kGMbg6CxWoutuQ7vv+bSgTXHWEl93GzpLIiBPmwJ66tSl72xA43CM+nlGA7159yvh9MEqhd5XQgghhBBCTFQTJmT78Y9/DMCKFSvStj/66KN8+tOfBuDP//zPCQQCfPGLX6Srq4ulS5fyzDPPYLNN7Qt01efL2icJEkGb6vOlLoo1ZjPRc+cSO/V6LNu2ETpyJGP5oXHDeo6GmjDpTBKCjJHkhWnckP9jq4bD+B97DMVZi+7GOrpCXXgjXlxlLhq7GplumY56cRHa1ZVXZ30MgHAszP7WF9nfZ/+6y9Yxg8KDQdIu+vsEbVqXC+P11yf6xmUTCuELdPOjd39EOB7GoDXgcri488o7pY/TCBtIH69klWMuhfb3JcMwBq/Z08y+D/axdeU6prMcQiEwGjlHL0+9/zjrLluXqghLTQENBAjs3p3+nT3KQWbcoM+7P6rXpv3c/30zkMEaQgghhBBCTAQTJmRT1fzTDiEx9OD+++/n/vvvH/0TmkCSzbEHvP/iUj9jfT2hI0cyl402NhLavYfKldfz8+P/mbUJuhh5yQvTk4EzLM7VL61PlZjqbqL21mUARONRrqi4gsvKL+PJE0/SHejGbrLT3tvOq2dfTf3+RjJUSV3092mqrwK9jzySdQIqAEYjvpCX4x3HU5vcXW6CsSB/uvRP5cJ7BA2kj1eNrYZyc3nWJaP9qyALGe0JmLkUGuxQLE55TnGs/RjesJfrp11FpWJjbtDAPTW30xw6x/YzuwjG0oPRbBVhgd27xzzI7NWpmFxO1Cx/zFGctbztuxS0W/VWVFQOtxzGarBi0prY17CPDn9H6hj5N0UIIYQQQkxUEyZkE0OnFJie2n+/ajaidbnQVldn7a8DiaV9ldpVQPYm6GJgQt2daAJhCAbBbCJuMmC0l2c9tsaRCDxeOv97am+7HcfzCmq/wRTGpUvTqsSU8KUwyxf28Wb7mxi1RmZYZ6S29/39JR9jJEIVSFS09Q1OIj0etNXVGcFt8vzVcJgjXcf4wsJ7uKH8anSROFG9lt953qahs4HFsxYP6vFFbgPp42Uzmtkyf0vW6aJb528d1Od9PCZgZl2e6nKhbFhD3Gopmu+rV06/woMHH8TtcbN9/S+oePb3RC+G6DrgMmct1as/wk9O/AdtvrZUladBY0i7n/EKMs02B+HVyzHsJ61qWnE6aV++iJfcT6IoCjqNjtmls3nyvSeJqTFC0RDtve3cOOdGtIo2tZxd/k0RQgghhBATlYRsU4BitaJxObMuGdW4nCjW9OokfakDNmyACxfy33HwUgWcNLMevGjnBSK7dmdMcNVu2oiufFrG8TajjS3zt/DEO0/wj8f+hVuvvoG1qz+Lpqs7McWvpSURsPWpElMN+kQlWDTI4srFKChpF7NJfX9/IxWqZKMvdaBs2kgwy/M2r19PU6Cdq8sXUPniW6jup1L71zhriVdnviajbaJUQQ1FziW9/YZb1DpquWfxPZeW8+mt1DgGv5xvrCdg5lye2tiIsudp3r+xjmnls8e1WioeCBDxduMMmPl/199PQBNl1sF3MqpUVXcTpv1wy/X1fOvwgwBUWat4t+Ndyi3lqecw1kGmN+TllOcUncFO9jfu55pFV3LNjbeji8TAaMCnU+lUe1l/+XoMGgPvdrzLB50fpL5/uoPdNHY1EowEWV6znLbeRK9Vi87C6qqbUS904g21oZhNYDFjLa0Y0fMXQgghhBBipEnINgWYrHbYuD7rdFH9xvWpoQd9HQ25WWwv0HvLlF4BJ82sBy7U3ZkRsEGiQjC4azf6rZsyKtq8IS+tPa1U26spt5RzOnSON3s/4IpXm9Mq2pIUZy1v9JzgQPMB5pTO4YWmF3ir/S22LdhGZ6AzLWgzaA2UKRZiHR1UB3X8L9fH6FJCNIXOYtFZhhSq5KIrn4bx9i0o/iBcnECpGo20hM/xRsdR1rwdzRoyaJ9+gfidd45KyJWtJ1RJMD7pm/RnW9KbLUi0GW3DDtDHegJmvqoutdHN3BX1PDaO1VJ9q+zMgBmwfPKT+N37sh6vupu4YkVicnCVtYqVrpU0djVyIXAh9RzGMshs8jSx48QODBoDLza/SKuvlcOnDzPXMRcAg8aAq8zF55d8HpvRxtvtb/N+5/tp9xGOJwYitPpaU30iLToLn738Y+iefgHV7SbZKEJxOunduIaSaTNH7DkIIYQQQggx0iRkmyJM5dPhjq2oPh/qxWBDsVqzBmwAJq2Js9EuypzOnEv72mM9adsG069rqtMEwllfV0gEbcZAGK/Jm7r4b/I08cQ7T/Cc+zm8YS9tvjZWu1bz2pnX+JuVf07pc2rG9EHfymX8+c6PMqd0DstrlvP2ubdp9DSy/fh27rjiDi4EEpWKBq2BT7u2Ufr0IXx9QglLXR1LRilQ0pc6oDR9W097C8vKr0Z1Zx+KEG9sHJXlbsmwoG/l3ua5q5l/qHFKNOnvv6R3NB9nIJVzI6VQ1ZY2HB23CtxcVXYUOGdjDD565UdRUGj1thJTY2nPYahB5mAHD3hD3tRnprKkklZfK5AIzc70nGHxzMUYdUZ8EV/q3LL9EabvctdgNPHcN9esTgVsfaluN7Hdz+C7fYNUtAkhhBBCiKIlIdsUYrLaU1NE++u/LO6ykjk89v7/cNeGDbDn6YylfboNa/nPE/+W2jaUfl1TVZOniapg/kEeajDAo2/+F1vmb2GaeRo7TuygsauRQDRAKBoiGo/ybOOz3LngTr5x5Dvc/eFtLFlxF0o4jNZsoUcT4V/f+w/WXraWnlAPR84cwawzM6d0DoFoAK2ixWawYdAauLZsIbbnjxDrt5x4rAOlWkctqv8s+V6Z0Vju1j9gA5irn06s8dmstxnN3lYTXaGwZqCVcyOhUNVW7OKU3vGowM1ZZafL/0+y2VxKV7CLcCyctj35HIYSZGYLmQsNHmj2NKeOT4ZjSYFogO5gd6rvY/Lcsv0Rxm6yY9aZCUQDmHQmukPdzNLYs1bmQiJoo9efEdALIYQQQghRLCRkE9mbg9fVcdeGTTzWvItVK5clhhwEQygmE+3xHh478W/0RnqB9H5dg62ImGqSoc4Xau7Mf6DJmGr+fdOcm+gMdKaWViWXeUbiEZ44/gRfXvplDrQfpjFwBo2iYYl5CWc8ZzjQfCB1dwoKcTWOJ+jhVPcp3mh7g/2N+3E5XHxi9UbijS9mPY2xDJRsRhvBEh/5ZuGOdN+uvmFBkklrwqqzoLvrLohGU/3uQocPp/rdjUaT/oluoGHNWFXO5avqUlxOTgYSU3hLDaVj3nsv1/sn1tKC1uXKGsBpnU7iZ1q5pbKe/a3pn9e+AVa2IBOjETUUItrSkvb8coXMhQYP9A0mTbr0z6RZZ2ZL7VqutV+BNhzFrHcQDwSyDlUx6ozMr5hPT6gHBSWxMZQeIPZnDKvEA4FJU0kqhBBCCCEmFwnZJpnBXizmbA7e0AB7nuau2/+AD3pPcyZyCqvZSo2jAjtW1mvXZzRBH0pFxFSTDHXOxb048izFPRf3AomL3VZvYilWcmmVVtGmjo3EIzR5mnj97OvUXFlDe287Zp0ZuzG9YtGkM3H8/HE8QQ8lhhKqbdXMnzYfnUZHNNBL+oxCQK/HWF+PtrqauM9HIBoYk8bjBpuD6Bj27epfxWTSmrjnsjuJPftbwn1DZ6cTy7ZtqcESIx32TXRDDWtGU66qLsXlxHvbUg40bqeypJLLDbPwP/HEmPbey/X+CR0+jPWznyWwb19G9XBycvC8T97J/j63yVZF3DfIjHd343/yyazP73ToTNZJwpB/mE3fUE9BocpaRauvFbPOzD/d+O2LwxseAyAMxOrqKNm8ma3zt/LUiafSHtNV5mJd3ToisQjeiBeNxpy3mpVQCP/27ZOqN6IQQgghhJg8JGSbRHJVpOW7GMnXHDzW0IA5GMl6kdV/WzFeZBejZKjzw3d+wbc2/BnsybyY1m1Yxw/f+EeM+sRgCb1OD1xaWhWNRxPhWDwKJHqqVVmrUFBSF9zTS6bjKnPR2JX43cbiMcKxMH+z7Jtsrl6FVdVzT83tvNz5JkGtmh6y6fVYtm0jdOQIoYMHU5vHovH4WPftSoYFJfoS7nJuYabWjtrdA0uXEps9O1W9FnO7CQHG+nqira2o8Tixjo5JNW10OLJVBCaN5+ThZFVX2Osh4OsmqtdwMtDCgcbtWA1W7r78Dwjt3DXmvfdyVtlFIsS7u9FVV2Osr4dYDMVuh2gU1efDcued6HUWDFoD4Vi44NTffH9E8e/ciX3NDXnPM9dS2r5Vaef951npWslzjc+xpXbtxYAt+9LzOdu2FZxU6+vpIO50Zl0yqnU6ibW0TMreiEIIIYQQYnKQkG2SKHQxletipNCyt4EuiyvWi+xik6oAUeBzL36Nv7ntL5itW51oeG4ycjbq4a9f/BrVpdWp21RZq1IXtPMr5nOi4wRRS5QOfwezrLPQa/SsdK0kEA2kLrhtRhv3Lb2P7x/5Po1djWg1WnZveRzXKw2oL+wAwA5scNYSWWNDM+9y4icTk/+M9fWEjhzJqLIbq8bjY9m3q8ZRw2zbbP6oZiuRPfvo7Rd49q1ei7ndGG+6Ce3s2fT+7GcQiUy6aaNDVaiv2XhOHtaYzZjMZiJ2K2c8zWgVC1vmbaHGUYPFG0ob9tHXaC6Vzhcma+x2/L/+dSrsDj77bHoQX+fiy+vu4XS8izn2OXn/eFHojyjl8VvznmeuYTY2o40t87ek/rDS6m1lec1y1s66GXX3r3I+ntrbi62iIu+/BdbSCno3riG2+5m0oK1vNV/f+5PeiEIIIYQQophIyDZJFLqYynUxUmjZ20CXxRXzRXYx6VsBMs0yjS++8L9xljk51n4MT9DD5dMuZ659LkZdooqt3FxOraM2dUELsHjmYrqD3diMNtbVrcNmtGHWmZnrmJt2wb145mIeWvkQx88dZ4bOztwX3ibeZwIpgOpuQv8M6DduIBqLE2toQFtdnVbBln782DQeH6u+XTajjU/U3UFkx56MULFv9Vrq9VDVVOgGk3Pa6FAUmixcDJOHbUZbRrgTPd+d9zaj2XsvV5gMibBNV1WVNeyONTSi3fccH9q2DY0x/3uu0PnrovGMPmlJhYbZ1DpqM6rSrGE9/jyPF/f3EvHpMVntBH3dl6ZdX3zuyWnXJdNm4rt9A8beCHR1pfoi9v3sDeT5CSGEEEIIMdYkZJskhlqRlq85+GB6YE2Ei+xi0LcCBBJBmC/k4xNXfYLm7mZUVU0L2PpWphVaZpVNpbWSSmsl4XNtBNw7sx6jupvQxOKpC/64L38gqobyjSaYeAyhGL4c0wxjbndi2V5qQyztIh+kogbI2tQ+qZgnD4/UHxmGKleYbNm8mVhnZ86we6DvuULnrzGZ0yrSkgotQ03qH1zGOjryHk8wRGTnbnRr1xLZvZt4n4nGGpcTNq7HVD4dSFS0xcId+P77v3PenfRGFEIIIYQQxUZCtkliqBeLI9UDa6JeZI+HbBUgydcnX4iWrRJnoDThaIH9kdQFfyCSrxYFFKNxSOdQrApWw0QTr12yH9SQ7mOS6798MGmgYc14Gak/Mow0jd1OvKcn7zEDec8N5PnVmiuGFODnfjwXsYbs01FjLS3oK2cS3LWbeL9gO97oJrJ7L9yxNVXRVqy/HyGEEEIIIXKRkG2SGM7FyEj0wJqoF9njJVdgNlp96wYVwpZYUHI0HlecTiixjPTpjauC1TA6HVqXC+P116f6QQ36PqaAXOFxMX/2x3rQxmAow6xSg4E/v6EG+PFAANXrTfy7YTCg6vWwdiXKPhW1MXs/Ncudd+as0Is3ulF9PrgYshXz70cIIYQQQohsJGSbJIZ7MTISPbAm4kX2VDGYEDZX43HF6US7cQ0lozj0YFxYLIkqm2zTDF0u1HIHbFhDaP9vM5aKglTU9DWcasvxMpaDNgZjpKq4Ruv5ZZ1m7XRivGU5wXWrMEeBLk9mP7Vo/qra/svRi/X3I4QQQgghRDaKqqrqeJ9EMenp6cFut9Pd3U1p6Sh3dx8F8UBALkZEVvHu7twhbJbpmL6eDuj1JxqTG41QYhnVqaLZ5GuOPpJinZ0Edu1Kn+LodKLfsI5/a36Kjy38GCXB+KBePzE83pD3UmBvsFJjn3qB/WA/s5B43U55TuGP+vGFfWgVLeWW8hF9/eKBAP4nnsg6bEfrdKK78kriVZVEHvl5xn7LXXfhf+yxnPdt+PxnMc+cPSLnOdYm+v8/CCGEEEKI4ZNKtklmrKYyiolnsBUh1tKKIU8RHYmAJNh5nsjuvXmbo48UbXk52i0bMAQjEAyCyci5uJe9zU+xpm5N4tyNSEXNGGnyNGVder5l/hZqHbXjd2JjbLCf2SZPE7tO7sKsM/Nc43O0+lox68zMr5iPq8w1Yq9f3mnWF4eFxLXarMvOYy0tOStHNS4nilWG5AghhBBCiIlLKtn6kb9ECzE8IxGQBH3dRH7zVFrAlqRxOdH3aY4+ktLCQVnuPC68IS+PvvloziEq9yy+R34nfSSrl+OBAF4lzKnIef7fmz/F3X3ps2PWmVk8czGzbLNG5PWLtrTQ+/PMKrUky0c+gtekELOYMD5zMC1o08y7HPPatQSyTBfVj0KAPpbk/x+EEEIIIYRUshUBWRY1tuT1Hj3ekDcjYAPoDHSy48SOAV/gqz5f1oANMpujj6SJ2FNssmn2NGcN2CDxPmr2NMvv6KL+fdG0QJ3LyV/e9CW+cuivCUQDAASiAbqD3Rh1xhF5/QYyLCSmh5+//zjrbl5Bzcqb0EfiaE1mFKsVndWO/o6tl5aCG40oVuuoBOdCCCGEEEKMJQnZxtlkWRY1UYKrJk8Th04doifUQzAaxKQzcdR4lBvn3ljUr3fy9e0MdBJTY1gNVix6C3Ptc4vqdR6pgKR/8/PB7hcTly/iG9b+qSIeCGQMHoBECD1LVfnUgo/xk7cfTW0Px8PAyLx+eYcyOJ3EfT7U8umscK5Ap7eic0zH2u97ymS1j0pQLoQQQgghxHiSkG0cjVTVz3ibKEGhN+TlldOv8Fv3bznrO0s0HkWn0THLOguNomGaeVpRvt7J17exq5ETHScIRANUWatY6VrJb5t+y6Z5m4rmdR6pgEQxGoe1X0xcVn3+nlyF9k8V+fqiqe4mbrhpKz/ps82gMQAj8/rlnGbtdGJcvhxtWRkz7HZmMGfYjyWEEEIIIcREIiHbOJoMy6K8IS973t9DZUklt8ysp1o3jRKNCa2iIeoJEImcQ2u1FUVz+NPdp5mmlPBXC7+ILhIjotPwbPshfvbOv6PVaFk0Y1HRvd7JIPas92wqYANo9bXyXONzLK9ZXlSB7EgFJIrVisblzNmTTZqjT141jhrKzeU5e7LVOGrG4ayKjxoM5t2vi8RT/23WmbGb7CP6+qWGMni9iaEMBgMYDChmc1F83wshhBBCCDEeJGQbR5NhWdRpz2lmWGawyOJk1qH3MF9rJ3TkOUIXG12HAW1dHZbNm9HYx3dp0GyllOrXu1Ddb6S2fdRZy7Lb/h+fef5PafW1Fl3Ilgxiu4PdqYAtqdXXiopaVIHsSAUkJqsdNq7POl1Uv3G99G6axGxGG1vmb8laHbt1/taiCJOLQaG+aKoxUbmWnC46yzZrxF8/mWYthBBCCCFEOgnZxtFkWBblC/uI+H3Meu1tDNVzCB05QsydXn0Ua2jAv3Mnlm3bxq3CIR4IoNn3PHF3U/oOdxNzgc9e+Qm6A93jcWp5JYPWZD+l/oLRYNpx420kAxJT+XTo1xw9ZjFyovcMp08cQa/TU2WrotZeK8HLJFPrqOWexffIpNc88vZFq3OhlJTwreXfQqvRpgJuef2EEEIIIYQYXRKyjaPJsCyq1dfKEscCVPdetPXLCB08mPW4WEMDam/vuFU9qL29OadV4m5i1Q2beE9tH9uTGoBk0Jrsp9SfSWeiO9RdVIHsSAYkfZujN3ma+Pc3H+XQqUOpqr4qaxWb5m/ihjk3FE1fOjEyZNJrfjn7ol2sHLba7VRNd47jGQohhBBCCDH1SMg2jibDsihfxEeqBX00mvfYQj2ERlOhx7aoWuaUDr5JdzwQQO3tTfQkMplQSkoKVusNZhJrMogNRUOYdea0JaNV1ioUlKIMZEc6IPGGvDzxzhNpARskQt5dJ3ahqmrRDq4oRvFAgJjPSzTQS9ygp1evYrY65PWbYFJ90Qb5HSSEEEIIIYQYHRKyjbOJviyqzFhGVKtN/KDL/3Yq1ENoNBV6bJPFTq2jYlD3Ge/uxr9nD7rKSrTV1ag9PWA2o5aVoXU4st5msJNY+waxgWggY7poIBqYMIHscDR7mmnsaszoSweJoK0n1FM0femKXby7G/+OHWmTKU0uJ/5VN9Bp7iy6wFbkJ33RhBBCCCGEKB4SshWBibwsalHlIl51v8QqZy2xlha0TmdGTzZILGFSSkrG4QwT8vUv0ricxEssgwqq4oEA/j17MF5zDaEjR9KWyWqdTsxbtmQEbclJof2XB3cGOvNOCO0bxHYGOonFY1iNViw6C3Mdcyd9wAaJislcfekg0ZuuWPrSFaNUxWU8TvDpp9MCNgC10Y35WWi5sY5yc/mUeE8JIYQQQgghxEiTkE0My1zHXM5Or+PcciPTX34Hy9KlhCAtaEtNFx3Haovc/YtcGDdtQu8oG9T9qb296Corsw96cLsJ7NqVMeghGZJlU2hC6EQOYkeCVW/N2ZcOEr3piqkvXTHpW7lmueuujIAtSW10M3dFvVQETmGDWcouhBBCCCGEyCQhmxi2pdVLOe05Tccti5mmGDGtWY1JUSAcQTGbi6ZH0Ej2L1KDQbTV1YMa9FCo0koqsXKrcdTgKnPh9rgzloxWWasoNZbKMscs4oFA+tLQAn0TteEoPkXeh1PRYJeyCyGEEEIIITJJyCZGxBzHHHCM91kUNlL9ixSTKdGDLY/+wxYKVVpJJVZuNqONO6+8k2AsmDFddPP8zdww5wapuMki7PWkV64V6JsYM+jkfTgFDXUpuxBCCCGEECKdhGxCDIFSUlIwrOs/bCE5KTTbktFinBBabGodtfzp0j9lw2UbOOs7i06ro8paRa2jVgKALLwhLzFfN0qfbfn6JiouJ6ci55k346qxO8khkmWNIyvg9XBX1Tq04Sgxg453fI38V8MOzvvPE46FmVs6l2tmXcNcx9zxPlUhhBBCCCGKmoRsQgyBJjlFdBCDHvpOCu2/JGsqTAgdCTajjWuqrhnv05gQmj3NVOoN9O1kFzp8GMu2bRl9ExWnk57brkel+JeKyrLGkRXv7say94VUxaMWuMbpZNoNn+Cm/15Pb6QXu8nOfx3/L757898yU2Mf9nJ7IYQQQgghJitFVVV1vE+imPT09GC32+nu7qa0tHS8T0cUuZjHQ2DXrn7DFC4OerDbs94mrQpHb6XGIVU44yE1cTNLYJBv30RxuOUwMb+fRUdaUBv7BMF6Pcb6erROJ3GtQq8mRnPkPK91vs1Z31nsJnvRBlbekJdH33w0ZzWoLGscnHgggP+JJ7IPw3DW8LPqVv7ipf+Pexbfw5eu+BTOVxpRsw21yfFdN1LnOFE+i/L/D0IIIYQQQirZhBgGrcMx6GEKU31SaDHoO3EzKRkYADn3jWaYMNKseis72p/Heds2rHApaItECJ9pQXPVAn7l/g3tve1ptyvmPlzDmdArMqm9vTmnzeJuZlP9Wn7ieJTVVTfjfKUB1d2UdkisoQH/zp0Zk5RHSr7P6UT6LAohhBBCiKlDM94nMBp+9KMf4XQ6MZlMXHvttRzMMQFSiJGgMZvRVlSgq65GW1FRtFUWIiFj4uZFsYYGIg0f5Nzn37mTeCB9smkxq3HUYDVY+UXjdo4trSb8x3cR+8RHCP/xXbx/Yx3N8QsZAVtSMrAqNmMxoTceCBDr6CDa0kKso2NC/c4Hq/9wlv4scS3L5ixjcen8jIAtKTVJeYTl+5xOtM+iEEIIIYSYOiZdJdvjjz/OV77yFX70ox9x44038tOf/pT169dz/Phx5s6Vps1CTHX5qnc0VlvOfakwYYKEqH17AO5vfZH9F7cnewC2+dry3n4kAquRNtoTeqda5VT/4Sz9qQYDzzY8y7c/9KX8xxUI64Yi3+d0on0WhRBCCCHE1DHpQrZ/+Id/4DOf+Qyf/exnAfinf/onnn76aX784x/z0EMPZRwfCoUIhUKpn3t6esbsXIUQYy9vIBCNDv22RajWUcs9i+/J2gPQG/JmHG/QGrilsp555mqscT2xjo5B9cAa7f5ZIz2hN+18LRYCu3fnrJwarSWRuYzFBFWlpARtXV1aT8kUZw27z/wWX8RHUBsnX8RYKKzLJ9d7ptBnbaJ9FoUQQgghxNQwqUK2cDjMa6+9xl/+5V+mbV+zZg0vv/xy1ts89NBDPPDAA2NxekKIIpA3ENDl/0ocTpgwHvIFNf0DK4PWwKdd27A9d4S4+yBhIMzAK7nGogpsJCf09j9fy113FU3l1FhNUNWYzVg2b8a/c2da0KZxOTl705X87fbN9IZ72XXmt3zWWZt1yWi2ScoDle89oxgMeW458T6LQgghhBBiaphUIVtHRwexWIzKysq07ZWVlbS1ZV8a9Y1vfIOvfvWrqZ97enqYM2fOqJ6nEGL85KveiXu9aF2urGHLcMKE8VAoqOkfWN1SWX8xYHOn3c9AKrkK9c8aySqwfNV5A5X1fIukitEb8mb83mD0BlJo7PaM4S0BA5zreo9vLv8mveFeSowOelfdQMmzpAVtqRB1CL/bnO+ZU6eIdXURv3ABrdNJrN/7EUBx1tIW72Y2FYN+XCGEEEIIIUbTpArZkhRFSftZVdWMbUlGoxGj0TgWpyWEGAftvnaOnzuOJ+TBYXJw5fQrqdi8Gf/OHcQa+lTQOJ1obDaMS5cSUtW0i/vhhAnjYaBBTd/Ayqk6iLqzD4kpVMk11v2zhjuhN+v5FkkV43hMUNWYzWm/HyvgOevhieNPpLY9eeJJPrXgY9xw01Z0kThW2zQsZTOG/JnI9Z4x1tcTevFFYi0tWLZtIwRpn0WNy0nHLR/mJ0cf4d7r7mWuQ3qtCiGEEEKI4jGpQraKigq0Wm1G1dq5c+cyqtuEEJNXss9TuNeLSpBOTyv/duK/iMaj1Dhq+MKSL/ChdetQOrsSFUw6HbGWFvxPJEIFY309pjVrIBpFMZmImPS85z9DT8u7o9YfayQNJqhJBlbRlhby1XLlq+SaaP2zsp1PrKUlZ+XUWFYxjsUE1YHQ6/RpPweiAX7y9qP85OLP37j5G6ytGlwPvL5yvSe01dWELk4E92/fjrG+HmN9fepz2mPVcc2/XcvmeZt5/ezrvHb2NRwmBwumL6DSKv/OCyGEEEKI8TWpQjaDwcC1117L/v37ueOOO1Lb9+/fz9atW8fxzIQQo80b8nK6+zRzNGUoe59NVcmY9Xo2rl3DhhU/5EJ3G1G9hvc7mrnMZiPy2GNZ7yt08CDxulosNS6aPE3sfXcvV9ouY555NtruKMHQWcIlPUwrnz2WT3HAhhLUFKrUyrd/OLcdD9nOJ3T4cNbKKa3LNaZVjKM9QXWgqqxVVFmraPW15tw3HDnfE32X7UYiqcAtqecja9k6fyuHTh/iaPtRqmxVBKIBXGUu7lt6H4tnLh7WeQkhhBBCCDEckypkA/jqV7/KJz/5SZYsWcKyZct45JFHOHXqFF/4whfG+9TG3VhMqxNiPCT7j11btpA5h1+9FJLo9Yng5MgRYrt2k3y3L3XWYthYiv7uuyESSVWyhQ4fTvwMKEYj3pCXve/vZeOsW3A8/yqq+9IAFcXpJLBpPeby6WP8bAsbSlCTr1ddoUqu4dx2PGQ930gkUTm1dg3R227C3+vBVGInZDJgHaHBDQMx0hNUh6rWUcum+ZvYdWJXWtBWZa1i8/zNwx7AkPM9U2DZrtZk5uXTLxNTY5SZytBqtJSZyugJ9fCDIz/gwZUPSkWbEEIIIYQYN5MuZPvoRz/KhQsX+Ju/+RvOnj3LwoUL2bNnDzU1Y3NhUqzGalqdEGOtb/+xeVXVxPv0FTPW1ycCtn5LAFV3E8Hdu9H1WZqmdTqxbNuGf/t2NHOqUaxWmj3NXGm77GLA1v8+3ER37yV4x1ZM1rELYQZiKEFNrkmTA+lHN5zbjodc56tUz6a5XOErL9xLmamMjfM2smX+ljE9t5GcoDrc87hhzg2oqkpPqIdgNIhJZ6LUWMoNc24Y9nnk+h3Efb6cgS3OGt7pdWMxWDjrPcsbbW9gNVjpjfRSYangmpnX8O65dyVkE0IIIYQQ42bShWwAX/ziF/niF7843qdRNMZ6Wp0QY6lv/zElFE7b17e/U38xtzvR66nPzyHAuHYtOOdistrxed5lnnl2WgVbX/FGN6rPB0UWsg01qMk2aVIpKRlQSDac246H5PmGvR783i56NVEOXXiDXx76a8pMZWyev3nIYVI8EED1ehOvg8EABgOK2Tzg12IkJqiOhFpHLdPM00btPHK9Z/R1dRnhG84aPljq5NCZ/Zz1niUSj+CP+FPn0uHv4PW21+kOd4/IuQkhhBBCCDEUkzJkE+nGY1qdEGMl2V8sFA0R0MZJa9cezdfKP3N/zO3GtG4duotLQK16K9pA/vtQQ6HBnvKYGGpQ03/S5GAM57bjQWM2YzKbiditnL/wPrbSCr6y7CtUWauoddQOLWDr7sa/Y0fa5Eyt04lx+XIoK0MzwKWnw52gOlJG+zyyvmfM5lT4FvH76CbI4c6j/OroD1jlWkUwGsQf8WPUGYmr8dTNOvwdqKo6aucqhBBCCCFEIRKyTQHBaJCP1m1llsYOoTAYjZyNe9jZvB9/1F+wSbr0chPFzKq3YtAauHH6tdgNpZjvugtITIss1N8p6/7wpWq4GkcNgVBm4/e+FKNx0Oc8VsY7qIl5veD3p6qUsFjQ2orvu8NmtHFN1TXDvp94IJARsMGlKkn9woWo8+roCfZQElXQhCPozCVorbairfgbL8nwTUsF77W9yVPNT9Ph7yAcDTPTOpMz3jOUmcvwhS79++V0ODHpimvIhhBCCCGEmFokZJuA2n3tHD93HE/Ig8PkYMH0BXl70MwzVMHeZ9N6Ss121vLZtR/jZ+//Z94m6dLLTRS7GkcNn3Jtw/bcYVT3L/Ff3K51OtHNn4/W6czoyZbcH2tpydjed+qhzWgjbLWiOJ0ZPdkANC4ninVspj1ONLHOTgK7dqVP6nQ6MW/ahLa8fBzPbPSovb0ZAVtSzO3GuGwZajCMec9viV58XcKAts6FZfOWAVe5TTWLZy7moZUPcfzccS4EL/DRKz/Ks+5neff8u6gkKtecDidrLluDSSshmxBCCCGEGD+KKmsr0vT09GC32+nu7qa0tHS8TyfDm21v8v0j36ex69KFnKvMxX1L72PxzMUZx/t6Oog/uSdrQKA4a2lfeS0zKzIr0+KBADGfl15vJxG9hpOBFg60HyYcS1T5lJvLpZebKAq+ng7Up/YQb8wSpM2bh3n1agJ792Yu31u6FP/27alponCxUf+2bRlVRYHO80R37017DI3LiX7jekzl06Xas5+Y10vgN7/JGW6a77ijKCvahiva0kLvz3+ec3/JZz5D8Le/zRrE5XrviXTtvnb++vm/RqvRUqIvIRQLYdQa6Y30EovH+PZt3x63wQfF/v8PQgghhBBi9Ekl2wTS7mvPCNgATl44yd8d/Du+fuPXMeqM6Rf4vf6sARskJizO1NyaGbD16SmkAAZgkcuJ87Zt/KJxO+FYWHq5ieLR688asAHETp4kvmQJutmzMS5dCoDG4QCDgcC+fZkBW45JmOby6QTv2Irq86GGQihGI4rVislql2rPbPz+rAEbJCq68PthEoZsfasgs9Jocle6NTSg9vbm7GknQW5CpbWSe6+/l+8f+T7vdbyX2p78Y5NMFhVCCCGEEONJQrYJ5Pi54xkBWzAapMPfQUtPC++ce4dGT2PaBb4aLNCUvV/T9lw9hdRGN1bglqX17G99EaBgLzchxkLB93gkQujgwUsh2sUleZatW1NTDVWjgS4lxHHfCSwhS9YAw2S1Z0wRlcm92anB4LD2T1RKSQnaurr0qZgXaZ3OIb8uzZ5m2i+cYq5uGpVhC7GYlne9b1I5bS41jpoROfeJpO/yUU/Ig8PoYMGM/G0ThBBCCCGEGAsSsk0gnpAn7edoPEqHv4NoPDH90Bv2AukX+Iopf1P2/k3b8/UUUhvdzFtRz/6LP+fr5Tba4oFAKiBRTCaUkhJZZjVFFXqPU1aG9d57M94jycbqiUq0/xlSJZpM7s2uUEVXwYqvCUpjNmPZvBn/zp1pQVtyumjcZMh7+2yvizfkRd8b4kOH3Kju51PbP+SsxbeyEq/ZOyWD3EprpYRqQgghhBCi6EjINoE4jI60n0PRUCpgA7AZbJz3nwcuXeDXlszM2bRdcTqhxJK2rVClhTaceLxyc/m4VVD0Xc6aOq9+VUogy6umjBJL3vd4qESPtbQi602HW4lWqJpzylZ7Wix5B05gsWS50eSgsduxbNuG6vUm/ghgMIDBQMSg5d3z71LncqJm6x9YV4dSUpKxvbenE+tzhzPe36q7Cetz0Lt+Bbbp8r0mhBBCCCFEMZCQbQJZMGMBrjJXasloTI2l9l1RcQUGXXqVhC/iw1pZQe/GNcR2P5N2kaY4nWg3rqGkX/hQqMIkZtBRbi5n6/yt4xJY5VrOGmtowL9zZ6px+FTpkyVBIlhLB/ce72u4lWiFqjnHs9pzPGltNsybNuWeLjrMfmynPKc41n6MzmAn5eZyFs1YxFzH3OGe9ohJVkn2pQXKo7MIrKrA/CxpQVtiumj2foCWCHn7aloiWXcJIYQQQgghxoGEbBNIpbWS+5belxp+oFW0QCJg++yHP8t7F95LOz55gV8ybSa+2zckhiBcbNpOiSVr+JC3p5DLhWo2j2ufqXzLWZONw72a6JTok5UMEs96z9Id7CYcD1Nlq+Ljiz7O/Ir54316Y2ow7/G+hluJVuOoodxcnjWoG89qz2KgLS/HfMcd4PenlnVjsQw7YHvl9Cs8ePBBjp07ltq2aMYivnnzN1k2Z9lwT3tU1Thq8Jq9BNbfSkn0NjThCDpzCVqrLedyd004Qizrnkv7hRBCCCGEEMVBQrYJpm/D585gJ8FYEK2i5b0L7xGJX7rY6n+Bby2tgNLC95+zp9DF5ZhWuz3PrUffQBqHN8faJn2frOQyx8auRk50nCAQDQDwQecHtPS08M2bvsll0y4b57McW/ne47kq/oZbiWYz2tgyf0vWqsnxqvYsJlqbbUSniJ7ynMoI2ACOnTvGgwcf5IcbflhUFW3Z2Iy2Qb0vtCZz3pBNa5JelEIIIYQQQhQLCdkmoL4Nn5PVTP0DtuFc4Kd6CiUHCxgMoNMR9/lQI5FxHTIwkIbqvuDk7pPl6+lA9fXyiYpVRKu0HPM20B3ysMS+AF0kTlSvpdvnwWudmg3R+8u3dHgkKtFqHbXcs/ieSyGe3kqNY+ot2x0tfQPSNm8bRp0RvUaf9p0HiaDtWPuxog/ZBkuxWtG4nMSz9HHTuJwo1om7JNnX05GoPg2GUMwmsJhRjcYpvwReCCGEEEJMXBKyTXADucBv97Vz/NxxPCEPDpODBdMXFJzKluwpNNAhA2Ml73LWi43DrbHJ2yer90Ib8Yu9x7Qk+jwtdbkw3nwT/l8/BpFE8FDmcqLZMAcGeXE62aa2DmSwwUhUotmMtglfHVlsTnlOcfz8cZ468RSdgU7KTGWc95/ng84PWFO3hmcanskI2rpCXeN0tqPHZLXDxvVEdu9NC9o0Lif6jesT+yegvt9lSYrTSWzdCva8vwd/1A9Mzl6aQgghhBBi8pKQbRLId4H/ZtubqR5uSa4yF/ctvY/FMxfnvd9CQwb8626hMXhmSNUGQV83qs+X6J91McwZyMVioeWsGrOZGs3k7JPl6+nIuCgFiDU2ElJVjPX1hA4eBCDe6EbZ8wzxO+8ccEhWbIHqSBjoYAOpRBs/2YLd3194i+3vbmf3+7tp6Ex8zmdaZ1JfXU+br41XWl7h2lnXcvjM4bT7KjOWjfm5jkUIbSqfDndsvfSdaTSiWK0TNmDL9V2mut1o96lsvnU1jzc8BUy+XppCCCGEEGJyk5BtEmv3tWcEbACNXY18/8j3eWjlQ3kr2goNGVAC17OvYR8wuGqDYOf5rFUZbFyfuJgsIGM5a7+L3UnbJ6s3kHPKYMztxlhfn76tsRG1tzdjymE2A53aOtEMdLCBVKKNj+zBrotpNy+iN9ybCtgUFM70nOGdc+9Q66jl+PnjXDPrGoxaI6FYCEgMP1hUuWiMz3XsQmiT1Q4FQrWh/vFizPX6805MnbXy5rRtk6WXphBCCCGEmPwkZJvEjp87nhGwJTV2NXL83PH8IVuBIQPacDT13wOtNgj6ujMCNkhUXkV274U7tg64oi1feDQZ+2TpwtG8DdDRajM2Ffodpo4bwNTWgYR1xWa4gw3E6Mkd7DYyIx5nw+KV/PyNn6OgEI1HUVE5ceEEW+dv5ULgAqFoiK5gFw6jg/kV8/nm8m+OWj+2iRBCD/ePF2NJDYbyHxAKZ2ya6L00hRBCCCHE1DDgkK2lpYXq6urRPBcxwjwhz7D2FxoyEDOkv30GUm2g+nxZG3hDImhTfb6C1RoDNdGrk/pPxJxvrMh7vJLlIr/Q7zBpIFNbJ6KRGGwgRke+YFd1N/Hh5Xde+hkVgLgapyvYxbWzrmXtZWu5tupaau21XDPrmlEdeFDsIfRI/fFirCgmY/4DjIaMTRKICyGEEEKIiUAz0AMXLlzIr371q9E8FzHCHEbHsPYnhwxko3E5aQieJRqPYtKasBvtaBVtwWoDNZS/gqHQ/qmiydPEo28+yhPvPsG+D/bxxPEniBFH63RmPV7rdEI8nr7t4iCIgRjI1NaJKLl0uNxcnrZ9wi8dngQKBbdKOIzT4UwFbEk6jQ6bwUYwEuS68qtYXbaEKp+GWEcH8UBgXM51vEPoAf3xYhzFAwFiHR1EW1qIdXSgt1hRcnyXKc5azsa707ZJIC6EEEIIISaKAVeyPfjgg9x77708+eSTPPLII0ybNm00z0uMgAUzFuAqc2VdMuoqc7FgxoK8t881ZEDjcnLmxivY9pvb6Y30AjB/2nzuWnQXNn3+0EIx5q9gKLR/Ksg1EdMX7cW+dCkhEj3YkrROJ8alS1H7BAx9B0EMxECmtk5Uk3Hp8GRQKLj1K1GWVS8DBd6/8D4AlSWVVNmq2HD5BurtC7E9f5ho40GSC9e1Lhf6DesIW00j+vst9hC6mP94kbWX3fz5WDZtxL9rd9bpojtP/mdqmwTiQgghhBBiIhlwyPbFL36R9evX85nPfIYrr7ySRx55hC1btozmuYlhqrRWct/S+3JOF83Xjy2p/5CBqF7LjtP7+bM+ARvAiQsn2HliJ5sv35z3/hSrFY3LmbXqQuNyolhlSVCuiZgn/KdZ9HobhurqxJCDaBR0OmItLQRffw1uW47hnj/CYLENeurhQKa2TmQTfelwIeM19XI48ga7Lhdv+Rp4uuFpFs9czPVV12M32amvrsesMzNTV4bt+cMZ3yOxxkbYvRfWr6JZ3zli1U/FHkIX4x8v4oEAaiBAYPfuzF52J04QBIxbNxHxX5qYSokFxWhkw+UbJBAXQgghhBAT0qAGHzidTp5//nn++Z//mW3btnHFFVeg06Xfxeuvvz6iJyiGZ/HMxTy08iGOnzuOJ+TBYXSwYMaCAQVsSX2HDDx9Yjc/eOtf0GrSm+yXGksJx8K81/EeddOyLzGFixPyNq7P2qBbv3F9UfUNGi+5ltweaD+Mc/k2Sp//HaGDB1PbNS4n8XUrCZn1zKgcet/EQlNbRXEa76mXQ1Uo2F2i9vDTTT/lQuACJfoSLHoLrd5WGjobuMn1UeKNB7Leb8ztxuIN0q6eodxcjs1oy+hvWGMfXHBT7CF0sf3xIvmeNC5dmruX3YkTmFetwjgrs5feZA7EhRBCCCHE5Dbo6aLNzc1s376d8vJytm7dmhGyieJTaa0cVKiWT2ewkzPeM1SWVDLXPpdYPIZWoyUUDXHGe4auUFfB+zCVT4c7tqL6LlUwKFarBGwX5WrwHY6F+UXjdj67/pNMY/2oBGGFprZOVu2+9ktBtMnBgumDC6KHYzhVaBNh6mU++YLdOdiZ45iTOjYtKIvryZw/2UcwyNySCpo9zfRGennyxJN0B7uxG+0YdUbKzeVsmb+FWkftiJzreCumP16kvSevvTbvsePdy04IIYQQQoiRNqiE7F/+5V/42te+xqpVq3j77beZPn36aJ2XKFLlpnLiapzz/vNZ95cZywZ0PyarfcSmiE42+SZiWg1WzDYHWlk+NWLebHsz55LqxTMXj+pjZ69Cc2HctAm9o/BnqdDUy5jPWxQhUD4DDXb7LvmNdXTkD9l0OsxxOND8PIdOHaLV1wqAWWdmfsV8AHac2ME9i+8ZdEVbsYbQxfLHi7T3ZIE/wo13LzshhBBCCCFG2oCni65bt46/+Iu/4J//+Z/5n//5HwnYpqhFlYtYNGNR9n0zFrGoMvu+iSgeCBA5f47AKTe9bS2cu3Aab8g76o8rEzEHLujrJtB2Bn9zI4H2VoK+7sI36qPd154RsAE0djXy/SPfp93XPpKnmyZ3FVojwZ078XjaCt5HoUogn7eTJk/TcE6zKCV6pLmy7tM6ncRaWuhWA1j0Fs76zqb2BaIBTnScIBQN0RnopNnTPFanPCZMVjvmmbOx1Lgwz5w9LtXBfd+TsZaW3BOR61xj2svOG/LydvvbHG45zNvn3h6T73IhhBBCCDH1DLiSLRaL8dZbb1FdPfSeT2Lim+uYyzdv/iYPHnyQY+eOpbYvmrGIby7/JnMdmf11JqJsFUYml5PA6puIGHsxh2KJapGLS8ZG+mJWJmIWFuw8n3V5HBvXJ6p6BuD4ueNZp+9CImg7fu74qC0bzVeFFm90E/P58Jq9eX/nhSqBonrNkCq2ip3GbMa0cSPBnbuyTtoNvPYqTxuP0xxqo0RfktbnMBAN0B3sZoZ1Rs7+h2Lo+r4nQ4cPY9m2LWMissbl5OxNV9J+7jVuqrlpQPc7nL56TZ6mjInNQ1kyLIQQQgghRCEDDtn2798/muchJpBlc5bxww0/5Fj7MbpCXZQZy1hUuWjyBGw5KozURjeWZxV0VywgtGtXavtgg52BmuwTMfsbTF+0oK87I2CDRDgV2b0X7tg6oODTE/IMa/9wFKpCU0Jhmj3Ned8D+aZeKi4nJwMtqYqtyfZe0pWVY9y8ETzdEAimJu0GXnuV9huu4NcvfI2l1UtRUTNuG44nFpvm6n8ohk4pKbk0hCESwb99O8b6+sREZFR6TArvBk7zxLv/xnsd7/HDDT/MOywHEiHZ3vf3cpV9PvPM1Wi9USLhc3isvTgcM/Pe1hvyZgRsAJ2BzkkZQAshhBBCiPElUwvEkMx1zJ00oVp/+ftcNWK8fmnatsEGOyLTYPuiqT5f1kmKkPh9aHoDA+r55zA6hrV/OApVocUMOnyRzL58faWmXvYLhRWXE+9tSznQuB3IPbF2otOXTeN0qBO9BpRwkKhrBu/M8LHr+C9QUekJ9TC9ZDq9nt602xk0BsrN5dQ4asbpzCcvjdlMcPXNGJ6Jg7sZIhFCBw+idbnQrF3Fv7/7bzQH2nm19VX+ddUPmBuxEG1uTnweLBa0tvTAyxvysvf9vWytug3bc0eIu9MnK0c2b87bv7DZ05y1vyUwaQNoIYQQQggxfiRkE6KfghPvotGMTfFGN6rPJ8McsogHAkS93UT8vcQMOro0QczWMmZYZwCF+6I9tPKhjIo2NRTK+5hKdw+9OoW41ZK3SmXBjAW4ylxZl4y6ylwsmLFgoE9z0JJ9xWINmY+drEKz22cUvB+N3Y5//QqUwFK04Sgxg46TgRYONG4nHJv8FVvdSogn3E+kbSsxlGDWmTl54SSfu+ZzPPXeU2nDD1xlLulvOIoOe97mjNPDp1Z/Bp3XDyT6s4V+9iifrq7Ct/J2HNd8HXXfs/jdO1K30zqdmDdtQlt+qR9ls6eZq+zzLwZsmZWroV270G67M+eAj0IB82QNoIUQQgghxPiQkG2MnfKc4lj7MTqDnZSby1k0Y/Iss5wsFIMh/35r9sCib/Ajv+eEbL3typy1dK64hrd627iq8qoh9UVTjMaCj63ufQbWruKUvou5jrlZezpVWiu5b+l9OavoRqsfGyQqfoybNhHcuTOtKi9ZhfZW6/N8oua6Ad2X2ebg0YbfZK3YmewVW9mm8Rp1RuZXzKcn1EN3sJvlNctTy0avqryKqyqvkoCtgOH0QFswfQEBXxeR/c8Rdjel73Q3M61tEdHjv0vr0waJvm2BXbsw33FHqqLNF/Exz1ydVsGWdpuGRsJeD6YcIVuhgHkyB9BCCCGEEGLsScg2hk63v4/iD7AwPp1IyQyea3uZX7z5C7667Kssm7NsvE9PJOl0iQmF7szliFqnE3TZPzbJ4OeV069kHwxx8zen1O85Z287dxPlQPP1M/HpKrnJ8iGeWfEomIw0Bs/yjcPfpivYlTo+W180xWq91Pepn+R0yVhDIxZvgEq7jfc73mdvw96sjc8Xz1zMQysfutQPzuhgwYzc/eBGkt5RRu/mNcR8PpRQOFWF9lbr82y4fMOAQ43kRNpszd0ne8VWrufuKnOxrm4dkVgEb8Qrw0MGYbiDAuqm1VEZNhDb/a9Z92ttNkK5luS73eD3w8WQzaq3ovVlVg/3FfB1E7Fbs/5us4WwSZM9gBZCCCGEEGNPQrYx0nuhDfvTL6P2+av+x5w1LFv2FR54+WH+ce0/TslKp2KkBgIYly7NmIiXnFyodndn3EbjcqJYrZzynMoI2ACOnTvGgwcf5Icbfjhlfs/5etup7ee4cfomgrt34+/zGlc7nfx6/Y+5+7n/lQrasvVFM1ntsHE90d370h4j+Tvyb0/0IiMYJPLSS5hWLs3b+LzSWjkmoVo2DsdMvOZk1VAndvsMPlFz3aDDoKk8kXYqP/eRNlKDAkwxhd5cO7Msue+r75L9GkcN4Uh73uOjeg1ncvRWm8oBtBBCCCGEGHsSso0BX08H6p5n0gI2ANzN1AArapbxRtsbUyZ8KXaK0UjvL395aSJeNJqaXOjfvh3LXR9LO17jcqLfuB6T1c6xEy9lBGxJx84d41j7sSnze87X286yZQvB3buzLhdj7zM8tv4nPNm8jwNth3P2RTOVTye6YQPqhQsZvyMikcRBOh0xt5tK7aqs91Esjc9HapLsVJtI29d4P/fhLK8sJiM1KCDvYI8c1cDZbmsz2vBYe3NWrib7F2oVS877kxBWCCGEEEKMFQnZxkKvP+ckRNzNrK1fxws9R/GGvPI//UVAKSlBO3cuoYOZPYC0dS7i5Q4Mn/8caiiIYjSiWK2pqaKdwfzTILtCXXn3Tyb5LrIVmy3rclxIBG2mSIwNxxU2b/wWJXkqzDQWC/69e4k1NGTsSy4bBSCYe1CCND4XwzXc5ZXFZKQGBSQGe9Rl/WzGfT60LlfWSlet0wmW9MDM4ZiJb/0alD3PoLoz+xceaNzOlnlb8p7PeIewQgghhBBiatCM9wlMBWqeC3wAQ1TFZrTR7GkeozMS+WjMZiybN6Otq0vbrricdN96Pf968nHaTWEsNS7MM2enAjaAKmsVGy/fyGrXajZdvon62fXoNfrU/jJj2Zg9j/GWnJ6ZVTic/8ahEKrbjbr3WeKBQM7Dcv2ukstGQ4cPJzaYcg9KkMbnYjgKLa/0hrzjdGZDM5KDAsxr1mC56y4sd92F8eabQa9H63IRmFOJccP6RKDWR2q6qC3zj02qrYT3b6oj/Md3EfvERwj/8V0cW1rNLxu3JyoHpbeaEEIIIYQoAhOikq2pqYm//du/5fnnn6etrY2qqio+8YlP8Fd/9VcY+kyCPHXqFPfeey/PP/88ZrOZu+++m4cffjjtmPGg5LnAB9CYTNiitowKgcmy/Ggi0tjt6G7fTMhzHoIhonotfk0EUzTONseNKN4wPk0H1tKK1G3ebHuTp04+xa6Tu2jvTfQQqiuvY/1l69n7wV4+VPEhFlUuGq+nNOY0ZjOa9WtQ9zydXsnprIV8S8kALg6RiDU0oPb2Qo7JgZD4XZk3byZ+4QIEgxnLRrVOJxfU7EGdND4XwzVSyyuLxUgMCsg2VVjrcmH+k8+yu+W3PPL0ZzHpTHx3xQPUrFkNoTAakwkslqwBGyQq0aaVz+Yx6a0mhBBCCCGK2IQI2d577z3i8Tg//elPueyyy3j77bf53Oc+R29vLw8//DAAsViMjRs3Mn36dF566SUuXLjApz71KVRV5Qc/+MH4PoESC4rTmbbMJUlx1hI26jh25hib521ObS+0/EgCuNH3Qe9pfvb2zzjVfYrv1n+L6b89mvY7VF0uAhvXYS6fTruvne8f+T7NXc0sr1nOO+ffoSvQRSga4mj7UbZdsY2tV2ydMv3Ykt4ONhNdOof5t96AEooQ1St8EGxlVqSD6XkmuKreS9U/+Xq7pW5jt0MsRmDXroxhFeZNm+jU+DKCg/4X596Ql/cvvE+rtxW9Tk+VrYpae23Wz9Vk+PyN9nMI+rpRfT7UUAjFZEIpKUmr+pwsRmp5ZbEY7qCAXFOFY42NBPfsJbQAAtEAgWiAzz5/X6L6d95GtszckvW+44EAam8vajDIHJOVP7nyUzT6z9AT7pHeakIIIYQQouhMiJBt3bp1rFu3LvWzy+XixIkT/PjHP06FbM888wzHjx/n9OnTVFVVAfC9732PT3/603znO9+htLQ0632HQiFCoUvLOXt6ekb8/K2lFfRuXENszzOofSp6NC4nkTUrePKD/6LEUJKqEMi2/MigNXBV6TwsPUF8ng/AaEAfi3Os7RhGvZHGzkaumnnVhOv/U8y6Al3E4jH+bPEXmfHiUeL9AqF4YyPR3Xu5sHElxz0nee/8e8wunc3BUwcx68xUWCqIqTEAVtSuYFn1svF4GuPKorPwROsengFaelr4oPMDFBSqS6v56fq/h737M0Oxdevw/fKXqW15G6j3oS0vx3zHHeD3owaDidtdrIyZS3nexudNnib+/a1/59CpQwSiiaq3KmsVm+Zv4oY5N6R9rj648AFvnXsLT8BDJB7BorfwVvtbGccVs2ZPMxe6zlCrr0QT1hFDR1PbCSzWMuqm1RW+gwKCneeJ7N6bVsGocTlh43pM5dOHff/FxKa3saRqCd3BbnxhH3aTHQ0a3u98n0g8MiGXIw9nUEDeqcLuJm64aSs/6bPtnP8cWo2WV8+8itlgTgt8s1bE1dXxoc2b0eQYiCKEEEIIIcR4mhAhWzbd3d2Ul5enfn7llVdYuHBhKmADWLt2LaFQiNdee41bb7016/089NBDPPDAA6N+viXTZuLbugF6/QR7ewjrFE4GTvPyyX/HarCmVQj0X35k0Br4eO1Wyn77Kqr7CLGL22c6a7nl5mv4g72fYk7pHD6/5PNMM0+Tv+oPUt9KiWTFjcZsxh/x82bbm/zlgs8TbzyU/baNbhR/kPOB85SbyznccpiuYKKCLapGAVBQWNK4hDn2OVw548qxfGrjru/SM4MmsWxbRaWlp4W/fvW7fHPdn+KIr0ks8zQYUL3eRMDm9wOJC2qlpGTAj6e12SDPcrNsy/a8IS9PvPNEWsAG0OprZdeJXaiqmvpcneg4wa6Tu3jyvSc53XM6cb8GGzfMuQEFZUJ8/rwhL6ZAlMtf+oB4434g8Q9BjbOWzhXXcFI9ybyKeUO+/6CvOyNgg8RnJbJ7L9yxddJUtDV5mjjZeZJ/fOUfeevcW0Di+3pZ9TL+6Ko/ot3fPmGXIw91UEChylNdJH7pvzU6ls5eyr4P9qHT6KgurQagwlLB3Zdvw7Dr2cyKuIYG/Dt3Ytm2DU2eZeRCCCGEEEKMhwkZsjU0NPCDH/yA733ve6ltbW1tVFamTyEsKyvDYDDQ1taW876+8Y1v8NWvfjX1c09PD3PmzBn5kyZR0UYpqCEvbZ5mTDoHW8q3pCoEksu33u98n3O957Ab7Rh1Rm6ouOZiwNaUfofuJiqBbyz5Kn/18t/w01d/Sq29Fp1GN6GXsY2lXJUSug1reb7pedweN/o+F4VZXayE1Gg0dPg7iMajRNUoRq0RraJlhmUGX7ryHqrj5USamsBkIqBTaVW7mV06e1L/fvouPQtFQ5h1ZgLRALOss7iy8kp+/O6/odVo+cxlf0jJcy+lTSLU1tVh2bx51C+kmz3NNHY1pgVsSa2+VnpCPTR7mqlx1PBc43NpARuAN+zl5dMvE4vHWDhjYdH33Qt4PViePZQRgqnuJsqBt5ZWM8s2a8jvS9XnyzlNOd7oRvX5oEhCtuEsmfWGvLzV9haPvPYIjZ5GNIqGuBonHAvzSssrKIrC36/8+0n9+c6mUOVpVH9p3tK8afN4sflFSo2l1NgTYaRW0WLWmQl2d6LNURE3kF6NQgghhBBCjIdxDdnuv//+glVkv//971myZEnq59bWVtatW8dHPvIRPvvZz6YdqyhKxu1VVc26PcloNGI05h9MMNKyVQj07cFWWVLJ8fPHMevMzK+YzzzzHFT3kex35m7i5pu2Eo1HafW2cvLCSbqCXUDiub+gvsCmeZsmzDK2sZSzd1BDA+rufVzumkO5qZyYQZv3fqJ6LdqglgpzBaXGUv73tV9mS/Vq9FGVqEFHjaOG8J69+Psti3RtXM+v3vkvVrpWTurfT9+lZ7fW3soZ3xlCkRCt3lZiagy7wU7IbGD6tm1ZKwpHmy/iIxzPPe00GA3ii/hSYUzfgC3JG/Zy1neWVl9r0YdsJVGFaI4QTHU3UXfLdcNq1q+G8k9TjgVzT4sdS4X6Xhby/oX3Oec/x5ttb6IoCiX6EmJqLPVvzunu05zxnmHe9KFXBU5EianCdWmBeWqfs5aXO4+mfi41luIJepheMh27KRG8TrdM5+mGp1ljuSrv4wykV6MQQgghhBBjbVxDti996Ut87GMfy3tMbW1t6r9bW1u59dZbWbZsGY888kjacTNnzuTIkfQgqquri0gkklHhVmz692BTUKiyVtHqS4Rm2kg07+21kRhV1irO+8/zetvrvHL6FaZZpjHNPI1l1cvYdXIXn7r6U1OuoqKQfL2D4o2NLF+6ji9d+Drv+U9xjbMW+lcSAjhraAidJRgLcscVd/D1RZ+n+tB7qAf3AWD52McI7dmb0eA/5nYT3r2XjatX8F8ndnDP4nsm9e8nGSwvrFyYXj3Uv9fTOFSmWPXW1FLWbEw6E1a9FV/ERyQWyXlcNB4lGsv/WS0GmnDu5wCgi8TwaXuHXOWlFPijRUSvwRvyjuv7PVvfS0hMA90xgM9jk6eJI2eO0B3qTlVAahQNFr0FnTbxz6qKiifkGbXnUKw0ZjOWzZvx79zZrzLVRc9tS3n8xb9IbTNoDMybNo859jkYdUZC0RC+sI93z79LRKfJdvcpA+3VKIQQQgghxFga15CtoqKCioqKAR175swZbr31Vq699loeffRRNJr0/wFftmwZ3/nOdzh79iyzZs0CEsMQjEYj11577Yif+0jq34PtvP88K10red79PN6wl4hOQ+pyQq/HWF+PtroaolHQ6aDURDQe5VzvObxBL0fbj2LQGqi2VaNRNFw769phVaZMVoUqIfRRFb1Wzz+/9TP+9sa/YDYquJsvHeCsoe3mRRy78BqlplIut8xh9m/fIt4njFNstqwTNCERtJUrq+kMdE6p389Qez2NlhpHDa4yF26PO2PJaJW1KrGUzVFDs6eZUmMpOo2OaDwzTDPpTcyyzhqr0x4ynbmE3HV7oBoMxOI9PPrmo3QGOtFr9NQ6anmt9TU0ioZyczmLZizKOSlXsVpRXM60IS+pfU4nzeFz6Dz+rO+BbP0RezXREZ+C2v87t69Cn8dkQKfX6CnRX+oXGFfj+CN+rAYrGkWDVtHiMDqGdZ4TlcZux5KlMlXVRPk/y/8PZ31n0Wl16BU9kXgEo86IJ+jhRMcJrph+BR3+DnafeZ5POWsz2yQAWpdrUL0ahRBCCCGEGCsToidba2srK1asYO7cuTz88MOcP38+tW/mzJkArFmzhgULFvDJT36S7373u3R2dvL1r3+dz33uczknixYLX8SX9nNMjdHqbWXz/M18cOEDLih+Sl1O1NMtWLZtI3TkCKGDB1PHa1xO/vW27/O5F/6MVl8rAOFYONUr6sY5N2Y8hhhAJYRRTyAa4LnG55hTOofrPrSIdas+iRUDhCME9RCNdXJr7a3sd+9nZpk9YwIpBZbOcTHok9/P2MhVnXXnlXcSjAUzpotunr+ZG+bcgM1oSw1xuLryao62H00L2spMZSyZuYTLp10+Xk9twLRWG9o6F7GGzCpOxeWkKXKOBp8bBQWj1ojT4eRHv/8Rb517C4PWgMPoYH7FfL558zdZNidzYq7Jaie8bhXK3mdR+3weFKeT0Jqb2ff+46xwrki7TTwQQPV6iXs8AMRaWggdPox27hz8K5ex44MdhGOJaHAwSzpzKfR5y7c/GdDNLJmJVtGycMZC3j73duJ5qHGi8SgWvYUF0xewYApPwNSYzRmVqTbgmqprUj97Q17ePv82Z71nOdFxgkA0gEFrQFEUfnjs56za8CtmQ1rQpnE5UTaskaEHQgghhBCiKE2IkO2ZZ57hgw8+4IMPPqC6ujptn6qqAGi1Wnbv3s0Xv/hFbrzxRsxmM3fffTcPP/zweJzyoFj11oxtMTVGV6CLZ93P0hPs4S/XfAlLy3lCR45kVEbFG924VJX/e9P93LXrnkvb1TjesJdANJD1Maa6fL2DtHUu2uI9XD7tcs77zrO88no2Vq1A0+MDosRaWuDwYWrmzsWyeTOGyzdCZ5ZeU/mWzun1aKxW7rvsk+ijKoH2VpSSkkkzebHYnOg4wX+89R+0+loxaA3YjXZm2WalAps/XfqnbLhsQ6rKpspaRa2jNlU1ZTPauHHujSiKglajxd3lJqbGsBls3Oa8jT9a/EcTYslvYjnfFvw7d6QFbYqzlpYb5vP9oz/g5dMvU2tPvCb/ePjS5MxwLIyKyrFzx3jw4IP8cMMPs1a0nVG7CS//EM5Vy1FDYeIGLe2qj+OdbxBTY2nfR1mHjzidWLZtw799O+ZnVW5ZWs/+1heBgS/pzKfQ92G+/ckA7rz/PHPtc/mTa/6ER15/JBW06TQ66mfX82fL/oxKa3G3KhhvycEo//r6v6bC7Z5QD1dVXkUwEuQj++7hvqv/hPU334E2HEU1GvBowsy1Wsb5zIUQQgghhMhuQoRsn/70p/n0pz9d8Li5c+eya9eu0T+hEZaskOm/fCkYDWLWmTHoDOxpe5HbZ91MbFfuhuXOGxamNXDXKBpiagyzzkyNoybt+OFM1ZsscvcOSky11HpP8LEFH+MLH/oElmcPEdz5L5eO6RMC+HfuxLzuFnTmEmL9HkP1etE6nZlLRvV6LHfdRXDvPrSNjcSBMIkqDTaux1Q+fdSe91TU2XWW0t4oX5h9O1G9lpc73+TxD54kEA2kBTZ9q2yyqXXUMs08jUUzFtHqayUaizLLOovLp10+oT4/ieV8dxLzeYn6e/EQ4OULb/Dk0X/m2lnX8uGZH8Yf9tMT7qHEUMLVM67GoDMQiUew6C2EoiHe7XiXY+3HsoZs1fZqnut8jr986Vu82/FuavsVFVfw+SWfT30f5Rw+4nYTAoz19YQOHmTeinr299k/3CXWub5zIVEp1//7sq9kABdTY5zqPsUs6yz+8qa/pDvYTW+4lypbFdfNvk4CtgGqddSyef5mZtlmEYwGsegt3FJzC/99/L9p8bbw4O//ge3TdjPNPC2tslQIIYQQQohiNCFCtsku+df8/o24HebEsqzq0mr2vL+HleYryff3e300jkbREFfjiSU3KLgcLuZNm5d2UTLcqXqTSa7eQRqzmevt11NjrMS890DGMtD+IYASuJ6jgRYW9etF5d+xA+unPkVg3760oM20di2hl17KCBfijW4iu/fCHVtTFW0SiA5PxNOFftd+tH1+LxuctXz45r/mL498G7POPKjAxma0sahyUdFPES1EYzajMZt5qfG3PPDiA1j0Fv7wyj/k0Tce5XDLYQA+cuVHaOhsoK68jmcbnyUSj6DX6KmwVPDhWR/O2djfH/HzxDtP8H7n+4nHUjRMM0+jN9zLU+89xWzbbMw6My7K0M2ejXHp0lSPyeRS0ZjbjbG+HgBtOLMH3nCWWOf6zi03l7N1/ta8n6++AV1MjdHibaHF25K6/S21t8jnc5DMOjPtve0AdIe6Odd7jlXOVdxScws9oR4WVS7C6XCmVZYKIYQQQghRjCRkKxK1jlruWXxP2tTFGSUzuKp0Hk7DTLaUXk+5bQb5WvWrBgNWgxUFhTJzGbX2Wu5ccCdXzrgydcxwp+pNRtl6BwG0+9rRBsNpfaX6irndmFatQvehD1ESDnN96RXENywi9PxvUY9frN7x+wkcOIBx80YIRSAUBKMJFIjlqLqMN7pRfT6w2iUQHaZ4IEBo5y7i/Zrwq+4mZgEfXXA7L7YdmdI98TwhDwoK6y9bz49//2OOnTtGXI0TU2OU6Eo41X0KT8jDVZVX8frZ11FRae9t542zb/Dl676c9T6PnztOi7eFmdaZqHGV2rJazvWewx/x0+Rp4uVTL9Psaeb/LvlLwi0taT0m+1aJEk2EazFD5j9Vw10Cn+07N23SbQ7DCehEdv0rC2NqjLbeNiDxut5ae6u8rkIIIYQQYkKQkK2I9J+6GO/uxnKokVjjs5QA6s03Z196SGKZYYfSy33X34eKitVgpdRYyk1zb0q7OBnOVL2poG/V2AX/BZZpnXmPV30+/I89lvpZ63Ri3rgBzw3XYI1pMVhsqcq4vvzNmU3n0+43FJJAdASovb0Z1YKpfe4mbrhpK8+2HpzSPQsdRgcl+hJi8RivnX0NSFQWBaNBOgIdzLHP4WTnSa6cfiU6jY6YmlgUXWpKTFrNJlnhZtQaqXJU8WLzi5zxnkksYY/HuHLGlXy07nbC+57O+D7rWyWKToficnIy0JJ2TKElnQM11Em3Qw3oRHYSXAohhBBCiMlCQrYiFfR1E+3Xqyh0+HBiuiikXZhqXE70G9dzeYkJg6U070XfcKbqTXb9q8bePf8u1y19AO0g7iPmdhPavYfI6mUcVdupr8ge0in5BiJc3C+B6PCpwXy1n6CLxKmyVo1IYDNRLZixgGp7Nd6QN7UtOeXxaNtRbq65mVg8RjQeTQVsl0+7nLV1aznnP5f1Ph1GBwCV1kreOPsGZ7xnAFBQUFHxhX1U68qJNR7KevuY243xppuIe7oIrLqBAx/8V2pfsQQvQw3oJrp4IJB1ef1wSXAphBBCCCEmAwnZilCTpwmbL4qufwVOJIJ/+3aM9fUY1qzC4+sAgxGLYxqm0gpMUPCibzhT9SYzb8jLE+88QWNXI+F4GIPWQIm+hMNdx1jhrEV1N2XcRut0JqaM9hNzu6lQVvFm4P2Mx0heQNYaZ1HicmYsY4REaKpYrfg8p/Oe81QORAdKMZkK7Dfyias+MaUv5CutlWy7YhsnLpxI265RNOi0Oh479hg31dzEXQvvYn7FfIxaI52BTvac3MNq5+qs97lgxgJcZS66g910BbsSvbQMNuJqnLn2uUwzTUMJhbPeNknR6dBfsQCLJsqWeVvGLXgZrVBpIso6CfbioBiNffhTkadqcCmEEEIIISYPCdmKTHKJ4CcqVmU/IBIhdPAgsZqZ/OeFF9g6fyszSisGfP/Dmao3mb3V/hbPuZ8jEA2ktuk1ev67YQdXr/gLyiAtaNO6XBivvz7RNyqbYIjnGp5jfvl86qbVZVTJGbQGPn3bndggLWhLViWarHasvRKIDpdSUoK2ri5temySxuXEVFrOrLJZ43BmxaXKWkVvuJdVrlUcaz+GoijE1TjhWBi9Vk9PqAd3l5tnGp5J3WbRjNzDHyqtldy39D5+/Lsf4ypz8c75d2joasDpcGIz2tjXsI+vfeiP856TYrGgMZuxUfiPB6M1HCTe3Y1/zx50lZVoq6tRe3rAbEYtK0PrcAz7/ieSnJNgGxrw79yJZdu2KRs+CiGEEEIIkSQhW5FJLhGMGXR5lymaSuzcar2VNl8b3rB3wBeV0vsmkzfk5a32t9ICNkhU8hxpOcLaM3fyszX/jGv5ErSRKHGDnukl0+l95F8gEsl+pyYjvzz6S5bXLmeGdUbG6x2OhflF4xOsuuFmFq1eiRoKoRiNKFZraqqoBKLDpzGbsWzejH/nzrSgTVvnwrhpE3pH2TieXfGY65jLgVMH+PTVn+ZHv/8Rb517C4BgNMhK50puv+J2/v6lv08dv2jGIr65/JvMdczNeZ+LZy7m41d9nD3v7+EvlnyFD5fORwmF8SkRdpQ9y/62l/iDHNWc2ro6LhCgseVwwdBstIaDxAMB/Hv2YLzmGkJHjmQMZzBv2TKlgrZ8/Q1jDQ2ovb1ZB8gIIYQQQggxlUjIVmSSSwBPBlpY5HKi5lhOeNR7kqfPHEhtG8xFpfS+Sdfsac66PRqPcqrnFNW2anae3s9LzS+h1WiJxCL82+ofM6u6OusQCq3TSWOwDV/ER6e/M2dvtXAszJ7Tz2G5ooyFNZmVOqMViPat+ik1luIyz0YfjEza5XAaux3Ltm2y5C+Lvu+FqyuvpqWnhf913f+iN9KLL+yjzFTGkqol2Aw2ppun0xXqosxYxqLKRXkDtqRgNMjHnVuoefl9VHei6rME+JyzhpYbryDqqkK7T02vEq1z0btyGT9/91eEY4klpbm+30ZzOIja24uuspLQkSNZhzMEdu2aUtVbhfobFtovhBBCCCHEVCAhW5FJLgE80H6Ymtv+gFI1/QJU43Jy/pbF/P3L3+JDFR/CqEs00B/sRaX0vrnEF/GhoFBlraLV15raHoknqtQqrZU0dDakmrcDfPKZL/DiH+wkvHtv2gW41ulEu2EtG/59GQBWo3VYwyZGOhDtW/Vj0Br4tGsbkX1PEeoT5k7GKi+N2TziVTYTvVfXBxc+4ODpg3gCHkw6EwoK/oifG+feCECJviTtvTaQUK2/Wfpyag4cz+xp6G5mDhpaVhgoWV3PNG5DG4miNZl5u7eRfR88ngrYIPf322gOB1GDQbTV1WkVbH1Nteqtwv0N8+8XQgghhBBiKpCQrcj0XSL4vbd+ytIFi7nhpq3oInFUo4EebYSvHvgLAtEA3cFuZlhnpG472IvK0epjNNFY9VbO+8+z0rWS5xqfSwVteo0ep8PJ8prlPHH8ibTbtPW28WLnUZZuXIM5EodgCNVoxB06y4Z/X0arr5VrZl2Dq8yFUZt/kmih3mojFYj2rfrpDnazctZNWJ87Qrx/lU5DI6Gdu4hsWoelbPqwH3cyGu0G8KPtRMcJ/u7Q39HYlTj/aDxKhbmC5bXL2ffBPr6w5AtUWiuH/Tg1+grULNWeAKrbTfWq5ZTOqk1te7v9bXY0P5P1+Gzfb6M5LVkxmRI92PKYStVb+fobauvqUEpKxuGshBBCCCGEKC4SshWZvksEW3pa+Mnbj/ITEo3JV7pW4gv7Ur3DwvHM6XwDvagcrT5GE1GNowa7yU6rt5XlNctRUQlGg9iNdt44+wYvNL2QqmpLWjRjEfOmzwNzCU99sI9/PPyPvH729dT+a2Zdw1frv8q8afMAiqK3WrLq53T3aV5sfpH/5foYqntf1mNjjY0Yu7wEVDCXS9DW10RvAO8NefmPt/4jFbAFo0E6/B209LRwIXCBRZWL2PPBHm6tvXXY3wWGKIQK7O9rsKHZYKYlD7byUCkpKVilNpWqt3L3N7wYLhfxe14IIYQQQoixIiFbEUouEXz1zKu82f5mailXq7eVCsulSaIGjSHjtgOZODmafYwmor7BZltvW2q7XqvnIws/QnN3M2d9Z1Pb+zd9v272dXyt/mtcCFzAG/ZiM9iYZp7GktlLUq/jSPRWG27lYWegkzZvGwebD3Ku91xGwJEhGCS6+yWCd2xNDWOYSEarUnMoDeCLqWq02dPMhcAFvrjoj1lesQRtJEZUr+VtXwO/PPE4ZaYyPAHPiHwX6C3WvCGb3pL+fTWY0AwSAfnl5ZfTE+ohGA2mvivP+89TZi6j1FjKi+4XWVhSi+HpF4ilLYvOX3moSU4RdTqz916cgtVb0t9QCCGEEEKI/CRkK1I2o40ls5dw7Pwx2nvbU9uTvcO6gl3YTekXhwOtihrNPkbjrdvTjuIPooZCaExG4mYTdkfhZW/5ep/V2ms51n4sZ9P3Wkct08zT8vZNG25vtf6VhwatgbWzb+FKqwtdOFbwYrfJ00SDp4FWXyuNnkRAFNap+R9UpyPe6Eb1+WAChWztvnaOth/laPtRNGgwaA14gh7sJvuIVGoOtgF8sVWN+qN+/uKqeyn77avE3f8NgAG43lnD7Bvv46WuN1FROes7O+zvgsEuMRzsRN0LgQu4PW4OnTqUqvCtslax5UNbqLHX8MCBB1g9ezmLD7qJ9esLN5DKQ63DgXnLFgK7dkn11kWj0d9QCCGEEEKIyUJCtiKWbbrkef95Ns3fRGNXI9H4pVKkwVRFjWYfo/Hk7WhF2fNsqgdUHFCctXg3rMZWUVXw9rl6n811zC3Y9H0gfdOG2lutf+VhcmCB7bkjhNzPpiqFclXmJG9v0BgoM10aZrCz5Xk+56zNbEpPYoBDrKUFAF0oQqyjY0JUrLzZ9iaPvPYIB5sP4g17AXA5XGxbsG3EKjUH0wC+GKtGa42zMO/9bUYvPtzNVKNhwdI6WqMXOOs7O+zvAo3ZjHHTRkI7d2XvX9fv/TSYibrJ1zYaj7J45mK6g90oisLttetY4riSaKCXby26D7vZgfrMf2Q9v4EML9A6HFK9JYQQQgghhBgQCdmKXK4KKGDIVVGDXZI1EXR72tMCtiTV3QR79tO9Zd2AKtqKUf/Kw1sq67FlHViQvTIneXutomXT5Zt4+fTLuD1u/ubI37H2I/uoVTTpAYjTiXHpUvzbtyc2hML4fvHDMW/sP9gllu2+dr5/5Pu0+9pTARtAo6eR7ce3c8cVd3AhcGFMq7OKsWq0TDXib8w9jKDm5sWciXSgVbTD/i5o8jTx+NuPc9mV1Vx/0x2JAS4GPV5dDF20gzoy30sDrfrs+9oadUaq7dWp8Dnu/hUGEhV6WpcL47ZtifdzJJLxeAMZXiDVW0IIIYQQQoiBkJBtAshVATXUi/PBLsmaCBR/MM8UwyYUfxAcY3tOI6V/NdE8czVx98Gsx2arzEnePqbG6I30cmvtrSyLLSMSj/CD47/g/lX/m4rAjRAMgk5HrKUlFUj0rWgby8b+Q1liefzccRq7GtOmueo0OlRVpdHTSHeoG1/YNyLVWQNtAF+MVaNKKHNgSppQiL0f7GW1a/Wwvgu8IS9PvPMEB5oPcEij4/6u/5sKP+eUzmFN3Rr+8Mo/ZH7F/IzbDqTqs/9rlzN8bmwkpKoY6+sJHcz83Eyl4QVCCCGEEEKI0SUh2xQ0mCVZE4UaytdevfD+vhouNHDs3DE6A52UW8pZNH0RddPqhnuKQ9a/mkgbzj+xoH9lTt/bu7vc3DDnBn762k95o+0NAA6fOcyeLf9F6aFXifdtDN+/oo3Cy+uCvm5Unw81FEotqxvs0IShLrH0hDxAIlgD0Gv0nPefJxhNvB7NnmZebX2V9ZetH9T5ZDPQBvDFWDVaKFQK6xQC0QC3VNZj8YaInu8e0hLJZk8zjV2NaNDg7nKnVRee7jlNb6SX/3jrP/jfN/7vIX3n9H/t8obPbjfG+vqM7VNxeIEQQgghhBBi9EjINkUNtxF/sVGMRvK18beYbIQ6zkE0RjjYi2IygsWMtbQi7bgXm17kgQMP8NrZ11Lbrp11Ld+65Vssr10+SmefX//Kw5hBhzbP8f1DlL63VzQKx88f566Fd/GJqz5BOBamurSak6FWFm9ajSkURxeKQCicVtHWV67ldcHO80R2700L6jQuJ2xcj6l8+oCf71CXWDqMjsTzR6HMVIbb404FbJDoZWc1WHn59MssnLGQSuvwlg8PZAlhMVaN5lvuqjhreaPnPR6uvx/HMy/jy9ZHbYDLhX0RH+F4GBU1LWBLCsfCdPg7hrxktv9rWyh87m8qDy8QQgghhBBCjA7NeJ+AGD/JJVn11fUsrFw4YQM2ANViQnE6s+7TOp0o8TiRPfsI/vQR4r/8D2I//VfiT+6h90Jb6riGCw0ZARvAa2df44EDD9BwITOUGAvJysNyczkAJwMtKK4czzVLZU7/21sMFs76ztLua2dJ1RIWVCxgyewllJXNwjxzNpoSK/7HHkssrcvSwypbJVTQ150RsAHEG91Edu8l6Ose8PMd6hLLBTMW4Cpz0RvppdZRm7ZstK68Dg0altcs50DzAY6fOz7g8xmO/q990nhWjSaXu2pdrrTtirOW9uVXUWGZjuP536f16YNLy4XjgcCAHseqt2LQGNIGtPRl0BowaAxDXjLb/7WNGfL/zajXosP/6Tsx3PNHWO+9N7HseYz6CwohhBBCCCGmBqlkE5OC3VGJd/0q2Ls/bVqm1unEtHIlwQMHiGUMRXAT2/0Mvts3YC2t4Ni5Y7zX8R7fXvZ/WFt1M4aoSkSnYV/rizz06j9w7NyxcVs22rfy0B/1o92wFnXv/oI9wbLdvlDl4mAa+yepPl9GwJYUb3Sj+nwwwGWjQ11iWWmt5L6l9/H9I9+nqauJaZZpzLHPobq0mk3zNvFW21scOXOEaDyaWlo6FoqxalRjt6O7YwuhrnPEQ0Giei1v+xp4yf0kX7rs48Tdh7PebiDTOJNqHDW4ylyc8Z3J2DendA6haAi7yT6sJbO1jlr+5MpPofp8aBUN4ToXsYbGjOM0Lied2ggmRwXmYVYwCiGEEEIIIUQuErKJSePAhdcJL9Sz7JY7KacEzcUlj6rfT+z997PeRnW7odcPpdAT6mHPlsdxvtKA+sLe1DGfdNZw85bHecufPUQaK/2bwccH0BMs3+1zebvnfUqXX015PJYeWNa5coZ4I9kTb6hLLL0hLzpFx8cXfZzuYDenu0/TFezCG/Ly+NuPE4lfqspLLi0dKwN97ceSyWqnLdrFjta9qddaURT0kXje2w1kGicknvOdV96JP+LnlOcUXcEuIBGwrXSuxBv2Mss2a1hLZuPd3UR37EhU3en1WLZtIxRX0wL1ZPhsk6o1IYQQQgghxCiTkE1MGuf85/jbF/+W7y7/NltmroBeP9rqahSzGfT6rEsf4VIAVF/xYWY+/3pasASAu5lawHzbtaN5+oM2kJ5gg9Xua+efDv8TZ71n+dSCj3HDTVvRReJE9Rre6W3iWm2IGdluaDRm25qiFNjf10AHc8QDgVTIGDXoOOlr4OkzBwjHwvjCPk50nOCqyqs4eu5o2pJFV5mLBTMWDPh8JrNsVXYlmnL8eW4zmGmctY5a/mzZn3FL7S281voaUTWKGk/0aKtx1AxryWw8EMCfDNgAIhH827djrK/HePPNKDoditk86IENQgghhBBCCDFUErKJSWOGZQbP3vEk0w+8SWDnz1LbtS4Xlm3bsjbxh0sBULWunEj/gC3J3Uy1bjXvtL+DN+LFarBSY5+4gyJyOX7uOI1didDiJ28/yk/67f9WiZ0Z1vSYrcnTRG+4kzlOZ6IysB+Ny4liHdySwEJLLOPd3ekBC3C5y8ms27bxi8btWA1WZpfO5q32t5g3bR7Hzx9Hp9FxS80t3DDnBtweN+f95yfl73CwMiokA4FBLxcudP+31N7CNbOuGdEls2pvb0bfOCKRRC/Bgwex3nsv2oqK7DcWQgghhBBCiFEgIZuY0PpWM60pW0K8pYVQS3oPqFhjIyFVxVhfn7gA70NxOaHEkvihwJLGsN/H697XueC/gFFn5KjxKDfOvZFaR+1IPqVxVahXWf/93pCXHSd24A/7+cyaj2J8hrSgTeNyot+4HtMA+7H1lWuJZUYF00VqoxsrcMvSeva3vshM60ysBiu31tzKGtcaSo2l/K71dxw8dek9UG4uZ8v8LaP+Owz6ulF9PtRQKLW0dyivyVhIDkbw79w54J5/AzHSS2YLLVsd6LJWIYQQQgghhBgpErKJCStbNZPW6cxatRZzuzHedBP0CdkUZy3xtbdRWpqodim0pNGj+nnqvafojfQSiAaoslahKArTzNMmTTVUoV5l/fc3e5pTSzp//v7jrLt5BXNvuxElHEY1GAiZDNjKp4/oOWatYErua3Qzb0U9+y/+bDVYmVYyjSunX8mjbz5KMJoevHQGOtlxYgf3LL5n1H6Hwc7zGZNXNS4nbFyPaYRfm5GisduxDLLn31grtGx1MMtahRBCCCGEEGIkSMgmJqRc1Uwxt5sQZK1aQ6dF+7l76O3tIqLT8Fr3u2g632DzjGoAFKsVjcuZfUqms4YdLfupKKkg0B3AorPQE+ph98ndLJqxiEWVi0bpmY6tBTMW4CpzpZaM9pWtl5kv4kv9dzAW5MnmfWn71122jhnMGdFzLFShpA1H03626q1pYWB/nYFOmj3NozKYIOjrzgjYIDFxNbJ7L9yxtagr2ka6599IGsoUXCGEEEIIIYQYTZrxPgEhhiJfNVPM7UZbXZ2x3auJsumZP+Kjh/6UTxz4Mv/45o+wGi71CjNZ7UTWrEBx1qbdTnHW4q6/jP/v5QfpCnRxxnuGw2cO09DVgDfs5azv7Ig+t/FUaa3kvqX34SpzpW13lbm4b+l9VFor07Zb9fl7rRXaPxSFKpRihkt/O0hOI+0bBmZTaP9QqT5f9tCWRNCm+kbncaeC5LJWbV1d2vbhLmsVQgghhBBCiKGSSjYxIRXstxRNr2ZSnLW4w21p27JVZr3tb8JzlZmFN26inBJMFiuReIwS/zn+eunXOd7TiFbRElfjtPe2o1E0hGPhEXlOxWLxzMU8tPIhjp87jifkwWF0sGDGgoyADaDGUUO5uTxrlVgy4Bpp+SqYFJeTk4GW1OMnp1eORxgIlybXDnW/yG8iLGsVQgghhBBCTB0SsokJqWC/Jd2lt7birCW0ZjnffekbqW25KrPmT5/P9z7Yhcs6l4qXjxC6OG10BvA5Zy3nl2/ko09/FoC4GscX9mHSTr7eT5XWyqyhWn82o40t87ew48SOtKCtb8A10vI15lfWr0YfbObOK+5Mm145HmEgFO7zV2i/KKzYl7UKIYQQQgghpg5FVVV1vE+imPT09GC32+nu7qa0tHS8T0fkEA8E8G/fnr0fk8uFdt0qgt5uMOo5G+/h0LlXqbJWEY6H81ZmAbR3NGPecyBtSmaS4qzllzXn+T+vfBuD1sD1VdfzrRXf4rrZ1434c5xIvCEvzZ5mfBEfVr01LeAqpNvTjuIPooZCaExG4mYTdkfhgK/vZNmBVDA1eZpyhoGjFbIFfd1EfvNU1iWjGpcTfRH3ZBNCDI78/4MQQgghhJBKNjEh5apm0ricdN92Pb9879G0ZZzl5nKW1y4fUPBTQQm+LAEbgOpuYuMNG/m+5afMtc9ldd1qLDrL8J/QBGcz2oY0OMDb0Yqy59lUoBknEWR6N6zGVlGV97aDrWCqddRyz+J7hhwGDoXJaoeN67NOF9VvXC8BmxBCCCGEEEJMIhKyiQkrWz8mry7Kjvd/kxGwDWbpYqF+b6WY2LZgG6FoiFg8xlzH3GE9j6mq29OeFrAlqe4m2LOf7i3rBlTRNhhDDQOzSaveM1ipsWcP7Ezl0+GOrag+H2oohGI0oliteQO2gd63EEIIIYQQQojiISGbmND6VzM5gE9c9YlhVSsV6vfm10Q52naUG+feyLYF2yT8GCLFH8y6JBcSQZviDyZ+oaMg11LTQuFWcv/pntMcP38co9aITqPjvP88dpOdLfO3UOuozXg8k9UOA6xay7WsNdd9CyGEEEIIIYQoDhKyiUlnuNVK+aZXalwuIiY937ntO1w+7XIJ2HIYSCXWeE3ejHd349+xg1hjY2qbtq4O3Ya1PN/+MucD5/GGvNiNdk52nOSaqmuoddTS5Gni5dMv83zj8xw5cwRv2ItOo+PqyqvZcPkGWr2t7Dixg3sW3zPk94U35M0I2AA6A53Dvm8hhBBCCCGEEKNrwoVsoVCIpUuXcvToUd544w0WL16c2nfq1Cnuvfdenn/+ecxmM3fffTcPP/wwBoNh/E5YTDj5pldaNm+mzi59tPIZaCWWYjSSb+rKUCdvtvvaOX7uOJ6QB4fJwYLpl4ZcxAOBjIANINbQgLp7L/4Pxfnas18jrsZRUVk8czFfWfoVzDozh04dYvfJ3XSHuvGGvQBE41GOth9Fq9FyW+1ttPW20expHnLIG/B6uKtqHdpwlJhBx8lACwfaDxOOhekMdA7rvoUQQgghhBBCjK4JF7L9+Z//OVVVVRw9ejRteywWY+PGjUyfPp2XXnqJCxcu8KlPfQpVVfnBD34wTmcrJqps/d4KTa8Ug6vEUi0mFGdtogdbP4qzFtWSf9luNm+2vcn3j3yfxq5LIZqrzMV9S+9j8czFqL29GQFbUrzRzZKl6wjHwqgX479XW1/lHw7/AzOtM+kJ9dDqa8WoTQ//ovEo7i43am3iNr6Ib9DnDYkKO8veF1LnpwWucjn50Jq7efLMcxi0BkKx0anuE0IIIYQQQggxfJrxPoHB2Lt3L8888wwPP/xwxr5nnnmG48eP8+///u98+MMfZtWqVXzve9/jX/7lX+jp6RmHsxUTncZsRltRga66Gm1FhQRsA9Dsac4I2JKSlVhJdkclyobVKM7atOMUZy3KhjWDHnrQ7mtPBWzReJTecC89oR6OtR/jH1/5R9p97QWHWuijaipgS3r97Ou09LTgCyfCM50m828TMTVGMJq4b6veOqjzhtwVdvFGN7qnXyDo6+bbL36bhw89zJttbw76/oUQQgghhBBCjL4JU8nW3t7O5z73OZ588kksFkvG/ldeeYWFCxdSVVWV2rZ27VpCoRCvvfYat956a9b7DYVChPr0fpJAToihK1TF1X+/raKK7i3rEkMQLk7eVC0mSocwVfT4ueM0djUSjAbp8HcQjUdT+w6dPsQbZ99gddmSvPcRzvGN2BvpRUEBQEHBZrCllowCaBUtJp0JrUZLjaNm0Oeu9vYSO30a4803o62uhmgUdDpiLS2EDh9mzbJV/O3v/p7mnmZ++upP+e7yv8UcRqoshRBCCCGEEKKITIiQTVVVPv3pT/OFL3yBJUuW0NTUlHFMW1sblZXpF+ZlZWUYDAba2tpy3vdDDz3EAw88MNKnLMSUVKiKK9t+u6NyRKaIekIeovEonYFOykxlGHVGYvEYWo2WUDTEqe5TRGYtyznUAmcNu8+8kLHZqDVSZirDH/VTZa3irO8szjIn7i53aviBs8xJqbGUm+beNKTBBGoohGXbNkJHjhA6eDC1Xet0Ytm2DWOsB62iJR6Pc9+Ce+CpPfgaL01m1dbVoV2/hmfOvcJ5/3nKLeUsrFjIvOnzBn0uQgghhBBCCCGGZlxDtvvvv79gwPX73/+el19+mZ6eHr7xjW/kPVZRlIxtqqpm3Z70jW98g69+9aupn3t6epgzZ06BMxdCZFPjqKHcXJ51yWi5uXxIVV4D5TA6CEfDVJZU0tzdTE/oUlVqqbEUh9mB29/K/KxDLVy03bSI7z6xIe0+jVojN865EZPOxNKqpUwzT2PXiV2c9Z2lxl6DVqvl8rLL+cMr/5Arpl8x5MmfqslI6LnniLndadtjbjchwLZ6OYFogM8s+ASzX3qXWL8+drGGBuK799I45yzfOHQ/AEtnL+X+FfdzqzN7Fa8QQgghhBBCiJE1riHbl770JT72sY/lPaa2tpZvf/vbHD58GGO/aYNLlizh4x//OL/85S+ZOXMmR44cSdvf1dVFJBLJqHDry2g0ZtyvEGJobEYbW+ZvyTpddOv8rUMOoQZiwYwFLKxcyLONz6YFbAAzS2ZysuMkTocTzYzsQy3Od7zJ1TOv5p3z7xBX42gUDVdOv5J7r7+XUz2nuLnmZq6YfgWLZiyi1ddKNBZllnUWl0+7fNjPKxYJZwRsqX1uN0rsJrSKlpWVy1Cf3ZX1ONXdxMb6tST/FHHkzBHuf+F+ZltnS0WbEEIIIYQQQoyBcQ3ZKioqqKioKHjc97//fb797W+nfm5tbWXt2rU8/vjjLF26FIBly5bxne98h7NnzzJr1iwgMQzBaDRy7bXXjs4TEEJkqHXUcs/ie2j2NOOL+LDqrdQ4akY1YAOotFZy98K7ebv97bSQbV75PDbP38yB5gPcOOdGIDHUgn49zJbNWcY/rPkHjp47iifowW60YzPaON1zmvWXrU+d/6LKRSyqXDSi5x4O9Obd39vbRWVJJYboxaEMej3G+vqM/m1lGiu3f+h29Bo9Z3rO8PvW3/P2+bclZBNCCCGEEEKIMTAherLNnTs37WerNdHXqa6ujurqagDWrFnDggUL+OQnP8l3v/tdOjs7+frXv87nPvc5SktLx/ychZjKbEYbCysXjvnjGrVGbnXeytrL1hKKhjDqjPjDfl5sfhGdRodWo817+ytmXEG1vTotILyl5pZRDwgN5hJCefZPt1cxyzaLuEEPen3O/m2lixbybMOzdAY7cTqc3P6h2+kOdY/quQshhBBCCCGESJgQIdtAaLVadu/ezRfqiMJUAAAv20lEQVS/+EVuvPFGzGYzd999Nw8//PB4n5oQYpgiPZ6LE0gTyztVswl9qSPjuDJzGaFYiLfa3yIQDaS2m3Vm5lfMp9xcXvCxRiogDPq6UX2+xNTUi0tSTVZ71mO1egNal4tYY2PmPqcT9Uwr37vlO7RHe5h1992EDh7M2r9N3bePn6/9Ebc/9VEaPYn7+viijw/7uQghhBBCCCGEKGxChmy1tbWoqpqxfe7cuezalb1fkRBiYop2XiC0a3daqKR1OlE2bURXPi3t2BpHDa4yF2adme5gN+F4GIPGgN1kZ5Zt1qgOXugr2HmeyO69xPtMANW4nLBxPaby6RnHK8EQ5rVrCezbl/E8jUuX4t++nVmfvBOPthdUNWsYBxBvdLPslo+mfo7EI+g0Ot4+9zY19tFfsiuEEEIIIYQQU9mEDNmEEFNDpMeTEbBBomoruGs3xtu3pFW09R28YNRdGmgyFoMXkoK+7oyADRIBWGT3Xrhja0ZFm2I0Ej9/Hl11Ncb6+rQ+a/7t2yESwRLTYHzxLVhyXd7Ht6tGbHobDrOD5XOX80HXB7x0+iXKzeVsmb+FWkftSD9lIYQQQgghhBBIyCaEKGKKP5h/6qY/CP1aLo7X4IUk1efLCNiS4o1uNL0B6B+ylZSA15vWY60/vclC1N0E9cvyPr4mrvLrjY/yH+8/wW+bfssK5woAOgOd7Dixg3sW3yMVbUIIIYQQQggxCjTjfQJCCJGLGgoOaX+yr1p9dT0LKxeOaaikhvKNMAClu4dg5/m0bRqzGU1ZGVqnM/ttXE5iF5fIx1pa0LpcWY/TOp3E3E0stLrY+8FenGVO1PilpfWdgU6aPc2DeTpCCCGEEEIIIQZIQjYhRNFSjKZh7R8PitFY8JjI7r0EfelTP7UOB+YtW9DW1aVvd7nQbliLTmcAIHT4MOY1azICuWT/ttDhw+ijcRbOWMgfXfVHvHPunbTjfBHfUJ6WEEIIIYQQQogCZLmoEKJoqRbTxeqszOWXWqcT1VKEIZvVisblzLpkVOt0EmtpId7oJubzZiwb1TocWLZtQ+3tRQ0GU1NJNWYz8UAAbV0dsYYG4j09efu3lVjL2DxvM3s/2MuHKj6U9hhWvXVUn78QQgghhBBCTFUSsgkhipa+1IGyaSPBLNNFTZs2ousz9KBYmKx22Lie6O59aVNA+04KBYgFAllvrzGbwWzOut2yeTP+nTuJnT5NtKUlaw83xenkmK+RF5peYH7F/IwBEGM1YVUIIYQQQgghphoJ2YQQRU1XPg3j7VtQ/EHUUBDFaEK1mIoyYEsylU8nuG4Nxq7urJVmAHHD4L9+NXZ7qtJNv2gRgX3pQZ7icsK6VZjCrax0rkxbGjqWE1aFEEIIIYQQYiqSkE0IUfT0pY6MKaLFrjVygWmHfw/upsydzlo6lQAOIOb1gt+fWh6KxYLWljsI61vpprtjC1pfL2ooSFSvpU3tob23gXkV8/j8ks+P24RVIYQQQgghhJiKJGQTQowLb8h7KQQyWKmxT64QSG+x0bniGsohPWhz1tK54hqMFjuxzk4Cu3ZlLIU1b9qEtry84GOYrHZe7X6f7/3ue5zoPIFW0WLUGZk3bR73Lb2PxTMXj/TTEkIIIYQQQgiRg6KqqjreJ1FMenp6sNvtdHd3U1o6wUpnhJggmjxN7Dixg85AZ2pbubmcLfO3UOuoHb8TG2FHWo5wvrOFRdY6dJEYUb2WY74GZkybw7WlVxD4zW9yDnUw33FH3oo2gBPnT/D1/V/n2LljqW06jY4KSwULpi/goZUPUWmtHPHnJYTIJP//IIQQQgghpJJNCDEigr5uVJ8PNRRKTcU09ZueCYkKtv4Bm1bRYtAY+G3Tb6lz1FFuKZ8UlW1Lq5dyyjqLY+3H6Ap1UUYZV829jrmOucTa27MGbEBiu98PeUI2b8jLq22vcuzcMSx6C19bfC+3Vtajj8aJ6rW8fOFNTpw/kRGyxQOBrNNLhRBCCCGEEEIMj4RsQohhC3aeJ7J7L/HGS6GRxuWEjesxlU9PO7bZ05wRsFXZqniu8Tlafa0sqFjADOuMSVPZNtcxl7mOuRnb1WAw7+0K7W/2NOMJeLDoLfz3un9lzqETqM/uSu3f5KwlWpM+STTm8aAGAhAMgslE/MIFQi+8gGX1ajT2zEBUCCGEEEIIIcTAScgmhBiWoK87I2ADiDe6iezeC3dsTato6zvxEmC6ZXoqYAMIx8MAdAY62XFiB/csvmdEKtr6VnBhMBDXKET9PhSjMWfV3WhSTKZh7fdFfNgMNr62+N5EwNZ/wIK7CcPzh4hstKMJR1H9ftRYjJjbTejwYYhEEstS163Dv38/lo0bpaJNCCGEEEIIIYZBQjYhxLCoPl9GwJYUb3Sj+nzQJ8Cy6q3pt0dNBWwABo0h9d+dgU6aPc0srFw4rHOMd3fj37GD2OnTGOvr0VZXowAGm43ouyeInG3Fe+syDne/zYKKBdRNqxvW4w2IxYLW6czZkw2LJe/NrXorBp2B26puRn32N5kH6PWYrrmW0FM7iTU2pt23Zds2/Nu3E3O7Cezbh3HpUtTe3tTUUiGEEEIIIYQQg6cZ7xMQQkxsaig0qP01jhrKzZcmZwajl5ZFmnVm7Kb0irL+lW+DFQ8EUgGbZds2oi0t+B97DP9jj9H7yCNET5/GdM21GJ4/hLvtPf5k15/wYtOLw3rMgdDabIkpok5n+vbkdNECQw9qHDV0Bjqxkz0YM9bXEzpyJC1gg0S/t9CRIxjr61M/KzZbweWpQgghhBBCCCHyk0o2IcSwKEZj3v1xg47DLYexGqypYQZb5m9JDT8w6RLLIs06M/Mr5mPUpd9fsvLNG/LS7GnGF/Gl3Vcham8vscZGjDffnAid+lWOxRobCakqxupq1s+ax//3ynd44MADPGJ7ZNQr2rTl5ZjvuAP8/tQgAiyWggEbgM1oY8PlG4j1qijZ7ru6mtDBg1lvG3O7UyEbAKEQygAeUwghhBBCCCFEbhKyCSGGRbFa0bicWZeMKk4nr3ef4Pm2QwBpwwzuWXwPzZ5mAtEAZ71nicQjGQFbubmcGkcNTZ6mjImkAx2MkKzQGkjoZIp3o1E0vHb2NY6dOzYmy0a1NlveKaL51Dpq8Wk6iLucqP1f/2g0/4377r84ZVQIIYQQQgghxNDJclEhxLCYrHb0G9cnpon2oTideG5bwkvnf5/alhxm4A15sRltLKxcyHWzr+OPr/ljZtlmpd2+3FzO1vlbATICtv73lU9qgMAAQqeAJo79/2/v3qOjLu99j39mJslkck8YSbiZTFK5iQoNFigoAha0GKiNdlstWzmWJVW8nNq9vXUVunYpKtKepVWrVtleetRd0+4GERFrudiCclE3mCNqbhBIQAyZJJPJZC7P+QMzMCQEMJBJMu/XWrNW53l+85vv71mphA/PxZ6u5PhkFSQNlbdun1qqK+Q9sF+tze6uPx8lKWlOJXQy/jrJwQmKO/JvLDaXSxaHg0MPAAAAAKCbmMkGoNsSs86Rrp4r09ws4/MplBCnHe7derfyv9UWbIu4trPDDI6d2dbsb1ZKfIpyM44sB911YFeHgK2rex3PkpwsW0FBOFQ68UMkqrTqz0q1p+qFGU8ob2OZ2ipWh7ut+S5p9pVHnrWXOX78A/E21Rmv0jub4aYjwVqwpubo/m8ZGT1fNAAAAAD0M4RsAM6IxJT08CmiW2q2hJeIdqazwwzaZ7adyrWn0291OJRUVCR/eXmXp3kesgf0yy0PacXUXyt/S7lClVUR14QqKhVY/aZar55z5Fl7mWPHf9eBXSr9tFQ3TS9WihQRtNkK8uWYdYVkjOIvvviU9n8DAAAAAJwcIRuAM679sIKv238m7xXyemX8ftnOOUdxV1yhwN69al27VvL7JUm2/Hw1T5+gcf/3Unn8Hn138FSZt//S6b2CFRWye7zhMKu3ys3IVUpCiv6zokRTJ0zU8MsmytYWUDAhTnv8X2h4WuIpHRoBAAAAADh1hGwAzrjcjFxlObI6XebZfpjB2bxXyOuV8XgkSd41axSsqAj32QoKZF/wv/RFfY0CcRbtCzTog5q1uu1bt8npcCrLmiJ/VwW5GxVKS+/Ve5gde4Lruv0bte6r9vZ97gjYAAAAAODMI2QDcMYdG/IcfyLo6YY8p3uvkNutltJSxQ0ZokBNTYflocHyculNo61jbPrphvvD7WNzxmreRfPkizv5iTDG45F6ccgmdb3PHQAAAADgzLMYY0y0i+hNGhsblZ6eLrfbrbS0tGiXA/QZrc3u8Mb7lsREWZKT5Y+3nrGQp8nXdNJ7hbxetbz2moIVFUr64Q/V8vLLJ7xf4k9u0duHt+uw77Ay7ZkakjZEqz9brR8UzNWgdz6ImP3WzuZyKW7oUMUNH664oUO/1nMA6J/4/QEAAADMZAPQba31X8i/eo1Cx2ywb813KX72lV2e/Hk6TnQwwrGMx3M0HAsEurzW1hbQ7BGzw++31GyRP+TXP7/Yrh9cMUta81bELDibyyX7hAlqKSlR/IUXfv0HAQAAAAD0S4RsALqltdndIWCTjpzG6V+9Rrp6bo+dxmlaW4++iev6P2+WxMSI9+0HKNR76/X8J6/qpvMnyz5x4pGwLi5OwZoatZSUyDpsqCzJyWe8dgAAAABA30bIBqBbTHNzh4CtXaiiUqa5ucdO4zw2OAvW1MjmcnXYk006cvjB8UFZ+wELSfFJWvzPxZo451W5Nu+SKquPXuTKU3DWtF596AEAAAAAIDpOtr83AHTJ+Hxd9gdavWryNfVILZbkZNkKCiRJvi1bZJ8wQTaXK+IaW0GBkoqKOgRl7QcsZCVmqSCzQLNL/0Uv5H6hL67/rhr/5bs6dMNs/e2CeDUl9MijAAAAAAD6GGayAegWi93eZb8/zqKXPlypOSPmKC8j76zWYnU4lFRUpJZVqxQsL1dLSYnsEyfKfsklssTFyeJwyJKcfMKZaHkZeRrgGKBMR6Z+u/m3evSjp/XYR8+oLdSmCwZeoPsvvV/DMoad1WcAAAAAAPRNhGwAvpaQ16u2pgbJGNny8zs9jdPicmmP/wv5g36tr1yv4tHFX/t00VNlTU9XUnGxjMcj09oaPun0VJd4ptpTNc01TQWZBdp5YGf49NELsi/QuRnnntXaAQAAAAB9FyEbgNMWcrvVUlp6JFiLj1dScbF8xkTsf2ZxudQwrVA3vn693D638jPy5cp0aWre1O5/v9fbZYhmdTikbu6bdm7GuYRqAAAAAIBTRsgG4LSEvN6jAZsk+f1Hl2VOmaJWS0D1pkX7AvX6yVcBmyRVNFToxY9e1EjnSGWnZH/97z824PtKeJ+19J45YAEAAAAAgONx8AGA02I8no5LQ/1++TZtUsuLL+qwadElf52jlZ+8HA7Y2tU216rsYFmHezb5mrTrwC5tqdmiXQd3nfCghA4B31eC5eVqWbVKIa+3ew8HAAAAAMDXxEw2AKfFtLZ22W/zB+VudSvNnhbRnpqQKossavA1RLRXNVSpdHepaptq5W51qy3UpsGpg3XDBTdohHNE5Hd3FvB9JVheLuPxdHuZKAAAAAAAX0efmsm2evVqTZgwQQ6HQ06nU9///vcj+vfs2aOioiIlJyfL6XTqjjvuUFtbW5SqBfonS2Jil/3B+DgNTR8qj98TbktNSJUr0yWP36MMe0a4vcnXpNLdpao4XKEP6z5U2aEyfV7/uTZWb9RD/3hIn3/5ecS9TxbwnawfAAAAAICzpc/MZCspKdGCBQv061//WtOnT5cxRjt37gz3B4NBzZ49W+ecc47effddffnll7rxxhtljNFjjz0WxcqB/sWSnCxbQYGC5eUd+1x5+thTqWtGXaOPDnykEQNGKM4aJ4ssavI1yZXp0uiBo8PXVzdUq7apVrsP7ZY3ELnUs+JwhTbt3aTslOzwiaQnC/hO1g8AAAAAwNnSJ0K2QCCgO++8U8uXL9fNN98cbh8x4uhSsrfeektlZWXau3evBg8eLElasWKFbrrpJi1dulRpaWkd7gvg9FkdDiUVFallVamC5UeXblrzXfJePlm1tRuUk5KjA54Dqm6o1rwRP9C3sy5SYtCqlLQBSrQd/f9is79Z7lZ3h4CtXYO3QdUN1RqTPUZS1wGfraBAluTkM/y0AAAAAACcmj4Rsu3YsUP79u2T1WrVuHHjVFdXp7Fjx+qRRx7R+eefL0navHmzxowZEw7YJGnWrFny+Xzavn27pk2b1um9fT6ffD5f+H1jY+PZfRigH7Cmpyvue3Pka/hCFl+bgglx+tRbow2fv6q2YJucSU49MOUBpfmtsr75N4Uq/ipJ8ksKHXMSaEp8itpCJ17SnRiXqGZ/89HvDQd8qyKCtvDpouzHBgAAAACIkj4RslV8tdH5kiVL9Jvf/EZ5eXlasWKFpk6dqk8//VRZWVmqq6tTdnZ2xOcyMzOVkJCgurq6E9572bJl+uUvf3lW6wf6o8SUdNUFDqt03xuq99aH27McWSoaXqQhdqdaVr2mYEVlxOfaTwJNKi5WbkauBqcM1uf1nx9/ew1OGSyLLEqJT4lot6anK6m4WMbjkWltlSUxUZbkZAI2AAAAAEBURfXggyVLlshisXT52rZtm0KhkCTpgQceUHFxsQoLC7Vy5UpZLBb96U9/Ct/PYrF0+A5jTKft7e677z653e7wa+/evWf+QYF+Ki8jT/PHztc1o67RFd+4QteMukbzx85XbkbuKZ0EmmpP1Q0X3qD8zPyI/sEpgzUjf4YCJqDcjNwOn7c6HLI5nYobOlQ2p5OADQAAAAAQdVGdybZo0SJdd911XV6Tl5enpqYmSdLo0Uc3TLfb7crPz9eePXskSTk5OXrvvfciPnv48GH5/f4OM9yOZbfbZbfbv+4jADEv1Z4a3jPtWKd6EugI5wjdP+V+bdq7SQ3eBiXGJcoii7wBr4qGF4UPPQAAAAAAoDeLasjmdDrldDpPel1hYaHsdrt2796tKVOmSJL8fr+qqqqUm3tklsukSZO0dOlS1dbWatCgQZKOHIZgt9tVWFh49h4CQKdO5yTQbwz4hrJTslXdUK1mf7NS4lOUm5FLwAYAAAAA6DP6xJ5saWlpWrhwoRYvXqxhw4YpNzdXy5cvlyRde+21kqSZM2dq9OjRmjdvnpYvX676+nr97Gc/04IFCzhZFIiC0z0J9EQz4gAAAAAA6Av6RMgmScuXL1dcXJzmzZsnr9erCRMm6J133lFmZqYkyWazafXq1br11ls1efJkORwOXX/99XrkkUeiXDkQmzgJFAAAAAAQSyzGGBPtInqTxsZGpaeny+12MwMOOANCXi8ngQLo9/j9AQAAAH1mJhuAvsnqcEiEagAAAACAfs4a7QIAAAAAAACAvo6QDQAAAAAAAOgmQjYAAAAAAACgmwjZAAAAAAAAgG4iZAMAAAAAAAC6iZANAAAAAAAA6CZCNgAAAAAAAKCbCNkAAAAAAACAboqLdgEAgN4t5PXKeDwyra2yJCbKkpwsq8MR7bIAAAAAoFchZAMAnFDI7VZLaamCFRXhNltBgZKKimRNT49iZQAAAADQu7BcFADQqZDX2yFgk6RgeblaVq1SyOuNUmUAAAAA0PsQsgEAOmU8ng4BW7tgebmMx9PDFQEAAABA70XIBgDolGlt7VY/AAAAAMQSQjYAQKcsiYnd6gcAAACAWELIBgDolCU5WbaCgk77bAUFsiQn93BFAAAAANB7EbIBADrlsQZkufI7suXnR7SHTxd1OKJUGQAAAAD0PnHRLgAA0PtUNVSpdHepmtuaNXXCRA2/bILi/CE5UtKVkJpBwAYAAAAAxyFkAwBEaPI1qXR3qeq99ZKkdfs3at1XfVmOLM0fO1+p0SsPAAAAAHollosCACJUN1SHA7bj1XvrVd1Q3cMVAQAAAEDvR8gGAIjQ7G/uVj8AAAAAxCJCNgBAhJT4lG71AwAAAEAsYk82AOgjmnxNqm6oVrO/WSkJKTon6Rx96flS3oBX3oBX+5v3yxfwyZnk1PnnnK9zM8495XuHvF4Zj0emtVUj7ANVdO53tHbfBrUF2yKuy3JkKTcj90w/GgAAAAD0eYRsANAHtJ/22b5XWkNrgzxtHn33G99VTVONnvvgOX1y6BPF2+KVkZihaXnTtHD8Qk0aNumk9w653WopLVWwoiLcNqIgX0Nn/EDPfv5f4aAty5GluSPmKtXOsQcAAAAAcDxCNgDo5Y4/7dOEjIalDVNOSo7KvijTuop1qm2ulST5g365W936e9XfFQgFNCR1SMSMtgPNB1R2sEwNvgZlJGbo4gEXSKVrIgI2SQqWVyhZFv34inmqaN2nlPgU5WbkKjkUp+ChQzKtrbIkJsqSnCyrw9FzgwEAAAAAvRQhGwD0csee9hlvjVdeVp6e3Pakzss6T/HWeG3as0mJcYk6J/kcfeH5QiETUqOvUdXuau08sDMcsn1Y96Eefe9RVRw+Gqi9PO1xJR0XsLULlpdrgK7QwKETJbXPeHstIpCzFRQoqahI1vT0s/X4AAAAANAncPABAPRyx57mWZBVoJUfrNSug7sUCAXkD/klSd6AV1+2fKn0xHQZGUlSMBTUYd9hSUdmsB0fsEmSafV1+d2mtVXSkT3bjl9SKh0J4lpWrVLI6+3eQwIAAABAH0fIBgC93LGnebYF2lR2qEySFGeNU7w1PtznDXgVb42XRRZJks1qU6Y9U5JUdrCsQ8AmSYH4rv8YsCQmSpKMx9MhYGsXLC+X8XhO44kAAAAAoP8hZAOAXi43I1dZjixJUlNbk+KscbJarKprrlNIIQ0fMDx8rTFGVotVOSk5unf8/9blmYUK1NSoMDFfC8fMlyMucv+0f9Z/JIsrr9PvtRUUyJKcfOS+X81oO5GT9QMAAABAf0fIBgC9XKo9VXNGzFGWI0upCamyWqxKik/SroO7lJaQpqtHXq3hWUeCNqvVqkGpg7Rmzp902Uctan3yKXmefVbmmf/Ud8uk/zP5VxFB2/OfvKLaS8bIlp8f8Z3hvda+OtSgfUbbiZysHwAAAAD6O4sxxkS7iN6ksbFR6enpcrvdSktLi3Y5ABDW5GtSVUOV/mPjf6jycKXibfEyxuj8c87XRTkXKd4arzR7miY6x2rg37Z3urzT4srTG6Ol3+9aGW4b5Ryl5Zf+hxxtOuGpoSGvVy0lJQqWl3e4p62gQEnFxZwyipjG7w8AAABgJhsA9KAmX5N2HdilLTVbtOvgLjX5mk75s6n2VF2QfYHuv+R+XZB9gRJsCbLH2fX54c/1Qd0Hmjhsoq6/8HrlJgw84f5pprJK3866KPw+PzNft4y/RSlpTtmcTsUNHSqb09khMLM6HEoqKpKtoCCi/fgZbwAAAAAQq+KiXQAAxIqqhiqV7i5Vvbc+3JblyNKcEXOUl5GnJl+Tqhuq1exvVkpCinLTc5VqT+1wn7E5Y7VsxjKVHSxTg69BGfYMjR44Wtkp2ZJOvj/aAGuq7pxwZ4fPnUybTUr4zuWyXHKJLHa7FB8va1ISARsAAAAAiJANAHpEk6+pQ8AmSe5Wt96peEcDUwaqtrFWaYlpciY5VXawTOur1uuq4VcpLyOvw/2yU7JPGI6dbH+0xJR0XZ139WnV31r/hfyr1yhUURlus+a7FD/7SiUSsgEAAABA31ku+umnn2ru3LlyOp1KS0vT5MmT9fe//z3imj179qioqEjJyclyOp2644471NbWFqWKAeCo6obqcMCWYEvQ9JzJWuj6Fy0aeo1mZHxThw/X6t6/3asb//tGLV6/WJmOTKXb0/X6p6+f1pJSSbIkJ3dY1tnu2BNDT6Z9aev+Lyrlfz0yYJOkUEWl/KvXqLXZfVr1AQAAAEB/1GdCttmzZysQCOidd97R9u3bNXbsWF111VWqq6uTJAWDQc2ePVsej0fvvvuuXnnlFZWUlOjuu++OcuUAIDX7myUdCdh+5Pqexr5fK8d//pesL/2XMl78q+buTtDfrv6rkuOTtW3/Nq3YvELx1njFWeJU3VB9Wt91JvZPq2qo0soPV+q1//eaEn0hhSorO70uVFEp09x8WvUBAAAAQH/UJ5aLHjp0SJ9//rmee+45XXjhhZKkBx98UE888YQ+/vhj5eTk6K233lJZWZn27t2rwYMHS5JWrFihm266SUuXLuWkLwBRlRKfIkmacs7Fynhnm8xxoZWprJJLRr+YcI/uefcX2rZ/m1qDrTIy4YDudFjT05VUXCzj8ZzwxNATOX5pq+UkM4KNz3fa9QEAAABAf9MnZrINGDBAo0aN0gsvvCCPx6NAIKCnnnpK2dnZKiwslCRt3rxZY8aMCQdskjRr1iz5fD5t3779hPf2+XxqbGyMeAHAmZabkassR5aGO4Z0CNjCKqv13cGXKTk+WcsmL1GRc4quG3CZLoo/VyGvt8dqPXZpqySZhIQur7fY7We7JAAAAADo9frETDaLxaJ169Zp7ty5Sk1NldVqVXZ2tt58801lZGRIkurq6pSdHbkJeGZmphISEsJLSjuzbNky/fKXvzyb5QOAUu2pmjNijuK/9HR5nT0ovX31f6tgS4XMxj9KktokBduXeqanS5JCXm+Xs9RCbrdaSksVrKgIt9mOu8eJHD9zbo//C+W7XJ2Gg9Z8lywpKV3eDwAAAABiQVRnsi1ZskQWi6XL17Zt22SM0a233qqBAwdq06ZNev/99zV37lxdddVVqq2tDd/PYrF0+A5jTKft7e677z653e7wa+/evWflWQFggGOAUpOzurwmOSXzSMBWWRXRHiwvV8uqVQp5vUcCtNdeU/Pjj8vz7LNqfvxxtZSUKHjo0JFXU5Na3ngjImA7/h5daV/a2u7NmvXyzbxEFpcroj18umhK16EdAAAAAMSCqM5kW7Roka677rour8nLy9M777yj119/XYcPHw7vrfbEE09o3bp1ev7553XvvfcqJydH7733XsRnDx8+LL/f32GG27HsdrvsLHUC0AO8TQ2K33dQNpdLwRPMCpMtrkPA1i5YXi7j9cq7enWnAZr3jTcUN3SoAvv3y37xxWqprJT8/o738HikLvZma1/a2r5ktDXYqmc/e1VXXHKZcmdMUULAyGpPlCUlhYANAAAAAL4S1ZDN6XTK6XSe9LqWlhZJktUaOfHOarUqFApJkiZNmqSlS5eqtrZWgwYNkiS99dZbstvt4X3bACCakgMW+dauVVJxsXxSRNBmc7mUcOWVUrNboa5u0tbWIWBrF6yslH3iRPk2bZIvFAr/7+OZ1tYu62xf2nrs4QetwVZtPPi+5o6Yq9yM3JM9KgAAAADEnD6xJ9ukSZOUmZmpG2+8Ub/4xS/kcDj0zDPPqLKyUrNnz5YkzZw5U6NHj9a8efO0fPly1dfX62c/+5kWLFjAyaIAegVrm1/y+9VSUiL7xImyT5woBQJSXJyCNTUKej2KT0pWV2d1mpOc9KlAQNLRwK0zlsTEk9aal5Gn+WPnq7qhWs3+ZqXEpyg3I1ep9tSTfhYAAAAAYlGfCNmcTqfefPNNPfDAA5o+fbr8fr/OP/98/fWvf9VFF10kSbLZbFq9erVuvfVWTZ48WQ6HQ9dff70eeeSRKFcPAEfEOZLVJkl+f6czzBxjRmtnc7nOy3fJVHRcTmorKDh5QBZ3zH/WvwrcOtwjOfmU6k21p2pM9phTuhYAAAAAYl2fCNkkafz48Vq7dm2X15x77rl6/fXXe6giADg9tpRU2QryFSzvuNzTVpAvtzWgtfs2aND0YqVIEUGbJd8ly5XfkSUpVbaCAgXLyzvew+VSsKbmaMNx+66FTxftYj82AAAAAMDXYzHGmGgX0Zs0NjYqPT1dbrebZaYAzriQ262WVasiQrL28Gtb82698dkbSrAlaGr2RA13DJWtLaBgQpw+9dYoPjlF3xryrc7v4XLJPmGCWkpKJL9ftoICOebOlXw+mdZWWRITZUlOJmADzhJ+fwAAAECfmckGAP2BNT1dScXFMh5Ph/ArqTVJktQWbNO6/Ru17rjPXjPqmo738HplAgEFKysjArakoiJZU1OlVPZQAwAAAICeQMgGAD3M6nB0WMopSbkZucpyZIVP9DxWliMr4lTPY+8R8nplTU1V3PDhzFgDAAAAgCixRrsAAMARqfZUzRkxR1mOrIj2LEeW5o6Ye8KTPa0Oh2xOp+KGDpXN6SRgAwAAAIAoYCYbAPQieRl5mj92vqobqtXsb1ZKfIpyM3JPGLABAAAAAHoHQjYA6GVS7akakz0m2mUAAAAAAE4Dy0UBAAAAAACAbiJkAwAAAAAAALqJkA0AAAAAAADoJkI2AAAAAAAAoJsI2QAAAAAAAIBuImQDAAAAAAAAuomQDQAAAAAAAOgmQjYAAAAAAACgmwjZAAAAAAAAgG6Ki3YBvY0xRpLU2NgY5UoAAEBf0f57Q/vvEQAAAIg9hGzHaWpqkiQNGzYsypUAAIC+pqmpSenp6dEuAwAAAFFgMfyTa4RQKKT9+/crNTVVFosl2uWcVY2NjRo2bJj27t2rtLS0aJfTazAunWNcOse4dI5x6Rzj0rn+MC7GGDU1NWnw4MGyWtmNAwAAIBYxk+04VqtVQ4cOjXYZPSotLa3P/qXmbGJcOse4dI5x6Rzj0jnGpXN9fVyYwQYAABDb+KdWAAAAAAAAoJsI2QAAAAAAAIBuImSLYXa7XYsXL5bdbo92Kb0K49I5xqVzjEvnGJfOMS6dY1wAAADQH3DwAQAAAAAAANBNzGQDAAAAAAAAuomQDQAAAAAAAOgmQjYAAAAAAACgmwjZAAAAAAAAgG4iZIthq1ev1oQJE+RwOOR0OvX9738/on/Pnj0qKipScnKynE6n7rjjDrW1tUWp2p7l8/k0duxYWSwWffjhhxF9sTYuVVVVuvnmm+VyueRwOFRQUKDFixd3eOZYGxdJeuKJJ+RyuZSYmKjCwkJt2rQp2iX1qGXLluniiy9WamqqBg4cqO9973vavXt3xDXGGC1ZskSDBw+Ww+HQZZddpo8//jhKFUfHsmXLZLFYdNddd4XbYnVc9u3bpx/96EcaMGCAkpKSNHbsWG3fvj3cH6vjAgAAgP6BkC1GlZSUaN68eZo/f74++ugj/eMf/9D1118f7g8Gg5o9e7Y8Ho/effddvfLKKyopKdHdd98dxap7zr//+79r8ODBHdpjcVw++eQThUIhPfXUU/r444/129/+Vr///e91//33h6+JxXF59dVXddddd+mBBx7QBx98oEsuuURXXnml9uzZE+3SesyGDRt02223acuWLVq3bp0CgYBmzpwpj8cTvubhhx/Wb37zG/3ud7/T1q1blZOTo+985ztqamqKYuU9Z+vWrXr66ad14YUXRrTH4rgcPnxYkydPVnx8vNasWaOysjKtWLFCGRkZ4WticVwAAADQjxjEHL/fb4YMGWL+8Ic/nPCaN954w1itVrNv375w28svv2zsdrtxu909UWbUvPHGG2bkyJHm448/NpLMBx98ENEXq+NyrIcffti4XK7w+1gcl29961tm4cKFEW0jR4409957b5Qqir6DBw8aSWbDhg3GGGNCoZDJyckxDz74YPia1tZWk56ebn7/+99Hq8we09TUZM477zyzbt06M3XqVHPnnXcaY2J3XO655x4zZcqUE/bH6rgAAACg/2AmWwzasWOH9u3bJ6vVqnHjxmnQoEG68sorI5bkbN68WWPGjImYzTVr1iz5fL6IpT39zYEDB7RgwQK9+OKLSkpK6tAfq+NyPLfbraysrPD7WBuXtrY2bd++XTNnzoxonzlzpv75z39Gqaroc7vdkhT+2aisrFRdXV3EONntdk2dOjUmxum2227T7Nmzdfnll0e0x+q4lJaWavz48br22ms1cOBAjRs3Ts8880y4P1bHBQAAAP0HIVsMqqiokCQtWbJEP//5z/X6668rMzNTU6dOVX19vSSprq5O2dnZEZ/LzMxUQkKC6urqerzmnmCM0U033aSFCxdq/PjxnV4Ti+NyvPLycj322GNauHBhuC3WxuXQoUMKBoMdnjk7O7tfPu+pMMbopz/9qaZMmaIxY8ZIUngsYnGcXnnlFe3YsUPLli3r0Ber41JRUaEnn3xS5513ntauXauFCxfqjjvu0AsvvCApdscFAAAA/QchWz+yZMkSWSyWLl/btm1TKBSSJD3wwAMqLi5WYWGhVq5cKYvFoj/96U/h+1kslg7fYYzptL03O9Vxeeyxx9TY2Kj77ruvy/vF2rgca//+/briiit07bXX6sc//nFEX38Zl9Nx/LP19+ftyqJFi/Q///M/evnllzv0xdo47d27V3feeadeeuklJSYmnvC6WBuXUCikb37zm/r1r3+tcePG6ZZbbtGCBQv05JNPRlwXa+MCAACA/iMu2gXgzFm0aJGuu+66Lq/Jy8sLbyA9evTocLvdbld+fn540/acnBy99957EZ89fPiw/H5/h1kGvd2pjsuvfvUrbdmyRXa7PaJv/PjxuuGGG/T888/H5Li0279/v6ZNm6ZJkybp6aefjriuP43LqXA6nbLZbB1m1xw8eLBfPu/J3H777SotLdXGjRs1dOjQcHtOTo6kIzOUBg0aFG7v7+O0fft2HTx4UIWFheG2YDCojRs36ne/+134BNZYG5dBgwZF/LkjSaNGjVJJSYmk2P15AQAAQP9ByNaPOJ1OOZ3Ok15XWFgou92u3bt3a8qUKZIkv9+vqqoq5ebmSpImTZqkpUuXqra2NvyXnbfeekt2uz3iL459wamOy6OPPqpf/epX4ff79+/XrFmz9Oqrr2rChAmSYnNcJGnfvn2aNm1aeNaj1Ro5CbY/jcupSEhIUGFhodatW6err7463L5u3TrNnTs3ipX1LGOMbr/9dv3lL3/R+vXr5XK5IvpdLpdycnK0bt06jRs3TtKR/ew2bNighx56KBol94gZM2Zo586dEW3z58/XyJEjdc899yg/Pz8mx2Xy5MnhgLHdp59+Gv5zJ1Z/XgAAANCPROvEBUTXnXfeaYYMGWLWrl1rPvnkE3PzzTebgQMHmvr6emOMMYFAwIwZM8bMmDHD7Nixw7z99ttm6NChZtGiRVGuvOdUVlZ2OF00Fsdl37595hvf+IaZPn26qampMbW1teFXu1gcl1deecXEx8ebZ5991pSVlZm77rrLJCcnm6qqqmiX1mN+8pOfmPT0dLN+/fqIn4uWlpbwNQ8++KBJT083f/7zn83OnTvND3/4QzNo0CDT2NgYxcp73rGnixoTm+Py/vvvm7i4OLN06VLz2WefmT/+8Y8mKSnJvPTSS+FrYnFcAAAA0H8QssWotrY2c/fdd5uBAwea1NRUc/nll5tdu3ZFXFNdXW1mz55tHA6HycrKMosWLTKtra1RqrjndRayGRN747Jy5UojqdPXsWJtXIwx5vHHHze5ubkmISHBfPOb3zQbNmyIdkk96kQ/FytXrgxfEwqFzOLFi01OTo6x2+3m0ksvNTt37oxe0VFyfMgWq+OyatUqM2bMGGO3283IkSPN008/HdEfq+MCAACA/sFijDHRmEEHAAAAAAAA9BecLgoAAAAAAAB0EyEbAAAAAAAA0E2EbAAAAAAAAEA3EbIBAAAAAAAA3UTIBgAAAAAAAHQTIRsAAAAAAADQTYRsAAAAAAAAQDcRsgEAAAAAAADdRMgGAAAAAAAAdBMhGwB0IRgM6tvf/raKi4sj2t1ut4YNG6af//znUaoMAAAAANCbWIwxJtpFAEBv9tlnn2ns2LF6+umndcMNN0iS/vVf/1UfffSRtm7dqoSEhChXCAAAAACINkI2ADgFjz76qJYsWaJdu3Zp69atuvbaa/X+++9r7Nix0S4NAAAAANALELIBwCkwxmj69Omy2WzauXOnbr/9dpaKAgAAAADCCNkA4BR98sknGjVqlC644ALt2LFDcXFx0S4JAAAAANBLcPABAJyi5557TklJSaqsrFRNTU20ywEAAAAA9CLMZAOAU7B582ZdeumlWrNmjR5++GEFg0G9/fbbslgs0S4NAAAAANALMJMNAE7C6/Xqxhtv1C233KLLL79cf/jDH7R161Y99dRT0S4NAAAAANBLELIBwEnce++9CoVCeuihhyRJ5557rlasWKF/+7d/U1VVVXSLAwAAAAD0CiwXBYAubNiwQTNmzND69es1ZcqUiL5Zs2YpEAiwbBQAAAAAQMgGAAAAAAAAdBfLRQEAAAAAAIBuImQDAAAAAAAAuomQDQAAAAAAAOgmQjYAAAAAAACgmwjZAAAAAAAAgG4iZAMAAAAAAAC6iZANAAAAAAAA6CZCNgAAAAAAAKCbCNkAAAAAAACAbiJkAwAAAAAAALqJkA0AAAAAAADopv8PZYC/+DEW+PUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tsne_df_filters = filters.plots.create_tsne_plots_filters(fragment_library, saved_filter_results)" + ] + }, + { + "cell_type": "markdown", + "id": "dd793cdd-6f9e-449a-b477-cb0e2411a574", + "metadata": { + "tags": [] + }, + "source": [ + "## 3. Fragment subpocket specificity\n", + "\n", + "Cluster the fragments contained in the complete subset using Butina clustering with a similarity cut-off of 0.6 using RDKit fingerprints and a Tanimoto distance matrix calculated using the RDKit fingerprints.\n", + "Afterwards, the information is added in which subpockets the clustered fragments are found, to check which fragments only occur in one subpocket and are more subpocket specific and which are less specific and occur in all subpockets.\n", + "\n", + "* 3.1. Pre-filtered fragment library\n", + "* 3.2. Reduced fragment library\n", + "* 3.3. Custom filtered fragment library\n", + "* 3.4. Compare cluster sizes for all subsets\n", + "* 3.5. Compare most common fragments in complete fragment library with most specific fragments in custom filtered fragment library" + ] + }, + { + "cell_type": "markdown", + "id": "0a1667d7-fa3a-4485-9a35-f3116fd5144e", + "metadata": {}, + "source": [ + "### 3.1. Pre-filtered fragment library\n", + "Applied analyses:\n", + "- Clustering\n", + "- Inspect clusters for all subpockets\n", + "- Inspect clusters only for a single subpocket (AP)\n", + "- Inspect fragments appearing in all subpockets\n", + "- Inspect fragments only appearing in one subpocket\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "34ffd6af-a560-4e0e-9671-00adbf5cdc69", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of molecules: 3060\n", + "Threshold: 0.6\n", + "Number of clusters: 538\n", + "# Clusters with only 1 molecule: 251\n", + "# Clusters with more than 5 molecules: 112\n", + "# Clusters with more than 25 molecules: 24\n", + "# Clusters with more than 100 molecules: 3\n" + ] + } + ], + "source": [ + "clustered_fragments = filters.analysis.cluster_fragment_library(fragment_library)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3d58e6e3-7e02-4443-918d-8a47c870c75c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
16290Clc1cnc2nc[nH]c2c11\"Mol\"/118[AP]
17291O=c1[nH]c2ccc(O)cc2[nH]11\"Mol\"/119[AP]
18301Cc1cccc2nc[nH]c(=O)c121\"Mol\"/120[AP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments.head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "89b56c7e-7d94-4271-a7ad-b8ea2f32534c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count | subpockets\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.draw_clusters(clustered_fragments[:100], show_subpockets=True)" + ] + }, + { + "cell_type": "markdown", + "id": "ed8501d1-6669-4863-8635-062529dccc59", + "metadata": {}, + "source": [ + "Inspect clusters for fragments contained in AP subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "20f67d3c-4ff1-465d-b1f3-42290c3633b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_AP = clustered_fragments[clustered_fragments[\"subpockets\"].astype(str).str.contains(\"AP\")]\n", + "filters.plots.draw_clusters(clustered_fragments_AP[:100])" + ] + }, + { + "cell_type": "markdown", + "id": "2892529c-dd30-4e3e-b575-5ce2eb62940d", + "metadata": {}, + "source": [ + "Are there fragments appearing in all 6 subpockets (not subpocket specific)?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "893349dd-52d7-4685-b2ec-5937d8babf7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4, 7)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments[clustered_fragments [\"subpocket_count\"]==6].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "57ddef19-dd7c-43ba-bd3d-2a12f12550af", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
4212Cc1ccccc16\"Mol\"/42[AP, FP, SE, GA, B1, B2]
17700Fc1ccccc16\"Mol\"/472[AP, FP, SE, GA, B1, B2]
21943FC(F)(F)c1ccccc16\"Mol\"/962[AP, FP, SE, GA, B1, B2]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments[clustered_fragments [\"subpocket_count\"]==6].head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "16c8dba5-2f99-4d4b-bdd0-7defa5b21331", + "metadata": {}, + "source": [ + "Are there fragments appearing only in one subpocket (subpocket specific)?" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "1e147744-37c6-4675-a2c5-30eccfaa11c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2780, 7)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments[clustered_fragments[\"subpocket_count\"]==1].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "91e08efb-30c8-4dbf-b114-fd3f1de206d6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
16290Clc1cnc2nc[nH]c2c11\"Mol\"/118[AP]
17291O=c1[nH]c2ccc(O)cc2[nH]11\"Mol\"/119[AP]
18301Cc1cccc2nc[nH]c(=O)c121\"Mol\"/120[AP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments[clustered_fragments [\"subpocket_count\"]==1].head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "88ef8f5d-c6e3-4fa4-931a-c091f0a185c9", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.2. Reduced fragment library\n", + "Applied analyses:\n", + "- Clustering\n", + "- Inspect clusters for all subpockets\n", + "- Inspect clusters only for a single subpocket (AP)\n", + "- Inspect fragments appearing in all subpockets\n", + "- Inspect fragments only appearing in one subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "b74daf3d-afb1-4941-85e4-d1b631a85d26", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of molecules: 629\n", + "Threshold: 0.6\n", + "Number of clusters: 290\n", + "# Clusters with only 1 molecule: 195\n", + "# Clusters with more than 5 molecules: 26\n", + "# Clusters with more than 25 molecules: 0\n", + "# Clusters with more than 100 molecules: 0\n" + ] + } + ], + "source": [ + "clustered_fragments_reduced = filters.analysis.cluster_fragment_library(fragment_library_reduced)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "ee777b77-a8e3-4af3-8f7f-95e89d7c360e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
664Cc1ccc2ncccc2c11\"Mol\"/18[AP]
768Nc1cc2ncccc2cn11\"Mol\"/19[AP]
877Nc1ncnc2ccccc121\"Mol\"/110[AP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments_reduced.head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "da095ab0-8590-4887-8316-c043dfdfe4df", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count | subpockets\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.draw_clusters(clustered_fragments_reduced[:100], show_subpockets=True)" + ] + }, + { + "cell_type": "markdown", + "id": "355d569d-04d8-4c26-bd3d-756e3a35c20b", + "metadata": {}, + "source": [ + "Inspect clusters for fragments contained in AP subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "bf42e97b-4c3e-413e-81fc-ac7a99aea535", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_reduced_AP = clustered_fragments_reduced[clustered_fragments_reduced[\"subpockets\"].astype(str).str.contains(\"AP\")]\n", + "filters.plots.draw_clusters(clustered_fragments_reduced_AP[:100])" + ] + }, + { + "cell_type": "markdown", + "id": "f97444a2-1a4c-4e20-81fa-82cb6177235a", + "metadata": {}, + "source": [ + "Are there fragments appearing in all 6 subpockets?" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "875a6c50-11f5-4880-82ab-256ebb8513ec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0, 7)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_reduced[clustered_fragments_reduced[\"subpocket_count\"]==6].shape" + ] + }, + { + "cell_type": "markdown", + "id": "3c7ae027-aa78-4add-a810-e14fa57ed30b", + "metadata": {}, + "source": [ + "Are there fragments appearing only in one subpocket?" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "ab18b80e-34b2-4644-a63a-031193096fff", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(565, 7)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_reduced[clustered_fragments_reduced[\"subpocket_count\"]==1].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "bb060891-d0a5-421c-9d8a-2593f651807e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
664Cc1ccc2ncccc2c11\"Mol\"/18[AP]
768Nc1cc2ncccc2cn11\"Mol\"/19[AP]
877Nc1ncnc2ccccc121\"Mol\"/110[AP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments_reduced[clustered_fragments_reduced[\"subpocket_count\"]==1].head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "d15aaec3-a4b2-4c84-a9c9-94a1ca283238", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.3. Custom filtered fragment library\n", + "Applied analyses:\n", + "- Clustering\n", + "- Inspect clusters for all subpockets\n", + "- Inspect clusters only for a single subpocket (AP)\n", + "- Inspect fragments appearing in all subpockets\n", + "- Inspect fragments only appearing in one subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "4c4681e0-0a93-406a-aec5-2ade2f285590", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of molecules: 400\n", + "Threshold: 0.6\n", + "Number of clusters: 96\n", + "# Clusters with only 1 molecule: 48\n", + "# Clusters with more than 5 molecules: 17\n", + "# Clusters with more than 25 molecules: 3\n", + "# Clusters with more than 100 molecules: 0\n" + ] + } + ], + "source": [ + "clustered_fragments_custom = filters.analysis.cluster_fragment_library(fragment_library_custom)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "ffe48b7f-4252-4647-8985-b6eb4a0f7e5d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
1694Cc1ccc2c(c1)OCO21\"Mol\"/118[AP]
17123Cc1ccc(O)cc11\"Mol\"/119[AP]
18206OCc1ccccc11\"Mol\"/120[FP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments_custom.head(3).to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "ad17c3cf-770a-4104-bf8c-25a052fe2480", + "metadata": {}, + "source": [ + "Inspect clusters for all subpockets" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "248fda15-7cdc-4c0f-b7f9-94cca43b2b1c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count | subpockets\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.draw_clusters(clustered_fragments_custom[:100], show_subpockets=True)" + ] + }, + { + "cell_type": "markdown", + "id": "aefc623f-b075-4c19-8745-43356d917626", + "metadata": {}, + "source": [ + "Inspect clusters for fragments contained in AP subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "43d15f4d-adc4-45ff-95a7-00c2803d0cf3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: cluster ID | subpocket count\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_custom_AP = clustered_fragments_custom[clustered_fragments_custom[\"subpockets\"].astype(str).str.contains(\"AP\")]\n", + "filters.plots.draw_clusters(clustered_fragments_custom_AP[:100])" + ] + }, + { + "cell_type": "markdown", + "id": "54e4ab30-d74d-43a7-80a0-bb89c3e1476f", + "metadata": {}, + "source": [ + "Are there fragments appearing in all 6 subpockets?" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "b2a1e895-7995-4625-a829-10ed8739e4d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0, 7)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_custom[clustered_fragments_custom[\"subpocket_count\"]==6].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "5e7950fa-5b94-4652-bb60-066395212c3e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments_custom[clustered_fragments_custom[\"subpocket_count\"]==6].to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "cb202cd2-2d4b-4b2d-b2e9-0568a12eca82", + "metadata": {}, + "source": [ + "Are there fragments appearing only in one subpocket?" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "ef0b4943-988e-4abf-bfa8-8eea1efefbaa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(321, 7)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clustered_fragments_custom[clustered_fragments_custom[\"subpocket_count\"]==1].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "7b859e1c-f5fc-47c2-ab05-6c08dace2ca4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
molecule_idsmilessubpocket_countROMolcluster_idcluster_member_idsubpockets
1694Cc1ccc2c(c1)OCO21\"Mol\"/118[AP]
17123Cc1ccc(O)cc11\"Mol\"/119[AP]
18206OCc1ccccc11\"Mol\"/120[FP]
19214COc1cc(C)cc(O)c11\"Mol\"/121[FP]
20215COc1cc(C)cc(OC)c11\"Mol\"/122[FP]
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(clustered_fragments_custom[clustered_fragments_custom[\"subpocket_count\"]==1].head().to_html(notebook=True))\n", + "# NBVAL_CHECK_OUTPUT" + ] + }, + { + "cell_type": "markdown", + "id": "e25789cc-9a74-44fd-9947-6d25fac5c8ec", + "metadata": { + "tags": [] + }, + "source": [ + "### 3.4. Compare cluster sizes for all subsets" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "da84536f-3b75-423c-979d-3a57d6682837", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAHUCAYAAAD2haUTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+3UlEQVR4nOzdd3iUZb7G8ftNLyQhCZAQCRB674KAEDrSLOCiogIKrFKUDmKhuAgCigUE1kaxLO4u5SirFGmKqHSR3psmhpqEJKS+54+YkTEJZsJMJuX7ua65DvPW30zyZs/e+3uexzBN0xQAAAAAAAAAm7g4uwAAAAAAAACgKCJYAwAAAAAAAPKBYA0AAAAAAADIB4I1AAAAAAAAIB8I1gAAAAAAAIB8IFgDAAAAAAAA8oFgDQAAAAAAAMgHgjUAAAAAAAAgHwjWAAAAAAAAgHwgWAMAIJ/279+vJ554QhEREfLy8lKpUqXUpEkTzZ49W1euXLEc165dO7Vr185hdSxYsEBLlixx2PXzyzAMTZ061dll5NuZM2fUo0cPBQUFyTAMjRo1KtdjZ8yYodWrV2fbvmTJEhmGoV27djmu0N9t3LhRzZo1k6+vrwzDyLGeksjW56Ny5coaOHCg5f2ZM2dkGIbVNaZOnSrDMHTp0iX7FVrEOes7Kax//wAAJYebswsAAKAoeu+99zRs2DDVrFlT48ePV506dZSamqpdu3Zp0aJF+v7777Vq1aoCqWXBggUqU6aMVRhQGHz//feqUKGCs8vIt9GjR+vHH3/Uhx9+qNDQUJUvXz7XY2fMmKEHH3xQ999/f8EVeBPTNNW3b1/VqFFDn3/+uXx9fVWzZk2n1FLY3O7zUb58eX3//feqWrWqfQuDXRTWv38AgJKDYA0AABt9//33Gjp0qDp37qzVq1fL09PTsq9z584aO3as1q5d68QKb59pmrpx44a8vb3zfY277rrLjhUVvAMHDqh58+ZOC8ts8euvv+rKlSt64IEH1LFjx1sem5iYKB8fnwKqrOjz9PS0++9yUlLSbT1bEj9HAAAKC4aCAgBgoxkzZsgwDL377rtWoVoWDw8P3Xvvvbmev2XLFhmGoS1btlhtz2nI2alTp/Twww8rLCxMnp6eCgkJUceOHbVv3z5JmcPWDh48qK1bt8owDBmGocqVK1vOj4uL07hx4xQRESEPDw/dcccdGjVqlBISEqzubRiGRowYoUWLFql27dry9PTU0qVLc/0MmzZtUrt27RQcHCxvb29VrFhRffr0UWJiotU1bx4KWrlyZUuNf37d/F0cP35c/fr1U7ly5eTp6anatWvrnXfesbp/RkaGpk+frpo1a8rb21ulS5dWgwYN9NZbb+Vac5Zz587pscces7r+66+/royMDEl//HxOnDihr776ylLjmTNncryeYRhKSEjQ0qVLLcf+eehvfHy8hg4dqjJlyig4OFi9e/fWr7/+mu1an332mVq2bClfX1+VKlVKXbt21d69e2/5eaZOnWrpDJw4caLV70DW8Lw9e/bowQcfVGBgoKXzateuXXr44YdVuXJleXt7q3LlynrkkUd09uzZbPfYtm2bWrZsKS8vL91xxx166aWX9P7772f7XipXrqyePXtqzZo1aty4sby9vVW7dm2tWbNGUubQ2Nq1a8vX11fNmzfPcYjsrl27dO+99yooKEheXl5q3Lix/v3vf1sdkzXEdvPmzbf8Xv/q+ciLnJ7LLOfPn1fv3r3l7++vgIAAPfbYY7p48aLVMVnfycqVK9W4cWN5eXlp2rRpkqR33nlHbdu2Vbly5eTr66v69etr9uzZSk1NtbpGu3btVK9ePX3zzTdq1aqVfHx89OSTT2rQoEEKCgqyeu6ydOjQQXXr1r3lZ9u7d6969uxpeRbCwsLUo0cPXbhw4S8/e25DvfPyneTl70dKSoqmT5+uWrVqydPTU2XLltUTTzxhda1b/Xxv528EAAC2oGMNAAAbpKena9OmTWratKnCw8Mdfr/u3bsrPT1ds2fPVsWKFXXp0iVt375d165dkyStWrVKDz74oAICArRgwQJJsoR9iYmJioyM1IULF/T888+rQYMGOnjwoCZPnqyff/5ZX3/9tQzDsNxr9erV+vbbbzV58mSFhoaqXLlyOdaUNfdYmzZt9OGHH6p06dL65ZdftHbtWqWkpOTaRbNq1SolJydb3mdkZOjpp5/WqVOnVLFiRUnSoUOH1KpVK1WsWFGvv/66QkNDtW7dOj377LO6dOmSpkyZIkmaPXu2pk6dqhdffFFt27ZVamqqjhw5YvlecnPx4kW1atVKKSkp+sc//qHKlStrzZo1GjdunE6ePKkFCxaoSZMm+v777/XAAw+oatWqeu211yQp16Gg33//vTp06KD27dvrpZdekiT5+/tbHTN48GD16NFDn376qc6fP6/x48frscce06ZNmyzHzJgxQy+++KKeeOIJvfjii0pJSdGcOXPUpk0b7dixQ3Xq1Mnx/oMHD1bDhg3Vu3dvPfPMM+rXr1+2wLd37956+OGH9fTTT1tC1TNnzqhmzZp6+OGHFRQUpKioKC1cuFB33nmnDh06pDJlykjKnEuwc+fOqlGjhpYuXSofHx8tWrRIH3/8cY71/PTTT5o0aZJeeOEFBQQEaNq0aerdu7cmTZqkjRs3WoLpiRMnqmfPnjp9+rSle2vz5s2655571KJFCy1atEgBAQFavny5HnroISUmJmYb7vdX3+utng97eOCBB9S3b189/fTTOnjwoF566SUdOnRIP/74o9zd3S3H7dmzR4cPH9aLL76oiIgI+fr6SpJOnjypfv36WYLvn376Sa+88oqOHDmiDz/80OpeUVFReuyxxzRhwgTNmDFDLi4uKl26tD788EN9+umnGjx4sOXYQ4cOafPmzdkC6ZslJCSoc+fOioiI0DvvvKOQkBBFR0dr8+bNio+Pd9h3kpe/HxkZGbrvvvv07bffasKECWrVqpXOnj2rKVOmqF27dtq1a5e8vb1v+fPN798IAABsZgIAgDyLjo42JZkPP/xwns+JjIw0IyMjLe83b95sSjI3b95sddzp06dNSebixYtN0zTNS5cumZLMN99885bXr1u3rtX1s8ycOdN0cXExd+7cabX9v//9rynJ/PLLLy3bJJkBAQHmlStX/vLzZJ2/b9++Wx4nyZwyZUqu+0eMGGG6ublZ1dG1a1ezQoUKZmxsbLZjvby8LPX17NnTbNSo0V/W+mfPPfecKcn88ccfrbYPHTrUNAzDPHr0qGVbpUqVzB49euTpur6+vuaAAQOybV+8eLEpyRw2bJjV9tmzZ5uSzKioKNM0TfPcuXOmm5ub+cwzz1gdFx8fb4aGhpp9+/a95f2zfnfmzJljtX3KlCmmJHPy5Ml/+RnS0tLM69evm76+vuZbb71l2f63v/3N9PX1NS9evGjZlp6ebtapU8eUZJ4+fdqyvVKlSqa3t7d54cIFy7Z9+/aZkszy5cubCQkJlu2rV682JZmff/65ZVutWrXMxo0bm6mpqVa19ezZ0yxfvryZnp5ummbev1fTzP35yE2lSpWsfpZ/fi5N84/vdfTo0VbnfvLJJ6Yk8+OPP7a6nqurq9XvVk7S09PN1NRUc9myZaarq6vVsxgZGWlKMjdu3JjtvMjIyGzPwtChQ01/f38zPj4+1/vt2rXLlGSuXr0612Ny+uxZ/vx85/U7ycvfj3/961+mJHPFihVW23fu3GlKMhcsWGDZltvPN79/IwAAsBVDQQEAKKSCgoJUtWpVzZkzR3PnztXevXstwxXzYs2aNapXr54aNWqktLQ0y6tr1645DkXt0KGDAgMD//K6jRo1koeHh/7+979r6dKlOnXqlK0fTa+++qrmz5+vRYsWqVu3bpKkGzduaOPGjXrggQfk4+NjVXP37t1148YN/fDDD5Kk5s2b66efftKwYcO0bt06xcXF5em+mzZtUp06ddS8eXOr7QMHDpRpmlYdZPb056HBDRo0kCTLsMt169YpLS1N/fv3t/rcXl5eioyMzPazslWfPn2ybbt+/bomTpyoatWqyc3NTW5ubipVqpQSEhJ0+PBhy3Fbt25Vhw4dLB1skuTi4qK+ffvmeK9GjRrpjjvusLyvXbu2pMzhjDd3M2Ztz/oOTpw4oSNHjujRRx+VpGw//6ioKB09etTqXn/1vTpaVq1Z+vbtKzc3N23evDlbXTVq1Mh2/t69e3XvvfcqODhYrq6ucnd3V//+/ZWenq5jx45ZHRsYGKgOHTpku8bIkSO1b98+fffdd5Iyh39/9NFHGjBggEqVKpVr7dWqVVNgYKAmTpyoRYsW6dChQ3n+3LfyV99JXv5+rFmzRqVLl1avXr2sfg8aNWqk0NDQPD0P+f0bAQCArQjWAACwQZkyZeTj46PTp087/F6GYWjjxo3q2rWrZs+erSZNmqhs2bJ69tln8zRU67ffftP+/fvl7u5u9fLz85Npmrp06ZLV8bda9fJmVatW1ddff61y5cpp+PDhqlq1qqpWrZrnuYs+/vhjPf/885o8ebIGDRpk2X758mWlpaVp3rx52Wru3r27JFlqnjRpkl577TX98MMP6tatm4KDg9WxY8cc5+y62eXLl3P8nGFhYZb9jhAcHGz1Pmu4WlJSkqTMn5Uk3Xnnndk++2effZbtZ2WrnD5zv379NH/+fA0ePFjr1q3Tjh07tHPnTpUtW9ZSl5T5nYSEhGQ7P6dtUmYgfDMPD49bbr9x44akP76DcePGZfsOhg0bJknZvoe/+l4dLTQ01Oq9m5ubgoODs/0e5fT9nzt3Tm3atNEvv/yit956S99++6127txpGb7558+Q2/N53333qXLlypbzlixZooSEBA0fPvyWtQcEBGjr1q1q1KiRnn/+edWtW1dhYWGaMmVKtjnebPFX30le/n789ttvunbtmjw8PLL9LkRHR+fpecjv3wgAAGzFHGsAANjA1dVVHTt21FdffaULFy5YJo23hZeXlyRZzTcmZQ8NJKlSpUr64IMPJEnHjh3Tv//9b02dOlUpKSlatGjRLe9TpkwZeXt7Z5ur6eb9N7t5vrW/0qZNG7Vp00bp6enatWuX5s2bp1GjRikkJEQPP/xwrudt2LBBTz75pAYOHGiZwD1LYGCgXF1d9fjjj+caCkREREjK/C/rY8aM0ZgxY3Tt2jV9/fXXev7559W1a1edP38+13negoODFRUVlW171oT3f/5OCkrWff/73/+qUqVKdr/+n3+2sbGxWrNmjaZMmaLnnnvOsj05OVlXrlyxOjY4ONgSet0sOjrarjVmfQeTJk1S7969czymZs2adr3n7YqOjrbqzktLS9Ply5ezBX45PVurV69WQkKCVq5cafUzz1qY5M9yez5dXFw0fPhwPf/883r99de1YMECdezYMU/fVf369bV8+XKZpqn9+/dryZIlevnll+Xt7a3nnnsu179Vtwqg8/Kd/NXfj6zFKHJbXdnPz+8vP1t+/0YAAGArOtYAALDRpEmTZJqmhgwZopSUlGz7U1NT9cUXX+R6ftaqdfv377fa/vnnn9/yvjVq1NCLL76o+vXra8+ePZbtnp6eOXbo9OzZUydPnlRwcLCaNWuW7WXr6og5cXV1VYsWLSzdMjfX9Wf79u1Tnz591KFDB7377rvZ9vv4+Kh9+/bau3evGjRokGPNfw4sJKl06dJ68MEHNXz4cF25ciXX1TslqWPHjjp06FC2OpctWybDMNS+ffs8fnJruf0M8qpr165yc3PTyZMnc/zczZo1y/e1c2IYhkzTzDaR//vvv6/09HSrbZGRkdq0aZNV8JuRkaH//Oc/dq2pZs2aql69un766adcv4O8BCp/drs/m1v55JNPrN7/+9//VlpaWrZVYXOSFZTd/DMwTVPvvfeezXUMHjxYHh4eevTRR3X06FGNGDHCpvMNw1DDhg31xhtvqHTp0pbnIyQkRF5eXtn+Vv3f//1frtey5TvJ7e9Hz549dfnyZaWnp+f4e3BzaJiXn68tfyMAALAVHWsAANioZcuWWrhwoYYNG6amTZtq6NChqlu3rlJTU7V37169++67qlevnnr16pXj+aGhoerUqZNmzpypwMBAVapUSRs3btTKlSutjtu/f79GjBihv/3tb6pevbo8PDy0adMm7d+/36rLKKvr5LPPPlOVKlXk5eWl+vXra9SoUVqxYoXatm2r0aNHq0GDBsrIyNC5c+e0fv16jR07Vi1atLD58y9atEibNm1Sjx49VLFiRd24ccPSFdepU6ccz4mLi1P37t3l7e2tcePGZRuOVadOHfn7++utt97S3XffrTZt2mjo0KGqXLmy4uPjdeLECX3xxReWOdB69eqlevXqqVmzZipbtqzOnj2rN998U5UqVVL16tVzrX306NFatmyZevTooZdfflmVKlXS//73Py1YsEBDhw7NcR6svKhfv762bNmiL774QuXLl5efn59N3VWVK1fWyy+/rBdeeEGnTp3SPffco8DAQP3222/asWOHfH19s3X43Q5/f3+1bdtWc+bMUZkyZVS5cmVt3bpVH3zwgUqXLm117AsvvKAvvvhCHTt21AsvvCBvb28tWrTIsrqoi4v9/nfaf/7zn+rWrZu6du2qgQMH6o477tCVK1d0+PBh7dmzJ19hXm7Phz2sXLlSbm5u6ty5s2UFzIYNG+Y6/9zNOnfuLA8PDz3yyCOaMGGCbty4oYULF+rq1as211G6dGn1799fCxcuVKVKlXL923OzNWvWaMGCBbr//vtVpUoVmaaplStX6tq1a+rcubOkzMDtscce04cffqiqVauqYcOG2rFjhz799NNcr/tX30le/n48/PDD+uSTT9S9e3eNHDlSzZs3l7u7uy5cuKDNmzfrvvvu0wMPPCAp959vfv9GAABgMycunAAAQJG2b98+c8CAAWbFihVNDw8P09fX12zcuLE5efJkMyYmxnLcn1cFNU3TjIqKMh988EEzKCjIDAgIMB977DHLKn1ZK/D99ttv5sCBA81atWqZvr6+ZqlSpcwGDRqYb7zxhpmWlma51pkzZ8wuXbqYfn5+piSzUqVKln3Xr183X3zxRbNmzZqmh4eHGRAQYNavX98cPXq0GR0dbTlOkjl8+PA8fe7vv//efOCBB8xKlSqZnp6eZnBwsBkZGWm1umPWNbNWDcxaXTC3180rpJ4+fdp88sknzTvuuMN0d3c3y5Yta7Zq1cqcPn265ZjXX3/dbNWqlVmmTBnTw8PDrFixojlo0CDzzJkzf1n/2bNnzX79+pnBwcGmu7u7WbNmTXPOnDmWFSez2LIq6L59+8zWrVubPj4+piTLzztr9co/r8ya28qwq1evNtu3b2/6+/ubnp6eZqVKlcwHH3zQ/Prrr295/79aFfTmFT2zXLhwwezTp48ZGBho+vn5mffcc4954MCBbKtimqZpfvvtt2aLFi1MT09PMzQ01Bw/frw5a9YsU5J57do1y3G5fWc5/X7lVvNPP/1k9u3b1yxXrpzp7u5uhoaGmh06dDAXLVpkOcaW7/VWz0dObFkVdPfu3WavXr3MUqVKmX5+fuYjjzxi/vbbb9mul9vv0RdffGE2bNjQ9PLyMu+44w5z/Pjx5ldffZXtM0RGRpp169a9Zd1btmwxJZmvvvrqLY/LcuTIEfORRx4xq1atanp7e5sBAQFm8+bNzSVLllgdFxsbaw4ePNgMCQkxfX19zV69eplnzpzJdVXQv/pO8vr3IzU11Xzttdcs30+pUqXMWrVqmU899ZR5/Phxy3G5/Xxv528EAAC2MEzTNAskwQMAAECx0aVLF505cybb6pVwjrFjx2rhwoU6f/58jkOmAQCAYzAUFAAAALc0ZswYNW7cWOHh4bpy5Yo++eQTbdiwwbKwBpznhx9+0LFjx7RgwQI99dRThGoAABQwgjUAAADcUnp6uiZPnqzo6GgZhqE6deroo48+0mOPPebs0kq8li1bysfHRz179tT06dOdXQ4AACUOQ0EBAAAAAACAfLDfMk4AAAAAAABACUKwBgAAAAAAAOQDwRoAAAAAAACQDyxeICkjI0O//vqr/Pz8ZBiGs8sBAAAAAACAk5imqfj4eIWFhcnF5dY9aQRrkn799VeFh4c7uwwAAAAAAAAUEufPn1eFChVueQzBmiQ/Pz9JmV+Yv7+/k6sBAAAAAACAs8TFxSk8PNySF90KwZpkGf7p7+9PsAYAAAAAAIA8TRfG4gUAAAAAAABAPhCsAQAAAAAAAPlAsAYAAAAAAADkA3OsAQAAAACAYi09PV2pqanOLgOFiLu7u1xdXW/7OgRrAAAAAACg2Lp+/bouXLgg0zSdXQoKEcMwVKFCBZUqVeq2rkOwBgAAAAAAiqX09HRduHBBPj4+Klu2bJ5WeUTxZ5qmLl68qAsXLqh69eq31blGsAYAAAAAAIql1NRUmaapsmXLytvb29nloBApW7aszpw5o9TU1NsK1li8AAAAAAAAFGt0quHP7PU7QbAGAAAAAAAA5APBGgAAAAAAAJAPBGsAAAAAAAAlVHR0tDp37ixfX1+VLl1aUuYwydWrV0uSzpw5I8MwtG/fPqfVmB/t2rXTqFGjHH4fFi8AAAAAAAAood544w1FRUVp3759CggIkCRFRUUpMDAw39ds166dGjVqpDfffNNOVRZeBGsAAAAAAABFWEpKijw8PPJ17smTJ9W0aVNVr17dsi00NNRepd2W2/lcBcWpQ0G/+eYb9erVS2FhYVZthjc7fPiw7r33XgUEBMjPz0933XWXzp07Z9mfnJysZ555RmXKlJGvr6/uvfdeXbhwoQA/ReGz/eQldXvrW41cvtfZpQAAAAAAUGiYpqnElDSnvEzTzHOd7dq104gRIzRixAiVLl1awcHBevHFFy3XqFy5sqZPn66BAwcqICBAQ4YMkSRt375dbdu2lbe3t8LDw/Xss88qISEh1/tUrlxZK1as0LJly2QYhgYOHChJuWY0WQ4dOqTu3burVKlSCgkJ0eOPP65Lly5JkgYOHKitW7fqrbfekmEYMgxDZ86c+cvzbv7cY8aMUZkyZdS5c+c8nZeQkKD+/furVKlSKl++vF5//fU8f9e3y6kdawkJCWrYsKGeeOIJ9enTJ9v+kydP6u6779agQYM0bdo0BQQE6PDhw/Ly8rIcM2rUKH3xxRdavny5goODNXbsWPXs2VO7d++Wq6trQX6cQiM5NUOHo+Lk7spywgAAAAAAZElKTVedyeuccu9DL3eVj0feY5ilS5dq0KBB+vHHH7Vr1y79/e9/V6VKlSwh2pw5c/TSSy/pxRdflCT9/PPP6tq1q/7xj3/ogw8+0MWLFy3h3OLFi3O8x86dO9W/f3/5+/vrrbfekre391/WFRUVpcjISA0ZMkRz585VUlKSJk6cqL59+2rTpk166623dOzYMdWrV08vv/yyJKls2bJ/ed7Nn3vo0KH67rvvZJpmns4bP368Nm/erFWrVik0NFTPP/+8du/erUaNGuX5+84vpwZr3bp1U7du3XLd/8ILL6h79+6aPXu2ZVuVKlUs/46NjdUHH3ygjz76SJ06dZIkffzxxwoPD9fXX3+trl275njd5ORkJScnW97HxcXd7kcpVDzdMhsRk1MznFwJAAAAAADIj/DwcL3xxhsyDEM1a9bUzz//rDfeeMMSrHXo0EHjxo2zHN+/f3/169fPMmF/9erV9fbbbysyMlILFy60alLKUrZsWXl6esrb2zvPwz8XLlyoJk2aaMaMGZZtH374ocLDw3Xs2DHVqFFDHh4e8vHxsbpmXs6TpGrVqlnlQJMnT77leWFhYfrggw+0bNkyS4fb0qVLVaFChTx9nttVaOdYy8jI0P/+9z9NmDBBXbt21d69exUREaFJkybp/vvvlyTt3r1bqamp6tKli+W8sLAw1atXT9u3b881WJs5c6amTZtWEB/DKTzdfw/W0tKdXAkAAAAAAIWHt7urDr2cc1ZQEPe2xV133SXD+GMkWsuWLfX6668rPT3zv+s3a9bM6vjdu3frxIkT+uSTTyzbTNNURkaGTp8+rVWrVlmFU4cOHVLFihVt/hy7d+/W5s2bVapUqWz7Tp48aQnI8nteTp/rVuclJSUpJSVFLVu2tGwPCgpSzZo1bfpc+VVog7WYmBhdv35dr776qqZPn65Zs2Zp7dq16t27tzZv3qzIyEhFR0fLw8Mj20oVISEhio6OzvXakyZN0pgxYyzv4+LiFB4e7rDPUtA8fh8Cm5xGxxoAAAAAAFkMw7BpOGZh5uvra/U+IyNDTz31lJ599tlsx1asWFFPP/20+vbta9kWFhaWr/tmZGSoV69emjVrVrZ95cuXv+3zcvpctzrv+PHjtpRvd4X2tykjIzMUuu+++zR69GhJUqNGjbR9+3YtWrRIkZGRuZ5rmqZVqvtnnp6e8vT0tG/BhcgfHWsEawAAAAAAFEU//PBDtvfVq1fPdT75Jk2a6ODBg6pWrVqO+4OCghQUFHTbdTVp0kQrVqxQ5cqV5eaWc6zk4eFh6ayz5bz83K9atWpyd3fXDz/8YOnAu3r1qo4dO3bL7MhenLoq6K2UKVNGbm5uqlOnjtX22rVrW1YFDQ0NVUpKiq5evWp1TExMjEJCQgqs1sLmjznWGAoKAAAAAEBRdP78eY0ZM0ZHjx7Vv/71L82bN08jR47M9fiJEyfq+++/1/Dhw7Vv3z4dP35cn3/+uZ555hm71jV8+HBduXJFjzzyiHbs2KFTp05p/fr1evLJJy1hWuXKlfXjjz/qzJkzunTpkjIyMvJ0Xn7uV6pUKQ0aNEjjx4/Xxo0bdeDAAQ0cOFAuLgUTeRXaYM3Dw0N33nmnjh49arX92LFjqlSpkiSpadOmcnd314YNGyz7o6KidODAAbVq1apA6y1MPN0YCgoAAAAAQFHWv39/JSUlqXnz5ho+fLieeeYZ/f3vf8/1+AYNGmjr1q06fvy42rRpo8aNG+ull1665fDM/AgLC9N3332n9PR0de3aVfXq1dPIkSMVEBBgCbPGjRsnV1dX1alTR2XLltW5c+fydF5+7zdnzhy1bdtW9957rzp16qS7775bTZs2tevnzo1hmqZZIHfKwfXr13XixAlJUuPGjTV37ly1b99eQUFBqlixolatWqWHHnpI77zzjtq3b6+1a9dq1KhR2rJli+6++25J0tChQ7VmzRotWbJEQUFBGjdunC5fvqzdu3fn2h75Z3FxcQoICFBsbKz8/f0d9nkLytWEFDX+R2bYeOKVbnJzLbT5KQAAAAAADnPjxg2dPn1aEREROa6KWVi1a9dOjRo10ptvvunsUoqtW/1u2JITOXWOtV27dql9+/aW91kLCgwYMEBLlizRAw88oEWLFmnmzJl69tlnVbNmTa1YscISqknSG2+8ITc3N/Xt21dJSUnq2LGjlixZkudQrTjKmmNNklLSMwjWAAAAAAAAHMCpwVq7du30Vw1zTz75pJ588slc93t5eWnevHmaN2+evcsrsjxuCtKSUzPk4+HEYgAAAAAAAIqpQrsqKPLPzdVFbi6G0jJM5lkDAAAAAKCI2bJli7NLQB4xRrCYsqwMmsbKoAAAAAAAAI5AsFZMebqzMigAAAAAAIAjEawVU1kdaykEawAAAAAAAA5BsFZMMRQUAAAAAADAsQjWiilPt9+HgqbSsQYAAAAAAOAIBGvFlKd7VscawRoAAAAAAIAjEKwVUwwFBQAAAACgZGvXrp1GjRrl7DJkGIZWr17t7DIcgmCtmLIMBaVjDQAAAAAAwCEI1oopS8cac6wBAAAAAFCkpaSkOLsE5IJgrZjyYCgoAAAAAADWTFNKSXDOyzTzXGa7du00YsQIjRkzRmXKlFHnzp116NAhde/eXaVKlVJISIgef/xxXbp0yXJOQkKC+vfvr1KlSql8+fJ6/fXXs103pyGZpUuX1pIlSyzvL1y4oIcfflhBQUHy9fVVs2bN9OOPP1r2f/HFF2ratKm8vLxUpUoVTZs2TWlpaZb9x48fV9u2beXl5aU6depow4YNef7cRZGbswuAY/wxxxodawAAAAAASJJSE6UZYc659/O/Sh6+eT586dKlGjp0qL777jtduXJFkZGRGjJkiObOnaukpCRNnDhRffv21aZNmyRJ48eP1+bNm7Vq1SqFhobq+eef1+7du9WoUaM83/P69euKjIzUHXfcoc8//1yhoaHas2ePMjIys4V169bpscce09tvv602bdro5MmT+vvf/y5JmjJlijIyMtS7d2+VKVNGP/zwg+Li4grFHG+ORLBWTDHHGgAAAAAARVe1atU0e/ZsSdLkyZPVpEkTzZgxw7L/ww8/VHh4uI4dO6awsDB98MEHWrZsmTp37iwpM5irUKGCTff89NNPdfHiRe3cuVNBQUGWOrK88soreu655zRgwABJUpUqVfSPf/xDEyZM0JQpU/T111/r8OHDOnPmjOXeM2bMULdu3fL/RRRyBGvFlKd71hxrDAUFAAAAAECS5O6T2TnmrHvboFmzZpZ/7969W5s3b1apUqWyHXfy5EklJSUpJSVFLVu2tGwPCgpSzZo1bbrnvn371LhxY0uo9me7d+/Wzp079corr1i2paen68aNG0pMTNThw4dVsWJFq0Dv5pqKI4K1YoqhoAAAAAAA/Ilh2DQc05l8ff+oMyMjQ7169dKsWbOyHVe+fHkdP348T9c0DEPmn+Z6S01Ntfzb29v7ludnZGRo2rRp6t27d7Z9Xl5e2a6ddc/ijGCtmGIoKAAAAAAAxUOTJk20YsUKVa5cWW5u2aOcatWqyd3dXT/88IMqVqwoSbp69aqOHTumyMhIy3Fly5ZVVFSU5f3x48eVmJhoed+gQQO9//77unLlSo5da02aNNHRo0ethoferE6dOjp37px+/fVXhYVlzmX3/fff5+9DFxGsClpMebIqKAAAAAAAxcLw4cN15coVPfLII9qxY4dOnTql9evX68knn1R6erpKlSqlQYMGafz48dq4caMOHDiggQMHysXFOvbp0KGD5s+frz179mjXrl16+umn5e7ubtn/yCOPKDQ0VPfff7++++47nTp1SitWrLCEY5MnT9ayZcs0depUHTx4UIcPH9Znn32mF198UZLUqVMn1axZU/3799dPP/2kb7/9Vi+88ELBfVFOQLBWTP0xxxodawAAAAAAFGVhYWH67rvvlJ6erq5du6pevXoaOXKkAgICLOHZnDlz1LZtW917773q1KmT7r77bjVt2tTqOq+//rrCw8PVtm1b9evXT+PGjZOPzx9zv3l4eGj9+vUqV66cunfvrvr16+vVV1+Vq2vmqLiuXbtqzZo12rBhg+68807dddddmjt3ripVqiRJcnFx0apVq5ScnKzmzZtr8ODBVvOxFUeGmdMA2BImLi5OAQEBio2Nlb+/v7PLsYul289oyucH1aN+eb3zaBNnlwMAAAAAQIG7ceOGTp8+rYiICHl5eTm7HBQit/rdsCUnomOtmGLxAgAAAAAAAMciWCumLENBmWMNAAAAAADAIQjWiilWBQUAAAAAAHAsgrViiqGgAAAAAAAAjkWwVkxZOtZSGQoKAAAAAADgCARrxVTWHGspdKwBAAAAAAA4BMFaMcVQUAAAAAAAAMciWCum/li8gKGgAAAAAAAAjkCwVkx5ZHWspdKxBgAAAAAA4AgEa8UUQ0EBAAAAAAAci2CtmMoK1lLSM5SRYTq5GgAAAAAAUBhs2bJFhmHo2rVrzi6lWCBYK6Y83V0t/05Jp2sNAAAAAADA3gjWiqmsjjWJedYAAAAAAJAk0zSVmJrolJdp2jaaLCMjQ7NmzVK1atXk6empihUr6pVXXsmx42zfvn0yDENnzpyRJJ09e1a9evVSYGCgfH19VbduXX355Zc6c+aM2rdvL0kKDAyUYRgaOHCgJCk5OVnPPvusypUrJy8vL919993auXOn5R5Z9123bp0aN24sb29vdejQQTExMfrqq69Uu3Zt+fv765FHHlFiYuJt/ZyKEjdn3vybb77RnDlztHv3bkVFRWnVqlW6//77czz2qaee0rvvvqs33nhDo0aNsmxPTk7WuHHj9K9//UtJSUnq2LGjFixYoAoVKhTMhyik3FwMuRhShpm1Mqi7s0sCAAAAAMCpktKS1OLTFk6594/9fpSPu0+ej580aZLee+89vfHGG7r77rsVFRWlI0eO5Onc4cOHKyUlRd988418fX116NAhlSpVSuHh4VqxYoX69Omjo0ePyt/fX97e3pKkCRMmaMWKFVq6dKkqVaqk2bNnq2vXrjpx4oSCgoIs1546darmz58vHx8f9e3bV3379pWnp6c+/fRTXb9+XQ888IDmzZuniRMn2vYFFVFO7VhLSEhQw4YNNX/+/Fset3r1av34448KCwvLtm/UqFFatWqVli9frm3btun69evq2bOn0tPTHVV2kWAYhjzdMoeDsoABAAAAAABFR3x8vN566y3Nnj1bAwYMUNWqVXX33Xdr8ODBeTr/3Llzat26terXr68qVaqoZ8+eatu2rVxdXS0hWbly5RQaGqqAgAAlJCRo4cKFmjNnjrp166Y6derovffek7e3tz744AOra0+fPl2tW7dW48aNNWjQIG3dulULFy5U48aN1aZNGz344IPavHmz3b+TwsqpHWvdunVTt27dbnnML7/8ohEjRmjdunXq0aOH1b7Y2Fh98MEH+uijj9SpUydJ0scff6zw8HB9/fXX6tq1q8NqLwo83V2UlJr+e8caAAAAAAAlm7ebt37s96PT7p1Xhw8fVnJysjp27Jivez377LMaOnSo1q9fr06dOqlPnz5q0KBBrsefPHlSqampat26tWWbu7u7mjdvrsOHD1sde/N1QkJC5OPjoypVqlht27FjR77qLooK9RxrGRkZevzxxzV+/HjVrVs32/7du3crNTVVXbp0sWwLCwtTvXr1tH379lyvm5ycrLi4OKtXcZQ1zxodawAAAAAAZI7u8nH3ccrLMIw815k1PDMnLi6Z/13/5jnbUlNTrY4ZPHiwTp06pccff1w///yzmjVrpnnz5uV6zaxr/blG0zSzbXN3/2OqKcMwrN5nbcvIKDk5RKEO1mbNmiU3Nzc9++yzOe6Pjo6Wh4eHAgMDrbaHhIQoOjo61+vOnDlTAQEBlld4eLhd6y4sGAoKAAAAAEDRU716dXl7e2vjxo3Z9pUtW1aSFBUVZdm2b9++bMeFh4fr6aef1sqVKzV27Fi99957kiQPDw9JsppCq1q1avLw8NC2bdss21JTU7Vr1y7Vrl3bLp+puHLqUNBb2b17t9566y3t2bPHplRXyjlRvdmkSZM0ZswYy/u4uLhiGa5ZOtZYFRQAAAAAgCLDy8tLEydO1IQJE+Th4aHWrVvr4sWLOnjwoPr376/w8HBNnTpV06dP1/Hjx/X6669bnT9q1Ch169ZNNWrU0NWrV7Vp0yZLQFapUiUZhqE1a9aoe/fu8vb2VqlSpTR06FCNHz9eQUFBqlixombPnq3ExEQNGjTIGV9BkVFoO9a+/fZbxcTEqGLFinJzc5Obm5vOnj2rsWPHqnLlypKk0NBQpaSk6OrVq1bnxsTEKCQkJNdre3p6yt/f3+pVHHm6Zw0FZY41AAAAAACKkpdeekljx47V5MmTVbt2bT300EOKiYmRu7u7/vWvf+nIkSNq2LChZs2apenTp1udm56eruHDh6t27dq65557VLNmTS1YsECSdMcdd2jatGl67rnnFBISohEjRkiSXn31VfXp00ePP/64mjRpohMnTmjdunXZRgnCmmHePCjXiQzD0KpVq3T//fdLki5fvmzV1ihJXbt21eOPP64nnnhCNWvWVGxsrMqWLauPP/5Yffv2lZTZClmhQgV9+eWXeV68IC4uTgEBAYqNjS1WIVufhdu1++xV/fPxpupaN9TZ5QAAAAAAUKBu3Lih06dPKyIiQl5eXs4uB4XIrX43bMmJnDoU9Pr16zpx4oTl/enTp7Vv3z5L22FwcLDV8e7u7goNDVXNmjUlSQEBARo0aJDGjh2r4OBgBQUFady4capfv75lldCSjMULAAAAAAAAHMepwdquXbvUvn17y/usec8GDBigJUuW5Okab7zxhtzc3NS3b18lJSWpY8eOWrJkiVxdXR1RcpHyxxxrDAUFAAAAAACwN6cGa+3atZMtI1HPnDmTbZuXl5fmzZt3y2VjSypWBQUAAAAAAHCcQrt4AW7fH4sXEKwBAAAAAADYG8FaMebhyqqgAAAAAAAUknUbUYjY63eCYK0Ys3SspdKxBgAAAAAoebLmX09JSXFyJShssn4nbneOfqfOsQbHYo41AAAAAEBJ5ubmJh8fH128eFHu7u5ycaG/CFJGRoYuXrwoHx8fubndXjRGsFaMWVYFZSgoAAAAAKAEMgxD5cuX1+nTp3X27Flnl4NCxMXFRRUrVpRhGLd1HYK1YoyONQAAAABASefh4aHq1aszHBRWPDw87NLBSLBWjDHHGgAAAAAAmd1JXl5ezi4DxRCDi4sxhoICAAAAAAA4DsFaMZY1FDSFoaAAAAAAAAB2R7BWjP3RsUawBgAAAAAAYG8Ea8WYl3tmx1r8jVQnVwIAAAAAAFD8EKwVY9VDSkmSDkfFKy2drjUAAAAAAAB7IlgrxqqVLSU/LzclpabrSHS8s8sBAAAAAAAoVgjWijEXF0ONKwZKkvacu+rkagAAAAAAAIoXgrVirknF0pKkPWcJ1gAAAAAAAOyJYK2Ya1ops2NtNx1rAAAAAAAAdkWwVsw1Ci8tw5DOX0lSTPwNZ5cDAAAAAABQbBCsFXN+Xu6qGeInSdpz9ppziwEAAAAAAChGCNZKABYwAAAAAAAAsD+CtRKgYYUASdKR6HgnVwIAAAAAAFB8EKyVAKW83CRJyanpTq4EAAAAAACg+CBYKwHcXTN/zCnpGU6uBAAAAAAAoPggWCsBPNx+D9bSCNYAAAAAAADshWCtBPB0JVgDAAAAAACwN4K1EiCrYy2VoaAAAAAAAAB2Q7BWArjTsQYAAAAAAGB3BGslgGWONTrWAAAAAAAA7IZgrQTICtaS6VgDAAAAAACwG4K1EsCDoaAAAAAAAAB2R7BWAniyeAEAAAAAAIDdEayVAFmLF2SYUhrhGgAAAAAAgF0QrJUAWXOsSSxgAAAAAAAAYC8EayWAVbDGPGsAAAAAAAB24dRg7ZtvvlGvXr0UFhYmwzC0evVqy77U1FRNnDhR9evXl6+vr8LCwtS/f3/9+uuvVtdITk7WM888ozJlysjX11f33nuvLly4UMCfpHBzczFkGJn/pmMNAAAAAADAPpwarCUkJKhhw4aaP39+tn2JiYnas2ePXnrpJe3Zs0crV67UsWPHdO+991odN2rUKK1atUrLly/Xtm3bdP36dfXs2VPp6ekF9TEKPcMwLPOs0bEGAAAAAABgH27OvHm3bt3UrVu3HPcFBARow4YNVtvmzZun5s2b69y5c6pYsaJiY2P1wQcf6KOPPlKnTp0kSR9//LHCw8P19ddfq2vXrg7/DEWFp6uLUtIyCNYAAAAAAADspEjNsRYbGyvDMFS6dGlJ0u7du5WamqouXbpYjgkLC1O9evW0ffv2XK+TnJysuLg4q1dxlzXPGkNBAQAAAAAA7KPIBGs3btzQc889p379+snf31+SFB0dLQ8PDwUGBlodGxISoujo6FyvNXPmTAUEBFhe4eHhDq29MMgK1lLTTCdXAgAAAAAAUDwUiWAtNTVVDz/8sDIyMrRgwYK/PN40TRlZs/XnYNKkSYqNjbW8zp8/b89yC6U/OtaYew4AAAAAAMAeCn2wlpqaqr59++r06dPasGGDpVtNkkJDQ5WSkqKrV69anRMTE6OQkJBcr+np6Sl/f3+rV3GXtXhBMnOsAQAAAAAA2EWhDtayQrXjx4/r66+/VnBwsNX+pk2byt3d3WqRg6ioKB04cECtWrUq6HILNQ9WBQUAAAAAALArp64Kev36dZ04ccLy/vTp09q3b5+CgoIUFhamBx98UHv27NGaNWuUnp5umTctKChIHh4eCggI0KBBgzR27FgFBwcrKChI48aNU/369S2rhCKTZY61dOZYAwAAAAAAsAenBmu7du1S+/btLe/HjBkjSRowYICmTp2qzz//XJLUqFEjq/M2b96sdu3aSZLeeOMNubm5qW/fvkpKSlLHjh21ZMkSubq6FshnKCosc6zRsQYAAAAAAGAXTg3W2rVrJ9PMvYPqVvuyeHl5ad68eZo3b549Syt2LENBWbwAAAAAAADALgr1HGuwHzrWAAAAAAAA7ItgrYRg8QIAAAAAAAD7IlgrISwdayxeAAAAAAAAYBcEayWEOx1rAAAAAAAAdkWwVkIwxxoAAAAAAIB9EayVEJ5urAoKAAAAAABgTzYHa0uXLtX//vc/y/sJEyaodOnSatWqlc6ePWvX4mA/WR1rqcyxBgAAAAAAYBc2B2szZsyQt7e3JOn777/X/PnzNXv2bJUpU0ajR4+2e4GwD1YFBQAAAAAAsC83W084f/68qlWrJklavXq1HnzwQf39739X69at1a5dO3vXBzvJWrwgmWANAAAAAADALmzuWCtVqpQuX74sSVq/fr06deokSfLy8lJSUpJ9q4PdsHgBAAAAAACAfdncsda5c2cNHjxYjRs31rFjx9SjRw9J0sGDB1W5cmV71wc7+WOONYI1AAAAAAAAe7C5Y+2dd95Ry5YtdfHiRa1YsULBwcGSpN27d+uRRx6xe4GwDzrWAAAAAAAA7MvmjrW4uDi9/fbbcnGxzuSmTp2q8+fP260w2JeHqyFJSqFjDQAAAAAAwC5s7liLiIjQpUuXsm2/cuWKIiIi7FIU7I+ONQAAAAAAAPuyOVgzTTPH7devX5eXl9dtFwTH8HB1lUTHGgAAAAAAgL3keSjomDFjJEmGYWjy5Mny8fGx7EtPT9ePP/6oRo0a2b1A2AcdawAAAAAAAPaV52Bt7969kjI71n7++Wd5eHhY9nl4eKhhw4YaN26c/SuEXbhnzbFGsAYAAAAAAGAXeQ7WNm/eLEl64okn9NZbb8nf399hRcH+LB1rDAUFAAAAAACwC5tXBV28eLEj6oCDeTIUFAAAAAAAwK5sDtYSEhL06quvauPGjYqJiVFGhnVQc+rUKbsVB/vJWrwglY41AAAAAAAAu7A5WBs8eLC2bt2qxx9/XOXLl5dhGI6oC3bG4gUAAAAAAAD2ZXOw9tVXX+l///ufWrdu7Yh64CAsXgAAAAAAAGBfLraeEBgYqKCgIEfUAgfK6lhLZigoAAAAAACAXdgcrP3jH//Q5MmTlZiY6Ih64CBZwVpqeoZM03RyNQAAAAAAAEWfzUNBX3/9dZ08eVIhISGqXLmy3N3drfbv2bPHbsXBfjx/X7zANKW0DNMyNBQAAAAAAAD5Y3Owdv/99zugDDiau9sfQVpKWobcXW1uVgQAAAAAAMBNbA7WpkyZ4og64GAeNwVpKWkZ8vV0YjEAAAAAAADFQL7alq5du6b3339fkyZN0pUrVyRlDgH95Zdf7Foc7MfN1UUuvzetpbKAAQAAAAAAwG2zuWNt//796tSpkwICAnTmzBkNGTJEQUFBWrVqlc6ePatly5Y5ok7YgYebi26kZig5jWANAAAAAADgdtncsTZmzBgNHDhQx48fl5eXl2V7t27d9M0339i1ONhX1nDQFDrWAAAAAAAAbpvNwdrOnTv11FNPZdt+xx13KDo62i5FwTE83H4P1uhYAwAAAAAAuG02B2teXl6Ki4vLtv3o0aMqW7asXYqCY2R1rDHHGgAAAAAAwO2zOVi777779PLLLys1NVWSZBiGzp07p+eee059+vSxe4GwHzrWAAAAAAAA7MfmYO21117TxYsXVa5cOSUlJSkyMlLVqlWTn5+fXnnlFZuu9c0336hXr14KCwuTYRhavXq11X7TNDV16lSFhYXJ29tb7dq108GDB62OSU5O1jPPPKMyZcrI19dX9957ry5cuGDrxyoRCNYAAAAAAADsx+Zgzd/fX9u2bdOKFSv06quvasSIEfryyy+1detW+fr62nSthIQENWzYUPPnz89x/+zZszV37lzNnz9fO3fuVGhoqDp37qz4+HjLMaNGjdKqVau0fPlybdu2TdevX1fPnj2Vnp5u60cr9tx/HwqazFBQAAAAAACA22aYpmk6uwgpc0jpqlWrdP/990vK7FYLCwvTqFGjNHHiREmZ3WkhISGaNWuWnnrqKcXGxqps2bL66KOP9NBDD0mSfv31V4WHh+vLL79U165d83TvuLg4BQQEKDY2Vv7+/g75fIXBAwu+095z1/TPx5uqa91QZ5cDAAAAAABQ6NiSE7nl5wY7duzQli1bFBMTo4wM6+6nuXPn5ueS2Zw+fVrR0dHq0qWLZZunp6ciIyO1fft2PfXUU9q9e7dSU1OtjgkLC1O9evW0ffv2XIO15ORkJScnW97ntBhDccTiBQAAAAAAAPZjc7A2Y8YMvfjii6pZs6ZCQkJkGIZl383/vl3R0dGSpJCQEKvtISEhOnv2rOUYDw8PBQYGZjsm6/yczJw5U9OmTbNbrUUFc6wBAAAAAADYj83B2ltvvaUPP/xQAwcOdEA52f05rDNN8y8DvL86ZtKkSRozZozlfVxcnMLDw2+v0CIgq2ONYA0AAAAAAOD22bx4gYuLi1q3bu2IWqyEhmbOAfbnzrOYmBhLF1toaKhSUlJ09erVXI/Jiaenp/z9/a1eJYGlY42hoAAAAAAAALfN5mBt9OjReueddxxRi5WIiAiFhoZqw4YNlm0pKSnaunWrWrVqJUlq2rSp3N3drY6JiorSgQMHLMfgDwwFBQAAAAAAsB+bh4KOGzdOPXr0UNWqVVWnTh25u7tb7V+5cmWer3X9+nWdOHHC8v706dPat2+fgoKCVLFiRY0aNUozZsxQ9erVVb16dc2YMUM+Pj7q16+fJCkgIECDBg3S2LFjFRwcrKCgII0bN07169dXp06dbP1oxZ5lKCgdawAAAAAAALfN5mDtmWee0ebNm9W+fXsFBwff1oIFu3btUvv27S3vs+Y9GzBggJYsWaIJEyYoKSlJw4YN09WrV9WiRQutX79efn5+lnPeeOMNubm5qW/fvkpKSlLHjh21ZMkSubq65ruu4oqONQAAAAAAAPsxTNM0bTnBz89Py5cvV48ePRxVU4GLi4tTQECAYmNji/V8a1M/P6gl289oWLuqmnBPLWeXAwAAAAAAUOjYkhPZPMdaUFCQqlatmu/i4Dyev3espTIUFAAAAAAA4LbZHKxNnTpVU6ZMUWJioiPqgQMxFBQAAAAAAMB+bJ5j7e2339bJkycVEhKiypUrZ1u8YM+ePXYrDvbF4gUAAAAAAAD2Y3Owdv/99zugDBQE99871pLpWAMAAAAAALhtNgdrU6ZMcUQdKABZHWup6TatVwEAAAAAAIAc2DzHGoqurDnWklPTnVwJAAAAAABA0Wdzx1pgYKAMw8i23TAMeXl5qVq1aho4cKCeeOIJuxQI+/F2d5Uk3WAoKAAAAAAAwG2zOVibPHmyXnnlFXXr1k3NmzeXaZrauXOn1q5dq+HDh+v06dMaOnSo0tLSNGTIEEfUjHzy9cwM1hKT05xcCQAAAAAAQNFnc7C2bds2TZ8+XU8//bTV9n/+859av369VqxYoQYNGujtt98mWCtkvD0yf9yJKQwFBQAAAAAAuF02z7G2bt06derUKdv2jh07at26dZKk7t2769SpU7dfHezK1+P3jrUUOtYAAAAAAABul83BWlBQkL744ots27/44gsFBQVJkhISEuTn53f71cGuvH8P1hLoWAMAAAAAALhtNg8FfemllzR06FBt3rxZzZs3l2EY2rFjh7788kstWrRIkrRhwwZFRkbavVjcHt/fh4ImEawBAAAAAADcNpuDtSFDhqhOnTqaP3++Vq5cKdM0VatWLW3dulWtWrWSJI0dO9buheL2+Vg61tJkmmaOq7sCAAAAAAAgb2wO1iSpdevWat26tb1rgYP5eGb+uE1TSk7LkJe7q5MrAgAAAAAAKLryFaxlSUpKUmpqqtU2f3//2yoIjuN9U5CWkJxGsAYAAAAAAHAbbF68IDExUSNGjFC5cuVUqlQpBQYGWr1QeLm6GPJyz/yRJzLPGgAAAAAAwG2xOVgbP368Nm3apAULFsjT01Pvv/++pk2bprCwMC1btswRNcKOfH5fwIBgDQAAAAAA4PbYPBT0iy++0LJly9SuXTs9+eSTatOmjapVq6ZKlSrpk08+0aOPPuqIOmEnPh6uupIgJaakObsUAAAAAACAIs3mjrUrV64oIiJCUuZ8aleuXJEk3X333frmm2/sWx3sLmtlUDrWAAAAAAAAbo/NwVqVKlV05swZSVKdOnX073//W1JmJ1vp0qXtWRscgKGgAAAAAAAA9mFzsPbEE0/op59+kiRNmjTJMtfa6NGjNX78eLsXCPv6o2ONoaAAAAAAAAC3w+Y51kaPHm35d/v27XXkyBHt2rVLVatWVcOGDe1aHOyPjjUAAAAAAAD7sKljLTU1Ve3bt9exY8cs2ypWrKjevXsTqhURWR1rCcl0rAEAAAAAANwOm4I1d3d3HThwQIZhOKoeOJivZ2awlkTHGgAAAAAAwG2xeY61/v3764MPPnBELSgA3u6ZQ0ETCNYAAAAAAABui81zrKWkpOj999/Xhg0b1KxZM/n6+lrtnzt3rt2Kg/390bHGUFAAAAAAAIDbYXOwduDAATVp0kSSrOZak8QQ0SLAO2uONTrWAAAAAAAAbkuegrX9+/erXr16cnFx0ebNmx1dExzI9/dVQZljDQAAAAAA4PbkaY61xo0b69KlS5KkKlWq6PLlyw4tCo7zR8caQ0EBAAAAAABuR56CtdKlS+v06dOSpDNnzigjI8OhRcFxsjrWEulYAwAAAAAAuC15Ggrap08fRUZGqnz58jIMQ82aNZOrq2uOx546dcquBcK+fH7vWEukYw0AAAAAAOC25ClYe/fdd9W7d2+dOHFCzz77rIYMGSI/Pz9H1wYHsARryXSsAQAAAAAA3I48rwp6zz33SJJ2796tkSNHEqwVUT4MBQUAAAAAALCLPM2xdrPFixcXWKiWlpamF198UREREfL29laVKlX08ssvW83xZpqmpk6dqrCwMHl7e6tdu3Y6ePBggdRXFPl4sngBAAAAAACAPdgcrBWkWbNmadGiRZo/f74OHz6s2bNna86cOZo3b57lmNmzZ2vu3LmaP3++du7cqdDQUHXu3Fnx8fFOrLzwylq8ICklXaZpOrkaAAAAAACAoivPQ0Gd4fvvv9d9992nHj16SJIqV66sf/3rX9q1a5ekzG61N998Uy+88IJ69+4tSVq6dKlCQkL06aef6qmnnsrxusnJyUpOTra8j4uLc/AnKTy8f59jLS3DVEp6hjzdcl6EAgAAAAAAALdWqDvW7r77bm3cuFHHjh2TJP3000/atm2bunfvLkk6ffq0oqOj1aVLF8s5np6eioyM1Pbt23O97syZMxUQEGB5hYeHO/aDFCJZixdImV1rAAAAAAAAyJ88BWtNmjTR1atXJUkvv/yyEhMTHVpUlokTJ+qRRx5RrVq15O7ursaNG2vUqFF65JFHJEnR0dGSpJCQEKvzQkJCLPtyMmnSJMXGxlpe58+fd9yHKGTcXV3k4Zr5Y08gWAMAAAAAAMi3PAVrhw8fVkJCgiRp2rRpun79ukOLyvLZZ5/p448/1qeffqo9e/Zo6dKleu2117R06VKr4wzDsHpvmma2bTfz9PSUv7+/1askyVrAIIkFDAAAAAAAAPItT3OsNWrUSE888YTuvvtumaap1157TaVKlcrx2MmTJ9utuPHjx+u5557Tww8/LEmqX7++zp49q5kzZ2rAgAEKDQ2VlNm5Vr58ect5MTEx2brY8Acfd1ddU6oSkulYAwAAAAAAyK88BWtLlizRlClTtGbNGhmGoa+++kpubtlPNQzDrsFaYmKiXFysm+pcXV2VkZEhSYqIiFBoaKg2bNigxo0bS5JSUlK0detWzZo1y251FDc+npk/u0SGggIAAAAAAORbnoK1mjVravny5ZIkFxcXbdy4UeXKlXNoYZLUq1cvvfLKK6pYsaLq1q2rvXv3au7cuXryySclZQZ5o0aN0owZM1S9enVVr15dM2bMkI+Pj/r16+fw+oqqrAUMEhkKCgAAAAAAkG95CtZultUtVhDmzZunl156ScOGDVNMTIzCwsL01FNPWXXFTZgwQUlJSRo2bJiuXr2qFi1aaP369fLz8yuwOouaP4I1OtYAAAAAAADyyzBN07T1pJMnT+rNN9/U4cOHZRiGateurZEjR6pq1aqOqNHh4uLiFBAQoNjY2BKxkMGTS3Zq05EYzepTXw/dWdHZ5QAAAAAAABQatuREeVoV9Gbr1q1TnTp1tGPHDjVo0ED16tXTjz/+qLp162rDhg35LhoFh441AAAAAACA22fzUNDnnntOo0eP1quvvppt+8SJE9W5c2e7FQfHIFgDAAAAAAC4fTZ3rB0+fFiDBg3Ktv3JJ5/UoUOH7FIUHMvHI2tVUBYvAAAAAAAAyC+bg7WyZctq37592bbv27evQFYKxe3L6lhLSKZjDQAAAAAAIL9sHgo6ZMgQ/f3vf9epU6fUqlUrGYahbdu2adasWRo7dqwjaoSd+Xpm/tiTGAoKAAAAAACQbzYHay+99JL8/Pz0+uuva9KkSZKksLAwTZ06Vc8++6zdC4T9ZXWsXWcoKAAAAAAAQL7ZHKwZhqHRo0dr9OjRio+PlyT5+fnZvTA4TqnfO9au3yBYAwAAAAAAyC+bg7WbEagVTf7e7pKkuBupTq4EAAAAAACg6LJ58QIUfX5emXlqPB1rAAAAAAAA+UawVgL5e/3esZZExxoAAAAAAEB+EayVQFnBGh1rAAAAAAAA+WdTsJaamqr27dvr2LFjjqoHBSBrKGhSarpS0zOcXA0AAAAAAEDRZFOw5u7urgMHDsgwDEfVgwJQyuuPNSvoWgMAAAAAAMgfm4eC9u/fXx988IEjakEBcXd1kY+HqyQpnpVBAQAAAAAA8sXtrw+xlpKSovfff18bNmxQs2bN5Ovra7V/7ty5disOjuPn5abElHQ61gAAAAAAAPLJ5mDtwIEDatKkiSRlm2uNIaJFh5+Xu36LS2ZlUAAAAAAAgHyyOVjbvHmzI+pAAfP/fZ61ODrWAAAAAAAA8sXmOdaynDhxQuvWrVNSUpIkyTRNuxUFx/PzcpfEHGsAAAAAAAD5ZXOwdvnyZXXs2FE1atRQ9+7dFRUVJUkaPHiwxo4da/cC4Rh+dKwBAAAAAADcFpuDtdGjR8vd3V3nzp2Tj4+PZftDDz2ktWvX2rU4OI6/Nx1rAAAAAAAAt8PmOdbWr1+vdevWqUKFClbbq1evrrNnz9qtMDhWVscaq4ICAAAAAADkj80dawkJCVadalkuXbokT09PuxQFx/P/fY41VgUFAAAAAADIH5uDtbZt22rZsmWW94ZhKCMjQ3PmzFH79u3tWhwcx5+ONQAAAAAAgNti81DQOXPmqF27dtq1a5dSUlI0YcIEHTx4UFeuXNF3333niBrhAJZVQZPpWAMAAAAAAMgPmzvW6tSpo/3796t58+bq3LmzEhIS1Lt3b+3du1dVq1Z1RI1wAH/v31cFTaJjDQAAAAAAID9s7liTpNDQUE2bNs3etaAAWTrWWBUUAAAAAAAgX/IVrF29elUffPCBDh8+LMMwVLt2bT3xxBMKCgqyd31wEFYFBQAAAAAAuD02DwXdunWrIiIi9Pbbb+vq1au6cuWK3n77bUVERGjr1q2OqBEOYFkV9EaqTNN0cjUAAAAAAABFj80da8OHD1ffvn21cOFCubq6SpLS09M1bNgwDR8+XAcOHLB7kbC/rI611HRTyWkZ8nJ3dXJFAAAAAAAARYvNHWsnT57U2LFjLaGaJLm6umrMmDE6efKkXYuD4/h6uMkwMv8dl8Q8awAAAAAAALayOVhr0qSJDh8+nG374cOH1ahRI3vUhALg4mLIz/P3lUGZZw0AAAAAAMBmeRoKun//fsu/n332WY0cOVInTpzQXXfdJUn64Ycf9M477+jVV191TJVwCD8vd8XdSGNlUAAAAAAAgHwwzDzMXO/i4iLDMP5yknvDMJSenm634iTpl19+0cSJE/XVV18pKSlJNWrU0AcffKCmTZtKkkzT1LRp0/Tuu+/q6tWratGihd555x3VrVs3z/eIi4tTQECAYmNj5e/vb9f6C7N73vxGR6LjtfTJ5oqsUdbZ5QAAAAAAADidLTlRnjrWTp8+bZfCbHX16lW1bt1a7du311dffaVy5crp5MmTKl26tOWY2bNna+7cuVqyZIlq1Kih6dOnq3Pnzjp69Kj8/PycUndR4e+duTIoHWsAAAAAAAC2y1OwVqlSJUfXkaNZs2YpPDxcixcvtmyrXLmy5d+maerNN9/UCy+8oN69e0uSli5dqpCQEH366ad66qmnCrrkIsX/95VB45ljDQAAAAAAwGZ5Ctb+7JdfftF3332nmJgYZWRkWO179tln7VKYJH3++efq2rWr/va3v2nr1q264447NGzYMA0ZMkRSZidddHS0unTpYjnH09NTkZGR2r59e67BWnJyspKTky3v4+Li7FZzUeLnldmxxqqgAAAAAAAAtrM5WFu8eLGefvppeXh4KDg4WIZhWPYZhmHXYO3UqVNauHChxowZo+eff147duzQs88+K09PT/Xv31/R0dGSpJCQEKvzQkJCdPbs2VyvO3PmTE2bNs1udRZVdKwBAAAAAADkn83B2uTJkzV58mRNmjRJLi4ujqjJIiMjQ82aNdOMGTMkSY0bN9bBgwe1cOFC9e/f33LczeGelDlE9M/bbjZp0iSNGTPG8j4uLk7h4eF2rr7ws3SsMccaAAAAAACAzWxOxhITE/Xwww87PFSTpPLly6tOnTpW22rXrq1z585JkkJDQyXJ0rmWJSYmJlsX2808PT3l7+9v9SqJKgR6S5JW7flFh6NK5nBYAAAAAACA/LI5HRs0aJD+85//OKKWbFq3bq2jR49abTt27JhlMYWIiAiFhoZqw4YNlv0pKSnaunWrWrVqVSA1FmX3N75DzSOCFJ+cpgEf7tCFq4nOLgkAAAAAAKDIMEzTNG05IT09XT179lRSUpLq168vd3d3q/1z5861W3E7d+5Uq1atNG3aNPXt21c7duzQkCFD9O677+rRRx+VlLly6MyZM7V48WJVr15dM2bM0JYtW3T06FH5+fnl6T5xcXEKCAhQbGxsietei01KVd9F3+vob/G6p26oFj3e1NklAQAAAAAAOI0tOZHNc6zNmDFD69atU82aNSUp2+IF9nTnnXdq1apVmjRpkl5++WVFRETozTfftIRqkjRhwgQlJSVp2LBhunr1qlq0aKH169fnOVQr6QK83TWvX2N1eeMbrTsUrbOXE1Qp2NfZZQEAAAAAABR6NnesBQYG6o033tDAgQMdVFLBK8kda1kGLt6hLUcvqn/LSnr5vnrOLgcAAAAAAMApbMmJbJ5jzdPTU61bt853cSic/t6miiTpP7su6Eh0nGLibzi5IgAAAAAAgMLN5mBt5MiRmjdvniNqgRO1rBqsOuX9lZSarnve/FbNX9mo/+w67+yyAAAAAAAACi2b51jbsWOHNm3apDVr1qhu3brZFi9YuXKl3YpDwTEMQxO71dKYz/YpPjlNKWkZ+u/uC/pbs3BnlwYAAAAAAFAo2RyslS5dWr1793ZELXCyyBpltfulzjp/JVFtZm/WrrNXFZuYqgAf978+GQAAAAAAoISxOVhbvHixI+pAIRIe5KMaIaV07Lfr2nIsRvc1usPZJQEAAAAAABQ6Ns+xhpKhY+0QSdLXh2OcXAkAAAAAAEDhZHPHWkREhAzDyHX/qVOnbqsgFA6dapfTwi0nteVojFLTM+TuSgYLAAAAAABwM5uDtVGjRlm9T01N1d69e7V27VqNHz/eXnXByRqFByrI10NXElK068xVtawa7OySAAAAAAAAChWbg7WRI0fmuP2dd97Rrl27brsgFA6uLoba1yynFXsuaNXeCwRrAAAAAAAAf2K38X3dunXTihUr7HU5FAKPNA+XJK3e+6ti4m84uRoAAAAAAIDCxW7B2n//+18FBQXZ63IoBJpWClTjiqWVkp6hj74/6+xyAAAAAAAAChWbh4I2btzYavEC0zQVHR2tixcvasGCBXYtDs5lGIaGtKmiYZ/s0Uc/nFWn2iEK8HZX5TK+zi4NAAAAAADA6WwO1u6//36r9y4uLipbtqzatWunWrVq2asuFBJd64YqPMhb568k6b53vpMkvf1IY93bMMzJlQEAAAAAADiXYZqm6ewinC0uLk4BAQGKjY2Vv7+/s8spdNYeiNYrXx7S9RtpupqYqpohflo7qo1V5yIAAAAAAEBxYEtOZLc51lB83VMvVN9O6KAt49vL18NVR3+L1zfHLzm7LAAAAAAAAKfKc7Dm4uIiV1fXW77c3GweWYoiJMDbXQ/dWVGS9P63p5xcDQAAAAAAgHPlOQlbtWpVrvu2b9+uefPmiVGlxd8TrStryfbT+vb4Jf10/poahpd2dkkAAAAAAABOkedg7b777su27ciRI5o0aZK++OILPfroo/rHP/5h1+JQ+IQH+ahXwzD9375f9dRHu7ViWCvdUdrb2WUBAAAAAAAUuHzNsfbrr79qyJAhatCggdLS0rRv3z4tXbpUFStWtHd9yIeDlw/qxW0vasG+BQ65/sv31lONkFKKjruh/h/8qPgbqQ65DwAAAAAAQGFmU7AWGxuriRMnqlq1ajp48KA2btyoL774QvXq1XNUfciHS4mX9H8n/0/fXvjWIdcP8HHX0iebK8TfUycvJmj9wd8cch8AAAAAAIDCLM/B2uzZs1WlShWtWbNG//rXv7R9+3a1adPGkbUhn/w8/CRJcSlxDrtH+QBvRdYoK0mKik1y2H0AAAAAAAAKqzzPsfbcc8/J29tb1apV09KlS7V06dIcj1u5cqXdikP++Hv4S5LiU+Idep9yfl6SpN/ikh16HwAAAAAAgMIoz8Fa//79ZRiGI2uBndzcsWaapsN+biH+npKk3+JuOOT6AAAAAAAAhVmeg7UlS5Y4sAzYk79nZsdaupmupLQk+bj7OOQ+5fwzO9Zi4ulYAwAAAAAAJU++VgVF4ebl6iU3l8zM1JHzrJXzy+xYi6FjDQAAAAAAlEAEa8WQYRiWedYcGayF/N6xdvF6sjIyTIfdBwAAAAAAoDAiWCumLMFasuOCtTKlMjvWUtNNXU1Mcdh9AAAAAAAACiOCtWIqawEDR64M6uHmomBfD0msDAoAAAAAAEoegrViKqtjLT7VccGadPMCBsyzBgAAAAAAShaCtWIqq2PNkUNBpZsXMKBjDQAAAAAAlCwEa8WUpWPNgUNBJSnE//dgjY41AAAAAABQwhCsFVOWjjUHrgoqSeX8MoeCMscaAAAAAAAoaQjWiil/z99XBXVwsJbVsfZbHB1rAAAAAACgZClSwdrMmTNlGIZGjRpl2WaapqZOnaqwsDB5e3urXbt2OnjwoPOKLCQKqmOtrF/W4gV0rAEAAAAAgJKlyARrO3fu1LvvvqsGDRpYbZ89e7bmzp2r+fPna+fOnQoNDVXnzp0VH+/YucUKuwKfY42ONQAAAAAAUMIUiWDt+vXrevTRR/Xee+8pMDDQst00Tb355pt64YUX1Lt3b9WrV09Lly5VYmKiPv30UydW7HwF1bEW4p/ZsXbxerIyMkyH3gsAAAAAAKAwKRLB2vDhw9WjRw916tTJavvp06cVHR2tLl26WLZ5enoqMjJS27dvz/V6ycnJiouLs3oVNwXVsVamVGbHWmq6qauJKQ69FwAAAAAAQGFS6IO15cuXa8+ePZo5c2a2fdHR0ZKkkJAQq+0hISGWfTmZOXOmAgICLK/w8HD7Fl0IZAVrccmODQ093FwU7OshiZVBAQAAAABAyVKog7Xz589r5MiR+vjjj+Xl5ZXrcYZhWL03TTPbtptNmjRJsbGxltf58+ftVnNhkTUUNDEtUWkZaQ69V1m/zK613gu/U5c3turgr7EOvR8AAAAAAEBhUKiDtd27dysmJkZNmzaVm5ub3NzctHXrVr399ttyc3OzdKr9uTstJiYmWxfbzTw9PeXv72/1Km6ygjVJup5y3aH3uqtKsCTpRmqGjv12XQMX79T5K4kOvScAAAAAAICzFepgrWPHjvr555+1b98+y6tZs2Z69NFHtW/fPlWpUkWhoaHasGGD5ZyUlBRt3bpVrVq1cmLlzufm4iYfNx9Jjl/AYEqvOvp2QnttGN1WtUL9dDE+Wf0/3KGEZMd2ygEAAAAAADiTm7MLuBU/Pz/Vq1fPapuvr6+Cg4Mt20eNGqUZM2aoevXqql69umbMmCEfHx/169fPGSUXKv6e/kpMS3T4AgaGYSg8KDPEW/pkc/Wat02nLyVo67GL6l6/vEPvDQAAAAAA4CyFumMtLyZMmKBRo0Zp2LBhatasmX755RetX79efn5+f31yMZc1HDQ2peDmPAvx91K7mmUlSUeiit9qqwAAAAAAAFkKdcdaTrZs2WL13jAMTZ06VVOnTnVKPYVZ1sqgju5Y+7Pa5TPvezi6YO8LAAAAAABQkIp8xxpyl9Wx5ug51v6sVmhmsHYkmo41AAAAAABQfBGsFWPO6lirFZoZ6J2/kqT4G6kFem8AAAAAAICCQrBWjGUFa3HJBds5FujroVB/L0nSsd8YDgoAAAAAAIongrViLGsoaEF3rElSrfKZ9z4cRbAGAAAAAACKJ4K1YszSsVbAc6xJzLMGAAAAAACKP4K1YsxZixdIUu3fO9aO0LEGAAAAAACKKYK1YqycTzlJ0i/Xfynwe9cun9WxFi/TNAv8/gAAAAAAAI5GsFaM1QisIUk6F3dOiamJBXrviDK+8nB10fXkNHV54xs99dEu3UhNL9AaAAAAAAAAHIlgrRgL9g5WsFewTJk6ee1kgd7b3dVFzSoHSpKOx1zXuoO/6bsTlwq0BgAAAAAAAEciWCvmsrrWjl09VuD3frd/M30yuIU61c4ckrr77NUCrwEAAAAAAMBRCNaKOWcGa6U83dS6Whl1qh0iSdpzjmANAAAAAAAUHwRrxVyNoMxg7ejVo06roWmlzCGhP52PVVp6htPqAAAAAAAAsCeCtWLu5o41Z63OWbVsKfl7uSkpNV1HouOdUgMAAAAAAIC9EawVc1UCqsjVcFV8Srx+S/zNKTW4uBhqXDGza4151gAAAAAAQHFBsFbMebh6KCIgQpJz5lnLkjUclHnWAAAAAABAcUGwVgJUD6wuybnBWpPfO9Z2nbmqa4kpzLUGAAAAAACKPIK1EiBrnrWjV5y3gEHD8AC5GNIv15LU6OUNajt7s+JupDqtHgAAAAAAgNtFsFYCVPKvJEmKSohyWg1+Xu66r9Edlve/xt7Q5iMxTqsHAAAAAADgdhGslQDBXsGSpMtJl51axxsPNdKJV7rpqcgqkqSNhwnWAAAAAABA0UWwVgIEe/8erN1wbrAmSW6uLupcO0SStOVojFKZaw0AAAAAABRRBGslQFbHWlJakhJTE51cjdS4YqCCfD0UdyNNu86wSigAAAAAACiaCNZKAF93X3m6ekoqHF1rri6G2tUsK0naePg3J1cDAAAAAACQP27OLgCOZxiGgr2C9WvCr7qcdFnhfuHOLkmdaodo5Z5ftGZ/lHw8XC3bG1cMVPta5ZxYGQAAAAAAQN4QrJUQwd6/B2uFoGNNktpULyMPNxdFx93Q25tOWLa7uhj6YVJHlfXzdGJ1AAAAAAAAf41grYQoLCuDZvHzctc7/Zro2+MXLds2Ho7RL9eStPlIjPre6fyuOgAAAAAAgFshWCshCtPKoFk61wlR5zohlvfBvsf1xtfH9PXh3wjWAAAAAABAocfiBSVEkFeQpMLTsZaTjrUz51b79vgl3UhNd3I1AAAAAAAAt0awVkJYOtYKcbBWN8xfof5eSkpN1/enCm+dAAAAAAAAEsFaiVEYh4L+mWEY6vB719qmwzFOrgYAAAAAAODWCNZKiMK2eEFuOv0erK0/FK2E5DQnVwMAAAAAAJA7grUSoox3GUmFu2NNklpVLaMypTz1W1yynv54t1LSMpxdEgAAAAAAQI4I1kqIrKGgCakJupF2w8nV5M7L3VXvD2gmb3dXfXv8kl5Y9bOzSwIAAAAAAMgRwVoJ4efuJ3cXd0mFv2utUXhpLXysiVwM6T+7L+jgr7HOLgkAAAAAACCbQh2szZw5U3feeaf8/PxUrlw53X///Tp69KjVMaZpaurUqQoLC5O3t7fatWungwcPOqniwsswjCKxMmiWdjXLqUeDMEnSB9+ednI1AAAAAAAA2RXqYG3r1q0aPny4fvjhB23YsEFpaWnq0qWLEhISLMfMnj1bc+fO1fz587Vz506Fhoaqc+fOio+Pd2LlhVNRWcAgy5A2EZKkz3/6VdGxhXf4KgAAAAAAKJncnF3Araxdu9bq/eLFi1WuXDnt3r1bbdu2lWmaevPNN/XCCy+od+/ekqSlS5cqJCREn376qZ566ilnlO18iVek4xskD1+pdk/LZkvHWiEfCpqlQYXSah4RpB2nr+gf/zukyOplM3cY0t3VyiistLdzCwQAAAAAACVaoQ7W/iw2NnOuraCgIEnS6dOnFR0drS5duliO8fT0VGRkpLZv355rsJacnKzk5GTL+7i4OAdW7QSHP5e+GCnd0cw6WCtiHWuSNKRNFe04fUX/2x+l/+2Psmz393LTf55upZqhfk6sDgAAAAAAlGSFeijozUzT1JgxY3T33XerXr16kqTo6GhJUkhIiNWxISEhln05mTlzpgICAiyv8PBwxxXuDNW7Zv7fX3ZL12Msm4tax5okdaxVTkPbVVWHWuUsryplfBV3I00DPtyhX68lObtEAAAAAABQQhWZjrURI0Zo//792rZtW7Z9hmFYvTdNM9u2m02aNEljxoyxvI+Liyte4Zp/eal8Iylqn3RsndTkcUl/dKxdSrrkvNps5OJiaOI9tay2XUtM0YOLvteJmOvq/+EO/ffplirt4+GkCgEAAAAAQElVJDrWnnnmGX3++efavHmzKlSoYNkeGhoqSdm602JiYrJ1sd3M09NT/v7+Vq9ip2a3zP977I956qoEVJEkHblyxBkV2U1pHw8te7K5Qv29dCLmugYt3aXElDRlZJi5vgAAAAAAAOytUHesmaapZ555RqtWrdKWLVsUERFhtT8iIkKhoaHasGGDGjduLElKSUnR1q1bNWvWLGeUXHjUuEfaMlM6uUlKvSG5e6l+2foyZOh8/HldSrqkMt5lnF1lvoWV9tayQc314MLt2n32qupMXpfrse6uhoa0qaLxXWvespMRAAAAAADAFoW6Y2348OH6+OOP9emnn8rPz0/R0dGKjo5WUlLmvFqGYWjUqFGaMWOGVq1apQMHDmjgwIHy8fFRv379nFy9k5VvKPmFSamJ0plvJUl+Hn6qWrqqJOmniz85szq7qBHip/cH3Kkg31sPA01NN7Vgy0kt2HKygCoDAAAAAAAlQaHuWFu4cKEkqV27dlbbFy9erIEDB0qSJkyYoKSkJA0bNkxXr15VixYttH79evn5lfDVIg1DqtFV2r1YOvqVVL2zJKlh2YY6ce2Efrr4kzpW7OjkIm9f84ggfT+pgxKS03M9ZuWeC5r+v8Oas+6o/m/fL3L5vWvN28NVz3asrvY1yxVUuQAAAAAAoBgxTNMs8RNQxcXFKSAgQLGxscVrvrXjX0uf9JG8AqTRhyTPUlp9YrVe+u4lNSnXREu7LXV2hQVm1tojWphDx5qHm4uWPdlcd1UJdkJVAAAAAACgsLElJyrUHWu4TVU7SEFVpSsnpb0fS3c9rYZlG0qSDl4+qNT0VLm7uju5yIIx8Z5aurdhmC5fT7FsW/r9GW049JuGLNulzrX/WOzC39tdQ9pW0R2lvZ1RKgAAAAAAKCII1oozFxep5TDpf2OlHxZIzYeosn9lBXgGKDY5VkeuHFH9svWdXWWBqV3eOmVuVjlQj3/wo3aeuaqVe3+x2rf5aIz++3QrlfXzLMgSAQAAAABAEVKoFy+AHTTsJ3kHSdfOSoe/kGEYlq61pYeW6tPDn+rqjatOLtI5vNxdteSJ5nq1d309372W5RUe5K2zlxP15JKdup6c5uwyAQAAAABAIUWwVtx5+Eh3Ds789/fzJUmNyzWWJK07s04zd8zUtO+nOas6p/P1dNPDzSvq722rWl7LnmyhIF8P/fxLrIZ+vFspaRnOLhMAAAAAABRCBGslQfMhkqundGGndO5H/a3G3/RIrUfUrXI3SdKmc5t0Nu6sk4ssPCLK+GrxwDvl7e6qb49f0tj//KTtJy7paHS8s0sDAAAAAACFCMFaSVCqnNSgb+a/t7+tAM8APd/iec2OnK02d7SRKVMfHfrIuTUWMg3DS2vhY03k5mLoi59+Vb/3f1TXN7/R3PVHnV0aAAAAAAAoJAjWSoqWIzL/75H/SZdPWjYPqDtAkvR/J/5PF+IvKDE10RnVFUrtapbT/H5N1KBCgKqVKyVJenvTCS357rSuJaYoOS3dyRUCAAAAAABnMkzTNJ1dhLPFxcUpICBAsbGx8vf3/+sTiqpP/iYdXy/V7S09+KFkGDJNUw+teUiHrxyWJBkyNLXVVPWu3tvJxRY+b359TG9+fdzy3s/LTW893EgdaoU4sSoAAAAAAGBPtuREdKyVJG3HS4ardHCltPFlSZJhGBrReIQ8XT0lSaZMLfxpoVIzUp1ZaaE0smN1PdW2itxcDElS/I00Dftkj/acK5mrqgIAAAAAUNLRsaYS1LEmSXs+kj7/fVhot9lSi6ckSRlmhm6k3VC3ld105cYVzWozS92rdHdioYVXeoap1PQMPf3xbm05elGebi4K9vVQhSAfze7TQJXL+Dq7RAAAAAAAkE90rCF3TR6XOryY+e+vJkoHV0mSXAwX+bj76JFaj0iSlh5aKjLXnLm6GPJyd9WCR5uoaaVAJadl6NfYG9px+ooGLN6hi/HJzi4RAAAAAAAUADrWVMI61iTJNKUvx0k735dcPaSqHSRlDm+86uqqLilHdCMjRe91eU93lb/LubUWchkZpg5HxykxJV1j/r1P568kqVKwj6r/vtjBrTSsUFrD2leT6+9DSwEAAAAAgPPZkhMRrKkEBmuSlJEu/WegdPjzbLumR9TTZ4pTGe8y+rj7x7qj1B0FX18RdPpSgh5cuF2XE1LyfM6jLSpq+v31ZBiEawAAAAAAFAYEazYqkcGaJKWnSsfWSolXfn+fIn01UfHK0MB6rXXs+jlV9q+spd2WKsgryLm1FhExcTe05ehFZfzFYxUTn6w3vj4m05QeaHyHwgO97VqHu6uL7m98h8KDfOx6XQAAAAAAijuCNRuV2GAtJ/95Qjq4UjH1e+sx8xdFJUSpfpn6er/L+/JxJ6Sxp6Xbz2jK5wcddv2yfp5aObQV4RoAAAAAADYgWLMRwdpNftktvddBcnHXqXv+of7Hlyg2LVFt7mijtzq8JXcXd2dXWKx8+XOUfjh12e7X/e7EJZ28mKDKwT6acE8t/dU0bn5e7rqrSjDzvQEAAAAASjyCNRsRrP3Jh92kc9slST95emhwWJhuKEP3Vr1X01tPZz6wIuC3uBvqvWC7frmWlOdzetQvr7cfaUy4BgAAAAAo0QjWbESw9ie/7pW+niqlJkm/7NZWTzeNDA1RukwNrvagRtbun/u5PkGSV0CBlYrcnb6UoFlfHdGl68l/eexPF64pNd1U/5aVNPjuKpbt/t5uKu3j4cgyAQAAAAAoVAjWbESwdgv7/y2tHKJVpXw1uWywJOm5y1f0aNz1nI9395H6vC/V6lGAReJ2ffHTr3rmX3uzbXd3NTT13rp6tEUlJ1QFAAAAAEDBsyUncimgmlBUNegr9ZirBzK89UxsoiRpVlCg1voHSu6+1i83Lyk1Ufrvk9K5H5xcOGzRq2GYZvaurzKlPOTj4SofD1d5u7sqNd3Ui6sPaO2BKGeXCAAAAABAoUPHmuhYyyvTNDXjxxlafnS5DBlWq4SG+ITolZYvq97GmdKxryTDNbN7LTeh9aS/LZH8Qh1fOPLFNE09v+qA/rXjnFwMycfDrUDvb0i6p16oZvSuL3dX/jcAAAAAAEDBYCiojQjW8i49I13Pb3teX57+Mtu+QM9AfdT5XVX6Ypx05tu/vlhIfemJ/zEnWyGWlp6hUZ/t05r9zutY69Okgl77WwMWzQAAAAAAFAiCNRsRrNkuOiFaKekpkqQ0M02Tvp2kQ5cPKcgrSJX9K6uCR2mNrT1AQZ45hGZJV6V/PSIlxEiBlSW/sNxvVLWD1Gas5ELHkjP9ci1JqWkZBXrP/b/EavRn+5SeYapumL98C7hjLq8ql/HRCz3qKMDb3dmlAAAAAADsgGDNRgRrt+9S0iX1/6q/zseft2yrX6a+3u/yvtWQUYuon6TFPaSU+L++eOuRUueX7Vgtiop/7zqvCf/d7+wy/lLziCAte7K5vNxdnV0KAAAAAOA2EazZiGDNPhJSE/RD1A9KTE3UrJ2zFJscq4ZlG6pucN1sx9YMqqkHQlrKOP9j7he8fFzaND3z3/UelHyCb12Ai6tU/2/SHU1u41OgsDkSHadTFxOcXUaOElPSNe3zg4pPTlPzykGqE1Y0/n74e7mpf6vKKlPK09mlAAAAAEChQ7BmI4I1+/vp4k8avG6wbqTfyPWYQfUGaVTTUbe+0LdzpY3T8n5jN29pwBdS+J15Pwe4Dd+fvKwBH+5QSnrBDpW9XbVC/fTZUy0ZwgoAAAAAf0KwZiOCNcc4euWoNpzdoAzTOnCITY7Vv4/9W5I0sO5AVQmokus1mpRrrEq//CRF5WE44Nnt0rntkneg1HGy5JLHwMDDV6rZTXL3ztvxwJ/sv3BNGw79pqLw19SUqX/vuqCL8clqXjlIDzat4OyS8sTVxVCHWuUU6Ovh7FIAAAAAFHMEazYiWCt47+1/T2/vffsvj/Nw8dB7Xd5Tk5A8DO9MSZCW9pJ+2W17QZVaS4+tlNy9bD8XKGIO/Rqnh/75veKT05xdik3uKO2tlcNaKcSf5xQAAACA4xCs2YhgreCZpqnlR5dr2y/bcj0mKiFKx68el5+Hn+a0naNAr8C/vnBSrLTrfel6TK6HeMlFEfKQYRiZG85uz1xEoVZPqe14Wz+KcxguUrk6kmvhXCkThd++89f03jenlJSa7uxS8uRwVJyiYm+oVqifXu3TQG4uhrNLKjHKB3gpmPn4AAAAUIIQrNmIYK1wSkpL0t/X/137Lu6z+7XvqXyPXm3zqlxdXKXT30of95bSU+x+H4cKbZA5n5x3aWdXAjjc+SuJ6r1wuy7GJzu7lBLHw81F/3ysqdrXKufsUgAAAIACQbBmI4K1wis2OVYvbHtBh68ctts1LyddVrqZrodqPqRJzSdldq4d+TJzkYTk6/m+rvH7q0AkXZXSkjKHsD76X8mthA6Nc3FxdgUoQId+jdOkVT/rt9jcF0WBfaWkZ+hKQoq83V318eAWahxe2tkloYRxoTsVAAA4AcGajQjWSpa1Z9ZqwtYJMmXfX/3yvuU1t91c1StTz67XzVH0z9Li7lJynOPvVVgZLlLTgVL31wnYAAdJTc/Q4KW7tPXYRWeXghLIw81FIztW1/D21ZxdCgAAKGFsyYn4b6Moce6pfI9eaPGCPFzsu7pgVEKUhn09TGfjztr1ujkKrS89/EnmCqgllZkh7fpQWv+CisRynEAR5O7qogWPNlGrqsHOLgUlUEpahuasO6qPvj/j7FIAAAByVWw61hYsWKA5c+YoKipKdevW1Ztvvqk2bdrk6Vw61kqmxNREJafbZ76m5PRkjdw8UocuH5K/h79CfEPsct2/ZJqZAVNJlBwvxf0iSaonb72c6uPkgoDiy5Sp9BL6pwbOczUxRZeuJ8uQ5OHmajXdwgaPjlrpdb+TKgMAADnpWjdUozvXcHYZdmFLTlQslhT87LPPNGrUKC1YsECtW7fWP//5T3Xr1k2HDh1SxYoVnV0eCikfdx/5uNsvjFnQcYH6f9Vf5+LPKS6lBA/RLEgemV2HpZMSpJjTTi4GKL4MFZP/hwFFSllJZbPGVvwp2M24/puOXIsv6JIAAMAtNCqh8/EWi461Fi1aqEmTJlq4cKFlW+3atXX//fdr5syZ2Y5PTk5WcvIfnUpxcXEKDw+nYw237UbaDf108SdllNQuMmeIvSD/lETVLUWIDgDFjSnpzOUEXb+RbrU92TdMN/wjnFMUAADIUYi/p6qH+Dm7DLsoUR1rKSkp2r17t5577jmr7V26dNH27dtzPGfmzJmaNm1aQZSHEsbLzUstyrdwdhklS5izCwAAOIohKaKqs6sAAADIXZFfvODSpUtKT09XSIj1nFYhISGKjo7O8ZxJkyYpNjbW8jp//nxBlAoAAAAAAIBipMh3rGUxDMPqvWma2bZl8fT0lKenZ0GUBQAAAAAAgGKqyHeslSlTRq6urtm602JiYrJ1sQEAAAAAAAD2UuSDNQ8PDzVt2lQbNmyw2r5hwwa1atXKSVUBAAAAAACguCsWQ0HHjBmjxx9/XM2aNVPLli317rvv6ty5c3r66aedXRoAAAAAAACKqWIRrD300EO6fPmyXn75ZUVFRalevXr68ssvValSJWeXBgAAAAAAgGLKME3TdHYRzhYXF6eAgADFxsbK39/f2eUAAAAAAADASWzJiYr8HGsAAAAAAACAMxCsAQAAAAAAAPlAsAYAAAAAAADkA8EaAAAAAAAAkA8EawAAAAAAAEA+EKwBAAAAAAAA+UCwBgAAAAAAAOSDm7MLKAxM05QkxcXFObkSAAAAAAAAOFNWPpSVF90KwZqk+Ph4SVJ4eLiTKwEAAAAAAEBhEB8fr4CAgFseY5h5id+KuYyMDP3666/y8/OTYRjOLue2xMXFKTw8XOfPn5e/v7+zywGcjmcC+APPA2CNZwKwxjMBWOOZKLlM01R8fLzCwsLk4nLrWdToWJPk4uKiChUqOLsMu/L39+fBB27CMwH8gecBsMYzAVjjmQCs8UyUTH/VqZaFxQsAAAAAAACAfCBYAwAAAAAAAPKBYK2Y8fT01JQpU+Tp6ensUoBCgWcC+APPA2CNZwKwxjMBWOOZQF6weAEAAAAAAACQD3SsAQAAAAAAAPlAsAYAAAAAAADkA8EaAAAAAAAAkA8EawAAAAAAAEA+EKwVIwsWLFBERIS8vLzUtGlTffvtt84uCXCIb775Rr169VJYWJgMw9Dq1aut9pumqalTpyosLEze3t5q166dDh48aHVMcnKynnnmGZUpU0a+vr669957deHChQL8FIB9zJw5U3feeaf8/PxUrlw53X///Tp69KjVMTwTKEkWLlyoBg0ayN/fX/7+/mrZsqW++uory36eB5RkM2fOlGEYGjVqlGUbzwRKmqlTp8owDKtXaGioZT/PBGxFsFZMfPbZZxo1apReeOEF7d27V23atFG3bt107tw5Z5cG2F1CQoIaNmyo+fPn57h/9uzZmjt3rubPn6+dO3cqNDRUnTt3Vnx8vOWYUaNGadWqVVq+fLm2bdum69evq2fPnkpPTy+ojwHYxdatWzV8+HD98MMP2rBhg9LS0tSlSxclJCRYjuGZQElSoUIFvfrqq9q1a5d27dqlDh066L777rP8lyKeB5RUO3fu1LvvvqsGDRpYbeeZQElUt25dRUVFWV4///yzZR/PBGxmolho3ry5+fTTT1ttq1Wrlvncc885qSKgYEgyV61aZXmfkZFhhoaGmq+++qpl240bN8yAgABz0aJFpmma5rVr10x3d3dz+fLllmN++eUX08XFxVy7dm2B1Q44QkxMjCnJ3Lp1q2maPBOAaZpmYGCg+f777/M8oMSKj483q1evbm7YsMGMjIw0R44caZom/xmBkmnKlClmw4YNc9zHM4H8oGOtGEhJSdHu3bvVpUsXq+1dunTR9u3bnVQV4BynT59WdHS01fPg6empyMhIy/Owe/dupaamWh0TFhamevXq8cygyIuNjZUkBQUFSeKZQMmWnp6u5cuXKyEhQS1btuR5QIk1fPhw9ejRQ506dbLazjOBkur48eMKCwtTRESEHn74YZ06dUoSzwTyx83ZBeD2Xbp0Senp6QoJCbHaHhISoujoaCdVBThH1u98Ts/D2bNnLcd4eHgoMDAw2zE8MyjKTNPUmDFjdPfdd6tevXqSeCZQMv38889q2bKlbty4oVKlSmnVqlWqU6eO5b/w8DygJFm+fLn27NmjnTt3ZtvHf0agJGrRooWWLVumGjVq6LffftP06dPVqlUrHTx4kGcC+UKwVowYhmH13jTNbNuAkiI/zwPPDIq6ESNGaP/+/dq2bVu2fTwTKElq1qypffv26dq1a1qxYoUGDBigrVu3WvbzPKCkOH/+vEaOHKn169fLy8sr1+N4JlCSdOvWzfLv+vXrq2XLlqpataqWLl2qu+66SxLPBGzDUNBioEyZMnJ1dc2WjsfExGRL2oHiLmtFn1s9D6GhoUpJSdHVq1dzPQYoap555hl9/vnn2rx5sypUqGDZzjOBksjDw0PVqlVTs2bNNHPmTDVs2FBvvfUWzwNKnN27dysmJkZNmzaVm5ub3NzctHXrVr399ttyc3Oz/E7zTKAk8/X1Vf369XX8+HH+cwL5QrBWDHh4eKhp06basGGD1fYNGzaoVatWTqoKcI6IiAiFhoZaPQ8pKSnaunWr5Xlo2rSp3N3drY6JiorSgQMHeGZQ5JimqREjRmjlypXatGmTIiIirPbzTACZz0lycjLPA0qcjh076ueff9a+ffssr2bNmunRRx/Vvn37VKVKFZ4JlHjJyck6fPiwypcvz39OIF8YClpMjBkzRo8//riaNWumli1b6t1339W5c+f09NNPO7s0wO6uX7+uEydOWN6fPn1a+/btU1BQkCpWrKhRo0ZpxowZql69uqpXr64ZM2bIx8dH/fr1kyQFBARo0KBBGjt2rIKDgxUUFKRx48apfv362Sb1BQq74cOH69NPP9X//d//yc/Pz/K/sAYEBMjb21uGYfBMoER5/vnn1a1bN4WHhys+Pl7Lly/Xli1btHbtWp4HlDh+fn6WOTez+Pr6Kjg42LKdZwIlzbhx49SrVy9VrFhRMTExmj59uuLi4jRgwAD+cwL544ylSOEY77zzjlmpUiXTw8PDbNKkibl161ZnlwQ4xObNm01J2V4DBgwwTTNzmewpU6aYoaGhpqenp9m2bVvz559/trpGUlKSOWLECDMoKMj09vY2e/bsaZ47d84Jnwa4PTk9C5LMxYsXW47hmUBJ8uSTT1r+/6GyZcuaHTt2NNevX2/Zz/OAki4yMtIcOXKk5T3PBEqahx56yCxfvrzp7u5uhoWFmb179zYPHjxo2c8zAVsZpmmaTsr0AAAAAAAAgCKLOdYAAAAAAACAfCBYAwAAAAAAAPKBYA0AAAAAAADIB4I1AAAAAAAAIB8I1gAAAAAAAIB8IFgDAAAAAAAA8oFgDQAAAAAAAMgHgjUAAAAAAAAgHwjWAAAAihjDMLR69WpnlwEAAFDiEawBAAAUItHR0XrmmWdUpUoVeXp6Kjw8XL169dLGjRsdcr8tW7bIMAxdu3bNIdeXsgeBhmFYXr6+vqpevboGDhyo3bt3O6wGAAAARyBYAwAAKCTOnDmjpk2batOmTZo9e7Z+/vlnrV27Vu3bt9fw4cOdXd4tmaaptLS0PB+/ePFiRUVF6eDBg3rnnXd0/fp1tWjRQsuWLXNglQAAAPZFsAYAAFBIDBs2TIZhaMeOHXrwwQdVo0YN1a1bV2PGjNEPP/yQ4zk5dZzt27dPhmHozJkzkqSzZ8+qV69eCgwMlK+vr+rWrasvv/xSZ86cUfv27SVJgYGBMgxDAwcOlJQZlM2ePVtVqlSRt7e3GjZsqP/+97/Z7rtu3To1a9ZMnp6e+vbbb/P8WUuXLq3Q0FBVrlxZXbp00X//+189+uijGjFihK5evWrbFwcAAOAkbs4uAAAAANKVK1e0du1avfLKK/L19c22v3Tp0vm+9vDhw5WSkqJvvvlGvr6+OnTokEqVKqXw8HCtWLFCffr00dGjR+Xv7y9vb29J0osvvqiVK1dq4cKFql69ur755hs99thjKlu2rCIjIy3XnjBhgl577TVVqVLltmqUpNGjR2vZsmXasGGD+vbte1vXAgAAKAgEawAAAIXAiRMnZJqmatWqZfdrnzt3Tn369FH9+vUlSVWqVLHsCwoKkiSVK1fOEowlJCRo7ty52rRpk1q2bGk5Z9u2bfrnP/9pFay9/PLL6ty5s13qzPrsWZ12AAAAhR3BGgAAQCFgmqakzIn97e3ZZ5/V0KFDtX79enXq1El9+vRRgwYNcj3+0KFDunHjRrbALCUlRY0bN7ba1qxZM7vV6cjvAAD+v727CYWujeM4/p27vBWT1Nho0hSKBTVeFrJUXvaWaMqCbGgsZOU1K1FCspGNnSxYKUsLC00pipqF1NiRshAz97N4Iro9Pc9zbu4svp+6Nuf8r+t07U6/zvU/kvQV7LEmSZL0DVRXVxMKhTg/P/9f8378+Pt17iWUAnh6enpXMzAwQDqdpre3l9PTU5qamlheXv7HNXO5HAD7+/ukUqnXcXZ29q7PGvDhsdWgXvYei8U+bU1JkqSvZLAmSZL0DZSVldHR0cHKygoPDw+/3H/7c4K3IpEIAJlM5vVaKpX6pS4ajTI4OMjOzg7JZJKNjQ0A8vPzAchms6+1dXV1FBQUcHV1RVVV1bsRjUaDbvFfLS0tEQ6HaW9v/7JnSJIkfSaPgkqSJH0Tq6urtLa20tLSwvT0NPX19Tw/P3NwcMDa2tqHX7O9hF2Tk5PMzs5yeXnJwsLCu5qRkRG6urqoqanh9vaWw8NDamtrAaisrCQUCrG3t0d3dzdFRUWUlJQwNjbG6OgouVyOtrY27u/vOTo6ori4mP7+/t/e693dHTc3Nzw+PnJxccH6+jq7u7tsbW399k8QJEmS/hSDNUmSpG8iFotxcnLC3NwcyWSSTCZDJBKhsbGRtbW1D+fk5eWxvb3N0NAQDQ0NNDc3Mzs7S09Pz2tNNptleHiY6+trwuEwnZ2dLC4uAlBRUcHU1BTj4+MkEgn6+vrY3NxkZmaG8vJy5ufnSafTlJaWEo/HmZiY+JS9JhIJAAoLC6moqKCtrY3j42Pi8finrC9JkvQnhH6+bcghSZIkSZIk6T+xx5okSZIkSZIUgMGaJEmSJEmSFIDBmiRJkiRJkhSAwZokSZIkSZIUgMGaJEmSJEmSFIDBmiRJkiRJkhSAwZokSZIkSZIUgMGaJEmSJEmSFIDBmiRJkiRJkhSAwZokSZIkSZIUgMGaJEmSJEmSFMBflrno5Bf8f9EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cluster_sizes = pd.DataFrame()\n", + "cluster_sizes[\"pre-filetered\"] = clustered_fragments.groupby('cluster_id').size()\n", + "cluster_sizes[\"pre-filetered\"].name = 'cluster_size'\n", + "cluster_sizes[\"reduced\"] = clustered_fragments_reduced.groupby('cluster_id').size()\n", + "cluster_sizes[\"reduced\"].name = \"cluster_size\"\n", + "cluster_sizes[\"custom\"] = clustered_fragments_custom.groupby('cluster_id').size()\n", + "cluster_sizes[\"custom\"].name = \"cluster_size\"\n", + "\n", + "plt = cluster_sizes.plot(\n", + " figsize=(15,5),\n", + " title=\"Cluster sizes of the fragment library subsets\",\n", + " ylabel=\"Number of fragments\",\n", + " xlabel=\"Cluster ID\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "39bc5899-44fc-48ed-ab40-9322f9817617", + "metadata": {}, + "source": [ + "### 3.5. Compare most common fragments in complete fragment library with the clustered fragments in custom filtered fragment library" + ] + }, + { + "cell_type": "markdown", + "id": "578c2b57-6e3a-4dde-99e3-9bef2f8f6410", + "metadata": {}, + "source": [ + "Which of the most common fragments in the complete library are seen in how many subpockets?\n", + "\n", + "Inspecting the cluster ID, the fragment count in the original Library and the number of subpockets the fragment is found in the subset." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "f0f1b34f-1b3a-4772-a071-736de555e368", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: subset cluster ID | fragment count inside AP in complete fragment library | fragment subpocket count in subset\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAJYCAIAAAC1geo8AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVxUdfcH8M8s7IuAG4iYouaSW+KCorlhbrilaJqoZY2VhWjWlD1PaIuOPaXY4zaaKZr6hGZJLilp7qJC7vu+4AIKIiDLwHx/f1x+wzAMOAwzc+8dzvvFH/W9l5kjHL4zc+73nq+EMQZCCCGEEEIIIYQQQgghhFSNlO8ACCGEEEIIIYQQQgghhBB7QAV3QgghhBBCCCGEEEIIIcQCqOBOCCGEEEIIIYQQQgghhFgAFdwJIYQQQgghhBBCCCGEEAuggjshhBBCCCGEEEIIIYQQYgFUcCeEEEIIIYQQQgghhBBCLIAK7oQQQgghhBBCCCGEEEKIBVDBnRBCCCGEEEIIIYQQQgixACq4E0IIIYQQQgghhBBCCCEWQAV3QgghhBBCCCGEEEIIIcQCqOBOCCGEEEIIIYQQQgghhFgAFdwJIYQQQgghhBBCCCGEEAuggjshhBBCCCGEEEIIIYQQYgFUcCeEEEIIIYQQQgghhBBCLIAK7oQQQgghhBBCCCGEEEKIBVDBnRBCCCGEEEIIIYQQQgixACq4E0IIIYQQQgghhBBCCCEWQAV3QgghhBBCCCHC9fbbGDIE2dklI5s2YfRoABg7FitXljo5ORk9eyI11aYRErE6eRLvvotu3RASgkmTkJjId0CEEELsARXcCSGEEEIIIYQIV2Ii/vgD0dElI7duYf/+4kM3bpQ6OT0d+/YhL8+mERJR+t//0LEj7t7FiBF4/XVkZCAkBMuW8R0WIYQQbNyI//wH+fklI5cuYd48FBYiLg47dpQ6+ckTfPcdUlJsHGNFqOBOCCGEEEIIIUTQQkPxww84cYLvOIjdSEvD22/j7bexdSumTcOHH2LzZnz0EaZONbyGQwghxOZWr8Ynn2DevJKRs2fx6acoLMTSpVi/vtTJaWn4+GNcv27jGCtCBXdCCCGEEEIIIYLWvTvCwvDee9Bq+Q6F2IdNm5CbW+q+CQAzZ0ImMyzkEEII4UPDhpg7F1eu8B2HWeR8B0AIIYQQQgghhDzH99/jpZegVuO990qN//MPli4t+d+LF20cFxGnM2fg5wdf31KDXl5o3BhnzvAUEyGEkBK9e+PWLUyZgl27+A6l8qjgTgghhBBCCCFE6AID8emnmDkTr71Wavz8+VId2zMybBwXEadnz+DjY2S8Zs1S+/MSQgjhT0wMXn4ZGzZgzJhS48+e4c6dkv998MDGcT0fFdwJIYQQQgghhIjAp59i/Xp8/jlatCgZHDcOX39d8r8JCXj1VduHRsTG2xv37xsZv3cPXbvaPBpCCCFGtGqFDz/E9OkYMKDU+ObN2LyZp5hMQz3cCSGEEEIIIYSIgJMTFi7EqlU4dYrvUIjYdeyIR49w4UKpwbQ03LyJzp15iokQQoih2bMhk2H27FKDY8YgJ6fk6/RpnoIrHxXcCSGEEEIIIYSIQ//+GDYM69Y9/0yNBkeP4upV68dExGjYMNSrB6UShYXFI1otPvoInp54/XVeIyOEEFLCwwPff4/Fi0vt0SKTwdW15MvZmb/4ykEtZQghhBBCCCGEiEZMzPP3T0tLw9Ch6NwZ166hQwfMnWuTyIiIuLpi40aEhaFVK/TuDbkce/fi5k1s3gxvb76DI4QQUmL0aPz4I777ju84KoMK7oQQQgghhBBChGvaNDRvXvK/AQH45Rdcvw4AM2eW6ucO4MUX8Z//oHZtrFyJ9u2Rlwd/fyq4E2O6dsXly1izBmfOQKvFuHGIiICfH27dwpEjGD0aEgnfIRJCCAGAJUvQuvXzT5s9G1u2QC7He+/hzTetH1b5qOBOCCGEEEIIIUS4Jk0q+e89e7BsGfr0wQcfAMDbbxue/MILmDEDABo0AIDsbNSoYZswiQjVqoXp0w0Hu3XD3bto29bwYg4hhBBbadcOPj4l/9u0KVQqbNsGqRTt2qF27VInu7qiRw8AKCpCcjKePsWLL2L0aLi62jRmfRLGGG9PTgghhBBCCCGEmOznnxERgSFDsGXL809mDGPH4pVX8N571o+MiA5j+Ne/kJiI7dvh5FQyPno04uKwYoWR6zmEEEJsZcMGODqiXz+4u1f6exs1wokT8PKyQlimoU1TCSGEEEIIIYSIQ9euAHD4MJ67ckyjwXvvwd+fqu2kHBIJ4uOxZw+Sk0uN65KMEEIIf774AiNH4uzZSn9jfDxatOCz2g4quBNCCCGEEEIIEYvAQPj54dEjXLlS0Wn376NXL2i1GDMGycnIz7dVfERcjNbWqeBOCCF8u3QJV6/CxwcdO1buG48cwRdf4McfrROWyajgTgghhBBCCCFENLhy6KFDFZ1z6xa6dYOPDzZuxMaNyMmxTWhEbIzW1tu1g6srLl9GWhovQRFCCNm+HQAGDoRMVonvWrMG//oXduxAvXpWistUtGkqIYQQQgghhBDR6NoVv/6Kw4fx5pvlnhMcjOBgG8ZERMro1RsHB3TsiH37kJiIwYN5iYsQQqq5HTsAYMCASnzL0aOYPRseHsUzt1qNoCCrxGYKWuFOCCGEEIHauxeffWY4OHcu/viDj2gIIaR8NF/ZEjX8IBbTtCl8fZGaimvXSo2HhACUZIQQwo+cHOzfD5kM/fpV4rs6d8a1azh5EklJSEris9oOKrgTQgghRLD++QdLlxoOxsbiwAE+oiGEkPLRfGVLQUFwccGFC0hP5zsUYge4WyEMFrmb0reIEEKIdezejfx8dOqEmjX5DsVcVHAnhBBCCCGEECIaDg4ICgJjSEzkOxRiB7p0AYAjR0oNdu0KqRTHj6OggJegCCGkOjOjn4zQUMGdEEIIIYQQQoiYUMMPYjFcMhksZvf2RrNmyMvDiRO8BEUIIdUZV3AfOJDvOKqANk0lhBBC7NPFiygoQJs2JSNpaUhJQbt2/MVUeUVFhmvO8vJ4CoUQQipE85UtcYuSqeBOLKBDBzg54dw5ZGaiRo2S8a5dceECDh9G5878BUcIIdXO2bO4dQu+vmjfnu9QqoAK7oQQQoh9mjABx45h27aSpQGbN+Pjj/H0Ka9hVVJODgYNKjWSmclTKIQQUiGar2wpJAQSCY4ehUYDBwe+oyGi5uSE9u1x5AgSE0ttz9e1K1auxOHDmDaNv+AIIaTa2b4dAAYMgETCdyhVQC1lCCGEELvl6YmoKHEvsfT0RHp6qa+mTfmOiRBCjKH5ypZq1ULTpnj2DKdO8R0KsQNGWxRxgwcP8hAPISJx48aNCxcu7N+/nzHGdyzEfthBA3dQwZ0QQgixY+PGITsbc+fyHQchhBBiaV27AtRVhliE0RZFL76I2rXx4AFu3OAlKEIEbuvWrS+//HJERESPHj2aNWs2a9asW7du8R1UNZKUhOXL8fBhyUhWluGIGD19ikOHIJejb1++Q6kaKrgTQgghdsvdHSoVVCpcuMB3KIQQQohFde0KN7fsK1fO8R2I+TQazfHjxwsLC/kOpNrjFrMnJkL/dyGRLBk1qlWTJhsMNmcQPMorYm1arfaLL74YMmRIZmYmY6x+/fpXrlyZPXt2kyZNhgwZ8vvvv2s0Gr5jtH/x8Zg8GVOnlow8eoTJk3HtGn8xWcKuXdBoEBICLy++Q6kaKrgTUmmMsY0bN/bv33/06NGzZs3Kz8/nOyJiDyiviJVERKBDB3zwAehGT2IpNF8Ra6C8IpUVEnItL89ryxax3nM+b968kJCQ4ODgOnXqjBo1as2aNZnU9Z8vdevmtWx5MDDw/rlS12+e1q9/7urVg4cO8RWXGSiviLVlZWWNHDnyq6++kkqlKpUqOTn51q1bCQkJERERDg4Of/zxx/Dhw319fSdPnnz69Gm+g7Vzdergt9+wcyffcVjUsWPnnZzyxd5PBgAYIaQyjh49GhwcrP9H1LRp0z/++IPvuIi4UV4Ra+jUiX3yCWOMnTzJ5HK2fj1btox5ePAdVmVs384UCsPBjz9mGzbwEQ1hjNF8RazDDvKK5ivb02q1Pj4+AG7fvs13LJWj1Wo/+ugjAFKpNCAgQJf2Tk5OAwYMWLZsWUpKCt8xVjvjx48HsGjRIv3Bffv2AWjXrh1fUVUK5RWxgcuXL7ds2RKAj4/Prl27DI6mp6er1ep27drp0i8oKEitVj99+pSXaO3bv//N2rVjkZGscWP27BljjF2/zgB26BDfkVWBVqv18/Nzc3M7e/YW37FUFRXcCTHVvXv3FAqFVCoF4Ofnp1arExISWrVqxb2Q9OnT5/Tp03zHWBmZmWzbNvbTTyw+nj16xHc01Ze95RURhidPGNMruDPGoqJYQACbP7+44M6dIHx37rC4OHbtWqnB335jV6/yFFD1ZjfzFeWVoFBekaoYOHAggA2iuqxRWFj49ttvA3B0dPzll18YY9evX4+JiQkNDXVwcNBVqVq2bBkdHZ2UlMR3vNXF0qVLAYwdO1Z/8NmzZ46OjjKZjOubIWSUV8QGtm/f7uXlBaBNmzbXDF7wSktKSoqMjOSuiQJwcXEJDw9PSEjQarU2i9bucQX39HRWqxb7/HPG7KLgnpycDKB+/fp2kCpUcCfk+fLz82NiYjw9PQE4ODhERkbq3nJpNBq1Wl2rVi0AcrlcoVCkpqbyG61J1Grm4cE8PVn79szbmzk7s7lz+Y6p2rHDvCICkJ/PYmKYpyfbt69UwT0zk9Wrxxo3Zh4e7M4dVqMGUyiY8NNq0yYGsKAgVlhYMujlxRYv5i+masnO5ivKK4GgvCJV99VXXwGIjIzkOxBT5efnjxw5EoCrq+uOHTsMjj569Cg2NjY8PNzDw0NXIW3YsGFkZGRCQkJBQQEvMVcTp06d4n7aBuOdOnUCkJCQwEtUJqK8Itam1WpVKhV3dXzw4MEmXoLKzc2Ni4sLDQ2VSCRc4jVr1kylUj148MDaAVcHXMGdMbZiBXN0ZOfO2UPBnXtZnzx5Mt+BWIDdFtwLCwu32UrZlzRiT+Lj4wMDA7mXh7CwsKvG1ik9fvw4MjJSLpdzt1bFxMRoNBrbh2qqrVuZRMK+/ZYVFTHGmFbLli1jEglbtYrnwKoTO8wrIgCbN7PAQAYwgH32WamCO2Ns/XoGMA8PtmoVk8kYwGrWZEuWlKoNCQ1XwKpThy1cWDJIBSwbs7/5ivJKCCiviEXs2bOHa1nAdyAmyc7OfvXVVwF4eXkdPHiwgjNzc3MTEhIiIyP9/Px0FVIfH5/w8PDY2Fjhr7YWo6Kioho1agC4c+eO/vi0adMAzJo1i6/AnovyilhbdnZ2eHg4AIlEolQqi7gyQmVcunQpOjq6QYMGXNbJZLLQ0NC4uDi63lMVuoJ7URHr0oX17m0PBfeuXbsC+P333/kOxALss+B+8+bNqfo79VqZg4PD1KlT09LS+P53Ewu7cOFC//79ud9y8+bNt2/fbtnzedOlC+vXz3Bw8GDWuDEf0VQ7dptXhFcXLrD+/YtL7c2bMy5NDArujLE+fYpbyhg9X4C4AtbixczTk+n6jlIBy2bsdb6ivOIX5RWxoOzsbLlcLpfLs7Ky+I7lOdLT07t06QLA19f35MmTJn5XUVFRUlJSdHQ01zSZ4+zsHBoaGhMTQy25Latfv34A4uLi9Afj4uIA9Cv76UkYKK+Itd2+fTsoKAiAh4fHb7/9VpWHKioqSkhICA8P17U58vPzUyqVV65csVS01Yqu4M4YO3GCyWQsJkbcBffHjx/LZDJHR0f7aPpvnwX3UaNGAQgICBhgE/Xq1QPw3nvv8f3vJhZTlRVVpqzY4lNODpPJ2H/+Yzi+ejUDmNi2nBIXe84rPQUFBdnZ2XxHUY08fswiI5lczgDm48NiYpjpC0Dj40tWxIeFCbHRMFfAKihgrVuz8PDiQSpg2YB9z1eUV3yhvCLWwFWC9uzZw3cgFbl3717r1q0BNGzY0OzS0rVr17iW3NwfEQCpVBoUFEQtuS1l9uzZAKKiovQHU1JSAHh6ehYK75ZAyitibfv27atTpw6Apk2bnjt3roIzCwsLR44cuXbt2mfc9p0Vun//fkxMDJe9HG5vVfoUaaKUFJaVVargzhiLjGQ1axYX3GfOZOvX8xefudatWwegb9++fAdiGXZYcD948KBEInFxcbl1y0Z72p4/f97BwUEmk506dco2z0isxyI9QyvoScq/27cZwMpuLfX33wxgx47xEZP9Kyhgy5dv8fb25vIqMjIyPT29sg8i6LxiLC8vj7tHtU6dOlOmTJk9ezbfEdk/jYap1axWLQYwudzMnuy6nu8Ac3BgkZFMSGlVXMDSatmBA0wiYVu3MkYFLCuz/9dByis+UF4R64mMjATw1Vdf8R1Iua5fv964cWMALVu2vHv3btUfMC0tjWvJ7e7uritXBQYGci25hdx5SeASEhIAdOrUyWC8YcOGAIT2YZ/yyp4cPnx4w4YNgwYNWr9+fW5uLt/hFFOr1dxS9IEDB2ZkZFR88rZt27ic8fT0VCgUBw4cMOUpkpKSFAqFLuU8PT0jIiIEvmUC7/btY35+bPRow4I7t2UXwFauZBIJA9jIkSLYskvfuHHjAMyfP5/vQCzD3gruRUVFHTp0AGDjWg/3Pq9Xr162fFJicX/99VerVq24ub5Pnz6nT5+uyqPdu3dPoVBw+4r4+fmp1Wozmp1ZUk4OS05m9+8Xz8EG/viDAUxg7yPtw19/sVatWGDgBQcHB/vLq5ycnE2bNo0dO5argHC4BTKbN2/mMTC799dfrHXr4sXpffqwqqUVu3ePKRRMKmUA8/NjajXjfbr69Ve2cWNJAYsxNn48a9KE5eVRAcuK7Pt1kPKKL5RXxKo2bNjA1YP4DsS4M2fOcPdDd+zY8dGjR2VPyMvLM/vBnz17Fh8fr1AofH19dW/DatasGRERERcXZx+35NtSVlaWXC53cHDIycnRHx87diyApUuX8hVYWZRX9mTFihVOTk5OTk7cj7pGjRoKhSI5OZnHkPLy8t58801Upml7ZmZmbGxsaGioLmdatmypUqlMub7+7Nkzg71VW7RoYeL3VitaLfvPf4rvbA4NZQsXsjFjSp0QF8eCgtipUywujnl7F28t8+uvPIVbSUVFRdztFBcvXuQ7Fsuwt4K7Wq0GEBAQYPAaaW3p6encmp1fxZLLpLTLly9z24AAaNKkiUHnvgqMGzdOoVBU0ME/KSkpJCREd5+UiVd6LSknh8XHs4gI5uHBatZk+fmsRg32+eeGpy1YwORyRvdwWdTlyywsrLgk2rQp+/PPiu7C0yf8vMrJyYmPj4+IiPDw8NB/UxUdHX3+/PkffvgBgJeX182bN20cWHVw5QoLDy/OqyZNmMnT1fMlJbGQkOJHDgpi/E5XAGvWrFQB68ED5uXFvv2WClhWYfrrYEFBQUxMTI8ePUy8uV4A8xXlFW/s+P0V5ZVw3L17l3vXwfPSFmMSExN9fHwA9O7du2yZUqvVTp8+vVevXlVf0FpYWMi15G7evLnujZmLiwvXkvvevXtVfPzqo127dgD27dunP7ho0SIAERERfEVlgPLKbmg0GqVSyf1gJ06cuGTJEt1Lm65gbfvNAu/evdupUycA7u7uGzdurOy3X7hwQalUcpVTAE5OTuHh4fHx8abcJMF9b926dbnvdXR0DAsLi4uLoxssGGNPnxZ/BpRImFLJnvs2/OZN1qdP8Se78HBm7MKcsBw5cgRAo0aN+A7EYuyq4J6Zmcldg/3ll19s/+yLFy/mkkM4dwARU2RnZ0dHR3PXk93c3KKjo01fDnDt2jWZTAagdu3ay5YtK6/0oNVq4+LiXnjhBe4ScXh4uC2qkOnpbPVqNngwc3YunmUlEtalC7tzh40fzxo1Yvq91TQa1qYNGzTI6lFVG9nZLDqaOTkxgLm5sehoZvoqEyHnVXp6OnerqZubm0Gd/dKlS/qxDR06FED37t0F2O9SvDIzM7/5ZqujIwOYpyf79luWn2/hp9Bq2dq1zN+/eM745JPfLXKTcsXKm66++47FxZUUsBhjixczLy/m7EwFLEuq1Ovg77//3qRJE+5v3/S9K3maryiv+GSv768or4QpICAAwNmzZ/kOpJStW7e6uroCGDZsWNlPiAUFBdy9887OzocsusPdmTNnvvnmm44dO+rWispkssWUiKaZMmUKgDlz5ugP/vPPPwAaN27MV1T6KK/sRlpaWq9evbiS9Eq9G9DPnTunVCpr166tX7BOSEjQ6l5grOngwYNcVa1x48Znzpwx+3Hy8/Pj4+PDw8N1ewP4+/srlcpr166Z8r2//vrroEGDuDcDABo0aHDixAmzg7EDFy+yli2LPwOavspXq2VqNXN3ZwDz9WVbtlgzxCr74osvAHz44Yd8B2IxdlVwnz59OoCQkBCjM1FmZuZDC8nKyir7+IWFhW3atCn78kwEq6ioKDY2lrt8KpVKIyIi7t+/X9kHOX/+PLedPYAWLVr8+eef5Z2Zk5MTHR3t4uICwNXVNTo62pTtRCrt8WMWG8vCwhhXkwOYVMpCQlhMDLtzp/ic27dZ7dqse3f255/s1i22ezcbMIB5erLz5y0fT/VTVMRiY1ndusUfwiMiWOXTSnB59ejRo9jY2LCwMEdHRy4qqVQaEhISExNTXjU2PT29QYMGAGbNmmXxeKoh/fmqXbsn5uWVvs2b2d9/l3s0J4dFR7OGDe+6ublZM6+eP13prxhljBUVsU6dGEAFLMuo1OvgxYsXBw4cyM0AzZo127ZtW2WfzlbzFeUVz+zy/RXllcCNHj0awPLly/kOpMT69eu53scTJkwouzYzLy/vtdde4y5H7dq1y0oxpKamcu/f5HJ5kyZNVqxYYaUnsifcln1hYWH6g4WFhdw9nWbMZpZFeWU3Tpw4we0N4O/vn5iYWPaEvLy8uLi4sLAwXdG5fv36SqXyxo0b1otKrVZzH/d69OhhqXYuKSkpKpWK229A9ylSrVab0pTi3r17KpWqSZMmjo6OgwcPfm4feXu1YUNx0bxtW2bGnvHXr7MePUqWuld+Lzkb4dqDm76gR/jsp+B+5coVJycnqVR6/PhxoyeMGTMGFlLeJZc9e/YAcHd3T0lJsea/lVjA0aNHg4ODuV9op06djhw5UpVHi4+PDwwM5B4tLCysgsu2d+7ciYiI4NYF1K9fPzY21jJXqtPSij8IOjgUT6UyWfEHQaP3+l29ykaMYC4uDGBOTmzQICawNUEidfQoCw4u/g106sSqllb855Xu/TT3zh6ATCbj6uym3EO6b98+mUwmlUr37NlT9WCqs/3797dv3577FXTr1u2ff8xfbMLJyGC1azOAhYWxClaZ3Lx5d+TIkdzzNmzY0IxbSo2q1HS1YwcLDGT66XzsGAsMZGvXWiSWas3018H09HSlUsl9APP29lapVPlVuLfCSvMV5ZVA2Nn7K8orsVi4cCGAiRMn8h1IsSVLlnDbDCiVyrKpmJWVxbU59vHxqeLfiIm+++47AOPHj7fBc4ndjRs3ANSsWdPgF9enTx/wvUER5ZXdWL9+PXebQteuXZ97Fefu3bsqlUr3aiiVSkNDQ2NjYy17dTk/P/+dd97hnkKhUFijhQu3P6ruPmkvLy8TW9VrtdqXXnoJgG0SW1A0GqZUFr8DeeMNZnbnbG6pu6srA9gLL7C//rJolJbw8OFDqVTq4uJi4/bgVmU/BfdBgwYBeOedd8o74d13361tITNnzizvWYYPHw5gwoQJVvlHEkvQ/0jm7+9vqY9k+fn5MTEx3NoHR0fHyMjICvaT2bt3L9cfEECPHj3Mvj3qxo0b33///faIiOK9DrnqeVgYW7WKPX5s0kOkp5faG/HXX4V7xZNvycmG15Nv3mS6Nip377KIiOLdwP39WWwss8iVFF7y6tatWzExMSEhIdx7egBOTk5cr8aHDx9W6qE+//xzrvZhdDcn8lxWm69YTExx32FHRxYZySrY/sqy89XQodPNnq70ZWSw99+n6cpMpueVRqNRq9XcTc3cUmVLLXcSbF5NmUJ5ZSb7e39FeSUix48f5xLPqms/TaRSqQBIJJJ58+aVPfrw4cOXX34ZgJ+fXxU3EDZdcnIygCZNmtjm6cTO398fwIULFxhj6enp27dv//85YejfFdweaGWUV/ahsLBQ17RdoVCYvoKhqKjowIEDCoWCq9RzayAUCoVFGq2kpqb27NkTgLOz8+rVq6v+gBV48uSJWq0u26q+4k+L3MbFq1atsmpsQpOSUry9lpMTi4mxwAOeO8c6diy+EV+hYMY6d/Bm1apVAAbZV5djOym4JyQkAPDw8OD9Jq9r1645OztLJBKjtwURfuXk5KhUKnd3dwCurq5KpdJod6CqSElJUSgUXJmyXr16arW6vO2byt5w/eDBAxOf5fr161w9lPtYO6hjR+bszMLCWGwse/LE/Oi//ZYBbMQI8x/BrslkzM2N6X+Oe+cd1rMny8lhKlXxTV6urkyptPxLFy95BcDFxSUsLCw2NvaJuXml0Wi6du0K4LXXXjPvEaotm8xXTKEovlpXrx5Tq1l5u81ZNq9atMit+nTFbRlE01VlVSqvdu/ezfXKA9CrV69Tp05ZNhjKK7thr++vKK9EZMGCBS4uLs7OzlztRqlUHjhwwDb9jvVptdqPPvoIgEwmM9rf5tatW82aNQMQGBh41Yy+AOYqLCzk/kJ5/7AsCtztfStXrly4cGGdOnW4C36UV2VRXlXW48eP+/btC0Auly9cuNC8B8nIyFCr1bqbXwEEBQXFxMQ8NuOCMGOMseTkZK4RaP369Y8dO2beg5iBa1Vfq1Yt3QKvClrVz549G4BSqbRZeLzbt4/5+TGA1a9f1fvm9Wk0TKUq7o/XqBHbu9dij2y2O3furF27lms69P333/MdjiXZQ8Fdo9FwN5h89913fMfCGGOfffYZgODgYNu/GJMKxMfHc13SAISFhVl1/cvx48e5IiOADh06VLBfTUZGhlKp5LYUc3d3r3hLsTNnzsyaNat169a6F1cPD48xY1x02kkAACAASURBVMb8/uuv5t9cpO/WLebtzQC2bJkFHs3uyGTMw4MNH14ywhXcx48vvkr8+uvs9m0rBmClvDp79qxKpdJfZeDq6srV2StYRVieskWW27dv+/j4AFhGeWUy285XrGvX4iWcHTqwCrbXqlRenT592mC+8vT0HDNmzKZNm3JyLHADLE1XZjA9r65cuRIeHs6d2aBBg9jYWOtFJai8un27OK/U6qo/WHVhB++vKK9ETavVch++pFJpp06dPD09db/HgICAKVOm7Nq1qypdsExXWFj41ltvAXB0dIyLiyt7woULF7jNXVu1amX7BqS9e/cG8Ntvv9n4ecXo8OHD27Zt4/aHo7yqGOWV6U6fPs21halVq1bFt0pkZGSYUko6e/asUqmsWbMml5nOzs5m7K36888/c5ugdOvWzfTr0xaUm5u7YcOGvn376m6t/uCDD8qe9ssvvwAYOnSo7SO0Pa1WO3++Ri5nAAsNZUZvLs3KYhERzOzrI2fOsPbtS5a6276JS0pKSlxcnEKhaNmypW52dXd3DwkJscpOhzyxh4L7/PnzATRp0qSCd9K2lJWVVa9ePQBrqWWjMCQnJ3fr1o37G27fvv3+/ftt8KRarTYuLo67ViyRSMLDw2/dulXeyZcvXw4LC+MibNq0qcF7qbNnz0ZHR7do0UI3E3l7e0dERMTFxWVnZ1s47rg4BjBnZ2bplYx2QCZjX3zB5HL2xx/FI1zB/fx5FhzMDh60RQwCz6v//e9/NWvWPHDggMH4xo0buXeBFl8ha394ma+Kitjq1cVrKCQSplBkVdCjXzjz1caNNF2ZyvS8ys7Ojo6O5laJurm5RUdH5+bm2iBCG+RVSgozpRBBeWU6en9lOsorKykqKpo8eTIAmUz2008/McYKCwsPHDgQGRlZv3593W/Wzc2NW0lgvQ338vLyRowYwT3Xzp07y56QlJTEted65ZVXzL5xsCr+/e9/A/j4449t/9SiQ3llOmHmVVpaGt8hGIqPj+cu27z88ss3b96s+OShQ4e++OKL0dHRFbzA6XB7q4aGhuruzWratKkp36vRaPSb2xQUFFTi32MFXKv6Ro0aJSQklD166tQpAM2aNbN9YDb29OnT8PDwzp3nSqVMqWSFhUbOuXCBtWzJANaqlfltbAsKmEpVvEVNy5bm1+5Nd/Xq1ZUrV44fP/6FF16Anho1aoSFhX366afc7Yl9+/YVSGm36kRfcH/8+DG3dnLr1q18x1Ji9erVAPz9/S1+Ry2plLS0tMjISG5f71q1asXExBQanbGsRr9y4erqWnHlIiEhgbtXA0BoaOjatWs/+ugj3aoxAHXq1FEoFDt37rTuy+FbbzGAvfQSs6NLixYhk7FffmEffMAaNChuGsMV3G1PsHk1c+ZMAPXr1y97S+OkSZMAvPTSS/Z0ydqyBDBfseho5uzMevRQPrfSKpD5iqar5zI9r7RabWxsrK+vL1fHjIiIsP0d4tbIq1u3WEwMCwlhUimbMcOkb6G8ei4BzFcCfR2sAOWVxeXn548ePRqAk5OT0a0suWsqQUFBujqUbu/32xa9JzErK4trE+Ht7X348OGyJ+zdu5ertQ0aNMhmb4QMnmj79u0AQkJCbPPs4kV5VTFR5FVQUFCzZs1UKhUvS7YNaLValUrFLd8eO3bsc39TeXl5ulcouVw+ZMiQLVu2mLKF6e3bt1Uqle57ub1V4+LijL60PXr0iNsH2MnJacWKFWb+26ygqKjI6Ar93NxcmUwml8ttc2cJX86ePcu1h/Ly8tqxw/h8smULq1GDAax5c3buXFWf8ehR1qIFA5hczpRKZvGf7rVr12JjYxUKhf77LgAeHh6hoaEqlerAgQO6FL106RL3SWTYsGG8XwGyCNEX3LmLz6GhoXwHUopWq+3UqROAf/3rX3zHUn0VFhYuWrQIgIODQ2RkZGZmJl+R3L59OyIigptZAgICKrg3v6CgQK1Wc43MuCtJAGrXrh0REREfH2+jSSc7mzVvzgA2ZYotnk48uIJ7ejqrXZt98glj/BXcOZbKKwvuQV9Bx/bs7GxuFeEUyitjhDNfXb2qHTXqdS5JAgMDjX7U5AhhvqLpqmKm59WxY8e6dOnC/RI7duxo9IO9bVgqry5fZnPnsg4ditslcXtsTJ1q0vfq8srYPc1EQPOVuN5fUV5ZVk5OzoABAwC4u7v/9ddfFZ9848YNtVodFhbm4OCg+7RvqZbcjx8/Dg4OBuDn52f0Tr74+HiuY8PYsWNtk2xbtmzx9fV9++239QczMjKkUqmTk5Nt7lsSKcqrCoglr1JTU/38/Lhfh4ODw/Dhw7du3Wrjq8I6T58+HTZsGHdVRqVSmfhdRUVFCQkJ4eHhjo6O3D/E19c3MjLSlO1wTfnekydPNmrUCEC9evWOWLA7uJVxDXnOnz/PdyDWsmHDBm5ThLZt2xrdjEGjYUolk0gYwMaMYZa6GS83lymVTCYrXjKfnMwYY1evsuTkUsvnnzxhSUnGV9wbuHaNxcYyhYK1bv1Y1ykIgKenJ1dkT0pKKm8nnlOnTnFdkkaOHGnBMgVfxF1wP3v2rFwul8vlZ8+e5TsWQ0eOHJFIJM7OztevX+c7lmrq5s2b3F/1lStX+I6FMcb27Nmj232uZ8+eJ0+eLO/M1NRU7gLgiBEjDh8+zMNmAKdPM2dnBjDqx6eHK7gzxlatYg4O7Px5ngvuHKHlla5ju7pMq9ozZ85wHwyoz2NZQp6vevXqxXteVYCmqwqYkld3796NiIjglunVq1cvNjZWCDvQmJ1XZ88ylYqFhJSqs3ObXlZqTwpdXv3+uznx2zchz1dCeB2sAOWVpWRkZHB7z9SpU+eff/4x/RsfP34cFxcXERGh35L7hRdeUCgU8fHxZiycTElJadWqFYBGjRoZrY+sXbtWLpcDeP/998urL1jckSNHuMqvwTgXagWbH1RzlFcVE1FeFRYWckVn3bUQPz8/pVJp45ety5cvc/2pa9asabRNynOlp6er1eq2bdvq8iooKEitVpvSR6G87129erWbmxuA9u3bm9KyRjgGDhwIoILFQOKl397njTfeyDHWUj01lfXpU7wU3eRrN5Wwfz9r3JgBzNGRffMNGzaMAeznn0tOiI9nADO6ykKrZWfPskWLWHg4q1u35E04wIKDQ8PDwxctWnTmzBkT33edOHHC29sbwIQJE2w2v1mJuAvu3D1WUVFRfAdi3Lhx47grM3wHUk1xHwgbNGjAdyAlioqKYmNj69SpA0AqlUZERDx8+NDomf369QOwY8cOG0dYYsECBjBvbyaql2Gr0hXctVrWrRvr318QBXcmvLyqoGN7TEwMAG9vb3G9vbMBmq+qgqar8lScV8+ePVOpVB4eHgBcXFyUSqUZ+yRbT6XyirvBv2XLl+rV03Dv7729WUQEi4szf/kP5VV5aL6qCsqrqnvw4EG7du24gualS5fMe5Dc3NyEhITIyEh/f39dNcrb2zs8PDw2NtbEXtgXL17kthN46aWXjG5W+d///pdb3KdUKs2L0zwFBQUuLi4SicSgxZ9CoQDwn//8x5bBiAXl1XOJMa/u378fExOjvyc2V3S2/EZoZWzfvt3LywtAmzZtqr4EMykpSaFQcO/ZAHh4eERERJi4P+rhw4fffvtt3fdy65/eeust0bXJ5vYxnjNnDt+BWNjDhw979eoFwMnJKSYmxug5Bw6wevUYwPz9mfWubT17xpRKJpWy3r3Z8OHM3Z3VrcvS04uPli24X7vG1GoWHs5q1y5VZK9bl4WHs5gYlpRkZov5w4cPc4v9J02aJISVQGYTccGdq+n4+Pg8evSI71iMu3v3LnfxsOJNqImVCPADISc9PT0yMpJbleDt7V12h0kmgA+ETKtlQ4YwgHXvbtKNQ9WAruDOGDt1isnlrGlTQRTcOYLKq/I6tmu12iFDhgDo3r07X7d2CpOQ5yulUsndlOrl5aVSqcou1OJ9vqLpqjwV5NWNGze4z/MARo0a9dz9u2zvuXml1WqPHDkyY8YM7rZozsCBR995h/35J6v67fW6vHrlFcqrUoQ8XwnndbA8lFdVdOPGjaZNmwJo3ry5pfpl61py62YSuVzOteS+c+dOed+VnJzMXePp3Lmz0U+jKpUKgEQi+f777y0SZ6VwGxpv27ZNf5DbZmz48OG2j0fgKK9MJN684grWXAkPgKenp0KhMPoyUXX6TdtHjRplweJ+bm6uwf6ozZs3V6lU5V1j1pednb1q1aqGDRvK5fLBgwdbKiRbUqvVACZMmMB3IJa0f/9+rgNS/fr1y2vv8+OPydzWpj17MhvsSpCQwG7dYsOHs9dfZy1asMmTi8e5gvuNG2zBAjZ0KPPxKVVk9/dnb7zBli9nFy9aJozdu3dzW/VMNbEjpCCJteCel5fXpEkTAEuXLuU7lop8+eWXXNXJDtoPiY5gPxByLl26NGjQoLp16xpd7MD7B0LGGEtNLb6Q+uWXfIYhGPoFd8bYtGnFL3uCIpC8qqBje1paWr169QB89dVX1g5DREQxXwEICAgoe5OjEOYr3XQ1ezaPUQhOBXnFbTbz8ssv79u3z/aBmaK8vCoqKjpw4EBkZGT9+vV1VYxatWpZoxm3Lq9outInivmK99fBClBeme3cuXPcH35QUFBqamrZE7755pv58+eb/fjXr1+PiYkJDQ01aMkdHR2dlJSkf+a+fftq1KgBoE+fPmV7O2i12qioKAAymWzlypVmx1MVXHeCzz//XH/w8uXLAOrUqcNLSIL13LyqIsor4Xj69GlsbKx+wbpFixYqlcqCv/esrKyRI0dyF0WUSqWVFudeunQpOjpat3JCJpNx+6M+t+jE1awnTpxojaisbf/+/dy1KL4DsRi1Ws1NCz179jS6wW9WVha3h3PXrrcjIy2wmsR0w4ezceNYQgKTSovX1HMF90uXSorsfn4sPJyp1cxKHb537tzp5OQE4IsvvrDKE1ifWAvuX3/9tSgK2bm5uVyzyGXLlvEdS7Uj8A+EHKP3CTJhfCBkjLG9e5lMxmQyRndplCm4P33K/P0FV3DnCCGvKujYvnfvXm6X+YMHD9ogElEQxXwVHx+/ffv2suMCma+46UoqpemqRMV5df/+fSE3RjSaV8nJyXXr1tUVLBo2bDh9+vRDhw5Z7x/C5ZVczmi60hHFfCWE18EKUF6Z4ejRc9wmMb179y7b/0qr1XLdBuRy+eXLl6v4XI8ePYqNjQ0PD9c1YeAmHK4l92+//ca9wxkzZkzZi3wajWbChAkAnJycfv311ypGYrYtW7ZwRRyDcV9fXwBG24JXTxXnlWVRXgnHhQsXlEoldzMBAEdHx7CwMFMK1hW7evUq177G09Pzd+tv1mFGq/p9+/YBCA4OtnZs1pCamsr9bPkOxAKePn0aHh7OXZiJjIw0mngXLlzg9gDw9PTcvNnWe79wBXfG2NChrE0bptGUtJSZMYOtXs0su1VlUVGR0Y+Zv/32G3fnokhbCYmy4H737l3ubqBdu3bxHcvzxcXFAfDx8TFodkasrbwPhOPGjQsLCzOxiR5fBPKBkDHGPv2UAeyFFwoyMvgORRAKC1lKCjPhvj0hsnFeVdCx/dNPP+WWS9PEyKH5yiK46SowUJOR8fy9pKoDURRGy2M0r3Jyctzc3Bo2bBgZGXngwAHbdHXk8ioggNF0xaH5yiIoryplzx5Wu7a2bdvIwYMHG3SrY4wVFha+/fbbXNXsF/3FEVX27NmzLVu2TJo0SVeYw/93QDa6WWVOTs6AAQMAuLu7m7dHoqWkpaVJJBIXFxeD0u2wYcMAxMbG8hWYoFScV9ZDeSUQuoI1V9ED4O/vr1Qqr127Zsaj7d27t3bt2gBefPHF8+fPWzzaCty7d0+lUr344ovcv0IikfTq1Wvt2rVlG3g+fPgQgJeXly3Ds6CaNWsCuHfvHt+BVMnFixdfeuklrpK+adMmo+ds2bKFu9+lefPm586ds3GETK/gfvMmc3VlCxZUtGlq1Y0fPx7AggULyh7auHGjTCaDUDeKqJgoC+4REREARowYwXcgpurZsyeAadOm8R1I9VLeB0LuhdCUTmc8Es4HQqbRaHr3Xtu9u4j+4qzq5k0GMHHWr2ydVxV0bNdoNF26dBHXTG5VNF9ZREEBGzToRqtWwbRdOcf+Cu6MMdtvuazRsC5dGMBouuLQfGURlFem27iROToygL37bkHZZYD5+flcAwc3Nzfr/WaLioqSkpKio6MDAgI8PDw6duxY9pyMjAyuw7WPj09iYqKVIjEdV307fvy4/uC3334LYLKuKW81VnFe2QbllUCkpKSoVCquZTEAqVQaEhKiVqvL9lEsj643yMCBA3m88Kzfqr5Ro0ZG1yVwNev79+/bPryqCwkJAbBnzx6+A6mS9evXSySSFi1aGL0wo9FolEol1/VozJgxNtjg1yhdwZ0xNmcO8/JiP/1kxYL76tWrpVKpRCJZsmRJBUcF3lG8LPEV3I8cOSKRSJycnCq4U0ZoTp48yfVPOGul5kbEGPpAaCnXr1/nrq8uX76c71j4RwX3StF1bP+yzE4A165d4/JqxYoVNotHsGi+spRbt255e3vTfMWxy4I7L65dYzVqMIDRdMVovrIcyitTxMYyuZwB7MMPWdneUdnZ2a+++ip3O90hrsuslR04cABAmzZtyh7KzMwMCgpq0KDBRUvtGVc1EydOBLBw4UL9wYMHDwJo3bo1X1EJRMV5ZXuUVwLBFazd3Ny4yruXl5dCoUhOTq7gW3Jzc7mfCde0XQjN+jIzM9Vq9Zo1a4we7dq1q3hr1pMmTQJgtCYrItwWzX/99VfZQ6mpqX369AEgl8tVKpXtY9PRL7jn57PmzVnTplYsuDPGfvzxR4lEIpFIjBYHFi1axP2V/fjjj9aKwAqkEBXGWFRUFGNsxowZuiuQwte2bdtJkyYVFhZOmzaN71gIqbRGjRqtWLECQGRk5JkzZ/gOh4hJrVq11q9fL5PJvvzyy0OHDukfCgwM5PJq6tSpFy5c4ClAYm8aNGjA7QdF8xWxoMBArFgBAFOngqYrYimUV8+1cCEmTkRhIZRK/PADpKU/uWZkZPTt23fXrl2+vr5///03V0Wyto4dOzo5OZ09ezYzM9PgkKen5/bt2w8ePNisWTMbRPJc3A/k8OHD+oMdOnRwcnI6d+5cRkYGT3Hxr+K84gXllUAEBQWp1eqUlBS1Wh0SEvLkyZPly5cHBQW99NJL8+bNe/z4scH5KSkpr7zyyurVq93d3Tdu3KhSqaQCyCdPT0+FQsG1hSirefPmAC5evGjboCyD+yu4dOkS34FUyfDhwwFs2rTJYPzQoUPt2rXbvXu3v7//vn37uD2KhcDREcuW4epV6z7LpEmTuG3P33333f/9738GR6dMmcI1nJk8eXLZo4LF/3RQKWvWrDl69Kivr+8nn3zCdyyV8/XXX3t5eSUkJGzfvp3vWAiptPDw8DfffDMvL2/s2LG5ubl8h0PEpEePHp988klhYeGYMWPS09P1D4WHh0+cOPHZs2ejRo2ivCKWQvMVsYbwcEyciGfPMGoUKK2IpVBelYcxfPopoqIAYMECqFSGJ9y/f79Hjx5Hjhxp1KjRgQMH2rZta5vAnJycXn75Za1We/To0bJH69SpExAQYJtInovrvcAtPdZxcnJq3769Vqs9duwYT3Hx6bl5xRfKK0GpUaOGQqE4ePDguXPnlEpl7dq1z58//+mnn/r7+48aNYpbmAzg4MGDHTp0OH78eOPGjY8cOTJixAi+AzeJqGvWor5aoMNtgPzLL7/k5+frj2dkZDx48OCVV15JSkqyzSVk0/XogdGjrf4sUVFRs2fPLioqGj9+fHx8fNmjs2bN4o7+8ccfVo/GEsRUcM/Ozp45cyaAb7/91tPTk+9wKqd27dr//ve/AUydOtXg74oQUfjvf//bvHnzs2fPcttdEgMff4zJk5GVxXccgvTll1926dLlzp07CoXC4NCiRYsor4jF6eYr4awNIXZg0SI0b46zZ0HTFbEgyquyiooweTLmzYNcjlWrisuj+i5fxrhxLjduPGrTps2hQ4dsfN8zV3A0WOErQC1atPDx8UlJSbl9+7b+uFjit7jn5hW/xPJ7qVZ51bJlS5VKdfv27Q0bNvTt21ej0WzcuLFv375NmzYdOnRo7969Hzx40K9fv+PHj7dq1YrvYE0l6pq1qIPXadmyZdu2bTMyMnbs2KE/HhYWtm3btt27d/v6+vIVm87mzVAqkZpaMrJhAxiDtQuxX3zxxWeffabRaMLDw8suVo6OjuaOjhw5UhRLmcVUcJ87d+69e/eCgoLeeOMNvmMxx4cfftisWbOrV68uWbKE71gIqTQ3N7e4uDhnZ+f//ve/W7Zs4TscwYmNxfLltDzNOLlcvm7duho1avz6669cGxkdyitiDbq8WrRoEeUVsRQ3N6xbBycnrF6N+/f5jobYC8orAwUFGDsWK1bA1RXx8ZgwwfCEEyfQvTv27PEaPPifvXv3+vn52ThCbtd34RcWJRJJcHAwyoQqlvgt67l5xTux/F6qYV45Ozu//vrru3btun37tkqlatSo0bVr1xITEzUajUKh2Lp1K7d7kFiIumYdGBjo5OR0+/bt7OxsvmOpEq7hz9q1aw3G+/fvL5fL+YjIiPfeg58fdu+29fPOmTNnxowZBQUFI0eO3Lt3b6WOCo1oCu43btyYP3++RCJZvHixEBpjmcHBwWH+/PkAZs2a9eDBA9s9cWYmjh3D0aPQb6mm1eL6dTx7VurMJ09Q+ko1Ifpat279zTffMMbefPPN25QqpDIq2AmA8opYQ+vWrefMmUN5RSyrfXusXo3Dh3HvHlJSSh26dAm3byMvDydOGF58vXsX4rx1m9jIc/Oq+sjJwZAhiIuDlxd27sSAAYYnHDiAXr2QmorevaFW+/JS5+rWrRuAxMTEoqIi2z97pRhtt82tRE5MTCwsLOQnLJt7bl4JAeWV8Pn7+yuVyqtXr65cuTI1NdXPz0+tVgunPGoiXc06JyeH71gqTSaTNWnShDF2+fJlvmOpkrFjx8pksq1bt5bdGEAgMjKQmAiZDB068PDs33777bvvvpubmxsWFsbtKV3eUYP2VkIjmsr1jBkz8vLyIiIiOnfuzHcs5hs4cOCAAQOePn06a9YsWzxfdjYmTkStWujeHa+8gtq1MW4cnj4FgIwMNG6MhIRS5y9dio4dbREYEa1p06YNHjw4IyNj/Pjxwn87SASlgs7alFfEGqKioiiviMW9/jocHNChA3r0KFVYf+cdzJ2LS5fQvj3Ony/1LXPnYuxYG4dJRKbivKomMjLw6qvYuRN16+Lvv9Gtm+EJ27ahXz9kZmLYMGzfDg8PPqIE6tatGxgYmJWVJfytuY0WRuvWrdu4cePs7Gzhx28Rz80rgaC8EgupVDp+/HhHR8eHDx8+M1i/KAZyubxx48birVmLeoW+jp+fX+/evQsKCn799Ve+YzFu504UFuKVV1CjBg/PLpFIlixZMmnSpJycnMGDByclJRkcXbx48bhx43JycsLCwpKTk3kI0TTiKLj//fffmzdvdnd3nyv+t5w//PCDo6PjihUrrJ4WjCE8HLt3Y9cuZGcjOxt//YX9+zFsGLRa6z41sV8SiWTlypV+fn779u2bN28e3+EQkSmvszblFbEGyitiVQ8fYs4cvoMgdsfu8yovD9evF6//0blzB9evo3t3HD6MRo1w8CDatTP8xvXrMXw4cnMxcSI2boSTk81CNsJowVGAOnXq5ODgcOrUKYP2C2KJ30BWFm7dMhy8dw/p6ebnlaCI5fdiZ3llBq5mrdVqqWZte1zwIt30Vd+4ceMA/Pzzz3wHYhzXXp7H+4EkEolarX799dczMzMHDBhw9uxZ/aNSqXT16tXc0f79+587d46vOCsmgoJ7UVFRVFQUgM8++6xevXp8h1NVTZo0mTJlilarnTp1Kre9tbXs24c//8QPP6BXLzg4wMEBPXti8WL8/bfhwnZCKqN27drr16+XSqXR0dHV4R0VsaAKOmtTXhFroLwi1jNjBr79Fhcu8B0HsS92n1dJSWjcGIMGQf9jUGgoYmPRqRNatMD+/Si7B+qSJYiIgEYDpRI//QTeWziIpbDo5ubWtm3bwsLCY8eO6Y+LJX4Da9eiWTPDwQEDMHu2mXklNGL5vdhZXpmnvJp1RkbG1atX+YioEkRds27WrBlEe7VA34gRI9zd3Q8ePHj9+nW+YzGk1WLnTgAYOJDPMGQy2Zo1awYPHvzo0aM+ffpcKP3eSP9o7969LwjynZMICu7Lly8/ffp0o0aNpk+fzncsljFr1ixfX99Dhw799NNPD01WmJqKhw9N/crNxc6dqFEDw4aVeu6wMNSqVfzXQ4i5evbsOWPGjMLCwtdffz1Df28AQp6ngs7alFfEGiiviJUMH46ePfHuu7Dq8glS3VSTvEpKwqpVpUYkEqjVOHwY9esbnjxvHqZMAWP49luoVJBIbBZmuURUWDQaqojir5RK5ZUAiej3Uq3yyiijBffExEQfH58xY8bwFJSpRF2zFvXyfH1ubm5Dhw5ljK1fv57vWAwlJeHhQzRqhBYteI7EwcFh06ZNAwYMSE1NffXVVw0uThgcvXHjBl9xlkcEBffTp09LJBKVSuXs7Mx3LJbh6en52WefSSSSt99+29dk//TqBV9fU7+WL8fdu2jQwPA9qUSCRo1w507x/370ETp0KPlavNj2Pw0iUl9//XXLli3T09MFe/8OEayoqKiBAwfWqFEjPT3d4BDlFamKS5cuGX3/TXlFrOT773HkCNasMRwfPhxNm5Z8rVvHR3BEtMrLK3sSGYlPPsGjR6UGHRzg5WV4ZmEh9uyBTIYff8THH9sswOdo3bp1jRo1bty4kWKwy63wGK2BtmrVqkaNGjdv3rx79y5PcVmF36BWRQAAIABJREFU6XklTJRXIsLVrA0WiTdt2pQbtG4ngyoTdc26efPmEonk8uXLdrA/E9dVZo3wXu+3bwf4Xt6u4+jouGnTpp49e969e7dXr163SncW0z/as2fPW2X7jvFKBAX3Bw8eMMYePHhQ9hBjbNu2bbYPyURFRUXbuVQtIy0tjTHm4uJSx2QOXl6oU8fUL1dXSKUwukV4YSFksuL/HjoU06aVfAl2ExkiPDk5OZmZmbm5uWLc35zwSyKRrFmz5uTJk+3KtNKkvCJmy8vLGz16dIcOHfbt22dwiPKKWEmrVpg6FR9/jCdPSo1Pn47580u+QkJ4io+IU3l5ZU8+/BC1auGTT55/plyOzZvx55946y3rh2UyqVTauXNnAEeOHOE7lufo1q0bgCNHjmj1NvGSSqXBwcEQQ/yVYnpeCRPllYgYrVnXrFmzVq1aWVlZ9+7d4ykuk3A160uXLomxZu3h4VGvXr28vDyhlVbN0LdvX19f3ytXrhw/fpzvWErhvYG7AVdX161bt3br1u327dt9+/a9f/++6Uf5JYKC+5tvvglg1qxZjwyuVgODBw8OCwvbtGkTH3E9348//jho0KAJEyYYjN+5c2f+/PkSiWTnzp2mt5R5+dChSrSUeecdvPAC7tyBwRzKGG7eRMOGxf/7yit4442Sr7ZtbfFzIXbh/fffT0lJCQoK6tWrF9+xEPGpWbNmDWNbnlNeEbN98sknp06d8vPza9++vcEhyitiPdHRcHLCV1+VGuzeHYMHl3zp3nYRYiKjeWVPHBywYAFWr8b+/c8/2c0NoaHWj6mSunTpAjEUFv39/QMCAp48eWLQ31ak3T8KCtC5c6kv/XbZlcorYaK8EosWLVoAuHTpkv4lB4hk8binp6efn19eXp5Be0+xEMUP2RQymYxrQCSorVPT0pCUBGdnCOpjk5ub29atW4OCgq5cudKvX7/Hjx+bfpRHIii4DxkypH///hkZGdHR0QaHBg8eDGD69OnPnj3jI7SKPHny5N///jeAIUOGGBz66KOPnj17Nnbs2O7du1sxgoEDkZ2NuLhSgzt3IiMDgwZZ8XlJNbBixYoNGza4u7uvW7fO0dGR73BsSiLR1qql9fY2vH3Ex6ewVi2tRCLo+wcFrjrnFamiHTt2LFq0yMHBYd26dR4eHvqHKK+IVbm7Y8ECLFpU0q6PkKqrDnk1YACGD8f77xu/I1f4QkJCABw6dIjvQJ7PaKgiLYzK5ZgypdRXzZqlTqC8shl7yiszcDXr3Nxcg5q1WGrBYonTKO5qh0iDN8B1ldmwYYNGo+E7lmI7dkCrRa9ecHXlO5TSatSo8eeff7700ktnzpwJDQ01aE5rcFQgG3eJoOAOYP78+Q4ODmq1+vTp0/rj77zzTlBQELdgnK/YyjN79uy0tLRu3bq99tpr+uOHDh3atGmTi4vLnDlzrBtBcDBeew3TpmH7duTmIi+v+G7MIUNg1UI/sXdXrlzhdjBetmwZ16iuWmHszqNHsoyMxgbj6en1Hj2SMZbGS1R2oJrnFamKlJSU8ePHM8bmzZvXqVMn/UOUV8QGRo5EaChu3uQ7DmJfqkNexcTg5k0sW8Z3HGYJDg6WyWT//POPABd+GTC6aDo4OFgul584cUL48euTSjF+fKkvb2/DcyivbMOe8so8RmvWRnu7C5Coa9Zi+SGbon379q1atUpLS9u1axffsRQTWj8ZfbVq1dqzZ0/z5s1Pnjw5aNCgrKwsg6MJCQlNmzY9efKkUqnkK0h94ii4t2jR4t133y0qKpo2bZr+uFQqjYmJkUgkc+fOFdTtMBcvXly8eLEuPN24VquNiopijH322WcNGjSwehzr1mHECIwYAQ8PeHhg2DAMG4b//c/qz0vsV35+/qhRo7Kzs99888033niD73CInaC8ImbTarUTJkx49OhR//79o6Ki9A9RXhGbWbgQzs58B0EET6vFiROVON/u8yogAF98gdmzUfojszh4eHi0atVKo9EkJyfzHctzGF2J7O7uzsWflJTEU1zWQnllG9Utr8oyWnAXSyFb1DVrUS/PL2vs2LEQTFeZoiIkJABCLbgDqFOnzq5duxo2bJiYmKhQKAyO+vn5bdu2zcXFJS0tTQg3DYij4A5g9uzZ3NWM3377TX+8W7duI0aMePbs2eeff85XbGVNnz5do9EoFIqgoCD98R9//DEpKSkgIOCjjz6yRRzOzli8GI8f459/kJyMx4+xZAlcXADAxwePHxtuPDxtGsQ55xKb+fjjj0+ePNmkSZOFCxfyHQuxH5RXxGxz587dvXt3nTp1Vq1apX+FG5RXxDpWrICXFxhDmzYlg02aIDcXS5eibVsUFqL0uz8sWgSB7YZF+KFSoWNHGJ2QKs4rOzZ9OurVg5B2OKsEsXT/aNu2badOnfr06WOwQaJY4jcD5ZUNVMO8MmC0Zi2WWrBY4jRK1MGX9cYbb0il0t9//z0zM5PvWJCYiMeP8eKLaNKE71DKFxAQsHv37pCQkK+//rrs0evXr3O9nhwcHGwfmwHRFNy9vb1nzZoFYMaMGXl5efqH5s+f7+rqum7duoMHD/ITXGnbtm3bsWOHl5fXl19+qT/+9OlTrg39d99952rLfkiurmjTBm3awM2tZFAigY8PDFLQ2RleXrYLjIgN1yXZycnpl19+MeiSTIjZKK+I2Y4fPz579mypVPrzzz/7+vrqH6qgqzshZvvjD0yejE6dUPqtaCkymeGIRAKpaN5xE2s5fhyzZoExtGxpeMiUvLJXcjkWLULpq6WiIZb9LeVy+dGjR5cuXSorPT2JJX4zUF7ZQDXMKwNGF7M3atTI2dn57t272dnZPMVlErHUrA8ePFi2lYW/v7+np2dqaqpw9sasigYNGrzyyit5eXmbN2/mOxb8+acWAl7erhMYGHjw4MHGjQ3b/ALYsWMHgIEGa4t5Iqa3/++++26bNm2uX7++YMEC/fGAgIBp06YxxqKiogw2ibY9jUbDrV6Pjo6uXbu2/qHZs2c/ePAgJCQkPDycp+gIMZ+uS/LcuXPbt2/PdzjETlBeEbNlZmaOHj1ao9F8/PHHffv21T9UQVd3QsyWkoK33gJjmDrVzht9EIvLzMTo0dBo8PHHKD1dVbu8Cg5Gejr0PyT5++PxYwij22rlcCt5Dx8+zBjjOxZziC7+t95CSorh4L59mDOH8kpAxB6/6YzWrKVSadOmTRljAu/WUr9+fXd394cPHxrsPCkoy5cv79Onz9ChQw22BJBIJC+++CJE2xKnLG7rVCF0ldm1q+vLL4cOGybiHdu3b98OYIAwLhqIqeAuk8m4UvucOXPu3bunf2jmzJkNGjRITk5eu3YtT9EV++GHHy5dutS8efMpU6boj1+9etVoV3dCRKGCLsmEmI3yilTF+++/f+PGjQ4dOhjcT0Z5RaxBq8WECXj0CP37g9KKVNb77+PGDXTogNLTVXXMK7kc3t4l93y0b4/GjZGWVtzzUlwaNWrk7+//6NGjy5cv8x2LORo2bFi3bt3Hjx+LpWjl7IyaNQ0Hvbzg5kZ5JSCiyyuzBQQEuLu7P3jwICMjQ39cFIvHJRKJkNu4FxYWTp06dfLkyQUFBZ06dXJ0dDQ4QRQ/ZNOFh4e7uLjs3bv3zh0+K933798/fvzY5cuJwcG1n3+2IF2/fv3KlSs+Pj6dO3fmOxZAXAV3AL179x4+fHh2dvbMmTP1x11dXbn2PUql8unTpzxFh9TUVC6M+fPnGzQMioqKys/PnzRpUocOHXiKjhDzVdAlmRCzUV4Rs61cuXL9+vXu7u7r1q0zeBdOeUWsYe5c7N6NOnWwapVY2xQQvqxcifXr4e6OdetgUDSgvAoMBADxdnsODg4GcPjwYb4DMceWLVvS09PHjx9fv359vmOxMMorHtlxXhkob501VwsWZiFbn2Br1mlpaX379v3hhx+cnZ1XrVqlVqvlcrnBOU+fPpXL5WlpabxEaHGenp6DBw/WarUbNmzgMYzt27czxvr06eMs2hvu/vjjDwD9+/eXle3wyAeRFdwBfPfdd87OzmvWrDl27Jj++Lhx47p16/bw4UOVSsVXbP/617+ePHkyaNAgg/sX/vrrr23btnl4eBiswiNEFJISE2fNmmW0SzIhZktMPE55Rcxz9erVadOmAVi6dCn3UUengq7uhJjt+HHMng2pFD//DEorUilXr2LaNABYuhSlpyvKKwDo0gUAxNvtuWvXrhBnYfTHH38cMWKERqOpVauWu7s73+FYGOUVX+w7r8oyWrPmVo4LsJBtQJgr3E+cONGhQ4e9e/fWr19///79EydONDghPz9foVDEx8fXrFnzvffe4yNGq+C6ysTGxvIYA9f9XCDNWMwjtH+C+ArugYGBUVFRjLGpU6fq9wWTSCQxMTFSqfT777+/cuWK7QM7efLkTz/95ODg8P333+uPFxYWcre0R0dH04d/Ij6Zma0nTvwoJOSTMl2SCTFbZibeeqtD166/lO2+TUjF8vPzR40alZWVNWHCBO69qU4FXd2J3SgsLMzMzLTlM1bQfZuQiuXnY9QoZGVhwgSUnq4or4qFhABiXoks0sLowoULFQpFUVGRUqk0+OhqHyiveGH3eVWW0Zq1YFeOGxBgnOvWrQsJCbl9+3a3bt2SkpI6duxocEJaWlq/fv1WrFjh7Ow8b948T09PXuK0hgEDBtSpU+f8+fMnT57kJQCNRvPXX39BSNXqysrNzd2/f79UKn311Vf5jqWY+AruAD7//PN69eolJiauW7dOfzwoKGjcuHEFBQWffvqp7aOKiooqKir68MMPuWlXZ9GiRefOnWvSpMkHH3xg+6hIWdOmTZs5c6ab2/+xd59xUVxfH8DP0lFUsGGJYm8YxaCoARUjdrBEUYxii67Ggj0YNWJi+WMHOypG1EQFRYodRAl2wRYEGxZEBKWEXnfv82J41s0u4ALbgN/3kxdyd2b2DJzcnT1z596aqg6kkpg1S/fZM9ecnP+tXavqUKDqmDWLoqN5ubnfr137P1XHotbQX0lzdnZ+8OBB69atd+zYIfFSSbO6Q1USEhJSr149Kysrd3f3xMREJbxjSbNvgwT0V9LWrYt98IDatqVduyRfQl5xzM1JX5+io0mN1+0rjbm5eY0aNaKjo9V54UFxjLE1a9Zwo8G2b9+uwkfDFQp5pWTVJK+kFVuz7tChA4/He/78uUAgUFFcMlGrgnthYeHy5csnTZqUk5PD5/OvXLlibGwssc39+/e7d+8eGhrKDX6fMmWKSkJVEC0tLXt7e1Ld0qnXr19PS0vr3LmziYmJSgKouODg4JycHAsLi4YNG6o6lv/HKqc//viDiJo2bZqRkSHenpCQwN3munTpkjLjOXnyJBE1aNAgNTVVvD05OblevXpEdPbsWWXGA4yxN2/eEFHz5s1VHUiJcnJywsLCin1p8ODBRHThwgUlhyTp4EFGxAwM2LNnKo5EbZSUV4cOHdq1a1d2drZKohKXk5Ozbt26vXv3Sr+kJnmFtJKG/kpG58+f5/F42trat2/flnjp4MGDRGRgYPAMifX/Ss+riIiI5ORkJYcku5LyasuWLaJpGbW0tAYOHLhv376EhAQFhYH+Shr6KxmdPXtWW1t7wIBN4eGSLyGvxFlZMSJ27pyq4yivPn36VJbveoWFhXw+n+s8Dx8+rOpwFAt5pTTVKq8kPHr0iIg6dOgg0d6sWTMievnypUqiklFubq6mpqaWllZeXp5qI0lKYoMHF5iZ9dfV1T1w4ECx2xw7dkxfX5+IrKysFHfVp1q3b98mosaNGxcWFpZj99TU1JSUlNevX8fExNy/fz88PDwkJCQoKOj06dPe3t6enp4eHh5btmxxdXW9cuWK9O7Lli0jop9//rnC56Ey3BRDv/32m6oD+ayyFtyFQqGFhQURrVq1SuKl9evXE1GnTp0KCgqUE0x2dnaLFi2IyMPDQ+Kl2bNnE5GNjY1yIgFxav6FMCAgoFWrVvr6+m/fvpV+VS0Koy9esFq1GBE7elSVYagZNc8rHx+fli1bEpGhoWFaWprEq+qQV0irYql5XqlJf5WQkMCNdtmyZYvESy9evKhVqxYRHUViiSklr3Jzc9u0aWNkZOTm5qa066UyKSWvkpOTvby8bG1tRevlamhoWFpaurq6yvfLLfqrYqG/kkWp/RXy6j9+/pkRsZUrVR1HeTk7OxPRSrU/AW5CNiKqUaMGtzJe1Ya8Uo7qllcScnJyNDU1tbW18/Pzxdu5iQ3V/35J69atiSgqKkqFMTx4wFq0YESsU6ePt25JjqdhjBUUFHD/OxARn8+X+FVXMdxsGZcvX5Z+adOmTTY2NgMGDDA3Nzc3N2/VqlWrVq2MjIyMjIx4ZVx1fenSpdLHNzU1JaKrV68q/CQVhqvK3rt3T9WBfFZZC+6MsVu3bvF4PD09vdevX4u35+XltW3bloh2796tnEh+++03IjIzM5O4ExUZGamlpaWlpfXPP/8oJxIQp7ZfCB8+fGhtbc11dl26dHn06JH0NqovjObmsm7dGBGbMkVlMagltc2rqKgoLm2IqGPHjhcvXpTeRuV5hbQqidrmlfr0VwKBwMbGhogGDx4sFArFX8rNze3WrRsRTUFi/VcpeRUfHz9gwADuL9u5c+egoCDlh1c6WfIqNTXV29vb0dFRfBqTTp06ubi4VPxBB/RXJUF/9UWl9lfIK0l+foyI9e+v6jjKy9/fn4isra1VHUhpMjMzhwwZwg3IKOn5jyoGeaUE1TCvpLVq1YqIoqOjxRvnz59PRJs3b1ZVVDIaPnw4Efn6+qoqgBMnWM2ajIh98w0r7i45S0pK4q5XdXV1Dx48qPQAlY0rLTo6Okq/5ODgUHoZvU6dOkZGRiYmJq1atTIzMzM3N7e2traxsRk9erS9vf20adP4fP7ixYudnZ2l743FxsYSUe3atSvv/YzIyEgiatiwoUAgUHUsn1XigjtjbOLEiURkb28v0X769Gkiqlu3blJSkqJjiIuL477mXbt2TeIl7sYmt8QrKJ8afiFMTk52cnLinoWvW7eum5tbSY8LqbwwyhYsYESsdWsmNUq6mkNeVQTSqiTIqy/asGEDdxX14cMHiZcWLFhARK1bt5Z+qqOa+2JeBQQEcIObiMjGxka1Q5wklCmvsrOzAwICHB0duQcdxCvvT548KV8ACxcWErG2bdl/Jy8E9FdfVkp/hbyS9ukT4/FYzZpMLR+2+bJPnz7xeDx9fX21rVOkpKRwi3AaGxs/ePBA1eEoCfJK0apnXkkbNmwYEZ05c0a8cdeuXUQ0Y8YMVUUlISYmptj2JUuWENGGDRuUHA9jTChkLi6Mx2NEbNIkVuy0rA8fPuQe3W7SpMmtW7eUHqMKvH79msfj1axZM0PqKuHOnTtBQUFBQUHh4eHh4eEvX76MiYlJTk5OSUmpeIl5z549RDR27NgKHkeFNm3aRERTp05VdSD/UbkL7qJit/SDD1yxe8GCBYqOoaSi/6lTp5RW9IdivXv3rl69erVr1w4MDFR1LCw/P9/Dw6N+/fpEpKWlxefzP336VNLGd+7cMTY21tXV7dy5s5ub2/v375UZKmOMnT/PeDymrc2kZkkG5FW5Ia1Kgbwq3d27d3V0dHg8nvTDuaXM6g6y5FV+fr6bmxu3/o22traTk5M63Lcod17l5ORwlfc6deqIKu+tWrVycnIq0+C78+fPt23buWPHx0graeivSld6f4W8KlbbtoyISU92X1m0a9eOSniM/f379yYmJnw+PyAgQCUTJX/48KFr165EZGJi8vz5c+UHoELIK8WpznklYfHixUT0v//9T7wxODiYiKysrFQVlYhQKHR1ddXS0goICJB+df/+/UQ0efJkJUeVlsZGjGBETEuLuboWv82JEydq1KhBRL17946Pj1dugKrE3cc6duyYMt/Uzs6OiDw9PZX5pvLVv39/Ijp58qSqA/mPyl1wZ4z9/vvvRNS1a1eVTOdy8+bNYqe14aZGJaJi1y0Epdm3bx/3ZXvw4MEqHLgXFBTUuXNnLpIBAwaUkpPx8fFTpkzhJuESDdPT0NDo27evu7v7u3fvlBFuQgIzNmZETGrWUeCoSV5duMAsLIZwkQwZMkTiSUZxxeaVpqamMvMKafVFapJXFeyvFJFXGRkZ3Exxy5Ytk3iplFmSgSNjXsXHx/P5fG6AcP369UsZIKxo8sqrwsLCsLAwJycnLkM4LVq04CrvErN8SHj//n2DBg2IaOvWbfI4pyoI/VVJSumvkFelmDqVETF3d1XHUV7Tpk0jIjc3N+mXDh06JOqCDA0NJ0yYcOLEiX///Vc5gb169Yr7TtqxY0clfY9QJ8grBanmeSXBw8NDelxtXFwcEdWrV09VUXEyMjLGjh3L1RO2b98uvcHff//NFdOUGdWzZ6xDB0bE6tdnxS3eyQoL2fr1h7iP7B9//DE3N1eZ4anc3r17uW/3SnvH3NxcAwMDHo+ngoGecpKWlqajo6OpqZmcnKzqWP6j0hfcc3JyuKnx9+3bJ/ESt0btgAEDFPTWAoGAW7j1119/lXhp3bp1RGRqaqqeC5FVHwUFBbKPe1KE58+f29vbcxdDbdu29fb2LmnLvLw8iTGGsbGxipuatkQCAbOxYURs8GBWaj2iOlODvGL29oyI9e37sPS8kh67qpK8QlrJQg3ySk37q8mTJxNR9+7dJcZwlTJLMoiUKa8iIiKsrKy4P98333yj5PlYFZRXBQUFQUFBs2fPbtSokeggJiYmq1evLnZ75JUs0F+VhHvy1dzcHP1Vmezfz4jY+PGqjqO8uFGi40s4gcjISBcXF3Nzc9G6dpqampaWlm5ubrGxsYqLKjIysmnTptwHqJL/D1UTyCtFQF5JCA0NJaJevXpJtHOfOyr8FcXGxpqbm3O3mf38/KQ3EAqFq1evrl27to6OTrt27VxcXBSaOZx374qWDS9p0va0NGZnxwwNU1q37uha0uj3Ki0lJUVXV1dTU1N6VjoFuXjxInflr5y3UwRufpG+ffuqOhBJlb7gzhjz9vYmorp160rczUhOTq5Xrx4RFfv4TMVxN5abNm2amZkp3v7hwweuey12cWFQPm5mTy0tLfr/mT2VcCMkIyPDxcVFV1eXiAwMDFxcXEq5NxsQEMAtt0JEtra2L1++FH9VEVPTlmjDBkbEGjZkyurfKy+V5NW//7LFi5m2NiNideqwbdsEpUzsKD47s2rzCmklO/RX0iIjI3v16vX06VOJ9lJmSQYJZcqrgIAAExMT0Z9Y4hk+BVFCXgkEgrCwMGdnZ65jnDRpUrGbIa9kh/5KAreIVK1atV68eCHxEvKqdJGRjIg1barqOMrryZMn3LfC0jd7/fq1h4eHra2ttra2eMo5Ozt/8cmbsrpz5w73Rbh///7p6elyPHIlgrxCXilBYmIiERkaGkq09+jRg4hUtZbstWvXGjZsSETt2rUr9kG0jIyMMWPGEJGGhkbdunW5tNHW1h45cmRAQIBCP80XLGAODiwrq5iXIiNZmzZFXxv//ltNVy9QglGjRhHRtm0VfR4uKysrJSXl/fv3MTExkZGR4eHh169fDwoKCgwM9Pb2Pnr0qIeHx44dOywtLYlo1apVcgleJX788UeSmtlJHVSFgjtjzNramogWLVok0e7m5kZErVu3lvtzKOnp6Y0bN6biJldydHQkojFjxsj3HaGCoqOjuVXUiahDhw6KWy9LIBB4eXlxz7BraGg4OjomJCTIGJX0gtHisrOzfX19J06cKD41ramp6fa1a9mjR3II/e5dpqPDeDwmNesolESJecW8vIpmZdHQYI6OrOS0kk9erV69+p9/Sn4PmSGtyqEK9Ffymkq7JKXMkgwlkT2vsrKyXF1dDQwMiKhGjRrOzs7SazcpKCol5JVQKLx9+/bjx4+lX0JelQP6K5G8vLxly5YdOXJEoh159UVCIatblxExxQ+vVAihUMhVrN4WO2JTSnJyMveYBTdIiyPHKbmDg4O5DnzkyJE5OTkVPFrlhbxCXikHdxNCYp5xrih04MAB5cfj4eHB3X0ZNmxYamqq9AYvX778+uuviah27dp+fn4CgSAoKMje3l50z6ZRo0ZOTk4Kmpy5pDkLAwNZnTqMiJmZMaUM9lBf3HjtNm3aeHt7Hzx40MPDY/Pmza6uritXrnR2dp4zZw6fz58wYYK9vf3QoUNtbGx69eplbm7eoUOHVq1aGRsbGxkZceMSZNewYUMHBwdVn3c5CYVC7rGbR3KpiclVFSm4P3z4UFNTU0tLKzIyUrw9Pz+/Y8eOZmZmb968ke87RkVFdejQoXfv3hI3jcPDwzU0NHR1daXHtoA6kBjrVNKC3eV2+/btnj17csfv2bNnKYv4VWRcmMTUtHssLRkRa9GCOTmxsLDyz9mxaBEjYkuXlnP3akzxecV69mREjIj17FnaoqPieWVkZFSRvNLQ0DA2fl/xtJoyBWlVTlWyv+LIOJV2SUqZJRm+SPa8evfunaOjI/es+ldffeXl5SXfgXLIq6oE/VVJkFcy+vHHCGvrNb6+11QdSDlxy9yNGTMmIiJC9r1ycnKCgoKcnJy4YgHHyMjI3t7ey8urfFNy+/r6cqWWyZMnY3ZT5BXySgm4P1NISIh44+bNmzt16nT48GFlRpKTkzN16lQi4vF4zs7OAoFAeptr165xC4pID35PSUnx8PDo0qWLKG3Mzc09PDwUN+qCIxQyV1emocGIShz8Xq3k5ua2bdtW9ORBuenr6xsZGTVu3LhVq1adOnUyNzf/9ttvbWxshg8fbm9vP3HiRD6fP2/evIkTJ+ro6BDRypUrVX3q5fHgwQMiaty4sRpO2VdFCu6MMT6fT0QDBw6UaI+NjVXQwl/5+flxcXHiLUKhkHscY8WKFYp4R5AL8dk8dXR0nJyc0tLSKn5Y2QsT0jOffvz4sXxvyk33HyUGAAAgAElEQVRN+3bVqqKRz9x/JiZs0SJ2/Tor7iP2P/LyWHIyE3/+w9ubqWKl+ypAQXmVnMzGjfv8hy1l2W0ur7jrJ7nklbOza5nSKi+PpaQwiRluUlNZVhbz8EBalVNV6q9ElSzu+TBOs2bNnJycgoKCyvTlraRZkkFGZcor8UKnhYXFrVu3Kh4A8qpKQn9VLOSVjNauXUtETk5Oqg6kPPz8/HR0dLgJHIioYcOGjo6OZR1TLJqSW5RyWlpa3JTcEl85S7F3714NDQ3uN6mGpQflQ14hr5Rg+vTpRLRnzx7VhhEXF8fNY2NgYHDq1Klit/Hw8OBuSA8fPryUWy/h4eF8Pl8031rt2rUdHR2DgoIUEXZ6Ohs9mhExTU1WLedsL9HPP/9sb28/ffp0Pp+/ZMkSZ2fntWvXurq67tq1y8PD49ixY97e3ufOnQsKCrp582Z4eHhUVFRMTMyHDx9SUlLK+gyKn58f93zD+vXrFXQ6irN+/XoimjlzpqoDKUbVKbh//PjR0NCQiM6dO6eqGLy8vIjI2NhYLl8wQKHi4+P5fD536dC4cWMPD49i7wDLIisry8XFRV9fn2R49D44OJh7gIuIBgwYUOwj7eUhELCwMObszFq3/lwirV+fOTqygADJIihjLDKSDR3KdHSKPtysrdmdO/KJpHp7//69qC7QpEmTEyeCK3hRmpfH2rdnNWowZ2dWytiCkJAXnTp14vJq4MCB8pqEvUxpdeoUI2JTpvyn0dCQ7d4tl1iqtSrWX0lMpc2pX78+9zWylGUJONwCKgYGBtKzukOZyJ5XZZrK44uQV1Ub+itxyCvZXblyhYi6d++u6kDK7OjRo1ydYuTIkbNmzWrSpIkoVerUqePg4HDixIkyjSl+/vz5pk2brKysNDU1uePweDwLC4svDjJ1dXXlNnZxcanQKVUhyCsR5JXibNy4kYgWLFigwhiuX7/OLQ7funXrYqeCkWXwu4SMjAxPT09u/D5nzBjPbduYHBeCffGCmZoyIla3LsMCiKp16tQp7mbMxo0bVR1L2VhZWRGRr6+vqgMpRtUpuDPGtm7dSkRt2rSR+4ztssjIyOA+CL28vJT/7lA+4eHh3EMJRGRubn79+vUy7S4UCr29vcUXlytl8qIXL17Y29tzW3ITclU4/BJERjIXF9a+/ecSad26RSVSbkDEixfM0JANGsRCQ1l8PLt5k40ezfT12b17igqpmuHySkdHp2XLp+bmrIxpJenePfbuXYmvvnjB7O2ZgYHQ2NhMoXn1xbTiCu46Ouzq1c97oeAuR1Wyv+IGXrVv3150KV+3bt1SBnC9ePGCG24jPUsylI/seVWmxSqLhbyqPtBfMeRVGWVmZmppaWlpaSl67gL52rlzJ3d7ydnZWdQoPaZYU1OTG1McW5bZxJOSkry8vOzt7WvVqtW5c+dSthQKhcuWLePeyMPDo/znU+Ugr6Qhr+TO39+fiAYPHqyqADw8PLgpQQYPHpySkiK9wbt37744+L0UT58+dXZ2NjY2NjNL4b7u2doyb29WwbmFLlxgRkaMiH39NZP3RHRQHocPH9bQ0ODxeCp/XEN2KSkpWlpaOjo66rmMc5UquOfn53MXwRVfz7ccVqxYwX2pKPdAHlAJ8S91PB7P3t5e9hn/X716xX22de/e/caNGyVtlpmZKSpS1KxZsxxFinK6f5+tXMk6dPhcIjUyYm/eMHt71r79f+b4KCxkHTsya2tlRFU9CIVCb+/wJk0YEePxmKMjk/mpTVmlpbFly4qeUqhdm+3Z80o5j6sXm1ZTpjBvb0bE5s5lHTt+Ti4U3OWrCvdX3NdI0YMaRGRoaMhNNpqZmcltk5+fb2FhQUTjxo1TQkjVR5ny6tmzZ8OHD+f+RpdlHoyEvKqG0F8hr8qKqyRKzIOszkQjf7ds2VLsBq9fv/bw8LC1tRUtRUhEnTp1cnZ2LtOqAFlZWdHR0SW9WlhYOGPGDCLS0dE5Wcrkg9UV8qokyCt5efbsGRGZmJgo/61zc3O5PxMR8fn8Ymc8CwsL4x5SbNOmTUXWQc3Pzz9zRmhryzQ1i74DfvUV+/XX8tTKuUnbuePY2TFMD6E+Dh48yOPxeDyeStb7LYfjx48T0YABA1QdSPGqVMGdMXbu3Dkiql279ocPH5T5vq9evdLT0+PxeGFhYcp8X5AX7rFlPT09IqpRo4aLi0t2drYsO27YsOHQoUMl3WURCoVeXl7c4108Hs/R0VHJmVkkJoa5uTFLS9aiBcvPZzVrMulHAnfsYBoarLh1zKHcsrKYiwvT02NErEYN5uLCZEurLxAKmZcXa9ToczVftWlFxHr3LhrhnpTE6tVj69YVbYOCuyJU7f4qJibGzc1NNDaWiPT19W1tbb28vObOnUtErVu3xrxtilCmvLpw4cK8efNkOSzyqppDf4W8kt38+fOJaJ3oGkKNCYXChQsXciN/PT09v7h9cnKyt7e3o6Mjt8gBx8TEhM/nl3VKbgl5eXljx47l/v+6cOFCuY9ThSGvygF5VSYFBQW6uro8Hk90z1U53r9/37t3byLS09MraZaFLw5+L4f4eObqytq2LSq783jM0pJ5eDCJs3/xgrm6Momlf9zd2Y0bzNGxaEdn5y+vOgdK5ubmxvVCf/31l6pj+bLJkycTUUm3J1WuqhXcGWNDhw4lolmzZinzTceMGUNEjo6OynxTkDvZF+aSxZ07d3r16sVd+shrobmKSk1lcXGMiEl/JJ8/z4jY/fuqCKuKe/eOOToyHq9oIICXF6vIxO537rBevYqubywsJC9iVOLFC3b7dlHBXShku3czfX328iVjKLgrUpXvr168eOHq6tqjRw/uHLkxVtra2nfv3lV1aFUZ8goUAXkFsuDGqQ0bNkzVgXxBQUEBNxWyrq7u6dOny7RvTk5OUFCQk5OT+JTcRkZG3BMSZZqSmzGWmZk5aNAgIjI0NCzrxE3VB/IKeaUE3DNPGzduVNrkxhEREc2bN+c+VYv9rJFl8HsFhYczPp/VrFn0zbROHcbnM9EAVH9/RsSaNfvPOmT167ONG9nXX7NatdiZM3KPCOTj999/JyJtbW1/f39Vx1IagUDAPb0RFRWl6liKVwUL7i9evNDR0dHQ0AgPD1fOO4aEhHC3f9++faucdwSFunr1ateuXbkPp379+j148KCsR4iLixN9sWzatGkFv1jKWWwsI2J//inZHhzMiJiy/q+phq5eZV27Fl2O9OvHyp5WLC7uc+G+adOKFu7lTlRwLyxk5uaM+16DgruiVfH+ijHG2Js3b7Zt22Zpablp0yYFrn4BYpBXoAjIKyjd27dvuRqfOs/PmZWVNWzYMCIyMDAICgoq93EEAkF4eLjElNxaWlrclNzvSlm95/+lpKRwg1sbNWr08OHDckdS5SGvkFdKcPny5Y4dO3KZxufz7yt4ENuxY8e4FcX79OlT7Dr279+/5+5MlzL4XV7+/Zft28csLD5PN2pmxnbuZKdPMyLWpg1buvTzxvXrMzc3FhPDsJS4muNmzNbR0Tl79qyqYynRnTt3iKhly5aqDqREVbDgzhhbtGgREdWsWbOpUhgYGBDR2rVrVX3eIDcCgcDLy6thw4ZEpKGh4ejoWOwnmbTs7GxXV1cuJfT19Z2dndVuiZ7cXKatzVxdJds9PRkRk+00oXwEAublxRo2ZERMQ4M5On7+fcfFMYkbdmlp7PXron9nZzNXV2ZgwIiYvj5zdmbqllZMrODOGLtzh2losHPnUHBXhqrcX4HqIK9AEZBXULpmzZoR0ZMnT6RfioqKSkpKUn5I4lJTU62srIiobt26t2/fltdhX7165ebmZmNjo6WlJSqSdurUycXFpaQBZPHx8V9//TVXaHjx4oW8IqmqkFfIK0UTCoU7d+7s1q2b6Ffdo0ePvXv3lvXxgi8qKChwdnYWjVvPz8+X3kZ88Pu9e/fkG0ApoqKYszNr0KDoqe4zZxgRO3WKaWmxR4+KtuEK7lApcGsm6+vrq+0aGC4uLkQ0d+5cVQdSoqpZcE9NTT1w4AApi7a2tqenZ05OjqrPG+QsNTXV2dmZW4zL0NDQ1dW19GfEAgICWrRowWWFra3ta1G5VN1YW7N+/SQbR49mX3+tgmCqn9RU5uzMdHUZETM0ZK6uLDeXWVgwHo+Jf5bt28dq1WKMsYAA1qJF0XgBW1umtmklXnBnjM2axTp2ZLVqoeCuJFW2vwKVQl6BIiCvoCTjx48nov3790u/1LdvX01NTUtLS1dX11JWelSchIQEMzMzImrSpElFFh4sRVJSkpeXl729fa1atUTfNFu0aOHk5BQUFCSqrMXExLRu3ZqIOnXqFBcXp4hIqhjkFfJKaSIjI52dnevXr8/9nvX09Ozt7YOCguTyPFZSUtJ3331HRLq6ugcPHix2m6NHj5Y++F3RcnOZtzc7dqxoSpn8fDZoEOvdu2iudhTcKxGhUMjn84moZ8/BN2+qOpricKvTq/MY/KpZcGeMCYXCd8qCD6Sq7dmzZ7a2ttxHZtu2bQMDA6W3iYiI6NOnD7fNN9988/fffys/zjIICWE8HnNxYdwFlkDA3NwYj8dOnVJ1ZNVIdDQbMqSojD57NrOwYDVrMlNTJlrfiCu479hRtM033zA1X5JZouCeklI0wAEFd2Wqgv0VqAHkFSgC8gqkubu7E9HUqVMl2gUCwbBhw7il/zidO3desWLF3bt3lTOt0KtXzMLCiog6dOgQGxur6LfLysry8/ObPn16gwYNRKdcv379KVOmbN++vXHjxkRkYWGh8qHZlQXyioO8Uprc3Fxvb29bW1tNTU3u99ysWTNnZ+c3b95U5LA9e/YkoqZNmxb7JIQsg9+VSVRwf/qU6eoyDw/GUHCvbAQCweLFm2vWzDQ0ZBERSn3rgoKC8PBwV1dXW1tbOzs76Q0+fvyooaGhp6eXlZWl1MjKosoW3AHkKygoyNTUlPsAs7GxiYyM5NqTkpKcnJy4j9J69eq5ubkVFhaqNlSZ/Pknq1uX6euzzp2ZgQGrVYvt3avqmKqjoCDWrRt7+pRZWLBZs1iDBmzDhqKXuIJ7ejrr3Jm5uTH1TyuJgjv7/2mKUHBXvqrWX4F6QF6BIiCvQNy9e/eIqF27dsW+mpaWduLEiQkTJhgaGorKhU2aNJk9e/aFC8GKW6owKop99RVr2/Zhv34DPn78qKi3KY5oSm5uSUYi4qYHGTJkSGZmpjIjqdSQVxKQV0rz7t07V1fXli1bcr9nDQ0NGxsbb2/vPNEYq7K4ceOGtbV1fHy89EufPn0SDX739PSscOByICq4M8ZWrGBGRiwpCQX3yqewkDk4FD2ar+C1CVhOTk5oaOhvv/02YMCAGjVqiDpkPT096f9lvLy8iGjo0KGKjaliUHAHkFV+fr6bmxt3KaatrT1jxoz169fXqVOH+9HJyUnuc7QpVlYWCwpix4+zixdZerqqo6m+uAq1hQX7+Wfm4cH09VlMDGNiU8qo2YJwJcrMLIpcRChkMTEsLU1FAVVvVa2/AvWAvAJFQF6BSEFBgYGBAY/HK73+WFhYGBYW5uzs3LZtW+7beK9erjVqMFtb5uHBEhPlGdK9e6x+/aIV71V7SRMVFfW///1v2bJlp06dKl+1rtpCXpUCeaUEAoEgKCjI0dGRm+yFiIyMjPh8vryWpX3w4AE38VqTJk1u3boll2NWnHjBPSuLtWjBnJxQcK+U8vPZiBGMiDVsyKKi5Hzw7GwWEsLWrdver18/PT09UZGdx+OZmprOnTv35MmTxU6O5ODgQEQ7duyQc0ByhYI7QNkkJibOnDlTQ0ODu0dNRHZ2ds+fP1d1XFC5cQX3wkJmbs6GDWNMrOBeWRw5wiwtJRtHjGDbtqkiGmCMob8CxUBegSIgr4BjbW1NRP7+/jJuf//+fRcXFweH59wUfERMS4t99x1zd5fDsjchIaxWraJFdLKzK3o0UCHkFaiD1NRUDw8PbtZ+jrm5uYeHR3oFRr8dP36cGwv87bffFjv4XVXEC+6MsYAApqPDdHVRcK+U8vLYsGFFy+FKjLErh6wsFhbGXF2ZjQ3T02NEzNx8Bfd/RKtWrfh8vpeXV+kTdxcWFtarV4+I1Hx5Zx5jjACgjB4+fHjkyJEGDRqYm5sPGjRI1eFApdezJ1lb08aNdPcu9e5Np07Rx4+0bBmlp6s6Mplt20a//07//vufxg4daMQI2rRJRTEBEaG/AsVAXoEiIK9g5cqVGzZs6NChg7Ozs62trWjtwS+KjaWLFykwkC5fpvz8osZOncjOjmxtydKSeLyyReLvTw4OlJtLEyfSH3+QtnbZdge1grwCtRIREXHkyJFjx46lpKQQkZ6enp2dHZ/PHzBgAE/mlBIIBCtXrty0aRNjzNHRcf/+/eIDhFUuIIBGjqT8/M9JPmIEBQaSmxstWKDSyKBccnJo2DC6do2aN6e//yYTk7LtnplJN25QaCiFhtK9e1RQUNSuoUFdu9L33z/s3PlNnz59uDL6F12/fr1Pnz7t27d/+vRpGc9DqVBwBwBQPVHBnYhmz6agIFqwgFatQsEdAAAAqpH3799v27Zt27ZtRKShodGtWzdbW1sHB4cOHTrIeITUVDp/nvz96eJFysgoanz1iv5/FmWZHD1K06dTYSHNnUs7dpCGRtnOAtQN8grUUG5ubmBg4P79+69cucLV5dq1azd9+vSpU6caGxuXvm9KSsqECRMuX76spaW1bt060XKp6uPWLVq9mi5cIC2topY3b4jPp59+otGjVRoZlFdWFg0dSmFh1LYthYZS48ay7vjXXzRlChUWFv2oqUndulG/ftSvH/XpQ2LLZ8jq559/3rx586JFi7heXW2h4A4AoHriBfeUFOrQgerXp7g4FNwBAACgeomPj/f39/fz87t27Vr+/w8qNjU1HTly5MiRI3v06CHjCNC8PLp6lfz96fVrunixDAHs2EELFxJj5OxMrq7lOANQR8grUFsvXrz4888/Dx8+/PbtWyLS1NTs378/n88fNWqUdnEPQTx79mzUqFFPnz6tX7++t7d3//79lR0xVFdpaWRjQ+Hh1L49hYbSl24MFbl/nywsyMyMLC3JyopsbMjIqMxvnZmZefv27evXr9+4cePatWsGBgbe3t4DBw4s84GUCAV3AADVEy+4E9GhQ/Tjj1SrViUruK9cSStX/qfR3Z2mTUPBHQAAAMosOzv7ypUrPj4+gYGB//7/Lf0GDRoMGTLE3t5+0KBBurq6cn/TjRtp+XLi8WjrVlq0SO6HB9VDXoF6EgqFISEh+/fv9/PzKygoIKJGjRqNGzdu5syZnTt3Fm129uzZSZMmpaWlmZmZ+fn5mZR1ag+AiklKov79KTKSunalkBCqW/fLuwiFlJ1NBgZlfq/U1NSwsLDQ0NDQ0NCHDx8KBAKuXUtL68qVK5aWlpqammU+qBKh4A4AoHoSBXfGqH9/un+/khXcly+nkSP/03jpEs2ejYI7AAAAlF9BQUFoaKi/v39AQEBsbCzXWKtWrcGDB48dO3PgwEGyfOH/IoGA5s4lDw/S0qIDB2jqVDkcE9QZ8grUU0pKyqlTp3bv3v348WOuxdzcnM/nT5gwYc+ePStWrBAKhRMmTDh48CC3XCqAkn38SNbWFB1NvXrR5ctUq5Y8D56RkXHnzp3g4ODg4OAHDx4IhUKuXUtLq2vXrjY2NpaWln369DEsx0w0SoeCOwCA6mVkkJYW6et/bsnNpdzc8sxopiqYUgYAAAAU7cmTJ2fPng0MDLx58yZjzNr6UljYoF69yM6ORo2i9u3Ledj8fJo8mU6eJF1dOn4cUwxXO8grUEM3btw4dOiQt7d3ZmYmEenp6eXm5mppaW3atGkRHpQAlXr3jvr1o9evydqagoOpggPNP36kmzczrlxZce3atSdPnojK1Lq6uhYWFv379+/bt2/v3r0r3R0mFNwBAEAOUHAHAAAApXn79m1AQMCdOz94e9crKChq7NqVRoygkSPpm2+o2Bm5fX0pK4scHT+3PHlC9+5ReDjt3k116lBgIPXpo4z4QT0hr0Dd5OTknD17dv/+/QkJCXXr1v31119tbGxUHRQAxcZSv360cCFpaFBUFG3Y8Hlm9vv3ycODdu/+vGSutMREunuXbtyg4GC6f5+0tUlLq0F2dpK2tnaXLl1sbGy4wez64mMSKxsU3AEAQA5QcAcAAADly8qikBDy8aGAAEpLK2ps2JAGDyZ7exo0iMRn5O7enSIi6K+/aMKEopbdu2nVKnryhL7/nvbupW7dlB0/qCfkFaibzMxMg3JMgw2gMJmZZGBAw4fT+fM0ezbt3VvUfuoU2dtTbi5JrIgRH0/XrlFoKIWG0rNnn9tr1qTevWnYsNPduze0sLBQxEIaKlHy7QYAAAAAAAAANVazJtnZkZ0dCQR06xb5+JCvL8XF0dGjdPQo1ahB331H9vY0YkTRTH2NG9PixTR06H8m7mvShG7fVtUZgDpCXoG6QbUd1I0oJc3M6MABmjKFevWS3ObDB7p+nYKD6fp1io4m0ZBvrshuaUlWVtSnD1eaH6O0yJUDBXcAAJCDwYPJ2FiyccMGat5cFdEAAABANaOpSVZWZGVFbm4UHk7+/hQQQP/8Q2fP0tmzpKNDu3YREU2cSP7+tGIF7dmj6oihMkBeAQCUztycTE1p9mwKD/88jUx0NH3/Pb1+/Xmz2rXJyor69aO+fal799ImnKkaqvr5AQCAUpiakqmpZOP336siFAAAAKjGeDzq0YN69KB16+jNG7p8mQID6dIl6tKFiEhHh7ZvpxEjaMoU6tlT1bFC5YG8AgAoycaN1KEDubvTkiVFLc2aUVwcGRhQr15kY0OWlmRhQTo6Ko1SuVBwBwAAAAAAgCqoRQvi84nPp+Tkz+u5DR9Ow4fTzJkUEaHS4KDSQl4BAIhr2pRWr6Y1a2jcuKIWAwN6/JjatiVNTZVGpjoaqg4AAAAAAAAAQIHq1SMNse++u3bRq1e0b5/qAoIqAXkFAMBZtIhataJlyz63dOhQfavthII7AAAAAAAAVCvNm9Mvv9CaNZSaqupQoApBXgFAtaWlRTt2kLc33byp6lDUAwruAAAAAAAAUL0sXUr169POnaqOA6oW5BUAVFv9+tHEiVg7uggK7gAAAAAAAFC96OrS7t308aOq44CqBXkFANXZli2kr6/qINQDFk0FAAAAAACAqq9jR2rS5POPNjY0dy49eaK6gKBKQF4BQLU1ZAjVqfP5R2NjOniQLl+u1rO3c3iMMVXHAAAAAAAAAAAAAABQ6WFKGQAAAAAAAAAAAAAAOUDBHQAAAAAAAAAAAABADlBwBwAAAAAAAAAAAACQAxTcAQAAAAAAAAAAAADkAAV3AAAAAAAAAAAAAAA5QMEdAAAAAAAAAAAAAEAOUHAHAAAAAAAAAAAAAJADFNwBAAAAAAAAAAAAAOQABXcAAAAAAAAAAAAAADlAwR0AAAAAAAAAAAAAQA5QcAcAAAAAAAAAAAAAkAMU3AEAAAAAAAAAAAAA5AAFdwAAAAAAAAAAAAAAOUDBHQAAAAAAAAAAAABADlBwBwAAAAAAAAAAAACQAxTcAQAAAAAAAAAAAADkAAV3AAAAAAAAAAAAAAA5QMEdAAAAAAAAAAAAAEAOUHAHAAAAAAAAAAAAAJADFNwBAAAAAAAAAAAAAOQABXcAAAAAAAAAAAAAADlAwR0AAAAAAAAAAAAAQA5QcAcAAAAAAAAAAAAAkAMU3AEAAAAAAAAAAAAA5AAFdwAAAAAAAAAAAAAAOUDBHQAAAAAAAAAAAABADlBwBwAAAAAAAAAAAACQAxTcAQAAAAAAAAAAAADkAAV3AAAAAAAAAAAAAAA5QMEdAAAAAAAAAAAAAEAOUHAHAAAAAAAAAAAAAJADFNwBAAAAAAAAAAAAAOQABXcAAAAAAAAAAAAAADlAwR0AAAAAAAAAAAAAQA5QcAcAAAAAAAAAAAAAkAMU3AEAAAAAAAAAAAAA5AAFdwAAAAAAAAAAAAAAOUDBHQAAAAAAAAAAAABADlBwBwAAAAAAAAAAAACQAxTcAQAAAAAAAAAAAADkAAV3AAAAAAAAAAAAAAA5QMEdAAAAAAAAAAAAAEAOUHAHAAAAAAAAAAAAAJCD6ltwT09PHzdu3JMnT+R1wLlz5/r7+8vraFBJeXh4rFu3Tr7HnDp16pUrV+R7TKhcLly4wOfz5XvMJUuWeHt7y/eYUOn8+OOPly5dktfRnj17Nm7cuJSUFHkdECojb2/vJUuWyPeYV69edXR0lO8xoRLJz88fN25cRESEfA87c+bMCxcuyPeYULkUFhaOGzfu3r178jrg69evx40b9+HDB3kdECqpkJCQyZMny+to9+/fHzduXF5enrwOCJUU8goUYdy4cTdv3pTjAd3d3bds2SLHA1ZeVbngnp+ff+zYsZkzZxZbVc/NzfXx8UlMTJR+6dGjR/PmzTtw4AD345YtW2ZJ2bx5s8ReZ8+effr0aUnB/PPPP9yOjx49qsA5geo9ffp04cKFbm5uxb567969a9euSbdnZWXt2bNn1qxZ8fHx4u13796dPXv2sGHDpk+ffvXq1WKP6evrGxMTI9EYHx+/evXqkSNHTpw4cceOHTk5OeU5GVADQqHQx8dn6tSpdnZ2CxcujIqKkt7m+fPnpd/Pc3FxmTVr1tatW8Ubr127xufzAwICit3l4sWL//zzj0Rjenr69u3bx48fP3bs2DVr1qSmppbxbECNxMbG/vrrr1wvsWfPnoKCAult/Pz8Xrx4IdH44cMHFxeXUaNG/fDDD25ubtnZ2aKXMjMzd+7cOXv27I8fP0of7dOnTz4+PuLbc+7cufPTTz/Z2dnNmDEjMDCwwmcGKlNQUHD06FFHR0c7O7ulS5e+evVKept//vnn4sWLEo2MMX9//2nTptnZ2c2fP//Bgwfix/T09OHIsycAACAASURBVJw8ebKdnd2SJUuKvZR69erV6dOnpduFQuGZM2dmzJhx+/btip0ZqFJ0dPTSpUvt7OymTZt29OhRxpjEBoWFhT4+Pu/fv5dof/fuHddZTZw4cdeuXeK93JMnTxYtWmRnZzd58uTDhw8XFhZKv6+/v790Byhy//597tI9Ojq6AicHqvTs2bNly5bZ2dlNnTrVy8tLKBRKbCAQCHx8fOLi4qT3jY6OXrBgwY4dO8Qbb926NWfOHDs7Oz6fX+zdmtTUVB8fn4yMDIn2qKioJUuWcEn+559/Sic5VCKMMT8/P9EnWrHf7l+9euXr6yvdLhQKfX19pT+20tLStmzZMmfOnPT0dOm94uPjfXx8pC/kGGOXLl2aMWNGUFBQBU4I1ALyChTnwYMH3CVNsaVRHx+f2NhY6fbnz58vWrRo27ZtEu2vX79etWrVqFGjxowZ8/vvv0vfY75169b169elD5iRkeHm5vbTTz8lJSWV91QqmapZcM/MzNy4cWOrVq0cHR0PHjwo+4Xy5cuXbWxszMzMdu/e7ePjwzVmZGSk/tfRo0eLLaqWRCAQTJ8+/dy5c/v373/79m1ZTwfURFhYmJ2dnampqbu7+9GjR2Xc69OnTytWrGjevPncuXP3798v/nXx9OnT33777fXr19u0afPkyZMBAwbs3btXlmOGh4d36dIlMDDQxMREIBAsW7asb9++ubm55TkrUCnGmL29/cSJEzMyMpo3b37u3DkzM7OzZ8+W6SDHjh1bv359QECAaMc///zT3Ny8f//+Bw4cuHz5sozHSUhI6NGjx/r162vWrGloaLh9+3ZTU9Niv4WC+rtx48bXX3994sSJZs2a5eXlzZ8/v3///sWWnCQ8fPiwS5cufn5+zZs3J6JffvnF0tIyOzs7MTHR2dm5WbNmTk5OHh4eCQkJMkayc+dOKyurd+/etWzZMiYmZsSIEc7OzhU6N1CR/Pz8IUOGzJo1q6CgoFmzZt7e3p07dy72elratGnTxo4dm5KSYmJicuXKlR49epw4cYKIhELhyJEj58+fr6+v371799DQ0C5duvz9999fPGBeXt6uXbvat2///fffe3p63r17t6KnBypy5syZbt26BQcHt2jR4uPHj5MnTx43bpwsO96+fbtLly7Hjh1r2rRpQUHBwoUL+/Tpk5+fT0TBwcFdu3a9detW9+7ddXV1Z8+ePXbs2DKVOAsKCqZOncpduuNzsJLy9/c3MzO7fPlyixYtkpKSpk6dOmbMGFl2DA0NHT58uKmp6Y4dO/78809R+9atWy0tLaOiolq0aPHkyZNhw4atWrVKlgP6+Ph069bt6tWrLVq0SEhImDRp0g8//FDOswI14OjoaG9vn5qaamJiEhQU1L17d1meGc3Ly9u5c2e7du3GjBnj6ekpeq4iLi5u0aJFzZo1W7Zs2d69e2Uc7CIUCg8dOtSlS5chQ4Z4enqGhoZW6JRADSCvQEEKCgqmTZvGXdK8e/dOll2uX78+YsSIjh07urm5HTlyRPylgICATp06eXl51axZs2HDhsWOh5D24cOHZcuWNWvWbNGiRfv27fv06VM5T6bSYVVRSkrKqFGjDh48GBwcTEQ+Pj7S23Bj269cuSLeuGrVql9//TU8PLx3794DBw4s9uDh4eFEdPr0aYn25s2bu7q6FrvLli1bdHV1jx07RkT+/v7lOidQvU2bNjk7O9+8eXP48OHffPNNsdv8+OOPAwYMEG+JiooaP378X3/9xSXA3bt3ufbs7GxjY2MzM7OMjAzGmEAgGDp0aM2aNT99+iRxzFq1anl4eIi3rFq1ysHBQSAQcD9ynaCfn59cThOU6cmTJ40aNQoKCuJ+TE9Pb9KkSY8ePSQ2c3Nza9iwYbFH+PTpU8OGDRcsWNCvXz9ra2uuccaMGa6urtHR0fXr1587d26xO3bq1GnVqlXiLV5eXq1atXr//j334+3bt3k83i+//FLuswMVcnJyGjBgQG5uLvfj9u3biSgwMFBis7p16+7cuVO85ffffx8zZkxhYSH3I1cV9fb2fvTo0YQJE06cOHHo0CEievTokfSbhoWFEdG7d+9ELQUFBb179z506JCoxcHBQUtLKzs7Wy6nCcp069atRo0aiT7FEhMT69SpM2zYMInNVq1a1alTJ/GWN2/eNG3a1NfXl/sxJyenTZs27du3Z4xxk4Rs376deyk7O7tRo0bDhw+XOObBgwf19fXFW/Lz88eMGbNr166HDx8Skbu7u5zOEpRt9OjREydOFF3SLFq0iIgePnwovk1WVpb0JfTixYutra1FncmuXbuIiEuzQYMGcfcauZf+97//EdHjx48l3rpBgwYlZc7atWtr1Kjh5eVFRJcvX67wWYIKjB071sHBQfRxtmzZMiIKDw8X34YbrSLqnTgbNmxYvnz5rVu3Bg8ebGFhIdrSzMxszZo13I9CoXD48OHa2trp6eni+3J92rNnz8QbbW1tp0yZIkry+fPnE1FkZKT8zhWUJyYmpkmTJgEBAdyP2dnZLVu2NDU1ldjswIEDNWvWFG/Jy8v7/vvvd+/ezT3jtWPHDq79xo0bkydPPnXqFPc4xZs3b6TflHs6kPvOyBEKhRMnTty6devLly+1tLRWrlwpz5MEpUNegeKsX79eX1+fGzB64cIF6Q2I6Pjx4+Itmzdv/vnnn2/cuGFnZ9e1a1dRe3x8fO3atfv27ZuTk1PKO44fP37kyJHiLRERET/88IO3t/f+/fuJKCoqqmLnVGloKaOor3RGRkZnzpwhIukJE0q3du1a7h88Hq+kbbZu3dqyZcuRI0fKeMw3b96sWbPml19+6dChQ5mCAXXDXakTkYZGGR4N6dixI1exkhi2HBISkpiYuHHjRgMDA+6YCxcuvHDhQkBAwPTp00s/5tq1axljoixt06YNEVWj+4RVSKdOneLi4jQ1Nbkfa9Wq9d1333Ff/ErphcQ5OTlpamr+9ttv4p2SaEasMpk8efLEiRNFwfTs2bNRo0aRkZHlOBSonLu7u0AgEP01R44cuWjRosjISFtb29J3/PXXX6W7l6SkJHt7+7/++ouIip3ZoyRaWlo3btwQT+Y2bdoUFhampqbq6+uX6YxA5Xr16iXeXzVs2LB3796ydBEmJiZv374V7ainpzd48OC9e/fm5eVxox+MjY25l/T19Y2NjWV5zlRbW/vUqVNElJycXL7TATXh6+srEAhEV1ajRo3avn17ZGRk165dS99x69atEr3cvHnzIiMjR48enZiYaGRkpKOjw73UsmVLIpL9+eVnz56tX7/+t99+a9WqVXlOCdSDj4+PRIZs3rz5yZMn5ubmpe/4yy+/cP8Qv+DX1dW9f/8++//nJHg83ogRI86dO/fs2bPu3buXfsDAwEDxJB85cuTOnTsjIyNNTU3LcV6gWq1atYqNjRXllb6+/qBBgzw9PQsKCrS1tUvZUUdHh7uCkuiLvv3222+//ZaIuAENMuLxeNxYLqgakFegIM+fP1+7du3q1atbt24t+15Lly7l/iHKSc6RI0fS09O3bNmip6dXpjC++eYb7okxrjJWfVTNKWUUJy4u7tSpU4sXL5bIvFLw+fzGjRvjCXqQ8PLlSyLq06ePqIX79/Pnz2XZXVTAys7O3r59e+3atYcNG6aAMEHhJDqTzMxMPT09GavtFy5cOH78+K5du+rUqSP3YBhjWVlZqIpWXuJ/TW58qIx/TVH65eTkbN261cDA4ItlelmORkRv3749evRo3759mzRpUu4DggpJ91cyJpX0jtra2lpaWj179qxVq5azszP3SOKNGzceP378xbvOUMWIp0dmZiYR1ahRo3w7cgk5cODAx48fL1q06N9//y0sLNy/f3/79u250sMXCYXCGTNmtGnThhtrD5VaSRlSPjweT7wEX8FclXFHUEPSn2g6OjpaWlVzICMoDfIK5I4x9tNPP7Vu3XrJkiVyOWBYWFi9evV69Ojx/PlzPz+/e/fuMSxJUioU3Mtm+/btBgYGU6dOlXH7P/74IygoaO/evWW9BQRVHjfXlWhYHxHp6+sbGBjIMgcWJyAgwMrKqmnTpnfu3Pn7779RwKoCUlNTg4ODR4wYIcvGWVlZc+fOHTp06Pfff6+IYC5dupSenm5nZ6eIg4OS+fj4aGlpDR06VMbtz58/z3Uvf//9d2hoaLNmzSoYwKpVq7755pt27dp16tTJz8+vgkcDdRAbG3vnzp1ydBHZ2dnnzp0bNmyYpqZm3bp1AwICPn36NHDgwPbt2w8ZMmTdunV8Pl8RAUOl4OPjU6tWrX79+pVjR01NTW7wwdq1a4cMGeLm5ta4ceOuXbvGxcWFhITo6urKcpx9+/bdvHnTw8Oj9EGFUOn4+PgYGBj0799fjgds27Ztx44dy7GjoaFh37595RUJqFBmZuaFCxeGDx8u41gZAFkgr0AuPDw8rl69umvXLtEzfxUUGxtbu3btQYMGtW/f3sHBwcLCwtLSEg+blgIF9zJIT0/39PScPXs2NwfIFyUkJCxdunTKlCkDBgxQdGxQ6RR7M1BDQ0P2m4StW7d2cHCYNm1aVlbWokWLuPEyUKnNmzePMSaa26p0zs7OiYmJu3fvVkQk6enpTk5O3bt3x7peVUBkZOSWLVtmz57drl07GXdp1aoV173k5eUtXLgwPT29gjFYWVlNmjRpzJgxV65ckV7sHiodoVA4a9asOnXqrFixoqz7Ll26ND093dXVlYiys7PXrVvXvHnzI0eO9OjRQygUbty4MSAgQAEhQyVw5cqVI0eOrFq1qm7dumXaMTo6euPGjTNmzOjUqRMRBQQEhIaGrl69evXq1UT0/PnzOXPmZGdnf/E48fHxK1eu5PP5Mg6Hh8ri6tWrhw8fXrFiRf369eVywL17996+fXvLli1lLYddvHjx+PHjq1evlteziaBaixcvzsrK4haKAJAX5BVU3IcPH3755ZcZM2ZYW1vL65j5+fkfPnzo379/QkJCTk6Or6/v3bt3MZlHKfCIShns378/Ozt7zpw5Mm6/YMGCrKwsBwcHbv2c6OhoIoqJiXn16hUmhQRuQPqnT59q1qzJteTm5qanp8s+ktTU1JSb/HHixIndu3ffvXs3OrtKbeXKlSdPnvzrr7+++uqrL2588+bNvXv3Tps2LSUlJSUlhYgyMjJ4PF5ERMTXX39dwZvY2dnZo0aNSk9PDwwMLNOKBaCG3rx5Y2dn16VLlzJdtXfo0IFbd2Tq1KldunRxd3f/9ddfKxLGkCFDhgwZQkTcNIL29vZdunSpyAFBhRhj8+bNCwkJCQgIMDIyKtO+mzZt2rdv34EDB7jbP5s3b7527VpUVFS7du0cHR0/fPgwYsSISZMmxcbGGhoaKiZ8UFP3798fN27ciBEjFi9eXKYd3759O3z48M6dO2/evJmIUlJSpk+f/sMPP/z2229E9Msvv+zatWv+/Pnbt29fuXJl6YeaPXt2Xl7emDFjREtfEtGLFy/atm3bokWL8p0XqNyDBw/s7e2HDx8umpS2gnx9fRcsWLBw4UIZH0kUuXXr1vjx40eNGsWtmwqV3caNGz09PY8cOVKmyZEBSoe8Arn46aefcnNz7e3txS9pXr58+fr1a25tm3Jo1KhRjRo1RCudjB49euDAgdzqu1AsFNxlVVhYuHPnzh9++EGWWhgRZWRkeHt7E5HEI/yLFy++ffv2yZMnFRIlVB7cTZe7d++KvsLdu3dP1F4m5ubmNWrUePTokVwDBOXJzs6eNWvWyZMnjxw5Mm7cOFl2+eOPP4RCoaenp6enp3h79+7d3717J2M3VazXr1+PGTMmISEhJCSkffv25T4OqINr166NHz++ZcuWFy9elPHZLAlff/21oaHh48eP5RUS9xD948ePUXCvpNLS0iZPnhwcHHzmzJnBgwfLviP3tMSBAwf27dv3448/co337t1r1KiR6NmLxo0bz549e8aMGc+ePevZs6f8owd15ePj8+OPP/br1+/kyZNlmrI2LCxs3LhxzZo1u3DhQq1atYgoOjo6KytLfFKaefPmrV27lrvKKsXHjx+5L40DBw4Ub587d+7kyZO9vLzKcD6gNnx9fadNm2ZlZeXt7V3xaYIYY9u2bVu+fPmcOXPK+rTWiRMnZsyYMXDgwBMnTmBe5souLy9v/vz5f/zxx/79+ydOnKjqcKCKQF6BvCQnJ/v7+xPRoEGDxNvnz59/586do0ePlu+wX3311blz5woLC0WfYgYGBgUFBRWMtgrD0EVZnTx5MjY2duHChTJuX7NmzZj/4jJ+//79O3bsUGSkUDkMGDDA0NBw165doh6Km+tflvlwz549y93O4Tx69Cg7O9vExERRsYIivXz5snfv3hcvXrx06ZLs87ds2LBBooexsLDo2bNnTExMo0aNyh3MhQsXunfvzuPxbt++zT2YD5UUY8zd3X3QoEEDBw68evWq7I+uX7x48a+//hL9GB0dnZaWVpHuZcOGDdyQCs6tW7eICP1VJfX06dPevXvfv3//2rVrZVqpOy4uztra2tvb+/z58+JTtLdu3TohIeHNmzeilnv37mloaFTkriFULoWFhcuXLx8/fvycOXP8/PzK9ITW/v37BwwY0L9//2vXroketuAGLnBdDef169dJSUlf7Hbq1asn8cHKjY/x8vLixs5D5SIQCNasWTN27FgHBwd/f38ZJ/EvRWZmpoODw/Lly9etW+fu7i77ZDJckv/www/z5s07ffo0lgeo7OLi4vr16+fr63v+/HnR/WOACkJegRwZGhpKXNKcOnWKiP7444+tW7eW+7CDBg36999/RaOH4+Pjg4KCLC0t5RN0VVRl764fP3780aNHnz59IqI///wzPDy8T58+w4cPL32vmJiYAwcOENHbt2+1tbWXL1+uo6Pz+++/E5G7u/vAgQPNzMxkDEBDQ0NiqHJqaioRGRsbi6+TCZVIQkKCm5sbEUVHR2dkZCxfvpyI1q1b98VRKnv27ImNjY2JiSGiXbt2NW7ceMSIEd9+++3mzZtnzpw5cODAIUOG3Lx5MzAwcMOGDbJUS4ODg3fs2HH27NkePXokJiYeOHCgYcOGsk92BOrj9u3bQ4cO/ffffydOnHjp0qVLly5x7fPmzSu93tSgQYMGDRqIt+jr6/N4PK7buXPnzpkzZ4goKyvr1q1by5cvb9q06RefX96xY8eiRYv09PT69u27Z88erlFPT2/NmjXlPT9QGUdHxz///LN58+ZfffUVN68CEbVv337atGml7xgSErJly5Zz58717Nnz06dPBw8erFev3rx584ho586d79+/56rn7u7uDRo0GD16dOnDkDMzM0+dOsX1dc2aNXv8+LGXl5eNjY2VlZWcThSU59KlS2PGjMnJyZk2bdrp06dPnz7Ntf/888+lz7j9+PFjGxubT58+jR07NiQkJCQkhGufMWMGn88/fPiwtbX1vHnzGjdufO3atUOHDs2ZM6dp06ZfjOfcuXNhYWE5OTlEFBgYGB8f37Vr1wkTJlT4REF5BAKBjY1NaGho586diUg05UvPnj1Hjx5d+r5Tp0718vL66quvmjdvzl2rE1GbNm1mzJgxadKkffv25eTkfPfdd8nJyTt27Khbt+4XB81oampKXLrHx8cTUePGjRs2bFi+EwRVEQqF3P1mU1NTIyOjVatWce09evQYM2ZM6fu+f/9+586dRPTs2bOcnBzugn/x4sXW1tbR0dH9+vVLTU3lGolo+PDhffr0KeVoBQUF33333fXr17t27UpEonUvevfuPXLkyIqdJajAgwcPBg0alJSUNG7cuCtXrly5coVrnzVr1hdnaTh79uz169e5j62AgID379+bmZk5ODhs3rw5OTmZe5pw48aNtWvXnjBhApcwpQgNDb1w4QIRCYXCkJCQ5cuXt27deubMmXI4SVA65BXIl/QlTWJiIhE1atRIlkuaxMTE7du3E9GTJ0/S0tK4j7y1a9dOmDBh9+7d06dPv3r1qrGx8ZEjRxhjMk5b6ubmlpCQwM2zvW3btnr16o0dO7Z79+7lOLtKpMoW3F+9esXNVWRjY5OZmRkRESHL3IvclkTErTgfERGhr69PRC9fvizfymDiateubWNjI1Ejg0okOzubSw8ul7h/C4XCL+747NmzqKgoIrKxsYmPj4+Pj+/VqxcRzZgxo1GjRh4eHsePH2/cuPHx48cdHBxkicTNzc3KyuqPP/7YvXu3np7e2LFjly9fLvvk76A+EhISuI+ZxMRE7lOQk5WVVdZDmZubiwZbJSUlcfnJ3XCOiIiQZdHL5OTk7777jogiIyNFjaI1BqByycvLs7Gxof/vqTiyzMi/adOm3r17e3p67t27V0dHZ9SoUcuXL+dGhkZHR7948YKIbGxsYmNjY2NjS68yEJGBgcGNGzfc3d3PnTvn6+vbqFGjtWvXLliwoKyrzIE6SExM7N27NxG9ffv27du3ovb8/Pwv7sh9wfv333/FE3L8+PHdunX7559/tm3bdubMmU+fPpmYmHh6ek6ZMkWWeN69eye60iOiiIgIbkYRqEQEAoG2trZ0ZyXL4IPc3FzpHbmV5w8fPjx48OATJ064urrq6OgMGzbM2dm5HJdJhoaGNjY29erVK+uOoHJCoVBTU1M6Q2T5Iia64OeqFdy/09LSmjZtyt0LFD9gjx49Sj9aYWGhnp6edCSy3FYENZSYmMiNwBOtosTJyMj44r5xcXESH1vcA4iRkZHc7T0bGxvuQotb9qZ0CQkJ3NG4q/eIiAiBQFCucwLVQ16BotWpU0f2S5rc3FwuDbjvgKLCl66ubnBw8ObNm4P/j737jIvi6uIAfHaX3kRRrBg09orBjiWWxIYlJtjRVHuwt8SIYolJ1KCvJmpMImg0YkFRsfeKYkdQsGBXRBSQzu55PwxZlqW4wO7OLvyfnx90Zpx70Muw98y95x4+fPny5e7du0+fPr127dqa3DM8PPz+/ftE1LVr1+jo6OjoaC3u5mqwJMIH01IoJiamYsWKR44cER4lxffee++NHTsWu1aWcl9//XV0dPThw4e1eE87O7slS5aorsGH0mb58uWLFi1SzcgXX8OGDfv37z9//nwt3hOMjoODw7x584QJ7MV3+vTp9u3bF3MXATB2P/zww44dO27evKnFe/7555/ffvttcnKyFu8JRiQ5Odna2nrXrl2F3aOyYI6OjrNnz/by8tLiPcG4pKWlWVhY7Nix450rKjR0+fJlV1fX27dvK7emgNJp3bp1EydOfPv2rVbutmfPnt69eycmJhZtPx4oMdCvQBckEonmUz81MWjQoNTU1J07d2rrhsYLNdwBAAAAAAAAAAAAALSgxJaUeSdTU1MXFxctrj5u1KgRirND9erV31nSvbCaNm1avnx57d4TjIujo2Pjxo21e8/69etXqVJFu/cEo9OkSRMtFjqzsbFxcXEp1J6HUPJUqVJFqMunRQ4ODppvogMlj1QqdXFx0XzzZw01btwYxdlLOaFr2dvba+uGVlZWLi4uFhYW2rohGKny5cu/s1i25sqUKePi4iKTybR1QzBS6FegCy4uLsqd57WiRo0aaWlpWryh8Sq9JWUAAAAAAAAAAAAAALQIJWUAAAAAAAAAAAAAALQACXcAAAAAAAAAAAAAAC1Awh0AAAAAAAAAAAAAQAuQcAcAAAAAAAAAAAAA0AIk3AEAAAAAAAAAAAAAtAAJdwAAAAAAAAAAAAAALUDCHQAAAAAAAAAAAABAC5BwBwAAAAAAAAAAAADQAiTcAQAAAAAAAAAAAAC0AAl3AAAAAAAAAAAAAAAtQMIdAAAAAAAAAAAAAEALkHAHAAAAAAAAAAAAANACJNwBAAAAAAAAAAAAALQACXcAAAAAAAAAAAAAAC1Awh0AAAAAAAAAAAAAQAuQcAcAAAAAAAAAAAAA0AIk3AEAAAAAAAAAAAAAtAAJdwAAAAAAAAAAAAAALUDCHQAAAAAAAAAAAABAC5BwBwAAAAAAAAAAAADQAiTcAQAAAAAAAAAAAAC0AAl3AAAAAAAAAAAAAAAtQMIdAAAAAAAAAAAAAEALkHAHAAAAAAAAAAAAANACJNwBAAAAAAAAAAAAALQACXcAAAAAAAAAAAAAAC1Awh0AAAAAAAAAAAAAQAuQcAcAAAAAAAAAAAAA0AIk3AEAAAAAAAAAAAAAtAAJdwAAAAAAAAAAAAAALUDCHQAAAAAAAAAAAABAC5BwBwAAAAAAAAAAAADQAiTcAQAAAAAAAAAAAAC0AAl3AAAAAAAAAAAAAAAtQMIdAAAAAAAAAAAAAEALkHAHAAAAAAAAAAAAANACJNwBAAAAAAAAAAAAALQACXcAAAAAAAAAAAAAAC1Awh0AAAAAAAAAAAAAjIazM61dm+PIjh3k4ECpqSIFpAIJdwAAAAAAAAAAAAAwGq9eUUpKjiNpaRQXR8wiBaQCCXcAAAAAAAAAgGzPntHEifToUY6D27fTkiUiBQQAAMYDCXcAAAAAAAAotOPHadeuHEeYafVqioxUv/LmTVq7lqKjs49kZqofATAosbG0fDk9f57j4LFj9M8/IgUEAFB4aWlpYodQSpmIHQAAAAAAAAAYH39/ioykvn2zj8jlNGYM+flRnTo5rjx6lLy8qEMHOn6cJBIiorQ0GjWKAgPJ2VmfIQMAAJRkb9++vXr16qVLl86cOXPy5MlPPvmkXbt2Q4cOFTsuXdm2jW7fzv7jnTvihZITEu4AAAAAAACgW3Z2dPUqbdxInp5ihwIAAFBSKBSKiIiIkJCQ8+fPnz9/Pjw8XC6XK8+uW7du3bp1Li4uDRs2FDFI3ZFKydQ0+48ymXih5FSSE+63blF6OjVpkn3k5Ut68oRcXMSLCYwf+hUAAAAAQGHZ2NDYsTR1KvXqReXKiR0NgGZu3KDMzOw/qlWYAQAQRXx8/MWLF0+fPn3p0qWzl4rrcQAAIABJREFUZ8/GxcUpT5mYmDRo0KBdu3Zubm6urq6rV69euXKll5fXkSNHRAxYd/r3pwkTsv+4eTPt3y9eNCpKcsJ9xAi6cIH27qWePbOO7NhB06ZRQoKoYYGRQ78CAAAAABDI5fT6dY4/FmDKFPrrL5o5k9au1XVcANoxaVKO+ZLJyVS/vnjRAEBplZmZefv27TNnzghJ9oiICGZWnq1cubKrq6syyW5paak85ePj8++//x49enTHjh39+/cXI/ZSqiQn3InIzo4mTqTOncnCQuxQoARBvwIAAAAAIKLz5wsxXd3Cglatol69aMQILA8F43D4MLVokf3H8ePpzBnxogGA0uTp06eXLl0SqrGfOXMmJSVFecra2trFxcXV1dXV1bVDhw7O+W+HUrZsWR8fn7Fjx06aNKl79+5WVlb6CB1KfMJ92DAKDKQff6R588QOBUoQ9CsAAAAAACJq2ZJ2787+o1xOVaoUdH337tSrF40fTydO6Do0Q5GRkREfH79p06bmzZs3a9ZMdeIhAACAUlJS0pUrV4Qk+6lTp6Kjo1XP1qxZU5jA7urq2rJlSzMzMw1vO3LkyDVr1ly7dm3p0qU//PCD9uOGvJTwhLuNDS1eTN98Q4MGYeUXaA36FQAAAAAAEZmakqNj9h9Vq13nZ8UKatiQ/vpLd0EZEGYeNWpUSEhIeHg4Eclksrp167r+p3nz5hZYMwsAUIrdu3dPqBJz6dKlixcvpqenK0/Z2dm1bNlSSLK3bdvWwcGhaE3IZLJVq1a1b9/+xx9/HD58+Hvvvael2MW3cyfVrp3jSKdOtH8/mZuLFJCKEp5wJyJPT1qzhsaPp8OHxQ4FShD0KzAu//xDpqY0YED2kdBQuncvxxEA7Tp1iiIiaNAgsrPLOhITQzt35jgCJcPx4xQZSUOHkrV11pFnz2j3bhoyhGxsRI0MQDN4XumZszN99x0tWCB2HHoxd+7cv//+29LSsm/fvtHR0Tdv3gwPDw8PD9+wYQMRmZmZNW3atPl/GjRoYGJS8kfooH8nTpz47rvv2rZtm5CQsGDBggoVKogdEegbxoOGZu3atdu3bw8JCYmPj1ceNDU1bdGiRav/1FbLJReDm5vbgAEDtmzZMnPmzM2bN2vrtqL79196+ZI2bSJlpZwzZ+jff6lbN1HDIqLSkHCXSOi336h5c/r3X7FDgRIE/QqMy4wZ9OQJ2dhkb/a7ezcFBOADFujQP//QmjUUHk6+vllH7t+nUaOoc2cksEqa9evJz4/u3qWffso6EhVFo0ZRjx5IuINxwPNKFzZupP/9jyQSGjSIJk5UPzttGm3cSK9eiRGZHq1bt87Hx0cmk23atKlfv35ElJGRERkZKRTkPX369K1bty5evHjx4kXhelNT09q1ayt3vatfv75UKhX1KyjVypaloUOpfPkcB1u2JHt7kQIqkujo6OnTp2/dupWIQkND09PTt2/f7uPjM3LkSLzdKVUwHjQoO3bsWL9+/blz5+i//U6VW54WuexYamrqpUuXQkJCQkJCpFJp7qz6kiVL9uzZ8++//44ePbpjx47F/RoMw/nzFBZG8+fTjz9mHXn4kE6eFDWm/5TMn98q74eIiJo2pfHjacYMSk7O+wIATaBfgVGrWpUmTKDUVLHjgNKkShVatYouXRI7DtC9KlXo11/pxg2x4wAoKjyviqZGDapXL8cRiYRcXcnens6doyNH6NgxWrWK7t4lR0dq0iT7MjMzWrky68qSKjg4eMyYMUS0fPlyIdtORKampg0bNhw+fPiaNWtu3rwZHx9/6tQpX19fT0/PBg0aZGZmhoeHr127dsSIEY0aNSpTpky7du0mTJjg7+9/8+ZNZhb1Cyp1Klakvn3p+fMcB2vXzs5XGrjk5OS5c+c2aNBg69atVlZW3t7eISEh3bt3f/Xq1bhx4xo3brxv3z6xYwS9wnjQcGzcuPHcuXPTpk178uTJ06dPd+/ePXfu3K5duxY22/706dOtW7dOmDChXbt2ZcuWbdeu3ZQpUwICAoKCgjJzlXirVq3ajBkziGj8+PG5zxqvdu1o6VIKCxM7jlxK2ivN9HT6/XeaMyfH1j1ENG8eBQTQqlVERI8fU6NGNHAgLVhAWEoFmkC/ghJgzBhatYoWLSIfH7FDgVKjUSMqW5ZGj6bz50kmEzsa0CVXV5LJaPRoOnWKMB0TjBGeV0WTe+s1mYxCQ4mI+vTJOlK9OsXH08CBNHBgjiu7dKHQUHryhAYPpv/9T30esbELDQ0dOHBgZmbmnDlzxo0bl99lNjY27dq1a9eunfDHhISE69evX/pPRETEmTNnzpw5I5y1s7Nr3Lixsv57w4YN9fGVlGIpKTRgAFlZUVgY1aiRdXDZMpLLaccOUSN7F2betm3btGnTHjx4IJFIPDw8fvnlF6Fq8759+3bv3j1p0qRbt2717NnT3d3d19f3/fffFztk0AeMBw3H06dPiahfv35VCt5nPJf4+PgLFy6cP39emMkeGxurPCWTyZo2bdq6dWuhHI0sr08z06ZN+/vvv8PCwtatWzd69OhifhUGoksXsrOjMWPo5EmSSMSORkWJSrgHBtLUqXTvHhHR/v05TtnZ0ZIlNGQI2drS4cP09i2tXUvbt9P8+TRyJD5VQ0EK26927CAfH/QrKAS5XH7gwAHNrzczq52eXohqbm5uREQ2NvTjjzRqFA0dSnXrFjZGKIHOnz8fFxen4cUymY1c3kHzmyvrDf78M9WvT7//TuPHFzZAMDJLllDDhvTnn/TNN9kH9+0jzWdkmpk9TU+/qnmLrVq1KvLmUWBc8LwyXjdvUkwMNW6c7wXjx9POnZSYSLt3G9Y4uTju3bvn7u7+9u3boUOHzp07V/O/aGdnp5p/f/PmTVhYmFB/5tSpU8+fP1fNv9vb2zds2FAoQdCiRYtKlSpp/QsBIrKxoQkTKChI7Dg0dunSpQkTJgj9xNXV1dfXV9mjBL179+7evftvv/02Z86cPXv2HDhwYMyYMfPnz7dDCS3xYDxY2ggJd02y7XK5/NatW8Jb2DNnzly5ckWhUCjPVqpUqXnz5sqKNGXLli34bhYWFkuWLPn000+///57Dw+PEvNBetkyatKE/vqLvvpK7FBUcYkQEcHduzMRE3G9ehwczMzcsiVPn57jsi5d2NY23+sB1BSzX+3bJ0LMYHSio6MnTJhQqOd2hw4BQjfT8NeFC1y1Kvv6skLBbdtyx46sUPCcOVyvnthfPIhEoVBMmjTJ1dVV815XrVr7QvU6b28eNYo//piZef58trPjx4/5/Hkm4qgosb9+0LYRI7h3b2bm2bO5XDl+8YJPnGAifviQpdJCdJu2bTcU6mE4bty4ffhZW9LheWXUHjzgJk04NLSgax494vLlmYiXLtVXWDr28uXLOnXqEFHnzp3T0tK0eOdHjx4FBgZ+9913H3/8cbly5dR6vpOT0yeffLJw4cKYmBgtNlqaxcczEfv6sokJBwZmHfzsM/7kE1HDyt/Tp09Hjhwp1P2vXLnymjVrMjMztXg96AjGg6WNQqEwMzOTSCQpKSl5XvDs2bOgoCBvb293d3e1HLqpqamrq6uXl5efn19YWFjRAujWrRsRjR8/vhhfhKFo1Ii9vZmZv/uOHRz45UtetowdHTk1lX18eN8+jo0VLTYJG3kluLg4mjePfvuNMjOpXDmaM4fGjSMNN//YvZsmTsyauezuTr6+ZLBLqTIyMtLT062trcUOpLRAvwK9GThwYEBAgJOTU6NGjTT8K87O46OjC1E8cvly6tSJpk2jCRPoxg1ydSV/f4qIoIAAiogoUtBg5Pz9/UeMGGFnZ9e2bVuJZvMJy5SpEx/v++7r/jN0KJ06Rffv04EDlJ5OTZtS8+Y0fjy1bk1RUVSrVlFDB4P0+ecUF0dBQZSSQo0aUadONHw4dexIDx/S2LEkl2t6n/feO/bgwS8aXvz48eMbN27Url07LCzMzMysiKGDwcPzyngdOUKzZtHateTi8o4rg4PJ3Z1MTOjECWrTRi/B6UxKSkqXLl3OnTvn6up6/PhxG13uHP306VNl8Zlz5869+m8L2unTp0+dOrUCalwWW0IClSlDBw7Q3r0UGEjh4WRjQx4ehlhSJiMjQ5ixnpCQYGpqWqgZ6++cEQ+6hvFgafPy5UtHR8dy5cq9yrV1+Ndff3348OEHDx6oHnz//feVhWKaNWtmampazADCw8NdXFwUCsXly5ebqO6vYoQaN6ZPP6W5cyklhRo2pG7dqE4dWryYdu+mVq2yrqlcmVxds365uVGuF9Y6I1qqv9gyMnjNmqwJESYmPHIkF+Fdfloa+/qynR0Tsakpe3lxfLwOYi2q1NTUQ4cOeXl5OTo6jhs3bt68eWJHVPKhX4E+nT59WiKRWFpaPnjwQKcNCTMaBBMmcPXqPHUqZjSUUomJicLqxQ0bNui0IeWMUWY+eJAlEl6+HDNGSyblDHdm3r2bpVL29c2a4a47GRkZwrj0559/1mEzICo8r4zX48dcuza3bs1du3LXrrx//zuunzCBibhmTX7zRi/x6UZmZqawOWqNGjWePXumdvb+/fvJyck6aloul0dERGzYsKFWrVpEtGbNGh01VKoIM9wPHOD4eK5cmadMYTbIGe5BQUHKIuzu7u537twp7B0UCkVAQIBQ5F2o+R4dHa2LUCE3jAdLoatXrxJRo0aNcp/68MMPicjGxsbNzc3LyysgIODFixe6iMHLy4uIOnXqpIub65Nyhjsz79rFMhl/+SU7OvLt2zxpErdrx9bWOVZ7yGTcsCF//jmvXMkhIZyaqsPYjDXhfvgwN26c9e/VpQtfv16suz19yiNHZq16rlyZ16xhuVxLgRZJUlLStm3bhgwZovpS2sTEhIh27NghZmQlXYnvV9u3b0e/Mhxyubx58+ZEpId3HqofsIQxQ/ny+IBVSs2aNYuIWrdurVAodNqQagKLmQcMyHqXiQRWyaOacGfmvn2z/q91mnBn5sOHDxORra3t06dPddsSiATPq9IjPZ1btWIi/uwzsUMpBmFzVAcHh4iICLVTz549c3Z2dnNzi4uL02kMf//9NxF17dpVp62UEsqEOzP7+7OJCYeFZSXc793jX39lHSdI3y0iIqJ79+7CsK5evXrBxSuVm5SU5O3tbWlpSURWVlbe3t66e0UEAowHS6fg4GAi+lj1k8d/Ll68GBYWJtd95iguLk5YCLV161Zdt6VTqgl3ZnZ3Z5mMHR2zj2Rm8vXr/OefPHo0u7qyqWmO/LuZGTdvzmPG8D//HL9x44Z2y2oZX8I9Koo9PLL+aWrV4oAArd05NJTd3LLu7OrKp05p7c4aSkpKCgoK8vT0tLW1VeZDGzRo4O3tHR4evmLFCiKyt7fH22ZdQL9Cv9K/NWvWEJGTk1NSUpKu21L9gMXMmzZl7TQApc3du3ctLCwkEsn58+d13ZZaAuvZMy5TBgmskkkt4f7gQdZcEl0n3Jm5d+/eRPTVV1/pvCXQOzyvSps7d7KWhxrp5GwfHx8isrS0PH36tNqphISEDz74gIhatGjx9u1bnYbx+vVrMzMzmUymo0mRpYpqwl2h4I4d+aOPshLuCxdmje8aNGBvb871hkXnXr165eXlJcydKleunK+vb0ZGRn4XBwUFubi4aFjc/9GjR56enkIJr2rVqvn5+en6lWdphvFg6fTnn38S0YgRI8QNY/Xq1XrrfrqjlnAXhiGqCXc16ekcFsZ+fuzlxa6uLJMxEUskXK5cbSKytrYW1hYIJfKL+fQzpoR7fHz8woV7zMyYiO3s+OefWaub0DAzKxS8YQNXrZr1Lz59+s7Hjx9ruY1c4uLi/Pz8PDw8VEtpC/nQ27dvq8Sm6Nu3LxG1b98em5lokX76VUAAv/deVr/y8GA9JLfRrwxcfHx8pUqViGjLli16aK5HD968OceRYcP400/10DIYlk8++URvH+8WLuRx43Ic+f13dnXVRxIW9MzbmydOzHFkxQp2deXnz3Xe9J07d8zNzaVS6YULF3TeGOgXnlel0JYtTMQWFnz1qtihFNLGjRslEolUKt2+fbvaqfT0dGF7uvfff18/SfBevXoR0erVq/XQVsmmmnBn5rAwNjXlSpX4k0/48GEeOJBtbLKnSTZtyj4+fPOmzqPKyMhYs2ZN+fLlhcXKI0eOLCCTHhoa6ubmJowEFyxYoHkrx48fd/lv+4VWrVrp4cVnKYTxYKk1f/58Ipo1a5a4YSgXWMydO1fcSIogMZEHDuQ7d3jZMj50KMepgACeP1/T+yQk8PHj7OubNmDAgBo1aqjVYC9Xrly3bt1mz569a9euJ0+eFDZI40i4y+VyPz+/ihUrEpGLyxtPT85VEy9bWFhxp0UkJbG3Nzs7P7a2ttbdWqrY2Fg/Pz93d3flTl9SqdTNzc3X1ze/LH9cXFz16tWN9PvBAInSrywsmIitrNjbm3WxRC8mhjduPN+tWzflThoymaxjx44rVqxAvzIokydPJiI3N7fcb01TU1NfFCgmJvHFCy7gl4Zzp7Zt47Vrtf+lgcE6evSoUBMw98cFhULxrl4XW3Cv03CJfFgYT5nCmClVkhw/zkuWaPSuOi2toC704gXHxLzj6ZeYmJj7ttOmTSOiNm3aYApeSYLnVan19ddMxHXqcEKC2KFo7MiRI8KAbvny5WqnFArFF198QUTly5ePjIzUTzzr168noi5duuinuRJMLeHOzFOnMlF2DfeUFA4K4pEjuUKF7Mx7zZrs5cWnTunk6XH48OHGjRsLo7wuXbpcz78EamxsrJeXl0wmE8oc+fr6FnZylepgWSqVenp6PtfDi/TSBOPBUmvs2LFEtGLFCrED4TNnzghbCNy/f1/sWAohPZ179GAidnPT8p1fvnwZHBw8b948d3d34X2YqqpVq/br12/hwoW5C8flyQgS7idPnhSW4BFRu3btLl++kd+VcXHs5cUmJmxiwjfyvUpT0dGPP/vsM6FdZ2dnbRU2iomJEfLsqvlQIc+uSQXSEydOyGQyqVR69OhRrcRTaonVrx49Yk9PlkiYiKtVYz8/7XwUe/mS/fzY3Z1NTblhw/PoVwYuKipKmJJ58eLF3Gf9/f2pQB06BKjWHcv96/vv3x3DhQtMxDY2XPg3tWCUMjMzhT3oFy1alPvsq1evCu511aq1L7jXNW367hjS07PWkKnNrwHjlZnJTZowEWsyZAgKKqgLEXHbthsK7odjx47NfduEhITKlSsT0WZ0rJICz6vSLCWFmzZlIv7yS7FD0cz169fLlClDRDNnzsx99vvvvyciKyurc+fO6S0kVJXRlsRErlkzR0XQxER2deXRo9WvzMzkU6fYy4srVcp+1Lz3njYz71FRUR4eHsJTrlatWgH5l0BNT0/39fUVuqWpqamXl9ebYmxG/Pr16xkzZpibmxORjY2Nt7d3qk43GSw1MB4szYQ1fAZSPH3w4MFENGDAALED0ZRCwV98wURcvjyr1G7QiSdPngQFBXl7e7u7uzs4OCi/ATds2KDJXzfohLtq+bCqVasWUD4sI4PXrMl6sSyVsqcna1ag7N1U11J17NjxypUrRbvPgwcPfH193dzcpFKpcDdzc/OuXbv6+voW9pOQ8LmtWrVqsbGxRQumlDOMfpU1liDijh1Z2a0ePODQUE5Pz74yKYlDQzklJe/73L/PS5dy27ZZW7MSsbk59+6tWL9+46tXrwoVEvqVPglLfb/55ps8zwYEBFQoUM+e2ypU4AJ+/fijRmF88gkTsdi140BPVq1aRUQ1atRIyeuB8vr164J7XZMm7gX3Og23uF+3Lut1o45r2IKerFrFRFyjRr4/p1QdOFBQF6pQgbt121pwP5wxY0aed163bp3wI0zXxZFBP/C8KuXCwtjKiolYs/GsmO7fvy/MgBs0aFDuAcXatWuJSCaT7dy5U6dh5F4Igqoyxefjw0V4S5KZyUeO8NixXLlyduqzb9/QCRMmnDx5smgbIb59+9bb21tIeVtbWxec8j506FD9+vWFhEPXrl1vaqnGTWRkpDLdX7t27QLS/aAhjAdLs1atWhHRmTNnxA6Emfnx48c2NjZEdOzYMbFj0cj332cVjdDji2xmZoVCcevWrQ0bNnh5ed27d0+Tv2KgCfekpKTFixcL/+tWVlYzZszIcxGx4MiRrNlVRNypE1+7puVgirOW6t69e0KeXUjvEpGlpaW7u7ufn1+R3zNnZGS0bduWiPr371+0O5RaBtav2M+PHR2zs/nPn/PYsUzEP/2UfdnFi0zEt27l+Lv37rGvL7u5Zc2UF4pduruznx8XefoC+pXeHDp0iIhsbW2fFVDDSC/u3mULC5ZIGFUZS7y4uDih1mfu2rJ6JpdzixZMlGNzGzBScXFcvjwTsdjdiuVyeYsWLYjIGx3L+OF5Bcz8xx9MxFWqxEdFPRA7lnzFxsbWq1ePiD788MPcCdA9e/YIG1quWrVKp2F89NFHEokkKucOv6gqU0w7dmTN/C3kFKZscjmHhrK3N9eqxfXrDxNSAQ4ODp6enkFBQemqE6wKukl2IkIikXh6ehYwfLh161bPnj2FhurWrbt3794ihp6/Q4cONWzYUJnNv1H81d+lFcaDpZyTkxMRGU4VlwULFhBRw4YNC9h72UCsWcNEbGrKwcFih6IBQ0y4BwUFOTs7C89xd3f3AnrhnTvs4ZGVcKxenf38dBhVodZShYWFLV68WLk/iZDeFfLsCRrXI4yJiVm7du3Bgwdzn3r48GG5cuUwbaFQDLVf8cSJbGrKRFy1Ko8axba2bGXFyuhUE+5hYbx4Mbu5ZU+XsLLKyrMXocxl7pcN6Fd6kJGRIXxOXbJkidixMDPPmsVE3Lo1atSWcF5eXkTUScNZnTp25gxLJGxpqY/to0GnvLyy3kkbAmUNymh0LCOH5xUIxo+/Vb36+x988IFh1q9ITk5u164dETVq1Oj169dqZy9cuGBtbU162SHJ09OTctVfQlWZ4nj0iB0cNK2W9k4KBYeEXJgxY0atWrWUyQEHB4cvv/xy7969BXTvkJCQ1q1bC9e3bNmygKpEcXFxM2bMEDYSKFu27OLFi9M02VmlSNLT09W2bH358qWO2iqpMB4s5RQKhZmZmUQiyXMZnyhSU1Nr166thzfExbR7N5uYsETCf/4pdiiaMayE+6VLl4QPLkT0wQcfnDx5Mr8rExISfHzizc2ZiG1tefFi1s8nscjISHd39/zWUoWFhXl7eyvXcAk/8Dw9PQMCAjRf4/zy5UvVIu/u7u55XrZ161YisrCwuKb1qdcljuH3q9u32d2d58/nsWO5Sxfu2JGV/+1Cwv3ECa5bNzvPXrYsjxjBQUEaLeHP07///uvg4HBKtSQhM6Nf6d6yZcuIqFatWgYyekxM5CpVjGPVNhRZeHi4qampTCYznO/rQYOYiAcNEjsOKIbwcDY1ZZlM+yvAimzQoEFCYQexA4Giw/MKlBITE+vWrUtEXl5eYseiTi6Xf/rpp0J1yocPH6qdvXPnjjAl+auvvtJDMEFBQUTUrFkzteOoKlM0cjl37sxE3KOH9vOPQrrA1dU197Q81blQjx8/1rACqjAFvkKFCsq1+DHaKoFaoFevXil3ZC1XrlwRdmQtzTAeLOViYjI6dFjZvft8sQPJITAwUEhgGuwrtJAQtrZmIp5vWP9yBTGUhPvLly+Vj+zy5csX8MhWKBR+fn6VKlVq2XKBRMIeHpzrQ47Oqa2l2rBhw5QpU5Szp4nI0dFx5MiRBw4c0HCxGDPfv39/6dKlbdu2VS3y7u7uvnHjxvz+yldffSWs+0hOTtbSV1bSGFe/ksuzEu5XrrBMxjt2MP+XcI+IYCcndnBgT08OCuLiT1n47rvviKhatWq5S72jX+nOq1evhDUEe/bsETuWbOvXZy2wyL/AEhi37t27E9GYMWPEDiTbo0dZH5hOnBA7FCiq7t2ZiA2pW/GjR4+EKaUn0LGMFp5XoCo0NNTc3FwikQQGBoodSw7COowyZcrkfjP08uXLOnXqEFGPHj30szY/LS2tbNmyRBQZGal6HFVlimbu3KwPxjpNOkVERCxYsKBZs2bKBIK1tbWHh4efn5+Pj4/GFVCPCPtLC6uC9P+eMjw8vFu3bkIA9evX379/v54DMEYYD8LVq0zEjRqJHUcuwmewsWPHih1IHqKisqoxjxwpdiiFYRAJ98zMzJUrV9J/m2jHx8fnd+WZM2eaN28uPNPbtGkTGpqkzzhVqa6lEp6YRFShQgWhKJvmn67u37+vVuTdwsJCwyLvb9++FWbTjxs3rthfUAlkjP1KSLgz85gxXK0aJyRkl5S5c4e1OG+ggIrt6Fe6M2rUKOEtndiB5KBQcMuWTMSzZ4sdCuiAMPHNAGcreHszETdrxkXaPwxEFhSUtdzKwLoVe3t7CzM9i7YxHYgLzyvI7ddffxV6heHUul28eDERmZmZHT58WO1UUlJSmzZtiMjV1bWAPKnW5VdVxtzcHFVlCuXUKTYxYamUc/3f6kp0dLRaNkCYK/auCqh3lFuYOjk5+em0BOq7BAUF1axZUxjj6LPbGymMByE4mIn444/FjiMX5SrDq1evih1LDk+fsrMzE7G7Oxt8kfkcDCLhHh0dTUR2dnZqm72oUl1XVaVKlQLWVelTTEyMMLH9008/PXv2rOYhaaXIOzPfuHHD0tKSiAxt3ochMMZ+pUy4x8WxoyNPnZr3pqlaoazYvmbNGrVT6Fe6EBYWZmJiYmJiEhYWJnYs6s6dY4mELSxYs922wWikpaUJ8+x8fX3FjkVdcjK/9x4T8bp1YocChZSWxnXqMBEbXrfi5OTk9957j4jWoWMZGzyvIE8KhaJv375E1KpVK82XDuvO5s2bpVKpRCLJvQo5MzNTCLVGjRrPnz/XZ1SoKqMVr19n5XS+/16E1h89erR8+XKhDnsB+52+fftmOUkNAAAgAElEQVTW29vbwsJCmBTv7e1tCGWgU1JSOnbsSEQLFiwQOxaDhvEgMPO6dUzEI0aIHUdeJk6cSETt2rUzhHSrICGBmzVjIm7ZkjUu1G0oDCjhXr169TzPJicnL1682NbWlogsLS1nzJhRqJS0rgmrqPbt26fJxVop8q7G19dXuM+DBw+KdoeSyhj7lTLhzszr17OZGW/erKuEOxdYsR39Sus++ugjIpo4caLYgeRt2DAm4s8+EzsO0KpffvlFWORrCEmK3DZtYiJ2dOR3LegCw/LLL0zE9euzQXYr3rRpk1Dc750rBcGg4HkF+YmLixNepH333XfiRnLs2DFzc3MiWrZsWe6zY8eOJSIHB4dbOvrgnj9UldEKYcOGFi3E/Onm4OBARHmu8lFWQCUiiUTi4eGRe/8AEQkFS5FwLxjGg8DM8+czEc+aJXYceYmPjxceMlu2bBE7Fmbm9PSMjz5SEHHduhwbK3Y0hWfoCfegoKAaNWoIuWl3d/d7hve6TZOEu5BnF6btCBwcHITiM8XfQFyhUPTp04eI2rdvj71KVBljv1JNuCsU3L49166tw4Q751+xHf1Ku4R3G+XKlYs11B8Ujx9n1ag9dkzsUEBLXrx4UaZMGc1fCYuifXsm4unTxY4DNPbiBZcpw0RswN2KO3ToQETTpk0TOxDQFJ5XULCTJ0+amJhIpdKDBw+KFcONGzfs7e2JaPLkybnPzp07V5jEc+bMGf3HxqgqU2yrVzMRlykj8vTe/BLuaWlprVq1UlZAvXDhgijhFQAJ93fCeBAEY8cyEa9YIXYc+Vi7di0RVatWrchzgrVFoVCMGDHCzW24k1O6wVSVKxxDT7h37dpVWB9nsPtf5Zdwl8vlp06d8vLyqlatmjLPrizyrt3JOy9fvqxSpQoRzTei/Xp1zxj7lWrCnZnDwtjUVLcJ9wIqtqNfaUtqamqtWrWI6Pfffxc7loL4+DARN22qzd0CQERff/218E5R7EAKcvkyS6VsZsa3b4sdCmjm66+zSigassuXL0ulUjMzs9voWEYCzyt4p/nz5wuLV54+far/1h8/fuzk5EREAwYMyL1FxIYNGyQSiUwm2759u/5jE6CqTHHcvMlWVkzE//wjciQFzHAfNWqUIVRAzQ8S7gXDeBCU+vVjIt62Tew48iGXy1u0aEFE3t7e4kYyffp0IrK1tb1yJULcSIrM0BPuV69eXbt2rSHvfJVfwv2HH35Q5tmdnZ2nTJly5swZ3X0hx48fl8lkJiYmp0+f1lETRscY+5Vawp2Zp0zRbcKdC6zYjn6lFQsWLBCWEWi+nbIokpOzKlf++ado+waDtly+fFkmk5mZmel/YXthffklE7GHB3qdEbh6NcVYEo7C+q3evXuLHQi8G55XoAm5XC5UY+jUqZOeF1++efOmSZMmRNShQ4fc9bKDg4NNTEyIaIWo8xWVVWXUvo9QVeadUlO5aVMm4q++EjuUAhPur1+/Fn3CaQGQcC8YxoOgJOxPK9JqKI2cPXtWIpFYWlqKuF35b7/9RkSmpqb79+8XK4biM/SEu+HLL+F+/vz5OnXqzJo1KzQ0VD+RzJw5k4icnJxevXqlnxYNnFH3q1ev+MkTTk3VU3MFVGxHvyqmx48f29jYEJGIi6A1t317WseOEypXrvL69WuxY4FiEUpqTJ06VexA3u3ZM+7Sxb98eUej+B4pzRQKRYcOHVq1WjRnTrzYsbybUZQoAQGeV6Ch58+fC7Vl1Qqn6FRaWlqXLl2IqEGDBnFxcWpnQ0NDhY95oteXZ+bhw4cT0cKFC1UPoqrMO02dGkfE9eoZxHZ8BSTcDccPP/zg7u5+5coV1YNIuBcA40FQ5eTERGzgNVJ69eolk8ns7e3d3d29vb2DgoJiYmL01vquXbtkMplEIlm/fr3eGtUFEwLdaNWq1e3bt/XZ4vz580+cOHHu3LmRI0du27ZNn02D1g0ZQgcO0L591L27Pprz8vI6evRoUFDQsGHDjh07JpPJlKfQr4pp1qxZb9++/fTTT4VpWQauf3+z//3v2rNnT318fJYtWyZ2OFBEW7ZsOXnypKOj4+zZs8WO5d0qVaKPP3525EjMhAkTrl27ZmpqKnZEkLeAgICTJ086Ot6aPHms2LG8m6Oj43fffTdjxozJkyd36dIF/cpg4XkFmqtYseKmTZu6du06Z84cuVxet25d5SmFQhEfH5/n30pNTU1JScnzVEJCglwuz31cLpcnJCQIv7948eKVK1eqVq26f/9+YQq50v37993d3d++fTt48GBh+qq4PDw8/P39t27dKqQ+Bfb29l27dt27d29gYOCoUaNEDM8w7dq1648/Pm/f/o8VKz6zthY7GiNx/vz5Q4cOffvtt2IHYjQwHgQlhYKePyeJhCpVEjuU/D18+PDSpUtE9ObNmz179uzZs0c4/v7777f4zwcffGCtm4fmyZMnBw4cKJfLf/rppxEjRuiiCf0RO+PPbOQzkTXZNFVv7t69K8zn+uOPP8SORXxG3q/0vSWdsmK7j4+P2in0qyI7d+6cRCIxNzePiooSOxZNXb16VagjFBYWJnYsUBTJycnOzs7G9Q2blpYm7Csu7np8KIBR96vly5eLHQvkzaj7FZ5XYhk9erSweal+lClTxtbWNs89KocMGUJEH330kXZ35yoyVJUprMePH5cvX56IfH19xY4li1HMcBeyxgcOHFA9iBnu+cF4EFS9eMFE7OAgdhz5U1ZR69ix4/3794OCgry9vbt27WplZaX6w1EmkzVo0MDT09PX1/fUqVO5660Vzc2bN4UfZKNHj9bKDcWFGe4lSs2aNf/4448BAwZMmDDBzc1N2AwTQBPly5fftGlTly5dfHx8Onfu7ObmpjyFflU0zDxx4kRmnjp1qrBJjlFo2rTpV199tXbt2kmTJh08eFDscKDQfv755+joaBcXly+++ELsWDRlZmb2888/9+vXz9vbe/DgwcLoFwyKkfarX375pW/fvnPnzh0yZAj6lQEy0n6F55W4nJyc3rx54+zsLOzqJpBKpcLskNwsLCyEzYpys7OzU13WqSSTyezs7ITfL1y48OHDhy9fvsx92dq1aytVquTt7W0gax3MzMx69+7t7++/fft21Unuffv2NTc3P378eExMjKOjo4gRGhSFQjF8+PDY2NgePXp4eXmJHQ6UTBgPgpqnT4mIqlQRO458pKam9u7d+/r16w0bNgwMDCxbtqyzs3Pv3r2JSC6X37p169J/QkNDw8PDw8PDN2zYQEQmJiZ16tRxdXV1dXVt166di4tLnj9eC/b06dMePXq8fv26T58+K1eu1P6Xp3/i5vsFRj4T2YBmuAs+//xzImrUqFFycrLYsYjJyPuVvme4C2bNmkX5VGxHvyosYT5RpUqV4uONoN6xqpiYGGHu2N69e8WOBQrn0aNHwuK+48ePix1LoQk/T8eNGyd2IKDOqPtV9+7diWjs2LFiBwLqjLpf4XklolatWhHRzp079dPc/Pnziejzzz/XT3PFtHv3biJycXFRO96rVy8iWr16tShRGSYfHx8iqlix4vPnz8WOJRtmuJcwGA+Cmr17mYg//ljsOPIil8s/++wzIqpaterDhw8Lvjg9PT0sLMzPz2/kyJENGjSQSqWqeWYbGxs3NzcvLy8/P7+wsDCFQvHO1uPj45s2bUr57E9upJBwLy4DTLi/ffu2Xr16ROTl5SV2LGIy8n4lTsI9IyOjTZs2RPTpp5+qnUK/KpTExEShRI+/v7/YsRTF0qVLiahWrVqpetu6F7Rh8ODBRDRw4ECxAymK8PBwU1NTmUx27do1sWOBHNCvQBfQr6AInjx5IpFIrKyskpKS9NOisCmXvb19WlqaflosDmVVmYiICNXjqCqjJiQkxNTUVCqVHjp0SOxYckDCvSTBeBByW7eOidgw3+EKa33KlClThM82CQkJp06d8vX19fT0bNCggUQiUc2/lylTRsi/BwQEPHv2LPdfT0tL69q1K+WzP7nxQsK9uAww4c7M169ft7CwkEgkepv9YYCMvF+Jk3Bn5nv37glrcteuXat2Cv1Kc8KHTldXV7lcLnYsRZGeni7sRbZs2TKxYwFNnT17ViKRWFpa3jfwbe/zJ2zA1blzZ7EDgWzoV6AL6FdQNKtWrSKi/v3767NRYc7dnj179NlokQ0fPpyIFi5cqHrw9evX5ubmMpnsxYsXYgVmOF6/fi3sHjFr1iyxY1GHhHtJgvEg5Objw0T83Xdix5HLokWLiMjCwuLkyZPFv9vr169PnTq1ePFid3f3ihUrqtVZqVy5sru7u7e3d1BQ0MuXLxUKxbBhw4ioSpUq0dHRxW/dcCDhXlyGmXDn/15Ili1b9sGDB2LHIg4j71eiJdyZOSAgQHjaXr9+Xe0U+pUm7t27J7yZOH/+vNixFN3evXuJyM7OLs+30FoXFsY3b+Y48uwZCx0wLIzVQoiP58uXOSNDD3EV0dGEowue6XXIIZfLW7ZsSURz5szRZ7vaFRcXJxRE3rFjhx6ae/SIQ0NZdc5icjKHhnJyMj98yLdvq19/5QrHxmqt9Zs3+enTHEcSE/nyZc49h/LuXb50iVXXYr55w6Gh+vgWQL8q2e6npNxKSlL9layXpAD6VRGI+7wyHMIMuA0bNuiz0QULFhDRiBEj9NlokeVXVcbd3Z2Ifv/9d1GiyltUFJ85wzducGamPpsVlte0aNHCAFctIOFeYmA8WAQlbDyYp7Aw/usvDgkRO46cNm3aJJFIpFLp1q1bdXH/6OjorVu3Tp8+vVOnTsotUgQSiUTYXMTe3j539snYIeFeXAabcFcoFMLmBh07dszU74cYA2Hk/UrMhDszC9uX5a7Yjn6lif79+xPR8OHDxQ6kuHr06EFEo0aN0kNbdeqwVMqqn0h//JGdnJiZq1XjuXNzXCwUv9PLB7932/NmT7eoblWvV618vXKvO73Ovz3PzD89/6lmWE19hvHnn38KFffevn2rz3a1Ttghp2bNmnoo3jdpEhOx6tjw+nUm4mvXeNQobtFC/Xoi/uMPrbX+/vusNrXu8GEm4tzzfT08mIjXr88+EhzMRJxrrw3tQ78q2TzCwlqEhra6dEn561pioh7aRb8qAnGfVwbi9evXZmZmpqamauvNdb38vGRUlfHz8zOgNRmnT3PDhkzENjZMxBUrZv+QmzSJ+/TR8Nfq8eP7aEyYpfvHH38I9YUjIyPF/BfIBxLuJQbGg0VgvONBZr51iz/+mNXmZy9dypMmcWoqd+3KatsJLVzIs2frM8B8HT161NzcnIh8fX310+KTJ08CAgK8vLzc3NwsLS2lUqmtrW3u+golABLuxdW//6Dy5R0PHjwqdiB5iImJqVy5cu5FhaWEUfcr0RPuyort3377rdqpUt6v3uno0aPC5/gnT56IHUtxRUVFmZmZSaXS0NBQXbdVpw7b2HDz5tmTnIziA9b/Yv5Hl2jo/aGb4jYFxAWMiB5hd9UuJiNGzwn3hIQE4bvyn3/+0VujOpKZmdmkSRMiWrRoka7bmjSJbWzY0pLv3Mk6YrAJdxsbrlAhe76qfhLu6FclnkdY2PLHj/XcKPpV0Yj7vDIQ/v7+RPTRRx+pHf/ggw9q165969Yt3TWNqjLadPMmW1nx0KEsbMoXF8dz57JEwps2MTM3a8ZEGv4a26EDaWzo0KGRkZG2trZEtHHjRnH/DfKDhHvJgPFg0RjpeFBw/jwTcVhYjoNffMFt23JyctZDKyAg+9TgwezurucY83D9+nWhnvDMmTNzn/3pp5/279+v0wDS09MHDRpERN8ZYJ2dYpMW8DMJNJGUtDk29oVc3knsQPJQoUKFTZs2SaVSb2/vs2fPih0OGBNra+uAgAALC4uVK1fu2rVL9RT6VQHkcvnEiROJaNasWcImOUatVq1a48aNUygUEyZMYGZdN/fNNxQZSb/9put2tCYmM2bak2lfOHyx0Xnj4LKDPcp6rH9vfVj9sAomFfQcyYIFC549e9amTRthlbRRk8lkv/76KxEtWrTo6dOnum7OxYXc3GjcOF23U1zdu5OjI82YoddG0a9AF9CvisxYnle6ExgYSESffPKJ6sEHDx5cuXLl2bNn7733nu6a9vDwIKKtW7fqrgktyjNae3v7jz76SC6X79ixQ6S4/uPjQw4O9Oef5ORERFS2LHl7U8+e9P33xEy//ko7d2r4a/SsWTs1Nn78+IEDByYmJn7++edDhw4V+R8BSi6MB4vD6MaDmuvQgSZOpIQEseNQcf/+/Y8//jg+Pn7w4MFCDXdVf/3118yZM/v166fTTzimpqajRo0i4/kJWygmYgcA2nT58uWmTZvKZDLlkQ8//HDq1Kk///zzoEGDrl27JiwwBNBE48aNFy1aNHny5C+++OLq1avVq1dXnkK/ys/atWuvX79eo0aNyZMnix2LdsydO3fz5s1nzpz566+/hOqfmpBILJnt3n3df8qVIyKqUIHmzKHZs6l/f6patQjB6tve+L2pitQZFXMkQZ3MnJS/z+CMuMy4Qt1TIpHwq8J9ln3w4MHy5culUqmvr6/ajvBGqnPnzv369du5c+e0adOWLVum4d+SSKTMhXjVYW2d9Zvly8nFhQICaMCAwkaqPyYmtGIFde1Kw4bRhx9mH3/xohA3kUhSmDX9mF8i+9Unn3wSGBg4depUIUmqB/b29sIqXSMSn5kpL8yIWp6QoMjM1PDiEtmv8LzSj5SUlIMHD0okEqG2oVJgYCAz9+rVy8LCQnete3h4zJ49e9euXenp6WZmZrprSCs+/vjjsmXLXr169datW8KKVYGHh8eePXu2bt06evRoEcOjgwfp669J7dn4+efk4UFRUdSxo+Z3akzUWOOLJ0yYcOXKlVq1aq1YsULzJgAKC+NBQSkZD2rOy4umTqXZs8lAnkCvXr3q0aPH8+fPO3Xq9Pfff6t9KgsODhbqCP3yyy+6fm/UoUOHypUrR0VFXb9+XVg4WGIg4V5yREREtG/fvkWLFvv27bO0tFQeX7BgwZ49ex48eHDz5s127dqJGCEYnYkTJx4+fDg8PDwuLk414U7oV/m4fv26RCJZvHixTkd9OhIZGVm5cmVhpa2SnZ3drFmzJk6c+PXXX2t+q3btvjh9+i/Nrz9+POs3Xl701180aRIFBOS4YMUK2rgx+4/JyZrfW4ei0qJMJaa1LWrnd0FIUkj7yPaFvq9rof+GmZlZ3759hU0IjUtiYuLz589r11b/N1yyZMnevXv37t27adMmDW/l4FDh1asYzZueNi3rNw0a0NixNHEideuW44Lr1ylXXFq2ejWpTuZISSno4s6d6dNP6dtv6fLlrCNpaVSoD8Dt2z84daq+5tfn16/kcvmNGzdcXFwK0bZh+OWXX/bs2RMcHLx582b9tBgYGNivXz/9tFU0/8bE7IyNFX7fytb2x5o1h9+69SQtTfM7ZM6de23PHs2vx/OKjPN5JboDBw4kJSW1bt26WrVqqsfznPaudXXq1GnatOm1a9cOHTrUq1cvnbZVfGZmZr179/b399+xY4dQ6EPQp08fc3PzEydOxMTECJvUieDtW3r9mnIvR6hRg4jo0SOqU0cXzaalpZ0+fdrExGTLli1qn3UBtMuox4N5wnhQc4GBFBKS/ceoqOzfW1rSkiU0cCCNGEGuhR/uaVdKSkqfPn1u377duHHjwMBAtdkhoaGhAwcOzMzMnDNnzvjx43UdjFQq7du37+rVq7du3YqEOxiitLS0IUOGJCcnv//++6rZdiJKSkqKj49PSUlJSkoSKzwwUhKJxN/f38TERCjspQr9Kk/Pnz9n5ufPn+c+xczBwcEGO0iTy+UDBgyIiYnZt2+fUKhUSagjaWlpqfn4xNa2TKHGccq5YqamtGoVde5Mhw7luKB7dxo0KPuPly7RvHmFuL+OpCnSbKQ2Usq3OJuZxMzRpHADWolEwo6Fm+GekpKSmJj4+vXrPM9evHjRycmpUqVKhbqn3ixcuPDXX39dsWKFsJZQKTY2NjMzMzMzs0KFChpOgy1XroLK+q53s7Ul5b+Zjw8FBJC3N331VfYF1avT0qU5/kqfPoW4vya6diVPz+w/Xr9Os2cXdP2yZdSgAS1fTg0bEhFJJFSobzRbW9Y8w5Jfv0pISOjQocO9e/du374tVOI2QIcPHxZ2YVI7XoR+VUyGP9j+0N6+f/nywu/LmJgQkb2JSYpcrvkd0mxsit+vBHhe5ccQnleiyzOxHhsbe/bsWXNzc2FbP53y8PC4du3a1q1bDfaznCoPDw9/f/+IiAjVg0JVmT179uzYsUO0Se5SKRFR7oeMsFCmUN8YhcHMsbGxcrn88ePHH3zwgY5aASAjHw8eOHCgZ8+euU9hPKihHTtI9ePnnTtUq1b2Hz/9lLp2pdGjcyTl9U8ulw8dOvTs2bM1atQ4ePCgWqrn7t277u7ub9++HTZs2Ny5c/UT0meffbZ69eqAgID58+frp0U9Eal2fA7Y3LL4hPdOtWrVSkhIUDsllMhs0aJFWlqaKLGJBf1Kp0ptvyqYUO++bNmyuTc7Ej5abd26VZTA3um3334Tvl+SkpJUjz98+NDKykoikZw8eVKnAdSpw8o954YO5YYNecECQ98kZ9GzRXSJ3srf5j6lz01TX716JWyxtWvXLrVTK1eulEqln3/+uX4iKaw7d+6Ym5tLpdKQkBDV4wqFolWrVkT0/fff6zSASZO4Xbus32/axKamvGWLgW6aOmhQ1u9//pnLlOH163W+aWoB/UqYsm3g/crZ2VntE5He+pUR0f+mqXheFZm4zyvRZWRklC9fnojUdkZdt24dEfXs2VMPMdy+fZuI7O3tU1NT9dBcMaWlpd29ezf3cT8/PyLq3Lmz/kPK5ujIEyeqH9y8Oe8fgdojFH0qW7bsgwcPdNdKMWHT1BLAeMeDq1evJqLhw4erHcd4UBPv3DR1715m5qgotrDgP/7I2jQ1KYnPndN3qELy0MHBISIiQu3Uy5cv69SpI/xgzcjI0FEAN27cUNuEPDMzU5i9cePGDR01KgrMcC8JgoODV61aZW5uHhAQoPbK8Y8//ti8ebONjc0///xj+AUHQcnaOr18eROZTGGYy1DQr/LTp0+f7t2779+/39vbe9WqVaqnevfuvXfv3smTJ/fs2dPKykqsCPP05s2bOXPmENGyZcvUYpsyZUpycvLQoUPbty98aZSiWrKE6tUjf3+9NVhEbazbEFFwfLBHWQ8RwyhXrtycOXMmTJgwefLkbt26qS4J7NGjh6mpqb+//5gxYwywgMPkyZPT0tK+/PJLtdj8/f1DQkIqVao0ffp0vQUzeDCtW0c//KC3Boto4kTy86Nc2xppXwH9aunSpfv37/fz8zPMfjVlypS0tLROnTqpfSISpV+BGjyvtMJYnldadOLEidjY2IYNG9atW1f1uH7qyQiUVWUOHz5ssBNUlczMzGrWrJn7uLKqzIsXLypWrKj/wIiIevSgf/+lRYtyTATdsoUaNiRnZ1q3jp490/BO++3tL755o+HFjRo16t279+7duz09PY8ePSrT2Wx6KOWMdzz4ww8/EFGfXCukMB7Uolq1aPp0mj2bWrQgIvL3pzFjyNWVvLxo8GAyNdV5APPmzVu5cqWlpeWuXbtUN/kgouTk5N69e0dGRjZv3nzLli0mJjrJRN24caNJkyaVKlV68uSJVJq1Ulwmk/Xr12/t2rXbtm1r1KiRLtoVh9gZf2bMRC6ex48fCzM+fv31V7VTkZGRNjY2RLRx40ZRYhOXkferbkS0zyCnuJfyfvVO4eHhpqamMpns2rVrqsflcrmrqysRzZ8/X6zY8jNx4kQiateunUKhUD1++vRpiURiaWmph6lAqjMamHn5ciZ694yGrVt5yBAeO5ajo3UdYB4UrGgW0axWWK2HaQ+VRyJTI1m/M9yZOSMjo3HjxkT0888/q52aMWMGEbVp00btP1d0R44cISJbW9unT5+qHk9MTBR25vH399d1DKozRpn59m02N3/3jNHr1/mbb9jTkw8fLlbrBcxwDwzkIUN49GgWpieqznBn5pMnWSLR+Qx3Rr8qBfQ/w53Rr4pK3OeV6ObNO1a5cgu1ZQSJiYkWFhZSqfSZvqY4LliwgIhGjBihn+Z0pE6dOrVr1w4NDRUtgjt32NaWP/mEIyNZoeBnz3jmTJZKWZjw2KwZE2n4a2yHDprnPYYOHRoTEyMUQzPYidiY4V4yYDxYNMY4HlTScIY7Mycnc82aLJOxuzuvWsXly2c90pyc+KefOC5Oh0Fu2LBBIpHIZLIdO3aonUpPTxeKs9WsWVMoi6Q7tWrVIqITJ06oHjx48CAR1atXT6dN6xkS7sUlbsJdLpd36dKFiLp37672ZExNTRU2NPviiy/ECU5sRt6vDDThjn6liW+//ZbyWq576tQpiURiZWVlUEtZIyIihE+EV69eVT0ul8ubN29ORD4+PnoIQ+0DVmYmN2v2jg9YR45w7958+zZv3sytWukhxjzcTb3b4GYDiysWrW+17nOnj/MN5+o3qstZrueEOzMfPnw4z3xQQkKCMLY0qDdkmZmZQsZt8eLFaqdmzZpFRK1bt9ZDxk0tgcXMM2e+I4G1Zg137MgnT/LNm/zee/zkSdFbzy/hfvgw9+jBt27x9u3s4sKcK+HOzMOG6SPhziWoXwmJAFdXV7lcLkpshkmUhDuXoH5Vep5X4lIouFo1lkj40qUctVy2bNlCRO3bt9dbJMZVVSZPP/30ExFVqFAhMTFRzDguXeIWLZgo68WRszMrsz+//cazZ2v4a/fSpbM1tm3bNmY+duyYTCYzMTE5c+aMmP8C+UDCvcQwxvGgVCpVexWH8aDmNE+4M/P+/UzE7u7MzKmp7OfHjRplpd0tLNjTk2/e1H6Ee/fuFSat/+9//1M7pVAovvzySyIqX7787du3tSPtb5gAACAASURBVN92TjNnziSib7/9VvVgRkZGhQoViOimLr54kSDhXlziJtyFLQUqVqyYe2aH8IjPs6p7KWHk/cpAE+7oV5qIi4sT1p3kfnX82WefEdGwYcNECSxPwqvs0aNHqx1fs2YNETk5OalVddc/uZxzpzIyM3NcUK6cPiPKIUORERwf/PPzn5c8X7Lt9bZEeSIz30i+se31Nj1H0rt3byL66quv1I7/9ddfRFS1atW3b/MoNy+KFStWCBMo1HIWd+/etbCwkEgk58+fFys2gULBuROzal3R3Z2LU8rynR2bme3t87hGz0pAv7p3756B9CtDI2cWq3+VgH5Vqp5X4goJYSKuVk39eTh27C8SiXTp0qX6DEbYWF6t+Kyx2Lx5s1QqlUgkGzZsEDsWZmZ+8oRDQzkqSs/NCotpnJycXunhxXUhIeFeYmA8qF0GPh5k5idPeMECVvve3bOH/fw4I4MXL2a1bTXWrmW1Yv6nTrG7e9YyVomEu3bloCCtDQQuXrwoVCmYM2dO7rPff/89EVlZWZ09e1Y77RUoNDSUiCpVqqQ2D+brr78morlqr1aMGRLuxSViwj0k5KmZmYVUKj106JDaqeDgYIlEYm5ufunSJREiMwxG3q8MMeGOfqW5lStXCuPzlJQU1ePKPWdOnTolVmyq9uzZI8zViomJUT0eHx9fqVIlItqyZYtYsWlu/37u3VvsIAyAck+/CxcuqB6Xy+VC0eEffvhBrNhUxcXFCePJnTt3qp0S6vAaxWr916+5Vi1+80aHTRw7xh99pMP7a6gE9Kv+/ftTXpuAgYhKQL/C80pvhLn8EybkOJiWxmXKcNWqmffv63L5fS7GW1Xm2LFjwq4Jy5YtEzsWkWVkZLRp04aIPvvsM7FjUYeEe0mC8aA+lZjxYGQke3mxtXXWhPc6ddjXl4v5vuPu3bvCph3Dhg3LvSZPeK0ik8lyf9TRnffff5+I1L4F9u/fT0SNGjXSWxi6hoR7cYmVcH/zhp2d+YMPXnl7L1c7pazqXso/Thl5vzK4hDv6VaFkZmY2adKEiBaprotj5v9eIBtCZYP09HRh87HcO0BMnjyZiNzc3AytkG5ukZHcoIH+Z0cZqGnTplFeFZDPnj0rlF+8f/++SKFlGz9+fJ5rbI8ePUpENjY2Twy+8EFqKnfuzDotenH3LjdowOHhOmxCc+hXoAvoV/qhh+eVrtWrx0R8/HiOg8HBTJRVd0ufIiMjjbGqzI0bN+zt7Ylo8uTJYsdiEO7evWtnZ0dE69atEzuWHJBwL0kwHtSbkjcejI3lRYu4atWstHuFCjx7Nj97VpQnw8uXL+vUqUNEPXv2zMjIUDu7e/duExMTiUTy559/aiNwTQlbzU/I+S49PT1deAaGG8gQqNiQcC8usRLugwczETdvzmlpOY4XUNW9tDHyfmVYCXf0qyIQ9ljLPRpPSkqqXr06Ea1fv16s2ARr1jyqUqV13bp109PTVY9HRUUJEw8vXrwoVmwaOnyYW7bkGzfEjsNgKCsgb968We3UkCFDiGjAgAGiBKYUFpbp6jrFxMTkRs7/NuWYZOHChWLFpqFHj/jDD9nPT4dNnDjBLVrwlSs6bKJQCu5XNja2kyfvEiUwpZs3bwp7UVy/fl31uBH1q1IIzys90MPzStfCw5mIHRxYLUvwzTdMxPPmiRCS0VWVefz4sZOTk/A9JXp2z3AIewBYW1sbVGYHCfcSxvDHg0uWLCGievXqYTxogDIzOSiI27ZlIq5f/62ZmZmHh8e5c+c0v0NSUlLr1q2JqHnz5rm37ggJCbG2tiYxdvG9cOGCUEJQ7aeSUEreAHcVLhok3ItLlIT7unVMxDY2nHs/A2Gdo6OjY+6q7qWNkfcrw0q4o18VTX7rzf39/YmoYsWK8fHxYsTFzBwTw/b2bGXFBw/eVTvVq1cvIvrmm29ECUxzu3ezTMadO7OHB3t4cGys2AEZhnXr1hFRtWrV1CogP378WPhEdVxtlqB+ffQRE/GcOQ/Vjq9atYqIatSoobbq1tC8fMmOjly/flavy1XRTQsOHGATE+7YMauJ58+130QR5NevHj585uz8lIhPnBArNOb/fmiOHz9e7fhvv/1mFP2q1MLzSqf08LzSg4ULmYi//DLHQbmcK1ViInEyLMZVVSY+Pl54P9ShQwcD77H6N2LECKF8QXJystixZEHCveQx5PHgixcvhLUvwcHBaqcwHjQop0+zl1eATCYjIiLq2LFjYGDgO1+gZmZm9u3bV6hr9DzXiCIqKsrR0VHE/+WaNWsSkdr+1fv3n/vww3MffyzyngHagoR7cek/4R4Vxba2TJTH4tBz5y6YmJhIpf9n777jmrraOIA/CWGKAwQHaFVwgq0LXFTcowquKuLArbgQte6FdeLGPaniQkGrRW1drSIuBEQcqOBEUVBQlB1IzvvH5Y0xQQwQMvD3/fhHOUnOffJy3su9zz3nOfxz586pLiBNpeXjSoMS7hhXRSbZUS00NFS6XSwW//zzz0Q0Z84cdcXGTQ3r0UO2/fz580RUtmxZzX+4kpLCnjz5/E9uhdx3SiQS2dvbE5GXl5fMS7///jsRNW7cOFdma05VOXGCETETE9kNhST7Sh07dkwtgSlOKPxi1JXELdLHj18c4sv5RmpT4LjKK+ygpmHFjh8/TkQmJiYyGQotGlffLZyvSpQKzlcqYGfHiNjJk180hoQwIla7tnpC0qKqMtnZ2dwSVRsbm/fvVVrsXiukpaVxxTRkyhqoERLupY9m3w+OIaIecjeEuB/UTPHx8V5eXqamplzavVatWt7e3l87t4vFYm62uJmZ2SO5ibqvX7+uWbMmETk5OcnXmVGN3377jYimTp0q3SgUMlNTRsQePFBLUEqGhHtxubiwihXZv/+q6HBZWaxJE0bE5CdVpKSwBg3Ejo7HZs2apaJoNJtWj6uvJdzPnTuXotpNrzCuimn27NlE1LJlS5lSPOHh4Xw+X09PLyYmRvVRRUYyHR2mq8sePvyiPScnx9bWlojWrFmj+qhAWa5evcpVQH7+/Ll0e0ZGBndptXPnTtVHlZ3N6tZlRGzTJtmXJk+eTETt27dXfVSguK+PK1azJiNi6hhWLDs7u06dOkS0SW5geXp6YlxpPpyvoACvXjEejxkbM5mZ2dOmMSI2Y4aawtKSqjJisXjIkCFEZGFhIfP/L5CIiIjQ09Pj8Xh//aXm2mgcJNxLJU29H4zU0dHR1dV9+OUNIe4HNVxqauqOHTsaNGjApd3Lli07duxYmV8iY2z+/PlEZGRkdO3aNZmXPn361KRJEyJq3ry5zBJDVbpxI9TWdmTPnrdkKhYPG8aImMYX7VMIEu5F9OIFCw//4gFaejoLD5e9HFQ6T09GxKyt85mlMmAAI2LNmzOhECW2GdPOcSWRb8L93bt3AoFAR0fHwcHBx8dHfllQScC4KqbU1FQLCwsi2r9/v8xLQ4cOJaK+ffuqPqq2bRkRk983a/16catWsS1a9MqW2R0CtI2rqysRubq6yrRzFUsrVar04cMHFYfk7c3VH5Sdsh0dzRo2/PTjj+OioqJUHBIU1tChIzp2XDBihOyl+eHDjIhVqsRUPqyYt7c3ETVo0ECm9mh0dDRX1f327duqjgkKCecr+JqNGxkR699ftt3KihExuRyC6mhFVZmpU6cSUbly5SI1Z0sQjcTVsDYzM9OEPZC1IuG+Z8+euXPnxn65QyUS7gXQ1PvBtpTfRsrr168notq1a2v+Ip7vmUgkOn/+vJOTE4/HIyI+n+/k5HT+/8XjduzYQUQ6OjonTpyQ+aBQKOzSpQv3K05MTFR54J+JxaxGDUbEZIrSnzrFiFiTJmoKS6m0IOEeERGRnJys4pC+acIERsTWrv3cEhbGiGSniyrX338zHo/p6rIbN2RfKqCq+3dLG8eVRL4J9+jo6A4dOkhKdwkEgk6dOm3btq3kMu8YV0qxZ88eIrK0tJTZqCQhIaFcuXLyM0RK2pEjeXudy2QwkpPzFnBp9oQtUMjLly+5CsjBcqW1ucvr3377TZXxJCSw8uUZETtzRvalbt0YEZswQZXhQBG9fMnKlGH5VmznHuOpdlixhISE8uXLE9EZuYHVrVs3Iho/frxKA4IiwfkKvqZ9e0bEDh78ovH2bUbEKldmatz+U/OrynA7Dejq6qIg5DeJxWInJyeuLLK6alhJFJBwf/bsmUyOW6Mg4V4wzbsfPEJE5ubmMo+0k5OTuUGo4St4QCIyMnL48OH6+vpcjqhZs2bTpk0TCAQ8Hs/X11fmzWKxmNu7wtzcXBPOJ1On5nP7IBQyExNGxDQgwOLS9IR7VlZW7dq1TUxMfHx81FVaKF8TJrAyZZixMYv7/0ZKJZ1wT01llSoxIia/skdS1V3uiel3TRvHlUQBNdzfvXu3a9eubt266enpcWdVPp/v6Oi4YcOGuDhlzsvAuFIWsVjcvHlzIpo/f77MS8uWLeMKa6psHEqKP+zYIfvSuHGMiHXqpJpAoMR5eXkRUZMmTWR21PnaAtISNWIEI2K9esm2BwXlXyUZNJaXV96sE5lU19cKVZWoESNGEFEvuYEVFBSUb1V30Fg4X4G8pCQmEDBdXSZTn5Y7C40bp6aw/q9x48ZEdFKmurxmCAgI4PP5PB7Pz89P3bFoh7dv31atWpWIli9frt5ICki49+jRQ1dXd/LkyWrcY7MASLgXTMPuB/OKtu2QuyEcN24cEXXCDaG2SUxM9Pb2trS0JCIu+b548WL5t82cOZOrQnPr1i3VBynv6lVGxKpXZzJVZdzcGBFbsUJNYSmPpifcX79+ze30QkQNGzaULJFQuwkTWIcOzMGB9e6d16KCGe5nzjA3N9mxWEBV9++cNo4rCUU2Tf3w4UNAQICbmxs3L4yIfv55r40N8/JSwjjEuFKu69ev83g8AwODZ8+eSbdLqg9v2bJFNZF8bXvDe/eYQMAEAnb3rmoCgRKXkZFRo0YNItq9e7fMS1/bIqmEREQwPp/p6cmulZFUSfbxUU0goAQZGXnLP+WG1Ve3Yi4hERERXOVTmZ2gsrOz69atS0Q+GFjaA+crkLdnDyNiXbvKto8axfh8VuA1sipwObKhQ4eqOQ45wcHBBgYGRLRq1Sp1x6JNzp49y+fzBQKBfL1jVfpawj07O3vEiBF8Pp+IqlSp8scff4jUuMQjP0i4f5Mm3Q/mvy35vXv3BAKBQCC4ixtC7ZSVlbVjxw5DQ0M+n59vFQQ/Pz8jIyP5haHqIhazH35gROzmzS/a//qLEbFmzdQUlvJoesKdExQUZG1tzaUUO3XqFB0drcrw8jVhAuvYkd26xfh8xu2wooKEe74KqOr+ndPGcSWhSMJdIjU19fDhwy4uLpaWyUSM+9ekCVu6tOibO2NcKd3gwYOJqL9cIdJjx44RkampaVJSUknH8OpVXjmIS5dkX+rcmRGxKVNKOgRQqUOHDnEVkGU2W05MTKxQoQIR/f333yUdg1jM2rRhREx+3+VVq/Kvkgwa7tChvIrtMnt4JyayChUYESv5YcXEYnGbNm2ISH5D79WrVxNR/fr1hRhYWgXnK5DRsycjYtu35/NSYqL6fxGPHz8uuKrMxYsX4yRLoVXl/v37JiYmRDRO7UsAtNCMGTOIqFatWjJnIVUquIZ7RETEzz//zN29Nm3a9PLlyyoOrwBIuCtCM+4HX3HT9S7J3RBy2+FOwQ2hluvZsycRbd26Nd9X1Vu3XR6Xd5o584vGrKy84n6PH6spLCXRiIT7y5cvK1asWK5cuQIW5QmFQh8fH66+lSaspeIS7oyxMWNYjRosLU09CfcCqrqDNo4rTmhoaOXKlfX19Rs2bOjj46P4Bj6ZmSwoiLm55Z2euH9WVmzyZBYSIrs2ogAYVyVBcnFz8eJFmZe4ixtPT8+SjiE6mjVvzvr1k20/epQRMVNTVvLXeKBqjo6ORDRjxgyZdm6LMBUkJdPT2fDhrGpV2ad3iYl5Zyq1z1KEInB0ZERMblixNWvYDz+oIuF+8ODBryVnuaruKkjOgtLhfAUSubnMyorx+ez1a3WH8nUFVJXJzc3lrvoqVKjg4OAwa9asoKCgN2/elGg88fHx3EoRZ2dntdci10ZCobBly5b55kNLWm5ubkhIyOTJk/X09PT19VevXl3AbzAoKIirB0JETk5OMtOl1eLZs2cNGzYsV67cunXr1B2LRtOE+8GvJf2PHj2qsqQ/lKh9+/YRUYcOHdQdiEJCQhgRq1VLNls1eDAjYitXqiksJdGIhDtjbPv27dzfjK5duxYw0fj169djx47lNo00MzPz8fFR18WEJOGelMTMzNicOZ8T7ocPs5cvVRFDQgKrXDn/qu7A0bpx9fr162HDhnE7TZctW5YLXkdHhyvR/lLhgZWdzU6fZiNHsooVP2fe5auR5gvjquQsXryYiBo1aqTG5XtisWweISuL1a7NiNi2bSV9cFCDW7dufa3sRr169Yho/fr1KghDfq7Y6NGMiDk5qeDgoHzcCj/5shtCIUtPL/GjS8qPyG8GNXr0aC4BUeJBQAnA+eo7l5LCPn36/KNIxG7e1OillgVUlXn37l3Xrl1NTU3pS9WrV+/Tp8+yZcvOnj2bnJysxGA+fvzIPQBo3rx5ugpOxKXU48ePuZlYf/zxhwoOl5GRcfz48SFDhnCPiqX9+OOP//7779c+mJ6e7u3tbWxsTERGRkazZs2S2YpTZdLS0ubPn29oaEhEbdq0UUsM2kW994PXrl3Lt6wNt8UdEW3DDaH2+/jxo4GBgY6OjqZNZs+XSMQsLRkRCw//ov34cUbE7O3VFJaSaErCPScnZ8eOHWZmZkQkEAjGjh1bwD5XMmupQkJCVBlqZibLzf2ccGeM7d7N9PXZkSOMiAUHMz6fETGulLbMjagSiUSsU6e8yoaKz1z+3mjRuMrOzpaZax8XFydTop2IbGxsvLy8Hik8sHJzWUgImzyZWVgwRVb4YVyVqMzMTG5Cyna5BdLjx48noo6S04oKLV3KiJitLdPI/YNBCUaOHElEPXv2lGk/efIkN/nu7du3Kg7p1i2mo8P09NRQhw2UZeRIRsTkhpUqLFy4kPLbYPPWrVs6Ojp6enqq3GATlAvnq++ZpSUzMmJPn35uWbiQ1aunvoC+5ZtVZRhj8fHxQUFBXl5eTk5OXLUQaVWrVnVycvLy8goKCipO/l0oFHLTY2vXrq36/4+UMkeOHCGiMmXKPChyac5vycjICAoKcnNz4279pO/y7t+/HxQUZGVlJZnA/vjrJRVevnzp5ubGTdWytLT08/MTq/D+TSwWBwQEcM+/eTxe//79nz9/rrKjay813g+KRCJu49YFCxbIvLR06VIisrW1VdnGrVCinJyc8h1jmsnDgxGx2bO/aMzMZOXKMSL25ImawlIGTUm4c5KTkydPniwQCLjFLD4+PgX8Hz4oKIg7v6tyLVVQELOyYlu3fpFwF4tZ69asXj1GxM6eZf365VVJ5v41bcqWLVP+Nfry5XkVVEt4bWJpoA3jqqDrKsk1mWTOu/Q1mYKHEIlYRsa334ZxVdICAgK4cShzW5WcnMzdhgUFBakynjdv8v6SnTunysOCSkmKbMhvC/HLL7+QOiq9cgVJpk9X8WFBmdRVZCMuLs7IyIjH48nXruUKkkzHwNJmOF99zywtmZ4ec3b+3KLhCXdWYFWZfEny7506dZKeUiOdf/f29g4JCVF8lrpYLB46dCgRmZubx8bGFvWrwGdubm7cHPPMzEwldvvhwwduNhU3M136nk7mObH8TKwCqp7euHGDq4RDRM2bN79+/boSY/6a8PBwBwcH7qDNmjVT8Uw1baeu+8E//viDezaTlpYm3f7mzRtusJ3DDWFpsXfvXiLq1KmTugNRSHBwXiVkGQMHan3dBc1KuHMePHjQrVs37vRdv379AvaNVOVaqjt3WIcOeTn09u2/SLhzrwoEn2u4F1xKu/hu3mR6eozHY6dOKaG374RmjiuZqAquOZuRkfHnn38OHjxYetWhra3twoUL797NZxPqwsK4Uo127doR0dSpU2XafXx8iMja2rqAeVJK5+bGiNivv6rsgKAeK1euJKIGDRrIVEB+8OCBrq6ujo7O7du3VRbM4cP5b7kJWmflSjVsI+ni4kJEgwYNkmk/fPgw5VfVHbQOzlffLUtLNmEC09Vlx4/ntWh+wr2AqjLflJOTc+fOHV9f3/Hjx9vb2+vp6Ukn3wUCwU8//TRy5Eg/P7+C+5k1axYRlS1bNiIiokhfAmSlpqZyZazkL9eLIDk52c/Pz8nJSfIr5vP5Dg4O3t7eBT8g4aqe8vl87mHMjh07ZNZ1SYhEIj8/v8qVK3Odu7m5JSQo4d5QwaiwYUARqP5+8NOnT1WrViWiAwcOyLzEPWH6FTeEpciHDx/09PS0qKrMr7+yrVtlF9wfO8aIWIsWagpLGTQx4c6RmfP75OsLCaTXUlWrVk3pa6mSk9nkyXn5dFNT5uPDcnJkE+7s/7vrysxklxT04Ipic/9q1iz0JpYyhg3DXJsi0qRxVYh59zIk++pIrqsqV47HuNIWt2/f1tHREQgE9+7dk24XCoUNGjRo3LixytZjhofnVWHGdKhSLzs7u27dukS0ceNGmZc8PT0rVqyosqUVGRmsZk1GxHbtUs0BoQRlZ7O6dRkRkxtWJUUoFPbs2dPIyCguLk66PSMjg1ugvQsDS/vhfPXdsrRkPj5syhRWvTrj5rpofsKdqypTpkyZGzduFHNT35ycnHv37vn5+U2ePNnBwUFfX5+7YSl44ztuwypdXd0zZ84U5+ggIzw8XE9Pj8fjFfmE8+7dOy7Prqury/0qdXR0HBwcfHx84uPjCxWJgnPJU1NTvby8uJFTpkwZLy8v5SZthUKh4vPuoWCqvx+Mjo6uX79+q1atZHIa4eHhfD5fX18f62NKme7duxPRzp071R1I0WVkMGNjxuMx7a1WpbkJd/blWio9Pb1vrqVq0aKFctdS5eSwHTuYuTkjYgIBGzuWFbkmniTzXrXq58x79eps8mR2/vxXSydnZ7P372Unjn34wNLT2Y4dLDu7iMF85zRgXMlWli9yscWcnJzz58/PmuUt/USnRg02dSq7coV9ZQ4ExpX6jR07log6d+4s0x4XF6eySSJiMXNwYERs7lzVHBDU7K+//iIiExMTma0sUlJS3r9/r7IwFi1iRKxxY4bpUKXDiROMiJmYsK/vkKJ88tXeFi1aRESNGzfGPLvSAeer7xOXcP/wgVWuzKZNY0wbEu6BgYH6+vqWlpZcCtLGxsbNzc3HxyckJCS7eJfUGRkZ165d27hx4+HDh7/2nqCgIB0dHR6Pp5odPr83q1at4gr1FCo/HhcX5+Pj06lTJ25alXSevcizzgtVLT0mJqZ///7coWvXrh0QEFC0g8oICgqytraWzForoLI8KEj194NCofDVq1fSLWKxmHucMxc3hKUOV0GoS5cu6g6kWObPZytXsqQkdcdRVBqdcOeoay3VhQvsxx/zMpgdOrA7d4rck0yQLCSEzZrFrK0/Z0jNzJibGwsKks2BHj3KiNiwYV80VqjAtmxRTjDfM/WNqws//vgjd7HSsWPHO0oaWBhX2uXt27cVKlQgotOnT6srhrAwpqvLqlZlJVYwCTRO165diWjixInqCkAozJsuGhysrhBA+Tp3ZkRMjdsyvXz5kiuFfOnSJbUFAcqG89V3iEu4M8b27WMCAbtzR6MT7mlpaSNGjOAu6Rs3bly3bl1uXayEsbFxmzZtpk6devDgwZiYGKXvZhkaGsqd+pYuXarcnoEjFot79OhBRO3atftmAvTZs2c+Pj4ODg6SYWBgYODk5OTn56esQmfp6eleXl6GhoZEZGRk5OXllfH1HbouXLjQsGFDyS3n3bt3i3zcBw8ecFtokAIVUEFxmnA/6OfnR0SVK1fGYoXSh6sqIxAI3qlyUoxSnTzJxo5lUVGfW96/Z2PHspgY9cVUSFqQcOfIrKW6cuXK194pvZbK2Ni4CGupYmNZ//55KcvatZmSngrn49495uWVt9sq98/UNC9Dyk2J4BKjenrs4sXPn0JiVIlUO65iS2K6gTyMK62wdu1abiSosmK7jOhodv68ug4OahAdHc1VQI6SvnJRrZQU9q1qtKBloqPVvOvywIEDiWjAgAHqDAKUDeer75Ak4S4Ws7ZtWYcObMECDU24R0dHcxNoDAwMfLigGfv06VNISIiPj4+bm5uNjY1M/r1s2bIODg6TJ0/28/O7d+9eMfPvsbGxlSpVIqIxY8Yo4wtB/hITE6tUqUJE3t7e+b7hyZMnMnl2Q0NDLs9eQhlMxaueyi+qLmzeTboCqomJSaEqoIIi1Hs/mJqaamFhQUTf3CgCtBQ3d8HX11fdgRQRt9DQzu7zQsO4OC2bCaE1CXdWyLVUjx494p5IU2F2W05LY15eTF+fEbEyZZiXF1PNqe/WLTZvHqtf/3OG1MSEDRvGAgIYEZs4kTVo8LnQBxKjyqWScZVWogX1vgbjSpMJhUJuO6Z169ap4HCWlqx8efb69eeWhQtZ/foqODJoFg8PD/pWQVhlcXdnROzPPz+33LjBiLBnQCnEbQEiXec2OJgRsS8LrZeIa9eu8Xg8Q0ND+TozoO1wvvreSBLujLF795iuLmvWLC/h/uiRGuOS5efnZ2RkREQNGjQoYK1qSkqKdP6dvlS+fHlJ/r2APaXy9fbt29q1axNRjx49kAAtaWfOnOHxeAKB4Nq1a5LGe/fueXl5Sf9aK1So0L9/fz8/v1SVLB29dOlS48aNuUO3bds2MjLya+989+7duHHjdHR0iGjFihUK9s8l683NzanYFVChACq+H5Qxd+5cbtLh1xb6g7bbvXs3EXXr1k3dgRTRokWsenVmavo5T4WEe4nj1lIZGBgospbqn3/+mTRpkiLdikSivXsP9ZORTQAAIABJREFUW1jkEjE+n40cyUpsZ++CPHnCfHzyCiu3apU3EzkpiVWsyCSLBZEYLQklNK7EYrGfnx83M4LH47m5ub1580Z5USsK40oznT59mojKlSunglFhacl0dNjgwZ9bkHD/Pr1//56b63T8+PGSPpa7O9PRYdWqsU+f8lqQwCqthg1jOjqsVi2Wnp7XopqEu0gkat68OREtXLiwZI8E6oDz1fdGOuHOGJsxgxGxevXY338zPp9Nnqz+fYY+fvzILakhIjc3t7S0NMU/+/r166CgIC8vLycnJ65SpbSqVas6OTl5eXkFBQUVXLsyPT2d21/K3t6+UAFAkf32229EZGVldePGDS8vLy5DyjE1NXVzcwsKCipmyf4iKFTV06ioqMGDBxdweyvt33//lVRA7dChg7IqoEK+VHk/KO3p06cGBgY8Hq+AbXhB2yUlJQkEAl1d3eTkZHXHUhSLFrGGDdn69ax8ecb9/wMJdxVRfC2VIkJDQ1u2bElEjo7bmjdnytgXs7hiY9mNG3mJUbGYbdnCDA0ZtzcJEqMlp4TGFSlvw9ViwrjSNFxJRHd395I+kKUlGzGC6eiwCxfyWpBw/25t3ryZu2/MzMws0QO5u7N27Zi1NZs6Na8FCazSatgw1rkzq1GDzZ6d16KahLuvry8RWVpaIutUWuF89V2RSbinp7MaNVi9eszHhwkEjIg1a8YePlRbeGFhYdy88rJlyx48eLCYvcXHx0vy79yDpa/l36XLgAiFwm7duhGRtbV1cfaUgkLJzs5u1qyZdI2gqlWrjh8//sKFC2rfqfvDhw+zZs3iFlJXqFDB29u7OAupVVYBFaSp7H5Q2q+//so9OFTlQUH1OnfuXK5ceX9/7UlRS+ES7kIhs7Fhrq6MIeGuYhcvXmzUqJEia6m+Ji4uztXVlfvzWb169YCA48rez6ZYJInR3FzWrBnr3p0xJEZLXvHH1atXrySJe0tLy2Im7pUO40pzxMbG6unp8fn88PDwEj0QdxM7ejSrU4dxWQsk3L9bubm53MQlxVcWF427O+vShR0/znR02K1bjCGBVXoNG8acndnhw0wgYLdvM6aShPunT5+qVq1KRMXPfIHGwvnqu/LiBZPZXfLdu7zTyM2brHZtRsQMDb9IyquGWCz28fHR09Pjyi/EKntYiMXimJiYQ4cOTZ06tU2bNsbGxtLJdx6PV7du3UGDBq1du7Znz55EZGZm9kijiux8B2JiYgICAmrXrj1lypSQkBBNK8Hx6NEjJycnbsDUqVOnCIlydVVABabC+0GJ//77j1vW/+LFC9UcEdRl376X+vpZPXqoO44i4RLujLH//mM8Hjt7VvsS7jzGGGkzsVh84MCBGTNmvH37ls/nDx48ePXq1fLL9ORlZmZu3Lhx6dKlaWlphoaGkydPnj9/vsz1jdodO0b9+pFYTDwe3bxJrVrRyZM0eDAtW0YTJqg7uFIN4wpUZtq0aevXry9Tpgy3T70imjYdcevWEsUPcfo09ehBM2bQwIFUvz55epKXF3l5UUAAPXhQpKBBy124cKFz587Gxsbly5dX8CNVqvyQkHBN8UNMm0YxMfTsGZ09S1270sePdO0ahYVRy5YUG0u1axcpbtBUw4fT+/f011/Uvj2JxRQcTCEh1LYtxcXRzz+TSKRoP40aPYmKaqvgmzMyMj58+NC6desrV67IbE4IpQnOV8BJTaXp02nnTiKiPn1o1y6qWFEVx01KSho+fPjp06d5PJ6Hh8fq1au5zHuJevr06ZUrVyIiIiIiIiIjIzMyMrh2S0vLlJSU//77j6umBSDtwoULU6ZMuX//PhF16tTJx8fH1tb2m59ijO3fv3/WrFkJCQk8Hm/IkCGrVq3iCqKCyhThfrA4Pn78mJaWtmTJkvnz56vgcKBGSUlUtSrxeJSYSCYm6o6mkH7/nY4epbt3iYgGD6Zbt+j0abK2puBgcnRUd3AKUnfGXzkKu5YqKCioZs2a3P8CTk5OGrvRlmQmMsfdnTVowMqWxUxkFcG4AhX48OHDrl27CnXednScKNkIV5F/N29+Xqa9ZQszMGCxsZjh/r3bs2dP69atFR911arVLNSo8/LKmzHKGHv0iOnrs+3bMWO01OJmuLP/73O4Z8/nGe58fiGGTevWTwt1Mly7du1tbkY9lGo4X4FEYCAzMWFErHJl9s8/JX64K1eiLS0tiahixYpB0htDq5BQKLx169bOnTvHjh3r7+8fERGhljBAKwiFQh8fHy5pq6urO3bsWOmSRPI0sALq96kI94PFoaur6+vrW9K12kBDdOzIiJifn7rjKDzJDHfG2OvXrHx5Nn06ZrirT0xMzG+//Xbq1CkiqlOnzrp16yRLqyRu3brFLQQjoqZNm/r4+LRp00YNsSpGeiYyEX34QPXq0bt3tGULZiKrDsYVlDTGWHx8vOLv5/ONxeJCTH+oXJlq1aIZM8jTk0QiatmSLC2pUSPMcP/evXv3Ljs7W8E383gCxgox3alcOZo5M2/GKBEtWEDbt9OBA9StG2aMlkLcDPegICKimTNp/37avZucnCgujvh8UvxKk8/PFIuTFT+uubk591AcSj2cr0AiLo7c3OjyZeLxyMODVq+mkphxzhht3Ejz52dZWraqUEHf39+/Vq1ayj8MQAl4//7977//vmXLFpFIZGpqunDhwkmTJuno6Ei/Jz4+fs6cOQcOHGCMWVpaLl++XFIQFdSisPeDxcHj8bhHifA92L6dxo8nZ+e8C3UtIj3DnYg2bqSZMyk7GzPc1er8+fOSxVOdOnW6d+8e156UlDR58mTuL03FihV9fHzUvsnJN8nMRGaM+foyIsxEVgOMK9Bq0huR3bzJ+HzWpg1muEPJkswYZYxlZLBatVibNpgxWjpJZrgzxlJTWfXqeb/rkt40FUBZcL7SLrm5zNub6erm7aSq9Hrm8fGsfXtGxPh8tnz5m5ycHCUfAKDkRUdHd+3albt7bdCgwZkzZ7j2jIwMb29vruSpoaHhrFmzUlNT1RsqAJSct2+ZQMD09WV3SdF80jPcGWO5uaxJE8xw1wA5OTlbt25dtGhRSkqKrq7usGHDatWqtWrVqo8fP+rq6o4fP37x4sWKF4JUo/R0SkwkK6vPLYzRs2dkZkblyqkvrO8VxhVor2rV8ma4c8aPp+3bqX59zHCHEjRu3OcZo0R05gz98gsRYcZoKSQ9w52Ijh6l/v2JiOLiqHp1NcYFoCicr7TRzZs0eDA9fkyGhrRixeeLnGK6cIHc3CghgSpVon376P8ZSwCtdPLkSU9Pz2fPnhGRk5NTz549ly9f/vz5c+7HTZs2SQqiAkBp1aEDXbxI+/fTkCHqDkUxO3ZQ7dqUmUkREeTl9bk9PJx27aLp06lOHfUFVxilM+HOefv27fz58319fcViMZ/PF4vFzs7Oa9euraMtvxzQSBhXoI1kEu4fPlD9+mRqioQ7lCCZBBYR9e5Nf/2FBFYpJJNwJyInJzp9Ggl30Bo4X2kp5e6kmptLS5fSkiUkFlPHjrR/P1WtqqxIAdQmMzNz7dq13t7e6enpRkZGGRkZTZs23bBhw88//6zu0ABAFbZupYkTqVcvOnFC3aEo4NgxcnEhXV169Ihq1FB3NMVTmhPunNu3b+/bt8/c3LxZs2ZdunRRdzhQSmBcgXa5c4eqVKFKlT63PH9O6en0/zpJAMoXF0fZ2V9MQPjwgZ4+pYYNCWW3S5nnzyk394u85Pv39OwZ/fhjidRWBlA6nK+0WmAgubvThw9UpQrt3VvEOelxcTRwIF27RgIBzZtHCxcSn6/sQAHUJz4+ftmyZfb29iKRaOTIkXyMb4DvRmIiWVqSQEBv32p6SYMbN6hjR8rIIG9vmjVL3dEUW+lPuAMAAAAAAEBpVcydVI8fp1Gj6MMH+uEHOnSIHBxKLFAAAACVa9uWLl+mQ4do4EB1h/J10dHUpg29f0/jxtG2beqORhnwYBMAAAAAAAC01Q8/0H//kbc3CQS0cSM5OFBMjEIfzMoiT0/q25c+fKDevSkyEtl2AAAobbjdlQID1R3H171+Td270/v31LMnbd6s7miUBDPcAQAAAAAAQOvJ76SalESfPlHNmp9LxGRnU3w8Va9OT5/SgAEUFUX6+rRyJU2eTDyeWqMHAAAoAQkJZGlJenr09i2VLavuaOR8+kRt29Lt29SiBf33HxkZqTsgJcEMdwAAAAAAANB6zZtTRAQNHkyZmTRlCvXvT/PmkbU1bd/++T337pG1Nfn7U7NmFBVF9erRjRvk6YlsOwAAlE5VqlDr1pSVRX//re5Q5AiF1K8f3b5NNjb099+lJ9tOSLgDAAAAAABA6VCuHB04QAEBZGJCL16Qjg4ZGNC8eZSQ8MXbGjakatXIzY3Cw6lxYzXFCgAAoBL9+hERHT2q7ji+xBiNHk3nz5OFBf39N5maqjsgpUJJGQAAAAAAAChVnj0jPp9Wr6boaEpLy5vVTkQREWRnRw8eUKVKpe3eHgAAIF+vXlGNGlSlCr14QQKBuqP5v99+o3XrqFw5Cg4uhQ+/NeZ/ZgAAAAAAAABlqFUr7z94PNqwgRwcyM2Nunf//AZk2wEA4DtRrRoFB1Pz5t/OtotEVK0aWVtTs2Z5/2xtSySktWtp3TrS06OjR0thtp2QcAcAAAAAAIBSrFUrcnMjT0/q0EHdoQAAAKhchw4UHEzXrlGLFnkt+/fT8OEkEsm+88EDSkighAS6ejWvpUoVsrcne3uysyN7ezIzU0I8R47QzJnE55OfH3XurIQONRAS7gAAAAAAAFCarVpF9evTypXk5KTuUAAAAFSOz6dJk+jGDdLRKehtDRtSfDyFhVFYGIWHU1gYJSTQyZN08mTeGzp3TjYxmWBvb29vb9+0adOyZcsWNpLg4GBv7wWmpkfnzKnk6lqkL6MNkHAHAAAAAACA0qxyZVq6lGbOpEaN1B0KAACAyvXrR2fO0Nat5OHxjXdaWFCvXtSrV96Pr19TRETev6tXSSh8HBAQEBAQwL1qZWXl4ODQ7P8MDQ0L7vzu3bu9evX6+PHjvHm+06bNKe630mDYNBUAAAAAAABKoUmT6MED+vdfIiKRiFq0IKGQ7t6lBw+ofn11BwcAAKASHTqQrS3VqkW//07R0WRp+dWSMgUTiejhwxehof+Gh4eHhYVFRUXl5ORIXtXT02vUqNHSpUu7dOmS78fj4+NbtWr18uVLFxcXf39/Pp9fnC+l4TDDHQAAAAAAAEo5HR3avv1z+VoAAIDviocH+frS1Kn0/+nphaajQ7a2NWxtR44cOZKIcnNzHz16FBERERERcfXq1cjIyLCwMMFXNmb9+PFj9+7dX7582bZt23379pXubDsh4Q4AAAAAAADfAzs7GjOGduxQdxwAAAAqp6tLW7ZQhw507lxei1BILVtSo0Z526I2akR6eoXoUCAQ2Nra2traDh06lIhSU1MjIiLs7e3l35mVleXs7Hznzh1bW9vjx4/r6+sr4ftoNpSUAQAAAAAAgFIoI4NEIpLe0S0nh9LSqFy5b+waBwAAUGpwJWU2bSIiGjKEbt2iGTNo9GgKDSXp9LhAQHXrUrNmef9atCBdXSUcXSwWDxgw4OjRo5aWltevX69evboSOtV4SLgDAAAAAABAKTR0KOnr065dn1sSEqhpU/L3p7Zt1RcWAACACkkn3BMSqH59srGh0FDKzKTISAoLy/v36BGJxZ8/ZWxMTZvmTX63tycrqyIefcqUKRs2bChfvvzly5d/+uknJXwfbYCSMgAAAAAAAFAKJSeTgcEXLSIRvXlDWVlqCggAAECtqlShxYvJ05P4fNLToxYtPu9ukppKERGf8+/Pn9Ply3T5ct6rFStSnz67q1aNs7e3t7Ozq1q1qiKHW7FixYYNGwwMDE6ePPn9ZNsJCXcAAAAAAAAAAACA78HEibR3L0VFybaXLUvt2lG7dnk/fvxId+/S1at05QqFh1NCAp04sT4pKZp7tWrVqs3+r1WrVmZmZvIH8vf3nzdvHp/P379/f5s2bUruG2kglJQBAAAAAACAUqhHDzIwoGPHPrfEx1O1anTmDHXtqr6wAAAAVCgmhgwNSbp2emIivXpFzZoVopO4OHFY2PGwsLCwsLDw8PBPnz5JXuLxeHXq1LG3t+cmvzdp0sTIyOjixYu//PJLdna2j4+Pp6en8r6NdkDCHQAAAAAAAEqhHj0oJoZ69Pjckp5Ou3cj4Q4AAFB0YrE4JiZGknyPjIzMkirWJhAI6tSp8+zZs6ysrFmzZnl7e6sxVHVBSRkAAAAAAAAoncRiys7+/KP0fwMAAEAR8Pn8+vXr169f383NjYhyc3MfPXoU8X/h4eEPHjwYNGgQj8dbsWKFuoNVD8xwBwAAAAAAgFIIJWUAAABULCMjIzIysm7dumZmZjweT93hqAdmuAMAAAAAAAAAAABAcRkZGTk4OKg7CjXjqzsAAAAAAAAAAAAAAIDSAAl3AAAAAAAAAAAAAAAlQA13AAAAAAAAKIVCQ0lHh+zsPrdkZdG5c9SqFZmbqy8sAAAAKNWQcAcAAAAAAAAAAAAAUAKUlAEAAAAAAAAAAAAAUAIk3AEAAAAAAAAAAAAAlAAJdwAAAAAAAAAAAAAAJUDCHQAAAAAAAAAAAABACZBwBwAAAAAAAAAAAABQAiTcAQAAAAAAAAAAAACUAAl3AAAAAAAAAAAAAAAlQMIdAAAAAAAAAAAAAEAJkHAHAAAAAAAAAAAAAFACJNwBAAAAAAAAAAAAAJQACXcAAAAAAAAAAAAAACVAwh0AAAAAAAAAAAAAQAmQcAcAAAAAAAAAAAAAUAIk3AEAAAAAAAAAAAAAlAAJdwAAAAAAAAAAAAAAJUDCHQAAAAAAAAAAAABACZBwBwAAAAAAAAAAAABQAiTcAQAAAAAAAAAAAACUAAl3AAAAAAAAAAAAAAAlQMIdAAAAAAAAAAAAAEAJkHAHAAAAAAAAAAAAAFACJNwBAAAAAAAAAAAAAJQACXcAAAAAAAAAAAAAACVAwh0AAAAAAAAAAAAAQAmQcAcAAAAAAAAAAAAAUAIk3AEAAAAAAAAAAAAAlAAJdwAAAAAAAAAAAAAAJUDCHQAAAAAAAAAAAABACZBwBwAAAAAAAAAAAABQAiTcAQAAAAAAAAAAAACUAAl3AAAAAAAAAAAAAAAlQMIdAAAAAAAAAAAAAEAJkHAHAAAAAAAAAAAAAFACJNwBAAAAAAAAAAAAAJTgu064Hzp0aNasWcrq7fTp0+7u7srqDbTUxYsXhw4dqtw+ly9fvm3bNuX2CZrv6tWrAwYMUMGBgoODBw8erIIDgabJyclxcXEJDw9XYp9//fXXpEmTlNghaJ07d+64uLikp6crsc9169atW7dOiR2C1hEKhS4uLhEREUrsE5fucObMmdGjRyu3z+nTpx85ckS5fYJ2CQ0NdXFxEYlESuzTx8dnzZo1SuwQtNrZs2dHjRql3D4jIyNdXFyysrKU2y1ol48fP7q4uERHRyurQxcXl2vXrimrN61T+hPuCxcudHd3z/c+LSoq6ty5c/Lt2dnZf/zxx9ixYx8/fizd/ubNmwULFkyfPj3fA8XExAQFBcm3nzt3bvTo0c7OzhMmTLh69WqRvgRols2bN7u7u+f7tObp06fHjh2TbxeLxcePHx89evSNGzek2+Pi4mbOnOnk5OTq6rp//36xWCz/2eDg4Js3b8o0pqenb9iwwcXF5ddff124cGFCQkIxvhCoQUZGxpYtWwYOHNijR49JkybJ/4rj4uICAgLkPygWi0+ePDl69OjLly9LGrOysrZv3z5w4MA+ffrMnTv35cuXkpfOnTs3atQoZ2fn8ePHX7lyRb7D58+fHz16tIBQV6xY4e7uvnTp0sJ9Q9AAp0+fHjNmTPfu3YcNG3bo0KHc3FzpV3NzcwMDA+Pj42U+9erVKy8vr969ew8aNGjTpk1CoZBrF4lEhw8fHjp0qLOz87Rp02JiYuSP+ODBg1OnTsm35+TkHDp0aPTo0Xfv3lXSlwP1EAqFu3fvHjJkSPfu3ceNGxccHCzzhoSEhMDAwOzsbPnPXrhwYcyYMWfOnJF/KTs729PT093dff/+/fKvXrt2Tf5iXSgU7t27183NrWfPnjNnznzx4kVRvxNoBOnzlb+/v4LnKyKKjo729PTcvHlzvt2uWbPG3d190aJF8i997dI9Nzf3yJEjo0ePjoyMLMo3AQ0QFRXlnp/nz59Lvy02Nvavv/6S/7hIJAoMDBw9enS+z3gSExO53s6fPy//6pkzZ/L9S5eQkLBw4cJp06YV8SuBZhCJRAcOHBg2bJizs/PkyZPv3Lkj/55Xr14FBgbK39Yxxv7+++/Ro0dfvHhRuj0hIWHu3LnOzs79+/ffvXt3vpn669evy2cSsrKytm3b5urqKn/9D1ohKirKw8Nj165d0o3Z2dkbNmzo27dvr169Fi9enJKSIv/B2NjYEydOyLf/+++/Y8aM4e77QkJCJO1isdjf33/48OHOzs4eHh63bt2S/+zr168DAwNzcnJk2kNCQsaOHevs7Dx27Nh8s2eggZKTk5ctW+bh4SFzQX7mzJnhw4d37959woQJt2/flv9gZmZmYGDg27dv5V+6ffv2pEmTdu/eLd0oEomOHTs2evTo0NDQfCMJDAyMi4uTb4+JiZk6dWqpn09TyhPu+/btW758eVBQ0OnTpxV5f0pKypIlS2rUqDFq1Khdu3ZJEu7R0dHDhw+vWbPm0qVLN23apHgA06ZN69at2+vXr2vWrHnt2rU2bdpgqrK2u3btmqen5+nTpw8ePKjI+7Ozszdv3ly3bt2+ffv6+vpK51UfPnzYuHHjffv21ahRIz09fdiwYcOHD1ekz6SkpJYtW65Zs8bExKRixYrbtm1r2LChzC0EaLJXr141btx45syZqampVlZWMTEx//zzzzc/lZOTs337dhsbm549e/r6+krST2lpae3atVu0aFGZMmWqVKmyd+9eGxub+/fvE9H06dN79uz56dOnWrVqhYWFFeEUdPLkyXnz5p0+fTrfJ0mgscRi8ZAhQ5ycnO7fv1+jRo2cnJxdu3bxeLxvfjA0NPTHH388cOCApaWlSCSaOnVqmzZthEKhSCTq1avX8OHDMzMzq1evfuLEiZ9++infXIOM9PT01atXW1lZDR482NfX9969e8r4fqAeSUlJLVq0mDhxYnJysrW19cuXL/O935MhFov9/PwaNWrUuXPn3bt3//fff/LvWb58+d69e/39/aXvDwuQnZ3dqVOniRMn5ubmWlpaHjp0yMbG5mvX+qDhRCLR4MGDJecroVC4c+dOPv/bNymXLl365ZdfGjZsuHHjxkOHDsm/4dy5czNnzjx9+nS+D7DlZWZmrlu3rnbt2q6urr6+vlFRUYX+MqAZcnJyPnwpNDR0586dmZmZBX8wMzNz/fr1tWvXdnFx8fX1zfehC3cjsHPnTgVHyMOHD0eOHFmzZs0lS5Zs3LixKN8HNANjbNCgQaNGjRIIBHZ2dhEREU2aNPn777+/+cHc3Nxdu3bZ2tr26NHD19dX+i/dixcvmjRpsmPHjmrVqonFYnd3919//ZUx9s0+U1NTHR0dFy9ebGxsXKVKlT179tja2ipxXiqUqHPnznXu3Llx48abN28ODAyUtAuFwk6dOk2fPt3AwMDc3HzNmjX29vbJycmK9Dl79uzOnTu/fPmyZs2aoaGhbdu2lZxwRowYMWzYMCKys7O7c+eOnZ3dn3/+qUify5cv79Chw9u3b2vVqhUdHd21a1fMwdJwz549Gz9+/A8//DB//vzNmzdLL1lYtWrVL7/8EhsbW7t27f/++6958+Znz55VpM+zZ8927NixSZMmW7ZskUzUy87O3rhxY926dfv16+fr66v4mumrV6/27NmzQYMGPj4++/btK+wX1DKs9Hr37p25uTmXLOjQoYP8G2bOnNm4cWPplvj4+L59++7du/fkyZNE9M8//3DtR44cGT9+/NmzZ6dNm6anp5fv4datW1elShWZAGrVqrV7927ux5ycnKZNm5qZmSnhu4GaZGdn29raduvWbdSoUZaWlvJv2L17t5GRkcxH+vbtu3nzZu4R4oYNGyQvdevWrUKFCjExMdyP3PSrf//9V6bPLl26DB8+XLrlzz//tLOzS0lJ4X6MiYnh8XizZs0q/hcE1ejUqVP58uUfPnxYwHu43IF0S25ubv/+/Tds2PDgwQMiWrFiBdd+4cKFhg0bvn37lvvx9evX+vr6Y8aMSU5Orlev3oULF7h2kUjUqlWratWqyRxo7969Xzutffz4sXr16sOGDevVq5fM2RI0HDfZc9u2bQW8JyMjg4hOnDgh3fjbb7+1bds2IyOD+3HLli1EdOzYscjIyCpVqgQHB3Pt79+/Nzc3d3R0lOlzxYoVNWrUkG5JSUnp3bv3zp07L126RESHDh0q5lcDNRowYIC+vn54eHgB7+Gu3ZOTk6Ubhw4dunr16tjYWCMjoxkzZsh85MGDB/r6+ps2bbKwsBgzZox8n7/++iuXgJC4fPlylSpVbt26xf0YHx9vbGzcu3fvonwrUDduLsv27dsLeA9XpOivv/6Sbly6dOmcOXNu3LjRqVOnVq1ayX/E2tra1dXVxcWlQYMG8n3KX7qnpaX17t17x44d3EzSPXv2FPErgeZp165d69atZRo3btwoc2uWnp7ep0+f7du3c2tSd+3aJfMRbhbX4cOHiWj16tXyB7K1tZ03b550S2Bg4Lhx4/75558ZM2bo6Ogo49uAenCz8by8vLgfhUKhtbX1zz//LPM2LiElFAolLSKRyNXVdf369bGxsUT0+++/S14aMGCAoaFhVFQU96OPjw8R/fnnnzJ9uri4yPyNO3fuXMOGDd+9e8f9GB8fr6en5+7uroTvCSVvwYIF8+fPDw8Pb9WqVefOnSUbK/GTAAAgAElEQVTt3IW3r68v92NYWBifz58yZYrMxzdt2mRqaird8uHDB2tra8mVf25ubosWLSpUqCAWi7nFYZJcQW5uro2NjZ2dnUyf3BLVT58+SVoyMjIaNWp09OhRSUv37t2NjY1zc3OL9eWhJJ05c2bUqFFBQUHcoxFJyujFixd6enrOzs7cry89Pd3W1rZmzZoyv803b94Q0cWLF6Ub582bt2DBgvDw8BYtWnTt2pVrzMrK6tu379atW7mlYJs3b843HiLy9/eXblmzZs3MmTOvXr3q7OzcqFEjJX1vDSVQSVZfPSZNmiQQCLy8vJydnRX8iIWFBTeL8/r169LtLi4uLi4uRMTlCxRkZmYWGxuro6PD/SgQCHr06LFkyZKEhIQqVaoo3g9ojmXLlj19+jQoKGjFihUKfkRPT48bVDKPppOTk7lyQ3Xq1OFaJk2atGzZMn9//w4dOhTcZ58+fXr37i2ZrFqzZk1dXd2kpKTCfRlQkwcPHly4cGHevHn16tUr1Ad1dHS4OXoy87M6dux4584dyXioWrWqsbFxUlKSqanpgwcPJO18Pt/KyioyMpIxpshMZyKaPXt2enr6qlWrxo4dW6hQQe02bdr0448/FqE88Zo1a0QikeQvV69evSZOnHjv3r2+ffu+evVK0m5iYuLo6CizJjpf5cuXP378OBE9fPiwsMGARnnz5s3Ro0fHjBnTrFmzwn7Wz8/vay+JxeJRo0b9+OOP48ePV/xva5s2baQHpIWFhb29PdZPaKmNGzf+9NNPRfhDM2/ePO4/8p0OP2/evHfv3q1du3bq1KkKdlimTBnufPXs2bPCBgOaLCIi4tKlS4qs1TMyMuImfuZbnePTp0/jxo0bNGhQ9+7dFT96v379+vXrR0QoLqrtEhMTiUhyI6+rq2tpaZlv7QUZfD7f39+fiGTKxWRmZp44caJ3794//fQT1zJmzJj58+f7+/v36dOn4D47d+4sff1vYWFhZGSE+0FtsXjxYu4/ZG7K/P39LS0tJave7ezsHB0d/f39169fX3CHFSpUePTokeS6SEdHp0ePHqGhoa9eveJGhWTc6ujoVK9eXZHLckNDw8jISOkIa9eu/c8//2RmZhobGyvyNUH1unbt2rVrVyLiHu9JHDt2TCgUzpkzhxskRkZG48aN8/Dw4OpwFNynZFmD9GDQ19fn/qoqcg6U9ttvv3H/IRmupVipLSnz999/HzlyZOvWreXLl1djGDJjKC0tjcfjGRgYqCseKI6HDx+uXLnSy8vLysqq+L09efJELBZLn90qVqxoY2OTb1lkeZKTnVgsXrNmDbf5YfGjAhXgCql369bt3bt3Z8+ePXv27DcXOH+TZDwwxrZv356cnOzq6kpf/lGMioo6derUgAEDFMy2X79+fceOHatXr65UqVIxwwMVe/v27aNHj7p06ZKVlXX9+vW//vrr1atXin9c+i8XN6vU0NCQ8vuLxrXDd+LatWsikahbt27v37+/cOHCP//8k5qaWvxuN27cGBoaumPHjsJedsu8Pz09HQNSGyUkJMTGxnbt2rVo56uvCQsL27Rpk7e3t4WFRfF7A223du3aWrVq9erVq5j9zJ49+9OnT6tXr1ZKVKB1GjdubG5uvmjRolOnTjHGbt++ff369ZEjRxa5w5cvX2ZnZ0vfDxoZGTVr1qyw94OMsS1btqSkpAwYMKDIwYAmiI2NdXBwkH6K3KZNm8TExE+fPn3zs/IX6kRkaGhoY2NjYWGxbNmyEydOiMXi6Ojo4OBgBcet9G1jbGxsQECAk5MTsu3a6PHjx7q6ui1btpS0cGcembw8KFfpnOHOzT7o3r1779691R3LZ7m5ucePH3d0dKxQoYK6Y4FC46bg1alTR1mbHXFruypXrizdWKlSpadPnyrYQ2xs7JgxYx4/fvz+/fuAgIAuXbooJTAoadzOfn/88ceBAwf4fH52dra5ufmxY8e++Wy5YImJia6urk+fPn3z5s0ff/wh/QCG28YkOjp66NCh27dvV6S37Ozs0aNHOzg4jBgxojhRgVpwW9PExMRYWVklJyeLRCIej/f7779LZoMqLiAgQEdHR34q39u3b4ODgxXcdgJKB25c/fnnn66uroyx7Ozs8uXLHzp0qFAzPWW8ePFiwYIFnp6eTZs2LU5sT58+jYiIyHczc9Bw3Lh69OiR9PlqyZIlc+bMKXKfubm57u7uTZs2LcIqHyh9Xr16dfTo0XXr1hVzMh03EWHbtm0WFhZKedwIWsfIyOjUqVOdOnVydnauVatWSkrK1KlTZ8yYUeQOueeL8veD3FZMinjz5s2gQYO46/+9e/f279+/yMGA2uXk5Lx7905+PBBRfHx8uXLlFO9KJBL9+eefrVu3NjMzI6JTp0516NChT58+P/zwQ0ZGxtixYxcsWKB4b1OnTr148eL9+/d79eq1d+9exT8ImiM+Pt7MzEz6CYpkaKkvqNKvdM5wnz17dnJyMlcAS3MsWrQoLi5uzZo16g4EimLTpk03btzYvn27rq6uUjqU37meiPh8PlNgkxyOiYmJq6vryJEjq1WrNnPmTAWnQoDacZu/f/r06fbt25mZmTExMRUqVHB1dRUKhcXp1sjIyNXVdcSIEfXq1Zs3b570tuNdu3Z1c3Pr0aOHv79/AYUdpC1ZsuTx48fbt29XcDo8aBRuLMXExOzdu/fTp08fP34cOHDg/PnzudUVinvw4MHKlStHjRpla2sr3c4YGz9+vJ6eHrfzBHwnuHGVmJh448aN9PT0Fy9eWFlZDRo0SJFZV1/j7u5uYmLy+++/FycwkUg0ZswYMzMzJNy1keR85efnx52vXF1d582bV5ziGytWrLh79+6OHTsU2XkVSj0fHx9jY+NiPiHmJiLY29uPHj1aSXGB9hEKhcuWLTM1NfXz82vbtm1ubu7mzZvz3bFZQfne9xXqfrBMmTLc9X/dunXnzp2LrZ61Glf0Webmi/tDlm/qoABLly598uTJ2rVriSg3N3fFihVlypTx8/Pr3LlzTk7Orl27CpU3b9++/ZAhQ3r37n3y5ElNS7KBguSHFvdjYYcWFEopvAy9cuXKjh07Bg0alJycHBERERERkZaWlpqaGhERweW51GLXrl0rVqxYuXKlnZ2dumKAInvx4sX8+fM7duxoYGDADaqkpKScnJyIiIgiz3CxtLQkonfv3kk3JiYmVq9eXcEezMzMxo0bt3jx4ps3b6alpRVnegWoEjdtYf369TY2Njwej1s28fr1a26/kSIrW7asu7v7okWLbt68aWBg4OHhIXmpf//+M2fODAoKGjRokKen5zfLO969e3fVqlW9e/fOzMzkBnxKSkpGRkZERETxq9+ACnBVGidOnNi1a1cDAwNjY+NVq1YREbcbkoLi4uJ69OhhY2Mj85yYMTZlypSTJ08ePHhQZg4OlG7cuPL29m7UqJGOjs4PP/wwZ86cjx8/Xr58uWgd7t+//+zZs6NGjXr06BF3quHmdkVGRireiUgkGjVq1I0bN44cOVKoyV+gISTnqy5dukjOV+z/u7cVwcOHD5ctW+bs7CwWi7lx9eHDh6ysrIiICG6naPiupKam7t69e9y4ccWsgbBkyZLo6Ohx48ZFRkZGRERw0xri4+O5fezhO7F169agoKBjx44NHTp0z549T58+tbOzGzVqFLfNYBF87X6wWrVqCvZQrlw5yfW/np6ep6dn0SIBTaCnp2dmZiZTEZvbOUDxIUFEvr6+ixcv9vb25uqH+Pr6BgYGHjlyZOjQobt373727Fnr1q3d3d25VdeK6Nmz5/Tp0wMDAz08PObOnav4inzQHBYWFklJSdIP87iRpnj2CYqgFCbc9+zZIxaLd+/ebfd/kZGRYWFhdnZ2hS3nrxQikWjWrFnjxo1bsWLF9OnTVR8AFN+RI0fS0tLOnz8vGVQnTpx4+/atnZ1deHh40fqsVasWj8e7efOmpCU1NZVbUl3YripUqPDTTz/duXOnaJGAinEXTNIrEsqUKUNEubm5Sunf0NDQzs4u3/Hg6OiYlZX16NGjgnvYt29fTk5OQECAZMAHBwfHxMTY2dk9efJEKUFCibKwsODz+dIl+bhEg+JPnUNCQlq2bGlqanrmzJmyZctK2tPS0gYOHLhjxw5/f38nJyflhg0aTunnrj/++IOIFi1aJDnVvHv37sSJEw4ODgr28P79+549ex49evTEiRNt27YtWhigXvLnK25cFXmWzIEDB7Kzs48fPy4ZV+fPn3/27JmdnR1yo9+hnTt3ZmRkTJgwoZj9cOerESNGcIPK0dGRiHx8fAYNGqSEKEFLhIWFGRsbS3YONzMz8/DwyMrKunv3btE6rF69uq6urvT9oFAojIqKKsL9IFf8HfeD2s7KyiosLEw6KxoWFmZmZqbgxoQikWj+/Pljx45dvHjxzJkzJT0IBILWrVtzP5qYmEyZMiUnJ0d6PbSCHB0dxWIx9qjXRlZWVtzpRdISFhZGRNbW1uoLqvQrhQl3b2/vJ1+yt7dv1arVkydPVD8XLykp6Zdfftm6deuRI0ckpzzQOmPHjpUZVC4uLpUrV37y5In0vhOFUrly5Z9//vnw4cMJCQlcy549ezIzMxUpvRcTE7N8+XLJX+LU1NT79+/XqFGjaJGAirVv315PT2/nzp3cb1AsFu/fv79MmTKNGjUqWocvX7708vKS5LyysrIiIyNr1KiRm5s7b9486Uk3169f5/F433yOPXv2bJkB36lTpwYNGjx58qRu3bpFCxJUycDAwNHR8ciRIykpKVwLV0pIwTzmzp07O3bs2LZt28uXL5uYmEjaY2JiWrVqFRIScunSpV9//bUkIgdN1qpVq3Llyu3evVuy+NTPz08gELRo0aJoHR48eFDmVFOpUqUBAwYoWLv29u3b9vb2jx49un79eufOnYsWA6idkZFRmzZtDh8+LDlf7du3jxQ+X8mbNm2azLjq3r27tbX1kydPGjZsqLS4QRvk5uZu3Lhx0KBBhZocmq/r169LDyourTlnzpyTJ08qI1LQDtbW1mlpadLZRi5j9cMPPxStwzJlynTr1u348eOSucaHDx/+8OGDIveDcXFxixYtkr/+L1okoCH69ev35MkTyYklNjb2woUL/fr1U+SzycnJPXr0WLt27d69e6X3bbKyssrNzZWeJsj99zdHi1gsXrRo0bNnzyQt169fV+SDoIH69Omjo6Ozfv167sfc3NydO3daWFhInsRASSiFm6aam5ubm5tLtxgYGOjq6ir4oHjv3r0PHz58/fo1Ee3Zs+fSpUsdO3bs1KkTt3dTcHCwSCSaPXs2EXl4eHCrwL7myZMn7dq1e/XqlZOTU3h4uOQcN2jQoJ9++qlo3w7UokKFCjJb3ZYrV04gECg4qE6fPh0SEsLV4jh58uTr168bNWo0cODAdevWOTo6Ojo6Dh069NWrV76+vs7Ozr/88ss3OwwPD1+4cOGFCxd69OiRm5u7f//+pKQk7gYVNJ+5ufncuXMXLVr0/v371q1bX7x4MSQkZMOGDYoUQzh37tx///3HXVufOXMmJSXFxsamYsWK3t7e58+f79OnDxEdOXLkyZMnAQEBiYmJBw8e9PPzGz58eOXKla9cuRIYGDhy5Mhv3hVUrFixYsWK0i1lypTR19cvwnQbUBdvb+927drZ29v369cvISFh//79nTt37tWr1zc/OGLEiL1791arVq1GjRqLFy/mGq2trevVq+fs7Jyamurm5nbixIkTJ05wL02dOvWbD7OPHDkSGRmZnJxMRIcPH46KimrdunXPnj2L9xVB1YyMjJYtW+bh4dG2bdv27duHhoaeO3fOy8uratWq3/zslStXuAohOTk5wcHBs2fPrlmz5rhx42TeJhAIypUrV6tWrW92eOrUKRcXF6FQOHLkyIMHD0ra586di8IyWsfb27t9+/bNmzf/9ddfufNVly5dFDlFvHr1avPmzUQUGxubnZ3NXZ97e3ubmppKv83Y2FhPT0/BP2HHjh0LCwv7+PEjEQUGBj58+LB58+Z9+/YtyhcDdQsICIiLi5syZUqhPnX8+PHQ0FCuaOSff/75+PFje3t7mcfM3KumpqYKpvLnzJnDGAsJCRGLxdxAnThxIhbya50RI0Zs3bq1a9euHh4e1atX5/bRHTJkSP369b/52X///ff8+fPcbJvz589nZGTUq1dvxIgRK1eubNmyZdu2bUeOHJmUlLRz58527dq5uLh8s8OoqKjly5efP3++d+/eRHT48OHnz58HBgYW/2uCCjx58mTXrl1E9OLFC11d3dmzZ+vp6S1evHjChAn79u0bOHDgxIkT9fX1fX19zc3NFdng9Pnz523bto2Li/vll1/u37/PnWeIyNXVdejQoRs3bnR2dvbw8KhZs2ZYWNi2bdv69evXuHHjgvtMSUkJCAjYunXrqFGjLCwswsPDDx482KdPnyLPEgPVWLx4cUZGBvc4cNGiRfr6+iNHjqxbt+5v/2PvzsNqTP8/gL9P+74wjH2sESE7Y53sKV8zZEvly9iNiihqprIWrczYhjGlsRUzJIb6jpBBShiJ7PuSShvt5/fH8UulITrnPJ28X1eXq+7n6bnfuY5z8nnu87kXLFi9enVOTk6XLl0iIiLOnTu3Z8+eyuxQeOPGjS1btgC4d++eurq6i4uLurq6p6dneHj4qVOnJP369u/ff//+/U6dOo0bN+7dV3v69Kmk7p+YmJiRkSF5rC5dulRNTa3qP3t1UwML7m/r2rVr5Xelv3nzpqST8qBBg9LS0tLS0tq2bQtAMqijo/PVV19JPn9vI8iUlJQ2bdq0adNG0jiyZLwyFVWq5oyNjbOzsyt58v3790seVADi4+Ml5YCuXbueOXPGx8cnNDRUX19/xYoVlfwvwcSJE1u2bBkQELBt2zaxWNy+ffutW7d+9BpDkj93d/fmzZuHhIT88ccfX3zxxcGDB0eMGFGZbyxp9V7yWFJXV7e1tY2Li/P19Q0ODi4qKjI2Nvbx8RkwYACAhISENWvWREZGpqWlNW7ceMOGDR+32VfHjh0lbXZJUfTo0ePvv//28fE5dOiQgYHBqlWr7O3tK/NSmJubW/LoKhksKirS19fv3r07gEePHknuSUtUpq3/nTt3Sh63ks0AWGVQUHPnzm3QoMGWLVv279/fsGHD3bt3V6YoAODp06eSx4Ck8Ut8fHxeXt7bp/Xt29fY2LiSF5SsgL59+3bptVcC7tZDH61nz56nTp36iOernJwcyeNK8obof9sKpX379pXv33337t2S56v8/Pz4+Hi+/CmuCxcuzJ49+71FpXLu3btX8hiQ7NhUbi0XABUVlUGDBlV+mWd8fLxYLNbS0ho4cGAl/yNJ1VCzZs3++ecff3//iIgISaf1H3/8sZK/Wj9+/Ljc7/CSzTCNjY1jY2O9vb337duno6Pj6urq5ORUmSdAS0vLc+fO+fn5SX7/b9u2rZ+fH7urKYrs7GzJ40Hya098fLyGhgYALS2tEydOeHl5RUdHFxQUjBo1asmSJQ0aNHjvBZ8/f25kZGRkZCR51ioZHzJkiKmp6aVLl/z8/I4cOfLkyZOGDRv6+vq+vejhbbVq1YqNjfX19T1y5MizZ88aNGjg4+MzZ86cj/+xSS4uXryYmZmppKQ0aNAgyTtyJPeMvby8jI2Nf/vtt127djVv3jwyMnLgwIGVuaBkR0wAJaVRLS0tlC1zicXi+Pj4cqtUK1RSHZW8hko+r6l7t4oqvwV2zePs7Hz06NEP2pvrHfz9/VevXv3RW6ZQzbB169Z58+bl5ORI8ZpDhw5t0KDBtm3bpHhNqv527tw5ceJEOTxFBwUFTZ8+vcLiF9Vsr1690tLS+uOPPyqz8r2SvLy8Nm7ceOfOHWldkBTO0aNHhw4dmpqaWm6VcVVI3kwdFhYmrQuSwnn58qW2tvb+/ful+OYY/upO69atW7p0abktK6vIxMRk1KhRy5cvl+I1SbHs3bt3zJgx+fn5lVk6Wknjxo3Lz8///fffpXVBUmg//viju7u75M2j0hIREWFhYZGZmVl69yb61Dx58qR+/frHjh2TrN6rOpFItHPnzvHjx0vlagqnBvZwJyIiIiIiIiIiIiKSv0+ipcy/adiwYWUarlVS3bp127dvL62rkYKqXbu21JuatWzZ8u23slKNV6tWrU6dOslhotq1a3/ou62pZlBSUjI1Na3MW/8q7/PPP2/Xrp0UL0gKR09Pz9TUVEVFmr9hVqarO9VskucrfX19KV6Tv7pTnTp1pP4YMDY2rkz/B6rBDAwMTE1NRSKRFK/ZrFkz9kyjEnXq1JH6poD6+vqmpqaVb8VMNZKqqqqpqakU3+VgampqaGgoraspnE+6pQwRERERERERERERkbSwpQwRERERERERERERkRSw4E5EREREREREREREJAUsuBMRERERERERERERSQEL7kREREREREREREREUsCCOxERERERERERERGRFLDgTkREREREREREREQkBSy4ExERERERERERERFJAQvuRERERERERERERERSwII7EREREREREREREZEUsOBORERERERERERERCQFLLgTEREREREREREREUkBC+5ERERERERERERERFLAgjsRERERERERERERkRSw4E5EREREREREREREJAUsuBMRERERERERERERSQEL7kREREREREREREREUsCCOxERERERERERERGRFLDgTkREREREREREREQkBSy4ExERERERERERERFJAQvuRERERERERERERERSwII7EREREREREREREZEUsOBORERERERERERERCQFLLgTEREREREREREREUkBC+5ERERERERERERERFLAgjsREVVJaCjWrEFe3puRa9fg7Y3CQuzZg8OHy5z84gV8fPDwoZwzEhERERERERHJAwvuRERUJb/+ikWL4O39ZuTyZbi4oLAQGzZgx44yJ6ekYOFC3Lol54xERERERERERPLAgjsREVVV06ZYtQrXrwudg4iIiIiIiIhIUCy4ExFRVZmZoXdvzJkjdA4iIiIiIiIiIkGpCB2AiIhqgoAAdOqEnTsxYUKZ8Zcvcf/+my+fPJFzLiIiIiIiIiIi+WHBnYiIpMDEBN99h/nzMXx4mfF9+7Bvn0CZiIiIiIiIiIjkiy1liIhIOjw9oawMT88ygxMmICfnzcelSwKFIyIiIiIiIiKSPa5wJyIi6dDVha8vbGzw2WdvBpWVoaX15ksNDfnnIiIiIiIiIiKSE65wJyIiqRk3Dv37w8dH6BxEREREREREREJgwZ2IiKRp/Xq8evX+0zw90bkzunfHtm2yz0REREREREREJBdsKUNERFViaopatd582aoVvLwQEQElJZiaok6dMidraaF/fwAoKkJ8PDIzYWSEcePKtJ0hIiIiIiIiIlJQIrFYLHQGIiJSbDt3Qk0NQ4dCR+eDv7dZMyQkwMBABrGIiIiIiIiIiOSLLWWIiKiqfvgBY8bg8uUP/sYDB2BszGo7EREREREREdUQXOFORERVcu0a2rRBrVp49gzKyh/wjadPY9YsHDqEBg1kFo6IiIiIiIiISI7Yw52IiKrk0CEAMDf/sGp7cDCCgnD4MOrXl1EuIiIiIiIiIiJ5Y0sZIiKqksOHAWD48A/4lrNn4emJ1FRYWqJrV8THyygaEREREREREZFcsaUMERF9vJwc1K6NwkI8fYratYVOQ0REREREREQkKK5wJyKij/e//yEvD927s9pORERERERERMSCOxERVcFH9JMhIiIiIiIiIqqpWHAnIqKPJym4m5sLnYOIiIiIiIiIqBpgD3ci+n9pabhyBcXFMDJCvXqvB8ViXL2Khg2hp/fmzPR0pKTAyEiQmFR9XL6M9u1Rrx4ePYJIJHQaIiIiIiIiIiKhcYU7EQE5ObCzQ926GDIEFhZo0AD/+Q9SUgAgNxdt2yIiosz5wcHo0kWQpFStHDoEAMOHs9pORERERERERASw4E5EADB+PKKi8NdfyMpCRgbOnkVSEszNUVgodDKq1tjAnYiIiIiIiIioNBbciT55p0/j4EH8/DP69YOyMkQidOuGn39GXBz++EPocDVBXBw2b8bTp29GsrLKjyiizEycOgUVFQweLHQUIiIiIiIiIqLqgQV3ok9eZCTU1TFsWJnB/v3xxRc4elSgTDXKgQOYMQP29m9Gnj/HjBm4eVO4TNJw9CgKCtC7NwwMhI5CRERERERERFQ9sOD+8X77DXv2lBmJiys/Qp+a1NRUe3t7Dw+PPn36nDp1Sug4lfPwIRo1gtJbzwZNm+LBg9efOzujffs3H97ecs6o6OrWxe+/48gRoXNIVWzsFXX1PPaTISIiIiIiIiIqoSJ0AAXm7IyHD6GjA3Pz1yPh4dizB2PHChqLBJKfn79u3bply5ZlZGRoaGjk5ub27dvXxsZm1apVDRo0EDrdOykro6CggvGCAqiqvv589Gj07v3m0KFDCA2VR7aaokEDjB+POXPwzz/Q1BQ6jTSIxeKQkEEqKpkWFleAJkLHISIiIiIiIiKqFrjCvUoaNoS9PXJzhc5BQouKiurcubOTk1NGRsagQYNiYmLc3d3V1dWDg4NbtWrl4eGRW50fJU2b4tEj5OeXGRSLcesWmjZ9/WX37hgz5s1Hx45yT6nwPDyQkYEVK4TOISUJCQmPHz82NDRs27ax0FlIhp49Q2gorl4tM3joEJKSBApEREREREREVL2x4F4ls2YhJwcrVwqdg4STnJxsYWExePDgxMREIyOj8PDwyMjILl26eHh4JCcn29jYvHz50tPT08jIKDg4WOiwZb16heXLkZwMc3MUFiIsrMzRgwfx5AksLQUKVwMZGmLVKqxZgytXhI4iDYcOHQIwYsQIkUgkdBaSocREjB2LkSPL3FqeOxd79wqXiYiIiIiIiKgaq7EtZYqKiiF2DkYAACAASURBVI58SL9kNbVW+fmtKn++pLuGjg5WrcKMGbC2RuvWH5qRFNuLFy+8vLz8/f3z8/MNDAxcXFwcHR3V1NRKTmjcuHFwcPCUKVMcHBwuXrxoZ2e3bdu2gICAjtVheXh4OOztcfs2YmNx4ACmTMGcOVBSwrBhUFHB8eOYORPm5hg4kO/gkKIpU/DLL/juO2zZInSUKjt8+DCA4ezg/mnIyIC3N9zdhc5BREREREREVO3VzIL73bt3/f39AwMDK/8t/frtOXHiAwrusbGvP7G1xebNmDEDx459UEZSYMXFxSEhIQsXLnz27JmSkpKNjY2Pj0/dunUrPHnAgAHnz5+XnB8dHd25c2dra+t3nC9zCQlwcMCJEwBgaooFCwBg0yZ8/jmmT0dWFpSUoK6OyZPh4wMuXpYqJSWsX4+uXXHggNBRqiYtLe3s2bNqampmZmZCZyF5cHfHggWYOBGtPuB1koiIiIiIiOhTVDML7osWLdqzZ0/jxo1NTEwq+S1Nm2pra3/AFAYGrz8RibBxI7p0we7dH5iSFFN0dLRkxTqAAQMGVGbFupKSkq2t7ciRIyUr4rdv3x4eHv72iniZS03F0qX46ScUFaFWLfzwA+bOhbIyAKioYOVKeHri5k2IxWja9M3OnpqayM6GhkaZS82Zg2nT5JdcYT16BD29MiOmppgzB8uWvf7S1RUmJpgwQf7RquTPP/8sKioyMzPT1dUVOgvJw7hx2LEDs2cjMlLoKERERERERETVWw0suJ86dSo0NFRTUzMmJqZJkyZymLF9e8yeDWdnjB0rh9lIMPfv33d1dd2+fTuAxo0bL1++3NbWtvLfbmBg4OXlNWXKlPnz50dERLi4uPzyyy++vr4WFhYyi/z/Cgqwfj3c3ZGRAVVVzJkDT883d41KqKqiTZsKvv3tm1EqKlCpgc8e0nXiBMaPR79+MDIqM75s2euG+VevYtUqiMXYtw/r16NOHUFifgz2k/nUiETYsAGdO2PHDkycKHQaIiIiIiIiomqspm2aWlxc7ODgIBaLXVxc5FNtl1i6FAUF+PVXuU1IcvXy5UsPDw8jI6Pt27draWm5u7snJyd/ULW9hJGR0cGDByMjI9u1a5ecnGxpaSnZcFXqmd+IikKnTnBwQEYGBg1CQgICAyuotpP0iMXw8cHAgXj8GKmp+OwzGBu/Oaqnh4AAdOmCrl2xezcMDREWBhMT7NsnXOIPUVxcfPToUQDm5uZCZyFZyctDeDh+++3NSPv2mDMHTk7IyhIuFhEREREREVG1V9MK7lu2bImLi2vcuLGTk5M859XTg68vnj+X55wkD2KxODQ01NjY2NPTMy8vz8rKKikpycPDQ6Nci5W3PHjwwNjYODg4uMKjgwYNSkhICAgI0NfXj4qK6tSpk729fUZGhpTTJyfD0hKDByMxEUZGCA9HZCTatZPyLFRWVhbGjcPChSgqgrMz/vwT8+Zhx44y51hZIS4OHTrAygoJCRg4EM+eYfRojB2L1FSBcldabGzss2fPmjVr1ppbRdc4r14hPBy2tvj8c4wcCScniMVvji5dCgArVwqVjoiIiIiIiEgB1KiCe2Zmpru7OwAfHx8tLS1ZT9ehAz7//M2XEyZg0iQWM2uUuLi4Pn36jB079t69e127do2JidmzZ08l3zkRGBh49epVOzu7wYMHX758+e0TVFVV7e3tb968OW/evOLi4rVr17Zo0SIwMLCoqKjqyV+8eJHt5gYTExw8CAMD+Pnh8mXIoXfNJ+/aNfTsidBQ6OkhLAxeXq+b5L/DF18gMhKbNkFHB6GhMDGp7luqSvrJyKMVEslLZiZ27sSYMfjsM4wcie3bkZGBLl0wbx4KCt6cJrm1HBiItDThshIRERERERFVbyJx6dVrCm7BggV+fn69e/c+efKkSCQqfSgvL+/dy4dFIi2xWOcdJ2hrV9DI+m179yItjdtJKrxHjx55enpu2bKluLi4QYMG7u7u3377rZLSB9ygKi4uDgkJcXJySklJUVJSsra29vX1rfMvXboTEhIcHBxOnDgBoFOnTgEBAf369fu45JJ5Fy5cuLhFC4ezZ2FtDR8f1K37cVejD7JrF6ZNQ3Y2OnbE3r1o0eLDvv32bfz3vzh+HACsrLBpEwwNZRGzqrp16xYXF3fo0CH2cFd06ekID8fBgzh0CDk5rwfbtoWVFayt0aoVABw7BjMzpKaiVq3XJwwciL/+wrJlcHMTJjYRERERERFRdVZzCu43btwwMTEpKCg4e/Zs165dyx3dvn37uztu9+u358QJq3ec4OqK5cvfk+HcOXTvDh0dXLuGBg0ql5uqmfz8/A0bNnz//fdZWVlqamozZ85cvny5rq7ux10tPT3d29vb398/Pz/f0NDQ2dnZ0dFRTU2twpPDw8Pt7e1v374NwMLCYu3atc2aNfug6Y4dO+bo6Hjx4kUAAwYM+DMwUL1Dh49LTh+ksBBubvD2BgBra2zejI97j41YjJ9/hqMjXr7EF19g61YMHCjdpFX17Nmz+vXrq6urP3/+XA5vJCJZSE1FRARCQ3H0KPLzAUBJCb16wcoKY8agYcMyJ585A2trxMe/2ffh6lVYWsLBAXPmyDs5ERERERERUfVXc1rKODg45OXlTZ069e1qOwANDY0676Sjo1SnDt7xofOu5e+vdeuGr79GdjaWLJH+D0hyEB4ebmxs7ODgkJWVZWFhkZSUFBgY+NHVdgCGhoZeXl6XLl0yNzdPT093cXHp0KHDoUOHKjzZ0tIyMTHRy8tLV1f34MGD7dq1c3FxyarcBoX379+3tbU1MzO7ePFio0aNgoKC/vrrL1bb5ePRIwwYAG9vqKsjIAAhIR9ZbQcgEmH6dJw7h27dcPcuBg/GjBnIzpZq3Ko5dOhQcXGxmZkZq+0K5+HDhz/++OPIkWPq1Su2s8PBgxCLMWQINm3C48eIiYG9fflqO4CePXHzZpldltu0wfXrmDwZDg549EiePwERERERERGRAqghK9yjoqIGDx6sq6ubnJxcr149AZPcuoV27ZCXh9On0aOHgEHowyQlJTk6Oh45cgSAsbGxv7//0KFDpTtFVFTUvHnzkpKSAAwaNCgwMLBt27YVnvnw4cPFixeHhISIxeIGDRqsWrXKxsamXJekEi9fvly9erW3t3dubq6WltbChQtdXFzeu6crScuJExg/Ho8fo1EjhIaiZ88P+/akJBgbVzBeWIhVq7BsGQoK0KqVOCjon169BL598uDBg+joaA8Pj5s3b/r6+s6fP1/YPFRJ9+7d+/3330NDQ0+fPl1cXAygc+e/a9XqZWGBCRM+vt3UzJnYtAkDB+LoUXxIty0iIiIiIiKiGq4mFNwLCwtNTU0TExN9fHwWLFggdBwsWYJVq9CzJ/7+G/9SI6VqJC0tzdPT86effioqKqpVq9YPP/wwd+5c5ffudPlRCgoK1q9f7+7unpGRoaqqOmvWrKVLl+rr61d48rlz5+zt7U+fPg2gW7dugYGBvXr1Kn2CWCwOCwtzcnK6d++eSCQaM2bMmjVrvvjiC1kkp7eJxeKAgKJFi1QKCzFoEHbswL+06P9X58+jZ0+MGoUNG1C7dgUnXL4MOztoa2+KiZk1bdo0f39/Oa8rf/To0alTp6KiomJiYq5cuSIZ1NHR6dixY2RkpKampjzD0Ae5du3avn379u7dGx8fLxnR0tIaPnz46NGjLSwsdXUr8aatd3r2DKamePwYq1bBxaXKcYmIiIiIiIhqippQcA8ICHB0dGzZsuXly5fV1dWFjoPsbLRujUePsH07Jk0SOg39u4KCgm3btrm6uj5//lxVVfW///3vihUrPvvsM1nPm5qaunTpUkmJv3bt2t9///2/lfjFYvH27dudnZ2fPHkiKan7+vo2btwYQFxcnIODw6lTpwB06dIlMDCwd+/esk5OJbKysqZOnXrvXudz51wWLsSKFfiIezS7duHbb5GTgwYN8PPPMDev4Jz8fKxcuWLFCo/CwsK2bdsGBQVV2DVLim7dunX8+PHo6Ojjx4/fvXu3ZFxfX79v374mJibbtm17+vTpkCFDDhw4UB2ecqm0xMTEgwcPhoeHS54cAGhpaZmZmVlZWX399ddVaZD1tqNHMXw4lJRw4gTK3g0kIiIiIiIi+nQpfMH9+fOc1q2bpKWlhYeHW1hYCB3ntaAgTJ6Mhg1x9Wqlmr+T/EVFRTk4OCQmJgIYNGiQv7+/iYmJPAOcP3/ewcHh5MmTADp37hwQENC3b98Kz8zJyVmzZo2kaYy2tvaMGTMyMjK2bdtWXFxcv359Dw+Pb7/9Vok9HeQoMTFx9OjR165dMzAw2Lnz0rBhjT/6UrdvY8oUREcDgJUVNm2CoWEFp8XGxk6ePDkpKUlFRWXBggVLly79t613P86tW7diYmJOnTp19OjRO3fulIzr6ur26NFj0KBBvXv37tGjh6qqKoDk5OT+/fs/efJk1KhRe/bskQySsOLj48PCwvbu3Xv9+nXJSK1atUaOHDl69OjBgwfL7r7IwoXw8UHz5jh/Hv/yXh0iIiIiIiKiT4vCF9xnzcLJk7HduoVu27ZG6CxviMXo2ROxsXBzw7JlQqeht2RkZAwdOvTs2bOtWrVasWKFlZWVUEnCw8PnzZsnKXFaWFisW7euadOmFZ558+bNxYsXh4aGqqqqFhQUqKmpzZw5c9myZXp6evIMTLt27Zo2bVp2dnbHjh337t3bokWLKl5QLMbPP2P+fOTkoEkTbN2KQYMqOC03N9fDw8PHx6eoqKh9+/ZBQUGdOnWqyrwlRfYjR46UXsmup6fXvXv3QYMGDRo0qFOnThXey7l06ZKZmVlqauqYMWN27typoqJSlSRURenp6YMHD5a0jqldu7a5ubmVldXQoUOle1emQgUF6NsXZ8/Cygp79sh6NiIiIiIiIiIFoNgF98REmJoCQEIC5Ls6+f3OnMGXX0JdHVeuoFkzodNQWU5OTr6+vpaWlnv37hV8fe7Lly/XrVu3fPny7OxsTU3NefPmubm56fzLOyOCgoImT55saGgYHx/fjA8s+SosLHRzc/P29gZgbW29efNmKXZUv3kTkycjJgYiEaZNg69vxW+OOX369OTJk5OTk1VVVefPn79s2bIPegDfunVL0pA9Ojr6/v37JeN16tTp0aNHnz593lFkL+fChQtmZmbp6el2dna//PIL32MhoIkTJ+7cuXPo0KGLFy/u06ePjLag+Dc3b6JzZ2RmYts2TJ4sz5mJiIiIiIiIqiPFLpE4OqKwEHPnVrtqO4CePWFtjdxcLFokdBT6F/369RO82g5AS0vL2dn56tWrNjY2ubm53t7ebdq0CQ4OrvBm2Jdffgmgdu3arLbL2bNnz4YMGeLt7a2urh4QEBASEiLd/UtbtMCxY1i+HKqq2LwZXbsWnT4d//ZpvXr1unDhgrOzc1FRkbe3d58+fa5evfruK9+6dWvz5s22traNGzdu0aLFjBkztm/ffv/+/c8//9zCwsLLyysuLu7p06fh4eHOzs5dunSpZOnc1NQ0IiJCR0cnKCho+vTpCn3vtmawtbXt37+/HKrtRUVlvmzRAuvWAcDcuXjfg5GIiIiIiIio5lPggntYGCIjUasW3NyEjvIvvLygrY2wsNcNmoneoWHDhsHBwcePH+/cufPDhw/t7OwGDx5cXFwsdC4CgJMnT5qamh47dqxRo0bR0dH29vaymEVFBa6uiI9H586oX39N797dZsyY8fLly3KnaWpqenl5HTlypEmTJrGxsZ06dfL29i4qVQQtLi5OTEzcvHnz2LFj69SpU1Jkf/DgQb169aysrAICAuLi4h4/flxSZBeJRB8RuFevXvv379fQ0Ni6dev8+fOr9MOTgggORqdOyMgoM2hri0mTkJMDa2vk5QmUjIiIiIiIiKh6UNSCe14eFi8GgBUrULu20Gn+RcOGcHYGAAeH8ksCiSrUt2/fc+fOBQUF1atXr1u3bmzTUR1s3rx54MCBjx8/HjBgQFxcXM+ePWU6nYkJTp9G//4FysrKmzdv7tq167lz594+bdCgQf/888/06dPz8vJcXFz69u37+++/+/r6jhw5snbt2iYmJjNmzAgNDX3+/HmTJk1sbGy2bNly/fr1x48f79mzx97e/uOK7CkpKeVGzMzM9u/fL1n17+7u/pE/MymIggKsW4d//sHs2eUPbdgAIyOcP48lS4RIRkRERERERFRtKGo5b80a3LiBdu3w7bdCR3knJyc0bYqLFxEUVH6ZKlGFlJSUbG1tr1696urqKnSWT11WVtbYsWNnzJhRWFg4b968yMjIzz//XA7zqqnBw+P7uLi4jh07JiUlffnlly4uLnlvrRzW09PbtGnTgQMH6tevf/r0aVtbWycnp/Dw8BcvXtSvX9/KymrTpk2XL1++e/ducHDw1KlTW7ZsWZVUiYmJHTt2XLlyZbnxIUOG7Nq1S0VFZenSpatWrarKFFTNqapi1y7o6WHHDvz6a5lDOjrYsQNqavD3R3i4MPGIiIiIiIiIqgOFLLg/fAhvbwDw94eKitBp3klTE76++f37O7i5tXrx4oXQcehdYmJiLC0tV69eLXQQANDX1/+3fVNJPq5du9arV6/Q0FA9Pb3Q0NDAwEAV+T7ddOzY8cyZM87OzmKx2Nvbu2vXrufPn3/7NAsLizNnzigrK+fl5dnZ2QUHB9+9e/fRo0d79uyZPn16u3btpJXn8uXLz549c3V1DQwMLHdo1KhRO3fuVFZWXrJkiY+Pj7RmpKrYv3+/paXl1q1bpXvZd3Rs79IFy5dDLMb06XjyJFO68xIREREREREpCoUsuC9ejOxsjB6NwYOFjlIJ33yjJhJdfPz40dKlS4XOQu/y8OHDgwcPxsdXsFMlfYLOnz9/5coVY2PjM2fOjB49WpAMGhoaXl5eJ0+eNDIyunz5co8ePVxcXAoKCsqdFhcXV1RU1LNnz19//dXGxqZJkyayCDNu3LitW7cqKSk5Ojpu3Lix3NExY8Zs3rxZJBJFRLT7+WdZzE8f5ubNmwcPHkxMTJT6ld/RsX3BAowd+6p+fSdb2zHcgoKIiIiIiIg+TYpXcD9zBiEhUFeHl5fQUSotICBAWVl53bp1sqh9EJEsuLu7i8XidevWGRsbC5ukV69e58+fnzNnTlFRkbe39/jx48udcPjwYQDDhw+XdRI7O7vNmzcDmD179pYtW8odnTJlyi+/XI6OHj5zJrZvl3UWEtK/dWxXUsK6dVmPH/8WGRnJ9zoQERERERHRp0nBCu5iMRwcIBbDyQlVa0csVx07dpw6dWphYaGjo6PQWYioUr7++msAYWFhQgcBAG1t7R9//PHEiRMtW7acPn166UNisVhScDc3N5dDkqlTp/r5+YnF4pkzZ+7atavc0cmT2/r7o7gY//0v3jpINcc7OrbXrVv3119/FYlErq6uZ86cESggERERERERkWAUrOAeHIyzZ1GvHhYtEjrKB1q+fLmBgUFkZOShQ4eEzkJE72dnZwdg9+7d5XYrffjwoYuLy5JyK3vlok+fPomJiUOHDi09ePHixYcPH9avX79Dhw7yieHg4ODh4VFUVGRra3vgwIG3jsLDA0VFsLXl5pk1WZcuWLYMYjGmTsXjx2UODR061NHRsbCw0NraOjOTzdyJiIiIiIjo06JIBffs7NfvXl+9Gnp6Qqf5QHXq1Pn+++8B2Nvbl6vfEVE11LZt244dO6anp0vWj5d4+fKlt7f3Tz/99OrVK/mnUlNTKzciuYdnYWEhEonkFsPd3X3x4sUFBQVWVlZv30R0d8fixSgowJgxKPuXRzWKkxMGD4aR0a0pU6zKdWz38vLq0aPHrVu3pk2bJlQ8IiIiIiIiIkEoUsE9KQlFRejRA5MmCR3lo3z33XetW7e+cePG+vXrhc5CRO9nY2MDYHvZfuStWrXq1q1bZmZmePVYvy23Bu7lrFy5ct68ecXFSmvWtDl+/O2jcHJCfj7GjEF0tJyjkZwoKSE4OP369V5//hlWrmO7qqpqSEiIrq7unj17goODhUpIREREREREJH/Vt+B+4QKSk8uM1K+P8HD89hvkuI5TmlRVVf38/AB4eHg8efJEDjMmJuLKlTIjT57gn39eHyoXITMTCQkoLJRDLiLFMHHiRGVl5YMHD6amppYenzRpEoCQkBCBcr2Rnp5+5swZVVVVMzMz+c8eEBCwaNG16OjmlpZ4u1n36tWYMQMvX8LCAjEx8k9H8lCvnmFwcHCFHdtbtmy5du1aALNnz7527ZocwhQVIT4ed+6UGbx1CzdvorAQCQko197m6VNwI3MiIiIiIiKSuupbcDczQ4cOKP2f9IAAzJyJFi2Ey1Rl5ubmw4cPz8zM9PDwkMN033yD9u1x9uybkV9/xYgRADBsGDZtKnNyTAw6d8bz53LIRaQY6tevb2Zmlp+fv3fv3tLjEyZMUFVVPXz48NOnT4XKJnHkyJHCwsJ+/frp6+vLf3aRSLR8eZOpU5GVhWHDEBdX7ijWr8ekScjJgYUF4uPlH5Dk4R0d2ydPnmxtbZ2Tk2NtbZ2fny/rJC9fomtXdO1a5oXMxQVOTkhLQ+fOOHGizPmbN2PIEFmHIiIiIiIiok9O9S24A1BVxbx5QoeQtrVr16qpqf3888/xcqk/aWlh7lwUFclhKqIaqMLF7HXq1BkyZEhhYWFoaKhAuV4Tqp9MCZEImzZh/HhkZGD4cFy+XOaokhJ+/fX10WHDuJq4xnpHx/aNGze2atUqPj7ezc1NPmHy8rB4sXymIiIiIiIiIqpAtS64f/cdjh/Hrl1C55Cqli1bzpkzp7i42N7eXiwWy3q6adOQnAw2jSf6OKNHj9bR0YmJibl161bp8erQVaa4uPjIkSMAzM3NBYyhrIzgYFha4vlzDByIpKR/PWpmhqtXBUpJsvSOju06Ojq//fabmpqaj49PRESEHMIsWIBffmEXIyIiIiIiIhKMitAB3qV5czg4wNERw4bBwEDoNNLj4eGxc+fOU6dO/fLLLxYWFpX8LpFIUyzWq/wstWoBQJ06+OEHuLnhm2/QsOFHhCX6pGlra//nP//57bffduzYUXqJ7qhRo/T19c+ePXvt2rXWrVsLki0+Pv7p06dNmjQxNjYWJEAJVVWEheHrr3HoEIYMwfHjaN68zNE9e2BpiagojB2LCxegVK1v9dLHkHRs/+9//zt79uwePXqU/kfRrVs3Dw+PJUuWTJkyJSoqqm7dupW8pkikJxZrVj6DpiYAfPklxo3DzJlISICq6of8DERERERERETSUN3LHq6uUFGBq6vQOaRKT09v8eLFIpHo22+/rVdpo0c71KuHyn/8/ffr6ebNQ6NGcHQsH2PtWrRq9ebjrU4ARAT8/2L2cut2NTQ0vvnmGwA7duwQJhZw6NAhAJW/aSdTamoIC8OAAXjwAF99hbt3yxzV0MAff2DUKGzbBjs7GBnhxo03Rw8cQIsWkP0bfki23tGx3dnZuWfPni9evOjQoUPlX/WsrH75oFe9ly9fT7d6Ne7dg59f+YQzZpR51QsIkMvfCxEREREREX1iqvUKdwC6uvDzw/jxmDpV6Cgfrqio6MiRIxV2e0hJSRGLxZqamrq6upW8mq6ufqXXBQKAmtrrT1RV8dNPMDNDZGSZE4YNw/jxb76Mj4en5wdcn+gTMXjw4Hr16l2/fv3cuXPdunUrGZ80adK2bduCg4M9PDxEIpH8gx05EglBG7iXo6mJAwcwZAjOnMHKleW3ZdbWxu+/A8Djx7hxA7Nn4+jR14eys1G2YQ8pqvXr158+fdrExKSwsFCt5EUIyM3NTUtLKygo0NPT09DQqOTVdHS0PuhVr+SdE40awd0dP/yAiRPLnDB1Kkr9C8bu3Th27AOuT0RERERERFQZ1b3gDsDKClu2wMGhzP+TFcKWLVtmzpxpa2sbFBRUevz+/ft+fn4ikejIkSN9+/aVQ5IBAzBxIhwdMWHCm0EjI1havvlSWVkOQYgUj7Ky8oQJE/z9/UNCQkoX3AcMGNC4ceM7d+78/fffvXv3lnOqlBRcu3ayf/+7ZmYfUpKUMV1dHD6MZcuwYsW7TjM3x//+h507yzwjUQ2gp6d37ty5WpKOZqU4OjomJye3bdv23LlzWlpaMpo9K+vN5/Pm4ddf4eJS5oTu3VH6DSEXLrDgTkRERERERNJX3VvKSKxbh9hYHDwodI4P8eLFi++//x7AyJEjyx1asGDBy5cvJ06cKJ9qu4SPDx48QNmuGERUKZKuMjt37iwoKCgZVFJSmjhxIgTaOvXPP5GWJtLUbCq78uXHMTCAry/evYi5SRPMnw9HR7x4Ia9YJC9vV9v37du3efNmDQ2NHTt2yO3hqqqK9euxaxcuXJDPhERERERERESvKUbB3cgICxciOVnoHB/C09MzJSWlT58+kkbPJU6dOhUWFqapqbly5Up55qlXD0uXVurvMCwM1taYM6d8F2aiT1bnzp1NTExSUlKOlrRBAQDY2toC2L17d15enpwjHT4MANWmncwHW7wYqqo1bX8OetuDBw+mTZsGwNfXt2PHjvKcum9fTJqE69ffc1pREQIDMW4c3NyQmSmXZERERERERFSjKUbBHcCSJWjeXOgQlXb16tWffvpJSUkpICCgdHPn4uJiBwcHsVi8ePHiJk2ayDnVnDno1Ok951y5guBguLujb1+MGyeXWESKoMLF7G3btjU1NU1PT5fsXyo3RUWvG6BXtEOEYtDRgb8/Nm7EuXNCRyGZKS4utrGxSUtLGzFixKxZs+QfYM0aGBq+55xdu3DrFlavhliMxYvlEouIiIiIiIhqtOrbwz0trcyXmpq4eRNXriAmBn36VHD++fPo3Fk+0d5v/vz5BQUFM2fO7NKlS+nxLVu2xMXFNW7ceMGCBXKIce1amS+VlXH+/OvP795FuV0ezc1RWAhlF1IwAQAAIABJREFUZZiZAUDLlpgzRw4ZiRSDtbW1m5vbH3/8kZGRoa+vXzI+adKkCxcuhISEfP3113ILc+YMUlNhZISWLeU2p/SNGYNhwzBvHubOFToKyYanp2d0dHTDhg2DgoLksLGwri7E4jIjdeu++V1C8gJXmpsbXF2hpARrawAYMwZyeWUmIiIiIiKiGk5hVrgDOHkSHTvCzg5vN28YNQpdu+LMGSFivSUiIuLw4cMGBgZLly4tPZ6Zmenu7g7Ax8dH8LbLSkrlC+4ou29qZCTkvg0kUfXVpEmTfv365ebm7tu3r/T4xIkTlZWVDx48mJqaKrcwkn4yiru8vURgIC5cwO7dQucgGTh58uSKFSuUlJSCg4Nr164tdJwKNgYXiaBU6pegw4fRr588ExEREREREVHNpEgF9y+/RNu2uHULfn7lD5mYQCzG3LkoLhYiWSkFBQWS1evu7u516tQpfcjT0/PJkye9e/e2srISKF1lXb+O+fMr+Hsm+pRJtk4t11Wmfv36AwcOzM/PDwsLk1sSSQMbxW3gXqJlSyxahPBwoXOQtKWnp9vY2BQVFbm5uZlJ3jZVvR0+jD/+gJOT0DmIiIiIiIhI8SlSwV1ZGf7+ALByJR49KnNoyRI0aYL4eGzfLki0N9auXXvt2rU2bdrMKduQ5caNGxV2da+G/vc/TJqE3bsVu1sFkdRZWVlpampGR0ffv3+/9HiFhXjZefwYFy5AW7uGrMZdsgRGRkKHIGmbOXPm3bt3u3fv7ubmJnSW99u4ET4+iIiAjo7QUYiIiIiIiEjxKVLBHYCZGb7+GtnZWLKkzLiWFpYvBwBnZ2RmChINAJ49e7Z8+XIAfn5+qqqqpQ85ODjk5eVNnTq1a9euAqWrlIMHMXQodHSwdCnGjoUcm2QQVXd6enqWlpbFxcU7d+4sPf7NN9/o6OicOnXq1q1bcohx6BDEYgwcCA0NOcwmfd9/j6lT33ypro7ff8eePRU0uSIFtWHDhj179hgYGOzevbvcS2E1tGIF5s6Fri7mzMG0aUKnISIiIiIiIsWnYAV3AD4+0NBAcDBiY8uMT5qEPn3w9Cm8vARKBri5ub148WLEiBHDy/Z6iIqKioiI0NXVLdfVvRrq2xfJyfj5Z3h5wcsLpfaGJKLXi9mDgoJKD2pra//nP/8Ri8U7duyQQwZJA3fF7SfTvz88PTFwIJKSXo+0bYtq32eLKisxMdHJyQnAhg0bmjZtKnSc95s+HcnJ8PODlxcUYTk+ERERERERVXeKV3Bv3hwODhCLYW8PsfjNuEiEgAAoKcHXF9evCxDswoULv/zyi6qqqq+vb+nxwsJCBwcHAO7u7vXq1RMg2YfQ10fz5m8+VFSEDkRUnQwfPrxu3bpXrly5cOFC6XEbGxsAwcHB4tLPSjJQUICoKEkSmc4jQ69eISoK0dGoBvtokpQVF+emp9t37txq2rRp48ePFzpOpdSp8+Yl74svhE5DREREREREik/xCu4AXF3RoAHOnMFvv5UZ79IFkyYhPx8uLgKkcnBwKCoq+u6771q3bl16/Mcff0xMTGzZsuXcuXMFiEWV1rZt2yVLlnzzzTdCB6HqS0VFRbLpcbmO7YMGDapXr97169fPnTsn0wAxMcjIgImJAlcGo6Lw6hW6d0fdukJHqdF69OixZMmSwYMHy3PSBw/ma2r+b/36wsBAf3nOS0RERERERFR9KGTBXUcHK1YAgIsLsrPLHFq9Gnp62LcPkZFyjbRnz57jx4/XqVPn+++/Lz2elpYm6eoeEBCgrq4u10z0gdq3b79ixYpx48YJHQQArly5MmbMmJSUFKGDUHmSxew7duwoKioqGVRWVp4wYQJkv3WqpJ+MublMJ5EtRW+Joyh69+69YsWK4XL8i37x4veUlA0ikXqLFiGamtpym5eIiIiIiIioWlHIgjsAOzt0746HD+HtXWb888/h7AwVFfzyy7nS5TCZevXqlbOzM4Dly5cbGBiUPuTq6pqamjpo0KARI0bIJwwpurS0tHnz5nXs2HHv3r0rJHeWqDrp0aNH69atHz9+/Ndff5UelxTi//jjD5l2lTl0CFDwanUNuGdAb8vPf3D37jQAjRqt0dIyFToOERERERERkWAUteAuEiEwECIRfHxw+3aZQ/Pno3fv2bt2dd+8ebN8wqxZs+bOnTumpqZTp04tPZ6YmLhlyxYVFRV/f765nt6vuLg4ODi4TZs269atKy4utrGxWbJkidChqAITJ04EsH379tKDnTp12rVr1z///CMSiWQ0r2TvivHj0bu3jGaQucRE3LmDunXRubPQUUiaiu/csSssTNXXN69bl83TiIiIiIiI6JOmqAV3AD17wtoaublYtKjMuIYGvvtuIAA3N7fU1FRZx3j48OHq1asBBAQEKCsrlz7k6OhYWFg4d+5cExMTWccgRXfs2LFOnTrZ2dmlpKR89dVXCQkJwcHBddnlulqytbUViUT79u3LLtvTaty4cfr6+tKda8MGzJyJ9HQAEIkwbRoWL8bcucjNle48ciJZoW9uDiUFfvGh8h49WpqV9ZeqasOmTYMAWd1wIiIiIiIiIlIIil3z8PKCtjbCwhAdXWZ89OjRgwcPTktLW7ZsmawzODs75+TkWFlZ9e/fv/T43r17IyMja9Wq5ebmJusM9KG0tbV1dXXDwsIePXokdBbcu3fP1tbWzMzs0qVLjRs3DgoK+uuvvzp06PD2mfn5+du2bdPQ0EhJSfnzzz/lH5UkmjZt2qtXr5ycnP3798t6rqNHsWkTFi9+M3L3LjZvRkGBrGeWCTZwlwVdXV1NTc1ly5YFBgY+ePBAzrNnZ8c8ebIcUGrWLEhF5TM5z05ERERERERU3Yhk2m5YDlasEEdG3iwuXvzXXztVVFRKxhMTE01NTQEkJCTIboH56dOne/fura6unpSU1LRp05LxvLw8ExOTGzdubNiwYebMmTKanT6aWCzu0KHD5cuXdXR0lixZ4ujoqKGhIf8YWVnYuPHq99+b5uXl6erqSpL82+a6ERER8+fPT05OFole/7MdMWKEn5+fkZGRfFMTAGzcuHHWrFnDhg07LCkhy8zXX+PGDSQl4eRJ9OoFAOHhGDkSmZnQ1ZXpzNKXmYk6dVBUhGfPUKuW0Glqls6dOyckJAAQiUQ9evQYPXr06NGjmzVrJut5i4peXLlimp9/t359twYNZH6Hm4iIiIiIiKj6U+wV7gAWLMi7e3fwyZNhW7duLT3erl27adOmFRYWOjg4yGjq4uJiBwcHsVi8cOHC0tV2AD4+Pjdu3GjXrt23334ro9mpKkQi0aFDh2xsbLKzs5csWWJkZBQcHCzPAGIxgoNhZIQlS9p88cUIKyurxMREFxeXCqvtycnJFhYWFhYWycnJRkZG+/btCwgI0NfXj4iIMDExsbe3z8jIkGd4AjBu3Dh1dfXIyMgnT57Iei5TU0yciJkzUVgo66lkKzIS+fno3ZvVdumLiYk5cOCAjY2Njo7OmTNnFi5c2Lx583bt2nl4eCQlJclu3rt3Z+bn39XW7l6//g+ym4WIiIiIiIhIgSj8CncAoaGhY8eOrVWr1vXr12uVKuSkpaUZGRmlpqYeOHDA0tJS6vNu27ZtypQpDRs2vHbtmra2dsn4kydPWrdunZmZefTo0cGDB0t9XpKiY8eOOTg4XLp0CcCAAQMCAgI6duwo60lPn4a9Pc6dA4BevbBuXV6XLhWvan/x4oWXl5e/v39+fr6BgYGLi4ujo6OamhqA1NTUpUuX/vTTT0VFRbVr1/7+++/nzp1bbhcBkqmvv/76jz/+8PPzc3R0rMp1Xr1Cbm6ZP0s+adcO8+dDRwfe3mjdGu7ucHJS4BXu336LrVuxahVcXISOUnPl5uZGRkaGhoYeOHCg5FZc27ZtLS0tLSws+vTpI8W5UlI23rs3S1lZ39g4QV1d5qvpiYiIiIiIiBRCTSi4A/jqq6+io6MdHR39/PxKjwcGBjo4OLRo0SIxMfHfOnV8nKysrNatWz9+/DgkJMTa2rr0IVtb2+3bt48ePTosLEyKM5KMFBcXh4SELFy48NmzZ0pKStbW1j4+PjLarfTRI7i4ICQEYjEaNIC7O779tuLdIyuZKiEhwcHB4cSJEwBMTU0DAwP79esni+T0tr17944ZM6Zly5YrV67MzMwsKiqS/JmVlVVYWCj5Mzs7u6CgICcnJz8/Pycnp27dNsnJv+Tl4eVLlPz5Dhs24MgR6Ohg+3b4+MDTE4mJuHhRIQvuYjEaN8bDh7h4ERXtUEBSlpeXFxUVtXfv3v3796elpUkGW7VqNXr06IkTx7Rv36WK18/NvZKU1K24+GWzZjtq1ZpQ5bxERERERERENUQNKbhfvHixS5cuIpHowoUL7dq1KxkvLCzs1KnT5cuX16xZ4+TkJMUZk5KSvvnmG0NDw1OnTolEopLx+Pj47t27q6qqXr58uWXLllKckWTqHWvJpeLVK6xdixUrkJUFNTXMnInly/+1YBodHe3g4HDx4kVUbt19eHi4vb397du3AVhYWKxdu1YOvZspLy+vffv2qampJdXM9zI27pKUFFduUEMDmppl/lRXh5YW1NUxezZ+/vl1wb2wEF27onVrTJqkkAX3CxfQqRPq18fDhyj1lEkyV1RUdPr06dDQ0NDQ0MePHwPYuXNAu3a3DAxGGRpa6eh8+XHN5a5e7ZWTc+azz6Z+8cUWaUcmIiIiIiIiUmA1pOAOYMaMGZs3bx48ePDRo0dLjx85cmT8+PFeXl4zZsyQ7owFBQXPnj1r2LBhyYhYLO7bt++pU6eWLFmyYsUK6U5HcpCcnDx//vyIiAgARkZGfn5+I0aMqPpl//wTM2fi7l0AsLLC6tUo2/P/jfv377u6um7fvh1A48aNly9fbmNjI6pEefLVq1dr165dsWJFVlaWpqbmvHnzXF1ddRWrIquYnJ2db9++raurq6KiIvlTR0dHVVVV8qe2traampqWlpa6urqWlpaGhoGGRttyFfZ3+/rr1wV3ACdOYMAALFyI1asVr+C+ciVcXTFtGjZvFjrKp6qoqCgmJmbv3r1TpsQVFZ2WDKqqNjA0/MbA4BsdnX4i0Qf0pMrNvfbokXvTpluVlLTffzYRERERERHRJ6PmFNxTUlKMjIxevHgRERFhbm5e+lBGRoa+vr4cMgQHB9vZ2X3++efJycl6enpymJFkITw8fMGCBdevXwdgYWHh57enVSvNql0QI0fC2Bj+/hg6tOJzsrPh7//jypULc3NztbW1Fy9evGDBAo33lmPLevDgwaJFi3bt2iUWixs1ahQQ8Ns33/TjamKFVrrgDsDODnv2IDdX8QruNjZL7t5ttnDhREtL1meF9+pVYnp6aHr6ztzcZMmIikptfX1zQ0MrPb2hIlH5N/dkZUU/fLj41auLYnGxpma7hg1X6ekNkXtqIiIiIiIiIgVQcwruAPz8/BYsWNCyZcvLly9Lt2N7ZWRnZ7du3frRo0dBQUG2trZynp2kq6CgYP369e7u7q1b90tIODBrFpYuRVXu2hw4gBEjUOGepmIxwsLg5IQvvrgWE2M8ZswYHx+fJk2afPRc586ds7e3P3/+fL16l+vWbRkYiF69Pj45Catcwf3ZM7Rpg/R0ZGZCJIKOjqDhKi09Pb1u3bpKSkrPnz/nGy+qlf+vvO/JzU2SjCgrGxoYWOjrW+rrm0tWr+fn301MbGdgYFm37nyRSPXly1gtra5aWp0FDU5ERERERERUTdWogntBQUH79u2vXbvm6+s7f/58Oc/u6uq6cuXKLl26xMbGKlW4DyYpmqdPn65enR8Q0Li4GJ9/juXLMWVKxXucfrSzZ2Fvj7NnAaBXL/j7J/To0anqly0uLt69O2H+/C5PnkBJCXZ2WLkS9epV/cIkbxs2QF0dU6a8Gdm3D0eOYNYsWFq+3ne3+tu1a9eECRMGDhwYFRUldBaq2KtXl1+82Juevu/Vq0uSEWVlXX19i9q1pxQUPLhz57+mppnKyrxZQkRERERERPQeNargDiAyMnLIkCF6enrXrl2rJ8f64u3bt9u2bZuXl3fixIk+ffrIbV6Sg4QEODjgxAkA6NQJAQHo108Kl330CJ6e2LIFxcWoXx8eHvj2WylX83NysGYNvL2RmwttbTg5wcXl/U3DSSH8+CO++w7KytixA2PHCp3mfezs7IKDg318fBYsWCB0FnqP/Pw7L17sT08Pzc7+GxDXr++uodH69u2JzZvvNjSs9g81IiIiIiIiIqHVtII7AHNz88OHD8+YMWPjxo1ym3TMmDF79+61sbEJDg6W26QkT+HhmDcPd+4AgIUF1q5Fs2Yfean8fGzYgB9+QGYm1NQwcyaWLYPsev7fvInFixEaCgCNG2P5crDjUc2wbBl++AGqqggLw8iRQqf5d8XFxQ0aNHj69OmVK1eMjY2FjkOVlZ9/Jz19n77+CDW1Rlev9n716pKu7oDatScbGlopKVVpWwsiIiIiIiKiGqwGFtxv3LjRrl27wsLC2NjYLl26yGHGY8eOmZmZaWlpJSUlVaX1NlVzr15h7VqsWIGsLGhqYt48uLp+8MaV4eFwcMCtWwBgYYHAQDRvLouw5f31FxwdcekSAHz1FQIC0KGDPOYlmXJ1xcqVUFPD77+j7F7R1UhsbGyPHj2aNWt2S/K4JwUkFuelp+9NSwvJzIxUUfmsVaujmprthQ5FREREREREVB3VwII7gPnz5/v7+2traxsYGMhhuoyMjOzs7GXLlrm5uclhOhLWw4dYvBghIRCL0bAhVq6EjQ1EIuTl4eFD1KqF0g+6Bw+gpYVatQAgKQmOjjhyBADatIG/P4YNk2vy4mKEhMDJCSkpUFKCtTV8fVGnzuucYjEaN35zckYGXrzAF1/g5k3o6qJu3TeHXr7EnTto1QqqqnLNTxVatAhr1kBTE4cOYcAAodNUxMPDw9PTc86cOT/++KPQWaiq8vJuXr8+WEPDuGXLCKGzEBEREREREVVHNbPg/uLFi7CwsGnTpslnOlVV1Y0bN06cOFGD7bE/GefOwd4ep08DQLduCAyEkhJ69kSXLjh7FsrKr09r3x4jR2LBAnh64qefUFSEWrXwww+YMwcqKsIkT0+Htzf8/ZGfD0NDODvD0RE9euDSJcTEoFev16etXYulS/H8OVq3xqhR8PZ+c4XoaHz1FW7cQIsWgvwEVIZYjNmzsXEjtLVx+DD69hU60Ft69OgRGxt78ODBESNGCJ2FpODevTlZWf9r1+6q0EGIiIiIiIiIqiOBan4yZmBgMHXq1GHyWj8sEokaNmwon7momujWDTEx+PVXuLri3Dn06YPt2wHg6lWsX4/vvntzpliML7/EtWtQVcXcuXB3h6GhUKkBwNAQXl6wsYGDA6Ki4OKCx48BQFMTs2YhLk6wOwH0cUQirF+PggJs3QpLS0RFoWtX+c2en58fGxt7/PjxU6dO7du37+2bjikpKXFxcRoaGl999ZX8YpFU5eXdBMTq6i0BFBamZWYe1dIyFToUERERERERUTVVY0trIpGoUaNGQqegmkxJCVOmYNw4rFmDxMTXy70dHeHmhtGj0aDB69NEIjg5YdcuBATAxETAvGW0a4fISERFYeFCzJ2L48cxeTJ27EBgIBYsEDocfSCRCJs2IScHu3Zh+HAcOybbR1phYeHFixejoqJiYmJOnDiRmZkpGY+Nje3Xr1+5kw8fPlxcXPzVV19paWnJMBPJ0osXfzx4sEhdvYWKSq1XrxJVVes2bLha6FBERERERERE1VSNLbgT/V97dx6XY77/cfzbhoSMZepkS5MTORE5J7Ti1lgmstSYw4k5NTqWsQ4n5qD5mQyN5UzoWEK2IQ2SLNlatFuyVCLLERlKg0qKubt/f1y/3z0NhrtctMzr+VfX97quz/39Proe1/14vK/r/n7fDQMD4ecnVCqRmiqEEN7e4tAhMX26CA395RgvL+HtXV0dfBWFQpw9K7S0hBCiWTPx1VfC11eMGCFMTau5Y6gsHR2xZYsoKREREaJfPxETIzp1krP+kydPkpOTY2NjY2JiUlJSSktLpXYtLa3OnTs7Ozs7OTl1edk6vIcOHRJCDBw4UM7e4N0yMprZrNknJSVnnj3Lr1evTePGzlpaLOAAAAAAAMDLEbgDMpAyayGEtrZYsUI4OYlx44Q6Y1TvrYEq9m3CBBEcLKZPF3v3/uqYjRvFgQrrIz5+/I76hkrR0xNhYWLYMHHwoHBxEbGxwszsjQqWlJScPXs2ISFBepldHbILIczMzBQKhUKhcHZ2biktvPsySqXy6NGjgsC99tPTMzE0NHn9cQAAAAAA/O4RuAMyc3AQnp7i889FRkZ1d6WSdHVFUJBwcPhVvC6EsLMTY8b8spmRIfz83m3PoJl69URYmBg4UMTFiS++OBUY+IfKzqz1+PHjpKSk+Pj4hISEkydPlpWVSe3a2tqWlpb29vYKhaJv377NmzfXpFpSUlJBQYGFhYW5uXmlBwMAAAAAAFALEbgD8gsIEB07ihUrqrsflWdnJ8aNEzNmiPHjf2m0sBAjR/6y2aLFu+8XNNWwoYiMFJ9/nrh5s11Gxh9jY2ONjY1ffUpxcXFycrIUssfFxT19+lRq19HRUYfs/fr1a9asWWU7ExERIYQYNGhQFQYCAAAAAABQGxG4A/J7/33h7y98fUWjRtXdlcpbskR07CiCg6u7H6iqxo3Fd991Tk+3OXPmTP/+/aOjo1v89kOStWvXTpo0SalUSpu6uro9e/Z0dHR0cnKyt7dv0qRJZT+9YnwfExPTtGlT5pMBAAAAAAC/HwTuwFvh4yM2bxYpKdXdj8pr2VL4+4sJE8RrZw05fFiEhgpDQzF9umjX7p10DpoxNDQ8fPhwnz590tPTFQrFiRMnfuv9dAsLCy0tLRsbGzs7O3t7+/79+zdt2rSyH/fgwYP4+PiYmJjY2Nhz585VjO/37dtnZ2f3RoMBAAAAAACoPQjcgbdCW1usXi1sbau7H1UyfrwICRFXr77qmBs3RECAWLFCXL4shg0TZ8++q85BMy1atDh+/Lizs/P58+cHDx585MiRxo0bv3iYvb39o0ePGjZsWNn6RUVFKSkpx44dO3bsWFpaWnl5udSuq6trY2OjUCjs7OwcHByqEN8DAAAAAADUXloqlaq6+wDUBT//LIqKhKGh0Nb+pfHRI1GvntDXr75uaaawUOjp/aqfpaWitFQ0bSpKS4WOjtDT+2VXebkoLRX6+kJL6/9a3ntPFBT8auCoIW7fvu3o6Hjjxg07O7uoqCgDA4M3qZafn5+cnJyQkPBiyN61a1cpZHdycqrCRDQAAAAAAAB1A4E7gDeSlCTmzBExMdXdD/yGnJwcR0fHmzdv9u/fPyIiokGDBpU6PS8vLyUlRQrZz549q/7K0NPT69Kli0KhkHJ2/Zr/WAkAAAAAAODtI3AHUHW3b4sBA8T334suXaq7K/ht2dnZTk5OP/7444ABA8LDw+vXr//q4+/evXvy5Elp4dOKIXvDhg27detmb2+vUCjs7e0rm90DAAAAAADUeQTuAKooJUV8/rlYubK2TlX/u3Lx4sU+ffoUFBQMHz48NDRUV/f5BTx+/PHH+Pj4Y8eOxcfHX7p0Sf3VYGBg0KtXL2lJVQcHh9eG9QAAAAAAAL9nBO4AqiI6WgwYIPr3F61aCSHE//yPMDKq7j7hlc6dO9e3b98HDx54enpu2rRJW1v7zp070lwx8fHxmZmZ6iMrhuyOjo716tWrxm4DAAAAAADUIgTuAKqiqEjk5/+y2abNrxZWRc2UmJj44YcfFhcXW1paFhcX5+TkqHc1bdrU3t7e2dnZ0dGxe/fuOjo61dhPAAAAAACAWorAHQB+RxISEkaNGqWjo3Pz5s3GjRvb2tpKq57a2trq8cwEAAAAAADgzRC4A8DvS2lpaWJiYvPmza2srLS1tau7OwAAAAAAAHUHgTsAAAAAAAAAADLg3UYAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELgDAAAAAAAAACADAncAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELgDAAAAAAAAACADAncAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELgDAAAAAAAAACADAncAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELgDAAAAAAAAACADAncAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELgDAAAAAAAAACADAncAAAAAAAAAAGRA4A4AAAAAAAAAgAwI3AEAAAAAAAAAkAGBOwAAAAAAAAAAMiBwBwAAAAAAAABABgTuAAAAAAAAAADIgMAdAAAAAAAAAAAZELj/n9OnT3t4eDx79kyWateuXfPw8MjLy5OlGmqpR48eeXh4ZGZmyljT09MzOjpaxoKojb744oudO3fKWDA3N9fDw+PmzZsy1kSts2jRoqCgIBkLnj171sPDo6ysTMaaAAAAAADUcHUtcL969eqMGTMCAgIqNiqVyo0bN3p4eLi6us6ZM+fOnTsvnpibmxsWFvbzzz8/165SqQ4fPuzt7X38+PGK7Y8fP169erWPj8+1BqtwAAAQuElEQVRLqxUUFISFhRUXFz/Xfvr06YkTJ7q6unp5eYWHh6tUqqoMEu9cfn7+woULp0yZUvEKuXz58syZM11dXceOHbtly5YXL54nT56EhYW99LnLuXPnJk+eHBwcXLHx8uXL06dPHzx4sKenZ0RExEt7snv37uvXr7/Yfu3atZkzZ37zzTeVHhuqw+XLl2fNmuXq6jpu3LjNmzeXl5c/d8C9e/d8fHx8fHyOHDny4ulRUVEXL158sf3u3bvz58+fPn36c+179+7929/+NmjQoClTply6dOnFEwsLC8PCwh4+fPjirpSUlAkTJnz//feajg3V6ujRoz4+PoMGDfL09AwJCXn69KnUnpOTM3v27I8++mjUqFFbt2598ZITQsTFxaWmpj7XWFpaun79+tGjR7u5ufn6+ubm5qp3nTx5cvz48a6uruPHj3/phXrnzp2wsLAXn2RXPPHo0aNvNGAAAAAAAGqYuhO4JycnDxs2zMLCYsWKFZs2bVK3q1Sqjz/+2Nvb+9mzZ23atNmwYUO3bt1eGlk+R6lUBgcHW1lZDRw4cMOGDXFxcVJ7fn7+3Llz27ZtO3ny5HXr1r00cH+ptWvX9urV6+bNm+3bt7958+awYcNmzJhRhZHiXbp69aqPj0+7du3mz5+/cuVKdXIUGRlpbW19+vTp9u3bP3z48NNPP3V3d9fkCUpUVJRCoejWrdvq1at/+OEHdXtMTEz37t337NljZGR05cqVoUOHLliwQJMepqamjhgx4o9//OPy5cs3btxYtWHiXYqIiLC2to6KijI1Nb1///64ceOGDx/+3DFTp049cODAunXrzp8/r0nNrKysv//976ampgsXLgwMDKy4a86cOcOHD8/Nzf3ggw8iIyNtbGwSEhI0qRkeHm5vb9+zZ881a9bs379fw9GhuqhUKh8fHxcXl7S0tLZt25aXl69du1balZWVZW1tvXnz5nbt2pWUlIwdO3bcuHGa1CwuLnZycpK+qoyNjUNCQiwtLS9cuCCE+Oabb/r27ZuXl9e+ffvMzMwPP/xw4cKFmtT09/dXn5iRkeHi4rJo0aIqjhkAAAAAgJqn7gTuKSkp5ubmsbGxI0eOrNi+f//+3bt3L1iwYO/evUFBQSkpKSUlJbNnz35tQW1t7ejoaC8vr2vXrmlpaanb79+/f/369VWrVm3dulXz7imVyu3bt69aterAgQOBgYHHjh3z9PQMDAwsKirSvAjevcuXL6tUql27dj0Xf+/cuXPq1KmxsbGBgYH79u2bN29eeHh4RkbGawvGx8f37t379OnTtra26kYpKTM2Nr5w4cLGjRuTkpLGjRu3aNGiGzduvLZgamqqqalpdHT0qFGjqjBAvHvbtm1zc3NLS0tbuXJlZGTk7Nmz9+3bd/r0afUBBw8eDA0NXbZsmeY1MzIy6tWrFx4e/tzNLTMzMyAgYPTo0cePH1+5cmVaWtr7778/YcIETWrGxsYOGDDg/PnzFhYWmvcE1WXr1q3r1q0LCAhITU1ds2bNtm3bkpKS6tWrJ4SYPn26SqWKj49fvXp1RESEn5/f1q1bT5w48dqaiYmJt2/fTk1N3b59+5o1a5KSkp4+ffrtt9+WlpaGhobu2LEjPDw8MDAwPj5+8ODBS5YsUSqVry745MmTXbt2hYaGSicmJCQMHDhw8eLFL33jHgAAAACA2ki3ujsgm6lTp0p/rFq1qmL7jh079PX11e+St2/f3s3NbdeuXcXFxY0aNXpFQS0tre3bt7/Y3qlTJ2n25Eq98qmjoxMbG1sxuDc3Ny8vLy8oKGjcuLHmdfCODR48ePDgwUKI9PT0iu3btm2r+D67ubm5EOL+/fuvLah+CbTixZCbm3vlyhU/Pz9DQ0Np14wZM0JCQvbv3z9lypRXF5w8ebL0x7p16zQZEardrl27lEqljo6OtDl06NCAgICMjIwePXoIIQoLC//xj3988skn0oWnoREjRowYMUIIkZiYWLE9NDS0vLz8yy+/lK43Q0NDLy+v+fPnp6en/+lPf3p1zRUrVlRqXKheK1euNDMze3FCoYKCgiNHjnh7e3fo0EFqmTx5sr+//44dO/r27fvqmi4uLjk5OeprtX379lZWVunp6Q0aNEhLS3vuG+3AgQMlJSWv/kbT19c/d+7ccycePnz4yZMnBgYGmg8WAAAAAIAaq+684f5bsrOzra2tK0YADg4OT58+fffLA1aMGG7fvr158+ZevXq1a9fuHXcDclH/Q3/66aegoCBTU9OePXtWrZT0WmjFBN/CwkJbW5tFLOsqdYIphJAWe9DX15c2fX19CwsLly5dKssHXb16tUWLFp06dVK3ODg4CCGys7NlqY8a4vHjx2fPnlUoFEqlMjU1NTw8XH33uH79enl5ufR/lzRr1szS0vLKlSuaVK54rUofJF2rFb/RsrOzQ0NDP/roI02eH1c88cqVK7t27XJ1dSVtBwAAAADUGXU/cM/NzTUyMqrY8v7770vt1dIfPz8/Gxsbc3NzMzOz/fv3V4weUOusWbPG1ta2bdu2paWlMTExDRo0qFqdtm3bdujQISQk5NatW0KI0tJSaeFfzVcIQO0VFhbWqFEj6V3j5OTktWvXLlmyxMTERJbit2/flu54atV7A8Rbcvv27fLy8lu3bnXo0MHOzm7kyJFmZmZz5syRdgkhXvwerMI1kJ6efunSJVdXV3XLjBkzrK2tLS0te/fuvWPHDs1LTZs2zdraunPnzvb29i/9MRkAAAAAALVU3Q/cVSrVc6G2tFldM8b27t17zJgxI0eOjIuLk0JV1F5du3YdPXr06NGjL1++PHfu3NfOX/xbtLS0QkJCioqKzM3NO3To0KRJk7i4OC0tLT09PXk7jJomJiZm06ZNc+bMadGiRVlZmZeXV48ePT777DO56te0GyDekqdPnwohsrKyVq9e/ejRo8LCQm9v78WLFx86dOilizlra2trsshzRc+ePRs/fnzbtm3VE7gJIZydnceMGePm5hYZGfncfG6v1rdv3zFjxgwdOnT//v1BQUGV6gkAAAAAADVZ3ZnD/beYmJjk5eVVbJE227RpUy39cXFxcXFxEUJYWVn5+vq6u7tLEzejNurVq1evXr2EEP369fv444+HDRv23Jq9muvdu3d2dvbBgwcLCwu7devWrl27Vq1atWrVStb+omZJS0sbOXLk4MGDZ82aJYT4+uuvMzMzN23alJaWJoQoKSkRQuTm5mZmZlpaWlbtI0xMTLKysiq2VO8NEG+JsbGxEMLb21v9+vnSpUvXr18fGRnp6ekphMjPz694/L1791q3bq15faVSOXbs2IyMjGPHjjVs2FDdPmTIEOmPWbNmffnll+7u7h988IEmBdUnzpw5c+7cue7u7u3bt9e8PwAAAAAA1Fh1/w13MzOzixcvlpaWqltOnTqlq6vbtm3bauyVEMLR0VEIcfHixertBmQhzY984cKFNynSrFmzMWPGTJw4sVevXrGxsUIIKc1HnbRnzx5nZ+e//OUvu3btkn7KsHHjRiHEp59+2qNHjx49eki3iO++++6vf/1rlT/FzMzs/v37N27cULecOnVKCKFhKoraokWLFg0aNKg4NX+DBg10dXWfPXtmamqqpaWVmpqq3lVUVJSVlWVmZqZh8by8PBcXl4MHD0ZGRv75z39+6TGOjo7l5eXPLS6tCUdHR6VSWYUTAQAAAAComep+4D5y5MjCwsINGzZIm/n5+T/88MOAAQM0WdtNXkuWLMnIyFBvJiUlCSGqPfdH1QQHB588eVK9Ke9/s6ioyN/f39TUdODAgbIURI2iVCr9/Pzc3d1HjRoVERFRv359qT0xMfFaBdLTOF9f38jIyCp/1ogRI4QQ//73v6XNsrKyjRs3WlhYWFlZvfE4UINoaWn1799/z5496l90ff/998+ePbOzszMyMnJwcNi5c+fdu3elXSEhIU+ePHF3d9ek8pkzZ2xtbW/dupWYmKheeVWlUn311VcVH+RI98DXLgNeXl7u5+f33//+t7InAgAAAABQW9SdKWUKCgq+/fZbIcT58+fz8/N9fX2FEAsWLPDw8Fi3bt20adOysrJatmy5ZcsWpVK5ePFiTWpGR0dHRUUJIVQq1fHjx8vKyjp06ODl5RUUFJSTk3P16lUhxKpVq4yNjYcMGdK7d+9XlCopKdm9e/eiRYukOXDT09NDQkKcnJz69Okjw+DxNi1YsKCsrCw5OVkIMW/ePF1dXW9v74iIiKioKG9v744dO964cWP9+vUdO3YcNWrUa6tdvXo1ODhYCJGTk1O/fn1fX9/69et/9dVX4eHhoaGhVlZWd+/ejYyMzM/PP3TokCZzuD948GDJkiVCiLS0tIKCAunKnzdvnoGBwZuOHG+BSqVycXE5ceJE586d33vvvX/9619Se48ePZ6bj6i4uFgI0axZMw2n/pgzZ45KpTp58qRKpZIug0mTJtnY2Hh7ewcGBv7000+dOnXas2dPdnb2gQMHNFmu+eLFi9Jqlvn5+efPn/f19W3atKlUGTXQ119/bWdnZ2tr6+7u/vDhw5CQEDs7u08++UQIsXz5cgcHB0dHR09Pz9zc3ODgYFdX10GDBr22ZlhY2JgxY8rLyz/77LMtW7ao26dOnRoaGrpq1SovL69WrVqdPn16+/btbm5u1tbWry744MGD0NDQoKAgLy8vExMT6cThw4d36dLlDYcPAAAAAEANUXcC97KysjNnzgghWrdu3bp1a+lvpVKpra194MCB5cuXHzp0qLi42MHB4Z///GfHjh01qXn37l2pjkKhEEKcOXNGWmUuKyvr0qVLUntubm5ubm7Pnj1fXaphw4ZxcXGBgYH79+/fu3evkZGRn5/ftGnTtLXr/o8Maru0tLQnT57o6ekpFIrz588LIUaNGrV3794NGzaEhoYePXrU0NBw8uTJs2fPbtSo0WurFRUVSReVNCv3mTNn9PX1hRDNmzdXKpVhYWH6+vpDhgyZNm2aqampJt17+vSpVNDExMTExET6++eff676gPE2lZeXa2trq28p6vaWLVs+d6SOjo5CodDwMhD/f4Nq2LBhv379pMqPHz8WQvznP//p1q1bWFjYhQsXLCwsAgMDX/10UO3hw4dSne7du0v1jYyMNOwM3r0uXbokJycHBARERUU1adJkwYIFM2bMqFevnhDCxsYmOTl56dKlYWFhhoaG/v7+06ZN06TmvXv3pKmNKk5WI4QwNDRMTU1dvnz54cOH8/LyTExMli5dOmnSpNcWbN68+alTp5YtWxYVFZWXl9eqVatly5ZNnDixSiMGAAAAAKAm0pISZOzbt8/Nza2kpERKP99Qamqqra3ttWvXNJ8kF3XP3bt3//CHP0RHRzs7O8tV08DAIDAw0MvLS66CqI2srKyGDBni7+8vV8FLly5ZWlqeO3eua9euctVErTNgwABjY+OQkBC5CkZGRrq6uhYVFWnyMBIAAAAAgLqB16sBAAAAAAAAAJBB3ZlS5g01bdrU2tpargleDAwMrK2t1Wsh4vdJT0/P2tpa3uV5u3bt2rx5cxkLojbq1KmTiYmJjAUbNGhgbW0ty+97UHuZm5vLe3sxNDS0trbW0dGRsSYAAAAAADUcU8oAAAAAAAAAACADppQBAAAAAAAAAEAGBO4AAAAAAAAAAMiAwB0AAAAAAAAAABkQuAMAAAAAAAAAIAMCdwAAAAAAAAAAZPC/68ok/vUMzjgAAACielRYdHJka2l0UEtMIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAHYobmDkYMgA0syMjGwOGiAGC5sDWICZkRgGNwOjAiNTBhMTcwIzSwYTC2sCK1sGExtjgggjGyMbKwszk3gcUCUj3F7PSSoO23OjVUGcSSqd9qqeQktAbM9JS+weui3bD2Ln3Z62H8H+tr/RXF8VSdweST2YLQYAToYnNHh52ggAAADcelRYdE1PTCByZGtpdCAyMDIxLjA5LjUAAHicfZFRCsMgDIbfPUUuMInR1vq41jLGqIWt2x32vvuzWHFaGCYGon4k8VdAtLu/vT/wM/JCAGBjOefgpRFRLBATGOfLNcC0ncd8Mq3PsD3AsmP0I3ne1iWfKFiBZGeVIQcocbcqyRzBBEpi4k4NUDOIUlMClSTnUA9/QMMg3ys7cPcm2SXS0U42eveHko2Kth6ywc3BH9RK+o1r8EW/6FRkMhy6iGFilCdH78q7eAN9md5w2DKj4aB6lLpx3Ocv51x8AaeSbtWgjc43AAAAY3pUWHRTTUlMRVMgcmRraXQgMjAyMS4wOS41AAB4nPNPNkwGAUOFGg0jPVNzQxNjHQMda0M9AxjTQM/YyNDEyFJH11DPyNLSwETHGsgyNLcwNUcVsjQCCRkgScNl4WbARDRrAEwWGXCJZrinAAAAwHpUWHRyZGtpdFBLTDEgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIyVoQFisCBoqAQHA1iAiY0hAUgzMcH43AyMGUyMTAlMzBlMzCwJLKwZTCxsCmzsDOwcDKwMCRzMCiJAPawszEyMrGwszBzs4mVAfYxwR7H2CR9gYHDYD+JA2fYgtubVBqDYATD74bGpdjBxKHs/khowm5fnjv25kNlgdn6xmgPMAqg4WK8YAP0rJjmMMUvhAAABB3pUWHRNT0wxIHJka2l0IDIwMjEuMDkuNQAAeJx9UkFuxDAIvOcVfCAW2MYOx02yqqpqE6lN+4fe+38VusqSqK3tIAEZwzB2B7Ze55fPL3isOHcdADY+EYGPhIjdDcyB8fr0vMC0XcY9M63vy/YGAoTws8/Qy7be9gzBBH0MCZlzgh5DZS2tRwLi3dmR8YRsAJMBSdOFkYEC4z/ArEAMUSKnZkE+4loUy6lz32hdYVVmlYRoMGCkxJH/AA5aMoaCWKUcfv/CybFgo951mU/6329kXJfZbySrRZc9qyUXN5u5hLbZldIAiutBGlYfmtQGH43UxCfIduBBw5iIdzLiR5oW729O/e4bJ7SF6gBqBeAAAAB3elRYdFNNSUxFUzEgcmRraXQgMjAyMS4wOS41AAB4nF3MwQmAQAxE0VY8KiQhk5hdlz1agEWkDYtXQVbw+HnMJDLTjv1IS0znzCauESuxSg3qo9+EqJYAQe5SsWbh/iKkosFuM3g4dZOiupF+xMPGln/P/Fwv5wXelx+NIP+W/gAAAMR6VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4g5gLiBkY2hwwgzczMyO6gAWbABdggAixIAnClFiAGIzNMCUwvNwNjBhMjUwITcwYTM0sCC2sGEytbAht7AjtHBhMHQwI7c4IIExsDBzszEyMrCzM7G6t4GVAjI9xZrH3CBxgYHPaDOFC2PYitebUBKHYAzH54bKodTJyX5479uZDZYHZ+sZoDUHwZkvh+JPX7kcwBs8UAG2QpC8dPFQIAAAEMelRYdE1PTDIgcmRraXQgMjAyMS4wOS41AAB4nH1SQY7DIAy88wp/IMiADeHYJFVVVSVSN7t/2Hv/r5pWiVOpBTKScSaOZ4yBum7T5f8O2/KTMQDYeHLO8BcQ0VyhBjAcT+cC43IY1sw4/5blBzI4hOd+px6W+bpmHIzQeRuQmQJ0aBNLafnEIr6Clemh7JgNYqglnaQjI4OzjF+IJES0PnsOzYIsPGeTy871EngX2PMHXhSetxEx5Vil4LcfJ5GyFewaFft9hy1zcjVn09w1RB/L9DaA10iGuUw6EhJ49Z0EQd2lCvWwblar5ABRHSFBUt0k6FUdCbJqoHpltjbw+Zr2je/brOf10klsHtGUhi8vs1RKAAAAe3pUWHRTTUlMRVMyIHJka2l0IDIwMjEuMDkuNQAAeJxdzMEJgEAMRNFWPCokIZMYdbEBexBPuW8FFq+CrODx85hJ1EzL3Ot2pFV0Z88mrhEjscoctLZ+E6I6BQhyl4oVC/cXITMK7DaDh9NqMqkupB9xs7bl3zM/18N5AbYAIPbLzMTaAAAAw3pUWHRyZGtpdFBLTDMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIxgsDtogBlsEJqF3cECRDMyYyqFKYELcDMwZjAxMiUwMWcwMbMksLAmsLJlMLGxJ7BzZDBxMCSwMyeIMLExcLAzMzGysjCzs7GKlwF1MsLdxdonfICBwWE/iANl24PYmlcbgGIHwOyHx6bawcR5ee7YnwuZDWbnF6s5AMWXIYnvR1K/H8kcMFsMAFAuKUuRNPaLAAABDHpUWHRNT0wzIHJka2l0IDIwMjEuMDkuNQAAeJx9UkFuxCAMvPMKfwBkjA3huElWVVUtkdq0f+h9/6+aXSUkUheIJeNMJp4xBur6nD9+77Avmo0BwM6Tc4afgIjmBjWB8fr2XmBaL+NWmZbvsn5BBo/w2GfoZV1uW8XDBJZcQBEOYNElUWr9xCE+kw1JJ2QHGKCA9VqOggLeCb4AsjKio0wSuoSihN4ln70fNCEfhOQfXFQ+chEx5Vil4KsfJwXuhLbDOBw77JmTqzm7ZtsRfS3zaQDPkYxLmdtIWIOa76wRmrtco3lYtzSr9ACxOcIaqelmjaGpY43cNHC9Mnsb+HjNx8aPbdbzduk0N3/IQYYkREciogAAAHt6VFh0U01JTEVTMyByZGtpdCAyMDIxLjA5LjUAAHicXczBCYBADETRVjwqJCGTmFWxAXsQT7lbgcW7gqzg8fOYSeSZtp/bkZmW6K6eTVwjRmKVKWht/SZEtQQIUkvFFgv3FyETFlg1g4fTalJUZ9KPuFnb8u+Zn+vhugGvnyDrq5mQHwAAAL96VFh0cmRraXRQS0w0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4g5gLiBkY2hwwgzcyMlaEBYrCwQ2hmdgcLEM3IjKECLsDNwJjAyJTBxMScwMySwcTCmsDKlsDGnsHEzpHAwQCkmBNEmNgYONiZmRhZWZjZ2VjFy4A6GeHuYu0TPsDA4LAfxIGy7UFszasNQLEDYPbDY1PtYOK8PHfsz4XMBrPzi9UcgOLLkMT3I6nfj2QOmC0GAFYSKUu28DgsAAABCnpUWHRNT0w0IHJka2l0IDIwMjEuMDkuNQAAeJx9UkGOwyAMvPMKfyDIgA3h2CRVtVqVSLvZ/qH3/l81rRIn0hbISAYmxjPGQB0/0/f9AdvwkzEA2PhyznALiGiuUAMYzpevAuNyGtadcf4ryy9kcAiveaSelvm67jgYofM2IDMF6NAmltTyi0V8ByvTH5gNYqhEJ9uRkcFZxg9EEiJanz2HZkKGImmSy871EngX2PM/vCg8byNiyrFKwU8XJ7l4S9g1Mvb7Clvm5IPmriH6XKZDA94tGeYyaUtI4NV3EgR1lyrUwzpZrZIFRHWEBEl1k6BXdSTIqoHqk9nKwNcx7Qvfl1nX66OT2DwBww6GJIrpKF0AAAB8elRYdFNNSUxFUzQgcmRraXQgMjAyMS4wOS41AAB4nF3NzQmAMAwF4FU8KqQhP6ZauoA7iKfcO0GHtxas4CkJH+/F2V38LMdV2nSe6hwElcxWCISbQQ6MRNEY2tJOQkliqi8zbpxYHhVWU8iCkWgH+mzQCP+qe/N43HGpN6rnIOth1YlCAAAAwHpUWHRyZGtpdFBLTDUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIyVoQFisLA7WIBoRmZ2iAAzhgq4ADcDYwYTI1MCE3MGEzNLAgtrAitbBhMbewI7RwYTB0MCO3OCCBMbAwc7MxMjKwszOxureBlQJyPcXax9wgcYGBz2gzhQtj2IrXm1ASh2AMx+eGyqHUycl+eO/bmQ2WB2frGaA1B8GZL4fiT1+5HMAbPFAFT+KUviFJK0AAABCnpUWHRNT0w1IHJka2l0IDIwMjEuMDkuNQAAeJx9UkGOwyAMvPMKfyDIgA3h2CRVtVqVSLvZ/qH3/l81rRIn0hbISAYmxjPGQB0/0/f9AdvwkzEA2PhyznALiGiuUAMYzpevAuNyGtadcf4ryy9kcAiveaSelvm67jgYofM2IDMF6NAmltTyi0V8ByvTH5gNYqhEJ9uRkcFZxg9EEiJanz2HZkKGImmSy871EngX2PM/vCg8byNiyrFKwU8XJ7l4S9g1Mvb7Clvm5IPmriH6XKZDA94tGeYyaUtI4NV3EgR1lyrUwzpZrZIFRHWEBEl1k6BXdSTIqoHqk9nKwNcx7Qvfl1nX66OT2DwBww6GJPSeZisAAAB6elRYdFNNSUxFUzUgcmRraXQgMjAyMS4wOS41AAB4nF2MwQmAQAwEW/GpkIRsYtTDBuxBfOVvBRbvCXKCr2UYdhKZafu5HWfdRHf1bOIaMRKrzEFr4xchqlOAIJVUrFi4vxIyo8CqM3g4rSaT6kL6KW6ufflX5ic9XDevUiDrDOb9AwAAAQN6VFh0cmRraXRQS0w2IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAG4g5gHiBkZ2hgwgzczIxOagAWKwsENoZjYHsAQzI0IAogAugZcBUcvNwKjAyJTBxMScwMySwcTCmsDKlsHExp7AzpHBxMGZwMmVwcTFmMDFmiDCxMbIxcrCzMTGxs7BycUq3gc0gBHu3m3/HuyXjZd0AHGk/Lbt15DMtwexp3YqHjD03rAXxPYw5DkQZXZsP4h9/Kbj/l3X/oHZmxPW2z3rqgCzb/g+tr/8dAuYXcJp4aAfdHIfiK2+UclB+m4H2MxFb3rtq2sPgtnLTwjbXNjw2w7EFgMAWG89SgZKdZEAAAFSelRYdE1PTDYgcmRraXQgMjAyMS4wOS41AAB4nH1SS2oDMQzdzyl0gQ762tYyyYRSSibQpr1D970/lSYkTsDUHhlb8/z0eZ4gx8fy/vML98HLNAHgP5+7w7cg4nSC3MD++Pq2wuGy2988h/PXevkEIiCOOzGfsbvL+XTzEKzwQnO1WqsAz+JFw40zbqNfZTgkUFnZPP67iNc2AEoy8mysyAwvAWgFGw2QmpQ8k6NhS3LTZqIDpCUnZpbMnkh3dB5FL8GJs0SSYnnFa4T3AbAGMOqu1ki2wki4jGK3APLcqkWLklFcGG0A9A1oylg4qLE46yhFwi00YatNY2NERXkEpK0YREdOSdTJmgyAx3V5EvUq8/68Ll3mnNzF1DDpkmla1yWn9ebHAUrvsIbV3kcNa71bGua9JxpGj7VrLkQPRWou99yIr47yWN1jLXm+PffYT38tp50dRPBv+QAAAKp6VFh0U01JTEVTNiByZGtpdCAyMDIxLjA5LjUAAHicHY7LDcNQCARbyTGRntHye4DcQ5rw3RW4+EA4jpjd/V58X/cl1xzL63kfTOERsYS0tuk6m5iY7AUq1YpsJORikHWAkBuJ+kMuOK8W3NJHxYSJ1LAqVDOQmrj6uBVtt9qd4fk3jbWrTqEM95wnLRX4IDfBXkzYJT4WI3tO1zFvm2igIAD3Viv21PV5fg/iL27atLLXAAABBnpUWHRyZGtpdFBLTDcgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbiDmAeIGRg4GDSDNzMTmAKZZ2B0sQDQjM5tDBojBzMgOkWGGqYBL4GVA1HIzMGowMTIlMDEnMLNkMLGwJrCyZTCxsSewc2QwcXAmcHJlMHExJnCxJogwsTFysbIAHcLGzsHJxSreBzSAEe7ebf8e7JeNl3QAcaT8tu3XkMy3B7GndioeMPTesBfE9jDkORBldmw/iH38puP+Xdf+gdmbE9bbPeuqALNv+D62v/x0C5hdwmnhoB90ch+Irb5RyUH6bgfYzEVveu2raw+C2ctPCNtc2PDbDsQWAwAhTz0bHLjxfAAAAVN6VFh0TU9MNyByZGtpdCAyMDIxLjA5LjUAAHicfVJJbsMwDLz7FfxABG5aeGzioCiK2ECb9g+99/8o6SCRAwiVPIJEj7iNJojxMb///MJj8DxNAPjPZ2bwLYg4XSA2cDy/vi1wur4c75bT+rVcP4EIiP2Oz2fuy3W93C0EKxwo1VxrFeAkVtTNmHAb/SrDKYjKytn8v4lYbQOiwAIHTpkVmeHghFaw0YCp4ZITGWZs4Txry6IDZg6fGFkyWzDN0HgUvbhPTOJJSo4rVj28DYjViV53zY1kK4yEyyh2cyKnVrO3KDyKCWMeEG0jZmUs7K6xGOsoRcItNGGrTX2TiYryiEhbMYiGHJKoUW4yIJ6X+UnUm8zHdZm7zBzoYqpDumQa6LrEzL35foDSO6yO2vuojta7pQ7rPVEH7WvXWIh2RWosj9yIb4ayr25fS5zvz9330x8xQp0f9wkuWQAAALJ6VFh0U01JTEVTNyByZGtpdCAyMDIxLjA5LjUAAHicHY47DsJADESvQgnSxhr/dm1F9HQcAFGlzwlyeGxcPvnNzPt58Od8fY/zkKOP5XbdN6bla60hpDlNx17ExGQOUKrmikJCLgYZGwgxEcg/5ITzKMEtvFV0mEg2y0QWA6mJq7ebq+xSq3N5/E1jrapdKJZ79JOmCryRm2AOJswUb4sRNafqmKd1NJAQgGurJXvoeFw/LhEwrPx5Er8AAAEAelRYdHJka2l0UEtMOCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABuIOYB4gZGNoYEIM3IzOagAaSZWdgcMkA0MyMSAyLDDqGZsalAUwoX4GZgZGBkymBiYk5gZslgYmFNYGXLYGJjT2DnyGDi4Ezg5Mpg4mJM4GRJEGFiY+TiZGFmYmNlY+fgZBHvAzkL7t7mxtwDd7b42IM4TZ+ED/hcbbEDsc9Lsx74Xj1nP4htYay3X2jhQzCbIean3THNIDCbqfSj/T/LdWD2+SJnB9vt1/aB2DJzTByqmDvAZppLbbOfqnEWzM5a1mR31kITzE4vmbS/6eBMMFsMADS1OiqAVyrzAAABVHpUWHRNT0w4IHJka2l0IDIwMjEuMDkuNQAAeJx9klFuwyAMht9zCl+gyL8xBh7bppqmqam0dbvD3nt/zaRqSSU0iJEhHwb/ZqLWPueP3xs9m8zTRMT/fLVW+onMPJ2pOXQ4vb0vdLzuD4+V4+V7uX4RQBDf4/2V3V8v58cK6Ei7GDLAPuOQa7WY3OG19a3SQAkRsGz+X1JV5QEY7yDnWkRohyAiKcYBqY3kYIXVaiOzSZYyIJOTHLTkdknfUoRrGh1utBBCKRZLbBGjATpKJ3vEGDjFUqRFVNRoeQAWB8UPFPabIbCJsQ246hyCilhO7pjjjAEHXnORlLDqaAaWkTpYS4MAVeTsIYUhGKlzWuaXmt6rfLgsc69y69JrqW6xV0yb9bK0nrr2PiHrCqtb7jqqW+lqqVvtoqgbtslrG4BNltqG590gdyRts9vm0uaP1+7+9Afr75ye7jnJgwAAAKh6VFh0U01JTEVTOCByZGtpdCAyMDIxLjA5LjUAAHicHY6xEQMxCARbcWjP6BnuQIDmQ5ei3BW4eCMnBMvewXtj783PPnPj8X1eJgmoDZVcK2yO+6IYENWIc7n/ieYqjgtCclojlSj1WIdlMJupeGVX9a6oq6sgVWF1HAugq0x0WtVxHMsix8222TGIBgMn5WRvIKGs08s5kdEPRUB5zkPgjmqHCnK8vj96dC2ZA5C9MwAAAO96VFh0cmRraXRQS0w5IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4g5gbiBkZ2hgwgzczIxOagAWKwsDmABZgZ4Qx2iAwzYRUwmpuBUYGRKYOJiTmBmSWDiYU1gZUtg4mNPYGdI4OJgzOBkzGBkzVBhImNkZOVhZmJlY2Vk4NdvAmolxHuwvCQ8/ZOr0QdQJwv7LPspx5Iswexr/XzO6wRtNgHYntefmmfX3Z+P4i9ac9eO82Ov2C2RKD2/iDvNDCb4TjXgVsvi8Ds9FztA1wpb+xA7FcB+/cz/t8ANnNhQeM+pblcYLYYAJ4pNexh2bl4AAABRnpUWHRNT0w5IHJka2l0IDIwMjEuMDkuNQAAeJx9klFuwyAMht9zCl+gyDbG2I9NU03T1FTaut1h77u/ZlK1tBoaxBGYD7B/M0Fr78vb9w/cGy/TBID/fO4OXxkRpxO0AczHl9cVDpf9fPMczp/r5QMIgSj2RH9m95fz6eYhWIGSklcl4JSFhTNgwq31nQyH4BhzVotlR8pVB1wOjhNLpiKww0TVaykDULYDjbUqwi5CYDTkAVgiQky5YrENdMNKNgA1TowbVZ1R28jci9UBWRvJidSyb6SLmdGAtCup1UppsohSxRHoEWUEJy5aaiSWjauN0omqrO1KLmzUgCIkIcFf8rguT6W6Fm8+r0svXuvcayRhuZdCmnXBWy9d1piAdvEkrHaFJMy6DBLmPVkJo8ecpP3ukcS72xz6mMtj5G1+e7Ixnn4B2EmSRAaEac0AAACielRYdFNNSUxFUzkgcmRraXQgMjAyMS4wOS41AAB4nB2Myw3DMAxDV+mxBRxBpGV9kB26RO6ZIMNX7oWHx0d+L1zXfbHjBl/PG+Ko8EGZRuM4IdQ5Y6iUYnZzUmgTaxwqiIq1tpT07o6eU3OcKjN05QaVGv3TtntRfe+yamU0pMDTNirLTPyRR/apijlCN4JYmfuAzGTk/4yLCba1DObj8/wAlWwqcWhYIpcAAAC9elRYdHJka2l0UEtMMTAgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIxgsDtogBlsEJoFtwqESqgENwNjAiNTBhMTcwIzSwYTC2sCK1sGExt7AjtHAgdDBhM7c4IIExsDBzszEyMrCzM7G6t4GVAnI9xZrH3CBxgYHPaDOFC2PYitebUBKHYAzH54bKodTJyX5479uZDZYHZ+sZoDUHwZkvh+JPX7kcwBs8UAPzApOhoAxqsAAAEOelRYdE1PTDEwIHJka2l0IDIwMjEuMDkuNQAAeJx9UkGOwyAMvPMKfwBkwIZwbJJqVa1KpG3aP/Te/2tNq0AjtUBGMs7E8YxRUNbf/Ht/QF1uVgoAO09KCW4eEdUZSgDj8eeUYVoP45aZlmteL5DAIjz3nnpYl/OWsTCBdsYjM3nQaCJLafnEIL6Cjel2zA7RQwZtJR0YGaxh/EIkqYjGJce+W5CFZ020ydpBAmc9O/7AC8JzJiDGFIoU/PbjKB3WgrpTcRBi7bBnTirmVM26I/qY590AXiMZlzy3kZDANd9J4Ju7VNA8LJubVXKA0BwhQWy6STA0dSRITQOVK1PbwOdrem/8vc1y3i6dxOof0ZSGLzXnaL4AAAB3elRYdFNNSUxFUzEwIHJka2l0IDIwMjEuMDkuNQAAeJxdzUEKgDAMBMCveFRIQzYxaulzcu8L+nhrwQpeQsKwm0BUrRHRB5a2JmUT952S8OlUEljkcFBf+imsWd3sZfCJDH1UYW5UlA+Ri+SzSTP8qx7N8/HArd0WPh/2KXZPQAAAALx6VFh0cmRraXRQS0wxMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOIOYC4gZGNocMIM3MjGCwO2iAGTAatwo2CM0Cl+BmYExgZMpgYmJOYGZJYGHNYGJlS2Bjz2Bi50jgYABSzAkiTGwMHOzMTIysLMzsbKziZUCdjHBnsfYJH2BgcNgP4kDZ9iC25tUGoNgBMPvhsal2MHFenjv250Jmg9n5xWoOQPFlSOL7kdTvRzIHzBYDAD/KKTodYz5zAAABDnpUWHRNT0wxMSByZGtpdCAyMDIxLjA5LjUAAHicfVJBjsMgDLzzCn8AZMCGcGySalWtSqRt2j/03v9rTatAI7VALBkzsT1jFJT1N//eH1CXm5UCwM6XUoKbR0R1huLAePw5ZZjWw7hFpuWa1wsksAjPvYce1uW8RSxMoJ3xyEweNJrIklp+MYgvZ0O6HbID9JBBWwkHRgZrGL8ASYBoXHLsuwlZKlsTbbJ2EMdZz44/4ILgnAmIMYVCBb8VjlK4JtSdjINkrB32xElFnMpZd0gf87wbwGsk45LnNhISc013EvNNXSrWNCybm1RygNAUIbHYeJPY0NiRWGocqDyZ2gY+r+m98fc2y3l7dOKrf9iKhi+FZQ70AAAAd3pUWHRTTUlMRVMxMSByZGtpdCAyMDIxLjA5LjUAAHicXc1BCoAwDATAr3hUSEM2MWrpc3LvC/p4a8EKXkLCsJtAhNaI2geWtiZlE/edkvDpVBJY5HBQX/oprFnd7GXwiQx9VGFuVJQPkYvks0kz/KsezfPxwK3dFgcf9oOlt5AAAACpelRYdHJka2l0UEtMMTIgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAdihuYGRnyADSzIxMbA4aIAYLO4RmZnMASzAzYjJgSrgZGBUYmTKYmJgTmFkymFhYE1jZMpjYGBNEGNkY2VhZmJnE44AKGeG2ek5ScdieG60K4kxS6bRX9RRaAmJ7Tlpi99Bt2X4QO+/2tP0I9rf9jeb6qkji9kjqwWwxAPIDJrQs+/2FAAAA3npUWHRNT0wxMiByZGtpdCAyMDIxLjA5LjUAAHicfZFRCsMgDIbfPUUuMInR1vq41jLGqIWt2x32vvuzWHFaGCYGon4k8VdAtLu/vT/wM/JCAGBjOefgpRFRLBATGOfLNcC0ncd8Mq3PsD3AsmP0I3ne1iWfKAhAsrPKkAOUuFuVZI5gAiUxcacGqLkgSk0JVJKcQz38AQ1X5HtlB+7eJLtEOtrJRu/+ULJR0dZDNrg5+INaSb9xDb7oF52KTIZDFzFMjPLk6F15F2+gL9MbDltmNBxUj1I3jvv85ZyLL77Ybur+7zlJAAAAaHpUWHRTTUlMRVMxMiByZGtpdCAyMDIxLjA5LjUAAHic80s2zEtOTs4zVKjRMNIzNTc0MdYx0LE21DOAMQ30jI0MTYwsdXQN9YwsLQ1MdKyBLENzC1NzVCFLI5CQAZI0XBZuBkxEswYAVZUZhTXzz3AAAACtelRYdHJka2l0UEtMMTMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRnyADSzIxMbA4aIAYLO4RmZnMASzAzwiQEGRSANCNcHKaQm4FRgZEpg4mJOYGZJYOJhZWBhS2BjT2DiZ0xQYSRjZGdjYWZSTwLpBfJegcHBoYEVQj3gD2QWAJhO9g/dFu2H8rej2Af2H/qpDFUvcMBhF6wGnskvWC2GADA6B8SXJGsygAAAON6VFh0TU9MMTMgcmRraXQgMjAyMS4wOS41AAB4nI1SSQrDMAy8+xXzgQR5yeJjNkopcaBN+4dCj/0/lRscJ7SYSB6Q5UHLYAFv1/7yfGM11QsBUOJYa/HQRCRG+ADtcDo7dHPThkw33d18Q81O3vfMZp7GkJFw0Dl9DfQbBJ5CB5kXSzZLEDUXpLwqFqLMlbWk6z9EwxWzQ8zCM9fmid4luheyI+tUu+aJ3vV2nQRvcP1O10XpdnJ9VNq7ioIaho6yGY8ojvciKiAZZdyT31DFZQyjjiMbhtpOtp3D38Nf4Vh8AKRueOfkO/1MAAAAWnpUWHRTTUlMRVMxMyByZGtpdCAyMDIxLjA5LjUAAHic80s2zEtO1nDO0UzOM1So0TDWMdCxNtQzBVEGeuamOrqGekaWlgYmOta66HyoMl2wHogsXBKFp1kDALaIFf9A3X0cAAAArXpUWHRyZGtpdFBLTDE0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAA4obmBkY0gA0ozMbA4aQJqZhc0hA0QzM7JDBOAS7AxgCUYmhARUJTcDIwMjUwYTE3MCM0sGEwurAgtbAht7BhM7Y4IIIxsjOxsLM5N4FsgaJPsdHBgYElQh3AP2QGIJhO1g/9Bt2X4oez+CfWD/qZPGUPUOBxB6wWrskfSC2WIA6/AfSp/iHyIAAADgelRYdE1PTDE0IHJka2l0IDIwMjEuMDkuNQAAeJyNUtsKwjAMfe9X5Acs6W1rH3dDRNaBTv/Bd/8fE0fXDaUs6YE0PeRyqAC2W399vWE13QsBgIUTQoCnQUQxAgfQDudLhG5u2pTppkec7+DJkX3PbOZpTBkFHRiJXwP8DRJPE09Jt2RPBaIhIsraLUQldQho/B+ihciFDjAdlTytzQu9Ky55ZJt617vQ2m+3KfCG2O9kXYRup9hnodl11tMSTFbNMrI27C4LoAhVXpPeoM7LWILPI1uC3k62nYPv6atQLD7biXh7ENj3WgAAAFl6VFh0U01JTEVTMTQgcmRraXQgMjAyMS4wOS41AAB4nHNONkzOS9bw08xLNlSo0TDWMdCxNtQzBVEGeuamOrqGekaWlgYmOta66HyoMl2wHogsXBKFp1kDAIulFZOI/wu9AAAArXpUWHRyZGtpdFBLTDE1IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAA4obmBkZ8gA0syMTGwOGiAGCzuEZmZzAEswM8IkOBkUgDQjXBymkJuBUYGRKYOJiTmBmSWDiYWVgYUtgY09g4mdMUGEkY2RnY2FmUk8C6QXyXoHBwaGBFUI94A9kFgCYTvYP3Rbth/K3o9gH9h/6qQxVL3DAYResBp7JL1gthgAu4AfCsh/0aYAAADhelRYdE1PTDE1IHJka2l0IDIwMjEuMDkuNQAAeJyNUkkKwzAMvPsV84EEecniY7aWUuJAm/YPvff/VG5wnNBiInlAlgctgwW83frr643VVC8EQIljrcVTE5EY4QO0w/ni0M1NGzLd9HDzHTU7ed8zm3kaQ0bCQef0NdBvEHgKHWReLNksQdRckPKqWIgyV9aSrv8QDVfMDjELz1ybJ3qXOCE7sk21651oXW+3SfAG1+9kXYRuJ9dHob2rqKdh6Kia8YjaeC+iAJJRxjX5DVVcxjDqOLJhqO1k2zn8PXwVjsUH5+54fl0eTBMAAABZelRYdFNNSUxFUzE1IHJka2l0IDIwMjEuMDkuNQAAeJzzSzbMS07WcNNMzjNUqNEw1jHQsTbUMwVRBnrmpjq6hnpGlpYGJjrWuuh8qDJdsB6ILFwShadZAwCNDxWWuauqVwAAAPR6VFh0cmRraXRQS0wxNiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuIOYG4gZGdoYMIM3MyMTmoAFisLBDaGZ2BwuwBDNMgs0BrJKZES8DopabgVGBkSmDiYk5gZklgYU1g4mVLYGNPYOJnSOBgzODiZMxgZMlQYSJlZGJmYWTjZWNnYOTRbwJqJcR7kTOePUDUr8u2IPdvvHO/kCxW3Ygtpkf94GlHQ37QeycyyX7u/Q/gNn22g12nK41YLaJ2h1761lLwGylQ7oOsUXq+0DsimR+hyjThWAzpcJd7QXXHgez5aak7mtjeQA2XwwA6PwxIGPHNFkAAAFEelRYdE1PTDE2IHJka2l0IDIwMjEuMDkuNQAAeJx9UlFuwzAI/c8puEAtwGCbzzappmlqKm3d7rD/3V+DVK1bzZptIps88OPhCWK8L2/fP3AfvEwTAP6zzAy+MiJOJ4gNHI4vryvMl/3h5pnPn+vlAwiByGN8PmP3l/Pp5iFYYcepkFItQKlk9gWYcBs9lGGGHaXKQpr9v7CajoD5mtHTFbEIQRSqOEBKIDGZlqwUyFaL+O4vUv1yTKyY/RAhTYXbAFgc6CTJjEpk5OYs6wBYHcgOFKsSGck58KictgFZUCT08apFRhRto1grtuKqJlWzYgOcd2WOC9mFtChBctWsA+RxXZ5adW3e4bwuvXkxubdI3HJvhIR1tWNql9QPULpw4la7POLWugjiZr1WcaPHmiQ+dyb+7jaHPtbyyDzOtyfr++kXsfqSKZnqvSQAAACoelRYdFNNSUxFUzE2IHJka2l0IDIwMjEuMDkuNQAAeJwljrsNAkEMRFshBMm3smf9WWsbIKIBRHT5VUDx2MLhm4/ndcr1vp6fE2ef4Pa9HxguJotk+IRP2oeMgIoRD4WloRCGhLtRacwqUYhHmk+TZitcjTYPGM9JrS1TLNrVJZloE5al00YRzWiTVB5oBOUqKI+lahdF8PICZpn/b6hNuXrUDJtGj+8PdXwriHEtIQkAAADaelRYdHJka2l0UEtMMTcgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAALiDmBuIGRg4GDSDNzMQGoVnYGBKANBMTmwOU75ABopkZ8TIgatkZwAJMjNwMjBpMjEwMTMxA0QwmFtYEVrYMJjb2BHaODCYOTgVORgUO5gQRJlZGJmYOTjYWVjZ2DmbxJqBmRrgLN5rkHFB6LLwMxNlownNA7umCJSD2hL7l+8+FzN4PYnvu+WDLwOAAZi8L2mrPwHAAzD5yRtcBJg5l2yOpsUfSa49kJpgtBgC5yjAmD88WOAAAARR6VFh0TU9MMTcgcmRraXQgMjAyMS4wOS41AAB4nIVSUW7DIAz9zyl8gSAbMITPJqmqaSqRtmx32P/ur9mbUlOpZSYvMtbDxs8MoPa2vn59w838OgwA2PlKKfAZEHG4gjowny8vFZb9NB+RZfuo+zsQApGckXXPPe3b9YgQbDAGlwpmSjCiw18Dcw6mhwVG7+h/ZlAmuYAFw6Sep8CeHzCjMNERZY5ZU2Z+kpKFSC5S4ok1Iz+rnYToXSZOPnQz5pbY4U1t5U7h0rbSySdTqY06HXHOdb0b1d/w5q2uNjyvsAlpINgYSBBNa11sisoGkukWBdnUiYLJRIiCYr2Sou2J9He7iby7KIzYttJeXPfHixV/+AG0QpEtdon4dAAAAH96VFh0U01JTEVTMTcgcmRraXQgMjAyMS4wOS41AAB4nFWNOw6AMAxDr8IIUhrFadNQVUzscAiuweH5qZXwZMtP9r6sWA89HumG4RxD5FzElYRqUEb34ChFEt1GES1SFQbcklMQdqMKTsg2P8SdlB2WtZUt/tGX7Dtf15/a0XRevroih6gWx6MAAACoelRYdHJka2l0UEtMMTggcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAdihuYGRnyADSzIxMbA4aIAYLmwNYgJkRD4MdopaZm4FRgZEpg4mJOYGZJYOJhTWBlS2DiY0xQYSRjZGNlYWZSTwOqJARbq3nJBWH7bnRqiDOJJVOe1VPoSUgtuekJXYP3ZbtB7Hzbk/bj2B/299orq+KJG6PpB7MFgMAIz4m9K7Q12YAAADfelRYdE1PTDE4IHJka2l0IDIwMjEuMDkuNQAAeJx9kVEKwyAMht89RS4widHW+tjWMsaoha3bHfa++7NYsbYwTAxE/TDJr4BoD3//fGE38kIAYGU55+CtEVHMEBMYpustwLj2Qz4Zl1dYn2DZMfqZ7NdlzicKApBsrDLkACVudkgyRzCCkpi4SwXUDKLUlEAlyTnU3R/QMMj3ynZcvUo2iXS0kZXa7enJyouWp96brHBT8Ce1kn7DEnzRLzoVmQyHLmKYGGXk6E2ZizfQlu4Nhy09Gg46tnIsHPf5yzkXP67Gbt8xgIN7AAAAZnpUWHRTTUlMRVMxOCByZGtpdCAyMDIxLjA5LjUAAHic80s2TAaCPEOFGg0jPVNzQxNjHQMda0M9AxjTQM/YyNDEyFJH11DPyNLSwETHGsgyNLcwNUcVsjQCCRkgScNl4WbARDRrAFCDGXqHFMHwAAABCXpUWHRyZGtpdFBLTDE5IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAG4g5gHiBkY2hgQgzcjMzpABpJmZGNkcNEAMFnYIzczmAJZgZkQIwBRYgGhGhAokBkQJNwMjAyOTAhNzBhMzSwILawYTK1sCG3sCO0cCB2cGEydXAhdTAhdbBpMIExsTFxsrCzMrOxsXJ4d4H8hNcMe6h6Q6aHxssAdxLELYHQLeLgez/Z/22R+/6WIHYvsonbZn3zx3P4gdtk/Mvr9J7ACI/cwxcX81CzOY/eHumv25pfJgNWuC9Q5c6F+wB2zOEZUDeZ17wGZKvevdPyn5KZhtk71lX2vsP7D5YgBRYzoxeVrfTgAAAVh6VFh0TU9MMTkgcmRraXQgMjAyMS4wOS41AAB4nH2SXWrDMAzH33MKXaBBX7alx7UpY4ymsHW7w953fya1tE7BzI6M7fwkRfpnghwfy/vPLzwGL9MEgP887g7fgojTCXID++Pr2wqHy8v+fnM4f62XTyAC4vCJ+cy+XM6n+w3BAWQuJlwdaEZsUsMhNjm6J8MKPBNpoRKcELmMOIl4FFyVJvGanFnagNOIR5G3uinsaGZh5DoASwTEAM2UYcezFGrkA7BGxB3O1tzpSqI20hHZImSklIKFJX0qs9kouWVMnhuLlZYkklcc1e0Zk+fSVI2jMm3sqgOQ8Jad0Iyz5c2ZkEZkahM5Jb7SElCvhqNmHtflSdSbzPvzunSZc3JXMw4gXTRN69rkLF2BOEDtfdaw1pupYdY7pmHe26JhtK1ecyHaVKm5PD4mxLtetG1121ryfP/dYz/9AfH0nQ+QbE1HAAAAtXpUWHRTTUlMRVMxOSByZGtpdCAyMDIxLjA5LjUAAHicHc4xDgIxDATAr1CClIu86zi2dSUNFR9AVOnvBfd4zHXRZL32871wrGNxYa3P8frydt61Wyi9oYu4zrazA8NYoEBq21Ew1Zt0JFmPEouZ0TZ0KqUyUhIx2DZ2NTjbvkkPz8RlMhxWVqUmVV6fk4yYV06NGqgFI2eIXzlIhNYRnkQBu/kYUTCcOS7xmpr/KkFa1j2P8wcVLi+MAYCNzQAAAKl6VFh0cmRraXRQS0wyMCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB2KG5gZGfIANLMjExsDhogBgubA1iAmRHOYIfIMGMIcDMwKjAyZTAxMScws2QwsbAmsLJlMLExJogwsjGysbIwM4nHARUywm31nKTisD03WhXEmaTSaa/qKbQExPactMTuoduy/SB23u1p+xHsb/sbzfVVkcTtkdSD2WIA9RkmtLj6IxgAAADhelRYdE1PTDIwIHJka2l0IDIwMjEuMDkuNQAAeJx9kVEKwyAMht89RS4widHW+lhrGWPUwtbtDnvf/VlssbYwTAxE/Ujir4Bkj3D/fGE3CkIAYGU55+CtEVFMkBLw4/UWYVh6n0+G+RWXJ1h2TH4m+2We8omCCCQbqww5QImrHZLMEQygJG7cpQJqBlFq2kAlyTnU3R/QMMj3ynbcvUo2PCPfO1rJSu/2VLJS0XLFfcgKN8ZwUmvTz88xFP2SU5HJcOgihklRnpy8Ke/iDbRlesNhy4yGg46jHBunff5yzsUPu0du6lfzcpIAAABoelRYdFNNSUxFUzIwIHJka2l0IDIwMjEuMDkuNQAAeJzzSzZMTs5LzjNUqNEw0jM1NzQx1jHQsTbUM4AxDfSMjQxNjCx1dA31jCwtDUx0rIEsQ3MLU3NUIUsjkJABkjRcFm4GTESzBgBVfxmFz5eRgwAAAKZ6VFh0cmRraXRQS0wyMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5gZGfIANLMjExsDhogBgs7hGZmcwBLMDNiY0CUckD1MnIzMCowMmUwMTEnMLNkMLGwJrCyZTCxsSuwMSaIMLIxsrGyMDOJZwEVM8JdEJT1056B4cB+EOehmxqQ7QBj74eJA9Xsh4lD2fZIauyR9NpD1djDxMUAtBMj6J0kRqYAAADnelRYdE1PTDIxIHJka2l0IDIwMjEuMDkuNQAAeJx9UtsKgzAMfe9XnB+wpNqqfZwXxhhW2Nz+Ye/7f5awafRhTRpIwuEkOdRA7DZcX29sVg7GAJR5MUY8KyIyEyRBN54vCf1y6tZOPz/SckfLTuJH5GmZp7XjkOBs9G0IDQpnA4mBLP2SFVii527tY3ARBdkm/AFWzFgoMkPpmbLQ4RnOcEBmgLUAt+GZ2c3+nAxhi1n1yfCNaTjo+lW6m9OgSouXqqfnqFQ1L6HSiAe9nwvUeqXnaPQWx9Hqyp7Lcr/Zfg+p17/CufkAYxp5UwBdq2UAAABhelRYdFNNSUxFUzIxIHJka2l0IDIwMjEuMDkuNQAAeJzzSzbMSwYCQ3+FGg1DPUsTC1MzHV1DPVMdawM9MxNLU0NLHV0DPXMgXxchAJbXhSuHysP46MpRTYPIwtSC5DRrAMETHD8KrBVBAAAA8HpUWHRyZGtpdFBLTDIyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4g5gbiBkZ2hgwgzczIxOagAWKwsENoZjYHsAQzI5xBjAzEDG4GRgVGpgwmJuYEZpYMJhbWBFa2BDb2DCZ2jgQOzgwmTsYETtYEESY2Rk5WFmYmVjZWTg528SagXka4C8NDzts7vRJ1AHG+sM+yn3ogzR7EvtbP77BG0GIfiO15+aV9ftn5/SD2pj177TQ7/oLZEoHa+4O808BshuNcB269LAKz03O1D3ClvLEDsV8F7N/P+H8D2MyFBY37lOZygdliAJu1NewFZHCUAAABR3pUWHRNT0wyMiByZGtpdCAyMDIxLjA5LjUAAHicfZJRbsMgDIbfcwpfoMg2xtiPbVJN09RU2rrdYe+7v2ZStbQaGsQRmA+MfzNBa+/L2/cP3Bsv0wSA/3zuDl8ZEacTtAEcji+vK8yX/eHmmc+f6+UDCIEo9kR/ZveX8+nmIViBkpJXJeCUhYUzYMKt9Z0Mc3CMOavFsiPlqgMux3mcWDIVgR0mql5LGYCyHWisVRF2cQVGQx6AJUBMuWKxDXTDSjYANUJHRFVn1DYy92J1QNY4cseJ1LJvpIuZ0YC0K6nVSmmyiFLFEegtOCVx0VIjsWxcbZROVGVuIbmwUQOKkIQEf8njujyV6lq8w3ldevFa514jCcu9FNKsC9566bLGBLSLJ2G1KyRh1mWQMO/JShg95iTtd79JvLvNoY+5PN68zW9PNsbTL+L8kkQ21ZauAAAAonpUWHRTTUlMRVMyMiByZGtpdCAyMDIxLjA5LjUAAHicHYzLDcMwDENX6bEFHEGkZX2QHbpE7pkgw1fugZfHR34v3Nd1s3OBr+cNcVT4oEyjcZwQ6pwxVEoxuzkptIk1DhVExVpbSnp3R8+pOU6VGbpyg0qN/mnbvai+d1m1MhpS4GkblWUm/sgj+1TFHKEbQazMfUBmMvJ/xsUE21oG8/F5fpW5KnFqFMesAAAAnXpUWHRyZGtpdFBLTDIzIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAADYobmBkZ8gA0syMTGwOGiAGCzuEZmZzAEswM8IZAhAZJm4GRgVGpgwmJuYEZpYMJhbWBFbGBBFGVkYmZhZW8SCgGka4PSG8Ig6rV2ktAXECTAPsYex5TD17z4XMtgex66L272dgcEBm70dSA2aLAQDUoR6JnylH3QAAANZ6VFh0TU9MMjMgcmRraXQgMjAyMS4wOS41AAB4nIVRSwrCMBDd5xTvAg352y7bpohIU7DVO7j3/jijxLSgdV4G5vOYXwRYLvF8f+AjJgoBqJ3XNA1uViklRrCBbjieEvql7XKkn65pmREIirFltss05ohGgpFWW6sdKiXVS1CMTDToKVr/J1qqyPlQ2+CgpdHWG/+F6KhipaVrGJQ/+B8V/YZY7TAD5lXvaqf5kOLmDu/LdFOK5TIMU/Z3pLZs6VjLLgxfJiYHoYzlSM2697oT+/n3yBZP50FlFl3XOrAAAABrelRYdFNNSUxFUzIzIHJka2l0IDIwMjEuMDkuNQAAeJzzSzbMS04uNlSo0TDSMzY0NjbUMdCxNtCzADFNQGxdAz0DMwtjMxMTHUM9I0NjU2OgmKGeiaWJpamOgZ65KRJXF8pHaNGF6dGsAQDxFRZ6RO1gcQAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"AP\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "e2a7fc5b-f103-497d-9801-e58078222589", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: subset cluster ID | fragment count inside FP in complete fragment library | fragment subpocket count in subset\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xT1/sH8CeDvcGB4sSFW9yKoypaBziqVK0Fa6tYv/0JOMGqxVUNaiVYbUtbrUCtFau1oNY96irugYiooIIKCMgeIcn5/XEptQQQMOQm+Hm/+OP7zbm555OQAj733OcIGGMEAAAAAAAAAAAAAABvRsh3AAAAAAAAAAAAAACAugAFdwAAAAAAAAAAAAAANUDBHQAAAAAAAAAAAABADVBwBwAAAAAAAAAAAABQAxTcAQAAAAAAAAAAAADUAAV3AAAAAAAAAAAAAAA1QMEdAAAAAAAAAAAAAEANUHAHAAAAAAAAAAAAAFADFNwBAAAAAAAAAAAAANQABXcAAAAAAAAAAAAAADVAwR0AAAAAAAAAAAAAQA1QcAcAAAAAAAAAAAAAUAMU3AEAAAAAAAAAAAAA1AAFdwAAAAAAAAAAAAAANUDBHQAAAAAAAAAAAABADVBwBwAAAAAAAAAAAABQAxTcAQAAAAAAAAAAAADUAAV3AAAAAAAAAAAAAAA1QMEdAAAAAAAAAAAAAEANUHAHAAAAAAAAAAAAAFADFNwBAAAAAAAAAAAAANQABXcAAAAAAAAAAAAAADVAwR0AAAAAAAAAAAAAQA1QcAcAAAAAAAAAAAAAUAMU3AEAAAAAAAAAAAAA1AAFdwAAAAAAAAAAAAAANUDBHQAAAAAAAAAAAABADVBwBwAAAAAAAAAAAABQAxTcAQAAAAAAAAAAAADUAAV3AAAAAAAAAAAAAAA1QMEdAAAAAAAAAAAAAEANUHAHAAAAAAAAAAAAAFADFNwBAAAAAAAAAAAAANQABXcAAAAAAAAAAAAAADVAwR0AAAAAAAAAAAAAQA1QcAcAAAAAAAAAAAAAUAMU3AHKUigUCoWC7xRqVidfFAAAAAAAAAAAgFZBwR3gX8+fP589e/bEiRNbt24dFBQkl8v5TqQGjLHQ0NDWrVtPmzbN1dU1ISGB70QAAABaRCaTnTt37vLly3wHAQAAAACAukDAGOM7AwD/CgsLAwMD165dm5ubKxaLuVJ7p06dAgMDnZ2d+U5Xc+fPn/f29r569SoR6evry2QyIyOjhQsX+vr6mpiY8J0OylFUdP/589X5+Tfk8lQ9vUZmZsNsbX3F4vp85wIAqLOSkpKaNm1qZ2eXlJTEdxYAAAAAANB5WOEOQJGRkR07dvz8889zc3NdXFxiY2MjIiJatWoVHR09fPjw4cOH3717l++M1fb06VMPD4+BAwdevXrVzs4uJCQkPj7e3d29sLBw9erVbdu2/f7775VKJd8x4T/k8rR7997Jyjpobj7S1napmZlzdvZRgUCf71zwtmBMJpM9Uihy+A4CAAAAAAAAoKuwwh3earGxsfPmzTt8+DAROTg4bNq0adSoUdxQcXHxN99888UXX2RnZ+vp6c2ZM2f16tXm5ua85q2SgoKCzZs3r1mzJjc318jIyMvLa+nSpWZmZtzo5cuXvb29L168SES9evWSSqX9+/fnNS/8KzV1c2Kid9u2p8zM3uE7C7xdCgpuPn48Oy/vMpGSiIyMOjZr9q2p6UC+cwFoAla4AwAAAACAGmGFO7ylMjIyvL29O3fufPjwYWtra6lUevv27dJqOxHp6el5e3vHxsZ6enoqlcrNmze3atUqKChIy7cejYyM7NChg5+fH7daPyYmRiKRlFbbiahXr17nz58PCQmxtbW9fPnygAED3n///cTERB4zQymZ7DER6es34zsIvF0UipwHD8bJZIktWmxzcIhq3fqAmdlwsbgB37kAAAAAAAAAdE8dWeGek5Pj7e2dnJzMy+wLFizo06ePqakpL7NDdcnl8u3bty9dujQtLU0sFn/88cdr1qypX7+yHtnXrl3z9vY+d+4cEXXv3l0qlQ4cqHULP69du+bj43P27FkicnR0lEqlgwYNquT4vLy8DRs2BAQEFBYWmpiYLFy40M/Pz9DQUFN5oRzp6SGPHn1kZja4efMfDQxalz6uVBbI5S+qezbGBCkpNfkJ37hxY7FYXIMngo7Kzj5y//7Ili13Wlt/oIHpcnNz8/LycnNzMzMzc3JycnNzc3Nzs7Ozx4wZY2dnp4EAdVtRUVF8fPyCBQv4ChAWFmZjY8PX7DWDFe4AAAAAAKBGdaHgHhMT069fP5FI9PLlS14CtGrVqm/fvj///DMvs0O1nDhxwsfHJzo6moiGDRsWGBjYuXPnKj43MjJy7ty5jx8/JiIXF5evv/66RYsWtRe16tLT01etWrV161aFQmFjY7N8+fL/+7//E4lEVXnukydPli1bFhYWRkRNmzZds2aNh4dHLeeFCjFW/OiRR0bGr0QCU9P+9erNtLKaIhQaZmbuf/hwQnXPJhRad++eUYMYu3btevfdd62srGrwXNBFGRm7EhI+aN58W716H1fxKYzJlcocuTxTqcxVKnMVilyFIpP7H0pl7nff5aamvuQq6Tk5OVlZWbn/qOQ39ZQpUzw8PF690whqYO3atd999x2P9y3Vq1fvhx9+GD9+PF8BagAFdwAAAAAAUKO6UHAfOXLkkSNHxo8fP2vWLM3P/uLFizlz5hQWFp45c0YLVz1DqQcPHnz++ed79uwhotatW69du9bNza26J8nPz//666+59ujGxsZz585dtmwZjzc3cI3m/f39s7KyuEbzq1atsrCwqO55Tp065ePjc+vWLSIaMmSIVCrt0qVLLeSFKikouJOREZqR8atM9sTY2LFt2zN5eRcfP55Z3fMIBJajR2dW91np6en5+fnBwcGenp7VfS7oKJnsSXR0G4FAr3HjVTY2HmJxPe7x4uLkZ8+WKxRZCkXOP4X1bIUiS6HIZayokhNOmWLz4EF6RaPGxsampqampqaWlpam/0hKSrpw4cLo0aMPHjyo5pf3NklOTm7Xrl12dvaaNWscHR01HyAyMvK7776zt7e/c+eODt0yhYI7AAAAAACokc4X3P/444/x48dbWVnFxcXVq1ePlwxffPHF6tWru3fvfvnyZaEQbfG1Dtc7RSKRFBUVcb1TlixZYmBgUOMTJiUlff755z///DNjrEmTJl9++aW7u7tAIFBj5qo4fvy4t7d3TEwMETk7OwcFBXXo0KHGZ1MqlT///PPChQtfvHghFAqnTZu2cePGBg3QxJlHyqdPlyYnS5o02diwoea6Q+zYsWPGjBkjRow4cuSIxiYF3mVlHXjyZK5M9kgg0Le0HNuw4UITkz4y2ZPbt5uXe7xAIBIKzUUic5HIVCg0FYnMRCJLodBUJDIVCk0OHmxYXKzPVdItLCzMzc1NTExMTU3Nzc0tLCzK/UWZkZHRuHHj4uLiR48eNW3atJZfbp3l4eERFhY2ceLE3377jZcACoXC0dHx9u3b69at8/Pz4yVDDaDgDgAAAAAAaqTbBXeZTNa5c+e4uLjNmzfPnTuXrxgFBQUODg5Pnjz56aefPvroI75igCquiLx48eKUlBSBQPDhhx+uX7/e1tZWLSePiory9vaOiooiot69ewcFBfXt21ctZ36te/fuzZ8//9ChQ0TUtm3bTZs2jRkzRi1nfvnyZUBAQGBgoEwms7Ky8vX1nTdvnr6+vlpODtXFmOzaNUMbm+ktWvyksUkzMzMbNmzIGEtOTra2ttbYvKAFWG7u2fT0nzMydjIma9PmmIlJ34yMUJHISig0FYlMhEJTkchSJDITCk2FQiO1Tz958uTw8PAvv/zy888/V/vJ3wZXr17t3bu3np5edHR069atX/+E2nHy5Mlhw4aZmprGxcU1atSIrxjVgoI7AAAAAACokW4vx5ZKpXFxce3bt//00095jGFkZLR27Voi8vPzy87O5jEJvOrSpUtOTk7Tp09PSUnp3bv3hQsXQkNDq15tX7hw4b59+yo5oE+fPhcuXAgJCWnYsCE3l4eHR0pKijqyV+jly5d+fn5dunQ5dOiQlZWVRCK5fft21avtZ8+enTdvXiU9lLlz3rp1a/To0a/Opab48BqMyV/9vwUFt4hYaX8PzbC0tHznnXeKi4sjIyM1OS9oAYGp6aDmzb93cIgSCMQpKRuFQsN69TytrNwsLEaZmg4yNu5uYGAvFtevjWo7Ec2YMYOItm3bptNLAfjCGPP29lYqlQsWLOCx2k5EQ4cOHTduXG5u7tKlS3mMAQAAAAAAwBums1JSUrhe1X/++SffWZhSqRwwYAAR+fn58Z0FWFJSUmmPFzs7u5CQEKVSWa0zXLx4kXv60KFDb926VfnBOTk5/v7+XI8aExMTf3//wsLCN4hfPoVCERISwvV4EQqF7u7uKSkp1T1Jz549iahevXrffvutXC6v/OBjx46V9qhxdna+c+dOTbNDVT1+/Gls7MDnzwPS03c9fy65edPu2jXjgoIYDccIDg4mIldXVw3PC9rjzp2Od+501vCkCoWiWbNmRHTmzBkNT10HhISEEFHDhg2zsrL4zsIePnxoYGAgFAqjoqL4zlIl3B6zdnZ2fAcBAAAAAIC6QIdXuC9ZsiQrK2vs2LEjR47kOwsJBIKgoCChULhp06b79+/zHeftlZ+fHxAQ4ODgEBYWZmho6OvrGxsb6+HhUd0G6717996xY0eDBg1OnjzZrVs3Dw+P1NTUig42NTVdsWLF7du33dzc8vLyVq5c2blzZ253VnU5deqUo6Pj9OnTU1NThwwZcv369dDQ0Bo0WA8NDX333XfT0tLmzJnTqVOnw4cPV3Kws7PzjRs3pFKphYXF8ePHu3Xr5u3tnZWV9QavA17D0nKCnl7jtLTvHj3ySE0NNDHp1a7deUPD9hqO8d5774nF4qNHj+KWnbeEXJ4ul/+7x2lhYWxh4X0DA02vkhYKhR4eHkT000+a66FUN+Tm5i5ZsoSI1q9fb25uznccsre39/HxUSqVPj4+DPcrAAAAAADAW0ZXe7hfv369Z8+eYrH49u3bbdu2LfeY33//PS4uTu1Tf/zxx/Xr1y93aMaMGTt27Bg/fvzvv/+u9nnhtSIjI728vB49ekRELi4uX3/9dYsWLd7khK82NLe0tPTz83ttQ/MTJ074+PhER0cT0bBhw6RSaadOnd4kQ2Ji4tKlS8PCwoioadOma9as4QpSbyIyMtLHxyc+Pp6IXFxcgoKC7O3tKzk+PT191apVW7duVSgUNjY2y5cv/7//+z+RSPSGMUCVXP5CKDQTCg35DkLvvPPOmTNnfvnll6lTp/KdBWpdcvLaZ89Wmpm9Y2joIJdnZGX9wRhr1+6MsXF3DSdJSEho1aqVsbHx8+fPzczMNDy77lq6dOnatWt79Ohx6dKlcvekZYytX79e7fNaW1vPmjWr3KGcnJx27do9f/78559/njZtmtqnVi/0cAcAAAAAAHXid4F9jQ0cOJCIFi9eXMkx48ePr4137ObNmxXNmJyczK0sO3LkSC28aKjQ1atXuY8EEXXv3v2vv/5S48nv3btX2iS9bdu2Bw4cqPz44uLi4ODgevXqEZFYLPb09Hzx4kUN5s3NzfX39zc0NKR/OtUUFBTU6BWUo6ioSCqVch9XfX19Ly+v13YhqNU3GTiPHn1y/br5y5d7+Q7CNm/eTEQTJ07kOwhoglyemZb2U0LC9Hv3BsfFjUxKWiyTJWlgXoVCofrgO++8Q0Q//vijBgLUDfHx8YaGhgKB4OzZsxUdU1xcXBt/EbVp06aSYNu3byciOzu73NzcWnjd6oSWMgAAAAAAoEY6ucJ9165dH3zwQYMGDeLi4rg27uUKCwvjFhqr17x58yrZeFMikSxZsqRDhw43b94Ui8Vqnx3KSEtLW716tQYWXx8/ftzb2zsmJoaInJ2dpVJpx44dKzk+IyNj5cqV33zzjVwut7a2/uKLLz777LMqfiQYY7/99tvChQufPHkiEAgmTZq0ceNGrrWxej179mzlypU//vijUqls1KjRihUrZs6cWe7qyFJqv40ASjEmv3WrkVye1rFjjMbayOzevTsoKGjRokUTJkx49fGnT582a9bM0NAwNTXVxMREM2GAR9nZR4yNHcXiajeqqpnCwkIvL6+TJ0/GxMSUuW0oNDR0+vTpTk5O586d00wYXTdp0qS9e/e6u7uHhoZWdIxSqeR6zqhX/fr1Fy5cWMmk/fr1u3Tp0hdffLFy5Uq1z65GWOEOAAAAAADqxHfFv9ry8/ObN29O2rr8raioqE2bNkS0ZcsWvrPUcTKZrHSNtp6enpeXV2ZmpgZm5K7xVHHGu3fvlu4x4ODgUJUNfi9dutS/f3/uKT179jx//rya4lfo8uXLTk5O3Iw9evQ4d+5c5cfn5+dLJBJTU1MiMjIy8vX1zcnJqe2Qb4OsrGNXrtCdOx01OenGjRuJaOrUqapD/fr1I6K9e/lfbg+1TS7PvHpVfPWqgUKRp7FJu3XrVu4HLD8/39LSkohiYjS9XbAuOnnyJBEZGxs/fvyY7yzluHDhgkAgMDIySkhI4DtLZbDCHQAAAAAA1Ej3Nk0NCAh4/Pixo6PjjBkz+M5SDn19/YCAACJavnx5enr6a4+Hmjl+/HjXrl19fHyys7O5vT2DgoIqud1BLfT09Ly9vR8+fOjl5aVUKjdv3tyqVaugoCCFQlHRU7gie0REhL29fWxs7KhRo1xdXbnm6aqePXs2e/bsvn37XrhwoXHjxsHBwVFRUaXF99rTs2fPs2fPhoeHN2vWjOsb8/777z958qSi47kie2xsrLu7e2FhIbdLbWhoKNPB22W0SmbmXiKytJyoyUknTpwoEAgOHDhQWFioOkREe/fu1WQe4EVOzinG5CYmfYRCY41N+tFHH1F5+6MaGRm5ubkRUUhIiMbC6CiFQjFv3jwi+vzzz2vjLqg3169fv6lTpxYUFPj6+vKdpTJCgcDW2qS+peY+/wAAAAAAUJfxXfGvnsTERK65wZkzZ/jOUpkRI0YQ0dy5c/kOUgfFxsaOHj2a+/S2a9fu4MGDvMS4du3aoEGDuBiOjo6v/UBW3jOdG+V2CORGs7Oza/kVlCMvL6+0a7yxsXFVusZHRUX17duXex969+598eJFzUStixQ3bza6coXy8yvcJaKW9OjRg4giIyPLPJ6QkCAQCMzMzNS4eQBop8eP/3flCj17tlqTk6alpRkYGIjF4qdPn5YZunDhAhE1bNhQJpNpMpLO+eabb4ioWbNmeXmauzWhupKSkri/3E6fPs13loplJbIVxL7CCncAAAAAAFADHVvhvnDhwry8vKlTp5bWOrVTYGCgWCz+5ptvbt++zXeWuuPly5d+fn5dunQ5dOiQlZWVRCK5detWafFdw7gie0RERIsWLa5fvz548GBXV9eEhISKjtfX1/f29o6NjfX09JTL5Zs3b3ZwcPj++++VSmVkZKSDg4OPj09OTo6Li0tsbGxQUBBXfNcwY2PjFStWxMXFubu75+fnr1y5sk2bNpUvXe/du/eFCxdCQkJsbW25ZjgeHh7JycmajF035OaeLy5+bmDQ2sioi4anrmgle4sWLRwdHXNyco4fP67hSKBh2dnHiMjcfLgmJ7WxsXF1dZXL5aqdx/v169ehQ4eUlJTDhw9rMpJuyczM/OKLL4ho06ZNxsbauzTbzs5u8eLFROTj41PJDWEAAAAAAAB1hi4V3C9cuBAeHm5kZLRu3Tq+s7xGhw4dPD09S+/1hjcXExPTunXrgIAApVL52Wef3b9/39fXt8xWe5rn6uoaExMjkUjMzMwOHDjQsWNHPz+/nJycio5v1KhRcHDwhQsX+vTp8/z589mzZzdq1Gjs2LEJCQndunU7ffp0ZGRky5YtNfkSVDVt2jQ0NPTUqVNdu3ZNSkqaPn360KFDb968WdHxAoHAw8Pj3r17Cxcu1NPTCwsLa9eu3aVLlzSZuQ54+XIvEVlZabSfDGfSpElEtH//fplMVmYIXWXeBjLZ46Ki+yKRpbFxTw1PzbWG++mnn1Sv6lXUcAZKrVy5Mi0tbcCAAe+99x7fWV5j0aJFLVq0uHHjxvbt2/nOAgAAAAAAUOt0puCuVCp9fHwYY4sXL+Y2TdVyq1evtrGxOXHiREREBN9Z6oJt27YJBIKBAwdevXp1y5YtNjY2fCcqwTU0v3v3bmlD8/bt21e+KrxPnz4XL14MDw+vX7++kZGRqampVCq9cuXK4MGDNZm8cu+88861a9dCQkIaNGhw+vTp7t27e3h4pKamVnS8ubn5hg0b7ty5M3HiRMbYtm3bNJlW97HMzN9J4w3cOW3atOnUqVNmZubp06fLDHGttMutxUOdwS1vNzMbKhCINDz1yJEjmzZtGhcXd/78+TJDHh4eenp6kZGRuGOmXLGxsVu3bhWJRFu2bBEIBHzHeQ0jIyOJREJEy5Yty8zM5DsOAAAAAABA7dKZgvv27dsvX77cpEmTRYsW8Z2lSqytrbl7vefPn19UVMR3HJ23e/fu9PT0X375pUsXTTfcqAo7O7vQ0NCoqKh+/fo9ffp0+vTpXFW9ouMFAoGbm9v//d//PX78eObMmd7e3iKRpktdryUUCrml676+vmKxmFu6HhAQUMnnuXXr1jt27MjJydm5c6cmo+q6vLxLMtkTff2mJiaaXmLMqWgle2kt/syZM3zkAk3gpZ8MRygUuru7U3kr2Rs2bDh69Gi5XP7LL79oPpj2mz9/fnFx8axZs7p27cp3liqZPHny4MGDU1NT16xZw3cWAAAAAACA2qUbBfecnByueL1hwwZu6y2d8L///a9z584PHz4MCgriOwtoQq9evc6fP881NL98+bKTk1PlDc25ljgGBgYazFhtlpaWEonk9u3bLi4umZmZXBv9AwcO8J2rTvmnn8wkIn5WqnJdZfbt2yeXy8sMoatMXafMyTlFPBXcieiTTz4RCATh4eGqzbi4hjNoQqLqwIEDf/75p6Wl5apVq/jOUg1SqVQkEm3evPnevXt8ZwEAAAAAAKhFulFwX7Vq1fPnz/v37z958mS+s1SDWCwODAwkojVr1jx//pzvOKAJpQ3NFy9eXNrQ/OjRo3znelNt27aNjIw8cOBA27Zt4+LiXF1dP/zwQ75D1R2ZmfuIp34ynE6dOjk4OKSlpal29uAK7vv378duh3VSfv51ufyFvn4LA4NWvASwt7cfOHBgbm7ub7/9VmZozJgxtra2d+7cwZ4QryouLl64cCER+fv7169fn+841dCtW7ePP/64uLh4wYIFfGcBAAAAAACoRTpQcH/48OHXX38tFAqlUqn2NyotY9iwYa6urjk5OcuXL+c7C2iOubl5QEDAnTt33NzcRCJR9+7d+U6kHmPGjImOjpZKpRYWFr179+Y7Th2Rn3+jqOihnp6tqWk/HmNMmDCBylvJ3rlz53bt2qWkpJw7d46PXFC7/uknM4LHDKVbp5Z5XCwWcxf2sHXqq7gV4g4ODp999hnfWaptzZo1FhYWBw8e/PPPP/nOAgAAAAAAUFt0oOA+b968oqKiGTNm9OrVi+8sNREYGGhgYPDTTz9dvnyZ7yygUa1btw4PD4+Ojq5Xrx7fWdRGT0/P29s7Li5uzpw5fGepIzIz9xKRpeV7/P5A5lay79u3T6lUlhl67733CF1l6igeG7iXcnNzMzMzO3v2bGxsbJmhmTNnEtGuXbvy8/P5iKZ1Snugb9q0SU9Pj+841dagQYNly5bRPz3o+Y4DAAAAAABQK7S94H7ixInIyEgzM7PVq1fznaWGWrVq5eXlpVQqvb29GWN8x6lrjhw5EhQUpM0NYRs3bsx3BPVr0KCBLtZ6tNM/Ddx56yfD6dGjh729/dOnT6OiosoMldbi8ROsjlEqC/LyLhAJzcze4TGGiYnJ+++/T0ShoaFlhtq1a9e3b9+srKx9+/bxEU3rLFu2LDMzc8yYMaNGjeI7Sw15eXm1a9cuNjZ269atfGcBAAAAAACoFVpdcJfL5T4+PkS0fPnyRo0a8R2n5rj8Fy9e/PXXX/nOUteEhob6+PhcuXKF7yAANVFYGFNYeFcsrmdqOojvLBV2lamkFg86LTf3L6Wy0MSkh1jM8104pV1lVLftrajhzFvoxo0b27dv19PT++qrr/jOUnP6+vobN24kopUrV7548YLvOAAAAAAAAOqn1QX3b775Jjo6mlshzneWN1K6Qn/x4sV5eXl8xwEAbfHo0Z+MCSwtxwkEYr6zlKxk37t3r+pK9vHjxxO6ytQ5XD8ZMzM++8lwnJyc2rdvn5ycfOTIkTJDU6ZMMTY2PnXq1MOHD3nJpj18fHwUCgW3QpzvLG/ExcVl1KhRmZmZX3zxBd9ZAAAAAAAA1E97C+4ZGRmrVq2if3qg8x3nTXE96JOSkjZs2MB3FgDQFlOn/jxxYuPs7Cl8ByEi6tu3b9OmTR89enT9+vUyQ1wt/rfffkNXmbpEGxq4l5o+fTqVt5Ld3Nx80qRJjLGwsDA+cmmL8PDwM2fO1K9fn+uBruu4HvQ//PDDzZs3+c4CAAAAAACgZtpbcF++fHl6evqwYcNcXV35zqIGQqFQKpUKBIL169c/fvyY7zgAwL/4+PgbN25kZ+e1a8d/PxkiEggE48aNo/JWsvfr169Jkybl1uJBRxUWpuTnRwuFxqam/fjOQkT00Ucf6enpRUZGqrYZ4brKbNu2TaFQ8BGNfwUFBb6+vkS0Zs0aS0tLvuOogYODw//+9z+FQjFv3jy+swAAAAAAAKiZlhbcY2Jivv/+e7FYHBgYyHcWtenfv//kyZMLCgr8/Pz4zgIA/NuzZw8Rubq66uvr852lBLeSnQv2KoFAgK4ydcy+fSfGjLE+ePBDgUAr7iFr2LDhyJEjZTLZzp07ywwNHjy4VatWSUlJJ0+e5CUb7zZs2PDo0aNu3bp98sknfGdRG39//3r16p06dQo/VQAAAAAAoI7R0oL7vHnz5HL5//73v86dO/OdRZ02bNhgYmLy66+//vXXX3xnAQCecWUmrsatJQYNGmRra3v//v3o6OgyQ6VdZfjIBWxbXboAACAASURBVOp39OjR1NQ0ExMHvoP8q3Qle5nHBQJBRQ1n3gZPnz5dv349EUmlUpFIxHcctbGysuI6By5atKiwsJDvOAAAAAAAAGqjjQX333///ejRo9bW1nVvN60mTZosXLiQiHx8fJRKJd9xAIA3SUlJV65cMTU1HTFiBN9Z/iUUCseOHUvlrWQfOHBggwYN4uLi7ty5w0c0ULMTJ04Q0fDhWtHAnePq6mpraxsdHX3lypUyQzNmzBCJRL///vvLly95ycYjbrv1999/f/DgwXxnUTNPT8+uXbsmJCRs2rSJ7ywAAAAAAABqo3UFd5lMxjUqXb16tY2NDd9x1M/X17d58+bXr19/O1fqAQCH24B0zJgxRkZGfGf5D24lu2rBXSQSVdThHXROTExMUlKSra1tx44d+c7yL7FY/MEHH1B5K9mbNGni7OxcWFj4yy+/8BGNNxcvXty1a5ehoWFAQADfWdRPJBJxnQPXrVv37NkzPqOYNSLveJp5kc8MAAAAAABQV2hdwf2rr766f/9+hw4dPD09+c5SK4yMjNatW0dEn3/+eVZWFj8hDh2iSZPIwYFatCAnJ1qzhkqTKBTUvz9JpWWf8vPP1L8/paRoOClAXaWF/WQ4Q4YMsba2vn37dmxsbJmhimrxddgff/xRJzfqPHbsGBENHz5cIBDwneU/Pv74YyLauXNnfn5+mSGu4cxbda1aqVT6+PgwxhYtWtSiRQu+49SKIUOGvPfee7m5uUuWLOEnQdgI2tyKvm5LO0dTxEw67kt5KURExXmU+aiqX2mP6dGjqn49fVoyNWO0Zw+NHUtt21KLFvTOO7RpE6l88gEAAAAAQOdoV8E9JSVFIpEQUWBgoFgs5jtObZk6deqgQYNSU1O//PJLHqafP5/GjKEnT+iDD2jePGrbltasoe7d6fFjIiKlki5epISEss96+pQuXiR0WQVQh+Tk5AsXLhgZGY0aNYrvLGXp6elxXWV+//33MkNDhw61tra+devWvXv3+IimaaGhoePHjx8zZkzda2NSWnDnO0hZHTt27N27d1ZW1v79+8sMTZgwoV69elevXr158yYv2TQvJCTk0qVLdnZ23J1/ddXGjRsNDQ3DwsLOnTvHw/TZSUQC6uFJXT4k00b0dxB934sK0in2DwpqWdWvjeOoZcuqfg0ZQkSkVJK7O73/PmVn04wZ5O1Ntra0eDH1709paTy8DwAAAAAAoD7aVXD39fXNzs6eMGGCVjU1rg1SqVQoFAYFBcXFxWl04n37KDCQ5s6lqCj64gvy9qaffqKzZyk5maZP12gSgLfYvn37lErlyJEjTU1N+c5SjopWsuvp6bm6ulJ5tfg6qVWrVra2tkeOHOndu3dd6lxfXFx89uxZIho6dCjfWcpR0Up2fX39qVOnEtGOHTs0n0rzcnJyli5dSkQBAQEmJiZ8x6lFLVu2nD9/PmOMt+1tLJqRky8NXErjd9CEUMpOpNu7SN+ULJpX9cu8PjVvXtWvJk2IiL77jnbupDVr6PRpWrKE5s2jX3+lQ4fozh2aO5eHNwEAAAAAANRHiwru165dCwsL09fXr5ONSstwdHScMWOGTCbj9lDVHKmU6tenDRvo1TYCvXqRtzedOUPXr2s0DMDbSmv7yXCGDx9ubm5+9erV+Pj4MkNvVVcZJyenK1eu9OrV68GDB3379q0zlxkuXryYnZ3dqVMnOzs7vrOUY+rUqcbGxidOnFD9+M2cOZOIwsLCioqK+IimUV9++eXz58/79evH9bWv25YsWdK4ceOrV6/u3LmT5yj2w4iI0uOo3VjyeVTVr8+PVaOlzMmTRESBgdS+PZVppDNiBLm70549lJTEw2sHAAAAAAA10ZaCO2PM29tbqVTOnz+/TZs2fMfRhLVr11pYWERGRh4+fFhDUxYVUVQUOTmRgUHZIWdnIqK//tJQEoC3WHp6+l9//aWnpzd69Gi+s5TPwMBgzJgxRKTa1mPEiBHm5uZXrlxJUG08VRfZ2dn99ddfHh4eubm5EydO9PPz42cFrlpx/WScuR/72sfCwuK9995jjIWFhZUZ6tKli6OjY3p6emRkJC/ZNCY+Pj4oKEggEEilUm3rs18bTE1Nue1tFi9enJ2dzWeUlNtERJbNa3eWZ8/owQMaPJiEKn+HOzuTQkHnz9duAAAAAAAAqE3aUnB/+PBhTEyMjY3N559/zncWDWnQoIGfnx8RjRo1SlBN3w0aRAJB9b46daLUVJLJqFmzctI0b05E/27ktWsXOTr+52vzZo29MwB12/79++Vy+fDhw62srMoMPX/+XCaT8ZKqjIpWshsYGHDXCerMcu/XMjQ0DAkJ4fqABQQEjB8/nueC4BvT2gbupbiuMqoFd3prtk49duyYTCZzc3Pr3bs331k0xN3dvXPnzunp6RYWFtX9o6iJXSNaKajJV2YCEVFBBsUfpweHKWoz7fuQ9M2ofS3ffsQtYK/K32MAAAAAAKCDtKXgXhUvXrzgO0K15ebmFhQU8J3iH9wqOdXlVKoPtmxJLi7/+XJw0ERCgLdARf1kiouLJ0yY0K9fP01v7VCeUaNG2dratmjRQqFQlBl6q7rKlPL29j5w4IClpWVkZOTAgQN1d4F/ZmbmlStX9PX1Bw0axHeWCg0ZMkQqlZ45c0Z1aNq0aQYGBocPH05MTNR8MO2hVCrT09P5TlFtWvqHXMpNChtOO0fRX2uoQSf66BRZtqjdGV/79xhjtRsAAAAAAABqk5jvACVatWrVsWPHs2fPfvnllxKJpMyoXC6fNWvWvn377t6927hxY14S1szy5cv379+/ffv2IUOGlBlKTU3lXunhw4ffffddTaQpKCCxmJ48KWeIe7Bhw5L/27cvrV79nwMCAkq6jgLAG8jMzDxx4oRIJOJ2H31VYmLiixcv4uPje/TosWXLlum87mNsbGyclJQkEolUh0aPHm1iYvL3338/e/ZMt34gv6GRI0devnx53Lhxt27d6tWr1+7du4cNG8Z3qGo7efKkQqEYMGCA6oa98fHx1tbWlpaWvAR7lUAg8Pb2LnfI2tp63Lhx4eHhYWFhdfiWuOHDh+vr6+/Zs2fBggWqi9xjY2OnTZtWr169I0eO8BKvZoqKivr169emTZuwsLB69eqVGQ0NDb19+7adnV1sbKymd5NuNoCmRpBIn/Q0tTkt9+dWuReNuL/HbG01lAQAAAAAAGqBtqxw5xqVCoXCwMDA+/fvlxkVi8XZ2dnZ2dlLyuwupd1iY2O3bt2amJhobW2tOrpkyZKsrKyxY8dqqNpOREZG5OhIly+Tag/iCxeIiJycNJQE4G0VGRkpk8mGDBlSv379MkP29vY3btz48MMPc3NzP/roIzc3t8zMTF5CcsqtthORsbHxu+++q1Qq356uMqVat279999/jx8/Pj09feTIkbq4xffx48epvH4ycrl88uTJ7du31/57FyZMmEBEUql0/vz5f/75Z15eHt+J1M/e3t7Hx4fb3oapLHZu0KDB48ePjx49GhERwUu8mtm0adPDhw+fPHmielEnNzeXu3wikUg0XW0nIqEeGVpprtpORM2aUZMm9Pff5QxduEACAfXvr7kwAAAAAACgbtpScCei7t27e3h4yGSyxYsXq45u3LjR0NAwLCzs3Llzms9WM/Pnzy8uLp41a1bXrl3LDF2/fn3Hjh36+vobNmzQaKbZsykxkQID//NgUhJt2kTdu1PfvhoNA/A2SUlJCQ4OXrZsGRH16tWr3GPMzMzCwsJCQkJMTU1/++23bt26ndfKrfP69u1LROvWrduyZcvTt6zXsJmZ2b59+yQSiUKh8PPz+/DDD7Wob1gVVNTAPSMjw8DAIDk5edKkSVOmTElNTeUj3etdunRp4cKFRJSWlhYYGDh69GhLS8uePXv6+fkdP368uLiY74Bqs3Tp0saNG//99987d+4sM2Rtbf3FF18Q0fz584uKivhIV20pKSncXX2BgYFicdnbK9euXfvs2bO+fftOmzaNj3TluRdB0hZV/Vo7nFq0qOrX0KFERJ9+SlevUplvbkwM/fgjjRxJLVvy8qIBAAAAAEA9mDZJTk42NzcnosOHD6uOcqufevTooVAoNJ+tuiIjI4nI0tIyNTW1zJBSqRw4cCARLV68WNOxFAo2bhwTCJi7O/v9d3b0KNuwgTVqxKyt2Y0bjDEmkzEi5uVV9okSCSNijx5pOvA/7OzsiCgxMbHM4x988AER/fzzz7ykekPr1q0jIl9fX76DqFNOTg4RmZiY8B1EWyQmJgYHB7u4uJTWmPT19fX19QMDA5VKZUXPio+P54raYrHY399fq37off/990ZGRq+WzDp06ODv73/v3j2+o2lUeHi4iYkJEfXr1+/Zs2d8x6mSR48ecb+Y5HK56qhSqQwODjYzMyMiKyur4OBgzSes3M6dO42MjIjIyclp//79y5Yt69Onz6u3YlhbW0+aNCk4ODg+Pp7vsGrA7Q1rZ2eXk5NTZqi4uLhz585EtH79el6yVRfXI2vChAmqQw8fPjQ0NBQIBH///bfmg7Et7dmOIeU8fmsnW0FV/fLtyoiq+tWmDWOMFRayAQOYWMzmzGEREezwYbZqFbOyYnZ2LCFBs28BAAAAAAComXYV3Nk/JcgOHTrIZLIyQzk5OVy/4NDQUF6yVZ1MJmvXrh0RBQYGqo5yq9UaNGiQmZmp+WysuJh99RVzcCj5h5+5OZs2jT148O9ow4Zs2bKyz9qyhTVsyFTq3RqDgruuQMGd8/Dhw/Xr1/ft21fAbY5HZGhoOHbs2G3bts2ePZt70NnZuZJCrUwm8/f3FwqFRDR06NCnT59qMn+5srKypk6dyr2cKVOmbN++feLEicbGxqXlzh49eqxdu/btqbxfv369efPmROTqejgqiu80r6NUKhcsWEBErq6ulRyWkJAwYsQI7hs6atSox48fayxhJeRyua+vL5fK09OzqKiodCgnJ+fYsWO+vr49evR4dT2Bvb29p6dneHh4eno6j8nfhFKp5Bq4L1P9pcwY1x3IzMxM+6/3XL16VSgU6uvrx8XFqY5yPYKmT5+u8VyMMcZCh7O9H5TzuCyXvUyo6teLRywhoapfSUklU+TnsxUrWMuWJX+P2diwWbOYFvyoBwAAAACAN6R1BfeioqI2bdoQ0ZYtW1RHQ0JCiMjW1jYrK0vz2apu48aNROTg4KB62SA/P58r0Gzbto2XbP8qLGTa/Ta+CgV3XfGWF9zj4+OlUqmTk1Npnd3IyMjFxSUkJOTVn1pHjhxp2LAhd+Ht0KFDlZzw0KFDDRo04I48coTPmm5UVJS9vT0RmZubv/pfXH5+fkREhLu7u4WFxatr3n19fc+ePctjYM1ITU318PhRKGSGhiwkhO80FUhKSpJIJK1ateKWS1taWoa8Lmt4eLiNjQ337ZZKpfzeY5GWlubs7ExEBgYGP/zwQyVHPnv2LCQkxM3NjQvPEYlEPXr08PX1PXbsWGFhocZiq8XFixcFAoGhoWFCeaueub2XP/nkE43nqgalUjlgwAAi8vPzUx09efIkEZmamvJ8TVEpZy/jWdYTfmbPz2fZ2fxMDQAAAAAAtUDrCu6MMW4jPisrq7S0tDJDSqWyT58+RLR06VJeslVFSkoKtyFYuXU0f39/InJ0dNSqHhHaDwV3XfF2Ftyjo6P9/f1fXWBrbGzM1dlVe0FwkpOTuQ2TBQKBl5fXqyt2y0hJSRk1apSNjYOtrdzLi2m+YKhUKqVSqZ6eHhH16tXr/v375R5WWFh47NgxLy8v7goBp2XLll5eXmfPnq2kf46uKy5mvr4lS1Q9PZnKZVbeFBQU/PrrryNGjODukyCiZs2aOTg4cP974sSJz58/r+Tpz58/nzhxInfwgAEDYmNjNZb8VTdv3mzZsiUR1a9f//Tp01V8lkKhuHLlikQicXZ2NjAwePU/TGdnZ4lEcuXKFV35THJtzd3c3FSHHjx4YGBgIBQKL126pPlgVRQWFkZEDRs2VF0qIZfLu3TpQkRr167lJdu/shLZCmJf2fEcAwAAAAAA6gRtLLgzxrj72efOnas6xK32MjAwqKjow7tZs2YR0ZgxY1SHEhMTuZ6/Z86c0XwwnYaCu654qwruXJ29tILJXSl0d3ePiIioykLaVwvZPXv2rORnmkKh2Lr1mZ4eI2LduzNNtmxJTEwcPHhwVS4MlJLL5WfPnvXy8mrUqFHpO9OsWTOu8l5XrzV+/z3T12dEbNAgprJzh6ZFR0f7+vrWq1ePe/MNDAzc3NwiIiLkcrlSqQwJCbGysiIiS0vL4ODgyuvOu3fv5q6g9OrlvXEjK6/3ey3avXs390uze/fuNW5uk5eXV9pzpvTWE+6uETc3t+DgYNXfLFolKSmJexNOnTqlOrpo0SIi6tevn3ZeP8jLy2vWrBkR/fTTT6qjW7du5S7LFRQUaDzaf6HgDgAAAAAA6qOlBfc7d+6IxWKRSHTr1i3VUXd3d251nuaDvdb169dFIpGenl65iwEnT55MRFOnTtV8MF2HgruuqPMFd27lrL+/P9f8imNjY8PV2VW7SL1WVFQU1+vDzMwsLCyskiMvX2Zt2jAiZmTEpNI3eA1Vtn//fq41R8OGDf/888/qPl2hUHCV9yZNmpS+V/Xr16/xe6Xlzp9ntraMiLVqxW7f5iHAy5cvg4ODu3fvXvpud+jQQSKRvHjxosyRz549Gz9+PHfMu++++6jSDbHT0tI8PD62ty8kYr17a+ilKZVKiUTC1cenTZuWn5+vltOmpKSEh4d7eno2bdqUXlHa8F07G9atWrWKiLp27aq62212djZ3ZWvXrl28ZKvcsmXLuOslqlfaMjIyuGtCe/fu5SXbf6DgDgAAAAAA6qOlBXfG2GeffUZEQ4cOVR16/vy5ubk5ER09elTzwSrHLQVdsGCB6tD58+cFAoGRkVHlpQ0oFwruuqKuFtxLa8fcR5HTpEkTT0/PiIiI4uLiNzl5VlYW90kmInd394q60DDGsrOZu3tJ95KJE1lGxptMW5mCggIvLy+u3Dl8+PDKe49UBXc3QNu2bVWvUlRl1byuSEpivXszImZqyjRWRVQoFMeOHXN3dzcyMiq908LT0/PatWuVPzE8PJyreBobG0skkspvPjh0iDVrxoiYnh7z9a3d1kbZ2dnjxo0jIrFYLJFIammWhw8fBgcHu7m5vbr9gFgsLm34/ob/XatRQUFBixYtiOi7775THf3xxx+5H0e5ubmaz1aJJ0+eGBsbCwSCcrdz8PLyIqIhQ4ZoPlg5UHAHAAAAAAD10d6Ce0ZGBrey8o8//lAdXbNmDRF17NhRe/49zBjbvXs3t37z5cuXZYYUCkXPnj2JaMWKFbxk03UouOuKOlZwL+2OYmtrW1qSa968eW30JQ8JCTE1NSWiFi1aXLx4sZIjw8OZpSUjYs2bs3Pn1BihxN27d7t27cq1InltHba6uMp7+/btS99Prg9PeHi4tpULa6aggH30ESNiAgHz9WW12kHnwYMnS5cuLb2BQCQSjRkz5rfffqv6NYyUlBTupjEi6t+//927dys5OCuLeXkxoZARsU6dWFTtbOJ779497uNhY2Nz/PjxWpnjv4qLi0sbvnMtnjhmZmYuLi7BwcHx8fEaiFG58PBwIrK2tk5PTy8zpFAoevXqRUT+/v58RKuQm5sbd4OC6lBMTIyenp5IJLp586bmg5UDBXcAAAAAAFAf7S24M8Y2b95MRK1atVLthlxYWNi6dWsi+vbbb3nJpio/P59bgBYcHKw6+sMPP2jnAjRdgYK7rqgbBfeCgoKIiAhPT8/69eu/2nSitvf/jI2NdXR05JbZ+vv7V1LpTkhg/foxIiYWM39/dXbWDgkJ4RpGt2vX7rVLpN9EdHS0RCJxcnIqfYdLd5rNzs6uvXk1IziYicWMiLm4MLU3KSkoYOHhzNmZ9ehxlHvr2rRp4+/vX+Pbpw4cOMBV7Q0NDf39/Svv9nP2LGvXjhExoZB5ejL1/k47ePAgt+t4165deSlzp6en79mzZ/bs2fb29vSK1q1bz5kzZ9++fapNXTSGu4Vu/vz5qkNaeAvduXPnuEjlNt8fOXIkEc2ZM0fzwcqHgjsAAAAAAKiPVhfci4uLO3fuTEQBAQGqo3v27OFWe6WlpWk+m6qVK1cSUbdu3XSuxapOQMFdV+h0wT0/Pz8iIsLd3Z1rWsXp0KGDv7//lStXNJOhsLCwtJeLp+eulJQKjywqYgsXMoGAEbFhw5hKm+5qy8hg3t7B3Kv+5JNPNHZ1MD4+XiqVOjk5lW5oaWhoyFXeMzMzNZOhNhw+zKysGBHr3Jk9fKiec164wGbOZObmJW2FzM0Vc+b4/PXXX29+ESgzM9PT05P7FnTt2rXyD3x+PvP1ZSIRI2L29uzEiTecnDHGlEq2ahUbPNibiCZPnpyXl6eGk76Z0p4z1tbW3CfT1taWx71JuU1ixGJxdHS06uiUKVOIaMqUKZoPpkqhUPTo0YOIVq1apToaERHB3dqiursAb1BwBwAAAAAA9dHqgjtj7Pjx49xt3c+ePVMdHT58OBH5+PhoPlgZSUlJ3JrQ06dPq44uXLiQu1ufx3+o67qKCu6HDx+WSqXlblGr/VBw1xJ5eXlcnZ3r6PJqnb3yDhu15+jRo127ulhaKhs0YAcPVnbk8eOscWPWqRN7w00l//6b2dszQ8MCR8cBO3fufKNz1dTjx4+5yrtQKOS+CwYGBs7OzlKpNKWSKw9a7P591rEjI2LW1uzYsZqf5/lzJpWyrl1L6uxErEcPFhzM1H4nwJkzZ7jdgMVisa+vr+rtZa+KimKdOpU0z5kzh71JK/6cHPbee4yIGRgUb978s7b9rpTL5VFRUWvWrFm3bh2/STw9PYlo+PDhqkOJiYnc3yFnzpzRfLAyvvvuOyJq2rSp6oWToqIibi8HqWa2fq4iFNwBAAAAAEB9tL3gzhgbO3YsEX388ceqQ9HR0WKxWCwW3759W/PBXsWts37//fdVhx48eGBgYCAUCi9duqT5YHVGRQV37ff06dOKhnS34J6SklJR0wkdKrhnZmZu27Zt9OjRBgYGXHlXKBQOGDBg06ZN5fZA0LCnT5VDh5ZUMxctqqyamZzM7t+v+URyOVuxomS1cr9+LD6e/1rn06dPv/766yFDhohEIu5bo6enN3z48O+++061gbWWy85m48czIiYSMYmE/for8/QsexHl7l3m6clUf4/J5ezYMebmxvT0SursjRoxLy9261YtBs7JyZk7d65QKBQKxS4uLyrdTYDJZEwiYQYGbNgwVuMi+YMHJYV7c3NW3qYt8K/U1FSu5c7B8i7E+fv7E5Gjo6N6912orqysLG7Ti/DwcNXR9evXE1H79u0r71ykaSi4AwAAAACA+uhAwb3ygvWnn35KRM7OzpoPVurChQtco9KEhATVURcXFyKaOXOmxnPVKbpYcL9//76bm1sld83rYsFdJpNJpVILC4uKFifqUMH93r17XDFXJBI5OTlJpdJKro7wQqlkUinT1y9Z0RwXp/4pnjxhgwaVlPW9vJhWVcAYY+np6SEhIS4uLvr6+tw3K6qWduqsTUolk0iYUMg8PJiXFyNiDRuyjIx/Dzh+nBH9pwp/9y7z9WUNG5bU2UUi5uzMwsM19w06d+7cpEl/clP7+LymUfutW+zJkxpOdPo0q1+fEbG2bVlMTA1P8lb56quvuJ7yqlvj5ufnN2/enIh+/PFHXrJx5s2bR0ROTk6qdyqkpKRYWFgQ0Z9//slLtgqh4A4AAAAAAOqjAwV3xtiiRYuIqF+/fqr/eEtPT+eaqx44cICXbAqFonfv3kS0fPly1dHKW+JA1elWwT0rK2vx4sVcidDc3PzIkSPlHqZzBfcDBw5wrQCIaNq0aeUeo0MFd8aYp6fnDz/8oEV9hMtz6RJr3ZoRMTMzVt6WzDX3++/M2rqk/nv4sDrPrHYZGRk7duyYPn26tjUbqbo//2SFhczLixkYMGtrNnv2v0OlBfesLBYSwpydS1rzE7H27ZlEwnhpqFNQwPz9S673tGz5Ri1xKlK6teyYMUyX2/VrlEwma9euHRFt2rRJdfSXX34hogYNGvC1/8H9+/e5RRLlbgMwc+ZMInJxcdF8sNdAwR0AAAAAANRHNwrupZuO/vLLL6qjmzZt4lZ7Vd5ttpZs376diOzs7FQ3GCwuLu7UqRMRrV+/XvPB6hhdKbgrlcqQkBDubnqBQODu7v78+fOKDtahgvu9e/fGjBnDldrbtm0bGRlZ0ZG6VXDXFVlZbNq0kgqsmxt7+fJNT1hQULLUmoiNHcu0Y+fpt4KXFzMzYxs3MqGQXbhQ8mBpwb1Vq5JviqUl+/RTpg2r+W/eZD17ltwD4e7O1NXRp6CAffRRyWl9fRmvHVB0z4EDB7irueX+fhk0aBARLVq0SPPBGGOjR48mIk9PT9Wha9euiUQifX19bdx2BQV3AAAAAABQHyHpAjMzs9WrVxPR4sWL8/LyyozOnTu3Y8eODx482LJli4aD5eTkLF26lIgCAgK4zcpetXXr1ujo6FatWnl5eWk4GPDi0qVL/fv3nz59enJycq9evc6fPx8aGsoV38slk8mIqKioSIMZqy0zM9PPz69z584HDx60tLSUSCS3b9/mGiWBxpib088/U0gImZrSnj3k6EgXLtT8bHfvUp8+tHkzGRqSVEr795ONjfqyQhXMnUtt2tDs2VRc/J/H3dzIyYmCgykpib79lnr35infK7p0oYsXSSIhfX0KC6OOHWnfvjc959OnNHgw7dhR8nmWSEioG3+MaIsxY8aMGjUqOzt7xYoVqqNSqVQoFAYFBcXFxWk42LFjxw4dOmRubr5y5UrVUR8fH4VC4eXlxa3QBwAAAAAAqLP4rvhXlUKh6NWrFxH5+/urjh47doyIzMzMKllNXBt8fX2p4l43NjY2wp68iQAAIABJREFURBQREaHJSHXV/PnzbWxsBg4cePPmTb6zlCMpKcnd3V0gEBCRnZ1dSEhI5Y0vlEpleHh4/fr1mzVrZmpqKpVK5XK5xtJWkUKhCAkJadCgAREJhUJ3d/eU1zW2uH///sSJE83MzMpd3ghv7t491r07I2JiMfP3r8m64JAQZmzMiJiDA7t+vRYiQqW4Fe6MsUOHGBHbsIGxV1a4a3O/nPv32eDB/95mkZpaw/OcO8dsbRkRa9WqnH1ioYru3r2rp6dXUeeWjz/+mIjGjh2ryUjFxcUdO3Ykoq+++kp1dNeuXcRrr5vXwAp3AAAAAABQH50puLNX9iZ99OiR6ijX72LWrFkay/Pw4UOuUWm5m/jNmTOHiIYNG6axPHXbnTt3uGb9YrH4s88+S9OaFhj5+fkSicTU1JSIjIyMfH19s7OzK3/K33//3adPH+6KF1fOJqJu3bqdPn1aM5mr4tSpU127duWyvfPOOzdu3Kj8+KysrIULF5a2rdfFnS11hUzG/P2ZUMiI2LBhrOr7vGZmssmTSwqm7u6v2QYTaklpwZ0xNmECMzVlT56Us2mqdlIqWXAwMzVlRMzKqiY7CgQHlzSFf/fd/2wbCzWgbXuTlu7mqtrfr3Q31x9++EFjeaoHBXcAAAAAAFAfXSq4M8amTJlCRFOmTFEdKt2n6/Lly5oJM27cOCKaMWOG6tCdO3fEYrFYLL6N9Xvqk5GR4evry5V0raysJBJJUVERv5EiIiJatGjBVaVdXFwSEhIqP/7p06eenp5CoZCIGjVqFBwcrFAoIiIiWrZsWXqShw8faiR7hZ48eeLu7s7ladq0aUhISOXHcwvhGzZsSFVoWw/qcuwYa9SIEbH69Rm3Y/SWLUwiYVlZ/zns8GHGLTa9eJG1bMmImIUFK28vDNCQVwvuT54wU1M2darOFNw5CQls+PCSKzejR7MnT6r0rKIiNmtWybM8PVlxcS2nfAtkZWVxP3j37NmjOhoQEEBE7du3l8lkGgiTmppqaWlJRAfL+xxzrW+6deumhfdylUDBHQAAAAAA1EfHCu6JiYlcq/QzZ86ojs6fP7+i1V5qd+LECSIyNTV99uyZ6uiIESOIyMvLq7ZjvIViY2O5PdmIqF27duX+214Drl69OnDgQC6Go6NjuR/IVxUVFUmlUnNzcyLS19f38vLKeqUyyo2amZmVjr52mXxtyMvL8/f3NzQ0JCJjY2N/f/+CgoLKnxIVFdW3b1/ufejdu/fFixc1ExUYY8+eldQ9BQK2Ywdr3JgRMW/v/xzz6afMxITt3ctEIkbEnJxYeTcIgea8WnBnjEkkTCBgq1frUsGdEx7OrK1LLuFIpUyhYFIps7dnS5b857A7d5i9PfvlF9a/PyNiRkZs506eEtdF3377LXdlNC8vr8xQUVFR27ZtiWjz5s0aSDJ79mwicnZ2Vh0q/ctNq+7iKgsFdwAAAAAAUB8dK7gzxvz9/bkSp+o6qaysLG6Dyt27d9dqBrlc3rlzZyJat26d6ujevXuJyNraWnvantQ9x44d69ChA1fndXZ2vnPnjsamTktL8/LyEolERGRjY1OV9usRERH29vavXcP+6vr3xo0bc+vfa+EVlIPrKd+sWTNulbqbm9vjx48rf0p129ZDbVAqmVTKmjZlycmscWNmYcFEInb16r8HcAX3nBzWrh3z8mIaWeoKlSlTcC8qYh06MHNz3Su4M8aePmVjx5YsWh87lvn7M6Kyn8Br1xgRCw1lkyezJk3YpUv8xa2LFApFjx49iGj16tWqo/v37+duCHvx4kWtxrhx44ZIJBKLxdHR0aqjU6dOJaLJkyfXaoY39DQpydTUpF3bNnwHAQAAAACAukD3Cu6VdwL9/vvviahTp061miE8PJyI7O3tVRuVFhUVtWnThoi2bt1aqxlAJpNJpVKuTa2enp6Xl1dtb8VWgxljYmLeffddrtTu4OBQlXa6ly9f7t+/P/eUnj17nj9/Xk3xqzrjuXPnKj8+Ly+vTNv6nJyc2g4JlcjPZ4yxxo2Zhwdr35716sVKrwFxBffSY4B3ZQrujLEzZ5hAoJMFd054OGvQgG3ZUlJw79r1P59AruAeFsZyc9nrNl2Gmjh79qxAIDA2Ni73Kunw4cOJaMWKFbWawc3NjYh8fHxUh0p333ltyzV+JSYmcheP+Q4CAAAAAAB1ge4V3Blju3bt4nabVC13yuXy5cuXl9vmRb127959+PBh1cfXrl1LRB06dChGh1qNqMF685qp7pr69PT00mDW1tZSqbTqH4karDevmRqsqa9u23rQmMaN2ccfs2PHGBHbsqXkwdKCO2gJ1YI7Y+yDD3S44M4YS09nCkVJwf3wYUbEvv66ZKi04A61Z9KkSUT04Ycfqg5FR0cHBQXVdhv37Oxsf3//ly9flnlcoVD06tWLiPz9/Ws1wJtDwR0AAAAAANRIJwvujLFBgwYR0aJFi/gO8h/Jyclck+4jR47wneXt8mpH9e7du//1119qPPmrXePbtm17gNuhsmLFxcXBwcH16tUjIrFY7OnpWbPb+XNzc6vbUb3qVLvGZ5XZbVNFrb7J8Oa4gjtjbOxYZmHBuMuOKLhrm7w8plKWZDIZy8jQ+YY/XMFdJmMTJzJzc5aUxBgK7hrx5MkTY2NjgUBw9uxZvrP8x7Zt27gqdm5uLt9ZXgMFdwAAAAAAUCMh6SapVCoUCoOCguLi4vjO8i9fX9/s7OwJEyZwm6aCxnD1X27x9bVr1wYNGuTq6vro0aM3PO3Lly/9/Py6dOly6NAhKysriURy+/btMWPGVPKU48ePOzo6zp49Oy0tbdiwYdevXy8tvleXiYnJihUr4uLi3N3d8/PzV65c2bZt29DQ0Jq+mn9FRka2b9/ex8cnJyfHxcXl7t27QUFB3LWicqWlpXl7e/fu3fvs2bPcbQSXLl0qLb6DtpFKSSaj+fP5zgHlWbaMZswo++CzZzRyJP3+Ox+BasFXX5FcTgsW8J3jrdG0adN58+Yxxnx8fJRKJd9xSuTk5CxbtoyI1q9fz22aCgAAAAAA8JbQ1YK7o6PjjBkzZDLZwoUL+c5S4urVq2FhYfr6+gEBAXxneUu5urrGxMRw7cUPHDjQoUMHPz+/3NzcGpxKqVSGhoY6ODgEBATI5XJ3d/fY2FhfX199ff2KnnL//v33339/+PDh0dHR/9/e3cfVfP/xH3+XhIkN6WKkRYmtmosk2UxkmxW2fTf53qj23XdyURRmy0XK1g1ppWN9lZpt1XeJ4kvJxZSRyyKVy4qmXGwRojLV6eL3x/n9+jUXOeWTUzzuN3903n3e7/P63PrcTnqe93l9TExMNm/enJycbGZm9hQnJIQQBgYGUVFR+/bts7CwuHLliouLi62tbXZ2dvNWO3/+/Pvvvz9x4sTff/994MCBu3fvTkxMrL+h68PkcrlMJuvXr9/atWvV1dXnzp2bn5/v4eGhaJWD1snISCxeLGJjxYEDqi4FD8nNFZmZDw7evy/S00VRkSoKagGGhmLpUrFpk9i7V9WlvDAWL17cp08fxf9DVF3L/+Xn5/fnn3+OGDFCcdNUAAAAAHhxtNXAXQixYsWKl19+OTExcffu3aquRdTvLFuwYIHipqlQCcU9PHNycpycnCoqKvz9/QcMGBAVFVVXV9ekddLT0z/77LMbN26MGTMmKysrKipKR0fncQeXl5f7+vqam5vHxcVpaWn5+PicPn1acRM5qdja2mZmZkZGRuro6Ozfv3/IkCHOzs43btxo6jrOzs579uzR1tYODQ09ffp0/Q1dHyk5OfnNN9/09PQsLS21s7PLysqSyWSKe8ailVu4UPTvL+bNE61mtyteLAsWiIEDhYeHqK5WdSkvhpdeesnPz0/8v0/aqbockZ+fL5PJ1NXVg4OD1dTUVF0OAAAAADxTbThw19HRWbJkiRBi/vz5crlctcX88ssvhw4d0tXV9fLyUm0lEEL06tUrKirq2LFj1tbW165dc3Fxsba2PnbsmPIrWFtbz58/f8uWLSkpKebm5o87TLER3tjYePny5XK53MnJ6eLFi76+vh06dJDiPP5GXV3d2dlZsdFeQ0MjOjra1NTU39+/qqpK+UWCgoI8PT3z8vJmzpzZyC713Nxce3v7cePGnT9/3tTUNCkpqeE9Y9H6deggQkJEZqbYvl3VpeCFpKkpvv9enD8vIiJUXcoLY9q0aW+99db169dXrVql6lrE/PnzKysrP/vsMysrK1XXAgAAAADPWhsO3IUQHh4e/fv3P3/+fGhoqArL+OuvvxTRv7+/fyONsPGMWVlZHTlyJDIyUk9PLz093cbGxtnZuUjprg3ffffdxx9/3MgBaWlpNjY2Li4u169fHz58+JEjR6KionR1daWo/bEatpK/c+eOl5eXubl5UlKSktPffvvtNWvWdOvW7XEHPNy2/tSpU/X3jEUbMm6cmDxZXL+u6jrwoho7VkyZIn78UdV1vDDU1NQUt7cJDAy8cOGCCivZt29fQkJCly5dFJvuAQAAAOBF07YDd01NzYCAACGEr6/vzZs3VVXGypUrL1++PGTIECcnJ1XVgEdSU1Nzdna+ePGij4+PpqZmdHS0sbGxr69vZWXl0yx79epVZ2fnESNGpKWl9e7dOzIy8ujRo8OHD5eq7Cfq37//jh07FLvO8/LyHBwcxo0bd/bs2adZs7q6Ojw8XLFrXtG2Pjc3t/G29WjlZDJBB6BW6I8/hIXF3/5NmqTqmlrGmjVCS0vVRbxIhg4dOm3atKqqKhV+2K6mpsbT01MIsWTJEn19fVWVAQAAAAAqpNbU3tat0Pjx43fv3j1p0iRXV9dn/+zFxcWzZs2qqKhITU196623nn0BUNLFixcXL14cFxcnhDA2Nl6xYkUz2qz/9ddf33//vZ+fX3l5+UsvvTRnzpylS5dqqS5Sksvl69at8/HxuXv3bvv27WfNmvXNN980o836vn375s2bd+rUKSGEra1tcHCwhYVFC9SLFnTqlHj5ZWFo+LfB/HxRWioGD1ZRTXiIvb04ckR4ev5t8OZNERIiZDIxd66KypJCeLgIDxfHjgkNjQcHv/1WjB+vuspeJNevX+/fv39paem33347ZMiQZ19AYmJiWFhY3759z5071xLd1VrI1atXDQwMevXqdfXqVVXXAgAAAKDNex4C93Pnzo0YMaJdu3YlJSUqKaBfv37W1tb//e9/VfLsaJKUlJR58+adPn1aCDFmzJjg4OBGWrQ3VFdXFx8fv3DhwsLCQiGEg4NDSEiI4QPpporcunXrm2+++c9//lNTU9OjRw9vb293d/dGWrQ31PB9CAMDAz8/P2dn5xauF3hx2duLs2dFQcHfBnNyxMCBbT5wRyuxYsWKsLCwK1euqKoAbW3tiIiIDz/8UFUFNAOBOwAAAAAJPQ+BuxCirKzMw8ND+fbc0lqwYMHw4cNVuM0ZTVJdXf3jjz8uXbq0uLhYQ0Pj888/9/Pz69mzZyNTMjIyPD09Dx06JIQYMmSITCZrhZ9myMzM9PT0TE1NFUIMHjw4ODh41KhRjRx/7969gIAAf3//ioqKzp07f/nll15eXh07dnxW9QIvIgJ3tLTKysrff/99wYIFqiogOjq6R48eqnr25iFwBwAAACCh5yRwB5rq9u3by5cvX7duXXV1dbdu3Xx8fNzc3DQatkIQQgjx559/+vr6btiwoaamRltbe+nSpcpvHleJxMTEuXPnFhQUCCEcHBzWrl1rZGT0wDF1dXXR0dFff/11UVGRmpratGnTVq9eraenp4JygRcMgTvQChG4AwAAAJBQ275pKtBs3bt3l8lkp0+fHj9+fElJiaenp7m5+a5du+oPkMvlMplswIAB4eHh6urqc+fOzc/P9/DwaM1puxBiwoQJ586dW7VqVZcuXXbs2PHGG294eXmVlZXVH3D8+PGRI0e6uLgUFRUNGzbs8OHDUVFRpO0AAAAAAADA0yNwxwttwIABO3fuTEhI6NevX05OzgcffDBhwoT8/PzExMSBAwd6enqWlpY6ODicP39eJpN17dpV1fUqpVOnTl9//fX58+ednJwqKir8/f0HDhwYFRV19epVZ2fn4cOHHz169NVXX42MjExLSxsxYoSq6wVeINraQl//wcH27UWvXqJLF1UUBAAAAAAAJEVLGUAIISoqKtasWbNixYry8nINDY3q6mohhJmZ2Zo1a+zs7FRdXfMdPnzYw8MjIyNDCKGpqVlVVdWpU6cvv/zy66+/7ty5s6qrAwBA9WgpAwAAAEBCBO7A/6fo2H7jxo3s7GwPD49HdnVvcxQd2319fYcPH15eXv7Iru4AALywqqqq0tPTO3ToMGzYMFXXAgAAAKDNI3AHHlRTUyOEaOW92pvquTwpAAAAAAAAoFUhcAcAAAAAAAAAQALcNBUAAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAHAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJEDgDgAAAAAAAACABAjcAQAAAAAAAACQAIE7AAAAAAAAAAASIHAXQojFixdHRUU1Y+Ldu3cnT5587tw5yUvCc6asrGzy5MmnT59u6sSff/556dKlLVES2qhDhw5NmTJFwgVjY2MXLlwo4YJoizZs2ODr6yvtml988cWePXukXRNtnbOz8759+5o6KykpacaMGS1RDwAAAABITkPVBTwjR44ciYqKGjNmzOTJkx/+bnJyckVFhbOz8wPj+/fv37hx4x9//KGrq/vRRx/Z29s/cMD9+/fj4uJmz579+uuvP/J5ExISkpKShBABAQFdu3aV4lSgekePHo2MjLS1tXV0dKwflMvlmzZtOnDggIeHh5mZ2QNTKisr4+LiXF1dzc3NFSPJyclxcXEPLx4UFNS5c+f6h5mZmenp6X5+fg2Pqa6ujomJ+fXXX0tLS/v37z9jxgwTExPJTg/PSkVFRXR09PHjxxctWmRkZHTx4sWAgICHD5szZ07DK6qwsDAuLi42NvaBw2pra5OSkrZv3+7i4vL2228rBuVyeUxMTHJy8t27d01NTWfPnm1kZPTAxFOnTu3Zs+eBp66rq9u+ffv27dtv3rz52muv/fvf/x40aJAE54yWd+PGjbCwsFu3bgUFBbVr127Pnj1bt259+DCZTNaxY8f6hxkZGWfOnHk4c//rr7+ioqJOnjzp7e1tYGDQ8PgffvihsLBQV1d36tSpdnZ2Dz/Ftm3bBg0a9N577z0wXlBQsG7dOi0trWXLljX7NKEqycnJMTExRUVFRkZGM2bMsLCwqP9Wenr6hg0brly5oq+v7+TkNHr06Ienb926ddSoUWPGjFE8zMzMDAsLe/iwJUuW9OnTp/5hXl5eQkLC+vXrHzisurp6y5Yte/fudXNzGzx48NOfHQAAAAA8ved/h3t8fLy1tfXIkSPXr1+/c+dO5SeuXbvW1tb2jz/+sLS0LC0tnTBhgre3d5Oe+vr16//617+SkpLCw8Pv37/fxMLRGm3ZssXGxsbGxmb9+vU7duxQDJaXl/v7+xsZGTk5Of3www9KfuKhoqKi5O9SUlJ++umnJ06Uy+UffPCBp6enhoZGnz59tmzZYmZmdvjw4ac6MTxbJSUlvr6+ffr0cXV1jYiIKCgoEEJUV1c/cElkZWWFh4ffuXOn8dXkcnlYWNjAgQMnTpy4YcOGo0ePKsarqqrefffdWbNmyeXyXr16xcbGvvHGG0eOHFGmQhcXl08//bSkpMTQ0DA5OdnS0nLTpk1Pd9JocRcuXHB1dTU0NPTx8Vm7dm1NTY141EtNcnJyZGTkE1e7deuWt7e3oaHhrFmzIiIiLl++XP+thIQEa2vr/fv3Gxsb5+TkjBs3TiaTKVPhyZMnHR0dTUxMAgICwsPDm32mUJUVK1aMGzfuzJkzurq6u3btGjZsWHJysuJb8fHxNjY2hw8fNjY2PnPmzJgxYx6ZpD9ALpc/cH0eO3YsPDy8oqKi8Yn3798PCgoyNjaeMmXKhg0bsrOzJTg9AAAAAJDC87/Dff/+/YoQysHBoUkTV61aZWdnl5iYqHg4derUgIAAb29vTU1NJVeYM2dOly5d3Nzcvvrqq6YVjdbqwIED9vb24eHhH374Yf1gdXX1sWPHfH19+/XrV79r74kcHBwaXpM1NTX9+/efMmVKw+3tj5SdnV1YWJiZmWloaCiE8PPzMzY2DggIGDlyZNNPCKpRWlp65syZwMDAzp07/+Mf/1AMDhgwYPPmzQ0P++STT+7evWtjY9P4aurq6vv27XN3dx87duwbb7xRP37ixImcnJyDBw8OHTpUCOHj42Nqarpy5cr6l7XHuXTpUkpKSnx8/KRJk4QQ9+/fNzMzW758ecOPdKAVOn/+vJqa2pYtW44dO/btt98qBidNmqT4OSrI5XJjY+OpU6c23N7+SCUlJbm5ucHBwe3bt2/4o6+qqpo9e7apqemRI0e6du1aW1v70UcfLVq0yNHRUU9Pr/E1MzIy9PX1f/3116ioqL179zb3RKEaBQUFy5Ytmzx5cmxsrJqaWllZmbW19ezZs3NzcysqKtzc3CwsLFJTU7W0tGpra+3t7RcuXPjpp5/26NGjkTWtrKweeN0bNWrU22+/3b9//8aLqa2tPXjw4OLFi83MzPj1BwAAAKBVef4D95CQkGbMqq2tLS4ubpgdvPbaa5WVlWVlZY3/6VgvKSkpLi4uMTGx4a5AtHVr1659ePCVV1753//+J4Q4e/Zss1eOj4///fff4+Pjn3ikpaVlTk6Omppa/bPr6OjcvHmz2U+NZ8/Q0FDxs96/f//jjrl06dK2bdtCQ0PV1Z/wUaR27dopEqt79+41HLexsbl69Wq7du0UD/X09IYPH37mzJknlmdkZHT58uX6iZ06dXr33XcjIiKqqqqUf8cRz97EiRMnTpwohMjMzHzcMZs2bbp8+bKHh8cTVzM2NlZcV7/++mvD8dTU1GvXri1btkzRJ01dXX3evHkJCQnbtm2bOXNm42tOnz5d8UVMTMwTC0Brc+DAgZqaGnd3d8UvoC5duri6unp6ep49e7agoODGjRsBAQFaWlpCCHV1dU9Pz927dycmJn722WfKP8WJEycOHjy4bdu2Jx7ZuXNnxW/eS5cuNfN8AAAAAKBlPP8tZZpHXV19zJgxmzdvlslklZWVd+7c2bhx48SJE5VM20tLS2fOnOno6NjUbfV4Ya1Zs2bs2LFKtqCtT9uFEHFxcbm5udLeRROtQVBQUPfu3adNm/Y0i9SH5gr37t3r1KlTMyaWl5e3b99eQ+P5f4/2uRcUFPT+++837LvdVBcuXBBC1N8nQAgxcuRINTW1vLw8CepDK1ZbWyuEqKurqx9R3MCmsLDw4atC8XVTr4qAgAATE5MJEyZIUjAAAAAAqASB+2NFRkYaGxt7enrq6+sPGTLE2NhY+R15X331VWlpaWBgYItWiOfGwYMH09LSFixYoPyUysrKsWPHGhsbOzo6+vv7u7u7t1x5ePZKSkp+/vlnNzc3JfNxZRQWFqanpzcjybp3797OnTsdHByeuNcerdy+ffsyMzOb9FLzsGvXrgkhdHV160fat2/frVs3xTieY6NHj27Xrt13332nuC1NUVGRohH/H3/88fBV8dJLL3Xu3LlJV0VhYeHWrVvnzZvHSw0AAACANo0/aR4rIiKisLAwJCRk+vTpVVVVKSkpPj4+DTd2PU5qamp4ePjKlSt79er1DOrEcyAwMNDU1PS9995Tfkq7du0cHR1dXFwsLS1XrlyZmpracuXh2QsNDZXL5U9s0KG82tpaV1fXbt26LVq0qKlzFyxYcO/evZUrV0pVDFQlMDDQ3Nx87NixT7PII38PqqurK/P7EW2akZFRUFDQzp079fT0jIyMDAwM7t69K4TQ0NCQ5KoIDg7u2rWrs7OzZBUDAAAAgCrQH+DRTpw4sWzZMplM5ubmJoTw8/Pz9PQMDAx85513Gt8fWlFR4erqamhoOGzYsIyMDCHElStXhBCnTp2ysLBouPkLULhw4UJiYmJ4eHiT9vRpaGi4uroKIRYtWmRlZeXq6pqTk9NiNeKZqqysDAkJcXFxkeoVo66uzs3N7eDBg0lJSa+88kqT5vr7+0dERERFRRkbG0tSDFQlNzd39+7dP/30U8OeVM3w6quvCiGKi4u7d++uGKmpqbl9+7aBgYEEVaJ1mzt37vjx41NSUjp16mRjY5OWlrZ3797evXvfvn1o0Yf+AAAGz0lEQVRbCFFcXKy4m7cQ4v79+2VlZcpfFaWlpT/++OPcuXOfeOdwAAAAAGjl2OH+aMePHxdCvPPOO4qH7du39/b2rh9vxKFDh3JzcwsKCqysrCwtLS0tLVetWiWEePfdd6Ojo1u4arRJQUFB2traU6dObd50DQ0NGxub3NzciooKaQuDqsTExBQVFXl6ekqy2p07dyZNmhQVFbV161ZbW1vlJ1ZWVs6YMWPJkiXr169v9vWJ1iMgIEBPT+/p7/fQt29fIUR6enr9yIkTJ2praxXjeO6ZmJjMnDnTxcXFxMRk//79mpqaQ4cO7devn/j7VaH4/5LyV0VYWFhlZeXs2bNbomYAAAAAeJYI3B9N8Sfi0aNH60cUfzrWb916nJEjR+b/3fLly4UQaWlp06dPb8mS0Sbdvn07Ojra3d29Y8eOSk65devW4sWL6+P12tratLQ0XV1d5VdAKyeTyezt7QcOHPj0S2VnZ1taWmZlZR04cOD9999XfuLVq1dHjx4dHx+/a9euL7744ukrgWrduHHjl19+mTNnjqam5lMuNXr0aG1t7XXr1lVWVipGQkNDNTU1J02a9NRloi05e/ZsdHT05MmTu3fvbmdn98orr4SEhMjlcsV3Q0NDO3bsqOSt4+VyeUhIyNSpU/X19VuyZAAAAAB4Fp7/ljJZWVmxsbFCiJKSkoyMDC8vL21t7S+//LLxWba2tpaWlvPnz8/Pzx80aFB+fr5MJjMzM3vi3sBOnTo9sJ9LW1tbCGFoaPjyyy8/3alA9bKzszdu3CiEuHXrVmZmppeXV48ePRYuXBgbG5uVlXXz5k0hRExMzMmTJ0eOHKnM3SlDQkJqa2tnzZqlfA25ublr167duXOno6Njhw4dtm/ffuLEidDQ0GafFFRiw4YNFy5cuHz5shAiIiJiz5497733nq2t7e7du7Ozs9esWdOk1fbs2fPbb78poq5du3bdvn379ddf79mz5yeffFJRUfH555/Hx8fHx8crDvby8mq8sUxWVta4ceNu3rz56aefpqSkpKSkKManT5+u2MeKVsvb21sulyveLV6yZEm7du1mzJhhZGT0/fffq6urN/V93/Xr11+6dOnSpUtCiLCwsMTExA8++GDUqFGBgYEuLi52dnb29vZpaWnbtm3z8fHp3bv3ExcsLy/38/MTQqSnp5eWlnp5eQklLki0HkuXLi0pKenVq9eFCxfi4+P79u2ruD+8lpbW6tWrXV1dx40bN378+EOHDu3YsWPlypVK9sWKjY29cuWKh4dHk4rZsmXL8ePHFX3k4+LicnJyrKysPv7442acFwAAAABI6PkP3G/fvq3opT5s2DAhREZGhjKhgKam5oEDB8LCwnbt2pWQkNCtWzc3N7cFCxY0o7WogYGBnZ3d028qRGugeNtGCGFpaSmEyMjIULQzvnTpkmLczs7u3r17GRkZT/wwhBCirq4uLy9v6dKlindllGRjY5Odnb169erY2NjKykoTE5PExEQldxGi9cjLyzt58qQQws7Orri4uLi4+M033xRCHD9+3MnJqUm9X4QQ165dq78ChRAZGRkdOnSora21sbERQhQUFBQUFNQfXFVV1fhq169fHzRokGhwwSv885//bFJVePYyMzMrKys1NTXt7OyysrKEEGVlZXV1dRcvXly2bFmPHj2atFpeXt6pU6eEEHZ2dkVFRUVFRUOHDhVCODs76+johIaGbty4UU9PLzo6etq0acosKJfLFVeUjo6Ojo6O4usnXpBoPfr27bt58+ZDhw716NFjyZIl7u7uWlpaim9Nnz5dX19//fr1MTEx+vr6sbGxjo6OSi6blZU1Z84cCwuLJhVTWFhY/7pXVVWVkZGhp6fXpBUAAAAAoCWo1dXVqboG1bOysnrrrbeCgoKaOrGoqEhfX/+3334bPXp0C9SF58fNmzd79uy5d+9eRR6qPA8Pj/T09IbdjfCC++WXX5ydnWtqaqRacPHixTt27FDkqnhhzZ49+8yZM6mpqRKuqa2t7evr6+7uLuGaaOu0tLSCg4Ob2qhqzZo1q1ev/vPPP1uoKgAAAACQED3cAQAAAAAAAACQwPPfUkYZpqamyvSZeVj79u0HDRrUpUsXyUvCc0ZDQ2PQoEFdu3Zt6sTevXsrGtQCCt27dx88eLCEC7766quS3KAVbZqBgYHkrV0sLCx69uwp7Zpo6958880mdVFT0NHRMTc3b4l6AAAAAEBytJQBAAAAAAAAAEACtJQBAAAAAAAAAEACBO4AAAAAAAAAAEiAwB0AAAAAAAAAAAkQuAMAAAAAAAAAIAECdwAAAAAAAAAAJPB/AM4+ChaE+qN9AAAAonpUWHRyZGtpdFBLTCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB2KG5g5GDIANLMjIxsDhogBgubA1iAmZEYBjcDowIjUwYTE3MCM0sGEwtrAitbBhMbY4IIIxsjGysLM5N4HFAlI9xez0kqDttzo1VBnEkqnfaqnkJLQGzPSUvsHrot2w9i592eth/B/ra/0VxfFUncHkk9mC0GAE6GJzR4edoIAAAA3HpUWHRNT0wgcmRraXQgMjAyMS4wOS41AAB4nH2RUQrDIAyG3z1FLjCJ0db6uNYyxqiFrdsd9r77s1hxWhgmBqJ+JPFXQLS7v70/8DPyQgBgYznn4KURUSwQExjnyzXAtJ3HfDKtz7A9wLJj9CN53tYlnyhYgWRnlSEHKHG3KskcwQRKYuJODVAziFJTApUk51APf0DDIN8rO3D3Jtkl0tFONnr3h5KNirYessHNwR/USvqNa/BFv+hUZDIcuohhYpQnR+/Ku3gDfZnecNgyo+GgepS6cdznL+dcfAGnkm7VoI3ONwAAAGN6VFh0U01JTEVTIHJka2l0IDIwMjEuMDkuNQAAeJzzTzZMBgFDhRoNIz1Tc0MTYx0DHWtDPQMY00DP2MjQxMhSR9dQz8jS0sBExxrIMjS3MDVHFbI0AgkZIEnDZeFmwEQ0awBMFhlwiWa4pwAAALN6VFh0cmRraXRQS0wxIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4g5gbiBkY2hwwgzcyMlaEBYrDgVYJLLTcDYwYTI1MCE3MGEzNLAgtrBhMrWwIbewYTO0cCB2cGEydDAgdzgggTGwMnBzMTIxsLKxs7B7N4E1A7I9yZD93UDjAwOOwHcaBsewh7GVDsgD1EWcNSJHF7mDhQvQNCHMzej6RmPyI04OL7YeJiACHaK0PsWt9YAAAA/3pUWHRNT0wxIHJka2l0IDIwMjEuMDkuNQAAeJyNUtsOgyAMfecr+gOSgkXl0VuWZVGTze0f9r7/z4pGiw8SgZOU5lDoOSgI49k9vj/Yh+2UAsDE8t7DJ0dENUAIoOlv9xHauW62TDu9x/kFBsEYPsPzyK3nadgyBlrIrHa+wrKADHXpuDYf0YhrsDHtgZkg5oFotPUe8wqMdnhCpECU9HlFx8QrBQvmXXlhGfNSPVfxxVniZs/EPZuqyKbE6qRq9mN3sGo1r5nGTswjhhWHiJGLDxQgaofpRFPeQCHSEaMUhYhRiQ7E8NItMUzcFC3fbU+YhUFxK/HDw377sRyrP8DVkSk2W5YjAAAAYXpUWHRTTUlMRVMxIHJka2l0IDIwMjEuMDkuNQAAeJxLNkxOTjZKTgaThgo1GrpGeqaWFgYWOgZ65qY61nCuLpRvqGdkaWlgogNkALkGMHFUYTRNqEbClEINQDMXJKpZAwD1FB/mmnfi6QAAAKl6VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAHYobmBkY0gA0ozMbA4aQJqZhc0hA0QzMwpABJjgElCF7BA+MzcDIwMjUwYTE3MCM0sCCysDC1sGExtjgggjKyMTULl4HEg53MKJ3zUcvt6W2Q/inAuZbZ95UmIfRMrBXr1xsT2UvR/GBqrZD1MD1HsAphfo5iX/PzeD2WIAOtwlSFMPsH8AAADrelRYdE1PTDIgcmRraXQgMjAyMS4wOS41AAB4nI2RXQ7CIAzH3zlFLyBpy5c8us0YY2SJTu/gu/ePrTrZkkVtaQLlR6F/DKidusPtDh/jzhgA/DJyznB1iGiOoBNotrt9gXbYNGOm7S9lOEMSR/U5uRn645ghaIFt9EiEsEIbiZMjQItPq0dZQLJMLnBQkHxmjAugExBtCs+snEjJpbzAeThrnd9gkIKrv66OSv7VTYKi+++0VEeH67VfILelmwn2krDpS1clVOcqlJdwVQ6vUbtWD7U3koi1AdmDVF/pJXj6lOnFuh5/XebmAdCjbzgfByfzAAAAb3pUWHRTTUlMRVMyIHJka2l0IDIwMjEuMDkuNQAAeJxtjLENwCAMBFdJCZKx/DZgIkpGoU+TluGTtBHlne5/TMx7hhEvHCso1ywAJeEKdQN1sMKKfQr5VKnUhb3Q692tUU8/3AzS5lfoLcWkNYrrAYcDG5d755IYAAAAz3pUWHRyZGtpdFBLTDMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRjSADSjMzsDBlAmpmJkc1BA8RgYYfQzDA+TCGbA1ghM6MARIKJm4GRgZFJgYk5g4mZJYGFlYGFLYOJjT2BnSlBhJEVKMbGLp4F0gq3/I9M8AF9byM7EGf1NI4DS2tc94PYa9ZY75+WU7gPxH4izmYv/b0NLH4u+4b9vqSne0Hs1889HFj7GcDi/Lcn219lWGoPYv+fvH5fidlsMFsMACZVKu2G492bAAABGXpUWHRNT0wzIHJka2l0IDIwMjEuMDkuNQAAeJx9kttqwzAMhu/zFHqBGJ18umySMsZoAmu2d9h9359JHZlbZiZFINuff+SfDODxvrx93eA3eBkGAPznq7XCpyDicAFvYDq/vK4w76fp2Jm3j3W/QrFEz2fytG+XY4dghlEC15JUAQNlJYrW4D3aVYYVRg4kSjXBiCFnUpEOKS5p5yKE6h1LzCl1SDVNDJGlIMNIAaMq9cBokhRSxVzRFYkYsTdlMlBsyEoxOhiRqXAHzHdFo4jFGi4VS+lwBa6uI8qVk4PE0fz/C57X5cnYH6unbV2a1Z7cDLUFSHNNvZo1nrEZQFapPdPOILfHqFVpM6uVPE72OIevj5/F+uEb9Ep5mxbEEOAAAACSelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wOS41AAB4nB2NMQ7EMAgEv3JlItmIBYONXKbPJ9xfc20efzgVaDQM173wXcd1rh8+z1GVJIa3woTeACuzCkGblMrUO5pqolxVwW1DUevuZTKZ6OAUQWwtLybIg3tsCxDmrGnGAr6RsWC8FswgBSQjON58PgzxjZDjfP6SjiI8iGH6mQAAAMN6VFh0cmRraXRQS0w0IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4obmBkY0gA0ozM/AwKQJoVxuVg0ADSzExsDmCahc0hA0QzMxLD4GZgZGBkApnCxMjCwMKawcTKlsDGnsHEzpHAwZnBxMmSIMLIxsLJwc7GKt4Esg/uLmPjy/YMDAfsQRwQOy0tTRXGBorvB7FnzfR0OHvmzGIIW9IOib3/odsysJq0NLYDCLbZAUMDK1UkcXsk9WC2GACnUDFfgJ/YsAAAAP16VFh0TU9MNCByZGtpdCAyMDIxLjA5LjUAAHicjVLbDoIwDH3fV/QHXLoLlz1yizEGMIr+g+/+f+yA2RHNcF2hXQ+HXibAr2t7fr7gs3QrBAAmtnMOHgYRRQ/egLo7ngZopqoOJ814H6YbKPR7li22msY+nChoQMk8I0Jy5PymDySuRsBpuDCOw184E/MdEoQWRjBSrcAEY0aM+A8wJyDFcwz/1s6hKX8gC4/UUu0jywVZ7tbtNpQJRhpJnGYC2Q3tZlTL8OpxaHl4XjTPiBwwPApNYrnhPppxWy1pzs2zpAV3yJKW3AZL6rhYS6rimqx/ZHHqcaLeDzeUbPEG02GN0OcbbFYAAABpelRYdFNNSUxFUzQgcmRraXQgMjAyMS4wOS41AAB4nHMO0HDW1LD110w2TAYBQ4UaDUM9M1MdQz1THWswywBK64KFjPUMwUIGUFrXQM8MJGVkaWlgAuQa6Rmici0gykDiCGGQJhhPswYAfOgbkYTWVUYAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"FP\") " + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "4fd719a4-df73-4ec0-821b-567a25070b62", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: subset cluster ID | fragment count inside GA in complete fragment library | fragment subpocket count in subset\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAGQCAIAAAB50mx4AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1hU19YH4DWF3hFRih2VEmPBhtjF2EBRgiURjWjQa0FUBBUVUFCwjj0QS1CjBrCBLQFsCNhQVFABRSmiKE16mZn9/XH4EIYiZZgzA+t97nMf7z6HOT+uW5hZZ5+1GYQQQAghhBBCCCGEEEIIIYRQ8zDpDoAQQgghhBBCCCGEEEIItQZYcEcIIYQQQgghhBBCCCGEhAAL7gghhBBCCCGEEEIIIYSQEGDBHSGEEEIIIYQQQgghhBASAiy4I4QQQgghhBBCCCGEEEJCgAV3hBBCCCGEEEIIIYQQQkgIsOCOEEIIIYQQQgghhBBCCAkBFtwRQgghhBBCCCGEEEIIISHAgjtCCCGEEEIIIYQQQgghJARYcEcIIYQQQgghhBBCCCGEhAAL7gghhBBCCCGEEEIIIYSQEGDBHSGEEEIIIYQQQgghhBASAiy4I4QQQgghhBBCCCGEEEJCgAV3hBBCCCGEEEIIIYQQQkgIsOCOEEIIIYQQQgghhBBCCAkBFtwRQgghhBBCCCGEEEIIISHAgjtCbRuXCxkZkJNDdw6EEEIIIYQQQgghhCQeFtwRaquysmDRImjXDjp2BHV16NoV9u4FQgAASkqAwYCjR6ud//gxMBhw/z4tYRFCCCGEEEIIIYQQEn9sugMghOhQWAijR0N+Phw+DEOGwNevcO0aODlBcjJwOBVld+q/K9U6iBBCCCGEEEIIIYQQ+n9YcEeoTdq3DxIS4MUL6NWrYsTYGOTlYe1aWLQIevSgNRxCCCGEEEIIIYQQQhIJW8og1CZduABjxnyrtlMWLwYmEy5epCkTQgghhBBCCCGEEEKSDVe4I9QmJSTA0KGCg4qKoKUF8fEV/zMoCFJTvx1NTxdRNoQQQgghhBBCCCGEJBMW3BFqk0pLQVGxlnFlZSgpqfjzhw/ArvIjIjdXFMEQQgghhBBCCCGEEJJYWHBHqE3S0Kh9xXpaGowaVfHn//0Pfv/926FHj2DwYFFkQw1z+vTp8vJyf39/KysrS0tLDQ0NuhMhhBBCCCGEEEIItXVYcEeoTTIxgYcPgRBgML4NxsVBXh6YmNAXCzWUl5fXhg0bFBQUCgoKbty4sXjxYhMTE2tr659//llHR4fudAghhBBCCCGEEEJtFG6ailCbtGwZJCTA3r3fRkpLYeVK0NEBKyv6YqHvI4SsXbt2/fr1TCZz8+bNfn5+5ubmbDY7IiLCwcGhc+fOAwcOdHNzS0xMpDspQgghhBBCCCGEUJvDIITQnQEhJCq3b4OHB1y+DAoK4OkJmzbB8OEwbBh8/Qr//Qc5OXDlCgwbBsXFIC8Pvr61tJSJjMQl8DQqKyubP3/+uXPnZGRkTp48OXPmTGo8Nzc3JCQkODj44sWLBQUF1KChoaG1tfWsWbMMDAzoi4wQQgghhBBCCCHUhmDBHaG2gRDYvh02bwYeD/buBQcHAIDHj+HMGXj7FmRkYMAAWLgQ2rcHACgvBycnmDULhg799gqpqbBnDzg4QJcu9HwLbV5BQYGVldV///2npKR0/vz58ePH1zynuLg4NDQ0ICDg8uXLeXl51KChoaGFhYW5ufnw4cNFGxkhhBBCCCGEEEKobcGCO0JtQH4+LFgA588DgwFOTrBtGzCxnZSE+fTp0+TJk58+faqlpXXt2rV+/frVf35JSUlISMiVK1cuXrz45csXarBbt24WFhbW1tampqaMqu37EUIIIYQQQgghhJAwYMEdodYuPh5mzICXL0FZGU6ehGnT6A6EGi0pKWnChAlv3rzp0aPHv//+26NHj4Z/LY/Hi4qKCggI8Pf3//TpEzXYuXNnS0tLa2vrYcOGMfHuC0IIIYQQQgghhJCQYMEdoWYhhKSlpcXFxQ0bNkxZWZnuODUEBcG8efD1K/TtCxcuQPfudAdCjfb48eMpU6Z8/vx50KBBV69ebU+1/Wk8Pp8fGRkZEBBw/vz5Dx8+UIMaGhqTJk2ytraeOHGilJSU8FIjhJD4OnUK5OUF9wjfvRsGDYKRI2nKhBBCCCGEEGotsOCOUNPl5+fb2trevXs3OzubzWZbWFjY2dmZmZnRnQsAAHg8cHGBHTuAEPjlF/jzT5CXpzsTarSwsLDp06fn5+ePHz/+/PnzSkpKtZ7G4/EYDEYD16rz+fynT58GBwefOXMmMTGRGlRXV58yZYq1tfWECROkpaWF9g0ghJD4GTkSNDUhMLDaoLo6rFgB7u40ZUIIIYQQQgi1FthJAKEmevXq1eDBgwMDA0tKSn788cfS0tKAgIDx48f379//8OHDX79+pTNcVhZMmgTe3sBigZcX/P03Vtsl0enTpydNmpSfnz9v3ryrV6/WVW0HgEuXLnXo0GHevHnBwcHl5eX1vyyTyTQ2NnZzc0tISIiNjXV1dTUwMMjOzj516tTUqVM7dOgwc+bMkydPFhYWCvsbQgghhBBCCCGEEGrlcIU7Qk0RFBQ0b968r1+//vjjjxcuXOjRo0diYuKxY8dOnDjx+fNnAJCVlaVtwfvTpzBjBrx/D+3bwz//wJgxog6AhGHfvn2rV6/m8/n29vYcDqf+PU5XrFhx8OBB6s8aGhqWlpYzZswYN25cw9eqx8XFXblyJTg4OCIighqRk5MbN26ctbX19OnT66n1I4SQxMEV7gghhBBCCKGWgwV3hBqHx+Nt3bp1y5YthJA5c+b8+eefCgoKlUfLysouX77s6+sbFhZG/eMyMDCYP3/+77//rq6uLop8p07B4sVQXAympuDvD9raorgoEipCyLp163bs2MFgMHbs2OHo6NiQr4qLi6N2Rn316hU1oqqqOn78eHNz8xkzZigqKjbw6gkJCefPnz9//nx0dDQ1IicnN2HChH379nXu3LkJ3w5CCIkbLLgjhBBCCCHUyjwsfPiF+2WKyhS6gwBgwR2hRsnKypozZ05ISAibzfbw8HB2dq7rzDdv3hw9elSUC95LS0v3b9jg+OefjPx8WLYM9uwB7MQtgcrKyhYsWHDmzBlpaWk/P7/Zs2c39hXqWatuaWnZ8K19U1JSLl68GBAQEBUVxWKxbG1t9+7dKycn19g8CNUjOxvatYMuXSAuDirvXXp7g5cX5OTQmgy1aiNHQnh4LeObN2PBHSGEEEIIIXF3K/9WQG5ASlmKPFN+jOIYWw1bGYbMitQVUYVRj/Uf050OAAvuCDXc06dPrays3r171759+3Pnzo0dO/a7XyKyBe9paWlWVlYPHz7cPWLE6kWLYN48Ib44EpmCggJra+sbN24oKiqeP3/+p59+as6rvX///vLlywEBAZGRkdT0k5WVNTMzs7CwmD59evv27Rv4Ounp6SNGjEhKSrp3756pqWlzIiEkgCq4M5mwbh14elYMYsEdtbSRI0FaGnbsqDY4Zgw4OGDBHSGEEEIIIbG2InXFwS8HTRVNB8sPLiWl/jn+PWR6hPcKX522WnwK7rhpKkINcurUKVNT03fv3pmamsbExDSk2g4A0tLS1tbWISEhCQkJzs7Ompqar169WrdunY6OzsyZM0NDQ4WS7e7du4MGDXr48GGnTp1G7N6N1XYJlZGRMXr06Bs3bnTs2PHu3bvNrLYDQNeuXVeuXHnv3r3k5GQOh2NmZsblcq9cubJ48WItLa3hw4fv27fv06dP330dbW3t8ePHA8DDhw+bGQmhWs2ZA7t2wcuXdOdAbYmqKgwYUO0/LBbdmRBCCCGEEEL1upB74eCXg9u0t93rdW+P7p5DnQ49N3i+vuN6KYYU3dGqwYI7Qt9RWlq6cuXKefPmFRcX29nZ3bx5U7vxjdH19PS8vLxSU1P9/f3NzMxKS0sDAgLGjx9vaGjo7e2dnZ3d5Hi+vr5mZmafPn2aOHFiTEzMoEGDmvxSiEbv3r0bMWJEdHR09+7dw8PD+/fvL8QX79Sp08qVK0NCQj5+/Ojn52dubs5kMiMiIhwcHHR0dKjK+4cPH+p5hcGDBwMW3FGLmTULhgyBJUsAH7pDCCGEEEIIIVSXo5lHO0l3WtNhTeWIlpTWNJVpNEaqFRbcEarPhw8fRo8evX//fllZ2WPHjvn4+EjX3Rj99evXz549q+fVhLvgvaCgYNasWYsXL+Zyuc7OzleuXBHRvqxI2KKjo01MTBITEwcNGhQVFaWnp9dCF9LQ0Jg3b15wcHB6evrRo0cnTZrEZrOpynvnzp1NTU337NmTkpJS8wupgvuDBw9aKBhqJkLI2bNnnzx5EhUVRXeWJtq7FyIiwM+P7hyoAR48eBAdHX3mzBk+n093FoRaqZIS4PHoDoFaHZxXCCGE/t/169djYmKuXLlCd5BGiy6KNlUwlWaI+56FWHBHqE53794dOHDg/fv3O3XqdPfuXVtb2/rP37p1a79+/QYOHOjr61tQUFDPmfUveM/KyvputsTERBMTE39/fyUlpYCAAC8vLxY+DC+Zbt68OXbs2IyMDDMzs7CwME1NTRFcVENDY+HChdeuXcvIyPD397exsZGXl4+MjFyzZs3Ro0drnm9oaKisrPzu3buMjAwRxEON8vjx4+HDh//yyy9WVlampqYzZ85MTk6mO1SjGRvD4sWwdi0044Ef1OLS09MXL148bNiwGTNm/Prrr4MHD7537x7doRBqRfLyYM0a0NICOTlgs6FvXzh+nO5MSPLhvGqrEhIS/Pz81qxZk5SUxOVy6Y6DaHPqFDAY8Pvv1QZHjQIbG5oCIbolJibOnDlz8uTJ1tbWFhYWZmZmL168oDtUI+TwcrSlGt12ggYEIVQbHx8fKSkpABgzZkxGRkZDvsTR0VFVVZX6l6WiorJ06dKYmJiGfGFiYiK14J36WllZWWohfF3nX7lyhbpQ7969X7582dBvCYmfwMBAWVlZAJg7d25ZWRmNSfLz8//555+ZM2c+e/as1hPGjBkDAMHBwSIOhurx4cMHGxsbBoMBANra2tOnT6emk4KCwtatW4uKiugO+H1ZWQSABAURQkh2NtHUJMuXEy8voqpKdzJUXXFxsaenp6KiIvVLavr06VR3NQaD8euvv6alpdEdsHHy8kh+vuBgTg6RhH80qPUqKSGDBpGOHcnhw+TxYxIWRtasIUwm2biR7mRIkuG8aksKCwvDw8M5HI61tXX79u0raz7q6uo2NjZ8Pp/ugIgeJ08SAMJikfDwb4MjR5K5c+nLhGiSk5OzevVqqtKloqIyffp0NTU1AJCSkrK3t8/OzqY7YIMoxygveL+g1kPLU5YbvzIWcZ66YMEdIUH5+fmzZs2i6gjOzs5cLrfhX1tSUkItWqdKYABgbGzs4+OTX/OTfQ2lpaUCX2tgYODl5ZWZmVl5Dp/P9/LyYjKZADBt2rSvX7825TtE4oHD4VB/lfb29jwej+443+Hs7AwAmzZtojsIIoSQ0tJSDoejpKQEANLS0vb29tRPg9TU1MoSvK6urp+fn9h+uIqNJbt3Vyu4E0L++ouw2eS334iqKuHziZsbSUmhNSUihBASFBTUvXt36heTubn527dvCSGFhYWurq5ycnIAIC8v7+rqKhH3eChr1pDu3cl//30bKS0l3buTwED6MiG0axdhs4nAbe8tWwiTSeLjacqEJB/Oq9YuOTn57Nmz9vb2AwcOZLPZVddWamlpzZgxw97eXkFBAQBWrFhBd1hED6rgPncuMTIilUu8sODe1vB4PD8/vw4dOgAAk8m0sbH59OkTISQrK8ve3p766aGurs7hcMrLy+kOW7uU0pS9GXsJIYNeDRr2elit52DBHSHxlZCQ8MMPPwCAkpJSYDM+eb969crZ2bldu3bU2x1lZWU7O7snT5405GvrWvCelZU1YcIEAGCxWF5eXmJbR0PfxefzXV1dqZs6O3bsoDtOg1y4cAEAJkyYQHcQVHv1s6rbt2/369ePOmHUqFFPnz6lJWddsrOJvT1hswmDQUJCqhXc+XwyYgRhsYiqKjl7lgAQOTni7FzLYmQkGi9fvqR+71D3gK9fvy5wggTd46lq3jwCQHr2JMXFFSMlJQSAnDhBZyrU1g0eTMzMBAdzcwmTSTw96QiEWgWcV61OeXl5bGysj4+PjY1Nt27dqlbYWSyWoaGhnZ2dn59fbGxs5W/k0NBQGRkZANi+fTu94REtqIJ7SgpRVCReXhWDWHBvU6p+PBwyZMj9+/cFTnj16tXEiROpE/T19Wu+56dXEa/I65OX4lNFiIZ/v/677eM2ZjTzQcGDmmeKVcGdQQipt+WMhMnLy/Px8QkLCxPZFceNG7d48WJlZWWRXRG1nKtXr86dOzc3N7d3794XLlwwNDRs5guWlpYGBQX5+vqGhYVR/9aMjY3t7Ox++eUX6sH8epSVlV26dMnX1/fmzZvU16qqqubm5mpqap47d47q74EkEZfLXbx48fHjx6Wlpf/66685c+bQnahBPn78qK2traqqmp2dXfkQBhKxV69erVq16t9//wUAAwODvXv3VhZDBfD5/NOnTzs5OWVkZDCZzF9//XXnzp3UigYacblw/Dhs3AhfvgCbDba2sGYN9O4NQUFgYVFxTlwc9O8PCgoQGwvr18Pp00AI6OjAtm1gYwM49UQmOzvb3d390KFDPB5PXV198+bNy5cvr2uzkDt37jg4OMTExADAkCFD9u3bN2TIENHmbZz58+H1a0hOhiVLwM0NAKC0FGRl4cQJ+O03eqNJqry8vF9++UWUPYLd3Nz69OlDLdtsJVRUYO5cOHRIcFxHB8aOhVOn6MhEM5xXQoDzqlXIyMh4+PBhdHR0REREREREcXFx5SFlZeXBgwebmpoaGxuPGDGissGpgIsXL1pbW/P5/D/++MPOzk5UwdF3NKF+1b37uqSk0Q0/f8gQ0NODefOAx4Pt22HbNoiNhW7dYNQo6NwZfwa0fmlpaRs2bDh9+jQhRFdX19PTs3KtTE3BwcEODg5JSUkAYG5uzuFwevToIdq8gggQ/xx/pw9OKWUpADBTbeZOnZ3t2O2GvB6Swc3Yqr11tOLoYn5xZGFkHi9vfcf1K1JXRBVGPdZ/TG/sCvTW+4WrqKioS5cuArd5W1q3bt26dOlSWFhI93ePmkWgVUtubq5wX59a8K6hoUFNmyYseFdTU+vUqZO2tva7d++Emw2JUkFBwaRJkwBAUVFR3O4bf5eOjg4AxOMDyHSgnvWjyp3Us34N6XaVk5Pj7OxMrWlSVFR0dXUtKSkRQdpahYWRPn0IAAEgY8dWPN1eWEicnYnAVhR+fsTVteLPDx6QoUMrvmrwYBIVJeLUbVF5ebmPjw/1C4vNZtvZ2X358uW7X1XXY6riad48MnYsOXKEyMiQ168JwRXuzRMaGqqqqkq9iRKZrl27Llu2jO5vXaikpMj69bWMGxkRKyuRp6EfzivhwHklmbhcbmxsrJ+fn52dnaGhoUB1rHv37jY2NhwO5/Hjxw3vS3nkyBEAYDKZ//zzT4uGRw3UtPrVqFHXqTfGDfzPlCkVK9x5PFJSQnr1IlOmEIIr3NuAprV/pDqXUkuKqcbuNPYxflL4ZGT8SIgGiIb+r/rfyb9TeSizPHNx8mL1Z+oQDVJPpAziDPZ/3k8IWZu2dlT8KLoCC2hVK9zd3Nzc3d319fV3794tmjdnhJC1a9fGxcW5urq6UUukkATKzs7+9ddfb9y4wWKxPD09nZycWmgBb3MWvF+/fn3y5Mljxoy5efNmS2RDIpCVlWVhYREVFdWhQ4dr164NGDCA7kSNY2VldeHChVOnTs2dO5fuLG1IeXn5iRMnXFxcMjMz2Wy2ra2tp6dn5d27hkhMTFy9evWVK1cAoGfPnp6entbW1i2WtxZv3sCGDRAQAADQowds3w6Nuj4hcOoUODvDp0/AYMDcubBjB3Ts2EJh27rQ0NBVq1bFxsYCwLhx4zgcDtVmrYFyc3O9vLw4HE5paamiouKaNWvWr19P3fIRK/PnQ1oa/PcfDBwI6uoQGgplZbjCvYl4PF7//v1fvHhha2srsp8tKSkpy5cv5/P5T58+7dOnj2gu2uK0tGDCBPjrL8FxVVWYPRv++IOGSPTBeSU0OK8kR35+/rNnzyIiIu7duxcREZGTk1N5SEFBoV+/fsOHDzc1NR02bFhl29LG8vDw2LRpk7S0dFBQUF1PSSKRaVr9Slq6d1lZI2r0mpoQF1exwp3JhNBQGD8erl4Fb29c4d5qEUICAwPXrl2bnJzMYDB+/vnnnTt3dunSpeGv8PHjRzc3t6NHj/L5fC0tLTc3t0WLFonyFngWN2vLpy2HvhziEV47drtNHTctb7+cxajlWdt8Xr4CS4EJIr0931D01vuFKDU1lXr6786dO98/W3giIiIYDIacnNz79+9FeV0kLDExMVQ3ZA0NjZCQENFc9PXr141d8P7u3TsA0NXVFU1CJHRJSUm9evUCgG7duiUkJNAdpym8vLwAN1wSrZCQkMpy57hx4168eNGclzIyMqJeyszMrDkv1XAFBcTVlcjKEgCioEBcXb+1zG7aS8nIfHsp+hbrt04JCQmVVa2ePXv6+/uLw0u1EGqFOyEkIoIwGOTUKVzh3nQHDhwAgO7duxc3+Z93kyxfvhwAxlJ/ka3D1KnEyEhwMD6eAJDjx+kIRCecV0KD80q8vX371s/Pz97e3tjYWKCYpaWlZW1tzeFwwsPDS0tLhXXFNWvWAIC8vHxERISwXhM1gSjrV5Ur3CkzZxIDAzJsGK5wb50eP35sampK/RgxNjYODw8Xh5dquDJ+GSeDoxKjQi1dt0+1z+UKuf+EyLSegvvs2bMBYPbs2W3q0qiZTp8+LS8vDwADBgwQfauWkpISf39/MzOzygX1xsbGPj4++bXtD8jj8WRlZRkMRkFBgYhzIqFwcXEBgIEDB2ZkZNCdpYmopysGDx5Md5A2oWkly6KionomWFlZWWWrECkpqQa2CmkaPp/4+ZGOHQkAYTCIjQ35+FEIL5uYSKytK56Q1dMj4lfIlUj5+fmurq5NaD1U/+9NWu7x1OPjR3L4MBk3joSGfiu4E0JsbUmHDuTzZyy4N0V2djb1I+XixYtt59It5fp1AkB8fb+NlJcTCwuiqdnWdo7GeSVMOK/E0u3bt6dMmaKurl61wi4rKzt8+PC1a9devHix5dqy8fl8W1tbAGjXrl1cXFwLXQV9lyiLSAIF97Q0oqREWCwsuLc26enpdnZ21K07LS0tHx+fhvQg5fP59awe5vP5/v7+1Op4BoNhbW3dokuNQ/JCDOMMqR4yZglmscWxLXctEWglBffIyEgal5nTtbgeNUd5ebmzszP15sbGxqYh3axaTmxsrL29vZqaGpVn4MCBtZ5mYGAAAM+fPxdxPNR8xcXFampqbDY7KyuL7ixNl5eXx2KxpKWlaewD3hY0ufpJCHFzc1NQUKj/S5rWDr5RHj4kJiYVZfFBg0hkpHBfXrAdPP5QbLLmNF6PjIxksVg2NjYf676XIsp7PHVJSSEcDhkxgjCZFXNm8eJqBfcvX0i7dsTREQvuTUHvcuDKRdAS/FspPZ0cP/6tCrJ2LWEwiLk52baNODuTPn2IggIJDaU1Ig1wXjUXzivxdu3atWnTplUuYzc3N/fy8goPD2+J5zn4fH7N1VpcLnfGjBkAoKOjg9uD0ULE9SuBgjshZNcuAoAF99ajrKysyY3XT58+/d0vodrBy8rKQmPawTdKfEn8lDdTqFJ7r9heV3KvCPf1adEaCu48Hm/QoEEA4Fq5yZrIubq6AkD//v0bvmkJolFGRsaYMWMAQEZGxrfqig9aVS543717d60nWFhYAMD58+dFHAwJBXW/5NGjR3QHaRaqvcmDBw/oDtI6NX/byZkzZ1Kf33r16hUcHFzPmS9fvqzs3WlgYHDjxo3mZa+Qmpr622//09DgARBdXfL334TPF8oLCyovJ/v2ETU1AkB69461t7eX6LtZtLh///6QIUOoOTBkyJD79+836ssPHTokLS0NACoqKjt37qznaXcR3OOp6f17wuEQU1PCYFTU2WVlibk58fMjOTnVCu6EEF/fisZHWHBvlJcvX0pJSbFYLLqWAnC5XKrRtpeXFy0BhOC33wgAcXT8NhIWRhYuJCNHkgkTyLp1JDmZvnD0wHklBDivxNucOXMAYN68eckt/BfB5XJtbW1NTEwKCwsFDhUVFY0cORIA9PT0xHmT81ZJ9PWrJ0+Is3O19+Tl5WTzZnLunGiuj1pWUFBQjx49qLf05ubmb968adSXr1u3jloU37Fjx+PHj9dT0kxNTbWxsaHaM+jq6vr5+fGF8UkvOzvbYZVDj6c9IBrUYtQ4GZwyflnzX1YctIZNU48dO7Zo0SJdXd3Xr19TK82r4vF4t27dEuLlxowZQ31orKq4uNjAwCA5Ofno0aMLFy4U4uWQ0EVERFhbW3/8+FFXVzcwMLCy3CA+CCG17tq6Zs2aPXv2eHl5Va7NRxJkwYIFf/3116FDh5YuXUp3lqZbuHDh8ePH9+/fv2LFCrqztDYPHjxYuXLlgwcPAGDIkCH79u1r2k+nsLAwBweHyk0v9+7dW8/Ob8HBwStXrqS2iDA3N9+3bx+1p0UTFBcX79y509vbu6ioaOzYU6amc52docbv5MbZvRu4XHBwgLo23czKgs2b4dGjSY8e3WjXrt2WLVvs7OzYbHazrtoGpKWlbdiw4fTp04QQXV1dT0/PynfPjZKYmOji4hIQEAAAenp627Ztq2dvw1evXq1aterff/8FAAMDg71797bEdm1JSRAcDAEBEBkJ1DtcOTkYNw6srcHSEpSVK06jNk0NC6v4n3w+DB8OUVG4aWrjTJw48d9//122bNnBgwdrHk1PT3/58qWwrqWhodGvX7+a4zdv3hw3bpySklJ8fLyWlpawLiciT57AoEHAZkNsLPTsSXcacYHzqrlwXom38vJyTU3N3Nzct2/fNvlNVwOlp6cPHjz4w4cPU6dOPX/+vMAbpLy8vDFjxjx58qRv31oPMw4AACAASURBVL63b99WVVVt0TCoUv31q0ePHn39+rWeL5eS0isv71rPCQoKYGLy/RhpabBhA4wZAwsWfP9kJJ5ev369evXq69evA4C+vv6ePXsmTZrUhNd58uTJypUr7927BwADBgzgcDgjRoyo6+Q7d+6sXLny2bNnADBq1CgOh1Prb9KG4PF4vr6+mzdvzszMHOo0tN+yflu1t2qwNZr2auKI5oJ/s+Xl5VFvg86cOVPrCfn5+cL9f6zW/tqEkDNnzgAA9euzJb9j1Cw+Pj7UirxRo0ZJ3M38I0eOAMDChQvpDoKa4vDhwwAwf/78mocSEhIkZTb+8ccfADAXnz8UKqEvFigvL6/s48Fms+vv41FaWsrhcJSUlABAWlra3t4+Ly+vsVcMCgrq1q0b9VvS3Nw8KSmpOfkpX74QBQUCQHr0IPW30n316lXlm0t9ff1r1641/+qtVWFhoZeXl6KiIgDIy8s7OzvX9a6m4UJDQ6tu7Vv/olSBqfL27dtmXp0SG0tcXYmxccVidgAiL1+xnr3W7+/AAeLuXm3k6VNibU1u3RJKnDbh0qVLAKCmplbXj5ejR48K8e335MmT60pCdWZYsGBBi32vLYPPJ8OHEwCybh3dUcQIzqvmwnkl9qgbz3379hXN5eLj4zU1NQFg7ty5NReufv78uXfv3gAwevRoEW9Q3GZ9t341ePDg+n9wjRp1vfLdTq3/6dmzQUn+/psAEE1NguUrSUQ9P0rdRVNTU+NwOOXl5c18zaCgIKpXOwCYm5vX02+Keiyb+tnStMeyCSE3b97s27cvdbnRo0fHxMQ0K71YkvgV7k5OTjt37jQxMYmIiKh1cVZJSYm5ubkQr3jlyhWqdVFNo0aNunv37tq1a3fs2CHEKyJhWbx4sa+vL4PBWLt27bZt22o+qSDmwsLCzMzMRo4ceefOHbqzoEaLjo4eOHCgvr7+q1evqo6vXr1679693t7eTk5OdGVruJiYmP79+/fq1Ss+Pp7uLK1BUVHRjh07duzYUVxcLC8vv2LFio0bN1LF0ObLzs52d3c/fPgwl8tVV1ffvHnzsmXL6lr9nZ6e7u7ufvToUT6fr62t7erqumjRIurpwvo9ffrUwcHh7t27ANC/f38Oh0M9oSwUt26BgwM8fw4AMGYMcDjw4491nhwcHLxq1aq3b98CgLm5OYfDqXy4EgEAISQwMHDt2rXJyckAYG5ufvDgwcp31c3E5XKPHz/u4uKSmZnJZrNtbW09PT2pWz41lZWVHTlyZNOmTfn5+dLS0kuWLPHw8KBu+TRWXFxcQEDAhQtXk5Mf5uUxAEBdHaZMAWtr+OmnOh+MqEd8PCxbBsePQ+fOTYjThpSVlfXp0ychIaGeB55u3Lixa9cuYV1x6NChHh4etR5KSkoyNDQsLy+Pior6bp1CjJw+DTY20KEDJCR8e/iCMm8eTJkCM2dC4587kWg4r4QA55XYW7Zs2eHDhzdv3uzu7i6aKz58+HDcuHEFBQXLly+ntiioKjU1dfjw4SkpKbWugkdC99361YoVKwQ+LQro0cPl7dsx9Zygqwt//fX9JITAqFEQHg5OTuDt/f3zkZig3nVv3Ljxy5cv1LtuDw+P9u3bC+XFi4qKDhw44OHhUVBQ8N0Pp7m5uV5eXhwOp7S0VFVVdd26dQ4ODjINeP+dmprq4uJy6tQpAOjUqZOHh8e8efOEkl/s0F3xb5Y3b97IyMgwmcyHDx/SnYUQQp48ecJkMqWlpePj4+nOggSlpKTMmTNHVlbW39+f7ixNRFVJtLS06A6CmqKsrExOTo7BYGRnZ1cdP3nyJABYWVnRFaxRuFyugoICg8HIzMykO4tkq7rhOwCYm5u30KZJr169mjhxInUVfX3969ev13Pyo0ePhg0bRp08cODAiIiIek7OzMysbMzdrl27FmrMzeMRPz/Svj0BIEwmsbEhnz/XeXJz9gtq3R4/fjx8+HDqb3bAgAHh4eEtcZWqa22oXu31rLX58OGDnZ0ddVNHW1vbx8engbvg8Hi88PBwBweHzlWK4pMmxf/vfyQ0lDRzcY+1NQEgo0eTlm8yL9m8vb0BwMDAoKxMLJpsUnesTUxMhNJLVBQKC0nnzrXvGxAYSACIhkYbXHOI86q5cF6JPT6fr6urCwDR0dGivG5YWBhVBfP09Kx5NDY2Vl1dHQBsbGwkZrZLJvGrXxEmk0hLEyxfSYrQ0NDKZqFjx45toc1OGvX4dXx8fOUS5549e9a/i1hBQYHA5qut+9kayS64T506FQBsbW3pDvKNra0tAEydOpXuIEjQw4cPAeCHH36gO0jT8Xg8OTk5AGhCwwckDqhS5n///Vd18PXr19RvMrpSNRZVthPWHpttk2iqn1UFBQVV9gmtv48HdSeAKmUyGAxra+uaO3pRdW0VFZXKunZL91LLzibOzkRamgAQNTXi5UXq3qGTpKenV1ZytbS0fHx8RLBFp9ii/t+g7otoaGiIYMPSFrrHw+Vyw8PD7e3ttbW1K+vsnTp1srOzCwoKav5TtJTPn4m2NgEgW7cK5fVap4yMDOqff/1/uaJU+YT+33//TXeWhtm4kQCQAQOIwH2m4mLSrRsBIEeO0JSMNjivhADnldijPpB27txZ9HXtixcvUm8G9u3bV/PogwcPqEWsK1asEHGwNkUM61cLFhAAMm0a3TnQ9yQmJlZulaSnpyeCVaT379+v3FFs8ODBUVFR9ZwcEhJiZGREnWxmZhYbGytwQkM+Y7Y+ElxwDw0NBQAlJaX09HS6s3wjhm8WESU3NxcAFBQUJPq+PfVT7OnTp3QHQU3h4OAAAB4eHlUH+Xy+mpoaAHz48IGuYI2yZs0aANiyZQvdQSRS1eqniGvBVK92avU31au9ntXfVVcfKCgoVF198N23Uy0nNpaMH1/RntLIiNy8GVfPyVXvahgbG4vgroa4oXe9v8A9njdv3tR1Zv3vvyvr7B07dqyss3fp0sXe3j48PLwlfqHfvk1YLMJmk3v3hP7arYR4Li45duwYAOjo6BQUFNCd5XtSUoi8PGEwSM2fS1u3VvyAE9I9JAmC86q5cF5JAhcXl1qL2mlpaSK4+l9//cVgMJhM5rlz52oeDQ0NpVbBb9++XQRh2iDxrF99+kRUVAgAwcVUYov6XEb986Q+l5WUlIjm0lSv9g4dOkADerVTHz2o7Zepjx45OTnUoUY9Rd2aSGrBvby8nHqSwtvbm+4sgsTtcUhUieonK1a/4RrL0tISACS3K04bd/bs2Vo/TP70008AcLH+fSHFxj///AMAU6ZMoTuIhBGTbic1V3/X08cjJSXFxsamcimxt7f3lClTqP/Zq1evK1euiDJ5pZAQYmBA9PWjmUymmZlZXFydZfeqfXuoSm4L9e0RQ0FBQZUt7Ouvd7ecqvd4vjvnBZ4wdXFxCQwMtLOzq9qSsnv37i1XZ69q3ToCQDp1IllZLXodiSS27RN5PB7VaHvz5s10Z/men38mAKTm9uNpaURRkQCQ6k/CtQU4r4QA55UkoJYshIaGVh3Mz8+XlZU1NDQsrefxPSHx9PSkfinXujrwwoULLBaLwWD4+vq2dJK2RpzrV15eBIAYGBAsX4kbPp/v5+dHLTphMBg2NjYfP34UfYz8/PyGV/ypDpPU8jJ1dXV3d/fff/+9CT0kWwdJLbjv378fAHr06CGyezsNV1pa2qtXLwDYv38/3VlQNSYmJgBw584dgXEej0fLT64mWLt2LdTRfQ+JP2o7R01NTYHxjRs3AsD69etpSdVY7969A4D27dvTHUTCREZGUr2tLS0taal+VvX48WNTU9MGrv6u7BVIbWuppqa2d+9eeu8ol5SQAwfOUnmkpaXXrl1bfyV348aNVD8ud3d3YfUeEWdZWVldu3YFgB9++CEkJITeMI26x/P27dvp06dTi2gq6+yGhoaurq6PHz8WWebycmJiQgCIhGyuIVIjRowAACcnJ7qD1CIyMpLBYMjJyb17947uLHW7d48wGEROjtR8ktrGps1OO5xXzYXzShK8efMGAFRVVQXeRPn7+wPAyJEjRRPD0dGRurd9r7YnuY4cOQIALBbrn3/+EU2eNkK861ekVy8CQLB8JW6SkpKo/hnDhw8X5TvhWiUkJFT2tOnZs2f9a0CfPHkycuRIAKDK9LKysi4uLhLwrJiwSWTBPTs7u127dgBw+fJlurPU7vLly1RV4suXL3RnQd9Qex8fPXq06uCXL19kZGQ0NDToStUovr6+APDbb7/RHQQ1kaamJgAILLMNCgoCgLFjx9KVqrGox8qSkpLoDiJJqIW6AQEBdAep0KjV3+Xl5QsWLKAWtovP77VG7dr67t07at7ev39flCFp8csvvwDA/PnzxefuQqPu8Zw/f566leLt7U3X3am3byuesP7zT1quL6bOnDlD3TZu6W0bmmzOnDkAMGvWLLqD1IHHI8bGBIDUbMsWFUUYDCIjQxIT6UhGJ5xXzYXzSkLs3LkTAGxsbATGf/31VwDYvXu3aGLw+fyFCxdSpf+YmJiaJ2zdupX6LYw7NgmL+NevLl2q2CdJbN7mI0L+f8Gou7u7+HRFDg0N/eGHH6i39OPGjXvx4kU9J2/fvp36/d5m6wYSWXBftmyZ+BenJkyYAADLli2jOwj6hnr34OzsLDBOLZPMzs6mJVWj3Lp1CwBMTU3pDoKaiOrIIXBDOCMjg1o+LCkPWFlYWADA2bNn6Q4iSaiCe0ZGBt1BqiksLBTYKb6oqKjWM6mCyOzZs0Wc8Luio6OppZEAMGDAgLt379Z1JtUWoO0U3E+fPk13kGoafo/ny5cv1E0UEScU4O9PAIi8PHn5kt4g4qKoqIj66xNYuCBWUlNTFRQUAOD27dt0Z6nNH39UtCsqLKw2zueTIUMIAHFxoSkZbXBeCQHOKwlBbS0TGBhYdbCsrIzazCkhIUFkSbhcrpWVFdXhodZHN6gdm+Tl5dtOq+UWJSH1KwJAsHwlVqiCu7j9MywvL/fx8aHaNbPZbDs7u7rWY1HbRA8cOFDECcXHtyd2JcXLly99fHxYLBaHw6E7S3327t0rJSX1xx9/PH/+nO4sqELPnj0BIDExUWCcanRLPeUn5qhvQSKiolpRJT/qd08lTU3Nrl275ufnv379mqZcjVPrd4Ekkby8vJub28uXL62srIqKitzd3Q0NDcPDw+nO1QhUkT0oKKhr167U04sWFhbv37+nOxcSRBXZ4+LiXFxcZGRkAgICjIyMDhw4QHeuOllbw2+/QVERzJwJxcV0pxED3t7eycnJ/fv3p553EU+6urpU8z0HBwcej0d3nOry8sDNDQBg926Ql6926NQpePAAOnYEJyc6ktEJ51Vz4bySEJ8/f46KipKRkaG2bqp0586dnJycPn36UJ/yRIPFYp05c2b8+PHp6enjx4//9OmTwAk7d+60tbUtKiqaOnXqy5cvRRasVZKc+hVIScEff8CLF3RHQeKNKrK/evVqyZIlhBBfX18DA4PAwEC6c4kjySu4r1q1isvlLl26lGopK7YMDAyWLFnC4/FWrVpFdxZUoa6Ce13jYkhbW1tBQSEjI+Pr1690Z0FNQZWqHzx40MBx8TRkyBDAgnsr0q1bt8DAwNu3b/ft2/fDhw9U4yPJYmFhERcX5+rqKi8vf+XKlXXr1tGdCNVOQUHBw8MjMTHRxsamqKiIerpCbB08CPr6EBsLOKHS0tJ27doFABwOp2qHfTHk5OTUtWvXmJiY48eP052lmj84nMdqajByJPx/C9QKBQWwfj0AwI4doKxMSza64LxqvrMcTiHOK0kQHBzM4/HGjx9PPVpdiWpFa2lpKeI80tLSgYGBxsbGb968mTBhQm5ubtWj1L6pM2bMyMrK+umnn3AdQ3NITv0KFi8GHg8cHOiOgiSBhobGkSNHYmNjJ06cmJmZKfCTDVWge4l941y8eBEA1NTUMjMz6c7yfdnZ2dRzFhcvXqQ7CyKEkLy8PACQk5MTaNyxYcMGAHBzc6MrWKP8+OOPABAdHU13ENQUWVlZDAZDXl5eoLcy9YGTukss/nJzc5lMpqysLL07Z0oW8WwpI4DL5UZGRtZ6SGxbyghITk7+9ddf3759W/MQtpQRNxEREbW23ReTljKU58+JrCxhMMilS3RHodWsWbMAYM6cOXQHaZBz586BmPUEf/36tbS0NJvNTqnZMXnDBgJAjI2JhLSVEyKcV81EzStpNjsN55XYo/ox/ll9YxA+n9+pUycAoGs7xM+fP+vr6wPAsGHDCgVaEhFSVFREbXuop6f36dMnWhJKOkmrXxENDQJAsHwlJsSzpUxNdW3OhC1lxHopgYCysjInJycA2Lp1K7XphJhTU1Nzc3MDgDVr1pSUlNAdB4GSklKHDh2Ki4vT09OrjkvQCneQtLRIgLq6up6eXlFRUVxcXNVxas24pKxwV1FR6dmzZ0lJyQt85rB57t+/7+HhERYWRneQCiwWi3pjJ7k6d+58+vTp7t270x1E7GRkZHh4eBw9epTuIN8MGzaM2vNWnPXpA56eQAgsWAApKXSnoUlkZKS/v7+cnBy1+ZX4mzVr1siRIz9//uzh4UF3lgqrV68uKyuztbXt1LdvtQPv3sGePcBgAIcD4r3EW+hwXjUfNa9+s7XVwXkl3oqKisLCwphMprm5edXxJ0+epKam6ujoDBgwgJZg7du3DwkJ6dy5c2Rk5OzZs7lcbtWjcnJywcHBAwYMqHUVPPouCaxfgZsbmJoG79o1HutXYis+Pt7Dw0OsWrhQG1SgmiTpF/CePXsSExMNDQ3t7OzoztJQS5Ys6dOnT1JSkph37Go7aq1WS1YJW7LSoppq7R5jbGwsJSX14sWLoqIimnI1DnaVEYrw8PBNmzbduHGD7iCo9fv48eOmTZsOHjxIdxDJs2oVWFhATg7Mmwfi1r1ZBPh8voODAyHEycmJ2txSInA4HBaLtX///vj4eLqzQEhIyLVr15SVld3d3QWPOTpCSQnY2EAb+7CK86r52sK84vP5bm5uHz58oDtIc924caOoqMjExKRjx45Vx6l+MtOnT2cwGDRFA11d3ZCQEE1NzeDg4AULFvD5/KpHlZWVb9y40bt372fPnk2fPh2LsI0imfUrXl6eS0REKNavxNbLly83bdr0999/0x0EfZ/EFNwzMjKo5Q979uyRkpKiO05DVW6O4enpKbCqGtECC+6IdrXuOConJ2dkZMTlcp8+fUpTrsbBfVMRQm0EgwHHjoGWFty5A97edKcRuePHjz969Khy00hJQW3CWVZW5ujoSG8SLpdL7efk6uoqUGu7devWuKSkFz/8ANu20ZSONjivmqn+eeWUlFTUKuaVp6enu7v7hAkTsrKy6M7SLFRhfdq0aQLjly5dqnVcxHr16hUcHKyoqHj69OmVK1cKHK1cBX/79u1Zs2YJrIJHdWkF9auPHz/SHQchySYxBfd169bl5eVZWlpOmDCB7iyNM3bsWEtLy4KCAhcXF7qzoIpq9Zs3b6oOampqqqio5OTkSMSbOT09PcCCuySra224ZHWVkaxdXhFCqDnat4czZ4DJBFdXiIykO40I5efnb968GQB27typoKBAd5zG8fT0VFFRuXLlyvXr12mMceDAgbi4OD09vWXLllUd5/F4q1atuhkTEzR7Nujo0BWPFjivmq/+ebUzJmZvq5hX9vb2/fr1i4uLmzx5ckFBAd1xmojH4127dg1qFNbfv3//4sULFRUVqk86vQYPHnz58mUZGZmDBw9uq3GrplOnTteuXVNXVw8KCrK1tSWE0BJSskh0/WratGlYv0Ko+SSj4P7kyZOTJ09KS0vv2LGD7ixNsXv3bllZWT8/P1wNSru6lodLUBUbV7hLun79+snIyMTFxVG7+FaSrDXj/fr1k5OTe/36tcB3gRBCrdLo0eDoCFwuzJ4NOTl0pxGVLVu2fPz4cdiwYdTmlpJFU1Nz48aNALB69ery8nJaMmRnZ1P9vjkcjoyMTNVDvr6+z54969at25o1a2jJRiOcV83UduaViorK1atXu3Xr9vDhw2nTppWWltKdqCnu3r2bmZlpaGjYq1evquMXLlwAAHNzc2lpaZqiVTN27NhTp06xWKyNGzf6+voKHDUyMrp+/bqsrGx+fn5ZWRktCSWIpNev9uzZIyMjg/UrhJpJAgruhBAHBwc+n79q1Sqq1ChxunfvvnLlSuobwRvC9KqrWi1BVWwtLS0lJaXMzMyctvOJv3WRkZH58ccf+Xz+kydPqo6LZ1f0p0+fpqam1hyXkpLq27cvn89//Pix6FMhhJDoeXrC0KGQmgqS04u1Wd6+fXvgwAEmk8nhcGjsL9wc9vb2vXr1ev369eHDh2kJsGHDhuzsbDMzsylTplQdz8nJqVziLSsrS0s2uuC8ar42Na+0tbVDQkI6dux48+bN2bNn8yRwJw2qn4ylpWWt47T3k6nK2tr60KFD8vLynTt3rnnU2NhYVlb20qVLycnJos8mQVpH/Yr6FrB+hVBzSEDB/cyZM+Hh4R06dFi/fj3dWZrOxcVFS0srKirqzJkzdGdp0/T09BgMxps3bwQ2hJGggjsA9OjRA2o0xkESpNbauoGBgbKy8rt37zIyMmjKJSgsLGz06NETJ06s9e4OdpVBCLUpbDacPg3KyhAYCMeP052m5a1ataq0tHTBggWDBg2iO0sTSUtL79q1CwDc3d0zMzNFfPW4uLhjx46x2eyaW89RecaMGWNlZSXiVLTDedVMbXBe9ejR47///lNTU7t06ZJACx2JEBQUBDUK61lZWZGRkTIyMhMnTqQpV+0WL16ckJBQa6o7d+7k5uYaGRkJLNVHArB+hRCiiHvBvbi4eMOGDQCwfft2FRUVuuM0nZKSkqenJwA4OzsXFhbSHaftUlBQ0NLSKi0tTUtLqzouWQV3yUqLaqq1VM1kMo2NjQHg0aNH9MSq7sKFC+bm5nl5ef3796+1xaqysjKDwdizZ4+7u/uLFy9EnxAhhESsRw/4808wMgKJLRU2VFhYWHBwsJKS0tatW+nO0iwWFhbUbWNq5a8orVq1isvlLl++3MjIqOr4q1evDh8+zGKx9u7dK+JItMN51Xxtc1716dPn2rVrCgoKPj4+VEsfSfH06dN3795pa2sL3GEKCgricrnjxo1TUlKiK1tdtLW1ax0XwyX5YgjrVwihSuJecN++fXtKSsqAAQPmz59Pd5bmmj9//uDBgz98+ODt7S26q5aWwp9/ws8/w9ixYGkJ+/ZB5YYzDx7A7NmQm1vt/MBA+P130cWjQ63VaskqYUtWWlRTXe3axaerzIEDB6ytrUtKSuzt7akWhAInXLhwYdeuXSwWKzMz083N7ccff+zdu/eGDRuio6NpCYwQQqIxcybExMCZM/DTT1D1qfrPn2H8eBCPG6bNxeVyHRwcAGDTpk1aWlp0x2muPXv2SElJUb2tRXbRwMDAkJAQdXX1msVBqve3nZ1d3759RZZHHOC8ar62PK+GDh167tw5KSkpT09P6gkDiVBZpBZooCSJxevg4GCQtMyih/Wr5ggMhPHj4eLFaoO2tvDHH/D+PUyaBM+fVzt05w5MmgRfv4omHUKNJtYF99TU1N27dzMYDA6Hw2SKddSGqGxWuHPnzvfv34vikrm5YGoKa9eCqipMnAgdO4KnJwwYAB8+AACkpMA//0BxcbUvefECLlwQRTb61Lo/qmSVsCUrLaqpV69eampqaWlpH6h/jP9PHPZNJYS4ubnZ29sTQlxdXfft21fzx+/x48dnzZpVUlJiZ2d3584de3t7LS2thISE7du3Dxw4sEuXLitXrrx3755A4yaEEGod2Gx4+hRCQuB///s2WFICoaEg8vYSLeLw4cOxsbE9evSwt7enO4sQGBgYLF26lMfjrVq1SjRXLCkpcXJyAgBPT8927dpVPRQcHHzjxg01NbUtW7aIJoz4wHnVTDivzM3NT5w4wWQynZycjh07RnecBqm1sF5UVBQSEsJkMi0sLGjK1Wh1LdVHVbXW+tWuXbtEU79KTobQUPjf/6rtTh8VBYmJkJ8PN25AVla189PT4cYNwE18kdgS658Cjo6ORUVFc+bMGTFiBN1ZhMPExGTOnDklJSXOzs6iuJ6TE7x9C48fw9Gj4OQEf/wBMTFQVARLloji6uKq1mp1u3bt1NXV8/Lyvnz5QlOuRsCCu6RjMBjUu1WB2vrQoUMB4MGDB3TtTsPj8ezs7Nzd3dls9tGjR93c3Gqe4+3tvXDhQh6P5+rqeujQoZEjR+7bty8tLS08PNze3l5XVzclJWX//v0jRozo0KHDvHnzgoODy8vLRf6tIIRQyxowAEJCWuEqhezsbKpmt3fvXhkZGbrjCIerq6uGhsatW7cuiOQvbNeuXe/evTMyMlq0aFHV8bKyMkdHx8o8IkgiPnBeNR/OKwD49ddfDxw4QAhZvHjx+fPn6Y7zHcnJyc+ePVNWVh4zZkzV8f/++6+oqGjIkCES9KhHXUv1UVWttX5VXFwsovoVgKoqqKiAi4toroZQyxLfgntERERAQICcnNy2bdvoziJMO3bsUFBQ8Pf3v3PnTsteqagITp6EZctAT+/boLY2ODvD1auQmtqyVxdjdVWra135Lp6w4N4K1No9RktLS0dHJzc3l5a/3MLCwmnTph09elRBQSEoKMjW1lbgBB6Pt2TJknXr1rFYLB8fn6rleCaTOXz48H379qWkpERGRjo6Onbr1i0zM/PUqVNTp07V0dGxs7ML+/dfXIGAEGo1eveG33+HlSshP5/uKEK1adOmrKyscePGSdDSy+9SU1Nzd3cHAEdHx5KSkpa+nJaWVrt27Q4cOMBms6uO79+/PyEhQV9ff+nSpS2dQdzgvGo+nFeUpUuXbtq0icfjzZ07t8U/UDfPpUuXCCGTJ08W6M0oif1kLl26BJKWWcSwfiUUbDZ4hNQjNgAAIABJREFUe4OPD1Tf7AwhicT+/il04PP5Dg4OhJB169Z16dKF7jjCpKOj4+Tk5OrqumDBguXLlzf8UaMVTCar4f0ZtLWhSxcoLYX+/QUPGRsDIVDZZzkhAbKzvx2VhPXdzVRXtbpnz54PHz5MTEwcNmwYHbkaQVNTU0VFJScnJysrS+CRUiQp6mnjfuHChYcPH/bq1UuUebKzsy0sLCIjI9u1axccHGxiYiJwQmlp6dy5cwMDA+Xl5f/55x9zc/NaX4fBYJiYmJiYmOzcuTMuLi4gICAgIODly5d//vmnTkzMuMREGD8ezM1hxgxQVGz5bwshhFrQ1q3wzz/g6gp79tAdRUhevnzp6+vLZrNb376Lixcv9vHxef78+c8//2xmZtbSl1u7du2zZ8+ePXs2Z86cDh06AMDnz589PDzg/3t/t3QAsYLzSlhwXlG2bNmSl5e3b9++qVOn3rx509jYmO5Etau1sM7j8a5cuQIAlpaW9MRqvOTk5OfPn6uoqAgs1UeVsH5Vk5LSqPz8GsWoulXuA21pCWPHwpIl8OgRVL+9CHFxUPURKVx/iMScmBbcCSH9+/dPSEgQWVM8UVq1atWePXvKysrWrFnT8K/6n7Q0q+GLQ01MgFp82rGj4CFq2/GcnIpq1+jRgieoqzc8lSTS09NjMplJSUk8Ho/FYlWOS9aycT09vejo6MTERCy4SyhqhfujR48E5uHgwYOpgvvcuXNFFub9+/cTJ06Mj4/v1q3bjRs3atb6c3Jypk2bFh4erq6uHhQUZGpq2pCXNTIyMjIycnNzi4uLO3/+/Jy4OHj0CAICICAAli2DyZPBygomT8bKO0JIQrVrB9u3w7JlYGMDreO3saysrKGhoaKiYp8+fejOImQsFmvp0qXOzs5Xr169evWqyK57586duXPnWllZubi4fP361dzcfNKkSSK7upjAeSV0OK/27NmTkZFx7ty5SZMm3b17V19fn+5EgrKzs8PDw6WkpCZOnFh1PDw8PDMzU19fv3fv3nRla6yLFy8SQiZNmiSwVB9VwvpVTSNH7r57txEF9wULvtXcDxyAvn1h/35YvbraOWvWQNWCP4/X8JdHiAZiWnDn8Xg3b97My8vz8/Nbvny5wNGPHz+6u7u7u7tTN/bFU0ZGhqurq6ura83WbCdPnvz69au0tPTy5curFtrqx2axGvETpVs3kJcHgGqr1ynUfl6VFa7k5GpF+a1b4fDhhl5FMsnJyWlra6elpaWkpHTr1q1yXLIK7j179qQK7lTXbyRx2rdv37Vr1/fv379+/dqo8s0FwOTJkwkhIlgkVSk2NnbSpElpaWl9+vS5fv26jo6OwAnp6emTJk16/vx5ly5dbty40YSPNFTlHQDA2xsuX4aAAIiMBH9/8PcHWVkwMwMLC5g+Hdq3r+WLX72CAwcgOhqKi6FzZ/j5Z7CxgQb/5EQIoRa1aBGcOAHLlsHZs3RHEYaPHz++ePFCTk4uJSWlc+fOAkfv3Llz7do1b29vWrI1kL+//6dPn5YuXSrQdoMQ8vfff3/9+nXAgAEi664bGxt76dKlmJgYXV3d48ePS0tL7969WzSXFis4r4QL5xUAMJlM6jP19evXf/rpp3v37tWcWvQKDg7mcrkTJkxQVVWtOk4te5eg5e0gmT1wRAzrVzW1bz+gZreFegwdCh8+VPxZXx/WrAE3N5gzp9o5N25A1acszp6FX35pxCUQEjUirqg2YWpqal++fBE4ZG1tDQCLFi2iJVgDUbvZWFtbC4xnZ2dTu9lQPd1aUFYWYTDIrl2C46dOEQASF0f8/QkASU+vdnTzZqKu3rLBxAD1NNy///5bdZBq7tG/f3+6UtXk4+Mza9YsPp9f89CmTZsAYPPmzaJPhYRl1qxZAHD8+HEaM9y6dUtFRQUAxowZ8/Xr15onxMXFUR9gjIyMUlNThXbh5GTC4RAzM8JmEwACQFgsYmpKOBzy8eO3065fJ7KyZOhQsm0bOXKELFpEZGXJ1KmEyxVaElFp3749AGRkZFQd3LFjBwA4OjrSlarhzpw5AwCzZ8+mO0jTUX2c7t+/T3eQFvfLL78AwOnTp6sOPn36FAD69u1LV6qGo3Yvb9euHd1B6jNhApkzp+LPjx8TFovs2EEAyLVrtMYShtmzZ9f6jz0nJ0dJSQkAQkJCaAnWEPn5+dra2gAQEBAgcOjs2bMAoKmpmZubK7I8PB6Panbh6urq7e3t6uoqskuLG5xXQoTzqlJhYeHw4cOpt6mZmZl0x6lm+vTpAHD48GGB8e7duwNAVFQULamaICsri81mS0lJ5eTk0J1FrGH9qvl27SIaGhV/LiwkXbqQhQuJvj5ZvZo8f04AyM2b1c4/c4YAkM+fWzoXbagurxEREVUHqW26LS0t6UrVcFSFbeDAgXQHoY34FtwJIRMmTACA5cuXC4y/efNGRkaGyWQ+evSIlmDf9eTJEyaTKS0tHR8fL3CIuuE5duxYUeSYMIH06kWKir6NlJeTIUNIv36EkLZccLezswOAgwcPVh3MyckBAEVFxVoL3CJWXFy8YMEC6q7YTYFfLIQQQk6ePAkAcyo/7iMJRC1HWrJkCV0BLly4ICsrCwAzZswoLi6ueUJUVBT1BsvExKSlPsakp5NDh8jYsYTF+lZ5HzOGBASQ/HyioUEsLauV1//7jzCZ5NChFgnTkrDgTjssuGPBXYiqFtwJIcuWEVXVVlJwT01NVVBQAIA7d+4IHPLy8gIAAwODsrIyWrJ917p16wBg6NChAu/lioqKqKa6f/75p4gjhYeHMxgMeXn55ORkEV9arOC8Ei6cV5Vyc3P79esHAIMHD87Pz6c7ToWioiIFBQUGgyGwWiUmJgYAOnTowOPx6MrWWH/99RcATJgwge4gEgDrV81UteBOCLl0ibBYRFkZC+5YcJdUDd3xgBbU3i9Hjhx58eJF1fEePXosX76cz+evXLmSEEJXvHo4ODjw+Xx7e3uBVsgvX7708fFhsVgcDkcUOTgc+PIFxo6FgACIjYXLl2HSJHjxAo4cEcXVxVit3WNUVVU1NDQKCgoyMjJoylUhLS1t1KhRJ06ckJWVPXHiRK2706ipqQHAzZs3qXK8yDMiIaDKfw9o2oL90KFDP//8c0lJyYoVKwICAqjKe1VBQUFjx47NzMy0tLQMCwtrqd0CtLRg6VIIC4PPn8HPD8zNgcWCW7cgPh6CgiAzEzw8qjWQGT8exo2DY8daJAxCCDXJtm0gJ0d3CCHR1dV1dHQEAAcHB171ZoarVq3q2bPnq1evfHx8aEpXn6SkJA6Hw2Aw9u3bx2Awqh7y9vZOTk7u379/5WoGkRk+fLiVlVVRUZGLi4uILy1WcF4JF86rSioqKlevXu3WrdvDhw+nTZtWWlpKdyIAgJCQkMLCwkGDBunq6lYdj4+Pl5eXnzZtWsN3nqQd9pNpOKxfCde0aTBpEuTlfec0Hg82bIA+fWDQIPD3F0kyhBqI5oL/99R1Py0vL69jx44AcO7cOVqC1aOeRwvruufZguLjiZUVUVAgAERWlkyeTJ4+rTgUHEw6diTVl1uSnTuJoaHo4tGEeuCLapZdFXUL8e7du7Skoty+fZtq7qanp/fs2bNazwkPD+/YsWPlrjU9e/b08vISWDmLxF9RUZGUlBSbzS4oKBDldfl8vqurKwAwGIy6HkM+ceIE1aXU1ta2vLxclPFITg45dYokJRFHRyIlVUv3GEdHwmZLXFcZXOFOO1zhDrjCvcF4POLnR+pZgDh/Plm5strI33+T7t3J7dstHU0U6lm3e/HiRajjkXnaUQ0c5s+fLzBez9pq0UhJSZGXl2cwGOHh4bQEEBM4r4QL51VVb968oYoDlpaWXDF4i2hrawsAnp6eNQ8VFRVJ0Ke2upbqo7pg/ao5jh4lxsbVRt6+JT17Eg8PkpBA9PXJgwfVjl69SvT1SVQUcXQkXC758IGoq5PCQtGEFQVc4S7pxL3gXk/HKF9fXwDQ1dUVca2qfvW8laynq5co5OXRcFFxFRcXR9WpBcbnzZsHAMeOHaMlFZ/P53A4VJVz8uTJ2dnZtZ7m4+NDldpNTEwcHR07depEld2lpaVnzZoVFhYmDi1xUAP1798fAO7duyeyK3K53N9//x3g/9i777imzu8P4CcsQQEHaHFgxVX3wlVxVMVZrLUK1Z+itVjcoFWLtbbYunCjiIobd6GuOKriqigKilsQFVRcgMjeI8/vj6ffFBMIAUJuAp/3q3/Um3tzT+rT5N5zz3Me0tPTK2oGNJ/cTURubm5qC6wQzs6sbt1Ctq9Zw4iYGpulqgQS7oJDwh0Jd+UtWcKI2P/9XyEvnTvHvLxYhf+l1ZzbbyVduHCBiIyNjd+8eSPzUlHdw9WJlyFbW1trUR+J8oBxpVoLFy4kok6dOlXyccXdv3+fzwCePHmysJHk5+fz1OqjR4+EjaTseHl7t27dhA5EayB/JaxPP2UxMUIHoTpIuGs7TU+4M8a8vLyIqHHjxllZWQW35+fnd+7cmYgWLVokVGzyeN1ox44dZR6tZ2dn8+k5Xl5eQsUGUllZWbq6unp6ejLNIlevXt2xY0eZJIV6pKSkjBo1ihcdu7m5FXrdLG3sLhKJXFxcePD5+fkBAQH29vY8U89L41Hwri34X+j48ePVc+GVnp5uZ2dHRNWqVTt16pT8Dnl5eVOmTCEiXV3dLVu2qCEkRX78kRkYFFJi6ubGdHVR4a5mSLhrESTcyyg4mOnrMx0ddu6c7EuxsczCghExzStQU73evXsT0bx582S2P3r0SF9fX1dX9/79+4IEJi8vL69du3ZEtGzZMpmXgoKCRCKRkZHRixcvBImNS09P5yuQ7969W8AwNAHGlQphXMkICgri0w5++eUX9Z89MzMzMDBw5cqV/fr109XVrVto1Yi24aX68v8LgALIXwklMJBVsNQuEu7aTgsS7nl5eW3btiUiDw8PmZeuXbumCdc6Ulq9HFBlwx/kPnv2TOhAGGMsIiKidevWRGRqanr06NFC93n58iX/hTY2Nvbz85Pf4e3btx4eHo0aNZIWvNvb2wcEBKDgXWO9ffu2SZMmdevWJSJDQ0M7OztfX1/5mi9VSUhIsLGxIaJatWrJ/GxzWVlZ9vb2RFSlShV/f/9yCqMEdu9mROzJE9ntdnasXTshAioTJNwFh4Q7Eu7KSEpiVlaMiMnP8JFImJ0dI2J9+mjdI7/SULCE2vTp0wudMi8Ub29vnt2QWQA8Pz+/S5cuRFRU/zR14svdf/LJJ8nJyULHIiSMK9Xau3cvxlVBJ06c0NfXJ6LVq1er4XRv374Vi8Vubm42NjYF10OqUaOGSCTatWuXGmIoP/n5+bzTaQUo1Vcn5K8E8fQp++wzpjFPbFUDCXdtpwUJd/a/2XwmJiZv376VecnBwYGI/q/QSb9qN2bMGCL69ttvZbbHxMRUr16diM6cOSNIYCDP1taWiP7++2+hA2FisZgPj3bt2hX1AOD06dN8jmSzZs0ePHig4N1Q8K4twsLCeFFSw4YNu3TpIl06ycDAYOjQoTt27IiPj1fh6aKjo1u0aEFEVlZW8re4jLHExERedFazZk1NaQaamMhMTJiT00cbb99m+vpMLTdRqoWEu+CQcEfCXRljxjAi1rkzy86WfWn1akbEzM2ZXG+JCsvJyYmIhg0bJrM9ISGBr6QtP2Ve/aTz948cOSLz0vbt2zVn/r5EIunZsycR/fzzz0LHIjCMKxXCuJK3b98+HR0dkUi0fft2lb95bm5uSEjI+vXrR48eza/kpXR1ddu1azdlypQ9e/b8/vvvfItGlLCU1pUrV/i9pNCBaB/kr9Ts3DnWsSO7fVvoOFQNCXdtpx0Jd8YYXxd74sSJMtuly8UIu9AlKzC18Pnz5zIv8a4Rw4cPFyIuKNzUqVOJaMOGDQLGkJeX5+7uzjOtY8aMKfSqXSKReHh48H2GDRuWmJio5JvLFLwv7deP2duzgICK33dWGwQHB/O7uO7du/PEelxcnK+vr52dHa/K4dfoNjY2np6e8m1DSyEpKaldu3Zt2rQpdMmjt2/ftm/fnojq1atX1FK9wtizh+noMAcH9uef7MIF5uHBzMyYjU0hmTCNh4S74JBwR8K9WNu2MSJmbMzkn0uGhjIDAyYSsePH1R+XYGJjY/ktt3yBwoYNG6iwKfPq5+LiQkR9+/aV2Z6SksLnkB04cECQwOTdunWLF3c/kZ+8VZlgXKkWxpW8jRs38mvpv/76q+zvlpycHBAQ4O7ubmtrW7Vq1YJJdhMTExsbGzc3N7FY/OHDh4JH8U4dBgYG5+Tbk2mJOXPmUGENoEAZyF+pjVjMdHVZnz7M3p7Z2zONupctIyTctZ3WJNwjIyOrVKmio6MTLLMyMWO//fYbEXXs2FHA5WIUTC1UMHESBLR27VoimjlzplABxMfHDxw4kIj09PTkp5txycnJI0aMIIWN3RXLy8s7efLk8OHD39aty4gYEWvalK1YwVDwLhyxWMwv1ocPH56RkSHzanx8PM+886VxiUhHR8fa2trd3f3p06dlOe/r168L7VcjrbVv1apVdHR0WU5RLi5cYIMGsVq1mKEha9mS/f67lq49j4S74JBwR8JdsSdPmIkJI2J798q+lJbGPvuMETFXVzUHJTz+NSU/qVw6ZX7FihVCxcYYCwsL442/5Z8Wz5s3j4g+//xzjeqtN378eCL65ptvhA5EYBhXqjVhwgQiGjFihNCBaJBff/2ViAwNDS9fvlyKwyMjI319fZ2dnVu1aiUSiQom2evWrWtvb+/p6Xnr1i3Fd2ezZs0iIlNT01u3bpX2cwipWbNmRHT16lWhA9FKyF+pTXIyi4z87x+522sthoS7ttOahDtj7Keffir0+ka6sPKOHTuEiq2oqYUSiaRXr15E9NNPPwkVGxRKLBYT0eDBgwU5++3bt62srIiodu3aFy5cKHSf8PDwli1b8qTD2bNny3rKt2+Zh8e/jWmJmIEBCt4FsXv3bl7DPnHixNzcXAV7JiYm+vn5OTo68s56XKtWrdzd3cPDw1UVj3ytvUZLSmKase5CKSDhLjgk3JFwVyAri3XowIjYhAmFvDphAiNibdpUqLs4JUmXTVu/fr3MSwqmzKvN4MGDiWjatGky2589e8YzHSEhIYIEVpSYmBhTU1MiUsGlnTbDuFItjKtCubq68nx3aGhosTunpqYGBgZ6eHjY2dnVqlWrYIa9atWqNjY2Li4ufn5+cXFxygcgkUi+++47IjI3N1fh1bt6PHjwgIjq1KmTVxkWLSkfyF9BGSHhru20KeEuncG3f/9+mZf279/Pfw/Kb71BZQKTn1oobGCgQFhYGBFZWFi8e/dOzafes2ePkZER/+p5+fJlofscPHiQp1k7dOgQFRWlsnPn57OAAGZvz/T1/yt49/BgMTGF75+ZyQID2dGjLDCQfbxgFJSCh4cHr5Fxk1+Mr2jp6elisdjR0dHExEQm817GehnFtfYa5/x5pqPDNGYttZIqNOF+5swZJycnrejviYS7Fik04R4dHe3k5PT7778LFZXyBEm4z5uXQsSaNWOpqbIv/fknI2LVqrGwMHVGpEGOHz9ORDVr1nz//r3MS1999RURff/994IExosnNDAwxZYuXbq4a9e0gQMrxdq7RcO4Uq1ly5Z16mQ7ePAjheUclUt+fv7o0aN5hVOh+e43b974+fm5uLhYW1tLl1OSlrHb2dl5eHgEBgaWpcFRTk7O0KFDeWZTQ9bJVNLixYuJaNKkSUIHosWQv4IyKjThfvv2bScnJ29vb6GiUh4S7tqUcGeM7dixg4jq169f1IO4EqWxVEWTH11CoZKTk4cPH25oaKinp6erq2tra+vn56eGp/dZWVm8IyQROTs7ZxfWhzo3N9fNzY3vM27cuPRy6p4hX/BuZ8f8/D669/P2ZtWrM5GIWVgwkYhVr8604WtdM+Xl5U2bNo2IdHV1N2/eXLo3yczM5Jl33vmUa9y4sYuLS2BgYEmnNitfa68pYmMZETMxYcLNviyLQhPuGki+jSOnLQn3lJSUouZqVPKEuwYqKvWg/oT7iRMnatUy79FDLP8QMzKSmZoyIlYOa+9pk2ILfuWnzJc3BSXS58+fF7xEWgFJZua/F2CbNgkdi8AwrlQoMzOvcWNGhKv1j+Tk5AwZMoSILC0tX758mZOTc+vWLU9PT3t7+zp16hTMsOvp6VlbW7u4uPj6+hZ1LVQ6GRkZPFPRrFkzzb8OlOrcuTMRnThxQuhAtBvyV1AWhSbcNVBR35lIuGtZwj0/P5/fMP/2228yL4WGhgrSakrBFaEmNOcCeQ8ePOAN6WrUqNG7d289PT1p4nLZsmXlV/D++vXr7t27E5GhoWFRv2Hv37/v378/KWzsrkr5+ezUKTZ8ONPT+zfz3qQJ8/Bgublsxw5GxP74g6WkMMZYcjL79VdGxHbuLPeoKpysrKxvv/2WiKpUqeLn51f2N8zLywsMDHRxcfnkk0+k9wmffvqp8pn30tXaC69RI0bEHj0SOo7S0PyE+5MnT+zt7atWrVrozBvNT7hLJBJfX18LCwv59ak4JNw1R2pqqru7e5UqVQqd3qHmhHtMTAz/Ll2zZo3MS7m57PPPGREbNUo9sWguBS2ti7pvL28a3gS8GH/9xYhYrVpM85u5lSeMK9U6fBjDqhBpaWk8aWVmZsZrTaQsLCxGjBixevXqq1evlus6vUlJSR07diSiLl26pPB7K832+vVrkUhkbGyciSnOZYP8FZSF5ifc37596+zsrKenV+gDciTctSzhzjRvMeWipha+evWKtwQRfPlpKEi+Vcu7d+88PDwaN27ML7zKqeD9n3/+sbCw4OUVRbV9vHXrFn+kXL9+/aCgIBWevXgFC97bt2e5uaxePfbtt7K7ffMNq1+/ks+ALqmUlJQBAwbwBzwq/zaQZt7r1asnvXlo0KCBs7OzWCwutG5dJbX2gnFw0N6nPpqccE9KSpozZw5fp7d69eqnT5+W30fDE+7Xrl3jpVhEZGNjU+j8ISTcNUF+fv62bdt4XaGOjo78/SdTb8I9Pz/f1taWiAYNGiSf13NzY0TM0pJ9+KCGWDTdzJkziaifXF8vBTPTy09sbCyf7PX333/LvLRhwwZeRVGu6TMVGDCgkq7D+zGMK9UaOJARMRcXoePQMB8+fBg6dKitra2urm6rVq0cHR19fHwePnyozsc5sbGxfPJEv379NHwUMcY2btxIRCNHjhQ6kIoA+SsoNU1OuGdlZXl4ePCet1WqVNm6dav8Pki4a1/CnTE2ZswYIvpWLhsYExPDL5LOnDmjnkgUTC3kBa1jxoxRTyRQLN6qhVf1yrdqyc/PDwgIsLe3lxY+NGjQwM3NLTo6uuyn9vHx4W/bt2/fotJtPj4+PNvVq1cv9beV/xcveD97loWGMiImX3h46BAjYnfuCBGcdnrzpn+vXnw4PXz4sPzOk5+fHxgY6Obm1rRpU2nm3czMzNHRUSwWS5OPWVlZDg4OKqy1V7fVqxkRmzJF6DhKQzMT7vn5+b6+vry8V0dHx9HRMaaIFR00NuH++vVrR0dH/t1er149X1/fou6fkXAX3I0bN/hMLyLq2rXr9evXC91NnQn3pUuXElGdOnXkf3kvXWK6ukxPj2nkbY4AEhIS+CLbR44ckXmpqLXXyo+TkxMRDRs2TD5IMzMzIjp27Jh6Iim9hw+Znh7T02MPHggdipAwrlTr0SMMqyJFR0enyi/ToUaRkZH8MdLXX3+t4e0cebXQnj17hA6kgkD+CkpHYxPuYrG4SZMm/JLezs7u2bNnhe6GhLtWJtylD98uX74s85KHh0eh0wDLg4KphdeuXeOPMbVraZQKTPlWLSoveE9OTm7UqJFIJPrll18KfZOsrKxJkybx0zk7O6th6BbvyBFGxOQr8YODGRHT+JsNTfHsGWvS5GbLll2srYtaHbc8PHz40N3dvUWLFtLMe82aNR0dHX19ffv161dOtfZqEhjIiFinTkLHURo84X716lWhA/nPjRs3unXrVmz2k+Oz+zt27Kg5ZVkZGRnSwgojIyM3NzcF07STk5MbNmxYqRLuc+fOFTqQ/7x69Ur6XKR+/foKnoswxoKCgojI0NDwzz//LNfkSEhIiL6+vkgkOnnypMxLcXFxgwZNrl49ccmS8ju/9uE1j40bN5ZpMpCfn9+lSxcicnd3V0MYt2/fLmoa/vTp0wstl9ZQU6cyIta/v9BxCAzjSrUwrDTZ/fv3a9WqRUQTJkxQc7sk5SUlJRkYGOjp6RW1KA6UFPJXUDo84e7j4yN0IP8JDw/nC2MQ0WeffVboxGipnTt3EpGlpWWlXYNXKxPujLFFixYRUYcOHWQymNnZ2bw9t5eXV3nHUNTUwvz8fD6xfdGiReUdAyhD2qqlXr16SrZqkS94r1+/fqkL3kNDQ4uqiImOjuZFl4aGhrt27SrFm5cL3gMyNFR2+61bjIjJlSBBIa5fZ+bmjIj16CERqBkBz7xbW1tLM+86OjrlXWtfvtLTmZ4e09dn5bSYcHk6e/YsX6jZ2dn5/fv3wgZTouxnRESEnZ0df1TDr5l8fX3VGW2hxGKxlZWVtLCCtwgrlLS3OxH9+uuv5bUStSaJjIxs2bIlEfXv3/+B0FWO6enpHh4exsbGRFS1alU3NzcFOfTExEQ3N7cqVapIf3wNDQ3t7Ox8fHzi4uJUG1hqaiq/Yvzpp59kXpJIJEOHDiWib74Zhy6mBeXl5bVr146Ili1bJvOSdMq8Gu7Ve/fuXegjpUePHunp6enq6t6/f7+8Y1CNDx+YmRkjYmKx0KEICeNKtTCsNNz169d57vXnn38WOpbC7d+/X4ueMGkL5K+gFG7fvs1rtuzs7AR/FpKQkODi4sJXQKxZs6anp6eCmTq8t7uOjg7/ujMzM/P09FRt02atoK20HqlZAAAgAElEQVQJ94yMjEaNGhHRtm3bZF46evQoHwHlmtFQMLVw27Ztap7/CApIW7X07NlTfuZUscq1w/ulS5d4H9umTZtq1kX8jRuMiB09KrudJ+Jv3hQiJkU0bl2Xc+eYiQkjYsOGaUJqODw8fMmSJYMHD963b59KuiQJqUMHRsQ0qU5cSfHx8ZMnT9bV1SUic3PzzZs3C3LNUdLs5+zZs3nqs0aNGlOnTm3VqhX/MrS1tRUqk3v79m2eFuEV9//884+CnQMDAzt16sR37tmz5+3bt9UWp4Byc3PXrVvHH5Do6+u7uromJCQIEolYLOZXa/xWQb57qVReXt6WLVv4TYWuru748eOXLl3aq1cvHR0dfriBgcGQIUO2b9+uqqs7Pg/A2tpavuP/2rVr+ZWkOicnaYsLFy4QkbGx8Zs3b2ReGj16NJV/46mDBw8SUZ06deSrpQYOHEhEM2fOLNcAVMzT898l6zVm8pAgMK5UC8NKw507d47fn65atUrNp87Ly7t79663t7ejo2NGRkah+/D+k+vXr1dzbBUb8ldQCunp6QsXLjQyMiKiatWq/fHHH0X9b1uucnNzfXx8+FU6rx5TUAeTmZm5dOlSfrNpaGj4/fff9+jRQ3rjpq3z7EtLWxPujLFDhw4VdWE0aNAgIpoxY0b5nb2oqYXSFX4OHTpUfmcHZaiwVUtRBe+lvhWXSCSenp788eDQoUOFSoUUKSuL1azJJk+W3T5pEjM3Z5rQ9OZjPj4+jRs3dnFxCQwMFDoWxnx9mb4+I2ITJjDN7s+olSZPZkRs7Vqh4yilsLAw/gtFRC1atJBflq1cicViPt2n2Own7+0uXdlS2tudb+fXW3y7yuuOFYiPj3dxceEPLYotlCjY273YKv4K6cOHD9L/XLVq1VJch6JyoaGhPXv25IOtU6dOii+vL1++3L59e75znz597hRYKeT9+/e+vr52dnbS319dXV0bGxtPT0/5xJzyduzYwbN78r0j7t+/b2hoKBKJNL9Zs1C+/vprIvruu+9ktkunzCt+DFYWGRkZ/EtMQcJCy3og5OayNm0YEVu5UuhQBIZxpULSYaX2dC4oa//+/To6OiKRaPv27eV9rpSUlMDAQA8PDzs7u5o1a9L/FPrTnJWVZWpqSkQK5g5C6SB/BaVTcGpygwYN1HxTc+HCBd6JiI8fxXWiYrFYWqtqZ2cXGRkp3a7k1OQKRosT7kzh1D99ff3ym/qnYGrh3LlziahHjx6V7cZe07x69ao8WrWopOA9JSVl1KhRRCQSidzc3DSuOptbupTp6X20buqffzJdXc28Ifzmm2+k145NmzZ1c3MLCQkR5v9BT08mEjEi5ubG8CVQHnbsYERM85buLJGirkXKj6qyn1xCQoKbmxsvzqpZs6aHh4d8jbBq5eTkeHp68nWl9PX1XVxcFLQC5L3deWEF7+0u7CJpwgoLCxs8eLA6n/G8f/9emug3NzdX/FxE+VuIDx8+8Mx7lSpV+MfR0dGxtrZ2d3d/+vRpSYPcunWroaHh3r17ZbanpaXxBTC0q5pVzSIjI/kzieDgYJmX3N3deQVTOc3gKer91TklX/XOn2dEzMSElXwiZkWCcaVaAQEYVprO29ub3076F7zhUgWJRBIeHr5z585Jkya1atVKOleMa9Kkybhx47y9veVXC2eMnT59ml8rqjYk4JC/glIruPhWt27d1LAq1dOnT+3t7aU5Fj8/PwU7h4eHK77jKNHiWxWGdifcb9++raura2Bg8PjxY5mX+BO8kSNHlsd5R44cSUTTp0+X2f7s2bMqVaro6OiEyK82CWp0+fLlTz75hMqtVUtZCt4jIiJat25NRKampkfle7Zojrw8NmMG09FhVlZs4EBmZcV0dNjs2UwjHw/k5eUFBga6uLjw5/OcpaWli4tLQECAmoo6JRI2dy4jYrq6zNtbHWesnB48YETMykroOMoqOzvb09OT1xAZGBi4uLgkJyeXx4nKKfvJGHv8+DHvc01En3322alTp8ojfsZYQEAA/9okIltbW8WLECjfw6RSUc8zHv5chI9q/lxEwahOT093d3fnk2SrVq3q7u6u5CTZ9PR0sVjs6OjIn6lwrVq1cnd3l78aVKDQn+yJEycSUZs2bQSZsatF5s+fT0Tdu3eX+YpIT0/nqxOrPH/EGEtMTDQ2NhaJRPKPDJcvX86HgUasPF8KdnaMiE2aJHQcAsO4Ui0MK83HH/YYGBicO3eujG+VlpYWGBjo6elpb29vbm5eMMOur69vbW3t4uLi6+tbbBvoyZMnE9Hvv/9exnigUMhfQVnwqcY801VwCrLKpaWlubu78xqXatWqubu7y6xqXhCfU8ubNxQ7p7ayTUHW7oQ7Y4z3DLGzs5PZHh8fP2fOnA/ls1bhhw8f5syZIz+1kC8rNwnXNcJRc6uWkha8Hz9+nFdotmvX7tmzZ+Uam2pERDBvb7Z4Mdu0iZW8hFD98vPzeea9QYMG0qtMc3NzR0dHsVhcjvdL2dls9GhGxKpUYX/+WV5nAcZYfj4zNWVELDZW6FBU4M2bN3w9GSKqW7euj4+PCqe8lCL7aWhoWNLsZ0BAAF+fk2fDHz16pKr4GWMRERFffvklf/PmzZufOHFCwc6hoaG9evXiOxdbxV8JlfczHpmREBYWVtSeEonEz8+PN3AQiUT29valWwYqIyODZ975hyqYeb9161Yp3tDPz4+IDA0NNWtVFY2Umppar149IpKfJXD8+PFdu3aV0+y9mzdv/vHHHzIbY2Ji+Bg4c+ZMeZxUHZ49Y1WqMB0dVrlTHhhXqiUdVpq3+hL8Z/bs2bwSqxS/XG/evBGLxW5ubjY2NnzeoVTdunXt7Ow8PDwCAwMVZMpkSCQSfg919+7dkgYDSkL+CsooNTVVmg03NjZ2d3fPUt16HRKJxNfX18LCgl+lOzo6FjoVhuO93fkTPt7bXcl1CEJCQj7//HP+ZdWlS5egoCBVxa9ptD7hHhsbyzOYau6EK+/8+fNEZGJiUoqVOUElhGrVokzBe15enru7O3+UN2bMGC1bkOTKFebqWsgaqhpMIpFcv3597ty50mZhRGRmZvb999+Hnj3LVNv+IjWVDRzIiFiNGuzyZVW+MxSqb19GxE6eFDoOlbl586aNjQ0fpZ07d76qiiVhxWJxkyZN1JP9LFG/FyUlJiZKu9bUqFHDw8NDwaVkiXq7V3Ll8Yzn8ePHQ4YM4YOt2LkOt27dko52a2trlSy8kZmZKRaLnZ2d+eoCnHRhDyULZ16+fMk7227durXsIVUGu3bt4hc8gl/SfPfdd0T09ddfCxtGWfFJcj16VPJ+dBhXqjVnDoaVppNIJHywmZubh4eHK945Nzf31q1bnp6ejo6O0vl80sKvVq1aOTs7+/r6Kp4LqMD169eJqFGjRqU7HJSB/BWoxJMnT6T9Xpo1a6a434uSgoODu3fvrmQe/Pz5823atOE79+/f/8GDByU6V4ky+9pL6xPujLFVq1YRUcuWLQWc7pebm8tHm/qXGgdOE1q18IJ3aZJLWvAeGxs7YMAA/tzPw8NDkNjKZMMGRsSmThU6jlJ6+PChu7t7q1at+N/Lk549WY0azN6e+fqysnd2fveOdezIiFjdukyu1TWUCzc3RsR++03oOFSJZ735lHme9S71msxlyX6WJdevqqy3/HqtsUXPZiiPXH9lUPAZT1n+3hMSEqRzSIvt5v/27dvym8/BSduL8ct37tNPPy02856bm8sLbcppKneFJJFI+GI5v/76q4BhhIaG6ujoGBgYPHnyRMAwVCApibVsyTZu1MzefWqDcaVaSUmsUSO2aBFT45rZUGI5OTm8R1+DBg0UFz3s3LmzYJLd1NTU1tbW3d1dLBaX8frnxYsXBw4csLa2JqJZs2aV5a2gWMhfgaoEBASUJestVaJOLyrM9fPeNXyO9eXu3Zm7O1N6Ro5WqAgJ9+zs7ObNmxORp6enUDF4enoSUZMmTVQ4mwOUJxaLNadVS35+/tmzZ0eOHCkteOczUi0sLLS1xcHp04yI2doKHUdZPXz48I8//sjp3ZsR/fuPsTFzcGB//ln6zPvQoYyItWjBStUSAUrj8OFsA4PH48cLHYfqyfd1UX4WMDdr1ixpBz0vLy8FHfTKKftZxr4ujx49ateuHT+8b9++imc0BwQESB+kqbybTYUn/4ynpDMbDhw4UKtWLf4sefr06QomQRfsZlNsdyOVkGbeeXsKztLS0tnZWSwWy/9/8fPPP/Mdymkqd0UVFBQkEokMDQ2FWixBIpHwLxw3NzdBAlAx/iWclMT8/dnKlWzdOnbxYiXMv2Ncqda7d8zDg8m0ZLtwgfHJPDt3Mpkf6pwc5unJ8IuqZhkZGXzUNWvWTEGdwePHj9u0afPDDz/s2rWrRMuWyCuqWH727Nnoq1bekL8CFcrJySldXxeptWvXVq1alYiMjIx+++239PT0ovYs2M2G93ZXyfh5+vTpqmnT/s3PNG3Kjh0r+3tqiIqQcGeMicViXl1V0rGlEh8+fDAzMyMisVis/rNXcrxVC88ZaVqrlpiYGF7w/sMPP3zxxRdv3rwROqLSevqUEbFPPxU6DtV58YJ5ejIbGyYS/fvNbmjI7OyYjw+Liytk//x8tnUrs7Fhn3zC6tZlAwaww4f/fenlS/bNN0yuIx6Un7jXrw0MDGrVqlVRl1iJjo52dHTktz3Frlwqw9XVlV9pxRU6khljalmvtdQrlyYkJJiZmVlaWvr6+irYTW3rtVZ4ZXnGc/LkSSLq16/fvXv3FOwms16rmh+K5+fn37p1y93dvWnTptJsgszCHpcvX9bV1dXT01NJN6fKZuzYsURkb28vyNn37dtHRJ988knFmdpy9CirWZNVr8569GDt2jF9fdahA6t8iz9jXKlQeDgjYkZGrOBq2XPmsObNGWOsYUP2448f7Z+SwojYzp1qDRIYY0lJSR07diSiLl26pKSklMcp3r17d+TIkblz59rY2PCffikzMzM7O7slS5Zo+6wObYH8FagWX7mUTzXmK5cqP9XYy8ur2Fs2dazXeuECa9v23+RMv35M4f2FtqggCXfG2ODBg4loqhBdL6ZOncpncKj/1JVcfHz8wIEDSbNbteTn55e0RlXj5OYyAwOmo1PBJvgwxlh0NPPxYXZ2TE/v3y93XV1mY8M8PVnBJmKOjszQkP34I/vrL3bgAJs4kYlEzN1dsLArvfr16xNRxb4luHTpUvv27fld0BdffKHk6lUJCQmKG3fKZD8jC95/q1R6erqHh4exsTHP5Lq5uaUqN4/k5s2bCr4zExISpL3di+1hAkoq9TMexR3Yw8PD+bUZEbVo0ULYXqUSiSQ4ONjNzU3a9o3nF8aOHctrguSXTARlvH79ulq1akR06dIlNZ86IyODT9HYWWFSgw8esCpV2MSJ/11uRUWx5s1Zu3YsN5dNmMB69GA9ejAnJ0GjVAeMKxXiCfe6ddnQof9tRMJdM8XGxvLC5379+qmkbjQvL+/hw4e+vr7Ozs6tWrXi/SKkGjdu7Ojo6OnpeevWLbUtfgZSyF+ByoWFhQ0aNIj/D96yZUslF/3Ozc29fv26gh1u3Lgh7e3etWtXxTuXSW4u8/FhtWszIqanx5ydC6+G1B4VJ+EeFhamr6+vq6uruNJK5R49eqSnp6enp1fqfklQOrdv3+brYdauXfvChQtCh1PRNWvGiCry/NJ379jmzczW9qPMe79+LCSEHT3KiNhff320/+LFTEeHYcalQEaMGEFEe/fuFTqQ8lWibubFEiT7WaKGgIrx/xp8Vcyy/9cAeaV7xlMoXmUj7W7k6empoLuR+vGFPXinWiJq2LBhnz59sNBuqf3xxx9E1L59ezX/N/z111+JqFOnThUnT/Tdd6xePSaTZbt8mRGxo0dZXh7LzWW5uaxyjFWMK1XhCfdNm5iODvP3/3cjEu4aKzIysm7dukT09ddfl+6nMyUlJSAgwN3d3c7Oji8GLmVsbGxjY+Pm5iYWi+MxPVdoyF9BOVFhfdWrV69UdStXAgkJzMXl37RMzZrMw4NpbX2ViDFGFYWrq+uGDRtsbGy2b9+utpNOmTLln3/+cXFxWb9+vdpOCnv37p08eXJmZmbnzp0PHz7MS1GgHH35JZ0+TceO0fDhQodSzhIT6cQJ8vengADKzqawMFq4kB49osePP9otM5PMzWnmTPLwECjQSs3Dw+Pnn3+eOXPmhg0bhI6l3CUlJXl4eKxbty4nJ6dGjRrz58+fNWsW752npISEhN9//33Tpk15eXm1atX67bffpk+fzpOh6hESEuLq6nrjxg0i6tq16/r166VVEkq6dOnSrFmz7t+/T0R9+/b19PSUtnoHFZJIJPv27Zs3b15cXJyOjs7YsWNXr17NH/koKS8vb+fOnb/88kt8fLyent7333+/ZMkS/phEA4WHhx8+fHjs2LGmpqZ8bjWUQlZWVsuWLV+8ePHHH39IF9EqbzExMV9++WVmZuY///wjXTdC61lZ0eef04EDH21kjKpVox9+oEp2o4FxpSqPH1PLlnT9Ou3YQadOUXg4Va9Oc+fSiRMUEUGffkqjRtGaNf/tn5pKpqa0cydNnChc0JXbgwcPvvjii4SEhAkTJuzatUumLL1QUVFRV69eDQ0NvXbt2p07dyQSifSlunXr9uzZ08bGxtraulu3btI1xkATIH8F5SQnJ2fz5s2//vpramqqgYHBlClTFi9ezBuKKikjI8PLy2vJkiVpaWlVq1adOXPmwoUL+dxlNYmIoNmz6e+/iYg++4zWrqX/NRTVJkJn/FUpISHB3Ny8RHeGZVenTh0zMzOssqU2WVlZLi4u/D++s7MzmgmoiasrI2KVahHzpCR25AhjjDVrxr7+upAd2rb9aHYuqNHFixeJqFu3bkIHoj4RERF2dnb8q6958+YnZJY/K0Jubm4ZV9FRFfnGf+8Kdm0qWsFuJ8X2dgeVSExMdHNz4w91atSo4eHhoeTE9vPnz7dt25b/ZfXv3x+rrlUefn5++vr6fEEdtalZs+aYMWOE/ugqVaUK++mnQra3aMFGjVJ7NMLDuFIJXuF+/TqLj2fm5szVlbGPK9wNDJiJyUf/oMJdcNevX+ddlX7++edCd0hLSwsMDPT09LS3t+eXeVL6+vrW1tYuLi5+fn6YC6jhkL+CcvXmzRtnZ2f+M1qvXj0fHx8lJ2+Vejku1ROLWZMm/3YgsLVlYWH/vZSTw06fZqtXsxUr2JEjrOBqjsePM/mVmXbvZgo7r5aHClXhTkRRUVE+Pj7Hjx9X2xm/+uqrKVOmSKdsQLl68+bNqFGjbty4YWhouHHjRicnJ6EjqjS8vWnGDHJ2Jh8foUNRu/r1aehQ2rZNdnv//pSbS1euCBFTZZeamlqzZk09Pb3k5OQS1Xpru/Pnz8+aNevRo0dEZGtr6+np2bp166J2vnDhwqxZsx4+fEhE/fv3X7dunTQZKpT09PRVq1bxxuvVqlWbO3fuzz//XNTfIN95xYoVWVlZfOf58+fLrPEF5efJkydz5szhK6M2b958zZo10kc+8p49e7ZgwQJ/f38iatq06bJly9RWkQoaIioqavjw4bm5uWo749q1a7t06aKx8ydKw9iYJk0iT0/Z7VZW1KMH7d8vREwCw7gqO2mFe/fu5OND06dTaCjt3ftfhXv37jRt2n/7Z2bSkCGocBdeQECAnZ1dTk7OypUr582bR0Rv3769du0ar2S/efNmTk6OdOe6detaW1vzSvbOnTvjYkmLIH8F5e3WrVuurq5BQUFE1LlzZ09PTxsbm6J2vn37tqur69WrV4moU6dOnp6ews/3ys4mT09aupRSU6lKFVqxglxd6dEjGjGCXr2i1q3JwIAePKBq1ejgQerbl4ioQwfq1Il27vzoffT0aMUKmjNHrcGrOcEPUGpXrlyxsLAgIktLy5CQEKHDqWTOnv13tehKqFUrZmdXyPaWLdlXX6k9GvgXTzQHBwcLHYi65eTkeHp6Vq9enYj09fVdXFySkpJk9nn69Kk03dm0aVM/Pz9BQi3KkydPFIcnkUj8/PwsLS2JSCQS2dvbv3z5UpBQISAgQPpQx9bWVn5J3rS0NHd3d/7UpFq1au7u7ipZ5w2gMmrdupAZdTk5TF+fLVggREBQEUgr3Blj+fmsa1fWty/78Uf0cNcC+/bt09HREYlEXbt25XfBUvr6+l26dHF1dT106FB0dLTQkQKARuP3VrwPc1H3Vu/fv3dxcdHV1SUic3NzT09PzVrf6P175uLCdHXZyZMsNZU1asS6dWMxMf++mpLChg1jpqaMf6727dnEibLvoKvLVq9Wa8wVadFUqNh8fHx4y7m+ffticpwAoqIYEbO0FDoOIYwdyxo1YjLLgyQnM0NDtmiRQDEB+/7774low4YNQgcijPj4eOklkZmZmfSSSIuyn+fPn2/Tpg2/byzYfiQkJKRHjx58e5cuXa5duyZsnCD/jCcxMZH9r00QTwGIRCLl2wQBQOHmzmUmJkxmJcNDhxgRwzchlFbBhDtj7NYtpqvLWrZEwl07eHt7t2vXjrdxr169uq2trbu7e0BAQHp6utChAYCWSU9Pd3d35zNgqlat6u7unpmZyf53qc87vPNL/eTkZKGDLUJ4OGOMbdnCRCL2+PFHLyUkMGNjNncuY0i4A5TElClT+P38ggULNOs5W+WRl8eqVGEiEcvIEDoUtTt/nhGx7ds/2jhvHjMwYFFRAsUEbMuWLUQ0btw4oQMR0u3bt3v37s1z0x06dFiwYAFvkq4t2U+ZFvPjxo0bP358KfoMghoUfMZTq1atH3/8sVu3bnzsde3a9bo0lwMApfb2LTM3Z336sMhIxhjLy2PnzjFzczZsmNCRgRaTSbgzxqZNY0TFJ9xfvGBubmzKFHb6tFoDBhnZ2dn+/v4RERFCBwIAFYHM+lg//fRTy5YtpZNZwwo2SddYo0ezTz8tZHv//qxLF8Y0KOFe0Xq4Q4V0/vx5e3v77du3jxw5UuhYKrGWLenxY3rwgP5XlFqJzJpF3t40fjzZ2FBuLp09S8eO0caNH/W8BPW6e/dux44dmzdvHhERIXQsAjtx4oSrq+vz58/r1KkTFxfXtWvX9evXd+/eXei4lJWQkPD7779v2rSJiPLy8gwMDKZMmbJkyRITExOhQwNZd+7cmTVr1pUrV/hyW/Xr11+2bJmjoyMvvgOAsrp3j8aPp/v3qXZtSk+nzEwaO5a2bKFq1YSODLRVwR7uXEoKtWhBJib/9nAfNYrWrPlv/9RUMjWl7dtp40b66SeysiJHR/rzT+rUSZDwAQBA9S5fvjxr1qx79+5ZWFjExMR89tlna9euHTp0qNBxKadvX8rLo8BA2e1OTnTuHL16RR060NOnVLPmR6++eUOrV6u5hzsS7qAdkpOT+Xx2EMxXX9GJE3TkCI0YIXQoQjh8mHbtoqdPSUeH2ral6dOpTx+hY6rU8vPzq1evnpGR8f79ezMzM6HDEVhmZqanp2fHjh2Tk5MdHBy0Mft5//794ODglJSUkSNHNmrUSOhwQBE/Pz8TE5O7d++6urpWrVpV6HAAKhbG6MEDiooifX3q1Inq1hU6INBuubn06hXVr08FVyh//56yssjSkl6/pmrVPkpKMEYvX5K5ORkZka4uEZGLC7VuTZMnqztyAAAoP/n5+Vu3bm3atGlERMSUKVP09PSEjkhpAwZQcjKFhMhuHzuWrl+nqCjq0IFq1yYXl49e/fprWrkSCXcA0Eg//kjr1tGKFfTTT0KHAkBE1KtXr6tXr545c2bQoEFCxwIAAABQ0TBGNja0bh39r4sYAACAoH74gcRiio2V3d6jBxka0sWL1KEDdepEO3d+9KqeHq1YoeaEu446TwYA2iutTZt33brdTUkROhCAf/EW0iHyD7cBAAAAoMwWLaImTZBtBwAAjTFkCMXF0T//fLQxKopu3iQN64qDhDsAKOVGw4b1goNnXb0qdCAA/+ratSsRBQcHCx0IAAAAQIWSn08//0xhYbRjh9ChAAAASA0fTp9/TuPH07VrJJEQET18SCNHkqWlprU/Q8IdAJTSrFkzInr69KnQgQD8q2vXrjo6OimYdQEAAACgOhkZNGgQHT9Otra0ezcFBQkdEAAAAKerSydOUIcO1LMnVa9OtWpR27ZUrRpduEAmJkIH9xH0cAcApUgkEmNj46ysrJSUFGNjY6HDASDCcsoAAAAAqpaaSgcP/vfHNm2oRw/hogEAAJD36hXdv08SCX32GTVv/t/2Z8/IyIjq1/9o54cPycKCzM3VGSAS7gCgrNatW4eFhd29e7d9+/ZCxwIAAAAAAAAAAKBx0FIGAJSFrjIAAAAAAAAAAAAKIOEOAMpCwh0AAAAAAAAAAEABJNwBQFlIuAMAAAAAAAAAACiAhDsAKAsJdwAAAAAAAAAAAAWQcAcAZSHhDgAAAAAAAAAAoICIMSZ0DACgHRhjJiYm6enpSUlJ1atXFzocAAAAAAAAAAAAzYIKdwBQlkgkaty4MRFFRkYKHQsAAAAAAAAAAIDGQcIdAEoAXWUAAAAAAAAAAACKgoQ7AJQAEu4AAAAAAAAAAABFQcIdAEqAJ9yfPXsmdCAAAAAAAAAAAAAaBwl3ACiBZs2amZiYiEQioQMBAAAAAAAAAADQOCLGmNAxAIDWkEgkOjp4UAcAAAAAAAAAAFAIJNwBAAAAAAAAAAAAAFQAlaoAAAAAAAAAAAAAACqAhDsAAAAAAAAAAAAAgAog4Q4AAAAAAAAAAAAAoAJIuAMAAAAAAAAAAAAAqAAS7gAAAAAAAAAAAAAAKoCEOwAAAAAAAAAAAACACiDhDgAAAAAAAAAAAACgAki4AwAAAAAAAAAAAACoABLuAAAAAAAAAAAAAAAqgIQ7AAAAAAAAAAAAAIAKIOEOAAAAAAAAAAAAAKACSLgDALNTiFwAACAASURBVAAAAAAAAAAAAKgAEu4AAAAAAAAAAAAAACqAhDsAAAAAAAAAAAAAgAog4Q4AAAAAAAAAAAAAoAJIuAMAAAAAAAAAAAAAqAAS7gAAAAAAAAAAAAAAKoCEOwAAAAAAAAAAAACACiDhDgAAAAAAAAAAAACgAki4AwAAAAAAAAAAAACoABLuAAAAAAAAAAAAAAAqgIQ7AAAAAAAAAAAAAIAKIOEOAAAAAAAAAAAAAKACSLgDAAAAAAAAAAAAAKgAEu4AAAAAAAAAAAAAACqAhDsAAAAAAAAAAAAAgAog4Q4AAAAAAAAAAAAAoAJIuAMAAAAAAAAAAAAAqAAS7gAAAAAAAAAAAAAAKoCEOwAAAAAAAAAAAACACiDhDgAAAAAAAAAAAACgAki4AwAAAAAAAAAAAACoABLuAAAAAAAAAAAAAAAqgIQ7AAAAAAAAAAAAAIAKIOEOAAAAAAAAAAAAAKACSLgDAAAAAAAAAAAAAKgAEu4AAAAAAAAAAAAAACqAhDsAAAAAAAAAAAAAgAog4Q4AAAAAAAAAAAAAoAJIuAMAAAAAAAAAAAAAqAAS7gAAAAAAAAAAAAAAKoCEOwAAAAAAAAAAAACAClTehPuPP/7o5+enwjcMDQ11cHDIzs5W4XuCVgsODnZwcMjPzy/FsdOmTROLxSoPCSqAY8eOzZgxo3THLly4cPfu3SoNByqI9evXr169unTHOjo6Xrp0SbXxQMWwceNGDw+P0h07evToq1evqjYe0GorV67csGGDqt7t8OHDrq6uqno3qAAkEomDg8ONGzdKeqC/v//s2bPLIySoGFavXu3p6VnSo169euXg4PDq1avyCAkqkuzsbAcHh9DQ0FIce+HChQkTJqg8JKgA9u7du2DBgtId6+rqevjwYdXGo6X0hA6gHF2+fPnAgQN2dnZfffWV/KtnzpwxNjZ2cHAouHH79u03b94suGXRokV169YlooCAAD8/v5iYGEtLy7Fjx9rY2Mi84du3b/39/Xft2lWlSpVC4/Hy8nr48GGtWrWWL19epg8GGiMxMXHr1q3R0dErV66sVq2azKuvX7/29/ffv3+/rq5uwe0vXrzYvHnzo0ePqlev/tVXXzk4OIhEIpljT5482ahRI5mh+/79+y1btty+fdvQ0NDa2nry5MkmJibl8blAWG/evPH29maMFfpdER4efurUqY0bN8psj46O3rx58+PHj42MjLp16/bDDz9UrVpVZp8LFy6kpqZ+9913BTempKRs3bo1ODiYiNq1azd16lRzc3NVfh4QWlpa2q5du4KCgrKzs1u3bu3i4lK7dm2Zfa5fv56VlTV37lyZ7Xfv3t25c+fz58/NzMwGDBgwZswYHR3ZR/WHDx/u27dv3759Cz17UFCQr68vEbm5uTVu3FhFnwmEl56e7uvrGxgYmJWVxcdVnTp1ZPYJDg5OSEiYP3++/OEBAQF//fXXq1evzM3N+/fvP2bMGAMDg4I7+Pv7Dxs2rGfPnoWe/cqVK/v37yeiX375pWHDhir6TCCYjIyMXbt2BQYG5uTktGrVaurUqfXr15fZ5+rVq8bGxi4uLjLbk5OTt23bFhUV5eHhYWpqeuPGjV27dsmf4o8//vjkk0+kfwwLCzt9+vT69esL7iORSA4fPnzixInExMTGjRs7OTm1a9dORR8RBPby5cstW7Y8fPiwRo0aPXv2nDhxosx3jkQi8ff3t7e37969O99y7dq1PXv2yL/VkiVLCv6MPnr06O+//163bl2h55VIJPPnz09OTu7QocPUqVNV94FAI+zbty8wMLDglvnz51tZWRXccu3aNQMDg1mzZvE/ZmVlFfq0b8SIEYMHD5b+MTk52d/f/7fffrO0tCy42+PHj3fs2PH48WMzM7N+/fo5OjrK30iCNkpKStq6devLly89PDwK3uNfunRp37597969s7S0dHJy6tq1q8yBeXl5/v7+jo6O1tbWMi+lpqbu3LkzKCgoPT29SZMm3333XceOHQvuEBUVdeTIEX6hXtDp06f9/f3j4+MtLS3Hjx8v/VYEbZSamrpr166wsLDFixcX/PGKioratGlTrVq1Ck2s371798qVK8uWLZPZ/uzZMx8fn4iIiOrVqxf6Y0pEp0+fNjMzGzlypMz2t2/fbtq0KTc3d8WKFar4ZFqgYla479+/39raum/fvtu2bQsICFD+QD8/v9OnTycWwLOoc+bMGTRo0OvXrxs1ahQUFNSrV69NmzaVKKSrV6/OmjXr1KlTBw4cKNmHAY0UHR09c+bMhg0bzp8/f9OmTampqUoeGBoa2r59+z179tSpUyc6Onr06NHyt46FCgsLa9++/aFDhxo0aKCnp+fu7t6tWzflzwta4cGDB+PGjbOyslq+fHmJvmTCwsJat2597Nixtm3b1q5d293dvXfv3pmZmcUe+Pbt286dO3t7e5ubm5uamq5du7Zdu3bv3r0rw4cAzRIfH9+9e/fffvutSpUq5ubm3t7erVq1ioyMVOZYsVhsbW19586dzp076+joTJw4cfz48SU6e2Zm5oQJE06dOrV169bY2NhSfQLQRImJiT169FiwYIGBgUGdOnU2b97csmXLJ0+eKHMsY8zZ2XngwIF37tz59NNPJRKJj49PifIF6enp0nEVHx9f2g8BmiIpKalnz55Lly41NTWtU6fOtm3bWrdurcxwev369ezZsy0tLefNm7d58+bExEQiysnJSfzY1atXt23blpeXp/jdGGOjR492cnLKz8+3srI6e/Zsx44dT548qZoPCYK6cuVK27ZtL168aGVllZmZOWPGjIEDB+bm5io+Sn4sBQYGbt++vUSzVzdu3Lhhw4YjR46U6J4UtMWRI0eOHz9ecJDI17vIYIzJjKvnz59v3bpVmWuzY8eOdejQISAgoFGjRu/fv58wYcKoUaNU9FFAMK9evXJ1dbW0tHRzc9u0aVNycrL0pc2bN/fv3//BgwdNmzYNCgrq0aPHkSNHlHzbqKiotm3bLly4MCsry8rK6sGDBxcvXlTmwBkzZowcOTIjI8PKyur69euff/55oY+xQfPFxMS4ubk1bNjQ1dXVx8dHei8WEhIyatSo5s2br1mzZseOHcq/4Y0bN9q0aXP+/PlOnTqZmJj8+OOPQ4YMKfb6iogePXo0YcIEKyurpUuXyhcOVmAVs8L98uXLDg4OBw4ckK9DV+zNmzdDhgzZunVrwY0fPnw4evTo1q1bJ02aRER5eXndu3d3d3efNm2akm+bnZ09efLkQYMGWVhYXLhwoUQhgWaKiopKS0vbu3dvZGSkfE2oAtOnTzcyMrp79y4vs5ozZ866deu+//57mafN8k6fPm1tbX3kyBF9fX0icnBw+Oqrr44cOYJZYBXJvXv3atasefr06WPHju3du1f5Azdu3JiTk3P16lUzMzMi6tmzp4ODw9mzZ7/++mvFB168eLFOnTpnz57lDxdnzJjRqVOnnTt3/vLLL2X5IKA5Ll26lJaWdu/ePV4FPH369E6dOnl5eSkzu9nDw6Np06aXLl3S09Mjonr16i1dunTJkiWNGjVS8uyLFi2Ki4tbu3Yt/wGFCuPy5cuJiYl37tzhdXyurq7t27f39PRU5knhnj17tm3btmrVqhL9eha0cOHClJQUDw8PZ2fn0r0DaJSgoCCJRMKngRLRggULGjdu7O3tLVN+Li86OjohIWHXrl1v376Vli/07t27d+/eBXeztrYePHiwfMm8jGfPnt25cycoKKhNmzZElJmZ2bp1aw8PDzs7u9J/NtAMhw8f/vbbb7du3cqf7W3cuHHmzJnXrl374osvFBwlP3mrY8eOX375pYWFhZLnjY6OXrhw4fz5848ePVra2EGjvX37tm/fvgcPHlT+ECMjI5nGtosXL7527dro0aOLPXbv3r0jR47cs2cPnz89d+7cNWvW3Llzp9gbSdBkL168SE5O9vX1ffXqlXQmBBHFxcXNmzevb9++f//9t4GBQU5Ojo2NzbRp04YOHWpoaFjs244bNy4jI+P+/fsyUy4Ui4uLO3fuXEBAAJ9imJ+f37Vr12XLlk2cOLEUHw2EFRMT8/r1ax8fn7S0NCcnJ+n2mzdvfvrppxcvXvTx8SlRI7W1a9dWq1bt6tWrPHXQtm3badOm3bhxo6gJqVL37983NjY+efLkqVOntm3bVrqPo40qZoX7tm3b3NzcPvvss5Ie+O7du3r16slsNDMze/r0qTRZoKen9+WXX8bHxytfBLp48eIXL154e3uXNB7QWF988cWuXbu+/vrrYqsYCkpPT+eN3aWTmufMmcMYO378eLHHzp07VywW82w7ETVt2pSI3r9/X/LYQXONGzfOy8vL1tZWfmaWYrGxsUZGRtWrV+d/5PlQZQo/x40bFxgYKG2I1KRJEyUPBG1hb28fGRkp7bnRvn17Kyurhw8fKnNsXFycubk5z7YTEb9eV3543Lt3b926dcuXLy82zwVaZ8SIEc+fP5fewrVq1app06ZKjisvL68mTZoUvKUskZCQEC8vr5UrV8p3sAEtNXTo0Dt37vBsOxE1aNDA0NBQma+aHj16+Pr6jhw5Ur6tn9TFixdv3749Z86cYt+tWbNmT5484dl2IjIyMqpfvz4utCqG9evXS7PtVNqr6HPnzt29e1eZsSQ1Y8YMCwuLQttqQcVQaPagRLKzszdt2jRx4kReNKPY4cOHpdl2Iho+fDgRKfnjCxqrV69eu3fv/uabb2QSC2KxOD093c3Njd8YGhgYzJgxIzY2VplC9Zs3b16/fn3OnDklyrYTUZ06dSIiIqT5U11dXSsrK/wUaqkOHTrs37/fwcFBphHx9OnT16xZ07t3b5nWx8WKjY01NTWVDlTlcw5jxozx9vYeMGBASbMc2q5iJtxLJysrKykpycTEhPcVLfjTJTMQ09LSRCKRMs8ViejBgwcrV678/fffS/plBxWPRCKR2VKvXr0aNWq8ePFCmcOl9wnZ2dmrVq0yMjLil1kAAwYMSE5OHjt2bExMDBFt2bLF3Ny80OUr5EnHVX5+voeHh66urr29fTnGCmon8xOWnp5uZGSkzIEDBgwICgpasGBBampqTk7Ojh07OnTooGQVVV5enpOTU4cOHSZPnlyaoEHjlW5cpaWl3blzx9bWNj8/PyQk5NixYy9fvlT+pHl5eZMnT/7888+///77EkcMGkz6S8QYW79+fUZGxrfffquSd16zZk3btm379etXojCI6Pz588HBwcrUnIJWkP7lpqamrl+/vnbt2ra2tiV6hzVr1lhbW/fp00fJ/ffu3XvixInNmzcrec8IWocxFhMTU7169QsXLvj7+9+7d68Ub7J37964uDjlH0IX/PFNS0sjohKVf4EWefbsGRH16tVLuoX/+9OnT4s9li8tMHjw4JiYmDNnzgQEBGRlZSl53oI/hbdu3Tp79ix+CoEbMGDAixcvnJ2dP3z4wHtCWlpalvTHtFKpmC1lSoc/mfn555/r16+fkpKSkJAwfPjwQ4cOyVwk5eXlHT16tFevXjVr1iz2PSUSyeTJk1u0aFHo0ihQ2ZiYmHTr1u3gwYMzZ85s1qxZbm7upk2bMjIylJ8tcfHiRXd39/DwcD09vYsXLzZr1qxcAwZtMXny5NDQ0O3btx85cqR169Zv3ry5fPmy8uWf9+7dc3FxefLkSXp6ulgs7tGjR7lGCwK6cuVKTEzMsGHDlNl51apV4eHhy5cvX79+fcOGDQ0MDM6fP69kKcSaNWvu3bsXEhJS0tIJ0EY3btx49eqVm5tbsXu+fv1aIpFER0c3a9bs3bt3jDHG2Pz585cuXarMiZYvXx4WFnbnzh2sEVfxREdHT5gwITIyMi4ubt++fUo+M1YsIiLizJkzu3fvLtGA+fLLLyMjIyMiIhYsWODu7l72MEBDHDx40MvL69GjRxYWFleuXFHmVk7q4cOHAQEBfK1mZcTHx8+dO3f8+PH9+/cvVbCgBZKTk/Py8hYvXly/fv309PT4+PiBAwcePnzY2NhYyXdgjK1bt2748OF81kVJ+fv7m5iYKO6MBNrrzZs3JiYmBasZ+M3dmzdvij2WVzN4eXnt3r1bT08vOzu7bt26x48f79Kli5JnHz9+fGhoaHh4uLOzs5eXV6k+AVQ0bm5ud+/e3b59+549e5o3b56cnHzlyhXlv/EqIVS4/6dBgwZPnz798OHD8+fP4+Pjvb29jx8/Ln8HuGjRopcvX65evVqZ9/T09AwODvbx8ZF2AoFKbuvWrXp6eq1bt27atKmJiYm/v3+VKlWkHRuK1bBhw9GjR/PKvlmzZiUkJJRnsKA1rl27duTIkR9++GHt2rV8Jv4PP/yg/Oy/2rVr83FlZmb2448/lqjgFLRIRkbGtGnT2rRpo2R18F9//RUcHLx06dL58+dLJJL79++7urrm5OQUe+Dz588XL148a9YsNBWtDLKysqZMmdKiRQtlOqrz8RMREbFp06aUlJSUlBQnJ6dly5adOXOm2GMjIiKWLVs2b968Vq1aqSBu0DCmpqbffvvtxIkTrays5s+f/+jRo7K/56pVqywsLEpaLD9y5Mjx48f36dNnw4YNp06dKnsYoCFatGgxZsyYCRMmxMbGzp07V/l6TyJas2ZN/fr1lV+g0sXFJS8vb9WqVaWKFLRDjRo1nj179v79+xcvXsTFxe3evTsgIGDhwoXKv8Pp06fDwsJK1KdI6uLFi3v27Pnll1+U6UUD2ogxJvO0mP9RftK8PL4odFZWVlhYWGZm5sOHDw0MDEaPHq3MsdzQoUPHjx8/ZMgQX1/fAwcOlDx8qIACAgLOnj07d+7cZcuW6erqvnr1ytnZOSUlRei4NBcS7h9p0qQJb28kEommTZvWoUOHY8eOFdxh27Zty5cvX7FihTLPBp8/f/7bb78NHDjQwMAgNDQ0NDQ0Pj4+JycnNDSUz/+CSqhdu3YRERF79uyZPXv2uXPnzp49m56ernyD46ZNm06fPn3lypWBgYE3b97EdTwQkUQiGTduXPv27X18fGbOnHnjxo1jx47dunVLmWpTrl69elOnTl26dGlwcPC7d+9KdKsA2iI7O9vBwSE2NvbPP/9U5iHfu3fvpkyZMmXKlAULFvz666+PHz9evnz5wYMHt2zZovhAxpiTk5Ouru6wYcP4bx+fEhsREREdHa2aDwMaIycnx8HB4eXLlwcOHFCmtoAvNjhp0iQ7OzsjI6OqVauuXr1aJBKdPHlS8YESicTJycnIyGjw4MF8XEVGRhJReHj469evVfJZQFg1atSYMmXK77//fvPmTYlEMnv27DK+YVxc3P79+11cXEraMPT7779fsGDBpUuXunbtOmnSpLy8vDJGAhqiY8eOM2fO3LBhw5EjR06dOrV7924lD4yNjT106NCsWbOUrKA6ffr0wYMHx48f/+rVK/59lZmZmZSUFBoaqny2C7SClZVVjRo1iEgkEk2YMKFnz54y2QPF1qxZ06VLFxsbm5Ke9/bt2/b29nZ2dqVL1oNWqFevXkpKSsFHg3FxcURkaWlZ7LF8xTgvL6/mzZuLRKLWrVvPmDEjKioqLCxMybOPHj3azc3t1KlTI0aMmDZtWnJycqk+BFQcGRkZ48ePHzx48KpVq+bMmXP37l1fX9/z588vWbJE6NA0FxLuilSvXj07O5v/e35+/vz586dMmbJs2bK5c+cqc/ihQ4fS09PPnDnT+X9OnDgRExPTuXPn27dvl2fgoNFMTU1Hjx49ffr03r17X716VSKRfP755yV9k2bNmllYWNy/f788IgTtEhsb+/Lly969e0uLIIYPH25tbX3r1q2SvlWdOnU+++wzjKuK59WrV3369AkJCQkICFCyOvj+/fvZ2dnSZrUikWj+/PlGRkY3b95UfODz588vXbqUkpLSp08f/ts3c+ZMIpo4ceLKlSvL+EFAo7x586Zv375BQUEBAQFKzmaoXbu2oaFhwfajhoaGurq6vBRLgYiIiGvXriUmJvbq1YuPK55lGDdu3Lp168ryKUDTGBsbd+zYsey/RF5eXrq6upMmTSrd4SKRqFevXnFxcXxxFKhIevbsKRKJlB9j69ev19fXV34s7dy5k4g8PT2l94BPnz69dOlS586dMzMzSxk0aANTU1Np9qBY9+7du3Tp0rx580p6lr/++uuLL77o0aOHkiUUoKUaN25MRAUvvPm/N2nSpNhjGzRoQERPnjyRbuGrixd7uSWvd+/eGRkZvHoGKrOoqKgPHz4UXMhk/PjxTZo0KfbesDJDwv0/MTExBSfLPH36NCQkhD9wjo+PHzJkiLe3959//ql80ejUqVMjPzZq1Kh69epFRkZ27dq1XD4DaJWsrKxFixbVrl1bmQmqly9f3rVrl/SPUVFRsbGxDRs2LM8AQTt88sknxsbGN27ckG5JTk5+8uSJMsPj/v37a9asYYzxP3748OHp06effvppecUKQvjnn3+6dOmSnZ0dEhLSoUMHJY/iV/nXr1+Xbnn48GFmZmaxw8PS0lLmt49/d/3111+LFi0q5WcAzXPlypXOnTunpaXdvHmzc+fOSh4lEolsbW2PHDki7Xl14MCBvLy8Yuv7mjRpIjOufHx8iEgsFi9YsKAsHwQE9/z58z/++CM/P5//MSMj4969e2X8JcrIyNiyZYuTk5PyzRbS0tLmz/9/9u48rok7/x/4JxDuQ0CkiBVRRC4PFA8UFY+4WgVbbcFqBbW2qP1WoG4rtNYC9QK7/Qm06uJRBTxatLULKCp44oEYDgHlBpVDkVNuCMn8/pjdlCKEK2QSeD0f/NFNJjOvbNNJ5v35zPvj1fbO6Pv376uqqurq6vYlCUiD3377rW13oPj4eIqiuvkruqGh4ciRI59++umQIUO6ebiDBw+2O1+ZmZn94x//yMvLw/qWA0llZWVISIjwfxYWFt65c6f709X3799vZGS0YsWK7h+RngLo5OS0evXqCxcuKCkp9SwxyBQHBwdFRcWAgAD6Sk0gEPz73//W0dHpzjLgHA5HXl6e/qVECGltbT19+rSOjo65ubnoF7a0tHzzzTdtG5Pev39fXl6eruDDYGZkZCQnJ9f22vDly5dFRUUoHYgwMEdEHzx4cOHCBUJIQ0PDvXv3vLy8RowYQc+wE+HUqVNfffXV4cOHORzO69evQ0JCdHR0fH198/Ly5s+fX1hYaG9vz+VyhZNG16xZM3HiRBE71NLSom8xE9LQ0GCz2XQVA2Tdvn37Xr9+nZycTAjZs2ePmpqas7OzpaWl6FfdvHkzKCjI2tq6vLw8Ojr66dOnf/zxB93IqMsX+vr6RkdHz549u7Ky8tixY+rq6t1f0R5kAo/H27lzJyHkzp07zc3NXl5ehJAvvviCviuwM3Jycv/85z99fX3fe++9d999t7m5OTg4uKGhoTudYeLj47/66quYmJjFixc3NjaGhIQ0NjbSx4WB4dixY5s3b1ZQUFi1apWwG4y8vHyXa1SamJi8++67P/74Y3V19Zw5c16+fBkYGGhgYPDZZ5+JfqGCgkK7rzl6fo2BgQHqVgPGyZMnP/30U3l5+Q8++EB4OUcI2bdvX5erU+7evXv27NnTp093cnKqqqo6efLk7NmzP/zwQ9GvUlRUbPe5ok+MI0aMQPtaWZecnLxr167Y2Njly5cLBIKzZ88WFxcfOnSoO6/94YcfKioq6KnK/v7+mpqaq1evnjRp0smTJ6uqqtzc3Lofo6Cg4OjRo3/++edHH32kqakZHR199erVXbt2KSsr9/KNgdS4fPlyWFjY+vXrJ02aVFRUdPTo0ZEjR27cuLE7rz1+/Hh1dfXnn3/e/cO9+bNNUVFRTU0N14ADTHh4+JYtWw4fPrx48eKGhobQ0FAlJaV9+/Z157VFRUXnzp3bv39/96eoCwQCDodz8+ZNS0tLbW1t4e/86dOnr1y5spfvAaSDv79/VVXVo0ePCCH79u3T0ND46KOPJkyY8O2333733XfLly+3tbW9evXqjRs3Tpw40Z1xu1GjRnl4ePz444+lpaVTp069cuVKQkLCsWPHuvxGe/HiRWho6OnTp9etWzds2LCbN2/+8ccf//d//yf6ahSkVmBg4IsXLzIzMwkhAQEBurq6K1euHDdunJ+fHyEkKSmpsrKSvvb/9ttvRS9/qq6uvmXLloMHD1IUtWTJkpqamp9//llJSWn79u1dxuDz+Tt27CCE3Lp1i8fj0Ud0c3MzMDAQy9uUWgOz4F5WVpaYmEgIoUeYExMTu9PI/8svv7Sysjp58uSFCxfU1NQ2bdq0bds2XV3dBw8emJqampqaNjU10bulLVmypKfBLCwsun+XGUi51NTU8vJyQgiHw6FPYQ4ODl2+Sl1dXUVF5ffff1dSUlqwYIGbm5uZmVl3Dufj4zN16tSjR4/++9//ZrPZS5cu3b59e+9WtAepJRAI6JPMkCFD5syZQ/9zdxb18vHxmT59+rFjxw4cOEBRlLW1dVhY2Pjx47t8oaurq7m5+U8//XTs2DEWizVt2rTffvut+5OgQfqVlZXNnz+fENK2aWM3r+7OnTt36tSp8PDwvXv3Kisrv//++56ensOHD+9phqFDh3I4nO7PDQTp9+rVq3nz5hFC6K+/Hpk0adL9+/d/+OGHy5cva2pqent7b9u2raddtgkhw4YN43A43RmxBim3cuXKBw8eHDhwICQkRCAQWFhY/Pzzz92cJZqenl5SUkII4XA4dKsi+vd5enr6tm3bunPfvdCECRNSU1P9/f0vXLhQX18/evToX3/9tacLroJ0+uWXXxYuXBgWFhYXF6emprZu3TpPT89hw4Z157WPHz/+6quvRo8e3ZcANjY2vfj2BCm3efNmCwuL48ePR0ZGKikprVu3btu2bfRSJV26devWwoULuznqQ+Pz+Ww2m8PhEELaFiVQCR0A0tLSSktLCSEcDoeep7J06VJCEnmfuAAAIABJREFUyM6dO42NjUNDQ8+ePTtq1KiLFy/Sj3fHDz/8YG5ufvbs2T///NPY2PjKlSuLFi3q8lWjRo1KSUn54YcfoqOjX79+bWhoeOzYsQ0bNvThzQGTMjIy6EWPOBzOs2fP6D60RkZG9Dlk+PDhw4cPp/+5O+2GgoKC5s2bFxYW5u/vz2az7ezstm/f3p3fWhRF0UfR1NS0s7Oj/3kw9FhjCTsJDDYWFhYffPDB999/L64dRkZGLl++vK6ujm6PBfD7779/8MEHLS0t3VxhqS1DQ8PPP/+8O6OFMNjs27fvyJEjBQUFvXjtzJkzp0+fHhgYKPZUIOs+/PDDpqamHq30JaSqqvrzzz9//PHHYk8Fss7Z2bmysrJtJ4fuk5eXDw0N/eijj8SeCmTU8uXL1dXV27Z/7Itdu3aFhoa2XU4ABrnW1lYFBYXw8HBHR8cevdDHx+fXX3/txegjDBIrVqxQVFT87bffevSq9PT0CRMmpKWldWcCDQxm9fX16urqERER3Zn8187Ro0e3bdtWW1vbH8FApv3zn/+8fft27/qzm5iYODs7f/fdd2JPJXPQwx0AAAAAAAAAAAAAQAwGZkuZ7jA3NxfvnX1DhgyxsrKSl5cX4z5BpmlpaVlZWXXZzbZD48ePx+2B0CF9ff0ulwrojKmpKVa8gQ6NHj261x3PrKys0EQbOmRkZKStrd27106ePFlHR0e8eUCmGRsbq6ioiGtv+vr6FhYW4tobDAAsFsvKyqoXp6zhw4fjswQijBkzphe3O6uoqFhZWYnxpAcDlby8vJWVVe86N+rq6k6aNEnskWAAGDFihKmpae9ea2FhgS5qtMHbUgYAAAAAAAAAAAAAQIzQUgYAAAAAAAAAAAAAQAxQcAcAAAAAAAAAAAAAEAMU3AEAAAAAAAAAAAAAxAAFdwAAAAAAAAAAAAAAMUDBHQAAAAAAAAAAAABADFBwBwAAAAAAAAAAAAAQAxTcAQAAAAAAAAAAAADEAAV3AAAAAAAAAAAAAAAxQMEdAAAAAAAAAAAAAEAMUHAHAAAAAAAAAAAAABADFNwBAAAAAAAAAAAAAMQABXcAAAAAAAAAAAAAADFAwR0AAAAAAAAAAAAAQAxQcAcAAAAAAAAAAAAAEAMU3AEAAAAAAAAAAAAAxAAFdwAAAAAAAAAAAAAAMUDBHQAAAAAAAAAAAABADFBwBwAAAAAAAAAAAAAQAxTcAQAAAAAAAAAAAADEAAV3AAAAAAAAAAAAAAAxQMEdAAAAAAAAAAAAAEAMUHAHAAAAAAAAAAAAABADFNwBAAAAAAAAAAAAAMQABXcAAAAAAAAAAAAAADFAwR0AAAAAAAAAAAAAQAxQcAcAAAAAAAAAAAAAEAMU3AEAAAAAAAAAAAAAxAAFdwAAAAAAAAAAAAAAMWAzHQAAAAAAAEA8KIri8XiEEEVFRaazAAAAAMBghBnuAAAAADAYUYQ08Pnt/iimU0FfJCUl2dnZffrpp6NHjz5y5IhAIGA6EQAAAAAMOiyKwmUFAAAAAAw6z5qa3n/8uN2DERMmGGBmtAx6+fLljh07Tp48KRAI1NXV6+rqCCHTp08PDAy0sbFhOh0AAAAADCKY4Q4AAAAAg5e3kdF5S0vhn56CAtOJoGd4PF5gYKCZmdkvv/wiLy/v5uZWWFgYHh4+atSohISEWbNmOTk5PXv2jOmYAAAAADBYoOAOAAAAAIPXW4qKRsrKwj82i8V0IuiB2NjYSZMmeXh4vH79msPhpKSkBAYGamlpOTo6PnnyxNvbW0lJ6dy5cxYWFj4+Po2NjUznBQAAAICBDwV3AAAAAACQMVlZWcuWLVu0aFFGRoapqenFixdjYmIsLCyEG6iqqvr4+OTk5Dg7Ozc2Nvr6+o4bNy40NBQdNQEAAACgX6GHOwAAAAAMRnQP9+mamrpsNv3IdE1N+6FDmU0FXaqqqvL39z9w4EBLS4u2tranp+cXX3yhKLLz/q1bt9zd3R89ekQIsbOzCwgIsLKyklReAAAAABhcMMMdAAAAAAYvZTk5VXl5+k9RDr+NpZpAIAgNDTU1NfX3929tbXV2ds7KyvL09BRdbSeE2NnZJSUlhYSE6Onp3bp1y9ra2sXFpbS0VDKxAQAAAGBQwQx3AAAAEKWurm7fvn16enp37tzZu3eviYkJ04kAxIOe4X5o3LjpGhpMZ4Gu3bhxw8PDIzU1lRAyf/78gICAiRMn9nQn1dXVfn5+AQEBzc3NWlpaXl5eHh4eSkpK/ZAXAAAAAAYpzOIBAACAjlEURU8m3bt379dff33+/Pnx48dv3769pqaG6WgAMIg8f/7cxcVlwYIFqampI0eODAkJuX79ei+q7YQQLS0tPz+/1NRUe3v76upqLy+viRMnRkVFiT0zAAAAAAxaKLgDAABAB7hc7uzZs9etW1dSUjJ16tTz58+7ubnx+fwffvhhzJgxgYGBfD6f6YwAvSfAXZ6yoL6+3sfHx9TUNCwsTE1NzdvbOzs728XFpcONKyoq/u///u/atWtd7nbcuHGRkZExMTGWlpbZ2dkODg6LFi16/PixuOMDAAAAwGCEgjsAAAD8TUlJyaZNm2bMmHHv3j0DA4Pg4OAHDx4sXbo0MDAwISFhzpw5FRUVHh4e06ZNu337NtNhAXojsqJiQ1ZWLQaNpBh9h83YsWN9fX2bm5sdHR0zMjJ8fHyUlZXf3Li1tTUoKMjExOTQoUNfffVVN3tmcjic5OTkgIAALS2t2NjYyZMnu7u7V1dXi/utwEDG5/NTU1OPHj2amJjIdBYAAACQFujhDgAAkpZQn1DWWrZsyDKmg0B7LS0thw8f3rlzZ21traKi4ubNm3ft2qWpqdlus8jISDc3t6dPnxJC7O3tf/rpJyMjI8mnBeidq1VV3xYUCChqh6HhKx7PYehQA7TwljIPHz50d3e/f/8+IWTatGmBgYEzZ87sbONr16598cUXaWlphJAFCxYEBARMmDChR4errKz09fU9ePAgn8/X0dH57rvvPv/8c3l5+T6+Cxjw6uvrP/roo6tXr/J4vNbWViMjo1WrVm3cuBGLnQAAAAxyKLgDAEA/ulF741z1uectz1XlVOerz/9Y92MlltLWwq336+9zzbhMp4O/iYyM9PDwyM/PJ4TY29sHBgaOGTOms40bGxuDgoJ2795dV1enoqLi5ua2Y8cODaw8CVLvQU3NF7m5LRT1+YgR6/X1mY4D7ZWUlHh5eZ06dYqiKAMDA29v708++UROruO7cnNzc7/55ptz584RQsaOHbt3715HR8deHzolJcXd3Z2+ccfc3PzAgQOLFy/u9d5gwCsuLnZwcEhOTtbW1l64cOGdO3devnxJP2VjY7NmzZpVq1bp6ekxGxIAAAAYgZYyAADQX7YWbl2QsyC1MXWc0rhh7GHfvfjOLtuOR/GYzgXtZWRkLFmyZPny5fn5+ebm5tHR0ZGRkSKq7YQQFRUVT0/PzMxMZ2fnpqYmf39/c3Pz0NBQDOSDNEutq/syL6+Fotbo6aHaLm0aGxv9/f3NzMzCwsKUlZXpM4yrq2uH1Xa6t/v48ePPnTtH93ZPT0/vS7WdEGJlZXXr1q2IiIjRo0fTZ0UHB4eCgoK+7BMGqtTU1FmzZiUnJxsbG9+/f//cuXPFxcVxcXGurq6amprx8fFubm4GBgazZ88+cuRIbW0t03kBAABAojDDHQAA+sUf1X+8n//+XoO9X+t/TT/ygvcioSHh3SHvYoa79BBLI4WEhAR3d/f4+HjSjeYPAEzJbmzclJVVy+cvHzp0p5ERi+k80FZkZKS7uztd3ba3tw8KCho9enSHWwoEglOnTnl6er58+ZLFYq1du3b//v36Yh0+oe/g2bNnj7C51u7du3EHDwhdvnx51apVNTU1tra2Fy5cGDZsWNtnm5qaYmJiwsLC/vOf/7S0tBBClJWVORyOi4vLu+++q6ioyFBqAAAAkBwU3AEAoF8szV2a3pSea5mryGp/bYmCuzTg8XgnTpzYsWNHeXk5m83++OOP9+zZo6ur27u9URQVFhbWryUwgL543tT0SXZ2JY+3QFvbb/RoORbq7dIiOTnZw8ODbuRiZWUVGBg4d+7czjZuO7w3ffr0wMBAGxubfgpWUlLi6+t77NgxgUDQZXMbGDwCAwP/+c9/8vn8Dz/88MSJEx2u4kurrq6OiIgICwu7du0afdGtra1tb2/v4uKycOFCFs5CAAAAA9dA+MlIUdTZs2eTkpLohZVk0cuXLy9evHju3Lmamhqms0AXHjx4kJiYeObMGYFAwHQWGBSio6NTUlKioqKYDtJjiQ2Jtmq2b1bbQRrExsZOmTJl06ZN5eXlCxcuTE5ODg4O7rLazufzg4KC6uvr33yKxWK5uLjk5uZ6e3srKiqGhYWNHTvWx8enqampf94BQA+UtrR8lpNTyePZaGruQbVdalRUVLi7u0+bNu327dtDhw4NCAjgcrmdVduLi4tdXFxsbGzi4+NHjBgREhISHx/ff9V2QoiBgUFwcHB8fPysWbNKSko2bdpkY2Nz7969/jsiSDk+n79161YPDw+BQODt7X327FkR1XZCiJaWlouLS0xMzPPnzwMCAqZMmVJVVRUWFrZo0aJRo0a5u7snJydLLDwAAABIFCXjHj58OGvWLEKIkZERi8VydHR8+vQp06F6oKWlJSAgQFNTU1lZWU5Ojr7YaG1tZToXdKC4uJhuJGpoaEgIsba2jouLYzoUDGTZ2dl0O9qxY8cSQhYuXJiamsp0qB5QSFLYVritw6c+f/65dYa1hPMATfi5IoSYmJiEh4d3/7XBwcHkf0UoPp/f2WY5OTnCQ4wdO7ZHhwAQuwoeb2V6ujWXuyEzs6Hzzy1IEv0DeMiQIYQQBQUFNze36urqzjaur6/38/NTV1cn/1s9ora2VpJpBQJBeHj4yJEjCSH05cazZ88kGQCkQW1t7bJlywghSkpKp0+f7t1O0tPTvb292y6RYmFh4e3tnZ+fL960AAAAwCwZLrgXFxc7OzvT9+IZGBisWLGCnmKgpqa2a9euhoYGpgN27c8//zQ2NqZ/bM2fP3/atGn0P0+ZMgWVXKnS2Ni4Z88e+kpPWVl5xYoVBgYG9EXXRx99VFRUxHRAGGiqqqq2bdumoKBACBkyZMiKFSu0tbWFVYnKykqmA3aLZormhqcbOnwKBXdG1NbWent7KykpEULU1dW9vb2bmpp6tIf4+HjhV9XMmTMTEhJEbHzt2rUJEybQGy9YsEC2hotgwKhpbV395Ik1l7v6yZMaTGiQDi0tLePHj6dPDkuXLs3MzBSxcUREhJGREb2xvb19QUGBpGK2V1NT4+npSZ9CNTQ0uFwuU0lA8goLC62srAghQ4cOvX37dh/3xufz4+Li3NzchM3f5eTkbG1tAwICysrKxBIYAAAAmCWTBffm5uaAgAB65SJFRUU3N7fXr19TFFVYWCgswb/99tshISECgYDpsB3LzMx855136B9YpqamFy9epB+XnosKEIqIiBDOQ7G3t8/Ly6Moqr6+3tvbW0VFhRCiqqrq7e0tE2M8bdXUXM/NXfn48cTMzFnPn29tasLMGqnA5/NDQkLeeust+urL2dn55cuXFEVVVFS4ubmx2WxCiI6OTkBAAI/HYzpsx543Pz9QeoCiqGkZ02ZlzupwGxTcJayzz1Uv0DM96Rt9upzpyePxgoOD6YICm812dXV99epVb98EQI818vkfZ2Zac7kr0tMrpPWcOQj9+9//Njc3HzlyZGRkpIjNEhMT58yZI5yM0vcqp1g8f/589erVQ4YM+eSTT5jOAhISHx9Pf4FaWlp2eHXW659kra2tMTExzs7Oampq9EddSUnJ3t4+JCSkrq6uT6EBAACAUbJXcO+w+tnWzZs36QkIhBA7O7vk5GRGcnamsrJSWDXT1tb28/Nrbm5uu0FDQwOzt82C0JMnTxYvXkx/lszNzaOjo9ttIENjPO28fn2Zy2Xl5r5XVna0tPRAbu6KhoY0pkPB305fM2bMiI+Pb7dBRkbGkiVL6A3MzMze/Ewyq4Hf4PfSTz1ZnSSSK6+v7H2xVy5R7kHdgze3RMFdkuLj42fMmCHic9ULdXV13t7ewhvLvL29GxsbO9u43RefNA8XwUDSIhB8np1tzeUuS0198fffWsAsFxcXQsjx48c726C8vNzNzU1eXp6eUCxt7RYrKysJIVpaWkwHAUk4f/68qqoqIYTD4VRVVb25QWVl5YIFC/bt29eXozQ0NISHh9vb29PflfQNjs7OzhEREfjGBAAAkEWyVHBvV/28fPlyZ1uKcSqfGPVool9RUZGwkksvDCUrldyBgZ5NTF/p0bOJRVzpdVkklUJ5ee8/eTKZovChkhY9GrxpN+6Ym5sryagdElCCXyt/NUwzJImEJBKnfKdnzc/q+HWWjy11H+keLjuc0ZiRVJ/086uf977YS6HgLin9PSj4/PlzZ2dn+qM4cuTIkJAQERtnZGS0vbXr0qVLYkwC0A6Px/M8fnxGYuKSR4+Ketg6CfobXXA/efLkm0/1qLc7U1BwHzwCAgLk5OQIIZ988klLS8ubG+Tm5pqZmdHXa/Qt131UXl4eHBxsa2vL+t/azgYGBm5ubmg3CgAAIFtko+Deo+qnUFVVlbDTYu+a1YpRu1a2jx496s6rHjx4YGNjQ79q2rRp9+7d6++cQI+L6OrqCsdFutNLUTrHeETIypqfnm4uEGDKDPN6156I7qylqakpLEmI5TKvd5Lqk+ZmzaVL7ZMzJt+qvSV8qpxXvunZJp1HOiSRKCQpmD82D3oVRFHUV0Vf2WXZMRV4MGj3uerXm6WuX78+ceJE+qtq/vz5or/gIiIihIuXSMlwEQw8fD5/7dq1hJAVO3fmyVrDt8FARMH9t99+o88Py5cvz87Olny27kDBfTDg8XibN2+mm6d5e3t3uM29e/f09PQIIRMmTHj69Kl4A2RmZn733Xdjx44l/2Nubr5r167i4mLxHggAAAD6g7QX3FtaWnpR/WwrOzvb3t6e/pliYmISHh7eT1E7k5OT4+joSAcwNjbuaQCBQBASEqKvr0//4HN2dn7x4kU/RYWYmBjhKl4LFy5MS+tZlxWpGuMRrbQ0iMslGRkzKyvDBQIpDTng0b2wR40aRf7XC7unV2slJSWurq703Kvhw4cHBwfz+fx+Stuhcl65W6GbfJI8SSRDHw0NKA1oFXQ8GlrTWsOnJJpt0Or756oX6EFHuu5ADzqWlpZ2tjE9g1VKhotA7KThhjwPDw+62dHdu3eZzgIdEFFwFwgELi4uV65ckXyq7kPBfcCrrKycP38+fRq5cOFCh9uEh4fTo9qLFy/u12+x9PR0T09P+mKQEHLgwAEpvO0DAAAA2pHqgnsfq5/tdmVpaUnvisPh9GVX3dejFrfd2RVdye3jrqBD2dnZwnGRPg7MiHFX/YHPp+f6CcrKjjx5YsXlkpSUoSUl36O9jIRxuVxbW1v6c2Jtbd2XO4XFuKvuaxG0BJQGDEkZQk9ddyt0q27F5R/zuFzu7NmzJfxhEKqsrPT09FRUVCSdLFLSFj1cRN+7pqurK209mqEXGhoadu7cuXTpUgsLC1dX15CQEBEL6vafr7/+mhCiqKgo5UXbwUxEwV3aNDc319TUtDuVoeA+sOXl5dFdYoYPH/7w4cM3NxAIBH5+fnTLF1dXV8n0WG9tbY2OjjYwMCCE4OQGAAAg/aS04N67kmVDQ4PoKXXCyfIKCgq9mCzffb2elv706VMRU8PaTpYfO3astFVyZVRtba1wMKNH09ILCgpEPMvIGI8IPF5ZeXlITo59SsowgeCv68aGhvSCAhcul7x6dYjBeIPKm9PSu1NnFAgEIuYpS3hSc0xNjMVjC7qHDCebk96Y3n/Hgm5qaWlZv3698HN14sQJCd/uIJSZmbl06VL67Ddu3LioqCgRGyckJMycOZPeeOrUqVlZWRLLCeLV0tJC31BIf58KmZiYrF+//tixYxkZGRKIERAQQP/Mi4iIkMDhoHdkqOBOj9/s2bOn7YMouIvNxYuUqyvl4ECtXk0FBVE1NUwH+luXmA6HDJuamujFS+Tl5QMDAyUcb+vWrYQQf39/CR8XAAAAekrqCu69rn5SFOXj40PP/hbxkt61g++RtuWDHjVeb2hoMDQ0nDZtmug7oNu1g09NTRVH6sGoL43X7927Jy8vL3ooRZJjPJ1pbn5eWhqQmTmHy5XjcgmXSxITFevr28/Wefx4Uk7OUglnG4T60knj1KlTXb6EbttN31XT/XbwPZLVlLUsdxldah+XPi6qWlQtFSSJXr2ZzWZLSYeWmJgYCwsL4aDj48ePRWwcERFhaGiopqZ28OBBiSUEMeLz+atXr6ZvVkhMTIyLi/Pz87O3t9fW1m5bfNfU1ORwON7e3jExMf3Rcu3EiRMsFktOTu7MmTNi3zmIEQruQLW2Uk5OFJtNOThQX39NrV9PvfUWNXIklZnJYKhff/2V/hHVWZeYiooKOzs7+iqVkVG9Y8eOEULWrFkj+UMDAABAj0hRwb3vy046OTkJp9RFRkaK2PLJkyeLFy+mNzY3N798+XLfsv9XUVGRs7MzfYPhiBEjQkJCetTJNDExkZ4ULycnt379+pKSks62pBf2HDZsGPlfa/tXr16J4x0MIvHx8TNmzKA/AzNmzIiPj+/Ryw8ePEi3TRgyZMgPP/wgom2CBMZ43tTc/LS0NCAz05bLZdF19qQk5Zwc+7KyYB7vzY8KPz19XH4+frv3rz6uFenl5UVPXtbX1//ll19ETF4uLCwUnojefvvtnp6IOlNZWenxhYdxsjFJJNop2gGlAS2Clr7vFsSFLmDt37+f6SB/oUeYhgwZIhxhEtF2tqioCAUsGSUQCDZt2kTX09u1X2htbU1PTw8ODnZ2djYyMmpbfFdQULC2tnZzcwsPD6+oqOh7jN9//11eXp7FYh0+fLjve4N+hYI7UD/+SMnLUzExfz1SXk6ZmVHW1hQT60AIBAJvb2/RXWJycnJMTU3pq7zExETJh6Qo6uHDh4QQS0tLRo4OAAAA3SctBfc+Vj+FYmNj27Z9Fz37OyIiYvTo0cL6V15eXu8OSlFUQ0ODn5+fhoYGIURFRcXT07OmVzdF9qjte2VlpZubG5vNJoRoa2sHBARIpoegrBNXObJt46MuO/z00xhPO01NeW/U2VVycuzLy0NaW/82Tycv7/3Cwm1VVb9XVf2Zl+fE5ZKqqt/7IxJQFJWRkfHOO+/Q//bNzMwuXbrUu/0kJiYK23NPmTLl9u3bIja+efPmpEmT6I3t7OySk5N7d1CKolpbWw8dOkTfq2Gz3Wbzs81lPEnfqwFdktoCVnl5uXDQcejQoZ0NOqKAJbs8PT3pHz83b94UvWVxcXF4eLibm5u1tTU9gkiTk5MTtn3Pz8/vRYYrV67QN0f6+fn16k2AREnt+epNKLj3lzFjKEfH9g/+8QdFCHX/voSzNDU1rV27lhAiLy8fFBTU4TZxcXH0D6FJkyYVFhZKOKFQQ0MDm81ms9lYzQsAAEDKMV9wF/tkTHr2N/2TiJ79LaKPR3Nzc0BAAF0oV1RUdHNz60WhvF3hvnfXim09f/6cbg5ICBk5cmRISIiIjcVVyxsM6uvr/fz81NXVCSGqqqqenp61tbV93CdTYzxt1dWlFBfvTE+3oIvsXC5JTtbKz19bVXXhf0uktlde/ktOztK0tDGPHulnZdlVV//3rthWrHspVvT9DeIdFYuIiKB7tdOfIhFrCdC3DdGtSHt32xBFUdevXxcW7ufNm5eSktKn9NBvpLyA1XY11w0bNry5AQpYMmrPnj30dHXRzfrfVFNTExMT4+3tzeFw6HkGQsOHD3d0dAwICOByud1ZiuDu3btqamqEkK+//rq37wMkSsrPV22h4N4vysooQqg3G5EXFVGEUAEBksxSXl4+d+5cQoi6unpnd0j/8ssv9I2tK1asqK+vl2S8N5mbmxNCmJpiDwAAAN3EZMGdbjesoqIixuqnUNs6F93HQ0Sdq7i4WLiGoYGBQXBwcDfXmktKSqJ/ohFCJk+efOvWLXHlpyjq+vXrEydOpHc+f/78R48eidi4j90qBry2S0rS/xeJcUlJyY/x0NLT0729vU1NTWNjbek6e0qKTkGBc3V1hEDQ4964AkFrcfGOlBS9lpai3uWBtvq171OPho6qqqo8PT3puZ9aWlp+fn7dbJ3co5E/YJxMFLDoQccOb85AAUsWHTp0iB7PO3v2bF/2w+PxuFxuQECAo6Mj/WUqpKGhIWz73uGiFMnJyVpaWoSQLVu29CUDSJJMnK9oKLj3i6wsihDq1Kn2j/P5lJwctXMnFRtLff89deoUde8e1fO5At2XnZ09btw4QsiIESOSkpLe3IBuNUOfjtzc3CS5GnljY2NUVNTRo0fbPU4vmHH8+HGJJQEAAIBeYKbg3q/Vz7YyMjKWLFkinP0dHR0tYuOHDx/OmjWL3njq1KmiVy7t5j3yfURPUKVrdvQE1dLS0s427st6jANb25mVU6ZMiYuL64+jSGaMh8/nx8XFeXh4GBoaCusR33zDefZsS01NrEDQl9nTgtzc5VwuycycKxD0e5f5gS02NlYCKxv36PagrKwse3t7OpKJiYnoVS7a9raiF1/FncvST1YKWC0tHbf+RwFL5pw6dUpOTo7FYgUHB4t3z3l5eSEhIa6ursJ1d2lsNlvY9p0ewszKyqLX/lmzZo0kC2HQR7JyvqJQcO8nhYUUIdSbzVsqKylCKD8/6osvKEL++lNSosaMoTgcytWV8vOjwsMpLpcSx12q9HCdlZVVh11iGhsb6eo2m82W/Jrer1+/ZrFYSkpK7S4o/Pz86Oq/hPMAAABAjzBQcJdM9bOtiIiIMWPGCIv7Ivp40CMBdCmTxWI5Ojo+e/as3TY9WgVOLCorKz09Pen7vdONAAAgAElEQVQ7GbW1tf38/EQs0VlSUiKs5A4fPjw4OFgCS3RKLfr/DXpcRFdXVwILlvbTGE9ra2tcXJybm5uBgYGw9DBy5EhXV9eIiAhx9e7n8V49emTA5ZKSkl1i2eEglJOT0/3O/mLRdgGM6dOn3xfZ+TQmJsbS0pLemMPhpKent9ugO+dAkE4dFrBycnKmTJmyatUqplJ1HwpYsiUiIkJBQYEQ4v9mU4g2Tpw4weVy+/IlVVRU9Ouvv27dutXKyor+NqexWCwzMzO6WObg4NDZQA5IJxTcBzs+nxoyhNq6tf3j9+9ThFD/+Q915Qrl5UU5OVFTp1I6On8rvrf9MzCgZs+mnJ1/8vMLCQmJi4srLi7uZm/S48eP0yexlStXdtglpqysjL5i1dDQYKpjJ30B2+7XWnR0NCHEzs6OkUgAAADQTRItuLetfkq4Fkz38aBnf9N9PETM/haxcmmX5ar+k5mZuXTpUvrQpqamFy9eFLFx21ENa2trCYxqSBtm5/u3G+MR0eFHdH1TWGfX19cXVhlGjRrl5uYWFxfXx9UOOlRTczMxUT4xkV1be0fsOx/Y6PMG3bmFPm90s3NL39G3wtDTPLvs1U7/p0FXqej/NKqqquinenSXD0ibDgtYqamphJDx48czlar7UMCSIdevX6d/I3377bciNisrK6NvwVFTU7O1tfX09IyIiBCecHqhtrY2Li7Oz8/P3t6envdgZGRkbGyMW3BkDgruQG3YQOnpUZWVf3vQ2ZnS0aHeLH83NlJ5eVRMDBUcTHl6Uo6OlLU1papKl90FLBa9igNNUVFxzJgxHA7H1dXVz88vPDycy+W2vQroTpeYtLQ0+lbs0aNHP378WPxvv3tWrFhBCDl9+nTbB0tKSuiPX39cCAAAAIC4SKjgLiXdTt6c/S3iBuR2/Yv9/f2XLVtG/89x48b1dHEwcYmJiRHeYc3hcET8BGzbt4eu5PZT3x4pJA0d7duO8XT5mW/XwWPHjh3nz593dXWluwnRxowZ03919raKiry4XJKaOpLHq+jXAw0YAoEgJCSEHhRhsVjOzs4vXryQfIza2truV/zpDkj08KeOjo6vr++nn37aix5HID1QcAfJePDgAb0MyWeffSZ6y+fPn2/YsIHujyzEZrOnTp3q7u5+7ty5vpwqW1pajhw5QggxNjbu9U6AKSi4A1VcTOnrU1ZW1J9/Uvn51N27lKsrxWJRYWHd3UNrK/X0KXX9etOJEzt27Fi9evWMGTPa/nJuR09Pz8bGZs2aNdOmTaN/nHfWBv3q1av0kJ6NjU0vVpsXIx8fH0LI9u3b2z2up6dHCME9iAAAANJMQgX3e/fu0b2t33vvPcbX8+Ryuba2tt2c/S3sxUxfXmprax84cIDZO5d71NOmrq7u22+/pVem9fX1FVfvEWlWUVFhZGRE15hiYmKYDdOjMZ68vDx6Jgu9Pc3CwsLb25vL5Uoss0DAy8iYyeWSvLz3JXZQmZafn0//9zh79mxJ/pvqUHZ2trCnjYmJieieNsJln+kyvbKy8o4dO+rq6iSWFsQIBXeQgLS0tKFDhxJC1q5d2/1hudLS0oiICE9PT1tbW/psIzR8+HBHR8eAgAAul9vT4WQ+n0/f2ZORkdHztwJMQsEdKIqiCgqo99+nlJX/2x/GyoqKiOj7XpuamvLy8mJiYoKDgz09PR0dHa2trel15mmjRo1SVVW9du1ahy8/cuQI3WrG0dGxw4WaJenChQuEkMWLF7d7fNGiRYSQ//znP4ykAgAAgO6QUMGdnm5w7tw5yRyuSz2a/c3j8TZs2EBPbC8rK5NkThF6tGprQUEBfVEaHx8vyZCMWLNmDSFk3bp10jO60KMxnt9//50Qoqio6O/vz9ToVFNTXnLyEC6XlJUdZSSAbJk5cyY9oCU99/bGxsaOHz+e/sgtXLgwLS1NxMb79u2jZ37l5+dLLCGIHQru0N9yc3PpdUSWL1/e62/Y+vp6YVsYbW3ttsV3TU1NDofj7e0dExPTzS4x69atI131kQcphII7UAUFFD1hqLmZKinp+wqoogkEgqKiotu3b/v6+tLXdB1u5unpSV8b7ty5Uxp+1OXn5xNC9PX12z3+5ZdfEkK+//57RlIBAABAd8gRCaKnUkoDusj+5MkTugPDuXPnLCwsfHx8Ghsb39yYzWbT8wimTJmiq6sr8bAdGzp0aGBgYEJCwpw5cyoqKjw8PKZPnx4XF9fhxkZGRvTowuCxaNEi+qYKaUAX2ekxnsTExLlz5zo5OT179qzDjen/TDQ0NLZv3y5sjCNhSkpjRo06SggpLHRvaspgJIPM4XA4dLdiabBw4cLk5OTg4GBdXd1r165Nnjx506ZN5eXlnW1MCDE0NBw9erRkYwKAzCgpKVm0aFFJScmCBQt+++23Xn/Dqqqqzp4929PTMzIysqysLD09PTg42NnZefTo0TU1NbGxsb6+vosWLdLU1BR2nqmoqOhsbw4ODoSQyMjIXr4rAGDKli1k1Chy/TpRVCTDh5M2M9D7A4vFGjFixJw5czw9PRUUFPLy8hoaGt7cbNq0acrKyidPnvz++++l4UedkZGRlpbWy5cvS0tL2z4+adIkQsijR48YygUAAABdk2jBXdqoqqr6+Pg8efLk/fffb2ho8PX1tbCw6KxmLZ2mTJly69atM2fOjBw5Mikpyc7ObvXq1S0tLUzngvboMZ7Hjx/v2LGDHuOxtLT86aefmM7VKW1tx6FD1wsEDfn5TgJBBwNRIOXYbLarq2tGRsbmzZspijpy5Ii5ufn58+eZzgUAohx/8eKbgoK2f1crK5kORcrLyxctWlRQUDB9+vQ///yTXnGk7+Tl5S0tLV1dXUNDQ/Pz8wsKCsLCwjZv3jx+/Hg+n5+YmBgUFOTk5KSnpzdx4kT69q92Fi9erKysfP/+/c4GFAFAGqWkkCtXSGsrmThRwkdWUlIaN24cn89/8uTJm8++//77eXl59B0Y0oDFYtGtTdvV1lFwBwAAkH6DuuBOGz169Pnz52/evDlp0qTi4mJ6FRoZwmKxVq9enZWV5efnp6am1tjYqKioyHQo6Jiamtru3btzcnKcnZ0bGhrEVbPoJ4aGPysrmzU2phcXezGdBXpJV1f38OHD6enpS5YsKS8vp9eiAACplVBbm1lfr6ugIPxTlZdnNlJNTc0777zz5MmT8ePHR0dH999pxMjIaO3atYcPH05LS6uuro6JifH29uZwOEpKSmlpaW1XNxFSV1efN28en8+/dOlSP6UCAPHbvZtQFPnsM8LErcOiq9V04yzp0WFac3NzZWXlvLy8mpoahnIBAABAF6Sl5wbj7OzsEhMTExISTE1Nmc7SGyoqKp6enqtXr2Y6CHTt7bffDg0N3bx584wZM5jOIoqcnNro0aczM2e9evWThsYCLa13mU4EvWRmZhYdHX3nzp3Zs2cznQUAumCiqrrt7beZTvFfjY2Ny5cv53K5xsbGV69e1dHRkcxxNTQ0OBwOh8MhhDQ3N3O5XOG6FO04ODhcvnw5MjJSeialAoAomZnkwgWipEQ8PBg5/qRJk86cOSMr08M7LLiz2Wxzc/Pk5OT09PRZs2YxFA0AAABEYXKGe3x8/O7du69du8Zghrbk5eXpxQ9ll6GhoaGhIdMppFFpaenu3buPHTvGdJC/zJo1S57peYtdUlWdMmLEXkKoZ88+aWoqYTqOLMnKytq9e7dUtXBBtR0AeoTH4zk6Ot66dWvEiBExMTHDhw9nJIaSkpKtre2QIUM6fNbBwYHFYl2+fLm5uVnCwQCgN/btIwIB2biRMDSX3MrKihCSkpLCyNF7qrP5+OgqAwAAIOWYLLjHxcXt3Lnz8uXLDGaAQeLFixc7d+78+eefmQ4ie9566wt19XdDQy2XLv2Iz+czHUdmPHnyZOfOnadPn2Y6CADImOrW1uS6Ovovpa6OqRgCgcDFxeXixYu6urpXr16V2kWVR44cOWnSpLq6ups3bzKdBQC68vw5OXuWKCiQL79kKgJdcH/06BFFUUxl6L7x48ez2ezMzMympqa2j6PgDgAAIOXQwx0ARGNpax85cybrxo2b/v7+TIcBABjgkmprN2Vn03+bs7MJISXNzU8aGvgSrA1RFPXZZ5/9+uuvmpqaly9ftrCwkNihe8HBwYEQEhkZyXQQAOiKvz/h8ciaNYS5MTw9Pb233nqrpqbm2bNnTGXoPhUVFRMTk9bW1narvKLgDgAAIOVQcAeALujp6Z09e1ZOTs7b2/vevXtMxwEAGMgWaGsnTJlC/8VPmUIIuVBe7pKRMS8lZWNW1k/Fxbdfv67p5/uNvLy8goODVVRUIiMjra2t+/VYfScsuMvEfFWAwau0lJw4QVgs8tVXzAYRTnJnNkY3dVhbpx9MS0sTCATMxAIAAACRUHAHgK7Nmzfvyy+/bG1t/fDDD6uqqpiOAwAwiGiy2UbKyo0CwaO6upCXL7fl5i569Mg5I+NfhYWxVVXlPJ54D7dnz579+/crKCicO3du7ty54t15f5g6deqIESOeP3+emprKdBYA6NyPP5LGRrJyJbG0ZDYIXa2W6TbuOjo6I0eOrK+vz83NZSgXAAAAiIKCOwB0y549e2xsbAoLC11dXZnOAgAwiDi/9dZ5S8tbVlaHTExchw+frqkpT0hGQ8Ovr1555ecvSU1dkprqlZ9/9tWrjIaGPs51PHTo0LfffisnJxcaGrps2TLxvIF+xmKx6KgRERFMZwGATlRWkn//mxBCvLyYjiJj/Vg6W+VVtt4FAADAYIOCOwB0C5vNPn36tKam5vnz53/55Rem4wAADC5q8vLTNTVdDQwOmZhct7I6Mm7cFgODWZqaavLy5TxebFXVj4WFzhkZix498n70aP/+/ffu3WtpaenRIU6fPr1161YWi3X48OEPP/ywn95If0AbdwBp99NPpLaWLFlCpk5lOoqMlaqFadt1zZKtdwEAADDYsJkOAAAyY8yYMUePHl21apWbm9usWbPMzMyYTgQAMKAMYbM15eW73ExZTm6KhsYUDQ1CiICinjY1pdTXp9TVpdTVlTQ35z59esbTkxCioKAwceJEW1vb2bNnL1iwYOjQoSL2GRERsX79eoFAsH//fpm7k2nhwoVqampcLre4uHjEiBFMxwGAv6uvJz//TAgh33zDdBRCCDE1NVVWVi4oKKipqdHU1GQ6TheGDx+up6f36tWrwsJCQ0ND4eMouAMAAEgzzHAHgB5wcnJycXGpr693cnJqampiOg4AwICyf8yYHaNG9eglcizWGBWVlbq63xsZRYwfHzlhwqphw7Zs2TJ+/Hg+n5+YmBgUFOTk5KSnpzdhwoTPPvvs9OnTz549a7eTGzdurFq1qrW1defOnV8xvZ5hL6ioqCxcuJCiqEuXLjGdBQDecPgwKS8nM2eSOXOYjkIIIWw229LSkqIoWVn4ocOm8521mgEAAABpgII7APTMoUOHTE1N09LSvv76a6azAADA3wxXVFw+d+6hQ4fS0tKqq6tjYmK8vb05HI6SklJ6evrhw4fXrl1rZGRkYGDg4ODg7+9/586de/fuvfvuu01NTZ999tn333/P9DvoJXSVAZBOTU1NR69fbzY2Jjt3Mp3lL7I1PbzDtMbGxurq6kVFReXl5QzlAgAAgE6h4A4APaOmpnb69GlFRcXAwECsUAcAILU0NDQ4HI6Pj09MTEx1dfXdu3f9/f0dHByGDh364sWLqKgoLy+vOXPmLF68uLa21sXF5We654NsWr58uZycXGxsbENDA9NZYODw9fWtq6uTxds+pMfJkyddo6PnaGmRJUuYzvKXAVBwl5OTGz9+PCEkLS2NmVgAAADQORTcAaDHrK2t9+zZQ1HUJ598UlJSwnQcAADogqKi4qxZs7Zv3x4REVFeXp6XlxcSEuLq6mpiYsJms3V0dI4fP85isZiO2Xt6enrTpk1rbGyMjY1lOgv0HkVRLi4uV65cYTrIfykoKKipqSkoKDAdRFbx+fwff/yRELLdy4tI0xlmABTcRTwOAAAAjEPBHQC6EBoaev78+XYP/vOf/7S3ty8rK1uzZg2fz2ckGAAA9M6YMWNcXFyCg4MzMjLYbHZlZWV+fj7TofoKXWUGgHPnzoWFhS1ZssTBwSE7O5vpONBXZ86cyc3NNTMzW7lyJdNZ/mbSpEksFistLU0mfsSam5srKSnl5eXV1NS0fRwFdwAAAKmFgjsAiJKRkbFlyxZHR8eEhIS2j7NYrKCgIGVlZVNTU3l5eabiAQBAX8jLy7/zzjuEkAHQIkxYcBcIBExngV5asWJFQEDAkCFDoqKixo8f7+7u/vr1a6ZDQS9RFLV//35CiJeXl5ycdF11amlpGRoaNjY25uTkMJ2la2w228LCgqKo9PT0to9j3VQAAACpJV0/fQBAqjQ3N69Zs6ahoeHjjz+ePn16u2e9vb2bmpq4XC5KGwAAsquzieH3799ftmzZd999x0So3pg4ceLo0aNLS0u5XC7TWUCUlpYWQkhra+ubTykoKLi7u+fl5bm5uQkEgqCgIGNj48DAQCmchkxRFNMRpN2FCxfS09NHjhy5evVqprN0QLamh3eYduLEiXJyck+ePKH/mwIAAADpgYI7AHTqyy+/TElJGTt2bEBAQLunwsPDw8LC6AVUpW3WEgAAdN8777yjpKR09+7d8vLyto/zeLxLly6Fh4czFawX7O3tCbrKSDEej3fkyJGoqKiRI0f6+PicO3euw82GDh0aGBj48OHDuXPnVlRUeHh4TJs27fbt2xJO26Hc3NxPPvlEU1OzubnZxcXl5cuXTCeSXn5+foQQLy8vRUVFprN0QLYK7ps2bfrjjz/adeZRU1MbM2ZMS0tLVlYWU8EAAACgQyiTAUDHLl26dPDgQSUlpfDwcA0NjbZP5eXlffrpp4SQn376yczMjKGAAAAgBurq6nPnzuXz+ZcvX277uK2tra6ublZWlgy10kYbd2kWHR09YcKETZs21dXVNTQ0FBUVOTk5vfPOO5mZmR1uP3ny5Fu3bkVERIwePTo5OdnOzs7BwaGgoEDCsYVqamq2b99uaWn5xx9/tLa28vn8sLCwcePG7d+/v7m5malUUuvKlSsPHz586623NmzYwHSWjslWwd3GxmbFihVvvfVWu8fprjKy8i4AAAAGDxTcAaADxcXF69atoyjKz89v8uTJbZ/i8Xhr166tqalxdHSU2osoACCEGBkZXbx48fDhw0wHAWnXYZ1a2N5dhurX8+bN09LSevTo0dOnT5nOAn/JyclxcHBYunRpVlaWiYlJeHj4y5cvg4ODdXV1L1++TFfh291gIeTg4PD48WM/Pz8NDY2oqChLS0svL6/a2lpJ5qcoKjQ01NTU9IcffuDxeM7Oznl5eU+ePHF0dKytrfX09LS0tOxstv6gtXfvXkLItm3bVFRUmM7SMdkquHdmYLwLAACAgQcFdwBoTyAQrFu3rry8fMmSJe7u7u2e3bFjR3x8vKGhYXBwMCPxAKCbNDQ0li5dOnv2bKaD/BePxzt8+HBdXR3TQaC9d999lxBy+fLldo2AZW7CuIKCwqJFiwghUVFRTGcBQgiprq728vKaMGFCVFSUurq6t7d3Wlqao6Mjm812dXXNyspyc3OjKOrIkSOmpqad9WpXUVHx9PTMyMhwdnZuamry9/c3MzMLDQ2VTBf1hISEWbNmrVu37uXLl9OmTbt7925oaKi+vv7YsWPDw8OvXbs2YcKEvLw8JyenhQsXpqamSiCS9IuPj799+7aOjs6WLVuYztIpY2NjTU3N4uLiV69eMZ2l9yZOnEgIiYmJqa6uZjoLAAAA/AUFdwBob9++fdeuXdPT0ztx4gSLxWr71NWrV3/88Uc2m/3rr79qa2szlRAAZM61a9emTJny2Wef7du3j+ks0J6hoeHEiRNrampu3brV9nG6vfudO3cqKiqYytZTMjdIMFAJBILQ0FAzMzN/f396Vnhubq6Pj4+SkpJwGx0dncDAwLS0tMWLF1dWVnp4eEyYMKFdayOhESNGhIaGPnjwYObMmSUlJevWrZsxY8b9+/f77y0UFxe7uLjY2NjEx8ePGDEiJCSEPnrbbRYsWJCUlBQcHDxs2LDr169bW1tv2rSprKys/1LJhF27dhFCtm7d2q4noVRhsVjjx48nhKSlpTGdpZeam5tDQkI0NTVTU1P19fUdHBxCQ0MbGhqYzgUAAAAouAPA3yUkvPb3/0lOTu7UqVP6+vptnyorK1u/fr1AIPj+++/bXXACAHQmOzvbwcGBw+Gkp6ebmJjY2toynQg60GGdWtjePTo6mqFcPbZs2TI2m33z5s2amhqmswxet27dsra2XrduXWlpqZ2dXWJiYmho6Jvtp2nm5uaXL1+OiIgYM2ZMRkbGO++84+DgkJ+f3+HG9BzzkJAQfX39hw8f2tra9sfKpY2NjfQ8+rCwMGVlZU9Pz8zMTBcXl3azEGhtZ+sTQujZ+v7+/u3uFxk8Hj16FB0draam9vnnnzOdpQsy3Y+F/o/rjz/+oChq6tSpra2tUVFR69atGzFixMaNG2/cuCEQCJjOCAAAMHih4A4Af6muJqtWDRk27Jmv7y/0XflCFEV9/PHHL168sLOz2759O1MJAUCG1NXV+fj4TJw4MSoqSk1Nje4msXTpUqZzQQfogntERESHj8vQhHEdHZ2ZM2e2tLRcvXqV6SyDUVFRkYuLy/z581NSUt5+++2QkJAbN27Q6zqK5uDgkJGRERAQQPdqNzc3d3d373DUhMViubi45Obment7KykphYWFjR071sfHp6mpSSxvITIy0sLCwsvLq66uzt7e/smTJ35+furq6qJfpa2tHRgYmJ6evnTp0qqqKi8vr4kTJ166dEkskWTLnj17KIrasmWLrq4u01m6ILsF98ePH9vY2Dx48GD06NHx8fEJCQmlpaXBwcG2travX7/+5ZdfFixYMHLkSHd39zt37jAdFgAAYDBCwR0A/vLZZ+TpU6Kjo7R9+7p2T/2///f/oqKidHV1z5w5Iy8vz0g8AOhQUlLS9evXNTU1g4ODCwsLmY5DyP+6SYwdO9bX11e4xmC7bhJCPB7vyJEjqqqqra2tR44cwaQ8RkybNk1fX//Zs2ftuit01t5dmsncIMHAUN/Y+O2335qYmISFhamqqu7atSs7O7uzWeEdUlRUdHd3z8zMdHV1bW1tDQoKMjc37+ycoKam5uPjk56e7ujoWF9f7+vrO27cuNDQ0L68haSkpLlz5y5fvvzp06eTJ0++detWZGSkkZFR9/dgamp68eLFCxcuGBsbZ2VlLVu27L333ssrKOhLKtlSWFj4xx9/KCgofPHFF0xn6ZqMFtxjYmJsbW2fPn1qY2Nz//59CwsLQsjQoUNdXV3v3LmTn5/v5+dnYmJSUlISFBQ0Z84cCwsLHx+f3NxcpoMDAAAMIii4A8B/HTtGzp4l6urk9GmiqPi3p5KSkr755hsWi3X8+HEDAwOGAgJAey9fvty4ceO0adOKiop4PN79+/ctLS39/f2bm5sZTPXgwQNbW1u6m8T06dPpNQY76yZx6dKlCRMmeHl5NTQ01NXVbdq0aebMmfHx8RLODHJycvb29uSNOrWwvfvt27cZitZjy5cvJ4RERUW1trYynWVQoAiJrapam5t7Pi6uubnZ0dHx8ePH3377rYqKSi/2ZmBgEBwc/ODBg1mzZpWUlGzatGnGjBl3797tcGNjY2N65dKJEycWFhauW7duwYIFvVi5tKKiwt3dffr06XFxcUOHDg0ICHj48OHcuXN7kZ8Q8t5779Gz9TU1NSMvXvymsvJfhYX1Ha0HO/C8/fbbDg4OfD4/NjaW6SxdmzBhgpyc3JMnT2RoQPHYsWPLli17/fr1Bx98cP369Te/W42MjDw9PbOzs+/fv79161Y9Pb2MjAx6RMrW1vbgwYNlrwf7GgMAAAASgII7ABBCSE4O2baNEEIOHybjxv3tqbq6+tWrV7e0tGzdupWuYgAA43g8XmBgoJmZ2S+//CIvL+/m5nbv3j1HR8fa2lovLy8TE5M+zvTsHbqbBF0xp9cYjI+Pt7Gx6XBjurf7smXLsrKyTExMIiIiwsPDDQ0NExISZs2a5eTk9OzZMwnnH+Q6mxgucxPGTU1Nx40bV1lZ2a8ragLtcX39x5mZXvn5hS0t9vv23b17Nzw8fNSoUX3c7dSpU+/cuUOfE7hc7pw5c5ycnJ4/f97hxgsWLEhMTPzpp590dHRu3Lixfv367h+IPpcaGxsHBQXJycm5ubnl5eW5u7v38WY+BQUFera+76lTBYT8+urVysePIyoqBvz9OywWa9KkSQKB4OOPPz5+/DjTcbqgpqY2duxYHo+XkZHBdJauURTl4+Pz6aef8ng8Nze33377TfSYlo2NTVBQUElJSVxcnKurq7q6+r179zw8PCakTFiUsyi0MrROUCex8AAAAIMNCu4AQJqbyapVpLaWrFtH1q5t/+zWrWr6+r9NnjzDz8+PiXQA0F5sbOykSZM8PDxev37N4XBSUlICAwOtrKzEMtOzdxoaGvz9/c3NzcPCwlRUVESvMVhdXU03OI6KitLS0vLz80tLS3NwcHB0dMzIyKD7Mp87d46+C76xsVEybwEWLVqkqqqakJDQbglKuuD+n//8h6FcvSFzgwSyqJzH2/vs2YbMzLT6el0FhW9Gjdo/a5YY11RnsVjtzgnm5uad9Wpns9mff/55Tk7O559//q9//aubh4iNjbWysmp3Lh0yZIi43sLw4cO/XbUq1NzcSl29gsf7/ulTl4yM5LoBXuX08fHx8/Pj8/mffvrpgQMHmI7TBdFdZbZu3eru7v7gwQPJhupAfX39ihUrfH19FRUVT548GRgYKCfXrQt5eXn52bNnBwcHv3z58syZMx97fVypWRlbG7vu6brhqcOdnzpH12aqcAoAACAASURBVES3UrgZCAAAQNwoiRg2bBghpLS0tO2Dly9f3rhx47lz5ySToS/OnDlDCPnwww+ZDtJ706dPJ4TEx8czHaTfrVmzhhBy6tSptg8+f/5848aNvr6+TKXqvrKyMkLI0KFDJXnQrVspQihjY+r16/ZPnT5NEUKpqVGZma2SjCRD6OLC3bt32z6YlJS0cePGgwcPMpWq+xISEgghU6dOZToIdEtmZqZw0VG6WfCb2/D5/JCQEPqbV05OztnZ+dWrV/2aKiIiQjih1d7evqCgoLMt6Wx6enrCbC9fvnxzs8LCQmdnZ7pYT6+7KBAI+vENwP/QXWWOHTvW9kE+n6+vr08ISU1NZSpYh+rq6jr7GXnz5k1CiJmZmYQjDRItAsGZ0tK5ycnWXO6MxMQfnj+va+3fHwnPnz93dnamTzIjR44MCQnp4w7bnkvHjRsXFRUllpwi3Kqutk9NteZyrblcj5yc4ubm/j4isw4dOkRXhD09PZnOIsru3bsJIdu2bXvzqZqaGlVVVfpDMnbsWG9v76ysLMknpCiquLjY2tqaEELfw9HHvVW2VoZUhHCyOaxEFkkkJJHoPNJxfeYaVxsnoLr4qq1srWwW/PXR3f9y/1dFX/UxDwAAwIDEZMFdCnVWI5CVgntNTU15eXmHTw3ygrsUevr0aYePS77gfukSxWJRCgrUm5+OvDxKU5MihPp77QX+psOCuxTq7PyGgrusqKys9PT0VFRUJIRoa2v7+fk1i6zX9HT73klMTJw9ezZdj5gyZcrt27dFbHzjxg16LiEhxM7OLjk5WfTOe7o99F1wcDAh5N133233+MaNGwkhe/bsYSRVh5qbm//xj38QQn7++ec3n+XxeOrq6vLy8itXrjx48GBqaiqfz5d8yAHpVnX18rQ0YeG4sKlJYodue06YN29eSkpKL3bS9txI32HTH+fGDjXy+SdfvJiTlGTN5domJQUVFdUP6I9lWFgYm82W8pp7VFQUIWThwoUdPpuenu7t7d124VwLCws/P7+SkhKJJXz06JGhoSEhxNjYOCMjQ4x7ft78PKA0YHLGZLrsThKJYZqhW6FbckP7b9vClsK1BWvVk9VJIpFLlJuXPS+lIYWiKJcCl/nZ88UYCQAAYMBAwf2/srOzHR0dVVVVnz179uaz0l9wFwgEISEh+vr6GzZs6HADFNylR21trfDm6DeflXDBvbiY0tWlCKH+9a/2T/F41MyZFCHUBx9IJouskv6Ce0lJiaurK5vNfvDgwZvPouAu/Xg8XnBwcO9mrHdnRnzvlJWVubm50W2OdXV1AwICWjuf4trrGevdnBEP4lJSUsJisVRVVevr69s+/ueffxJCbGxsmArWTmtrq5OTEyFk2LBhHVag9u7dSwhp2xtEQ0ODw+F4e3vHxMQ0NDRIPrNM4L/x11ZBY+PW7Gy61P5+evrdN2+Lk0DCN84J3b++6Mtrxai0uXlnQcFULteay33n0aOo8vK2Z0OByH8FMue3335TUFAghGzevFk6B70KCwu7/OHN5/Pj4uLc3Nx0dXXp84mcnJytrW1wcPDrfv6vIDo6WlNTkxAya9as/rtZLb3x/7d353E1Z/8fwE8LaUGkSCKyVFMUZQkhWYZmMF/bDOFnl1GWGTFjZAwz2dJkiyxlFwZlnfCNLG23XZslRUj7vt3u+f1xfO/cuW23ut3bzev56A997udz7rl83Pu5r8857xPr/M65Z0xPfvJu9MzI+Z1zclkypTSzIrNHTA/dGN2TWSfjS+IDCwKnvJgyKH5QJa1E4A4AAFATBO40Nzd33bp1bJxL+/btb968WXWfZh64P3782NzcnF3/DR8+vNpxOgjcm4PKykpPT0/+N73NmzdX3UfCgXt5OXV2phMn0qrZl5MTJYTq6tKsLMn0RVY158C9tLTUxcWlbdu2hBAlJaUjR45U3QeBezPHarKzd/gxY8ZERUU1oBF/f39DQ0PWiI2NzbNnzxrTpfLycjc3NxYBtGrVysHBoZbEoaioyNnZuU2bNoQQFRUVZ2fnBmSdOTk5q1evZqmNurr63r17y7nljXkJUAsLCwtCiFCFjeLiYhUVFXl5+ffv30urY3w8Hm/x4sXssi08PLzqDgcPHmSfs7t27fLw8Jg7d67gAFVCSOvWrS0tLX/88cdr165lZGRI/iU0T0VcLgvTBX+iCgoopXkVFbtSUwdzOIPCwsZERp5NT+dKtcpTTk5OfUep379/v/HvpWIUU1g4Pz6e/SXPi4+PLixk260jI4X+CW7K+HXY9evX2dqec+bMqaiokHZ3qsFi9Ldv39a5Z2lpqa+vr52dHb/UTJs2bWxtbX18fJpinsThw4fZFIFZs2aVlJSIvX0hlbTyfv79Ra8XqUeqs9hdIVwhojhi3dt18hz5qOIowT1zubkUI9wBAABq9lkH7mycS+fOnescN9dsA/e3b9/yxwx27dq1ljGDCNylLigoaOjQoezqfPDgwU+fPq12N6nUcK/69ee//6UKClRRkTbLGLl5abaBu6+vr76+PjvlbG1tX7x4Ue1uCNybrZevX06ZMoX9C+rr61+5cqUxrbGUnA34ZSl5bm5uA9oRPK9sbGzi4uJq2pPH4/n4+LDa7mzxw5pKaYkoMTGRVRgfuGJg39i+frl+jWkNarJ161ZCyLJly4S2V1veXSrWrVvH7t8EBgZWffTMmTPy8vJycnIeHh6C29++fXv+/PlVq1aZmpqymRmMnJycoaHhkiVLrp87R2t4n/xMsMD9yLt3z4qK+D8FXO7ljIyxkZGDwsIGczjbX7/ObjaZaWJi4uTJk9m/Yy112MVe/11cKim9npk5LipqUFiYRVjYL8nJWeXl1pGR21NSBP8J8prNX3iDBQQEsHv/U6ZMKZVgDSJRFBUV9erVi90PSEpKEvGo3Nxcb29vW1tbFoizGz92dnb+/v5iGcjP5XK///579gbl7Ows4VVMSnmlvrm+dsl2Bs8MKmll79jeE59PrHZPBO4AAAA1kWjg/ujRI8k8nSiCgoKGDBlSZ/rJrF+/nhBiZmbWfK4Ri4uL+QNXlZWVnZyc8vPza9o5Ly+P1f77fAL3H374Qdod+YdgLQUdHZ3aayk8efKEjZe5cOFCQUGBJPvJ9/Ej1damhNBt26Ty/DKGBe6HDx+Wdkf+ER8f/+WXX7L3t379+lU7cYfv+PHjLINoWPwKTaGwstD5nXPvO73btGmjqqrq7OwsrqFtmZmZ/DowGhoatdeBqYpFsYSQL7744u+//65lz7CwsOHDh7OdBw0aJMYLgOvXr1tHWrPBd5NeTEooSRBXy8BEREQQQrS1tYU+qmoq7y5hzs7ObIj6rVu3qj7q6+vLZkLs2LGjlkYKCgoCAwNdXFxsbW35ZWdWWVlRQmjnztTWlrq40MBAKsqQ1YoK6u1N58yhNjZ0+nS6bx/931BlGh5O7eyo0OI6vr506VKRX65EscD9xr87/L6szDI8fFBY2MqkpJdNP8a2Afz9/b/44gv+XcDY2Fj+Q4WFhfwZNuJ9LxWjAi5375s3QzmcQWFh1zIyrCMjj0iwPrjEhISEdOzYkRAyadKkZlLTiQ296tq1K3vHY6cQK9Eu+lSet2/furm58T/vCCHdunVzcHCo9nagiAoKCtgNTiUlJekOIeLyuJW0Uo4jt+bNmmp3QOAOAABQEwkF7nfu3GnTpo2iouLSpUulPnW3Xuknfzydurp68xkX4+vr27NnT/7A1VevXtW0J7+2OyHkl19+ESrJ2iK9fPmSVU4YO3ZsTEyMdDtTVFTk4uKipqbGxuI5OTnVkqGz+dFKSkosLOBPU/X29s7JyZFYn3k8+tVXlBBqZUXrE8R9vsLDw9k9RVtb20YO4G287OxsBwcHNt6qQ4cObm5utUzfZrXd5eXlVVVVGxa/gthV0srjmce7RHdh65JtPLWxKVZm43A4I0eOZO8zda50KujVq1fa2tq1V2/gn1cswjh8+LDY6/aW88rd0t3YnPdW4a0c3jjkcCX3Jvk5YAVYQkNDBTempaVVW95dktzd3QkhCgoKPj4+VR+9f/8+i1Z//vln0dssLy8PCgpydXUN/P57qqVFCfnnR02N2tjQLVuovz+t9uO7oICOGEFVVamdHf3tN7pkCdXQoH360DdvKKX06lVKCBX6XNi2jaqp1edFS061gTul1OfjxwfN+45s1Rk8OTk5Pj4+bLgJm2FT7SpNzUdKScme1NRKSltq4E4p5XA47HppzjffVP8fSoKuXr3Kr7RmYWHh6uq6YMECViqNvclMmDDB29u7lvFMQuLi4pydnXv37s1P3o2MjJydnWuaX1iTt2/fmpmZsasy0T+dm05xZTHhEOd3ztU+isAdAACgJhIK3DMzM5ctW8ZfWu3QoUNSyXTqm36uWbOGXzF2xYoVRkZG/OEz0kpyw8PDraysWDfMzMwePHhQy86BgYEDBw5kO48YMaLaOqctT0VFxd69e9kNklatWjk6OmZnZ0ulJ76+vvyisba2tsnJyTXtyeVyPTw82JcQBQWFefPmbd++feTIkSyxYkP5vvzyy6NHj2ZW+Rosdq6ulBDaoQNt3t9Mm5GioqJNmzax+qSqqqpbt26VytAtwXU12d3NWhbXKikp2b59O3szbNOmzcKFCy0tLflvLM3hC97nKaQoZFjCMDZ22yLe4knhkyZ9OtHfowSVl9dYPL2srIxf271169a113ZvvKyKLIc3DgrhCoRDOkZ1dEt34/Jwu0g87O3tCSFVFxphC8bUVLijqXl7e8vJycnJyVVb1iY4OJhN+7O3t2/U06SlUR8f6uBABw2icnL/hO8KCtTIiC5dSr29/8nQHRyomhoVGFJN09Jot2504kRKZTVwX56YuD0lhf1carJFGpvChw8fFi9ezK6d2AccIWTo0KHVLhjebFlHRtrFxfH/CY62rPA9Pj7e1Nj4mb4+NTcXnvwhKUFBQaNGjWKnR48ePQSHXpWUlDSyRDuPx3v06JG9vb2GhgZrQU5ObuTIkR4eHqJ8+Q0ODmbDpPr06SN6fZumphKhsjhlcbUPIXAHAACoiYQCdyYuLm7ChAns4sPAwKDaucBNx9fXl1WSrTNZYBMM+Stb8mu7s+0sz2Lbm26x+KrqVQdAsLZ7naP4W6SsrCz+X1fHjh1rH+crdhwOZ8SIESKOHg0ICBgwYADbedSoUREREfyHMjIyWIFI/ph3BQWF4cOHu7m5paWlNUXPo6NpmzZUTo5evdoUzbdkglNnunXrJuH/dPfu3TMxMWEnibW1dXR0dC07+/r6snKl7M3w5cuX/O0iTp0BsXtb/tYu2U6OI0c4RCdaxzvLm0clcf4I3odm1ckaXMmqpvOqqUUUR1glWrG7FIbPDG/n3ZbM87Zst27dYrffhLb/+uuvpLry7hJw5coVNndnz549VR+NiYlh8dacOXPEOaMiPZ3+9Rddu5YOGUJbtfrX4PcBA2hZGVVVpevWCR918CAlhL56JaOB+6KEhM3JyeznXDNbfkkU4eHh/fv379q1a7t27Zpihk1Ts46M/DYujv9PcLBprvekiPfyJdXTo4RQU1Mq2RMsISFhxowZ7FJNQ0PDxcWlpmKhOTk57Aqcv95Dhw4dWIl2Ea/uuFyuv7+/nZ0d+4Q1NDSs85BLly6xoN/GxkaSc1vrNCpxlEmcSbUPIXAHAACoiUQDd0by38nFlX4y2dnZTk5OrVu3Ztdetc+sF4t6rXTHaruLJT1pAeLi4iZOnCjJezwZGRn8oL9Tp0613xcRPaLNyspi1/1KSkrs5cjLyw8fPtzFxeX58+fi6nxhITUwoITQVavE1eRnR3BxiCFDhkhg1YTnz5/PmDGDPWPv3r2rLbPAFx8fX/v/iHotDgH1klGR8bb8bdXtxZXFLh9c2ka2JRyiHKHs9NYpnyvpv/NG3qOt87ySAN9c354xPVnsbvvC9lWZSLeLcrm5yWXJTdw1mVRaWsreB4TKZNVU3r2p+fv7s4+/3377reqjL168YFWYv/766ya8uV5URAMDqYsLtbWlHTtSGxsaEUEJoWfOCO8ZGkoJoT4+nwL3gACalPTPz5o1zTxwr1pSRuacOXOGEDJz5kxpd6QhWnBJmX+8e0eNjSkhtF+/T/WXmtjHjx/5BfdUVVWdnJxEXLemphLtHA5HxKcuKCg4efLkhQsXat/Nzc2NTc5YtGhRLTPJpOJM1hnCIe4f3QU3FlYWUgTuAAAANZNC4E4lOOu8idJPSmlCQsKkSZPYhVe/fv1u3LjRFP2nta4EVVXD6gO0eJK5x8Pui7Czmt0XqeWsLioqcnZ2ZkVIVFRUnJ2dRSxCkpOTc/LkyalTp7JjCSFycnJ2dpd37KCNf1mLFlFCaP/+tPmtKCZL2FSYzp07k39PkRE7thYcC6HqXAuOzflgXzXrnPMhGL927dr1M5wi00gZFRlnss64fHDZ93FfbMmnN+2lKUuHJQwT2rNhMXETCQ4OHjp0KHtjqXMtcaZe51VTE7x10Tq8tcMbB8FbF4WVhX/l/LXzw07XdNdHBZ9WcHVLd2sX2U5K/W3u/vOf/xBCDhw4ILS92vLuTerp06dsGIGDg0PVR9PS0tjUHGtra8mth8nl0vR0ev8+JYT+97/Cj757RwmhHh6fAveqPwjcm9jZs2cJIbNnz5Z2RxriswjcKaXp6dTUlBJCe/Sg4hs7UlVBQQF/JAEruNewlVGePXvm7Oysr6/PT95ZifbGf62oqKhYvnw5u6R3dnZuZGtNZGnKUsIh1knWv7z7Zc2bNQPjB057OY0icAcAAKiZdAJ3Ji0trenWVWtA+skW2qpX+unv789fb8fGxubZs2fi6j+lNDExcfLkyazxvn37+vn51bJzg1fA+0w09T0eoTMhLi6upj15PJ6Pjw+rbsRW8WrYMpvFxcWsymSHDh00ND6yr/BGRtTZmTb4NHz6lBoZ0VqLkYCoCgoK+Gm4mpqas7NzTdOWG0BwMWQ5OTk7O7v379/XtDOr7d6pUyf+V00RV64OCQkZNmwYO6stLCyePGnaeuItxonME6oRqh0iO7Ap2HIcuTVv1vAoTyhwDy8K5xdCMYs3e1BQ24IcEsNuF4lyajX4vGpqb8rffJf8HSvO0y26m1+uH6X0fv79ztGdlSOUhycOH5wwWCFc4esXX5dUliBwr4WXlxchZCKrRS6gpvLuTSQqKqpDhw6EkPnz51e985eRkcHW1xk8eLAUpuMEB1NC6KVLwttjYigh9NSpT4F7XBwtKPjnZ/NmBO5NDYG7bMjJocOGUUJoly60KRbHKit75OnJPqfk5OSmT5+emJjY+FbDwsIcHBxY6VH+lFM3N7eGFRrNzs62trZmIyeuXLnS+O41nbv5d+1T7b9+8fX81/N3fNjBJu15Z3m7pbtJu2sAAADNkTQDdyY0NJQ/Tc/c3PzRo0eNb9PX15c/AKGp08961XsRUU5ODr9qjbq6ei0VBmk9a7t/5priHk9CQsKXX34p4lyHsLAw/tk+aNCgwMDARj47pbS4uPzKFTp3LlVX/2fwnJER/eUXWqUe0icXLlAnp3+tiVpRQZ2caFgYlbVKp81dUlISv95Lnz59aq/3IiLBYch15uB37941NjZmO48dO7a+qz3XK9kHSumTwicK4Qpzk+cWV366a3sn786GtA1cHpcfuGdWZPKX+tSI0miGS31WnTwh9BnUyPNKAvjLz97Mu/m2/G37yPYjEkdkVHy6JRBTHLMsZVlhZSEC91pkZmYqKCgoKSkJBdk1lXdvCklJSez9Z9q0aVUnT+Tl5bFFXI2NjbOysiTQH2G5uVRenv7+u/D2ixcpITQ8XEZruCNwl67PKHCnlBYWUhsbSgjt2JGGhIitWR6P+vhQfX1uly4dlZWHDRsm9qFIQiXa2YAeW1tbb2/vwsJCERt5+fIlG6+jra0tyWlDAAAAIAHSD9zp/1Lv7t2781PvFMEssD4ak342JusXV+pddb3W9JpXE2qKrP9zIHiPpzH/7tnZ2fxaCnVW83/37l3TzedguFwaGEgdHGjnzv8k73p61MGBBgZSwXGB8+ZRQuiXX/6zpbSUEkJPnBBvj+ATf39/saST9Sq0LcasPy8vb/369Sx+bdu2rfeTJ2WoMFOD6S+nq0eq53KreStmgfuxzGPtI9uzmifr3q6rds9motrlAZriHlITqaSVt/JuUUo3v9ssz5Hn1/YRhMC9duyz8vLly4IbS0tL3d3dJbCocmpqKhsPMW7cuKrDDoqLi0ePHk0I0dfXb1iBCPGYNIn27k2Liv7ZUllJR42iBgaUx5O5wL2Mx3N98yZO8OXIJpkO3D3S0oKaptJmM1VaSqdMoYRQdXX6+LEYGvT3pwMHfroONjZ+eeeOGNqsWXFxsY+Pj62tbatWrdiHo4qKyowZM3x9fWuvsfbkyRP2jc/ExKTB33wBAACg2WoWgTtTta5LfWtxrl69ml9Jdt++fbVc5TRR+tnIui7Pnj3r378/O3zMmDGRkZG17Ozv78+mUZMmqGbT4lW9x1PfmQ1nz57t2LEjq6WwcuXKWsbWCVazqbO6kVjwk/euXf9J3nV1qYMD9fenFRV03jyqp0cVFSl/6ioC96ZWXl7eyPobrq6uKioqhBBlZeXNmzcX1RyICFazqXZ4csOw+NXI1NQiJGRKTIx/dnbj22x5Okd3nvVqVrUPscD9XPY5wiE2STbV5r/N0O3bt/n1svr27cumXrVv337Xrl1NvWC4uFgnWRvHGVf7EAL32rm4uBBCFixYIPmn/vjxo4GBASFk2LBhVYeLlpeX29rasluPEoj+a5OQQDt0oEOH0qtXaXw8vX2bfvUVVVL6VNhd1gL3FkOmA/fPUVkZnTGDEkJVVenffze8ndjYT+0QQnV06OHDVIKzfrOysg4fPjx8+HA2MIKNwVq6dGlgYGDV4REXLlxgqzFNmDChqb8XAAAAgFQ0o8CdSU1NtbOzY5cpda5cKsTR0ZElWbUU0ZPAeq0NXrk0OztbQ0NDV1fX29u7lt0ktl5ri9eYezzXr18nhFhbW0dFRdWym9B6rS9evBBHx0VVWUkfPqSrV9Pu3f9J3pcvp/PmUWtrumIF7d6dFhRQisBdUtgKk2wqDFthUvSpMPv27avzLUUC67U+/fBhxrNng8LCBoWFrUhKeinachefiUpaKc+R/+HtD9U+ygJ3HuUFFoihlpQksXLtmpqaQ4cObdJ1gJvIF8++mPRiUrUPIXCvXVxcHCFEU1NTwqXqcnNzzczMCCEDBgzIrnJvr7Ky8ttvvyWEdOrUqVmMNkhIoFOnUmVlSghVVKRjx1L+gsO3blENDfrmzb/2d3WlPXpIvJefFwTusofLpQsXUkKokhJtQCnz1FS6dClVUPi0KLGzM5Xe9cnr169dXFz69etH/qdHjx5OTk6sgjyPx3NxcWGh/NKlS6W40jgAAAA0qWYXuDP//e9/BwwYwK5RRo8eXftYb77s7OzY2NrGDAqln41fVr4mRUVFLi4urKifioqKk5NTAcs16xIaGlpL5pudnc2v7V5nDRMQUYPv8dRegT0+Pn7ixImsWQMDg1u3bompvw0UG0udnWm/fvTq1U+Be0YG7dCBrltHKQJ3yYqLi5swYQI7NwwNDW/fvi3KURUVFU/5IU51goKC+LXdBw8eXPvOjcHl8S5nZNhERg4KC7MIC/slOTkbXxf/RzFc0eGNQ7UPCS2aKnMyMjLevXtX+4ds89Q/rr9Nkk21DyFwr1OfPn0IIWJZX0dERUVFI0aMYDWLqt7a4fF4y5YtI4S0a9eueZU85vFodrYkh9NCLRC4y6TKSmpvTwmhrVt/miMiiqws6uRE27T5dODSpbTmapwSFhISsnr1arYQBf/yjF2qKSgo7N+/X9odBAAAgCbUTAN3Ws9q5nWSSvpZr4LLtWN/G5qammL524CqGnaPp1psFDO/upGbm1uzGr1SWfkpcKeUHjhAFRVpeDgCdykQ4/2/N2/eiOutRnR5XO6u1NTBHM6gsLAxERFe79+Xo7A7pb1ie3314qtqH5L1wF12ffXiK/1Y/WofQuBepzVr1hBCnJycJPN0ZWVl7GpNV1e32lJvTk5OrLJWQECAZLoEsgiBuwzbvJlaWlJ+Iam8PHrjBvX0pBcv0rdv/7VnURF1caHq6pQQKi9PZ8ygTTaUqjEqKysDAwOXLl3KJlibmJioqan5+vpKu18AAADQtJpv4M7k5OTwx3Srq6u7uLjUtxix1NPP4ODgRg47vX//vmBt99prmECDNf4eDyu8IFinu5bqRlLED9wrK+mQIdTSkpaUIHCXAlbhqm3btg2ucNXgyTTi8rqkxOH5c1Zh5pvY2Eef/brNy1OWq0aopldU89aBwF1a9n3cRzgkuDC46kMI3Ot0//59QoiRkZEEnovL5bIlebW0tBISEqrusH37dkJIq1atrl+/LoH+gOxC4C7b+N/1Dh+mbdtSJSX6xRe0fXuqoEDt7Wl5OeXx6NGjVEfnU7XEiRNpIwbKSExxcfGFCxeio6NZbRkAAABo2Zp74M4kJiay1bHYom1+fn6iHFU1/azvKoXiUrWw8vv370U5ULDaSZ213UEs2D0etuBkve7x3L1718TEhP1jjR07Njo6uqm72mD8wJ1SGhJC5eWplxcCd6lJS0vjr+HctWtX0ddwbvByEWIXnJc3PTaWX9j91f/qYpXxeGfS04V+ssrLpdVPCXhV9qptZNuhCUPjSuLYlrCisBu5NygCd+kpqCzoFdtLL0aPXz3/eenzs9lnKQJ3EXC5XA0NDUKIBKoJ+fr6srER1X6AHjx4kF1EnTt3rql7ArIOgXtLcOUKJYRu2kT59TMvXKBKSnT1akopHTOGEkLNzem9e1LsIwAAAEBNZCNwZ/z9/b/44guWLtnY2NT+3e/u3bvGxsbNKv0sLCx0dnZmSa6qqqqzs3Mt3cEwRAAAIABJREFUSS7bma3nyXYWfT1PaLx63eN5/vw5G5RHCOndu7ePj4/E+tkwgoE7pXTFCqqri8BdykJDQy0tLdlZZG5uXnvFZA6Hw2ocE0IGDhz48OFDifWzJhU83tn0dKuIiEFhYUM4nF2pqQVcbh6XOygsbFps7P8lJPB/XrX0t7KgwiDDZ4aEQzSjNFUjVBXCFb5P/Z4icJeqV2WvRiaOJBzSPrK9eqQ64ZBxz8fxKA+BuyjmzJnTvXt3BQWFQYMGOTg4+Pj4ZGZmNtFzHTp0KCgoqOr206dPy8vLy8nJHT58uImeGloSBO4twYABdMwY4Y2bNtHWrWl6Og0NpefPU9SyAwAAgOZKlgJ3Sml5ebmbm1v79u3ZnGIHB4fcKhUMmnn6mZSUVHv3eDyej4+Prq4uIUROTm7GjBkpKSlS6SrUeY+nXjdRmg+hwD07m2ppIXCXPvZ/v3v37rX838/IyHBwcFBQUCCEdOrUyc3Njduc1ujLLC//NTnZIixsUFjY+KioJ/n5g8LCbmVlSbtfksajvJjimFt5t54UPsmo+DSz6m352xelL6Tbsc/cq7JXt/JuPSx4+Kb8DduSWZEZWyJ7y8BKGJfLdXR0ZLNwGHl5eWNj4xUrVpw6daraSuvide3aNVYYcMeOHU39XNAyIHCXeR8/UkKoq6vw9rAwSgi9eFEafQIAAACoBxkL3JnMzEx+5KShocGPnGQo/axpAH5ISAh/lKuFhcXjx4+l20+oeo8nJyeH/q9MUJcuXVg2KnqZoOZAKHCnlJ44gcC9uSgqKuLPblFRUeHPbmGnIltxi52K9S34LjHxRUWLEhLGREa+KS39PAN3gJYnPz/f39/f2dnZxsZGWVmZCNDW1ra1tXVxcQkMDCwXd82o+/fvs/fDTZs2ibdlaMEQuMu88HBKCL10SXh7Zmb1QTwAAABAMyNHKSWyKSIiYvXq1Q8fPiSEmJqaTpo06dixY+np6XJycnPnzt25cycLQ5stLpd7/Pjxn3/+OTMzU1FRcfbs2fLy8qdPn+bxeF27dnV2dl68eLHggDKQoqysrK1btx44cKCysrJjx44LFix4/PhxcHAwIWTw4MF//vknf11cALF48+bNzz//fOrUKUKIrq7ut99+6+fnFx8fTwixsbFxd3c3NDSUdh9rQwl5W1bWXlHROjLyVz29cR07su0KhCjIyUm3bwDQSFwuNyoq6tGjR48fPw4ICMjIyOA/pKamNmDAgBEjRgwfPtzKyordrm6wkJAQGxubgoICe3v7AwcONLrj8Lm4e/ny5i1bxo0e/eu+fdLuCzRIVBQxNSU+PuR/04I/+fiRdO5M/vyTODhIqWcAAAAAIpHhwJ3x8/NzdHRMTk7W0tL6+PGjzKWf2dnZv/76K1sKjMvltm7devny5du2bWvbtq20uwbC+Pd4NDQ0srKydHR0fv/9dzs7OzkEiNA0AgICVq9eHRUV1aVLlw8fPvTr18/V1XXSpEnS7peo8isrrSMjBbdYq6vv1NeXVn8AoCm8evWKhe+PHj2Kj4/nX1gqKir27dt3xIgRNjY2o0aN0tLSqlezsbGxo0ePzsrKmjt3rre3N4YgQD2cO0e++47Mnk3OnZN2V6BBsrKIpibZtYusW/ev7aGhZPBgcuUKmTpVSj0DAAAAEInMB+6EkJKSEjc3NzMzs7y8vJkzZ8pi+hkdHR0cHJyfn/+f//xHT09P2t2B2vj4+LRt2zYyMtLR0VFFRUXa3YEWrrKy8siRI717905MTFy+fDkrZCwrWOBur6Nj2a4d29JOQaGrkpJ0ewUATefDhw+hoaEsfA8NDS0vL+c/1KtXr+HDh7PB70ZGRrVfrb18+XLkyJHv37//+uuvL1++LFtvfSB9CNxbAHNzoqpKHjz418affyauriQtjfxv5hwAAABA89QSAncAAGiGWOC+rWfPifhiDPD5KSoqioiIYOH7o0ePcnNz+Q9paWkNHjyYhe8WFhZK/74Pl5aWNnLkyOTkZGtr6xs3brAa7gD1gMC9BfDzI19/TTZtIps3k1atCCHk8mUydy5xdCQuLtLuHAAAAEAdELgDAECTQOAOAExlZWVCQgIL3x8+fJiSksJ/SEVFxczMjIXvI0aMqKysHDVqVFxc3JAhQ+7evaumpibFboOsQuDeMnh6knXrSGUl6duXpKaSvDxib09cXQmmvAAAAECzh8AdAACaBAJ3AKjWixcvWPj++PHjhIQE/rWogoKCurp6VlaWiYlJQEBAR7x1QMMgcG8xcnPJgwckPZ20bUtGjCC6utLuEAAAAIBIMEAAAAAAACSnd+/evXv3nj9/PiEkPz8/JCSEv+yqkZGRioqKl5cX0nYAIOrqZMoUaXcCAAAAoN4QuAMAQJNoq6Bw3cREHVO/AaBm7dq1s7GxsbGxIYSUlJRkZmbqYhArAAAAAADIMuQgAADQJOQI6dK6tbR7AQAyQ1lZGWk7AAAAAADIOnlpdwAAAAAAAAAAAAAAoCVA4A4AAAAAAAAAAAAAIAYI3AEAAAAAAAAAAAAAxACBOwAAAAAAAAAAAACAGCBwBwAAAAAAAAAAAAAQAwTuAAAAAAAAAAAAAABigMAdAAAAAAAAAAAAAEAM5Cil0u4DAAAAAACAOHz4QKKiiLY26d9f2l0BAAAAgM8RRrgDAAAAAIDs43KJtzf5/nuydStxciLbtpHMzE8PJSSQ6dNJcvK/9vf3J9OnEy5X8j0FAAAAgBYMgTsAAAAAAMi40lIyfjxZuZK0a0e++YYYGpKjR4mxMXn2jBBCMjPJ5cskJ+dfh7x8SS5fJjyeVPoLAAAAAC2VorQ7AAAAAAAA0DjbtpGnT8mTJ8TM7NMWZ2cyfDixsyMcjlR7BgAAAACfF4xwBwAAAAAAWUYp8fQkc+b8k7YTQtq3J7/+SiIiSGio9HoGAAAAAJ8djHAHAAAAAABZ9uYN+fiRmJoKbx80iBBCOBxiYkIIIc+fEwWFfx5NS5NU/wAAAADgM4LAHQAAAAAAZFluLiGEaGsLb+/alRDyT+n22bMl2CcAAAAA+EyhpAwAAAAAAMgyVVVCCMnMFN7Otqipffo1NJRwuf/8HDwowS4CAAAAwOcCI9wBAAAAAECW6ekRNTWSmCi8PT6eEPKpngwhRF7+XyVl5OQk0jkAAAAA+LxghDsAAAAAAMgyBQUycyY5c+Zfg9wpJXv3El1dMnKk9HoGAAAAAJ8dBO4AAAAAACDjtm8nSkrEyoqcPEnCw4mvL/nmG/L33+TwYaKISb0AAAAAIDm4+gQAAAAAABnXpQsJCiKbNpG1a0lW1qfwPSCAWFoSQoiSEunWjbRu/a9D1NRIt24oLAMAAAAA4iVHKZV2HwAAAAAAAMSkrIwoKUm7EwAAAADwmULgDgAAAAAAAAAAAAAgBqjhDgAAAAAAAAAAAAAgBgjcAQAAAAAAAAAAAADEAIE7AAAAAAAAAAAAAIAYIHAHAAAAAAAAAAAAABADBO4AAAAAAAAAAAAAAGKAwB0AAAAAAAAAAAAAQAwQuAMAAAAAAAAAAAAAiAECdwAAAAAAAAAAAAAAMUDgDgAAAAAAAAAAAAAgBgjcAQAAAAAAAAAAAADEAIE7AAAAAAAAAAAAAIAYIHAHAAAAAAAAAAAAABADBO4AAAAAAAAAAAAAAGKAwB0AAAAAAAAAAAAAQAwQuAMAAAAAAAAAAAAAiAECdwAAAAAAAAAAAAAAMUDgDgAAAAAAAAAAAAAgBgjcAQAAAAAAAAAAAADEAIE7AAAAAAAAAAAAAIAYIHAHAAAAAAAAAAAAABADBO4AAAAAAAAAAAAAAGKAwB0AAAAAAAAAAAAAQAwQuAMAAAAAAAAAAAAAiAECdwAAAAAAAAAAAAAAMUDgDgAAAAAAAAAAAAAgBgjcAQAAAAAAAAAAAADEAIE7AAAAAAAAAAAAAIAYIHAHAAAAAAAAAAAAABADBO4AAAAAAAAAAAAAAGKAwB0AAAAAAAAAAAAAQAwQuAMAAAAAAAAAAAAAiAECdwAAAAAAAAAAAAAAMUDgDgAAAAAAAAAAAAAgBgjcAQAAAAAAAAAAAADEAIG7sIKCgpkzZ8bExNT3QC8vr02bNjVFl6AFKCoqmjlzZnR0dAOOffDgwdy5c8XeJZBdZ8+eXb9+vRgbXLNmzcWLF8XYIMi0lJSUmTNnvnv3rgHHXr58efXq1WLvEsiuZcuW3bhxQ1ytvXjxYubMmRkZGeJqEGTUt99+GxgYKK7W3r9/P3PmzNevX4urQZBRFy9eXLNmjRgb3Lt3r6urqxgbBAAAAFkhRymVdh+a0NOnT729vceMGTNr1iz+xoqKigsXLjx48MDR0dHY2FjokMzMTE1NTX9/fxsbG7bl7t271UZRrq6uqqqq/F8dHR1DQkKePn0quA+Xyz179uzff/+dn5/ft2/fZcuW9enTR2wvDyQuPz//2LFjSUlJ27dv79ixo9Cjjx49OnXqFCFk48aNenp6gg9lZ2draGjcuXNn/PjxgtsrKipOnToVEBCQk5PTp0+fJUuWGBoaCjXr5eW1fPny0tJSoe137ty5cOFCRkZGt27d5s6dO3z4cLG8RpCY169fHzx4UE1NbfPmzfyNhYWFhw8fDgsLKysrMzIysre379q1q9CBGzZsuH37dmRkpND2srKyM2fOBAUFrV+/vnfv3mxjdnY2a1BRUdHMzGzFihXt27cXOtDAwGD27NlbtmwR2v7+/fsDBw6UlZXt2rWr8a8XJKykpOTkyZMcDmfTpk3du3fnb/fz87t27Vp6enrXrl3nzJljZWUldGBkZKSZmVl8fLyBgYHg9uLiYk9Pz+Dg4OLiYkNDQ3t7e11dXaFjt27devr06aSkJMGNPB7v8uXLfn5+OTk5vXr1Wrx4sYmJiVhfKzStvLy8Y8eOBQcHV1ZWmpiYODg4dOjQwcXFJTk5WWhPAwMDobhKW1t7/fr1VTOs1NTUAwcOtGnT5tdff+Vv5HA4x48fT01N1dLS+uqrr6ZMmSInJyd4VHBw8NChQ1+9etWzZ0+hBgMDA0+fPj1x4sRp06Y19gWDRGRmZnp6enI4HAUFBTMzs1WrVqmqqv7888+ZmZlCe1pYWCxevFhwi6KiopeXV9XhCM+fPz906FDXrl1/+OEH/sawsDAvL6+UlJQuXbrY2tpOmTJF6KjExEQDA4Pw8HAzMzOhh0JCQk6cODFy5MjvvvuuUa8WJOvixYt3794lhLi7uyspKRFCuFzu8ePH7969W1paOnDgwFWrVmloaAgdtWXLlvPnzyckJAhtLy8vP3/+fGBg4Nq1a/kX6oWFhcePH3/y5El5ebmxsbGDg0OnTp2EDpwxYwb7BBTaXvsXCgAAAGgBWuwI98uXL1taWlpaWh4+fPj69etsY2Fh4Y4dO3r27GlnZ3f06NG4uDhRmiotLc35t3v37p04caLOAysqKiZNmrR69WpFRcXu3btfvnzZ2Nj48ePHjXphICXv3r374YcfdHV1165d6+HhkZWVJbRDcXHx/Pnzb9y4ceTIkY8fP4rSJo/HmzZt2sqVK9u0aWNubh4YGDhgwICAgABRjl27du2UKVMKCwt79uwZEhIyYsSIw4cP1/dFgbRwOJyZM2f27t17165dnp6e/O1FRUXDhg37/ffftbW1jYyMzp8/b2xs/OLFizobzMvL++233/T09BYtWuTp6ck/5OXLl2ZmZl5eXl26dFFWVt6+ffvAgQOzs7PrbDAuLm7BggV6enrbt2/ft29fg18pSEVWVtbmzZu7d+++fPlyT0/P1NRU/kM//fTTlClTCgoKzM3N09LSRo0adeDAAVHaLC0ttbKycnZ21tTU7N+//9WrV7/44gtRPkYppbNnz160aBGPx+vZs+edO3dMTU1v3rzZ8JcHkvXu3Ttzc/M//vhDTU2tffv2e/bsMTY2TktLKygoELo68vb2fvDgQZ0NRkZGfvvtt/r6+jt37vTw8OBvP3LkyNChQ5OTk3v27JmSkjJt2jQRZ0ucP3/ewsLCysrqyJEjt2/fbvhLBQlKSkoaMGDAvn37NDQ02H0XMzOz3Nzc/Px8wZMqKyvL09MzJCSkzgafPHkydepUAwODvXv3ent787cfOnRoyJAhkZGRenp6SUlJU6dOXbt2rSg9vHbt2siRI4cMGeLh4eHr69vwlwoSl5qaumjRInZNzuVyCSEVFRUTJkywt7cvLy9XVlZ2dXU1NzcX5XK9oKDgjz/+6Nmz5/z5848ePcrP4jMyMoYMGbJlyxZlZeVOnTrt27fPyMio6j3IqoS+UFS9vQQAAAAtg6K0O9BUHjx4MHny5CNHjkydOpW/kcvlBgUFbdmyRV9f39raWsSmbG1tbW1t+b9WVlb27dt39uzZgsPbqxUVFZWSkhIREdGjRw9CyLZt21i+hpHIsigtLS09Pf3YsWOZmZkrVqyousPmzZuzsrJ27dq1dOlSEduMiYm5cePG7t27161bRwhxcnLS19ffsWPH6NGjaz8wKyvr5s2bt27dGjNmDCGEx+NZWlr+/vvvy5Ytq9+rAinhcDg6Ojp379718vK6d+8ef7ufn19sbOz169cnT55MCFm5cmW3bt0OHjxY53zk4uLiyMhIFxcXDQ2Nr776ir/9zp07ffv2vX79OhveNX/+fGtr63Pnzq1cubL2BmNiYlRUVPz8/G7fvn3w4MGGv1SQhry8vISEBDc3t1atWglO8CorK9uzZ8+cOXPYXBxCiLW19e+//17n+UAI+fvvvzkcjo+Pz4wZMwghjo6OOjo67u7ugoFptZ4/fx4REREUFGRkZEQIKSkpMTQ0/OOPPyZNmtTwVwgS9Pfff1NKo6OjtbW1CSGLFi0aPny4h4fH9u3bBXcLDQ29ePGi0DDkaoWHh2tpad25c+f8+fPXrl1jG3k83tmzZ93d3fmfsP/3f/+3f//+rVu3Vp2UIyQgIOA///nPyZMnx44d25BXCNLg5+fXqVOngICADh06EEK++eabqVOnnjp1SugWr6+v7+XLlxcuXFhng8HBwX379n348OHu3bv5d525XK63t/cPP/ywY8cOtmXGjBnu7u4//fRT1cHIQh48eDB+/PgDBw4IvouCTFi1ahWbwsWfQejl5XX//v1jx46xcykqKmrQoEHbtm1zd3evvamysrLQ0NDffvtNV1dXcJbqvXv3ioqKoqKi2Ewve3v7QYMG7du3r84Ltnfv3n348OHo0aPZ2dnLly9v1OsEAACAZqzFBu7VXj+pq6tfuXKFEPLs2bMGt3zp0qVXr15dunSpzj3Nzc0TEhL4s6HV1dW1tLQwkEFGWVhYsIjq9OnTVR+NjIz8888/9+/fX7X6Ry3S09MJIV26dGG/tmnTpkuXLqKcIRoaGvHx8fxTS15evlevXjExMZRSodn30Dzx78oInU5Cp0Tnzp2VlZVFOSW0tbXZhGWhqlb29vYrVqzgnxWszowo5Y9nzZrFIob//ve/de4MzU2vXr18fHwIIf7+/oLbc3Nzy8vL+ScYIURPT+/Jkyc8Hk9evo4Zb+zk7Ny5M/tVQ0OjXbt2opycffv2TUpK4p+EysrK3bp1w0ehDFmwYIGdnZ2CggL71dLSUlNTMzY2Vmi3HTt29O3bV5T7KPzwVPBSSl5eXujdpnfv3jweLzs7u87Avc67PtAMrVu3bvXq1fzzavLkyYqKilXPqz179owYMWLo0KF1NsgvW7R3717+RkVFxadPnwrWz5w6deqlS5fi4uKqVtMSgtLbMurMmTN+fn737t0LDQ3lb7x//367du3mz5/Pfh0wYMC4ceOuXr1aZ+DeqVOnv/76ixAiVMdv9uzZM2bM4J/Apqam3bt3r3oCV2Vubs6u/c6cOVOflwUAAAAypsWWlGk6e/fuHTt2bNUij9USTD8vXryYmJg4e/bsJusaSAeXy120aNHAgQOXLFlSrwMHDx7cvn37DRs2sFDs6dOnkZGRogzjIv8+tSIiIm7cuDFr1iyk7bLO2tpaQUFh0aJF7HvdyZMnS0tL+d8PG4Z/VlRUVOzcubN169bffPONGPoKMkhLS6t///4eHh5eXl5cLjctLc3Pz2/BggV1pu2EkNGjR7dq1WrFihUswrh48WJmZuaCBQtEeV7BtyZ/f/+QkBB8FMoWfqhECKGUFhcXKysrC+6QnJx89erVdevWiXIu1UROTo5/qqSlpXl5eQ0dOlRoQRRoSQTPq9LS0srKSqHzKiws7OHDh2wWYIPJyckJnpaFhYWEEBUVlca0Cc1WVlbW2rVrFy5cyOaA8vF4PKFby4aGhmlpaRUVFQ1+LsETmBBSVFQkdAIDAADA5wyBe/0EBgYGBwfX69K/rKxs7NixvXv3njVr1o4dO77//vum6x5Ixc6dO6Ojow8fPlzfoEFdXd3X1zcrK2v8+PF9+/adMGHCli1bqq1XU5OFCxeamJiYm5tPnz790KFD9ew4NDsmJiZHjx6Njo42MzMbMGDAsmXLzpw50/giCU+ePLGystLR0Tl79uydO3f69+8vlt6CzJGTk/vrr7/U1dX/7//+r1u3bkOGDLGxsRGxRn+fPn1Onz6dkJAwePDg/v3729nZnThxQrDeWp0mTZpkYGAwfvz49evX//LLLw19ESBlN2/eLCoq+vrrrwU3urq6duzY0c7OrvHt//rrr4MGDdLX19fT07t+/TpuJH8mLl68SCkVLIlGCNm9e3evXr2ENjb+iXR1dU1NTcXYJjQfjo6OlZWVLi4uQtvHjh1bWFjIn7UQEhJy584dHo/HJm81XkBAQEZGhtAbIwAAAHzOELjXz549e/r16zdhwgTRD1FQUJg1a9b8+fPZmmMPHz5suu6B5CUlJW3btm3dunUN+PJWUlKybdu2bt26nTx5csiQITweb9euXazqkYgmTpxoZ2c3adKkM2fOnDx5sr4dgObmw4cPu3fvtrS09Pb27tGjB6V07dq1gnOiG0ZHR2f27NkLFy5UVlZes2aNuL5egsyhlLq5uRUVFXl6es6cObO8vPzSpUsilk3IyspycXEZNGjQqVOnevfuTSldv359vZYBnz59+rx586ysrP78808smiqj8vLyHB0dhwwZIljVOicnx8vLy97eXiyjOy0tLefOnTt9+vTAwMCqqRm0SO/fv9+4cePkyZMFbzCnpKRcvnx53bp1QuOIG+PkyZP37t3bsWOHomKLLar5Obt169aZM2dcXV2rFuhfuHDh1KlTf/jhBx0dHS0trS+//FJNTY0QIpYzoaioaOXKlf379xdx1hcAAAB8DnC5WQ/Pnz/38/M7cuRIvQYyKyoqsnrNGzduHDx48NKlS/kL3IOso5QuXbq0devWkydP5nA4hBC2TldCQoK2tjZbRqkWe/bsuXfvXmxsrKGhoZ2d3fv376dOnTpv3ryUlJSOHTuK0oGZM2cSQtavX79gwQIHB4dvvvlGQ0Oj0S8LpGbdunXv379//Phx+/bt582bFxcXN2nSpG+//Za//lvD9OjRw97enhBib2/ft2/fbdu2iTioGVqY69ev79+/n7/wqYuLy8KFCzdu3GhtbW1hYVH7sRs3bnz+/HlycnKnTp3mzp37/PnzSZMmzZ49+/Xr1yLGYaxe1saNG8eOHbt48eK0tDQx5mggAUVFRVOnTi0tLT179qzgwPNDhw5VVFSIa/W/cePGjRs3jhAyYMCA9evXz5gxY/DgwWJpGZqnjIyMiRMntm3b1tPTU3C7m5ubYNHtxrt9+/ayZcvs7e2//fZbcbUJzUdhYeGKFSsMDAyMjIzYNXlaWhohJCIiol+/fpqamn/99VdgYGBUVJSOjs7o0aMdHByio6PrXDu3TsXFxVOnTs3IyAgICMCHGgAAAPBhhHs9sBETc+bMadjhioqKlpaWiYmJpaWl4u0YSMuLFy8ePHiQl5dnZWVlbm5ubm6+evVqQsj8+fN3795d5+GhoaFaWlqGhobsV21t7RUrVhQWFjbgloyVlVVpaWlSUlJ9D4RmJTQ0dMCAAfwVAo2MjGbNmvXy5cucnByxtN+9e/cePXpER0eLpTWQOWFhYYQQ/lKBKioqTk5OlFJRZlGEhoZ+8cUX/GyiT58+c+fOffv27fv37+vVBzk5uZEjR6anp3/48KGe3Qdpevny5fDhw5OSku7evdurVy/+9vLy8v3798+bN09wMV6xYCdqTEyMeJuFZiUmJsbS0rK4uPj+/fva2tr87fn5+SdOnFixYoWqqqpYnujAgQNTpkyZO3fu/v37xdIgNDd3795NSUlJSEiwsLBg1+RsQdSRI0eyVeXl5OSsrKxWrVr1zTfftGvX7tGjRxYWFo0c4Z6amjp69Ojo6Gh/f38jIyPxvBIAAABoERC4iyo7O/vUqVPff/99mzZtRDwkKyvrp59+4sfrPB4vODi4c+fOorcAzZyent7Lfzt69Cgh5K+//tq8eXOdh+vr63/8+PHVq1f8LaGhofLy8nUOja+oqPj5558F46qnT5+KciA0c/r6+nFxcfn5+fwtYWFh6urq7dq1a1iDQUFBgsX909LSUlNTu3fv3tiOgmxiOWlQUBB/C4vaRVmXUl9fPzExMTs7W/BYVVXVOocHFhQUbNiwoaCggL/l6dOnohwIzceNGzcsLCxUVVXDwsIMDAwEHzpz5syHDx/YzeZG2rlzZ2xsLP/Xp0+fEkLwftWCnT17dtiwYfr6+iEhIUIXMB4eHqWlpStXrmz8s5SWli5atMjR0XHr1q2enp5YFaClGjdunNA1uZOTEyEkNjb2u+++E9rZw8MjJSWlkfNyAgICBg8eXFFRERwcPGDAgMY0BQAAAC1Piy0pExUVde7cOUJIVlZWRETEhg0bNDQ0fvzxx/Pnz0dGRmZmZhJCzp49Gx4ePnz4cFGWY9q/fz+Px6vXgpaJiYnu7u43b96cNWuWkpLStWvXwsLCsLKl7HJ1df348eOzZ88IIbtJSvi+AAAGrElEQVR37+7QocPMmTMHDhwouE98fDwhREdHR5TSLkuWLDl+/PiYMWO+//77rl27Pnz48OjRo8uWLaszN09PTz99+vTJkycXLFigpaUVGBh46dKlJUuWdOvWrRGvDySnoKBg+/bthJDQ0NC8vLwNGzYQQjZu3Lh69WpbW1srK6slS5aoqaldu3bt/v377u7uokxS9vb2jo+Pf/fuHSHkxIkTAQEBY8eOjYyMXL9+/Z07d8aMGZOfn3/s2DEFBYUffvihztZ4PN5PP/1ECHnw4AGXy2U9XLVqlY6OTiNfO0jGkSNHXr169fr1a0KIh4fH9evXv/zyy2nTpm3btm3+/PmrVq0yMDB49uyZu7v7yJEjRVmYZNWqVX5+fiNHjly+fHn79u1v3Lhx48aNP/74o85byMnJyUeOHLl27dp3333Xtm3bW7du+fv7b9u2TUlJSSyvFJqam5vb2rVrVVRUhgwZ8ueff7KNKioq7L7yn3/+OWnSpHoN7SwuLt66dSshJCgoqLCwkP/2cvny5W3bti1durRHjx7Pnj07ceLEyJEjRVk1Oiws7NKlS4SQgoKC4ODgDRs2dO7cec2aNQ14sSAxmzZt2r59e8eOHU1MTHbs2ME2ampqrlu3rqKiYv/+/d99953gmPc6ZWRk7NmzhxASGxublZXFzqu1a9eOHz8+KirK0tIyJyeHbSSEjB8/3trauvYGY2NjT58+zVqOiorasGFD+/btN27c2IAXCxKgqqoqOPmGEMLKM+rp6amqqlZUVEyfPt3Y2LhVq1ZhYWE3b96cM2eOiMWFzpw5ExMT8/HjR0LIqVOngoODR40alZqaunLlylatWs2aNcvDw4PtqaiouG3btjobZF8o4uLiCCG7d+/u2LFj1S8UAAAAIOtabOCek5PD6veZm5sTQjgcTteuXQkhycnJbLuNjU1RURGHw+nRo0edrVFKk5KSNm3aVK8ReZaWllFRUTt37jx//nxZWVmfPn38/PxsbW0b+JJA2uLi4lJSUgghNjY2bFh61SCgU6dONjY2/JIgtTM0NIyJidmzZ8+1a9c+fvzYo0cPT09PURZc6tatW0RExK5du+7cuZOTk6Orq+vh4bF48eJ6vySQkoqKCvZGpKWlpaWlxf5cXl4+YcKEiIgIV1dXb2/vgoKCer1pvHjxgv/mlp2dnZ2dbWho+OOPP5qamh46dOjw4cMKCgrW1tY//vgjv4pR7VhrampqY8aMYX8uLi5u8EsGCUtKSoqKiiKE2NjYpKenp6enDxw4sF27dmFhYe7u7vfv379w4YKWltamTZscHR1FuaMzatSoyMhIV1fX06dP5+Xl6evr//XXX9OmTavzwP79+0dHR+/YsePKlStFRUU9e/a8cOECW38CZEJWVhb7sBOs7tK2bVtCSEJCgqamJj/EFFFlZSV7S9HQ0LC0tGR/lpOTe/jwobu7u5+f39WrVzt37uzs7LxmzRpRVs3JzMxkjQwdOpQQwuFwRJm0AdKVl5dnY2NDCImMjORvZOMGOBxOv3791q5dW68Gy8rK2Gmgq6urq6vL/pyfn6+pqcmeiG1hTExM6mwwNzeXHWJmZsYO19TUrFeXQLr09PRsbGzYB1xJSUn//v0DAgLy8/N79ep17ty5mTNnijjd4dWrV/zrq4KCAg6Ho6+vn5mZOWbMGEIIy82ZVq1aidKg4BeK5OTk5ORkUe4sAgAAgGyRo5RKuw/NS2Zmpqampr+/P7s6F52jo2NISAibAQ0gJDs7W0ND486dO+PHj6/vsV5eXsuXL0fpf+DbsGHD7du3BUOKRjIwMJg9e/aWLVvE1SDItMjISDMzs/j4eKHiIaLYunXr6dOnsZ4E8Glra69fv15c482Dg4OHDh366tWrnj17iqVBkFGKiopeXl5z584VS2uJiYkGBgbh4eEsW4fP1pYtW86fP9+AtZRqMmPGDB6Px4rIAwAAwGcFNdwBAAAAAAAAAAAAAMSgxZaUaTBFRUVTU9MGLFHYrVu3vLy8pugStAANPq8IIRoaGqampmLvEsguHR2dBgw9roWRkVG9SuVCy6aiomJqatqw9b21tbXrVc4bWjwTExMtLS1xtaaqqmpqaooFAMDMzIxV6BaLNm3amJqaqqioiKtBkFFi/wjr2bMnZpMDAAB8nlBSBgAAAAAAAAAAAABADFBSBgAAAAAAAAAAAABADBC4AwAAAAAAAAAAAACIAQJ3AAAAAAAAAAAAAAAxQOAOAAAAAAAAAAAAACAGCNwBAAAAAAAAAAAAAMTg/wFt4kYLZDIAXAAAAKJ6VFh0cmRraXRQS0wgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAdihuYORgyADSzIyMbA4aIAYLmwNYgJmRGAY3A6MCI1MGExNzAjNLBhMLawIrWwYTG2OCCCMbIxsrCzOTeBxQJSPcXs9JKg7bc6NVQZxJKp32qp5CS0Bsz0lL7B66LdsPYufdnrYfwf62v9FcXxVJ3B5JPZgtBgBOhic0eHnaCAAAANx6VFh0TU9MIHJka2l0IDIwMjEuMDkuNQAAeJx9kVEKwyAMht89RS4widHW+rjWMsaoha3bHfa++7NYcVoYJgaifiTxV0C0u7+9P/Az8kIAYGM55+ClEVEsEBMY58s1wLSdx3wyrc+wPcCyY/Qjed7WJZ8oWIFkZ5UhByhxtyrJHMEESmLiTg1QM4hSUwKVJOdQD39AwyDfKztw9ybZJdLRTjZ694eSjYq2HrLBzcEf1Er6jWvwRb/oVGQyHLqIYWKUJ0fvyrt4A32Z3nDYMqPhoHqUunHc5y/nXHwBp5Ju1aCNzjcAAABjelRYdFNNSUxFUyByZGtpdCAyMDIxLjA5LjUAAHic8082TAYBQ4UaDSM9U3NDE2MdAx1rQz0DGNNAz9jI0MTIUkfXUM/I0tLARMcayDI0tzA1RxWyNAIJGSBJw2XhZsBENGsATBYZcIlmuKcAAADnelRYdHJka2l0UEtMMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuKG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRrgAVCGSBJoKDgawACMjNwMjAyOTAhNzBhMzSwILKwMLWwYTG3sCO0cGEwenAgdTgggjGxMHOxsLs3gTyFC4szb8kHJ41sp3AMS54sjrcJfdbj+IzV4aYA9k7wOxVzTv2vestQ8szv/qwX6gejB73yPrA3fZ94HZR8P/7L/SmWsPYm/44QVkvwWzZ82UtH/otgzMtl7x2B6o1wHEFgMAeL83zF1dYpsAAAEyelRYdE1PTDEgcmRraXQgMjAyMS4wOS41AAB4nH2SXW7DMAiA33MKLlAL8A/msW2qaZqaSFu2O+y999cgUeZUsgpGsuEzMZABXD7Hj98H/AuPwwCAL5aqwk9ExOEOvoHL7e19gutyvuye6/w9LV9A6GvVZ/a8zPfdQ3AFDokpscKJA3NRZsCAq7SrDLOBjEIpwgmDJI4oHTBaRgzVEtbiINWcpQcmAy0ey0ZSIIqpUIfMTlKQvH885yKxRxYnOWh01O+kailzh5Qtp8paOQZlqTV1wLo9U5RrFqDg5RTtgLoWXjYvBVbFWDucDWW2uIjlI3jR8ts0Ps1qm95lnsY2PVduM7IDxDaJ5Nb67ZpbU8mstM5ZDKS1J5nV1oRkpq1UcjuWlMwRjy8/vtPP+x9q++EPCRyPJozoIH0AAACeelRYdFNNSUxFUzEgcmRraXQgMjAyMS4wOS41AAB4nDWOyxGEQAhEU9mjVo0UzTB8yqMBGMSkYfCLrntrXjcNxzkx53Ksc06cn2sRUoH2tgmJWErbS7BD28bkKp297UwBlbCbIcbwYiW7/SAI6GrFQD7e3THMO4oJZS94xzTU8MTS76NMKR6hT5unxPAGeg8wWQ2SyeVXsd/u/8v1+gLvdSmsIdD3FwAAAOh6VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4obmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGbAyIErgWqBFwBdwMjAyMTApMzBlMzCwJLKwZTKxsCWzsCuwcDGycGUycTAkijGxMnGysLMziTSCtcGftO591gHFj9H4QJ7Ke/0Cm5Eowe2nshP3czov2gdiJsTv2n7GYbA9ie31ctm/nA04HELv8SY99Z8MNsLjxky32V7en2oHY9YdMHQr8S8B6Yw95OtQG3wKbOY1npl34YncwWwwAKhA1G+jck4oAAAE8elRYdE1PTDIgcmRraXQgMjAyMS4wOS41AAB4nH2SWW6EMAyG3zmFL0DkLdvjAKOqqgakdto79L33V21GNIwUNcEoDl/+eGEAH+/L2/cP/A1ehgEA/3lqrfAliDjcwBcwXV9eV5jvl+nYmbfP9f4BhP7s85m93LfbsUMwwyghpVLNGzGUWCjbkYD7aGcZNhg5sDJpgZGCMGEpHVJckwJxNjHXFEqVeqQ+SFWUaLEEikiZOmB00IQ4YbJQDFTRHpgMNB3EzGwLu1dZOlzeOSVLQu0zs4pohyuWNYciVvbkEbBYTj2wmqBYXKxlr07GmHLvZuvJ7DfWUlldMudaJHXI67o89erRvWlbl9Y9n9xaZA5I64O6tWL7jK2k5kBqhVOz3OpDZqWVgcxqS1adOOek/pJz6OdA3T9+UVsPv1RajyXxuaMLAAAAn3pUWHRTTUlMRVMyIHJka2l0IDIwMjEuMDkuNQAAeJwdjcsNxDAIRFvZYyJhCwaMQTmmgBThNlL84nBj3nzuZ8mqO577XPJ7j6bdPVKpcY8RMulq6DDIoCZdIZwlSRfM8O1S8ZT4NDPWQcUGf8GCcHZCKaZGVyHmibJUxrAFk+ok7oDptqCH7VpozdevlYXlHp88vGqLZSQ+15wZ6nS+f7dqKT4imagLAAAAtXpUWHRyZGtpdFBLTDMgcmRraXQgMjAyMS4wOS41AAB4nI2QzQ3CMAxGHTu/VNwQbIDYojkxh48Zo2IXuLEC6SSVmIAVcAlNeuCAJcvPT1+kyK/HfQKpLbTaSHfSg7IxyST6CacZtCuT/ohW0YFKqJCREpJmbRIay9YldJ59SBiAPfEOLQRPqKw21nk6XOS5qr98no8jQMzz8uW+8E3c2JfYcF35fvGSj81/OK8yuR2j+rz4/RvebisDYruuBAAAAQN6VFh0TU9MMyByZGtpdCAyMDIxLjA5LjUAAHicjVJBjsMgDLzzivlAkCEmCccmqVarVYm0TfuH3vf/WtMqMTkUFRjJWIPBMxjk8Tv/PP6wDz8bA1BlxRhxb4nIXJADjOev74RpPY1bZlpuab3CEZyTMzKP3NO6XLaMw4TG2xAH6js0ZPsgteWIJXoFG9MfmBVim4nO+hipHeBsoDdEzkRNv68YkPBJwU4KfvLCvuTVeh6EuF/cVG6OQtyztYpiSqlOreY5zQerXuaNS5rVPBZ4dYgFrfrAGap2nkE1lQ06lY4FvSrEgkF1YEHUblngyqb4+d32hHsyuGylfHjebz9WYvMP1WqRNPsPYrcAAABkelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wOS41AAB4nEs2TE5ONspLBpHJhgo1GrpGeqaWFgYWOroGeuamOtZwPpRrqGdkaWlgomOoB+QZQEVRBFE1oBkHU6kL1a+LZixYXLMGAP9aH/FLKqYZAAAAwHpUWHRyZGtpdFBLTDQgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATiDmAuIGRjaHDCDNzIyVoQFisLA7WIBoRmZ2iAAzhgq4ADcDYwYTI1MCE3MGEzNLAgtrAitbBhMbewI7RwYTB0MCO3OCCBMbAwc7MxMjKwszOxureBlQJyPcXax9wgcYGBz2gzhQtj2IrXm1ASh2AMx+eGyqHUycl+eO/bmQ2WB2frGaA1B8GZL4fiT1+5HMAbPFAFT+KUsX8B4xAAABCnpUWHRNT0w0IHJka2l0IDIwMjEuMDkuNQAAeJx9UkGOwyAMvPMKfyDIgA3h2CRVtVqVSLvZ/qH3/l81rRIn0hbISAYmxjPGQB0/0/f9AdvwkzEA2PhyznALiGiuUAMYzpevAuNyGtadcf4ryy9kcAiveaSelvm67jgYofM2IDMF6NAmltTyi0V8ByvTH5gNYqhEJ9uRkcFZxg9EEiJanz2HZkKGImmSy871EngX2PM/vCg8byNiyrFKwU8XJ7l4S9g1Mvb7Clvm5IPmriH6XKZDA94tGeYyaUtI4NV3EgR1lyrUwzpZrZIFRHWEBEl1k6BXdSTIqoHqk9nKwNcx7Qvfl1nX66OT2DwBww6GJIrpKF0AAAB6elRYdFNNSUxFUzQgcmRraXQgMjAyMS4wOS41AAB4nF2MwQmAQAwEW/GpkIRsYtTDBuxBfOVvBRbvCXKCr2UYdhKZafu5HWfdRHf1bOIaMRKrzEFr4xchqlOAIJVUrFi4vxIyo8CqM3g4rSaT6kL6KW6ufflX5ic9XDevUiDrDX6b6wAAALp6VFh0cmRraXRQS0w1IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4obmDkYNAA0sxMbBCahUNBC0j/Z2Zkc4AIsDlkgGiQAGEGNwOjBhMjkwIjswIzSwYTC2sCK1sGExt7AjtHBhMHc4IIIxszBzsbK4t4GVADI9w5oaGqDg/dltmDOKtXvbK37EtWBbGh4vsh4qvsLPseL4aIX90HEw8N/bofoUbrAHOEuSqSuD2SejBbDACqCTIFUbct/wAAAQV6VFh0TU9MNSByZGtpdCAyMDIxLjA5LjUAAHichVJJbsMwDLzrFfyABWqxbB5y8BKkQRsbaJ38Iff8HyUdqLTRQCFNQCRHYy4yIPI9ft4f8Cd+NAYACx8RwS0gormAHKA/ns4TDEvX58gwX6flB4gVRffIbpkvOeJgBm/rNrCAs54IQwtocRW96WHg9AoLm/Q/XNjyVS8IYfg4HSoHt+7r4PKtyOxow5O9KtDXDOR8dCml5iV/RiZBOkvvkY0gvU1pRRZ+3u4oC4y0q7IAPE7jbhvP/fTzNOp+vJiuQQJBpy1u1DGK1josdiDpRCJbo21Htlabi2ykLUSxbaHbssTPD47P5he3YIa6IXr8iwAAAHd6VFh0U01JTEVTNSByZGtpdCAyMDIxLjA5LjUAAHic87d11oj2143VTDZMBgFDhRoNIz1TC2NjYx1DPSNLSwMTHWtDPRDfWMdAxxompwuXNNAzNobJ6hromRiamZmZI8kDWZaGaEJGemZgVQZI0ghZuCEwIc0aAO0eIwK86ljFAAAAuXpUWHRyZGtpdFBLTDYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYGRnyADSzIxMbAwaIAYLB4RmYnOA8NkcwAqYGYlhcDMwKjAyaTAxMisws2QwsbAmsLJlMLGxJ7BzZDBxMCeIMLIxc7CzsbKIlwE1MMKdExqq6vDQbdl+EGf1qlf2ln3JqiA2VNweIr7KzrLv8WKI+NV9MPWhoV/3I/RqHWCOMFdFErdHUg9miwEA+IcxJeH8bZAAAAD3elRYdE1PTDYgcmRraXQgMjAyMS4wOS41AAB4nIVSW2rEMAz89ynmAmvkR5zoc5MspZR1oE17h/7v/amUJVVCwdVYYFuTsR5xUHuf374f+LU4OwdQYzEzvhIRuTt0g/H28loxrddxv5mWz7p+gAWkODOv63LfbwIqou+GJIZL8JGZ0gDytJl9GjEh+I2XDuE/vITFBBt6WfTIp6fepSHYCVHiOZRS+maKRZnB8//MXpnRl7IxG48PJ8mGIp+ybBBvdT4N4DmScamzjUQRrfGKZP2VGLK1UdFZs+SAYh3J4r2VncUHKy6Ls5WQ1Y+JHtPS8/6Pyd79APJMg7uoHbO/AAAAdHpUWHRTTUlMRVM2IHJka2l0IDIwMjEuMDkuNQAAeJzzc9aw9ddMNkwGAUOFGg0jPVMLY2NjHV1DPSNLSwMTHWtDPZCAsY6BjjVMEi5noGdsDJPUNdAzMTQzMzNH0gtkWRqiCRnpmYFVGSBJI2ThhsCENGsAV+0iHBzn2GoAAADGelRYdHJka2l0UEtMNyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5gZGNIANKMzBCaiYnNQQNIM7OwOWSAaGZGYhjcDIwMjEwMTMwZTMwsCSysGUysbAls7BlM7EwJIoxsTOxsrCzM4lkgi+Au8CxyPWCU/MEOxMkIZTlQ+0txP4g9da/U/jXMs/eB2NYpSvuKJ06wB7Hr/i+zP3Z2F5i9YI6Iw7t728B6/6p9sF80qxOs90H2Zbtv1zaD2WIANUAusMQbta0AAAEWelRYdE1PTDcgcmRraXQgMjAyMS4wOS41AAB4nH2SXWrDMAzH33MKXSBG1odlPzZJGWU0gS3bHfa++zO5JXMLppIFkv2zkf54gGofy/vPL/wbLcMAgC9WKQW+GRGHK9QEpvPbZYV5P03Hzrx9rfsnZHes/kye9u167ESYYeSAWSM6GCQVRfMEb9auUgUpYDKLDCOGxGSUOyRX0s9RRLVmjGSJOqTcyajZHWKIVIRLB1QHo78jycgT0SKoHS45R4GJMNVhWC0adji7vZctxYIwxoCmyL0Os4Muijfmxw4KSim9oc/r8qTrXelpW5emdHVqenoB3ESTGk2Z6trm9wJSG1M8rE0jHrn1LB782NljH7U+/ornwx9fVnlZM2izmwAAAIt6VFh0U01JTEVTNyByZGtpdCAyMDIxLjA5LjUAAHicHY3LDcMwDENX6bEFZEHU14aPGSVrZPjIFS/i04fXdeM+hc/zHcYyAyTsuUKK9lCWrAIN4TQtnc26FfeIA020Uv8QMVsEhi532uihZzXwWO2VTVWyv1sU6izMSiwaYKkQo93BfWx6kEvQ73kBvaEhDie3xCYAAACnelRYdHJka2l0UEtMOCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAB2KG5gZGfIANLMjExsDhogBgubA1iAmREPgx2ilpmbgVGBkSmDiYk5gZklg4mFNYGVLYOJjTFBhJGNkY2VhZlJPA6okBFureckFYftudGqIM4klU57VU+hJSC256Qldg/dlu0HsfNuT9uPYH/b32iur4okbo+kHswWAwAjPib0hSsDkwAAAN56VFh0TU9MOCByZGtpdCAyMDIxLjA5LjUAAHicfZFRCsMgDIbfPUUuMInR1vrY1jLGqIWt2x32vvuzWLG2MEwMRP0wya+AaA9//3xhN/JCAGBlOefgrRFRzBATGKbrLcC49kM+GZdXWJ9g2TH6mezXZc4nCgKQbKwy5AAlbnZIMkcwgpKYuEsF1Ayi1JRAJck51N0f0DDI98p2XL1KNol0tJGV2u3pycqLlqfem6xwU/AntZJ+wxJ80S86FZkMhy5imBhl5OhNmYs30JbuDYctPRoOOrZyLBz3+cs5Fz+uxm7fnZD5zQAAAGV6VFh0U01JTEVTOCByZGtpdCAyMDIxLjA5LjUAAHic80s2TAaCPEOFGg0jPVNzQxNjHQMda0M9AxjTQM/YyNDEyFJH11DPyNLSwETHGsgyNLcwNUcVsjQCCRkgScNl4WbARDRrAFCDGXpQCEknAAAAonpUWHRyZGtpdFBLTDkgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYORgyADSzIyMbA4aIAYLmwNYgJkRLwOiVpBBAUgzcjMwKjAyZTAxMScws2QwsbAmsLJlMLGxM7AxJogwsjGysbIwM4lngZTCHRCU9dOegeHAfhDnoZsakO0AY++HiQPV7IeJQ9n2SGrskfTaQ9XYw8TFAKKCI8Ui96l3AAAA5XpUWHRNT0w5IHJka2l0IDIwMjEuMDkuNQAAeJx9UlEKwjAM/e8p3gU20q3d1k+3DhFZBzq9g+Cn98cEndk+bNJAEh4vyaMGYpd4frzwsyoaA1DmhRBwr4nITJAE/Xg8JQzLoV87w3xLyxUdO4nvkYdlntaOxQxbBtd536KwpScxUEnfZAVWGLjbuOBtQEFl6/8AawYWisxQOkHq8Ayn3yEzwGY3PDO73Z6TIewwPFWgDOGY4k7Yj9T9nKJKLV6poI6jVtmchGoj7lUALtDomY6j1WMsR6c7Oy6r7WbbPaRePwvn5g31TXmptrRkZQAAAGB6VFh0U01JTEVTOSByZGtpdCAyMDIxLjA5LjUAAHic8082TAYBQ+cchRoNQz1LEwtTMx1dQz1THWsDPTMTS1NDSx1dAz1zIF8XIQCW14Urh8rD+OjKUU2DyMLUguQ0awDuHxyVLDNF2AAAALR6VFh0cmRraXRQS0wxMCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuIOYG4gZGNocMIM3MjJWhAWKw4FWCSy03A2MGEyNTAhNzBhMzSwILawYTK1sCG3sGEztHAgdnBhMnQwIHc4IIExsDJwczEyMbCysbOwezeBNQOyPcmQ/d1A4wMDjsB3GgbHsIexlQ7IA9RFnDUiRxe5g4UL0DQhzM3o+kZj8iNODi+2HiYgAh2itD8j1e5QAAAQB6VFh0TU9MMTAgcmRraXQgMjAyMS4wOS41AAB4nI1S2w6DIAx95yv6A5KCReXRW5ZlUZPN7R/2vv/PikaLDxKBk5TmUOg5KAjj2T2+P9iH7ZQCwMTy3sMnR0Q1QAig6W/3Edq5brZMO73H+QUGwRg+w/PIredp2DIGWsisdr7CsoAMdem4Nh/RiGuwMe2BmSDmgWi09R7zCox2eEKkQJT0eUXHxCsFC+ZdeWEZ81I9V/HFWeJmz8Q9m6rIpsTqpGr2Y3ewajWvmcZOzCOGFYeIkYsPFCBqh+lEU95AIdIRoxSFiFGJDsTw0i0xTNwULd9tT5iFQXEr8cPDfvuxHKs/wNWRKTTDtlEAAABielRYdFNNSUxFUzEwIHJka2l0IDIwMjEuMDkuNQAAeJxLNkxOTjZKTgaThgo1GrpGeqaWFgYWOgZ65qY61nCuLpRvqGdkaWlgogNkALkGMHFUYTRNqEbClEINQDMXJKpZAwD1FB/mKhoQsgAAAMB6VFh0cmRraXRQS0wxMSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOIOYC4gZGNocMIM3MjJWhAWKwCEBoJrgEO0SAGaYALsHNwJjBxMiUwMScwcTMksDCmsDKlsHExp7AzpHBxMGQwM6cIMLExsDBzszEyMrCzM7GKl4G1MkIdxZrn/ABBgaH/SAOlG0PYmtebQCKHQCzHx6bagcT5+W5Y38uZDaYnV+s5gAUX4Ykvh9J/X4kc8BsMQBILilC8+vUkAAAAQp6VFh0TU9MMTEgcmRraXQgMjAyMS4wOS41AAB4nH1SQY7DIAy88wp/IMiADeHYJFVVVSVSm+4f9r7/15pWqROpBTKScSYTj42Bum7T5fcP3stPxgBg48k5w09ARHOFGsBwPJ0LjMthWDPj/CjLHTI4hOfeUw/LfF0zDkbovA3ITAE6tIlFWj6xiK9gZfods0EMlegkHRkZnGX8QiQhovXZc2gKMtxFJrnsXC+Bd4E9f+BF0fM2IqYcqxX89uMERQW7hmK/rbDVnLzz3DVMH8u0G8BrJMNcJh0JCbz2nQRBu0sV2sO6WVslB4jaERIk9U2CXt2RIKsHqlfmXQY+X9O28G2Z9bxeOonNP8l/hilrwLdVAAAAd3pUWHRTTUlMRVMxMSByZGtpdCAyMDIxLjA5LjUAAHicXcwxCoBADETRq1gqJCGTmFXxOOltbPfwrrCsYPl5zCQy0+680hJTndnENWIlVtmCztE9IaolQJBWKnZYuHeEbDhgzQweTqdJUd1JP+JhY8u/Z36vl/oAFyEf8CUQn48AAACgelRYdHJka2l0UEtMMTIgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYORkUADSjGwOGkCKmYXNIQNEMzPiZUDUCkK0cjMwMjAyZTAxMScws2QwsbAmsLJlMLGxM7AxJogwsjGysbIwM4lngZTCrQ/K+mnPwHBgP4jz0E0NyHaAsffDxIFq9sPEoWx7JDX2SHrtoWrsYeJiAElYI1puSEDhAAAA5npUWHRNT0wxMiByZGtpdCAyMDIxLjA5LjUAAHicfVJRDoIwDP3fKd4FIB1swD5hoDEGSBS9g4mf3j+2USx8uHZN2ubltX2ZgdilPz9e+FnRGwNQ4oUQcC+JyIyQBN1wPE2IS9utnTjfpuWKhp3E98h2mce1Y3GAzYNrvK+R2dyTGCinb7ICC0TuVi54G5BRXvs/wJKBmSITlE6QOjzB6XfIBLDaDU/MrrfnJAgbxKcKlCAcpn4n7Efqbp56lVq8UEEdR6myOQnVRtyrAFyg0jMdR63HWI5Gd3ZcFtvNtntIvX4Wzs0b40R5oImwGnIAAABhelRYdFNNSUxFUzEyIHJka2l0IDIwMjEuMDkuNQAAeJxzSzZMBgFD5xyFGg1DPUsTC1MzHV1DPVMdawM9MxNLU0NLHV0DPXMgXxchAJbXhSuHysP46MpRTYPIwtSC5DRrAOlgHIwi0+MtAAAAqnpUWHRyZGtpdFBLTDEzIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAA4obmAUZFAA0oxsDhpAipmFzSEDRDMzYmNAlMB1QMW5GRgZGJkymJiYE5hZMphYWBNY2RhY2TOY2BkTRBjZGNlZWZiZxLNAeuDWP3RTO8DAMGE/iPPQbRmQPrAPwZ5gD1E2QY2B4YM9VNweJg5hw9SrOcDMYWBQWAZjiwEAY/IjZxUHn1EAAADpelRYdE1PTDEzIHJka2l0IDIwMjEuMDkuNQAAeJyNUtsKgzAMfe9X5Acs6U3bx3lhjGGFze0fBnvc/7NkQ6MPikkDSXoacg5VwHZrr68PzGZbpQBw56SU4OkQUfXACdTd+ZKhGU/11GmGRx7vEMmRfY08jUM/dQw0byisDiliVUJhtLGBZgNq/Jk8ttDwvU0JXYQCtas2kG6F3BnpCTh3jY5bAwPhjswrl7i9DSumfYh1ZC5zew/Z5XYl7V/sesitiM1uRVBP4UQ1zyHasAeRgAoohamhqISPpzLK0p7CLjdb7sH19F0oV18EtHn0i0ynpgAAAGR6VFh0U01JTEVTMTMgcmRraXQgMjAyMS4wOS41AAB4nHPOSTZMBgIN5xzNZEOFGg1dIz1TSwsDCx1dQz1DI1MdayBtZGlpYKKja6BnbI4sAFVgAGRYgCTQxNH1oRtsAGNp1gAA0TAcOg3TiSUAAADWelRYdHJka2l0UEtMMTQgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYORgyADSzIyMbA4aIAYLmwNYgJkRiQGR4WRQANI4xbkZGBUYmTKYmJgTmFkymFhYGVjYEtjYM5jYORjYGRNEGNkY2dlYmJnEy0Cq4S7RiNFxmKWeux/EETwy137dJlEwmycq2M73yTUw+1/Hgv3XNVeD2bkqN/Z77zxpC2KH9Xge0Ip4aAdiW0/X3N+1bIY9iO0c6GOvcSMSzC5sfGnP9f0HmC0GAAqHLiU0k7zOAAABK3pUWHRNT0wxNCByZGtpdCAyMDIxLjA5LjUAAHicfVJRbsMwCP3PKbhALcCYwGfTdNM0NZG2bHfo/+6v4VaZW8kaBAnjF8x79gDVPub36w/8Gc/DAID/fO4O3xkRhwvUBKbz69sCp+047ZXT+rVsn+DhWP0ZedzWy14hWIGTeiYucMDkrNkUMOHN2q8MJ6DEmYtoBRaTsVgHmAOIiVGzGxwo6Wgm3AFKAGM/GpJRzXIemaSDLHekmindOrmJ985WeIFDTiROHuUkgsQ9NmPtiEmVRSV4kXOx3pB2YzO6EZVIrKCX0sF5nEzJWEK/SFwKZu/gzsv8pP/9RqZ1mduNVOemu0Tkpq7UaBpWL00oitAmR+zB2EhLhDVqFOGNgcSSHwd9HKuu9ycW+fAL2FGDwdFP+B8AAACcelRYdFNNSUxFUzE0IHJka2l0IDIwMjEuMDkuNQAAeJwljjEOw0AIBL+S0pEwYjngQNe7zSPuG358iNOh0WiWz8be+7jee+N63Ydy1IDSKVwaI4MWWIe6/5CnTU9awioxKukEx8w0Wn2pGx40xlQ8KDIDJCyV1vo6B8MK1chMoJ3vbIRaGIFR+s/PSsDbSpfq7X4i1VoHl7kYve8veHkmhTTUt3MAAAC7elRYdHJka2l0UEtMMTUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAATihuYORgyADSzIyMbA4aIAYLjOZkUADSQGGwPDNWBopKbgZGBUamDCYmZgYmlgQW1gwmVrYENvYMJnYOBnbGBBFGNkZ2NlYWJvEykGq4Syz7jNVDQ0UPgDhFMu1qoaGh+0Hsh27L9q9etWovhK12AFk8NHSrPYgdmnVv2epVXA5QcXuYOIiNpNcBplcMANxxLkak+tkAAAAA+npUWHRNT0wxNSByZGtpdCAyMDIxLjA5LjUAAHicjZJRboMwDIbfcwpfoJGTmBA/FmirqipIG9sd9r77a3YnMEiAavNLsfVhYhsHah/d4+cXZoudcwB48DAzfCdEdE/QAzSX272Hdjw3U6YdvvrxE1gc1dfkeRyeUybAAOjxZXCKPr3MUvOrEdoFiL7sgUnAU/CRGVNREssOSXDVT1ZcsM6HNatVzeAp5JzrDTArOKejV24TrAV8p2BZckfNsDTzVi+Xvltt4H8nzdB3thP1aJMnUbL5BhHZEEnCyiZFomzzIFFtXZOoWHNBxNYCSRiXF11eS+PpJ5Oz+wMf64O/EekZiwAAAG16VFh0U01JTEVTMTUgcmRraXQgMjAyMS4wOS41AAB4nPNPNkzWcNNMBgJDN4UaDQMdXSM9YxDQsQayDfQsoBxdQz0jS0sDE5CYAVzQSM/U0sLAAqtCQz0TQzMzc5A5RnpAFoiJIYfNVExDNWsAypoit7axzlcAAAD0elRYdHJka2l0UEtMMTYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAALiDmBuIGRkEGBSDNyOagAaSYWdgcMkA0MyMSAyaDpoKDASzAxMaQAKSZmGB8bgZGBkamDCYm5gRmlgwmFtYEVrYMJlZ2BXYOBg5OBjbGBE4WBREmNkY2VhZmoDgrCyeHeBPIEXDXrb8V7ZCua7sfxPmWxOggd6FoH4i97f19e7WyefZgRYxr7K5tugdmfzP027/dzgXM7m7l2D830RSsNzoy0b7u7SwwO1Dw7X5L7W1g9mlZmwP7Jx4Hm7lku9CBVWvKwHrFAK5KNCQC6GdRAAABRXpUWHRNT0wxNiByZGtpdCAyMDIxLjA5LjUAAHicfVLbasMwDH3PV+gHanSxY+mxTcoYowls3f5h0Mf9P5NSWrfMzIpAco5ypKMMEOd9fvv+gfvheRgA8J/HzOBLEHE4QQRwOL68LjCd94fbzbR+LucPIAQir3F7xu7P6+l2QzBdQFKWwsyww1RFrWbAhNtptQwTcEKmcSwBZKnkJX+B4kBKNVtB8cBxptTBZcdhEimWSxSIqUgHVxznfIolF79O1RvQHvF4BRYRVt1mQS3co64btSpyRdh5j4RSe9wKa7z3z6BRRJmFrCePBTknExPayENH7SF9L2tA2TgXc4CNUmpvoOMyPy3rur7DusxtfWHcdpTdpW0ihzfBw0rT1RMYm3rZvTaJyFNtQpC7tWkp/HGm7CX3RmhrDBtZjPLYeOS3f9bj4Re2GZKGFcRy3gAAAKZ6VFh0U01JTEVTMTYgcmRraXQgMjAyMS4wOS41AAB4nCWOQQ7DMAgEv9JjKxELWGNAPuYBeYSvfUIeX5ze0LDscH6XrLX0Oq+lS173G63DVOng5oj0TlMbq4yxkcKlllOa9zSSDTJocgMs+yaODNCscLAVqZ4xLOro0KapfRTKAfM/SiQe3bZF6Q5pYcpJNXSF5FNmgEY8b3GtZTsjWH3HVBhOn/sHFecq9/niTS4AAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"GA\")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "202064a7-c09f-424e-9be9-e3ce016217c6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: subset cluster ID | fragment count inside SE in complete fragment library | fragment subpocket count in subset\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAGQCAIAAAB50mx4AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVyM2/8A8M8s7aVFoc2SXcjStRUucUVlH3u5tnJdLdb6ClmvspZrK2uyVqLswi3JkgglJFlaSEr7MjVzfn88fhnTqmbmmerzfvnj3vM8M+eTxpnn+TznfA6DEAIIIYQQQgghhBBCCCGEEKofJt0BIIQQQgghhBBCCCGEEEKNASbcEUIIIYQQQgghhBBCCCERwIQ7QgghhBBCCCGEEEIIISQCmHBHCCGEEEIIIYQQQgghhEQAE+4IIYQQQgghhBBCCCGEkAhgwh0hhBBCCCGEEEIIIYQQEgFMuCOEEEIIIYQQQgghhBBCIoAJd4QQQgghhBBCCCGEEEJIBDDhjhBCCCGEEEIIIYQQQgiJACbcEUIIIYQQQgghhBBCCCERwIQ7QgghhBBCCCGEEEIIISQCmHBHCCGEEEIIIYQQQgghhEQAE+4IIYQQQgghhBBCCCGEkAhgwh0hhBBCCCGEEEIIIYQQEgFMuCOEEEIIIYQQQgghhBBCIoAJd4QQQgghhBBCCCGEEEJIBNh0ByC9SkpKVqxYoaCgcOvWLWtr66lTp7Zq1YruoBBCCCGEEEIIIYQQQghJKQYhhO4YpFFWVtbEiRPDw8OVlZXz8/MBgMVimZmZTZ8+ffz48WpqanQHiBBCCCGEEEIIIYQQQki6YMK9Eu/evbOwsHj58qW2tnZgYGBmZqafn19wcDCXywUAOTm5kSNHcjiciRMnKisr0x0sQgghhBBCCCGEEEIIIamACXdhUVFRY8eOTU9P7969++XLl1u3bk21Z2dnh4SEBAQEXLt2raysDAAUFBTMzMxsbGzGjRsnKytLa9QIIYQQQgghhBBCCCGEaIYJ95+cP39+1qxZhYWFI0aMCAwMVFVVrXhOZmbmuXPnjh8/fu/ePepvT01NzcrKisPhjB49ms3GsvgIIYQQQgghhBBCCCHUFGHC/QcvL6+lS5fy+fy5c+ceOHBARkam+vOTk5ODgoICAgIiIyOplubNm0+aNMna2trExITBYIg/ZIQQQgghhBBCCCGEEELSAhPuAAA8Hs/JyWnPnj0MBmPt2rXr1q37pZe/fPny7NmzZ86cef36NdWir68/YcIEDodjamoq+nARQgghUeByuTExMf/++68E+nJ3d9fR0WEymRLoCyGEEEIIIYQQogsm3KGgoGD69OkXL16Uk5M7cuTIjBkz6vxWL168CAgI8PPzS0pKolq6du06ZcqU6dOnd+7cWUTxIoQQQqLh4OAQFhYWGxsrgb46duzo4uIyd+5cCfSFEEIIIYQQQgjRpakn3D99+mRlZfX48WMNDY3z588PGTKkqjMXL17cpUsXDofTsmXL6t+Tz+ffu3cvICDg7Nmz6enpVGO3bt04HI6NjY2BgYEofwCEEEKoTl6+fGlkZMTn8zdu3Kivry/Wvu7fv79v374WLVokJCRUuj8KQgghhBBCCCHUODTphHtcXJylpeWHDx8MDAyuXLlSzST05OTkNm3aEEKYTObAgQM5HM6MGTO0tLSqf38ej3f//n0/P7+zZ8/m5OQAQPnLp02bVmPiHiGEEBIfc3Pz69ev//3333v27JFAd0OGDImIiFi5cqWHh4cEukMIIYQQQgghhGjRdBPuN2/enDx5ck5OzoABA4KDg1u0aFHNyUVFRRcuXDhz5sz169dLSkoAQE5ObtSoUdOmTRs7dqySklL1fZWUlNy4cSMgIOD8+fP5+fkAwGKxBgwYYGNjM3XqVJzrhxBCSMKCg4PHjx+vrq6ekJCgqakpgR5jYmKMjY3ZbHZsbGynTp0k0CNCCCGEEEIIISR5TTThfvToUTs7u9LS0kmTJvn5+SkoKNTyhdnZ2SEhIQEBAdevXy8tLQUAeXn5ESNGcDicyZMnKyoqVv/yvLy84ODgM2fO3Lhxo/zlz58/79ixYz1/IoQQQqiWuFxujx49EhISdu/ebW9vL7F+582bd+TIkbFjxwYHB0usU0S7Gzdu8Hi83NzcCRMmyMrK0h0OQgghhBBCCIlXk0u4E0LWr1+/fv16AHBwcNi1axeTyazD+2RmZl6+fNnPz+/WrVvU36GampqVlRWHwzE3N5eRkan+5d++fbt48WJAQEBYWJiqqmp8fHyzZs3qEAZCCCH0qzw8PFxcXLp27frs2bMav7BE6MuXL506dcrJybl69aq5ubnE+kV0KSsrW716tYeHh66ubmpqqpqa2pQpU+zt7bt37053aAghhBBCCCEkLk0r4V5SUjJv3ryTJ0+yWKzdu3cvWrSo/u+ZnJwcFBQUEBAQGRlJtTRv3nzMmDE2NjZmZmYMBqP6lxsbGz9+/Dg8PLya/VoRQgghUUlPT+/cuXNOTs61a9dGjRoldPTDhw9//vln/XuRkZG5ceNGxfatW7c6OztLPtePJC8tLY3D4dy7d09eXn7y5MmxsbHPnj0DAAaDMXToUFtb24kTJ8rJydEdJkIIIYQQQgiJWBNKuGdlZU2cODE8PFxZWfnMmTMWFhaiff/379+fPXv22LFjr169olr09fUnTJjA4XBMTU2retXChQu9vb09PT0dHR1FGw9CCCFU0dy5c48ePTpu3LgLFy5UPBofH29oaFj/XmRkZLhcbsV2uqrZIAm7e/fulClTPn36pKenFxgY2L9/fwB4/Pixj4/PqVOnqP1sqAnvixcv7tGjB93xIoQQQgghhJDINJWEe1JSkoWFxatXr3R0dC5evNinTx/x9fXixYuAgIATJ068ffuWamnbtu3UqVP//PPPLl26CJ3s7e29cOHC2bNnHzt2THwhIYQQQlCLnUsLCwsfPnxY/46YTObQoUMrPRQSEjJu3DhJ7teKJMzHx8fe3p7L5Q4ZMsTf379ly5aCR/Py8k6fPu3t7f3kyROqpW/fvra2trNmzapxLxyEEEIIIYQQkn5NIuH+8OHDsWPHfvnypUePHpcuXWrdurUEOiWEREZGnjlzJiAg4MuXLwCgoKDw9etXoZvJqKio/v379+zZk1pnjRBCCIkJIWTo0KERERErV6708PCgMRJzc/Pr16///fffe/bsoTEMJHLFxcWLFi06evQoANja2u7Zs6eawkHUhPfTp0/n5eUBgKqq6tSpU//++++ePXtKLmKEEEIIIYQQErXGn3APCgqaNWtWUVHRyJEjAwMDJb83KY/Hu3Xr1pkzZ9hsto+Pj9DR4uJiFRUVAMjLy5OXl5dwbAghhJqOU6dOzZw5s0WLFgkJCaqqqjRG8vLlSyMjIz6f/+TJE8yuNhofP36cNGlSdHS0srLykSNHOBxObV5VVFR06dIlHx+fmzdvUi3UhPeZM2cqKSmJM16EROzlS7h/H+bO/dFSUgJHjsC4caCjQ19YCCFUAY5XCCEkbo084e7l5bV06VI+nz9v3rz9+/dL5/5sPXr0iIuLe/TokbGxMd2xIIQQapyKioq6du364cOHw4cPzxW8waKJg4PDv//+O3z48Fu3btEdCxKBa9euzZw5Mysrq2PHjkFBQd27d//Vd4iPjz9+/PjBgwezsrLg/ye8L1q0yMjISAzxIiR6hw7BihXw7duPlqwsaN4cbt+GYcPoCwshhCrA8QohhMSNSXcA4sLj8RYvXuzk5EQIcXNzO3TokHRm2wGgd+/eABATE0N3IAghhBotd3f3Dx8+9O7d+88//6Q7FgCA9evXa2pq3r59u9K9W1EDQgjx8PCwtLTMysqysLCIioqqKtuen5//7t27qt6nW7du7u7uqamp/v7+I0aMyMnJ8fHx6dWrl7GxsY+PT0FBgdh+AoQQQgghhBASpcaZcM/Pzx8/fvzevXvl5OROnjy5bt06uiOqDibcEUIIiVVKSsqOHTsAwMvLi8mUiq9+dXV16tt52bJlxcXFdIeD6igvL4/D4bi4uPD5fGdn55CQEDU1tapO9vPz69Chw8iRIwMCAkpLSys9R15ensPhhIaGxsfHOzs7a2hoPH782M7OTkdHx87O7unTp2L7URBCCCGEEEJINKTirlu0Pn369Pvvv1+6dElDQyM0NHT69Ol0R1QDKuH+5MkTugNBCCHUOC1fvrygoGD69OmDBw+mO5YfFi5c2KNHj6SkJE9PT7pjQXXx+vXrAQMGnDt3rlmzZufPn3d3d6/+cU5GRoasrOzNmzenTJnSunXrVatWvX37tqqTu3btKjjhPTc318fHp3fv3tSE9/z8fDH8QAjVV1kZ3L79409EBN0BoQYiPByePfup5cEDeP+enmBQE4HjFaobHK8QqqXGVsM9NTV1wIABKSkpnTp1unz5cocOHeiOqGY5OTnq6ury8vK5ublsNpvucBBCCDUq9+7dMzU1lZeXf/nyZZs2begO5ye3b982MzNTVlZ+/fq1Du7S1aCEhITY2Njk5OQYGRkFBQUZGBjU5lU5OTlnz57dt2/fs2fPAIDJZA4fPtzW1nbcuHGysrLVvPDVq1fHjh07dOhQZmYmADRr1mzatGl2dnZ9+vQRyY+DUP0dOgR2diB488HnQ2Ii1kRGNWveHIqLIS4O2rX73mJkBFOnwqpVtIaFGi8cr1Cd4XiFUC01thnub968UVFRMTQ0vHv3boPItgOAqqpqu3btioqKEhIS6I4FIYRQo8Ln8x0dHQkhzs7O0pZtB4Dhw4ePHz8+Pz/f1dWV7lhQbfF4PBcXl/Hjx+fk5EyfPj0yMrKW2XYAUFVVtbW1ffr0aXR0tK2trYKCAjXhvVWrVnZ2di9evKjqhV26dBGc8J6Xl+fj49O3b1+c8I6kSrNm8Pr1jz8PH9IdEGo4lJTA0ZHuIFBTguMVqjMcrxCqjcaWcA8LC3v58uWYMWO0tLTojuUXYFUZhBBC4nD48OHo6Gg9Pb3ly5fTHUvlduzYIS8v7+vrGxUVRXcsqGaZmZmjR4/28PBgsVju7u6nTp1SUlKqw/v07dvX29s7LS3N29u7V69e37598/Hx6d69O5VALyoqqvRVcnJyVIX32NhYBwcHdXV1qsK7m5sb7gSAEGrQVqyAmzfh/Hm640AIoZrgeIVQbTS2hDuVuX4mVFNK6uG+qQghhEQuLy9v7dq1ALB9+/a6ZUUlwMDAwMnJiRBCzcSnOxxUnZiYmN9++y00NFRLS+v69evOzs71fMNmzZrZ2trGxMRQE96VlZUFt0iNi4ur6oWGhoZeXl5paWnHjx/X19ffvXv3wYMH6xkMkip8Pj8nJyc7O5vuQFADlp2d3YA+Qq1bw4oV4OgIuGKnwcHxCtUfjlcINT6NM+He4KaKY8IdIdSAJCQkhIWF8Xg8ugNBNdiwYcPnz58HDRo0ZcoUumOpjqurq7a29oMHD06dOkV3LKhKJ06cMDExeffunbGxcXR09PDhw0X45tSE99TUVG9v7969e2dnZ/v4+PTo0YOa8F5YWFjpq+Tl5a2trR0dHcvKyhITE0UYD6LXo0ePBg8ePHHiRF1dXUdHx9zcXLojQg1MWlqanZ1dly5djI2NraysqtmfWaq4uACbDWvX0h0H+hU4XqF6wvEKIfHicsHXF+bNgylTYOVKiI6WXNek0dHU1ASAlJQUwcZly5YZGRklJSXRFVX1Pn/+DABqamp8Pp/uWBBCSBiXy42Ojvb09ORwOC1atACAli1bGhoahoeH0x0aqlJiYqKcnByTyYyKiqI7lpodOXIEAHR1dfPz8+mOBQkrLi52cHCgrhttbW1LSkrE3WP5hHeqUzU1NVtb2+fPn1d6ckhICACYm5uLOyokASkpKTNnzmQwGACgqqpK/YeOjs6xY8ek/yI5MZEEBPzUUlJCTpwgnz/TFFCTVFRUtGnTJmpRl6ysrIKCAgDIycm5uLjk5ubSHV2VNDTImTOEEHL1KmGzyfPnpGdPsnkz3WGhauF4heoJxyuExC47mxgbE3194uREtmwhEycSBoNs3SqZzhthwn3EiBEAEBISItg4ZswYAAgMDKQrqhq1atUKAKT2kQBCqKn5+PHj6dOnHRwcfvvtNxkZGcEnta1aterYsSN1dxETE0N3pKhylpaWADB//ny6A6kVHo/Xr18/AFizZg3dsaCfpKSkDBw4kLoDPHjwoCS7zsnJ2b9/f58+fcoHnyFDhrx580botJcvXwJA+/btJRkbErmSkhJPT08VFRUq7+Dg4JCbmxsdHW1iYkL99vv27RsREUF3mNV59oxwOOTcuR8tKSmEw8EEluSEhISU7+FsaWn59u3btLQ0W1tbJpMJANra2t7e3mVlZXSH+UNRETl8mPD5PxJYhJCxY8moUd8TWE+ekHv3aA0RVQbHK1R/OF4hJAmLFpFWrcjXrz9a9u4lTCaRSBKjESbcV6xYAQDr168XbHR1dQUAV1dXuqKq0ejRowHgnOCXHkIISVBpaWlcXJy3t7e1tXW7du0EM+wsFqtbt27W1tbe3t5xcXF8Pp/H402dOhUAtLS0Xr16RXfsSFhoaCgAqKiopKWl0R1Lbd27d4/BYMjLy797947uWNB3d+7coSYE6OnpPXz4kK4wqAnvKioqysrKFed8lZSUsFgsFoslgan3SExCQkLKv3csLS0FJ6Dw+Xx/f/82bdoAAIPB4HA479+/pzHUaly/TgBI8+YkI+N7S3w8ASCJibSG1TTEx8ePGjWK+gh17dr12rVrgkelMxMaEkIMDAgAOXPmpwTWu3dEUZHIy5NNm0i/foTBIBwOkdZPfVOE4xWqJxyvEJKQsjLSrBn55x/hxnbtyJIlEuifXXmhmYas0nro0l8kvU+fPlevXo2JiZk4cSLdsaAaFBcXv3nzxt7eXgJ9bdy4sVevXtQECoRELicn59GjR3fv3o2MjIyMjCwqKio/pKKi0r9/fxMTk759+w4ePFhNTU3whQwGw8/PLzc39+rVqyNHjrx7927r1q0lHj6qXFlZ2ZIlSwBg7dq12tradIdTWwMHDpwxY8bJkydXrlzp7+9PdzgIfHx8Fi9eXFpaOnTo0LNnz7Zs2ZKuSKgK79u3b3/69GnFL0RZWdk2bdokJSW9f/++U6dOtESI6uzly5dLliy5fv06AHTt2nXXrl3laQgKlbSysLDYunWrh4dHQEDA5cuXV6xY4ezsTK2+lyoMBvToAS4ucOgQ3aE0GVlZWevXr9+7dy+Px9PQ0Fi7du3ixYtZLJbgOVTSKjAwcMWKFY8fPx4yZMjkyZO3bdtGJUYl79kzcHKCsDAAgJ49QU/vp6Nt24KrK7i6Ap8Pf/wBsbEQEABXroCLCyxbBtL3qW9CcLxC9YTjFao/Lpf79u3bv/76SwJ9rV271tjYuFmzZhLoSyw+foTcXDAy+qmRxYKePSEuThIBSCCpL2GvXr0CgDZt2gg2JiUlAYC2tjZNQdUsMDAQACwsLOgOBNVsw4YNEss76Orq2tnZ0f0To8ajrKwsLi7O19fX1ta2W7duVLnJcgYGBtbW1p6entHR0Twer8Z3KygoMDU1BQBDQ8PMzEwJxI9qw9PTEwDat29fXFxMdyy/JiUlhSpkGRYWRncsTVpRUdGff/4JAAwGw8HBobS0lO6IakClPC5evEh3IOgXZGZmOjg4UIkGDQ0NT0/PGtfOJycnW1tbU99cenp6vr6+UlUo+fp1wmCQJ08Ii0X++48QnDEqZlwu19vbm9q+S0ZGxtbWNqN8sm4VCgoK3NzcqNSnoqKim5tbYWGhZKKlZGYSBwfCYhEAoqFBPD0J9alfv548e/bjtJISsno1uX2bEEKSk4m1NWEwCADR0yO+vkSaPvVNBY5XqJ5wvEKisnXrVmpPNQnQ09ObPXs23T9xPVDjWsVlIjY2xNRUAv0zCCGS+VVJDJ/PV1VVzc/Pz8jIoEY0ACCENG/e/Nu3b58+faIWR0ubpKSk9u3b6+jopKam0h0Lqk5KSkqXLl0KCgo8PT2NhJ6VidrHjx/nz5/P4/GioqL69u0r1r5QI5aXl/fs2bPIyEhqJvu3b9/KDykpKfXq1atv376mpqbDhg0rHzNrLycnZ+jQoc+ePevXr9+tW7fKNzlEdMnKyurUqVNmZmZISIiVlRXd4fyyDRs2uLm59erVKzo6WmjKD5KMlJQUCwuL58+fq6ioHD16dNKkSXRHVDN7e/s9e/bs3LmTWtuBpFxpaem+ffvWrVuXnZ0tIyMzZ86czZs31/4LKDw83NHR8dmzZwAwdOhQT0/PXr16iTPe2rpxA8zNgc8HOzuIjISYGEhMhG7dIDER2renO7hG5+bNm05OTi9evACAESNG7Nq1q3v37rV8bUpKyqpVq06cOEEI0dPT27x5c3liVHxKS+HoUXB1ha9fgc2GuXNh82ao/WVXeDg4OcHTpwAA/fuDlxf07y++YNEPOF6h+sPxCscrUUlPT+/cuXNOTs7WrVt/++03sfb16dOnOXPmcLnc+/fv92+gv8KvX0FLC86cgalTf2o3MwN1dQgMFHsAEkjqS96gQYMA4ObNm4KNw4YNA4ArV67QFVX1+Hy+uro6AHz69InuWFB1pk+fDgBTp06VTHdU7sDExESq5kQg6Zeamurv7+/g4NC3b19q751y2traHA7H09MzIiJCJCWPU1NTqVqWZmZmDW5KdeNDLTA0MzOjO5A6KiwsbNu2LQB4e3vTHUsTFR4erq+v37Zt29jYWLpjqS0vLy8A+Ouvv+gOBNUsNDTU0NCQ+j4aMWJEXFxcHd6Ex+P5+vpSM7yYTKa1tfVnWnf64/FIWtr3GaOEkK9fiaYm8fDAGaNikZCQwOFwqI9Qx44d/f396/Y+YWFh5anP/v37P3jwQLRxCgoNJd27EwACQMzMSN0GVx6P+PqSli0JAGEyibU17m8pdjheoXrC8QrHK9GaM2cOAIwbN04y3f3vf/8DgAEDBjTgZFS3bmTWrJ9a0tOJoiLx8pJA540z4b548WIA2LZtm2Dj0qVLAWDz5s10RVWj33//HQCuXr1KdyCoStSefgoKChLb0+/bt29aWloAEBAQIJkeUUNXWFgotPZCXl7exMRk2bJlQUFBYnqkl5iYSC0emjBhQo1rbJH4xMXFsdlsNpvdgFKlFZ09exYAtLS0vn37RncsTRH1XPnAgQN0B/ILrly5QmVD6A4EVef169eWlpa/lHfg8Xjbtm2raij49u2bs7OznJwcAKipqbm7u0v4oS+PRyIiiIMD0dUlffr8SGARQg4dIioq5NYtTGCJkuBvXFlZ2c3NrTa/cV9f35cvX1Z6iMqEUoUixZQJTUggHM731FXHjqSu2bYf8vKImxuRkyMARFmZuLkRnOogDjheoXrC8YrgeCVqT548YTKZsrKyr1+/lkyPeXl5Ojo6AODn5yeZHkXPz4+w2eTo0e//++0bsbAgenokJ0cCnTfOhPvhw4cBYMaMGYKNfn5+ADB58mS6oqoRNZf5H6EtdJHU4PF4/fr1A4C1a9dKst/9+/cDgL6+fkFBgST7RQ0Rn89v06aNpqZmixYtLC0t3dzcQkNDi4qKRNtLbGxsRIVSaM+fP6eW6SxcuFC03aHaGzlyJAA4OjrSHUh9DR06FACWLl1KdyBNkZubGwCsXr2a7kB+QWJiIlTYvwdJjzpnmqhL+uorJgvlxSRQyp/LJdeukQULiJbW98QEADEwIBcu/Ehg8Xhk4EBiaooJLNGoc6bp7du3cnJybDa7morJdcuL1Sg7O9vFhSsjQwCIqirZvp2IYlXhd69ekTFjvn/2Oncm16+niuytmzwcr1A94XglBMcrkeDz+YMHDwaAlStXSrLfo0ePAoCurm5eXp4k+62XS5fIsGE/thrYsYMoKhItLdKzJ5GTIz16kDotV6qDxplwf/LkCQB07dpVsDEuLg4ADAwM6IqqRsePHwcADodDdyCoctRVlK6ubn5+viT75fF4VAH3jRs3SrJf1BBFRUVRj2fEt+wrISFBQ0NDVVU1JiZG6NC9e/eoHS/XrFkjpt5RNe7evUvd6TWCDWyfPHnCYrEUFBRq3FEKidyJEyckWTlNJMrKymRlZZlMpoT3E0M1queMvKdPn1KP3wDAyMjoP2prv8qIpPJD9YqKSEgIsbUlLVr8yFu1a0ccHEhEBOHzf5oxSgh5/pyw2ZjAEoH61FLIyMiws7OjdgTR1NTcv39/VZlQUVV+IAIf+99/D61nLQU+nzx8WOVRqvKDsnJuixatzMzMGvTiNmmA4xWOV/WH41VVcLyqp5MnTwJAixYtsrOzJdkvn8+nZp02mLk4XC7p3JkAkJ07fzTm5pKbN0lQEImJITyexGJpnAn3kpIS6r5L8CFMWVmZoqIig8HIysqiMbZqxMbGAkD79u3pDgRVIjc3V1tbGwBOnjxZ8WhpaWlHEUlJSan4/hEREQwGQ1FR8cOHD+L/WVED5urqCgD29vbi64LH402dOpWq+PHq1SuhoyEhIWw2GwC2b98uvhhQpeLj49u3b9+jR49Kj0rnd19JSUmljzALCwvV1dVNTU0bwcODBufhw4cA0Lt3b8HGkpKSR48eXbt2ja6oatSpUycAEEfaAtWZYN5h6NChFR/T1lJISIiBgQH1PpaWlm/fvq30NC6X6+npqaamBgAyMjLVzBD8JYWFJCSEWFuTZs1+5K26dSNubiQ6+qczhRJYhBAHB0xg1UtycnL59oB6enq+vr51m08QHx8/atQo6iPUtWvXagp4CmVC65ASCg8P79279/+/g+WTJ/WaAHHiBAEglpakik894XKJj094+cfeyckJq7HVDY5XOF7VE45XOF6JT2FhYZs2bQDg8OHDlZ7QpUsXkSSjkpKSKr75/fv3GQyGvLy8xOoq18uOHQSAdOggymUaddU4E+6EEGrguHfvnmAjtbVuWFgYXVFVr/yRgISfWaHacHZ2BoCBAwdW+sXJ5XJBRKoaxSZNmgQA1tbW4v05UQNHXXUJbRktclwud/To0QCgr6//8eNHoaN+fn5MJpPBYFR1QYDEJCsrq3nz5gBw4cIFoUP//vuviorK9fVRNrAAACAASURBVOvXaQmsGlu3btXV1a24pJqqatK7d2/cEkDysrKyAEBZWVnw+y4tLQ0ANDU1aQysetQi/fPnz9MdCCJEdHmHciUlJZ6enioqKgAgKyvr4OCQm5tb6ZmZmZkODg7UDMHqaztULycn5+TJk46ODxQVvyetGAxibEy2bCEJCZW/pLBQOMtQVETeviWfP5OzZ+sQQpNWUFDg5uamoKAAAIqKim5ubvVfv1L7TKi3t7empuavZkJF/rEnhOzfT5SUCACRlyerVpGqFvSL6mPfNOF4RcHxqs5wvKLgeCU+a9eupe6MeFXMzmYymSJJRlWcTkeZOXMmNIhqHF++EDU1AkAuX/6pPTWV3Lgh+XAabcJ97ty5ALB3717BxoULFwLATsGVBVKGWqwRHh5OdyDoJ1Q9NSaT+bDqVVKvRaS0tLTS9//w4QP1PKZi7WyEKFQVYzU1NS6XK+6+CgoKTExMAMDQ0LDiHOQ9e/YAAIvFOnfunLgjQYJ2794NAAYGBkL1HLdu3QoAXbt2lcBno/Y+f/6sqqoKAELzppOTk6naRPhtSBfqzk1oj2UqdyC1aw6ojXA8PDzoDqSpE0feoVxqaqqtrS11V6mjo+Pt7V3VnWdMTEx5bYeuXbvWfnFGVlaWr6+vpaUlVSG3U6fJTCbp25e4uVWZt6pefj5p04awWATHs1ri8/n+/v7UVD4Gg8HhcN6/fy+qN6cyoc2aNSvPhOZUsW3aL6WEhD72zs7OIqx1m5pKbG0Jk0kAiLY28faucjW80MRYaV6TJCVwvBKC49WvwvFKCI5X4pCcnEwlgu7cuVPVOQkJCSJJRlV1q5iSkkLdnVVTLEsq2NoSADJypHC7tTUBIO7uEg6n0Sbc//33XwCYP3++YKO3tzdI9xxhOzs7ANi1axfdgaCfjBs3DgDmzJlDbxhUtZC+fftWdbmGmrht27ZJcoj79u2bkZERAPTr16/ihRr1cVVQUMCcqSSVlZX16NEDANx/vp4oKSmhCm54eXnRFVtFc+bMAYBx48YJtU+bNg0Apk2bRktUiBAycODAig88qLWD1Tx4pte+ffsqXvghSRJr3kHQo0ePBg0aRN2lGxsbR0ZGVnVmSEhIu3btqDMtLS0rXShN+fz584EDB0aOHElVRaOeGQ8bNmzPnj2pqfW96HJ1JQBET498/VrPd2r8oqOjTU1NqV9B3759xTTLRDATqq2tXU0mtMaUkODHnvqYie1jT0xMvk9e7tuX3L1b5Zm1nBjbxOF4VRUcr2oPx6uq4HglWlQ11+nTp9MbxoYNGwDAyMhIelckxMQQFouw2cJ7ot6/TxgMIidH3ryRcESNNuFO7R3Xp08fwUZqO8Hu3bvTFVWNDhw4AAA2NjZ0B4J+uHXrFgCoqKikpaXRG0lBQUHr1q0B4NixY/RGgqQTdc0XGBgo2CjWPX5TU1OpewMzMzOhKdWEEEdHRwBo1qzZ48ePxRcDElLVkBUcHAwA6urqUrIN6ZMnT5hMpqys7OvXrwXbIyMjGQyGgoKCmO4BUG3Y2NgAwKFDhwQbp0yZAgAnTpygK6rqhYaGAsDQoUPpDqSJio6OppY9iTXvUI7KGlAXRVSyrKpNbqqv7ZCcnOzt7W1paSmYtzIxMfH09BRa4VEfpaXfUw8WFkRsO5o3eGlpaUJJJXHf0gtlQu9WnRMSyoSWp4QE0219+vQR/8eeHD9OdHS+FwyZPZubmppa6Zm1L2nSNOF4VQ0cr2oDx6sa4XglKtJzZ1RUVNS2bVsAOHDgAL2RVGnoUAJAli79qZHPJ/37EwDi6ir5iBptwj0vL4+6ky8RqJRfXFwsIyPDYrEKCgpojK0a1E5lVW15hySvqumidDl+/DgAtGzZsqoFZajJSk9PZ7FYcnJyQtconTt37tu3b3Jyspj6TUxMbNWqFQBMmDBB6Fqz+u1VkfhUtSjH3NwcABYtWkRLVIL4fP7gwYMBYOXKlYLtPB7vt99+AwA3NzeaQkOEELJx40YAcHZ2FmxcvXq1NP9q3r9/DwA6Ojp0B9LkVMw7SGwdXn5+vpubm7y8PPx/OYiioqJKzxSq7fDPP/9s3bp1wIABVPlaAJCXlx87dqyvr6+Y9pf++JFoaBAAsm+fON6+YaN2j6TKJsjIyFRTNkHk6pwJnTdv3pw5c6gCDpJJt5UrKCBubkRengwd6ll9FZTalzRpOnC8qg0cr6qB49UvwfGqnng8nrGxMQCsW7eO7lgIIcTf35+6tZfG3W79/QkA0dIiQrH5+hIA0qoVoSOB1mgT7oSQzp07A8DTp08FG6nkKe0LoktLS2/dulWxvaioSEZGhs1mV/UFjCSMqk1UsSAyXfh8PjUjY9WqVXTHgqTLoUOHqIkMgo0vXrwAAE1NTbFeVz179kxdXR0AFi5cKHSo+u1VkZhUte1EfHw89dT52bNndMVGOXnyJAC0aNFCaJNw6mOsp6cn1pUZqEZnz54FgIkTJwo2+vr6AsCMGTPoiqp6PB5PQUGBwWDgxChJKisro1ZnSjjvIOjjx4/W1tZUHkpfX9/X17eqM6OioqgZghoaGtT5CgoKlpaWvr6+Eog8MPD7VnI/35og8vTpU2VlZeoaJjExUfIBUBWNfykTSqWuaPzYJyURa+v51Me4bdu2AQEBVZ1ZPjG2Q4cOtK/WpReOV7WH41VVcLyqAxyv6szHx0fa7oyoDSeWCs0ip11REWnblgAQodn3eXnf11kcP05LXI054U4VgT1y5Ihg4+zZs2lfBJGXl2dhYcFkMs+fP1/xaPfu3QEgKipK8oEhIVlZWdTGcZX+pugSHR1Nrd5IqNtuOKiRsrKyAoCDBw8KNm7evBkA5s6dK+7e7927R+2jsmbNGqFD1W+visRk5cqVADBw4ED+z+uBHRwcAGDYsGF0BUYIKSwspMpHHj58WLA9NzdXW1sbAE6dOkVXbIjy5MkTqFCC7969e9RCZrqiqpGhoSEAxMTE0B1IE5KamgoAysrKtNddvX37NrWtCAD8/vvvT6vIEvF4vPnz5wNAu3btgoKCRLhBYm3Mn08ASLduRFqX2tKD+pcrVMNK8ipmQvlVFNS4ePEi9bGnJd0mKCwsrPxjP3To0KpGPz6fb2trCwAzZ86UcIRSBcerX4LjVaVwvKozHK9+VW5uLrWO/MyZM3TH8kNMTAyLxWKz2XFCddLptWEDASBGRkRoluGqVd93EqBpwURjTrh7eHgAgL29vWCjp6cnANjZ2dEVVWpqap8+fQCgefPmle4yTD3TGzRo0MWLFwXr4SDJW7x4MQAMHz6c7kCEUdV1heYeoqasoKBAUVGRyWQK1XDs168fAAQHB0sghpCQEKqm5I4dO4QOVb+9KhKH8uT1yZMnBdvLnyMGBQXRFdvatWsBoHfv3kJrRVesWFHpQwIkeXl5eVS9SMHfUUZGBgCoqqrSGFj1xo8fDwD+/v50B/IrMjNJSAg5coRcu9YQsxpUAktbW5vuQAghhMfj+fr6tmjRAgCYTKa1tXV6enrF06i1GhLbYFxQQQHp2pUAkArrwZo0KoEVGxtLdyCEEPLff//VmAn99OkTALRs2VLy4VVU8WP/+fPniqf5+flhAgvHq1+C41WlcLyqDxyvfsny5cupxKC03RlRT0RGjhxJdyD/LyWFKCkRAPLffz+1JyUReXnCYBAx71hQjcaccL9x4wYAmJqaCjaGh4dTSR9aQnr+/DlVdat9+/ZC28QRQvh8vrOzM3U3S42bampq1tbWISEhpaWltATclL148YKqvfD8+XO6YxH2+fNnqnLc9evX6Y4FSYVz584BgImJiWBjamoqg8FQVFSU2K4Vfn5+TCaTwWAILS0iNW2visTh8OHDAKCrqyu0CHHPnj0AYGBgQEvtsuTkZEVFRQaDIfTIOTExkSqDgwu8pAT1wEaoEhS1sP3Lly90RVU9amHH5s2b6Q6k1nbvJoqKpE0bMngwadGCaGqSCxfojunXSFUCi5KVleXg4CAjIwMALVq0qPiUl8YEFiEkNpYoKBAAIk3z1WgmVQksQkhZWdn+/fuph9MsFissLEzoBKlKYFG+ffvm5OREfezV1NT2Vai9jQksguPVr8PxqiIcr+oPx6vakOY7oy9fvqipqQHA5cuX6Y6FEEKItTUBIJMmCbdPnEgAiI0NHTF9x4TGi5pI/vTpUz6fX97Yq1cvBoPx/Pnz0tJSCccTGho6ePDgjx8/Dhw48P79+506dRI8WlJSMmvWLA8PDzabvXLlSk9PTxMTk+zsbD8/v7Fjx7Zq1crOzo7ajVrCYTdZS5cuLS0t/euvv6i6/1KlZcuW1LOZJUuWlJWV0R0Ool9wcDAAUFtlCjYSQkaNGqWoqCiZMGbNmuXl5UUIWbBgQVBQkOAhHR2d0NDQVq1a3bp1a/r06TweTzIhNWV//vlnv379UlNTt27dKti+cOHCnj17JiUl7dq1S/JRLV++vLCwcNq0adSmqeWWLFlSUlIyZ84catNURLuOHTsCQEJCgmBjhw4dKjZKDyrmN2/e0B1I7Vy+DI6O4OMD79/DnTvw6RPY2sLUqfDiBd2RNWzq6upeXl5xcXEWFhYzZsygiu1Kj+7dwd0dAGDhQvjwge5oUGVYLNbChQvfvHnj7Ozcs2dPqiyelFNTU9u1a1dcXJylpWV2dnZmZibdEaFawfEK1ROOV42Vk5NTSUnJ3LlzpfDOSEtLa82aNQDg6OjI5XLpDebBgweTHz7M7N8ftm376cB//0FQECgqwqZNNIUGANCYZ7gTQvT19QFAaC45dbso4ceShw8fph7iTZ48uWL9tczMzCFDhgCAsrLylStXyttfvHjh5uZG7f5K0dfXd3BwiKBvTUQTceHCBQBQV1fPyMigO5bKlZSUUJ/kis+EUVNTVlZGzWsQGutGjRoFAMeOHZNwPK6urgCgoKAQHh4udKia7VWRONy7d48qDPLu3TvB9lu3blHfOKmpqZKMJzIykorn/fv3gu03b94EABUVFdwfSXrMmzcPAPbv3y/YOHPmTAA4evQoTUHVICwsDAAGDRpEdyC1M3QoGTPmp5bSUtKhA6Gv7GEdSOGMUUFcLrdiI70zRgkhfD4ZN44AEFNT4VqjTZO0zRgVVOlHSApnjAq6evVqxZtNnDFKcLyqExyvhOB4JVo4XlUqNDRUyu+MuFwulaXcuXMnjWHw+Xyqgu7q1at/OlBWRoyMCAChe9lrY57hDgC9e/cGgJiYmBobxYcQsm7dunnz5pWWljo4OJw9e1ZBQUHwhLdv3w4aNOjOnTu6uroRERGjR48uP9StW7d169a9evUqKipq6dKlenp6ycnJu3fvHjx4sKGh4aZNmz69fSuZn6JJ4XK51LL09evXU3lMKSQrK+vu7g4Aq1evxsfCovL+/Xu6Q6iLO3fufP36tVu3boLrZvLy8sLCwlgsloWFhYTj2bRpk4ODQ1FRkZWVFbX1YrmePXtevnxZSUnpwIEDVCFvJFYDBw6cNm1aUVGRi4uLYPvw4cMnTJiQn5+/atUqiQXD5/MdHR0JIc7OztSmqZSysrIlS5YAwOrVq6kyJkgaVDpbXMqnkEt5eD8hBB4+BDOznxrZbBg+HO7fpykmkYmJiVFWVqamktCLmuwibRgMOHQIdHUhOrr433+v0h2OlGrdurWysvK3b9/oDUM6P0LVMzc3F7rZRNXA8ap6OF7VBo5XdYbjVUXld0Zr166V2jsjGRmZHTt2AMC6des+f/5MVxi+vr5RUVG6urpU+YcffHzg2TNo1w6WLqUptO+aaMJdVlY2PT1dAgFQhWLWr1/PZrP379/v5eXFZP70d/7gwYOBAwe+fv26Z8+eDx486NWrV6Xv89tvv+3YsePDhw8REREODg4tW7aMj49fs2ZNs3HjwNAQ1q2DpCQJ/DhNxK5duxISErp27bpw4UK6Y6nOpEmTRo4cmZWVtXHjRrpjaQyondPXr19PdyC/jKonQ+0WWO7y5cslJSWDBw+m5aHRrl27pk6dmpuba25u/vr1a8FDAwcOPH36NJvN3rhx486dOyUfW1OzdetWJSWls2fPUluYlNu+fbu8vPzx48ejoqIkE8nhw4ejo6P19PSoLYDK7du3LzY2tn379o6OjpKJBNVGQ0y4a2trq6ioZGRk0H7TW7PCQiguhor3Udra0PAfovN4vIKCgsLCQroDkV6amnDiBLdt20HLl1tFRETQHY40ys/Pp3agoTsQ1MjheFUjHK9qhOMVEqG9e/fGxcW1b9/e3t6e7liqY2FhMXr06Nzc3HXr1tESQH5+PrWw3t3dXbAeV3Z2dnxICDAYsHUryMvTElu5Rp5wp8q4CyXc7e3t8/PzhW74xSErK+uPP/44deqUsrJycHBwxextYGDg8OHDMzIyRo0aFRERoaenV/0bMplMU1NTLy+vlJSUK1euuP71l1JKCsTHw/r10LEjDB0K+/fD169i+4GahC9fvmzZsgUAdu3aJf1PiXft2sVms6lBme5YGrzc3NzCwsJ169bRUti6PkJCQqCyAu4VGyWGyWT6+fmNHj06IyNj5MiRycnJgketrKyOHj3KZDKXL19+9OhRWiJsOvT09FasWAEATk5OgqXzDQwMnJycCCHUrHNxh5GXl0etadi+fbuSklJ5e1ZW1oYNGwBg586dcnJy4g4D1R61YkYot15po/RgMBjt27cHgMTERLpjqUxiInh7f/9vBQVgsyu5Zvv6FZo1k3BciBa//y47adIYHo83Y8YMXKqIEJJmOF4hJBnlkyk9PT2l/85o586dMjIyBw8efPz4seR737x5c1pa2oABA6iKl+XWr19veO3aP9OmweTJko9KSCNPuFMz3IVqGigrK0sgkSpUKGbMmDFCJ3h5eU2dOrWoqGj+/PmXLl1q9iv3V2w2e/To0Zv27YP0dAgJAWtrUFSEO3dg0SJo1QpMTcHHB3JzK3llSQmcPg3OzrBsGRw6BDk59fkZG6X//e9/OTk5Y8eOpepfSzlDQ8P58+eXLztC9TF27NgjR44wGIxly5YdO3aM7nBqKyYm5t27dzo6OoIbqpSWll67dg3oS7gDgIyMTGBgoImJSXJy8ujRo7OysgSPzpo1a/v27YSQ8+fP0xVh07Fy5cq2bds+ffr0yJEjgu2urq46OjoPHjw4efKkuGNYv37958+fBw0aNGXKFMH2NWvWZGZmmpmZjR07VtwxoF/Svn17JpOZlJQkuDV3+Qx3qZ3GJb1z8C9fht9+g0WL4MYNAAAmE3r2hEePhE+LioLevSUfHaLFunXrBg0alJKSYmtrS3csCCFUHRyvEJIAqlywmZmZpaUl3bHUrEuXLn///Tefz6dmcUmy66SkJE9PTwaD4eXlxWAwyttfvXq1d+9eFotlIVRkhiaNPOGur6+vpaX19evXlJQUSfZbfaEYHo+3aNEi6kPp5uZ28OBBNptdx57k5MDKCo4fhy9fwN8fLC2BxYLISLCzgxYtvh/Kz/9+8sePYGQEy5fDly9QUAA7d0LHjpXc7DVhMTExx44dk5WV3Sa0x7EU27x5c/PmzW/evHnp0iW6Y2nwrK2tvby8CCG2trZXrlyhO5xaKZ/JLvhNc/v27ezsbCMjo3bt2tEXGigqKgYHBxsaGubn51es8GBvb6+ionLjxg1qDyskPgoKCuVbPuQIPGdVVlbevHkzALi4uOSXf1OIwdu3b/fs2cNkMoUuieLj4318fNhsdoNbVtIUKCgo6Orqcrncjx8/ljeqqqpqaWkVFBRQe3BJIWlMuBMCHh4wdixkZ4OFBfTv/719wQI4cwaeP/9x5rlzEB0NmMtoMths9pkzZzQ0NIKCgrzLVz8ghJD0wfEKIXF78eIFlRv09PSkO5bacnNz09LSunv37rlz5yTZ7/Lly4uLi21sbKhNU8stXbq0tLR0wYIFRkZGkoynKo084Q4AVLJbYlukQk2FYvLz88eNG7d//345OblTp06JrOCRggJwOHDxIqSlgbc3/P47lJbCpUswezbo6MCffwKfD7Nng7IyxMbC0aNw4ADExoKpKUyeDFyuaGJo4KjSCtQDOsHNJ6WchobG6tWrAcDJyamkpITucBo8e3t7Z2fn0tLSyZMnN4gyhZWWjqm0qjstmjdvfv369bt371J1HgTdvXs3Ly/PwMBAV1eXltialKlTpw4ZMuTLly+bNm0SbJ89e3a/fv1SU1M9PDzE1zs1Os2dO9fY2FiwfcmSJWVlZX/99VePHj3E1zuqM+qrMCEhocZG6SF1CffcXJg0CVxcgBBwdoYLF0BV9fshW1uYMgUGDYKZM2HNGpgwAaZPh/XrYehQWiNGEqWvr0+lrpycnJ4LPn1BCCEpg+MVQmJF3Rn9/fff3bt3pzuW2lJTU6Oqgy5dulRim2Hcvn37/PnzysrK//zzj2D7pUuXrl69Wh6SNGj8CfdK900Vn+oLxaSlpQ0ZMuTy5cvUlORp06aJPoLmzcHWFv77D5KTwdMTTEwgPx9SUuDNGwgLgw0bQEPj+5ksFmzdCh8/wlXccBwA4PTp0xERES1atFi1ahXdsfyaxYsXd+/e/e3bt//++y/dsTQGW7ZsWbBgQVFRkZWVlSSf1dXBhw8fnj171qxZs2HDhpU3EkIuXrwItNaTEaSrq1vpBhXS81SgifD09GSxWLt37xbcxrZ8Id727dvfv38vjn6p9TcqKipClz7nz5+/ceOGurq6m5ubOPpF9dcQ902Vrirzr17BgAFw/jw0bw5Xr4K7OzAFLryZTDhxAkJCQFcX0tOhRw94+BDWrKEvXESPyZMnz5s3r7i4eMaMGUVFRXSHgxBCVcLxCiExCQoKCg0N1dDQWNPQLgVtbW379u2bnJy8c+dOCXTH4/GocsqrVq3S0dEpb+dyudQ+ndSkewlEUhuNP+FuaGgIAIGBge/evRNrRzUWiomNjR0wYEBMTEyHDh3u379vamoq1nhARwccHeHuXUhMhG3b4OlTAACBKs8AAB06gKbm90NNW1FREZVn37Jli2r57LMGorwgw4YNGz5//iz2/uLiwM4OBg2CgQNh/nwo3yPh/n0YMwaEqndZWEBkpNhDEikGg7F//34Oh5OTk2Nubi61EzkB4MKFC4SQMWPGyMrKljc+evQoJSWlTZs2QsWspA2927o2Qb17954zZ075tUi5AQMGzJgxo7i4eOXKlSLvtHyHibVr12pra5e3c7lcZ2dnANi4cWPz5s1F3i8SCWlOuD9+/NjFxaViOxWeVIzbZ8+CsTG8fAm9esGjR1BxY5i0NACA4cNh61bw8YENG7B6e5Pl5eXVtWvXFy9eUHtcI4SQ1MLxCiGR43K51GXtpk2bGtydEZPJpMqpb9myRbAQpZgcOHDg+fPnBgYGQrsYUrPKqLLy4o6h9hp5wj0zM3Pv3r2qqqqxsbEGBgaGhoYeHh5p1B2OSNVYKObGjRumpqbJycmDBg26f/8+dUMoIQYG0Ls3FBQAg/Fjenu55s0hL09ywUgrDw+PDx8+9O7d+88//6Q7lroYMWKEhYVFXl7e2rVrxdvTtWtgbAw5ObBgASxcCCUlMGAAUBW7Pn+Gq1eFE+5XroC0lvqtBovFOnHixKhRo758+TJ69GiprVZcTT0Zoaru0ubp06fv3r1r2bLlb0JPAZE4bd68WVVVlVptJ9ju4eGhpKQUEBAQFhYm2h737NkTFxfXvn17e3t7wfYdO3a8efOmW7dudnZ2ou0RiZDUJtyPHTtmamrq4eFx5swZoUNaWlrq6urZ2dlfv36lJTYAAB4PXFxg+nQoKICZMyEyEipup+HjA+3bf99AFTV5SkpK/v7+CgoKe/fuvXDhAt3hIIRQlXC8Qkjktm/fTt0ZLViwgO5Y6sLU1HTixImFhYVUrWPx+fbtG5Vr3b59u7y8fHl7ed3UnTt3ysjIiDWGX9KYE+6vX7/u379/VFSUkpKSlZWVsrJyfHy8i4tL69atzczMDh48mJWVJZKOaiwUc+jQIUtLy9zcXA6Hc+vWLU1NTZH0+2s0NIAQqDj9OS0NaIlHmqSkpGzfvh0APD09mcyG+o/C09NTTk7u8OHD0dHR4uqDy4W5c2HmTDhzBubMgdmzwc8PbG3B1hYKCsTVKU1kZWWDgoIGDRqUlJT0xx9/iGq4EKGsrKyIiAgZGRlzc3PBduraV8pnjlNPBSZMmNBw/8U1RC1atKAug6j9ZMrbdXV1qfnmot28lMfjUXWudu3aJScnV96enp5ObeK6a9euuu8ZjsSv0vIs9Cbcy8rKXFxc5syZU1xcbGtrO3HiRKETCCHUMrX169dnZGTQEOLXr2BuDh4ewGKBuzucOAGKij+dUFAA06aBnR2UlIB0Vy1DktS9e/ctW7YAwNy5cyUwQQwhhOoMxyskVnJylkZG2ZqaorwrkWbp6enUZloN+s5o586dioqKJ06cuHv3rvh62bhx49evX4cPHz5hwgTBdldX15ycHEtLy9GjR4uv97ogjVRkZCRVuMfIyCg5OZkQUlRUFBISYm1traSkRP3sLBZrxIgRvr6+ubm59enLwcEBALp06fL27VuhQ3w+v7w6rYODA5/Pr09H9ZKaSlgs4uv7U+ODBwSAhIXRFJO0mDp1KgBMnz6d7kDqa9myZQAwaNAgcX3SQkMJAImP/6kxOZkAkPPnSVAQASA83k9HAUhAgFiCkYiMjIyuXbsCQODs2aSggO5wfnLs2DEAGDVqlGAjlQVTU1Pjcrl0BVYb1O4aV69epTuQJqekpITKonp6egq2FxYW7ty5s6ioSLTdZWRkeHl5CTVSC4nGjx8v2r6QyJWUlLDZbBaLVVJSUt6Yn5/PYDDk5OTKysokHE9qauqgQYMAQE5O7uDBgxVPyM7Opp41qqmpAYCsrCyHwwkNDZXY1Rc3Koro6xMAoq1N7t6t5Iw3b0iPHgSAqKiQwEDJRCVWqampAKCtrS3Y+OjRHSl5IAAAIABJREFUIwDo27cvXVFVz9fXFwCsra3pDaOoqEjoHxGfzx87diwADB48WPL/vmhE1f+MjY0VbFRXVweAzMxMuqKqBrXwsWXLlnQH8gv8/PwAYObMmXQHQiccr0QIxyvBRhyvRMvPjwCQpjNc2djYAMDEiRPpDqS+XF1dqeGUJ5QREp3k5GRra+vnz58LNsbExLBYLFlZ2VevXomp3zprqM9PqhcQEGBjY1NcXGxubu7v76+iogIA8vLyVlZWVlZW//77b3BwcEBAwPXr12/evHnz5k07O7sRI0ZwOJxJkyaVp+Nrb+vWrWw229XVVePngi0lJSVz5sw5ffo0m83es2cPzQvndXRg2jRYtw6GDQN9fQCAnBxYsgT69YMhQ+gMjG6pqakXL16Ul5enZlw2aGvWrDl27NjDhw91dHRquZTmoZaWdi3nAJqbQ69ewGaDUEEkPT1o1gxev4ZOnQAAli371bClmaam5vXr15/Z21sePw4ZGXDhAkjNGqVK68mcP38eAKysrKRqLZWQDx8+PH36VFlZWXCvVyQZsrKy27dvHzt27Pr162fOnFm+4kpBQUGoEJ5IaGpqUs+kyz158uT48eOysrJbt24VeXdItGRlZVu3bp2UlPTu3bvOnTtTjUpKStra2mlpadReERIL5u7du1OmTPn06ZOenl5gYGD//v2FTnj9+vXEiRPj4+ObNWv2999/P3/+/MqVKwEBAQEBAR06dFiwYMHs2bNbtmwpvgiPHz++f+3aSC6XaWICAQEgsGnBd1euwKxZ8O0bdOoEQUFgaCi+YJD0W7x48YsXL06dOtXu/ysOMRiMQ4cO9ejRIzIyMiwszMzMjN4IEUKI8vHjx9atWwu24HiFkEh8+fLl/PnzsrKy27ZtozuW+nJxcTl8+HBMTIyOjo7gDnMiRxVBDQ4O7t69u4yMjJOTE4/Hc3JyKr9bkR6NMOHu5eW1dOlSPp9va2u7d+/eiosyVFVVbWxsbGxssrKyLl265Ofnd/v27UuXLl26dMnBwWHs2LEcDsfc3Lz26So5ObkdO3YINWZmZk6YMCEiIkJFReXs2bNSsbRh716YPh06d4Y+fUBeHh49go4dISgIpLjQswQwmUw9Pb2vX79qVCxwD5CSkqKpqSlYH0oa8Pn8d+/etW/fXqhdSUlJRUWltLS09lunlpWV1bbGekYGlJYCmw0slvAheXkoL09R8WgDp6+vr799Ozx4AFeuwOzZcOIESEEVlKKiohs3bjAYDCsrK8H2BrETaXBwMCHEwsJCsMwIkhgrKytzc/Nr166tXbt23759kuyaEOLo6Mjn85cuXSrRvUxQXXXq1CkpKenNmzeCl7AcDqegoIAI7dghTj4+Pvb29lwud8iQIf7+/hXz5iEhITY2Njk5OUZGRkFBQQYGBgDw6dOn48ePe3t7JyYmOjs7r1q1atiwYVQhGpZIv6pKSkrs7e0PHjwIAGfWrJmxZo3wo1lCYOtWWLUK+HywsgI/P2ho27Mj0Tp37tzhw4fl5eXzft5ISU1NTV1dvaioSFlZma7YEEJIUEBAwKxZs3bs2LF48WLBdhyvEBIJfX391NTUSvdK/fTpU7NmzeowJ1isCCFv377t0KGDULuioqKKikpBQUF6eroEwujfv/+2bdtatWoVHh5eXjdV6tA6v17ESktLFy5cCAAMBsPNza32L0xOTvb09DQxMSnfY1BDQ8Pa2jo0NLRuqyESExOpNfu6uroxMTF1eAcxevyYHDxI9u0jd+4IV/9okvh8PjVRztXVVejQ4cOHlZSUNm3aREtg1Th69KisrOyWLVuE2vfs2QMAbdu2TUhI+FA7ZR8/kg8favUnI4P4+xMAkp7+U68FBYTBIEePNsqSMj88fUrU1AgAWbSI7lAIIYRKrPfr10+wMT09ncViycnJ1bNMlrgNHz4cAE6dOkV3IE1XfHy8jIwMi8V6+vSpJPullrS3bNkyJydHkv2iOqN2u92xYwddARQVFc2ZM4e6NrO1ta1YLKusrMzZ2Zm6fps+fXp+fr7QCTweLzQ0lMPhlE+k0NPTc3Z2/vjxo0giTElJGTBgAADIy8sfPny4kjNycsiECQSAsFjEza2RXXphiYY6+PjxIzXJ48CBA0KHVq5cCQD6+vpZWVm0xEYLLNEgAVhShuB4VSfl49X+/fuFDuF4VQ7HK9FqaiVlhgwZAgDLly8Xavfz81NWVl69ejUtUVXj1KlTbDZ73bp1Qu2HDh2iUqAvX76sZTKqzo4cOQIA6urqGzdulJOT8/HxoeWvokaNJ+Gem5tLzSJXUlK6cOFC3d7k/fv3np6eVHHh8rsyBweHiIiI2hcAvXfvHlU+vmfPnlT5eGm0bx8ZPpzcvk13HFLh/v37VEXaN2/eCLZHREQwGAxFRcUPHz7QFVtFubm52traAHDy5EnB9qysLKo6RFBQkLj6/vyZyMqS3bt/ajx8mLBY5P37Rp5wJ4T89x+RlycApMK3i+TNnTsXADZv3izYSM2vtLS0pCuq2sjMzGSz2TIyMt++faM7libN0dERAIYNGyaxHgsKCqj1yEePHpVYp6iedu/eDQALFy6kpfcPHz4YGxsDgLKy8tmzZyue8PXr15EjRwIAm812d3ev/t3S0tLc3d3Ly3dQG/n4+/vXp/hseHh4q1atqIxDVFRUJWe8fEm6dCEApHlzcv16nTuSWpjA+lWlpaUmJiYAMGHCBKFD//33H5PJZLPZkZGRtMRGF0xgSQAm3AmOV78Ox6uKcLySgKaWcH/y5EmlJcipJJW8vHxSUhJdsVVUWFhIlZQUmmVSnqSS2KQ6c3NzAPjrr7/evXsntTtJNJKEe0pKSq9evQCgVatWld/w/KK4uDg3NzfBVRJt2rRxcHB48uRJ9S8MCAhQUFAAgFGjRkn1JFMnJwJA/vmH7jikhbW1NQBMmjRJqH3y5MkAMGvWLFqiqhQ1m2DgwIFCD4GoeYjDhw8Xb/fLlhE1NRIYSLhcUlpKQkNJixbkr78IIY0/4U4ICQ4mbDYBIDt30hgFj8ejKiq8ePFCsH3ixIkAUOlegtLj+PHjAPDHH3/QHUhTV/6I7ty5c5LpkVro16dPH/FtpINE7urVqwBgZmZGS9fUrLqOHTsK3dlSnjx5QmXPtbS0bt26Vcu3rTjhXVdX19nZuQ5P1r29vak3+f3339OF1n5RTp8mSkoEgPTqRaTpZkmEMIH1q6iRkCpmKNj+5csX6k5V6FF6U4AJLAnAhDvB8erX4XhVEY5XEtDUEu6EkPnz51c6bW7WrFkAMHnyZFqiqtTatWsBoHfv3kI3dCtWrKg0SSU+5Su2nz17Jpke66AxJNwLHz9ura8PAN26dXv37p1o3zwuLs7Z2VlbYOerbt26ubm5CU2Fpnh6ejKZTABYsGBBaWmpaCMRMV9fAkA4HLrjkBZUeSwAuHHjhmD7x48fFRUVGQxGREQEXbEJevv2rZycHJPJfPjwoWC75IabsjKyejVRViayskRenigqkpUrCfVpbwoJd0LI8eOEwfheRYcmd+7cAYAOHToItRcWFgYHB2dkZNASVS1NmjQJAPbu3Ut3IIhQBdzbtWtXVFQk7r6kbSxFtZSYmAgArVu3lmSnfD7f3d2dKrNuYWFR6WoYPz8/RUVFADA2Nq7bKrRPnz65u7tT1d4BgMlkUhPea3P9lpeXN3XqVABgMBjOzs4Vp9WUlpbucHXlU4XIbGxIYWEdImwQMIH1S8LDw1ksFpPJvP3zGlM+n0/tyDJ06FCpnaUlPpjAkgBMuBMcr34RjleVwvFKAppgwj09PV1VVRUArly5ItiekpJCFXD/77//aArtJ8nJyVQ8d+7cEWxPTEykklQimf1cew4ODhJesf2rGn7C/do1oqJyxNTUzMxMfAUKeDxeRESEg4MDVSumPPPu7u6elpZG6lE+njbPnxMAUiFh15Rt2rQJAAwNDYVutl1dXanrMGmYlUlthjlnzhyh9lGjRgHA33//LaE4SkpIfDx58YIUF/9oLC0l2dnCZ+bkECl/+FQHu3cTACIjQy5fpqX/ZcuWAcCKFSto6b0+iouL/4+9+45r8uriAH4CkSGogCi4EEHcuDdqsWIdULWuOkq1DlwVR2up2pbWaktdxVqrOKq4BRy4quLeuw7cg7oVARd75Lx/XN8YwjBAyJPA7/vpH83NM07o05sn57n33FKlSslkMv0tt1WcpKen16pVSyaTWVlZ2RUysaBWHzzlNTTp6ekmJiYymSxRVynj169fi8dyIped9Zs3LS3Nz89P3In5+PikpKQU5HQ5DXj/77//ctrl1q1brq6uRFSqVKmwsLCsGzx79szd3Z2Ifm7Zkv/8syDh6T8ksDQXFxcnympl/aUwd+5cIrK2ttarGoY6gwSWDiDhzuiv8gL9VU7QX+lAMUy4M/OsWbOIqFatWmrrFU2bNo2IGjRooA/Pt8Rwk/79+6u1i4dwQ4cO1XE8up+xnVf5TLj/999/BfyFox3z57OxMRPxoEEZOoknJSUlPDy8f//+ypWCjY2N3d3dRUGbkiVLFmL5bO1KS2Nzc5bJssmQFlfJycmiiJDamjDKusMrVqyQKjZh37594he+eMyjJNbPtLa21vOhzUWKnx8Tsbk5Z366W3gUCsW1a9f+/vvvYcOGWVlZZZ2NYRC2bdtGRM2aNZM6EHirRYsWogyaDsjl8lGi/BQYjvPnz1tZWdna2taoUSMgIKCwf0xev369Tp06RFS6dOls1+N59OhRq1atiMjU1FS75bOePn0aEBDg7OwsLtecBrzv2LFD/K6uUaNGZGRk1uOcO3dOlLYsX768ngxHKlRIYGlIoeCRI5cRUdu2bdV+M1+6dMnMzEwmk+V7DSpDhwSWDiDhzuiv8kKM8WrTpg36KzXor3SgeCbcU1JSatasSUSBgYGq7UlJSY6OjpTdQus6duzYMZlMZm5urjYqZe/evZRdkko3FixYQLqasZ0P+Uy4t2rVysrKytvbe+vWrdLUTlEo2N+fiVgmY39/1lWdIKWkpKStW7d6e3uLGc2VKlUqU6bM0aNHdRxGgTRrxkR86JDUceiR0NBQIrKxsVErVCeqTtvZ2b169Uqq2NLT08WQOrV14VJSUmrUqEFE8+bNkyq24kih4OHDmYjLlOH3Le2Qb/Hx8UeOHAkMDOzTp494eKskk8k6dOiQrDrDwBCI+nTTp0+XOhBgZt6yZQsRWVlZXbly5Ukhi4iIMDIyMjExuXHjhtSfGzS1dOlSMzMzIhK3OkRkYWExdOjQkydPFsbpwsPDxXTa+vXr3759O+sGR44cESX+KleurFZXTVsUCsWRI0d8fHyUD6IqVqzo5+cnKhZeuXJFVA7s1atXtuv0BAcHix3d3Nwk+dWhe0hgaejPP1km486dT6iNCY2Pj69VqxYRjR07Vpfx6BUksHQACXdGf6Wx+fPni/tDtbSasr/y9fXVZTx6Bf2VDhTPhDv/f2ha1mGUISEhRFSuXLnCK+nxXhkZGU2bNiWiH3/8UbU9LS1NJKl+++03SQJLT0+vX78+Ef2il+tT5ifhnpiYKAZ0C/b29mPHjj1+/LjOquNzUhJ/+ikTsYkJr1ypo5Pm4MWLFwMGDCCifv36SRtJno0YwUSc+QEadOzYkYjGjx+v2qhQKMQS7VOmTJEqMHHr4+TkpJZj/e2334iodu3aapOPoNClp3OvXiyTsVZHWUZFRa1Zs+bLL79s3LixXC5XTbJXqlSpd+/ec+fODQsLE1mnHj166PtyESoyMjLs7e2JKNthoaBjymd1f/zxh27OOGTIECLq1q2bbk4HBZGcnCyqIhKRj4/PmzdvQkJCPDw8ZDKZaKxdu3ZAQIDaw+l8S09P9/f3Fwfv379/fHx81m2UK5R+8MEHT58+1cp5cxEXFxcUFCR+V6sOeJ80aVJAQEDWO97k5OThw4cr/2J6MQ1UJ5DA0kRkJJubMxGvX6/+1hdffEFE9erV01nVJj2EBJYOIOHO6K80ExkZKZ4cr8/SYaG/YvRXOlFsE+7M3LlzZyLKOif4gw8+IKKJEydKEhUzL1myRAx5UbtLnzdvHhE5OztLOBBw//79RGRpafno0SOpYshJ/mu4X7161d/fX8x6EKpUqeLr61vo66HFxLCbGxOxtTVnXsFDKkePHtXn7+kcLVokqvFIHYd+iYyMlMvlcrlcLSd49uxZMTzz5s2buo9KWZ1q8+bNqu3K5TX++ecf3UcFnJzMu3a9e5mWxufP8759nN2iyrkd5PhxnjPn5JgxquszE5FcLm/atOnYsWPXrl2rNibu0qVLNjY2RDRo0CDdPewsGNFVOjs7Sx0IMDMHBATo+Fkd+itD8fDhw5YtWxKRmZnZ0qVLVd+6efOmn59f+fLlRR9lZmbWp0+fiIiIgpwuJiZGPOqWy+VqU7iEpKSkwYMHE5FMJvP19dXxU8azZ8+qDnivUKGCn5/f3bt3Vbd58OBBixYtxB9k2bJlugxPckhgvVdSEtevz0Q8cqT6W2LMmpmZ2aVLl3QTjH5CAksHkHBn9FcaSEpKEmNFR2bpsNBfCeivdKA4J9yvXr1aokQJY2PjCxcuqLb/+++/xsbGWZNUuvH69WuRpli3bp1qe1xcXNmyZYkoPDxc91Gp+uSTT0RiRNowstLCoqmRkZH+/v5OTk7KJFHt2rX9/f2vX79e8IOru3WLXVyYiKtV46tXtX/8fHnz5o2RkZGpqamBDTE+dYqJuH59qePQOyNGjCAiDw8PtfbPP/+ciHr27Kn7kL788ksi+vDDD9Xahw4dSkQff/yx7kMCdatXc7lybGrKDg5sZMQNGnDmr8lMnjzhrVvZ3589PN4OeyN6ZmtLRKVLl/bw8PD399+6devLXJdYOHHihFhMYvLkydr/OIVg0qRJRPT1119LHQi8y33vUn1iVPgwI0f/HT58WMxEqVKlSk5lW1JSUtQGvNeqVSvfA9537dplZGRkZ2d3KLsad/fu3RMzWC0tLUNCQvJxfK148eJFUFCQmDNLRGPHjlV+2EOHDtnZ2Ym/2OnTp6WKUCpIYL2Xjw8TcZ06nJCQqT0qKrVSpdpEtHjxYt1EoreQwNIBJNwZ/ZUGfHx8iKhOnToJmTusu3fvivtG9Ffor3SgOCfcmXncuHFE1L59e7V28b9nx44ddR/S119/TUStW7dWG+c3ZsyYbJNUunfnzh2xvEQh1b3MNy0k3IWMjIzDhw+PHj26XLlyysx7i2bN0ubO5fv3tXOOo0fZ1paJuHlzLvzZxHkiJuZfyCW/poeSklguZ7mc9XJ5AQnFxsaKscPbt29XbX/69Gnp0qVJ54tVKp9zqg0oOH/+PGoi64t//mGZjP/4g8XQy5gY9vLicuX42bO3G4jB73/+yQMHcrVqIsP+9h8jI65Xj4cP5+XLb+fxP+WePXtMTEyIaNasWdr+SNon+slCnwUFGpCquovu69hAnijLtri7uz9Tdl85u3Xrlp+fn0g3E5GpqakY8J7XaTfLly9/+PBh1vadO3eKH7EuLi5qP24loVAoDh48KCrYzp49m1X+Yu3bt9fkL1b0IIGVu40bmYjNzNQfwaemcsuW7OCQOmrUfB2EoeeQwNIBJNwZ/dX7bNy4UYxhV8tppKWlieXKe/XqpYMw9Bz6Kx04cYK/+IKL7cMdZW2DjRs3qrZHR0dbWVkR0c6dO3UZz+3bt01NTY2MjNSGlVy5ckUul2dNUknl22+/JSIvr756Nflfawl3pfT09CNHjvj6+tra2o5v2PBtRqlJEw4M5CdP8n/cDRvYzIyJuEcP9SEieqBfv35EtHz5cqkDyaN69ZiIz5yROg69M3fuXCKqXr26Wi2qGTNmEFHdunV1OaW9U6dORDRmzBi19nbt2hHRpEmTdBYJ5Kh1a+7aNVPLy5dsbc0//sj79nH79mxpmSnJXro0d+zI/v78zz+c6zD291qzZo2RkZFMJlOr/KBvIiMjiah8+fLp6elSx1LcSfusTqzUmnU5IJBWQcq2pKenR0RE9OnTx9jYWGTea9asGRAQUJD/xAqFIiAgQKxQ6uXlJeEiUVmJJVV8fHz69u0r/mJTp04ttj1btgmsxMTEf//9V29HA+gsgfXgAdvYMBEvWKD+1uTJTMRVqrBe5md0LdsE1uXLl//991/9/D/LEBNYSLgz+qtcPXjwQAw4W5Clw5o8ebKYxaWfCWUdQ39VeBIT2c9PfbGT77/PbdJ4UfXXX38RUbVq1ZIyD42dM2eOSFLpcq2gjz/+mIiGDh2q1v7RRx+RPi35/vr1648/nm1mlrRqldShqNB+wl0pKSnp8fbt3LevsmACy+XcqRMvX57nBNOOHSyTMRGPH88ZGYUTb4GIafKGt2C3tzcTcVCQ1HHonbS0NPFtKoawKSUnJ1evXp2I/vrrL91EklNyau3atSJ9mXvVEdAFMVlk0SL19p49uUMH3rXrbQdYoQL36cOBgXzkCGu1nsaCBQuIyNjYODQ0VIuH1S7xsCrrVzXomEKhaNu2LRF98803UsWQ00NEkMqtW7dEsRRLS8uCdCMPHjwICAioUqVKAQe8v379umfPniKX7efnl6FnN367du0S82d9fHxKlSoVFhYmdURSyjaBpQ8SExOnT5+ebfUD3SSwMjLY3Z2J2NOT1f4POHiQjY1ZLuejRws1BIORbQJLH4SFhWVduY71OIGVlJQ0Y8aMRVnvSJFwZ2b0VznLyMhwd3cnIk9PT7Wv7IMHD4rK0UfRYTEz+qvC9OIFE7GpKauWpra05Mxlw4uF9PR0sZrCjBkzVNtTU1PFIppz587VTSR79+4lolKlSj1+/Fi1fdOmTSJJlb96koVk+XIm4kqV+M0bqUP5v0JMuL+TmMhbt3KfPmxi8jbxZGrKXl4cHKz+l0hN5WnTuEYNLlGCy5ThLl1Y1A9NT+dPPmE9noG+Z88eImrbtq3UgeTR3LnZr+IEzBEREaJzeZJ5ZkZYWBgR2djY6KBzyan8QmJiYtWqVYlIzwc1FxePHzMRZy5AxMw8bhzXq8evX3N4OBdyqQF/f38iMjEx0XG9I801b96ciLZu3Sp1IMXdmjVrJH9WpyyTdfHiRalikNbmzZuvXbsmdRRvRe/aJQa11apV66o2VsfJOuC9Ro0aAQEB0dHRmux+/fr12rVri+9Z/Vxf986dO2KsX3Jy8q08LZFdFOlnAis0NNTR0VFcRW+y/OrSTQLr7l12dOTKlVntbvH5c65YkYl42rRCPb8h0cME1oULF0T+kYgOHDig9q5+JrDCwsKqVasmMiCvX79WexcJd0Z/lbMffviBiCpVqqT28/b58+cVK1YkomnosP4P/VXhEQn3Bg1YtUp58Uy4M/P+/fvFUJhHjx6ptm/fvp2ISpcu/aQg5UM0k5aWVq9ePSKaOXOmantKSoqLiwsR/fnnn4UdQ54oFNy8ORPxd99JHcr/6SThrvTiBQcHs5cXy+VvM+/m5uzlxSEhnJLCCgX37Mm2tvz333ztGh89ykOHsqkpi4K/elWJJ4uYmBjx/4O+jcN6jwMHmIhbtJA6Dj3VtWtXMW1crb1jx45ENG7cuMIOICAggLJbYFBkVxs1amRg11tRJe4OVq9Wbx80iJs311kU48ePF9++Z8+e1dlJNfTo0SOZTFayZMkE/SsIVqwon9UtW7ZM2kjGjh1L+rHGju4lJiaKBHeTJk2CgoKk/J9CoeCAADYymuLuXhhlWx4+fBgQEODg4KD5gPfw8HCxLFuDBg3u3Lmj3Xi0JT093cTERCaTJSYmSh2L9PQtgXX16lUxh0bcPmW7LrTOSjS8eMFqTxUVCu7WjYm4bVvWy9oD0tCrBFZsbKyvr694XmhjYxMYGJi1TIS+JbDULvtsH1Ui4c7or3Jw+PBhY2NjIyOjffv2qbYrFIpu3bqJMYX6WSxFEuivCujCBQ4Pz/4t8ZN682a2sOC1a982FtuEOzOL6Z6ff/65WnuXLl2IaMSIEYUdQGBgIBE5OzurlVn+9ddfiahOnTq6LLOsoRMnWCZjMzO+e1fqUJhZ1wl3pcePOTCQW7Z8WyhGDLLes4eJ+NChTFt6eHDTptIEmUeVK1cmops3b0odSB6kv3jRv3XrBrVq4Us0W7du3RILRJzJXOY+MjJSLpfL5fJC/a599uyZyDuo3X49ePDAwsKCiA6p/c8CEqpYkf381BsbNuQhQ3QWgkKhECWYbW1t9WfwrCDq0PXs2VPqQIo7MYJJH57VKZcD2rRpk7SR6F50dLQoRSJ+Y9vY2IwbN+7KlSu6juPFC/74YyZiY+OMX3/Na9UXzWVkZIgB73K5XHxkFxeXrAPe09PT/fz8ZDIZEfXv31/PH86JdVP15Pe2tEQCy8bGJlWrpdLyQZO8gyBGM7Ro0eLp06c6DjIwkInY2prv3dPxmfWaSGBJflubmpoaFBQkvpvkcrmPj09OC1HcuHFDDCTXZRXdbGl+2c+cORMJd/RXWcXFxYmhGD/88IPaWyLXZm1tfQ8dlgr0V/kWG8u+vmxszNbW6nO/BJFwP32aZ8xge3sW40CKc8L97t27ZmZmMpns5MmTqu3Xrl0rUaKEkZFRoQ6zi42NLVu2bNYZ6k+fPi1dunTWJJX++OwzJuLevaWOg5klS7gr3b3Lv/zCrq68axf7+nLNmuobhIUxUYFWW9UV8QR4w4YNUgeSN05OTkQUGRkpdSB6auLEiUTk5uamlowYOXIkEXl4eBTeqYcMGUJE3bp1U2sXK/T269ev8E4Nefbtt2xtzaoTvjZvzuYJYiFLTU0V0zIqV67833//6fLUuRPjd4KDg6UOpFhLvn+/csWKMpnsiJg3JrU///yTiD5v04YzD5ooJhITE0NCQjw8POj/xID3+Ph4XZz+2jWuXZuJ2MaGdXW7LAa8ix/2RGRiYqIc8B4TEyOmjsnl8oCAAN3EUxBi/aiNGzdKHYiAn8McAAAgAElEQVT0ROlhIyMjFxeXkJAQSWJQzTuUKFEil7zDixcv/Pz8TExMRJEEIyMjNze3gICA27dv6yDOy5ffLmu1ebMOzmZIwsLCbG1tLSws/P39kyX6RoiIiBAT54moQ4cOOT1Oy8jICA4OLl++vLm5uf5c9rmn25SXfd26dYt5GW70V1n16NGDiJo3b672EOLy5cvm5uZEtBkdVmbor/IhNZV//52trJiIS5Tg8eOzX9JRmXBPTuYaNVhUpC/OCXdmnjJliviNoDZYSkxtb9OmTeGNmBk9erS4wNTaxQi/Hj16FNJ5C+7hQ7a0ZCLWh1K7UifcVXXvzl26qDdeuMBEnPmRjn4SVT6+/fZbqQPJm169ehHRKr1aylefvHr1yt7ePuujFOUTv23bthXGec+fP29kZGRiYnLjxg3V9mPHjslkMnNzc71KpwLHx3OLFly+PH/3HQcF8YgRLJfz11/rPpDExESxJKaLi8uzQi4cr/Tw4cOQkJDx48dnO9zj5cuXJiYmxsbGOf2iAB359NNYa+vlX30ldRxvpaWlHenXj01N+ddfpY5FSleuXPHz8xNFZoioTJkyPj4+//77byGecv16trBgIm7YkHVetiU9PT08PNzT01NZ4d3R0bFcuXJEZG9vf/jwYR3Hkz/iYbxBPBvQgWPHjoklvIioS5cuOp5iFRERIcYbimEQOeUd0tPTFy5cKJJcxsbGnp6eXl5eZmZmYkeZTNayZctZs2bdLbQZyPHxbx9yYbnorJ48eSKGCxBRjRo1tmddFKcw3bx5s0+fPsr5N7kkpA4cONCgQQOxZaNGjZydncW/d+7cWSsLYGhOw3Rbenr6okWLRAdrbGzs4+Mj+RBXyaG/UrVgwQIisrKyioqKUm2Pj48Xi6lgffus0F/lVUQE16v3tqpFhw6cy+RAZcJd7GVkxGfPFveE+5s3b8Qjt5UrV6q2v3jxQvTtoaGhhXHeK1euiIoOly5dUm0/d+6cSFLpeWGPn39mIq5blyWveaNPCfdPPuFOndQbz51797+dftuyZQsRdcr6EfTb9OnTiWjixIlSB6K/goKCiKhKlSpqM9x///13yq6mVcEpFAqRM/3mm29U2zMyMpo1a0ZE/v7+2j0jaEFKCgcFce/e7OHBQ4bw7t1SBfLy5cuGDRsSUbNmzbKumqUVaWlpkZGRQUFB3t7ederUUQ7RVbtihXXr1hFR+/btCyMS0NSxYyyTsbk569Wzun37mIgtLTnzckDFUHx8/NKlS8XawkKrVq3CV61i7VZWSU9nP7+31fwGDtTywfPo0aNHAQEBYqW4hg0bNm3a1IAmrS9cuJCIhg4dKnUg+kLzMZtadPPmTS8vr7zmHdzd3S9cuCDaExIStm7d6u3trSzxRER16tTx9/fXepWnIUPe/vZD5f+caJhE1qI3b974+/ubmpoSkaWlZS7jVR88eODt7S1qXlWuXDk4OFihUKSlpWk4xlyLNE+3HTx4UNwNEtEHH3xQuM9xDQr6K6Vff/1VLpdnTdgNHTqUiOrWrYulSnKC/koTN29ynz5vU+0uLpzL8PqDB3nIEI6Ly5T569uXO3Qo7gl3Zl6xYgUR2dvbv3r1SrVd3ItmTVJpxUcffUREvr6+qo0KhaJNmzZkCIOMk5LY0ZGJeNEiiSPRp4T7hAlcvbp6Y0gIE3HmQp/66d69e0Rka2srdSB5s3PnTuTCcpeRkdGkSRPKsj67ctXm2bNna/eMa9euJaLy5cu/zDzbaunSpeKLU0c1B8BgPXv2rEaNGkT04YcfauuBUHR0dHh4+LffftuuXbuSJUuSCisrq86dO//0009qqx0IoghSYGCgVsKA/MjI4KZNmYh//FHqULLo0YOJePBgqePQF1evXlUOeN/v7s6lS7OPD58/r4VDP3/OHh5MxHI5683Q7PT09N27d8fGxhrWuMu9e/cSUbt27aQORL9oXpW4gESlBU3yDvfv3/f29hZfVcq8Q9bNkpKSRCZLrJ0jODk5+fr6aqUGV2goE7GZmfoaqqBGZykhUWnBzs6OiIyMjLy9vXMqkJ2QkODv7y8GF5csWdLf318tBZn1si+kReQKmG4rjJAMGvor4datW2otoaGhRGRmZnYRHVau0F/l4uXLlzNm7C5Rgom4TBmePZtzusuLiuLevd8m5Zcty5Rwf/iQS5ViouKecFcoFC1atCCiqVOnqranp6eLh3PTp0/X7hk3bdokrpCYzLX2V69eTUR2dnZqqX/9JBLJNjYcGytlGPqUcN+/n4l4//5MjR9+yK1aSRRQng1r3nxl27YpBjVS7+nTpyJfhluxXBw9elQUclEbf/fPP/8QUZMmTbT71xPFYZcuXara+Pr16woVKhDRWuWi3QA5u3PnjrhgevToke97qTt37gQHB/v4+NSpU0f8clO9s/f29g4MDDx79mwuK3CmpqZaWVkRUeHN04f3W7KEibhyZdbDZ3V37rCZGctkfOqU1KHokYSEhL///jvB0/PtTxAibtGCly3L/3/Bc+fejvQoV079Rgvy7v79+0RUoUIFqQPRR1evXhXrdhBR7dq1tbumVkHyDklJSe89fnp6+pEjR3x9fcUpiMjevlK1agpfXz5yhPN3rxcfz7a2TMRBQfnZvRgq7JSQ6tDvFi1anMyhcqlCoQgJCRHLTshksj59+uRSzvHq1audO3cWx6xVq9Y///yjxYDzetmL0tvZpttATRHrr4jI0dFRZN7z9+P0/v374pH/IsnHhRoI9FdqlJe9ubl55cr/eXtzTsv9JiSwv//bpU1KlmR/f37yRL22xZw5SLgzM584cUImk5mamqo9ITtw4AARubq6avd5oZhH9eeff6o2JiYmOjg4ENHff/+txXMVKnd3JuIJE6SMQZ8S7szcpw9XrMirVvHt23ziBA8dyubmBlHA/S0xdqxwinoXHlGjHOmw3Il+Z+DAgWrtGzZs0Pq4vPT09PXr16slMSdNmkRErVq1wqMR0NClS5esra2JaNCgQRpeNm/evDly5EhAQICXl5eyqLRgYWHh5ubm6+sbEhISrfGso127dhFRw4YNC/A5oGBev+YKFZiI16+XOpQc+PkxEbdqlc9sVtF27Rr7+XHZsm/T7mLA+7lzeTtIcPDbHzRubqjeoxUKhUKktAqpbFcRsHXrVicnJ/H14eXldUcbqwVoWCJD5B3Ez0KRd8hHtaK0tLSIiIiRI0d6ef2kfOxVtSpPmMBHj3LOT5mzd/Ikjx+f1xCKO9VMqLZSQpoP/T579qybm5s4e5MmTTRca7QwLvuTJ0+KsY1aTLeBGkPvr5SZdzHURqhSpYqvr29ERITm+d+0tLTWrVsTUc+ePfMaQzGH/ko4dOiQ8rJv167dhQs3st1MoeCQEK5alYlYJuM+fd4WvExL44gIVh08LVpyStkXK2L6S69evdTaQ0NDNXk+lycZGRkbNmxQ6zq+//57ImrcuHEuI+30zYULbGzMcjlHRkoWg54l3FNTedo0dnFhIyO2tOTOnfnsWaljyotJk5iIf/pJ6jjypkuXLkS0ceNGqQPRa/fv3y9ZsqRMJtPK5OK8un37tqmpqZGR0WlDWM8A9MeJEycsLCyIaPLkybls9uDBAx8fn3r16hkZGakm2R0dHQcMGDB//vxz587lb7zGsGHDCKsOSOvrr5mIW7fW33S28pHA6tVSh6KvkpM5JIQ9PN6WXyfiJk04KIjfvMm02d27PG4cu7lxixb82WcsFjFOTeVGjd6u1WhQZVv0nKgpd14r1X6KqJSUlMDAQFFu2MTExNfXN99zkDXPO5w5cyYfeYdcZGTwkSPs58fOzu8mnNjasrc3b93KqamZNj5yhJ2cMlVsun2bnZzYcJYn0DvaSgmpDf328/N7o9Z//t/jx499fHzE7VCFChWCgoLylFwQl33p0qV1edmrpdsk+ali6IpKf5Vx5MgRPz8/5QqZRGRra+vt7b1169ZUtQ4ri6lTp4qY1epIgIbQX2nWX7Gb27ubWXRXGnr48KGlpSUR7dmzR/dnV6bCDh8+rPuzF4SPDxOxt7dkAehZwt3QrV3LRNyjh9Rx5I34cv3uu++kDkTffffdd1I91uvWrRsRDRkyRMfnhSJgz549JiYmRDRr1qyctnn+/Lm4Q5LL5U2aNPH19Q0ODo6KisrfGUUhGl9f3yZNmpiYmJQqVQo5Kcncvs2mpmxkpO9rj//9NxNxpUr6WPRGr1y/zn5+b+tTEHGpUuzj83ZowunTXLo0d+7MQUG8ejUPGsRGRrxgATNzVBSvWiVt4EVPz549iWj9+g1SB6LvHj16pEwHVKxYMa/pAM1LZKieKB95B01ERrK/P9es+S7zbmPzNvMuHmbt3s1EbG7ON2++3eXqVSbi27e1G0jxUsCUkOZDv7WYeyrg1aizdBuoKVr9VaS/v3/NmjWVmXcbGxuRec92cvahQ4eMjY2NjIz2o+5cAaC/yrW/Yh8fNjJiIq5QgYOC8jxdrJj7+eefiahu3bqFVHk/F3379iWiAQMG6Pi8BRcdzf7+Uv6+RMJdq65dezvj1KCEhYURkaenp9SB6LuEhAQx42/58uW6PK9YnK1UqVKPHz/W5XmhyFizZo2RkZFMJlNbGEDVokWLjh07lr8VVl+/fr13795p06Z16dJFVGxXMjc3j4yMRB0kyXh5MREPGyZ1HO+TkcHNmzMRf/+91KEYgqQkXrmS27Z9m/MrU4YTE7l+fe7cOdM8hmnT2NQUNWQKyfTpsba2GT//LHUcBuLMmTOiUgERNW3a9NixYxruOH36dJF3GDhw4MOHD7PdRot5Bw2dP89Tp3KtWu8y71ZW7O3NW7awTMYDB7KHx9stkXDXlnynhE6dOiUuvGbNmuVy4RVGdYV8j1/+5ZdfxGU/YMCABw8eZLuN6mVfokQJHVz2xUcR669E5r1OnTrKm3MrK6s+ffoEBwfH/z8LFRcXJ37k/vjjj4UaTDFRfPqr69evV65cWYP+igMDuXRpJuISJdjXl9Fd5UNycnL16tWJaOHChbo8r3I5QwOtVLZ2LTs58YoV71oOHGAnJ1YouEMHnj0708azZ3OHDto8OxLuWpWRwZaWTMSFs0R1Iblz5454jC91IAZg1apVpNulmdPS0lxdXYnot99+080ZoUhasGABERkbG4eGhmrlgI8ePQoJCfH19XVzcxMj6JUqVKjg5eUVEBBw5MiR/GXwQTv27n07CNogntUdP84yGZubc36nVhRHV6/yhAk8derbrN7evZnejY9nM7O3g9xB25YuZSIeNEjqOAxH/koVv3nzplu3bsePH89pg8LIO2juzh0ODGQ3N5bJ2NGRd+1imYwfPGALC16zhhkJd21TTQk1bdpUw5TQmDFjli9fnlPC69q1a4W3fmDWy16ThEV8fHy3bt00T7fdxhWmbUW0v7oTGBjo5uYmZrWKYTFeXl4rVqzw9PQkorZt22p36cVirjj0V+np6a6uro0bN86lktWmTZtdXV+Jh9OffMK6veqLmtDQUDFbRWd1nzIyMpo2bUpEPxla3WylRYvY2JjLlmXlInQ7djARKxTs6so//JBp4x9+YFdXbZ4dCXdta906mx+9+k2hUIiVFZ88eSJ1LPpOoVC0adOGiL799lvdnHHevHlE5OzsjMQlFNAPP/wgRtPkr/Rbamrq2bNnAwMDvb29xa2Yklwur1Onjo+PT3BwsI5/PECO0tK4Xj0m4pkzpQ5FYwMGMBH37St1HAZoyxYmymYwe82a7OsrRUBF36FDb9f6hTwRc8/NzMzo/yUX8r3YV2EsUpdvt27xvn28ezfLZMzM06eznR2/eIGEu/ZpZZFJITY21tfXVy6Xi/xFYGBgIc3T1+JlX6jpNlBTdPurWwEBAc2aNVNm3k1MTGxsbO7fvy9hVEVSceivHj169N7HAx98MKlWLUZ3pRUdO3YkovG6Woo9KCiIiKpUqZKQkKCbM2rdokXs5MQffPBulAwS7oZszBgm4pxrJesnd3d3IsJNmybOnTtnZGRkYmJy7dq1tEIWHR1dtmxZIgoPD5f6c0NRMH78eCIqXbr0Wc3Wo378+PHWrVv9/Pzc3NzEjZdSmTJlPDw8/P39IyIicqpQCVKaN4+J2NmZDehZ3cOHbGHBRHzwoNShGJrQUCbi2Fj19oYNedQoKQIq+h4/frt4JuTD/fv3vb29xbdJlSpVgoOD87S7yDsYGxsXdt4hr5QJ9+RkrlGDx4xBwr2wFDATmpaWFhQUZGtrKwYN+Pj4PC/82cnistdkUcFs6SzdBmqKan/FzPfu3fv999/btGmzatWqffv2SR1OkVUM+6vnz5+PGjVKXPZly5ZduHAx5k5oS2RkpFwul8vlFy9eLOxkVFxcnL29PRFt2GDASxaJhPu//7KxMYt+Dgl3QybmGBvaegITJkwgol9++UXqQAzDoEGDxPeHDpiYmHgoS4ECFIxCoRg0aBAR2draXrt2LesGaWlpkZGRQUFB3t7eqtUeicjY2LhOnTre3t5BQUEoy67v0tPZ2ZmJ2OCe1f3009sZp5Anx44xEf/7r3q7jQ3PmCFFQMVCqVJMxHFxUsdhsA4cONCgQQPxFePu7n7hwoX37iJJ3kFzyoQ7M+/Zw3I5h4Qg4V6IVDOhmqeE9u7dW69ePbFXhw4dLl++rINQlVQv+w8++KAIXPbFRNHrr0DH0F+BtowYMUKsEKADJiYmbdu2Negf/iLhzswjR3Lt2pySkinh7ujI7u7v/nF0RMJdz50/z0Rcu7bUceTN1atXDx06hMV2NPTkyZOQkBBjnVi2bNmtW7ek/sRQdKSmpnbt2lXc6onCfK9evYqIiPD39/fw8ChZsqTqV2ypUqXc3Nz8/Py2bt0am3XwLOizmBieN0/qIPIuMZF//53zO2W7+EpKYhsbVqt19s8/TMSnTkkUU9HXqBH+wAWVkZERHBxcvnx5IjIyMvL29n727FlOG0dEREiYd9CEasKdmfv2ZRcXJNwLneaZ0Js3b/bp00ds6eLiEhISoss4lbJe9k+fPs1pY7V026VLl3QZKqgqYv0VSAL9FRRcdHT0pk2bdJOMCgoKun79utSfuECUCffYWC5Xjn/9NVPC/ZNPeNWqd/988gkS7nouJYVNTNjIiN+8kToUAIBsJCQktG7dmojs7OxcXFxUM+wymaxWrVqDBw9evHhxZGRkTiX5QO/cu8dffMGVKrGFBTs58Vdf8cuXUsdUAFFR/PnnXLEiW1iwszN/8w2/fi11THpv7lw2N+e1azk5mTMy+ORJdnbm7t2lDqso69uXiXj1aqnjMHwvXrzw8/MT629bWVkFBASkpKSobqAneYf3Uku4P3nCZcog4a4L782Evnnzxt/f39TUlIgsLCz8/f0lXxtJXPYiJHHZq4WketlXr15dby/74qbI9FcgFfRXALqkTLgz8/LlXKrU26IkKCljsBo2ZCLOeYFyAABpvXz5snnz5h999JG4k3Nzc/P19Q0JCYlWrt4NBuTRI65QgTt04B07ODKSN2zg2rW5cWNDHSd+7x6XL88ffcQ7d3JkJK9bxzVqcPPmnPkHLWRj7ly2tma5nEuWZBMTHj6cDXaBI4Pw3XdMxP7+UsdRVNy4ccPT01P8XK9Ro8a2bds4c97B0tJSH/IOudi/n21sMrUEBrK1Nd+9K1FAxUy2KSGR27Kzs9NkeKbu3bhxw8vLK5fLXk/SbaCmCPRXIC30VwC6oZpwVyjYzY2rVUPC3aANGcJEvGCB1HEAAOQoIyPj+vXrZ8+e1Z+1myCfhg5lB4dMi6P+9x+bmvLvv0sXUwF4e7OTE6emvmu5fZtLlMC3qkbS0vjaNb50iePjpQ6l6AsONsRVe/Tdtm3batSoIX7PN2nSRNSBNTIyGj58eC7VGwCUrl692rlzZ3EJOTk51axZU/x727Ztz507J3V02du+fbvysm/cuLHysh82bJhepdtADforKCD0VwCFTTXhzsyXL3OJEu9JuMfG8pgx3KkT+/tzAdf71VGt/eKlUSMion//lToOAIAcGRkZ1axZs0mTJnK5XOpYioVEjaUlJpLm/xDRtm00aBCZmr47WdWq5OlJ27ZJ9WHzj5m2b6chQ6hEiXeNzs700Ue0bRspFJr/ZVKTkjT8gycnJ0v3gbVNLqdatcjVlSwspA6l6BMVuW7elDqOosXLyysyMjIwMLBMmTJxcXExMTEtWrQ4fvz44sWLxQR8gNzVrl37n3/+iYiIqFu37sOHD588eVKpUqXg4OBDhw41btxY6uiy5+npqXbZN2/e/NixY0uWLBFjXUE/ob+CAkJ/BVDYSpemKlXevaxXj775hpyciIgqVyZr60wbW1tT5coUEkLt2tG2bXTzJm3YUKCzy5i5QAeArE6fpgkT6JNP6OuvpQ4FAACkFxcXV7ZsWQ03PvDBB+6HDml66AcPqEoVWrGCBg3K1O7nR2FhdOdOXsLUAy9fkrU1rVtH/fplah8/nnbvpj//JA8PDY/Uo3nz8NOnNdmySpUq9+/fz2ukADExVK4clSlDL19KHUpR9OzZs5iYmOjo6Pbt20sdCxik1NTU06dPy+XyBg0amJubSx2ORqKjo6Ojo58/f+7u7i6TyaQOBzSF/goKCP0VgB6aM4eI6Kuv8n8EDGwsBE2b0syZdP06LV9ODRqQvj6cBAAA3ZDJZHm4ey5RgjTf2MiIiCjrs3NmMsR7XxFzTh/H2Fjzv4ypiYmGf3ND+WED+sbWlmxsKC6Onj+ncuWkjqbIsbOzs7Ozq1u3rtSBgKEyMTFp06aN1FHkTfny5TEy2hChv4ICQn8FoG+SkykkhFatKtBBkHDXtgcPqEcPunWLGjemlBS6eJHatKENG9TnKgAAQLFhbW2dKMq/FAY7O4qKUm+8e5ccHQvrjIWndGmyts7x47i7k8Z/xoLN/wPQSPXqdPo03byJhDsAAAAAQFGQkkKffUbDhtH/FyzIJ9Rw1ypm6tmTzMzo/n06eJBOnKAbN+jOHRo2TOrIAACgiPL0pJUrKS3tXcvjx7RjB338sXQx5ZdMRp6etHw5ZWS8a7x/n/bsoW7dpAsLIHuijPutW1LHAQAAAAAABfbwIXXpQt270/DhBT0Uarhr1aFD5O5Op05R8+bvGtevpwEDDHWwIQAA6LkHD6hxY3J1pZ9/pmrV6PJlmjKF0tLo1Kk8lKbRH1FR1LQpNWlCP/5Ijo508SJ9+y3J5XT8eKaFYQH0wKlTFBtLTZsSJlUDAAAAABi6776jU6fe/nvnzgWq4Y4R7lp16hRZWGTKthNRhw7ETJot3QYAAJA3VarQiRNkbU2dOlGlSjRwIDVrRgcPGmS2nYiqVaPjx8nCgjp2pEqV6PPPqU0b2rcP2XbQK6Gh5OxMt25R165vs+1Hj5KzM6WmUu/e9PvvmTZetIg8PSUJEwAAAAAANDV9OkVEvP2nINl2Qg13LXv5kuzs1BvLlaMSJSguToqAAACgGKhenTZuJCJKSSkKiemaNWnzZqKi8nGgKHrzhv77jyZMoC5dqGxZIqKkJLp7l5gpKkq94GNMDN29K0mYAAAAAAAgAYxw16pSpSgmRr0xLo7S0qhMGSkCAgCA4qSIpaeL2MeBoqVSJapdm/z8pI4DAAAAAAD0DBLuWtW4Mb1+TVevZmo8efLtWwAAAABQVMybRytW0MGDUscBAAAAAAD6BCVltKpDB6penaZMoY0bydiYiCgxkfz96cMPqWZNqYMDAAAAAK1p1IiGDKEvv6R//83UHhZGV668e3nzpo7jAgAAAAAAKSHhriUHDpCjI1WrRqGh1KULubrSBx9Qejrt2UPm5m9L6wIAAABAEfLrr1SrFgUGUsOG7xqdnKhTp3cvmenWLd2HBgAAAAAA0kDCXRuCg8nHh5yc6ORJatiQbtygDRvoyhUqWZJ+/ZV69UIVWgAAAICip2xZCgigiRNpwYJ3jY0b0+jR717GxSHhDgAAAABQjCDhXjDM9NNPNG0aMdNHH1GpUkREpUvT8OFSRwYAAAAAhe6LL2jZMpo+Xeo4AAAAAABAPyDhXgCpqTRsGK1aRcbGFBhIX34pdUAAAAAAoFNGRhQURI0bv2ezhAT65Re6fp1at6YJE8jISCfBAQAAAACAzuFmP79evKBOnWjVKrKwoM2bkW0HAAAAKCZMTalMmXcvXV1p3DiytiYisrYmC4tMG5csSdbWtGoVValCS5fSqVO0fr1OowUAAAAAAF2SMbPUMRigqCjy9KRr16hCBdq2jZo0kTogAAAAADAA8+dTfDxNnix1HAAAAAAAUDgwwj3vTp+mVq3o2jWqV49OnkS2HQAAAAA0kZ5OoaHUtavUcQAAAAAAQKFBwj2Ptmyh9u3p2TPy8KCjR8nBQeqAAAAAAMAAZGSQjw99/DE1aCB1KAAAAAAAUGiQcM+LefOoVy9KTKQvvqCdOzMV7wQAAAAAyEFMDHXrRi1b0qRJUocCAAAAAACFCQl3jWRkZCzx98/46itiphkz6O+/qUQJqYMCAAAAAMMwaxbFxVFoKHXsSAEBUkcDAAAAAACFBoumvl9CQkL//v23bds28cMP5wwbRv37Sx0RAAAAAAAAAAAAAOgdJNzf48mTJ926dTt79qyNjc2mTZs++OADqSMCAAAAAAAAAAAAAH0klzoAvXblyhVPT8979+45OTnt2LGjVq1aUkcEAAAAAAAAAAAAAHoKNdxztG/fvjZt2ty7d69ly5YnTpxAth0AAAAAAAAAAAAAcoGEe/ZWrFjRpUuXly9f9uzZc//+/eXLl5c6IgAAAAAAAAAAAADQa0i4q2PmH3/88YsvvkhLS/P19Q0NDTU3N5c6KAAAAAAAAAAAAADQd6jhnklqaurQoUNXr15tbGw8b968MWPGSB0RAAAAAAAAAAAAABgGJNzfefHiRc+ePQ8ePGhpablu3TovLy+pIwIAAAAAAAAAAMqDXXEAACAASURBVAAAg4GE+zszZ848ePBgpUqVtm/f3rBhQ6nDAQAAAAAAAAAAAABDImNmqWPQF6mpqePGjZs6dWrlypWljgUAAAAAAAAAAAAADAwS7gAAAAAAAAAAAAAAWmAkdQAAAAAAAAAAAAAAAEUBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABagIQ7AAAAAAAAAAAAAIAWIOEOAAAAAAAAAAAAAKAFSLgDAAAAAAAAAAAAAGgBEu4AAAAAAAAAAAAAAFqAhDsAAAAAAAAAAAAAgBYg4Q4AAAAAAAAAAAAAoAVIuAMAAAAAAAAAAAAAaAES7gAAAAAAAAAAAAAAWoCEOwAAAAAAAAAAAACAFiDhDgAAAAAAAAAAAACgBUi4AwAAAAAAAAAAAABoARLuAAAAAAAAAAAAAABaUHwT7pMnT169erV2j7lv375BgwZp95hgWL7//vsVK1Zo8YAHDhzw9vbW4gHBQE2ZMmXVqlXaOtqyZct+/PFHbR0NioDjx4/37ds3f/uOGDFix44d2o0HioaNGzeOHz8+f/sWxn0aGK5z58717ds3NTVVi8f09vY+cOCAFg8IBmfKlCkrV67U4gGfP3/et2/fW7duafGYYNBOnDiR7/ur+fPnz5w5U7vxQJGRv8sjOjq6b9++d+7cKYyQwBCtXr168uTJWjxgRETEkCFDtHhAgyaXOoBCdOzYsVWrVnl4ePTu3TvruxEREWlpaZ999plqY3x8/PLly48dO5aamlq3bt1x48bZ2tqKt1JTUxcvXnzgwIG0tLTGjRv7+vra2NioHfPu3bubNm0KDg5Wa1coFFu2bNm5c+fw4cNbtGihvY8IEjh58uSKFSvat2//6aefZn133759r169Gjx4sFp7TEzMokWLoqOj58yZU6JECdGYlpa2cuXKQ4cOvXjxwsXFxcfHp1atWmo7RkVFbdy4MZdM6y+//HLv3j0HB4epU6cW6IOB1ESX1aFDhz59+mR9NyIiIiUlJevTl+jo6EWLFsXGxs6dO9fY2Hj37t2bNm3Kuvu8efPMzMyUL8+dOxcZGamWc8/IyNi4ceOOHTvi4uKcnZ1HjBhRu3ZtLXww0A9xcXFBQUGPHj2aNWuWubm52rv3798PDQ3NuldUVNRff/117do1Kyur7t279+7dWyaTqW2zdevWWrVqeXp6qjbGxsYuXbr07NmzMpmsYcOGY8eOLVWqlHY/EeiDBw8eLFiwoESJEj///HPWd69cubJz587AwEC19nv37i1cuPD69esWFhYtW7YcNmxY1msyr/dpYND27NkTEhLy7NmzKlWqDBw40M3NTW2DR48ehYaGrlixwsTERLWdmXfv3h0WFtavXz8PDw/Vt/bv3x8aGnr//n0bG5v27dsPHDjQ1NRUdYONGze2b9++ffv2aidatGjRxYsXS5Uq1apVq6FDh2a9OMEgxMTEiK8hY2PjRo0ajR071sLCQm2bvXv3Jicnf/7552rtz58/X7hwofLmStm+Y8eOkJCQ58+fOzk5jRw5sl69emo7JiQkhIaGTpw40cXFJduoNm3atHv3biIKDAzEpVUE7Ny5c+PGjdHR0Q4ODoMHD27WrJnaBuL+ipnVbp9iY2P/+uuvS5cuEVHDhg1Hjx5tbW2ttu/Jkydfv379zTffqDampKSsWLHi4MGDycnJtWrVGjVqlIODQyF8MpBSQkLCihUrjh49mpKSUqdOHV9f3/Lly6tto3Z5KBSKUaNGZT2Up6dnt27dlC/j4+NDQ0O//vprZ2dn1c2uXLmyZMmSO3fu2NrafvTRR59++qmRUfEdm1tkZGRkrF+/fteuXS9fvqxRo8bw4cOzppsuXLhw8ODBX3/9Va09OTl59erVp0+f9vPzU14tCoVi7dq1O3bsePPmTb169Xx9fStWrKi24+3btzdv3vz333/nFNVPP/30+PFjZ2dntc6tSCqa/xeFhoa2aNGiTZs2QUFBO3fu1HCvmJiYli1b/vDDD2ZmZra2tn/++WedOnXu3r1LROnp6Z07dx4/fryJiYmdnV1gYGDTpk2jo6Pfe8yUlJT58+fXqFGjV69ey5YtO3PmTIE+GEhq06ZNrVu3btWqVVBQ0Pbt2zXc686dOyNHjnRwcPj+++/nz5+vHJylUCi6d+8+duxYc3Pzpk2bHj58uH79+ocOHcpTSOHh4d9999327ds3b96ctw8D+iQ0NLRly5Z57bJu3brl4+NTtWpVf3//P/74IyMjg4iSk5NfZLZ3796sTwGzUigUPXv29Pb2TkhIcHBw2LZtW8OGDf/5558CfTDQD//999+YMWMcHBymTJmyYMGCxMREDXc8depUgwYN1qxZU758+f/++69v375fffWVJjvevXu3UaNGgYGB1tbWFhYW06dPb9CgQUxMTAE+BOidixcvDhgwwNnZ+bffflu4cKHmO16+fLlu3brbtm2rX79+2bJlv/vuu/bt26ekpLx3x1zu08CgTZw4sXPnzo8fP3Z0dDx+/Hjbtm01uaIyMjKWLVvm6urapUuXZcuWHT58WPXdL7/8skOHDmfOnKlSpQoRBQUFaRLJ6dOnXV1dd+7c6ejomJ6e/tVXX2l4cYK+uXXrVsOGDf/444+yZcuamZn99NNPDRs2fPHixXt3vH37to+Pj4ODg7i5Sk9PV771888/e3l5RUVFVa9efffu3U2aNNm/f3+eonr48OEXX3yxY8eOxYsXa3e6Bkhi1KhRH3/8cXR0tKOj46FDh1q2bKnhROdnz541aNAgKCjI2dnZyclpwYIFjRo1ev78+Xt3jI+Pd3d39/f3t7CwsLe3X7lyZd26dS9fvlzQTwL6JC4urlWrVlOnTjUxMSlXrtzChQvr1Klz+/bt9+6o9hvw/v37ixcvvnHjxnt3DAkJady4cWRkZLVq1Z49ezZw4ECUbSgC0tPTu3fvPmbMGJlM5ujoGB4eXr9+/YMHD753x5cvX06bNq1q1arDhw9fsmSJ8k6bmfv16/f555+/evWqdOnSS5cubdSoUV7vwzds2DBt2rRt27aFh4fn40MZHi6KRo8e/csvv0RGRjo4OHzxxRfZbtOkSZOvvvpKtWXDhg1Vq1a9d++eeHnhwgUjI6Nx48Yx85IlS4ho4cKFyrfkcvno0aPVjrl48WJLS0vVlpSUlJ49ey5YsODcuXNENH/+fK18QJCEr6/v9OnTL1++7Ozs/Nlnn2W7TatWrcaOHavasmPHjmHDhm3btu2nn34iovj4eNF+/vx5Ipo7d654mZSUZG9v37VrV7UDLlu2zNzcPNtzvXr1qnLlykOGDPHy8mrSpEmBPhtIavTo0TNmzIiMjKxatergwYOz3aZp06YTJ05UbQkPD/fx8dmxY8f3339PRCkpKVn3SktLc3BwGDJkiFr7qFGj2rZtq9py6dIle3v7/fv3i5evXr2yt7dv1apV/j8V6A0xs2/Lli0BAQFEFBMTk3WbdevWZb0laNKkSYUKFaKjo8XLsWPHymSyS5cuqW1mb2+v7MqEP/74o27dusoTiSc3s2bN0s7nAf2wfPnysWPH7t27d8SIEWXLls12m59++snFxUWtUYxnj4uLEy/XrFlDRNu3b1fbLE/3aWC4nj9/Xq1atWXLlomXYiJpuXLl1DYTP8wSEhKULQqFYsCAAXPnzr1z546RkdH333+vfEt0aNOnT8/91Obm5srzCpMnTx44cGBGRoZ4KcZnZb04Qf/NnTvX1dVV2c9s3bqViAIDA9U2a9as2YQJE1Rbtm3bNnz48O3bt//www9ElJycLNpv374tl8t79eolLo83b97UqFGjRo0aCoVCdfeoqCgiOnHiRLZR9ejRw8XFZcaMGUT08uVLrXxSkMrjx4+rVKmydu1a8VKMRHZwcFDbbP369USkdp2ISiAXL14UL8WYPLVbKWYeMGCAl5eXasu+ffvq1q377Nkz8fLJkydmZmZDhw7V1ocCfRAWFubg4BAVFSVeXr582djYeMyYMWqbZb081MyaNcvU1PTx48eqjaKYzKlTp1Qbu3fvrvqNOXHiRCL677//CvIpQHIXL150cXG5ffu2ePn69Ws7O7vOnTurbfbVV1+ppZIePHjQq1ev4OBgceu1Z88e0b5lyxYi+uWXX8TLqKgoS0vLvn37qh3wr7/+srKyyjak2NhYOzu7UaNGdezYsXXr1gX8gAahaJaUWbBgQT726tu3b69evZTTBhs0aODo6BgZGUlE69ats7OzGz58uPKtDz/8cP369X/++WfWyfWqTExMNm7cSESaDIcHPTdv3rx87NW1a9euXbsS0dWrV1Xbnz17RkT29vbipZmZmb29fZ5GgE6aNCkpKSkgIABFsgxd/rqsbt26iRmC//77b07bbNiw4f79++PGjXvv0VxdXR8+fKjsAEuXLu3u7o7C3EWDh4eHqLRw7949zfd6/fr1uXPnJk6cWK5cOdHy1VdfzZ8/Pzw83NXVNfd9x44dO3r0aOXl1KlTJ3Nzc/F9CkXG4MGDRf00cf+tuWfPnpUsWbJ06dLipaOjIxFp8vWXy30aGC5bW9tbt24p/7PK5XJPT8+ff/752bNndnZ2uewok8nE05qs5s+f7+DgMGnSpLwGI35GKu/tRVUQTYadgr6ZMGGCr6+v8rrq2rVriRIlNOkuvLy8vLy8iOjixYuq7aGhoenp6VOmTBFlFiwtLYcPHz5p0qSzZ89mrSKSrQ0bNmzZsmXv3r1qRwYDVaFChaioKOU1ZmJi0rVr19mzZ79+/Vr5BZcT8TNQ2cVp/j344YcfXr58WdlH2dvbW1paYgZhEdOrV68ePXooL6169eo5Ozvn9W4nLS1t/vz5AwYMqFChwns33rJlCzMrXyq/+6pWrZqnk4JeqV+//o0bN5TdRalSpSpUqKBJd1G5cuWwsDAiOnr0qGr7/v37ZTLZ2LFjxUtHR8eePXuGhIQoFAoNCxCJZzkzZszItjhzkVQ0S8rkm2qRPiJKSEgQxfVu3brVqlUr1Xfbtm0bFxcXGxur6xChqGjRokXp0qX9/Pz27t1LRMePH7906ZLmqfPDhw8vWbJkzpw5ylwYQFZz587t3Llz/fr1NdlYrQOMj49HddHiTBQpUlW1alULCwsNs/aql1NqampqaiouJxA6duwYGxvr7e0txugtWrSofPnyamsA5CSn+zQwaFm/fWQymeq6I3mSnJx85syZDz/8kJnPnDmzZcsWMehYQ8qfpomJib///ruVlVWXLl3yFwlIS/W6Sk5OTk9PL0h3cfv2bQsLi8aNGytb2rZtS0Qaro8aFxc3bty4QYMGdejQId8xgL7J2nfJ5XK1dSay1bFjRyLq16+fqBOyaNEic3Pz/v37a3JS1dF+QUFBMTEx/fr1y1vcoPcKfrcTEhKi4aArQXldPX/+fPHixbVr127QoEGezgh6SLW7CA8Pv3z5ckG6C4VCQUSqz2bq1KmTnJwsniC+1/79+1euXCkqjuY7BoODhHuODh069OzZs27duikUiqdPn6qNshHLVjx69Eii6MDgWVtbh4eHP3/+vGPHjjVr1uzUqdO0adNGjBihyb4pKSkjR45s27Zt1lWeAJT2799//vx5DYtuq4mNjd2/f7/qGjtQ3FhbWzdu3HjNmjVi8mlqaurcuXNTU1OfPHmS10Nt3LgxIyPj448/LoQwwfCMGTNm8ODB69atq1y5csOGDXfv3n3o0KF8rH16+PBhcZ9WGEGCVNLT0zdv3tyuXbsyZcrk7whPnjxJS0t7/PhxzZo1W7du3bt3b2dn56+//lrzI2zevNnNza1SpUrnzp07fPhw7gPtwSCEhYUxc0G6i4cPH6otWpinH4MTJ05MS0sThUSgSEpJSdm6dauHh4cmDws7der0888/Hzx4sEaNGo0aNfrll1927tyZdQ3enERHR7dv397R0fHLL79cunQpEu5F27Fjxx49epTX7mvu3LmdOnXKU9L8999/b9asmaOjo6mp6d69e0uUKJHHSEEfKRSKDh06uLi4fPLJJ9OmTRNjzPOnQ4cOzDxjxgyReb9y5cqmTZuI6PHjx+/dNzEx0cfHp2PHjsWtv0LCPXsJCQmjR492dXVVloBXKx0jJk2ISw0gHxITE2fMmOHg4LBy5crmzZsrFIqZM2dquHbEjz/+eOfOnUWLFuVe0QiKuTlz5ri6uuZvLNWYMWOMjY3FwgNQbC1dupSZa9eu7eLiUqpUqfDwcBMTE7k8b8XooqOjJ02a5OHhIYprARw5cmTLli2jRo2aM2eOqalpdHT0sGHD8jojPjExUXmfVkhxgiT8/f3v378/e/bsfB9BrEV548aNefPmvXr1Kj4+fvTo0XPmzNF8eS4XF5f+/fsPHjz49evXEyZMSEhIyHcwoA+ePn367bffdu3aVVRXy5+sPwbFS01+DIphfbNmzVJL2UNRMnny5OjoaA2fqdy4cWPx4sUff/zxkiVLbGxsxFAqTVbFFEqWLNmvX78vvviidu3a33//fS61JcHQJSUljRo1qk6dOsOGDdN8r/wNumrSpMlnn33Wr1+/Cxcu+Pv7qw5kBsMlk8k+/fTTQYMGtWjRYtasWXld61tV9+7dhw4d+ttvv9nb21eqVKlly5ZiQo8mvw2/++67x48f//XXX/k+u4EqmjXcCygpKalHjx7Pnz8/ePCguHrs7OzUirCLeROVK1eWJkQwfLNnz96/f//Vq1dr1qzp7e09c+bM7t27e3t7379/38rKKpcdL168OGfOnN69eycmJorFeF+9eiX+vW7duvmegg1FzI0bN3bt2rV8+fJ8PJWZMmVKWFjY+vXrK1asWBixgaFo1KjRzZs3d+7cGRcXV79+/QYNGlhZWVWqVEnzI7x8+dLLy0suly9btqzw4gQDkp6e/tlnnzVr1kzcc/v6+m7atOnTTz+dOnVqUFCQhgcR92nR0dHK+zQoGpYsWfLrr7/OnDmzadOm+T6IWB1n8ODB3bt3Fy2zZs1atGjR9u3blS25q1evnhhq2q9fv5YtWy5atCh/c8VAH7x48cLLy8vS0nLp0qUFOU6lSpWOHz+u2iJ+G1apUiX3HRMSEoYNG1a9evX69euL+/aHDx8S0YULF2rXro0UfNHw+++/BwYG/vXXX+9d5Ebw8fExMzMLCwszMTEZOnToiRMnPD09hw8ffuDAAU12t7S0FLOiv/nmm3r16o0dO1at1DIUDSkpKX379n3y5MnBgwfzNN58zpw59erVy+sjxnbt2rVr146IWrduPWzYsF69enXu3DlvEYP+kclkPj4+RDRlyhTxXzZPdfbUDrV06VIfH59Tp07Z2dm1a9du5syZR48efe9vwzNnzvzxxx8DBw58+fKl+B58/fp1UlLSuXPn6tWrZ2pqmr94DAJ+pah78OBB7969o6Ki9uzZU6dOHdHo5OR09uxZ1aENZ86cKVOmTD5mQAMIZ86csbe3r1mzpnhZoUKFkSNHDh069Pr16y1btsxlx+Dg4LS0tHXr1q1bt061vWnTpleuXFFetFDMzZo1y97ePq+TthISEnx8fMLCwtasWdO7d+9Cig0MSJkyZZRFRbdv387MrVq10nDfq1ev9urVKyUl5dChQw4ODoUWIxiSx48fP3z4cOTIkcqWnj17NmjQ4OzZsxoeIdv7NDB0GRkZU6ZMmT17dkBAQJ7Kv2RVpkyZUqVKqVbWNjExKVGiRFpaWl4P1bx5c1NTUyxxabguX77cq1cvZt6/f78mKwfmwsnJKT4+/urVq8pu58yZM0Tk7Oyc+44HDhwQ2Q21tVXd3d3nz5//5ZdfFiQqkFxaWtqkSZPmz58fGBio+tWWuzNnzvTp00dZ7b1Vq1adO3feunVrXs9ubm7erFmznTt35nVH0H8PHz7s06fP7du3d+/eXbduXc13FIOu/v7773xPhRcLVFy6dAkJ96Lkf+zdeXxM9/7H8c9k3wSJXdW+K6Ep6qqdW0WrKEWL2lq1RYTGvhcRRGsrIqp6Lf1R1O2ltlJbLU2q1hC1BBEiksieyfn9MW06YsngzJyZeD0f/eP6ZPm8W+fG+Jwzn6+dnd2//vWvefPmJSQkPPPWPhGpX79+/fr1Df/bsBcrz6HoqlWr9Hr96tWrV69ebVz39fWNioqqUKHCM4exfqyUecC+fftee+21jIyMo0eP+vj45NS7dOly9erVjRs3Gn75559/bt++vXPnziz0wDOrWLHirVu3jG8wHjt2zM7OLs8nZcaNGxf1oBYtWtSqVSsqKqpSpUpmTg3bEBsb++233w4dOtSUg5tyGE6H3rlz544dO16co8NhotTU1ClTppQoUeLdd9815fO3bNnSqFGjYsWKHTlypFy5cmZOB5tRqlQpV1fXw4cP51Ti4+OjoqJMvCXzuNdpsGl37txp27bt4sWL169fP3r06Of/hm3atNmyZUvOgRMbNmxIS0v717/+lecXbtmyJefVvoj89ttv6enpZcuWff5IsLy1a9e+/vrrFSpUOHr0aJ6vrvPUqVMnOzu7kJAQwy8zMzNDQ0PLlSuXa4z+sBYtWuR63T5u3DgRiYiI4CgmWxcbG/vmm2+uXLly48aNw4YNM/0LK1asePz48Zy7gJmZmREREab8qImOjp40aVJWVpbhl+np6b/99hvPNOQ/+/fvf+2111JTU48ePWp8VrMpgoODS5QoYeIZvAYLFy48evRozi+PHDkiIlxXti4+Pn7MmDEpKSmGX2ZnZx85cqRw4cIFChRQ5ftv2LAhPDzclBuNU6ZMyfXnYOPGjevVqxcVFfX8fzpbufz5hHt4ePj69etF5N69e8ePHw8MDCxatGie7wZdvnz5oEGDHB0du3XrtnTpUkPR3t5+xowZAwcOXLVq1YcffnjkyBE3N7eVK1cWKlRo8uTJpoT54YcfDh48aLjQt27dGh0d7ePj86KdFZA/nDx58j//+Y+IxMXFhYeHBwYGenl5mfI3w8mTJ6elpf36668iMnHiREdHx/79+w8cODAsLKx58+aDBw8uVarUvn37QkNDBw0alOdbcry9vb29vY0rbm5uzs7O+fveYP6W8yMrPj7+xIkTJv7IEpEJEyZkZmYaRlfjxo2zt7f/+OOPy5cv/+WXX9rZ2Q0YMMD0DAcPHmzXrl1CQsIHH3ywffv27du3G+rDhg1jsUw+MH369Pv37xvexDd16lRXV9c+ffpUq1btyV+1a9eupUuX1q1b9/bt2z/++OO1a9e2bNni7u6eZ7tp06ZNmjSpYMGCr7322rx58wxFE39gwlakpaUZXggdOnQoJSUlMDBQRAICAp78nIuDg8OIESM+//zzTp06vf3226mpqUuXLs3IyDBMoJ7sCa/TVPj3gUaioqKaNWsWHR3dvn3748eP57zXoUePHrVr137y1/7888+GP60URdm9e3dGRkalSpX69+8/derUnTt3NmzYsGvXrklJSatWrWrQoMGHH36YZ5idO3cuXrz4ww8/9PX1vXnz5vLly0uUKGH6U6uwHhMmTJg+fXrhwoVfeeWV2bNnG4pFihQx5f0TEydOzMjIMLy4Gj9+vL29/YABA2rUqDFkyJAvvvgiISHBx8dny5Ytv//++/fff2841usJ3Nzccr1E9/LyEpFy5cp5eno+478erMDZs2dbtmx58+bNjh07HjlyxDCjFBFTXl+NHDmyb9++LVu2/OCDD+zt7b/99tvz589v2LAhz6YnT56cNWvWTz/91KlTJxHZsGHDxYsXDX+JQL4RFhY2cOBAe3v79957L2fbnk6nmzlzZp5fGxsbu2bNmokTJ5r+0FVWVtbmzZtHjRo1cODASpUqXbhwYcWKFT4+Ph07dnz2fwdYgQsXLixatGjbtm3du3d3dXX94YcfDh06FBISkucfWyISFhZ2/vx5wwK00NDQ3bt3t27dukWLFj179ixTpoyHh0dERMSWLVvefPNNU96nVaRIkVx/O3B1dc3Ozn4R5lf5c+AeFxdnGCsY3uxw4sQJU+6c3L59u3nz5iJy5syZnKJhN6iLi8vPP/88e/bsPXv2pKent2/ffuzYsSbejYmOjjaEadWqlaIoJ06ceJ53cEBDd+/eNfxWGlaLnjhxwsR3p0ZERCQnJzs4OLRq1erkyZMi0rVr13r16v3xxx/z5s3bvHnz7du3y5Ytu2LFij59+jxDMB8fn3x/bzB/y7m0cn5kmXg+RHh4eHp6upOTU6tWrSIiIkQkKSlJUZSLFy9OnDgx142ZJ4uJiTE8pRUTExMTE5NTz7krDpt28uTJ+Ph4EWnVqpXhzzhTXkZ7eno6OTlt3LjR2dm5TZs2w4YNq1Kliint4uPjDaf1Gq9iMCxWRr6h1+sNP7i8vLz+9a9/Gf53Wlpanl84ffr0hg0brly5cu7cuSLi6+u7du1aU5bDPOF1GmzX7du3q1WrVq1atbS0NMNVZNC2bds8vzYmJsbwJYYfOCdOnDAc8lajRo0jR44EBQXt3LnTw8Nj7NixAQEBphxys3DhwiZNmqxatWrRokWurq7dunULDAx8qoMrYCUSEhIM+4sNr44MTH9xlZaWZvziyvCs6Pz582vVqrVu3bp169ZVKyOU/wAAIABJREFUqlRp9uzZTZs2fYZsZcuWbdWqFT+7bN3t27dr1qxZs2bNnAcaDEx5fdWnT5+qVat++eWXS5cuTU9Pr1mz5r59+xo3bpznF7711lvHjx+fO3fuN998k5WVVb169aCgIMOfjMg3YmNjmzVrJiJnz57NKZq4WWH//v1NmjQxrPg3kYODw/bt25cuXbpx48Yff/zRy8srICDAxD80Yc3q16//+++/BwUFGd7nV7Fixe+//97E+ygXLlzImWHGxcXFxcXVqlUrPT29Vq1aP/30U3x8fJkyZZYtW9a7d297e/tnyFa3bl1T/sqQD+he2NOHfX19mzVrFhwcrOL3XL58ub+/f1JSkorfE7alUaNGvr6+X3zxhVrfcOXKlUOGDGHoiddee61JkyaG+dTz+/TTT0+dOrV//35VvhvygXXr1nXv3v3ZXhKULFly9OjRI0aMUD0VbN3UqVPXrFkTGRn5DF9rjtdpsF1bt2595513kpOT3dzc1Pqebm5uCxcu7Nu3r1rfEDanfv36jRs3znkn1vO7fPly+fLlDx8+/OQDmfDiWL9+/fvvv5+dnf0Mq2h79uyZmJj4ww8/mCMYbN2zXR6XLl2qWLHir7/+mrOGGy+4gICAn3/+2fSzlPK0ZMmSsWPHGp70AjvcAQAAAAAAAABQwYv7XrZq1aqp/hbRIkWK1KlTR93vCdtSpUoVE9+vaiJvb2/OhYOIVK1aVcUfWWXKlMnIyFDruyEfKFy48DP/qHnllVeKFSumbh7kDyVLljRlV8wjmeN1GmxXwYIFfXx8TFk8ajofH5+n2r2G/Kdq1arqvm53dnb28fEx5bATvCAMr6+e4fF2ESlXrlxycrLqkZA/PNvlwc8o5FK6dOk8j514KkWLFs3zDJ4Xx4u7UgYAAAAAAAAAABWxUgYAAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQgYPWAQAA+cWlSxIZKS4u4uMjhQppnQY2T68o4ffvG1c87e2ruLlplQcAAAAAgDzpFEXROgMAwMbduCE9e8r+/VKhgiQkyL174ucnM2eKvb3WyWDDkvT65hERRR0dnez+ekNebXf3aeXLa5sKAAAAAIAn4Al3AMDzycqS9u3F1VWuX5cSJUREfvhBevYUV1eZMkXrcLB508uXf7VAAa1TAAAAAABgEna4AwCez48/yu+/y9Klf03bRaRDB/H3l/nzJTVV02QAAAAAAAAWxcAdAPB8fvlFXn5ZXnnlgeLbb0tSkkREaJQJ+ceNjIxLqamGf9Kys7WOAwAAAADAk7BSJl/LyJC1a2X/fklKknLlpGtX8fXVOhOAfOfOHSlVKnfxpZdERGJjLR8H+czMK1d0Op3hfy+sXLmuh4e2eQAAAAAAeAIG7vlXQoK0aiW3bknnzlK5shw7JvXry+zZMmqU1skA5C9ubnLvXu7i3bsiIu7ulo+DfObLypXZ4Q4AAAAAsBUM3POvsWMlOlpOnRJv778qixfL0KHSurX4+GiaDED+UquWhIVJQoIULPhPMTxcdLrce2YAAAAAAADyNXa451N6vaxZI8OG/TNtF5GPP5ayZWX1au1iAciPunQRe3v5/PN/KklJMnu2tGsnxYtrFwsAAAAAAMDSbOkJ94yMjKioqEGDBlmg18SJE319fT09PS3QyyyuXpXERKlT54Givb3Uri2nTmmUSU2KokRHR3/44YcW6DV8+PBmzZoVLlzYAr3M7e7duytXrty2bZu5GxUvXnzJkiVeXl7mbmRV7t27d+jQoaCgIAv0Cg0NLVeunL29vQV65a1oUQkNlQ8+kD/+kBYtJDFR1q+XzExZtEjrZPnBi3tdAQAAAABgg3SKomidwVRz5swJDg6OtcgRfC+99FLLli1XrVplgV5mcfas1Kghv/wijRs/UO/dWy5dkl9+0SiWalavXj1ixIi7hiXRZla2bNnq1av/73//s0Avs0pLS6tevbqiKFeuXDF3L09Pz6ysrAMHDtStW9fcvaxHly5djh07dvXqVQv0KlKkyLRp0z755BML9DLV2bMSFibnz4uLi7z+uvTrJ+zdVsOLfF1lZGeviInp6O1dytlZ6ywAAAAAAJjEZgbut27dqlq1akJCQlBQ0GuvvWbWXjdv3vzoo48yMjIOHz7coEEDs/Yylzt3pGhRWbdOunV7oN6ypRQuLP/3fxrFUsf9+/erVq1648aNsWPHtm7d2qy9kpKSevfuHR8f/8MPP7Rv396svcxt2rRpEydOrFat2qJFi+zszLtOavny5f/5z38aNWp04MABnU5n1l5WYu/evS1atHB3d//666+9jVc5mcH+/fsnTZrk5eUVGRlp7l4m2bBBDh+Wbt2kYcN/isuXy5kzMnCgVK+uXTKb90JfV3+7k5m58Pr1Io6OQ0qX1joLAAAAAAB5UWzERx99JCLvvPOOZdqNGTNGRBo2bJidnW2ZjuqrUUP54IMHKrduKW5uyoIFGgVSjYV/d+bPny8iFStWTEtLs0A7M4mOjnZ3dxeRvXv3WqBdYmJiiRIlRGT9+vUWaKe5rKys2rVri8iMGTMs09Fwq2n48OGWaZeH/v0VEWXZsgeKb72liCjbtmmUKT940a+rv/2Zmvrq8eOdTp3SOggAAAAAAHmzjUNTw8PDv/76aycnJ8sssRWRsWPHlipV6siRI99++61lOqpvzBhZt05ytuLcuyd9+4qXl/Tpo2Go53fp0qX58+frdLqQkBDLPDo9ZMiQmjVrRkVFLVy40ALtzCQwMDA5OblLly7NmjWzQLsCBQpMnTpVRAICAlJSUizQUVvLli07efJk+fLl/f39LdNx/vz5Dg4OixYtOpUvTmXAI3FdAQAAAABgc2xg4K4oyvDhw7Ozs/38/KpUqWKZph4eHjNmzBCRwMDA+/fvW6apCv77X2nRQk6eFBH54AOZPVsGD5ZixaROHSlRQq5ele3bxXZPghURkYCAgLS0tF69ells24+Dg0NISIiITJkyJSYmxjJN1WW4deTi4mKxW1Yi0q9fP19f32vXrgUHB1usqSbi4+MnTpwoInPmzHFxcbFM05o1a/bv3z8rK2vEiBGW6QgL47oCAAAAAMAW2cDAfe3atb/88kuxYsXGjh1ryb69e/euX7/+9evXZ8+ebcm+zy4zU0aOlL17Zffuvyr+/hITI2vXyuTJcuSIRERIzZqaRnxee/fu/f777z08PD7//HNL9m3VqlW7du2SkpIM8y/bYrhlpShKQEBA+fLlLdbXzs7O8C6EWbNmWeCYVg1NmTLlzp07zZs379y5syX7zpgxw9vbe9euXdu2bbNkX1gG1xUAAAAAALbI2g9NTU1NrV69+pUrV0JDQ/v27fvwJ1SvXl2v1z9/ox07djw8izxy5EijRo2cnZ3Pnj1brly55+9iXvPmyciRUqmSnD4tTk5ap1GfXq+vV6/eyZMnP//8c8Mad0u6ePFirVq1MjMzf/31V19fXwt3fx6rVq366KOPSpcufe7cOQ8Pj1wfXb169fTp05+/S7NmzZYtW/ZwvVu3bhs2bOjRo4cNb2d6orNnz9apUyc7O/vEiRN16tTJ9dFTp0516tTp+bt4enoeP3784XpISMiIESMqVqx4+vRpZ2fn52/0jAYMkBUrZNkyGTDgn2K7dvLjj7Jtm7Rrp1kwm8V1ZexyWlqX06fLurhstPF7xgAAAACAF4GD1gHyYHg2tm7dun0es3k8MjIyOzv7+RtlZGQ8XGzYsKFhUDh69OgNGzY8fxczun1bpk0TEVmw4IFp+40bcvq0tG6tVS4VffXVV4Z1xprsOqhUqdKQIUPmzp07fPjwAwcOWGZ9/PO7f//+uHHjRGTWrFkPT9tFJD4+/sKFC8/fqHLlyo+sBwcHb9u2be3atZ988skbb7zx/I2sjb+/f2Zm5qBBgx6eiopIWlqaKv95CxYs+Mj6kCFDQkNDT5069eWXXwYEBDx/I1gJrisAAAAAAGyUVT/hHh0dXbVq1dTU1H379j1uVHfhwgVV/hXKly/v6Oj4cP369etVq1ZNTk7eu3evZU6bfEYffyzLlknr1vLTTw/Ue/WSb76RWbPks880SqaO+Pj4KlWq3LlzZ+PGjao82vkMkpKSqlSpEhMTs379+q5du2qS4WmNGTNm1qxZDRs2PHTo0CNvEty7dy82Nvb5G3l4eJQqVeqRH5o4ceK0adPq1at37NgxOzsbWGNlum3btnXo0KFw4cKRkZFFihR5+BPS09NVWadjb29fsWLFR35o165drVu3LlCgQGRkZIkSJZ6/17PgCXdVcV3lwhPuAAAAAABbolixbt26iUj37t21jTF16lQRqVOnTlZWlrZJHis8XLG3VxwclFOnHqgfPqzodIqzs3LhgkbJVDNs2DARad68ubYxvvrqKxEpU6ZMcnKytklMERUV5eLiotPpfv31Vw1jpKSkvPzyyyKycuVKDWOoLj09vWrVqiISEhKibZJ27dqJyIABAzRL0L+/IqIsW/ZA8a23FBFl2zaNMtkqrquH/Zma+urx451y/QEHAAAAAIBVst6nTQ8dOrRhwwZXV9eZM2dqm2TUqFHlypX7/fffV6xYoW2Sx/LzE71ehg174ExURRE/P1EUCQiQSpW0C6eCs2fPLlmyxN7ePiQkRNsk/fv39/X1vXbtWnBwsLZJTBEQEJCWltarV6/69etrGMPV1dVwyO2YMWMSEhI0TKKuL7744vz589WqVfv000+1TRISEuLs7BwaGvrIfdywLVxXAAAAAADYNCsduGdnZw8fPlxRlM8++6xs2bLahnFxcQkKChKRCRMm3Lt3T9swj/Ddd7JvnxQtKhMmPFD/5hv59VcpUUJGj9YomWpmjR2bmZk5YMCA2rVra5vEzs5u7ty5IhIUFHT9+l1twzzZnj17vv/+ew8PD8OwW1s9evR44403bt26pfn9M7XExsYaDpudN2/eI7dRWZLhgIGcH5vahsHz4LoCAAAAAMDWWenA3fBI3UsvvWQlx7W99957TZs2vX379jTDwaTWIy3tr3n6tGlSqNA/9fv3ZcwYEZGgIPH01CabWv7731X79/+nTRvDbh/NNWnSZNCgcZUq/Xf0aC+tszyWXq83HC07duzYx61WtySdThcSEmJnZzd//nxVDnvU3Lhx4xISEtq3b9+2bVuts4iITJo0qUSJEoY3Blm+u1LARYp6Ky4PnMKtFHSXot6Kk73l89gurisAAAAAAGydNQ7ck5KSJk6cKCLBwcHu7u5ax/lLSEiIvb39F198cfr0aa2zGJkzRy5fljp1pH//B+ozZ8qNG/Lqq9Kzp0bJVJKRIf7+urt3u7/1VtGiRbVO85cxY6ZfuNB07Vr55RetozzGV199dfLkyQoVKhjG7tagXr16vXr1ysjIGG37b7mIiIgICwtzcnKyns1CBQoUMNyRCggISElJsXD3q8PTTvwvLq5tlnExamryif/FJdbXWziM7eK6AgAAAAAgH7DGgfvUqVNjYmIaNWrUtWtXrbP8w8fHp1+/fllZWdYzwZTr12X2bBGRkBCxN3qM9M8/Zd480ekkJETsrPG3+Cl88YVERkq1aqL1OmNjZcrIyJF/LcnPztY6zUPi4+MnTZokIsHBwS4uLlrH+cesWbM8PT03b968Y8cOrbM8Fz8/P71eP3ToUMPhllaiX79+vr6+0dHR1jOuxVPhugIAAAAAIB+wumlsVFTUl19+aWdnFxISotPptI7zgOnTpxcqVGjnzp0//vij1llERJQxYyQ5WTp3lmbNHvhAQICkpcmHH0rjxtokU0tsrEyfLiIyb55ovc44lzFj5OWX5bff5OuvtY7ykMmTJ9+5c6d58+bvvvuu1lkeULx48TFjxoiIv79/Zmam1nGe0fr16/ft21esWLHx48drneUBOT82Z82adeXKFa3j4OlwXT1JenpFvb5Eaqo23QEAAAAAeBpWN3D38/NLT0/v27fva6+9pnWW3IoWLTphwgQRGT58eEZGhrZhjhw54vPrr3sbNJA5cx74wN69smmTuLn9Naq2aePGSUKCtG8v1rHO2JirqxjOIh0zRhIStE5j5OzZs0uWLLG3tw8JCdE6yyP4+/tXrlz5zJkzy5Yt0zrLs0hNTQ0MDJS/b79pHSe3f/3rX++9915qaurYsWO1zoKnwHX1ZGk3b25o0GD3Bx9o0h0AAAAAgKdiXQP3Xbt2bdu2LWdprBUyvNn/4sWLixYt0jCGoijDhw8/GRm5p3VrKV/+nw/o9WLYeDNunJQpo1U8dYSHS1iYODmJte4x6NFD3nhDbt2SmTO1jmLE8PD4xx9/XLt2ba2zPIKTk1NQUJCITJgwIS4uTus4Ty0oKOjy5cs+Pj59+/bVOsujBQcHu7m5rV279herPWEAD+G6AgAAAAAg37CigXvOevSJEyeWLFlS6ziP5ujoOHfuXBGZPHlyTEyMVjG+/vrro0ePli5d+rPPPnvgA8uWye+/S/ny4u+vUTT1+PmJXi/Dhok1rTM2lrMkf/58uXBB6zQiIrJ169bt27cXLlx4ypQpWmd5rI4dO7Zp0yY+Pt6aQz5SdHT0nDlz5O8jlLWO82hlypQJCAgw3JPLtsITBvAQrisAAAAAAPITKxq4L1q06NSpUxUrVhw6dKjWWZ6kXbt2bdu2TUxMnDx5siYB7t+/P27cOBGZNWuWh4dHTv3evXvfbN2q6HQSFCTWdFTms1i3Tvbvl2LFxMrWGedSr5706iUZGTJ6tNZRRDIyMkaNGiUikydPLlKkiNZxnmT+/PkODg6LFy/+448/tM7yFEaPHp2cnNytW7emTZtqneVJAgMDy5YtGx4e/rUVnjCAh3BdAQAAAACQn1jLwP3u3bvTpk0TkZCQEGdnZ63j5GHevHmOjo7Lly8/ceKE5bvPmDHjxo0bDRs27Nmzp3F9ypQpvbZvH/b++9Kli+VTqSk1VQIDRURmzJCCBbVOk4dZs8TTUzZvlh07NE6yYMGCyMjI6tWrDxo0SOMoealRo8bHH3+s1+v9/Py0zmKqw4cPr1u3ztXVddasWVpnyYOrq+vnn38uImPGjEmwqhMG8BCuKwAAAAAA8hlrGbiPHz8+Li6uZcuW7du31zpL3qpVqzZ48ODs7Gw/Pz9FUSzZ+tKlSyEhITqdbsGCBTqdLqd+7ty5RYsW2dvb98+1ZMYWBQXJlStSt6589JHWUfJWvLiMGSMi4u8vWVmaxYiNjZ0xY4b8fTdIsxwmmzZtmre39549e7Zu3ap1lrzl/J991KhR5cqV0zpO3rp37/7GG2/cunVrplWdMIAHcV0BAAAAAJD/WMXA/fTp08uXL3dwcAgJCdE6i6kmTZpUtGjRAwcObNy40ZJ9AwIC0tLSevXqVb9+feO64ajMAQMG1KlTx5J51BcdLXPmiIiEhIi1rjPOxd9fKleWM2fkq680yzB27NiEhIQOHTq8+eabmoV4GoULF544caKI+Pv7p6enax0nD6tWrTKcmjDaGpYHmUCn04WEhNjZ2c2fPz8yMlLrOHg0risAAAAAAPIfqxi4jxgxIisra/DgwbVq1dI6i6kKFSo0depUEfH3909JSbFM0z179nz//fceHh6G9/Xn2LZt2//+97+cSLZt8mRJTpauXaVJE62jmMrJSYKCREQmTZKkJA0ChIeHh4WFOTk5BQcHa9D+WX366aevvPJKVFTUggULtM7yJElJSePHjxeRoKAgd3d3reOYql69er17987IyLCVYe6LhusKAAAAAIB8SfuB+6ZNm3bu3Onl5TVhwgStszydgQMHvvrqq9euXZs3b54F2un1+hEjRojI2LFjS5UqlVPPyMgICAiQvx+6t0AS85o9W4YO/WuAbTs6dpSPP5Zvv5UCBTTo7ufnl52dPXz48CpVqmjQ/lk5ODjMnz9fRKZPn37z5k2t4zyWId7rr7/evXt3rbM8nZkzZxYsWHDLli07zHzCgLd3n7JlV3h4PHCTrFgxv7JlV7i61jZra9vFdQUAAAAAQL6ks/AK8lwyMjJq1ap14cKFxYsXW/9Jjw87cOBAkyZNXF1dz549+/LLL5u116JFi4YMGVKhQoXTp0+7uLjk1IODg0eNGlWtWrWTJ0/axPLuByiKbNggGzbIlSvi6SlNm8rQoeLlpXWsZ5GWJh06SJ06YvyUeadOMmiQtG5txr7r1q3r3r17sWLFIiMjC1r9GbMPe+edd7Zu3dq3b9/Q0FCtszzCpUuXatSokZmZefjw4Vx7nGzC7NmzAwMDa9SoERERYe6fD4qSFRcXlpS0R69PcHau5O3dy83N16wdbRfX1VM5d+5c9erVq1ateu7cOTO1+E9s7O74eOPKmJdfruTqaqZ2AAAAAIB8TOMn3IODgy9cuFCjRo0BAwZom+TZNG7cuFOnTikpKYbNAOYTHx8/efJkEQkODjaetsfGxk6fPl1s56jM3D79VAYOlKpVZfRo6dhRNm8WX1+x4oedn0Cvl127ZO5c+d///inu22fef5vU1NTAwEARmTFjhi1O20Vk3rx5zs7Oq1atOnbsmNZZHsGwYr537962OBUVkREjRlSuXPnMmTNfmf+EgatXP71+fayLS/WCBTuIKKmpp8zd0XZxXVmb6PT0JL3+vaJFc/7xtsU/UgEAAAAAVkDLJ9xv3bpVpUqVxMTEHTt2tGnTRqsYz+nq1avVq1dPTU3dv39/48aNzdTF399//vz5LVq02L17t3F9wIABK1asaN++/Q8//GCm1ma0a5e0bi07dkjO735ystSsKU2ayOrVmiZ7FsnJ4uEhb78tp07JqVNieDLS21vmz5devczVdPLkyVOmTKlbt+6xY8fsbeSM2YeNHj16zpw5r7/++sGDB3U6ndZx/rFnz56WLVsWKFDg/PnzJUuW1DrOM9q8efO7775buHDhyMjIIkWKmKmLomSGhxcoW3aJt/dHZmqRb3BdPS0LPOEedO3an6mpS2xqKxcAAAAAwDpp+YT76NGjExMTO3XqZLvTdhF5+eWXR4wYoSiKYY+2mbr4+/t/+OGHISEhxsWIiAhbPCrzH+vXS506Yvy77+4uQ4bIxo2SlaVdrOcyYoTY28uMGZboFR0dbfitDwkJsd1pu4hMmDChZMmShw8fXrdundZZ/qHX6/38/ERk3LhxtjsVFZGOHTv++9//jo+PnzJlivm6KIpeJCstLdJ8LfIHrisAAAAAAPI3zZ5wj42NrVSpUnp6+tmzZytUqKBJBrXcv3+/cuXKsbGxRYsWdXJyMne7LVu21KpVy9HRsVmzZvv27Rs5cqStDtybNpVSpWTt2geKP/4o7drJn39KuXLapHpWhifcDx6U2Fjp1k3Cw6VGjb+ecN+yRUxfl1K27MdXrvwv788TSUxMTEhI6Ny58//93/89e27rEBoa2r9//yZNmuzbt0/rLH/Zs2dP69aty5Qpc/78eWdnZ63jPJdTp075+Pg4Ojp6e3vb2Zl0n7Vz57p9+4ab+P2dnStWqbL36tVBt28vLVCgRZEiHxUq1NnOzjU9/UJkZEvTcw4aVOjq1XsmfvKSJUvatWtn+je3Ei/4dfVsMjMzY2JiHBwcTL9F0WTJkniTD1Z5x9v7nl6/8+5dHw8PQ6Wyq+tAo8PJAQAAAAAwnYOGvcuUKXP9+nVvb++HP3Tz5k1PT093d3fLp3oCRVGioqIqVaqUq+7m5lagQIHk5ORbt25ZIEaDBg3mzJlTokSJffv2FStWzNzr480oK0uM9tH/xbCKJTPT8nHU0rGjtG4tgwfL3r1/VWJi5No1U7/c1fXeNZM/29HRsUSJEo/80MWLFx++VjV37dq1YsWKPTxnLF++vE6nK2dNd1nc3d29vLwKFy78yKmodf7nTUhIyMjIKFq0aK568eLFnZ2dnZ2dr1+/buK3iosrl5Fh6nVoZ+cqIi+/vLhgwfZxcauvXBl47Zp/xYrfOzgUNv2biEhMTPK1a3dN/OSUlBTTv7P1eMGvq2dmb2+flZVl+s/GuykpsRkZJn5yol4vIh729nX+HriXNP+9cwAAAABAfqXZwL1YsWJFihQ5c+bM9OnT58yZY/yhNWvWDBo0yM/Pb9q0aVrFe6R169b16tVr/PjxkyZNMq6HhYVduHChdOnSR48edXNzM2uG3bt39+3bd8qUKf7+/s7OztOnTy9UqJBZO5pRqVJy9Wru4pUrYm8vtrxpQUS++EJq1ZLvvvvrl5s2SXq6qV+r0y1QlDl5f57IH3/88fbbby9fvnz48OGVK1fOqaenp3fo0OHQoUPnzp176aWXni66OSmK0qVLl7i4uM2bN9eqVSunrtfr/f39FUWdugFMAAAgAElEQVSpWrWqhvFyqV69uoODQ0RExHfffffee+8Zf+izzz6bO3fu999/36FDB63iPdLkyZNXrVq1YsWKzp07G9fHjx+fkpLSqFGj0NBQE7+Vm5udp6epO7J0OsPxkrqCBdsVLNguKysuKurta9eGVqt29JVXrpief98+nV5v6puuHp7/2oQX/Lp6NlFRUS1atKhQocLenNuYeXHy9haTTz11t7dfcuNGCSenD4oXf9aMAAAAAAD8TdHOb7/9Zm9v7+TkdO7cOeP64cOHdTqdi4vLpUuXtMr2sJSUlLJly4pIaGiocT0xMdHwJvf//Oc/lkny5ptvisigQYP+/PPPrKwsyzQ1iyVLFCcn5dq1B4pt2iiNG2sU6Lncv6+IKAcP/vXLKVOUChUUT0/l66/N2LRXr14i0qlTp1z1rl27ikiPHj3M2PvphYWFiUjp0qWTkpKM64sXLxaR8uXLp6amapXtkZYuXSoiZcqUSU5ONq4bTlOoWLFiWlqaVtkedubMGUdHR3t7+4iICON6eHi4vb29o6Njrp+0ZnXrVkh4eGGLtbMtXFdP6+zZsyJStWpV87WYffXqJ+fPm+/7AwAAAABeHFoemlq3bt2PPvooIyMjICDAuN6wYcOePXumpaWNHj1aq2wPmzVr1pUrV+rWrdunTx/j+rRp027evPn666+///77lkkyb948R0fHZcuWJSYm2vRRmdKrl5QrJ126yNmzIiKJiTJjhuzeLVOnap1MBZ99Jo6Okpho3i5BQUGenp6bNm366aefjOvBwcFubm5r16795ZdfzJvAZPfv3x83bpyIzJo1y+PvvQ0iEh8fP3HiRBGZM2eOy8MrhjQ1YMCAV1999dq1a3PnzjWuDx48uFatWlFRUV9++aVW2R7m7++fmZk5cODAOnXqGNf9/Pz0ev3QoUPN+gYCRcm6e3dtdvZ9EcnKunv37np391fN186mcV0BAAAAAJCfaTvvv3XrVsGCBUXkxx9/NK5HR0cbFrjv3btXo2gPuHbtmiHP/v37jesXL150dna2s7M7evSoJfMMGzZMRJo3b27JpmZx7ZrStq1iZ6cUKKDodEqFCsrWrVpneka5nnBXFGXHDkXEvE+4K4oyY8YMEalRo0ZmZqZxfcKECSJSr149vV5v3gSmGTNmjIg0bNgwOzvbuD58+HBrvpgPHDig0+lcXV2vXLliXN+1a5eIFChQ4MaNG1plM/bDDz+ISKFChW7fvm1cX79+vYgULVo0Pj7erAHS0/88darGiROOv/9e6sQJpzNnfNLSLpi1o03junoqPOEOAAAAALAhGg/cFUUxLHCvVq1aRkaGcX3q1KkiUqdOHWvYmtKtWzcR6d69e666YdNuv379LJzn7t27RYoUEZGNGzdauLVZxMUpERHKn3/+9cszZ5TERC3zPJOvv1Y0GZGlp6cbFrgvWrTIuJ6SkvLyyy+LyMqVKzWI9aCoqCgXFxedTnfkyBHj+tmzZx+5rcKqGBZt9+zZM1e9ffv2ItK/f39NUhlLT083PGU8f/5843pKSorhHNqvvvrKMkkyMm7cv38kLe2iomTn/dkvNq4r01lg4A4AAAAAgFq0H7jn/JU+JCTEuJ6ammr4K/3SpUu1ymZw8OBBw6OIly9fNq5r+yjiokWLxCrXXj+vL79UHByUwECtczyd8HDF3l7x8tLmTsHGjRtFxMvL686dO8b1NWvWiEjx4sXv3bunQSwj7777roj07t07V71t27Yi8sknn2gRylRXr151c3PT6XS//PKLcV2rN7g87Mm3LX18fMx92zI6evTJky/FxT1wjsWff/Y+efKlxMTdZm1tu7iuTMfAHQAAAABgQ7QfuCt/v2m9cOHCud60vmHDBku+af2R9Hq9r6+viEyePNm4npmZ+corr4jI7NmzNQmWlZVVu3ZtEfn88881CWAux48rdnaKk5MSGal1lKfQtKkioowcqVmA1q1bi8jw4cONi9nZ2W+88YaIfPbZZ1oFUxRlz549IuLh4XH9+nXjes62itjYWK2ymWj8+PGP3M9jOH+iUaNGufbkWFKei7l+/vlnc2e4fLn/8eNy+/Yy4+KFC28dPy737m0zd3fbxXVlIgbuAAAAAAAbYhUDd0VR3nzzTREZNGhQrnrTpk1FxN/fX5NUiqIsX75cRF566aX79+8b1xcsWCAiFStWTEtL0yrb4+aYNq93b0VEefddrXOYav16RUQpVkzR7saQcurUKQcHBwcHhz/++MO4fuLECTs7Oycnp0iNbmA87s7Q47ZVWKfk5GTDfp6wsDDjemJiYokSJURk3bp1GkVT+vfvLyLt27fPVe/Zs6eIvPfeexbIwMD92XBdmYiBOwAAAADAhljLwP3MmTOPXOUcHh5ub2/v4OBw6tQpy6dKTEwsWbKkiKxdu9a4fvfuXW9vbxHZsmWL5VMZe9ymDtsWE6N4eioiyo4dWkfJW0qKUq6cIqIsW5b3J5vVoEGDRKRly5a56n369BGRjh07apLqcbuPgoODH7mtwmp98803hv08CQkJxvVly5Y98p6cZRh+Qjo5OZ07d864fujQIZ1O5+Li8mfO0QjmxMD9mXFdmYKBOwAAAADAhtiJdahevfqnn36q1+tHjBhhXPfx8enXr19WVlauumVMnTr15s2bjRo1MhyammPChAlxcXEtWrR4++23LZ/KWHBwsIuLy+rVq3/99Vdtk6ipeHEJDBQRGTFCsrK0TpOHOXPk8mXx8ZG+fTVOMn36dG9v7927dxtWteSYNWuWp6fn5s2bd+zYYeFI8fHxkyZNkr8v1Jx6bGzs9OnTRWTevHmOjo4WTvVsevbs2bhx41u3bs2cOdO43q9fP19f3+joaMMtBAvz8/PT6/VDhw41vF3AIDs728/PT1GUUaNGGU7CgNXiugIAAAAAIL/ReuL/j7t37xYpUkRENm7caFyPjY0tVKiQPLRJ1twed3Ld6dOnHRwc7O3tT548ack8jxMYGCgiI955R9Fu26/60tOVypUVEWXRIq2jPEl0tOLurogoFtxm/CQhISHyqE1HhllejRo1MjMzLZln2LBhItK8efNc9QEDBohIu3btLBnm+T1uP8/jzlU2t3Xr1olIsWLFcp1yERYWJiKlS5e22MPRPOH+PLiu8sQT7gAAAAAAG2JFA3dFURYvXiyP2j4xd+5cEalUqVJ6errFwnTo0EFE+vXrl6vepk0bERk6dKjFkjxZYmLi4Q4dFEdH5ZtvtM6iqo0bFRHFy0u5c0frKI/Vs6ciolh2m/GTZGZm1qpVS0TmzJljXE9PT69cubKILFy40GJhcvZE/f7778Z1w7YKR0fHXNsqbELv3r1F5N2HDhjo2rWriPTo0cNiSVJSUgxPGS97cJlRUlJSqVKlRGTNmjUWC8PA/TlxXT0ZA3cAAAAAgA2xroF7zvmKM2bMMK5nZGQY3tg+b948yyTZtWuXiBQoUODGjRvG9U2bNolI4cKF71jVFDgsTBFRSpdWkpK0jqKqNm0UEWXYMK1zPNqhQ4pOp7i4KJbdZpyHnTt3Wsml++STkEeOHGmZGOqKiYnx9PQUkR0PHjBw9epVNzc3nU63f/9+yySZPHmyiPj4+GRlZRnXDW95adiwYbYF3/LCwP05cV09GQN3AAAAAIANsa6Bu6Ioe/bsEREPD4/r168b17dt2yYinp6eN2/eNHeGnMeEg4KCjOuaPCZskuxspX59RUQZP17rKKo6fVpxcFAcHBTr2N5jTK//6z/5hAlaR3lI+/btRaR///656pZ8c8bWrVsN8/3bt28b19evX//IbRU25PPPP3/kfp6JEyeKSN26dfV6vbkzREdHu7u7i8jPDy4zioqKcnFx0el0v/76q7kzGGPg/vy4rp4g6tat7uvWDX5w3RwAAAAAANbJ6gbuiqJ06tRJRHr16pWr3rZtWxH5+OOPzR3A2hZhm+Tw4b8et750Sesoqvr0U0VEadlS6xy55bypwOLbjPOm+fED6enpVapUEZGQkBDj+uO2VdiWx914S0lJKVu2rIiEhoaaO0OPHj1EpGvXrrnqHTt2FJE+ffqYO0AuDNyfH9fVE/yZmvrq8eOdTp3SKgAAAAAAAKazxoH7pUuXDA/THTlyxLh+9uxZR0dHOzu748ePm697XFyct7e3iGzdutW4nvOW/+3bt5uv+3P54ANFROnSRescqoqLU7y9FRHlwd8ObSUlKaVKKSKKFtuMTRIQECAijRo1yrX/YfDgwSLSokULs3afM2eOiFSvXj0jI8O4PmXKlEduq7A5j9vP8+233xqe37937575uh86dMhwluafDy4z2r179yPfHmQBDNxVwXX1OAzcAQAAAAA2xE6sT/ny5f39/RVFGTx4cHZ2dk69WrVqhoqfn5+iKGbqPmHChLi4uJYtWxoOTc0RGBiYmJjYsWPHf//732Zq/bxmzRIPD/m//5OdO7WOoh4vL5k4UUQOLF2akZGhdZq/LF78S1qa0rCh9OihdZTHmDhxYsmSJQ8dOrRhwwbj+rRp07y9vffs2WNY+WIOsbGx06dPF5F58+Y5Ojrm1K9fvx4UFCQiISEh9vb2ZupuGe+++26bNm3i4+MNtxBydO/e/Y033oiNjTW8G8Yccn4Ajho1yvB2AQO9Xu/n5yci48aNMxxuaUlFjpeovKmpe5S7cbH4L+Urb2rqcsPJwmFsF9cVAAAAAAD5gbbz/sdJSkoy/N1+9erVxvX4+PiiRYuKyHfffWeOvoadGw4ODrl2bpw4ccLOzs7JySkyMtIcfVUzbZoiotSsqVjh0ptnlpHxWefOIjJnzhytoyiKokRFRTk7O3t5VTx2zKq3kC9fvlxEXnrppfsPbr1ZsGCBPGpjklr69+8vIu3bt89Vf9y2ChuV58+K8+fPm6NvaGioiJQuXTrXb+vChQtFpEKFCqmpqebom4f+/RURJdemoLfeUkSUbTzh/hS4rh6JJ9wBAAAAADbEGp9wFxEPDw/DCXKjR49OTEzMqRcqVGjq1Kki4u/vn5KSonrfESNGZGVlffrpp6+88kpOUVGU4cOHZ2dn+/v7G3bsWq+AAClXTk6fltBQraOox9Gx9aBBIjJ16tSbN29qnUZGjhyZnp7+9ttv+PoW0jrLk/Tt29fX1zc6Ojo4ONi4bri8o6KiDJN3dYWHh4eFhTk5OeVqevjw4bVr17q6us6ePVv1ppqoUaPGwIEDs7KyRowYYVyvV69e7969MzIyRo8erXrTpKSk8ePHi0hQUJDhcEuD+Pj4yZMni0hwcLCLi4vqfWExXFcAAAAAANg8rSf+j5Wdnd2gQQMRGTdunHE9KyurTp06IjJ9+nR1Oxr253p5eeXan7tmzRoRKV68eEJCgrodzWLDBkVE8fJS4uK0jqKm9u3bi0j//v21jWEN64xNd/DgQcNS5suXLxvXd+3aJSIFChS4ceOGuh2bNGkiIgEBAcZFvV5fv359EZkwYYK67bSVc97Dli1bjOsxMTEFCxYUM5z3YBi2vv7667lW8w8dOlTMv5r/SXjCXT1cVw/jCXcAAAAAgA2x0ifcRUSn04WEhOh0uuDg4IsXL+bU7e3tQ0JCRGT9+vV6vV7FjmvXrhWRqVOnGoYdBqmpqWPHjhWRmTNnGg5NtXbvvSfNmsnduzJ9utZR1BQSEuLs7Lxy5cpjx45plUGv1xseO7WVdcaNGjXq2rVramrqmDFjjOuGIwru37//3//+V8V2586dO3HiRLFixQxPy+b4+uuvjx49Wrp06c8++0zFdprz8vKaOHGiiPj7+6enp+fUixcvbvgPvn79ehXbZWRkbNy40c7ObsGCBTqdLqd+9uzZpUuX2tvbz58/X8V20ArXFQAAAAAAtk3riX8ePvzwQxHp3Llzrvp3332n+kpZvV6/fv36zAe3n0+YMEFE6tWrp9fr1W1nRhERir294uCg5K/nAQMCAkSkUaNGuR7DtBgrWWf8VK5du2bYEbF//37j+sWLFw8dOqR6u+jo6D179hhXEhMTS5YsKSJr1qxRvZ3mMjMzDeungoKCjOtpaWnfffed6hdqcnLypk2bchUNxzgPHjxY3V5PhyfcVcV1lQtPuAMAAAAAbIhOURStZv2muH79erVq1e7fv//TTz+1bt3awt2vXbtWrVq11NTUffv2vfHGGxbu/lw++US++koGDpSvvtI6imqSkpKqVq168+bNtWvXvv/++xbuHh8fX6VKlTt37mzatOndd9+1cPfnMWnSpKlTp9atW/f48eN2dpZ+U0tgYODs2bNff/11w34bC3e3gN27d7dq1apAgQLnz5833FqwpK1bt77zzjuFCxeOjIwsUqSIhbv/Y8AAWbFCli2TAQP+KbZrJz/+KNu2Sbt2mgWzWVxXxi6npXU5fbqsi8vGmjW1zgIAAAAAQB6sd6WMQc4aCsNxphbuHhAQkJKS0r17dxubtovItGkSEiILF2qdQ00FChQwHJk7atSo5ORkC3efNGnSnTt3WrRoYVvTdhEJDAwsW7ZseHj4qlWrLNz60qVLhj0VhvVQFu5uGYb9PElJSYZ3w1hSRkbGqFGjRGTy5MnWMBWFiriuAAAAAACwUdY+cBeRUaNGVapU6fTp0ytWrLBk34MHD3733Xeurq6ff/65Jfuqo2hRGT5cLl+WDz+UsmXF21vq1ZPZsyUjQ+tkz6Vv376+vr7R0dHBwcGW7GvT64xzruExY8YkJCRYsvXIkSPT0tJ69+5tODQ1v5o/f76zs3NYWJiFDxgICQmJjIysXr36oEGDLNkXlsF1BQAAAACALbKBgbuzs/PMmTNFZNy4cXFxcZZpmp2d7efnpyiK4elgyzRV2dmzUr++JCXJokWyfbsMGCCzZ8t774miyM6dsmaNrFkj2h1A+mxyTvabPXv2lStXLNZ3xIgRmZmZn3zySe3atS3WVEWGd2nExsZa8u7Rnj17Nm/e7OHhMWPGDIs11UTFihWHDRuWnZ09fPhwiy3pyvndnDdvnqOjo2WawpK4rgAAAAAAsEU2MHAXkS5durRu3fru3bvTp0+3TMcVK1YcP368TJkyhoM6bVJAgFSoIJs2Sfv28tprMmiQbNsmW7fK1q2SnS16vej1kp2tdcqn1qhRo65du6ampo4ZM8YyHbds2bJjx47ChQtPnjzZMh1Vp9PpFixYYGdnZ3h21QId9Xq9n5+fiIwbN65UqVIW6KitCRMmlCxZ8vDhw+vWrbNMR8P7Fd5+++0333zTMh1heVxXAAAAAADYHGs/NDXH6dOnfXx8ROTEiRM1atQwa6+kpKQaNWrExMSsX7++a9euZu1lLikpUqiQLFwoAwc+UPf1ldq1ZeVKjWKpIzo6ulq1asnJyXv37m3cuLFZe2VkZNStWzcyMvKLL74YOnSoWXuZW79+/VauXNmhQ4dNmzaZu9eSJUuGDRtWoUKF06dPu7i4mLudNQgNDe3fv/9LL7106tQpd3d3s/aKiIho0KCBg4PDH3/8UaVKFbP2MsmQIRIWJosWSZ8+/xQ7d5bt22XTJvn3vzULZvte6Ovqb9fT0wdfuPCSs/PCypW1zgIAAAAAQB5sZuAuIp988sny5cuzLfJQtpOTU4MGDfbt22erJz2ePy/Vqsnu3dKixQP199+XW7dk716NYqlm0qRJ06ZNs8zV6+rqWr58+YiICFtfsBATE1OlSpXs7GwLHDnr6uqampq6adMmmztj9pllZ2e/9tprp0+fTk9Pt0A7nU43cuTIOXPmWKDXUzhzRi5eFGdnqVdPihbVOk1+8IJfV3pFOZqUZFwp6OBQw81NqzwAAAAAAOTJlgbut2/fPnDgwHvvvWeBXosXL27atGnVqlUt0MssIiOlalXZs0eaN3+g3r273Lole/ZoFEs1KSkp+/fvb9++vQV6zZgxo23btja6vT2XgwcPhoWFrVq1ytyNXn755WXLlrVq1crcjazK6dOnd+/e7e/vb4FemzdvbtKkiaenpwV6meTaNXn/fTl6VCpXlqQkiYmRTz+VuXPFwUHrZDbvRb6ukvT65hERJZycXOz+2oBXy919crlymoYCAAAAAOBJbGngjqeQnCwFC8qyZdK37wP1Bg2kenUx/7wVwAskK0vq1RM3N9m4UUqXFhHZsUO6dpUhQyS/H5kLszIM3L+qUuXVAgW0zgIAAAAAgEls49BUPDV3d2naNPeu9j/+kGPHxCJPhQN4gWzbJqdPS2joX9N2Efn3vyUgQL74QlJSNE0GAAAAAABgUQzc86/Zs+XECfngAzl5Um7flh9+kA4dpGlT6dRJ62QA8pcDB6RsWalZ84Fi+/Zy/75ERGiUCfnH1fT0cykphn9SLHKOCwAAAAAAz4ztuvmXr6/8/LMEBkq9eqLXi7e3fPCBzJghdtxlAaCquDgpVSp30fC0++3blo+DfGbetWv2fx9gHlKpko+Hh7Z5AAAAAAB4Agbu+VqDBrJ3r2RlSUqKWM0heADyG3d3uXs3dzEuTkSE2SieW0ilSuxwBwAAAADYCh52fgE4ODBtB2BGr7wily/LvXsPFH/7Tezs5JVXNMoEAAAAAACgAQbuAIDn06WLODrK1Kn/VBISZNYs6dBBihXTLhYAAAAAAIClsVIGAPB8vL0lLEx69JDff5fWreXePdmwQRwcZOFCrZMBAAAAAABYlE5RFK0zAABs38WLsnq1REaKk5M0bCi9e4u7u9aZYNsyFGV1TEw7b++STk5aZwEAAAAAwCQM3AEAAAAAAAAAUAE73AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAAAAAVMHAHAAAAAAAAAEAFDNwBAAAAAAAAAFABA3cAAAAAAAAAAFTAwB0AAAAAAAAAABUwcAcAAAAAAAAAQAUM3AEAAAAAAAAAUAEDdwAAAAAAAAAAVMDAHQAAAAAAAAAAFTBwBwAAAAAAAABABQzcAQAAAAAAAABQAQN3AAAAAAAAAABUwMAdAAAAAAAA/9/evUdDnf9/AH/nUoakhFyLcSkhQmkpTbl0uojUTiq1bVQ6Ham2w9BlV6PtJrFrK5FVEUI5UtnVhdpcVhIGx62yZWwnyr3cmu8fn/ObMz+730zTfIWej7/m85p5v+b9PuZ8nPOa97zeAAAgBii4AwAAAAAAAAAAAACIAQruAAAAAAAAAAAAAABigII7AAAAAAAAAAAAAIAYoOAOAAAAAAAAAAAAACAGX27B/dKlS76+vuLN6e3tffXqVfHmhOHl+fPnTCbz+fPnYsy5Z8+exMREMSaEYa2trY3JZJaWloorYUVFBZPJbG5uFldCGO7q6uqYTGZ9fb0IY1NSUnx8fMQ+JQAAAAAAAIDhYhSPx/vccxC/vr6+y5cv37hxo7m5WV9f39PTc/r06f1ew2KxMjIyHj9+3C/e1dUVFxeXm5vr6+urr6/Pj5eWlkZERDx58kRZWZnJZC5duvSf70un0z09PQMCAgSDjY2NZ86cefTo0ejRo83Nzb28vMaNGyemhcJgu379+tWrV1++fKmurr5mzRoGg9HvBRwOx8TEpLS01NjYuN9TeXl5MTExDAbDzc1NMF5YWHjx4sXa2lo5Obk5c+Zs2rSp3yfE2NjYxcUlKChIMNja2hodHZ2bm9vb22tiYrJjxw5FRUWxrRMGRV1d3alTp2g02g8//MAPcjic6Ojo6upqZWVlBwcHNze3UaNGCY5qbGxUVlbOzMy0t7fvl7CkpCQyMtLExGTLli38YHZ29qVLl7hcroaGBpPJXLhwYb9R2dnZDAaDy+WqqakJxvPz82NiYl68eDFp0iQXF5dly5aJZdUwOP7666/IyMjS0lI5OTkbG5vNmzdLS0tTT2VlZcXGxnK53ClTpmzevNnc3Lzf2OLiYjMzs/LyckNDQ8F4Z2dnZGRkfn5+Z2enoaHhtm3bJk+e3G8sm82+cOFCdXV1v4SnTp0SjCxdunT58uXiWSoAAAAAAADAUDICd7j39fW5urp6eXkRQrS1ta9du2Zqanrr1q0BB7a0tLDZbG1tbQ8Pj6ioqJqaGv5Td+7csbS0zMjI0NPTe/bs2bJly9hstjCTqaysNDU1jYuLU1dXHz169MGDB2fNmtXS0iLy6uAzOnDggJOTU2trq6WlJZfLXbBgQVhYmDADr1y5Ym1t/dVXX0VERKSnpws+FRwcPHv27N9++01FRUVOTi4qKurdu3cDJvz7779nzZoVFBQkJyc3YcKEkydPGhkZiXdbPfxPFRUVubm56enpHTt2LCIigh+Pj483Nze/d++etrZ2fX392rVrv/nmG2ESZmZmOjg4mJqahoeHX758mR8PDAxkMBhPnjzR1mBBGzMAAA4iSURBVNZ+9OiRnZ3d0aNHhUn4008/zZ0798WLFzo6OjU1NU5OTv7+/h+7TPhccnJyZsyYkZCQoKmp2d3d7e3tzWAwenp6CCEhISELFy4sKipSVVXNzMy0srK6ceOGMDnfvXs3f/7877//XllZecaMGampqcbGxmVlZcKMLSwsPHv2bFNT05v/IyUl9UkrBAAAAAAAABiyeCMOh8PR09OrrKykLtvb2zU0NOzs7Pq9zM/Pz9TUVDDC5XJdXV1jYmKokuiNGzeoeF9fn76+vq6u7qtXr6iIu7u7lJRUbW1tv5w6OjqHDh0SjJw8eXLx4sVdXV3U5c2bNwkhkZGR4lgoDKru7m4ZGRk3Nzd+xNHRUUVFpd/LqEYfpaWlgsEdO3YEBQWVlJTo6emtW7eOH8/NzZWQkPDw8Ojr6/vAWxsZGe3du1cwcuHCBTqdXl9fT13m5+ePGjWKxWKJtjQYfFFRUTt27Lh9+7aHh4eqqio/vmjRIk9Pz/fv31OX1BeH/LsZ5dWrV4SQzMxMweCBAwf27dtXUFBgY2PDv921tbVNmzbtxIkT1GVfX9/8+fNlZWW7u7sFx2ZlZRFCuFwuP9Ld3W1lZXX+/Hl+5Ouvv5aWln779q0YFg//ez4+PnZ2dvy/V2hoKCEkLS2tvr5eSkrK2dmZuue0t7ebmZlNnjy53y2I+u1XeXm5YDAtLY0QkpiYSF02NjbKyMhs2bKl31sfPHhQT0+vX5DNZo8dO1aMCwQAAAAAAAAYskbgFjMjI6Oqqip+EwY5OTk1NbXGxsYBB6qpqaWkpBBC8vLyBOMPHz6srq4+fvy4kpISFdm1a1dsbGxycvKAXeB37tzp4+PDn4yenh4hRJjJwFDT2tr67t07VVVVfkRbW/vu3bu9vb0DbtX8bxvhf/nlFxqNduTIEQmJj/utyfr169euXSspKUldzp49W01NjcPhfFQS+Iw8PDyoB4K70QkhGRkZfX19/DuGs7PzmTNnOByOgYHBhxMGBgZSDwT7z4wdO7asrIwfkZCQcHJyys7OfvLkydSpUz+QTVpaOjc3VzCVvr5+T09PS0uLjIyMUCuEzyo0NLSvr49/i3B2dt65cyeHw+ns7Ozt7d2+fTt1z5GTk/Py8vLy8nr06JGlpeWHc758+ZIQMmnSJOpy4sSJ8vLyQv47a2hoUFdXF309AAAAAAAAAMPHCGwpQ/5/ySk9PZ3q3iByNqoX7bx58/gRc3NzOTm5qqqqj5pMd3f3sWPHZGRkXFxcRJ4MfC4TJ040NzePjIw8d+5cT09PQ0NDamrqhg0bPqUxwv379y0tLSdMmFBcXJyamlpeXi78WH4pjRDC4/E6OjpoNJrIM4GhQ/Av297eTgiRlZUVOZuEhITg/VD4hIKj6urqYmNjFyxYwC+2wtD3zw8SjUZ7//49IYQncHYLdcBJXV3dgAkZDIa0tPS2bdv+/PNPQkhycnJjY+PGjRuFmUxDQ8OkSZMePXqUlJR0+/bt7u7uj1sMAAAAAAAAwPAxMgvuFHt7ewMDg+XLl3///fd+fn4i56mvrycC2/ooysrKVFwYWVlZtra2Ghoaqampt27dmjZtmsiTgc8oOTl54sSJnp6empqas2fPnj9/fr9jAD8Kj8d7/vx5V1eXubn5zJkzV69ebWRk5Obm1tvb+7Gpfv/995aWFicnJ5EnA0NTUlKSoqKijY2NWLLxeLyUlBQzMzMtLS0hhwQEBMycOdPAwMDExOTKlStimQYMvqSkJCkpqSVLltja2kpLS4eEhHR0dBBCXr16dfr0aUIIl8sdMImenl5cXFxlZaWVlZWJiYm7u3t0dLSQt52mpqb79+8vW7Zs9+7djo6OBgYGRUVFn7goAAAAAAAAgKFpJBfcmUzmhg0brK2tg4ODMzMzRc4juBmQT0JC4l/j/0pLS2v16tWbNm2SlJTcuXMnWsoMU2FhYa2trWfPnl2zZk13d/fVq1eDg4NFztbT08Pj8aqrq3ft2vXmzZuOjo6jR48mJiaGh4d/VJ62tjZvb28LC4t169aJPBkYgq5fv56UlBQYGCgvLy+WhMHBwaWlpSEhIcIPmTdv3vr1611dXTMzM0+ePCmWacAg43A4wcHBXl5eBgYGGhoaP//88+3bt9XU1Oh0upqaWlNTEyFEmF/qNDU1HTlyxNzc/OLFi/r6+jwez8/P748//hBmDmlpabW1tVwu9/nz58XFxT09PUwmk9puDwAAAAAAADDCjOSC+5YtW/bt23fv3j1jY2MPDw/h6+P9UJ1nqYMK+V6+fCn8LlFdXd3t27cfPXr0wYMHRUVFR44cEW0m8BndvHkzLCzs1KlTmzdvDg0NffbsGZPJ3Lt3b25urmgJR48eraiouGTJko0bNyooKEhJSfn6+mppaV27dk34JJ2dnc7Ozi0tLbGxsR/bCB6GsgcPHqxZs2blypXbtm0TS8KEhISAgICDBw8uWLBA+FGLFy/evXt3fHy8v78/m83GOQHDzrNnz5ycnGbMmHH48GEqsnXr1srKyuPHj+/fv7+srGzz5s2EEE1NzQFTBQQEVFVV3bhxw93d/cqVKxwOR0FBwc3Nra+vb8CxCgoKdDqdemxsbLxz586ampqysrJPWBkAAAAAAADAEDXyK3QSEhJz58598eLF69evRcugq6tLCKG61lIqKio6Ojr45QPh0el0DQ2NkpIS0WYCn9HDhw8JIba2ttQljUZjsViEkIKCApFzampqUicE8MnKyvb09Ag5/OnTp/PmzauoqLhz5w76FI0ksbGxjo6OixYtio+PF+zELRoej8dms9etW+fn57d//37Rktja2vJ4PNy7hpesrCwrK6tJkyZlZGSMHTuWH6fT6Vu3bv3222+nTp2alZUlKSk5e/bsAbMVFBRMnz5dWVmZutTX13d3d6+vrxemHU0/1I82urq6PnYgAAAAAAAAwNA3AgvuLS0t/v7+VINaQgiPx8vLy1NQUBg/frxoCa2srLS0tM6ePdvZ2UlFzpw5IyEh4erqOuDY+/fvR0ZG8i/r6uoaGhqmTJki2kzgM6K+XxHcz06V2rW1tUXO6ejomJ+f//jxY+oyLy+vqqpKyIbdN2/etLS0JITk5+cbGRmJPAcYUnp7e1ks1oYNG7y9vRMTEz/lSF5Ka2vrypUrDx06FBUVFRQUJOQoHo936NAhwXOhqU8+7l3DBY/HCwsLc3R0tLe3v3v3roKCwr++rKqqKjo6esWKFcIch6urq1tVVUW1oKEUFBTIysryS/AfmExERAT/n/L79+8TExMnTJhAndcKAAAAAAAAMMJ8ajVnCKqpqTl9+nRaWtratWtlZWWvX79+79694OBgYTaKnj9/vqKigtqv9+uvv2ZnZ9vZ2Tk4OISFha1atYrBYKxYsaKkpCQhIWH37t1Tp04dMGF2dvb+/fszMjJsbW2bm5vPnTtHo9F27dolhnXC4Fq+fLmBgYGHh8fjx48NDQ0rKirCwsKsra2XLFky4NiSkpJLly4RQpqamoqKilgslqKioq+v7549e+Lj4+3s7Nzd3SUlJaOjo7W1tb/77rsBE4aHh/v4+MjIyNja2vIPbh0zZkxgYOAnLhMGR0dHB5vNJoTk5+e3tbVRv5bw8fFZtWpVTk7OzJkzCSEBAQHUi21sbAY8mvLp06cRERGEkGfPnklKSrJYLGlpaS8vr/nz59fW1jo4OFRWVlLvQghxdXX98I7m9vb25OTkEydOeHp6amlpFRcXnz9/3tHR0dra+pOXDoNh/fr1cXFxkydP1tLS4t8WDAwMNm3adPDgwYaGhsmTJ9fU1CQnJ2toaISFhQmT09vbOy0tzdbW1svLa/z48enp6enp6T/++KOMjMyHB1ZWVu7Zs4fNZjOZzHHjxqWnpxcVFcXExMjKyn7qOgEAAAAAAACGnhFYcLewsCguLj527FhycvLbt2/pdHpKSoowu9EJITU1NYWFhYQQe3v7N2/eFBYWGhoaEkJWrFhx69at8PDwhIQEZWXlqKioTZs2CZNw3759FhYWERERERERUlJSjo6Ofn5++vr6n7JA+Czk5eULCgqo8wYvX76soqLi7++/a9cuYfYgv379mvpcWVhYEEIKCwvV1NQIISoqKnl5eYcPH37w4IGkpKSnpyeLxVJSUhowYWNj48KFCwkhgj21Ub0aRnp7e6mPhJKSkpKSEvW4o6NDVlbW3t6eEEJFKMLsK29ra6OGUM2FCgsLx4wZ8/r1ax0dHR0dHR6PJ5iQ3xnpv5GXl8/JyQkNDb1+/XpDQ4O6uvqhQ4d8fHxGjRolymph0HV1df3zg0Qd86Cjo5OXl5eTk0N97eft7T1u3Dhhctra2hYXF4eEhMTFxTU3N+vq6gr5v3XatGllZWXh4eEPHjzo6OiYMWNGeHj4nDlzRF0cAAAAAAAAwJA2SuSjRIc7FouVkZHB7+YhFnQ63dPTk78vFb5AHA7HxMSktLTU2NhYXDmNjY1dXFyE7wcCI1tjY6OysnJmZiZVUf102dnZDAaDy+VS3wMBFBcXm5mZlZeXU185fxQ2m33hwoV+p1MAAAAAAAAAfDlGYA93AAAAAAAAAAAAAIDB9+UW3DU0NKjeC2JkZGSkqqoq3pwwvNBoNDMzMxqNJsachoaG6urqYkwIw5qUlJSZmZmQbUCEIS8vb2ZmJi0tLa6EMNxR97EBm7P/K1VVVZyGCgAAAAAAAF+yL7elDAAAAAAAAAAAAACAGH25O9wBAAAAAAAAAAAAAMQIBXcAAAAAAAAAAAAAADFAwR0AAAAAAAAAAAAAQAxQcAcAAAAAAAAAAAAAEAMU3AEAAAAAAAAAAAAAxOA/sI5EJ3SyYisAAADjelRYdHJka2l0UEtMIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAB4obmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGbAyIErgWqBG4xLkZGBkYmRSYmDOYmFkSWFgzmFjZEtjYFdg5GNg4M5g4uRS4uBk4mRJEGNmYONlYWZjFZ4H0wd3afzP7QNL05ftAnGxlwQPWtYH7IeyJ+5Omq9uB2G45W/db1160h4rvA4o7QNn2DNocDlA19kBxewjb1AGmd8sEdyB7OcxMOyS77NULnkHFBfffEDA6AGKLAQC1jzWipLQ5LAAAAU16VFh0TU9MIHJka2l0IDIwMjEuMDkuNQAAeJx9k9tqwzAMhu/zFHqBCh18vFybMsZoAlu3d9j93p9J7lKnYGpLJna+SOiXM4GPj/n95xfuQ+ZpAqAnVmuFbyWi6QL+AMfz69sCp+vLcTs5rV/L9RNY3MjnI/tyXS/bCcMJDoqpRI4BDoQq2QwIqY3+rcAKB0FJOZfsZOGiPCLVYzKyaqlq7zlpSjoAww0MnDVlYGxcGIDRQUIpGrKCYOKSOA7AZOA9syBLTjIKmBv3n5gwxWA24IoVLdjShmeVVIunyFyEspekVJVG2rC1B+6VPNOb2XITxpRqaDELkdQyIuUmz4YK5iKSR+h5mR/af7sQx3WZ+4XwKb3rtgHtrQ3uvYE+Y2+TbSD1ZgTz3DVn89KlZfPaFQxO7IXitvBOEG6L7AoPzui+vH0xvt/+DHue/gAd4KUY3SzpnwAAAKd6VFh0U01JTEVTIHJka2l0IDIwMjEuMDkuNQAAeJxNjksOwzAIRK/SZSIRxIANWF7mADlErpHD126UtmhWT8xnP06c45ZjX08c++taNmPPikqbsGkMUd+U1SPaZIk0TAaGWTYShpu7fVBBWBD4IcKaVsJI2ZEO6o9NGRquE9wmYa9liLry7fklGwOpoNFg0mzEfIP/ZgpX91ZivqXI3f8g5UjVpPV6A9P1Mk2YyazxAAAAo3pUWHRyZGtpdFBLTDEgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAdihuYORgyADSzIyMbA4aIAYLmwNYgJmRGAY3A6MCI1MGExNzAjNLBhMLawIrWwYTG2OCCCMbIxsrCzOTeBxQJSPcXs9JKg7bc6NVQZxJKp32qp5CS0Bsz0lL7B66LdsPYufdnrYfwf62v9FcXxVJ3B5JPZgtBgBOhic0Vv3ZyQAAAN16VFh0TU9MMSByZGtpdCAyMDIxLjA5LjUAAHicfZFRCsMgDIbfPUUuMInR1vq41jLGqIWt2x32vvuzWHFaGCYGon4k8VdAtLu/vT/wM/JCAGBjOefgpRFRLBATGOfLNcC0ncd8Mq3PsD3AsmP0I3ne1iWfKFiBZGeVIQcocbcqyRzBBEpi4k4NUDOIUlMClSTnUA9/QMMg3ys7cPcm2SXS0U42eveHko2Kth6ywc3BH9RK+o1r8EW/6FRkMhy6iGFilCdH78q7eAN9md5w2DKj4aB6lLpx3Ocv51x8AaeSbtWfgqUcAAAAZHpUWHRTTUlMRVMxIHJka2l0IDIwMjEuMDkuNQAAeJzzTzZMBgFDhRoNIz1Tc0MTYx0DHWtDPQMY00DP2MjQxMhSR9dQz8jS0sBExxrIMjS3MDVHFbI0AgkZIEnDZeFmwEQ0awBMFhlw0lQFfAAAAMd6VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAA4obmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGYhjcDIwMjEwKTMwZTMwsCSysGUysbAls7BlM7EwJIoxsTOxsrCzM4lkgi+Au8CxyPWCU/MEOxMkIZTlQ+0txP4g9da/U/jXMs/eB2NYpSvuKJ06wB7Hr/i+zP3Z2F5i9YI6Iw7t728B6/6p9sF80qxOs90H2Zbtv1zaD2WIAHBAumyQbi7EAAAEYelRYdE1PTDIgcmRraXQgMjAyMS4wOS41AAB4nH2SXWrDMAzH33MKXSBG1odlPzZJGWU0gS3bHfa++zO5JXMLplIEkv2zkP5kgGofy/vPL/wbLcMAgC++Ugp8MyIOV6gJTOe3ywrzfpqOk3n7WvdPyO5Y/Zk87dv1OIkww8gBs0Z0MEgqiuYJ3qw9JdhgpIDJLDKMGBKTUe6QXFv6PYqo1oyRLFGHlDsZNbtDDJGKcOmA6mD0PpKMPBEtgtrhknMUmAhTXYbVomGHs1u/bCkWhDEGNEXuTZgddFF8ML92UFBK6S19XpcnXe9KT9u6NKWrU9PTC+AmmtRoylTXtr8XkNqa4mFtG/HIbWbx4MfJHueo9fGveD78AXVqeWX90yFhAAAAjHpUWHRTTUlMRVMyIHJka2l0IDIwMjEuMDkuNQAAeJwdjcsNAzEIRFvJMZEwYvja8nELSBHbxhYfHObCPD5zfW/cp/B63sNYZoCEPVdI0R7KklWgIZympbNZt+IecaCJVuofImaLwNDlThs99KwGHqu9sqlK9neLQp2FWYlFAywVYrQ7uI9ND3IJ+jw/xRUhGjSfp10AAAC0elRYdHJka2l0UEtMMyByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuKG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRrwMiFq4XqhZ3AyMDIxMCkzMGUzMLAksrBlMrGwJbOwZTOwcChycDOxMCSKMbEzsbKwszOJNIB1IznI44NRxfD+Ee2A/gu2wv5G1dR9MHMi2h4kbLhN1gLLtEewD9khq7JH02iOZ6QBjiwEA8z0oAM4csNkAAAEDelRYdE1PTDMgcmRraXQgMjAyMS4wOS41AAB4nI1SW46DMAz8zynmAo2cFySfBapqtSpIW9o79H/vr7WpwKBWXexYip3BxDMxEPvpvh+/WMx3xgD0YZVScA9EZC6QDZrT+atHOx6budIOt368wpGsybfY4zhc5opDi0OwNBkOzqaUc6xAc2n51mOYzv9HBulJtk5PJFmfSqb8BhkFufR0lkLxXH4Fpk1Lb0PIvipvgBUD9+Bqxu35cV73+zRKYXp2scOatNjF+KnvNlo91WuGvlP1xL1KxAmC6hAllGzxpJRygkqJixy18hM5stLgOIoO6yTWM0U+D+ubr+8p+fxCeW/+APuujnsOuyDvAAAAa3pUWHRTTUlMRVMzIHJka2l0IDIwMjEuMDkuNQAAeJxz9k82TAYBQ39nhRoNXWMdXUM9U1MLC1MdaxALmWugZw7kG+gZmVpaGFhA5Q31DIwtjYxh0kZ6xsYWRuY61qg8FJXo5qBag+QCzRoAtqQhFP1orHcAAAD9elRYdHJka2l0UEtMNCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABuKG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRmwMqBKIFhZ2BrAEIxPCDKhKbgZGBkYmBSbmDCZmlgQW1gwmVrYENnYFdg4Fdk4NJjauDCYupgQRRjYmLjZWFmbxPpBT4G4smdR0gGuD5n4QJ++r9gHPJ7PB7AfGB/d3Hpm8D8S+ffvOfk++mfYg9gFPnv07GDgcQGydkgh7na8nwOKCj9rtuWPW24LYLQqyDnxRH8B6G79oObwT/QU2k7Emw6Gv6LUdiL3I7+3es7/CweJiAKE7OZ48OLvaAAABUHpUWHRNT0w0IHJka2l0IDIwMjEuMDkuNQAAeJx9UktuAzEI3c8puEAswGDDsvmoqqrMSG3aO3Tf+6vQKHUiWQUzwvgZ82AWSHk7vn59w5/wcVkA8J/l7vBZEXE5QzqwPz2/rHC4PO1vkcP2sV7egSgXpj5iny7b+RYhOMBOChrWbrDD0hqbMGDBXxl3GTbYcWnWTBV2VJi6o0yQNXNSUfTqLXOyWUOfIOWK7KzSopZCrl1sAtQEYlGxDHMhVpTZ2y2AWExUuUZCbe42Y9MDRwUbqfU8Nm2sE5wFjkukI8KsQJpL7ROgwxrA1ol6TU6utfuswsizQS2tchQX56JuOuNMdCVNWWNNz6TGAxPoaT0+TPU65/22HsecU3kMMzZQx8QkbYwlVUfzYwNttFjC+ugkhdloGIX5aAtn6J695BW6Yyn5qfdc7ivP/e3vDn/5AfgemjkiQFw9AAAAsHpUWHRTTUlMRVM0IHJka2l0IDIwMjEuMDkuNQAAeJwljTEOw0AIBL+S0pYwAo7lQFYq98kj/I08PlxCOZplrvetd992ba/9+d5vfXy2w1lSRtIhHGHpRudhHBkJOpRNZzVRhpQvyTJD/mgaPEhZCxNNhOFJxmoQp1M4HbDRBqIq6VSWUBRJNxHW8mncjur67FE+5kIxVeeqF8bKD45hmL1zVCJ/LVXkHGuYPnpB++cLLJAuk1zwwbwAAADCelRYdHJka2l0UEtMNSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOIOYC4gZGNocMIM3MjJWhAWKwsDtYgGhGZrgMO0SGGaYCLsHNwJjBxMiUwMScwcTMksDCmsDKlsHExp7AzpHBxMGQwM6cIMLExsDBzszEyMrCzM7GKl4G1MkIdxdrn/ABBgaH/SAOlG0PYmtebQCKHQCzHx6bagcT5+W5Y38uZDaYnV+s5gAUX4Ykvh9J/X4kc8BsMQBWiSlLzESSWQAAAQh6VFh0TU9MNSByZGtpdCAyMDIxLjA5LjUAAHicfVJBjsMgDLzzCn8gyIAN4dgkVVVVJVI3u3/Ye/+vmlapE6kFMpJxJhOPjYG6btPl/w7v5SdjALDx5JzhLyCiuUINYDiezgXG5TCsmXH+LcsPZHAIz72nHpb5umYcjNB5G5CZAnRoE4u0fGIRX8HK9Dtmgxgq0Uk6MjI4y/iFSEJE67Pn0BRkKCKTXHaul8C7wJ4/8KLoeRsRU47VCn77cdoKdg3Fflthqzl557lrmD6WaTeA10iGuUw6EhJ47TsJgnaXKrSHdbO2Sg4QtSMkSOqbBL26I0FWD1SvzLsMfL6mbeHbMut5vXQSmwfBS4YkN1BGPwAAAHt6VFh0U01JTEVTNSByZGtpdCAyMDIxLjA5LjUAAHicXczBCYBADETRVjwqJCGTmFWxAXsQT7lbgcW7gqzg8fOYSWSm7ed25JmW6K6eTVwjRmKVKWht/SZEtQQIUkvFFgv3FyETFlg1g4fTalJUZ9KPuFnb8u+Zn+vhugGvRyDrJlMoKwAAALV6VFh0cmRraXRQS0w2IHJka2l0IDIwMjEuMDkuNQAAeJyNkM0NwjAMRh07v1TcEGyA2KI5MYePGaNiF7ixAukklZiAFXAJTXrggCXLz09fpMivx30CqS202kh30oOyMckk+gmnGbQrk/6IVtGBSqiQkRKSZm0SGsvWJXSefUgYgD3xDi0ET6isNtZ5Olzkuaq/fJ6PI0DM8/LlvvBN3NiX2HBd+X7xko/NfzivMrkdo/q8+P0b3m4rA3WIAU0AAAEDelRYdE1PTDYgcmRraXQgMjAyMS4wOS41AAB4nI1SQY7DIAy884r5QJAhJgnHJqlWq1WJtE37h973/1rTKjE5FBUYyViDwTMY5PE7/zz+sA8/GwNQZcUYcW+JyFyQA4znr++EaT2NW2Zabmm9whGckzMyj9zTuly2jMOExtsQB+o7NGT7ILXliCV6BRvTH5gVYpuJzvoYqR3gbKA3RM5ETb+vGJDwScFOCn7ywr7k1XoehLhf3FRujkLcs7WKYkqpTq3mOc0Hq17mjUua1TwWeHWIBa36wBmqdp5BNZUNOpWOBb0qxIJBdWBB1G5Z4Mqm+Pnd9oR7MrhspXx43m8/VmLzD9VqkTS7E9jSAAAAZHpUWHRTTUlMRVM2IHJka2l0IDIwMjEuMDkuNQAAeJxLNkxOTjbKSwaRyYYKNRq6RnqmlhYGFjq6BnrmpjrWcD6Ua6hnZGlpYKJjqAfkGUBFUQRRNaAZB1OpC9Wvi2YsWFyzBgD/Wh/xZIhd6gAAAL16VFh0cmRraXRQS0w3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4g5gLiBkY2hwwgzcyMlaEBYrCwO1iAaEZm3ErgAtwMjBlMjEwJTMwZTMwsCSysCaxsGUxs7AnsHBlMHAwJ7MwJIkxsDBzszEyMrCzM7Gys4mVAnYxwh7H2CR9gYHDYD+JA2fYgtubVBqDYATD74bGpdjBxXp479udCZoPZ+cVqDkDxZUji+5HU70cyB8wWAwCQHymL1DN/NQAAAQp6VFh0TU9MNyByZGtpdCAyMDIxLjA5LjUAAHicfVJBjsMgDLzzCn8gyIAN4dgkVbValUi72f6h9/5fNa0SJ9IWyEjGmUw8Ngbq+pm+7w/Ylp+MAcDGk3OGW0BEc4UawHC+fBUYl9OwZsb5ryy/kMEhvPaRelrm65pxMELnbUBmCtChTSzS8olFfAcr0x+YDWKoRCfpyMjgLOMHIgkRrc+eQ1OQoYhMctm5XgLvAnv+hxdFz9uImHKsVvDTj5MQN8GuodjvK2w1Jx88dw3T5zIdBvAeyTCXSUdCAq99J0HQ7lKF9rBu1lbJAaJ2hARJfZOgV3ckyOqB6pXZysDXa9oXvi+zntdLJ7F5ArK6hhlNY/MBAAAAenpUWHRTTUlMRVM3IHJka2l0IDIwMjEuMDkuNQAAeJxdjMsJgEAMBVvxqJCEvMT4wQbsQTzlbgUW7wrLCp4ew/AmkZl2XPv5bqK7ezZxjRiJVeagrXFFiOoUIEghFVst3KuEzFhhxRk8nDaTSXUh/RQ31778K/ObHu4HqQwg4GO5Z0AAAAC3elRYdHJka2l0UEtMOCByZGtpdCAyMDIxLjA5LjUAAHicbZDNDQIhEEaHGX7deDPagbELOFkHR8rY2IvebEG2kk2swBacFYFNdJLJPB7fJITX4z4D1xZ6bbgH7lHokHgS/YXTAtKUSe3iR9RkEwOIhAIjUkKSUaqESkdtEhobrUvoIFqKO9TgLKHQUmlj6XDhddEe+TwfJ4CQl8OXfeEbu8mX2HhdeV8950P3H86rTO5/0Xyufv8Gnmcqw2RGWZQAAAEDelRYdE1PTDggcmRraXQgMjAyMS4wOS41AAB4nI1SQY7DIAy88wp/IMgQk4Rjk1RVVZVI3Wz/0Pv+Xzu0SpwcigKMZKxhwGMM5fEYb68/WocfjSHiwoox0rNmZnOnHFB/vlwTDfOpXzLD9JvmH3JMzuEM5p57mqf7knE0UOVtiB23DVVs2wBtHLHMn2Bh+h2zQKwz0VkfI9cdORv4C1EyUdPfFQMlOiLYQPDIC1voHaq5g+B6cVW4OYK4ZkuKaMrWnZLmOY27Vn2a109p1OYJ4LVDAtTaB8lQt/MM6ik21Kh1ArTqkACd+iBA1GoFcNui5P3d1oR7M2Rbyvbheb/8WMTmH+aPkT/ClkcMAAAAZXpUWHRTTUlMRVM4IHJka2l0IDIwMjEuMDkuNQAAeJxLNkxOTjbKS84DksmGCjUaukZ6ppYWBhY6ugZ65qY61nA+lGuoZ2RpaWCiY6gH5BlARVEEUTWgGQdTqQvVr4tmLFhcswYABY4f/PtbVx0AAAC5elRYdHJka2l0UEtMOSByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOKG5gZGfIANLMjExsDBogBgsHhGZic4Dw2RzACpgZiWFwMzAqMDJpMDEyKzCzZDCxsCawsmUwsbEnsHNkMHEwJ4gwsjFzsLOxsoiXATUwwp0TGqrq8NBt2X4QZ/WqV/aWfcmqIDZU3B4ivsrOsu/xYoj41X0w9aGhX/cj9GodYI4wV0USt0dSD2aLAQD4hzElJX1atwAAAPd6VFh0TU9MOSByZGtpdCAyMDIxLjA5LjUAAHichVJbasQwDPz3KeYCa+RHnOhzkyyllHWgTXuH/u/9qZQlVULB1VhgW5OxHnFQe5/fvh/4tTg7B1BjMTO+EhG5O3SD8fbyWjGt13G/mZbPun6ABaQ4M6/rct9vAiqi74YkhkvwkZnSAPK0mX0aMSH4jZcO4T+8hMUEG3pZ9Minp96lIdgJUeI5lFL6ZopFmcHz/8xemdGXsjEbjw8nyYYin7JsEG91Pg3gOZJxqbONRBGt8Ypk/ZUYsrVR0Vmz5IBiHcnivZWdxQcrLouzlZDVj4ke09Lz/o/J3v0A8kyDu7rfSKoAAAB0elRYdFNNSUxFUzkgcmRraXQgMjAyMS4wOS41AAB4nPNz1rD110w2TAYBQ4UaDSM9UwtjY2MdXUM9I0tLAxMda0M9kICxjoGONUwSLmegZ2wMk9Q10DMxNDMzM0fSC2RZGqIJGemZgVUZIEkjZOGGwIQ0awBX7SIcFfskiQAAALt6VFh0cmRraXRQS0wxMCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOKG5g5GDQANLMTGwQmoVDQQtI/2dmZHOACLA5ZIBokABhBjcDowYTI5MCI7MCM0sGEwtrAitbBhMbewI7RwYTB3OCCCMbMwc7GyuLeBlQAyPcOaGhqg4P3ZbZgzirV72yt+xLVgWxoeL7IeKr7Cz7Hi+GiF/dBxMPDf26H6FG6wBzhLkqkrg9knowWwwAqgkyBfkcaakAAAEGelRYdE1PTDEwIHJka2l0IDIwMjEuMDkuNQAAeJyFUkluwzAMvOsV/IAFarFsHnLwEqRBGxtonfwh9/wfJR2otNFAIU1AJEdjLjIg8j1+3h/wJ340BgALHxHBLSCiuYAcoD+ezhMMS9fnyDBfp+UHiBVF98humS854mAGb+s2sICznghDC2hxFb3pYeD0Cgub9D9c2PJVLwhh+DgdKge37uvg8q3I7GjDk70q0NcM5Hx0KaXmJX9GJkE6S++RjSC9TWlFFn7e7igLjLSrsgA8TuNuG8/99PM06n68mK5BAkGnLW7UMYrWOix2IOlEIlujbUe2VpuLbKQtRLFtoduyxM8Pjs/mF7dghrrhE2YQAAAAeHpUWHRTTUlMRVMxMCByZGtpdCAyMDIxLjA5LjUAAHic87d11oj2143VTDZMBgFDhRoNIz1TC2NjYx1DPSNLSwMTHWtDPRDfWMdAxxompwuXNNAzNobJ6hromRiamZmZI8kDWZaGaEJGemZgVQZI0ghZuCEwIc0aAO0eIwIjnGERAAAA1XpUWHRyZGtpdFBLTDExIHJka2l0IDIwMjEuMDkuNQAAeJxtjrENwjAQRc9nx3Zi6FBo0yCxRVyxgXuXLhmBDaCmBjpKWpwlaFGYgIYBcEisWMA1/93Xv697Xs93CDOFcSbDviFcu6CU/oVlB0zARykHGxQxqoSq02/7t0gBcUjQInVIWcUyyDhwAUKCzIEWtlAOFdicwSzUqIIi4RkXMmfzfaggydtrbczl2K9aP1Yn33NTj6zrti1jxhtzOwwZHzL14Dcjr5vd9rVIfJ/k0/54qyOXb9EvNMVzeyn1AAABGXpUWHRNT0wxMSByZGtpdCAyMDIxLjA5LjUAAHicjZNLjoMwDIb3OYUvALLzKGRZoKqqqkHqMHOH2ff+GpspOJGqtIFfSpwvNraDARn36fr7gH3YyRgArLwxRvhxiGhuIBMYTudLgnE5DptlnL/T8gVkgRyf4adkj8t82ywEI7i2C+wQocEW1wE62UC7gk9rQ62NEV3/AnQMUhveg55B/CR0gCT7H5AHdtnswSuxOwH3dCpgD7OAz9iV0LHwWMubsPjKKkp5MWtg0Z4KeEpT0f//GzHMadIb4VlW++5ZTrvrRdpDwYN2ilgHbQexOi06sXotLbGiFpBEeZm8+KesGLLkXLOs/XrNd4NjJ3ww5Onmycl6+1V4bv4AH+mmsDlvZH0AAABrelRYdFNNSUxFUzExIHJka2l0IDIwMjEuMDkuNQAAeJxLNkxOTtbwM3J29nd2NtJMTjZUqNEw1jM31THQsTbW0TXUM7K0NDDRsTbUM0XiGUBV6MIZIHm4tK4xMhumBNk4XVTzUHQjNGvWAADS4CEpE6mWmgAAAMZ6VFh0cmRraXRQS0wxMiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAuKG5gZGNIANKMzAIMCkCajYNBA0gxM8FoNgcwzcLmkAGimRmJYXAzMDIwMnEwMTIDMQsDC2sGEytbAht7BhM7RwIHZwYTJ0uCCCMbCycHOxureBPIfrjDZs30dDh75sxiEMfY+LJ9WlqaKozNwHDAHom9H8SeNVPSDqYeyN7/0G0ZWDwtje0Agm12wNDAShVJ3B5JPZgtBgDSwjE2Th2nXQAAAP16VFh0TU9MMTIgcmRraXQgMjAyMS4wOS41AAB4nI2SSQ7CMAxF9zmFL9DImUqz7IAQQrQSFO7AnvsLu1VwylCw4yrDk2X7VwHbqTvc7vA02ykFgCsrxghXh4jqCLyBZrvb99COdZNu2uHSj2cwyGvyJVuPwzHdGGjBaRMoIUKBGicD2STQAmXUZXh5fuMcDMIZHb5xPueKFTBQhfhPhSWB9F5iSmljRFd9IDdMWm1+k9VMVj/bjouUKxlJkrzMFXLbdwupZvGaoe9EPHYrErE7UYKPXgZOKAQZq6coZXieYiMT8hSVjMFTRGnWU5i8J8+fkJeeF8rn9IfSXj0A79ON4NVY4ZUAAABnelRYdFNNSUxFUzEyIHJka2l0IDIwMjEuMDkuNQAAeJxzDtaw9dcE4WTDZBAwVKjRMNYzNNUx0LE21DND0IZ6plCWLphpAFWka6BnBhIysrQ0MAFyjfQMUbkWEGUgcYQwSBOMp1kDAKQ+G92IlIaWAAAAv3pUWHRyZGtpdFBLTDEzIHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4obmDkZFAA0oxsYIoFyoMJOmgAKWYWNocMEM3MSAyDm4GRgZGJgZGZgZGFgYU1g4mVLYGNPYOJnSOBgzODiZMlQYSRjYWTg52NVbwJZAvcTbNmejqcPXNmMYhjbHzZPi0tTRXGZmA4sB+JbQ9iz5opaQdTD2Tvf+i2DKwmLY3tAIJtdsDQwEoVSdweST2YLQYASsIwwBfRgdIAAAD+elRYdE1PTDEzIHJka2l0IDIwMjEuMDkuNQAAeJyNktsOgjAMQN/3Ff0Bl+6G7FFAjTFAoug/+O7/xxYzOryg3Ura7aTrBQUsp+Z4u8MktlEKABd2jBGuDhFVC2xAtd0fOqiHTZVO6v7SDWcwyHtcc3Yz9G06MbADp02ggAgr1DgKiJFACzUYXYSX6zfOUcCJWxkdvoE+Bxe4QA/jPxkWBNJ9gelpGyO68gO5ZtJq85ssn2T5s+w4C7kQkUaSp7lAbrtmNqrn8Kq+a2R4vKyMiBxwMgl2vfSb3SBt9aSFNM+TrqVDnrSUNnjSKMV6UpPX5PkT8tTzRNlPfyjZ6gGr8o2/mpgGGwAAAGZ6VFh0U01JTEVTMTMgcmRraXQgMjAyMS4wOS41AAB4nHNz1nDTBKJkw2QQMFSo0TDWMzTVMdCxNtQzQ9C6hnqmUCaYZQBVpGugZwaSNLK0NDABco30DFG5FhBlIHGEMEgTjKdZAwBU3BtEFkKb3AAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"SE\")" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "93f1c876-3e22-4b60-89e0-d2dac1a96753", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Legend: subset cluster ID | fragment count inside B1 in complete fragment library | fragment subpocket count in subset\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAADICAIAAAA/eO1WAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVzN2f8H8Pe9t+1WJJF9J0S2MBTGZBlDdmVJzGAsMWWXsSRraiIZZgYxMZGd0NdP9j2uaNOQFi2ItK93O78/Pia5t9Ktez/n3no/H/0x8/nc+zmveKt73/d8zuEQQgAhhBBCCCGEEEIIIYQQQtXDpR0AIYQQQgghhBBCCCGEEKoJsOGOEEIIIYQQQgghhBBCCCkBNtwRQgghhBBCCCGEEEIIISXAhjtCCCGEEEIIIYQQQgghpATYcEcIIYQQQgghhBBCCCGElAAb7gghhBBCCCGEEEIIIYSQEmDDHSGEEEIIIYQQQgghhBBSAmy4I4QQQgghhBBCCCGEEEJKgA13hBBCCCGEEEIIIYQQQkgJsOGOEEIIIYQQQgghhBBCCCkBNtwRQgghhBBCCCGEEEIIISXAhjtCCCGEEEIIIYQQQgghpATYcEcIIYQQQgghhBBCCCGElAAb7gghhBBCCCGEEEIIIYSQEmDDHSGEEEIIIYQQQgghhBBSAmy4I4QQQgghhBBCCCGEEEJKgA13hBBCCCGEEEIIIYQQQkgJsOGOEEIIIYQQQgghhBBCCCkBNtwRQgghhBBCCCGEEEIIISXAhjtCCCGEEEIIIYQQQgghpATYcEcIIYQQQgghhBBCCCGElAAb7gghhBBCCCGEEEIIIYSQEmDDHSGEEEIIIYQQQgghhBBSAmy4I4QQQgghhBBCCCGEEEJKgA13hBBCCCGEEEIIIYQQQkgJsOGOEEIIIYQQQgghhBBCCCkBNtwRQgghhBBCCCGEEEIIISXAhjtCCCGEEEIIIYQQQgghpATYcEcIIYQQQgghhBBCCCGElAAb7gghhBBCCCGEEEIIIYSQEmDDHSGEEEIIIYQQQgghhBBSAmy4I4QQQgghhBBCCCGEEEJKgA13hBBCCCGEUC2yeTMcOCB7cM8e8PKikQYhhBBCCNUs2HBHCCGEEEII1SLHj8OVK7IHL16EM2dopEEIIYQQQjULNtwRQgghhBBCCCGEEEIIISXAhjtCCCGEEEIIIYQQQgghpATYcEcIIYQQQgghhBBCCCGElECLdgCEEEIIIYQQYlVQEJiafnEkOxt69aKUBqFyzHrxIqWoqPSR/kZG7q1bU4qDagisK4QQUjVsuCOEEEIIIYQUcPnyZTMzs7Zt29IOUnW9esHSpV8c2bqVUhSEypclFrfS05vUsGHJEVMdHYp5UM2AdYUQQqqGDXeEEEIIIYRQZcXHx0+ZMkUqle7du3f69Om041RR8+YwadIXR/z8ICuLUhqEytdUV/f7+vVpp0A1DdYVQgipFK7hjhBCCCGEEKqsBg0ajBo1Kjc319HRccaMGXl5ebQTIYQQQgghpEaw4Y4QQgghhBCqrLp16wYEBPj7+xsaGh45csTCwuLhw4e0QyFUY6UJhTezskq+iqRS2olQTYB1pT6Ki4uzsrLS0tJoB0EIKRM23BFCZSgoKAgMDDx79uz9+/dpZ0EIaZjiYhg2DKZOBbH488GkJBg2DLAph8rz7h0MGwbz5n1xMDwchg2DFy/g1CkYNQokki/O3rgBo0bBu3dsxkSfzZgxQyAQ9OzZMzExceDAgRs2bJBivwYhFQjLy1uTkFDylVH6lytCVYV1pSYuXLjQpUuXyZMnt2zZ0sXFJTc3l3YihJBy4BruCKHPJBLJjRs3Dh8+fO7cudzc3CZNmrx9+9bZ2Xnnzp1cLn4+hxCqFIkErl4FAOjdG5Yt+3QwPx+uXgVnZ4q5kForLPxUNoMGgYPDp4OZmXD1KmRnw6tXEBwMUinweJ+fkpoKwcFQUEAhLWJ07NjxwYMHbm5uXl5e7u7u9+7dO3z4cJMmTWjn+rr166FePdmDv/wCQiGNNAhV6If69d1bt6adAtU0WFfURUVFLV68+Nq1awCQm5srEol8fX1Pnz7t4eHh4ODA4XBoB0QIVQt20BBCIJFIrl69OmfOnIYNGw4bNuzIkSN5eXlWVlbffvutlpaWr6+vo6NjcXEx7ZgIIU3StSts2ADJybRzII3StSssWwaZmbRzoErT1dX18PC4fPly48aNr1692qNHj+DgYNqhvo7Hg7AwePv2i4NpaV98ooMQQgipQmZmpouLS8+ePa9du2ZsbOzj45Oamvro0SMrK6vU1FRHR8e+fftq9I3mEkl2ZuaptLQd6ekHi4piaMdBiA5suCNUq0VHR7u6urZo0WLYsGF+fn6ZmZnm5uZubm4vX768d+/esWPHgoODjYyMjh49+t1333348IF2XoSQxpg/H0xNcUo7UszKlSCRwOrVtHMgBQ0bNuzZs2cjRox4//69ra2ti4uLUL3nih8+DK6usGTJFwd9feH4cUqBEEII1QJisXjfvn0dO3b09fUFgLlz57548cLFxUVLS6t379537949ceJEy5YtBQLBgAED7O3tk5KSaEdWWF7enaio9omJP338ePjt243R0eZ5eXdoh0KIAlxShiUSiSQpKSk2NjY2NnbixIkNGjTQ0sI/fPWVK5Fc/PhR5uA3deu21dOjkkfpoqOjT548GRAQ8OrVK+ZI69atJ0+ePHPmzM6dO5d+5LBhw+7cuWNra/vgwYP+/fsHBwebmZnRiFzrxMbGZrI+ybN79+66urosD4rYVIW64nK7S6UKVAWHA126AADo6oK3N4wfD0FBMGaMQmMi9RITE6PoiqJcbm+pVIFZHTo6YGQEAFCvHmzaBAsXwsyZ0L+/7MOKir7YGEAkUigUUq1GjRoFBwf7+vquXLnS19eX+di+Q4cOtHOVq1EjOHECfvwRRoygHQUBJCQksD+xo2vXrvr6+iwPitiEdYXUyvXr1xcvXhwZGQkANjY2Pj4+FhYWpR/A4XDs7OxGjhzp5eW1ffv2kydPXrp0acWKFa6urnqa04h4/Xqujk4rM7MQHs8YAIqKXurqtqYdCiEKsOerEpmZmfHx8dHR0c+fP4+Pj4+Pj4+JiSn4b5HRo0ePWlpaMh9pIvWUIRJ5Jyc31tExKHVrcRMdHU1vuCcmJh4/ftzf3z8m5tONXc2bN58wYYKdnZ21tXV568RZWFg8ePBg9OjRYWFhVlZWZ8+eHThwIIupayNvb+/Lly9fZdYzZpGbm5uDg4M690dQdVStrlq3Lk5MVODxHA7k5X3673HjYNQo+OUXsLFRaEykLgghW7duPXv27JMnTxR6Yt260pwcBR7fuDGU3Dk9dy4cOgTz5oH8mHXrKpQCsY3D4bi4uHzzzTfTpk178uSJpaXlH3/86eAwjXausllYgJERLFoEkZHA59NOU7v9/vvv169fP3v2LMvjrlu3bsKECT169GB5XMQOrCukPl69evXrr7+ePHkSANq3b79161Y7O7vyHmxgYLBhw4bZs2evWbPmyJEj7u7uBw8e3Lx584wZM1iMXEVSaX5R0YsmTdYw3XYA0NPD6XqoluIQQmhn0GwfPnx4+fLly5cvY0spkNvAi8PhNG/evEOHDvXq1bt48aJQKDx8+LCjoyOVzOirXhcVTYyO9mzb1sbYmHYWJUhJSTl9+vTJkyfv37/P/JOvX7/+qFGjZsyYYWNjU8ndUPPy8qZOnXrx4kVdXd1Dhw5NnTpVxalrrxs3btjY2PD5fHNzczb3qk1NTX3z5s3o0aODgoJYGxSxpsp11bDhzQ8fFJioxeXC9etgYAD798OcOfDqFVhYwJIl4OgI5uYQFASjRyueHlESGBg4derUOnXqdOrUSaEn6us/KChQYDHsBg1gzx5o2/ZThTx6BP37g7c39OgB330HoaFw/TqsXg0PHnyxxPbly7B+PcTFQdu2CqVDKpeTk+Pk5BQQEPDtt96mpkv37Stjh1K6xo2D/Hzw84POnWHpUti0CQCgZ0/o0gX++Yd2uFomLCysT58+WlpaXbp0YfMO4Hfv3iUnJw8cOPDWrVvqvDlhjkSiBaCP2wsoCOuqYlhXrMnPz/fy8vLw8CguLjYwMFi+fLlC09Vv3LixePHiiIgIABg8eLCPj0/37t1Vmbf6pM+emWhpNezQIVhXtz3tMAhRRVClZWZmCgSCEydOeHh4zJ07d+jQoY0aNSrzT9XY2NjS0tLOzs7Nze3EiRMCgSA3N7fkOv7+/gCgp6cnEAgofjuoAomFhZYCwbWMDNpBquXjx4/+/v5Dhw4taa4ZGRk5OjoGBQUJhcIqXFAsFi9cuBAAOByOm5ubsvMiQggRi8XdunUDgC1btrA8dFpampGREQD873//Y3lopGos11V+PgEg+/d/+l83N6KnRy5eJAAkKIiF8ZFyFBQUtGrVCgAOHDjAwnDx8V9UyLx5xNiYnDxJAEhoKNm2jQAQmd9dR44QABIXx0I6VBUBAcGGhlIA0r49efSIdpovjR1Lhg4lhBA3N6KjQ54/J4SQHj2IgwPdXLXRoEGDAGDFihUsj5uTk9O4cWMACAwMZHnoKvBJTh749OnpDx9oB9EYWFeVgXWlUlKp1N/fn6kHDofj6Oj49u3bKlxHIpH4+/ubmpoCAJfLdXR0TEtLU3paJfrwwe/JE60nT7RiY0dmZJySSqvSeUCoBsCGe9mKiori4uKCgoJKeutt27Yt8zPqevXqMb31VatW/fXXX3fu3MnKyvrq9X/++WcAaNWq1Yda+evt8Lt3f6amlv66nplJO9QXNLrhnpWV5e/vb2trq62tzVSpnp6era2tv79/Xl5e9a/v4+PDdPBnz55dtcY9qsDevXsBoE2bNoWFheyP7unpCQCdO3fGv9kahuW6kmm4FxaSdu1Ijx7YcNcwbm5uANCzZ0+JRMLCcDIN948fScOGn8oGG+6a699/Sc+eBIBoaRE3N8JKKX1FcjIRCj833JkfUN99Rwg23Gk4evQoAJiamlbmDZTS7du3DwCaN2+ulFfIKrX99WtLgeC4enfZ1MexY8ewrioD60p1QkND+/Xrx7wZ79OnD3OjeXVkZmauWrVKR0eH6UExU+aVElVZ8vOf5OWFMv9dVBT/5s2GqCgzgQCio7uKROl0syFEBTbciVAojIuLCwkJ+euvv5ydnZneepm32+vq6rZt29bW1pbprYeEhMRV9U2eUCi0trYGgCFDhojFYuV+R+pvWHj4D+HhP//7b8nXwSp92Ks6TMP9h/DwiVFRzNeSV69oh/qKwsLCoKAgR0fHkl16eDze0KFD/f39c3JylDvWqVOn+Hw+AAwfPjw7O1u5F6/NMjIyGjRoAACnT5+mEqC4uJjZFHfXrl1UAiBVYL+uZBruhJDLlwkANtw1SXJysoGBAQDcunWLnRFlGu6EED+/T2WDDXeNJhQSNzfC5RIAMmQISU2lEyMxkfj4EGtrwuGQy5c/N9wJIcHBBICcOoUNd7axfBuNPIlE0rt3bwBwd3enEqDysDFaeVhXlYd1pQopKSmOjo7MZM1mzZr5+/tLpdJKPvf333+v+FOiFy9ejBo1inmzb2ZmdvHiRWVErpaCgqjUVDemt/7y5TCZs+nphwUCTkqKK5VsCNFVqxvuhYWFV65c4ZW1cpmurq65ufm4ceNWrFixb9++GzdupKSkKHf0N2/eNGnSBABWr16t3Curv2Hh4V5JSbRTVIRpuLsnJBxNS2O+gj9+pB2qbGKxOCQkxNHRsU6dOkz1crlca2trHx+f6t9r5unpGRUVVeapBw8eMPe1WVhYJKn336YGcXFxAYDvmIl2lJw/f55ZF6t23n9TI7FfV/INd0LIuHHYcNckU6ZMAYApU6awNqJ8w10qJd9+iw33GuLKFdK4MQEgDRsSNvsDMTFk82bSq9enD28AiIEB+fPPLxruhJDx40mbNqRzZ2y4s4rl22jKdO/ePQ6Hw+fzExMTaWWoDGyMVl5JXVGc1oZ1VTsVFBR4eHgYGhoCAJ/PX7VqlULz3pgtVU1MTHx8fCqu3pCQEHNzc+a9/9ChQ8t7w646Uqk4J+dmUpJzRERzgQCYr/DwpklJi+UfHBXVKTZ2NMsJEVIHtbrhfujQIR0dHS6X27Zt26FDh86dO9fDwyMoKCguLo6dX893797V1tbmcDgnTpxgYTj1oSkNd3VeUkYikdy5c8fZ2ZnpejPMzc09PDxSlTR57NSpU8yy71evXi3zAXFxccw2ek2bNg0LC1PKoLXZ8+fPtbW1eTzes2fP6CYZMWIEADg5OdGNgZSCSl2JxSQkhMh8Tv3hAwkJIS9fspYCVR2VTkFBAQkJITKf9KWmkpAQkphI4uJIcDCRmSKWmkqCg0lBAWsZUbWkpZERIwgA4XCIszMpKlLhWFFRxM2NWFp+7rPr6xNbW+LvT5htlWQa7q9fEwMDAoANd/awfxtNeezt7QFg2rRpdGNUDBujlYR1pRCsKyUKCgpq3bo1867c1tY2ISFB0Ss8e/Zs4MCBzBV69uxZcQ0LhUIfHx9m/y1tbW1nZ2cWFlCSSsW5uXeSkpzDw5uU9NkjIlomJTlnZ4dIpSLmYSLR56mKQmFqWJh+UpKzqrMhpIY4hBD5+d21hLW19f379/fv3z9nzhxaGXbs2LFs2TJDQ8OHDx926dKFVgyWDY+IGG5svLxFC9pByvW6qGhidLRn27Y2xsa0s8iKjo4+cuTIkSNH3rx5wxwxNze3s7NzcHDo0KGDEgcqLi7+6aefjh07pqWltXv37vnz58s/JiMjY/z48bdv3zY0NAwMDCy5wQ1VwQ8//HD58uUFCxYwy23L8/Pzy8rKUuKI48aNa9eunfzxmJiY7t27S6XSsLAwZqdNpLkqrqvLly9HR0dXfAVd3fnFxQYVPgAWLapUmDVrwMcHHj4EC4tKPR5RIZVK+/Xr9/jxYzc3tw0bNtAOA4sWQUAAREWBGr9qQJVFCPj6wsqVIBRCr15w7BiYmSnz+tHRcPIkHD8O//776YixMdjagp0dDB8OurqfHzluHOTnQ0jI5yPbt4OrKzg4wD//KDMSKs/UqVMDAwOnTJnCLLctLyAg4N27d0occcSIEWW+20pOTu7UqVNhYeGtW7dKul3qxjMp6cSHDytbtLAvNdUGycO6UgjWlVKEhYUtXrz4zp07ANCzZ08fHx9mz96quXDhgouLS0JCAgDY2tr6+vq2adOmvAd//Phx48aNe/bskUgkJiYm69atW7RoUZlLOFQHIcW5uXeysy9kZh4XidKYgzo6revVG2NsbGdoaA3webPD4uJX0dFd6tYdwud3l0qLMjNPSqU5HTs+4PNrS7MLoc9od/ypef78OQAYGRlR38xkxowZAGBmZkZlUxcqhoWHW4eFDQsPL/nKUbOF7NV2hrtAICjZYKB9+/Zr165V6R1kUqmUuSsTAJydncu84beoqMjBwQEAeDze3r17VRemZrtw4QJ8bSGXtm3bKvfn/7lz58oby9nZGWgvboOq76t15ejo+NU6ad26uGSKaJlfdetWNs8vvxAAYmOjtG8QqcKBAwdAnXZ7s7cnAES95wgixTx6RNq3JwCEzyc+PtW9mkRCBALi5kY6dPj8c8nEhDg6kqAg2WWISpw+TQIDvzgiFBIvLxIURMRi2XspkNJV5jYaS0tL5b7sOXToUHljrV+/HmgvblMxnIlcGffv38e6UgjWVTWlp6c7OzszDe7KLAVTSczSNMyCsZVZmiYsLKykxf/VqfGVl5+f/+7d2fj4aU+f1i2Zzx4d3TU11a2gILy8Z0mloqys4KSkRbGxP8TGjkxJWSUUpvz3fbG99A1CdNXeGe4uLi6+vr5OTk579uxhZ8SsrCxPT093d3dtbe3SxwsLC62trZ8+fTp27NizZ88y22vUbMMjIsz4/JH165ccGVa/vrZ6fOOpxcUR+fnm+vpqOMM9JyenXr16fD5//vz5U6ZM6dOnDzvj+vn5LViwQCQS2dnZHT58WE9PT+YBhBB3d3d3d3cAcHZ23rlzZ5nbDqPyCIXCbt26vXjxwsfHh1luu0zbtm1LT09X4rizZs0q78aazMxMMzOz9PT0M2fOjB8/XomDItZUpq6OHTsmEAgqvo6Bwcb8/IpmuPP5sHlzpSJlZoKZGaSnw5kzgGWlnnJzczt27Pj27dtjx44xy7iXyMjI2Lhx45o1axo2bMhmpORk6NQJCgvh1i1Q1zmCSGG5ueDk9Gku+aRJsH8/PHgAEREwaRKUvvPq+HHgcMDevowrSKVw/z6cPAmnT0Nq6qeDzZvDyJFgaws//ABaWlUJlpwMjo4wYQI4O1fl6agyKnkbjY+PT3JyshLHnTp1KrOVpbzCwsLOnTu/fv3az89v1qxZShxUWXAm8ldhXVUB1lWViUSivXv3urm5ZWdna2trL1iwYOPGjcwCL8qSmpq6evXqf/75hxDStGnTbdu2lezFWqYLFy44OzsnJiZCJabGV6CgoODatWsnT548d+7c0aO9mjS5BQB6eubGxnb160/W0+tchWsSIklIcMjKOtep0319/V5VuAJCGolyw5+SgoKC+vXrAwCbC0/b2NgAwMKFC+VPJSQkmJiYAMCWLVtYy0OR2q7hni0STYyK6i0QnHr/3jsp6aWarQt78+ZNAPjmm2/YH/rKlSt169YFACsrq/fv35f5GD8/P+bDpEmTJhWo2R+dmvPy8gKATp06CcubiUfD77//DgBt27YtLCyknQVVhbrWFQEgbdsSLCv1tGLFCgDo37+/VG6K76JFiwBg/Pjx7Kdav54AkJ49ibrOEURVdOgQMTQkAGTQIDJnzqf/KF16w4aR4cO/eIpYTO7cIc7On7ZgZb5atSLOzuTOHSXMTD93jnA4RFeXPH1a3Uuh8qjbbTSMgIAAADA1NVXPe45xJvJXYV1VAdZV1cjsWRodHa26sR49etS/f39mrD59+ty/f7+CBys6Nb60jIyMv//+e/To0SWz6zgczvr19u/eeRUVxVf/G0lK+kUggMjI9mKxAhvJIqTRamnD/fDhwwDQt29fNgcNCwvj8/kA4OfnJ3/2ypUrPB6Py+UGBwezmYqK8hrudN9Hi6TSBS9eWAoE9tHRuWq2xA1j586dADB//nwqo0dERLRo0QIA2rdv/+LFizIfExISwnyw369fv/L68khGWloa84embv/2xWIxs4D71q1baWdBClPjuiLduhEAgmWlhl69eqWrq8vlch89eiRzKjo6mtl9NyIigv1gBQWkVSsCQMp6AYU024sXpHdvcvUqmTOHmJgQbW3i7//5bEnDvbCQBAWRuXNJw4af++xt2yqtz16akxMBIB06kEq3KZACcnJymjRpAgDHjh2jneULUqmUWWh71apVtLOUARujFSupq6NHj9LO8gWsqxrm33//HTlyJNOPNjMzu3jxIguDSqVSf3//xo0bM01wOzu7pAonL6akpJTMhW/WrJm/v7/8LIoSHz9+9Pf3t7W11dHRYb4vLpdrbW3N3Aui1O+i6PnzHgIBJCT8pMTLIqTOamnDnfm1t3//fpbHZRr9enp6jx8/lj/L3PtmbGwcFxfHcjCWldlwf5yTM+358zfFxVQiSQlZl5BgKRCMCA9/RynDVzHL/f/111+0AqSmpvbq1QsATExM7ty5U+ZjIiMjW7ZsCQDt2rX7999/WU6oiZhNm21tbWkHKcO1a9cAwNDQMDU1lXYWpBj1risCQAwNCZaVuhk9ejQAzJ49W/7U999/DwCLFi1iPxUjIIAAEFNTopZzBFG1MH2AOXNIt27EyYmYmpKPHz+dYhruHh6fJsIzX927k40bieomFBYWku7dCQCZM0dVQ9RmFdxGQ92TJ0+4XK6Ojk55M0sowsZoxbCuqgbrqvIyMjJWrVrFdKXr1avn4eFRzG7TIC8vz83NjZl+bmBg4ObmVvFdyBVPjf/w4QPTZy9Z7pjH4zF99jdv3qjoWygqehkWZigQwMePASoaAiG1Uhsb7jExMRwOx9DQsPL31yjR3LlzAaBly5by83+lUumECRMAoHv37vn5+exnY418w11KyI8xMZYCwffh4TE0vve9qamWAsHAp09fqPGffNeuXQFAfuIhm3Jzc0eNGgUAurq65U1NevPmDbMfUf369ZW1Z0tN9fTpUx6Pp6Ojo7YfTjALuM+cOZN2EKQATagrAkCwrNTK1atXAaBOnTryb7TOnj0LX9vVWdWkUjJwIAEgK1fSioBUi2m4f/xITEzI3LmfDjIN9337CAAxNydubiQmho0w0dFEX58AEDWbLKvxKriNRk389NNPADB27FjaQWRhY7QCcXGvmboqc06bOsC60mgSicTf39/U1JSZ/e3o6JhG70/s1atXdnZ2TIu8RYsW/qVvCpMjMzXe0dFRIBD4+PhYW1uX7Limq6s7dOhQHx8fdr6pDx/2CQQQFmZYVPSSheEQoqs2NtyXLFkCAPPmzZM5LhAIevbseeTIEZWOLhQKBwwYAABDhgyR38M6Jyenc+fOADBt2jSVxqAr4N27B9nZMgdzxOJ5L15YCgQDwsJusTuB7Xx6uqVA0OfJE5bHVUhhYaG2traWlhb15dHFYrGTkxPza9vNza3Mx+Tl5dna2jK/wgMC8BPscn377bcAsGzZMtpByhUXF6enp8fhcEJDQ2lnQZWlCXVF9PQIh0OwrNSESCSysLAAAE9PT5lTxcXFHTp0AIDdu3dTyVYiLIxwuURHh6jfHEGkBEzDnRCyZw/hcsm9e4T813DPziavX7Od548/CAAxMiLxSli6Fn1SwW00auLdu3fMgmyXL1+mneUL2BitwNixpH//487Ov9IOUi6sK40WGhrKLM9iY2NDZWE9edeuXWNW/gSA7777Ljw8vIIHZ2dnr1y5kpmbX7Ktq76+/oQJEwICArLl2jKqFh8/RSCAmJg+Uqka7TKFkCrUuoZ7UVFRw4YNAUAgEMicYuaeL126VNUZ3rx5w6wx5+rqKn82JiaG2Z3S19dX1UnUjVgq3ZKYyPS+A9n6xS/Iyen35ImlQHBCvdccDw0NBQALCwvaQT7x8fFhPhifM2eOSCSSf4BYLFVdrEQAACAASURBVF64cGHFfflaLjAwkNlGKTMzk3aWiri6ujLr8qvhXbpInubUFQEg/fopefFlVDW7du1ilgIrKiqSOeXh4QEA5ubm6rD77k8/EQCifnMEkRKUNNzFYmJpSbp1I2JxGZumsmnyZAJA+vYlalD7NUEFt9GoFeaHXufOndXhh14JbIyW5+pVAkDq1CHqXVZYVxqMac6oel6moph590xri5l3X/EOarGxsU2bNgWAQYMGnTx5kuKCCmJxZkREa4EAUlLU90MyhJSioob7mzdval57hdkovHv37jLHc3NzmZ+kKt1jusS9e/d0dHQ4HM7x48flz545c4bD4Whra9fO5TiOpqX1FggsBQKvpCRVb6MaV1g4+OlTS4Fgd0qKioeqrj///BMAZsyYIXN88+bNnTt3pjKL/NSpU8w+wMOHDy/vs/GSvvysWbPU6vUldQUFBa1btwaAffv20c7yFbm5uczrM3V7oYnkaVRdkaZNCQDBsqLu48ePJiYmAHD+/HmZU+o2Ke/dO2JkRACIesRBylTScCeEhIYSLpfs3Uu54Z6Z+Wm33rVrqWWoMUQiEbM0ovxtNOqmuLjYzMxMHW7rKQ0bo2USiYiFBQEg27fTjvI1WFeai2kTZanlrfClV5Y3NjaueGV5ZrtXdjZ6rVheXuiTJ9oCATc7O4R2FoRU6NPKTfKuXr1qYWHBfBJbk+zfvx8AFixYIHP86NGjOTk5gwYNMjc3ZyGGlZXV9u3bCSGzZ8+Ojo6WOTt+/Phly5aJRCJ7e/vU1FQW8qiVqaamW9u21eFyA9+/XxUXVySVqmigdJHIJTY2VyIZamzs1KyZikZRlqdPnwJAz549ZY4/fvw4JiamZBU2Nk2cOPH69eumpqZXrlwZMGBAcnKy/GNcXFxOnjypr69/8ODBUaNGZWdns59TPXl6eiYmJvbo0WPWrFm0s3yFoaHhli1bAMDV1TUvL492HFQRjaor2LIFAMDVFbCs6Fq3bt3Hjx+HDBkyZswYmVOrV6/Ozs4eO3Yss2kqdY0awerVAABLloBIRDsNUpm+feHnn2H9eqD7qqFePfjnH+DxYOtWuHaNZpIaYO/evVFRUe3atXN2dqad5St0dHQ8PT0BYP369enp6bTjoIrs3QuRkdCuHbi40I7yNVhXSBWYJntYWNjQoUMzMzNdXV179erF3E6kzgwM+jZpshZAmpg4XSRKox0HIZUprxP/f//3fzwej8vlBgcHs/gBgGq9ePGC2S5VfjZu7969gfX5mzNnzgQAMzMz+c9LxWIx8+a2X79+8vd31wbPcnOHPHtmKRDMiIn5qIKZ0YUSycyYGOb6hRJVz6RXgr59+wKA/E0PLVu2BACKu97HxcV17NgRAJo2bRoWFlbmYx4+fMjsM2NhYfGa/XVY1U9KSoqBgQEA3Lx5k3aWSpFKpUwFrsVpfmpMA+uK9O2Ls0cpi46O1tLS0tLSkl+W9MmTJ1wuV0dHh+KvGHnFxcTMjACQ2rfwXg1XeoY7IeTjR9KwIQGgOcOd4eZGAEizZoTensEar4LbaNQW80Zs0aJFtIN8snHv3v7Tp/ufPUs7iBrJyCAmJgSAaE5ZYV1pJHWe4V5aSEgIsx3gihUrynyA+sxwJ4QQInnxwkYggNjYHwipaetqIMSoaEmZDRs2AICxsXFcXBxrgVRq+fLlADBnzhyZ4+Hh4QBQr149lpeyKigo6NWrFwCMGTNGItfz/fjxY5s2bQDAycmJzVTyPgqFLwsKZL5YGDepqGh8ZKSlQDA6MjK+sFCJV5ZIpUtfvbIUCMZERn4sa/1xdSMWi/X19TkcjsxvemZ+hKGhoXz9sOnjx4+DBg1ikpT3KzwuLq5Tp05MX/7JkycsJ1Q306ZNAwB7e3vaQRTw4MEDDoejp6eXkJBAOwsqm2bWFeFwiJ4ewbKiZfjw4QDwyy+/yByXSqUDBw4EgFWrVlEJVoFz5wgAMTbGBmiNItNwJ4T4+alFw10iId99RwDIyJG450QVOTk5AcCQIUNoB1FAdHS0trY2j8dTkz0SmY2R1Go1EuoWLiQAxMaGdg5FYF1pIk1puBNCioqKduzYUV5UNWu4E6Ew5dkzE4EA0tJ20c6CkEpU1HCXSqUTJkwAgO7du1PcVEFZiouLmTm2oaGhMqeYFWZcXFzYT5WQkNCgQQMA2LRpk/zZp0+fMmtk+/n5sZ+txJ6UFEuBQOZLxMp7jkyRaNa//1oKBN89fSrIyVHWZT2TkiwFAptnz14rtY+vOpGRkQDQrl07meMhISEAMGDAACqpSisqKnJwcAAAHo+3d+/eMh+Tnp7OtG/q1KmjJssBU3H//n0Oh8Pn8zWuc838FdvZ2dEOgsqgyXVFGjVKdXH5nXaQ2ujMmTPM1Ir09HSZU8yeN40aNVLPd5hDh5KWLV+tX3+AdhCkNMHBRObVrlRKdu0iZe12xLbk5E8TabErVQUV3Eaj5hYtWgQANurR0MXGqIzoaKKlRXg8omllhXWlecpsuBcWFj579kytbgH8KnVruBNCsrIuCgScJ0908/PLvlEeIY1WUcOdEJKTk8PcluLg4MBOINU5duwYAHSTmTxDSH5+fr169QAgMjKSSrArV64wq/dcunRJ/uzhw4cBQE9P79GjR+xnY+xJSbEOC8sUiUp/sTZ6sUTiGhdnKRD0e/LkklxHoAoCHjzoLRD0Dwt7lptb/auxgykD+UYnsxSg/MxEKqRSqZubG7NWlbOzc5mT7ouKiqZPn87j8Xx8fOjOyqdFIpEwa7OsX7+edhaFlaxYcuPGDdpZ0Bc0vK4KTU0badBKODVGcXFxhw4dAOD332U/7SgoKGjVqhUAHDx4kEq2r4qOTjcwMNDS0qL14g2pzp07ZMUKEhREO8eXzpwhAOSbbz6Eh4fTzqJhmNtonJ2daQdRWEZGBjMv6ty5c7SzYGNU1vDhBICox3sgxWBdaZwyG+4REREA0LVrV1qpqkANG+6EkNevnW7fNlq4cHxeXh7tLAgp2Vc2WqxTp86ZM2fq1q0bEBCwe/fuih+s5pjtUufNmydz/NixY1lZWdbW1l27dqWRC4YNG+bm5iaVSqdPnx4XFydz1tHRcd68eUVFRZMmTfrw4QOVhIx6Wlqlv1gbV4fL3dKmzVRTUxEhbomJB+Pjq3O1M2fOOFpbN7tyZUOrVt0NDZUVUtXK2zG1vONUcDicDRs2+Pn5aWtr+/r6Tp48ubCwUOYxurq6v/32m0QicXNz43A4VHLS9ffffz969KhZs2YrV66knUVhzZo1W7VqFQAsXrxYIpHQjoM+0/C60lu0aCEAuLi4YF2xydvbOzY21tzcXP6lkYeHx+vXr3v27MlsNqOGzM1NfvrpJ7FY7KL+O+UhBT1+DF5ecP067RxfGj8e1q9/8PhxkylTphQUFNCOozHOnj175coVY2Pj9evX086iMGNjY2YqydKlS4uLi2nHQZ+dPQtXroCxMfw31UeTYF0hVFrz5t4eHr337DmLr+hQzfOVhjsAdOrU6e+//+ZwOMuWLbt9+zYLmVQhPj7+5s2bfD6fWeK2NKYR//PPP9PI9cnatWsnTpyYmZk5YcKE/Px8mbO7d+8eMGBAUlLSlClTxGIxlYR0cTmcZS1a/Nqqla5Y7Dtt2o8//igUCqtwHYFAMGPGDKlU2o/DGV6/vtJzqk55jfWwsLAyj1M0a9as4OBgIyOjxMREqVQq/4CSzLWw4Z6bm7t27VoA8PT0ZKaKa5wVK1a0bt06PDzcz8+Pdhb0SU2qqwMHDtDOUlukpaV5eHgAwM6dO7W+/BA9OTn5t99+43A4u3bt4nK//kKRlo0bNzZo0OD69evnzp2jnQXVCqtX9+za1TwmJmbJkiW0s2gGoVDIfE6/adMmZtNUjbNgwQILC4v4+HgfHx/aWdAnQiGsWgUAsGkTaGZZYV0h9BmXq+fl5auvr+/n58csSoFQjVGp91Hjx49ftmyZSCSyt7dPTU1VdSZV2Ldvn1QqnTJlCrN6TInIyMjQ0FAjIyM7Ozta2QCAw+EcOnTI3Nw8IiJCvvWvra198uTJpk2bXr9+nemqsElKCACICPFISir5Cs3JYTkGAExo0GC9WPwqKsrf33/kyJFZWVkKPT0hIcHW1jY/P3/27Nmurq4qCqkK5L99fXv06FH6eH5+fmxsrI6Ojrm5OaVoZRs6dOidO3cuXbpUZu9PrWbls2zLli1v377t37//1KlTaWepIj09PWYho7Vr1yr6bxCpSE2qq3Xr1mFdscPV1TUnJ2fcuHHMag+lLV++vKCgYOrUqcyuG2qrZJLgsmXLcJIgYoGent7Ro0f5fP6+ffsCAwNpx9EAFdxGoymYVRDhv1+1tOMgAABvb4iNBXNz0NiywrpC6Avm5ube3t4AsGDBgoSEBNpxEFKayk5c8vDwGD58eFpa2qRJkzTuXY1IJGKWwJbvZe/btw8AZsyYoa+vTyFZKSWr9xw7dmzXrl0yZxs3bnzy5EkdHR1PT88TJ06oKIOQkPjCwquZmf7v3m19/dopNnZERMSx9+8BgAB8EIlKvgrKmrnMguHW1vfu3WvevPm1a9esra0TExMr+cTs7OwxY8akpaV9//33f/75pyozKl9CQkJmZmbTpk0bN25c+nh4eLhUKu3atauOjg6tbOWxsLBg9iiWV2sb7sw0Fi6X6+Pjo9Gz++3s7L799tsPHz5s2rSJdhaEdYWqIiws7PDhw8yLCplT9+/fP3nyJJ/P37p1K5VsCsFJgohlXbp0+e233wBgwYIFlX8VWjtVcBuNZrGxsRk7dmxubu6aNWtoZ0GQlgYeHgAAO3eCJpcV1hVCX5g/f/7kyZOzs7OnTJkiEolox0FIOSrbcOfxeEePHm3Tps3Dhw+XLl2q0kxKd+7cubdv31pYWPTv37/08cLCwoCAAACYNWsWpWhf6Nixo7+/P4fDWb58+a1bt2TOWllZeXp6EkJmz54dHR1dzbGEUmlcYeGNrCz/d+82vX4998WL7yMirMLC7J8/d42P352aeiY9/VFOTrpI9EYoBAAdDse7XbuSr+++vFGATd27d3/48GGPHj2eP3/ev39/gUDw1aeIRKKJEydGRUV16dIlMDBQ4170a9B6MpXBfDu9evWiHYRtzEKNM2fOZDa31Gg+Pj48Hm/37t0vXrygnaW2q3l15evrW/3fcagChBAXFxepVLp06VJm09QSUqnUxcWFEOLq6spsmqrmcJIgYp+Tk5O9vX1WVtbkyZOxKVCBVatW5eTkjB8/Xv42Go2zY8cOXV1df3//R48e0c5S27m6Qk4OjBsHml9WWFcIfeHPP/9s1arVo0ePNm7cSDsLQsqhwNKcJiYmZ86c4fP5e/fuPXjwoOoyKV15q7QfP348MzOzX79+Mit1UDRu3LgVK1aIxeLJkyenpKTInHVxcfnxxx/z8vLGjx+fnZ1dyWuKRKKXL19eunRp586du8LDnWJjR0dGDnj6dPLz5yvi4nanpp5PTw/Ly/soEulyuR34fBtj4x8bN17fqtX+jh2vdOu2okULZX+X1dWsWbPbt2//8MMP7969Gzx48Pnz5yt4MPMRxbVr15o0aRIcHFyP3kcFVaYRO6ZWUk5OTnx8PJ/P79ixI+0srLp+/fr58+fr1KmzZcsW2lmUoEePHrNnzxaJRL/88gvtLLVajawrsViM6yOrVEBAwN27dxs1arR69WqZU35+fgKBoHnz5suWLaOSrQpwkiBiX0lTYPPmzbSzqKmwsLAjR47o6Ohs376ddhYlaNu27eLFi6VS6eLFiwkhtOPUXkVFEBEBurrw22+0oygD1hVCpdWrV++ff/7h8Xhbt269du0a7TgIKQNRELOhWR0Dg/SnTxV9LhXx8fFcLpfP52dkZMicsrKyAgA/Pz8qwcojkUhGjBgBAN98801RUZHM2YKCAmZq8OjRoyUSifzTMzIy7ty589dff61atcrOzs7S0lJPT6/kr3t6UJClQGApEHzz5MmYyMgFL19uSUz8++3bW1lZKUVFZVyOEELInpQU67AwZX+j1SUSiZgVIXk83q5du8p72Lp16wDA0NAwTP2+hUr64YcfAOD06dMyx5lW+71796ikqpqbN28CQN++fVkbUSyVpguFMl/FZf3bUWEGsdjCwgIAPDw82BxXpd6/f898fBUcHEwnQVoaiYsjOTlfHJRISGEhkUq/OCiVksJCotS/dKwrFSmpq0uXLtHOUjMVFBS0bNkSAA4dOiRzKicnh1m4LDAwkEa0qouLi9PV1eVyuaGhoXQSvHlD4uJIQQGd0WucHTsIAFm8mHaOCt2+fZvH43G53GvXrtFJIBaT5GSSkEDk3ixQJ5VKBwwYAACurq60syhNTk5OkyZNACAgIIBKgIULFwLA7t272RlO/kVOPtsvckhGBsnP/+KgUEjS08mDB2wGUS2sK5brqmrq1q0LAFlZWaUPRkREAEDXrl1ppaqCkSNHAsDFixdpB6kIsz1Ps2bNPnz4QDsLQtWl8Noas2fPToqM/OXePZNx40AggAYNqtLmZ9GBAwekUqmdnZ2xsXHp4zExMffv3zcyMpo8eTKtbGXicrkBAQG9e/cODQ11cXGRWXCcz+efOXOmd+/eFy5c+PXXX0eMGBH7n5cvX8bFxcmvsM/j8dq0adOhQ4cOHTpY16u3oEOHlrq6TXR0eJq82i8AaGlp/fnnn507d16yZImLi0tcXNyOHTt4PF7pxxw6dGjTpk08Hi8gIECzZoKXVuYaLEKh8Pnz51wut1u3bpRyVQX768nEFxVNff5c5uCmNm1+qF+ftQx//PFHZGQkM42FtUFVrWHDhuvWrVu2bJmzs3N0dDSrGwns2wfbt0N8PAAAlwvW1uDpCf36AQCEhMCIEfDwIXzzzefHx8RAly5w6hRMnKisCFhXKlJSVy4uLkOHDlXDDSo03bZt25KSknr16jVjxgyZU+7u7u/evbOysrK3t6eSrcqYfwXbt29fvHjxvXv3rl+/HhoaWvmnm+jpzSsqUmzI6dOhZUuQSsHbG3btgtRUAAAtLRgyBLy8wMJCsashDTRw4MA1a9Zs3LhxxowZ4eHhJiYmJ06cePXqVeWv0KtOnRG5uYqN6uICBgZQWAjr1sGhQ5CRAQDA58PYsfDbb9CsmWJXU5kKbqPRXHXq1Nm8efPs2bNXrlw5duxYAwMD2olUSCiVfh8RIXNwTpMm85s2ZS3Ds2fQuze0agXR0VDyh33hAkycCLGxrKVQOawrlusKqb/169ffuXPn+vXrM2bMuHTpkkbvUIWQwjPcCSFEKCQDBhAAYmNDRCJlfwagTCKRqGnTpgBw584dmVMuLi4A4OTkRCXYVwkEAj09PS6X+7SsOwmCg4O5XK6RkZH8X6ixsbGlpaWjo6OHh8eJEycEAkG+zNwAxR1PS/sxJqaaF1GdEydOMLP4x40bV/qbvXHjBtOs+f333ynGq6Z3794BQL169aRfTtplFnDv1KkTrWBVw7R4/vrrL9ZGfFlQYCkQnHz/Pq6wsOQrTyxmLUBGRkaDBg0A4OzZs6wNyg6hUMgsDbRjxw72RnV3JwBk4UJy6xZ5/ZpcvUqsrIieHrl7lxBCLl8mAOThwy+eEh1NAMipU0pMgXWlOnTqqnZISkrS19fncDi3b9+WOfXq1Stmkvjjx4+pZKum0pMEFd1qyKx1awKg2NeNG4QQ4uREeDzi6kru3yevX5OLF0m3bqRuXRIVRfmPQ8NpxAx3QohEIvnuu+8AYNSoUVKplJk5WHlb+vZVuPDeviUSCRk2jBgYkN9+I0+ekNevyT//kObNSatWRD0mA+bn55d3G42mk0gkzHYp69evZ390NmciF0sklgLBrpSU0i9yMth91y8QEADC5ZLVqz8fPH2aAJDYWDaDqBzWFQtDVxPOcGdZcnKyiYkJAPj6+tLOglC1VGn3SG1tOHkSLC3h+nVYu/bTTuFqKSgo6M2bN506dbK2ti59vKio6MiRIwAwZ84cStG+wtLS8sCBA8bGxmWuLz948GADA4PCwsI+ffp06dLFzMysffv2zBx2VXwwbm9qam9qqvTLKoudnV2zZs3Gjh177tw5KyurS5cuNWvW7Pnz5+PHjxcKhStWrGBeSWioJ0+eAEDPnj1lPt3V0K1Haa0730hHp22ptZXYtH79+vT0dBsbm3HjxlEJoDra2tre3t62trYbNmyYOnUqsxiFaiUkwMaN4OICPj6fjrRsCVZWYGkJTk4QHq7yAF/CulIFCnVVayxbtqygoMDBwWHgwIEypxYvXlxcXDxnzpzevXtTyVZNpScJ7t69W1dXt/LPbaivDwUFio3XqhU8fgx798K2beDq+ukg8+Ooa1dYvBhCQhS7INJAXC738OHDPXr0uHTp0t69eydPnty9e/fKP92iXj0YMkSxIQ0NISAAQkLg7Fko+eHv4AC9e0OPHuDuDrt3K3ZBFajgNhpNx+VyfXx8rK2tvby8fvrpp9atW9NOpFomWlq0XuSUmD4dvL1h+nQwN6cbRIWwrhCS0bx58/3790+YMGHFihUDBw5Unw0XEVJY1Xv19+4RHR3C4ZDjx5X3AYCSMYuh79y5U+b44cOHAaBPnz5UUlWfpudXhdjY2A4dOgBAs2bNrl692qpVKwCYNGlSmSvdaxBmP65ly5bJHF+0aBEAeHl5UUlVNYWFhdra2lpaWgUsLnTLzES+/eWUBNZER0dra2vzeLyIiAgqAVjA7DEwb948Ngbz9CQAJCFB9vju3QSAREWxPMMd60p1WK2r2uHu3bscDofP579+/VrmlEAgAIC6deu+e/eOSjalYHuS4LJlREtLdhsJQsjatYTDIe/fs5GhhtKUGe6M06dPA4Curu6zZ8/YGG/kSNKqVRnHJ00iDRvKbmHCupLbaOTvLa4xpk2bBgD29vYsj8v+TOR/qP5GYGa437pFunUjAwZ8Ku0aOcOdgXWlznCGOxULFiwAgA4dOuTm5tLOglAVVWmGO8PKCrZvhyVLYPZs6NIFunSp+qVUIzk5OSQkRFdXd/r06TKn9u/fDwA///wzjVxKoOn5VaF9+/Z3794dM2ZMaGjoiBEjxGJx//79Dx8+zOVyaUerlvKmhNOaKl4dkZGRIpHIwsKCz+ezPPT/ZWTE/DeBsaG29vgGDc6kp/+bn6/QRfTfvo05dEihp4SEhIhEIicnJ4uau6Tvjh07rl69un///o8fP9av9ArmfB0dH6FQsZHmzoWoKNDTg1atZE917gwAEB0NzEJb//d/UHohXWZ5ZRXAulKdqtWVUsyePZvp29YkhBBnZ2dCiKurK7PaQ2mWlpZXrlx59+5do0aNqMRTCi6Xu2PHjoEDB3p5ef3888/NmzdX7XhRUdC0KdSpI3u8c2cgBJ4/h2+/VW0ApB4mTJgwb968v/76a/r06c+ePZPZTEj5oqOhY8cyjnfqBKdOQVoaUL0raOXKlQUFBdOmTWM2Ta2RPDw8zp07d+LEiaKiIjbvwbp37x4ABAYGRkZGVv5ZTTp10pkwQdGxlrdoAQAPc3LypVLmiA6H8yON0uLxwMcHbGzg0CGYNYv98dmDdYWQDG9v7zt37kRFRf3666++vr604yBUFdVouAPA4sUQHg5//w3jx8Pjx1DWkuIU7d+/XyKRTJ06tcGXO7v++++/d+/eNTQ0nDJlCq1s1aHp+VXH1NT0xo0bZmZmmZmZEolk4sSJ7Dd2la7MxrpUKg0PDwcAhW5epo5Zd57KhwT/FhSk/refcBs9vfENGjzMybmemanQRTrn5v6zb59CTzE0NNTX1//xxx8VepZm6dSpk5mZWW5u7qlTpyr/rLp16vgoulmcjQ3k54OJCchvnsOseZWX9+nX0J49UHqzTbFYsYEqDetKdapWV0oxaNCgmtdwBwAbG5sXL16UVzbDhg1jN45KWFlZNW/evFOnTmzsO5efD1++vPykYUMAgLw8lQdAasPV1dXf379Xr15s7O1WXuExvwcV/MRX6aytrS9cuODo6Eg3hkq1aNHCwsIiNTU1KCiI5aGNjIzu3bvHdEgrqd+wYaJBgxQdiGmMJhYV5UkkzBE+l0urMfrddzBtGqxcCWPHUhmfJVhXqHYqKioaPny4k5OTfGuLz+cvWrTI2dlZQ1c7RAiq23AHgL17ISICwsLA0RHOnQO1mU0sFosPHjwIZU0D37dvHyHEwcGhjvy8JE2g6flVatWqVSkpKXp6eoSQFStW5Obmurm5ae7e1tnZ2QkJCXw+38zMrPTx2NjYvLy8Vq1aNSjzTZe6ojgr36V584FffiI4sUGDfgr+C+Lx+QP+/FOhpxw9evT27dubN28+f/68zCmJRLJv376oqKg9e/YodE0qQkNDvb29PT095VeWvHHjRnR0tJ6e3tatWys/E1mXx4P/Xm1XVu/e8H//Bx8+gFQq+7vmzRsAgHr1Pv1vUBB8883ns8+fq+geLKyralJ6XSnFN6WLp6bgcDgxMTH5+fmbN2/ep+AHPBrk+PHjycnJxcXFbNzcZmQECQllHH/7FqDUjyNU00ml0rlz5xYVFTG73Ktc3bqQllbGcfUovISEBObnzPfffy/z8lsqlR45cuTGjRt///03pXQKeP78+erVq728vGRegQPA06dPBQIBl8t1d3dn866gwMDAmzdvTpkyZfDgwZV/Vt2mTXXl7mqqpCmmpg7qcduTtzcEB8O6dTB0KO0o1YN1BepUV0gduLi43LlzJyMjY+LEidra2qVPvX//fsOGDUKhkKVfrwipghKWpUlMJA0aEACyaZMSrqYk586dA4COHTtKv1zNsLi4uGHDhgAgEAhoZasOTc+vUjt27AAAHR2da9eu7d+/X0tLCwDs7e0LCwtpR6uiGzduAEC/fv1kjh87dgwAxo0bRyVVlTGTRm/evMnmoHTX2k5LSzMyMgKA//3vfzKnkpOTNWWdU6lUyrQg16xZR1RhWAAAIABJREFUI3NKLBYzt1ls3ryZjSg+PgSAvHghe/y33wgAefWqlqzhjnWFqiA2NlZXV5fL5T5+/Jh2FpUoKChgtm/Zv38/G+OtXk24XJKRIXt85UrC45HsbDYy1FCatYb7tm3bAMDU1PTNmzdsjDduHGnalMhvUDRmDGnRgo0AFcrOzmZWwzgut8VXenq6sbExAAQFBVHJppDhw4cDwMKFC+VPDRo0CACWL1/OcqTattY2s4b73buf/tfHh/B4ZONGzV7DHeuKel1VDa7hriLMJih6enrym6BIpdJRo0YBwODBgzV9Tz5Um1V7hjsAtGoFR4/CDz+Amxv06gUjRyrhmtVWssq5zPSKU6dOffjwoXv37paWlpSiVYum51edS5curVixgsPhHDhwwMbGxsbGpmXLlnZ2didOnEhNTT137pxmTQZn1KQF3CUSSVRUFIfDqVX7jJuamv7666+rVq1aunTpkCFDSn9u37x58xUrVri7uzs7Oz9+/Fjlq75Ww+HDh0NDQxs3brxy5UqZU/v27QsPD2/ZsuWSJUvYiGJnBytXgpcX7N//+WB+PvzxB1hZQbt2XyzdXnNhXaEqaN++/aJFi7y9vV1cXJgNVGknUrLt27e/fv26Z8+eUqmU2XS3kpobG+9XcCUo8PSEqVPBwwN27IBNmz4f//ABDh2CMWOgbl3FLohKMTSMsbISmJiYA6j7a12BQMDcSenn5/fnn38+evSo8s+1a9FiVnKyYuMdPQrTp8O5c3DsGDg4fD4eGQn/+x8sX67Y1VSgbt267u7u8+bNW758ua2trb6+fskpExMTNze3xYsXL1myZPjw4bq6uhRzVuz8+fNXrlwxNjbesGGDzKnAwMDbt2+bmpquXbuWRrTaa+FC+Ptv+O032jmqAesKodJSUlKYtSi8vb3ll8n18vK6dOlSw4YNjx49qul78qFaTWmt+02bCAAxNiavXintmlWVnJzM4/F0dHTev38vc4q5W+qPP/6gEqz6ND2/iggEAmbBVpnpkOHh4S1atACA9u3bv3z5kla8KmMWwWQWESpt6NChoCFThEowW/G0a9eO5XHpzkQmhBQXFzP3jfr6+sqcKpmPeeDAASrZKiM3N7dp06YAcPjwYZlTmZmZzOdYp5Q6efwrvL0JAPnxR/LwIYmLIxcuEEtLYmhInj4lhNSSGe4E6wpVSU5OTnmTTzVdcnIy8zLg1q1bS5cuVeiVsFnr1gRAsa8bNwghZOVKwuEQFxciEJDYWHLqFOnUiTRoQOLjKf9xaDjmhsXFaj/FPTc3l/k5zExKHanglKMtffsqXHhv3xKplIwdS/T0yObNJDKSvHhBDhwgjRqRTp1ITg7tPxJCCJFIJMx6uxs3bpQ5JRKJunbtCgBeXl5UslVGZX69snQbzZdq20xkmRnuhJBHjwiXq6kz3LGuiHrUVdXgDHelk0gkTF9r1KhRMitSEEIEAoGOjg6Hw9GsdgdC8pQxw52xZg08ewanT8OECXD/PrCwXVX5Dhw4IJFI7O3tmdVXShBCRo0alZ2dPW3aNFrZqiMuLu7WrVsGBgYaml9FEhMTR40alZ+fP2vWrDVr1pQ+1a1bt4cPH9ra2j59+rR///7nz5+3tramlbMKyttl9NmzZwDQq1cvCpmqitasfC0Ox0RbW5feXE4dHR0vL6+xY8e6ubnJ7OHM5/M9PDymTp3666+/Tpo0yUjN9p1mbNu27c2bN5aWlg6lJ9MBAIC7u3t6evqAAQMmTJjAXqClS6FJE9iyBZhFYLW1YehQOHgQunUDAODxgM8HmWndXC7w+aClvN93WFfVpnZ1VTvUqVNn48aNc+fOlZ98qulWrlyZn58/efLkQYMGmZqaDlVkoV9DLS2Ft1ZmfuBs3w5t2oC3N+zaBQCgpwcjR4KnJ7Rpo9jVkGaaP3/+y5cvLS0tt2zZAgAbN25ctGhR5Z/eTFsbRCLFhqxfHzgcOHECtm6FPXuAmQxbty5Mngxbt4J67O3E5XJ9fHwGDhy4bdu2mTNntiy10LOWlpaPj8/QoUM3btzo4ODQpEkTijnL4+Pj8/Lly86dO8+fP1/mlKen5+vXr3v06PHTTz9RycYeDsdEW5tP9SY5LS0wNv7itVufPjBvHgQGyr7K0whYVwBqUVdITbi7u9+8ebNZs2b+/v4y91zm5eVNmzZNKBQuXbp09OjRtBIipBzK7N5nZZGOHQkAcXdX5mUVJJFImE+Jr1+/TjGGKixfvhwA5syZQzuIGsnOzrawsACAwYMHFxcXl/mY3Nxc5uNcPT29wMBAlhNWWUFBgZaWlpaWlswa9K9fvwaABg0a0ApWNczSEFu2bKEdhI7vv/8eKly0ccWKFeyn+qr4+Hg9Pb0yFwSPiYnR1tbm8Xjyi+6xJDubJCURjd2hQSmwrpCiSiafulN9qaZc9+/f53A4fD4/ISGBToKMDJKcTIqK6Ixe42jEDPdDhw4BgIGBwb///ksngVRK0tLImzdEJKIToEJ2dnYA4ODgIH/K1tZWbd/OVLxFCnMbDct7EZVgcyayOvvwgRw8WPYpqVT2Fkc1gXWl6XCGu3Ldvn2bx+Nxudxr167Jn50+fToAWFhYaO4+fAiVUGrDnRASHU2cnVl+yyGRSBISEq5cubJnz57Fixf379+fw+G0bNlS/uYUjVZcXGxqagoAoaGhtLOoC6FQyMxiMzc3z8zMrOCRIpGImVDA4XDc3NzYClgtDx8+BIBu3brJHGc2BB4+fDiVVFXG3DUm/0Kzlnj+/DnTRgwPD5c5FRYWxuVydXR0XsjvBUobM8V4xowZ8qeYJZLnz5/PfipUAusKVQGzgDufz09MTKSdRQkkEkmfPn0AQFN+uaOvUv+Ge2xsbJ06dQDA39+fdhY1lZSUxOzgffv2bZlTr169YjZwfvToEZVsFZg1axYAjBkzRv7U1KlTAWDy5Mnsp2JgY5QQUlhImjYlHA65d0/2lFhMvv2WcLnkyRMaySqEdaXpsOGuRBkZGczs2PXr18uf9ff3Zz7MjomJYT8bQkqn7IZ7aU+fkkWLyODBZMAA4uhILl1SylUzMjIEAsGJEyfc3Nzs7OwsLS0N5JavMTExqVOnzis1WE1eiQIDA8tsv9ZaUql05syZANCkSZNKdg18fHyYPTd+/vlnkVpOCCrtjz/+AICZM2fKHD9+/Hjbtm1XrVpFI1QVSaVSY2NjAHj79i3tLNT88ssvAGBjYyN/avbs2QAwevRo9lNV4Pr16wBgaGiYmpoqc+rixYsAUK9ePfl9MhDLsK5QFdjb2wPAtGnTaAdRggMHDgBA8+bN8/LyaGdByqHmDXehUPjNN98AgL29Pe0sam3dunUA0KtXL4lEInOKuWfXyspKrWZHVfBBNf3baLAx+p916wgA6dWLyJUVWb6cABArK6JOZYV1VRNgw12Jxo0bBwB9+/YVCoUyp169esX8UR86dIhGNISUT2UN9717CZdLevQgixeTzZvJiBEEgMycqdgvwPR08uAB8fffs3Wrvb19z549DQ0Ny1wYp1mzZoMHD/755589PT3PnDnD/CixsLCoSe++hgwZAgC///477SDqws3NDQD09fUVmvIfEBCgq6sLAJPHjyfqXR5z584FAB8fnzLPqtVblK+Ki4sDgKZNm9IOQlNGRgaz0PbZs2dlTlVwqyktYrG4W7duZa4CJBQKO3bsCAA7d+6kkg2VhnWFqqCCyaeaJScnh1kG+ujRo7SzIKVR84b7smXLAKBt27bZ2dm0s6i1goICZgH3g3IrgJT8y1WrlR4HDhwIACtXrpQ5ria30WBjlFFQQFq2JABlLCyTk0MaNyYARJ3KCuuqJsCGu7Ls2bOHmVsj/yGTUCjs168fANjZ2dGIhpBKqKbh/vQp0dIi/9/encfVlP9/AP/c2162bNlSyhoj+y5KjCHxNVMYk12WLxkGxRhhLGWZiexipkIUJpFlqBARXZJKpZo2JC3a13s/vz/O93t/fbt1u/d2t+r1fPhj5px7znmf8ZmzvM/78/msWPE/6fVTpyghtK7Zt8vKaHQ09fWlLi7U3p5aWtLOnSkhzJ/Zo0bxc+u6urpDhw61sbFxdHT09PSMiIgoKCiosbPCwkITExNCyNy5c2VygnKXlJTEZrO1tLRyc3MVHYtS8PHxYbFYKioq/v7+4m4bFhbWsUOHxHHj6MCBND1dFuFJBfMQ1tizIYwrV64QQqZPn67oQBTM3d2deUsXHJNu//79hJB+/foJfu1XiOPHjxNCevToIRjqwYMHCSF9+/ZVklAB7QokIKT4tBHZtGkTIWT06NGN6yM0CKfMCfc7d+6wWCxVVdWnT58qOpZG4Pz584QQPT09wY8TZ86cUaq+KRcvXiSEdOzYsUZOjVJ69uxZZQgViVG+8+cpIVRPjwp+8zp9mhJCu3VTlqoqtKumAQl3qYiOjtbS0iKE+Pj4CK5lnuiMjIwE/2cBaLxkk3C3t6ctW9Zyoxs5kn71FaWUvn5Nr1yh+/bRJUvo+PFUT4+fW/+fP61b02HD6Lx593777fz58+Hh4aKnm+Pi4pjKvkOHDkn13BTD0dGRELJ48WJFB6IUHj58yFSpHzlyRLI95MbHU2NjSgg1MKDR0dINTyoqKyu1tLRYLFbTuOX8/PPPhJBt27YpOhAFq6qqYub43bdvX41V5eXlvXv3JoQcPnxYIbFVxy+avnLlSo1Vnz59atOmDSHk1q1bCokNBKFdgQSEFJ82Fso8EjQ0hNIm3D99+tSpUydCiKurq6JjaRx4PN64ceMIIU5OTjVW8Sdw3rFjh0Jiq66kpIQZU9jDw6PGKuXpRoPEKB+PR8eNo4RQgWZFuVw6bBglhCpBs0K7ajqQcG+40tJSppOrvb294Nq7d++y2WxVVdWwsDD5xwYgO7JJuA8YQMeMqWX5hg2UxaL5+bRt25q5dXV1amRErayooyM9dYreu0eTkho4AJu/vz9ThBISEtKQ/ShcZWUlc0vGBYhSmlxaahsZ2cfMbMOGDQ3aUXY2HT+eEkJbtqRKluKJiopixpPp2LFjo6495GMmQrx69aqiA1G8oKCgugawvn79OtOJ5/PnzwqJjW/dunWEEHNzc8FVy5cvR2cFJYR2BRLgF5820i+71tbWhJAlS5YoOhCQMuVMuPN4vOnTpxNCJk6cWFVVpehwGg0Oh8MMYJ2QkFBj1ZMnT5RkAmdmmMrBgwcLPnVv3rxZSbrRIDFaHYdD2Wyqrk4FmhV98oSyWFRLiyq6WaFdNR1IuDfcypUrCSEmJibFxcU1VmVlZTHJrr1798o/MACZkk3CvWNHWus8Qm5ulBCamEjnzKHW1vSnn+jJkzQoiKalyWhyky1bthBC2rVrp8CpSBrOz8+PGRNA0YEoXk5FxYyoqKEREdvi46WQiS4ro/PmUUKoqio9eVIaATZISkqKm5vbkCFDmNGTWrZsSQj59ttvS0pKFB1aQzEVYcnJyYoORCkwc8UsWrRIcNXUqVMJIatXr5Z/VHyxsbFqamoqKiqRkZE1Vr169UpFRUVNTS0uLk4hsYEQaFcgLh6Px4wt27hm4Wbcv3+fuVF++PBB0bGAlAlJuD99+nTnzp3RiuibyIzQ1aFDB8HvmiDcokWLCCGzZs0SXDVnzhxCyLx58+QfFV96erqOjg4h5OHDhzVW8bvRiDVflIwgMVrDokWUEFpbs6Jz5lBCqEKbFdpVk1Jrwv3NmzdsNtvU1FRRUUlAUQn3a9euEUI0NDRevXpVYxWPx7OysiKETJgwAR+zoemRTcK9WzdqZVXL8t27KSE0I0MmB60Nl8tlSmsHDx7ceLOWU6ZMUZIBARSrjMtd9Pbt0IgIu9jYEmnVffN41Nn5P90sHBxqmfBe9jIyMg4dOsSM2M5o3779ypUrf/vtN2aMhZEjR2ZmZso/MGnJzMxkZkdReBGHkkhKSqrrOZuflHz9+rVCYqP/Tc6uWrVKcNWECRMIIQ3tXAKygXYFEhBSfKrMKisrmWGUMLJHkyQk4b5ixQrmSalHjx4ODg6hoaHyebSIiIhQV1dnsVgBAQFyOFwTk5mZyaSr7ty5U2MVPympwCmLhCT9laobDRKjNWRm0latKCFUoFnR9HSqo0MJoQK5bvlBu2pKak24N0YKSbinp6e3a9eurmbGzOHUvn17fMyGJkk2Cffx4/8zVnsNy5ZRHR1aWSmTg9YhNzfXyMiIELJgwQJ5HldakpOTmelSc3JyFB2LInEp3ZiYODQiYkZUVI7Up9Tz8KBqapQQamNDBabyk5Hc3FxPT08rKytVVVXm7VFbW9vGxiYgIKC8vJz5TUxMjKGhIfNi+fbtW/kEJnWBgYF1jSPRbDGzMtTak3Tt2rWEEAsLC4UEduPGDebriODwI5cvX2aK+/Ly8hQSG9QL7QokIKT4VGkdOXKEEGJsbFxWVqboWED6hCTcHzx4sHz58g4dOvBrFIyMjDZt2vT06VPZZd4LCwv79OlDCFm/fr2MDtHk7du3jxlMoFLgNXD79u11DbshB0KGtWHGalOebjRIjArat48SQk1MqOCrIVNPNXiwQoqp0K6amkaUcE9LS7Ozs0tNTa11rfwT7lwu19zcnBAybdo0wds0h8NhPmZfv35dbiEByJNsEu5791IWi9bIDxYX086da+/3JWORkZHa2tqEkNOnT8v/6A20devWxvu1QIoOpaUNjYiY8OpVoox6Kvz993/KJMaMobIc6bi4uNjX19fKykpdXZ15V9TU1LSysvL09Kx1kvqPHz8yxe+6urqNdDaC3bt3o3y1Bv5cSefPn6+xij+x5LVr1+QcVXl5OZNT+P3332usKikpYb79nDp1Ss5RgejQrkACQopPlVNubi5TKoXXs6aq3jHcuVxuaGiog4ND165d+Zn3bt262dvbBwQECKZ0G8jOzo4Q8tVXX5XKqyaj6SkvL+/Vqxch5OjRozVW8SeWPHv2rJyj4nK5zDO2s7NzjVX82ciVpxvNoRs3vjt69FJoqKIDUSLl5bRXL0oIFUwXFxfTAQOqzMz8zp3zlHNUaFdNT6NIuBcXFzs7OzNZLzs7u1p/I/+EOzOTQdeuXQVrboqKipgXhHXr1sktHgA5k03CPTeXdu1KTU1pUtJ/lnz5Qr/9lqqp0ZcvZXLE+jAzg6mpqT1+/FghAUimsrKyS5cuhJDQ5n0XvJqVNTQiYiSHE15QIMPDREVRfX1KCO3Zk8bHS3nnJSX0ypWVCxdqamoyb4ZqamrTpk3z8vLKz88XvmlRUdHMmTMJIerq6t7e3lIOTPa+/fZbQkhjjFymzp07xzx/CH5oOXr0KFO1J+d3+wMHDhBC+vbtWyFQKbRr1y5CyKBBgzC4npJDuwIJCCk+VUJMOZ6iumuAHIg+aSqXy42IiHB2dmaSuYx27drZ2dlV7y/YEEwvHB0dncbb0VBJMGP46urqZmdn11h14cIFQkjHjh3lnM86c+YM86lG8I7JdKMxMjJSnm40rqmpQyMiLn/6pOhAlMtff1FCqK4uFWhW9OJFH0KInp5eva9a0oV21fQof8I9ICCAKWEhhFhZWdU1f6GcE+6hoaEqKipsNvv+/fuCaxcuXEgIGTBgQOMd+RmgXrJJuFNK37yhfftSFRU6aBAdNYpqa9P27alCxz1cs2YNIaRz585K0oFLFMyzad++fZvz4NehX74M53CGRUTcFHySkrr37+ngwZQQ2q4dlcpHjqoqGhpK7e2Z8vk1ZmZsNnvs2LFubm5iDcteVVXl4OBACGGxWILlEkqOGdMpJiZG0YEoFy6XO2LECELI9u3ba6yqqqoaOHAgke9c7Z8+fWrdujUh5NatWzVWZWRkMEOsPnjwQG7xgGTQrkACQopPlU1MTIyqqqqKikpUVJSiYwFZYRLu4pa8RUdHOzs79+3bl59519XVZTLvEue2EhMTmTzLuXPnJNsDVMfMSrV27doay/kTOG/evFluwfD7hPn4+NRYxe9G4+/vL7d46oXEaF2mTKGEUIFmhXYlErQrUShzwp3D4TDtnBAyZMgQ4fNhyDPhnpeXx/Re2rZtm+Ba/sfs2NhYOQQDoCgyS7hTSisr6f379Pff6YED9No1Wlgow2OJoKKiwszMjBAyduxYwTo75cTM+CrYDb/5eFtcPO7ly6EREWfk9pkkP59+/TUlhGpp0Rs3JNwJl0tDQuiKFbRdu//MyEoIHTEi/cSJjAZMGuzm5qaiokIIWbRokfK0YS6XGxwcXNfd/cuXL8wgho2icFLOwsLCmP84gmUIzAiPLVq0kNsEMsuWLWNqIgRXzZ8/nxBiY2Mjn0iggdCuQAJCik+VSl0JO2gy8vPzx44d2759e21tbckK1ZnM+9ChQ/mZd21tbWbsvkJxXkYqKipGjRqFy5QUCflg9vLlS2YC53ip9zGtw8aNGwkhY8aMEaxqUs5uNEiM1uXNG6qqSlVVaXR0zb9KtKt6oV2JYty4cS1btly1alWBTHvbiyk7O9vBwYFJDrRr187NzU14h9F79+61b9++devWnTt3lsOs48y8wSNGjBDMWiQlJTHfMDw8PGQXAIAykGXCXflkZmYyoz02ilmP0tLSVFRUNDQ0srKyFB2LYnyqqPgmKmpoRMTW5GS5VvhXVdHVq2nLljQy8j9LoqLoxo3UyopOn04dHGh4eJ3bRkdTZ2fao8f/59lNTKizs7TGqLl9+3bLli0JIZMmTVL4HIPR0dGOjo7MqEd1PT6GhIQQQkaOHCnn2BqL77//nhBia2sruGrWrFnMxxU5hPHq1SsVFRU1NbW4uLgaq5jsraamZl2dE0EJoV2BBJQ/l/3XX381iq8CILGnT5/26NGDEMI86vAL1RcsWHD9+nVxh8NKTk52c3MbO3Ysi8VidqWlpcVk3kUZYmLTpk2EkB49eihnVWMjJSTnuHjxYkLIzJkz5RBGYmKihoYGm81+/vx5jVVK240GiVEh1q8vnzjxzrRp/xJctWTJEkKItbW1HMJAu2qqmKdWZqSg8+fPK3zsgYqKCjc3N6YLqZqamoODg/D7VHR09OTJk5n7YNu2bfm31x49emzcuFEWs46fOHGCENK6devk5OQaqyorK0ePHk0I+e6776R7UAAl1LwS7pTSp0+famhoEEL+/PNPRcdSj19++YUQMn/+fEUHohhFVVVzY2KGRkQsj48vV8hdjT8DweHDlM2m/ftTe3u6cSMdPpyyWLRG3ygmz9679//n2bt3pw4O0hmX5n9FRkYy34369++fkpIi9f3XKyoqauvWrcxAMQxjY2PB8SsYTMfwVatWyTnIxkLIqBpJSUmamposFitcyAceKZkwYQIh5KeffqqxnD8+yS+//CLrGECK0K5AAkqbDmA0onFvQAI8Hs/NzY2ZT37YsGEJCQlJSUlMupz/sMFPl4tbY5icnHzgwIFRo0bxM++amprW1tZBQUF1bXL37l02m62qqhoWFtbgk4P/J2TS48zMTCZ/JIcJnGfMmEEIWbp0qeCqr7/+mhCyZs0aWccgLiRGhRAyWgt/aDu0q1qhXYno+fPnTJqYEDJ8+PAnT54oKpJ79+6ZmJgwkVhaWgoftTU3N9fR0ZG5t+rq6rq4uJSWlsp61vGYmBgtLS1CyOXLlwXXOjo6EkL09fVzcnIafiwAJdfsEu6U0mPHjjFP7RwOR9Gx1Kmqqqp79+61pkuag0oeb3VCwtCIiO+io/MVO5ne06eUzaZr1tDqSf9t2ygh9MYN+uUL3b2bDhjw/3n2Ll3ojz/SZ89kGlRGRoapqSkhpFOnTi9evJDpsfhSUlLc3NyGDBnCvzd37dq13v5odnZ2hJDTp0/LJ8jGaOfOnaSOeSOdnJwIIaNGjZJpJcWlS5cIIR07dhTsM/HHH3+QOmbgBCWHdgUSUM4O7wz+zK7KM6IaSEtmZubUqVMJISwWy8HBocYYMv/880+NQnVNTU0m8y5u7XlWVpanp6eVlZWqqqqQ4pusrCxmFGZ5znjRfBw+fJip1RAcW9/FxYUQ0q9fP5n+b37//n2mF4XgtF78bjSfP3+WXQCSQWJUOCHzkaJdCYF2JToej+fr66uvr8/crWxsbFJTU+UZQFxcHDMIOyGkT58+gYGBQn5cWVl56tSpDh06EELYbLadnZ3gqAnMCGxSn3W8oKDAzs5u2bJlgqtCQkJUVFRUVVUV+MUCQJ6aY8Kd/rdzmaGhodL2Sr5+/TpzJVV4lyWF2JOaOjQiYsrr1x8acK2XjnnzaPv2tMajG5dLjY2phQUtKKBaWpQQqqtL7exoQACV10jlBQUFzNupjo6OYJWQFGVkZNR40eXPQibKN/ABAwYQQuT2VaAxKikpYaaVF/wsUVhYyIzY4+3trcCjnz9/XkZHB9lBuwIJCCk+VazMzExmuE85lCiCnP3999+dOnVivs8JTx+kpaW5ublZWloy6XJCiIqKigQT0VNKP336dPLkyVrL63g8npWVFSFkwoQJwsfDBclUVlZ+9dVXhBBXV9caq8rLy3v37k0IOXLkiOyOzjya7t+/X/DoTOLJ3d1dRkdvCCRGhauqqkK7kgDalbiKioqcnZ01NTWZ13BnZ2dxhzuTgGChuvCEeFBQ0MCBA5kbpbm5+evXr4XvXxazjgsmCvgfs3fv3i3ZPgEanWaacC8tLR02bBghZPLkycr5MM086x88eFDRgcjcqoSE5fHx1f94f/y44O3bcS9fxhQXKzo6SvX16bRptSxftIhqatKqKnrkCA0MpIoouKusrLS3t2deOKX+BJmbm1u9CozpFGJjYyPWF+/S0lJVVVVVVVU5PIg0avXWAk+cOFFGh/b392ez2QqsgwbZQbsCCQgpPlWgRYsWEUJmzZql6EBAmsrKyhwdHdlsNtMvXrAstC6fP39mHlHU1NRqZN4bPiP0wYMHCSHt27eX2+TSzZCQWmB/f3+me5aM7hHBwcEqKio9e/YUvMQpeTeM0EYuAAAgAElEQVQaJEbrVW+7kl2NOdpVc5OWlsZ04yaE6Ovre3p6yuhAXC7X09OzeqH6J6F/We/evbOxsWEC6969u7iBRUdHu7i4VB/MTbJZxwXxeDxmzCUzMzPlzL8ByEIzTbhTSlNTU5krV11jT0tdSUnJ69evr1y5sm/fviVLlpiZmdX1Npuenq6ioqKuri78eto0jORwlsfFnXj/nv/nyZcvpVzuayUZakBdna5YUcvy7dspIVQJhh5zc3Njas8dHBy4XG4D91ZSUuLr62tlZcV8Qq/ecVuswR+YMrRhw4Z17Nhx9OjRDYyqORAy2vW5c+ca0q2vXs+fPxfsgiDPkb5BdtCuQFxCik+rmzZtmrlUxcbG1nUsDofDZrPV1dUTEhJkcMagGHFxcYMHDyaEqKqqOjs7S/YAk5OTw2Te+Q8tbDZ77NixLi4uiYmJEuyQw+Goq6uzWCxl6+TR9FhbWxNClixZIrjqjz/+KJZlzU1UVFSowBxLyt+NBolRUQhpV5aWliwWS3aJUbSrZig4OFisQnKZ7l+6pfcNnHVcEDOvm66urpzH4QFQrOabcKeUBgUFqaqqslisq1evSnfPFRUVSUlJ9+7dO3XqlIODg6WlpZGREVPCU11dr5c7duwghMydO1e6USmnkRzOKWWuIdLWpgsX1rJ80yZKCFWOrwKXL19mbq6zZs2S7BWltLQ0ICDAzs6OmWiRXyx26tQpse6pmZmZ7u7uY8aM4d+bu3fvjo/Yonj16pWKioqamlpcXJyiY6GU0lmzZhFCFi1apOhAoEHQrkACQooE+fg3C2l5+vRprQfi8Xjjxo0jhDg5OcnsjEHePD09W7RoQQjp0aNHXX/1YsnLy/P19a3+GEMIMTExcXZ2Fv3qV1RU1KdPH0LIunXrGh4SCJeYmKihocFms58/f67oWChtDN1okBgVBb9dCX7Xj4uLeybjSbYEoV01eeJWoItIrAp6Ho/n6enJDM7GYrHs7Ow+fvzY8BgYzCxuY8eO5eeyNDQ0LC0t3dzcRD/TqKgopuBGcFpjgKaNRSmV7itT4+Lq6urk5NSyZcvw8PB+/fpJsAcul5uamvru3bt3794lJCQw/5CamlpVVVXjl+rq6kZGRn369On1XyNHjtTW1q7xMx6PZ2RklJqaGhQUZGFhIeGJNR6jXr5c0qmTfZcuig6kDv37k44dSUhIzeVz5pCQEJKVpYiYavHkyZNZs2ZlZ2ePGDEiICBAT09PlK24XO7Tp0+9vb0vXbpUUFBACGGz2aNHj7axsZk7d66IOyGEfPnyJSAgwM/P7+7du5WVlYQQLS2tSZMmLViwwNraWkNDQ+Lzalbs7e3PnDkzffr0mzdvKjaS4ODgSZMmtWjRIj4+vovS/r8JokG7AgnMnDkzICBgyZIlZ8+erfUHjx49EnzOaYhhw4YxZYA1XLhw4YcfftDT00tISKj1B9C4FBQUrFq16uLFi4QQOzu748ePM5l3aSktLb1//76fn5+/v39hYSGz0MTExMbGxtbW1sTERMi2ixYt8vT0HDBgwPPnz7W0tKQYFdRq8+bNBw4cGD169JMnT/iFGgrx8uXL4cOHq6qqRkdHV58/UKnsT0vz/fx5s76+bceOio5FqTk6Ou7fvx/tSkRoV1KRl5fn6ur6+++/V1RU6OrqOjo6rl+/nt/1SizFxcUHDhxwdXUtKyvT0dHZuHGjk5MTU1pXqxcvXqxbt+7p06eEkOHDhx8+fHj06NGSn0ndPn/+fPv2bT8/vzt37jBPgCoqKqNGjbKxsZkzZw6T7q/rjIYNGxYXF7d27VpmcmOAZkTRGX8F4/F4tra2hJA+ffqIUsmbm5sbERHh6enp6OhoY2MzdOhQwYw5o3PnzpaWlvb29i4uLr6+vtHR0SLW+TI5EWNj42Yyvu1IDsc1LS2ltJT/R9ER/a8ff6QaGrTGV+L8fNq2LbWzU1BMtXv37h3zMNejRw8hffP5kpKS2rdvz2+xw4cP/+233zIyMkQ/YklJCVMXz/+/QENDg+lrVlBQ0IBTaaY+ffrUunVrQsitW7cUGEZVVRXTe3Hfvn0KDAOkBe0KJKAkxaclJSXdu3cnhJw7d06BYYC0hIeHGxsbE0Jatmwpu0mbGfyue8wFkGFkZOTg4BAaGir4jH358mVCiI6OjihPUCAVBQUFzAR6Fy9eVGAYPB5v/PjxhBBHR0cFhlEvVCKLCO1KLGhXUhQXFzdt2jTmdtOnTx/h04DXKjAwkGm9bDZ74cKFwqc2ycjIsLOzY74qdenSxdPTUz7po+zs7FoHc3Nzc6s1k7B48WJCyIABA0pKSuQQHoBSae4Jd0ppYWFh//79CSGzZs0SfpFiJh+vgcVi6evrW1hYrFix4uDBgwEBAXFxcQ0ZGHfmzJmkvrFTm5KRHM7QiIjqf5TrO0NqKm3VipqbU/4cO/n5dOZMqqFBY2IUGlktsrOzmUlOdHV1g4ODhf+Yx+MZGBgwHa7j4+NFP0pZWRnzEtuyZcsad9msrKyGnUFzd+DAAUJI3759FTix0tGjR5msBKa6bTLQrkACmzZtIoSMHj1agZ//f/nlF0LIkCFDGj5DCSgWj8dzc3Nj5jgdNmzYu3fv5Hboqqqq0NBQBweH6v32DA0Nq2fek5KSmP4THh4ecgsMKKUeHh6EkG7duok1UZB0nT9/nhCip6f35csXRcUgCiRGRYd2JTq0K6m7d+8evzeVpaVljDgZg2fPnrFYrOHDhz958kTIz0pKSlxcXJg3cS0tLUdHR4XUuuXm5np6etrY2AgO5safdMfX15cQoqmpGRUVJf8IARQOCXdKKU1ISGDqX/bv3y/kZ998842uru7QoUNtbGycnZ19fX0jIiIaOF9zDR8+fFBTU1NTUxP+PbMpGcnhHEpL+1Bezv+j6IgEPHhAO3Wi2tp0wgQ6aRJt1Yq2a0cDAhQdVu1KS0vnzJlDCFFXV/fy8hL+Y7Hy41wul3llZUapYwwdOtTNza35NFdZKy8vZwaQ/f333xUSQG5uLtPv4dq1awoJAGQB7QokoPAiwbS0NG1tbRaL9ejRI4UEANKSmZn59ddfM0UqDg4OMp2uWYjKysp79+6tXLmyes93AwODdevWMRMFf/fddwoJrDnjcrnDhw8nhDg7OyskgEbUjQaJUdGhXYkO7UoWKioq3NzcmPySmpqag4OD6N9dHj9+LLzQISAgoEePHswtzMrKKjk5WRohN0h+fv6FCxdmz55dfeyHYcOGbd68mfkqcPr0aUXHCKAYSLj/R0BAAJvNVlFRETKHuBxqA3/99VdCiI2NjawPpDyUfdJURlER9fWlO3bQ7dvphQtUuUsVeDyes7Mz82br7Ozc8OLEiIgIBwcHJvNS/du1PCvUmo8bN24QQtq0afOZ36lCjtauXUsIsbCwkP+hQabQrkACii0StLGxIYTMnz9f/ocGKbp79y5TWt6xY0fFDmzFxxQQODo6MuPbMLEZGhrm5eUpOrTmKCwsjMViaWlppaSkyP/ojagbDRKjYkG7EhHalexkZ2c7ODioqKgQQtq1a+fm5ibiCMN1efnypZmZGXPbGjx48MOHD6UVqrTwx5vlT7rTunVrfMyG5gwJ9/+3bds2Qkjbtm3l9p0wLy8vIiLC19fXxcXF3t7e0tKSuTb9/fff8glAGTSOhHsjdPr0aVVVVULIwoULJasmi46OdnZ27tmzZ/Uu2I6OjhjeVNamTp1KCFm1apWcjxsbG6umpqaiovL69Ws5HxrkAO0KxKXAIsHHjx8zuZLU1FQ5HxqkpayszMHBgRledvLkyUrYGY7H4z179mzTpk2hoaGoIVCguXPnEkLmzp0r5+M2rm40Fz99Wh4XF4zPQiJDuxIF2pWscTgcZjR/5huMZK1C6rl7WWOmUVm6dGlycjI+ZkNzxqKUEiCEEMLj8WbMmHHr1q1BgwaFhYVpaWlJcefl5eXv37+PiYmJjY1N/q9//vlH8L9/SEiImZkZm82W4tGV2aiXL5d06mTfpYuiA2mC7t69a2NjU1hYaGFhcfXq1TZt2oiyVUpKyuXLlz09Pd++fcss6dat2+zZs21sbMaOHcu8OYNMvX371tTUVF1dvby8XJ7HZTpDrFy58vjx4/I8LsgH2hVI4PHjx2ZmZjo6OmVlZfI8Lo/H4/F4O3fu3L59uzyPC9ISFxc3b968yMhINTW1rVu3bt++vfk82YK40tPT+/btSwipqKiQ53F5PB4hZM6cORcvXpTnccX1uqiolMervqStqmrvakM3QK3QroRDu5KnGzduODg4pKSkEEKsrKzc3d0NDQ1F2bCysvL48ePOzs75+flqamqrVq3atWtX9cnAAUCZIeH+P/Ly8oYPH56UlGRnZ+fl5SXZTiorK9PT05mUOj/DnpKSwvvfWxohRENDo2vXriYmJv379zeqpsHn0Zgg4S5TUVFR06dPz8jIMDExCQwMFHJrz8jIuHr1qp+fX1hYGHNZaNu27fTp0xcsWGBhYYH3ZDm7e/fu0aNHb968KefjXr582cLCghluG5oetCuQQGBg4K+//hoeHi7n4wYEBFhaWkq3+gHkw8vLa/Xq1cXFxX369PHx8Rk8eLCiIwJlFxQU9Mcff1y4cEHOx/X29p44cWK3bt3kfFyxzI6JSS8rq17yMqF16wP/HRAJhEC7EgLtSs5KS0uPHDmye/fuoqIiLS0tBweHbdu2tWjRQsgm9+/f//HHH2NiYgghlpaWbm5u/fv3l1e8ACAFSLjXFBUVNWbMmOLi4uPHj69atare33/48KF60XpMTEx8fDyXy63xMzU1NX19fSafzs+wGxoaIo8ZWVSkp67eWV1d0YE0We/fv7eysoqMjOzUqVNAQAAzPgBfbm7uzZs3vb29g4ODmW9CrVu3tra2trGxmTp1qpqamoKiBsLlcgW/0ska/sabPLQrkACaDYiooKBg5cqVPj4+hBA7O7vjx48LzyYA8OE6U5fZMTFf6ejsFK0eFmpAu6oL2pVCvH//fsuWLefPn6eUdu3ade/evXZ2doI9yBMSEjZs2BAYGEgI6d2796FDh6ysrBQRLwA0CBLutfDx8fn+++/V1NSCgoL4Q24RQvLy8mqMCRMbG1taWlpjc1VV1e7du/PL1Zn0uoGBATPqFoD8FRYWzpkz5/bt2zo6OhcuXJg5c2Z+fv7169f9/Pzu3r1bWVlJCNHU1LS0tLSxsfnuu++00Z0QAAAAxPH8+fN58+YlJye3atXq+PHj8+fPV3REAE0BEqMgC2hXCvT8+fN169Y9e/aMEDJixIjDhw+PGjWKWfXlyxcXF5fff/+9oqKiTZs2Tk5O69evV0dtIkDjhIR77davX+/m5tauXbu5c+d+/Pjx3bt37969ExzAlM1m6+vr9/qv3r179+rVq0ePHo3iszY0K5WVlfb29n/++aeKioqpqWlMTAwzjrO6uvqUKVPmzp07c+ZMlKEBAACAuCilR44c2bRpU2Vl5fDhwy9evFh9xnUAaAgkRkEW0K4Ui1Lq7e3t6OiYmZnJYrF++OEHFxeX+/fvb9q0KSsri81mz58//+DBgx07dlR0pAAgOSTca1dVVWVpaZmTkxMdHc1fqKurW2NMmL59++ro6CgwTgCxHD58eMeOHWw2+8uXL6NHj7axsZk3bx5u5AAAACCZT58+LViw4O+//2axWGvXrj1w4ABq8QCkaHZMTAWP169a99Mt3bu3RXUXNAzalTIoKCj49ddfjxw5UlFRoaWlxYydYG5u/vvvv5uamio6OgBoKCTc61RYWJicnHzz5s2ePXsyBewtW7ZUdFAADZWdnR0VFdWvX7/OnTsrOhYAAABoxK5fv7506dKcnBw9Pb0///xz6tSpio4IoKmZHRNDCBlW7T10dZcubVRVFRcRNAVoV8ojMTFx69at7dq1u3v37o4dOxYsWKDoiABAOpBwBwAAAAAAMZSVlTk6Orq7u1NKJ0+e7OXl1alTJ0UHBdAEYegPkAW0K2XDzO7LZrMVHQgASA2+YQIAAAAAgKiSk5NnzZr15s0bDQ0NV1dXBwcHFoul6KAAAAAaK6TaAZoeJNwBAAAAAEBU7dq1Kyws7NOnj4+Pz+DBgxUdDgAAAACAckHCHQAAAAAARNW6devbt2/r6+vr6OgoOhYAAAAAAKWDhDsAAAAAAIihb9++ig4BoFkY0qKFoaamoqOApgbtCgBA1jBpKgAAAAAAAAAAAACAFGBmBgAAAAAAAAAAAAAAKUDCHQAAAAAAAAAAAABACpBwBwAAAAAAAAAAAACQAiTcAQAAAAAAAAAAAACkAAl3AAAAAAAAAAAAAAApQMIdAAAAAAAAAAAAAEAKkHAHAAAAAAAAAAAAAJACJNwBAAAAAAAAAAAAAKQACXcAAAAAAAAAAAAAAClAwh0AAAAAAAAAAAAAQAqQcAcAAAAAAAAAAAAAkAIk3AEAAAAAAAAAAAAApAAJdwAAAAAAAAAAAAAAKUDCHQAAAAAAAAAAAABACpBwBwAAAAAAAAAAAACQAiTcAQAAAAAAAAAAAACkAAl3AAAAAAAAAAAAAAApQMIdAAAAAAAAAAAAAEAKkHAHAAAAAAAAAAAAAJACJNwBAAAAAAAAAAAAAKQACXcAAAAAAAAAAAAAAClAwh0AAAAAAAAAAAAAQAqQcAcAAAAAAAAAAAAAkAIk3AEAAAAAAAAAAAAApAAJdwAAAAAAAAAAAAAAKUDCHQAAAAAAAAAAAABACpBwBwAAAAAAAAAAAACQAiTcAQAAAAAAAAAAAACkAAl3AAAAAAAAAAAAAAApQMIdAAAAAAAAAAAAAEAKkHAHAAAAAAAAAAAAAJACJNwBAAAAAAAAAAAAAKQACXcAAAAAAAAAAAAAAClAwh0AAAAAAAAAAAAAQAqQcAcAAAAAAAAAAAAAkAIk3AEAAAAAAAAAAAAApAAJdwAAAAAAAAAAAAAAKUDCHQAAAAAAAAAAAABACpBwBwAAAAAAAAAAAACQAiTcAQAAAAAAAAAAAACkAAl3AAAAAAAAAAAAAAApQMIdAAAAAAAAAAAAAEAKkHAHAAAAAAAAAAAAAJACJNwBAAAAAAAAAAAAAKQACXcAAAAAAAAAAAAAAClAwh0AAAAAAAAAAAAAQAqQcAcAAAAAAAAAAAAAkAIk3AEAAAAAAAAAAAAApAAJdwAAAAAAAAAAAAAAKUDCHQAAAAAAAAAAAABACpBwJ4SQjIwMW1vb9PR0cTesrKy0tbWNiIiQRVTQBOzatevMmTPibhUWFmZrayuLeKCJKS8vt7W1ffnypbgburu779+/XxYhQdPg6+u7YcMGcbfKy8uztbWNi4uTRUjQBJw5c2bXrl3ibvXPP//Y2tp+/PhRFiFBE7B///4jR46Iu9XLly9tbW3Ly8tlERI0dlFRUba2tsXFxRJs+/Dhw/nz50s9JGgazp8/7+TkJMGGXl5eW7dulXo80DS8efPG1ta2sLBQ3A3Xrl37119/ySIkACDNJ+FeWlp6+vRpe3v71NRUwbX5+fl+fn5fvnypsTwuLm7Tpk0zZsxYtGiRl5cXpbTGD6qqqvz8/N6/f19jeUZGhrOz86xZs77//nt3d/eKigopngsolRcvXqxater8+fO1rg0JCan1e0xOTs7evXvXrl1bVlYmuDYtLc3Pz09w+f3795cuXTpjxoyVK1c+fPiwgZGDsnnx4sXq1atrtKWqqqrLly8vW7YsMjJScJPKyko/P78PHz4IroqJiXFwcDh27Fitx3r27FloaGiNhWVlZadOnZo3b96//vWvLVu2pKWlSXoqoCwopXfu3Fm2bFlQUBB/YUhIyIr/9fjx4xobRkdH37lzR3CHFRUVnp6ey5cvrzWrXlJS4ufn9/nzZ8FVr169+ve///3HH3807IRAKeTm5rq4uKxZs6akpIS/sLS01M3Nbfbs2TNnznR1dS0qKhLcMCIiIiQkRHB5SUnJiRMnVqxYkZGRIbg2Ly/Pz89P8DUyJibmp59+mjFjxpIlSy5evCj4kAaNCKXU399/8eLFM2bMWLt27evXr6uvjYyMXLNmzdmzZ2vd9vHjx8+ePRNcnp+ff/DgwdWrVxcUFAiu/fDhg5+fX2VlpWAkd+/eXbZs2b179yQ9G1AKCQkJmzdvtra2Xrhw4Z9//snj8firAgMDFy1aNG3atHXr1tV6O8vMzPTz8xPyPYa5ZG3atElwVUpKypUrV2oszMjIqHHnxQ2x8QoKCrK3t58xY8aqVasePXrEX15eXn7s2LHvvvvO2tp69+7dgrkFQsjr168Fry1VVVXnz5//4YcfrK2tf/rpp1rbZGRkZK0XpbKyMg8PD3t7++Tk5IadFigSl8v18fGxs7ObMWPGhg0bYmNj+at4PJ63t/fcuXOtrKw2b95c6wvap0+f6rpkBQUFLV++/NatW7UeNzAw8O3btzUWZmdn7969e/bs2XPnzt2/f3+t91AAEEXTT7jn5uY6OzsbGBisWLHizJkzKSkpIm54/fr1QYMG/f3334aGhp8/f164cOF3330nyobh4eEDBw48f/58165duVzu+vXrx48fj5x70xMQEDB+/PgRI0acPHny+vXrIm6VkpLy73//u3v37j///PPRo0erZyuE27Jly/Tp0/Pz83v06PHy5cuJEydKUM8FyikgIMDMzGzEiBEnTpzgt6WSkpJDhw4ZGxvPnTv37NmzNbIPQoSEhEydOvWrr75yd3f38fERcauioqKJEyc6Ozvr6Oh06tTJy8urf//+b968keR8QAlwudyzZ89+9dVX33zzzdmzZ6u/ED548MDLyyuvGg0NjXp3WFBQsHfvXkNDw0WLFnl4eMTHx4sYye3bty0sLIYMGXL8+PGrV69KeD6gHFJTU9esWdO9e/ctW7YcO3aMX/5ZVFQ0duxYR0dHNTU1VVXVHTt2jB07VpTi0Ozs7G3btnXv3n316tWnT5+uNeFeKz8/vyFDhoSEhBgaGn748GH+/PkoKW3U7OzsbGxs8vLyDAwM7t27N2zYMF9fX0LI3bt3J02aNHjw4GPHjgkmMeuSkZGxfv16fX39TZs2nThxIi8vT5SteDzeuXPnBg4cOHXq1LNnz6KyoVELDAw0NTW9ffu2gYFBbm7ukiVLZs2axazasmWLlZVVYmJihw4d/vrrryFDhjx9+lSsnT9//nzt2rWBgYHe3t4ibhIfH3/69On09HT+nVdFRUW8UwLl4OTkNHny5LS0NENDw/Dw8IkTJx4+fJgQUlZWZm5uvn79ekqphoaGi4vLyJEjRbn4VFVVWVtbr127ls1mGxgY+Pv7Dxw4UJTrT15e3s6dOw0MDJYvX37mzJl//vlHCqcHisDlcmfPnr1y5UpCiKGh4Y0bN0xNTe/fv8+sXbRo0YIFC4qLiw0MDLy9vQcNGiRKX1JKqaen56BBgywtLT08PIKDg0UMJj4+3tTU9MKFC126dFFXV9+1a9fw4cPz8/MlPjuA5qzpJ9wLCgpiY2N/++030R/TGd7e3t9+++3Lly/d3d0DAwN/+umna9euvXr1qt4N/fz8Bg4cGB0dfezYscuXL7u7uz9//vzGjRuSngEoqYcPH06ePDkyMrJ///6ib5WYmFhWVubj47Nv3z7Rt8rPz79+/XpAQMCVK1eOHDkSHh4+fvz4vXv3ih81KKNHjx5ZWlrWaEs8Hu/x48c///zzkydPxNrbkydPhgwZ8uzZMwsLC9G3ev78eVFRUVRUlIeHx4kTJzgcTlVVFfMKAY0Rm80ODg5eunRpUlISi8WqvurDhw/Gxsa+1QwfPrzeHZaXl0dEROzZs6fWynchQkNDx48fz+Fwhg4dKt45gPJJTk4uKSm5cOFCjTGpfvvtt1evXvn7+1++fPnq1as3btyIiooS5atwbm7uu3fvjhw5cvHiRbEi8fLy+v777yMiItzd3e/cubNmzRofH5/qFWHQiCQnJ4eEhFy7ds3f3//o0aOvXr3S19dnRh8KDQ0dO3ZsRETEiBEjRN9hWlpabm7uH3/8IVZpAovFCg4OXrx4cWJioqqqqtinAcrkwoULVlZWkZGR7u7uN27ccHJyunHjRnh4eHR0tKur67Jlyx4/fuzp6RkZGamnp7d27VrR91xVVbVy5cpJkyZZWVmJvhXTH9rb25t/512wYIHYZwWK9uXLlytXrhw7duzOnTvu7u4vXrwYOXLkjh07KKUnTpx4+vSpt7f31atX/fz87t+//+7duwMHDtS7z5iYmMTERA6H4+Xl5e7uHhkZ2bZtW1dX13o3LCoqevPmzYEDBzAkSGMXFxcXGxv74sULb29vpg3o6em5uLgQQu7fv+/t7b158+YbN24cO3aM6Tq/fv36evfJYrFCQkJ++OGHhISEFi1aiB7M7du3TU1NX79+ffToUS8vrytXriQkJNTa+R4A6tX0nyYNDQ2ZC4Ton/UYV65c4XK5/OqDmTNnHjp0KDo6evDgwcI3PHjwYI0NV69eHR0d/e2334ofPiivQ4cOSbCVpaWlpaUlIUSsMoTWrVvHxMTws2YsFsvY2PjZs2fVWxo0XgcPHhRc2KJFC+YBWtwuotu2bWP+gc0W45OqhYXFmzdv+G2sU6dOLVq0yM7OFuvQoDxYLNaFCxdqXfXx48cuXbqIu8MOHTpcu3aNECLunAH8T4M18v7QGJmbm5ubmxNCjh49Wn15cHCwsbHxN998w/yrpaWlqampv7//li1bhO+wd+/ely9fJoTcvn1brEhu3LjB5XL5V7lZs2YdPXo0OjraxMRErP2AMjAyMkpLS+M/z2hpaU2ZMuXs2bOVlZW7d+9mFop1ARkzZsyYMWMIIefOnRN9KxaLVdcIgdDoXLx4scbr2L59+2JiYoqLiymla9asYZa3bdt28eLFzs7O6enp+vr6oux53759sbGxr1+/dnNzEz2eDx8+aGhotG3bVtwTAaXSpk2b+Ph4fmxUD9wAABBsSURBVLtSUVGZPn36s2fP0tPTg4OD9fT0+LNwjRo1aty4cf7+/vUWSJmamsbHx/MvcS1bttTT0xPlCVxfX58pKKzeixEao/79+yckJPDbgI6OTufOnZk24OPjo6amtnnzZmZV165dbW1tPTw8cnJy2rVrJ3y3f/75pwTB/Pjjj+vWreMH07NnT0IIXgkBJNP0K9wbonoqkxmNVFtbW7INtbS0pB0dNC/VXzWjo6OvX79uY2ODbDtIUfU2dvLkyezs7Llz5yowHpCRjx8/dujQISwszM/P7/Hjx9WHtQWQjGAr6tevX62z5kiRxA9poIRqPM8UFRWpq6ujzBwaonqjYka40tLSErxYMV/pRLxexcfH792795dffunTp49YwWRmZnbq1Ck2Nvbq1au3b98WfUhJUDaCFyvy36ZFKa3+LC36fbD6Vv7+/tHR0XgCb26qt4GbN2++evWKaQOJiYkmJibVc+vjx4/ncrlJSUlyCKaiomL//v2ampr8IbkAQCxIuIvKz8+vZcuWEydOlGBD5uu3DIKCZmfFihUDBw40NTW1srKqa/YwAIllZWWZm5sbGhquXbv27NmzeNxvknJycnx8fObMmfPjjz+OHz/e1NRU1olRaPImTZqUlJTEHxYmKCgoLCwsKytLcEZKGfHz82vTps348ePlcziQqaKiotu3b0+fPh3dYkBa/Pz8tLW1LSwszM3NWSyWq6srM71Weno6M3lprfPP18Dj8ZYtW2ZgYLBx40ZxA8jJyUlNTTU3N9+wYYO1tbWBgQF/gGZovLhc7rVr10aPHt2hQ4dJkyZlZWWdOnWKWfX48eOQkJCSkpJap06tdVeTJk3q1avX7Nmz9+zZs2HDBlkGDkrK0tKyd+/e1tbWzs7Ojo6OhJD379937Nix+m+Yf2VGqZKdBw8emJmZde3a1d/f//79+3379pXp4QCaKiTcRRIcHOzl5bV169Z6e+7UEBcX5+LisnTpUrGG+Qaoy5QpU5jpy319fZFwB6nT1taeO3fu4sWL+/Xrt23bNlFmrYBGJzw8/P379+np6e/fv3/06FFKSsqSJUsUHRQ0bps2bTIzM5s/f76BgYGuru6CBQvatGnDYrHkU6F8584dHx+f7du3t27dWg6HA1nbsGFDcXGxWFPdAAgRGhrq4eHh6Oiop6c3cODA3bt3X7p0SU9Pz8DAwNjYuLy8nBAiysXqxIkTT548OXHihCgzjddw+vTpt2/fZmVlpaamJiYmdurUydbWtrCwUJLzAaWxZ8+exMREZpTRNWvWfP311ytXrtTX12/fvv23337bqlUrIlrTIoSwWKw5c+YsXLhw5MiRrq6u4o6FC02Dra3tggULxowZc/DgwXv37hFCanSbIP8tP5d1/1R9ff05c+YsWbJERUXlxx9/xJAyAJJBwr1+r169srGxsbKy+umnn8TaMC0tbfr06SYmJrUO0AwggW+//XbTpk3+/v4LFy7csGFDZmamoiOCJqVFixYrVqxwdnYODw/X0tISaxoxaCz09PQ6d+7M/PP48eMXLFgQHBycn5+v2KigUdPW1g4ODr579+7GjRu9vLzi4uLat2/fpUsXOVQoP336dM6cObNmzcL1qmlwdXU9e/bs2bNnjY2NFR0LNAWRkZGzZ8+2sLBgykUJIVu3bo2Ojt6zZ8+ePXvi4+P/9a9/EUK6du0qfD/p6elbt241Nzdv1aoVh8PhcDifP3+urKzkcDgFBQX1hqGlpcUvETUwMPj555/z8vIePnzYsJMDRTp79uzOnTv37ds3evRoQoi6uvqtW7eCg4M3b97s4eERHx/frVu3Nm3a6OjoiLI3Npttb2+/bdu2J0+e9O7de9myZTIOH5QR0wYePXo0YMCApUuXUkq7dOny+fPn6r/JysoihIg454TEjI2N//3vf7u6uj558uTVq1fMDK4AIC4k3Otx9erVCRMmjB49+vLly2pqaqJvGBoaOmrUKF1d3Tt37rRs2VJ2EULzZGZmVlFRERcXp+hAoGnS0tIaPnx4VFSUogMBmWPuUEznegCJqaioTJkyZe3atTNmzCCEcDgcZtZKmbp06dLkyZMnTZp06dIljPfd2JWXlzO5htOnT8+fP1/R4UBTcP369YkTJw4ZMuT69evVy9JNTExWr179ww8/9OjR4+HDhy1atBg4cKDwXfn5+RUUFAQHBw/7r6tXr+bm5g4bNiw8PFzcwJjaZ9x5Gykul7tt2zZ7e/udO3fyP+QQQthstrm5+dq1a2fNmqWpqfns2bPRo0eL++GZzWaPHTv2n3/+QQeIZovNZo8bNy4jIyM3N9fIyCguLq56Y3jx4gWbze7Ro4d8gjEyMuratSteCQEkg4R7nbhcrpOTk42Nzbx58/z9/cXqPHj69OlJkyZNmDDh0aNHurq6sgsSmgnmwa76YG1Pnz5lsVjdu3dXYFTQlGRkZDg7O1dVVTH/Wl5e/vLlSwMDA8VGBVJXWVl58uRJ/sjaJSUl169f79OnT4cOHRQbGDQlLi4u+fn5K1eulN0hqqqqnJycvv/++zVr1ly5ckWskghQQhkZGRMmTLh27dqtW7eWLl2q6HCg0eNyuTt27Jg9e/acOXNu3rypqalZ689evHhx7dq1hQsXamlpCd/h0qVLk/7X999/3759+6SkpHHjxtUbj5eXV/UxGXx8fNTU1EaMGCHWSYEyyMnJmT59+qFDh/74449t27bV9TM3N7dPnz6tWLGi3h3m5eVt2bKFP48uj8cLDw9v165dixYtpBY0KLf8/PwtW7YwczsTQiilz549a926dZs2bb777rvS0tKTJ08yq/Ly8i5dujRhwgTZPbeHhoaeOXOG/6+pqakfP37EKyGAZJpFNZCHh0diYiIzKdzp06dv3749depU4dOf8ng8S0vLBw8e9O/fX1dXl383HTFixOzZs4UfbvHixX/++We3bt0MDAx27drFLDQ2Nl6+fLkUTgaURkxMjLe3NyHk06dPzJt/q1attm7dWu+Gu3fvLioqioiIIITs2rVLU1Nz0aJFwqci+fz5s4+Pz7lz5xYvXtypU6ewsLDLly/b2dkZGRlJ63RAgWJjY728vIhAW7p69eqLFy+Y2Zb8/Pzevn07cuRIpu+zEOnp6ceOHSOEJCYmVlZWOjk5sVisegfDjYqKcnFx+fvvv5lLnK+vb2Ji4uXLl6VzhqAIISEhd+/eJYRQSoOCgsrLy3v27NmzZ08HB4fff//9X//6l6qqqp+fX2pqamBgoCg7PH/+fHR09KdPnwghXl5eT58+nThx4tSpU4Vv9e7dO2bCiYyMjLy8PCcnJy0tLWdn5wafHyjGnj17CgsLX758SQj59ddftbW1FyxY0K1btzlz5owYMYLH44WFhQUHB2/cuNHc3FyUHZ48eTIlJSU5OZkQcvz4cX9/fysrK+EJrMrKSgsLi8ePH5uamhJC+Hfe0aNHz5w5s6FnCHL36tWrKVOmZGdn29raBgUFBQUFMctXrFjB5XI9PDwIIenp6VlZWU5OThoaGjt37qx3nwcOHMjJyWGK8lxdXVu1ajVv3jymwQjx8OHD27dvE0J4PF5wcLCTkxMe4Bupb7755t69e/369dPV1f3ll1+YhUOGDLG1tV2/fj2Px+vYsWN8fPyVK1eYUd3r3WHr1q1rzBLRqlUrFRUVUR7Fs7OzN2/evGHDBltb286dOwcHBz948GDv3r3dunWT7OxAUVJSUiZOnJiamvrNN9/ExsY6OTkxy+fMmdO3b18bG5vBgwez2ezw8PC7d+/a29uLckt69+7dsWPHAgMD586dq6WlFRAQEBYWduTIEVFK48+dO5eQkJCenk4I8fDwuHfv3pQpUywsLBp4miBniYmJJ06cCAgI+P7777W1tQMDAx89enTw4EEVFRUrK6tp06Y5OTklJyd36dLlwoULBQUFzLQB9Xry5MmNGzcIIRUVFY8ePXJycjIwMFi1apXwrR4+fPjLL7/cuXPHzMzsy5cvZ8+e1dLSWr9+vRTOE6D5aRYJ94SEBGbqP0tLy6ysrKysrEGDBgnfhMvlqqqqWlpaEkI4HA5/uZ6eXr2HKysrE9yQy+VKFjworfz8fOavmGlOHA6nffv2omz4+vXrL1++sFgsS0vLmJgYQki9KdROnTpxOJyDBw/ev38/JyenW7dux44ds7e3b/BJgFL48uVLjbbEzM+ckpLCLLe0tCwvL+dwOPyht4UoLi5mturZsyezN1Ee2adNmxYREXHo0CFvb++qqqp+/frt379fxHwZKKfMzEx++yGEcDgcSumyZcsiIyOPHTv24MGDysrKCRMm/PjjjyYmJqLsMDk5mb/DgoICDofTq1everdifkkIGTBgABMGirYataioqNzcXEKIpaXl27dvCSHW1tbt27c3MTEJCgoqLCzs16/fzZs3p0+fLuIO4+Pjo6OjmR1+/Pjx48ePw4cPF75JZWWlpqam4LMWsleN1KdPn5jbX25uLtO6GIWFhVVVVcxfMXOZ4nA42traouwzOjr6w4cPhBBLS8t3794RQur9OkiqXTaZjBWHw8EDfCNFKRW8RLRt25YQ0qtXr7/++uvBgwcdO3bcs2fPypUr6y1vr1Xfvn3NzMxE+WX79u2jo6OPHj0aEhLy5MmTPn363Llz5+uvv5bgoKBYOTk5vXr16tWrFzN8P3/55MmTS0tLBwwY8ODBg4KCgl69el29erXeKj3GiBEjXr9+vX//fl9f37Kysp49e16/ft3a2lqUbd+9e8d/MMvOzs7Ozv7qq68kOzVQoKFDhzJt4MqVK6WlpUZGRvz2w2Kxrl27dvjw4Zs3b4aFhY0YMcLPz0/Ev+WsrCymeTBXKg6HU1paWu9W27ZtGzp06KlTp06dOqWqqjplyhRHR0dRHvgBQBCLUqroGBQvJiZmwIABUVFR4t6iSktLtbW1/f39UVEFtTI3N+/du/epU6fE2urSpUvz5s3D/5tQr6KiopYtW964ccPKykqsDefPn19QUMBUPQAI2r59+5UrV2JjY8Xa6v379926dXv06NH48eNlFBg0aitWrEhISAgJCRFrq5cvXw4dOjQ+Pr53794yCgwaNWtr6xYtWly8eFGsrW7evDljxozCwkJ8AgRBf//999dff52Tk8Pk6MXi6elpb29fXl4ui8Cgsdu0aVNwcHD1ZL2INmzYEBoa+uLFC1lEBY3d/fv3J0+e/PnzZxHr//iMjIyWLVsmSh99AJAAxnAHAAAAAAAAAAAAAJCCZjGkTL20tLQGDRokQXdCNps9aNCgNm3ayCIqaAJ69eolwbymurq69Y56BEAIUVFRGTRoUI1BRUVhaGjIn5kHQFDnzp379esn7lbq6uqDBg1CuSjUpXv37hJ03tLW1h40aFBdcx4CGBsbS/AM37p160GDBqmoqMgiJGjsWrVqNWjQIFVVSd6U27Vrh8d4qEvXrl2FT9xVl27duvXp00fq8UDTIPElq3///p06dZJFSABAMKQMAAAAAAAAAAAAAIBUYEgZAAAAAAAAAAAAAAApQMIdAAAAAAAAAAAAAEAKkHAHAAAAAAAAAAAAAJACJNwBAAAAAAAAAAAAAKQACXcAAAAAAAAAAAAAACn4P9kaMQzrSloAAAAA23pUWHRyZGtpdFBLTCByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQABOKG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRiQGRIaTQQGkA1MBNwMjAyOTAhNzBhMzSwILawYTKxsDK3sCO0cGEwdTgggjGxMHOysLs3gZSD/cKU+OxR54KKNpD+IscFI6EKLPsh/EPtLZtv9D0Mx9ILZZ9L99PiI9YDVxJ2vsra4vB7PNcr/a/+/gtAOxI7dEOlhc2Axm21ets39hvhBsznXhH3uv/doDZosBAIB/MRxTNT3FAAABKXpUWHRNT0wgcmRraXQgMjAyMS4wOS41AAB4nH2SXWrDMAzH33MKXSBGsj4cPTZNN8ZoAlu2O/R992dyS+cWzKQIJPsXo7/sAap9LO+XH/izvAwDAP7zuTt8MyIOZ6gJzKfXtxWO+2G+rxy3r3X/BA/H6s/kYd/O9xWCI4ycxDSbACYzVC+R4NXarxk2GHNSVqYCIyYlY+mRXI+khEpYvJLZXYw6pFQSk7gVj1YSurB5B9QAMflURKbgmCirdTgLjpJTYdfYJham3OEKvECIxpDAsc1K5FOHm67nsTGhVU1ZXanXoN+UUCbiXEkpJqgd8rQuTxdwu5J5W5d2JdVzG3wUwG26UqONsLq2QUUB1uZBEaXJliinpk4ivGmQCH5s9LGtWt/fWOTDLyj8g8al5Of6AAAAmXpUWHRTTUlMRVMgcmRraXQgMjAyMS4wOS41AAB4nB2Ouw3DMAwFV0lpAzTBx59EuAyQNkNoDQ8fKu3xcI/v78Ja6/ica+H1HJexZ2iScKZEDbov5bAwpUs4kOabgSUgczOt8kQzYa8cRX0rt7aEaw732cSAjt7gwvCOw9ygdPecdLOJBVBzK5ZtU09oVOg/DAX2B2Af6XQ+PxwYJdefERJDAAAA5XpUWHRyZGtpdFBLTDEgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAbihuYORkUADSjGxgigXKg1IcDBpAipmJzQFMs7A5ZIBoZkZiGNwMjAyMTAyMzAyMLAwsrAqsbBlMbOwJ7BwZTBycCZxcGUxcrAkijGysXJwc7GzifSAL4c6zlwk+IJxcbQ/idHZxHQC6dCmI7ZfseSBbeeJ+sHjy9P1ANljN8o/N+4HqweLVr47aCSf/3gdif27TtoeZ82A6q4Nf1x4we5qmnwNQjR2IrcFq4wDTyzXvkD1QDZgtBgDHGzKsyrZTjQAAATl6VFh0TU9MMSByZGtpdCAyMDIxLjA5LjUAAHicfVLbbsMgDH3PV/gHgmxjwDw2STdNUxNpy/YPfd//a3arjlRrAxhhcuLLOXTg42N6P//A3+Cp6wBwZ9Va4TsiYncCP8BwfH2bYVwPw+1mXL7m9ROIfKHPe+xhXU63G4IX6GPgqskCY6hKtuyAl9F+ZRih50BZCmboG+AfMl5DkuSshqRAMWqND5DiSPuuXDjBDjDB4kCMqMSe/GmZ2crEEDWnlBwo1Rh7VGW5AHNBZN3rWw3HAbXE6iVK4Voe4arhjEcmVo/3NC/hJWCNRSnttmLijZYxMYqot/8093Ge7kS9yjws89Rk9slNTHMgNsXclSaLu6mRT2a5MSxmpfEoZtroErPaWBEz2nYvvhFtuhTf8raZbenu3163nbtf25CaJa8/ewwAAACcelRYdFNNSUxFUzEgcmRraXQgMjAyMS4wOS41AAB4nFWOSwrDQAxDr9JlAh7jz4w/ZFnItofINXL4eAi0qdFCPJCs/b3sa+lz8DGPX+fSFCXDgDCDS7A1QbbuDFRekbtZQmNk1chC5UJc4UlIqaLtV0KoYWOMyXpS5kTmRBKPV4IUrllV3SUdthojLAnfkGCq/1czDqE+5qQ7tZ4XgXEsxaURduUAAACpelRYdHJka2l0UEtMMiByZGtpdCAyMDIxLjA5LjUAAHice79v7T0GIOBlQAAOKG5g5GDIANLMjIxsDhogBgubA1iAmRGJAZHhZFAA0oyYCrgZGBUYmTKYmJgTmFkymFhYGVjYEtjYM5jYGRNEGNkY2dlYmJnEs0CakRzg4MDAkKAK4R6wBxJLIGwH+4duy/ZD2fsR7AP7T500hqp3OIDQC1Zjj6QXzBYDACDxH4rKBqZgAAAA4HpUWHRNT0wyIHJka2l0IDIwMjEuMDkuNQAAeJyNkt0KgzAMhe/7FOcFlNgftZf+bYxhhc3tHXa/92fppFbZKCYeiPGDJAcFfNz66+uNNWQvBECJx1qLpyIiMcIXaIfzxaGbmzZ0uunh5jtqTvK5J5t5GkOnwASV0zdAv0XgJDoUuVm6WQJUDFJemQUscmktqfoPqBnMDpHGk+vwxOwSJ2RHrql2sxOj6+01CW5w/c7Wxeh2cn002qeMfmqWiq5pr+iNTxMNKFhlPJO/oYrHaFYdV9Ysud1su4d/D78K1+IDzdN4aUGZcQUAAABYelRYdFNNSUxFUzIgcmRraXQgMjAyMS4wOS41AAB4nPNPNkxOTtZw00xONlSo0TDWMdCxNtQzBVEGeuamOrqGekaWlgYmOta66HyoMl2wHogsXBKFp1kDAIVAFYG/TYONAAAArHpUWHRyZGtpdFBLTDMgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRjSADSjMxsDhpAmpmFzSEDRDMzIjEgMpwMCiCVcHF2iDgzNwMjAyNTBhMTcwIzSwYTCysDC1sCG3sGEztjgggjGyM7Gwszk3gWSC+S9Q4ODAwJqhDuAXsgsQTCdrB/6LZsP5S9H8E+sP/USWOoeocDCL1gNfZIesFsMQDSQx8f+oiBrAAAAN96VFh0TU9MMyByZGtpdCAyMDIxLjA5LjUAAHicjZLRCoMwDEXf+xX3B5TYVm0f1boxhhU2t3/Y+/6fpROtslFMvBDjgSQXBULc3PX1xhrSCQFQ4rHW4qmISAwIBdr+fPHopqZdOt348NMdhpNC7slmGoelU6CDyukboN9i4SRzRV7O3SwBKgYpr8sZLHJpLSnzB9QMZofIMpDr8MTsCidkR66pd7MTow08jnC9dztbZ6Pb0btodEgZ/dQsFV3TQdGbkGU0oGBV8Uz+hjoeo1kmrqxZcrvZdo/wvvwqXIsPv394aN/dNroAAABYelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wOS41AAB4nHNONkxOTtZw00zOM1So0TDWMdCxNtQzBVEGeuamOrqGekaWlgYmOta66HyoMl2wHogsXBKFp1kDAIRsFYCcBDt5AAAAqHpUWHRyZGtpdFBLTDQgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAdihuYORg0ADSzExsDmCahc0hA0QzM+JhsDtYgBiMzNwMjBpMjEwJTMwZTMwsCSysGUysbAlsjAkijGyMbKwszEzicUCVjHBrPSepOGzPjVYFcSapdNqregotAbE9Jy2xe+i2bD+InXd72n4E+9v+RnN9VSRxeyT1YLYYAP8wJsW5VGxuAAAA3npUWHRNT0w0IHJka2l0IDIwMjEuMDkuNQAAeJx9kVEKwyAMht89RS4widHW+rjWMsaowtbtDnvf/VmsOFsYJv0h6oeJfwWkuPvb+wO/IC8EADY+5xy8NCKKBVIB43y5BpjW81h2pvgM6wMsJ6Y8kuc1LmVHQQSSnVWGHKDELXZF4QgmUBIzd2qAmkGUmjKoJDmHevgDGgb5XNmBuzfJLpOONrLRuz9c2bjRQqhDNrg5+INb2b8xBl/9o6Rqk2HpaoZJqk9O2dV38QL6Or1h2TqjYdF+lH3jtC6/nGvxBbEUbuG7HNHEAAAAaXpUWHRTTUlMRVM0IHJka2l0IDIwMjEuMDkuNQAAeJzzt002TAaC6DyPWEOFGg0jPVNzQxNjHQMda0M9AxjTQM/YyNDEyFJH11DPyNLSwETHGsgyNLcwNUcVsjQCCRkgScNl4WbARDRrAOpdGriZH58WAAAAt3pUWHRyZGtpdFBLTDUgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAADihuYGRjSADSjMxsDhpAmpmFzSEDRDMzwgQ4GMA0E7uDBYhmZGaHSDDDdHIzMDIwMmUwMTEnMLNoMDGzJrCyJbCxM7AxJogwsjICBdjEs0Aq4ZbvYWQ6cOnWhf0gTnhsIJB2ALODrkvbnwuZDWZXH9tnD6RUQWy7ZHsHIKWGpMYeSS+YDTUTzBYDAPHCI7zDAUKUAAAA+XpUWHRNT0w1IHJka2l0IDIwMjEuMDkuNQAAeJyFkl1qwzAMx999Cl2gRpa/H5uklDLiwJruDnvv/am0kikhI5MikOyfbelPDIh9Dh/fT/g1GowBwIOv1gpfHhHNCJJAd7neGvTzuVtW+unR5jsUdhTfkud5GpcVBz2cyKJ3PiY4OZu8S5mPWfwxPUtCoi0uF644y/EN7EjPJNqEJccgVxLfTfEPMDDobKgYPK22d1yECcjWf7kETR8+eDczp6McTFI26hyIc2nDRta30N3UBhVanFTNwOFVsiChwsh+1PkDe9IxuYCs0ziOoj0HLmnd2boPqZdfhXPzArNXeQMKSQJNAAAAfnpUWHRTTUlMRVM1IHJka2l0IDIwMjEuMDkuNQAAeJw9jTkOgCAQAL9iCcmy2WU5Q6xo7HyAsaLnBTxejYFuislMbdya2k999ePuXLehjEUSlgCGMQiHBMUQJo5J4IXooRAGStG7T7EsXqAwukxOgKBYzBOXuLyV+ktrNl96PEzMHtg28boWAAAAvnpUWHRyZGtpdFBLTDYgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAALihuYORkUADSjGxgigXKgwk6aAApZhY2hwwQzcxIDIObgZGBkYmBkZmBkYWBhTWDiZUtgY09g4mdI4GDM4OJkyVBhJGNhZODnY1VvAlkC9xNs2Z6Opw9c2YxiGNsfNk+LS1NFcZmYDiwH4ltD2LPmilpB1MPZO9/6LYMrCYtje0Agm12wNDAShVJ3B5JPZgtBgBKwjDAG9q6SAAAAP16VFh0TU9MNiByZGtpdCAyMDIxLjA5LjUAAHicjZLbDoIwDEDf9xX9AZfuhuxRQI0xQKLoP/ju/8cWMzq8oN1K2u2k6wUFLKfmeLvDJLZRCgAXdowRrg4RVQtsQLXdHzqoh02VTur+0g1nMMh7XHN2M/RtOjGwA6dNoIAIK9Q4CoiRQAs1GF2El+s3zlHAiVsZHb6BPgcXuEAP4z8ZFgTSfYHpaRsjuvIDuWbSavObLJ9k+bPsOAu5EJFGkqe5QG67Zjaq5/CqvmtkeLysjIgccDIJdr30m90gbfWkhTTPk66lQ560lDZ40ijFelKT1+T5E/LU80TZT38o2eoBq/KNv4ax3EIAAABlelRYdFNNSUxFUzYgcmRraXQgMjAyMS4wOS41AAB4nHNz1nDTBKJkw2QQMFSo0TDWMzTVMdCxNtQzQ9C6hnqmUCaYZQBVpGugZwaSNLK0NDABco30DFG5FhBlIHGEMEgTjKdZAwBU3BtE5cUSVgAAAMN6VFh0cmRraXRQS0w3IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAC4obmDkZFAA0oxsYIoFyoMJOmgAKWYWNocMEM3MCGewQ2SYMWW4GRgZGJkYGJkZGFkYWFgzmFjZEtjYM5jYORI4ODOYOFkSRBjZWDg52NlYxZtAlsCdNGump8PZM2cWgzjGxpft09LSVGFsBoYD+5HY9iD2rJmSdjD1QPb+h27LwGrS0tgOINhmBwwNrFSRxO2R1IPZYgAQ8zCABjWHUgAAAQF6VFh0TU9MNyByZGtpdCAyMDIxLjA5LjUAAHicjZLbTsMwDIbv8xT/CyxyTl1zubZjQmipBIV32D3vL+yhzOmADieu7OST40MNRF6nl8snbuInYwDa2DlnfAQiMmeIgeF4ei4Yl8NQT8b5vSxvcCT7utbsYZnP9cThCcG6xAEJO7J0FahRQY8Rznbp7voHFzjgjds5m/4CYwtucIkfpv9k2DHI9x3Vp33OFPpfyL2Q3rrHZI8iZP+w7LwKuRGRR9KmuUEey7Qa1ffwhrlMOjxZXkfEDoJOQtyo/RY3aVsja6fNi6x77VBk7bUNkTVrsZHVtTVF+aQ29TZR8esfyrb5ArqZjcq+9EI3AAAAZ3pUWHRTTUlMRVM3IHJka2l0IDIwMjEuMDkuNQAAeJxzc9Zw0wSiZMPk5LzkZEOFGg1jPUNTHQMda0M9MwSta6hnCmWCWQZQRboGemYgSSNLSwMTINdIzxCVawFRBhJHCIM0wXiaNQBaBBtPsf6XVwAAALp6VFh0cmRraXRQS0w4IHJka2l0IDIwMjEuMDkuNQAAeJx7v2/tPQYg4GVAAE4g5gLiBkY2hwwgzcyMlaEBYrAIQGgm3CrgAtwMjBlMjEwJTMwZTMwsCSysCaxsGUxs7AnsHBlMHAwJ7MwJIkxsDBzszEyMrCzM7Gys4mVAnYxwd7H2CR9gYHDYD+JA2fYgtubVBqDYATD74bGpdjBxXp479udCZoPZ+cVqDkDxZUji+5HU70cyB8wWAwCBuymCNvo3fwAAAQp6VFh0TU9MOCByZGtpdCAyMDIxLjA5LjUAAHicfVJBboQwDLznFf4AkePYCTkusKqqakHq0v6h9/5fdXYFBqmbhJEcMwweOw7q+pw+fn5hXzQ5B4CNp5QC3xER3Q1qAMP17X2Gcb0MW2Zcvub1DgUCwmOfqZd1uW2ZACN05COKcIQOfRaV1k884jPYmHRiNoixEoOmk6BA8IIviKxE9FRIYlNQ4K4yOZQQeg0oRCH5h5dUj3xCzCVVK/jqx1mJu2DXUOyPFbaaU06eu4bp6zydBvAcybDMk42EFWR9Z0W07nKF9bBusVbpAZJ1hBXZfLOiN3esKOaB65XZy8DHaz4WfiyznrdLp7H7A7ruhh4WgqSuAAAAdHpUWHRTTUlMRVM4IHJka2l0IDIwMjEuMDkuNQAAeJxdjEEKgDAMBL/iUSEJ2cRYi8/JE7z6eFsoFbwsDMNOIjPt7pNYnpVNXCN2YpUSdE0eCFE9AgRppGLVwn1ISEGFNWfwcLpMDtWT9FM83fzyr8w9vT0vEOYf5QpVBvkAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"B1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "3922c336-05f6-4915-99bb-d56cac378b11", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No fragment was found in both subsets\n" + ] + } + ], + "source": [ + "filters.plots.most_common_in_subset(fragment_library_orig, clustered_fragments_custom, \"B2\")" + ] + }, + { + "cell_type": "markdown", + "id": "271528c4-ab39-407d-aeb7-63267301b89c", + "metadata": { + "tags": [] + }, + "source": [ + "## 4. Connection frequency between subpockets\n", + "\n", + "Count how often a connection between two subpockets (dummy atoms pointing to adjacent subpockets) appears in the individual libraries and calculate the frequency of each connection." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "261188e7-9a18-4b60-8629-1a0674e2dbec", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDIAAAH5CAYAAABzvh7wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHA0lEQVR4nOzdd1yV9f//8ecBkSGIG1BRcIsjV5paiiv3SE1Tc0RZaWZq5chc5Sgys7LcCGaucpTlHqg5Pq4cuTVcCWoONFBUuH5/+ON8PQLKoYOHY4/77XZuN6739b6u63XeXBd6Xuc9TIZhGAIAAAAAAHAATvYOAAAAAAAAIL1IZAAAAAAAAIdBIgMAAAAAADgMEhkAAAAAAMBhkMgAAAAAAAAOg0QGAAAAAABwGCQyAAAAAACAwyCRAQAAAAAAHAaJDAAAAAAA4DBIZACAg9i/f79eeeUVBQYGys3NTZ6enqpSpYpCQ0N15coVe4dnc4cOHdLIkSN16tSpFPt69OihgICAxx6TJJlMplRf+fLls0s8WdmpU6dkMpkUHh5u71BSderUKTVv3lx58uSRyWRSv3790qw7duxYLV26NEV5eHi4TCaTdu3alXmBPkTy9e9/ToKDgxUcHGxRL633+vvvv6tu3bry9vaWyWTSxIkTH1vs1vr222/tdi8FBwerfPnyj/Wa8fHxGjlypCIjIx/rdQHAEWSzdwAAgEebPn26evfurdKlS+v9999XUFCQ7ty5o127dmnKlCnatm2blixZYu8wberQoUMaNWqUgoODUyQthg0bpnfeecc+gUlq37693n33XYsyFxcXO0WTdfn5+Wnbtm0qXry4vUNJVf/+/fW///1PYWFh8vX1lZ+fX5p1x44dq/bt26tNmzaPL8AM+vbbb1OUpfVeQ0JCFBcXp/nz5yt37tx2SxCmx7fffqt8+fKpR48e9g7lsYiPj9eoUaMkKUViCgD+60hkAEAWt23bNvXq1UuNGjXS0qVL5erqat7XqFEjvfvuu1q5cqUdI3z87P3B2MfHR88880y669+8eVPu7u6ZGFHW5OrqalU7PW5//PGHqlev7hDJCWsEBQWlKEvrvf7xxx/q2bOnmjZtapNrJyYm6u7duxZ/pwAAsDWGlgBAFjd27FiZTCZNmzYt1Q8H2bNnV6tWrczbSUlJCg0NVZkyZeTq6qoCBQqoW7duOnfunMVxyV2ld+7cqeeee04eHh4qVqyYPvnkEyUlJZnrRUZGymQyad68eRo6dKgKFiyonDlzqmHDhjp69GiKeNauXasGDRooZ86c8vDwUO3atbVu3boU9Y4cOaJOnTrJx8dHrq6uKlKkiLp166aEhASFh4frxRdflCTVq1fPPHwjuVt5akNLbt26pSFDhigwMFDZs2dXoUKF9NZbb+natWsW9QICAtSiRQutXLlSVapUkbu7u8qUKaOwsLCH/h7SK/n8ixcvVuXKleXm5mb+VjUmJkZvvPGGChcurOzZsyswMFCjRo3S3bt3Lc5x/vx5dejQQV5eXvL29lbHjh21ffv2FMM0UhtCIKXePrdv39bo0aPN90X+/Pn1yiuv6NKlSxlun7/++kuvv/66/P39lT17dhUsWFDt27fXhQsXJKU9tOT48ePq3LmzChQoIFdXV5UtW1bffPONRZ2kpCSNHj1apUuXlru7u3LlyqWKFSvqyy+/fFjzS5LOnDmjl19+2eL8n3/+ufm+Tr6nT5w4oRUrVpjvr9SGMUn3hhPFxcUpIiLCXPfBdr9x44Z69eqlfPnyKW/evGrbtq3Onz+f4lwLFixQzZo1lSNHDnl6eqpx48b6/fffH/meJGn79u2qXbu23NzcVLBgQQ0ZMkR37txJUe/++yKt95o8JOXu3buaPHmyuTxZeu7V5N9vaGioRo8ercDAQLm6umrDhg2SpF27dqlVq1bKkyeP3NzcVLlyZS1cuNAi1uQ4NmzY8ND2CwgI0MGDB7Vx40ZzrI/qPfLDDz+oRo0a8vb2Nv99CwkJSXHtB3/vyW2W2pCOzZs365lnnpG7u7sKFSqkYcOGKTEx0aLO5MmT9dRTT8nT01NeXl4qU6aMPvjgA4s6j2rfU6dOKX/+/JKkUaNGmd9zcm+US5cumZ+95Oe5du3aWrt27UPbBACeGAYAIMu6e/eu4eHhYdSoUSPdx7z++uuGJKNPnz7GypUrjSlTphj58+c3/P39jUuXLpnr1a1b18ibN69RsmRJY8qUKcaaNWuM3r17G5KMiIgIc70NGzYYkoyAgACjS5cuxq+//mrMmzfPKFKkiFGyZEnj7t275rrfffedYTKZjDZt2hiLFy82li1bZrRo0cJwdnY21q5da663d+9ew9PT0wgICDCmTJlirFu3zpgzZ47RoUMH4/r168bFixeNsWPHGpKMb775xti2bZuxbds24+LFi4ZhGEb37t2NokWLms+XlJRkNG7c2MiWLZsxbNgwY/Xq1cb48eONHDlyGJUrVzZu3bplrlu0aFGjcOHCRlBQkDF79mxj1apVxosvvmhIMjZu3PjI9pVk9O7d27hz547FKykpyXx+Pz8/o1ixYkZYWJixYcMGY8eOHUZ0dLTh7+9vFC1a1Jg6daqxdu1a4+OPPzZcXV2NHj16mM8fHx9vlC1b1vD29ja+/vprY9WqVUbfvn2NIkWKGJKMWbNmWfwO69atmyLGB9snMTHRaNKkiZEjRw5j1KhRxpo1a4wZM2YYhQoVMoKCgoz4+Hir2+fcuXOGn5+fkS9fPmPChAnG2rVrjQULFhghISHG4cOHDcMwjKioqBQxHzx40PD29jYqVKhgzJ4921i9erXx7rvvGk5OTsbIkSPN9caNG2c4OzsbI0aMMNatW2esXLnSmDhxokWd1Fy8eNEoVKiQkT9/fmPKlCnGypUrjT59+hiSjF69ehmGYRixsbHGtm3bDF9fX6N27drm++v+++R+27ZtM9zd3Y1mzZqZ6x48eNAwDMOYNWuWIckoVqyY8fbbbxurVq0yZsyYYeTOnduoV6+exXnGjBljmEwmIyQkxPjll1+MxYsXGzVr1jRy5MhhPl9aDh48aHh4eBhBQUHGvHnzjJ9++slo3Lix+b6Iiooy173/vkjrvcbExBjbtm0zJBnt27c3lxuGke57Nfn3W6hQIaNevXrGjz/+aKxevdqIiooy1q9fb2TPnt147rnnjAULFhgrV640evTokeJ+SG/77dmzxyhWrJhRuXJlc6x79uxJs722bt1qmEwm46WXXjKWL19urF+/3pg1a5bRtWvXFNe+v+0M4//+5m3YsMGiTfPmzWsULFjQ+Oqrr8zPpSTjrbfeMtebN2+eIcl4++23jdWrVxtr1641pkyZYvTt29dcJz3te+vWLWPlypWGJOPVV181v+cTJ04YhmEYjRs3NvLnz29MmzbNiIyMNJYuXWoMHz7cmD9/fpptAgBPEhIZAJCFxcTEGJKMl156KV31Dx8+bP6gfb///e9/hiTjgw8+MJfVrVvXkGT873//s6gbFBRkNG7c2Lyd/J/6Zs2aWdRbuHChIcn84ScuLs7IkyeP0bJlS4t6iYmJxlNPPWVUr17dXFa/fn0jV65c5sREan744YcUHyaSPfhBPfk//KGhoRb1FixYYEgypk2bZi4rWrSo4ebmZpw+fdpcdvPmTSNPnjzGG2+8kWY8ySSl+po+fbr5/M7OzsbRo0ctjnvjjTcMT09Pi+sahmGMHz/ekGT+IDt58mRDkvHTTz9Z1OvZs2eGExnJH64WLVpkUW/nzp2GJOPbb7+1un1CQkIMFxcX49ChQ2m2VWqJjMaNGxuFCxc2YmNjLer26dPHcHNzM65cuWIYhmG0aNHCqFSpUprnTsvgwYNTva979eplmEwmi99L0aJFjebNm6frvDly5DC6d++eojz5w/CDz1xoaKghyYiOjjYMwzDOnDljZMuWzXj77bct6t24ccPw9fU1OnTo8NDrd+zY0XB3dzdiYmLMZXfv3jXKlCnz0ERGsrTe64MfxA0j/fdq8u+3ePHixu3bty3qlilTxqhcubJx584di/IWLVoYfn5+RmJiomEY6W8/wzCMcuXKpXq/pyY51mvXrqVZx9pERlrPpZOTk7mt+vTpY+TKleuhsaW3fS9dumRIMkaMGJHiHJ6enka/fv0eeh0AeJIxtAQAniDJXbofnAyvevXqKlu2bIohHr6+vqpevbpFWcWKFXX69OkU575/+EpyPUnmulu3btWVK1fUvXt33b171/xKSkpSkyZNtHPnTsXFxSk+Pl4bN25Uhw4dzF2n/63169dLSvm+X3zxReXIkSPF+65UqZKKFCli3nZzc1OpUqVSfd+p6dChg3bu3Gnxun/ugYoVK6pUqVIWx/zyyy+qV6+eChYsaNE+yXMTbNy4UdK936GXl1eK9u7cuXO6YkvNL7/8oly5cqlly5YW165UqZJ8fX1TdKFPT/usWLFC9erVU9myZdMdx61bt7Ru3Tq98MIL8vDwsIilWbNmunXrlrZv3y7p3j27b98+9e7dW6tWrdL169fTdY3169crKCgoxX3do0cPGYZhvlds7VHPx6pVq3T37l1169bN4n27ubmpbt26j1yZYsOGDWrQoIF8fHzMZc7OzurYsaNt34jSf68ma9WqlcVktydOnNCRI0fUpUsXSUrxe46Ojk4xLO1R7Wetp59+WtK9Z3XhwoX666+/MnSe+6X1XCYlJWnTpk2S7t23165dU6dOnfTTTz/p77//TnEea9s3NdWrV1d4eLhGjx6t7du3pzrECACeZEz2CQBZWL58+eTh4aGoqKh01b98+bIkpbr6QsGCBVN8KMibN2+Keq6urrp582aK8gfrJs/XkVw3eV6E9u3bpxnflStX5OTkpMTERBUuXPhhb8Uqly9fVrZs2VIkRkwmk3x9fc3tksya952a/Pnzq1q1amnuT639L1y4oGXLlqW5uknyB57Lly9bfFhN5uvrm67YUnPhwgVdu3ZN2bNnf+i1k6WnfS5dumT17/Dy5cu6e/euvv76a3399dcPjWXIkCHKkSOH5syZoylTpsjZ2Vl16tTRp59++tC2v3z5cqpzJxQsWNC8PzOk9/lI/oD9ICenh3+3dPny5VTvgX9zX6Qlvfdqsgfv9+T3+t577+m9995L1zke1X7WqlOnjpYuXaqvvvrKPPdOuXLlNHToUHXq1ClD53zYc5l8X3Xt2lV3797V9OnT1a5dOyUlJenpp5/W6NGj1ahRI0nWt29qFixYoNGjR2vGjBkaNmyYPD099cILLyg0NDRT7gkAyGpIZABAFubs7KwGDRpoxYoVOnfu3CM/OCZ/GIiOjk5R9/z588qXL1+mxZp87q+//jrNlSp8fHyUmJgoZ2fnFJOP/ht58+bV3bt3denSJYtkhmEYiomJSfPDY2a5f9LEZPny5VPFihU1ZsyYVI9J/qCdN29e7dixI8X+mJiYFGVubm6KjY1NUf7gB6HkCRTTWt3Gy8sr1fKHyZ8/v9W/w9y5c8vZ2Vldu3bVW2+9lWqdwMBASVK2bNk0YMAADRgwQNeuXdPatWv1wQcfqHHjxjp79qw8PDxSPT5v3ryKjo5OUZ48cWRmPgMPk3zdH3/8UUWLFrX6+Lx586Z6D6RW9m+l915N9uD9nvxehwwZorZt26Z6jtKlS9sg0odr3bq1WrdurYSEBG3fvl3jxo1T586dFRAQoJo1a8rNzU2SlJCQYHFcWomE5ATN/ZLb//5EzCuvvKJXXnlFcXFx2rRpk0aMGKEWLVro2LFjKlq0qNXtm5p8+fJp4sSJmjhxos6cOaOff/5ZgwcP1sWLF/9zq1gB+G8ikQEAWdyQIUO0fPly9ezZUz/99FOKb9Xv3LmjlStXqmXLlqpfv74kac6cORYf3nfu3KnDhw9r6NChmRZn7dq1lStXLh06dEh9+vR5aN26devqhx9+0JgxY9L8YGnNN7INGjRQaGio5syZo/79+5vLFy1apLi4ODVo0MCKd5I5WrRooeXLl6t48eLKnTt3mvXq1aunhQsX6ueff7boxj537twUdQMCAvTDDz8oISHB3F6XL1/W1q1blTNnTotrz58/X4mJiapRo4ZN3k/Tpk313Xff6ejRo+n+UOrh4aF69erp999/V8WKFdPsIfKgXLlyqX379vrrr7/Ur18/nTp1KtUlRqV798K4ceO0Z88eValSxVw+e/ZsmUwm1atXL13XfJA1PXZS07hxY2XLlk0nT55Uu3btrD6+Xr16+vnnn3XhwgVzz4DExEQtWLAgwzGlJb33alpKly6tkiVLat++fRo7dqzN4sro78DV1VV169ZVrly5tGrVKv3++++qWbOmuefO/v37Le7hn3/+OdXz3LhxI9Xn0snJSXXq1ElRP0eOHGratKlu376tNm3a6ODBgypatGi62ze9fwOLFCmiPn36aN26ddqyZctD6wLAk4JEBgBkcTVr1tTkyZPVu3dvVa1aVb169VK5cuV0584d/f7775o2bZrKly+vli1bqnTp0nr99df19ddfy8nJSU2bNtWpU6c0bNgw+fv7W3zItzVPT099/fXX6t69u65cuaL27durQIECunTpkvbt26dLly5p8uTJkqQJEybo2WefVY0aNTR48GCVKFFCFy5c0M8//6ypU6fKy8tL5cuXlyRNmzZNXl5ecnNzU2BgYKrDHho1aqTGjRtr0KBBun79umrXrq39+/drxIgRqly5srp27Zpp7zu9PvroI61Zs0a1atVS3759Vbp0ad26dUunTp3S8uXLNWXKFBUuXFjdunXTF198oW7dumnMmDEqWbKkli9frlWrVqU4Z9euXTV16lS9/PLL6tmzpy5fvqzQ0FCLJIYkvfTSS/r+++/VrFkzvfPOO6pevbpcXFx07tw5bdiwQa1bt9YLL7xg9ftZsWKF6tSpow8++EAVKlTQtWvXtHLlSg0YMEBlypRJ9bgvv/xSzz77rJ577jn16tVLAQEBunHjhk6cOKFly5aZ57Bo2bKlypcvr2rVqil//vw6ffq0Jk6cqKJFi6pkyZJpxtW/f3/Nnj1bzZs310cffaSiRYvq119/1bfffqtevXqlmLskvSpUqKDIyEgtW7ZMfn5+8vLysqpXQUBAgD766CMNHTpUf/75p5o0aaLcuXPrwoUL2rFjh3LkyGFepjc1H374oX7++WfVr19fw4cPl4eHh7755hvFxcVl6P08THrv1YeZOnWqmjZtqsaNG6tHjx4qVKiQrly5osOHD2vPnj364YcfrI6rQoUKmj9/vhYsWKBixYrJzc1NFSpUSLXu8OHDde7cOTVo0ECFCxfWtWvX9OWXX8rFxUV169aVdG+YT+nSpfXee+/p7t27yp07t5YsWaLffvst1XPmzZtXvXr10pkzZ1SqVCktX75c06dPV69evcxzyvTs2VPu7u6qXbu2/Pz8FBMTo3Hjxsnb29ucXE5v+3p5ealo0aL66aef1KBBA+XJk0f58uVT7ty5Va9ePXXu3FllypSRl5eXdu7cqZUrV6bZAwYAnjj2nm0UAJA+e/fuNbp3724UKVLEyJ49u3lp0eHDh1us/pGYmGh8+umnRqlSpQwXFxcjX758xssvv2ycPXvW4nx169Y1ypUrl+I6D654kTyD/w8//GBRL7UVKQzDMDZu3Gg0b97cyJMnj+Hi4mIUKlTIaN68eYrjDx06ZLz44otG3rx5jezZsxtFihQxevToYbEE5sSJE43AwEDD2dnZ4loPxmgY91bWGDRokFG0aFHDxcXF8PPzM3r16mVcvXrVol5aqzektQLIg5TKKg/pOb9h3FuFoG/fvkZgYKDh4uJi5MmTx6hataoxdOhQ459//jHXO3funNGuXTvD09PT8PLyMtq1a2ds3bo11faOiIgwypYta7i5uRlBQUHGggULUm2fO3fuGOPHjzeeeuopw83NzfD09DTKlCljvPHGG8bx48cz1D5nz541QkJCDF9fX8PFxcUoWLCg0aFDB+PChQuGYaR9j0RFRRkhISFGoUKFDBcXFyN//vxGrVq1jNGjR5vrfP7550atWrWMfPnyme+PV1991Th16lRaTW92+vRpo3PnzkbevHkNFxcXo3Tp0sZnn31mXinjUe81NXv37jVq165teHh4GJLMbZG88sXOnTst6qe28oVhGMbSpUuNevXqGTlz5jRcXV2NokWLGu3bt7dYnjgtW7ZsMZ555hnD1dXV8PX1Nd5//31j2rRpNl+1xDDSd68m/34/++yzVOPdt2+f0aFDB6NAgQKGi4uL4evra9SvX9+YMmWKuY417Xfq1Cnj+eefN7y8vAxJKe7x+/3yyy9G06ZNjUKFChnZs2c3ChQoYDRr1szYvHmzRb1jx44Zzz//vJEzZ04jf/78xttvv238+uuvqa5aUq5cOSMyMtKoVq2a4erqavj5+RkffPCBxcosERERRr169QwfHx8je/bs5mdi//79VrevYRjG2rVrjcqVKxuurq6GJKN79+7GrVu3jDfffNOoWLGikTNnTsPd3d0oXbq0MWLECCMuLi7NNgGAJ4nJMAzjsWdPAACAVU6dOqXAwEDNmjUrxeosAAAA/yUsvwoAAAAAABwGiQwAAAAAAOAwGFoCAAAAAAAcht17ZPz11196+eWXlTdvXnl4eKhSpUravXu3eb9hGBo5cqQKFiwod3d3BQcH6+DBg3aMGAAAAAAA2ItdExlXr15V7dq15eLiohUrVujQoUP6/PPPlStXLnOd0NBQTZgwQZMmTdLOnTvl6+urRo0a6caNG/YLHAAAAAAA2IVdh5YMHjxYW7Zs0ebNm1PdbxiGChYsqH79+mnQoEGSpISEBPn4+OjTTz/VG2+88TjDBQAAAAAAdmbXREZQUJAaN26sc+fOaePGjSpUqJB69+6tnj17SpL+/PNPFS9eXHv27FHlypXNx7Vu3Vq5cuVSRETEI6+RlJSk8+fPy8vLSyaTKdPeCwAAAAAAyDjDMHTjxg0VLFhQTk5pDyDJ9hhjSuHPP//U5MmTNWDAAH3wwQfasWOH+vbtK1dXV3Xr1k0xMTGSJB8fH4vjfHx8dPr06VTPmZCQoISEBPP2X3/9paCgoMx7EwAAAAAAwGbOnj2rwoULp7nfromMpKQkVatWTWPHjpUkVa5cWQcPHtTkyZPVrVs3c70He1IYhpFm74px48Zp1KhRKcrPnj2rnDlz2jB6AAAAAABgK9evX5e/v7+8vLweWs+uiQw/P78UvSXKli2rRYsWSZJ8fX0lSTExMfLz8zPXuXjxYopeGsmGDBmiAQMGmLeTGyJnzpwkMgAAAAAAyOIeNS2EXVctqV27to4ePWpRduzYMRUtWlSSFBgYKF9fX61Zs8a8//bt29q4caNq1aqV6jldXV3NSQuSFwAAAAAAPFns2iOjf//+qlWrlsaOHasOHTpox44dmjZtmqZNmybpXhamX79+Gjt2rEqWLKmSJUtq7Nix8vDwUOfOne0ZOgAAAAAAsAO7JjKefvppLVmyREOGDNFHH32kwMBATZw4UV26dDHXGThwoG7evKnevXvr6tWrqlGjhlavXv3IMTMAAAAAAODJY9flVx+H69evy9vbW7GxsQwzAQAAAP4DEhMTdefOHXuHAeABLi4ucnZ2TnN/ej+/27VHBgAAAADYimEYiomJ0bVr1+wdCoA05MqVS76+vo+c0PNhSGQAAAAAeCIkJzEKFCggDw+Pf/VBCYBtGYah+Ph4Xbx4UZIsVia1FokMAAAAAA4vMTHRnMTImzevvcMBkAp3d3dJ0sWLF1WgQIGHDjN5GLsuvwoAAAAAtpA8J4aHh4edIwHwMMnP6L+Zx4ZEBgAAAIAnBsNJgKzNFs8oiQwAAAAAAOAwSGQAAAAAgB0ZhqHXX39defLkkclk0t69e+0dEu6zZcsWVahQQS4uLmrTpo0iIyNlMpnMq+OEh4crV65cdo3xQSNHjlSlSpXsHUamYbJPAAAAAE+0gMG/PtbrnfqkuVX1V65cqfDwcEVGRqpYsWLKly9fJkWGjBgwYIAqVaqkFStWyNPTUx4eHoqOjpa3t3eq9UeOHKmlS5eSkMpE9MgAAAAAADs6efKk/Pz8VKtWLfn6+ipbNsvvm2/fvm2nyJ4c/2ZiyZMnT6p+/foqXLiwcuXKpezZs8vX1zfT52P5NzE/6UhkAAAAAICd9OjRQ2+//bbOnDkjk8mkgIAABQcHq0+fPhowYIDy5cunRo0aSZIOHTqkZs2aydPTUz4+Puratav+/vtv87ni4uLUrVs3eXp6ys/PT59//rmCg4PVr18/cx2TyaSlS5daxJArVy6Fh4ebt//66y917NhRuXPnVt68edW6dWudOnXKIuY2bdpo/Pjx8vPzU968efXWW29ZfPBOSEjQwIED5e/vL1dXV5UsWVIzZ86UYRgqUaKExo8fbxHDH3/8IScnJ508efKRbWYymTR58mQ1bdpU7u7uCgwM1A8//GDef+rUKZlMJi1cuFDBwcFyc3PTnDlzJEmzZs1S2bJl5ebmpjJlyujbb79N8zrJ57l8+bJCQkJkMpnMPWfuH1pyv/DwcI0aNUr79u2TyWQyHyNJsbGxev3111WgQAHlzJlT9evX1759+8zHJg8HCQsLU7FixeTq6irDMB55nCR98skn8vHxkZeXl1599VXdunXrke3oyEhkAAAAAICdfPnll/roo49UuHBhRUdHa+fOnZKkiIgIZcuWTVu2bNHUqVMVHR2tunXrqlKlStq1a5dWrlypCxcuqEOHDuZzvf/++9qwYYOWLFmi1atXKzIyUrt377Yqnvj4eNWrV0+enp7atGmTfvvtN3l6eqpJkyYWPUM2bNigkydPasOGDYqIiFB4eLhFMqRbt26aP3++vvrqKx0+fFhTpkyRp6enTCaTQkJCNGvWLIvrhoWF6bnnnlPx4sXTFeewYcPUrl077du3Ty+//LI6deqkw4cPW9QZNGiQ+vbtq8OHD6tx48aaPn26hg4dqjFjxujw4cMaO3ashg0bpoiIiFSv4e/vr+joaOXMmVMTJ05UdHS0Onbs+NC4OnbsqHfffVflypVTdHS0+RjDMNS8eXPFxMRo+fLl2r17t6pUqaIGDRroypUr5uNPnDihhQsXatGiReahKY86buHChRoxYoTGjBmjXbt2yc/P76EJmicBc2QAAAAAgJ14e3vLy8tLzs7O8vX1NZeXKFFCoaGh5u3hw4erSpUqGjt2rLksLCxM/v7+OnbsmAoWLKiZM2dq9uzZ5h4cERERKly4sFXxzJ8/X05OTpoxY4Z56MSsWbOUK1cuRUZG6vnnn5ck5c6dW5MmTZKzs7PKlCmj5s2ba926derZs6eOHTumhQsXas2aNWrYsKEkqVixYuZrvPLKKxo+fLh27Nih6tWr686dO5ozZ44+++yzdMf54osv6rXXXpMkffzxx1qzZo2+/vpriw/w/fr1U9u2bc3bH3/8sT7//HNzWWBgoA4dOqSpU6eqe/fuKa6R/DsxmUzy9va2+P2kxd3dXZ6ensqWLZtF/fXr1+vAgQO6ePGiXF1dJUnjx4/X0qVL9eOPP+r111+XdG8Y0Xfffaf8+fOn+7iJEycqJCTE3B6jR4/W2rVrn+heGSQyMiijEwZZO/EPAAAAgP+eatWqWWzv3r1bGzZskKenZ4q6J0+e1M2bN3X79m3VrFnTXJ4nTx6VLl3aquvu3r1bJ06ckJeXl0X5rVu3LIZ9lCtXTs7OzuZtPz8/HThwQJK0d+9eOTs7q27duqlew8/PT82bN1dYWJiqV6+uX375Rbdu3dKLL76Y7jjvf5/J2w9Ornl/G166dElnz57Vq6++qp49e5rL7969a560s2nTptq8ebMkqWjRojp48GC643mU3bt3659//lHevHktym/evGnRrkWLFjUnMdJ73OHDh/Xmm29a7K9Zs6Y2bNhgs/izGhIZAAAAAJDF5MiRw2I7KSlJLVu21Keffpqirp+fn44fP56u85pMJhmGYVF2/9wWSUlJqlq1qr7//vsUx97/AdvFxSXFeZOSkiTd65XwKK+99pq6du2qL774QrNmzVLHjh3l4eGRrveQlgcn37y/DZNjmz59umrUqGFRLzkhM2PGDN28eVNSyvf3byUlJcnPz0+RkZEp9t2/dGtqv/f0HPdfQyIDAAAAALK4KlWqaNGiRQoICEixqol0byiKi4uLtm/friJFikiSrl69qmPHjln0jMifP7+io6PN28ePH1d8fLzFdRYsWGCeWDIjKlSooKSkJG3cuNE8tORBzZo1U44cOTR58mStWLFCmzZtsuoa27dvV7du3Sy2K1eunGZ9Hx8fFSpUSH/++ae6dOmSap1ChQpZFUNasmfPrsTERIuyKlWqKCYmRtmyZVNAQEC6z5We48qWLZtqezzJmOwTAAAAALK4t956S1euXFGnTp20Y8cO/fnnn1q9erVCQkKUmJgoT09Pvfrqq3r//fe1bt06/fHHH+rRo4ecnCw/8tWvX1+TJk3Snj17tGvXLr355psWvQ+6dOmifPnyqXXr1tq8ebOioqK0ceNGvfPOOzp37ly6Yg0ICFD37t0VEhKipUuXKioqSpGRkVq4cKG5jrOzs3r06KEhQ4aoRIkSKYaKPMoPP/ygsLAwHTt2TCNGjNCOHTvUp0+fhx4zcuRIjRs3Tl9++aWOHTumAwcOaNasWZowYYJV136UgIAARUVFae/evfr777+VkJCghg0bqmbNmmrTpo1WrVqlU6dOaevWrfrwww+1a9euNM+VnuPeeecdhYWFWbSHLYfFZEUkMgAAAAAgiytYsKC2bNmixMRENW7cWOXLl9c777wjb29vc7Lis88+U506ddSqVSs1bNhQzz77rKpWrWpxns8//1z+/v6qU6eOOnfurPfee89iSIeHh4c2bdqkIkWKqG3btipbtqxCQkJ08+ZNq3poTJ48We3bt1fv3r1VpkwZ9ezZU3FxcRZ1Xn31Vd2+fVshISFWt8eoUaM0f/58VaxYUREREfr+++8VFBT00GNee+01zZgxQ+Hh4apQoYLq1q2r8PBwBQYGWn39h2nXrp2aNGmievXqKX/+/Jo3b55MJpOWL1+uOnXqKCQkRKVKldJLL72kU6dOycfHJ81zpee4jh07avjw4Ro0aJCqVq2q06dPq1evXjZ9T1mNyXhwgNQT5vr16/L29lZsbGyGu0alhsk+AQAAgKzj1q1bioqKUmBgoNzc3OwdTpYRHBysSpUqaeLEifYOJYUtW7YoODhY586de+iH+QeZTCYtWbJEbdq0ybzgkGke9qym9/M7c2QAAAAAAB6bhIQEnT17VsOGDVOHDh2sSmIAEkNLAAAAAACP0bx581S6dGnFxsYqNDTUYt/3338vT0/PVF/lypWzU8TIauiRAQAAAABPqNSW7bS3Hj16qEePHqnua9WqVYrlUZMlT0r6hM+OgHQgkQEAAAAAyBK8vLzk5eVl7zCQxTG0BAAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAHZkGIZef/115cmTRyaTSXv37rV3SP8ZJpNJS5cutWsMkZGRMplMunbtml3jcCQsvwoAAADgyTbS+zFfL9aq6itXrlR4eLgiIyNVrFgx5cuXL5MCA54MJDIAAAAAwI5OnjwpPz8/1apVK9X9t2/fVvbs2R9zVI7jzp07cnFxsXcYeIwYWgIAAAAAdtKjRw+9/fbbOnPmjEwmkwICAhQcHKw+ffpowIABypcvnxo1aiRJOnTokJo1ayZPT0/5+Pioa9eu+vvvv83niouLU7du3eTp6Sk/Pz99/vnnCg4OVr9+/cx1UhtKkStXLoWHh5u3//rrL3Xs2FG5c+dW3rx51bp1a506dcoi5jZt2mj8+PHy8/NT3rx59dZbb+nOnTvmOgkJCRo4cKD8/f3l6uqqkiVLaubMmTIMQyVKlND48eMtYvjjjz/k5OSkkydPPrLNTCaTpkyZotatWytHjhwaPXq0JGnZsmWqWrWq3NzcVKxYMY0aNUp37941H3f8+HHVqVNHbm5uCgoK0po1ayzOm9oQj71798pkMlm8/y1btqhu3bry8PBQ7ty51bhxY129elXSvWFCoaGhKlasmNzd3fXUU0/pxx9/tLjO8uXLVapUKbm7u6tevXoW50b6kMgAAAAAADv58ssv9dFHH6lw4cKKjo7Wzp07JUkRERHKli2btmzZoqlTpyo6Olp169ZVpUqVtGvXLq1cuVIXLlxQhw4dzOd6//33tWHDBi1ZskSrV69WZGSkdu/ebVU88fHxqlevnjw9PbVp0yb99ttv8vT0VJMmTXT79m1zvQ0bNujkyZPasGGDIiIiFB4ebpEM6datm+bPn6+vvvpKhw8f1pQpU+Tp6SmTyaSQkBDNmjXL4rphYWF67rnnVLx48XTFOWLECLVu3VoHDhxQSEiIVq1apZdffll9+/bVoUOHNHXqVIWHh2vMmDGSpKSkJLVt21bOzs7avn27pkyZokGDBlnVNtK9xEaDBg1Urlw5bdu2Tb/99ptatmypxMRESdKHH36oWbNmafLkyTp48KD69++vl19+WRs3bpQknT17Vm3btlWzZs20d+9evfbaaxo8eLDVcfzXMbQEAAAAAOzE29tbXl5ecnZ2lq+vr7m8RIkSCg0NNW8PHz5cVapU0dixY81lYWFh8vf317Fjx1SwYEHNnDlTs2fPNvfgiIiIUOHCha2KZ/78+XJyctKMGTNkMpkkSbNmzVKuXLkUGRmp559/XpKUO3duTZo0Sc7OzipTpoyaN2+udevWqWfPnjp27JgWLlyoNWvWqGHDhpKkYsWKma/xyiuvaPjw4dqxY4eqV6+uO3fuaM6cOfrss8/SHWfnzp0VEhJi3u7atasGDx6s7t27m6/38ccfa+DAgRoxYoTWrl2rw4cP69SpU+Y2GTt2rJo2bWpV+4SGhqpatWr69ttvzWXlypWTdK9HzIQJE7R+/XrVrFnTHMdvv/2mqVOnqm7dupo8ebKKFSumL774QiaTSaVLl9aBAwf06aefWhXHfx2JDAAAAADIYqpVq2axvXv3bm3YsEGenp4p6p48eVI3b97U7du3zR+gJSlPnjwqXbq0VdfdvXu3Tpw4IS8vL4vyW7duWQz7KFeunJydnc3bfn5+OnDggKR7vRacnZ1Vt27dVK/h5+en5s2bKywsTNWrV9cvv/yiW7du6cUXX0x3nKm1z86dO809MCQpMTFRt27dUnx8vA4fPqwiRYpYJHbub6v02rt3b5pxHjp0SLdu3TInkpLdvn1blStXliQdPnxYzzzzjDlJlNE4/utIZAAAAABAFpMjRw6L7aSkJLVs2TLVb+79/Px0/PjxdJ3XZDLJMAyLsvvntkhKSlLVqlX1/fffpzg2f/785p8fnFzTZDIpKSlJkuTu7v7IOF577TV17dpVX3zxhWbNmqWOHTvKw8MjXe9BSr19Ro0apbZt26ao6+bmluI9J8d8PyenezMv3F/3/raRHv7ekt//r7/+qkKFClnsc3V1TXFuZByJDAAAAADI4qpUqaJFixYpICBA2bKl/BhXokQJubi4aPv27SpSpIgk6erVqzp27JhFz4j8+fMrOjravH38+HHFx8dbXGfBggUqUKCAcubMmaFYK1SooKSkJG3cuNE8tORBzZo1U44cOTR58mStWLFCmzZtytC1klWpUkVHjx5ViRIlUt0fFBSkM2fO6Pz58ypYsKAkadu2bRZ1khM10dHRyp07t6R7PTDuV7FiRa1bt06jRo1K9Rqurq46c+ZMmr1RgoKCUky2un379ke+P1hisk8AAAAAyOLeeustXblyRZ06ddKOHTv0559/avXq1QoJCVFiYqI8PT316quv6v3339e6dev0xx9/qEePHuZeBsnq16+vSZMmac+ePdq1a5fefPNNi94VXbp0Ub58+dS6dWtt3rxZUVFR2rhxo9555x2dO3cuXbEGBASoe/fuCgkJ0dKlSxUVFaXIyEgtXLjQXMfZ2Vk9evTQkCFDVKJEiX89vGL48OGaPXu2Ro4cqYMHD+rw4cNasGCBPvzwQ0lSw4YNVbp0aXXr1k379u3T5s2bNXToUItzlChRQv7+/ho5cqSOHTumX3/9VZ9//rlFnSFDhmjnzp3q3bu39u/fryNHjmjy5Mn6+++/5eXlpffee0/9+/dXRESETp48qd9//13ffPONIiIiJElvvvmmTp48qQEDBujo0aOaO3euxSSpSB8SGQAAAACQxRUsWFBbtmxRYmKiGjdurPLly+udd96Rt7e3OVnx2WefqU6dOmrVqpUaNmyoZ599VlWrVrU4z+effy5/f3/VqVNHnTt31nvvvWcxpMPDw0ObNm1SkSJF1LZtW5UtW1YhISG6efOmVT00Jk+erPbt26t3794qU6aMevbsqbi4OIs6r776qm7fvm0xaWdGNW7cWL/88ovWrFmjp59+Ws8884wmTJigokWLSro3bGTJkiVKSEhQ9erV9dprr1nMpyHdGy4zb948HTlyRE899ZQ+/fRT89KuyUqVKqXVq1dr3759ql69umrWrKmffvrJ3Evm448/1vDhwzVu3DiVLVtWjRs31rJlyxQYGChJKlKkiBYtWqRly5bpqaee0pQpUywmcEX6mIwnfJDO9evX5e3trdjY2Ax3jUpNwOBfM3TcqU+a2ywGAAAAAPfcunVLUVFRCgwMlJubm73DyTKCg4NVqVIlTZw40d6hpLBlyxYFBwfr3Llz8vHxsXc4eEwe9qym9/M7c2QAAAAAAB6bhIQEnT17VsOGDVOHDh1IYsBqDC0BAAAAADw28+bNU+nSpRUbG6vQ0FCLfd9//708PT1TfZUrV85OESOroUcGAAAAADyhIiMj7R1CCj169FCPHj1S3deqVSvVqFEj1X0PLvmK/y4SGQAAAACALMHLy0teXl72DgNZHENLAAAAAACAwyCRAQAAAAAAHAaJDAAAAAAA4DBIZAAAAAAAAIdBIgMAAAAAADgMEhkAAAAAYEeGYej1119Xnjx5ZDKZtHfvXnuHhCwgJiZGjRo1Uo4cOZQrVy5Jkslk0tKlSyVJp06dynL3S2RkpEwmk65du5ap12H5VQAAAABPtAoRFR7r9Q50P2BV/ZUrVyo8PFyRkZEqVqyY8uXLl0mR4VFGjhyppUuXZonkwBdffKHo6Gjt3btX3t7ekqTo6Gjlzp071fqRkZGqV6+erl69ak58PKlIZAAAAACAHZ08eVJ+fn6qVatWqvtv376t7NmzP+aoYG8nT55U1apVVbJkSXOZr69vpl/XMAwlJiYqW7asmy5gaAkAAAAA2EmPHj309ttv68yZMzKZTAoICFBwcLD69OmjAQMGKF++fGrUqJEk6dChQ2rWrJk8PT3l4+Ojrl276u+//zafKy4uTt26dZOnp6f8/Pz0+eefKzg4WP369TPXuX9oQrJcuXIpPDzcvP3XX3+pY8eOyp07t/LmzavWrVvr1KlTFjG3adNG48ePl5+fn/Lmzau33npLd+7cMddJSEjQwIED5e/vL1dXV5UsWVIzZ86UYRgqUaKExo8fbxHDH3/8IScnJ508efKRbXbt2jW9/vrr8vHxkZubm8qXL69ffvlF0r0eFZUqVbKoP3HiRAUEBJi3IyMjVb16dfOQjdq1a+v06dMKDw/XqFGjtG/fPplMJplMJnO7nDlzRq1bt5anp6dy5sypDh066MKFC+ZzJl83LCxMRYoUkaenp3r16qXExESFhobK19dXBQoU0JgxYx75/iQpICBAixYt0uzZs2UymdSjRw9Jqf/+pHvDTOrVqydJyp07t8UxhmEoNDRUxYoVk7u7u5566in9+OOPFu1hMpm0atUqVatWTa6urtq8efMjj5Ok5cuXq1SpUnJ3d1e9evUs7pPMlHVTLAAAAADwhPvyyy9VvHhxTZs2TTt37pSzs7NefPFFRUREqFevXtqyZYsMw1B0dLTq1q2rnj17asKECbp586YGDRqkDh06aP369ZKk999/Xxs2bNCSJUvk6+urDz74QLt3707xwf5h4uPjVa9ePT333HPatGmTsmXLptGjR6tJkybav3+/uWfIhg0b5Ofnpw0bNujEiRPq2LGjKlWqpJ49e0qSunXrpm3btumrr77SU089paioKP39998ymUwKCQnRrFmz9N5775mvGxYWpueee07Fixd/aHxJSUlq2rSpbty4oTlz5qh48eI6dOiQnJ2d0/X+7t69qzZt2qhnz56aN2+ebt++rR07dshkMqljx476448/tHLlSq1du1aS5O3tLcMw1KZNG+XIkUMbN27U3bt31bt3b3Xs2FGRkZHmc588eVIrVqzQypUrdfLkSbVv315RUVEqVaqUNm7cqK1btyokJEQNGjTQM88889A4d+7cqW7duilnzpz68ssv5e7u/tD6/v7+WrRokdq1a6ejR48qZ86c5mM+/PBDLV68WJMnT1bJkiW1adMmvfzyy8qfP7/q1q1rPsfAgQM1fvx4FStWTLly5XrkcWfPnlXbtm315ptvqlevXtq1a5fefffddP0e/i27JjJGjhypUaNGWZT5+PgoJiZG0r3M0ahRozRt2jRdvXpVNWrU0DfffKNy5crZI1wAAAAAsClvb295eXnJ2dnZYthAiRIlFBoaat4ePny4qlSporFjx5rLwsLC5O/vr2PHjqlgwYKaOXOmZs+ebe7BERERocKFC1sVz/z58+Xk5KQZM2bIZDJJkmbNmqVcuXIpMjJSzz//vKR73/pPmjRJzs7OKlOmjJo3b65169apZ8+eOnbsmBYuXKg1a9aoYcOGkqRixYqZr/HKK69o+PDh2rFjh6pXr647d+5ozpw5+uyzzx4Z39q1a7Vjxw4dPnxYpUqVSnHuR7l+/bpiY2PVokULc9KkbNmy5v2enp7Kli2bxe9izZo12r9/v6KiouTv7y9J+u6771SuXDnt3LlTTz/9tKR7SZawsDB5eXkpKChI9erV09GjR7V8+XI5OTmpdOnS+vTTTxUZGfnIREb+/Pnl6uoqd3f3dA0ncXZ2Vp48eSRJBQoUMM+RERcXpwkTJmj9+vWqWbOmpHvt9dtvv2nq1KkWiYyPPvrIfO+k57jJkyerWLFi+uKLL2QymVS6dGkdOHBAn3766SPj/bfs3iOjXLly5myXJItMWmhoqCZMmKDw8HCVKlVKo0ePVqNGjXT06FF5eXnZI1wAAAAAyHTVqlWz2N69e7c2bNggT0/PFHVPnjypmzdv6vbt2+YPnZKUJ08elS5d2qrr7t69WydOnEjxeevWrVsWwz7KlStn8dnNz89PBw7cm+R07969cnZ2tviQfD8/Pz81b95cYWFhql69un755RfdunVLL7744iPj27t3rwoXLmxOYlgrT5486tGjhxo3bqxGjRqpYcOG6tChg/z8/NI85vDhw/L39zcnMSQpKChIuXLl0uHDh82JjICAAIt28/HxkbOzs5ycnCzKLl68mKHYM+LQoUO6deuWOUGR7Pbt26pcubJF2f33XHqOO3z4sJ555hlzwkuSxf2XmeyeyHgw25XMMAxNnDhRQ4cOVdu2bSXdyyj6+Pho7ty5euONNx53qAAAAADwWOTIkcNiOykpSS1btkz1224/Pz8dP348Xec1mUwyDMOi7P65LZKSklS1alV9//33KY7Nnz+/+WcXF5cU501KSpKkRw6DkKTXXntNXbt21RdffKFZs2apY8eO8vDweORxjzq3k5PTQ9+fdK+HSd++fbVy5UotWLBAH374odasWZNmLwnDMCw+rKdVnlqbPKydHofka/36668qVKiQxT5XV1eL7fvvufQc92A7P052n+zz+PHjKliwoAIDA/XSSy/pzz//lCRFRUUpJibG3HVJutdgdevW1datW+0VLgAAAAA8dlWqVNHBgwcVEBCgEiVKWLxy5MihEiVKyMXFRdu3bzcfc/XqVR07dsziPPnz51d0dLR5+/jx44qPj7e4zvHjx1WgQIEU10leAvRRKlSooKSkJG3cuDHNOs2aNVOOHDk0efJkrVixQiEhIek6d8WKFXXu3LkU7+v+9xcTE2PxITu1pVQrV66sIUOGaOvWrSpfvrzmzp0rScqePbsSExMt6gYFBenMmTM6e/asuezQoUOKjY21GJZib8nzl9wff1BQkFxdXXXmzJkUv8/7e5g8KD3HBQUFWdxvklJsZxa7JjJq1Kih2bNna9WqVZo+fbpiYmJUq1YtXb582TxPho+Pj8Ux98+hkZqEhARdv37d4gUAAAAAjuytt97SlStX1KlTJ+3YsUN//vmnVq9erZCQECUmJsrT01Ovvvqq3n//fa1bt05//PGHevToYTGsQZLq16+vSZMmac+ePdq1a5fefPNNi14DXbp0Ub58+dS6dWtt3rxZUVFR2rhxo9555x2dO3cuXbEGBASoe/fuCgkJ0dKlSxUVFaXIyEgtXLjQXMfZ2Vk9evTQkCFDVKJEiXQPSahbt67q1Kmjdu3aac2aNYqKijJPsClJwcHBunTpkkJDQ3Xy5El98803WrFihfn4qKgoDRkyRNu2bdPp06e1evVqHTt2zJyQCAgIUFRUlPbu3au///5bCQkJatiwoSpWrKguXbpoz5492rFjh7p166a6deumGAJkT0WLFpXJZNIvv/yiS5cu6Z9//pGXl5fee+899e/fXxERETp58qR+//13ffPNN4qIiEjzXOk57s0339TJkyc1YMAAHT16VHPnzrVY/SYz2TWR0bRpU7Vr104VKlRQw4YN9euvv0qSRYM+2IUnrW49ycaNGydvb2/z62FZJgAAAABwBAULFtSWLVuUmJioxo0bq3z58nrnnXfk7e1tTlZ89tlnqlOnjlq1aqWGDRvq2WefVdWqVS3O8/nnn8vf31916tRR586d9d5771kM6fDw8NCmTZtUpEgRtW3bVmXLllVISIhu3rypnDlzpjveyZMnq3379urdu7fKlCmjnj17Ki4uzqLOq6++qtu3b6e7N0ayRYsW6emnn1anTp0UFBSkgQMHmnshlC1bVt9++62++eYbPfXUU9qxY4fF6igeHh46cuSI2rVrp1KlSun1119Xnz59zFMXtGvXTk2aNFG9evWUP39+zZs3z7zkae7cuVWnTh01bNhQxYoV04IFC6yKO7MVKlRIo0aN0uDBg+Xj46M+ffpIkj7++GMNHz5c48aNU9myZdW4cWMtW7ZMgYGBDz3fo44rUqSIFi1apGXLlumpp57SlClTLCajzUwmw54DW1LRqFEjlShRQu+//76KFy+uPXv2WExC0rp1a+XKlSvN7FFCQoISEhLM29evX5e/v79iY2OtevAeJWDwrxk67tQnzW0WAwAAAIB7bt26paioKAUGBsrNzc3e4WQZwcHBqlSpkiZOnGjvUFLYsmWLgoODde7cuRQ98fHketizev36dXl7ez/y87vd58i4X0JCgg4fPiw/Pz8FBgbK19dXa9asMe+/ffu2Nm7cqFq1aqV5DldXV+XMmdPiBQAAAADIGhISEnTixAkNGzZMHTp0IIkBq9k1kfHee+9p48aNioqK0v/+9z+1b99e169fV/fu3WUymdSvXz+NHTtWS5YsMY/x8vDwUOfOne0ZNgAAAAAgg+bNm6fSpUsrNjZWoaGhFvu+//57eXp6pvoqV66cnSK2vf/K+8wsdl1+9dy5c+rUqZP+/vtv5c+fX88884y2b9+uokWLSpIGDhyomzdvqnfv3rp69apq1Kih1atXp1jTGAAAAACQUmRkpL1DSKFHjx7q0aNHqvtatWqlGjVqpLrvwaVMHdl/5X1mFrsmMubPn//Q/SaTSSNHjtTIkSMfT0AAAAAAALvx8vL6T3xx/V95n5klS82RAQAAAAAA8DAkMgAAAAA8MbLYoowAHmCLZ5REBgAAAACHlzyvQHx8vJ0jAfAwyc/ov5kLxK5zZAAAAACALTg7OytXrly6ePGiJMnDw0Mmk8nOUQFIZhiG4uPjdfHiReXKlUvOzs4ZPheJDAAAAABPBF9fX0kyJzMAZD25cuUyP6sZRSIDAAAAwBPBZDLJz89PBQoU0J07d+wdDoAHuLi4/KueGMlIZAAAAAB4ojg7O9vkwxKArInJPgEAAAAAgMMgkQEAAAAAABwGiQwAAAAAAOAwSGQAAAAAAACHQSIDAAAAAAA4DBIZAAAAAADAYZDIAAAAAAAADoNEBgAAAAAAcBgkMgAAAAAAgMMgkQEAAAAAABwGiQwAAAAAAOAwSGQAAAAAAACHQSIDAAAAAAA4DBIZAAAAAADAYZDIAAAAAAAADoNEBgAAAAAAcBgkMgAAAAAAgMPIZu8A/nNGemfwuFjbxpHFBAz+NUPHnfqkuY0jAQAAAABkZfTIAAAAAAAADoNEBgAAAAAAcBgkMgAAAAAAgMNgjgwHUSGiQoaOO9D9gI0jAQAAAADAfuiRAQAAAAAAHAaJDAAAAAAA4DBIZAAAAAAAAIdBIgMAAAAAADgMEhkAAAAAAMBhkMgAAAAAAAAOg0QGAAAAAABwGCQyAAAAAACAwyCRAQAAAAAAHAaJDAAAAAAA4DBIZAAAAAAAAIdBIgMAAAAAADgMEhkAAAAAAMBhkMgAAAAAAAAOg0QGAAAAAABwGCQyAAAAAACAw7A6kREXF5cZcQAAAAAAADyS1YkMHx8fhYSE6LfffsuMeAAAAAAAANJkdSJj3rx5io2NVYMGDVSqVCl98sknOn/+fGbEBgAAAAAAYCGbtQe0bNlSLVu21OXLlzV79myFh4dr2LBhaty4sUJCQtSqVStly2b1aYHHqkJEhQwdd6D7ARtHAgAAAACwRoYn+8ybN6/69++vffv2acKECVq7dq3at2+vggULavjw4YqPj7dlnAAAAAAAANb3yEgWExOj2bNna9asWTpz5ozat2+vV199VefPn9cnn3yi7du3a/Xq1baMFQAAAAAA/MdZnchYvHixZs2apVWrVikoKEhvvfWWXn75ZeXKlctcp1KlSqpcubIt4wQAAAAAALA+kfHKK6/opZde0pYtW/T000+nWqdYsWIaOnTovw4OAAAAAADgflbPkREdHa2pU6emmcSQJHd3d40YMcKq844bN04mk0n9+vUzlxmGoZEjR6pgwYJyd3dXcHCwDh48aG3IAAAAAADgCWF1IiMyMlKrVq1KUb5q1SqtWLEiQ0Hs3LlT06ZNU8WKFS3KQ0NDNWHCBE2aNEk7d+6Ur6+vGjVqpBs3bmToOgAAAAAAwLFZncgYPHiwEhMTU5QbhqHBgwdbHcA///yjLl26aPr06cqdO7fF+SZOnKihQ4eqbdu2Kl++vCIiIhQfH6+5c+dafR0AAAAAAOD4rE5kHD9+XEFBQSnKy5QpoxMnTlgdwFtvvaXmzZurYcOGFuVRUVGKiYnR888/by5zdXVV3bp1tXXrVquvAwAAAAAAHJ/Vk316e3vrzz//VEBAgEX5iRMnlCNHDqvONX/+fO3Zs0c7d+5MsS8mJkaS5OPjY1Hu4+Oj06dPp3nOhIQEJSQkmLevX79uVUwAAAAAACDrsrpHRqtWrdSvXz+dPHnSXHbixAm9++67atWqVbrPc/bsWb3zzjuaM2eO3Nzc0qxnMpkstg3DSFF2v3Hjxsnb29v88vf3T3dMAAAAAAAga7M6kfHZZ58pR44cKlOmjAIDAxUYGKiyZcsqb968Gj9+fLrPs3v3bl28eFFVq1ZVtmzZlC1bNm3cuFFfffWVsmXLZu6JkdwzI9nFixdT9NK435AhQxQbG2t+nT171tq3CAAAAAAAsqgMDS3ZunWr1qxZo3379snd3V0VK1ZUnTp1rDpPgwYNdODAAYuyV155RWXKlNGgQYNUrFgx+fr6as2aNapcubIk6fbt29q4caM+/fTTNM/r6uoqV1dXa98WAAAAAABwAFYnMqR7wz2ef/55i4k4reXl5aXy5ctblOXIkUN58+Y1l/fr109jx45VyZIlVbJkSY0dO1YeHh7q3Llzhq8LAAAAAAAcV4YSGevWrdO6det08eJFJSUlWewLCwuzSWCSNHDgQN28eVO9e/fW1atXVaNGDa1evVpeXl42uwYAAAAAAHAcVicyRo0apY8++kjVqlWTn5/fQyfetFZkZKTFtslk0siRIzVy5EibXQMAAAAAADguqxMZU6ZMUXh4uLp27ZoZ8QAAAAAAAKTJ6lVLbt++rVq1amVGLAAAAAAAAA9ldSLjtdde09y5czMjFgAAAAAAgIeyemjJrVu3NG3aNK1du1YVK1aUi4uLxf4JEybYLDgAAAAAAID7WZ3I2L9/vypVqiRJ+uOPPyz22XLiTwAAAAAAgAdZncjYsGFDZsQBAAAAAADwSFbPkZHsxIkTWrVqlW7evClJMgzDZkEBAAAAAACkxupExuXLl9WgQQOVKlVKzZo1U3R0tKR7k4C+++67Ng8QAAAAAAAgmdWJjP79+8vFxUVnzpyRh4eHubxjx45auXKlTYMDAAAAAAC4n9VzZKxevVqrVq1S4cKFLcpLliyp06dP2ywwAAAAAACAB1ndIyMuLs6iJ0ayv//+W66urjYJCgAAAAAAIDVWJzLq1Kmj2bNnm7dNJpOSkpL02WefqV69ejYNDgAAAAAA4H5WDy357LPPFBwcrF27dun27dsaOHCgDh48qCtXrmjLli2ZESMAAAAAAICkDPTICAoK0v79+1W9enU1atRIcXFxatu2rX7//XcVL148M2IEAAAAAACQlIEeGZLk6+urUaNG2ToWAAAAAACAh7I6kbFp06aH7q9Tp06GgwEAAAAAAHgYqxMZwcHBKcpMJpP558TExH8VEAAAAAAAQFqsniPj6tWrFq+LFy9q5cqVevrpp7V69erMiBEAAAAAAEBSBnpkeHt7pyhr1KiRXF1d1b9/f+3evdsmgQEAAAAAADzI6h4ZacmfP7+OHj1qq9MBAAAAAACkYHWPjP3791tsG4ah6OhoffLJJ3rqqadsFhgAAAAAAMCDrE5kVKpUSSaTSYZhWJQ/88wzCgsLs1lgAAAAAAAAD7I6kREVFWWx7eTkpPz588vNzc1mQQHpNjLlnC3pEljEtnEAAAAAAB4LqxMZRYsWzYw4AAAAAAAAHsnqRMZXX32V7rp9+/a19vQAAAAAAABpsjqR8cUXX+jSpUuKj49Xrly5JEnXrl2Th4eH8ufPb65nMplIZAAAAAAAAJuyevnVMWPGqFKlSjp8+LCuXLmiK1eu6PDhw6pSpYpGjx6tqKgoRUVF6c8//8yMeAEAAAAAwH+Y1YmMYcOG6euvv1bp0qXNZaVLl9YXX3yhDz/80KbBAQAAAAAA3M/qREZ0dLTu3LmTojwxMVEXLlywSVAAAAAAAACpsTqR0aBBA/Xs2VO7du2SYRiSpF27dumNN95Qw4YNbR4gAAAAAABAMqsTGWFhYSpUqJCqV68uNzc3ubq6qkaNGvLz89OMGTMyI0YAAAAAAABJGVi1JH/+/Fq+fLmOHTumI0eOyDAMlS1bVqVKlcqM+AAAAAAAAMysTmQkCwgIkGEYKl68uLJly/BpAAAAAAAA0s3qoSXx8fF69dVX5eHhoXLlyunMmTOSpL59++qTTz6xeYAAAAAAAADJrE5kDBkyRPv27VNkZKTc3NzM5Q0bNtSCBQtsGhwAAAAAAMD9rB4TsnTpUi1YsEDPPPOMTCaTuTwoKEgnT560aXAAAAAAAAD3s7pHxqVLl1SgQIEU5XFxcRaJDQAAAAAAAFuzOpHx9NNP69dffzVvJycvpk+frpo1a9ouMgAAAAAAgAdYPbRk3LhxatKkiQ4dOqS7d+/qyy+/1MGDB7Vt2zZt3LgxM2IEAAAAAACQlIEeGbVq1dLWrVsVHx+v4sWLa/Xq1fLx8dG2bdtUtWrVzIgRAAAAAABAkpU9Mu7cuaPXX39dw4YNU0RERGbFBAAAAAAAkCqremS4uLhoyZIlmRULAAAAAADAQ1k9tOSFF17Q0qVLMyEUAAAAAACAh7N6ss8SJUro448/1tatW1W1alXlyJHDYn/fvn1tFhwAAAAAAMD9rE5kzJgxQ7ly5dLu3bu1e/dui30mk4lEBgAAAAAAyDTpTmQkJSXJyclJUVFRmRkPAAAAAABAmtI9R4aLi4suXrxo3n7//fd15cqVTAkKAAAAAAAgNelOZBiGYbE9depUXbt2zdbxAAAAAAAApMnqVUuSPZjYAAAAAAAAyGwZTmQAAAAAAAA8blatWjJ8+HB5eHhIkm7fvq0xY8bI29vbos6ECRNsFx0AAAAAAMB90p3IqFOnjo4ePWrerlWrlv7880+LOiaTyXaRAQAAAAAAPCDdiYzIyMhMDAMAAAAAAODRmCMDAAAAAAA4DLsmMiZPnqyKFSsqZ86cypkzp2rWrKkVK1aY9xuGoZEjR6pgwYJyd3dXcHCwDh48aMeIAQAAAACAPdk1kVG4cGF98skn2rVrl3bt2qX69eurdevW5mRFaGioJkyYoEmTJmnnzp3y9fVVo0aNdOPGDXuGDQAAAAAA7MSuiYyWLVuqWbNmKlWqlEqVKqUxY8bI09NT27dvl2EYmjhxooYOHaq2bduqfPnyioiIUHx8vObOnWvPsAEAAAAAgJ1kmTkyEhMTNX/+fMXFxalmzZqKiopSTEyMnn/+eXMdV1dX1a1bV1u3bk3zPAkJCbp+/brFCwAAAAAAPBnSvWrJ/a5du6YdO3bo4sWLSkpKstjXrVs3q8514MAB1axZU7du3ZKnp6eWLFmioKAgc7LCx8fHor6Pj49Onz6d5vnGjRunUaNGWRUDAAAAAABwDFYnMpYtW6YuXbooLi5OXl5eMplM5n0mk8nqREbp0qW1d+9eXbt2TYsWLVL37t21ceNGi3PezzCMFGX3GzJkiAYMGGDevn79uvz9/a2KCQAAAAAAZE1WJzLeffddhYSEaOzYsfLw8PjXAWTPnl0lSpSQJFWrVk07d+7Ul19+qUGDBkmSYmJi5OfnZ65/8eLFFL007ufq6ipXV9d/HRcAAAAAAMh6rJ4j46+//lLfvn1tksRIjWEYSkhIUGBgoHx9fbVmzRrzvtu3b2vjxo2qVatWplwbAAAAAABkbVb3yGjcuLF27dqlYsWK/euLf/DBB2ratKn8/f1148YNzZ8/X5GRkVq5cqVMJpP69eunsWPHqmTJkipZsqS5F0jnzp3/9bUBAAAAAIDjsTqR0bx5c73//vs6dOiQKlSoIBcXF4v9rVq1Sve5Lly4oK5duyo6Olre3t6qWLGiVq5cqUaNGkmSBg4cqJs3b6p37966evWqatSoodWrV8vLy8vasAEAAAAAwBPAZBiGYc0BTk5pj0YxmUxKTEz810HZ0vXr1+Xt7a3Y2FjlzJnTZucNGPxrho475Zax3iQVAotk6LgD3Q9k6LjHjfYEAAAAgP+29H5+t7pHxoPLrQIAAAAAADwuVk/2CQAAAAAAYC8ZSmRs3LhRLVu2VIkSJVSyZEm1atVKmzdvtnVsAAAAAAAAFqxOZMyZM0cNGzaUh4eH+vbtqz59+sjd3V0NGjTQ3LlzMyNGAAAAAAAASRmYI2PMmDEKDQ1V//79zWXvvPOOJkyYoI8//pilUYH/oAoRFTJ0HJOnAgAAALCW1T0y/vzzT7Vs2TJFeatWrRQVFWWToAAAAAAAAFJjdSLD399f69atS1G+bt06+fv72yQoAAAAAACA1Fg9tOTdd99V3759tXfvXtWqVUsmk0m//fabwsPD9eWXX2ZGjAAAAAAAAJIykMjo1auXfH199fnnn2vhwoWSpLJly2rBggVq3bq1zQMEYL2Awb9m6LhTnzS3cSQAAAAAYFtWJzIk6YUXXtALL7xg61gAAAAAAAAeyuo5MgAAAAAAAOwlXT0y8uTJo2PHjilfvnzKnTu3TCZTmnWvXLlis+AAAAAAAADul65ExhdffCEvLy/zzw9LZAAAAAAAAGSWdCUyunfvbv65R48emRULAAAAAADAQ1k9R4azs7MuXryYovzy5ctydna2SVAAAAAAAACpsTqRYRhGquUJCQnKnj37vw4IAAAAAAAgLelefvWrr76SJJlMJs2YMUOenp7mfYmJidq0aZPKlClj+wgBAAAAAAD+v3QnMr744gtJ93pkTJkyxWIYSfbs2RUQEKApU6bYPkIAAAAAAID/L92JjKioKElSvXr1tHjxYuXOnTvTggIAAAAAAEhNuhMZyTZs2JAZcQAAAAAAADyS1ZN9tm/fXp988kmK8s8++0wvvviiTYICAAAAAABIjdWJjI0bN6p58+Ypyps0aaJNmzbZJCgAAAAAAIDUWJ3I+Oeff1JdZtXFxUXXr1+3SVAAAAAAAACpsTqRUb58eS1YsCBF+fz58xUUFGSToAAAAAAAAFJj9WSfw4YNU7t27XTy5EnVr19fkrRu3TrNmzdPP/zwg80DBAAAAAAASGZ1IqNVq1ZaunSpxo4dqx9//FHu7u6qWLGi1q5dq7p162ZGjAAAAAAAAJIykMiQpObNm6c64ScAAAAAAEBmsnqODEm6du2aZsyYoQ8++EBXrlyRJO3Zs0d//fWXTYMDAAAAAAC4n9U9Mvbv36+GDRvK29tbp06d0muvvaY8efJoyZIlOn36tGbPnp0ZcQIAAAAAAFjfI2PAgAHq0aOHjh8/Ljc3N3N506ZNtWnTJpsGBwAAAAAAcD+rExk7d+7UG2+8kaK8UKFCiomJsUlQAAAAAAAAqbE6keHm5qbr16+nKD969Kjy589vk6AAAAAAAABSY3Uio3Xr1vroo490584dSZLJZNKZM2c0ePBgtWvXzuYBAgAAAAAAJLM6kTF+/HhdunRJBQoU0M2bN1W3bl2VKFFCXl5eGjNmTGbECAAAAAAAICkDq5bkzJlTv/32m9avX689e/YoKSlJVapUUcOGDTMjPgAAAAAAADOrExnJ6tevr/r169syFgAAAAAAgIfKUCJj3bp1WrdunS5evKikpCSLfWFhYTYJDAAAAAAA4EFWJzJGjRqljz76SNWqVZOfn59MJlNmxAUAAAAAAJCC1YmMKVOmKDw8XF27ds2MeAAAAAAAANJk9aolt2/fVq1atTIjFgAAAAAAgIeyOpHx2muvae7cuZkRCwAAAAAAwENZPbTk1q1bmjZtmtauXauKFSvKxcXFYv+ECRNsFhwAAAAAAMD9rE5k7N+/X5UqVZIk/fHHHxb7mPgTAAAAAABkJqsTGRs2bMiMOAAAAAAAAB7J6jkyAAAAAAAA7MXqHhlxcXH65JNPtG7dOl28eFFJSUkW+//880+bBQcAAAAAAHA/qxMZr732mjZu3KiuXbvKz8+PeTEAAAAAAMBjY3UiY8WKFfr1119Vu3btzIgHAAAAAAAgTVbPkZE7d27lyZMnM2IBAAAAAAB4KKsTGR9//LGGDx+u+Pj4zIgHAAAAAAAgTVYPLfn888918uRJ+fj4KCAgQC4uLhb79+zZY7PgAAAAAAAA7md1IqNNmzaZEAYAAAAAAMCjWZ3IGDFiRGbEAQAAAAAA8EhWJzKS7d69W4cPH5bJZFJQUJAqV65s9TnGjRunxYsX68iRI3J3d1etWrX06aefqnTp0uY6hmFo1KhRmjZtmq5evaoaNWrom2++Ubly5TIaOoC0jPTO2HGBRWwbBwAAAACkwerJPi9evKj69evr6aefVt++fdWnTx9VrVpVDRo00KVLl6w618aNG/XWW29p+/btWrNmje7evavnn39ecXFx5jqhoaGaMGGCJk2apJ07d8rX11eNGjXSjRs3rA0dAAAAAAA4OKsTGW+//bauX7+ugwcP6sqVK7p69ar++OMPXb9+XX379rXqXCtXrlSPHj1Urlw5PfXUU5o1a5bOnDmj3bt3S7rXG2PixIkaOnSo2rZtq/LlyysiIkLx8fGaO3eutaEDAAAAAAAHZ3UiY+XKlZo8ebLKli1rLgsKCtI333yjFStW/KtgYmNjJUl58uSRJEVFRSkmJkbPP/+8uY6rq6vq1q2rrVu3pnqOhIQEXb9+3eIFAAAAAACeDFYnMpKSklIsuSpJLi4uSkpKynAghmFowIABevbZZ1W+fHlJUkxMjCTJx8fHoq6Pj49534PGjRsnb29v88vf3z/DMQEAAAAAgKzF6kRG/fr19c477+j8+fPmsr/++kv9+/dXgwYNMhxInz59tH//fs2bNy/FPpPJZLFtGEaKsmRDhgxRbGys+XX27NkMxwQAAAAAALIWqxMZkyZN0o0bNxQQEKDixYurRIkSCgwM1I0bN/T1119nKIi3335bP//8szZs2KDChQuby319fSUpRe+LixcvpuilkczV1VU5c+a0eAEAAAAAgCeD1cuv+vv7a8+ePVqzZo2OHDkiwzAUFBSkhg0bWn1xwzD09ttva8mSJYqMjFRgYKDF/sDAQPn6+mrNmjXm5V1v376tjRs36tNPP7X6egAAAAAAwLFZnchI1qhRIzVq1OhfXfytt97S3Llz9dNPP8nLy8vc88Lb21vu7u4ymUzq16+fxo4dq5IlS6pkyZIaO3asPDw81Llz5391bQAAAAAA4HjSPbRk/fr1CgoKSnUVkNjYWJUrV06bN2+26uKTJ09WbGysgoOD5efnZ34tWLDAXGfgwIHq16+fevfurWrVqumvv/7S6tWr5eXlZdW1AAAAAACA40t3j4yJEyeqZ8+eqc454e3trTfeeEMTJkzQc889l+6LG4bxyDomk0kjR47UyJEj031eAAAAAADwZEp3j4x9+/apSZMmae5//vnntXv3bpsEBQAAAAAAkJp0JzIuXLggFxeXNPdny5ZNly5dsklQAAAAAAAAqUl3IqNQoUI6cOBAmvv3798vPz8/mwQFAAAAAACQmnQnMpo1a6bhw4fr1q1bKfbdvHlTI0aMUIsWLWwaHAAAAAAAwP3SPdnnhx9+qMWLF6tUqVLq06ePSpcuLZPJpMOHD+ubb75RYmKihg4dmpmxAgAAAACA/7h0JzJ8fHy0detW9erVS0OGDDGvOGIymdS4cWN9++238vHxybRAAQAAAAAA0p3IkKSiRYtq+fLlunr1qk6cOCHDMFSyZEnlzp07s+IDAAAAAAAwsyqRkSx37tx6+umnbR0LAAAAAADAQ6V7sk8AAAAAAAB7I5EBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAwSGQAAAAAAwGGQyAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAy7JjI2bdqkli1bqmDBgjKZTFq6dKnFfsMwNHLkSBUsWFDu7u4KDg7WwYMH7RMsAAAAAACwO7smMuLi4vTUU09p0qRJqe4PDQ3VhAkTNGnSJO3cuVO+vr5q1KiRbty48ZgjBQAAAAAAWUE2e168adOmatq0aar7DMPQxIkTNXToULVt21aSFBERIR8fH82dO1dvvPHG4wwVAAAAAABkAVl2joyoqCjFxMTo+eefN5e5urqqbt262rp1a5rHJSQk6Pr16xYvAAAAAADwZMiyiYyYmBhJko+Pj0W5j4+PeV9qxo0bJ29vb/PL398/U+MEAAAAAACPT5ZNZCQzmUwW24ZhpCi735AhQxQbG2t+nT17NrNDBAAAAAAAj4ld58h4GF9fX0n3emb4+fmZyy9evJiil8b9XF1d5erqmunxAQAAAACAxy/L9sgIDAyUr6+v1qxZYy67ffu2Nm7cqFq1atkxMgAAAAAAYC927ZHxzz//6MSJE+btqKgo7d27V3ny5FGRIkXUr18/jR07ViVLllTJkiU1duxYeXh4qHPnznaMGgAAAAAA2ItdExm7du1SvXr1zNsDBgyQJHXv3l3h4eEaOHCgbt68qd69e+vq1auqUaOGVq9eLS8vL3uFDAAAAAAA7MiuiYzg4GAZhpHmfpPJpJEjR2rkyJGPLygAAAAAAJBlZdk5MgAAAAAAAB5EIgMAAAAAADgMEhkAAAAAAMBhkMgAAAAAAAAOw66TfQIAkG4jvTN4XKxt4wAAAIBd0SMDAAAAAAA4DBIZAAAAAADAYZDIAAAAAAAADoNEBgAAAAAAcBhM9gkAeKwCBv+aoeNOudk4EAAAADgkemQAAAAAAACHQY8MAAD+i1jOFgAAOCh6ZAAAAAAAAIdBIgMAAAAAADgMEhkAAAAAAMBhMEcGAAAOjFVgAADAfw09MgAAAAAAgMMgkQEAAAAAABwGiQwAAAAAAOAwSGQAAAAAAACHQSIDAAAAAAA4DBIZAAAAAADAYZDIAAAAAAAADiObvQMAAAAAAIcx0juDx8XaNg7gP4weGQAAAAAAwGHQIwMA8ESrEFEhQ8cd6H7AxpEAAADAFuiRAQAAAAAAHAaJDAAAAAAA4DAYWgIAAPBvMflfqgIG/5qh40590tzGkQAAniT0yAAAAAAAAA6DRAYAAAAAAHAYJDIAAAAAAIDDIJEBAAAAAAAcBokMAAAAAADgMFi1BAAegVn3gf9TIaJCho470P2AjSMBAAD/VSQyACCL4YMi8N/B8w4AgPUYWgIAAAAAABwGiQwAAAAAAOAwSGQAAAAAAACHwRwZAAAA/1+GJ/d1s3EgAAAgTfTIAAAAAAAADoMeGQAAAAD+c+iBBTguemQAAAAAAACHQY8MAMgsI70zdlxgEdvGAQCOJqN/P0fG2jYOAECWRI8MAAAAAADgMEhkAAAAAAAAh0EiAwAAAAAAOAzmyAAAAMAToUJEhQwdd6D7ARtHAgDITCQyAAAAgCcZk6cCeMIwtAQAAAAAADgMEhkAAAAAAMBhMLQEAAAAADIZc7gAtkOPDAAAAAAA4DAcIpHx7bffKjAwUG5ubqpatao2b95s75AAAAAAAIAdZPmhJQsWLFC/fv307bffqnbt2po6daqaNm2qQ4cOqUiRIvYODwAAAHgsAgb/mqHjTrnZOBAAsLMsn8iYMGGCXn31Vb322muSpIkTJ2rVqlWaPHmyxo0bZ+foAAAAgCcTczrAGhlOtH3S3MaR4L8gSycybt++rd27d2vw4MEW5c8//7y2bt2a6jEJCQlKSEgwb8fG3lv/+vr16zaNLSkhPkPHXTcZGTou8WZixq5n4/edWWhP26I9bYv2tC3a07ZoT9uiPW2L9rQt2tO2aE/bynB7DsmZsQsOOZex45504wpn7Lgs0p7J97thPPw5MxmPqmFH58+fV6FChbRlyxbVqlXLXD527FhFRETo6NGjKY4ZOXKkRo0a9TjDBAAAAAAANnL27FkVLpx2UiZL98hIZjKZLLYNw0hRlmzIkCEaMGCAeTspKUlXrlxR3rx50zwmK7h+/br8/f119uxZ5cyZwawkzGhP26I9bYv2tC3a07ZoT9uiPW2L9rQt2tO2aE/boj1ty1Ha0zAM3bhxQwULFnxovSydyMiXL5+cnZ0VExNjUX7x4kX5+Pikeoyrq6tcXV0tynLlypVZIdpczpw5s/SN5WhoT9uiPW2L9rQt2tO2aE/boj1ti/a0LdrTtmhP26I9bcsR2tPb2/uRdbL08qvZs2dX1apVtWbNGovyNWvWWAw1AQAAAAAA/w1ZukeGJA0YMEBdu3ZVtWrVVLNmTU2bNk1nzpzRm2++ae/QAAAAAADAY5blExkdO3bU5cuX9dFHHyk6Olrly5fX8uXLVbRoUXuHZlOurq4aMWJEimExyBja07ZoT9uiPW2L9rQt2tO2aE/boj1ti/a0LdrTtmhP23rS2jNLr1oCAAAAAABwvyw9RwYAAAAAAMD9SGQAAAAAAACHQSIDAAAAAAA4DBIZAAAAAADAYZDIAAAAAAAADoNEhh388MMP6tKlizp06KBp06bZOxyHtmPHDiUmJpq3H1yEJyEhQQsXLnzcYT2RkpKStGzZMrVp08beoTxxrly5Yu8QAAAA7GLdunUP3Z+UlKTRo0c/pmjgKEhkPGbTpk1Tx44dtWvXLh09elS9evXSkCFD7B2Ww6pZs6YuX75s3vb29taff/5p3r527Zo6depkj9CeGMePH9eQIUNUuHBhdejQwd7hOJzg4GCdOnUqzf2LFy9WuXLlHl9A/wF79+61dwhAmrg/bYtEMLIynvf0adq0qfr06aP4+PgU+/744w89/fTTmjx5sh0ie7I5+t9PEhmP2ddff62hQ4fq6NGj2rdvn2bOnKlJkybZOyyH9WAPjAe30yrDw928eVMRERGqU6eOypUrp9DQUA0ePFiXLl3S0qVL7R2eQ/Hy8lLFihU1depUi/IrV66oU6dO6tKli/r27Wun6J4csbGx+vbbb1WlShVVrVrV3uE4jGbNmik2Nta8PWbMGF27ds28ffnyZQUFBdkhsicL92fGkAjOHOfOndM///yTovzOnTvatGmTHSJ6svC8W2/z5s1at26dKlasqC1btkj6v14YVatWVdmyZfXHH3/YOUrH8l/4+0ki4zH7888/9corr5i3u3btqoSEBMXExNgxqiebyWSydwgOY8eOHXr99dfl6+urSZMmqV27djp79qycnJzUsGFDeXp62jtEh7Ns2TJNnDhRgwYNUuPGjXXu3DktWbJEQUFBOnnypHbt2kWvrH9h/fr1evnll+Xn56evv/5azZo1065du+wdlsNYtWqVEhISzNuffvqpxTc0d+/e1dGjR+0R2hOB+/PfIRFsW9HR0apevbqKFi2qXLlyqXv37hYJjStXrqhevXp2jNCx8bxnXI0aNfT777+rRYsWqlevnvr06aPq1avrm2++0cKFCzVnzhzlzp3b3mE6lP/C389s9g7gv+bmzZsWHwadnZ3l6uqaalcq4HGrVauW3n77be3YsUOlS5e2dzhPjJCQEDVs2FDdunVTqVKlZBiGhg0bpkGDBsnZ2dne4Tmcc+fOKTw8XGFhYYqLi1OHDh10584dLVq0iN4DVkpPrzZYh/vTdpYtW6awsDANGDBAixcv1syZM7Vz50716tVLRYoU0a5duxz+G8XHafDgwXJ2dtb//vc/Xbt2TUOGDFFwcLDWrFlj/pDI3wDr8Lzbjpubm7744gtdvHhR3377rXLkyKGdO3eqTJky9g7NIf0X/n6SyLCDGTNmWCQz7t69q/DwcOXLl89c5ugZssfp0KFD5h4thmHoyJEj5m8Y/v77b3uG5nDq16+vmTNn6uLFi+ratasaN25MjxYbOXLkiE6ePKn8+fMrOjpad+/etXdIDqlZs2b67bff1KJFC3399ddq0qSJnJ2dNWXKFHuHBnB/ZgISwbazdu1aLVmyRNWqVZMkPffcc+rYsaPq169vnmyRf/PTj+fdtk6ePKkePXro+PHjmjJlisLDw1W3bl1NmTJFL7zwgr3Dc0hP+t9PEhmPWZEiRTR9+nSLMl9fX3333XfmbZPJRCLDCg0aNLD4BqFFixaS7rWjYRj8o2yF1atX6+zZs5o1a5Z69eqlmzdvqmPHjpL4z01GxcXFqX///oqIiNAHH3ygoUOHavXq1Xr99df1008/afbs2Q6fEX+cVq9erb59+6pXr14qWbKkvcNxeCaTKcWzzbOecdyfmYNEsG3ExsZadM93dXXVjz/+qBdffFH16tXTnDlz7Bid4+F5t51JkyZp8ODBaty4sRYvXqz8+fPrtdde02effabOnTurXbt2+vrrrxlekgFP8t9P5sh4zE6dOqWoqKiHvu5fdQMPl9xeabUj7Wk9f39/DR8+XFFRUfruu+908eJFZcuWTa1bt9YHH3ygPXv22DtEh1K+fHlt375d27Zt04gRI5QtWzY1a9ZMf/zxh8qWLatq1arp008/tXeYDmPz5s26ceOGqlWrpho1amjSpEm6dOmSvcNyWIZhqEePHmrbtq3atm2rW7du6c033zRvh4SE2DtEh8L9aVtxcXF6/fXX1bJlS7322ms6efKkli5dqmnTpql69eo6ePCgvUN0KMWKFdP+/fstyrJly6YffvhBxYoVM38RhPThebedESNGaOrUqVq0aJHy588vSXJyctKgQYO0a9cuHTlyROXLl7dzlI7lv/D302QwGA7AI1y9elVz5sxRWFiY9u/fr8TERHuH5DAGDRqkjz/+WNmzZ091/5IlS9SrVy8m/LVSfHy85s+fr7CwMO3YsUOJiYmaMGGCQkJC5OXlZe/wHMb9k08/zKxZszI5kicL96dtBAYGysvLS+Hh4apSpYq5/Nq1a+rTp48WLVqkkSNHatCgQXaM0nEMGjRIe/fu1apVq1Lsu3v3rtq1a6dffvmFf+OtxPP+70VHR8vPzy/N/YmJiRo7dqyGDRv2GKNybP+Fv58kMh6zIkWK6Pfff1fevHkl3etK1a1bN+XMmdPOkTmmK1euKD4+XoULFzaXHTx4UOPHj1dcXJzatGmjzp072zHCJ8+ePXss/iDi37t8+bL5bwKsd/ToUc2cOVPfffedrl27pkaNGunnn3+2d1iAJO7Pf4NEsG3dvXtX8fHxaf6fMzExUefOnVPRokUfc2RPDp53ZBX/hb+fJDIeMycnJ8XExKhAgQKSpJw5c2rv3r0qVqyYnSNzTJ06dZKfn58mTJggSbp48aLKlCmjggULqnjx4lqxYoVmzpyprl272jlSx3H9+nXzf3KWL19uMZYueVgEkBUlJiaaZ+nmP47/zunTpxUXF6cyZcrIyYlRqLbA/Zk5SAQjK+J5z7gtW7aoWrVqcnV1tfgZtufofz9JZDxmDyYyvLy8tG/fPhIZGRQYGKhZs2YpODhYkjR+/HhNmTJFR44cUbZs2TR+/Hj9+OOP2r59u30DdRC//PKLhg0bpt9//13SvfszLi7OvN9kMmnBggVq3769vUJ0aM2bN9eMGTPk5+dn8TNgLxEREbp69ar69etnLnv99dc1c+ZMSVLp0qW1atUq+fv72ylCALZ0/Phx7d+/X1WqVFFgYKB+/fVXffrpp7p586batGmjDz74gAl/YVf3f8nLF754GL5mgUOLiYlRYGCgeXv9+vV64YUXlC3bvQV5WrVqpePHj9srPIczbdo09enTx6LsxIkTSkpKUlJSksaNG6ewsDA7Ref4Nm3apJs3b6b4GekXHR2toUOHmrefffZZValSxfyqXr26/vrrLztG6FimTJkib29v8/bKlSs1a9YszZ49Wzt37lSuXLk0atQoO0boWLg/M0/z5s0VHR2d4mek35IlSxQUFKTOnTurbNmymj17ttq1a6ccOXLIx8dHI0eOVGhoqL3DdBg875nj/u/Y+b7dNp7Uv58kMuxgxowZ+uqrr/TVV1/p7t27Cg8PN28nv5A+OXPm1LVr18zbO3bs0DPPPGPeNplMSkhIsENkjmn//v166qmn0tzftGlT7dq16zFGBFj69ttvLZ75ffv26bnnnlPr1q3VunVrOTk56YsvvrBfgA7m2LFjqlatmnn7p59+UqtWrdSlSxdVqVJFY8eO1bp16+wYoWPh/sw8JIL/vTFjxmjgwIG6deuWJk+erDfffFOffPKJVqxYoV9++UXffPONwsPD7R2mw+B5h6N4Uv9+ZrN3AP81RYoU0fTp083bvr6++u677yzqmEwm9e3b93GH5pCqV6+ur776StOnT9fixYt148YN1a9f37z/2LFjdIm2QkxMjMVYuQ0bNli0n6enp2JjY+0RGiBJWrZsmT777DOLsnfeecfc7fSZZ57RgAEDNH78eHuE53Bu3rxpMfHf1q1bLZZcLVasmENPBPa4cX8iKzt69KgWLFggk8mk7t27q2fPnmrYsKF5//PPP28xzAwPx/MO2BeJjMfs1KlT9g7hifLxxx+rYcOGmjNnju7evasPPvhAuXPnNu+fP3++6tata8cIHUuePHl08uRJ83Cd+7+ple6Nrc2TJ489QgMk3fsbWrx4cfN2o0aNlCNHDvN26dKlFRUVZY/QHFLRokW1e/duFS1aVH///bcOHjyoZ5991rw/JibGYugJHo77E1lZXFyceTlQJycnubu7y8PDw7zf3d2dXqxW4HkH7ItEBhxapUqVdPjwYW3dulW+vr6qUaOGxf6XXnpJQUFBdorO8dSpU0dfffWVxTc09/vqq69Up06dxxwV8H/u3r1r0Sto8eLFFvuvXr3KKhtW6Natm9566y0dPHhQ69evV5kyZVS1alXz/q1bt6p8+fJ2jNCxcH8iKzOZTBYTeT64DevwvAP2xdNlR1u2bDFnvu//GdbJnz+/WrdunSKJId2b0Ob+yUDxcIMGDdLq1av14osvaufOnYqNjVVsbKx27Nihdu3aae3atRo0aJC9w8R/WOnSpbV169Y092/evFmlSpV6jBE5tkGDBum1117T4sWL5ebmph9++MFi/5YtW9SpUyc7Red4uD+RlRmGoVKlSilPnjzKkyeP/vnnH1WuXNm8XaZMGXuH6FB43gH7okeGHTVt2tS8pND9PyNjWHf636tcubIWLFhg/mBzv9y5c2v+/PmqUqWKnaJzfA9+EwbrvfTSSxo+fLiee+45VaxY0WLfvn37NGrUKA0ePNhO0TkeJycnffzxx/r4449T3f9gYgMPx/2JrGzWrFn2DuGJwvMO2BeJDDtieSHbIjFkG61bt1ajRo20atUq89K1JUuW1PPPP28x9hPW45n/9/r166dffvlFVatWVaNGjVS6dGmZTCYdOXJEa9asUc2aNZmsDnbD/Zl5SAT/e927d7d3CE8UnvfM8cEHH5jnY7v/Z2Tck/r3k0QGnhh8SLQdDw8PvfDCC/YO44lz48aNVH9G+rm4uGjNmjWaMGGC5s+fr8jISEn3km0ff/yx+vfvLxcXF/sG6aCaN2+uGTNmyM/Pz+JnpB/3Z+bh33hkNTzvmWPIkCGp/oyMe1L/fpqMJ+ndOBgvLy/t27dPxYoVs/gZGUN72hZDdYD/Fv6GAv8dJC6R1Zw+fVqrV6/WnTt3VLduXZUrV87eISGLY7JPAKlq2rSp/vrrrxQ/wzqhoaG6efOmeXvTpk0WE/veuHFDvXv3tkdoAID/qE2bNpn/bbr/Z8AeNm3apHLlyumNN95Qnz59VLlyZc2bN8/eYSGLI5EBIFVPaje0x23IkCEWw0hatGhhkRSKj4/X1KlT7RGaw2vevLmio6NT/AxkBdyf/158fLzeeustFSpUSAUKFFDnzp31999/2zssIAWe939n2LBhqlevns6dO6fLly8rJCREAwcOtHdYyOJIZABAJnowCURSyHb4RhFZGffnvzdixAiFh4erefPm6tSpk9asWaNevXrZOywgBZ73f+fAgQMaN26cChYsqNy5c+vzzz/X+fPndfXqVXuH5rDu3LmjgQMHqkSJEqpevXqKVYsuXLggZ2dnO0VnG0z2CQAAgCxn8eLFmjlzpl566SVJUpcuXVS7dm0lJiY6/H/AAfyfa9euqUCBAubtHDlyyMPDQ9euXVPu3LntGJnjGjNmjGbPnq333ntP165dU//+/bV9+3aLXsCO/uUaiQw7YnkhAACA1J09e1bPPfecebt69erKli2bzp8/L39/fztGBsDWDh06pJiYGPO2YRg6fPiwxfDcihUr2iM0h/T9999rxowZatGihSTplVdeUdOmTfXKK68oLCxMkuMvxUoiw45YXsi2SAwhq5oxY4Y8PT0lSXfv3lV4eLjy5csniWVYkXU8qevMw3ElJiYqe/bsFmXZsmXT3bt37RQRgMzSoEGDFD0Ekj+ES/f+XUpMTHzcYTmsv/76S+XLlzdvFy9eXJGRkapfv766du2q0NBQO0ZnGyQy7IDlhTIHiSFkRUWKFNH06dPN276+vvruu+9S1AHsjQl+kdUYhqEePXpYLP1969Ytvfnmm8qRI4e5bPHixfYIz6GRuERWEhUV9cg6zJdhHV9fX508eVIBAQHmsoIFC2r9+vWqV6+eunfvbr/gbIRExmO2adMmNWvWTPHx8ZLufbMQERGhTp062Tkyx0ViCFnZqVOn7B0CkC739w6ipxCygm7duqX4kP3yyy/bKZonC4lLZCVFixZNtTw2Nlbff/+9Zs6cqb1799Ijwwr169fX3Llz1aBBA4vy5GRGcHCwfQKzIRIZj1ny8kJTp06Vu7u7hgwZooEDB5LIyCASQ5mHoTq28b///U9XrlxR06ZNzWWzZ8/WiBEjFBcXpzZt2ujrr7+2+MYR6cM3isjKuD//veHDhysgIEBOTiyyZ2skLm2L59221q9fr7CwMC1evFhFixZVu3btNGPGDHuH5VCGDRumI0eOpLqvUKFC2rRpk1avXv2Yo7It/mV4zFheyLZYdzrzDBkyRLly5UrxM6wzYsQI7d+/37x94MABvfrqq2rYsKEGDx6sZcuWady4cXaM0HHxjeK/Fx8fr7feekuFChVSgQIF1LlzZ/3999/2DuuJwP3575UsWdLifuzYsaMuXLhgx4iA1PG8/3vnzp3T6NGjVaxYMXXq1Em5c+fWnTt3tGjRIo0ePVqVK1e2d4gOpWjRomrcuLEuX75sLjt79qyGDx+u999/XydOnHD44SUmg6ftsXJyclJMTIzFEkNeXl7av3+/AgMD7RiZY8qTJ482bdpknswmLi5OOXPm1N9//81yTRnEUB3b8vPz07Jly1StWjVJ0tChQ7Vx40b99ttvkqQffvhBI0aM0KFDh+wZJv6j3n//fX377bfq0qWL3N3dNXfuXAUHB+uHH36wd2hAiv8zeXl5ad++fSpWrJidI3syxcXFaffu3apTp469Q8F/TLNmzfTbb7+pRYsW6tKli5o0aSJnZ2e5uLho3759CgoKsneIDufAgQNq2bKlzp49q5IlS2r+/Plq0qSJ4uLi5OTkpLi4OP34449q06aNvUPNMIaW2AHLC9kO607bFkN1bO/q1avy8fExb2/cuFFNmjQxbz/99NM6e/asPUIDtHjxYs2cOVMvvfSSJKlLly6qXbu2EhMT5ezsbOfoADxOJ06cUL169ZiHAI/d6tWr1bdvX/Xq1UslS5a0dzhPhIEDB6pChQqaM2eO5syZoxYtWqhZs2bmITpvv/22PvnkE4dOZDC0xA4aNGigSpUqmV/x8fFq0aKFeZuuU9Y5dOiQ9u/fb34lJ4buL0P6MFTH9nx8fMyzcd++fVt79uxRzZo1zftv3LghFxcXe4XncBgKYVtnz57Vc889Z96uXr26smXLpvPnz9sxqidXXFycNm3aZO8wHIbJZEox3wDzDwBPns2bN+vGjRuqVq2aatSooUmTJunSpUv2Dsuh7dy5U2PGjNGzzz6r8ePH6/z58+rdu7ecnJzk5OSkt99+O805NBwFQ0ses9OnTz+yztWrV1WpUqXMD+YJ4OTkJJPJ9NDxiKw7nX4M1bG9N954QwcOHNCnn36qpUuXKiIiQufPn1f27NklSd9//70mTpyonTt32jlSx8BQCNtydnZWTEyM8ufPby5juGPm2bdvn6pUqcK/Senk5OSkpk2bmidDXrZsmerXr2+x9KrE8qvp9ahJuxMTE/XPP/9wf6bTnTt3NHToUC1evFh58uRRr1699Morr5j3X7hwQQULFqQ9rRAfH6/58+crLCxMO3bsUGJioiZMmKCQkBB5eXnZOzyH8qiheU/C/cnQkseM5YVsi3WnbYuhOrY3evRotW3bVnXr1pWnp6ciIiLMSQxJCgsL0/PPP2/HCB0LQyFsyzAM9ejRw2LVnFu3bunNN9+0+LDIB0XYw4MT0bH06r+TkJCgXr16qUKFCqnuP336tEaNGvWYo3JcY8aM0ezZs/Xee+/p2rVr6t+/v7Zv366pU6ea6/B9sXU8PDwUEhKikJAQHT16VDNnztQnn3yiwYMHq1GjRvr555/tHaJDedJ7tNEjw85SW16oXbt2DC/5l0gMZYyTk5PWr19v8a1NrVq1tHDhQhUuXNhcxhwu1ouNjZWnp2eKD9tXrlyRp6enRXIDacuePbuioqJUqFAhc5m7u7uOHTsmf39/O0bmmHr06JGu/9jMmjXrMUTj+PjGG1lZ7dq11aFDB73zzjup7qfHkHVKliypL774Qi1atJAknTx5Uk2bNlXt2rUVFhamixcvOvw33llBYmKili1bprCwMBIZVnhUj7aEhAStXLnSoe9PEhl2cO7cOYWHhyssLExxcXHq0KGDpkyZwqy8NkBi6N9hqA6yOoZC2Naff/6pgIAAOTkxZZYt5MiRI13fePM3FPYwduxY3blzRyNGjEh1f/LSjCQu08fDw0OHDh1SQECAuez8+fOqX7++qlWrptDQUPn7+/O8wy7uH+b0MI78vJPIeMxYXsj2SAzZDnO4IKt78BsGKfVx8wyFSB9nZ2dFR0ebh5R17NhRX331lcVKO0g/vvEG/juKFSum6dOnq0GDBhbl58+fV7169VSkSBGtX7+e5x3IJMyR8ZixvJBt3Z8Y+vrrr82JoSlTptg7NIfEHC7I6rp165ZiKATj5jPuwe8yli9frnHjxtkpGsfXvHlzXbt2Lc39efLkUbdu3R5fQEAqLl++rLx580q61wtj+vTpunnzplq1amWxihEern79+po7d26KREbBggW1fv16BQcH2ycw4D+CHhmP2bZt2xQWFqaFCxeqTJky6tq1qzp27KiCBQvSgyADsmXLlmpiiB4utsFQHWQ1DIWwrUfNag7gyXHgwAG1bNlSZ8+eVcmSJTV//nw1adJEcXFxcnJyUlxcnH788Ue1adPG3qE6hNOnT+vIkSNq3Lhxqvujo6O1evXqFJPWArAN/if4mNWsWVPTp09XdHS03njjDc2fP1+FChVSUlKS1qxZoxs3btg7RIfCutO2d+7cOY0ePVrFihVTp06dlDt3bt25c0eLFi3S6NGjSWLArkqWLKm///7bvN2xY0dduHDBjhE5NpPJ9MTPam4Ply9fNv+cPO/A+++/r82bN9sxKvzXDRw4UBUqVNDGjRsVHBysFi1aqFmzZoqNjdXVq1f1xhtv6JNPPrF3mA6jaNGiaty4cZrP+4kTJ0hiAJmIHhlZQPLyQt99952uXbvG8kIZwLrTtsEcLsjq6EFgW4+a1TwZc46kD994IyvLly+f1q9fr4oVK+qff/5Rzpw5tWPHDlWrVk2SdOTIET3zzDMPHR6F/8PzDtgXPTKygNKlSys0NFTnzp3TvHnz7B2OQ0ped/q3337TgQMH9O677/6/9u4+tKoyDuD49+h0u3XDl2wbOrOm6KYyYdqmaM6tLquEORiJhqCGJoSxrLQiU+yFlg1lIpj/tC2L+iNf8AVENCfNJeYfQuVyIEiJY5I2BEtZuv4ID65Z3pV1d/P7gQs753nOc59z2Dlwf+f3PA9VVVWkp6dTVlaW6O4ljX379rFo0SLWrFnDzJkzuy0VKun/Zf78+aSnpzNgwAAGDBjAvHnzGDp0aLh9/aP4+MZbvdmFCxfIzMwEIBqNcvfdd3dZMnjQoEFmBveA97uUWGZk6H/Ldad7zjlc1Nv9cflVl15Vb+Ibb/Vmffr0oa2t7U+fn21tbQwdOtQJvePk/S4lloEMSd04VEe9lUMh1JvdauiTPxSVSLd6fl65coW9e/f6/xkn73cpsQxkSPpLzuGi3mThwoVx1autrf2XeyJ15xtv9WY+P28v73cpsQxkSIqLQ3Uk6a/5xlu6c3i/S4llIEOSJOk28I23dOfwfpcSy0CGJEmSJElKGi6/KkmSJEmSkoaBDEmSJEmSlDQMZEiSJEmSpKRhIEOSJP1nGhoaCIKA9vb2hPajrq6OgQMHJrQPkiTp7zGQIUmS4nbu3DmWLFnC/fffT2pqKpmZmZSWlvLll18mumv/qd4SkJEk6U6UkugOSJKk5FFRUUFHRwf19fVkZ2fT1tbGgQMHuHDhQqK7JkmS7hBmZEiSpLi0t7fT2NjIu+++S3FxMSNGjKCgoIBXX32VmTNncvr0aYIg4Pjx412OCYKAhoaGLm0dPnyYCRMmkJaWRmFhIV9//XVYdn3Yx44dOxg9ejRpaWnEYjF++OGHLm1s2rSJkSNH0r9/f8aMGcOWLVu69feZZ54hIyODtLQ0xo8fz+7du296bufPn6egoICysjIuX75MZ2cna9euJTs7m0gkwoQJE/jss88AOH36NMXFxQAMGjSIIAhYsGDB37yqkiSppwxkSJKkuESjUaLRKDt27ODKlSv/qK3ly5dTXV3NV199RXp6OmVlZXR0dITlP//8M2+//Tb19fUcPnyYixcvMmfOnLB8+/btVFZW8uKLL/LNN9+wZMkSFi5cyMGDBwG4du0ajz/+OE1NTXz00UecOHGCqqoq+vbt260vZ86c4eGHHyYnJ4dt27aRlpbGypUrqa2tZdOmTXz77bcsW7aMefPmcejQIYYPH87WrVsBOHnyJK2trdTU1Pyj6yFJkuLn0BJJkhSXlJQU6urqWLx4Me+//z75+fkUFRUxZ84c8vLyetTW6tWricViANTX15OVlcX27duZPXs2AB0dHWzcuJHCwsKwTm5uLkePHqWgoIDq6moWLFjAs88+C8ALL7zAkSNHqK6upri4mP3793P06FGam5sZPXo0ANnZ2d360dLSQiwWY9asWdTU1BAEAZcuXWLdunV8/vnnTJkyJTy2sbGRzZs3U1RUxODBgwFIT0930lBJkv5jZmRIkqS4VVRUcPbsWXbu3ElpaSkNDQ3k5+dTV1fXo3auBwgABg8ezJgxY2hubg73paSkMGnSpHA7JyeHgQMHhnWam5uZOnVqlzanTp0alh8/fpysrKwwiHEzv/zyC9OmTaO8vJwNGzYQBAEAJ06c4PLly8RisTALJRqN8uGHH3Lq1KkenackSbr9zMiQJEk9cn3OilgsxqpVq1i0aBGrV6/miy++AKCzszOse+NwkVu5Hkj4s+0/7vtjeWdnZ7gvEonc8vtSU1N59NFH2bNnD8uXLycrKwv4fVgKwJ49exg2bFi3YyRJUmKZkSFJkv6RsWPHcunSJe677z4AWltbw7IbJ/680ZEjR8K/f/rpJ1paWsjJyQn3/frrrxw7dizcPnnyJO3t7WGd3NxcGhsbu7TZ1NREbm4uAHl5eZw5c4aWlpY/7XefPn3YsmULEydOpKSkhLNnz4bnk5qayvfff8+oUaO6fIYPHw5A//79Abh69epfXxxJknTbmZEhSZLicv78eZ588kmefvpp8vLyuOeeezh27Bhr165l1qxZRCIRJk+eTFVVFQ888AA//vgjK1euvGlbb7zxBvfeey8ZGRm89tprDBkyhPLy8rC8X79+PPfcc2zYsIF+/fqxdOlSJk+eTEFBAfD7ZKGzZ88mPz+fRx55hF27drFt2zb2798PQFFREdOnT6eiooJ169YxatQovvvuO4Ig4LHHHgu/p2/fvnz88cfMnTuXkpISGhoayMzM5KWXXmLZsmVcu3aNadOmcfHiRZqamohGo8yfP58RI0YQBAG7d+/miSeeIBKJEI1G/72LL0mSQmZkSJKkuESjUQoLC1m/fj3Tp09n/PjxvP766yxevJiNGzcC8MEHH9DR0cGkSZOorKzkrbfeumlbVVVVVFZWMnHiRFpbW9m5c2eY5QBw11138fLLL/PUU08xZcoUIpEIn376aVheXl5OTU0N7733HuPGjWPz5s3U1tYyY8aMsM7WrVt56KGHmDt3LmPHjmXFihU3zaBISUnhk08+Ydy4cZSUlHDu3DnefPNNVq1axTvvvENubi6lpaXs2rWLBx98EIBhw4axZs0aXnnlFTIyMli6dOntuMSSJCkOQeeNA1klSZISrK6ujueff5729vZEd0WSJPVCZmRIkiRJkqSkYSBDkiRJkiQlDYeWSJIkSZKkpGFGhiRJkiRJShoGMiRJkiRJUtIwkCFJkiRJkpKGgQxJkiRJkpQ0DGRIkiRJkqSkYSBDkiRJkiQlDQMZkiRJkiQpaRjIkCRJkiRJScNAhiRJkiRJShq/Ad6JQpNKY3PmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "con_frequencies = filters.plots.connection_frequencies(fragment_library, fragment_library_reduced, fragment_library_custom)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "a2b0c263-d1c2-408f-bdc8-220c4c35787e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count_pre-filteredfrequency_pre-filteredcount_reducedfrequency_reducedcount_custom-filteredfrequency_custom_filtered
AP=FP131157.229045.221744.7
AP=SE103645.222835.620241.6
AP=GA63327.613220.613728.2
SE=X853.7142.2173.5
FP=GA1727.5538.3255.1
FP=SE1506.6467.2183.7
B1=GA652.8294.5173.5
FP=X1024.5142.281.6
B1=B2120.591.420.4
B2=GA602.6345.351.0
AP=X60.310.200.0
B2=X20.110.200.0
\n", + "
" + ], + "text/plain": [ + " count_pre-filtered frequency_pre-filtered count_reduced \\\n", + "AP=FP 1311 57.2 290 \n", + "AP=SE 1036 45.2 228 \n", + "AP=GA 633 27.6 132 \n", + "SE=X 85 3.7 14 \n", + "FP=GA 172 7.5 53 \n", + "FP=SE 150 6.6 46 \n", + "B1=GA 65 2.8 29 \n", + "FP=X 102 4.5 14 \n", + "B1=B2 12 0.5 9 \n", + "B2=GA 60 2.6 34 \n", + "AP=X 6 0.3 1 \n", + "B2=X 2 0.1 1 \n", + "\n", + " frequency_reduced count_custom-filtered frequency_custom_filtered \n", + "AP=FP 45.2 217 44.7 \n", + "AP=SE 35.6 202 41.6 \n", + "AP=GA 20.6 137 28.2 \n", + "SE=X 2.2 17 3.5 \n", + "FP=GA 8.3 25 5.1 \n", + "FP=SE 7.2 18 3.7 \n", + "B1=GA 4.5 17 3.5 \n", + "FP=X 2.2 8 1.6 \n", + "B1=B2 1.4 2 0.4 \n", + "B2=GA 5.3 5 1.0 \n", + "AP=X 0.2 0 0.0 \n", + "B2=X 0.2 0 0.0 " + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "con_frequencies" + ] + }, + { + "cell_type": "markdown", + "id": "9a52cf6a-692e-4568-a32f-23b976ed7283", + "metadata": {}, + "source": [ + "## 5. Fragment similarity per subpocket\n" + ] + }, + { + "cell_type": "markdown", + "id": "b41d219b-470e-4192-83cb-bab69493d689", + "metadata": {}, + "source": [ + "Calculate the pairwise Tanimoto similarity of the fragments RDKit fingerprints for each fragment library subset." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "3c73d774-682d-4dc8-9086-7ee81c137f1b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
similarity_pre-filteredsimilarity_reducedsimilarity_custom
subpocket
AP0.1433620.1114630.183834
FP0.0901400.0714980.117084
SE0.1010060.0758920.137825
GA0.1040380.0727970.159363
B10.0906240.0640780.158110
B20.0864270.061338NaN
\n", + "
" + ], + "text/plain": [ + " similarity_pre-filtered similarity_reduced similarity_custom\n", + "subpocket \n", + "AP 0.143362 0.111463 0.183834\n", + "FP 0.090140 0.071498 0.117084\n", + "SE 0.101006 0.075892 0.137825\n", + "GA 0.104038 0.072797 0.159363\n", + "B1 0.090624 0.064078 0.158110\n", + "B2 0.086427 0.061338 NaN" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "similarities_per_subpocket = utils.get_fragment_similarity_per_subpocket(pd.concat(fragment_library))\n", + "similarities_per_subpocket_reduced = utils.get_fragment_similarity_per_subpocket(pd.concat(fragment_library_reduced))\n", + "similarities_per_subpocket_custom = utils.get_fragment_similarity_per_subpocket(pd.concat(fragment_library_custom))\n", + "mean_similarities = pd.concat(\n", + " [\n", + " similarities_per_subpocket.groupby('subpocket', sort=False).mean(),\n", + " similarities_per_subpocket_reduced.groupby('subpocket', sort=False).mean(),\n", + " similarities_per_subpocket_custom.groupby('subpocket', sort=False).mean(),\n", + " ],\n", + " axis=1,\n", + ")\n", + "mean_similarities.columns=[\"similarity_pre-filtered\", \"similarity_reduced\", \"similarity_custom\"]\n", + "mean_similarities" + ] + }, + { + "cell_type": "markdown", + "id": "3adbedcf-3dbb-4de7-a87a-f355622b89ae", + "metadata": {}, + "source": [ + "Plot the fragment similarity." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "e96149a4-9ee2-4823-94e8-6cba7cf04b4d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnEAAAHoCAYAAACW1cqsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhUZfsH8O8w7KAgiBuI+Rpg5oKK4u4YiWtm6c8Ie90No0RTQ+wtTc0ELEpUgkolSpRKy6Uy0iB3CEFzS7FS3BdwRdmG+f1B5zSHGXAYhm3m+7kurmvOOTczzxyGOc95lvuRqVQqFYiIiIiIiIiIiIiIiKheMavrAhAREREREREREREREZEmduIQERERERERERERERHVQ+zEISIiIiIiIiIiIiIiqofYiUNERERERERERERERFQPsROHiIiIiIiIiIiIiIioHmInDhERERERERERERERUT3EThwiIiIiIiIiIiIiIqJ6iJ04RERERERERERERERE9RA7cYiIiIiIiIiIiIiIiOohduIQNRB5eXkICAhAs2bNIJPJMHr0aACATCbDO++8I8alpqZCJpMhNTVV3PfDDz9IYuqb8u+hIllZWRg4cCAcHBwgk8nw0Ucf1XjZGoLExMQqnQuFQgGFQiHZV/5vEB8fD5lMhoyMDMMUkoiIjIK2a0h9Ily/zp0798jYVatW4fHHH4elpSVkMhlu375d4+Wr7x48eIB33nlHUo+szLlz5yCTyRAfHy/u0/Y3UCgU6Nixo2ELS0RE9VJVryW1qaioCDNmzEDLli0hl8vh7e0NAHjssccwadIkMU7b9e3AgQN455136m19ofx7qMi5c+cwYsQIODk5QSaTYfbs2TVetoagqu1mkyZNwmOPPSbZV/5vILTPffPNN4YpJJk087ouABHpZunSpfj222+xbt06tGvXDk5OTgCAgwcPws3NrdLf/eGHH7BmzZp63ZGjiylTpiA/Px+bNm1CkyZNNC6YpioxMRHHjx+vVuVLl88RERGRsThy5AhCQkIwbdo0TJw4Eebm5mjUqFFdF6vOPXjwAIsXLwYAvTvrRowYgYMHD6Jly5YGLBkRETUUhriW1JSPP/4YcXFxWLVqFbp37w57e3sAwLfffovGjRtX+rsHDhzA4sWLMWnSJDg6OtZCaWvG66+/jrS0NKxbtw4tWrTg9fofhmg30+VzRKQvduIQ1bCHDx/Cxsam2s9z/PhxtGvXDuPHj5fs79WrV7WfW18PHjyAra1trb3e8ePHMX36dAwbNqzSuIcPH8La2hoymayWStbwGfpzZIjPRm1/voiIjBm/U6VOnDgBAJg+fTp69uxZaSzPXdW4uLjAxcXFYM+nVCpRUlICKysrvZ9DpVKhoKDAIHVyIiJquI4fPw4bGxu89tprkv1du3atoxLVTbtKz549xewuFSkuLoZMJoO5OZuOdWXozxHbVUgd06kRPcI777wDmUyGrKwsPP/882jcuDEcHBzw0ksv4caNG5LYxx57DCNHjsSWLVvQtWtXWFtbiyNQrl69iqCgILi5ucHS0hJt27bF4sWLUVJSUunrC9N4d+3ahVOnTkEmk0nSpT0qFdmkSZOwZs0aMVb4EVJcqFQqxMTEwNvbGzY2NmjSpAnGjh2Lv/76S/I8QhqMPXv2oE+fPrC1tcWUKVMAAHfv3sW8efPQtm1bWFpawtXVFbNnz0Z+fr7kOe7evYvp06fD2dkZ9vb2GDp0KM6cOVPp+wf+TctRUlKCjz/+WHwP6seSk5MxZcoUuLi4wNbWFoWFhTh79iwmT54MDw8P2NrawtXVFc888wyOHTum8RonTpyAv78/bG1t4eLigldffRXff/+9Rmo64TwcPHgQffr0gY2NDR577DGsX78eAPD999+jW7dusLW1RadOnbBz506N18rOzkZgYCCaNWsGKysrPPHEE+LfSCBMu924cSP+97//oVWrVmjcuDGefvppnD59WlKe77//HufPn5f8fauqos/RrVu3MHnyZDg5OcHOzg7PPPNMlT4bSUlJ8Pf3R8uWLWFjY4MnnngCYWFhGp+NSZMmwd7eHseOHYO/vz8aNWoEPz8/LF26FObm5rhw4YJG2aZMmQJnZ2cUFBRU+f0SERkzoe6SmZmJsWPHokmTJmjXrh0A3a/7KpUKkZGRaNOmDaytrdGtWzf8+OOPGq9VUfoybeldAWDnzp3w8/ODg4MDbG1t8cQTT2D58uWSmIyMDIwaNQpOTk6wtrZG165d8dVXX2m89qFDh9C3b19YW1ujVatWWLBgAYqLix95fhQKBV566SUAgK+vL2QymZj6whDXNAD49NNP4enpCSsrK3To0AGJiYkaaTeEOt6KFSsQERGBxx57DDY2NlAoFDhz5gyKi4sRFhaGVq1awcHBAc899xyuX7+u8VpJSUno3bs37OzsYG9vjyFDhiArK0sSI1xnz549i+HDh8Pe3h6tW7fG3LlzUVhYKJZH6HxZvHixWKfQJTWLuspS2u3duxe9evWCjY0NXF1d8fbbb0OpVGqck8jISLz77rto27YtrKyskJKSgoKCAsydOxfe3t5wcHCAk5MTevfuja1bt2q8jkwmw2uvvYbY2Fg88cQTsLKyQnx8PDw8PDBkyBCN+Pv378PBwQGvvvpqld4rEVFD8ccff+DFF19E8+bNYWVlBXd3d0yYMEG8Bgh1h/K0faf/8ssvUCgUcHZ2ho2NDdzd3TFmzBg8ePBAp2vJvn374Ofnh0aNGsHW1hZ9+vTB999/r/V1f/nlF7ENoXHjxpgwYQLy8/Nx9epVjBs3Do6OjmjZsiXmzZv3yDqATCbDZ599hocPH4rlEtKlPSoV2TvvvIM33ngDANC2bVuNdhmgatfj8ve9QFmqt3fffRft27eHlZUVXFxcMHnyZI12p+LiYoSGhqJFixawtbVFv379kJ6eXul7B/6tm509exY//vijpG1IOPbFF19g7ty5cHV1hZWVFc6ePYsbN24gODgYHTp0gL29PZo1a4annnoKe/fu1XiNixcvYuzYsWjUqBEcHR0xfvx4/Pbbbxqp6YTz8Mcff2DIkCGws7NDy5YtER4eDqCsjtevXz/Y2dnB09MTn3/+ucZr6dLGJtQr3n//fURFRaFt27awt7dH7969cejQIUl5Kms301VFn6OCggLMmTMHLVq0gI2NDQYOHFilz8bPP/+MZ599Fm5ubrC2tsbjjz+OoKAg3Lx5U/IcFd0DfPHFF5DJZDh48KBG2ZYsWQILCwtcvny5Su+Vah+7U4l09Nxzz2HcuHGYMWMGTpw4gbfffhsnT55EWloaLCwsxLjMzEycOnUKb731Ftq2bQs7OztcvXoVPXv2hJmZGRYuXIh27drh4MGDePfdd3Hu3DmxA0Cbli1b4uDBgwgODsadO3ewYcMGAECHDh10Kvfbb7+N/Px8fPPNN5IvbGHKbFBQEOLj4xESEoKIiAjk5eVhyZIl6NOnD44ePYrmzZuLv3PlyhW89NJLCA0NxXvvvQczMzM8ePAAAwcOxMWLF/Hmm2+ic+fOOHHiBBYuXIhjx45h165dkMlkUKlUGD16NA4cOICFCxeiR48e2L9//yNn1QD/puXo3bs3xo4di7lz52rETJkyBSNGjMAXX3yB/Px88SLk7OyM8PBwuLi4IC8vD59//jl8fX2RlZUFLy8v8X0NHDgQdnZ2+Pjjj9GsWTNs3LhRY3SO4OrVq5g8eTJCQ0Ph5uaGVatWYcqUKbhw4QK++eYbvPnmm3BwcMCSJUswevRo/PXXX2jVqhUA4OTJk+jTpw/c3d3xwQcfoEWLFvjpp58QEhKCmzdvYtGiRZLXevPNN9G3b1989tlnuHv3LubPn49nnnkGp06dglwuR0xMDF5++WX8+eef+Pbbbx95Lqtq6tSpGDx4MBITE3HhwgW89dZbUCgU+P333yVTyLV9NoCyDqvhw4dj9uzZsLOzwx9//IGIiAikp6fjl19+kbxWUVERRo0ahaCgIISFhaGkpATe3t5YtmwZ4uLi8O6774qxeXl52LRpE1577TVYW1sb/H0TERmD559/HgEBAZgxY4bY0aDrdX/x4sVYvHgxpk6dirFjx+LChQuYPn06lEqleP2sqrVr12L69OkYOHAgYmNj0axZM5w5cwbHjx8XY1JSUjB06FD4+voiNjYWDg4O2LRpE1544QU8ePBAvDE+efIk/Pz88NhjjyE+Ph62traIiYlBYmLiI8sRExODjRs34t1338X69evRvn17ycyR6l7TPvnkEwQFBWHMmDH48MMPcefOHSxevFhsKCtvzZo16Ny5M9asWYPbt29j7ty5eOaZZ+Dr6wsLCwusW7cO58+fx7x58zBt2jRs27ZN/N333nsPb731FiZPnoy33noLRUVFWLFiBfr374/09HRJfbG4uBijRo3C1KlTMXfuXOzZswdLly6Fg4MDFi5ciJYtW2Lnzp0YOnQopk6dimnTpgGAwWbVXL16FQEBAQgLC8OSJUvw/fff491338WtW7ewevVqSWx0dDQ8PT3x/vvvo3HjxvDw8EBhYSHy8vIwb948uLq6oqioCLt27cLzzz+P9evXY8KECZLn+O6777B3714sXLgQLVq0QLNmzVBcXIzZs2cjOzsbHh4eYmxCQgLu3r3LThwiMkpHjx5Fv3790LRpUyxZsgQeHh64cuUKtm3bhqKioirNdBTWU+nfvz/WrVsHR0dHXLp0CTt37kRRUdEjryW//vorBg8ejM6dO2Pt2rWwsrJCTEwMnnnmGWzcuBEvvPCC5PWmTZuG559/Hps2bUJWVhbefPNNlJSU4PTp03j++efx8ssvY9euXYiIiECrVq0wZ86cCst+8OBBLF26FCkpKeJ1Wxjk8ijTpk1DXl4eVq1ahS1btojtKcJ1tirXY233vaWlpXj22Wexd+9ehIaGok+fPjh//jwWLVoEhUKBjIwMcTbp9OnTkZCQgHnz5mHw4ME4fvw4nn/+edy7d6/S99CtWzccPHgQzz33HNq1a4f3338fQFnbkNBZsWDBAvTu3RuxsbEwMzNDs2bNxE6kRYsWoUWLFrh//z6+/fZbKBQK7N69W0yZl5+fj0GDBiEvLw8RERF4/PHHsXPnTo2/qaC4uBjPP/88ZsyYgTfeeAOJiYlYsGAB7t69i82bN2P+/Plie8ukSZPQsWNHdO/eHQCq3Ma2Zs0atG/fXlxL+O2338bw4cPx999/w8HB4ZHtZtX15ptvolu3bvjss89w584dvPPOO1AoFMjKysJ//vMfMU7bZwMA/vzzT/Tu3RvTpk2Dg4MDzp07h6ioKPTr1w/Hjh2TtEkCmvcAw4YNQ2hoKNasWYPevXuLcSUlJYiLi8Nzzz0ntllRPaYiokotWrRIBUD1+uuvS/Zv2LBBBUD15ZdfivvatGmjksvlqtOnT0tig4KCVPb29qrz589L9r///vsqAKoTJ048shwDBw5UPfnkkxr7AagWLVokbqekpKgAqFJSUsR9r776qkrbv/vBgwdVAFQffPCBZP+FCxdUNjY2qtDQUMnrA1Dt3r1bErt8+XKVmZmZ6rfffpPs/+abb1QAVD/88INKpVKpfvzxRxUA1cqVKyVxy5Yt03gPFQGgevXVVyX71q9frwKgmjBhwiN/v6SkRFVUVKTy8PCQ/D3feOMNlUwm0/g7DBkyRONcCuchIyND3Jebm6uSy+UqGxsb1aVLl8T9R44cUQFQRUdHS57Tzc1NdefOHclrvfbaaypra2tVXl6eSqX69+84fPhwSdxXX32lAqA6ePCguG/EiBGqNm3aPPL9q7+HgQMHSvaV/xsI5/W5556TxO3fv18FQPXuu+9Knk/bZ6O80tJSVXFxserXX39VAVAdPXpUPDZx4kQVANW6des0fm/ixImqZs2aqQoLC8V9ERERKjMzM9Xff/+twzsmIjItQt1l4cKFkv26Xvdv3bqlsra2rvAaoH4NEa4X5b+Py9dH7t27p2rcuLGqX79+qtLS0grL3r59e1XXrl1VxcXFkv0jR45UtWzZUqVUKlUqlUr1wgsvqGxsbFRXr14VY0pKSlTt27fXWp7yhHKXr79U95qmVCpVLVq0UPn6+kriz58/r7KwsJBcr//++28VAFWXLl3E96VSqVQfffSRCoBq1KhRkueYPXu2CoBYh8jJyVGZm5urZs6cKYm7d++eqkWLFqpx48aJ+4Tr7FdffSWJHT58uMrLy0vcvnHjhs71MvX3sH79enGfts+EcF63bt0q+f3p06erzMzMxDqy8Hzt2rVTFRUVVfraJSUlquLiYtXUqVNVXbt2lRwDoHJwcBDrVYK7d++qGjVqpJo1a5Zkf4cOHVSDBg3S6T0TETU0Tz31lMrR0VF1/fr1CmOEukN55b/Thfv8I0eOVPhclV1LevXqpWrWrJnq3r174r6SkhJVx44dVW5ubmIdQXjd8te40aNHqwCooqKiJPu9vb1V3bp1q7BMgokTJ6rs7Ow09rdp00Y1ceJEcVvb9W3FihVa6xj6XI/L3/du3LhRBUC1efNmyf7ffvtNBUAVExOjUqlUqlOnTlXaPqX+HirSpk0b1YgRIyT7hHrbgAEDHvn7wvXXz89PUldcs2aNCoDqxx9/lMQHBQVpnEvhPKi/3+LiYpWLi4sKgCozM1PcL7S3zJkzR/KcurSxCX/HTp06qUpKSsS49PR0FQDVxo0bxX0VtZtVZOLEiRrtMOU/R8J57datm6T+e+7cOZWFhYVq2rRpGudEW5uIOqEOev78eY26VUX3AMIxS0tL1bVr18R9SUlJKgCqX3/9Vde3TXWI6dSIdFR+LZpx48bB3NwcKSkpkv2dO3eGp6enZN+OHTswaNAgtGrVCiUlJeKPMAvl119/BfBvzm/hp7S0tAbfUVm5ZDIZXnrpJcnrtmjRAl26dNFIgdKkSRM89dRTGs/RsWNHeHt7S55jyJAhkunFwnkqfx4DAwMN8l7GjBmjsa+kpATvvfceOnToAEtLS5ibm8PS0hLZ2dk4deqUGPfrr7+iY8eOGrObXnzxRa2v1bJlS3EECAA4OTmhWbNm8Pb2loxeeOKJJwAA58+fB1A2hXb37t147rnnYGtrKzlfw4cPR0FBgWRKLwCMGjVKst25c2fJc9a08n+vPn36oE2bNhqfe22fDQD466+/EBgYiBYtWkAul8PCwgIDBw4EAMnfQKDt7zhr1ixcv34dX3/9NQCgtLQUH3/8MUaMGCFJS0NERFLlv1N1ve4fPHgQBQUFFV4D9HHgwAHcvXsXwcHBFab9PHv2LP744w/xdctfJ69cuSKmFE1JSYGfn59kxrBcLq9wtGdVVOeadvr0aTHFizp3d3f07dtX6+sNHz5cnO0D/Ft/GDFihCRO2J+TkwMA+Omnn1BSUoIJEyZIzpW1tTUGDhyoUY+TyWR45plnJPs6d+5ca3WKRo0aadRrAgMDUVpaij179kj2jxo1SmNUKQB8/fXX6Nu3L+zt7WFubg4LCwusXbtWa53iqaeeQpMmTTTKMHnyZMTHx4uz03755RecPHmywhnYREQN2YMHD/Drr79i3LhxBplZ6e3tDUtLS7z88sv4/PPPNdKxViY/Px9paWkYO3Ys7O3txf1yuRz//e9/cfHiRUnqcAAYOXKkZLuya2RtXc/Kq+r1GNBeR3N0dMQzzzwjeQ5vb2+0aNHike0qQvtUdWm7HweA2NhYdOvWDdbW1uL1d/fu3RrtKo0aNcLQoUMlv1tRu4pMJsPw4cPFbXNzczz++ONo2bKlZG0Zob1F/e+raxubYMSIEZDL5eJ2bberBAYGSuq/bdq0QZ8+fTTaVQDtf4Pr169jxowZaN26tXj+hTq5ru0qr7zyCoCylL+C1atXo1OnThgwYEDV3xTVOnbiEOmoRYsWkm1zc3M4OzsjNzdXsl/bdMtr165h+/btsLCwkPw8+eSTACDmsfTz85McF3Kw15Rr165BpVKhefPmGmU7dOiQRn7Nit7b77//rvH7jRo1gkqlEp8jNzdXPGfqyp9XfWkr25w5c/D2229j9OjR2L59O9LS0vDbb7+hS5cuePjwoRiXm5sraQQSaNsHlFUiyrO0tNTYb2lpCQDimi25ubkoKSnBqlWrNM6XUHkpf87Lny9hqrt6+WuStr9PixYtdPrc379/H/3790daWhreffddpKam4rfffsOWLVsAaL4HW1tbNG7cWON5unbtiv79+4s5anfs2IFz586xsYWI6BHKfzfret0XvuMrugboQ0jF4ebmVmHMtWvXAADz5s3TKF9wcDAASMpoyPKpq841TTh31alXCPWHR9UrhPPVo0cPjfOVlJSkUaewtbXVSEFqZWVVa2vLaXv/wt9Ll3rFli1bMG7cOLi6uuLLL7/EwYMH8dtvv2HKlCla30NFKVBmzpyJe/fuiSmKV69eDTc3Nzz77LNVfk9ERPXdrVu3oFQqK73+VkW7du2wa9cuNGvWDK+++iratWuHdu3aYeXKlTqVRaVSaf1+FgZDlr8eVOUaWVdrpepzPS5/33vt2jXcvn0blpaWGs9x9erVR9bRtLW16EPb3yYqKgqvvPIKfH19sXnzZhw6dAi//fYbhg4dWq12FW31Em3tKsJ+9b+vrm1sgobSrqLts1FaWgp/f39s2bIFoaGh2L17N9LT08UBwNreg7a/Y/PmzfHCCy8gLi4OSqUSv//+O/bu3ct2lQaEa+IQ6ejq1atwdXUVt0tKSpCbm6txMdA2urRp06bo3Lkzli1bpvW5hQpLXFycJI9p06ZNDVH0CjVt2hQymQx79+7Vmge3/L6K3puNjQ3WrVtX4WsAZRdNbefs6tWr1XkLlZbtyy+/xIQJE/Dee+9J9t+8eVOynouzs7NY8VJnqLIJmjRpIo4yqijnetu2bQ36mtWl7RxcvXoVjz/+uGSftvP/yy+/4PLly0hNTRVHKgPA7du3tb5WRSOzASAkJAT/93//h8zMTKxevRqenp4YPHiwju+CiMg0lf9e1fW6L1ynK7oGqM+CFG6+y6/3Uv7mWRj9e/HixQrLK9QZFixYgOeff15rjLAej7Ozc4Xlq67qXNOEc1cb9QrhfH3zzTd6z5CqTZWdE13q019++SXatm2LpKQkyfGK1hqqqF7x+OOPY9iwYVizZg2GDRuGbdu2YfHixZIRukRExsLJyQlyubzS6y8gvZ6r1xHKX88BoH///ujfvz+USiUyMjKwatUqzJ49G82bN0dAQECFr9GkSROYmZnhypUrGseERdVrug2kJlT1elxRu4qzszN27typ9XcaNWoEQFpH09Y+VV0VXX8VCgU+/vhjyf7ya/A4OzsjPT1d4/cNXf8BdG9jqy8qqrPqUv85fvw4jh49ivj4eEycOFHcf/bs2Qpfr6I60KxZs/DFF19g69at2LlzJxwdHTVmdVH9xU4cIh1t2LBBkkLrq6++QklJibiIW2VGjhyJH374Ae3atdNI66BO34WCH0V9lIGwGJ5QrvDwcFy6dEkj7YeuRo4ciffeew/Ozs6VdkAMGjQIkZGR2LBhA0JCQsT9uixArC+ZTKbRSPX999/j0qVLkk6IgQMH4v3338fJkyclKdU2bdpk0PLY2tpi0KBByMrKQufOncVRRNVlZWVVYyNINmzYIJmKe+DAAZw/f15coLIyQsWh/N8gLi6uyuV47rnn4O7ujrlz5+LXX3/Fhx9+WGmnDxERadL1ut+rVy9YW1tXeA1Q78QRHv/++++Sesy2bdskz9mnTx84ODggNjYWAQEBWr/Dvby84OHhgaNHj2oMwChv0KBB2LZtG65duyaO8FQqlUhKSqr09/Sl6zXNy8sLLVq0wFdffSVZXDknJwcHDhwwaKPCkCFDYG5ujj///LPC9CdVVZMjU+/du4dt27ZJUqolJibCzMxMpzQeMpkMlpaWks/O1atXsXXr1iqXZdasWfD398fEiRMhl8sxffr0Kj8HEVFDYGNjg4EDB+Lrr7/GsmXLKuwkUb+e9+jRQ9y/ffv2Cp9bLpfD19cX7du3x4YNG5CZmYmAgIAKryV2dnbw9fXFli1b8P7774ttE6Wlpfjyyy/h5uamkZq+PqnofRniejxy5Ehs2rQJSqUSvr6+FcYJ7U8VtU/VBG3tKr///jsOHjyI1q1bi/sGDhyIr776Cj/++KOY1gwwfLsKoHsbW1VU1G5mCBs3bsScOXPEOsz58+dx4MABTJgw4ZG/a8h2le7du6NPnz6IiIjA8ePH8fLLL8POzq7Kz0N1g504RDrasmULzM3NMXjwYJw4cQJvv/02unTpolPnx5IlS/Dzzz+jT58+CAkJgZeXFwoKCnDu3Dn88MMPiI2NNdj0Zm06deoEAIiIiMCwYcMgl8vRuXNn9O3bFy+//DImT56MjIwMDBgwAHZ2drhy5Qr27duHTp06iXkzKzJ79mxs3rwZAwYMwOuvv47OnTujtLQUOTk5SE5Oxty5c+Hr6wt/f38MGDAAoaGhyM/Ph4+PD/bv348vvviixt73yJEjER8fj/bt26Nz5844fPgwVqxYoXGuZ8+ejXXr1mHYsGFYsmQJmjdvjsTERPzxxx8AIMlTX10rV65Ev3790L9/f7zyyit47LHHcO/ePZw9exbbt2/HL7/8UuXn7NSpE7Zs2YKPP/4Y3bt3h5mZGXx8fAxS3oyMDEybNg3/93//hwsXLuB///sfXF1dxbQ2lenTpw+aNGmCGTNmYNGiRbCwsMCGDRtw9OjRKpdDLpfj1Vdfxfz582FnZ4dJkybp8W6IiEybrtf9Jk2aYN68eXj33Xcl14B33nlHIx1Ejx494OXlhXnz5qGkpARNmjTBt99+i3379kni7O3t8cEHH2DatGl4+umnMX36dDRv3hxnz57F0aNHsXr1agBlN6TDhg3DkCFDMGnSJLi6uiIvLw+nTp1CZmamuD7aW2+9hW3btuGpp57CwoULYWtrizVr1ojrnBiartc0MzMzLF68GEFBQRg7diymTJmC27dvY/HixWjZsqVB6xSPPfYYlixZgv/973/466+/MHToUDRp0gTXrl1Deno67OzssHjx4io9Z6NGjdCmTRts3boVfn5+cHJyQtOmTQ2yBp2zszNeeeUV5OTkwNPTEz/88AM+/fRTvPLKK3B3d3/k748cORJbtmxBcHAwxo4diwsXLmDp0qVo2bIlsrOzq1SWwYMHo0OHDkhJScFLL72EZs2a6fu2iIjqvaioKPTr1w++vr4ICwvD448/jmvXrmHbtm2Ii4tDo0aNMHz4cDg5OWHq1KlYsmQJzM3NER8fjwsXLkieKzY2Fr/88gtGjBgBd3d3FBQUiFk5nn76aQCVX0uWL1+OwYMHY9CgQZg3bx4sLS0RExOD48ePY+PGjfV6oJ7QrrJy5UpMnDgRFhYW8PLyMsj1OCAgABs2bMDw4cMxa9Ys9OzZExYWFrh48SJSUlLw7LPP4rnnnsMTTzyBl156CR999BEsLCzw9NNP4/jx43j//fe1piY3hJEjR2Lp0qVYtGgRBg4ciNOnT2PJkiVo27atpONo4sSJ+PDDD/HSSy/h3XffxeOPP44ff/wRP/30EwDDtqvURBtbRe1mhhh8e/36dTz33HOYPn067ty5g0WLFsHa2hoLFix45O+2b98e7dq1Q1hYGFQqFZycnLB9+3b8/PPPepVl1qxZeOGFFyCTyXRq16H6g2viEOloy5Yt+OOPP/D8889j4cKFeOaZZ5CcnKzTF3rLli2RkZEBf39/rFixAkOHDsV///tfrFu3Dt7e3gYbOVCRwMBATJs2DTExMejduzd69OghTleOi4vD6tWrsWfPHgQEBGDEiBFYuHAh8vPz0bNnz0c+t52dHfbu3YtJkybhk08+wYgRIzBu3DhER0fDzc1NvOk3MzPDtm3bMH78eERGRmL06NE4cOAAfvjhhxp73ytXrsRLL72E5cuX45lnnsG2bduwZcsWtGvXThLXqlUr/Prrr/D09MSMGTMwfvx4WFpaYsmSJQAgSb1WXR06dEBmZiY6duyIt956C/7+/pg6dSq++eYb+Pn56fWcs2bNwtixY/Hmm2+iV69ekpFT1bV27VoUFRUhICAAISEh8PHxQWpqqtY8teU5Ozvj+++/h62tLV566SVMmTIF9vb2eo+SFhar/u9//wsHBwe9noOIyNTpet1fsmQJli9fjuTkZIwaNQqrVq1CbGysxqxhuVyO7du3o3379pgxYwYmTJgAKysrsVNG3dSpU/HDDz9AqVRi2rRpGDlyJD766CNJA/6gQYOQnp4OR0dHzJ49G08//TReeeUV7Nq1S2wcAoCOHTti165daNy4MSZOnIiXX34ZnTt3xttvv10DZ61q17SXX34Zn3zyCY4ePYrnnnsOixcvRlhYGLp27WrQOgVQlnrum2++wZkzZzBx4kQMGTIEoaGhOH/+vN6L1K5duxa2trYYNWoUevTogXfeeccgZW3RogUSExPx+eefY9SoUfjqq6/w5ptvIjo6Wqffnzx5MsLDw/Hjjz9i+PDhiIiIQFhYGAIDA/UqjzAQi7ngicjYdenSBenp6ejevTsWLFiAoUOHYv78+bCyshLbMxo3boydO3eiUaNGeOmllzBjxgx07NgR//vf/yTP5e3tjZKSEixatAjDhg3Df//7X9y4cQPbtm2Dv7+/GFfRtWTgwIH45ZdfxIF5AQEBuHPnDrZt2ybe79VXCoUCCxYswPbt29GvXz/06NEDhw8fBlD967FcLse2bdvw5ptvYsuWLXjuuecwevRohIeHw9raWuxgAMrO7Zw5cxAfHy9eTzdv3lxj7Ur/+9//MHfuXKxduxYjRozAZ599htjYWPTr108SZ2dnh19++QUKhQKhoaEYM2YMcnJyEBMTA8Cw7So10cZWWbtZdb333nto06YNJk+ejClTpqBly5ZISUnRaJvSxsLCAtu3b4enpyeCgoLw4osv4vr169i1a5deZRk9ejSsrKwwZMgQeHh46PUcVDdkKpVKVdeFIKrP3nnnHSxevBg3btxokPlZSX8vv/wyNm7ciNzcXIOlPiP9rVq1CiEhITh+/Li4YCEREVFDcPv2bXh6emL06NH45JNP6ro4BMDHxwcymQy//fZbXReFiIjIaL333nt46623kJOTU6MZaEg327dvx6hRo/D9999j+PDhdV0cqgKmUyMiQtmI41atWuE///kP7t+/jx07duCzzz7DW2+9xQ6cOpaVlYW///4bS5YswbPPPssOHCIiqteuXr2KZcuWYdCgQXB2dsb58+fx4Ycf4t69e5g1a1ZdF8+k3b17F8ePH8eOHTtw+PBhfPvtt3VdJCIiIqMhzMRu3749iouL8csvvyA6OhovvfQSO3Dq2MmTJ3H+/HnMnTsX3t7eknWLqGFgJw4REcqmqK5YsQIXL15ESUkJPDw8EBUVxcaWeuC5557D1atX0b9/f8TGxtZ1cYiIiCplZWWFc+fOITg4GHl5ebC1tUWvXr0QGxvLgQh1LDMzU+xcW7RoEUaPHl3XRSIiIjIatra2+PDDD3Hu3DkUFhbC3d0d8+fPx1tvvVXXRTN5wcHB2L9/P7p164bPP/+8Xq8/RdoxnRoREREREREREREREVE9ZFbXBSAiIiIiIiIiIiIiIiJN7MQhIiIiIiIiIiIiIiKqh9iJQ0REREREREREREREVA+Z13UBjF1paSkuX76MRo0acdEoIiKif6hUKty7dw+tWrWCmRnHlNQk1kWIiIg0sS5Se1gXISIi0lSVugg7cWrY5cuX0bp167ouBhERUb104cIFuLm51XUxjBrrIkRERBVjXaTmsS5CRERUMV3qIuzEqWGNGjUCUPbHaNy4cR2XhoiIqH64e/cuWrduLV4nqeawLkJERKSJdZHaw7oIERGRpqrURdiJU8OEqcKNGzdmZYWIiKgcptSoeayLEBERVYx1kZrHuggREVHFdKmLMPErERERERERERERERFRPcROHCIiIiIiIiIiIiIionqInThERERERERERERERET1EDtxiIiIiIiIiIiIiIiI6iF24hAREREREREREREREdVD7MQhIiIiIiIiIiIiIiKqhxpMJ86DBw/w448/4t1338Xzzz+PNm3aQCaTQSaT4Z133jHIa1y7dg1z586Fl5cXbGxs4OTkhP79++Ozzz6DSqUyyGsQERFRw8S6CBEREdUl1kWIiIhMk3ldF0BX6enpGD58eI09/+HDhzFkyBDk5uYCAOzt7XHv3j3s27cP+/btw9dff41t27bBysqqxspARERE9RfrIkRERFSXWBchIiIyTQ1mJg4ANGnSBH5+fnjjjTewceNGtGjRwiDPe+fOHYwcORK5ublo3749fvvtN9y7dw/5+flYvXo1LCwskJycjNdff90gr0dEREQNE+siREREVJdYFyEiIjI9DWYmTv/+/ZGXlyfZFxYWZpDnfv/993H16lXY2Njghx9+QNu2bQEAlpaWePXVV3H37l28+eab+OSTTzB79mx4enoa5HXrSkJCApYtWyZu/+9//8OECRPqsET129SpU7Fv3z5xu1+/fli7dm0dlqh+++yzz7BixQpx+4033sC0adPqsET129WrVzFmzBjcuXMHDg4O2Lx5s8FuxIjIsFgXobqiVCqRkZGBGzduwMXFBT4+PpDL5XVdrHqL54uIjBXrIrUnLy8PEyZMwPXr19GsWTMkJCTAycmprotllIqKipCYmIicnBy4u7sjMDAQlpaWdV0sIqJ6pcHMxKnJG6+EhAQAQEBAgFhRUTdz5kzY29tDqVRiw4YNNVaO2uDl5SXpwAGAZcuWwcvLq45KVL95eXlJOnAAYN++fTxfFfDy8pJ04ADAihUreL4q0KVLFwwcOBA3b95EcXExbt68iYEDB6JLly51XTQi0oJ1EaoLycnJGDx4MCZMmIC5c+diwoQJGDx4MJKTk+u6aPUSzxcRGTPWRWpH37590bt3b2RnZ+POnTvIzs5G79690bdv37oumtGJjIyEt7c3li9fjg0bNmD58uXw9vZGZGRkXReNiKheaTCdODXl9OnTyMnJAQAMGzZMa4y9vT369+8PAA36BrB8Q3r50f5saJd61Png+ZIqfz6cnZ0rPW7qunTpgoKCAgCAm5sbPvroI7i5uQEACgoK2JFDZEJMqS5CVZOcnIyQkBB4enoiKSkJmZmZSEpKgqenJ0JCQvhZKIfni4hIP6yL/Ktv3764efMmgLJ7tvj4ePHe7ObNm+zIMaDIyEisXbsWjo6OWLp0Kfbt24elS5fC0dERa9euZUcOEZEak+/EOX78uPi4Y8eOFcYJx06ePFnjZaoJwqgaoGxmxOnTp/Hrr7/i9OnTkpkT6nGmbOrUqeLjF198EadPnxZ/XnzxRa1xpuyzzz4THy9btgynT5/GgQMHcPr0acnML/U4U3b16lWxAyctLQ27d+/GsGHDsHv3bqSlpQEo68i5evVqXRaTiGqJqdRFqGqUSiXCw8OhUCgQExMDb29v2NnZwdvbGzExMVAoFIiIiIBSqazrotYLPF9ERPpjXaRMXl6e2IFz+PBhfPXVV+jduze++uorHD58GEBZR075lHZUdUVFRYiPj4ezszP27NmDcePGwcXFBePGjcOePXvg7OyM+Ph4FBUV1XVRiYjqBZPvxLl8+bL42NXVtcI44djdu3dx//79CuMKCwtx9+5dyU99oN6QPnToUMTHx2PJkiWIj4/H0KFDtcaZMvUUau+8847kmPp2+VRrpkq9I3Ds2LGSY+rb5VOtmaoxY8YAKJuB4+joKDnm6OiIVq1aSeKIyLiZSl2EqiYjIwOXLl3CjBkzYGYmrbKbmZkhKCgIFy9eREZGRh2VsH7h+SIi0h/rImWEtYK7dOkCe3t7yTF7e3t06tRJEkf6S0xMhFKpxOzZs2FuLl2u29zcHLNmzYJSqURiYmIdlZCIqH4x+U6ce/fuiY9tbW0rjFM/pv475S1fvhwODg7iT+vWrQ1TUAOxtrbWmm+Ui8aRITg7O0OpVCItLQ07duxAWloalEqlRkeFqbtz5w4AYN68eVqPz5kzRxJHRMbN1OoipJsbN24AADw8PLQeF/YLcaaO54uISH+si5S5fv06AOD111/XenzWrFmSONKfkL5v0KBBWo8rFApJHBGRqTP5ThxDW7BgAe7cuSP+XLhwoa6LJFFQUABHR0dMmTIFixYtwpQpU+Do6MgpqmQQubm5WhcTvn37dl0XrV5xcHAAALz//vtaj0dFRUniiIiqor7XRUg3Li4uAIDs7Gytx4X9Qpyp4/kiIqo/GmpdpFmzZgCADz/8UOvxlStXSuJIf+7u7gCAlJQUrcdTU1MlcUREps7kO3EaNWokPn7w4EGFcerH1H+nPCsrKzRu3FjyUx/Mnz9ffJyfn49169Zh8eLFWLduHfLz87XGmbJ+/fqJjytLp6YeZ8reeOMN8bFKpYK/vz969eoFf39/qFQqrXGmbPPmzQCAixcvanRw3b59W0xnIMQRkXEzlboIVY2Pjw9cXV0RGxuL0tJSybHS0lLExcXBzc0NPj4+dVTC+oXni4hIf6yLlBHWCD569KhGurj79+/j2LFjkjjSX2BgIORyOT766COUlJRIjpWUlGDlypWQy+UIDAysoxISEdUvJt+JI6w9AQCXLl2qME441rhxY43cqA2Bem5wYUF1bdvlc4ibqrVr14qPN27cCC8vL/Fn48aNWuNM2eTJk8XHly9fRnJyMg4dOoTk5GRJfmX1OFPWokULWFtbAwB8fX0xaNAgbN++HYMGDYKvry+AstSHLVq0qMtiElEtMZW6CFWNXC5HWFgYUlNTERwcjKysLNy/fx9ZWVkIDg5Gamoq5s+fD7lcXtdFrRd4voiI9Me6SBknJyc0bdoUANC9e3eMHTsWe/fuxdixY9G9e3cAQNOmTeHk5FSXxTQKlpaWmDRpEnJzczFgwAAkJSXh2rVrSEpKwoABA5Cbm4tJkyYx9T8R0T/MHx1i3Dp27Cg+Pn78OJ544gmtccePHwcAdOjQoVbKZWjnz583aJwpOH36NLy8vCo9TmV0XSQ4IyND7KQwdUePHkWXLl1QUFCAy5cvS9bHsba2xtGjR+uwdERUm0ylLkJV5+/vj+joaISHhyMgIEDc7+bmhujoaPj7+9dh6eofni8iIv2wLvKv/fv3o2/fvrh58yaOHTuGadOmiceaNm2K/fv312HpjEtoaCgAID4+HgsXLhT3y+VyTJ06VTxOhqNUKpGRkYEbN27AxcUFPj4+HOBC1ECYfCeOl5cX3N3dkZOTg507d+L//u//NGLy8/Oxd+9eAGiwN3/qa940adIEt27d0rrNtXGkpk6dqnW2zdSpU+ugNPWXMCJLLpfDxsZGMvXc3t4eDx8+hFKprHRUlyk6evQorl69ijFjxuDOnTtwcHDA5s2bOQOHyMSYSl2E9OPv7w8/Pz/ecOuI54uIqOpYF5Hav38/8vLyMGHCBFy/fh3NmjVDQkICZ+DUgNDQUMyePRuJiYnIycmBu7s7AgMDOQOnBiQnJyM8PFzSLuPq6oqwsDCj/58mMgYm34kDABMmTMC7776LTZs24e2338Zjjz0mOb5mzRrcv38fcrkc48ePr5tCVlN6err4WL0Dp/y2epypi4yMxNq1a+Hk5AQ7OzsUFBTA2toa+fn5YscOR4aU2bVrF4CyUR0+Pj5wd3cXz1dOTo64KOGuXbvw/PPP12FJ6x8nJydMnz5drLDyxoDINJlCXYT0J5fLOZO1Cni+iIiqjnURKScnJ+zYsaOui2EShNRqVHOSk5MREhIChUKBqVOnwtraGgUFBdi7dy9CQkI4Y5moAWhQC6DcunULN2/eFH+ERUsfPHgg2V9+Abp33nkHMpkMMpkM586d03jeefPmoUWLFnjw4AFGjBiBw4cPAyiblfLxxx/j7bffBgC8/PLL8PT0rNk3WUPKd9xUN87YFRUVIT4+HmZmZsjLy8OFCxdw48YNXLhwAXl5eTAzM0N8fDxnLv0jPz8fQNkClqmpqUhISMBXX32FhIQEpKamwsrKShJHZSIjI+Ht7Y3ly5djw4YNWL58Oby9vREZGVnXRSOiCrAuQkRERHWJdREiqgqlUonw8HA8+eSTOH36NJYsWYI333wTS5YswenTp/Hkk08iIiICSqWyrotKRJVoUDNxunbtqnXNlhUrVmDFihXi9sSJExEfH6/z8zo4OGDHjh0YMmQITp48CR8fHzRq1AgFBQUoLi4GUDZd+MMPP6z2e6grjRo1wr1793SKIyAxMVFyAevfvz9effVVrFmzBnv37hUryomJiRwxAsDOzg4AUFhYqPW4sF+II+lMr9GjR6N169a4cOECvvvuO870IqrHWBchIiKiusS6CBFVRUZGBi5duoRLly5BoVBg2rRp4kycPXv2iJlTuIaxYXH9ITK0BtWJU5O6d++OEydOICIiAjt27MCFCxdgZ2eHjh07YuLEiZgyZQrMzBrUxCUJ9Xyijo6O8PT0RGlpKczMzHDmzBncvn1bI86UnT17VnyclZUFW1tbAMBnn32GBw8eoGvXrhpxpkyhUGD37t06xdG/M73s7e1hbW2NdevWicdatWoFe3t7xMfHY/bs2fyfJDIhxl4XISIiovqNdREi43Pt2jUAwBNPPIHs7Gyx0wYoWxPniSeewKlTp8Q4qj6uP0Q1QaZSqVR1XQhjdvfuXTg4OODOnTto3LhxnZXD29sbDx8+fGScjY0Njhw5UvMFqueeeuopXLp0CY8//ji+//57jePDhg3DX3/9BVdXV/zyyy91UML6ZdGiRdi0adMj4wICArB48eJaKFH9Fh8fj+XLlwOAOAJGoL69YMECzvQio1Vfro+mgOeaiIhIE6+PtYfnmqjuqLc/DBo0CDNmzICHhweys7MRGxuLlJQUAGx/MBT19YfKn+vU1FSuP0QSVbk+ciaOidC1r459emVKSkoAADdu3EBhYSGOHDkiToH09vbGzZs3JXGm7sqVKwaNM3bqOah79eqFAQMGaJ3OrC1XNRERERERERGRLhwdHQEATk5OWL16NczNy5qCvb29sXr1avTv3x95eXliHOlPWH9IoVAgJiZGnLno7e2NmJgYBAcHIyIiAn5+fkytRlXGThwT0bFjR2RkZOgUR2XTHK9du4Y7d+6gc+fOlcZRWWeXwNLSEkVFRVq31eNMmdBZ2rRpU5w5c0YynblVq1Zo2rQpbt68yU5VIiIiIiIiItKbsHzCrVu38NprryEoKEicHRIXF4dbt25J4kh/wvpDUVFRGqknzczMEBQUhICAAK4/RHphJ46J6NOnj06dOH369KmF0tR/sbGx6Nmzp05xBFhZWYmPhUUvtW2rx5kyYYqkMKNL3eXLlzXiiIiIiIiIiIiqysnJCQDQvn17nDlzBgEBAeIxNzc3tG/fHqdOnRLjSH/CwGUPDw+tx4X9HOBM+mAnjolIT0/XOe7VV1+t4dLUf/b29pJtKysrNGnSBLdu3UJhYWGFcabK1dUVWVlZAACZTIb27dvDxsYGDx8+xOnTp8UZJZy5VKb8iIw+ffqgV69eOHToEA4cOFBhHJVNT87IyBDTG/r4+HAaMhEREREREZEWzZs3BwCcOnUKCoUCU6ZMEdO57927V8wMIsSR/lxcXAAA2dnZ8Pb21jienZ0tiSOqCnbimIi///7boHHGTr0hHQAKCwtx9epVrXH9+/evrWLVW+3bt8eOHTsAAKWlpTh16lSFcaTZ+XfgwAGNz5y2OFOXnJyM8PBwXLp0Sdzn6uqKsLAwLgxIREREREREVI6Pjw9cXV3RpEkTjXTurq6u6NixI27fvg0fH5+6K6SREM51bGysZE0coKytLC4uDm5ubjzXpBd24pgIpVJp0Dhjt27dOvFxkyZNYGFhgYcPH8LGxgbFxcViztB169axEwfAvXv3DBpn7E6fPm3QOFOQnJyMkJAQKBQKREVFiTl8Y2NjERISgujoaHbkEBER6YGzXImIiIyXXC5HWFiYeD89depUcSbOvn37kJqaiujoaF77DUD9XL/yyivo37+/ZNbTr7/+ynNNemMnjolo2bKl1vU3tMXRvwu6WVlZwdraGleuXAFQ1gnRsmVLWFlZobCwkAu//UNIl2aoOGP34MEDg8YZO6VSifDwcCgUCsloFm9vb8TExCA4OBgRERHw8/NjZYiIiNgpUQWc5UpEpB2vJbWH57rm+fv7Izo6GuHh4UhJSRH3u7m5cUCkgfn7+2PKlCmIj4+XzHqSy+WYMmUKzzXpjZ04JoIzJarGysoKQFkaNaEDR6C+LcSZOn6+qqZp06YGjTN2GRkZuHTpEqKiojTWCTIzM0NQUBACAgKQkZEBX1/fOiolERHVB+yU0B1nuRIRacdrSe3hua5d5QfWlpaW1lFJjFdycjLWrVsHhUKhMRNn3bp18Pb25meb9MJVs03E5cuXDRpn7Nq1ayfZtrS0hLm5OSwtLSuNM1VFRUUGjTN2uq51wzVxyty4cQMA4OHhofW4sF+Io38plUqkpaVhx44dSEtLY8pMogaK/8u6ETolPD09kZSUhMzMTCQlJcHT0xMhISFITk6u6yLWG+VnuXp7e8POzk6c5apQKBAREcHPGhGZHF5Lag/Pde0RzrWXl5fkXHt5efFcG1D5+tX48eMxZswYjB8/nvUrqjZ24piI4uJig8YZu/Kj/YuKilBSUqLRCVE+zlQdPHhQfCyTySTH1LfV40zZyZMnDRpn7FxcXAAA2dnZWo8L+4U4KpOcnIzBgwdjwoQJmDt3LiZMmIDBgwezgk7UwPB/WTfslKgaYZbrjBkzKpzlevHiRWRkZNRRCYmIah+vJbWH57r28FzXHtavqCaxBdpE6NrZwE6JMjk5OQaNM3bqadKaN28uOdaiRQutcabs4cOHBo0zdj4+PnB1dUVsbKzGdO/S0lLExcXBzc0NPj4+dVTC+oej2oiMA/+Xdad+06xSqSQzl1QqFW+ay+EsVyIiTWyArT0817WH57r2sH5FNYkt9iai/OyI6sYZu7y8PMm2XC5Hs2bNNBbXKx9nqtQ/N1evXpUcU19DiJ+vMtbW1pLtJ598EsOHD8eTTz5ZaZypksvlCAsLQ2pqKoKDg5GVlYX79+8jKysLwcHBSE1Nxfz587n45T840orIOPB/uWqEm+GcnBytM5cuXLggiTN1nOVKRKSJDbC1h+e69vBc1x7Wr6gmsRPHRJSUlBg0ztidPXtWsq1UKnH9+nWNhpLycaaqb9++Bo0zdk2aNBEfW1lZ4cSJE/jhhx9w4sQJWFlZaY0zdf7+/oiOjsaZM2cQEBCA7t27IyAgANnZ2Vx4uRyOtCIyDvxfrhrhZjg0NFTrzKXQ0FBJnKnjLFciIk1sgK09PNe1h+e69rB+RTWJnThEWqh/2TZp0gQ9e/ZEjx490LNnT0nDevkvZVM1evRog8YZu/Pnz4uPy6+zpL6tHkdlHTk///wzEhIS8MEHHyAhIQHJycnswCmHI62IjAP/l6uma9eukMvlcHJywsqVK1FYWIiUlBQUFhZi5cqVcHJyglwuR9euXeu6qPUCZ7kSEWliA2zt4bmuPernuri4WJJytri4mOfagFi/oppkXtcFIKrvbt26hfT09LouRr125swZneMUCkXNFqYBUE8rp1KpJMfUt5l+TpNcLoevr29dF6NeUx9p5e3trXGcI62IGgb+L1dNVlYWlEolcnNz0bNnTxQUFIjHrK2txe2srCxeR/4hzHINDw9HQECAuN/NzY2zXInIJAkNsCEhIQgODkZQUBA8PDyQnZ2NuLg4pKamIjo6mg2wBsBzXXuEcz1z5kz4+PhorSOtWrWK59pAWL+imsJOHCIt7OzskJ+fr1McAbt379Y57uWXX67h0tR/nTt3xokTJ3SKI6oq9ZFWMTExkjRMHNVG1HDwf7lqdJ2RxJlLUv7+/vDz80NGRgZu3LgBFxcX+Pj4sCGHiEwWG2BrD8917apokCgHjxoe61dUE9iJYyLMzMx0Sv1VPue6qZo9ezaWLVumUxwB169fFx/L5XLJ2kHq2+pxpiwkJAQbN24EUFZhKj/7RtgOCQmpk/LVZ0qlkhWhR+CoNiLjwP/lqnF2dgYAdOvWDQkJCcjMzBSvFd26dcOECROQmZkpxtG/OMuViEiKDbC1h+e65imVSoSHh0OhUGDVqlUadaSZM2ciIiICfn5+PO8GxPoVGRo7cUxE+ZRN1Y0zdrqudcM1ccrcvn1bfNy3b1889thjKCgogLW1Nc6dO4c9e/ZoxJmylStXio8rS6e2cuVKLF68uNbKVd8lJycjPDwcly5dEve5uroiLCyMo7TK4ag2IuPA/+Wqk8lkGjfNpaWlHGVKRERVwgbY2sNzXbMyMjJw6dIlREVFwcLCQuNcBwUFISAgABkZGfw7GNDDhw8RGRmJ8+fPo02bNggNDYWNjU1dF4saMHbimAh24lSNo6OjQeNMyZ49e8ROG9Lu+PHjAABzc3OUlJRoHBf2C3FU1oETEhIChUKBqKgocTR6bGwsQkJC2JipBUe1ERkH/i/rJjc3FwCQmZmpdeZSZmamJI6IiIjIFAipZD08PLQeF/Yz5azhBAcHS5Yd2L9/PxITE+Hn54eYmJg6LBk1ZMydRaTFzZs3DRpn7Fq2bGnQOGPXuHFjANDagaO+X4gzderTv2NiYuDt7Q07Ozt4e3sjJiYGCoUCERERkjR+VEYY1TZy5Ej4+vqy0ZeogeL/8qO5uLgAAF5//XWcOXMGAQEB6N69OwICApCdnY3XX39dEkdERFQZpVKJtLQ07NixA2lpabzXoAZLqPtkZ2drPS7sZx3JMIQOHAsLC7z88stITk7Gyy+/DAsLC+zevRvBwcF1XURqoDgTh0iLU6dOGTTO2E2YMAGLFi3SKY6AcePG4cCBAwA016tS3x43blydlK++UZ/+XX7dLjMzM07/JiIi+Pj4wNXVFVlZWfjpp5+05nt3c3ODj49PXReViIjqOaZxJmMi1JFiY2Px0UcfYdOmTcjJyYG7uzsCAgIQFxfHOpKBPHz4UOzAyczMhKWlJQBg7ty5mDlzJrp164bdu3fj4cOHTK1GVcaZOERaqFfWDBFn7O7du2fQOGO3fv168XFpaSl69+6N119/Hb1795Z06KjHmTJO/yYiokeRy+UICwtDamoqZs6cCUtLSygUClhaWmLmzJlITU3F/PnzOYuJiIgqJaRx9vT0RFJSEjIzM5GUlARPT0+EhIQgOTm5rotIVCVCHSklJQXe3t5Yvnw5NmzYgOXLl8Pb2xspKSmsIxlIZGQkAGDy5MliB47A0tISEydOlMQRVQU7cYi0uH//vvhY2xevtjhTtnfvXoPGGbs///xTsn3w4EF8+OGHOHjwYKVxporTv4mISBf+/v6Ijo7Wmk6Na6cREdGjMI0zGasjR44AAGQymWS/sC0cp+o5f/48AGDs2LFajwv7hTiiqmAnDpEWf/31l/i4qKhIckx9Wz3OlOl6Hni+ypRPCVbdOGOnPv1bfaYSUDaTidO/iYhI4O/vj59//hkJCQn44IMPkJCQgOTkZHbgEBHRIwlpnGfMmFFhGueLFy8iIyOjjkponLj+UM0qKipCfHw8GjVqhBYtWkiOtWjRAo0aNUJ8fLxG2xdVXZs2bQAA33zzjdbjwn4hjqgq2EJIpEX5huLqxhm7u3fvGjTO2PXp08egccZOPUVOcHAwsrKycP/+fWRlZSE4OJgpcoiISEIul8PX1xcjR46Er68vrw9ERKQTpnGufcnJyRg8eDAmTJiAuXPnYsKECRg8eDDT1hlQYmIilEol7t27By8vL0maQC8vL9y7dw9KpRKJiYl1XdQGLzQ0FEBZanxtA8I///xzSRxRVbATh0gLW1tbg8YZO3Z6VU2HDh0k2+3atcPq1avRrl27SuNMGVPkEBERERFRTVJP46xtdgjTOBsW1x+qHULqrr59+2pNEygMHmWKr+qzsbGBn58fiouL0a1bN6xYsQJ///03VqxYgW7duqG4uBh+fn6wsbGp66JSA2Re1wUgqo8UCgW+//57neIIMDc3R3FxsU5xBJw+fVqy/eeff+K11157ZJyp8/f3h5+fHzIyMnDjxg24uLjAx8eHI6yJiIiIiKjahDTOS5cuRV5eHi5fviwea9WqFZycnJjG2UDKrz8kpK8TOhaCg4MREREBPz8/3u8ZyJNPPqk1TWCHDh1w4MCBOiqV8RE+v7t378Znn32Gzz77TDzm5+eHmJiYOiwdNWSciUOkRWZmpkHjjF3z5s0NGmfszpw5Y9A4U8IUOVXD/NJEZIr43UdERPqQy+UYOnQojh8/jsLCQixduhR79+7F0qVLUVhYiOPHj2PIkCG8BzEArj9Ue7p06QKgbD2WBw8eID4+HkuWLEF8fDwePHiALVu2SOKo+mJiYnDkyBEEBgaib9++CAwMxJEjR9iBQ9XCYfFEWty5c8egccZO18YRNqKUsbe3B1CWju/Bgwcax4X9Qhz9S6lUciaOjpKTkxEeHo5Lly6J+1xdXREWFsb0c0QNTFFRERITE5GTkwN3d3cEBgbC0tKyrotVL/G7j4iI9KVUKrFz50507NgRt27dwttvvy0ec3NzQ8eOHfHTTz9h7ty5vAepJvX1h7Td43H9IcNp2bIlACAvLw9du3aVHFu+fLlGHBmGpaUlhg4dKn6uWXen6mInDpEWulbIWHEjfTz99NPIysrS2oEDQNz/9NNP12ax6j02zOlOyC+tUCgQFRUFDw8PZGdnIzY2FiEhIVxHiKgBiYyMRHx8vGQgRGRkJCZNmsRFUcvhdx8REVWHMDskKioKnTp10uhY+P333xEQEICMjAz4+vrWdXEbNGFdoS+//BJJSUka93gvvPCCJI705+PjA3t7e9y/f7/CGHt7e6YJNCC2XVBNYDo1Ii1UKpVB44xdYWGhQeOMXUBAgEHjTAEXvdRd+fzS5ReuVCgUiIiI4Mw4ogYgMjISa9euhaOjI5YuXYp9+/Zh6dKlcHR0xNq1axEZGVnXRaw3+N1HRETVpT47RFsaZ84OMRwfHx84OTkhKipK6z1eVFQUnJ2d2bFgAEqlEvn5+ZXG5Ofns45kIGy7oJrCThwiLSqaIaFvnLErKCgwaJyxS0hIMGicsWPDXNUwvzSRcSgqKkJ8fDycnZ2xZ88ejBs3Di4uLhg3bhz27NkDZ2dnxMfHo6ioqK6LWi/wu4+IiKpLmPWRnZ0tXoeFtUOKioqQnZ0tiSPDUKlUGj9kOF988YV4Tq2trSXHhG2VSoUvvvii1stmbNh2QTWJnThEWpSWlho0ztjdvXvXoHHGbv369QCAJk2aaG1oatKkiSTO1Kk3zKlUKsli1SqVig1z5aiPINSGIwiJGobExEQolUrMnj0b5ubSDMjm5uaYNWsWlEolEhMT66iE9Qu/+4iIqLp8fHzg6uqKN954A507d8by5cuxYcMGLF++HJ07d0ZoaCjc3Nw4O8QAMjIykJeXhzlz5iA7OxsBAQHo3r07AgICcPbsWcyZMwe5ubm8xzOAXbt2AQDatWuHjIwMJCQk4IMPPkBCQgIyMjLQrl07SRzpj4OKqCZxTRwiolomjJp+9tlnMXfuXI3FqiMjI/HFF19wdPU/hAa3CxcuYM6cORp5ZWfPni2JM3XqIwi15fLmCEKihiEnJwcAMGjQIK3HFQqFJM7UqX/3eXt7axzndx8RET2KXC5H+/btsXv3bo1jKpUKOTk58PPz49q4BiDcu7300kuYPHmyxj1xUVERoqKieI9nAPfu3QMA9O7dGxYWFhrrOfn6+uLPP/8U40h/HFRENYmdOERUbWZmZjrNSio/EsFUubq64s8//8QXX3yBWbNmSY6VlJSIo6pdXV3ronj1jtDgNm/ePAwaNEhjseo33nhDEmfqhBGES5cuRV5eHi5fviwea9WqFZycnDiCkKgBcHd3BwCkpKRg3LhxGsdTU1MlcaZO+O6LjY1FTEyMpM5RWlqKuLg4fvcREVGlioqKkJKSAqAszZR6OnBhOyUlBUVFRbC0tKyrYhoF4d7tyy+/xKZNmyT3LJ9//rm4Pizv8arPy8sL2dnZ+PbbbxEaGoojR46Ig/y8vb3x3XffiXFUPRxQSTVJpmKyyRp19+5dODg44M6dO2jcuHGdlaMqX8anT5+uwZI0DO3bt9cpD6tMJsMff/xRCyWq35544gmdO3FOnTpVCyWq3/Ly8tC7d+9Hxh08eBBOTk61UKL6raioCN7e3nB0dMSePXskaYVKSkowYMAA3L59G0eOHOHN1D+ExdCdnZ0xatQouLu7IycnB9u2bUNubi6mTp2K0NDQOi1jfbk+mgKe64aJ331VJywkq1AoEBQUJHb4x8XFITU1FdHR0fD396/rYhJRPcHrY+1pKOd63bp1iIiIgJeXFzZv3ozMzEyxAbZbt24YM2YMTp8+jfnz52PKlCl1XdwGTalUol+/fsjLy6swxtnZGXv37uXMp2rav3+/+HmVyWSSti717XXr1qFv3751UkZjoVQqMXjwYDRp0gS3bt3SyCLSpEkT3L59G8nJyfxcE4CqXR85LJ5IC137NtkHWoZrCFWNk5OTxoKC5VlbW7MD5x9ZWVlQKpXIy8vDa6+9hqysLNy/fx9ZWVl47bXXkJeXB6VSiaysrLouar2gVCqxc+dOtG7dGrdv38b69euxePFirF+/Hrdv30br1q3x008/cTFFonrO0tISkyZNQm5uLgYMGICkpCRcu3YNSUlJGDBgAHJzczFp0iR24Kjx9/dHdHQ0zpw5I8mtn52dzQ4cIiJ6pMOHDwMAXn/9dTHt1MiRI+Hr6wsLCwsxi4IQR9Xz4MEDAICFhQWmT5+O5ORkTJ8+HRYWFgCA/Pz8uiye0ejVq5fY/lC+DUvYtra2Rq9evWq9bMZGLpdj6NChOH78OAoKCjB06FA899xzGDp0KAoKCnD8+HEMGTKEHTikF6ZTIyKqZUVFRSguLq40pri4mNP0/yHki42MjMRHH30kTq0HADc3N0RGRuKNN95gXtl/CIspymQyDBw4EAMGDBDTP+zZswe//vorVCoVMjIyNPIhE9UWpVKpkV6ANzOahBlz8fHxWLhwobhfLpfXixl19ZG/vz/8/Pz4+SIioiqztbUFAFy8eFFrXUUYVS/Ekf4OHTqEgoIC2NrawtHREZ9++ik+/fRTAGUzFm7duoUHDx7g0KFDnB1iAOozuvU5TroRBlQ2bdoUN2/exM6dOyXHmzZtip9++glz585l3ZSqjP+lRES1LDEx8ZGzIJRKJRITEzFp0qTaKVQ9JuSLdXd3x88//6xxM/X7779L4kzdtWvXAAD9+/fHxx9/LFkX4sUXX0RQUBD27NkjxhHVtuTkZISHh2ukFwgLC+NMCS1CQ0Mxe/ZsjQV/2clPRERkWKNHj8a2bdvwwQcfYN26dRprS966dUuMo+oR1mEZPnw4Dhw4IDmmUqkwbNgwbN68Gd999x07caopPT0d9+/fB1A207uoqEg8ZmVlhcLCQty/fx/p6ek6pX2nigkDKoGyDCy+vr6wsbHBw4cPkZaWhps3b4pxHFBJVcVOHCItyucJrSyOeL6qSljMzlBxxq78YtXqlR0uVq1JyCs9ePBgSQcOULYu1dNPP409e/ZUmn+aqKaor1kSFRUlrlkSGxuLkJAQpryqgJBajR6NnYRERKQvIe3Uw4cP8fDhQ8kxoUOHaacMQ0il9s0330ChUGDatGmS7AGbN2+WxJH+Dh06BAB47LHHUFhYiCtXrojHnJycYGVlhXPnzuHQoUPsxKkm4dza29vDxsYGP/74o3jM1dUV9vb2uH//vuRvQKQrrolDpIW9vb1B44wd1xCqmpSUFIPGGTu5XI6wsDCkpqYiODhYsiZOcHAwUlNTMX/+fE5H/oewllJycrLGOlSlpaX4+eefJXFEtUWpVCI8PBwKhQIxMTHw9vaGnZ0dvL29ERMTA4VCgYiICK7XRHoTOgk9PT2RlJSEzMxMJCUlwdPTEyEhIUhOTq7rIhIRERGAbt26ASibCXL69GksWbIEb775JpYsWYLTp0/DyspKEkf6Ezogz507h/bt20vqSO3bt8e5c+ckcaS/o0ePAgDu37+vtT4qzIgS4oiqgp04RFrcu3fPoHFE6tRHE5WfnaS+zVFH/+Ji1bpr3rw5AGDv3r1aO7327t0riSOqLUJ6gRkzZmidJRYUFISLFy8iIyOjjkpIDRk7CYmIqLqEdVoAiJ0IAmFh+IKCAnFmA+mvffv2AIDCwkKNNM/Xrl1DYWGhJI7016JFCwBA48aNsWLFCmzduhUzZ87E1q1bsWLFCjRq1EgSR/oT6plNmjTBypUrUVhYiJSUFBQWFmLlypVo0qSJJI6oKphOjYiolqnPGCk/O0l9mzNLpLhYtW6E9HNNmjTB6dOnERAQIB5zdXVFx44dcfv2baafo1p348YNAICHh4fW48J+IY6oKoROwqioqAo7CQMCApiDnIiIKvTtt98CAFq2bAmVSoWrV6+KxxwdHSGTyXDlyhV8++23XKelmnJzc8XH2rIHaIsj/QgdB3fv3pXcA+7fvx+JiYkacaQ/oW3i1q1b6Nmzp9gpDEBMF6geR1QV7MQhIqplTZs2FafRPiqOpORyORvfHkFIPyesOzJ16lSxwrhv3z6kpqYiOjqaFUeqdS4uLgDK1vvy9vbWOC6sAybEEVUFOwmJiKi6hPXUrly5Is68Edy+fVtsgFVfd430Iyzwbqg4qpiu7Qpsf6i+Ll26SDrGKosjqip24hAR1bLyjefOzs7o0KEDTp48KRlpxEZ20peQfi48PFyytpKbmxvTz1GdEWaJxcbGIiYmRjJborS0FHFxcXBzc+MsMdILOwmJiKi6WrVqhczMTACVzw5p1apVrZbLGN26dQsAYGlpiZKSEsn5NTMzg7m5OYqKisQ40p+uM2w4E6f61FOW29jY4MUXX0Tr1q1x4cIFfPfdd2JHMFObkz7YiUNEVMssLS0l27m5ueI6JZXFEVUF089RfaM+Syw4OBhBQUHw8PBAdnY24uLiOEuMqoWdhEREVF3t27fHjh07AAAlJSWSY+rbXKel+oRUdUVFRbCwsMC0adMwZswYbN68GevXr0dRUZEkjvS3e/du8bGVlZW43lD57d27d6N///61Xj5j1Lx5c9y4cQPr168X95mZmaF58+Yaa0AR6YqdOEREtaz81Hx1MplMXBensjgiXTD9HNU36rPE1Ndr4iyxyimVSnbIPgI7CYmIqLru3r0rPq5sJo56HOlHmIlgZmYGJycnfPLJJ/jkk08AAC1atMD169dRWlrKGQsGcP78eYPGUcWEzCrXrl2DQqFA69atUVhYCCsrK1y4cAGpqamSOKKqYCcOEVEtc3NzQ1ZWltZjQgeOEEdEZGz8/f2hUCiQmJiInJwcuLu7IzAwkLMPK5CcnIzw8HBJ/n1XV1eEhYWx06scdhISEVF1XLlyxaBxVLF79+4BKOscK58yLS8vT+w0E+JIfzY2NuJj9faG8tvqcaQfIW3vnDlzkJSUJHbaAGX10Tlz5iAqKorpfUkvZo8O0e6pp55CUlISiouLDVkeIiKj99xzzxk0jshUsS7SMCUnJ2Po0KFYvnw5NmzYgOXLl2Po0KFITk6u66LVO8nJyQgJCYGnpyeSkpKQmZmJpKQkeHp6IiQkhOdMC39/f/z8889ISEjABx98gISEBCQnJ7MDh4hqBOsixsnW1rZK+6nq1NOeCqnTtG2rx5F+nnrqKfFxZedaPY70I6T3zcrKwk8//SSpj+7cuRNZWVlM70t60/vbMDU1FYGBgXB1dUVoaKi4WCgREVWuW7du4uPylVL1bfU4ItLEukjDw04J3SmVSoSHh0OhUCAmJgbe3t6ws7ODt7c3YmJioFAoEBERAaVSWddFrXeEVJIjR46Er68vU6gRUY1hXcS4uLq6AgAePHig9biwX4gj/bVu3Vp8XNk9sXoc6ef+/fsGjaOKCel9U1NTMXPmTFhaWkKhUMDS0hIzZ85Eamoq5s+fz7op6UXvTpzx48fDysoKN2/exAcffID27dvDz88PX331FUehEBFVIikpSXxcWa5l9Tgi0sS6SMPCTomqycjIwKVLlzBjxgytjRtBQUG4ePEiMjIy6qiERETEuohx6d69u/hYJpNJjqlfi9XjSD8eHh4Ayhq9y6eWatasmdjILcSR/ho3bmzQOKqckN73zJkzCAgIQPfu3REQEIDs7Gym96Vq0bsT54svvsDly5excuVKdOzYESqVCikpKXjxxRfh6uqK+fPn18golHv37uGdd95Bp06dYG9vDwcHB/To0QMffPCBxrTAqvrmm2/wzDPPoFWrVrC0tISdnR28vLwwffp0HDlyxDBvgIhMXk5ODgBg2bJlGqO4XF1dsXTpUkkcEWnHukjDwk6Jqrlx4waAihsvhP1CHBER1T7WRYzLmTNnxMfl1w5RH2ynHkf6OXz4MICyQT4lJSWYPHkyFi5ciMmTJ6O4uFgc1CPEkf5+//13g8bRozG9L9WEaiWXdHR0xMyZM3H06FEcPHgQkydPhq2tLW7evIn333/f4KNQzp8/j86dO2Px4sU4fvw4VCoVCgsLkZGRgXnz5qFXr14aC6LporCwEKNGjcL//d//YceOHbhy5QqsrKxQUlKCM2fO4LPPPkP37t3x4YcfVvs9EBG5u7sDKLsR2LlzJxYsWIDx48djwYIF2Llzp3jDIMQRUcVYF2k42ClRNcKo1Ioa/4T9XBiViKhusS5iPLKysgwaR482bNgw3L59G+vXr8eSJUuwfv163L59G0OHDq3rohmNa9euGTSOdMP0vmRoBlshzNfXF2vXrsXly5fFFBmGHIWiVCrxzDPP4Ny5c2jZsiV+/vln5Ofn48GDB9i0aRMaNWqErKwsjB8/vsrP/d5772H79u0AgODgYFy8eBH37t3Dw4cPkZGRgX79+qG0tBRz587l6FAiqrbAwEDI5XJERkZi8ODBksW9Bw8ejBUrVkAulyMwMLCui0rUoLAuUr+xU6JqhIVRY2NjtabejIuL48KoRET1DOsiDZuNjY34uHw6NfVt9TjSj6+vL4CyjoNDhw7Bz88Pnp6e8PPzw6FDh3D9+nVJHOnv4cOH4uPK1h9Sj6PqUyqVSEtLw44dO5CWlsaU0VRtBuvEETRq1AgzZszA4cOHcfjwYfTv3x8qlQq5ubniKBR/f/8qL1wbHx+PY8eOAQA2b96Mp59+uuwNmJnhhRdeQFxcHADgxx9/xO7du6v03AkJCQCAgQMHYs2aNWJ6IzMzM3Tv3h07duyAvb09VCoVNm/eXKXnJiIqT1jc7t69e7h69ark2NWrV3Hv3j1x8TsiqjrWReondkpUjfrCqMHBwcjKysL9+/eRlZWF4OBgLoxKBsNGBiLDY12kYfLy8hIf9+vXDwsXLsR7772HhQsXol+/flrjSD89e/aEk5MTMjMz0aNHD+zevRtnzpzB7t270aNHD2RmZsLZ2Rk9e/as66I2eE5OTuLjytbkVY+j6klOTsbgwYMxYcIEzJ07FxMmTMDgwYOr/J1PpM7gnThAWe/t+vXrERwcjH379gEoyyfapEkTqFQq7Nq1C8OGDcPo0aPx4MEDnZ7z888/BwAMGjQIvXv31jgeEBCAtm3bAvi38qGrK1euAECFjQYODg7w9PQEANy/f79Kz01EVJ5SqXzkFPwjR46wEYWqzZQb5lgXqX/YKVF1XBiVahobGYhqDusiDc/du3fFxydOnIC5uTn69esHc3NznDhxQmsc6Ucul6Nr166Vxnh7e7NeaADqs8gsLCwwYsQIhIWFYcSIEbCwsNAaR/pLTk5GSEgIPDw8JB3BHh4eCAkJYR2L9GbQTpwjR44gODgYLVu2xLRp05CWlga5XI4xY8Zg165duHnzJjIyMjBhwgSYmZlh+/btWLhw4SOf98GDB9i/fz+AsnyZ2shkMjFnZlX/If7zn/8AqHjBtDt37ogL13F0KBFVV3p6OvLy8iqNyc3NRXp6ei2ViIyRqTbMsS5Sv7FTouq4MCrVFKGRwdPTE0lJScjMzERSUhI8PT3ZyEBUDayLNFzqWRLy8vKwcOFCDBgwAAsXLpTcv5XPpkBVV1RUhNTUVDRq1AitWrWSHHN1dUWjRo2QmpqKoqKiOiqhcSopKcH333+P8PBwfP/99ygpKanrIhkVpVKJ8PBwPPnkkzhz5gyWLFmCN998E0uWLMGZM2fw5JNPIiIiwqQGV5LhVLsTJz8/H59++il69OiB7t27Iy4uDnfv3kXr1q2xdOlSXLhwAV9//TWeeuopAEC3bt0QHx+PrVu3QqVS4euvv37ka5w6dUqc4texY8cK44RjV69efWQDqbpXXnkFAJCamopXX30Vly5dAlA2SiYzMxMjR47E/fv30atXL71yyxIRqTtw4ID42MrKSnJMfVs9jqgqTK1hjnWRhoWdElXHhVHJ0IRGBoVCIa7bYWdnB29vb8TExEChULCRgagKWBcxDkJnQkVr3lhbW0viSH+JiYlQKpUIDQ3Frl27JPXCn3/+GW+88QaUSiUSExPruqgNnvoMm8rWxOFMnOrLyMjApUuXcPz4cY3v37y8PBw/fhwXL1402nXFqGaZ6/uLGRkZ+OSTT7Bp0ybk5+dDpVLBzMwMQ4YMwSuvvIIRI0ZU+gUwfPhwuLi4iBWDyly+fFl8LORl1Ub92OXLl3XO5/jqq6/i4sWLeP/99xETE4OYmBjY29ujqKgIRUVFaNGiBcLCwrBw4UKYm1d+ygoLC1FYWChuc5otEZUn5LEGIPm+KL+tHkekq/INc0LFXGiYCw4ORkREBPz8/Bp8QzDrIto1hLqI0ClBurl//z5CQ0Nx4cIFtG7dGpGRkbC3t6/rYlEDJjQyREVFaW3QCQoKQkBAADIyMvi/SlQJ1kW0awh1EW169eqF2NjYChd4LygoEOOoenJycgCUpQbUVi9UKBSSONKfeqdj+cEZ6tvsnKy+a9euiY979+6NGTNmwMPDA9nZ2YiNjUVKSopGHJGu9J6J07NnT6xduxb379+Hi4sLFixYgD///BPff/89Ro4cqVMPro2NDVQq1SPj7t27Jz62tbWtME79mPrvPIqZmRmWL1+OdevWiTfE9+/fF6dtFhQU4M6dO8jPz3/kcy1fvhwODg7iT+vWrXUuBxGZBqHyb6g4InVCw9yMGTMqbJgzltE/rItox7qIcRk7diy6d+8uWfC3e/fuGDt2bF0XjRqwGzduAAA8PDy0Hhf2C3FEpB3rIto11LpIp06dDBpHFXN3dwcAsVG7vNTUVEkc6U/b+lnViaOK3bx5EwDg5eWldaazl5eXJI6oKqqVTm3AgAHYtGkTLl68iGXLlqFNmzZV+v39+/fjr7/+qk4RDOLmzZvw8/PDpEmT0Lt3b+zbtw+3b9/GlStXsGXLFri4uODjjz+Gr6/vI0fILFiwAHfu3BF/Lly4UEvvgogaCvXFAw0RR6TO1BrmWBfRxLqI8Rg7diyOHTsGmUyGZ599Flu3bsWzzz4LmUyGY8eOsSOnAkqlEmlpadixYwfS0tKYEkwLFxcXAEB2drbW48J+IY6IKsa6iKaGWhdZsWKF+Lh8B5z6tnoc6ScwMBByuRwfffSRxrosJSUlWLlyJeRyOQIDA+uohMajQ4cOBo2jit25cwdAWerFoqIixMfHY8mSJYiPj0dRUZGYklGII6oKvdOpnTx5Eu3bt6/Wi1c2BVhdo0aNxMcPHjyoME79mPrvPMrEiRORmpqKgQMH4qeffhIvzg4ODnjuuefQt29fPPnkk/jrr78QFhaGL774osLnsrKy0ljjgohIna4LYXLBTNKHesOct7e3xnFjaphjXUQ71kWMw/3798UOnCNHjog3fZGRkViyZAm8vb1x7Ngx3L9/n6nV1CQnJyM8PFzSwOjq6oqwsDCuu6TGx8cHrq6uiI2NlaTeBIDS0lLExcXBzc3NaBcvJzIU1kW0a6h1ESGddevWrVFUVCRJedS8eXOYm5vj4sWLTHttAJaWlpg0aRLWrl2LAQMGYNasWVAoFEhNTcXKlSuRm5uLqVOnwtLSsq6L2uAtWLBA57iYmJgaLo1xE743jx49ii5dukiOLV++XCOOqCr0nolz/fp1HDp0SOf49PR07NmzR6/XUs/LWNmID/VjuuZyPHXqFH744QcAwNy5c7X+IzVr1gwTJkwAAGzZskWnqc5ERBWp7KZLnzgideoNc8LitwJja5hjXYSMWWhoKABg1KhRMDMzk4zkMzMzw8iRIyVxVNaBExISAk9PTyQlJSEzMxNJSUnw9PRESEgIkpOT67qI9YZcLkdYWBhSU1MRHByMrKws3L9/H1lZWQgODkZqairmz5/f4NdOI6pprIsYpzt37misWXH16tUGs7ZPQxEaGoqpU6fi9u3bWLhwIQYMGICFCxfi9u3bmDp1Kus4BnL+/HmDxlHFdF1HkOsNkj70nomjUCjQsmVLnRbgA4AXXngBFy5c0JgmqYsnnngCZmZmKC0txfHjxzFs2DCtccePHwcAtGjRQufF+06ePCk+bteuXYVxQvqZBw8e4Pr162jevLmuxScikrCxsTFonClRKpXIyMjAjRs34OLiAh8fHzYwlSM0zIWEhCA4OBhBQUHiYopxcXFITU1FdHS0UZw31kVYFzFmQuoZMzMzeHt7S1KCRUZGip04DSVFTU1TKpUIDw+HQqGQzCwRcpAHBwcjIiICfn5+RvH9Zwj+/v6Ijo5GeHg4AgICxP1ubm6Ijo7mzCUiHbAuYlx1kT59+uDEiRO4e/cuZDIZOnTogDZt2uD8+fM4efKk2InTp0+fOi6p8QgNDcXs2bORmJiInJwcuLu7IzAwkDNwqEFSz4Th6OgIT09PlJaWwszMDGfOnMHt27c14qj6TKWdqFpr4lR15IW+IzVsbW3Rt29fAMDOnTsrfO6ffvoJAKp0w6GeOqCyXmf1URhMWUFE1dGiRQuDxpmK5ORkDB48GBMmTMDcuXMxYcIEDB48mCOrtRAa5s6cOYOAgAB0794dAQEByM7ONrqGOdZFyFgJi0B/++23cHR0xNKlS7Fv3z4sXboUjo6O2Lp1qyTO1GVkZODSpUuYMWOG5H8KKPsfCwoKwsWLF5GRkVFHJayf/P398fPPPyMhIQEffPABEhISkJycbFTXCaKaxrqI8ejevbv4WKVS4cSJE/jhhx9w4sQJyd9NPY6qT0ittnDhQkyaNIkdOAam64w8XeOoYhs3bhQf3759G+np6cjIyEB6errYgVM+jqrHlNqJqtWJUxX5+fnVWqR74sSJAICUlBSkpaVpHP/666/FxQCFKb666Natm/j4448/1hqTn5+PhIQEAEDnzp1hZ2en8/MTEZVXUFBg0DhTwBQ5VceGOU2si1BD8u6774qPk5OTMW7cOLi4uGDcuHGS7zz1OFN248YNAP+OEi9P2C/E0b/kcjl8fX0xcuRI+Pr6GuXIRaL6gnWR+u2rr74yaBzpRqlUIi0tDTt27EBaWppk9jFVX1FRkWS7Xbt2WL16tcasu/JxVHWHDx8WH2sbVKQtjvRnau1EtdKJc/r0ady8eRPNmjXT+zkmTpyITp06QaVSYcyYMdi9ezeAsvz+X3/9NaZPnw4AGDZsGPz8/CS/+84770Amk0Emk+HcuXOSY23atMEzzzwDANi+fTv++9//4s8//4RKpUJxcTEOHDgAhUIhVoTmzp2r93sgIgKYk7aqyqfI8fb2hp2dnZgiR6FQICIigpV9Ldgw9y/WRaih2bZtm/jYx8cH8+bNw4kTJzBv3jzJmlbqcabMxcUFAJCdna31uLBfiCMiqm2si9R/uqYoZSpTwzGlUfR1pfw6qX/++Sdee+01/Pnnn5XGUdVZW1sDAKysrDTSTTZv3hxWVlaSONKfKbYT6bwmztatW8W0DYI7d+5gypQpFf6OSqXC7du3sXfvXshkMvTv31//gpqbY9u2bRg0aBDOnTuHp59+Gra2tigtLRVHq3ft2hUbNmyo8nOvW7cOQ4cOxeHDh/Hll1/iyy+/hK2tLYqKiiS5aufNm1el0SxERNo8fPjQoHHGTkiRExUVVWGKnICAAGRkZHCBQCPHugjrIqYkJycHANC+fXv88ccf2L59O7Zv3y4e9/LywunTp8U4U+fj4wNXV1fExsZK1sQByhol4uLi4ObmJukAIyKqKtZFjLsuomsjNhu7DUMYRd+vXz/Y2dnhzp07cHBwQPPmzRESEmJ0aaDrivqaXU2aNIG5uTkKCgpgbW2NkpIS3Lp1SyOO9COkmSwsLMSVK1ckx9S3jTEdZW0zxXYinTtxjhw5gvj4eMhkMjEX6MOHDxEfH6/T77u4uGDRokV6FVLw2GOP4ffff8f777+PLVu24O+//4aFhQWefPJJvPjii5g5c6ZeuTObNm2KQ4cO4fPPP8fXX3+NI0eOIC8vD+bm5nB3d0efPn0QFBSEfv36Vav8RERA2eyI4uJineKIKXLoX6yLsC5iStzd3QEA48ePx5AhQzBjxgxcvnwZrVq1QmxsLHbu3ImFCxeKcaZOLpcjLCwMISEhCA4ORlBQEDw8PJCdnY24uDikpqYiOjqa11YiqhbWRYy7LqKeIs7S0lKSXkp92xhTydU2YRS9lZUV9u7dK+6/du0azpw5A2tra0RERMDPz4/X7moyN/+36VfosAGAe/fuVRhH+pHJZAaNo4qZYjuRTKXjqnpbt27Fd999J25//vnnsLGxwbhx4yr8HTMzMzRu3BgdO3bEmDFj4OjoWN3yNjh3796Fg4MD7ty5g8aNG9dZOby8vHSOPX36dA2WpGHg+aoanq+q8fPzw8WLFx8Z5+bmJqZIMGVpaWmYMGECkpKS4O3trXE8KysLAQEBSEhIMJoRFqZAn+sj6yL6qS91EaqaoqIieHt7w9bWFo0aNcLly5fFY61atcK9e/fw4MEDHDlyhAsAq0lOTkZ4eLhkNKmbmxvmz5/P0bxEJMG6SO1pKHWRESNG4OzZs4+Me/zxx/H999/XQomMl3CPJ2jbtq04+OLvv/8W9/Mer/refvttndZxGjduHJYuXVoLJTJeixYtwqZNmx4ZFxAQgMWLF9dCiYyXsbQTVeX6qHM367PPPotnn31W3P7888/h4OCA9evX619SIiITpMssnKrEGTumyNGfUqlERkYGbty4ARcXF/j4+DTokWysi5ApsbS0hEKhwO7du1FQUIDp06dj7Nix+OabbxAfH4/i4mL4+fmxA6ccf39/+Pn5GdV3HxHVH6yLGLemTZvq1InTtGnTWiiNcSu//uvff/8t6bxRj6vPDbANwbx588ROHPVZhOW3582bVyflMybqs5vMzMwkqRfVt8vPgqKqM8V2Ir3nyqWkpPCmkYhID7m5uQaNM3ZMkaMfbaPRXV1dERYWZjSj0VkXIWOmVCrxxx9/oHXr1rh8+TI+/fRTfPrppwDKvhdbt26N06dPQ6lU8vuvHLlczgYfIqoVrIsYF2dnZ/FxZY3d6nGkn4SEBPGxs7MzZs+ejUGDBiElJQUfffSReC+ckJBQ6Uw3erRvv/1WfFw+GZP69rfffotJkybVVrGMkvq6N3K5HD179oSLiwtu3LiBw4cPi5045dfLoaozxXYivTtxBg4caMhyEBGZDC6YWXX+/v6Ijo5GeHg4AgICxP1ubm5c8FILYZFQhUKBqKgosTITGxtrVIuEsi5CxkxYrDMpKQkdOnRAYmIicnJy4O7ujsDAQJw4ccLoFus0FGObhUhE9RfrIsZFfSR3ZY3d5RfRpqq7e/cugLLOsdTUVLEzdNy4cRg9ejQ6d+4MlUolxpH+cnJyDBpHFWvVqhUyMzNhZmaG4uJiHDp0SHJcmI3TqlWrOiqhcTG1diKuWkVEVMssLCxQWFioUxz9iylydCMsEqpQKCTTir29vRETE4Pg4GAuEkrUAKgv1mlpaakxMtIYF+s0BFOYhUhERDWjZcuWBo2jipmblzVHqlQqhISEaIyiFzrNhDjSn5ubm/jYwsJCkrZdfVs9jvTToUMH7NixA6WlpVpn8wkDdTt06FBXRTQ6ptROpNO34VNPPQUAaNOmjZjrVdhXFTKZjIt0E5HJa9asGS5cuKBTHEkxRc6jCaP3o6KiNEYJmpmZISgoqEGO3mddhEyNi4sLACA7O1vrYp3Z2dmSODKdWYhEVDdYFzF+jo6OBo2jivXq1QubN28GAHF2saB58+aSOKqexx9/XHxcft1d9W31ONKPeqrFymbzMSWjYZlKO5FOnTipqakAgPbt22vsqwqZTFbl3yEiMjZeXl46deJ4eXnVQmnI2KiP3temoY7eZ13EuDDd1aOZ4mKd1cFZiERU01gXMX63bt0yaBxVzNPTU3x8/fp1ybFr165pjSP9HD58WOe4AQMG1HBpjFteXp5B44jU6dSJs2jRIgBA06ZNNfYREVHVVKUSRVRVxjp6n3UR45GcnIzly5fj8uXL4r5WrVphwYIFnCWhpvxinf369YO1tTUKCgqwb98+o1ysszrUZyGqVCqkpaVJOgkb6ixEIqo/WBcxfsePHzdoHFUsMDAQERERla4Da2ZmhsDAwFoslXG6ePGiQeOoYnfu3BEfW1lZSdLoC/X48nFEuqpSJ86j9hER0aPpsh5OVeKI1Bnr6H3WRYxDcnIyZs6cCWtra8n+vLw8zJw5E6tWrWJHjhp/f39MmTIF8fHxSElJEffL5XJMmTKF50qNMLswJycHc+bM0VgTZ/bs2ZI4IqKqYl3E+AkNrIaKo4rJ5XJYWlpWei4tLS05WMUAbt68CaCsU0xbp5mwX4gjw+jduzf69+8vdt7s3btXr9mbRAKuEEZEVMscHBzw4MEDneKIqqr86P3yi4Ry9D7VFaVS+cjGrnfeeYfprtQkJydj3bp1GDhwIAYMGCDeBO7Zswfr1q2Dt7c3O3L+IcwuDA0N1bomTmhoqCSOiIioPEtLS4PGUcXS09Mf2RlWUFCA9PR09O7du5ZKZZyEwaEVzXoS9nMQafUJbTitWrXCmTNnJJ02rq6uaNWqFS5fvsy2HtKL2aNDKvhFMzOYm5vj7NmzhiwPEZHRa9mypUHjiMrz9/dHdHQ0zpw5g4CAAHTv3h0BAQHIzs42qoW9WRdpWNLT08X8z7169UJSUhIyMzORlJQkLlqbm5uL9PT0uixmvaG+xsvHH3+M8ePHY8yYMRg/fjw+/vhjKBQKREREQKlU1nVR64WuXbtCLpfDyckJK1aswNatWzFz5kxs3boVK1asgJOTE+RyObp27VrXRSUiI8K6iHG5ffu2QeOoYocOHQIAdOnSBb/99hv8/Pzg6ekJPz8//Pbbb+jSpYskjvTH9ofaI6TbvHz5Mjw9PfH2229j2bJlePvtt+Hh4SGmk1ZPy0mkK71n4tjY2MDCwgKPP/64IctDRGT01FO8GCKOSBt/f3/4+fkZ9eLxrIs0LMJNuLe3N1auXIlNmzZh27ZtcHd3x8qVKzFx4kQcOXIEhw4d4ohLSNd4UU+LCJQ1GnKNF6msrCwolUrk5uZK0kXu378fiYmJkjieLyIyFNZFjMvVq1cNGkcVExqzbW1t0atXL3FQypkzZ9CrVy/xWq6+hiLpJz8/36BxVLHmzZuLjw8dOiSZiaOeTlo9jkhXenfiuLm5cdErIiI96DpqmqOrqbrkcrlRN1ayLtKwCDfhNjY26Nq1qySlQ0REBHr06CGJM3XC2i0eHh5ajwv7ucZLGV3PA88XERkS6yLG5eHDhwaNo4q1atUKAHDw4EE4OTnh9ddfx6BBg5CSkoIPP/wQaWlpkjjS37lz5wwaRxUT1qdt0qQJ8vLyJPc1zs7OaNKkCW7fvt3g1qel+kHvdGojRoxAQUEBfv31V0OWh4jI6DVu3NigcUSminWRhkX9Zl0b3qxLCWu3ZGdnaz0u7OcaL2WE3OJyuVwjHUjLli3FWYjMQU5EhsS6iHGxsrIyaBxVTL0Ru1OnTvDw8ICNjQ08PDzQqVMnrXGkn/IzuqsbRxUT1qc9ceKE1nRqJ06cwPz5840qOwbVHr3/QxcsWAAXFxe88soruHLliiHLRERk1HRtcGPDHFHlWBdpWNRvwh0dHbF06VLs3bsXS5cuhaOjo9Y4UyaM5IuNjdVYiLa0tBRxcXFwc3Pj+frH7t27AZTNYvXy8pKsueTl5SXObhXiiIgMgXUR4/Kf//zHoHFUMfVBKocOHZKs4ykM7CkfR/opKCgwaBxVTn192qVLl+J///sfli5danTr01Lt0zud2qlTp7Bs2TK8/vrr6NChA/773/+ib9++aNasWaU9igMGDND3JYmIjIKzs7NB44hMFesiDcvp06fFx/n5+Xj77bfFbfURradPn0b//v1rtWz1kTCSLyQkBK+88gr69+8Pa2trFBQUYO/evfj1118RHR3NkXz/OH/+vGT7+PHjOHv2rEaDRPk4IqLqYF3EuHTt2hVHjx7VKY6qRz0NYWFhoeSY+rWb6Qqrj+nca9+RI0dw7do1yb6rV6/iyJEj7MQhvendiaNQKCCTycTtNWvWYM2aNZX+jkwmQ0lJib4vSURERCRiXaRhycrKEh+r/93Kb6vHmTp/f39MmTIF8fHxkoVR5XI5pkyZwptANTY2NgCAdu3aYe/evRrn6z//+Q/++usvMY6IyBBYFzEuv/32m0HjqGLu7u4GjaOKlZ/RXd04qlxkZCTWrl0LJycnjB49Gq1bt8aFCxfw3XffYe3atQCA0NDQOi4lNUR6d+IAgEqlqtF4IiJjdPbsWYPGEZky1kUaDltbWwDAmDFjcODAAUnaGScnJ/Tu3RubN28W4whITk7GunXroFAoNGbirFu3Dt7e3uzI+cfTTz+N3bt3488//9Q4plQq8ddff4lxRESGxLqI8WBjd+0ZO3Ysli9frlMcVc9jjz2Gmzdv6hRH1VNUVIT4+HjY29vDxsYG69atE4+5urrC3t4e8fHxmD17NiwtLeuwpNQQ6b0mTmlpqV4/RESmTlsDU3XiiEwV6yINy+jRowEAP/zwg8ZMHGG/epypUyqVCA8Ph0KhQExMDMaPH48xY8Zg/PjxiImJgUKhQEREBFNf/KNly5aS7U6dOuG1116TLI6sLY6IqDpYFzEu1tbWBo2jin311VeS7f79+yMxMVEjpW75OKq6O3fuSLYtLCzQtm1bWFhYVBpHVZeYmAilUon8/Hx4enpK1mj09PREfn4+lEolEhMT67qo1ADp3YlDRET6YU5aIjJFvXr1grW1NR4+fIgbN25g+vTp2LlzJ6ZPn44bN27g4cOHsLa2Rq9eveq6qPVCRkYGLl26hBkzZsDMTFplNzMzQ1BQEC5evIiMjIw6KmH9UlxcLNk+duwYVq9ejWPHjlUaR0REJGjbtq1B46hi6enpAMrSC5qZmWHv3r0IDAzE3r17YWZmJg74EeJIf40bN5ZsFxcX4++//9aoE5WPo6o7d+4cAKBPnz5YtWoVCgsLkZKSgsLCQqxatQq9e/eWxBFVRbXSqREREVH9pVQqkZGRgRs3bsDFxQU+Pj5cBJ3qlK2tLQoKClBcXIxPP/0Un376qeS4nZ1dHZWs/rlx4wYAwMPDQ+txYb8QZ+q2b98uPm7SpAkef/xxcfvs2bO4deuWGMcFxYmISJtDhw4ZNI4q9vfffwMAevfujVWrViE0NBQXLlxA69atERkZiVdffRWHDh0S40h/58+fN2gcVUzofLSxscGQIUNw6dIl8ZirqyueeOIJSRxRVbATh4iolllYWOg0Erj89GaiqkhOTkZ4eLhGxTEsLIxraFCdyMjIQF5eHubMmYOkpCSNz+YLL7yAqKgoZGRkwNfXtw5LWj+4uLgAALKzs+Ht7a1xPDs7WxJn6vLz8wGULYCsVColi067ubnB3t4eFy5cEOOIiIjKe/DggUHjqGLCGojp6eno0aOHmGbwzJkz6NGjhzgLmWslVl/5Gd3VjaOKdenSBYmJidi1axcGDBgAPz8/FBYWwsrKCufOncOuXbvEOKKqMkgnzsWLF3HgwAFcvHgR+fn5lS7Ut3DhQkO8JBFRg+Xs7IyrV6/qFEekj+TkZISEhEChUCAqKgoeHh7Izs5GbGwsQkJCEB0dbXQdOayL1H/CjJGXXnoJ06ZN05gl9vDhQ0RFRXFmyT98fHzg6uqK2NhYrFq1CpmZmeL56tatG+Li4uDm5gYfH5+6Lmq9oN6Z9dNPP2mcr+HDh2vEURnO2iQyDNZFGj4rKyuDxlHFunTpgpMnT6KkpETjmPraUWzsrr5GjRrh+vXrOsVR9TRv3lx8vGfPHuzZs+eRcUS6qlYnzs2bNzFjxgx89913lVZQAEClUkEmk7GyQkQmr2nTpjp14jRt2rQWStOwsKHp0covhi6MqPL29kZMTAyCg4MREREBPz8/ozh3rIs0HOVnlpSfbcOZJVJyuRxhYWEICQmBj48PCgoKxGPW1tYoLCxEdHS0UfwfG0LXrl2xadMm5OTk4LXXXsOMGTOgUCiQnZ2N1157DTk5OWIc/YuzNomqj3UR49G1a1fs3LlTpziqntdffx0bN27UKY6qx8fHB3/++adOcURUf+ndiZOfnw+FQoFTp07B0tISXbp0QXp6OiwtLdGzZ09cvXoVZ8+eBQA4OTmhU6dOBis0EVFDpusidlzsTooNTboRFkOPioqqcDH0gIAAo0hZxbpIw6I+s0S9gxEoG3HJmSXaVdQg+KiGQlPTsmVL8fGePXuQmpoqbqt/1tTjTJ0pztokMjTWRYwL007Vnq+++krnuOnTp9dwaYxbSkqKQeOoYteuXRMf9+3bF+fPn8fdu3fRuHFjtGnTBvv379eII9KV3leeNWvW4OTJk/Dy8sJff/0lLuzm5OSEPXv24MyZM/j7778xbtw43L59G0OHDuUXAhERgPv37xs0zhQIDU2enp5ISkpCZmYmkpKS4OnpiZCQECQnJ9d1EesN9cXQlUol0tLSsGPHDqSlpUGpVBrVYuisizQswsyS1NRUBAcHIysrC/fv30dWVhaCg4ORmpqK+fPnc2bJP4RZdYMGDUJGRgYSEhLwwQcfICEhARkZGRg0aBAiIiKgVCrruqj1gtBJ6OzsLKZgEZSWlsLZ2ZmdhGrKz9r09vaGnZ2dOGtToVDw80WkA9ZFjEteXp5B46hiW7duNWgcVezu3bsGjaOKHT16FADQuHFj7N+/HxcvXsTdu3dx8eJF7N+/H40bN5bEEVWF3p043377LWQyGZYvX17hiLY2bdpg06ZNGDduHN58803s3r1b74ISEZFpYkNT1QipqL788ksMHjwYEyZMwNy5czFhwgQMHjwYGzZskMQ1ZKyLNDz+/v6Ijo7GmTNnEBAQgO7duyMgIADZ2dkc9V+OMKtuxowZFc6qu3jxIjIyMuqohPWLXC7H0KFDkZubq/V85ebmYsiQIewk/Ac/X0SGwbqIcXn48KFB46hixcXFBo2jinGGWe2rqEOMHWVUHXr/h/7xxx8AgKFDh0r2a/uCXbZsGVQqFVatWqXvyxERkYliQ1PV+Pj4wMnJSUyNoz5zycPDA1FRUXB2djaK0eisizRM/v7++PnnnyUzS5KTk9mBU44wWy4nJ0drh+yFCxckcaZOqVTi22+/BQBYWFhIjllaWgIAvvvuO3b4/0N91qY2xjRrk6gmsS5iXIqKigwaRxVzd3c3aBxVrFmzZgaNo4q1aNHCoHFE6vTuxCkoKICjoyOsrKzEfdbW1lrT/7Rt2xYODg5IT0/X9+WIiMhEsaFJfzKZDCqVSvyRyWR1XSSDYl2k4ZLL5fD19cXIkSPh6+vL2RFaCLPlQkNDtaaSDA0NlcSZuvT0dOTl5aF79+5IT0/HggULMH78eCxYsABpaWno3r07cnNz+R3wD+Fzk52drfW4sJ+fL6LKsS5iXNT/joaIo4pZW1tLtkeNGoXvvvsOo0aNqjSOqq58mtnqxlHFMjMzxcfl773Vt9XjiHSldydO8+bNcffuXck/uYuLC4qKinDx4kVJrFKpRH5+PnJzc/UvKRERmSQ2NFVNRkYG8vLyMGfOHK0pq+bMmYPc3FyjmLnEukjDpW29JpLq2rUr5HI5nJycsHr1akkqydWrV8PJyQlyuRxdu3at66LWC2lpaQCA3r17Y/jw4Vi+fDk2bNiA5cuXY/jw4ejVq5ckztQJawjFxsZqXUMoLi6OawgR6YB1EePCTpzac/z4ccn2tm3bMHr0aGzbtq3SOKo6pgmsPeptFiqVSnJMfbuitg2iyujdidOmTRuUlpbi8uXL4j5vb28AEFMZCLZt24aSkhJOzSMioipjQ1PVCDOSXnrpJa0pq8aPHy+Ja8hYF2mYkpOTtaYHS05Oruui1StZWVlQKpXIzc3Fa6+9hqysLNy/fx9ZWVl47bXXkJubC6VSiaysrLouar2yZs0arTOXYmJi6rpo9YpcLkdYWBhSU1MRHBws+XwFBwcjNTUV8+fP5yw5okdgXcS4lG90rW4cVUzoMKgoU4Cwnx0L1ceZOLWnpKTEoHFE6vTuxPHz8wMA/PLLL+K+F154ASqVCgsWLMCKFSvw888/4/3338fkyZMhk8kwbNiw6peYiIhMChuaqkZ95pK2lFXGNHOJdZGGJzk5GSEhIVob2UNCQtiRo0boaH3//fe1zqpbsWKFJM7U9ejRAwDQuHFjrFy5EoWFhUhJSUFhYSFWrlyJxo0bS+KobH2q6OhorZ+v6OhorlNFpAPWRYyLrrOkOJuq+pydnQFU3CEm7BfiSH/C2oCGiqOKeXl5iY8PHjwoSe978OBBrXFEupKp9BxCkJWVhe7du2Pw4MH46aefAJR9yfr5+SE1NVXSm65SqdCiRQtkZGSgVatWhil5A3H37l04ODjgzp074s1jXajKF8Tp06drsCQNA89X1fB8VQ3Pl36Sk5Px3nvv4cqVK+K+Vq1aYcGCBWxoUqNUKjF48GB4enpi1apVyMzMxI0bN+Di4oJu3bph5syZyM7ORnJycp12fBni+si6iG7qS11E/bMZExMDM7N/xxKVlpYiODi4Xnw264u0tDRMmDABSUlJePzxxxEaGooLFy6gdevWiIyMRHZ2NgICApCQkABfX9+6Lm6dO3jwICZNmgQAsLCwkCwqrr4dHx+P3r1710UR662HDx8iMjIS58+fR5s2bRAaGgobG5u6LhZRjWNdpPbUl7rIowwcOBBXr159ZFyLFi3w66+/1kKJjFdMTAxWrlz5yLhZs2YhODi4FkpkvPr06aNTx6OzszMOHDhQCyUyXq+88oqkU7958+awsrJCYWEhrl27Ju5/6qmn8PHHH9dFEameqcr10VzfF+natavGVDuZTIbvv/8e7777LpKSknDhwgU4ODhg6NChePfdd02uokJERIZz5MgRXL9+XbLv2rVrOHLkCDtx1Agzl0JCQuDj44OCggLxmLW1NQoLCxEdHW0UjeSsizQsGRkZuHTpEqKioqBSqZCWliZ2MPr4+CAoKAgBAQHIyMhgpwT+TSX56quv4ubNm+L+M2fOoHv37mjatClTSapRb5xQ78Apv83R01KRkZGIj48X16Xav38/kpKSMGnSJISGhtZx6YjqP9ZFjMutW7cMGkcV0/VexBjuWeqargMzOICj+sqny1TvuKksjkgXenfiVMTGxgbLli3DsmXLDP3URERkoiIjI7F27VrJyH2gbETj2rVrAYCNTeU8KjWBMWNdpH4S0n5duHABc+bMwaVLl8Rjrq6umD17tiTO1Mnlcjg5OeHYsWOQyWQYNWoUJk+ejPXr12Pbtm24efMmOnXqxMaNf+iaboVpWf4lXFudnZ0xe/ZsDBo0CCkpKfjoo494bSWqJtZFGiauiVN7UlNTdY4LCgqq2cIYOaZTqz1t27Y1aByROr3XxCEiIv1UtHijvnHGrqioCOvXrwcA9O/fX7KORv/+/QEA69evR1FRUV0Ws95QKpUIDw/HoEGDkJGRgYSEBHzwwQdISEhARkYGBg0ahIiICHHUNVFtEdZhmjdvntY1cd544w1JnKl7+PAhjh07BrlcjlatWmHr1q0YPXo0tm7dilatWkEul+PYsWNc8PcfwjVAJpMhMzNT8t2XmZkpXlN5rShTVFSE+Ph4ODs7Y8+ePRg3bhxcXFwwbtw47NmzB87OzoiPj+f5IiKTYmdnZ9A4ovqgsLDQoHFUsVGjRhk0jkgdO3GIiGoZR3hVzZdffonS0lJ4eXlhzZo1ksWq16xZA09PT5SWluLLL7+s66LWC0LKqhkzZsDCwgK+vr4YOXIkfH19YWFhgaCgIFy8eBEZGRl1XVQyMV27doVcLoezszNWr14Nb29v2NnZwdvbG6tXr4azszPkcjm6du1a10WtFyIjIwEAU6dOxc8//yzplPj5558xefJkSZypi4+PB1B27Zw7dy6ys7NRUFCA7OxszJ07V7ymCnGmLjExEUqlErNnz4a5uTQ5g7m5OWbNmgWlUonExMQ6KmH9pVQqkZaWhh07diAtLY2DIoiMSPnvw+rGUcUUCoX4+NChQwgMDETfvn0RGBiIQ4cOaY0j/aivKWuIOKrYm2++adA4InU6XXlycnIM9oLu7u4Gey4iIjJ+hw8fBlBWgR8yZIhGCqbhw4fjzJkzOHz4MKZMmVJXxaw3hFRUHh4eWo8L+xtayirWRRq+rKwsKJVK5OXl4bXXXkNQUBA8PDyQnZ2NuLg45OXlQaVSISsri2viADh//jwAYOzYsVqPjx07Fp999pkYZ+ru3r0LABg0aBD27NmDlJQU8ZhcLodCoUBqaqoYZ+qE79RBgwZpPS40mhnyu9cYJCcnIzw8XKMuEhYWxvX5TADrIsbv9u3bBo2jiqmng+3Tp4+4ttT+/fuxadMmrXGkn/LrdlU3jip27Ngxg8YRqdOpE8dQufpkMhlKSkoM8lxERGQabG1tAQBxcXEYNGgQoqKixIbf2NhYfPrpp5I4UyekosrOzkanTp2QkZEhWTw+OztbEtdQsC7S8Akdh5GRkfjoo48QEBAgHnNzc0NkZCTeeOONBtfBWFPatGmD/fv3IzIyEidPnsTly5fFY61atUKHDh3EOAI6deqE48ePIyUlBQMHDsTAgQNhbW2NgoIC/Prrr2Lu/U6dOtVtQesJoQE5JSUF48aN0zgunC82NP8rOTkZISEhUCgUGnWRkJAQREdHsyPHyLEuYvyY9rr2qNdrynceqG+rx5F+zMzMdOqgKb/+LFWd+nnu168f/vOf/6CwsBBWVlb466+/sG/fPo04Il3p1IljqJQ+TA1ERERVNWrUKGzbtg3m5uaIjo4WF1z09vZGdHQ0unbtipKSEuaV/YePjw9cXV2xdOlS5ObmSqbFt2zZEs7OznBzc4OPj08dlrLqWBdp+ISOQ3d3d+zcuROJiYnIycmBu7s7AgMDceLECUmcqQsNDUViYiJ27doFKysrybHc3Fzs2rVLjKOytZY2btwIoOzGWKVSiT/qN8rz5s2rqyLWK4GBgWKH6vPPPy9JDVRSUoKVK1dCLpcjMDCwDktZfwjrzSkUCsTExIgNXd7e3oiJiUFwcDAiIiLg5+fHUeNGjHUR49e4cWPcvHlT3LaxsREbwNXXoGvcuHFdFM+ouLm5GTSOKmZvb6/TTGR7e/taKI1xKy4uFh9/9NFHOHnypDigskOHDuI9uHocka506sT5+++/a7ocREREWgkNSyUlJRg4cCCeffZZtG7dGhcuXMDWrVvFkYzMTV1GLpdj6NChWLt2rcZoqmvXruHKlSuYOnVqg2tkYl2k4VPvYMzLy5OMrPz888/h5OTUIDsYa4qlpSUsLCxQXFyMwsJC9OnTB76+vkhLS8OBAwcAABYWFmLHtqkTOgEBYO/evdi7d2+FcUzXV/b5mjRpEtauXYsBAwZg1qxZYsq5lStXIjc3F1OnTuXn6x/CenNRUVEa11YzMzMEBQUhICAAGRkZ/HwZMdZFjF+jRo0knTjqHTfl46h6HnvsMfFx+Zki6tvqcaSfwsJCg8ZRxdQ76Su7p2FnPulDpxYvpmkgIqK6kpubKz7Oy8vD+vXrHxlnypRKJb799lsAZY10BQUF4jFh+7vvvsPcuXMbVEcO6yINX2UdjFevXsXly5cbZAdjTUlPT0dxcTFsbW3x4MEDHDhwQOy8ASDuT09PR+/eveuwpPWDrmn4mK7vX8Isrvj4eCxcuFDcL5fLMXXqVM7yUmOs681R1bAuYvwePHhg0Diq2Oeffy4+Fq47Y8aMwebNmxEfHy924nz++ed46qmn6qqYRkHXWR+cHVJ9zs7OuH//vk5xRFXFhIdERFSvqadWKp9SSH2bKZjKpKenIy8vD927d0dGRgYSEhLwwQcfICEhARkZGejevTtyc3ORnp5e10UlE1O+g1GdsP3dd99BqVTWetnqo7S0NABlDUXavvuEBiQhztQJN8Pdu3dHZmYmAgMD0bdvXwQGBiIzMxPdu3eXxFGZ0NBQHDlyBAsWLMD48eOxYMECHDlyhB045aivN6dNQ11vjoiorvz1118AADs7OxQXF+PTTz/F0KFD8emnn6K4uBh2dnaSONKfrmvdcE2c6tO1/sR6FumDuWeIiKhe69q1K+RyORwdHZGSkoIjR46IeWW9vb0xaNAg3L59G127dq3rotYLQoPuzJkzYWFhoZHW5bXXXsPkyZORlpbG0ftUq4QOxm7dumH9+vXYtGmTuCZOQEAAJk+ejMzMTM4s+Yd6WpHevXvjlVdeERdS//jjj8WF57kwqpRKpYKNjQ0WLVok7hPWyCHthNRqVDEhHWRsbKxkTRyg7PMVFxfHdJBERqBPnz7igJNHxVH1CKmwS0tLIZPJJNdpmUwmDuphyuzqk8lkBo2jigmdj4aKI1Kn07dhTk4OgLK82y1btpTsqyp3d3e9fo+IyFiUz/lbWRwBWVlZUCqVyM3NxaxZsxAUFASFQoHs7GzMmjVLTKOWlZXFPPRqjK0SzrpIwyd0MPbt2xfDhw/HpUuXxGMJCQkYPXo0MjMz2cH4DwcHBwBlN3lr1qwRGzG8vb2xZs0a9OzZE/n5+WKcqROuBZmZmQgODkZQUJDY6RUXF4fMzExJHFFVyOVyhIWFISQkROvnKzU1FdHR0UwHaeRYFzF+f/75p0HjqGJdu3bF5cuXta47pFKpxJTQHKhHDcm1a9cMGkekTqdOnLZt2wIA2rdvLy4aKuyrCplMJi5ATURkqnQdNc3R1WWE/PLvv/8+PvzwQwQEBIjH3NzcsGLFCrzxxhvMQ/8PX19ffPzxx1i5ciV69uypMVp41apVYlxDwrqI8Vi1ahWsra0l+3Jzc7FmzZo6KlH9dPfuXQBAfn4+Xn31VcyYMUNsNI6NjUV+fr4kztQJaazmzJmDTZs2Sa4Vrq6umDNnDqKiopjuivTm7++P6OhohIeHa9RFoqP/n717j4uyTP8H/pkZYAA5H1QOomFqpZuo4ykVMYx029rSNln7pqZrtpau1WpW66ZZPw+15qJ5yDxkaZJJm1YiZaCoiY2QphmSiCCEIgcBgQFm5vcHO8/OyGlmeJjj5/16+WpmnmueuecOmGue6z4kIC4uzoqtI0tgLuL4CgoKRI2j1j3yyCP46quvjIqjjnF1dTVqvxtXV1cLtMax/fjjjwAAb29v1NTUGCwTLZPJ4OnpiaqqKvz444949NFHrdNIsltGFXF00xr1pzeasyQBlzEgIiJT6S649ejRA9988w2USqWwnJpCocDZs2cN4pzdsGHDEBAQgMzMTPz1r39tduE3MzMTgYGBGDZsmLWbahLmIvZv6NCh2LhxI4CmIuLYsWPh7u6Ouro6HDlyBEeOHBHiyHA23cmTJ4Xl0wAYFMEcbdaduXTLXaWkpLTYJykpKVzuijosLi4OsbGxzXIRzsBxDsxFHJ+x/2/4/7Djfv31V6PjYmJiOrcxDi4wMFDYS7G9OOqY69evAwCqqqoQHR0Nd3d3VFZWwsfHB3V1dTh69KhBHJEpjCriXL58GYBhVVb3GBERUWe6fR16/RkkXIe+OZlMhmXLlmH+/PktXviVSCRYunSp3V1wYi7iWDIyMoSiDYBmM3Pof7PqIiMjUVdXh6KiIuFYYGAg5HI5cnNz7W5WXWeRyWSYMGECtm7disDAQCxfvhwxMTFIS0vD2rVrce7cOcyaNcvu/vaR7ZHJZPy9c1LMRRxfeHg4KioqjIqjjjl9+rTRcX/5y186uTWOLTAw0KjZYyzidJynp6dwW1ewaS+OyFhGFXF69uxp1GNERERi4zr0ptNf8kV/35GgoCC8/PLLdrnkC3MR+/fDDz8It3XrnLd0/4cffsCoUaMs1i5bpZtVl5ubi5iYGMyaNUuYuZSeno60tDS7nFXXWdRqNZKTkzFgwACUlZVhyZIlwrGwsDAMGDAAhw4dwksvvcTPCyIyC3MRx2fsHkfm7oVE/1NcXAwA8PHxgZeXl8FglbCwMFRVVaGyslKII/OFhIQIy3y1F0cdc9ddd+HAgQNGxRGZyqgiDhERkTVxHXrTcckXsjX6+3y5ubmhvr5euC+Xy6FSqZrFOTPdrLp58+a1upyaPc6q6yxKpRKFhYWYMmUK9uzZY3BMq9UiLi4Oa9asgVKp5CyK26jVan5WEBEBqK6uFjWOWieXywE0DeTp0qWLwTGNRoPa2lqDODKf/qA+MeKodQEBAaLGEeljEYeIiOwCixJE9s3X1xcA0KVLF3z//ff48ccfhd/lqKgojBw5Erdu3RLiqOnv3rp167BixYpmy6ktXryYBWw9JSUlAIA1a9YgJiYGf/nLX4SZS0ePHsWaNWsM4qhJSkpKs1mbYWFh/PkiIqdk7EASDjjpuPDwcGRlZaG+vh4lJSWYPXs2Hn/8cXz22WfYvn07GhsbhTjqGP0cUow4ap1uv15j4iZNmtTJrSFHI0oRp6ioCGfPnkV5eTkaGhrajJ02bZoYL0lERE6I69Abz9kuzDEXsX2VlZUAgFu3bmH+/PkYM2YM3N3dkZOTg23btuHWrVsGcdQkLi4OY8aMwerVq3HlyhX07NkTixYtgoeHh7WbZlN067hHRkYiJyfHYOZSWFgYIiMjkZuby/Xe9aSkpGD+/PmIiYnBmjVrhKVKN23ahPnz53OmK5GJmIvYP4lEAq1Wa1Qcdcwf//hHYdmpxsZGbNmyBVu2bGkxjjrGzc1N1Dhq3bVr10SNI9LXoSJOVlYW/va3v+H48eNGxUskkg4nK1VVVfjXv/6Fffv24fLly5DJZOjbty/i4+Mxb968Dv/RKS4uxnvvvYevv/4aly9fRm1tLbp27Yq7774bMTExeOmllww2MiQiIrI1znRhjrmI/dC/4HHkyBGDi+z6x3hhxNDq1auxY8cOqNVqAMDx48eRmJiIGTNmYNGiRVZune3Jzc1t9jtYUlJisHwfNS2htnLlSsTExGDdunXIzMxEamoqgoODsW7dOsybNw+rVq1CbGwsZ7wStYO5iOPw9vY2ajCJt7e3BVrj2FxcjLscaWwcte6OO+4wapbNHXfcYYHWODbdoDQAcHV1RVxcHO69916cPXsWKSkpQoFfP47IWGb/NczKykJ0dDRqamqg1Wohl8sRFBTUqX9gr1y5gpiYGOTl5QEAPD09oVKpoFQqoVQqsWvXLhw+fBj+/v5mnT8xMRHPPPOM8KHt5uYGDw8P5OfnIz8/H4cOHcKzzz4LPz8/kd4RERGRuPQvzG3YsAFSqRQAEBUVhQ0bNmDu3LkOc2GOuYh9GT58ODZu3Aig6UuN/kV1/fucbfc/q1evxtatWxEQEIBHH30UPXr0QEFBAf7zn/9g69atAMBCzn/pL5OmW4KlpftcTq2J/h5CDz74YLNZm1OmTEFqair3ECJqB3MRx+Ll5WVUEcfLy8sCrXFspaWlosZR6y5cuGBwPygoCPfccw9+/vln3Lhxo9U4Mt3NmzeF20FBQfjqq6/w1VdfAQBCQ0OFYpp+HJGxpOY+8R//+Adu3bqFyMhIHD58GLdu3UJBQQEuX77c5j9zqdVqPPzww8jLy0NISAi++eYb3Lp1CzU1NdizZw+8vb2RlZWFJ5980qzz7927F1OnTkVlZSWmTJmCrKwsqFQqVFRUoKqqCunp6XjhhRcccrQJERE5Dt2FuWeffVYo4OhIpVLMmTMHV69ehVKptFILxcNcxL4MGTJE+JkcOXIklixZgrfeegtLlizByJEjATT9jA4ZMsSazbQZ9fX12LFjB7y8vODh4YFt27Zh2bJl2LZtGzw8PODl5YUdO3Zwhsl/6V+EuH2vAv37+nHOTFfMevfdd9G3b18kJiYiMzMTiYmJ6Nu3L959912DOCJqGXMRx3L7IICOxlHrdHsgSqVSdO/e3eBYSEiIkDNyr8SOq6qqMrh/48YNHD16tFlOdHscma68vFy4XVxcbHDst99+azGOyFhmDw85fvw4JBIJPv30UwwaNEjMNrVox44d+OmnnwAA+/btM/iyP2XKFGg0GkydOhUHDx7E4cOHERsba/S5f/vtN8yZMwcajQYvvPCCsPGpjpeXF0aPHo3Ro0eL94aIiIg6ge6CW58+fVo8rnvcES7MMRexL1lZWcLF9IyMDBw5ckQ45u7uDqDpYntWVhZH/gPYvXs31Go1bt26hSFDhiA2NhYqlQpyuRxXrlzB0aNHodVqsXv3bsyYMcPazbU6/S/Drq6uBvtR6N/nl+Ymur2BBg8ejLVr12LPnj3Yv38/IiIisHbtWsycOROnT5/mHkJE7WAu4lj8/Pxw/fp1o+KoYw4fPgwACAgIaHZMq9UiICAAN27cwOHDhzFmzBhLN8+hGLtUMZc07jgfHx9hv5vb99fSv+/j42PRdpFjMHsmjlarRZcuXSySqADAhx9+CAAYN26ckKjoi4+PF9Zv3Llzp0nnTkhIQHl5OcLDw7Fy5cqON5aIiMhKgoODAQA5OTktHtc9rouzZ8xF7IuucDht2rRms0fq6+vx1FNPGcQ5O90yOaGhoTh27Bh27tyJxMRE7Ny5E8eOHUNISIhBnLPTH92o2z+opfv6cQQUFBRg8ODBWLFiBXbt2oUVK1Zg8ODBKCgosHbTiOwCcxHHUlNTI2octS4/Px9A06yQ22csFBcXC7NEdHFkvm7duokaR6175JFHRI0j0md2EefOO+9EQ0NDsy9JnaGmpkbYJHDixIktxkgkEkyYMAFA04bOptAlN//3f//X4Q0AiYio86jVamRkZODLL79ERkaGRT6D7I1CoUBYWBg2bdqEhoYGg/5qaGjA5s2bER4eDoVCYe2mdhhzEfuiKxzu3LmzxeWuPvroI4M4Z6cbDVlYWAhfX1/MnDkTr7/+OmbOnAlfX19hTW2OmmyiP7qxreXUbh8V6ax0ewxcv34dUqkUzzzzDA4dOoRnnnkGUqlUGInOvQiI2sZcxLEYMwvHlDhqXY8ePUSNo9b17t1b1DhqXf/+/UWNI9JndhFnxowZqK+vxxdffCFme1p04cIF4cvXgAEDWo3THSsuLkZZWZlR5758+bLwJXjs2LHIysrClClT0L17d8jlcvTo0QPx8fH4/vvvO/guiIioI1JSUvDAAw9g2rRpeOmllzBt2jQ88MADJn9BdXQymQyLFy9GamoqFAqFQX8pFAqkpqbi5Zdfhkwms3ZTO4y5iH0ZNGiQUHBoab8moOnik6VGM9s6/S937u7uBnvi6Jafuz2OyFi6Dc89PT0RFBSE999/Hw8++CDef/99BAcHw9PT0yCOiFrGXMSxcE8cyxkxYoRw+/aiof59/TgyT8+ePUWNo9YZO/iFg2TIHGYXcebOnYvx48djzpw5nf5BrksmACAsLKzVOP1j+s9py8WLF4Xbp06dwvDhw/Hpp5/i5s2b8PDwwNWrV5GYmIhRo0ZhxYoV7Z5PpVKhsrLS4B8REXVMSkoK5s+f3+Lmy/Pnz2chpwWtjc53pFH7zEVaZqu5yA8//CDMgvD398fy5cuRnp6O5cuXCxeKtVotfvjhB2s202acP39euF1SUoKHHnoIixcvxkMPPWSw5Jx+HJGxsrOzATSNcP7mm2+wc+dO/Otf/8LOnTuRkpKC8PBwgzgiahlzkZbZai7SntsHmXQ0jlr37rvvCrdbWma3pTgyT0ZGhqhx1DrdLL3WBkzq/nZwNh+Zw8XcJ8pkMhw4cAB///vfMXr0aIwZMwZDhw6Ft7d3m8/75z//afJrVVVVCbd1o8Jaon9M/zlt0d/cdNmyZQgNDcUHH3yABx54AFKpFL/88guef/55HD58GK+++iruvvtuPProo62eb8WKFVi2bJlRr01ERO1Tq9VYuXIlYmJisGHDBiHxiYqKwoYNGzB37lysWrUKsbGxDjG7pKP0+2vdunXIzMxESUkJgoODMXjwYMybN89h+ou5SMtsNRf5/PPPAQAhISGQSCRYsmSJcCwsLAwhISH47bff8Pnnn2PUqFHWaqbN0I22dnV1RUNDA7766it89dVXwnHd47cvHeas9JdJc3NzM7gAJJfLoVKpmsU5s6tXrwJoKtLMmzcPc+bMQUxMDHJycjBv3jzhgq4ujohaxlykZbaai7THzc3NqFk2zrrcnJiMnSVmbBy1zthirrFx1LpffvkFQNN38rFjx6Jnz55QqVSQy+W4cuUKjhw5YhBHZAqzizgA8O233+LLL7+EVqtFeno60tPT232OOclKZ9L/4qvRaLB3716D6Zp33XUXvvjiC/Tt2xdFRUVYunRpm8nKK6+8ghdffFG4X1lZyTU8iYg6QKlUorCwEGvWrIFWq0VGRoZQlFAoFJgzZw7i4+OhVCoxfPhwazfX6vT7y9XVtVmfOFp/MRdpzlZzkcLCQgDAU089haeeegq7d+9Gfn4+IiIiMHXqVHz44Yd45513hDhnpytYNzQ0IDAwEMOGDYO7uzvq6upw6tQpYRkGjgZuwotBpomIiADQtAl6eno64uPjhWPh4eGIj4/Hnj17hDgiah1zkeZsNRch2+Hh4YGqqirIZDKkp6fj+eefR1FREUJDQ7F+/XqMGTMGarUaHh4e1m6q3aurqxM1jlpXU1Mj3NZoNDh//jwqKirg5+dnUGDXjyMyltlFnPT0dDz66KNQq9WQSCTo3bs3unXrBheXDtWFWqQ/iqWtH3T9Y+2NfGkpbvTo0S2ut9mlSxfMnTsX//jHP3DmzBlcu3YN3bp1a/F8crkccrncqNcmIqL26ZYNys/Px4svvmhwgTcsLAwLFiwwiHN2un7o06cP1Go1lEqlQdGrT58+BnH2jLmIfeUiYWFhyMzMxM6dO7Fr1y6D3+WdO3cKm0K3tUSMM/nd734HoKlI4+bmhoMHDwrHQkNDIZVKodFohDhnp//F+PZlWXSzcG6Pc2ZTp07F6tWr8c033yA1NRU//vij8FkRFRWFcePGQSaTYerUqdZuKpFNYy5iX7lIe4yd3cpZsB03ZMgQHDx4EGq1Gvfdd5/weHFxscH9IUOGWKN5DsXY5bQdadlta+natSsACMXJ28lkMqjVaiGOyBRmZxZvvPEGGhsboVAokJiYiDvuuEPMdhkIDQ0VbhcWFuLee+9tMU7/YoD+c9qif6Hg7rvvbjVO/9iVK1daTVaIiEhcwcHBAIBFixYhJiYGa9asQZ8+fZCTk4NNmzZh0aJFBnHOTtcPH3/8MRITE5sVvaZMmWIQZ8+Yi9hXLvLYY4/hwIEDKC4uRmBgIJYvX46YmBikpaVh7dq1wsySxx57zMottQ26/QM0Gg3q6+vx9NNPo0ePHigoKMD+/fuFC0j2ss9AZ1MoFDh8+LBRcdS0FNCMGTOwdetWjBs3Do888gh69OiBc+fO4YUXXkBpaSlmzZrFJYOI2sFcxL5ykfYYs5SaKXHUup49e4oaR63z8PAwGNDSVhx1TFRUFD755BNhcFr37t0RHByMkpISFBcXC49HRUVZsZVkr8wu4mRmZkIikWDXrl2dmqgATYmCbrThuXPnMHHixBbjzp07B6DplyQgIMCoc99zzz1CJbStqrP++tmsThMRWc6gQYMgk8ng5+eH9evXCyMbo6KisH79ekRHR6OiogKDBg2yckttg0KhQEBAANasWdOs6LVx40asWbMGgYGBDnEhk7mIfRk6dCgkEgm0Wi1KS0sN9sTRkUgkGDp0qBVaZ3t0Pz/h4eEoKirC9u3bhWNSqRTh4eG4evWq0T9nju6JJ57AqlWrjIqjJosWLUJeXh4OHz5s8PMFALGxscIgCSJqHXMRx6K7wCpWHLXO2O8ijvCdxdqMnRnYGTMInY2fn5/B/eLiYhQXF7cbR2QMsxfRVqvV8Pb2FpZl6Uyenp7CBrfJycktxmi1Whw6dAgAEBcXZ/S53d3dER0dDQD4+eefW427cOECgKZEpVevXkafn4iIOiYrKwtqtRqlpaWYO3cu3nzzTSxZsgRvvvkm5s6di9LSUqjVamRlZVm7qTZHq9Xiyy+/xMqVK4W12h0JcxH7kpWV1e7PoFar5e/yf+lGNxcWFiI6OhpPPfUUnnjiCTz11FOIjo4WRlo72ihoc3322WeixjmDlJQUfPfdd4iOjoZCocCdd94JhUKB6OhofPfdd0hJSbF2E4lsHnMRx2JsruxoObU1XLx4UdQ4al1VVZWocdS6PXv2iBpHpM/sIs7dd9+N2tpao6bkiWH69OkAgNTUVGRkZDQ7vnfvXuTm5gIApk2bZtK5n376aQDAsWPH8P333zc7XlNTg40bNwIAhg8f7hBL0BAR2Qvd3i1jx47FkSNH8NFHH+HTTz/FRx99hCNHjmDs2LEGcc5OqVSirKwMCoWixf5SKBQoLS2FUqm0dlM7jLmIfdH9jr799tvN9r0JCwvD22+/bRDn7BQKBcLCwtC/f3/k5OQY/C7/+uuv6N+/P8LDwzlC9b+uXLkCAAgJCYFMJjM4JpPJEBISYhDn7NRqNVauXIkePXrg2LFjUCqV+PXXX6FUKnHs2DH06NEDq1at4mhzonYwFyEyzw8//CBqHLVOKjXu0q+xcdS6q1evGtwPCAhA//79m82KvD2OyBhm/4bOmTMHDQ0N+Pjjj8VsT6umT5+O3/3ud9BqtZg8ebKw5rVGo8HevXsxe/ZsAMDEiRMRGxtr8NylS5dCIpFAIpEgLy+v2bmffPJJDBs2DAAwZcoUHDp0SFhn/JdffsEjjzyCoqIiSKVSvPXWW534LomI6Ha6L4hHjhxBYGAgZs6ciddffx0zZ85EYGAgjhw5YhDn7HQXwJVKZYv9pSveOMKFcuYi9kX3OxoREYHk5GS88sorePLJJ/HKK68gOTkZPXr0MIhzdjKZDIsXL8b58+dx5513GszE6d27N86fP4+XX365WcHC2fXv37/ZZrFdu3ZF//79rdQi26RUKlFYWIj8/Hz4+/tj+fLlOHbsGJYvXw5/f3/k5+fj6tWrDlHwJ+pMzEWIzPPrr7+KGketi4yMFDWOWqc/+EUqlaKsrAznz59HWVmZQZGMg2TIHGYveDhjxgwcOXIEf/vb39ClSxfEx8eL2a5mXFxcsH//fowbNw55eXkYP348PD09odFoUFdXB6Bp34Rdu3aZfG6pVIovvvgCsbGx+PnnnzFhwgR4eHjAzc0NN2/eBAC4urrivffew/333y/q+yIiorbpNm11dXXF4cOHcfbsWZSUlCAmJgbz58/H0KFD0dDQ0Ormrs7G398fAODr64vU1FT8+OOPQn8tWLAAY8aMwc2bN4U4e8ZcxL7oZpYsX74cZWVlKCoqEo59+OGHCAgI4MyS28TFxWHmzJnYsWOHwZc9mUyGmTNnmrRUjqMbOHAgdu/ejW+//RYxMTFYu3atwX5g3377rRBHwG+//QagaYTo0aNHhXXwn3jiCUyaNAljxoxBWVmZEEdELWMuQmQeLvFlOY2NjaLGUesqKiqE27oieEv39eOo49RqNZRKJUpKShAcHAyFQuGQA93MLuLMnDkTEokEbm5uwihKhUIBb2/vVp8jkUiwdetWc18SvXr1wtmzZ/HOO+8gKSkJly9fhqurK/r3748///nPmDdvHtzc3Mw6d/fu3ZGZmYn169cjMTERFy9eRG1tLXr16oX7778fL7zwAgYMGGB224mIyDyJiYkAgIaGBowYMUL4ggo0rd/d0NAgxM2YMcMaTbQp2dnZAIAuXbpgwoQJBhfKQ0ND0aVLF9y8eRPZ2dnCuur2irmIfZHJZJgwYQK2bt2KwMBAPP3004iIiEB+fj7279+Pc+fOYdasWQ6ZcJsrJSUF27Ztg1wuNyjiuLq6Ytu2bYiKimIh57/09wb66aefkJycjPPnz6OgoAA//fRTi3HO7MyZMwCAxx9/vNlGxi4uLpg0aRI++OADnDlzBo8++qgVWkhkH5iLEImjd+/euP/++/Hdd9/h0qVL1m6OQzF2BQZHWKnB2urr6w3uBwQEoFu3brh27RrKyspajSPzpaSkYOXKlcJ+oUDTUt2LFy92uO9JEq2ZO7JJpVJIJBKjNnTTxUkkEqebMlZZWQlfX1/cvHkTPj4+VmtHv379jI7VXQB0Zuwv07C/TMP+Ms0bb7whjCZ0d3dvVsTR3X/yySfxz3/+0ypttCX6/RUYGIgFCxYgJiYGaWlpWLt2LUpLSwFYv7/E+HxkLmIcW8lF1Go1HnjgAUilUhQVFTWbWRIaGgqtVouUlBQWctDUX6NHj0ZZWRliYmLw17/+1WBmSVpaGgIDA5Gens7+AvD9999jxowZ8PHxQWVlZbPjusd37NiBkSNHWqGFtmXp0qX45JNPMGrUKHzwwQcGS3xoNBrMmjULJ06cwJ///GcsXbrUeg0l6kTMRSzHVnKR9vB7muU8/PDDuHjxYrtxffv2xYEDByzQIsc1dOjQFnOj2/n4+HAPog6aOHGisC9ZWyIjI3Hw4EELtMixpaSkYP78+YiJicGzzz4rfFfatGkT0tLSkJCQYPOFHFM+H82eiTNt2jRIJBJzn05ERGSU8PBwAE1fqvbt24fMzExhmuzgwYMxefJkZGdnC3HOTtcPoaGhkEgkWLJkicGx0NBQFBUVOUR/MRexL7o9OAA0m1ni4uKCgoICIW748OFWaaMtOXXqFMrKyjB48GBs3LhRuMgeFRWFjRs34sknn0RmZiZOnTrFogQgFKgrKyvh7++PO++8Uzj266+/ory83CDO2fXq1QsAcOLECcydOxdz5swRvvhu3rxZ2NRcF0dELWMu4lhMKchRx9TW1ooaR2QL+vXrZ1QRx5SCMbVMrVZj5cqViImJwYYNGwy+K23YsAFz587FqlWrEBsb6zAD3swu4uzYsUPEZhAREbVMl+D89ttvkEgkBhd3GxsbhfX6mQg10fXDrVu3kJ6eLuyJExwcjKioKIwZM8Ygzp4xF7Ev165dE27fd999zUZLpaamNotzZhkZGQCAv/3tb9BqtcjIyDBY53nevHl4+umnkZGRwSIOmmYeAkDXrl1RUlJiMJJUIpGga9euuH79uhDn7KZOnYrVq1fDw8MDFy9eNNjHIzw8HF26dEFtbS2mTp1qxVYS2T7mIkTmuX2/kI7GUeuMnfnnbDMEO4P+qiFixFHrdAME16xZYzCjHGiaJTtnzhzEx8c71ABBafshRERE1qMbPV1ZWYno6GgkJibi2rVrSExMRHR0tDA1XBfn7HT9cPPmTWHT26FDhyIvLw/jxo0TNqZlf5Gl3bhxA0BTAXHdunVQqVRITU2FSqXCunXrhMKiLo6aKJVKxMbGYtq0aXjppZcwbdo0xMbGQqlUWrtpNun69evNRlFrtVpcv37dSi2yTW5ubpgxYwaqq6tRW1uLCRMmYNKkSZgwYQJqampQXV2NGTNmmL2vBhGRPXJ1dRU1jlrXtWtXUeOodSziWI6xM745M7zjdHs49enTp8Xjuscdaa8ns2fiEBERWUJwcDCApnWTv/rqK4N9XKRSKf7whz/gyy+/FOKcnX5/ff311wb9JZPJ8PDDD+PAgQPsL7I4XQFRpVJh/PjxKC4uFo51794d7u7uBnHObvjw4di4cSPWrVvX7Nhvv/2G9957T4gjwy9oLi4uePDBB3Hvvffi7NmzOHToEBobG5vFObtFixYhLy8Phw8fRnJyssGx2NhYLFq0yEotIyKyji5duhi14XiXLl0s0BrHNmnSJGRlZRkVRx1j7PJ/XCaw43SrhIgVR63TXc/IyclBVFRUs+M5OTkGcY6ARRwiIrJpCoUCYWFhuHz5Mrp3746ioiLhWPfu3ZGXl4fw8HAoFAorttJ26PdX165dDRLErl274vLly+wvsgrdF8O8vLxmx/QLOvwC2WTIkCGixjk63UwbFxcXaLVafPXVV/jqq68ANBWwXVxc0NjYyBk5elJSUvDdd99h7Nix6NmzJ1QqFeRyOa5cuYLvvvsOKSkpNr8ZLBGRmDhjwXKMHbTDwT0dJ5fLjdpbSC6XW6A1jq26ulrUOGqd7rrHpk2bDPbEAZqWYdy8ebPDXfcwqohz//33AwB69uyJ7du3GzxmColEgsOHD5v8PCIicl4ymQwTJkzA1q1bm611WlxcjKKiIsyaNcthNqvrqLb669q1a/jtt9/ssr+Yi9i/oUOHYuPGjUbFEQz2dGkvbtSoUZ3cGtv3yy+/AGjaKy0mJgbR0dFwd3dHXV0djh49irS0NIM4Z9faZrBA0xdfR9wMlqijmIs4vqqqKlHjqHXHjx83Om727Nmd3BrH1tDQIGoctc7Ly8uogpmXl5cFWuPYZDIZFi9ejPnz52Pu3LmYM2eOsN/q5s2bkZaWhoSEBIfKY40q4ui+9Nx1113NHjMFR1YSEZGp1Go1Pv/8cwBNI6z1lzjQ3f/Pf/6Dl156yaE+oM3VVn+5urpCpVLZZX8xF7F/+hvT+vr6YvLkyejRowcKCgqwb98+YaQlN7BtkpSUBKBpVGRgYKDBLMSwsDCUlJSgvr4eSUlJLOIAqKmpMbh/zz33CF/kjh492mqcs9LfDFar1SIjIwMlJSUIDg6GQqFwyM1giTqKuYjjk0gkzfZVay2OOqawsFDUOGrdrVu3RI2j1nl6eooaR22Li4tDQkICVq5cifj4eOHx8PBwJCQkONyMcqOKOK+//joAICgoqNljREREnenUqVMoKytDZGQkVCqVQSIfHBwMuVyO3NxcnDp1CiNHjrRiS22Dfn/V1dUZXPgNDAyEu7u7XfYXcxH798UXXwi3VSoVtm3bJtzX7YejixszZoxF22aLsrOzAQB/+tOf8Oqrr0KpVBpcZF++fDk++eQTIc7Z6TY+DgoKwsWLFw2+yIWFhSEoKAg3btzgBsn/pdsbKD8/Hy+++KLBZ2tYWBgWLFhgEEdEzEWcgZubG+rq6oyKIyK6nbGDhTioSDxxcXGIjY1t9l3JngasGsukIk57jxEREYktIyMDAJCbm4tx48ZhzZo1wujqTZs2ITU1VYizp6JEZ7m9v959912H6C/mIvZPd5H40UcfxQ8//GBw0TgoKAiDBw/G/v37OeLyv3TLLHz//feQSCQGsyE0Go3wu87lGJpERUXhk08+wY0bNzB69GiEhITg5s2b8PX1hYeHB44dOybE0f82eV20aBFiYmKafbYuWrTIII6ImIs4A2Nm4ZgSR63z9fU1uO3j44O6ujq4u7ujsrJSmKGtH0dk64xZSs2UODKOTCZzipnjRhVxiIiIrEX3JSkqKspg3X7d/T//+c/48ccf+WXqv3T9MHDgQKxbtw6ZmZlITU1FcHAw1q1bhyeffBJnzpxhf5HFhYWFITMzE+fPn8ehQ4eQmZkpjJYaPHgwHnvsMSGOgPHjxyMrKwuXLl3CnDlzMHbsWGGPlyNHjiA3N1eIIyAkJES4rSvYtBfnzAYNGgSZTAY/Pz+sX78eLi5NXwujoqKwfv16REdHo6KiAoMGDbJyS4mILEetVosaR627du2acPvmzZtC0aatOCJb5+rqKmockT4WcYiIyKbpRl+1NlpF9zhHaTXR9UNJSQni4uIMllMLDQ1tFkdkKY899hgOHDiAnJwczJ07VyhK5OTk4IMPPkBOTo4QR8C0adPwzjvvQKvV4ujRowb7uuhIJBJMmzbNCq2zPQqFQihytcbd3R0KhcKCrbJdWVlZUKvVKC0txfPPP99sM9jS0lIhzhlGNhIRAcbvy8f9+zqusbFR1DgiW1BdXS1qHJE+s4s49fX1KC4uhpubG7p3725wrLq6GkuXLsU333wDmUyGhx56CK+++io8PDw63GAiInIuunXHs7OzMXfu3GYXmnT7QeivT+7MdP1QVFSEwMBAPP3004iIiEB+fj72798vXJhzhP5iLmJfRowYAS8vL1RXV7dalPDy8sKIESOs0Drb4+bmhvvvvx+HDx9uNeb+++/nuvz/VV9fLxRwxowZg169ekGlUkEulyMvLw/p6emoq6tDfX09/w7gf3vdvPPOO3j33XebbQb79ttvY+HChdwTh6gdzEUcC4s4lhMcHIyysjKj4ojsRUNDg6hxRPrMLuJ88MEHmDdvHqZPn26wMS0APPTQQzh27JiwVMuZM2eQnp6O1NRUSCSSjrWYiIicSrdu3YTb33//vbCnC2C4Gbp+nDPT/6JTWlqK7du3txtnr5iL2BeZTIYpU6Zg69atrcZMmTLFITehNIdarRb2vWnNqVOnoFar2WcAVq9eDaBpebkLFy4gPT1dOBYeHo7x48fj22+/xerVq7mHBf73GdCjRw988803zTaDPXv2rEEcEbWMuQiReYzNXZjjEBE1kZr7xEOHDgEApk6davD4/v37kZ6eDolEgieffBJ/+ctf4OrqivT0dHz00Ucday0RETkdhUKBsLAwRERENFsmp66uDhEREQgPD+cSOU6IuYh9UavVSE5OxoABA5qNVg4JCcGAAQNw6NAhrjP/XydPnmx3qYWqqiqcPHnSQi2ybVeuXAEALFq0CF999RWmTp2KUaNGYerUqfjyyy/x97//3SDO2ek+Wzdt2tRsRLlGo8HmzZv52UpkBOYiROb59ddfRY0jsgUsTlJnMnsmzoULFwAAQ4YMMXh89+7dkEgkePnll/HWW28BAAYPHoy5c+di9+7dXLebiIhMIpPJMGHChFZH7+fn52PWrFlMhP5Lf+kbV1dXDBkyBF27dsX169dx+vRpYeq2IyyRw1zEviiVShQWFmLNmjW45557sHv3buTn5yMiIgJTp07F+fPnER8fD6VSyT04AHz++efCbalUanChXf/+559/jlGjRlm8fbamZ8+eOH78OP7+97/j/PnzQjHw+PHjSExMRP/+/YU4avpsXbx4MebPnw+FQmEwSMLd3R0qlQoJCQn8bCVqB3MRIvMYO2iHg3vInri4uBj1M+viwi3qyXRmz8QpKSmBp6cn/P39DR7XLXPzl7/8RXjsqaeeAtA0fZiIiMgUarUau3btajNm165dTPD/6/r16wCaCjhqtRonT57E/v37cfLkSajVari6uhrE2TPmIvZFVzjMz8/HhAkTsGLFCuzatQsrVqzAhAkTUFBQYBDn7HT9AQDR0dFITExEZmYmEhMTER0d3WKcM1u0aBEA4OzZsy3OLNEtD6aLoya6ZZ6MfZyIDDEXITKPsRexebG744xdvpHLPHacscvQcrlaMofZfw1v3brVbEO+vLw8lJSUICIiAnfccYfweJcuXeDn52fUpmVERET6Tpw4gbq6OshkMgQHB6O4uFg41r17d5SUlKCurg4nTpzAmDFjrNhS2/DLL78AaNosMSYmBtHR0XB3d0ddXR2OHj2KtLQ0gzh7xlzEvui+rCxatAgxMTFYs2YN+vTpg5ycHGzatEm4uM4vNU1UKhUAwM3NDatWrcKrr76KgoIC9OjRA6tWrcKYMWNQX18vxDk7/Rkjtxcg9O9zZkkTtVqNlStXYty4cVi7di327NkjzIyLj4/HggULsGrVKsTGxrLPiNrAXITIPFx2ynI8PDxQU1NjVBx1zD333IOrV68aFUdkKrOLOAEBASgpKUFFRQX8/PwAAN999x0A4L777msW39jYCC8vL3NfjoiInJRuk1i1Wo2KigqDYxUVFcIMnG3btrGIAzRL0O+55x7hQvnRo0dbjbNHzEXsy6BBgyCTyeDn54f169cLIyujoqKwfv16REdHo6KiAoMGDbJyS22Du7s7AKC+vt5gebmLFy8a3NfFObuPP/7Y6LiZM2d2cmtsn255wylTpuD3v/89CgsLhWM7d+7ElClTkJqayuUNidrBXITIPMYOQuFglY7j0nWWk5+fL2ockT6zl1MbPHgwAAh7FGg0GmzduhUSiQTjxo0ziC0pKUF1dXWzTWyJiIjac/PmTVHjHF3Xrl0BAEFBQbh48SLi4+MxZMgQxMfHIycnB0FBQQZx9oy5iH3JysqCWq1GaWkpnnvuObz55ptYsmQJ3nzzTTz33HMoLS2FWq1GVlaWtZtqE8LDw0WNc3RKpVK4LZFI0LVrVwQFBaFr164Gy4Poxzkz3bKFa9asQd++fQ2W6+vbty/WrFljEEdELWMuQmQeLvFlOfX19aLGUev0Vw0RI45In9lFnBkzZkCr1WLx4sWYOHEihg0bhu+//x5eXl7405/+ZBCbnp4OALj77rs71loiInI6+sWGESNGGFxoGjFiRItxziwqKgoAcOPGDfTp0wdLlizBW2+9hSVLluDOO+/EjRs3DOLsGXMR+6K7GDx27FikpaXho48+wqeffoqPPvoIaWlpGDt2rEGcs5swYYKocY7u1q1bwm2tVovr16/jxo0buH79usFyavpxziwwMBBA0wXodevWQaVSITU1FSqVCuvWrRMuTOviiKhlzEWIzCOVGnc50tg4ap2x+9xxP7yOa2xsFDWOSJ/Zy6k98cQTOHToELZv345Dhw4BaFrOYdOmTcI0Yp3ExMQWR6IQERG1JzIyUtgcVqPRQKvVCv/0N6+OjIy0VhNtSkhIiHA7PT0dR44cEe7rfwnSj7NXzEXsi26vmyNHjkAqlRr8/kqlUuFnlXviNPnss8+Mjhs/fnwnt8b2cdameSoqKvDggw8aLKcWFhYGuVxuxVYR2Q/mIkREpOPq6ipqHJE+s4s4QNOU4ZkzZ+LEiRPw8/PD+PHjDTbuA5qm4/n6+mLatGn4/e9/36HGEhGR89EflX/06FGDfV1ai3NmCoUCYWFhkEqlKCoqMjgmkUjQo0cPaLVaKBQKK7VQXMxF7Me9994r3B4zZgzGjh0Ld3d31NXV4ciRI0IRRz/OmelfVBcjjkhfaWkpACA3NxeBgYFYvnw5YmJikJaWhrVr1wo/V7o4ImodcxEi03HGAjkif39/lJeXGxVHZKoOFXEAYNSoURg1alSrx93c3PD+++939GWIiMhJhYaGAgB8fHxQWVnZ7Li3tzeqqqqEOGcnk8mwePFizJ8/H2PHjkWPHj2gUqkgl8tRUFCAI0eOICEhATKZzNpNFQ1zEfvwySefCLe///57g1libm5uBnHceB7o3r07Ll68CKBpucjr168Lx7p164Zr164JccSRj6bSLZMWGRmJmpoaLFmyRDgWEhKCyMhIocBDRO1jLkJkGplMZjAru6046hiJRGLUUmncf6jjjC3OsIhD5uDikkREZNN0+960VMABgKqqKoM4AuLi4pCQkICcnByDfUd+/fVXJCQkIC4uztpNJCd0+vRp4XZDQ4PBMf37+nHURL+AA0Ao4ND/GLvXDffEMVRdXd1sJuv169dRXV1tpRYREZEzcHd3FzWOWsc9cSznl19+ETWOSF+HZ+IQERF1pmHDhglLLrXG3d0dw4YNs2CrbF9cXBxiY2OhVCpRUlKC4OBgKBQKjmYjq/Hw8BBuu7q6or6+vsX7+nHOrLi4WNQ4R6cr6IsV5+h0y6TdXiAEALVaLTzO5dSIiKgzeHp6GvWZ7OnpaYHWEIlD//uNGHFE+ljEISIim6ZWq4UkRy6XQ6VSCcd09+vr66FWq1mguI1arcaFCxeQn5+PiIgIDBo0iH1EVtOvXz8cOHAAQFNxNjIyUljqLzc3F8eOHRPiyHA5tfbiCAafDWLEOTr9ZTxcXV0NZsO5ubkJn7tc7oOIiDoDB1+QI5LJZM1WHGgtjshULOIQEZFN2717NzQaDUaPHo0TJ04YHGtoaMCoUaNw/Phx7N69GzNmzLBOI23Q6tWrsWPHDqjVaoPHZsyYgUWLFlmxZeSs9JdEPHbsmFC0aSvOmZWVlYka5+ikUuNWiTY2ztFduHABQFMBR/9zAmjaRFpX2Llw4UKb+3wQERGZw9iL2LzYTUTUhEUcIiKyafn5+QCaLvqOHTsWPXv2FEbvX7lyRdgcXRdHTcWarVu3IjAwEAsWLMC4ceOQmpqKtWvXYuvWrQDAQg5ZHJcHM01eXp7B/d69e+PFF1/EmjVrcOnSpVbjnFX37t1RXl5uVBwBWVlZAJoGQ7i6uuL3v/89BgwYgHPnzuHQoUPCKFJdHBERkZgaGxtFjSOyBVxOzTrUarVTLCPPIg4REdm08PBwAEBoaCh+/fVXoWgDAGFhYQgNDUVRUZEQ5+zq6+uxY8cOBAYG4ujRo3Bxafqof+KJJzBp0iRER0djx44dWLBgAdzc3KzcWnImXbt2FTXO0d2+FMOlS5fw3HPPtRvnrAIDA0WNc3S6jaJdXFyg0Wjw5Zdf4ssvvwTQNOrZxcUFjY2N3FCaiIg6hZeXF2pra42KI7IXbm5ube7lqx9H4khJScHKlStRWFgoPBYWFobFixcjLi7Oii0TH9cTICIim6bbH6OoqAh33nknEhMTkZmZicTERNx5550oKioyiHN2u3fvhlqtxoIFC4QCjo6Liwv+9re/Qa1WY/fu3VZqITmr25dJi4iIQK9evRAREdFmnLPSX/YrODjY4Jj+fS4P1uTq1auixjm6Ll26AGga4Xz7SEWZTCaMfNbFERERicmYAo4pcdQ6LjlrOcYWZ1jEEUdKSgrmz5+Pvn37Glwn6tu3L+bPn4+UlBRrN1FU/A0lIiKbVlpaKtw+d+4csrOzUV1djezsbJw7d67FOGemW1Zu3LhxUKvVyMjIwJdffomMjAyo1WrExMQYxBFZysWLFw3u5+fnIy8vr9nP4u1xzsrHx0e4XVJSgnvvvRcffPAB7r33XpSUlLQY58xcXV1FjXN0+hdqtFotZs+ejUOHDmH27NnQarUtxhEREYlFLpeLGket02g0osZR67jXk+Wo1WqsXLkSMTEx2LBhA6KiotClSxdERUVhw4YNiImJwapVq5rt/WjPuJwaERHZNN2m3aNGjcLJkyfxz3/+Uzgmk8kwatQoHD9+nJt7/5duVsP69euRnp7ebFrxmDFjDOKILEW/8CBGnKMbM2YMPvvsM+H+2bNn8Ze//KXFOALuvfde5OTkGBVHhhoaGrBlyxZs2bIFACCRSKzcIiIicnTBwcFGDcK7fTYykS3z9vY2ao9Gb29vC7TGsSmVShQWFmLNmjXNBh1JpVLMmTMH8fHxUCqVGD58uJVaKS5Rijj19fX45ptvoFQqcf36dUgkEgQHB2Po0KEYP348p4kREZHZAgICADR9EGdmZmLPnj3Iz89HREQE4uPj8fzzzxvEObupU6di1apV2LNnD2JiYrBmzRr06dMHOTk52LhxI/bs2QOpVIqpU6dau6miYi5i+wIDAw2Kim3FEfDggw8aFHHaiiMuy2Iq3cUDDw8P+Pn54bfffhOOhYSEoLy8HLW1tbzIQGQC5iJExrv77rvxyy+/GBVHZC/69etn1IoXXAq+43QD//r06dPicd3jjjRAsMNFnPfffx9LlizBjRs3WjweFBSEN998E7Nnz+7oSxERkRPq1q0bACA9PR0LFizAnDlz8PjjjyMnJwcLFixAenq6QZyzk8lk8PT0RHV1Nc6ePYvk5GScP38eBQUFOHv2LICmPQ4caQo3cxH7oL9Ekxhxjs7YvYG4h1ATY2bhmBLn6HSfAbW1tfD09MTTTz+NHj16oKCgAPv37xeKXY70WUHUmZiLEJnmzJkzosYR2YLs7GxR46h1ull6OTk5iIqKanZcl/M70my+DhVxXn75ZbzzzjvCl+2wsDCEh4cDaNo0tLCwECUlJXj22Wdx6dIlrFy5suMtJiIip6JQKBAWFgZ/f3/88ssviI+PF46FhoZiwIABqKiogEKhsGIrbYdSqUR1dTUUCgWUSiW2b99ucFz3uKNMK2YuYj+uX78uapyj8/T0FDXO0XG9d9MMHz4cGzduRLdu3XDjxg2DzwqZTIZu3brh2rVrDvE5QdTZmIs4DolEYtRgEi472XHXrl0TNY7IFty6dUvUOGqd7jrRpk2bsGHDBoMl1TQaDTZv3ozw8HCHuk5k9k6VR44cwdtvvw2tVovJkyfj559/RkFBAb7//nt8//33KCgowIULF/D4449Dq9Xi7bffFkZLExERGUsmk2Hx4sU4d+5cs31vSktLce7cObz88sscLfxfuunCSqUSMTExmDZtGqZMmYJp06YhJiYGSqXSIM6eMRexLyqVStQ4R7dhwwbh9ogRI9C3b19069YNffv2xYgRI1qMc2aurq6ixjm6YcOGISAgANeuXcPo0aPx1FNP4YknnsBTTz2F0aNH49q1awgMDMSwYcOs3VQim8ZcxLFw1jARdYSx1yR47aLjdNeJ0tLSMHfuXGRlZaG6uhpZWVmYO3cu0tLSHO46kdlFnPfeew8AMGvWLOzduxd33XVXs5h+/frh008/xaxZs6DVarF+/XrzW0pERE7v9ou7vNjbnG4/kcGDB2P9+vUYP348hg0bhvHjx2P9+vUYPHiwQZw9Yy5iX3x8fESNc3Q///yzcPvkyZO4ePEirl27hosXL+LkyZMtxjkzd3d3UeMcnUwmw7JlyyCRSJCRkYGPPvoIn376KT766CNkZGRAIpFg6dKlDvXFl6gzMBchMo+xe65xbzayJ8Yu8c6l4MURFxeHhIQEXLx4EfHx8RgyZAji4+ORk5ODhIQExMXFWbuJojJ7ObUTJ05AKpXirbfeajf2zTffxLZt23D8+HFzX46IiJyUWq3G66+/3mbM0qVLERsby4tNeioqKvDggw8abCQfFhYGuVxuxVaJi7mIffH19RU1jkifsRuGc2Px/9F98V25cqXBZ0VQUBBefvllh/viS9QZmIsQmcfX1xfFxcVGxRHZi4qKClHjqH1xcXGIjY2FUqlESUkJgoODoVAoHPLakNlFnBs3bsDX1xddu3ZtN7Zbt27w8/NrdZM/IiKi1pw6dUpYRi0wMBALFizAuHHjkJqairVr16K0tBSlpaU4deoURo4caeXWWl9paSkAIDc3F4GBgVi+fDliYmKQlpaGtWvXChfqdHH2jLmIfeHa56bp3r27wYX1tuIIButgixHnLJzpiy9RZ2AuQmSe+vp6UeOIbAGXj7YOmUzmFPs4mv0txtvbG1VVVairq2s3tra2FlVVVfDy8jL35YiIyEmdOHECQNMSS6mpqejZsycyMjLQs2dPpKamCksv6eKcnW6ZtMjISMjlcixZsgRjxozBkiVL4O7ujsjISIM4e8ZcxL40NjaKGufojN2LhHuWNPH09BQ1jojIGMxFiMxjzCwcU+KIbAHzUepMZs/Euffee5GWloZt27Zh7ty5bcZu27YNjY2NGDhwoLkvR0RETurcuXMAmvZ4mThxYrPlwQYPHoy0tDQhjpr4+flh586dyMzMFEZXDx48GNOmTbN200TDXMS+uLgYl3YaG+foLl++LGqcozO2MO0IBWwxpaSkNFtOLSwsDIsXL+ZyakRGYC5CZB7OWCBHdPPmTVHjiPSZPRPnySefhFarxUsvvYStW7e2GvfBBx/gpZdegkQiwVNPPWXuyxERkZPy8PAAAKSlpTVbAqy0tBRpaWkGcc5O10eZmZmYN28e3NzcEBMTAzc3N8ybNw+ZmZkGcfaMuYh9MXbkMUcoN8nPzxc1ztHV1NSIGucMUlJSMH/+fPTq1QtBQUHw8PBAUFAQevXqhfnz5yMlJcXaTSSyecxFiMyj0WhEjSOyBdXV1aLGEekze6jjjBkz8NFHH+HIkSN45pln8MYbb2DcuHEICwuDRCJBQUEBUlNTUVhYCK1Wi5iYGEyfPl3MthMRkRMYMmQIDh8+DADNlqrQvz9kyBCLtstWBQcHAwBefPFFJCYmIj4+XjgWHh6OF198EWvWrBHi7BlzEXJkvLhhmqKiIlHjHJ1arcbKlSshk8kMNlmvra3FjRs34OLiglWrViE2Npb74xC1gbkIERHpSCQSUeOI9JldxJFKpfjiiy8wc+ZMJCUloaCgAB999JFBjFarBQBMnjwZW7du5Q8pERGZrG/fvsJtiUQifLbcfl8/zpkpFAqEhYUhJSUFarXa4FhjYyNSUlIQHh4OhUJhpRaKh7mIfeGeOKbx9PRERUUFgKYl5oYMGYKuXbvi+vXrOH36tNBPXFO7CZdlMY1SqTRYQs3HxwdhYWEoLCxEZWUlGhsbcfXqVSiVSqfYKJbIXMxFiIhIx9XVFfX19UbFEZmqQ4uO+/j44LPPPsMPP/yAPXv2QKlU4vr16wCArl27QqFQID4+HkOHDhWlsURE5HyUSqVwu60ijlKpxJgxYyzePlsjk8kwYcIEbN26FVKp4aqp169fR3FxMWbNmuUwI6uZi9gPLqdmGv29gRobG5GRkdFunDPr2rUrfv75Z6PiCLh06ZLB/crKSlRWVrYYxyIOUduYixAREQCjCjimxBHpE+Vb39ChQ5mQEBFRp9AtfePn5yeMStfRaDTC41wip4larcbnn38OoGmEj/6oc939//znP3jppZccppADMBexB0FBQaLGOToux2Cabt26iRrn6N577z3htouLCyZMmIDf/e53+Omnn5CcnCzM9HrvvfcwdepUazWTyK4wFyEicm5cDpk6k9lFnPz8fMhkMoSFhRkVX1RUhMbGRkRERJj7kkRE5IRCQkIAABUVFZBKpQgODoZarYZMJkNJSYlQ2NHFObtTp06hrKwMkZGRUKlUBsvlBAUFQS6XIzc3F6dOncLIkSOt2NKOYy5iXy5fvixqnKMLCQnBlStXjIqjppHwYsY5uqqqKuF2165d8eWXX+LLL78EAISGhgoDI/TjiKg55iK2p7a2Frm5uZ3+OufPnzf5OZGRkfDw8OiE1hCRLZBKpc2WNG8tjshUZhdxevXqhZCQEIOLQ20ZNWoUCgoKuM45ERGZZMiQIcJtjUaDa9eutRvnzHRLLl2+fBkxMTFYs2YN+vTpg5ycHGzatAlpaWlCnL0XcZiL2JcbN26IGufohg0bhpMnTxoVR2j1s8HcOEenPxOzuLjY4Jj+fUeasUnUGZiL2J7c3FxMmjSp01/HnNdISkpC//79O6E1RGQLuAcodaYOLaemvy9BZ8QTERGlpqYaHTd27NhObo3t003NHjhwIDZs2CCM8omKisKGDRvw5z//GT/++KPDTOFmLmI/jN27hXu8NElJSTE67rnnnuvk1tg+LtdnmnvuuUfYc87FxcVgbXb9+/fcc49V2kdkT5iL2JbIyEgkJSWZ9dznnnsOv/32W7txISEhBstSGisyMtKcZhEREYmzJ44x6urq+KWciIhMpr+0kpubm8GFJv37XIKpiZ+fH4CmpSRaUlNTYxDnTJiLWFe3bt2MWpqJe5Y04fJzpvn1119FjXN0+svK1dfXIyAgAP3798f58+dRVlbWYhwRdRxzkc7n4eFh9myXpKQko2aqJyUlISAgwKzXICLH5eLigoaGBqPiiExlkUX4ioqKUFJSgsDAQEu8HBEROZDS0lIATctV3D6COjg4GD179jSIc3a6PsrOzsZf//pXZGVlobq6GllZWfjrX/+KixcvGsQ5C+Yi1mfsyGOOUG5izHrapsQ5urNnz4oa5+h69+5tcL+srAzp6ekGBZyW4ojIfMxFbF9AQEC7OXJQUBALOCKQSCSixhHZAk9PT1HjiPQZXfo7evSosI6+TnV1Nd54441Wn6PValFRUYGvv/4aWq0Ww4cPN7uhOlVVVfjXv/6Fffv24fLly5DJZOjbty/i4+Mxb948uLm5dfg1dJ599lls3rwZANCzZ0/k5eWJdm4iIjJOYGAgcnJycPXqVWRkZOCzzz5Dfn4+IiIi8PjjjwufLfxC3ER/FsPJkycNPrvd3d1bjLMXzEWYiziTwMBAg/1bvLy8hNmH1dXVBnEEgz4RI87R6Y8AlUgkkMvl0Gg0kEqlUKlUQjGVI0WJDDEXcfxc5Pjx4xg1alSLe/QFBQXh+PHjVmiV4+HgHiIi0xidlaempmLZsmUGVfBbt25h2bJl7T5Xq9XC3d0dr7zyinmt/K8rV64gJiZGSBo8PT2hUqmgVCqhVCqxa9cuHD58GP7+/h16HQBIS0vD+++/3+HzEBFRx0RGRuLkyZNobGzEkCFDDI6tWLHCII4AhUKBsLAw+Pv7o6ysDEVFRcKxwMBA+Pv7o6KiAgqFwoqtNA9zEfumvxSiGHGOzsPDw+B+a8WH2+OcFWcumWbo0KHYuHEjXFxc0NjYiLq6OoPjuseHDh1qpRYS2SbmIs7h+PHjKCsrwxNPPIGCggL06NEDn376KWfgEFGbmI9SZzK6iNOrVy+DDaOPHDkCV1fXNtcLlUql8PHxwYABAzB9+nTceeedZjdUrVbj4YcfRl5eHkJCQrBz506MHz8eGo0Ge/fuxezZs5GVlYUnn3wSX3/9tdmvAzTtF/CXv/wFLi4uGDhwoLDpJxERWd6iRYuwe/duo+IIkMlkWLx4MebPn4/o6Gj0798flZWV8PHxQX19PY4ePYqEhATIZDJrN9VkzEXsmzH74ZgS5+iuX78uapyjk0qlBl+IQ0ND0a9fP2RnZxsUs6VSi6wmbfN0/dDY2Ijo6GjI5XLhs0KlUuHo0aMGcUTUhLmI8wgICMC///1vTJo0Cf/+979ZwCGidnGGGXUmo4s406dPx/Tp04X7UqkUAQEBSE1N7ZSG3W7Hjh346aefAAD79u0TkiSpVIopU6ZAo9Fg6tSpOHjwIA4fPozY2FizX+u1117DpUuX8Nprr+Hq1atOl6wQEdkSNzc3uLq6ChsEduvWDXK5HCqVSlhqyNXVVdRlI+xdXFwc7r//fhw+fLjZsdjYWMTFxVmhVR3HXMS+1dTUiBrn6DiSzzQymcygL4qKigyKN/pxZLiP3KlTpwxm4ugvvcn95ogMMRchIqLW3Lp1S9Q4In1mD63avn071q5dK2JT2vbhhx8CAMaNG9fiKJf4+HjccccdAICdO3ea/TonT55EQkIC+vbti3/84x9mn4eIiMRx6tQpNDQ0CJv/Xbt2Dfn5+UIBx9PTEw0NDTh16pQ1m2lTVq9ejcOHDzfbCFQikeDw4cNYvXq1lVomLuYi9sXYi+e8yN6EG6OaRi6Xixrn6IKDgwEAvXv3braUWl1dnbBEqS6OiFrGXISIiIgswewizvTp0/HEE0+I2ZZW1dTUCJvHTZw4scUYiUSCCRMmAABSUlLMeh2VSoWZM2dCq9Vi8+bNBqPQiIjIOjIyMgAAtbW1iI6OhkKhwJ133gmFQoHo6GjU1tYaxDm7+vp6bN++HQAwduxYJCYmIjMzE4mJicLyH9u3b3eIfUeYi5Aju70I29E4R2fs3g9i7BHhCBQKBdzd3XHp0iVIpVJERESgV69eiIiIgFQqRW5uLtzd3e1y/zQiS2IuQkRERJZg9HJqbamvr8c333wDpVKJ69evQyKRIDg4GEOHDsX48eM7vMTNhQsXoNFoAAADBgxoNU53rLi4GGVlZSavWfrGG2/gwoUL+Mtf/oKYmBiz20tEROLR/f3v1asXfv31V4PlcUJDQ9GzZ0/k5eUJcc7u448/hkajQb9+/bB+/XpkZmYiNTUVwcHBWL9+PSZPnozs7Gx8/PHHmDlzprWbKxrmIraPM3FMU1ZWJmqco7vjjjuQn59vVBw1/c3UzcDRaDQt9l1dXR3q6+vh4eFh6eYR2SXmIkREzk0qlRp1XYJ7DpI5OlzEef/997FkyRLcuHGjxeNBQUF48803MXv2bLNfQ/+CXVhYWKtx+seKiopMSlaysrKwevVqdOvWrUPLzKhUKqhUKuF+ZWWl2eciIiLAz88PAHD58mXExMTg3XffRZ8+fZCTk4ONGzciLS3NIM7ZnT59GgAQExODBx98EIWFhcKxsLAw/P73v0d2djZOnz7tMEUc5iKGbDUXMXb2lyPMEiPL8/LyEjXO0Rn7N2b16tV4/fXXO7k1RPaPuYghW81FiIiI7FWHijgvv/wy3nnnHWi1WgBNyUJ4eDgA4OrVqygsLERJSQmeffZZXLp0CStXrjTrdaqqqoTbba37rX9M/zntaWxsxMyZM9HY2IiEhIQOLbOwYsUKLFu2zOznExGRIf0vnlqtFufOncOvv/6Kuro64fPn9jhnpvss3Lx5M8aOHYv+/fujsrISPj4+UKlU2LJli0GcvWMu0pyt5iLGzpbjrDoyh25pTbHiHF1ubi4AwMXFBSdOnMDatWtx5coV9OzZEwsWLMB9992HxsZGIY6IWsdcpDlbzUWIiIjsldnzt44cOYK3334bWq0WkydPxs8//4yCggJ8//33+P7771FQUIALFy7g8ccfh1arxdtvv4309HQx2y6alStX4scff8Qf/vCHDq9n+8orr+DmzZvCv4KCApFaSUTknCoqKoTbR44cwfLly/Haa69h+fLlOHLkSItxzuzhhx8Wbh85cgQpKSk4efIkUlJSDPpLP85eMRdpma3mImq1WtQ4R8c9cUyjP+JbjDhHV1paCqBpj6CRI0di9+7dOH78OHbv3o2RI0cKF291cUTUMuYiLbPVXISIqDNx0Bp1JrOLOO+99x4AYNasWdi7dy/uuuuuZjH9+vXDp59+ilmzZkGr1WL9+vVmvZa3t7dwu6amptU4/WP6z2nLzz//jOXLl8PLywsbNmwwq3365HI5fHx8DP4REZH5jJ1hw5k4TVxdXQ3u33vvvXj++edx7733thlnj5iLtMxWcxH9mXNixDk6Lg9mGt1SkmLFObrAwEAAQElJSbPfOa1Wi5KSEoM4ImoZc5GW2WouQkREZK/MXk7txIkTkEqleOutt9qNffPNN7Ft2zYcP37crNcKDQ0VbhcWFja7EKV/rKXntOW5555DfX09li1bBn9/f1RXVxscb2xsBND0ZUZ3TC6XO8TFLyIiexAcHCzcDgwMxCOPPIKIiAjk5+dj//79wihh/Thn9ttvvxncP3v2LM6ePdtunD1iLmJfuQg3+jTN7T8HHY1zdHV1daLGObqePXvi5MmTAJpGg/bq1Qs+Pj6orKxEXl6eQRwRtY65iH3lIkRExqitrTVrSVk3Nzej9vd0c3PD+fPnTT5/ZGQkPDw8TH4eOQazizg3btyAr68vunbt2m5st27d4Ofn1+omf+25++67hS/+586dw8SJE1uMO3fuHACge/fuRo/Ivnz5MoCm6b6vvPJKq3H5+fnCKJZ3330XCxYsMOEdEBGRuXQXfT09PSGXy7F9+3bhWFhYGDw9PVFTU8Mpyf/17bffCrdvTyL173/77beYNGmSxdsnJuYiC0x4B9bn5uZm1AV0Nzc3C7TG9nHmEnUm3X4dOvqFm7biiExVX1+P3bt3Iz8/HxEREZg6dapD/Z1nLrLAhHdARGQfcnNzO/W7cn19vVnnT0pKQv/+/TuhRWQPzC7ieHt74+bNm6irq4O7u3ubsbW1taiqqjJ7Cq2npydGjRqF9PR0JCcnY+HChc1itFotDh06BACIi4sz63WIiMj2/PDDDwDQYqGmtLRUuCj8ww8/YNSoURZvn63RLaHh4uLSbBRQfX09XFxc0NjY2OYyHPaCuYh94Z4lRLbjzJkzosYRtWT16tXYsWOHwV5nq1evxowZM7Bo0SIrtkw8zEWIiBxPZGQkkpKSTH5efX094uPj243bs2ePWQMaIiMjTX4OOQ6zizj33nsv0tLSsG3bNsydO7fN2G3btqGxsREDBw409+Uwffp0pKenIzU1FRkZGRg+fLjB8b179wpT3aZNm2b0eVsbdaYzY8YMfPjhh+jZs2e7sURE1Lk44rx9np6eAP637MXtdI/r4uwZcxH7wpklRLbD2AsHjjRjgixr9erV2Lp1a7MlMrVaLbZu3QoADlHIYS5CROR4PDw8zJ7xMmvWLOFzrrXjgwYNMrdp5MTMXnT8ySefhFarxUsvvdTmD+cHH3yAl156CRKJBE899ZS5L4fp06fjd7/7HbRaLSZPnozDhw8DaFpmZ+/evZg9ezYAYOLEiYiNjTV47tKlSyGRSCCRSJhwEBHZmaFDhwJoKjr4+/sbHPPz8xOKEbo4ZxcdHS1qnC1jLkJEZB5jZ2M6wqxNsanVamRkZODLL79ERkaGwSwTalJfXy8sfxsdHY3ExERkZmYiMTFRyD+2b99u1L4Bto65CBER6Vu0aBFmzZrVbBCDVCrFrFmzHGIAA1mH2TNxZsyYgY8++ghHjhzBM888gzfeeAPjxo1DWFgYJBIJCgoKkJqaisLCQmi1WsTExGD69OnmN9TFBfv378e4ceOQl5eH8ePHw9PTExqNRlhKZ9CgQdi1a5fZr0FERLZHl/zU1NQ0u5hUXFzcLM7ZpaamGh1nzFRvW8ZchIjIPPqfn2LEOYuUlBSsXLnSYOP4sLAwLF68mEtX6fn444+h0WjQr18/bNy4UcjRoqKisHHjRjz66KPIzs7Gxx9/jJkzZ1q5tR3DXISIiG63aNEiLFiwAGvWrMH27dvx9NNP48UXX+QMZ+oQs4s4UqkUX3zxBWbOnImkpCQUFBTgo48+MojRLYcxefJkbN26FRKJpEON7dWrF86ePYt33nkHSUlJuHz5MlxdXdG/f3/8+c9/xrx58/gLQUTkYEpKSkSNc3QXLlwQNc6WMRchIjJPbW2tqHHOICUlBfPnz4dcLjd4vLS0FPPnz0dCQgILOf91+vRpAMALL7zQ4kjkv/3tb5g7dy5Onz5t90Uc5iJERNQSNzc3PPzww9i+fTsefvhh/l2mDjO7iAMAPj4++Oyzz/DDDz9gz549UCqVuH79OgCga9euUCgUiI+PF3WJG29vbyxbtgzLli0z+jlLly7F0qVLzXq9HTt2YMeOHWY9l4iIOk73uSJWnKPT30/kvvvuQ35+PiorK+Hj44OIiAicOHGiWZw9Yy5CRGQ6X19fUeMcnVqtxuuvvw6tVosRI0YgOjoa7u7uqKurw9GjR5GWloalS5ciNjYWMpnM2s21Ot1St4WFhaitrcXq1atx5coV9OzZE4sWLRJmMjnC/nwAcxEiIiLqfB0q4ugMHTqUexEQEVGnOHfunKhxji4kJES4cKAr2ABAZWUlrl69ahDnSJiLEBEZr6GhQdQ4R3fq1CmUlZUhMjISFy9eRFpamnAsNDQUkZGRyM3NxalTpzBy5EjrNdRGPProo9i/fz9WrFiB5cuXC48fP34cu3fvhouLixDnSJiLEBERUWfhBgJERGTTzpw5I2qco+vXr5+ocURE5HiM3VDeETaeF0NGRgYAIDc3F/369UNiYiIyMzORmJiIfv36ITc31yDO2Y0YMQIymQyNjY0AgNGjR+OTTz7B6NGjAQCNjY2QyWQYMWKENZtJREREZDdYxCEiIptWU1Mj3G5pXfWW4pxZRESEqHFEROR4NBqNqHGOTrcE6cCBA7Fu3TqoVCqkpqZCpVJh3bp1GDhwoEGcs6uvr4darRbuHzt2DH/+859x7Ngx4TG1Ws0iIREREZGROrycWlVVFQ4cOICzZ8+ivLy8zSn3EokEW7du7ehLEhGRE9Ev1MhkMoMLSvr3by/wOKsrV66IGmcPmIsQEZnm2rVrosY5Ot3eQCUlJYiLi0NRUZFwLDQ0tFmcs1u9ejUAoGfPni3mGxEREcjPz8fq1avx+uuvW7p5nYK5CBEREXWmDhVx3n//ffz973/HrVu3hMdaGn0kkUig1WqZrBARkcnkcrlw+/YvxPr39eOc2c8//yxqnK1jLkJEZDruiWOaoKAgAEBRURECAwOxfPlyxMTEIC0tDWvXrkVpaalBnLPTFW5aGzCSn5/f5nF7w1yEiIiIOpvZRZxPP/0Uzz77LACgS5cuGDlyJLp16yZsUkhERCSGbt264bfffjMqjoxfysURlnxhLkJEZB53d3ejCjTu7u4WaI3tCw4OFm7funULS5YsEe7r95F+nDMLDw8XbgcEBOCFF17AuHHjkJqainfffRdlZWXN4uwVcxEiIiKyBLMzi3feeQcAMHHiROzZswfe3t6iNYqIiEinb9+++PHHH42KI8DT01O47eLiImwqfPt9/Th7xVyEiMg8o0aNQnJyslFx9D+RkZGoq6szWE4tMDAQcrkcubm5VmyZbdFfYu7w4cNCzvHEE0/gD3/4AwYNGtQszl4xFyEiIiJLMLuIc/78eUgkEmzbto2JChERdRo/Pz9R4xzd5cuXhdv6BZzb7+vH2SvmIkRE5klNTRU1ztHplku7fPkyxo4di1mzZsHd3R11dXVIT0/HkSNHDOKcna4/AGDYsGGYPn06Hn/8cXz22Wf48MMPDeJ0s1jsFXMRIiIisgSzizhdunSBXC7n8jVERNSppFKpqHGOzpn2OWAuQkRknvr6elHjHJ1umbQXXngBiYmJSEtLE46Fh4fjhRdewJo1a7ic2m169+6NS5cu4YMPPsAHH3zQ7HFHwFyEiIiILMHsK14DBw5EVVUVqqqqxGwPERGRgS5duoga5+icaeYScxEiIvPI5XJR4xydQqFAWFgYsrKycOjQIezcuRP/+te/sHPnTiQnJyMrKwvh4eFQKBTWbqpNiI2NBQBcvXoV3bt3NzjWvXt3XL161SDOnjEXISIiIkswu4izYMECqNVqvPfee2K2h4iIyMDFixcN7t9xxx144IEHcMcdd7QZ56z69+8vapwtYy5CRGSemTNnihrn6GQyGRYvXoy0tDTMmzcPbm5uiImJgZubG+bNm4e0tDS8/PLLkMlk1m6qTZg2bRoAQKVSobS0FLNnz8ahQ4cwe/ZslJaWQqVSGcTZM+YiREREZAlmL6f20EMPYcmSJViyZAkA4G9/+xs8PDxEaxgREREAg5GNbm5uuHz5srCfi5ubm7DUC0dANnGm5eeYixARmcfYZb+4PNj/xMXFISEhAStXrkR8fLzweHh4OBISEhAXF2fF1tkWmUwGLy8vVFdXo6GhAVu2bMGWLVsMYry8vByi6MVchIiIiCzB7CIOACxbtgxeXl54+eWXsXz5ctxzzz1tbuYnkUhw+PDhjrwk6amtrUVubq7o5z1//rxRcZGRkUxQiajT6ZbccHd3R0BAAIqKioRjwcHBKC0tRV1dnRDn7MrKykSNs3XMRYiITHf7BfW24qZOndrJrbEfcXFxiI2NhVKpRElJCYKDg6FQKByiGCEmpVKJ6upqPPzww/jyyy+h1WqFYxKJBH/4wx9w4MABKJVKDB8+3IotFQdzESIiIupsHSrivPbaa1i9ejUkEglqa2tx+vTpNuMlEklHXo5uk5ubi0mTJol+XmPPmZSU5BDL8RCRfairq0NkZCT69++PqqoqeHt7o7a2FoWFhdZumk1xd3cXNc7WMRchIjJdcXGxqHHORCaTOUThoTOVlJQAAKKjo3H69GmDATghISGIjo7GgQMHhDh7x1yEiIiIOpvZRZxt27ZhxYoVAJr2J4iNjUW3bt3g4tKhuhCZIDIyEklJSUbFmlLsMfackZGRRp+TiMhcPXv2xK+//goAOHbsWJtxBIPRrmLE2TLmIkRE5tFoNKLGEenTLcO3cOHCZoNGysrKsHDhQoM4e8ZchIiIiCzB7Mxi/fr1kEgkmD59Oj744AOHWFvf3nh4eHTKTBjOriEiW7J69WoMGTLEqDhyLsxFiIiIbM+gQYMglUqh0WgwdOhQ3HHHHVCpVJDL5bh8+TLS09MhlUoxaNAgaze1w5iLEBERkSWYXcS5ePEiAGDNmjVMVOxAdnY2+vXrZ1QcEZEtcXNzEzXO0V27dk3UOFvGXISIiMj2nD59WpjFlZ6ejvT09GYxGo0Gp0+fxsiRIy3dPFExFyEiIiJLMLuI06VLF7i5ucHPz0/E5lBnaq+QwwIOEdmijz/+2Oi4mTNndnJrbF99fb2ocbaMuQgREZHtycjIMDrO3os4zEWIiIjMV1tbi9zcXGs3o0WRkZHw8PCwdjMEZhdxhg0bhoMHD6K0tBSBgYFitok6UWuFHBZwiMhWKZVK4faYMWNQW1uLiooK+Pn5wcPDQxjdqVQqWcSBc+2Jw1yEiMg8EonEqM8BbsBO5lCr1cLt6Oho9OrVS1hOLS8vD0ePHm0WZ6+YixAREZkvNzfXpH3cLSkpKcmmthwxu4izaNEiHDx4EG+99RbWrFkjZpuok2VnZ+P8+fOYNGmSzf1AEhHdrqamBgAQHh6OjRs3IjMzEyUlJQgODsbgwYMxYcIEXL16VYhzdlVVVaLG2TLmIkRE5nF3d0dtba1RcUSmunnzJoCmpW5zcnKEog0AhISEwM3NDfX19UKcPWMuQkREZL7IyEgkJSV1+DyXLl3CwoUL8fbbb6N3794itKypbbbE7CLOmDFjsHnzZjz//POoqanByy+/jDvuuEPMthEREQmjGktKSvDAAw/gt99+E46FhISgrKzMIM7Z1dXViRpny5iLEBGZx9vb26gijre3twVaY1/UajWUSqUwoEShUEAmk1m7WTblxo0bAJqWbq2vr8fy5csRExODtLQ0rF27VljSVRdnz5iLEBERmc/Dw0PUyQW9e/d22MkKZhdxdNUomUyGLVu2YMuWLQgICGgz0ZdIJLh06ZK5L0lERE4oLCwMAKBSqQwKOAAM7uvinF1jY6OocbaMuQgRkXm8vLxw/fp1o+Lof1JSUrBy5UoUFhYKj4WFhWHx4sWIi4uzYstsi6enp3D71q1bWLJkiXBff3aXfpy9Yi5CRERElmB2EScvL6/ZY6WlpSgtLW31OVxTmYiITDV8+HBs3rzZqDgCXF1djRpd7erqaoHWdC7mIkRE5lGpVKLGOYOUlBTMnz8fY8eOxaxZs+Du7o66ujocPXoU8+fPR0JCAgs5/3XXXXfhwIEDkMvl8PPzQ3FxsXDM398fZWVlUKlUuOuuu6zYSnEwFyEiIiJLMLuIs337djHbQURE1CJjN711hM1xxWDski6OsPQLcxEiIvNUVFSIGufo1Go1Vq5cif79+yMnJwdpaWnCsbCwMPTv3x+rVq1CbGysQ3y+dlTXrl0BNBUBGxoa8PTTT6NHjx4oKCjA/v37heKgLs6eMRchIiIiSzC7iDN9+nQx20FEZNdqa2uRm5sr+nnPnz9vVFxkZCQ8PDxEf31bcODAAaPjoqOjO7k1ts/DwwPl5eVGxdk75iJEROapqakRNc7RKZVKFBYWoqioCDExMVizZg369OmDnJwcbNq0CWlpadBqtVAqlZwZDKBbt27C7dLS0lYLHfpx9oq5CBEREVmC2UUcIiL6n9zcXEyaNEn08xp7zqSkJIfdvO3WrVuixjk6/bXmxYgjIiLHo9VqRY1zdNeuXQPQtIn9hg0bIJVKAQBRUVHYsGED5syZg6NHjwpxzk6hUCAsLAxSqRRFRUUGs6VlMhlCQ0Oh1WqhUCis2EoiIiIi+8EiDhGRCCIjI5GUlGRUrCnFHmPPqdtU1REFBgYKt6OjoxETEyOsQ5+WloajR482i3Nmcrlc1DgiIiJnV1ZWBgB44IEHhAKOjlQqxfjx43H06FEhztnJZDJMmDABW7duRWBgIB555BGD5dQKCgowa9YsLj1HREREZCQWcYiIRODh4WH0TJhBgwYhKyvLqDhHnV1jCl9fX+G2VCrFPffcIyxhoivg3B7nzIKCgkSNIyIicnYBAQEAgJSUFDz++OMGhRyNRoNvvvnGIM7ZqdVqJCcnY8CAAbhx44bBcmohISEYMGAADh06hJdeeomFHCIiI3XWEu76jF3OXZ8jL+1OZEuMKuLoEqu77rpL+IU2J9mSSCRobGw0+XlERI5kz5496Nevn1FxBIOlSY4cOWKwmbBEImkxzpkVFRWJGmcrmIsQEZG16PZuSU9Px1//+leMGTNGmBWcnp6O9PR0gzhnp9tDaPDgwbhw4YLBsevXr0OhUODAgQN2t4cQcxEisqbOWsJdnznnd+Sl3YlsiVFFHN1ayPprInN9ZCIi82VnZ7dZyMnOzrZga2xbaGgoAMDNzQ319fUGx7RarfC4Ls7Z1dXViRpnK5iLEBGJRyaTGexT0lYcGe7xkp6ebjCgRCaToUePHtzjRU9JSQkA4MCBAwgMDMQf//hHYTm1L774AgcOHDCIsxfMRYjImkxZwl3fjBkzUFlZ2W6cj48PduzYYVa7iKjzGVXESU1NBQB4eno2e4yIiMyTnZ2N+Ph4g6XVBg0axBk4txkxYgQ2bdrUrICjo3t8xIgRlmyWzfLx8UFhYaFRcfaEuQgRkXjc3d1x69Yto+KIe7yYyt/fH0DTZ7ZcLse2bduEY6GhofD09ERNTY0QZy+YixCRNZmyhLu+r7/+GqNHjzYqLjg42JymEZEFGFXEGTt2rFGPERGRafbs2YPz589j0qRJnIbcit/97neixjk6R90Th7kIEZF4jCngmBLn6PT3eCkrKzPY4yUsLIx7vNxGN6O8pqam2Yyv0tJSqFQqIW7UqFEWb5+5mIsQkT0KDg6Gt7c3qqqqWo3x9vZmAYfIxknbDyEiIrKed955R9Q4R5eXlydqHBERkbPT7fGyZMkSfPvtt9i5cyf+9a9/YefOnfjmm2/wj3/8A1evXoVSqbR2U21CQUGBcLtLly5Yvnw50tPTsXz5cnTp0qXFOCIi6jxKpRLe3t4tHvP29ubnF5EdMGomDhE5n9raWuTm5op+Xt0moO2JjIyEh4eH6K9P9ufMmTOixjm6iooKUeOIiIicnW7vlj59+kAmk2H48OEGx/v06WMQ5+x0+8QEBQXBzc0NS5YsEY6FhYUhKCgIN27c4H4yREQWpFQqUVJSgsceewwlJSUIDg7G559/zhk4RHZClCKORqNBTk4OysrK0NDQ0GZsdHS0GC9JRJ0sNzcXkyZNEv28xp6TS4uRzo0bN4Tbrq6uBp8z+vf145yZRqMRNc5eMBchIjKebk8SY+IIwgWunJwcREVFNTuek5NjEOfsdKO9Kysrm30mFxUVwdXV1SDOUTAXISJbFxwcjM2bN2PSpEnYvHkzP7eI7EiHiji//fYbXnnlFXz22Weora1tN14ikaCxsbEjL0lEFhIZGYmkpCSjYk0p9hh7zsjISKPPSY5Nf1Pl278Q69/n5stNbh/V6uXlBV9fX9y8eRPV1dWtxtkr5iJERKarr68XNc7RKRQKhIWFYdOmTdiwYQOk0v+tSq7RaLB582aEh4dDoVBYsZW2Q7cvUH19PSQSCUaNGoXhw4cjIyMDJ06cEH6uHGX/IOYiRERE1NnMLuIUFRVh+PDhKCoqMvpCkKNcMCJyBh4eHkbPhHnuuefw3nvvGRXH2TVkKi8vL4P7oaGhuOuuu/DLL7+gqKio1ThndfsGwtXV1QbFm9bi7BFzESIi8xh7AZkXmpvIZDIsXrwY8+fPx9y5czFnzhz06dMHOTk52Lx5M9LS0pCQkOAwRYmOGjJkiHBbq9Xi+PHjOH78eJtx9oq5CBEREVmCtP2Qli1duhSFhYXw8vJCQkICrly5goaGBmg0mjb/EZHjmT9/vqhxRPrCw8MN7hcVFeG7774zKOC0FOesJBKJqHG2jLkIEZF5nOmzQixxcXFISEhAdnY24uPjMWTIEMTHx+PixYtISEhAXFyctZtoM3TLywGAv78/7rrrLtxxxx2466674O/v32KcvWIuQkRERJZg9kycgwcPQiKRYOvWrXj88cfFbBMR2aHs7Gz069evzeNE5rh69aqocY5OLpejrq7OqDh7x1zE+mpra5Gbmyv6ec+fP29UXGRkJDw8PER/fSJH5+Li0u6eHbo4MsTCVvsKCgqE2+Xl5SgvL283zl4xFyEiIiJLMDsrLykpgYuLCx599FERm0PUeXihqfNlZ2cjISHBYGm15557jjNwiCwoMDAQN2/eNCrO3jEXsb7c3FyT9kUzlrHnTEpK4jKdRGYwpoBjSpwzSElJwfz58xETE4M1a9YIy6lt2rQJ8+fP52ycVkilUoOZJ7fft3fMRYiIiMgSzC7idO3aFZWVlRydRXaDF5osY/78+YiNjcWkSZOc5j1T59L/nJHL5VCpVC3e5+dREzc3N1HjbBlzEeuLjIxEUlKSUbHLly9HVlZWu3GDBg3CkiVLjH59IqLOplarsXLlSsTExGDDhg2QSptWJY+KisKGDRswd+5crFq1CrGxsdwXBzDI/4OCgnD9+vUW7zvC9wTmIkRERGQJZmca48ePx4cffoicnBz06dNHzDYRdQpTLjSZUuwx9py80ET0P6bMjCsrKxNuq9Vqg2P698vKyjgzDkBxcbGocbaMuYj1eXh4GH0Rbvv27YiKijIqzlF/P4nIPimVShQWFmLNmjXQarXIyMhASUkJgoODoVAoMGfOHMTHx0OpVGL48OHWbq7V6edj5eXlmD17Nh5//HF89tln2LFjh0GcvS9BxlyEiIiILMHsIs6rr76Kzz77DC+//LLRF7GJrMmUC02mcIQRZESWZu7MuMbGxlbvX716lTPj0LzQ1dE4W8ZcxL54eHggNjYWhw8fbjUmNjaWBRwisjklJSUAmvZwefHFF1FYWCgcCwsLw4IFCwzinJ1WqwXQNGO6sbERW7ZswZYtWwAAMplMmEmti7NnzEWIiIjIEswu4tx5553Yv38/Jk+ejAceeACvvvoqhg0bhi5duojZPiKryM7ORr9+/YyKIyLTmTIzbuPGjfjmm29aXUNdIpFAq9XigQcewF//+lejX5/sH3MR+6NbdqilQk5sbCw2bNhghVYREbUtODgYAPD3v/8d48aNa7YnzsKFCw3inJ1EIgEAgyVwddRqtTCQRBdnz5iLEBERkSWYXcTRX+v3u+++w3fffdfucyQSSbNR1ES2qr1CDgs4ROYzZWbc22+/jaioKGg0Gvj5+SEsLAznz59H//79UVhYiIqKCiGOI/iN3xvIEdZuZy5inzZs2IDa2losXrwYycnJmDBhAlauXMnfXyIL6tKlC27dumVUHDXt1SWTyeDn54f169cLn6FRUVFYv349oqOjUVFRgUGDBlm5pbZh4MCB2L17t1Fx9o65CBEREVmC1NwnarVas/4R2ZPWCjUs4BBZjm4JJgCoqKgQ1lk/f/68UMDhEkz/U1dXJ2qcLWMuYr88PDzwzDPPAACeeeYZ/v4SWVhDQ4OocY4uKysLarUaZWVleP7555GVlYXq6mpkZWXh+eefR1lZGdRqNbKysqzdVJtw+4yk/v374/e//32zATyOMHOJuQgRERFZgtnDcFNTU8VsB5HNys7Oxvnz5zFp0iSH3keDyJZxCSbj1dbWihpny5iLEBGZp76+XtQ4R6fb62b16tVYu3Yt4uPjhWPh4eFYvXo1Fi5cyD1x/ks34Eb//u2P6R4fNWqUpZrVKZiLkLOrra1Fbm5up75GS38/2hMZGclBQkTkUMwu4owdO1bMdhAREbWJSzDR7ZiLEBGRJehmjEREROCbb76BUqlESUkJgoODoVAocPbsWYM4Z6df2AgICEDv3r2h1WohkUhw6dIllJWVCXG6WZn2irmIuIqKilBeXm7tZgguXbpk8F9b4O/vj9DQUGs3Q5Cbm4tJkyZ16muYc34OwCUiR2P/C+ITEZHT0C3BlJyc7FRLMJkyws3Nzc2okdNubm5Gj2rjSDYiInJmCoUCYWFh2LRpEzZs2IDhw4cLxzQaDTZv3ozw8HAoFAorttJ26JYL8/PzQ0VFBX744QfhmFQqFR7nsmKkr6ioCBMenABVvcraTWlm4cKF1m6CQO4mR/KhZJsp5ERGRiIpKcnk55lSmDHn/JGRkSY/h4jIlrGIQ0REZOM6Y4RbfX290efkSDYiInJmMpkMixcvxvz58zF37lzMmTMHffr0QU5ODjZv3oy0tDQkJCQYbHLvzPr164esrCxUVFRg7NixGDt2LNzd3VFXV4cjR47gyJEjQhyRTnl5OVT1Kgy8ORBeai9rN8cmVcuqccb3DMrLy22miOPh4WHW94StW7di1qxZRsXxewgRkYhFnGvXrqGwsBC3bt1qc0RNdHS0WC9JRETkFEwZ4VZXV4epU6e2G7d79264u7sb/fr2gLkIERF1lri4OCQkJGDlypXN9sRJSEhAXFycFVtnWwYOHIg9e/YAAM6cOYPY2FiMHj0aaWlpOHPmjEGco2Eu0nFeai/4NvpauxnUyUaPHi1qHBGRo+twEWf9+vVISEgwao1QiUSCxsbGDr1eVVUV/vWvf2Hfvn24fPkyZDIZ+vbti/j4eMybNw9ubm4mn7OwsBBffPEFUlNTkZWVhcLCQgBA9+7dMWLECMyePRv3339/h9pNRERkLlNHuMXGxuLw4cNtHh8yZIgYTbMJzEWIiMhU5mzGHRYWhrVr1+LChQsoLy+Hv78/7r77bshkMpM33nbkpUorKyuF2xUVFfjnP//Zbpy9Yy5CZLrs7Ow2Z+RlZ2dbsDVERLatQ0Wc+Ph47N271+i1bDu65u2VK1cQExODvLw8AICnpydUKhWUSiWUSiV27dqFw4cPw9/f3+hzFhQUoGfPngZt8/T0hFarRV5eHvLy8rBnzx7MnDkT77//PqfIExGRzduwYQPmzp3bYiEnNjYWGzZssEKrOgdzESIiMoclNuNui70tVWpK0aumpgYA0K1bN1y/ft3g800ikSA4OBjXr19HTU2NQ+zPx1yEyHzZ2dk4duyYwdJqW7du5QwcIqLbmF3E2bNnDz799FP4+vpi69atmDhxIrp06YLu3bvj6tWrKC4uxjfffIO33noLFRUVSExMxLhx48xuqFqtxsMPP4y8vDyEhIRg586dGD9+PDQaDfbu3YvZs2cjKysLTz75JL7++muTzqvVahEbG4tp06Zh/PjxCA0NhUajwS+//IJXX30VX3zxBbZt24bQ0FAsX77c7PdARERkKRs2bEBtbS0WL16M5ORkTJgwAStXrrTZCyDmYC5CRPQ/5swsMYYjXGRvibmbcQPApUuXsHDhQrz99tvo3bu32a9vT8wpel27dq3ZY1qtFtevXwcA/Pvf/8a///1vo85lq0Uv5iJEHTd69GgkJSVh0qRJNvu7TkRkbWYXcXbs2AGJRILly5c3S+akUilCQ0Mxffp0TJ48GWPHjsUf//hHZGZm4s477zT79X766ScAwL59+zBy5EjhtaZMmQKNRoOpU6fi4MGDOHz4MGJjY406r7+/P06fPo3Bgwc3ew/33HMPPv/8c/z+979HcnIy1q5di9dee83oPQSIiIisycPDA8888wySk5PxzDPP2NXFNWMwFyF7w4vspmF/maazZpYYe057u/Bm7mbc+nr37m1X77kjTCl6qdVqPPfcc/D29kZVVZVQtAGArl27wtvbG9XV1Vi/fr3RMzpstejFXISIiIgswewiTlZWFgDg//7v/wwe12g0Bve9vLywfv16jBo1CqtWrcKWLVvMer0PP/wQADBu3DghUdEXHx+P1157DZcvX8bOnTuNTlZ8fX2be/3ulAAAPCxJREFUJSr6JBIJZs6cieTkZFRXV+PChQsYNGiQWe+BiIiIxMNchOwNL7Kbhv1lGlMuss+YMcOo/Uh8fHywY8cOo1+fHJepRa8lS5Zg/vz5QuFiy5YtmD17NnJycnDkyBEkJCTg3nvv7cQWWwZzESIiIrIEs4s4FRUV8PLygp+fn/CYq6srbt261Sx25MiR8PT0xLfffmvWa9XU1OD48eMAgIkTJ7YYI5FIMGHCBGzcuBEpKSlmvU5r9EeYqNVqUc9NRERE5mEuQvbGlIvsphQvjD2nvV1kN6W/pkyZgoaGhnbjXF1dkZiYaPTr2xNTLrJ//fXXRu038PXXXyM4OLijTSMnFBcXh4SEBKxcuRJpaWkAgC1btiA8PBwJCQmIi4uzbgNFwlyEiIiILMHsIk5gYCAqKioMHvPz88ONGzdQUVFhkMToFBcXm/VaFy5cEEayDBgwoNU43bHi4mKUlZUhICDArNe7nS7pdHNzQ9++fUU5JxEREXUMcxGyN6ZcZF+xYgVeeeUVo+LsabaIKUzpr9TUVKOKEqmpqSxKAAgODhaWumqNt7c3+4o6JC4uDrGxsfjss8/wz3/+E2+88QYef/xxo5dQswfMRYiIbEtRURHKy8ut3QwATXvo6f/XVvj7+yM0NNTazSATmV3ECQsLw7Vr11BSUiIk93fffTfS09ORmpqKxx57TIjNzMxETU0N/P39zXqtoqIig9dtq036zxEjWbl8+TI2bdoEoGmEn4+PT5vxKpUKKpVKuG/MMgVERERkOuYiLWMu4hgmTZpkVBGnM5Ybs0csSphOqVRCoVC02Gfe3t5QKpVWaBU5GplMJhQVBgwY4FAFHIC5SGuYixCRNRQVFWHihAmo0/v7YwsWLlxo7SYYcJfLcTA5mYUcO2N0EWfnzp3w8PDAn/70JwBNU4EzMzORmZmJBx98EADw0EMP4ejRo/j73/+O8PBwREVF4cyZM3j66achkUgwatQosxqp/8XC09Oz1Tj9Y219gTNWbW0t/vSnP6GmpgaBgYFYsWJFu89ZsWIFli1b1uHXJiIiIkPMRZiLOJvs7Gz069evzeP0PyxKmE6pVKKkpASPPfaYcBH6888/Z7GLqBXMRZiLEJHtKi8vR51KhcX3yRDhK7F2c2xS/k0tVp5Qoby8nEUcO2N0EWfGjBkICQkRkpVHHnkE69evx8cffywkK3/961+RkJCAy5cvY8SIEcJztVotXF1d8dprr4nc/M7T2NiIqVOn4vTp03B1dcXu3bvbHO2i88orr+DFF18U7ldWVqJHjx6d2VQiIiKnwFyEuYgzys7ORlJSksGsnBUrVnAGTitYlDBdcHAwNm/ejEmTJmHz5s3sK6I2MBdhLkJEti/CV4I+AVJrN8NGaazdADKTScupabVa4XZMTAxSU1Ph4eEhPObl5YXvvvsOM2bMwPfffy88HhERgffeew/Dhw83q5He3t7C7Zqamlbj9I/pP8dUarUa//d//4f//Oc/cHFxwe7du43eeFEul0Mul5v92kRERNQ65iLtYy7ieCZNmoR+/fph0qRJSEpKctg9cMTCogQRdSbmIu1jLkJERCQus/fEcXFxwdixY5s93qdPHxw/fhxXr15FQUEBfH19cc8993SokfrTuwoLC3Hvvfe2GFdYWNjic0yhS1QSExMhk8nw8ccf4/HHHzfrXERERNR5mIsQERGRNTEXISIiIkvotLll4eHhGDlyZIcTFaBpY0CptKmp586dazVOd6x79+5mbd6nVqvx5JNPYs+ePUKiMmXKFPMaTURERFbFXISIiIisibkIERERicEuFgj09PQUNv9LTk5uMUar1eLQoUMAYPQUX326REV/pEl8fLz5jSYiIiKHwVyEiIiIrIm5CBERkfMyezk1S5s+fTrS09ORmpqKjIyMZuvI7t27F7m5uQCAadOmmXRutVqNqVOn4tNPP4WLi4vFR5oUFRWhvLzcYq8HAJcuXTL4ryX5+/ubPa2biIjIWhw5FyEiIiLbx1yEiIjIOZlUxLl27RpkMpnZLyaRSNDY2GjWc6dPn45///vf+OmnnzB58mR8+OGHiI2NhUajwb59+zB79mwAwMSJExEbG2vw3KVLl2LZsmUAgMuXL6NXr17CMbVajaeeekpIVHbv3o0//elP5r1BMxQVFWHCgxOgqldZ7DX1LVy40OKvKXeTI/lQMgs5RERkMuYiREREZE3MRYiIiMjSTJ6Jo9VqO6Md7XJxccH+/fsxbtw45OXlYfz48fD09IRGo0FdXR0AYNCgQdi1a5dJ5z1+/Dg++eQTAE3J1Lx58zBv3rxW4//973+LOhqlvLwcqnoVBt4cCC+1l2jntVXVsmqc8T2D8vJyFnGIiMgszEXEzUWIiIjINMxFmIsQERFZkklFnC5duuCll17qrLa0q1evXjh79izeeecdJCUl4fLly3B1dUX//v3x5z//GfPmzYObm5tJ59RoNMLthoYGXLt2rc342tpas9reHi+1F3wbfTvl3ERERI6CuUjn5SJERETUPuYizEWIiIgszaQijpeXF15//fXOaotRvL29sWzZMmEasDGWLl2KpUuXtngsJibGaqNoiIiIyDTMRYiIiMiamIsQERFZZ4/31lhz7/e2iLkvvMnLqRERERERERERERERkfMpKirChAkToVLVWbspBqyx93tb5HJ3JCcfFKWQwyIOERERERERERERERG1q7y8HCpVHeSD/wipV6C1m2OTNNWlUGV+Idq+8CziEBERERERERGR1VXLqq3dBJvFviEiWyP1CoTML8TazXAKLOIQEREREREREZHVnfE9Y+0mEBER2RwWcYiIiIiIiIiIyOoG3hwIL7WXtZthk6pl1Sxy2SluAN8+MTeAJ3JERhdxNBpNZ7aDiIiIqE3MRYiIiMiamIt0Pi+1F3wbfa3dDCLRFBUV4cGJE1Ffxw3g2+Lm7o5DB8XZAJ7IEXEmDhEREREREREREZHIysvLUV9Xh5rJk6EJCrJ2c2yS9MYNYN8+0TaAJ3JELOIQERERERERERERdRJNUBA0LFAQkZmk1m4AERERERERERERERERNceZOEREREROzhqbrVpzU1VunEpERERERET2gkUcIiIiIidWVFSECQ9OgKpeZZXXt8amqnI3OZIPJbOQQ0RERERERDaPRRwiIj0cjU5Ezqa8vByqehUG3hwIL7WXtZvT6apl1Tjje4YbpxIREREREZFdYBGHiOi/ioqKMHHCBNSpnGc0urtcjoPJHI1ORICX2gu+jb7WbgYRERERdTJrDF5sizUHNraGAx6JyJawiEPk4DizxHjl5eWoU6mw+D4ZInwlIrfM9uTf1GLlCRVHoxMRERERETmJoqIiTJgwASorDV5sizUGNrZGLpcjmQMeichGsIhD5MCKiorw4MSJqK+rs8rrWyMBc3N3x6GDBzuUaEX4StAnQCpiq2yVxtoNICIiIiIiIgsqLy+HSqWC6whXSH2c4Xuv6TSVGqhOcsAjEdkOFnFsRLWs2tpNsAhneZ+2ory8HPV1daiZPBmaoCBrN6fTSW/cAPbtY6JFRERERERE1AapjxRSpxi8SERk/1jEsRFnfM9YuwnkwDRBQdCwqEFERERERERERERkV1jEsREDbw6El9rL2s3odNWy6g4XrLjHCxERERERERERERE5AxZxbISX2gu+jb7WbobNs/YGfNbY44Wb6RERERERERERERE5JxZxyK442wZ83EyPiIiIiIiIiIiIyHmxiEN2iRvwEREREREREREREZGjYxGHiIjMxj2qiIiIiIiIiIiIOg+LOEREZJamPaomQqWqs8rrW2ePKnckJx80u5DDohcREREREREREZmCRRwiIjJL0x5VdZAP/iOkXoHWbk6n01SXQpX5hdl7VDUVvSZApVJ1QuvaZ52ilxzJycks5BAREREREZFF5N/UAtBYuxk2qalvyB6xiENERB0i9QqEzC/E2s2weU1FLxVCg++Dm6uvtZvT6eobbqKo5ITZRS8iW8ZZdaZhfxERERGRpaw8obZ2E5yGpuqGtZtgs8TuGxZxiIiILMjN1Rce8gBrN4OomWpZtbWbYBEdfZ+cVWeaoqIiPDhxIurrnGfpTTd3dxw6yKU3jcWiFxHpc5Z8xBzsGyLjLL5PhghfibWbYZPyb2pFLXKpsvaLdi5qG4s4RERERIQzvmes3QS7oJtV5zrCFVIfqbWb0+k0lRqoTqrMnlVXXl6O+ro61EyeDE1QUCe00LZIb9wA9u3r0NKbEydMQJ0TFQnd5XIc5NKbRE7P398fcjc585F2yN3k8Pf3t3YziGxahK8EfQIcP083j7jLzMkHPQKpt+Pn+ObQVN0QtcjFIg4RERERYeDNgfBSe1m7GZ2uWlYtygUiqY8UUn45NJomKAgaXqRvV3l5OepUKqcZQdo0GtT8IiHAmUtEjiI0NBTJh5It/vvclkuXLmHhwoV4++230bt3b2s3BwD/BtgzaUmJtZtgs9g39kvqHcTl9S2ERRwiIiIigpfaC76Njr9fE5E9cJ4RpB0bDdq0vOFEqFTOs1yfXO6O5GQu12csXvC2L6GhoTb5/6t3797o37+/tZshOk0lN35vTWf0jWdSkujnJCLnwSIOERERERER2Z2m5Q3rIB/8R0i9Aq3dnE6nqS6FKvOLDi3Xxz29iEin4WSDtZvgVGomTYImONjazbBJ0pISFrmI2sEijo1wlg3qnOV9EhERERGRZUi9ArmUhxF0e3qFBt8HN1fHn3lZ33ATRSUnOrRcH5Ejc5b9/cyhqdSIXuTSBAdzaVkLyb+phdh7vziKpr4he8QijpU54+Z93IiPiIiIiIjIOtxcfeEhD7B2M4jIyri/Hzkaf39/uMvlWHnCOjNO7YW7nNdl7RGLOFZmrc37rLlBH9cltjxn2SROrPfpLKM2OAKDiIiIiIiIiBxBaGgoDiZb/hpra6x57bUtvC5rn1jEsQHW3LzPUTfoI0NcW9Q0K0+ord0EIiIiIiIiIiIygTWvsbaG115JDCziEDkBZ9lAT6zN8BbfJ0OEr0SEFtm2/JtaFqyIiIiIiIiIiMhkmupSazfBZondNyzikF3SVDr+UleAeO+TG+iZJsJXgj5OsTawc/weEREREREREVmT9MYNazfBZrFv7I+/vz/kcneoMr+wdlNsmlzuLtr+QyzikF1qONlg7SYQERE5lGpZtbWbYBHO8j6JiIiI2uIsg2PNIWbf+Pv7w83dHdi3T7RzOiI3d/EudlPnCw0NRXLyQe4/1A4x9x9iEYfskusIV0h9HH+mhKZSw4IVkYNR1d+0dhMswlnepyPw9/eH3E2OM75nrN0Ui5G7yfklkYiIiJxS0wh6OVQnVdZuik2Ty8XJF0NDQ3HoIC92t0fMi91kGdx/yLJYxCG7JPWRQuoUy10RkaP57cYJazeByEBoaCiSDyVb/IulNb9A8kui5UlLSqzdBIsQ633m39TCGZY9bXqfRERkSU0j6C2f+7XFFgsLYuaLvNhNRB3FIg4REZEFhQTdB7mbr7Wb0elU9TdZsLIj1vxiaa9fIJ1lCRKx3qdnUpIo53EWK0+ord0EIiJyYLZYVADsNy8kIupsLOIQEVGHaKqcYxNCsd6n3M0XHvIAUc5FRNbD5U5NUzNpEjTBwdZuRqeTlpSIUrBafJ8MEb4SEVpk2/JvalmwIiIiIiJqB4s4RETUIaqs/dZuAhGRxXF/PhPPExwMjQ2O+LVVEb4S9HGKpYOdY0YbEREREVFHsIhDREQdIh/0CKTeQdZuRqfTVN1gwYqIBNyfj4iIiIiIiCyBRRwiIuoQqXcQZH4h1m4GERERERlBVX/T2k2wCGd5n0REROT4WMQhIiIiIiIichK/3Thh7SYQERERkQlYxCEiIiIiIiJyEiFB90Hu5mvtZnQ6Vf1NFqyIiIjIIbCIQ+QEpDduWLsJFuEs75OIiIiI/kdT5Rw5oFjvU+7mCw95gCjnIiIiIqLOxyIOkQPz9/eHm7s7sG+ftZtiMW7u7vD397d2M4iIiIjIQlRZ+63dBCIiIiKiTsMiDtklTaXG2k2wiI6+z9DQUBw6eBDl5eUitcg4ly5dwsKFC/H222+jd+/eFn1tf39/hIaGdugc+Te1ABz/Z6zpfRIRERHZN/mgRyD1DrJ2MzqdpuoGC1ZERERETohFHLIr/v7+kMvlUJ1UWbspFiOXyzs0syQ0NLTDRQ1z9e7dG/3797fKa5vD398f7nI5Vp5wnp8v9w7+fBERERFZm9Q7CDK/EGs3g4iIiBxAbW0tcnNzO3yeS5cuGfy3oyIjI+Hh4SHKucj+sIhDdiU0NBTJycmcWUKdIjQ0FAf580VEREbgrGAiIiIiIseTm5uLSZMmiXa+hQsXinKepKQkuxooTeKyuyJOVVUV/vWvf2Hfvn24fPkyZDIZ+vbti/j4eMybNw9ubm5mn/vatWtYvXo1vvzyS+Tn58PDwwP9+/fH9OnTMWvWLEgkEhHfCZmLM0uoM/Hni4jaw1zEuXFWsHmkN5xj43lneZ9EZF3MRYiIOk9kZCSSkpKs3YxmIiMjrd0E0dnqrCfA9mY+2VUR58qVK4iJiUFeXh4AwNPTEyqVCkqlEkqlErt27cLhw4fN+pJ5+vRpPPjggygtLQUAeHl5oaqqCseOHcOxY8ewd+9e7N+/H3K5XMy3RERETqa+4aa1m2ARjvo+mYsQZwWb/lw3d3dg3z6RW2W73NzduVQpEXUa5iJERJ1LV7ymzmers54A25v5ZDdFHLVajYcffhh5eXkICQnBzp07MX78eGg0GuzduxezZ89GVlYWnnzySXz99dcmnfvmzZv4wx/+gNLSUtx111346KOPoFAoUF9fjy1btuCFF15ASkoKXnjhBWzYsKGT3iERETky3ej9opIT1m6KxYgxet+WMBchHc7aNF5oaCgOHTzIopeJ8m9qATj+UnZN75OIjMVchIiIHImtznoCbG/mk90UcXbs2IGffvoJALBv3z6MHDkSACCVSjFlyhRoNBpMnToVBw8exOHDhxEbG2v0ud955x0UFxfDw8MDX3/9Ne644w4AgJubG5577jlUVlbi1Vdfxfvvv48FCxagb9++4r9BIiI7pakutXYTLKKj75Oj9+0fcxEi87DoZTx/f3+4y+VYecJ5lutzd7CCP1FnYi5CRESOhLOejGc3RZwPP/wQADBu3DghUdEXHx+P1157DZcvX8bOnTtNSlZ27twpnEOXqOibN28e/t//+3+orq7Grl27sGzZMjPfBRGR42iaWeIOVeYX1m6KxcjlHVsihxcy7RtzESLqbKGhoTjIgj8RtYK5CBERkXOyiyJOTU0Njh8/DgCYOHFiizESiQQTJkzAxo0bkZKSYvS5s7OzkZ+f3+a5vby8MGbMGBw8eBApKSlMVoiIoJtZwiVyyDkwFyEiS2HBn4hawlyEiIjIedlFEefChQvQaJrWhB4wYECrcbpjxcXFKCsrQ0BAQLvnPnfuXLPnt3bugwcP4ueffza22UREDo8XmshZMBchIiIia2IuQkRE5LzsoohTVFQk3A4LC2s1Tv9YUVGRUcmKqeeurKxEdXU1vLy8WoxTqVRQqf63hnVlZWW7bTBXbW0tcnNzzXrupUuXDP5rjsjISHh4eJj9fEtjf5mG/WUa9pdp2F+mYX9ZH3ORlvFn0zTsL9Owv0zjzP3F/flMU99wU5Tz2DpHe5/MRYzTkb+FtxPjb6M+e/tcMYZY/c2+bh/7msi52UURp6qqSrjt6enZapz+Mf3ndMa5W0tWVqxYYbFpxbm5uZg0aVKHzrFw4UKzn5uUlGRXo+DZX6Zhf5mG/WUa9pdp2F/Wx1ykZfzZNA37yzTsL9M4Y39xfz7TNPWXHEUlJ0Rule2Sy+Ud2s/QljAXMY4Yfwtv15G/jfrs7XPFGGL3N/u6dexrIudmF0Uce/LKK6/gxRdfFO5XVlaiR48enfJakZGRSEpK6pRzG/v69oT9ZRr2l2nYX6Zhf5mG/UWmYC5iu9hfpmF/mcYZ+6sj+/OpVCpcvXq1E1plnPDwcMjlcpOf15H9+Zr6K5n9RZ3OkrnI7az9t7At9va5Ygxb7W/2teU4Yl8T2SK7KOJ4e3sLt2tqalqN0z+m/xxTzu3j49Ohc8vlcrOSS3N4eHiw2m0C9pdp2F+mYX+Zhv1lGvaX9TEXaRl/Nk3D/jIN+8s0ztpfHdmfb/DgwSK3xvaxv+wXcxHjOOvfQmthf1sO+5rIuUmt3QBj6CeZhYWFrcbpHzM2MTX13D4+Pq1OGSYiIiLHxFyEiIiIrIm5CBERkfOyiyLO3XffDam0qannzp1rNU53rHv37kZt3gcAAwYMaPb8ts59zz33GHVeIiIichzMRYiIiMiamIsQERE5L7so4nh6emLUqFEAgOTk5BZjtFotDh06BACIi4sz+tz9+vVDREREm+e+desW0tPTTT43EREROQbmIkRERGRNzEWIiIicl10UcQBg+vTpAIDU1FRkZGQ0O753717k5uYCAKZNm2bSuXXxe/bsQV5eXrPj7733HqqrqyGTyfDkk0+a2HIiIiJyBMxFiIiIyJqYixARETknuyri/O53v4NWq8XkyZNx+PBhAIBGo8HevXsxe/ZsAMDEiRMRGxtr8NylS5dCIpFAIpG0mIz8/e9/R/fu3VFTU4OHHnoIp0+fBgDU19dj48aNWLJkCQDgmWeeQd++fTvxXRIREZGtYi5CRERE1sRchIiIyDm5WLsBxnJxccH+/fsxbtw45OXlYfz48fD09IRGo0FdXR0AYNCgQdi1a5fJ5/b19cWXX36JBx98ED///DMUCgW8vb1RV1eHhoYGAE3Thd99911R3xMRERHZD+YiREREZE3MRYiIiJyT3czEAYBevXrh7Nmz+Oc//4kBAwZAIpHA1dUVQ4YMwTvvvIOTJ0/C39/frHMPGTIE58+fxwsvvIA+ffqgoaEBXbp0wejRo7FlyxYcPHgQcrlc5HdERERE9oS5CBEREVkTcxEiIiLnI9FqtVprN8KRVVZWwtfXFzdv3oSPj4+1m0NERGQT+PloOexrIiKi5vj5aDnsayIiouZM+Xy0q5k4REREREREREREREREzoJFHCIiIiIiIiIiIiIiIhvEIg4REREREREREREREZENYhGHiIiIiIiIiIiIiIjIBrGIQ0REREREREREREREZINYxCEiIiIiIiIiIiIiIrJBLtZugKPTarUAgMrKSiu3hIiIyHboPhd1n5PUeZiLEBERNcdcxHKYixARETVnSi7CIk4nq6qqAgD06NHDyi0hIiKyPVVVVfD19bV2MxwacxEiIqLWMRfpfMxFiIiIWmdMLiLRcthJp9JoNCgqKoK3tzckEom1myOorKxEjx49UFBQAB8fH2s3x+axv0zD/jIN+8s07C/T2Gp/abVaVFVVITQ0FFIpV3ftTMxFHAP7yzTsL9Owv0zD/jKNrfYXcxHLsdVcpD22+rPriNjXlsO+thz2teXYa1+bkotwJk4nk0qlCA8Pt3YzWuXj42NXP9zWxv4yDfvLNOwv07C/TGOL/cVRr5bBXMSxsL9Mw/4yDfvLNOwv09hifzEXsQxbz0XaY4s/u46KfW057GvLYV9bjj32tbG5CIebEBERERERERERERER2SAWcYiIiIiIiIiIiIiIiGwQizhOSi6X4/XXX4dcLrd2U+wC+8s07C/TsL9Mw/4yDfuLbBV/Nk3D/jIN+8s07C/TsL9Mw/4ie8WfXcthX1sO+9py2NeW4wx9LdFqtVprN4KIiIiIiIiIiIiIiIgMcSYOERERERERERERERGRDWIRh4iIiIiIiIiIiIiIyAaxiENERERERERERERERGSDWMQhIiIiIiIiIiIiIiKyQSziOKDy8nK4u7tDIpFAIpEgJyenzfgdO3YIsfr/3Nzc0L17d8TFxeGDDz5AQ0ODhd6BZSxdurTF993SP30tHZdKpfDz88PgwYOxaNEi5OfnW+lddR6tVou9e/fiscceQ8+ePeHh4QEvLy/07t0bo0ePxosvvojPP/8clZWVBs+bMWOG0f3cq1cv67w5kWk0Gnz++eeYOXMm7rnnHgQGBsLV1RX+/v4YMGAAnnrqKezatatZX7Vm2LBhQh998MEHndx6y2rr99DT0xN9+vTB9OnTceLEiVbPkZ6ejn//+9+YPn06BgwYABcXF0gkEsTExFjujVhIR/tLpVLhwIEDeP7556FQKODn5wdXV1cEBwdj3LhxWLduHWpqaiz8rsgRMRcxDnMR0zAXMR5zEeMxFzENcxFyFMxVOh/zHMthjmQZzK8sg7lZK7TkcNatW6cFIPxbvHhxm/Hbt28XYoOCgrTdunXTduvWTdulSxeD8ygUCm1ZWZmF3kXne/3114X3pnvPrf3Tp3tOly5dhONBQUEGfeXl5aX96quvrPTOxFdeXq4dO3aswXt0cXHRBgQEaF1cXAwe3759u8Fzp0+frgWglUql7fazQqGwzhsU0cmTJ7X9+vUz6BOZTKYNCAjQyuVyg8d9fHy0a9asafN8P/30k8FzRowYYaF3Yhmt/R4GBwdrZTKZwXt//fXXWzyHfoz+v7Fjx1r0vVhCR/tr/PjxzX6PfX19DR678847tTk5OZZ/c+RQmIsYh7mI8ZiLGI+5iGmYi5iGuQg5CuYqnY95jmUwR7IM5leWw9ysZSziOKCoqCgtAO28efO0ALQhISHaxsbGVuP1k5HLly8bHMvNzdVOnTpVOP744493custR/+Pgila+0NRWVmp3bRpk9bb21tIKoqLi0VssfU8/PDDwgfUSy+9pL148aJWrVZrtVqttqGhQXvmzBntqlWrtAMHDmw1KejZs6flG25hn3/+udbNzU0LQBsYGKhdvny59ty5c1qNRiPEXLt2TfvZZ59p//jHP2qlUql2+PDhbZ5zwYIFWgDaGTNmCD9b58+f7+y3YjFt/R42NjZqjx07ph0yZIgQc/z48WZxHh4e2mHDhmmfffZZ7ZYtW7QPPvig3X84t6aj/TV27Fhtz549ta+//ro2MzNT+D0uKyvTrlq1Suvp6SlcPKmtrbXIeyLHxFzEOMxFjMdcxDjMRUzHXMQ0zEXIUTBX6XzMcyyDOdL/b+/+g6qq8z+Ovy4goCAQKWCiQpuT1orG9MOcWnXXrZ2aVsmETFNLa9q0trZdayuzbz+2sqa2/dHWljpKGZmKRZlpO2jbmj82JX8GukGDmigakPkj4L6/fzicuMHlN9wL9/mYudPhfs7nc97ndC/3hZ9zzm1/5KuORTarH5M4Xcxnn31mkiwmJsZOnjxp5557rkmynJwcr30aCiNmZm6326688kqTZC6Xy77++ut23IOO09aBosZrr73mrPP000+3QaW+VVBQ4OzPU0891ej6J06c8Pg5UELBnj17LDIy0iRZSkqKHThwoNE+O3futHvuucdr++nTp50zjjZu3GjTpk0zSXbfffe1Zek+1ZT3YXFxsbPO7Nmz67T/+I+tmtdcZ/5w9qa1x+vjjz+2yspKr33ffPNNp29mZmab1Y3AQhZpOrJI05BFmoYs0jJkkeYhi6ArIKt0DHJO+yMjtT/yVccjm9WP78TpYubPny9JysjIUHh4uG6++WaP51vC5XJp8uTJkiQz03//+9/WF9qFTZo0SUFBZ95aW7Zs8XE1rZeXl+csjx07ttH1u3fv3o7V+K+HH35Yx48fV0REhLKzs3XOOec02ufCCy/UCy+84LX9nXfeUWlpqc4//3xddtllmjp1qiRp8eLFAXWv5cTERJ199tmSpOPHj9dpDw4O7uiS/FpDx+vKK69USEiI177p6enq2bOnpK7x+wu+QRbxPbIIWYQs0rbIIs1DFoG/I6t0bl0t57QGGan9ka/8UyBmMyZxupBTp05pyZIlkqQpU6Y4/3W5XHrvvfdUUlLS4rETExOd5aZ+QVegCg8Pd36RdLVjtX//fl+X4Je+/vprrVixQpJ0880369xzz22TcWv+iKh5P48cOVJJSUk6cuSIcnJy2mQbncGBAwd09OhRSdL555/v42r8X2uOV1BQkLp16yZJqq6ubvPa0PWRRfwDWSTwkEXaF1mkecgi8Gdklc6vK+ec1iAjtT3ylf8KxGzGJE4Xsnz5cpWVlem8887TiBEjJEnnnnuurrjiClVVVSkzM7PFYxcVFTnLsbGxrS21S/vuu+9UWloqqWscq0suuUQul0uSdN9996mgoMDHFfmf3NxcmZkk6de//nWbjFlcXKy1a9d6nNHlcrmcs8QWLFjQJtvxZ9XV1fr000+VlpYmSYqLi3NCDupqi+O1Y8cOHTt2TJI0ZMiQNq8RXR9ZxD+QRQIPWaR9kEWahyyCzoCs0vl1tZzTGmSk9kW+8j+BnM2YxOlCfjyTW6Pm55ZeGlxVVaV//vOfks6cGXXJJZe0okr/lJCQ4PWxa9euZo31j3/8w/klP3z48PYot0MlJSVpxowZks78UTVo0CClpqZq5syZWrBggXbu3Onsb0OKi4sbPM4JCQl67rnn2nt32sXu3bud5WHDhrXJmAsXLpTb7dbo0aPVv39/5/ma9/Pq1at14MCBNtmWv6j9WoiLi1NYWJhGjBih/Px8TZo0SZs3b1ZMTIyvy/Qb7XG87r//fklSTEyMJkyY0A5Vo6sji7QcWcQ7skjjyCJtgyzSPGQRdEZkFd8g57QPMlL7Il/5HtnsB95vRotO5csvv9S6des8Zm9rpKen6+6779YXX3yhDRs2OGebNOb48ePauXOnHnnkEX3++eeSpKlTpzqXrXYlDV0y3ZT7UVZXV6uwsFBvvPGGnnrqKUlnzgipua9lZ/fSSy8pISFBzz//vL777jtt27ZN27Ztc9rj4uI0adIk3X///YqPj693DLfb3eil6fXdx7IzqLmEU/J+JtC+fft0xRVX1Nu2YsUKj/elmWnhwoWS6v5xUXPG2IYNG7Ro0SI9+OCDrS3fb3h7fZw4cULl5eUqKSnRgAEDOrgq/9XWx2vevHn64IMPJEnPPPNMwJ/VhuYji7QOWaRhZJGGkUXaBlmkecgi6GzIKr5Dzmk/ZKT2Q77yPbJZLYYu4aGHHjJJ9rOf/aze9okTJ5okmz59ep22hQsXmqRGH2PGjLHjx4+39650mLlz5zr71hxNOVa9e/e2f//73+1Uue+UlZVZZmamzZgxw4YOHWqhoaEe+92rVy/btGmTR5+pU6eaJBswYIBviu4Ad9xxh3MMTp06Ve86e/bs8fp6yc3N9Vh37dq1JskiIiLs22+/rTPWK6+8YpLsvPPOM7fb3R671GEaeh+ePHnStm3bZtOnTzdJFhYWZtnZ2Y2OWfOaGzlyZNsX7GPtcbzMzN566y0LCgoySTZlypQ2rhqBgizSfGSR5iOL1I8s0nJkkeYhi6AzI6t0LHJOxyIjtT3ylW+QzerH7dS6ALfbrUWLFkmqO5Nbo+bshLfeeqvB2fNevXopPj5e8fHxSkxMVEpKiiZPnqyVK1dqzZo1ioiIaPsd6KQiIiKcY9WnTx8NHDhQV199tebNm6c9e/Z4nYnvzKKjozV58mS9+uqrysvLU3l5udauXavrrrtOklRaWqrx48fr1KlTPq60Y9U+y6rmHt4/NmjQIJmZ8ygsLPQ6Xs09UNPS0hQZGVmnPSMjQ+Hh4dq3b58+/vjjVlbvv8LDwzVs2DC99tprSktL0+nTpzVt2jS+vNKLlh6v7OxsTZo0SW63W+PHj2/xLSQQ2MgivkEWIYvUIIu0D7JI85BF4M/IKp1PIOac1iAjtT3ylf8J5GzGJE4X8OGHH2r//v2SpBkzZsjlctV5/OpXv5J05vLHpUuXeh1ry5YtOnTokA4dOqTi4mJ9/vnnyszM1NixY50vS8MZv//9751jdfDgQRUUFGj16tX6wx/+EDCXToeHh2vMmDF69913ncC7f/9+rV692seVdawLLrjAWc7Ly2vVWN98842ys7MlSa+//nq97+eYmBgneAXKH7m33XabJKm8vFyrVq3ycTX+r6nHa+XKlcrIyFBVVZXS0tKUlZWlkBDutIrmI4v4BlmELFKDLNL+yCLNQxaBvyGrdD7knNYhI7Ue+cq/BVo2YxKnC2juG7tm5hdoS7fffruznJ+f78NKOt7o0aOdsP7uu++2aqw33nijWWfGLF++PCDOOKh9j9OGzmzBGU05XtnZ2UpPT1dlZaXGjRunt956i380QYuRReAPyCJkkfZEFmkesgj8DVkFgSyQM1JrkK/8W6BlMyZxOrkjR444v0iWLVumb7/91utj8+bNkqT//Oc/+uKLL3xZNrqg2peChoWF+bCSjtenTx9df/31kqTMzMxWfXjU/HHx29/+tsH3c3l5uXr37q0TJ07ozTffbJP98Gc1Z81J4vYETdDY8VqxYoUyMjKcfzRZunSpunXr1pElogshi8BfkEXIIu2JLNI8ZBH4E7IKAl0gZ6TWIF/5t0DLZkzidHKZmZmqrKxUdHS0rrvuOkVGRnp9XHLJJRo0aJAkzipB0xUWFqqgoKDR9WruLyxJqamp7VmSX3riiScUERGh7777TuPGjdPBgwebPcbWrVudS3QnTpzY4Ps5KirKCROBcJntkiVLnOWLL77Yh5V0Dg0dr+zsbN14442qrKxUWloa/2iCViOLoL2RRZqGLNK+yCLNQxaBPyGroKsiI7U/8pX/CrRsxiROJ1cTKsaOHavQ0NBG158wYYIkafHixaqqqmrX2tA17Nq1S4MHD9a1116rxYsXq6ioyGmrrKzUtm3bdMstt+j555+XJF166aUB+QWDgwYN0uuvv67Q0FBt375dKSkpeuKJJ7Rr1y6ZmbNeRUWFVq9erbvuuqvOGDUf0P3799dll13W6DbT09Mlnbkn886dO9toT/zLoUOH9PDDDzuhc/jw4br88ss91jl+/LhKS0udx+nTpyWdeX3Wfv6bb77p8Po7WmPH65133nHOeh0/fjz/aII2QRZBeyOLNA1ZpH2QRZqHLAJ/RFZBV0VGan/kK/8TqNmMG852Yhs3btSuXbsk/RAyGjNhwgQ9/vjjKikp0fvvv6+xY8e2Z4noArp16ya3261Vq1Y5XxQWGhqqyMhIffPNNx4fWqmpqcrOzlZQUN354eLiYiUkJDS6vS1btqhfv35ttwMdaNy4cVq/fr2mTZum/Px8zZkzR3PmzFFwcLBiYmJUWVnpcU/Tnj17avbs2Ro+fLhOnTrlnEXQ1PfzyJEjFRcXp8OHD2v+/Pl64YUX2mW/OsqPXx+nTp1SeXm58/OQIUO0fPnyOl8WOmvWLI8zi2ps2LBBvXv3dn4eMGCAR6jt7FpyvO69915VVlZKktavX6/ExESv448YMUIrVqxo46rR1ZBF0BHIIk1HFmkdskjzkEXQGZBV0JWRkToG+cp3yGY/YBKnE6uZyY2OjtZVV13VpD5DhgzR4MGDtWfPHs2fP58wgkZdffXV2rt3r1atWqVPPvlEO3fu1P79+1VWVqYePXronHPO0UUXXaTrr79eEyZMqDcQSJLb7VZJSUmj26uurm7rXehQw4cP1+7du7Vy5Url5ORo48aNKikpUXl5uSIjIzV48GClpqbqqquu0vjx4537dr7xxhsqKyuT9MNZF40JDg7W9ddfr5dfflmvv/66nnnmmSadWeavfvz66NatmxISEjR06FDdcMMNmjJlSqfev7bWkuPldrud5dLS0gbHP3bsWNsViy6LLIKOQBZpHrJIy5FFmocsgs6ArIKujIzUcchXvkE2+4HLak/LAgAAAAAAAAAAwC/wnTgAAAAAAAAAAAB+iEkcAAAAAAAAAAAAP8QkDgAAAAAAAAAAgB9iEgcAAAAAAAAAAMAPMYkDAAAAAAAAAADgh5jEAQAAAAAAAAAA8ENM4gAAAAAAAAAAAPghJnEAAAAAAAAAAAD8EJM4AAAAAAAAAAAAfohJHAAAAAAAAAAAAD/EJA6ADuVyueRyubRu3Tpfl9Ih1q1b5+wzAADwPbIIAADwJbIIgOYK8XUBAHzDzLRs2TItWbJEW7du1eHDhxUcHKz4+Hj16dNHl156qa688kr94he/UFRUlK/LRTOUlZXpz3/+syTpnnvuUUxMjE/rAQCgPmSRrossAgDoDMgiXRdZBF2Ny8zM10UA6FhlZWUaN26c1q9f7zwXEhKiqKgoVVRUqKqqynl+4cKFmjZtWpttu+bMi9zcXI0aNarNxvVX69at0+jRoyWdCYgdoaioSMnJyZKkwsJCJSUldch2AQBoKrJIxyGLAABQF1mk45BFgNbjdmpAAJoyZYrWr1+v4OBg3XfffSooKNDp06d19OhRnTx5Up9//rmeeeYZDR061NelAgCALogsAgAAfIksAqAz4XZqQIDZu3evcnJyJElPPPGEHnjgAY/2kJAQpaSkKCUlRbNnz9bJkyd9USYAAOiiyCIAAMCXyCIAOhuuxAECTF5enrM8duzYRtfv3r27x89N+QK+UaNGyeVy6dFHH21w7EOHDmnWrFlKTk5WeHi4EhISNGnSJH3xxRf1rl9UVORsv6ioSHv37tW0adOUmJiosLAw9e/fX3fccYcOHDjQ4HbLy8v12GOPKTU1VVFRUerevbsGDhyo3/zmN/ryyy8b7CtJmzZt0i233KLzzjtPERERioqK0gUXXKBbb71Va9asabR/bUePHtXll18ul8ul5ORkFRQU1Kn1ySef1GWXXaazzjpLYWFh6tevnyZOnKiNGzfWGW/UqFHOJcOSlJyc7Bwzl8sVEJdqAwD8G1mELAIAgC+RRcgiQKdjAALK0qVLTZJJsjVr1jS7f03f3Nxcr+uMHDnSJNncuXO99l+wYIElJCSYJOvevbtFRkY6beHh4fbBBx/U6VtYWOisk5WVZT179jRJFhkZad27d3faYmNj7bPPPqu3tp07d1piYqLHtmrGkWRhYWG2bNmyevtWVVXZ3Xff7awrySIiIqxHjx7Oz9HR0R59cnNznbYfKyoqskGDBpkkGzp0qB08eNCjfePGjRYfH+/0Dw4O9qjV5XLZn/70J48+aWlp1qtXL2edXr16WXx8vPNIS0urd98AAOgoZBGyCAAAvkQWIYsAnQ2TOECAKSwsNJfLZZJsyJAhlp+f36z+bRVWoqOjrX///rZmzRpzu91mZrZp0yYbMmSISbKoqCgrLi6uU3vt/ikpKbZp0yYzM3O73fbhhx9a//79TZL179/fKioqPPpXVFRYcnKySbK+ffva+++/b9XV1WZmlpeXZ8OHD3cCS15eXp3aZ8+e7Wz/1ltv9Th2JSUltnLlSsvIyPDo4y2sbN++3c455xyTZKNHj7by8vI6+xoTE2OS7IYbbrDPPvvMKisrnW3NmTPHQkJCTJJlZ2d7PU6FhYV19gMAAF8ii5BFAADwJbIIWQTobJjEAQLQbbfd5nHWwkUXXWR33nmnzZ8/33bs2OGEh/q0VVgJDQ213bt312kvKSmx2NhYk2R33nmnR1vtD+Gzzz7bSkpK6vTfvXu3hYaGmiSbN2+eR9vTTz9tkqxbt262Y8eOOn0rKiosKSnJJNm1117r0Zafn29BQUEmyWbPnu1133+svrCybt06i46ONkk2YcIEO3XqVJ1+N9xwg0mym2++2evYzz//vHO2Sm2EFQCAvyOLkEUAAPAlsghZBOhMmMQBAlBlZaXNmTPHIiIinA+12o+4uDi799577dChQ3X6tlVYmTRpktf+Dz74oBNIaqv9IfzQQw957X/TTTeZJEtNTfV4/qKLLjJJNnHiRK99X3rpJZNkQUFBVlZWVm9NJ0+e9Nr/x34cVpYtW2ZhYWEmyWbNmuWc8VLb0aNHnWC0a9cur2OXlpY6Y9f+f0VYAQD4O7IIWQQAAF8ii5BFgM4kSAACTkhIiB577DEdOHBAmZmZmjFjhoYOHarQ0FBJ0uHDh/XCCy/opz/9qTZv3twuNfz85z9vtO3o0aMqLCxscf/t27ersrJSkvT9999r+/btkqQxY8Z47fvLX/5SkuR2u7V161bn+Q0bNjjt4eHhXvs35O9//7vS09N1+vRpPfnkk/rrX/+qoKC6v4Y//fRTud1uZ18SEhLqfVx44YVOn6+++qpFNQEA4AtkEbIIAAC+RBYhiwCdSYivCwDgO9HR0Zo8ebImT54sSTp16pQ++eQT/eUvf1FOTo5KS0s1fvx47d27t8Uf0N707du3SW2HDx9WcnJyi/pXVVXp2LFjio+P17Fjx1RdXd1o38TERI9t1zh06JAkacCAAV77NmbWrFmSpJkzZ+rBBx/0ut7Bgwed5ZKSkiaNfeLEiRbXBQCAr5BF6iKLAADQccgidZFFAP/DlTgAHOHh4RozZozeffddTZ06VZK0f/9+rV69us235XK5fNa/ob612+pbrzXbrQmFr776qnJycryuVxOqunfvLjtz28tGH6NGjWpxXQAA+AuyCFkEAABfIouQRQB/xCQOgHrdfvvtznJ+fr6zHBwcLOnM2SnelJeXNzr+/v37vbYdOHDAWY6Li2tx/5CQEMXGxkqSYmNjndqLi4u99q3d1rt3b2e5T58+kqSioiKvfRuzaNEiTZ06Vd9//73Gjx+vlStX1rteQkKCJOnkyZPat29fi7cHAEBnRhYhiwAA4EtkEbII4C+YxAFQr8jISGc5LCzMWT7rrLMkef/A//bbb7Vnz55Gx8/NzW20LTY2tt5LhpvaPyUlRd26dZMkhYaGKiUlRZL0r3/9y2vfjz76SJIUFBSk1NRU5/kRI0ZIktauXdtgUGtIUFCQFixYoOnTp6uyslLp6elavnx5nfVGjBjhnNmSlZXVou3UMLMW1QoAgK+RRcgiAAD4ElmELAL4CyZxgABTWFiogoKCRtdbtGiRs1z7Q3vo0KGSVO+HrCQ999xzOn36dKPjv/322x5nstQoLS3VK6+8IknKyMjw2v/ll19WaWlpnefz8/O1bNmyevvfeOONkqRly5Zp586ddfoeP35c8+bNkyRdc801io6OdtqmTZum4OBgHT16VHPnzm1s97wKCgrSq6++qttvv12VlZW68cYbtXTpUo914uLiNHbsWEnSs88+2+j/r2PHjnn8HBUV5SyXlZW1uFYAANoDWYQsAgCAL5FFyCJAp2MAAkpOTo4FBQXZNddcY4sWLbLCwkKn7fvvv7etW7fatGnTTJJJsksvvdSqq6uddV577TWn7ZFHHrHy8nIzMzty5Ij98Y9/tKCgIIuJiTFJNnfu3Drbr+kbHR1tSUlJtnbtWnO73WZmtnnzZhs6dKhJsp49e9pXX33l0bewsNCj/7Bhw2zz5s1mZuZ2u23t2rU2YMAAk2T9+vVzaqtRUVFhycnJJskSExNt1apVzr5t377dRowYYZIsNDTU8vLy6tT+wAMPONufPn26FRQUOG2HDx+2rKwsGzdunEef3Nxcp09tbrfb7rzzTpNkwcHBtmTJEo/2//3vf3b22WebJOvdu7fNnz/fysrKnPYjR47Y8uXLLS0tza666qo6tfbt29ck2V133WWVlZV12gEA8BWyCFkEAABfIouQRYDOhkkcIMCsXr3a+fCseYSGhlpsbKy5XC6P51NTU+3AgQMe/auqqmz06NHOOi6Xy8466yxzuVzmcrns2WeftZEjRzYaVubPn28JCQkmyXr06GGRkZFOW1hYmL333nt1+tYOK1lZWdazZ0+TZJGRkdajRw+nLSYmxrZs2VLv/u/YscP5IJdk4eHhFhUV5bHtt99+u96+VVVVNnPmTI9j9ONtR0dHe/TxFlZq3H333U5gWbx4sUfb1q1bLSkpqc6xrn2sJNmYMWPqjPv444977FO/fv1swIABlpGRUW8dAAB0FLIIWQQAAF8ii5BFgM6GSRwgAO3du9defPFFmzBhgg0ePNh69uxpQUFBFhERYQMHDrT09HTLysryONOkthMnTtj//d//2aBBgywsLMxiY2Pt6quvto8++sjMrElhJTc3177++mubOXOmDRgwwEJDQy0uLs4mTpxou3fvrne7tcNKYWGh5efn25QpU6xv374WGhpqffv2tdtuu82Ki4sb3P+ysjJ79NFHbdiwYRYZGWlhYWH2k5/8xO644w7bt29fo8fvk08+sUmTJln//v0tLCzMYmJi7MILL7Tp06c7x6BGY2HFzOx3v/udSbKgoCBbuHChR9uJEyfsb3/7m40ZM8Z69+5tISEh1qNHDxs4cKDddNNNlpWVZRUVFXXGrK6uthdffNEuvvhii4yMdILoyJEjG90/AADaG1mELAIAgC+RRcgiQGfiMuPbnQB0DkVFRc4X+hUWFiopKcm3BQEAgIBCFgEAAL5EFgECU5CvCwAAAAAAAAAAAEBdTOIAAAAAAAAAAAD4ISZxAAAAAAAAAAAA/BCTOAAAAAAAAAAAAH7IZWbm6yIAAAAAAAAAAADgiStxAAAAAAAAAAAA/BCTOAAAAAAAAAAAAH6ISRwAAAAAAAAAAAA/xCQOAAAAAAAAAACAH2ISBwAAAAAAAAAAwA8xiQMAAAAAAAAAAOCHmMQBAAAAAAAAAADwQ0ziAAAAAAAAAAAA+KH/By3sChrPrq91AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filters.plots.plot_fragment_similarity(\n", + " [similarities_per_subpocket,\n", + " similarities_per_subpocket_reduced,\n", + " similarities_per_subpocket_custom],\n", + " [\"pre-filtered fragment library\",\n", + " \"reduced fragment library\",\n", + " \"custom filtered fragment library\"],\n", + " 'Subpocket'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "0d998cce-f57b-4c14-950b-564b8995668e", + "metadata": {}, + "source": [ + "## 6. Fragment properties \n", + "\n", + "Inspect the median values of the fragment properties in each subpocket, namely\n", + "\n", + " - Number of hyrogen bond donors (# HBD)\n", + " - Number of hydrogen bond acceptors (# HBA)\n", + " - Octanol-water partition coefficient (LogP)\n", + " - Number of heavy atoms (# Heavy atoms)\n", + "\n", + "* 6.1. For each library subset\n", + "* 6.2. For every custom filter step" + ] + }, + { + "cell_type": "markdown", + "id": "d3b828a0-a800-4e1b-b3d6-ae98e2898cc5", + "metadata": { + "tags": [] + }, + "source": [ + "### 6.1. For each library subset" + ] + }, + { + "cell_type": "markdown", + "id": "2db5c23b-2a6b-4b33-aaa4-af8a6f2a9a97", + "metadata": {}, + "source": [ + "Inspect the median values of the fragment properties for each subpocket." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "d2bf7c64-9a20-4fe0-870d-8da0032ab8e0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 pre-filteredreducedcustom
 # HBD# HBALogP# Heavy atoms# HBD# HBALogP# Heavy atoms# HBD# HBALogP# Heavy atoms
subpocket            
AP1.003.001.1812.001.002.501.2410.001.002.001.279.00
B10.001.001.188.000.001.001.177.000.001.001.839.00
B20.001.001.179.000.001.001.107.00nannannannan
FP1.002.000.7810.001.002.001.059.001.002.001.499.00
GA1.001.001.409.001.001.001.198.001.001.001.709.00
SE1.002.001.0111.000.002.001.179.000.002.001.5510.00
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m pre-filtered fragment library \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTFElEQVR4nOzde1zUZf7//+cwykFRNMWUkysoWmZhoq6ZqbGQta6WWaGVmrZJWKiVp11zM90VcfOnVIipqbVppFGWWwZrkoZlkmTmEUXDxAMqgshJh/n94Zf5RKIhwrw5PO63GzeZ93W953oyS7x35vW+rstktVqtAgAAAAAAAAAAAAAAv8vB6AAAAAAAAAAAAAAAANQWFNkBAAAAAAAAAAAAAKggiuwAAAAAAAAAAAAAAFQQRXYAAAAAAAAAAAAAACqIIjsAAAAAAAAAAAAAABVEkR0AAAAAAAAAAAAAgAqiyA4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIaGB3ACCUlJcrMzFSTJk1kMpmMjgMAqOesVqvOnz8vDw8POThw/9uN4joPAKgpuMZXLa7xAICagmt81eM6DwCoKSp6na+XRfbMzEx5e3sbHQMAgDKOHj0qLy8vo2PUelznAQA1Ddf4qsE1HgBQ03CNrzpc5wEANc3vXefrZZG9SZMmki6/OE2bNjU4DQCgvsvNzZW3t7ft+oQbw3UeAFBTcI2vWlzjAQA1Bdf4qsd1HgBQU1T0Ol8vi+yly800bdqUCzYAoMZgObSqwXUeAFDTcI2vGlzjAQA1Ddf4qsN1HgBQ0/zedZ4NYwAAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVBBFdgAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFUSRHQAAAAAAAAAAAACACqLIDgAAAAAAAAAAAABABVFkBwAAAAAAAAAAAACggiiyAwAAAAAAAAAAAABQQRTZAQAAAAAAAAAAAACoIIrsAAAAAAAAAAAAAABUUK0oso8aNUomk+maX4WFhUbHBAAAAAAAAAAAAADUcQ2MDnA9OnTooFatWpXb5uBQK+4XAAAAAAAAAAAAAADUYrWqyP63v/1No0aNMjoGAAAAAAAAAAAAAKCeqlVFdgAoj8ViUUpKirKysuTu7q7AwECZzWajYwGo5/jbBAAAAABA7cJ7eQBARVFkB1CrJSQkKDIyUseOHbMd8/T01NSpUxUSEmJgMgD1GX+bAAAAAACoXXgvDwC4HrVqI/O1a9fqwQcf1L333qvQ0FC9/vrrysnJMToWAIMkJCQoIiJC/v7+iouL044dOxQXFyd/f39FREQoISHB6IgA6iH+NgEAAAAAULvwXh4AcL1MVqvVanSI3zNq1CitXLmy3LbmzZtr1apVGjBgQIWfLzc3V25ubsrJyVHTpk2rKiYAO7JYLAoODpa/v79iYmLk4PB/9wyVlJQoPDxcaWlpSkhIYEkn1Hhcl6qWka8nf5sAAL/GNb5q8XoCAGoKrklVj/fyAICaoqLXpFoxk93Pz0//+te/tHPnTuXm5ur8+fNKSEhQz549lZ2drQcffFApKSlXPb+oqEi5ubllvgDUbikpKTp27JjCwsLK/B9fSXJwcNDYsWP1yy+/XPNvAwBUNf42AQAAAABQu/BeHgBQGbViT/aXX375imPBwcHq27ev+vTpo++++05TpkzRxo0byz1/zpw5mjlzZnXHBGBHWVlZkqQOHTqU2156vLQfANgDf5sAAAAAAKhdeC8PAKiMWjGT/WocHR01a9YsSVJSUpKys7PL7Tdt2jTl5OTYvo4ePWrPmACqgbu7uyQpLS2t3PbS46X9AMAe+NsEAAAAAEDtwnt5AEBl1OoiuyT16tVL0uW9UdLT08vt4+TkpKZNm5b5AlC7BQYGytPTU7GxsSopKSnTVlJSosWLF8vLy0uBgYEGJQRQH/G3CQAAAACA2oX38gCAyqj1RfaGDRvavr906ZKBSQDYk9ls1tSpU5WUlKTw8HClpqYqLy9PqampCg8PV1JSkqZMmSKz2Wx0VAD1CH+bAAAAAACoXXgvDwCojFqxJ/u17N692/a9l5eXgUkA2FtISIiio6MVGRmp0NBQ23EvLy9FR0crJCTEwHQA6iv+NgEAAAAAULvwXh4AcL1qfZH9tddekyR16tRJnp6eBqcBYG8hISEKCgpSSkqKsrKy5O7ursDAQO4sBWAo/jYBAAAAAFC78F4eAHA9anyRPTExUV9++aWeeeYZtWvXznY8JydHL7/8slavXi1JmjFjhlERARjMbDarZ8+eRscAgDL42wQAAAAAQO3Ce3kAQEXV+CL7hQsXFBkZqcjISHl6esrDw0MXL17Unj17VFxcLJPJpBkzZmjYsGFGRwUAAAAAAAAAAAAA1HE1vsjerVs3/f3vf9c333yjgwcP6qeffpLVapWnp6f69Omj8PBw7iwDAAAAAAAAAAA3xGKxsFw8AKBCanyR3dvbW7NnzzY6BgAAAAAAAAAAqKMSEhIUGRmpY8eO2Y55enpq6tSpCgkJMTAZAKAmcjA6AAAAAAAAAAAAgFESEhIUEREhf39/xcXFaceOHYqLi5O/v78iIiKUkJBgdEQAQA1DkR0AAAAAAAAAANRLFotFkZGR6tevn2JiYhQQEKDGjRsrICBAMTEx6tevn+bOnSuLxWJ0VABADUKRHQAAAAAAAAAA1EspKSk6duyYwsLC5OBQtmTi4OCgsWPH6pdfflFKSopBCQEANRFFdgAAAAAAAAAAUC9lZWVJkjp06FBue+nx0n4AAEgU2QEAAAAAAAAAQD3l7u4uSUpLSyu3vfR4aT8AACSK7AAAAAAAAAAAoJ4KDAyUp6enYmNjVVJSUqatpKREixcvlpeXlwIDAw1KCACoiSiyAwAAAAAAAACAeslsNmvq1KlKSkpSeHi4UlNTlZeXp9TUVIWHhyspKUlTpkyR2Ww2OioAoAZpYHQAAAAAAAAAAAAAo4SEhCg6OlqRkZEKDQ21Hffy8lJ0dLRCQkIMTAcAqIkosgMAAAAAAAAAgHotJCREQUFBSklJUVZWltzd3RUYGMgMdgBAuSiyAwAAAAAAAACAes9sNqtnz55GxwAA1ALsyQ4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIJYLh4AAAAAAAAAAADlslgs7FVfDl4XoH6jyA4AAAAAAAAAAIArJCQkKDIyUseOHbMd8/T01NSpUxUSEmJgMmPxugBguXgAAAAAAAAAAACUkZCQoIiICPn7+ysuLk47duxQXFyc/P39FRERoYSEBKMjGoLXBYAkmaxWq9XoEPaWm5srNzc35eTkqGnTpkbHAQDUc1yXqhavJwCgpuCaVLV4PQEANQXXpKrHa1rzWCwWBQcHy9/fXzExMXJw+L85myUlJQoPD1daWpoSEhLq1RLpvC5A3VfRaxIz2QEAAAAAQLU4deqUXnrpJXXu3FmNGjWSs7Oz/Pz89Mwzz+jgwYNGxwMAAMBVpKSk6NixYwoLCytTSJYkBwcHjR07Vr/88otSUlIMSmgMXhcApdiTHQAAAAAAVLn9+/frnnvu0alTp9SwYUP5+vqqYcOGOnjwoJYsWaL33ntPn332mfr27Wt0VAAAAPxGVlaWJKlDhw7ltpceL+1XX/C6ACjFTHYAAAAAAFDlxo0bp1OnTql3795KT0/Xvn37tGvXLv3yyy8aNGiQ8vPz9dRTT6ke7mIHAABQ47m7u0uS0tLSym0vPV7ar77gdQFQiiI7AAAAAACoUvn5+dq0aZMkadGiRfLy8rK1tWjRQitWrJDJZNLhw4e1b98+o2ICAADgKgIDA+Xp6anY2FiVlJSUaSspKdHixYvl5eWlwMBAgxIag9cFQCmK7AAAAAAAoEoVFxfbPnT09fW9or158+a66aabJEmXLl2yazYAAAD8PrPZrKlTpyopKUnh4eFKTU1VXl6eUlNTFR4erqSkJE2ZMkVms9noqHbF6wKgFHuyAwAAAACAKtWsWTN5e3vr6NGj2rp1q4KDg8u079+/X2fOnFGzZs2uup8lAAAAjBUSEqLo6GhFRkYqNDTUdtzLy0vR0dEKCQkxMJ1xeF0ASBTZAQAAAABANZg9e7ZGjhyp0aNHa8GCBerXr58aNGigb7/9VhMmTJDJZFJUVJScnZ2NjgoAQL1jtVqVnJysdevWacuWLdq3b5/y8/PVsmVL9erVS88995z69+9/xXmvvPKKZs6cec3n3rt3rzp16lRd0WFnISEhCgoKUkpKirKysuTu7q7AwMB6P1Ob1wUARXYAAAAAAFDlRowYIVdXV82aNUtDhw4t03b77bfrs88+04ABA656flFRkYqKimyPc3Nzqy0rAAD1zZdffqk//elPkiQHBwe1b99ejRs3VlpamuLj4xUfH6/p06dr1qxZ5Z7v7e0tHx+fctsaNWpUbblhDLPZrJ49exodo8bhdQHqN/ZkBwAAAAAAVc5qtSo9PV1nzpyR2WxW+/btdeutt8rR0VE//fST3nrrLZ09e/aq58+ZM0dubm62L29vbzumBwCgbrNarWrfvr1iYmJ0+vRp7d+/Xzt27NCZM2c0bdo0SZdXpVm/fn25548ePVpff/11uV9XK74DAFCXUGQHAAAAAABVLiwsTJMmTZK3t7cOHjyotLQ07d69W0ePHtUDDzygjz76SP3795fFYin3/GnTpiknJ8f2dfToUTv/BAAA1F09evTQ3r179eyzz6p58+a2446OjvrXv/6l+++/X5K0ZMkSoyIaIi8vT+Hh4frLX/6i8PBw5eXlGR2pRrBYLNq2bZvWr1+vbdu2XfX/vwFAfcJy8QAAAAAAoErt3LlTS5YsUcOGDfX++++XmYXeqlUrvffee/Lz89OPP/6oDz74QMOGDbviOZycnOTk5GTP2AAA1BtNmza9ZntwcLA+//xzHThwwE6JjDd06FDt2rXL9vjAgQPq1q2bunTporVr1xqYzFgJCQmKjIzUsWPHbMc8PT01depUhYSEGJgMAIzFTHYAAAAAAFClkpOTZbVa5e/vX+4y702bNlWPHj0kSSkpKfaOBwAAfkdhYaEkycXFpdz2TZs26ZFHHtG9996roUOHKioqSidOnLBnxCpVWmA3mUwaPHiw1q1bp8GDB8tkMmnXrl0aOnSo0RENkZCQoIiICPn7+ysuLk47duxQXFyc/P39FRERoYSEBKMjAoBhmMkOAAAAAACq1Pnz53+3j9VqlfR/H+IDAICawWq1as2aNZKk3r17l9tn8+bNZR5/+OGHeuWVVxQTE6NRo0ZVd8QqlZeXZyuw//DDD3J2dpYkRUVF6dVXX1VAQIB27dqlvLw8ubq6GpzWfiwWiyIjI9WvXz/FxMTIweHynM2AgADFxMQoPDxcc+fOVVBQkMxms8FpAcD+mMkOAAAMderUKb300kvq3LmzGjVqJGdnZ/n5+emZZ57RwYMHjY4HAAAqoUOHDpIuL7Na3l7qubm52r59uyTJ39/frtkAAMC1LVmyRKmpqXJ0dNSECRPKtLVp00Z/+9vftH37dp05c0b5+flKTk7W/fffr4KCAo0ePVqffvrp745RVFSk3NzcMl9GmTx5siRp0KBBtgJ7KWdnZw0cOLBMv/oiJSVFx44dU1hYmK3AXsrBwUFjx47VL7/8wqpEAOotiuwAAMAw+/fvV5cuXfTaa68pLS1NPj4+6tChgzIzM7VkyRLdcccd+uqrr4yOCQAArlNISIhatmypixcvKjQ0VEeOHLG1nTp1So8//rhOnz4tZ2fnerv8KgAANdGOHTs0fvx4SdLs2bPl5+dXpn3s2LH65z//qcDAQN10001ycXHRXXfdpf/+97966KGHZLVaNXHiRNuKNVczZ84cubm52b7K217GXkpvCBw9enS57U899VSZfvVFVlaWpP+7efK3So+X9gOA+oYiOwAAMMy4ceN06tQp9e7dW+np6dq3b5927dqlX375RYMGDVJ+fr6eeuqp331zXhNZLBZt27ZN69ev17Zt22SxWIyOBACA3bi6uuqdd96Rs7Oztm7dqvbt28vf31+dO3eWt7e31q9frwYNGig2Nlaenp5GxwUAAJIOHz6sgQMHqrCwUMOHD9dLL71U4XNNJpMiIyMlSYcOHdKPP/54zf7Tpk1TTk6O7cvIAnZpgf/tt98ut3358uVl+tUX7u7ukqS0tLRy20uPl/YDgPqGIjsAADBEfn6+Nm3aJElatGiRvLy8bG0tWrTQihUrZDKZdPjwYe3bt8+omJWSkJCg4OBgjRgxQi+++KJGjBih4OBgJSQkGB0NAAC7uf/++7Vz504988wzateunTIyMnTw4EG1adNGTz75pLZt26aRI0caHRMAAEg6ceKEgoODdfz4cf35z3+2vSe/Hv7+/rrpppsk6Xe3f3NyclLTpk3LfBklKipKkvTJJ5+osLCwTFthYaHWr19fpl99ERgYKE9PT8XGxqqkpKRMW0lJiRYvXiwvLy8FBgYalBAAjEWRHQAAGKK4uNj2Js3X1/eK9ubNm9venF+6dMmu2W5EQkKCIiIi5O/vr7i4OO3YsUNxcXHy9/dXREQEhXYAQL3i7++vxYsXKy0tTYWFhSoqKtKRI0f0zjvv6M477zQ6HgAAkHT27FkFBwfr0KFD6tu3r9asWaOGDRtW6rlKz6tN7+NdXV3VpUsXWa1WBQQE6KWXXtLu3bv10ksvKSAgQFarVV26dJGrq6vRUe3KbDZr6tSpSkpKUnh4uFJTU5WXl6fU1FSFh4crKSlJU6ZMkdlsNjoqABjCZK2N66/eoNzcXLm5uSknJ8fQO+QAAJDq93XJx8dHR48etc38/rX9+/erU6dOatasmY4fPy5nZ+cKPaeRr6fFYlFwcLD8/f0VExMjB4f/u5+xpKRE4eHhSktLU0JCAm9CAaAeqM/X+OrA6wkAqCnq0jUpLy9Pf/rTn7Rt2zZ1795dGzduVJMmTSr1XKdPn1arVq1ktVr19ddfq3fv3hU+tya8pkOHDtWuXbuuON6lSxetXbvWgEQ1Q0JCgiIjI3Xs2DHbMS8vL02ZMkUhISEGJgOA6lHRa1IDO2YCAAAoY/bs2Ro5cqRGjx6tBQsWqF+/fmrQoIG+/fZbTZgwQSaTSVFRUdcssBcVFamoqMj2ODc31x7Ry5WSkqJjx45p/vz5ZQrskuTg4KCxY8cqNDRUKSkp6tmzp0EpAQAAAAC4/H568ODB2rZtmzp37qwNGzZUusAuSfPnz5fVapWbm5u6d+9ehUntY+3atcrLy9PkyZN19OhReXt7Kyoqqt7NYP+tkJAQBQUFKSUlRVlZWXJ3d1dgYCCTBwDUexTZAQCAYUaMGCFXV1fNmjVLQ4cOLdN2++2367PPPtOAAQOu+Rxz5szRzJkzqzNmhWVlZUmSOnToUG576fHSfgAAAAAAGMFisSg0NFRffvml/Pz8lJiYaNuy7Wp2796tN998U+PGjVPnzp1txwsLCzV//nzNnTtXkjRlyhQ5OjpWa/7q4urqqpiYGKNj1Dhms5nJAgDwGxTZAQCAYaxWq9LT03XmzBmZzWa1a9dOjo6OOnjwoH766Se99dZb6tGjxzXf6E+bNk0vvPCC7XFubq68vb3tEf8K7u7ukqS0tDQFBARc0Z6WllamHwAAAAAARvjggw/08ccfS7q88tojjzxSbr82bdpozZo1kqSLFy9q0aJFWrRokdzd3eXj4yNJ2rt3r/Lz8yVJY8aM0dSpU6v/BwAAwGAU2QEAgGHCwsL01ltv6a677tLmzZv1hz/8QZJ06tQpjRkzRh999JEOHTqkHTt2XHUZMicnJzk5Odkx9dUFBgbK09NTsbGx5e7JvnjxYnl5eSkwMNDAlAAAAACA+u7X266lpaXZbgr/rbZt29q+/8Mf/qBZs2Zp69at2rdvn/bv36/i4mK1atVKDzzwgJ5++mndd9991Z4dAICawGS1Wq1Gh7C3im5YDwCAPdTX69LOnTvVtWtXNWjQQIcOHbpi9nlubq78/Px0+vRprVq1SsOGDavQ8xr9eiYkJCgiIkL9+vXT2LFj1aFDB6WlpWnx4sVKSkpSdHS0QkJC7J4LAGB/Rl+T6hpeTwBATcE1qerVlNc0JydHYWFhyszMlIeHh2JjY+Xm5mZYHqA2slgsSklJUVZWltzd3RUYGHjVyTNATVTRaxIz2QEAgCGSk5NltVrl7+9f7vLuTZs2VY8ePfTZZ58pJSWlwkV2o4WEhCg6OlqRkZEKDQ21Hffy8qLADgAAAABADRUcHKyMjAzb4xMnTqhHjx7y8fFRYmKigcmA2iMhIUGRkZE6duyY7Zinp6emTp3KZ2Kocxx+vwsAAEDVO3/+/O/2KV1wp7CwsLrjVKmQkBAlJibqnXfe0WuvvaZ33nlHCQkJvJkAAAAAAKAG+nWBvU+fPnr//ffVp08fSVJGRoaCg4ONjAfUCqWrO/r7+ysuLk47duxQXFyc/P39FRERoYSEBKMjAlWKmewAAMAQHTp0kCQdOHBAR48eLXe5+O3bt0uS/P397Z7vRpnNZvXs2dPoGAAAAAAA4BpycnJsBfbU1FQ1atRIkrR06VLl5+era9euysjIUE5ODkvHA1dhsVgUGRmpfv36KSYmRg4Ol+f4BgQEKCYmRuHh4Zo7d66CgoJYOh51BjPZAQCAIUJCQtSyZUtdvHhRoaGhOnLkiK3t1KlTevzxx3X69Gk5Oztr6NChxgUFAAAAAAB1VlhYmKTLM9hLC+ylGjVqpN69e5fpB+BKKSkpOnbsmMLCwmwF9lIODg4aO3asfvnlF6WkpBiUEKh6FNkBAIAhXF1d9c4778jZ2Vlbt25V+/bt5e/vr86dO8vb21vr169XgwYNFBsbK09PT6PjAgAAAACAOigzM1OSNG7cuHLbw8PDy/QDcKWsrCxJ/7dy5W+VHi/tB9QFFNkBAIBh7r//fu3cuVPPPPOM2rVrp4yMDB08eFBt2rTRk08+qW3btmnkyJFGxwQAAAAAAHWUh4eHJOnNN98stz0mJqZMPwBXcnd3lySlpaWV2156vLQfUBewJzsAADCUv7+/Fi9ebHQMAAAAAABQD8XGxqpHjx7asmWL8vPzyywZn5+fr+TkZFs/AOULDAyUp6enYmNjy+zJLkklJSVavHixvLy8FBgYaGBKoGoxkx0AAAAAAAAAANRLbm5u8vHxkSR17dpVo0ePVkpKikaPHq2uXbtKknx8fOTm5mZkTKBGM5vNmjp1qpKSkhQeHq7U1FTl5eUpNTVV4eHhSkpK0pQpU2Q2m42OClQZZrIDAAAAAAAAAIB6KzExUcHBwcrIyFBycrJt9rp0ucCemJhoYDqgdggJCVF0dLQiIyMVGhpqO+7l5aXo6GiFhIQYmA6oehTZAQAAAAAAAABAvZaYmKicnByFhYUpMzNTHh4eio2NZQY7cB1CQkIUFBSklJQUZWVlyd3dXYGBgcxgR51EkR0AAAAAAAAAANR7bm5uWr16tdExgFrNbDarZ8+eRscAqh17sgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAQL2Xl5en8PBw/eUvf1F4eLjy8vKMjlQj5OTkaNiwYerbt6+GDRumnJwcoyMBgOFYLh4AAAAAAAAAANRrQ4cO1a5du2yPDxw4oG7duqlLly5au3atgcmMFRwcrIyMDNvjEydOqEePHvLx8VFiYqKByQDAWMxkBwAAAAAAAAAA9VZpgd1kMmnw4MFat26dBg8eLJPJpF27dmno0KFGRzTErwvsffr00fvvv68+ffpIkjIyMhQcHGxkPAAwFDPZAQAAAAAAAABAvZSXl2crsP/www9ydnaWJEVFRenVV19VQECAdu3apby8PLm6uhqc1n5ycnJsBfbU1FQ1atRIkrR06VLl5+era9euysjIUE5Ojtzc3IyMCgCGoMgOAAAAAAAAAADqpcmTJ0uSBg0aZCuwl3J2dtbAgQP16aefavLkyYqJiTEioiHCwsIkXZ7BXlpgL9WoUSP17t1bycnJCgsL0+rVq42IWKUKCgqUnp5u93F9fX3l4uJi93EB3DiK7AAAAAAAAAAAoF46evSoJGn06NHltj/11FP69NNPbf3qi8zMTEnSuHHjym0PDw9XcnKyrV9tl56eriFDhth93Pj4eHXu3Nnu4wK4cRTZAQAAAAAAAABAveTt7a0DBw7o7bffVlRU1BXty5cvt/WrTzw8PHTixAm9+eabWrp06RXtpbP6PTw87B2tWvj6+io+Pv66zzt06JAmTZqkefPmyc/Pr1LjAqidKLIDAAAAAAAAAIB6KSoqSt26ddMnn3yiV199tcyS8YWFhVq/fr2tX30SGxurHj16aMuWLcrPzy+zZHx+fr6Sk5Nt/eoCFxeXG5pR7ufnx4x0oJ5xMDoAAAAAAAAAAACAEVxdXdWlSxdZrVYFBATopZde0u7du/XSSy8pICBAVqtVXbp0kaurq9FR7crNzU0+Pj6SpK5du2r06NFKSUnR6NGj1bVrV0mSj4+P3NzcjIwJAIZhJjsAAAAAAAAAAKi31q5dq6FDh2rXrl369NNP9emnn9raunTporVr1xqYzjiJiYkKDg5WRkaGkpOTbbPXpcsF9sTERAPTAYCxKLIDAAAAAAAAAIB6be3atcrLy9PkyZN19OhReXt7Kyoqqt7NYP+txMRE5eTkKCwsTJmZmfLw8FBsbCwz2AHUexTZAQAAAAAAAABAvefq6qqYmBijY9Q4bm5uWr16tdExAKBGYU92AAAAAAAAAAAAAAAqiCI7AAAAAAAAAAAAypWTk6Nhw4apb9++GjZsmHJycoyOBACGq7VF9unTp8tkMslkMmn27NlGxwEAAAAAAAAAAKhTgoOD1aNHD+3YsUMnTpzQjh071KNHDwUHBxsdDQAMVSuL7Hv37tW8efOMjgEAAAAAAAAAAFAnBQcHKyMjQ5LUp08fvf/+++rTp48kKSMjg0I7gHqtgdEBrpfVatXYsWPVsGFD3X333fryyy+NjgQAAAAAAAAAAFBn5OTk2ArsqampatSokSRp6dKlys/PV9euXZWRkaGcnBy5ubkZGRUADFHriuzLli3Tli1bNHfuXO3Zs8foODcsLy9PkydP1tGjR+Xt7a2oqCi5uroaHQs1VEFBgaKiovTzzz+rbdu2mjx5slxcXIyOZTheFwAAAAAAAAC/VlBQoPT0dLuP6+vrWyc+mwwLC5N0eQZ7aYG9VKNGjdS7d28lJycrLCxMq1evNiIiABiqVhXZs7KyNGXKFN16662aOHGi/vrXvxod6YYMHTpUu3btsj0+cOCAunXrpi5dumjt2rUGJkNNFB4ero0bN9oeJycna9WqVQoKClJMTIyByYzF6wIAAAAAAADgt9LT0zVkyBC7jxsfH6/OnTvbfdyqlpmZKUkaN25cue3h4eFKTk629QOA+qZWFdknTpyos2fPKj4+Xg0bNjQ6zg0pLbCbTCYNGjRIo0eP1ttvv61PPvlEu3bt0tChQym0w6a0kNywYUM99dRTtt+P5cuXa+PGjQoPD6+XBWVeFwAAAAAAAADl8fX1VXx8/HWfd+jQIU2aNEnz5s2Tn59fpcatCzw8PHTixAm9+eabWrp06RXtpZ+7enh42DsaANQItabIvnHjRr333nt64okn1LdvX6Pj3JC8vDxbgf2HH36Qs7OzJCkqKkqvvvqqAgICtGvXLuXl5bF0PFRQUGArJO/YsUOOjo6SpBdffFHPP/+87rzzTm3cuFEFBQV1YhmiiuJ1AQAAAAAAAHA1Li4uNzSj3M/Pr07MSK+s2NhY9ejRQ1u2bFF+fn6ZJePz8/OVnJxs6wcA9VGtKLIXFhYqLCxMbm5u+ve//33d5xcVFamoqMj2ODc3tyrjXbfJkydLkgYNGmQrsJdydnbWwIED9emnn2ry5Ml1YhYue9/cmKioKEnSU089ZSskl3J0dNTIkSO1dOlSRUVF6R//+IcREQ3B6wIAAAAAAAAA1cPNzU0+Pj7KyMhQ165d1bt3b9vKoaUFdh8fH7m5uRmcFACMUSuK7LNnz9bBgwf1xhtv6Oabb77u8+fMmaOZM2dWQ7LKOXr0qCRp9OjR5bY/9dRT+vTTT239ajv2vrkxP//8s6TLWwyUZ+jQoVq6dKmtX33B6wIAAAAAAAAA1ScxMVHBwcHKyMhQcnKyrbguXS6wJyYmGpgOAIxV44vse/fu1bx583TnnXfq2WefrdRzTJs2TS+88ILtcW5urry9vasq4nXz9vbWgQMH9Pbbb9tm4/7a8uXLbf3qAva+uTFt27ZVcnKy1q5dqxdffPGK9rVr19r61Se8LgAAAAAAAABQvRITE5WTk6OwsDBlZmbKw8NDsbGxzGAHUO/V+CJ7eHi4Ll26pEWLFsnBwaFSz+Hk5CQnJ6cqTlZ5UVFR6tatmz755BO9+uqrZZaMLyws1Pr162396gL2vrkxkydP1qpVq7R8+XI9//zzZZZGLy4u1sqVK2396hNeFwAAAAAAAACofm5ublq9erXRMQCgRqlc1dqOUlNTZTKZNGjQILVu3brMV1xcnCRp7ty5at26tbp3725w2opxdXVVly5dZLVaFRAQoJdeekm7d+/WSy+9pICAAFmtVnXp0kWurq5GR0UN4OLioqCgIF28eFF33nmn5s2bp8OHD9tWeLh48aKCgoLqxP7z14PXBQAAAAAAAAAAAEao8TPZJclisejkyZNXbc/Ly1NeXl6ZGeE13dq1azV06FDt2rVLn376qT799FNbW5cuXWxLXQOSFBMTo/DwcG3cuFFLly7V0qVLbW1BQUGKiYkxMJ1xeF0AoPZhiTkAAAAAAAAAtV2NL7KfO3fuqm2jRo3SypUrNWvWLE2fPt1+oarI2rVrlZeXp8mTJ+vo0aPy9vZWVFQUM9hRrpiYGBUUFCgqKko///yz2rZtq8mTJ9f7mdq8LgBQewQHBysjI8P2+MSJE+rRo4d8fHyUmJhoYDIAAAAAAHA1+/fv10MPPSSLxSKz2ayPPvpIHTt2NDoWaiiLxaKUlBRlZWXJ3d1dgYGBMpvNRsdCDVZbf2dqfJG9rnN1dWW2LSrMxcVF//jHP4yOUePwugBAzffrAnufPn00btw4vfnmm9qyZYsyMjIUHBxMoR0AAAAAgBrmt8V0i8WiQYMGSbpcfAd+LSEhQZGRkTp27JjtmKenp6ZOnaqQkBADk6Gmqs2/MzV+T3YAAADUbjk5ObYCe2pqqpYuXaquXbtq6dKlSk1NlSRlZGQoJyfHyJgAAAAAAOBXfl1gd3Jy0vjx4+Xk5FRuO5CQkKCIiAj5+/srLi5OO3bsUFxcnPz9/RUREaGEhASjI6KGqe2/M8xkBwAA+B0FBQVKT0+3+7i+vr51YvuLsLAwSZdnsDdq1KhMW6NGjdS7d28lJycrLCxMq1evNiIiAAAAAAD4lV/PUt+0aZM8PDwkSeHh4crMzFT//v1t/Si2w2KxKDIyUv369VNMTIwcHC7P8Q0ICFBMTIzCw8M1d+5cBQUF1YplwFH96sLvTK0usq9YsUIrVqwwOgYAAKjj0tPTNWTIELuPGx8fr86dO9t93KqWmZkpSRo3bly57eHh4UpOTrb1AwAAAAAAxnrooYckXZ7BXlpgL+Xh4SFHR0cVFxfroYce0p49e4yIiBokJSVFx44d0/z5823F0lIODg4aO3asQkNDlZKSop49exqUEjVJXfidqdVFdgAAAHvw9fVVfHz8dZ936NAhTZo0SfPmzZOfn1+lxq0LPDw8dOLECb355ptaunTpFe0xMTG2fgAAAAAAwHgWi0XS/61O91tjxozRokWLbP1Qv2VlZUmSOnToUG576fHSfkBd+J2hyA4AAPA7XFxcbmhGuZ+fX52YkV5ZsbGx6tGjh7Zs2aL8/PwyS8bn5+crOTnZ1g8AUPdYLBa9/fbb+s9//qPdu3crLy9PN998s7p27aqnnnpKgwcPNjoiAAAAfsNsNstisSg2Nlbh4eFXtC9btszWD3B3d5ckpaWlKSAg4Ir2tLS0Mv2AuvA74/D7XQAAAIDKc3Nzk4+PjySpa9euGj16tFJSUjR69Gh17dpVkuTj4yM3NzcjYwIAqkF2drbuvvtuPfPMM9qyZYtatmyp2267TRcvXtS6dev07rvvGh0RAAAA5fjoo48kSUVFRVds75aZmani4uIy/VC/BQYGytPTU7GxsSopKSnTVlJSosWLF8vLy0uBgYEGJURNUxd+ZyiyAwAAoNolJibaCu3Jycl6/PHHbTPYfXx8lJiYaGQ8AEA1KCkp0aBBg/Ttt99qyJAhysjI0L59+5SSkqLMzEwdPXpUERERRscEAABAOTp27Gj7vn///urSpYsWLFigLl26qH///uX2Q/1lNps1depUJSUlKTw8XKmpqcrLy1NqaqrCw8OVlJSkKVOmsPIBbOrC7wzLxQMAAMAuEhMTlZOTo7CwMGVmZsrDw0OxsbHMYAeAOuqtt97S119/rf79+2vNmjVycCh7n7+Xl5e8vLwMSgcAAIDfs3//flsRvbi4WIsWLbqiHSgVEhKi6OhoRUZGKjQ01Hbcy8tL0dHRCgkJMTAdaqLa/jtDkR0AAAB24+bmptWrVxsdAwBgBwsXLpQkzZo164oCOwAAAGqH/fv3a//+/XrooYdksVhkNpv10UcfMYMd5QoJCVFQUJBSUlKUlZUld3d3BQYG1ujZyDBWbf6docgOAAAAAACqVFpamvbt26ebbrpJd911l9atW6c1a9bo+PHjcnd315/+9Cc9+eSTcnJyMjoqAAD1ktVqVXJystatW6ctW7Zo3759ys/PV8uWLdWrVy8999xzZZYE/61vvvlGkZGR2rp1q/Ly8tSuXTsNGzZMkyZNkrOzsx1/EthDx44dtWfPHqNjoJYwm83q2bOn0TFQi9TW3xmK7AAAAAAAoEp9//33kqROnTrpySef1HvvvVemPS4uTq+99po2bNigtm3bGhERAIB67csvv9Sf/vQnSZKDg4Pat2+vxo0bKy0tTfHx8YqPj9f06dM1a9asK8597733NHLkSFksFnl6esrb21s//fSTZsyYoU8//VRJSUlq1KiRvX8kAADsivXaAAAAAABAlTp+/Lgkafv27Xrvvff09NNP68iRIyosLNT//vc/+fr6at++fXr44YdVUlJS7nMUFRUpNze3zBcAAKgaVqtV7du3V0xMjE6fPq39+/drx44dOnPmjKZNmyZJmj17ttavX1/mvCNHjmjMmDGyWCyKiorS0aNHtWPHDqWlpaljx47avn27Jk+ebMSPBACAXVFkBwAAAAAAVerChQuSpIsXL6pPnz5asmSJ2rZtKycnJwUFBSk+Pl4mk0nff/+9/vvf/5b7HHPmzJGbm5vty9vb254/AgAAdVqPHj20d+9ePfvss2revLntuKOjo/71r3/p/vvvlyQtWbKkzHnz5s1TUVGRQkJCNGnSJJlMJklS27Zt9fbbb0uS3nrrLZ08edJOPwkAAMagyA4AAAAAAKrUr/diHT9+/BXtd9xxh22f1w0bNpT7HNOmTVNOTo7t6+jRo9UTFgCAeqhp06Zq0ODqu8kGBwdLkg4cOGA7ZrVa9dFHH0mSxowZc8U5d911lzp16qSLFy9q3bp1VZwYAICahSI7AAAAAACoUr+eEdepU6dy+9xyyy2SLi87Wx4nJyc1bdq0zBcAALCPwsJCSZKLi4vtWEZGhm1LmN69e5d7Xunxbdu2VXNCAACMdfVb1QAAAAAAACqhY8eOtu+dnJzK7VN63GKx2CUTAACoGKvVqjVr1kgqW0xPS0uTdPka7uHhUe65vr6+ZfpeTVFRkYqKimyPc3NzbygzKq6goEDp6el2H9fX17fMTRsAUNtRZAcAAAAAAFWqa9eucnZ2VmFhodLT09W+ffsr+pR+uOvp6WnveAAA4BqWLFmi1NRUOTo6asKECbbj2dnZkqRmzZrZ9mL/rdLVbEr7Xs2cOXM0c+bMqgmM65Kenq4hQ4bYfdz4+Hh17tzZ7uMCQHWhyA4AAAAAAKpU48aN9cADDyg+Pl4rV65USEhImfYTJ07oiy++kCTde++9RkQEAADl2LFjh8aPHy9Jmj17tvz8/GxtpUvIOzo6XvX80pVqCgoKrjnOtGnT9MILL9ge5+bmytvbu9K5UXG+vr6Kj4+/7vMOHTqkSZMmad68eWV+L65nXACoSyiyAwAAAACAKjdjxgytW7dO77//vkJCQjRy5EhJ0rlz5zRq1CgVFBTI19dXjzzyiMFJAQCAJB0+fFgDBw5UYWGhhg8frpdeeqlMu7OzsySpuLj4qs9RugT87y0L7uTkdNUtZVC9XFxcbmhGuZ+fHzPSAUCSg9EBAAAAAABA3XPHHXfojTfekNVq1ahRo9S2bVt1795dnp6e+uKLL9SyZUt9+OGH15wNBwAA7OPEiRMKDg7W8ePH9ec//1krVqy4Ykn40qXgz507J6vVWu7zlC4TX9oXAIC6iiI7AAAAAACoFmFhYfrqq6/0l7/8Rfn5+frxxx/VqlUrjRs3Tj/88IMCAgKMjggAQL139uxZBQcH69ChQ+rbt6/WrFmjhg0bXtGvQ4cOki7PVs/MzCz3udLT08v0BQCgrmK5eAAAAAAAUG369OmjPn36GB0DAACUIy8vTw888IB++uknde/eXZ9++ulVl3r38fFR69atdeLECSUnJ+vRRx+9ok9ycrIkqWfPntWaGwAAozGTHQAAAAAAAACAeqaoqEiDBw/Wtm3b1LlzZ23YsEFNmjS5an+TyaSHHnpIkrRs2bIr2rdu3ap9+/apYcOGGjRoULXlBgCgJqDIDgAAAAAAAABAPWKxWBQaGqovv/xSfn5+SkxM1E033fS7502aNEmOjo5KSEjQvHnzbHuz//zzzxo9erQk6emnn1br1q2rNT8AAEZjuXgAAAAAAAAAAOqRDz74QB9//LEkycHBQY888ki5/dq0aaM1a9bYHrdr105LlizRU089pcmTJ2vhwoVq1aqVfvrpJ128eFHdunXTvHnz7PEjAABgKIrsAAAAAAAAAADUI0VFRbbv09LSlJaWVm6/tm3bXnFsxIgRat++vebMmaOtW7dqz5498vX11bBhwzRlyhQ5OztXW24ANV9xcbFWrVqljIwM+fj4aPjw4XJ0dDQ6FlDlKLIDAAAAAAAAAFCPjBo1SqNGjar0+XfddZc+/fTTqgsEoE6IiorSihUrZLFYyhwbNWqUJk+ebGAyoOqxJzsAAAAAAAAAAACASouKitKyZcvUrFkzzZo1S19//bVmzZqlZs2aadmyZYqKijI6IlClKLIDAAAAAAAAAAAAqJTi4mKtWLFCLVq00ObNm/Xoo4/K3d1djz76qDZv3qwWLVpoxYoVKi4uNjoqUGUosgMAAAAAAAAAAAColFWrVslisWjChAlq0KDsTtUNGjTQ+PHjZbFYtGrVKoMSAlWPIjsAAAAAAAAAAACASsnIyJAk9e/fv9z2fv36lekH1AUU2QEAAAAAAAAAAABUio+PjyRp06ZN5bYnJSWV6QfUBRTZAQAAAAAAAAAAAFTK8OHDZTabtWDBAl26dKlM26VLl7Rw4UKZzWYNHz7coIRA1aPIDgAAAAAAUEEWi0Xbtm3T+vXrtW3bNlksFqMjAQAAAIZydHTUqFGjdObMGd1zzz2Ki4vTyZMnFRcXp3vuuUdnzpzRqFGj5OjoaHRUoMo0MDoAAAAAAABAbZCQkKDIyEgdO3bMdszT01NTp05VSEiIgckAAPXFyZMnlZmZqY4dO6pRo0ZGxwEAm8mTJ0uSVqxYoRkzZtiOm81mjRkzxtYO1BXMZAcAAAAAAPgdCQkJioiIkL+/v+Li4rRjxw7FxcXJ399fERERSkhIMDoiAKAO2LZtm1544QX997//LXM8NzdXgwcPloeHhwIDA9W6dWstX77coJQAUL7Jkyfrhx9+0LRp0/T4449r2rRp+uGHHyiwo05iJjsAAAAAAMA1WCwWRUZGql+/foqJiZGDw+U5CwEBAYqJiVF4eLjmzp2roKAgmc1mg9MCAGqzpUuX6u2339aDDz5Y5vikSZP06aefysHBQW5ubsrOztZf//pXBQYGqkuXLsaEBYBylC4dD9R1zGQHAAAAAAC4hpSUFB07dkxhYWG2AnspBwcHjR07Vr/88otSUlIMSggAqCuSk5PVuHFj3XPPPbZjeXl5evfdd9WkSRP99NNPOnPmjBYsWKCSkhK99tprBqYFAKD+osgOAAAAAABwDVlZWZKkDh06lNteery0HwAAlXXy5El5e3uXOfbVV1+psLBQjz32mDp16iRJeu6559SyZUtt27bNiJgAcFUWi0Xbtm3T+vXrtW3bNlksFqMjAdWC5eIBAAAAAACuwd3dXZKUlpamgICAK9rT0tLK9AMAoLLOnz8vX1/fMse+/vprmUwmBQcH2445ODjoD3/4g/bs2WPviABwVQkJCYqMjNSxY8dsxzw9PTV16lSFhIQYmAyoesxkBwAAAAAAuIbAwEB5enoqNjZWJSUlZdpKSkq0ePFieXl5KTAw0KCEAIC6okWLFvr5559ltVptx/73v/9Jkvr27Vum78WLF+Xo6GjXfABwNQkJCYqIiJC/v7/i4uK0Y8cOxcXFyd/fXxEREUpISDA6IlClKLIDAADDWSwWLVmyRH379lXLli3l7Oystm3b6sEHH9S6deuMjgcAAOo5s9msqVOnKikpSeHh4UpNTVVeXp5SU1MVHh6upKQkTZkyRWaz2eioAIBa7o9//KPOnDmjJUuWSLpcYP/+++91xx13qFWrVrZ+VqtVBw8eVJs2bYyKCgA2FotFkZGR6tevn2JiYhQQEKDGjRsrICBAMTEx6tevn+bOncvS8ahTKLIDAABDZWdn6+6779YzzzyjLVu2qGXLlrrtttt08eJFrVu3Tu+++67REQEAABQSEqLo6GgdOHBAoaGh6tatm0JDQ5WWlqbo6GiWvwQAVIkXX3xRJpNJzz77rFq2bKkBAwbIZDLpxRdfLNNv8+bNunDhgrp3725QUgD4PykpKTp27JjCwsLk4FC29Ojg4KCxY8fql19+UUpKikEJgarHnuwAAMAwJSUlGjRokL799lsNGTJECxculJeXl639l19+UXp6uoEJAQAA/k9ISIiCgoKUkpKirKwsubu7KzAwkBnsAIAqc/fdd+vDDz/U9OnTdfDgQfn6+mrixIl6/PHHy/SLjY2VJG7yAlAjZGVlSZI6dOhQbnvp8dJ+QF1AkR0AABjmrbfe0tdff63+/ftrzZo1V9zp6uXlVaboDtRVFouFgg0A1BJms1k9e/Y0OgYAoA4bPHiwBg8efM0+b731lmJjY9WkSRM7pQKAq3N3d5ckpaWlKSAg4Ir2tLS0Mv2AuoAiOwAAMMzChQslSbNmzbqiwA7UFwkJCYqMjNSxY8dsxzw9PTV16lRmpQAAAAAoF8V1ADVJYGCgPD09FRsbq5iYmDKf85WUlGjx4sXy8vJSYGCggSmBqsWn2QAAwBBpaWnat2+fbrrpJt11111at26dnnjiCQUFBSk0NFRLly5VUVGR0TGBapWQkKCIiAj5+/srLi5OO3bsUFxcnPz9/RUREaGEhASjIwIAAAAAAFyT2WzW1KlTlZSUpPDwcKWmpiovL0+pqakKDw9XUlKSpkyZwqp9qFOYyQ4AAAzx/fffS5I6deqkJ598Uu+9916Z9ri4OL322mvasGGD2rZta0REoFpZLBZFRkaqX79+Ze7yDggIUExMjMLDwzV37lwFBQXxJhQAAACoR4qLi7V8+XJt2LBB6enpysvLk9VqLbevyWTSoUOH7JwQAK4UEhKi6OhoRUZGKjQ01Hbcy8tL0dHRrNaHOociOwAAMMTx48clSdu3b9fWrVv19NNPa/r06WrdurW+/vprPfPMM9q3b58efvhhfffdd1ddTr6oqKjMjPfc3Fy75IdUUFCg9PR0u4/r6+srFxcXu49b1VJSUnTs2DHNnz//it9vBwcHjR07VqGhoUpJSWHvXwAAAKCeOH78uIKCgrR///6rFtZ/zWQy2SEVAFRMSEiIgoKClJKSoqysLLm7uyswMJDJA6iTKLIDAABDXLhwQZJ08eJF9enTR0uWLLG1BQUFKT4+Xl27dtX333+v//73v/rLX/5S7vPMmTNHM2fOtEtmlJWenq4hQ4bYfdz4+Hh17tzZ7uNWtaysLElShw4dym0vPV7aDwAAAEDd9+KLL2rfvn3y9fXV5MmT1bVrV7m7u1NMB1BrmM1mJgugXqDIDgAADOHs7Gz7fvz48Ve033HHHerfv7++/PJLbdiw4apF9mnTpumFF16wPc7NzZW3t3fVB8YVfH19FR8ff93nHTp0SJMmTdK8efPk5+dXqXHrAnd3d0lSWlqaAgICrmhPS0sr0w8AAABA3bdhwwY5Ozvrq6++kqenp9FxAADAVVBkBwAAhmjevLnt+06dOpXb55ZbbtGXX36pI0eOXPV5nJyc5OTkVNXxUAEuLi43NKPcz8+vTsxIr6zAwEB5enoqNja2zJ7sklRSUqLFixfLy8tLgYGBBqYEAAAAYE8Wi0WdOnWiwA4AQA1X/uamAAAA1axjx462769WJC89brFY7JIJsCez2aypU6cqKSlJ4eHhSk1NVV5enlJTUxUeHq6kpCRNmTKFfcsAAACAeuT222/XmTNnjI4BAJVWXFysFStW6NVXX9WKFStUXFxsdCSgWlBkBwAAhujatattyfj09PRy+5Qe5w5+1FUhISGKjo7WgQMHFBoaqm7duik0NFRpaWmKjo5WSEiI0REBAAAA2NGkSZN09OhRxcXFGR0FAK5bVFSUAgICNGfOHL333nuaM2eOAgICFBUVZXQ0oMqxXDwAADBE48aN9cADDyg+Pl4rV668oph44sQJffHFF5Kke++914iIgF2EhIQoKChIKSkpysrKkru7uwIDA5nBDgA1lMVi4W82AKDaDBo0SK+99pqefvppfffddxo9erT8/PxsN6kDQE0VFRWlZcuWqUWLFpowYYL69++vTZs2acGCBVq2bJkkafLkyQanBKoORXYAAGCYGTNmaN26dXr//fcVEhKikSNHSpLOnTunUaNGqaCgQL6+vnrkkUcMTgpUL7PZrJ49exodAwDwOxISEjRnzhxlZmbajnl4eGjatGmsPiJuQACAqjJ8+HB9+eWXWrBggRYsWHDNviaTSZcuXbJPMAC4itIl4lu0aKHNmzerQYPL5cdHH31UQ4YM0T333KMVK1ZowoQJcnR0NDgtUDUosgMAAMPccccdeuONNxQeHq5Ro0ZpxowZatWqlfbs2aP8/Hy1bNlSH374If/nGwAAGC4hIUHPP/+8TCZTmePHjx/X888/r9dff71eF9oTEhIUGRmpY8eO2Y55enpq6tSp9fp1AYDrdfDgQfXr10/Hjx+X1Wr93f4V6QMA1W3VqlWyWCyaMGGCrcBeqkGDBho/frxmzJihVatWadSoUcaEhF0UFBRcdWvQ6uTr6ysXFxe7jkmRHQAAGCosLEydO3fWvHnz9M033+jHH3+Uh4eH/vznP2vatGnsxw4AAAxnsVg0bdo0SdJNN92kwYMHy9vbW0ePHtW6det05swZTZs2TUFBQfVy5nZCQoIiIiLUr18/zZ8/Xx06dFBaWppiY2MVERGh6OhoCu0AUEGTJ09WZmam/vjHP2rmzJkKCAiQu7u70bEA4JoyMjIkSf379y+3vV+/fmX6oe5KT0/XkCFD7D5ufHy8OnfubNcxKbIDAADD9enTR3369DE6BgAAQLm+/fZb5eXlqVGjRnJ0dNTbb79ta2vTpo0aNWqkvLw8ffvtt+rdu7eBSe3PYrEoMjJS/fr1U0xMjBwcHCRJAQEBiomJUXh4uObOnVtvb0AAgOv11VdfydXVVRs2bFDTpk2NjgMAFeLj4yNJ2rRpkx599NEr2pOSksr0Q93l6+ur+Pj46z7v0KFDmjRpkubNmyc/P79KjWtvFNkBAAAAAACu4eOPP5Yk5efnq6SkpExbdna2CgsLbf3qW5E9JSVFx44d0/z5820F9lIODg4aO3asQkNDlZKSop49exqUEgBqj5KSEnXs2JECO4BaZfjw4YqKitKCBQs0ZMiQMkvGX7p0SQsXLpTZbNbw4cMNTAl7cHFxuaEZ5X5+fnafkV5ZFNkBAAAAAACu4cKFC7bv//jHP+qee+6Rs7OzCgsLtXnzZtvMnF/3qy+ysrIkSR06dCi3vfR4aT8AwLV169ZNu3fvNjoGAFwXR0dHjRo1SsuWLdM999yj8ePHq1+/fkpKStLChQt15swZjRkzRo6OjkZHBaoMRXYAAAAAAIBraNmypSSpYcOG2rdvn62oLkmtW7dWw4YNdfHiRVu/+qR0n+C0tDQFBARc0Z6WllamHwDg2l5++WX96U9/0sKFCzV+/Hij4wBAhU2ePFmStGLFCs2YMcN23Gw2a8yYMbZ2oK6gyA4AAAAAAHANbm5ukqSLFy/q5MmTZdpOnjwpq9Vapl99EhgYKE9PT8XGxpbZk126vOTx4sWL5eXlpcDAQANTAkDt0a5dO82bN09TpkzR5s2bNXr0aPn5+alRo0ZXPYc9jgHUFJMnT9aECRO0atUqZWRkyMfHR8OHD2cGO+okiuwAAAAAAADX8OvCcWlBvbzHv92TvD4wm82aOnWqIiIiFB4errFjx6pDhw5KS0vT4sWLlZSUpOjoaJnNZqOjAkCt8Ic//EEmk0lWq1Uff/yxPv7442v2N5lMunTpkn3CAUAFlC4dD9R1FNkBAAAAAACuoUmTJlXar64JCQlRdHS0IiMjFRoaajvu5eWl6OhohYSEGJgOAGoXHx8fmUwmo2MAAIDfQZEdAAAAAADgGnJycmzfN2vWTH/84x/VqFEj5efn69tvv9W5c+eu6FffhISEKCgoSCkpKcrKypK7u7sCAwOZwQ4A1+nIkSNGRwCAG5KTk6OwsDBlZmbKw8NDsbGx9XJbJdR9FNkBAAAAAACu4fjx47bvCwsLtWHDBttjZ2fncvvVR2azWT179jQ6BgAAAAwSHBysjIwM2+MTJ06oR48e8vHxUWJiooHJgKpX/zYLAwAAAAAAqITWrVurRYsWZY61bNlSrVu3NigRAAAAUDP8usDep08fvf/+++rTp48kKSMjQ8HBwUbGA6ocM9kBAAAAAEC9VFBQoPT09N/t5+joKOnyTJw777xTDzzwgBwdHVVcXKzvv/9eO3bssPXbvXv37z6fr6+vXFxcbiw8AKBOKyoq0urVq5WQkKADBw7o/PnzatKkifz9/XXfffcpNDRUTk5ORscEAEmXl4gvLbCnpqaqUaNGkqSlS5cqPz9fXbt2VUZGhnJyclg6HnVGrSiyf/zxx/r888+VkpKizMxMnTlzRo0aNdKtt96qxx57TM8++6ztDS8AAAAAAEBFpKena8iQIdd1zo4dO2xF9d/68MMP9eGHH/7uc8THx6tz587XNS4AoP7YsWOHHnnkER05ckRWq/WKtri4OM2aNUsffPCB7rzzToNSAsD/CQsLk3R5Bntpgb1Uo0aN1Lt3byUnJyssLEyrV682IiJQ5WpFkf3f//63kpOT5eTkJA8PD91xxx06fvy4vvnmG33zzTd699139b///U/NmjUzOioAAAAAAKglfH19FR8f/7v9LBaLxowZo9zcXNsM9lKlj93c3LR06VKZzeYKjQsAQHl++eUXBQcHKzs7Wy1bttRf//pXde7cWTfffLNOnjyp3bt3a+nSpUpPT9d9992nH374QZ6enkbHBlDPZWZmSpLGjRtXbnt4eLiSk5Nt/YC6oFYU2Z9++mnNnj1bvXv3VsOGDW3Hv/32Wz3yyCP6/vvv9fe//11vvvmmgSkBAAAAAEBt4uLiUuEZ5f/85z/1/PPPy2QylTle+nj27Nm6/fbbqzwjaj+LxaKUlBRlZWXJ3d1dgYGBFboZA0D9NGfOHGVnZ2vIkCF69913y91e5OWXX9aTTz6pDz/8UHPmzNEbb7xhQFIA+D8eHh46ceKE3nzzTS1duvSK9piYGFs/oK5wMDpARYwaNUr9+vUrU2CXpD/+8Y+aP3++pMtLygN13a5du9SpUyd17NhRnTp10q5du4yOVCMUFBRo5syZGj16tGbOnKmCggKjI6EGs1gs2rZtm9avX69t27bJYrEYHQkAAAC1QEhIiF5//XW1aNGizPGWLVvq9ddfV0hIiEHJUJMlJCQoODhYI0aM0IsvvqgRI0YoODhYCQkJRkcDUEN9/vnnaty4sVasWFFugV2SnJ2dtXz5cjVu3FifffaZnRMCwJViY2MlSVu2bFF+fn6Ztvz8fCUnJ5fpB9QFtWIm+7V06tRJkq74jxaoazp27FjmsdVq1dChQyVJ+/fvNyJSjRAeHq6NGzfaHicnJ2vVqlUKCgqy3R0HlEpISFBkZKSOHTtmO+bp6ampU6fyoSgAAEA1mz59uv75z39KkmbNmqXp06cbnOj6hYSEKCgoSGvXrtWMGTP06quvaujQoXVyVnJBQYHS09PtPq6vr+9Vi0q1TUJCgiIiItSvXz/Nnz9fHTp0UFpammJjYxUREaHo6GjehwC4QmZmpm6//Xa5urpes5+rq6tuueUWJuEAqBHc3Nzk4+OjjIwMde3aVb1791Z4eLhiYmJsBXYfHx+5ubkZnBSoOrW+yP7NN99Iku68806DkwDV59cFdrPZrKeeekrLly+3zcDt2LFjvSy0lxbYGzZsqKeeekpDhw7V2rVrtXz5cm3cuNF2EQckPuACAAAw0t69ezVv3jyjY1QJs9ms2267TZJ022231ckCuySlp6dryJAhdh83Pj6+wkv412QWi0WRkZHq16+fYmJi5OBweTHJgIAAxcTEKDw8XHPnzlVQUFCd/R0CUDlNmjTRyZMnK9T35MmTaty4cTUnAoCKSUxMVHBwsDIyMpScnGwrrkuXC+yJiYkGpgOqXq0sslssFh0/flyffPKJpk6dqsaNG2vOnDlGxwKqxa/vRk1MTJSPj48kadKkScrIyFBwcLCtX5cuXQzJaISCggJbgX3Hjh1ydHSUJL344ot6/vnndeedd2rjxo0qKCioM7MgUHl8wAUAAGAcq9WqsWPHqmHDhrr77rv15ZdfGh0JFeDr66v4+PjrPu/QoUOaNGmS5s2bJz8/v0qNWxekpKTo2LFjmj9/vu39RykHBweNHTtWoaGhSklJUc+ePQ1KCaAm6tatmxITE/X+++8rNDT0qv1Wr16to0ePMmEAQI2SmJionJwchYWFKTMzUx4eHoqNjWUGO+qkWlVkX7BggSZOnFjm2IMPPqhZs2bZ7iIvT1FRkYqKimyPc3NzqzybUcuoSXVrKTVc6ZFHHpF0ebZEaYG9lI+Pj8xmsywWix555BHt27fPiIiGiIqKkiQ99dRTtgJ7KUdHR40cOVJLly5VVFSU/vGPfxgRETUIH3ABAAAYZ9myZdqyZYvmzp2rPXv2GB0HFeTi4nJDM8r9/PzqxIz0ysrKypIkdejQodz20uOl/QCg1PPPP6+EhASNHDlS27dv13PPPad27drZ2g8fPqzXX39dMTExMplMioiIqPRYhw8f1v/+9z999913+u6777R7925ZLJZrbuvyyiuvaObMmdd83r1799q2eQVQ/7i5uWn16tVGxwCqXa0qsnt6eqp37966ePGifv75Z508eVKbNm3S6tWr9eqrr1519uGcOXN+98J/o4xaRk2qO0upoXxWq1XS5WJyeYYPH653333X1q+++PnnnyXJti/9bw0dOlRLly619UP9xgdcAAAAxsjKytKUKVN06623auLEifrrX/9qdCTALtzd3SVJaWlpCggIuKI9LS2tTD8AKPXnP/9ZU6ZM0dy5c7VgwQItWLBATk5Ocnd3V1ZWlm0ymdVq1bRp0/TAAw9UeqyFCxdq4cKFlTrX29v7iglBpRo1alTpTAAA1Ba1qsj+yCOP2Gb1StK2bds0duxY/etf/9LZs2e1aNGics+bNm2aXnjhBdvj3NxceXt7V2m2yi6jJrGUGq7NZDLJarVq+fLlmjRp0hXtq1atsvWrT9q2bavk5GStXbtWL7744hXta9eutfUD+IALAADAGBMnTtTZs2cVHx+vhg0bGh0HsJvAwEB5enoqNja2zJZVklRSUqLFixfLy8tLgYGBBqYEUFPNmTNHvXv3VmRkpL799lsVFhbq6NGjki6vyHfXXXdpypQp+vOf/3xD47Rs2VIDBw5Ujx491L17dy1dulQffvhhhc4dPXq0XnnllRsaHwCA2qxWFdl/q2fPnvrss8/k6+urt956S1OnTi23oObk5CQnJ6dqzXKjy6hJLKWG8q1Zs0ZDhw6VxWJRRkZGmTtEMzIyZLFYbP3qk8mTJ2vVqlVavny5nn/++TJLxhcXF2vlypW2fgAfcAEAANjfxo0b9d577+mJJ55Q3759jY4D2JXZbNbUqVMVERGh8PBwjR07Vh06dFBaWpoWL16spKQkRUdHX3VVRgAYOHCgBg4cqAsXLujgwYPKy8uTq6ur2rdvr8aNG1fJGL9dEv7999+vkucFAKA+qNVFdkny8PBQQECAtm3bpp07dzJrFXVOly5dbN8HBwfLbDZr+PDhWrVqla3A/tt+9YGLi4uCgoK0ceNG3XnnnRo5cqSGDh2qtWvXauXKlbp48aKCgoLk4uJidFTUAHzABQAAYF+FhYUKCwuTm5ub/v3vf1fqOYqKimxL4kqXV6UDapOQkBBFR0crMjJSoaGhtuNeXl6Kjo5WSEiIgekA1BaNGzfWHXfcYXQMAADwG7W+yC5Jly5dKvMvUNfs379fHTt2lCRZLBa9++67V7TXRzExMQoPD9fGjRu1dOlSLV261NYWFBSkmJgYA9OhpuEDLgAAAPuZPXu2Dh48qDfeeEM333xzpZ5jzpw5mjlzZhUnA+wrJCREQUFBSklJUVZWltzd3RUYGMgNvgCuymw26+6779ZXX331u3379++vLVu2GPK5+KZNm7R7926dOXNGN910k3r06KERI0aodevWds8CAIARan2R/ciRI9q5c6ckcUcf6rT9+/dr165deuSRR2S1WmUymbRmzZp6N4P9t2JiYlRQUKCoqCj9/PPPatu2rSZPnswMdpSLD7gAAACq3969ezVv3jzdeeedevbZZyv9PNOmTdMLL7xge5ybmytvb++qiAjYldlsVs+ePY2OAaCWsFqtslqt19XfCJs3by7z+MMPP9Qrr7yimJgYjRo1ypBMAADY0w0V2Q8fPqzt27fr1KlTOn/+vJo2bapWrVqpR48eVbZs+/fff69PPvlEI0eOlK+vb5m2DRs2aOLEibp06ZIeeOAB+fn5VcmYQE3VpUsX7du3z+gYNY6Li4v+8Y9/GB0DtQQfcAEAAFSv8PBwXbp0SYsWLZKDg0Oln8fJyUlOTk5VmAwAgLrlwoULatiwoV3HbNOmjf72t7/poYcekq+vr1xcXJSamqrZs2fr888/1+jRo9WiRQv95S9/uebzXO+2MJmZmcrOzq6Sn+H3HDp0qMy/9tC8eXN5eHjYbTygogoKCpSenm73cUv/vgA1WaWK7O+++67mzJlzzSWqb731Vv3tb3/TsGHDKh1Oks6fP69XX31Vr776qlq3bi0vLy8VFxcrIyND586dkyR1795dK1euvKFxAADA9fvuu+/07rvv6vXXXzc6CgAAqCFSU1NlMpk0aNCgK9pycnIkSXPnztUbb7whb29vbd++3d4RAQCo9fbv36+ffvpJnp6edh137NixVxy766679N///lcPP/ywPvroI02cOFEDBw6UyWS66vNcz7YwmZmZGnDfABUVF/1+5yo0adIku43l5OikDV9soNCOGic9PV1Dhgyx+7jx8fHq3Lmz3ccFrsd1FdlLSko0YsQIrV692rYMTYsWLeTt7a3GjRsrLy9PR48e1dmzZ7V792498cQT+uKLL7R8+fJrXlCv5Y477tDChQu1ceNG7d69W/v27VNxcbFatGihXr166dFHH9UTTzyhBg1q/cr3AADUCkeOHNF//vMf/ec//1FaWpokUWQHAABlWCwWnTx58qrteXl5ysvLk7Ozsx1TAQBQ8yxcuFALFy4scywlJeWKVV1/raCgQKdOnZIkDR48uFrzVZTJZFJkZKQ++ugjHTp0SD/++OM1t3e9nm1hsrOzVVRcpDty7pCrxbXKsxstz5ynnW47lZ2dTZEdNY6vr6/i4+Ov+7xDhw5p0qRJmjdvXqVWob7W30CgpriuyvSrr76qVatWyWw267nnnlNYWJg6dux4Rb+9e/dq0aJFWrRokd599121b99e06dPr1TA5s2bKyIiQhEREZU6HwAA3LicnBx98MEHevfdd5WcnCzp8r5vDRs21IABAwxOBwAAapLSVefKM2rUKK1cuVKzZs2q9OcEAADUJefOndORI0dsj00mkwoLC8scK0+TJk30yCOPaPbs2dUb8Dr4+/vrpptu0tmzZ3Xw4MFrFtkrsy2Mq8VVbpfcbjQmgOvg4uJyQzPK/fz8mJGOOqvCRfbTp08rMjJSDRo00Pr16xUSEnLVvrfccouio6P1wAMP6C9/+Yv++c9/6tlnn1WLFi2qJDQAAKh+ly5d0meffaZ3331X69evV3FxsW0lm169eumJJ57QY489pptuusngpAAAAAAA1E4TJkzQqFGjJF2+md3X11fdu3fXBx98UG5/k8kkFxcXubu72zFlxZXuEX/p0iWDkwAAUL0qXGR/9913VVxcrBdffPGaBfZfGzBggCIiIrRgwQK99957zEYHAKAW2LZtm959913FxcXp7NmztsK6v7+/Dhw4oNatW9tmswMAAAAAgMpzc3OTm9v/zc4eOXKkOnbsqLZt2xqYqnJOnz5tW8bey8vL4DQAAFQvh4p2/Prrr2UymfTss89e1wDh4eGyWq3avHnzdYcDAAD2cfjwYc2aNUv+/v666667tGjRIp05c0Y333yzJkyYoO3bt2vfvn1GxwQAAAAAoE5bvny5pk6danSMSpk/f76sVqvc3NzUvXt3o+MAAFCtKjyT/ccff1SrVq3k6+t7XQP4+fmpVatW+vHHH687HAAAqH59+vTR1q1bJV1emq5p06YaMmSIHn/8cd17770ymUwGJwTqvsOHD2vw4MEqKiqSk5OT1q1bp3bt2hkdCwCq3IoVK7RixQqjYwAAgErYvXu33nzzTY0bN67MHsuFhYWaP3++5s6dK0maMmWKHB0djYoJAIBdVLjIfvbs2UovUePh4aGff/65UucCAIDqlZycLJPJpGbNmum1117TsGHD5OTkZHQsoN645ZZbVFJSYntcVFSkAQMGyMHBQXv37jUwGQAA+K2CggKlp6fbfVxfX1+5uLjYfdyK4nUBqt7hw4cVFxennTt36uzZs7p48WK5/UwmkzZu3FipMZKTkzV48GDb47y8PEnSnDlztGDBAtvx1NRUeXt76+LFi1q0aJEWLVokd3d3+fj4SJL27t2r/Px8SdKYMWNq7Ux8AACuR4WL7Lm5uXJ1da3UII0bN1Zubm6lzgUAANXLbDbLYrHo3Llzeu655/TFF19o+PDhuv/++9WgQYX/rwKASvh1gd3V1VXjx4/XwoULlZeXp5KSEt1yyy0U2gEAqEHS09M1ZMgQu48bHx9fZtZoTcPrAlStefPm6e9//7suXbpkW13OarXa2n997EZWn7t48aLOnDlzxfH8/Hxb0VySLBaLJOkPf/iDZs2apa1bt2rfvn3av3+/iouL1apVKz3wwAN6+umndd9991U6DwAAtUmFPzkvvZBW1q9n5wAAgJrj2LFjWrVqlf7zn/9ox44diouL0wcffKDmzZtr6NChGjZsmPr27Wt0TKDOOXz4sO3/I2/ZskWtWrWSJI0YMUKnTp1Snz59VFJSosOHD7N0PAAANYSvr6/i4+Ov+7xDhw5p0qRJmjdvnvz8/Co1bk3G6wJUnc8++0xTpkxRmzZtNGvWLC1YsEC7d+9WYmKijh49qp07d2rZsmWyWCyKjIzU7bffXumx+vXrV6Z4/3uaNWum6dOnV3o8AADqkuuanlZUVKSMjIzrHqSoqOi6zwEAAPbRqlUrTZgwQRMmTNDevXv1zjvvaNWqVTp69KiWLFmiJUuWyNPTU4899pjRUYE6pXRZRldXV1uBvVSrVq3UuHFjXbhwQYMHD9aPP/5oREQAAPAbLi4uNzRz2s/Pr07OvOZ1AarO66+/LpPJpA8++EC9e/fW8uXLJUlBQUG2PtOnT9fDDz+sl19+Wdu3bzcqKgAA9ZrD9XROSUlRu3btrvvr+++/r678AACgCt1yyy2aM2eOjhw5oo0bN2rEiBFydXXVL7/8ovnz58tkMuncuXOaNWuWIXsuAnVJ6Y2o48ePL7d93LhxZfoBAAAAqPu+//57tWnTRr17975qnxYtWmj16tXKz8/XzJkz7ZgOAACUuq6Z7NezdMxv3cjeMAAAwL5MJpP69++v/v37a9GiRfr444/1zjvvKDExUYWFhXrllVf0yiuvqFevXnryySc1duxYoyMDtY6Tk5OKioq0cOFCjRgx4or2N99809YPACTp9OnTkqSWLVsanAQAAFSX3Nxc3XHHHbbHzs7OtuNNmza1HW/Tpo1uu+02bdq0ye4ZgZouMzNT2dnZdhnr0KFDZf61h+bNm8vDw8Nu46F8BQUFhkxC8vX1lYuLi93HxZUqXGQ/fPhwdeYAAAA1lLOzs0JDQxUaGqpTp07pvffe03/+8x+lpqZq69at+uabbyiyA5Wwbt06DRgwQHl5eTp16lSZJeNPnTqlCxcu2PoBqL/OnTunv/3tb4qLi9O5c+ckSW5ubnrkkUf0r3/9Sy1atDA2IAAAqFKtWrVSbm5umceStH//fnXv3r1M37y8PJ05c8au+YCaLjMzU/fdf7+KCwvtOu6kSZPsNpajs7O++PxzCu0GS09P15AhQ+w+bnx8PNvs1BAVLrK3bdu2OnMAAIBaoFWrVpo4caImTpyoPXv22PZvB3D92rVrJwcHB5WUlKhPnz5q3Lixxo0bpzfffNNWYHdwcFC7du0MTgrAKAUFBerTp4/27NlTZmW5c+fOaenSpdqyZYu2b9+uxo0bG5gSAABUJT8/P+3YscP2uGfPnlq9erUWLVpUpsi+ceNGHTx4kPcLwG9kZ2eruLBQ+Q8/rJI6uAKUw+nT0ocfKjs7myK7wXx9fRUfH3/d5x06dEiTJk3SvHnz5OfnV6lxUTNc13LxAAAApW699VZFRkZqzpw5RkcBaq29e/fqlltuUUlJiS5cuKCoqChbm4ODg/bu3WtgOgBGW7hwoXbv3q1mzZppxowZuueee2S1WrV582bNmjVL+/fv14IFC/T3v//d6KgAAKCKDBgwQJs3b9b27dvVvXt3DR8+XP/4xz+0cuVKHThwQL169dLJkyf1wQcfyGQy6cknnzQ6MlAjlbRsqRKK0KhGLi4uNzSj3M/PjxnptVy1FNmLi4t17tw5ubu7sxc7AAB1SHnXeK71wI3Zu3evDh8+rMGDB6uoqEhOTk5at24dM1IA6KOPPpLJZNKHH36o/v37245369ZNt99+u4KDg/XRRx9RZAcAoA559NFHdfDgQZ09e1aS1LJlS8XFxSk0NFRbt27V1q1bbX2HDh2q6dOnGxUVAIB67bqL7Hv37tXGjRtVXFysTp066f7777d9uL5+/XrNmDFDP/74o6xWq5o0aaLhw4crMjJSTZs2rfLwAACg6nCNB4zTrl07/fjjj0bHAFDD7N+/X56enmUK7KWCgoLk5eWltLQ0A5IBAIDq0q5dOy1ZsqTMsZCQEB0+fFiff/65jhw5IhcXF/Xp00d33nmnQSkBAMB1FdlffvllzZkzp8xecF27dtWmTZv03//+V0888YRKSkpsbbm5uVq8eLF27Nihr7/+Wg0asDo9AAA1Edd4AABqnvPnz6tLly5Xbffx8dE333xjx0QAAMAobm5uCg0NNToGAAD4fxwq2vHzzz/XP//5T5WUlKhVq1bq1q2bmjRpotTUVP3rX//SSy+9pGbNmun111/X999/r+3bt2vBggVq1qyZtm/frrfeeqs6fw4AAFBJXOMBAKiZrFbrNbdlYcsWAAAAAACMUeFpZ7GxsTKZTHrhhRcUFRUlk8mkvLw8PfTQQ1q4cKGKioqUmJioe++913ZOt27d1KlTJw0YMEAffPCBwsPDq+WHAAAAlcc1HgAAAAAAAACAiqvwTPbt27erSZMmmj17tu1ueVdXV82ZM0eFhYW6+eaby3z4XiokJEQ333yzfvrpp6pLDQAAqgzXeAAAaq7k5GSZzeZyv7Zu3SpJV21nOxcAAAAAAKpHhYvsp0+flq+vr5ycnMocv/XWWyVd3gvuanx8fJSTk1PJiAAAoDpxjQcAoOayWq039AUAAAAAAKpehW9rv3TpklxdXa843qhRI0mSo6PjVc91dHRUSUlJJeIBAIDqxjUeAICaadOmTUZHAAAAAAAA5WDtOAAAAAAAaqC+ffsaHQEAAAAAAJSjwsvFAwAAAAAAAAAAAABQ313XTPaUlBT5+vpecdxkMl21TZKOHz9euXQAAMAuuMYDAAAAAGC8vXv36pZbbjE6BmqJzMxMZWdn22WsQ4cOlfnXHpo3by4PDw+7jQcA1+O6iuyFhYU6cuTIdbdJlz+kBwAANRPXeAAAar7Ro0dXuK/ZbFaTJk30hz/8Qb1791a3bt2qMRkAAKgqt912m7p3765Ro0YpNDRUzZo1MzoSaqjMzEwNGDBARUVFdh130qRJdhvLyclJGzZsoNAOoEaqcJF9+fLl1ZkDAAAYhGs8AAC1w4oVKyT93w1uVqv1ij6/bSt93K1bN61cuZKZcQAA1HDNmjXTd999p+3bt2vixIkaPHiwRo0apfvuu4+b3FFGdna2ioqK1PCPDeXQtO7tDFySW6Kib4uUnZ1NkR1AjVThIvvIkSOrMwcAADAI13gAAGqH5cuX69ChQ5o7d64aN26sBx98ULfffruaNGmi8+fPa9euXfr444914cIFTZ48Wa1bt9bevXv14YcfKiUlRf3791dqaqratGlj9I8CAACu4sSJE/rkk0+0cuVKbdiwQR988IHWrFmj1q1b68knn9TIkSO5aQ5lODR1kMNNda/IDgA1HX95AQAAAACoBe655x69+eabuvfee5Wenq63335bEyZM0JgxYzRhwgQtW7ZMhw8fVv/+/RUTE6MBAwbo9ddfV1pamoKDg5WVlaV58+YZ/WMAAIBraNiwoR5++GF98sknyszM1Pz583X77bfr+PHjioqK0m233aY//vGPio2N1blz54yOCwBAvUWRHQAAAACAWmD69OkqLCzU6tWrr7o/a9OmTbVq1SoVFBRo+vTpkqTGjRvr7bfflslk0meffWbHxAAA4Ea0bNlSEyZMUGpqqnbu3KmJEyfK3d1d3333ncaNG6c2bdooNDRUGzZsKHcbGQAAUH0qvFz8O++8c8ODjRgx4oafAwAAVC2u8QAA1A4bN25U586dr1pgL9W8eXN17txZX375pe2Yp6enOnXqpMOHD1dzSgAAUB26dOmi1157TVFRUfr3v/+tl19+WcXFxbbl5Nu0aaOxY8cqIiJCbm5uRscFAKDOq3CRfdSoUTKZTJUeyGQy8QE8AAA1ENd4AABqh9zcXJ09e7ZCfc+ePavc3Nwyx5ycnG7omg8AAIyTnZ2t1atXa8WKFfr+++9ltVrVsGFD3X///Tp58qS2bdumV155RbGxsfriiy902223GR0ZAIA6rcJFdh8fn6u+Gf/555/l5OSk1q1bV1kwAABgH1zjAQCoHTp06KCffvpJ69ev18CBA6/ab/369UpPT9ftt99e5nh6errc3d2rOyYA4P8pKChQenq63cf19fWVi4uL3cdF1bNYLPrss8+0cuVKrV+/XhcvXpTVatWtt96qp556SiNGjLBd2/fs2aO//e1v+uSTTzRx4kQlJiYanB4AgLqtwkX2I0eOXLXNwcFB3bt31+bNm6siEwAAsCOu8QAA1A7PPvuswsPD9eijj2rGjBkaNWpUmRvhTp48qRUrVmjWrFkymUx69tlnbW07d+5UTk6O7r33XiOiA0C9lJ6eriFDhth93Pj4eHXu3Nnu46Lq/PDDD1q5cqVWrVql06dPy2q1qmnTpho5cqRGjx6tnj17XnHOrbfeqvj4eLVr107btm0zIDUAAPVLhYvsAAAAAADAOGFhYdq+fbuWL1+uv//97/r73/+uFi1aqEmTJsrLy9Pp06clSVarVWPGjNHYsWNt5yYlJalv375s8QIAduTr66v4+PjrPu/QoUOaNGmS5s2bJz8/v0qNi9orICBAu3btktVqlclk0j333KPRo0dr6NChv7tCgYODg9q1a6dffvnFTmkBAKi/KLIDAAAAAFBLLFu2TPfff79ee+01fffddzp9+rStuO7g4KCePXvqhRde0MMPP1zmvPHjx2v8+PFGRAaAesvFxeWGZpT7+fkxI70e+vHHH+Xt7a0RI0Zo9OjRateu3XWdP23aND311FPVlM5YF00XVWQqMjpGlbtoumh0BABAJVBkBwAAAACgFhk6dKiGDh2qvLw8HTx4UBcuXFDjxo3Vvn17ubq6Gh0PAADcgM8//1whISEymUyVOv++++6r4kQ1x3fNvzM6AgAANhTZAQAAAACohVxdXRUQEGB0DAAAUIV69OhR6QI7AACwH4rsAAAAAADUQgUFBTp06JDOnz+vJk2ayM/P73f3agUAwGgFBQVKT0+3+7i+vr614jrZunVr3XfffRo+fLgGDRqkRo0aGR0JAACUgyI7AAAAAAC1yBdffKE5c+Zo69atslgstuNms1l33323pk6dqpCQEAMTAgBwdenp6RoyZIjdx42Pj68Ve9xbrVatX79e//3vf9WoUSMNGjRIoaGhuv/++9WgAR/nAwBQU1T4qrx58+Zrtufk5Pxun3vuuaeiwwEAADvhGg8AQO3xyiuvaNasWbJarZIkR0dHubu7KysrS8XFxUpKStJXX32ll19+Wa+88oqxYQEAKIevr6/i4+Ov+7xDhw5p0qRJmjdvnvz8/Co1bm1w8uRJrVmzRqtXr9aWLVu0evVqvf/++2rWrJmGDh2qYcOGqV+/fkbHNESP7B5qcqmJ0TGq3PkG59lvHgBqoQoX2fv163fVvWBMJpN++ukn9e/f/6rnm0wmXbp06foTAgCAasU1HgCA2mHDhg169dVXZTabNXbsWI0fP14dOnSwtaelpWnhwoV66623NGvWLPXq1Uv33XefgYkBALiSi4vLDc0o9/PzqxUz0iurefPmeuaZZ/TMM8/o+PHjev/997V69WqlpKRoyZIlWrp0qdq0aaPQ0FCFhoYqMDDQ6Mh209DaUE5WJ6NjVLlCa6HREQAAleBwPZ2tVmulv0pKSqrrZwAAADeIazwAADVfdHS0TCaT3n77bb3xxhtlCuyS1KFDB73xxht6++23ZbVatXDhQoOSAgCAqtCmTRtNnDhR3333nQ4ePKhXX31VnTp1UmZmpv6//+//U8+ePdWxY0ejYwIAUC9VuMheUlJyw18AAKDm4RoPAEDtsH37dnl5eenJJ5+8Zr8nnnhC3t7e+u47lh0FAKCu8PX11fTp07V792798MMPuu+++2S1WnXw4EGjowEAUC9VeLl4AAAAAABgnPPnz6tdu3YV6nvzzTdr165d1ZwIAADYU3p6ulavXq3Vq1dr7969RscBANRxmZmZys7OtstYhw4dKvOvPTRv3lweHh6VPp8iOwAAAAAAtYCHh4f27dunCxcuqHHjxlftd+HCBe3du1dt2rSxYzoAAFAdTpw4obi4OK1evVrbt2+XdHnLtzZt2uixxx7T8OHDDU4IAKiLMjMzNWDAABUVFdl13EmTJtltLCcnJ23YsKHShXaK7AAAAAAA1AL33XefFi9erL/+9a9asWKFHB0dr+hTXFysp59+Wvn5+RowYIABKQEAwI06d+6c1q5dq9WrV2vz5s0qKSmR1WpVs2bNNGTIEA0fPlz9+/eXyWQyOioAoI7Kzs5WUVGRPNzvkmNDN6PjVLniiznKzNqq7OxsiuwAAAAAANRlf/vb3xQXF6e4uDglJSXpr3/9q2699Va1atVKp06d0p49e7RkyRKdPHlSbm5umjZtmtGRAQDAdRo0aJASEhJ08eJFWa1Wubi4aODAgRo+fLjuv//+cm+yAwCgujg2dJOL001Gx6iRKLIDAIAaZfr06frnP/8pSZo1a5amT59ucCIAAGoGb29vff7553r00Ud19OhRzZ49+4o+VqtVPj4++uCDD+Tt7W1ASgAAcCPWr1+vBg0aKCQkRMOHD9dDDz0kV1dXo2MBAIDfoMgOAABqjL1792revHlGxwAAoMbq2bOn9u3bp1WrVikhIUEHDhxQXl6eXF1d5e/vr/vuu0/Dhg3T4cOH9eOPP+r22283OjIAALgOr7/+uh577DG1bNnS6ChA7VZQINOFC0anqHoFBUYnAPD/UGQHAAA1gtVq1dixY9WwYUPdfffd+vLLL42OBABAjeTi4qIxY8ZozJgxV+3Tt29fZWdn69KlS3ZMBgAAbtS4ceOMjgDUCa7vvGN0BAB1nIPRAQAAACRp2bJl2rJli2bMmMHytqh3Pv74Y3Xs2NH29fHHHxsdqcbIyMhQ165d1alTJ3Xt2lUZGRlGR0INVlxcrBUrVujVV1/VihUrVFxcbHQkQ1mtVqMjAAAAAABQJzGTHQAAGC4rK0tTpkzRrbfeqokTJ+qvf/2r0ZEAu+nYseMVx6ZMmaIpU6Zo//79BiSqOW699VZZLBbb4/z8fAUHB8tsNmvPnj0GJkNNFBUVpRUrVpT5nYmKitKoUaM0efJkA5MBAABcv8OHDysuLk47d+7U2bNndfHixXL7mUwmbdy40c7pAAAARXYAAGC4iRMn6uzZs4qPj1fDhg2NjgPYzW8L7P7+/jpw4ECZ9vpaaP91gb1Zs2Z64YUXNH/+fJ07d04Wi0W33norhXbYREVFadmyZWrRooUmTJig/v37a9OmTVqwYIGWLVsmSRTaAQBArTFv3jz9/e9/16VLl2QymSSVXaHm18dKvwcAAPZ1Q0V2s9msfv36caccAAB1jD2v8Rs3btR7772nJ554Qn379q328YCa4tdLwi9evFj9+vWzPU5KStLYsWNt/R588EH7hjNYRkaGrcCenJysli1bSpIee+wxnT59Wr1795bFYlFGRoZ8fHyMjIoaoHSJ+BYtWmjz5s1q0ODy29xHH31UQ4YM0T333KMVK1ZowoQJcnR0NDgtAADAtX322WeaMmWK2rRpo1mzZmnBggXavXu3EhMTdfToUe3cuVPLli2TxWJRZGSkbr/9dqMjAzVS3ogRsrZubXSMKmc6cYL95oEa4oaK7Far9Yo93iIiIrR7924K7wAA1GL2usYXFhYqLCxMbm5u+ve//12p5ygqKlJRUZHtcW5u7jX7Z2ZmKjs7u1JjXa9Dhw6V+dcemjdvLg8PD7uNh8qbMmWK7ftfF9h/+3jKlCn1rsg+ePBgSZdnsJcW2Eu1bNlSbm5uysnJ0eDBg5WammpERNQgq1atksVi0YQJE2wF9lINGjTQ+PHjNWPGDK1atUqjRo0yJiQAAEAFvf766zKZTPrggw/Uu3dvLV++XJIUFBRk6zN9+nQ9/PDDevnll7V9+3ajogI1m4uLrI0bG52iyplcXIyOAOD/qXCR/emnn9Zdd92lXr166ZZbbrlqv9TUVG3durVKwgEAgOpn5DV+9uzZOnjwoN544w3dfPPNlXqOOXPmaObMmRXqm5mZqQH3DVBRcdHvd65CkyZNsttYTo5O2vDFBgrttYi/v3+5x9u1a6fDhw/bOU3NUFBQIEl64YUXym2PiIjQrFmzbP1Qv2VkZEiS+vfvX2576U0rpf1gH1arVcnJyVq3bp22bNmiffv2KT8/Xy1btlSvXr303HPPXfV/MwAA6rPvv/9ebdq0Ue/eva/ap0WLFlq9erXatm2rmTNn6j//+Y8dEwIAAOk6iuxvv/227a45Nzc3/fGPf5R0+QOwS5cuXTFjAAAA1A5GXeP37t2refPm6c4779Szzz5b6eeZNm1amUJcbm6uvL29y+2bnZ2touIi3ZFzh1wtrpUes6bKM+dpp9tOZWdnU2SvRX69B/uv1dcCuyS5uLgoPz9f8+fP12OPPXZFe3R0tK0fULplwKZNm/Too49e0Z6UlFSmX23yzg0sA/nrVV6M8OWXX+pPf/qTJMnBwUHt27dX48aNlZaWpvj4eMXHx2v69OmaNWuWoTkBAKhpcnNzdccdd9geOzs72443bdrUdrxNmza67bbbtGnTpkqPdfjwYf3vf//Td999p++++067d++WxWLRrFmzNH369Gue+8033ygyMlJbt25VXl6e2rVrp2HDhmnSpEm2zABqFlZ3BKpWhT81P3TokLZu3aqtW7cqOTlZCQkJMplM+u677+Tm5qbevXurf//+OnPmTHXmBQAAVcyoa3x4eLguXbqkRYsWycHBodLP4+TkJCcnp+s6x9XiKrdLbpUeE6gKc+fOtS0Zn5SUdMWe7L/uV9+sW7dOwcHBOnfunE6fPl1myfjTp08rJyfH1g8YPny4oqKitGDBAg0ZMqTMzWGXLl3SwoULZTabNXz4cANTVs6oUaNkMpkqda7Vaq30uVXBarWqffv2euGFFxQaGqrmzZtLkoqLi/XKK69ozpw5mj17tnr27KmBAwcalhMAgJqmVatWZbZBa9WqlSRp//796t69e5m+eXl5N/RefeHChVq4cOF1n/fee+9p5MiRslgs8vT0lLe3t3766SfNmDFDn376qZKSktSoUaNK5wJQ9TIzM3X/gAEqtPPNuPZc3dHZyUmfb2B1R9hPhYvs7dq1U7t27fT4449Lks6fPy83Nzd5eHioffv22rx5s/73v/9Jkkwmk/r166e77rpLvXv3Vq9evXTTTTdVz08AAABuiFHX+NTUVJlMJg0aNOiKttIC2ty5c/XGG2/I29ubfeZQ5zz44IO2IvvYsWMllb9EfH3bj126POPYbDbLYrGod+/ecnNzU0REhKKjo21/H8xmc62cmYyq5+joqFGjRmnZsmW65557NH78ePXr109JSUlauHChzpw5ozFjxsjR0dHoqNfNx8fH0EL5jejRo4f27t17xYo4jo6O+te//qUffvhBn3/+uZYsWUKRHQCAX/Hz89OOHTtsj3v27KnVq1dr0aJFZYrsGzdu1MGDB9WuXbtKj9WyZUsNHDhQPXr0UPfu3bV06VJ9+OGH1zznyJEjGjNmjCwWi6KiovTSSy/JZDLp559/1n333aft27dr8uTJeuONNyqdC0DVy87OVmFRkabeZZaPW+18j3EtGTlWRW4tYnVH2FWl139t0qSJpMt7SH755ZcqLCzU119/rbCwMB0+fFjffvutNm/ebPtAoGPHjtqzZ0/VpAYAANXGntd4i8WikydPXrU9Ly9PeXl5LDWHOmv//v3q2LGj7fFvC+z79++3d6QaY8+ePbr11ltlsViUk5NTZklps9nMewuUMXnyZEnSihUrNGPGDNtxs9msMWPG2NprmyNHjhgdodJ+vZxteYKDg/X5559fdcsMAADqqwEDBmjz5s3avn27unfvruHDh+sf//iHVq5cqQMHDqhXr146efKkPvjgA5lMJj355JOVHuu3S8K///77v3vOvHnzVFRUpJCQkDIzVNu2bau3335bvXv31ltvvaWXX35ZN998c6WzAagePm4mdbip8itK1lwlRgdAPVTh/5KGDh2q+fPn65tvvlFxcfEV7c7OzvrTn/6kNm3aSLq8R0xycrL+/e9/a8iQITp//nzVpQYAAFXGqGv8uXPnZLVay/0aOXKkJGnWrFmyWq21usgA/J79+/dfsST83Llz63WBvdSePXuUmJioRo0ayWQyqVGjRkpMTKTAjnJNnjxZP/zwg6ZNm6bHH39c06ZN0w8//FBrC+x1XWFhoSTJxcXF4CQAANQsjz76qEaPHq2zZ89KujzbPC4uTm5ubtq6datee+01/ec//1FxcbEefvjh3907vSpZrVZ99NFHkqQxY8Zc0X7XXXepU6dOunjxIls7AQDqvArPZI+Pj7ddQB0dHdW1a1dJlz9oP3funJo1a1amv6Ojo3r16qVevXpp4sSJVZcYAABUKa7xgPEefPDBerksfEX4+PgoNTXV6BioJUqXjkfNZrVatWbNGklS7969DU4D4LcyMzOVnZ1tl7EOHTpU5l97aN68OcvIokZr166dlixZUuZYSEiIDh8+rM8//1xHjhyRi4uL+vTpozvvvNOu2TIyMnT8+HFJV7+G9+7dW/v27dO2bdv0zDPP2DNevWUttspaaDU6RpWzFte9nwlA3VLhIntWVpa++eYb29f27dtlMpmUmpqqli1bKiAgQPfee+81l3wFAAA1D9d4AABgT0uWLFFqaqocHR01YcKEq/YrKipSUVGR7XFubu41n5fCIHDjMjMzdf+AASr81X979vDrJaerm7OTkz7fsIH/nlDruLm5KTQ01NAMaWlpkiQnJ6er/jfk6+tbpi+qX3HSlasSAgCqX4WL7C1atNDAgQM1cOBASZf3UG3YsKF8fHx0xx136KuvvtKOHTskSSaTSd26dbPNcuvVq5ft4goAAGoWrvEAAMBeduzYofHjx0uSZs+eLT8/v6v2nTNnjmbOnFmh583MzNSA+waoqLjuFgadHJ204QsKg6he2dnZKiwq0tS7zPJxMxkdp8pl5FgVubVI2dnZ/LcEVELpzWzNmjWTyVT+34jmzZuX6Xs113sznSTlmfMqGrVWqas/FwDUdRUusv+W2WyWdPnOtHXr1qmkpETbt2/XiBEjdPDgQWVkZCg1NVWLFi2SJLm7u+vEiRNVkxoAAFSbmnCNX7FihVasWFGlzwkAAIx1+PBhDRw4UIWFhRo+fLheeumla/afNm2aXnjhBdvj3NxceXt7l9s3OztbRcVFuiPnDrlaXKs0d02QZ87TTredFAZhNz5uJnW4ycHoGNWgxOgAQIXt2rVL0dHR+uqrr3Ts2DEVFRXp0qVLtvbFixfr559/1tSpU9W0aVO7ZCosLJR0eYueq3FycpIkFRQUXPO5rudmuubNm8vJ0Uk73XZWMGnt4+ToZLtBAQBQO1S6yP5bDg4O6tmzp1q1aqWDBw8qKytL+/fv17fffqvk5GR9++23VTUUAACwI67xAADgRp04cULBwcE6fvy4/vznP2vFihVXnQFXysnJyfZBfUW5WlzldsntRqICAGC4N998UxMnTixTVP/tdbOoqEhz585V586d9fjjj9sll7OzsySpuPjqy5OXzk53cXG55nNdz810Hh4e2vDFBrtuCzNp0iTNmzfvmqvuVCW2hQGA2qfKiuzl6dixozp27KiRI0dW+jmsVquSk5O1bt06bdmyRfv27VN+fr5atmypXr166bnnnlP//v2rMDUAAPg9VXGNBwAA9cPZs2cVHBysQ4cOqW/fvlqzZo0aNmxodCwAAGqkTZs2KSIiQk2aNNE///lPDRo0SMOGDdM33/z/7d17eFTluf7xezJkJhGSMJyE4ZwQtEYFMYiASlSMKOyqWFrEXxG1rZUqKhIFtVoLW2LZWkWLZ2FTKiISpbYSEZBq5SSEUmkV0gRFiSiHQIgmk5B5f3+wMxozOU1mZs1Mvp/rmguy1npnPet1wh3zrMPGOtv9+Mc/1u23367XXnstbE322iutjxw5ImOM3xPmahvhTV2V3dKT6dxud9ib0GlpacrIyAjrPgPhyHIormPs3X3Ee8TL8+YBRLRWNdm93vq3WDLGtOYt61m3bp1Gjx4t6cSVdAMGDFD79u1VWFiovLw85eXl6b777tPs2bODul8AANqycGQ8AACIfeXl5br88su1c+dODR06VG+88UaTV7YBANCWPfLII5KkP/3pTxo7dqyk+lexS1L37t3Vu3dv/fvf/w5bbenp6ZJOXK1eUlKinj171tumuLi4zrYIPZvDJltC43cIikY2R+wdE4DYEvTTm5588kmtW7cuaO9njNGAAQO0YMECHTx4ULt27VJBQYEOHTqkWbNmSZLmzJmjv/zlL0HbJwAAqC/YGQ8AAGKbx+PRFVdcoc2bNysjI0P5+flKSkqyuiwAACLapk2b1L17d1+DvTE9evTQvn37wlDVCX369FH37t0lSe+//77fbWqXDxs2LGx1AQBghaA32QcPHqxRo0YF7f3OOeccffTRR7r55pvr3GLG4XDooYce0mWXXSZJeu6554K2TwAAUF+wMx4AAMSumpoaTZw4UevWrVNaWprefvttderUyeqyAACIeOXl5b5GdlOqqqpUU1MT4oq+ZbPZdNVVV0mSXnjhhXrrN2zYoI8//ljx8fH64Q9/GLa6AACwQkifyR4MycnJja6/5JJLtGrVKu3evTtMFQEAAAAAgMa88sorev311yWdePTbhAkT/G7Xo0cPLV++PIyVAQAQ2Xr06KGioqImt6usrNTHH3+s/v37h6Gqb+Xk5OiFF17Q6tWrNW/ePM2YMUM2m02ffvqpbrjhBknSz372s2afKAAAkaCkpESlpaVh2Vftv/HN+bc+WFwul9xud9j211ZEfJO9KZWVlZLEM90AAAAAAIgQHo/H9/fCwkIVFhb63a5v377hKgmoh1+mAq3H91HwXXjhhfrf//1fvfjii76mtT+PP/64Kisrdemllwa8r/fff19XXHGF7+vy8nJJ0ty5c/XYY4/5lm/fvl29e/eWJPXv31/PPfecrr/+et111116/PHH1a1bN+3cuVPV1dU6++yzNW/evIBrAoBwKykp0Zgxl8njqQzrfnNycsK2L6czQfn5q/jZMMiiuslujPGd8T5y5EiLqwEAAAAAAJI0ZcoUTZkyxeoygAaVlJTo0ssuU1Vl7P4y1ZGQoLdW8ctUhM6JpsSYOidWhUN4mxJO5efnh/X76O6779ZLL72kW2+9VRUVFbruuuvqrD9y5Ijmz5+v2bNnq3379rrjjjsC3ld1dbUOHTpUb/k333yjb775xvf1929JP3nyZA0YMEBz587Vhg0b9O9//1upqam65pprdPfddyshISHgmgAg3EpLS+XxVMo55ArFdehsdTlB5y0/JE/BSpWWlvJzYZBFdZP9ueee0/bt2+VwOHT77bc3uJ3H46nzw15ZWVmj7xvOMzCl6DoLk7NTg6eiokLFxcVh2dd3paamRvSdH5gXtIRVnxeJzwwAAAAQzUpLS1VVWalvrr5a3i5drC4n6OIOHpRWrOCXqQipE00Jj9xdR8gRn2J1OUFXVX1UJQc2hP376JRTTtHixYt13XXXadq0abrjjjtkt9slSX369NEXX3whr9crh8OhJUuW+K4wD0RWVpaMMQGNHTFihN54442A9w0AkSauQ2fZO/awugxEkahtshcUFOi2226TJM2ZM0dpaWkNbjt37lw9+OCDzXrfkpISjbl0jDxV4T0DUwrzWZgOp/LfatlZmJydGlzFxcUaP358yPfzfXl5ecrIyAj7fpuLeUFLWPV5kfjMAAAAIDpwIUHjvF26yEsTGs3AhScNc8SnKNHZKcgVtW0//vGP9YMf/EC/+c1vtGrVKt8jUz///HPFx8frsssu0+zZszVo0CCLKwUQbY55jI5UBnZyTSQ75om9Y4oUNTUeHa8J792fwqGmpvW9zqhssu/Zs0fjxo1TZWWlJk2apBkzZjS6/axZszR9+nTf12VlZQ2e4VdaWipPlUeDjg5Sh5oOQa07UpTby7UjZUeLz8KsPTs1/tx4xSXHhbBCa3jLvPJs8oTt7NTU1FTl5eW1eFxRUZFycnI0b968Rk8uaWy/kYx5QUtY9Xmp3TcAAAAQyaw6WV6K3RPm0TbxrFZY4YwzztCKFStUXV2t3bt36+jRo+rQoYPS09O5sx6AgN29rkZSTZPbAbU++3Kd1SVErKhrsu/fv1+XXHKJvvjiC40dO1aLFi2SzWZrdIzT6ZTT6WzRfjrUdFDK8di7zVEwxCXHKa5T7DXZwy0xMbFVV8GmpaXF5FW0zAtags8LAAAA0LBYP1leCv8J82ibeFYrrBQfH8/vLgAAiEBR1WQ/fPiwLrnkEhUVFWnUqFFavny54uPjrS4LAAAAAAAgYnGyPBAcPKsVAAAAtaKmyV5eXq7LL79cO3fu1NChQ/XGG29wWxwAAAAAAAAAQNRavHhxq99j8uTJQagEAAC0RFQ02T0ej6644gpt3rxZGRkZys/PV1JSktVlAQAAAAAAAAAQsClTpjT5ONTG2Gw2muwAmu3hi+xKdcXeHY6KS73/97x5BFvvky9SgtNldRlBV+kpbfXz5iO+yV5TU6OJEydq3bp1SktL09tvv61OnTpZXRYAAAAAAAAQk455jI5UGqvLCLpjntg7JkS/Pn36NNhk//TTT+V0OtW9e/cwVwUgViU5beqYEPiJPZEqyRl7xxQp7Han2tkTrC4j6Ox2Z6vfI+Kb7K+88opef/11SVJcXJwmTJjgd7sePXpo+fLlYawMAAAAAAAAiD0nrgTjajAgHD755JMG18XFxWno0KF69913w1cQAABolohvsns8Ht/fCwsLVVhY6He7vn37hqskAAAAAAAAAAAAAEAbFfEPXpgyZYqMMU2+GjvjDwAAAAAAAAAAAACAYIj4JjsAAAAAAAAAAAAAAJEi4m8XDwAAAAAAACB8Hr7IrlRX7F2bU1zq/b/nzQMAAACtQ5MdAAAAAAAAgE+S06aOCTarywi6JGfsHRMAAACsEXunpAIAAAAAAAAAAAAAECJcyQ4AAAAAAGJCta1aHpvH6jKCrtpWbXUJACSZqgoZz9dWlxF0pqqiVeNrajw6XlMZpGoiR01NePLk3XffbXT90aNHm9zmggsuCGZJANAmkfNoKZrsAAAAAAAgJmxxbbG6BAAxrHLTUqtLiEiffbnO6hKiWlZWlmw2/48ysNls2rlzpy688MIGx9tsNh0/fjxU5QFAm0HOo6VosgMAAAAAAAAAYBFjjCVjERu8ZV6rSwiJ1h5X3MGDQaokssTqcQHRiCY7AAAAAAAAAAAW8Hpjs0GK0HO5XHI6nfJsir1H5dRyOp1yuVwtGuNyueRISJBWrAhRVdZzJCS0eF4ABB9NdgAAAAAAAAAAgCjidruVn5+v0tLSsOyvqKhIOTk5mjdvntLS0sKyT5fLJbfb3aIxbrdbb61axbwACDma7AAAAAAAICacU3qOko4nWV1G0B1rd4znzQMRIOHca2RPOdnqMoKu5uiXrXoObe+TL1KCM/auqKz0lPK8eUQ8t9sd9mZrWlqaMjIywrrPlmJeEAhyHi1Fkx0AAAAAAMSEeBMvp3FaXUbQVZpKq0uIXRUVsn39tdVVBF9FhdUVxCSbI1E2Z3urywg6myOxVePtdqfa2ROCVE3ksNtjL08AAA0j59FSNNkBAAAAAADQJnVYvNjqEgAAAABEoTirCwAAAAAAAAAAAAAAIFrQZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew8kx0AALQ51bZqeWweq8sIumpbtdUlAAAARJXyyZNlune3uoygs+3fz/PmAQAAgBCiyQ4AANqcLa4tVpcAAACASJCYKNO+vdVVBJ0tMdHqEgAAAICYRpMdAAAAKikpUWlpaVj2VVRUVOfPcHC5XHK73WHZV0VFhYqLi8Oyr+9KTU1VYgT/Qt2qeZGYm4YwL/5F+rwAAAAAAADr0WQHAABo40pKSjRmzBh5POG9hX5OTk7Y9uV0OpWfnx+WRntxcbHGjx8f8v18X15enjIyMsK+3+ayal4k5qYhzIt/kT4vQCBMlZGpNFaXERKmKjaPC0DbZrfblZWVpbVr11pdCgAAaABNdgAAgDautLRUHo9H8efGKy45zupygs5b5pVnk0elpaVhabKnpqYqLy+vxeOKioqUk5OjefPmKS0tLaD9RrJA50VibhrCvPgX6/MCBKJqfZXVJQAAWsAYI2PqnkQ0bdo0/etf/6LxDqBV9h41krxWlxF0J44LCC+a7AAAoM05p/QcJR1PsrqMoDvW7lirnjcflxynuE6x12QPt8TExFZdBZuWlhaTV9G2dl4k5qYhzIt/sTovAAAgtvzsZz/TiBEjNHz4cP3gBz9ocLvt27drw4YNYawMQCxxuVxKcDqVuyG8dzEMpwSnUy6Xy+oy0IbQZAcAAG1OvImX0zitLiPoKk2l1SUAAAAAAFrgxRdf1MKFCyVJKSkpOvfccyVJFRUVOn78uNq141f4AFrP7XZrVX6+SktLw7K/1t5hLBAulyssdzAEapHQAAAAAAAAAABYoKioSBs2bNCGDRv0/vvva/Xq1bLZbNqyZYtSUlI0cuRIXXjhhTp06JDVpQKIcm63O+xNaO4whlhGkx0AAAAAACCGObIciusYm4+E8R7x8sx5AFGtf//+6t+/v6699lpJ0rFjx5SSkiK3260BAwbo3Xff1Zo1ayRJNptNWVlZGjFihEaOHKnhw4erU6dOVpYPAECbRZMdAAAAAAAghtkcNtkSbFaXERI2R2wel9X2HjWSvFaXEXQnjguIbElJSZKkgQMHat26daqsrNTf//53/fKXv9SePXu0adMmvfvuu7LZTvz7d8opp+jf//63lSUDANAm0WQHAAAAAAAAIJfLpQSnU7kbPFaXEjIJTqdcLpfVZQA+P/rRjzRixAgNHz5cZ599thwOR531CQkJGj16tHr06KE9e/aorKxM27Zt06ZNm7RhwwZt2rTJosoBAGjbaLIDAAAAAAAAkNvt1qr8fJWWloZlf0VFRcrJydG8efOUlpYWln26XK6wP48WaExeXp5ee+01SZLD4dBZZ50lSSorK9ORI0fUsWPHOts7HA4NHz5cw4cP1x133BHucgEAwP+hyQ4AAAAAAABA0olGe7ib0GlpacrIyAjrPhE8VdVHrS4hJMJ1XAcOHNDGjRt9rw8++EA2m03bt29Xly5dNHjwYF100UX68ssvw1IPAABoHprsAAAAAAAAAIAWcblccjqdKjmwwepSQsYZhscLdO7cWePGjdO4ceMkSTU1NYqPj1efPn00aNAg/e1vf1NBQYEkyWaz6eyzz/ZdyT58+HClpqaGtD4AAOAfTXYAAAAAAAAAQIu43W7l83iBoLPb7ZKk1NRUrVy5Ul6vVx988IEmT56s//znP9q7d6+2b9+up556SpLUtWtX7d+/P6w1AgAAmuwAAAAAAAAAgADweIHQi4uL07Bhw9StWzf95z//0YEDB7Rr1y5t2rRJ77//vjZt2mR1iQAAtEk02QEAAAAAAACgCd7yQ1aXEBKxelyx7JRTTtEpp5yi6667zupSAABos2iyAwAAAAAAAEADTjx7PEGegpVWlxIyTmdCyJ89jubzer31lhljLKgEAAA0hCY7AAAAAACICeX2cqtLCIlYPS4gWpx49vgqnj0OSz355JM6evSo1WUAQMyK1Tu7tPa4qqpjM3uCcVw02QEAAAAAQFRzuVxyOpzakbLD6lJCxulwcpUpYCGePQ6rDR482OoSACAmccca/07Mi1MlBzaEqCrrOZ2t+38smuwAAAAAACCqud1u5b+Vz1WmAAAAAFqEO9b4d2Je+H+sxtBkBwAAAAAAUY+rTAEAAAAEgv+X8I95aVyc1QUAAAAAAAAAAAAAABAtaLIDAAAAAAAAAAAAANBMNNkBAAAAAAAAAAAAAGgmmuwAAAAAACBk3nzzTY0ePVqdOnVS+/btNWTIED3xxBPyer1WlwYAAAI0ZcoU2Wy2Rl+VlZVWlwkAQMi0s7oAAAAAAAAQm3JzczVr1ixJUmpqqjp06KAdO3Zo2rRpWrNmjV577TXFxXH+PwAA0So9PV3dunXzu46MBwDEMprsAAAAAAAg6DZu3Kh77rlHcXFxWrJkia655hpJ0o4dO3TppZfqz3/+sx599FHNmDHD4krRlsUdPGh1CSERq8cFIPLcc889mjJlitVlAAAQdjTZAQAAAABA0M2ZM0fGGP385z/3NdgladCgQXr00Ud17bXXKjc3V7fddpvi4+MtrBRtkcvlkiMhQVqxwupSQsaRkCCXy2V1GQAAAEBMoskOAAAAAACCqqysTGvWrJEk3XjjjfXWT5gwQTfffLMOHTqkd955R9nZ2eEuEW2c2+3WW6tWqbS0NCz7KyoqUk5OjubNm6e0tLSw7NPlcsntdodlXwAAAEBbQ5MdAAAAAAAE1fbt21VVVaWEhAQNGTKk3vr4+HgNHTpUa9eu1ebNm2mywxJutzvsTei0tDRlZGSEdZ8AEEqvvvqqXn/9dZWVlalbt24aOXKkJk+erJSUFKtLAwAgpGiyAwAAAACAoCosLJQk9enTR+3a+f/VQ2pqqtauXevb9vs8Ho88Ho/v67KysuAXCgAAWuWvf/1rna+XLVumBx54QC+99JLGjBnT4DhyHgAQ7eKsLgAAAAAAAMSW2ltwN/Y86Np1Dd2ue+7cuUpJSfG9evfuHfxCAQBAQNLS0vTQQw9px44dKisr07Fjx7R69WoNGzZMpaWluvLKK7V169YGx5PzAIBoR5MdAAAAAAAEVWVlpSTJ4XA0uI3T6ZQkVVRU+F0/a9YsHT161Pf67LPPgl8oAAAIyK9//WvNmjVLZ555ppKSktShQwddcsklevfdd3XOOefI4/Ho7rvvbnA8OQ8AiHbcLh4AAAAAAARVQkKCJKmqqqrBbWpvEZuYmOh3vdPp9DXiAQBAdHA4HJo9e7YuvfRSrV+/XqWlpX7vbEPOAwCiHVeyAwAAAACAoGrqVvDfXdfYLeUBAED0GT58uCTJ6/WquLjY4moAAAgNmuwAAAAAACCo0tPTJUl79+7V8ePH/W5T+0v32m0BAEBsiI+P9/29oZ8DAACIdjTZAQAAAABAUJ111lmKj49XZWWlCgoK6q2vrq7WBx98IEkaNmxYuMsDAAAh9K9//cv39169ellYCQAAocMz2QEAAAAAQFAlJydr9OjRWrVqlV544QWdc845ddYvX75cZWVl6ty5s7Kysqwpsg3xlnmtLiFkYvnYACBaPfLII5KkU089VT179rS4GgAAQoMmOwAAAAAACLp7771X+fn5ev7555WVlaVrrrlGkrRjxw5Nnz5dknTXXXfJ4XBYWWZMc7lccjqd8mzyWF1KSDmdTrlcLqvLAIA24+2339a6dev0i1/8Qv379/ctP3r0qH79619r6dKlkqT777/fqhIBAAg5muwAAAAAACDoRo4cqdmzZ+u+++7TpEmTdN9996lDhw7auXOnvF6vxo4dqzvvvNPqMmOa2+1Wfn6+SktLw7bPoqIi5eTkaN68eUpLSwvLPl0ul9xud1j2BQCQvv76a+Xm5io3N1c9e/aU2+1WdXW1/v3vf6uqqko2m03333+/7wQ7AABiEU12AAAAAAAQEvfee68GDRqk3//+99q2bZv279+vM844Q9dff71uueUW2e12q0uMeW6325IGdFpamjIyMsK+XwBA6J199tm69957tXHjRv3nP//Rzp07ZYxRz549df7552vq1KkaNmyY1WUCABBSNNkBAIBljDF6//33tXLlSr333nv6+OOP9c0336hLly4aPny4brnlFl144YVWlwkAAFph3LhxGjdunNVlAACAIOndu7fmzJljdRkAAFiKJjsAALDMunXrNHr0aElSXFycBgwYoPbt26uwsFB5eXnKy8vTfffdp9mzZ1tcKQAAAAAAAAAAJ8RZXQAAAGi7jDEaMGCAFixYoIMHD2rXrl0qKCjQoUOHNGvWLEnSnDlz9Je//MXiSgEAAAAAAAAAOIEmOwAAsMw555yjjz76SDfffLNcLpdvucPh0EMPPaTLLrtMkvTcc89ZVSIAAAAAAAAAAHVwu3gAAGCZ5OTkRtdfcsklWrVqlXbv3h2mito2U2VkKo3VZQSdqQr8mA4fPhzEShp39OhR35/h2m+nTp3Csh8AAAAAAAAgltBkBwAAEauyslKSlJiYaHElbUPV+iqrS4g4w4cPD/s+r7/++rDta9euXWHbFwAAAAAAABAraLIDAICIZIzR8uXLJUkjR45scDuPxyOPx+P7uqysrMn3LreXt77ACBSrx4XQKSkpkdvtDmhcaWlpCCryr6ioqM6f4eByuSJ+bpgX/6JpXgAAAAAAQHSiyQ4AACLSc889p+3bt8vhcOj2229vcLu5c+fqwQcfbNZ7ulwuOR1O7UjZEaQqI4/T4azzfHsErqSkxOoSQu7Syy7TW6tWtag5WFJSosvGjFHld05uCZecnJyw7SvB6dSq/PwWz82YMZfJ46kMYWX1hXNenM4E5ee3/DMzZsyYOidEhUN458Wp/BZ+XgAAAAAAQPSiyQ4AACJOQUGBbrvtNknSnDlzlJaW1uC2s2bN0vTp031fl5WVqXfv3n63dbvdyn8rP6xXU+bk5GjevHmNHkMwcTVl8ITzSm2rVFVWqrS0tEWfmdLSUlV6PJo5wq4+KbYQVmedvUeNcjd4Apobj6dSziFXKK5D5xBWaA1v+SF5ClYGOC8eubuOkCM+JYQVWqOq+qhKDmxo8bwAAAAAAIDoFRVN9j179mjNmjXasmWLtmzZon/961+qqanR7Nmzdd9991ldHgAACKI9e/Zo3Lhxqqys1KRJkzRjxoxGt3c6nXI6nc1+f7fbHfYmSFpamjIyMsK6z0A4shyK6xhndRlB5z3ibdXz5ssnT5bp3j2IFUUG2/796rB4ccDj+6TYlN4p9j4vJ3hbNTquQ2fZO/YIUi2xwxGfokRnJ6vLAAAAAAAAaLWoaLI//vjjevzxx60uAwAAhNj+/ft1ySWX6IsvvtDYsWO1aNEi2WyxeaVsJLI5bLIlxN582xytPKbERJn27YNTTASxJSZaXQIAAAAAAAAQlaLi0pMuXbpo3Lhx+u1vf6tVq1bp6quvtrokAAAQZIcPH9Yll1yioqIijRo1SsuXL1d8fLzVZQEAAAAAAAAAUEdUXMn+/VvCv/zyyxZVAgAAQqG8vFyXX365du7cqaFDh+qNN95QIlfZAgAAAAAAAAAiUFRcyQ4AAGKXx+PRFVdcoc2bNysjI0P5+flKSkqyuiwAAAAAAAAAAPyKiivZrVBtq5bH5rG6jJCotlW3arypMjKVJkjVRA5TFfgxHT58OIiVNO7o0aO+P8O1306dOgU0jnkB0JSamhpNnDhR69atU1pamt5++22+twAAAAAAAAAAEY0mewO2uLZYXULEqlpfZXUJEWf48OFh3+f1118ftn3t2rUroHHMC4CmvPLKK3r99dclSXFxcZowYYLf7Xr06KHly5eHsTIAAAAAAAAAAPxrE012j8cjj+fbq9LLysosrAaIPiUlJXK73VaXEXECnZeSkhKVlpa2aIzH49Hnn3/e4n21Vq9eveR0Ols0xuVyhW1eAlVUVFTnz3AJdG5i2XfzubCwUIWFhX6369u3b7hKAgAAAAAAMaCiokLFxcUtHtfa3xulpqYqMTExoLHhwLz4x7z4x7w0jLnxry3NS5toss+dO1cPPvhgs7Z1uVwhriYyOB3ONnOsoVZSUmJ1CSF36WWX6a1Vq1rUHGwL83LZmDFalZ/f4nkZM+YyeTyVIazMWk5ngvLzW/55GTNmTJ2Gazjk5OSEdX9Op1P5LfzMxLopU6ZoypQpVpcBAAAAAABiTHFxscaPHx/w+EB/b5SXl6eMjIyA9xtqzIt/zIt/zEvDmBv/2tK8tIkm+6xZszR9+nTf12VlZerdu7ffbdtK4yP/LZo8wRKuK2+tVFVZqdLS0hZ9ZtrCvFR6PAHNi8dTKeeQKxTXoXMIq7OGt/yQPAUrA5wXj9xdR8gRnxLCCq1TVX1UJQc2tHhuAAAAAAAA0HKpqanKy8uzZL+RjHnxj3nxj3lpGHPjX1ualzbRZHc6nS263fHGjRtDWE19H3/8sa6//notXLhQp556alj22alTp4DHOrIciusYF8RqIoP3iLdVz5svnzxZpnv3IFYUGWz796vD4sUBj3/4IrtSXbH3eSku9erudTUBj4/r0Fn2jj2CWFFscMSnKNEZ+L9PAAAAAAAAgCQlJiZG9NWeVmFe/GNe/GNeGsbc+NeW5qVNNNlbqjUN6ECkpKT4/gz3vgNhc9hkS7BZXUbQ2RytPKbERJn27YNTTASxtfIZFklOmzrG4OclyRl7xwQAAAAAAAAAAICmxd7lpQAAAAAAAAAAAAAAhAhNdgAAAAAAAAAAAAAAmokmOwAAAAAAAAAAAAAAzRQVTfb3339fXbp08b1efvllSdLcuXPrLP/ss88srhQAAAAAAAAAAAAAEMvaWV1Ac1RXV+vQoUP1ln/zzTf65ptvfF/X1NSEsywAAAAAAAAAQAtUVFSouLi4xeOKiorq/NlSqampSkxMDGgsAADA90VFkz0rK0vGGKvLAAAAAAAAAAC0QnFxscaPHx/w+JycnIDG5eXlKSMjI+D9AgAAfFdUNNkBAAAAAAAAANEvNTVVeXl5luwXAAAgWGiyAwAAAAAAAADCIjExkSvKAQBA1IuzugAAAAAAAAAAAAAAAKIFTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM3EM9kBAAAAAAAABKyiokLFxcUtHldUVFTnz5ZKTU1VYmJiQGPDgXkBAACIXTTZAQAAAAAAAASsuLhY48ePD3h8Tk5OQOPy8vKUkZER8H5DjXkBAACIXTTZAQAAAAAAAAQsNTVVeXl5luw3kjEvAAAAsYsmOwAAAAAAAICAJSYmcuW0H8wLAABA7IqzugAAAAAAAAAAAAAAAKIFTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJnaWV0AAAAAAAAAgLalpqZGW7du1YEDB9S1a1dlZmbKbrdbXRYAAADQLDTZAQAAAAAAAITN6tWrlZubq3379vmW9ezZUzNnzlR2draFlQEAAADNw+3iAQAAAAAAAITF6tWrNW3aNA0cOFDLli1TQUGBli1bpoEDB2ratGlavXq11SUCAAAATaLJDgAAAAAAACDkampqlJubq6ysLC1YsECDBw9W+/btNXjwYC1YsEBZWVl6+OGHVVNTY3WpAAAAQKO4XTwAAAAAAGiTKioqVFxc3OJxRUVFdf5sqdTUVCUmJgY0FohmW7du1b59+/Too48qLq7utT9xcXG66aabNHHiRG3dulXDhg2zqEoAAACgaTTZAQAAAABAm1RcXKzx48cHPD4nJyegcXl5ecrIyAh4v0C0OnDggCQpPT3d7/ra5bXbAQAAAJGKJjsAAAAAAGiTUlNTlZeXZ8l+gbaoa9eukqTCwkINHjy43vrCwsI62wEAAACRiiY7AAAAAABokxITE7miHAijzMxM9ezZU08//bQWLFhQ55bxXq9XzzzzjHr16qXMzEwLqwQAAACaFtf0JgAAAAAAAADQOna7XTNnztT69es1depUbd++XeXl5dq+fbumTp2q9evX6+6775bdbre6VADN8Oabb2r06NHq1KmT2rdvryFDhuiJJ56Q1+u1ujQAAEKOK9kBAAAAtNgxj9GRSmN1GSFxzNO64zJVFTKer4NUTeQwVRWtGl9T49HxmsogVRM5amo8VpcQcY4dO6aVK1cqPz9fW7Zs0WeffSabzab+/fvr8ssv1/Tp09WjRw+rywRgkezsbM2fP1+5ubmaOHGib3mvXr00f/58ZWdnW1gdgObKzc3VrFmzJJ14DEqHDh20Y8cOTZs2TWvWrNFrr71W524VAADEGprsAAAAAFrs7nU1kmqsLiMiVW5aanUJEemzL9dZXQLCZOrUqVqyZIkkKSkpSaeeeqq+/vpr7dq1S//+97+1cOFCrVq1SkOHDrW4UgBWyc7O1sUXX6ytW7fqwIED6tq1qzIzM7mCHYgSGzdu1D333KO4uDgtWbJE11xzjSRpx44duvTSS/XnP/9Zjz76qGbMmGFxpQAAhA5NdgAAAEiSvGWxeUu/1h5X3MGDQaokssTqcQGIDFdeeaVuueUWjRo1Su3anfjVQ1FRkSZNmqQtW7bo6quv1q5du5SYmGhxpQCsYrfbNWzYMKvLABCAOXPmyBijn//8574GuyQNGjRIjz76qK699lrl5ubqtttuU3x8vIWVAgAQOjTZAQAA2jiXyyWn0ynPpti95bHT6ZTL5WrRGJfLJUdCgrRiRYiqsp4jISGgeWkLEgL8zMQ6p5PPjD+B/BsTyx5//HF16tSp3vK0tDS9+uqrGjBggD777DPl5+frqquusqBCAAAQqLKyMq1Zs0aSdOONN9ZbP2HCBN188806dOiQ3nnnHR4BAQCIWTTZAQAA2ji32638/HyVlpaGZX9FRUXKycnRvHnzlJaWFpZ9ulwuud3uFo1xu916a9Uq5uV7Wrp9tFqVn8/c+JGfv4p58SM/gM9LLPPXYK/Vu3dvnXrqqfrnP/+p3bt3h7EqAAAQDNu3b1dVVZUSEhI0ZMiQeuvj4+M1dOhQrV27Vps3b6bJDgCIWTTZAQAAILfbHfYGUVpamjIyMsK6z5ZiXvzbuHFjWPf38ccf6/rrr9fChQt16qmnhmWfjTUJGxPOuWFe/IumeWmrKisrJYlbxQMAEIUKCwslSX369PE9Eub7UlNTtXbtWt+2AADEIprsAAAAAFok3A3FlJQU35+R3swMZ33Mi3/RNC9t0Y4dO3xXsI8cOdLiagAAQEvV3umrsUfl1K5r7K5gHo9HHs+3jywrKysLUoUAAIRHnNUFAAAAAACA2FdTU6Nbb71VknTRRRfp7LPPbnR7j8ejsrKyOi8AAGCt2jvSOByOBrdxOp2SpIqKiga3mTt3rlJSUnyv3r17B7dQAABCjCY7AAAAAAAIuXvuuUfvvfeekpKS9Oyzzza5Pb98BwAg8iQkJEiSqqqqGtym9gr1xh4NM2vWLB09etT3+uyzz4JbKAAAIcbt4gEAAAAAgCTprrvu0p///OcWj1u4cKGGDx/e4Pqnn35av/vd79SuXTstXbpUaWlpTb7nrFmzNH36dN/XZWVlNNoBALBYc24F35xbyjudTt8V7wAARCOa7AAAAAAAQJJUUlKiXbt2tXjc119/3eC6ZcuW6Ve/+pVsNpsWLVqksWPHNus9+eU7AACRJz09XZK0d+9eHT9+XO3a1W8xFBcX19kWAIBYxO3iAQAAAACAJGnJkiUyxrT4NXr0aL/v9+abb+qnP/2pvF6vnnzySV177bVhPiIAABBMZ511luLj41VZWamCgoJ666urq/XBBx9IkoYNGxbu8gAACBua7AAAAAAAIOjeffdd/ehHP1J1dbXmzp2rqVOnWl0SAABopeTkZN/JdS+88EK99cuXL1dZWZk6d+6srKysMFcHAED40GQHAAAAAABBtW3bNv3Xf/2XKioqNGvWLM2cOdPqkgDL1NTUaOfOnZKknTt3qqamxuKKIkNNTY02b96sv/zlL9q8eTPzAkSRe++9VzabTc8//7yWLl3qW75jxw5Nnz5dknTXXXfJ4XBYVSIAACHHM9kBAAAAAEDQ7Nq1S2PGjFFZWZmmTp2qhx56yOqSgKCpqKjwPWu4OTZt2qRFixbpq6++kiTdf//9evLJJzVlyhSde+65zX6f1NRUJSYmtrjeSLV69Wrl5uZq3759vmU9e/bUzJkzlZ2dbWFlAJpj5MiRmj17tu677z5NmjRJ9913nzp06KCdO3fK6/Vq7NixuvPOO60uEwCAkKLJDgAAAAAAgmbatGk6ePCgbDab/vGPf+i8887zu90NN9ygG264IczVAa1TXFys8ePHt+o9vvrqK/3ud79r0Zi8vDxlZGS0ar+RYvXq1Zo2bZqcTmed5YcOHdK0adM0f/58Gu1AFLj33ns1aNAg/f73v9e2bdu0f/9+nXHGGbr++ut1yy23yG63W10iAAAhRZMdAAAAAAAEjcfjkSQZY7Rhw4YGt6t9nisQTVJTU5WXl9fkdjU1NfrVr36lpKQkHTt2zHcluyR169ZNSUlJKi8v15NPPtmsRlRqamqr6o4UNTU1euCBB2SM0bnnnqubb75Z6enpKiws1FNPPaX169frN7/5jS6++GIadEAUGDdunMaNG2d1GQAAWIImOwAAAAAACJr169dbXQIQMomJic26onzz5s366quvdODAAWVlZemJJ57wNZOffvpprV+/XsYYVVRUaNiwYWGoPDJs2bJFhw8f1pAhQ/TUU08pLi5OkjR48GA99dRTuvbaa1VQUKAtW7Zo+PDhFlcLAAAANCzO6gIAAAAAAACAWPLll19Kks4//3w98cQT8ng8euedd+TxePTEE0/o/PPPr7NdW7F582ZJ0m233eZrsNeKi4vTrbfeWmc7AAAAIFJxJTsAAAAAAAAQRIcPH5Ykud1uXXrppdq3b59vXc+ePX1N9trt2hpjjNUlAAAAAK3ClewAAAAAAABAEHXq1EmS9PLLL2vgwIFatmyZCgoKtGzZMg0cOFAvv/xyne3aitpb4z/xxBPyer111nm9Xj355JN1tgMAAAAiFU12AAAAAAAAIIi6du3q+7sxpt7L33ZtwTnnnKNOnTpp27Ztmjp1qrZv367y8nJt375dU6dO1bZt29S5c2edc845VpcKAAAANIrbxQMAAAAAADRTTU2Ntm7dqgMHDqhr167KzMyU3W63uixEqNTUVH388ceaOHGib1mPHj2Umpqq4uJiCyuzht1u14MPPqhbb71VGzdu1DvvvONbl5CQIEn6zW9+w/cUAAAAIh5NdgAAAAAAgGZYvXq1cnNz6z1fe+bMmcrOzrawMkSaQ4cOSZLfRvoXX3xRb7u2JDs7W0888YTmzp2rkpIS3/LOnTvzvQQAAICoQZMdAAAAAACgCatXr9a0adOUlZWlRx99VOnp6SosLNTTTz+tadOmaf78+TQH4fPd28DHxcXVef74d79ua7eLr5Wdna2LL76Yu0IAAAAgatFkBwAAAAAAaERNTY1yc3OVlZWlBQsWKC4uTpI0ePBgLViwQFOnTtXDDz+siy++mCYhJElnnnmmJCk+Pl4ffPCB/vnPf/qayWeeeaaGDh2q6upq33Ztkd1u17Bhw6wuAwAAAAhInNUFAAAAAAAARLKtW7dq3759+uUvf+lrsNeKi4vTTTfdpM8//1xbt261qEJEmmXLlkmSqqurdccdd8jhcCgrK0sOh0N33HGHqqur62wHAAAAILrQZAcAAAAAAGjEgQMHJEnp6el+19cur90O2Lt3ryRpzpw52r17tyZOnKizzz5bEydOVGFhoWbPnl1nOwAAAADRhdvFAwAAAAAANKL2udmFhYUaPHhwvfWFhYV1tosFFRUVKi4ubvG4oqKiOn+2VGpqqhITEwMaG0n69OkjSTLG6O2336737PFXX321znYAAAAAogtNdgAAAAAAgEZkZmaqZ8+eevrpp+s8k12SvF6vnnnmGfXq1UuZmZkWVhlcxcXFGj9+fMDjc3JyAhqXl5enjIyMgPcbKSZNmqTf/e53euyxxzR+/Pg6zx4/fvy4Hn/8cdntdk2aNMnCKgEAAAAEiiY7AAAAAABAI+x2u2bOnKlp06Zp6tSpuummm5Senq7CwkI988wzWr9+vebPny+73W51qUGTmpqqvLw8S/YbCxwOh6ZMmaIXXnhBF1xwgW677TZlZWVp/fr1evzxx3Xo0CHdeOONcjgcVpcKAAAAIAA02QEAAAAAAJqQnZ2t+fPnKzc3VxMnTvQt79Wrl+bPn6/s7GwLqwu+xMTEmLii3Ep33XWXJGnRokW6//77fcvtdrtuvPFG33oAAAAA0YcmOwAAAAAAQDNkZ2fr4osvrvd87Vi6gh3Bddddd+n222/XSy+9pL1796pPnz6aNGkSV7ADAAAAUY4mOwAAAAAAQDPZ7fY6z9cGmlJ763gAAAAAsSPO6gIAAAAAAAAAAAAAAIgWNNkBAAAAAAAAAAAAAGgmmuwAAAAAAAAAAAAAADQTz2QHAAAAAABAq9XU1Gjr1q06cOCAunbtqszMTNntdqvLAgAAAICgo8kOAAAAAACAVlm9erVyc3O1b98+37KePXtq5syZys7OtrAyAAAAAAg+bhcPAAAAAACAgK1evVrTpk3TwIEDtWzZMhUUFGjZsmUaOHCgpk2bptWrV1tdIgAAAAAEFU12AAAAAAAABKSmpka5ubnKysrSggULNHjwYLVv316DBw/WggULlJWVpYcfflg1NTVWlwoAAAAAQUOTHQAAAAAAAAHZunWr9u3bp1/+8peKi6v7a6a4uDjddNNN+vzzz7V161aLKgQAAACA4IuqJvubb76p0aNHq1OnTmrfvr2GDBmiJ554Ql6v1+rSAABAK5DxAAAA0enAgQOSpPT0dL/ra5fXbgcAAAAAsSBqmuy5ubkaO3as1q5dK5fLpQEDBmjHjh2aNm2arrrqKn4JDwBAlCLjAQAAolfXrl0lSYWFhX7X1y6v3Q4AAAAAYkFUNNk3btyoe+65R3FxcXrppZdUVFSkHTt2qKCgQCeffLL+/Oc/69FHH7W6TAAA0EJkPAAAQHTLzMxUz5499fTTT9c7OdLr9eqZZ55Rr169lJmZaVGFAAAAABB8UdFknzNnjowx+tnPfqZrrrnGt3zQoEG+X7zn5uaqurraqhIBAEAAyHgAAIDoZrfbNXPmTK1fv14333yzlixZoldffVVLlizRzTffrPXr1+vuu++W3W63ulQAAAAACJp2VhfQlLKyMq1Zs0aSdOONN9ZbP2HCBN188806dOiQ3nnnHWVnZ4e7RAAAEAAyHgAAIDZkZ2frhhtu0KJFi7R+/XrfcrvdrhtuuIGf4wAAAADEnIhvsm/fvl1VVVVKSEjQkCFD6q2Pj4/X0KFDtXbtWm3evJn/cQMQFUxVhYzna6vLCDpTVdGq8TU1Hh2vqQxSNZGlpsZjdQkRh4wHAACIDatXr9aLL76orKwsnX/++UpISFBlZaXee+89vfjiixo8eDA/ywEAAACIKRHfZC8sLJQk9enTR+3a+S83NTVVa9eu9W0LAJGuctNSq0uISJ99uc7qEhBGZDwAAED0q6mpUW5urrKysrRgwQLFxX37ZMJrrrlGU6dO1cMPP6yLL76YW8YDAAAAiBkR32QvLS2VJLlcrga3qV1Xu+33eTweeTzfXkFYVlYWxApPqKioUHFxcUBji4qK6vzZUqmpqUpMTAxobCC8Zd6w7SucWntccQcPBqmSyNLa49p71EiKvc/MieMC0BrByHgpsnM+2jK+pZgX/5gX/9rSz8stxWfGP+YFiA5bt27Vvn379Oijj9ZpsEtSXFycbrrpJk2cOFFbt27VsGHDLKoSAAAAAIIr4pvslZUnbhvscDga3MbpdEo68UsYf+bOnasHH3ww+MV9R3FxscaPH9+q98jJyQloXF5enjIyMlq17+ZwuVxyOp3ybIrdWx47nc5Gmz3+uFwuORISpBUrQlSV9RwJCQHNS4LTqdwNsft5SQjw8xLrnM7APi9tQSD/xsSyYGS8FB05H+kZHyjmxT/mxb+28PNyoPjM+Me8ANHhwIEDkqT09HS/62uX124HAAAAALEg4pvsCQkJkqSqqqoGt6m9eq2hqw1mzZql6dOn+74uKytT7969g1jliasd8vLygvqeLdl3OLjdbuXn5zd6NaE/Ho9Hn3/+eYiqalivXr18zZnmcrlccrvdLRrjdrv11qpVzMv3uN1ureLzUk9Lt49G+fmrmJcG5Ofnt5ljbY5gZLwU2zkfrowPFPPiH/PiX1v4eTlQfGb8Y16A6NC1a1dJJx4FNHjw4Hrrax/7U7sdAAAAAMSCiG+yN+c2sU3dbtbpdLa4edZSiYmJbeJqB7fbHVCDaMiQISGoJnIwL/4xL/5t3LjR6hJCqlOnTgGNi/V5kQKfm1gVjIyXyHkrMS/+MS/+MS8NY278Y16A6JCZmamePXvq6aefrvdMdq/Xq2eeeUa9evVSZmamhVUCAAAAQHBFfJO99rZie/fu1fHjx9WuXf2Sa5/T19CtyQAgktBo9Y95aXvIeAAAgOhnt9s1c+ZMTZs2TVOnTtVNN92k9PR0FRYW6plnntH69es1f/582e12q0sFAAAAgKCJa3oTa5111lmKj49XZWWlCgoK6q2vrq7WBx98IEkaNmxYuMsDAAABIuMBAABiQ3Z2tubPn6/du3dr4sSJOvvsszVx4kQVFhZq/vz5ys7OtrpEAAAAAAiqiL+SPTk5WaNHj9aqVav0wgsv6Jxzzqmzfvny5SorK1Pnzp2VlZVlTZEAAKDFyHgAAIDYkZ2drYsvvlhbt27VgQMH1LVrV2VmZnIFOwAAAICYFPFXskvSvffeK5vNpueff15Lly71Ld+xY4emT58uSbrrrrvkcDisKhEAAASAjAcAAIgddrtdw4YN07hx4zRs2DAa7AAAAABiVlQ02UeOHKnZs2fL6/Vq0qRJSktL06BBgzRkyBB9+eWXGjt2rO68806rywQAAC1ExgMAAAAAAAAAok1UNNmlE1e6vfHGG7rooot06NAh/ec//9EZZ5yhxx57TCtXruTsaAAAohQZDwAAAAAAAACIJhH/TPbvGjdunMaNG2d1GQAAIMjIeAAAAAAAAABAtIiaK9kBAAAAAAAAAAAAALAaTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANBNNdgAAAAAAAAAAAAAAmqmd1QVYwRgjSSorK7O4EgAAvs2j2nxC65DzAIBIQcYHFxkPAIgUZHzwkfMAgEjR3Jxvk032Y8eOSZJ69+5tcSUAAHzr2LFjSklJsbqMqEfOAwAiDRkfHGQ8ACDSkPHBQ84DACJNUzlvM23wdDuv16uSkhIlJSXJZrNZXY7KysrUu3dvffbZZ0pOTra6nIjBvPjHvPjHvPjHvPgXafNijNGxY8fkdrsVF8eTXForknI+0j5rkYJ58Y95aRhz4x/z4l8kzQsZH1xkfHRgbvxjXvxjXvxjXvyLpHkh44OPnI98zIt/zIt/zEvDmBv/ImlempvzbfJK9ri4OPXq1cvqMupJTk62/IMTiZgX/5gX/5gX/5gX/yJpXjjzPXgiMecj6bMWSZgX/5iXhjE3/jEv/kXKvJDxwUPGRxfmxj/mxT/mxT/mxb9ImRcyPrjI+ejBvPjHvPjHvDSMufEvUualOTnPaXYAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJnsEcDqdeuCBB+R0Oq0uJaIwL/4xL/4xL/4xL/4xLwgXPmv+MS/+MS8NY278Y178Y14QDnzOGsbc+Me8+Me8+Me8+Me8IFz4rPnHvPjHvPjHvDSMufEvGufFZowxVhcBAAAAAAAAAAAAAEA04Ep2AAAAAAAAAAAAAACaiSY7AAAAAAAAAAAAAADNRJMdAAAAAAAAAAAAAIBmoskOAAAAAAAAAAAAAEAz0WQPgzPOOEM2m02JiYkqKytrcLspU6bIZrPVecXHx6tHjx764Q9/qFWrVoWx6tDp169fveP8/uuxxx6TJH3yySd+1yclJWnQoEG65557dPDgQWsPKEj27t2r6dOn6/TTT1f79u2VmJioPn36aMSIEcrJydFbb71VZ/usrKwm59Fms+k3v/mNNQcUJFu2bNGvfvUrnX766XK5XIqPj1eXLl00YsQI3XXXXdq2bVuT73Hrrbf65uPtt98OQ9Wh1dD3UIcOHXTmmWdq1qxZOnToUL1xR44c0bJly3TnnXfqvPPO00knnSSbzabRo0dbcBTBF+i87N69W3PnzlV2dra6d++u+Ph4derUSRdeeKEWLlwor9drwdEgmpDz3yLjG0bO+0fO10XG+0fGwypkfF3kvH9kvH9kfH3kvH/kPKxCzn+LjG8YOV8fGV8fGe9fW8j4dlYXEOv+8Y9/aOfOnZKkyspKvfrqq7rhhhsaHdOtWzelp6f7xuzevVtvvPGG3njjDc2aNUsPPfRQyOsOh/T0dHXr1s3vup49e9ZblpmZKafTKUnat2+fPvzwQ/3zn//U4sWL9d5776l///4hrTeU1q1bpyuvvFLHjh2T3W5X79691a1bNx0+fFibNm3Sxo0btXDhQr8/oPTu3Vt9+vRp8L0bWxfJvvnmG/3sZz/T0qVLJUnx8fFKS0tTcnKyDh8+rC1btmjjxo2aN2+eLrvsMr355pt+36e6ulovv/yy7+s//vGPuuSSS8JyDKH23e8hr9erL774Qh9++KE+/PBD/fGPf9Tf//539evXz7f9+vXrNXHiRIuqDZ+WzEtNTY1OOeUU39hevXpp8ODB2rt3r9avX6/169fr5Zdf1sqVK5WQkGDF4SDCkfP+kfF1kfP1kfONI+P9I+MRTmR8w8j5b5Hx9ZHxTSPn/SPnEU7kvH9kfF3kfF1kfNPIeP9iOuMNQmr69OlGkunYsaORZLKyshrc9rrrrjOSzHXXXVdnucfjMTNmzDCSjCSzYcOGEFcdWn379jWSzMKFC5vcds+ePb7j3rNnT51127Zt873XpZdeGppiw+Do0aOmS5cuRpIZO3as+eSTT+qsLy0tNYsWLTKXX355neWjRo0ykswDDzwQxmrDo6qqypx33nlGkunRo4d58cUXTXl5eZ1taufltNNOM06ns8H3+vOf/1zne7B9+/b13ivaNPY9VFBQYNxut5FkJkyYUGddfn6+ueCCC8yMGTPMK6+8Yh566CEjyVx88cVhqjy0ApmX6upq07FjR3PfffeZoqKiOmOWLVtmEhMTjSRz5513hrp8RClyvi4yvj5yvj5yvmFkvH9kPKxAxtdHztdFxtdHxjeOnPePnIcVyPm6yPj6yPm6yPjGkfH+tYWMp8keQsePHzc9evQwksySJUuM3W43NpvNfPrpp363byiwjTHG6/WawYMHG0lm2rRpIa48tIIV2sYYk5eXZyQZm81mDh48GPxiw2Dp0qVGkklOTjZff/11s8fFamAbY8w999xjJBm322327t3b6LbV1dVmzpw5Da6fMGGCkWTuvfdek5GRYSSZP/7xj8EuOaya+h76wx/+YCQZl8vV6PssXLiwzYS2Mf7nxev1msOHDzf4nrm5ub4xNTU1wS4ZUY6cr4+Mr4+cr4+cbxgZ7x8Zj3Aj4/0j5+si4+sj4xtHzvtHziPcyPn6yPj6yPm6yPjGkfH+tYWM55nsIbRmzRp98cUX6t69uyZOnKiLLrpIxhj96U9/avF72Ww2nXfeeZKkwsLCYJcatS644AJJkjFGRUVFFlcTmOLiYknSwIEDddJJJ1lcjfWOHDmi+fPnS5Lmz5+v3r17N7p9u3btdO+99/pdd/ToUb3xxhuSpEmTJmnSpEmSTtyCJpb17dtXklRVVWVxJZHF37zYbDa5XK4Gx2RnZ0uSSktLdeDAgdAWiKhDzodWLGS8RM5/HznfOmS8f2Q8go2MD71YyHkyvi4yvvXIef/IeQQbOR9asZDxEjn/XWR865Hx/sVCxtNkD6HFixdLkn7yk5/Ibrfr2muvlRT4PxjGmKDVFitiYU6Sk5MlnfhB7MiRI9YWEwHefPNNlZeXq3v37rryyitb9V6vvPKKKisrNWjQIJ122mmaNGmSbDab1q5dqy+++CI4BUegrVu3SpJOPfVUiyuJLIHMS2Vlpe/viYmJQa8J0Y2cD61YmQ9yvi5yvnXIeP/IeAQbGR96sTAnZHxdZHzrkfP+kfMINnI+tGJlPsj5b5HxrUfG+xcLGU+TPUTKy8v1+uuvS5IvqMePH6/ExER99NFH2rZtW4vezxij999/X5I0YMCAoNYazd577z1JJ85uSU1NtbiawGRnZysuLk5Hjx7V6NGjtWLFCh09etTqsiyzYcMGSdLw4cNlt9tb9V61PxzXfg/269dPI0aMUE1NjV566aXWFRphvF6vSkpK9NRTT+nhhx+WzWbTrFmzrC7Lcq2dl1deeUWSdPrpp/t+uAYkcj4cYiHjJXL++8j5liPj/SPjESpkfHjEQs6T8XWR8YEh5/0j5xEq5HzoxULGS+T8d5HxgSHj/Yu5jA/v3enbjkWLFhlJZsCAAXWW1z5v4rbbbqs3pqHnu3g8HjNjxgzfs07ee++9EFYeerXPYWjoNWrUKN+2jT3jpaCgwPde0f6Miv/+7/+uMwc2m82ccsopZsqUKebll182lZWV9cbUPt+lqdf27dvDf0CtcOWVVxpJ5o477mjV++zZs8fYbDZjs9nqPCem9jkfgwYNamWl1mnqe2jo0KHmrbfeavJ9YvUZL62dl1offvihcTgcRpJZvHhxCCtHNCLn/SPj/SPnv0XON46M94+MRziR8Q0j5+sj479FxjeNnPePnEc4kfP+kfH+kfMnkPFNI+P9awsZ304IidozcmqfKVHr2muv1fLly7V06VL9z//8j9q1q/+fYNWqVb5nuVRWVmr37t06duyYJOmOO+7wrYt26enp6tatW73lZ5xxht/tJ0yYIKfTKUkqKSnRJ598ImOMTj75ZD311FMhrTXU7rnnHg0fPlz/8z//ozVr1qiqqkq7du3Srl27tGjRIvXp00f/+7//q6ysrHpje/furT59+jT43h06dAhh5cFX+1lv37693/Uvv/yyrrnmmnrLFy5cqClTpvi+XrJkiYwxuuCCC+o8J+bHP/6xbr/9du3YsUMffvhhg5+3aPD976GDBw/qk08+0bZt27RgwQINHTq00eeXxKpgzMuRI0d09dVXq6qqSpdffrl++tOfhrpsRBlyvnFkfF3k/LfI+eYh4/0j4xEOZHzTyPlvkfHfIuObj5z3j5xHOJDzjSPj6yLnTyDjm4+M9y+mM966/n7s+vzzz01cXJyRZD7++OM66zwej3G5XEaS+etf/1pnXe1Zcd992e1207VrV3PZZZeZ1157LYxHETq1Z68sXLiwyW2/e2bcd1+JiYnmtNNOMzNmzDD79+8PfdFh9M0335h3333XzJs3z1x44YXGZrP5jvmjjz7ybVd7VtwDDzxgXbEh0NSZcWvWrDEjR470vVJSUvx+nk455RQjyTz99NP13mPs2LFGksnJyQnFIYRcY99DpaWlZvLkyUaSyczMNF6vt8H3idUz41o7L5WVlb7vr4yMDHP48OEQVo1oRM43jIxvGjlPzjeGjPePjEe4kPGNI+cbR8aT8U0h5/0j5xEu5HzDyPimteWcJ+ObRsb71xYynmeyh8Cf/vQneb1eDRkyRKecckqddQ6HQxMmTJD07Zlz33fdddfJGCNjjI4fP66vvvpKb775pq688spQlx7R9uzZ45uXb775Rv/61780b948nXzyyVaXFlSJiYk6//zzNWPGDK1bt07vvvuu2rdvr4qKCj3yyCNWlxdyPXv2lCR98sknftdffPHF+vvf/+57ZWZm1ttmy5Yt2rVrl+Lj433fb99V+8yXl156SV6vN3jFR4COHTvq2WefVc+ePbV161atXLnS6pIiQnPn5fjx4/rJT36iv/3tb+rXr59Wr17dJs8uROPI+eBrKxkvkfPkfODIeP/IeAQTGR8abSXnyXgyvjXIef/IeQQTOR98bSXjpbad82R865Dx/sVKxtNkD4HaIC4oKJDNZqv3evbZZyVJK1euVFlZmZWlIgqcd955mjp1qqQTYRTrhg8fLknasGGDampqAnqPxYsXS5Kqq6vVuXPnet+DtbeE2rdvn9atWxecwiOI0+nUkCFDJLWNz0xzNTUvxhhdf/31WrlypXr06KE1a9bI7XaHu0xEAXIewUTOt1xbznky3j8yHsFCxiOYyPiWa8sZL5HzDSHnESzkPIKpLeU8Gd96ZLx/sZDxPJM9yLZv366dO3fKZrP5fX5JrdLSUlVUVGjFihW6/vrrw1gholFqaqokqaqqyuJKQu/yyy9Xhw4d9OWXX+q1117Tj370oxaNr66u1rJlyyRJnTt39vsMJUn6+uuvVV5erj/+8Y8aPXp0q+uONLVn/B0+fNjiSiJLY/Nyyy23aMmSJercubPefvttpaWlhbs8RAFyHqFAzjcfOU/GN4SMR2uR8QgFMr75yPgTyHn/yHm0FjmPUGgrOU/GBwcZ71+0ZzxXsgdZ7RlxF1xwgfbv39/g684776yzPdqugwcPyhjT6DYbNmyQJKWnp4ejJEu5XC7dcsstkqTbbrtNe/fubdH4VatW6eDBg2rfvr0++eSTBr8HV6xYIUnKy8vTN998E/TjsFJlZaW2b98u6dsf9tD4vNx7771asGCBkpKSlJ+fr4yMDCtKRBQg59FS5Hxd5HzrkPH+kfEIBjIeLUXG10XGtx457x85j2Ag59FS5Py3yPjWI+P9i4WMp8keRDU1NVq6dKkk6ac//Wmj2/6///f/JEnr16/XZ599FvLaELmWLFmiwYMH67nnntOhQ4fqrDty5Ijuv/9+LVmyRJLazBmUDz74oIYPH66SkhINGzZML774osrLy+tsU11drVdffVW7du2qs7z2h+CrrrpKHTp0aHAfF198sXr06KHy8nK99tprwT8Ii5SWlurnP/+5SkpK5HA49OMf/9jqkiJCY/Py6KOP6qGHHlJiYqL+8pe/+H1uECCR8wgMOV8fOR8YMt4/Mh7BQMYjEGR8fWR84Mh5/8h5BAM5j0CQ83WR8YEj4/2LlYzndvFB9Pbbb2v//v1KSEho8pYZp512ms466yxt375df/rTnzRz5swwVYlIY7PZ9M9//lO/+MUv9Itf/EL9+/dX165dVVpaqk8//dR3u5kZM2boqquuqjf+xRdf1Jo1axp8/wsuuEAPPfRQyOoPBYfDobfffls33HCDXnnlFd1444365S9/qbS0NCUnJ+vQoUP64osvfGe0ZWdn68ILL9SRI0f0xhtvSGr6h2a73a6JEyfq97//vf74xz/q2muvDflxBdtDDz2k559/3vf1oUOHtGfPHnk8HrVr107PPPOM+vXrV2dMly5dfH/3eDySpHfffbfO8ieffFITJ04MbfEh1JJ5KSkp0YwZMyRJSUlJuueeexp831dffVXdu3cPae2IbOQ8AkHO10fON42M94+MR6iQ8QgEGV8fGd885Lx/5DxChZxHIMj5usj45iHj/YvpjDcImkmTJhlJZsKECc3a/pFHHjGSzGmnnWaMMea6664zksx1110Xwiqt17dvXyPJLFy4sMlt9+zZYyQZSWbPnj0hr80KVVVVZt26dSYnJ8eMGDHC9OnTxzgcDnPSSSeZ9PR0M3nyZPPee+/VGzdq1Cjf3DT2uuKKK8J/UEG0adMm88tf/tKcdtppJiUlxbRr18507tzZDBs2zNx5551m27Ztvm2fffZZI8l0797dHD9+vMn33rZtm5Fk7Ha7+eKLL0J5GEFV+z30/ZfT6TSpqanm+uuvN//4xz/8jm3OZ6Y535uRKJB5+e6/MU29YvXfIDQfOd80Mr4+cr5x5HxdZLx/ZDxCjYxvHnK+LjK+cWR8feS8f+Q8Qo2cbxoZXx853zAyvj4y3r+2kPE2Y5p4sAQAAAAAAAAAAAAAAJDEM9kBAAAAAAAAAAAAAGg2muwAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7EAM6devn2w2mz755BOrSwmqrKws2Ww2rV+/3upSAACwDDkPAEBsIuMBAIhNZDwQ22iyA2Gwd+9eTZ8+Xaeffrrat2+vxMRE9enTRyNGjFBOTo7eeustq0uEpMcee0y/+c1vdOTIEatLAQBEEXI+OpDzAICWIuOjAxkPAGgpMj46kPGIdO2sLgCIdevWrdOVV16pY8eOyW63q3fv3urWrZsOHz6sTZs2aePGjVq4cKEOHjxodalt3mOPPaZPP/1UU6ZMUceOHa0uBwAQBcj56EHOAwBagoyPHmQ8AKAlyPjoQcYj0tFkB0KorKxMP/nJT3Ts2DGNHTtWf/jDH9S3b1/f+iNHjmjlypV65ZVXLKwSAAAEgpwHACA2kfEAAMQmMh5AMNFkB0LozTff1MGDB5WcnKxXXnlFJ510Up31HTt21HXXXafrrrvOogoBAECgyHkAAGITGQ8AQGwi4wEEE89kB0KouLhYkjRw4MB6gd0Ym80mm83W4Pp+/frJZrPpk08+aXCbt956S1lZWUpJSVFycrIuueQSvffee363zcrKks1m0/r167VlyxaNHTtWnTp1Uvv27TVixAi9/vrrDe7HGKMlS5Zo1KhR6tixoxITE3Xqqafq7rvv1uHDhxscd/z4cT333HO68MIL1blzZyUkJCg1NVVXX321Vq5c2eC473v55ZcVHx+v9u3ba/Xq1XXWbdmyRRMnTlTPnj3lcDh08skna8KECdq+fXud7RYtWiSbzaZPP/1UktS/f3/ff4PaeQEA4PvIeXIeABCbyHgyHgAQm8h4Mh4IKgMgZJ544gkjyaSkpJjS0tJmj5NkGvv27Nu3r5Fk9uzZ43f53Llzjc1mM506dTKZmZmmc+fORpKJi4szr7zySr33GzVqlJFkfvvb3xqHw2E6dOhgMjMzTY8ePXy1PPLII/XGeb1eM2nSJN82qampZsiQIcbhcBhJpm/fvqaoqKjeuMOHD5uRI0f6xvXt29dkZmaabt26+b72V98777xTZ/mzzz5r4uLiTEpKivn73/9eZ92jjz5qbDabkWQ6depkzjrrLN88xMfHmxUrVvi2ffPNN83IkSON0+k0kkxmZqYZOXKk71VQUNDgfwsAQNtFzpPzAIDYRMaT8QCA2ETGk/FAMNFkB0Jo165dJi4uzkgyZ599tnn11VfNkSNHmhzX2tBu166dmT59uqmqqjLGGFNdXW3uuusuI8kkJyebkpKSOuNqQ7Fdu3Zm4sSJpry83BhzIpTnz5/vW/ePf/yjzrjaH0qSkpLM6tWrfcu/+OILXygPGzasXv1XXnmlkWTS0tLMpk2b6qwrLCw0v/vd7/zW993QnjdvnpFkunbtWi9UV61aZWw2m+nSpUudcDbGmOeff960a9fOJCUl1ZuHhuYVAAB/yHlyHgAQm8h4Mh4AEJvIeDIeCCaa7ECI/fd//7cvhCUZm81mTjnlFDNlyhTz8ssvm8rKynpjWhvagwYN8jtuyJAhRpK5//776yyvDcVu3bqZioqKeuPGjx9vJJnJkyf7lnm9XtO7d28jyfz+97+vN+bzzz/3nSG3du1a3/ItW7YYScbpdJrdu3c3eIz+6qsN7V//+tdGkunVq5f56KOPGjzOlStX+n2/O++803cm4HcR2gCAliLnyXkAQGwi48l4AEBsIuPJeCBYeCY7EGL33HOP1q1bp8svv1wOh0PGGO3atUuLFi3SxIkTNXDgwKA/Q2Tq1KmNLn/rrbf8rr/xxhuVkJDQrHEfffSRPvvsMyUkJOjnP/95vTE9e/bU1VdfLUl1nr1S+/yWq666Sunp6c05HB9jjG6//XbNnj1baWlpeu+993TqqafW2ebTTz9VQUGBunXrph/+8Id+36d2+d/+9rcW7R8AgO8j58l5AEBsIuPJeABAbCLjyXggWNpZXQDQFlx44YW68MILVVFRoa1bt2rz5s168803tX79eu3du1eXX365CgoK6gVQoH7wgx80unz37t0Bjfvyyy9VVlam5ORk33v06dNH7du39zsuIyOj3v4++ugjSdK5557b1GHUM2PGDBUUFCgjI0Nvv/22evToUW+bDz/8UJJUWVmp8847z+/7VFZWSpL27dvX4hoAAPg+cp6cBwDEJjKejAcAxCYynowHgoEmOxBGiYmJOv/883X++edrxowZ+vvf/64xY8bo66+/1iOPPKLnnnsuKPvp1q2b3+Unn3yyJOnYsWMtGvfd5ceOHVNycrLKy8sbHdPQ/srKyiRJHTt2bHBcQ/7zn/9Ikvr166cuXbr43ebo0aO+/bz//vuNvl9FRUWLawAAoCHkPDkPAIhNZDwZDwCITWQ8GQ+0BreLByx03nnn+W7tsmXLlnrrjTF+x3399deNvu+BAwf8Lv/qq68kSUlJSS0a993ltWM7dOhQ5z39+fLLL+vtr/bvR44caXBcQ5577jmdeuqp+utf/6prrrlGx48fr7dNbV0jR46UMabR1yeffNLiGgAAaC5yvmXIeQBAtCDjW4aMBwBECzK+Zch4tHU02QGLpaamSpKqqqp8y2pv5+IvRI8ePaqDBw82+p61t3hpaPnAgQMDGnfyyScrOTm5znvs3bvXd5bc9/3rX/+qt7/aW9Js2rSp0WPwp1u3blq7dq0GDBigFStWaPLkyfJ6vXW2Oe2003w1f39dU2w2W4trAgCgMeR885HzAIBoQsY3HxkPAIgmZHzzkfFo62iyAyF08ODBBs9uq7VhwwZJUnp6um9ZbZB/8MEH9bZ//vnnm9zvggULGl2enZ3td/0LL7wgj8fTrHE/+MEP1KdPH1VWVvqtqaSkRCtWrJAkXXrppb7lV155pSTp9ddfV1FRUZPH8n1ut1vr1q1Tv379tHTpUt1www115jg9PV2nn366Dh8+rMWLF7fovRMTEyVxWxoAQPOQ8+Q8ACA2kfFkPAAgNpHxZDwQVAZAyPz+9783Z555pnn22WfNwYMH66wrLS01v/71r43NZjOSTF5enm/dXXfdZSSZwYMHm/379/uWr1q1yiQnJ5t27doZSWbPnj113rNv375GkmnXrp3JyckxVVVVxhhjqqurzaxZs4wkk5SUZPbt21dn3KhRo3zjrr32WlNeXm6MMcbr9Zo//OEPxmazGbvdbrZv315n3BNPPGEkmeTkZLNmzRrf8v3795vzzz/fSDLnnntuvXm56qqrjCSTnp5utmzZUmddYWGhmTdvnt/63nnnHd+yPXv2mN69extJ5he/+IXxer2+dX/961+NzWYzJ510knnuuedMdXV1nfcrKioyc+bMMStWrKizfOzYsUaSeeqpp+rVDADA95Hz5DwAIDaR8WQ8ACA2kfFkPBBMNNmBEHrssceMJN+rf//+5pxzzjHp6enG4XD4ls+YMaPOuK+++sp0797dSDJOp9MMHjzY9OvXz0gyM2fO9IVzQ6E9d+5cY7PZTOfOnc3QoUNNly5djCQTFxdnli5dWq/O2lD87W9/axwOh0lKSjKZmZnG7Xb7avzd735Xb5zX6zWTJk3ybTNgwAAzZMgQ37H16dPHFBUV1Rt3+PBhM3z4cN+4fv36mczMTHPyyScbSaZv375+6/tuaBtzIuBra7z11lvrrHvyySeN3W73/aBy9tln19mHv3BevHixb93pp59uRo0aZUaNGlXvhxUAAIwh58l5AECsIuPJeABAbCLjyXggmGiyAyFUVVVl1q1bZ3JycsyIESNMnz59jMPhMCeddJJJT083kydPNu+9957fsUVFRWbChAnG5XKZxMREc9ZZZ5mFCxcaY0yTob1nzx6Tn59vLrjgApOUlGQ6dOhgLrroIvO3v/3N776+G4qbN282l112menYsaNJTEw05557bp2z9r7P6/WaxYsXm/PPP98kJycbp9Np0tPTTU5OTr2zAb8/N3/4wx/MyJEjTUpKiklISDD9+/c3P/rRj8wbb7zRYH3f99FHH/mC+Ps//Hz44YfmZz/7mUlNTTUJCQkmJSXFZGRkmGuuucYsX77cfP311/Xe7/HHHzdnnnmmSUxM9AW4v/0CAEDOk/MAgNhExpPxAIDYRMaT8UAw2Yxp4gEUAGJeVlaW/va3v+mdd95RVlaW1eUAAIAgIucBAIhNZDwAALGJjAeiQ5zVBQAAAAAAAAAAAAAAEC1osgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANJPNGGOsLgIAAAAAAAAAAAAAgGjAlewAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANNP/B2ktie+jwasqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m reduced fragment library \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0FElEQVR4nOzdeVyUVf//8feAMBAComIKoglu5V1abqm3qZm45K3daoVWarZY1s/UQrOsu8JCJf2q9VXLFq3U1KRMy6VcMsUFlEzNBUFNJc0FQRIGhPn94de5I8FYhrlm4PV8POYhc13nmvOeCTgxnznnmKxWq1UAAAAAAAAAAAAAAOBvuRkdAAAAAAAAAAAAAAAAV0GRHQAAAAAAAAAAAACAYqLIDgAAAAAAAAAAAABAMVFkBwAAAAAAAAAAAACgmCiyAwAAAAAAAAAAAABQTBTZAQAAAAAAAAAAAAAoJorsAAAAAAAAAAAAAAAUE0V2AAAAAAAAAAAAAACKqYrRAYyQn5+v1NRU+fr6ymQyGR0HAFDJWa1WXbx4UUFBQXJz4/NvZcU4DwBwFozx9sUYDwBwFozx9sc4DwBwFsUd5ytlkT01NVUhISFGxwAAoIDjx4+rbt26RsdweYzzAABnwxhvH4zxAABnwxhvP4zzAABn83fjfKUssvv6+kq68uL4+fkZnAYAUNllZGQoJCTENj6hbBjnAQDOgjHevhjjAQDOgjHe/hjnAQDOorjjfKUssl9dbsbPz48BGwDgNFgOzT4Y5wEAzoYx3j4Y4wEAzoYx3n4Y5wEAzubvxnk2jAEAAAAAAAAAAAAAoJgosgMAAAAAAAAAAAAAUEwU2QEAAAAAAAAAAAAAKCaK7AAAAAAAAAAAAAAAFBNFdgAAAAAAAAAAAAAAiokiOwAAAAAAAAAAAAAAxUSRHQAAAAAAAAAAAACAYqLIDgAAAAAAAAAAAABAMVFkBwAAAAAAAAAAAACgmCiyAwAAAAAAAAAAAABQTC5RZB86dKhMJtN1b9nZ2UbHBAAAAAAAAAAAAABUcFWMDlASjRo1Uq1atQo95+bmEp8XAAAAAAAAAAAAAAC4MJcqsr/00ksaOnSo0TEAAAAAAAAAAAAAAJUU078BAAAAAAAAAAAAACgmiuwAAAAAAAAAAAAAABSTSy0X/8UXX+irr75SRkaGatWqpQ4dOmjw4MHy9/c3OhoAAAAAAAAAAAAAoBJwqSL7N998U+D+4sWL9Z///EcLFy5Ujx49DEoFAAAAAAAAAAAAAKgsXGK5+LCwML311lvavXu3MjIydPHiRa1du1Zt27ZVWlqa7rvvPiUkJBR5vcViUUZGRoEbAAAAAAAAAAAAAAAl5RIz2V955ZVrjnXr1k2dOnVSx44dtWPHDo0bN07r1q0r9Pro6Gi9/vrr5R0TAAAAAAAAAAAAAFDBucRM9qJ4enoqKipKkrRx40alpaUV2m78+PFKT0+33Y4fP+7ImAAAAAAAAAAAAACACsKli+yS1K5dO0lSfn6+UlJSCm1jNpvl5+dX4AYAAAAAAAAAAAAAQEm5fJHdw8PD9vXly5cNTAIAAAAAAAAAAAAAqOhcvsi+b98+29d169Y1MAkAAAAAAAAAAAAAoKJz+SL71KlTJUlNmzZVcHCwwWkAAAAAAAAAAAAAABWZ0xfZv/vuO40fP15HjhwpcDw9PV0jR47UokWLJEmvvvqqEfEAAAAAAAAAAAAAAJVIFaMD/J0//vhDkyZN0qRJkxQcHKygoCDl5ubql19+UU5Ojkwmk1599VUNHDjQ6KgAAAAAAAAAAAAAgArO6YvsLVu21Msvv6ytW7fq8OHD2rt3r6xWq4KDg9WxY0eNGDFCbdu2NTomAAAAAAAAAAAAAKAScPoie0hIiCZOnGh0DAAAAAAAAAAAAAAAnH9PdgAAAAAAAAAAAAAAnAVFdgAAAAAAAAAAAAAAiokiOwAAAAAAAAAAAAAAxUSRHQAAAAAAAAAAAACAYqLIDgAAAAAAAAAAAABAMVFkBwAAAAAAAAAAAACgmCiyAwAAAAAAAAAAAABQTBTZAQAAAAAAAAAAAAAoJorsAAAAAAAAAAAAAAAUE0V2AAAAAAAAAAAAAACKiSI7AAAAAAAAAAAAAADFRJEdAAAAAAAAAAAAAIBiosgOAAAAAAAAAAAAAEAxUWQHAAAAAAAAAAAAAKCYKLIDAAAAAAAAAAAAAFBMFNkBAAAAAAAAAAAAACgmiuwAAAAAAKBc/P7773rhhRfUrFkz3XDDDfLy8lJYWJiefPJJHT582Oh4AAAAAACUShWjAwAAAAAAgIrn4MGDuuuuu/T777/Lw8NDoaGh8vDw0OHDhzV37lwtWLBA3377rTp16mR0VAAAAAAASoSZ7AAAAAAAwO6eeeYZ/f777+rQoYNSUlJ04MAB7dmzRydOnFCfPn106dIlPfroo7JarUZHBQAAAACgRCiyAwAAAAAAu7p06ZI2bNggSZo9e7bq1q1rO1ejRg3NmzdPJpNJR44c0YEDB4yKCQAAAABAqVBkBwAAAAAAdpWTk6P8/HxJUmho6DXnAwICVL16dUnS5cuXHZoNAAAAAICyosgOAAAAAADsqlq1agoJCZEkxcXFXXP+4MGDOnfunKpVq6ZGjRo5Oh4AAAAAAGVCkR0AAAAAANjdxIkTJUnDhg3TsmXLdO7cOaWnp2vNmjW67777ZDKZNGXKFHl5eRmcFACAysdqtWrz5s2KjIzUnXfeqWrVqsnT01NBQUHq37+/bduXv3rttddkMpmue2MrGABAZVDF6AAAAAAAAKDiGTx4sKpWraqoqCgNGDCgwLnbbrtN3377rXr06FHk9RaLRRaLxXY/IyOj3LICAFDZrF+/Xvfcc48kyc3NTQ0bNpSPj4+SkpIUGxur2NhYTZgwQVFRUYVeHxISonr16hV67oYbbii33AAAOAtmsgMAAAAAALuzWq1KSUnRuXPn5O7uroYNG+qWW26Rp6en9u7dq/fff1/nz58v8vro6Gj5+/vbbleXnwcAAGVntVrVsGFDzZo1S2fPntXBgwe1a9cunTt3TuPHj5d0ZVWalStXFnr9sGHDtHnz5kJvRRXfAQCoSCiyAwAAAAAAu3vqqacUGRmpkJAQHT58WElJSdq3b5+OHz+uXr166csvv1SXLl2Ul5dX6PXjx49Xenq67Xb8+HEHPwMAACquNm3aaP/+/Xr66acVEBBgO+7p6am33npLPXv2lCTNnTvXqIgAADg1iuwAAAAAAMCudu/erblz58rDw0Off/65brrpJtu5WrVqacGCBapZs6Z+/vlnLVmypNDHMJvN8vPzK3ADAAD24efnpypVit5Ntlu3bpKkQ4cOOSoSAAAuhSI7AAAAAACwqy1btshqtapx48aFLvPu5+enNm3aSJISEhIcHQ8AAPyN7OxsSZK3t3eh5zds2KD7779fd999twYMGKApU6bo1KlTjowIAIChiv6oGgAAAAAAQClcvHjxb9tYrVZJ/30THwAAOAer1aqlS5dKkjp06FBom02bNhW4v2zZMr322muaNWuWhg4dWt4RAQAwHDPZAQCAoX7//Xe98MILatasmW644QZ5eXkpLCxMTz75pA4fPmx0PAAAUAqNGjWSdGWJ2cL2Us/IyFB8fLwkqXHjxg7NBgAArm/u3LlKTEyUp6enRo0aVeBcnTp19NJLLyk+Pl7nzp3TpUuXtGXLFvXs2VNZWVkaNmyYVqxY8bd9WCwWZWRkFLgBAOBKKLIDAADDHDx4ULfeequmTp2qpKQk1atXT40aNVJqaqrmzp2r5s2b64cffjA6JgAAKKHw8HDVrFlTubm5ioiI0NGjR23nfv/9dz300EM6e/asvLy8NGDAAOOCAgCAAnbt2qXnnntOkjRx4kSFhYUVOD98+HC9+eabatWqlapXry5vb2+1b99e33zzjf7973/LarVq9OjRthVrihIdHS1/f3/brbDtZQAAcGYU2QEAgGGeeeYZ/f777+rQoYNSUlJ04MAB7dmzRydOnFCfPn106dIlPfroo3/7xzkAAHAuVatW1SeffCIvLy/FxcWpYcOGaty4sZo1a6aQkBCtXLlSVapU0Zw5cxQcHGx0XAAAIOnIkSPq3bu3srOzNWjQIL3wwgvFvtZkMmnSpEmSpOTkZP3888/XbT9+/Hilp6fbboWtfAMAgDOjyA4AAAxx6dIlbdiwQZI0e/Zs1a1b13auRo0amjdvnkwmk44cOaIDBw4YFRMAAJRSz549tXv3bj355JNq0KCBfv31Vx0+fFh16tTRI488ou3bt2vIkCFGxwQAAJJOnTqlbt266bffftO9995r+5u8JBo3bqzq1atL0t9u/2Y2m+Xn51fgBgCAK6lidAAAAFA55eTkKD8/X5IUGhp6zfmAgABVr15d586d0+XLlx0dDwAA2EHjxo313nvvGR0DAABcx/nz59WtWzclJyerU6dOWrp0qTw8PEr1WFev4+94AEBFx0x2AABgiGrVqtn2XIuLi7vm/MGDB3Xu3DlVq1ZNjRo1cnQ8AAAAAAAqvMzMTPXq1Ut79+5V69attWLFCnl7e5fqsc6ePavff/9dkgqsVgcAQEVEkR0AABhm4sSJkqRhw4Zp2bJlOnfunNLT07VmzRrdd999MplMmjJliry8vIp8DIvFooyMjAI3AAAAAABwfRaLRX379tX27dvVrFkzrV69Wr6+vqV+vGnTpslqtcrf31+tW7e2Y1IAAJwPRXYAAGCYwYMHa9myZapZs6YGDBigmjVrqlq1aurRo4c8PT317bff6oknnrjuY0RHR8vf3992uzo7HgAAAAAAFC4vL08RERFav369wsLC9N1339n2Uy/Kvn37NGLECO3bt6/A8ezsbL311luaPHmyJGncuHHy9PQst+wAADgD9mQHAACGsVqtSklJ0blz5+Tu7q4GDRrI09NThw8f1t69e/X++++rTZs21/1Df/z48RozZoztfkZGBoV2AAAAAACuY8mSJfrqq68kSW5ubrr//vsLbVenTh0tXbpUkpSbm6vZs2dr9uzZCgwMVL169SRJ+/fv16VLlyRJjz32mF588cXyfwIAABiMIjsAADDMU089pffff1/t27fXpk2bdNNNN0mSfv/9dz322GP68ssvlZycrF27dsnd3b3QxzCbzTKbzQ5MDQAAAACAa7NYLLavk5KSlJSUVGi7+vXr276+6aabFBUVpbi4OB04cEAHDx5UTk6OatWqpV69eunxxx9X9+7dyz07AADOwGS1Wq1Gh3C0jIwM+fv7Kz09XX5+fkbHAQBUcpV1XNq9e7duv/12ValSRcnJydfMPs/IyFBYWJjOnj2rhQsXauDAgcV63Mr6egIAnA9jkn3xegIAnAVjkv3xmgIAnEVxxyT2ZAcAAIbYsmWLrFarGjduXOjy7n5+fmrTpo0kKSEhwdHxAAAAAAAAAAAoFEV2AABgiIsXL/5tm6sL7mRnZ5d3HAAAAAAAAAAAioUiOwAAMESjRo0kSYcOHdLx48evOZ+RkaH4+HhJUuPGjR2aDQAAAAAAAACAolBkBwAAhggPD1fNmjWVm5uriIgIHT161Hbu999/10MPPaSzZ8/Ky8tLAwYMMC4oAAAAAAAAAAB/UsXoAAAAoHKqWrWqPvnkE/Xr109xcXFq2LChQkND5eHhocOHDysnJ0dVqlTRnDlzFBwcbHRcAAAAAAAAAAAkUWQHAAAG6tmzp3bv3q2pU6dq/fr1+vXXX2W1WlWnTh3dddddGjVqlO644w6jYwIAAAAAAAAAYEORHQAAGKpx48Z67733jI4BAAAAAAAAAECxsCc7AAAAAAAAAAAAAADFRJEdAAAAAAAAAAAAAIBiosgOAAAAAAAAAAAAAEAxUWQHAAAAAAAAAAAAAKCYKLIDAAAAAAAAAAAAAFBMFNkBAAAAAAAAAAAAACgmiuwAAAAAAAAAAAAAABQTRXYAAAAAAAAAAAAAAIqJIjsAAAAAAAAAAAAAAMVEkR0AAAAAAAAAAAAAgGKiyA4AAAAAAAAAAAAAQDFRZAcAAAAAAAAAAAAAoJgosgMAAAAAAAAAAAAAUEwU2QEAAAAAAAAAAAAAKCaK7AAAAAAAAAAAAAAAFBNFdgAAAAAAAAAAAAAAiokiOwAAAAAAAAAAAAAAxUSRHQAAAAAAAAAAAACAYqLIDgAAAAAAAAAAAABAMblskX3ChAkymUwymUyaOHGi0XEAAAAAAAAAAAAAAJWASxbZ9+/fr5iYGKNjAAAAAAAAAAAAAAAqGZcrslutVg0fPlweHh66++67jY4DAAAAAAAAAAAAAKhEXK7I/uGHH+rHH3/Uq6++qpCQEKPjAAAAAAAAAAAAAAAqEZcqsp85c0bjxo3TLbfcotGjRxsdBwAAAAAAAAAAAABQyVQxOkBJjB49WufPn1dsbKw8PDyMjgMAAAAAAAAAAAAAqGRcZib7unXrtGDBAj388MPq1KmT0XEAAAAAAAAAAAAAAJWQS8xkz87O1lNPPSV/f3+9/fbbJb7eYrHIYrHY7mdkZNgzHgAAAAAAAAAAAACgknCJmewTJ07U4cOH9eabb+rGG28s8fXR0dHy9/e33UJCQsohJQAAAAAAAAAAAACgonP6Ivv+/fsVExOjO+64Q08//XSpHmP8+PFKT0+33Y4fP27nlAAAAAAAAAAAAACAysDpl4sfMWKELl++rNmzZ8vNrXSfCTCbzTKbzXZOBgAAAAAAAAAAAACobJy+yJ6YmCiTyaQ+ffpccy49PV2SNHnyZL377rsKCQlRfHy8oyMCAAAAAAAAAAAAACoJpy+yS1JeXp5Onz5d5PnMzExlZmbKy8vLgakAAAAAAAAAAAAAAJWN0+/JfuHCBVmt1kJvQ4YMkSRFRUXJarXq6NGjxoYFAAAAAAAAAAAAAFRoTl9kBwAAAAAAAAAAAADAWVBkBwAAAAAAAAAAAACgmCiyAwAAAAAAAAAAAABQTFWMDlAW8+bN07x584yOAQAAAAAAAAAAAACoJJjJDgAAAAAAAAAAAABAMVFkBwAAAAAA5SYvL09z585Vp06dVLNmTXl5eal+/fq67777tHz5cqPjAQAAAABQYi69XDwAAAAAAHBeaWlp6tWrl7Zt2yaTyaTGjRvrpptuUmpqqpYvX64qVaqob9++RscEAAAAAKBEKLIDAAAAAAC7y8/PV58+fbRt2zb169dPM2bMUN26dW3nT5w4oZSUFAMTAgAAAABQOhTZAQAAAACA3b3//vvavHmzunTpoqVLl8rNreCOdXXr1i1QdAcAAAAAwFWwJzsAAAAAALC7GTNmSJKioqKuKbADAAAAAODK+CsXAAAAAADYVVJSkg4cOKDq1aurffv2Wr58uR5++GF17dpVERER+uCDD2SxWIyOCQBApWW1WrV582ZFRkbqzjvvVLVq1eTp6amgoCD1799fGzZsuO71W7duVd++fRUYGChvb2/dcsstioqKUnZ2toOeAQAAxmK5eAAAAAAAYFc7d+6UJDVt2lSPPPKIFixYUOD84sWLNXXqVK1evVr169c3IiIAAJXa+vXrdc8990iS3Nzc1LBhQ/n4+CgpKUmxsbGKjY3VhAkTFBUVdc21CxYs0JAhQ5SXl6fg4GCFhIRo7969evXVV7VixQpt3LhRN9xwg6OfEgAADsVMdgAAAAAAYFe//fabJCk+Pl4LFizQ448/rqNHjyo7O1vff/+9QkNDdeDAAfXv31/5+fmFPobFYlFGRkaBGwAAsA+r1aqGDRtq1qxZOnv2rA4ePKhdu3bp3LlzGj9+vCRp4sSJWrlyZYHrjh49qscee0x5eXmaMmWKjh8/rl27dikpKUlNmjRRfHy8xo4da8RTQjnKycnRvHnz9MYbb2jevHnKyckxOhIAGI4iOwAAAAAAsKs//vhDkpSbm6uOHTtq7ty5ql+/vsxms7p27arY2FiZTCbt3LlT33zzTaGPER0dLX9/f9stJCTEkU8BAIAKrU2bNtq/f7+efvppBQQE2I57enrqrbfeUs+ePSVJc+fOLXBdTEyMLBaLwsPDFRkZKZPJJEmqX7++PvroI0nS+++/r9OnTzvomaC8TZkyRS1atFB0dLQWLFig6OhotWjRQlOmTDE6GgAYiiI7AAAAAACwKy8vL9vXzz333DXnmzdvri5dukiSVq9eXehjjB8/Xunp6bbb8ePHyycsAACVkJ+fn6pUKXo32W7dukmSDh06ZDtmtVr15ZdfSpIee+yxa65p3769mjZtqtzcXC1fvtzOiWGEKVOm6MMPP1S1atUUFRWlzZs3KyoqStWqVdOHH35IoR1ApUaRHQAAAAAA2NWfZ8Q1bdq00DY333yzpCvLzhbGbDbLz8+vwA0AADhGdna2JMnb29t27Ndff7VtCdOhQ4dCr7t6fPv27eWcEOXt6hLxNWrU0KZNm/TAAw8oMDBQDzzwgDZt2qQaNWqwdDyASq3oj6oBAAAAAACUQpMmTWxfm83mQttcPZ6Xl+eQTAAAoHisVquWLl0qqWAxPSkpSdKVMTwoKKjQa0NDQwu0LYrFYpHFYrHdz8jIKFPmwmRlZSklJcXuj/t3QkNDC3w4wVUtXLhQeXl5GjVq1DWrHlSpUkXPPfecXn31VS1cuFBDhw41JiQAGIgiOwAAAAAAsKvbb79dXl5eys7OVkpKiho2bHhNm6tvegcHBzs6HgAAuI65c+cqMTFRnp6eGjVqlO14WlqaJKlatWq2vdj/6upqNlfbFiU6Olqvv/66fQIXISUlRf369SvXPgoTGxurZs2aObxfe/v1118lybbFz1917ty5QDsAqGwosgMAAAAAALvy8fFRr169FBsbq/nz5ys8PLzA+VOnTmnNmjWSpLvvvtuIiAAAoBC7du3Sc889J0maOHGiwsLCbOeuLiHv6elZ5PVXV6rJysq6bj/jx4/XmDFjbPczMjIUEhJS6tyFCQ0NVWxsbImvS05OVmRkpGJiYgo8/5L0WxHUq1dPkrRhwwY98MAD15zfuHFjgXYAUNlQZAcAAAAAAHb36quvavny5fr8888VHh6uIUOGSJIuXLigoUOHKisrS6Ghobr//vsNTgoAACTpyJEj6t27t7KzszVo0CC98MILBc57eXlJ0nX34L66BPzfLZduNpuL3FLGXry9vcs0ozwsLKxCzEgvrUGDBmnKlCmaPn26+vXrV2DJ+MuXL2vGjBlyd3fXoEGDDEwJAMZxMzoAAAAAAACoeJo3b653331XVqtVQ4cOVf369dW6dWsFBwdrzZo1qlmzppYtW3bd2XAAAMAxTp06pW7duum3337Tvffeq3nz5l2zJPzVpeAvXLggq9Va6ONcXSb+alu4Lk9PTw0dOlTnzp3TXXfdpcWLF+v06dNavHix7rrrLp07d05Dhw7l/+UAVFrMZAcAAAAAAOXiqaeeUrNmzRQTE6OtW7fq559/VlBQkO69916NHz+e/dgBAHAC58+fV7du3ZScnKxOnTpp6dKl8vDwuKZdo0aNJF2ZrZ6amlroOJ6SklKgLVzb2LFjJUnz5s3Tq6++ajvu7u6uxx57zHYeACojiuwAAAAAAKDcdOzYUR07djQ6BgAAKERmZqZ69eqlvXv3qnXr1lqxYkWRS73Xq1dPtWvX1qlTp7Rly5ZC9+nesmWLJKlt27blmhuOM3bsWI0aNUoLFy7Ur7/+qnr16mnQoEHMYAdQ6VFkBwAAAAAAAACgkrFYLOrbt6+2b9+uZs2aafXq1fL19S2yvclk0r///W/Nnj1bH3744TVF9ri4OB04cEAeHh7q06dPeceHA11dOh4A8F/syQ4AAAAAAAAAQCWSl5eniIgIrV+/XmFhYfruu+9UvXr1v70uMjJSnp6eWrt2rWJiYmx7sx87dkzDhg2TJD3++OOqXbt2ueYHAMBozGQHAAAAAAAAAKASWbJkib766itJkpubm+6///5C29WpU0dLly613W/QoIHmzp2rRx99VGPHjtWMGTNUq1Yt7d27V7m5uWrZsqViYmIc8RQAADAURXYAAAAAAAAAACoRi8Vi+zopKUlJSUmFtqtfv/41xwYPHqyGDRsqOjpacXFx+uWXXxQaGqqBAwdq3Lhx8vLyKrfcAAA4C4rsAAAAAAAAAABUIkOHDi3THtvt27fXihUr7BcIAAAXw57sAAAAAAAAAAAAAAAUE0V2AAAAAAAAAAAAAACKieXiAQAAAAAAAAAAKoGsrCylpKQ4vN/Q0FB5e3s7vF8AKC8U2QEAAAAAAAAAACqBlJQU9evXz+H9xsbGqlmzZg7vFwDKC0V2AAAAAAAAAACASiA0NFSxsbElvi45OVmRkZGKiYlRWFhYqfoFgIqEIjsAAAAAAAAAAEAl4O3tXaYZ5WFhYcxIBwBJbkYHAAAAAAAAAAAAAADAVVBkBwAAAAAAAADABZw+fVqJiYm6dOmS0VEAAKjUKLIDAAAAAAAAAOAEtm/frjFjxuibb74pcDwjI0N9+/ZVUFCQWrVqpdq1a+vjjz82KCUAAKDIDgAAAAAAAACAE/jggw80Y8YM+fr6FjgeGRmpFStWyGQyqVq1asrMzNQTTzyhPXv2GJQUAIDKjSI7AAAAAAAAAABOYMuWLfLx8dFdd91lO5aZmalPP/1Uvr6+2rt3r86dO6fp06crPz9fU6dONTAtAACVF0V2AAAAAAAAAACcwOnTpxUSElLg2A8//KDs7Gw9+OCDatq0qSTp2WefVc2aNbV9+3YjYgIAUOlRZAcAAAAAAAAAwAlcvHhRN9xwQ4FjmzdvlslkUrdu3WzH3NzcdNNNN+n48eOOjggAAESRHQAAAAAAAAAAp1CjRg0dO3ZMVqvVduz777+XJHXq1KlA29zcXHl6ejo0HwAAuIIiOwAAMFxeXp7mzp2rTp06qWbNmvLy8lL9+vV13333afny5UbHAwAAAADAIe68806dO3dOc+fOlXSlwL5z5041b95ctWrVsrWzWq06fPiw6tSpY1RUAAAqtSpGBwAAAJVbWlqaevXqpW3btslkMqlx48a66aablJqaquXLl6tKlSrq27ev0TEBAAAAACh3zz//vFasWKGnn35aL730ki5cuCCTyaTnn3++QLtNmzbpjz/+UOvWrQ1KClQsWVlZSklJcXi/oaGh8vb2dni/AMqOIjsAADBMfn6++vTpo23btqlfv36aMWOG6tatazt/4sQJQ/7AAQAAAADACP/85z+1bNkyTZgwQYcPH1ZoaKhGjx6thx56qEC7OXPmSJLCw8ONiAlUOCkpKerXr5/D+42NjVWzZs0c3i+AsqPIDgAADPP+++9r8+bN6tKli5YuXSo3t4I72dStW7dA0R0AAAAAgIqub9++f7ui2/vvv685c+bI19fXQamAii00NFSxsbElvi45OVmRkZGKiYlRWFhYqfoF4JoosgMAAMPMmDFDkhQVFXVNgR0AAAAAABSO4jpgX97e3mWaUR4WFsaMdKCSocgOAAAMkZSUpAMHDqh69epq3769li9frqVLl+q3335TYGCg7rnnHj3yyCMym81GRwUAAAAAAAAAwIYiOwAAMMTOnTslSU2bNtUjjzyiBQsWFDi/ePFiTZ06VatXr1b9+vWNiAgAAAAAgMPl5OTo448/1urVq5WSkqLMzExZrdZC25pMJiUnJzs4IQAAoMgOAAAM8dtvv0mS4uPjFRcXp8cff1wTJkxQ7dq1tXnzZj355JM6cOCA+vfvrx07dhS5nLzFYpHFYrHdz8jIcEh+AAAAAADs7bffflPXrl118ODBIgvrf2YymRyQCgAA/BVFdgAAYIg//vhDkpSbm6uOHTtq7ty5tnNdu3ZVbGysbr/9du3cuVPffPON/vWvfxX6ONHR0Xr99dcdkhkAAAAAgPL0/PPP68CBAwoNDdXYsWN1++23KzAwkGI6AABOhiI7AAAwhJeXl+3r55577przzZs3V5cuXbR+/XqtXr26yCL7+PHjNWbMGNv9jIwMhYSE2D8wAAAAAADlbPXq1fLy8tIPP/yg4OBgo+MAAIAiFL7uKgAAQDkLCAiwfd20adNC29x8882SpKNHjxb5OGazWX5+fgVuAAAAAAC4ory8PDVt2pQCOwAATo6Z7AAAwBBNmjSxfW02mwttc/V4Xl6eQzIBAAAAAGCk2267Tb/++qvRMQCg1PLy8pSQkKAzZ84oMDBQrVq1kru7u9GxALtjJjsAADDE7bffblsyPiUlpdA2V4/zCX4AAAAAQGUQGRmp48ePa/HixUZHAYASW7t2rbp166bBgwfr+eef1+DBg9WtWzetXbvW6GiA3VFkBwAAhvDx8VGvXr0kSfPnz7/m/KlTp7RmzRpJ0t133+3QbAAAAAAAGKFPnz6aOnWqHn/8cT3//PPat2+fsrOzjY4FAH9r7dq1GjlypBo3bqzFixdr165dWrx4sRo3bqyRI0dSaEeFQ5EdAAAY5tVXX5W7u7s+//zzAoX2CxcuaOjQocrKylJoaKjuv/9+A1MCAAAAAOA4gwYNUufOnTV9+nTddttt8vHxkbu7e6G3KlXYERaA8fLy8jRp0iR17txZs2bNUosWLeTj46MWLVpo1qxZ6ty5syZPnsyWkKhQKLIDAADDNG/eXO+++66sVquGDh2q+vXrq3Xr1goODtaaNWtUs2ZNLVu2TJ6enkZHBQAAAACg3B0+fFgtW7bUt99+K6vV+re3/Px8oyMDgBISEnTy5Ek99dRTcnMrWHp0c3PT8OHDdeLECSUkJBiUELA/iuwAAMBQTz31lH744Qf961//0qVLl/Tzzz+rVq1aeuaZZ/TTTz+pRYsWRkcEAAAAAMAhxo4dq9TUVLVt21Zr1qzR6dOnlZ+ff90bABjtzJkzkqRGjRoVev7q8avtgIqAtWQAAIDhOnbsqI4dOxodAwAAAAAAQ/3www+qWrWqVq9eLT8/P6PjAECxBAYGSpKSkpIKnTCTlJRUoB1QETCTHQAAAAAAAAAAJ5Cfn68mTZpQYAfgUlq1aqXg4GDNmTPnmhU28vPz9d5776lu3bpq1aqVQQkB+6PIDgAAAAAAAACAE2jZsqVOnDhhdAwAKBF3d3e9+OKL2rhxo0aMGKHExERlZmYqMTFRI0aM0MaNGzVu3Di5u7sbHRWwG4rsAAAAAAAAAAA4gVdeeUVnz57VjBkzjI4CACUSHh6umTNn6tChQ4qIiFDLli0VERGhpKQkzZw5U+Hh4UZHBOyKPdkBAAAAAAAAAHACDRo0UExMjMaNG6dNmzZp2LBhCgsL0w033FDkNfXq1XNgQgAoWnh4uLp27aqEhASdOXNGgYGBatWqFTPYUSFRZAcAAAAAAAAAwAncdNNNMplMslqt+uqrr/TVV19dt73JZNLly5cdEw4AisHd3V1t27Y1OgZQ7iiyAwAAAAAAAADgBOrVqyeTyWR0DAAA8DcosgMAAAAAAAAA4ASOHj1qdAQAAFAMbkYHAAAAAAAAAAAAAADAVVBkBwAAAAAAAAAAAACgmFguHgAAAAAAAAAAJ2KxWLRo0SKtXbtWhw4d0sWLF+Xr66vGjRure/fuioiIkNlsNjomAACVlksU2b/66iutWrVKCQkJSk1N1blz53TDDTfolltu0YMPPqinn35anp6eRscEAAAAAAAAAKBMdu3apfvvv19Hjx6V1Wq95tzixYsVFRWlJUuW6I477jAoJQAAlZtLFNnffvttbdmyRWazWUFBQWrevLl+++03bd26VVu3btWnn36q77//XtWqVTM6KgAAAAAAAAAApXLixAl169ZNaWlpqlmzpp544gk1a9ZMN954o06fPq19+/bpgw8+UEpKirp3766ffvpJwcHBRscGAKDScYk92R9//HFt2LBBFy9eVEpKiuLj43XixAlt3bpVdevW1c6dO/Xyyy8bHRMAAAAAAAAAgFKLjo5WWlqa+vXrp2PHjunNN9/UoEGD1LVrVw0aNEhvvvmmjh07pv79++vcuXOKjo42OjIAAJWSSxTZhw4dqs6dO8vDw6PA8TvvvFPTpk2TdGVJeVeUl5en7du3a+XKldq+fbvy8vKMjuQUsrKy9Prrr2vYsGF6/fXXlZWVZXQkODF+jgAAAAAAAFARrFq1Sj4+Ppo3b568vb0LbePl5aWPP/5YPj4++vbbbx2cEAAASC6yXPz1NG3aVJJ06dIlg5OU3Nq1azVp0iSdPHnSdiw4OFgvvviiwsPDDUxmrBEjRmjdunW2+1u2bNHChQvVtWtXzZo1y8BkcEb8HAEAAACuYcKECXrzzTclSVFRUZowYYLBiQAAcD6pqam67bbbVLVq1eu2q1q1qm6++Wbt2bPHQckAAMCfucRM9uvZunWrJOmOO+4wOEnJrF27ViNHjlTjxo21ePFi7dq1S4sXL1bjxo01cuRIrV271uiIhrhaYPfw8NCTTz6ptWvX6sknn5SHh4fWrVunESNGGB0RToSfIwAAAMA17N+/XzExMUbHAADA6fn6+ur06dPFanv69Gn5+PiUcyIAAFAYlyyy5+Xl6cSJE5o1a5ZeeOEF+fj4uNTeM3l5eZo0aZI6d+6sWbNmqUWLFvLx8VGLFi00a9Ysde7cWZMnT650S15nZWXZCuy7du3S888/r/r16+v555/Xrl27bIV2lo6HxM8RAAAA4CqsVquGDx8uDw8P3X333UbHAQDAqbVs2VInTpzQ559/ft12ixYt0vHjx9WqVSsHJQMAAH/mUkX26dOny2QyqUqVKgoJCdEzzzyjrl27atu2bWrTpk2R11ksFmVkZBS4GSkhIUEnT57UU089JTe3gv8J3NzcNHz4cJ04cUIJCQkGJTTGlClTJEmPPvqoPD09C5zz9PTUkCFDCrRD5cbPEQAAAOAaPvzwQ/3444969dVXFRISYnQcAACc2v/7f/9PVqtVQ4YM0fPPP68jR44UOH/kyBGNGTNGjz76qEwmk0aOHFnqvo4cOaK5c+fqiSeeUPPmzVWlShWZTCZNnDixyGtee+01mUym694OHDhQ6kwAALgKl9qTPTg4WB06dFBubq6OHTum06dPa8OGDVq0aJHeeOMNubu7F3pddHS0Xn/9dQenLdqZM2ckSY0aNSr0/NXjV9tVFseOHZMkDRgwoNDzAwYM0AcffGBrh8qNnyMAAADA+Z05c0bjxo3TLbfcotGjR+uJJ54wOhIAAE7t3nvv1bhx4zR58mRNnz5d06dPl9lsVmBgoM6cOSOLxSLpykox48ePV69evUrd14wZMzRjxoxSXRsSEqJ69eoVeu6GG24odSYAAFyFS81kv//++7V582Zt375dp06d0rZt23TTTTfprbfe0rPPPlvkdePHj1d6errtdvz4cQemvlZgYKAkKSkpqdDzV49fbVdZ1K9fX5L0xRdfFHr+6vGr7VC58XMEAAAAOL/Ro0fr/PnzmjVrljw8PIyOAwCAS4iOjtbXX3+tdu3ayWQyKTs7W8ePH1d2drZMJpM6dOigFStW6M033yxTPzVr1lTv3r31xhtvaNWqVerfv3+xrx02bJg2b95c6K2o4jsAABWJSxXZ/6pt27b69ttvZTab9f777xc5w9lsNsvPz6/AzUitWrVScHCw5syZo/z8/ALn8vPz9d5776lu3bqVbj+dsWPHSpI+/vhj5eTkFDiXk5Oj+fPnF2iHyo2fIwAAAMC5rVu3TgsWLNDDDz+sTp06GR0HAACX0rt3b23evFnp6elKTEzUjz/+qMTERKWnp2vTpk269957y9zHhAkTtGLFCr3yyivq0aOHqlataofkAABUDi5dZJekoKAgtWjRQvn5+dq9e7fRcYrF3d1dL774ojZu3KgRI0YoMTFRmZmZSkxM1IgRI7Rx40aNGzeuyOXvKypvb2917dpVubm5uuOOOxQTE6MjR44oJiZGd9xxh3Jzc9W1a1d5e3sbHRVOgJ8jAAAAwHllZ2frqaeekr+/v95+++1SPYbFYlFGRkaBGwAAlY2Pj4+aN2+uDh06qHnz5vLx8TE6EgAAkIvtyV6Uy5cvF/jXFYSHh2vmzJmaNGmSIiIibMfr1q2rmTNnKjw83MB0xpk1a5ZGjBihdevW6YMPPtAHH3xgO9e1a1fNmjXLwHRwNvwcAQAAAM5p4sSJOnz4sN59913deOONpXqM6Ohovf7663ZOBgCAc3N3d9c///lP/fDDD3/btkuXLvrxxx8NeV98w4YN2rdvn86dO6fq1aurTZs2Gjx4sGrXru3wLAAAGMHli+xHjx61zWBv3ry5wWlKJjw8XF27dlVCQoLOnDmjwMBAtWrVqtLPvJ01a5aysrI0ZcoUHTt2TPXr19fYsWOZwY5C8XMEAAAAOJf9+/fbViR7+umnS/0448eP15gxY2z3MzIyFBISYo+IAAA4LavVKqvVWqL2Rti0aVOB+8uWLdNrr72mWbNmaejQoYZkAgDAkcpUZD9y5Iji4+P1+++/6+LFi/Lz81OtWrXUpk0b1a9f3y4Bd+7cqa+//lpDhgxRaGhogXOrV6/W6NGjdfnyZfXq1UthYWF26dOR3N3d1bZtW6NjOB1vb2/95z//MToGXAQ/RwAAAIDzGDFihC5fvqzZs2fLza30u9SZzWaZzWY7JgMAoGL5448/5OHh4dA+69Spo5deekn//ve/FRoaKm9vbyUmJmrixIlatWqVhg0bpho1auhf//rXdR/HYrHIYrHY7rMtDOCcsrKylJKS4vB+r/5+geupTN8zpSqyf/rpp4qOjtbBgweLbHPLLbfopZde0sCBA0sdTpIuXryoN954Q2+88YZq166tunXrKicnR7/++qsuXLggSWrdurXmz59fpn4AAEDJ7dixQ59++qneeecdo6MAAAAnkZiYKJPJpD59+lxzLj09XZI0efJkvfvuuwoJCVF8fLyjIwIA4PIOHjyovXv3Kjg42KH9Dh8+/Jpj7du31zfffKP+/fvryy+/1OjRo9W7d2+ZTKYiH4dtYQDXkJKSon79+jm839jYWDVr1szh/aLsKtP3TImK7Pn5+Ro8eLAWLVpkW4amRo0aCgkJkY+PjzIzM3X8+HGdP39e+/bt08MPP6w1a9bo448/vu6Aej3NmzfXjBkztG7dOu3bt08HDhxQTk6OatSooXbt2umBBx7Qww8/rCpVXH7lewAAXMLRo0f12Wef6bPPPlNSUpIkUWQHAAAF5OXl6fTp00Wez8zMVGZmpry8vByYCgAA5zNjxgzNmDGjwLGEhIRrVnX9s6ysLP3++++SpL59+5ZrvuIymUyaNGmSvvzySyUnJ+vnn3++7vaubAsDuIbQ0FDFxsaW+Lrk5GRFRkYqJiamVKtQX+93IJxbZfqeKVFl+o033tDChQvl7u6uZ599Vk899ZSaNGlyTbv9+/dr9uzZmj17tj799FM1bNhQEyZMKFXAgIAAjRw5UiNHjizV9QAAoOzS09O1ZMkSffrpp9qyZYukK/u+eXh4qEePHganAwAAzuTqqnOFGTp0qObPn6+oqKhSv08AAEBFcuHCBR09etR232QyKTs7u8Cxwvj6+ur+++/XxIkTyzdgCTRu3FjVq1fX+fPndfjw4esW2dkWBnAN3t7eZZodHBYWxoz0SqYyfc8Uu8h+9uxZTZo0SVWqVNHKlSsVHh5eZNubb75ZM2fOVK9evfSvf/1Lb775pp5++mnVqFHDLqEBAED5u3z5sr799lt9+umnWrlypXJycmwr2bRr104PP/ywHnzwQVWvXt3gpAAAAAAAuKZRo0Zp6NChkq58mD00NFStW7fWkiVLCm1vMpnk7e2twMBAB6Ysvqt7xF++fNngJAAAlK9iF9k//fRT5eTk6Pnnn79ugf3PevTooZEjR2r69OlasGABs9EBAHAB27dv16effqrFixfr/PnztsJ648aNdejQIdWuXds2mx0AAAAAAJSev7+//P39bfeHDBmiJk2aqH79+gamKp2zZ8/alrGvW7euwWkAAChfbsVtuHnzZplMJj399NMl6mDEiBGyWq3atGlTicMBAADHOHLkiKKiotS4cWO1b99es2fP1rlz53TjjTdq1KhRio+P14EDB4yOCQAAAABAhfbxxx/rxRdfNDpGqUybNk1Wq1X+/v5q3bq10XEAAChXxZ7J/vPPP6tWrVol3jg+LCxMtWrV0s8//1zicAAAoPx17NhRcXFxkq4sTefn56d+/frpoYce0t133y2TyWRwQteUl5enhIQEnTlzRoGBgWrVqpXc3d2NjgUAgKHmzZunefPmGR0DAACUwr59+/S///u/euaZZwrsl5udna1p06Zp8uTJkqRx48bJ09PTqJgAADhEsYvs58+fL/USNUFBQTp27FiprgUAAOVry5YtMplMqlatmqZOnaqBAwfKbDYbHculrV27VpMmTdLJkydtx4KDg/Xiiy8We9sdAAAAAEDldeTIES1evFi7d+/W+fPnlZubW2g7k8mkdevWlaqPLVu2qG/fvrb7mZmZkqTo6GhNnz7ddjwxMVEhISHKzc3V7NmzNXv2bAUGBqpevXqSpP379+vSpUuSpMcee8xlZ+IDAFASxS6yZ2RkqGrVqqXqxMfHRxkZGaW6FgAAlC93d3fl5eXpwoULevbZZ7VmzRoNGjRIPXv2VJUqxf5fBfyftWvXauTIkercubOmTZumRo0aKSkpSXPmzNHIkSM1c+ZMCu0AAAAAgCLFxMTo5Zdf1uXLl22ry1mtVtv5Px8ry+pzubm5Onfu3DXHL126ZCuaS1dWapOkm266SVFRUYqLi9OBAwd08OBB5eTkqFatWurVq5cef/xxde/evdR5AABwJcV+5/zqQFpa+fn5ZboeAACUj5MnT2rhwoX67LPPtGvXLi1evFhLlixRQECABgwYoIEDB6pTp05Gx3QJeXl5mjRpkjp37qxZs2bJzc1NktSiRQvNmjVLI0aM0OTJk9W1a1eWjgcAAAAAXOPbb7/VuHHjVKdOHUVFRWn69Onat2+fvvvuOx0/fly7d+/Whx9+aPv787bbbit1X507dy5QvP871apV04QJE0rdHwAAFUmJpqdZLBb9+uuvJe7EYrGU+BoAAOAYtWrV0qhRozRq1Cjt379fn3zyiRYuXKjjx49r7ty5mjt3roKDg/Xggw8aHdXpJSQk6OTJk5o2bZqtwH6Vm5ubhg8froiICCUkJKht27YGpbSfrKwspaSkOLzf0NBQeXt7O7xfAAAAAChv77zzjkwmk5YsWaIOHTro448/liR17drV1mbChAnq37+/XnnlFcXHxxsVFQCASq1ERfaEhAQ1aNCgvLIAAACD3XzzzYqOjtZbb72ljRs36pNPPlFsbKxOnDihadOmyWQy6cKFC4qKitJDDz2k0NBQoyM7lTNnzkiSGjVqVOj5q8evtnN1KSkp6tevn8P7jY2NVbNmzRzeLwAAAACUt507d6pOnTrq0KFDkW1q1KihRYsWqX79+nr99df12WefOTAhAACQSlhkL8nSMX9Vlr1hAACAY5lMJnXp0kVdunTR7Nmz9dVXX+mTTz7Rd999p+zsbL322mt67bXX1K5dOz3yyCMaPny40ZGdQmBgoCQpKSlJLVq0uOZ8UlJSgXauLjQ0VLGxsSW+Ljk5WZGRkYqJiVFYWFip+gWAyujs2bOSpJo1axqcBAAAlJeMjAw1b97cdt/Ly8t23M/Pz3a8Tp06+sc//qENGzY4PCMAAChBkf3IkSPlmQMAADgpLy8vRUREKCIiQr///rsWLFigzz77TImJiYqLi9PWrVspsv+fVq1aKTg4WHPmzCmwJ7sk5efn67333lPdunXVqlUrA1Paj7e3d5lmlIeFhTEjHQD+xoULF/TSSy9p8eLFunDhgiTJ399f999/v9566y3VqFHD2IAAAMCuatWqpYyMjAL3JengwYNq3bp1gbaZmZk6d+6cQ/MBAIAril1kr1+/fnnmAAAALqBWrVoaPXq0Ro8erV9++cW2fzuucHd314svvqiRI0dqxIgRGj58uBo1aqSkpCS999572rhxo2bOnCl3d3ejowIAXEBWVpY6duyoX375pcDKchcuXNAHH3ygH3/8UfHx8fLx8TEwJQAAsKewsDDt2rXLdr9t27ZatGiRZs+eXaDIvm7dOh0+fJjtXQEAMIjb3zcBAAC41i233KJJkybp2LFjRkdxKuHh4Zo5c6YOHTqkiIgItWzZUhEREUpKStLMmTMVHh5udEQAgIuYMWOG9u3bJ39/f02bNk0JCQmKj4/X1KlT5e/vr4MHD2r69OlGxwQAAHbUo0cPZWZmKj4+XpI0aNAg+fv7a/78+frnP/+pyMhIDR48WPfee69MJpMeeeQRgxMDAFA5lWhP9uLKycnRhQsXFBgYyF7sAABUIIWN8Yz11woPD1fXrl2VkJCgM2fOKDAwUK1atWIGOwCgRL788kuZTCYtW7ZMXbp0sR1v2bKlbrvtNnXr1k1ffvmlXn75ZQNTAgAAe3rggQd0+PBhnT9/XpJUs2ZNLV68WBEREYqLi1NcXJyt7YABAzRhwgSjogIAUKmVuMi+f/9+rVu3Tjk5OWratKl69uxpe3N95cqVevXVV/Xzzz/LarXK19dXgwYN0qRJk+Tn52f38AAAwH4Y4+3L3d1dbdu2NToGAMCFHTx4UMHBwQUK7Fd17dpVdevWVVJSkgHJAABAeWnQoIHmzp1b4Fh4eLiOHDmiVatW6ejRo/L29lbHjh11xx13GJQSAACUqMj+yiuvKDo6usBecLfffrs2bNigb775Rg8//LDy8/Nt5zIyMvTee+9p165d2rx5s6pUKZeJ8wAAoIwY4wEAcD4XL17UrbfeWuT5evXqaevWrQ5MBAAAjOLv76+IiAijYwAAgP9T7D3ZV61apTfffFP5+fmqVauWWrZsKV9fXyUmJuqtt97SCy+8oGrVqumdd97Rzp07FR8fr+nTp6tatWqKj4/X+++/X57PAwAAlBJjPAAAzslqtV53Wxa2bAEAAAAAwBjFnnY2Z84cmUwmjRkzRlOmTJHJZFJmZqb+/e9/a8aMGbJYLPruu+909913265p2bKlmjZtqh49emjJkiUaMWJEuTwJAABQeozxAAAAAAAAAAAUX7FnssfHx8vX11cTJ060fVq+atWqio6OVnZ2tm688cYCb75fFR4erhtvvFF79+61X2oAAGA3jPEAADivLVu2yN3dvdBbXFycJBV5nu1cAAAAAAAoH8Uusp89e1ahoaEym80Fjt9yyy2SruwFV5R69eopPT29lBEBAEB5YowHAMB5Wa3WMt0AAAAAAM4hLy9P27dv18qVK7V9+3bl5eUZHQllUOyPtV++fFlVq1a95vgNN9wgSfL09CzyWk9PT+Xn55ciHgAAKG+M8QAAOKcNGzYYHQEAAAAAYAdr167VpEmTdPLkSdux4OBgvfjiiwoPDzcwGUqLteMAAAAAAHBCnTp1MjoCAAAAAKCM1q5dq5EjR6pz586aNm2aGjVqpKSkJM2ZM0cjR47UzJkzKbS7oGIvFw8AAAAAAAAAAAAAKJ68vDxNmjRJnTt31qxZs9SiRQv5+PioRYsWmjVrljp37qzJkyezdLwLKtFM9oSEBIWGhl5z3GQyFXlOkn777bfSpQMAAA7BGA8AAAAAgPH279+vm2++2egYTic1NVVpaWkO6Ss5ObnAv44QEBCgoKAgh/UHwHESEhJ08uRJTZs2TW5uBec+u7m5afjw4YqIiFBCQoLatm1rUEqURomK7NnZ2Tp69GiJz0lX3qQHAADOiTEeAADnN2zYsGK3dXd3l6+vr2666SZ16NBBLVu2LMdkAADAXv7xj3+odevWGjp0qCIiIlStWjWjIxkuNTVVPbr3kCXH4tB+IyMjHdaX2dOs1WtWU2gHKqAzZ85Ikho1alTo+avHr7aD6yh2kf3jjz8uzxwAAMAgjPEAALiGefPmSfrvB9ysVus1bf567ur9li1bav78+cyMAwDAyVWrVk07duxQfHy8Ro8erb59+2ro0KHq3r17pf2Qe1pamiw5FjVPb66qeVWNjmN3me6Z2u2/W2lpaRTZgQooMDBQkpSUlKQWLVpccz4pKalAO7iOYhfZhwwZUp45AACAQRjjAQBwDR9//LGSk5M1efJk+fj46L777tNtt90mX19fXbx4UXv27NFXX32lP/74Q2PHjlXt2rW1f/9+LVu2TAkJCerSpYsSExNVp04do58KAAAowqlTp/T1119r/vz5Wr16tZYsWaKlS5eqdu3aeuSRRzRkyJBK+6G5qnlV5X/Z3+gYAFAirVq1UnBwsObMmaNZs2YVWDI+Pz9f7733nurWratWrVoZmBKlUaLl4gEAAAAAgDHuuusujRkzRnfffbcWLVpU6PKx//M//6MHH3xQs2bN0o4dOzRixAhNmjRJ/fr10/fff6+YmBhNmzbN8eGdVFZWllJSUhzeb2hoqLy9vR3eb0nw2gDGyMvLU0JCgs6cOaPAwEC1atVK7u7uRseCA3l4eKh///7q37+/zp49q88++0zz58/X7t27NWXKFMXExLCcPAC4EHd3d7344osaOXKkRowYoeHDh6tRo0ZKSkrSe++9p40bN2rmzJmM9y6IIjsAAAAAAC5gwoQJys7OLrLALkl+fn5auHCh6tatqwkTJmjhwoXy8fHRRx99pPr16+vbb7+lyP4nKSkp6tevn8P7jY2NVbNmzRzeb0nw2gCOt3btWk2aNEknT560HQsODtaLL76o8PBwA5PBKDVr1tSoUaM0atQo7dmzR/PmzdOCBQtYTh4AXEx4eLhmzpypSZMmKSIiwna8bt26mjlzJuO8iyp2kf2TTz4pc2eDBw8u82MAAAD7YowHAMA1rFu3Ts2aNfvbGWsBAQFq1qyZ1q9fbzsWHByspk2b6siRI+Wc0rWEhoYqNja2xNclJycrMjJSMTExCgsLK1W/zo7XBiXBygdlt3btWo0cOVKdO3fWtGnTbDPc5syZo5EjR/IGPHTrrbdq6tSpmjJlit5++2298sorysnJsS0nX6dOHQ0fPlwjR46Uvz9LqgOAswkPD1fXrl1ZsaYCKXaRfejQoWX6JJzJZOINeAAAnBBjPAAAriEjI0Pnz58vVtvz588rIyOjwDGz2cwMt7/w9vYu06zpsLCwCjvrmtcGJcHKB2WTl5enSZMmqXPnzgX2am3RooVmzZqlESNGaPLkyeratStvxFdiaWlpWrRokebNm6edO3fKarXKw8NDPXv21OnTp7V9+3a99tprmjNnjtasWaN//OMfRkcGAPyFu7u72rZta3QM2Emxi+z16tUr8o/xY8eOyWw2q3bt2nYLBgAAHIMxHgAA19CoUSPt3btXK1euVO/evYtst3LlSqWkpOi2224rcDwlJUWBgYHlHROo0JixXThWPiibhIQEnTx5UtOmTbMV2K9yc3PT8OHDFRERoYSEBN6Yr2Ty8vL07bffav78+Vq5cqVyc3NltVp1yy236NFHH9XgwYNtY/svv/yil156SV9//bVGjx6t7777zuD0AABUbMUush89erTIc25ubmrdurU2bdpkj0wAAMCBGOMBAHANTz/9tEaMGKEHHnhAr776qoYOHVrgg3CnT5/WvHnzFBUVJZPJpKefftp2bvfu3UpPT9fdd99tRHSgwmDGduFY+aBszpw5I+nKh6kKc/X41Xao+H766SfNnz9fCxcu1NmzZ2W1WuXn56chQ4Zo2LBhhX7Y4pZbblFsbKwaNGig7du3G5AaAIDKpdhFdgAAAAAAYJynnnpK8fHx+vjjj/Xyyy/r5ZdfVo0aNeTr66vMzEydPXtWkmS1WvXYY49p+PDhtms3btyoTp06scULUEbM2EZ5uDoTOSkpSbfeeus1e7UmJSUVaIeKrUWLFtqzZ4+sVqtMJpPuuusuDRs2TAMGDPjbFS3c3NzUoEEDnThxwkFpAQCovCiyAwAAAADgIj788EP17NlTU6dO1Y4dO3T27Flbcd3NzU1t27bVmDFj1L9//wLXPffcc3ruueeMiAxUKMzYRnlo1aqVgoODFRUVpfPnzys1NdV2LigoSNWrV1fdunXVqlUrA1PCUX7++WeFhIRo8ODBGjZsmBo0aFCi68ePH69HH320nNIBAICrKLIDAAAAAOBCBgwYoAEDBigzM1OHDx/WH3/8IR8fHzVs2FBVq1Y1Oh4AoITc3d3Vo0cPffjhh6pRo4aioqLUuXNnbdy4UdOnT9fevXv12GOPyd3d3eiocIBVq1YpPDxcJpOpVNd3797dzokAAEBhKLIDAAAAAOCCqlatqhYtWhgdAwBQRnl5eVq9erX+8Y9/KC0tTa+88ortXN26dfWPf/xDa9as0fPPP0+hvRJo06ZNqQvsqHxSU1OVlpbmkL6Sk5ML/OsIAQEBCgoKKvF1vC4AHIEiOwAAAAAALigrK0vJycm6ePGifH19FRYW9rd7tQIAnE9CQoJOnjypadOmFbon+88//6yIiAglJCSobdu2RsdFOatdu7a6d++uQYMGqU+fPrrhhhuMjgQnlZqaqh49eshisTi038jISIf1ZTabtXr16hIVlFNTU9W9Z0/lZGeXY7JrOfJ18fTy0ppVqyi0AwajyA4AAAAAgAtZs2aNoqOjFRcXp7y8PNtxd3d3/fOf/9SLL76o8PBwAxMCAErizJkzkqRGjRrJ3d39mkJ6o0aNCrRDxWa1WrVy5Up98803uuGGG9SnTx9FRESoZ8+eqlKFt/PxX2lpabJYLPK400Nufm5Gx7G7/Ix8WbZZlJaWVqJiclpamnKys3Wpf3/l16xZjgmN4Xb2rLRsWYlfFwD2V+xRedOmTdc9n56e/rdt7rrrruJ2BwAAHIQxHgAA1/Haa68pKipKVqtVkuTp6anAwECdOXNGOTk52rhxo3744Qe98soreu2114wNCwAolsDAQElSUlJSoduAJCUlFWiHiu306dNaunSpFi1apB9//FGLFi3S559/rmrVqmnAgAEaOHCgOnfubHRMOBE3Pze5Va94Rfayyq9ZU/kUoQGUo2IX2Tt37lzkXjAmk0l79+5Vly5dirzeZDLp8uXLJU8IAADKFWM8AACuYfXq1XrjjTfk7u6u4cOH67nnnrPNbpSuFGFmzJih999/X1FRUWrXrp26d+9uYGIAQHG0atVKwcHBmjNnjmbNmiU3t/8Wy/Lz8/Xee++pbt26atWqlYEp4SgBAQF68skn9eSTT+q3337T559/rkWLFikhIUFz587VBx98oDp16igiIkIRERF8XwAAYJASfbzJarWW+pafn19ezwEAAJQRYzwAAM5v5syZMplM+uijj/Tuu+8WKLBLV5YTfvfdd/XRRx/JarVqxowZBiUFAJSEu7u7XnzxRW3cuFEjRoxQYmKiMjMzlZiYqBEjRmjjxo0aN26c3N3djY4KB6tTp45Gjx6tHTt26PDhw3rjjTfUtGlTpaam6n/+53/Utm1bNWnSxOiYAABUSsUusufn55f5BgAAnA9jPAAAriE+Pl5169bVI488ct12Dz/8sEJCQrRjxw4HJQMAlFV4eLhmzpypQ4cOKSIiQi1btlRERISSkpI0c+ZMhYeHGx0RBgsNDdWECRO0b98+/fTTT+revbusVqsOHz5sdDQAACqlYi8XDwAAAAAAjHPx4kU1aNCgWG1vvPFG7dmzp5wTAQDsKTw8XF27dlVCQoLOnDmjwMBAtWrVihnssElJSdGiRYu0aNEi7d+/3+g4AABUahTZAQAAAABwAUFBQTpw4ID++OMP+fj4FNnujz/+0P79+1WnTh0HpgMA2IO7u7vatm1rdAw4kVOnTmnx4sVatGiR4uPjJV3Z8q1OnTp68MEHNWjQIIMTAgBQOVFkBwAAAADABXTv3l3vvfeennjiCc2bN0+enp7XtMnJydHjjz+uS5cuqUePHgakBAAAZXXhwgV98cUXWrRokTZt2qT8/HxZrVZVq1ZN/fr106BBg9SlSxeZTCajowIAUGlRZAcAAAAAwAW89NJLWrx4sRYvXqyNGzfqiSee0C233KJatWrp999/1y+//KK5c+fq9OnT8vf31/jx442ODAAASqhPnz5au3atcnNzZbVa5e3trd69e2vQoEHq2bNnoR+yAwAAjkeRHQAAOJUJEybozTfflCRFRUVpwoQJBicCAMA5hISEaNWqVXrggQd0/PhxTZw48Zo2VqtV9erV05IlSxQSEmJASgAAUBYrV65UlSpVFB4erkGDBunf//63qlatanQsAADwFxTZAQCA09i/f79iYmKMjgEAgNNq27atDhw4oIULF2rt2rU6dOiQMjMzVbVqVTVu3Fjdu3fXwIEDdeTIEf3888+67bbbjI4MAABK4J133tGDDz6omjVrGh0FAABcB0V2AADgFKxWq4YPHy4PDw/985//1Pr1642OBACAU/L29tZjjz2mxx57rMg2nTp1Ulpami5fvuzAZAAAoKyeeeYZoyMAAIBioMgOAACcwocffqgff/xRkydP1i+//GJ0HMChzpw5owcffFDnz59X9erVtXjxYgUGBhodyylkZmZq7NixOn78uEJCQjRlyhSWywSKyWq1Gh0BAIBrZGVlKSUlxeH9hoaGytvb2+H9AgAqJsYzUGQHAACGO3PmjMaNG6dbbrlFo0eP1hNPPGF0JMBhWrVqpYsXL9runzx5Uv/85z/l6+urhIQEA5MZb8CAAdqzZ4/t/qFDh9SyZUvdeuut+uKLLwxMBgAAgNJKSUlRv379HN5vbGysmjVr5vB+S+vIkSNavHixdu/erfPnzys3N7fQdiaTSevWrXNwOgAA4xkosgMAAMONHj1a58+fV2xsrDw8PIyOAzjMnwvsDRs21AsvvKC3335bhw8f1sWLF9WqVatKW2i/WmA3mUzq06ePhg0bpo8++khff/219uzZowEDBlBoBwAAcEGhoaGKjY0t8XXJycmKjIxUTEyMwsLCStWvq4iJidHLL7+sy5cvy2QySSq4Qs2fj139GgDgWIxnKFOR3d3dXZ07d+aTcgAAVDCOHOPXrVunBQsW6OGHH1anTp3KvT/AWZw5c8ZWYI+Pj5efn58kqUuXLsrIyFDr1q118eJFnTlzptItHZ+ZmWkrsP/000/y8vKSJE2ZMkVvvPGGWrRooT179igzM5Ol4wEAAFyMt7d3mWbghYWFVegZfN9++63GjRunOnXqKCoqStOnT9e+ffv03Xff6fjx49q9e7c+/PBD5eXladKkSbrtttuMjgwAlRLjGcpUZLdardfs8TZy5Ejt27ePwjsAAC7MUWN8dna2nnrqKfn7++vtt98u1WNYLBZZLBbb/YyMDHvFs2GPJZSHBx98UNKVGexXC+xX+fn5KTQ0VCkpKXrwwQe1fv16IyIaZuzYsZKkPn362ArsV3l5eal3795asWKFxo4dq1mzZhkREQAAACgX77zzjkwmk5YsWaIOHTro448/liR17drV1mbChAnq37+/XnnlFcXHxxsVFQCASq3YRfbHH39c7du3V7t27XTzzTcX2S4xMVFxcXF2CQcAAMqfkWP8xIkTdfjwYb377ru68cYbS/UY0dHRev311+2a66/YYwnl4fz585KkF154odDzY8aM0bPPPmtrV5kcP35ckjRs2LBCzz/66KNasWKFrR0A52O1WrVlyxYtX75cP/74ow4cOKBLly6pZs2aateunZ599ll16dLF6JgAADidnTt3qk6dOurQoUORbWrUqKFFixapfv36ev311/XZZ585MCEAAJBKUGT/6KOPbJ+a8/f315133inpysyuy5cvq0oVtncHAMAVGTXG79+/XzExMbrjjjv09NNPl/pxxo8frzFjxtjuZ2RkKCQkxB4RbdhjCeWhevXqOnnypN5+++1CC03Tpk2ztatsQkJCdOjQIX300UeaMmXKNeev/s6y98864Gw++eSTUl/751VejLB+/Xrdc889kiQ3Nzc1bNhQPj4+SkpKUmxsrGJjYzVhwgRFRUUZmhMAAGeTkZGh5s2b2+5fXdkpIyOjwApYderU0T/+8Q9t2LCh1H0dOXJE33//vXbs2KEdO3Zo3759ysvLU1RUlCZMmHDda7du3apJkyYpLi5OmZmZatCggQYOHKjIyMhrVqMCAKAiKva75snJyYqLi1NcXJy2bNmitWvXymQyaceOHfL391eHDh3UpUsXnTt3rjzzAgAAOzNqjB8xYoQuX76s2bNny83NrdSPYzabZTab7ZjsWuyxhPKwePFi/fOf/9Thw4evecMsIyPDtkXB4sWLjYpomClTpqhly5b6+uuv9cYbbxR4ky47O1srV660tQMqsqFDh8pkMpXqWqvVWupr7cFqtaphw4YaM2aMIiIiFBAQIEnKycnRa6+9pujoaE2cOFFt27ZV7969DcsJAICzqVWrVoFt0GrVqiVJOnjwoFq3bl2gbWZmZpn+Vp8xY4ZmzJhR4usWLFigIUOGKC8vT8HBwQoJCdHevXv16quvasWKFdq4caNuuOGGUucCAMAVFLvI3qBBAzVo0EAPPfSQJOnixYvy9/dXUFCQGjZsqE2bNun777+XJJlMJnXu3Fnt27dXhw4d1K5du0o5AwcAAFdg1BifmJgok8mkPn36XHMuPT1dkjR58mS9++67CgkJYZ85VDiBgYHy9fXVxYsX1bp1a4WGhmrMmDGaNm2arcDu6+urwMBAg5M6XtWqVXXrrbdqz549atGihXr37q1HH31UH3/8sVauXCmr1apbb71VVatWNToqUK7q1atnaKG8LNq0aaP9+/dfsyKOp6en3nrrLf30009atWqV5s6dS5EdAIA/CQsL065du2z327Ztq0WLFmn27NkFiuzr1q3T4cOH1aBBg1L3VbNmTfXu3Vtt2rRR69at9cEHH2jZsmXXvebo0aN67LHHlJeXpylTpuiFF16QyWTSsWPH1L17d8XHx2vs2LF69913S50LAABXUOr1X319fSVJjRs31vr165Wdna3Nmzfrqaee0pEjR7Rt2zZt2rTJ9oZAkyZN9Msvv9gnNQAAKDeOHOPz8vJ0+vTpIs9nZmYqMzOTpeZQYSUkJKhVq1a6ePGiUlJS9Oyzz9rO+fr6KiEhwcB0xvriiy80YMAA7dmzRytWrNCKFSts52699VZ98cUXBqYDHOPo0aNGRyi1P6/OUZhu3bpp1apVOnTokIMSAQDgGnr06KFNmzYpPj5erVu31qBBg/Sf//xH8+fP16FDh9SuXTudPn1aS5Yskclk0iOPPFLqvv66JPznn3/+t9fExMTIYrEoPDxckZGRtuP169fXRx99pA4dOuj999/XK6+8ohtvvLHU2QAAcHbFXpt1wIABmjZtmrZu3aqcnJxrznt5eemee+5RnTp1JF1Z4nLLli16++231a9fP128eNF+qQEAgN0YNcZfuHBBVqu10NuQIUMkSVFRUbJarS5dZAD+TkJCgjZv3qzg4GB5e3srODhYmzdvrtQF9qu++OIL7dy5U127dlXjxo3VtWtX7dy5kwI7UAFkZ2dLurIlCwAA+K8HHnhAw4YN0/nz5yVdmW2+ePFi+fv7Ky4uTlOnTtVnn32mnJwc9e/f/2/3Trcnq9WqL7/8UpL02GOPXXO+ffv2atq0qXJzc7V8+XKH5QIAwAjFnskeGxtrG0A9PT11++23S7ryRvuFCxdUrVq1Au09PT3Vrl07tWvXTqNHj7ZfYgAAYFeM8YDxAgMDtX79eqNjOKWqVatq1qxZRscAYEdWq1VLly6VJHXo0MHgNAAAOJcGDRpo7ty5BY6Fh4fryJEjWrVqlY4ePSpvb2917NhRd9xxh0Oz/frrr/rtt98kFT2Gd+jQQQcOHND27dv15JNP2rX/XFOuLCaLXR/TGeSaco2OAAAohWIX2c+cOaOtW7fabvHx8TKZTEpMTFTNmjXVokUL3X333ddd8hUAADgfxngAAOBIc+fOVWJiojw9PTVq1Kgi21ksFlks/30jPSMj47qPm5qaqrS0NHvFvK7k5OQC/zpCQECAgoKCHNYfAMC5+Pv7KyIiwtAMSUlJkiSz2VzkmBQaGlqgrT3tCNhh98cEAKC0il1kr1Gjhnr37q3evXtLurKHqoeHh+rVq6fmzZvrhx9+0K5duyRJJpNJLVu2tM1ya9eunW1wBQAAzoUxHgAAOMquXbv03HPPSZImTpyosLCwIttGR0fr9ddfL9bjpqamqkf3HrLkOHZ225/3oi1vZk+zVq9ZTaEdAGCYqx9mq1atmkwmU6FtAgICCrQtSkk/TAeg7PhQKkqK75nrK3aR/a/c3d0lXflk2vLly5Wfn6/4+HgNHjxYhw8f1q+//qrExETNnj1b0pUlME+dOlXqoAAAwDGcYYyfN2+e5s2bZ9fHBAAAxjpy5Ih69+6t7OxsDRo0SC+88MJ1248fP15jxoyx3c/IyFBISEihbdPS0mTJsah5enNVzatq19zOINM9U7v9dystLY03DgGgktizZ49mzpypH374QSdPnpTFYtHly5dt59977z0dO3ZML774ovz8/BySKTs7W9KVbeSKYjabJUlZWVnXfaySfJgOQNmlpqaqZ48eyrZU3A+lepnNWrWaD6XaS2pqqnr06FHgA1GO4NAPMpvNWl2G75lSF9n/ys3NTW3btlWtWrV0+PBhnTlzRgcPHtS2bdu0ZcsWbdu2zV5dAQAAB2KMBwAAZXXq1Cl169ZNv/32m+69917NmzevyBlwV5nNZtsb9cVVNa+q/C/7lyUqAACG+9///V+NHj26QFH9r+OmxWLR5MmT1axZMz300EMOyeXl5SVJysnJKbLN1WKMt7f3dR+rJB+mA1B2aWlpyrZY9GJ7d9Xzv/7/h7uiX9OtmhRn4UOpdpSWliaLxaKgwPby9Kh4f2Pl5KYr9Uxcmb5n7FZkL0yTJk3UpEkTDRkypNSPYbVatWXLFi1fvlw//vijDhw4oEuXLqlmzZpq166dnn32WXXp0sWOqQEAwN+xxxgPAAAqh/Pnz6tbt25KTk5Wp06dtHTpUnl4eBgdCwAAp7RhwwaNHDlSvr6+evPNN9WnTx8NHDhQW7duLdDugQce0KhRo/Tll186rMh+dSn4CxcuyGq1FvqBuavLCl9tW5TSfJiuTVob+V72LdE1ruBilYvsNw+HqedvUqPqbkbHKAf5RgeosDw9/OVtrm50DKdUpiJ7fv6137RWq7UsD3mN9evX65577pF0ZSZdw4YN5ePjo6SkJMXGxio2NlYTJkxQVFSUXfsFAKAyc8QYDwAAKr7MzEz16tVLe/fuVevWrbVixYq/ndkGwFjsvQkYa+rUqZKkBQsW6N5775V07Sx2Sapdu7ZCQkL0yy+/OCxbo0aNJF2ZrZ6amqrg4OBr2qSkpBRoa08eVg+ZrSUrzLuCbGu20REAAKVg95ns7777rtLT0+32eFarVQ0bNtSYMWMUERFh+wRcTk6OXnvtNUVHR2vixIlq27atevfubbd+AQBAQfYe4wEAQMVmsVjUt29fbd++Xc2aNdPq1avl61vxZp8BFQn7tdpXVlaWreDoSKGhoXygyYVt27ZNtWvXthXYr6dOnTrav3+/A1JdUa9ePdWuXVunTp3Sli1b9MADD1zTZsuWLZKktm3bOiwXAABGsHuRvUWLFnZ9vDZt2mj//v2qUqVgVE9PT7311lv66aeftGrVKs2dO5ciOwAA5cjeYzwAAKi48vLyFBERofXr1yssLEzfffedqldniUHA2bFfq32lpKSoX79+5d7PX8XGxqpZs2YO7xf2kZmZqfr16xerbU5OjvLy8so50X+ZTCb9+9//1uzZs/Xhhx9eU2SPi4vTgQMH5OHhoT59+jgsFwAARijXPdntwc/P77rnu3XrplWrVunQoUMOSgQAAAAAAK5nyZIl+uqrryRd2frt/vvvL7RdnTp1tHTpUgcmq3wcufS3xPLfFQX7tdpHaGioYmNjS3xdcnKyIiMjFRMTo7CwsFL1C9dVp06dYv0Ozc7O1oEDB9SgQQMHpPqvyMhIffjhh1q7dq1iYmL0wgsvyGQy6dixYxo2bJgk6fHHH1ft2rUdmgsAAEdz+iL738nOvrJfCUsgAQAAAADgHCx/Wmo6KSlJSUlJhbYr7kw9lE5qaqp69OhR4L+Hozhy+W+z2azVpVj+m73HUd68vb3LNKM8LCzM6Wek83Nkf126dNH8+fP10Ucf2YrWhZkxY4ays7PVvXv3Uve1ZcsW9e3b13Y/MzNTkhQdHa3p06fbjicmJiokJESS1KBBA82dO1ePPvqoxo4dqxkzZqhWrVrau3evcnNz1bJlS8XExJQ6EwAArsKli+xWq9X2ifcOHToYnAYAAAAAAEjS0KFDNXToUKNjVHppaWmyWCzyuNNDbn4VcVaylJ+RL8u2ki//nZqaqu49eyrn/yZvOIojP3zg6eWlNatWUWhHuTHqgzyu8CGeshg3bpwWLlyo//f//p+ysrI0ZMiQAucvXLigmTNnKioqSj4+Pho9enSp+8rNzdW5c+euOX7p0iVdunTJdv+vS9IPHjxYDRs2VHR0tOLi4vTLL78oNDRUAwcO1Lhx4+Tl5VXqTAAAuAqXLrLPnTtXiYmJ8vT01KhRo4psZ7FYCvzPXkZGht2zZGVlKSUlxe6PWxyhoaFOPZPfqNeG16VwvC6Fc/bXBYXjdy8AAADw99z83ORWIZf+Lr20tDTlZGfrUv/+yq9Z0+g4dud29qy0bJnD9h5H5XT1gzxBge3l6eFvdBy7y8lNV+qZOIf/HDVp0kSffPKJhgwZopEjR2r06NFyd3eXJNWrV0+//fab8vPz5enpqc8++8w2w7w0OnfuLKvVWqpr27dvrxUrVpS6bwAAXJ3LFtl37dql5557TpI0ceLE6+5PFB0drddff71c86SkpKhfv37l2kdRYmNjnXrpKKNeG16XwvG6FM7ZXxcUjt+9AAAAAMoiv2ZN5VOEBsrE08Nf3ubqRseoUB544AHdfPPNeu2117Rq1SrblqknTpyQh4eHevbsqaioKDVv3tzgpHAG1hyrrNml+7CEM7PmlPE5ZWXJ9Mcf9gnjTLKyjE4A4P+4ZJH9yJEj6t27t7KzszVo0CC98MIL120/fvx4jRkzxnY/IyOjTJ/wK0xoaKhiY2NLdW1ycrIiIyMVExNz3Q8LXK9vZ1ba14bXpXC8LoWr6K8LCmfU98vVvgEAAAAAAMrDrbfeqmXLlik3N1eHDh1Senq6qlatqkaNGrGyHgrI2ZhjdASnVPWTT4yOAKCCc7ki+6lTp9StWzf99ttvuvfeezVv3jyZTKbrXmM2m2U2m8s1l7e3d5lnNIaFhVXIWZFlfW14XQrH61K4ivq6oHB8vwAAAAAAgIrMw8OD9y4AAHBCLlVkP3/+vLp166bk5GR16tRJS5culYeHh9GxAAAAAAAAAFRgqampSktLc0hfycnJBf51hICAAIfuOw4AAODqXKbInpmZqV69emnv3r1q3bq1VqxYwbI4AAAAAAAAAMpVamqqevToKYsl26H9RkZGOqwvs9lLq1evotBugE/ssKT14MGD7ZAEAACUhEsU2S0Wi/r27avt27erWbNmWr16tXx9fY2OBQAAAAAAAKCCS0tLk8WSLfMdfeVWtYbRcewuP/OcLLuWKy0tjSK7AYYOHfq326Fej8lkosheyXl29pRbNTejY9hd/oX8Mu03nzl4sKy1a9sxkXMwnTrFfvOAk3D6InteXp4iIiK0fv16hYWF6bvvvlP16tWNjgUAAAAAAACgEnGrWkPu1eoYHQMVTL169Yossh87dkxms1m1K2ChEPZj8jTJ5FX6D2o4K5NnGZ+Tt7esPj72CeNETKzwDDgNpy+yL1myRF999ZUkyc3NTffff3+h7erUqaOlS5c6MBkAAAAAAAAAAKV39OjRIs+5ubmpdevW2rRpk+MCAQCAYnH6IrvFYrF9nZSUpKSkpELb1a9f31GRAAAAAAAAAAAAAACVlNNv1DF06FBZrda/vV3vE38AAAAAAAAAAAAAANiD0xfZAQAAAAAAAAAAAABwFhTZAQAAAAAAAAAAAAAoJqffkx0AAAAAAKA4ck25spgsRsewu1xTrtERAAAAAAB/QpEdAAAAAABUCDsCdhgdAQAAAICLSU1NVVpamkP6Sk5OLvCvIwQEBCgoKMhh/VUWFNkBAAAAAABQOWVlyfTHH0ansL+srDJdftFi1YVsq53COI+LlrI9J2tOlqyWivf9Ys0p2/cLymbTpk3XPZ+env63be666y57RgJQgTHGXys1NVU9evSUxZJtx0R/LzIy0mF9mc1eWr16FYV2O6PIDgAAAAAAgEqp6iefGB3BKY1bnycpz+gYTid72yKjI6AC6ty5s0wmU6HnTCaT9u7dqy5duhR5vclk0uXLl8srHoAKhjH+WmlpabJYsmW+o6/cqtYwOo7d5Week2XXcqWlpVFktzOK7AAAAAAAAACAUsnLs+hynmNn/zlCXp7FYX1ZraWfgVmWa11Npnum0RHKRUV9XoCrcataQ+7V6hgdAy6EIjsAAAAAAKgQ2qS1ke9lX6Nj2N3FKhfZbx6A0zp+er3REVxafn6+0RGcXkBAgMyeZu323210lHJj9jQrICDA6BgAgBKgyA4AAAAAACoED6uHzFaz0THsLttathmi1hyrrBVw703pynMDAFRsQUFBWr1mtdLS0hzSX3JysiIjIxUTE6OwsDCH9BkQEMAyzgDgYiiyAwAAAAAAVGA5G3OMjuC0MgcPlrV2baNj2J3p1Kky7Tc/+W53hQa42TGRc0hJy/+/vWhLx+vOgXL3v9GOiZxDXvpp9puH0wsKCnJ4ETosLEzNmjVzaJ9AeWOMB+yHIjsAAAAAAAAqJ29vWX18jE5hdyZv7zJd72s2qZqXyU5pnIevuWzPyeTpLZO5An6/eJbt+wUA4DoY4wH7ocgOAAAAAAAAACiVkBvvlpe54u0lnW1JY795AABQJIrsAAAAAAAAAIBScXc3q4q7l9Ex7M7d3Wx0BAAA4MQosgMAAAAAAFRgnp095Vat4u29KUn5F/LZcx4AAACAw1FkBwAAAAAAqMBMniaZKuDem9KV5wYAAAAAjlYxP8YMAAAAAAAAAAAAAEA5oMgOAAAAAAAAAAAAAEAxsVw8AACoVFJTU5WWluaQvpKTkwv86wgBAQEKCgoq8XW8LvaTlZWllJQUh/T1Z6GhofL29nZ4v8Vl1OsiOf9rg8LxswQAAAAAcBRrTpaslj+MjmF31pysMl2fl2fR5bxsO6VxHnl5ljI/BkV2AABQaaSmpqpH9x6y5JT9f6JKIjIy0mF9mT3NWr1mdYkKyqmpqerRo4cslgr8upjNWr26ZK9LaaWkpKhfv37l3s9fxcbGqlmzZg7vt7iMel0k539tUDh+lgAAQGXl7u6uzp07a926dUZHAYBKI3vbIqMjOKXjp9cbHcFpUWQHAACVRlpamiw5FjVPb66qeVWNjmN3me6Z2u2/W2lpaSUqJqelpcliscjjTg+5+VW83YTyM/Jl2WYp8etSWqGhoYqNjS3xdcnJyYqMjFRMTIzCwsJK1a8zK+3rIlX81waF42cJAOBs8jPPGR2hXFTU5+XKrFarrFZrgWMjR47Uvn37KLzjGvkZ+UZHKBdlfV5uZ8/aKYlzqajPC3BFFNkBAEClUzWvqvwv+xsdw+m4+bnJrXrFK7I7mre3d5lmwYaFhVXIWbRlfV2kivvaoHD8LAEAnEVAQIDMZi9Zdi03Okq5MZu9FBAQYHSMSunxxx9X+/bt1a5dO918881FtktMTFRcXJwDk8HZXfndZJZlm2NXpXMks9lc4t9NAQEB8vTykpYtK6dUxvP04nc24AwosgMAAAAAAABAEYKCgrR69SqlpaU5pL+yrspSGgEBAQ5Z9QnX+uijj/Txxx9Lkvz9/XXnnXdKkrKysnT58mVVqcJb+Cjcld9Nq/nd9BdBQUFas4rf2QDKHyM0AAAAAAAAAFxHUFCQwwsarMpSOSQnJysuLk5xcXHasmWL1q5dK5PJpB07dsjf318dOnRQly5ddO4cy/rjWvxuKhyvC0rD686Bcve/0egYdpeXfrpM+82H3Hi3vMwVb+WEbEtamfebp8gOAAAAAAAAAIABGjRooAYNGuihhx6SJF28eFH+/v4KCgpSw4YNtWnTJn3//feSJJPJpM6dO6t9+/bq0KGD2rVrp+rVqxsZHwAqDJOnt0xmH6Nj2J3J07tM17u7m1XF3ctOaZyHu7u5zI9BkR0AAAAAAFQIme6ZRkcoFxX1eQEAruXr6ytJaty4sdavX6/s7Gxt3rxZTz31lI4cOaJt27Zp06ZNMplMkqQmTZrol19+MTIyAACVEkV2AAAAAADg0gICAmT2NGu3/26jo5Qbs6dZAQEVb5lGAKjsBgwYoPbt26tdu3Zq2bKlPD09C5z38vLSPffcozp16ujIkSPKyMjQzp07tW3bNsXFxWnbtm0GJQcAoHKjyA4AAAAAAFxaUFCQVq9ZrbS0NIf0l5ycrMjISMXExCgsLMwhfQYEBDh8b1EAQPmLjY3Vl19+KUny9PTU7bffLknKyMjQhQsXVK1atQLtPT091a5dO7Vr106jR492dFwAAPB/KLIDAAAAAACXFxQU5PAidFhYmJo1a+bQPgEAFcuZM2e0detW2y0+Pl4mk0mJiYmqWbOmWrRoobvvvlunT582OioAAPgTiuwAAAAAAAAAABigRo0a6t27t3r37i1JysvLk4eHh+rVq6fmzZvrhx9+0K5duyRJJpNJLVu2tM1kb9eunUJDQ42MDwBApeVmdAAAAAAAAAAAACC5u7tLkkJDQ7V8+XKdP39eW7duVaNGjSRJv/76q2bNmqXBgwerUaNGql27tpFxAQCotJjJDgAAAAAAAMDm13SrpHyjY9jdlecFuBY3Nze1bdtWtWrV0uHDh3XmzBkdPHhQ27Zt05YtW7Rt2zajIwIAUClRZAcAAAAAAACggIAAeZnNmhRnMTpKufEymxUQEGB0DKBMmjRpoiZNmmjIkCFGRwEAoNKiyA4AAAAAAABAQUFBWrV6tdLS0hzSX3JysiIjIxUTE6OwsDCH9BkQEKCgoCCH9AWUVn7+tStJWK2sxAAAgDOhyA4AAAAAAABA0pVCu6OL0GFhYWrWrJlD+4T95OSmGx2hXDjb83r33XeVnu5cmQC4HraEAeyHIjsAAAAAAAAqJbezZ42OUC4q6vOCcwkICJDZbFbqmTijo5QbsxNtL9CiRQujIwBwYWwJA9gfRXYAAAAAAABUKgEBAfL08pKWLTM6Srnx9PLijWaUq6CgIK1mewEAcAlsCQPYH0V2AAAAAAAAVCpBQUFas2oVbzQDZcT2AgDgOvidfX35meeMjlAuKurzcgYU2QEAAAAAAFDp8EYzAAAArmx/4iXLruVGRyk3ZjMrHJUHiuwAAKDSyTXlymKqeHtQ5ZpyjY4AAACcUH5GvtERyk1Ffm4AAAAof1e2P2GFI5QcRXYAAFDp7AjYYXQEAACAcndlVo5Zlm0V78OFf2Y2m5mZAwAAgFJjhSOUBkV2AAAAAABQbr799ltNmzZNu3btksViUZMmTfToo4/qmWeekZubm9HxKrQrs3JWO2xWjsTMHACoLIYOHar58+dft01WVpa8vLwclAgAAMeiyA4AAAAAAMrFpEmTNH78eElSaGioqlatqt27d2vkyJH6/vvv9eWXX1JoL2dGzMqRmJkDAJVFo0aNVKtWrULPMcYDACoyiuwAAAAAAMDutm7dqpdeeklubm767LPPNHDgQEnS7t271b17d3399deaNm2aXnjhBYOTAgCA0nrppZc0dOhQo2MAAOBwFNkBAECl0yatjXwv+xodw+4uVrnIfvMAAKcxceJEWa1WPfHEE7YCuyQ1b95c06ZN00MPPaRJkybpueeek4eHh4FJAQAAAAAoGYrsAACg0vGweshsNRsdw+6yrdlGRwAAQJKUkZGh77//XpL02GOPXXP+/vvv19NPP61z585pw4YNCg8Pd3REAAAAAABKjU1RAAAAAACAXSUmJionJ0deXl664447rjnv4eGh1q1bS5K2b9/u6HgAAMBOvvjiC9133326++67FRERoXfeeUfp6elGxwIAoNwxkx0AAAAAANhVUlKSJKlevXqqUqXwtx5CQ0O1bt06W9u/slgsslgstvsZGRn2DwoAAMrkm2++KXB/8eLF+s9//qOFCxeqR48eRV7niHE+KytLKSkpJb4uOTm5wL8lFRoaKm9v71JdCwDOJie3Yn5wyh7PiyI7AAAAAACwq7S0NElSQEBAkW2unrva9q+io6P1+uuv2z8cADgIBT5UZGFhYXrrrbd07733qkGDBjKZTNq6dateeeUVbd++Xffdd582b96sVq1aFXq9I8b5lJQU9evXr9TXR0ZGluq62NhYNWvWrNT9AoAzCAgIkNlsVuqZOKOjlBuz2Xzdv1n/DkV2AAAAAABgV9nZ2ZIkT0/PItuYzWZJV4pQhRk/frzGjBlju5+RkaGQkBA7pgSA8kWBDxXZK6+8cs2xbt26qVOnTurYsaN27NihcePGad26dYVe74hxPjQ0VLGxsXZ9zOL2CwCuLigoSKtXry7yQ9H2lpycrMjISMXExCgsLMwhfQYEBCgoKKjU11NkBwAAAAAAduXl5SVJysnJKbLN1SVii5ptaTabbYV4AHBFFPhQGXl6eioqKkrdu3fXxo0blZaWVugsQUeM897e3nzgBADKICgoqExF6NIICwtzmd/dFNkBAAAAAIBd/d1S8H8+V5bl+QDAmVHgQ2XVrl07SVJ+fr5SUlLUsmVLgxMBAGB/bkYHAAAAAAAAFUujRo0kSb/++qsuX75caJur+xRfbQsAACoGDw8P29dF/X8AAACujiI7AAAAAACwq9tvv10eHh7Kzs7Wrl27rjmfm5ur+Ph4SVLbtm0dHQ8AAJSjffv22b6uW7eugUkAACg/FNkBAAAAAIBd+fn56Z577pEkffjhh9ecX7p0qTIyMlSjRg117tzZwekAAEB5mjp1qiSpadOmCg4ONjgNAADlgyI7AAAAAACwu5dfflkmk0kffPCBFi1aZDu+e/dujRkzRpI0duxYeXp6GhURAACUwnfffafx48fryJEjBY6np6dr5MiRtnH/1VdfNSIeAAAOQZEdAAAAAADYXYcOHRQVFaX8/HwNGjRIYWFhat68ue644w6dPn1a9957r55//nmjYwIAgBL6448/NGnSJIWGhqpu3bpq06aNbr/9dtWqVUvvvPOOTCaT/vOf/2jgwIFGRwUAoNxUMToAAAAAAAComF5++WU1b95c//M//6OdO3fq1KlTuvXWW/Xoo4/q2Weflbu7u9ERAQBACbVs2VIvv/yytm7dqsOHD2vv3r2yWq0KDg5Wx44dNWLECLVt29bomAAAlCuK7AAAwDBWq1VbtmzR8uXL9eOPP+rAgQO6dOmSatasqXbt2unZZ59Vly5djI4JAADKoHfv3urdu7fRMQAAgJ2EhIRo4sSJRscAAMBQFNkBAIBh1q9fr3vuuUeS5ObmpoYNG8rHx0dJSUmKjY1VbGysJkyYoKioKIOTAgAAAAAAAABwBXuyAwAAw1itVjVs2FCzZs3S2bNndfDgQe3atUvnzp3T+PHjJUkTJ07UypUrDU4KAAAAAAAAAMAVFNkBAIBh2rRpo/379+vpp59WQECA7binp6feeust9ezZU5I0d+5coyICAAAAAAAAAFAAy8UDAADD+Pn5Xfd8t27dtGrVKh06dMhBiSo3a45V1myr0THszppT+ud0/vx5Oya5vvT0dNu/juq3evXqDukHAAAAAAAAqEgosgMAAKeVnZ0tSfL29jY4SeWQszHH6AhOp127dg7v89FH/3979x4eRXn3f/yzOW0CJBCOEghgYpCKFsQoFVSiaEThUdTSRnyKeGj1oRZbIApon9ZqBaWixkrxUOFBKgcFRVuICBjFeqCBiNqfhTSAIBHLIRAC5ED2/v3hldVlJ8lms7uzu3m/risXZmbume/cTvjk4rszc0vIjrVt27aQHQsAAAAAAACIFjTZAQBAWDLG6OWXX5YkDR8+vNHtampqVFNT4/6+srKy2X1XxVa1vsAwFK3nheApLy9XWlqaX+MqKiqCUJG1srIyjz9DITU1NWRzU1NToy+//LLFx2qt3r17y+l0tmhMKOfFX5F0vQAAAAAAgMhEkx0AAISl5557TiUlJUpISNAvf/nLRrebNWuWHnjgAZ/2mZqaKmeCU1s7bg1QleHHmeD0eL89/FdeXm53CUF35VVX6c01a1rUHCwvL9dVo0ap+jsfbgmV/Pz8kB0r0enUmsLCFs/NqFFXqaamOoiV2cvpTFRhYcuvmVGjRnl8ICoUQnm9OJ1OFbbwegEAAAAAAJGLJjsAAAg7W7Zs0d133y1Jeuihh5SZmdnotjNmzNCUKVPc31dWVio9Pd1y27S0NBW+WRjSuynz8/M1Z86cJs8hkLibMnBCeae2XWqrq1VRUdGia6aiokLVNTWaPixWfTo6glidfXYfMZr9fo1fc1NTUy3nkGsV06FLECu0h6vqoGq2rPJzXmqU1m2YEuI7BrFCe9TWHVH5/vdbPC8AAAAAACByRUSTfefOnVq3bp02bdqkTZs26Z///Kfq6+v14IMP6v7777e7PAAAEEA7d+7UmDFjVF1drfHjx2vatGlNbu90Olv0uOO0tLSQN0EyMzM1cODAkB7THwk5CYrpFGN3GQHnOuxq1fvmqyZMkDnttABWFB4c+/apw6JFfo/v09GhrM7Rd718w9Wq0TEduii2U88A1RI9EuI7KsnZ2e4yAAAAAAAAWi0imuxPPvmknnzySbvLAAAAQbZv3z5dccUV+uqrrzR69GgtXLhQDkd03ikbjhwJDjkSo2++HQmtPKekJJn27QNTTBhxJCXZXQIAAAAAAAAQkSLi1pOuXbtqzJgx+t3vfqc1a9bohhtusLskAAAQYIcOHdIVV1yhsrIyjRgxQi+//LLi4+PtLgsAAAAAAAAAAA8RcSf7qY+EX7p0qU2VAACAYKiqqtLVV1+tzz77TOeff77eeOMNJXGXLQAAAAAAAAAgDEXEnewAACB61dTU6Nprr9VHH32kgQMHqrCwUMnJyXaXBQAAAAAAAACApYi4kz3UDh06FNLjHTlyxP1nqI7duXNnv8aFcm4iaV5gjesFQHPq6+uVl5enDRs2KDMzU2+99RY/WwAAAAAQxU6cOKEdO3a0eFxZWZnHny2VkZHBE9MAAEDA0GS3cOGFF9py3FtuuSVkx9q2bZtf4+yYm0iYF1jjegHQnOXLl+u1116TJMXExGjcuHGW2/Xs2VMvv/xyCCsDAAAAAATDjh07dP311/s9Pj8/369xK1eu1MCBA/0+LgAAwHe1iSZ7TU2Nampq3N9XVlbaWE14KC8vV1pamt1lhB1/56W8vFwVFRVBqMhbaz+164/U1FSuFwuhvF5qamr05ZdftvhYrdW7d285nc4WjfH3eon2nyOJnyUr383n0tJSlZaWWm7Xt2/fUJUEAAAAAAiijIwMrVy50pbjAuBpEo1hXqwxL41jbqy1pXlpE032WbNm6YEHHvBp2/Ly8iBXEx5GXTlKhW8WtqjZ0xbmZtSoUSosbPm8XHnVVaqtrg5iZd78/dSuPxISE/XmmjVcL6e4atQorfHjehk16irV1IT2egklpzNRhYUtv15GjRrl0XANhVD+HEmS0+ls8d8x0W7ixImaOHGi3WUAAAAAAEIkKSmJO8oBG/E0CWvMizXmpXHMjbW2NC9tosk+Y8YMTZkyxf19ZWWl0tPTLbcN1V2UdquprVFFRUWLGj1tYW5qavybl9rqah2/4Qa5unYNYnX2iDlwQFqxguvFQrWf10tNTbWcQ65VTIcuQazOHq6qg6rZssrPealRWrdhSojvGMQK7VNbd0Tl+99v8dwAAAAAAAAAgcLTJKwxL9aYl8YxN9ba0ry0iSa70+ls8eOOL6i4QMknk4NUkb2Oxh3VptRNfo9PyElQTKeYAFYUHlyHXaotqvV/fNeuctE48/LIZbHKSI2+62VHhUv3bqj3e3xMhy6K7dQzgBVFh4T4jkpydra7DAAAAAAAACAq8TQJa8yLNealccyNtbY0L22iye6PeBMvp2lZYz5SVJvWPabakeCQI9ERoGrChyMh+s4pHCQ7HeoUhddLsjP6zgkAAAAAAH+0pXdvAgAAABJNdgAAAAAAAACt0JbevQkAAABINNkBAAAAAAAAtEJbevcmAAAAINFkBwAAAAAAANAKbendmwAAAIAkxdhdgC/+/ve/q2vXru6vpUuXSpJmzZrlsXzPnj02VwoAAAAAAAAAAAAAiGYRcSd7XV2dDh486LX8+PHjOn78uPv7+vr6UJYFAAAAAAAAAAAAAGhjIqLJnpOTI2OM3WUAAAAAAAAAAAAAANq4iHhcPAAAAAAAAAAAAAAA4YAmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgozi7CwAAAAAAALDDiRMntGPHjhaPKysr8/izpTIyMpSUlOTXWAAAAACA/WiyAwAAAACANmnHjh26/vrr/R6fn5/v17iVK1dq4MCBfh8XAAAAAGAvmuwAAAAAAKBNysjI0MqVK205LgAAAAAgctFkBwAAAAAAbVJSUhJ3lAMAAAAAWizG7gIAAAAAAAAAAAAAAIgUNNkBAAAAAAAAAAAAAPARTXYAAAAAAAAAAAAAAHxEkx0AAAAAAAAAAAAAAB/RZAcAAAAAAAAAAAAAwEc02QEAAAAAAAAAAAAA8BFNdgAAAAAAAAAAAAAAfBRndwEAAAAAAAAA2pb6+noVFxdr//796tatm7KzsxUbG2t3WQAAAIBPaLIDAAAAAAAACJm1a9dq9uzZ2rt3r3tZr169NH36dOXm5tpYGQAAAOAbHhcPAAAAAAAAICTWrl2ryZMnq3///lq2bJm2bNmiZcuWqX///po8ebLWrl1rd4kAAABAs2iyAwAAAAAAAAi6+vp6zZ49Wzk5OZo3b54GDx6s9u3ba/DgwZo3b55ycnL0yCOPqL6+3u5SAQAAgCbxuHgAAAAAAADABydOnNCOHTtaPK6srMzjz5bKyMhQUlKSX2PDSXFxsfbu3au5c+cqJsbz3p+YmBjdcccdysvLU3FxsYYOHWpTlQAAAEDzaLIDAAAAAAAAPtixY4euv/56v8fn5+f7NW7lypUaOHCg38cNF/v375ckZWVlWa5vWN6wHQAAABCuaLIDAAAAAAAAPsjIyNDKlSt93n7RokV6/fXX5XK53MtiYmJ0zTXXaMKECS06bjTo1q2bJKm0tFSDBw/2Wl9aWuqxHQAAABCuaLIDAAAAAAAAPkhKSvL5jvJHH31Ur732mrp06aJrr71W6enp2rNnj1atWuVefs899wS54vCSnZ2tXr16af78+Zo3b57HI+NdLpeeeeYZ9e7dW9nZ2TZWCQAAADQvpvlNAAAAAAAAAPiqtrZWCxcuVHJyspxOp1544QU98MADeuGFF+R0OpWcnKyFCxeqtrbW7lJDKjY2VtOnT1dRUZEmTZqkkpISVVVVqaSkRJMmTVJRUZHuvfdexcbG2l0qAB+sXr1al19+uTp37qz27dtryJAheuqppzye3gEAQLTiTnYAAAAALXa0xuhwtbG7jKA4WtO68zK1J2RqjgWomvBhak+0anx9fY1O1lcHqJrwUV9fY3cJYefo0aNatWqVCgsLtWnTJu3Zs0cOh0Onn366rr76ak2ZMkU9e/a0u0wgqF566SXV19fr6NGjys7O1u23367ExERVV1dr48aNevvtt93bTZw40d5iQyw3N1cFBQWaPXu28vLy3Mt79+6tgoIC5ebm2lgdAF/Nnj1bM2bMkPTNKy06dOigrVu3avLkyVq3bp1effVVj6dVAAAQbWiyAwAAAGixezfUS6q3u4ywVP3hErtLCEt7vt5gdwkIkUmTJmnx4sWSpOTkZA0YMEDHjh3Ttm3b9P/+3//TggULtGbNGp1//vk2VwoEzxdffCFJGjBggLZt2+ZuqktSWlqazjzzTG3bts29XVuTm5urkSNHqri4WPv371e3bt2UnZ3NHexAhPjggw80c+ZMxcTEaPHixbrxxhslSVu3btWVV16p119/XXPnztW0adNsrhQAgOChyQ4AANCMEydOaMeOHS0eV1ZW5vFnS2VkZCgpKcmvsf5wVUbnI/1ae14xBw4EqJLwEq3nBSA8jB07VnfddZdGjBihuLhv/umhrKxM48eP16ZNm3TDDTdo27ZtIc05wA7/+te/dOmll+rxxx9XVlaWSktLNX/+fI+me1sVGxuroUOH2l0GAD889NBDMsbopz/9qbvBLkmDBg3S3LlzddNNN2n27Nm6++67FR8fb2OlAAAED012AACAZuzYsUPXX3+93+Pz8/P9Grdy5UoNHDjQ7+P6KjU1VU6nUzUfRu8jj51Op1JTU1s0JjU1VQmJidKKFUGqyn4JiYl+zUtbkOjHNQNrbWEe/fk7Jpo9+eST6ty5s9fyzMxMvfLKKzrjjDO0Z88eFRYW6rrrrrOhQiD4zjnnHElSfHy8CgoKlJCQIEkaPHiwCgoKNGTIENXV1bm3A4BIUVlZqXXr1kmSbrvtNq/148aN0//8z//o4MGDevvtt3kFBAAgatFkBwAAaEZGRoZWrlxpy3FDIS0tTYWFhaqoqAjJ8crKypSfn685c+YoMzMzJMdMTU1VWlpai8akpaXpzTVrmJdTtHT7SLWmsLDNnGuwtYV5LOR68WDVYG+Qnp6uAQMG6JNPPtH27dtDWBVaqq08ySdYKisrJUl1dXXKycnRNddco/T0dO3Zs0evv/666urqPLYDgEhRUlKi2tpaJSYmasiQIV7r4+Pjdf7552v9+vX66KOPaLIDAKIWTXYAAIBmJCUlheSOcjulpaWFvEGUmZkZ9vPKvFj74IMPQnq8f/3rX7rlllu0YMECDRgwICTHbKpJ2JzEH9yo2I49AlhNeKg/8rXf75sP5TUTaddLW1RdXS1JUdFIjWbR/iSfYGv4e6FLly46ePCgFixY4LG+YTl/fwCINKWlpZKkPn36uF8Jc6qMjAytX7/evS0AANGIJjsAAACAFgl1Q6Bjx47uPyOhGeFISJLD2d7uMgLOkeB/QzSU/98i7Xppa7Zu3eq+g3348OE2V4OmRPuTfIKtR49vPmzV0Ei/4IIL1K5dOx0/flybNm3SwYMHPbYDgEjR8KSvpl6V07CuqaeC1dTUqKbm21eW8WQPAECkockOAAAAAACCrr6+Xr/4xS8kSZdddpnOO++8JrfnH9/t5c+TfOrr61VcXKz9+/erW7duys7OVmxsbJAqDG/nnnuuYmNj1a5dOyUmJqqwsNC9rlevXkpOTtbx48d17rnn2lglALRcwxNpEhISGt3G6XRK+ubVI42ZNWuWHnjggcAWBwBACNFkBwAAAAAAQTdz5kxt3LhRycnJevbZZ5vdnn98jyxr167V7NmztXfvXveyXr16afr06W3yfbwlJSWqr6/X0aNHdd555+m2225TYmKiqqurtXHjRhUVFbm3Gzp0qL3FAkALJCYmSpJqa2sb3abhQ3JNvRpmxowZmjJlivv7yspKpaenB6hKAACCjyY7AAAAAACQJN1zzz16/fXXWzxuwYIFuvDCCxtdP3/+fD366KOKi4vTkiVLlJmZ2ew++cf3yLF27VpNnjxZOTk5mjt3rrKyslRaWqr58+dr8uTJKigoaHON9v3790uS/vCHP+jxxx93N9UlqXfv3pozZ47y8/Pd2wFApPDlUfC+PFLe6XS673gHACAS0WQHAAAAAACSpPLycm3btq3F444dO9boumXLlunnP/+5HA6HFi5cqNGjR/u0T/7xPTLU19dr9uzZysnJ0bx58xQTEyNJGjx4sObNm6dJkybpkUce0ciRI9vUo+O7desmSUpPT9dbb73l9Rj9Tz75xGM7AIgUWVlZkqTdu3fr5MmTiovzbjHs2LHDY1sAAKJRjN0FAAAAAACA8LB48WIZY1r8dfnll1vub/Xq1frJT34il8ulP/7xj7rppptCfEYItuLiYu3du1d33nmnu8HeICYmRnfccYe+/PJLFRcX21ShPbKzs9WrVy/Nnz9fDodDQ4cO1ZgxYzR06FA5HA4988wz6t27t7Kzs+0uFQBa5Nxzz1V8fLyqq6u1ZcsWr/V1dXX6xz/+IUm8DgMAENVosgMAAAAAgIB799139cMf/lB1dXWaNWuWJk2aZHdJCIKGx503drdiw/K29lj02NhYTZ8+XUVFRZo0aZJKSkpUVVWlkpISTZo0SUVFRbr33nvb1N39AKJDSkqK+8N1f/7zn73Wv/zyy6qsrFSXLl2Uk5MT4uoAAAgdmuwAAAAAACCgNm/erP/6r//SiRMnNGPGDE2fPt3ukhAkDY87Ly0ttVzfsLwtPhY9NzdXBQUF2r59u/Ly8nTeeecpLy9PpaWlbfI99QCix3333SeHw6Hnn39eS5YscS/funWrpkyZIkm65557lJCQYFeJAAAEHe9kBwAAAIAAclUdtLuEoIjW80Lgbdu2TaNGjVJlZaUmTZqkhx9+2O6SEETffSz6d9/JLkkul6vNPxY9NzdXI0eO9HonO3ewA4hkw4cP14MPPqj7779f48eP1/33368OHTros88+k8vl0ujRozV16lS7ywQAIKhosgMAAABAAKSmpsrpTFTNllV2lxI0TmeiUlNT7S4DYW7y5Mk6cOCAHA6HPv74Y1100UWW291666269dZbQ1wdAq3hseiTJ0/WpEmTdMcddygrK0ulpaV65plnVFRUpIKCgjbdVI6NjeW9xACizn333adBgwbp8ccf1+bNm7Vv3z6dc845uuWWW3TXXXe16b/3AQBtA012AAAAAAiAtLQ0FRauUUVFRUiOV1ZWpvz8fM2ZM0eZmZkhOWZqaqrS0tJCcixErpqaGkmSMUbvv/9+o9s1vM8Vka/hseizZs1SXl6ee3mvXr14LDoARLExY8ZozJgxdpcBAIAtaLIDAAAAQICkpaWFvAmdmZmpgQMHhvSYQFOKiorsLgE2cTgcdpcAAAAAACER0/wmAAAAAAAAgLW1a9dq8uTJ6t+/v5YtW6YtW7Zo2bJl6t+/vyZPnqy1a9faXSIAAAAABBRNdgAAAAAAAPilvr5es2fPVk5OjubNm6fBgwerffv2Gjx4sObNm6ecnBw98sgjqq+vt7tUAAAAAAgYmuwAAAAAAADwS3Fxsfbu3as777xTMTGe/8wUExOjO+64Q19++aWKi4ttqhAAAAAAAo8mOwAAAAAAAPyyf/9+SVJWVpbl+oblDdsBAAAAQDSgyQ4AAAAAAAC/dOvWTZJUWlpqub5hecN2AAAAABANaLIDAAAAAADAL9nZ2erVq5fmz58vl8vlsc7lcumZZ55R7969lZ2dbVOFAAAAABB4NNkBAAAAAADgl9jYWE2fPl1FRUWaNGmSSkpKVFVVpZKSEk2aNElFRUW69957FRsba3epAAAAABAwcXYXAAAAAAAAgMiVm5urgoICzZ49W3l5ee7lvXv3VkFBgXJzc22sDgAAAAACjyY7AAAAAAAAWiU3N1cjR45UcXGx9u/fr27duik7O5s72AEAAABEJZrsAAAAAAAAaLXY2FgNHTrU7jIAAAAAIOh4JzsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD4iCY7AAAAAAAAAAAAAAA+oskOAAAAAAAAAAAAAICPaLIDAAAAAAAAAAAAAOAjmuwAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI8iqsm+evVqXX755ercubPat2+vIUOG6KmnnpLL5bK7NAAA0ApkPAAAAAAAAAAgUkRMk3327NkaPXq01q9fr9TUVJ1xxhnaunWrJk+erOuuu45/hAcAIEKR8QAAAAAAAACASBIRTfYPPvhAM2fOVExMjF566SWVlZVp69at2rJli3r06KHXX39dc+fOtbtMAADQQmQ8AAAAAAAAACDSREST/aGHHpIxRrfffrtuvPFG9/JBgwa5/+F99uzZqqurs6tEAADgh2jO+Pr6en300Uf661//qo8++kj19fV2lwQAAAAAAAAACICwb7JXVlZq3bp1kqTbbrvNa/24ceOUkpKigwcP6u233w51eQAAwE/RnPFr167VFVdcoQkTJmjq1KmaMGGCrrjiCq1du9bu0gAAAAAAAAAArRRndwHNKSkpUW1trRITEzVkyBCv9fHx8Tr//PO1fv16ffTRR8rNzbWhSkDSiRNyHDtmdxWBd+KE3RVEJVN7QqYm+q4XU9u666W+vkYn66sDVE14qa+vsbuEsBOtGb927VpNnjxZOTk5mjt3rrKyslRaWqr58+dr8uTJKigoiJhzAQAAAAAAAAB4C/sme2lpqSSpT58+iouzLjcjI0Pr1693bwvYocOiRXaXgAhS/eESu0sIS3u+3mB3CQihaMz4+vp6zZ49Wzk5OZo3b55iYr55aNDgwYM1b948TZo0SY888ohGjhyp2NhYm6sFAAAAAAAAAPgj7JvsFRUVkqTU1NRGt2lY17DtqWpqalRT8+0dhJWVlc0etyq2qiVlRpTWnpur0hWgSsJLtJ6X3XYfMZKib26/OS8ArRGIjJf8y/lgKS4u1t69ezV37lx3g71BTEyM7rjjDuXl5am4uFhDhw61qcrAOXHihHbs2NHicWVlZR5/tlRGRoaSkpL8GhsKzIs1f+dFYm4aw7xYi/Z5AQAAAAAA9gv7Jnt19TePDU5ISGh0G6fTKembf4SxMmvWLD3wwAM+HS81NVXOBKe2dtzawkojizPB2WRTw0pqaqqcTqdqPozeRx47nf7NS7RLSEz0a14SnU7Nfj96r5dErhdLTqd/10tb4M/fMdEsEBkvtSzng23//v2SpKysLMv1Dcsbtot0O3bs0PXXX+/3+Pz8fL/GrVy5UgMHDvT7uMHGvFhr7bxIzE1jmBdr0TovAAAAAADAfmHfZE9MTJQk1dbWNrpNw91rjd1tMGPGDE2ZMsX9fWVlpdLT0y23TUtLU+GbhU3eMddYDV9++WWLxgRK79693U0IX6WmpiotLa1FY9LS0lRYGDlzE8p5iXZvrlnj17ys4Xrx0haul8JC/66XtqCwsLDNnKsvApHxUstyPti6desm6ZtH4Q8ePNhrfcNj7xu2i3QZGRlauXKlLccNZ8yLNbvmpeHY4YxrxhrzAgAAAAAAwlXYN9l9eUxsc4+bdTqdLWqepaWl+dUEGTJkSIvHRBrmxtoHH3xgdwlB1blzZ7/Gcb1Y43qxFu3zIvk/N9EqEBkvtTzngyk7O1u9evXS/PnzPd7JLkkul0vPPPOMevfurezsbBurDJykpCTu9rTAvFhjXhrH3FhjXgAAAAAAQLgK+yZ7w2NVd+/erZMnTyouzrvkhvf0NfZoViDYaJyhJbherDEvbU80ZnxsbKymT5+uyZMna9KkSbrjjjuUlZWl0tJSPfPMMyoqKlJBQYFiY2PtLhUAAAAAAAAA4KeY5jex17nnnqv4+HhVV1dry5YtXuvr6ur0j3/8Q5I0dOjQUJcHAAD8FK0Zn5ubq4KCAm3fvl15eXk677zzlJeXp9LSUhUUFCg3N9fuEgEAAAAAAAAArRD2d7KnpKTo8ssv15o1a/TnP/9ZF1xwgcf6l19+WZWVlerSpYtycnLsKRIAALRYNGd8bm6uRo4cqeLiYu3fv1/dunVTdnY2d7ADAAAAAAAAQBQI+zvZJem+++6Tw+HQ888/ryVLlriXb926VVOmTJEk3XPPPUpISLCrRAAA4IdozvjY2FgNHTpUY8aM0dChQ2mwAwAAAAAAAECUiIgm+/Dhw/Xggw/K5XJp/PjxyszM1KBBgzRkyBB9/fXXGj16tKZOnWp3mQAAoIXIeAAAAAAAAABApImIJrv0zZ1ub7zxhi677DIdPHhQ//73v3XOOefoiSee0KpVq7g7DACACEXGAwAAAAAAAAAiSdi/k/27xowZozFjxthdBgAACDAyHgAAAAAAAAAQKSLmTnYAAAAAAAAAAAAAAOxGkx0AAAAAAAAAAAAAAB/RZAcAAAAAAAAAAAAAwEc02QEAAAAAAAAAAAAA8BFNdgAAAAAAAAAAAAAAfESTHQAAAAAAAAAAAAAAH9FkBwAAAAAAAAAAAADARzTZAQAAAAAAAAAAAADwEU12AAAAAAAAAAAAAAB8RJMdAAAAAAAAAAAAAAAfxdldgB2MMZKkyspKmysBAODbPGrIJ7QOOQ8ACBdkfGCR8QCAcEHGBx45DwAIF77mfJtssh89elSSlJ6ebnMlAAB86+jRo+rYsaPdZUQ8ch4AEG7I+MAg4wEA4YaMDxxyHgAQbprLeYdpgx+3c7lcKi8vV3JyshwOh93lqLKyUunp6dqzZ49SUlLsLidsMC/WmBdrzIs15sVauM2LMUZHjx5VWlqaYmJ4k0trhVPOh9u1Fi6YF2vMS+OYG2vMi7VwmhcyPrDI+MjA3FhjXqwxL9aYF2vhNC9kfOCR8+GPebHGvFhjXhrH3FgLp3nxNefb5J3sMTEx6t27t91leElJSbH9wglHzIs15sUa82KNebEWTvPCJ98DJxxzPpyutXDCvFhjXhrH3FhjXqyFy7yQ8YFDxkcW5sYa82KNebHGvFgLl3kh4wOLnI8czIs15sUa89I45sZauMyLLznPx+wAAAAAAAAAAAAAAPARTXYAAAAAAAAAAAAAAHxEkz0MOJ1O/eY3v5HT6bS7lLDCvFhjXqwxL9aYF2vMC0KFa80a82KNeWkcc2ONebHGvCAUuM4ax9xYY16sMS/WmBdrzAtChWvNGvNijXmxxrw0jrmxFonz4jDGGLuLAAAAAAAAAAAAAAAgEnAnOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD4iCZ7CJxzzjlyOBxKSkpSZWVlo9tNnDhRDofD4ys+Pl49e/bUNddcozVr1oSw6uDp16+f13me+vXEE09Iknbt2mW5Pjk5WYMGDdLMmTN14MABe08oQHbv3q0pU6bo7LPPVvv27ZWUlKQ+ffpo2LBhys/P15tvvumxfU5OTrPz6HA49Nvf/taeEwqQTZs26ec//7nOPvtspaamKj4+Xl27dtWwYcN0zz33aPPmzc3u4xe/+IV7Pt56660QVB1cjf0MdejQQd///vc1Y8YMHTx40Gvc4cOHtWzZMk2dOlUXXXSR2rVrJ4fDocsvv9yGswg8f+dl+/btmjVrlnJzc3XaaacpPj5enTt31qWXXqoFCxbI5XLZcDaIJOT8t8j4xpHz1sh5T2S8NTIediHjPZHz1sh4a2S8N3LeGjkPu5Dz3yLjG0fOeyPjvZHx1tpCxsfZXUC0+/jjj/XZZ59Jkqqrq/XKK6/o1ltvbXJM9+7dlZWV5R6zfft2vfHGG3rjjTc0Y8YMPfzww0GvOxSysrLUvXt3y3W9evXyWpadnS2n0ylJ2rt3rz799FN98sknWrRokTZu3KjTTz89qPUG04YNGzR27FgdPXpUsbGxSk9PV/fu3XXo0CF9+OGH+uCDD7RgwQLLX1DS09PVp0+fRvfd1Lpwdvz4cd1+++1asmSJJCk+Pl6ZmZlKSUnRoUOHtGnTJn3wwQeaM2eOrrrqKq1evdpyP3V1dVq6dKn7+xdffFFXXHFFSM4h2L77M+RyufTVV1/p008/1aeffqoXX3xR7733nvr16+fevqioSHl5eTZVGzotmZf6+nqdeeaZ7rG9e/fW4MGDtXv3bhUVFamoqEhLly7VqlWrlJiYaMfpIMyR89bIeE/kvDdyvmlkvDUyHqFExjeOnP8WGe+NjG8eOW+NnEcokfPWyHhP5LwnMr55ZLy1qM54g6CaMmWKkWQ6depkJJmcnJxGt7355puNJHPzzTd7LK+pqTHTpk0zkowk8/777we56uDq27evkWQWLFjQ7LY7d+50n/fOnTs91m3evNm9ryuvvDI4xYbAkSNHTNeuXY0kM3r0aLNr1y6P9RUVFWbhwoXm6quv9lg+YsQII8n85je/CWG1oVFbW2suuugiI8n07NnTvPDCC6aqqspjm4Z5Oeuss4zT6Wx0X6+//rrHz2D79u299hVpmvoZ2rJli0lLSzOSzLhx4zzWFRYWmksuucRMmzbNLF++3Dz88MNGkhk5cmSIKg8uf+alrq7OdOrUydx///2mrKzMY8yyZctMUlKSkWSmTp0a7PIRoch5T2S8N3LeGznfODLeGhkPO5Dx3sh5T2S8NzK+aeS8NXIediDnPZHx3sh5T2R808h4a20h42myB9HJkydNz549jSSzePFiExsbaxwOh/niiy8st28ssI0xxuVymcGDBxtJZvLkyUGuPLgCFdrGGLNy5UojyTgcDnPgwIHAFxsCS5YsMZJMSkqKOXbsmM/jojWwjTFm5syZRpJJS0szu3fvbnLburo689BDDzW6fty4cUaSue+++8zAgQONJPPiiy8GuuSQau5n6OmnnzaSTGpqapP7WbBgQZsJbWOs58XlcplDhw41us/Zs2e7x9TX1we6ZEQ4ct4bGe+NnPdGzjeOjLdGxiPUyHhr5LwnMt4bGd80ct4aOY9QI+e9kfHeyHlPZHzTyHhrbSHjeSd7EK1bt05fffWVTjvtNOXl5emyyy6TMUZ/+ctfWrwvh8Ohiy66SJJUWloa6FIj1iWXXCJJMsaorKzM5mr8s2PHDklS//791a5dO5ursd/hw4dVUFAgSSooKFB6enqT28fFxem+++6zXHfkyBG98cYbkqTx48dr/Pjxkr55BE0069u3rySptrbW5krCi9W8OBwOpaamNjomNzdXklRRUaH9+/cHt0BEHHI+uKIh4yVy/lTkfOuQ8dbIeAQaGR980ZDzZLwnMr71yHlr5DwCjZwPrmjIeImc/y4yvvXIeGvRkPE02YNo0aJFkqQf//jHio2N1U033STJ/78wjDEBqy1aRMOcpKSkSPrmF7HDhw/bW0wYWL16taqqqnTaaadp7NixrdrX8uXLVV1drUGDBumss87S+PHj5XA4tH79en311VeBKTgMFRcXS5IGDBhgcyXhxZ95qa6udv93UlJSwGtCZCPngyta5oOc90TOtw4Zb42MR6CR8cEXDXNCxnsi41uPnLdGziPQyPngipb5IOe/Rca3HhlvLRoyniZ7kFRVVem1116TJHdQX3/99UpKStLnn3+uzZs3t2h/xhj9/e9/lySdccYZAa01km3cuFHSN59uycjIsLka/+Tm5iomJkZHjhzR5ZdfrhUrVujIkSN2l2Wb999/X5J04YUXKjY2tlX7avjluOFnsF+/fho2bJjq6+v10ksvta7QMONyuVReXq4//elPeuSRR+RwODRjxgy7y7Jda+dl+fLlkqSzzz7b/cs1IJHzoRANGS+R86ci51uOjLdGxiNYyPjQiIacJ+M9kfH+IeetkfMIFnI++KIh4yVy/rvIeP+Q8daiLuND+3T6tmPhwoVGkjnjjDM8lje8b+Luu+/2GtPY+11qamrMtGnT3O862bhxYxArD76G9zA09jVixAj3tk2942XLli3ufUX6Oyp+//vfe8yBw+EwZ555ppk4caJZunSpqa6u9hrT8H6X5r5KSkpCf0KtMHbsWCPJ/OpXv2rVfnbu3GkcDodxOBwe74lpeM/HoEGDWlmpfZr7GTr//PPNm2++2ex+ovUdL62dlwaffvqpSUhIMJLMokWLglg5IhE5b42Mt0bOf4ucbxoZb42MRyiR8Y0j572R8d8i45tHzlsj5xFK5Lw1Mt4aOf8NMr55ZLy1tpDxcUJQNHwip+GdEg1uuukmvfzyy1qyZIn+8Ic/KC7O+3/BmjVr3O9yqa6u1vbt23X06FFJ0q9+9Sv3ukiXlZWl7t27ey0/55xzLLcfN26cnE6nJKm8vFy7du2SMUY9evTQn/70p6DWGmwzZ87UhRdeqD/84Q9at26damtrtW3bNm3btk0LFy5Unz599H//93/KycnxGpuenq4+ffo0uu8OHToEsfLAa7jW27dvb7l+6dKluvHGG72WL1iwQBMnTnR/v3jxYhljdMkll3i8J+ZHP/qRfvnLX2rr1q369NNPG73eIsGpP0MHDhzQrl27tHnzZs2bN0/nn39+k+8viVaBmJfDhw/rhhtuUG1tra6++mr95Cc/CXbZiDDkfNPIeE/k/LfIed+Q8dbIeIQCGd88cv5bZPy3yHjfkfPWyHmEAjnfNDLeEzn/DTLed2S8tajOePv6+9Hryy+/NDExMUaS+de//uWxrqamxqSmphpJ5m9/+5vHuoZPxX33KzY21nTr1s1cddVV5tVXXw3hWQRPw6dXFixY0Oy23/1k3He/kpKSzFlnnWWmTZtm9u3bF/yiQ+j48ePm3XffNXPmzDGXXnqpcTgc7nP+/PPP3ds1fCruN7/5jX3FBkFzn4xbt26dGT58uPurY8eOltfTmWeeaSSZ+fPne+1j9OjRRpLJz88PxikEXVM/QxUVFWbChAlGksnOzjYul6vR/UTrJ+NaOy/V1dXun6+BAweaQ4cOBbFqRCJyvnFkfPPIeXK+KWS8NTIeoULGN42cbxoZT8Y3h5y3Rs4jVMj5xpHxzWvLOU/GN4+Mt9YWMp53sgfBX/7yF7lcLg0ZMkRnnnmmx7qEhASNGzdO0refnDvVzTffLGOMjDE6efKk/vOf/2j16tUaO3ZssEsPazt37nTPy/Hjx/XPf/5Tc+bMUY8ePewuLaCSkpJ08cUXa9q0adqwYYPeffddtW/fXidOnNBjjz1md3lB16tXL0nSrl27LNePHDlS7733nvsrOzvba5tNmzZp27Ztio+Pd/+8fVfDO19eeukluVyuwBUfBjp16qRnn31WvXr1UnFxsVatWmV3SWHB13k5efKkfvzjH+udd95Rv379tHbt2jb56UI0jZwPvLaS8RI5T877j4y3RsYjkMj44GgrOU/Gk/GtQc5bI+cRSOR84LWVjJfads6T8a1DxluLloynyR4EDUG8ZcsWORwOr69nn31WkrRq1SpVVlbaWSoiwEUXXaRJkyZJ+iaMot2FF14oSXr//fdVX1/v1z4WLVokSaqrq1OXLl28fgYbHgm1d+9ebdiwITCFhxGn06khQ4ZIahvXjK+amxdjjG655RatWrVKPXv21Lp165SWlhbqMhEByHkEEjnfcm0558l4a2Q8AoWMRyCR8S3XljNeIucbQ84jUMh5BFJbynkyvvXIeGvRkPG8kz3ASkpK9Nlnn8nhcFi+v6RBRUWFTpw4oRUrVuiWW24JYYWIRBkZGZKk2tpamysJvquvvlodOnTQ119/rVdffVU//OEPWzS+rq5Oy5YtkyR16dLF8h1KknTs2DFVVVXpxRdf1OWXX97qusNNwyf+Dh06ZHMl4aWpebnrrru0ePFidenSRW+99ZYyMzNDXR4iADmPYCDnfUfOk/GNIePRWmQ8goGM9x0Z/w1y3ho5j9Yi5xEMbSXnyfjAIOOtRXrGcyd7gDV8Iu6SSy7Rvn37Gv2aOnWqx/Zouw4cOCBjTJPbvP/++5KkrKysUJRkq9TUVN11112SpLvvvlu7d+9u0fg1a9bowIEDat++vXbt2tXoz+CKFSskSStXrtTx48cDfh52qq6uVklJiaRvf9lD0/Ny3333ad68eUpOTlZhYaEGDhxoR4mIAOQ8Woqc90TOtw4Zb42MRyCQ8WgpMt4TGd965Lw1ch6BQM6jpcj5b5HxrUfGW4uGjKfJHkD19fVasmSJJOknP/lJk9v+93//tySpqKhIe/bsCXptCF+LFy/W4MGD9dxzz+ngwYMe6w4fPqz//d//1eLFiyWpzXyC8oEHHtCFF16o8vJyDR06VC+88IKqqqo8tqmrq9Mrr7yibdu2eSxv+CX4uuuuU4cOHRo9xsiRI9WzZ09VVVXp1VdfDfxJ2KSiokI//elPVV5eroSEBP3oRz+yu6Sw0NS8zJ07Vw8//LCSkpL017/+1fK9QYBEzsM/5Lw3ct4/ZLw1Mh6BQMbDH2S8NzLef+S8NXIegUDOwx/kvCcy3n9kvLVoyXgeFx9Ab731lvbt26fExMRmH5lx1lln6dxzz1VJSYn+8pe/aPr06SGqEuHG4XDok08+0c9+9jP97Gc/0+mnn65u3bqpoqJCX3zxhftxM9OmTdN1113nNf6FF17QunXrGt3/JZdcoocffjho9QdDQkKC3nrrLd16661avny5brvtNt15553KzMxUSkqKDh48qK+++sr9ibbc3FxdeumlOnz4sN544w1Jzf/SHBsbq7y8PD3++ON68cUXddNNNwX9vALt4Ycf1vPPP+/+/uDBg9q5c6dqamoUFxenZ555Rv369fMY07VrV/d/19TUSJLeffddj+V//OMflZeXF9zig6gl81JeXq5p06ZJkpKTkzVz5sxG9/vKK6/otNNOC2rtCG/kPPxBznsj55tHxlsj4xEsZDz8QcZ7I+N9Q85bI+cRLOQ8/EHOeyLjfUPGW4vqjDcImPHjxxtJZty4cT5t/9hjjxlJ5qyzzjLGGHPzzTcbSebmm28OYpX269u3r5FkFixY0Oy2O3fuNJKMJLNz586g12aH2tpas2HDBpOfn2+GDRtm+vTpYxISEky7du1MVlaWmTBhgtm4caPXuBEjRrjnpqmva6+9NvQnFUAffvihufPOO81ZZ51lOnbsaOLi4kyXLl3M0KFDzdSpU83mzZvd2z777LNGkjnttNPMyZMnm9335s2bjSQTGxtrvvrqq2CeRkA1/Ayd+uV0Ok1GRoa55ZZbzMcff2w51pdrxpefzXDkz7x89++Y5r6i9e8g+I6cbx4Z742cbxo574mMt0bGI9jIeN+Q857I+KaR8d7IeWvkPIKNnG8eGe+NnG8cGe+NjLfWFjLeYUwzL5YAAAAAAAAAAAAAAACSeCc7AAAAAAAAAAAAAAA+o8kOAAAAAAAAAAAAAICPaLIDAAAAAAAAAAAAAOAjmuwAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDkSRfv36yeFwaNeuXXaXElA5OTlyOBwqKiqyuxQAAGxDzgMAEJ3IeAAAohMZD0Q3muxACOzevVtTpkzR2Wefrfbt2yspKUl9+vTRsGHDlJ+frzfffNPuEiHpiSee0G9/+1sdPnzY7lIAABGEnI8M5DwAoKXI+MhAxgMAWoqMjwxkPMJdnN0FANFuw4YNGjt2rI4eParY2Filp6ere/fuOnTokD788EN98MEHWrBggQ4cOGB3qW3eE088oS+++EITJ05Up06d7C4HABAByPnIQc4DAFqCjI8cZDwAoCXI+MhBxiPc0WQHgqiyslI//vGPdfToUY0ePVpPP/20+vbt615/+PBhrVq1SsuXL7exSgAA4A9yHgCA6ETGAwAQnch4AIFEkx0IotWrV+vAgQNKSUnR8uXL1a5dO4/1nTp10s0336ybb77ZpgoBAIC/yHkAAKITGQ8AQHQi4wEEEu9kB4Jox44dkqT+/ft7BXZTHA6HHA5Ho+v79esnh8OhXbt2NbrNm2++qZycHHXs2FEpKSm64oortHHjRsttc3Jy5HA4VFRUpE2bNmn06NHq3Lmz2rdvr2HDhum1115r9DjGGC1evFgjRoxQp06dlJSUpAEDBujee+/VoUOHGh138uRJPffcc7r00kvVpUsXJSYmKiMjQzfccINWrVrV6LhTLV26VPHx8Wrfvr3Wrl3rsW7Tpk3Ky8tTr169lJCQoB49emjcuHEqKSnx2G7hwoVyOBz64osvJEmnn366+/9Bw7wAAHAqcp6cBwBEJzKejAcARCcynowHAsoACJqnnnrKSDIdO3Y0FRUVPo+TZJr68ezbt6+RZHbu3Gm5fNasWcbhcJjOnTub7Oxs06VLFyPJxMTEmOXLl3vtb8SIEUaS+d3vfmcSEhJMhw4dTHZ2tunZs6e7lscee8xrnMvlMuPHj3dvk5GRYYYMGWISEhKMJNO3b19TVlbmNe7QoUNm+PDh7nF9+/Y12dnZpnv37u7vrep7++23PZY/++yzJiYmxnTs2NG89957Huvmzp1rHA6HkWQ6d+5szj33XPc8xMfHmxUrVri3Xb16tRk+fLhxOp1GksnOzjbDhw93f23ZsqXR/xcAgLaLnCfnAQDRiYwn4wEA0YmMJ+OBQKLJDgTRtm3bTExMjJFkzjvvPPPKK6+Yw4cPNzuutaEdFxdnpkyZYmpra40xxtTV1Zl77rnHSDIpKSmmvLzcY1xDKMbFxZm8vDxTVVVljPkmlAsKCtzrPv74Y49xDb+UJCcnm7Vr17qXf/XVV+5QHjp0qFf9Y8eONZJMZmam+fDDDz3WlZaWmkcffdSyvu+G9pw5c4wk061bN69QXbNmjXE4HKZr164e4WyMMc8//7yJi4szycnJXvPQ2LwCAGCFnCfnAQDRiYwn4wEA0YmMJ+OBQKLJDgTZ73//e3cISzIOh8OceeaZZuLEiWbp0qWmurraa0xrQ3vQoEGW44YMGWIkmf/93//1WN4Qit27dzcnTpzwGnf99dcbSWbChAnuZS6Xy6SnpxtJ5vHHH/ca8+WXX7o/Ibd+/Xr38k2bNhlJxul0mu3btzd6jlb1NYT2r3/9ayPJ9O7d23z++eeNnueqVass9zd16lT3JwG/i9AGALQUOU/OAwCiExlPxgMAohMZT8YDgcI72YEgmzlzpjZs2KCrr75aCQkJMsZo27ZtWrhwofLy8tS/f/+Av0Nk0qRJTS5/8803LdffdtttSkxM9Gnc559/rj179igxMVE//elPvcb06tVLN9xwgyR5vHul4f0t1113nbKysnw5HTdjjH75y1/qwQcfVGZmpjZu3KgBAwZ4bPPFF19oy5Yt6t69u6655hrL/TQsf+edd1p0fAAATkXOk/MAgOhExpPxAIDoRMaT8UCgxNldANAWXHrppbr00kt14sQJFRcX66OPPtLq1atVVFSk3bt36+qrr9aWLVu8Ashf3/ve95pcvn37dr/Gff3116qsrFRKSop7H3369FH79u0txw0cONDreJ9//rkk6Qc/+EFzp+Fl2rRp2rJliwYOHKi33npLPXv29Nrm008/lSRVV1froosustxPdXW1JGnv3r0trgEAgFOR8+Q8ACA6kfFkPAAgOpHxZDwQCDTZgRBKSkrSxRdfrIsvvljTpk3Te++9p1GjRunYsWN67LHH9NxzzwXkON27d7dc3qNHD0nS0aNHWzTuu8uPHj2qlJQUVVVVNTmmseNVVlZKkjp16tTouMb8+9//liT169dPXbt2tdzmyJEj7uP8/e9/b3J/J06caHENAAA0hpwn5wEA0YmMJ+MBANGJjCfjgdbgcfGAjS666CL3o102bdrktd4YYznu2LFjTe53//79lsv/85//SJKSk5NbNO67yxvGdujQwWOfVr7++muv4zX89+HDhxsd15jnnntOAwYM0N/+9jfdeOONOnnypNc2DXUNHz5cxpgmv3bt2tXiGgAA8BU53zLkPAAgUpDxLUPGAwAiBRnfMmQ82jqa7IDNMjIyJEm1tbXuZQ2Pc7EK0SNHjujAgQNN7rPhES+NLe/fv79f43r06KGUlBSPfezevdv9KblT/fOf//Q6XsMjaT788MMmz8FK9+7dtX79ep1xxhlasWKFJkyYIJfL5bHNWWed5a751HXNcTgcLa4JAICmkPO+I+cBAJGEjPcdGQ8AiCRkvO/IeLR1NNmBIDpw4ECjn25r8P7770uSsrKy3Msagvwf//iH1/bPP/98s8edN29ek8tzc3Mt1//5z39WTU2NT+O+973vqU+fPqqurrasqby8XCtWrJAkXXnlle7lY8eOlSS99tprKisra/ZcTpWWlqYNGzaoX79+WrJkiW699VaPOc7KytLZZ5+tQ4cOadGiRS3ad1JSkiQeSwMA8A05T84DAKITGU/GAwCiExlPxgMBZQAEzeOPP26+//3vm2effdYcOHDAY11FRYX59a9/bRwOh5FkVq5c6V53zz33GElm8ODBZt++fe7la9asMSkpKSYuLs5IMjt37vTYZ9++fY0kExcXZ/Lz801tba0xxpi6ujozY8YMI8kkJyebvXv3eowbMWKEe9xNN91kqqqqjDHGuFwu8/TTTxuHw2FiY2NNSUmJx7innnrKSDIpKSlm3bp17uX79u0zF198sZFkfvCDH3jNy3XXXWckmaysLLNp0yaPdaWlpWbOnDmW9b399tvuZTt37jTp6elGkvnZz35mXC6Xe93f/vY343A4TLt27cxzzz1n6urqPPZXVlZmHnroIbNixQqP5aNHjzaSzJ/+9CevmgEAOBU5T84DAKITGU/GAwCiExlPxgOBRJMdCKInnnjCSHJ/nX766eaCCy4wWVlZJiEhwb182rRpHuP+85//mNNOO81IMk6n0wwePNj069fPSDLTp093h3NjoT1r1izjcDhMly5dzPnnn2+6du1qJJmYmBizZMkSrzobQvF3v/udSUhIMMnJySY7O9ukpaW5a3z00Ue9xrlcLjN+/Hj3NmeccYYZMmSI+9z69OljysrKvMYdOnTIXHjhhe5x/fr1M9nZ2aZHjx5Gkunbt69lfd8NbWO+CfiGGn/xi194rPvjH/9oYmNj3b+onHfeeR7HsArnRYsWudedffbZZsSIEWbEiBFev6wAAGAMOU/OAwCiFRlPxgMAohMZT8YDgUSTHQii2tpas2HDBpOfn2+GDRtm+vTpYxISEky7du1MVlaWmTBhgtm4caPl2LKyMjNu3DiTmppqkpKSzLnnnmsWLFhgjDHNhvbOnTtNYWGhueSSS0xycrLp0KGDueyyy8w777xjeazvhuJHH31krrrqKtOpUyeTlJRkfvCDH3h8au9ULpfLLFq0yFx88cUmJSXFOJ1Ok5WVZfLz870+DXjq3Dz99NNm+PDhpmPHjiYxMdGcfvrp5oc//KF54403Gq3vVJ9//rk7iE/95efTTz81t99+u8nIyDCJiYmmY8eOZuDAgebGG280L7/8sjl27JjX/p588knz/e9/3yQlJbkD3Oq4AACQ8+Q8ACA6kfFkPAAgOpHxZDwQSA5jmnkBBYCol5OTo3feeUdvv/22cnJy7C4HAAAEEDkPAEB0IuMBAIhOZDwQGWLsLgAAAAAAAAAAAAAAgEhBkx0AAAAAAAAAAAAAAB/RZAcAAAAAAAAAAAAAwEc02QEAAAAAAAAAAAAA8JHDGGPsLgIAAAAAAAAAAAAAgEjAnewAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD46P8D3nr0JNOAcCYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m custom filtered fragment library \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHklEQVR4nOzdeVyU5f7/8feAMBAq4JaiYIKa5TlprqnHPbfypx23o1aKWlnWccslyywPFi7l0U5HK/SIlZqalKdFslwyd02zNDEEXApXRBCFYZvfH36dEwGKMHDPMK/n4zEPmPu+7nve3A1eMZ/7ui6T1Wq1CgAAAAAAAAAAAAAA3JKb0QEAAAAAAAAAAAAAAHAWFNkBAAAAAAAAAAAAACgiiuwAAAAAAAAAAAAAABQRRXYAAAAAAAAAAAAAAIqIIjsAAAAAAAAAAAAAAEVEkR0AAAAAAAAAAAAAgCKiyA4AAAAAAAAAAAAAQBFRZAcAAAAAAAAAAAAAoIgqGB3ACLm5uUpMTFSlSpVkMpmMjgMAcHFWq1VXrlxRQECA3Ny4/62k6OcBAI6CPt6+6OMBAI6CPt7+6OcBAI6iqP28SxbZExMTFRgYaHQMAADyOH36tOrUqWN0DKdHPw8AcDT08fZBHw8AcDT08fZDPw8AcDS36uddssheqVIlSdcvTuXKlQ1OAwBwdampqQoMDLT1TygZ+nkAgKOgj7cv+ngAgKOgj7c/+nkAgKMoaj/vkkX2G9PNVK5cmQ4bAOAwmA7NPujnAQCOhj7ePujjAQCOhj7efujnAQCO5lb9PAvGAAAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAAAAAAAAAFBEFNkBAAAAAAAAAAAAACgipyiyh4aGymQy3fSRkZFhdEwAAAAAAAAAAAAAQDlXwegAt6NBgwaqUaNGgfvc3JzifgEAAAAAAAAAAAAAgBNzqiL7iy++qNDQUKNjAAAAAAAAAAAAAABcFMO/AQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUkVNNF//xxx/r008/VWpqqmrUqKF27dpp2LBh8vX1NToaAAAAAAAAAAAAAMAFOFWR/YsvvsjzfPXq1XrllVe0cuVK9ezZ06BUAAAAAAAAAAAAAABX4RTTxYeEhOj111/XoUOHlJqaqitXrmjjxo1q3bq1kpOT9cgjj2j//v2FHm+xWJSamprnAQAAAAAAAAAAAADA7XKKkewvv/xyvm3dunVTx44d1b59e+3du1dTp07Vpk2bCjw+PDxcM2fOLO2YAAAAAAAAAAAAAIByzilGshfG09NTYWFhkqStW7cqOTm5wHbTpk1TSkqK7XH69OmyjAkAAAAAAAAAAAAAKCecusguSW3atJEk5ebmKj4+vsA2ZrNZlStXzvMAAAAAAAAAAAAAAOB2OX2R3cPDw/Z9dna2gUkAAAAAAAAAAAAAAOWd0xfZjxw5Yvu+Tp06BiYBAAAAAAAAAAAAAJR3Tl9kf/PNNyVJjRo1Uu3atQ1OAwAAAAAAAAAAAAAozxy+yP71119r2rRpSkhIyLM9JSVFY8eO1apVqyRJM2bMMCIeAAAAAAAAAAAAAMCFVDA6wK1cvXpVs2fP1uzZs1W7dm0FBAQoKytLP//8szIzM2UymTRjxgwNGTLE6KgAAAAAAAAAAAAAgHLO4YvszZs310svvaRdu3bp+PHjOnz4sKxWq2rXrq327dtrzJgxat26tdExAQAAAAAAAAAAAAAuwOGL7IGBgZo1a5bRMQAAAAAAAAAAAAAAcPw12QEAAAAAAAAAAAAAcBQU2QEAAAAAAAAAAAAAKCKK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiogiOwAAAAAAAAAAAAAARUSRHQAAAAAAAAAAAACAIqLIDgAAAAAAAAAAAABAEVFkBwAAAAAAAAAAAACgiCiyAwAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAIBScf78eU2aNEmNGzfWHXfcIS8vL4WEhOipp57S8ePHjY4HAAAAAECxVDA6AAAAAAAAKH+OHTumDh066Pz58/Lw8FBwcLA8PDx0/PhxRUREaMWKFfryyy/VsWNHo6MCAAAAAHBbGMkOAAAAAADs7tlnn9X58+fVrl07xcfHKyYmRj/99JN+/fVX9enTR9euXdOIESNktVqNjgoAAAAAwG2hyA4AAAAAAOzq2rVr2rJliyRp8eLFqlOnjm1f1apVFRkZKZPJpISEBMXExBgVEwAAAACAYqHIDgAAAAAA7CozM1O5ubmSpODg4Hz7/f39VaVKFUlSdnZ2mWYDAAAAAKCkKLIDAAAAAAC78vPzU2BgoCRp586d+fYfO3ZMSUlJ8vPzU4MGDco6HgAAAAAAJUKRHQAAAAAA2N2sWbMkSSNHjtS6deuUlJSklJQUffXVV3rkkUdkMpk0d+5ceXl5GZwUAADXY7VatX37dk2ePFkPPPCA/Pz85OnpqYCAAPXv39+27MsfvfrqqzKZTDd9sBQMAMAVVDA6AAAAAAAAKH+GDRumihUrKiwsTAMGDMiz77777tOXX36pnj17Fnq8xWKRxWKxPU9NTS21rAAAuJrNmzfrwQcflCS5ubmpfv368vHxUWxsrKKiohQVFaXp06crLCyswOMDAwMVFBRU4L477rij1HIDAOAoGMkOAAAAAADszmq1Kj4+XklJSXJ3d1f9+vV17733ytPTU4cPH9Z7772nS5cuFXp8eHi4fH19bY8b088DAICSs1qtql+/vhYtWqSLFy/q2LFjOnDggJKSkjRt2jRJ12el+fzzzws8fuTIkdq+fXuBj8KK7wAAlCcU2QEAAAAAgN09/fTTmjx5sgIDA3X8+HHFxsbqyJEjOn36tB566CF98skn6ty5s3Jycgo8ftq0aUpJSbE9Tp8+XcY/AQAA5VerVq109OhRPfPMM/L397dt9/T01Ouvv65evXpJkiIiIoyKCACAQ6PIDgAAAAAA7OrQoUOKiIiQh4eHPvroI9111122fTVq1NCKFStUrVo1/fjjj1qzZk2B5zCbzapcuXKeBwAAsI/KlSurQoXCV5Pt1q2bJOmXX34pq0gAADgViuwAAAAAAMCuduzYIavVqoYNGxY4zXvlypXVqlUrSdL+/fvLOh4AALiFjIwMSZK3t3eB+7ds2aKBAweqS5cuGjBggObOnauzZ8+WZUQAAAxV+K1qAAAAAAAAxXDlypVbtrFarZL+9yE+AABwDFarVWvXrpUktWvXrsA227Zty/N83bp1evXVV7Vo0SKFhoaWdkQAAAzHSHYAAGCo8+fPa9KkSWrcuLHuuOMOeXl5KSQkRE899ZSOHz9udDwAAFAMDRo0kHR9itmC1lJPTU3Vvn37JEkNGzYs02wAAODmIiIidPDgQXl6emr8+PF59tWqVUsvvvii9u3bp6SkJF27dk07duxQr169lJ6erpEjR+qzzz675WtYLBalpqbmeQAA4EwosgMAAMMcO3ZMf/7zn/Xmm28qNjZWQUFBatCggRITExUREaEmTZro22+/NTomAAC4Td27d1e1atWUlZWlwYMH68SJE7Z958+f16OPPqqLFy/Ky8tLAwYMMC4oAADI48CBAxo3bpwkadasWQoJCcmzf/To0XrttdfUokULValSRd7e3mrbtq2++OIL/fWvf5XVatWECRNsM9YUJjw8XL6+vrZHQcvLAADgyCiyAwAAwzz77LM6f/682rVrp/j4eMXExOinn37Sr7/+qj59+ujatWsaMWLELf84BwAAjqVixYp6//335eXlpZ07d6p+/fpq2LChGjdurMDAQH3++eeqUKGC3nnnHdWuXdvouAAAQFJCQoJ69+6tjIwMDR06VJMmTSrysSaTSbNnz5YkxcXF6ccff7xp+2nTpiklJcX2KGjmGwAAHBlFdgAAYIhr165py5YtkqTFixerTp06tn1Vq1ZVZGSkTCaTEhISFBMTY1RMAABQTL169dKhQ4f01FNPqV69ejp16pSOHz+uWrVq6fHHH9eePXs0fPhwo2MCAABJZ8+eVbdu3XTmzBk9/PDDtr/Jb0fDhg1VpUoVSbrl8m9ms1mVK1fO8wAAwJlUMDoAAABwTZmZmcrNzZUkBQcH59vv7++vKlWqKCkpSdnZ2WUdDwAA2EHDhg317rvvGh0DAADcxKVLl9StWzfFxcWpY8eOWrt2rTw8PIp1rhvH8Xc8AKC8YyQ7AAAwhJ+fn23NtZ07d+bbf+zYMSUlJcnPz08NGjQo63gAAAAAAJR7aWlpeuihh3T48GG1bNlSn332mby9vYt1rosXL+r8+fOSlGe2OgAAyiOK7AAAwDCzZs2SJI0cOVLr1q1TUlKSUlJS9NVXX+mRRx6RyWTS3Llz5eXlVeg5LBaLUlNT8zwAAAAAAMDNWSwW9e3bV3v27FHjxo0VHR2tSpUqFft88+fPl9Vqla+vr1q2bGnHpAAAOB6K7AAAwDDDhg3TunXrVK1aNQ0YMEDVqlWTn5+fevbsKU9PT3355Zd68sknb3qO8PBw+fr62h43RscDAAAAAICC5eTkaPDgwdq8ebNCQkL09ddf29ZTL8yRI0c0ZswYHTlyJM/2jIwMvf7665ozZ44kaerUqfL09Cy17AAAOALWZAcAAIaxWq2Kj49XUlKS3N3dVa9ePXl6eur48eM6fPiw3nvvPbVq1eqmf+hPmzZNEydOtD1PTU2l0A4AAAAAwE2sWbNGn376qSTJzc1NAwcOLLBdrVq1tHbtWklSVlaWFi9erMWLF6t69eoKCgqSJB09elTXrl2TJI0aNUovvPBC6f8AAAAYjCI7AAAwzNNPP6333ntPbdu21bZt23TXXXdJks6fP69Ro0bpk08+UVxcnA4cOCB3d/cCz2E2m2U2m8swNQAAAAAAzs1isdi+j42NVWxsbIHt6tata/v+rrvuUlhYmHbu3KmYmBgdO3ZMmZmZqlGjhh566CE98cQT6tGjR6lnBwDAEZisVqvV6BBlLTU1Vb6+vkpJSVHlypWNjgMAcHGu2i8dOnRI999/vypUqKC4uLh8o89TU1MVEhKiixcvauXKlRoyZEiRzuuq1xMA4Hjok+yL6wkAcBT0SfbHNQUAOIqi9kmsyQ4AAAyxY8cOWa1WNWzYsMDp3StXrqxWrVpJkvbv31/W8QAAAAAAAAAAKBBFdgAAYIgrV67css2NCXcyMjJKOw4AAAAAAAAAAEVCkR0AABiiQYMGkqRffvlFp0+fzrc/NTVV+/btkyQ1bNiwTLMBAAAAAAAAAFAYiuwAAMAQ3bt3V7Vq1ZSVlaXBgwfrxIkTtn3nz5/Xo48+qosXL8rLy0sDBgwwLigAAAAAAAAAAL9TwegAAADANVWsWFHvv/+++vXrp507d6p+/foKDg6Wh4eHjh8/rszMTFWoUEHvvPOOateubXRcAAAAAAAAAAAkUWQHAAAG6tWrlw4dOqQ333xTmzdv1qlTp2S1WlWrVi116NBB48ePV7NmzYyOCQAAAAAAAACADUV2AABgqIYNG+rdd981OgYAAAAAAAAAAEXCmuwAAAAAAAAAAAAAABQRRXYAAAAAAAAAAAAAAIqIIjsAAAAAAAAAAAAAAEVEkR0AAAAAAAAAAAAAgCKiyA4AAAAAAAAAAAAAQBFRZAcAAAAAAAAAAAAAoIgosgMAAAAAAAAAAAAAUEQU2QEAAAAAAAAAAAAAKCKK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiogiOwAAAAAAAAAAAAAARUSRHQAAAAAAAAAAAACAIqLIDgAAAAAAAAAAAABAEVFkBwAAAAAAAAAAAACgiCiyAwAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABF5LRF9unTp8tkMslkMmnWrFlGxwEAAAAAAAAAAAAAuACnLLIfPXpU8+bNMzoGAAAAAAAAAAAAAMDFOF2R3Wq1avTo0fLw8FCXLl2MjgMAAAAAAAAAAAAAcCFOV2RfunSpvvvuO82YMUOBgYFGxwEAAAAAAAAAAAAAuBCnKrJfuHBBU6dO1b333qsJEyYYHQcAAAAAAAAAAAAA4GIqGB3gdkyYMEGXLl1SVFSUPDw8jI4DAAAAAAAAAAAAAHAxTjOSfdOmTVqxYoUee+wxdezY0eg4AAAAAAAAAAAAAAAX5BQj2TMyMvT000/L19dXb7zxxm0fb7FYZLFYbM9TU1PtGQ8AAAAAAAAAAAAA4CKcYiT7rFmzdPz4cb322mu68847b/v48PBw+fr62h6BgYGlkBIAAAAAAAAAAAAAUN45fJH96NGjmjdvnpo1a6ZnnnmmWOeYNm2aUlJSbI/Tp0/bOSUAAAAAAAAAAAAAwBU4/HTxY8aMUXZ2thYvXiw3t+LdE2A2m2U2m+2cDAAAAAAAAAAAAADgahy+yH7w4EGZTCb16dMn376UlBRJ0pw5c/T2228rMDBQ+/btK+uIAAAAAAAAAAAAAAAX4fBFdknKycnRuXPnCt2flpamtLQ0eXl5lWEqAAAAAAAAAAAAAICrcfg12S9fviyr1VrgY/jw4ZKksLAwWa1WnThxwtiwAAAAAAAAAAAAAIByzeGL7AAAAAAAAAAAAAAAOAqK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiqiC0QFKIjIyUpGRkUbHAAAAAAAAAAAAAAC4CEayAwAAAAAAAAAAAABQRBTZAQAAAABAqcnJyVFERIQ6duyoatWqycvLS3Xr1tUjjzyi9evXGx0PAAAAAIDb5tTTxQMAAAAAAMeVnJyshx56SLt375bJZFLDhg111113KTExUevXr1eFChXUt29fo2MCAAAAAHBbKLIDAAAAAAC7y83NVZ8+fbR7927169dPCxcuVJ06dWz7f/31V8XHxxuYEAAAAACA4qHIDgAAAAAA7O69997T9u3b1blzZ61du1ZubnlXrKtTp06eojsAAAAAAM6CNdkBAAAAAIDdLVy4UJIUFhaWr8AOAAAAAIAz469cAAAAAABgV7GxsYqJiVGVKlXUtm1brV+/Xo899pi6du2qwYMHa8mSJbJYLEbHBADAZVmtVm3fvl2TJ0/WAw88ID8/P3l6eiogIED9+/fXli1bbnr8rl271LdvX1WvXl3e3t669957FRYWpoyMjDL6CQAAMBbTxQMAAAAAALv6/vvvJUmNGjXS448/rhUrVuTZv3r1ar355puKjo5W3bp1jYgIAIBL27x5sx588EFJkpubm+rXry8fHx/FxsYqKipKUVFRmj59usLCwvIdu2LFCg0fPlw5OTmqXbu2AgMDdfjwYc2YMUOfffaZtm7dqjvuuKOsfyQAAMoUI9kBAAAAAIBdnTlzRpK0b98+rVixQk888YROnDihjIwMffPNNwoODlZMTIz69++v3NzcAs9hsViUmpqa5wEAAOzDarWqfv36WrRokS5evKhjx47pwIEDSkpK0rRp0yRJs2bN0ueff57nuBMnTmjUqFHKycnR3Llzdfr0aR04cECxsbG6++67tW/fPk2ZMsWIHwkAgDJFkR0AAAAAANjV1atXJUlZWVlq3769IiIiVLduXZnNZnXt2lVRUVEymUz6/vvv9cUXXxR4jvDwcPn6+toegYGBZfkjAABQrrVq1UpHjx7VM888I39/f9t2T09Pvf766+rVq5ckKSIiIs9x8+bNk8ViUffu3TV58mSZTCZJUt26dfWf//xHkvTee+/p3LlzZfSTAABgDIrsAAAAAADArry8vGzfjxs3Lt/+Jk2aqHPnzpKk6OjoAs8xbdo0paSk2B6nT58unbAAALigypUrq0KFwleT7datmyTpl19+sW2zWq365JNPJEmjRo3Kd0zbtm3VqFEjZWVlaf369XZODACAY6HIDgAAAAAA7Or3I+IaNWpUYJt77rlH0vVpZwtiNptVuXLlPA8AAFA2MjIyJEne3t62badOnbItCdOuXbsCj7uxfc+ePaWcEAAAYxV+qxoAAAAAAEAx3H333bbvzWZzgW1ubM/JySmTTAAAoGisVqvWrl0rKW8xPTY2VtL1PjwgIKDAY4ODg/O0LYzFYpHFYrE9T01NLVFmAADKGiPZAQAAAACAXd1///22KePj4+MLbHNje+3atcssFwAAuLWIiAgdPHhQnp6eGj9+vG17cnKyJMnPz8+2Fvsf3ZjN5kbbwoSHh8vX19f2CAwMtE94AADKCEV2AAAAAABgVz4+PnrooYckScuXL8+3/+zZs/rqq68kSV26dCnTbAAAoHAHDhzQuHHjJEmzZs1SSEiIbd+NKeQ9PT0LPf7GTDXp6ek3fZ1p06YpJSXF9jh9+nRJowMAUKYosgMAAAAAALubMWOG3N3d9dFHH+UptF++fFmhoaFKT09XcHCwBg4caGBKAABwQ0JCgnr37q2MjAwNHTpUkyZNyrP/xiw1mZmZhZ7jxhTwv1/LvSBms1mVK1fO8wAAwJlQZAcAAAAAAHbXpEkTvf3227JarQoNDVXdunXVsmVL1a5dW1999ZWqVaumdevW3XQ0HAAAKBtnz55Vt27ddObMGT388MOKjIzMNyX8jangL1++LKvVWuB5bkwTf6MtAADlFUV2AAAAAABQKp5++ml9++23+n//7//p2rVr+vHHH1WjRg09++yz+uGHH9S0aVOjIwIA4PIuXbqkbt26KS4uTh07dtTatWvl4eGRr12DBg0kXR+tnpiYWOC54uPj87QFAKC8qmB0AAAAAAAAUH61b99e7du3NzoGAAAoQFpamh566CEdPnxYLVu21GeffVboVO9BQUGqWbOmzp49qx07dmjQoEH52uzYsUOS1Lp161LNDQCA0RjJDgAAAAAAAACAi7FYLOrbt6/27Nmjxo0bKzo6WpUqVSq0vclk0l//+ldJ0tKlS/Pt37lzp2JiYuTh4aE+ffqUWm4AABwBRXYAAAAAAAAAAFxITk6OBg8erM2bNyskJERff/21qlSpcsvjJk+eLE9PT23cuFHz5s2zrc1+8uRJjRw5UpL0xBNPqGbNmqWaHwAAozFdPAAAAAAAAAAALmTNmjX69NNPJUlubm4aOHBgge1q1aqltWvX2p7Xq1dPERERGjFihKZMmaKFCxeqRo0aOnz4sLKystS8eXPNmzevLH4EAAAMRZEdAAAAAAAAAAAXYrFYbN/HxsYqNja2wHZ169bNt23YsGGqX7++wsPDtXPnTv38888KDg7WkCFDNHXqVHl5eZVabgAAHAVFdgAAAAAAAAAAXEhoaKhCQ0OLfXzbtm312Wef2S8QAABOhjXZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAAAAAOAEzp07p4MHD+ratWtGRwEAwKVRZAcAAAAAAAAAwAHs2bNHEydO1BdffJFne2pqqvr27auAgAC1aNFCNWvW1LJlywxKCQAAKLIDAAAAAAAAAOAAlixZooULF6pSpUp5tk+ePFmfffaZTCaT/Pz8lJaWpieffFI//fSTQUkBAHBtFNkBAAAAAAAAAHAAO3bskI+Pjzp06GDblpaWpg8++ECVKlXS4cOHlZSUpAULFig3N1dvvvmmgWkBAHBdFNkBAAAAAAAAAHAA586dU2BgYJ5t3377rTIyMvS3v/1NjRo1kiQ999xzqlatmvbs2WNETAAAXB5FdgAAAAAAAAAAHMCVK1d0xx135Nm2fft2mUwmdevWzbbNzc1Nd911l06fPl3WEQEAgCiyAwAAAAAAAADgEKpWraqTJ0/KarXatn3zzTeSpI4dO+Zpm5WVJU9PzzLNBwAArqPIDgAADJeTk6OIiAh17NhR1apVk5eXl+rWratHHnlE69evNzoeAAAAAABl4oEHHlBSUpIiIiIkXS+wf//992rSpIlq1Khha2e1WnX8+HHVqlXLqKgAALg0iuwAAMBQycnJ+stf/qKnnnpK3333napVq6Y//elPysrK0vr16/XBBx8YHREAAAAAgDLx/PPPy2Qy6ZlnnlG1atXUs2dPmUwmPf/883nabdu2TVevXlXLli0NSgoAgGujyA4AAAyTm5urPn36aPfu3erXr59OnTqlmJgY7d+/X4mJiTp9+rTGjh1rdEwAAAAAAMrEX/7yF61bt0733nuvrl69quDgYL399tt69NFH87R75513JEndu3c3IiYAAC6vgtEBAACA63rvvfe0fft2de7cWWvXrpWbW977/+rUqaM6deoYlA4AAAAAgLLXt29f9e3b96Zt3nvvPb3zzjuqVKlSGaUCAAC/R5EdAAAYZuHChZKksLCwfAV2AAAAAABQMIrrAAAYiyI7AAAwRGxsrGJiYlSlShW1bdtW69ev19q1a3XmzBlVr15dDz74oB5//HGZzWajowIAAAAAAAAAYEORHQAAGOL777+XJDVq1EiPP/64VqxYkWf/6tWr9eabbyo6Olp169Y1IiIAAAAAAGUuMzNTy5YtU3R0tOLj45WWliar1VpgW5PJpLi4uDJOCAAAKLIDAABDnDlzRpK0b98+7dy5U0888YSmT5+umjVravv27XrqqacUExOj/v37a+/evYVOJ2+xWGSxWGzPU1NTyyQ/AAAAAAD2dubMGXXt2lXHjh0rtLD+eyaTqQxSAQCAP6LIDgAADHH16lVJUlZWltq3b6+IiAjbvq5duyoqKkr333+/vv/+e33xxRf6f//v/xV4nvDwcM2cObNMMgMAAAAAUJqef/55xcTEKDg4WFOmTNH999+v6tWrU0wHAMDBUGQHAACG8PLysn0/bty4fPubNGmizp07a/PmzYqOji60yD5t2jRNnDjR9jw1NVWBgYH2DwwAAAAAQCmLjo6Wl5eXvv32W9WuXdvoOAAAoBAFz7sKAABQyvz9/W3fN2rUqMA299xzjyTpxIkThZ7HbDarcuXKeR4AAAAAADijnJwcNWrUiAI7AAAOjiI7AAAwxN1332373mw2F9jmxvacnJwyyQQAAAAAgJHuu+8+JSUlGR0DAADcAkV2AABgiPvvv982ZXx8fHyBbW5s5w5+AAAAAIArmDx5sk6fPq3Vq1cbHQUAANwERXYAAGAIHx8fPfTQQ5Kk5cuX59t/9uxZffXVV5KkLl26lGk2AAAAAACM0KdPH7355pt64okn9Pzzz+vIkSPKyMgwOhYAAPgDiuwAAMAwM2bMkLu7uz766KM8hfbLly8rNDRU6enpCg4O1sCBAw1MCQAAAABA2Rk6dKg6deqkBQsW6L777pOPj4/c3d0LfFSoUMHouAAAuCSK7AAAwDBNmjTR22+/LavVqtDQUNWtW1ctW7ZU7dq19dVXX6latWpat26dPD09jY4KAAAAAECpO378uJo3b64vv/xSVqv1lo/c3FyjIwMA4JIosgMAAEM9/fTT+vbbb/X//t//07Vr1/Tjjz+qRo0aevbZZ/XDDz+oadOmRkcEAAAAAKBMTJkyRYmJiWrdurW++uornTt3Trm5uTd9AACAssdcMgAAwHDt27dX+/btjY4BAAAAAIChvv32W1WsWFHR0dGqXLmy0XEAAEAhGMkOAAAAAAAAAIADyM3N1d13302BHQAAB0eRHQAAAAAAAAAAB9C8eXP9+uuvRscAAAC3QJEdAAAAAAAAAAAH8PLLL+vixYtauHCh0VEAAMBNsCY7AAAAAAAAAAAOoF69epo3b56mTp2qbdu2aeTIkQoJCdEdd9xR6DFBQUFlmBAAAEgU2QEAAAAAAAAAcAh33XWXTCaTrFarPv30U3366ac3bW8ymZSdnV024QAAgA1FdgAAAAAAAAAAHEBQUJBMJpPRMQAAwC1QZAcAAAAAAAAAwAGcOHHC6AgAAKAI3IwOAAAAAAAAAAAAAACAs6DIDgAAAAAAAAAAAABAETFdPAAAAAAAAAAADsRisWjVqlXauHGjfvnlF125ckWVKlVSw4YN1aNHDw0ePFhms9nomAAAuCynKLJ/+umn2rBhg/bv36/ExEQlJSXpjjvu0L333qu//e1veuaZZ+Tp6Wl0TAAAAAAAAAAASuTAgQMaOHCgTpw4IavVmm/f6tWrFRYWpjVr1qhZs2YGpQQAwLU5RZH9jTfe0I4dO2Q2mxUQEKAmTZrozJkz2rVrl3bt2qUPPvhA33zzjfz8/IyOCgAAAAAAAABAsfz666/q1q2bkpOTVa1aNT355JNq3Lix7rzzTp07d05HjhzRkiVLFB8frx49euiHH35Q7dq1jY4NAIDLcYo12Z944glt2bJFV65cUXx8vPbt26dff/1Vu3btUp06dfT999/rpZdeMjomAAAAAAAAAADFFh4eruTkZPXr108nT57Ua6+9pqFDh6pr164aOnSoXnvtNZ08eVL9+/dXUlKSwsPDjY4MAIBLcooie2hoqDp16iQPD4882x944AHNnz9f0vUp5QEAAAAAAAAAcFYbNmyQj4+PIiMj5e3tXWAbLy8vLVu2TD4+Pvryyy/LOCEAAJCcpMh+M40aNZIkXbt2zeAkAAAAAACgMNOnT5fJZJLJZNKsWbOMjgMAgENKTEzUPffco4oVK960XcWKFXXPPffozJkzZZQMAAD8ntMX2Xft2iVJatasmcFJAAAAAABAQY4ePap58+YZHQMAAIdXqVIlnTt3rkhtz507Jx8fn1JOBAAACuKURfacnBz9+uuvWrRokSZNmiQfHx/WngEAAAAAwAFZrVaNHj1aHh4e6tKli9FxAABwaM2bN9evv/6qjz766KbtVq1apdOnT6tFixZllAwAAPyeUxXZFyxYIJPJpAoVKigwMFDPPvusunbtqt27d6tVq1aFHmexWJSamprnAQAAAAAASt/SpUv13XffacaMGQoMDDQ6DgAADu3vf/+7rFarhg8frueff14JCQl59ickJGjixIkaMWKETCaTxo4dW+zXSkhIUEREhJ588kk1adJEFSpUuOWyLq+++qpt+ZfCHjExMcXOBACAs6hgdIDbUbt2bbVr105ZWVk6efKkzp07py1btmjVqlX6xz/+IXd39wKPCw8P18yZM8s4LQAAAAAAru3ChQuaOnWq7r33Xk2YMEFPPvmk0ZEAAHBoDz/8sKZOnao5c+ZowYIFWrBggcxms6pXr64LFy7IYrFIuj5TzLRp0/TQQw8V+7UWLlyohQsXFuvYwMBABQUFFbjvjjvuKHYmAACchVMV2QcOHKiBAwfanu/Zs0ejR4/W66+/rkuXLmnx4sUFHjdt2jRNnDjR9jw1NZW75wEAAAAAKGUTJkzQpUuXFBUVJQ8PD6PjAADgFMLDw9WuXTvNnj1bu3fvVkZGhk6fPi1JcnNzU9u2bTV16lQ9/PDDJXqdatWqqXfv3mrVqpVatmypJUuWaN26dUU6duTIkXr11VdL9PoAADgzpyqy/1Hr1q315ZdfKjg4WO+9955eeOEF1a1bN187s9kss9lsQEIAAAAAAFzTpk2btGLFCj322GPq2LGj0XEAAHAqvXv3Vu/evXX16lUdP35caWlpqlixourXry8fHx+7vMb06dPzPL/VOvCAPaWnp2vu3Lk6efKk6tatqylTpsjb29voWE4rMzNTK1eu1KlTpxQUFKShQ4fK09PT6FhAuebURXZJCggIUNOmTbVnzx4dOnSowCI7AAAAAAAoOxkZGXr66afl6+urN954o1jnsFgstilxpeuz0gEA4Gp8fHzUpEkTo2MAdjVmzBht2rTJ9nzHjh1auXKlunbtqkWLFhmYzDnNnTtXkZGRysnJybMtNDRUU6ZMMTAZUL65GR3AHrKzs/N8BQAAAAAAxpk1a5aOHz+u1157TXfeeWexzhEeHi5fX1/bg2XfAACuwN3dvcgzwHTu3FkVKhgzjm7Lli0aOHCgunTpogEDBmju3Lk6e/asIVngXG4U2D08PPTUU09p48aNeuqpp+Th4aFNmzZpzJgxRkd0KnPnztXSpUvl5+ensLAwbd++XWFhYfLz89PSpUs1d+5coyMC5ZbTF9lPnDihQ4cOSRJ39AEAAAAAYLCjR49q3rx5atasmZ555plin2fatGlKSUmxPW6sRQsAQHlmtVpltVpvq70Rtm3bpo8//lhbtmzRunXrNHXqVAUHBysyMtKQPHAO6enptgL7gQMH9Pzzz6tu3bp6/vnndeDAAVuhPT093eioTiEzM1ORkZGqWrWqtm3bpkGDBql69eoaNGiQtm3bpqpVqyoyMlKZmZlGRwXKpRIV2RMSErRmzRq9/fbbCg8P17///W+tXbtWJ0+etFc+ff/993rllVcUHx+fb190dLR69eql7OxsPfTQQwoJCbHb6wIAAAAAgNs3ZswYZWdna/HixXJzK/7HDmazWZUrV87zAAAA/3P16lV5eHiU6WvWqlVLL774ovbt26ekpCRdu3ZNO3bsUK9evZSenq6RI0fqs88+u+V5LBaLUlNT8zxQ/t0YVT1ixIh864V7enpq+PDhedrh5lauXKmcnByNHz8+36wWFSpU0Lhx45STk6OVK1calBAo34o1l8wHH3yg8PBwHTt2rNA29957r1588UUNGTKk2OEk6cqVK/rHP/6hf/zjH6pZs6bq1KmjzMxMnTp1SpcvX5YktWzZUsuXLy/R6wAAgNu3d+9effDBB/rXv/5ldBQAAOAgDh48KJPJpD59+uTbl5KSIkmaM2eO3n77bQUGBmrfvn1lHREAAKd37NgxHT58WLVr1y7T1x09enS+bW3bttUXX3yh/v3765NPPtGECRPUu3dvmUymQs8THh6umTNnlmZUOKAbAzQHDBhQ4P4BAwZoyZIldh3IWZ6dOnVK0vWlIwrSqVOnPO0A2Ndt3VKem5urxx57TKGhoYqJiZHValWVKlXUpEkTtW3bVvfdd5/8/f1ltVp15MgRW9uSTFnTpEkTLVy4UH369JGPj49iYmIUExMjb29v9erVS8uWLdPOnTtVrVq1Yr8GAAAouhMnTmjWrFlq1KiR2rRpo0WLFhkdCQAAOJicnBydO3cu3yMjI0OSlJaWpnPnzunChQsGJwUAwFgLFy5UcHCw7SFJ+/fvz7Ptj49atWrp3nvvlcViUd++fQ3+Ca4zmUyaPXu2JCkuLk4//vjjTduzLIxrqlu3riTp448/LnD/je032uHmgoKCJElbtmwpcP/WrVvztANgX7c1kv0f//iHVq5cKXd3dz333HN6+umndffdd+drd/ToUS1evFiLFy/WBx98oPr162v69OnFCujv76+xY8dq7NixxToeAACUXEpKitasWaMPPvhAO3bskHR93TcPDw/17NnT4HQAAMCR3Jh1riChoaFavny5wsLCiv05AQAA5cnly5d14sQJ23OTyaSMjIw82wpSqVIlDRw4ULNmzSrdgLehYcOGqlKlii5duqTjx4+rSZMmhbY1m80ym81lmA6OYMqUKVq5cqWWLVumv//973mmjM/MzLTNWDxlyhSjIjqVoUOHau7cuVqwYIH69euXZ8r47OxsLVy4UO7u7ho6dKiBKYHyq8gj2S9evKjZs2erQoUK+uKLL/TPf/6zwAK7JN1zzz1666239Nlnn8nNzU2vvfaakpKS7BYaAACUvuzsbP33v//VwIEDVbNmTT399NPavn27rFarHnjgAf373//WmTNntH79eqOjAgAAAADglMaPH6+EhAQlJCQoPj5eVqtVLVu2tG374+PEiRM6d+6cUlJStGTJEt1xxx1G/wh53FgjPjs72+AkcETe3t7q2rWrsrKy1KxZM82bN08JCQmaN2+emjVrpqysLHXt2lXe3t5GR3UKnp6eCg0NVVJSkjp06KDVq1fr3LlzWr16tTp06KCkpCSFhobmuZkBgP0UeST7Bx98oMzMTD3//PPq3r17kY7p2bOnxo4dqwULFmjFihWMRgcAwAns2bNHH3zwgVavXq1Lly7Zln1p2LChfvnlF9WsWdM2mh0AAAAAABSfr6+vfH19bc+HDx+uu+++2ymny7548aLOnz8vSapTp47BaeCoFi1apDFjxmjTpk1asmSJlixZYtvXtWtXliW8TTdG/UdGRmrGjBm27e7u7ho1ahSzAgClqMhF9u3bt8tkMumZZ565rRcYM2aM/vnPf2rbtm0U2QEAcFAJCQn68MMP9cEHHyguLk7S9enga9asqcGDB+vRRx9V8+bN5eZW5ElwAAAAAADAbVq2bJnREYpt/vz5slqt8vX1VcuWLY2OAwe2aNEipaena+7cuTp58qTq1q2rKVOmMIK9mKZMmaLx48dr5cqVOnXqlIKCgjR06FBGsAOlrMhF9h9//FE1atRQcHDwbb1ASEiIatSooR9//PG2wwEAgNLXvn177dy5U9L1wnrlypXVr18/Pfroo+rSpYtMJpPBCQEAQHkRGRmpyMhIo2MAAIBiOHLkiP7973/r2WefVePGjW3bMzIyNH/+fM2ZM0eSNHXqVIp7uCVvb2+98sorRscoN25MHQ+g7BS5yH7p0qViT1ETEBCgkydPFutYAABQunbs2CGTySQ/Pz+9+eabGjJkiMxms9GxAAAAAABwWQkJCVq9erUOHTqkS5cuKSsrq8B2JpNJmzZtKtZr7NixQ3379rU9T0tLkySFh4drwYIFtu0HDx5UYGCgsrKytHjxYi1evFjVq1dXUFCQJOno0aO6du2aJGnUqFF64YUXipUHAABnUuQie2pqqipWrFisF/Hx8VFqamqxjgUAAKXL3d1dOTk5unz5sp577jl99dVXGjp0qHr16qUKFYr8vwoAAAAAAMAO5s2bp5deeknZ2dm22eWsVqtt/++3lWT2uaysLCUlJeXbfu3aNVvRXJJycnIkSXfddZfCwsK0c+dOxcTE6NixY8rMzFSNGjX00EMP6YknnlCPHj2KnQeuJTMzk+nN4dB4j+JWivzJ+Y2OtLhyc3NLdDwAACgdv/32m1auXKkPP/xQBw4c0OrVq7VmzRr5+/trwIABGjJkiDp27Gh0TAAAAAAAyr0vv/xSU6dOVa1atRQWFqYFCxboyJEj+vrrr3X69GkdOnRIS5cuVU5OjmbPnq377ruv2K/VqVOnPMX7W/Hz89P06dOL/XrADXPnzlVkZGSeutPcuXMVGhqqKVOmGJgMuI73KIritoanWSwWnTp16rZfxGKx3PYxAACgbNSoUUPjx4/X+PHjdfToUb3//vtauXKlTp8+rYiICEVERKh27dr629/+ZnRUAAAAAADKtX/9618ymUxas2aN2rVrp2XLlkmSunbtamszffp09e/fXy+//LL27dtnVFSgWObOnaulS5eqatWqGj9+vDp37qwtW7ZowYIFWrp0qSRRxISheI+iqEzWIt6q5ubmVqKpZ6SSj4a3l9TUVPn6+iolJUWVK1c2Og4AwMU5Yr9ktVq1detWvf/++4qKitKVK1ds/x9gNps1bdo0PfroowoODjY4aX6OeD0BAK6JPsm+uJ4AAEdRmn1SjRo15OnpqV9//VWS1L59e+3cuTPfZ+tnzpxR3bp1NWjQIH344Yd2zWAE+nnXkJmZqaZNm8rPz0/btm3Ls0xhdna2OnTooMuXL+uHH35gWm4YgvcopKL3Sbc1kv12po75o5IW6AEAQNkxmUzq3LmzOnfurMWLF+vTTz/V+++/r6+//loZGRl69dVX9eqrr6pNmzZ6/PHHNXr0aKMjAwBQ7l28eFGSVK1aNYOTAACA0pKamqomTZrYnnt5edm2//6D/lq1aulPf/qTtmzZUuYZgeJauXKlcnJyNH78+DzFS0mqUKGCxo0bpxkzZmjlypUKDQ01JqRB0tPTFR8fb3QMm+DgYHl7exsdo8zxHsXtKHKRPSEhoTRzAAAAB+Xl5aXBgwdr8ODBOn/+vFasWKEPP/xQBw8e1M6dO7Vr1y6K7AAAlJLLly/rxRdf1OrVq3X58mVJkq+vrwYOHKjXX39dVatWNTYgAACwqxo1aig1NTXPc0k6duyYWrZsmadtWlqakpKSyjQfUBI3liPu3Llzgfs7deqUp50riY+PV79+/YyOYRMVFaXGjRsbHaPM8R7F7Shykb1u3bqlmQMAADiBGjVqaMKECZowYYJ+/vln2/rtAADA/tLT09W+fXv9/PPPeWaWu3z5spYsWaLvvvtO+/btk4+Pj4EpAQCAPYWEhOjAgQO2561bt9aqVau0ePHiPEX2TZs26fjx46pXr54RMYFiCQoKkiRt2bJFgwYNyrd/69atedq5kuDgYEVFRZXoHHFxcZo8ebLmzZunkJCQEudxRbxHcTuKvCZ7ecL6LgAAR+Ls/ZLVanWoZWGc/XoCAMqPkvZJs2fP1osvvig/Pz/NmDFDHTp0kNVq1bZt2xQWFqaUlBT94x//0EsvvVQK6R0PfTwAwFGUZp80Z84cvfjii9q9e7datmypixcvqkGDBkpNTVWbNm3Upk0bnTt3TmvWrFFWVpZefvllvfrqq3bNYAT6edfAetel68iRI+rXr5/LjkK3B96jkIreJ7mVxotnZmbq/PnzJVrDHQAAOJ6C+nhHKrADAFCefPLJJzKZTFq3bp3Gjx+vZs2aqXnz5powYYLWrl0rq9WqTz75xOiYAADAjgYNGqSRI0fq0qVLkqRq1app9erV8vX11c6dO/Xmm2/qww8/VGZmpvr376/p06cbnBgoOk9PT4WGhiopKUkdOnTQ6tWrde7cOa1evVodOnRQUlKSQkNDKV7CMLxHcTuKPF38DUePHtWmTZuUmZmpRo0aqVevXrYP1z///HPNmDFDP/74o6xWqypVqqShQ4dq9uzZ3H0GAICDo48HAMCxHDt2TLVr1y5wPcCuXbuqTp06io2NNSAZAAAoLfXq1VNERESebd27d1dCQoI2bNigEydOyNvbW+3bt1ezZs0MSgkU35QpUyRJkZGRmjFjhm27u7u7Ro0aZdsPGIX3KIrqtorsL7/8ssLDw/OMXrv//vu1ZcsWffHFF3rssceUm5tr25eamqp3331XBw4c0Pbt2/NMqwAAABwHfTwAAI7nypUr+vOf/1zo/qCgIO3atasMEwEAAKP4+vpq8ODBRscA7GLKlCkaP368Vq5cqVOnTikoKEhDhw5ldDAcBu9RFEWRPxHfsGGDXnvtNUnSnXfeqcDAQP3yyy86ePCgXn/9dX3wwQfy8/PTzJkz1bZtW+Xm5mrHjh2aOXOm9u3bp/fee09jxowptR8EAAAUD308AACOyWq13nRZFpZsAQAAgLO6MS034Kh4j+JWilxkf+edd2QymTRx4kTNnTtXJpNJaWlp+utf/6qFCxfKYrHo66+/VpcuXWzHNG/eXI0aNVLPnj21Zs0aPoAHAMAB0ccDAAAAAAAAAFB0Juvv54W9iYCAAF27dk3nzp2T2Wy2bd+/f79atWqlmjVrKjExscBja9WqpaysLF28eNE+qUsoNTVVvr6+SklJYR1ZAIDhjO6XylMfLxl/PQEAuKGkfZKbm1uJRqubTCZlZ2cX+3hHQx8PAHAU9En2xzUFSu7IkSPq16+foqKi1LhxY6PjAE6rqH2SW1FPePHiRQUHB+f58F2S7r33XknX14IrTFBQkFJSUor6UgAAoAzRxwMA4LisVmuJHgAAALCP9PR0zZw5UyNHjtTMmTOVnp5udCQAgIGKPF18dna2KlasmG/7HXfcIen62gSF8fT0VG5ubjHiAQCA0kYfDwCAY9qyZYvREQAAACBpzJgx2rRpk+35jh07tHLlSnXt2lWLFi0yMBkAwChFLrIDAAAAAICy07FjR6MjAAAAuLwbBXYPDw+NGDFCAwYM0Mcff6xly5Zp06ZNGjNmDIV2AHBBFNkBAAAAAAAAAAD+ID093VZgP3DggG22v+eff15///vf1axZM23atEnp6eny9vY2OC0AoCzdVpF9//79Cg4OzrfdZDIVuk+Szpw5U7x0AACgTNDHAwAAAABgvKNHj+qee+4xOgb+z9y5cyVJI0aMyLecnqenp4YPH64lS5Zo7ty5euWVV4yIaJj09HTFx8cbHcMmODiYGx0AlKnbKrJnZGToxIkTt71Puv4hPQAAcEz08QAAOL6RI0cWua27u7sqVaqku+66S+3atVPz5s1LMRkAALCXP/3pT2rZsqVCQ0M1ePBg+fn5GR3JpZ08eVKSNGDAgAL3DxgwQEuWLLG1cyXx8fHq16+f0TFsoqKi1LhxY6NjAHAhRS6yL1u2rDRzAAAAg9DHAwDgHCIjIyX97wY3q9War80f99143rx5cy1fvpyRcQAAODg/Pz/t3btX+/bt04QJE9S3b1+FhoaqR48e3ORugLp162rHjh36+OOP9fzzz+fb//HHH9vauZrg4GBFRUWV6BxxcXGaPHmy5s2bp5CQkBLnAYCyZLIW9Fd5OZeamipfX1+lpKSocuXKRscBALg4+iX74noCAByFvfuk5cuXKy4uTnPmzJGPj48eeeQR3XfffapUqZKuXLmin376SZ9++qmuXr2qKVOmqGbNmjp69KjWrVuns2fPqkaNGjp48KBq1aplh5+u7NHHAwAcRWn2SVlZWfrvf/+r5cuXKzo6WtnZ2TKZTKpZs6Yef/xxDR8+vFzeNOeo/Xx6erqaNm2ab012ScrMzFSzZs2UlZWlH374ganKi+HIkSPq168fo9DthOsJ2EdR+6Tbmi4eAAAAAAAYo0OHDpo4caK6dOmiVatWFTh97D//+U/97W9/06JFi7R3716NGTNGs2fPVr9+/fTNN99o3rx5mj9/ftmHh8typPVay8NarY50PSXnv6ZcTzgiDw8P9e/fX/3799fFixf14Ycfavny5Tp06JDmzp2refPmMZ18GfL29lbXrl21adMmNWvWTMOHD9eAAQP08ccfa/ny5crKylLXrl353QUAF8RIdge6Kw4A4Jrol+yL6wkAcBT27pMeffRRffrpp/rtt99u+oF6cnKy6tSpo759+2rlypWSpN9++01169ZV/fr1FRMTU+IsRqCPd043RlQ5gvIwqsuRrqfk/NeU64niMqJP+umnnxQZGakVK1bo/PnzMplM8vT0LDfTyTt6Pz9mzBht2rQp3/auXbtq0aJFBiQqHxh5bV9cT8A+7D6S/f333y9xqGHDhpX4HAAAwL7o4wEAcA6bNm1S48aNbzlizd/fX40bN9bmzZtt22rXrq1GjRopISGhlFMCeTnSeq3lYa1WR7qeN/I4M64nnMmf//xnvfnmm5o7d67eeOMNvfzyy8rMzNSaNWu0du1a1apVS6NHj9bYsWPl6+trdNxyZ9GiRUpPT9fcuXN18uRJ1a1bV1OmTGEEOwC4sCIX2UNDQ0t0J5zJZOIDeAAAHBB9PAAAziE1NVWXLl0qUttLly4pNTU1zzaz2ezUI9zgnLy9ve02kiokJMTlR2VxPe2L6wlnkpycrFWrVikyMlLff/+9rFarPDw81KtXL507d0579uzRq6++qnfeeUdfffWV/vSnPxkdudzx9vbWK6+8YnQMAICDKHKRPSgoqNA/xk+ePCmz2ayaNWvaLRgAACgb9PEAADiHBg0a6PDhw/r888/Vu3fvQtt9/vnnio+P13333Zdne3x8vKpXr17aMQEALsyR1rkvD2vc5+Tk6Msvv9Ty5cv1+eefKysrS1arVffee69GjBihYcOG2fr2n3/+WS+++KL++9//asKECfr6668NTg8AQPlW5CL7iRMnCt3n5uamli1batu2bfbIBAAAyhB9PAAAzuGZZ57RmDFjNGjQIM2YMUOhoaF5boQ7d+6cIiMjFRYWJpPJpGeeeca279ChQ0pJSVGXLl2MiA4AcBHx8fEOs869M69J/MMPP2j58uVauXKlLl68KKvVqsqVK2v48OEaOXKkWrdune+Ye++9V1FRUapXr5727NljQOry7+zZs+rfv79SUlLk6+urdevWMSgBAFxYkYvsAAAAAADAOE8//bT27dunZcuW6aWXXtJLL72kqlWrqlKlSkpLS9PFixclSVarVaNGjdLo0aNtx27dulUdO3ZkiZciYBQmABRfSde5Z417qWnTpvrpp59ktVplMpnUoUMHjRw5UgMGDLhln+Dm5qZ69erp119/LaO0rqNJkybKyMiwPb948aI6duwoLy8vHTp0yMBkAACjUGQHAAAAAMBJLF26VL169dKbb76pvXv36uLFi7biupubm1q3bq2JEyeqf//+eY4bN26cxo0bZ0Rkp8MoTAAoPnutc+/Ka9z/+OOPCgwM1LBhwzRy5EjVq1fvto6fNm2aRowYUUrpXNPvC+x16tTRpEmT9MYbb+jXX39VRkaGmjRpQqEdAFwQRXYAAAAAAJzIgAEDNGDAAKWlpen48eO6evWqfHx8VL9+fVWsWNHoeE6PUZgAACNt2LBB3bt3l8lkKtbxPXr0sHMi13b27FlbgX3Pnj3y8/OTJPXq1UuXL19W69atlZGRobNnzzJ1PAC4GIrsAAAAAAA4oYoVK6pp06ZGxyh3GIUJADBSq1atil1gh/3dmB2oTp06tgL7DX5+fgoICFBiYqL69++vHTt2GJAQQGFYBgqljSI7AAAAAABOKD09XXFxcbpy5YoqVaqkkJAQPrgBAMDJ1axZUz169NDQoUPVp08f3XHHHUZHcmkpKSmSpEmTJhW4f+LEiZo0aZKtHQDHwTJQKG0U2QEAAAAAcCJfffWVwsPDtXPnTuXk5Ni2u7u76y9/+YteeOEFde/e3cCEAACguKxWqz7//HN98cUXuuOOO9SnTx8NHjxYvXr1UoUKfJxf1nx9fXXx4kW98cYb6tWrV7798+fPt7UD4FhKugyUZL+loFgGqnwqcq+8bdu2m+5PSUm5ZZsOHToU9eUAAEAZoY8HAMB5vPrqqwoLC5PVapUkeXp6qnr16rpw4YIyMzO1detWffvtt3r55Zf16quvGhsWAADctnPnzmnt2rVatWqVvvvuO61atUofffSR/Pz8NGDAAA0ZMkSdOnUyOqbLWLdunTp27Khff/1Vly9fzjNl/OXLl5WYmGhrB8Cx2GsZKImloFCwIhfZO3XqVOhaMCaTSYcPH1bnzp0LPd5kMik7O/v2EwIAgFJFHw8AgHOIjo7WP/7xD7m7u2v06NEaN26cGjRoYNsfGxurhQsX6r333lNYWJjatGmjHj16GJgYAADcLn9/fz311FN66qmndObMGX300UdatWqV9u/fr4iICC1ZskS1atXS4MGDNXjwYLVo0cLoyOVazZo15eXlpYyMDLVu3VoBAQGaOHGi5s+fbyuwe3l5qWbNmgYnBQCUtduaX+bGnfLFUZJjAQBA6aKPBwDA8b311lsymUz6z3/+o8cffzzf/gYNGujtt9/WAw88oGHDhmnhwoUU2QEAtyUxMVHJycmGvX5cXFyer0by9/dXQECAoRlq1aqlCRMmaMKECYqPj9fKlSu1atUqHT16VP/85z/1z3/+U/Xr19exY8cMzVneHTp0SE2aNFFGRoYSExPzrM/u5eWlQ4cOGZgOAGCUIhfZc3NzSzMHAAAwCH08AADOYd++fapTp06BBfbfe+yxx/TSSy9p7969ZZQMAFAeJCYmqmfPXrJYMoyOosmTJxsdQWazl6KjNxheaL8hODhY06dP1/Tp0/Xjjz/qhRdeUHR0tI4fP250NJdw6NAhnT17Vv3791dKSop8fX21bt06RrADgAu7rZHsAAAAAADAGFeuXFG9evWK1PbOO+/UTz/9VMqJAADlSXJysiyWDJmb9ZVbxapGxzFUblqSLAfWKzk52WGK7JIUHx+vVatW2Uazo2zVrFlTO3bsMDoGAMBBUGQHAAAAAMAJBAQEKCYmRlevXpWPj0+h7a5evaqjR4+qVq1aZZgOAFBeuFWsKnc/+hBHcfbsWa1evVqrVq3Svn37JF1ftq1WrVr629/+pqFDhxqcEAAA10SRHQAAAAAAJ9CjRw+9++67evLJJxUZGSlPT898bTIzM/XEE0/o2rVr6tmzpwEpAQBASV2+fFkff/yxVq1apW3btik3N1dWq1V+fn7q16+fhg4dqs6dO8tkMhkdFQAAl0WRHQAAAAAAJ/Diiy9q9erVWr16tbZu3aonn3xS9957r2rUqKHz58/r559/VkREhM6dOydfX19NmzbN6MgAAOA29enTRxs3blRWVpasVqu8vb3Vu3dvDR06VL169SrwJjsAAFD2KLIDAACHMn36dL322muSpLCwME2fPt3gRAAAOIbAwEBt2LBBgwYN0unTpzVr1qx8baxWq4KCgrRmzRoFBgYakBIAAJTE559/rgoVKqh79+4aOnSo/vrXv6pixYpGxwIAAH9AkR0AADiMo0ePat68eUbHAADAYbVu3VoxMTFauXKlNm7cqF9++UVpaWmqWLGiGjZsqB49emjIkCFKSEjQjz/+qPvuu8/oyAAA4Db861//0t/+9jdVq1bN6CgAAOAmKLIDAACHYLVaNXr0aHl4eOgvf/mLNm/ebHQkAAAckre3t0aNGqVRo0YV2qZjx45KTk5WdnZ2GSYDAAAl9eyzzxodAQAAFAFFdgAA4BCWLl2q7777TnPmzNHPP/9sdBw4kZycHO3fv18XLlxQ9erV1aJFC7m7uxsdC7DhPQqjWK1WoyMAAAA4jPT0dMXHxxsdwyY4OFje3t5Gx4AdJSYmKjk52bDXj4uLy/PVSP7+/goICDA6BuyIf0Pzo8gOAAAMd+HCBU2dOlX33nuvJkyYoCeffNLoSHASGzdu1OzZs/Xbb7/ZttWuXVsvvPCCunfvbmAy4DreowAAACiOhIQErV69WocOHdKlS5eUlZVVYDuTyaRNmzaVcTrnFB8fr379+hkdwyYqKkqNGzc2OgbsJDExUT169VJmRobRUTR58mSjI8jTy0tfbdhAob0c4d/Q/CiyAwAAw02YMEGXLl1SVFSUPDw8jI4DJ7Fx40aNHTtWnTp10vz589WgQQPFxsbqnXfe0dixY/XWW29RxISheI8CAACgOObNm6eXXnpJ2dnZMplMkvLOUPP7bTe+x60FBwcrKiqqROeIi4vT5MmTNW/ePIWEhJQ4D8qP5ORkZWZk6Fr//sqtVs3oOIZyu3hRWrdOycnJFNnLEf4Nza9ERXZ3d3d16tSJO+UAAChnyrKP37Rpk1asWKHHHntMHTt2LPXXQ/mQk5Oj2bNnq1OnTlq0aJHc3NwkSU2bNtWiRYs0ZswYzZkzR127dmVabhiC9ygAAACK48svv9TUqVNVq1YthYWFacGCBTpy5Ii+/vprnT59WocOHdLSpUtt/7953333GR3ZaXh7e9tt1GNISIjhIyjhmHKrVVMuhWWUQ/wbml+JiuxWqzXfGm9jx47VkSNHKLwDAODEyqqPz8jI0NNPPy1fX1+98cYbxTqHxWKRxWKxPU9NTbVXvEKxBpHx9u/fr99++03z58+3FS9vcHNz0+jRozV48GDt379frVu3NiglXBnvUQAASp/Ra99KrH8L+/vXv/4lk8mkNWvWqF27dlq2bJkkqWvXrrY206dPV//+/fXyyy9r3759RkUFAMClFbnI/sQTT6ht27Zq06aN7rnnnkLbHTx4UDt37rRLOAAAUPqM7ONnzZql48eP6+2339add95ZrHOEh4dr5syZds11K6xBZLwLFy5Ikho0aFDg/hvbb7QDyhrvUbg6q9WqHTt2aP369fruu+8UExOja9euqVq1amrTpo2ee+45de7c2eiYAJxYYmKievXsqYzf3XBrJEdY/9bLbNaG6GgK7U7u+++/V61atdSuXbtC21StWlWrVq1S3bp1NXPmTH344YdlmBAAAEi3UWT/z3/+Y7trztfXVw888ICk6yO5srOzVaECy7sDAOCMjOrjjx49qnnz5qlZs2Z65plnin2eadOmaeLEibbnqampCgwMtEfEQrEGkfGqV68uSYqNjVXTpk3z7Y+Njc3TDihrvEdhD++//36xj7UYXHTavHmzHnzwQUnXZ2+oX7++fHx8FBsbq6ioKEVFRWn69OkKCwszNCcA55WcnKwMi0UvtHVXkC9rUp9KsWr2Tgvr35YDqampatKkie25l5eXbXvlypVt22vVqqU//elP2rJlS7FfKyEhQd9884327t2rvXv36siRI8rJyVFYWJimT59+02N37dql2bNna+fOnUpLS1O9evU0ZMgQTZ482ZYZAIDyrMifmsfFxWnnzp3auXOnduzYoY0bN8pkMmnv3r3y9fVVu3bt1LlzZyUlJZVmXgAAYGdG9fFjxoxRdna2Fi9enG8q5dthNptlNpvtmOzWWIPIeC1atFDt2rX1zjvv5FnvWpJyc3P17rvvqk6dOmrRooWBKeHKeI/CHkJDQ2UyFa9wZLVai32sPVitVtWvX18TJ07U4MGD5e/vL0nKzMzUq6++qvDwcM2aNUutW7dW7969DcsJwPkF+ZrUoErx/54oP3KNDgA7qVGjRp5l0GrUqCFJOnbsmFq2bJmnbVpaWon+Vl+4cKEWLlx428etWLFCw4cPV05OjmrXrq3AwEAdPnxYM2bM0GeffaatW7fqjjvuKHYuAACcQZGL7PXq1VO9evX06KOPSpKuXLkiX19fBQQEqH79+tq2bZu++eYbSZLJZFKnTp3Utm1btWvXTm3atFGVKlVK5ycAAAAlYlQff/DgQZlMJvXp0yffvpSUFEnSnDlz9PbbbyswMJB15pCHu7u7XnjhBY0dO1ZjxozR6NGj1aBBA8XGxurdd9/V1q1b9dZbb8nd3d3oqHBRvEdhD0FBQYYWykuiVatWOnr0aL4ZcTw9PfX666/rhx9+0IYNGxQREUGRHQCA3wkJCdGBAwdsz1u3bq1Vq1Zp8eLFeYrsmzZt0vHjx1WvXr1iv1a1atXUu3dvtWrVSi1bttSSJUu0bt26mx5z4sQJjRo1Sjk5OZo7d64mTZokk8mkkydPqkePHtq3b5+mTJmit99+u9i5AABwBsWe/7VSpUqSpIYNG2rz5s3KyMjQ9u3b9fTTTyshIUG7d+/Wtm3bbB8I3H333fr555/tkxoAAJSasuzjc3JydO7cuUL3p6WlKS0tjanmUKDu3bvrrbfe0uzZszV48GDb9jp16uitt95S9+7dDUwH8B5FyZ04ccLoCMX2++lsC9KtWzdt2LBBv/zySxklAgDAOfTs2VPbtm3Tvn371LJlSw0dOlSvvPKKli9frl9++UVt2rTRuXPntGbNGplMJj3++OPFfq0/Tgn/0Ucf3fKYefPmyWKxqHv37po8ebJte926dfWf//xH7dq103vvvaeXX35Zd955Z7GzAQDg6IpcZB8wYIDatm2rNm3aqHnz5vL09Myz38vLSw8++KBq1aqlhIQEpaam6vvvv9fu3bu1c+dO7d692+7hAQBAyRnVx1++fLnQfaGhoVq+fHmR1oGDa+vevbu6du2q/fv368KFC6pevbpatGjB6GA4DN6jQMEyMjIkXV+CBY4tMTFRycnJhmaIi4vL89Uo/v7+rHUNoNQNGjRIx48f16VLlyRdH22+evVqDR482LbU2w0DBgwo07+ZrVarPvnkE0nSqFGj8u1v27atGjVqpJiYGK1fv15PPfVUmWUDAKCsFbnIHhUVZetAPT09df/990uSUlNTdfnyZfn5+eVp7+npqTZt2qhNmzaaMGGC/RIDAAC7oo+Hs3N3d1fr1q2NjgEUivcokJfVatXatWslSe3atTM4DW4mMTFRPXv2lMViMTqKJOUZMWkEs9ms6OjoEhXauWkhL25cAPKrV6+eIiIi8mzr3r27EhIStGHDBp04cULe3t5q3769mjVrVqbZTp06pTNnzkgqvA9v166dYmJitGfPHorscE3p6TJdvWp0CmOlpxudACgTRS6yX7hwQbt27bI99u3bJ5PJpIMHD6patWpq2rSpunTpctMpXwEAgOOhjwcAAGUpIiJCBw8elKenp8aPH19oO4vFkqe4m5qaWgbp8HvJycmyWCzyeMBDbpXdjI5jqNzUXFl2W5ScnFzsonBiYqJ69OqlzP+bycFoRt+0IEmeXl76asMGCu1AEfj6+uZZgsgIsbGxkq7fdFTY721wcHCetoCrqfj++0ZHAFBGilxkr1q1qnr37q3evXtLur6GqoeHh4KCgtSkSRN9++23OnDggCTJZDKpefPmtlFubdq0sXWuAADAsdDHAwCAsnLgwAGNGzdOkjRr1iyFhIQU2jY8PFwzZ84sq2i4CbfKbnKr4tpFdntITk5WZkaGrvXvr9xq1YyOYzi3ixeldetKdOMCgLJ1YyYOPz8/mUymAtv4+/vnaVuY4txMx2wgeZV0NhCuZ17MruJ4eI/+jz3en1zP/7HX73uRi+x/dGMNweDgYK1fv165ubnat2+fhg0bpuPHj+vUqVM6ePCgFi9eLEmqXr26zp49W+LAAACgdDlCHx8ZGanIyEi7nhMAABgrISFBvXv3VkZGhoYOHapJkybdtP20adM0ceJE2/PU1FQFBgaWdkyg1OVWq6ZcPsQHcAs//fST3nrrLX377bf67bffZLFYlJ2dbdv/7rvv6uTJk3rhhRdUuXLlMsmU8X8zcXh6ehbaxmw2S5LSbzFd9O3eTJeYmKiePXrKkskSJjeYPc2K/qp4y5iwJEx+9lgWBvaTmJioXj17KoP3qCTJy2zWhhK8P6//zveSxcKMSpJkNnspOrrksykVu8j+R25ubmrdurVq1Kih48eP68KFCzp27Jh2796tHTt2aPfu3fZ6KQAAUIbo4wEAQEmdPXtW3bp105kzZ/Twww8rMjKy0BFwN5jNZtsH9QCAsmPNTJfV4trrCVszjV1P+N///rcmTJiQp6j+x37TYrFozpw5aty4sR599NEyyeXl5SVJyszMLLTNjaKtt7f3Tc91uzfTJScny5JpUZOUJqqYU/F2YpdLae5pOuR7qNizgbAkTF72WBYG9pWcnKwMi0UvtHVXkO/N/24o706lWDV7Z8nen9d/5zNkbtZXbhWr2jmhc8lNS5LlwHq7/L7brchekLvvvlt33323hg8fXuxzWK1W7dixQ+vXr9d3332nmJgYXbt2TdWqVVObNm303HPPqXPnznZMDQAAbsUefTwAAHANly5dUrdu3RQXF6eOHTtq7dq18vDwMDoWAKAQGbtXGR3BpW3ZskVjx45VpUqV9Nprr6lPnz4aMmSIdu3alafdoEGDNH78eH3yySdlVmS/MRX85cuXZbVaC7xh7sZUxDfaFqa4N9NVzKko32zf2z4OBWNJGPtLGzZM1po1jY5hKNPZs3Zbmz7I16QGLv8ezbXbmdwqVpW7Xy27nc/VlajInpub/z+s1WotySnz2bx5sx588EFJ10fS1a9fXz4+PoqNjVVUVJSioqI0ffp0hYWF2fV1AQBwZWXRxwMAgPIvLS1NDz30kA4fPqyWLVvqs88+u+XINgAAXNmbb74pSVqxYoUefvhhSflHsUtSzZo1FRgYqJ9//rnMsjVo0EDS9dHqiYmJql27dr428fHxedoCLsfbW1YfH6NTGMrE/+/DRdj99o+3335bmzdvttv5rFar6tevr0WLFunixYs6duyYDhw4oKSkJE2bNk2SNGvWLH3++ed2e00AAJCfvft4AABQvlksFvXt21d79uxR48aNFR0drUqVKhkdCwAAh7Z7927VrFnTVmC/mVq1aum3334rg1TXBQUFqeb/jdDdsWNHgW1ubG/dunWZ5QIAwAh2L7I3bdpUHTt2tNv5WrVqpaNHj+qZZ57JM8WMp6enXn/9dfXq1UuSFBERYbfXBAAA+dm7jwcAAOVXTk6OBg8erM2bNyskJERff/21qlSpYnQsAAAcXlpamq2QfSuZmZnKyckp5UT/YzKZ9Ne//lWStHTp0nz7d+7cqZiYGHl4eKhPnz5llgsAACOU6prs9lC5cuWb7u/WrZs2bNigX375pYwSAQAAAACAm1mzZo0+/fRTSdeXfhs4cGCB7WrVqqW1a9fa9bUTExNt68EaIS4uLs9XI/n7+ysgIMDoGECpumKx6nIGS1tdsdjvGng9METuvnfa7XzOKCflnGFr09eqVatIfUhGRoZiYmJUr169Mkj1P5MnT9bSpUu1ceNGzZs3T5MmTZLJZNLJkyc1cuRISdITTzxR5BsFAABwVg5fZL+VjIwMSWJNNwAAAAAAHITFYrF9Hxsbq9jY2ALb1a1b166vm5iYqJ49esqSabl141I2efJkoyPI7GlW9FfRFNpRrk3dnCOp7EbyugKTp7dMZhdfT9jTuM+aO3furOXLl+s///mPrWhdkIULFyojI0M9evQo9mvt2LFDffv2tT1PS0uTJIWHh2vBggW27QcPHlRgYKAkqV69eoqIiNCIESM0ZcoULVy4UDVq1NDhw4eVlZWl5s2ba968ecXOBACAs3DqIrvVarXd8d6uXTuD0wAAAAAAAEkKDQ1VaGhomb9ucnKyLJkWNUlpooo5Fcv89R1JmnuaDvkeUnJyMkV2AHAiU6dO1cqVK/X3v/9d6enpGj58eJ79ly9f1ltvvaWwsDD5+PhowoQJxX6trKwsJSUl5dt+7do1Xbt2zfb8j1PSDxs2TPXr11d4eLh27typn3/+WcHBwRoyZIimTp0qLy+vYmcCAMBZOHWRPSIiQgcPHpSnp6fGjx9faDuLxZLnLvrU1NQySCelp6crPj6+TF7rVoKDg51+tL8jXU/J+a8p19O+uJ4AAACA46iYU1G+2b5GxwAA4Lbdfffdev/99zV8+HCNHTtWEyZMkLu7uyQpKChIZ86cUW5urjw9PfXhhx/aRpgXR6dOnWS1Fm+pgbZt2+qzzz4r9msDAODsnLbIfuDAAY0bN06SNGvWLIWEhBTaNjw8XDNnziyraDbx8fHq169fmb9uQaKiotS4cWOjY5SII11PyfmvKdfTvrieAAAAAAAAsIdBgwbpnnvu0auvvqoNGzbYlkz99ddf5eHhoV69eiksLExNmjQxOGnZyzJlyWIyflkYo2WZsuxyHmumVdaM4t1oUZ5YM7kGjuqKxarLLv4evWKx389vzUyX1XLVbudzRtbMdLudyymL7AkJCerdu7cyMjI0dOhQTZo06abtp02bpokTJ9qep6amlugOv6IKDg5WVFRUic4RFxenyZMna968eTe9kaAoWZydI13PG3mcGdfTvrieAAAAAIAiSU+X6aprf7gpSUq3zwecc7q4K9jfzS7ncmbxybn/tz49yos///nPWrdunbKysvTLL78oJSVFFStWVIMGDVx69sK9/nuNjlCuZG7NNDoCcFPX+zb6N3vJ2L3K6AjlitMV2c+ePatu3brpzJkzevjhhxUZGSmTyXTTY8xms8xmcxkl/B9vb2+7jSQNCQlx+VGpXE/74nraF9cTAAAAAFAUFd9/3+gI5Uols0l+Xjf/bNAVVDJzDcorDw8PPicCnIjbxYtGRzAc1wCuwqmK7JcuXVK3bt0UFxenjh07au3atfLw8DA6FgAAAAAAQLnFVLJMIwsARvP39zc6gsMxe5q5Lg7E399fnl5e0rp1RkdxCJ5eXrw/Ue45TZE9LS1NDz30kA4fPqyWLVvqs88+c+lpcQAAAAAAAMoCU8kCriU3LcnoCIYry2vwvh1mtxg2bJgdkji2gIAAoyM4nOivorkuDiQgIEBfbdig5ORkwzLYcznSkvL39+f9iXLPKYrsFotFffv21Z49e9S4cWNFR0erUqVKRscCAAAAAAAAgHLB399fZrOXLAfWGx3FIZjNZTMKMzQ09JbLod6MyWRyiSK7JO3atcvoCIqJidGIESO0bNkyNWrUyNAsVapUKfE5PDt5ys3PzQ5pnFvu5Vy73FQYEBDgEIXl8rQc6Zwu7gr2d+33aHxy7v+tTV9yXg8MkbvvnXY5l7PKSTlnt7XpHb7InpOTo8GDB2vz5s0KCQnR119/bZfOAwAAAAAAAChracOGyVqzptExDGc6e5b16R1MQECAoqMZhXlDWY3CDAoKKrTIfvLkSZnNZtXk3wxJ9ikql5Svr6/tqyPkKSmTp0kmr+Lf5FFemDy5Bo6qktkkPxd/j1Yy2+/nN3l6y2T2sdv5nJHJ036zpDt8kX3NmjX69NNPJUlubm4aOHBgge1q1aqltWvXlmEyAAAAAAAA4DZ5e8vq49ofbkqSiWUgHRKjMMveiRMnCt3n5uamli1batu2bWUXCAAAFInDF9ktFovt+9jYWMXGxhbYrm7dumUVCQAAAAAAwGUwlaz9ppEFAAAAUD44fJE9NDRUoaGhRscAAAAAAABwSUwlyzSyAAAAAPJy7duQAQAAAAAAAAAAAAC4DQ4/kh0AAAAAAOB2ZJmyZDFZbt2wHMsyZRkdAQAAAADKLYrsAAAAAACgXNnrv9foCAAAAACAcozp4gEAAAAAAAAAAAAAKCJGsgMAAAAAAAAAYIBt27bddH9KSsot23To0MGekQAAQBFQZAcAAAAAAAAAwACdOnWSyWQqcJ/JZNLhw4fVuXPnQo83mUzKzs4urXgAAKAQFNkBAAAAAEC50iq5lSplVzI6hqGuVLjC2vQA4CSsVqshx7qa9PR0xcfHl+gccXFxeb6WRHBwsLy9vUt8npLITc019PUdBdfBcZ1KsUpy7f8+16+BfeSmJdntXM7KnteAIjsAAAAAAChXPKweMlvNRscwVIY1w+gIQJngw/fr7PkBPMpWbi7v37ISHx+vfv362eVckydPLvE5oqKi1LhxYzukuX3+/v4ym82y7LYY8vqOyGw2y9/f3+gY+D/+/v7yMps1eyfvUUnyKuH78/rvvJcsB9bbMZXzMpu97PL7TpEdAAAAAAAAgFPhw/f8SvoBPFDeBQcHKyoqyugYNsHBwYa9dkBAgKKjo5WcnGxYBun6jACTJ0/WvHnzFBISYmgWf39/BQQEGJoB/xMQEKANvEdtSvr+vP47v4Hr+X/s9ftOkR0AAAAAAACAU+HD9/woEAE35+3tbdjIcUcUEBDgMP9mhISE8N8G+fAetS+up/1RZAcAAAAAAADKiNvFi0ZHcAj2uA58WAwAAACjUGQHAAAAAAAASpm/v788vbykdeuMjuIwPL3ssx4mAAAAUNYosgMAAAAAAAClLCAgQF9tYC3M32N6cwAAADgriuwAAAAAAABAGWB6cwAAAKB8oMgOAAAAAACAQuWm5hodwXBcAwAAAAC/R5EdAAAAAAAA+fj7+8tsNsuy22J0FIdgNptZPxwAXFhCQoL69u0ri8Uis9ms9evXq169ekbHAgAYhCI7AAAAAAAA8gkICFB0dDRriP8f1g8HANd1zz33KDf3f7OaWCwW9ezZU25ubjp69KiByQAARqHIDgAAXE5iYqJDfFj8+69GMvoD4/T0dMXHxxv2+n8UHBwsb29vo2OUiCNdU66n/ZWHawrAebCGOADA1f2+wF6xYkWNGzdOCxcuVFpamnJzc3XPPfdQaAcAF0SRHQAAuJTExET17NFTlkzHmPZ08uTJRkeQ2dOs6K+iDfsAPT4+Xv369TPktQsSFRXl9B/gO9I15XraX3m4pgAAACicu7u7OnXqpE2bNhkdxeUlJCTYCuzfffedatSoIUkaNmyYzp8/r/bt2ys3N1cJCQlMHQ8ALoYiOwAAcCnJycmyZFrUJKWJKuZUNDqO4dLc03TI95CSk5MNK7IHBwcrKiqqROew5zSywcHBJTreEZT0mnI98+I9CgAAgLJktVpltVrzbBs7dqyOHDlC4b2M9e3bV9L1Eew3Cuw31KhRQz4+Prp69ar69u2rH3/80YiIAAphj1np7DUTZXmYkc6RrqfkGNeUIjsAAHBJFXMqyjfb1+gYkOTt7W23UblMI3udva4p1/M63qMAAAAoLU888YTatm2rNm3a6J577im03cGDB7Vz584yTAbp+trrkjRu3LgC9z/77LOaO3eurR0Ax2HPWelKOhNleZiRzpGup+QY15QiOwAAAAAAKFfS3NOMjmA4rgEAOIf//Oc/WrZsmSTJ19dXDzzwgKTrIwazs7NVoQIf4RvJbDbLYrFo4cKFGjZsWL79//73v23tADgWe8xKZy/lYUY6R7qekmNcU3poAAAAAABQLvj7+8vsadYh30NGR3EIZk+z/P39jY4BALiJuLg47dy5Uzt37tSOHTu0ceNGmUwm7d27V76+vmrXrp06d+6spKQko6O6pPXr16tnz55KS0vT+fPn80wZf/78eV29etXWDoBjseesdOB6FoQiOwAAAAAAKBcCAgIU/VW0kpOTDcsQFxenyZMna968eQoJCTEsh3T9poOAgABDMwAAbq5evXqqV6+eHn30UUnSlStX5Ovrq4CAANWvX1/btm3TN998I0kymUzq1KmT2rZtq3bt2qlNmzaqUqWKkfHLvXr16snNzU25ublq3769fHx89Oyzz+rf//63rcDu5uamevXqGZwUAFDWKLIDAAAAAIByIyAgwCEKyyEhIYz0AADctkqVKkmSGjZsqM2bNysjI0Pbt2/X008/rYSEBO3evVvbtm2TyWSSJN199936+eefjYxc7h09elT33HOPcnNzdfXqVc2dO9e2z83NTUePHjUwHQDAKG5GBwAAAAAAAAAAwBUNGDBA8+fP165du5SZmZlvv5eXlx588EHVqlVLkpSamqodO3bojTfeUL9+/XTlypWyjuySjh49qujoaNva62azWdHR0RTYAcCFMZIdAAAAAAAAAAADREVF6ZNPPpEkeXp66v7775d0vZh++fJl+fn55Wnv6empNm3aqE2bNpowYUJZx3Vp9erV048//mh0DACAg6DIDgAAAAAAAACAAS5cuKBdu3bZHvv27ZPJZNLBgwdVrVo1NW3aVF26dNG5c+eMjgoAAH6HIjsAAAAAAAAAAAaoWrWqevfurd69e0uScnJy5OHhoaCgIDVp0kTffvutDhw4IEkymUxq3ry5bSR7mzZtFBwcbGR8AABcFkV2AAAAAAAAAAAcgLu7uyQpODhY69evV25urvbt26dhw4bp+PHjOnXqlA4ePKjFixdLkqpXr66zZ88aGdllZGZmauXKlTp16pSCgoI0dOhQeXp6Gh0LAGAQiuwAAAAAAAAAADggNzc3tW7dWjVq1NDx48d14cIFHTt2TLt379aOHTu0e/duoyO6hLlz5yoyMlI5OTl5toWGhmrKlCkGJgMAGIUiOwAAAAAAAAAATuLuu+/W3XffreHDhxsdxSXMnTtXS5cuVdWqVTV+/Hh17txZW7Zs0YIFC7R06VJJotAOAC7IzegAAAAAAAAAAADgutzcXG3evDnPNqvValAa15aZmanIyEhVrVpV27Zt06BBg1S9enUNGjRI27ZtU9WqVRUZGanMzEyjowIAyhgj2QEAAAAAAAAAcGBvv/22UlJSjI7hclauXKmcnByNHz9eFSrkLadUqFBB48aN04wZM7Ry5UqFhoYaExLlQnp6uuLj40t0jri4uDxfSyI4OFje3t4lPg9QnlFkBwAAAAAAAADAgTVt2tToCC7p1KlTkqTOnTsXuL9Tp0552gHFFR8fr379+tnlXJMnTy7xOaKiotS4cWM7pAHKL4rsAAAAAAAAAAAAfxAUFCRJ2rJliwYNGpRv/9atW/O0A4orODhYUVFRRsewCQ4ONjoC4PAosgMAAAAAAAAAAPzB0KFDNXfuXC1YsED9+vXLM2V8dna2Fi5cKHd3dw0dOtTAlCgPvL29GTkOOBk3owMAAAAAAAAAAAA4Gk9PT4WGhiopKUkdOnTQ6tWrde7cOa1evVodOnRQUlKSQkND5enpaXRUAEAZYyQ7AAAAAAAAAABAAaZMmSJJioyM1IwZM2zb3d3dNWrUKNt+AIBrocgOAAAAAAAAAABQiClTpmj8+PFauXKlTp06paCgIA0dOpQR7ADgwpguHgAAAAAAlJovv/xSDz74oKpUqSIfHx81a9ZM//rXv5Sbm2t0NAAAUEyhoaEymUw3fWRkZBgd065uTB0/Y8YMpogHADCSHQAAAAAAlI7Zs2dr2rRpkqTg4GBVrFhRhw4d0tixY/XNN9/ok08+kZsb9/8DAOCsGjRooBo1ahS4jz4eAFCeUWQHAAAAAAB2t2vXLr344otyc3PThx9+qCFDhkiSDh06pB49eui///2v5s+fr0mTJhmcFAAAFNeLL76o0NBQo2MALi8nJ0f79+/XhQsXVL16dbVo0ULu7u5GxwLKNW4lAwAAAAAAdjdr1ixZrVY98cQTtgK7JDVp0kTz58+XdH2ke1ZWllERAQAAAKe3ceNGdevWTcOGDdPzzz+vYcOGqVu3btq4caPR0YByjSI7AAAAAACwq9TUVH3zzTeSpFGjRuXbP3DgQFWuXFlJSUnasmVLWccDAAAAyoWNGzdq7NixatiwoVavXq0DBw5o9erVatiwocaOHUuhHShFFNkBAAAAAIBdHTx4UJmZmfLy8lKzZs3y7ffw8FDLli0lSXv27CnreAAAwE4+/vhjPfLII+rSpYsGDx6sf/3rX0pJSTE6FuAScnJyNHv2bHXq1EmLFi1S06ZN5ePjo6ZNm2rRokXq1KmT5syZo5ycHKOjAuUSa7IDAAAAAAC7io2NlSQFBQWpQoWCP3oIDg7Wpk2bbG3/yGKxyGKx2J6npqbaPygAl5aenq74+PgSnSMuLi7P15IIDg6Wt7d3ic9jpJJeU66n8/niiy/yPF+9erVeeeUVrVy5Uj179iz0OPp558e/ocbbv3+/fvvtN82fP19ubnnH1Lq5uWn06NEaPHiw9u/fr9atWxuUEii/KLIDAAAAAAC7Sk5OliT5+/sX2ubGvhtt/yg8PFwzZ860fzgA+D/x8fHq16+fXc41efLkEp8jKipKjRs3tkMa49jrmnI9HV9ISIhef/11Pfzww6pXr55MJpN27dqll19+WXv27NEjjzyi7du3q0WLFgUeTz/v/Pg31HgXLlyQJDVo0KDA/Te232gHwL4osgMAAAAAALvKyMiQJHl6ehbaxmw2S7o+Cqog06ZN08SJE23PU1NTFRgYaMeUAFxdcHCwoqKijI5hExwcbHSEEnOka1oerqcje/nll/Nt69atmzp27Kj27dtr7969mjp1qjZt2lTg8fTzzs+Rft8l1/ydr169uqTrs0g1bdo03/4bM0bdaAfAviiyAwAAAAAAu/Ly8pIkZWZmFtrmxhSxhU3raTabbYV4ACgN3t7eLjfqsbRxTeHp6amwsDD16NFDW7duVXJycoEz29DPOz9+343XokUL1a5dW++8844WLVqUZ8r43Nxcvfvuu6pTp06hM0oAKBm3WzcBAAAAAAAoultNBf/7fTebUh4AADifNm3aSLpe5Cvpmt0ACufu7q4XXnhBW7du1ZgxY3Tw4EGlpaXp4MGDGjNmjLZu3aqpU6fK3d3d6KhAucRIdgAAAAAAYFc31n88deqUsrOzVaFC/o8fbnzoXtgakgDyS09PL3HBKi4uLs/XkggODi50NgoArsvDw8P2fXZ2toFJgPKve/fueuuttzR79mwNHjzYtr1OnTp666231L17dwPTAeUbRXYAAAAAAGBX999/vzw8PJSRkaEDBw6oVatWefZnZWVp3759kqTWrVsbERFwSvHx8erXr59dzjV58uQSnyMqKoqpggHkc+TIEdv3derUMTAJ4Bq6d++url27av/+/bpw4YKqV6+uFi1aMIIdKGUU2QEAAAAAgF1VrlxZDz74oDZs2KClS5fmK7KvXbtWqampqlq1qjp16mRMSMAJBQcHKyoqyugYNsHBwUZHAOCA3nzzTUlSo0aNVLt2bYPTAK7B3d2dm1eBMkaRHQAAAAAA2N1LL72k6OhoLVmyRJ06ddKQIUMkSYcOHdLEiRMlSVOmTJGnp6eRMVHKHGl68/Iwtbm3tzcjxwEY7uuvv9bmzZv11FNPqV69erbtKSkpevnll7Vq1SpJ0owZM4yKCABAqaPIDgAAAAAA7K5du3YKCwvT9OnTNXToUE2fPl0VK1bU4cOHlZubq4cffljPP/+80TFRyhxpenOmNgcA+7h69apmz56t2bNnq3bt2goICFBWVpZ+/vlnZWZmymQyacaMGbYb7AAAKI8osgMAAAAAgFLx0ksvqUmTJvrnP/+p77//XmfPntWf//xnjRgxQs899xzrRLoAR5renKnNAcA+mjdvrpdeekm7du3S8ePHdfjwYVmtVtWuXVvt27fXmDFjmLYaAFDuUWQHAACGsVqt2rFjh9avX6/vvvtOMTExunbtmqpVq6Y2bdroueeeU+fOnY2OCQAASqB3797q3bu30TFgEKY3B4DyJzAwULNmzTI6BgAAhqLIDgAADLN582Y9+OCDkiQ3NzfVr19fPj4+io2NVVRUlKKiojR9+nSFhYUZnBQAAAAAAAAAgOvcjA4AAABcl9VqVf369bVo0SJdvHhRx44d04EDB5SUlKRp06ZJkmbNmqXPP//c4KQAAEeRk5OjPXv26PPPP9eePXuUk5NjdCQAAAAAAOBiGMkOAAAM06pVKx09elQVKuT9XxJPT0+9/vrr+uGHH7RhwwZFREQwzSwAQBs3btTs2bP122+/2bbVrl1bL7zwgrp3725gMgAAAAAA4EoosgMAAMNUrlz5pvu7deumDRs26JdffrH7a2eZsmQxWex+XmeTZcqyy3kuXbpkl/MUV0pKiu2r0VmqVKlS4nMY/TOUt+uJ8mHjxo0aO3asOnXqpPnz56tBgwaKjY3VO++8o7Fjx+qtt96i0A4AAAAAAMoERXYAAOCwMjIyJEne3t52P/de/712P6cra9OmjdERJEkjRowwOoKOHTtW4nNwPf/HHtcTzi8nJ0ezZ89Wp06dtGjRIrm5XV/5rGnTplq0aJHGjBmjOXPmqGvXrnJ3dzc4LQAAAAAAKO8osgMAAIdktVq1du1aSVK7du0KbWexWGSx/G9EempqaqlnA24mMTFRAQEBRscoN+xxPRMTE5WcnGynRMUTFxeX56tR/P39nfL9uX//fv3222+aP3++rcB+g5ubm0aPHq3Bgwdr//79at26tUEpAQAAAACAq6DIDgAAHFJERIQOHjwoT09PjR8/vtB24eHhmjlzZpHP6+/vb4d05YvZ01yi65KYmGjHNM6vZ8+eio6OLnYhk+uZV49evfTVhg0lup69evZUhsUxloeYPHmyoa/vZTZrQwnen0a5cOGCJKlBgwYF7r+x/UY7AAAAAACA0kSRHQAAOJwDBw5o3LhxkqRZs2YpJCSk0LbTpk3TxIkTbc9TU1MVGBhYaHtnKyyVheivSlZwM3qEsKOxWCxKTk4u9jXleuaVmZFR4uuZYbHohbbuCvI12TmdczmVYtXsnSV7fxqlevXqkqTY2Fg1bdo03/7Y2Ng87YCSSE9PV3x8fLGPt+fMFcHBwaWybA4AAAAAoGScosiekJCgb775Rnv37tXevXt15MgR5eTkKCwsTNOnTzc6HgAAsKOEhAT17t1bGRkZGjp0qCZNmnTT9mazWWaz+bZeY9euXSWJaBcxMTEaMWKEli1bpkaNGhmapUqVKnY5j2cnT7n5ud26YTmWezlXmVsz7XKutGHDZK1Z0y7nclams2dV8f337XKuIF+TGlRx7fenlGt0gGJr0aKFateurXfeeSfPmuySlJubq3fffVd16tRRixYtDEyJ8iI+Pl79+vUr8XnsMXNFVFSUGjduXOLzAAAAAADsyymK7AsXLtTChQuNjoH/396dR0dVpesffypTJWYijBIIQyBKCwiGoDIoURAV0AYFDWCj4HRvWrFlasHVg8MVGtqhUXEADRdQEAEFFKICoigIMop97RADCDKoYQoBMkD27w9+KQ0ZqJBTOTV8P2vVgpxz9q63Nid5snirzgEAwMMOHjyoG264QQcOHFDfvn01c+ZMORzWf/LUqqZyTcTGxrr+9IZ6rOAIc8gRHtifFHaEWfj6IyJkIiOtm88HOfj0Jv6/4OBgPfbYYxo5cqTS09P14IMPKikpSdnZ2Xrttde0evVqTZ06VcHBwXaXCj+QmJioRYsW2V2GpLO1AAAAAAC8j0802evXr69+/frpyiuvVOfOnTVjxgwtXLjQ7rIAAICFDh8+rBtuuEE5OTnq0aOH3n33XYWGhtpdFgDAS/Tu3VtTp07VpEmTlJaW5tretGlTTZ06Vb1797axOviTiIgIPj0OAAAAAKiSTzTZz70k/Lx582yqBAAAeEJ+fr769Omjb7/9Vp07d9bSpUu5/ygAoJzevXurZ8+e2rhxo3755Rc1aNBAKSkpfIIdAAAAAADUKp9osgMAAP9VWFio3//+91q/fr3atm2rzMxMRUdH210WAMBLBQcH66qrrrK7DAAAAAAAEMBoslfh8OHDdpegY8eOuf60sx4r7hXLev7KX+6962/sPke95fyUOEdRe86cOaO0tDStWrVKrVq10ieffML5BwAAAAAAAADwajTZq9ClSxe7S3AZPny4rc+flZVV4zlYz19ZsZ6wnreco3afnxLnKGrP/Pnz9f7770uSgoKCNGjQoAqPa9y4sd59991arAwAAAAAAAAAgIoFRJO9sLBQhYWFrq/z8vJsrMY37d+/X/Hx8XaX4TesWM/9+/fryJEjFlV0YXJycsr8aae4uDjOUQt5wzlaWFioH3/8sUY1WKVp06ZyOp0XPJ7zs3K/zefs7GxlZ2dXeFzz5s1rqyQAAAAAAAAAAKoUEE32iRMn6oknnqjWmP3793uoGt900403KfOjzAtuErGeZd10003KzKzZet54880qKiiwuLILM3bsWLtLUFh4uD5avpxz1CI333STltfwHL3ppptVWOgd56jdnM5wZWZe+Pnpz+655x7dc889dpcBAAAAAAAAAIDbAqLJPn78eI0aNcr1dV5enhISEqocY/cnhL1NYVGhjhw5csENItazrMLCmq9nUUGBTt5+u0rq17e4Ot8TlJsrLVzIOWqhAgvO0cLCAjmTf6+gqHoWV+dbSvIPqXDz4hqtJwAAAAAAAAAA8B4B0WR3Op0XfJnfK49cqejT0RZX5FuOhxzXhrgNlswVlhqmoDpBlszlq0qOlqhodZE1c9WvrxKadpb6x/XBSowL7HN055ES/XnVGUvmCoqqp+A6jS2ZCwAAAAAAAAAAwBsERJO9JkJNqJzmwu/D6w8KjHWXe3aEOeQId1g2ny9yhAX26/d20U6H6gT4ORrtDOzXDwAAAAAAAAAAUJXA/rgmAAAAAAAAAAAAAADVQJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNPtFk//LLL1W/fn3XY968eZKkiRMnltm+d+9emysFAAAAAAAAAAAAAPizELsLcEdxcbEOHTpUbvvJkyd18uRJ19dnzpypzbIAAAAAAAAAAAAAAAHGJ5rsqampMsbYXQYAAAAAAAAAAAAAIMD5xOXiAQAAAAAAAAAAAADwBjTZAQAAAAAAAAAAAABwE012AAAAAAAAAAAAAADcRJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN9FkBwAAAAAAAAAAAADATTTZAQAAAAAAAAAAAABwE012AAAAAAAAAAAAAADcRJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAVMuyZcvUq1cv1a1bV5GRkUpOTtaLL76okpISu0sDAMDjQuwuAAAAAAA87Xih0dECY3cZtjpeaM3rP3z4sCXz+Iu6devaXYLXOX78uBYvXqzMzExt2LBBe/fulcPhUMuWLdWnTx+NGjVKjRs3trtMAABQA5MmTdL48eMlSYmJiYqKitK2bds0cuRIrVixQu+9956CgviMHwDAf9FkBwAAAOD3/rzqjKQzdpfhF7p06WJ3CV4lKyvL7hK8Tnp6uubMmSNJio6OVps2bXTixAllZWXp//7v/5SRkaHly5erc+fONlcKAAAuxLp16zRhwgQFBQVpzpw5Gjx4sCRp27ZtuvHGG7VkyRI999xzGjNmjM2VAgDgOTTZAQAAqunUqVPauXNnjebIyckp82dNJCYmKiIiosbz1FRJHpcEtHINgnJzLZvLV7EG8AU///yzGjZsaHcZXqd///566KGH1KNHD4WEnP2vh5ycHA0ZMkQbNmzQ7bffrqysLK/ILwAAUD1PP/20jDG6//77XQ12SerQoYOee+45DR06VJMmTdIjjzyi0NBQGysFAMBzaLIDAABU086dO3XbbbdZMtfYsWNrPMeiRYvUtm1bC6q5MHFxcXI6nSr8qtC2GryJ0+lUXFzcBY+Pi4tTWHi4tHChhVX5rrDw8BqvJ34VXsPzE+W98847evjhh+0uw6v861//qvAy+q1atdKCBQvUunVr7d27V5mZmRowYIANFQIAgAuVl5enFStWSJLuvffecvsHDRqk//7v/9ahQ4f06aefqnfv3rVdIgAAtYImOwAAQDUlJiZq0aJFdpfhkpiYaOvzx8fHKzMzU0eOHLGthpycHI0dO1ZTpkxRq1atbKtDOtvUjY+Pv+Dx8fHx+mj5ctbz/7NiPfGr5ZmZrInF7rzzTrtL8DpV3ac+ISFBbdq00TfffKMdO3bUYlUAAMAKW7ZsUVFRkcLDw5WcnFxuf2hoqDp37qyVK1dq/fr1NNkBAH6LJjsAAEA1RURE2PrJcW8UHx/vFY27Vq1a+cW/DetprXXr1tldgv7zn/9o+PDhysjIUJs2bWyro6rmp7u8YT29iRVrGmgKCgokiUvFAwDgg7KzsyVJzZo1c90S5lyJiYlauXKl61gAAPwRTXYAAAAAfs0bmqCxsbGuP72hnprw9fphr23btrk+wd6tWzebqwEAANVVesWtqm5BVLqvqqtzFRYWqrDw11uO5eXlWVQhAAC1I8juAgAAAAAAgP87c+aM6/71119/vTp16lTl8YWFhcrLyyvzAAAA9iq9Ik1YWFilxzidTknSqVOnKj1m4sSJio2NdT0SEhKsLRQAAA+jyQ4AAAAAADxuwoQJWrNmjaKjo/X666+f93j+8x0AAO8THh4uSSoqKqr0mNJPqFd1a5jx48fr2LFjrsfevXutLRQAAA/jcvEAAAAAAECSNG7cOC1ZsqTa4zIyMtSlS5dK97/66quaPHmyQkJCNHfuXLVq1eq8c44fP16jRo1yfZ2Xl0ejHQAAm7lzKXh3LinvdDpdn3gHAMAX0WQHAAAAAACSpP379ysrK6va406cOFHpvnfeeUd//OMf5XA4NHPmTPXt29etOfnPdwAAvE9SUpIkac+ePTp9+rRCQsq3GHbu3FnmWAAA/BGXiwcAAAAAAJKkOXPmyBhT7UevXr0qnG/ZsmX6wx/+oJKSEr300ksaOnRoLb8iAABgpSuuuEKhoaEqKCjQ5s2by+0vLi7W119/LUm66qqrars8AABqDU12AAAAAABguc8//1wDBw5UcXGxJk6cqPT0dLtLAgAANRQTE+N6c90bb7xRbv+7776rvLw81atXT6mpqbVcHQAAtYcmOwAAAAAAsNSmTZt0yy236NSpUxo/frwee+wxu0sCAAAWefzxx+VwODRjxgzNnTvXtX3btm0aNWqUJGncuHEKCwuzq0QAADyOJjsAAAAAALBMVlaWbrrpJuXl5Sk9PV3PPPOM3SUBAAALdevWTU899ZRKSko0ZMgQtWrVSh06dFBycrJ++ukn9e3bV6NHj7a7TAAAPCrE7gIAAAAAAID/GDlypHJzc+VwOLR161Z17969wuNGjBihESNG1HJ1AADACo8//rg6dOig559/Xps2bdLBgwfVvn17DR8+XA899JCCg4PtLhEAAI+iyQ4AAAAAACxTWFgoSTLGaO3atZUeV3o/VwAA4Jv69eunfv362V0GAAC2oMkOAAAAAAAss3r1artLAAAAAADAo7gnOwAAAAAAAAAAAAAAbqLJDgAAAAAAAAAAAACAm2iyAwAAAAAAAAAAAADgJprsAAAAAAAAAAAAAAC4iSY7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuIkmOwAAAAAAAAAAAAAAbqLJDgAAAAAAAAAAAACAm2iyAwAAAAAAAAAAAADgJprsAAAAAAAAAAAAAAC4iSY7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuMmnmuzLli1Tr169VLduXUVGRio5OVkvvviiSkpK7C4NAADUABkPAAAAAAAAAPAVPtNknzRpkvr27auVK1cqLi5OrVu31rZt2zRy5EgNGDCA/4QHAMBHkfEAAAAAAAAAAF/iE032devWacKECQoKCtLbb7+tnJwcbdu2TZs3b1ajRo20ZMkSPffcc3aXCQAAqomMBwAAAAAAAAD4Gp9osj/99NMyxui+++7T4MGDXds7dOjg+o/3SZMmqbi42K4SAQDABQjUjM/Pz1d6erpuueUWpaenKz8/3+6SAMBnnDlzRuvXr9cHH3yg9evX68yZM3aXBAAAAAAAAozXN9nz8vK0YsUKSdK9995bbv+gQYMUExOjQ4cO6dNPP63t8gAAwAUK1IwfOHCgOnXqpJUrV2rHjh1auXKlOnXqpIEDB9pdGgB4vY8//lg33HCDhg0bptGjR2vYsGG64YYb9PHHH9tdGgAAAAAACCAhdhdwPlu2bFFRUZHCw8OVnJxcbn9oaKg6d+6slStXav369erdu7cNVQI2OXVKjhMn7K7CfqdO2V0BKmGKTskUBvY5aoo4PysTiBk/cOBAbd++XQ6HQ7feeqtGjBihN998U0uWLNH27ds1cOBALViwwO4yAcArffzxxxo5cqRSU1P13HPPKSkpSdnZ2Xr11Vc1cuRITZ061S+yAgAAAAAAeD+vb7JnZ2dLkpo1a6aQkIrLTUxM1MqVK13HAoEiatYsu0sAqlTw1Vy7S4AXC7SMz8/PdzXYt27dqvDwcEnS5MmT9eSTT6pjx47avn278vPzFRUVZXO1AOBdzpw5o0mTJik1NVXTpk1TUNDZi7J17NhR06ZNU3p6uv7xj3+oZ8+eCg4OtrlaAAAAAADg77y+yX7kyBFJUlxcXKXHlO4rPfZchYWFKiwsdH2dl5fn9vPnB3OPVCvXoCSvxLK5fBVr4N32HDOSAvvf6OwaAJ5nRcZLNcv52jRu3DhJ0q233upqsJcKDw9Xv379tHTpUo0bN07Tpk2zo0TbnDp1Sjt37qzRHDk5OWX+rInExERFRETUeB471XRNWc+yOEftt3HjRu3bt0/PPfecq8FeKigoSA8++KDS0tK0ceNGXXXVVTZVCQAAAAAAAoXXN9kLCgokSWFhYZUe43Q6JZ39z6+KTJw4UU888US1njcuLk7OMKe2xW6r1jh/5QxzVtkEOZ+4uDg5nU4VflV4/oMDgNNZ8/VEWWHh4TVe03CnU5PWco5KUjjnqKWczpqdn/7KioyXLizn7bB3715J0ogRIyrcP3z4cC1dutR1XCDZuXOnbrvtNkvmGjt2bI3nWLRokdq2bWtBNfaxak1Zz7M4R+33yy+/SJKSkpIq3F+6vfQ4AAAAAAAAT/L6JnvpJ72KiooqPab002uVfZpj/PjxGjVqlOvrvLw8JSQkVPm88fHxyvwos8pPzp1PYWGhfvzxxwseb6WmTZu6GhUXIi4uTvHx8Rc8Pj4+XpmZ/rOeUs3W1Ir1RFkfLV9e4zVdXoNz1J/OT4lz1GqZmTU7P/2VFRkvXVjO2yEhIUE7duzQm2++qcmTJ5fbn5GR4Tou0CQmJmrRokV2l+GSmJhodwk15k1rynpazx/WtLoaNGgg6eytRjp27Fhuf+ltRUqPAwAAAAAA8CSvb7K7c5nY811u1ul0XlCzKT4+vsZNkeTk5BqN9yesp7XWrVtndwlepW7dujWeo6bnKOdnWZyjv7Li/PRHVmS8dOE5X9smT56sTp06acmSJXryySfLXDK+oKBAH3zwgeu4QBMRERFwn8r1NNbUWqyn/VJSUtSkSRO9+uqrZe7JLkklJSV67bXX1LRpU6WkpNhYJQAAAAAACBRe32Qvvezfnj17dPr0aYWElC+59P6IlV06EPBHNO3g7ThHcT6BlvFRUVFq3769tm/fro4dO6pfv34aPny4MjIy9MEHH8gYo/bt2ysqKsruUgHA6wQHB+uxxx7TyJEjlZ6ergcffFBJSUnKzs7Wa6+9ptWrV2vq1KkKDg62u1QAAAAAABAAgs5/iL2uuOIKhYaGqqCgQJs3by63v7i4WF9//bUk6aqrrqrt8gAAwAUKxIxfsGCB2rdvL2OMli5dqttuu01Lly51NdgXLFhgd4kA4LV69+6tqVOnaseOHUpLS1OnTp2Ulpam7OxsTZ06Vb1797a7RAAAAAAAECC8/pPsMTEx6tWrl5YvX6433nhDV155ZZn97777rvLy8lSvXj2lpqbaUyQAAKi2QM34BQsWKD8/X+PGjdPevXuVkJCgyZMn8wl2AHBD79691bNnT23cuFG//PKLGjRooJSUFD7BDgAAAAAAapXXN9kl6fHHH1dmZqZmzJih1NRUDR48WJK0bds2jRo1SpI0btw4hYWF2VkmAACopkDN+KioKE2bNs3uMgDAJwUHB/vNFU4AAAAAAIBv8vrLxUtSt27d9NRTT6mkpERDhgxRq1at1KFDByUnJ+unn35S3759NXr0aLvLBAAA1UTGAwAAAAAAAAB8jU802aWzn3RbunSprr/+eh06dEjff/+92rdvrxdeeEGLFy/m8oAAAPgoMh4AAAAAAAAA4Et84nLxpfr166d+/frZXQYAALAYGQ8AAAAAAAAA8BU+80l2AAAAAAAAAAAAAADsRpMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN4XYXYAdjDGSpLy8PJsrAQDg1zwqzSfUDDkPAPAWZLy1yHgAgLcg461HzgMAvIW7OR+QTfbjx49LkhISEmyuBACAXx0/flyxsbF2l+HzyHkAgLch461BxgMAvA0Zbx1yHgDgbc6X8w4TgG+3Kykp0f79+xUdHS2Hw2F3OVXKy8tTQkKC9u7dq5iYGLvL8Xmsp7VYT2uxntbypfU0xuj48eOKj49XUBB3cqkpX8l5XzpHfQHraS3W03qsqbV8ZT3JeGuR8YGLNbUW62kt1tNavrKeZLz1yPnAxHpai/W0HmtqLV9ZT3dzPiA/yR4UFKSmTZvaXUa1xMTEePUJ52tYT2uxntZiPa3lK+vJO9+t42s57yvnqK9gPa3FelqPNbWWL6wnGW8dMh6sqbVYT2uxntbyhfUk461Fzgc21tNarKf1WFNr+cJ6upPzvM0OAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNm9nNPp1N/+9jc5nU67S/ELrKe1WE9rsZ7WYj3h7ThHrcV6Wov1tB5rai3WE96M89N6rKm1WE9rsZ7WYj3h7ThHrcV6Wov1tB5rai1/W0+HMcbYXQQAAAAAAAAAAAAAAL6AT7IDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtostusffv2cjgcioiIUF5eXqXH3XPPPXI4HGUeoaGhaty4sW699VYtX768Fqv2Pi1atCi3Puc+XnjhBUnS7t27K9wfHR2tDh06aMKECcrNzbX3Bdlsz549GjVqlNq1a6fIyEhFRESoWbNm6tq1q8aOHauPPvqozPGpqannXX+Hw6G///3v9rwgm23YsEF//OMf1a5dO8XFxSk0NFT169dX165dNW7cOG3atOm8czz88MOudfzkk09qoWrvVNn3elRUlC6//HKNHz9ehw4dKjfu6NGjeueddzR69Gh1795dF110kRwOh3r16mXDq0AgIedrjoy3HjlvLXLeGmQ8fA0Zbw1y3lpkvLXIeOuQ8/A15HzNkfHWI+etRc5bI9AzPsTuAgLZ1q1b9e2330qSCgoKtGDBAo0YMaLKMQ0bNlRSUpJrzI4dO7R06VItXbpU48eP1zPPPOPxur1ZUlKSGjZsWOG+Jk2alNuWkpIip9MpSdq3b5+2b9+ub775RrNmzdKaNWvUsmVLj9brjVatWqX+/fvr+PHjCg4OVkJCgho2bKjDhw/rq6++0rp165SRkVHhLzYJCQlq1qxZpXNXtc8fnTx5Uvfdd5/mzp0rSQoNDVWrVq0UExOjw4cPa8OGDVq3bp2mTJmim2++WcuWLatwnuLiYs2bN8/19ezZs3XDDTfUymvwVr/9Xi8pKdGBAwe0fft2bd++XbNnz9YXX3yhFi1auI5fvXq10tLSbKoWgYqctxYZbw1y3jrkvGeQ8fAFZLz1yPmaI+OtQ8Z7DjkPX0DOW4uMtwY5bx1y3jMCNuMNbDNq1CgjydSpU8dIMqmpqZUee/fddxtJ5u677y6zvbCw0IwZM8ZIMpLM2rVrPVy1d2revLmRZDIyMs577K5du1zrtWvXrjL7Nm3a5Jrrxhtv9EyxXuzYsWOmfv36RpLp27ev2b17d5n9R44cMTNnzjR9+vQps71Hjx5Gkvnb3/5Wi9V6t6KiItO9e3cjyTRu3Ni8+eabJj8/v8wxpet52WWXGafTWelcS5YsKfOzIjIystxcgaKq7/XNmzeb+Ph4I8kMGjSozL7MzExz7bXXmjFjxpj58+ebZ555xkgyPXv2rKXKEYjIeWuQ8dYh561DzluPjIcvIeOtQ85bg4y3DhnvGeQ8fAk5bw0y3jrkvHXIeesFesbTZLfJ6dOnTePGjY0kM2fOHBMcHGwcDof54YcfKjy+ssA2xpiSkhLTsWNHI8mMHDnSw5V7J6tC2xhjFi1aZCQZh8NhcnNzrS/Wi82dO9dIMjExMebEiRNujyOwy5swYYKRZOLj482ePXuqPLa4uNg8/fTTle4fNGiQkWQef/xx07ZtWyPJzJ492+qSfcL5vtdffvllI8nExcVVOU9GRoZPhjZ8BzlvHTLeOuS8dch565Hx8BVkvLXIeWuQ8dYh4z2DnIevIOetQ8Zbh5y3DjlvvUDPeO7JbpMVK1bowIEDuvjii5WWlqbrr79exhi99dZb1Z7L4XCoe/fukqTs7GyrSw041157rSTJGKOcnBybq6ldO3fulCRdcskluuiii2yuxncdPXpUU6dOlSRNnTpVCQkJVR4fEhKixx9/vMJ9x44d09KlSyVJQ4YM0ZAhQySdvfwMymvevLkkqaioyOZKEOjIee8UyBkvkfNWIeftQcbDW5Dx3iuQc56MtwYZbx9yHt6CnPdOgZzxEjlvFXLeHv6e8TTZbTJr1ixJ0p133qng4GANHTpU0oV/ExpjLKst0AXyWsbExEg6+4vf0aNH7S3Ghy1btkz5+fm6+OKL1b9//xrNNX/+fBUUFKhDhw667LLLNGTIEDkcDq1cuVIHDhywpmA/snHjRklSmzZtbK4EgY6c906Bvo7kvDXIeXuQ8fAWZLz3CuS1JOOtQcbbh5yHtyDnvVOgryM5bw1y3h7+nvE02W2Qn5+v999/X5JcQX3bbbcpIiJC3333nTZt2lSt+Ywx+vLLLyVJrVu3trTWQLRmzRpJZ99tmJiYaHM1tat3794KCgrSsWPH1KtXLy1cuFDHjh2zuyyfs3btWklSly5dFBwcXKO5Sn+JL/1Z0aJFC3Xt2lVnzpzR22+/XbNC/URJSYn279+vV155Rf/4xz/kcDg0fvx4u8tCACPnvVcgZ7xEzluFnK89ZDy8DRnv3QI558l4a5DxtYuch7ch571XIGe8RM5bhZyvPYGU8TTZbbBw4UKdPHlSrVu3VufOnSVJ0dHR6tevn6TqvTOuqKhI48aN09atWyVJd9xxh+X1+pLhw4fL4XCUe6Smpro1fsuWLXr00UclSddff73q16/vwWq9zyWXXKKnnnpKkrRp0yYNHDhQcXFxatOmjYYPH6533nlHhYWFlY5/4oknKlz/0kfpeerv9u3bJ+lsuNbE7t279cUXX8jhcCgtLc21ncvPlP1eDw4OVpMmTZSenq527dopMzNTt99+u90lIoCR855BxtccOW8Nct6zyHh4MzLec8j5miHjrUHGex45D29GznsGGV9z5Lw1yHnPCtSMD7G7gEBU+k1W+k1XaujQoXr33Xc1d+5c/fOf/1RISPl/nuXLl7vu5VJQUKAdO3bo+PHjkqRHH33UtS9QJSUlqWHDhuW2t2/fvsLjBw0aJKfTKUnav3+/du/eLWOMGjVqpFdeecWjtXqrCRMmqEuXLvrnP/+pFStWqKioSFlZWcrKytLMmTPVrFkz/e///m+FvwglJCSoWbNmlc4dFRXlwcq9R+n3ZGRkZIX7582bp8GDB5fbnpGRoXvuucf19Zw5c2SM0bXXXlvmHjF33HGH/vSnP2nbtm3avn17pee3Pzv3ez03N1e7d+/Wpk2bNG3aNHXu3FlxcXE2VohARs57BhlvDXK+5sh5zyLj4c3IeM8h52uOjK85Mt7zyHl4M3LeM8h4a5DzNUfOe1bAZrxBrfrxxx9NUFCQkWT+85//lNlXWFho4uLijCTz4Ycfltl39913G0llHsHBwaZBgwbm5ptvNu+9914tvgrv07x5cyPJZGRknPfYXbt2lVtLSSYiIsJcdtllZsyYMebgwYOeL9oHnDx50nz++edmypQp5rrrrjMOh8O1Vt99953ruB49ehhJ5m9/+5t9xXqR/v37G0nm0UcfrXD/ihUrTLdu3VyP2NjYCs/fSy+91Egyr776ark5+vbtaySZsWPHeuIleK2qvtePHDlihg0bZiSZlJQUU1JSUuk8GRkZRpLp2bOnB6tFICLnrUfGew45f2HIec8g4+HtyHjPIOc9g4y/MGS855Dz8HbkvPXIeM8h5y8MOe8ZgZ7xXC6+lr311lsqKSlRcnKyLr300jL7wsLCNGjQIEmVX1Li7rvvljFGxhidPn1aP//8s5YtW6b+/ft7unS/tGvXLtd6njx5Uv/+9781ZcoUNWrUyO7SvEJERISuueYajRkzRqtWrdLnn3+uyMhInTp1Ss8++6zd5XmtJk2aSDp76ZiK9OzZU1988YXrkZKSUu6YDRs2KCsrS6Ghoa6fC79Ver+Xt99+WyUlJdYV78Pq1Kmj119/XU2aNNHGjRu1ePFiu0tCACLnvQcZf37k/IUh52sfGQ9vQMZ7F3K+amT8hSHj7UHOwxuQ896DjD8/cv7CkPO1LxAyniZ7LSsN4s2bN1d4/4vXX39dkrR48WLl5eXZWSpQTvfu3ZWeni7pbKCgYl26dJEkrV27VmfOnLmgOWbNmiVJKi4uVr169cr9rCi9dNW+ffu0atUqawr3A06nU8nJyZI4R2EPch6+jJx3DzlvDzIediPj4cvIePeQ8fYh52E3ch6+jJx3DzlvD3/PeO7JXou2bNmib7/9Vg6Ho8L7kJQ6cuSITp06pYULF2r48OG1WCFwfomJiZKkoqIimyvxXn369FFUVJR++uknvffeexo4cGC1xhcXF+udd96RJNWrV6/Cez1J0okTJ5Sfn6/Zs2erV69eNa7bX5S+S/Dw4cM2V4JAQ87DH5Dz50fO24eMh13IePgDMv78yHh7kfOwCzkPf0DOnx85bx9/zng+yV6LSt8Rd+211+rgwYOVPkaPHl3meKC25ObmyhhT5TFr166VJCUlJdVGST4pLi5ODz30kCTpkUce0Z49e6o1fvny5crNzVVkZKR2795d6c+KhQsXSpIWLVqkkydPWv46fFFBQYG2bNki6ddfLoHaQs7D25Hz1iDn7UHGw05kPLwdGW8NMt4+5DzsRM7D25Hz1iDn7eHvGU+TvZacOXNGc+fOlST94Q9/qPLYu+66S5K0evVq7d271+O1AaXmzJmjjh07avr06Tp06FCZfUePHtVf//pXzZkzR5J4x+Z5PPHEE+rSpYv279+vq666Sm+++aby8/PLHFNcXKwFCxYoKyurzPbSX9YHDBigqKioSp+jZ8+eaty4sfLz8/Xee+9Z/yJ8zJEjR3T//fdr//79CgsL0x133GF3SQgg5Dx8ATlvHXK+dpHxsBMZD19AxluHjK995DzsRM7DF5Dz1iHna1cgZDyXi68ln3zyiQ4ePKjw8PDzXobisssu0xVXXKEtW7borbfe0mOPPVZLVSLQORwOffPNN3rggQf0wAMPqGXLlmrQoIGOHDmiH374wXW5mTFjxmjAgAHlxr/55ptasWJFpfNfe+21euaZZzxWvzcJCwvTJ598ohEjRmj+/Pm699579V//9V9q1aqVYmJidOjQIR04cMD1brbevXvruuuu09GjR7V06VJJ5//lPjg4WGlpaXr++ec1e/ZsDR061OOvy1s888wzmjFjhuvrQ4cOadeuXSosLFRISIhee+01tWjRosyY+vXru/5eWFgoSfr888/LbH/ppZeUlpbm2eLhl8h5+AJy3jrkvOeQ8fA2ZDx8ARlvHTLes8h5eBtyHr6AnLcOOe85gZrxNNlrSem7XG655RbFxsae9/i77rpLW7Zs0ezZswls1Jr09HRdfvnlWr58ub788kv9+OOP2rp1q0JCQtS8eXN16dJF999/v7p3717h+L1791b5Ts7f/nAMBJGRkXrnnXc0atQozZw5U59//rn27dun77//XrGxsWrfvr26d++uIUOGKDk5WZI0ffp0FRYW6uKLL1bPnj3P+xx33XWXnn/+ea1YsUIHDx7UxRdf7OmX5RWys7OVnZ3t+trpdKpJkybq0aOHHnnkEXXo0KHcmHPf6SmdfWfib7cXFBR4pmD4PXIevoCctxY57xlkPLwNGQ9fQMZbi4z3HHIe3oachy8g561FzntGoGa8w5zvZg4AAAAAAAAAAAAAAEAS92QHAAAAAAAAAAAAAMBtNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN9FkBwAAAAAAAAAAAADATTTZAT/SokULORwO7d692+5SLJWamiqHw6HVq1fbXQoAALYh5wEA8E9kPAAA/omMB/wbTXagFuzZs0ejRo1Su3btFBkZqYiICDVr1kxdu3bV2LFj9dFHH9ldIiS98MIL+vvf/66jR4/aXQoAwIeQ876BnAcAVBcZ7xvIeABAdZHxvoGMh7cLsbsAwN+tWrVK/fv31/HjxxUcHKyEhAQ1bNhQhw8f1ldffaV169YpIyNDubm5dpca8F544QX98MMPuueee1SnTh27ywEA+ABy3neQ8wCA6iDjfQcZDwCoDjLed5Dx8HY02QEPysvL05133qnjx4+rb9++evnll9W8eXPX/qNHj2rx4sWaP3++jVUCAIALQc4DAOCfyHgAAPwTGQ/ASjTZAQ9atmyZcnNzFRMTo/nz5+uiiy4qs79OnTq6++67dffdd9tUIQAAuFDkPAAA/omMBwDAP5HxAKzEPdkBD9q5c6ck6ZJLLikX2FVxOBxyOByV7m/RooUcDod2795d6TEfffSRUlNTFRsbq5iYGN1www1as2ZNhcempqbK4XBo9erV2rBhg/r27au6desqMjJSXbt21fvvv1/p8xhjNGfOHPXo0UN16tRRRESE2rRpoz//+c86fPhwpeNOnz6t6dOn67rrrlO9evUUHh6uxMRE3X777Vq8eHGl4841b948hYaGKjIyUh9//HGZfRs2bFBaWpqaNGmisLAwNWrUSIMGDdKWLVvKHDdz5kw5HA798MMPkqSWLVu6/g1K1wUAgHOR8+Q8AMA/kfFkPADAP5HxZDxgKQPAY1588UUjycTGxpojR464PU6Sqerbs3nz5kaS2bVrV4XbJ06caBwOh6lbt65JSUkx9erVM5JMUFCQmT9/frn5evToYSSZJ5980oSFhZmoqCiTkpJiGjdu7Krl2WefLTeupKTEDBkyxHVMYmKiSU5ONmFhYUaSad68ucnJySk37vDhw6Zbt26ucc2bNzcpKSmmYcOGrq8rqu/TTz8ts/311183QUFBJjY21nzxxRdl9j333HPG4XAYSaZu3brmiiuucK1DaGioWbhwoevYZcuWmW7duhmn02kkmZSUFNOtWzfXY/PmzZX+WwAAAhc5T84DAPwTGU/GAwD8ExlPxgNWoskOeFBWVpYJCgoykkynTp3MggULzNGjR887rqahHRISYkaNGmWKioqMMcYUFxebcePGGUkmJibG7N+/v8y40lAMCQkxaWlpJj8/3xhzNpSnTp3q2rd169Yy40p/KYmOjjYff/yxa/uBAwdcoXzVVVeVq79///5GkmnVqpX56quvyuzLzs42kydPrrC+34b2lClTjCTToEGDcqG6fPly43A4TP369cuEszHGzJgxw4SEhJjo6Ohy61DZugIAUBFynpwHAPgnMp6MBwD4JzKejAesRJMd8LD/+Z//cYWwJONwOMyll15q7rnnHjNv3jxTUFBQbkxNQ7tDhw4VjktOTjaSzF//+tcy20tDsWHDhubUqVPlxt12221Gkhk2bJhrW0lJiUlISDCSzPPPP19uzI8//uh6h9zKlStd2zds2GAkGafTaXbs2FHpa6yovtLQ/stf/mIkmaZNm5rvvvuu0te5ePHiCucbPXq0652Av0VoAwCqi5wn5wEA/omMJ+MBAP6JjCfjAatwT3bAwyZMmKBVq1apT58+CgsLkzFGWVlZmjlzptLS0nTJJZdYfg+R9PT0Krd/9NFHFe6/9957FR4e7ta47777Tnv37lV4eLjuv//+cmOaNGmi22+/XZLK3Hul9P4tAwYMUFJSkjsvx8UYoz/96U966qmn1KpVK61Zs0Zt2rQpc8wPP/ygzZs3q2HDhrr11lsrnKd0+2effVat5wcA4FzkPDkPAPBPZDwZDwDwT2Q8GQ9YJcTuAoBAcN111+m6667TqVOntHHjRq1fv17Lli3T6tWrtWfPHvXp00ebN28uF0AX6ne/+12V23fs2HFB43766Sfl5eUpJibGNUezZs0UGRlZ4bi2bduWe77vvvtOknT11Vef72WUM2bMGG3evFlt27bVJ598osaNG5c7Zvv27ZKkgoICde/evcJ5CgoKJEn79u2rdg0AAJyLnCfnAQD+iYwn4wEA/omMJ+MBK9BkB2pRRESErrnmGl1zzTUaM2aMvvjiC9100006ceKEnn32WU2fPt2S52nYsGGF2xs1aiRJOn78eLXG/Xb78ePHFRMTo/z8/CrHVPZ8eXl5kqQ6depUOq4y33//vSSpRYsWql+/foXHHDt2zPU8X375ZZXznTp1qto1AABQGXKenAcA+CcynowHAPgnMp6MB2qCy8UDNurevbvr0i4bNmwot98YU+G4EydOVDnvL7/8UuH2n3/+WZIUHR1drXG/3V46NioqqsycFfnpp5/KPV/p348ePVrpuMpMnz5dbdq00YcffqjBgwfr9OnT5Y4pratbt24yxlT52L17d7VrAADAXeR89ZDzAABfQcZXDxkPAPAVZHz1kPEIdDTZAZslJiZKkoqKilzbSi/nUlGIHjt2TLm5uVXOWXqJl8q2X3LJJRc0rlGjRoqJiSkzx549e1zvkjvXv//973LPV3pJmq+++qrK11CRhg0bauXKlWrdurUWLlyoYcOGqaSkpMwxl112mavmc/edj8PhqHZNAABUhZx3HzkPAPAlZLz7yHgAgC8h491HxiPQ0WQHPCg3N7fSd7eVWrt2rSQpKSnJta00yL/++utyx8+YMeO8zztt2rQqt/fu3bvC/W+88YYKCwvdGve73/1OzZo1U0FBQYU17d+/XwsXLpQk3Xjjja7t/fv3lyS9//77ysnJOe9rOVd8fLxWrVqlFi1aaO7cuRoxYkSZNU5KSlK7du10+PBhzZo1q1pzR0RESOKyNAAA95Dz5DwAwD+R8WQ8AMA/kfFkPGApA8Bjnn/+eXP55Zeb119/3eTm5pbZd+TIEfOXv/zFOBwOI8ksWrTItW/cuHFGkunYsaM5ePCga/vy5ctNTEyMCQkJMZLMrl27yszZvHlzI8mEhISYsWPHmqKiImOMMcXFxWb8+PFGkomOjjb79u0rM65Hjx6ucUOHDjX5+fnGGGNKSkrMyy+/bBwOhwkODjZbtmwpM+7FF180kkxMTIxZsWKFa/vBgwfNNddcYySZq6++uty6DBgwwEgySUlJZsOGDWX2ZWdnmylTplRY36effuratmvXLpOQkGAkmQceeMCUlJS49n344YfG4XCYiy66yEyfPt0UFxeXmS8nJ8c8/fTTZuHChWW29+3b10gyr7zySrmaAQA4FzlPzgMA/BMZT8YDAPwTGU/GA1aiyQ540AsvvGAkuR4tW7Y0V155pUlKSjJhYWGu7WPGjCkz7ueffzYXX3yxkWScTqfp2LGjadGihZFkHnvsMVc4VxbaEydONA6Hw9SrV8907tzZ1K9f30gyQUFBZu7cueXqLA3FJ5980oSFhZno6GiTkpJi4uPjXTVOnjy53LiSkhIzZMgQ1zGtW7c2ycnJrtfWrFkzk5OTU27c4cOHTZcuXVzjWrRoYVJSUkyjRo2MJNO8efMK6/ttaBtzNuBLa3z44YfL7HvppZdMcHCw6xeVTp06lXmOisJ51qxZrn3t2rUzPXr0MD169Cj3ywoAAMaQ8+Q8AMBfkfFkPADAP5HxZDxgJZrsgAcVFRWZVatWmbFjx5quXbuaZs2ambCwMHPRRReZpKQkM2zYMLNmzZoKx+bk5JhBgwaZuLg4ExERYa644gqTkZFhjDHnDe1du3aZzMxMc+2115ro6GgTFRVlrr/+evPZZ59V+Fy/DcX169ebm2++2dSpU8dERESYq6++usy79s5VUlJiZs2aZa655hoTExNjnE6nSUpKMmPHji33bsBz1+bll1823bp1M7GxsSY8PNy0bNnSDBw40CxdurTS+s713XffuYL43F9+tm/fbu677z6TmJhowsPDTWxsrGnbtq0ZPHiweffdd82JEyfKzfevf/3LXH755SYiIsIV4BU9LwAA5Dw5DwDwT2Q8GQ8A8E9kPBkPWMlhzHluQAHA76Wmpuqzzz7Tp59+qtTUVLvLAQAAFiLnAQDwT2Q8AAD+iYwHfEOQ3QUAAAAAAAAAAAAAAOAraLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG5yGGOM3UUAAAAAAAAAAAAAAOAL+CQ7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuIkmOwAAAAAAAAAAAAAAbvp/GgSzlMs32Q0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "filters.analysis.get_descriptors(fragment_library, fragment_library_reduced, fragment_library_custom)" + ] + }, + { + "cell_type": "markdown", + "id": "4820f8d0-a3c8-4522-9f58-19849c8c3b10", + "metadata": {}, + "source": [ + "### 6.2. For every custom filter step" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "5942488c-8cdd-494f-8e26-6f970bd35f77", + "metadata": {}, + "outputs": [], + "source": [ + "filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\")\n", + "fragment_library_filter_res, bool_keys = filters.analysis.filter_res_in_fraglib(fragment_library, filter_results)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "732e0164-a406-4119-b278-4f2775640bb2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m pre-filtered fragment library \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTFElEQVR4nOzde1zUZf7//+cwykFRNMWUkysoWmZhoq6ZqbGQta6WWaGVmrZJWKiVp11zM90VcfOnVIipqbVppFGWWwZrkoZlkmTmEUXDxAMqgshJh/n94Zf5RKIhwrw5PO63GzeZ93W953oyS7x35vW+rstktVqtAgAAAAAAAAAAAAAAv8vB6AAAAAAAAAAAAAAAANQWFNkBAAAAAAAAAAAAAKggiuwAAAAAAAAAAAAAAFQQRXYAAAAAAAAAAAAAACqIIjsAAAAAAAAAAAAAABVEkR0AAAAAAAAAAAAAgAqiyA4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIaGB3ACCUlJcrMzFSTJk1kMpmMjgMAqOesVqvOnz8vDw8POThw/9uN4joPAKgpuMZXLa7xAICagmt81eM6DwCoKSp6na+XRfbMzEx5e3sbHQMAgDKOHj0qLy8vo2PUelznAQA1Ddf4qsE1HgBQ03CNrzpc5wEANc3vXefrZZG9SZMmki6/OE2bNjU4DQCgvsvNzZW3t7ft+oQbw3UeAFBTcI2vWlzjAQA1Bdf4qsd1HgBQU1T0Ol8vi+yly800bdqUCzYAoMZgObSqwXUeAFDTcI2vGlzjAQA1Ddf4qsN1HgBQ0/zedZ4NYwAAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVBBFdgAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFUSRHQAAAAAAAAAAAACACqLIDgAAAAAAAAAAAABABVFkBwAAAAAAAAAAAACggiiyAwAAAAAAAAAAAABQQRTZAQAAAAAAAAAAAACoIIrsAAAAAAAAAAAAAABUUK0oso8aNUomk+maX4WFhUbHBAAAAAAAAAAAAADUcQ2MDnA9OnTooFatWpXb5uBQK+4XAAAAAAAAAAAAAADUYrWqyP63v/1No0aNMjoGAAAAAAAAAAAAAKCeqlVFdgAoj8ViUUpKirKysuTu7q7AwECZzWajYwGo5/jbBAAAAABA7cJ7eQBARVFkB1CrJSQkKDIyUseOHbMd8/T01NSpUxUSEmJgMgD1GX+bAAAAAACoXXgvDwC4HrVqI/O1a9fqwQcf1L333qvQ0FC9/vrrysnJMToWAIMkJCQoIiJC/v7+iouL044dOxQXFyd/f39FREQoISHB6IgA6iH+NgEAAAAAULvwXh4AcL1MVqvVanSI3zNq1CitXLmy3LbmzZtr1apVGjBgQIWfLzc3V25ubsrJyVHTpk2rKiYAO7JYLAoODpa/v79iYmLk4PB/9wyVlJQoPDxcaWlpSkhIYEkn1Hhcl6qWka8nf5sAAL/GNb5q8XoCAGoKrklVj/fyAICaoqLXpFoxk93Pz0//+te/tHPnTuXm5ur8+fNKSEhQz549lZ2drQcffFApKSlXPb+oqEi5ubllvgDUbikpKTp27JjCwsLK/B9fSXJwcNDYsWP1yy+/XPNvAwBUNf42AQAAAABQu/BeHgBQGbViT/aXX375imPBwcHq27ev+vTpo++++05TpkzRxo0byz1/zpw5mjlzZnXHBGBHWVlZkqQOHTqU2156vLQfANgDf5sAAAAAAKhdeC8PAKiMWjGT/WocHR01a9YsSVJSUpKys7PL7Tdt2jTl5OTYvo4ePWrPmACqgbu7uyQpLS2t3PbS46X9AMAe+NsEAAAAAEDtwnt5AEBl1OoiuyT16tVL0uW9UdLT08vt4+TkpKZNm5b5AlC7BQYGytPTU7GxsSopKSnTVlJSosWLF8vLy0uBgYEGJQRQH/G3CQAAAACA2oX38gCAyqj1RfaGDRvavr906ZKBSQDYk9ls1tSpU5WUlKTw8HClpqYqLy9PqampCg8PV1JSkqZMmSKz2Wx0VAD1CH+bAAAAAACoXXgvDwCojFqxJ/u17N692/a9l5eXgUkA2FtISIiio6MVGRmp0NBQ23EvLy9FR0crJCTEwHQA6iv+NgEAAAAAULvwXh4AcL1qfZH9tddekyR16tRJnp6eBqcBYG8hISEKCgpSSkqKsrKy5O7ursDAQO4sBWAo/jYBAAAAAFC78F4eAHA9anyRPTExUV9++aWeeeYZtWvXznY8JydHL7/8slavXi1JmjFjhlERARjMbDarZ8+eRscAgDL42wQAAAAAQO3Ce3kAQEXV+CL7hQsXFBkZqcjISHl6esrDw0MXL17Unj17VFxcLJPJpBkzZmjYsGFGRwUAAAAAAAAAAAAA1HE1vsjerVs3/f3vf9c333yjgwcP6qeffpLVapWnp6f69Omj8PBw7iwDAAAAAAAAAAA3xGKxsFw8AKBCanyR3dvbW7NnzzY6BgAAAAAAAAAAqKMSEhIUGRmpY8eO2Y55enpq6tSpCgkJMTAZAKAmcjA6AAAAAAAAAAAAgFESEhIUEREhf39/xcXFaceOHYqLi5O/v78iIiKUkJBgdEQAQA1DkR0AAAAAAAAAANRLFotFkZGR6tevn2JiYhQQEKDGjRsrICBAMTEx6tevn+bOnSuLxWJ0VABADUKRHQAAAAAAAAAA1EspKSk6duyYwsLC5OBQtmTi4OCgsWPH6pdfflFKSopBCQEANRFFdgAAAAAAAAAAUC9lZWVJkjp06FBue+nx0n4AAEgU2QEAAAAAAAAAQD3l7u4uSUpLSyu3vfR4aT8AACSK7AAAAAAAAAAAoJ4KDAyUp6enYmNjVVJSUqatpKREixcvlpeXlwIDAw1KCACoiSiyAwAAAAAAAACAeslsNmvq1KlKSkpSeHi4UlNTlZeXp9TUVIWHhyspKUlTpkyR2Ww2OioAoAZpYHQAAAAAAAAAAAAAo4SEhCg6OlqRkZEKDQ21Hffy8lJ0dLRCQkIMTAcAqIkosgMAAAAAAAAAgHotJCREQUFBSklJUVZWltzd3RUYGMgMdgBAuSiyAwAAAAAAAACAes9sNqtnz55GxwAA1ALsyQ4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIJYLh4AAAAAAAAAAADlslgs7FVfDl4XoH6jyA4AAAAAAAAAAIArJCQkKDIyUseOHbMd8/T01NSpUxUSEmJgMmPxugBguXgAAAAAAAAAAACUkZCQoIiICPn7+ysuLk47duxQXFyc/P39FRERoYSEBKMjGoLXBYAkmaxWq9XoEPaWm5srNzc35eTkqGnTpkbHAQDUc1yXqhavJwCgpuCaVLV4PQEANQXXpKrHa1rzWCwWBQcHy9/fXzExMXJw+L85myUlJQoPD1daWpoSEhLq1RLpvC5A3VfRaxIz2QEAAAAAQLU4deqUXnrpJXXu3FmNGjWSs7Oz/Pz89Mwzz+jgwYNGxwMAAMBVpKSk6NixYwoLCytTSJYkBwcHjR07Vr/88otSUlIMSmgMXhcApdiTHQAAAAAAVLn9+/frnnvu0alTp9SwYUP5+vqqYcOGOnjwoJYsWaL33ntPn332mfr27Wt0VAAAAPxGVlaWJKlDhw7ltpceL+1XX/C6ACjFTHYAAAAAAFDlxo0bp1OnTql3795KT0/Xvn37tGvXLv3yyy8aNGiQ8vPz9dRTT6ke7mIHAABQ47m7u0uS0tLSym0vPV7ar77gdQFQiiI7AAAAAACoUvn5+dq0aZMkadGiRfLy8rK1tWjRQitWrJDJZNLhw4e1b98+o2ICAADgKgIDA+Xp6anY2FiVlJSUaSspKdHixYvl5eWlwMBAgxIag9cFQCmK7AAAAAAAoEoVFxfbPnT09fW9or158+a66aabJEmXLl2yazYAAAD8PrPZrKlTpyopKUnh4eFKTU1VXl6eUlNTFR4erqSkJE2ZMkVms9noqHbF6wKgFHuyAwAAAACAKtWsWTN5e3vr6NGj2rp1q4KDg8u079+/X2fOnFGzZs2uup8lAAAAjBUSEqLo6GhFRkYqNDTUdtzLy0vR0dEKCQkxMJ1xeF0ASBTZAQAAAABANZg9e7ZGjhyp0aNHa8GCBerXr58aNGigb7/9VhMmTJDJZFJUVJScnZ2NjgoAQL1jtVqVnJysdevWacuWLdq3b5/y8/PVsmVL9erVS88995z69+9/xXmvvPKKZs6cec3n3rt3rzp16lRd0WFnISEhCgoKUkpKirKysuTu7q7AwMB6P1Ob1wUARXYAAAAAAFDlRowYIVdXV82aNUtDhw4t03b77bfrs88+04ABA656flFRkYqKimyPc3Nzqy0rAAD1zZdffqk//elPkiQHBwe1b99ejRs3VlpamuLj4xUfH6/p06dr1qxZ5Z7v7e0tHx+fctsaNWpUbblhDLPZrJ49exodo8bhdQHqN/ZkBwAAAAAAVc5qtSo9PV1nzpyR2WxW+/btdeutt8rR0VE//fST3nrrLZ09e/aq58+ZM0dubm62L29vbzumBwCgbrNarWrfvr1iYmJ0+vRp7d+/Xzt27NCZM2c0bdo0SZdXpVm/fn25548ePVpff/11uV9XK74DAFCXUGQHAAAAAABVLiwsTJMmTZK3t7cOHjyotLQ07d69W0ePHtUDDzygjz76SP3795fFYin3/GnTpiknJ8f2dfToUTv/BAAA1F09evTQ3r179eyzz6p58+a2446OjvrXv/6l+++/X5K0ZMkSoyIaIi8vT+Hh4frLX/6i8PBw5eXlGR2pRrBYLNq2bZvWr1+vbdu2XfX/vwFAfcJy8QAAAAAAoErt3LlTS5YsUcOGDfX++++XmYXeqlUrvffee/Lz89OPP/6oDz74QMOGDbviOZycnOTk5GTP2AAA1BtNmza9ZntwcLA+//xzHThwwE6JjDd06FDt2rXL9vjAgQPq1q2bunTporVr1xqYzFgJCQmKjIzUsWPHbMc8PT01depUhYSEGJgMAIzFTHYAAAAAAFClkpOTZbVa5e/vX+4y702bNlWPHj0kSSkpKfaOBwAAfkdhYaEkycXFpdz2TZs26ZFHHtG9996roUOHKioqSidOnLBnxCpVWmA3mUwaPHiw1q1bp8GDB8tkMmnXrl0aOnSo0RENkZCQoIiICPn7+ysuLk47duxQXFyc/P39FRERoYSEBKMjAoBhmMkOAAAAAACq1Pnz53+3j9VqlfR/H+IDAICawWq1as2aNZKk3r17l9tn8+bNZR5/+OGHeuWVVxQTE6NRo0ZVd8QqlZeXZyuw//DDD3J2dpYkRUVF6dVXX1VAQIB27dqlvLw8ubq6GpzWfiwWiyIjI9WvXz/FxMTIweHynM2AgADFxMQoPDxcc+fOVVBQkMxms8FpAcD+mMkOAAAMderUKb300kvq3LmzGjVqJGdnZ/n5+emZZ57RwYMHjY4HAAAqoUOHDpIuL7Na3l7qubm52r59uyTJ39/frtkAAMC1LVmyRKmpqXJ0dNSECRPKtLVp00Z/+9vftH37dp05c0b5+flKTk7W/fffr4KCAo0ePVqffvrp745RVFSk3NzcMl9GmTx5siRp0KBBtgJ7KWdnZw0cOLBMv/oiJSVFx44dU1hYmK3AXsrBwUFjx47VL7/8wqpEAOotiuwAAMAw+/fvV5cuXfTaa68pLS1NPj4+6tChgzIzM7VkyRLdcccd+uqrr4yOCQAArlNISIhatmypixcvKjQ0VEeOHLG1nTp1So8//rhOnz4tZ2fnerv8KgAANdGOHTs0fvx4SdLs2bPl5+dXpn3s2LH65z//qcDAQN10001ycXHRXXfdpf/+97966KGHZLVaNXHiRNuKNVczZ84cubm52b7K217GXkpvCBw9enS57U899VSZfvVFVlaWpP+7efK3So+X9gOA+oYiOwAAMMy4ceN06tQp9e7dW+np6dq3b5927dqlX375RYMGDVJ+fr6eeuqp331zXhNZLBZt27ZN69ev17Zt22SxWIyOBACA3bi6uuqdd96Rs7Oztm7dqvbt28vf31+dO3eWt7e31q9frwYNGig2Nlaenp5GxwUAAJIOHz6sgQMHqrCwUMOHD9dLL71U4XNNJpMiIyMlSYcOHdKPP/54zf7Tpk1TTk6O7cvIAnZpgf/tt98ut3358uVl+tUX7u7ukqS0tLRy20uPl/YDgPqGIjsAADBEfn6+Nm3aJElatGiRvLy8bG0tWrTQihUrZDKZdPjwYe3bt8+omJWSkJCg4OBgjRgxQi+++KJGjBih4OBgJSQkGB0NAAC7uf/++7Vz504988wzateunTIyMnTw4EG1adNGTz75pLZt26aRI0caHRMAAEg6ceKEgoODdfz4cf35z3+2vSe/Hv7+/rrpppsk6Xe3f3NyclLTpk3LfBklKipKkvTJJ5+osLCwTFthYaHWr19fpl99ERgYKE9PT8XGxqqkpKRMW0lJiRYvXiwvLy8FBgYalBAAjEWRHQAAGKK4uNj2Js3X1/eK9ubNm9venF+6dMmu2W5EQkKCIiIi5O/vr7i4OO3YsUNxcXHy9/dXREQEhXYAQL3i7++vxYsXKy0tTYWFhSoqKtKRI0f0zjvv6M477zQ6HgAAkHT27FkFBwfr0KFD6tu3r9asWaOGDRtW6rlKz6tN7+NdXV3VpUsXWa1WBQQE6KWXXtLu3bv10ksvKSAgQFarVV26dJGrq6vRUe3KbDZr6tSpSkpKUnh4uFJTU5WXl6fU1FSFh4crKSlJU6ZMkdlsNjoqABjCZK2N66/eoNzcXLm5uSknJ8fQO+QAAJDq93XJx8dHR48etc38/rX9+/erU6dOatasmY4fPy5nZ+cKPaeRr6fFYlFwcLD8/f0VExMjB4f/u5+xpKRE4eHhSktLU0JCAm9CAaAeqM/X+OrA6wkAqCnq0jUpLy9Pf/rTn7Rt2zZ1795dGzduVJMmTSr1XKdPn1arVq1ktVr19ddfq3fv3hU+tya8pkOHDtWuXbuuON6lSxetXbvWgEQ1Q0JCgiIjI3Xs2DHbMS8vL02ZMkUhISEGJgOA6lHRa1IDO2YCAAAoY/bs2Ro5cqRGjx6tBQsWqF+/fmrQoIG+/fZbTZgwQSaTSVFRUdcssBcVFamoqMj2ODc31x7Ry5WSkqJjx45p/vz5ZQrskuTg4KCxY8cqNDRUKSkp6tmzp0EpAQAAAAC4/H568ODB2rZtmzp37qwNGzZUusAuSfPnz5fVapWbm5u6d+9ehUntY+3atcrLy9PkyZN19OhReXt7Kyoqqt7NYP+tkJAQBQUFKSUlRVlZWXJ3d1dgYCCTBwDUexTZAQCAYUaMGCFXV1fNmjVLQ4cOLdN2++2367PPPtOAAQOu+Rxz5szRzJkzqzNmhWVlZUmSOnToUG576fHSfgAAAAAAGMFisSg0NFRffvml/Pz8lJiYaNuy7Wp2796tN998U+PGjVPnzp1txwsLCzV//nzNnTtXkjRlyhQ5OjpWa/7q4urqqpiYGKNj1Dhms5nJAgDwGxTZAQCAYaxWq9LT03XmzBmZzWa1a9dOjo6OOnjwoH766Se99dZb6tGjxzXf6E+bNk0vvPCC7XFubq68vb3tEf8K7u7ukqS0tDQFBARc0Z6WllamHwAAAAAARvjggw/08ccfS7q88tojjzxSbr82bdpozZo1kqSLFy9q0aJFWrRokdzd3eXj4yNJ2rt3r/Lz8yVJY8aM0dSpU6v/BwAAwGAU2QEAgGHCwsL01ltv6a677tLmzZv1hz/8QZJ06tQpjRkzRh999JEOHTqkHTt2XHUZMicnJzk5Odkx9dUFBgbK09NTsbGx5e7JvnjxYnl5eSkwMNDAlAAAAACA+u7X266lpaXZbgr/rbZt29q+/8Mf/qBZs2Zp69at2rdvn/bv36/i4mK1atVKDzzwgJ5++mndd9991Z4dAICawGS1Wq1Gh7C3im5YDwCAPdTX69LOnTvVtWtXNWjQQIcOHbpi9nlubq78/Px0+vRprVq1SsOGDavQ8xr9eiYkJCgiIkL9+vXT2LFj1aFDB6WlpWnx4sVKSkpSdHS0QkJC7J4LAGB/Rl+T6hpeTwBATcE1qerVlNc0JydHYWFhyszMlIeHh2JjY+Xm5mZYHqA2slgsSklJUVZWltzd3RUYGHjVyTNATVTRaxIz2QEAgCGSk5NltVrl7+9f7vLuTZs2VY8ePfTZZ58pJSWlwkV2o4WEhCg6OlqRkZEKDQ21Hffy8qLADgAAAABADRUcHKyMjAzb4xMnTqhHjx7y8fFRYmKigcmA2iMhIUGRkZE6duyY7Zinp6emTp3KZ2Kocxx+vwsAAEDVO3/+/O/2KV1wp7CwsLrjVKmQkBAlJibqnXfe0WuvvaZ33nlHCQkJvJkAAAAAAKAG+nWBvU+fPnr//ffVp08fSVJGRoaCg4ONjAfUCqWrO/r7+ysuLk47duxQXFyc/P39FRERoYSEBKMjAlWKmewAAMAQHTp0kCQdOHBAR48eLXe5+O3bt0uS/P397Z7vRpnNZvXs2dPoGAAAAAAA4BpycnJsBfbU1FQ1atRIkrR06VLl5+era9euysjIUE5ODkvHA1dhsVgUGRmpfv36KSYmRg4Ol+f4BgQEKCYmRuHh4Zo7d66CgoJYOh51BjPZAQCAIUJCQtSyZUtdvHhRoaGhOnLkiK3t1KlTevzxx3X69Gk5Oztr6NChxgUFAAAAAAB1VlhYmKTLM9hLC+ylGjVqpN69e5fpB+BKKSkpOnbsmMLCwmwF9lIODg4aO3asfvnlF6WkpBiUEKh6FNkBAIAhXF1d9c4778jZ2Vlbt25V+/bt5e/vr86dO8vb21vr169XgwYNFBsbK09PT6PjAgAAAACAOigzM1OSNG7cuHLbw8PDy/QDcKWsrCxJ/7dy5W+VHi/tB9QFFNkBAIBh7r//fu3cuVPPPPOM2rVrp4yMDB08eFBt2rTRk08+qW3btmnkyJFGxwQAAAAAAHWUh4eHJOnNN98stz0mJqZMPwBXcnd3lySlpaWV2156vLQfUBewJzsAADCUv7+/Fi9ebHQMAAAAAABQD8XGxqpHjx7asmWL8vPzyywZn5+fr+TkZFs/AOULDAyUp6enYmNjy+zJLkklJSVavHixvLy8FBgYaGBKoGoxkx0AAAAAAAAAANRLbm5u8vHxkSR17dpVo0ePVkpKikaPHq2uXbtKknx8fOTm5mZkTKBGM5vNmjp1qpKSkhQeHq7U1FTl5eUpNTVV4eHhSkpK0pQpU2Q2m42OClQZZrIDAAAAAAAAAIB6KzExUcHBwcrIyFBycrJt9rp0ucCemJhoYDqgdggJCVF0dLQiIyMVGhpqO+7l5aXo6GiFhIQYmA6oehTZAQAAAAAAAABAvZaYmKicnByFhYUpMzNTHh4eio2NZQY7cB1CQkIUFBSklJQUZWVlyd3dXYGBgcxgR51EkR0AAAAAAAAAANR7bm5uWr16tdExgFrNbDarZ8+eRscAqh17sgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAQL2Xl5en8PBw/eUvf1F4eLjy8vKMjlQj5OTkaNiwYerbt6+GDRumnJwcoyMBgOFYLh4AAAAAAAAAANRrQ4cO1a5du2yPDxw4oG7duqlLly5au3atgcmMFRwcrIyMDNvjEydOqEePHvLx8VFiYqKByQDAWMxkBwAAAAAAAAAA9VZpgd1kMmnw4MFat26dBg8eLJPJpF27dmno0KFGRzTErwvsffr00fvvv68+ffpIkjIyMhQcHGxkPAAwFDPZAQAAAAAAAABAvZSXl2crsP/www9ydnaWJEVFRenVV19VQECAdu3apby8PLm6uhqc1n5ycnJsBfbU1FQ1atRIkrR06VLl5+era9euysjIUE5Ojtzc3IyMCgCGoMgOAAAAAAAAAADqpcmTJ0uSBg0aZCuwl3J2dtbAgQP16aefavLkyYqJiTEioiHCwsIkXZ7BXlpgL9WoUSP17t1bycnJCgsL0+rVq42IWKUKCgqUnp5u93F9fX3l4uJi93EB3DiK7AAAAAAAAAAAoF46evSoJGn06NHltj/11FP69NNPbf3qi8zMTEnSuHHjym0PDw9XcnKyrV9tl56eriFDhth93Pj4eHXu3Nnu4wK4cRTZAQAAAAAAAABAveTt7a0DBw7o7bffVlRU1BXty5cvt/WrTzw8PHTixAm9+eabWrp06RXtpbP6PTw87B2tWvj6+io+Pv66zzt06JAmTZqkefPmyc/Pr1LjAqidKLIDAAAAAAAAAIB6KSoqSt26ddMnn3yiV199tcyS8YWFhVq/fr2tX30SGxurHj16aMuWLcrPzy+zZHx+fr6Sk5Nt/eoCFxeXG5pR7ufnx4x0oJ5xMDoAAAAAAAAAAACAEVxdXdWlSxdZrVYFBATopZde0u7du/XSSy8pICBAVqtVXbp0kaurq9FR7crNzU0+Pj6SpK5du2r06NFKSUnR6NGj1bVrV0mSj4+P3NzcjIwJAIZhJjsAAAAAAAAAAKi31q5dq6FDh2rXrl369NNP9emnn9raunTporVr1xqYzjiJiYkKDg5WRkaGkpOTbbPXpcsF9sTERAPTAYCxKLIDAAAAAAAAAIB6be3atcrLy9PkyZN19OhReXt7Kyoqqt7NYP+txMRE5eTkKCwsTJmZmfLw8FBsbCwz2AHUexTZAQAAAAAAAABAvefq6qqYmBijY9Q4bm5uWr16tdExAKBGYU92AAAAAAAAAAAAAAAqiCI7AAAAAAAAAAAAypWTk6Nhw4apb9++GjZsmHJycoyOBACGq7VF9unTp8tkMslkMmn27NlGxwEAAAAAAAAAAKhTgoOD1aNHD+3YsUMnTpzQjh071KNHDwUHBxsdDQAMVSuL7Hv37tW8efOMjgEAAAAAAAAAAFAnBQcHKyMjQ5LUp08fvf/+++rTp48kKSMjg0I7gHqtgdEBrpfVatXYsWPVsGFD3X333fryyy+NjgQAAAAAAAAAAFBn5OTk2ArsqampatSokSRp6dKlys/PV9euXZWRkaGcnBy5ubkZGRUADFHriuzLli3Tli1bNHfuXO3Zs8foODcsLy9PkydP1tGjR+Xt7a2oqCi5uroaHQs1VEFBgaKiovTzzz+rbdu2mjx5slxcXIyOZTheFwAAAAAAAAC/VlBQoPT0dLuP6+vrWyc+mwwLC5N0eQZ7aYG9VKNGjdS7d28lJycrLCxMq1evNiIiABiqVhXZs7KyNGXKFN16662aOHGi/vrXvxod6YYMHTpUu3btsj0+cOCAunXrpi5dumjt2rUGJkNNFB4ero0bN9oeJycna9WqVQoKClJMTIyByYzF6wIAAAAAAADgt9LT0zVkyBC7jxsfH6/OnTvbfdyqlpmZKUkaN25cue3h4eFKTk629QOA+qZWFdknTpyos2fPKj4+Xg0bNjQ6zg0pLbCbTCYNGjRIo0eP1ttvv61PPvlEu3bt0tChQym0w6a0kNywYUM99dRTtt+P5cuXa+PGjQoPD6+XBWVeFwAAAAAAAADl8fX1VXx8/HWfd+jQIU2aNEnz5s2Tn59fpcatCzw8PHTixAm9+eabWrp06RXtpZ+7enh42DsaANQItabIvnHjRr333nt64okn1LdvX6Pj3JC8vDxbgf2HH36Qs7OzJCkqKkqvvvqqAgICtGvXLuXl5bF0PFRQUGArJO/YsUOOjo6SpBdffFHPP/+87rzzTm3cuFEFBQV1YhmiiuJ1AQAAAAAAAHA1Li4uNzSj3M/Pr07MSK+s2NhY9ejRQ1u2bFF+fn6ZJePz8/OVnJxs6wcA9VGtKLIXFhYqLCxMbm5u+ve//33d5xcVFamoqMj2ODc3tyrjXbfJkydLkgYNGmQrsJdydnbWwIED9emnn2ry5Ml1YhYue9/cmKioKEnSU089ZSskl3J0dNTIkSO1dOlSRUVF6R//+IcREQ3B6wIAAAAAAAAA1cPNzU0+Pj7KyMhQ165d1bt3b9vKoaUFdh8fH7m5uRmcFACMUSuK7LNnz9bBgwf1xhtv6Oabb77u8+fMmaOZM2dWQ7LKOXr0qCRp9OjR5bY/9dRT+vTTT239ajv2vrkxP//8s6TLWwyUZ+jQoVq6dKmtX33B6wIAAAAAAAAA1ScxMVHBwcHKyMhQcnKyrbguXS6wJyYmGpgOAIxV44vse/fu1bx583TnnXfq2WefrdRzTJs2TS+88ILtcW5urry9vasq4nXz9vbWgQMH9Pbbb9tm4/7a8uXLbf3qAva+uTFt27ZVcnKy1q5dqxdffPGK9rVr19r61Se8LgAAAAAAAABQvRITE5WTk6OwsDBlZmbKw8NDsbGxzGAHUO/V+CJ7eHi4Ll26pEWLFsnBwaFSz+Hk5CQnJ6cqTlZ5UVFR6tatmz755BO9+uqrZZaMLyws1Pr162396gL2vrkxkydP1qpVq7R8+XI9//zzZZZGLy4u1sqVK2396hNeFwAAAAAAAACofm5ublq9erXRMQCgRqlc1dqOUlNTZTKZNGjQILVu3brMV1xcnCRp7ty5at26tbp3725w2opxdXVVly5dZLVaFRAQoJdeekm7d+/WSy+9pICAAFmtVnXp0kWurq5GR0UN4OLioqCgIF28eFF33nmn5s2bp8OHD9tWeLh48aKCgoLqxP7z14PXBQAAAAAAAAAAAEao8TPZJclisejkyZNXbc/Ly1NeXl6ZGeE13dq1azV06FDt2rVLn376qT799FNbW5cuXWxLXQOSFBMTo/DwcG3cuFFLly7V0qVLbW1BQUGKiYkxMJ1xeF0AoPZhiTkAAAAAAAAAtV2NL7KfO3fuqm2jRo3SypUrNWvWLE2fPt1+oarI2rVrlZeXp8mTJ+vo0aPy9vZWVFQUM9hRrpiYGBUUFCgqKko///yz2rZtq8mTJ9f7mdq8LgBQewQHBysjI8P2+MSJE+rRo4d8fHyUmJhoYDIAAAAAAHA1+/fv10MPPSSLxSKz2ayPPvpIHTt2NDoWaiiLxaKUlBRlZWXJ3d1dgYGBMpvNRsdCDVZbf2dqfJG9rnN1dWW2LSrMxcVF//jHP4yOUePwugBAzffrAnufPn00btw4vfnmm9qyZYsyMjIUHBxMoR0AAAAAgBrmt8V0i8WiQYMGSbpcfAd+LSEhQZGRkTp27JjtmKenp6ZOnaqQkBADk6Gmqs2/MzV+T3YAAADUbjk5ObYCe2pqqpYuXaquXbtq6dKlSk1NlSRlZGQoJyfHyJgAAAAAAOBXfl1gd3Jy0vjx4+Xk5FRuO5CQkKCIiAj5+/srLi5OO3bsUFxcnPz9/RUREaGEhASjI6KGqe2/M8xkBwAA+B0FBQVKT0+3+7i+vr51YvuLsLAwSZdnsDdq1KhMW6NGjdS7d28lJycrLCxMq1evNiIiAAAAAAD4lV/PUt+0aZM8PDwkSeHh4crMzFT//v1t/Si2w2KxKDIyUv369VNMTIwcHC7P8Q0ICFBMTIzCw8M1d+5cBQUF1YplwFH96sLvTK0usq9YsUIrVqwwOgYAAKjj0tPTNWTIELuPGx8fr86dO9t93KqWmZkpSRo3bly57eHh4UpOTrb1AwAAAAAAxnrooYckXZ7BXlpgL+Xh4SFHR0cVFxfroYce0p49e4yIiBokJSVFx44d0/z5823F0lIODg4aO3asQkNDlZKSop49exqUEjVJXfidqdVFdgAAAHvw9fVVfHz8dZ936NAhTZo0SfPmzZOfn1+lxq0LPDw8dOLECb355ptaunTpFe0xMTG2fgAAAAAAwHgWi0XS/61O91tjxozRokWLbP1Qv2VlZUmSOnToUG576fHSfkBd+J2hyA4AAPA7XFxcbmhGuZ+fX52YkV5ZsbGx6tGjh7Zs2aL8/PwyS8bn5+crOTnZ1g8AUPdYLBa9/fbb+s9//qPdu3crLy9PN998s7p27aqnnnpKgwcPNjoiAAAAfsNsNstisSg2Nlbh4eFXtC9btszWD3B3d5ckpaWlKSAg4Ir2tLS0Mv2AuvA74/D7XQAAAIDKc3Nzk4+PjySpa9euGj16tFJSUjR69Gh17dpVkuTj4yM3NzcjYwIAqkF2drbuvvtuPfPMM9qyZYtatmyp2267TRcvXtS6dev07rvvGh0RAAAA5fjoo48kSUVFRVds75aZmani4uIy/VC/BQYGytPTU7GxsSopKSnTVlJSosWLF8vLy0uBgYEGJURNUxd+ZyiyAwAAoNolJibaCu3Jycl6/PHHbTPYfXx8lJiYaGQ8AEA1KCkp0aBBg/Ttt99qyJAhysjI0L59+5SSkqLMzEwdPXpUERERRscEAABAOTp27Gj7vn///urSpYsWLFigLl26qH///uX2Q/1lNps1depUJSUlKTw8XKmpqcrLy1NqaqrCw8OVlJSkKVOmsPIBbOrC7wzLxQMAAMAuEhMTlZOTo7CwMGVmZsrDw0OxsbHMYAeAOuqtt97S119/rf79+2vNmjVycCh7n7+Xl5e8vLwMSgcAAIDfs3//flsRvbi4WIsWLbqiHSgVEhKi6OhoRUZGKjQ01Hbcy8tL0dHRCgkJMTAdaqLa/jtDkR0AAAB24+bmptWrVxsdAwBgBwsXLpQkzZo164oCOwAAAGqH/fv3a//+/XrooYdksVhkNpv10UcfMYMd5QoJCVFQUJBSUlKUlZUld3d3BQYG1ujZyDBWbf6docgOAAAAAACqVFpamvbt26ebbrpJd911l9atW6c1a9bo+PHjcnd315/+9Cc9+eSTcnJyMjoqAAD1ktVqVXJystatW6ctW7Zo3759ys/PV8uWLdWrVy8999xzZZYE/61vvvlGkZGR2rp1q/Ly8tSuXTsNGzZMkyZNkrOzsx1/EthDx44dtWfPHqNjoJYwm83q2bOn0TFQi9TW3xmK7AAAAAAAoEp9//33kqROnTrpySef1HvvvVemPS4uTq+99po2bNigtm3bGhERAIB67csvv9Sf/vQnSZKDg4Pat2+vxo0bKy0tTfHx8YqPj9f06dM1a9asK8597733NHLkSFksFnl6esrb21s//fSTZsyYoU8//VRJSUlq1KiRvX8kAADsivXaAAAAAABAlTp+/Lgkafv27Xrvvff09NNP68iRIyosLNT//vc/+fr6at++fXr44YdVUlJS7nMUFRUpNze3zBcAAKgaVqtV7du3V0xMjE6fPq39+/drx44dOnPmjKZNmyZJmj17ttavX1/mvCNHjmjMmDGyWCyKiorS0aNHtWPHDqWlpaljx47avn27Jk+ebMSPBACAXVFkBwAAAAAAVerChQuSpIsXL6pPnz5asmSJ2rZtKycnJwUFBSk+Pl4mk0nff/+9/vvf/5b7HHPmzJGbm5vty9vb254/AgAAdVqPHj20d+9ePfvss2revLntuKOjo/71r3/p/vvvlyQtWbKkzHnz5s1TUVGRQkJCNGnSJJlMJklS27Zt9fbbb0uS3nrrLZ08edJOPwkAAMagyA4AAAAAAKrUr/diHT9+/BXtd9xxh22f1w0bNpT7HNOmTVNOTo7t6+jRo9UTFgCAeqhp06Zq0ODqu8kGBwdLkg4cOGA7ZrVa9dFHH0mSxowZc8U5d911lzp16qSLFy9q3bp1VZwYAICahSI7AAAAAACoUr+eEdepU6dy+9xyyy2SLi87Wx4nJyc1bdq0zBcAALCPwsJCSZKLi4vtWEZGhm1LmN69e5d7Xunxbdu2VXNCAACMdfVb1QAAAAAAACqhY8eOtu+dnJzK7VN63GKx2CUTAACoGKvVqjVr1kgqW0xPS0uTdPka7uHhUe65vr6+ZfpeTVFRkYqKimyPc3NzbygzKq6goEDp6el2H9fX17fMTRsAUNtRZAcAAAAAAFWqa9eucnZ2VmFhodLT09W+ffsr+pR+uOvp6WnveAAA4BqWLFmi1NRUOTo6asKECbbj2dnZkqRmzZrZ9mL/rdLVbEr7Xs2cOXM0c+bMqgmM65Kenq4hQ4bYfdz4+Hh17tzZ7uMCQHWhyA4AAAAAAKpU48aN9cADDyg+Pl4rV65USEhImfYTJ07oiy++kCTde++9RkQEAADl2LFjh8aPHy9Jmj17tvz8/GxtpUvIOzo6XvX80pVqCgoKrjnOtGnT9MILL9ge5+bmytvbu9K5UXG+vr6Kj4+/7vMOHTqkSZMmad68eWV+L65nXACoSyiyAwAAAACAKjdjxgytW7dO77//vkJCQjRy5EhJ0rlz5zRq1CgVFBTI19dXjzzyiMFJAQCAJB0+fFgDBw5UYWGhhg8frpdeeqlMu7OzsySpuLj4qs9RugT87y0L7uTkdNUtZVC9XFxcbmhGuZ+fHzPSAUCSg9EBAAAAAABA3XPHHXfojTfekNVq1ahRo9S2bVt1795dnp6e+uKLL9SyZUt9+OGH15wNBwAA7OPEiRMKDg7W8ePH9ec//1krVqy4Ykn40qXgz507J6vVWu7zlC4TX9oXAIC6iiI7AAAAAACoFmFhYfrqq6/0l7/8Rfn5+frxxx/VqlUrjRs3Tj/88IMCAgKMjggAQL139uxZBQcH69ChQ+rbt6/WrFmjhg0bXtGvQ4cOki7PVs/MzCz3udLT08v0BQCgrmK5eAAAAAAAUG369OmjPn36GB0DAACUIy8vTw888IB++uknde/eXZ9++ulVl3r38fFR69atdeLECSUnJ+vRRx+9ok9ycrIkqWfPntWaGwAAozGTHQAAAAAAAACAeqaoqEiDBw/Wtm3b1LlzZ23YsEFNmjS5an+TyaSHHnpIkrRs2bIr2rdu3ap9+/apYcOGGjRoULXlBgCgJqDIDgAAAAAAAABAPWKxWBQaGqovv/xSfn5+SkxM1E033fS7502aNEmOjo5KSEjQvHnzbHuz//zzzxo9erQk6emnn1br1q2rNT8AAEZjuXgAAAAAAAAAAOqRDz74QB9//LEkycHBQY888ki5/dq0aaM1a9bYHrdr105LlizRU089pcmTJ2vhwoVq1aqVfvrpJ128eFHdunXTvHnz7PEjAABgKIrsAAAAAAAAAADUI0VFRbbv09LSlJaWVm6/tm3bXnFsxIgRat++vebMmaOtW7dqz5498vX11bBhwzRlyhQ5OztXW24ANV9xcbFWrVqljIwM+fj4aPjw4XJ0dDQ6FlDlKLIDAAAAAAAAAFCPjBo1SqNGjar0+XfddZc+/fTTqgsEoE6IiorSihUrZLFYyhwbNWqUJk+ebGAyoOqxJzsAAAAAAAAAAACASouKitKyZcvUrFkzzZo1S19//bVmzZqlZs2aadmyZYqKijI6IlClKLIDAAAAAAAAAAAAqJTi4mKtWLFCLVq00ObNm/Xoo4/K3d1djz76qDZv3qwWLVpoxYoVKi4uNjoqUGUosgMAAAAAAAAAAAColFWrVslisWjChAlq0KDsTtUNGjTQ+PHjZbFYtGrVKoMSAlWPIjsAAAAAAAAAAACASsnIyJAk9e/fv9z2fv36lekH1AUU2QEAAAAAAAAAAABUio+PjyRp06ZN5bYnJSWV6QfUBRTZAQAAAAAAAAAAAFTK8OHDZTabtWDBAl26dKlM26VLl7Rw4UKZzWYNHz7coIRA1aPIDgAAAAAAUEEWi0Xbtm3T+vXrtW3bNlksFqMjAQAAAIZydHTUqFGjdObMGd1zzz2Ki4vTyZMnFRcXp3vuuUdnzpzRqFGj5OjoaHRUoMo0MDoAAAAAAABAbZCQkKDIyEgdO3bMdszT01NTp05VSEiIgckAAPXFyZMnlZmZqY4dO6pRo0ZGxwEAm8mTJ0uSVqxYoRkzZtiOm81mjRkzxtYO1BXMZAcAAAAAAPgdCQkJioiIkL+/v+Li4rRjxw7FxcXJ399fERERSkhIMDoiAKAO2LZtm1544QX997//LXM8NzdXgwcPloeHhwIDA9W6dWstX77coJQAUL7Jkyfrhx9+0LRp0/T4449r2rRp+uGHHyiwo05iJjsAAAAAAMA1WCwWRUZGql+/foqJiZGDw+U5CwEBAYqJiVF4eLjmzp2roKAgmc1mg9MCAGqzpUuX6u2339aDDz5Y5vikSZP06aefysHBQW5ubsrOztZf//pXBQYGqkuXLsaEBYBylC4dD9R1zGQHAAAAAAC4hpSUFB07dkxhYWG2AnspBwcHjR07Vr/88otSUlIMSggAqCuSk5PVuHFj3XPPPbZjeXl5evfdd9WkSRP99NNPOnPmjBYsWKCSkhK99tprBqYFAKD+osgOAAAAAABwDVlZWZKkDh06lNteery0HwAAlXXy5El5e3uXOfbVV1+psLBQjz32mDp16iRJeu6559SyZUtt27bNiJgAcFUWi0Xbtm3T+vXrtW3bNlksFqMjAdWC5eIBAAAAAACuwd3dXZKUlpamgICAK9rT0tLK9AMAoLLOnz8vX1/fMse+/vprmUwmBQcH2445ODjoD3/4g/bs2WPviABwVQkJCYqMjNSxY8dsxzw9PTV16lSFhIQYmAyoesxkBwAAAAAAuIbAwEB5enoqNjZWJSUlZdpKSkq0ePFieXl5KTAw0KCEAIC6okWLFvr5559ltVptx/73v/9Jkvr27Vum78WLF+Xo6GjXfABwNQkJCYqIiJC/v7/i4uK0Y8cOxcXFyd/fXxEREUpISDA6IlClKLIDAADDWSwWLVmyRH379lXLli3l7Oystm3b6sEHH9S6deuMjgcAAOo5s9msqVOnKikpSeHh4UpNTVVeXp5SU1MVHh6upKQkTZkyRWaz2eioAIBa7o9//KPOnDmjJUuWSLpcYP/+++91xx13qFWrVrZ+VqtVBw8eVJs2bYyKCgA2FotFkZGR6tevn2JiYhQQEKDGjRsrICBAMTEx6tevn+bOncvS8ahTKLIDAABDZWdn6+6779YzzzyjLVu2qGXLlrrtttt08eJFrVu3Tu+++67REQEAABQSEqLo6GgdOHBAoaGh6tatm0JDQ5WWlqbo6GiWvwQAVIkXX3xRJpNJzz77rFq2bKkBAwbIZDLpxRdfLNNv8+bNunDhgrp3725QUgD4PykpKTp27JjCwsLk4FC29Ojg4KCxY8fql19+UUpKikEJgarHnuwAAMAwJSUlGjRokL799lsNGTJECxculJeXl639l19+UXp6uoEJAQAA/k9ISIiCgoKUkpKirKwsubu7KzAwkBnsAIAqc/fdd+vDDz/U9OnTdfDgQfn6+mrixIl6/PHHy/SLjY2VJG7yAlAjZGVlSZI6dOhQbnvp8dJ+QF1AkR0AABjmrbfe0tdff63+/ftrzZo1V9zp6uXlVaboDtRVFouFgg0A1BJms1k9e/Y0OgYAoA4bPHiwBg8efM0+b731lmJjY9WkSRM7pQKAq3N3d5ckpaWlKSAg4Ir2tLS0Mv2AuoAiOwAAMMzChQslSbNmzbqiwA7UFwkJCYqMjNSxY8dsxzw9PTV16lRmpQAAAAAoF8V1ADVJYGCgPD09FRsbq5iYmDKf85WUlGjx4sXy8vJSYGCggSmBqsWn2QAAwBBpaWnat2+fbrrpJt11111at26dnnjiCQUFBSk0NFRLly5VUVGR0TGBapWQkKCIiAj5+/srLi5OO3bsUFxcnPz9/RUREaGEhASjIwIAAAAAAFyT2WzW1KlTlZSUpPDwcKWmpiovL0+pqakKDw9XUlKSpkyZwqp9qFOYyQ4AAAzx/fffS5I6deqkJ598Uu+9916Z9ri4OL322mvasGGD2rZta0REoFpZLBZFRkaqX79+Ze7yDggIUExMjMLDwzV37lwFBQXxJhQAAACoR4qLi7V8+XJt2LBB6enpysvLk9VqLbevyWTSoUOH7JwQAK4UEhKi6OhoRUZGKjQ01Hbcy8tL0dHRrNaHOociOwAAMMTx48clSdu3b9fWrVv19NNPa/r06WrdurW+/vprPfPMM9q3b58efvhhfffdd1ddTr6oqKjMjPfc3Fy75IdUUFCg9PR0u4/r6+srFxcXu49b1VJSUnTs2DHNnz//it9vBwcHjR07VqGhoUpJSWHvXwAAAKCeOH78uIKCgrR///6rFtZ/zWQy2SEVAFRMSEiIgoKClJKSoqysLLm7uyswMJDJA6iTKLIDAABDXLhwQZJ08eJF9enTR0uWLLG1BQUFKT4+Xl27dtX333+v//73v/rLX/5S7vPMmTNHM2fOtEtmlJWenq4hQ4bYfdz4+Hh17tzZ7uNWtaysLElShw4dym0vPV7aDwAAAEDd9+KLL2rfvn3y9fXV5MmT1bVrV7m7u1NMB1BrmM1mJgugXqDIDgAADOHs7Gz7fvz48Ve033HHHerfv7++/PJLbdiw4apF9mnTpumFF16wPc7NzZW3t3fVB8YVfH19FR8ff93nHTp0SJMmTdK8efPk5+dXqXHrAnd3d0lSWlqaAgICrmhPS0sr0w8AAABA3bdhwwY5Ozvrq6++kqenp9FxAADAVVBkBwAAhmjevLnt+06dOpXb55ZbbtGXX36pI0eOXPV5nJyc5OTkVNXxUAEuLi43NKPcz8+vTsxIr6zAwEB5enoqNja2zJ7sklRSUqLFixfLy8tLgYGBBqYEAAAAYE8Wi0WdOnWiwA4AQA1X/uamAAAA1axjx462769WJC89brFY7JIJsCez2aypU6cqKSlJ4eHhSk1NVV5enlJTUxUeHq6kpCRNmTKFfcsAAACAeuT222/XmTNnjI4BAJVWXFysFStW6NVXX9WKFStUXFxsdCSgWlBkBwAAhujatattyfj09PRy+5Qe5w5+1FUhISGKjo7WgQMHFBoaqm7duik0NFRpaWmKjo5WSEiI0REBAAAA2NGkSZN09OhRxcXFGR0FAK5bVFSUAgICNGfOHL333nuaM2eOAgICFBUVZXQ0oMqxXDwAADBE48aN9cADDyg+Pl4rV668oph44sQJffHFF5Kke++914iIgF2EhIQoKChIKSkpysrKkru7uwIDA5nBDgA1lMVi4W82AKDaDBo0SK+99pqefvppfffddxo9erT8/PxsN6kDQE0VFRWlZcuWqUWLFpowYYL69++vTZs2acGCBVq2bJkkafLkyQanBKoORXYAAGCYGTNmaN26dXr//fcVEhKikSNHSpLOnTunUaNGqaCgQL6+vnrkkUcMTgpUL7PZrJ49exodAwDwOxISEjRnzhxlZmbajnl4eGjatGmsPiJuQACAqjJ8+HB9+eWXWrBggRYsWHDNviaTSZcuXbJPMAC4itIl4lu0aKHNmzerQYPL5cdHH31UQ4YM0T333KMVK1ZowoQJcnR0NDgtUDUosgMAAMPccccdeuONNxQeHq5Ro0ZpxowZatWqlfbs2aP8/Hy1bNlSH374If/nGwAAGC4hIUHPP/+8TCZTmePHjx/X888/r9dff71eF9oTEhIUGRmpY8eO2Y55enpq6tSp9fp1AYDrdfDgQfXr10/Hjx+X1Wr93f4V6QMA1W3VqlWyWCyaMGGCrcBeqkGDBho/frxmzJihVatWadSoUcaEhF0UFBRcdWvQ6uTr6ysXFxe7jkmRHQAAGCosLEydO3fWvHnz9M033+jHH3+Uh4eH/vznP2vatGnsxw4AAAxnsVg0bdo0SdJNN92kwYMHy9vbW0ePHtW6det05swZTZs2TUFBQfVy5nZCQoIiIiLUr18/zZ8/Xx06dFBaWppiY2MVERGh6OhoCu0AUEGTJ09WZmam/vjHP2rmzJkKCAiQu7u70bEA4JoyMjIkSf379y+3vV+/fmX6oe5KT0/XkCFD7D5ufHy8OnfubNcxKbIDAADD9enTR3369DE6BgAAQLm+/fZb5eXlqVGjRnJ0dNTbb79ta2vTpo0aNWqkvLw8ffvtt+rdu7eBSe3PYrEoMjJS/fr1U0xMjBwcHCRJAQEBiomJUXh4uObOnVtvb0AAgOv11VdfydXVVRs2bFDTpk2NjgMAFeLj4yNJ2rRpkx599NEr2pOSksr0Q93l6+ur+Pj46z7v0KFDmjRpkubNmyc/P79KjWtvFNkBAAAAAACu4eOPP5Yk5efnq6SkpExbdna2CgsLbf3qW5E9JSVFx44d0/z5820F9lIODg4aO3asQkNDlZKSop49exqUEgBqj5KSEnXs2JECO4BaZfjw4YqKitKCBQs0ZMiQMkvGX7p0SQsXLpTZbNbw4cMNTAl7cHFxuaEZ5X5+fnafkV5ZFNkBAAAAAACu4cKFC7bv//jHP+qee+6Rs7OzCgsLtXnzZtvMnF/3qy+ysrIkSR06dCi3vfR4aT8AwLV169ZNu3fvNjoGAFwXR0dHjRo1SsuWLdM999yj8ePHq1+/fkpKStLChQt15swZjRkzRo6OjkZHBaoMRXYAAAAAAIBraNmypSSpYcOG2rdvn62oLkmtW7dWw4YNdfHiRVu/+qR0n+C0tDQFBARc0Z6WllamHwDg2l5++WX96U9/0sKFCzV+/Hij4wBAhU2ePFmStGLFCs2YMcN23Gw2a8yYMbZ2oK6gyA4AAAAAAHANbm5ukqSLFy/q5MmTZdpOnjwpq9Vapl99EhgYKE9PT8XGxpbZk126vOTx4sWL5eXlpcDAQANTAkDt0a5dO82bN09TpkzR5s2bNXr0aPn5+alRo0ZXPYc9jgHUFJMnT9aECRO0atUqZWRkyMfHR8OHD2cGO+okiuwAAAAAAADX8OvCcWlBvbzHv92TvD4wm82aOnWqIiIiFB4errFjx6pDhw5KS0vT4sWLlZSUpOjoaJnNZqOjAkCt8Ic//EEmk0lWq1Uff/yxPv7442v2N5lMunTpkn3CAUAFlC4dD9R1FNkBAAAAAACuoUmTJlXar64JCQlRdHS0IiMjFRoaajvu5eWl6OhohYSEGJgOAGoXHx8fmUwmo2MAAIDfQZEdAAAAAADgGnJycmzfN2vWTH/84x/VqFEj5efn69tvv9W5c+eu6FffhISEKCgoSCkpKcrKypK7u7sCAwOZwQ4A1+nIkSNGRwCAG5KTk6OwsDBlZmbKw8NDsbGx9XJbJdR9FNkBAAAAAACu4fjx47bvCwsLtWHDBttjZ2fncvvVR2azWT179jQ6BgAAAAwSHBysjIwM2+MTJ06oR48e8vHxUWJiooHJgKpX/zYLAwAAAAAAqITWrVurRYsWZY61bNlSrVu3NigRAAAAUDP8usDep08fvf/+++rTp48kKSMjQ8HBwUbGA6ocM9kBAAAAAEC9VFBQoPT09N/t5+joKOnyTJw777xTDzzwgBwdHVVcXKzvv/9eO3bssPXbvXv37z6fr6+vXFxcbiw8AKBOKyoq0urVq5WQkKADBw7o/PnzatKkifz9/XXfffcpNDRUTk5ORscEAEmXl4gvLbCnpqaqUaNGkqSlS5cqPz9fXbt2VUZGhnJyclg6HnVGrSiyf/zxx/r888+VkpKizMxMnTlzRo0aNdKtt96qxx57TM8++6ztDS8AAAAAAEBFpKena8iQIdd1zo4dO2xF9d/68MMP9eGHH/7uc8THx6tz587XNS4AoP7YsWOHHnnkER05ckRWq/WKtri4OM2aNUsffPCB7rzzToNSAsD/CQsLk3R5Bntpgb1Uo0aN1Lt3byUnJyssLEyrV682IiJQ5WpFkf3f//63kpOT5eTkJA8PD91xxx06fvy4vvnmG33zzTd699139b///U/NmjUzOioAAAAAAKglfH19FR8f/7v9LBaLxowZo9zcXNsM9lKlj93c3LR06VKZzeYKjQsAQHl++eUXBQcHKzs7Wy1bttRf//pXde7cWTfffLNOnjyp3bt3a+nSpUpPT9d9992nH374QZ6enkbHBlDPZWZmSpLGjRtXbnt4eLiSk5Nt/YC6oFYU2Z9++mnNnj1bvXv3VsOGDW3Hv/32Wz3yyCP6/vvv9fe//11vvvmmgSkBAAAAAEBt4uLiUuEZ5f/85z/1/PPPy2QylTle+nj27Nm6/fbbqzwjaj+LxaKUlBRlZWXJ3d1dgYGBFboZA0D9NGfOHGVnZ2vIkCF69913y91e5OWXX9aTTz6pDz/8UHPmzNEbb7xhQFIA+D8eHh46ceKE3nzzTS1duvSK9piYGFs/oK5wMDpARYwaNUr9+vUrU2CXpD/+8Y+aP3++pMtLygN13a5du9SpUyd17NhRnTp10q5du4yOVCMUFBRo5syZGj16tGbOnKmCggKjI6EGs1gs2rZtm9avX69t27bJYrEYHQkAAAC1QEhIiF5//XW1aNGizPGWLVvq9ddfV0hIiEHJUJMlJCQoODhYI0aM0IsvvqgRI0YoODhYCQkJRkcDUEN9/vnnaty4sVasWFFugV2SnJ2dtXz5cjVu3FifffaZnRMCwJViY2MlSVu2bFF+fn6Ztvz8fCUnJ5fpB9QFtWIm+7V06tRJkq74jxaoazp27FjmsdVq1dChQyVJ+/fvNyJSjRAeHq6NGzfaHicnJ2vVqlUKCgqy3R0HlEpISFBkZKSOHTtmO+bp6ampU6fyoSgAAEA1mz59uv75z39KkmbNmqXp06cbnOj6hYSEKCgoSGvXrtWMGTP06quvaujQoXVyVnJBQYHS09PtPq6vr+9Vi0q1TUJCgiIiItSvXz/Nnz9fHTp0UFpammJjYxUREaHo6GjehwC4QmZmpm6//Xa5urpes5+rq6tuueUWJuEAqBHc3Nzk4+OjjIwMde3aVb1791Z4eLhiYmJsBXYfHx+5ubkZnBSoOrW+yP7NN99Iku68806DkwDV59cFdrPZrKeeekrLly+3zcDt2LFjvSy0lxbYGzZsqKeeekpDhw7V2rVrtXz5cm3cuNF2EQckPuACAAAw0t69ezVv3jyjY1QJs9ms2267TZJ022231ckCuySlp6dryJAhdh83Pj6+wkv412QWi0WRkZHq16+fYmJi5OBweTHJgIAAxcTEKDw8XHPnzlVQUFCd/R0CUDlNmjTRyZMnK9T35MmTaty4cTUnAoCKSUxMVHBwsDIyMpScnGwrrkuXC+yJiYkGpgOqXq0sslssFh0/flyffPKJpk6dqsaNG2vOnDlGxwKqxa/vRk1MTJSPj48kadKkScrIyFBwcLCtX5cuXQzJaISCggJbgX3Hjh1ydHSUJL344ot6/vnndeedd2rjxo0qKCioM7MgUHl8wAUAAGAcq9WqsWPHqmHDhrr77rv15ZdfGh0JFeDr66v4+PjrPu/QoUOaNGmS5s2bJz8/v0qNWxekpKTo2LFjmj9/vu39RykHBweNHTtWoaGhSklJUc+ePQ1KCaAm6tatmxITE/X+++8rNDT0qv1Wr16to0ePMmEAQI2SmJionJwchYWFKTMzUx4eHoqNjWUGO+qkWlVkX7BggSZOnFjm2IMPPqhZs2bZ7iIvT1FRkYqKimyPc3NzqzybUcuoSXVrKTVc6ZFHHpF0ebZEaYG9lI+Pj8xmsywWix555BHt27fPiIiGiIqKkiQ99dRTtgJ7KUdHR40cOVJLly5VVFSU/vGPfxgRETUIH3ABAAAYZ9myZdqyZYvmzp2rPXv2GB0HFeTi4nJDM8r9/PzqxIz0ysrKypIkdejQodz20uOl/QCg1PPPP6+EhASNHDlS27dv13PPPad27drZ2g8fPqzXX39dMTExMplMioiIqPRYhw8f1v/+9z999913+u6777R7925ZLJZrbuvyyiuvaObMmdd83r1799q2eQVQ/7i5uWn16tVGxwCqXa0qsnt6eqp37966ePGifv75Z508eVKbNm3S6tWr9eqrr1519uGcOXN+98J/o4xaRk2qO0upoXxWq1XS5WJyeYYPH653333X1q+++PnnnyXJti/9bw0dOlRLly619UP9xgdcAAAAxsjKytKUKVN06623auLEifrrX/9qdCTALtzd3SVJaWlpCggIuKI9LS2tTD8AKPXnP/9ZU6ZM0dy5c7VgwQItWLBATk5Ocnd3V1ZWlm0ymdVq1bRp0/TAAw9UeqyFCxdq4cKFlTrX29v7iglBpRo1alTpTAAA1Ba1qsj+yCOP2Gb1StK2bds0duxY/etf/9LZs2e1aNGics+bNm2aXnjhBdvj3NxceXt7V2m2yi6jJrGUGq7NZDLJarVq+fLlmjRp0hXtq1atsvWrT9q2bavk5GStXbtWL7744hXta9eutfUD+IALAADAGBMnTtTZs2cVHx+vhg0bGh0HsJvAwEB5enoqNja2zJZVklRSUqLFixfLy8tLgYGBBqYEUFPNmTNHvXv3VmRkpL799lsVFhbq6NGjki6vyHfXXXdpypQp+vOf/3xD47Rs2VIDBw5Ujx491L17dy1dulQffvhhhc4dPXq0XnnllRsaHwCA2qxWFdl/q2fPnvrss8/k6+urt956S1OnTi23oObk5CQnJ6dqzXKjy6hJLKWG8q1Zs0ZDhw6VxWJRRkZGmTtEMzIyZLFYbP3qk8mTJ2vVqlVavny5nn/++TJLxhcXF2vlypW2fgAfcAEAANjfxo0b9d577+mJJ55Q3759jY4D2JXZbNbUqVMVERGh8PBwjR07Vh06dFBaWpoWL16spKQkRUdHX3VVRgAYOHCgBg4cqAsXLujgwYPKy8uTq6ur2rdvr8aNG1fJGL9dEv7999+vkucFAKA+qNVFdkny8PBQQECAtm3bpp07dzJrFXVOly5dbN8HBwfLbDZr+PDhWrVqla3A/tt+9YGLi4uCgoK0ceNG3XnnnRo5cqSGDh2qtWvXauXKlbp48aKCgoLk4uJidFTUAHzABQAAYF+FhYUKCwuTm5ub/v3vf1fqOYqKimxL4kqXV6UDapOQkBBFR0crMjJSoaGhtuNeXl6Kjo5WSEiIgekA1BaNGzfWHXfcYXQMAADwG7W+yC5Jly5dKvMvUNfs379fHTt2lCRZLBa9++67V7TXRzExMQoPD9fGjRu1dOlSLV261NYWFBSkmJgYA9OhpuEDLgAAAPuZPXu2Dh48qDfeeEM333xzpZ5jzpw5mjlzZhUnA+wrJCREQUFBSklJUVZWltzd3RUYGMgNvgCuymw26+6779ZXX331u3379++vLVu2GPK5+KZNm7R7926dOXNGN910k3r06KERI0aodevWds8CAIARan2R/ciRI9q5c6ckcUcf6rT9+/dr165deuSRR2S1WmUymbRmzZp6N4P9t2JiYlRQUKCoqCj9/PPPatu2rSZPnswMdpSLD7gAAACq3969ezVv3jzdeeedevbZZyv9PNOmTdMLL7xge5ybmytvb++qiAjYldlsVs+ePY2OAaCWsFqtslqt19XfCJs3by7z+MMPP9Qrr7yimJgYjRo1ypBMAADY0w0V2Q8fPqzt27fr1KlTOn/+vJo2bapWrVqpR48eVbZs+/fff69PPvlEI0eOlK+vb5m2DRs2aOLEibp06ZIeeOAB+fn5VcmYQE3VpUsX7du3z+gYNY6Li4v+8Y9/GB0DtQQfcAEAAFSv8PBwXbp0SYsWLZKDg0Oln8fJyUlOTk5VmAwAgLrlwoULatiwoV3HbNOmjf72t7/poYcekq+vr1xcXJSamqrZs2fr888/1+jRo9WiRQv95S9/uebzXO+2MJmZmcrOzq6Sn+H3HDp0qMy/9tC8eXN5eHjYbTygogoKCpSenm73cUv/vgA1WaWK7O+++67mzJlzzSWqb731Vv3tb3/TsGHDKh1Oks6fP69XX31Vr776qlq3bi0vLy8VFxcrIyND586dkyR1795dK1euvKFxAADA9fvuu+/07rvv6vXXXzc6CgAAqCFSU1NlMpk0aNCgK9pycnIkSXPnztUbb7whb29vbd++3d4RAQCo9fbv36+ffvpJnp6edh137NixVxy766679N///lcPP/ywPvroI02cOFEDBw6UyWS66vNcz7YwmZmZGnDfABUVF/1+5yo0adIku43l5OikDV9soNCOGic9PV1Dhgyx+7jx8fHq3Lmz3ccFrsd1FdlLSko0YsQIrV692rYMTYsWLeTt7a3GjRsrLy9PR48e1dmzZ7V792498cQT+uKLL7R8+fJrXlCv5Y477tDChQu1ceNG7d69W/v27VNxcbFatGihXr166dFHH9UTTzyhBg1q/cr3AADUCkeOHNF//vMf/ec//1FaWpokUWQHAABlWCwWnTx58qrteXl5ysvLk7Ozsx1TAQBQ8yxcuFALFy4scywlJeWKVV1/raCgQKdOnZIkDR48uFrzVZTJZFJkZKQ++ugjHTp0SD/++OM1t3e9nm1hsrOzVVRcpDty7pCrxbXKsxstz5ynnW47lZ2dTZEdNY6vr6/i4+Ov+7xDhw5p0qRJmjdvXqVWob7W30CgpriuyvSrr76qVatWyWw267nnnlNYWJg6dux4Rb+9e/dq0aJFWrRokd599121b99e06dPr1TA5s2bKyIiQhEREZU6HwAA3LicnBx98MEHevfdd5WcnCzp8r5vDRs21IABAwxOBwAAapLSVefKM2rUKK1cuVKzZs2q9OcEAADUJefOndORI0dsj00mkwoLC8scK0+TJk30yCOPaPbs2dUb8Dr4+/vrpptu0tmzZ3Xw4MFrFtkrsy2Mq8VVbpfcbjQmgOvg4uJyQzPK/fz8mJGOOqvCRfbTp08rMjJSDRo00Pr16xUSEnLVvrfccouio6P1wAMP6C9/+Yv++c9/6tlnn1WLFi2qJDQAAKh+ly5d0meffaZ3331X69evV3FxsW0lm169eumJJ57QY489pptuusngpAAAAAAA1E4TJkzQqFGjJF2+md3X11fdu3fXBx98UG5/k8kkFxcXubu72zFlxZXuEX/p0iWDkwAAUL0qXGR/9913VVxcrBdffPGaBfZfGzBggCIiIrRgwQK99957zEYHAKAW2LZtm959913FxcXp7NmztsK6v7+/Dhw4oNatW9tmswMAAAAAgMpzc3OTm9v/zc4eOXKkOnbsqLZt2xqYqnJOnz5tW8bey8vL4DQAAFQvh4p2/Prrr2UymfTss89e1wDh4eGyWq3avHnzdYcDAAD2cfjwYc2aNUv+/v666667tGjRIp05c0Y333yzJkyYoO3bt2vfvn1GxwQAAAAAoE5bvny5pk6danSMSpk/f76sVqvc3NzUvXt3o+MAAFCtKjyT/ccff1SrVq3k6+t7XQP4+fmpVatW+vHHH687HAAAqH59+vTR1q1bJV1emq5p06YaMmSIHn/8cd17770ymUwGJwTqvsOHD2vw4MEqKiqSk5OT1q1bp3bt2hkdCwCq3IoVK7RixQqjYwAAgErYvXu33nzzTY0bN67MHsuFhYWaP3++5s6dK0maMmWKHB0djYoJAIBdVLjIfvbs2UovUePh4aGff/65UucCAIDqlZycLJPJpGbNmum1117TsGHD5OTkZHQsoN645ZZbVFJSYntcVFSkAQMGyMHBQXv37jUwGQAA+K2CggKlp6fbfVxfX1+5uLjYfdyK4nUBqt7hw4cVFxennTt36uzZs7p48WK5/UwmkzZu3FipMZKTkzV48GDb47y8PEnSnDlztGDBAtvx1NRUeXt76+LFi1q0aJEWLVokd3d3+fj4SJL27t2r/Px8SdKYMWNq7Ux8AACuR4WL7Lm5uXJ1da3UII0bN1Zubm6lzgUAANXLbDbLYrHo3Llzeu655/TFF19o+PDhuv/++9WgQYX/rwKASvh1gd3V1VXjx4/XwoULlZeXp5KSEt1yyy0U2gEAqEHS09M1ZMgQu48bHx9fZtZoTcPrAlStefPm6e9//7suXbpkW13OarXa2n997EZWn7t48aLOnDlzxfH8/Hxb0VySLBaLJOkPf/iDZs2apa1bt2rfvn3av3+/iouL1apVKz3wwAN6+umndd9991U6DwAAtUmFPzkvvZBW1q9n5wAAgJrj2LFjWrVqlf7zn/9ox44diouL0wcffKDmzZtr6NChGjZsmPr27Wt0TKDOOXz4sO3/I2/ZskWtWrWSJI0YMUKnTp1Snz59VFJSosOHD7N0PAAANYSvr6/i4+Ov+7xDhw5p0qRJmjdvnvz8/Co1bk3G6wJUnc8++0xTpkxRmzZtNGvWLC1YsEC7d+9WYmKijh49qp07d2rZsmWyWCyKjIzU7bffXumx+vXrV6Z4/3uaNWum6dOnV3o8AADqkuuanlZUVKSMjIzrHqSoqOi6zwEAAPbRqlUrTZgwQRMmTNDevXv1zjvvaNWqVTp69KiWLFmiJUuWyNPTU4899pjRUYE6pXRZRldXV1uBvVSrVq3UuHFjXbhwQYMHD9aPP/5oREQAAPAbLi4uNzRz2s/Pr07OvOZ1AarO66+/LpPJpA8++EC9e/fW8uXLJUlBQUG2PtOnT9fDDz+sl19+Wdu3bzcqKgAA9ZrD9XROSUlRu3btrvvr+++/r678AACgCt1yyy2aM2eOjhw5oo0bN2rEiBFydXXVL7/8ovnz58tkMuncuXOaNWuWIXsuAnVJ6Y2o48ePL7d93LhxZfoBAAAAqPu+//57tWnTRr17975qnxYtWmj16tXKz8/XzJkz7ZgOAACUuq6Z7NezdMxv3cjeMAAAwL5MJpP69++v/v37a9GiRfr444/1zjvvKDExUYWFhXrllVf0yiuvqFevXnryySc1duxYoyMDtY6Tk5OKioq0cOFCjRgx4or2N99809YPACTp9OnTkqSWLVsanAQAAFSX3Nxc3XHHHbbHzs7OtuNNmza1HW/Tpo1uu+02bdq0ye4ZgZouMzNT2dnZdhnr0KFDZf61h+bNm8vDw8Nu46F8BQUFhkxC8vX1lYuLi93HxZUqXGQ/fPhwdeYAAAA1lLOzs0JDQxUaGqpTp07pvffe03/+8x+lpqZq69at+uabbyiyA5Wwbt06DRgwQHl5eTp16lSZJeNPnTqlCxcu2PoBqL/OnTunv/3tb4qLi9O5c+ckSW5ubnrkkUf0r3/9Sy1atDA2IAAAqFKtWrVSbm5umceStH//fnXv3r1M37y8PJ05c8au+YCaLjMzU/fdf7+KCwvtOu6kSZPsNpajs7O++PxzCu0GS09P15AhQ+w+bnx8PNvs1BAVLrK3bdu2OnMAAIBaoFWrVpo4caImTpyoPXv22PZvB3D92rVrJwcHB5WUlKhPnz5q3Lixxo0bpzfffNNWYHdwcFC7du0MTgrAKAUFBerTp4/27NlTZmW5c+fOaenSpdqyZYu2b9+uxo0bG5gSAABUJT8/P+3YscP2uGfPnlq9erUWLVpUpsi+ceNGHTx4kPcLwG9kZ2eruLBQ+Q8/rJI6uAKUw+nT0ocfKjs7myK7wXx9fRUfH3/d5x06dEiTJk3SvHnz5OfnV6lxUTNc13LxAAAApW699VZFRkZqzpw5RkcBaq29e/fqlltuUUlJiS5cuKCoqChbm4ODg/bu3WtgOgBGW7hwoXbv3q1mzZppxowZuueee2S1WrV582bNmjVL+/fv14IFC/T3v//d6KgAAKCKDBgwQJs3b9b27dvVvXt3DR8+XP/4xz+0cuVKHThwQL169dLJkyf1wQcfyGQy6cknnzQ6MlAjlbRsqRKK0KhGLi4uNzSj3M/PjxnptVy1FNmLi4t17tw5ubu7sxc7AAB1SHnXeK71wI3Zu3evDh8+rMGDB6uoqEhOTk5at24dM1IA6KOPPpLJZNKHH36o/v37245369ZNt99+u4KDg/XRRx9RZAcAoA559NFHdfDgQZ09e1aS1LJlS8XFxSk0NFRbt27V1q1bbX2HDh2q6dOnGxUVAIB67bqL7Hv37tXGjRtVXFysTp066f7777d9uL5+/XrNmDFDP/74o6xWq5o0aaLhw4crMjJSTZs2rfLwAACg6nCNB4zTrl07/fjjj0bHAFDD7N+/X56enmUK7KWCgoLk5eWltLQ0A5IBAIDq0q5dOy1ZsqTMsZCQEB0+fFiff/65jhw5IhcXF/Xp00d33nmnQSkBAMB1FdlffvllzZkzp8xecF27dtWmTZv03//+V0888YRKSkpsbbm5uVq8eLF27Nihr7/+Wg0asDo9AAA1Edd4AABqnvPnz6tLly5Xbffx8dE333xjx0QAAMAobm5uCg0NNToGAAD4fxwq2vHzzz/XP//5T5WUlKhVq1bq1q2bmjRpotTUVP3rX//SSy+9pGbNmun111/X999/r+3bt2vBggVq1qyZtm/frrfeeqs6fw4AAFBJXOMBAKiZrFbrNbdlYcsWAAAAAACMUeFpZ7GxsTKZTHrhhRcUFRUlk8mkvLw8PfTQQ1q4cKGKioqUmJioe++913ZOt27d1KlTJw0YMEAffPCBwsPDq+WHAAAAlcc1HgAAAAAAAACAiqvwTPbt27erSZMmmj17tu1ueVdXV82ZM0eFhYW6+eaby3z4XiokJEQ333yzfvrpp6pLDQAAqgzXeAAAaq7k5GSZzeZyv7Zu3SpJV21nOxcAAAAAAKpHhYvsp0+flq+vr5ycnMocv/XWWyVd3gvuanx8fJSTk1PJiAAAoDpxjQcAoOayWq039AUAAAAAAKpehW9rv3TpklxdXa843qhRI0mSo6PjVc91dHRUSUlJJeIBAIDqxjUeAICaadOmTUZHAAAAAAAA5WDtOAAAAAAAaqC+ffsaHQEAAAAAAJSjwsvFAwAAAAAAAAAAAABQ313XTPaUlBT5+vpecdxkMl21TZKOHz9euXQAAMAuuMYDAAAAAGC8vXv36pZbbjE6BmqJzMxMZWdn22WsQ4cOlfnXHpo3by4PDw+7jQcA1+O6iuyFhYU6cuTIdbdJlz+kBwAANRPXeAAAar7Ro0dXuK/ZbFaTJk30hz/8Qb1791a3bt2qMRkAAKgqt912m7p3765Ro0YpNDRUzZo1MzoSaqjMzEwNGDBARUVFdh130qRJdhvLyclJGzZsoNAOoEaqcJF9+fLl1ZkDAAAYhGs8AAC1w4oVKyT93w1uVqv1ij6/bSt93K1bN61cuZKZcQAA1HDNmjXTd999p+3bt2vixIkaPHiwRo0apfvuu4+b3FFGdna2ioqK1PCPDeXQtO7tDFySW6Kib4uUnZ1NkR1AjVThIvvIkSOrMwcAADAI13gAAGqH5cuX69ChQ5o7d64aN26sBx98ULfffruaNGmi8+fPa9euXfr444914cIFTZ48Wa1bt9bevXv14YcfKiUlRf3791dqaqratGlj9I8CAACu4sSJE/rkk0+0cuVKbdiwQR988IHWrFmj1q1b68knn9TIkSO5aQ5lODR1kMNNda/IDgA1HX95AQAAAACoBe655x69+eabuvfee5Wenq63335bEyZM0JgxYzRhwgQtW7ZMhw8fVv/+/RUTE6MBAwbo9ddfV1pamoKDg5WVlaV58+YZ/WMAAIBraNiwoR5++GF98sknyszM1Pz583X77bfr+PHjioqK0m233aY//vGPio2N1blz54yOCwBAvUWRHQAAAACAWmD69OkqLCzU6tWrr7o/a9OmTbVq1SoVFBRo+vTpkqTGjRvr7bfflslk0meffWbHxAAA4Ea0bNlSEyZMUGpqqnbu3KmJEyfK3d1d3333ncaNG6c2bdooNDRUGzZsKHcbGQAAUH0qvFz8O++8c8ODjRgx4oafAwAAVC2u8QAA1A4bN25U586dr1pgL9W8eXN17txZX375pe2Yp6enOnXqpMOHD1dzSgAAUB26dOmi1157TVFRUfr3v/+tl19+WcXFxbbl5Nu0aaOxY8cqIiJCbm5uRscFAKDOq3CRfdSoUTKZTJUeyGQy8QE8AAA1ENd4AABqh9zcXJ09e7ZCfc+ePavc3Nwyx5ycnG7omg8AAIyTnZ2t1atXa8WKFfr+++9ltVrVsGFD3X///Tp58qS2bdumV155RbGxsfriiy902223GR0ZAIA6rcJFdh8fn6u+Gf/555/l5OSk1q1bV1kwAABgH1zjAQCoHTp06KCffvpJ69ev18CBA6/ab/369UpPT9ftt99e5nh6errc3d2rOyYA4P8pKChQenq63cf19fWVi4uL3cdF1bNYLPrss8+0cuVKrV+/XhcvXpTVatWtt96qp556SiNGjLBd2/fs2aO//e1v+uSTTzRx4kQlJiYanB4AgLqtwkX2I0eOXLXNwcFB3bt31+bNm6siEwAAsCOu8QAA1A7PPvuswsPD9eijj2rGjBkaNWpUmRvhTp48qRUrVmjWrFkymUx69tlnbW07d+5UTk6O7r33XiOiA0C9lJ6eriFDhth93Pj4eHXu3Nnu46Lq/PDDD1q5cqVWrVql06dPy2q1qmnTpho5cqRGjx6tnj17XnHOrbfeqvj4eLVr107btm0zIDUAAPVLhYvsAAAAAADAOGFhYdq+fbuWL1+uv//97/r73/+uFi1aqEmTJsrLy9Pp06clSVarVWPGjNHYsWNt5yYlJalv375s8QIAduTr66v4+PjrPu/QoUOaNGmS5s2bJz8/v0qNi9orICBAu3btktVqlclk0j333KPRo0dr6NChv7tCgYODg9q1a6dffvnFTmkBAKi/KLIDAAAAAFBLLFu2TPfff79ee+01fffddzp9+rStuO7g4KCePXvqhRde0MMPP1zmvPHjx2v8+PFGRAaAesvFxeWGZpT7+fkxI70e+vHHH+Xt7a0RI0Zo9OjRateu3XWdP23aND311FPVlM5YF00XVWQqMjpGlbtoumh0BABAJVBkBwAAAACgFhk6dKiGDh2qvLw8HTx4UBcuXFDjxo3Vvn17ubq6Gh0PAADcgM8//1whISEymUyVOv++++6r4kQ1x3fNvzM6AgAANhTZAQAAAACohVxdXRUQEGB0DAAAUIV69OhR6QI7AACwH4rsAAAAAADUQgUFBTp06JDOnz+vJk2ayM/P73f3agUAwGgFBQVKT0+3+7i+vr614jrZunVr3XfffRo+fLgGDRqkRo0aGR0JAACUgyI7AAAAAAC1yBdffKE5c+Zo69atslgstuNms1l33323pk6dqpCQEAMTAgBwdenp6RoyZIjdx42Pj68Ve9xbrVatX79e//3vf9WoUSMNGjRIoaGhuv/++9WgAR/nAwBQU1T4qrx58+Zrtufk5Pxun3vuuaeiwwEAADvhGg8AQO3xyiuvaNasWbJarZIkR0dHubu7KysrS8XFxUpKStJXX32ll19+Wa+88oqxYQEAKIevr6/i4+Ov+7xDhw5p0qRJmjdvnvz8/Co1bm1w8uRJrVmzRqtXr9aWLVu0evVqvf/++2rWrJmGDh2qYcOGqV+/fkbHNESP7B5qcqmJ0TGq3PkG59lvHgBqoQoX2fv163fVvWBMJpN++ukn9e/f/6rnm0wmXbp06foTAgCAasU1HgCA2mHDhg169dVXZTabNXbsWI0fP14dOnSwtaelpWnhwoV66623NGvWLPXq1Uv33XefgYkBALiSi4vLDc0o9/PzqxUz0iurefPmeuaZZ/TMM8/o+PHjev/997V69WqlpKRoyZIlWrp0qdq0aaPQ0FCFhoYqMDDQ6Mh209DaUE5WJ6NjVLlCa6HREQAAleBwPZ2tVmulv0pKSqrrZwAAADeIazwAADVfdHS0TCaT3n77bb3xxhtlCuyS1KFDB73xxht6++23ZbVatXDhQoOSAgCAqtCmTRtNnDhR3333nQ4ePKhXX31VnTp1UmZmpv6//+//U8+ePdWxY0ejYwIAUC9VuMheUlJyw18AAKDm4RoPAEDtsH37dnl5eenJJ5+8Zr8nnnhC3t7e+u47lh0FAKCu8PX11fTp07V792798MMPuu+++2S1WnXw4EGjowEAUC9VeLl4AAAAAABgnPPnz6tdu3YV6nvzzTdr165d1ZwIAADYU3p6ulavXq3Vq1dr7969RscBANRxmZmZys7OtstYhw4dKvOvPTRv3lweHh6VPp8iOwAAAAAAtYCHh4f27dunCxcuqHHjxlftd+HCBe3du1dt2rSxYzoAAFAdTpw4obi4OK1evVrbt2+XdHnLtzZt2uixxx7T8OHDDU4IAKiLMjMzNWDAABUVFdl13EmTJtltLCcnJ23YsKHShXaK7AAAAAAA1AL33XefFi9erL/+9a9asWKFHB0dr+hTXFysp59+Wvn5+RowYIABKQEAwI06d+6c1q5dq9WrV2vz5s0qKSmR1WpVs2bNNGTIEA0fPlz9+/eXyWQyOioAoI7Kzs5WUVGRPNzvkmNDN6PjVLniiznKzNqq7OxsiuwAAAAAANRlf/vb3xQXF6e4uDglJSXpr3/9q2699Va1atVKp06d0p49e7RkyRKdPHlSbm5umjZtmtGRAQDAdRo0aJASEhJ08eJFWa1Wubi4aODAgRo+fLjuv//+cm+yAwCgujg2dJOL001Gx6iRKLIDAIAaZfr06frnP/8pSZo1a5amT59ucCIAAGoGb29vff7553r00Ud19OhRzZ49+4o+VqtVPj4++uCDD+Tt7W1ASgAAcCPWr1+vBg0aKCQkRMOHD9dDDz0kV1dXo2MBAIDfoMgOAABqjL1792revHlGxwAAoMbq2bOn9u3bp1WrVikhIUEHDhxQXl6eXF1d5e/vr/vuu0/Dhg3T4cOH9eOPP+r22283OjIAALgOr7/+uh577DG1bNnS6ChA7VZQINOFC0anqHoFBUYnAPD/UGQHAAA1gtVq1dixY9WwYUPdfffd+vLLL42OBABAjeTi4qIxY8ZozJgxV+3Tt29fZWdn69KlS3ZMBgAAbtS4ceOMjgDUCa7vvGN0BAB1nIPRAQAAACRp2bJl2rJli2bMmMHytqh3Pv74Y3Xs2NH29fHHHxsdqcbIyMhQ165d1alTJ3Xt2lUZGRlGR0INVlxcrBUrVujVV1/VihUrVFxcbHQkQ1mtVqMjAAAAAABQJzGTHQAAGC4rK0tTpkzRrbfeqokTJ+qvf/2r0ZEAu+nYseMVx6ZMmaIpU6Zo//79BiSqOW699VZZLBbb4/z8fAUHB8tsNmvPnj0GJkNNFBUVpRUrVpT5nYmKitKoUaM0efJkA5MBAABcv8OHDysuLk47d+7U2bNndfHixXL7mUwmbdy40c7pAAAARXYAAGC4iRMn6uzZs4qPj1fDhg2NjgPYzW8L7P7+/jpw4ECZ9vpaaP91gb1Zs2Z64YUXNH/+fJ07d04Wi0W33norhXbYREVFadmyZWrRooUmTJig/v37a9OmTVqwYIGWLVsmSRTaAQBArTFv3jz9/e9/16VLl2QymSSVXaHm18dKvwcAAPZ1Q0V2s9msfv36caccAAB1jD2v8Rs3btR7772nJ554Qn379q328YCa4tdLwi9evFj9+vWzPU5KStLYsWNt/R588EH7hjNYRkaGrcCenJysli1bSpIee+wxnT59Wr1795bFYlFGRoZ8fHyMjIoaoHSJ+BYtWmjz5s1q0ODy29xHH31UQ4YM0T333KMVK1ZowoQJcnR0NDgtAADAtX322WeaMmWK2rRpo1mzZmnBggXavXu3EhMTdfToUe3cuVPLli2TxWJRZGSkbr/9dqMjAzVS3ogRsrZubXSMKmc6cYL95oEa4oaK7Far9Yo93iIiIrR7924K7wAA1GL2usYXFhYqLCxMbm5u+ve//12p5ygqKlJRUZHtcW5u7jX7Z2ZmKjs7u1JjXa9Dhw6V+dcemjdvLg8PD7uNh8qbMmWK7ftfF9h/+3jKlCn1rsg+ePBgSZdnsJcW2Eu1bNlSbm5uysnJ0eDBg5WammpERNQgq1atksVi0YQJE2wF9lINGjTQ+PHjNWPGDK1atUqjRo0yJiQAAEAFvf766zKZTPrggw/Uu3dvLV++XJIUFBRk6zN9+nQ9/PDDevnll7V9+3ajogI1m4uLrI0bG52iyplcXIyOAOD/qXCR/emnn9Zdd92lXr166ZZbbrlqv9TUVG3durVKwgEAgOpn5DV+9uzZOnjwoN544w3dfPPNlXqOOXPmaObMmRXqm5mZqQH3DVBRcdHvd65CkyZNsttYTo5O2vDFBgrttYi/v3+5x9u1a6fDhw/bOU3NUFBQIEl64YUXym2PiIjQrFmzbP1Qv2VkZEiS+vfvX2576U0rpf1gH1arVcnJyVq3bp22bNmiffv2KT8/Xy1btlSvXr303HPPXfV/MwAA6rPvv/9ebdq0Ue/eva/ap0WLFlq9erXatm2rmTNn6j//+Y8dEwIAAOk6iuxvv/227a45Nzc3/fGPf5R0+QOwS5cuXTFjAAAA1A5GXeP37t2refPm6c4779Szzz5b6eeZNm1amUJcbm6uvL29y+2bnZ2touIi3ZFzh1wtrpUes6bKM+dpp9tOZWdnU2SvRX69B/uv1dcCuyS5uLgoPz9f8+fP12OPPXZFe3R0tK0fULplwKZNm/Too49e0Z6UlFSmX23yzg0sA/nrVV6M8OWXX+pPf/qTJMnBwUHt27dX48aNlZaWpvj4eMXHx2v69OmaNWuWoTkBAKhpcnNzdccdd9geOzs72443bdrUdrxNmza67bbbtGnTpkqPdfjwYf3vf//Td999p++++067d++WxWLRrFmzNH369Gue+8033ygyMlJbt25VXl6e2rVrp2HDhmnSpEm2zABqFlZ3BKpWhT81P3TokLZu3aqtW7cqOTlZCQkJMplM+u677+Tm5qbevXurf//+OnPmTHXmBQAAVcyoa3x4eLguXbqkRYsWycHBodLP4+TkJCcnp+s6x9XiKrdLbpUeE6gKc+fOtS0Zn5SUdMWe7L/uV9+sW7dOwcHBOnfunE6fPl1myfjTp08rJyfH1g8YPny4oqKitGDBAg0ZMqTMzWGXLl3SwoULZTabNXz4cANTVs6oUaNkMpkqda7Vaq30uVXBarWqffv2euGFFxQaGqrmzZtLkoqLi/XKK69ozpw5mj17tnr27KmBAwcalhMAgJqmVatWZbZBa9WqlSRp//796t69e5m+eXl5N/RefeHChVq4cOF1n/fee+9p5MiRslgs8vT0lLe3t3766SfNmDFDn376qZKSktSoUaNK5wJQ9TIzM3X/gAEqtPPNuPZc3dHZyUmfb2B1R9hPhYvs7dq1U7t27fT4449Lks6fPy83Nzd5eHioffv22rx5s/73v/9Jkkwmk/r166e77rpLvXv3Vq9evXTTTTdVz08AAABuiFHX+NTUVJlMJg0aNOiKttIC2ty5c/XGG2/I29ubfeZQ5zz44IO2IvvYsWMllb9EfH3bj126POPYbDbLYrGod+/ecnNzU0REhKKjo21/H8xmc62cmYyq5+joqFGjRmnZsmW65557NH78ePXr109JSUlauHChzpw5ozFjxsjR0dHoqNfNx8fH0EL5jejRo4f27t17xYo4jo6O+te//qUffvhBn3/+uZYsWUKRHQCAX/Hz89OOHTtsj3v27KnVq1dr0aJFZYrsGzdu1MGDB9WuXbtKj9WyZUsNHDhQPXr0UPfu3bV06VJ9+OGH1zznyJEjGjNmjCwWi6KiovTSSy/JZDLp559/1n333aft27dr8uTJeuONNyqdC0DVy87OVmFRkabeZZaPW+18j3EtGTlWRW4tYnVH2FWl139t0qSJpMt7SH755ZcqLCzU119/rbCwMB0+fFjffvutNm/ebPtAoGPHjtqzZ0/VpAYAANXGntd4i8WikydPXrU9Ly9PeXl5LDWHOmv//v3q2LGj7fFvC+z79++3d6QaY8+ePbr11ltlsViUk5NTZklps9nMewuUMXnyZEnSihUrNGPGDNtxs9msMWPG2NprmyNHjhgdodJ+vZxteYKDg/X5559fdcsMAADqqwEDBmjz5s3avn27unfvruHDh+sf//iHVq5cqQMHDqhXr146efKkPvjgA5lMJj355JOVHuu3S8K///77v3vOvHnzVFRUpJCQkDIzVNu2bau3335bvXv31ltvvaWXX35ZN998c6WzAagePm4mdbip8itK1lwlRgdAPVTh/5KGDh2q+fPn65tvvlFxcfEV7c7OzvrTn/6kNm3aSLq8R0xycrL+/e9/a8iQITp//nzVpQYAAFXGqGv8uXPnZLVay/0aOXKkJGnWrFmyWq21usgA/J79+/dfsST83Llz63WBvdSePXuUmJioRo0ayWQyqVGjRkpMTKTAjnJNnjxZP/zwg6ZNm6bHH39c06ZN0w8//FBrC+x1XWFhoSTJxcXF4CQAANQsjz76qEaPHq2zZ89KujzbPC4uTm5ubtq6datee+01/ec//1FxcbEefvjh3907vSpZrVZ99NFHkqQxY8Zc0X7XXXepU6dOunjxIls7AQDqvArPZI+Pj7ddQB0dHdW1a1dJlz9oP3funJo1a1amv6Ojo3r16qVevXpp4sSJVZcYAABUKa7xgPEefPDBerksfEX4+PgoNTXV6BioJUqXjkfNZrVatWbNGklS7969DU4D4LcyMzOVnZ1tl7EOHTpU5l97aN68OcvIokZr166dlixZUuZYSEiIDh8+rM8//1xHjhyRi4uL+vTpozvvvNOu2TIyMnT8+HFJV7+G9+7dW/v27dO2bdv0zDPP2DNevWUttspaaDU6RpWzFte9nwlA3VLhIntWVpa++eYb29f27dtlMpmUmpqqli1bKiAgQPfee+81l3wFAAA1D9d4AABgT0uWLFFqaqocHR01YcKEq/YrKipSUVGR7XFubu41n5fCIHDjMjMzdf+AASr81X979vDrJaerm7OTkz7fsIH/nlDruLm5KTQ01NAMaWlpkiQnJ6er/jfk6+tbpi+qX3HSlasSAgCqX4WL7C1atNDAgQM1cOBASZf3UG3YsKF8fHx0xx136KuvvtKOHTskSSaTSd26dbPNcuvVq5ft4goAAGoWrvEAAMBeduzYofHjx0uSZs+eLT8/v6v2nTNnjmbOnFmh583MzNSA+waoqLjuFgadHJ204QsKg6he2dnZKiwq0tS7zPJxMxkdp8pl5FgVubVI2dnZ/LcEVELpzWzNmjWTyVT+34jmzZuX6Xs113sznSTlmfMqGrVWqas/FwDUdRUusv+W2WyWdPnOtHXr1qmkpETbt2/XiBEjdPDgQWVkZCg1NVWLFi2SJLm7u+vEiRNVkxoAAFSbmnCNX7FihVasWFGlzwkAAIx1+PBhDRw4UIWFhRo+fLheeumla/afNm2aXnjhBdvj3NxceXt7l9s3OztbRcVFuiPnDrlaXKs0d02QZ87TTredFAZhNz5uJnW4ycHoGNWgxOgAQIXt2rVL0dHR+uqrr3Ts2DEVFRXp0qVLtvbFixfr559/1tSpU9W0aVO7ZCosLJR0eYueq3FycpIkFRQUXPO5rudmuubNm8vJ0Uk73XZWMGnt4+ToZLtBAQBQO1S6yP5bDg4O6tmzp1q1aqWDBw8qKytL+/fv17fffqvk5GR9++23VTUUAACwI67xAADgRp04cULBwcE6fvy4/vznP2vFihVXnQFXysnJyfZBfUW5WlzldsntRqICAGC4N998UxMnTixTVP/tdbOoqEhz585V586d9fjjj9sll7OzsySpuPjqy5OXzk53cXG55nNdz810Hh4e2vDFBrtuCzNp0iTNmzfvmqvuVCW2hQGA2qfKiuzl6dixozp27KiRI0dW+jmsVquSk5O1bt06bdmyRfv27VN+fr5atmypXr166bnnnlP//v2rMDUAAPg9VXGNBwAA9cPZs2cVHBysQ4cOqW/fvlqzZo0aNmxodCwAAGqkTZs2KSIiQk2aNNE///lPDRo0SMOGDdM33/z/7d17eFTluf7xezJkJhGSMJyE4ZwQtEYFMYiASlSMKOyqWFrEXxG1rZUqKhIFtVoLW2LZWkWLZ2FTKiISpbYSEZBq5SSEUmkV0gRFiSiHQIgmk5B5f3+wMxozOU1mZs1Mvp/rmguy1npnPet1wh3zrMPGOtv9+Mc/1u23367XXnstbE322iutjxw5ImOM3xPmahvhTV2V3dKT6dxud9ib0GlpacrIyAjrPgPhyHIormPs3X3Ee8TL8+YBRLRWNdm93vq3WDLGtOYt61m3bp1Gjx4t6cSVdAMGDFD79u1VWFiovLw85eXl6b777tPs2bODul8AANqycGQ8AACIfeXl5br88su1c+dODR06VG+88UaTV7YBANCWPfLII5KkP/3pTxo7dqyk+lexS1L37t3Vu3dv/fvf/w5bbenp6ZJOXK1eUlKinj171tumuLi4zrYIPZvDJltC43cIikY2R+wdE4DYEvTTm5588kmtW7cuaO9njNGAAQO0YMECHTx4ULt27VJBQYEOHTqkWbNmSZLmzJmjv/zlL0HbJwAAqC/YGQ8AAGKbx+PRFVdcoc2bNysjI0P5+flKSkqyuiwAACLapk2b1L17d1+DvTE9evTQvn37wlDVCX369FH37t0lSe+//77fbWqXDxs2LGx1AQBghaA32QcPHqxRo0YF7f3OOeccffTRR7r55pvr3GLG4XDooYce0mWXXSZJeu6554K2TwAAUF+wMx4AAMSumpoaTZw4UevWrVNaWprefvttderUyeqyAACIeOXl5b5GdlOqqqpUU1MT4oq+ZbPZdNVVV0mSXnjhhXrrN2zYoI8//ljx8fH64Q9/GLa6AACwQkifyR4MycnJja6/5JJLtGrVKu3evTtMFQEAAAAAgMa88sorev311yWdePTbhAkT/G7Xo0cPLV++PIyVAQAQ2Xr06KGioqImt6usrNTHH3+s/v37h6Gqb+Xk5OiFF17Q6tWrNW/ePM2YMUM2m02ffvqpbrjhBknSz372s2afKAAAkaCkpESlpaVh2Vftv/HN+bc+WFwul9xud9j211ZEfJO9KZWVlZLEM90AAAAAAIgQHo/H9/fCwkIVFhb63a5v377hKgmoh1+mAq3H91HwXXjhhfrf//1fvfjii76mtT+PP/64Kisrdemllwa8r/fff19XXHGF7+vy8nJJ0ty5c/XYY4/5lm/fvl29e/eWJPXv31/PPfecrr/+et111116/PHH1a1bN+3cuVPV1dU6++yzNW/evIBrAoBwKykp0Zgxl8njqQzrfnNycsK2L6czQfn5q/jZMMiiuslujPGd8T5y5EiLqwEAAAAAAJI0ZcoUTZkyxeoygAaVlJTo0ssuU1Vl7P4y1ZGQoLdW8ctUhM6JpsSYOidWhUN4mxJO5efnh/X76O6779ZLL72kW2+9VRUVFbruuuvqrD9y5Ijmz5+v2bNnq3379rrjjjsC3ld1dbUOHTpUb/k333yjb775xvf1929JP3nyZA0YMEBz587Vhg0b9O9//1upqam65pprdPfddyshISHgmgAg3EpLS+XxVMo55ArFdehsdTlB5y0/JE/BSpWWlvJzYZBFdZP9ueee0/bt2+VwOHT77bc3uJ3H46nzw15ZWVmj7xvOMzCl6DoLk7NTg6eiokLFxcVh2dd3paamRvSdH5gXtIRVnxeJzwwAAAAQzUpLS1VVWalvrr5a3i5drC4n6OIOHpRWrOCXqQipE00Jj9xdR8gRn2J1OUFXVX1UJQc2hP376JRTTtHixYt13XXXadq0abrjjjtkt9slSX369NEXX3whr9crh8OhJUuW+K4wD0RWVpaMMQGNHTFihN54442A9w0AkSauQ2fZO/awugxEkahtshcUFOi2226TJM2ZM0dpaWkNbjt37lw9+OCDzXrfkpISjbl0jDxV4T0DUwrzWZgOp/LfatlZmJydGlzFxcUaP358yPfzfXl5ecrIyAj7fpuLeUFLWPV5kfjMAAAAIDpwIUHjvF26yEsTGs3AhScNc8SnKNHZKcgVtW0//vGP9YMf/EC/+c1vtGrVKt8jUz///HPFx8frsssu0+zZszVo0CCLKwUQbY55jI5UBnZyTSQ75om9Y4oUNTUeHa8J792fwqGmpvW9zqhssu/Zs0fjxo1TZWWlJk2apBkzZjS6/axZszR9+nTf12VlZQ2e4VdaWipPlUeDjg5Sh5oOQa07UpTby7UjZUeLz8KsPTs1/tx4xSXHhbBCa3jLvPJs8oTt7NTU1FTl5eW1eFxRUZFycnI0b968Rk8uaWy/kYx5QUtY9Xmp3TcAAAAQyaw6WV6K3RPm0TbxrFZY4YwzztCKFStUXV2t3bt36+jRo+rQoYPS09O5sx6AgN29rkZSTZPbAbU++3Kd1SVErKhrsu/fv1+XXHKJvvjiC40dO1aLFi2SzWZrdIzT6ZTT6WzRfjrUdFDK8di7zVEwxCXHKa5T7DXZwy0xMbFVV8GmpaXF5FW0zAtags8LAAAA0LBYP1leCv8J82ibeFYrrBQfH8/vLgAAiEBR1WQ/fPiwLrnkEhUVFWnUqFFavny54uPjrS4LAAAAAAAgYnGyPBAcPKsVAAAAtaKmyV5eXq7LL79cO3fu1NChQ/XGG29wWxwAAAAAAAAAQNRavHhxq99j8uTJQagEAAC0RFQ02T0ej6644gpt3rxZGRkZys/PV1JSktVlAQAAAAAAAAAQsClTpjT5ONTG2Gw2muwAmu3hi+xKdcXeHY6KS73/97x5BFvvky9SgtNldRlBV+kpbfXz5iO+yV5TU6OJEydq3bp1SktL09tvv61OnTpZXRYAAAAAAAAQk455jI5UGqvLCLpjntg7JkS/Pn36NNhk//TTT+V0OtW9e/cwVwUgViU5beqYEPiJPZEqyRl7xxQp7Han2tkTrC4j6Ox2Z6vfI+Kb7K+88opef/11SVJcXJwmTJjgd7sePXpo+fLlYawMAAAAAAAAiD0nrgTjajAgHD755JMG18XFxWno0KF69913w1cQAABolohvsns8Ht/fCwsLVVhY6He7vn37hqskAAAAAAAAAAAAAEAbFfEPXpgyZYqMMU2+GjvjDwAAAAAAAAAAAACAYIj4JjsAAAAAAAAAAAAAAJEi4m8XDwAAAAAAACB8Hr7IrlRX7F2bU1zq/b/nzQMAAACtQ5MdAAAAAAAAgE+S06aOCTarywi6JGfsHRMAAACsEXunpAIAAAAAAAAAAAAAECJcyQ4AAAAAAGJCta1aHpvH6jKCrtpWbXUJACSZqgoZz9dWlxF0pqqiVeNrajw6XlMZpGoiR01NePLk3XffbXT90aNHm9zmggsuCGZJANAmkfNoKZrsAAAAAAAgJmxxbbG6BAAxrHLTUqtLiEiffbnO6hKiWlZWlmw2/48ysNls2rlzpy688MIGx9tsNh0/fjxU5QFAm0HOo6VosgMAAAAAAAAAYBFjjCVjERu8ZV6rSwiJ1h5X3MGDQaokssTqcQHRiCY7AAAAAAAAAAAW8Hpjs0GK0HO5XHI6nfJsir1H5dRyOp1yuVwtGuNyueRISJBWrAhRVdZzJCS0eF4ABB9NdgAAAAAAAAAAgCjidruVn5+v0tLSsOyvqKhIOTk5mjdvntLS0sKyT5fLJbfb3aIxbrdbb61axbwACDma7AAAAAAAICacU3qOko4nWV1G0B1rd4znzQMRIOHca2RPOdnqMoKu5uiXrXoObe+TL1KCM/auqKz0lPK8eUQ8t9sd9mZrWlqaMjIywrrPlmJeEAhyHi1Fkx0AAAAAAMSEeBMvp3FaXUbQVZpKq0uIXRUVsn39tdVVBF9FhdUVxCSbI1E2Z3urywg6myOxVePtdqfa2ROCVE3ksNtjL08AAA0j59FSNNkBAAAAAADQJnVYvNjqEgAAAABEoTirCwAAAAAAAAAAAAAAIFrQZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew8kx0AALQ51bZqeWweq8sIumpbtdUlAAAARJXyyZNlune3uoygs+3fz/PmAQAAgBCiyQ4AANqcLa4tVpcAAACASJCYKNO+vdVVBJ0tMdHqEgAAAICYRpMdAAAAKikpUWlpaVj2VVRUVOfPcHC5XHK73WHZV0VFhYqLi8Oyr+9KTU1VYgT/Qt2qeZGYm4YwL/5F+rwAAAAAAADr0WQHAABo40pKSjRmzBh5POG9hX5OTk7Y9uV0OpWfnx+WRntxcbHGjx8f8v18X15enjIyMsK+3+ayal4k5qYhzIt/kT4vQCBMlZGpNFaXERKmKjaPC0DbZrfblZWVpbVr11pdCgAAaABNdgAAgDautLRUHo9H8efGKy45zupygs5b5pVnk0elpaVhabKnpqYqLy+vxeOKioqUk5OjefPmKS0tLaD9RrJA50VibhrCvPgX6/MCBKJqfZXVJQAAWsAYI2PqnkQ0bdo0/etf/6LxDqBV9h41krxWlxF0J44LCC+a7AAAoM05p/QcJR1PsrqMoDvW7lirnjcflxynuE6x12QPt8TExFZdBZuWlhaTV9G2dl4k5qYhzIt/sTovAAAgtvzsZz/TiBEjNHz4cP3gBz9ocLvt27drw4YNYawMQCxxuVxKcDqVuyG8dzEMpwSnUy6Xy+oy0IbQZAcAAG1OvImX0zitLiPoKk2l1SUAAAAAAFrgxRdf1MKFCyVJKSkpOvfccyVJFRUVOn78uNq141f4AFrP7XZrVX6+SktLw7K/1t5hLBAulyssdzAEapHQAAAAAAAAAABYoKioSBs2bNCGDRv0/vvva/Xq1bLZbNqyZYtSUlI0cuRIXXjhhTp06JDVpQKIcm63O+xNaO4whlhGkx0AAAAAACCGObIciusYm4+E8R7x8sx5AFGtf//+6t+/v6699lpJ0rFjx5SSkiK3260BAwbo3Xff1Zo1ayRJNptNWVlZGjFihEaOHKnhw4erU6dOVpYPAECbRZMdAAAAAAAghtkcNtkSbFaXERI2R2wel9X2HjWSvFaXEXQnjguIbElJSZKkgQMHat26daqsrNTf//53/fKXv9SePXu0adMmvfvuu7LZTvz7d8opp+jf//63lSUDANAm0WQHAAAAAAAAIJfLpQSnU7kbPFaXEjIJTqdcLpfVZQA+P/rRjzRixAgNHz5cZ599thwOR531CQkJGj16tHr06KE9e/aorKxM27Zt06ZNm7RhwwZt2rTJosoBAGjbaLIDAAAAAAAAkNvt1qr8fJWWloZlf0VFRcrJydG8efOUlpYWln26XK6wP48WaExeXp5ee+01SZLD4dBZZ50lSSorK9ORI0fUsWPHOts7HA4NHz5cw4cP1x133BHucgEAwP+hyQ4AAAAAAABA0olGe7ib0GlpacrIyAjrPhE8VdVHrS4hJMJ1XAcOHNDGjRt9rw8++EA2m03bt29Xly5dNHjwYF100UX68ssvw1IPAABoHprsAAAAAAAAAIAWcblccjqdKjmwwepSQsYZhscLdO7cWePGjdO4ceMkSTU1NYqPj1efPn00aNAg/e1vf1NBQYEkyWaz6eyzz/ZdyT58+HClpqaGtD4AAOAfTXYAAAAAAAAAQIu43W7l83iBoLPb7ZKk1NRUrVy5Ul6vVx988IEmT56s//znP9q7d6+2b9+up556SpLUtWtX7d+/P6w1AgAAmuwAAAAAAAAAgADweIHQi4uL07Bhw9StWzf95z//0YEDB7Rr1y5t2rRJ77//vjZt2mR1iQAAtEk02QEAAAAAAACgCd7yQ1aXEBKxelyx7JRTTtEpp5yi6667zupSAABos2iyAwAAAAAAAEADTjx7PEGegpVWlxIyTmdCyJ89jubzer31lhljLKgEAAA0hCY7AAAAAACICeX2cqtLCIlYPS4gWpx49vgqnj0OSz355JM6evSo1WUAQMyK1Tu7tPa4qqpjM3uCcVw02QEAAAAAQFRzuVxyOpzakbLD6lJCxulwcpUpYCGePQ6rDR482OoSACAmccca/07Mi1MlBzaEqCrrOZ2t+38smuwAAAAAACCqud1u5b+Vz1WmAAAAAFqEO9b4d2Je+H+sxtBkBwAAAAAAUY+rTAEAAAAEgv+X8I95aVyc1QUAAAAAAAAAAAAAABAtaLIDAAAAAAAAAAAAANBMNNkBAAAAAAAAAAAAAGgmmuwAAAAAACBk3nzzTY0ePVqdOnVS+/btNWTIED3xxBPyer1WlwYAAAI0ZcoU2Wy2Rl+VlZVWlwkAQMi0s7oAAAAAAAAQm3JzczVr1ixJUmpqqjp06KAdO3Zo2rRpWrNmjV577TXFxXH+PwAA0So9PV3dunXzu46MBwDEMprsAAAAAAAg6DZu3Kh77rlHcXFxWrJkia655hpJ0o4dO3TppZfqz3/+sx599FHNmDHD4krRlsUdPGh1CSERq8cFIPLcc889mjJlitVlAAAQdjTZAQAAAABA0M2ZM0fGGP385z/3NdgladCgQXr00Ud17bXXKjc3V7fddpvi4+MtrBRtkcvlkiMhQVqxwupSQsaRkCCXy2V1GQAAAEBMoskOAAAAAACCqqysTGvWrJEk3XjjjfXWT5gwQTfffLMOHTqkd955R9nZ2eEuEW2c2+3WW6tWqbS0NCz7KyoqUk5OjubNm6e0tLSw7NPlcsntdodlXwAAAEBbQ5MdAAAAAAAE1fbt21VVVaWEhAQNGTKk3vr4+HgNHTpUa9eu1ebNm2mywxJutzvsTei0tDRlZGSEdZ8AEEqvvvqqXn/9dZWVlalbt24aOXKkJk+erJSUFKtLAwAgpGiyAwAAAACAoCosLJQk9enTR+3a+f/VQ2pqqtauXevb9vs8Ho88Ho/v67KysuAXCgAAWuWvf/1rna+XLVumBx54QC+99JLGjBnT4DhyHgAQ7eKsLgAAAAAAAMSW2ltwN/Y86Np1Dd2ue+7cuUpJSfG9evfuHfxCAQBAQNLS0vTQQw9px44dKisr07Fjx7R69WoNGzZMpaWluvLKK7V169YGx5PzAIBoR5MdAAAAAAAEVWVlpSTJ4XA0uI3T6ZQkVVRU+F0/a9YsHT161Pf67LPPgl8oAAAIyK9//WvNmjVLZ555ppKSktShQwddcsklevfdd3XOOefI4/Ho7rvvbnA8OQ8AiHbcLh4AAAAAAARVQkKCJKmqqqrBbWpvEZuYmOh3vdPp9DXiAQBAdHA4HJo9e7YuvfRSrV+/XqWlpX7vbEPOAwCiHVeyAwAAAACAoGrqVvDfXdfYLeUBAED0GT58uCTJ6/WquLjY4moAAAgNmuwAAAAAACCo0tPTJUl79+7V8ePH/W5T+0v32m0BAEBsiI+P9/29oZ8DAACIdjTZAQAAAABAUJ111lmKj49XZWWlCgoK6q2vrq7WBx98IEkaNmxYuMsDAAAh9K9//cv39169ellYCQAAocMz2QEAAAAAQFAlJydr9OjRWrVqlV544QWdc845ddYvX75cZWVl6ty5s7Kysqwpsg3xlnmtLiFkYvnYACBaPfLII5KkU089VT179rS4GgAAQoMmOwAAAAAACLp7771X+fn5ev7555WVlaVrrrlGkrRjxw5Nnz5dknTXXXfJ4XBYWWZMc7lccjqd8mzyWF1KSDmdTrlcLqvLAIA24+2339a6dev0i1/8Qv379/ctP3r0qH79619r6dKlkqT777/fqhIBAAg5muwAAAAAACDoRo4cqdmzZ+u+++7TpEmTdN9996lDhw7auXOnvF6vxo4dqzvvvNPqMmOa2+1Wfn6+SktLw7bPoqIi5eTkaN68eUpLSwvLPl0ul9xud1j2BQCQvv76a+Xm5io3N1c9e/aU2+1WdXW1/v3vf6uqqko2m03333+/7wQ7AABiEU12AAAAAAAQEvfee68GDRqk3//+99q2bZv279+vM844Q9dff71uueUW2e12q0uMeW6325IGdFpamjIyMsK+XwBA6J199tm69957tXHjRv3nP//Rzp07ZYxRz549df7552vq1KkaNmyY1WUCABBSNNkBAIBljDF6//33tXLlSr333nv6+OOP9c0336hLly4aPny4brnlFl144YVWlwkAAFph3LhxGjdunNVlAACAIOndu7fmzJljdRkAAFiKJjsAALDMunXrNHr0aElSXFycBgwYoPbt26uwsFB5eXnKy8vTfffdp9mzZ1tcKQAAAAAAAAAAJ8RZXQAAAGi7jDEaMGCAFixYoIMHD2rXrl0qKCjQoUOHNGvWLEnSnDlz9Je//MXiSgEAAAAAAAAAOIEmOwAAsMw555yjjz76SDfffLNcLpdvucPh0EMPPaTLLrtMkvTcc89ZVSIAAAAAAAAAAHVwu3gAAGCZ5OTkRtdfcsklWrVqlXbv3h2mito2U2VkKo3VZQSdqQr8mA4fPhzEShp39OhR35/h2m+nTp3Csh8AAAAAAAAgltBkBwAAEauyslKSlJiYaHElbUPV+iqrS4g4w4cPD/s+r7/++rDta9euXWHbFwAAAAAAABAraLIDAICIZIzR8uXLJUkjR45scDuPxyOPx+P7uqysrMn3LreXt77ACBSrx4XQKSkpkdvtDmhcaWlpCCryr6ioqM6f4eByuSJ+bpgX/6JpXgAAAAAAQHSiyQ4AACLSc889p+3bt8vhcOj2229vcLu5c+fqwQcfbNZ7ulwuOR1O7UjZEaQqI4/T4azzfHsErqSkxOoSQu7Syy7TW6tWtag5WFJSosvGjFHld05uCZecnJyw7SvB6dSq/PwWz82YMZfJ46kMYWX1hXNenM4E5ee3/DMzZsyYOidEhUN458Wp/BZ+XgAAAAAAQPSiyQ4AACJOQUGBbrvtNknSnDlzlJaW1uC2s2bN0vTp031fl5WVqXfv3n63dbvdyn8rP6xXU+bk5GjevHmNHkMwcTVl8ITzSm2rVFVWqrS0tEWfmdLSUlV6PJo5wq4+KbYQVmedvUeNcjd4Apobj6dSziFXKK5D5xBWaA1v+SF5ClYGOC8eubuOkCM+JYQVWqOq+qhKDmxo8bwAAAAAAIDoFRVN9j179mjNmjXasmWLtmzZon/961+qqanR7Nmzdd9991ldHgAACKI9e/Zo3Lhxqqys1KRJkzRjxoxGt3c6nXI6nc1+f7fbHfYmSFpamjIyMsK6z0A4shyK6xhndRlB5z3ibdXz5ssnT5bp3j2IFUUG2/796rB4ccDj+6TYlN4p9j4vJ3hbNTquQ2fZO/YIUi2xwxGfokRnJ6vLAAAAAAAAaLWoaLI//vjjevzxx60uAwAAhNj+/ft1ySWX6IsvvtDYsWO1aNEi2WyxeaVsJLI5bLIlxN582xytPKbERJn27YNTTASxJSZaXQIAAAAAAAAQlaLi0pMuXbpo3Lhx+u1vf6tVq1bp6quvtrokAAAQZIcPH9Yll1yioqIijRo1SsuXL1d8fLzVZQEAAAAAAAAAUEdUXMn+/VvCv/zyyxZVAgAAQqG8vFyXX365du7cqaFDh+qNN95QIlfZAgAAAAAAAAAiUFRcyQ4AAGKXx+PRFVdcoc2bNysjI0P5+flKSkqyuiwAAAAAAAAAAPyKiivZrVBtq5bH5rG6jJCotlW3arypMjKVJkjVRA5TFfgxHT58OIiVNO7o0aO+P8O1306dOgU0jnkB0JSamhpNnDhR69atU1pamt5++22+twAAAAAAAAAAEY0mewO2uLZYXULEqlpfZXUJEWf48OFh3+f1118ftn3t2rUroHHMC4CmvPLKK3r99dclSXFxcZowYYLf7Xr06KHly5eHsTIAAAAAAAAAAPxrE012j8cjj+fbq9LLysosrAaIPiUlJXK73VaXEXECnZeSkhKVlpa2aIzH49Hnn3/e4n21Vq9eveR0Ols0xuVyhW1eAlVUVFTnz3AJdG5i2XfzubCwUIWFhX6369u3b7hKAgAAAAAAMaCiokLFxcUtHtfa3xulpqYqMTExoLHhwLz4x7z4x7w0jLnxry3NS5toss+dO1cPPvhgs7Z1uVwhriYyOB3ONnOsoVZSUmJ1CSF36WWX6a1Vq1rUHGwL83LZmDFalZ/f4nkZM+YyeTyVIazMWk5ngvLzW/55GTNmTJ2Gazjk5OSEdX9Op1P5LfzMxLopU6ZoypQpVpcBAAAAAABiTHFxscaPHx/w+EB/b5SXl6eMjIyA9xtqzIt/zIt/zEvDmBv/2tK8tIkm+6xZszR9+nTf12VlZerdu7ffbdtK4yP/LZo8wRKuK2+tVFVZqdLS0hZ9ZtrCvFR6PAHNi8dTKeeQKxTXoXMIq7OGt/yQPAUrA5wXj9xdR8gRnxLCCq1TVX1UJQc2tHhuAAAAAAAA0HKpqanKy8uzZL+RjHnxj3nxj3lpGHPjX1ualzbRZHc6nS263fHGjRtDWE19H3/8sa6//notXLhQp556alj22alTp4DHOrIciusYF8RqIoP3iLdVz5svnzxZpnv3IFYUGWz796vD4sUBj3/4IrtSXbH3eSku9erudTUBj4/r0Fn2jj2CWFFscMSnKNEZ+L9PAAAAAAAAgCQlJiZG9NWeVmFe/GNe/GNeGsbc+NeW5qVNNNlbqjUN6ECkpKT4/gz3vgNhc9hkS7BZXUbQ2RytPKbERJn27YNTTASxtfIZFklOmzrG4OclyRl7xwQAAAAAAAAAAICmxd7lpQAAAAAAAAAAAAAAhAhNdgAAAAAAAAAAAAAAmokmOwAAAAAAAAAAAAAAzRQVTfb3339fXbp08b1efvllSdLcuXPrLP/ss88srhQAAAAAAAAAAAAAEMvaWV1Ac1RXV+vQoUP1ln/zzTf65ptvfF/X1NSEsywAAAAAAAAAQAtUVFSouLi4xeOKiorq/NlSqampSkxMDGgsAADA90VFkz0rK0vGGKvLAAAAAAAAAAC0QnFxscaPHx/w+JycnIDG5eXlKSMjI+D9AgAAfFdUNNkBAAAAAAAAANEvNTVVeXl5luwXAAAgWGiyAwAAAAAAAADCIjExkSvKAQBA1IuzugAAAAAAAAAAAAAAAKIFTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM3EM9kBAAAAAAAABKyiokLFxcUtHldUVFTnz5ZKTU1VYmJiQGPDgXkBAACIXTTZAQAAAAAAAASsuLhY48ePD3h8Tk5OQOPy8vKUkZER8H5DjXkBAACIXTTZAQAAAAAAAAQsNTVVeXl5luw3kjEvAAAAsYsmOwAAAAAAAICAJSYmcuW0H8wLAABA7IqzugAAAAAAAAAAAAAAAKIFTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJnaWV0AAAAAAAAAgLalpqZGW7du1YEDB9S1a1dlZmbKbrdbXRYAAADQLDTZAQAAAAAAAITN6tWrlZubq3379vmW9ezZUzNnzlR2draFlQEAAADNw+3iAQAAAAAAAITF6tWrNW3aNA0cOFDLli1TQUGBli1bpoEDB2ratGlavXq11SUCAAAATaLJDgAAAAAAACDkampqlJubq6ysLC1YsECDBw9W+/btNXjwYC1YsEBZWVl6+OGHVVNTY3WpAAAAQKO4XTwAAAAAAGiTKioqVFxc3OJxRUVFdf5sqdTUVCUmJgY0FohmW7du1b59+/Too48qLq7utT9xcXG66aabNHHiRG3dulXDhg2zqEoAAACgaTTZAQAAAABAm1RcXKzx48cHPD4nJyegcXl5ecrIyAh4v0C0OnDggCQpPT3d7/ra5bXbAQAAAJGKJjsAAAAAAGiTUlNTlZeXZ8l+gbaoa9eukqTCwkINHjy43vrCwsI62wEAAACRiiY7AAAAAABokxITE7miHAijzMxM9ezZU08//bQWLFhQ55bxXq9XzzzzjHr16qXMzEwLqwQAAACaFtf0JgAAAAAAAADQOna7XTNnztT69es1depUbd++XeXl5dq+fbumTp2q9evX6+6775bdbre6VADN8Oabb2r06NHq1KmT2rdvryFDhuiJJ56Q1+u1ujQAAEKOK9kBAAAAtNgxj9GRSmN1GSFxzNO64zJVFTKer4NUTeQwVRWtGl9T49HxmsogVRM5amo8VpcQcY4dO6aVK1cqPz9fW7Zs0WeffSabzab+/fvr8ssv1/Tp09WjRw+rywRgkezsbM2fP1+5ubmaOHGib3mvXr00f/58ZWdnW1gdgObKzc3VrFmzJJ14DEqHDh20Y8cOTZs2TWvWrNFrr71W524VAADEGprsAAAAAFrs7nU1kmqsLiMiVW5aanUJEemzL9dZXQLCZOrUqVqyZIkkKSkpSaeeeqq+/vpr7dq1S//+97+1cOFCrVq1SkOHDrW4UgBWyc7O1sUXX6ytW7fqwIED6tq1qzIzM7mCHYgSGzdu1D333KO4uDgtWbJE11xzjSRpx44duvTSS/XnP/9Zjz76qGbMmGFxpQAAhA5NdgAAAEiSvGWxeUu/1h5X3MGDQaokssTqcQGIDFdeeaVuueUWjRo1Su3anfjVQ1FRkSZNmqQtW7bo6quv1q5du5SYmGhxpQCsYrfbNWzYMKvLABCAOXPmyBijn//8574GuyQNGjRIjz76qK699lrl5ubqtttuU3x8vIWVAgAQOjTZAQAA2jiXyyWn0ynPpti95bHT6ZTL5WrRGJfLJUdCgrRiRYiqsp4jISGgeWkLEgL8zMQ6p5PPjD+B/BsTyx5//HF16tSp3vK0tDS9+uqrGjBggD777DPl5+frqquusqBCAAAQqLKyMq1Zs0aSdOONN9ZbP2HCBN188806dOiQ3nnnHR4BAQCIWTTZAQAA2ji32638/HyVlpaGZX9FRUXKycnRvHnzlJaWFpZ9ulwuud3uFo1xu916a9Uq5uV7Wrp9tFqVn8/c+JGfv4p58SM/gM9LLPPXYK/Vu3dvnXrqqfrnP/+p3bt3h7EqAAAQDNu3b1dVVZUSEhI0ZMiQeuvj4+M1dOhQrV27Vps3b6bJDgCIWTTZAQAAILfbHfYGUVpamjIyMsK6z5ZiXvzbuHFjWPf38ccf6/rrr9fChQt16qmnhmWfjTUJGxPOuWFe/IumeWmrKisrJYlbxQMAEIUKCwslSX369PE9Eub7UlNTtXbtWt+2AADEIprsAAAAAFok3A3FlJQU35+R3swMZ33Mi3/RNC9t0Y4dO3xXsI8cOdLiagAAQEvV3umrsUfl1K5r7K5gHo9HHs+3jywrKysLUoUAAIRHnNUFAAAAAACA2FdTU6Nbb71VknTRRRfp7LPPbnR7j8ejsrKyOi8AAGCt2jvSOByOBrdxOp2SpIqKiga3mTt3rlJSUnyv3r17B7dQAABCjCY7AAAAAAAIuXvuuUfvvfeekpKS9Oyzzza5Pb98BwAg8iQkJEiSqqqqGtym9gr1xh4NM2vWLB09etT3+uyzz4JbKAAAIcbt4gEAAAAAgCTprrvu0p///OcWj1u4cKGGDx/e4Pqnn35av/vd79SuXTstXbpUaWlpTb7nrFmzNH36dN/XZWVlNNoBALBYc24F35xbyjudTt8V7wAARCOa7AAAAAAAQJJUUlKiXbt2tXjc119/3eC6ZcuW6Ve/+pVsNpsWLVqksWPHNus9+eU7AACRJz09XZK0d+9eHT9+XO3a1W8xFBcX19kWAIBYxO3iAQAAAACAJGnJkiUyxrT4NXr0aL/v9+abb+qnP/2pvF6vnnzySV177bVhPiIAABBMZ511luLj41VZWamCgoJ666urq/XBBx9IkoYNGxbu8gAACBua7AAAAAAAIOjeffdd/ehHP1J1dbXmzp2rqVOnWl0SAABopeTkZN/JdS+88EK99cuXL1dZWZk6d+6srKysMFcHAED40GQHAAAAAABBtW3bNv3Xf/2XKioqNGvWLM2cOdPqkgDL1NTUaOfOnZKknTt3qqamxuKKIkNNTY02b96sv/zlL9q8eTPzAkSRe++9VzabTc8//7yWLl3qW75jxw5Nnz5dknTXXXfJ4XBYVSIAACHHM9kBAAAAAEDQ7Nq1S2PGjFFZWZmmTp2qhx56yOqSgKCpqKjwPWu4OTZt2qRFixbpq6++kiTdf//9evLJJzVlyhSde+65zX6f1NRUJSYmtrjeSLV69Wrl5uZq3759vmU9e/bUzJkzlZ2dbWFlAJpj5MiRmj17tu677z5NmjRJ9913nzp06KCdO3fK6/Vq7NixuvPOO60uEwCAkKLJDgAAAAAAgmbatGk6ePCgbDab/vGPf+i8887zu90NN9ygG264IczVAa1TXFys8ePHt+o9vvrqK/3ud79r0Zi8vDxlZGS0ar+RYvXq1Zo2bZqcTmed5YcOHdK0adM0f/58Gu1AFLj33ns1aNAg/f73v9e2bdu0f/9+nXHGGbr++ut1yy23yG63W10iAAAhRZMdAAAAAAAEjcfjkSQZY7Rhw4YGt6t9nisQTVJTU5WXl9fkdjU1NfrVr36lpKQkHTt2zHcluyR169ZNSUlJKi8v15NPPtmsRlRqamqr6o4UNTU1euCBB2SM0bnnnqubb75Z6enpKiws1FNPPaX169frN7/5jS6++GIadEAUGDdunMaNG2d1GQAAWIImOwAAAAAACJr169dbXQIQMomJic26onzz5s366quvdODAAWVlZemJJ57wNZOffvpprV+/XsYYVVRUaNiwYWGoPDJs2bJFhw8f1pAhQ/TUU08pLi5OkjR48GA99dRTuvbaa1VQUKAtW7Zo+PDhFlcLAAAANCzO6gIAAAAAAACAWPLll19Kks4//3w98cQT8ng8euedd+TxePTEE0/o/PPPr7NdW7F582ZJ0m233eZrsNeKi4vTrbfeWmc7AAAAIFJxJTsAAAAAAAAQRIcPH5Ykud1uXXrppdq3b59vXc+ePX1N9trt2hpjjNUlAAAAAK3ClewAAAAAAABAEHXq1EmS9PLLL2vgwIFatmyZCgoKtGzZMg0cOFAvv/xyne3aitpb4z/xxBPyer111nm9Xj355JN1tgMAAAAiFU12AAAAAAAAIIi6du3q+7sxpt7L33ZtwTnnnKNOnTpp27Ztmjp1qrZv367y8nJt375dU6dO1bZt29S5c2edc845VpcKAAAANIrbxQMAAAAAADRTTU2Ntm7dqgMHDqhr167KzMyU3W63uixEqNTUVH388ceaOHGib1mPHj2Umpqq4uJiCyuzht1u14MPPqhbb71VGzdu1DvvvONbl5CQIEn6zW9+w/cUAAAAIh5NdgAAAAAAgGZYvXq1cnNz6z1fe+bMmcrOzrawMkSaQ4cOSZLfRvoXX3xRb7u2JDs7W0888YTmzp2rkpIS3/LOnTvzvQQAAICoQZMdAAAAAACgCatXr9a0adOUlZWlRx99VOnp6SosLNTTTz+tadOmaf78+TQH4fPd28DHxcXVef74d79ua7eLr5Wdna2LL76Yu0IAAAAgatFkBwAAAAAAaERNTY1yc3OVlZWlBQsWKC4uTpI0ePBgLViwQFOnTtXDDz+siy++mCYhJElnnnmmJCk+Pl4ffPCB/vnPf/qayWeeeaaGDh2q6upq33Ztkd1u17Bhw6wuAwAAAAhInNUFAAAAAAAARLKtW7dq3759+uUvf+lrsNeKi4vTTTfdpM8//1xbt261qEJEmmXLlkmSqqurdccdd8jhcCgrK0sOh0N33HGHqqur62wHAAAAILrQZAcAAAAAAGjEgQMHJEnp6el+19cur90O2Lt3ryRpzpw52r17tyZOnKizzz5bEydOVGFhoWbPnl1nOwAAAADRhdvFAwAAAAAANKL2udmFhYUaPHhwvfWFhYV1tosFFRUVKi4ubvG4oqKiOn+2VGpqqhITEwMaG0n69OkjSTLG6O2336737PFXX321znYAAAAAogtNdgAAAAAAgEZkZmaqZ8+eevrpp+s8k12SvF6vnnnmGfXq1UuZmZkWVhlcxcXFGj9+fMDjc3JyAhqXl5enjIyMgPcbKSZNmqTf/e53euyxxzR+/Pg6zx4/fvy4Hn/8cdntdk2aNMnCKgEAAAAEiiY7AAAAAABAI+x2u2bOnKlp06Zp6tSpuummm5Senq7CwkI988wzWr9+vebPny+73W51qUGTmpqqvLw8S/YbCxwOh6ZMmaIXXnhBF1xwgW677TZlZWVp/fr1evzxx3Xo0CHdeOONcjgcVpcKAAAAIAA02QEAAAAAAJqQnZ2t+fPnKzc3VxMnTvQt79Wrl+bPn6/s7GwLqwu+xMTEmLii3Ep33XWXJGnRokW6//77fcvtdrtuvPFG33oAAAAA0YcmOwAAAAAAQDNkZ2fr4osvrvd87Vi6gh3Bddddd+n222/XSy+9pL1796pPnz6aNGkSV7ADAAAAUY4mOwAAAAAAQDPZ7fY6z9cGmlJ763gAAAAAsSPO6gIAAAAAAAAAAAAAAIgWNNkBAAAAAAAAAAAAAGgmmuwAAAAAAAAAAAAAADQTz2QHAAAAAABAq9XU1Gjr1q06cOCAunbtqszMTNntdqvLAgAAAICgo8kOAAAAAACAVlm9erVyc3O1b98+37KePXtq5syZys7OtrAyAAAAAAg+bhcPAAAAAACAgK1evVrTpk3TwIEDtWzZMhUUFGjZsmUaOHCgpk2bptWrV1tdIgAAAAAEFU12AAAAAAAABKSmpka5ubnKysrSggULNHjwYLVv316DBw/WggULlJWVpYcfflg1NTVWlwoAAAAAQUOTHQAAAAAAAAHZunWr9u3bp1/+8peKi6v7a6a4uDjddNNN+vzzz7V161aLKgQAAACA4IuqJvubb76p0aNHq1OnTmrfvr2GDBmiJ554Ql6v1+rSAABAK5DxAAAA0enAgQOSpPT0dL/ra5fXbgcAAAAAsSBqmuy5ubkaO3as1q5dK5fLpQEDBmjHjh2aNm2arrrqKn4JDwBAlCLjAQAAolfXrl0lSYWFhX7X1y6v3Q4AAAAAYkFUNNk3btyoe+65R3FxcXrppZdUVFSkHTt2qKCgQCeffLL+/Oc/69FHH7W6TAAA0EJkPAAAQHTLzMxUz5499fTTT9c7OdLr9eqZZ55Rr169lJmZaVGFAAAAABB8UdFknzNnjowx+tnPfqZrrrnGt3zQoEG+X7zn5uaqurraqhIBAEAAyHgAAIDoZrfbNXPmTK1fv14333yzlixZoldffVVLlizRzTffrPXr1+vuu++W3W63ulQAAAAACJp2VhfQlLKyMq1Zs0aSdOONN9ZbP2HCBN188806dOiQ3nnnHWVnZ4e7RAAAEAAyHgAAIDZkZ2frhhtu0KJFi7R+/XrfcrvdrhtuuIGf4wAAAADEnIhvsm/fvl1VVVVKSEjQkCFD6q2Pj4/X0KFDtXbtWm3evJn/cQMQFUxVhYzna6vLCDpTVdGq8TU1Hh2vqQxSNZGlpsZjdQkRh4wHAACIDatXr9aLL76orKwsnX/++UpISFBlZaXee+89vfjiixo8eDA/ywEAAACIKRHfZC8sLJQk9enTR+3a+S83NTVVa9eu9W0LAJGuctNSq0uISJ99uc7qEhBGZDwAAED0q6mpUW5urrKysrRgwQLFxX37ZMJrrrlGU6dO1cMPP6yLL76YW8YDAAAAiBkR32QvLS2VJLlcrga3qV1Xu+33eTweeTzfXkFYVlYWxApPqKioUHFxcUBji4qK6vzZUqmpqUpMTAxobCC8Zd6w7SucWntccQcPBqmSyNLa49p71EiKvc/MieMC0BrByHgpsnM+2jK+pZgX/5gX/9rSz8stxWfGP+YFiA5bt27Vvn379Oijj9ZpsEtSXFycbrrpJk2cOFFbt27VsGHDLKoSAAAAAIIr4pvslZUnbhvscDga3MbpdEo68UsYf+bOnasHH3ww+MV9R3FxscaPH9+q98jJyQloXF5enjIyMlq17+ZwuVxyOp3ybIrdWx47nc5Gmz3+uFwuORISpBUrQlSV9RwJCQHNS4LTqdwNsft5SQjw8xLrnM7APi9tQSD/xsSyYGS8FB05H+kZHyjmxT/mxb+28PNyoPjM+Me8ANHhwIEDkqT09HS/62uX124HAAAAALEg4pvsCQkJkqSqqqoGt6m9eq2hqw1mzZql6dOn+74uKytT7969g1jliasd8vLygvqeLdl3OLjdbuXn5zd6NaE/Ho9Hn3/+eYiqalivXr18zZnmcrlccrvdLRrjdrv11qpVzMv3uN1ureLzUk9Lt49G+fmrmJcG5Ofnt5ljbY5gZLwU2zkfrowPFPPiH/PiX1v4eTlQfGb8Y16A6NC1a1dJJx4FNHjw4Hrrax/7U7sdAAAAAMSCiG+yN+c2sU3dbtbpdLa4edZSiYmJbeJqB7fbHVCDaMiQISGoJnIwL/4xL/5t3LjR6hJCqlOnTgGNi/V5kQKfm1gVjIyXyHkrMS/+MS/+MS8NY278Y16A6JCZmamePXvq6aefrvdMdq/Xq2eeeUa9evVSZmamhVUCAAAAQHBFfJO99rZie/fu1fHjx9WuXf2Sa5/T19CtyQAgktBo9Y95aXvIeAAAgOhnt9s1c+ZMTZs2TVOnTtVNN92k9PR0FRYW6plnntH69es1f/582e12q0sFAAAAgKCJa3oTa5111lmKj49XZWWlCgoK6q2vrq7WBx98IEkaNmxYuMsDAAABIuMBAABiQ3Z2tubPn6/du3dr4sSJOvvsszVx4kQVFhZq/vz5ys7OtrpEAAAAAAiqiL+SPTk5WaNHj9aqVav0wgsv6Jxzzqmzfvny5SorK1Pnzp2VlZVlTZEAAKDFyHgAAIDYkZ2drYsvvlhbt27VgQMH1LVrV2VmZnIFOwAAAICYFPFXskvSvffeK5vNpueff15Lly71Ld+xY4emT58uSbrrrrvkcDisKhEAAASAjAcAAIgddrtdw4YN07hx4zRs2DAa7AAAAABiVlQ02UeOHKnZs2fL6/Vq0qRJSktL06BBgzRkyBB9+eWXGjt2rO68806rywQAAC1ExgMAAAAAAAAAok1UNNmlE1e6vfHGG7rooot06NAh/ec//9EZZ5yhxx57TCtXruTsaAAAohQZDwAAAAAAAACIJhH/TPbvGjdunMaNG2d1GQAAIMjIeAAAAAAAAABAtIiaK9kBAAAAAAAAAAAAALAaTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANBNNdgAAAAAAAAAAAAAAmqmd1QVYwRgjSSorK7O4EgAAvs2j2nxC65DzAIBIQcYHFxkPAIgUZHzwkfMAgEjR3Jxvk032Y8eOSZJ69+5tcSUAAHzr2LFjSklJsbqMqEfOAwAiDRkfHGQ8ACDSkPHBQ84DACJNUzlvM23wdDuv16uSkhIlJSXJZrNZXY7KysrUu3dvffbZZ0pOTra6nIjBvPjHvPjHvPjHvPgXafNijNGxY8fkdrsVF8eTXForknI+0j5rkYJ58Y95aRhz4x/z4l8kzQsZH1xkfHRgbvxjXvxjXvxjXvyLpHkh44OPnI98zIt/zIt/zEvDmBv/ImlempvzbfJK9ri4OPXq1cvqMupJTk62/IMTiZgX/5gX/5gX/5gX/yJpXjjzPXgiMecj6bMWSZgX/5iXhjE3/jEv/kXKvJDxwUPGRxfmxj/mxT/mxT/mxb9ImRcyPrjI+ejBvPjHvPjHvDSMufEvUualOTnPaXYAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJnsEcDqdeuCBB+R0Oq0uJaIwL/4xL/4xL/4xL/4xLwgXPmv+MS/+MS8NY278Y178Y14QDnzOGsbc+Me8+Me8+Me8+Me8IFz4rPnHvPjHvPjHvDSMufEvGufFZowxVhcBAAAAAAAAAAAAAEA04Ep2AAAAAAAAAAAAAACaiSY7AAAAAAAAAAAAAADNRJMdAAAAAAAAAAAAAIBmoskOAAAAAAAAAAAAAEAz0WQPgzPOOEM2m02JiYkqKytrcLspU6bIZrPVecXHx6tHjx764Q9/qFWrVoWx6tDp169fveP8/uuxxx6TJH3yySd+1yclJWnQoEG65557dPDgQWsPKEj27t2r6dOn6/TTT1f79u2VmJioPn36aMSIEcrJydFbb71VZ/usrKwm59Fms+k3v/mNNQcUJFu2bNGvfvUrnX766XK5XIqPj1eXLl00YsQI3XXXXdq2bVuT73Hrrbf65uPtt98OQ9Wh1dD3UIcOHXTmmWdq1qxZOnToUL1xR44c0bJly3TnnXfqvPPO00knnSSbzabRo0dbcBTBF+i87N69W3PnzlV2dra6d++u+Ph4derUSRdeeKEWLlwor9drwdEgmpDz3yLjG0bO+0fO10XG+0fGwypkfF3kvH9kvH9kfH3kvH/kPKxCzn+LjG8YOV8fGV8fGe9fW8j4dlYXEOv+8Y9/aOfOnZKkyspKvfrqq7rhhhsaHdOtWzelp6f7xuzevVtvvPGG3njjDc2aNUsPPfRQyOsOh/T0dHXr1s3vup49e9ZblpmZKafTKUnat2+fPvzwQ/3zn//U4sWL9d5776l///4hrTeU1q1bpyuvvFLHjh2T3W5X79691a1bNx0+fFibNm3Sxo0btXDhQr8/oPTu3Vt9+vRp8L0bWxfJvvnmG/3sZz/T0qVLJUnx8fFKS0tTcnKyDh8+rC1btmjjxo2aN2+eLrvsMr355pt+36e6ulovv/yy7+s//vGPuuSSS8JyDKH23e8hr9erL774Qh9++KE+/PBD/fGPf9Tf//539evXz7f9+vXrNXHiRIuqDZ+WzEtNTY1OOeUU39hevXpp8ODB2rt3r9avX6/169fr5Zdf1sqVK5WQkGDF4SDCkfP+kfF1kfP1kfONI+P9I+MRTmR8w8j5b5Hx9ZHxTSPn/SPnEU7kvH9kfF3kfF1kfNPIeP9iOuMNQmr69OlGkunYsaORZLKyshrc9rrrrjOSzHXXXVdnucfjMTNmzDCSjCSzYcOGEFcdWn379jWSzMKFC5vcds+ePb7j3rNnT51127Zt873XpZdeGppiw+Do0aOmS5cuRpIZO3as+eSTT+qsLy0tNYsWLTKXX355neWjRo0ykswDDzwQxmrDo6qqypx33nlGkunRo4d58cUXTXl5eZ1taufltNNOM06ns8H3+vOf/1zne7B9+/b13ivaNPY9VFBQYNxut5FkJkyYUGddfn6+ueCCC8yMGTPMK6+8Yh566CEjyVx88cVhqjy0ApmX6upq07FjR3PfffeZoqKiOmOWLVtmEhMTjSRz5513hrp8RClyvi4yvj5yvj5yvmFkvH9kPKxAxtdHztdFxtdHxjeOnPePnIcVyPm6yPj6yPm6yPjGkfH+tYWMp8keQsePHzc9evQwksySJUuM3W43NpvNfPrpp363byiwjTHG6/WawYMHG0lm2rRpIa48tIIV2sYYk5eXZyQZm81mDh48GPxiw2Dp0qVGkklOTjZff/11s8fFamAbY8w999xjJBm322327t3b6LbV1dVmzpw5Da6fMGGCkWTuvfdek5GRYSSZP/7xj8EuOaya+h76wx/+YCQZl8vV6PssXLiwzYS2Mf7nxev1msOHDzf4nrm5ub4xNTU1wS4ZUY6cr4+Mr4+cr4+cbxgZ7x8Zj3Aj4/0j5+si4+sj4xtHzvtHziPcyPn6yPj6yPm6yPjGkfH+tYWM55nsIbRmzRp98cUX6t69uyZOnKiLLrpIxhj96U9/avF72Ww2nXfeeZKkwsLCYJcatS644AJJkjFGRUVFFlcTmOLiYknSwIEDddJJJ1lcjfWOHDmi+fPnS5Lmz5+v3r17N7p9u3btdO+99/pdd/ToUb3xxhuSpEmTJmnSpEmSTtyCJpb17dtXklRVVWVxJZHF37zYbDa5XK4Gx2RnZ0uSSktLdeDAgdAWiKhDzodWLGS8RM5/HznfOmS8f2Q8go2MD71YyHkyvi4yvvXIef/IeQQbOR9asZDxEjn/XWR865Hx/sVCxtNkD6HFixdLkn7yk5/Ibrfr2muvlRT4PxjGmKDVFitiYU6Sk5MlnfhB7MiRI9YWEwHefPNNlZeXq3v37rryyitb9V6vvPKKKisrNWjQIJ122mmaNGmSbDab1q5dqy+++CI4BUegrVu3SpJOPfVUiyuJLIHMS2Vlpe/viYmJQa8J0Y2cD61YmQ9yvi5yvnXIeP/IeAQbGR96sTAnZHxdZHzrkfP+kfMINnI+tGJlPsj5b5HxrUfG+xcLGU+TPUTKy8v1+uuvS5IvqMePH6/ExER99NFH2rZtW4vezxij999/X5I0YMCAoNYazd577z1JJ85uSU1NtbiawGRnZysuLk5Hjx7V6NGjtWLFCh09etTqsiyzYcMGSdLw4cNlt9tb9V61PxzXfg/269dPI0aMUE1NjV566aXWFRphvF6vSkpK9NRTT+nhhx+WzWbTrFmzrC7Lcq2dl1deeUWSdPrpp/t+uAYkcj4cYiHjJXL++8j5liPj/SPjESpkfHjEQs6T8XWR8YEh5/0j5xEq5HzoxULGS+T8d5HxgSHj/Yu5jA/v3enbjkWLFhlJZsCAAXWW1z5v4rbbbqs3pqHnu3g8HjNjxgzfs07ee++9EFYeerXPYWjoNWrUKN+2jT3jpaCgwPde0f6Miv/+7/+uMwc2m82ccsopZsqUKebll182lZWV9cbUPt+lqdf27dvDf0CtcOWVVxpJ5o477mjV++zZs8fYbDZjs9nqPCem9jkfgwYNamWl1mnqe2jo0KHmrbfeavJ9YvUZL62dl1offvihcTgcRpJZvHhxCCtHNCLn/SPj/SPnv0XON46M94+MRziR8Q0j5+sj479FxjeNnPePnEc4kfP+kfH+kfMnkPFNI+P9awsZ304IidozcmqfKVHr2muv1fLly7V06VL9z//8j9q1q/+fYNWqVb5nuVRWVmr37t06duyYJOmOO+7wrYt26enp6tatW73lZ5xxht/tJ0yYIKfTKUkqKSnRJ598ImOMTj75ZD311FMhrTXU7rnnHg0fPlz/8z//ozVr1qiqqkq7du3Srl27tGjRIvXp00f/+7//q6ysrHpje/furT59+jT43h06dAhh5cFX+1lv37693/Uvv/yyrrnmmnrLFy5cqClTpvi+XrJkiYwxuuCCC+o8J+bHP/6xbr/9du3YsUMffvhhg5+3aPD976GDBw/qk08+0bZt27RgwQINHTq00eeXxKpgzMuRI0d09dVXq6qqSpdffrl++tOfhrpsRBlyvnFkfF3k/LfI+eYh4/0j4xEOZHzTyPlvkfHfIuObj5z3j5xHOJDzjSPj6yLnTyDjm4+M9y+mM966/n7s+vzzz01cXJyRZD7++OM66zwej3G5XEaS+etf/1pnXe1Zcd992e1207VrV3PZZZeZ1157LYxHETq1Z68sXLiwyW2/e2bcd1+JiYnmtNNOMzNmzDD79+8PfdFh9M0335h3333XzJs3z1x44YXGZrP5jvmjjz7ybVd7VtwDDzxgXbEh0NSZcWvWrDEjR470vVJSUvx+nk455RQjyTz99NP13mPs2LFGksnJyQnFIYRcY99DpaWlZvLkyUaSyczMNF6vt8H3idUz41o7L5WVlb7vr4yMDHP48OEQVo1oRM43jIxvGjlPzjeGjPePjEe4kPGNI+cbR8aT8U0h5/0j5xEu5HzDyPimteWcJ+ObRsb71xYynmeyh8Cf/vQneb1eDRkyRKecckqddQ6HQxMmTJD07Zlz33fdddfJGCNjjI4fP66vvvpKb775pq688spQlx7R9uzZ45uXb775Rv/61780b948nXzyyVaXFlSJiYk6//zzNWPGDK1bt07vvvuu2rdvr4qKCj3yyCNWlxdyPXv2lCR98sknftdffPHF+vvf/+57ZWZm1ttmy5Yt2rVrl+Lj433fb99V+8yXl156SV6vN3jFR4COHTvq2WefVc+ePbV161atXLnS6pIiQnPn5fjx4/rJT36iv/3tb+rXr59Wr17dJs8uROPI+eBrKxkvkfPkfODIeP/IeAQTGR8abSXnyXgyvjXIef/IeQQTOR98bSXjpbad82R865Dx/sVKxtNkD4HaIC4oKJDNZqv3evbZZyVJK1euVFlZmZWlIgqcd955mjp1qqQTYRTrhg8fLknasGGDampqAnqPxYsXS5Kqq6vVuXPnet+DtbeE2rdvn9atWxecwiOI0+nUkCFDJLWNz0xzNTUvxhhdf/31WrlypXr06KE1a9bI7XaHu0xEAXIewUTOt1xbznky3j8yHsFCxiOYyPiWa8sZL5HzDSHnESzkPIKpLeU8Gd96ZLx/sZDxPJM9yLZv366dO3fKZrP5fX5JrdLSUlVUVGjFihW6/vrrw1gholFqaqokqaqqyuJKQu/yyy9Xhw4d9OWXX+q1117Tj370oxaNr66u1rJlyyRJnTt39vsMJUn6+uuvVV5erj/+8Y8aPXp0q+uONLVn/B0+fNjiSiJLY/Nyyy23aMmSJercubPefvttpaWlhbs8RAFyHqFAzjcfOU/GN4SMR2uR8QgFMr75yPgTyHn/yHm0FjmPUGgrOU/GBwcZ71+0ZzxXsgdZ7RlxF1xwgfbv39/g684776yzPdqugwcPyhjT6DYbNmyQJKWnp4ejJEu5XC7dcsstkqTbbrtNe/fubdH4VatW6eDBg2rfvr0++eSTBr8HV6xYIUnKy8vTN998E/TjsFJlZaW2b98u6dsf9tD4vNx7771asGCBkpKSlJ+fr4yMDCtKRBQg59FS5Hxd5HzrkPH+kfEIBjIeLUXG10XGtx457x85j2Ag59FS5Py3yPjWI+P9i4WMp8keRDU1NVq6dKkk6ac//Wmj2/6///f/JEnr16/XZ599FvLaELmWLFmiwYMH67nnntOhQ4fqrDty5Ijuv/9+LVmyRJLazBmUDz74oIYPH66SkhINGzZML774osrLy+tsU11drVdffVW7du2qs7z2h+CrrrpKHTp0aHAfF198sXr06KHy8nK99tprwT8Ii5SWlurnP/+5SkpK5HA49OMf/9jqkiJCY/Py6KOP6qGHHlJiYqL+8pe/+H1uECCR8wgMOV8fOR8YMt4/Mh7BQMYjEGR8fWR84Mh5/8h5BAM5j0CQ83WR8YEj4/2LlYzndvFB9Pbbb2v//v1KSEho8pYZp512ms466yxt375df/rTnzRz5swwVYlIY7PZ9M9//lO/+MUv9Itf/EL9+/dX165dVVpaqk8//dR3u5kZM2boqquuqjf+xRdf1Jo1axp8/wsuuEAPPfRQyOoPBYfDobfffls33HCDXnnlFd1444365S9/qbS0NCUnJ+vQoUP64osvfGe0ZWdn68ILL9SRI0f0xhtvSGr6h2a73a6JEyfq97//vf74xz/q2muvDflxBdtDDz2k559/3vf1oUOHtGfPHnk8HrVr107PPPOM+vXrV2dMly5dfH/3eDySpHfffbfO8ieffFITJ04MbfEh1JJ5KSkp0YwZMyRJSUlJuueeexp831dffVXdu3cPae2IbOQ8AkHO10fON42M94+MR6iQ8QgEGV8fGd885Lx/5DxChZxHIMj5usj45iHj/YvpjDcImkmTJhlJZsKECc3a/pFHHjGSzGmnnWaMMea6664zksx1110Xwiqt17dvXyPJLFy4sMlt9+zZYyQZSWbPnj0hr80KVVVVZt26dSYnJ8eMGDHC9OnTxzgcDnPSSSeZ9PR0M3nyZPPee+/VGzdq1Cjf3DT2uuKKK8J/UEG0adMm88tf/tKcdtppJiUlxbRr18507tzZDBs2zNx5551m27Ztvm2fffZZI8l0797dHD9+vMn33rZtm5Fk7Ha7+eKLL0J5GEFV+z30/ZfT6TSpqanm+uuvN//4xz/8jm3OZ6Y535uRKJB5+e6/MU29YvXfIDQfOd80Mr4+cr5x5HxdZLx/ZDxCjYxvHnK+LjK+cWR8feS8f+Q8Qo2cbxoZXx853zAyvj4y3r+2kPE2Y5p4sAQAAAAAAAAAAAAAAJDEM9kBAAAAAAAAAAAAAGg2muwAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7EAM6devn2w2mz755BOrSwmqrKws2Ww2rV+/3upSAACwDDkPAEBsIuMBAIhNZDwQ22iyA2Gwd+9eTZ8+Xaeffrrat2+vxMRE9enTRyNGjFBOTo7eeustq0uEpMcee0y/+c1vdOTIEatLAQBEEXI+OpDzAICWIuOjAxkPAGgpMj46kPGIdO2sLgCIdevWrdOVV16pY8eOyW63q3fv3urWrZsOHz6sTZs2aePGjVq4cKEOHjxodalt3mOPPaZPP/1UU6ZMUceOHa0uBwAQBcj56EHOAwBagoyPHmQ8AKAlyPjoQcYj0tFkB0KorKxMP/nJT3Ts2DGNHTtWf/jDH9S3b1/f+iNHjmjlypV65ZVXLKwSAAAEgpwHACA2kfEAAMQmMh5AMNFkB0LozTff1MGDB5WcnKxXXnlFJ510Up31HTt21HXXXafrrrvOogoBAECgyHkAAGITGQ8AQGwi4wEEE89kB0KouLhYkjRw4MB6gd0Ym80mm83W4Pp+/frJZrPpk08+aXCbt956S1lZWUpJSVFycrIuueQSvffee363zcrKks1m0/r167VlyxaNHTtWnTp1Uvv27TVixAi9/vrrDe7HGKMlS5Zo1KhR6tixoxITE3Xqqafq7rvv1uHDhxscd/z4cT333HO68MIL1blzZyUkJCg1NVVXX321Vq5c2eC473v55ZcVHx+v9u3ba/Xq1XXWbdmyRRMnTlTPnj3lcDh08skna8KECdq+fXud7RYtWiSbzaZPP/1UktS/f3/ff4PaeQEA4PvIeXIeABCbyHgyHgAQm8h4Mh4IKgMgZJ544gkjyaSkpJjS0tJmj5NkGvv27Nu3r5Fk9uzZ43f53Llzjc1mM506dTKZmZmmc+fORpKJi4szr7zySr33GzVqlJFkfvvb3xqHw2E6dOhgMjMzTY8ePXy1PPLII/XGeb1eM2nSJN82qampZsiQIcbhcBhJpm/fvqaoqKjeuMOHD5uRI0f6xvXt29dkZmaabt26+b72V98777xTZ/mzzz5r4uLiTEpKivn73/9eZ92jjz5qbDabkWQ6depkzjrrLN88xMfHmxUrVvi2ffPNN83IkSON0+k0kkxmZqYZOXKk71VQUNDgfwsAQNtFzpPzAIDYRMaT8QCA2ETGk/FAMNFkB0Jo165dJi4uzkgyZ599tnn11VfNkSNHmhzX2tBu166dmT59uqmqqjLGGFNdXW3uuusuI8kkJyebkpKSOuNqQ7Fdu3Zm4sSJpry83BhzIpTnz5/vW/ePf/yjzrjaH0qSkpLM6tWrfcu/+OILXygPGzasXv1XXnmlkWTS0tLMpk2b6qwrLCw0v/vd7/zW993QnjdvnpFkunbtWi9UV61aZWw2m+nSpUudcDbGmOeff960a9fOJCUl1ZuHhuYVAAB/yHlyHgAQm8h4Mh4AEJvIeDIeCCaa7ECI/fd//7cvhCUZm81mTjnlFDNlyhTz8ssvm8rKynpjWhvagwYN8jtuyJAhRpK5//776yyvDcVu3bqZioqKeuPGjx9vJJnJkyf7lnm9XtO7d28jyfz+97+vN+bzzz/3nSG3du1a3/ItW7YYScbpdJrdu3c3eIz+6qsN7V//+tdGkunVq5f56KOPGjzOlStX+n2/O++803cm4HcR2gCAliLnyXkAQGwi48l4AEBsIuPJeCBYeCY7EGL33HOP1q1bp8svv1wOh0PGGO3atUuLFi3SxIkTNXDgwKA/Q2Tq1KmNLn/rrbf8rr/xxhuVkJDQrHEfffSRPvvsMyUkJOjnP/95vTE9e/bU1VdfLUl1nr1S+/yWq666Sunp6c05HB9jjG6//XbNnj1baWlpeu+993TqqafW2ebTTz9VQUGBunXrph/+8Id+36d2+d/+9rcW7R8AgO8j58l5AEBsIuPJeABAbCLjyXggWNpZXQDQFlx44YW68MILVVFRoa1bt2rz5s168803tX79eu3du1eXX365CgoK6gVQoH7wgx80unz37t0Bjfvyyy9VVlam5ORk33v06dNH7du39zsuIyOj3v4++ugjSdK5557b1GHUM2PGDBUUFCgjI0Nvv/22evToUW+bDz/8UJJUWVmp8847z+/7VFZWSpL27dvX4hoAAPg+cp6cBwDEJjKejAcAxCYynowHgoEmOxBGiYmJOv/883X++edrxowZ+vvf/64xY8bo66+/1iOPPKLnnnsuKPvp1q2b3+Unn3yyJOnYsWMtGvfd5ceOHVNycrLKy8sbHdPQ/srKyiRJHTt2bHBcQ/7zn/9Ikvr166cuXbr43ebo0aO+/bz//vuNvl9FRUWLawAAoCHkPDkPAIhNZDwZDwCITWQ8GQ+0BreLByx03nnn+W7tsmXLlnrrjTF+x3399deNvu+BAwf8Lv/qq68kSUlJSS0a993ltWM7dOhQ5z39+fLLL+vtr/bvR44caXBcQ5577jmdeuqp+utf/6prrrlGx48fr7dNbV0jR46UMabR1yeffNLiGgAAaC5yvmXIeQBAtCDjW4aMBwBECzK+Zch4tHU02QGLpaamSpKqqqp8y2pv5+IvRI8ePaqDBw82+p61t3hpaPnAgQMDGnfyyScrOTm5znvs3bvXd5bc9/3rX/+qt7/aW9Js2rSp0WPwp1u3blq7dq0GDBigFStWaPLkyfJ6vXW2Oe2003w1f39dU2w2W4trAgCgMeR885HzAIBoQsY3HxkPAIgmZHzzkfFo62iyAyF08ODBBs9uq7VhwwZJUnp6um9ZbZB/8MEH9bZ//vnnm9zvggULGl2enZ3td/0LL7wgj8fTrHE/+MEP1KdPH1VWVvqtqaSkRCtWrJAkXXrppb7lV155pSTp9ddfV1FRUZPH8n1ut1vr1q1Tv379tHTpUt1www115jg9PV2nn366Dh8+rMWLF7fovRMTEyVxWxoAQPOQ8+Q8ACA2kfFkPAAgNpHxZDwQVAZAyPz+9783Z555pnn22WfNwYMH66wrLS01v/71r43NZjOSTF5enm/dXXfdZSSZwYMHm/379/uWr1q1yiQnJ5t27doZSWbPnj113rNv375GkmnXrp3JyckxVVVVxhhjqqurzaxZs4wkk5SUZPbt21dn3KhRo3zjrr32WlNeXm6MMcbr9Zo//OEPxmazGbvdbrZv315n3BNPPGEkmeTkZLNmzRrf8v3795vzzz/fSDLnnntuvXm56qqrjCSTnp5utmzZUmddYWGhmTdvnt/63nnnHd+yPXv2mN69extJ5he/+IXxer2+dX/961+NzWYzJ510knnuuedMdXV1nfcrKioyc+bMMStWrKizfOzYsUaSeeqpp+rVDADA95Hz5DwAIDaR8WQ8ACA2kfFkPBBMNNmBEHrssceMJN+rf//+5pxzzjHp6enG4XD4ls+YMaPOuK+++sp0797dSDJOp9MMHjzY9OvXz0gyM2fO9IVzQ6E9d+5cY7PZTOfOnc3QoUNNly5djCQTFxdnli5dWq/O2lD87W9/axwOh0lKSjKZmZnG7Xb7avzd735Xb5zX6zWTJk3ybTNgwAAzZMgQ37H16dPHFBUV1Rt3+PBhM3z4cN+4fv36mczMTHPyyScbSaZv375+6/tuaBtzIuBra7z11lvrrHvyySeN3W73/aBy9tln19mHv3BevHixb93pp59uRo0aZUaNGlXvhxUAAIwh58l5AECsIuPJeABAbCLjyXggmGiyAyFUVVVl1q1bZ3JycsyIESNMnz59jMPhMCeddJJJT083kydPNu+9957fsUVFRWbChAnG5XKZxMREc9ZZZ5mFCxcaY0yTob1nzx6Tn59vLrjgApOUlGQ6dOhgLrroIvO3v/3N776+G4qbN282l112menYsaNJTEw05557bp2z9r7P6/WaxYsXm/PPP98kJycbp9Np0tPTTU5OTr2zAb8/N3/4wx/MyJEjTUpKiklISDD9+/c3P/rRj8wbb7zRYH3f99FHH/mC+Ps//Hz44YfmZz/7mUlNTTUJCQkmJSXFZGRkmGuuucYsX77cfP311/Xe7/HHHzdnnnmmSUxM9AW4v/0CAEDOk/MAgNhExpPxAIDYRMaT8UAw2Yxp4gEUAGJeVlaW/va3v+mdd95RVlaW1eUAAIAgIucBAIhNZDwAALGJjAeiQ5zVBQAAAAAAAAAAAAAAEC1osgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANJPNGGOsLgIAAAAAAAAAAAAAgGjAlewAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGaiyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANNP/B2ktie+jwasqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m pains filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRxUlEQVR4nOzde1zUZf7//+eAnBRFU0zl4AqKlpmYqGvmKRayctU1c9FKSdskKtTyuGtuprsibv3UCjU1sTaNNNLVLcNVScMyUSo1DygaJh7wBKGcHOb3h1/mE4mGCPMe4HG/3bjFvK/rPe8ns7CXM6/3dV0mi8ViEQAAAAAAAAAAAAAA+E0ORgcAAAAAAAAAAAAAAKC6oMgOAAAAAAAAAAAAAEA5UWQHAAAAAAAAAAAAAKCcKLIDAAAAAAAAAAAAAFBOFNkBAAAAAAAAAAAAACgniuwAAAAAAAAAAAAAAJQTRXYAAAAAAAAAAAAAAMqJIjsAAAAAAAAAAAAAAOVUx+gARiguLlZmZqbq168vk8lkdBwAQC1nsVj0888/q0WLFnJw4P6328U4DwCwF4zxlYsxHgBgLxjjKx/jPADAXpR3nK+VRfbMzEz5+PgYHQMAgFJOnDghb29vo2NUe4zzAAB7wxhfORjjAQD2hjG+8jDOAwDszW+N87WyyF6/fn1J116cBg0aGJwGAFDb5eTkyMfHxzo+4fYwzgMA7AVjfOVijAcA2AvG+MrHOA8AsBflHedrZZG9ZLmZBg0aMGADAOwGy6FVDsZ5AIC9YYyvHIzxAAB7wxhfeRjnAQD25rfGeTaMAQAAAAAAAAAAAACgnCiyAwAAAAAAAAAAAABQThTZAQAAAAAAAAAAAAAoJ4rsAAAAAAAAAAAAAACUE0V2AAAAAAAAAAAAAADKiSI7AAAAAAAAAAAAAADlRJEdAAAAAAAAAAAAAIByosgOAAAAAAAAAAAAAEA5UWQHAAAAAAAAAAAAAKCcKLIDAAAAAAAAAAAAAFBO1aLIHh4eLpPJdNOv/Px8o2MCAAAAAAAAAAAAAGq4OkYHuBVt2rRR06ZNy2xzcKgW9wsAAAAAAAAAAAAAAKqxalVk/+tf/6rw8HCjYwAAAAAAAAAAAAAAaqlqVWQHAACoLsxms1JSUpSVlSVPT08FBQXJ0dHR6FgAAAAAAOAGeC8PACgviuwAAACVLDExUdHR0Tp58qT1mJeXl6ZMmaLQ0FADkwEAAAAAgLLwXh4AcCuq1Ubma9as0aBBg/Tggw8qLCxMb775prKzs42OBQAAYJWYmKioqCgFBAQoPj5ee/bsUXx8vAICAhQVFaXExESjIwIAAAAAgF/gvTwA4FaZLBaLxegQvyU8PFwrVqwos61Ro0ZauXKl+vXrV+7ny8nJkYeHh7Kzs9WgQYPKigkAQIUwLlUuI19Ps9mskJAQBQQEKDY2Vg4O/3c/Y3FxsSIjI5WWlqbExESWmwOAWoAxvnLxegIA7AVjUuXjvTwAwF6Ud0yqFjPZ/f399c9//lPfffedcnJy9PPPPysxMVHdunXTxYsXNWjQIKWkpNzw/IKCAuXk5JT6AgAAqGwpKSk6efKkIiIiSr0plyQHBweNGTNGP/30003/3QIAAAAAAGyH9/IAgIqoFnuyv/LKK9cdCwkJUe/evdWzZ0998803mjx5sjZv3lzm+bNnz9aMGTOqOiYAAKjlsrKyJElt2rQps73keEk/AAAAAABgLN7LAwAqolrMZL8RZ2dnzZw5U5KUlJSkixcvltlv6tSpys7Otn6dOHHCljEBAEAt4enpKUlKS0srs73keEk/AAAAAABgLN7LAwAqoloX2SWpe/fukq7tjZKenl5mHxcXFzVo0KDUFwAAQGULCgqSl5eXFi1apOLi4lJtxcXFWrx4sby9vRUUFGRQQgAAAAAA8Eu8lwcAVES1L7I7OTlZv7969aqBSQAAQG3n6OioKVOmKCkpSZGRkUpNTVVubq5SU1MVGRmppKQkTZ48WY6OjkZHBQAAAAAA4r08AKBiqsWe7Dezf/9+6/fe3t4GJgEAAJBCQ0O1YMECRUdHKywszHrc29tbCxYsUGhoqIHpAAAAAADAr/FeHgBwq6p9kf3111+XJLVr105eXl4GpwEAALj25jw4OFgpKSnKysqSp6engoKCuOsdAAAAAAA7xXt5AMCtsPsi+6ZNm7RlyxY9++yzatWqlfV4dna2XnnlFa1atUqSNH36dKMiAgAAXMfR0VHdunUzOgYAAAAAACgn3ssDAMrL7ovsly9fVnR0tKKjo+Xl5aUWLVqoqKhIP/zwgwoLC2UymTR9+nQNGzbM6KgAAAAAAAAAAAAAgBrO7ovsnTt31t/+9jd99dVXOnLkiPbt2yeLxSIvLy/17NlTkZGR3FkGAAAAAAAAAABui9lsZrl4AEC52H2R3cfHR7NmzTI6BgAAAAAAAAAAqKESExMVHR2tkydPWo95eXlpypQpCg0NNTAZAMAeORgdAAAAAAAAAAAAwCiJiYmKiopSQECA4uPjtWfPHsXHxysgIEBRUVFKTEw0OiIAwM5QZAcAAAAAAAAAALWS2WxWdHS0+vTpo9jYWAUGBqpevXoKDAxUbGys+vTpozlz5shsNhsdFQBgRyiyAwAAAAAAAACAWiklJUUnT55URESEHBxKl0wcHBw0ZswY/fTTT0pJSTEoIQDAHlFkBwAAAAAAAAAAtVJWVpYkqU2bNmW2lxwv6QcAgESRHQAAAAAAAAAA1FKenp6SpLS0tDLbS46X9AMAQKLIDgAAAAAAAAAAaqmgoCB5eXlp0aJFKi4uLtVWXFysxYsXy9vbW0FBQQYlBADYI4rsAAAAAAAAAACgVnJ0dNSUKVOUlJSkyMhIpaamKjc3V6mpqYqMjFRSUpImT54sR0dHo6MCAOxIHaMDAAAAAAAAAAAAGCU0NFQLFixQdHS0wsLCrMe9vb21YMEChYaGGpgOAGCPKLIDAAAAAAAAAIBaLTQ0VMHBwUpJSVFWVpY8PT0VFBTEDHYAQJkosgMAAAAAAAAAgFrP0dFR3bp1MzoGAKAaYE92AAAAAAAAAAAAAADKiSI7AAAAAAAAAAAAAADlxHLxAAAAAAAAAAAAKJPZbGav+jLwugC1G0V2AAAAAAAAAAAAXCcxMVHR0dE6efKk9ZiXl5emTJmi0NBQA5MZi9cFAMvFAwAAAAAAAAAAoJTExERFRUUpICBA8fHx2rNnj+Lj4xUQEKCoqCglJiYaHdEQvC4AJMlksVgsRoewtZycHHl4eCg7O1sNGjQwOg4AoJZjXKpcvJ4AAHvBmFS5eD0BAPaCMany8ZraH7PZrJCQEAUEBCg2NlYODv83Z7O4uFiRkZFKS0tTYmJirVoindcFqPnKOyYxkx0AAAAAAFSJs2fPasKECWrfvr3q1q0rV1dX+fv769lnn9WRI0eMjgcAAIAbSElJ0cmTJxUREVGqkCxJDg4OGjNmjH766SelpKQYlNAYvC4ASrAnOwAAAAAAqHSHDh1Sr169dPbsWTk5OcnPz09OTk46cuSIlixZog8++ECffvqpevfubXRUAAAA/EpWVpYkqU2bNmW2lxwv6Vdb8LoAKMFMdgAAAAAAUOmef/55nT17Vj169FB6eroOHjyovXv36qefftKAAQN05coVPf3006qFu9gBAADYPU9PT0lSWlpame0lx0v61Ra8LgBKUGQHAAAAAACV6sqVK9q6daskaeHChfL29ra2NW7cWHFxcTKZTDp27JgOHjxoVEwAAADcQFBQkLy8vLRo0SIVFxeXaisuLtbixYvl7e2toKAggxIag9cFQAmK7AAAAAAAoFIVFhZaP3T08/O7rr1Ro0a64447JElXr161aTYAAAD8NkdHR02ZMkVJSUmKjIxUamqqcnNzlZqaqsjISCUlJWny5MlydHQ0OqpN8boAKMGe7AAAAAAAoFI1bNhQPj4+OnHihHbs2KGQkJBS7YcOHdL58+fVsGHDG+5nCQAAAGOFhoZqwYIFio6OVlhYmPW4t7e3FixYoNDQUAPTGYfXBYBEkR0AAAAAAFSBWbNmaeTIkRo1apTmzZunPn36qE6dOvr66681btw4mUwmxcTEyNXV1eioAADUOhaLRcnJyVq3bp22b9+ugwcP6sqVK2rSpIm6d++uF154QX379r3uvFdffVUzZsy46XMfOHBA7dq1q6rosLHQ0FAFBwcrJSVFWVlZ8vT0VFBQUK2fqc3rAoAiOwAAAAAAqHQjRoyQu7u7Zs6cqSFDhpRqu/fee/Xpp5+qX79+Nzy/oKBABQUF1sc5OTlVlhUAgNpmy5Yt+sMf/iBJcnBwUOvWrVWvXj2lpaUpISFBCQkJmjZtmmbOnFnm+T4+PvL19S2zrW7dulWWG8ZwdHRUt27djI5hd3hdgNqNPdkBAAAAAECls1gsSk9P1/nz5+Xo6KjWrVvr7rvvlrOzs/bt26d33nlHFy5cuOH5s2fPloeHh/XLx8fHhukBAKjZLBaLWrdurdjYWJ07d06HDh3Snj17dP78eU2dOlXStVVpNmzYUOb5o0aN0pdfflnm142K7wAA1CQU2QEAAAAAQKWLiIjQxIkT5ePjoyNHjigtLU379+/XiRMn9Mgjj+iTTz5R3759ZTabyzx/6tSpys7Otn6dOHHCxj8BAAA1V9euXXXgwAE999xzatSokfW4s7Oz/vnPf+rhhx+WJC1ZssSoiIbIzc1VZGSk/vjHPyoyMlK5ublGRwIA2CmK7AAAAAAAoFJ99913WrJkiZycnPThhx/qd7/7nbWtadOm+uCDD9SkSRN9//33+uijj8p8DhcXFzVo0KDUFwAAqBwNGjRQnTo33k02JCREknT48GFbRTLckCFD1LlzZ23evFmHDx/W5s2b1blz5+u2vQEAQKLIDgAAAAAAKllycrIsFosCAgLKXOa9QYMG6tq1qyQpJSXF1vEAAMBvyM/PlyS5ubmV2b5161Y9/vjjevDBBzVkyBDFxMTo9OnTtoxYqYYMGaK9e/fKZDJp4MCBWrdunQYOHCiTyaS9e/dSaAcAXOfGt6oBAAAAAABUwM8///ybfSwWi6T/+xAfAADYB4vFotWrV0uSevToUWafbdu2lXr88ccf69VXX1VsbKzCw8OrOmKlys3NtRbYv/32W7m6ukqSYmJi9NprrykwMFB79+5Vbm6u3N3dDU4LALAXzGQHAACGOnv2rCZMmKD27durbt26cnV1lb+/v5599lkdOXLE6HgAAKAC2rRpI+naErNl7aWek5OjXbt2SZICAgJsmg0AANzckiVLlJqaKmdnZ40bN65UW/PmzfXXv/5Vu3bt0vnz53XlyhUlJyfr4YcfVl5enkaNGqX169f/5jUKCgqUk5NT6ssokyZNkiQNGDDAWmAv4erqqv79+5fqBwCARJEdAAAY6NChQ+rQoYNef/11paWlydfXV23atFFmZqaWLFmijh076osvvjA6JgAAuEWhoaFq0qSJioqKFBYWpuPHj1vbzp49qyeeeELnzp2Tq6sry68CAGBH9uzZo7Fjx0qSZs2aJX9//1LtY8aM0T/+8Q8FBQXpjjvukJubm+6//37997//1Z/+9CdZLBaNHz/eumLNjcyePVseHh7Wr7K2l7GVkhsCR40aVWb7008/XaofAAASRXYAAGCg559/XmfPnlWPHj2Unp6ugwcPau/evfrpp580YMAAXblyRU8//fRvvjm3R2azWTt37tSGDRu0c+dOmc1moyMBAGAz7u7ueu+99+Tq6qodO3aodevWCggIUPv27eXj46MNGzaoTp06WrRokby8vIyOCwAAJB07dkz9+/dXfn6+hg8frgkTJpT7XJPJpOjoaEnS0aNH9f3339+0/9SpU5WdnW39MrKAXVLgf/fdd8tsX758eal+AABIkslSHT+1vk05OTny8PBQdna2GjRoYHQcAEAtV1vHpStXrqh+/foqLi7W999/rw4dOpRqv3jxoho3biyLxaIffvhBd911V7me1x5ez8TEREVHR+vkyZPWY15eXpoyZYpCQ0MNyQQAsD17GJOMdvjwYb3++uvasmWLTpw4IYvFoubNm6tXr14aN26c7rvvvnI/F68nAMBe1MQx6fTp03rggQd09OhRPfroo/rkk0/k5OR0y8/TuHFjXbhwQWvWrNFjjz1W7vOMfE1zc3PVuXPn6/Zkl6T8/HwFBgbKYrFo9+7d7MkOALVAecckZrIDAABDFBYWqri4WJLk5+d3XXujRo10xx13SJKuXr1q02y3IzExUVFRUQoICFB8fLz27Nmj+Ph4BQQEKCoqSomJiUZHBADAZgICArR48WKlpaUpPz9fBQUFOn78uN57771bKrADAICqc+HCBYWEhOjo0aPq3bu3Vq9eXaECuyTredXpfby7u7s6dOggi8WiwMBATZgwQfv379eECROsBfYOHTpQYAcAlEKRHQAAGKJhw4bWpdZ27NhxXfuhQ4d0/vx5NWzYUG3atLF1vAoxm82Kjo5Wnz59FBsbq8DAQNWrV0+BgYGKjY1Vnz59NGfOHJaOBwAAAADYhdzcXD3yyCPat2+funTpovXr18vNza1Cz3Xu3DmdPXtWkuTt7V2ZMavcmjVrrIX29evXa/DgwVq/fr21wL5mzRqjIwIA7AxFdgAAYJhZs2ZJkkaNGqWPP/5Y58+fV3Z2tj7//HMNGjRIJpNJMTExpZZq+7WCggLl5OSU+jJKSkqKTp48qYiICDk4lP5nloODg8aMGaOffvpJKSkpBiUEAAAAAOCagoICDRw4UDt37lT79u21ceNG1a9fv8LP98Ybb8hiscjDw0NdunSpxKS2sWbNGu3evVvBwcEKCAhQcHCwdu/eTYEdAFCmOkYHAAAAtdeIESPk7u6umTNnasiQIaXa7r33Xn366afq16/fTZ9j9uzZmjFjRlXGLLesrCxJuuHM+5LjJf0AAAAAADCC2WxWWFiYtmzZIn9/f23atMm6ZduN7N+/X2+//baef/55tW/f3no8Pz9fb7zxhubMmSNJmjx5spydnas0f1Vxd3dXbGys0TEAANUARXYAAGAYi8Wi9PR0nT9/Xo6OjmrVqpWcnZ115MgR7du3T++88466du160zf6U6dO1UsvvWR9nJOTY12G3tY8PT0lSWlpaQoMDLyuPS0trVQ/AAAAAACM8NFHH2nt2rWSrq289vjjj5fZr3nz5lq9erUkqaioSAsXLtTChQvl6ekpX19fSdKBAwd05coVSdLo0aM1ZcqUqv8BAAAwGEV2AABgmIiICL3zzju6//77tW3bNv3ud7+TJJ09e1ajR4/WJ598oqNHj2rPnj1ydHQs8zlcXFzk4uJiw9Q3FhQUJC8vLy1atEixsbGllowvLi7W4sWL5e3traCgIANTAgAAAABqu4KCAuv3aWlp1pvCf61ly5bW73/3u99p5syZ2rFjhw4ePKhDhw6psLBQTZs21SOPPKJnnnlGDz30UJVnBwDAHpgsFovF6BC2lpOTIw8PD2VnZ6tBgwZGxwEA1HK1dVz67rvv1KlTJ9WpU0dHjx69bvZ5Tk6O/P39de7cOa1cuVLDhg0r1/Ma/XomJiYqKipKffr00ZgxY9SmTRulpaVp8eLFSkpK0oIFCxQaGmrzXAAA2zN6TKppeD0BAPaCMany2ctrmpubq0mTJunEiRPy8fFRTEyM3N3dDcsDVEdms1kpKSnKysqSp6engoKCbjh5BrBH5R2TmMkOAAAMkZycLIvFooCAgDKXd2/QoIG6du2qTz/9VCkpKeUushstNDRUCxYsUHR0tMLCwqzHvb29KbADAAAAAGCnhgwZor1791ofHz58WJ07d1aHDh20Zs0aA5MB1UdiYqKio6N18uRJ6zEvLy9NmTKFz8RQ4zj8dhcAAIDK9/PPP/9mn5IFd/Lz86s6TqUKDQ3Vpk2b9N577+n111/Xe++9p8TERN5MAAAAAABgh0oK7CaTSQMHDtS6des0cOBAmUwm7d27V0OGDDE6ImD3SlZ3DAgIUHx8vPbs2aP4+HgFBAQoKipKiYmJRkcEKhUz2QEAgCHatGkj6dqd4SXLsP1STk6Odu3aJUkKCAiweb7b5ejoqG7duhkdAwAAAAAA3ERubq61wP7tt9/K1dVVkhQTE6PXXntNgYGB2rt3r3Jzc1k6HrgBs9ms6Oho9enTR7GxsXJwuDbHNzAwULGxsYqMjNScOXMUHBzM0vGoMZjJDgAADBEaGqomTZqoqKhIYWFhOn78uLXt7NmzeuKJJ3Tu3Dm5urpyxzgAAAAAAKgSkyZNkiQNGDDAWmAv4erqqv79+5fqB+B6KSkpOnnypCIiIqwF9hIODg4aM2aMfvrpJ6WkpBiUEKh8FNkBAIAh3N3d9d5778nV1VU7duxQ69atFRAQoPbt28vHx0cbNmxQnTp1tGjRInl5eRkdFwAAAAAA1EAnTpyQJI0aNarM9qeffrpUPwDXy8rKkvR/K1f+Wsnxkn5ATUCRHQAAGObhhx/Wd999p2effVatWrVSRkaGjhw5oubNm+upp57Szp07NXLkSKNjAgAAAACAGqpk+7p33323zPbly5eX6gfgep6enpKktLS0MttLjpf0A2oCk8VisRgdwtZycnLk4eGh7OxsNWjQwOg4AIBajnGpcvF6AgDsBWNS5eL1BADYC8akymfka5qbm6vOnTtftye7JOXn5yswMFAWi0W7d+9mT3bgBsxms0JCQhQQEFBqT3ZJKi4uVmRkpNLS0pSYmMie7LB75R2TmMkOAAAAAAAAAABqJXd3d3Xo0EEWi0WBgYGaMGGC9u/frwkTJlgL7B06dKDADtyEo6OjpkyZoqSkJEVGRio1NVW5ublKTU1VZGSkkpKSNHnyZArsqFHqGB0AAAAAAAAAAADAKGvWrNGQIUO0d+9erV+/XuvXr7e2dejQQWvWrDEwHVA9hIaGasGCBYqOjlZYWJj1uLe3txYsWKDQ0FAD0wGVjyI7AAAAAAAAAACo1dasWaPc3FxNmjRJJ06ckI+Pj2JiYpjBDtyC0NBQBQcHKyUlRVlZWfL09FRQUBAz2FEjUWQHAAAAAAAAAAC1nru7u2JjY42OAVRrjo6O6tatm9ExgCrHnuwAAAAAAAAAAAAAAJQTRXYAAAAAAAAAAFDr5ebmKjIyUn/84x8VGRmp3NxcoyPZhezsbA0bNky9e/fWsGHDlJ2dbXQkADAcy8UDAAAAAAAAAIBabciQIdq7d6/18eHDh9W5c2d16NBBa9asMTCZsUJCQpSRkWF9fPr0aXXt2lW+vr7atGmTgckAwFjMZAcAAAAAAAAAALVWSYHdZDJp4MCBWrdunQYOHCiTyaS9e/dqyJAhRkc0xC8L7D179tSHH36onj17SpIyMjIUEhJiZDwAMBQz2QEAAAAAAAAAQK2Um5trLbB/++23cnV1lSTFxMTotddeU2BgoPbu3avc3Fy5u7sbnNZ2srOzrQX21NRU1a1bV5K0dOlSXblyRZ06dVJGRoays7Pl4eFhZFQAMARFdgAAAAAAAAAAUCtNmjRJkjRgwABrgb2Eq6ur+vfvr/Xr12vSpEmKjY01IqIhIiIiJF2bwV5SYC9Rt25d9ejRQ8nJyYqIiNCqVauMiFip8vLylJ6ebvPr+vn5yc3NzebXBXD7KLIDAAAAAAAAAIBa6cSJE5KkUaNGldn+9NNPa/369dZ+tUVmZqYk6fnnny+zPTIyUsnJydZ+1V16eroGDx5s8+smJCSoffv2Nr8ugNtHkR0AAAAAAAAAANRKPj4+Onz4sN59913FxMRc1758+XJrv9qkRYsWOn36tN5++20tXbr0uvaSWf0tWrSwdbQq4efnp4SEhFs+7+jRo5o4caLmzp0rf3//Cl0XQPVEkR0AAAAAAAAAANRKMTEx6ty5s/7zn//otddeK7VkfH5+vjZs2GDtV5ssWrRIXbt21fbt23XlypVSS8ZfuXJFycnJ1n41gZub223NKPf392dGOlDLOBgdAAAAAAAAAAAAwAju7u7q0KGDLBaLAgMDNWHCBO3fv18TJkxQYGCgLBaLOnToIHd3d6Oj2pSHh4d8fX0lSZ06ddKoUaOUkpKiUaNGqVOnTpIkX19feXh4GBkTAAzDTHYAAAAAAAAAAFBrrVmzRkOGDNHevXu1fv16rV+/3trWoUMHrVmzxsB0xtm0aZNCQkKUkZGh5ORk6+x16VqBfdOmTQamAwBjUWQHAAAAAAAAAAC12po1a5Sbm6tJkybpxIkT8vHxUUxMTK2bwf5rmzZtUnZ2tiIiIpSZmakWLVpo0aJFzGAHUOtRZAcAAAAAAAAAALWeu7u7YmNjjY5hdzw8PLRq1SqjYwCAXWFPdgAAAAAAAAAAAAAAyokiOwAAAAAAAAAAAMqUnZ2tYcOGqXfv3ho2bJiys7ONjgQAhqu2RfZp06bJZDLJZDJp1qxZRscBAAAAAAAAAACoUUJCQtS1a1ft2bNHp0+f1p49e9S1a1eFhIQYHQ0ADFUti+wHDhzQ3LlzjY4BAAAAAAAAAABQI4WEhCgjI0OS1LNnT3344Yfq2bOnJCkjI4NCO4BarY7RAW6VxWLRmDFj5OTkpAceeEBbtmwxOhIAAAAAAAAAAECNkZ2dbS2wp6amqm7dupKkpUuX6sqVK+rUqZMyMjKUnZ0tDw8PI6MCgCGqXZF92bJl2r59u+bMmaMffvjB6Di3rbCwUCtXrlRGRoZ8fX01fPhwOTs7Gx0LdiovL08xMTH68ccf1bJlS02aNElubm5GxzIcf0cAAAAAAAAAfikvL0/p6ek2v66fn1+N+Mw2IiJC0rUZ7CUF9hJ169ZVjx49lJycrIiICK1atcqIiABgqGpVZM/KytLkyZN19913a/z48frLX/5idKTbEhMTo7i4OJnN5lLHwsPDNWnSJAOTwR5FRkZq8+bN1sfJyclauXKlgoODFRsba2AyY/F3BAAAAAAAAODX0tPTNXjwYJtfNyEhQe3bt7f5dStbZmamJOn5558vsz0yMlLJycnWfgBQ21SrIvv48eN14cIFJSQkyMnJyeg4tyUmJkbLli1T48aNNW7cOPXt21dbt27VvHnztGzZMkmiQAirkgK7k5OTnn76aQ0ZMkRr1qzR8uXLtXnzZkVGRtbKQjt/RwAAAAAAAADK4ufnp4SEhFs+7+jRo5o4caLmzp0rf3//Cl23JmjRooVOnz6tt99+W0uXLr2uveTz6BYtWtg6GgDYhWpTZN+8ebM++OADPfnkk+rdu7fRcW5LYWGh4uLi1LhxY23btk116lz7n2Ho0KEaPHiwevXqpbi4OI0bN44lr6G8vDxrgX3Pnj3W34mXX35ZL774ou677z5t3rxZeXl5NWIZovLi7wgAAAAAAADAjbi5ud3WjHJ/f/8aMSO9ohYtWqSuXbtq+/btunLlSqkl469cuaLk5GRrPwCojapFkT0/P18RERHy8PDQv/71r1s+v6CgQAUFBdbHOTk5lRnvlq1cuVJms1njxo2zFgZL1KlTR2PHjtX06dO1cuVKhYeHGxOyErH3ze2JiYmRJD399NPXFYudnZ01cuRILV26VDExMfr73/9uRERD1La/IwAAAAAAAACwFQ8PD/n6+iojI0OdOnVSjx49rCuqlhTYfX195eHhYXBSADBGtSiyz5o1S0eOHNFbb72lO++885bPnz17tmbMmFEFySomIyNDktS3b98y2/v06VOqX3XH3je358cff5QkDRkypMz2IUOGaOnSpdZ+tUVt+zsCAAAAAAAAAFvatGmTQkJClJGRoeTkZGtxXbpWYN+0aZOB6QDAWHZfZD9w4IDmzp2r++67T88991yFnmPq1Kl66aWXrI9zcnLk4+NTWRFvma+vryRp69atGjp06HXtSUlJpfpVd+x9c3tatmyp5ORkrVmzRi+//PJ17WvWrLH2q01q298RAAAAAAAAANjapk2blJ2drYiICGVmZqpFixZatGgRM9gB1Hp2X2SPjIzU1atXtXDhQjk4OFToOVxcXOTi4lLJySpu+PDhiomJ0bx58zR48OBSS11fvXpV8+fPl6Ojo4YPH25gysrD3je3Z9KkSVq5cqWWL1+uF198sdSS8YWFhVqxYoW1X21S2/6OAAAAAAAAAMAIHh4eWrVqldExAMCuVKxqbUOpqakymUwaMGCAmjVrVuorPj5ekjRnzhw1a9ZMXbp0MTht+Tg7Oys8PFznz59Xr169FB8frzNnzig+Pl69evXS+fPnFR4eft3+26id3NzcFBwcrKKiIt13332aO3eujh07Zl3hoaioSMHBwTVi//lbwd8RAAAAAAAAAAAAjGD3M9klyWw268yZMzdsz83NVW5urlxdXW2Y6vaUzDqOi4vT9OnTrccdHR01evToWjcrGTcXGxuryMhIbd68WUuXLtXSpUutbcHBwYqNjTUwnXH4OwKA6ocl5gAAAAAAAABUd3ZfZL906dIN28LDw7VixQrNnDlT06ZNs12oSjJp0iSNGzdOK1euVEZGhnx9fTV8+HBm3qJMsbGxysvLU0xMjH788Ue1bNlSkyZNqnUz2H+NvyMAqD5CQkKUkZFhfXz69Gl17dpVvr6+2rRpk4HJAAAAAADAjRw5ckSDBg1SUVGRnJyctHbtWrVu3droWLBTZrNZKSkpysrKkqenp4KCguTo6Gh0LNix6vo7Y/dF9pquZMlroDzc3Nz097//3egYdoe/IwCwf78ssPfs2VPPP/+83n77bW3fvl0ZGRkKCQmh0A4AAAAAgJ1p166dLBaL9XFRUZEeffRRmUwmHTx40MBksEeJiYmKjo7WyZMnrce8vLw0ZcoUhYaGGpgM9qo6/87Y/Z7sAAAAqN6ys7OtBfbU1FQtXbpUnTp10tKlS5WamipJysjIUHZ2tpExAQAAAADAL/yywO7m5qaJEydaV1a1WCxq166dkfFgZxITExUVFaWAgADFx8drz549io+PV0BAgKKiopSYmGh0RNiZ6v47w0x2AACA35CXl6f09HSbX9fPz69GbAsSEREh6doM9rp165Zqq1u3rnr06KHk5GRFRERo1apVRkQEAAAAAAC/cOTIEWuB/YsvvlCzZs0kSc8884xOnz6t3r17y2Kx6MiRIywdD5nNZkVHR6tPnz6KjY2Vg8O1Ob6BgYGKjY1VZGSk5syZo+Dg4GqxDDiqXk34nanWRfa4uDjFxcUZHQMAANRw6enpGjx4sM2vm5CQoPbt29v8upUtMzNTkvT888+X2R4ZGank5GRrPwAAAAAAYKxBgwZJujaDvaTAXqJZs2ZydXVVfn6+Bg0apH379hmQEPYkJSVFJ0+e1BtvvGEtlpZwcHDQmDFjFBYWppSUFHXr1s2glLAnNeF3ploX2QEAAGzBz89PCQkJt3ze0aNHNXHiRM2dO1f+/v4Vum5N0KJFC50+fVpvv/22li5del17bGystR8AAAAAADBeUVGRJOmFF14os33MmDGaP3++tR9qt6ysLElSmzZtymwvOV7SD6gJvzMU2QEAAH6Dm5vbbc0o9/f3rxEz0itq0aJF6tq1q7Zv364rV66UWjL+ypUrSk5OtvYDANQ8ZrNZ7777rv79739r//79ys3N1Z133qlOnTrp6aef1sCBA42OCAAAgF9xcnJSUVGR3nrrLT3zzDPXtS9evNjaD/D09JQkpaWlKTAw8Lr2tLS0Uv2AmvA74/DbXQAAAICK8/DwkK+vrySpU6dOGjVqlFJSUjRq1Ch16tRJkuTr6ysPDw8jYwIAqsDFixf1wAMP6Nlnn9X27dvVpEkT3XPPPSoqKtK6dev0/vvvGx0RAAAAZVi7dq0kKS8vT6dPny7Vdvr0aeXn55fqh9otKChIXl5eWrRokYqLi0u1FRcXa/HixfL29lZQUJBBCWFvasLvDEV2AAAAVLlNmzZZC+3Jycl64oknrDPYfX19tWnTJiPjAQCqQHFxsQYMGKCvv/5agwcPVkZGhg4ePKiUlBRlZmbqxIkTioqKMjomAAAAytC6dWuZTCZJUu/evdWxY0fFxsaqY8eO6t27tyTJZDKpdevWRsaEnXB0dNSUKVOUlJSkyMhIpaamKjc3V6mpqYqMjFRSUpImT54sR0dHo6PCTtSE3xmWiwcAAIBNbNq0SdnZ2YqIiFBmZqZatGihRYsWMYMdAGqod955R19++aX69u2r1atXy8Gh9H3+3t7e8vb2NigdAAAAfsvBgwfVrl07WSwW5efna/78+dY2k8mkgwcPGpgO9iY0NFQLFixQdHS0wsLCrMe9vb21YMEChYaGGpgO9qi6/85QZAcAAIDNeHh4aNWqVUbHAADYQMmHsDNnzryuwA4AAIDq4eDBgzpy5IgGDRqkoqIiOTk5ae3atcxgR5lCQ0MVHByslJQUZWVlydPTU0FBQXY9GxnGqs6/MxTZAQAAAABApUpLS9PBgwd1xx136P7779e6deu0evVqnTp1Sp6envrDH/6gp556Si4uLkZHBQCgVrJYLEpOTta6deu0fft2HTx4UFeuXFGTJk3UvXt3vfDCC+rbt+8Nz//qq68UHR2tHTt2KDc3V61atdKwYcM0ceJEubq62vAngS20bt1a+/btMzoGqglHR0d169bN6BioRqrr7wxFdgAAAAAAUKl2794tSWrXrp2eeuopffDBB6Xa4+Pj9frrr2vjxo1q2bKlEREBAKjVtmzZoj/84Q+SJAcHB7Vu3Vr16tVTWlqaEhISlJCQoGnTpmnmzJnXnfvBBx9o5MiRMpvN8vLyko+Pj/bt26fp06dr/fr1SkpKUt26dW39IwEAYFOs1wYAAAAAACrVqVOnJEm7du3SBx98oGeeeUbHjx9Xfn6+/ve//8nPz08HDx7UY489puLi4jKfo6CgQDk5OaW+AABA5bBYLGrdurViY2N17tw5HTp0SHv27NH58+c1depUSdKsWbO0YcOGUucdP35co0ePltlsVkxMjE6cOKE9e/YoLS1Nbdu21a5duzRp0iQjfiQAAGyKIjsAAAAAAKhUly9fliQVFRWpZ8+eWrJkiVq2bCkXFxcFBwcrISFBJpNJu3fv1n//+98yn2P27Nny8PCwfvn4+NjyRwAAoEbr2rWrDhw4oOeee06NGjWyHnd2dtY///lPPfzww5KkJUuWlDpv7ty5KigoUGhoqCZOnCiTySRJatmypd59911J0jvvvKMzZ87Y6CcBAMAYFNkBAAAAAECl+uVerGPHjr2uvWPHjtZ9Xjdu3Fjmc0ydOlXZ2dnWrxMnTlRNWAAAaqEGDRqoTp0b7yYbEhIiSTp8+LD1mMVi0SeffCJJGj169HXn3H///WrXrp2Kioq0bt26Sk4MAIB9ocgOAAAAAAAq1S9nxLVr167MPnfddZeka8vOlsXFxUUNGjQo9QUAAGwjPz9fkuTm5mY9lpGRYd0SpkePHmWeV3J8586dVZwQAABj3fhWNQAAAAAAgApo27at9XsXF5cy+5QcN5vNNskEAADKx2KxaPXq1ZJKF9PT0tIkXRvDW7RoUea5fn5+pfreSEFBgQoKCqyPc3Jybiszyi8vL0/p6ek2v66fn1+pmzYAoLqjyA4AAAAAACpVp06d5Orqqvz8fKWnp6t169bX9Sn5cNfLy8vW8QAAwE0sWbJEqampcnZ21rhx46zHL168KElq2LChdS/2XytZzaak743Mnj1bM2bMqJzAuCXp6ekaPHiwza+bkJCg9u3b2/y6AFBVKLIDAAAAAIBKVa9ePT3yyCNKSEjQihUrFBoaWqr99OnT+vzzzyVJDz74oBERAQBAGfbs2aOxY8dKkmbNmiV/f39rW8kS8s7Ozjc8v2Slmry8vJteZ+rUqXrppZesj3NycuTj41Ph3Cg/Pz8/JSQk3PJ5R48e1cSJEzV37txSvxe3cl0AqEkosgMAAAAAgEo3ffp0rVu3Th9++KFCQ0M1cuRISdKlS5cUHh6uvLw8+fn56fHHHzc4KQAAkKRjx46pf//+ys/P1/DhwzVhwoRS7a6urpKkwsLCGz5HyRLwv7UsuIuLyw23lEHVcnNzu60Z5f7+/sxIBwBJDkYHAAAAAAAANU/Hjh311ltvyWKxKDw8XC1btlSXLl3k5eWlzz//XE2aNNHHH39809lwAADANk6fPq2QkBCdOnVKjz76qOLi4q5bEr5kKfhLly7JYrGU+Twly8SX9AUAoKaiyA4AAAAAAKpERESEvvjiC/3xj3/UlStX9P3336tp06Z6/vnn9e233yowMNDoiAAA1HoXLlxQSEiIjh49qt69e2v16tVycnK6rl+bNm0kXZutnpmZWeZzpaenl+oLAEBNxXLxAAAAAACgyvTs2VM9e/Y0OgYAAChDbm6uHnnkEe3bt09dunTR+vXrb7jUu6+vr5o1a6bTp08rOTlZQ4cOva5PcnKyJKlbt25VmhsAAKMxkx0AAAAAAAAAgFqmoKBAAwcO1M6dO9W+fXtt3LhR9evXv2F/k8mkP/3pT5KkZcuWXde+Y8cOHTx4UE5OThowYECV5QYAwB5QZAcAAAAAAAAAoBYxm80KCwvTli1b5O/vr02bNumOO+74zfMmTpwoZ2dnJSYmau7cuda92X/88UeNGjVKkvTMM8+oWbNmVZofAACjsVw8AAAAAAAAAAC1yEcffaS1a9dKkhwcHPT444+X2a958+ZavXq19XGrVq20ZMkSPf3005o0aZLmz5+vpk2bat++fSoqKlLnzp01d+5cW/wIAAAYiiI7AAAAAAAAAAC1SEFBgfX7tLQ0paWlldmvZcuW1x0bMWKEWrdurdmzZ2vHjh364Ycf5Ofnp2HDhmny5MlydXWtstwA7F9hYaFWrlypjIwM+fr6avjw4XJ2djY6FlDpKLIDAAAAAAAAAFCLhIeHKzw8vMLn33///Vq/fn3lBQJQI8TExCguLk5ms7nUsfDwcE2aNMnAZEDlY092AAAAAAAAAAAAABUWExOjZcuWqWHDhpo5c6a+/PJLzZw5Uw0bNtSyZcsUExNjdESgUlFkBwAAAAAAAAAAAFAhhYWFiouLU+PGjbVt2zYNHTpUnp6eGjp0qLZt26bGjRsrLi5OhYWFRkcFKg1FdgAAAAAAAAAAAAAVsnLlSpnNZo0bN0516pTeqbpOnToaO3aszGazVq5caVBCoPJRZAcAAAAAAAAAAABQIRkZGZKkvn37ltnep0+fUv2AmoAiOwAAAAAAAAAAAIAK8fX1lSRt3bq1zPakpKRS/YCagCI7AAAAAAAAAAAAgAoZPny4HB0dNW/ePF29erVU29WrVzV//nw5Ojpq+PDhBiUEKh9FdgAAAAAAgHIym83auXOnNmzYoJ07d8psNhsdCQAAADCUs7OzwsPDdf78efXq1Uvx8fE6c+aM4uPj1atXL50/f17h4eFydnY2OipQaeoYHQAAAAAAAKA6SExMVHR0tE6ePGk95uXlpSlTpig0NNTAZACA2uLMmTPKzMxU27ZtVbduXaPjAIDVpEmTJElxcXGaPn269bijo6NGjx5tbQdqCmayAwAAAAAA/IbExERFRUUpICBA8fHx2rNnj+Lj4xUQEKCoqCglJiYaHREAUAPs3LlTL730kv773/+WOp6Tk6OBAweqRYsWCgoKUrNmzbR8+XKDUgJA2SZNmqRvv/1WU6dO1RNPPKGpU6fq22+/pcCOGomZ7AAAAAAAADdhNpsVHR2tPn36KDY2Vg4O1+YsBAYGKjY2VpGRkZozZ46Cg4Pl6OhocFoAQHW2dOlSvfvuuxo0aFCp4xMnTtT69evl4OAgDw8PXbx4UX/5y18UFBSkDh06GBMWAMpQsnQ8UNMxkx0AAAAAAOAmUlJSdPLkSUVERFgL7CUcHBw0ZswY/fTTT0pJSTEoIQCgpkhOTla9evXUq1cv67Hc3Fy9//77ql+/vvbt26fz589r3rx5Ki4u1uuvv25gWgAAai+K7AAAAAAAADeRlZUlSWrTpk2Z7SXHS/oBAFBRZ86ckY+PT6ljX3zxhfLz8/XnP/9Z7dq1kyS98MILatKkiXbu3GlETAC4IbPZrJ07d2rDhg3auXOnzGaz0ZGAKsFy8QAAAAAAADfh6ekpSUpLS1NgYOB17WlpaaX6AQBQUT///LP8/PxKHfvyyy9lMpkUEhJiPebg4KDf/e53+uGHH2wdEQBuKDExUdHR0Tp58qT1mJeXl6ZMmaLQ0FADkwGVj5nsAAAAAAAANxEUFCQvLy8tWrRIxcXFpdqKi4u1ePFieXt7KygoyKCEAICaonHjxvrxxx9lsVisx/73v/9Jknr37l2qb1FRkZydnW2aDwBuJDExUVFRUQoICFB8fLz27Nmj+Ph4BQQEKCoqSomJiUZHBCoVRXYAAGA4s9msJUuWqHfv3mrSpIlcXV3VsmVLDRo0SOvWrTM6HgAAqOUcHR01ZcoUJSUlKTIyUqmpqcrNzVVqaqoiIyOVlJSkyZMny9HR0eioAIBq7ve//73Onz+vJUuWSLpWYN+9e7c6duyopk2bWvtZLBYdOXJEzZs3NyoqAFiZzWZFR0erT58+io2NVWBgoOrVq6fAwEDFxsaqT58+mjNnDkvHo0ahyA4AAAx18eJFPfDAA3r22We1fft2NWnSRPfcc4+Kioq0bt06vf/++0ZHBAAAUGhoqBYsWKDDhw8rLCxMnTt3VlhYmNLS0rRgwQKWvwQAVIqXX35ZJpNJzz33nJo0aaJ+/frJZDLp5ZdfLtVv27Ztunz5srp06WJQUgD4PykpKTp58qQiIiLk4FC69Ojg4KAxY8bop59+UkpKikEJgcrHnuwAAMAwxcXFGjBggL7++msNHjxY8+fPl7e3t7X9p59+Unp6uoEJAQAA/k9oaKiCg4OVkpKirKwseXp6KigoiBnsAIBK88ADD+jjjz/WtGnTdOTIEfn5+Wn8+PF64oknSvVbtGiRJHGTFwC7kJWVJUlq06ZNme0lx0v6ATUBRXYAAGCYd955R19++aX69u2r1atXX3enq7e3d6miO1BTmc1mCjYAUE04OjqqW7duRscAANRgAwcO1MCBA2/a55133tGiRYtUv359G6UCgBvz9PSUJKWlpSkwMPC69rS0tFL9gJqAIjsAADDM/PnzJUkzZ868rsAO1BaJiYmKjo7WyZMnrce8vLw0ZcoUZqUAAAAAKBPFdQD2JCgoSF5eXlq0aJFiY2NLfc5XXFysxYsXy9vbW0FBQQamBCoXn2YDAABDpKWl6eDBg7rjjjt0//33a926dXryyScVHByssLAwLV26VAUFBUbHBKpUYmKioqKiFBAQoPj4eO3Zs0fx8fEKCAhQVFSUEhMTjY4IAAAAAABwU46OjpoyZYqSkpIUGRmp1NRU5ebmKjU1VZGRkUpKStLkyZNZtQ81CjPZAQCAIXbv3i1JateunZ566il98MEHpdrj4+P1+uuva+PGjWrZsqUREYEqZTabFR0drT59+pS6yzswMFCxsbGKjIzUnDlzFBwczJtQAAAAoBYpLCzU8uXLtXHjRqWnpys3N1cWi6XMviaTSUePHrVxQgC4XmhoqBYsWKDo6GiFhYVZj3t7e2vBggWs1ocahyI7AAAwxKlTpyRJu3bt0o4dO/TMM89o2rRpatasmb788ks9++yzOnjwoB577DF98803N1xOvqCgoNSM95ycHJvkh5SXl6f09HSbX9fPz09ubm42v25lS0lJ0cmTJ/XGG29c9/vt4OCgMWPGKCwsTCkpKez9CwAAANQSp06dUnBwsA4dOnTDwvovmUwmG6QCgPIJDQ1VcHCwUlJSlJWVJU9PTwUFBTF5ADUSRXYAAGCIy5cvS5KKiorUs2dPLVmyxNoWHByshIQEderUSbt379Z///tf/fGPfyzzeWbPnq0ZM2bYJDNKS09P1+DBg21+3YSEBLVv397m161sWVlZkqQ2bdqU2V5yvKQfAAAAgJrv5Zdf1sGDB+Xn56dJkyapU6dO8vT0pJgOoNpwdHRksgBqBYrsAADAEK6urtbvx44de117x44d1bdvX23ZskUbN268YZF96tSpeumll6yPc3Jy5OPjU/mBcR0/Pz8lJCTc8nlHjx7VxIkTNXfuXPn7+1foujWBp6enJCktLU2BgYHXtaelpZXqBwAAAKDm27hxo1xdXfXFF1/Iy8vL6DgAAOAGKLIDAABDNGrUyPp9u3btyuxz1113acuWLTp+/PgNn8fFxUUuLi6VHQ/l4Obmdlszyv39/WvEjPSKCgoKkpeXlxYtWlRqT3ZJKi4u1uLFi+Xt7a2goCADUwIAAACwJbPZrHbt2lFgBwDAzpW9uSkAAEAVa9u2rfX7GxXJS46bzWabZAJsydHRUVOmTFFSUpIiIyOVmpqq3NxcpaamKjIyUklJSZo8eTL7lgEAAAC1yL333qvz588bHQMAKqywsFBxcXF67bXXFBcXp8LCQqMjAVWCIjsAADBEp06drEvGp6enl9mn5Dh38KOmCg0N1YIFC3T48GGFhYWpc+fOCgsLU1pamhYsWKDQ0FCjIwIAAACwoYkTJ+rEiROKj483OgoA3LKYmBgFBgZq9uzZ+uCDDzR79mwFBgYqJibG6GhApWO5eAAAYIh69erpkUceUUJCglasWHFdMfH06dP6/PPPJUkPPvigEREBmwgNDVVwcLBSUlKUlZUlT09PBQUFMYMdAOyU2Wzm/7MBAFVmwIABev311/XMM8/om2++0ahRo+Tv72+9SR0A7FVMTIyWLVumxo0ba9y4cerbt6+2bt2qefPmadmyZZKkSZMmGZwSqDwU2QEAgGGmT5+udevW6cMPP1RoaKhGjhwpSbp06ZLCw8OVl5cnPz8/Pf744wYnBaqWo6OjunXrZnQMAMBvSExM1OzZs5WZmWk91qJFC02dOpXVR8QNCABQWYYPH64tW7Zo3rx5mjdv3k37mkwmXb161TbBAOAGSpaIb9y4sbZt26Y6da6VH4cOHarBgwerV69eiouL07hx4+Ts7GxwWqByUGQHAACG6dixo9566y1FRkYqPDxc06dPV9OmTfXDDz/oypUratKkiT7++GP+8Q0AAAyXmJioF198USaTqdTxU6dO6cUXX9Sbb75ZqwvtiYmJio6O1smTJ63HvLy8NGXKlFr9ugDArTpy5Ij69OmjU6dOyWKx/Gb/8vQBgKq2cuVKmc1mjRs3zlpgL1GnTh2NHTtW06dP18qVKxUeHm5MSNhEXl7eDbcGrUp+fn5yc3Oz6TUpsgMAAENFRESoffv2mjt3rr766it9//33atGihR599FFNnTqV/dgBAIDhzGazpk6dKkm64447NHDgQPn4+OjEiRNat26dzp8/r6lTpyo4OLhWztxOTExUVFSU+vTpozfeeENt2rRRWlqaFi1apKioKC1YsIBCOwCU06RJk5SZmanf//73mjFjhgIDA+Xp6Wl0LAC4qYyMDElS3759y2zv06dPqX6oudLT0zV48GCbXzchIUHt27e36TUpsgMAAMP17NlTPXv2NDoGAABAmb7++mvl5uaqbt26cnZ21rvvvmtta968uerWravc3Fx9/fXX6tGjh4FJbc9sNis6Olp9+vRRbGysHBwcJEmBgYGKjY1VZGSk5syZU2tvQACAW/XFF1/I3d1dGzduVIMGDYyOAwDl4uvrK0naunWrhg4del17UlJSqX6oufz8/JSQkHDL5x09elQTJ07U3Llz5e/vX6Hr2hpFdgAAAAAAgJtYu3atJOnKlSsqLi4u1Xbx4kXl5+db+9W2IntKSopOnjypN954w1pgL+Hg4KAxY8YoLCxMKSkp6tatm0EpAaD6KC4uVtu2bSmwA6hWhg8frpiYGM2bN0+DBw8utWT81atXNX/+fDk6Omr48OEGpoQtuLm53daMcn9/f5vPSK8oiuwAAAAAAAA3cfnyZev3v//979WrVy+5uroqPz9f27Zts87M+WW/2iIrK0uS1KZNmzLbS46X9AMA3Fznzp21f/9+o2MAwC1xdnZWeHi4li1bpl69emns2LHq06ePkpKSNH/+fJ0/f16jR4+Ws7Oz0VGBSkORHQAAAAAA4CaaNGkiSXJyctLBgwetRXVJatasmZycnFRUVGTtV5uU7BOclpamwMDA69rT0tJK9QMA3Nwrr7yiP/zhD5o/f77Gjh1rdBwAKLdJkyZJkuLi4jR9+nTrcUdHR40ePdraDtQUFNkBAAAAAABuwsPDQ5JUVFSkM2fOlGo7c+aMLBZLqX61SVBQkLy8vLRo0aJSe7JL15Y8Xrx4sby9vRUUFGRgSgCoPlq1aqW5c+dq8uTJ2rZtm0aNGiV/f3/VrVv3huewxzEAezFp0iSNGzdOK1euVEZGhnx9fTV8+HBmsKNGosgOAAAAAABwE78sHJcU1Mt6/Os9yWsDR0dHTZkyRVFRUYqMjNSYMWPUpk0bpaWlafHixUpKStKCBQvk6OhodFQAqBZ+97vfyWQyyWKxaO3atVq7du1N+5tMJl29etU24QCgHEqWjgdqOorsAAAAAAAAN1G/fv1K7VfThIaGasGCBYqOjlZYWJj1uLe3txYsWKDQ0FAD0wFA9eLr6yuTyWR0DAAA8BsosgMAAAAAANxEdna29fuGDRvq97//verWrasrV67o66+/1qVLl67rV9uEhoYqODhYKSkpysrKkqenp4KCgpjBDgC36Pjx40ZHAIDbkp2drYiICGVmZqpFixZatGhRrdxWCTUfRXYAAAAAAICbOHXqlPX7/Px8bdy40frY1dW1zH61kaOjo7p162Z0DAAAABgkJCREGRkZ1senT59W165d5evrq02bNhmYDKh8tW+zMAAAAAAAgApo1qyZGjduXOpYkyZN1KxZM4MSAQAAAPbhlwX2nj176sMPP1TPnj0lSRkZGQoJCTEyHlDpmMkOAAAAAABqpby8PKWnp/9mP2dnZ0nXZuLcd999euSRR+Ts7KzCwkLt3r1be/bssfbbv3//bz6fn5+f3Nzcbi88AKBGKygo0KpVq5SYmKjDhw/r559/Vv369RUQEKCHHnpIYWFhcnFxMTomAEi6tkR8SYE9NTVVdevWlSQtXbpUV65cUadOnZSRkaHs7GyWjkeNUS2K7GvXrtVnn32mlJQUZWZm6vz586pbt67uvvtu/fnPf9Zzzz1nfcMLAAAAAABQHunp6Ro8ePAtnbNnzx5rUf3XPv74Y3388ce/+RwJCQlq3779LV0XAFB77NmzR48//riOHz8ui8VyXVt8fLxmzpypjz76SPfdd59BKQHg/0REREi6NoO9pMBeom7duurRo4eSk5MVERGhVatWGRERqHTVosj+r3/9S8nJyXJxcVGLFi3UsWNHnTp1Sl999ZW++uorvf/++/rf//6nhg0bGh0VAAAAAABUE35+fkpISPjNfmazWaNHj1ZOTo51BnuJksceHh5aunSpHB0dy3VdAADK8tNPPykkJEQXL15UkyZN9Je//EXt27fXnXfeqTNnzmj//v1aunSp0tPT9dBDD+nbb7+Vl5eX0bEB1HKZmZmSpOeff77M9sjISCUnJ1v7ATVBtSiyP/PMM5o1a5Z69OghJycn6/Gvv/5ajz/+uHbv3q2//e1vevvttw1MCQAAAAAAqhM3N7dyzyj/xz/+oRdffFEmk6nU8ZLHs2bN0r333lvpGVH9mc1mpaSkKCsrS56engoKCirXzRgAaqfZs2fr4sWLGjx4sN5///0ytxd55ZVX9NRTT+njjz/W7Nmz9dZbbxmQFAD+T4sWLXT69Gm9/fbbWrp06XXtsbGx1n5ATeFgdIDyCA8PV58+fUoV2CXp97//vd544w1J15aUB2q6vXv3ql27dmrbtq3atWunvXv3Gh3JLuTl5WnGjBkaNWqUZsyYoby8PKMjwY6ZzWbt3LlTGzZs0M6dO2U2m42OBAAAgGogNDRUb775pho3blzqeJMmTfTmm28qNDTUoGSwZ4mJiQoJCdGIESP08ssva8SIEQoJCVFiYqLR0QDYqc8++0z16tVTXFxcmQV2SXJ1ddXy5ctVr149ffrppzZOCADXW7RokSRp+/btunLlSqm2K1euKDk5uVQ/oCaoFjPZb6Zdu3aSdN0fLVDTtG3bttRji8WiIUOGSJIOHTpkRCS7EBkZqc2bN1sfJycna+XKlQoODrbeHQeUSExMVHR0tE6ePGk95uXlpSlTpvChKAAAQBWbNm2a/vGPf0iSZs6cqWnTphmc6NaFhoYqODhYa9as0fTp0/Xaa69pyJAhNXJWcl5entLT021+XT8/vxsWlaqbxMRERUVFqU+fPnrjjTfUpk0bpaWladGiRYqKitKCBQt4HwLgOpmZmbr33nvl7u5+037u7u666667mIQDwC54eHjI19dXGRkZ6tSpk3r06KHIyEjFxsZaC+y+vr7y8PAwOClQeap9kf2rr76SJN13330GJwGqzi8L7I6Ojnr66ae1fPly6wzctm3b1spCe0mB3cnJSU8//bSGDBmiNWvWaPny5dq8ebN1EAckPuACAAAw0oEDBzR37lyjY1QKR0dH3XPPPZKke+65p0YW2CUpPT1dgwcPtvl1ExISyr2Evz0zm82Kjo5Wnz59FBsbKweHa4tJBgYGKjY2VpGRkZozZ46Cg4Nr7O8QgIqpX7++zpw5U66+Z86cUb169ao4EQCUz6ZNmxQSEqKMjAwlJydbi+vStQL7pk2bDEwHVL5qWWQ3m806deqU/vOf/2jKlCmqV6+eZs+ebXQsoEr88m7UTZs2ydfXV5I0ceJEZWRkKCQkxNqvQ4cOhmQ0Ql5enrXAvmfPHjk7O0uSXn75Zb344ou67777tHnzZuXl5dWYWRCoOD7gAgAAMI7FYtGYMWPk5OSkBx54QFu2bDE6EsrBz89PCQkJt3ze0aNHNXHiRM2dO1f+/v4Vum5NkJKSopMnT+qNN96wvv8o4eDgoDFjxigsLEwpKSnq1q2bQSkB2KPOnTtr06ZN+vDDDxUWFnbDfqtWrdKJEyeYMADArmzatEnZ2dmKiIhQZmamWrRooUWLFjGDHTVStSqyz5s3T+PHjy91bNCgQZo5c6b1LvKyFBQUqKCgwPo4Jyen0rMZtYyaVLOWUsP1Hn/8cUnXZkuUFNhL+Pr6ytHRUWazWY8//rgOHjxoRERDxMTESJKefvppa4G9hLOzs0aOHKmlS5cqJiZGf//7342ICDvCB1wAAADGWbZsmbZv3645c+bohx9+MDoOysnNze22ZpT7+/vXiBnpFZWVlSVJatOmTZntJcdL+gFAiRdffFGJiYkaOXKkdu3apRdeeEGtWrWyth87dkxvvvmmYmNjZTKZFBUVVeFrHTt2TP/73//0zTff6JtvvtH+/ftlNptvuq3Lq6++qhkzZtz0eQ8cOGDd5hVA7ePh4aFVq1YZHQOoctWqyO7l5aUePXqoqKhIP/74o86cOaOtW7dq1apVeu211244+3D27Nm/OfDfLqOWUZNqzlJqKJvFYpF0rZhcluHDh+v999+39qstfvzxR0my7kv/a0OGDNHSpUut/VC78QEXAACAMbKysjR58mTdfffdGj9+vP7yl78YHQmwCU9PT0lSWlqaAgMDr2tPS0sr1Q8ASjz66KOaPHmy5syZo3nz5mnevHlycXGRp6ensrKyrJPJLBaLpk6dqkceeaTC15o/f77mz59foXN9fHyumxBUom7duhXOBABAdVGtiuyPP/64dVavJO3cuVNjxozRP//5T124cEELFy4s87ypU6fqpZdesj7OycmRj49PpWar6DJqEkup4eZMJpMsFouWL1+uiRMnXte+cuVKa7/apGXLlkpOTtaaNWv08ssvX9e+Zs0aaz+AD7gAAACMMX78eF24cEEJCQlycnIyOg5gM0FBQfLy8tKiRYtKbVklScXFxVq8eLG8vb0VFBRkYEoA9mr27Nnq0aOHoqOj9fXXXys/P18nTpyQdG1Fvvvvv1+TJ0/Wo48+elvXadKkifr376+uXbuqS5cuWrp0qT7++ONynTtq1Ci9+uqrt3V9AACqs2pVZP+1bt266dNPP5Wfn5/eeecdTZkypcyCmouLi1xcXKo0y+0uoyaxlBrKtnr1ag0ZMkRms1kZGRml7hDNyMiQ2Wy29qtNJk2apJUrV2r58uV68cUXSy0ZX1hYqBUrVlj7AXzABQAAYHubN2/WBx98oCeffFK9e/c2Og5gU46OjpoyZYqioqIUGRmpMWPGqE2bNkpLS9PixYuVlJSkBQsW3HBVRgDo37+/+vfvr8uXL+vIkSPKzc2Vu7u7WrdurXr16lXKNX69JPyHH35YKc8LAEBtUK2L7JLUokULBQYGaufOnfruu++YtYoap0OHDtbvQ0JC5OjoqOHDh2vlypXWAvuv+9UGbm5uCg4O1ubNm3Xfffdp5MiRGjJkiNasWaMVK1aoqKhIwcHBcnNzMzoq7AAfcAEAANhWfn6+IiIi5OHhoX/9618Veo6CggLrkrjStVXpgOokNDRUCxYsUHR0tMLCwqzHvb29tWDBAoWGhhqYDkB1Ua9ePXXs2NHoGAAA4FeqfZFdkq5evVrqv0BNc+jQIbVt21aSZDab9f7771/XXhvFxsYqMjJSmzdv1tKlS7V06VJrW3BwsGJjYw1MB3vDB1wAAAC2M2vWLB05ckRvvfWW7rzzzgo9x+zZszVjxoxKTgbYVmhoqIKDg5WSkqKsrCx5enoqKCiIG3wB3JCjo6MeeOABffHFF7/Zt2/fvtq+fbshn4tv3bpV+/fv1/nz53XHHXeoa9euGjFihJo1a2bzLAAAGKHaF9mPHz+u7777TpK4ow812qFDh7R37149/vjjslgsMplMWr16da2bwf5rsbGxysvLU0xMjH788Ue1bNlSkyZNYgY7ysQHXAAAAFXvwIEDmjt3ru677z4999xzFX6eqVOn6qWXXrI+zsnJkY+PT2VEBGzK0dFR3bp1MzoGgGrCYrHIYrHcUn8jbNu2rdTjjz/+WK+++qpiY2MVHh5uSCYAAGzptorsx44d065du3T27Fn9/PPPatCggZo2baquXbtW2rLtu3fv1n/+8x+NHDlSfn5+pdo2btyo8ePH6+rVq3rkkUfk7+9fKdcE7FWHDh108OBBo2PYHTc3N/397383OgaqCT7gAgAAqFqRkZG6evWqFi5cKAcHhwo/j4uLi1xcXCoxGQAANcvly5fl5ORk02s2b95cf/3rX/WnP/1Jfn5+cnNzU2pqqmbNmqXPPvtMo0aNUuPGjfXHP/7xps9zq9vCZGZm6uLFi5XyM/yWo0ePlvqvLTRq1EgtWrSw2fWA8srLy1N6errNr1vy/y+APatQkf3999/X7Nmzb7pE9d13362//vWvGjZsWIXDSdLPP/+s1157Ta+99pqaNWsmb29vFRYWKiMjQ5cuXZIkdenSRStWrLit6wAAgFv3zTff6P3339ebb75pdBQAAGAnUlNTZTKZNGDAgOvasrOzJUlz5szRW2+9JR8fH+3atcvWEQEAqPYOHTqkffv2ycvLy6bXHTNmzHXH7r//fv33v//VY489pk8++UTjx49X//79ZTKZbvg8t7ItTGZmpvo91E8FhQW/3bkSTZw40WbXcnF20cbPN1Joh91JT0/X4MGDbX7dhIQEtW/f3ubXBW7FLRXZi4uLNWLECK1atcq6DE3jxo3l4+OjevXqKTc3VydOnNCFCxe0f/9+Pfnkk/r888+1fPnymw6oN9OxY0fNnz9fmzdv1v79+3Xw4EEVFhaqcePG6t69u4YOHaonn3xSdepU+5XvAQCoFo4fP65///vf+ve//620tDRJosgOAABKMZvNOnPmzA3bc3NzlZubK1dXVxumAgDA/syfP1/z588vdSwlJeW6VV1/KS8vT2fPnpUkDRw4sErzlZfJZFJ0dLQ++eQTHT16VN9///1Nt3e9lW1hLl68qILCAnXM7ih3s3ulZzdarmOuvvP4ThcvXqTIDrvj5+enhISEWz7v6NGjmjhxoubOnVuhVahv9v+BgL24pcr0a6+9ppUrV8rR0VEvvPCCIiIi1LZt2+v6HThwQAsXLtTChQv1/vvvq3Xr1po2bVqFAjZq1EhRUVGKioqq0PkAAOD2ZWdn66OPPtL777+v5ORkSdf2fXNyclK/fv0MTgcAAOxJyapzZQkPD9eKFSs0c+bMCn9OAABATXLp0iUdP37c+thkMik/P7/UsbLUr19fjz/+uGbNmlW1AW9BQECA7rjjDl24cEFHjhy5aZG9ItvCuJvd5XHV43ZjArgFbm5utzWj3N/fnxnpqLHKXWQ/d+6coqOjVadOHW3YsEGhoaE37HvXXXdpwYIFeuSRR/THP/5R//jHP/Tcc8+pcePGlRIaAABUvatXr+rTTz/V+++/rw0bNqiwsNC6kk337t315JNP6s9//rPuuOMOg5MCAAAAAFA9jRs3TuHh4ZKu3czu5+enLl266KOPPiqzv8lkkpubmzw9PW2YsvxK9oi/evWqwUkAAKha5S6yv//++yosLNTLL7980wL7L/Xr109RUVGaN2+ePvjgA2ajAwBQDezcuVPvv/++4uPjdeHCBWthPSAgQIcPH1azZs2ss9kBAAAAAEDFeXh4yMPj/2Znjxw5Um3btlXLli0NTFUx586dsy5j7+3tbXAaAACqlkN5O3755ZcymUx67rnnbukCkZGRslgs2rZt2y2HAwAAtnHs2DHNnDlTAQEBuv/++7Vw4UKdP39ed955p8aNG6ddu3bp4MGDRscEAAAAAKBGW758uaZMmWJ0jAp54403ZLFY5OHhoS5duhgdBwCAKlXumezff/+9mjZtKj8/v1u6gL+/v5o2barvv//+lsMBAICq17NnT+3YsUPStaXpGjRooMGDB+uJJ57Qgw8+KJPJZHBCoOY7duyYBg4cqIKCArm4uGjdunVq1aqV0bEAoNLFxcUpLi7O6BgAAKAC9u/fr7ffflvPP/98qT2W8/Pz9cYbb2jOnDmSpMmTJ8vZ2dmomAAA2ES5i+wXLlyo8BI1LVq00I8//lihcwEAQNVKTk6WyWRSw4YN9frrr2vYsGFycXExOhZQa9x1110qLi62Pi4oKFC/fv3k4OCgAwcOGJgMAAD8Wl5entLT021+XT8/P7m5udn8uuXF6wJUvmPHjik+Pl7fffedLly4oKKiojL7mUwmbd68uULXSE5O1sCBA62Pc3NzJUmzZ8/WvHnzrMdTU1Pl4+OjoqIiLVy4UAsXLpSnp6d8fX0lSQcOHNCVK1ckSaNHj662M/EBALgV5S6y5+TkyN3dvUIXqVevnnJycip0LgAAqFqOjo4ym826dOmSXnjhBX3++ecaPny4Hn74YdWpU+5/KgCogF8W2N3d3TV27FjNnz9fubm5Ki4u1l133UWhHQAAO5Kenq7Bgwfb/LoJCQmlZo3aG14XoHLNnTtXf/vb33T16lXr6nIWi8Xa/stjt7P6XFFRkc6fP3/d8StXrliL5pJkNpslSb/73e80c+ZM7dixQwcPHtShQ4dUWFiopk2b6pFHHtEzzzyjhx56qMJ5AACoTsr9yXnJQFpRv5ydAwAA7MfJkye1cuVK/fvf/9aePXsUHx+vjz76SI0aNdKQIUM0bNgw9e7d2+iYQI1z7Ngx67+Rt2/frqZNm0qSRowYobNnz6pnz54qLi7WsWPHWDoeAAA74efnp4SEhFs+7+jRo5o4caLmzp0rf3//Cl3XnvG6AJXn008/1eTJk9W8eXPNnDlT8+bN0/79+7Vp0yadOHFC3333nZYtWyaz2azo6Gjde++9Fb5Wnz59ShXvf0vDhg01bdq0Cl8PAICa5JampxUUFCgjI+OWL1JQUHDL5wAAANto2rSpxo0bp3HjxunAgQN67733tHLlSp04cUJLlizRkiVL5OXlpT//+c9GRwVqlJJlGd3d3a0F9hJNmzZVvXr1dPnyZQ0cOFDff/+9EREBAMCvuLm53dbMaX9//xo585rXBag8b775pkwmkz766CP16NFDy5cvlyQFBwdb+0ybNk2PPfaYXnnlFe3atcuoqAAA1GoOt9I5JSVFrVq1uuWv3bt3V1V+AABQie666y7Nnj1bx48f1+bNmzVixAi5u7vrp59+0htvvCGTyaRLly5p5syZhuy5CNQkJTeijh07tsz2559/vlQ/AAAAADXf7t271bx5c/Xo0eOGfRo3bqxVq1bpypUrmjFjhg3TAQCAErc0k/1Wlo75tdvZGwYAANiWyWRS37591bdvXy1cuFBr167Ve++9p02bNik/P1+vvvqqXn31VXXv3l1PPfWUxowZY3RkoNpxcXFRQUGB5s+frxEjRlzX/vbbb1v7AYAknTt3TpLUpEkTg5MAAICqkpOTo44dO1ofu7q6Wo83aNDAerx58+a65557tHXrVptnBOxdZmamLl68aJNrHT16tNR/baFRo0Zq0aKFza6HsuXl5RkyCcnPz09ubm42vy6uV+4i+7Fjx6oyBwAAsFOurq4KCwtTWFiYzp49qw8++ED//ve/lZqaqh07duirr76iyA5UwLp169SvXz/l5ubq7NmzpZaMP3v2rC5fvmztB6D2unTpkv76178qPj5ely5dkiR5eHjo8ccf1z//+U81btzY2IAAAKBSNW3aVDk5OaUeS9KhQ4fUpUuXUn1zc3N1/vx5m+YD7F1mZqYeevhhFebn2/S6EydOtNm1nF1d9flnn1FoN1h6eroGDx5s8+smJCSwzY6dKHeRvWXLllWZAwAAVANNmzbV+PHjNX78eP3www/W/dsB3LpWrVrJwcFBxcXF6tmzp+rVq6fnn39eb7/9trXA7uDgoFatWhmcFIBR8vLy1LNnT/3www+lVpa7dOmSli5dqu3bt2vXrl2qV6+egSkBAEBl8vf31549e6yPu3XrplWrVmnhwoWliuybN2/WkSNHeL8A/MrFixdVmJ+vK489puIauAKUw7lz0scf6+LFixTZDebn56eEhIRbPu/o0aOaOHGi5s6dK39//wpdF/bhlpaLBwAAKHH33XcrOjpas2fPNjoKUG0dOHBAd911l4qLi3X58mXFxMRY2xwcHHTgwAED0wEw2vz587V//341bNhQ06dPV69evWSxWLRt2zbNnDlThw4d0rx58/S3v/3N6KgAAKCS9OvXT9u2bdOuXbvUpUsXDR8+XH//+9+1YsUKHT58WN27d9eZM2f00UcfyWQy6amnnjI6MmCXips0UTFFaFQhNze325pR7u/vz4z0aq5KiuyFhYW6dOmSPD092YsdAIAapKwxnrEeuD0HDhzQsWPHNHDgQBUUFMjFxUXr1q1jRgoAffLJJzKZTPr444/Vt29f6/HOnTvr3nvvVUhIiD755BOK7AAA1CBDhw7VkSNHdOHCBUlSkyZNFB8fr7CwMO3YsUM7duyw9h0yZIimTZtmVFQAAGq1Wy6yHzhwQJs3b1ZhYaHatWunhx9+2Prh+oYNGzR9+nR9//33slgsql+/voYPH67o6Gg1aNCg0sMDAIDKwxgPGKdVq1b6/vvvjY4BwM4cOnRIXl5epQrsJYKDg+Xt7a20tDQDkgEAgKrSqlUrLVmypNSx0NBQHTt2TJ999pmOHz8uNzc39ezZU/fdd59BKQEAwC0V2V955RXNnj271F5wnTp10tatW/Xf//5XTz75pIqLi61tOTk5Wrx4sfbs2aMvv/xSdeqwOj0AAPaIMR4AAPvz888/q0OHDjds9/X11VdffWXDRAAAwCgeHh4KCwszOgYAAPh/HMrb8bPPPtM//vEPFRcXq2nTpurcubPq16+v1NRU/fOf/9SECRPUsGFDvfnmm9q9e7d27dqlefPmqWHDhtq1a5feeeedqvw5AABABTHGAwBgnywWy023ZWHLFgAAAAAAjFHuaWeLFi2SyWTSSy+9pJiYGJlMJuXm5upPf/qT5s+fr4KCAm3atEkPPvig9ZzOnTurXbt26tevnz766CNFRkZWyQ8BAAAqjjEeAAAAAAAAAIDyK/dM9l27dql+/fqaNWuW9W55d3d3zZ49W/n5+brzzjtLffheIjQ0VHfeeaf27dtXeakBAEClYYwHAMB+JScny9HRscyvHTt2SNIN29nOBQAAAACAqlHuIvu5c+fk5+cnFxeXUsfvvvtuSdf2grsRX19fZWdnVzAiAACoSozxAADYL4vFcltfAAAAAACg8pX7tvarV6/K3d39uuN169aVJDk7O9/wXGdnZxUXF1cgHgAAqGqM8QAA2KetW7caHQEAAAAAAJSBteMAAAAAALBDvXv3NjoCAAAAAAAoQ7mXiwcAAAAAAAAAAAAAoLa7pZnsKSkp8vPzu+64yWS6YZsknTp1qmLpAACATTDGAwAAAABgvAMHDuiuu+4yOgaqiczMTF28eNEm1zp69Gip/9pCo0aN1KJFC5tdDwBuxS0V2fPz83X8+PFbbpOufUgPAADsE2M8AAD2b9SoUeXu6+joqPr16+t3v/udevTooc6dO1dhMgAAUFnuuecedenSReHh4QoLC1PDhg2NjgQ7lZmZqX79+qmgoMCm1504caLNruXi4qKNGzdSaAdgl8pdZF++fHlV5gAAAAZhjAcAoHqIi4uT9H83uFksluv6/Lqt5HHnzp21YsUKZsYBAGDnGjZsqG+++Ua7du3S+PHjNXDgQIWHh+uhhx7iJneUcvHiRRUUFMjp905yaFDzdgYuzilWwdcFunjxIkV2AHap3EX2kSNHVmUOAABgEMZ4AACqh+XLl+vo0aOaM2eO6tWrp0GDBunee+9V/fr19fPPP2vv3r1au3atLl++rEmTJqlZs2Y6cOCAPv74Y6WkpKhv375KTU1V8+bNjf5RAADADZw+fVr/+c9/tGLFCm3cuFEfffSRVq9erWbNmumpp57SyJEjuWkOpTg0cJDDHTWvyA4A9o7/5wUAAAAAoBro1auX3n77bT344INKT0/Xu+++q3Hjxmn06NEaN26cli1bpmPHjqlv376KjY1Vv3799OabbyotLU0hISHKysrS3Llzjf4xAADATTg5Oemxxx7Tf/7zH2VmZuqNN97Qvffeq1OnTikmJkb33HOPfv/732vRokW6dOmS0XEBAKi1KLIDAAAAAFANTJs2Tfn5+Vq1atUN92dt0KCBVq5cqby8PE2bNk2SVK9ePb377rsymUz69NNPbZgYAADcjiZNmmjcuHFKTU3Vd999p/Hjx8vT01PffPONnn/+eTVv3lxhYWHauHFjmdvIAACAqlPu5eLfe++9277YiBEjbvs5AABA5WKMBwCgeti8ebPat29/wwJ7iUaNGql9+/basmWL9ZiXl5fatWunY8eOVXFKAABQFTp06KDXX39dMTEx+te//qVXXnlFhYWF1uXkmzdvrjFjxigqKkoeHh5GxwUAoMYrd5E9PDxcJpOpwhcymUx8AA8AgB1ijAcAoHrIycnRhQsXytX3woULysnJKXXMxcXltsZ8AABgnIsXL2rVqlWKi4vT7t27ZbFY5OTkpIcfflhnzpzRzp079eqrr2rRokX6/PPPdc899xgdGQCAGq3cRXZfX98bvhn/8ccf5eLiombNmlVaMAAAYBuM8QAAVA9t2rTRvn37tGHDBvXv3/+G/TZs2KD09HTde++9pY6np6fL09OzqmMCAP6fvLw8paen2/y6fn5+cnNzs/l1UfnMZrM+/fRTrVixQhs2bFBRUZEsFovuvvtuPf300xoxYoR1bP/hhx/017/+Vf/5z380fvx4bdq0yeD0AADUbOUush8/fvyGbQ4ODurSpYu2bdtWGZkAAIANMcYDAFA9PPfcc4qMjNTQoUM1ffp0hYeHl7oR7syZM4qLi9PMmTNlMpn03HPPWdu+++47ZWdn68EHHzQiOgDUSunp6Ro8eLDNr5uQkKD27dvb/LqoPN9++61WrFihlStX6ty5c7JYLGrQoIFGjhypUaNGqVu3btedc/fddyshIUGtWrXSzp07DUgNAEDtUu4iOwAAAAAAME5ERIR27dql5cuX629/+5v+9re/qXHjxqpfv75yc3N17tw5SZLFYtHo0aM1ZswY67lJSUnq3bs3W7wAgA35+fkpISHhls87evSoJk6cqLlz58rf379C10X1FRgYqL1798pischkMqlXr14aNWqUhgwZ8psrFDg4OKhVq1b66aefbJQWAIDaiyI7AAAAAADVxLJly/Twww/r9ddf1zfffKNz585Zi+sODg7q1q2bXnrpJT322GOlzhs7dqzGjh1rRGQAqLXc3Nxua0a5v78/M9Jroe+//14+Pj4aMWKERo0apVatWt3S+VOnTtXTTz9dRemMVWQqUoGpwOgYla7IVGR0BABABVBkBwAAAACgGhkyZIiGDBmi3NxcHTlyRJcvX1a9evXUunVrubu7Gx0PAADchs8++0yhoaEymUwVOv+hhx6q5ET245tG3xgdAQAAK4rsAAAAAABUQ+7u7goMDDQ6BgAAqERdu3atcIEdAADYDkV2AAAAAACqoby8PB09elQ///yz6tevL39//9/cqxUAAKPl5eUpPT3d5tf18/OrFuNks2bN9NBDD2n48OEaMGCA6tata3QkAABQBorsAAAAAABUI59//rlmz56tHTt2yGw2W487OjrqgQce0JQpUxQaGmpgQgAAbiw9PV2DBw+2+XUTEhKqxR73FotFGzZs0H//+1/VrVtXAwYMUFhYmB5++GHVqcPH+QAA2Ityj8rbtm27aXt2dvZv9unVq1d5LwcAAGyEMR4AgOrj1Vdf1cyZM2WxWCRJzs7O8vT0VFZWlgoLC5WUlKQvvvhCr7zyil599VVjwwIAUAY/Pz8lJCTc8nlHjx7VxIkTNXfuXPn7+1foutXBmTNntHr1aq1atUrbt2/XqlWr9OGHH6phw4YaMmSIhg0bpj59+hgd0xBdL3ZV/av1jY5R6X6u8zP7zQNANVTuInufPn1uuBeMyWTSvn371Ldv3xuebzKZdPXq1VtPCAAAqhRjPAAA1cPGjRv12muvydHRUWPGjNHYsWPVpk0ba3taWprmz5+vd955RzNnzlT37t310EMPGZgYAIDrubm53daMcn9//2oxI72iGjVqpGeffVbPPvusTp06pQ8//FCrVq1SSkqKlixZoqVLl6p58+YKCwtTWFiYgoKCjI5sM04WJ7lYXIyOUenyLflGRwAAVIDDrXS2WCwV/iouLq6qnwEAANwmxngAAOzfggULZDKZ9O677+qtt94qVWCXpDZt2uitt97Su+++K4vFovnz5xuUFAAAVIbmzZtr/Pjx+uabb3TkyBG99tprateunTIzM/X//X//n7p166a2bdsaHRMAgFqp3EX24uLi2/4CAAD2hzEeAIDqYdeuXfL29tZTTz11035PPvmkfHx89M03LDsKAEBN4efnp2nTpmn//v369ttv9dBDD8lisejIkSNGRwMAoFYq93LxAAAAAADAOD///LNatWpVrr533nmn9u7dW8WJAACALaWnp2vVqlVatWqVDhw4YHQcAEANl5mZqYsXL9rkWkePHi31X1to1KiRWrRoUeHzKbIDAAAAAFANtGjRQgcPHtTly5dVr169G/a7fPmyDhw4oObNm9swHQAAqAqnT59WfHy8Vq1apV27dkm6tuVb8+bN9ec//1nDhw83OCEAoCbKzMxUv379VFBQYNPrTpw40WbXcnFx0caNGytcaKfIDgAAAABANfDQQw9p8eLF+stf/qK4uDg5Oztf16ewsFDPPPOMrly5on79+hmQEgAA3K5Lly5pzZo1WrVqlbZt26bi4mJZLBY1bNhQgwcP1vDhw9W3b1+ZTCajowIAaqiLFy+qoKBALTzvl7OTh9FxKl1hUbYys3bo4sWLFNkBAAAAAKjJ/vrXvyo+Pl7x8fFKSkrSX/7yF919991q2rSpzp49qx9++EFLlizRmTNn5OHhoalTpxodGQAA3KIBAwYoMTFRRUVFslgscnNzU//+/TV8+HA9/PDDZd5kBwBAVXF28pCbyx1Gx7BLFNkBAIBdmTZtmv7xj39IkmbOnKlp06YZnAgAAPvg4+Ojzz77TEOHDtWJEyc0a9as6/pYLBb5+vrqo48+ko+PjwEpAQDA7diwYYPq1Kmj0NBQDR8+XH/605/k7u5udCwAAPArFNkBAIDdOHDggObOnWt0DAAA7Fa3bt108OBBrVy5UomJiTp8+LByc3Pl7u6ugIAAPfTQQxo2bJiOHTum77//Xvfee6/RkQEAwC1488039ec//1lNmjQxOgpQveXlyXT5stEpKl9entEJAPw/FNkBAIBdsFgsGjNmjJycnPTAAw9oy5YtRkcCAMAuubm5afTo0Ro9evQN+/Tu3VsXL17U1atXbZgMAADcrueff97oCECN4P7ee0ZHAFDDORgdAAAAQJKWLVum7du3a/r06Sxvi1pn7dq1atu2rfVr7dq1RkeyGydPnlSXLl109913q0uXLjp58qTRkWDHCgsLFRcXp9dee01xcXEqLCw0OpKhLBaL0REAAAAAAKiRmMkOAAAMl5WVpcmTJ+vuu+/W+PHj9Ze//MXoSIDNtG3b9rpjkydP1uTJk3Xo0CEDEtmPe+65R0VFRdbHOTk5evDBB+Xk5KR9+/YZmAz2KCYmRnFxcTKbzaWOhYeHa9KkSQYmAwAAuHXHjh1TfHy8vvvuO124cKHUv4t/yWQyafPmzTZOBwAAKLIDAADDjR8/XhcuXFBCQoKcnJyMjgPYzK8L7AEBATp8+HCp9tpaaP9lgd3T01MTJkzQv/71L2VlZamoqEj33HMPhXZYxcTEaNmyZWrcuLHGjRunvn37auvWrZo3b56WLVsmSRTaAQBAtTF37lz97W9/09WrV2UymSSVXqHml8dKvgcAALZ1W0V2R0dH9enThzvlAACoYWw5xm/evFkffPCBnnzySfXu3bvKrwfYi18uCb948WL16dPH+jgpKUljxoyx9hs0aJBtwxns5MmT1gL7V199pTvuuEOSNGjQIF24cEHdu3dXUVGRTp48KS8vLyOjwg6ULBHfuHFjbdu2TXXqXHubO3ToUA0ePFi9evVSXFycxo0bJ2dnZ4PTAgAA3Nynn36qyZMnq3nz5po5c6bmzZun/fv3a9OmTTpx4oS+++47LVu2TGazWdHR0br33nuNjgzYpdwRI2Rp1szoGJXOdPo0+80DduK2iuwWi+W6Pd6ioqK0f/9+Cu8AAFRjthrj8/PzFRERIQ8PD/3rX/+q0HMUFBSooKDA+jgnJ+em/TMzM3Xx4sUKXetWHT16tNR/baFRo0Zq0aKFza6Hips8ebL1+18W2H/9ePLkybWuyF7y83p6eloL7CXuuOMONWnSROfOndOgQYO0a9cuAxLCnqxcuVJms1njxo2zFthL1KlTR2PHjtX06dO1cuVKhYeHGxMSAACgnN58802ZTCZ99NFH6tGjh5YvXy5JCg4OtvaZNm2aHnvsMb3yyiv8exi4ETc3WerVMzpFpTO5uRkdAcD/U+4i+zPPPKP7779f3bt311133XXDfqmpqdqxY0elhAMAAFXPyDF+1qxZOnLkiN566y3deeedFXqO2bNna8aMGeXqm5mZqX4P9VNBYcFvd65EEydOtNm1XJxdtPHzjRTaq5GAgIAyj7dq1UrHjh2zcRr7cPnyZUnShAkTymwfN26cpk2bZu2H2i0jI0OS1Ldv3zLbS25aKekH27BYLEpOTta6deu0fft2HTx4UFeuXFGTJk3UvXt3vfDCCzf83wwAgNps9+7dat68uXr06HHDPo0bN9aqVavUsmVLzZgxQ//+979tmBAAAEi3UGR/9913rXfNeXh46Pe//70kKS8vT1evXr1uxgAAAKgejBrjDxw4oLlz5+q+++7Tc889V+HnmTp1ql566SXr45ycHPn4+JTZ9+LFiyooLFDH7I5yN7tX+Jr2KtcxV995fKeLFy9SZK9GfrkH+y/V1gK7JNWrV085OTn617/+VeYs/nnz5ln7Ab6+vpKkrVu3aujQode1JyUllepXnbx3G8tA/nKVFyNs2bJFf/jDHyRJDg4Oat26terVq6e0tDQlJCQoISFB06ZN08yZMw3NCQCAvcnJyVHHjh2tj11dXa3HGzRoYD3evHlz3XPPPdq6dWuFr3Xs2DH973//0zfffKNvvvlG+/fvl9ls1syZMzVt2rSbnvvVV18pOjpaO3bsUG5urlq1aqVhw4Zp4sSJ1swA7AurOwKVq9yfmh89elQ7duzQjh07lJycrMTERJlMJn3zzTfy8PBQjx491LdvX50/f74q8wIAgEpm1BgfGRmpq1evauHChXJwcKjw87i4uMjFxeWWznE3u8vjqkeFrwlUhjlz5liXjE9KSrpuT/Zf9qtt1q5dqwcffFBZWVm6cOFCqSXjL1y4oHPnzln7AcOHD1dMTIzmzZunwYMHl7o57OrVq5o/f74cHR01fPhwA1NWTHh4uEwmU4XOtVgsFT63MlgsFrVu3VovvfSSwsLC1KhRI0lSYWGhXn31Vc2ePVuzZs1St27d1L9/f8NyAgBgb5o2bVpqG7SmTZtKkg4dOqQuXbqU6pubm3tb79Xnz5+v+fPn3/J5H3zwgUaOHCmz2SwvLy/5+Pho3759mj59utavX6+kpCTVrVu3wrkAVL7MzEw93K+f8m18M64tV3d0dXHRZxtZ3RG2U+4ie6tWrdSqVSs98cQTkqSff/5ZHh4eatGihVq3bq1t27bpf//7nyTJZDKpT58+uv/++9WjRw917979ur0UAQCAfTBqjE9NTZXJZNKAAQOua8vOzpZ0rbj41ltvycfHh33mUOMMGjTIWmQfM2aMpLKXiK9t+7FLkpeXl5ycnFRUVKTu3burSZMmGjdunObNm2ctsDs5OcnLy8vgpLAHzs7OCg8P17Jly9SrVy+NHTtWffr0UVJSkubPn6/z589r9OjRcnZ2NjrqLfP19TW0UH47unbtqgMHDly3Io6zs7P++c9/6ttvv9Vnn32mJUuWUGQHAOAX/P39tWfPHuvjbt26adWqVVq4cGGpIvvmzZt15MgRtWrVqsLXatKkifr376+uXbuqS5cuWrp0qT7++OObnnP8+HGNHj1aZrNZMTExmjBhgkwmk3788Uc99NBD2rVrlyZNmqS33nqrwrkAVL6LFy8qv6BAU+53lK9H9XyPcTMZ2RZF7yhgdUfYVIXXf61fv76ka3tIbtmyRfn5+fryyy8VERGhY8eO6euvv9a2bdusHwi0bdtWP/zwQ+WkBgAAVcaWY7zZbNaZM2du2J6bm6vc3FyWmkONdejQIbVt29b6+NcF9kOHDtk6kt3Yt2+f7rnnHhUVFencuXOllqt0cnLSvn37DEwHezNp0iRJUlxcnKZPn2497ujoqNGjR1vbq5vjx48bHaHCfrmcbVlCQkL02Wef3XDLDAAAaqt+/fpp27Zt2rVrl7p06aLhw4fr73//u1asWKHDhw+re/fuOnPmjD766COZTCY99dRTFb7Wr5eE//DDD3/znLlz56qgoEChoaGlZqi2bNlS7777rnr06KF33nlHr7zyiu68884KZwNQNXw9TGpzR8VXlLRfxUYHQC1U7iL7kCFDdP/996t79+7q3LnzdbMAXF1d9Yc//EHNmzfXsWPHlJOTo927d+vrr7/Wjh079PXXX1d6eAAAcPuMGuMvXbp0w7bw8HCtWLGiXPvAAdXdoUOHtHbtWuusdunaKg61cQb7r+3bt08nT57UoEGDdPnyZdWrV09r165lBjvKNGnSJI0bN04rV65URkaGfH19NXz48Go5g702yM/PlyS5ubkZnATAr7FfK2CsoUOH6siRI7pw4YKka7PN4+PjFRYWZt3qrcSQIUNs+p7ZYrHok08+kSSNHj36uvb7779f7dq108GDB7Vu3To9++yzNssGAICtlbvInpCQYB1AnZ2d1alTJ0lSTk6OLl26pIYNG5bq7+zsrO7du6t79+4aP3585SUGAACVijEeMN6gQYMoqt+Al5cX20Wg3EqWjod9s1gsWr16tSSpR48eBqcB8Evs1woYr1WrVlqyZEmpY6GhoTp27Jg+++wzHT9+XG5uburZs6fuu+8+m2bLyMjQqVOnJN14DO/Ro4cOHjyonTt3UmS3EUuhRZZ8i9ExKp2lsOb9TABqlnIX2bOysvTVV19Zv3bt2iWTyaTU1FQ1adJEgYGBevDBB2+65CsAALA/jPEAAMCWlixZotTUVDk7O2vcuHE37FdQUKCCXxT6cnJybvq8zL4Fbh/7tQL2y8PDQ2FhYYZmSEtLkyS5uLjc8G/Iz8+vVF9UvcKkQqMjAECtVO4ie+PGjdW/f3/1799f0rU9VJ2cnOTr66uOHTvqiy++0J49eyRJJpNJnTt3ts5y6969u3VwBQAA9oUxHgAA2MqePXs0duxYSdKsWbPk7+9/w76zZ8/WjBkzyvW8mZmZ6vdQPxUU1tzZty7OLtr4ObNvYRvs1wqgLCU3szVs2FAmU9k34jRq1KhU3xu51ZvpJCnXMbe8UauVmvpzAUBNV+4i+685OjpKunZn2rp161RcXKxdu3ZpxIgROnLkiDIyMpSamqqFCxdKkjw9PXX69OnKSQ0AAKqMPYzxcXFxiouLq9TnBAAAxjp27Jj69++v/Px8DR8+XBMmTLhp/6lTp+qll16yPs7JyZGPj0+ZfS9evKiCwgJ1zO4od7N7pea2B7mOufrO4ztm3wJALbJ3714tWLBAX3zxhU6ePKmCggJdvXrV2r548WL9+OOPmjJliho0aGCTTPn5+ZKubdFzIy4uLpKkvLy8mz7XrdxM16hRI7k4u+g7j+/KmbT6cXF2sd6gAACoHipcZP81BwcHdevWTU2bNtWRI0eUlZWlQ4cO6euvv1ZycrK+/vrryroUAACwIcZ4AABwu06fPq2QkBCdOnVKjz76qOLi4m44A66Ei4uL9YP68nI3u8vjqsftRAUAwHBvv/22xo8fX6qo/utxs6CgQHPmzFH79u31xBNP2CSXq6urJKmw8MbLk5fMTndzc7vpc93KzXQtWrTQxs832nRbmIkTJ2ru3Lk3XXWnMrEtDABUP5VWZC9L27Zt1bZtW40cObLCz2GxWJScnKx169Zp+/btOnjwoK5cuaImTZqoe/fueuGFF9S3b99KTA0AAH5LZYzxAACgdrhw4YJCQkJ09OhR9e7dW6tXr5aTk5PRsQAAsEtbt25VVFSU6tevr3/84x8aMGCAhg0bpq+++qpUv6FDh2rcuHH65JNPbFZkL5lpfenSJVksljJvmCsphP/WrOxbvZmuRYsWNi9C+/v7q3379ja9ZkU493GWQ8Oat8VH8aVi9psHYNduq8heXHz9PkYWi+V2nvI6W7Zs0R/+8AdJ12bStW7dWvXq1VNaWpoSEhKUkJCgadOmaebMmZV6XQAAajNbjPEAAKDmy83N1SOPPKJ9+/apS5cuWr9+/W/ObAMAoDZ7/fXXJUkffPCBHn30UUnXz2KXpGbNmsnHx0c//PCDzbK1adNG0rXZ6pmZmfLy8rquT3p6eqm+qHomZ5NMrjdfIag6MjnXvJ8JQM1S6bc3vfXWW9qyZUulPZ/FYlHr1q0VGxurc+fO6dChQ9qzZ4/Onz+v/7+9e4+Lss77P/4eRmYgBRxPKZ4hrI1KM8zUSiwjS++tbN01+63ZYbdyyzaT0mo7bN5peWelrZ3T29zMTMraTTI1O3lKcd1sSwksS7I8oEjBgMz394c3U8RwGmbmmhlez8djHsp1Xd+5Pte3wTfxuQ7Tpk2TJE2fPl3/+Mc/ArZPAABQW6AzHgAARDe3261LLrlEGzduVHp6unJzc5WQkGB1WQAAhLUNGzaoc+fO3gZ7fbp06aI9e/aEoKpjevTooc6dO0uSPvroI5/bVC8fOHBgyOoCAMAKAW+y9+vXT0OHDg3Y+5155pn67LPPdOONN9a4xYzD4dCDDz6oiy66SJL07LPPBmyfAACgtkBnPAAAiF5VVVUaO3as1qxZo9TUVL3zzjtq166d1WUBABD2SktLvY3shlRUVKiqqirIFf3EZrPpsssukyQ9//zztdavW7dOn3/+uWJjY/XrX/86ZHUBAGCFoD6TPRASExPrXX/BBRdoxYoV2rlzZ4gqAgAAAAAA9XnllVf0+uuvSzr26LcxY8b43K5Lly5aunRpCCsDACC8denSRQUFBQ1uV15ers8//1y9e/cOQVU/yc7O1vPPP6+VK1dq1qxZmjJlimw2m7766itdc801kqTrrruu0ScKAEA4KCoqUnFxcUj2Vf1vfGP+rQ8Ul8ul5OTkkO2vpQj7JntDysvLJYlnugEAAAAAECbcbrf37/n5+crPz/e5Xc+ePUNVElALv0wFmo/vo8AbNmyY/vd//1cvvPCCt2nty+OPP67y8nJdeOGFfu/ro48+0iWXXOL9urS0VJI0Y8YMPfbYY97lW7duVffu3SVJvXv31rPPPqurr75at99+ux5//HF16tRJ27dvV2Vlpc444wzNmjXL75oAINSKioo0YsRFcrvLQ7rf7OzskO3L6YxTbu4KfjYMsIhushtjvGe8DxkyxOJqAAAAAACAJE2YMEETJkywugygTkVFRbrwootUUR69v0x1xMXp7RX8MhXBc6wpMaLGiVWhENqmhFO5ubkh/T6644479NJLL+nmm29WWVmZrrrqqhrrDx06pDlz5uiBBx5Q69atdeutt/q9r8rKSh04cKDW8h9//FE//vij9+tf3pJ+/PjxOuGEEzRjxgytW7dO//nPf5SSkqIrrrhCd9xxh+Li4vyuCQBCrbi4WG53uZz9L1FMm/ZWlxNwntIDcuctV3FxMT8XBlhEN9mfffZZbd26VQ6HQ3/+85/r3M7tdtf4Ya+kpKTe9w3lGZhSZJ2FydmpgVNWVqbCwsKQ7OvnUlJSwvrOD8wLmsKqz4vEZwYAAACIZMXFxaooL9ePl18uT4cOVpcTcDH790vLlvHLVATVsaaEW8kdB8sRm2R1OQFXUXlYRfvWhfz76MQTT9TChQt11VVXadKkSbr11ltlt9slST169NC3334rj8cjh8OhRYsWea8w90dmZqaMMX6NHTx4sN58802/9w0A4SamTXvZ23axugxEkIhtsufl5emWW26RJE2fPl2pqal1bjtjxgzdf//9jXrfoqIijbhwhNwVoT0DUwrxWZgOp3LfbtpZmJydGliFhYUaPXp00PfzSzk5OUpPTw/5fhuLeUFTWPV5kfjMAAAAIDJwIUH9PB06yEMTGo3AhSd1c8QmKd7ZLsAVtWy//e1v9atf/Ur33XefVqxY4X1k6jfffKPY2FhddNFFeuCBB9S3b1+LKwUQaY64jQ6V+3dyTTg74o6+YwoXVVVuHa0K7d2fQqGqqvm9zohssu/atUujRo1SeXm5xo0bpylTptS7/bRp0zR58mTv1yUlJXWe4VdcXCx3hVt9D/dVm6o2Aa07XJTaS7UtaVuTz8KsPjs19qxYxSTGBLFCa3hKPHJvcIfs7NSUlBTl5OQ0eVxBQYGys7M1a9asek8uqW+/4Yx5QVNY9Xmp3jcAAAAQzqw6WV6K3hPm0TLxrFZY4dRTT9WyZctUWVmpnTt36vDhw2rTpo3S0tK4sx4Av92xpkpSVYPbAdW+/m6N1SWErYhrsu/du1cXXHCBvv32W40cOVILFiyQzWard4zT6ZTT6WzSftpUtVHS0ei7zVEgxCTGKKZd9DXZQy0+Pr5ZV8GmpqZG5VW0zAuags8LAAAAULdoP1leCv0J82iZeFYrrBQbG8vvLgAACEMR1WQ/ePCgLrjgAhUUFGjo0KFaunSpYmNjrS4LAAAAAAAgbHGyPBAYPKsVAAAA1SKmyV5aWqqLL75Y27dv14ABA/Tmm29yWxwAAAAAAAAAQMRauHBhs99j/PjxAagEAAA0RUQ02d1uty655BJt3LhR6enpys3NVUJCgtVlAQAAAAAAAADgtwkTJjT4ONT62Gw2muwAGu2h8+xKcUXfHY4Kiz3/97x5BFr3489TnNNldRkBV+4ubvbz5sO+yV5VVaWxY8dqzZo1Sk1N1TvvvKN27dpZXRYAAAAAAAAQlY64jQ6VG6vLCLgj7ug7JkS+Hj161Nlk/+qrr+R0OtW5c+cQVwUgWiU4bWob5/+JPeEqwRl9xxQu7HanWtnjrC4j4Ox2Z7PfI+yb7K+88opef/11SVJMTIzGjBnjc7suXbpo6dKlIawMAAAAAAAAiD7HrgTjajAgFL788ss618XExGjAgAF6//33Q1cQAABolLBvsrvdbu/f8/PzlZ+f73O7nj17hqokAAAAAAAAAAAAAEALFfYPXpgwYYKMMQ2+6jvjDwAAAAAAAAAAAACAQAj7JjsAAAAAAAAAAAAAAOEi7G8XDwAAAAAAACB0HjrPrhRX9F2bU1js+b/nzQMAAADNQ5MdAAAAAAAAgFeC06a2cTarywi4BGf0HRMAAACsEX2npAIAAAAAAAAAAAAAECRcyQ4AAAAAAKJCpa1Sbpvb6jICrtJWaXUJACSZijIZ9w9WlxFwpqKsWeOrqtw6WlUeoGrCR1VVaPLk/fffr3f94cOHG9zm3HPPDWRJANAikfNoKprsAAAAAAAgKmxybbK6BABRrHzDYqtLCEtff7fG6hIiWmZmpmw2348ysNls2r59u4YNG1bneJvNpqNHjwarPABoMch5NBVNdgAAAAAAAAAALGKMsWQsooOnxGN1CUHR3OOK2b8/QJWEl2g9LiAS0WQHAAAAAAAAAMACHk90NkgRfC6XS06nU+4N0feonGpOp1Mul6tJY1wulxxxcdKyZUGqynqOuLgmzwuAwKPJDgAAAAAAAAAAEEGSk5OVm5ur4uLikOyvoKBA2dnZmjVrllJTU0OyT5fLpeTk5CaNSU5O1tsrVjAvAIKOJjsAAAAAAIgKZxafqYSjCVaXEXBHWh3hefNAGIg76wrZk463uoyAqzr8XbOeQ9v9+PMU54y+KyrL3cU8bx5hLzk5OeTN1tTUVKWnp4d0n03FvMAf5DyaiiY7AAAAAACICrEmVk7jtLqMgCs35VaXEL3KymT74Qerqwi8sjKrK4hKNke8bM7WVpcRcDZHfLPG2+1OtbLHBaia8GG3R1+eAADqRs6jqWiyAwAAAAAAoEVqs3Ch1SUAAAAAiEAxVhcAAAAAAAAAAAAAAECkoMkOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCReCY7AABocSptlXLb3FaXEXCVtkqrSwAAAIgopePHy3TubHUZAWfbu5fnzQMAAABBRJMdAAC0OJtcm6wuAQAAAOEgPl6mdWurqwg4W3y81SUAAAAAUY0mOwAAAFRUVKTi4uKQ7KugoKDGn6HgcrmUnJwckn2VlZWpsLAwJPv6uZSUFMWH8S/UrZoXibmpC/PiW7jPCwAAAAAAsB5NdgAAgBauqKhII0aMkNsd2lvoZ2dnh2xfTqdTubm5IWm0FxYWavTo0UHfzy/l5OQoPT095PttLKvmRWJu6sK8+Bbu8wL4w1QYmXJjdRlBYSqi87gAtGx2u12ZmZlavXq11aUAAIA60GQHAABo4YqLi+V2uxV7VqxiEmOsLifgPCUeuTe4VVxcHJIme0pKinJycpo8rqCgQNnZ2Zo1a5ZSU1P92m8483deJOamLsyLb9E+L4A/KtZWWF0CAKAJjDEypuZJRJMmTdKnn35K4x1As+w+bCR5rC4j4I4dFxBaNNkBAECLc2bxmUo4mmB1GQF3pNWRZj1vPiYxRjHtoq/JHmrx8fHNugo2NTU1Kq+ibe68SMxNXZgX36J1XgAAQHS57rrrNHjwYA0aNEi/+tWv6txu69atWrduXQgrAxBNXC6X4pxOzVwX2rsYhlKc0ymXy2V1GWhBaLIDAIAWJ9bEymmcVpcRcOWm3OoSAAAAAABN8MILL2j+/PmSpKSkJJ111lmSpLKyMh09elStWvErfADNl5ycrBW5uSouLg7J/pp7hzF/uFyukNzBEKhGQgMAAAAAAAAAYIGCggKtW7dO69at00cffaSVK1fKZrNp06ZNSkpK0pAhQzRs2DAdOHDA6lIBRLjk5OSQN6G5wxiiGU12AAAAAACAKObIdCimbXQ+EsZzyMMz54OA57UCodO7d2/17t1bV155pSTpyJEjSkpKUnJysk444QS9//77WrVqlSTJZrMpMzNTgwcP1pAhQzRo0CC1a9fOyvIBAGixaLIDAAAAAABEMZvDJluczeoygsLmiM7jsgrPawWsl5CQIEnq06eP1qxZo/Lycn344Ye64YYbtGvXLm3YsEHvv/++bLZj//6deOKJ+s9//mNlyQAAtEg02QEAAAAAAADwvFbAAr/5zW80ePBgDRo0SGeccYYcDkeN9XFxcRo+fLi6dOmiXbt2qaSkRFu2bNGGDRu0bt06bdiwwaLKAQBo2WiyAwAAAAAAAJDE81qBUMvJydFrr70mSXI4HDr99NMlSSUlJTp06JDatm1bY3uHw6FBgwZp0KBBuvXWW0NdLgAA+D802QEAAAAAAAAAfqmoPGx1CUERquPat2+f1q9f7319/PHHstls2rp1qzp06KB+/frpvPPO03fffReSegAAQOPQZAcAAAAAAAAANInL5ZLT6VTRvnVWlxI0TqdTLpcrqPto3769Ro0apVGjRkmSqqqqFBsbqx49eqhv37567733lJeXJ0my2Ww644wzvFeyDxo0SCkpKUGtDwAA+EaTHQAAAAAAAADQJMnJycrNzVVxcXFI9ldQUKDs7GzNmjVLqampIdmny+UK+eMT7Ha7JCklJUXLly+Xx+PRxx9/rPHjx+uLL77Q7t27tXXrVj355JOSpI4dO2rv3r0hrREAANBkBwAAAAAAAAD4ITk5OeRN6NTUVKWnp4d0n1aKiYnRwIED1alTJ33xxRfat2+fduzYoQ0bNuijjz7Shg0brC4RAIAWiSY7AAAAAAAAADTAU3rA6hKCIlqPK5qdeOKJOvHEE3XVVVdZXQoAAC0WTXYAAAAAAAAAqMOxZ4/HyZ233OpSgsbpjAv6s8fReB6Pp9YyY4wFlQAAgLrQZAcAAAAAAFGh1F5qdQlBEa3HBUSKY88eX8Gzx2GpJ554QocPH7a6DACIWtF6Z5fmHldFZXRmTyCOiyY7AAAAAACIaC6XS06HU9uStlldStA4HU6uMgUsxLPHYbV+/fpZXQIARCXuWOPbsXlxqmjfuiBVZT2ns3n/j0WTHQAAAAAARLTk5GTlvp3LVaYAAAAAmoQ71vh2bF74f6z60GQHAAAAAAARj6tMAQAAAPiD/5fwjXmpX4zVBQAAAAAAAAAAAAAAEClosgMAAAAAAAAAAAAA0Eg02QEAAAAAAAAAAAAAaCSa7AAAAAAAIGjeeustDR8+XO3atVPr1q3Vv39/zZ07Vx6Px+rSAACAnyZMmCCbzVbvq7y83OoyAQAImlZWFwAAAAAAAKLTzJkzNW3aNElSSkqK2rRpo23btmnSpElatWqVXnvtNcXEcP4/AACRKi0tTZ06dfK5jowHAEQzmuwAAAAAACDg1q9frzvvvFMxMTFatGiRrrjiCknStm3bdOGFF+qNN97Q7NmzNWXKFIsrRUsWs3+/1SUERbQeF4Dwc+edd2rChAlWlwEAQMjRZAcAAAAAAAE3ffp0GWP0hz/8wdtgl6S+fftq9uzZuvLKKzVz5kzdcsstio2NtbBStEQul0uOuDhp2TKrSwkaR1ycXC6X1WUAAAAAUYkmOwAAAAAACKiSkhKtWrVKknTttdfWWj9mzBjdeOONOnDggN59911lZWWFukS0cMnJyXp7xQoVFxeHZH8FBQXKzs7WrFmzlJqaGpJ9ulwuJScnh2RfAAAAQEtDkx0AAAAAAATU1q1bVVFRobi4OPXv37/W+tjYWA0YMECrV6/Wxo0babLDEsnJySFvQqempio9PT2k+wSAYHr11Vf1+uuvq6SkRJ06ddKQIUM0fvx4JSUlWV0aAABBRZMdAAAAAAAEVH5+viSpR48eatXK968eUlJStHr1au+2v+R2u+V2u71fl5SUBL5QAADQLP/85z9rfL1kyRLde++9eumllzRixIg6x5HzAIBIF2N1AQAAAAAAILpU34K7vudBV6+r63bdM2bMUFJSkvfVvXv3wBcKAAD8kpqaqgcffFDbtm1TSUmJjhw5opUrV2rgwIEqLi7WpZdeqs2bN9c5npwHAEQ6muwAAAAAACCgysvLJUkOh6PObZxOpySprKzM5/pp06bp8OHD3tfXX38d+EIBAIBf/vKXv2jatGk67bTTlJCQoDZt2uiCCy7Q+++/rzPPPFNut1t33HFHnePJeQBApON28QAAAAAAIKDi4uIkSRUVFXVuU32L2Pj4eJ/rnU6ntxEPAAAig8Ph0AMPPKALL7xQa9euVXFxsc8725DzAIBIx5XsAAAAAAAgoBq6FfzP19V3S3kAABB5Bg0aJEnyeDwqLCy0uBoAAIKDJjsAAAAAAAiotLQ0SdLu3bt19OhRn9tU/9K9elsAABAdYmNjvX+v6+cAAAAiHU12AAAAAAAQUKeffrpiY2NVXl6uvLy8WusrKyv18ccfS5IGDhwY6vIAAEAQffrpp96/d+vWzcJKAAAIHprsAAAAAAAgoBITEzV8+HBJ0vPPP19r/dKlS1VSUqL27dsrMzMzxNUBAIBgeuSRRyRJJ510krp27WpxNQAABEcrqwsAAAAAAADR56677lJubq6ee+45ZWZm6oorrpAkbdu2TZMnT5Yk3X777XI4HFaW2SJ4SjxWlxA00XxsABCu3nnnHa1Zs0Z//OMf1bt3b+/yw4cP6y9/+YsWL14sSbrnnnusKhEAgKCjyQ4AAAAAAAJuyJAheuCBB3T33Xdr3Lhxuvvuu9WmTRtt375dHo9HI0eO1G233WZ1mVHN5XLJ6XTKvcFtdSlB5XQ65XK5rC4DAFqMH374QTNnztTMmTPVtWtXJScnq7KyUv/5z39UUVEhm82me+65x3uCHQAA0YgmOwAAAAAACIq77rpLffv21aOPPqotW7Zo7969OvXUU3X11Vfrpptukt1ut7rEqJacnKzc3FwVFxeHbJ8FBQXKzs7WrFmzlJqaGpJ9ulwuJScnh2RfAADpjDPO0F133aX169friy++0Pbt22WMUdeuXXXOOedo4sSJGjhwoNVlAgAQVDTZAQCAZYwx+uijj7R8+XJ98MEH+vzzz/Xjjz+qQ4cOGjRokG666SYNGzbM6jIBAEAzjBo1SqNGjbK6jBYrOTnZkgZ0amqq0tPTQ75fAEDwde/eXdOnT7e6DAAALEWTHQAAWGbNmjUaPny4JCkmJkYnnHCCWrdurfz8fOXk5CgnJ0d33323HnjgAYsrBQAAAAAAAADgmBirCwAAAC2XMUYnnHCC5s2bp/3792vHjh3Ky8vTgQMHNG3aNEnS9OnT9Y9//MPiSgEAAAAAAAAAOIYmOwAAsMyZZ56pzz77TDfeeKNcLpd3ucPh0IMPPqiLLrpIkvTss89aVSIAAAAAAAAAADVwu3gAAGCZxMTEetdfcMEFWrFihXbu3Bmiilo2U2Fkyo3VZQScqfD/mA4ePBjASup3+PBh75+h2m+7du1Csh8AAAAAAAAgmtBkBwAAYau8vFySFB8fb3ElLUPF2gqrSwg7gwYNCvk+r7766pDta8eOHSHbFwAAAAAAABAtaLIDAICwZIzR0qVLJUlDhgypczu32y232+39uqSkpMH3LrWXNr/AMBStx4XgKSoqUnJysl/jiouLg1CRbwUFBTX+DAWXyxX2c8O8+BZJ8wIAAAAAACITTXYAABCWnn32WW3dulUOh0N//vOf69xuxowZuv/++xv1ni6XS06HU9uStgWoyvDjdDhrPN8e/isqKrK6hKC78KKL9PaKFU1qDhYVFemiESNU/rOTW0IlOzs7ZPuKczq1Ije3yXMzYsRFcrvLg1hZbaGcF6czTrm5Tf/MjBgxosYJUaEQ2nlxKreJnxcAAAAAABC5aLIDAICwk5eXp1tuuUWSNH36dKWmpta57bRp0zR58mTv1yUlJerevbvPbZOTk5X7dm5Ir6bMzs7WrFmz6j2GQOJqysAJ5ZXaVqkoL1dxcXGTPjPFxcUqd7s1dbBdPZJsQazOOrsPG81c5/Zrbtzucjn7X6KYNu2DWKE1PKUH5M5b7ue8uJXccbAcsUlBrNAaFZWHVbRvXZPnBQAAAAAARK6IaLLv2rVLq1at0qZNm7Rp0yZ9+umnqqqq0gMPPKC7777b6vIAAEAA7dq1S6NGjVJ5ebnGjRunKVOm1Lu90+mU0+ls9PsnJyeHvAmSmpqq9PT0kO7TH45Mh2LaxlhdRsB5Dnma9bz50vHjZTp3DmBF4cG2d6/aLFzo9/geSTaltYu+z8sxnmaNjmnTXva2XQJUS/RwxCYp3tnO6jIAAAAAAACaLSKa7I8//rgef/xxq8sAAABBtnfvXl1wwQX69ttvNXLkSC1YsEA2W3ReKRuObA6bbHHRN982RzOPKT5epnXrwBQTRmzx8VaXAAAAAAAAAESkiLj0pEOHDho1apT++te/asWKFbr88sutLgkAAATYwYMHdcEFF6igoEBDhw7V0qVLFRsba3VZAAAAAAAAAADUEBFXsv/ylvAvv/yyRZUAAIBgKC0t1cUXX6zt27drwIABevPNNxXPVbYAAAAAAAAAgDAUEVeyAwCA6OV2u3XJJZdo48aNSk9PV25urhISEqwuCwAAAAAAAAAAnyLiSnYrVNoq5ba5rS4jKCptlc0abyqMTLkJUDXhw1T4f0wHDx4MYCX1O3z4sPfPUO23Xbt2fo1jXgA0pKqqSmPHjtWaNWuUmpqqd955h+8tAAAAAAAAAEBYo8leh02uTVaXELYq1lZYXULYGTRoUMj3efXVV4dsXzt27PBrHPMCoCGvvPKKXn/9dUlSTEyMxowZ43O7Ll26aOnSpSGsDAAAAAAAAAAA31pEk93tdsvt/umq9JKSEgurASJPUVGRkpOTrS4j7Pg7L0VFRSouLm7SGLfbrW+++abJ+2qubt26yel0NmmMy+UK2bz4q6CgoMafoeLv3ESzn+dzfn6+8vPzfW7Xs2fPUJUEAAAAAACiQFlZmQoLC5s8rrm/N0pJSVF8fLxfY0OBefGNefGNeakbc+NbS5qXFtFknzFjhu6///5GbetyuYJcTXhwOpwt5liDraioyOoSgu7Ciy7S2ytWNKk52BLm5aIRI7QiN7fJ8zJixEVyu8uDWJm1nM445eY2/fMyYsSIGg3XUMjOzg7p/pxOp3Kb+JmJdhMmTNCECROsLgMAAAAAAESZwsJCjR492u/x/v7eKCcnR+np6X7vN9iYF9+YF9+Yl7oxN761pHlpEU32adOmafLkyd6vS0pK1L17d5/btpTGR+7bNHkCJVRX3lqporxcxcXFTfrMtIR5KXe7/ZoXt7tczv6XKKZN+yBWZw1P6QG585b7OS9uJXccLEdsUhArtE5F5WEV7VvX5LkBAAAAAABA06WkpCgnJ8eS/YYz5sU35sU35qVuzI1vLWleWkST3el0Nul2x+vXrw9iNbV9/vnnuvrqqzV//nyddNJJIdlnu3bt/B7ryHQopm1MAKsJD55DnmY9b750/HiZzp0DWFF4sO3dqzYLF/o9/qHz7EpxRd/npbDYozvWVPk9PqZNe9nbdglgRdHBEZukeKf//z4BAAAAAAAAkhQfHx/WV3tahXnxjXnxjXmpG3PjW0ualxbRZG+q5jSg/ZGUlOT9M9T79ofNYZMtzmZ1GQFnczTzmOLjZVq3DkwxYcTWzGdYJDhtahuFn5cEZ/QdEwAAAAAAAAAAABoWfZeXAgAAAAAAAAAAAAAQJDTZAQAAAAAAAAAAAABoJJrsAAAAAAAAAAAAAAA0UkQ02T/66CN16NDB+3r55ZclSTNmzKix/Ouvv7a4UgAAAAAAAAAAAABANGtldQGNUVlZqQMHDtRa/uOPP+rHH3/0fl1VVRXKsgAAAAAAAAAATVBWVqbCwsImjysoKKjxZ1OlpKQoPj7er7EAAAC/FBFN9szMTBljrC4DAAAAAAAAANAMhYWFGj16tN/js7Oz/RqXk5Oj9PR0v/cLAADwcxHRZAcAAAAAAAAARL6UlBTl5ORYsl8AAIBAockOAAAAAAAAAAiJ+Ph4rigHAAARL8bqAgAAAAAAAAAAAAAAiBQ02QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBLPZAcAAAAAAADgt7KyMhUWFjZ5XEFBQY0/myolJUXx8fF+jQ0F5gUAACB60WQHAAAAAAAA4LfCwkKNHj3a7/HZ2dl+jcvJyVF6errf+w025gUAACB60WQHAAAAAAAA4LeUlBTl5ORYst9wxrwAAABEL5rsAAAAAAAAAPwWHx/PldM+MC8AAADRK8bqAgAAAAAAAAAAAAAAiBQ02QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOwAAAAAAAAAAAAAAjUSTHQAAAAAAAAAAAACARmpldQEAAAAAAAAAWpaqqipt3rxZ+/btU8eOHZWRkSG73W51WQAAAECj0GQHAAAAAAAAEDIrV67UzJkztWfPHu+yrl27aurUqcrKyrKwMgAAAKBxuF08AAAAAAAAgJBYuXKlJk2apD59+mjJkiXKy8vTkiVL1KdPH02aNEkrV660ukQAAACgQTTZAQAAAAAAAARdVVWVZs6cqczMTM2bN0/9+vVT69at1a9fP82bN0+ZmZl66KGHVFVVZXWpAAAAQL24XTwAAAAAAGiRysrKVFhY2ORxBQUFNf5sqpSUFMXHx/s1Fohkmzdv1p49ezR79mzFxNS89icmJkbXX3+9xo4dq82bN2vgwIEWVQkAAAA0jCY7AAAAAABokQoLCzV69Gi/x2dnZ/s1LicnR+np6X7vF4hU+/btkySlpaX5XF+9vHo7AAAAIFzRZAcAAAAAAC1SSkqKcnJyLNkv0BJ17NhRkpSfn69+/frVWp+fn19jOwAAACBc0WQHAAAAAAAtUnx8PFeUAyGUkZGhrl276qmnntK8efNq3DLe4/Ho6aefVrdu3ZSRkWFhlQAAAEDDYhreBAAAAAAAAACax263a+rUqVq7dq0mTpyorVu3qrS0VFu3btXEiRO1du1a3XHHHbLb7VaXCqAR3nrrLQ0fPlzt2rVT69at1b9/f82dO1cej8fq0gAACDquZAcAAADQZEfcRofKjdVlBMURd/OOy1SUybh/CFA14cNUlDVrfFWVW0erygNUTfioqnJbXULYOXLkiJYvX67c3Fxt2rRJX3/9tWw2m3r37q2LL75YkydPVpcuXawuE4BFsrKyNGfOHM2cOVNjx471Lu/WrZvmzJmjrKwsC6sD0FgzZ87UtGnTJB17DEqbNm20bds2TZo0SatWrdJrr71W424VAABEG5rsAAAAAJrsjjVVkqqsLiMslW9YbHUJYenr79ZYXQJCZOLEiVq0aJEkKSEhQSeddJJ++OEH7dixQ//5z380f/58rVixQgMGDLC4UgBWycrK0vnnn6/Nmzdr37596tixozIyMriCHYgQ69ev15133qmYmBgtWrRIV1xxhSRp27ZtuvDCC/XGG29o9uzZmjJlisWVAgAQPDTZAQAAIEnylETnLf2ae1wx+/cHqJLwEq3HBSA8XHrppbrppps0dOhQtWp17FcPBQUFGjdunDZt2qTLL79cO3bsUHx8vMWVArCK3W7XwIEDrS4DgB+mT58uY4z+8Ic/eBvsktS3b1/Nnj1bV155pWbOnKlbbrlFsbGxFlYKAEDw0GQHAABo4Vwul5xOp9wboveWx06nUy6Xq0ljXC6XHHFx0rJlQarKeo64OL/mpSWI8/MzE+2cTj4zvvjzb0w0e/zxx9WuXbtay1NTU/Xqq6/qhBNO0Ndff63c3FxddtllFlQIAAD8VVJSolWrVkmSrr322lrrx4wZoxtvvFEHDhzQu+++yyMgAABRiyY7AABAC5ecnKzc3FwVFxeHZH8FBQXKzs7WrFmzlJqaGpJ9ulwuJScnN2lMcnKy3l6xgnn5haZuH6lW5OYyNz7k5q5gXnzI9ePzEs18Ndirde/eXSeddJL+/e9/a+fOnSGsCgAABMLWrVtVUVGhuLg49e/fv9b62NhYDRgwQKtXr9bGjRtpsgMAohZNdgAAACg5OTnkDaLU1FSlp6eHdJ9Nxbz4tn79+pDu7/PPP9fVV1+t+fPn66STTgrJPutrEtYnlHPDvPgWSfPSUpWXl0sSt4oHACAC5efnS5J69OjhfSTML6WkpGj16tXebQEAiEY02QEAAAA0SagbiklJSd4/w72ZGcr6mBffImleWqJt27Z5r2AfMmSIxdUAAICmqr7TV32PyqleV99dwdxut9zunx5ZVlJSEqAKAQAIjRirCwAAAAAAANGvqqpKN998syTpvPPO0xlnnFHv9m63WyUlJTVeAADAWtV3pHE4HHVu43Q6JUllZWV1bjNjxgwlJSV5X927dw9soQAABBlNdgAAAAAAEHR33nmnPvjgAyUkJOiZZ55pcHt++Q4AQPiJi4uTJFVUVNS5TfUV6vU9GmbatGk6fPiw9/X1118HtlAAAIKM28UDAAAAAABJ0u2336433nijyePmz5+vQYMG1bn+qaee0sMPP6xWrVpp8eLFSk1NbfA9p02bpsmTJ3u/LikpodEOAIDFGnMr+MbcUt7pdHqveAcAIBLRZAcAAAAAAJKkoqIi7dixo8njfvjhhzrXLVmyRH/6059ks9m0YMECjRw5slHvyS/fAQAIP2lpaZKk3bt36+jRo2rVqnaLobCwsMa2AABEI24XDwAAAAAAJEmLFi2SMabJr+HDh/t8v7feeku///3v5fF49MQTT+jKK68M8REBAIBAOv300xUbG6vy8nLl5eXVWl9ZWamPP/5YkjRw4MBQlwcAQMjQZAcAAAAAAAH3/vvv6ze/+Y0qKys1Y8YMTZw40eqSAABAMyUmJnpPrnv++edrrV+6dKlKSkrUvn17ZWZmhrg6AABChyY7AAAAAAAIqC1btui//uu/VFZWpmnTpmnq1KlWlwRYpqqqStu3b5ckbd++XVVVVRZXFB6qqqq0ceNG/eMf/9DGjRuZFyCC3HXXXbLZbHruuee0ePFi7/Jt27Zp8uTJkqTbb79dDofDqhIBAAg6nskOAAAAAAACZseOHRoxYoRKSko0ceJEPfjgg1aXBARMWVmZ91nDjbFhwwYtWLBA33//vSTpnnvu0RNPPKEJEyborLPOavT7pKSkKD4+vsn1hquVK1dq5syZ2rNnj3dZ165dNXXqVGVlZVlYGYDGGDJkiB544AHdfffdGjdunO6++261adNG27dvl8fj0ciRI3XbbbdZXSYAAEFFkx0AAAAAAATMpEmTtH//ftlsNv3rX//S2Wef7XO7a665Rtdcc02IqwOap7CwUKNHj27We3z//fd6+OGHmzQmJydH6enpzdpvuFi5cqUmTZokp9NZY/mBAwc0adIkzZkzh0Y7EAHuuusu9e3bV48++qi2bNmivXv36tRTT9XVV1+tm266SXa73eoSAQAIKprsAAAAAAAgYNxutyTJGKN169bVuV3181yBSJKSkqKcnJwGt6uqqtKf/vQnJSQk6MiRI94r2SWpU6dOSkhIUGlpqZ544olGNaJSUlKaVXe4qKqq0r333itjjM466yzdeOONSktLU35+vp588kmtXbtW9913n84//3wadEAEGDVqlEaNGmV1GQAAWIImOwAAAAAACJi1a9daXQIQNPHx8Y26onzjxo36/vvvtW/fPmVmZmru3LneZvJTTz2ltWvXyhijsrIyDRw4MASVh4dNmzbp4MGD6t+/v5588knFxMRIkvr166cnn3xSV155pfLy8rRp0yYNGjTI4moBAACAusVYXQAAAAAAAAAQTb777jtJ0jnnnKO5c+fK7Xbr3Xffldvt1ty5c3XOOefU2K6l2LhxoyTplltu8TbYq8XExOjmm2+usR0AAAAQrriSHQAAAAAAAAiggwcPSpKSk5N14YUXas+ePd51Xbt29TbZq7draYwxVpcAAAAANAtXsgMAAAAAAAAB1K5dO0nSyy+/rD59+mjJkiXKy8vTkiVL1KdPH7388ss1tmspqm+NP3fuXHk8nhrrPB6PnnjiiRrbAQAAAOGKJjsAAAAAAAAQQB07dvT+3RhT6+Vru5bgzDPPVLt27bRlyxZNnDhRW7duVWlpqbZu3aqJEydqy5Ytat++vc4880yrSwUAAADqxe3iAQAAAAAAGqmqqkqbN2/Wvn371LFjR2VkZMhut1tdFsJUSkqKPv/8c40dO9a7rEuXLkpJSVFhYaGFlVnDbrfr/vvv180336z169fr3Xff9a6Li4uTJN133318TwEAACDs0WQHAAAAAABohJUrV2rmzJm1nq89depUZWVlWVgZws2BAwckyWcj/dtvv621XUuSlZWluXPnasaMGSoqKvIub9++Pd9LAAAAiBg02QEAAAAAABqwcuVKTZo0SZmZmZo9e7bS0tKUn5+vp556SpMmTdKcOXNoDsLr57eBj4mJqfH88Z9/3dJuF18tKytL559/PneFAAAAQMSiyQ4AAAAAAFCPqqoqzZw5U5mZmZo3b55iYmIkSf369dO8efM0ceJEPfTQQzr//PNpEkKSdNppp0mSYmNj9fHHH+vf//63t5l82mmnacCAAaqsrPRu1xLZ7XYNHDjQ6jIAAAAAv8RYXQAAAAAAAEA427x5s/bs2aMbbrjB22CvFhMTo+uvv17ffPONNm/ebFGFCDdLliyRJFVWVurWW2+Vw+FQZmamHA6Hbr31VlVWVtbYDgAAAEBkockOAAAAAABQj3379kmS0tLSfK6vXl69HbB7925J0vTp07Vz506NHTtWZ5xxhsaOHav8/Hw98MADNbYDAAAAEFm4XTwAAAAAAEA9qp+bnZ+fr379+tVan5+fX2O7aFBWVqbCwsImjysoKKjxZ1OlpKQoPj7er7HhpEePHpIkY4zeeeedWs8ef/XVV2tsBwAAACCy0GQHAAAAAACoR0ZGhrp27aqnnnqqxjPZJcnj8ejpp59Wt27dlJGRYWGVgVVYWKjRo0f7PT47O9uvcTk5OUpPT/d7v+Fi3Lhxevjhh/XYY49p9OjRNZ49fvToUT3++OOy2+0aN26chVUCAAAA8BdNdgAAAAAAgHrY7XZNnTpVkyZN0sSJE3X99dcrLS1N+fn5evrpp7V27VrNmTNHdrvd6lIDJiUlRTk5OZbsNxo4HA5NmDBBzz//vM4991zdcsstyszM1Nq1a/X444/rwIEDuvbaa+VwOKwuFQAAAIAfaLIDAAAAAAA0ICsrS3PmzNHMmTM1duxY7/Ju3bppzpw5ysrKsrC6wIuPj4+KK8qtdPvtt0uSFixYoHvuuce73G6369prr/WuBwAAABB5aLIDAAAAAAA0QlZWls4///xaz9eOpivYEVi33367/vznP+ull17S7t271aNHD40bN44r2AEAAIAIR5MdAAAAAACgkex2e43nawMNqb51PAAAAIDoEWN1AQAAAAAAAAAAAAAARAqa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGolnsgMAAAAAAKDZqqqqtHnzZu3bt08dO3ZURkaG7Ha71WUBAAAAQMDRZAcAAAAAAECzrFy5UjNnztSePXu8y7p27aqpU6cqKyvLwsoAAAAAIPC4XTwAAAAAAAD8tnLlSk2aNEl9+vTRkiVLlJeXpyVLlqhPnz6aNGmSVq5caXWJAAAAABBQNNkBAAAAAADgl6qqKs2cOVOZmZmaN2+e+vXrp9atW6tfv36aN2+eMjMz9dBDD6mqqsrqUgEAAAAgYGiyAwAAAAAAwC+bN2/Wnj17dMMNNygmpuavmWJiYnT99dfrm2++0ebNmy2qEAAAAAACL6Ka7G+99ZaGDx+udu3aqXXr1urfv7/mzp0rj8djdWkAAKAZyHgAAIDItG/fPklSWlqaz/XVy6u3AwAAAIBoEDFN9pkzZ2rkyJFavXq1XC6XTjjhBG3btk2TJk3SZZddxi/hAQCIUGQ8AABA5OrYsaMkKT8/3+f66uXV2wEAAABANIiIJvv69et15513KiYmRi+99JIKCgq0bds25eXl6fjjj9cbb7yh2bNnW10mAABoIjIeAAAgsmVkZKhr16566qmnap0c6fF49PTTT6tbt27KyMiwqEIAAAAACLyIaLJPnz5dxhhdd911uuKKK7zL+/bt6/3F+8yZM1VZWWlViQAAwA9kPAAAQGSz2+2aOnWq1q5dqxtvvFGLFi3Sq6++qkWLFunGG2/U2rVrdccdd8hut1tdKgAAAAAETCurC2hISUmJVq1aJUm69tpra60fM2aMbrzxRh04cEDvvvuusrKyQl0iAADwAxkPAAAQHbKysnTNNddowYIFWrt2rXe53W7XNddcw89xAAAAAKJO2DfZt27dqoqKCsXFxal///611sfGxmrAgAFavXq1Nm7cyP+4AYgIpqJMxv2D1WUEnKkoa9b4qiq3jlaVB6ia8FJV5ba6hLBDxgMAAESHlStX6oUXXlBmZqbOOeccxcXFqby8XB988IFeeOEF9evXj5/lAAAAAESVsG+y5+fnS5J69OihVq18l5uSkqLVq1d7twWAcFe+YbHVJYSlr79bY3UJCCEyHgAAIPJVVVVp5syZyszM1Lx58xQT89OTCa+44gpNnDhRDz30kM4//3xuGQ8AAAAgaoR9k724uFiS5HK56tymel31tr/kdrvldv90BWFJSUkAKzymrKxMhYWFfo0tKCio8WdTpaSkKD4+3q+x/vCUeEK2r1Bq7nHF7N8foErCS3OPa/dhIyn6PjPHjgtAcwQi46XwzvlIy/imYl58Y158a0k/LzcVnxnfmBcgMmzevFl79uzR7NmzazTYJSkmJkbXX3+9xo4dq82bN2vgwIEWVQkAAAAAgRX2Tfby8mO3DXY4HHVu43Q6JR37JYwvM2bM0P333x/44n6msLBQo0ePbtZ7ZGdn+zUuJydH6enpzdp3Y7hcLjmdTrk3RO8tj51OZ73NHl9cLpcccXHSsmVBqsp6jrg4v+YlzunUzHXR+3mJ8/PzEu2cTv8+Ly2BP//GRLNAZLwUGTkf7hnvL+bFN+bFt5bw87K/+Mz4xrwAkWHfvn2SpLS0NJ/rq5dXbwcAAAAA0SDsm+xxcXGSpIqKijq3qb56ra6rDaZNm6bJkyd7vy4pKVH37t0DWOWxqx1ycnIC+p5N2XcoJCcnKzc3t96rCX1xu9365ptvglRV3bp16+ZtzjSWy+VScnJyk8YkJyfr7RUrmJdfSE5O1go+L7U0dftIlJu7gnmpQ25ubos51sYIRMZL0Z3zocp4fzEvvjEvvrWEn5f9xWfGN+YFiAwdO3aUdOxRQP369au1vvqxP9XbAQAAAEA0CPsme2NuE9vQ7WadTmeTm2dNFR8f3yKudkhOTvarQdS/f/8gVBM+mBffmBff1q9fb3UJQdWuXTu/xkX7vEj+z020CkTGS+S8lZgX35gX35iXujE3vjEvQGTIyMhQ165d9dRTT9V6JrvH49HTTz+tbt26KSMjw8IqAQAAACCwwr7JXn1bsd27d+vo0aNq1ap2ydXP6avr1mQAEE5otPrGvLQ8ZDwAAEDks9vtmjp1qiZNmqSJEyfq+uuvV1pamvLz8/X0009r7dq1mjNnjux2u9WlAgAAAEDAxDS8ibVOP/10xcbGqry8XHl5ebXWV1ZW6uOPP5YkDRw4MNTlAQAAP5HxAAAA0SErK0tz5szRzp07NXbsWJ1xxhkaO3as8vPzNWfOHGVlZVldIgAAAAAEVNhfyZ6YmKjhw4drxYoVev7553XmmWfWWL906VKVlJSoffv2yszMtKZIAADQZGQ8AABA9MjKytL555+vzZs3a9++ferYsaMyMjK4gh0AAABAVAr7K9kl6a677pLNZtNzzz2nxYsXe5dv27ZNkydPliTdfvvtcjgcVpUIAAD8QMYDAABED7vdroEDB2rUqFEaOHAgDXYAAAAAUSsimuxDhgzRAw88II/Ho3Hjxik1NVV9+/ZV//799d1332nkyJG67bbbrC4TAAA0ERkPAAAAAAAAAIg0EdFkl45d6fbmm2/qvPPO04EDB/TFF1/o1FNP1WOPPably5dzdjQAABGKjAcAAAAAAAAARJKwfyb7z40aNUqjRo2yugwAABBgZDwAAAAAAAAAIFJEzJXsAAAAAAAAAAAAAABYjSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGgkmuwAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABqJJjsAAAAAAAAAAAAAAI3UyuoCrGCMkSSVlJRYXAkAAD/lUXU+oXnIeQBAuCDjA4uMBwCECzI+8Mh5AEC4aGzOt8gm+5EjRyRJ3bt3t7gSAAB+cuTIESUlJVldRsQj5wEA4YaMDwwyHgAQbsj4wCHnAQDhpqGct5kWeLqdx+NRUVGREhISZLPZrC5HJSUl6t69u77++mslJiZaXU7YYF58Y158Y158Y158C7d5McboyJEjSk5OVkwMT3JprnDK+XD7rIUL5sU35qVuzI1vzItv4TQvZHxgkfGRgbnxjXnxjXnxjXnxLZzmhYwPPHI+/DEvvjEvvjEvdWNufAuneWlszrfIK9ljYmLUrVs3q8uoJTEx0fIPTjhiXnxjXnxjXnxjXnwLp3nhzPfACcecD6fPWjhhXnxjXurG3PjGvPgWLvNCxgcOGR9ZmBvfmBffmBffmBffwmVeyPjAIucjB/PiG/PiG/NSN+bGt3CZl8bkPKfZAQAAAAAAAAAAAADQSDTZAQAAAAAAAAAAAABoJJrsYcDpdOree++V0+m0upSwwrz4xrz4xrz4xrz4xrwgVPis+ca8+Ma81I258Y158Y15QSjwOasbc+Mb8+Ib8+Ib8+Ib84JQ4bPmG/PiG/PiG/NSN+bGt0icF5sxxlhdBAAAAAAAAAAAAAAAkYAr2QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOwAAAAAAAAAAAAAAjUSTPQROPfVU2Ww2xcfHq6SkpM7tJkyYIJvNVuMVGxurLl266Ne//rVWrFgRwqqDp1evXrWO85evxx57TJL05Zdf+lyfkJCgvn376s4779T+/futPaAA2b17tyZPnqxTTjlFrVu3Vnx8vHr06KHBgwcrOztbb7/9do3tMzMzG5xHm82m++67z5oDCpBNmzbpT3/6k0455RS5XC7FxsaqQ4cOGjx4sG6//XZt2bKlwfe4+eabvfPxzjvvhKDq4Krre6hNmzY67bTTNG3aNB04cKDWuEOHDmnJkiW67bbbdPbZZ+u4446TzWbT8OHDLTiKwPN3Xnbu3KkZM2YoKytLnTt3VmxsrNq1a6dhw4Zp/vz58ng8FhwNIgk5/xMyvm7kvG/kfE1kvG9kPKxCxtdEzvtGxvtGxtdGzvtGzsMq5PxPyPi6kfO1kfG1kfG+tYSMb2V1AdHuX//6l7Zv3y5JKi8v16uvvqprrrmm3jGdOnVSWlqad8zOnTv15ptv6s0339S0adP04IMPBr3uUEhLS1OnTp18ruvatWutZRkZGXI6nZKkPXv26JNPPtG///1vLVy4UB988IF69+4d1HqDac2aNbr00kt15MgR2e12de/eXZ06ddLBgwe1YcMGrV+/XvPnz/f5A0r37t3Vo0ePOt+7vnXh7Mcff9R1112nxYsXS5JiY2OVmpqqxMREHTx4UJs2bdL69es1a9YsXXTRRXrrrbd8vk9lZaVefvll79cvvviiLrjggpAcQ7D9/HvI4/Ho22+/1SeffKJPPvlEL774oj788EP16tXLu/3atWs1duxYi6oNnabMS1VVlU488UTv2G7duqlfv37avXu31q5dq7Vr1+rll1/W8uXLFRcXZ8XhIMyR876R8TWR87WR8/Uj430j4xFKZHzdyPmfkPG1kfENI+d9I+cRSuS8b2R8TeR8TWR8w8h436I64w2CavLkyUaSadu2rZFkMjMz69z2qquuMpLMVVddVWO52+02U6ZMMZKMJLNu3bogVx1cPXv2NJLM/PnzG9x2165d3uPetWtXjXVbtmzxvteFF14YnGJD4PDhw6ZDhw5Gkhk5cqT58ssva6wvLi42CxYsMBdffHGN5UOHDjWSzL333hvCakOjoqLCnH322UaS6dKli3nhhRdMaWlpjW2q5+Xkk082Tqezzvd64403anwPtm7dutZ7RZr6vofy8vJMcnKykWTGjBlTY11ubq4599xzzZQpU8wrr7xiHnzwQSPJnH/++SGqPLj8mZfKykrTtm1bc/fdd5uCgoIaY5YsWWLi4+ONJHPbbbcFu3xEKHK+JjK+NnK+NnK+bmS8b2Q8rEDG10bO10TG10bG14+c942chxXI+ZrI+NrI+ZrI+PqR8b61hIynyR5ER48eNV26dDGSzKJFi4zdbjc2m8189dVXPrevK7CNMcbj8Zh+/foZSWbSpElBrjy4AhXaxhiTk5NjJBmbzWb2798f+GJDYPHixUaSSUxMND/88EOjx0VrYBtjzJ133mkkmeTkZLN79+56t62srDTTp0+vc/2YMWOMJHPXXXeZ9PR0I8m8+OKLgS45pBr6Hvrb3/5mJBmXy1Xv+8yfP7/FhLYxvufF4/GYgwcP1vmeM2fO9I6pqqoKdMmIcOR8bWR8beR8beR83ch438h4hBoZ7xs5XxMZXxsZXz9y3jdyHqFGztdGxtdGztdExtePjPetJWQ8z2QPolWrVunbb79V586dNXbsWJ133nkyxujvf/97k9/LZrPp7LPPliTl5+cHutSIde6550qSjDEqKCiwuBr/FBYWSpL69Omj4447zuJqrHfo0CHNmTNHkjRnzhx179693u1btWqlu+66y+e6w4cP680335QkjRs3TuPGjZN07BY00axnz56SpIqKCosrCS++5sVms8nlctU5JisrS5JUXFysffv2BbdARBxyPriiIeMlcv6XyPnmIeN9I+MRaGR88EVDzpPxNZHxzUfO+0bOI9DI+eCKhoyXyPmfI+Obj4z3LRoyniZ7EC1cuFCS9Lvf/U52u11XXnmlJP//wTDGBKy2aBENc5KYmCjp2A9ihw4dsraYMPDWW2+ptLRUnTt31qWXXtqs93rllVdUXl6uvn376uSTT9a4ceNks9m0evVqffvtt4EpOAxt3rxZknTSSSdZXEl48WdeysvLvX+Pj48PeE2IbOR8cEXLfJDzNZHzzUPG+0bGI9DI+OCLhjkh42si45uPnPeNnEegkfPBFS3zQc7/hIxvPjLet2jIeJrsQVJaWqrXX39dkrxBPXr0aMXHx+uzzz7Tli1bmvR+xhh99NFHkqQTTjghoLVGsg8++EDSsbNbUlJSLK7GP1lZWYqJidHhw4c1fPhwLVu2TIcPH7a6LMusW7dOkjRo0CDZ7fZmvVf1D8fV34O9evXS4MGDVVVVpZdeeql5hYYZj8ejoqIiPfnkk3rooYdks9k0bdo0q8uyXHPn5ZVXXpEknXLKKd4frgGJnA+FaMh4iZz/JXK+6ch438h4BAsZHxrRkPNkfE1kvH/Ied/IeQQLOR980ZDxEjn/c2S8f8h436Iu40N7d/qWY8GCBUaSOeGEE2osr37exC233FJrTF3Pd3G73WbKlCneZ5188MEHQaw8+Kqfw1DXa+jQod5t63vGS15enve9Iv0ZFf/93/9dYw5sNps58cQTzYQJE8zLL79sysvLa42pfr5LQ6+tW7eG/oCa4dJLLzWSzK233tqs99m1a5ex2WzGZrPVeE5M9XM++vbt28xKrdPQ99CAAQPM22+/3eD7ROszXpo7L9U++eQT43A4jCSzcOHCIFaOSETO+0bG+0bO/4Scrx8Z7xsZj1Ai4+tGztdGxv+EjG8YOe8bOY9QIud9I+N9I+ePIeMbRsb71hIyvpUQFNVn5FQ/U6LalVdeqaVLl2rx4sX6n//5H7VqVfs/wYoVK7zPcikvL9fOnTt15MgRSdKtt97qXRfp0tLS1KlTp1rLTz31VJ/bjxkzRk6nU5JUVFSkL7/8UsYYHX/88XryySeDWmuw3XnnnRo0aJD+53/+R6tWrVJFRYV27NihHTt2aMGCBerRo4f+93//V5mZmbXGdu/eXT169Kjzvdu0aRPEygOv+rPeunVrn+tffvllXXHFFbWWz58/XxMmTPB+vWjRIhljdO6559Z4Tsxvf/tb/fnPf9a2bdv0ySef1Pl5iwS//B7av3+/vvzyS23ZskXz5s3TgAED6n1+SbQKxLwcOnRIl19+uSoqKnTxxRfr97//fbDLRoQh5+tHxtdEzv+EnG8cMt43Mh6hQMY3jJz/CRn/EzK+8ch538h5hAI5Xz8yviZy/hgyvvHIeN+iOuOt6+9Hr2+++cbExMQYSebzzz+vsc7tdhuXy2UkmX/+85811lWfFffzl91uNx07djQXXXSRee2110J4FMFTffbK/PnzG9z252fG/fwVHx9vTj75ZDNlyhSzd+/e4BcdQj/++KN5//33zaxZs8ywYcOMzWbzHvNnn33m3a76rLh7773XumKDoKEz41atWmWGDBnifSUlJfn8PJ144olGknnqqadqvcfIkSONJJOdnR2MQwi6+r6HiouLzfjx440kk5GRYTweT53vE61nxjV3XsrLy73fX+np6ebgwYNBrBqRiJyvGxnfMHKenK8PGe8bGY9QIePrR87Xj4wn4xtCzvtGziNUyPm6kfENa8k5T8Y3jIz3rSVkPM9kD4K///3v8ng86t+/v0488cQa6xwOh8aMGSPppzPnfumqq66SMUbGGB09elTff/+93nrrLV166aXBLj2s7dq1yzsvP/74oz799FPNmjVLxx9/vNWlBVR8fLzOOeccTZkyRWvWrNH777+v1q1bq6ysTI888ojV5QVd165dJUlffvmlz/Xnn3++PvzwQ+8rIyOj1jabNm3Sjh07FBsb6/1++7nqZ7689NJL8ng8gSs+DLRt21bPPPOMunbtqs2bN2v58uVWlxQWGjsvR48e1e9+9zu999576tWrl1auXNkizy5E/cj5wGspGS+R8+S8/8h438h4BBIZHxwtJefJeDK+Och538h5BBI5H3gtJeOllp3zZHzzkPG+RUvG02QPguogzsvLk81mq/V65plnJEnLly9XSUmJlaUiApx99tmaOHGipGNhFO0GDRokSVq3bp2qqqr8eo+FCxdKkiorK9W+ffta34PVt4Tas2eP1qxZE5jCw4jT6VT//v0ltYzPTGM1NC/GGF199dVavny5unTpolWrVik5OTnUZSICkPMIJHK+6VpyzpPxvpHxCBQyHoFExjddS854iZyvCzmPQCHnEUgtKefJ+OYj432LhoznmewBtnXrVm3fvl02m83n80uqFRcXq6ysTMuWLdPVV18dwgoRiVJSUiRJFRUVFlcSfBdffLHatGmj7777Tq+99pp+85vfNGl8ZWWllixZIklq3769z2coSdIPP/yg0tJSvfjiixo+fHiz6w431Wf8HTx40OJKwkt983LTTTdp0aJFat++vd555x2lpqaGujxEAHIewUDONx45T8bXhYxHc5HxCAYyvvHI+GPIed/IeTQXOY9gaCk5T8YHBhnvW6RnPFeyB1j1GXHnnnuu9u7dW+frtttuq7E9Wq79+/fLGFPvNuvWrZMkpaWlhaIkS7lcLt10002SpFtuuUW7d+9u0vgVK1Zo//79at26tb788ss6vweXLVsmScrJydGPP/4Y8OOwUnl5ubZu3Srppx/2UP+83HXXXZo3b54SEhKUm5ur9PR0K0pEBCDn0VTkfE3kfPOQ8b6R8QgEMh5NRcbXRMY3HznvGzmPQCDn0VTk/E/I+OYj432LhoynyR5AVVVVWrx4sSTp97//fb3b/r//9/8kSWvXrtXXX38d9NoQvhYtWqR+/frp2Wef1YEDB2qsO3TokO655x4tWrRIklrMGZT333+/Bg0apKKiIg0cOFAvvPCCSktLa2xTWVmpV199VTt27KixvPqH4Msuu0xt2rSpcx/nn3++unTpotLSUr322muBPwiLFBcX6w9/+IOKiorkcDj029/+1uqSwkJ98zJ79mw9+OCDio+P1z/+8Q+fzw0CJHIe/iHnayPn/UPG+0bGIxDIePiDjK+NjPcfOe8bOY9AIOfhD3K+JjLef2S8b9GS8dwuPoDeeecd7d27V3FxcQ3eMuPkk0/W6aefrq1bt+rvf/+7pk6dGqIqEW5sNpv+/e9/649//KP++Mc/qnfv3urYsaOKi4v11VdfeW83M2XKFF122WW1xr/wwgtatWpVne9/7rnn6sEHHwxa/cHgcDj0zjvv6JprrtErr7yia6+9VjfccINSU1OVmJioAwcO6Ntvv/We0ZaVlaVhw4bp0KFDevPNNyU1/EOz3W7X2LFj9eijj+rFF1/UlVdeGfTjCrQHH3xQzz33nPfrAwcOaNeuXXK73WrVqpWefvpp9erVq8aYDh06eP/udrslSe+//36N5U888YTGjh0b3OKDqCnzUlRUpClTpkiSEhISdOedd9b5vq+++qo6d+4c1NoR3sh5+IOcr42cbxgZ7xsZj2Ah4+EPMr42Mr5xyHnfyHkECzkPf5DzNZHxjUPG+xbVGW8QMOPGjTOSzJgxYxq1/SOPPGIkmZNPPtkYY8xVV11lJJmrrroqiFVar2fPnkaSmT9/foPb7tq1y0gyksyuXbuCXpsVKioqzJo1a0x2drYZPHiw6dGjh3E4HOa4444zaWlpZvz48eaDDz6oNW7o0KHeuanvdckll4T+oAJow4YN5oYbbjAnn3yySUpKMq1atTLt27c3AwcONLfddpvZsmWLd9tnnnnGSDKdO3c2R48ebfC9t2zZYiQZu91uvv3222AeRkBVfw/98uV0Ok1KSoq5+uqrzb/+9S+fYxvzmWnM92Y48mdefv5vTEOvaP03CI1HzjeMjK+NnK8fOV8TGe8bGY9gI+Mbh5yviYyvHxlfGznvGzmPYCPnG0bG10bO142Mr42M960lZLzNmAYeLAEAAAAAAAAAAAAAACTxTHYAAAAAAAAAAAAAABqNJjsAAAAAAAAAAAAAAI1Ekx0AAAAAAAAAAAAAgEaiyQ4AAAAAAAAAAAAAQCPRZAcAAAAAAAAAAAAAoJFosgMAAAAAAAAAAAAA0Eg02QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOxBFevXqJZvNpi+//NLqUgIqMzNTNptNa9eutboUAAAsQ84DABCdyHgAAKITGQ9EN5rsQAjs3r1bkydP1imnnKLWrVsrPj5ePXr00ODBg5Wdna23337b6hIh6bHHHtN9992nQ4cOWV0KACCCkPORgZwHADQVGR8ZyHgAQFOR8ZGBjEe4a2V1AUC0W7NmjS699FIdOXJEdrtd3bt3V6dOnXTw4EFt2LBB69ev1/z587V//36rS23xHnvsMX311VeaMGGC2rZta3U5AIAIQM5HDnIeANAUZHzkIOMBAE1BxkcOMh7hjiY7EEQlJSX63e9+pyNHjmjkyJH629/+pp49e3rXHzp0SMuXL9crr7xiYZUAAMAf5DwAANGJjAcAIDqR8QACiSY7EERvvfWW9u/fr8TERL3yyis67rjjaqxv27atrrrqKl111VUWVQgAAPxFzgMAEJ3IeAAAohMZDyCQeCY7EESFhYWSpD59+tQK7PrYbDbZbLY61/fq1Us2m01ffvllndu8/fbbyszMVFJSkhITE3XBBRfogw8+8LltZmambDab1q5dq02bNmnkyJFq166dWrdurcGDB+v111+vcz/GGC1atEhDhw5V27ZtFR8fr5NOOkl33HGHDh48WOe4o0eP6tlnn9WwYcPUvn17xcXFKSUlRZdffrmWL19e57hfevnllxUbG6vWrVtr5cqVNdZt2rRJY8eOVdeuXeVwOHT88cdrzJgx2rp1a43tFixYIJvNpq+++kqS1Lt3b+9/g+p5AQDgl8h5ch4AEJ3IeDIeABCdyHgyHggoAyBo5s6daySZpKQkU1xc3Ohxkkx93549e/Y0ksyuXbt8Lp8xY4ax2WymXbt2JiMjw7Rv395IMjExMeaVV16p9X5Dhw41ksxf//pX43A4TJs2bUxGRobp0qWLt5ZHHnmk1jiPx2PGjRvn3SYlJcX079/fOBwOI8n07NnTFBQU1Bp38OBBM2TIEO+4nj17moyMDNOpUyfv177qe/fdd2ssf+aZZ0xMTIxJSkoyH374YY11s2fPNjabzUgy7dq1M6effrp3HmJjY82yZcu827711ltmyJAhxul0GkkmIyPDDBkyxPvKy8ur878FAKDlIufJeQBAdCLjyXgAQHQi48l4IJBosgNBtGPHDhMTE2MkmTPOOMO8+uqr5tChQw2Oa25ot2rVykyePNlUVFQYY4yprKw0t99+u5FkEhMTTVFRUY1x1aHYqlUrM3bsWFNaWmqMORbKc+bM8a7717/+VWNc9Q8lCQkJZuXKld7l3377rTeUBw4cWKv+Sy+91EgyqampZsOGDTXW5efnm4cffthnfT8P7VmzZhlJpmPHjrVCdcWKFcZms5kOHTrUCGdjjHnuuedMq1atTEJCQq15qGteAQDwhZwn5wEA0YmMJ+MBANGJjCfjgUCiyQ4E2X//9397Q1iSsdls5sQTTzQTJkwwL7/8sikvL681prmh3bdvX5/j+vfvbySZe+65p8by6lDs1KmTKSsrqzVu9OjRRpIZP368d5nH4zHdu3c3ksyjjz5aa8w333zjPUNu9erV3uWbNm0ykozT6TQ7d+6s8xh91Vcd2n/5y1+MJNOtWzfz2Wef1Xmcy5cv9/l+t912m/dMwJ8jtAEATUXOk/MAgOhExpPxAIDoRMaT8UCg8Ex2IMjuvPNOrVmzRhdffLEcDoeMMdqxY4cWLFigsWPHqk+fPgF/hsjEiRPrXf7222/7XH/ttdcqLi6uUeM+++wzff3114qLi9Mf/vCHWmO6du2qyy+/XJJqPHul+vktl112mdLS0hpzOF7GGP35z3/WAw88oNTUVH3wwQc66aSTamzz1VdfKS8vT506ddKvf/1rn+9Tvfy9995r0v4BAPglcp6cBwBEJzKejAcARCcynowHAqWV1QUALcGwYcM0bNgwlZWVafPmzdq4caPeeustrV27Vrt379bFF1+svLy8WgHkr1/96lf1Lt+5c6df47777juVlJQoMTHR+x49evRQ69atfY5LT0+vtb/PPvtMknTWWWc1dBi1TJkyRXl5eUpPT9c777yjLl261Nrmk08+kSSVl5fr7LPP9vk+5eXlkqQ9e/Y0uQYAAH6JnCfnAQDRiYwn4wEA0YmMJ+OBQKDJDoRQfHy8zjnnHJ1zzjmaMmWKPvzwQ40YMUI//PCDHnnkET377LMB2U+nTp18Lj/++OMlSUeOHGnSuJ8vP3LkiBITE1VaWlrvmLr2V1JSIklq27ZtnePq8sUXX0iSevXqpQ4dOvjc5vDhw979fPTRR/W+X1lZWZNrAACgLuQ8OQ8AiE5kPBkPAIhOZDwZDzQHt4sHLHT22Wd7b+2yadOmWuuNMT7H/fDDD/W+7759+3wu//777yVJCQkJTRr38+XVY9u0aVPjPX357rvvau2v+u+HDh2qc1xdnn32WZ100kn65z//qSuuuEJHjx6ttU11XUOGDJExpt7Xl19+2eQaAABoLHK+ach5AECkIOObhowHAEQKMr5pyHi0dDTZAYulpKRIkioqKrzLqm/n4itEDx8+rP3799f7ntW3eKlreZ8+ffwad/zxxysxMbHGe+zevdt7ltwvffrpp7X2V31Lmg0bNtR7DL506tRJq1ev1gknnKBly5Zp/Pjx8ng8NbY5+eSTvTX/cl1DbDZbk2sCAKA+5HzjkfMAgEhCxjceGQ8AiCRkfOOR8WjpaLIDQbR///46z26rtm7dOklSWlqad1l1kH/88ce1tn/uueca3O+8efPqXZ6VleVz/fPPPy+3292ocb/61a/Uo0cPlZeX+6ypqKhIy5YtkyRdeOGF3uWXXnqpJOn1119XQUFBg8fyS8nJyVqzZo169eqlxYsX65prrqkxx2lpaTrllFN08OBBLVy4sEnvHR8fL4nb0gAAGoecJ+cBANGJjCfjAQDRiYwn44GAMgCC5tFHHzWnnXaaeeaZZ8z+/ftrrCsuLjZ/+ctfjM1mM5JMTk6Od93tt99uJJl+/fqZvXv3epevWLHCJCYmmlatWhlJZteuXTXes2fPnkaSadWqlcnOzjYVFRXGGGMqKyvNtGnTjCSTkJBg9uzZU2Pc0KFDveOuvPJKU1paaowxxuPxmL/97W/GZrMZu91utm7dWmPc3LlzjSSTmJhoVq1a5V2+d+9ec8455xhJ5qyzzqo1L5dddpmRZNLS0symTZtqrMvPzzezZs3yWd+7777rXbZr1y7TvXt3I8n88Y9/NB6Px7vun//8p7HZbOa4444zzz77rKmsrKzxfgUFBWb69Olm2bJlNZaPHDnSSDJPPvlkrZoBAPglcp6cBwBEJzKejAcARCcynowHAokmOxBEjz32mJHkffXu3duceeaZJi0tzTgcDu/yKVOm1Bj3/fffm86dOxtJxul0mn79+plevXoZSWbq1KnecK4rtGfMmGFsNptp3769GTBggOnQoYORZGJiYszixYtr1Vkdin/961+Nw+EwCQkJJiMjwyQnJ3trfPjhh2uN83g8Zty4cd5tTjjhBNO/f3/vsfXo0cMUFBTUGnfw4EEzaNAg77hevXqZjIwMc/zxxxtJpmfPnj7r+3loG3Ms4KtrvPnmm2use+KJJ4zdbvf+oHLGGWfU2IevcF64cKF33SmnnGKGDh1qhg4dWuuHFQAAjCHnyXkAQLQi48l4AEB0IuPJeCCQaLIDQVRRUWHWrFljsrOzzeDBg02PHj2Mw+Ewxx13nElLSzPjx483H3zwgc+xBQUFZsyYMcblcpn4+Hhz+umnm/nz5xtjTIOhvWvXLpObm2vOPfdck5CQYNq0aWPOO+8889577/nc189DcePGjeaiiy4ybdu2NfHx8eass86qcdbeL3k8HrNw4UJzzjnnmMTERON0Ok1aWprJzs6udTbgL+fmb3/7mxkyZIhJSkoycXFxpnfv3uY3v/mNefPNN+us75c+++wzbxD/8oefTz75xFx33XUmJSXFxMXFmaSkJJOenm6uuOIKs3TpUvPDDz/Uer/HH3/cnHbaaSY+Pt4b4L72CwAAOU/OAwCiExlPxgMAohMZT8YDgWQzpoEHUACIepmZmXrvvff07rvvKjMz0+pyAABAAJHzAABEJzIeAIDoRMYDkSHG6gIAAAAAAAAAAAAAAIgUNNkBAAAAAAAAAAAAAGgkmuwAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABrJZowxVhcBAAAAAAAAAAAAAEAk4Ep2AAAAAAAAAAAAAAAaiSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGgkmuwAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABrp/wNucckf3oU2ewAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m brenk filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKDUlEQVR4nOzde1yUZf7/8fcwcgo8i6mArqBoWUmJsWolaqK1rplZoVtK2oZRS2oecLM20w2U8qfUouZadtLQIk03jTYlTUslydI8gGgamKGoiMrBYX5/+GU2EhVwmJvD6/l4zCPmvq57rjfz5bu3M5/7ui6T1Wq1CgAAAAAAAAAAAAAAXJWT0QEAAAAAAAAAAAAAAKgtKLIDAAAAAAAAAAAAAFBBFNkBAAAAAAAAAAAAAKggiuwAAAAAAAAAAAAAAFQQRXYAAAAAAAAAAAAAACqIIjsAAAAAAAAAAAAAABVEkR0AAAAAAAAAAAAAgAqiyA4AAAAAAAAAAAAAQAU1MDqAEUpKSpSdna2GDRvKZDIZHQcAUM9ZrVadOXNGbdq0kZMT979dK67zAICagmu8fXGNBwDUFFzj7Y/rPACgpqjodb5eFtmzs7Pl6+trdAwAAMo4cuSIfHx8jI5R63GdBwDUNFzj7YNrPACgpuEabz9c5wEANc3VrvP1ssjesGFDSRffnEaNGhmcBgBQ3+Xl5cnX19d2fcK14ToPAKgpuMbbF9d4AEBNwTXe/rjOAwBqiope5+tlkb10uZlGjRpxwQYA1Bgsh2YfXOcBADUN13j74BoPAKhpuMbbD9d5AEBNc7XrPBvGAAAAAAAAAAAAAABQQRTZAQAAAAAAAAAAAACoIIrsAAAAAAAAAAAAAABUEEV2AAAAAAAAAAAAAAAqiCI7AAAAAAAAAAAAAAAVRJEdAAAAAAAAAAAAAIAKosgOAAAAAAAAAAAAAEAFUWQHAAAAAAAAAAAAAKCCKLIDAAAAAAAAAAAAAFBBFNkBAAAAAAAAAAAAAKigWlFkDw8Pl8lkuuKjoKDA6JgAAAAAAAAAAAAAgDqugdEBKqNjx45q2bJluW1OTrXifgEAAAAAAAAAAAAAQC1Wq4rsf//73xUeHm50DAAAAAAAAAAAAABAPVWriuwAAAC1hcViUWpqqnJycuTl5aWgoCCZzWajYwEAAAAAgMvgszwAoKIosgMAANhZcnKyYmNjlZWVZTvm7e2t6OhohYaGGpgMAAAAAACUh8/yAIDKqFUbmX/44YcaMmSI+vbtq7CwML322ms6ffq00bEAAABskpOTFRUVpYCAACUmJmrHjh1KTExUQECAoqKilJycbHREAAAAAADwG3yWBwBUlslqtVqNDnE14eHhevvtt8tta9q0qZYuXaqBAwdW+PXy8vLUuHFjnT59Wo0aNbJXTAAAqoTrkn0Z+X5aLBb1799fAQEBSkhIkJPT/+5nLCkpUWRkpNLT05WcnMxycwBQD3CNty/eTwBATcE1yf74LA8AqCkqek2qFTPZ/f399fLLL2vnzp3Ky8vTmTNnlJycrODgYJ08eVJDhgxRamrqZc8vLCxUXl5emQcAAIC9paamKisrS2PHji3zoVySnJycFBERoZ9//vmK/24BAAAAAACOw2d5AEBV1Io92Z9//vlLjvXv31+9e/fWnXfeqW3btmnKlCn64osvyj0/JiZG06dPr+6YAACgnsvJyZEkdezYsdz20uOl/QAAAAAAgLH4LA8AqIpaMZP9clxcXDRjxgxJUkpKik6ePFluv6lTp+r06dO2x5EjRxwZEwAA1BNeXl6SpPT09HLbS4+X9gMAAAAAAMbiszwAoCpqdZFdknr06CHp4t4omZmZ5fZxdXVVo0aNyjwAAADsLSgoSN7e3lqwYIFKSkrKtJWUlGjhwoXy8fFRUFCQQQkBAAAAAMBv8VkeAFAVtb7I7uzsbPv5woULBiYBAAD1ndlsVnR0tFJSUhQZGam0tDTl5+crLS1NkZGRSklJ0ZQpU2Q2m42OCgAAAAAAxGd5AEDV1Io92a9k9+7dtp99fHwMTAIAACCFhoYqPj5esbGxCgsLsx338fFRfHy8QkNDDUwHAAAAAAB+j8/yAIDKqvVF9ldffVWS1LlzZ3l7exucBgAA4OKH8379+ik1NVU5OTny8vJSUFAQd70DAAAAAFBD8VkeAFAZNb7I/vnnn2v9+vV64okn1L59e9vx06dP6/nnn9eyZcskSS+88IJREQEAAC5hNpsVHBxsdAwAAAAAAFBBfJYHAFRUjS+ynz17VrGxsYqNjZW3t7fatGmj4uJi/fjjjyoqKpLJZNILL7yg4cOHGx0VAAAAAAAAAAAAAFDH1fgie7du3fTcc8/p66+/VkZGhnbt2iWr1Spvb2/deeedioyM5M4yAAAAAAAAAABwTSwWC8vFAwAqpMYX2X19fTVz5kyjYwAAAAAAAAAAgDoqOTlZsbGxysrKsh3z9vZWdHS0QkNDDUwGAKiJnIwOAAAAAAAAAAAAYJTk5GRFRUUpICBAiYmJ2rFjhxITExUQEKCoqCglJycbHREAUMNQZAcAAAAAAAAAAPWSxWJRbGysQkJClJCQoMDAQHl4eCgwMFAJCQkKCQnRrFmzZLFYjI4KAKhBKLIDAAAAAAAAAIB6KTU1VVlZWRo7dqycnMqWTJycnBQREaGff/5ZqampBiUEANREFNkBAAAAAAAAAEC9lJOTI0nq2LFjue2lx0v7AQAgUWQHAAAAAAAAAAD1lJeXlyQpPT293PbS46X9AACQKLIDAAAAAAAAAIB6KigoSN7e3lqwYIFKSkrKtJWUlGjhwoXy8fFRUFCQQQkBADURRXYAAAAAAAAAAFAvmc1mRUdHKyUlRZGRkUpLS1N+fr7S0tIUGRmplJQUTZkyRWaz2eioAIAapIHRAQAAAAAAAAAAAIwSGhqq+Ph4xcbGKiwszHbcx8dH8fHxCg0NNTAdAKAmosgOAAAAAAAAAADqtdDQUPXr10+pqanKycmRl5eXgoKCmMEOACgXRXYAAAAAAAAAAFDvmc1mBQcHGx0DAFALsCc7AAAAAAAAAAAAAAAVRJEdAAAAAAAAAAAAAIAKYrl4AAAAAAAAAAAAlMtisbBXfTl4X4D6jSI7AAAAAAAAAAAALpGcnKzY2FhlZWXZjnl7eys6OlqhoaEGJjMW7wsAlosHAAAAAAAAAABAGcnJyYqKilJAQIASExO1Y8cOJSYmKiAgQFFRUUpOTjY6oiF4XwBIkslqtVqNDuFoeXl5aty4sU6fPq1GjRoZHQcAUM9xXbIv3k8AQE3BNcm+eD8BADUF1yT74z2teSwWi/r376+AgAAlJCTIyel/czZLSkoUGRmp9PR0JScn16sl0nlfgLqvotckZrIDAAAAAIBq8euvv2rixInq0qWLrrvuOrm5ucnf319PPPGEMjIyjI4HAACAy0hNTVVWVpbGjh1bppAsSU5OToqIiNDPP/+s1NRUgxIag/cFQCn2ZAcAAAAAAHa3b98+3XXXXfr111/l7OwsPz8/OTs7KyMjQ4sWLdL777+vTz/9VL179zY6KgAAAH4nJydHktSxY8dy20uPl/arL3hfAJRiJjsAAAAAALC7p556Sr/++qt69eqlzMxM7d27Vz/88IN+/vlnDR48WOfOndNjjz2meriLHQAAQI3n5eUlSUpPTy+3vfR4ab/6gvcFQCmK7AAAAAAAwK7OnTunDRs2SJLmz58vHx8fW1vz5s21ZMkSmUwmHTx4UHv37jUqJgAAAC4jKChI3t7eWrBggUpKSsq0lZSUaOHChfLx8VFQUJBBCY3B+wKgFEV2AAAAAABgV0VFRbYvHf38/C5pb9q0qZo1ayZJunDhgkOzAQAA4OrMZrOio6OVkpKiyMhIpaWlKT8/X2lpaYqMjFRKSoqmTJkis9lsdFSH4n0BUIo92QEAAAAAgF01adJEvr6+OnLkiLZs2aL+/fuXad+3b59OnDihJk2aXHY/SwAAABgrNDRU8fHxio2NVVhYmO24j4+P4uPjFRoaamA64/C+AJAosgMAAAAAgGowc+ZMjRo1SqNHj9bcuXMVEhKiBg0a6JtvvtG4ceNkMpk0e/Zsubm5GR0VAIB6x2q1avPmzVq1apU2bdqkvXv36ty5c2rRooV69Oihp59+Wn369LnkvBdffFHTp0+/4mvv2bNHnTt3rq7ocLDQ0FD169dPqampysnJkZeXl4KCgur9TG3eFwAU2QEAAAAAgN2NHDlSnp6emjFjhoYNG1am7ZZbbtGnn36qgQMHXvb8wsJCFRYW2p7n5eVVW1YAAOqb9evX6+6775YkOTk5qUOHDvLw8FB6erqSkpKUlJSkadOmacaMGeWe7+vrq7Zt25bbdt1111VbbhjDbDYrODjY6Bg1Du8LUL+xJzsAAAAAALA7q9WqzMxMnThxQmazWR06dNCNN94oFxcX7dq1S2+88YZyc3Mve35MTIwaN25se/j6+jowPQAAdZvValWHDh2UkJCg48ePa9++fdqxY4dOnDihqVOnSrq4Ks2aNWvKPX/06NH66quvyn1crvgOAEBdQpEdAAAAAADY3dixYzVp0iT5+voqIyND6enp2r17t44cOaJ7771XH3/8sfr06SOLxVLu+VOnTtXp06dtjyNHjjj4NwAAoO66/fbbtWfPHj355JNq2rSp7biLi4tefvll3XPPPZKkRYsWGRXREEVFRVqyZIleeuklLVmyREVFRUZHqhEsFou2bt2qNWvWaOvWrZf99xsA1CcsFw8AAAAAAOxq586dWrRokZydnfXBBx+UmYXesmVLvf/++/L399f333+v5cuXa/jw4Ze8hqurq1xdXR0ZGwCAeqNRo0ZXbO/fv7/Wrl2r/fv3OyiR8WbPnq0lS5aUKSDPnj1b4eHhmjx5soHJjJWcnKzY2FhlZWXZjnl7eys6OlqhoaEGJgMAYzGTHQAAAAAA2NXmzZtltVoVEBBQ7jLvjRo10u233y5JSk1NdXQ8AABwFQUFBZIkd3f3cts3bNigBx98UH379tWwYcM0e/Zs/fLLL46MaFezZ8/W4sWL1aRJE82YMUNfffWVZsyYoSZNmmjx4sWaPXu20RENkZycrKioKAUEBCgxMVE7duxQYmKiAgICFBUVpeTkZKMjAoBhKLIDAAAAAAC7OnPmzFX7WK1WSf/7Eh8AANQMVqtVK1askCT16tWr3D4bN27Uhx9+qA0bNuijjz7SlClT5OfnpyVLljgwqX2ULhHfvHlzbdy4UQ899JC8vLz00EMPaePGjWrevHm9XDreYrEoNjZWISEhSkhIUGBgoDw8PBQYGKiEhASFhIRo1qxZLB0PoN6iyA4AAAz166+/auLEierSpYuuu+46ubm5yd/fX0888YQyMjKMjgcAAKqgY8eOkqT9+/eXu5d6Xl6etm/fLkkKCAhwaDYAAHBlixYtUlpamlxcXDRu3Lgyba1bt9bf//53bd++XSdOnNC5c+e0efNm3XPPPTp//rxGjx6t1atXX3WMwsJC5eXllXkYZenSpbJYLBo3bpwaNCi7w26DBg30zDPPyGKxaOnSpQYlNEZqaqqysrI0duxYOTmVLSU5OTkpIiJCP//8M6sSAai3KLIDAADD7Nu3TzfffLNeffVVpaenq23bturYsaOys7O1aNEide3aVV9++aXRMQEAQCWFhoaqRYsWKi4uVlhYmA4dOmRr+/XXX/WXv/xFx48fl5ubm4YNG2ZcUAAAUMaOHTv0zDPPSJJmzpwpf3//Mu0RERH65z//qaCgIDVr1kzu7u7q2bOn/vOf/+j++++X1WrV+PHjbSvWXE5MTIwaN25se5S3vYyjHD58WJLUp0+fcttDQkLK9KsvcnJyJP3v5snfKz1e2g8A6huK7AAAwDBPPfWUfv31V/Xq1UuZmZnau3evfvjhB/38888aPHiwzp07p8cee+yqH85rIovFoq1bt2rNmjXaunUry6cBAOoVT09PvfPOO3Jzc9OWLVvUoUMHBQQEqEuXLvL19dWaNWvUoEEDLViwQN7e3kbHBQAAkg4ePKhBgwapoKBAI0aM0MSJEyt8rslkUmxsrCTpwIED+v7776/Yf+rUqTp9+rTtUd7KN47Stm1bSRf3mS9PSkpKmX71hZeXlyQpPT293PbS46X9AKC+ocgOAAAMce7cOdsH2Pnz58vHx8fWVrrfmclk0sGDB7V3716jYlZJcnKy+vfvr5EjR+rZZ5/VyJEj1b9/fyUnJxsdDQAAh7nnnnu0c+dOPfHEE2rfvr0OHz6sjIwMtW7dWo8++qi2bt2qUaNGGR0TAABI+uWXX9S/f38dPXpUf/rTn2yfySsjICBAzZo1k6Srbv/m6uqqRo0alXkYZcSIETKbzZo7d64uXLhQpu3ChQuaN2+ezGazRowYYVBCYwQFBcnb21sLFixQSUlJmbaSkhItXLhQPj4+CgoKMighABiLIjsAADBEUVGR7UOan5/fJe1Nmza1fTj//Yfcmiw5OVlRUVEKCAhQYmKiduzYocTERAUEBCgqKopCOwCgXgkICNDChQuVnp6ugoICFRYW6tChQ3rnnXd02223GR0PAABIys3NVf/+/XXgwAH17t1bK1askLOzc5Veq/S82vQ53sXFReHh4Tpx4oTuuusuJSYm6tixY0pMTNRdd92lEydOKDw8XC4uLkZHdSiz2azo6GilpKQoMjJSaWlpys/PV1pamiIjI5WSkqIpU6bIbDYbHRUADGGy1sb1V69RXl6eGjdurNOnTxt6hxwAAFL9vi61bdtWR44csc38/q19+/apc+fOatKkiY4ePSo3N7cKvaaR76fFYlH//v0VEBCghIQEOTn9737GkpISRUZGKj09XcnJyXwIBYB6oD5f46sD7ycAoKaoS9ek/Px83X333dq6dau6d++uL774Qg0bNqzSax0/flwtW7aU1WrVV199pV69elX43Jrwns6ePVtLliwps92b2WxWeHi4Jk+ebEimmiA5OVmxsbHKysqyHfPx8dGUKVMUGhpqYDIAqB4VvSY1cGAmAACAMmbOnKlRo0Zp9OjRmjt3rkJCQtSgQQN98803GjdunEwmk2bPnn3FAnthYaEKCwttz/Py8hwRvVypqanKysrSnDlzyhTYJcnJyUkREREKCwtTamqqgoODDUoJAAAAAMDFz9P33Xeftm7dqi5dumjdunVVLrBL0pw5c2S1WtW4cWN1797djkkdY/LkyRo3bpyWLl2qw4cPq23bthoxYkS9m8H+e6GhoerXr59SU1OVk5MjLy8vBQUFMXkAQL1HkR0AABhm5MiR8vT01IwZMzRs2LAybbfccos+/fRTDRw48IqvERMTo+nTp1dnzArLycmRJHXs2LHc9tLjpf0AAAAAADCCxWJRWFiY1q9fL39/f33++ee2LdsuZ/fu3frXv/6lp556Sl26dLEdLygo0Jw5czRr1ixJ0pQpU2ptYbp06XiUZTabmSwAAL9DkR0AABjGarUqMzNTJ06ckNlsVvv27eXi4qKMjAzt2rVLb7zxhm6//fYrftCfOnWqJkyYYHuel5cnX19fR8S/hJeXlyQpPT1dgYGBl7Snp6eX6QcAAAAAgBGWL1+ulStXSrq48tqDDz5Ybr/WrVtrxYoVkqTi4mLNnz9f8+fPl5eXl9q2bStJ2rNnj86dOydJGjNmjKKjo6v/FwAAwGAU2QEAgGHGjh2rN954Qz179tTGjRv1hz/8QZL066+/asyYMfr444914MAB7dix47LLkLm6usrV1dWBqS8vKChI3t7eWrBgQbl7si9cuFA+Pj4KCgoyMCUAAAAAoL777bZr6enptpvCf69du3a2n//whz9oxowZ2rJli/bu3at9+/apqKhILVu21L333qvHH39cAwYMqPbsAADUBCar1Wo1OoSjVXTDegAAHKG+Xpd27typW2+9VQ0aNNCBAwcumX2el5cnf39/HT9+XEuXLtXw4cMr9LpGv5/JycmKiopSSEiIIiIi1LFjR6Wnp2vhwoVKSUlRfHy8QkNDHZ4LAOB4Rl+T6hreTwBATcE1yf5qyntqsVjYexwA6rmKXpOYyQ4AAAyxefNmWa1WBQQElLu8e6NGjXT77bfr008/VWpqaoWL7EYLDQ1VfHy8YmNjFRYWZjvu4+NDgR0AAAAAgBoqOTlZsbGxysrKsh3z9vZWdHQ0n+UBAJegyA4AAAxx5syZq/YpXXCnoKCguuPYVWhoqPr168fd7wAAAAAA1AK/XZVuzpw5tlXpFixYoKioKG6aBwBcgiI7AAAwRMeOHSVJ+/fv15EjR8pdLn779u2SpICAAIfnu1Zms1nBwcFGxwAAAAAAAFdgsVgUGxurkJAQJSQkyMnJSZIUGBiohIQERUZGatasWerXrx83zwMAbJyMDgAAAOqn0NBQtWjRQsXFxQoLC9OhQ4dsbb/++qv+8pe/6Pjx43Jzc9OwYcOMCwoAAAAAAOqs1NRUZWVlaezYsbYCeyknJydFRETo559/VmpqqkEJAQA1ETPZAQCAITw9PfXOO+9o6NCh2rJlizp06CA/Pz85OzsrIyNDRUVFatCggRYsWCBvb2+j4wIAAAAAgDooJydH0v9W3Pu90uOl/QAAkJjJDgAADHTPPfdo586deuKJJ9S+fXsdPnxYGRkZat26tR599FFt3bpVo0aNMjomAAAAAACoo7y8vCRJ6enp5baXHi/tBwCAxEx2AABgsICAAC1cuNDoGAAAAAAAoB4KCgqSt7e3FixYUGZPdkkqKSnRwoUL5ePjo6CgIANTAgBqGmayAwAAAAAAAACAeslsNis6OlopKSmKjIxUWlqa8vPzlZaWpsjISKWkpGjKlCkym81GRwUA1CDMZAcAAAAAAAAAAPVWaGio4uPjFRsbq7CwMNtxHx8fxcfHKzQ01MB0AICaiCI7AAAAAAAAAACo10JDQ9WvXz+lpqYqJydHXl5eCgoKYgY7AKBcFNkBAAAAAAAAAEC9ZzabFRwcbHQMAEAtwJ7sAAAAAAAAAAAAAABUEEV2AAAAAAAAAABQ7+Xn5ysyMlJ//vOfFRkZqfz8fKMjAQBqKJaLBwAAAAAAAAAA9dqwYcP0ww8/2J7v379f3bp1080336wPP/zQwGQAgJqImewAAAAAAAAAAKDeKi2wm0wm3XfffVq1apXuu+8+mUwm/fDDDxo2bJjREQEANQwz2QEAAAAAAAAAQL2Un59vK7B/9913cnNzkyTNnj1bL730kgIDA/XDDz8oPz9fnp6eBqcFANQUFNkBAAAAAAAAAEC9NHnyZEnS4MGDbQX2Um5ubho0aJBWr16tyZMnKyEhwYiIdnX+/HllZmY6fFw/Pz+5u7s7fNyK4n0BUFkU2QEAAAAAAAAAQL105MgRSdLo0aPLbX/ssce0evVqW7/aLjMzU0OHDnX4uElJSerSpYvDx60o3hcAlUWRHQAAAAAAAAAA1Eu+vr7av3+/3nzzTc2ePfuS9rfeesvWry7w8/NTUlJSpc87cOCAJk2apLi4OPn7+1dp3JqM9wVAZVFkBwAAAAAAAAAA9dLs2bPVrVs3ffLJJ3rppZfKLBlfUFCgNWvW2PrVBe7u7tc0c9rf379OzrzmfQFQWU5GBwAAAAAAAAAAADCCp6enbr75ZlmtVgUGBmrixInavXu3Jk6cqMDAQFmtVt18883y9PQ0OioAoAahyA4AAAAAAAAAAOqtDz/80FZoX716tYYOHarVq1fbCuwffvih0REBADUMy8UDAAAAAAAAAIB67cMPP1R+fr4mT56sI0eOyNfXV7Nnz2YGOwCgXBTZAQAAAAAAAABAvefp6amEhASjYwAAagGWiwcAAAAAAAAAAAAAoIIosgMAAAAAAAAAgHovJydHffv2VWBgoPr27aucnByjIwEAaqhaW2SfNm2aTCaTTCaTZs6caXQcAAAAAAAAAABQSwUFBemOO+5QVlaWzp8/r6ysLN1xxx0KCgoyOhoAoAaqlUX2PXv2KC4uzugYAAAAAAAAAACglgsKCtKZM2ckSR06dNCCBQvUoUMHSdKZM2cotAMALtHA6ACVZbVaFRERIWdnZ91xxx1av3690ZEAAAAAAAAAAEAtlJOTYyuwb9++XY0aNZIk9enTR3l5eerevbvOnDmjnJwceXl5GRkVAFCD1LqZ7IsXL9amTZv0wgsvyNfX1+g4gENZLBZt3bpVa9as0datW2WxWIyOBAAAAAAAAAC11sMPPyzp4gz20gJ7qUaNGsnPz69MPwAApFpWZM/JydGUKVN04403avz48UbHARwqOTlZ/fv318iRI/Xss89q5MiR6t+/v5KTk42OBgAAAAAAAAC1Um5uriRp4sSJ5bZPmDChTD8AAKRaVmQfP368cnNzlZCQIGdnZ6PjAA6TnJysqKgoBQQEKDExUTt27FBiYqICAgIUFRVFoR0AAAAAAAAAqqBZs2aSpFdeeaXc9jlz5pTpBwCAVIuK7F988YXef/99PfLII+rdu7fRcQCHsVgsio2NVUhIiBISEhQYGCgPDw8FBgYqISFBISEhmjVrFkvHAwAAAAAAAEAlJSYmSpIyMjKUl5dXpi0vL0+ZmZll+gEAIEkNjA5QEQUFBRo7dqwaN2582bvJrqSwsFCFhYW257+/UKJ6nT9/3vYPEUfy8/OTu7u7w8e1t9TUVGVlZWnOnDlycip7X4yTk5MiIiIUFham1NRUBQcHG5QSAAAAAAAAAGofLy8vNWzYUGfOnFH37t3l5+enCRMmaM6cObbvtRs2bCgvLy+DkwIAapJaUWSfOXOmMjIy9Prrr+v666+v9PkxMTGaPn16NSRDRWRmZmro0KEOHzcpKUldunRx+Lj2lpOTI0nq2LFjue2lx0v7AQAAAAAAAAAqLjU1VUFBQTpz5owyMzP19NNP29oaNmyo1NRUA9MBAGqiGl9k37Nnj+Li4nTbbbfpySefrNJrTJ06VRMmTLA9z8vLk6+vr70i4ir8/PyUlJRU6fMOHDigSZMmKS4uTv7+/lUaty4ovUMyPT1dgYGBl7Snp6eX6QcAAAAAAAAAqJzU1FTl5OTo4YcfVm5urpo1a6bExES+dwUAlKvGF9kjIyN14cIFzZ8//5KlsivK1dVVrq6udk6GinJ3d7+mGeX+/v51YkZ6VQUFBcnb21sLFixQQkJCmf8/KCkp0cKFC+Xj46OgoCADUwIAAAAAAABA7ebl5aX169cbHQMAUAtUrWrtQGlpaTKZTBo8eLBatWpV5pGYmChJmjVrllq1aqXu3bsbnBawP7PZrOjoaKWkpCgyMlJpaWnKz89XWlqaIiMjlZKSoilTpshsNhsdFQAAAAAAAAAAAKjzavxMdkmyWCw6duzYZdvz8/OVn58vNzc3B6YCHCc0NFTx8fGKjY1VWFiY7biPj4/i4+MVGhpqYDoAACouPz9fkydP1pEjR+Tr66vZs2fL09PT6FgAAAAAAAAAUGE1vsh+6tSpy7aFh4fr7bff1owZMzRt2jTHhQIMEBoaqn79+tn2BvLy8lJQUBAz2AEAtcawYcP0ww8/2J7v379f3bp1080336wPP/zQwGQAAAAAAEhZWVkaMmSIzp49Kw8PD61cuVLe3t5GxwJqFYvFQh0D9UKNL7ID+B+z2azg4GCjYwAAUGmlBfbSbYBGjx6tN998U5988ol++OEHDRs2jEI7AAAAAMAwN910k4qLi23P8/Ly1LdvXzk7O2vXrl0GJgNqj+TkZMXGxiorK8t2zNvbW9HR0azIizqnxu/JDgAAgNotPz/fVmD/7rvvNHv2bHXu3FmzZ8/Wd999J5PJpB9++EH5+flGRwUAAAAA1EO/LbB7eXlp1qxZ8vLykiQVFxfrpptuMjIeUCskJycrKipKAQEBSkxM1I4dO5SYmKiAgABFRUUpOTnZ6IiAXTGTHQAA4CrOnz+vzMxMh4/r5+cnd3d3h49rb5MnT5YkDR48WG5ubmXa3NzcNGjQIK1evVqTJ09WQkKCEREBAAAAAPVUVlaWrcD+9ddfq1mzZpKkIUOGKDc3Vz169FBxcbGysrJYOh64DIvFotjYWIWEhCghIUFOThfn+AYGBiohIUGRkZGaNWuW+vXrx9LxqDNqdZF9yZIlWrJkidExAABAHZeZmamhQ4c6fNykpCR16dLF4ePa25EjRyRJo0ePLrf9scce0+rVq239AAAAAABwlCFDhki6OIO9tMBeqlmzZmrRooWOHz+uIUOGaPv27QYkBGq+1NRUZWVlac6cObYCeyknJydFREQoLCxMqampbIlbx9WnyUq1usgOAADgCH5+fkpKSqr0eQcOHNCkSZMUFxcnf3//Ko1bF/j6+mr//v168803NXv27Eva33rrLVs/AAAAAAAc6ezZs5KkiRMnlts+btw4TZs2zdYPwKVycnIkSR07diy3vfR4aT/UXfVpshJFdgAAgKtwd3e/pn+k+fv714kZ6VU1e/ZsdevWTZ988oleeumlMkvGFxQUaM2aNbZ+AIC6x2Kx6M0339R7772n3bt3Kz8/X9dff71uvfVWPfbYY7rvvvuMjggAAOoxDw8P5eXl6ZVXXrHNav+tuXPn2voBKJ+Xl5ckKT09XYGBgZe0p6enl+mHuqs+TVaiyA4AAIBq5enpqZtvvlk//PCDAgMDNWjQID322GN66623tGbNGlmtVt18883y9PQ0OioAwM5Onjype++9V998841MJpMCAgL0hz/8QdnZ2Vq1apUaNGhAkR0AABhq5cqV6tu3r3JycpSbm1tmyfjc3FwdP37c1g9A+YKCguTt7a0FCxaU2ZNdkkpKSrRw4UL5+PgoKCjIwJRwhPo0Wcnp6l0AAACAa/Phhx/q5ptvltVq1erVqzV06FCtXr3aVmD/8MMPjY4IALCzkpISDR48WN98842GDh2qw4cPa+/evUpNTVV2draOHDmiqKgoo2MCAIB6ztvbW87OzpKkHj16qFevXlqxYoV69eqlHj16SJKcnZ3l7e1tZEygRjObzYqOjlZKSooiIyOVlpam/Px8paWlKTIyUikpKZoyZYrMZrPRUQG7YSY7AAAAHOLDDz9Ufn6+Jk+erCNHjsjX11ezZ89mBjsA1FFvvPGGvvrqK/Xp00crVqwoM5tFknx8fOTj42NQOgAAgP/ZtWuXbrrpJhUXF+v48eOaNm2arc3Z2Vm7du0yMB1QO4SGhio+Pl6xsbEKCwuzHffx8VF8fLxCQ0MNTAfYH0V2AAAAOIynp6cSEhKMjgEAcIB58+ZJkmbMmHFJgR0AAKCm2bVrl7KysjRkyBCdPXtWHh4eWrlyJTPYgUoIDQ1Vv379lJqaqpycHHl5eSkoKIgZ7KiTKLIDAAAAAAC7Sk9P1969e9WsWTP17NlTq1at0ooVK3T06FF5eXnp7rvv1qOPPipXV1ejowIAUC9ZrVZt3rxZq1at0qZNm7R3716dO3dOLVq0UI8ePfT000+rT58+lz3/66+/VmxsrLZs2aL8/Hy1b99ew4cP16RJk+Tm5ubA38S+vL29tX37dqNjALWa2WxWcHCw0TGAakeRHQAAAAAA2NW3334rSercubMeffRRvf/++2XaExMT9eqrr2rdunVq166dEREBAKjX1q9fr7vvvluS5OTkpA4dOsjDw0Pp6elKSkpSUlKSpk2bphkzZlxy7vvvv69Ro0bJYrHI29tbvr6+2rVrl1544QWtXr1aKSkpuu666xz9KwEA4FCs1wYAAAAAAOzq6NGjkqTt27fr/fff1+OPP65Dhw6poKBA//3vf+Xn56e9e/fqgQceUElJSbmvUVhYqLy8vDIPAABgH1arVR06dFBCQoKOHz+uffv2aceOHTpx4oSmTp0qSZo5c6bWrFlT5rxDhw5pzJgxslgsmj17to4cOaIdO3YoPT1dnTp10vbt2zV58mQjfiUAAByKIjsAAAAAALCrs2fPSpKKi4t15513atGiRWrXrp1cXV3Vr18/JSUlyWQy6dtvv9V//vOfcl8jJiZGjRs3tj18fX0d+SsAAFCn3X777dqzZ4+efPJJNW3a1HbcxcVFL7/8su655x5J0qJFi8qcFxcXp8LCQoWGhmrSpEkymUySpHbt2unNN9+UJL3xxhs6duyYg34TAACMQZEdAAAAAADY1W/3Yn3mmWcuae/atattn9d169aV+xpTp07V6dOnbY8jR45UT1gAAOqhRo0aqUGDy+8m279/f0nS/v37bcesVqs+/vhjSdKYMWMuOadnz57q3LmziouLtWrVKjsnBgCgZqHIDgAAAAAA7Oq3M+I6d+5cbp8bbrhB0sVlZ8vj6uqqRo0alXkAAADHKCgokCS5u7vbjh0+fNi2JUyvXr3KPa/0+NatW6s5IQAAxrr8rWoAAAAAAABV0KlTJ9vPrq6u5fYpPW6xWBySCQAAVIzVatWKFSsklS2mp6enS7p4DW/Tpk255/r5+ZXpezmFhYUqLCy0Pc/Ly7umzOU5f/68MjMz7f66V+Pn51fm5gQAQN1EkR0AAAAAANjVrbfeKjc3NxUUFCgzM1MdOnS4pE/pl97e3t6OjgcAAK5g0aJFSktLk4uLi8aNG2c7fvLkSUlSkyZNbHux/17pajalfS8nJiZG06dPt0/gy8jMzNTQoUOrdYzyJCUlqUuXLg4fFwDgWBTZAQAAAACAXXl4eOjee+9VUlKS3n77bYWGhpZp/+WXX/TZZ59Jkvr27WtERAAAUI4dO3bomWeekSTNnDlT/v7+trbSJeRdXFwue37pSjXnz5+/4jhTp07VhAkTbM/z8vLk6+tb5dzl8fPzU1JSUqXPO3DggCZNmqS4uLgyv39lxgUA1H0U2QEAAAAAgN298MILWrVqlT744AOFhoZq1KhRkqRTp04pPDxc58+fl5+fnx588EGDkwIAAEk6ePCgBg0apIKCAo0YMUITJ04s0+7m5iZJKioquuxrlC4Bf7Xl0l1dXS+7pYy9uLu7X9OMcn9/f2akAwAuy8noAAAAAAAAoO7p2rWrXn/9dVmtVoWHh6tdu3bq3r27vL299dlnn6lFixb66KOPrjgbDgAAOMYvv/yi/v376+jRo/rTn/6kJUuWXLIkfOlS8KdOnZLVai33dUqXiS/tCwBAXUWRHQAAAAAAVIuxY8fqyy+/1J///GedO3dO33//vVq2bKmnnnpK3333nQIDA42OCABAvZebm6v+/fvrwIED6t27t1asWCFnZ+dL+nXs2FHSxdnq2dnZ5b5WZmZmmb4AANRVLBcPAAAAAACqzZ133qk777zT6BgAAKAc+fn5uvfee7Vr1y51795dq1evvuxS723btlWrVq30yy+/aPPmzXrooYcu6bN582ZJUnBwcLXmBgDAaMxkBwAAAAAAAACgniksLNR9992nrVu3qkuXLlq3bp0aNmx42f4mk0n333+/JGnx4sWXtG/ZskV79+6Vs7OzBg8eXG25AQCoCSiyAwAAAAAAAABQj1gsFoWFhWn9+vXy9/fX559/rmbNml31vEmTJsnFxUXJycmKi4uz7c3+008/afTo0ZKkxx9/XK1atarW/AAAGI3l4gEAAAAAAAAAqEeWL1+ulStXSpKcnJz04IMPltuvdevWWrFihe15+/bttWjRIj322GOaPHmy5s2bp5YtW2rXrl0qLi5Wt27dFBcX54hfAQAAQ1FkBwAAAAAAAACgHiksLLT9nJ6ervT09HL7tWvX7pJjI0eOVIcOHRQTE6MtW7boxx9/lJ+fn4YPH64pU6bIzc2t2nIDAFBTUGQHAAAAAAAAAKAeCQ8PV3h4eJXP79mzp1avXm2/QAAA1DLsyQ4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIosgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVBBFdgAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFUSRHQAAAAAAAACAWuDYsWNKS0vTuXPnjI4CAEC9RpEdAAAAAAAAAIAaYOvWrZowYYL+85//lDmel5en++67T23atFFQUJBatWqlt956y6CUAACAIjsAAAAAAAAAADXAv//9b82bN08NGzYsc3zSpElavXq1TCaTmjRpovz8fP31r3/VDz/8YFBSAADqN4rsAAAAAAAAAADUAJs3b5aHh4fuuusu27H8/Hy9++67atiwoXbt2qUTJ05o7ty5Kikp0auvvmpgWgAA6i+K7AAAAAAAAAAA1ADHjh2Tr69vmWNffvmlCgoK9PDDD6tz586SpKefflotWrTQ1q1bjYgJAEC9R5EdAAAAAAAAAIAa4MyZM7ruuuvKHPvqq69kMpnUv39/2zEnJyf94Q9/0JEjRxwdEQAAiCI7AAAAAAAAAAA1QvPmzfXTTz/JarXajv33v/+VJPXu3btM3+LiYrm4uDg0HwAAuIgiOwAAMJzFYtGiRYvUu3dvtWjRQm5ubmrXrp2GDBmiVatWGR0PAAAAAACH+OMf/6gTJ05o0aJFki4W2L/99lt17dpVLVu2tPWzWq3KyMhQ69atjYoKAEC9RpEdAAAY6uTJk7rjjjv0xBNPaNOmTWrRooVuuukmFRcXa9WqVXr33XeNjggAAAAAgEM8++yzMplMevLJJ9WiRQsNHDhQJpNJzz77bJl+Gzdu1NmzZ9W9e3eDkgIAUL9RZAcAAIYpKSnR4MGD9c0332jo0KE6fPiw9u7dq9TUVGVnZ+vIkSOKiooyOiYAAAAAAA5xxx136KOPPtKNN96os2fPys/PT6+//rr+8pe/lOm3YMECSVJoaKgRMQEAqPcaGB0AAADUX2+88Ya++uor9enTRytWrJCTU9n7/3x8fOTj42NQOgAAAAAAHO++++7Tfffdd8U+b7zxhhYsWKCGDRs6KBUAAPgtiuwAAMAw8+bNkyTNmDHjkgI7AAAAAAAoH8V1AACMRZEdAAAYIj09XXv37lWzZs3Us2dPrVq1SitWrNDRo0fl5eWlu+++W48++qhcXV2NjgoAAAAAAAAAgA1FdgAAYIhvv/1WktS5c2c9+uijev/998u0JyYm6tVXX9W6devUrl07IyICAAAAAOBwRUVFeuutt7Ru3TplZmYqPz9fVqu13L4mk0kHDhxwcEIAAECRHQAAGOLo0aOSpO3bt2vLli16/PHHNW3aNLVq1UpfffWVnnjiCe3du1cPPPCAtm3bdtnl5AsLC1VYWGh7npeX55D8kM6fP6/MzEyHj+vn5yd3d3eHjwsAAAAA1e3o0aPq16+f9u3bd9nC+m+ZTCYHpAIAAL9HkR0AABji7NmzkqTi4mLdeeedWrRoka2tX79+SkpK0q233qpvv/1W//nPf/TnP/+53NeJiYnR9OnTHZIZZWVmZmro0KEOHzcpKUldunRx+LgAAAAAUN2effZZ7d27V35+fpo8ebJuvfVWeXl5UUwHAKCGocgOAAAM4ebmZvv5mWeeuaS9a9eu6tOnj9avX69169Zdtsg+depUTZgwwfY8Ly9Pvr6+9g+MS/j5+SkpKanS5x04cECTJk1SXFyc/P39qzQuAAAAANRF69atk5ubm7788kt5e3sbHQcAAFwGRXYAAGCIpk2b2n7u3LlzuX1uuOEGrV+/XocOHbrs67i6usrV1dXe8VAB7u7u1zSj3N/fnxnpAAAAAPAbFotFnTt3psAOAEANR5EdAAAYolOnTrafL1ckLz1usVgckgkAAAAAACPdcsstOnz4sNExAKDKLBaLUlNTlZOTIy8vLwUFBclsNhsdC7A7J6MDAACA+unWW2+1LRmfmZlZbp/S49zBDwAAAACoDyZNmqQjR44oMTHR6CgAUGnJycnq37+/Ro4cqWeffVYjR45U//79lZycbHQ0wO4osgMAAEN4eHjo3nvvlSS9/fbbl7T/8ssv+uyzzyRJffv2dWg2AACAy7FYLNq6davWrFmjrVu3suIOAMCuBg8erFdffVWPP/64nn32We3evVsFBQVGxwKAq0pOTlZUVJQCAgKUmJioHTt2KDExUQEBAYqKiqLQjjqHIjsAADDMCy+8ILPZrA8++KBMof3UqVMKDw/X+fPn5efnpwcffNDAlAAAABclJyfr7rvvLjMz5+677+YLw//DDQgAYB8jRoxQSEiI5s6dq1tuuUUeHh4ym83lPho0YEdYAMazWCyKjY1VSEiIEhISFBgYKA8PDwUGBiohIUEhISGaNWsW/z5EnUKRHQAAGKZr1656/fXXZbVaFR4ernbt2ql79+7y9vbWZ599phYtWuijjz6Si4uL0VEBAEA9l5ycrL/97W/Kzc0tczw3N1d/+9vf6n2hnaVBAcA+MjIy1K1bN3366aeyWq1XfZSUlBgdGQCUmpqqrKwsjR07Vk5OZUuPTk5OioiI0M8//6zU1FSDEgL2R5EdAAAYauzYsfryyy/15z//WefOndP333+vli1b6qmnntJ3332nwMBAoyMCAIB6zmKx6B//+IckqUePHmWWv+zRo4ck6cUXX6y3M3NYGhQA7Gfy5MnKzs5WcHCwPvvsMx07dkwlJSVXfACA0XJyciRJHTt2LLe99HhpP6AuoMgOAAAMd+edd+qTTz5RTk6OCgsLdfDgQb3++uvy9vY2OhoAAIC2bdum3NxcdevWTa+99poKCwu1YcMGFRYW6rXXXlO3bt104sQJbdu2zeioDsfSoABgX19++aU8PT21bt069e/fX15eXkZHAoCrKv3fqvT09HLbS4/zv2moSyiyAwAAAAAAXMHWrVslST179tSAAQPKLIk+YMAA/fGPfyzTrz5haVAAsK+SkhJ16tRJjRo1MjoKAFRYUFCQvL29tWDBgktW2CgpKdHChQvl4+OjoKAggxIC9tfA6AAAAAAAAAC1wWuvvaY+ffpozJgxcnNzU0FBgTZt2qR//etfRkczDEuDAoB9devWTbt37zY6BgBUitlsVnR0tKKiohQZGamIiAh17NhR6enpWrhwoVJSUhQfHy+z2Wx0VMBuKLIDAAAAAABcQffu3TV//nxdd9112rt3rzZs2GBra926ta677jqdO3dO3bt3NzClMX67NGhgYOAl7SwNCgCV8/zzz+vuu+/WvHnz9MwzzxgdBwAqLDQ0VPHx8YqNjVVYWJjtuI+Pj+Lj4xUaGmpgOsD+KLIDAAAAAABcQeky6OfOnZObm5see+wxtW3bVocPH9aqVat07ty5Mv3qk98uDZqQkFDmPWBpUACovPbt2ysuLk5TpkzRxo0bNXr0aPn7++u666677Dlt27Z1YEIAuLzQ0FD169dPqampysnJkZeXl4KCgpjBjjqJIjsAAAAAAMAV/Hap89zcXL311ltX7VdfsDQoANjXH/7wB5lMJlmtVq1cuVIrV668Yn+TyaQLFy44JhwAVIDZbFZwcLDRMYBqR5EdAAAAAADgCnJzc+3ar65haVAAsJ+2bdvKZDIZHQMAAFwFRXYAAAAAAIAraNKkiV371UUsDQoA9nHo0CGjIwDANbFYLPybEPUCRXYAAAAAAIAr+P0M9TvvvFORkZFKSEjQpk2bLtuvvmFpUAAAgPotOTlZsbGxysrKsh3z9vZWdHQ0qxuhznEyOgAAAAAAAEBN9tu91lu3bq1NmzZp+PDh2rRpk9q0aVNuPwAAAKA+SU5OVlRUlAICApSYmKgdO3YoMTFRAQEBioqKUnJystERAbtiJjsAAAAAAMAVrF+/3vZzp06d9Pjjj8vNzU0FBQXatGmTsrOzbf2mTJliVEwAQB1SWFioZcuWKTk5Wfv379eZM2fUsGFDBQQEaMCAAQoLC5Orq6vRMQFA0sUl4mNjYxUSEqKEhAQ5OV2c4xsYGKiEhARFRkZq1qxZ6tevH0vHo86oFUX2lStXau3atUpNTVV2drZOnDih6667TjfeeKMefvhhPfnkk3JxcTE6JgAAAAAAqIMuXLgg6eJSl/v371dKSoqtzdvbW23atFF2dratHwAA12LHjh168MEHdejQIVmt1kvaEhMTNWPGDC1fvly33XabQSkB4H9SU1OVlZWlOXPm2ArspZycnBQREaGwsDClpqayvRDqjFpRZH/llVe0efNmubq6qk2bNuratauOHj2qr7/+Wl9//bXeffdd/fe//1WTJk2MjgoAAAAAAOqYgIAA/fzzz8rKylJISIjGjBlTZiZ7adE9ICDA2KAAgFrv559/Vv/+/XXy5Em1aNFCf/3rX9WlSxddf/31OnbsmHbv3q1///vfyszM1IABA/Tdd9/J29vb6NgA6rnSbZM6duxYbnvpcbZXQl1SK4rsjz/+uGbOnKlevXrJ2dnZdvybb77Rgw8+qG+//VbPPfec/vWvfxmYEgAAAAAA1EVxcXHq1q2bJOnrr78uM5P9t0v1xsXFOToaAKCOiYmJ0cmTJzV06FC9++67cnd3v6TP888/r0cffVQfffSRYmJi9PrrrxuQFAD+x8vLS5KUnp6uwMDAS9rT09PL9APqAqerdzFeeHi4QkJCyhTYJemPf/yj5syZI+nikvJAXbdv3z7deOON6tSpk2688Ubt27fP6Eg1gsVi0datW7VmzRpt3bpVFovF6Eiowfh7AQAAQGV5enrq5ptvlnRxj9zfKn1+8803y9PT0+HZAAB1y9q1a+Xh4aElS5aUW2CXJDc3N7311lvy8PDQp59+6uCEAHCpoKAgeXt7a8GCBSopKSnTVlJSooULF8rHx0dBQUEGJQTsr1bMZL+Szp07S5LOnTtncBKgenXq1KnMc4vFosGDB0tSvS62JycnKzY2VllZWbZj3t7eio6OVmhoqIHJUBPx9wIAAGCcadOm6Z///KckacaMGZo2bZrBiaTz588rMzOzQn2nT5+uyZMnKyMj45K2Dh06aPr06dq9e3eFXsvPz++yhZOaojLvjT3VhvcGAKpTdna2brnllqveuOXp6akbbrhBP/zwg4OSAcDlmc1mRUdHKyoqSpGRkYqIiFDHjh2Vnp6uhQsXKiUlRfHx8TKbzUZHBeym1hfZv/76a0nSbbfdZnASoPr8tsDu6uqqsWPHasGCBbYZE506daqXhfbk5GRFRUUpJCREc+bMsV20FyxYoKioKMXHx1M4hQ1/LwAAAMbZs2dPjVxKPTMzU0OHDr3m18nIyKjU6yQlJalLly7XPG51std7U1m14b0BgOrUsGFDHTt2rEJ9jx07Jg8Pj2pOBAAVExoaqvj4eMXGxiosLMx23MfHh+9eUSfVyiK7xWLR0aNH9cknnyg6OloeHh6KiYkxOhZQLX5bPN+wYYPatGkjSYqMjFR2drb69Olj6/f72e51mcViUWxsrEJCQpSQkCAnp4u7XwQGBiohIUGRkZGaNWuW+vXrx91x4O8FAADAQFarVREREXJ2dtYdd9yh9evXGx3Jxs/PT0lJSZU+78CBA5o0aZLi4uLk7+9fpXFrOt6b8jHDH0B169atmz7//HN98MEHZYpUv7ds2TIdOXKEohWAGiU0NFT9+vVTamqqcnJy5OXlpaCgIL5zRZ1Uq4rsc+fO1fjx48scGzJkiGbMmKGbbrrpsucVFhaW2TMtLy/P7tmM+pAl8UGrrrv//vslXZzBXlpgL9WmTRu5uLioqKhI999/v3788UcjIhoiNTVVWVlZmjNnjq1gWsrJyUkREREKCwtTamqqgoODDUqJmoK/FwAAAOMsXrxYmzZt0qxZs2rcZxZ3d/drmjXt7+9fZ2dd896Ujxn+AKrb3/72NyUnJ2vUqFHavn27nn76abVv397WfvDgQb322mtKSEiQyWRSVFRUlcc6ePCg/vvf/2rbtm3atm2bdu/eLYvFcsVtXV588UVNnz79iq+7Z88e2zavAOofs9nMd6yoF2pVkd3b21u9evVScXGxfvrpJx07dkwbNmzQsmXL9NJLL132TpiYmJirXvivlVEfsiQ+aNV1FotFkjR27Nhy28eMGaP58+fb+tUXOTk5kqSOHTuW2156vLQf6jf+XgAAAIyRk5OjKVOm6MYbb9T48eP117/+1ehIwDVhhj+A6vanP/1JU6ZM0axZszR37lzNnTtXrq6u8vLyUk5Ojm0ymdVq1dSpU3XvvfdWeax58+Zp3rx5VTrX19dXbdu2Lbftuuuuq3ImAABqi1pVZH/wwQf14IMP2p5v3bpVERERevnll5Wbm6v58+eXe97UqVM1YcIE2/O8vDz5+vraNVtVP2RJfNDClZnNZlksFi1YsECRkZGXtC9evNjWrz7x8vKSJKWnpyswMPCS9vT09DL9UL/x9wIAAGCM8ePHKzc3V0lJSXJ2djY6DnDNmOEPwBFiYmLUq1cvxcbG6ptvvlFBQYGOHDki6eKKfD179tSUKVP0pz/96ZrGadGihQYNGqTbb79d3bt317///W999NFHFTp39OjRevHFF69pfAAAarNaVWT/veDgYH366afy8/PTG2+8oejoaLVr1+6Sfq6urnJ1da3WLNf6IUvigxbK9/HHH2vw4MEqLCxUdnZ2mSXjs7OzVVRUZOtXnwQFBcnb21sLFiwos8e2JJWUlGjhwoXy8fFRUFCQgSlRU/D3AgAA4HhffPGF3n//fT3yyCPq3bu30XEAAKhVBg0apEGDBuns2bPKyMhQfn6+PD091aFDB3l4eNhljN8vCf/BBx/Y5XUB1G8Wi4U92VEv1Ooiu3RxT+rAwEBt3bpVO3fuLLfIDtRmnTp1sv3cp08fubi4aMyYMVq8eLGtwP77fvWB2WxWdHS0oqKiFBkZqYiICHXs2FHp6elauHChUlJSFB8fz8Ubkvh7AQAAcLSCggKNHTtWjRs31iuvvFKl1ygsLLQtiStdXJUOAID6xsPDQ127djU6BgBUSHJysmJjY5WVlWU75u3trejoaIWGhhqYDLA/p6t3qfkuXLhQ5r9AXbNv3z7bz0VFRZo/f36ZAvtv2+uT0NBQxcfHa//+/QoLC1O3bt0UFham9PR0xcfHc9FGGfy9AAAAOM7MmTOVkZGhf/7zn7r++uur9BoxMTFq3Lix7WHvbd8AAKiJzGZzhVeA6dOnjxo0MGYe3YYNG/Tggw+qb9++GjZsmGbPnq1ffvnFkCwAaobk5GRFRUUpICBAiYmJ2rFjhxITExUQEKCoqCglJycbHRGwq1o/k/3QoUPauXOnJHFHH+q0ffv2ad++fbr//vtlsVhkNpv18ccf17sZ7L8XGhqqfv36sfwMKoS/FwAAgOq3Z88excXF6bbbbtOTTz5Z5deZOnWqJkyYYHuel5dHoR0AUOdZrVZZrdZK9TfCxo0byzz/6KOP9OKLLyohIUHh4eGGZAJgHIvFotjYWIWEhJTZrjMwMFAJCQmKjIzUrFmz1K9fP76LRZ1xTUX2gwcPavv27fr111915swZNWrUSC1bttTtt99ut2Xbv/32W33yyScaNWqU/Pz8yrStW7dO48eP14ULF3TvvffK39/fLmMCNVWnTp30448/Gh2jxjGbzQoODjY6BmoJ/l4AAACqV2RkpC5cuKD58+fbvlyrCldXV7m6utoxGQAAdcvZs2fl7Ozs0DFbt26tv//977r//vvl5+cnd3d3paWlaebMmVq7dq1Gjx6t5s2b689//vMVX4dtYYC6JTU1VVlZWZozZ84lnwGcnJwUERGhsLAwpaam8t0s6owqFdnfffddxcTEXHGJ6htvvFF///vfNXz48CqHk6QzZ87opZde0ksvvaRWrVrJx8dHRUVFOnz4sE6dOiVJ6t69u95+++1rGgcAAFTetm3b9O677+q1114zOgoAAKgh0tLSZDKZNHjw4EvaTp8+LUmaNWuWXn/9dfn6+mr79u2OjggAQK23b98+7dq1S97e3g4dNyIi4pJjPXv21H/+8x898MAD+vjjjzV+/HgNGjRIJpPpsq8TExOj6dOnV2dUAA6Uk5MjSerYsWO57aXHS/sBdUGliuwlJSUaOXKkli1bZluGpnnz5vL19ZWHh4fy8/N15MgR5ebmavfu3XrkkUf02Wef6a233rriBfVKunbtqnnz5umLL77Q7t27tXfvXhUVFal58+bq0aOHHnroIT3yyCOG7T0DAEB9c+jQIb333nt67733lJ6eLkkU2QEAQBkWi0XHjh27bHt+fr7y8/Pl5ubmwFQAANQ88+bN07x588ocS01NvWRV1986f/68fv31V0nSfffdV635KspkMik2NlYff/yxDhw4oO+///6K27uyLQxQt3h5eUmS0tPTFRgYeEl76XeIpf2AuqBSlemXXnpJS5culdls1tNPP62xY8eWux/0nj17NH/+fM2fP1/vvvuuOnTooGnTplUpYNOmTRUVFaWoqKgqnQ8AAK7d6dOntXz5cr377rvavHmzpIv7vjk7O2vgwIEGpwMAADVJ6apz5QkPD9fbb7+tGTNmVPl7AgAA6pJTp07p0KFDtucmk0kFBQVljpWnYcOGevDBBzVz5szqDVgJAQEBatasmXJzc5WRkXHFIjvbwgB1S1BQkLy9vbVgwYIye7JLFyfwLly4UD4+PgoKCjIwJWBfFS6yHz9+XLGxsWrQoIHWrFmj0NDQy/a94YYbFB8fr3vvvVd//vOf9c9//lNPPvmkmjdvbpfQAACg+l24cEGffvqp3n33Xa1Zs0ZFRUW2lWx69OihRx55RA8//LCaNWtmcFIAAAAAAGqncePGKTw8XNLFm9n9/PzUvXt3LV++vNz+JpNJ7u7uNXY2aOke8RcuXDA4CQBHMpvNio6OVlRUlCIjIxUREaGOHTsqPT1dCxcuVEpKiuLj42U2m42OCthNhYvs7777roqKivTss89escD+WwMHDlRUVJTmzp2r999/n9noAADUAlu3btW7776rxMRE5ebm2grrAQEB2r9/v1q1amWbzQ4AAAAAAKqucePGaty4se35qFGj1KlTJ7Vr187AVFVz/Phx2zL2Pj4+BqcB4GihoaGKj49XbGyswsLCbMd9fHwUHx9f4doiUFtUuMj+1VdfyWQy6cknn6zUAJGRkfp//+//aePGjRTZAQCooQ4ePKj33ntP7777rg4cOCDp4h30rVq1UlhYmP7yl7+oW7duZZZ6AgAAAAAA9vXWW28ZHaHK5syZI6vVqsaNG6t79+5GxwFggNDQUPXr10+pqanKycmRl5eXgoKCmMGOOqnCRfbvv/9eLVu2lJ+fX6UG8Pf3V8uWLfX9999XOhwAAKh+d955p7Zs2SLpYmG9UaNGGjp0qP7yl7+ob9++MplMBicE6r6srCwNGTJEZ8+elYeHh1auXClvb2+jYwGA3S1ZskRLliwxOgYAAKiC3bt361//+peeeuopdenSxXa8oKBAc+bM0axZsyRJU6ZMkYuLi1ExARjMbDYrODjY6BhAtatwkT03N7fKS9S0adNGP/30U5XOBQAA1Wvz5s0ymUxq0qSJXn31VQ0fPlyurq5GxwLqjZtuuknFxcW253l5eerbt6+cnZ21a9cuA5MBAABUzPnz55WZmenwcf38/OTu7u7wcQFHOHjwoBITE7Vz507l5uaW+czwWyaTSV988UWVxti8ebPuu+8+2/P8/HxJUkxMjObOnWs7npaWJl9fXxUXF2v+/PmaP3++vLy81LZtW0nSnj17dO7cOUnSmDFjFB0dXaU8AADUJhUusufl5cnT07NKg3h4eCgvL69K5wIAgOplNptlsVh06tQpPf300/rss880YsQI3XPPPWrQoML/VABQBb8tsHt5eWnixIl65ZVXlJOTo+LiYt10000U2gEAQI2XmZmpoUOHOnzcpKSkMrNpgboiLi5Ozz33nC5cuGBbXc5qtdraf3vsWlafKy4u1okTJy45fu7cOVvRXJIsFosk6Q9/+INmzJihLVu2aO/evdq3b5+KiorUsmVL3XvvvXr88cc1YMCAKucBAKA2qfA356UX0qoqKSm5pvMBAED1yMrK0tKlS/Xee+9px44dSkxM1PLly9W0aVMNGzZMw4cPV+/evY2OCdQ5WVlZtgL7119/rWbNmkmShgwZotzcXPXo0UPFxcXKyspi6XgAAFCj+fn5KSkpqdLnHThwQJMmTVJcXJz8/f2rNC5Q13z66aeaMmWKWrdurRkzZmju3LnavXu3Pv/8cx05ckQ7d+7U4sWLZbFYFBsbq1tuuaXKY4WEhJQp3l9NkyZNNG3atCqPBwBAXVKp6WmFhYU6fPhwpQcpLCys9DkAAMAxWrZsqXHjxmncuHHas2eP3nnnHS1dulRHjhzRokWLtGjRInl7e+vhhx82OipQpwwZMkTSxRnspQX2Us2aNVOLFi10/PhxDRkyRNu3bzcgIQAAQMW4u7tf04xyf39/ZqQD/+e1116TyWTS8uXL1atXL7311luSpH79+tn6TJs2TQ888ICef/55PisAAGAQp8p0Tk1NVfv27Sv9+Pbbb6srPwAAsKMbbrhBMTExOnTokL744guNHDlSnp6e+vnnnzVnzhyZTCadOnVKM2bMMGTPRaAuOXv2rCRp4sSJ5baPGzeuTD8AAAAAdd+3336r1q1bq1evXpft07x5cy1btkznzp3T9OnTHZgOAACUqtRM9sosHfN717I3DAAAcCyTyaQ+ffqoT58+mj9/vlauXKl33nlHn3/+uQoKCvTiiy/qxRdfVI8ePfToo48qIiLC6MhArePh4aG8vDy98sortlntvzV37lxbPwCQpOPHj0uSWrRoYXASAABQXfLy8tS1a1fbczc3N9vxRo0a2Y63bt1aN910kzZs2ODwjEbIzs7WyZMnHTLWgQMHyvzXEZo2bao2bdpU+jzel/LxvtjP+fPnDZlo4+fnJ3d3d4ePC1RGhYvsBw8erM4cAACghnJzc1NYWJjCwsL066+/6v3339d7772ntLQ0bdmyRV9//TVFdqAKVq5cqb59+yonJ0e5ublllozPzc21FdNWrlxpUEIANcGpU6f097//XYmJiTp16pQkqXHjxnrwwQf18ssvq3nz5sYGBAAAdtWyZUvl5eWVeS5J+/btU/fu3cv0zc/P14kTJxyazwjZ2dkaOGCgCoscuy3tpEmTHDaWq4ur1n22rlKF0+zsbA0cONDh2/U69H1xddW6dZV/Xwbcc4+KCgqqMdmlHPm+uLi56bO1ax1SaM/MzNTQoUOrfZzfS0pKYisZ1HgVLrK3a9euOnMAAIBaoGXLlho/frzGjx+vH3/80bZ/O4DK8/b2lrOzs4qLi9WjRw+1aNFC48aN09y5c20FdmdnZ3l7exucFIBRzp8/rzvvvFM//vhjmZXlTp06pX//+9/atGmTtm/fzooXAADUIf7+/tqxY4fteXBwsJYtW6b58+eXKbJ/8cUXysjIUPv27Y2I6VAnT55UYVGhup7uKk+Lp9Fx7C7fnK+djXfq5MmTlSqanjx5UoWFhXL+o7OcGlVqZ+BaoSSvRIXfFFbpfSkqKNC5Bx5QSR1cAcrp+HHpo48q/b5UlZ+fn5KSkip93oEDBzRp0iTFxcXJ39+/SuMCNV2llosHAAAodeONNyo2NlYxMTFGRwFqrV27dummm25ScXGxjh8/rmnTptnanJ2dtWvXLgPTATDavHnztHv3bjVp0kQvvPCC7rrrLlmtVm3cuFEzZszQvn37NHfuXD333HNGRwUAAHYycOBAbdy4Udu3b1f37t01YsQI/eMf/9Dbb7+t/fv3q0ePHjp27JiWL18uk8mkRx991OjIDuNp8VTjC42NjlHjODVyklOzuldkv1YlLVqoxEFLqtdl7u7u1zSj3N/fnxnpqLOqpcheVFSkU6dOycvLi73YAQCoQ8q7xnOtB67Nrl27lJWVpSFDhujs2bPy8PDQypUrmcEOQB9//LFMJpM++ugj9enTx3a8W7duuuWWW9S/f399/PHHFNkBAKhDHnroIWVkZCg3N1eS1KJFCyUmJiosLExbtmzRli1bbH2HDRtW5kZdAADgOJUusu/Zs0dffPGFioqK1LlzZ91zzz22L9fXrFmjF154Qd9//72sVqsaNmyoESNGKDY2Vo0aNbJ7eAAAYD9c4wHjeHt7a/v27UbHAFDD7Nu3T97e3mUK7KX69esnHx8fpaenG5AMAABUl/bt22vRokVljoWGhurgwYNau3atDh06JHd3d91555267bbbDEoJAAAqVWR//vnnFRMTU2YvuFtvvVUbNmzQf/7zHz3yyCMqKSmxteXl5WnhwoXasWOHvvrqKzVowOr0AADURFzjAQCoec6cOaObb775su1t27bV119/7cBEAADAKI0bN1ZYWJjRMQAAwP+p8EYda9eu1T//+U+VlJSoZcuW6tatmxo2bKi0tDS9/PLLmjhxopo0aaLXXntN3377rbZv3665c+eqSZMm2r59u954443q/D0AAEAVcY0HAKBmslqtV9yWhS1bAAAAAAAwRoWnnS1YsEAmk0kTJkzQ7NmzZTKZlJ+fr/vvv1/z5s1TYWGhPv/8c/Xt29d2Trdu3dS5c2cNHDhQy5cvV2RkZLX8EgAAoOq4xgMAAAAAAAAAUHEVnsm+fft2NWzYUDNnzrTdLe/p6amYmBgVFBTo+uuvL/Ple6nQ0FBdf/312rVrl/1SAwAAu+EaDwBAzbV582aZzeZyH1u2bJGky7aznQsAAAAAANWjwkX248ePy8/PT66urmWO33jjjZIu7gV3OW3bttXp06erGBEAAFQnrvEAANRcVqv1mh4AAAAAgJrBYrFo69atWrNmjbZu3SqLxWJ0JFyDCt/WfuHCBXl6el5y/LrrrpMkubi4XPZcFxcXlZSUVCEeAACoblzjAQComTZs2GB0BAAAAACAHSQnJys2NlZZWVm2Y97e3oqOjlZoaKiByVBVrB0HAAAAAEAN1Lt3b6MjAAAAAACuUXJysqKiohQSEqI5c+aoY8eOSk9P14IFCxQVFaX4+HgK7bVQhZeLBwAAAAAAAAAAAABUjMViUWxsrEJCQpSQkKDAwEB5eHgoMDBQCQkJCgkJ0axZs1g6vhaq1Ez21NRU+fn5XXLcZDJdtk2Sjh49WrV0AADAIbjGAwAAAABgvD179uiGG24wOgYAwE5SU1OVlZWlOXPmyMmp7NxnJycnRUREKCwsTKmpqQoODjYoJaqiUkX2goICHTp0qNJt0sUv6QEAQM3ENR4AgJpv9OjRFe5rNpvVsGFD/eEPf1CvXr3UrVu3akwGAADs5aabblL37t0VHh6usLAwNWnSxOhIAIBrkJOTI0nq2LFjue2lx0v7ofaocJH9rbfeqs4cAADAIFzjAQCoHZYsWSLpfze4Wa3WS/r8vq30ebdu3fT2228zMw4AgBquSZMm2rZtm7Zv367x48frvvvuU3h4uAYMGMBN7gBQC3l5eUmS0tPTFRgYeEl7enp6mX6oPSpcZB81alR15gAAAAbhGg8AQO3w1ltv6cCBA5o1a5Y8PDw0ZMgQ3XLLLWrYsKHOnDmjH374QStXrtTZs2c1efJktWrVSnv27NFHH32k1NRU9enTR2lpaWrdurXRvwoAALiMX375RZ988onefvttrVu3TsuXL9eKFSvUqlUrPfrooxo1ahQ3zQFALRIUFCRvb28tWLBACQkJZZaMLykp0cKFC+Xj46OgoCADU6IqnK7eBQAAAAAAGO2uu+7Sv/71L/Xt21eZmZl68803NW7cOI0ZM0bjxo3T4sWLdfDgQfXp00cJCQkaOHCgXnvtNaWnp6t///7KyclRXFyc0b8GAAC4AmdnZz3wwAP65JNPlJ2drTlz5uiWW27R0aNHNXv2bN1000364x//qAULFujUqVNGxwUAXIXZbFZ0dLRSUlIUGRmptLQ05efnKy0tTZGRkUpJSdGUKVNkNpuNjopKosgOAAAAAEAtMG3aNBUUFGjZsmWX3Z+1UaNGWrp0qc6fP69p06ZJkjw8PPTmm2/KZDLp008/dWBiAABwLVq0aKFx48YpLS1NO3fu1Pjx4+Xl5aVt27bpqaeeUuvWrRUWFqZ169aVu40MAKBmCA0NVXx8vPbv36+wsDB169ZNYWFhSk9PV3x8vEJDQ42OiCqo8HLx77zzzjUPNnLkyGt+DQAAYF9c4wEAqB2++OILdenS5bIF9lJNmzZVly5dtH79etsxb29vde7cWQcPHqzmlAAAoDrcfPPNevXVVzV79my98sorev7551VUVGRbTr5169aKiIhQVFSUGjdubHRcAMDvhIaGql+/fkpNTVVOTo68vLwUFBTEDPZarMJF9vDwcJlMpioPZDKZ+AIeAIAaiGs8AAC1Q15ennJzcyvUNzc3V3l5eWWOubq6XtM1HwAAGOfkyZNatmyZlixZom+//VZWq1XOzs665557dOzYMW3dulUvvviiFixYoM8++0w33XST0ZEBAL9jNpsVHBxsdAzYSYWL7G3btr3sh/GffvpJrq6uatWqld2CAQAAx+AaDwBA7dCxY0ft2rVLa9as0aBBgy7bb82aNcrMzNQtt9xS5nhmZqa8vLyqOyYA4P+cP39emZmZDh/Xz89P7u7uDh8X9mexWPTpp5/q7bff1po1a1RcXCyr1aobb7xRjz32mEaOHGm7tv/444/6+9//rk8++UTjx4/X559/bnB6AADqtgoX2Q8dOnTZNicnJ3Xv3l0bN260RyYAAOBAXOMBAKgdnnzySUVGRuqhhx7SCy+8oPDw8DI3wh07dkxLlizRjBkzZDKZ9OSTT9radu7cqdOnT6tv375GRAeAeikzM1NDhw51+LhJSUnq0qWLw8eF/Xz33Xd6++23tXTpUh0/flxWq1WNGjXSqFGjNHr06HJnQd54441KSkpS+/bttXXrVgNSAwCuxmKxsFx8HVLhIjsAAAAAADDO2LFjtX37dr311lt67rnn9Nxzz6l58+Zq2LCh8vPzdfz4cUmS1WrVmDFjFBERYTs3JSVFvXv3ZosXAHAgPz8/JSUlVfq8AwcOaNKkSYqLi5O/v3+VxkXtFRgYqB9++EFWq1Umk0l33XWXRo8erWHDhl11hQInJye1b99eP//8s4PSAgAqKjk5WbGxscrKyrId8/b2VnR0tEJDQw1MhqqiyA4AAAAAQC2xePFi3XPPPXr11Ve1bds2HT9+3FZcd3JyUnBwsCZMmKAHHnigzHnPPPOMnnnmGSMiA0C95e7ufk0zyv39/ZmRXg99//338vX11ciRIzV69Gi1b9++UudPnTpVjz32WDWlAwBURXJysqKiohQSEqI5c+aoY8eOSk9P14IFCxQVFaX4+HgK7bUQRXYAAAAAAGqRYcOGadiwYcrPz1dGRobOnj0rDw8PdejQQZ6enkbHAwAA12Dt2rUKDQ2VyWSq0vkDBgywcyIAwLWwWCyKjY1VSEiIEhIS5OTkJOniyiUJCQmKjIzUrFmz1K9fP5aOr2UosgMAAAAAUAt5enoqMDDQ6BgAAMCObr/99ioX2AEANU9qaqqysrI0Z84cW4G9lJOTkyIiIhQWFqbU1FQFBwcblLJ82dnZOnnypEPGOnDgQJn/OkLTpk3Vpk2bKp9PkR0AAAAAgFro/PnzOnDggM6cOaOGDRvK39//qnu1AgBgtPPnzyszM9Ph4/r5+dWK62SrVq00YMAAjRgxQoMHD9Z1111ndCQAwDXIycmRJHXs2LHc9tLjpf1qiuzsbA0cOFCFhYUOHXfSpEkOG8vV1VXr1q2rcqGdIjsAAAAAALXIZ599ppiYGG3ZskUWi8V23Gw264477lB0dDT7+QEAaqzMzEwNHTrU4eMmJSXVij3urVar1qxZo//85z+67rrrNHjwYIWFhemee+5RgwZ8nQ8AtY2Xl5ckKT09vdyVyNLT08v0qylOnjypwsJCtfHqKRfnxkbHsbui4tPKztmikydPVn+RfePGjVdsP3369FX73HXXXRUdDgAAOAjXeAAAao8XX3xRM2bMkNVqlSS5uLjIy8tLOTk5KioqUkpKir788ks9//zzevHFF40NCwBAOfz8/JSUlFTp8w4cOKBJkyYpLi5O/v7+VRq3Njh27JhWrFihZcuWadOmTVq2bJk++OADNWnSRMOGDdPw4cMVEhJidEwAQAUFBQXJ29tbCxYsKLMnuySVlJRo4cKF8vHxUVBQkIEpL8/FubHcXZsZHaNGqnCRPSQk5LJ7wZhMJu3atUt9+vS57Pkmk0kXLlyofEIAAFCtuMYDAFA7rFu3Ti+99JLMZrMiIiL0zDPPlFlyMD09XfPmzdMbb7yhGTNmqEePHhowYICBiQEAuJS7u/s1zSj39/evFTPSq6pp06Z64okn9MQTT+jo0aP64IMPtGzZMqWmpmrRokX697//rdatWyssLExhYWE1tigDALjIbDYrOjpaUVFRioyMVEREhDp27Kj09HQtXLhQKSkpio+Pl9lsNjoqKsnp6l3+x2q1VvlRUlJSXb8DAAC4RlzjAQCo+eLj42UymfTmm2/q9ddfv2RPv44dO+r111/Xm2++KavVqnnz5hmUFAAA2EPr1q01fvx4bdu2TRkZGXrppZfUuXNnZWdn6//9v/+n4OBgderUyeiYAICrCA0NVXx8vPbv36+wsDB169ZNYWFhSk9PV3x8PNt91VIVnsnOF+gAANRNXOMBAKgdtm/fLh8fHz366KNX7PfII4/oueee07Zt2xyUDAAAVDc/Pz9NmzZN06ZN0/fff6/o6GitW7dOGRkZRkcDAFRAaGio+vXrp9TUVOXk5MjLy0tBQUHMYK/FKlxkBwAAAAAAxjlz5ozat29fob7XX3+9fvjhh2pOBAAAHCkzM1PLli3TsmXLtGfPHqPjAAAqyWw2Kzg42OgYsBOK7AAAAAAA1AJt2rTR3r17dfbsWXl4eFy239mzZ7Vnzx61bt3agekAAEB1+OWXX5SYmKhly5Zp+/btki5u+da6dWs9/PDDGjFihMEJAQConyiyAwAAAABQCwwYMEALFy7UX//6Vy1ZskQuLi6X9CkqKtLjjz+uc+fOaeDAgQakBAAA1+rUqVP68MMPtWzZMm3cuFElJSWyWq1q0qSJhg4dqhEjRqhPnz4ymUxGRwUAoN6iyA4AAAAAQC3w97//XYmJiUpMTFRKSor++te/6sYbb1TLli3166+/6scff9SiRYt07NgxNW7cWFOnTjU6MgAAqKTBgwcrOTlZxcXFslqtcnd316BBgzRixAjdc8895d5kBwAAHI8iOwAAqFGmTZumf/7zn5KkGTNmaNq0aQYnAgCgZvD19dXatWv10EMP6ciRI5o5c+YlfaxWq9q2bavly5fL19fXgJQAAOBarFmzRg0aNFBoaKhGjBih+++/X56enkbHAgAAv0ORHQAA1Bh79uxRXFyc0TEAAKixgoODtXfvXi1dulTJycnav3+/8vPz5enpqYCAAA0YMEDDhw/XwYMH9f333+uWW24xOjIAAKiE1157TQ8//LBatGhhdJQap9hUrEJTodEx7K7YVGx0hLrp/HmZzp41OoX9nT9vdAIA/4ciOwAAqBGsVqsiIiLk7OysO+64Q+vXrzc6EgAANZK7u7vGjBmjMWPGXLZP7969dfLkSV24cMGByQAAwLV66qmnjI5QY21rus3oCKhFPN95x+gIAOo4iuwAAKBGWLx4sTZt2qRZs2bpxx9/NDoO4FDr16/Xk08+aXs+f/589e3b18BENUdOTo4efvhh5ebmqlmzZkpMTJSXl5fRsVBDFRUVaenSpTp8+LDatm2rESNG1Ot9S61Wq9ERAAAAAKBOOn/+vDIzMx0+rp+fn9zd3R0+Li5FkR0AABguJydHU6ZM0Y033qjx48frr3/9q9GRAIfp1KnTJcdKC+779u1zdJwaJSgoSGfOnLE9z8rK0h133KGGDRsqNTXVwGSoiWbPnq0lS5bIYrGUORYeHq7JkycbmAwAAKDyDh48qMTERO3cuVO5ubkqLi5/SXGTyaQvvvjCwekAAJmZmRo6dKjDx01KSlKXLl0cPi4uRZEdAAAYbvz48crNzVVSUpKcnZ2NjgM4zO8L7D179tSWLVvKtNfXQvtvC+wdOnTQxIkT9corrygjI0NnzpxRUFAQhXbYzJ49W4sXL1bz5s01btw49enTRxs2bNDcuXO1ePFiSaLQDgAAao24uDg999xzunDhgkwmk6SyK9T89ljpzwAAx/Lz81NSUlKlzztw4IAmTZqkuLg4+fv7V2lc1AzXVGQ3m80KCQnhTjkAAOoYR17jv/jiC73//vt65JFH1Lt372ofD6gp1q9fb/t52bJluu2222zPd+zYoeHDh9v61bel43NycmwF9u3bt6tRo0aSpD59+igvL0/du3fXmTNnlJOTw9LxUFFRkZYsWaLmzZtr48aNatDg4sfchx56SEOHDtVdd92lJUuWaNy4cfV66XgAAFA7fPrpp5oyZYpat26tGTNmaO7cudq9e7c+//xzHTlyRDt37tTixYtlsVgUGxurW265xejIDnP7ydvV8EJDo2PY3ZkGZ9hvvhrkjxwpa6tWRsewO9Mvv7DffA3h7u5+TTPK/f39mZFey11Tkd1qtV6yx1tUVJR2795N4R0AgFrMUdf4goICjR07Vo0bN9Yrr7xSpdcoLCxUYWGh7XleXt4V+2dnZ+vkyZNVGquyDhw4UOa/jtC0aVO1adPGYeOh6n67B/tvC+y/f/7kk0/Wu9nsDz/8sKSLM9hLC+ylGjVqJD8/P2VmZurhhx8uc7MC6qelS5fKYrFo3LhxtgJ7qQYNGuiZZ57RCy+8oKVLlyo8PNyYkAAAABX02muvyWQyafny5erVq5feeustSVK/fv1sfaZNm6YHHnhAzz//vLZv325UVIdztjrL1epqdAy7K7AWGB2hbnJ3l9XDw+gUdmdiL26gxqhwkf3xxx9Xz5491aNHD91www2X7ZeWllZmiUsAAFCzGXmNnzlzpjIyMvT666/r+uuvr9JrxMTEaPr06RXqm52drYEDBqqwqPDqne1o0qRJDhvL1cVV6z5bR6G9FunZs2e5x+vzcui5ubmSpIkTJ5bbPmHCBD399NO2fqjfDh8+LOniSgflCQkJKdMPjmG1WrV582atWrVKmzZt0t69e3Xu3Dm1aNFCPXr00NNPP33Z/5sBAFCfffvtt2rdurV69ep12T7NmzfXsmXL1K5dO02fPl3vvfeeAxMCAACpEkX2N99803bXXOPGjfXHP/5RknT+/HlduHDhkhkDAACgdjDqGr9nzx7FxcXptttuKzOjt7KmTp2qCRMm2J7n5eXJ19e33L4nT55UYVGhup7uKk+LZ5XHrKnyzfna2XinTp48SZG9FrnczSv1tcAuSc2aNVNWVpZeeeWVcotwc+bMsfUD2rZtK0nasGGDHnrooUvaU1JSyvSrTd65hmUgf7vKixHWr1+vu+++W5Lk5OSkDh06yMPDQ+np6UpKSlJSUpKmTZumGTNmGJoTAICaJi8vT127drU9d3Nzsx3/7SpPrVu31k033aQNGzZUeayDBw/qv//9r7Zt26Zt27Zp9+7dslgsmjFjhqZNm3bFc7/++mvFxsZqy5Ytys/PV/v27TV8+HBNmjTJlhkAgLqswt+aHzhwQFu2bNGWLVu0efNmJScny2Qyadu2bWrcuLF69eqlPn366MSJE9WZFwAA2JlR1/jIyEhduHBB8+fPl5OTU5Vfx9XVVa6ulVsuztPiqcYXGld5TMAe5s+fb7vBZMeOHZfsyf7bfvVNYmKi7rjjDmVkZFzyZWJeXp4yMzNt/YARI0Zo9uzZmjt3roYOHVrm5rALFy5o3rx5MpvNGjFihIEpqyY8PFwmk6lK51qt1iqfaw9Wq1UdOnTQhAkTFBYWpqZNm0qSioqK9OKLLyomJkYzZ85UcHCwBg0aZFhOAABqmpYtW5bZBq1ly5aSpH379ql79+5l+ubn51/TZ/V58+Zp3rx5lT7v/fff16hRo2SxWOTt7S1fX1/t2rVLL7zwglavXq2UlBRdd911Vc4FAEBtUOEie/v27dW+fXv95S9/kSSdOXNGjRs3Vps2bdShQwdt3LhR//3vfyVJJpNJISEh6tmzp3r16qUePXowywQAgBrKqGt8WlqaTCaTBg8efEnb6dOnJUmzZs3S66+/Ll9f33q1zxzqh759+9p+Hj58uKTyl4j/bb/6wsvLSw0bNtSZM2fUvXt3+fn5acKECZozZ46twN6wYUN5eXkZnBQ1gYuLi8LDw7V48WLdddddeuaZZxQSEqKUlBTNmzdPJ06c0JgxY+Ti4mJ01Epr27atoYXya3H77bdrz549l6yI4+Liopdfflnfffed1q5dq0WLFlFkBwDgN/z9/cvcdBscHKxly5Zp/vz5ZYrsX3zxhTIyMtS+ffsqj9WiRQsNGjRIt99+u7p3765///vf+uijj654zqFDhzRmzBhZLBbNnj1bEydOlMlk0k8//aQBAwZo+/btmjx5sl5//fUq5wIAoDao8vqvDRs2lCQFBARo/fr1Kigo0FdffaWxY8fq4MGD+uabb7Rx40bbFwKdOnXSjz/+aJ/UAACg2jjyGm+xWHTs2LHLtufn5ys/P5+l5lBn7du3T506dbI9/32Bfd++fY6OVGOkpqYqKChIZ86cUWZmpp5++mlbW8OGDev1cvq41OTJkyVJS5Ys0QsvvGA7bjabNWbMGFt7bXPo0CGjI1TZb1egKE///v21du1a7d+/30GJAACoHQYOHKiNGzdq+/bt6t69u0aMGKF//OMfevvtt7V//3716NFDx44d0/Lly2UymfToo49WeazfLwn/wQcfXPWcuLg4FRYWKjQ0VJMmTbIdb9eund5880316tVLb7zxhp5//nldf/31Vc4GAEBNV+Ei+7Bhw9SzZ0/16NFD3bp1u2QWgJubm+6++261bt1aBw8eVF5enr799lt988032rJli7755hu7hwcAANfOqGv8qVOnLtsWHh6ut99+u0L7wAG13b59+7R+/Xrb0vHSxSXi6+MM9t9LTU1VTk6OHn74YeXm5qpZs2ZKTExkBjvKNXnyZI0bN05Lly7V4cOH1bZtW40YMaJWzmCvDwoKCiRJ7u7uBicB8HvZ2dk6efKkQ8Y6cOBAmf86QtOmTdWmTRuHjQdU1kMPPaSMjAzl5uZKujjbPDExUWFhYbat3koNGzbMoZ+ZrVarPv74Y0nSmDFjLmnv2bOnOnfurL1792rVqlV64oknHJYNAABHq3CRPSkpyXYBdXFx0a233irp4p6Ip06dUpMmTcr0d3FxUY8ePdSjRw+NHz/efokBAIBdcY0HjNe3b996PWv9Sry8vLR+/XqjY6CWKF06HjWb1WrVihUrJEm9evUyOA2A38rOztY9AweqoLDQoeP+djZsdXNzddXadesotKPGat++vRYtWlTmWGhoqA4ePKi1a9fq0KFDcnd315133qnbbrvNodkOHz6so0ePSrr8NbxXr17au3evtm7dSpHdQaxFVlkLrEbHsDtrUd37nQDULRUusufk5Ojrr7+2PbZv3y6TyaS0tDS1aNFCgYGB6tu37xWXfAUAADUP13gAAOBIixYtUlpamlxcXDRu3LjL9issLFThbwp9eXl5DkgH1G8nT55UQWGhonua1baxyeg4dnf4tFWxWwp18uRJiuyodRo3bqywsDBDM6Snp0uSXF1dL/v/Q35+fmX6ovoVpRQZHQEA6qUKF9mbN2+uQYMGadCgQZIu7qHq7Oystm3bqmvXrvryyy+1Y8cOSZLJZFK3bt1ss9x69Ohhu7gCAICahWs8AABwlB07duiZZ56RJM2cOVP+/v6X7RsTE6Pp06c7KhqA32jb2KSOzZyMjlENSowOANRqpVtJNGnSRCZT+TfiNG3atEzfy6nKzXT55vyKRq1V6urvhZqHLWEA+6pwkf33zGazpIt3pq1atUolJSXavn27Ro4cqYyMDB0+fFhpaWmaP3++pIvLPP7yyy/2SQ0AAKpNTbjGL1myREuWLLHrawIAAGMdPHhQgwYNUkFBgUaMGKGJEydesf/UqVM1YcIE2/O8vDz5+vpWd0wAAGqEH374QfHx8fryyy+VlZWlwsJCXbhwwda+cOFC/fTTT4qOjlajRo0ckqmgoEDSxS16LsfV1VWSdP78+Su+VmVupmvatKlcXVy1s/HOCiatfVxdXG03KADVgS1hAPurcpH995ycnBQcHKyWLVsqIyNDOTk52rdvn7755htt3rxZ33zzjb2GAgAADsQ1HgAAXKtffvlF/fv319GjR/WnP/1JS5YsuewMuFKurq62L+orgpk5AIC64l//+pfGjx9fpqj+++tmYWGhZs2apS5duugvf/mLQ3K5ublJkoqKLr88eensdHd39yu+VmVupmvTpo3WfbbOodf5SZMmKS4u7oqr7tgT13lUN7aEAezPbkX28nTq1EmdOnXSqFGjqvwaVqtVmzdv1qpVq7Rp0ybt3btX586dU4sWLdSjRw89/fTT6tOnjx1TAwCAq7HHNR4AANQPubm56t+/vw4cOKDevXtrxYoVcnZ2tusY2dnZGjhgoAqL6u7MHFcXV637jJk5AFDXbdiwQVFRUWrYsKH++c9/avDgwRo+fLi+/vrrMv0eeughjRs3Th9//LHDiuylM61PnTolq9Va7g1zpYXwq83KruzNdG3atHH4NdDf319dunRx6JhV4RLiIqcmdW+Lj5JTJew3Xw3YEgawn2sqspeUXPpHa7Var+UlL7F+/Xrdfffdki7OpOvQoYM8PDyUnp6upKQkJSUladq0aZoxY4ZdxwUAoD5zxDUeAADUffn5+br33nu1a9cude/eXatXr77qzLaqOHnypAqLCtX1dFd5Wjzt/vpGyzfna2fjnczMAYB64NVXX5Ukvf/++/rTn/4k6dJZ7JLUqlUr+fr66scff3RYto4dO0q6OFs9Oztb3t7el/TJzMws0xfVz+Riksmt7s1MNrnUvd8JQN1i95nsr7/+uk6fPm2317NarerQoYMmTJigsLAw2x1wRUVFevHFFxUTE6OZM2cqODhYgwYNstu4AACgLHtf4wEAQN1WWFio++67T1u3blWXLl20bt06NWzYsFrH9LR4qvGFxtU6BuoOthgAUBN98803atWqla3AfiWtW7fWnj17HJDqorZt26pVq1b65ZdftHnzZj300EOX9Nm8ebMkKTg42GG5AAAwgt2L7IGBgXZ9vdtvv1179uxRgwZlo7q4uOjll1/Wd999p7Vr12rRokUU2QEAqEb2vsYDAIC6y2KxKCwsTOvXr5e/v78+//xzNWvWzOhYgE12drYG3HOPigoKHDquI7cYcHFz02dr11JotxNuyoCj5Ofnq127dhXqW1RUJIvFUs2J/sdkMun+++/X/PnztXjx4kuK7Fu2bNHevXvl7OyswYMHOywXAABGqNY92e2hUaNGV2zv37+/1q5dq/379zsoEQAAAAAAuJLly5dr5cqVki5u/fbggw+W269169ZasWKFA5MBF508eVJFBQU698ADKmnRwug4dud0/Lj00UdsMWAn2dnZGjjwHhUW1t2bMlxd3bRuXeVvyuDmA/tr3bp1hX7HgoIC7d27V+3bt3dAqv+ZNGmSFi9erOTkZMXFxWnixIkymUz66aefNHr0aEnS448/rlatWjk0FwAAjlbji+xXU/B/dxxXx55uAAAAAACg8goLC20/p6enKz09vdx+FZ2pB1SXkhYtVEIRGldx8uRJFRYWyPW2++Tk2dzoOHZXkn9ChTtWVfqmjIs3Hwws87/5juDYmw9ctW7dOocW2vv06aO3335bb775pq1oXZ558+apoKBAAwYMqPJYmzdv1n333Wd7np+fL0mKiYnR3LlzbcfT0tLk6+srSWrfvr0WLVqkxx57TJMnT9a8efPUsmVL7dq1S8XFxerWrZvi4uKqnAkAgNqiVhfZrVar7Y73Xr16GZwGAAAAAABIUnh4uMLDw42OAQB25eTZXOYmrY2OUWNcvPmgUG28esrFubHRceyuqPi0snO2OHxFiClTpmjp0qX629/+pvPnz2vUqFFl2k+dOqX4+HjNmDFDHh4eGj9+fJXHKi4u1okTJy45fu7cOZ07d872/PdL0o8cOVIdOnRQTEyMtmzZoh9//FF+fn4aPny4pkyZIjc3typnAgCgtqjVRfZFixYpLS1NLi4uGjdu3GX7FRYWlrmjMi8v74qv68hljqTatdQRS0DZz/nz55WZmemQsX7Lz8+vRq/8wPuCyjDq70XibwYAAAC1A99xAKhuLs6N5e7azOgYdUanTp30zjvvaNSoUYqKitL48eNlNpslSW3bttXRo0dVUlIiFxcXvffee7YZ5lUREhIiq9VapXN79uyp1atXV3lsAABqu1pbZN+xY4eeeeYZSdLMmTPl7+9/2b4xMTGaPn16hV43OztbAwcMVGGRY5c5khy81JGLq9Z9VrmljlgCyr4yMzM1dOjQah/n95KSktSlSxeHj1tRvC+oDKP+XiT+ZgAAAFDzGfU5Xqq7n+UBwBEeeugh3XDDDXrxxRe1du1a25apP//8s5ydnXXPPfdoxowZ6tq1q8FJAQB1ncVSqAuWAqNj2J3Fcu2fkWplkf3gwYMaNGiQCgoKNGLECE2cOPGK/adOnaoJEybYnufl5V32Dr+TJ0+qsKhQXU93lafF0665a4p8c752Nt5Z6aWOSpeAcv6js5waOVVjQmOU5JWo8JtChy0B5efnp6SkpEqfd+DAAU2aNElxcXFXvLnkSuPWZLwvqAyj/l5KxwYAAABqsrr+OV5y/Gd5AHCUm2++WR999JGKi4u1f/9+nT59Wp6enurYsSMr6wEAHObIsfVGR6ixal2R/ZdfflH//v119OhR/elPf9KSJUtkMpmueI6rq6tcXV0rNY6nxVONL9S9vYTswamRk5ya1c0P547k7u5+TbNg/f396+QsWt4XVAZ/LwAAAMDV8TkeAGovZ2dnvrsAAKAGqlWfsHJzc9W/f38dOHBAvXv31ooVK+Ts7Gx0LAAAAAAAAAAAAABAPVFrZrLn5+fr3nvv1a5du9S9e3etXr2aZXEAAAAAAAAAALXWO++8c82vMXLkSDskAQAAlVEriuyFhYW67777tHXrVnXp0kXr1q1Tw4YNjY4FAAAAAAAAAECVhYeHX3U71CsxmUwU2QEA1cb3+r5yc21qdAy7Kyg8ec37zdf4IrvFYlFYWJjWr18vf39/ff7552rWrJnRsQAAAAAAAIA66UyhVacKrEbHsLszhXXvd0Lt17Zt28sW2X/66Se5urqqVatWDk4FAMBFZrOrGpjdjI5hd2az6zW/Ro0vsi9fvlwrV66UJDk5OenBBx8st1/r1q21YsUKByYDAAAAAAAA6p4p6y2SLEbHAOqFQ4cOXbbNyclJ3bt318aNGx0XCAAAVEiNL7IXFhbafk5PT1d6enq5/dq1a+eoSAAAAAAAAAAAAACAesrJ6ABXEx4eLqvVetXHle74AwAAAAAAAADg/7d37/FR1Pf+x9+by25WIGEJoCwSMDFqjQpiFAGFoIgonFPEYhFPFdT2eKiiRYKAVmv1CJUjXqvWS6FIRVRi0RYicok3bkIiVWsRExQkolwCAUw2Ifv9/cEvq2s2Idns7uxuXs/HYx8xM/Od+cy3G95pPjszAAAAoRD1V7IDAAAAAAAAgNVMTZWM57DVZYScqamyugQAAICYQ5MdAAAAAAAAgM8fLkpUpivqb4DZYmUV3v//vPngVK9bGMJq4kddnUdH6qqtLiPk6uo8x94IAAC0WTTZAQAAAAAAAPh0cNjUMcVmdRkh18ERf+cUDXZ8s8rqEgAAACIu/j6SCgAAAAAAAAAAAABAmHAlOwAAAAAAAAAAFnjnnXeaXH/gwIFjbjNo0KBQlgQgjh30GO2vNlaXEXIHPfF3Toh+NNkBAAAAAEBcqLXVymOLv2fo1tpqrS4BgKSU869WYtrxVpcRcnUHvuF58xbKy8uTzRb4UQY2m00ff/yxhgwZ0uh4m82mI0eOhKs8AHHmjlV1kuqsLgOICzTZAQAAAABAXNjg2mB1CQDimM3ulM3RzuoyQs5md7ZqfI/jL1KKwxWiaqJHtaciYs+bNyb4KzBbMxbxwVvptbqEsGjteSXs2ROiSqJLvJ6X1crLy1VRURGRY5WWlvp9jQSXyyW32x2x47UVNNkBAAAAAADQNlVVyXb4sNVVhF5VldUVoA1JTHQoKTHF6jJCLjHREZHjeL3x2SBF+LlcLjkcDnnWxd9dfOo5HA65XC37EI/L5ZI9JUVavDhMVVnPnpLS4nlB48rLyzV8+GXyeKojetz8/PyIHcvhSFFh4TIa7SFGkx0AAAAAAABtUvv5860uAQCAoLjdbhUWFkb06tv8/HzNnj1bWVlZETlmMFffut1uvblsGfOCZquoqJDHUy1H358qoX261eWEnPfQXnmKl6iiooL3TYjRZAcAAAAAAAAAAIgxbrc74k2zrKws5eTkRPSYLcW8NO4PFyUq05VgdRkhV1bh/f/Pmw9eQvt0JXbsFqKK0BbQZAcAAAAAAHHhvIrz1OFIB6vLCLmDSQd53jwAAABarYPDpo4pNqvLCLkOjvg7J0Q/muwAAAAAACAuJJtkOUxknqEbSdUmss+HBAAAAAA0jSY7AAAAAAAA2qRD114rc8IJVpcRcrZdu3jePAAAABBGNNkBAAAAAADQNjmdMu3aWV1FyNmcTqtLAAAAAOJagtUFAAAAAAAAAAAAAAAQK7iSHQAAtDm1tlp5bB6rywi5Wlut1SUAAAAAAAAAQNyjyQ4AANqcDa4NVpcAAAAAAAAAAIhRNNkBAACg8vJyVVRURORYpaWlfl8jweVyye12R+RYVVVVKisri8ixfigzM1POKH7+qlXzIjE3jWFeAov2eQEAAAAAhJ6pqZLxHLa6jJAzNVVWlxC3aLIDAAC0ceXl5Ro+fLg8nsjeQj8/Pz9ix3I4HCosLIxIo72srEyjR48O+3F+rKCgQDk5ORE/bnNZNS8Sc9MY5iWwaJ8XIBimxshUG6vLCAtTE5/nBaBtS0xMVF5enlauXGl1KQDQZlSvW2h1CYgxNNkBAADauIqKCnk8HiWfn6yE1ASrywk5b6VXnnUeVVRURKTJnpmZqYKCghaPKy0tVX5+vmbPnq2srKygjhvNgp0XiblpDPMSWLzPCxCMmqIaq0sAALSAMUbG+H+IaNKkSfrkk09ovANole0HjCSv1WWE3NHzAiKLJjsAAGhzzqs4Tx2OdLC6jJA7mHSwVc+bT0hNUEKn+GuyR5rT6WzVVbBZWVlxeRVta+dFYm4aw7wEFq/zAgAA4suNN96oAQMGqH///vrJT37S6HYlJSVas2ZNBCsDEE9cLpdSHA7NWhPZuxhGUorDIZfLZXUZaENosgMAgDYn2STLYRxWlxFy1aba6hIAAAAAAC3w5z//WXPnzpUkpaWl6fzzz5ckVVVV6ciRI0pK4k/4AFrP7XZrWWGhKioqInK81t5hLBgulysidzAE6pHQAAAAAAAAAABYoLS0VGvWrNGaNWv0/vvva/ny5bLZbNqwYYPS0tI0cOBADRkyRHv37rW6VAAxzu12R7wJHUt3GEs5/2olph1vdRkhV3fgG543HyY02QEAAAAAAOKYPc+uhI7x+UgY734vz5wHENNOOukknXTSSbrmmmskSQcPHlRaWprcbrdOPvlkvfPOO1qxYoUkyWazKS8vTwMGDNDAgQPVv39/derUycryASBu2OxO2RztrC4j5Gx2p9UlxC2a7AAAAAAAAHHMZrfJlmKzuoywsNnj87yAWFJTe8DqEsLCqvPq0KGDJOmUU07RqlWrVF1drffee0833XSTtm3bpnXr1umdd96RzXb0379TTz1V//rXvyypFQCAtowmOwAAAAAAAACgRVwulxwOh8p3r7G6lLBxOBxyuVxhPcbPfvYzDRgwQP3799c555wju93utz4lJUVDhw5Vt27dtG3bNlVWVmrTpk1at26d1qxZo3Xr1oW1PgAAEBhNdgAAAAAAAAA+2w8YSV6rywi5o+eFUHG73SosLFRFRUVEjldaWqr8/HzNnj1bWVlZETmmy+UK+/OLCwoK9Nprr0mS7Ha7zj77bElSZWWl9u/fr44dO/ptb7fb1b9/f/Xv31+/+c1vwlobAABoHE12AAAAAAAAAHK5XEpxODRrjcfqUsImpRVXJnsP7Q1xNdGhNefldrvD3oT+saysLOXk5ET0mOG0e/durV271vf64IMPZLPZVFJSos6dO6tPnz666KKL9M0331hdKgAA+AGa7AAAAAAAAADkdru1jCuTA45xOFLkKV4Spqqs53CkhP226AgsPT1dI0eO1MiRIyVJdXV1Sk5OVkZGhnr37q23335bxcXFkiSbzaZzzjnHdyV7//79lZmZaWX5AAC0WTTZAQAAAAAAAEjiyuRAjt4WfRkfPkBEJCYmSpIyMzO1ZMkSeb1effDBB7r22mv1+eefa/v27SopKdFTTz0lSerSpYt27dplZckAALRJNNkBAAAAAAAAoAl8+ABWSUhIUL9+/dS1a1d9/vnn2r17t7Zs2aJ169bp/fff17p166wuEQCANokmOwAAAAAAAAAAMeLUU0/Vqaeequuuu87qUgAAaLNosgMAAAAAAAAAECW8Xm+DZcYYCyoBAACNockOAAAAAAAAAEAUe+KJJ3TgwAGrywCAuOU9tNfqEsKitedVUxuf2ROK86LJDgAAAAAA4sKhxENWlxAW8XpeAIDm69Onj9UlAEBccrlccjhS5CleYnUpYeNwpMjlcrVozNF5cah895owVWU9h8PR4nn5IZrsAAAAAAAgprlcLjnsDm1O22x1KWHjsLfuD0AAAAAAGnK73SosXKaKioqIHK+0tFT5+fmaPXu2srKyInJMl8slt9vdojFH56WQeWkCTXYAAAAAABDT3G63Ct/kD0AAAAAAWs7tdkf8d+2srCzl5ORE9Jgtxbw0jSY7AAAAAACIefwBCAAAAAAQKQlWFwAAAAAAAAAAAAAAQKzgSnYAAAAAAAC0SQl79lhdQljE63kBAAAA0YImOwAAAAAACJulS5dqzpw5Ki4ulsfj0amnnqoJEybo17/+tRISuMEerOFyuWRPSZEWL7a6lLCxp6TI5XJZXQaAODV+/Hj95S9/aXKbqqoqpaSkRKgiAAAiiyY7AAAAAAAIi1mzZmn69OmSpMzMTLVv316bN2/WpEmTtGLFCr322ms02mEJt9utN5ctU0VFRUSOV1paqvz8fM2ePVtZWVkROabL5ZLb7Y7IsQC0XdnZ2eratWvAdWQ8ACCe0WQHAAAAAAAht3btWs2YMUMJCQlasGCBrr76aknS5s2bdemll+r111/XnDlzNGXKFIsrRVvldrsj3oTOyspSTk5ORI8JAOE0Y8YMjR8/3uoyAACIOD5KBgAAAAAAQu7++++XMUY33nijr8EuSb1799acOXMkHb3Svba21qoSAQAAAAAICk12AAAAAAAQUpWVlVqxYoUk6YYbbmiwfsyYMUpNTdXevXu1evXqSJcHAAAAAECr0GQHAAAAAAAhVVJSopqaGqWkpKhv374N1icnJ+vcc8+VJK1fvz7S5QEAgBB59dVXNWrUKF100UUaO3asHn/8cR04cMDqsgAACDueyQ4AAAAAAEJq69atkqSMjAwlJQX+00NmZqZWrlzp2/bHPB6PPB6P7/vKysrQFwoAAFrlH//4h9/3ixYt0j333KMXX3xRw4cPb3QcOQ8AiHVcyQ4AAAAAAEKqoqJCkuRyuRrdpn5d/bY/NnPmTKWlpflePXr0CH2hAAAgKFlZWXrggQe0efNmVVZW6uDBg1q+fLn69euniooKjRo1Shs3bmx0PDkPAIh1NNkBAAAAAEBIVVdXS5Lsdnuj2zgcDklSVVVVwPXTp0/XgQMHfK8dO3aEvlAAABCU3/72t5o+fbrOOussdejQQe3bt9cll1yid955R+edd548Ho/uuOOORseT8wCAWMft4gEAAAAAQEilpKRIkmpqahrdpv4WsU6nM+B6h8Pha8QDAIDYYLfbdd999+nSSy9VUVGRKioqAt7ZhpwHAMQ6rmQHAAAAAAAhdaxbwf9wXVO3lAcAALGnf//+kiSv16uysjKLqwEAIDxosgMAAAAAgJDKzs6WJG3fvl1HjhwJuE39H93rtwUAAPEhOTnZ99+N/R4AAECs43bxAAAAAAAgpM4++2wlJyerurpaxcXFOu+88/zW19bW6oMPPpAk9evXz4oS2xRvpdfqEsImns8NiFdVVVVBXd1cWlrq97WlMjMzG31ECULrk08+8f33iSeeaGElAACED012AAAAAAAQUqmpqRo6dKiWLVum559/vkGT/ZVXXlFlZaXS09OVl5dnTZFtgMvlksPhkGedx+pSwsrhcPDYASCGlJWVafTo0UGPz8/PD2pcQUGBcnJygj4umu+hhx6SJJ122mnq3r27xdUAABAeNNkBAAAAAEDI3XnnnSosLNRzzz2nvLw8XX311ZKkzZs3a/LkyZKkqVOnym63W1lmXHO73SosLFRFRUXEjllaWqr8/HzNnj1bWVlZETmmy+WS2+2OyLEAtF5mZqYKCgosOS5C46233tKqVav0q1/9SieddJJv+YEDB/Tb3/5WCxculCTdfffdVpUIAEDY0WQHAAAAAAAhN3DgQN1333266667NG7cON11111q3769Pv74Y3m9Xo0YMUK333671WXGPbfbbUkDOisriytGAQTkdDr59yHGHT58WLNmzdKsWbPUvXt3ud1u1dbW6l//+pdqampks9l09913+z5gBwBAPKLJDgAAAAAAwuLOO+9U79699fDDD2vTpk3atWuXzjzzTE2YMEE333yzEhMTrS4RAAC00DnnnKM777xTa9eu1eeff66PP/5Yxhh1795dF154oSZOnKh+/fpZXSYAAGFFkx0AAFjGGKP3339fS5Ys0bvvvqt///vf+u6779S5c2f1799fN998s4YMGWJ1mQAAoBVGjhypkSNHWl0GAAAIkR49euj++++3ugwAACxFkx0AAFhm1apVGjp0qCQpISFBJ598stq1a6etW7eqoKBABQUFuuuuu3TfffdZXCkAAAAAAAAAAEclWF0AAABou4wxOvnkk/Xkk09qz5492rJli4qLi7V3715Nnz5dknT//ffr73//u8WVAgAAAAAAAABwFFeyAwAAy5x33nn69NNPlZTk/yuJ3W7XAw88oA8//FDLli3Ts88+y21mAQAAAABAs1VVVamsrKzF40pLS/2+tlRmZqacTmdQYwEAsYMmOwAAsExqamqT6y+55BItW7ZMn332WYQqattMjZGpNlaXEXKmJvhz2rdvXwgradqBAwd8XyN13E6dOkXkOAAAAAAQaWVlZRo9enTQ4/Pz84MaV1BQoJycnKCPCwCIDTTZAQBA1KqurpYkPgEeITVFNVaXEHX69+8f8WNOmDAhYsfasmVLxI4FAAAAAJGUmZmpgoICS44LAIh/NNkBAEBUMsbolVdekSQNHDiw0e08Ho88Ho/v+8rKymPu+1DiodYXGIXi9bwQPuXl5XK73UGNq6ioCENFgbX2do3BcLlcUT83zEtgsTQvAAAACB+n08kV5QCAsKHJDgAAotKzzz6rkpIS2e123XbbbY1uN3PmTN17773N2qfL5ZLD7tDmtM0hqjL6OOwOuVwuq8uIC+Xl5VaXEHaXXnaZ3ly2rEXNwfLycl02fLiqf/DhlkgJ9naNwUhxOLSssLDFczN8+GXyeKrDWFlDkZwXhyNFhYUtf88MHz7c7wNRkRDZeXGosIXvFwAAAAAAELtosgMAgKhTXFysW2+9VZJ0//33Kysrq9Ftp0+frsmTJ/u+r6ysVI8ePQJu63a7VfhmYUSvpszPz9fs2bObPIdQ4mrK0InkldpWqamuVkVFRYveMxUVFar2eDRtQKIy0mxhrM462w8YzVrjCWpuPJ5qOfr+VAnt08NYoTW8h/bKU7wkyHnxyN1lgOzJaWGs0Bo1tQdUvntNi+cFAAAAAADErphosm/btk0rVqzQhg0btGHDBn3yySeqq6vTfffdp7vuusvq8gAAQAht27ZNI0eOVHV1tcaNG6cpU6Y0ub3D4ZDD4Wj2/t1ud8SbIFlZWTFxizp7nl0JHROsLiPkvPu9rXre/KFrr5U54YQQVhQdbLt2qf38+UGPz0izKbtT/L1fjvK2anRC+3QlduwWolrihz05TU5HJ6vLAAAAAAAAaLWYaLI/+uijevTRR60uAwAAhNmuXbt0ySWX6Ouvv9aIESM0b9482WzxeaVsNLLZbbKlxN982+ytPCenU6Zdu9AUE0VsTqfVJQAAAAAAAAAxKSYuPencubNGjhyp3//+91q2bJmuvPJKq0sCAAAhtm/fPl1yySUqLS3V4MGD9corryg5OdnqsgAAAAAAAAAA8BMTV7L/+JbwL730kkWVAACAcDh06JAuv/xyffzxxzr33HP1xhtvyMlVtgAAAAAAIIJqamr04osvavv27crIyNC4ceNkt9utLgsAEIVioskOAADil8fj0U9/+lOtX79eOTk5KiwsVIcOHawuCwAAAAAAtCEPPvig5s2bp7q6Or9l48eP19SpUy2sDAAQjWiyN6LWViuPzWN1GWFRa6tt1XhTY2SqTYiqiR6mJvhz2rdvXwgradqBAwd8XyN13E6dOgU1jnkBcCx1dXUaO3asVq1apaysLL311lv8bAEAAAAAgIh68MEH9fzzzys9PV233XabhgwZotWrV+uRRx7R888/L0k02gEAfmiyN2KDa4PVJUStmqIaq0uIOv3794/4MSdMmBCxY23ZsiWoccwLgGN5+eWX9be//U2SlJCQoDFjxgTcrlu3bnrllVciWBkAAAAAAGgLampqNG/ePKWnp+udd95RUtLRtslVV12l0aNHa9CgQZo3b55uu+02bh0PAPBpE012j8cjj+f7q9IrKystrAaIPeXl5XK73VaXEXWCnZfy8nJVVFS0aIzH49FXX33V4mO11oknniiHw9GiMS6XK2LzEqzS0lK/r5ES7NzEsx/m89atW7V169aA2/Xs2TNSJQEAAAAAgDbkxRdfVF1dnW677TZfg71eUlKSbr31Vt1999168cUXNX78eGuKDKGqqiqVlZW1eFxr/56WmZkpp9MZ1NhIYF4CY14ax9wE1pbmpU002WfOnKl77723Wdu6XK4wVxMdHHZHmznXcCsvL7e6hLC79LLL9OayZS1qDraFebls+HAtKyxs8bwMH36ZPJ7qMFZmLYcjRYWFLX+/DB8+3K/hGgn5+fkRPZ7D4VBhC98z8W78+PFx8X9QAQAAAABAbNq+fbskaciQIQHX5+Xl+W0X68rKyjR69Oigxwf797SCggLl5OQEfdxwY14CY14ax9wE1pbmpU002adPn67Jkyf7vq+srFSPHj0CbttWGh+Fb9LkCZVIXXlrpZrqalVUVLToPdMW5qXa4wlqXjyeajn6/lQJ7dPDWJ01vIf2ylO8JMh58cjdZYDsyWlhrNA6NbUHVL57TYvnBgAAAAAAAOGTkZEhSVq9erWuuuqqBuuLior8tot1mZmZKigosOS40Yx5CYx5aRxzE1hbmpc20WR3OBwtut3x2rVrw1hNQ//+9781YcIEzZ07V6eddlpEjtmpU6egx9rz7EromBDCaqKDd7+3Vc+bP3TttTInnBDCiqKDbdcutZ8/P+jxf7goUZmu+Hu/lFV4dcequqDHJ7RPV2LHbiGsKD7Yk9PkdAT/7xMAAAAAAADQEuPGjdODDz6oRx55RKNHj/a7ZfyRI0f06KOPKjExUePGjbOwytBxOp1RfRWsVZiXwJiXxjE3gbWleWkTTfaWak0DOhhpaWm+r5E+djBsdptsKTarywg5m72V5+R0yrRrF5piooitlc+w6OCwqWMcvl86OOLvnAAAAAAAAIC2xm63a/z48Xr++ec1aNAg3XrrrcrLy1NRUZEeffRR7d27VzfccIPsdrvVpQIAoghNdgAAAAAAAABA1Kqrq9PGjRu1e/dudenSRbm5uUpMTLS6LMSRqVOnSpLmzZunu+++27c8MTFRN9xwg289AAD1aLIDAAAAAAAAAKLS8uXLNWvWLO3cudO3rHv37po2bZqGDRtmYWWIN1OnTtVtt92mF198Udu3b1dGRobGjRvHFewAgIBosgMAAAAAAAAAos7y5cs1adIk5eXlac6cOcrOztbWrVv19NNPa9KkSXrsscdotCOk6m8dDwDAsSRYXUBzvP/+++rcubPv9dJLL0mSZs6c6bd8x44dFlcKAAAAAAAAAGituro6zZo1S3l5eXryySfVp08ftWvXTn369NGTTz6pvLw8/eEPf1BdXZ3VpQIAgDYoJprstbW12rt3r+/l8XgkSd99953fcn6hAgAAAAAAAIDYt3HjRu3cuVM33XSTEhL8/4ydkJCg//7v/9ZXX32ljRs3WlQhAABoy2LidvF5eXkyxlhdBgAAAAAAAAAgAnbv3i1Jys7ODri+fnn9dgAAAJEUE1eyAwAAAAAAAADaji5dukiStm7dGnB9/fL67QAAACKJJjsAAAAAAAAAIKrk5uaqe/fuevrpp+X1ev3Web1e/elPf9KJJ56o3NxciyoEAABtGU12AAAAAAAAAEBUSUxM1LRp01RUVKSJEyeqpKREhw4dUklJiSZOnKiioiLdcccdSkxMtLpUAADQBsXEM9kBAAAAAAAAAG3LsGHD9Nhjj2nWrFkaO3asb/mJJ56oxx57TMOGDbOwOgAA0JbRZAcAAAAAAAAARKVhw4bp4osv1saNG7V792516dJFubm5XMEOAAAsRZMdAAAAAAAAQNCqqqpUVlbW4nGlpaV+X1sqMzNTTqczqLGRwLyETmJiovr162d1GQAAAD402QEAAAAAAAAEraysTKNHjw56fH5+flDjCgoKlJOTE/Rxw415AQAAiF802QEAAAAAAAAELTMzUwUFBZYcN5oxLwAAAPGLJjsAAAAAAACAoDmdTq6cDoB5AQAAiF8JVhcAAAAAAAAAAAAAAECsoMkOAAAAAAAAAAAAAEAz0WQHAAAAAAAAAAAAAKCZaLIDAAAAAAAAAAAAANBMNNkBAAAAAAAAAAAAAGgmmuwAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM1Ekx0AAAAAAAAAAAAAgGZKsroAAAAAAAAAK1RVVamsrKzF40pLS/2+tlRmZqacTmdQYwEAAAAA1qPJDgAAAAAA2qSysjKNHj066PH5+flBjSsoKFBOTk7QxwUAAAAAWIsmOwAAAAAAaJMyMzNVUFBgyXEBAAAAALGLJjsAAAAAAGiTnE4nV5QDAAAAAFosweoCAAAAAAAAAAAAAACIFTTZAQAAAAAAAABAiyxdulRDhw5Vp06d1K5dO/Xt21ePP/64vF6v1aUBABB23C4eAAAAQIsd9BjtrzZWlxEWBz2tOy9TUyXjORyiaqKHqalq1fi6Oo+O1FWHqJroUVfnsbqEqHPw4EEtWbJEhYWF2rBhg3bs2CGbzaaTTjpJl19+uSZPnqxu3bpZXSYAAGiFWbNmafr06ZKkzMxMtW/fXps3b9akSZO0YsUKvfbaa0pI4Bo/AED8oskOAAAAoMXuWFUnqc7qMqJS9bqFVpcQlXZ8s8rqEhAhEydO1IIFCyRJHTp00GmnnabDhw9ry5Yt+te//qW5c+dq2bJlOvfccy2uFAAABGPt2rWaMWOGEhIStGDBAl199dWSpM2bN+vSSy/V66+/rjlz5mjKlCkWVwoAQPjQZAcAAIAkyVsZn7f0a+15JezZE6JKoku8nheA6DBq1CjdfPPNGjx4sJKSjv7pobS0VOPGjdOGDRt05ZVXasuWLXI6nRZXCgAAWur++++XMUa//OUvfQ12Serdu7fmzJmja665RrNmzdKtt96q5ORkCysFACB8aLIDAAC0cS6XSw6HQ5518XvLY4fDIZfL1aIxLpdL9pQUafHiMFVlPXtKSlDz0hakBPmeiXcOB++ZQIL5NyaePfroo+rUqVOD5VlZWXr11Vd18skna8eOHSosLNQVV1xhQYUAACBYlZWVWrFihSTphhtuaLB+zJgx+p//+R/t3btXq1ev1rBhwyJdIgAAEUGTHQAAoI1zu90qLCxURUVFRI5XWlqq/Px8zZ49W1lZWRE5psvlktvtbtEYt9utN5ctY15+pKXbx6plhYXMTQCFhcuYlwAKg3i/xLNADfZ6PXr00GmnnaZ//vOf+uyzzyJYFQAACIWSkhLV1NQoJSVFffv2bbA+OTlZ5557rlauXKn169fTZAcAxC2a7AAAAJDb7Y54gygrK0s5OTkRPWZLMS+BrV27NqLH+/e//60JEyZo7ty5Ou200yJyzKaahE2J5NwwL4HF0ry0VdXV1ZLEreIBAIhBW7dulSRlZGT4HgnzY5mZmVq5cqVvWwAA4hFNdgAAAAAtEumGYlpamu9rtDczI1kf8xJYLM1LW7R582bfFewDBw60uBoAANBS9Xf6aupROfXrmrormMfjkcfz/SPLKisrQ1QhAACRkWB1AQAAAAAAIP7V1dXplltukSRddNFFOuecc5rc3uPxqLKy0u8FAACsVX9HGrvd3ug2DodDklRVVdXoNjNnzlRaWprv1aNHj9AWCgBAmNFkBwAAAAAAYTdjxgy9++676tChg5555pljbs8f3wEAiD4pKSmSpJqamka3qb9CvalHw0yfPl0HDhzwvXbs2BHaQgEACDNuFw8AAAAAACRJU6dO1euvv97icXPnzlX//v0bXf/000/rwQcfVFJSkhYuXKisrKxj7nP69OmaPHmy7/vKykoa7QAAWKw5t4Jvzi3lHQ6H74p3AABiEU12AAAAAAAgSSovL9eWLVtaPO7w4cONrlu0aJF+/etfy2azad68eRoxYkSz9skf3wEAiD7Z2dmSpO3bt+vIkSNKSmrYYigrK/PbFgCAeMTt4gEAAAAAgCRpwYIFMsa0+DV06NCA+1u6dKl+8YtfyOv16oknntA111wT4TMCAAChdPbZZys5OVnV1dUqLi5usL62tlYffPCBJKlfv36RLg8AgIihyQ4AAAAAAELunXfe0c9+9jPV1tZq5syZmjhxotUlAQCAVkpNTfV9uO75559vsP6VV15RZWWl0tPTlZeXF+HqAACIHJrsAAAAAAAgpDZt2qT/+I//UFVVlaZPn65p06ZZXRJgmbq6On388ceSpI8//lh1dXUWVxQd6urqtH79ev3973/X+vXrmRcghtx5552y2Wx67rnntHDhQt/yzZs3a/LkyZKkqVOnym63W1UiAABhxzPZAQAAAABAyGzZskXDhw9XZWWlJk6cqAceeMDqkoCQqaqq8j1ruDnWrVunefPm6dtvv5Uk3X333XriiSc0fvx4nX/++c3eT2ZmppxOZ4vrjVbLly/XrFmztHPnTt+y7t27a9q0aRo2bJiFlQFojoEDB+q+++7TXXfdpXHjxumuu+5S+/bt9fHHH8vr9WrEiBG6/fbbrS4TAICwoskOAAAAAABCZtKkSdqzZ49sNps+/PBDXXDBBQG3u/7663X99ddHuDqgdcrKyjR69OhW7ePbb7/Vgw8+2KIxBQUFysnJadVxo8Xy5cs1adIkORwOv+V79+7VpEmT9Nhjj9FoB2LAnXfeqd69e+vhhx/Wpk2btGvXLp155pmaMGGCbr75ZiUmJlpdIgAAYUWTHQAAAAAAhIzH45EkGWO0Zs2aRrerf54rEEsyMzNVUFBwzO3q6ur061//WhkZGZo2bZoSEr5/YqPX69WsWbO0Y8cOPfHEE81qRGVmZraq7mhRV1ene+65R8YYnX/++fqf//kfZWdna+vWrXrqqadUVFSk3/3ud7r44otp0AExYOTIkRo5cqTVZQAAYAma7AAAAAAAIGSKioqsLgEIG6fT2awrytevX69vv/1Wjz/+uM4888wG66dMmaKxY8eqqqpK/fr1C0epUWnDhg3at2+f+vbtq6eeesr34YM+ffroqaee0jXXXKPi4mJt2LBB/fv3t7haAAAAoHEJx94EAAAAAAAAQHPt3r1bkpSdna26ujqtX79ef//737V+/XrV1dUpOzvbb7u2Yv369ZKkW2+91e/qfklKSEjQLbfc4rcdAAAAEK24kh0AAAAAAAAIoS5dukiSFixYoEWLFmnnzp2+dd27d9fPf/5zv+3aGmOM1SUAAAAArcKV7AAAAAAAAEAI5ebmqlOnTpozZ45OOeUULVq0SMXFxVq0aJFOOeUUzZkzR+np6crNzbW61IiqvzX+448/Lq/X67fO6/XqiSee8NsOAAAAiFY02QEAAAAAAIAwMcY0eLVV5513njp16qRNmzZp4sSJKikp0aFDh1RSUqKJEydq06ZNSk9P13nnnWd1qQAAAECTuF08AAAAAAAAEEIbN27Uvn37NHnyZC1cuFBjx471rXO73Zo8ebLmzJmjjRs3tqmrthMTE3Xvvffqlltu0dq1a7V69WrfupSUFEnS7373OyUmJlpVIgAAANAsXMkOAAAAAAAAhNDu3bslSXv37tW3337rt+6bb77Rnj17/LZrS4YNG6bHH39cnTp18luenp6uxx9/XMOGDbOoMgAAAKD5uJIdAAAAAAAACKEuXbpIkv7yl78oPT1dt912m4YMGaLVq1frkUce0fz58/22a2uGDRumiy++WBs3btTu3bvVpUsX5ebmcgU7AAAAYgZNdgAAAAAAACCEzjrrLElScnKyioqKZLfbJUlXXXWVRo0apb59+6q2tta3XVuUmJjYpm6VDwAAgPjC7eIBAAAAAACAEFq0aJEkqba2VpMmTVJJSYkOHTqkkpISTZo0SbW1tX7bAQAAAIgtNNkBAAAAAACAENq+fbsk6f7779dnn32msWPH6pxzztHYsWO1detW3XfffX7bAQAAAIgt3C4eAAAAAAAAfqqqqlRWVtbicaWlpX5fWyozM1NOpzOosdEkIyNDkmSM0VtvvdXg2eOvvvqq33YAAAAAYgtNdgAAAAAAAPgpKyvT6NGjgx6fn58f1LiCggLl5OQEfdxoMW7cOD344IN65JFHNHr0aL9njx85ckSPPvqoEhMTNW7cOAurBAAAABAsmuwAAAAAAADwk5mZqYKCAkuOGw/sdrvGjx+v559/XoMGDdKtt96qvLw8FRUV6dFHH9XevXt1ww03yG63W10qAAAAgCDQZAcAAAAAAIAfp9MZF1eUW2nq1KmSpHnz5unuu+/2LU9MTNQNN9zgWw8AAAAg9tBkBwAAAAAAAMJg6tSpuu222/Tiiy9q+/btysjI0Lhx47iCHQAAAIhxNNkBAAAAAACAMKm/dTwAAACA+JFgdQEAAAAAAAAAAAAAAMQKmuwAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJZ7IDAAAAAACg1erq6rRx40bt3r1bXbp0UW5urhITE60uCwAAAABCjiY7AAAAAAAAWmX58uWaNWuWdu7c6VvWvXt3TZs2TcOGDbOwMgAAAAAIPW4XDwAAAAAAgKAtX75ckyZN0imnnKJFixapuLhYixYt0imnnKJJkyZp+fLlVpcIAAAAACFFkx0AAAAAAABBqaur06xZs5SXl6cnn3xSffr0Ubt27dSnTx89+eSTysvL0x/+8AfV1dVZXSoAAAAAhAxNdgAAAAAAAARl48aN2rlzp2666SYlJPj/mSkhIUH//d//ra+++kobN260qEIAAAAACL2YarIvXbpUQ4cOVadOndSuXTv17dtXjz/+uLxer9WlAQCAViDjAQAAYtPu3bslSdnZ2QHX1y+v3w4AAAAA4kHMNNlnzZqlESNGaOXKlXK5XDr55JO1efNmTZo0SVdccQV/hAcAIEaR8QAAALGrS5cukqStW7cGXF+/vH47AAAAAIgHMdFkX7t2rWbMmKGEhAS9+OKLKi0t1ebNm1VcXKzjjz9er7/+uubMmWN1mQAAoIXIeAAAgNiWm5ur7t276+mnn27w4Uiv16s//elPOvHEE5Wbm2tRhQAAAAAQejHRZL///vtljNGNN96oq6++2re8d+/evj+8z5o1S7W1tVaVCAAAgkDGAwAAxLbExERNmzZNRUVFmjhxokpKSnTo0CGVlJRo4sSJKioq0h133KHExESrSwUAAACAkIn6JntlZaVWrFghSbrhhhsarB8zZoxSU1O1d+9erV69OtLlAQCAIJHxAAAA8WHYsGF67LHH9Nlnn2ns2LE655xzNHbsWG3dulWPPfaYhg0bZnWJAAAAABBSSVYXcCwlJSWqqalRSkqK+vbt22B9cnKyzj33XK1cuVLr16/n/7gBiAmmpkrGc9jqMkLO1FS1anxdnUdH6qpDVE10qavzWF1C1CHjAQAA4sewYcN08cUXa+PGjdq9e7e6dOmi3NxcrmAHAAAAEJeivsm+detWSVJGRoaSkgKXm5mZqZUrV/q2BYBoV71uodUlRKUd36yyugREEBkPAAAQXxITE9WvXz+rywAAAACAsIv6JntFRYUkyeVyNbpN/br6bX/M4/HI4/n+CsLKysoQVnhUVVWVysrKghpbWlrq97WlMjMz5XQ6gxobDG+lN2LHiqTWnlfCnj0hqiS6tPa8th8wkuLvPXP0vAC0RigyXorunI+1jG8p5iUw5iWwtvT7ckvxngmMeQEAAAAAANEq6pvs1dVHbxtst9sb3cbhcEg6+keYQGbOnKl777039MX9QFlZmUaPHt2qfeTn5wc1rqCgQDk5Oa06dnO4XC45HA551sXvLY8dDkeTzZ5AXC6X7Ckp0uLFYarKevaUlKDmJcXh0Kw18ft+SQny/RLvHI7g3i9tQTD/xsSzUGS8FBs5H+0ZHyzmJTDmJbC28PtysHjPBMa8AAAAAACAaBX1TfaUlBRJUk1NTaPb1F+91tjVBtOnT9fkyZN931dWVqpHjx4hrPLo1Q4FBQUh3WdLjh0JbrdbhYWFTV5NGIjH49FXX30Vpqoad+KJJ/qaM83lcrnkdrtbNMbtduvNZcuYlx9xu91axvulgZZuH4sKC5cxL40oLCxsM+faHKHIeCm+cz5SGR8s5iUw5iWwtvD7crB4zwTGvAAAAAAAgGgV9U325twm9li3m3U4HC1unrWU0+lsE1c7uN3uoBpEffv2DUM10YN5CYx5CWzt2rVWlxBWnTp1CmpcvM+LFPzcxKtQZLxEzluJeQmMeQmMeWkccxMY8wIAAAAAAKJV1DfZs7OzJUnbt2/XkSNHlJTUsOT65/TVbwsA0YxGa2DMS9tDxgMAAAAAAAAAYlGC1QUcy9lnn63k5GRVV1eruLi4wfra2lp98MEHkqR+/fpFujwAABAkMh4AAAAAAAAAEIuivsmempqqoUOHSpKef/75ButfeeUVVVZWKj09XXl5eRGuDgAABIuMBwAAAAAAAADEoqhvskvSnXfeKZvNpueee04LFy70Ld+8ebMmT54sSZo6darsdrtVJQIAgCCQ8QAAAAAAAACAWBMTTfaBAwfqvvvuk9fr1bhx45SVlaXevXurb9+++uabbzRixAjdfvvtVpcJAABaiIwHAAAAAAAAAMSamGiyS0evdHvjjTd00UUXae/evfr888915pln6pFHHtGSJUuUmJhodYkAACAIZDwAAAAAAAAAIJYkWV1AS4wcOVIjR460ugwAABBiZDwAAAAAAAAAIFbEzJXsAAAAAAAAAAAAAABYjSY7AAAAAAAAAAAAAADNRJMdAAAAAAAAAAAAAIBmoskOAAAAAAAAAAAAAEAz0WQHAAAAAAAAAAAAAKCZaLIDAAAAAAAAAAAAANBMNNkBAAAAAAAAAAAAAGgmmuwAAAAAAAAAAAAAADQTTXYAAAAAAAAAAAAAAJqJJjsAAAAAAAAAAAAAAM2UZHUBVjDGSJIqKystrgQAgO/zqD6f0DrkPAAgWpDxoUXGAwCiBRkfeuQ8ACBaNDfn22ST/eDBg5KkHj16WFwJAADfO3jwoNLS0qwuI+aR8wCAaEPGhwYZDwCINmR86JDzAIBoc6yct5k2+HE7r9er8vJydejQQTabzepyVFlZqR49emjHjh1KTU21upyowbwExrwExrwExrwEFm3zYozRwYMH5Xa7lZDAk1xaK5pyPtrea9GCeQmMeWkccxMY8xJYNM0LGR9aZHxsYG4CY14CY14CY14Ci6Z5IeNDj5yPfsxLYMxLYMxL45ibwKJpXpqb823ySvaEhASdeOKJVpfRQGpqquVvnGjEvATGvATGvATGvAQWTfPCJ99DJxpzPprea9GEeQmMeWkccxMY8xJYtMwLGR86ZHxsYW4CY14CY14CY14Ci5Z5IeNDi5yPHcxLYMxLYMxL45ibwKJlXpqT83zMDgAAAAAAAAAAAACAZqLJDgAAAAAAAAAAAABAM9FkjwIOh0P33HOPHA6H1aVEFeYlMOYlMOYlMOYlMOYFkcJ7LTDmJTDmpXHMTWDMS2DMCyKB91njmJvAmJfAmJfAmJfAmBdECu+1wJiXwJiXwJiXxjE3gcXivNiMMcbqIgAAAAAAAAAAAAAAiAVcyQ4AAAAAAAAAAAAAQDPRZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7BFw5plnymazyel0qrKystHtxo8fL5vN5vdKTk5Wt27d9J//+Z9atmxZBKsOn169ejU4zx+/HnnkEUnSF198EXB9hw4d1Lt3b82YMUN79uyx9oRCZPv27Zo8ebLOOOMMtWvXTk6nUxkZGRowYIDy8/P15ptv+m2fl5d3zHm02Wz63e9+Z80JhciGDRv061//WmeccYZcLpeSk5PVuXNnDRgwQFOnTtWmTZuOuY9bbrnFNx9vvfVWBKoOr8Z+htq3b6+zzjpL06dP1969exuM279/vxYtWqTbb79dF1xwgY477jjZbDYNHTrUgrMIvWDn5bPPPtPMmTM1bNgwnXDCCUpOTlanTp00ZMgQzZ07V16v14KzQSwh579HxjeOnA+MnPdHxgdGxsMqZLw/cj4wMj4wMr4hcj4wch5WIee/R8Y3jpxviIxviIwPrC1kfJLVBcS7Dz/8UB9//LEkqbq6Wq+++qquv/76Jsd07dpV2dnZvjGfffaZ3njjDb3xxhuaPn26HnjggbDXHQnZ2dnq2rVrwHXdu3dvsCw3N1cOh0OStHPnTn300Uf65z//qfnz5+vdd9/VSSedFNZ6w2nVqlUaNWqUDh48qMTERPXo0UNdu3bVvn37tG7dOq1du1Zz584N+AtKjx49lJGR0ei+m1oXzb777jvdeOONWrhwoSQpOTlZWVlZSk1N1b59+7RhwwatXbtWs2fP1mWXXaalS5cG3E9tba1eeukl3/cvvPCCLrnkkoicQ7j98GfI6/Xq66+/1kcffaSPPvpIL7zwgt577z316tXLt31RUZHGjh1rUbWR05J5qaur06mnnuobe+KJJ6pPnz7avn27ioqKVFRUpJdeeklLlixRSkqKFaeDKEfOB0bG+yPnGyLnm0bGB0bGI5LI+MaR898j4xsi44+NnA+MnEckkfOBkfH+yHl/ZPyxkfGBxXXGG4TV5MmTjSTTsWNHI8nk5eU1uu11111nJJnrrrvOb7nH4zFTpkwxkowks2bNmjBXHV49e/Y0kszcuXOPue22bdt8571t2za/dZs2bfLt69JLLw1PsRFw4MAB07lzZyPJjBgxwnzxxRd+6ysqKsy8efPM5Zdf7rd88ODBRpK55557IlhtZNTU1JgLLrjASDLdunUzf/7zn82hQ4f8tqmfl9NPP904HI5G9/X666/7/Qy2a9euwb5iTVM/Q8XFxcbtdhtJZsyYMX7rCgsLzaBBg8yUKVPMyy+/bB544AEjyVx88cURqjy8gpmX2tpa07FjR3PXXXeZ0tJSvzGLFi0yTqfTSDK33357uMtHjCLn/ZHxDZHzDZHzjSPjAyPjYQUyviFy3h8Z3xAZ3zRyPjByHlYg5/2R8Q2R8/7I+KaR8YG1hYynyR5GR44cMd26dTOSzIIFC0xiYqKx2Wzmyy+/DLh9Y4FtjDFer9f06dPHSDKTJk0Kc+XhFarQNsaYgoICI8nYbDazZ8+e0BcbAQsXLjSSTGpqqjl8+HCzx8VrYBtjzIwZM4wk43a7zfbt25vctra21tx///2Nrh8zZoyRZO68806Tk5NjJJkXXngh1CVH1LF+hv74xz8aScblcjW5n7lz57aZ0DYm8Lx4vV6zb9++Rvc5a9Ys35i6urpQl4wYR843RMY3RM43RM43jowPjIxHpJHxgZHz/sj4hsj4ppHzgZHziDRyviEyviFy3h8Z3zQyPrC2kPE8kz2MVqxYoa+//lonnHCCxo4dq4suukjGGP31r39t8b5sNpsuuOACSdLWrVtDXWrMGjRokCTJGKPS0lKLqwlOWVmZJOmUU07RcccdZ3E11tu/f78ee+wxSdJjjz2mHj16NLl9UlKS7rzzzoDrDhw4oDfeeEOSNG7cOI0bN07S0VvQxLOePXtKkmpqaiyuJLoEmhebzSaXy9XomGHDhkmSKioqtHv37vAWiJhDzodXPGS8RM7/GDnfOmR8YGQ8Qo2MD794yHky3h8Z33rkfGDkPEKNnA+veMh4iZz/ITK+9cj4wOIh42myh9H8+fMlST//+c+VmJioa665RlLw/2AYY0JWW7yIhzlJTU2VdPQXsf3791tbTBRYunSpDh06pBNOOEGjRo1q1b5efvllVVdXq3fv3jr99NM1btw42Ww2rVy5Ul9//XVoCo5CGzdulCSddtppFlcSXYKZl+rqat9/O53OkNeE2EbOh1e8zAc574+cbx0yPjAyHqFGxodfPMwJGe+PjG89cj4wch6hRs6HV7zMBzn/PTK+9cj4wOIh42myh8mhQ4f0t7/9TZJ8QT169Gg5nU59+umn2rRpU4v2Z4zR+++/L0k6+eSTQ1prLHv33XclHf10S2ZmpsXVBGfYsGFKSEjQgQMHNHToUC1evFgHDhywuizLrFmzRpLUv39/JSYmtmpf9b8c1/8M9urVSwMGDFBdXZ1efPHF1hUaZbxer8rLy/XUU0/pD3/4g2w2m6ZPn251WZZr7by8/PLLkqQzzjjD98s1IJHzkRAPGS+R8z9GzrccGR8YGY9wIeMjIx5ynoz3R8YHh5wPjJxHuJDz4RcPGS+R8z9ExgeHjA8s7jI+snenbzvmzZtnJJmTTz7Zb3n98yZuvfXWBmMae76Lx+MxU6ZM8T3r5N133w1j5eFX/xyGxl6DBw/2bdvUM16Ki4t9+4r1Z1T87//+r98c2Gw2c+qpp5rx48ebl156yVRXVzcYU/98l2O9SkpKIn9CrTBq1CgjyfzmN79p1X62bdtmbDabsdlsfs+JqX/OR+/evVtZqXWO9TN07rnnmjfffPOY+4nXZ7y0dl7qffTRR8ZutxtJZv78+WGsHLGInA+MjA+MnP8eOd80Mj4wMh6RRMY3jpxviIz/Hhl/bOR8YOQ8IomcD4yMD4ycP4qMPzYyPrC2kPFJQljUfyKn/pkS9a655hq98sorWrhwof7v//5PSUkN/ydYtmyZ71ku1dXV+uyzz3Tw4EFJ0m9+8xvfuliXnZ2trl27Nlh+5plnBtx+zJgxcjgckqTy8nJ98cUXMsbo+OOP11NPPRXWWsNtxowZ6t+/v/7v//5PK1asUE1NjbZs2aItW7Zo3rx5ysjI0F/+8hfl5eU1GNujRw9lZGQ0uu/27duHsfLQq3+vt2vXLuD6l156SVdffXWD5XPnztX48eN93y9YsEDGGA0aNMjvOTFXXXWVbrvtNm3evFkfffRRo++3WPDjn6E9e/boiy++0KZNm/Tkk0/q3HPPbfL5JfEqFPOyf/9+XXnllaqpqdHll1+uX/ziF+EuGzGGnG8aGe+PnP8eOd88ZHxgZDwigYw/NnL+e2T898j45iPnAyPnEQnkfNPIeH/k/FFkfPOR8YHFdcZb19+PX1999ZVJSEgwksy///1vv3Uej8e4XC4jyfzjH//wW1f/qbgfvhITE02XLl3MZZddZl577bUInkX41H96Ze7cucfc9oefjPvhy+l0mtNPP91MmTLF7Nq1K/xFR9B3331n3nnnHTN79mwzZMgQY7PZfOf86aef+rar/1TcPffcY12xYXCsT8atWLHCDBw40PdKS0sL+H469dRTjSTz9NNPN9jHiBEjjCSTn58fjlMIu6Z+hioqKsy1115rJJnc3Fzj9Xob3U+8fjKutfNSXV3t+/nKyckx+/btC2PViEXkfOPI+GMj58n5ppDxgZHxiBQyvmnkfNPIeDL+WMj5wMh5RAo53zgy/tjacs6T8cdGxgfWFjKeZ7KHwV//+ld5vV717dtXp556qt86u92uMWPGSPr+k3M/dt1118kYI2OMjhw5om+//VZLly7VqFGjwl16VNu2bZtvXr777jt98sknmj17to4//nirSwspp9OpCy+8UFOmTNGqVav0zjvvqF27dqqqqtJDDz1kdXlh1717d0nSF198EXD9xRdfrPfee8/3ys3NbbDNhg0btGXLFiUnJ/t+3n6o/pkvL774orxeb+iKjwIdO3bUM888o+7du2vjxo1asmSJ1SVFhebOy5EjR/Tzn/9cb7/9tnr16qXly5e3yU8XomnkfOi1lYyXyHlyPnhkfGBkPEKJjA+PtpLzZDwZ3xrkfGDkPEKJnA+9tpLxUtvOeTK+dcj4wOIl42myh0F9EBcXF8tmszV4PfPMM5KkJUuWqLKy0spSEQMuuOACTZw4UdLRMIp3/fv3lyStWbNGdXV1Qe1j/vz5kqTa2lqlp6c3+BmsvyXUzp07tWrVqtAUHkUcDof69u0rqW28Z5rrWPNijNGECRO0ZMkSdevWTStWrJDb7Y50mYgB5DxCiZxvubac82R8YGQ8QoWMRyiR8S3XljNeIucbQ84jVMh5hFJbynkyvvXI+MDiIeN5JnuIlZSU6OOPP5bNZgv4/JJ6FRUVqqqq0uLFizVhwoQIVohYlJmZKUmqqamxuJLwu/zyy9W+fXt98803eu211/Szn/2sReNra2u1aNEiSVJ6enrAZyhJ0uHDh3Xo0CG98MILGjp0aKvrjjb1n/jbt2+fxZVEl6bm5eabb9aCBQuUnp6ut956S1lZWZEuDzGAnEc4kPPNR86T8Y0h49FaZDzCgYxvPjL+KHI+MHIerUXOIxzaSs6T8aFBxgcW6xnPlewhVv+JuEGDBmnXrl2Nvm6//Xa/7dF27dmzR8aYJrdZs2aNJCk7OzsSJVnK5XLp5ptvliTdeuut2r59e4vGL1u2THv27FG7du30xRdfNPozuHjxYklSQUGBvvvuu5Cfh5Wqq6tVUlIi6ftf9tD0vNx555168skn1aFDBxUWFionJ8eKEhEDyHm0FDnvj5xvHTI+MDIeoUDGo6XIeH9kfOuR84GR8wgFch4tRc5/j4xvPTI+sHjIeJrsIVRXV6eFCxdKkn7xi180ue1//dd/SZKKioq0Y8eOsNeG6LVgwQL16dNHzz77rPbu3eu3bv/+/br77ru1YMECSWozn6C899571b9/f5WXl6tfv37685//rEOHDvltU1tbq1dffVVbtmzxW17/S/AVV1yh9u3bN3qMiy++WN26ddOhQ4f02muvhf4kLFJRUaFf/vKXKi8vl91u11VXXWV1SVGhqXmZM2eOHnjgATmdTv39738P+NwgQCLnERxyviFyPjhkfGBkPEKBjEcwyPiGyPjgkfOBkfMIBXIewSDn/ZHxwSPjA4uXjOd28SH01ltvadeuXUpJSTnmLTNOP/10nX322SopKdFf//pXTZs2LUJVItrYbDb985//1K9+9Sv96le/0kknnaQuXbqooqJCX375pe92M1OmTNEVV1zRYPyf//xnrVixotH9Dxo0SA888EDY6g8Hu92ut956S9dff71efvll3XDDDbrpppuUlZWl1NRU7d27V19//bXvE23Dhg3TkCFDtH//fr3xxhuSjv1Lc2JiosaOHauHH35YL7zwgq655pqwn1eoPfDAA3ruued83+/du1fbtm2Tx+NRUlKS/vSnP6lXr15+Yzp37uz7b4/HI0l65513/JY/8cQTGjt2bHiLD6OWzEt5ebmmTJkiSerQoYNmzJjR6H5fffVVnXDCCWGtHdGNnEcwyPmGyPljI+MDI+MRLmQ8gkHGN0TGNw85Hxg5j3Ah5xEMct4fGd88ZHxgcZ3xBiEzbtw4I8mMGTOmWds/9NBDRpI5/fTTjTHGXHfddUaSue6668JYpfV69uxpJJm5c+cec9tt27YZSUaS2bZtW9hrs0JNTY1ZtWqVyc/PNwMGDDAZGRnGbreb4447zmRnZ5trr73WvPvuuw3GDR482Dc3Tb1++tOfRv6kQmjdunXmpptuMqeffrpJS0szSUlJJj093fTr18/cfvvtZtOmTb5tn3nmGSPJnHDCCebIkSPH3PemTZuMJJOYmGi+/vrrcJ5GSNX/DP345XA4TGZmppkwYYL58MMPA45tznumOT+b0SiYefnhvzHHesXrv0FoPnL+2Mj4hsj5ppHz/sj4wMh4hBsZ3zzkvD8yvmlkfEPkfGDkPMKNnD82Mr4hcr5xZHxDZHxgbSHjbcYc48ESAAAAAAAAAAAAAABAEs9kBwAAAAAAAAAAAACg2WiyAwAAAAAAAAAAAADQTDTZAQAAAAAAAAAAAABoJprsAAAAAAAAAAAAAAA0E012AAAAAAAAAAAAAACaiSY7AAAAAAAAAAAAAADNRJMdAAAAAAAAAAAAAIBmoskOAAAAAAAAAAAAAEAz0WQHAAAAAAAAAAAAAKCZaLIDcaRXr16y2Wz64osvrC4lpPLy8mSz2VRUVGR1KQAAWIacBwAgPpHxAADEJzIeiG802YEI2L59uyZPnqwzzjhD7dq1k9PpVEZGhgYMGKD8/Hy9+eabVpcISY888oh+97vfaf/+/VaXAgCIIeR8bCDnAQAtRcbHBjIeANBSZHxsIOMR7ZKsLgCId6tWrdKoUaN08OBBJSYmqkePHuratav27dundevWae3atZo7d6727Nljdalt3iOPPKIvv/xS48ePV8eOHa0uBwAQA8j52EHOAwBagoyPHWQ8AKAlyPjYQcYj2tFkB8KosrJSP//5z3Xw4EGNGDFCf/zjH9WzZ0/f+v3792vJkiV6+eWXLawSAAAEg5wHACA+kfEAAMQnMh5AKNFkB8Jo6dKl2rNnj1JTU/Xyyy/ruOOO81vfsWNHXXfddbruuussqhAAAASLnAcAID6R8QAAxCcyHkAo8Ux2IIzKysokSaecckqDwG6KzWaTzWZrdH2vXr1ks9n0xRdfNLrNm2++qby8PKWlpSk1NVWXXHKJ3n333YDb5uXlyWazqaioSBs2bNCIESPUqVMntWvXTgMGDNDf/va3Ro9jjNGCBQs0ePBgdezYUU6nU6eddpruuOMO7du3r9FxR44c0bPPPqshQ4YoPT1dKSkpyszM1JVXXqklS5Y0Ou7HXnrpJSUnJ6tdu3Zavny537oNGzZo7Nix6t69u+x2u44//niNGTNGJSUlftvNmzdPNptNX375pSTppJNO8v1vUD8vAAD8GDlPzgMA4hMZT8YDAOITGU/GAyFlAITN448/biSZtLQ0U1FR0exxkkxTP549e/Y0ksy2bdsCLp85c6ax2WymU6dOJjc316SnpxtJJiEhwbz88ssN9jd48GAjyfz+9783drvdtG/f3uTm5ppu3br5annooYcajPN6vWbcuHG+bTIzM03fvn2N3W43kkzPnj1NaWlpg3H79u0zAwcO9I3r2bOnyc3NNV27dvV9H6i+1atX+y1/5plnTEJCgklLSzPvvfee37o5c+YYm81mJJlOnTqZs88+2zcPycnJZvHixb5tly5dagYOHGgcDoeRZHJzc83AgQN9r+Li4kb/twAAtF3kPDkPAIhPZDwZDwCIT2Q8GQ+EEk12IIy2bNliEhISjCRzzjnnmFdffdXs37//mONaG9pJSUlm8uTJpqamxhhjTG1trZk6daqRZFJTU015ebnfuPpQTEpKMmPHjjWHDh0yxhwN5ccee8y37sMPP/QbV/9LSYcOHczy5ct9y7/++mtfKPfr169B/aNGjTKSTFZWllm3bp3fuq1bt5oHH3wwYH0/DO3Zs2cbSaZLly4NQnXZsmXGZrOZzp07+4WzMcY899xzJikpyXTo0KHBPDQ2rwAABELOk/MAgPhExpPxAID4RMaT8UAo0WQHwux///d/fSEsydhsNnPqqaea8ePHm5deeslUV1c3GNPa0O7du3fAcX379jWSzN133+23vD4Uu3btaqqqqhqMGz16tJFkrr32Wt8yr9drevToYSSZhx9+uMGYr776yvcJuZUrV/qWb9iwwUgyDofDfPbZZ42eY6D66kP7t7/9rZFkTjzxRPPpp582ep5LliwJuL/bb7/d90nAHyK0AQAtRc6T8wCA+ETGk/EAgPhExpPxQKjwTHYgzGbMmKFVq1bp8ssvl91ulzFGW7Zs0bx58zR27FidcsopIX+GyMSJE5tc/uabbwZcf8MNNyglJaVZ4z799FPt2LFDKSkp+uUvf9lgTPfu3XXllVdKkt+zV+qf33LFFVcoOzu7OafjY4zRbbfdpvvuu09ZWVl69913ddppp/lt8+WXX6q4uFhdu3bVf/7nfwbcT/3yt99+u0XHBwDgx8h5ch4AEJ/IeDIeABCfyHgyHgiVJKsLANqCIUOGaMiQIaqqqtLGjRu1fv16LV26VEVFRdq+fbsuv/xyFRcXNwigYP3kJz9pcvlnn30W1LhvvvlGlZWVSk1N9e0jIyND7dq1CzguJyenwfE+/fRTSdL5559/rNNoYMqUKSouLlZOTo7eeustdevWrcE2H330kSSpurpaF1xwQcD9VFdXS5J27tzZ4hoAAPgxcp6cBwDEJzKejAcAxCcynowHQoEmOxBBTqdTF154oS688EJNmTJF7733noYPH67Dhw/roYce0rPPPhuS43Tt2jXg8uOPP16SdPDgwRaN++HygwcPKjU1VYcOHWpyTGPHq6yslCR17Nix0XGN+fzzzyVJvXr1UufOnQNuc+DAAd9x3n///Sb3V1VV1eIaAABoDDlPzgMA4hMZT8YDAOITGU/GA63B7eIBC11wwQW+W7ts2LChwXpjTMBxhw8fbnK/u3fvDrj822+/lSR16NChReN+uLx+bPv27f32Gcg333zT4Hj1/71///5GxzXm2Wef1WmnnaZ//OMfuvrqq3XkyJEG29TXNXDgQBljmnx98cUXLa4BAIDmIudbhpwHAMQKMr5lyHgAQKwg41uGjEdbR5MdsFhmZqYkqaamxres/nYugUL0wIED2rNnT5P7rL/FS2PLTznllKDGHX/88UpNTfXbx/bt232fkvuxTz75pMHx6m9Js27duibPIZCuXbtq5cqVOvnkk7V48WJde+218nq9ftucfvrpvpp/vO5YbDZbi2sCAKAp5HzzkfMAgFhCxjcfGQ8AiCVkfPOR8WjraLIDYbRnz55GP91Wb82aNZKk7Oxs37L6IP/ggw8abP/cc88d87hPPvlkk8uHDRsWcP3zzz8vj8fTrHE/+clPlJGRoerq6oA1lZeXa/HixZKkSy+91Ld81KhRkqS//e1vKi0tPea5/Jjb7daqVavUq1cvLVy4UNdff73fHGdnZ+uMM87Qvn37NH/+/Bbt2+l0SuK2NACA5iHnyXkAQHwi48l4AEB8IuPJeCCkDICwefjhh81ZZ51lnnnmGbNnzx6/dRUVFea3v/2tsdlsRpIpKCjwrZs6daqRZPr06WN27drlW75s2TKTmppqkpKSjCSzbds2v3327NnTSDJJSUkmPz/f1NTUGGOMqa2tNdOnTzeSTIcOHczOnTv9xg0ePNg37pprrjGHDh0yxhjj9XrNH//4R2Oz2UxiYqIpKSnxG/f4448bSSY1NdWsWLHCt3zXrl3mwgsvNJLM+eef32BerrjiCiPJZGdnmw0bNvit27p1q5k9e3bA+lavXu1btm3bNtOjRw8jyfzqV78yXq/Xt+4f//iHsdls5rjjjjPPPvusqa2t9dtfaWmpuf/++83ixYv9lo8YMcJIMk899VSDmgEA+DFynpwHAMQnMp6MBwDEJzKejAdCiSY7EEaPPPKIkeR7nXTSSea8884z2dnZxm63+5ZPmTLFb9y3335rTjjhBCPJOBwO06dPH9OrVy8jyUybNs0Xzo2F9syZM43NZjPp6enm3HPPNZ07dzaSTEJCglm4cGGDOutD8fe//72x2+2mQ4cOJjc317jdbl+NDz74YINxXq/XjBs3zrfNySefbPr27es7t4yMDFNaWtpg3L59+0z//v1943r16mVyc3PN8ccfbySZnj17Bqzvh6FtzNGAr6/xlltu8Vv3xBNPmMTERN8vKuecc47fMQKF8/z5833rzjjjDDN48GAzePDgBr+sAABgDDlPzgMA4hUZT8YDAOITGU/GA6FEkx0Io5qaGrNq1SqTn59vBgwYYDIyMozdbjfHHXecyc7ONtdee6159913A44tLS01Y8aMMS6XyzidTnP22WebuXPnGmPMMUN727ZtprCw0AwaNMh06NDBtG/f3lx00UXm7bffDnisH4bi+vXrzWWXXWY6duxonE6nOf/88/0+tfdjXq/XzJ8/31x44YUmNTXVOBwOk52dbfLz8xt8GvDHc/PHP/7RDBw40KSlpZmUlBRz0kknmZ/97GfmjTfeaLS+H/v00099QfzjX34++ugjc+ONN5rMzEyTkpJi0tLSTE5Ojrn66qvNK6+8Yg4fPtxgf48++qg566yzjNPp9AV4oOMCAEDOk/MAgPhExpPxAID4RMaT8UAo2Yw5xgMoAMS9vLw8vf3221q9erXy8vKsLgcAAIQQOQ8AQHwi4wEAiE9kPBAbEqwuAAAAAAAAAAAAAACAWEGTHQAAAAAAAAAAAACAZqLJDgAAAAAAAAAAAABAM9FkBwAAAAAAAAAAAACgmWzGGGN1EQAAAAAAAAAAAAAAxAKuZAcAAAAAAAAAAAAAoJlosgMAAAAAAAAAAAAA0Ew02QEAAAAAAAAAAAAAaCaa7AAAAAAAAAAAAAAANBNNdgAAAAAAAAAAAAAAmokmOwAAAAAAAAAAAAAAzUSTHQAAAAAAAAAAAACAZqLJDgAAAAAAAAAAAABAM9FkBwAAAAAAAAAAAACgmf4f2cZ3rxrhd74AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m ro3 filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4XElEQVR4nOzdeVyU5f7/8feAbAEiKqYgmuBSeUpKzaNWbolaHuuYGVkpaWV5+pqaa8dswQIhPVr9sDLLFjU0KdPSLJdMcQElU3NhcUvSUFEgYUCY3x8e50SCAQ5zD/B6Ph7zkLnv657rPXcz3snnvq7LZLFYLAIAAAAAAAAAAAAAAH/JyegAAAAAAAAAAAAAAABUFxTZAQAAAAAAAAAAAAAoJ4rsAAAAAAAAAAAAAACUE0V2AAAAAAAAAAAAAADKiSI7AAAAAAAAAAAAAADlRJEdAAAAAAAAAAAAAIByosgOAAAAAAAAAAAAAEA5UWQHAAAAAAAAAAAAAKCc6hgdwAjFxcXKyMiQt7e3TCaT0XEAALWcxWJRTk6O/P395eTE/W9Xi+s8AMBRcI23La7xAABHwTXe9rjOAwAcRXmv87WyyJ6RkaHAwECjYwAAUMKxY8fUtGlTo2NUe1znAQCOhmu8bXCNBwA4Gq7xtsN1HgDgaP7qOl8ri+ze3t6SLp6cunXrGpwGAFDbZWdnKzAw0Hp9wtXhOg8AcBRc422LazwAwFFwjbc9rvMAAEdR3ut8rSyyX5pupm7dulywAQAOg+nQbIPrPADA0XCNtw2u8QAAR8M13na4zgMAHM1fXedZMAYAAAAAAAAAAAAAgHKiyA4AAAAAAAAAAAAAQDlRZAcAAAAAAAAAAAAAoJwosgMAAAAAAAAAAAAAUE4U2QEAAAAAAAAAAAAAKCeK7AAAAAAAAAAAAAAAlBNFdgAAAAAAAAAAAAAAyokiOwAAAAAAAAAAAAAA5USRHQAAAAAAAAAAAACAcqLIDgAAAAAAAAAAAABAOVWLInt4eLhMJtMVH/n5+UbHBAAAAAAAAAAAAADUcHWMDlARrVq1UqNGjUrd5+RULe4XAAAAAAAAAAAAAABUY9WqyP78888rPDzc6BgAAAAAAAAAAAAAgFqK4d8AAAAAAAAAAAAAAJQTRXYAAAAAAAAAAAAAAMqpWk0X/9lnn+mLL75Qdna2GjVqpK5du2ro0KHy8fExOhoAAAAAAAAAAAAAoBaoVkX2r776qsTzuLg4vfjii1q0aJH69u1rUCoAAAAAAAAAAAAAQG1RLaaLDw4O1muvvaZdu3YpOztbOTk5WrNmjTp16qSsrCzdd999SkpKKvN4s9ms7OzsEg8AAAAAAAAAAAAAACqqWoxkf+GFFy7b1rt3b3Xr1k133HGHtm/frkmTJmnt2rWlHh8ZGamXX365qmMCAAAAAAAAAAAAAGq4ajGSvSyurq6KiIiQJG3YsEFZWVmltpsyZYrOnTtnfRw7dsyeMQEAAAAAAAAAAAAANUS1LrJLUufOnSVJxcXFSk9PL7WNm5ub6tatW+IBAAAAAAAAAAAAAEBFVfsiu4uLi/XnCxcuGJgEAAAAAAAAAAAAAFDTVfsi+969e60/N23a1MAkAAAAAAAAAAAAAICartoX2WfOnClJuv766xUQEGBwGgAAAAAAAAAAAABATebwRfZvv/1WU6ZM0aFDh0psP3funEaPHq3FixdLkqZNm2ZEPAAAAAAAAAAAAABALVLH6AB/5ffff1dUVJSioqIUEBAgf39/FRYW6ueff1ZBQYFMJpOmTZumhx56yOioAAAAAAAAAAAAAIAazuGL7O3bt9e///1vbdmyRampqdqzZ48sFosCAgJ0xx13aNSoUerUqZPRMQEAAAAAAAAAAAAAtYDDF9kDAwM1ffp0o2MAAAAAAAAAAAAAAOD4a7IDAAAAAAAAAAAAAOAoKLIDAAAAAAAAAAAAAFBOFNkBAAAAAAAAAAAAACgniuwAAAAAAAAAAAAAAJQTRXYAAAAAAAAAAAAAAMqJIjsAAAAAAAAAAAAAAOVEkR0AAAAAAAAAAAAAgHKiyA4AAAAAAAAAAAAAQDlRZAcAAAAAAAAAAAAAoJwosgMAAAAAAAAAAAAAUE4U2QEAAAAAAAAAAAAAKCeK7AAAAAAAAAAAAAAAlBNFdgAAAAAAAAAAAAAAyokiOwAAAAAAAAAAAAAA5USRHQAAAAAAAAAAAACAcqLIDgAAAAAAAAAAAABAOVFkBwAAAAAAVeK3337T+PHj1bZtW11zzTVyd3dXcHCwnnzySaWmphodDwAAAACASqljdAAAAAAAAFDzHDhwQHfeead+++03ubi4KCgoSC4uLkpNTdW8efO0cOFCff311+rWrZvRUQEAAAAAqBBGsgMAAAAAAJv717/+pd9++01du3ZVenq69u/fr927d+uXX37RgAEDdP78eT322GOyWCxGRwUAAAAAoEIosgMAAAAAAJs6f/681q9fL0maO3eumjZtat3XoEEDLViwQCaTSYcOHdL+/fuNigkAAAAAQKVQZAcAAAAAADZVUFCg4uJiSVJQUNBl+319fVW/fn1J0oULF+yaDQAAAACAq0WRHQAAAAAA2FS9evUUGBgoSUpISLhs/4EDB3T69GnVq1dPrVq1snc8AAAAAACuCkV2AAAAAABgc9OnT5ckDR8+XMuWLdPp06d17tw5ffPNN7rvvvtkMpkUHR0td3d3g5MCAFD7WCwWbdq0SRMmTNDf//531atXT66urvL399f9999vXfblz1566SWZTKYrPlgKBgBQG9QxOgAAAAAAAKh5hg4dKi8vL0VERGjQoEEl9t188836+uuv1bdv3zKPN5vNMpvN1ufZ2dlVlhUAgNpm3bp1uuuuuyRJTk5OatmypTw9PZWSkqL4+HjFx8dr6tSpioiIKPX4wMBANWvWrNR911xzTZXlBgDAUTCSHQAAAAAA2JzFYlF6erpOnz4tZ2dntWzZUjfeeKNcXV21Z88evfvuuzpz5kyZx0dGRsrHx8f6uDT9PAAAuHoWi0UtW7ZUbGysTp06pQMHDmjnzp06ffq0pkyZIunirDQrV64s9fjhw4dr06ZNpT7KKr4DAFCTUGQHAAAAAAA299RTT2nChAkKDAxUamqqUlJStHfvXh07dkx33323Pv/8c/Xo0UNFRUWlHj9lyhSdO3fO+jh27Jid3wEAADXXbbfdpn379unpp5+Wr6+vdburq6tee+019evXT5I0b948oyICAODQKLIDAAAAAACb2rVrl+bNmycXFxd9+umnuu6666z7GjVqpIULF6phw4b66aeftGTJklJfw83NTXXr1i3xAAAAtlG3bl3VqVP2arK9e/eWJB08eNBekQAAqFYosgMAAAAAAJvavHmzLBaLWrduXeo073Xr1tVtt90mSUpKSrJ3PAAA8Bfy8/MlSR4eHqXuX79+vR544AH17NlTgwYNUnR0tE6cOGHPiAAAGKrsW9UAAAAAAAAqIScn5y/bWCwWSf/7JT4AAHAMFotFS5culSR17dq11DYbN24s8XzZsmV66aWXFBsbq/Dw8KqOCACA4RjJDgAADPXbb79p/Pjxatu2ra655hq5u7srODhYTz75pFJTU42OBwAAKqFVq1aSLk4xW9pa6tnZ2UpMTJQktW7d2q7ZAADAlc2bN0/JyclydXXVmDFjSuxr0qSJnn/+eSUmJur06dM6f/68Nm/erH79+ikvL0/Dhw/XihUr/rIPs9ms7OzsEg8AAKoTiuwAAMAwBw4c0E033aSZM2cqJSVFzZo1U6tWrZSRkaF58+apXbt2+v77742OCQAAKig0NFQNGzZUYWGhwsLCdPjwYeu+3377TQ8//LBOnTold3d3DRo0yLigAACghJ07d+rZZ5+VJE2fPl3BwcEl9o8cOVKvvvqqOnTooPr168vDw0NdunTRV199pX/+85+yWCwaO3asdcaaskRGRsrHx8f6KG15GQAAHBlFdgAAYJh//etf+u2339S1a1elp6dr//792r17t3755RcNGDBA58+f12OPPfaX/zgHAACOxcvLSx999JHc3d2VkJCgli1bqnXr1mrbtq0CAwO1cuVK1alTR2+//bYCAgKMjgsAACQdOnRI/fv3V35+voYMGaLx48eX+1iTyaSoqChJUlpamn766acrtp8yZYrOnTtnfZQ28w0AAI6MIjsAADDE+fPntX79eknS3Llz1bRpU+u+Bg0aaMGCBTKZTDp06JD2799vVEwAAFBJ/fr1065du/Tkk0+qRYsWOnr0qFJTU9WkSRM9+uij2rZtm4YNG2Z0TAAAIOnEiRPq3bu3fv31V91zzz3Wf5NXROvWrVW/fn1J+svl39zc3FS3bt0SDwAAqpM6RgcAAAC1U0FBgYqLiyVJQUFBl+339fVV/fr1dfr0aV24cMHe8QAAgA20bt1a77zzjtExAADAFZw5c0a9e/dWWlqaunXrpqVLl8rFxaVSr3XpOP4dDwCo6RjJDgAADFGvXj3rmmsJCQmX7T9w4IBOnz6tevXqqVWrVvaOBwAAAABAjZebm6u7775be/bsUceOHbVixQp5eHhU6rVOnTql3377TZJKzFYHAEBNRJEdAAAYZvr06ZKk4cOHa9myZTp9+rTOnTunb775Rvfdd59MJpOio6Pl7u5e5muYzWZlZ2eXeAAAAAAAgCszm8269957tW3bNrVt21arV6+Wt7d3pV9v1qxZslgs8vHxUceOHW2YFAAAx0ORHQAAGGbo0KFatmyZGjZsqEGDBqlhw4aqV6+e+vbtK1dXV3399dd64oknrvgakZGR8vHxsT4ujY4HAAAAAAClKyoqUlhYmNatW6fg4GB9++231vXUy7J3716NGjVKe/fuLbE9Pz9fr732mmbMmCFJmjRpklxdXassOwAAjoA12QEAgGEsFovS09N1+vRpOTs7q0WLFnJ1dVVqaqr27Nmjd999V7fddtsV/6E/ZcoUjRs3zvo8OzubQjsAAAAAAFewZMkSffHFF5IkJycnPfDAA6W2a9KkiZYuXSpJKiws1Ny5czV37lz5+fmpWbNmkqR9+/bp/PnzkqQRI0Zo8uTJVf8GAAAwGEV2AABgmKeeekrvvvuuunTpoo0bN+q6666TJP32228aMWKEPv/8c6WlpWnnzp1ydnYu9TXc3Nzk5uZmx9QAAAAAAFRvZrPZ+nNKSopSUlJKbde8eXPrz9ddd50iIiKUkJCg/fv368CBAyooKFCjRo1099136/HHH1efPn2qPDsAAI7AZLFYLEaHsLfs7Gz5+Pjo3Llzqlu3rtFxAAC1XG29Lu3atUu33HKL6tSpo7S0tMtGn2dnZys4OFinTp3SokWL9NBDD5XrdWvr+QQAOB6uSbbF+QQAOAquSbbHOQUAOIryXpNYkx0AABhi8+bNslgsat26danTu9etW1e33XabJCkpKcne8QAAAAAAAAAAKBVFdgAAYIicnJy/bHNpwp38/PyqjgMAAAAAAAAAQLlQZAcAAIZo1aqVJOngwYM6duzYZfuzs7OVmJgoSWrdurVdswEAAAAAAAAAUBaK7AAAwBChoaFq2LChCgsLFRYWpsOHD1v3/fbbb3r44Yd16tQpubu7a9CgQcYFBQAAAAAAAADgD+oYHQAAANROXl5e+uijjzRw4EAlJCSoZcuWCgoKkouLi1JTU1VQUKA6dero7bffVkBAgNFxAQAAAAAAAACQRJEdAAAYqF+/ftq1a5dmzpypdevW6ejRo7JYLGrSpInuvPNOjRkzRrfeeqvRMQEAAAAAAAAAsKLIDgAADNW6dWu98847RscAAAAAAAAAAKBcWJMdAAAAAAAAAAAAAIByosgOAAAAAAAAAAAAAEA5UWQHAAAAAAAAAAAAAKCcKLIDAAAAAAAAAAAAAFBOFNkBAAAAAAAAAAAAACgniuwAAAAAAAAAAAAAAJQTRXYAAAAAAAAAAAAAAMqJIjsAAAAAAAAAAAAAAOVEkR0AAAAAAAAAAAAAgHKiyA4AAAAAAAAAAAAAQDlRZAcAAAAAAAAAAAAAoJwosgMAAAAAAAAAAAAAUE4U2QEAAAAAAAAAAAAAKCeK7AAAAAAAAAAAAAAAlBNFdgAAAAAAAAAAAAAAyokiOwAAAAAAAAAAAAAA5USRHQAAAAAAAAAAAACAcqLIDgAAAAAAAAAAAABAOVFkBwAAAAAAAAAAAACgnKptkX3q1KkymUwymUyaPn260XEAAAAAAAAAAAAAALVAtSyy79u3TzExMUbHAAAAAAAAAAAAAADUMtWuyG6xWDRy5Ei5uLioZ8+eRscBAAAAAAAAAAAAANQi1a7IPn/+fP3www+aNm2aAgMDjY4DAAAAAAAAAAAAAKhFqlWRPTMzU5MmTdKNN96osWPHGh0HAAAAAAAAAAAAAFDL1DE6QEWMHTtWZ86cUXx8vFxcXIyOAwAAAAAAAAAAAACoZarNSPa1a9dq4cKFeuSRR9StWzej4wAAAAAAAAAAAAAAaqFqMZI9Pz9fTz31lHx8fPT6669X+Hiz2Syz2Wx9np2dbct4AAAAAAAAAAAAAIBaolqMZJ8+fbpSU1P16quv6tprr63w8ZGRkfLx8bE+AgMDqyAlAAAAAAAAAAAAAKCmc/gi+759+xQTE6Nbb71VTz/9dKVeY8qUKTp37pz1cezYMRunBAAAAAAAAAAAAADUBg4/XfyoUaN04cIFzZ07V05OlbsnwM3NTW5ubjZOBgAAAAAAAAAAAACobRy+yJ6cnCyTyaQBAwZctu/cuXOSpBkzZuitt95SYGCgEhMT7R0RAAAAAAAAAAAAAFBLOHyRXZKKiop08uTJMvfn5uYqNzdX7u7udkwFAAAAAAAAAAAAAKhtHH5N9rNnz8pisZT6GDZsmCQpIiJCFotFhw8fNjYsAAAAAAAAAAColoqKirRt2zatXLlS27ZtU1FRkdGRHEJBQYEWLFigV155RQsWLFBBQYHRkQDAcNViJDsAAAAAAAAAAEBVWbNmjaKionT8+HHrtoCAAE2ePFmhoaEGJjNWdHS0FixYUOKGg+joaIWHh2vixIkGJgMAYzn8SHYAAAAAAAAAAICqsmbNGo0ePVqtW7dWXFycdu7cqbi4OLVu3VqjR4/WmjVrjI5oiOjoaM2fP1/16tVTRESENm3apIiICNWrV0/z589XdHS00REBwDAU2QEAAAAAAAAAQK1UVFSkqKgode/eXbGxsQoJCZGnp6dCQkIUGxur7t27a8aMGbVu6vhLU8Q3aNBAGzdu1ODBg+Xn56fBgwdr48aNatCgAVPHA6jVqvV08QsWLNCCBQuMjgEAAAAAAAAAAKqhpKQkHT9+XLNmzZKTU8lxiU5OTho5cqTCwsKUlJSkTp06GZTS/hYtWqSioiKNGTNGdeqULCXVqVNHzz77rKZNm6ZFixYpPDzcmJA2lJeXp/T0dLv3GxQUJA8PD7v3C+DqVesiOwAAAAAAAAAAQGVlZmZKklq1alXq/kvbL7WrLY4ePSpJ6tGjR6n7u3fvXqJddZeenq6BAwfavd/4+Hi1bdvW7v0CuHoU2QEAAAAAQJUpKirS+++/r08++UR79+5Vbm6urr32Wt1yyy167LHHdO+99xodEQAA1GJ+fn6SpJSUFIWEhFy2PyUlpUS72qJZs2aSpPXr12vw4MGX7d+wYUOJdtVdUFCQ4uPjK3xcWlqaJkyYoJiYGAUHB1eqXwDVE0V2AAAAAABQJbKysnT33Xdr69atMplMat26ta677jplZGRo+fLlqlOnDkV2AABgqA4dOiggIEBvv/22YmNjS0wZX1xcrHfeeUdNmzZVhw4dDExpf0OGDFF0dLRmz56tgQMHlpgy/sKFC5ozZ46cnZ01ZMgQA1PajoeHx1WNKA8ODmZEOlDLOP11EwAAAAAAgIopLi7WgAEDtHXrVg0cOFBHjx7V/v37lZSUpIyMDB07dkyjR482OiYAAKjlnJ2dNXnyZG3YsEGjRo1ScnKycnNzlZycrFGjRmnDhg2aNGmSnJ2djY5qV66urgoPD9fp06d15513Ki4uTidPnlRcXJzuvPNOnT59WuHh4XJ1dTU6KgAYgpHsAAAAAADA5t59911t2rRJPXr00NKlS0uMCpOkpk2bqmnTpgalAwAA+J/Q0FC98cYbioqKUlhYmHV706ZN9cYbbyg0NNTAdMaZOHGiJGnBggWaNm2adbuzs7NGjBhh3Q8AtRFFdgAAAAAAYHNz5syRJEVERFxWYAcAAHA0oaGh6tWrl5KSkpSZmSk/Pz916NCh1o1g/7OJEydqzJgxWrRokY4ePapmzZppyJAhjGAHUOtRZAcAAAAAADaVkpKi/fv3q379+urSpYuWL1+upUuX6tdff5Wfn5/uuusuPfroo3JzczM6KgAAtZLFYtHmzZu1fPly/fDDD9q/f7/Onz+vhg0bqnPnznrmmWfUo0ePMo/fsmWLoqKilJCQoNzcXLVo0UIPPfSQJkyYIHd3dzu+E9tydnZWp06djI7hcC5NHQ8A+B+K7AAAAAAAwKZ27NghSbr++uv16KOPauHChSX2x8XFaebMmVq9erWaN29uREQAAGq1devW6a677pIkOTk5qWXLlvL09FRKSori4+MVHx+vqVOnKiIi4rJjFy5cqGHDhqmoqEgBAQEKDAzUnj17NG3aNK1YsUIbNmzQNddcY++3BACAXTFfGwAAAAAAsKlff/1VkpSYmKiFCxfq8ccf1+HDh5Wfn6/vvvtOQUFB2r9/v+6//34VFxeX+hpms1nZ2dklHgAAwDYsFotatmyp2NhYnTp1SgcOHNDOnTt1+vRpTZkyRZI0ffp0rVy5ssRxhw8f1ogRI1RUVKTo6GgdO3ZMO3fuVEpKitq0aaPExMRqvU53QUGBFixYoFdeeUULFixQQUGB0ZEcQl5enl5++WUNHz5cL7/8svLy8oyOBACGo8gOAAAAAABs6vfff5ckFRYW6o477tC8efPUvHlzubm5qVevXoqPj5fJZNKOHTv01VdflfoakZGR8vHxsT4CAwPt+RYAAKjRbrvtNu3bt09PP/20fH19rdtdXV312muvqV+/fpKkefPmlTguJiZGZrNZoaGhmjBhgkwmkySpefPmev/99yVJ7777rk6ePGmnd2I70dHRCgkJUWRkpBYuXKjIyEiFhIQoOjra6GiGGjVqlEJCQrRo0SJt3rxZixYtUkhIiEaNGmV0NAAwFEV2AAAAAABgU39ci/XZZ5+9bH+7du2s67yuXr261NeYMmWKzp07Z30cO3asasICAFAL1a1bV3XqlL2abO/evSVJBw8etG6zWCz6/PPPJUkjRoy47JguXbro+uuvV2FhoZYvX27jxFUrOjpa8+fPV7169RQREaFNmzYpIiJC9erV0/z582ttoX3UqFFau3atXFxc9OSTT2rNmjV68skn5eLiorVr11JoB1CrUWQHAAAAAAA29ccRcddff32pbW644QZJF6edLY2bm5vq1q1b4gEAAOwjPz9fkuTh4WHddvToUeuSMF27di31uEvbt23bVsUJbefSFPENGjTQxo0bNXjwYPn5+Wnw4MHauHGjGjRoUCunjs/Ly7MW2Hfu3KnnnntOzZs313PPPaedO3daC+1MHQ+gtqLIDgAAAAAAbKpNmzbWn93c3Eptc2l7UVGRXTIBAIDysVgsWrp0qaSSxfSUlBRJF6/h/v7+pR4bFBRUom1ZzGazsrOzSzyMsmjRIhUVFWnMmDGXje6vU6eOnn32WRUVFWnRokUGJTTGpdH7jz32mFxdXUvsc3V11bBhw0q0A4DahiI7AAAAAACwqVtuucU6ZXx6enqpbS5tDwgIsFsuAADw1+bNm6fk5GS5urpqzJgx1u1ZWVmSpHr16lnXYv+zS7PZXGpblsjISPn4+FgfgYGBtglfCUePHpUk61I2f9a9e/cS7WqLI0eOSJIGDRpU6v5L2y+1A4DahiI7AAAAAACwKU9PT919992SpA8//PCy/SdOnNA333wjSerZs6ddswEAgLLt3LlTzz77rCRp+vTpCg4Otu67NIX8n0c1/9GlmWr+agrxKVOm6Ny5c9bHsWPHrjZ6pTVr1kyStH79+lL3b9iwoUS72qJ58+aSpM8++6zU/Ze2X2oHALUNRXYAAAAAAGBz06ZNk7Ozsz799NMShfazZ88qPDxceXl5CgoK0gMPPGBgSgAAcMmhQ4fUv39/5efna8iQIRo/fnyJ/ZdmqbnS2uRms1lSybXcS+Pm5qa6deuWeBhlyJAhcnZ21uzZs3XhwoUS+y5cuKA5c+bI2dlZQ4YMMSihMSZOnChJ+uCDDy77b15QUGD9/7tL7QCgtqHIDgAAAAAAbK5du3Z66623ZLFYFB4erubNm6tjx44KCAjQN998o4YNG2rZsmVXHA0HAADs48SJE+rdu7d+/fVX3XPPPVqwYMFlU8Jfmgr+7Nmzslgspb7OpWniL7WtDlxdXRUeHq7Tp0/rzjvvVFxcnE6ePKm4uDjdeeedOn36tMLDw2vd/7N4eHioV69eKiws1K233qqYmBgdOnRIMTExuvXWW1VYWKhevXr95Q0VAFBT1TE6AAAAAAAAqJmeeuoptW3bVjExMdqyZYt++ukn+fv765577tGUKVNYjx0AAAdw5swZ9e7dW2lpaerWrZuWLl0qFxeXy9q1atVK0sXR6hkZGaVex9PT00u0rS4ujcZesGCBpk2bZt3u7OysESNG1NrR2rGxsRo1apTWrl2r9957T++99551X69evRQbG2tgOgAwFkV2AAAAAABQZe644w7dcccdRscAAAClyM3N1d133609e/aoY8eOWrFiRZkjk5s1a6bGjRvrxIkT2rx5swYPHnxZm82bN0uSOnXqVKW5q8LEiRM1ZswYLVq0SEePHlWzZs00ZMiQWjeC/c9iY2OVl5en6OhoHTlyRM2bN9fEiRMZwQ6g1qPIDgAAAAAAAABALWM2m3Xvvfdq27Ztatu2rVavXi1vb+8y25tMJv3zn//U3LlzNX/+/MuK7AkJCdq/f79cXFw0YMCAqo5fJS5NHY+SPDw89OKLLxodAwAcCmuyAwAAAAAAAABQixQVFSksLEzr1q1TcHCwvv32W9WvX/8vj5swYYJcXV21Zs0axcTEWNdmP3LkiIYPHy5Jevzxx9W4ceMqzQ8AgNEYyQ4AAAAAAAAAQC2yZMkSffHFF5IkJycnPfDAA6W2a9KkiZYuXWp93qJFC82bN0+PPfaYJk6cqDlz5qhRo0bas2ePCgsL1b59e8XExNjjLQAAYCiK7AAAAAAAAAAA1CJms9n6c0pKilJSUkpt17x588u2DR06VC1btlRkZKQSEhL0888/KygoSA899JAmTZokd3f3KssNwPEVFRUpKSlJmZmZ8vPzU4cOHeTs7Gx0LMDmKLIDAAAAAAAAAFCLhIeHX9Xa4126dNGKFStsFwhAjbBmzRpFRUXp+PHj1m0BAQGaPHmyQkNDDUwG2B5rsgMAAAAAAAAAAACotDVr1mj06NFq3bq14uLitHPnTsXFxal169YaPXq01qxZY3REwKYosgMAAAAAAAAAAAColKKiIkVFRal79+6KjY1VSEiIPD09FRISotjYWHXv3l0zZsxQUVGR0VEBm2G6eAAAAAAAAAAAUKPk5eUpPT3d7v0GBQXJw8PD7v2WF+cFVSEpKUnHjx/XrFmz5ORUcnyvk5OTRo4cqbCwMCUlJalTp04GpQRsiyI7AAAAAAAAAACoUdLT0zVw4EC79xsfH6+2bdvavd/y4rygKmRmZkqSWrVqVer+S9svtQNqAorsAAAAAAAAAACgRgkKClJ8fHyFj0tLS9OECRMUExOj4ODgSvXryDgvqAp+fn6SpJSUFIWEhFy2PyUlpUQ7oCagyA4AAAAAAAAAAGoUDw+Pqxo5HRwcXCNHXnNeUBU6dOiggIAAvf3224qNjS0xZXxxcbHeeecdNW3aVB06dDAwJWBbTn/dBAAAAAAAAAAAAAAu5+zsrMmTJ2vDhg0aNWqUkpOTlZubq+TkZI0aNUobNmzQpEmT5OzsbHRUwGYYyQ4AAAAAAAAAQDVw8uRJZWRkqE2bNrrmmmuMjgMAVqGhoXrjjTcUFRWlsLAw6/amTZvqjTfeUGhoqIHpANujyA4AAAAAAAAAgAPYtm2b4uLi1KtXL91zzz3W7dnZ2Xr00Ue1cuVKSZKnp6fmzJmjxx57zKioAHCZ0NBQ9erVS0lJScrMzJSfn586dOjACHbUSBTZAQAAAAAAAABwAO+9957ef/993XfffSW2T5gwQStWrJCTk5N8fHyUlZWlJ554Qh06dNBNN91kTFgAKIWzs7M6depkdAygyrEmOwAAAAAAAAAADmDz5s3y9PTUnXfead2Wm5urjz/+WN7e3tqzZ49Onz6t2bNnq7i4WDNnzjQwLQAAtRdFdgAAAAAAAAAAHMDJkycVGBhYYtv333+v/Px8Pfjgg7r++uslSc8884waNmyobdu2GRETAIBajyI7AAAAAAAAAAAOICcnR9dcc02JbZs2bZLJZFLv3r2t25ycnHTdddfp2LFj9o4IAABEkR0AAAAAAAAAAIfQoEEDHTlyRBaLxbrtu+++kyR169atRNvCwkK5urraNR8AALiIIjsAADBcUVGR5s2bp27duqlhw4Zyd3dX8+bNdd9992n58uVGxwMAAAAAwC7+/ve/6/Tp05o3b56kiwX2HTt2qF27dmrUqJG1ncViUWpqqpo0aWJUVAAAajWK7AAAwFBZWVm6/fbb9eSTT+qHH35Qw4YN9be//U2FhYVavny5Pv74Y6MjAgAAAABgF88995xMJpOefvppNWzYUH379pXJZNJzzz1Xot3GjRv1+++/q2PHjgYlBQCgdqPIDgAADFNcXKwBAwZo69atGjhwoI4ePar9+/crKSlJGRkZOnbsmEaPHm10TAAAAAAA7OL222/XsmXLdOONN+r3339XUFCQ3nrrLT388MMl2r399tuSpNDQUCNiAgBQ69UxOgAAAKi93n33XW3atEk9evTQ0qVL5eRU8v6/pk2bqmnTpgalQ1UoKipSUlKSMjMz5efnpw4dOsjZ2dnoWAAAAADgMO69917de++9V2zz7rvv6u2335a3t7edUgEAgD+iyA4AAAwzZ84cSVJERMRlBXbUPGvWrFFUVJSOHz9u3RYQEKDJkycz+gIAAAAAKoDiOgAAxuK32QAAwBApKSnav3+/6tevry5dumj58uV65JFH1KtXL4WFhem9996T2Ww2OiZsZM2aNRo9erRat26tuLg47dy5U3FxcWrdurVGjx6tNWvWGB0RAAAAAAAAAMqFkewAAMAQO3bskCRdf/31evTRR7Vw4cIS++Pi4jRz5kytXr1azZs3NyIibKSoqEhRUVHq3r27YmNjrbMWhISEKDY2VqNGjdKMGTPUq1cvpo4HAAAAUOsVFBTogw8+0OrVq5Wenq7c3FxZLJZS25pMJqWlpdk5IQAAoMgOAAAM8euvv0qSEhMTlZCQoMcff1xTp05V48aNtWnTJj355JPav3+/7r//fm3fvr3M6eTNZnOJEe/Z2dl2yY/yS0pK0vHjxzVr1qzL/js6OTlp5MiRCgsLU1JSkjp16mRQSgAAAAAw3q+//qpevXrpwIEDZRbW/8hkMtkhFQAA+DOK7AAAwBC///67JKmwsFB33HGH5s2bZ93Xq1cvxcfH65ZbbtGOHTv01Vdf6R//+EeprxMZGamXX37ZLplROZmZmZKkVq1albr/0vZL7QAAAACgtnruuee0f/9+BQUFaeLEibrlllvk5+dHMR0AAAdDkR0AABjC3d3d+vOzzz572f527dqpR48eWrdunVavXl1mkX3KlCkaN26c9Xl2drYCAwNtHxiV5ufnJ0lKSUlRSEjIZftTUlJKtAMAAACA2mr16tVyd3fX999/r4CAAKPjAACAMpQ+7yoAAEAV8/X1tf58/fXXl9rmhhtukCQdPny4zNdxc3NT3bp1SzzgWDp06KCAgAC9/fbbKi4uLrGvuLhY77zzjpo2baoOHToYlBAAAAAAHENRUZGuv/56CuwAADg4iuwAAMAQbdq0sf7s5uZWaptL24uKiuySCVXD2dlZkydP1oYNGzRq1CglJycrNzdXycnJGjVqlDZs2KBJkybJ2dnZ6KgAAAAAYKibb75Zp0+fNjoGAFRaUVGRtm3bppUrV2rbtm38Xg81FtPFAwAAQ9xyyy1yd3dXfn6+0tPT1bJly8vapKenSxJ38NcAoaGheuONNxQVFaWwsDDr9qZNm+qNN95QaGiogekAAAAAwDFMmDBB9913n+Li4vTggw8aHQcAKmTNmjWKiorS8ePHrdsCAgI0efJkfveDGoeR7AAAwBCenp66++67JUkffvjhZftPnDihb775RpLUs2dPu2ZD1QgNDdW3336rjz76SDNnztRHH32kNWvW8I8sAAAAAPivAQMGaObMmXr88cf13HPPae/evcrPzzc6FgD8pTVr1mj06NFq3bq14uLitHPnTsXFxal169YaPXq01qxZY3REwKYosgMAAMNMmzZNzs7O+vTTT0sU2s+ePavw8HDl5eUpKChIDzzwgIEpYUvOzs7q1KmT+vfvr06dOjFFPAAAAAD8yZAhQ9S9e3fNnj1bN998szw9PeXs7Fzqo04dJqsFYLyioiJFRUWpe/fuio2NVUhIiDw9PRUSEqLY2Fh1795dM2bMYOp41CgU2QEAgGHatWunt956SxaLReHh4WrevLk6duyogIAAffPNN2rYsKGWLVsmV1dXo6MCAAAAAFDlUlNT1b59e3399deyWCx/+SguLjY6MgAoKSlJx48f11NPPSUnp5KlRycnJ40cOVK//PKLkpKSDEoI2B5FdgAAYKinnnpK33//vf7xj3/o/Pnz+umnn9SoUSP961//0o8//qiQkBCjIwIAAAAAYBcTJ05URkaGOnXqpG+++UYnT55UcXHxFR8AYLTMzExJUqtWrUrdf2n7pXZATcBcMgAAwHB33HGH7rjjDqNjAAAAAABgqO+//15eXl5avXq16tata3QcACgXPz8/SVJKSkqpA2ZSUlJKtANqAkayAwAAAAAAAADgAIqLi9WmTRsK7ACqlQ4dOiggIEBvv/32ZTNsFBcX65133lHTpk3VoUMHgxICtkeRHQAAAAAAAAAAB9C+fXv98ssvRscAgApxdnbW5MmTtWHDBo0aNUrJycnKzc1VcnKyRo0apQ0bNmjSpElydnY2OipgMxTZAQAAAAAAAABwAC+88IJOnTqlOXPmGB0FACokNDRUb7zxhg4ePKiwsDC1b99eYWFhSklJ0RtvvKHQ0FCjIwI2xZrsAAAAAAAAAAA4gBYtWigmJkaTJk3Sxo0bNXz4cAUHB+uaa64p85hmzZrZMSEAlC00NFS9evVSUlKSMjMz5efnpw4dOjCCHTUSRXYAAAAAAAAAABzAddddJ5PJJIvFoi+++EJffPHFFdubTCZduHDBPuEAoBycnZ3VqVMno2MAVY4iOwAAAAAAAAAADqBZs2YymUxGxwAAAH+BIjsAAAAAAAAAAA7g8OHDRkcAAADl4GR0AAAAAAAAAAAAAAAAqguK7AAAAAAAAAAAAAAAlBPTxQMAAAAAAAAA4EDMZrMWL16sNWvW6ODBg8rJyZG3t7dat26tPn36KCwsTG5ubkbHBACg1qoWRfYvvvhCq1atUlJSkjIyMnT69Gldc801uvHGG/Xggw/q6aeflqurq9ExAQAAAAAAAAC4Kjt37tQDDzygw4cPy2KxXLYvLi5OERERWrJkiW699VaDUgIAULtViyL766+/rs2bN8vNzU3+/v5q166dfv31V23ZskVbtmzRxx9/rO+++0716tUzOioAAAAAAAAAAJXyyy+/qHfv3srKylLDhg31xBNPqG3btrr22mt18uRJ7d27V++9957S09PVp08f/fjjjwoICDA6NgAAtU61WJP98ccf1/r165WTk6P09HQlJibql19+0ZYtW9S0aVPt2LFD//73v42OCQAAAAAAAABApUVGRiorK0sDBw7UkSNH9Oqrr2rIkCHq1auXhgwZoldffVVHjhzR/fffr9OnTysyMtLoyAAA1ErVosgeHh6u7t27y8XFpcT2v//975o1a5aki1PKV0dFRUXatm2bVq5cqW3btqmoqMjoSHBgeXl5evnllzV8+HC9/PLLysvLMzqSQ+B7BAAAAAAAgJpg1apV8vT01IIFC+Th4VFqG3d3d33wwQfy9PTU119/beeEAABAqibTxV/J9ddfL0k6f/68wUkqbs2aNYqKitLx48et2wICAjR58mSFhoYamAyOaNSoUVq7dq31+ebNm7Vo0SL16tVLsbGxBiYzFt8jAAAAoHqYOnWqXn31VUlSRESEpk6danAiAAAcT0ZGhm6++WZ5eXldsZ2Xl5duuOEG7d69207JAADAH1WLkexXsmXLFknSrbfeanCSilmzZo1Gjx6t1q1bKy4uTjt37lRcXJxat26t0aNHa82aNUZHhAO5VGB3cXHRk08+qTVr1ujJJ5+Ui4uL1q5dq1GjRhkd0RB8jwAAAIDqYd++fYqJiTE6BgAADs/b21snT54sV9uTJ0/K09OzihMBAIDSVMsie1FRkX755RfFxsZq/Pjx8vT0rFZrzxQVFSkqKkrdu3dXbGysQkJC5OnpqZCQEMXGxqp79+6aMWMGU15D0sUp4i8V2Hfu3KnnnntOzZs313PPPaedO3daC+21bep4vkcAAABA9WCxWDRy5Ei5uLioZ8+eRscBAMChtW/fXr/88os+/fTTK7ZbvHixjh07pg4dOtgpGQAA+KNqNV387NmzNXbs2BLb7rvvPkVEROhvf/tbmceZzWaZzWbr8+zs7CrLWB5JSUk6fvy4Zs2aJSenkvc5ODk5aeTIkQoLC1NSUpI6depkUErbycvLU3p6ut37DQoKKnPdouokOjpakvTYY4/J1dW1xD5XV1cNGzZM7733nqKjo/Xiiy8aEdEQte17BAAAAFRX8+fP1w8//KAZM2bo559/NjoOAAAO7f/+7/+0Zs0aDRs2TImJiXrmmWfUokUL6/5Dhw7pzTffVGxsrEwmk0aPHl3pvg4dOqTvvvtO27dv1/bt27V3714VFRVdcVmXl156SS+//PIVX3ffvn3WZV4BAKipqlWRPSAgQF27dlVhYaGOHDmikydPav369Vq8eLFeeeUVOTs7l3pcZGTkX1747SkzM1OS1KpVq1L3X9p+qV11l56eroEDB9q93/j4eLVt29bu/drakSNHJEmDBg0qdf+gQYP03nvvWdvVFrXtewQAAABUR5mZmZo0aZJuvPFGjR07Vk888YTRkQAAcGj33HOPJk2apBkzZmj27NmaPXu23Nzc5Ofnp8zMTOtgMovFoilTpujuu++udF9z5szRnDlzKnVsYGCgmjVrVuq+a665ptKZAACoLqpVkf2BBx7QAw88YH2+bds2jRw5Uq+99prOnDmjuXPnlnrclClTNG7cOOvz7OxsBQYGVnnesvj5+UmSUlJSFBISctn+lJSUEu2qu6CgIMXHx1f4uLS0NE2YMEExMTEKDg6uVL81QfPmzbV582Z99tlneu655y7b/9lnn1nb1Sa17XsEAAAAVEdjx47VmTNnFB8fLxcXF6PjAABQLURGRqpr166KiorS1q1blZ+fr2PHjkm6OINjly5dNGnSJN1zzz1X1U/Dhg3Vv39/3XbbberYsaPee+89LVu2rFzHDh8+XC+99NJV9Q8AQHVWrYrsf9apUyd9/fXXCgoK0rvvvqvJkyeXWmh0c3OTm5ubAQlL16FDBwUEBOjtt99WbGxsiamui4uL9c4776hp06Y1Zj0dDw+PqxpRHhwcXCNGpFfWxIkTtWjRIn3wwQf6v//7vxJTxhcUFOjDDz+0tqtNatv3CAAAAKhu1q5dq4ULF+qRRx5Rt27djI4DAEC10r9/f/Xv31+///67UlNTlZubKy8vL7Vs2VKenp426ePPU8L/1TrwAFAeubm5mjhxoo4dO6bAwEBFR0fLy8vL6FiAzTn9dRPH5u/vr5CQEBUXF2vXrl1GxykXZ2dnTZ48WRs2bNCoUaOUnJys3NxcJScna9SoUdqwYYMmTZpU5vT3qF08PDzUq1cvFRYW6tZbb1VMTIwOHTqkmJgY3XrrrSosLFSvXr1qxPrzFcH3CAAAAHBc+fn5euqpp+Tj46PXX3+9Uq9hNpuVnZ1d4gEAQG3j6empdu3aqWvXrmrXrp3NCuwAUBUGDRqk9u3ba+3atTp48KDWrl2r9u3bl7kcLlCdVfsiuyRduHChxJ/VQWhoqN544w0dPHhQYWFhat++vcLCwpSSkqI33nhDoaGhRkeEA4mNjbUW2t977z317dtX7733nrXAHhsba3REQ/A9AgAAABzT9OnTlZqaqldffVXXXnttpV4jMjJSPj4+1oeRy74BAGAvzs7O5Z4BpkePHqpTx5jJatevX68HHnhAPXv21KBBgxQdHa0TJ04YkgWAYxg0aJB2794tk8mke++9V8uXL9e9994rk8mk3bt3U2hHjVOtp4uXpMOHD1tHsLdr187gNBUTGhqqXr16KSkpSZmZmfLz81OHDh0YeYtSxcbGKi8vT9HR0Tpy5IiaN2+uiRMn1roR7H/G9wgAAABwLPv27bPOvPX0009X+nWmTJmicePGWZ9nZ2dTaAcA1HgWi0UWi6VC7Y2wcePGEs+XLVuml156SbGxsQoPDzckEwDj5ObmWgvsP/74o9zd3SVJ0dHReuWVVxQSEqLdu3dbl74AaoKrKrIfOnRIiYmJ+u2335STk6O6deuqUaNGuu2220pdG70yduzYoS+//FLDhg1TUFBQiX2rV6/W2LFjdeHCBd19990KDg62SZ/25OzsrE6dOhkdA9WEh4eHXnzxRaNjOBy+RwAAAIDjGDVqlC5cuKC5c+fKyanyE+i5ubnJzc3NhskAAKhZfv/9d7m4uNi1zyZNmuj555/XP//5TwUFBcnDw0PJycmaPn26Vq1apeHDh6tBgwb6xz/+ccXXMZvNMpvN1ucsCwNUbxMnTpQkDRgwwFpgv8Td3V39+/fXihUrNHHixFo7M29tkZeXp/T0dLv3e+maZE+VKrJ//PHHioyM1IEDB8psc+ONN+r555/XQw89VOlwkpSTk6NXXnlFr7zyiho3bqymTZuqoKBAR48e1dmzZyVJHTt21IcffnhV/QAAgIrbvn27Pv74Y7355ptGRwEAAA4iOTlZJpNJAwYMuGzfuXPnJEkzZszQW2+9pcDAQCUmJto7IgAA1d6BAwe0Z88eBQQE2LXfkSNHXratS5cu+uqrr3T//ffr888/19ixY9W/f3+ZTKYyXycyMlIvv/xyVUYFYEfHjh2TJA0fPrzU/Y899phWrFhhbYeaKz09XQMHDrR7v/Hx8Wrbtq1d+6xQkb24uFhDhw7V4sWLrdPQNGjQQIGBgfL09FRubq6OHTumM2fOaO/evXrkkUf0zTff6IMPPrjiBfVK2rVrpzlz5mjt2rXau3ev9u/fr4KCAjVo0ECdO3fW4MGD9cgjjxi29gwAALXN4cOH9cknn+iTTz5RSkqKJFFkBwAAJRQVFenkyZNl7s/NzVVubu5lo1wAAKht5syZozlz5pTYlpSUdNmsrn+Ul5en3377TZJ07733Vmm+8jKZTIqKitLnn3+utLQ0/fTTT1dc3pVlYYCaJTAwUAcPHtT777+v6Ojoy/Z/8MEH1nao2YKCghQfH1/h49LS0jRhwgTFxMRUaubyK103q0qFKtOvvPKKFi1aJGdnZz3zzDN66qmn1KZNm8va7du3T3PnztXcuXP18ccfq2XLlpo6dWqlAvr6+mr06NEaPXp0pY4HAABX79y5c1qyZIk+/vhjbd68WdLFdd9cXFzUt29fg9MBAABHcmnWudKEh4frww8/VERERKV/TwAAQE1y9uxZHT582PrcZDIpPz+/xLbSeHt764EHHtD06dOrNmAFtG7dWvXr19eZM2eUmpp6xSI7y8IANUt0dLTat2+vL7/8Uq+88kqJm2nz8/O1cuVKazvUbB4eHlc1ojw4ONjuI9Irq9xF9lOnTikqKkp16tTRypUrFRoaWmbbG264QW+88Ybuvvtu/eMf/9Crr76qp59+Wg0aNLBJaAAAUPUuXLigr7/+Wh9//LFWrlypgoIC60w2nTt31iOPPKIHH3xQ9evXNzgpAAAAAADV05gxYxQeHi7p4s3sQUFB6tixo5YsWVJqe5PJJA8PD/n5+dkxZfldWiP+woULBicBYE9eXl666aabtHv3boWEhKh///567LHH9MEHH2jlypWyWCy66aab5OXlZXRUwGbKXWT/+OOPVVBQoOeee+6KBfY/6tu3r0aPHq3Zs2dr4cKFjEYHAKAa2LZtmz7++GPFxcXpzJkz1sJ669atdfDgQTVu3Ng6mh0AAAAAAFSej4+PfHx8rM+HDRumNm3aqHnz5gamqpxTp05Zp7Fv2rSpwWkA2Ntnn32mQYMGaffu3VqxYoVWrFhh3XfTTTfps88+MzAdYHvlLrJv2rRJJpNJTz/9dIU6GDVqlP7zn/9o48aNFNkBAHBQhw4d0ieffKKPP/5YaWlpki7eQd+4cWOFhYXp4YcfVvv27eXk5GRwUgAAAAAAaq5L6xZXR7NmzZLFYpGPj486duxodBwABvjss8+Um5uriRMn6tixYwoMDFR0dDQj2FEjlbvI/tNPP6lRo0YVXjg+ODhYjRo10k8//VThcAAAoOrdcccdSkhIkHSxsF63bl0NHDhQDz/8sHr27CmTyWRwwuqpoKBAixYt0tGjR9WsWTMNGTJErq6uRscyXGZmph588EGdOXNG9evXV1xcnMNOcwgAsL0FCxZowYIFRscAAACVsHfvXv2///f/9K9//avEern5+fmaNWuWZsyYIUmaNGkS//4FajEvLy/FxsYaHQOocuUusp85c6bSU9T4+/vryJEjlToWAABUrc2bN8tkMqlevXqaOXOmHnroIbm5uRkdq1qLjo7WggULVFRUVGJbeHi4Jk6caGAyY3Xo0EE5OTnW58ePH9ftt98ub29vJSUlGZgMAAAAABzLoUOHFBcXp127dunMmTMqLCwstZ3JZNLatWsr1cfmzZt17733Wp/n5uZKkiIjIzV79mzr9uTkZAUGBqqwsFBz587V3Llz5efnp2bNmkmS9u3bp/Pnz0uSRowYocmTJ1cqDwAA1Um5i+zZ2dmVns7B09NT2dnZlToWAABULWdnZxUVFens2bN65pln9M0332jIkCHq16+f6tQp9/8q4L+io6M1f/58NWjQQGPGjFGPHj20fv16zZ49W/Pnz5ekWllo/2OBvWXLlho/frxef/11paamKicnRx06dKDQDgAAAACSYmJi9O9//1sXLlywzi5nsVis+/+47WpmnyssLNTp06cv237+/Hlr0VyS9Qby6667ThEREUpISND+/ft14MABFRQUqFGjRrr77rv1+OOPq0+fPpXOAwBAdVLu35z/cSRWZRQXF1/V8QAAoGocP35cixYt0ieffKKdO3cqLi5OS5Yska+vrwYNGqSHHnpI3bp1MzpmtVBQUKAFCxaoQYMG2rhxo/UmhcGDB2vgwIG68847tWDBAo0ZM6ZWTZ2XmZlpLbAnJiaqbt26kqQePXooOztbHTt2VE5OjjIzM5k6HgAAAECt9vXXX2vSpElq0qSJIiIiNHv2bO3du1fffvutjh07pl27dmn+/PkqKipSVFSUbr755kr31b179xLF+79Sr149TZ06tdL9AQBQkzhVpLHZbNbRo0cr/DCbzVWVHwAAXKVGjRppzJgxSkpK0t69ezVp0iQ1bdpUZ86c0bx589SzZ081a9ZMEyZMMDqqw1u0aJGKioo0ZsyYy2YBqFOnjp599lkVFRVp0aJFBiU0xoMPPijp4gj2SwX2S+rWraugoKAS7QAAAACgtnrzzTdlMpm0ZMkSDR8+XD4+PpKkXr16KTw8XP/5z3906NAhdezYUS+88IL8/f0NTgwAQO1UoSJ7UlKSWrRoUeHHjh07qio/AACwoRtuuEGRkZE6fPiw1q5dq6FDh8rLy0u//PKLZs2aJZPJpLNnzyoiIkLp6elGx3U4R48elXRxhHZpunfvXqJdbXHmzBlJ0vjx40vdP27cuBLtAAAAAKC22rFjh5o0aaKuXbuW2aZBgwZavHixzp8/r5dfftmO6QAAwCUVWmi1IlPH/NnVrA0DAADsy2QyqUePHurRo4fmzp2rL774Qh999JG+/fZb5efn66WXXtJLL72kzp0769FHH9XIkSONjuwQmjVrJklav369Bg8efNn+DRs2lGhXW9SvX1/Hjx/X66+/XuoNCLNmzbK2AwCU7dSpU5Kkhg0bGpwEAABUlezsbLVr18763N3d3br9jzODNWnSRH/729+0fv16u2cEUHvk5eUZMtAmKChIHh4edu+3Ijg3KHeR/dChQ1WZAwAAOCh3d3eFhYUpLCxMv/32mxYuXKhPPvlEycnJSkhI0JYtWyiy/9eQIUMUHR2t2bNna+DAgSWmjL9w4YLmzJkjZ2dnDRkyxMCU9hcXF6fbb79dqampl/1iKDs72/oPkri4OKMiAoDDOnv2rJ5//nnFxcXp7NmzkiQfHx898MADeu2119SgQQNjAwIAAJtq1KiRsrOzSzyXpAMHDqhjx44l2ubm5ur06dN2zQegdklPT9fAgQPt3m98fLzatm1r934rgnODchfZmzdvXpU5AABANdCoUSONHTtWY8eO1c8//6yPPvqo1q0vfiWurq4KDw/X/Pnzdeedd+rZZ59V9+7dtWHDBs2ZM0enT5/WiBEj5OrqanRUu/Lz85O3t7dycnLUsWNHBQUFady4cZo1a5a1wO7t7S0/Pz+DkwKAY8nLy9Mdd9yhn3/+ucTMcmfPntV7772nH374QYmJifL09DQwJQAAsKXg4GDt3LnT+rxTp05avHix5s6dW6LIvnbtWqWmpqpFixZGxARQSwQFBSk+Pr7Cx6WlpWnChAmKiYlRcHBwpfp1dJwbVGi6eAAAgEtuvPFGRUVFKTIy0ugoDmXixImSpAULFmjatGnW7c7OzhoxYoR1f22TlJSkDh06KCcnR+np6XrmmWes+7y9vZWUlGRgOgBwTHPmzNHevXtVr149TZs2TXfeeacsFos2btyoiIgIHThwQLNnz9a///1vo6MCAAAb6du3rzZu3KjExER17NhRQ4YM0YsvvqgPP/xQBw8eVOfOnXXy5EktWbJEJpNJjz76qNGRAdRgHh4eVzVqOjg4uMaOuubcoEqK7AUFBTp79qz8/PxYix0AgBqktGs81/rLTZw4UWPGjNGiRYt09OhRNWvWTEOGDKl1I9j/LCkpSZmZmXrwwQd15swZ1a9fX3FxcYxgB4AyfP755zKZTFq2bJl69Ohh3d6+fXvdfPPN6t27tz7//HOK7AAA1CCDBw9Wamqqzpw5I0lq2LCh4uLiFBYWpoSEBCUkJFjbDho0SFOnTjUqKgAAtVqFi+z79u3T2rVrVVBQoOuvv179+vWz/nJ95cqVmjZtmn766SdZLBZ5e3tryJAhioqKKrH2JgAAcDxc423r0tTxKMnPz0/r1q0zOgYAVAsHDhxQQEBAiQL7Jb169VLTpk2VkpJiQDIAAFBVWrRooXnz5pXYFhoaqkOHDmnVqlU6fPiwPDw8dMcdd+jWW281KCUAAKhQkf2FF15QZGRkibXgbrnlFq1fv15fffWVHnnkERUXF1v3ZWdn65133tHOnTu1adMm1anD7PQAADgirvEAADienJwc3XTTTWXub9asmbZs2WLHRAAAwCg+Pj4KCwszOgYAAPgvp/I2XLVqlV599VUVFxerUaNGat++vby9vZWcnKzXXntN48ePV7169fTmm29qx44dSkxM1OzZs1WvXj0lJibq3Xffrcr3AQAAKolrPAAAjslisVxxWRaWbAEAAAAAwBjlHnb29ttvy2Qyady4cYqOjpbJZFJubq7++c9/as6cOTKbzfr222/Vs2dP6zHt27fX9ddfr759+2rJkiUaNWpUlbwJAABQeVzjAQAAAAAAAAAov3KPZE9MTJS3t7emT59uvVvey8tLkZGRys/P17XXXlvil++XhIaG6tprr9WePXtslxoAANgM13gAABzX5s2b5ezsXOojISFBksrcz3IuAAAAAABUjXIX2U+dOqWgoCC5ubmV2H7jjTdKurgWXFmaNWumc+fOVTIiAACoSlzjAQBwXBaL5aoeAAAAAADA9sp9W/uFCxfk5eV12fZrrrlGkuTq6lrmsa6uriouLq5EPAAAUNW4xgMA4JjWr19vdAQAAAAAAFAK5o4DAAAAAMABdevWzegIAAAAAACgFOWeLh4AAAAAAAAAAAAAgNquQiPZk5KSFBQUdNl2k8lU5j5J+vXXXyuXDgAA2AXXeAAAAAAAjLdv3z7dcMMNRsdwOBkZGcrKyrJLX2lpaSX+tAdfX1/5+/vbrb+ajs8LAHuoUJE9Pz9fhw8frvA+6eIv6QEAgGPiGg8AgOMbPnx4uds6OzvL29tb1113nbp27ar27dtXYTIAAGArf/vb39SxY0eFh4crLCxM9erVMzqS4TIyMtS3T1+ZC8x27XfChAl268vN1U2rv1lN4dQGMjIy1KdfPxXk59u1X3t+Xlzd3fXNqlV8XgCDlbvI/sEHH1RlDgAAYBCu8QAAVA8LFiyQ9L8b3CwWy2Vt/rzv0vP27dvrww8/ZGQcAAAOrl69etq+fbsSExM1duxY3XvvvQoPD1efPn1q7U3uWVlZMheY1e5cO3kVeRkdx+ZynXO1y2eXsrKyKJraQFZWlgry83X+/vtV3LCh0XFszunUKWnZMj4vgAMod5F92LBhVZkDAAAYhGs8AADVwwcffKC0tDTNmDFDnp6euu+++3TzzTfL29tbOTk52r17t7744gv9/vvvmjhxoho3bqx9+/Zp2bJlSkpKUo8ePZScnKwmTZoY/VYAAEAZTpw4oS+//FIffvihVq9erSVLlmjp0qVq3LixHn30UQ0bNqzW3jTnVeQlnws+RsdANVHcsKGKKUIDqEIVmi4eAAAAAAAY484779S4cePUs2dPLV68uNTpY//zn//owQcfVGxsrLZv365Ro0YpKipKAwcO1HfffaeYmBjNmjXL/uEdVF5entLT0+3eb1BQkDw8POzeb0VwbkrHeSkd5wWwHRcXF91///26//77derUKX3yySf68MMPtWvXLkVHRysmJobp5AEAcAAU2QEAAAAAqAamTp2q/Pz8MgvsklS3bl0tWrRITZs21dSpU7Vo0SJ5enrq/fffV/PmzfX1119TZP+D9PR0DRw40O79xsfHq23btnbvtyI4N6XjvJSO8wJUjYYNG2rMmDEaM2aMdu/erQULFmjhwoVMJw8AgAMod5H9o48+uurOhg4detWvAQAAbItrPAAA1cPatWvVtm3bvxyx5uvrq7Zt22rdunXWbQEBAbr++ut16NChKk5ZvQQFBSk+Pr7Cx6WlpWnChAmKiYlRcHBwpfp1dJyb0nFeSsd5AareTTfdpJkzZyo6Olqvv/66XnjhBRUUFFink2/SpIlGjhyp0aNHy8eHKdUBAKhq5S6yh4eHX9WdcCaTiV/AAwDggLjGAwBQPWRnZ+vMmTPlanvmzBllZ2eX2Obm5sYItz/x8PC4qlGwwcHBNXYULeemdJyX0nFegKqXlZWlxYsXa8GCBdqxY4csFotcXFzUr18/nTx5Utu2bdNLL72kt99+W998843+9re/GR0ZAIAardxF9mbNmpX5j/EjR47Izc1NjRs3tlkwAABgH1zjAQCoHlq1aqU9e/Zo5cqV6t+/f5ntVq5cqfT0dN18880ltqenp8vPz6+qYwIA/ou16nG1ioqK9PXXX+vDDz/UypUrVVhYKIvFohtvvFGPPfaYhg4dar22//zzz3r++ef15ZdfauzYsfr2228NTg8AQM1W7iL74cOHy9zn5OSkjh07auPGjbbIBAAA7IhrPAAA1cPTTz+tUaNGafDgwZo2bZrCw8NL3Ah38uRJLViwQBERETKZTHr66aet+3bt2qVz586pZ8+eRkQHgFqJtepRWT/++KM+/PBDLVq0SKdOnZLFYlHdunU1bNgwDR8+XJ06dbrsmBtvvFHx8fFq0aKFtm3bZkBqAABql3IX2QEAAAAAgHGeeuopJSYm6oMPPtC///1v/fvf/1aDBg3k7e2t3NxcnTp1SpJksVg0YsQIjRw50nrshg0b1K1bN5Z4AQA7Yq16VEZISIh2794ti8Uik8mkO++8U8OHD9egQYP+coYCJycntWjRQr/88oud0gIAUHtRZAcAAAAAoJqYP3+++vXrp5kzZ2r79u06deqUtbju5OSkTp06ady4cbr//vtLHPfss8/q2WefNSIyANRarFWPyvjpp58UGBiooUOHavjw4WrRokWFjp8yZYoee+yxKkoHAAAuocgOAAAAAEA1MmjQIA0aNEi5ublKTU3V77//Lk9PT7Vs2VJeXl5GxwMAAFdh1apVCg0NlclkqtTxffr0sXEiAABQGorsAAAAAABUQ15eXgoJCTE6BgAAsKHbbrut0gV21D4ZGRnKysqyS19paWkl/rQHX19f+fv7260/AKgIiuwAAAAAAFRDeXl5SktLU05Ojry9vRUcHPyXa7UCAGC0vLw8paen273foKCganGdbNy4sfr06aMhQ4ZowIABuuaaa4yOBAeVkZGhvn37ymw227XfCRMm2K0vNzc3rV69mkI7AIdEkR0AAAAAgGrkm2++UWRkpBISElRUVGTd7uzsrNtvv12TJ09WaGiogQkBAChbenq6Bg4caPd+4+Pjq8Ua9xaLRStXrtRXX32la665RgMGDFBYWJj69eunOnX4dT7+JysrS2azWS5/d5FTXSej49hccXaxzFvNysrKosgOwCGV+6q8cePGK+4/d+7cX7a58847y9sdAACwE67xAABUHy+99JIiIiJksVgkSa6urvLz81NmZqYKCgq0YcMGff/993rhhRf00ksvGRsWAIBSBAUFKT4+vsLHpaWlacKECYqJiVFwcHCl+q0OTp48qaVLl2rx4sX64YcftHjxYn366aeqV6+eBg0apIceekjdu3c3OiYciFNdJznVr3lFdgBwdOUusnfv3r3MtWBMJpP27NmjHj16lHm8yWTShQsXKp4QAABUKa7xAABUD6tXr9Yrr7wiZ2dnjRw5Us8++6xatWpl3Z+SkqI5c+bo3XffVUREhDp37qw+ffoYmBgAgMt5eHhc1Yjy4ODgajEivbJ8fX315JNP6sknn9Svv/6qTz/9VIsXL1ZSUpLmzZun9957T02aNFFYWJjCwsLUoUMHoyMDAFArVej2JovFUulHcXFxVb0HAABwlbjGAwDg+N544w2ZTCa9//77euutt0oU2CWpVatWeuutt/T+++/LYrFozpw5BiUFAAC20KRJE40dO1bbt29XamqqXnnlFV1//fXKyMjQf/7zH3Xq1Elt2rQxOiYAALVSuYvsxcXFV/0AAACOh2s8AADVQ2Jiopo2bapHH330iu0eeeQRBQYGavv27XZKBgAAqlpQUJCmTp2qvXv36scff1SfPn1ksViUmppqdDQAAGqlck8XDwAAAAAAjJOTk6MWLVqUq+21116r3bt3V3EiAABgT+np6Vq8eLEWL16sffv2GR0HAIBajSI7AAAAAADVgL+/v/bv36/ff/9dnp6eZbb7/ffftW/fPjVp0sSO6QAAQFU4ceKE4uLitHjxYiUmJkq6uORbkyZN9OCDD2rIkCEGJwQAoHaiyA4AAAAAQDXQp08fvfPOO3riiSe0YMECubq6XtamoKBAjz/+uM6fP6++ffsakBIAAFyts2fP6rPPPtPixYu1ceNGFRcXy2KxqF69eho4cKCGDBmiHj16yGQyGR0VAIBaiyI7AAAAAADVwPPPP6+4uDjFxcVpw4YNeuKJJ3TjjTeqUaNG+u233/Tzzz9r3rx5OnnypHx8fDRlyhSjIwMAgAoaMGCA1qxZo8LCQlksFnl4eKh///4aMmSI+vXrV+pNdgAAwP4osgMAAIcydepUvfrqq5KkiIgITZ061eBEAAA4hsDAQK1atUqDBw/WsWPHNH369MvaWCwWNWvWTEuWLFFgYKABKQEAwNVYuXKl6tSpo9DQUA0ZMkT//Oc/5eXlZXQsAADwJxTZAQCAw9i3b59iYmKMjgEAgMPq1KmT9u/fr0WLFmnNmjU6ePCgcnNz5eXlpdatW6tPnz566KGHdOjQIf3000+6+eabjY4MAAAq4M0339SDDz6ohg0bGh3F4RSaCmU2mY2OYXOFpkKjIwAAKoEiOwAAcAgWi0UjR46Ui4uLbr/9dq1bt87oSAAAOCQPDw+NGDFCI0aMKLNNt27dlJWVpQsXLtgxGQAAuFr/+te/jI7gsLb7bjc6AgAAVk5GBwAAAJCk+fPn64cfftC0adOY3rYGW7lypdq0aWN9rFy50uhIDiEzM1M9e/ZUSEiIevbsqczMTKMjOYzc3FyNGjVK//jHPzRq1Cjl5uYaHQmoNiwWi9ERAAAAAACokRjJDgAADJeZmalJkybpxhtv1NixY/XEE08YHQlVoE2bNpdte+655/Tcc8/pwIEDBiRyDB06dFBOTo71+fHjx3X77bfL29tbSUlJBiYz3qBBg7R7927r84MHD6p9+/a66aab9NlnnxmYDAAAAKhahw4dUlxcnHbt2qUzZ86osLD0KcVNJpPWrl1r53QAAIAiOwAAMNzYsWN15swZxcfHy8XFxeg4qAJ/LrC3bdtWe/fuLbG/Nhba/1hgb9mypcaPH6/XX39dqampysnJUYcOHWptof1Sgd1kMmnAgAEaPny43n//fX355ZfavXu3Bg0aRKEdAAAANVJMTIz+/e9/68KFCzKZTJJKzlDzx22XfgYAAPZ1VUV2Z2dnde/enTvlAACoYex5jV+7dq0WLlyoRx55RN26davy/mB/f5wSfv78+br99tutzzdt2mRdU3jlypXq37+/3fMZJTMz01pgT0xMVN26dSVJPXr0UHZ2tjp27KicnBxlZmbKz8/PyKh2l5ubay2w//jjj3J3d5ckRUdH65VXXlFISIh2796t3NxceXl5GZwWAAAAsJ2vv/5akyZNUpMmTRQREaHZs2dr7969+vbbb3Xs2DHt2rVL8+fPV1FRkaKionTzzTcbHdlubsu6Td4XvI2OYXM5dXJYbx4AqqGrKrJbLJbL1ngbPXq09u7dS+EdAIBqzF7X+Pz8fD311FPy8fHR66+/XqnXMJvNMpvN1ufZ2dm2imeVl5en9PR0m7/uXwkKCpKHh4fd+7W15557zvrzHwvsf37+3HPP1aoi+4MPPijp4gj2SwX2S+rWraugoCClp6frwQcf1Lp164yIaJiJEydKkgYMGGAtsF/i7u6u/v37a8WKFZo4caJiY2ONiAgAAABUiTfffFMmk0lLlixR165d9cEHH0iSevXqZW0zdepU3X///XrhhReUmJhoVFS7c7G4yM3iZnQMm8u35BsdAQBQCeUusj/++OPq0qWLOnfurBtuuKHMdsnJyUpISLBJOAAAUPWMvMZPnz5dqampeuutt3TttddW6jUiIyP18ssv2zTXn6Wnp2vgwIFV2kdp4uPj1bZtW7v3W1XKei+tWrVSSkqKndMY78yZM5Kk8ePHl7p/3LhxeuaZZ6ztapNjx45JkoYPH17q/scee0wrVqywtgPgeCwWizZv3qzly5frhx9+0P79+3X+/Hk1bNhQnTt31jPPPKMePXoYHRMAAIezY8cONWnSRF27di2zTYMGDbR48WI1b95cL7/8sj755BM7JgQAAFIFiuzvv/++9a45Hx8f/f3vf5d0cWTXhQsXVKcOy7sDAFAdGXWN37dvn2JiYnTrrbfq6aefrvTrTJkyRePGjbM+z87OVmBgoC0iWgUFBSk+Pr7Cx6WlpWnChAmKiYlRcHBwpfqtSf64Bvsf1cYCuyTVr19fx48f1+uvv15qoWnWrFnWdrVNYGCgDh48qPfff1/R0dGX7b/0d5atv+uAo/noo48qfewfZ3kxwrp163TXXXdJkpycnNSyZUt5enoqJSVF8fHxio+P19SpUxUREWFoTgAAHE12drbatWtnfX5pZqfs7OwSM2A1adJEf/vb37R+/fpK93Xo0CF999132r59u7Zv3669e/eqqKhIERERmjp16hWP3bJli6KiopSQkKDc3Fy1aNFCDz30kCZMmHDZbFQAgOopIyNDWVlZdukrLS2txJ/24OvrK39//0ofX+7fmqelpSkhIUEJCQnavHmz1qxZI5PJpO3bt8vHx0ddu3ZVjx49dPr06UqHAQAA9mfUNX7UqFG6cOGC5s6dKycnp0q/jpubm9zcqna6OA8Pj6saUR4cHFyjRqRX1MyZM61Txm/atOmyNdn/2K42iYuL0+23367U1NTLfmGWnZ1tXaIgLi7OqIiGiY6OVvv27fXll1/qlVdeKfFLuvz8fK1cudLaDqjJwsPDZTKZKnWsxWKp9LG2YLFY1LJlS40bN05hYWHy9fWVJBUUFOill15SZGSkpk+frk6dOtWqpUIAAPgrjRo1KrEMWqNGjSRJBw4cUMeOHUu0zc3Nvap/q8+ZM0dz5syp8HELFy7UsGHDVFRUpICAAAUGBmrPnj2aNm2aVqxYoQ0bNuiaa66pdC4AgPEyMjLUt29fu9/APWHCBLv15ebmptWrV1e60F7uInuLFi3UokULPfzww5KknJwc+fj4yN/fXy1bttTGjRv13XffSZJMJpO6d++uLl26qGvXrurcuXOtHIEDAEB1YNQ1Pjk5WSaTSQMGDLhs37lz5yRJM2bM0FtvvaXAwMBatc5cTdO/f39rkX3EiBGSSp8ivrYVWfz8/OTt7a2cnBx17NhRQUFBGjdunGbNmmUtsHt7e8vPz8/gpPbn5eWlm266Sbt371ZISIj69++vxx57TB988IFWrlwpi8Wim266SV5eXkZHBapUs2bNDC2UX43bbrtN+/btu2xGHFdXV7322mv68ccftWrVKs2bN6/W/f0PAMCVBAcHa+fOndbnnTp10uLFizV37twSRfa1a9cqNTVVLVq0qHRfDRs2VP/+/XXbbbepY8eOeu+997Rs2bIrHnP48GGNGDFCRUVFio6O1vjx42UymXTkyBH16dNHiYmJmjhxot56661K5wIAGC8rK0tms1n+fl3k6uJjdBybKyg8p4zMBGVlZVV9kf3PvL29JUmtW7fWunXrlJ+fr02bNumpp57SoUOHtHXrVm3cuNH6C4E2bdro559/rmx3AADATux5jS8qKtLJkyfL3J+bm6vc3FymmqsBDhw4oDZt2lif/7nAfuDAAXtHcghJSUnq0KGDcnJylJ6ermeeeca6z9vbW0lJSQamM9Znn32mQYMGaffu3VqxYoVWrFhh3XfTTTfps88+MzAdYB+HDx82OkKl/XF2jtL07t1bq1at0sGDB+2UCACA6qFv377auHGjEhMT1bFjRw0ZMkQvvviiPvzwQx08eFCdO3fWyZMntWTJEplMJj366KOV7uvPU8J/+umnf3lMTEyMzGazQkNDS4w2bN68ud5//3117dpV7777rl544QVde+21lc4GAHAMri4+8nBjIHVpyj0366BBgzRr1ixt2bJFBQUFl+13d3fXXXfdpSZNmki6OMXl5s2b9frrr2vgwIHKycmxXWoAAGAzRl3jz549K4vFUupj2LBhkqSIiAhZLJZqXWTA/xw4cOCyKeFnzpxZawvslyQlJWnTpk0KCAiQh4eHAgICtGnTplpdYL/ks88+044dO9SrVy+1bt1avXr10o4dOyiwAzVAfn6+pItLsgAAgP8ZPHiwhg8frjNnzki6ONo8Li5OPj4+SkhI0MyZM/XJJ5+ooKBA999//1+unW5LFotFn3/+uaT/zVL2R126dNH111+vwsJCLV++3G65AAAwQrlHssfHx1svoK6urrrlllskXfxF+9mzZ1WvXr0S7V1dXdW5c2d17txZY8eOtV1iAABgU1zjYU/9+/dnWuBS+Pn5ad26dUbHcEheXl6KjY01OgYAG7JYLFq6dKkkqWvXrganAQDAsbRo0ULz5s0rsS00NFSHDh3SqlWrdPjwYXl4eOiOO+7QrbfeatdsR48e1a+//iqp7Gt4165dtX//fm3btk1PPvmkPeMBJeXlyfT770ansL28PKMTAPivchfZMzMztWXLFusjMTFRJpNJycnJatiwoUJCQtSzZ88rTvkKAAAcD9d4AABgT/PmzVNycrJcXV01ZsyYMtuZzWaZzWbr8+zs7Cu+bkZGhrKysmwV84rS0tJK/GkPvr6+lV4rEKgIvkuAY/Lx8VFYWJihGS4t++Xm5lbm9ygoKKhEW8AoXh99ZHQEADVcuYvsDRo0KDHyqKioSC4uLmrWrJnatWun77//Xjt37pQkmUwmtW/f3jrKrXPnztaLKwAAcCxc4wEAgL3s3LlTzz77rCRp+vTpCg4OLrNtZGSkXn755XK9bkZGhvr26StzgfmvG9vQH9eirWpurm5a/c1qioOoUhkZGerXt6/yzTX3u+Tu5qZVq/kuAZVx6QacevXqyWQyldrG19e3RNuyVPRmOgBXjxvpysa5QWWUu8j+Z87OzpIu3pm2fPlyFRcXKzExUUOHDlVqaqqOHj2q5ORkzZ07V9LFKTBPnDhhm9QAAKDKOMI1fsGCBVqwYIFNXxMAABjr0KFD6t+/v/Lz8zVkyBCNHz/+iu2nTJmicePGWZ9nZ2crMDCw1LZZWVkyF5jV7lw7eRV52TS3I8h1ztUun13Kysril2OoUllZWco3mzW5i7Oa+ZReQKvOjp6zKCrBzHcJ1cLu3bv1xhtv6Pvvv9fx48dlNpt14cIF6/533nlHR44c0eTJk1W3bl27ZMrPz5d0cRm5sri5uUmS8v5iSuuK3EwH4OpxI13ZMjIy1LdvP5nN+VWUrHR2vWHXzV2rV6/i/39srNJF9j9zcnJSp06d1KhRI6WmpiozM1MHDhzQ1q1btXnzZm3dutVWXQEAADviGg8AAK7WiRMn1Lt3b/3666+65557tGDBgjJHwF3i5uZm/UV9eXkVecnngs/VRAUgqZmPSa3qOxkdowoUGx0AKJf/9//+n8aOHVuiqP7n66bZbNaMGTPUtm1bPfzww3bJ5e7uLkkqKCgos82l0ekeHh5XfK2K3EwH4OpxI13ZsrKyZDbny+3We+Xk1aCKEhqnOPe0zDuXc5NhFbBZkb00bdq0UZs2bTRs2LBKv4bFYtHmzZu1fPly/fDDD9q/f7/Onz+vhg0bqnPnznrmmWfUo0cPG6YGAAB/xRbXeAAAUDucOXNGvXv3Vlpamrp166alS5fKxcXF6FgAADik9evXa/To0fL29tarr76qAQMG6KGHHtKWLVtKtBs8eLDGjBmjzz//3G5F9ktTwZ89e1YWi6XUG+YuTbd8qW1ZKnMzHVARuUOHytK4sdExbM504sRVrTfPjXRlc/JqIOd6TWyQBbXFVRXZi4sv/9BaLJarecnLrFu3TnfddZekiyPpWrZsKU9PT6WkpCg+Pl7x8fGaOnWqIiIibNovAAC1mT2u8QAAoObLzc3V3XffrT179qhjx45asWLFX45sAwCgNps5c6YkaeHChbrnnnskXT6KXZIaN26swMBA/fzzz3bL1qpVK0kXR6tnZGQoICDgsjbp6ekl2gKG8fCQxdPT6BQ2Z+L/pQGHYfPbVd566y2tW7fOZq9nsVjUsmVLxcbG6tSpUzpw4IB27typ06dPa8qUKZKk6dOna+XKlTbrEwAAXM7W13gAAFCzmc1m3Xvvvdq2bZvatm2r1atXy9vb2+hYAAA4tK1bt6px48bWAvuVNGnSRMePH7dDqouaNWumxv8dGbx58+ZS21za3qlTJ7vlAgDACDafLj4kJMSmr3fbbbdp3759qlOnZFRXV1e99tpr+vHHH7Vq1SrNmzdP/fv3t2nfAADgf2x9jQcAADVXUVGRwsLCtG7dOgUHB+vbb79V/fr1jY4FALCxjIwM6/TgVS0tLa3En/bg6+tr9/Vrc3Nz1bx583K1LSgoUFFRURUn+h+TyaR//vOfmjt3rubPn6/BgweX2J+QkKD9+/fLxcVFAwYMsFsuAACMUKVrsttC3bp1r7i/d+/eWrVqlQ4ePGinRAAAAAAA4EqWLFmiL774QtLFpd8eeOCBUts1adJES5cutWMyAICtZGRkqG/fvjKbzXbtd8KECXbry83NTatXr7Zrob1JkyblupEgPz9f+/fvV4sWLeyQ6n8mTJig+fPna82aNYqJidH48eNlMpl05MgRDR8+XJL0+OOPW0e8AwBQUzl8kf2v5OfnSxJrugEAAAAA4CD+WHBJSUlRSkpKqe3KO1IPqAqMwEVF8Hm5XFZWlsxms/z9usjVxaeKkhmnoPCcMjITlJWVZdfvUo8ePfThhx/q/ffftxatSzNnzhzl5+erT58+le5r8+bNuvfee63Pc3NzJUmRkZGaPXu2dXtycrICAwMlSS1atNC8efP02GOPaeLEiZozZ44aNWqkPXv2qLCwUO3bt1dMTEylMwEAUF1U6yK7xWKx3vHetWtXg9MAAAAAAABJCg8PV3h4uNExgDJlZGSoT79+Kvjv4A17secIXFd3d32zahWFdhu4OGK7n8zmmvt5cXNz1+rVlfu8uLr4yMONJUFsZdKkSVq0aJH+7//+T3l5eRo2bFiJ/WfPntUbb7yhiIgIeXp6auzYsZXuq7CwUKdPn75s+/nz53X+/Hnr8z9PST906FC1bNlSkZGRSkhI0M8//6ygoCA99NBDmjRpktzd3SudCQCA6qJaF9nnzZun5ORkubq6asyYMWW2M5vNJe6iz87OtnmWvLw8paen2/x1yyMoKMhuI/m5a9d2jPrM2PPzUhmcF1REbfm7FwAAAIBtZWVlqSA/X+fvv1/FDRsaHcfmnE6dkpYts/sI3Jrq4ojtfLndeq+cvBoYHcfminNPy7xzOZ8XB9GmTRt99NFHGjZsmEaPHq2xY8fK2dlZktSsWTP9+uuvKi4ulqurqz755BPrCPPK6N69uywWS6WO7dKli1asWFHpvgEAqO6qbZF9586devbZZyVJ06dPV3BwcJltIyMj9fLLL1dpnvT0dA0cOLBK+yhLfHy82rZtW+X9sM6SbRn1mbHX56WyOC+oiNrwdy8AAACAqlPcsKGKKSqinJy8Gsi5XhOjY6AWGDx4sG644Qa99NJLWrVqlXXJ1F9++UUuLi7q16+fIiIi1K5dO4OTwhFYCiyy5FfuZglHZimoee/JEeSYLTpbAz8vOeaa954cRVGRWReK7Dubjz0UFV19rbNaFtkPHTqk/v37Kz8/X0OGDNH48eOv2H7KlCkaN26c9Xl2dvZV3eFXmqCgIMXHx1fq2LS0NE2YMEExMTFXvFngSn3bw6V1llz+7iKnuk526dOeirOLZd5qtttdu5X9zFSXz0tlcV5QEUZ9Xi71DQAAAAAAUBVuuukmLVu2TIWFhTp48KDOnTsnLy8vtWrVipn1UELBhgKjI6AambSuSFLRX7YDLjl2cp3RERxWtSuynzhxQr1799avv/6qe+65RwsWLJDJZLriMW5ubnJzc6vSXB4eHlc9ojE4OLhajIp0quskp/o1r8hub1f7makun5eK4rygIvi8AAAAAFdmz2XfpJq/9BsA2JuLiwu/u/ivXOdcoyNUiZr6vgCgpqtWRfYzZ86od+/eSktLU7du3bR06VK5uLgYHQsAAAAAAMDhGLXsm1Rzl34DANifr6+v3FzdtMtnl9FRqoybq5t8fX2NjgEAqIBqU2TPzc3V3XffrT179qhjx45asWIF0+IAAAAAAACUoaYv+ybZf+k3ALC1jz766KpfY+jQoTZI4rj8/f21+pvVdpuZxRbLDFYUs7IAQPVTLYrsZrNZ9957r7Zt26a2bdtq9erV8vb2NjoWAAAAAABwIIWmQplN9h+1XdUKTYVXdTzLvgGA4woPD//L5VCvxGQy1fgiu3Sx0G7vInR1WWbQtburnOrVvOt88dli1puvAjN6OivIt+Z9XtKziv+73jxsLfDannJ3q3kzbeSbs656vXmHL7IXFRUpLCxM69atU3BwsL799lvVr1/f6FgAAAAAAMDBbPfdbnQEoEbIMVt0Nt9idAybyzHXvPeE6q9Zs2ZlFtmPHDkiNzc3NW7c2M6pUJ2YXE0yuVf+Rg1HZXKtee/JEXi7mVSvBn5evN1q3ntyFM7Obqrj7G50DJtzdna76tdw+CL7kiVL9MUXX0iSnJyc9MADD5TarkmTJlq6dKkdkwEAAAAAAAA1z8WRYIwGA+zh8OHDZe5zcnJSx44dtXHjRvsFAgAA5eLwRXaz+X/TvKWkpCglJaXUds2bN7dXJAAAAAAAAAAAAABALeXwCy+Eh4fLYrH85eNKd/wBAAAAAAAAAAAAAGALDj+SHQAAAAAAoDxuy7pN3he8jY5hczl1clhvHgAAAAAcCEV2AAAAAABQI7hYXORmcTM6hs3lW/KNjoBaZkZPZwX5OvwEmBWWnlX83/XmK8dSkCeL+XcbJnIMloI8oyMAAABUOxTZAQAAAAAAAFh5u5lUz91kdAyb83a7uveUv3WxjZIAAACguqt5t6QCAAAAAAAAAAAAAFBFGMkOAAAAAAAAAKiUoiKzLhTVvGUtiorMduln48aNV9x/7ty5v2xz55132jISANRKLAuDiqLIDgAAAAAAAAColGMn1xkdoVrr3r27TKbSlzIwmUzas2ePevToUebxJpNJFy5cqKp4AFBrsCwMKooiOwAAAAAAAAD8Bfe/PyRnn2uNjmFzRedOUlgwmMViMeRYAABQeRTZAQAAAAAAUDvl5cn0e82bFlR5TAtaFUyuHjK5eRodw+ZMrh5GR6jViouLjY4AAAAqgSI7AAAAAAAAaiWvjz4yOgIAAACAaogiOwAAAAAAAACgUgKv7Sl3N1+jY9hcvjmL9eYBoBZhWRhUFEV2AAAAAAAAAEClODu7qY6zu9ExbM7Z2c3oCAAAO2JZGFSUk9EBAAAAAAAAAAAAAACoLhjJDgAAAAAAgFopd+hQWRo3NjqGzZlOnGC9eQAAAKAKUWQHAAAAAABA7eThIYtnDZwW1INpQQEAAICqxHTxAAAAAAAAAAAAAACUE0V2AAAAAAAAAAAAAADKiSI7AAAAAAAAAAAAAADlxJrsAACgVsnIyFBWVpZd+kpLSyvxpz34+vrK39/fLn3l5eUpPT3dLn39UVBQkDwceJ1RzkvpjDovkuOfG5SO7xJgO5YCiyz5FqNjVAlLQc18XwAAAAAcG0V2AABQa2RkZKhvn74yF5jt2u+ECRPs1pebq5tWf7PaLoX29PR0DRw4sMr7+bP4+Hi1bdvW7v2WF+eldEadF8nxzw1Kx3cJsJ2CDQVGRwAAVICzs7O6d++utWvXGh0FAACUgSI7AACoNbKysmQuMKvduXbyKvIyOo7N5TrnapfPLmVlZdmlyB4UFKT4+PgKH5eWlqYJEyYoJiZGwcHBlerXkXFeSlfZ8yLV/HOD0vFdQmXkOucaHaFK1NT3Bcd19JxFUrHRMWzu4vsCHJ/FYpHFUvLzOnr0aO3du5fCOy5TnF3z/r6Wrv59OZ06ZaMkjuVq3xfXeMB2KLIDAIBax6vISz4XfIyOUe15eHhc1WjP4ODgGjlalPNSuqs9L1LNPTcoHd8lVISvr6/cXN20y2eX0VGqjJurm3x9fY2OgRrO19dX7m5uikqw78xP9uTuxncJjuXxxx9Xly5d1LlzZ91www1ltktOTlZCQoIdk8HR+fr6ys3NTeatNffvbLdK/J3t6+srV3d3admyKkplPFd390qdF67xgG1RZAcAAAAAANWav7+/Vn+zWllZWXbp72pnTKgMX19fu8xUg9rN399fq1bzXSpLce5pG6dxDDX1fVUX77//vj744ANJko+Pj/7+979LkvLy8nThwgXVqcOv8FE6f39/rebv7Mv4+/vrm1WrOC9/wjUesD2u0AAAAAAAoNrz9/e3+y/VqsuMCa7dXeVUz8noGFWi+Gwxa87bGN+ly10cLeou887lRkepMm5uFR8VCdtIS0tTQkKCEhIStHnzZq1Zs0Ymk0nbt2+Xj4+Punbtqh49euj0aW6GwOX4O7t0nJfScV4A26LIDgAAAAAAUIOZXE0yuZuMjlElTK41833BsVwcLcqoSFSNFi1aqEWLFnr44YclSTk5OfLx8ZG/v79atmypjRs36rvvvpMkmUwmde/eXV26dFHXrl3VuXNn1a9f38j4AADUWhTZAQAAAAAAAOAKGP0He/H29pYktW7dWuvWrVN+fr42bdqkp556SocOHdLWrVu1ceNGmUwXbzJq06aNfv75ZyMjAwBQK1FkBwAAAAAAAADAAIMGDVKXLl3UuXNntW/fXq6uriX2u7u766677lKTJk106NAhZWdna8eOHdq6dasSEhK0detWg5IDAFC7UWQHAAAAAAAAAMAA8fHx+vzzzyVJrq6uuuWWWyRJ2dnZOnv2rOrVq1eivaurqzp37qzOnTtr7Nix9o4LAAD+iyI7AAAAAAAAAKBSCgrPGR2hStjrfWVmZmrLli3WR2Jiokwmk5KTk9WwYUOFhISoZ8+eOnnypF3yAACA8qHIDgAAAAAAAACoEF9fX7m5uSkjM8HoKFXGzc1Nvr6+VdpHgwYN1L9/f/Xv31+SVFRUJBcXFzVr1kzt2rXT999/r507d0qSTCaT2rdvbx3J3rlzZwUFBVVpPgAAUDqK7AAAAAAAAACACvH399fq1auVlZVll/7S0tI0YcIExcTEKDg42C59+vr6yt/f3y59XeLs7CxJCgoK0vLly1VcXKzExEQNHTpUqampOnr0qJKTkzV37lxJkp+fn06cOGHXjAAAgCI7AAAAAAAAAKAS/P397V6EDg4OVtu2be3ap5GcnJzUqVMnNWrUSKmpqcrMzNSBAwe0detWbd68WVu3bjU6IgAAtRJFdgAAAAAAAAAAqok2bdqoTZs2GjZsmNFRAACotSiyAwAAAAAAAADgIIqLiy/bZrFYDEgCAADKQpEdAAAAAAAAAAAH9tZbb+ncuXNGxwCAGqs497TREarE1b6vgsKaee2xxfuiyA4AAAAAAAAAgAMLCQkxOgIA1Ei+vr5yc3OXeedyo6NUGTc3d/n6+lbomIvnxU0ZmQlVlMp4bm5uFT4vf0SRHQAAAAAAAAAAAECt4+/vr9WrVykrK8su/aWlpWnChAmKiYlRcHCwXfr09fWVv79/hY65eF5Wc16ugCI7AAAAAAAAAAAAgFrJ39//qoqtlREcHKy2bdvatc+K4rxcmZPRAQAAAAAAAAAAAAAAqC4osgMAAAAAAAAAAAAAUE4U2QEAAAAAAAAAAAAAKCeK7AAAAAAAoMp8/fXXuuuuu1S/fn15enrq1ltv1Ztvvqni4mKjowEAgEoKDw+XyWS64iM/P9/omAAAVJk6RgcAAAAAAAA1U1RUlKZMmSJJCgoKkpeXl3bt2qXRo0fru+++0+effy4nJ+7/h3GcTp0yOkKVqKnvC4DjadWqlRo1alTqPq7xAICajCI7AAAAAACwuS1btuj555+Xk5OTPvnkEz300EOSpF27dqlPnz768ssvNWvWLI0fP97gpKiNfH195eruLi1bZnSUKuPq7i5fX1+jYwCo4Z5//nmFh4cbHQMAALujyA4AAAAAAGxu+vTpslgseuKJJ6wFdklq166dZs2apYcfflhRUVF69tln5eLiYmBS1Eb+/v76ZtUqZWVl2aW/tLQ0TZgwQTExMQoODrZLn76+vvL397dLXwAAAEBtQ5EdAAAAAADYVHZ2tr777jtJ0ogRIy7b/8ADD+jpp5/W6dOntX79eoWGhto7IiB/f3+7F6GDg4PVtm1bu/YJAAAAwPZYFAUAAAAAANhUcnKyCgoK5O7urltvvfWy/S4uLurYsaMkadu2bfaOBwAAbOSzzz7Tfffdp549eyosLExvvvmmzp07Z3QsAACqHCPZAQAAAACATaWkpEiSmjVrpjp1Sv/VQ1BQkNauXWtt+2dms1lms9n6PDs72/ZBAQDAVfnqq69KPI+Li9OLL76oRYsWqW/fvmUex3UeAFDdMZIdAAAAAADY1KV1rn19fctsc2lfWWtiR0ZGysfHx/oIDAy0fVAAAFApwcHB/7+9e4+Oqj73P/6Z3CZjIBBuSiCAgQAVFcQoBVSiQkThVMSiiEcUbdVDLfYAUS5aa7WAtd6wUq/Fg7TcJIq2EBAQRUURglT9aaAJiBCxXAIBzI3M9/eHK6NDdi4zmZk9M3m/1spC9t7f2c88zvBh8czsrVmzZmn79u0qLS3VsWPHtGbNGg0YMEAlJSUaNWqUtmzZUud6ch4AEOkYsgMAAAAAgIAqLy+XJCUkJNR5jNPplCSVlZVZ7p8+fbqOHj3q+fn6668DXygAAPDL/fffr+nTp+vcc89Vy5Yt1aJFCw0bNkzvvvuuLrzwQlVUVOjee++tcz05DwCIdFwuHgAAAAAABFRiYqIkqbKyss5jai4R63K5LPc7nU7PIB4AAESGhIQEPfTQQ7riiiu0YcMGlZSUWF7ZhpwHAEQ6vskOAAAAAAACqqFLwf94X32XlAcAAJFn4MCBkiS3262ioiKbqwEAIDj4JjsAAAAAAAiojIwMSdKePXt08uRJxcXV/ueHmn90rzkWweMuddtdQtBE83MDgEgVHx/v+e+TJ0/aWAkAAMHDkB0AAAAAAATUeeedp/j4eJWXlys/P18XXnih1/6qqip9/PHHkqQBAwbYUWKzkJKSIqfTqYoPK+wuJaicTidXRACAMPL55597/rtz5842VgIAQPAwZAcAAAAAAAGVnJysoUOHatWqVXrppZdqDdmXLVum0tJStW3bVllZWfYU2QykpqYqLy+v3sv2B1phYaFycnL06KOPqnv37iE5Z0pKilJTU0NyLgBAwx577DFJUu/evdWpUyebqwEAIDgYsgMAAAAAgICbOXOm8vLy9OKLLyorK0s33HCDJGn79u2aPHmyJOmee+5RQkKCnWVGvdTUVFsG0N27d1efPn1Cfl4AQPC99dZbWr9+vW6//XadeeaZnu1Hjx7V/fffr0WLFkmSfvvb39pVIgAAQRdjdwEAAAAAACD6DB48WA899JDcbrfGjRun7t27q2/fvurfv7++/fZbjRgxQlOmTLG7TAAA4KMTJ05ozpw5Sk9PV+fOnXXhhRfqvPPOU4cOHfT000/L4XDogQce8HzADgCAaMQ32QEAAAAAQFDMnDlTffv21RNPPKGtW7dq//79OuecczRhwgTdddddio2NtbtEAADgo/PPP18zZ87Upk2b9O9//1ufffaZjDHq1KmTLr74Yk2cOFEDBgywu0wAAIKKITsAALCNMUbvv/++VqxYoY0bN+rLL7/Ud999p3bt2mngwIG66667dOmll9pdJgAAaIKRI0dq5MiRdpcBAAACJC0tTQ8//LDdZQAAYCuG7AAAwDbr16/X0KFDJUkxMTHq0aOHkpKStHPnTuXm5io3N1f33XefHnroIZsrBQAAAAAAAADge9yTHQAA2MYYox49emjevHk6ePCgCgoKlJ+fr0OHDmn69OmSpIcfflj/+Mc/bK4UAAAAAAAAAIDv8U12AABgmwsvvFBffPGF4uK8/0qSkJCgWbNm6ZNPPtGqVav0wgsvcJlZAAAAABGlrKxMRUVFPq8rLCz0+tVX6enpcrlcfq0FAABA4zBkBwAAtklOTq53/7Bhw7Rq1Srt2LEjoOetclSpwlER0McMB1WOKr/XHj58OICV1O/o0aOeX0N13jZt2vi1jr4AAADAX0VFRRo9erTf63Nycvxal5ubqz59+vh9XgAAADSMITsAAAhb5eXlkhTwb2FsTtkc0MeLBgMHDgz5OSdMmBCycxUUFPi1jr4AAADAX+np6crNzbXlvAAAAAguhuwAACAsGWO0bNkySdLgwYPrPK6iokIVFT98K720tDTotSHyFBcXKzU11e4ywo6/fSkuLlZJSUkQKrLW1Eum+iMlJSVkvamoqNDevXt9PldTde7cWU6n06c1oeyLvyLp9QIAiG4ul4tvlAMAAEQphuwAACAsvfDCC9q2bZsSEhL0m9/8ps7jZs+erQcffLBRj5mSkhKg6sKXM8Hp8/MsLi4OUjXhY/jw4crLy/NpCNYc+nLFlVdq9apVPvflyuHDVV4R+lsu+HvJVH8kOp1a5cdrZvjwK1VRUR7EyuzldCYqL8/318zw4cO9PhAVCqF8vTidTp//jAEAAAAAAJGLITsAAAg7+fn5uvvuuyVJDz/8sLp3717nsdOnT9fkyZM9vy8tLVVaWprlsc1h+JG32vchTyi/kWyXiooKlZSU+NSb5tCXyvJyv/pSXlGhaYNi1aWVI4jV2WfPUaM5H/j3mqmoKJez/9WKadE2iBXaw338kCryV/jZlwqlth+khPhWQazQHpVVR1V84AOf+wIAAAAAACJXRAzZd+3apbVr12rz5s3avHmzPv/8c1VXV+uhhx7SfffdZ3d5AAAggHbt2qWRI0eqvLxc48aN09SpU+s93ul0+nS5402bNjW1xEb78ssvNWHCBM2fP1+9e/cOyTnbtGnj99qErATFtI4JYDXhwX3ErcoNlX6vPz5+vMwZZwSwovDg2L9fLRYs8Ht9l1YOZbSJvtfL99xNWh3Toq1iW3cMUC3RIyG+lVxO//+MAgAAAAAACBcRMWR/6qmn9NRTT9ldBgAACLL9+/dr2LBh+uabbzRixAi9/PLLcjgC+03ZpgyhfdWqVSvPr6E8r78cCQ45EqPvm8mOhCY+J5dLJikpMMWEEYfLZXcJAAAAAAAAQESKiK+etGvXTiNHjtTvf/97rVq1Stdee63dJQEAgAA7fPiwhg0bpsLCQg0ZMkTLli1TfHy83WUBAAAAAAAAAOAlIr7Jfuol4RcvXmxTJQAAIBiOHz+uq666Sp999pkuuOACvfnmm3LxLVsAAAAAAAAAQBiKiG+yAwCA6FVRUaGrr75aH330kfr06aO8vDy1bNnS7rIAAAAAAAAAALAUEd9kD7XDhw+H9HxHjx71/BqqczflvrCm0siUmwBWEx5Mpf/PKZSvmUh6vdAXAA2prq7W2LFjtX79enXv3l1vvfUW7y0AAAAAiGJlZWUqKiryeV1hYaHXr75KT0/nimkAACBgGLJbGDhwoC3nnTBhQsjOVVBQ4Pfayg2VAawkOtjxmomE1wt9AdCQpUuX6vXXX5ckxcTEaMyYMZbHdezYUcuWLQthZQAAAACAYCgqKtLo0aP9Xp+Tk+PXutzcXPXp08fv8wIAAPxYsxiyV1RUqKKiwvP70tJSG6sJD8XFxUpNTbW7DEQIXi/W/O1LcXGxSkpKfFpTUVGhvXv3+nyupurcubOcTqdPa1JSUkLWF3819dPv/vK3N9Hsx/m8c+dO7dy50/K4rl27hqokAAAAAEAQpaenKzc315bzonnhqgnW6Is1+mKNvtSN3lhrTn1pFkP22bNn68EHH2zUscXFxUGuJjwMv2K48lbnMewJgObwmrniyiu1etUqn14vzaEvVw4frlV5vr2PiouLNXz4laqoKA9iZfZyOhOVl+f762X48OFeA9dQ8PfT7/5yOp3K8/E1E+1uueUW3XLLLXaXAQAAAAAIEZfLxTfKERJcNcEafbFGX6zRl7rRG2vNqS/NYsg+ffp0TZ482fP70tJSpaWlWR4bqm9R2q2iskIlJSUMegKgObxmKsvLfX69NIe+lFf4/j4qKSlRRUW5nP2vVkyLtkGszh7u44dUkb/Cz75UKLX9ICXEtwpihfaprDqq4gMf8GcvAAAAAABACHDVBGv0xRp9sUZf6kZvrDWnvjSLIbvT6fT5cscXllyolidbBqkiex2LO6bNKZv9Xp+QlaCY1jEBrCg8uI+4m3S/+ePjx8uccUYAKwoPjv371WLBAr/XP3JZrNJTou/1UlTi1r3rq/1eH9OirWJbdwxgRdEhIb6VXM42dpcBAAAAAACACMdVE6zRF2v0xRp9qRu9sdac+tIshuz+iDfxchrfBvORotw07TLVjgSHHImOAFUTPhwJTXxOLpdMUlJgigkjjibew6Kl06HWUfh6aemMvucEAAAAAAAAAACAhjFkBwAAAAAAAOC3srIyFRUV+byusLDQ61dfpaeny9XELwcAAAAA/mDIDgAAAAAAmiUGg0BgFBUVafTo0X6vz8nJ8Wtdbm5us7kcKQAAAMILQ3YAAAAAANAsMRgEAiM9PV25ubm2nBcAAACwQ0QM2d9//31dffXVnt8fP35ckjR79mw9+eSTnu3btm1TWlpaqMsDAAAAAAARiMEgEBgul4sPjgAAAKBZiYghe1VVlQ4dOlRr+3fffafvvvvO8/vq6upQlgUAAAAAACIYg0EAAAAAgD8iYsielZUlY4zdZQAAAAAAAAAAAAAAmrmIGLIDAAAAAACEg+rqam3ZskUHDhxQ+/btlZmZqdjYWLvLAgAAAACEEEN2AAAAAACARlizZo3mzJmjffv2ebZ16tRJ06ZNU3Z2to2VAZGHD6wAAAAgksXYXQAAAAAAAEC4W7NmjSZNmqSePXtqyZIlys/P15IlS9SzZ09NmjRJa9assbtEIGKsWbNGw4YN0/jx4zVlyhSNHz9ew4YN430EAACAiMGQHQAAAAAAoB7V1dWaM2eOsrKyNG/ePPXr109JSUnq16+f5s2bp6ysLD3yyCOqrq62u1Qg7PGBFQAAAEQDhuwAAAAAAAD12LJli/bt26c777xTMTHe/5QSExOjO+64Q3v37tWWLVtsqhCIDHxgBQAAANGCITsAAAAAAEA9Dhw4IEnKyMiw3F+zveY4ANb4wAoAAACiBUN2AAAAAACAerRv316StHPnTsv9NdtrjgNgjQ+sAAAAIFowZAcAAAAAAKhHZmamOnXqpGeffVZut9trn9vt1nPPPafOnTsrMzPTpgqByMAHVgAAABAtGLIDAAAAAADUIzY2VtOmTdOGDRs0ceJEbdu2TcePH9e2bds0ceJEbdiwQffee69iY2PtLhUIa3xgBQAAANGCITsAAAAAAEADsrOzNXfuXO3YsUNjx47V+eefr7Fjx2rnzp2aO3eusrOz7S4RCHt8YAUAAADRIs7uAgAAAAAAACJBdna2Lr/8cm3ZskUHDhxQ+/btlZmZyUAQ8EHNB1bmzJmjsWPHerZ37tyZD6wAAAAgYjBkBwAAAAAAaKTY2FgNGDDA7jKAiMYHVgAAABDpGLIDAAAAAAAACCk+sAIAAIBIxj3ZAQAAAAAAAAAAAABoJIbsAAAAAAAAAAAAAAA0EpeLBwAAAAAAaKTq6mruIw0EAO8lAAAARDKG7AAAAAAAAI2wZs0azZkzR/v27fNs69Spk6ZNm6bs7GwbKwMiC+8lAAAARDouFw8AAAAAANCANWvWaNKkSerZs6eWLFmi/Px8LVmyRD179tSkSZO0Zs0au0sEIgLvJQAAAEQDhuwAAAAAAAD1qK6u1pw5c5SVlaV58+apX79+SkpKUr9+/TRv3jxlZWXpkUceUXV1td2lAmGN9xIAAACiBUN2AAAAAACAemzZskX79u3TnXfeqZgY739KiYmJ0R133KG9e/dqy5YtNlUIRAbeSwAAAIgWDNkBAAAAAADqceDAAUlSRkaG5f6a7TXHAbDGewkAAADRgiE7AAAAAABAPdq3by9J2rlzp+X+mu01xwGwxnsJAAAA0YIhOwAAAAAAQD0yMzPVqVMnPfvss3K73V773G63nnvuOXXu3FmZmZk2VQhEBt5LAAAAiBYM2QEAAAAAAOoRGxuradOmacOGDZo4caK2bdum48ePa9u2bZo4caI2bNige++9V7GxsXaXCoQ13ktAdFm5cqWGDh2qNm3aKCkpSf3799fTTz9d60M0AABEozi7CwAAAAAQeY5VGB0pN3aXERTHKpr2vExlmUzFiQBVEz5MZVmT1ldXV+hkdXmAqgkf1dUVdpcQdo4dO6YVK1YoLy9Pmzdv1tdffy2Hw6EzzzxTV111lSZPnqyOHTvaXabPsrOzNXfuXM2ZM0djx471bO/cubPmzp2r7OxsG6sDIgfvJSA6zJkzR9OnT5ckpaenq0WLFtq+fbsmTZqktWvX6rXXXlNMDN/xAwBEL4bsAAAAAHx27/pqSdV2lxGWyj9cZHcJYenrb9fbXQJCZOLEiVq4cKEkqWXLlurdu7dOnDihgoIC/b//9/80f/58rVq1ShdccIHNlfouOztbl19+ubZs2aIDBw6offv2yszM5Fu3gI94LwGRbdOmTZoxY4ZiYmK0cOFC3XDDDZKk7du364orrtAbb7yhxx9/XFOnTrW5UgAAgochOwAAQAPKyspUVFTk87rCwkKvX32Vnp4ul8vl11p/uEuj85J+TX1eMQcPBqiS8BKtzwtAeBg1apTuuusuDRkyRHFx3//TQ2FhocaNG6fNmzfr2muvVUFBQUhzLlBiY2M1YMAAu8sAIh7vJSByPfzwwzLG6Je//KVnwC5Jffv21eOPP64bb7xRc+bM0d133634+HgbKwUAIHgYsgMAADSgqKhIo0eP9nt9Tk6OX+tyc3PVp08fv8/bWCkpKXI6nar4MHoveex0OpWSkuLTmpSUFCUkJkrLlwepKvslJCb61ZfmINHP10y0czp5zVjx58+YaPbUU0+pTZs2tbZ3795dr776qnr06KGvv/5aeXl5uuaaa2yoEAAA+Ku0tFRr166VJN1222219o8ZM0b/8z//o0OHDuntt9/mFhAAgKjFkB0AAKAB6enpys3NteW8oZCamqq8vDyVlJSE5HyFhYXKycnRo48+qu7du4fknCkpKUpNTfVpTWpqqlavWkVfTuHr8ZFqVV4evbGQl7eKvljI8+P1Es2sBuw10tLS1Lt3b/3rX//Sjh07QlgVAAAIhG3btqmyslKJiYnq379/rf3x8fG64IILtG7dOn300UcM2QEAUYshOwAAQANcLldIvlFup9TU1JAPiLp37x72faUv1jZt2hTS83355ZeaMGGC5s+fr969e4fknPUNCesTyt7QF2uR1Jfmqry8XJIi8lLxAAA0dzt37pQkdenSxXNLmFOlp6dr3bp1nmMBAIhGDNkBAAAA+CTUA8VWrVp5fg33YWYo66Mv1iKpL83R9u3bPd9gHzx4sM3VAAAAX9Vc6au+W+XU7KvvqmAVFRWqqPjhlmWlpaUBqhAAgNCIsbsAAAAAAAAQ/aqrq/XrX/9aknTZZZfp/PPPr/f4iooKlZaWev0AAAB71VyRJiEhoc5jnE6nJKmsrKzOY2bPnq1WrVp5ftLS0gJbKAAAQcaQHQAAAAAABN2MGTO0ceNGtWzZUs8//3yDx/OP7wAAhJ/ExERJUmVlZZ3H1HxDvb5bw0yfPl1Hjx71/Hz99deBLRQAgCDjcvEAAAAAAECSdM899+iNN97wed38+fM1cODAOvc/++yz+uMf/6i4uDgtWrRI3bt3b/Axp0+frsmTJ3t+X1payqAdAACbNeZS8I25pLzT6fR84x0AgEjEkB0AAAAAAEiSiouLVVBQ4PO6EydO1LlvyZIl+tWvfiWHw6GXX35ZI0aMaNRj8o/vAACEn4yMDEnSnj17dPLkScXF1R4xFBUVeR0LAEA04nLxAAAAAABAkrRw4UIZY3z+GTp0qOXjrVy5UjfddJPcbrf+/Oc/68YbbwzxMwIAAIF03nnnKT4+XuXl5crPz6+1v6qqSh9//LEkacCAAaEuDwCAkGHIDgAAAAAAAu7dd9/Vz3/+c1VVVWn27NmaOHGi3SUBAIAmSk5O9ny47qWXXqq1f9myZSotLVXbtm2VlZUV4uoAAAgdhuwAAAAAACCgtm7dqv/6r/9SWVmZpk+frmnTptldEgAACJCZM2fK4XDoxRdf1KJFizzbt2/frsmTJ0uS7rnnHiUkJNhVIgAAQcc92QEAAAAAQMAUFBRo+PDhKi0t1cSJEzVr1iy7SwICpqyszHOvYV8UFhZ6/eqr9PR0uVwuv9YCQKANHjxYDz30kO677z6NGzdO9913n1q0aKHPPvtMbrdbI0aM0JQpU+wuEwCAoGLIDgAAAAAAAmbSpEk6ePCgHA6HPvnkE1100UWWx91666269dZbQ1wd0DRFRUUaPXq03+tzcnL8Wpebm6s+ffr4fV4ACLSZM2eqb9++euKJJ7R161bt379f55xzjiZMmKC77rpLsbGxdpcIAEBQMWQHAAAAAAABU1FRIUkyxuiDDz6o87ia+7kCkSQ9PV25ubm2nBcAws3IkSM1cuRIu8sAAMAWDNkBAAAAAEDAbNiwwe4SgKBxuVx8oxwAAACAYuwuAAAAAAAAAAAAAACASMGQHQAAAAAAAAAAAACARmLIDgAAAAAAAAAAAABAIzFkBwAAAAAAAAAAAACgkeLsLgAAAAAAAACIVtXV1dqyZYsOHDig9u3bKzMzU7GxsXaXBQAAAKAJGLIDAAAAAAAAQbBmzRrNmTNH+/bt82zr1KmTpk2bpuzsbBsrAwAAANAUXC4eAAAAAAAACLA1a9Zo0qRJ6tmzp5YsWaL8/HwtWbJEPXv21KRJk7RmzRq7SwQAAADgJ4bsAAAAAAAAQABVV1drzpw5ysrK0rx589SvXz8lJSWpX79+mjdvnrKysvTII4+ourra7lIBAAAA+IEhOwAAAAAAABBAW7Zs0b59+3TnnXcqJsb7n99iYmJ0xx13aO/evdqyZYtNFQIAAABoCu7JDgAAAAAAAC9lZWUqKiryeV1hYaHXr75KT0+Xy+Xya204OXDggCQpIyPDcn/N9prjAAAAAEQWhuwAAAAAAADwUlRUpNGjR/u9Picnx691ubm56tOnj9/nDRft27eXJO3cuVP9+vWrtX/nzp1exwEAAACILAzZAQAAAAAA4CU9PV25ubm2nDcaZGZmqlOnTnr22Wc1b948r0vGu91uPffcc+rcubMyMzNtrBIAAACAvxiyAwAAAAAAwIvL5YqKb5TbJTY2VtOmTdOkSZM0ceJE3XHHHcrIyNDOnTv13HPPacOGDZo7d65iY2PtLhUAAACAHxiyAwAAAAAAAAGWnZ2tuXPnas6cORo7dqxne+fOnTV37lxlZ2fbWB0AAACApmDIDgAAAAAAAARBdna2Lr/8cm3ZskUHDhxQ+/btlZmZyTfYAQAAgAjHkB0AAAAAAAAIktjYWA0YMMDuMgAAAAAEUIzdBQAAAAAAAAAAAAAAECkYsgMAAAAAAAAAAAAA0EgM2QEAAAAAAAAAAAAAaCSG7AAAAAAAAAAAAAAANBJDdgAAAAAAAAAAAAAAGokhOwAAAAAAAAAAAAAAjcSQHQAAAAAAAAAAAACARmLIDgAAAAAAAAAAAABAI0XUkH3lypUaOnSo2rRpo6SkJPXv319PP/203G633aUBAIAmIOMBAAAAAAAAAJEiYobsc+bM0YgRI7Ru3TqlpKSoR48e2r59uyZNmqRrrrmGf4QHACBCkfEAAAAAAAAAgEgSEUP2TZs2acaMGYqJidHf//53FRYWavv27crPz9fpp5+uN954Q48//rjdZQIAAB+R8QAAAAAAAACASBMRQ/aHH35Yxhj94he/0A033ODZ3rdvX88/vM+ZM0dVVVV2lQgAAPwQzRn/ySefqFevXp6fTz75xO6SAAAAAAAAAAABEPZD9tLSUq1du1aSdNttt9XaP2bMGCUnJ+vQoUN6++23Q10eAADwUzRnfK9evXT99dd7bbv++uvVq1cvmyoCAAAAAAAAAARKnN0FNGTbtm2qrKxUYmKi+vfvX2t/fHy8LrjgAq1bt04fffSRsrOzbagSAHxjKstkKk7YXUbAmcqyJq2vrq7QyeryAFUTXqqrK+wuIexEa8b/eJAeExOjm266Sa+88orn3vK9evVSQUGBXeUBAAAAAAAAAJoo7IfsO3fulCR16dJFcXHW5aanp2vdunWeYwEg3JV/uMjuEsLS19+ut7sEhFA0ZvyPLwm/evVqdevWTZI0Y8YM7d69W1dccYXnuH79+oW+QAAAAAAAAABAk4X9kL2kpESSlJKSUucxNftqjj1VRUWFKip++AZhaWlpg+c9HnvclzIjSlOfm7vUHaBKwktTn1fMwYMBqiS8NPV57TlqJEXfa+b75wWgKQKR8ZJ/OR8sNZeIj4mJ8QzYa3Tr1k0xMTFyu926/vrro+Lb7GVlZSoqKvJ5XWFhodevvkpPT5fL5fJrbSjQF2v+9kWiN3WhL9aivS8AAAAAAMB+YT9kLy///rLBCQkJdR7jdDolff+PMFZmz56tBx98sFHnS0lJkTPBqe2ttvtYaWRxJjjrHWpYSUlJkdPpVMWH0XvJY6fTv74kJCZKy5cHqSr7JSQm+tWXRKdTcz6I3tdLop+vl2jndPr3emkO/PkzJpoFIuMl33I+VG666SbL7dddd50WL14c4mqCp6ioSKNHj/Z7fU5Ojl/rcnNz1adPH7/PG2z0xVpT+yLRm7rQF2vR2hcAAAAAAGC/sB+yJyYmSpIqKyvrPKbm22t1fdtg+vTpmjx5suf3paWlSktLszw2NTVVeavz6v3GXF017N2716c1gdK5c2fPEKKxUlJSlJqa6tOa1NRU5eVFTm9C2ZfVq1bRl1OkpqZqFa+XWnw9PhLl5a2iL3XIy8trNs+1MQKR8ZJvOR8qr7zyimbMmFFr+9KlS22oJnjS09OVm5try3nDGX2xZldfas4dznjNWKMvAAAAAAAgXIX9kL0xl4lt6HKzTqfTp+FZamqqX0OQ/v37+7wm0tAba/TFGn2xtmnTJrtLCKo2bdr4tS7a+yL535toFYiMl3zP+WBasmSJrr/+erndbu3evdvrkvG7d++W2+32HBcNXC4X3/a0QF+s0Ze60Rtr9AUAAAAAAISrsB+yZ2RkSJL27NmjkydPKi6udsk19+mrORYAwhmDVmv0pfmJxozv16+f57+vuOIKxcTE6LrrrtPSpUs9A/ZTjwMAAAAAAAAARJYYuwtoyHnnnaf4+HiVl5crPz+/1v6qqip9/PHHkqQBAwaEujwAAOCnaM34goICz3+73W4tXrzYa8D+4/0AAAAAAAAAgMgT9kP25ORkDR06VJL00ksv1dq/bNkylZaWqm3btsrKygpxdQAAwF/RnPEFBQW1Lgm/ZMkSBuwAAAAAAAAAEAXCfsguSTNnzpTD4dCLL76oRYsWebZv375dkydPliTdc889SkhIsKtEAADgh2jO+H79+qmgoMDzwyXiAQAAAAAAACA6RMSQffDgwXrooYfkdrs1btw4de/eXX379lX//v317bffasSIEZoyZYrdZQIAAB+R8QAAAAAAAACASBMRQ3bp+2+6vfnmm7rssst06NAh/fvf/9Y555yjJ598UitWrFBsbKzdJQIAAD+Q8QAAAAAAAACASBJndwG+GDlypEaOHGl3GQAAIMDIeAAAAAAAAABApIiYb7IDAAAAAAAAAAAAAGA3huwAAAAAAAAAAAAAADQSQ3YAAAAAAAAAAAAAABqJITsAAAAAAAAAAAAAAI3EkB0AAAAAAAAAAAAAgEZiyA4AAAAAAAAAAAAAQCMxZAcAAAAAAAAAAAAAoJEYsgMAAAAAAAAAAAAA0EgM2QEAAAAAAAAAAAAAaCSG7AAAAAAAAAAAAAAANFKc3QXYwRgjSSotLbW5EgAAfsijmnxC05DzAIBwQcYHFhkPAAgXZHzgkfMAgHDR2JxvlkP2Y8eOSZLS0tJsrgQAgB8cO3ZMrVq1sruMiEfOAwDCDRkfGGQ8ACDckPGBQ84DAMJNQznvMM3w43Zut1vFxcVq2bKlHA6H3eWotLRUaWlp+vrrr5WcnGx3OWGDvlijL9boizX6Yi3c+mKM0bFjx5SamqqYGO7k0lThlPPh9loLF/TFGn2pG72xRl+shVNfyPjAIuMjA72xRl+s0Rdr9MVaOPWFjA88cj780Rdr9MUafakbvbEWTn1pbM43y2+yx8TEqHPnznaXUUtycrLtL5xwRF+s0Rdr9MUafbEWTn3hk++BE445H06vtXBCX6zRl7rRG2v0xVq49IWMDxwyPrLQG2v0xRp9sUZfrIVLX8j4wCLnIwd9sUZfrNGXutEba+HSl8bkPB+zAwAAAAAAAAAAAACgkRiyAwAAAAAAAAAAAADQSAzZw4DT6dQDDzwgp9Npdylhhb5Yoy/W6Is1+mKNviBUeK1Zoy/W6Evd6I01+mKNviAUeJ3Vjd5Yoy/W6Is1+mKNviBUeK1Zoy/W6Is1+lI3emMtEvviMMYYu4sAAAAAAAAAAAAAACAS8E12AAAAAAAAAAAAAAAaiSE7AAAAAAAAAAAAAACNxJAdAAAAAAAAAAAAAIBGYsgOAAAAAAAAAAAAAEAjMWQPgXPOOUcOh0Mul0ulpaV1HnfLLbfI4XB4/cTHx6tjx4762c9+plWrVoWw6uDp1q1bred56s+TTz4pSdq9e7fl/pYtW6pv376aMWOGDh48aO8TCpA9e/Zo8uTJOvvss5WUlCSXy6UuXbpo0KBBysnJ0erVq72Oz8rKarCPDodDv/vd7+x5QgGyefNm/epXv9LZZ5+tlJQUxcfHq127dho0aJDuuecebd26tcHH+PWvf+3px1tvvRWCqoOrrvdQixYtdO6552r69Ok6dOhQrXVHjhzRkiVLNGXKFF100UU67bTT5HA4NHToUBueReD525cdO3Zo9uzZys7O1hlnnKH4+Hi1adNGl156qebPny+3223Ds0EkIed/QMbXjZy3Rs57I+OtkfGwCxnvjZy3RsZbI+NrI+etkfOwCzn/AzK+buR8bWR8bWS8teaQ8XF2FxDtPvnkE3322WeSpPLycr366qu69dZb613ToUMHZWRkeNbs2LFDb775pt58801Nnz5ds2bNCnrdoZCRkaEOHTpY7uvUqVOtbZmZmXI6nZKkffv26dNPP9W//vUvLViwQBs3btSZZ54Z1HqDaf369Ro1apSOHTum2NhYpaWlqUOHDjp8+LA+/PBDbdq0SfPnz7f8C0paWpq6dOlS52PXty+cfffdd/rFL36hRYsWSZLi4+PVvXt3JScn6/Dhw9q8ebM2bdqkRx99VFdeeaVWrlxp+ThVVVVavHix5/evvPKKhg0bFpLnEGw/fg+53W598803+vTTT/Xpp5/qlVde0Xvvvadu3bp5jt+wYYPGjh1rU7Wh40tfqqur1atXL8/azp07q1+/ftqzZ482bNigDRs2aPHixVqxYoUSExPteDoIc+S8NTLeGzlfGzlfPzLeGhmPUCLj60bO/4CMr42Mbxg5b42cRyiR89bIeG/kvDcyvmFkvLWozniDoJo8ebKRZFq3bm0kmaysrDqPvfnmm40kc/PNN3ttr6ioMFOnTjWSjCTzwQcfBLnq4OratauRZObPn9/gsbt27fI87127dnnt27p1q+exrrjiiuAUGwJHjx417dq1M5LMiBEjzO7du732l5SUmJdfftlcddVVXtuHDBliJJkHHngghNWGRmVlpbnooouMJNOxY0fz17/+1Rw/ftzrmJq+nHXWWcbpdNb5WG+88YbXezApKanWY0Wa+t5D+fn5JjU11UgyY8aM8dqXl5dnLrnkEjN16lSzdOlSM2vWLCPJXH755SGqPLj86UtVVZVp3bq1ue+++0xhYaHXmiVLlhiXy2UkmSlTpgS7fEQoct4bGV8bOV8bOV83Mt4aGQ87kPG1kfPeyPjayPj6kfPWyHnYgZz3RsbXRs57I+PrR8Zbaw4Zz5A9iE6ePGk6duxoJJmFCxea2NhY43A4zFdffWV5fF2BbYwxbrfb9OvXz0gykyZNCnLlwRWo0DbGmNzcXCPJOBwOc/DgwcAXGwKLFi0ykkxycrI5ceJEo9dFa2AbY8yMGTOMJJOammr27NlT77FVVVXm4YcfrnP/mDFjjCQzc+ZM06dPHyPJvPLKK4EuOaQaeg8988wzRpJJSUmp93Hmz5/fbELbGOu+uN1uc/jw4Tofc86cOZ411dXVgS4ZEY6cr42Mr42cr42crxsZb42MR6iR8dbIeW9kfG1kfP3IeWvkPEKNnK+NjK+NnPdGxtePjLfWHDKee7IH0dq1a/XNN9/ojDPO0NixY3XZZZfJGKO//e1vPj+Ww+HQRRddJEnauXNnoEuNWJdccokkyRijwsJCm6vxT1FRkSSpZ8+eOu2002yuxn5HjhzR3LlzJUlz585VWlpavcfHxcVp5syZlvuOHj2qN998U5I0btw4jRs3TtL3l6CJZl27dpUkVVZW2lxJeLHqi8PhUEpKSp1rsrOzJUklJSU6cOBAcAtExCHngysaMl4i509FzjcNGW+NjEegkfHBFw05T8Z7I+Objpy3Rs4j0Mj54IqGjJfI+R8j45uOjLcWDRnPkD2IFixYIEm6/vrrFRsbqxtvvFGS/39gGGMCVlu0iIaeJCcnS/r+L2JHjhyxt5gwsHLlSh0/flxnnHGGRo0a1aTHWrp0qcrLy9W3b1+dddZZGjdunBwOh9atW6dvvvkmMAWHoS1btkiSevfubXMl4cWfvpSXl3v+2+VyBbwmRDZyPriipR/kvDdyvmnIeGtkPAKNjA++aOgJGe+NjG86ct4aOY9AI+eDK1r6Qc7/gIxvOjLeWjRkPEP2IDl+/Lhef/11SfIE9ejRo+VyufTFF19o69atPj2eMUbvv/++JKlHjx4BrTWSbdy4UdL3n25JT0+3uRr/ZGdnKyYmRkePHtXQoUO1fPlyHT161O6ybPPBBx9IkgYOHKjY2NgmPVbNX45r3oPdunXToEGDVF1drb///e9NKzTMuN1uFRcX6y9/+YseeeQRORwOTZ8+3e6ybNfUvixdulSSdPbZZ3v+cg1I5HwoREPGS+T8qch535Hx1sh4BAsZHxrRkPNkvDcy3j/kvDVyHsFCzgdfNGS8RM7/GBnvHzLeWtRlfGivTt98vPzyy0aS6dGjh9f2mvtN3H333bXW1HV/l4qKCjN16lTPvU42btwYxMqDr+Y+DHX9DBkyxHNsffd4yc/P9zxWpN+j4g9/+INXDxwOh+nVq5e55ZZbzOLFi015eXmtNTX3d2noZ9u2baF/Qk0watQoI8n87//+b5MeZ9euXcbhcBiHw+F1n5ia+3z07du3iZXap6H30AUXXGBWr17d4ONE6z1emtqXGp9++qlJSEgwksyCBQuCWDkiETlvjYy3Rs7/gJyvHxlvjYxHKJHxdSPnayPjf0DGN4yct0bOI5TIeWtkvDVy/ntkfMPIeGvNIePjhKCo+UROzT0latx4441atmyZFi1apD/96U+Ki6v9v2DVqlWee7mUl5drx44dOnbsmCTpf//3fz37Il1GRoY6dOhQa/s555xjefyYMWPkdDolScXFxdq9e7eMMTr99NP1l7/8Jai1BtuMGTM0cOBA/elPf9LatWtVWVmpgoICFRQU6OWXX1aXLl30f//3f8rKyqq1Ni0tTV26dKnzsVu0aBHEygOv5rWelJRkuX/x4sW64YYbam2fP3++brnlFs/vFy5cKGOMLrnkEq/7xFx33XX6zW9+o+3bt+vTTz+t8/UWCU59Dx08eFC7d+/W1q1bNW/ePF1wwQX13r8kWgWiL0eOHNG1116ryspKXXXVVbrpppuCXTYiDDlfPzLeGzn/A3K+cch4a2Q8QoGMbxg5/wMy/gdkfOOR89bIeYQCOV8/Mt4bOf89Mr7xyHhrUZ3x9s33o9fevXtNTEyMkWS+/PJLr30VFRUmJSXFSDL//Oc/vfbVfCruxz+xsbGmffv25sorrzSvvfZaCJ9F8NR8emX+/PkNHvvjT8b9+MflcpmzzjrLTJ061ezfvz/4RYfQd999Z959913z6KOPmksvvdQ4HA7Pc/7iiy88x9V8Ku6BBx6wr9ggaOiTcWvXrjWDBw/2/LRq1cry9dSrVy8jyTz77LO1HmPEiBFGksnJyQnGUwi6+t5DJSUlZvz48UaSyczMNG63u87HidZPxjW1L+Xl5Z73V58+fczhw4eDWDUiETlfNzK+YeQ8OV8fMt4aGY9QIePrR87Xj4wn4xtCzlsj5xEq5HzdyPiGNeecJ+MbRsZbaw4Zzz3Zg+Bvf/ub3G63+vfvr169enntS0hI0JgxYyT98Mm5U918880yxsgYo5MnT+o///mPVq5cqVGjRgW79LC2a9cuT1++++47ff7553r00Ud1+umn211aQLlcLl188cWaOnWq1q9fr3fffVdJSUkqKyvTY489Znd5QdepUydJ0u7duy33X3755Xrvvfc8P5mZmbWO2bx5swoKChQfH+95v/1YzT1f/v73v8vtdgeu+DDQunVrPf/88+rUqZO2bNmiFStW2F1SWGhsX06ePKnrr79e77zzjrp166Y1a9Y0y08Xon7kfOA1l4yXyHly3n9kvDUyHoFExgdHc8l5Mp6Mbwpy3ho5j0Ai5wOvuWS81LxznoxvGjLeWrRkPEP2IKgJ4vz8fDkcjlo/zz//vCRpxYoVKi0ttbNURICLLrpIEydOlPR9GEW7gQMHSpI++OADVVdX+/UYCxYskCRVVVWpbdu2td6DNZeE2rdvn9avXx+YwsOI0+lU//79JTWP10xjNdQXY4wmTJigFStWqGPHjlq7dq1SU1NDXSYiADmPQCLnfdecc56Mt0bGI1DIeAQSGe+75pzxEjlfF3IegULOI5CaU86T8U1HxluLhoznnuwBtm3bNn322WdyOByW9y+pUVJSorKyMi1fvlwTJkwIYYWIROnp6ZKkyspKmysJvquuukotWrTQt99+q9dee00///nPfVpfVVWlJUuWSJLatm1reQ8lSTpx4oSOHz+uV155RUOHDm1y3eGm5hN/hw8ftrmS8FJfX+666y4tXLhQbdu21VtvvaXu3buHujxEAHIewUDONx45T8bXhYxHU5HxCAYyvvHI+O+R89bIeTQVOY9gaC45T8YHBhlvLdIznm+yB1jNJ+IuueQS7d+/v86fKVOmeB2P5uvgwYMyxtR7zAcffCBJysjICEVJtkpJSdFdd90lSbr77ru1Z88en9avWrVKBw8eVFJSknbv3l3ne3D58uWSpNzcXH333XcBfx52Ki8v17Zt2yT98Jc91N+XmTNnat68eWrZsqXy8vLUp08fO0pEBCDn4Sty3hs53zRkvDUyHoFAxsNXZLw3Mr7pyHlr5DwCgZyHr8j5H5DxTUfGW4uGjGfIHkDV1dVatGiRJOmmm26q99j//u//liRt2LBBX3/9ddBrQ/hauHCh+vXrpxdeeEGHDh3y2nfkyBH99re/1cKFCyWp2XyC8sEHH9TAgQNVXFysAQMG6K9//auOHz/udUxVVZVeffVVFRQUeG2v+UvwNddcoxYtWtR5jssvv1wdO3bU8ePH9dprrwX+SdikpKREv/zlL1VcXKyEhARdd911dpcUFurry+OPP65Zs2bJ5XLpH//4h+V9gwCJnId/yPnayHn/kPHWyHgEAhkPf5DxtZHx/iPnrZHzCARyHv4g572R8f4j461FS8ZzufgAeuutt7R//34lJiY2eMmMs846S+edd562bdumv/3tb5o2bVqIqkS4cTgc+te//qXbb79dt99+u84880y1b99eJSUl+uqrrzyXm5k6daquueaaWuv/+te/au3atXU+/iWXXKJZs2YFrf5gSEhI0FtvvaVbb71VS5cu1W233aY777xT3bt3V3Jysg4dOqRvvvnG84m27OxsXXrppTpy5IjefPNNSQ3/pTk2NlZjx47VE088oVdeeUU33nhj0J9XoM2aNUsvvvii5/eHDh3Srl27VFFRobi4OD333HPq1q2b15p27dp5/ruiokKS9O6773pt//Of/6yxY8cGt/gg8qUvxcXFmjp1qiSpZcuWmjFjRp2P++qrr+qMM84Iau0Ib+Q8/EHO10bON4yMt0bGI1jIePiDjK+NjG8cct4aOY9gIefhD3LeGxnfOGS8tajOeIOAGTdunJFkxowZ06jjH3vsMSPJnHXWWcYYY26++WYjydx8881BrNJ+Xbt2NZLM/PnzGzx2165dRpKRZHbt2hX02uxQWVlp1q9fb3JycsygQYNMly5dTEJCgjnttNNMRkaGGT9+vNm4cWOtdUOGDPH0pr6fq6++OvRPKoA+/PBDc+edd5qzzjrLtGrVysTFxZm2bduaAQMGmClTppitW7d6jn3++eeNJHPGGWeYkydPNvjYW7duNZJMbGys+eabb4L5NAKq5j106o/T6TTp6elmwoQJ5pNPPrFc25jXTGPem+HIn778+M+Yhn6i9c8gNB453zAyvjZyvn7kvDcy3hoZj2Aj4xuHnPdGxtePjK+NnLdGziPYyPmGkfG1kfN1I+NrI+OtNYeMdxjTwI0lAAAAAAAAAAAAAACAJO7JDgAAAAAAAAAAAABAozFkBwAAAAAAAAAAAACgkRiyAwAAAAAAAAAAAADQSAzZAQAAAAAAAAAAAABoJIbsAAAAAAAAAAAAAAA0EkN2AAAAAAAAAAAAAAAaiSE7AAAAAAAAAAAAAACNxJAdAAAAAAAAAAAAAIBGYsgOAAAAAAAAAAAAAEAjMWQHoki3bt3kcDi0e/duu0sJqKysLDkcDm3YsMHuUgAAsA05DwBAdCLjAQCITmQ8EN0YsgMhsGfPHk2ePFlnn322kpKS5HK51KVLFw0aNEg5OTlavXq13SVC0pNPPqnf/e53OnLkiN2lAAAiCDkfGch5AICvyPjIQMYDAHxFxkcGMh7hLs7uAoBot379eo0aNUrHjh1TbGys0tLS1KFDBx0+fFgffvihNm3apPnz5+vgwYN2l9rsPfnkk/rqq690yy23qHXr1naXAwCIAOR85CDnAQC+IOMjBxkPAPAFGR85yHiEO4bsQBCVlpbq+uuv17FjxzRixAg988wz6tq1q2f/kSNHtGLFCi1dutTGKgEAgD/IeQAAohMZDwBAdCLjAQQSQ3YgiFauXKmDBw8qOTlZS5cu1Wmnnea1v3Xr1rr55pt1880321QhAADwFzkPAEB0IuMBAIhOZDyAQOKe7EAQFRUVSZJ69uxZK7Dr43A45HA46tzfrVs3ORwO7d69u85jVq9eraysLLVq1UrJyckaNmyYNm7caHlsVlaWHA6HNmzYoM2bN2vEiBFq06aNkpKSNGjQIL3++ut1nscYo4ULF2rIkCFq3bq1XC6XevfurXvvvVeHDx+uc93Jkyf1wgsv6NJLL1Xbtm2VmJio9PR0XXvttVqxYkWd6061ePFixcfHKykpSWvWrPHat3nzZo0dO1adOnVSQkKCTj/9dI0ZM0bbtm3zOu7ll1+Ww+HQV199JUk688wzPf8PavoCAMCpyHlyHgAQnch4Mh4AEJ3IeDIeCCgDIGiefvppI8m0atXKlJSUNHqdJFPf27Nr165Gktm1a5fl9tmzZxuHw2HatGljMjMzTdu2bY0kExMTY5YuXVrr8YYMGWIkmd///vcmISHBtGjRwmRmZpqOHTt6annsscdqrXO73WbcuHGeY9LT003//v1NQkKCkWS6du1qCgsLa607fPiwGTx4sGdd165dTWZmpunQoYPn91b1vf32217bn3/+eRMTE2NatWpl3nvvPa99jz/+uHE4HEaSadOmjTnvvPM8fYiPjzfLly/3HLty5UozePBg43Q6jSSTmZlpBg8e7PnJz8+v8/8FAKD5IufJeQBAdCLjyXgAQHQi48l4IJAYsgNBVFBQYGJiYowkc/7555tXX33VHDlypMF1TQ3tuLg4M3nyZFNZWWmMMaaqqsrcc889RpJJTk42xcXFXutqQjEuLs6MHTvWHD9+3BjzfSjPnTvXs++TTz7xWlfzl5KWLVuaNWvWeLZ/8803nlAeMGBArfpHjRplJJnu3bubDz/80Gvfzp07zR//+EfL+n4c2o8++qiRZNq3b18rVFetWmUcDodp166dVzgbY8yLL75o4uLiTMuWLWv1oa6+AgBghZwn5wEA0YmMJ+MBANGJjCfjgUBiyA4E2R/+8AdPCEsyDofD9OrVy9xyyy1m8eLFpry8vNaapoZ23759Ldf179/fSDK//e1vvbbXhGKHDh1MWVlZrXWjR482ksz48eM929xut0lLSzOSzBNPPFFrzd69ez2fkFu3bp1n++bNm40k43Q6zY4dO+p8jlb11YT2/fffbySZzp07my+++KLO57lixQrLx5syZYrnk4A/RmgDAHxFzpPzAIDoRMaT8QCA6ETGk/FAoHBPdiDIZsyYofXr1+uqq65SQkKCjDEqKCjQyy+/rLFjx6pnz54Bv4fIxIkT692+evVqy/233XabEhMTG7Xuiy++0Ndff63ExET98pe/rLWmU6dOuvbaayXJ694rNfdvueaaa5SRkdGYp+NhjNFvfvMbPfTQQ+revbs2btyo3r17ex3z1VdfKT8/Xx06dNDPfvYzy8ep2f7OO+/4dH4AAE5FzpPzAIDoRMaT8QCA6ETGk/FAoMTZXQDQHFx66aW69NJLVVZWpi1btuijjz7SypUrtWHDBu3Zs0dXXXWV8vPzawWQv37yk5/Uu33Hjh1+rfv2229VWlqq5ORkz2N06dJFSUlJluv69OlT63xffPGFJOmnP/1pQ0+jlqlTpyo/P199+vTRW2+9pY4dO9Y65tNPP5UklZeX66KLLrJ8nPLycknSvn37fK4BAIBTkfPkPAAgOpHxZDwAIDqR8WQ8EAgM2YEQcrlcuvjii3XxxRdr6tSpeu+99zR8+HCdOHFCjz32mF544YWAnKdDhw6W208//XRJ0rFjx3xa9+Ptx44dU3Jyso4fP17vmrrOV1paKklq3bp1nevq8u9//1uS1K1bN7Vr187ymKNHj3rO8/7779f7eGVlZT7XAABAXch5ch4AEJ3IeDIeABCdyHgyHmgKLhcP2Oiiiy7yXNpl8+bNtfYbYyzXnThxot7HPXDggOX2//znP5Kkli1b+rTux9tr1rZo0cLrMa18++23tc5X899Hjhypc11dXnjhBfXu3Vv//Oc/dcMNN+jkyZO1jqmpa/DgwTLG1Puze/dun2sAAKCxyHnfkPMAgEhBxvuGjAcARAoy3jdkPJo7huyAzdLT0yVJlZWVnm01l3OxCtGjR4/q4MGD9T5mzSVe6tres2dPv9adfvrpSk5O9nqMPXv2eD4ld6rPP/+81vlqLknz4Ycf1vscrHTo0EHr1q1Tjx49tHz5co0fP15ut9vrmLPOOstT86n7GuJwOHyuCQCA+pDzjUfOAwAiCRnfeGQ8ACCSkPGNR8ajuWPIDgTRwYMH6/x0W40PPvhAkpSRkeHZVhPkH3/8ca3jX3zxxQbPO2/evHq3Z2dnW+5/6aWXVFFR0ah1P/nJT9SlSxeVl5db1lRcXKzly5dLkq644grP9lGjRkmSXn/9dRUWFjb4XE6Vmpqq9evXq1u3blq0aJFuvfVWrx5nZGTo7LPP1uHDh7VgwQKfHtvlcknisjQAgMYh58l5AEB0IuPJeABAdCLjyXggoAyAoHniiSfMueeea55//nlz8OBBr30lJSXm/vvvNw6Hw0gyubm5nn333HOPkWT69etn9u/f79m+atUqk5ycbOLi4owks2vXLq/H7Nq1q5Fk4uLiTE5OjqmsrDTGGFNVVWWmT59uJJmWLVuaffv2ea0bMmSIZ92NN95ojh8/bowxxu12m2eeecY4HA4TGxtrtm3b5rXu6aefNpJMcnKyWbt2rWf7/v37zcUXX2wkmZ/+9Ke1+nLNNdcYSSYjI8Ns3rzZa9/OnTvNo48+alnf22+/7dm2a9cuk5aWZiSZ22+/3bjdbs++f/7zn8bhcJjTTjvNvPDCC6aqqsrr8QoLC83DDz9sli9f7rV9xIgRRpL5y1/+UqtmAABORc6T8wCA6ETGk/EAgOhExpPxQCAxZAeC6MknnzSSPD9nnnmmufDCC01GRoZJSEjwbJ86darXuv/85z/mjDPOMJKM0+k0/fr1M926dTOSzLRp0zzhXFdoz5492zgcDtO2bVtzwQUXmHbt2hlJJiYmxixatKhWnTWh+Pvf/94kJCSYli1bmszMTJOamuqp8Y9//GOtdW6324wbN85zTI8ePUz//v09z61Lly6msLCw1rrDhw+bgQMHetZ169bNZGZmmtNPP91IMl27drWs78ehbcz3AV9T469//WuvfX/+859NbGys5y8q559/vtc5rMJ5wYIFnn1nn322GTJkiBkyZEitv6wAAGAMOU/OAwCiFRlPxgMAohMZT8YDgcSQHQiiyspKs379epOTk2MGDRpkunTpYhISEsxpp51mMjIyzPjx483GjRst1xYWFpoxY8aYlJQU43K5zHnnnWfmz59vjDENhvauXbtMXl6eueSSS0zLli1NixYtzGWXXWbeeecdy3P9OBQ/+ugjc+WVV5rWrVsbl8tlfvrTn3p9au9UbrfbLFiwwFx88cUmOTnZOJ1Ok5GRYXJycmp9GvDU3jzzzDNm8ODBplWrViYxMdGceeaZ5uc//7l5880366zvVF988YUniE/9y8+nn35qfvGLX5j09HSTmJhoWrVqZfr06WNuuOEGs2zZMnPixIlaj/fUU0+Zc88917hcLk+AW50XAABynpwHAEQnMp6MBwBEJzKejAcCyWFMAzegABD1srKy9M477+jtt99WVlaW3eUAAIAAIucBAIhOZDwAANGJjAciQ4zdBQAAAAAAAAAAAAAAECkYsgMAAAAAAAAAAAAA0EgM2QEAAAAAAAAAAAAAaCSG7AAAAAAAAAAAAAAANJLDGGPsLgIAAAAAAAAAAAAAgEjAN9kBAAAAAAAAAAAAAGgkhuwAAAAAAAAAAAAAADQSQ3YAAAAAAAAAAAAAABqJITsAAAAAAAAAAAAAAI3EkB0AAAAAAAAAAAAAgEZiyA4AAAAAAAAAAAAAQCMxZAcAAAAAAAAAAAAAoJEYsgMAAAAAAAAAAAAA0EgM2QEAAAAAAAAAAAAAaKT/Dwlzr3zyaBHMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m qed filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQHElEQVR4nOzde1xVVf7/8ffhyE1RvGEpF0dQcjKLEnXMyTCSrBxrzIyoFLVRo0KtRJ0xu2CJWH7VGtTUwi4YZZTllOGoZGmpJJmaGoq3wAxFRZKLHs7vD3+ciQQDhLMP8Ho+HjzGs9faZ7/ZY63O+ey1lslqtVoFAAAAAAAAAAAAAAD+kJPRAQAAAAAAAAAAAAAAqC8osgMAAAAAAAAAAAAAUEUU2QEAAAAAAAAAAAAAqCKK7AAAAAAAAAAAAAAAVBFFdgAAAAAAAAAAAAAAqogiOwAAAAAAAAAAAAAAVUSRHQAAAAAAAAAAAACAKqLIDgAAAAAAAAAAAABAFTUxOoARSktLlZOTo+bNm8tkMhkdBwDQyFmtVp05c0YdOnSQkxPPv10uxnkAgKNgjK9djPEAAEfBGF/7GOcBAI6iquN8oyyy5+TkyNfX1+gYAACUc+TIEfn4+Bgdo95jnAcAOBrG+NrBGA8AcDSM8bWHcR4A4Gj+aJxvlEX25s2bS7pwc1q0aGFwGgBAY5efny9fX1/b+ITLwzgPAHAUjPG1izEeAOAoGONrH+M8AMBRVHWcb5RF9rLlZlq0aMGADQBwGCyHVjsY5wEAjoYxvnYwxgMAHA1jfO1hnAcAOJo/GufZMAYAAAAAAAAAAAAAgCqiyA4AAAAAAAAAAAAAQBVRZAcAAAAAAAAAAAAAoIoosgMAAAAAAAAAAAAAUEUU2QEAAAAAAAAAAAAAqCKK7AAAAAAAAAAAAAAAVBFFdgAAAAAAAAAAAAAAqogiOwAAAAAAAAAAAAAAVUSRHQAAAAAAAAAAAACAKqLIDgAAAAAAAAAAAABAFdWLIntkZKRMJtMlf4qKioyOCQAAAAAAAAAAAABo4JoYHaA6unTponbt2lXY5uRUL54XAAAAAAAAAAAAAADUY/WqyP7Pf/5TkZGRRscAAAAAAAAAAAAAADRS9arIDgAAUF9YLBalp6crNzdXXl5eCg4OltlsNjoWAAAAAACoBJ/lAQBVRZEdAACglqWmpiouLk7Z2dm2Y97e3poyZYrCwsIMTAYAAAAAACrCZ3kAQHXUq43MV6xYobvvvlu33HKLwsPD9corr+j06dNGxwIAALBJTU1VdHS0AgMDlZycrG3btik5OVmBgYGKjo5Wamqq0REBAAAAAMBv8FkeAFBdJqvVajU6xB+JjIzUsmXLKmxr1aqVkpKSNHDgwCq/X35+vjw9PXX69Gm1aNGitmICAFAjjEu1y8j7abFYNGDAAAUGBiohIUFOTv97nrG0tFRRUVHKzMxUamoqy80BQCPAGF+7uJ8AAEfBmFT7+CwPAHAUVR2T6sVM9oCAAL344ovavn278vPzdebMGaWmpqp37946efKk7r77bqWnp1d6fnFxsfLz88v9AAAA1Lb09HRlZ2dr3Lhx5T6US5KTk5PGjh2rn3766ZL/3QIAAAAAAOyHz/IAgJqoF3uyP/300xcdGzBggG6++WbddNNN2rJliyZPnqy1a9dWeP7MmTP13HPP1XVMAADQyOXm5kqSunTpUmF72fGyfgAAAAAAwFh8lgcA1ES9mMleGRcXF8XGxkqS0tLSdPLkyQr7TZ06VadPn7b9HDlyxJ4xAQBAI+Hl5SVJyszMrLC97HhZPwAAAAAAYCw+ywMAaqJeF9klqU+fPpIu7I2SlZVVYR9XV1e1aNGi3A8AAEBtCw4Olre3txYuXKjS0tJybaWlpVq0aJF8fHwUHBxsUEIAAAAAAPBbfJYHANREvS+yOzs72/58/vx5A5MAAIDGzmw2a8qUKUpLS1NUVJQyMjJUUFCgjIwMRUVFKS0tTZMnT5bZbDY6KgAAAAAAEJ/lAQA1Uy/2ZL+UXbt22f7s4+NjYBIAAAApLCxM8+fPV1xcnMLDw23HfXx8NH/+fIWFhRmYDgAAAAAA/B6f5QEA1VXvi+wvv/yyJKlr167y9vY2OA0AAMCFD+ehoaFKT09Xbm6uvLy8FBwczFPvAAAAAAA4KD7LAwCqw+GL7GvWrNG6des0ZswYderUyXb89OnTevrpp7V8+XJJ0vTp042KCAAAcBGz2azevXsbHQMAAAAAAFQRn+UBAFXl8EX2X3/9VXFxcYqLi5O3t7c6dOigc+fO6YcfflBJSYlMJpOmT5+u+++/3+ioAAAAAAAAAAAAAIAGzuGL7D169NC//vUvff3119q3b5927twpq9Uqb29v3XTTTYqKiuLJMgAAAAAAAAAAcFksFgvLxQMAqsThi+y+vr6aMWOG0TEAAAAAAAAAAEADlZqaqri4OGVnZ9uOeXt7a8qUKQoLCzMwGQDAETkZHQAAAAAAAAAAAMAoqampio6OVmBgoJKTk7Vt2zYlJycrMDBQ0dHRSk1NNToiAMDBUGQHAAAAAAAAAACNksViUVxcnEJCQpSQkKCgoCA1a9ZMQUFBSkhIUEhIiGbNmiWLxWJ0VACAA6HIDgAAAAAAAAAAGqX09HRlZ2dr3LhxcnIqXzJxcnLS2LFj9dNPPyk9Pd2ghAAAR0SRHQAAAAAAAAAANEq5ubmSpC5dulTYXna8rB8AABJFdgAAAAAAAAAA0Eh5eXlJkjIzMytsLzte1g8AAIkiOwAAAAAAAAAAaKSCg4Pl7e2thQsXqrS0tFxbaWmpFi1aJB8fHwUHBxuUEADgiCiyAwAAAAAAAACARslsNmvKlClKS0tTVFSUMjIyVFBQoIyMDEVFRSktLU2TJ0+W2Ww2OioAwIE0MToAAAAAAAAAAACAUcLCwjR//nzFxcUpPDzcdtzHx0fz589XWFiYgekAAI6IIjsAAAAAAAAAAGjUwsLCFBoaqvT0dOXm5srLy0vBwcHMYAcAVIgiOwAAAAAAAAAAaPTMZrN69+5tdAwAQD3AnuwAAAAAAAAAAAAAAFQRRXYAAAAAAAAAAAAAAKqI5eIBAAAAAAAAAABQIYvFwl71FeC+AI0bRXYAAAAAAAAAAABcJDU1VXFxccrOzrYd8/b21pQpUxQWFmZgMmNxXwCwXDwAAAAAAAAAAADKSU1NVXR0tAIDA5WcnKxt27YpOTlZgYGBio6OVmpqqtERDcF9ASBJJqvVajU6hL3l5+fL09NTp0+fVosWLYyOAwBo5BiXahf3EwDgKBiTahf3EwDgKBiTah/31PFYLBYNGDBAgYGBSkhIkJPT/+ZslpaWKioqSpmZmUpNTW1US6RzX4CGr6pjEjPZAQAAAABAnfjll1/01FNPqVu3bmratKnc3NwUEBCgMWPGaN++fUbHAwAAQCXS09OVnZ2tcePGlSskS5KTk5PGjh2rn376Senp6QYlNAb3BUAZ9mQHAAAAAAC1bu/everXr59++eUXOTs7y9/fX87Oztq3b58WL16sd955R59++qluvvlmo6MCAADgd3JzcyVJXbp0qbC97HhZv8aC+wKgDDPZAQAAAABArXv00Uf1yy+/qG/fvsrKytKePXu0Y8cO/fTTTxo8eLDOnj2rkSNHqhHuYgcAAODwvLy8JEmZmZkVtpcdL+vXWHBfAJShyA4AAAAAAGrV2bNntX79eknSggUL5OPjY2tr06aNEhMTZTKZdODAAe3Zs8eomAAAAKhEcHCwvL29tXDhQpWWlpZrKy0t1aJFi+Tj46Pg4GCDEhqD+wKgDEV2AAAAAABQq0pKSmxfOvr7+1/U3qpVK7Vu3VqSdP78ebtmAwAAwB8zm82aMmWK0tLSFBUVpYyMDBUUFCgjI0NRUVFKS0vT5MmTZTabjY5qV9wXAGXYkx0AAAAAANSqli1bytfXV0eOHNGmTZs0YMCAcu179+7ViRMn1LJly0r3swQAAICxwsLCNH/+fMXFxSk8PNx23MfHR/Pnz1dYWJiB6YzDfQEgUWQHAAAAAAB1YMaMGRoxYoRGjRqluXPnKiQkRE2aNNE333yjCRMmyGQyKT4+Xm5ubkZHBQCg0bFardq4caNWrlypL7/8Unv27NHZs2fVtm1b9enTR4899pj69+9/0XnPPvusnnvuuUu+9+7du9W1a9e6ig47CwsLU2hoqNLT05WbmysvLy8FBwc3+pna3BcAFNkBAAAAAECtGz58uDw8PBQbG6uhQ4eWa7v22mv16aefauDAgZWeX1xcrOLiYtvr/Pz8OssKAEBjs27dOt16662SJCcnJ3Xu3FnNmjVTZmamUlJSlJKSomnTpik2NrbC8319feXn51dhW9OmTessN4xhNpvVu3dvo2M4HO4L0LixJzsAAAAAAKh1VqtVWVlZOnHihMxmszp37qyrr75aLi4u2rlzp1577TXl5eVVev7MmTPl6elp+/H19bVjegAAGjar1arOnTsrISFBx48f1969e7Vt2zadOHFCU6dOlXRhVZpVq1ZVeP6oUaP01VdfVfhTWfEdAICGhCI7AAAAAACodePGjdOkSZPk6+urffv2KTMzU7t27dKRI0d0xx136MMPP1T//v1lsVgqPH/q1Kk6ffq07efIkSN2/g0AAGi4evXqpd27d+uRRx5Rq1atbMddXFz04osv6vbbb5ckLV682KiIhigoKFBUVJT+9re/KSoqSgUFBUZHcggWi0WbN2/WqlWrtHnz5kr/+w0AGhOWiwcAAAAAALVq+/btWrx4sZydnfXuu++Wm4Xerl07vfPOOwoICND333+v9957T/fff/9F7+Hq6ipXV1d7xgYAoNFo0aLFJdsHDBigzz77TD/++KOdEhlv6NCh2rFjh+31jz/+qB49eqh79+5asWKFgcmMlZqaqri4OGVnZ9uOeXt7a8qUKQoLCzMwGQAYi5nsAAAAAACgVm3cuFFWq1WBgYEVLvPeokUL9erVS5KUnp5u73gAAOAPFBUVSZLc3d0rbF+/fr3uvfde3XLLLRo6dKji4+P1888/2zNirSorsJtMJt11111auXKl7rrrLplMJu3YsUNDhw41OqIhUlNTFR0drcDAQCUnJ2vbtm1KTk5WYGCgoqOjlZqaanREADAMM9kBAAAAAECtOnPmzB/2sVqtkv73JT4AAHAMVqtV77//viSpb9++FfbZsGFDudcffPCBnn32WSUkJCgyMrKuI9aqgoICW4H9u+++k5ubmyQpPj5ezz//vIKCgrRjxw4VFBTIw8PD4LT2Y7FYFBcXp5CQECUkJMjJ6cKczaCgICUkJCgqKkqzZs1SaGiozGazwWkBwP6YyQ4AAAz1yy+/6KmnnlK3bt3UtGlTubm5KSAgQGPGjNG+ffuMjgcAAGqgS5cuki4ss1rRXur5+fnaunWrJCkwMNCu2QAAwKUtXrxYGRkZcnFx0YQJE8q1tW/fXv/85z+1detWnThxQmfPntXGjRt1++23q7CwUKNGjdInn3zyh9coLi5Wfn5+uR+jxMTESJIGDx5sK7CXcXNz06BBg8r1ayzS09OVnZ2tcePG2QrsZZycnDR27Fj99NNPrEoEoNGiyA4AAAyzd+9ede/eXS+//LIyMzPl5+enLl26KCcnR4sXL9Z1112nL774wuiYAACgmsLCwtS2bVudO3dO4eHhOnjwoK3tl19+0QMPPKDjx4/Lzc2t0S6/CgCAI9q2bZvGjx8vSZoxY4YCAgLKtY8dO1YvvPCCgoOD1bp1a7m7u+vGG2/Uf/7zH/3973+X1WrVxIkTbSvWVGbmzJny9PS0/VS0vYy9lD0QOGrUqArbR44cWa5fY5Gbmyvpfw9P/l7Z8bJ+ANDYUGQHAACGefTRR/XLL7+ob9++ysrK0p49e7Rjxw799NNPGjx4sM6ePauRI0f+4YdzR2SxWLR582atWrVKmzdvlsViMToSAAB24+HhoTfffFNubm7atGmTOnfurMDAQHXr1k2+vr5atWqVmjRpooULF8rb29vouAAAQNKBAwc0aNAgFRUVKSIiQk899VSVzzWZTIqLi5Mk7d+/X99///0l+0+dOlWnT5+2/RhZwC4r8L/++usVtr/xxhvl+jUWXl5ekqTMzMwK28uOl/UDgMaGIjsAADDE2bNntX79eknSggUL5OPjY2tr06aNEhMTZTKZdODAAe3Zs8eomDWSmpqqAQMGaPjw4XryySc1fPhwDRgwQKmpqUZHAwDAbm6//XZt375dY8aMUadOnXT48GHt27dP7du310MPPaTNmzdrxIgRRscEAACSfv75Zw0YMEBHjx7VnXfeaftMXh2BgYFq3bq1JP3h9m+urq5q0aJFuR+jxMfHS5I+/vhjFRUVlWsrKirSqlWryvVrLIKDg+Xt7a2FCxeqtLS0XFtpaakWLVokHx8fBQcHG5QQAIxFkR0AABiipKTE9iHN39//ovZWrVrZPpyfP3/ertkuR2pqqqKjoxUYGKjk5GRt27ZNycnJCgwMVHR0NIV2AECjEhgYqEWLFikzM1NFRUUqLi7WwYMH9eabb+qGG24wOh4AAJCUl5enAQMGaP/+/br55pv1/vvvy9nZuUbvVXZeffoc7+Hhoe7du8tqtSooKEhPPfWUdu3apaeeekpBQUGyWq3q3r27PDw8jI5qV2azWVOmTFFaWpqioqKUkZGhgoICZWRkKCoqSmlpaZo8ebLMZrPRUQHAECZrfVx/9TLl5+fL09NTp0+fNvQJOQAApMY9Lvn5+enIkSO2md+/tXfvXnXt2lUtW7bU0aNH5ebmVqX3NPJ+WiwWDRgwQIGBgUpISJCT0/+eZywtLVVUVJQyMzOVmprKh1AAaAQa8xhfF7ifAABH0ZDGpIKCAt16663avHmzevbsqbVr16p58+Y1eq/jx4+rXbt2slqt+uqrr9S3b98qn+sI93To0KHasWPHRce7d++uFStWGJDIMaSmpiouLk7Z2dm2Yz4+Ppo8ebLCwsIMTAYAdaOqY1ITO2YCAAAoZ8aMGRoxYoRGjRqluXPnKiQkRE2aNNE333yjCRMmyGQyKT4+/pIF9uLiYhUXF9te5+fn2yN6hdLT05Wdna05c+aUK7BLkpOTk8aOHavw8HClp6erd+/eBqUEAAAAAODC5+m77rpLmzdvVrdu3bR69eoaF9glac6cObJarfL09FTPnj1rMal9rFixQgUFBYqJidGRI0fk6+ur+Pj4RjeD/ffCwsIUGhqq9PR05ebmysvLS8HBwUweANDoUWQHAACGGT58uDw8PBQbG6uhQ4eWa7v22mv16aefauDAgZd8j5kzZ+q5556ry5hVlpubK0nq0qVLhe1lx8v6AQAAAABgBIvFovDwcK1bt04BAQFas2aNbcu2yuzatUv//ve/9eijj6pbt26240VFRZozZ45mzZolSZo8ebJcXFzqNH9d8fDwUEJCgtExHI7ZbGayAAD8DkV2AABgGKvVqqysLJ04cUJms1mdOnWSi4uL9u3bp507d+q1115Tr169LvlBf+rUqXriiSdsr/Pz8+Xr62uP+Bfx8vKSJGVmZiooKOii9szMzHL9AAAAAAAwwnvvvaePPvpI0oWV1+69994K+7Vv317vv/++JOncuXNasGCBFixYIC8vL/n5+UmSdu/erbNnz0qSRo8erSlTptT9LwAAgMEosgMAAMOMGzdOr732mm688UZt2LBBf/rTnyRJv/zyi0aPHq0PP/xQ+/fv17Zt2ypdhszV1VWurq52TF254OBgeXt7a+HChRXuyb5o0SL5+PgoODjYwJQAAAAAgMbut9uuZWZm2h4K/72OHTva/vynP/1JsbGx2rRpk/bs2aO9e/eqpKRE7dq10x133KGHH35Yt912W51nBwDAEZisVqvV6BD2VtUN6wEAsIfGOi5t375d119/vZo0aaL9+/dfNPs8Pz9fAQEBOn78uJKSknT//fdX6X2Nvp+pqamKjo5WSEiIxo4dqy5duigzM1OLFi1SWlqa5s+fr7CwMLvnAgDYn9FjUkPD/QQAOArGpNrnKPe0sLBQ8fHxOnTokDp27KiYmBi5u7sblgeojywWi9LT05WbmysvLy8FBwdXOnkGcERVHZOYyQ4AAAyxceNGWa1WBQYGVri8e4sWLdSrVy99+umnSk9Pr3KR3WhhYWGaP3++4uLiFB4ebjvu4+NDgR0AAAAAAAcVFRWltWvX2l5v3LhRSUlJCg0NZZ92oIpSU1MVFxen7Oxs2zFvb29NmTKF78TQ4Dj9cRcAAIDad+bMmT/sU7bgTlFRUV3HqVVhYWFas2aN3nzzTb388st68803lZqayocJAAAAAAAcUFmB3dnZWWPGjFFqaqrGjBkjZ2dnrV27VlFRUUZHBBxe2eqOgYGBSk5O1rZt25ScnKzAwEBFR0crNTXV6IhArWImOwAAMESXLl0kST/++KOOHDlS4XLxW7dulSQFBgbaPd/lMpvN6t27t9ExAAAAAADAJRQWFtoK7Nu2bZOLi4sk6cknn9Tjjz+uG264QWvXrlVhYSFLxwOVsFgsiouLU0hIiBISEuTkdGGOb1BQkBISEhQVFaVZs2YpNDSUpePRYDCTHQAAGCIsLExt27bVuXPnFB4eroMHD9rafvnlFz3wwAM6fvy43NzcNHToUOOCAgAAAACABis+Pl6SNHLkSFuBvYyLi4tGjBhRrh+Ai6Wnpys7O1vjxo2zFdjLODk5aezYsfrpp5+Unp5uUEKg9lFkBwAAhvDw8NCbb74pNzc3bdq0SZ07d1ZgYKC6desmX19frVq1Sk2aNNHChQvl7e1tdFwAAAAAANAAHTp0SJIqfcC/7HhZPwAXy83NlfS/lSt/r+x4WT+gIaDIDgAADHP77bdr+/btGjNmjDp16qTDhw9r3759at++vR566CFt3rzZ9sQ4AAAAAABAbevYsaMkacWKFRW2lx0v6wfgYl5eXpKkzMzMCtvLjpf1AxoCk9VqtRodwt7y8/Pl6emp06dPq0WLFkbHAQA0coxLtYv7CQBwFIxJtYv7CQBwFIxJtc/Ie1pYWKigoKCL9mSXpJKSEt1www06d+6cvvvuO/ZkByphsVg0YMAABQYGltuTXZJKS0sVFRWlzMxMpaamsic7HF5VxyRmsgMAAAAAAAAAgEbJ3d1doaGhOnfunG644QbNnj1bBw4c0OzZs20F9tDQUArswCWYzWZNmTJFaWlpioqKUkZGhgoKCpSRkaGoqCilpaVp8uTJFNjRoDCTnScNAQAGY1yqXdxPAICjYEyqXdxPAICjYEyqfY5wT6OiorR27dqLjoeGhiohIcGARED9k5qaqri4OGVnZ9uO+fj4aPLkyQoLCzMwGVB1VR2TmtgxEwAAAAAAAAAAgMNJSEhQYWGh4uPjdejQIXXs2FExMTHMYAeqISwsTKGhoUpPT1dubq68vLwUHBzMDHY0SBTZAQAAAAAAAABAo+fu7q5nnnnG6BhAvWY2m9W7d2+jYwB1jj3ZAQAAAAAAAAAAAACoImayAwAAAAAAAACARq+goEAxMTE6cuSIfH19FR8fLw8PD6NjGe706dMaN26ccnJy1KFDBy1cuFCenp5GxzJcSUmJkpKSdPjwYfn5+SkiIkIuLi5GxwJgJxTZAQAAAAAAAABAozZ06FDt2LHD9vrHH39Ujx491L17d61YscLAZMYaMGCADh8+bHv9888/q1evXvLz89OaNWsMTGas+Ph4JSYmymKxlDsWGRmpmJgYA5MBsBeWiwcAAAAAAAAAAI1WWYHdZDLprrvu0sqVK3XXXXfJZDJpx44dGjp0qNERDfHbAvtNN92kd999VzfddJMk6fDhwxowYICR8QwTHx+vpUuXqmXLloqNjdVXX32l2NhYtWzZUkuXLlV8fLzREQHYgclqtVqNDmFv+fn58vT01OnTp9WiRQuj4wAAGjnGpdrF/QQAOArGpNrF/QQAOArGpNpn5D0tKChQjx49ZDKZ9N1338nNzc3WVlRUpKCgIFmtVn377beNaun406dPq1evXpKkjIwMNW3a1NZ29uxZXX/99ZKkLVu2NKql40tKShQUFKSWLVtqw4YNatLkfwtGnz9/Xv369dOpU6f03XffsXQ8UE9VdUxiJjsAAAAAAAAAAGiUypb2Hjx4cLkCuyS5ublp0KBB5fo1FuPGjZN0YQb7bwvsktS0aVP17du3XL/GIikpSRaLRRMmTChXYJekJk2aaPz48bJYLEpKSjIoIQB7ocgOAAAAAAAAAAAapSNHjkiSRo0aVWH7yJEjy/VrLHJyciRJjz76aIXtUVFR5fo1FmXL5/fv37/C9pCQkHL9ADRcFNkBAAAAAAAAAECj5OvrK0l6/fXXK2x/4403yvVrLDp06CBJ+ve//11he0JCQrl+jYWfn58kaf369RW2p6WllesHoOGiyA4AAAAAAAAAABql+Ph4SdLHH3+soqKicm1FRUVatWpVuX6NxcKFCyVJX375pc6ePVuu7ezZs9q4cWO5fo1FRESEzGaz5s6dq/Pnz5drO3/+vObNmyez2ayIiAiDEgKwF4rsAAAAAAAAAACgUfLw8FD37t1ltVoVFBSkp556Srt27dJTTz2loKAgWa1Wde/eXR4eHkZHtStPT0/bbOzrr79eo0aNUnp6ukaNGqXrr79e0oXZ2p6enkbGtDsXFxdFRkbqxIkT6tevn5KTk3Xs2DElJyerX79+OnHihCIjI+Xi4mJ0VAB1zGS1Wq1Gh7C3/Px8eXp66vTp02rRooXRcQAAjRzjUu3ifgIAHAVjUu3ifgIAHAVjUu1zhHs6dOhQ7dix46Lj3bt314oVKwxI5BgGDBhQ4f7ifn5+WrNmjQGJHEN8fLwSExNlsVhsx8xmsyIjIxUTE2NgMgCXq6pjUhM7ZgIAAAAAAAAAAHA4K1asUEFBgWJiYnTkyBH5+voqPj6+0c1g/701a9bo9OnTGjdunHJyctShQwctXLiw0c1g/72YmBhNmDBBSUlJOnz4sPz8/BQREcEMdqARocgOAAAAAAAAAAAaPQ8PDyUkJBgdw+F4enpq+fLlRsdwOGVLxwNonNiTHQAAAAAAAAAAAACAKmImOwAAAAAAAAAAAFANhYWFio+P16FDh9SxY0fFxMTI3d3d6FgA7KTezmSfNm2aTCaTTCaTZsyYYXQcAAAAAAAAAAAANAJRUVEKCgpSUlKSNm7cqKSkJAUFBSkqKsroaADspF4W2Xfv3q3Zs2cbHQMAAAAAAAAAAACNSFRUlNauXStnZ2eNGTNGqampGjNmjJydnbV27VoK7UAjUe+K7FarVWPHjpWzs7NuueUWo+MAAAAAAAAAAACgESgsLLQV2Ldt26Ynn3xSHTt21JNPPqlt27bZCu2FhYVGRwVQx+rdnuxLly7Vl19+qVmzZumHH34wOg5gVxaLRenp6crNzZWXl5eCg4NlNpuNjgUAAAAAAAAADqWwsFBZWVl2v66/v79D78vNfbk88fHxkqSRI0fKxcWlXJuLi4tGjBihJUuWKD4+Xs8884wREQHYSb0qsufm5mry5Mm6+uqrNXHiRP3jH/8wOhJgN6mpqYqLi1N2drbtmLe3t6ZMmaKwsDADkwEAAAAAAACAY8nKytKQIUPsft2UlBR169bN7tetKu7L5Tl06JAkaejQoRW2Dx06VEuWLLH1A9Bw1asi+8SJE5WXl6eUlBQ5OzsbHQewm9TUVEVHRyskJERz5sxRly5dlJmZqYULFyo6Olrz58+n0A4AAAAAAAAA/5+/v79SUlKqfd7+/fs1adIkzZ49WwEBATW6riPjvlyejh07auPGjVqxYoWefPLJi9pXrFhh6wegYas3Rfa1a9fqnXfe0YMPPqibb77Z6DiA3VgsFsXFxSkkJEQJCQlycnKSJAUFBSkhIUFRUVGaNWuWQkNDWToeAAAAAAAAACS5u7tf1szpgICABjHz+ve4L5cnJiZGSUlJeuONN/T444+XWzK+pKREy5Yts/UD0LDViyJ7UVGRxo0bJ09PT7300kvVPr+4uFjFxcW21/n5+bUZD3+APV4uT3p6urKzszVnzhxbgb2Mk5OTxo4dq/DwcKWnp6t3794GpQQAAAAAAAAAoGFzd3dXaGio1q5dqxtuuEEjRozQ0KFDtWLFCi1btkznzp1TaGhog6hNALi0elFknzFjhvbt26dXX31VV1xxRbXPnzlzpp577rk6SIaqYI+Xy5ObmytJ6tKlS4XtZcfL+gEAAAAAAAAAgLpRtsLs2rVrtWTJEi1ZssTWFhoaqoSEBAPTAbAXhy+y7969W7Nnz9YNN9ygRx55pEbvMXXqVD3xxBO21/n5+fL19a2tiPgD7PFyeby8vCRJmZmZCgoKuqg9MzOzXD8AAAAAAAAAAFB3EhISVFhYqPj4eB06dEgdO3ZUTEwMM9iBRsThi+xRUVE6f/68FixYcNFS2VXl6uoqV1fXWk6GqmKPl8sTHBwsb29vLVy4sNye7JJUWlqqRYsWycfHR8HBwQamBAAAAAAAAACg8XB3d9czzzxjdAwABqlZ1dqOMjIyZDKZNHjwYF155ZXlfpKTkyVJs2bN0pVXXqmePXsanBaofWazWVOmTFFaWpqioqKUkZGhgoICZWRkKCoqSmlpaZo8ebLMZrPRUQEAAAAAAAAAAIAGz+FnskuSxWLRsWPHKm0vKChQQUGB3Nzc7JgKsJ+wsDDNnz9fcXFxCg8Ptx338fHR/PnzFRYWZmA6AACq7vTp0xo3bpxycnLUoUMHLVy4UJ6enkbHAgAAAAAAAIAqc/gi+6lTpypti4yM1LJlyxQbG6tp06bZLxRggLCwMIWGhio9PV25ubny8vJScHAwM9gBAPXGgAEDdPjwYdvrn3/+Wb169ZKfn5/WrFljYDIAAAAAAIDqyc3N1X333ae8vDy1bt1aycnJ8vLyMjqW4SwWC3UMVEt9/Tvj8EV2AP9jNpvVu3dvo2MAAFBtvy2w33TTTXr00Uf173//W19++aUOHz6sAQMGUGgHAAAAAAD1QnBwsM6cOWN7nZ2drb/+9a9q3ry50tPTDUxmrNTUVMXFxSk7O9t2zNvbW1OmTGFFXlSoPv+dcfg92QEAAFC/nT592lZgz8jI0JIlS3T99ddryZIlysjIkCQdPnxYp0+fNjImAAAAAADAH/ptgb1z585auHChOnfuLEk6c+aMgoODjYxnmNTUVEVHRyswMFDJycnatm2bkpOTFRgYqOjoaKWmphodEQ6mvv+dYSY7AADAHygsLFRWVpbdr+vv7y93d3e7X7e2jRs3TtKFGexNmzYt19a0aVP17dtXGzdu1Lhx47R8+XIjIgIAAAAAAPyh3NxcW4F969atatGihSSpf//+ys/PV8+ePXXmzBnbsteNhcViUVxcnEJCQpSQkCAnpwtzfIOCgpSQkKCoqCjNmjVLoaGh9WIZcNS9hvB3pl4X2RMTE5WYmGh0DAAA0MBlZWVpyJAhdr9uSkqKunXrZvfr1racnBxJ0qOPPlphe1RUlDZu3GjrBwAAAAAA4Ijuu+8+SRdmsJcV2Mu0aNFC/v7+ysrK0n333ad169YZEdEQ6enpys7O1pw5c2zF0jJOTk4aO3aswsPDlZ6ezpa4kNQw/s7U6yI7AACAPfj7+yslJaXa5+3fv1+TJk3S7NmzFRAQUKPrNgQdOnTQzz//rH//+99asmTJRe0JCQm2fgAAAAAAAI4qLy9PkvTUU09V2P7EE0/oscces/VrLHJzcyVJXbp0qbC97HhZP6Ah/J2hyA4AAPAH3N3dL2tGeUBAQIOYkV5TCxcuVK9evfTll1/q7Nmz5ZaMP3v2rDZu3GjrBwBoeCwWi15//XW9/fbb2rVrlwoKCnTFFVfo+uuv18iRI3XXXXcZHREAAACoktatWys7O1svvfSS+vfvf1H7nDlzbP0ak7Kl8TMzMxUUFHRRe2ZmZrl+QEP4O+P0x10AAACAmvP09JSfn58k6frrr9eoUaOUnp6uUaNG6frrr5ck+fn5ydPT08iYAIA6cPLkSf31r3/VmDFj9OWXX6pt27a65pprdO7cOa1cuVJvvfWW0REBAACAKktOTpYk7du3T/n5+eXa8vPzlZWVVa5fYxEcHCxvb28tXLhQpaWl5dpKS0u1aNEi+fj4KDg42KCEcDQN4e8MRXYAAADUuTVr1tgK7Rs3btQDDzxgm8Hu5+enNWvWGBkPAFAHSktLNXjwYH3zzTcaMmSIDh8+rD179ig9PV05OTk6cuSIoqOjjY4JAAAAVJmXl5eaN28uSerZs6duv/12rVmzRrfffrt69uwpSWrevLlDz76tC2azWVOmTFFaWpqioqKUkZGhgoICZWRkKCoqSmlpaZo8ebLMZrPRUeEgGsLfGZaLBwAAgF2sWbNGp0+f1rhx45STk6MOHTpo4cKFzGAHgAbqtdde01dffaX+/fvr/fffl5NT+ef8fXx85OPjY1A6AAAAoGbS09MVHBysM2fOKCsrS4899pitrXnz5kpPTzcwnXHCwsI0f/58xcXFKTw83Hbcx8dH8+fPV1hYmIHp4Ijq+98ZiuwAAACwG09PTy1fvtzoGAAAO5g3b54kKTY29qICOwAAAFCfpaenKzc3V/fdd5/y8vLUunVrJScnN7oZ7L8XFham0NBQ2/3x8vJScHCwQ89GhrHq898ZiuwAAAAAAKBWZWZmas+ePWrdurVuvPFGrVy5Uu+//76OHj0qLy8v3XrrrXrooYfk6upqdFQAABolq9WqjRs3auXKlfryyy+1Z88enT17Vm3btlWfPn302GOPqX///pWe//XXXysuLk6bNm1SQUGBOnXqpPvvv1+TJk2Sm5ubHX8TwDheXl5at26d0TEcjtlsVu/evY2OgXqkvv6docgOAAAAAABq1bfffitJ6tq1qx566CG988475dqTk5P18ssva/Xq1erYsaMREQEAaNTWrVunW2+9VZLk5OSkzp07q1mzZsrMzFRKSopSUlI0bdo0xcbGXnTuO++8oxEjRshiscjb21u+vr7auXOnpk+frk8++URpaWlq2rSpvX8lAADsivXaAAAAAABArTp69KgkaevWrXrnnXf08MMP6+DBgyoqKtJ///tf+fv7a8+ePbrnnntUWlpa4XsUFxcrPz+/3A8AAKgdVqtVnTt3VkJCgo4fP669e/dq27ZtOnHihKZOnSpJmjFjhlatWlXuvIMHD2r06NGyWCyKj4/XkSNHtG3bNmVmZuqqq67S1q1bFRMTY8SvBACAXVFkBwAAAAAAterXX3+VJJ07d0433XSTFi9erI4dO8rV1VWhoaFKSUmRyWTSt99+q//85z8VvsfMmTPl6elp+/H19bXnrwAAQIPWq1cv7d69W4888ohatWplO+7i4qIXX3xRt99+uyRp8eLF5c6bPXu2iouLFRYWpkmTJslkMkmSOnbsqNdff12S9Nprr+nYsWN2+k0AADAGRXYAAAAAAFCrfrsX6/jx4y9qv+6662z7vK5evbrC95g6dapOnz5t+zly5EjdhAUAoBFq0aKFmjSpfDfZAQMGSJJ+/PFH2zGr1aoPP/xQkjR69OiLzrnxxhvVtWtXnTt3TitXrqzlxAAAOBaK7AAAAAAAoFb9dkZc165dK+zz5z//WdKFZWcr4urqqhYtWpT7AQAA9lFUVCRJcnd3tx07fPiwbUuYvn37Vnhe2fHNmzfXcUIAAIxV+aNqAAAAAAAANXDVVVfZ/uzq6lphn7LjFovFLpkAAEDVWK1Wvf/++5LKF9MzMzMlXRjDO3ToUOG5/v7+5fpWpri4WMXFxbbX+fn5l5UZuFyFhYXKysqy+3X9/f3LPcwCoP6gyA4AAAAAAGrV9ddfLzc3NxUVFSkrK0udO3e+qE/Zl5je3t72jgcAAC5h8eLFysjIkIuLiyZMmGA7fvLkSUlSy5YtbXux/17ZajZlfSszc+ZMPffcc7UTGKgFWVlZGjJkiN2vm5KSom7dutn9ugAuH0V2AAAAAABQq5o1a6Y77rhDKSkpWrZsmcLCwsq1//zzz/r8888lSbfccosREQEAQAW2bdum8ePHS5JmzJihgIAAW1vZEvIuLi6Vnl+2Uk1hYeElrzN16lQ98cQTttf5+fny9fWtcW7gcvn7+yslJaXa5+3fv1+TJk3S7Nmzy/3zUp3rAqifKLIDAAAAAIBaN336dK1cuVLvvvuuwsLCNGLECEnSqVOnFBkZqcLCQvn7++vee+81OCkAAJCkAwcOaNCgQSoqKlJERISeeuqpcu1ubm6SpJKSkkrfo2wJ+D9a/trV1bXSLWUAI7i7u1/WjPKAgABmpAONjJPRAQAAAAAAQMNz3XXX6dVXX5XValVkZKQ6duyonj17ytvbW59//rnatm2rDz744JKz4QAAgH38/PPPGjBggI4ePao777xTiYmJFy0JX7YU/KlTp2S1Wit8n7Jl4sv6AgDQUFFkBwAAAAAAdWLcuHH64osv9Le//U1nz57V999/r3bt2unRRx/Vd999p6CgIKMjAgDQ6OXl5WnAgAHav3+/br75Zr3//vtydna+qF+XLl0kXZitnpOTU+F7ZWVllesLAEBDxXLxAAAAAACgztx000266aabjI4BAAAqUFBQoDvuuEM7d+5Uz5499cknn1S61Lufn5+uvPJK/fzzz9q4caOGDRt2UZ+NGzdKknr37l2nuQEAMBoz2QEAAAAAAAAAaGSKi4t11113afPmzerWrZtWr16t5s2bV9rfZDLp73//uyRp6dKlF7Vv2rRJe/bskbOzswYPHlxnuQEAcAQU2QEAAAAAAAAAaEQsFovCw8O1bt06BQQEaM2aNWrduvUfnjdp0iS5uLgoNTVVs2fPtu3NfujQIY0aNUqS9PDDD+vKK6+s0/wAABiN5eIBAAAAAAAAAGhE3nvvPX300UeSJCcnJ917770V9mvfvr3ef/992+tOnTpp8eLFGjlypGJiYjRv3jy1a9dOO3fu1Llz59SjRw/Nnj3bHr8CAACGosgOAAAAAAAAAEAjUlxcbPtzZmamMjMzK+zXsWPHi44NHz5cnTt31syZM7Vp0yb98MMP8vf31/3336/JkyfLzc2tznIDcHwlJSVKSkrS4cOH5efnp4iICLm4uBgdC6h1FNkBAAAAAAAAAGhEIiMjFRkZWePzb7zxRn3yySe1FwhAgxAfH6/ExERZLJZyxyIjIxUTE2NgMqD2sSc7AAAAAAAAAAAAgBqLj4/X0qVL1bJlS8XGxuqrr75SbGysWrZsqaVLlyo+Pt7oiECtosgOAAAAAAAAAAAAoEZKSkqUmJioNm3aaMOGDRo2bJi8vLw0bNgwbdiwQW3atFFiYqJKSkqMjgrUGorsAAAAAAAAAAAAAGokKSlJFotFEyZMUJMm5XeqbtKkicaPHy+LxaKkpCSDEgK1jyI7AAAAAAAAAAAAgBo5fPiwJKl///4VtoeEhJTrBzQEFNkBAAAAAAAAAAAA1Iifn58kaf369RW2p6WllesHNAQU2QEAAAAAAAAAAADUSEREhMxms+bOnavz58+Xazt//rzmzZsns9msiIgIgxICtY8iOwAAAAAAAAAAAIAacXFxUWRkpE6cOKF+/fopOTlZx44dU3Jysvr166cTJ04oMjJSLi4uRkcFak0TowMAAAAAAAAAAIA/duzYMeXk5Oiqq65S06ZNjY4DADYxMTGSpMTERE2fPt123Gw2a/To0bZ2oKGgyA4AAAAAAAAAgAPYvHmzkpOTFRoaqjvvvNN2PD8/Xw899JBWrVolSWrWrJnmzZunkSNHGhUVAC4SExOjCRMmKCkpSYcPH5afn58iIiKYwY4GiSI7AAAAAAAAAAAOYMmSJXr99dd19913lzs+adIkffLJJ3JycpKnp6dOnjypf/zjHwoODlb37t2NCQsAFShbOh5o6NiTHQAAAAAAAAAAB7Bx40Y1a9ZM/fr1sx0rKCjQW2+9pebNm2vnzp06ceKE5s6dq9LSUr388ssGpgUAoPGiyA4AAAAAAAAAgAM4duyYfH19yx374osvVFRUpPvuu09du3aVJD322GNq27atNm/ebERMAKiUxWLR5s2btWrVKm3evFkWi8XoSECdYLl4AAAAAAAAAAAcwJkzZ+Tv71/u2FdffSWTyaQBAwbYjjk5OelPf/qTfvjhB3tHBIBKpaamKi4uTtnZ2bZj3t7emjJlisLCwgxMBtQ+ZrIDAAAAAAAAAOAA2rRpo0OHDslqtdqO/fe//5Uk3XzzzeX6njt3Ti4uLnbNBwCVSU1NVXR0tAIDA5WcnKxt27YpOTlZgYGBio6OVmpqqtERgVpFkR0AABjOYrFo8eLFuvnmm9W2bVu5ubmpY8eOuvvuu7Vy5Uqj4wEAAAAAYBd/+ctfdOLECS1evFjShQL7t99+q+uuu07t2rWz9bNardq3b5/at29vVFQAsLFYLIqLi1NISIgSEhIUFBSkZs2aKSgoSAkJCQoJCdGsWbNYOh4NCkV2AABgqJMnT+qvf/2rxowZoy+//FJt27bVNddco3PnzmnlypV66623jI4IAAAAAIBdPPnkkzKZTHrkkUfUtm1bDRw4UCaTSU8++WS5fhs2bNCvv/6qnj17GpQUAP4nPT1d2dnZGjdunJycypcenZycNHbsWP30009KT083KCFQ+yiyAwAAw5SWlmrw4MH65ptvNGTIEB0+fFh79uxRenq6cnJydOTIEUVHRxsdEwAAAAAAu/jrX/+qDz74QFdffbV+/fVX+fv769VXX9UDDzxQrt/ChQsliT2OATiE3NxcSVKXLl0qbC87XtYPaAiaGB0AAAA0Xq+99pq++uor9e/fX++///5FT7r6+PjIx8fHoHQAAAAAANjfXXfdpbvuuuuSfV577TUtXLhQzZs3t1MqAKicl5eXJCkzM1NBQUEXtWdmZpbrBzQEzGQHAACGmTdvniQpNjb2ogI7AAAAAACoWPPmzeXp6clnaQAOITg4WN7e3lq4cKFKS0vLtZWWlmrRokXy8fFRcHCwQQmB2scIDAAADJGZmak9e/aodevWuvHGG7Vy5Uo9+OCDCg0NVXh4uJYsWaLi4mKjYwIAAAAAAAC4BLPZrClTpigtLU1RUVHKyMhQQUGBMjIyFBUVpbS0NE2ePFlms9noqECtYbl4AABgiG+//VaS1LVrVz300EN65513yrUnJyfr5Zdf1urVq9WxY0cjIgIAAAAAYHclJSV64403tHr1amVlZamgoEBWq7XCviaTSfv377dzQgC4WFhYmObPn6+4uDiFh4fbjvv4+Gj+/PkKCwszMB1Q+yiyAwAAQxw9elSStHXrVm3atEkPP/ywpk2bpiuvvFJfffWVxowZoz179uiee+7Rli1bKl0Cr7i4uNyM9/z8fLvkh1RYWKisrCy7X9ff31/u7u52v25VcV8AAAAA1NTRo0cVGhqqvXv3VlpY/y2TyWSHVABQNWFhYQoNDVV6erpyc3Pl5eWl4OBgZrCjQaLIDgAADPHrr79Kks6dO6ebbrpJixcvtrWFhoYqJSVF119/vb799lv95z//0d/+9rcK32fmzJl67rnn7JIZ5WVlZWnIkCF2v25KSoq6detm9+tWFfcFAAAAQE09+eST2rNnj/z9/RUTE6Prr79eXl5eFNMB1Btms1m9e/c2OgZQ5yiyAwAAQ7i5udn+PH78+Ivar7vuOvXv31/r1q3T6tWrKy2yT506VU888YTtdX5+vnx9fWs/MC7i7++vlJSUap+3f/9+TZo0SbNnz1ZAQECNruvIuC8AAAAAamr16tVyc3PTF198IW9vb6PjAACASlBkBwAAhmjVqpXtz127dq2wz5///GetW7dOBw8erPR9XF1d5erqWtvxUAXu7u6XNXM6ICCgQc685r4AAAAAqCmLxaKuXbtSYAcAwMFRZAcAAIa46qqrbH+urEhedtxisdglEwAAAAAARrr22mt1+PBho2MAQI2VlJQoKSlJhw8flp+fnyIiIuTi4mJ0LKDWORkdAAAANE7XX3+9bcn4rKysCvuUHecJfgAAAABAYzBp0iQdOXJEycnJRkcBgGqLj49XUFCQZs6cqXfeeUczZ85UUFCQ4uPjjY4G1DqK7AAAwBDNmjXTHXfcIUlatmzZRe0///yzPv/8c0nSLbfcYtdsAAAAlbFYLNq8ebNWrVqlzZs3s+IOAKBWDR48WC+//LIefvhhPfnkk9q1a5eKioqMjgUAfyg+Pl5Lly5Vy5YtFRsbq6+++kqxsbFq2bKlli5dSqEdDQ5FdgAAYJjp06fLbDbr3XffLVdoP3XqlCIjI1VYWCh/f3/de++9BqYEAAC4IDU1VbfeequGDx+uJ598UsOHD9ett96q1NRUo6M5BB5AAIDaERERoZCQEM2dO1fXXnutmjVrJrPZXOFPkybsCAvAeCUlJUpMTFSbNm20YcMGDRs2TF5eXho2bJg2bNigNm3aKDExUSUlJUZHBWoNIzAAADDMddddp1dffVVRUVGKjIzU9OnT1a5dO/3www86e/as2rZtqw8++IB9mwAAgOFSU1P1+OOP27a7KZOXl6fHH39cr7zyisLCwgxKZ7zU1FTFxcUpOzvbdszb21tTpkxp1PcFAKpr3759CgkJ0dGjR2W1Wv+wf1X6AEBdS0pKksVi0YQJEy56+KdJkyYaP368pk+frqSkJEVGRhoTEnZRWFhY6dagdcnf31/u7u52vSZFdgAAYKhx48apW7dumj17tr7++mt9//336tChg+68805NnTqV/dgBAIDhLBaLnnnmGUlSnz59NG7cOHXp0kWZmZlauHCh1q9fr2effVahoaEym80Gp7W/1NRURUdHKyQkRHPmzCl3b6KjozV//nwK7QBQRTExMcrJydFf/vIXPffccwoKCpKXl5fRsQDgkg4fPixJ6t+/f4XtISEh5fqh4crKytKQIUPsft2UlBR169bNrtekyA4AAAx300036aabbjI6BgAAQIW2bNmivLw89ejRQwkJCXJyurD7XlBQkBISEvTggw/q22+/1ZYtW9SnTx+D09qXxWJRXFycQkJCKrw3UVFRmjVrVqN9AAEAquuLL76Qh4eHVq9erRYtWhgdBwCqxM/PT5K0fv16DRs27KL2tLS0cv3QcPn7+yslJaXa5+3fv1+TJk3S7NmzFRAQUKPr2htFdgAAAAAAgEvYvHmzJOnxxx+3FZHLODk56bHHHtPIkSO1efPmRldkT09PV3Z2tubMmVPhvRk7dqzCw8OVnp6u3r17G5QSAOqP0tJSXXXVVRTYAdQrERERio+P19y5czVkyJByS8afP39e8+bNk9lsVkREhIEpYQ/u7u6XNaM8ICDA7jPSa8rpj7sAAAAAAADAZDLJYrFo8+bNWrVqlTZv3iyLxWJ0LEPl5uZKkrp06VJhe9nxsn4AgEvr0aOHfvrpJ6NjAEC1uLi4KDIyUidOnFC/fv2UnJysY8eOKTk5Wf369dOJEycUGRkpFxcXo6MCtYaZ7AAAAAAAAJfQu3dvLViwQM8995wKCwt19OhRW1v79u3l7u5u69fYlO0TnJmZqaCgoIvaMzMzy/UDAFza008/rVtvvVXz5s3T+PHjjY4DAFUWExMjSUpMTNT06dNtx81ms0aPHm1rBxoKiuwAAAAAAACX0KtXL3l4eCgrK0smk6lc288//yyr1armzZurV69eBiU0TnBwsLy9vbVw4cJye7JLF5Y8XrRokXx8fBQcHGxgSgCoPzp16qTZs2dr8uTJ2rBhg0aNGqWAgAA1bdq00nPY4xiAo4iJidGECROUlJSkw4cPy8/PTxEREcxgR4NEkR0AAAAAAKCKrFZrha9/f7yxMJvNmjJliqKjoxUVFaWxY8eqS5cuyszM1KJFi5SWlqb58+fLbDYbHRUA6oU//elPMplMslqt+uijj/TRRx9dsr/JZNL58+ftEw4AqqBs6XigoaPIDgAAAAAAcAlbtmxRQUHBJfsUFBRoy5Yt6tOnj51SOY6wsDDNnz9fcXFxCg8Ptx338fHR/PnzFRYWZmA6AKhf/Pz8Llo1BQAAOB6K7AAAAAAAAJfwzTffVLlfYyyySxcK7aGhoUpPT1dubq68vLwUHBzMDHYAqKaDBw8aHQEALkthYaHi4+N16NAhdezYUTExMXJ3dzc6FlDrKLIDAAAAAABcQnZ2tu3Pbdq00YQJE9S/f3+tX79ec+fO1YkTJy7q1xiZzWb17t3b6BgAAAAwSFRUlNauXWt7vXHjRiUlJSk0NFQJCQkGJgNqn5PRAQAAAAAAABxZaWmppAtF5LS0NA0bNkxeXl4aNmyY0tLSbLO1y/oBAAAAjU1Zgd3Z2VljxoxRamqqxowZI2dnZ61du1ZRUVFGRwRqFTPZAQAAAAAALiEvL0+SZLFY9Pjjj2vcuHHq0qWLMjMztXDhQlkslnL9AAC4XMXFxVq+fLlSU1P1448/6syZM2revLkCAwN12223KTw8XK6urkbHBABJF5aILyuwb9u2TS4uLpKkJ598Uo8//rhuuOEGrV27VoWFhSwdjwajXhTZP/roI3322WdKT09XTk6OTpw4oaZNm+rqq6/Wfffdp0ceecT2DywAAAAAAEBtatq0qe3PX3/9tdLS0myv3dzcKuzXGJWUlCgpKUmHDx+Wn5+fIiIi+L4GAGpg27Ztuvfee3Xw4EFZrdaL2pKTkxUbG6v33ntPN9xwg0EpAeB/4uPjJUkjR4686L//XFxcNGLECC1ZskTx8fF65plnjIgI1Lp6UWR/6aWXtHHjRrm6uqpDhw667rrrdPToUX399df6+uuv9dZbb+m///2vWrZsaXRUAAAAAADQwAQHB9v2ljSZTJfs11jFx8crMTHRNqu/7FhkZKRiYmIMTAYA9ctPP/2kAQMG6OTJk2rbtq3+8Y9/qFu3brriiit07Ngx7dq1S0uWLFFWVpZuu+02fffdd/L29jY6NoBG7tChQ5KkoUOHVtg+dOhQLVmyxNYPaAjqxZ7sDz/8sNavX68zZ84oKytLW7du1U8//aSvv/5aPj4++vbbb/Wvf/3L6JgAAAAAAKABevDBB+XkdOErlN/vu1722snJSQ8++KDdszmC+Ph4LV26VC1btlRsbKy++uorxcbGqmXLllq6dKltZlNjZbFYtHnzZq1atUqbN28u9yACAPzezJkzdfLkSQ0ZMkSHDh3SCy+8oIiICIWGhioiIkIvvPCCDh06pHvuuUcnTpzQzJkzjY4MAOrYsaMkacWKFRW2lx0v6wc0BPWiyB4ZGamQkBA5OzuXO/6Xv/xFc+bMkXRhSXmgocvOzlbPnj119dVXq2fPnsrOzjY6kkMoKSlRYmKinn/+eSUmJqqkpMToSHBgfMEFAACA6nJxcdHIkSMlSefPny/XVva6oqUxG4Oyz2Nt2rTRhg0bNGzYMHl5eWnYsGHasGGD2rRp06g/p6WmpmrAgAEaPny4nnzySQ0fPlwDBgxQamqq0dEAOKjPPvtMzZo1U2JiYqX7Fru5uemNN95Qs2bN9Omnn9o5IQBcrGzlojfeeOOi/+4rKSnRsmXLyvUDGoJ6sVz8pXTt2lWSdPbsWYOTAHXrmmuu0blz52yv8/Pzdcstt8jZ2Vk7d+40MJmxWJIQ1ZGamqq4uLhyD6h4e3trypQpCgsLMzAZAABAwzdt2jS98MILkqTY2FhNmzbN4ERSYWGhsrKyqtT3zjvv1IkTJ/Txxx9f1Hb33Xfrzjvv1K5du6r0Xv7+/pUWTuqbpKQkWSwWTZgwQU2alP+aqUmTJho/frymT5+upKQkRUZGGhPSIKmpqYqOjlZISIjmzJmjLl26KDMzUwsXLlR0dLTmz5/P5xAAF8nJydG1114rDw+PS/bz8PDQn//8Z+3YscNOyQCgcu7u7goNDdXatWt1ww03aMSIERo6dKhWrFihZcuW6dy5cwoNDW0w/w0MSA2gyP71119Lkm644QaDkwB157cFdi8vLz311FN66aWXlJubq3Pnzumaa65plIX2siUJ27RpowkTJqh///5av3695s6dq6VLl0riyTj8D19wAQAAGGf37t2aPXu20TEukpWVpSFDhlzWe5SWluqjjz6q1gp7KSkp6tat22Vd11EcPnxYktS/f/8K20NCQsr1aywsFovi4uIUEhKihIQE23YDQUFBSkhIUFRUlGbNmqXQ0FCZzWaD0wJwJM2bN9exY8eq1PfYsWNq1qxZHScCgKop+2+ctWvXasmSJVqyZImtLTQ0VAkJCQamA2pfvSyyWywWHT16VB9//LGmTJmiZs2asfcMGqzs7Gxbgf3rr79W69atJV2YKZGXl6c+ffro3Llzys7Olre3t5FR7er3SxKWzZgYNmyYhgwZon79+ikxMVETJkxolEs2ojy+4AIAADCO1WrV2LFj5ezsrL/+9a9at26d0ZFs/P39lZKSUu3z9u/fr0mTJmn27NkKCAio0XUbCj8/P0nS+vXrNWzYsIva09LSyvVrLNLT05Wdna05c+bYPn+UcXJy0tixYxUeHq709HT17t3boJQAHFGPHj20Zs0avfvuuwoPD6+03/Lly3XkyBEmDABwKAkJCSosLFR8fLwOHTqkjh07KiYmhhnsaJDqVZF97ty5mjhxYrljd999t2JjY3XNNddUel5xcbGKi4ttr/Pz82s9W3WWmKttDWmZOVzs7rvvlnRhBntZgb1M69at1bZtWx0/flx33323tm7dakBCY7AkIaqDL7gAAACMs3TpUn355ZeaNWuWfvjhB6PjlOPu7n5ZM8oDAgIazIz0moqIiFB8fLzmzp2rIUOGlPt8dv78ec2bN09ms1kREREGprS/3NxcSVKXLl0qbC87XtYPAMo8/vjjSk1N1YgRI7R161Y99thj6tSpk639wIEDeuWVV5SQkCCTyaTo6OgaX+vAgQP673//qy1btmjLli3atWuXLBbLJbd1efbZZ/Xcc89d8n13795t2+YVQOPj7u6uZ555xugYQJ2rV0V2b29v9e3bV+fOndOhQ4d07NgxrV+/XsuXL9fzzz9f6ezDmTNn/uHAf7lqY4m5mmpIy8zhYr/++qsk6amnnqqwfcKECZo2bZqtX2PBkoSoDr7gAgAAMEZubq4mT56sq6++WhMnTtQ//vEPoyOhlrm4uCgyMlJLly5Vv379NH78eIWEhCgtLU3z5s3TiRMnNHr06Ea3wpiXl5ckKTMzU0FBQRe1Z2ZmlusHAGXuvPNOTZ48WbNmzdLcuXM1d+5cubq6ysvLS7m5ubbJZFarVVOnTtUdd9xR42vNmzdP8+bNq9G5vr6+la5S0rRp0xpnAgCgvqhXRfZ7771X9957r+315s2bNXbsWL344ovKy8vTggULKjxv6tSpeuKJJ2yv8/Pz5evrW6vZarrEnMQyc7i0Zs2aKT8/Xy+99JJtVvtvzZ0719avMWFJQlQHX3ABAAAYY+LEicrLy1NKSoqcnZ2NjoM6EhMTI0lKTEzU9OnTbcfNZrNGjx5ta29MgoOD5e3trYULF5bbskqSSktLtWjRIvn4+Cg4ONjAlAAc1cyZM9W3b1/FxcXpm2++UVFRkY4cOSLpwop8N954oyZPnqw777zzsq7Ttm1bDRo0SL169VLPnj21ZMkSffDBB1U6d9SoUXr22Wcv6/oAANRn9arI/nu9e/fWp59+Kn9/f7322muaMmWKOnbseFE/V1dXubq61mmWy11iTmKZOVTso48+0i233KLc3Fzl5eWVWzI+Ly9Px48ft/VrTFiSENXBF1wAAAD2t3btWr3zzjt68MEHdfPNNxsdB3UsJiZGEyZMUFJSkg4fPiw/Pz9FREQ0uhnsZcxms6ZMmaLo6GhFRUVp7Nix6tKlizIzM7Vo0SKlpaVp/vz5la7KCACDBg3SoEGD9Ouvv2rfvn0qKCiQh4eHOnfuXGuTbX6/JPy7775bK+8LoHErKChQTEyMjhw5Il9fX8XHx8vDw8PoWECtq9dFdknq0KGDgoKCtHnzZm3fvr3CIjtQn3l7e8vZ2Vnnzp1Tnz591LZtW02YMEFz5861FdidnZ3l7e1tcFL7YklCVAdfcAEAANhXUVGRxo0bJ09PT7300ks1eo/i4mLbkrjShVXp4NjKPqfhgrCwMM2fP19xcXEKDw+3Hffx8dH8+fMVFhZmYDoA9UWzZs103XXXGR0DAKpk6NCh2rFjh+31jz/+qB49eqh79+5asWKFgcmA2lfvi+zShVmrv/1foKHZuXOnrrnmGp07d07Hjx8v95Sps7Ozdu7caWA647AkIaqDL7gAAADsZ8aMGdq3b59effVVXXHFFTV6j5kzZ+q5556r5WSAfYWFhSk0NFTp6enKzc2Vl5eXgoODecAXQKXMZrP++te/6osvvvjDvv3799eXX35pyPfi69ev165du3TixAm1bt1avXr10vDhw3XllVfaPQsAx1BWYDeZTBo8eLBGjRql119/XR9//LF27NihoUOHUmhHg1Lvi+wHDx7U9u3bJYkn+tCg7dy5U9nZ2br77rv166+/qlmzZvroo48a3Qz232NJQlQHX3ABAADUvd27d2v27Nm64YYb9Mgjj9T4faZOnaonnnjC9jo/P1++vr61ERGwK7PZrN69exsdA0A9YbVaZbVaq9XfCBs2bCj3+oMPPtCzzz6rhIQEVjUBGqGCggJbgf27776Tm5ubJCk+Pl7PP/+8goKCtGPHDtvWF0BDcFlF9gMHDmjr1q365ZdfdObMGbVo0ULt2rVTr169am3Z9m+//VYff/yxRowYIX9//3Jtq1ev1sSJE3X+/HndcccdCggIqJVrAo7K29tbW7duNTqGw2FJQlQHX3ABAADUraioKJ0/f14LFiyQk5NTjd/H1dVVrq6utZgMAICG5ddff5Wzs7Ndr9m+fXv985//1N///nf5+/vL3d1dGRkZmjFjhj777DONGjVKbdq00d/+9rdLvk91t4XJycnRyZMna+V3+CP79+8v97/20KpVK3Xo0KHa53Ff4CjKVpUdPHiwrcBexs3NTYMGDdInn3yimJgYJSQkGBERqHU1KrK/9dZbmjlzpvbu3Vtpn6uvvlr//Oc/df/999c4nCSdOXNGzz//vJ5//nldeeWV8vHxUUlJiQ4fPqxTp05Jknr27Klly5Zd1nUAAED1bdmyRW+99ZZeeeUVo6MAAAAHkZGRYVsi8vdOnz4tSZo1a5ZeffVV+fr68iAxAAA1sHfvXu3cudPuq1yOHTv2omM33nij/vOf/+iee+7Rhx9+qIkTJ2rQoEEymUyVvk91toXJycnRwNsGqrik+I8716JJkybZ7VquLq5a/fnqahWUc3JyNHDgwHIPK9iDXe+Lq6tWr67efYExjhw5IkkaNWpUhe0jR47UJ598YusHNATVKrKXlpZq+PDhWr58uW0ZmjZt2sjX11fNmjVTQUGBjhw5ory8PO3atUsPPvigPv/8c73xxhuXHFAv5brrrtO8efO0du1a7dq1S3v27FFJSYnatGmjPn36aNiwYXrwwQfVpEm9X/keAIB64eDBg3r77bf19ttvKzMzU5IosgMAgHIsFouOHTtWaXtBQYEKCgoumuUCAEBjM2/ePM2bN6/csfT09ItWdf2twsJC/fLLL5Kku+66q07zVZXJZFJcXJw+/PBD7d+/X99///0lt3etzrYwJ0+eVHFJsa47fZ08LA1vmekCc4G2e27XyZMnq1VMPnnypIqLi+X8F2c5taj56kGOqjS/VMXfFFf7vsAYvr6++vHHH/X6668rPj7+ovY33njD1g9oKKpVmX7++eeVlJQks9msxx57TOPGjdNVV111Ub/du3drwYIFWrBggd566y117txZ06ZNq1HAVq1aKTo6WtHR0TU6HwAAXL7Tp0/rvffe01tvvaWNGzdKurDvm7OzswYOHGhwOgAA4EjKVp2rSGRkpJYtW6bY2Ngaf08AAEBDcurUKR08eND22mQyqaioqNyxijRv3lz33nuvZsyYUbcBqyEwMFCtW7dWXl6e9u3bd8kie022hfGweMjzvOflxmxwnFo4yal1wyuyo36Jj49Xjx499PHHH+v5558v9zBtUVGRVq1aZesHNBRVLrIfP35ccXFxatKkiVatWqWwsLBK+/75z3/W/Pnzdccdd+hvf/ubXnjhBT3yyCNq06ZNrYQGAAB17/z58/r000/11ltvadWqVSopKbGtZNOnTx89+OCDuu+++9S6dWuDkwIAAKC2FRYWKisry+7XLdvfFwAaiwkTJigyMlLShYfZ/f391bNnT7333nsV9jeZTHJ3d5eXl5cdU1Zd2R7x58+fNzgJAHvy8PBQ9+7dtWPHDgUFBWnQoEEaOXKk3njjDa1atUpWq1Xdu3eXh0fDW40CjVeVi+xvvfWWSkpK9OSTT16ywP5bAwcOVHR0tObOnat33nmH2egAANQDmzdv1ltvvaXk5GTl5eXZCuuBgYH68ccfdeWVV9pmswMAAKBhysrK0pAhQ+x+3ZSUFHXr1s3u1wUAo3h6esrT83+zs0eMGKGrrrpKHTt2NDBVzRw/fty2jL2Pj4/BaQDY24oVKzR06FDt2LFDn3zyiT755BNbW/fu3bVixQoD0wG1r8pF9q+++komk0mPPPJItS4QFRWl//u//9OGDRsosgMA4KAOHDigt99+W2+99Zb2798v6cIT9FdeeaXCw8P1wAMPqEePHnJyYvkxAACAxsDf318pKSnVPm///v2aNGmSZs+erYCAgBpdFwAas7J9i+ujOXPmyGq1ytPTUz179jQ6DgADrFixQgUFBYqJidGRI0fk6+ur+Ph4ZrCjQapykf37779Xu3btqv1hJyAgQO3atdP3339f7XAAAKDu3XTTTdq0aZOkC4X1Fi1aaMiQIXrggQd0yy23yGQyGZwQAAA0FImJiUpMTDQ6BqrA3d39smaUBwQEMCMdABqYXbt26d///rceffTRcv+OLyoq0pw5czRr1ixJ0uTJk+Xi4mJUTAAG8/DwUEJCgtExgDpX5SJ7Xl5ejZeo6dChgw4dOlSjcwEAQN3auHGjTCaTWrZsqZdffln333+/XF1djY4FAAAAOBz2qq8Y9wWofQcOHFBycrK2b9+uvLw8nTt3rsJ+JpNJa9eurdE1Nm7cqLvuusv2uqCgQJI0c+ZMzZ0713Y8IyNDvr6+OnfunBYsWKAFCxbIy8tLfn5+kqTdu3fr7NmzkqTRo0drypQpNcoDAEB9UuUie35+fo2Xc2jWrJny8/NrdC4AAKhbZrNZFotFp06d0mOPPabPP/9cERERuv3229WkSZX/UwEAAABo8NirvmLcF6B2zZ49W//61790/vx52+pyVqvV1v7bY5ez+ty5c+d04sSJi46fPXvWVjSXJIvFIkn605/+pNjYWG3atEl79uzR3r17VVJSonbt2umOO+7Qww8/rNtuu63GeQCgobNYLEpPT1dubq68vLwUHBwss9lsdCzUUJW/OS8bSGuqtLT0ss4HAAB1Izs7W0lJSXr77be1bds2JScn67333lOrVq00dOhQ3X///br55puNjgkAAAAYjr3qK8Z9AWrPp59+qsmTJ6t9+/aKjY3V3LlztWvXLq1Zs0ZHjhzR9u3btXTpUlksFsXFxenaa6+t8bVCQkLKFe//SMuWLTVt2rQaXw8AGrPU1FTFxcUpOzvbdszb21tTpkxRWFiYgclQU9WanlZcXKzDhw9X+yLFxcXVPgcAANhHu3btNGHCBE2YMEG7d+/Wm2++qaSkJB05ckSLFy/W4sWL5e3trfvuu8/oqAAAAICh2Ku+YtwXoPa88sorMplMeu+999S3b1+98cYbkqTQ0FBbn2nTpumee+7R008/ra1btxoVFQBQRampqYqOjlZISIjmzJmjLl26KDMzUwsXLlR0dLTmz59Pob0eqlaRPT09XZ06daqrLAAAwGB//vOfNXPmTL344otKS0vTm2++qZSUFP3000+aM2eOTCaTTp06pdjYWD3wwAPMHAEAAAAAoBZ9++23at++vfr27VtpnzZt2mj58uXq2LGjnnvuOb399tt2TAgAqI6ylUdCQkKUkJAgJycnSVJQUJASEhIUFRWlWbNmKTQ0lKXj65lqFdmrs3TM713O3jAAAMC+TCaT+vfvr/79+2vBggX66KOP9Oabb2rNmjUqKirSs88+q2effVZ9+vTRQw89pLFjxxodGQCABu/48eOSpLZt2xqcBAAA1JX8/Hxdd911ttdubm624y1atLAdb9++va655hqtX7/e7hkBR5eTk6OTJ0/a5Vr79+8v97/20KpVK3Xo0MEu1yosLFRWVpZdrvVb/v7+cnd3t/t160J6erqys7M1Z84cW4G9jJOTk8aOHavw8HClp6erd+/eBqWsGP8sXVqVi+wHDhyo8UUAAED95ebmpvDwcIWHh+uXX37RO++8o7ffflsZGRnatGmTvv76a4rsAADUkVOnTumf//ynkpOTderUKUmSp6en7r33Xr344otq06aNsQEBAECtateunfLz88u9lqS9e/eqZ8+e5foWFBToxIkTds0HOLqcnBzddvvtKikqsut1J02aZLdrubi56fPPPrNLoT0rK0tDhgyp8+v8XkpKSoPZSiY3N1eS1KVLlwrby46X9XMUOTk5GjhwoN23BLfnP0uurq5avXp1jf9ZqnKRvWPHjjW6AAAAaDjatWuniRMnauLEifrhhx9s+7cDAIDaV1hYqJtuukk//PBDuZXlTp06pSVLlujLL7/U1q1b1axZMwNTAgCA2hQQEKBt27bZXvfu3VvLly/XggULyhXZ165dq3379rG9K/A7J0+eVElRkc7ec49KG+AKUE7Hj0sffKCTJ0/apcju7++vlJSUap+3f/9+TZo0SbNnz1ZAQECNrttQeHl5SZIyMzMVFBR0UXtmZma5fo7i5MmTKi4uVgevG+Xi7Gl0nFpXcu60cnI3XdY/S9VaLh4AAKDM1Vdfrbi4OM2cOdPoKAAANEjz5s3Trl271LJlS02fPl39+vWT1WrVhg0bFBsbq71792ru3Ln617/+ZXRUAABQSwYOHKgNGzZo69at6tmzpyIiIvTMM89o2bJl+vHHH9WnTx8dO3ZM7733nkwmkx566CGjIwMOqbRtW5XaaUn1hszd3f2yZpQHBAQ0mBnpNRUcHCxvb28tXLiw3J7sklRaWqpFixbJx8dHwcHBBqasnIuzp9xdWxsdwyHVSZG9pKREp06dkpeXF3uxAwDQgFQ0xjPWAwBQNz788EOZTCZ98MEH6t+/v+14jx49dO2112rAgAH68MMPKbIDANCADBs2TPv27VNeXp4kqW3btkpOTlZ4eLg2bdqkTZs22foOHTpU06ZNMyoqAKAKzGazpkyZoujoaEVFRWns2LHq0qWLMjMztWjRIqWlpWn+/Pkym81GR0U1VbvIvnv3bq1du1YlJSXq2rWrbr/9dtuX66tWrdL06dP1/fffy2q1qnnz5oqIiFBcXJxatGhR6+EBAEDtYYwHAMCx7N27V97e3uUK7GVCQ0Pl4+NjW1oQAAA0DJ06ddLixYvLHQsLC9OBAwf02Wef6eDBg3J3d9dNN92kG264waCUAIDqCAsL0/z58xUXF6fw8HDbcR8fH82fP19hYWEGpkNNVavI/vTTT2vmzJnl9oK7/vrrtX79ev3nP//Rgw8+qNLSUltbfn6+Fi1apG3btumrr75SkyasTg8AgCNijAcAwPGcOXNG3bt3r7Tdz89PX3/9tR0TAQAAo3h6epYrzAAA6pewsDCFhoYqPT1dubm58vLyUnBwMDPY6zGnP+5ywWeffaYXXnhBpaWlateunXr06KHmzZsrIyNDL774op566im1bNlSr7zyir799ltt3bpVc+fOVcuWLbV161a99tprdfl7AACAGmKMBwDAMVmt1ktuy8KWLQAAAABQf5jNZvXu3VuDBg1S7969KbDXc1WedrZw4UKZTCY98cQTio+Pl8lkUkFBgf7+979r3rx5Ki4u1po1a3TLLbfYzunRo4e6du2qgQMH6r333lNUVFSd/BIAAKDmGOMBAAAAAAAAAKi6Ks9k37p1q5o3b64ZM2bYnpb38PDQzJkzVVRUpCuuuKLcl+9lwsLCdMUVV2jnzp21lxoAANQaxngAABzXxo0bZTabK/zZtGmTJFXaznYuAAAAAADUjSoX2Y8fPy5/f3+5urqWO3711VdLurAXXGX8/Px0+vTpGkYEAAB1iTEeAADHZbVaL+sHAAAAAADUvio/1n7+/Hl5eHhcdLxp06aSJBcXl0rPdXFxUWlpaQ3iAQCAusYYDwCAY1q/fr3REQAAAAAAQAVYOw4AAAAAAAd08803Gx0BAAAAAABUoMrLxQMAAAAAAAAAAAAA0NhVayZ7enq6/P39LzpuMpkqbZOko0eP1iwdAACwC8Z4AAAAAACMt3v3bv35z382OgYA4A8UFhYqKyvL7tf19/eXu7u73a+Li1WryF5UVKSDBw9Wu0268CU9AABwTIzxAAA4vlGjRlW5r9lsVvPmzfWnP/1Jffv2VY8ePeowGQAAqC3XXHONevbsqcjISIWHh6tly5ZGRwIAVCArK0tDhgyx+3VTUlLUrVs3u18XF6tykf2NN96oyxwAAMAgjPEAANQPiYmJkv73gJvVar2oz+/byl736NFDy5YtY2YcAAAOrmXLltqyZYu2bt2qiRMn6q677lJkZKRuu+02HnIHAAfi7++vlJSUap+3f/9+TZo0SbNnz1ZAQECNrgvHUOUi+4gRI+oyBwAAMAhjPAAA9cMbb7yh/fv3a9asWWrWrJnuvvtuXXvttWrevLnOnDmjHTt26KOPPtKvv/6qmJgYXXnlldq9e7c++OADpaenq3///srIyFD79u2N/lUAAEAlfv75Z3388cdatmyZVq9erffee0/vv/++rrzySj300EMaMWIED80BgANwd3e/rBnlAQEBzEiv55yMDgAAAAAAAP5Yv3799O9//1u33HKLsrKy9Prrr2vChAkaPXq0JkyYoKVLl+rAgQPq37+/EhISNHDgQL3yyivKzMzUgAEDlJubq9mzZxv9awAAgEtwdnbWPffco48//lg5OTmaM2eOrr32Wh09elTx8fG65ppr9Je//EULFy7UqVOnjI4LAECjRZEdAAAAAIB6YNq0aSoqKtLy5csr3Z+1RYsWSkpKUmFhoaZNmyZJatasmV5//XWZTCZ9+umndkwMAAAuR9u2bTVhwgRlZGRo+/btmjhxory8vLRlyxY9+uijat++vcLDw7V69eoKt5EBAAB1p8rLxb/55puXfbHhw4df9nsAAIDaxRgPAED9sHbtWnXr1q3SAnuZVq1aqVu3blq3bp3tmLe3t7p27aoDBw7UcUoAAFAXunfvrpdfflnx8fF66aWX9PTTT6ukpMS2nHz79u01duxYRUdHy9PT0+i4AAA0eFUuskdGRspkMtX4QiaTiS/gAQBwQIzxAADUD/n5+crLy6tS37y8POXn55c75urqelljPgAAMM7Jkye1fPlyJSYm6ttvv5XVapWzs7Nuv/12HTt2TJs3b9azzz6rhQsX6vPPP9c111xjdGQAABq0KhfZ/fz8Kv0wfujQIbm6uurKK6+stWAAAMA+GOMBAKgfunTpop07d2rVqlUaNGhQpf1WrVqlrKwsXXvtteWOZ2VlycvLq65jAgD+v8LCQmVlZdn9uv7+/nJ3d7f7dVH7LBaLPv30Uy1btkyrVq3SuXPnZLVadfXVV2vkyJEaPny4bWz/4Ycf9M9//lMff/yxJk6cqDVr1hicHgCAhq3KRfaDBw9W2ubk5KSePXtqw4YNtZEJAADYEWM8AAD1wyOPPKKoqCgNGzZM06dPV2RkZLkH4Y4dO6bExETFxsbKZDLpkUcesbVt375dp0+f1i233GJEdABolLKysjRkyBC7XzclJUXdunWz+3VRe7777jstW7ZMSUlJOn78uKxWq1q0aKERI0Zo1KhR6t2790XnXH311UpJSVGnTp20efNmA1IDANC4VLnIDgAAAAAAjDNu3Dht3bpVb7zxhv71r3/pX//6l9q0aaPmzZuroKBAx48flyRZrVaNHj1aY8eOtZ2blpamm2++mS1eAMCO/P39lZKSUu3z9u/fr0mTJmn27NkKCAio0XVRfwUFBWnHjh2yWq0ymUzq16+fRo0apaFDh/7hCgVOTk7q1KmTfvrpJzulBQCg8aLIDgAAAABAPbF06VLdfvvtevnll7VlyxYdP37cVlx3cnJS79699cQTT+iee+4pd9748eM1fvx4IyIDQKPl7u5+WTPKAwICmJHeCH3//ffy9fXV8OHDNWrUKHXq1Kla50+dOlUjR46so3TGOmc6p2JTsdExat0507nLOt9aYpW1yFpLaRyHteQyf6fCQpl+/bV2wjiSwkKjEwD4/yiyAwAAAABQjwwdOlRDhw5VQUGB9u3bp19//VXNmjVT586d5eHhYXQ8AABwGT777DOFhYXJZDLV6PzbbrutlhM5ji2tthgdwSGVpJUYHcEhebz5ptERADRwFNkBAAAAAKiHPDw8FBQUZHQMAABQi3r16lXjAjsAALAfiuwAAAAAANRDhYWF2r9/v86cOaPmzZsrICDgD/dqBQDAaIWFhcrKyrL7df39/evFOHnllVfqtttuU0REhAYPHqymTZsaHQkAAFSAIjsAAAAAAPXI559/rpkzZ2rTpk2yWCy242azWX/96181ZcoUhYWFGZgQAIDKZWVlaciQIXa/bkpKSr3Y495qtWrVqlX6z3/+o6ZNm2rw4MEKDw/X7bffriZN+DofAABHUeVRecOGDZdsP3369B/26devX1UvBwAA7IQxHgCA+uPZZ59VbGysrFarJMnFxUVeXl7Kzc1VSUmJ0tLS9MUXX+jpp5/Ws88+a2xYAAAq4O/vr5SUlGqft3//fk2aNEmzZ89WQEBAja5bHxw7dkzvv/++li9fri+//FLLly/Xu+++q5YtW2ro0KG6//77FRISYnRMQ/Q62UvNzzc3OkatO9PkzGXtN+8S4iKnlk61mMgxlJ4qvaz95guGD5f1yitrMZFjMP38M/vNAw6iykX2kJCQSveCMZlM2rlzp/r371/p+SaTSefPn69+QgAAUKcY4wEAqB9Wr16t559/XmazWWPHjtX48ePVpUsXW3tmZqbmzZun1157TbGxserTp49uu+02AxMDAHAxd3f3y5pRHhAQUC9mpNdUq1atNGbMGI0ZM0ZHjx7Vu+++q+XLlys9PV2LFy/WkiVL1L59e4WHhys8PFzBwcFGR7YbZ6uzXK2uRseodUXWoss63+Riksmt4u916jOTy2X+Tu7usjZrVjthHIipHmx7ATQW1Xq8yWq11vintLS0rn4HAABwmRjjAQBwfPPnz5fJZNLrr7+uV199tVyBXZK6dOmiV199Va+//rqsVqvmzZtnUFIAAFAb2rdvr4kTJ2rLli3at2+fnn/+eXXt2lU5OTn6v//7P/Xu3VtXXXWV0TEBAGiUqlxkLy0tvewfAADgeBjjAQCoH7Zu3SofHx899NBDl+z34IMPytfXV1u21HzZUQAA4Fj8/f01bdo07dq1S999951uu+02Wa1W7du3z+hoAAA0SlVeLh4AAAAAABjnzJkz6tSpU5X6XnHFFdqxY0cdJwIAAPaUlZWl5cuXa/ny5dq9e7fRcQAAaNQosgMAAAAAUA906NBBe/bs0a+//qpml9hf8tdff9Xu3bvVvn17O6YDAAB14eeff1ZycrKWL1+urVu3Srqw5Vv79u113333KSIiwuCEAAA0ThTZAQAAAACoB2677TYtWrRI//jHP5SYmCgXF5eL+pSUlOjhhx/W2bNnNXDgQANSAgCAy3Xq1CmtWLFCy5cv14YNG1RaWiqr1aqWLVtqyJAhioiIUP/+/WUymYyOCgBAo0WRHQAAAACAeuCf//ynkpOTlZycrLS0NP3jH//Q1VdfrXbt2umXX37RDz/8oMWLF+vYsWPy9PTU1KlTjY4MAACqafDgwUpNTdW5c+dktVrl7u6uQYMGKSIiQrfffnuFD9kBAAD7o8gOAAAcyrRp0/TCCy9IkmJjYzVt2jSDEwEA4Bh8fX312WefadiwYTpy5IhmzJhxUR+r1So/Pz+999578vX1NSAlAAC4HKtWrVKTJk0UFhamiIgI/f3vf5eHh4fRsQAAwO9QZAcAAA5j9+7dmj17ttExAABwWL1799aePXuUlJSk1NRU/fjjjyooKJCHh4cCAwN122236f7779eBAwf0/fff69prrzU6MgAAqIZXXnlF9913n9q2bWt0FAAAZLEU67ylyOgYtc5iKb7s96DIDgAAHILVatXYsWPl7Oysv/71r1q3bp3RkQAAcEju7u4aPXq0Ro8eXWmfm2++WSdPntT58+ftmAwAAFyuRx991OgIAADYHDnGd7SVocgOAAAcwtKlS/Xll19q1qxZ+uGHH4yOA8BB5OXlafjw4frll1/Url07vfnmm2rdurXRseCgSkpKlJSUpMOHD8vPz08RERGNet9Sq9VqdAQAAAAADiInJ0cnT560y7X2799f7n/toVWrVurQoYPdrgdQZAcAAIbLzc3V5MmTdfXVV2vixIn6xz/+YXQkAA6gb9++On78uO316dOn1adPH7Vt21YbN240MBkcUXx8vBITE2WxWModi4yMVExMjIHJAAAAqu/AgQNKTk7W9u3blZeXp3PnzlXYz2Qyae3atXZOB6C+ycnJ0e0DB6qo+PKXyK6OSZMm2e1abq6u+mz1agrtsBuK7AAAwHATJ05UXl6eUlJS5OzsbHQcAA7gtwX26667ThMnTtT//d//afv27Tp+/Lj69u1LoR028fHxWrp0qdq0aaMJEyaof//+Wr9+vebOnaulS5dKEoV2AABQb8yePVv/+te/dP78eZlMJknlV6j57bGyPwPApZw8eVJFxcWacqNZfp4N798bh09bFbepWCdPnqTIDru5rCK72WxWSEgIT8oBANDA2HOMX7t2rd555x09+OCDuvnmm+v8egAcX15enq3A/u2338rDw0OS1KdPHxUUFKhHjx46fvy48vLyWDoeKikpUWJiotq0aaMNGzaoSZMLH3OHDRumIUOGqF+/fkpMTNSECRMa9dLxAACgfvj00081efJktW/fXrGxsZo7d6527dqlNWvW6MiRI9q+fbuWLl0qi8WiuLg4XXvttUZHBlCP+Hma1KW1k9Ex6kCp0QEaLN8rbpGbayujY9S6ouKTl73f/GUV2a1W60V7vEVHR2vXrl0U3gEAqMfsNcYXFRVp3Lhx8vT01EsvvVSj9yguLlbxb5a6ys/Pv2R/9p8CHN/w4cMlXZjBXlZgL+Ph4aHu3btrx44dGj58uFatWmVERDiQpKQkWSwWTZgwwVZgL9OkSRONHz9e06dPV1JSkiIjI40JCQD1CP+9DBjrlVdekclk0nvvvae+ffvqjTfekCSFhoba+kybNk333HOPnn76aW3dutWoqACARsBsdlUTs5vRMWqd2ex62e9R5SL7ww8/rBtvvFF9+vTRn//850r7ZWRkaNOmTZcdDAAA2IeRY/yMGTO0b98+vfrqq7riiitq9B4zZ87Uc889V6W+OTk5GnjbQBWXNNz9p1xdXLX6c/afQv32yy+/SLqwlURFxo8fr4cfftjWD43b4cOHJUn9+/evsD0kJKRcP9iH1WrVxo0btXLlSn355Zfas2ePzp49q7Zt26pPnz567LHHKv3/DIBx2K8VMN63336r9u3bq2/fvpX2adOmjZYvX66OHTvqueee09tvv23HhAAAQKpGkf3111+3PTXn6empv/zlL5KkwsJCnT9//qIZAwAAoH4waozfvXu3Zs+erRtuuEGPPPJIjd9n6tSpeuKJJ2yv8/Pz5evrW2HfkydPqrikWNedvk4eFo8K+9RnBeYCbffczv5TqPfatWun06dP6//+7//Up0+fi9rnzZtn6wf4+flJktavX69hw4Zd1J6WllauX33y5ptv1vjcYjsXyH5v3bp1uvXWWyVJTk5O6ty5s5o1a6bMzEylpKQoJSVF06ZNU2xsrKE5AZTHfq2A8fLz83XdddfZXru5udmOt2jRwna8ffv2uuaaa7R+/foaX+vAgQP673//qy1btmjLli3atWuXLBaLYmNjNW3atEue+/XXXysuLk6bNm1SQUGBOnXqpPvvv1+TJk2yZQYAoCGr8rfm+/fv16ZNm7Rp0yZt3LhRqampMplM2rJlizw9PdW3b1/1799fJ06cqMu8AACglhk1xkdFRen8+fNasGCBnJxqvheUq6urXF2rt7yPh8VDnuc9a3xNAHXrzTffVJ8+fbR9+3YVFBSUWzK+oKBAO3bssPUDIiIiFB8fr7lz52rIkCHlHg47f/685s2bJ7PZrIiICANT1kxkZKRMppoVuaxWa43PrQ1Wq1WdO3fWE088ofDwcLVqdWEPv5KSEj377LOaOXOmZsyYod69e2vQoEGG5QRQMfZrBYzTrl27ctuglT1YunfvXvXs2bNc34KCgsv6rD5v3jzbA6zV8c4772jEiBGyWCzy9vaWr6+vdu7cqenTp+uTTz5RWlqamjZtWuNcAADUB1Uusnfq1EmdOnXSAw88IEk6c+aMPD091aFDB3Xu3FkbNmzQf//7X0mSyWRSSEiIbrzxRvXt21d9+vRR69at6+Y3AAAAl8WoMT4jI0Mmk0mDBw++qO306dOSpFmzZunVV1+Vr68v+8wBjUjr1q3Vtm1bHT9+XD169FD37t01fvx4zZs3z1Zgb9u2LZ8xIElycXFRZGSkli5dqn79+mn8+PEKCQlRWlqa5s2bpxMnTmj06NFycXExOmq1+fn5GVoovxy9evXS7t27L1oRx8XFRS+++KK+++47ffbZZ1q8eDFFdgAAfiMgIEDbtm2zve7du7eWL1+uBQsWlCuyr127Vvv27VOnTp1qfK22bdtq0KBB6tWrl3r27KklS5bogw8+uOQ5Bw8e1OjRo2WxWBQfH6+nnnpKJpNJhw4d0m233aatW7cqJiZGr776ao1zAQBQH9R4/dfmzZtLkgIDA7Vu3ToVFRXpq6++0rhx43TgwAF988032rBhg+0Lgauuuko//PBD7aQGAAB1xp5jvMVi0bFjxyptLygoUEFBAUvNAY3Qxo0b1bdvXx0/flw7duzQww8/bGtr27atNm7caGA6OJqYmBhJUmJioqZPn247bjabNXr0aFt7fXPw4EGjI9TYb5ezrciAAQP02Wef6ccff7RTIgAA6oeBAwdqw4YN2rp1q3r27KmIiAg988wzWrZsmX788Uf16dNHx44d03vvvSeTyaSHHnqoxtf6/ZLw77777h+eM3v2bBUXFyssLEyTJk2yHe/YsaNef/119e3bV6+99pqefvppXXHFFTXOBgCAo6tykX3o0KG68cYb1adPH/Xo0eOiWQBubm669dZb1b59ex04cED5+fn69ttv9c0332jTpk365ptvaj08AAC4fEaN8adOnaq0LTIyUsuWLavSPnAAGq6NGzcqLy9Pw4cP1y+//KJ27drpzTffZAY7KhQTE6MJEyYoKSlJhw8flp+fnyIiIurlDPbGoKioSJLk7u5ucBIAABzLsGHDtG/fPuXl5Um68IBpcnKywsPDbVu9lRk6dKhdPzNbrVZ9+OGHkqTRo0df1H7jjTeqa9eu2rNnj1auXKkxY8bYLRsAAPZW5SJ7SkqKbQB1cXHR9ddfL0nKz8/XqVOn1LJly3L9XVxc1KdPH/Xp00cTJ06svcQAAKBWMcYDcGStW7fWqlWrjI6BeqJs6Xg4NqvVqvfff1+S1Ldv31p735ycHJ08ebLW3u9S9u/fX+5/7aFVq1bq0KGD3a4HADBGp06dtHjx4nLHwsLCdODAAX322Wc6ePCg3N3dddNNN+mGG26wa7bDhw/r6NGjkiofw/v27as9e/Zo8+bNFNkBB3Sm2KpTRVajY9S6M8UN73eC46tykT03N1dff/217Wfr1q0ymUzKyMhQ27ZtFRQUpFtuueWSS74CAADHwxgPAADsafHixcrIyJCLi4smTJhQab/i4mIVFxfbXufn51faNycnRwNvG6jikuJK+9SF3y6TW9dcXVy1+vPVFNoBoJHy9PRUeHi4oRkyMzMlSa6urpWOR/7+/uX6AnAsk9dZJFmMjgE0CFUusrdp00aDBg3SoEGDJF3YQ9XZ2Vl+fn667rrr9MUXX2jbtm2SJJPJpB49ethmufXp08c2uAIAAMfCGA8AAOxl27ZtGj9+vCRpxowZCggIqLTvzJkz9dxzz1XpfU+ePKnikmJdd/o6eVg8aiWrIykwF2i753adPHmSIjsAwDBlK8a0bNlSJpOpwj6tWrUq17cy1XmYrkyBuaCqUeuVy/29SvNLaymJY7nc38vp+PFaSuJYGurvZTRWxapcybnTtZzGMdTG71XlIvvvmc1mSReeTFu5cqVKS0u1detWDR8+XPv27dPhw4eVkZGhBQsWSJK8vLz0888/X3ZgAABQtxxhjE9MTFRiYmKtvicAADDWgQMHNGjQIBUVFSkiIkJPPfXUJftPnTpVTzzxhO11fn6+fH19L3mOh8VDnuc9ayUvAOCPUZSoOzt27ND8+fP1xRdfKDs7W8XFxTp//rytfdGiRTp06JCmTJmiFi1a2CVTUVGRpAtb9FTG1dVVklRYWHjJ96rOw3StWrWSq4urtntur2LS+sfVxdX2gEJVtWrVSq6urir+xr4r+diTq2vN7ouLm5v0wQd1lMp4Lm5u1b4vqFxOTo4GDrxdxcVFdr2uXVfFcnXT6tWfVWtMK/t3TE7upjpMZqya/Dvmt2pcZP89Jycn9e7dW+3atdO+ffuUm5urvXv36ptvvtHGjRv1zTff1NalAACAHTHGAwCAy/Xzzz9rwIABOnr0qO68804lJiZWOgOujKurq+2LegCA47lQlBhYbjayPdi3KOGq1avtv1XHv//9b02cOLFcUf3342ZxcbFmzZqlbt266YEHHrBLLjc3N0lSSUlJpX3K/j64u7tf8r2q8zBdhw4dtPrz1XZ9oGPSpEmaPXv2JVfdqU01eaCjQ4cOWr2a+/J7HTp00OeffcZ9QZWdPHlSxcVFcr3hLjl5tDE6Tq0rLTih4m0rq70qFv+O+WO1VmSvyFVXXaWrrrpKI0aMqPF7WK1Wbdy4UStXrtSXX36pPXv26OzZs2rbtq369Omjxx57TP3796/F1AAA4I/UxhgPAAAah7y8PA0YMED79+/XzTffrPfff1/Ozs5GxwKYgQtcpgtFiWJ18LpRLs4NbxWRknOnlZO7ye5bdaxfv17R0dFq3ry5XnjhBQ0ePFj333+/vv7663L9hg0bpgkTJujDDz+0W5G9bLbfqVOnZLVaK3xgruzfq380M7C6D9N16NDB7v9OCwgIULdu3ex6zerivlSM+1K5WbeY5d/KyegYtS7rZOn/32++5pw82sjcsn0tJWoY+Gfp0i6ryF5aevGeGFar9XLe8iLr1q3TrbfeKunCTLrOnTurWbNmyszMVEpKilJSUjRt2jTFxsbW6nUBAGjM7DHGAwCAhq+goEB33HGHdu7cqZ49e+qTTz75w5ltqF32LCRL9aeYnJOTo9tuv10lRQ13WVAXNzd9/ln1lgVF5Xgoo3Iuzp5yd21dy4kar5dfflmS9M477+jOO++UdPEsdkm68sor5evrqx9++MFu2br8v/buPT6K8u7//3sTspsICSwnIZwTAla0IAYRUAkeEIVvi1hsxG85qK3+qKIiUcC2auUWLLeoaPGACjdSEZAochciAuKBoxCkahViAqJELIdAAJNNyF6/P/hmNWQTNpvdnd3N6/l45BEzM9fOZy5nfcd8dmbS0iSdvlq9sLBQ7dq1q7ZNQUFBlW0BhJdEh03N4mu/o1QkSnRE3zEh/AX8SvbnnntOx47V/2HxlYwx6tq1qyZOnKjMzEzPJ+DKysr0yCOPaPr06Zo2bZr69u2rYcOGBWy/AACgqkBnPAAAiG4ul0u//vWvtWXLFvXo0UM5OTlKTEy0uqwGxapbOUvhfzvnoqIilZWW6scbb5S7ZcsgVmeNmEOHpGXLQn4FbrTiWa0Ipc2bN6tNmzaeBntt2rZtqy+//DIEVZ3WsWNHtWnTRgcOHNCGDRt00003Vdtmw4YNkqS+ffuGrC4AAKwQ8CZ7r169Avp6l1xyib788ks1alS1VLvdrscff1yffvqpVq1apblz59JkBwAgiAKd8QAAIHpVVFQoMzNT69atU2pqqt577z01b85VjqFWeSvnuEvjFJMUfbcFlSR3sVuuzS6/m8nuli3lpqmIs+BZrQilEydOqFOnTj5tW1ZWpoqK+t0euS5sNptuuOEGPf/883rllVeqNdk3btyor776SnFxcfrVr34VsroAALBCUJ/JHghJSUm1rr/mmmu0atUq7d69O0QVAQAAAACA2ixZskRvv/22pNOPfhs5cqTX7dq2baulS5eGsLKGKSYpRjHNo7PJDoQSz2pFKLRt29anRwWUlpbqq6++UpcuXUJQ1U+ysrL0yiuvaPXq1Zo5c6YmTZokm82mb775Rrfeeqsk6fbbb1ebNm1CWhcAAKEW8f+HVfr/np3FM90AAAAAAAgPP789eV5enjZs2OD165NPPrGwSgAAws+gQYN0/Phxvfrqq7Vu98wzz6i0tFTXXnut3/vasGGDWrZs6fl64403JEnTp0+vsvzbb7/1jOnSpYvmzp2rmJgYPfDAA+rQoYN69+6ttLQ07dq1SxdffLFmzpzpd00AAESKsL+SvTbGGM8n3gcMGGBxNQAAAAAAQJLGjh2rsWPHWl0GAD8ddxkdLTVWlxFwx13Rd0yIPg8++KBef/113X333SopKdGYMWOqrD969Khmz56txx57TI0bN9Z9993n977Ky8t1+PDhast//PFH/fjjj56fz7wl/ejRo9W1a1dNnz5dGzdu1L///W+lpKTo5ptv1oMPPqj4+Hi/awIAIFJEdJN97ty52rFjh+x2u+69994at3O5XFU+RV9cXFzr6xYWFqqoqChQZZ5V5e1/fLkNUKA4nU6/nrEUyrmJpHnxR0lJiQoKCkKyr59LSUkJ6zs/MC+oC6vOF4lzBgAAAED0enBdhaTQPecZwE+6d++uBQsWaMyYMZowYYLuu+8+xcbGSpI6duyo77//Xm63W3a7XQsXLlSHDh383ldGRoaM8e/DJ/3799eKFSv83jcAAJEuYpvsubm5uueeeyRJ06ZNU2pqao3bTp8+XY8++qhPr1tYWKgh1w6Rq8x19o0DLCsrK2T7ctgdynk3p04N5cLCQg0ZMqTKBxZCIaTz4nAoJ6du8+KvgoICjRgxIuj7OVN2drZ69OgR8v36inlBXVh1vkicMwAAAAAAIDhuuukm/eIXv9AjjzyiVatWeR6Z+t133ykuLk7XXXedHnvsMfXs2dPiSgEgepiyEhnXSavLCDhTVmJ1CVErIpvse/bs0bBhw1RaWqpRo0Zp0qRJtW4/ZcoUTZw40fNzcXFxjZ/wKyoqkqvMpZ7HeqpJRZOA1h0uTsSe0M6mO1VUVFSnZnJRUZFcLpfiLo1TTFJMECu0hrvYLddmV53nxV8pKSnKzs6u87j8/HxlZWVp5syZtX64pLb9hjPmBXVh1flSuW8AAAAAAIBguPDCC7Vs2TKVl5dr9+7dOnbsmJo0aaK0tDTurAcAQVC6eZHVJSDCRFyT/cCBA7rmmmv0/fffa+jQoZo/f75sNlutYxwOhxwOR53206SiiZqealqfUqNWTFKMYppHX5M91BISEup1FWxqampUXkXLvKAuOF8AAAAAAEA0i4uL428XAAJm3zEjyW11GQF3+riA0IqoJvuRI0d0zTXXKD8/XwMHDtTSpUsVFxdndVkAAAAAAABA1HjiylilOKPvAouCIvf/e948AAANi9PpVLzDoRkbQ/+o5FCJdzjkdDqtLgMNSMQ02U+cOKHrr79en3/+ufr06aMVK1ZwWxwAAAAAAAAgwBIdNjWLr/3OkZEo0RF9x4TIt2DBgnq/xujRowNQCYBolpycrFU5OSoqKgrJ/gLxuM66cjqdIXkUMFApIprsLpdLv/71r7Vlyxb16NFDOTk5SkxMtLosAAAAAAAAAAD8Nnbs2LM+DrU2NpuNJjsAnyQnJ4e8CR1Jj+uMv/RmxTY91+oyAq7i2A88bz5Iwr7JXlFRoczMTK1bt06pqal677331Lx5c6vLAgAAAAAAAIAGr6LCpVMVpVaXEXAVFaG5pXLHjh1rbLJ/8803cjgcatOmTUhqAYCGzGZPkM3R2OoyAs5m567gwRL2TfYlS5bo7bffliTFxMRo5MiRXrdr27atli5dGsLKAAAAAAAAAKBh+/aHdVaXENH27t1b47qYmBj16dNHH374YegKAgAAPgn7JrvL9dMnBvPy8pSXl+d1u06dOoWqJAAAAAAAAAANjCkrkXGdtLqMgDNlJVaXAAAAEHHCvsk+duxYjR071uoyAAAAAAAAADRgPM8UAAAAlWKsLgAAAAAAAAAAAAAAgEgR9leyAwAAAAAAAADCU4dzr1S8w2l1GQFX6iriefMAAKBGNNkBAAAAAEBUKLeVy2VzWV1GwJXbyq0uAQBqFBvrUKPYeKvLCLjYWIfVJQAAgDBGkx0AAAAAAESFrc6tVpcAIIrFX3qzYpuea3UZAVdx7AeeNw8AAFBHNNkBAAAAAADQMJWUyHbypNVVBF5JidUVRCWbPUE2R2Orywg4mz3B6hIatA8//LDW9ceOHTvrNldccUUgSwIAAD6gyQ4AAAAAABDFTJmRKTVWlxEUpqx+x9VkwYIAVQIA/snIyJDNZvO6zmaz6fPPP9egQYNqHG+z2XTq1KlglQcAAGpAkx0AAAAAACCKla0vs7oEAEAtjPH/A0P1GQsA+In7xGGrSwiKaD2ucECTHQAAAAAARIVLii5R4qlEq8sIuOONjvO8eQCIUm632+oSAKBBczqdcjji5cpdbnUpQeNwxMvpdFpdRtShyQ4AAAAAAKJCnImTwzisLiPgSk2p1SUAAAAAUSk5OVk5OatUVFQUkv3l5+crKytLM2fOVGpqakj26XQ6lZycHJJ9NSQ02QEAAAAAANAgnRg9WqZNG6vLCDjbgQP1et78vmNGUvRdXXv6uAAAAKpKTk4OeRM6NTVVPXr0COk+EVg02QEAAAAAAKKYPcOumGYxVpcRFO6j7vo9cz4hQaZx48AVFCZsCQl+jXM6nYp3ODRjoyvAFYWPeIeD26UCAACg3miyAwAAAAAARDGb3SZbvM3qMoLCZo/O47JKcnKyVuXkcLtUAAAA4CxosgMAAAAAAACQxO1SAQAAAF9E573CAAAAAAAAAAAAAAAIAprsAAAAAAAAAAAAAAD4iNvFAwCABqfcVi6XzWV1GQFXbiu3ugQAAAAADUxZ+TGrSwiKaD0uAAAQGDTZAQBAg7PVudXqEgAAAAAgojmdTjkcDhUe3Gh1KUHjcDjkdDqtLgMAAIQhmuwAAABQYWGhioqKQrKv/Pz8Kt9Dwel0Kjk5uc7jmJfAKSkpUUFBQUj2daaUlBQlJCRYsm9fWDU3zIt34T4vAACEi+TkZOXk5IT09+WsrCzNnDlTqampIdlnKH9fBgAAkYUmOwAAQANXWFioIUOGyOUK7S30s7KyQrYvh8OhnJycOv2BrLCwUNded53KSkuDWFl1oZwXe3y83l21KiR/OCwoKNCIESOCvh9vsrOz1aNHD0v27Qur5oZ58S7c5wUAgHCSnJwc8iZ0ampq1Gd1bGysMjIytHbtWqtLAQAANaDJDgAA0MAVFRXJ5XIp7tI4xSTFWF1OwLmL3XJtdqmoqKhOfwAsKipSWWmpfrzxRrlbtgxihdaIOXRIWraszvPir5SUFGVnZ/s1tr5XLaWkpPi131Dxd26YF++ifV4AAED0M8bIGFNl2YQJE/TFF1/QeAcAhDV/70pX3zs8WnFXOprsAACgwbmk6BIlnkq0uoyAO97oeL2eNx+TFKOY5tHXZK8vd8uWcnOLyHpLSEio9xVH0XrVUn3nhnnxLlrnBQAARJfbb79d/fv3V79+/fSLX/yixu127NihjRs3hrAyAADqrr53pfP3Do9W3JWOJjsAAGhw4kycHMZhdRkBV2pCe1tzAAAAAED9vPrqq5o3b54kqWnTprr00kslnb4S8NSpU2rUiD/hAwAiR33uZFjf/YYaCQ0AAAAAAAAAgAXy8/O1ceNGbdy4URs2bNDq1atls9m0detWNW3aVAMGDNCgQYN0+PBhq0sFAOCsAnEnw0hBkx0AAAAAAAAAAAt06dJFXbp00S233CJJOn78uJo2bark5GR17dpVH374odasWSNJstlsysjIUP/+/TVgwAD169dPzZs3t7J8AAAaLJrsAAAAAAAAAACEgcTERElSt27dtG7dOpWWlurjjz/WnXfeqT179mjz5s368MMPZbPZJEndu3fXv//9bytLBgCgQaLJDgAAAAAAAACABX7zm9+of//+6tevny6++GLZ7fYq6+Pj43X11Verbdu22rNnj4qLi7V9+3Zt3rxZGzdu1ObNmy2qHACAho0mOwAAAAAAAAAAFsjOztZbb70lSbLb7broooskScXFxTp69KiaNWtWZXu73a5+/fqpX79+uu+++0JdLgAA+H9osgMAAAAAAAAAYIGDBw9q06ZNnq9PPvlENptNO3bsUMuWLdWrVy9deeWV+uGHH6wuFQAA/AxNdgAAAAAAEBVOxJ6wuoSgiNbjAgBILVq00LBhwzRs2DBJUkVFheLi4tSxY0f17NlTH3zwgXJzcyVJNptNF198sedK9n79+iklJcXK8gEAaLBosgMAAAAAgIjmdDrlsDu0s+lOq0sJGofdIafTaXUZAIAgi42NlSSlpKRo+fLlcrvd+uSTTzR69Gh9/fXX2rdvn3bs2KHnn39ektSqVSsdOHDAypIBAGiQaLIDAAAAAICIlpycrJx3c1RUVBSS/eXn5ysrK0szZ85UampqSPbpdDqVnJwckn0BAMJHTEyM+vbtq9atW+vrr7/WwYMHtWvXLm3evFkbNmzQ5s2brS4RAIAGiSY7AAAAAACIeMnJySFvQqempqpHjx4h3ScAAN27d1f37t01ZswYq0sBAKDBoskOAAAAAACABinm0CGrSwiKaD0uoKFwu93VlhljLKgEAADUhCY7AAAAAAAAGhSn0yl7fLy0bJnVpQSNPT5eTqfT6jKiivvEYatLCIpoPa5o89xzz+nYsWNWlxFRSkpKVFBQUOdx+fn5Vb7XVUpKihISEvwaC4Qb3kc1Y25Akx0AAAAAAAANSnJyst5dtUpFRUUh2V9+fr6ysrI0c+ZMpaamhmSfTqcz5I9QiFZOp1MOR7xcucutLiVoHA4+lBHuevXqZXUJEaegoEAjRozwe3xWVpZf47Kzs3mcDKIG76OaMTegyQ4AAAAAAIAGJzk5OeRN6NTUVP4oGoGSk5OVk8OHMoBIk5KSouzsbEv2C0QL3kc1Y25Akx0AAAAAACCKuYurP9s3WkTzsSG88KEMIPIkJCTwHgLqifdRzZgb0GQHAAAAAACIQqdvce2Qa7PL6lKCyuFwcJtrAAAAACFFkx0AAAAAACAKnb7FdU7IbnEtcZtrAAAAAA0DTXYAAAAAAIAoZcUtriVucw0AAAAgusVYXQAAAAAAAIheK1eu1NVXX63mzZurcePG6t27t5599lm53TxLGwCASDV27FjZbLZav0pLS60uEwCAoOFKdgAAAAAAEBQzZszQlClTJEkpKSlq0qSJdu7cqQkTJmjNmjV66623FBPD5/8BAIhUaWlpat26tdd1ZDwAIJrRZAcAAAAAAAG3adMmTZ06VTExMVq4cKFuvvlmSdLOnTt17bXX6p133tGsWbM0adIkiysFAAD+mjp1qsaOHWt1GQAAhBwfJQMAAAAAAAE3bdo0GWN0++23exrsktSzZ0/NmjVL0ukr3cvLy60qEQAAAAAAv9BkBwAAAAAAAVVcXKw1a9ZIkm677bZq60eOHKmkpCQdPnxY77//fqjLAwAAAACgXmiyAwAAAACAgNqxY4fKysoUHx+v3r17V1sfFxenPn36SJK2bNkS6vIAAECAvPnmmxo+fLiuvPJKZWZm6tlnn9WxY8esLgsAgKDjmewAAAAAACCg8vLyJEkdO3ZUo0be//SQkpKitWvXerY9k8vlksvl8vxcXFwc+EIBACFXUlKigoKCOo/Lz8+v8r2uUlJSlJCQ4NdY1Oyf//xnlZ8XL16shx9+WK+//rqGDBlS4zhy3jq8B71jXgDUFU12AAAAAAAQUEVFRZIkp9NZ4zaV6yq3PdP06dP16KOPBr44AIClCgoKNGLECL/HZ2Vl+TUuOztbPXr08Hu/qCo1NVWPP/64hg4dqi5dushms2nTpk3685//rC1btmj48OH6+OOPlZ6e7nU8OW8d3oPeMS8A6oomOwAAAAAACKjS0lJJkt1ur3Ebh8Mh6fRVQ95MmTJFEydO9PxcXFysDh06BLBKAIAVUlJSlJ2dbcl+ETh//vOfqy275pprNHDgQF1++eXaunWrHnzwQa1du9breHLeOrwHvWNeANQVTXYAAAAAABBQ8fHxkqSysrIat6m8RWxNt8d0OByeRjwAIHokJCRw1WYUs9vteuyxx3Tttddq/fr1Kioq8npnG3LeOrwHvWNeANRVjNUFAAAAAACA6HK2W8H/fF1tt5QHAACRp1+/fpIkt9vt1zOuAQCIBDTZAQAAAABAQKWlpUmS9u3bp1OnTnndpvKP7pXbAgCA6BAXF+f555p+DwAAINLRZAcAAAAAAAF10UUXKS4uTqWlpcrNza22vry8XJ988okkqW/fvqEuDwAABNEXX3zh+ef27dtbWAkAAMFDkx0AAAAAAARUUlKSrr76aknSK6+8Um390qVLVVxcrBYtWigjIyPE1QEAgGB68sknJUnnnXee2rVrZ3E1AAAEB012AAAAAAAQcA899JBsNptefvllLVq0yLN8586dmjhxoiTpgQcekN1ut6pEAADgh/fee09TpkzRnj17qiw/duyYJkyY4Mn9v/zlL1aUBwBASNBkBwAAAAAAATdgwAA99thjcrvdGjVqlFJTU9WzZ0/17t1bP/zwg4YOHar777/f6jIBAEAdnTx5UjNmzFBKSorat2+vSy65RBdddJFat26tZ599VjabTQ8//LBuvvlmq0sFACBoGlldAAAAAAAAiE4PPfSQevbsqaeeekrbt2/XgQMHdOGFF2rcuHG66667FBsba3WJAACgji6++GI99NBD2rRpk77++mt9/vnnMsaoXbt2uvzyyzV+/Hj17dvX6jIBAAgqmuwAAMAyxhht2LBBy5cv10cffaSvvvpKP/74o1q2bKl+/frprrvu0qBBg6wuEwAA1MOwYcM0bNgwq8sAAAAB0qFDB02bNs3qMgAAsBRNdgAAYJl169bp6quvliTFxMSoa9euaty4sfLy8pSdna3s7Gz96U9/0mOPPWZxpQAAAAAAAAAAnEaTHQAAWMYYo65du2rixInKzMyU0+mUJJWVlemRRx7R9OnTNW3aNPXt25cr4AAAAIAwVVJSooKCgjqPy8/Pr/K9rlJSUpSQkODXWAAAAKA+aLIDAADLXHLJJfryyy/VqFHVX0nsdrsef/xxffrpp1q1apXmzp1Lkx0AAAAIUwUFBRoxYoTf47Oysvwal52drR49evi9XwAAAMBfNNkBAIBlkpKSal1/zTXXaNWqVdq9e3eIKmrYTJmRKTVWlxFwpqyex1RSItvJk4EpJpyUlFhdQVQ6cuRIyPZ17Ngxz/dQ7bd58+Yh2Q8AILKkpKQoOzvbkv0CAAAAVqDJDgAAwlZpaakkcQvIEClbX2Z1CWGpyYIFVpeACNKvX7+Q73PcuHEh29euXbtCti8AQORISEjginIAAAA0KDTZAQBAWDLGaOnSpZKkAQMG1Lidy+WSy+Xy/FxcXHzW1z4Re6L+BYahaD0uhJ/CwkIVFRWFbH/1fV6rP5xOp5KTk0O2v0hRWFjo17yE8pzhfAEAAAAAAMFGkx0AAISluXPnaseOHbLb7br33ntr3G769Ol69NFHfXpNp9Mph92hnU13BqjK8OOwO+R0Oq0uA1GssLBQ1w0ZotKffbglVPx9Xqs/4h0OrcrJqVPjtLCwMIgVhYchQ65TTs6qOs/LkCFDqnwgKhRCeb44HA7l1PF8AQAAAAAAkYsmOwAACDu5ubm65557JEnTpk1TampqjdtOmTJFEydO9PxcXFysDh06eN02OTlZOe/mhPRqyqysLM2cObPWYwgkrqZEsBUVFanU5dLk/rHq2NRmdTlBse+Y0YyNLhUVFdXp/RTKq/ut4nKV+jUvLpdLya36yx7XNIjVWaOs/JgKD26s87wAAAAAAIDIFRFN9j179mjNmjXaunWrtm7dqi+++EIVFRV67LHH9Kc//cnq8gAAQADt2bNHw4YNU2lpqUaNGqVJkybVur3D4ZDD4fD59ZOTk0PeBElNTY2IZ1TaM+yKaRZjdRkB5z7qrtfz5k+MHi3Tpk0AKwoPtgMH6vW8+Y5NbUprHn3ny2nueo2Ov/RmxTY9N0C1hI+KYz+odPMiv8fb45oqwdE8gBUBACJZRUWFtm3bpoMHD6pVq1ZKT09XbGys1WUBAAAAPomIJvszzzyjZ555xuoyAABAkB04cEDXXHONvv/+ew0dOlTz58+XzRadV8qGI5vdJlt89M23zV7PY0pIkGncODDFhBFbQoLVJUQtmz1BNkcUnjN2zhkAQGCsXr1aM2bM0P79+z3L2rVrp8mTJ2vw4MEWVgYAAAD4JiIuPWnZsqWGDRumv/71r1q1apVuvPFGq0sCAAABduTIEV1zzTXKz8/XwIEDtXTpUsXFxVldFgAAAIAAWr16tSZMmKBu3bpp8eLFys3N1eLFi9WtWzdNmDBBq1evtrpEAAAA4Kwi4kr2M28J/8Ybb1hUCQAACIYTJ07o+uuv1+eff64+ffpoxYoVSuAqWwAAACCqVFRUaMaMGcrIyNCcOXMUE3P6+p9evXppzpw5Gj9+vJ544gldddVV3DoeAAAAYS0irmQHAADRy+Vy6de//rW2bNmiHj16KCcnR4mJiVaXBQAAACDAtm3bpv379+vOO+/0NNgrxcTE6I477tB3332nbdu2WVQhAAAA4JuIuJLdCuW2crlsLqvLCIpyW3m9xpsyI1NqAlRN+DBl/h/TkSNHAlhJ7Y4dO+b5Hqr9Nm/e3K9xzIt3oZwXK/g7L2iYKioqlJmZqXXr1ik1NVXvvfce5xAAAAAQpQ4ePChJSktL87q+cnnldgAAAEC4osleg63OrVaXELbK1pdZXULY6devX8j3OW7cuJDta9euXX6NY168s2JeQsnfeUHDtGTJEr399tuSTl+5MnLkSK/btW3bVkuXLg1hZQAAAAACrVWrVpKkvLw89erVq9r6vLy8KtsBAAAA4apBNNldLpdcrp+uSi8uLrawGiDyFBYWKjk52eoywg7z4p2/81JYWKiioqIgVFRdfn5+le+h4nQ6OWfO8PN8zsvL8/xR7UydOnUKVUkAAAAAgiQ9PV3t2rXTCy+8oGeffVa5ubk6ePCgWrVqpd69e+vFF19U+/btlZ6ebnWpAAAAQK0aRJN9+vTpevTRR33a1ul0Brma8OCwOxrMsQZbYWGh1SUE3bXXXad3V62qU3OwIczLdUOGaFVODvNyhiFDrlNOTt3PlyFDhlRpuIZCVlZWSPfncDiUU8dzJtqNHTtWY8eOtboMAAAAACEQGxuryZMn6+6771Z6erpKS0s96+Lj41VaWqpnn31WsbGxFlYJAAAAnF2DaLJPmTJFEydO9PxcXFysDh06eN22oTQ+ct6lyRMoobry1kplpaUqKiqq0znTEOal1OViXrxwufw7X1wul5Jb9Zc9rmkQq7NOWfkxFR7cWOe5AQAAAIBoY7PZ6rQcAAAACDcNosnucDjkcDh83n7Tpk1BrKa6r776SuPGjdO8efN03nnnhWSfzZs393usPcOumGYxAawmPLiPuuv1vPkTo0fLtGkTwIrCg+3AATVZsMDv8U9cGasUZ/SdLwVFbj24rsLv8fGX3qzYpucGsKLwUHHsB5VuXuT3eHtcUyU4/P/vEwAAAAAgfFVUVGjGjBnKyMjwerv4u+++W0888YSuuuqqqLiavaSkRAUFBXUeV99HnKWkpCghIcGvsQAAAPBNg2iy11V9GtD+aNq0qed7qPftD5vdJlt89H2y2Gav5zElJMg0bhyYYsKIrZ7/U5bosKlZFJ4viY76HZPNniCbIwrPFzv/Ew8AAAAA8G7btm3av3+/Zs2apbi4OPXt27fK+jvuuEOZmZnatm1btXWRqKCgQCNGjPB7vL+POMvOzlaPHj383i8AAADOjiY7AAAAAAAAgKA7ePCgJCktLc3r+srlldtFupSUFGVnZ1uy32hTUVGhbdu2ee58kJ6eHhV3OwAAAJGLJjsAAAAAAACAoGvVqpUkKS8vT7169aq2Pi8vr8p2kS4hIYErygNg9erVmjFjhvbv3+9Z1q5dO02ePFmDBw+2sDIAANCQRd+DkgEAAAAAAACEnfT0dLVr104vvPCC3G53lXVut1svvvii2rdvr/T0dIsqRLhZvXq1JkyYoG7dumnx4sXKzc3V4sWL1a1bN02YMEGrV6+2ukQAANBARUSTfcOGDWrZsqXn64033pAkTZ8+vcryb7/91uJKAQAAAAAAAHgTGxuryZMna/369Ro/frx27NihEydOaMeOHRo/frzWr1+vBx98kNuAQ9LpW8TPmDFDGRkZmjNnjnr16qXGjRurV69emjNnjjIyMvTEE0+ooqLC6lIBAEADFBG3iy8vL9fhw4erLf/xxx/1448/en7mFyoAAAAAAAAgfA0ePFizZ8/WjBkzlJmZ6Vnevn17zZ49m9t/w2Pbtm3av3+/Zs2apZiYqteKxcTE6I477lBmZqa2bdumvn37WlQlAABoqCKiyZ6RkSFjjNVlAAAAAAAAAKinwYMH66qrrtK2bdt08OBBtWrVSunp6VzBjioOHjwoSUpLS/O6vnJ55XYAAAChFBFNdgAAAAAAAADRIzY2lquPUatWrVpJkvLy8tSrV69q6/Py8qpsBwAAEEoR8Ux2AAAAAAAAANGjoqJCW7Zs0f/+7/9qy5YtPAYS1aSnp6tdu3Z64YUX5Ha7q6xzu9168cUX1b59e6Wnp1tUIQAAaMi4kh0AAAAAAABAyKxevVozZszQ/v37PcvatWunyZMn80x2eMTGxmry5MmaMGGCxo8frzvuuENpaWnKy8vTiy++qPXr12v27Nk8ZgAAAFiCK9kBAAAAAAAAhMTq1as1YcIEdevWTYsXL1Zubq4WL16sbt26acKECVq9erXVJSKMDB48WLNnz9bu3buVmZmpiy++WJmZmcrLy9Ps2bP5UAYAALAMV7IDAAAAAAAACLqKigrNmDFDGRkZmjNnjmJiTl//06tXL82ZM0fjx4/XE088oauuuoqrk+ExePBgXXXVVdq2bZsOHjyoVq1aKT09nXMEAABYiiY7AAAAAAAAgKDbtm2b9u/fr1mzZnka7JViYmJ0xx13KDMzU9u2bVPfvn0tqhLhKDY2lnMCAACEFW4XDwAAAAAAACDoDh48KElKS0vzur5yeeV2AAAAQLiiyQ4AAAAAAAAg6Fq1aiVJysvL87q+cnnldgAAAEC4oskOAAAAAAAAIOjS09PVrl07vfDCC3K73VXWud1uvfjii2rfvr3S09MtqhAAAADwDU12AAAAAAAAAEEXGxuryZMna/369Ro/frx27NihEydOaMeOHRo/frzWr1+vBx98ULGxsVaXCgAAANSqkdUFAAAAAAAAAGgYBg8erNmzZ2vGjBnKzMz0LG/fvr1mz56twYMHW1gdAAAA4Bua7AAAAAAAAABCZvDgwbrqqqu0bds2HTx4UK1atVJ6ejpXsAMAACBi0GQHAAAAAAANUklJiQoKCuo8Lj8/v8r3ukpJSVFCQoJfY4FoERsbq759+1pdBgAAAOAXmuwAAAAAAKBBKigo0IgRI/wen5WV5de47Oxs9ejRw+/9AgAAAACsRZMdAAAAAAA0SCkpKcrOzrZkvwAAAACAyEWTHQAAAAAANEgJCQlcUQ4AAAAAqLMYqwsAAAAAAAAAAAAAACBS0GQHAAAAAAAAAAAAAMBHNNkBAAAAAAAAAAAAAPARTXYAAAAAAAAAAAAAAHxEkx0AAAAAAAAIkrKyMq1YsUKStGLFCpWVlVlcEQAAAID6amR1AQAAAAAAAEAkKCkpUUFBgc/bL1iwQO+8847cbrckad68efqf//kf/epXv9Lo0aN9fp2UlBQlJCTUuV4AAAAAwUGTHQAAAAAAAPBBQUGBRowYUa/XcLvdevvtt/X222/7PCY7O1s9evSo134BAAAABA5NdgAAAAAAAMAHKSkpys7OPut2ZWVlGjVqlBITEzV37lw1avTTn+BOnTql3//+9zpx4oT+8Y9/yG63+7RfAAg3K1eu1KxZs5SbmyuXy6Xu3btr3Lhx+uMf/6iYGJ5UCwCIbjTZAQAAANTZcZfR0VJjdRlBcdwVncdltYoKl05VlFpdRsBVVLisLiHsHD9+XMuXL1dOTo62bt2qb7/9VjabTV26dNH111+viRMnqm3btlaXCfglISHBpyvK58+fL7fbrUmTJqlnz57V1t9///36y1/+op07d2rs2LFBqBQAgmvGjBmaMmWKpNMfBGrSpIl27typCRMmaM2aNXrrrbdotAMAohpNdgAAAAB19uC6CkkVVpeBCPLtD+usLgEhMn78eC1cuFCSlJiYqPPOO08nT57Url279O9//1vz5s3TqlWr1KdPH4srBYJn3759kqRBgwZ5XZ+RkVFlOwCIJJs2bdLUqVMVExOjhQsX6uabb5Yk7dy5U9dee63eeecdzZo1S5MmTbK4UgAAgocmOwAAACRJ7mK31SUERX2PK+bQoQBVEl6i9bjCgfvEYatLCIpoPS4Ex/Dhw3XXXXdp4MCBnttk5+fna9SoUdq6datuvPFG7dq1SwkJCRZXCgRHx44dJUnvv/++brrppmrr169fX2U7AIgk06ZNkzFGv//97z0Ndknq2bOnZs2apVtuuUUzZszQPffco7i4OAsrBQAgeGiyAwAANHBOp1MOh0OuzdF7y2OHwyGn01mnMU6nU/b4eGnZsiBVZT17fLxf89IQxPt5zjgc8XLlLg9SVdZzODhnvPHnvzHR7JlnnlHz5s2rLU9NTdWbb76prl276ttvv1VOTo5uuOEGCyoEgm/UqFH629/+pqefflojRoyo9kz2Z555RrGxsRo1apSFVQJA3RUXF2vNmjWSpNtuu63a+pEjR+r/+//+Px0+fFjvv/++Bg8eHOoSAQAICZrsAAAADVxycrJycnJUVFQUkv3l5+crKytLM2fOVGpqakj26XQ6lZycXKcxycnJenfVKublDHXdPlKtysnxa25ycjhnztQQzpkcP86XaOatwV6pQ4cOOu+88/Svf/1Lu3fvDmFVQGjZ7XaNHTtWr7zyiq644grdc889ysjI0Pr16/XMM8/o8OHDuu2222S3260uFQDqZMeOHSorK1N8fLx69+5dbX1cXJz69OmjtWvXasuWLTTZAQBRiyY7AAAAlJycHPIGUWpqqnr06BHSfdYV8+Ldpk2bQrq/r776SuPGjdO8efN03nnnhWSftTUJa8M5410oz5lIOl8aqtLSUkniVvGIeg888IAkaf78+frLX/7iWR4bG6vbbrvNsx4AIkleXp6k04+7+PldOn4uJSVFa9eu9WwLAEA0oskOAAAAoE5C3VBs2rSp5zvNzMgUyn9vnC/hbefOnZ4r2AcMGGBxNUDwPfDAA7r33nv1+uuva9++ferYsaNGjRrFFewAIlblXZtqe1RO5bra7vDkcrnkcv30yLLi4uIAVQgAQGjQZAcAAAAAAEFXUVGhu+++W5J05ZVX6uKLL651e/74bq2SkhIVFBTUeVx+fn6V73WVkpISdXc5qLx1PABEg8o70tT2YSGHwyHpdJbUZPr06Xr00UcDWxwAACFEkx0AAAAAAATd1KlT9dFHHykxMVEvvfTSWbfnj+/WKigo0IgRI/wen5WV5de47OzssH8EBgA0ZPHx8ZKksrKyGrep/JBcbR+amjJliiZOnOj5ubi4WB06dAhQlQAABB9NdgAAAAAAIOn0ra3feeedOo+bN2+e+vXrV+P6F154QX/729/UqFEjLVq0SKmpqWd9Tf74bq2UlBRlZ2f7vP3mzZs1f/58/ec///Esa926tcaOHatLL720TvsFAIQvX24F78st5R0Oh+eKdwAAIhFNdgAAAAAAIEkqLCzUrl276jzu5MmTNa5bvHix/vjHP8pms2n+/PkaOnSoT6/JH9+tlZCQ4PMV5atXr9bMmTOVkZGhZ599VmlpacrLy9MLL7ygmTNnavbs2Ro8eHCQKwYAhEJaWpokad++fTp16pQaNareYqh83EjltgAARKMYqwsAAAAAAADhYeHChTLG1Pnr6quv9vp6K1eu1O9+9zu53W4999xzuuWWW0J8RAi2iooKzZgxQxkZGZozZ4569eqlxo0bq1evXpozZ44yMjL0xBNPqKKiwupSAQABcNFFFykuLk6lpaXKzc2ttr68vFyffPKJJKlv376hLg8AgJChyQ4AAAAAAALuww8/1G9+8xuVl5dr+vTpGj9+vNUlIQi2bdum/fv3684771RMTNU/M8XExOiOO+7Qd999p23btllUIQAgkJKSkjwfrnvllVeqrV+6dKmKi4vVokULZWRkhLg6AABChyY7AAAAAAAIqO3bt+v//J//o5KSEk2ZMkWTJ0+2uiQEycGDByXVfEvgyuWV2wEAIt9DDz0km82ml19+WYsWLfIs37lzpyZOnChJeuCBB2S3260qEQCAoKPJDgAAAAAAAmbXrl0aMmSIiouLNX78eD3++ONWl4QgatWqlSQpLy/P6/rK5ZXbAQAi34ABA/TYY4/J7XZr1KhRSk1NVc+ePdW7d2/98MMPGjp0qO6//36rywQAIKgaWV0AAAAAAACIHhMmTNChQ4dks9n06aef6rLLLvO63a233qpbb701xNUh0NLT09WuXTu98MILmjNnTpVbxrvdbr344otq37690tPTLawSABBoDz30kHr27KmnnnpK27dv14EDB3ThhRdq3LhxuuuuuxQbG2t1iQAABBVNdgAAAAAAEDAul0uSZIzRxo0ba9yu8nmuiGyxsbGaPHmyJkyYoPHjx+uOO+5QWlqa8vLy9OKLL2r9+vWaPXs2zRYAiELDhg3TsGHDrC4DAABL0GQHAAAAAAABs379eqtLQIgNHjxYs2fP1owZM5SZmelZ3r59e82ePVuDBw+2sDoAAAAACDya7AAAAAAAAKiXwYMH66qrrtK2bdt08OBBtWrVSunp6VzBDgAAACAq0WQHAAAAAABAvcXGxqpv375WlwEAAAAAQRdjdQEAAAAAAAAAAAAAAEQKmuwAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD4iCY7AAAAAAAAAAAAAAA+oskOAAAAAAAAAAAAAICPaLIDAAAAAAAAAAAAAOAjmuwAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD4KKKa7CtXrtTVV1+t5s2bq3Hjxurdu7eeffZZud1uq0sDAAD1QMYDAAAAAAAAACJFxDTZZ8yYoaFDh2rt2rVyOp3q2rWrdu7cqQkTJuiGG27gj/AAAEQoMh4AAAAAAAAAEEkiosm+adMmTZ06VTExMXr99deVn5+vnTt3Kjc3V+eee67eeecdzZo1y+oyAQBAHZHxAAAAAAAAAIBIExFN9mnTpskYo9tvv10333yzZ3nPnj09f3ifMWOGysvLrSoRAAD4gYwHAAAAAAAAAESasG+yFxcXa82aNZKk2267rdr6kSNHKikpSYcPH9b7778f6vIAAICfyHgAAAAAAAAAQCQK+yb7jh07VFZWpvj4ePXu3bva+ri4OPXp00eStGXLllCXBwAIoIoKl05VlEblV0WFy+rpDTtkPAAAAAAAAAAgEjWyuoCzycvLkyR17NhRjRp5LzclJUVr1671bAsAiEzf/rDO6hIQQmQ8AAAAAAAAACAShX2TvaioSJLkdDpr3KZyXeW2Z3K5XHK5frqCsLi4OIAVnlZSUqKCggK/xubn51f5XlcpKSlKSEjwa6w/3MXukO0rlOp7XDGHDgWokvBS3+Pad8xIir5z5vRx+c994nCAKgkv0XpcCI5AZLwU3jkfaRlfV8yLd8yLdw3p9+W64pzxjnkBAAAAAADhKuyb7KWlpZIku91e4zYOh0PS6T/CeDN9+nQ9+uijgS/uZwoKCjRixIh6vUZWVpZf47Kzs9WjR4967dsXTqdTDodDrs3Re8tjh8NRa7PHG6fTKXt8vLRsWZCqsp49Pt6veYl3ODRjY/SeL/F+ni8OR7xcucuDVJX1HA7/zpeGwJ//xkSzQGS8FBk5H+4Z7y/mxTvmxbuG8PuyvzhnvGNeAAAAAABAuAr7Jnt8fLwkqaysrMZtKq9eq+lqgylTpmjixImen4uLi9WhQ4cAVnn6aofs7OyAvmZd9h0KycnJysnJqfVqQm9cLpe+++67IFVVs/bt23uaM75yOp1KTk6u05jk5GS9u2oV83KG5ORkreJ8qeb0+4jz5Ux13T5S5eTkNJhj9UUgMl6K7pwPVcb7i3nxjnnxriH8vuwvzhnvmBcAAAAAABCuwr7J7sttYs92u1mHw1HnJlFdJSQkNIirHZKTk/1qEPXu3TsI1YQP5sU75sU75sW7TZs2WV1C0DVv3tzqEsJKIDJeIuetxLx4x7x4x7zUjLnxjnkBAAAAAADhKuyb7GlpaZKkffv26dSpU2rUqHrJlc/pq9wWABB5aEA3PGQ8AAAAAAAAACASxVhdwNlcdNFFiouLU2lpqXJzc6utLy8v1yeffCJJ6tu3b6jLAwAAfiLjAQAAAAAAAACRKOyb7ElJSbr66qslSa+88kq19UuXLlVxcbFatGihjIyMEFcHAAD8RcYDAAAAAAAAACJR2DfZJemhhx6SzWbTyy+/rEWLFnmW79y5UxMnTpQkPfDAA7Lb7VaVCAAA/EDGAwAAAAAAAAAiTUQ02QcMGKDHHntMbrdbo0aNUmpqqnr27KnevXvrhx9+0NChQ3X//fdbXSYAAKgjMh4AAAAAAAAAEGkioskunb7SbcWKFbryyit1+PBhff3117rwwgv19NNPa/ny5YqNjbW6RAAA4AcyHgAAAAAAAAAQSRpZXUBdDBs2TMOGDbO6DAAAEGBkPAAAAAAAAAAgUkTMlewAAAAAAAAAAAAAAFiNJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJDgAAAAAAAAAAAACAj2iyAwAAAAAAAAAAAADgI5rsAAAAAAAAAAAAAAD4iCY7AAAAAAAAAAAAAAA+amR1AVYwxkiSiouLLa4EAICf8qgyn1A/5DwAIFyQ8YFFxgMAwgUZH3jkPAAgXPia8w2yyX78+HFJUocOHSyuBACAnxw/flxNmza1uoyIR84DAMINGR8YZDwAINyQ8YFDzgMAws3Zct5mGuDH7dxutwoLC5WYmCibzWZ1OSouLlaHDh307bffKikpyepywgbz4h3z4h3z4h3z4l24zYsxRsePH1dycrJiYniSS32FU86H27kWLpgX75iXmjE33jEv3oXTvJDxgUXGRwbmxjvmxTvmxTvmxbtwmhcyPvDI+fDHvHjHvHjHvNSMufEunObF15xvkFeyx8TEqH379laXUU1SUpLlJ044Yl68Y168Y168Y168C6d54ZPvgROOOR9O51o4YV68Y15qxtx4x7x4Fy7zQsYHDhkfWZgb75gX75gX75gX78JlXsj4wCLnIwfz4h3z4h3zUjPmxrtwmRdfcp6P2QEAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmexhwOBx6+OGH5XA4rC4lrDAv3jEv3jEv3jEv3jEvCBXONe+YF++Yl5oxN94xL94xLwgFzrOaMTfeMS/eMS/eMS/eMS8IFc4175gX75gX75iXmjE33kXivNiMMcbqIgAAAAAAAAAAAAAAiARcyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOwAAAAAAAAAAAAAAPqLJHgIXXnihbDabEhISVFxcXON2Y8eOlc1mq/IVFxentm3b6le/+pVWrVoVwqqDp3PnztWO88yvp59+WpK0d+9er+sTExPVs2dPTZ06VYcOHbL2gAJk3759mjhxoi644AI1btxYCQkJ6tixo/r376+srCy9++67VbbPyMg46zzabDY98sgj1hxQgGzdulV//OMfdcEFF8jpdCouLk4tW7ZU//799cADD2j79u1nfY27777bMx/vvfdeCKoOrpreQ02aNNEvf/lLTZkyRYcPH6427ujRo1q8eLHuv/9+XXbZZTrnnHNks9l09dVXW3AUgefvvOzevVvTp0/X4MGD1aZNG8XFxal58+YaNGiQ5s2bJ7fbbcHRIJKQ8z8h42tGzntHzldFxntHxsMqZHxV5Lx3ZLx3ZHx15Lx35DysQs7/hIyvGTlfHRlfHRnvXUPI+EZWFxDtPv30U33++eeSpNLSUr355pu69dZbax3TunVrpaWlecbs3r1bK1as0IoVKzRlyhQ9/vjjQa87FNLS0tS6dWuv69q1a1dtWXp6uhwOhyRp//79+uyzz/Svf/1LCxYs0EcffaQuXboEtd5gWrdunYYPH67jx48rNjZWHTp0UOvWrXXkyBFt3rxZmzZt0rx587z+gtKhQwd17NixxteubV04+/HHH3X77bdr0aJFkqS4uDilpqYqKSlJR44c0datW7Vp0ybNnDlT1113nVauXOn1dcrLy/XGG294fn7ttdd0zTXXhOQYgu3n7yG3263vv/9en332mT777DO99tpr+vjjj9W5c2fP9uvXr1dmZqZF1YZOXealoqJC3bt394xt3769evXqpX379mn9+vVav3693njjDS1fvlzx8fFWHA7CHDnvHRlfFTlfHTlfOzLeOzIeoUTG14yc/wkZXx0Zf3bkvHfkPEKJnPeOjK+KnK+KjD87Mt67qM54g6CaOHGikWSaNWtmJJmMjIwatx0zZoyRZMaMGVNlucvlMpMmTTKSjCSzcePGIFcdXJ06dTKSzLx588667Z49ezzHvWfPnirrtm/f7nmta6+9NjjFhsCxY8dMy5YtjSQzdOhQs3fv3irri4qKzPz58831119fZfnAgQONJPPwww+HsNrQKCsrM5dddpmRZNq2bWteffVVc+LEiSrbVM7L+eefbxwOR42v9c4771R5DzZu3Ljaa0Wa2t5Dubm5Jjk52UgyI0eOrLIuJyfHXHHFFWbSpElmyZIl5vHHHzeSzFVXXRWiyoPLn3kpLy83zZo1M3/6059Mfn5+lTGLFy82CQkJRpK5//77g10+IhQ5XxUZXx05Xx05XzMy3jsyHlYg46sj56si46sj42tHzntHzsMK5HxVZHx15HxVZHztyHjvGkLG02QPolOnTpm2bdsaSWbhwoUmNjbW2Gw2880333jdvqbANsYYt9ttevXqZSSZCRMmBLny4ApUaBtjTHZ2tpFkbDabOXToUOCLDYFFixYZSSYpKcmcPHnS53HRGtjGGDN16lQjySQnJ5t9+/bVum15ebmZNm1ajetHjhxpJJmHHnrI9OjRw0gyr732WqBLDqmzvYf+/ve/G0nG6XTW+jrz5s1rMKFtjPd5cbvd5siRIzW+5owZMzxjKioqAl0yIhw5Xx0ZXx05Xx05XzMy3jsyHqFGxntHzldFxldHxteOnPeOnEeokfPVkfHVkfNVkfG1I+O9awgZzzPZg2jNmjX6/vvv1aZNG2VmZurKK6+UMUb/+Mc/6vxaNptNl112mSQpLy8v0KVGrCuuuEKSZIxRfn6+xdX4p6CgQJLUrVs3nXPOORZXY72jR49q9uzZkqTZs2erQ4cOtW7fqFEjPfTQQ17XHTt2TCtWrJAkjRo1SqNGjZJ0+hY00axTp06SpLKyMosrCS/e5sVms8npdNY4ZvDgwZKkoqIiHTx4MLgFIuKQ88EVDRkvkfNnIufrh4z3joxHoJHxwRcNOU/GV0XG1x857x05j0Aj54MrGjJeIud/joyvPzLeu2jIeJrsQbRgwQJJ0m9/+1vFxsbqlltukeT/fzCMMQGrLVpEw5wkJSVJOv2L2NGjR60tJgysXLlSJ06cUJs2bTR8+PB6vdaSJUtUWlqqnj176vzzz9eoUaNks9m0du1aff/994EpOAxt27ZNknTeeedZXEl48WdeSktLPf+ckJAQ8JoQ2cj54IqW+SDnqyLn64eM946MR6CR8cEXDXNCxldFxtcfOe8dOY9AI+eDK1rmg5z/CRlff2S8d9GQ8TTZg+TEiRN6++23JckT1CNGjFBCQoK+/PJLbd++vU6vZ4zRhg0bJEldu3YNaK2R7KOPPpJ0+tMtKSkpFlfjn8GDBysmJkbHjh3T1VdfrWXLlunYsWNWl2WZjRs3SpL69eun2NjYer1W5S/Hle/Bzp07q3///qqoqNDrr79ev0LDjNvtVmFhoZ5//nk98cQTstlsmjJlitVlWa6+87JkyRJJ0gUXXOD55RqQyPlQiIaMl8j5M5HzdUfGe0fGI1jI+NCIhpwn46si4/1DzntHziNYyPngi4aMl8j5nyPj/UPGexd1GR/au9M3HPPnzzeSTNeuXassr3zexD333FNtTE3Pd3G5XGbSpEmeZ5189NFHQaw8+Cqfw1DT18CBAz3b1vaMl9zcXM9rRfozKv7rv/6ryhzYbDbTvXt3M3bsWPPGG2+Y0tLSamMqn+9ytq8dO3aE/oDqYfjw4UaSue++++r1Onv27DE2m83YbLYqz4mpfM5Hz54961mpdc72HurTp4959913z/o60fqMl/rOS6XPPvvM2O12I8ksWLAgiJUjEpHz3pHx3pHzPyHna0fGe0fGI5TI+JqR89WR8T8h48+OnPeOnEcokfPekfHekfOnkfFnR8Z71xAyvpEQFJWfyKl8pkSlW265RUuXLtWiRYv03//932rUqPq/glWrVnme5VJaWqrdu3fr+PHjkqT77rvPsy7SpaWlqXXr1tWWX3jhhV63HzlypBwOhySpsLBQe/fulTFG5557rp5//vmg1hpsU6dOVb9+/fTf//3fWrNmjcrKyrRr1y7t2rVL8+fPV8eOHfU///M/ysjIqDa2Q4cO6tixY42v3aRJkyBWHniV53rjxo29rn/jjTd08803V1s+b948jR071vPzwoULZYzRFVdcUeU5MTfddJPuvfde7dy5U5999lmN51skOPM9dOjQIe3du1fbt2/XnDlz1KdPn1qfXxKtAjEvR48e1Y033qiysjJdf/31+t3vfhfsshFhyPnakfFVkfM/Ied9Q8Z7R8YjFMj4syPnf0LG/4SM9x057x05j1Ag52tHxldFzp9GxvuOjPcuqjPeuv5+9Pruu+9MTEyMkWS++uqrKutcLpdxOp1GkvnnP/9ZZV3lp+J+/hUbG2tatWplrrvuOvPWW2+F8CiCp/LTK/PmzTvrtj//ZNzPvxISEsz5559vJk2aZA4cOBD8okPoxx9/NB9++KGZOXOmGTRokLHZbJ5j/vLLLz3bVX4q7uGHH7au2CA42yfj1qxZYwYMGOD5atq0qdfzqXv37kaSeeGFF6q9xtChQ40kk5WVFYxDCLra3kNFRUVm9OjRRpJJT083bre7xteJ1k/G1XdeSktLPe+vHj16mCNHjgSxakQicr5mZPzZkfPkfG3IeO/IeIQKGV87cr52ZDwZfzbkvHfkPEKFnK8ZGX92DTnnyfizI+O9awgZzzPZg+Af//iH3G63evfure7du1dZZ7fbNXLkSEk/fXLuTGPGjJExRsYYnTp1Sv/5z3+0cuVKDR8+PNilh7U9e/Z45uXHH3/UF198oZkzZ+rcc8+1urSASkhI0OWXX65JkyZp3bp1+vDDD9W4cWOVlJToySeftLq8oGvXrp0kae/evV7XX3XVVfr44489X+np6dW22bp1q3bt2qW4uDjP++3nKp/58vrrr8vtdgeu+DDQrFkzvfTSS2rXrp22bdum5cuXW11SWPB1Xk6dOqXf/va3+uCDD9S5c2etXr26QX66ELUj5wOvoWS8RM6T8/4j470j4xFIZHxwNJScJ+PJ+Pog570j5xFI5HzgNZSMlxp2zpPx9UPGexctGU+TPQgqgzg3N1c2m63a10svvSRJWr58uYqLi60sFRHgsssu0/jx4yWdDqNo169fP0nSxo0bVVFR4ddrLFiwQJJUXl6uFi1aVHsPVt4Sav/+/Vq3bl1gCg8jDodDvXv3ltQwzhlfnW1ejDEaN26cli9frrZt22rNmjVKTk4OdZmIAOQ8Aomcr7uGnPNkvHdkPAKFjEcgkfF115AzXiLna0LOI1DIeQRSQ8p5Mr7+yHjvoiHjeSZ7gO3YsUOff/65bDab1+eXVCoqKlJJSYmWLVumcePGhbBCRKKUlBRJUllZmcWVBN/111+vJk2a6IcfftBbb72l3/zmN3UaX15ersWLF0uSWrRo4fUZSpJ08uRJnThxQq+99pquvvrqetcdbio/8XfkyBGLKwkvtc3LXXfdpYULF6pFixZ67733lJqaGuryEAHIeQQDOe87cp6MrwkZj/oi4xEMZLzvyPjTyHnvyHnUFzmPYGgoOU/GBwYZ712kZzxXsgdY5SfirrjiCh04cKDGr/vvv7/K9mi4Dh06JGNMrdts3LhRkpSWlhaKkizldDp11113SZLuuece7du3r07jV61apUOHDqlx48bau3dvje/BZcuWSZKys7P1448/Bvw4rFRaWqodO3ZI+umXPdQ+Lw899JDmzJmjxMRE5eTkqEePHlaUiAhAzqOuyPmqyPn6IeO9I+MRCGQ86oqMr4qMrz9y3jtyHoFAzqOuyPmfkPH1R8Z7Fw0ZT5M9gCoqKrRo0SJJ0u9+97tat/2///f/SpLWr1+vb7/9Nui1IXwtXLhQvXr10ty5c3X48OEq644ePaq//OUvWrhwoSQ1mE9QPvroo+rXr58KCwvVt29fvfrqqzpx4kSVbcrLy/Xmm29q165dVZZX/hJ8ww03qEmTJjXu46qrrlLbtm114sQJvfXWW4E/CIsUFRXp97//vQoLC2W323XTTTdZXVJYqG1eZs2apccff1wJCQn63//9X6/PDQIkch7+IeerI+f9Q8Z7R8YjEMh4+IOMr46M9x857x05j0Ag5+EPcr4qMt5/ZLx30ZLx3C4+gN577z0dOHBA8fHxZ71lxvnnn6+LLrpIO3bs0D/+8Q9Nnjw5RFUi3NhsNv3rX//SH/7wB/3hD39Qly5d1KpVKxUVFembb77x3G5m0qRJuuGGG6qNf/XVV7VmzZoaX/+KK67Q448/HrT6g8Fut+u9997TrbfeqiVLlui2227TnXfeqdTUVCUlJenw4cP6/vvvPZ9oGzx4sAYNGqSjR49qxYoVks7+S3NsbKwyMzP11FNP6bXXXtMtt9wS9OMKtMcff1wvv/yy5+fDhw9rz549crlcatSokV588UV17ty5ypiWLVt6/tnlckmSPvzwwyrLn3vuOWVmZga3+CCqy7wUFhZq0qRJkqTExERNnTq1xtd988031aZNm6DWjvBGzsMf5Hx15PzZkfHekfEIFjIe/iDjqyPjfUPOe0fOI1jIefiDnK+KjPcNGe9dVGe8QcCMGjXKSDIjR470afsnn3zSSDLnn3++McaYMWPGGElmzJgxQazSep06dTKSzLx588667Z49e4wkI8ns2bMn6LVZoayszKxbt85kZWWZ/v37m44dOxq73W7OOecck5aWZkaPHm0++uijauMGDhzomZvavn7961+H/qACaPPmzebOO+80559/vmnatKlp1KiRadGihenbt6+5//77zfbt2z3bvvTSS0aSadOmjTl16tRZX3v79u1GkomNjTXff/99MA8joCrfQ2d+ORwOk5KSYsaNG2c+/fRTr2N9OWd8eW+GI3/m5ef/jTnbV7T+Nwi+I+fPjoyvjpyvHTlfFRnvHRmPYCPjfUPOV0XG146Mr46c946cR7CR82dHxldHzteMjK+OjPeuIWS8zZizPFgCAAAAAAAAAAAAAABI4pnsAAAAAAAAAAAAAAD4jCY7AAAAAAAAAAAAAAA+oskOAAAAAAAAAAAAAICPaLIDAAAAAAAAAAAAAOAjmuwAAAAAAAAAAAAAAPiIJjsAAAAAAAAAAAAAAD6iyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+IgmOxBFOnfuLJvNpr1791pdSkBlZGTIZrNp/fr1VpcCAIBlyHkAAKITGQ8AQHQi44HoRpMdCIF9+/Zp4sSJuuCCC9S4cWMlJCSoY8eO6t+/v7KysvTuu+9aXSIkPf3003rkkUd09OhRq0sBAEQQcj4ykPMAgLoi4yMDGQ8AqCsyPjKQ8Qh3jawuAIh269at0/Dhw3X8+HHFxsaqQ4cOat26tY4cOaLNmzdr06ZNmjdvng4dOmR1qQ3e008/rW+++UZjx45Vs2bNrC4HABAByPnIQc4DAOqCjI8cZDwAoC7I+MhBxiPc0WQHgqi4uFi//e1vdfz4cQ0dOlR///vf1alTJ8/6o0ePavny5VqyZImFVQIAAH+Q8wAARCcyHgCA6ETGAwgkmuxAEK1cuVKHDh1SUlKSlixZonPOOafK+mbNmmnMmDEaM2aMRRUCAAB/kfMAAEQnMh4AgOhExgMIJJ7JDgRRQUGBJKlbt27VArs2NptNNputxvWdO3eWzWbT3r17a9zm3XffVUZGhpo2baqkpCRdc801+uijj7xum5GRIZvNpvXr12vr1q0aOnSomjdvrsaNG6t///56++23a9yPMUYLFy7UwIED1axZMyUkJOi8887Tgw8+qCNHjtQ47tSpU5o7d64GDRqkFi1aKD4+XikpKbrxxhu1fPnyGsed6Y033lBcXJwaN26s1atXV1m3detWZWZmql27drLb7Tr33HM1cuRI7dixo8p28+fPl81m0zfffCNJ6tKli+ffQeW8AABwJnKenAcARCcynowHAEQnMp6MBwLKAAiaZ5991kgyTZs2NUVFRT6Pk2Rqe3t26tTJSDJ79uzxunz69OnGZrOZ5s2bm/T0dNOiRQsjycTExJglS5ZUe72BAwcaSeavf/2rsdvtpkmTJiY9Pd20bdvWU8uTTz5ZbZzb7TajRo3ybJOSkmJ69+5t7Ha7kWQ6depk8vPzq407cuSIGTBggGdcp06dTHp6umndurXnZ2/1vf/++1WWv/TSSyYmJsY0bdrUfPzxx1XWzZo1y9hsNiPJNG/e3Fx00UWeeYiLizPLli3zbLty5UozYMAA43A4jCSTnp5uBgwY4PnKzc2t8d8FAKDhIufJeQBAdCLjyXgAQHQi48l4IJBosgNBtGvXLhMTE2MkmYsvvti8+eab5ujRo2cdV9/QbtSokZk4caIpKyszxhhTXl5uHnjgASPJJCUlmcLCwirjKkOxUaNGJjMz05w4ccIYczqUZ8+e7Vn36aefVhlX+UtJYmKiWb16tWf5999/7wnlvn37Vqt/+PDhRpJJTU01mzdvrrIuLy/P/O1vf/Na389De+bMmUaSadWqVbVQXbVqlbHZbKZly5ZVwtkYY15++WXTqFEjk5iYWG0eappXAAC8IefJeQBAdCLjyXgAQHQi48l4IJBosgNB9l//9V+eEJZkbDab6d69uxk7dqx54403TGlpabUx9Q3tnj17eh3Xu3dvI8n85S9/qbK8MhRbt25tSkpKqo0bMWKEkWRGjx7tWeZ2u02HDh2MJPPUU09VG/Pdd995PiG3du1az/KtW7caScbhcJjdu3fXeIze6qsM7T//+c9Gkmnfvr358ssvazzO5cuXe329+++/3/NJwJ8jtAEAdUXOk/MAgOhExpPxAIDoRMaT8UCg8Ex2IMimTp2qdevW6frrr5fdbpcxRrt27dL8+fOVmZmpbt26BfwZIuPHj691+bvvvut1/W233ab4+Hifxn355Zf69ttvFR8fr9///vfVxrRr10433nijJFV59krl81tuuOEGpaWl+XI4HsYY3XvvvXrssceUmpqqjz76SOedd16Vbb755hvl5uaqdevW+tWvfuX1dSqXf/DBB3XaPwAAZyLnyXkAQHQi48l4AEB0IuPJeCBQGlldANAQDBo0SIMGDVJJSYm2bdumLVu2aOXKlVq/fr327dun66+/Xrm5udUCyF+/+MUval2+e/duv8b98MMPKi4uVlJSkuc1OnbsqMaNG3sd16NHj2r7+/LLLyVJl1566dkOo5pJkyYpNzdXPXr00Hvvvae2bdtW2+azzz6TJJWWluqyyy7z+jqlpaWSpP3799e5BgAAzkTOk/MAgOhExpPxAIDoRMaT8UAg0GQHQighIUGXX365Lr/8ck2aNEkff/yxhgwZopMnT+rJJ5/U3LlzA7Kf1q1be11+7rnnSpKOHz9ep3E/X378+HElJSXpxIkTtY6paX/FxcWSpGbNmtU4riZff/21JKlz585q2bKl122OHTvm2c+GDRtqfb2SkpI61wAAQE3IeXIeABCdyHgyHgAQnch4Mh6oD24XD1josssu89zaZevWrdXWG2O8jjt58mStr3vw4EGvy//zn/9IkhITE+s07ufLK8c2adKkymt688MPP1TbX+U/Hz16tMZxNZk7d67OO+88/fOf/9TNN9+sU6dOVdumsq4BAwbIGFPr1969e+tcAwAAviLn64acBwBECjK+bsh4AECkIOPrhoxHQ0eTHbBYSkqKJKmsrMyzrPJ2Lt5C9NixYzp06FCtr1l5i5ealnfr1s2vceeee66SkpKqvMa+ffs8n5I70xdffFFtf5W3pNm8eXOtx+BN69attXbtWnXt2lXLli3T6NGj5Xa7q2xz/vnne2o+c93Z2Gy2OtcEAEBtyHnfkfMAgEhCxvuOjAcARBIy3ndkPBo6muxAEB06dKjGT7dV2rhxoyQpLS3Ns6wyyD/55JNq27/88stn3e+cOXNqXT548GCv61955RW5XC6fxv3iF79Qx44dVVpa6rWmwsJCLVu2TJJ07bXXepYPHz5ckvT2228rPz//rMdypuTkZK1bt06dO3fWokWLdOutt1aZ47S0NF1wwQU6cuSIFixYUKfXTkhIkMRtaQAAviHnyXkAQHQi48l4AEB0IuPJeCCgDICgeeqpp8wvf/lL89JLL5lDhw5VWVdUVGT+/Oc/G5vNZiSZ7Oxsz7oHHnjASDK9evUyBw4c8CxftWqVSUpKMo0aNTKSzJ49e6q8ZqdOnYwk06hRI5OVlWXKysqMMcaUl5ebKVOmGEkmMTHR7N+/v8q4gQMHesbdcsst5sSJE8YYY9xut/n73/9ubDabiY2NNTt27Kgy7tlnnzWSTFJSklmzZo1n+YEDB8zll19uJJlLL7202rzccMMNRpJJS0szW7durbIuLy/PzJw502t977//vmfZnj17TIcOHYwk84c//MG43W7Pun/+85/GZrOZc845x8ydO9eUl5dXeb38/Hwzbdo0s2zZsirLhw4daiSZ559/vlrNAACciZwn5wEA0YmMJ+MBANGJjCfjgUCiyQ4E0dNPP20keb66dOliLrnkEpOWlmbsdrtn+aRJk6qM+89//mPatGljJBmHw2F69eplOnfubCSZyZMne8K5ptCePn26sdlspkWLFqZPnz6mZcuWRpKJiYkxixYtqlZnZSj+9a9/NXa73SQmJpr09HSTnJzsqfFvf/tbtXFut9uMGjXKs03Xrl1N7969PcfWsWNHk5+fX23ckSNHTL9+/TzjOnfubNLT0825555rJJlOnTp5re/noW3M6YCvrPHuu++usu65554zsbGxnl9ULr744ir78BbOCxYs8Ky74IILzMCBA83AgQOr/bICAIAx5Dw5DwCIVmQ8GQ8AiE5kPBkPBBJNdiCIysrKzLp160xWVpbp37+/6dixo7Hb7eacc84xaWlpZvTo0eajjz7yOjY/P9+MHDnSOJ1Ok5CQYC666CIzb948Y4w5a2jv2bPH5OTkmCuuuMIkJiaaJk2amCuvvNJ88MEHXvf181DcsmWLue6660yzZs1MQkKCufTSS6t8au9MbrfbLFiwwFx++eUmKSnJOBwOk5aWZrKysqp9GvDMufn73/9uBgwYYJo2bWri4+NNly5dzG9+8xuzYsWKGus705dffukJ4jN/+fnss8/M7bffblJSUkx8fLxp2rSp6dGjh7n55pvN0qVLzcmTJ6u93jPPPGN++ctfmoSEBE+Ae9svAADkPDkPAIhOZDwZDwCITmQ8GQ8Eks2YszyAAkDUy8jI0AcffKD3339fGRkZVpcDAAACiJwHACA6kfEAAEQnMh6IDDFWFwAAAAAAAAAAAAAAQKSgyQ4AAAAAAAAAAAAAgI9osgMAAAAAAAAAAAAA4COa7AAAAAAAAAAAAAAA+MhmjDFWFwEAAAAAAAAAAAAAQCTgSnYAAAAAAAAAAAAAAHxEkx0AAAAAAAAAAAAAAB/RZAcAAAAAAAAAAAAAwEc02QEAAAAAAAAAAAAA8BFNdgAAAAAAAAAAAAAAfESTHQAAAAAAAAAAAAAAH9FkBwAAAAAAAAAAAADARzTZAQAAAAAAAAAAAADwEU12AAAAAAAAAAAAAAB89P8DQyWPnBfJOq4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m bb filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIL0lEQVR4nOzde1xUdf7H8fcwcssLqGAqogmKlZWWqKuut1xRy7XWzCUrJbM02kVt89ZaW+EGwuaqlZfMIitddKVa3TTMNAtLRcnUvCBoXvAugqSADPP7w2V+kaCIw5yBeT0fj3nknPM9c95zAr/OfM73+zVZrVarAAAAAAAAAAAAAADANbkZHQAAAAAAAAAAAAAAgOqCIjsAAAAAAAAAAAAAABVEkR0AAAAAAAAAAAAAgAqiyA4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIosgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVFAtowMYobi4WFlZWapbt65MJpPRcQAALs5qter8+fNq2rSp3Ny4/+1G0c8DAJwFfbx90ccDAJwFfbz90c8DAJxFRft5lyyyZ2VlKTAw0OgYAACUcvjwYTVr1szoGNUe/TwAwNnQx9sHfTwAwNnQx9sP/TwAwNlcq593ySJ73bp1JV2+OPXq1TM4DQDA1eXm5iowMNDWP+HG0M8DAJwFfbx90ccDAJwFfbz90c8DAJxFRft5lyyyl0w3U69ePTpsAIDTYDo0+6CfBwA4G/p4+6CPBwA4G/p4+6GfBwA4m2v18ywYAwAAAAAAAAAAAABABVFkBwAAAAAAAAAAAACggiiyAwAAAAAAAAAAAABQQRTZAQAAAAAAAAAAAACoIIrsAAAAAAAAAAAAAABUEEV2AAAAAAAAAAAAAAAqiCI7AAAAAAAAAAAAAAAVRJEdAAAAAAAAAAAAAIAKosgOAAAAAAAAAAAAAEAFUWQHAAAAAAAAAAAAAKCCqkWRPSIiQiaT6aqP/Px8o2MCAAAAAAAAAAAAAGq4WkYHuB6tW7dWo0aNytzn5lYt7hcAAAAAAAAAAAAAAFRj1arI/sILLygiIsLoGAAAAAAAAAAAAAAAF8XwbwAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFVStpov/97//rU8++US5ublq1KiRunXrpuHDh8vHx8foaAAAAAAAAAAAAAAAF1Ctiuz//e9/Sz1PTEzU3/72Ny1evFj9+/c3KBUAAAAAAAAAAAAAwFVUi+nig4OD9dprr2n79u3Kzc3V+fPnlZycrM6dOys7O1sPPvigUlNTyz2+oKBAubm5pR4AAAAAAAAAAAAAAFyvajGS/cUXX7xiW9++fdWzZ091795dmzdv1qRJk7R27doyj4+JidErr7xS1TEBAAAAAAAAAAAAADVctRjJXh4PDw9FR0dLktavX6/s7Owy202ZMkU5OTm2x+HDhx0ZEwAAAAAAAAAAAABQQ1TrIrskdenSRZJUXFyszMzMMtt4enqqXr16pR4AAAAAAAAAAAAAAFyval9kd3d3t/25qKjIwCQAAAAAAAAAAAAAgJqu2hfZd+3aZftzs2bNDEwCAAAAAAAAAAAAAKjpqn2R/fXXX5ck3XrrrQoICDA4DQAAAAAAAAAAAACgJnP6IvuaNWs0ZcoUHThwoNT2nJwcRUVFacmSJZKkl156yYh4AAAAAAAAAAAAAAAXUsvoANfy888/KzY2VrGxsQoICFDTpk116dIl/fjjjyosLJTJZNJLL72kRx55xOioAAAAAAAAAAAAAIAazumL7B06dNBf//pXffvtt9q/f7927twpq9WqgIAAde/eXZGRkercubPRMQEAAAAAAAAAAAAALsDpi+yBgYGaNm2a0TEAAAAAAAAAAAAAAHD+NdkBAAAAAAAAAAAAAHAWFNkBAAAAAAAAAAAAAKggiuwAAAAAAAAAAAAAAFQQRXYAAAAAAAAAAAAAACqIIjsAAAAAAAAAAAAAABVEkR0AAAAAAAAAAAAAgAqiyA4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIosgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVBBFdgAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFUSRHQAAAAAAAAAAAACACqLIDgAAAAAAAAAAAABABVFkBwAAAAAAAAAAAACggiiyAwAAAACAKnHy5Ek9//zzatu2rW666SZ5eXkpODhYTz/9tPbv3290PAAAAAAAKqWW0QEAAAAAAEDNs3fvXvXo0UMnT56Uu7u7goKC5O7urv3792vBggX66KOP9Nlnn6lnz55GRwUAAAAA4Lowkh0AAAAAANjds88+q5MnT6pbt27KzMzUnj17tGPHDh05ckSDBg3ShQsX9MQTT8hqtRodFQAAAACA60KRHQAAAAAA2NWFCxe0bt06SdLcuXPVrFkz276GDRsqISFBJpNJBw4c0J49e4yKCQAAAABApVBkBwAAAAAAdlVYWKji4mJJUlBQ0BX769evrwYNGkiSioqKHJoNAAAAAIAbRZEdAAAAAADYla+vrwIDAyVJGzduvGL/3r17debMGfn6+qp169aOjgcAAAAAwA2hyA4AAAAAAOxu2rRpkqSRI0dq+fLlOnPmjHJycvT555/rwQcflMlkUlxcnLy8vAxOCgCA67Farfrmm280YcIE/eY3v5Gvr688PDzUtGlTPfTQQ7ZlX37t5ZdflslkuuqDpWAAAK6gltEBAAAAAABAzTN8+HDVqVNH0dHRGjJkSKl9d911lz777DP179+/3OMLCgpUUFBge56bm1tlWQEAcDVffvmlfve730mS3Nzc1KpVK9WuXVvp6elKSkpSUlKSpk6dqujo6DKPDwwMVPPmzcvcd9NNN1VZbgAAnAUj2QEAAAAAgN1ZrVZlZmbqzJkzMpvNatWqlW6//XZ5eHho586devvtt3X27Nlyj4+JiZGPj4/tUTL9PAAAuHFWq1WtWrXSnDlzdPr0ae3du1fbtm3TmTNnNGXKFEmXZ6VZuXJlmcePHDlS33zzTZmP8orvAADUJBTZAQAAAACA3Y0ZM0YTJkxQYGCg9u/fr/T0dO3atUuHDx/Wfffdp48//li9e/eWxWIp8/gpU6YoJyfH9jh8+LCD3wEAADVXp06dtHv3bj3zzDOqX7++bbuHh4dee+01DRgwQJK0YMECoyICAODUKLIDAAAAAAC72r59uxYsWCB3d3f961//0i233GLb16hRI3300Ufy8/PTDz/8oKVLl5b5Gp6enqpXr16pBwAAsI969eqpVq3yV5Pt27evJGnfvn2OigQAQLVCkR0AAAAAANhVSkqKrFarQkJCypzmvV69eurUqZMkKTU11dHxAADANeTn50uSvL29y9y/bt06Pfzww7r33ns1ZMgQxcXF6fjx446MCACAocq/VQ0AAAAAAKASzp8/f802VqtV0v9/iQ8AAJyD1WrVsmXLJEndunUrs82GDRtKPV++fLlefvllzZkzRxEREVUdEQAAwzGSHQAAGOrkyZN6/vnn1bZtW910003y8vJScHCwnn76ae3fv9/oeAAAoBJat24t6fIUs2WtpZ6bm6stW7ZIkkJCQhyaDQAAXN2CBQuUlpYmDw8PjRs3rtS+Jk2a6IUXXtCWLVt05swZXbhwQSkpKRowYIAuXryokSNHasWKFdc8R0FBgXJzc0s9AACoTiiyAwAAw+zdu1d33nmnXn/9daWnp6t58+Zq3bq1srKytGDBArVr105fffWV0TEBAMB1CgsLk5+fny5duqTw8HAdPHjQtu/kyZN69NFHdfr0aXl5eWnIkCHGBQUAAKVs27ZNY8eOlSRNmzZNwcHBpfaPHj1af//73xUaGqoGDRrI29tbXbt21X//+1/94Q9/kNVq1fjx420z1pQnJiZGPj4+tkdZy8sAAODMKLIDAADDPPvsszp58qS6deumzMxM7dmzRzt27NCRI0c0aNAgXbhwQU888cQ1P5wDAADnUqdOHS1atEheXl7auHGjWrVqpZCQELVt21aBgYFauXKlatWqpXnz5ikgIMDouAAAQNKBAwc0cOBA5efna9iwYXr++ecrfKzJZFJsbKwkKSMjQz/88MNV20+ZMkU5OTm2R1kz3wAA4MwosgMAAENcuHBB69atkyTNnTtXzZo1s+1r2LChEhISZDKZdODAAe3Zs8eomAAAoJIGDBig7du36+mnn1bLli116NAh7d+/X02aNNHjjz+uTZs2acSIEUbHBAAAko4fP66+ffvq2LFjuv/++22fya9HSEiIGjRoIEnXXP7N09NT9erVK/UAAKA6qWV0AAAA4JoKCwtVXFwsSQoKCrpif/369dWgQQOdOXNGRUVFjo4HAADsICQkRPPnzzc6BgAAuIqzZ8+qb9++ysjIUM+ePbVs2TK5u7tX6rVKjuNzPACgpmMkOwAAMISvr69tzbWNGzdesX/v3r06c+aMfH191bp1a0fHAwAAAACgxsvLy9N9992nnTt3qmPHjlqxYoW8vb0r9VqnT5/WyZMnJanUbHUAANREFNkBAIBhpk2bJkkaOXKkli9frjNnzignJ0eff/65HnzwQZlMJsXFxcnLy6vc1ygoKFBubm6pBwAAAAAAuLqCggI98MAD2rRpk9q2bavVq1erbt26lX69GTNmyGq1ysfHRx07drRjUgAAnA9FdgAAYJjhw4dr+fLl8vPz05AhQ+Tn5ydfX1/1799fHh4e+uyzz/TUU09d9TViYmLk4+Nje5SMjgcAAAAAAGWzWCwKDw/Xl19+qeDgYK1Zs8a2nnp5du3apcjISO3atavU9vz8fL322muaPn26JGnSpEny8PCosuwAADgD1mQHAACGsVqtyszM1JkzZ2Q2m9WyZUt5eHho//792rlzp95++2116tTpqh/0p0yZoueee872PDc3l0I7AAAAAABXsXTpUn3yySeSJDc3Nz388MNltmvSpImWLVsmSbp06ZLmzp2ruXPnyt/fX82bN5ck7d69WxcuXJAkPfnkk5o8eXLVvwEAAAxGkR0AABhmzJgxevvtt9W1a1dt2LBBt9xyiyTp5MmTevLJJ/Xxxx8rIyND27Ztk9lsLvM1PD095enp6cDUAAAAAABUbwUFBbY/p6enKz09vcx2LVq0sP35lltuUXR0tDZu3Kg9e/Zo7969KiwsVKNGjXTfffdp1KhR6tevX5VnBwDAGZisVqvV6BCOlpubKx8fH+Xk5KhevXpGxwEAuDhX7Ze2b9+uu+++W7Vq1VJGRsYVo89zc3MVHBys06dPa/HixXrkkUcq9Lquej0BAM6HPsm+uJ4AAGdBn2R/XFMAgLOoaJ/EmuwAAMAQKSkpslqtCgkJKXN693r16qlTp06SpNTUVEfHAwAAAAAAAACgTBTZAQCAIc6fP3/NNiUT7uTn51d1HAAAAAAAAAAAKoQiOwAAMETr1q0lSfv27dPhw4ev2J+bm6stW7ZIkkJCQhyaDQAAAAAAAACA8lBkBwAAhggLC5Ofn58uXbqk8PBwHTx40Lbv5MmTevTRR3X69Gl5eXlpyJAhxgUFAAAAAAAAAOAXahkdAAAAuKY6depo0aJFGjx4sDZu3KhWrVopKChI7u7u2r9/vwoLC1WrVi3NmzdPAQEBRscFAAAAAAAAAEASRXYAAGCgAQMGaPv27Xr99df15Zdf6tChQ7JarWrSpIl69OihcePG6Z577jE6JgAAAAAAAAAANhTZAQCAoUJCQjR//nyjYwAAAAAAAAAAUCGsyQ4AAAAAAAAAAAAAQAVRZAcAAAAAAAAAAAAAoIIosgMAAAAAAAAAAAAAUEEU2QEAAAAAAAAAAAAAqCCK7AAAAAAAAAAAAAAAVBBFdgAAAAAAAAAAAAAAKogiOwAAAAAAAAAAAAAAFUSRHQAAAAAAAAAAAACACqLIDgAAAAAAAAAAAABABVFkBwAAAAAAAAAAAACggiiyAwAAAAAAAAAAAABQQRTZAQAAAAAAAAAAAACoIIrsAAAAAAAAAAAAAABUEEV2AAAAAAAAAAAAAAAqiCI7AAAAAAAAAAAAAAAVRJEdAAAAAAAAAAAAAIAKosgOAAAAAAAAAAAAAEAFUWQHAAAAAAAAAAAAAKCCKLIDAAAAAAAAAAAAAFBB1bbIPnXqVJlMJplMJk2bNs3oOAAAAAAAAAAAAAAAF1Ati+y7d+9WfHy80TEAAAAAAAAAAAAAAC6m2hXZrVarRo8eLXd3d917771GxwEAAAAAAAAAAAAAuJBaRge4XgsXLtTXX3+t6dOn68cffzQ6zg2zWCxKTU3VqVOn5O/vr9DQUJnNZqNjGa6wsFCLFy/WoUOH1Lx5cw0bNkweHh5GxwIAAAAAAAAAAADg4qpVkf3UqVOaNGmSbr/9do0fP15PPfWU0ZFuSHJysmJjY3X06FHbtoCAAE2ePFlhYWEGJjNWXFycEhISZLFYSm2LiIjQxIkTDUwGAAAAAAAAAAAAwNVVq+nix48fr7Nnz2rOnDlyd3c3Os4NSU5OVlRUlEJCQpSYmKht27YpMTFRISEhioqKUnJystERDREXF6eFCxfK19dX0dHR+uabbxQdHS1fX18tXLhQcXFxRkcEAAAAAAAAAAAA4MKqTZF97dq1+uijj/TYY4+pZ8+eRse5IRaLRbGxserVq5fmzJmj9u3bq3bt2mrfvr3mzJmjXr16afr06aVGcruCwsJCJSQkqGHDhtqwYYOGDh0qf39/DR06VBs2bFDDhg2VkJCgwsJCo6MCAAAAAAAAAAAAcFHVosien5+vMWPGyMfHR//4xz+u+/iCggLl5uaWehgpNTVVR48e1ZgxY+TmVvp/gZubm0aPHq0jR44oNTXVoITGWLx4sSwWi8aNG6datUqvZFCrVi2NHTtWFotFixcvNighAAAAAAAAAAAAAFdXLYrs06ZN0/79+/X3v/9dN99883UfHxMTIx8fH9sjMDCwClJW3KlTpyRJrVu3LnN/yfaSdq7i0KFDkqTevXuXub9Xr16l2gEAAAAAAAAAAACAozl9kX337t2Kj4/XPffco2eeeaZSrzFlyhTl5OTYHocPH7Zzyuvj7+8vSUpPTy9zf8n2knauonnz5pKkdevWlbl//fr1pdoBAAAAAAAAAAAAgKM5fZE9MjJSRUVFmjt37hVTq1eUp6en6tWrV+phpNDQUAUEBGjevHkqLi4uta+4uFjz589Xs2bNFBoaalBCYwwbNkxms1kzZ85UUVFRqX1FRUWaNWuWzGazhg0bZlBCAAAAAAAAAAAAAK7O6YvsaWlpMplMGjRokBo3blzqkZiYKEmaPn26GjdurI4dOxqctmLMZrMmT56s9evXKzIyUmlpacrLy1NaWpoiIyO1fv16TZo0SWaz2eioDuXh4aGIiAidOXNGPXr0UGJiok6cOKHExET16NFDZ86cUUREhDw8PIyOCgAAAAAAAAAAAMBF1TI6QEVYLBadOHGi3P15eXnKy8uTl5eXA1PdmLCwMM2ePVuxsbEKDw+3bW/WrJlmz56tsLAwA9MZZ+LEiZKkhIQEvfTSS7btZrNZTz75pG0/AAConiwWi1JTU3Xq1Cn5+/srNDTU5W4sBAAAAAAAAFC9OX2R/dy5c+Xui4iI0Pvvv6/o6GhNnTrVcaHsJCwsTH369OGL5l+ZOHGixo0bp8WLF+vQoUNq3ry5hg0bxgh2AACqueTkZMXGxuro0aO2bQEBAZo8ebLL3mAIAAAAAHAe3BheNq4LAFzJ6YvsNZ3ZbFbnzp2NjuF0SqaOBwAANUNycrKioqLUq1cvzZgxQ61bt1Z6errmzZunqKgol57JBwAAAABgPG4MLxvXBQDK5vRrsgMAAKB6s1gsio2NVa9evTRnzhy1b99etWvXVvv27TVnzhz16tVL06dPl8ViMToqAAAAAMAFldwYHhISosTERG3btk2JiYkKCQlRVFSUkpOTjY5oCK4LAJSPIjsAAACqVGpqqo4ePaoxY8bIza30Pz/d3Nw0evRoHTlyRKmpqQYlBAAAAAC4Km4MLxvXBQCurloX2RMSEmS1WqvleuwAAACu4tSpU5Kk1q1bl7m/ZHtJOwAAAAAAHIUbw8vGdQGAq6vWRXYAAAA4P39/f0lSenp6mftLtpe0AwAAAADAUbgxvGxcFwC4OorsAAAAqFKhoaEKCAjQvHnzVFxcXGpfcXGx5s+fr2bNmik0NNSghACAqmSxWLRgwQL17NlTfn5+8vLyUosWLfTggw/q008/NToeAABwcdwYXjauCwBcHUV2AAAAVCmz2azJkydr/fr1ioyMVFpamvLy8pSWlqbIyEitX79ekyZNktlsNjoqAMDOsrOz9dvf/lZPP/20vv76a/n5+emOO+7QpUuX9Omnn+qDDz4wOiIAAHBx3BheNq4LAFwdRXYAAABUubCwMM2ePVv79u1TeHi4OnTooPDwcKWnp2v27NkKCwszOiIAwM6Ki4s1aNAgfffddxo8eLAOHTqkPXv2KDU1VVlZWTp8+LCioqKMjgkAAFwcN4aXjesCAFdnslqtVqNDOFpubq58fHyUk5OjevXqGR0HAODi6Jfsi+vp3CwWi1JTU3Xq1Cn5+/srNDSUD+QAaixX75PmzZunZ555Rr1799YXX3whN7cbu8/f1a8nAMB50CfZnzNc0+TkZMXGxuro0aO2bc2aNdOkSZNc+sZwrgsAV1PRPqmWAzMBAADAxZnNZnXu3NnoGAAAB5g1a5YkKTo6+oYL7AAAAFUtLCxMffr04cbwX+G6AEDZKLIDAAAAAAC7Sk9P1549e9SgQQN17dpVn376qZYtW6Zjx47J399fv/vd7/T444/L09PT6KgAALgkq9WqlJQUffrpp/r666+1Z88eXbhwQX5+furSpYv+9Kc/qXfv3uUe/+233yo2NlYbN25UXl6eWrZsqUceeUQTJkyQl5eXA9+JfXFjeNm4LgBwJYrsAAAAAADArrZu3SpJuvXWW/X444/ro48+KrU/MTFRr7/+ulavXq0WLVoYEREAAJf25Zdf6ne/+50kyc3NTa1atVLt2rWVnp6upKQkJSUlaerUqYqOjr7i2I8++kgjRoyQxWJRQECAAgMDtXPnTr300ktasWKF1q9fr5tuusnRbwkAAIdivjYAAAAAAGBXx44dkyRt2bJFH330kUaNGqWDBw8qPz9fX3zxhYKCgrRnzx499NBDKi4uLvM1CgoKlJubW+oBAADsw2q1qlWrVpozZ45Onz6tvXv3atu2bTpz5oymTJkiSZo2bZpWrlxZ6riDBw/qySeflMViUVxcnA4fPqxt27YpPT1dbdq00ZYtWzRx4kQj3pJdFBYWKiEhQa+++qoSEhJUWFhodCQAgJOiyA4AAAAAAOzq559/liRdunRJ3bt314IFC9SiRQt5enqqT58+SkpKkslk0tatW/Xf//63zNeIiYmRj4+P7REYGOjItwAAQI3WqVMn7d69W88884zq169v2+7h4aHXXntNAwYMkCQtWLCg1HHx8fEqKChQWFiYJkyYIJPJJElq0aKF3n33XUnS22+/rRMnTjjondhPXFyc2rdvr5iYGH300UeKiYlR+/btFRcXZ3Q0AIATosgOAAAAAADs6pdrsY4dO/aK/e3atbOt87p69eoyX2PKlCnKycmxPQ4fPlw1YQEAcEH16tVTrVrlrybbt29fSdK+ffts26xWqz7++GNJ0pNPPnnFMV27dtWtt96qS5cu6dNPP7Vz4qoVFxenhQsXytfXV9HR0frmm28UHR0tX19fLVy4kEI7AOAKFNkBAAAAAIBd/XJE3K233lpmm9tuu03S5Wlny+Lp6al69eqVegAAAMfIz8+XJHl7e9u2HTp0yLYkTLdu3co8rmT7pk2bqjih/ZRMEd+wYUNt2LBBQ4cOlb+/v4YOHaoNGzaoYcOGTB0PALgCRXYAAAAAAGBXbdq0sf3Z09OzzDYl2y0Wi0MyAQCAirFarVq2bJmk0sX09PR0SZf78KZNm5Z5bFBQUKm25SkoKFBubm6ph1EWL14si8WicePGXTG6v1atWho7dqwsFosWL15sUEIAgDOiyA4AAAAAAOzq7rvvtk0Zn5mZWWabku0BAQEOywUAAK5twYIFSktLk4eHh8aNG2fbnp2dLUny9fW1rcX+ayWz2ZS0LU9MTIx8fHxsj8DAQPuEr4RDhw5Jkm0pm1/r1atXqXYAAEgU2QEAAAAAgJ3Vrl1b9913nyTp/fffv2L/8ePH9fnnn0uS7r33XodmAwAA5du2bZvGjh0rSZo2bZqCg4Nt+0qmkPfw8Cj3+JKZai5evHjV80yZMkU5OTm2x+HDh280eqU1b95ckrRu3boy969fv75UOwAAJIrsAAAAAACgCrz00ksym83617/+VarQfu7cOUVEROjixYsKCgrSww8/bGBKAABQ4sCBAxo4cKDy8/M1bNgwPf/886X2l8xSc7W1yQsKCiSVXsu9LJ6enqpXr16ph1GGDRsms9msmTNnqqioqNS+oqIizZo1S2azWcOGDTMoIQDAGVFkBwAAAAAAdteuXTu9+eabslqtioiIUIsWLdSxY0cFBATo888/l5+fn5YvX37V0XAAAMAxjh8/rr59++rYsWO6//77lZCQcMWU8CVTwZ87d05Wq7XM1ymZJr6kbXXg4eGhiIgInTlzRj169FBiYqJOnDihxMRE9ejRQ2fOnFFERAT/ZgEAlFLL6AAAAAAAAKBmGjNmjNq2bav4+Hh9++23+uGHH9S0aVPdf//9mjJlCuuxAwDgBM6ePau+ffsqIyNDPXv21LJly+Tu7n5Fu9atW0u6PFo9KyurzH48MzOzVNvqYuLEiZKkhIQEvfTSS7btZrNZTz75pG0/AAAlKLIDAAAAAIAq0717d3Xv3t3oGAAAoAx5eXm67777tHPnTnXs2FErVqwod6r35s2bq3Hjxjp+/LhSUlI0dOjQK9qkpKRIkjp37lyluavCxIkTNW7cOC1evFiHDh1S8+bNNWzYMEawAwDKRJEdAAAAAAAAAAAXU1BQoAceeECbNm1S27ZttXr1atWtW7fc9iaTSX/4wx80d+5cLVy48Ioi+8aNG7Vnzx65u7tr0KBBVR2/SpRMHQ8AwLWwJjsAAAAAAAAAAC7EYrEoPDxcX375pYKDg7VmzRo1aNDgmsdNmDBBHh4eSk5OVnx8vG1t9p9++kkjR46UJI0aNUqNGzeu0vwAABiNkewAAAAAAAAAALiQpUuX6pNPPpEkubm56eGHHy6zXZMmTbRs2TLb85YtW2rBggV64oknNHHiRM2aNUuNGjXSzp07denSJXXo0EHx8fGOeAsAABiKIjsAAAAAAAAAAC6koKDA9uf09HSlp6eX2a5FixZXbBs+fLhatWqlmJgYbdy4UT/++KOCgoL0yCOPaNKkSfLy8qqy3FXNYrEoNTVVp06dkr+/v0JDQ2U2m42OZTiuCwBciSI7AAAAAAAAAAAuJCIi4obWHu/atatWrFhhv0BOIDk5WbGxsTp69KhtW0BAgCZPnqywsDADkxmL6wIAZWNNdgAAAAAAAAAA4LKSk5MVFRWlkJAQJSYmatu2bUpMTFRISIiioqKUnJxsdERDcF0AoHwmq9VqNTqEo+Xm5srHx0c5OTmqV6+e0XEAAC6Ofsm+uJ4AAGdBn2RfXE8AgLOgT7I/I6+pxWJR3759FRISojlz5sjN7f/HJhYXFysyMlLp6elKTk52qSnSuS4AXFVF+yRGsgMAAAAAAAAAAJeUmpqqo0ePasyYMaUKyZLk5uam0aNH68iRI0pNTTUooTG4LgBwdRTZAQAAAAAAAACASzp16pQkqXXr1mXuL9le0s5VcF0A4OoosgMAAAAAAAAAAJfk7+8vSUpPTy9zf8n2knaugusCAFdHkR0AAAAAAAAAALik0NBQBQQEaN68eSouLi61r7i4WPPnz1ezZs0UGhpqUEJjcF0A4OoosgMAAAAAAAAAAJdkNps1efJkrV+/XpGRkUpLS1NeXp7S0tIUGRmp9evXa9KkSTKbzUZHdSiuCwBcXS2jAwAAAAAAAAAAgGs7ceKEsrKy1KZNG910001Gx6kxwsLCNHv2bMXGxio8PNy2vVmzZpo9e7bCwsIMTGccrgsAlI8iOwAAAAAAAAAATmDTpk1KTExUnz59dP/999u25+bm6vHHH9fKlSslSbVr19asWbP0xBNPGBW1xgkLC1OfPn2UmpqqU6dOyd/fX6GhoS4/UpvrAgBlo8gOAAAAAAAAAIATeOedd/Tuu+/qwQcfLLV9woQJWrFihdzc3OTj46Ps7Gw99dRTCg0N1Z133mlM2BrIbDarc+fORsdwOlwXALgSa7IDAAAAAAAAAOAEUlJSVLt2bfXo0cO2LS8vTx988IHq1q2rnTt36syZM5o5c6aKi4v1+uuvG5gWAADXRZEdAAAAAAAAAAAncOLECQUGBpba9tVXXyk/P19//OMfdeutt0qS/vSnP8nPz0+bNm0yImaNVVhYqISEBL366qtKSEhQYWGh0ZEAAE6K6eIBAAAAAAAAAHAC58+fV1BQUKlt33zzjUwmk/r27Wvb5ubmpltuuUU//vijoyPWWHFxcUpISJDFYim1LSIiQhMnTjQwGQDAGTGSHQAAAAAAAAAAJ9CwYUP99NNPslqttm1ffPGFJKlnz56l2l66dEkeHh4OzVdTxcXFaeHChfL19VV0dLS++eYbRUdHy9fXVwsXLlRcXJzREQEAToYiOwAAMJzFYtGCBQvUs2dP+fn5ycvLSy1atNCDDz6oTz/91Oh4AAAAAAA4xG9+8xudOXNGCxYskHS5wL5161a1a9dOjRo1srWzWq3av3+/mjRpYlTUGqNkiviGDRtqw4YNGjp0qPz9/TV06FBt2LBBDRs2ZOp4AMAVmC4eAAAYKjs7W/fdd5++++47mUwmhYSE6JZbblFWVpY+/fRT1apVSw888IDRMQEAAAAAqHJ/+ctftGLFCj3zzDN64YUXdO7cOZlMJv3lL38p1W7Dhg36+eef1bFjR4OS1hyLFy+WxWLRuHHjVKtW6ZJJrVq1NHbsWL300ktavHixIiIijAmJKnfx4kVlZmY6/LxBQUHy9vZ2+HkB3DiK7AAAwDDFxcUaNGiQvvvuOw0ePFizZs1Ss2bNbPuPHDliyAccAAAAAACM8Nvf/lbLly/X1KlTtX//fgUFBWn8+PF69NFHS7WbN2+eJCksLMyImDXKoUOHJEm9e/cuc3+vXr1KtUPNlJmZqcGDBzv8vElJSWrbtq3DzwvgxlFkBwAAhnn77bf1zTffqHfv3lq2bJnc3EqvZNOsWbNSRffq5OLFi4qLi9NPP/2kFi1aaOLEidyZrMtLA6SmpurUqVPy9/dXaGiozGaz0bEAAAAAwGk88MAD15zR7e2339a8efNUt25dB6WquZo3by5JWrdunYYOHXrF/vXr15dqh5opKChISUlJ131cRkaGJkyYoPj4eAUHB1fqvACqJ4rsAADAMLNmzZIkRUdHX1Fgr84iIyO1du1a2/OUlBQtXrxYffr00Zw5cwxMZqzk5GTFxsbq6NGjtm0BAQGaPHkyoy8AAAAA4DpQXLefYcOGKS4uTjNnztTgwYNLTRlfVFSkWbNmyWw2a9iwYQamRFXz9va+oRHlwcHBjEgHXEzN+TYbAABUK+np6dqzZ48aNGigrl276tNPP9Vjjz2mPn36KDw8XO+8844KCgqMjnndSgrs7u7uevrpp5WcnKynn35a7u7uWrt2rSIjI42OaIjk5GRFRUUpJCREiYmJ2rZtmxITExUSEqKoqCglJycbHREAAAAA4II8PDwUERGhM2fOqEePHkpMTNSJEyeUmJioHj166MyZM4qIiJCHh4fRUQEATsRktVqtRodwtNzcXPn4+CgnJ0f16tUzOg4AwMW5ar/0r3/9S4888oi6du2qli1b6qOPPrqiza233qrVq1erRYsWFX5dI6/nxYsX1b59e7m7u2vbtm2lPoAXFhbqnnvu0aVLl/T999+71NTxFotFffv2VUhIiObMmVNq1oLi4mJFRkYqPT1dycnJTB0PoEZx1T6+qnA9AQDOoqr7pMLCQr333ntavXq1MjMzlZeXp/K+xjeZTMrIyLB7Bkdzhn4+Li5OCQkJslgstm1ms1kRERGaOHGiIZng/Hbt2qXBgweztjpQg1S0T2K6eAAAYIhjx45JkrZs2aKNGzdq1KhRmjp1qho3bqxvvvlGTz/9tPbs2aOHHnpImzdvLnc6+YKCglIj3nNzcx2SvyxxcXGSpCeeeOKKO9w9PDw0YsQIvfPOO4qLi9Pf/vY3IyIaIjU1VUePHtWMGTOu+P/o5uam0aNHKzw8XKmpqercubNBKQEAAADAeMeOHVOfPn20d+/ecgvrv2QymRyQyjVMnDhR48aN0+LFi3Xo0CE1b95cw4YNYwQ7AKBMFNkBAIAhfv75Z0nSpUuX1L17dy1YsMC2r0+fPkpKStLdd9+trVu36r///a9+//vfl/k6MTExeuWVVxyS+Vp++uknSdKQIUPK3D9kyBC98847tnau4tSpU5Kk1q1bl7m/ZHtJOwAAAABwVX/5y1+0Z88eBQUFaeLEibr77rvl7+9PMd1BSqaOBwDgWliTHQAAGMLLy8v257Fjx16xv127durdu7ckafXq1eW+zpQpU5STk2N7HD582P5hK6hkWvt///vfZe4v2X4909/XBP7+/pKk9PT0MveXbC9pBwAAAACuavXq1fLy8tJXX32lp59+Wh07dtQtt9yiFi1alPsAAACOR5EdAAAYon79+rY/33rrrWW2ue222yRJBw8eLPd1PD09Va9evVIPo5Ss0fbee++psLCw1L7CwkK9//77pdq5itDQUAUEBGjevHkqLi4uta+4uFjz589Xs2bNFBoaalBCAAAAAHAOFotFt956qwICAoyOAgAAroIiOwAAMESbNm1sf/b09CyzTcl2i8XikEw3ytvbW3369NGlS5d0zz33KD4+XgcOHFB8fLzuueceXbp0SX369JG3t7fRUR3KbDZr8uTJWr9+vSIjI5WWlqa8vDylpaUpMjJS69ev16RJk2Q2m42OCgAAAACGuuuuu3TmzBmjY7iswsJCJSQk6NVXX1VCQsIVN9C7KovFok2bNmnlypXatGlTtfmeBgCqEmuyAwAAQ9x9993y8vJSfn6+MjMz1apVqyvaZGZmSlK1uoN/zpw5ioyM1Nq1a/XOO+/onXfese3r06eP5syZY2A644SFhWn27NmKjY1VeHi4bXuzZs00e/ZshYWFGZgOAAAAAJzDhAkT9OCDDyoxMVF//OMfjY7jUuLi4pSQkFCqgBwXF6eIiAiXm5Hul5KTkxUbG6ujR4/atgUEBGjy5Ml8lgfg0iiyAwAAQ9SuXVv33XefkpKS9P7771/xwez48eP6/PPPJUn33nuvERErbc6cObp48aLi4uL0008/qUWLFpo4caLLjWD/tbCwMPXp00epqak6deqU/P39FRoaygh2AAAAAPifQYMG6fXXX9eoUaO0efNmjRw5UsHBwfLy8jI6Wo0WFxenhQsXqmHDhho3bpx69+6tdevWaebMmVq4cKEk11v6TbpcYI+KilKvXr00Y8YMtW7dWunp6Zo3b56ioqK4aR6ASzNZrVar0SEcLTc3Vz4+PsrJyTF03VYAACTX7pe2b9+uDh06yGq16t1339WIESMkSefOnVN4eLg+//xzBQUFaffu3fLw8KjQa7ry9QQAOBf6JPviegIAnEVV90knTpzQqFGj9Nlnn12zrclkUlFRkd0zOJqR/XxhYaHat28vX19fbdiwQbVq/f/YxKKiIvXo0UPnzp3T999/X+HvJmoCi8Wivn37KiQkRHPmzJGb2/+vPlxcXKzIyEilp6crOTnZpW+e37VrlwYPHqykpCS1bdvW6DgA7KCifRJrsgMAAMO0a9dOb775pqxWqyIiItSiRQt17NhRAQEB+vzzz+Xn56fly5e71IdYAAAAAIDr2r9/vzp06KDPPvtMVqv1mo/i4mKjI1d7ixcvlsVi0bhx40oV2CWpVq1aGjt2rCwWixYvXmxQQmOkpqbq6NGjGjNmTKkCuyS5ublp9OjROnLkiFJTUw1KCADGosgOAAAMNWbMGH311Vf6/e9/rwsXLuiHH35Qo0aN9Oyzz+r7779X+/btjY4IAAAAAIBDTJw4UVlZWercubM+//xznThxQsXFxVd94MYcOnRIktS7d+8y9/fq1atUO1dx6tQpSVLr1q3L3F+yvaQdALga1mQHAACG6969u7p37250DAAAAAAADPXVV1+pTp06Wr16NcujOEjz5s0lSevWrdPQoUOv2L9+/fpS7VyFv7+/JCk9Pb3MARDp6eml2gGAq2EkOwAAAAAAAAAATqC4uFht2rShwO5Aw4YNk9ls1syZM69Y376oqEizZs2S2WzWsGHDDEpojNDQUAUEBGjevHlXzJhQXFys+fPnq1mzZgoNDTUoIQAYiyI7AAAAAAAAAABOoEOHDjpy5IjRMVyKh4eHIiIidObMGfXo0UOJiYk6ceKEEhMT1aNHD505c0YRERHy8PAwOqpDmc1mTZ48WevXr1dkZKTS0tKUl5entLQ0RUZGav369Zo0aZLMZrPRUQHAEEwXDwAAAAAAAACAE3jxxRf1u9/9TrNmzdLYsWONjuMyJk6cKElKSEjQSy+9ZNtuNpv15JNP2va7mrCwMM2ePVuxsbEKDw+3bW/WrJlmz56tsLAwA9MBgLEosgMAAAAAAAAA4ARatmyp+Ph4TZo0SRs2bNDIkSMVHBysm266qdxjXG2t8KoyceJEjRs3TosXL9ahQ4fUvHlzDRs2zOVGsP9aWFiY+vTpo9TUVJ06dUr+/v4KDQ1lBDsAl0eRHQAAAAAAAAAAJ3DLLbfIZDLJarXqk08+0SeffHLV9iaT6Yp1xFF5JVPHozSz2azOnTsbHQMAnApFdgAAAAAAAAAAnEDz5s1lMpmMjgEAAK6BIjsAAAAAAAAAAE7g4MGDRkdwaWfPntXw4cN18uRJNWrUSIsWLVKDBg2MjgUAcEIU2QEAAAAAAAAAgEvr1q2bTp8+bXuek5OjLl26yM/PTykpKQYmAwA4IzejAwAAAAAAAAAAABjllwX2du3aKSEhQe3atZMknT59Wt26dTMyHgDACTGSHQAAAAAAAAAAJ1JQUKAlS5YoOTlZ+/bt0/nz51W3bl2FhISoX79+Cg8Pl6enp9Exa4SzZ8/aCuxbt25VnTp1JEldunRRXl6eOnTooNOnT+vs2bNMHQ8AsKkWRfZPPvlEq1atUmpqqrKysnTmzBnddNNNuv322/XHP/5RzzzzjDw8PIyOCQAAAAAAAADADdm2bZsefvhhHTx4UFar9Yp9iYmJio6O1tKlS3XPPfcYlLLmGD58uKTLI9hLCuwl6tSpozvvvFM7duzQ8OHDtXLlSiMi2tXFixeVmZnp8PMGBQXJ29vb4ecFgKpSLYrs//jHP5SSkiJPT081bdpU7dq107Fjx/Ttt9/q22+/1QcffKAvvvhCvr6+RkcFAAAAAAAAAKBSjhw5or59+yo7O1t+fn566qmn1LZtW9188806ceKEdu3apXfeeUeZmZnq16+fvv/+ewUEBBgdu1o7efKkJGn8+PFl7h87dqxGjRpla1fdZWZmavDgwQ4/b1JSktq2bevw8wJAVakWRfZRo0Zp2rRp6tatm9zd3W3bv/vuOz388MPaunWr/vrXv+qtt94yMCUAAAAAAABQmsViUWpqqk6dOiV/f3+FhobKbDYbHQuAk4qJiVF2drYGDx6sDz74oMyRvy+++KIef/xxLV++XDExMXrzzTcNSFpzNGrUSDk5OfrnP/+pLl26XLF/1qxZtnY1QVBQkJKSkq77uIyMDE2YMEHx8fEKDg6u1HkBoCapFkX2iIiIMrf/5je/0YwZMzR06FB98sknFNlrkLNnz2r48OE6efKkGjVqpEWLFrHejfhgDgAAAABAdZKcnKzY2FgdPXrUti0gIECTJ09WWFiYgckAOKtVq1apdu3aSkhIKHdqbS8vL7333ntavXq1PvvsMwcnrHkWLVqkLl26aPv27crLyys1ZXxeXp527Nhha1cTeHt739CI8uDgYEakA4AkN6MD3Khbb71VknThwgWDk8BeunXrpi5duig9PV05OTlKT09Xly5d1K1bN6OjGSo5OVl9+/bV8OHD9Ze//EXDhw9X3759lZycbHQ0AAAAALimqVOnymQyyWQyadq0aUbHAapccnKyoqKiFBISosTERNs6yiEhIYqKiuLzPIAyZWVl6bbbbrtibfBfq1Onjm677TYdO3bMQclqrgYNGsjPz0+S1KFDBw0ZMkRff/21hgwZog4dOkiS/Pz8GAQGACil2hfZv/32W0nSPffcY3AS2EO3bt10+vRpSVK7du2UkJCgdu3aSZJOnz7tsoV2PpgDAAAAqM52796t+Ph4o2MADmOxWBQbG6tevXppzpw5at++vWrXrq327dtrzpw56tWrl6ZPny6LxWJ0VABOpm7dujpx4kSF2p44cUK1a9eu4kSuISUlxVZo37Fjh0aNGmUbwe7n56eUlBQj4wEAnFC1LLJbLBYdOXJEc+bM0fPPP6/atWsrJibG6Fi4QWfPnrUV2Ldu3aqlS5eqS5cuWrp0qbZu3SrpcqH97NmzRsZ0OD6YAwAAAKjOrFarRo8eLXd3d917771GxwEcIjU1VUePHtWYMWPk5lb66zc3NzeNHj1aR44cUWpqqkEJATirDh066MiRI/rXv/511XZLlizR4cOHFRoa6qBkNV9KSoq+/fZbtW7dWj4+PmrdurW+/fZbCuwAgDJVizXZS8ycOVPjx48vte3BBx9UdHS07rjjjnKPKygoUEFBge15bm6u3bNdvHhRmZmZdn/diggKCip3fZ7qZPjw4ZIuj2D/9XRIderU0Z133qkdO3Zo+PDhWrlypRERDVHywXzGjBnlfjAPDw9XamqqOnfubFBKAAAAACjbwoUL9fXXX2v69On68ccfjY4DOMSpU6ckSa1bty5zf8n2knYAUOLPf/6zkpOTNWLECG3ZskV/+tOf1LJlS9v+AwcO6I033tCcOXNkMpkUFRVV6XMdOHBAX3zxhTZv3qzNmzdr165dslgsio6O1tSpU8s85uWXX9Yrr7xy1dfdvXu3bZnX6qZBgwYu9d0zAKDyqlWRPSAgQN26ddOlS5f0008/6cSJE1q3bp2WLFmiV199VWazuczjYmJirtnx36jMzEwNHjy4Ss9RnqSkJLVt29aQc9vTyZMnJemKGylKjB07VqNGjbK1cxV8MAcAAABQXZ06dUqTJk3S7bffrvHjx+upp54yOhLgEP7+/pKk9PR0tW/f/or96enppdoBQIn7779fkyZN0vTp0zVz5kzNnDlTnp6e8vf316lTp2yDyaxWq6ZMmaL77ruv0ueaNWuWZs2aValjAwMD1bx58zL33XTTTZXOBABAdVGtiuwPP/ywHn74YdvzTZs2afTo0Xrttdd09uxZzZ07t8zjpkyZoueee872PDc3V4GBgXbNFhQUpKSkpEodm5GRoQkTJig+Pl7BwcGVOndN0KhRI+Xk5Oif//ynunTpcsX+kn/wNWrUyNHRDMUHcwAAAADV1fjx43X27FklJSXJ3d3d6DiAw4SGhiogIEDz5s3TnDlzSs1MV1xcrPnz56tZs2ZM8wygTDExMerWrZtiY2P13XffKT8/X4cPH5Z0eWbLrl27atKkSbr//vtv6Dx+fn4aOHCgOnXqpI4dO+qdd97R8uXLK3TsyJEj9fLLL9/Q+QEAqM6qVZH91zp37qzPPvtMQUFBevvttzV58mS1aNHiinaenp7y9PSs0ize3t43PJo8ODi4RoxIr6xFixapS5cu2r59u/Ly8kpNGZ+Xl6cdO3bY2rkSPpgDAAAAqI7Wrl2rjz76SI899ph69uxpdBzAocxmsyZPnqyoqChFRkZq9OjRat26tdLT0zV//nytX79es2fPLndWRgAYOHCgBg4cqJ9//ln79++3fV/aqlUr1a5d2y7n+PWU8NdaB94VHD9+XA899JBycnLk4+Oj5cuXq3HjxkbHAqoVi8Wi1NRUnTp1Sv7+/goNDeXfPKiRqnWRXZKaNm2q9u3ba9OmTdq+fXuZRXZUDw0aNJCfn59Onz6tDh066M4779TYsWM1a9YsW4Hdz89PDRo0MDipY/HBHAAAAEB1k5+frzFjxsjHx0f/+Mc/KvUaBQUFtilxpcuz0gHVSVhYmGbPnq3Y2FiFh4fbtjdr1kyzZ89WWFiYgekAVBe1a9dWu3btjI7hEtq1a6f8/Hzb89OnT6tnz57y8vLS9u3bDUwGVB/JycmKjY3V0aNHbdsCAgI0efJk/u2DGsft2k2cX1FRUan/ovpKSUmRn5+fJGnHjh0aNWpUqQJ7SkqKkfEMU/LBfN++fQoPD1eHDh0UHh6u9PR0PpgDAAAAcDrTpk3T/v379fe//10333xzpV4jJiZGPj4+toe9l30DHCEsLExr1qzRokWL9Prrr2vRokVKTk7mczyAcpnN5grPANO7d2/VqmXMOLp169bp4Ycf1r333qshQ4YoLi5Ox48fNySLPfyywN6sWTPNnDlTzZo1k3T55kFudACuLTk5WVFRUQoJCVFiYqK2bdumxMREhYSEKCoqSsnJyUZHBOyq2o9kP3jwoO0uMjq6miElJUVnz57V8OHDdfLkSTVq1EiLFi1yuRHsvxYWFqY+ffowzQoAAAAAp7Z7927Fx8frnnvu0TPPPFPp15kyZYqee+452/Pc3FwK7aiWzGazOnfubHQMANWE1WqV1Wq9rvZG2LBhQ6nny5cv18svv6w5c+YoIiLCkEyVdfz4cVuBfdOmTfL19ZUkDRgwQOfOnVPnzp2Vn5+v48ePM3U8UA6LxaLY2Fj16tWr1LK37du315w5cxQZGanp06erT58+1DRQY9xQkf3AgQPasmWLTp48qfPnz6tevXpq1KiROnXqZLdp27du3ar//Oc/GjFihIKCgkrtW716tcaPH6+ioiLdd999Cg4Otss5YbwGDRpo5cqVRsdwOnwwBwAAAODsIiMjVVRUpLlz59q+XKsMT09PeXp62jEZAAA1y88//yx3d3eHnrNJkyZ64YUX9Ic//EFBQUHy9vZWWlqapk2bplWrVmnkyJFq2LChfv/731/1dZxpWZiHHnpI0uUR7CUF9hK+vr5q2rSpsrKy9NBDD7nsTKvAtaSmpuro0aOaMWPGFZ8B3NzcNHr0aIWHhys1NZUaRw138eJFZWZmOvy8JX2SI1WqyP7BBx8oJiZGe/fuLbfN7bffrhdeeEGPPPJIpcNJ0vnz5/Xqq6/q1VdfVePGjdWsWTMVFhbq0KFDOnfunCSpY8eOev/992/oPAAA4Ppt3rxZH3zwgd544w2jowAAACeRlpYmk8mkQYMGXbEvJydHkjR9+nS9+eabCgwM1JYtWxwdEQCAam/v3r3auXOnAgICHHre0aNHX7Gta9eu+u9//6uHHnpIH3/8scaPH6+BAwfKZDKV+zoxMTF65ZVXqjJqhZX8++T5558vc/9zzz2n559/3tYOwJVOnTolSWrdunWZ+0u2l7RDzZWZmanBgwc7/LxJSUlq27atQ895XUX24uJiDR8+XEuWLLFNQ9OwYUMFBgaqdu3aysvL0+HDh3X27Fnt2rVLjz32mD7//HO99957V+1Qr6Zdu3aaNWuW1q5dq127dmnPnj0qLCxUw4YN1aVLFw0dOlSPPfaYYWvPAADgag4ePKgPP/xQH374odLT0yWJIjsAACjFYrHoxIkT5e7Py8tTXl6evLy8HJgKAADnM2vWLM2aNavUttTU1Ctmdf2lixcv6uTJk5KkBx54oErzVZTJZFJsbKw+/vhjZWRk6Icffrjq8q7OtCyMj4+PTp8+rX/84x8aMGDAFftnzJhhawegbP7+/pKk9PR0tW/f/or9Jd8hlrRDzRUUFKSkpKTrPi4jI0MTJkxQfHx8pWYuv1q/WVWuqzL96quvavHixTKbzfrTn/6kMWPGqE2bNle02717t+bOnau5c+fqgw8+UKtWrTR16tRKBaxfv76ioqIUFRVVqeMBAMCNy8nJ0dKlS/XBBx/YpkazWq1yd3dX//79DU4HAACcScmsc2WJiIjQ+++/r+jo6Ep/TwAAQE1y7tw5HTx40PbcZDIpPz+/1Lay1K1bVw8//LCmTZtWtQGvQ0hIiBo0aKCzZ89q//79Vy2yO9OyMMuXL1fPnj115MgRnTt3rtSU8efOnVNWVpatHYCyhYaGKiAgQPPmzSu1Jrt0eQDv/Pnz1axZM4WGhhqYEo7g7e19QyPKg4ODHT4ivbIqXGQ/ffq0YmNjVatWLa1cuVJhYWHltr3ttts0e/Zs3Xffffr973+vv//973rmmWfUsGFDu4QGAABVr6ioSJ999pk++OADrVy5UoWFhbaZbLp06aLHHntMf/zjH9WgQQODkwIAAAAAUD2NGzdOERERki7fzB4UFKSOHTtq6dKlZbY3mUzy9vZ22tGgJWvEFxUVGZyk4ho3biwvLy/l5+erc+fOatq0qZ577jnNmDHDVmD38vJS48aNDU4KOC+z2azJkycrKipKkZGRGj16tFq3bq309HTNnz9f69ev1+zZs2U2m42OCthNhYvsH3zwgQoLC/WXv/zlqgX2X+rfv7+ioqI0c+ZMffTRR4xGBwCgGti0aZM++OADJSYm6uzZs7bCekhIiPbt26fGjRvbRrMDAAAAAIDK8/HxKTUN+YgRI9SmTRu1aNHCwFSVc/r0ads09s2aNTM4zfXZvn272rVrp/z8fGVlZZVan93Ly0vbt283MB1QPYSFhWn27NmKjY1VeHi4bXuzZs00e/bsCtcWgeqiwkX2b775RiaTSc8888x1nSAyMlL//Oc/tWHDBorsAAA4qQMHDujDDz/UBx98oIyMDEmX76Bv3LixwsPD9eijj6pDhw6lpnoCAABAzXXx4kVlZmY6/LxBQUHy9vZ2+HkBwFm89957RkeotBkzZshqtcrHx0cdO3Y0Os512759u44fP66HHnpIOTk58vHx0fLlyxnBDlyHsLAw9enTR6mpqTp16pT8/f0VGhrKCHbUSBUusv/www9q1KjRdS8cHxwcrEaNGumHH3647nAAAKDqde/eXRs3bpR0ubBer149DR48WI8++qjuvfdemUwmgxNWT8nJyfrzn/9se/7GG29wx64ki8XCBy0AcGEJCQlKSEgwOgYqIDMzU4MHD3b4eZOSkqrNGowA4Gp27dqlt956S88++2ypv6vz8/M1Y8YMTZ8+XZI0adIkeXh4GBXzhjB7H3DjzGazOnfubHQMoMpVuMh+9uzZSk9R07RpU/3000+VOhYAAFStlJQUmUwm+fr66vXXX9cjjzwiT09Po2NVa23atLliW0nBfe/evY6O4zSSk5MVGxuro0eP2rYFBARo8uTJ3IAAAICTCQoKUlJS0nUfl5GRoQkTJig+Pl7BwcGVOq8zY4R/2bgugP0dOHBAiYmJ2r59u86ePatLly6V2c5kMmnt2rWVOkdKSooeeOAB2/O8vDxJUkxMjGbOnGnbnpaWpsDAQF26dElz587V3Llz5e/vr+bNm0uSdu/erQsXLkiSnnzySU2ePLlSeQAAqE4qXGTPzc1VnTp1KnWS2rVrKzc3t1LHAgCAqmU2m2WxWHTu3Dn96U9/0ueff65hw4ZpwIABqlWrwv9UwP/8usAeGhqq1NTUUvtdsdCenJysqKgo9erVSzNmzFDr1q2Vnp6uefPmKSoqirW5AABwMt7e3jc0ojw4OLhGjkhnhH/ZuC6AfcXHx+uvf/2rioqKbLPLWa1W2/5fbruR2ecuXbqkM2fOXLH9woULtqK5dHlGMkm65ZZbFB0drY0bN2rPnj3au3evCgsL1ahRI913330aNWqU+vXrV+k8AABUJxX+5rykI62s4uLiGzoeAABUjaNHj2rx4sX68MMPtW3bNiUmJmrp0qWqX7++hgwZokceeUQ9e/Y0Oma1kJycbPvzBx98oE6dOtmeb968WY8//ritnSsVlC0Wi2JjY9WrVy/NmTNHbm5ukqT27dtrzpw5ioyM1PTp09WnTx+mjgcAAE6NEf5l47oA9vPZZ59p0qRJatKkiaKjozVz5kzt2rVLa9as0eHDh7V9+3YtXLjQ9jnrrrvuqvS5evXqVap4fy2+vr6aOnVqpc8HAEBNcl3D0woKCnTo0KHrPklBQcF1HwMAAByjUaNGGjdunMaNG6fdu3dr0aJFWrx4sQ4fPqwFCxZowYIFCggI0B//+Eejozq9X67B/ssC+6+f//nPf3ap0eypqak6evSoZsyYYSuwl3Bzc9Po0aMVHh6u1NRU1uwCAABOjRH+ZeO6APbzxhtvyGQyaenSperWrZvee+89SVKfPn1sbaZOnaqHHnpIL774orZs2WJUVAAAXNp1FdlTU1PVsmXLqsoCAAAMdttttykmJkavvfaa1q9fr0WLFikpKUlHjhzRjBkzZDKZdO7cOUVHR+vRRx9l5Eg5QkNDy9x+11136YcffnBwGuOdOnVKktS6desy95dsL2kHAAAAAK5q69atatKkibp161Zum4YNG2rJkiVq0aKFXnnlFX344YcOTAgAAKTrLLJfz9Qxv3Yja8MAAADHMplM6t27t3r37q25c+fqk08+0aJFi7RmzRrl5+fr5Zdf1ssvv6wuXbro8ccf1+jRo42O7FR+uQb7L7ligV2S/P39JUnp6elq3779FfvT09NLtQMAlO306dOSJD8/P4OTAACAqpKbm6t27drZnnt5edm216tXz7a9SZMmuuOOO7Ru3TqHZ6wuLl68qMzMTIefNygoSN7e3g4/L1AV+D0qH9cGFS6yHzhwoCpzAAAAJ+Xl5aXw8HCFh4fr5MmT+uijj/Thhx8qLS1NGzdu1LfffkuR/X/eeOMN25TxmzdvvmJN9l+2cyWhoaEKCAjQvHnzSq3JLknFxcWaP3++mjVrVu4MAADgys6dO6cXXnhBiYmJOnfunCTJx8dHDz/8sF577TU1bNjQ2IAAAMCuGjVqpNzc3FLPJWnv3r3q2LFjqbZ5eXk6c+aMQ/NVJ5mZmRo8eLDDz5uUlMQSGKgx+D0qH9cGFS6yt2jRoipzAACAaqBRo0YaP368xo8frx9//NG2fjsuCwsLs/358ccfl1T2FPG/bOcKzGazJk+erKioKEVGRmr06NFq3bq10tPTNX/+fK1fv16zZ8+W2Ww2OioAOJWLFy+qe/fu+vHHH0vNLHfu3Dm98847+vrrr7VlyxbVrl3bwJQAAMCegoODtW3bNtvzzp07a8mSJZo7d26pIvvatWu1f/9+lne9iqCgICUlJV33cRkZGZowYYLi4+MVHBxcqfMCNQW/R+Xj2uC6posHAAAocfvttys2NlYxMTFGR3Eqe/fuVZs2bWzPf11g37t3r6MjOYWwsDDNnj1bsbGxCg8Pt21v1qyZZs+e7XI3HgBARcyaNUu7du2Sr6+vXnrpJfXo0UNWq1UbNmxQdHS09u7dq5kzZ+qvf/2r0VEBAICd9O/fXxs2bNCWLVvUsWNHDRs2TH/729/0/vvva9++ferSpYtOnDihpUuXymQy2W7wxpW8vb1vaLRncHAwo0Xh8vg9Kh/XBlVSZC8sLNS5c+fk7+/PWuwAANQgZfXx9PVX2rt3r5KTk21Tx0uXp4h39UJyWFiY+vTpo9TUVJ06dUr+/v4KDQ1lBDsAlOPjjz+WyWTS8uXL1bt3b9v2Dh066K677lLfvn318ccfU2QHAKAGGTp0qPbv36+zZ89Kkvz8/JSYmKjw8HBt3LhRGzdutLUdMmSIpk6dalRUAABc2nUX2Xfv3q21a9eqsLBQt956qwYMGGD7cn3lypV66aWX9MMPP8hqtapu3boaNmyYYmNjVa9ePbuHBwAA9kMfb19hYWEuO2r9asxmszp37mx0DACoFvbu3auAgIBSBfYSffr0UbNmzZSenm5AMgAAUFVatmypBQsWlNoWFhamAwcOaNWqVTp48KC8vb3VvXt33XPPPQalBAAA11Vkf/HFFxUTE1NqLbi7775b69at03//+1899thjKi4utu3Lzc3V/PnztW3bNn3zzTeqVYvZ6QEAcEb08QAAOJ/z58/rzjvvLHd/8+bN9e233zowEQAAMIqPj0+ppbcAAICx3CracNWqVfr73/+u4uJiNWrUSB06dFDdunWVlpam1157Tc8//7x8fX31xhtvaOvWrdqyZYtmzpwpX19fbdmyRW+//XZVvg8AAFBJ9PEAADgnq9V61WVZWLIFAAAAAABjVHjY2bx582QymfTcc88pLi5OJpNJeXl5+sMf/qBZs2apoKBAa9as0b333ms7pkOHDrr11lvVv39/LV26VJGRkVXyJgAAQOXRxwMAAAAAAAAAUHEVLrJv2bJFdevW1bRp02x3y9epU0cxMTHq1KmTGjduXOrL9xJhYWG6+eabtXPnTvulBgAAdkMfDwCA80pJSZHZbL5qm/L2m0wmFRUVVUWsGuPixYvKzMx0+HmDgoLk7e3t8PMCAAAAAOyjwkX206dP64477pCnp2ep7bfffruky2vBlad58+batm1bJSMCAICqRB8PAIDzslqtRkeo0TIzMzV48GCHnzcpKUlt27Z1+HkBAAAAAPZR4SJ7UVGR6tSpc8X2m266SZLk4eFR7rEeHh4qLi6uRDwAAFDV6OMBAHBO69atMzpCjRcUFKSkpKTrPi4jI0MTJkxQfHy8goODK3VeAAAAAED1VeEiOwAAAAAAcJyePXsaHaHG8/b2vqER5cHBwYxIBwAAAAAX5GZ0AAAAAAAAAAAAAAAAqovrGsmemppa5pRmJpOp3H2SdOzYscqlAwAADkEfDwAAAACA8Xbv3q3bbrvN6BgAAOAarqvInp+fr4MHD173Punyl/QAAMA50ccDAOD8Ro4cWeG2ZrNZdevW1S233KJu3bqpQ4cOVZgMAADYyx133KGOHTsqIiJC4eHh8vX1NToSAAAoQ4WL7O+9915V5gAAAAahjwcAoHpISEiQ9P83uFmt1iva/HpfyfMOHTro/fffZ2QcAABOztfXV5s3b9aWLVs0fvx4PfDAA4qIiFC/fv24yR0AACdS4SL7iBEjqjIHAAAwCH08AADVw3vvvaeMjAxNnz5dtWvX1oMPPqi77rpLdevW1fnz57Vjxw598skn+vnnnzVx4kQ1btxYu3fv1vLly5WamqrevXsrLS1NTZo0MfqtAACAchw/flz/+c9/9P7772v16tVaunSpli1bpsaNG+vxxx/XiBEjuGkOAAAn4GZ0AAAAAAAAcG09evTQW2+9pXvvvVeZmZl69913NW7cOD355JMaN26cFi5cqAMHDqh3796aM2eO+vfvrzfeeEPp6enq27evTp06pfj4eKPfBgAAuAp3d3c99NBD+s9//qOsrCzNmDFDd911l44dO6a4uDjdcccd+s1vfqN58+bp3LlzRscFAMBlUWQHAAAAAKAamDp1qvLz87VkyZJy12etV6+eFi9erIsXL2rq1KmSpNq1a+vdd9+VyWTSZ5995sDEAADgRvj5+WncuHFKS0vT9u3bNX78ePn7+2vz5s169tln1aRJE4WHh2v16tVlLiMDAACqToWni1+0aNENn2z48OE3/BoAAMC+6OMBAKge1q5dq7Zt25ZbYC9Rv359tW3bVl9++aVtW0BAgG699VYdOHCgilMCAICqcOedd+r1119XXFyc/vGPf+jFF19UYWGhbTr5Jk2aaPTo0YqKipKPj4/RcQEAqPEqXGSPiIiQyWSq9IlMJhNfwAMA4ITo4wEAqB5yc3N19uzZCrU9e/ascnNzS23z9PS8oT4fAAAYJzs7W0uWLFFCQoK2bt0qq9Uqd3d3DRgwQCdOnNCmTZv08ssva968efr88891xx13GB0ZAIAarcJF9ubNm5f7Yfynn36Sp6enGjdubLdgAADAMejjAQCoHlq3bq2dO3dq5cqVGjhwYLntVq5cqczMTN11112ltmdmZsrf37+qYwIA/ufixYvKzMx0+HmDgoLk7e3t8PPC/iwWiz777DO9//77WrlypS5duiSr1arbb79dTzzxhIYPH27r23/88Ue98MIL+s9//qPx48drzZo1BqcHAKBmq3CR/eDBg+Xuc3NzU8eOHbVhwwZ7ZAIAAA5EHw8AQPXwzDPPKDIyUkOHDtVLL72kiIiIUjfCnThxQgkJCYqOjpbJZNIzzzxj27d9+3bl5OTo3nvvNSI6ALikzMxMDR482OHnTUpKUtu2bR1+XtjP999/r/fff1+LFy/W6dOnZbVaVa9ePY0YMUIjR45U586drzjm9ttvV1JSklq2bKlNmzYZkBoAANdS4SI7AAAAAAAwzpgxY7Rlyxa99957+utf/6q//vWvatiwoerWrau8vDydPn1akmS1WvXkk09q9OjRtmPXr1+vnj17ssQLADhQUFCQkpKSrvu4jIwMTZgwQfHx8QoODq7UeVF9tW/fXjt27JDVapXJZFKPHj00cuRIDRky5JozFLi5ually5Y6cuSIg9ICAOC6KLIDAAAAAFBNLFy4UAMGDNDrr7+uzZs36/Tp07biupubmzp37qznnntODz30UKnjxo4dq7FjxxoRGQBclre39w2NKA8ODmZEugv64YcfFBgYqOHDh2vkyJFq2bLldR0/ZcoUPfHEE1WUDgAAlKDIDgAAAABANTJkyBANGTJEeXl52r9/v37++WfVrl1brVq1Up06dYyOBwAAbsCqVasUFhYmk8lUqeP79etn50QAAKAsFNkBAAAAAKiG6tSpo/bt2xsdAwAA2FGnTp0qXWAHAACOQ5EdAAAAAIBq6OLFi8rIyND58+dVt25dBQcHX3OtVgAAjHbx4kVlZmY6/LxBQUHVop9s3Lix+vXrp2HDhmnQoEG66aabjI4EAADKQJEdAAAAAIBq5PPPP1dMTIw2btwoi8Vi2242m/Xb3/5WkydPVlhYmIEJAQAoX2ZmpgYPHuzw8yYlJVWLNe6tVqtWrlyp//73v7rppps0aNAghYeHa8CAAapVi6/zAQBwFhXulTds2HDV/Tk5Odds06NHj4qeDgAAOAh9PAAA1cfLL7+s6OhoWa1WSZKHh4f8/f116tQpFRYWav369frqq6/04osv6uWXXzY2LAAAZQgKClJSUtJ1H5eRkaEJEyYoPj5ewcHBlTpvdXDixAktW7ZMS5Ys0ddff60lS5boX//6l3x9fTVkyBA98sgj6tWrl9ExAQBweRUusvfq1avctWBMJpN27typ3r17l3u8yWRSUVHR9ScEAABVij4eAIDqYfXq1Xr11VdlNps1evRojR07Vq1bt7btT09P16xZs/T2228rOjpaXbp0Ub9+/QxMDADAlby9vW9oRHlwcHC1GJFeWfXr19fTTz+tp59+WseOHdO//vUvLVmyRKmpqVqwYIHeeecdNWnSROHh4QoPD1doaKjRkQEAcElu19PYarVW+lFcXFxV7wEAANwg+ngAAJzf7NmzZTKZ9O677+rNN98sVWCXpNatW+vNN9/Uu+++K6vVqlmzZhmUFAAA2EOTJk00fvx4bd68Wfv379err76qW2+9VVlZWfrnP/+pzp07q02bNkbHBADAJVW4yF5cXHzDDwAA4Hzo4wEAqB62bNmiZs2a6fHHH79qu8cee0yBgYHavHmzg5IBAICqFhQUpKlTp2rXrl36/vvv1a9fP1mtVu3fv9/oaAAAuKQKTxcPAAAAAACMc/78ebVs2bJCbW+++Wbt2LGjihMBAABHyszM1JIlS7RkyRLt3r3b6DgAALg0iuwAAAAAAFQDTZs21Z49e/Tzzz+rdu3a5bb7+eeftXv3bjVp0sSB6QAAQFU4fvy4EhMTtWTJEm3ZskXS5SXfmjRpoj/+8Y8aNmyYwQkBAHBNFNkBAAAAAKgG+vXrp/nz5+upp55SQkKCPDw8rmhTWFioUaNG6cKFC+rfv78BKQEAwI06d+6c/v3vf2vJkiXasGGDiouLZbVa5evrq8GDB2vYsGHq3bu3TCaT0VEBAHBZFNkBAAAAAKgGXnjhBSUmJioxMVHr16/XU089pdtvv12NGjXSyZMn9eOPP2rBggU6ceKEfHx8NGXKFKMjAwCA6zRo0CAlJyfr0qVLslqt8vb21sCBAzVs2DANGDCgzJvsAACA41FkBwAATmXq1Kn6+9//LkmKjo7W1KlTDU4EAIBzCAwM1KpVqzR06FAdPnxY06ZNu6KN1WpV8+bNtXTpUgUGBhqQEgAA3IiVK1eqVq1aCgsL07Bhw/SHP/xBderUMToWAAD4FYrsAADAaezevVvx8fFGxwAAwGl17txZe/bs0eLFi5WcnKx9+/YpLy9PderUUUhIiPr166dHHnlEBw4c0A8//KC77rrL6MgAAOA6vPHGG/rjH/8oPz8/o6MAAICroMgOAACcgtVq1ejRo+Xu7q7f/va3+vLLL42OBACAU/L29taTTz6pJ598stw2PXv2VHZ2toqKihyYDAAA3Khnn33W6AgAAKACKLIDAACnsHDhQn399deaPn26fvzxR6PjoIocOHBADzzwgAoKCuTp6alPP/1ULVu2NDqW4fLy8jRx4kQdPnxYgYGBiouLY0rI/8nJydGYMWOUlZWlpk2bat68efLx8TE6FlAtWK1WoyMAAADYRVZWlrKzsx1yroyMjFL/dYT69euradOmDjtfTcfPCwBHoMgOAAAMd+rUKU2aNEm33367xo8fr6eeesroSKgCt912m4qLi23PCwoK1L9/f7m5uWn37t0GJjPWkCFDtGPHDtvzffv2qUOHDrrzzjv173//28Bkxuvbt68OHTpke378+HF16tRJzZs315o1awxMBgAAAFStAwcOKDExUdu3b9fZs2d16dKlMtuZTCatXbvWwekcKysrS/379VdBYYFDzzthwgSHncvTw1OrP19N4dQOsrKy1G/AABXm5zv0vI78efHw8tLnq1bx8wIYjCI7AAAw3Pjx43X27FklJSXJ3d3d6DioAr8ssNepU0djx47VrFmzlJeXp+LiYt12220uWWgvKbCbTCYNGjRII0eO1Lvvvqv//Oc/2rFjh4YMGeKyhfZfFti7d++uZ599Vm+99Za+/vprHTp0SH379qXQDgAAgBopPj5ef/3rX1VUVCSTySSp9Aw1v9xW8ueaLDs7WwWFBWqX0051LDVvxq88c562+2xXdnY2RVM7yM7OVmF+vi489JCK/fyMjmN3bqdPS8uX8/MCOIEbKrKbzWb16tWrxt8pBwCAq3FkH7927Vp99NFHeuyxx9SzZ88qPx8c78CBA7YC+9dff61GjRpJkoYPH66TJ0+qe/fuKi4u1oEDB1xq6vi8vDxbgf3777+Xl5eXJCkuLk6vvvqq2rdvrx07digvL8/lpo7PycmxFdjT0tJ00003SZLeeecdXbhwQXfffbcOHTqknJwcpo4HAABAjfLZZ59p0qRJatKkiaKjozVz5kzt2rVLa9as0eHDh7V9+3YtXLhQFotFsbGxuuuuu4yO7DB1LHXkU8S//1ExxX5+KqYIDaAK3VCR3Wq1XrHGW1RUlHbt2kXhHQCAasxRfXx+fr7GjBkjHx8f/eMf/6jUaxQUFKig4P+njMvNzbVXPJuLFy8qMzPT7q97LUFBQfL29nb4ee3tgQcekHR5BHtJgb1Eo0aNVLt2bf3888964IEH9MMPPxgR0RATJ06UJA0aNMhWYC/h5eWlgQMHasWKFZo4caLmzJljRETDjBkzRtLlEewlBfYSN910k7p166aUlBSNGTNGS5YsMSIiAAAAUCXeeOMNmUwmLV26VN26ddN7770nSerTp4+tzdSpU/XQQw/pxRdf1JYtW4yKCgCAS6twkX3UqFHq2rWrunTpottuu63cdmlpadq4caNdwgEAgKpnZB8/bdo07d+/X2+++aZuvvnmSr1GTEyMXnnlFbvm+rXMzEwNHjy4Ss9RlqSkJLVt29bh57W3kpsgxo4dW+b+Z599VnFxcaVulnAFhw8fliSNHDmyzP1PPPGEVqxYYWvnSrKysiRd/tkoS2RkpFJSUmztADgfq9WqlJQUffrpp/r666+1Z88eXbhwQX5+furSpYv+9Kc/qXfv3kbHBADA6WzdulVNmjRRt27dym3TsGFDLVmyRC1atNArr7yiDz/80IEJAQCAdB1F9nfffdd215yPj49+85vfSLo8squoqEi1arG8OwAA1ZFRffzu3bsVHx+ve+65R88880ylX2fKlCl67rnnbM9zc3MVGBhoj4g2QUFBSkpKuu7jMjIyNGHCBMXHxys4OLhS560JPD09VVBQoFmzZmn48OFX7H/rrbds7VxJYGCg9u3bp3fffVdxcXFX7C/5vbT3z3N10LRpUx0/flxvvfWW3nnnnSv2l4zsZ/051HSLFi2q9LFG37j05Zdf6ne/+50kyc3NTa1atVLt2rWVnp6upKQkJSUlaerUqYqOjjY0JwAAziY3N1ft2rWzPS+Z9So3N1f16tWzbW/SpInuuOMOrVu3rtLnOnDggL744gtt3rxZmzdv1q5du2SxWBQdHa2pU6de9dhvv/1WsbGx2rhxo/Ly8tSyZUs98sgjmjBhwhUzdQEAUBNV+FvzjIwMbdy4URs3blRKSoqSk5NlMpm0efNm+fj4qFu3burdu7fOnDlTlXkBAICdGdXHR0ZGqqioSHPnzpWbm1ulX8fT07PKi7Pe3t43NKI8ODi4RoxIr6xPP/1U/fv3V15enk6ePFlqyviTJ0/q559/trVzJXFxcerQoYP+85//6NVXXy31RVR+fr5Wrlxpa+dq5s2bp06dOunrr7/WhQsXSk0Zf+HCBaWkpNjaATVZRESETCZTpY61Wq2VPtYerFarWrVqpeeee07h4eGqX7++JKmwsFAvv/yyYmJiNG3aNHXu3FkDBw40LCcAAM6mUaNGpZZBK/n8tHfvXnXs2LFU27y8vBv6rD5r1izNmjXruo/76KOPNGLECFksFgUEBCgwMFA7d+7USy+9pBUrVmj9+vVXLPsEAEBNU+Eie8uWLdWyZUs9+uijkqTz58/Lx8dHTZs2VatWrbRhwwZ98cUXkiSTyaRevXqpa9eu6tatm7p06aIGDRpUzTsAAAA3xKg+Pi0tTSaTSYMGDbpiX05OjiRp+vTpevPNNxUYGMg6c9VYy5Yt5ebmpuLiYnXv3l21a9fWs88+q7feestWYHdzc1PLli0NTupYderU0Z133qkdO3aoffv2GjhwoJ544gm99957WrlypaxWq+68807VqVPH6KgO5+Pjo+bNm+vQoUO6++671a1bN0VGRmrOnDm2Anvz5s3l4+NjcFKgajVv3tzQQvmN6NSpk3bv3n3FjDgeHh567bXX9P3332vVqlVasGABRXYAAH4hODhY27Ztsz3v3LmzlixZorlz55Yqsq9du1b79++/oc9Rfn5+GjhwoDp16qSOHTvqnXfe0fLly696zMGDB/Xkk0/KYrEoLi5Ozz//vEwmk3766Sf169dPW7Zs0cSJE/Xmm29WOhcAANVBped/rVu3riQpJCREX375pfLz8/XNN99ozJgxOnDggL777jtt2LDB9oVAmzZt9OOPP9onNQAAqDKO7OMtFotOnDhR7v68vDzl5eUx1VwNsHv3bt12220qLi7Wzz//XGp0tpubm3bv3m1gOuP8+9//1pAhQ7Rjxw6tWLFCK1assO2788479e9//9vAdMZas2aN+vbtq0OHDiklJcVWXJcuFx7XrFljYDrAMQ4ePGh0hEr75XS2Zenbt69WrVqlffv2OSgRAADVQ//+/bVhwwZt2bJFHTt21LBhw/S3v/1N77//vvbt26cuXbroxIkTWrp0qUwmkx5//PFKn+vXU8L/61//uuYx8fHxKigoUFhYmCZMmGDb3qJFC7377rvq1q2b3n77bb344ou6+eabK50NAABnV+G5WYcMGaIZM2bo22+/VWFh4RX7vby89Lvf/U5NmjSRdHmNmJSUFP3jH//Q4MGDdf78efulBgAAdmNUH3/u3DlZrdYyHyNGjJAkRUdHy2q1VusiA/7f7t27tXr1atv0/p6enlq9erXLFthL/Pvf/9bWrVvVp08fhYSEqE+fPtq6datLF9hLrFmzRps3b9Y999yjxo0b65577tHmzZspsAM1QH5+vqTLS7IAAID/N3ToUI0cOVJnz56VdHm0eWJionx8fLRx40a9/vrr+vDDD1VYWKiHHnrommun25PVatXHH38sSXryySev2N+1a1fdeuutunTpksstBwYAcD0VHsmelJRk60A9PDx09913S7r8Rfu5c+fk6+tbqr2Hh4e6dOmiLl26aPz48fZLDAAA7Io+Ho7UsmVL/fDDD0bHcDp16tTRnDlzjI7hlHx8fLRkyRKjYwCwI6vVqmXLlkmSunXrZnAaAACcS8uWLbVgwYJS28LCwnTgwAGtWrVKBw8elLe3t7p376577rnHodkOHTqkY8eOSSq/D+/WrZv27NmjTZs26emnn7br+S+ZLqnAVGDX13QGl0yXjI4AAKiEChfZT506pW+//db22LJli0wmk9LS0uTn56f27dvr3nvvveqUrwAAwPnQxwMAAEdasGCB0tLS5OHhoXHjxpXbrqCgQAUF//9Fem5urgPSAQDgnHx8fBQeHm5ohvT0dEmXZyVr2rRpmW2CgoJKtbWnzfU32/01AQCorAoX2Rs2bKiBAwdq4MCBki6voeru7q7mzZurXbt2+uqrr7Rt2zZJkslkUocOHWyj3Lp06WLrXAEAgHOhjwcAAI6ybds2jR07VpI0bdo0BQcHl9s2JiZGr7zyiqOiAfifrKwsZWdnO+RcGRkZpf7rCPXr1y+3OAjg6kr+bvD19ZXJZCqzTf369Uu1LQ8309kHf2fjevDzUj6uTdm4LldX4SL7r5nNZkmX70z79NNPVVxcrC1btmj48OHav3+/Dh06pLS0NM2dO1eS5O/vr+PHj1c6KAAAcAxn6OMTEhKUkJBg19cEAADGOnDggAYOHKj8/HwNGzZMzz///FXbT5kyRc8995zteW5urgIDA6s6JuDSsrKyNKB/f+UXOHY65gkTJjjsXF6enlq1ejVFGzi9HTt2aPbs2frqq6909OhRFRQUqKioyLZ//vz5+umnnzR58mTVq1fPIZny8/MlXV5Grjyenp6SpIsXL171tbiZ7sZlZWWpf//+pW5WcARH/p3t6emp1fydbRf08eW7/Ls0QAUF+VWUrGyO/V3y0urVq67r2vB3zLVVusj+a25uburcubMaNWqk/fv369SpU9q7d6++++47paSk6LvvvrPXqQAAgAPRxwMAgBt1/Phx9e3bV8eOHdP999+vhISEckfAlfD09LR9UQ/AMbKzs5VfUKDJXc1q7nP139Hq6FCOVbEbC5SdnU3BBk7trbfe0vjx40sV1X/dbxYUFGj69Olq27atHn30UYfk8vLykiQVFhaW26akGOPt7X3V1+JmuhuXnZ2tgoICuf/GXW713IyOY3fFucUq+I6/s+2FPr58l3+X8uV5zwNyq9OwihIapzjvjAq2fXrd16bk75im/l3l4e5ThQmNUXgpR1mnNt7Q3zF2K7KXpU2bNmrTpo1GjBhR6dewWq1KSUnRp59+qq+//lp79uzRhQsX5Ofnpy5duuhPf/qTevfubcfUAADgWuzRxwMAANdw9uxZ9e3bVxkZGerZs6eWLVsmd3d3o2MBuIrmPia1blDzCjZSsdEBgGtat26doqKiVLduXf3973/XoEGD9Mgjj+jbb78t1W7o0KEaN26cPv74Y4cV2Uumgj937pysVmuZN8yVTCtc0rY8lbmZrlN2J9Utqntdx1QH52udv6H15t3qucmtRv6djapAH18+tzoNZfZtYocsNYuHu4+8PRsYHcMp3VCRvbj4yh9aq9V6Iy95hS+//FK/+93vJF0eSdeqVSvVrl1b6enpSkpKUlJSkqZOnaro6Gi7nhcAAFfmiD4eAADUfHl5ebrvvvu0c+dOdezYUStWrLjmyDYAAFzZ66+/Lkn66KOPdP/990u6chS7JDVu3FiBgYH68ccfHZatdevWki6PVs/KylJAQMAVbTIzM0u1tSd3q7s8rTVvlpt8q2OnqAYA2IfdR7K/+eabysnJsdvrWa1WtWrVSs8995zCw8Ntd8AVFhbq5ZdfVkxMjKZNm6bOnTtr4MCBdjsvAAAozd59PAAAqNkKCgr0wAMPaNOmTWrbtq1Wr16tunVr3ugzVF9ZWVm2EZdVLSMjo9R/HaF+/fpMr4sqx++R/X333Xdq3LixrcB+NU2aNNHu3bsdkOqy5s2bq3Hjxjp+/LhSUlI0dOjQK9qkpKRIkjp37uywXAAAGMHuRfb27dvb9fU6deqk3bt3q1at0lE9PDz02muv6fvvv9eqVau0YMECiuwAAFQhe/fxAACg5rJYLAoPD9eXX36p4OBgrVmzRg0aMMUgnEdWVpb6DRigwnzHjh6cMGGCw87l4eWlz1etotBuJxSTr5SVlaX+/fvb1uB2FEf+Hnl6emr16tUO/T3Ky8tTixYtKtS2sLBQFoulihP9P5PJpD/84Q+aO3euFi5ceEWRfePGjdqzZ4/c3d01aNAgh+UCAMAIVbomuz3Uq1fvqvv79u2rVatWad++fQ5KBAAAAAAArmbp0qX65JNPJF1e+u3hhx8us12TJk20bNkyByYDLsvOzlZhfr4uPPSQiv38jI5jd26nT0vLlys7O5siux1cLiYPUEFBzb0pw9PTS6tXX99NGdnZ2SooKFBT/67ycPepwnTGKLyUo6xTGx3+e9SkSZMK3WCRn5+vPXv2qGXLlg5I9f8mTJighQsXKjk5WfHx8Xr++edlMpn0008/aeTIkZKkUaNGqXHjxg7NBQCAozl9kf1a8v93xzFrugEAAAAA4Bx+OaoxPT1d6enpZbar6Eg9oKoU+/mpmCI0ruFyMTlfnvc8ILc6DY2OY3fFeWdUsO3TSheTPdx95O3JbCX20rt3b73//vt69913bUXrssyaNUv5+fnq169fpc+VkpKiBx54wPY8Ly9PkhQTE6OZM2fatqelpSkwMFCS1LJlSy1YsEBPPPGEJk6cqFmzZqlRo0bauXOnLl26pA4dOig+Pr7SmQAAqC6qdZHdarXa7njv1q2bwWkAAAAAAIAkRUREKCIiwugYAGBXbnUayuzbxOgYqOEmTZqkxYsX689//rMuXryoESNGlNp/7tw5zZ49W9HR0apdu7bGjx9f6XNdunRJZ86cuWL7hQsXdOHCBdvzX09JP3z4cLVq1UoxMTHauHGjfvzxRwUFBemRRx7RpEmT5OXlVelMAABUF9W6yL5gwQKlpaXJw8ND48aNK7ddQUFBqbvoc3Nzr/q6jlxjSao+6yxV1sWLF5WZmemQc/1SUFCQU89wwHUpG9cF18OonxeJnxkAAAAAAGB/bdq00aJFizRixAhFRUVp/PjxMpvNkqTmzZvr2LFjKi4uloeHhz788EPbCPPK6NWrl6xWa6WO7dq1q1asWFHpcwMAUN1V2yL7tm3bNHbsWEnStGnTFBwcXG7bmJgYvfLKKxV63aysLPXv118FhQXXbmxnDl1nycNTqz9f7ZBCe2ZmpgYPHlzl5/m1pKQktW3b1uHnrSiuS9m4LrgeRv28SPzMAAAAOBtH3jBf02+WBwAYa+jQobrtttv08ssva9WqVbYlU48cOSJ3d3cNGDBA0dHRateuncFJASd28aJMP/9sdAr7u3jR6AQA/qdaFtkPHDiggQMHKj8/X8OGDdPzzz9/1fZTpkzRc889Z3uem5tb7h1+2dnZKigsULucdqpjqWPX3M4iz5yn7T7bK73O0vUKCgpSUlLSdR+XkZGhCRMmKD4+/qo3UVztvM6M61I2rguuh1E/LyXnBgAAgHMw6ob56nCzPLP1AUD1dOedd2r58uW6dOmS9u3bp5ycHNWpU0etW7dmZj2gAuosWmR0BAA1XLUrsh8/flx9+/bVsWPHdP/99yshIUEmk+mqx3h6esrT0/O6zlPHUkc+RT43EhX/4+3tfUOjPYODg2vkaFGuS9m4Lrge/LwAAABAqvk3zFf2ZvmsrCz179+/1BJ6juLQGxA8PbV6tWNm6wMAR3N3d+e7i//JM+cZHaFK1NT3BQA1XbUqsp89e1Z9+/ZVRkaGevbsqWXLlsnd3d3oWAAAAAAAwAlww3xp2dnZKigokPtv3OVWz83oOFWiOLdYBd8VOGy2PgCA49WvX1+eHp7a7rPd6ChVxtPDU/Xr1zc6BgDgOlSbInteXp7uu+8+7dy5Ux07dtSKFSuYFgcAAAAAAOAa3Oq5ya1BzSyyA0B1t8gOU1oPHz7cDkmcV9OmTbX689UOW/7EHssMXi+WPgGA6qdaFNkLCgr0wAMPaNOmTWrbtq1Wr16tunXrGh0LAAAAAAAAAIBKi4iIuOZyqFdjMplqfJFdulxod3QRmmUGq7e84cNlbdzY6Bh2Zzp+nPXmASfh9EV2i8Wi8PBwffnllwoODtaaNWvUoEEDo2MBAAAAAAAANdL5AqvO5VuNjmF35wtq3ntC9de8efNyi+w//fSTPD091bgGFgqBKuftLWvt2kansDsTMzwDTsPpi+xLly7VJ598Iklyc3PTww8/XGa7Jk2aaNmyZQ5MBgAAAAAAANQ8k760SLIYHQNwCQcPHix3n5ubmzp27KgNGzY4LhAAAKgQpy+yFxQU2P6cnp6u9PT0Mtu1aNHCUZEAAAAAAAAAAAAAAC7KzegA1xIRESGr1XrNx9Xu+AMAAAAAAAAAAAAAwB6cvsgOAAAAAAAAAAAAAICzcPrp4gEAAAAAAAA4zvR7zQqqX/PG5mRmF/9vvfnKsRZelLXgZzsmcg7WwotGRwAAAKh2KLIDAAAAAAAAsKnraZKvl8noGHZX1/PG3lP+d0vslAQAAADVXc27JRUAAAAAAAAAAAAAgCrCSHYAAAAAAAC4posXZfq55k3/rYtM/w3HsVgKVGTJNzqG3VksBQ45z4YNG666Pycn55ptevToYc9IqGashVZZ861Gx7A7a2HNe0/O4HyBVedq4M/L+YIbf08sC4PrRZEdAAAAAAAALqnOokVGRwCqvcMnvjQ6QrXWq1cvmUxlL2VgMpm0c+dO9e7du9zjTSaTioqKqioeqoHC9YVGR0A1MulLiySL0TGcEsvC4HpRZAcAAAAAAACAa/D6zSMy+9xsdAy7s+ScoLBgMKu18iMwb+RYAABQeRTZAQAAAAAAAOAaTB7eMnnWNjqG3Zk8vI2O4NKKi4uNjgAAACrBzegAAAAAAAAAAAAAAABUF4xkBwAAAAAAgEvKGz5c1saNjY5hd6bjx1lvHg4TePO98vKsb3QMu8svyGa9eVQLHr085OZb88ZTFp8rZr35KjD9XrOC6te8n5fM7OL/rTdfeSwLg+tFkR0AAAAAAACuydtb1to1cPpvb6b/huOYzZ6qZfYyOobdmc2eRkcAKsTkYZLJy2R0DLszedS89+QM6nqa5FsDf17qet74e2JZGFwviuwAAAAAAKBGuGS6pAJTgdEx7O6S6ZLREQAAAAC4IIulQEWWfKNj2J3FcuOfGymyAwAAAACAGmFz/c1GRwAAAACAGoOlU8pX8xZeAAAAAAAAAAAAAACgilBkBwAAAAAAAAAAAACggpguHgAAAAAAoAazFlplzbcaHaNKWAtr5vsCAAAA4NwosgMAAAAAgBqhU3Yn1S2qa3QMuztf6/wNrTdfuL7QjmkAAAAAuIrAm++Vl2d9o2PYXX5B9g2vN0+RHQAAuJSsrCxlZ2c75FwZGRml/usI9evXV9OmTR1yrosXLyozM9Mh5/qloKAgeXt7O/y8FcV1KZtR10Vy/muDsvG7hMpwt7rL0+ppdAy7y7fmGx0BAAAAgAsymz1Vy+xldAy7M5tv/HMjRXYAAOAysrKy1L9ffxUUFjj0vBMmTHDYuTw9PLX689UOKbRnZmZq8ODBVX6eX0tKSlLbtm0dft6K4rqUzajrIjn/tUHZ+F0CAACuymw2q1evXlq7dq3RUQAAQDkosgMAAJeRnZ2tgsICtctppzqWOkbHsbs8c562+2xXdna2Q4rsQUFBSkpKuu7jMjIyNGHCBMXHxys4OLhS53VmXJeyVfa6SDX/2qBs/C4BAABXZbVaZbVaS22LiorSrl27KLwDuCGHcqySio2OYXeX3xfgWBTZAQCAy6ljqSOfIh+jY1R73t7eNzTaMzg4uEaOFuW6lO1Gr4tUc68NysbvEmA/Hr085ObrZnSMKlF8rpg15+EwxXlnjI5QJWrq+6ouRo0apa5du6pLly667bbbym2XlpamjRs3OjAZgJqkfv368vL0VOxGx87u6Ehenp6qX7/mrR0O50WRHQAAAAAAoAYzeZhk8jIZHaNKmDxq5vuCc6lfv748Pb1UsO1To6NUGU9PLwoTBnn33Xf13nvvSZJ8fHz0m9/8RpJ08eJFFRUVqVYtvsIHcOOaNm2qVatXKzs72yHnu9EZxiqjfv36DpnZEShBDw0AAAAAAAAA5WjatKlWr15FYQJVIiMjQxs3btTGjRuVkpKi5ORkmUwmbd68WT4+PurWrZt69+6tM2eYcQDAjWnatKnD/65nhjHUZBTZAQAAAAAAAOAqKEygqrRs2VItW7bUo48+Kkk6f/68fHx81LRpU7Vq1UobNmzQF198IUkymUzq1auXunbtqm7duqlLly5q0KCBkfEBAHBZFNkBAAAAAAAA2BzKsUoqNjqG3V1+X4Bzq1u3riQpJCREX375pfLz8/XNN99ozJgxOnDggL777jtt2LBBJtPl5TLatGmjH3/80cjIAAC4JIrsAAAAAAAAAFS/fn15eXoqdmOB0VGqjJenJ2uPw6kMGTJEXbv+X3v3Hh5Vea99/J4EMolAIEBQkhAwGGCLlABBRFCiSERhV0TZRnyrUNvijootEgSsVatbolRqo0ZQK75KRRSiiAXkJBaVgyFIsa9iTFAQxIZjQHIi87x/sDM6ZHKazMyamXw/15UrZq31rPWbpxPuaX7rcKmGDh2qQYMGKSIiwmV9ZGSkrrrqKnXt2lV79uxRaWmptm/fri1btujjjz/Wli1bLKocAICWjSY7AAAAAAAAAMXFxWnV6tU8exzwo7y8PL311luSpIiICA0YMECSVFpaqmPHjqlDhw4u20dERGjo0KEaOnSofve73/m7XAAA8L9osgMAAAAAAACQxLPHAX8rKSnR5s2bnV+ffPKJbDabduzYoc6dOyslJUVXXnmlvv/+e6tLBQAAP0GTHQAAAAAAAAAAC3Tq1Eljx47V2LFjJUnV1dVq3bq1EhMT1b9/f33wwQcqKCiQJNlsNg0aNMh5JfvQoUOVlJRkZfkAALRYNNkBAAAAAAAAAB6prDpudQk+YdXrCg8PlyQlJSVp+fLlcjgc+uSTT3Trrbfqq6++0t69e7Vjxw4999xzkqTY2FgdPHjQkloBIJQ4Th62ugSfCNXXFQhosgMAAAAAAAAAmiQmJkZ2u10HSj62uhSfsdvtiomJsbSGsLAwDRkyRF26dNFXX32lkpIS7d69W1u2bNFHH32kLVu2WFofAAS7M3kWqYqC5VaX4jN2e6TleRaKaLIDAAAAAAAAAJokLi5Oq1ev1tGjR/1yvKKiImVlZWnu3Lnq2bOnX44ZExOjuLg4vxyrKXr37q3evXvrtttus7oUAAh6Z/JsFXmGJqPJDgAAAAAAgBYp7NAhq0vwiVB9XQg8cXFxfv+jfc+ePdW3b1+/HtPfHA5HrWXGGAsqAYCWgTyDJ2iyAwAAAAAAoEWJiYlRRGSktGyZ1aX4TEQktwUFQskzzzyj48eteU58sCorK1NxcXGTxxUVFbl8b6qkpCRFRUV5NNYTjtLaJ2WEgua+rlA94SxUXxcQjGiyAwAAAAAAoEWJi4vTe6u4LSiA4JGSkmJ1CUGnuLhY48eP93h8VlaWR+Py8vL8cnXqmedI21WxpcLnx7KK3W5v8gljnEgHwF9osgMAAAAAAKDF4bagABDakpKSlJeXZ8lx/eHMc6RXc8LYWTiRDoC/0GQHAAAAAAAh4WT4SatL8IlQfV0AAPhSVFRUyJ/YxAlj7jEvAPyBJjsAAAAAAAhqMTExskfYtbP9TqtL8Rl7RNNvlwoAAAAA8A2a7AAAAAAAIKjFxcVp9XvcLhUAAAAA4B802QEAAAAAQNDjtqAAAAAAAH8Js7oAAAAAAAAQulauXKmrrrpKHTt2VJs2bTRw4EA9/fTTcjgcVpcGAAA8NGnSJNlstnq/ysvLrS4TAACf4Up2AAAAAADgE9nZ2Zo1a5YkKSkpSW3bttXOnTs1depUrVu3Tm+99ZbCwjj/HwCAYJWcnKwuXbq4XUfGAwBCGU12AAAAAADgdZs3b9bs2bMVFhamRYsW6eabb5Yk7dy5U1dffbXeeecdzZs3T9OnT7e4UgAA4KnZs2dr0qRJVpfhNSUlJbrpppt05MgRdezYUUuWLFFsbKzVZQEAAhCnkgEAAAAAAK979NFHZYzRr371K2eDXZL69++vefPmSTpzpXtVVZVVJQIAADilpqZq+PDh2r9/v8rKyrR//34NHz5cqampVpcGAAhANNkBAAAAAIBXlZaWat26dZKk22+/vdb6CRMmKDo6WocPH9b777/v7/IAAABcpKam6sSJE5KkCy64QPPnz9cFF1wgSTpx4gSNdgBALdwuHgAAAAAAeNWOHTtUWVmpyMhIDRw4sNb61q1ba/DgwVq/fr22bt2q9PR0C6oEAADNtXTpUr399tsqLS1Vly5dNGzYMN16661q37691aU1WklJibPB/sknnyg6OlqSdMUVV6i0tFSDBw/WiRMnVFJSwq3jAQBONNkBAAAAAIBXFRYWSpISExPVqpX7Pz0kJSVp/fr1zm3PVlFRoYqKCufPpaWl3i8UAAA0y9///neXn5csWaIHH3xQr732mkaPHl3nuEDK+ZtuuknSmSvYaxrsNaKjo5WUlKTi4mLddNNN2rBhgxUlAoBlKquOW12CT3jjddFkBwAAAAAAXnX06FFJUkxMTJ3b1Kyr2fZsc+bM0cMPP+z94logR6nD6hJ8JpRfGwAEsp49e+qxxx7TmDFjdP7558tms2nz5s164IEHtHXrVo0bN04ffvhhnbdZD6ScP3LkiCRp+vTpbtdPmzZNd911l3M7AGgJYmJiZLfbdaDkY6tL8Rm73V7v/2dtCE12AAAAAADgVeXl5ZKkiIiIOrex2+2SpLKyMrfrZ82apWnTpjl/Li0tVbdu3bxYZeir+cNYxZaKhjcOYs394xgAoOkeeOCBWstGjRqlESNG6LLLLtO2bdt03333af369W7HB1LOd+zYUfv379ef/vQnXXHFFbXWz5s3z7kdALQUcXFxWr16dZ0nRXtbUVGRsrKyNHfuXPXs2dMvx4yJiVFcXJzH42myAwAAAAAAr4qMjJQkVVZW1rlNzS1io6Ki3K632+3ORjw84+8/jEnB+ccxAID3RERE6JFHHtHVV1+tjRs36ujRo25PhAqknF+yZImGDx+ur776SqWlpS63jC8tLVVxcbFzOwBoSeLi4vz+Obtnz57q27evX4/pKZrsAAAAAADAqxq6FfxP13EFsm9Z8YcxKbj+OAYA8K6hQ4dKkhwOh4qLizVo0CCLK6pfbGys2rVrpxMnTmjw4MFKSkrStGnTNG/ePGeDvV27doqNjbW4UgBAIAmzugAAAAAAABBakpOTJUl79+7V6dOn3W5T80frmm0BAEBoaN26tfO/6/ocEGjy8/PVrl07SWc+o9x1110uDfb8/HwrywMABCCa7AAAAAAAwKsGDBig1q1bq7y8XAUFBbXWV1VV6ZNPPpEkDRkyxN/lAQAAH/rXv/7l/O+EhAQLK2ma/Px8ffjhh4qPj1dUVJTi4+P14Ycf0mAHALjF7eIBAAAAAIBXRUdH66qrrtKqVav017/+VRdffLHL+jfffFOlpaXq1KmT0tLSrCkSAAD4xJNPPilJ6tOnj+Lj4y2upmliY2O1YcMGq8sAAAQBrmQHAAAAAABed//998tms+nFF1/U4sWLnct37typadOmSZJmzJihiIgIq0oEAAAeWLt2rWbNmqU9e/a4LD9+/LimTp3qzP0//OEPVpQHAIBf0GQHAAAAAABeN2zYMD3yyCNyOByaOHGievbsqf79+2vgwIH6/vvvNWbMGN17771WlwkAAJrohx9+UHZ2tpKSkpSQkKCLL75YAwYMUJcuXfT000/LZrPpwQcf1M0332x1qQAA+Ay3iwcAAAAAAD5x//33q3///vrzn/+s7du36+DBg+rXr58mT56su+66S+Hh4VaXCAAAmmjQoEG6//77tXnzZn311Vf67LPPZIxRfHy8LrvsMmVmZmrIkCFWl+mRkydPasaMGdq3b5+6deumJ554Qm3btrW6LABAAKLJDgAALGOM0UcffaTly5dr06ZN+uKLL3Tq1Cl17txZQ4cO1V133aUrrrjC6jIBAEAzjB07VmPHjrW6DAAA4CXdunXTo48+anUZXnfjjTdq165dzp+//PJLDRo0SP369dPSpUstrAwAEIi4XTwAALDMhg0bdNlll+lPf/qTPvnkE5177rm66KKLdOLECeXl5enKK6/UAw88YHWZAAAAAAAghNU02G02m6677jotX75c1113nWw2m3bt2qUbb7zR6hIBAAGGJjsAALCMMUYXXHCBcnNzdejQIe3evVsFBQU6fPiwZs2aJUl69NFH9e6771pcKQAAAAAACEUnT550Ntg//fRTPfHEE+rTp4+eeOIJffrpp85G+8mTJ60uFQAQQLhdPAAAsMzFF1+szz//XK1auX4kiYiI0GOPPaZPP/1Uq1at0gsvvMBtZgEAAAAElbKyMhUXFzd5XFFRkcv3pkpKSlJUVJRHY4GWaMaMGZKkn//854qMjHRZFxkZqbFjx2rFihWaMWOGcnNzrSgRABCAaLIDAADLREdH17t+1KhRWrVqlb788kuvHrfKVqUKW4VX9xkIqmxVHo89cuSIFyup3/Hjx53f/XXcjh07+uU4AAAAQI3i4mKNHz/e4/FZWVkejcvLy1Pfvn09Pi7Q0uzbt0+S9Mtf/tLt+smTJ2vFihXO7QAAkGiyAwCAAFZeXi5JXr8KY1vMNq/uLxQMHTrU78ecPHmy3461e/duvx0LAAAAkM5cUZ6Xl2fJcQE0Xrdu3fTll1/qpZde0hNPPFFr/cKFC53bAQBQgyY7AAAISMYYvfnmm5KkYcOG1bldRUWFKip+vCq9tLTU57Uh+Bw4cEBxcXEejTt69KgPKqqtubcF9URMTEzAz4sU+nNTUVGhb7/9tsnHaq6EhATZ7fYmjQmG90wwvV8AAKEtKiqKK8qBIPDEE09o0KBBeuedd/THP/7R5Zbx5eXlevfdd53bAQBQgyY7AAAISC+88IJ27NihiIgI/fa3v61zuzlz5ujhhx9u1D5jYmK8VF3gskfYm/w6Dxw44KNqAsfo0aO1evXqJjXBDhw4oKuvuUaV/3tHBX/x9LagnoiIjNR7q1Y1eV6uGT1a5RX+f+SCP+cm0m7XKg/eM6NHX6OKCv++Z/zJbo/U6tVNf8+MHj3a5YQof/Dn+8Vutzf53xgAAAAEhrZt26pfv37atWuXUlJSNHbsWE2ePFkLFy7Uu+++K2OM+vXrp7Zt21pdKgAggNBkBwAAAaegoED33HOPJOnRRx9Vz54969x21qxZmjZtmvPn0tLSOm/h1hKaH6vfa3qTx59XJFuloqJCR48ebdLcHD16VJXl5Tp1ww1ydO7sw+qsEXbokLRsmUfzUl5RoZmXhiuxvc2HFVpn73Gj7I89e89UVJTLPvA6hbXt5MMKreE4eVgVBcs9nJcKxcVeqojW7X1YoTUqq47rQMnHTZ4XAAAABI6lS5fqxhtv1K5du7RixQqtWLHCua5fv35aunSphdUBAAJRUDTZ9+zZo3Xr1mnbtm3atm2b/vWvf6m6ulqPPPKIfv/731tdHgAA8KI9e/Zo7NixKi8v18SJEzV9+vR6t7fb7U263fHmzZubW2KjffHFF86z3/v06eOXY3bs2NHjsRFpEQrrEObFagKD45hDlRsrPR/fubMcNM5qSWxvU3LH0Hu/nOFo1uiwtp0U3qGrl2oJHRGt2yvK7vm/UQAAAIAvLV26VCdPntSMGTO0b98+devWTU888QRXsAMA3AqKJvtf/vIX/eUvf7G6DAAA4GMHDx7UqFGj9N1332nMmDF6+eWXZbN590rZ5jShm6p9+/bO7/48rqdsETbZIkPvymRbROi9JgAAAACA97Vt21a5ublWlwEACAJBcelJ586dNXbsWP3xj3/UqlWrdMMNN1hdEgAA8LIjR45o1KhRKioq0ogRI/Tmm2+qdevWVpcFAAAAAAAAAICLoLiS/exbwr/++usWVQIAAHzh5MmTuvbaa/XZZ59p8ODBWrFihaKioqwuCwAAAAAAtCDHjx/XHXfcoQMHDiguLk7z58933qUOAICfCoomOwAACF0VFRW67rrrtHXrVvXt21erV69Wu3btrC4LAAAAAAC0IKNGjdLevXudPx88eFAXX3yxEhMTtXbtWgsrAwAEIprsdaiyVanCVmF1GT5RZavyeOyRI0e8WEn9jh8/7vzur+N6+rxc5sU95gVAQ6qrq5WRkaENGzaoZ8+eWrt2Lb9bAAAAABDCysrKVFxc3ORxRUVFLt+bKikpiTumoU4/bbBfdtlluvPOO/Xss89q06ZN2rt3r0aNGkWjHQDggiZ7HbbFbLO6hIA0dOhQvx9z8uTJfjvW7t27PRrHvLjHvABoyBtvvKG3335bkhQWFqYJEya43a5r16568803/VgZAAAAAPhfdXW18vPzVVJSotjYWKWmpio8PNzqsryquLhY48eP93h8VlaWR+Py8vLUt29fj4+L0HX8+HFng33Hjh0655xzJEkvvviiTp06pQEDBmjv3r06fvw4t44HADi1iCZ7RUWFKip+vCq9tLTUwmoQyGqetQNXzIt7ns7LgQMHdPTo0SaNqaio0LffftvkYzVXQkKC7HZ7k8bExMT4bV481dyz3z3l6dyEsp/mc2FhoQoLC91u1717d3+VBAAAAACWWLNmjbKzs7V//37nsvj4eM2cOVPp6ekWVuZdSUlJysvLs+S4gDt33HGHpDNXsNc02Gucc845GjZsmD766CPdcccdWrx4sRUlehV3k3CPeXGPeakbc+NeS5qXFtFknzNnjh5++OFGbRsTE+PjagKDPcLe5Nd64MABH1UTOEaPHq3Vq1c3qQnWEubl6muu0XurVjEvZ7lm9Git8uD9Mnr0NaqoKPdhZday2yO1enXT3y+jR492abj6g6dnv3vKbrc3+d+YUDdp0iRNmjTJ6jIAAAAAwFJr1qzR1KlTlZaWpnnz5ik5OVmFhYWaP3++pk6dqpycnJBptEdFRXFFOQJKzd8x77zzTrfrMzMz9dFHH4XM3zu5m4R7zIt7zEvdmBv3WtK8tIgm+6xZszRt2jTnz6WlperWrZvbbVtK42P1e01v8vjrClMrVVRU6OjRo02am5YwL5Xl5cyLG+Uevl8qKsplH3idwtp28mF11nCcPKyKguUezkuF4mIvVUTr0LztVmXVcR0o+bjJcwMAAAAACG3V1dXKzs5WWlqacnNzFRYWJklKSUlRbm6uMjMz9fjjj2vkyJEhd+t4IBDExcXp4MGDevbZZ/Xiiy/WWp+bm+vcLhRwNwn3mBf3mJe6MTfutaR5aRFNdrvd3qTbHW/evNmH1dT2xRdfaPLkyVq4cKH69Onjl2N27NjR47ERaREK6xDmxWoCg+OYQ5UbKz0ef/LWW2XOO8+LFQUG28GDavvKKx6Pf/zKcCXFhN77pfioQ/dtqPZ4fFjbTgrv0NWLFYWGiNbtFWX3/N8nAAAAAACCTX5+vvbv36958+Y5G+w1wsLCNGXKFGVkZCg/P19DhgyxqEogdM2fP18XX3yxNm3apFOnTrncMv7UqVP66KOPnNuFAu4m4R7z4h7zUjfmxr2WNC8tosneVM1pQHuiffv2zu/+PrYnbBE22SJtVpfhdbaIZr6mqCiZNm28U0wAsTXzGRbt7DZ1CMH3Szt76L0mAAAAAADgfyUlJZKk5ORkt+trltdsB8C72rdvr8TERO3du1cDBgzQsGHDlJmZqdzcXGeDPTEx0fl3fAAAJCn0Li8FAAAAAAAAgCARGxsrSSosLHS7vmZ5zXYAvG/t2rVKTEyUJH300Ue65ZZbXBrsa9eutbI8AEAAoskOAAAAAAAAABZJTU1VfHy85s+fL4fD4bLO4XBowYIFSkhIUGpqqkUVAi3D2rVrtW3bNg0cOFDnnXeeBg4cqG3bttFgBwC4xe3iAQAAAAAAAMAi4eHhmjlzpqZOnarMzExNmTJFycnJKiws1IIFC7Rx40bl5OQoPDzc6lKBkNe+fXstXrzY6jIAAEEgKJrsH330ka677jrnzydPnpQkzZkzR0899ZRz+Y4dO9StWzd/lwcAAAAAAAAAHktPT1dOTo6ys7OVkZHhXJ6QkKCcnBylp6dbWB0AAADOFhRN9qqqKh0+fLjW8lOnTunUqVPOn6urq/1ZFgAAAAAAAAB4RXp6ukaOHKn8/HyVlJQoNjZWqampXMEOAAAQgIKiyZ6WliZjjNVlAAAAAAAAAIDPhIeHa8iQIVaXAQAAgAaEWV0AAAAAAAAAAAAAAADBIiiuZAcAAAAAAACAUFddXc3t4gEAAIIATXYAAAAAAAAAsNiaNWuUnZ2t/fv3O5fFx8dr5syZSk9Pt7AyAAAAnI3bxQMAAAAAAACAhdasWaOpU6eqV69eWrJkiQoKCrRkyRL16tVLU6dO1Zo1a6wuEQAAAD9Bkx0AAAAAAAAALFJdXa3s7GylpaUpNzdXKSkpatOmjVJSUpSbm6u0tDQ9/vjjqq6utrpUAAAA/C9uFw8AAAAAAADAY2VlZSouLm7yuKKiIpfvTZWUlKSoqCiPxgaS/Px87d+/X/PmzVNYmOs1UWFhYZoyZYoyMjKUn5+vIUOGWFQlAAAAfoomOwAAAAAAAACPFRcXa/z48R6Pz8rK8mhcXl6e+vbt6/FxA0VJSYkkKTk52e36muU12wEAAMB6NNkBAAAAAAAAeCwpKUl5eXmWHDcUxMbGSpIKCwuVkpJSa31hYaHLdgAAALAeTXYAAAAAAAAAHouKigqJK8qtkpqaqvj4eM2fP1+5ubkut4x3OBxasGCBEhISlJqaamGVAAAA+KmwhjcBAAAAAAAAAPhCeHi4Zs6cqY0bNyozM1M7duzQyZMntWPHDmVmZmrjxo267777FB4ebnWpAAAA+F9cyQ4AAAAAAAAAFkpPT1dOTo6ys7OVkZHhXJ6QkKCcnBylp6dbWB0AAADORpMdAAAAAAAAACyWnp6ukSNHKj8/XyUlJYqNjVVqaipXsAMAAAQgmuwAAAAAAAAAEADCw8M1ZMgQq8sAAABAA3gmOwAAAAAAAAAAAAAAjUSTHQAAAAAAAAAAAACARuJ28QAAAAAAAAD8qrq6mmePAwAAIGjRZAcAAAAAAADgN2vWrFF2drb279/vXBYfH6+ZM2cqPT3dwsoAAACAxuF28QAAAAAAAAD8Ys2aNZo6dap69eqlJUuWqKCgQEuWLFGvXr00depUrVmzxuoSAQAAgAbRZAcAAAAAAADgc9XV1crOzlZaWppyc3OVkpKiNm3aKCUlRbm5uUpLS9Pjjz+u6upqq0sFAAAA6sXt4gEAAAAAQItUVlam4uLiJo8rKipy+d5USUlJioqK8mgsEMzy8/O1f/9+zZs3T2Fhrtf+hIWFacqUKcrIyFB+fr6GDBliUZUAAABAw2iyAwAAAACAFqm4uFjjx4/3eHxWVpZH4/Ly8tS3b1+PjwvreHJiRnV1tdavXy/pzK3Sq6urFR4e3qR9hMqJGSUlJZKk5ORkt+trltdsBwAAAAQqmuwAAAAAAKBFSkpKUl5eniXHRXBq7okZ8+fP1/z585s8LlROzIiNjZUkFRYWKiUlpdb6wsJCl+0AAACAQEWTHQAAAAAAtEhRUVEh0biE/zTlxIwtW7Zo7ty5GjRokG644QYlJiZq7969WrZsmbZv366srCxdcskljT5uKEhNTVV8fLzmz5+v3Nxcl1vGOxwOLViwQAkJCUpNTbWwSgAAAKBhNNkBAAAAAACARmjsiRnV1dW6++67lZaW5tJMTk1N1bhx45SZmanXXntNkyZNavKt44NZeHi4Zs6cqalTpyozM1NTpkxRcnKyCgsLtWDBAm3cuFE5OTktak6AYLZy5UrNmzdPBQUFqqioUO/evTV58mTdeeedLifRAAAQimiyAwAAAPUpK5Pthx+srsL7ysqaNfxEhdGxcuOlYgLLiYrmvS5TWSZTEXrvGVPZvPdMdXWFTleXe6mawFFdXWF1CQHnxIkTWr58uVavXq1t27Zp3759stlsOv/883Xttddq2rRp6tq1q9VlAj6Vn5+v/fv3a968ebUaTWFhYZoyZYoyMjKUn5+vIUOGWFSlNdLT05WTk6Ps7GxlZGQ4lyckJCgnJ0fp6ekWVgegsbKzszVr1ixJZ+620bZtW+3cuVNTp07VunXr9NZbb9FoBwCENJrsAAAAQD3avvKK1SUEpPs2VEuqtrqMgFS+ZbHVJQSkfd9vsLoE+ElmZqYWLVokSWrXrp369OmjH374Qbt379b/+3//TwsXLtSqVas0ePBgiysFfKekpESSlJyc7HZ9zfKa7Vqa9PR0jRw5Uvn5+SopKVFsbKxSU1O5gh0IEps3b9bs2bMVFhamRYsW6eabb5Yk7dy5U1dffbXeeecdzZs3T9OnT7e4UgAAfIcmOwAAQAPKyspUXFzc5HFFRUUu35sqKSlJUVFRHo31hKPU4bdj+VOovi4ACGTjxo3TXXfdpREjRqhVqzN/eigqKtLEiRO1bds23XDDDdq9e7dfcw7wp9jYWElSYWGhUlJSaq0vLCx02a4lCg8Pb3FX8QOh4tFHH5UxRr/+9a+dDXZJ6t+/v+bNm6dbbrlF2dnZuueee9S6dWsLKwUAwHdosgMAADSguLhY48eP93h8VlaWR+Py8vIa9czP5oqJiZHdblfFltC95bHdbldMTEyTxjR1+2AUERnJvNQhkveMW3Y77xl3PPk3JpT95S9/UceOHWst79mzp5YuXaoLLrhA+/bt0+rVq3X99ddbUCHge6mpqYqPj9f8+fNdnskuSQ6HQwsWLFBCQoJSU1MtrBIAmq60tFTr1q2TJN1+++211k+YMEH//d//rcOHD+v999/nERAAgJBFkx0AAKABSUlJysvLs+S4/hAXF6fVq1fr6NGjfjleUVGRsrKyNHfuXPXs2dMvx4yJiVFcXFyTxjR1+2D03qpVzEsdVq1ezdy4sXo17xl3Vnvwfgll7hrsNbp166Y+ffron//8p7788ks/VgX4V3h4uGbOnKmpU6cqMzNTU6ZMUXJysgoLC7VgwQJt3LhROTk53B4dQNDZsWOHKisrFRkZqYEDB9Za37p1aw0ePFjr16/X1q1babIDAEIWTXYAAIAGREVF+eWKcivFxcX5vUHUs2fPgJ/XzZs3++1YX3zxhSZPnqyFCxeqT58+fjlmfY2w+vhzXiTmpi7Mi3vBNC8tVXl5uSRxq3iEvPT0dOXk5Cg7O1sZGRnO5QkJCcrJyaHxBCAo1TzuIjEx0flImLMlJSVp/fr1zm0BAAhFNNkBAACAOvizcda+fXvn90Bv2Pm7PubGPebFvWCal5Zo586dzivYhw0bZnE1gO+lp6dr5MiRys/PV0lJiWJjY5WamsoV7ACCVs0d0Op7VE7NuvrullZRUaGKih8fWVZaWuqlCgEA8A+a7AAAAAAAwOeqq6t19913S5KuvPJKDRo0qN7t+eM7QkV4eLiGDBlidRkA4BU1d6SJiIiocxu73S5JKisrq3ObOXPm6OGHH/ZucQAA+FGY1QUAAAAAAIDQN3v2bG3atEnt2rXT888/3+D2c+bMUfv27Z1f3bp180OVAACgPpGRkZKkysrKOrepOUmuvkfDzJo1S8ePH3d+7du3z7uFAgDgY1zJDgAAAAAAJEkzZszQO++80+RxCxcu1NChQ+tcP3/+fD3xxBNq1aqVFi9erJ49eza4z1mzZmnatGnOn0tLS2m0AwBgscbcCr4xt5S32+3OK94BAAhGNNkBAAAAAIAk6cCBA9q9e3eTx/3www91rluyZInuvPNO2Ww2vfzyyxozZkyj9skf3wEACDzJycmSpL179+r06dNq1ap2i6G4uNhlWwAAQhG3iwcAAAAAAJKkRYsWyRjT5K+rrrrK7f5WrlypX/ziF3I4HHrmmWd0yy23+PkVAQAAbxowYIBat26t8vJyFRQU1FpfVVWlTz75RJI0ZMgQf5cHAIDf0GQHAAAAAABe949//EM33nijqqqqNGfOHGVmZlpdEgAAaKbo6GjnyXV//etfa61/8803VVpaqk6dOiktLc3P1QEA4D802QEAAAAAgFdt375d//mf/6mysjLNmjVLM2fOtLokwDLV1dXaunWr3n33XW3dulXV1dVWlxQQmBcgeN1///2y2Wx68cUXtXjxYufynTt3atq0aZKkGTNmKCIiwqoSAQDwOZ7JDgAAAAAAvGb37t0aPXq0SktLlZmZqccee8zqkgDLrFmzRtnZ2dq/f79zWXx8vGbOnKn09HQLK7MW8wIEt2HDhumRRx7R73//e02cOFG///3v1bZtW3322WdyOBwaM2aM7r33XqvLBADAp7iSHQAAAAAAeM3UqVN16NAh2Ww2ffrppxo+fLjbr5deesnqUgGfWrNmjaZOnapevXppyZIlKigo0JIlS9SrVy9NnTpVa9assbpES9TMy+HDh12WHz58uEXPCxBs7r//fq1YsUJXXnmlDh8+rK+++kr9+vXTU089peXLlys8PNzqEgEA8CmuZAcAAAAAAF5TUVEhSTLG6OOPP65zu5rnuQKhqLq6WtnZ2UpLS1Nubq7Cws5c55KSkqLc3FxlZmbq8ccf18iRI1tUI6q6uloPPvigjDG65JJL9N///d9KTk5WYWGhnnvuOW3cuFEPPfRQi5sXIFiNHTtWY8eOtboMAAAswZXsAAAAAADAazZu3ChjTINfDz30kNWlAj6Tn5+v/fv364477nA22GuEhYVpypQp+vbbb5Wfn29RhdbYtm2bjhw5ooEDB+q5555TSkqK2rRpo5SUFD333HMaOHCgDh8+rG3btlldKgAAAFAvmuwAAAAAAACAF5WUlEiSkpOT3a6vWV6zXUuxdetWSdI999zj9uSDu+++22U7AAAAIFBxu3gAAAAAAAC4KCsrU3FxcZPHFRUVuXxvqqSkJEVFRXk0NpDExsZKkgoLC5WSklJrfWFhoct2LY0xxuoSAAAAgGahyQ4AAAAAAAAXxcXFGj9+vMfjs7KyPBqXl5envn37enzcQJGamqr4+HjNnz/f5ZnskuRwOLRgwQIlJCQoNTXVwir9b8iQIXruuef09NNPa8iQIbXm5ZlnnnFuBwAAAAQymuwAAAAAAABwkZSUpLy8vEZvv2XLFr388sv697//7VzWpUsXTZo0SZdcckmTjhsKwsPDNXPmTE2dOlWZmZmaMmWKkpOTVVhYqAULFmjjxo3KyclReHi41aX61cUXX6yOHTtq+/btbudl+/bt6tSpky6++GKrSwUAAADqRZMdAAAAAAAALqKiohp9RfmaNWs0d+5cpaWl6emnn3Y2TefPn6+5c+cqJydH6enpPq448KSnpysnJ0fZ2dnKyMhwLk9ISGixcxIeHq6HH35Yd999tzZv3qz333/fuS4yMlKS9NBDD7W4kw8AAAAQfGiyAwAAAAAAwCPV1dXKzs5WWlqay23RU1JSlJubq8zMTD3++OMaOXJki2ycpqena+TIkcrPz1dJSYliY2OVmpraIueiRnp6up5++mnNmTNHBw4ccC7v1KmTZs6c2SJPPgAAAEDwockOAAAAAAAAj+Tn52v//v2aN2+ey/O1JSksLExTpkxRRkaG8vPzW+xztsPDw1vsa68LJx8AAAAg2NFkBwAAAAAAgEdKSkokScnJyW7X1yyv2Q6owckHAAAACGZhDW8CAAAAAAAA1BYbGytJKiwsdLu+ZnnNdgAAAAAQCmiyAwAAAAAAwCOpqamKj4/X/Pnz5XA4XNY5HA4tWLBACQkJSk1NtahCAAAAAPA+muwAAAAAAADwSHh4uGbOnKmNGzcqMzNTO3bs0MmTJ7Vjxw5lZmZq48aNuu+++3jWNgAAAICQwjPZAQAAAAAA4LH09HTl5OQoOztbGRkZzuUJCQnKyclRenq6hdUBAAAAgPfRZAcAAAAAAECzpKena+TIkcrPz1dJSYliY2OVmprKFewAAAAAQhJNdgAAAAAAADRbeHi4hgwZYnUZAAAAAOBzPJMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGgkmuwAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABqJJjsAAAAAAAAAAAAAAI1Ekx0AAAAAAAAAAAAAgEaiyQ4AAAAAAAAAAAAAQCMFVZN95cqVuuqqq9SxY0e1adNGAwcO1NNPPy2Hw2F1aQAAoBnIeAAAAAAAAABAsAiaJnt2drbGjBmj9evXKyYmRhdccIF27typqVOn6vrrr+eP8AAABCkyHgAAAAAAAAAQTIKiyb5582bNnj1bYWFheu2111RUVKSdO3eqoKBA5557rt555x3NmzfP6jIBAEATkfEAAAAAAAAAgGATFE32Rx99VMYY/epXv9LNN9/sXN6/f3/nH96zs7NVVVVlVYkAAMADoZzxu3btUp8+fdS7d2/16dNHu3btsrokAAAAAAAAAIAXBHyTvbS0VOvWrZMk3X777bXWT5gwQdHR0Tp8+LDef/99f5cHAAA8FMoZ37t3b914440yxkiSjDG68cYb1bt3b4srAwAAAAAAAAA0VyurC2jIjh07VFlZqcjISA0cOLDW+tatW2vw4MFav369tm7dqvT0dAuqBICmMZVlMhU/WF2G15nKsmaNr66u0Onqci9VE1iqqyusLiHghGrG/7SRHh4ersmTJ2vhwoWqrq52rt+9e7dV5QEAAAAAAAAAmingm+yFhYWSpMTERLVq5b7cpKQkrV+/3rktAAS68i2LrS4hIO37foPVJcCPQjHjf3pL+LVr1yoxMVGSlJWVpb1792rUqFHO7fr162dJjQAAAAAAAACA5gn4JvvRo0clSTExMXVuU7OuZtuzVVRUqKLixysIS0tLvVjhGWVlZSouLvZobFFRkcv3pkpKSlJUVJRHYz3hKHX47Vj+1NzXFXbokJcqCSzNfV17jxtJofeeOfO6ADSHNzJe8k/ON9aECRMknbmCvabBXiMxMVHh4eGqrq7WhAkT9MUXX1hRold5+vkn2D77NBXz4l5L+rzcVLxn3GNeAAAAAABAoAr4Jnt5+ZnbBkdERNS5jd1ul3TmjzDuzJkzRw8//LD3i/uJ4uJijR8/vln7yMrK8mhcXl6e+vbt26xjN0ZMTIzsdrsqtoTuLY/tdnu9zR53YmJiFBEZKS1b5qOqrBcRGenRvETa7cr+OHTfL5Eevl9Cnd3u2fulJfDk35hQ5o2Ml/yT841V8wz2yZMnu10/ceJEvfrqq87tgl1zP/8E+mcfTzEv7rWEz8ue4j3jHvMCAAAAAAACVcA32SMjIyVJlZWVdW5Tc/VaXVcbzJo1S9OmTXP+XFpaqm7dunmxyjNXO+Tl5Xl1n005tj/ExcVp9erV9V5N6E5FRYW+/fZbH1VVt4SEBGdzprFiYmIUFxfXpDFxcXF6b9Uq5uUscXFxWsX7pZambh+MVq9exbzUYfXq1S3mtTaGNzJe8k/ON5bNZpMxRgsXLnTb3Hnttdec24UCqz7/+Ouzj6eYF/dawudlT/GecY95AQAAAAAAgSrgm+yNuU1sQ7ebtdvtTW6eNVVUVFSLuNohLi7OowbRwIEDfVBN4GBe3GNe3Nu8ebPVJfhUx44dPRoX6vMieT43ocobGS/5J+cb680339SNN96o6upq7d271+WW8Xv37lV1dbVzu1DQUj7/NBXz4h7zUjfmxj3mBQAAAAAABKqAb7InJydLOvOH6dOnT6tVq9ol1zynr2ZbAAhkNFrdY15anlDM+H79+jn/e9SoUQoPD9fEiRP12muvORvsZ28HAAAAAAAAAAguYVYX0JABAwaodevWKi8vV0FBQa31VVVV+uSTTyRJQ4YM8Xd5AADAQ6Ga8bt373b+d3V1tV599VWXBvtP1wMAAAAAAAAAgk/AN9mjo6N11VVXSZL++te/1lr/5ptvqrS0VJ06dVJaWpqfqwMAAJ4K5YzfvXu3li5d6nz2us1m09KlS2mwAwAAAAAAAEAICPgmuyTdf//9stlsevHFF7V48WLn8p07d2ratGmSpBkzZigiIsKqEgEAgAdCOeP79eunL774Qrt379YXX3zBLeIBAAAAAAAAIEQERZN92LBheuSRR+RwODRx4kT17NlT/fv318CBA/X9999rzJgxuvfee60uEwAANBEZDwAAAAAAAAAINkHRZJfOXOm2YsUKXXnllTp8+LC++uor9evXT0899ZSWL1+u8PBwq0sEAAAeIOMBAAAAAAAAAMGkldUFNMXYsWM1duxYq8sAAABeRsYDAAAAAAAAAIJF0FzJDgAAAAAAAAAAAACA1WiyAwAAAAAAAAAAAADQSDTZAQAAAAAAAAAAAABoJJrsAAAAAAAAAAAAAAA0Ek12AAAAAAAAAAAAAAAaiSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBIrawuwArGGElSaWmpxZUAAPBjHtXkE5qHnAcABAoy3rvIeABAoCDjvY+cBwAEisbmfItssp84cUKS1K1bN4srAQDgRydOnFD79u2tLiPokfMAgEBDxnsHGQ8ACDRkvPeQ8wCAQNNQzttMCzzdzuFw6MCBA2rXrp1sNpvV5ai0tFTdunXTvn37FB0dbXU5AYN5cY95cY95cY95cS/Q5sUYoxMnTiguLk5hYTzJpbkCKecD7b0WKJgX95iXujE37jEv7gXSvJDx3kXGBwfmxj3mxT3mxT3mxb1Amhcy3vvI+cDHvLjHvLjHvNSNuXEvkOalsTnfIq9kDwsLU0JCgtVl1BIdHW35GycQMS/uMS/uMS/uMS/uBdK8cOa79wRizgfSey2QMC/uMS91Y27cY17cC5R5IeO9h4wPLsyNe8yLe8yLe8yLe4EyL2S8d5HzwYN5cY95cY95qRtz416gzEtjcp7T7AAAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJN9gBgt9v14IMPym63W11KQGFe3GNe3GNe3GNe3GNe4C+819xjXtxjXurG3LjHvLjHvMAfeJ/Vjblxj3lxj3lxj3lxj3mBv/Bec495cY95cY95qRtz414wzovNGGOsLgIAAAAAAAAAAAAAgGDAlewAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABqJJjsAAAAAAAAAAAAAAI1Ekx0AAAAAAAAAAAAAgEaiye4H/fr1k81mU1RUlEpLS+vcbtKkSbLZbC5frVu3VteuXfXzn/9cq1at8mPVvtOjR49ar/Psr6eeekqS9PXXX7td365dO/Xv31+zZ8/WoUOHrH1BXrJ3715NmzZNF110kdq0aaOoqCglJibq0ksvVVZWlt577z2X7dPS0hqcR5vNpoceesiaF+Ql27Zt05133qmLLrpIMTExat26tTp37qxLL71UM2bM0Pbt2xvcx9133+2cj7Vr1/qhat+q63eobdu2+tnPfqZZs2bp8OHDtcYdO3ZMS5Ys0b333qvhw4frnHPOkc1m01VXXWXBq/A+T+flyy+/1Jw5c5Senq7zzjtPrVu3VseOHXXFFVdo4cKFcjgcFrwaBBNy/kdkfN3IeffIeVdkvHtkPKxCxrsi590j490j42sj590j52EVcv5HZHzdyPnayPjayHj3WkLGt7K6gFD36aef6rPPPpMklZeXa+nSpfrlL39Z75guXbooOTnZOebLL7/UihUrtGLFCs2aNUuPPfaYz+v2h+TkZHXp0sXtuvj4+FrLUlNTZbfbJUn79+/Xrl279M9//lOvvPKKNm3apPPPP9+n9frShg0bNG7cOJ04cULh4eHq1q2bunTpoiNHjmjLli3avHmzFi5c6PYDSrdu3ZSYmFjnvutbF8hOnTqlX/3qV1q8eLEkqXXr1urZs6eio6N15MgRbdu2TZs3b9bcuXN1zTXXaOXKlW73U1VVpddff93586uvvqpRo0b55TX42k9/hxwOh7777jvt2rVLu3bt0quvvqoPP/xQPXr0cG6/ceNGZWRkWFSt/zRlXqqrq9W7d2/n2ISEBKWkpGjv3r3auHGjNm7cqNdff13Lly9XZGSkFS8HAY6cd4+Md0XO10bO14+Md4+Mhz+R8XUj539ExtdGxjeMnHePnIc/kfPukfGuyHlXZHzDyHj3QjrjDXxq2rRpRpLp0KGDkWTS0tLq3Pa2224zksxtt93msryiosJMnz7dSDKSzMcff+zjqn2re/fuRpJZuHBhg9vu2bPH+br37Nnjsm779u3OfV199dW+KdYPjh8/bjp37mwkmTFjxpivv/7aZf3Ro0fNyy+/bK699lqX5SNGjDCSzIMPPujHav2jsrLSDB8+3EgyXbt2NS+99JI5efKkyzY183LhhRcau91e577eeecdl9/BNm3a1NpXsKnvd6igoMDExcUZSWbChAku61avXm0uv/xyM336dPPGG2+Yxx57zEgyI0eO9FPlvuXJvFRVVZkOHTqY3//+96aoqMhlzJIlS0xUVJSRZO69915fl48gRc67IuNrI+drI+frRsa7R8bDCmR8beS8KzK+NjK+fuS8e+Q8rEDOuyLjayPnXZHx9SPj3WsJGU+T3YdOnz5tunbtaiSZRYsWmfDwcGOz2cw333zjdvu6AtsYYxwOh0lJSTGSzNSpU31cuW95K7SNMSYvL89IMjabzRw6dMj7xfrB4sWLjSQTHR1tfvjhh0aPC9XANsaY2bNnG0kmLi7O7N27t95tq6qqzKOPPlrn+gkTJhhJ5v777zd9+/Y1ksyrr77q7ZL9qqHfoWeffdZIMjExMfXuZ+HChS0mtI1xPy8Oh8McOXKkzn1mZ2c7x1RXV3u7ZAQ5cr42Mr42cr42cr5uZLx7ZDz8jYx3j5x3RcbXRsbXj5x3j5yHv5HztZHxtZHzrsj4+pHx7rWEjOeZ7D60bt06fffddzrvvPOUkZGhK6+8UsYY/e1vf2vyvmw2m4YPHy5JKiws9HapQevyyy+XJBljVFRUZHE1nikuLpYk9erVS+ecc47F1Vjv2LFjysnJkSTl5OSoW7du9W7fqlUr3X///W7XHT9+XCtWrJAkTZw4URMnTpR05hY0oax79+6SpMrKSosrCSzu5sVmsykmJqbOMenp6ZKko0ePqqSkxLcFIuiQ874VChkvkfNnI+ebh4x3j4yHt5HxvhcKOU/GuyLjm4+cd4+ch7eR874VChkvkfM/RcY3HxnvXihkPE12H3rllVckSTfddJPCw8N1yy23SPL8HwxjjNdqCxWhMCfR0dGSznwQO3bsmLXFBICVK1fq5MmTOu+88zRu3Lhm7euNN95QeXm5+vfvrwsvvFATJ06UzWbT+vXr9d1333mn4ACUn58vSerTp4/FlQQWT+alvLzc+d9RUVFerwnBjZz3rVCZD3LeFTnfPGS8e2Q8vI2M971QmBMy3hUZ33zkvHvkPLyNnPetUJkPcv5HZHzzkfHuhULG02T3kZMnT+rtt9+WJGdQjx8/XlFRUfr888+1ffv2Ju3PGKOPPvpIknTBBRd4tdZgtmnTJklnzm5JSkqyuBrPpKenKywsTMePH9dVV12lZcuW6fjx41aXZZmPP/5YkjR06FCFh4c3a181H45rfgd79OihSy+9VNXV1XrttdeaV2iAcTgcOnDggJ577jk9/vjjstlsmjVrltVlWa658/LGG29Iki666CLnh2tAIuf9IRQyXiLnz0bONx0Z7x4ZD18h4/0jFHKejHdFxnuGnHePnIevkPO+FwoZL5HzP0XGe4aMdy/kMt6/d6dvOV5++WUjyVxwwQUuy2ueN3HPPffUGlPX810qKirM9OnTnc862bRpkw8r972a5zDU9TVixAjntvU946WgoMC5r2B/RsX//M//uMyBzWYzvXv3NpMmTTKvv/66KS8vrzWm5vkuDX3t2LHD/y+oGcaNG2ckmd/97nfN2s+ePXuMzWYzNpvN5TkxNc/56N+/fzMrtU5Dv0ODBw827733XoP7CdVnvDR3Xmrs2rXLREREGEnmlVde8WHlCEbkvHtkvHvk/I/I+fqR8e6R8fAnMr5u5HxtZPyPyPiGkfPukfPwJ3LePTLePXL+DDK+YWS8ey0h41sJPlFzRk7NMyVq3HLLLXrzzTe1ePFi/elPf1KrVrX/J1i1apXzWS7l5eX68ssvdeLECUnS7373O+e6YJecnKwuXbrUWt6vXz+320+YMEF2u12SdODAAX399dcyxujcc8/Vc88959NafW327NkaOnSo/vSnP2ndunWqrKzU7t27tXv3br388stKTEzU//2//1dpaWm1xnbr1k2JiYl17rtt27Y+rNz7at7rbdq0cbv+9ddf180331xr+cKFCzVp0iTnz4sWLZIxRpdffrnLc2L+67/+S7/97W+1c+dO7dq1q873WzA4+3fo0KFD+vrrr7V9+3bl5uZq8ODB9T6/JFR5Y16OHTumG264QZWVlbr22mv1i1/8wtdlI8iQ8/Uj412R8z8i5xuHjHePjIc/kPENI+d/RMb/iIxvPHLePXIe/kDO14+Md0XOn0HGNx4Z715IZ7x1/f3Q9e2335qwsDAjyXzxxRcu6yoqKkxMTIyRZP7+97+7rKs5K+6nX+Hh4SY2NtZcc8015q233vLjq/CdmrNXFi5c2OC2Pz0z7qdfUVFR5sILLzTTp083Bw8e9H3RfnTq1Cnzj3/8w8ydO9dcccUVxmazOV/z559/7tyu5qy4Bx980LpifaChM+PWrVtnhg0b5vxq37692/dT7969jSQzf/78WvsYM2aMkWSysrJ88RJ8rr7foaNHj5pbb73VSDKpqanG4XDUuZ9QPTOuufNSXl7u/P3q27evOXLkiA+rRjAi5+tGxjeMnCfn60PGu0fGw1/I+PqR8/Uj48n4hpDz7pHz8Bdyvm5kfMNacs6T8Q0j491rCRnPM9l94G9/+5scDocGDhyo3r17u6yLiIjQhAkTJP145tzZbrvtNhljZIzR6dOn9e9//1srV67UuHHjfF16QNuzZ49zXk6dOqV//etfmjt3rs4991yrS/OqqKgoXXbZZZo+fbo2bNigf/zjH2rTpo3Kysr05JNPWl2ez8XHx0uSvv76a7frR44cqQ8//ND5lZqaWmubbdu2affu3WrdurXz9+2nap758tprr8nhcHiv+ADQoUMHPf/884qPj1d+fr6WL19udUkBobHzcvr0ad1000364IMP1KNHD61Zs6ZFnl2I+pHz3tdSMl4i58l5z5Hx7pHx8CYy3jdaSs6T8WR8c5Dz7pHz8CZy3vtaSsZLLTvnyfjmIePdC5WMp8nuAzVBXFBQIJvNVuvr+eeflyQtX75cpaWlVpaKIDB8+HBlZmZKOhNGoW7o0KGSpI8//ljV1dUe7eOVV16RJFVVValTp061fgdrbgm1f/9+bdiwwTuFBxC73a6BAwdKahnvmcZqaF6MMZo8ebKWL1+url27at26dYqLi/N3mQgC5Dy8iZxvupac82S8e2Q8vIWMhzeR8U3XkjNeIufrQs7DW8h5eFNLynkyvvnIePdCIeN5JruX7dixQ5999plsNpvb55fUOHr0qMrKyrRs2TJNnjzZjxUiGCUlJUmSKisrLa7E96699lq1bdtW33//vd566y3deOONTRpfVVWlJUuWSJI6derk9hlKkvTDDz/o5MmTevXVV3XVVVc1u+5AU3PG35EjRyyuJLDUNy933XWXFi1apE6dOmnt2rXq2bOnv8tDECDn4QvkfOOR82R8Xch4NBcZD18g4xuPjD+DnHePnEdzkfPwhZaS82S8d5Dx7gV7xnMlu5fVnBF3+eWX6+DBg3V+3XvvvS7bo+U6dOiQjDH1bvPxxx9LkpKTk/1RkqViYmJ01113SZLuuece7d27t0njV61apUOHDqlNmzb6+uuv6/wdXLZsmSQpLy9Pp06d8vrrsFJ5ebl27Ngh6ccPe6h/Xu6//37l5uaqXbt2Wr16tfr27WtFiQgC5Dyaipx3Rc43DxnvHhkPbyDj0VRkvCsyvvnIeffIeXgDOY+mIud/RMY3HxnvXihkPE12L6qurtbixYslSb/4xS/q3fb//J//I0nauHGj9u3b5/PaELgWLVqklJQUvfDCCzp8+LDLumPHjukPf/iDFi1aJEkt5gzKhx9+WEOHDtWBAwc0ZMgQvfTSSzp58qTLNlVVVVq6dKl2797tsrzmQ/D111+vtm3b1nmMkSNHqmvXrjp58qTeeust778Iixw9elS//vWvdeDAAUVEROi//uu/rC4pINQ3L/PmzdNjjz2mqKgovfvuu26fGwRI5Dw8Q87XRs57hox3j4yHN5Dx8AQZXxsZ7zly3j1yHt5AzsMT5LwrMt5zZLx7oZLx3C7ei9auXauDBw8qMjKywVtmXHjhhRowYIB27Nihv/3tb5o5c6afqkSgsdls+uc//6nf/OY3+s1vfqPzzz9fsbGxOnr0qL755hvn7WamT5+u66+/vtb4l156SevWratz/5dffrkee+wxn9XvCxEREVq7dq1++ctf6o033tDtt9+uO+64Qz179lR0dLQOHz6s7777znlGW3p6uq644godO3ZMK1askNTwh+bw8HBlZGToz3/+s1599VXdcsstPn9d3vbYY4/pxRdfdP58+PBh7dmzRxUVFWrVqpUWLFigHj16uIzp3Lmz878rKiokSf/4xz9clj/zzDPKyMjwbfE+1JR5OXDggKZPny5JateunWbPnl3nfpcuXarzzjvPp7UjsJHz8AQ5Xxs53zAy3j0yHr5CxsMTZHxtZHzjkPPukfPwFXIeniDnXZHxjUPGuxfSGW/gNRMnTjSSzIQJExq1/ZNPPmkkmQsvvNAYY8xtt91mJJnbbrvNh1Var3v37kaSWbhwYYPb7tmzx0gyksyePXt8XpsVKisrzYYNG0xWVpa59NJLTWJioomIiDDnnHOOSU5ONrfeeqvZtGlTrXEjRoxwzk19X9ddd53/X5QXbdmyxdxxxx3mwgsvNO3btzetWrUynTp1MkOGDDH33nuv2b59u3Pb559/3kgy5513njl9+nSD+96+fbuRZMLDw813333ny5fhVTW/Q2d/2e12k5SUZCZPnmw+/fRTt2Mb855pzO9mIPJkXn76b0xDX6H6bxAaj5xvGBlfGzlfP3LeFRnvHhkPXyPjG4ecd0XG14+Mr42cd4+ch6+R8w0j42sj5+tGxtdGxrvXEjLeZkwDD5YAAAAAAAAAAAAAAACSeCY7AAAAAAAAAAAAAACNRpMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGgkmuwAAAAAAAAAAAAAADQSTXYAAAAAAAAAAAAAABqJJjsAAAAAAAAAAAAAAI1Ekx0IIT169JDNZtPXX39tdSlelZaWJpvNpo0bN1pdCgAAliHnAQAITWQ8AAChiYwHQhtNdsAP9u7dq2nTpumiiy5SmzZtFBUVpcTERF166aXKysrSe++9Z3WJkPTUU0/poYce0rFjx6wuBQAQRMj54EDOAwCaiowPDmQ8AKCpyPjgQMYj0LWyugAg1G3YsEHjxo3TiRMnFB4erm7duqlLly46cuSItmzZos2bN2vhwoU6dOiQ1aW2eE899ZS++eYbTZo0SR06dLC6HABAECDngwc5DwBoCjI+eJDxAICmIOODBxmPQEeTHfCh0tJS3XTTTTpx4oTGjBmjZ599Vt27d3euP3bsmJYvX6433njDwioBAIAnyHkAAEITGQ8AQGgi4wF4E012wIdWrlypQ4cOKTo6Wm+88YbOOeccl/UdOnTQbbfdpttuu82iCgEAgKfIeQAAQhMZDwBAaCLjAXgTz2QHfKi4uFiS1KtXr1qBXR+bzSabzVbn+h49eshms+nrr7+uc5v33ntPaWlpat++vaKjozVq1Cht2rTJ7bZpaWmy2WzauHGjtm3bpjFjxqhjx45q06aNLr30Ur399tt1HscYo0WLFmnEiBHq0KGDoqKi1KdPH9133306cuRIneNOnz6tF154QVdccYU6deqkyMhIJSUl6YYbbtDy5cvrHHe2119/Xa1bt1abNm20Zs0al3Xbtm1TRkaG4uPjFRERoXPPPVcTJkzQjh07XLZ7+eWXZbPZ9M0330iSzj//fOf/BjXzAgDA2ch5ch4AEJrIeDIeABCayHgyHvAqA8Bnnn76aSPJtG/f3hw9erTR4ySZ+n49u3fvbiSZPXv2uF0+Z84cY7PZTMeOHU1qaqrp1KmTkWTCwsLMG2+8UWt/I0aMMJLMH//4RxMREWHatm1rUlNTTdeuXZ21PPnkk7XGORwOM3HiROc2SUlJZuDAgSYiIsJIMt27dzdFRUW1xh05csQMGzbMOa579+4mNTXVdOnSxfmzu/ref/99l+XPP/+8CQsLM+3btzcffvihy7p58+YZm81mJJmOHTuaAQMGOOehdevWZtmyZc5tV65caYYNG2bsdruRZFJTU82wYcOcXwUFBXX+bwEAaLnIeXIeABCayHgyHgAQmsh4Mh7wJprsgA/t3r3bhIWFGUlm0KBBZunSpebYsWMNjmtuaLdq1cpMmzbNVFZWGmOMqaqqMjNmzDCSTHR0tDlw4IDLuJpQbNWqlcnIyDAnT540xpwJ5ZycHOe6Tz/91GVczYeSdu3amTVr1jiXf/fdd85QHjJkSK36x40bZySZnj17mi1btrisKywsNE888YTb+n4a2nPnzjWSTGxsbK1QXbVqlbHZbKZz584u4WyMMS+++KJp1aqVadeuXa15qGteAQBwh5wn5wEAoYmMJ+MBAKGJjCfjAW+iyQ742P/8z/84Q1iSsdlspnfv3mbSpEnm9ddfN+Xl5bXGNDe0+/fv73bcwIEDjSTzhz/8wWV5TSh26dLFlJWV1Ro3fvx4I8nceuutzmUOh8N069bNSDJ//vOfa4359ttvnWfIrV+/3rl827ZtRpKx2+3myy+/rPM1uquvJrQfeOABI8kkJCSYzz//vM7XuXz5crf7u/fee51nAv4UoQ0AaCpynpwHAIQmMp6MBwCEJjKejAe8hWeyAz42e/ZsbdiwQddee60iIiJkjNHu3bv18ssvKyMjQ7169fL6M0QyMzPrXf7ee++5XX/77bcrMjKyUeM+//xz7du3T5GRkfr1r39da0x8fLxuuOEGSXJ59krN81uuv/56JScnN+blOBlj9Nvf/laPPPKIevbsqU2bNqlPnz4u23zzzTcqKChQly5d9POf/9ztfmqWf/DBB006PgAAZyPnyXkAQGgi48l4AEBoIuPJeMBbWlldANASXHHFFbriiitUVlam/Px8bd26VStXrtTGjRu1d+9eXXvttSooKKgVQJ76j//4j3qXf/nllx6N+/7771VaWqro6GjnPhITE9WmTRu34/r27VvreJ9//rkk6ZJLLmnoZdQyffp0FRQUqG/fvlq7dq26du1aa5tdu3ZJksrLyzV8+HC3+ykvL5ck7d+/v8k1AABwNnKenAcAhCYynowHAIQmMp6MB7yBJjvgR1FRUbrssst02WWXafr06frwww81evRo/fDDD3ryySf1wgsveOU4Xbp0cbv83HPPlSSdOHGiSeN+uvzEiROKjo7WyZMn6x1T1/FKS0slSR06dKhzXF2++uorSVKPHj3UuXNnt9scP37ceZyPPvqo3v2VlZU1uQYAAOpCzpPzAIDQRMaT8QCA0ETGk/FAc3C7eMBCw4cPd97aZdu2bbXWG2Pcjvvhhx/q3W9JSYnb5f/+978lSe3atWvSuJ8urxnbtm1bl3268/3339c6Xs1/Hzt2rM5xdXnhhRfUp08f/f3vf9fNN9+s06dP19qmpq5hw4bJGFPv19dff93kGgAAaCxyvmnIeQBAsCDjm4aMBwAECzK+ach4tHQ02QGLJSUlSZIqKyudy2pu5+IuRI8fP65Dhw7Vu8+aW7zUtbxXr14ejTv33HMVHR3tso+9e/c6z5I727/+9a9ax6u5Jc2WLVvqfQ3udOnSRevXr9cFF1ygZcuW6dZbb5XD4XDZ5sILL3TWfPa6hthstibXBABAfcj5xiPnAQDBhIxvPDIeABBMyPjGI+PR0tFkB3zo0KFDdZ7dVuPjjz+WJCUnJzuX1QT5J598Umv7F198scHj5ubm1rs8PT3d7fq//vWvqqioaNS4//iP/1BiYqLKy8vd1nTgwAEtW7ZMknT11Vc7l48bN06S9Pbbb6uoqKjB13K2uLg4bdiwQT169NDixYv1y1/+0mWOk5OTddFFF+nIkSN65ZVXmrTvqKgoSdyWBgDQOOQ8OQ8ACE1kPBkPAAhNZDwZD3iVAeAzf/7zn83PfvYz8/zzz5tDhw65rDt69Kh54IEHjM1mM5JMXl6ec92MGTOMJJOSkmIOHjzoXL5q1SoTHR1tWrVqZSSZPXv2uOyze/fuRpJp1aqVycrKMpWVlcYYY6qqqsysWbOMJNOuXTuzf/9+l3EjRoxwjrvlllvMyZMnjTHGOBwO8+yzzxqbzWbCw8PNjh07XMY9/fTTRpKJjo4269atcy4/ePCgueyyy4wkc8kll9Sal+uvv95IMsnJyWbbtm0u6woLC83cuXPd1vf+++87l+3Zs8d069bNSDK/+c1vjMPhcK77+9//bmw2mznnnHPMCy+8YKqqqlz2V1RUZB599FGzbNkyl+Vjxowxksxzzz1Xq2YAAM5GzpPzAIDQRMaT8QCA0ETGk/GAN9FkB3zoqaeeMpKcX+eff765+OKLTXJysomIiHAunz59usu4f//73+a8884zkozdbjcpKSmmR48eRpKZOXOmM5zrCu05c+YYm81mOnXqZAYPHmw6d+5sJJmwsDCzePHiWnXWhOIf//hHExERYdq1a2dSU1NNXFycs8Ynnnii1jiHw2EmTpzo3OaCCy4wAwcOdL62xMREU1RUVGvckSNHzNChQ53jevToYVJTU825555rJJnu3bu7re+noW3MmYCvqfHuu+92WffMM8+Y8PBw5weVQYMGuRzDXTi/8sorznUXXXSRGTFihBkxYkStDysAABhDzpPzAIBQRcaT8QCA0ETGk/GAN9FkB3yosrLSbNiwwWRlZZlLL73UJCYmmoiICHPOOeeY5ORkc+utt5pNmza5HVtUVGQmTJhgYmJiTFRUlBkwYIBZuHChMcY0GNp79uwxq1evNpdffrlp166dadu2rbnyyivNBx984PZYPw3FrVu3mmuuucZ06NDBREVFmUsuucTlrL2zORwO88orr5jLLrvMREdHG7vdbpKTk01WVlatswHPnptnn33WDBs2zLRv395ERkaa888/39x4441mxYoVddZ3ts8//9wZxGd/+Nm1a5f51a9+ZZKSkkxkZKRp37696du3r7n55pvNm2++aX744Yda+/vLX/5ifvazn5moqChngLs7LgAA5Dw5DwAITWQ8GQ8ACE1kPBkPeJPNmAYeQAEg5KWlpemDDz7Q+++/r7S0NKvLAQAAXkTOAwAQmsh4AABCExkPBIcwqwsAAAAAAAAAAAAAACBY0GQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGgkmzHGWF0EAAAAAAAAAAAAAADBgCvZAQAAAAAAAAAAAABoJJrsAAAAAAAAAAAAAAA0Ek12AAAAAAAAAAAAAAAaiSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBGoskOAAAAAAAAAAAAAEAj0WQHAAAAAAAAAAAAAKCRaLIDAAAAAAAAAAAAANBINNkBAAAAAAAAAAAAAGik/w/SlhwIlXf34QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m syba filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUpUlEQVR4nOzde1yUZf7/8fcwAuIJTTGVgysImbZJhrHqphgxWbnZmhnRibINo5a0VsVdczMsETa/Si1qZlFtGh0od92yaVWyNE2Saj2jqBiooSJEcnKY3x/9mI1AQ8S5Obyej8c8ZK7ruud+MzvL3cxnrusy2e12uwAAAAAAAAAAAAAAwC9yMToAAAAAAAAAAAAAAAAtBUV2AAAAAAAAAAAAAAAaiCI7AAAAAAAAAAAAAAANRJEdAAAAAAAAAAAAAIAGosgOAAAAAAAAAAAAAEADUWQHAAAAAAAAAAAAAKCBKLIDAAAAAAAAAAAAANBAFNkBAAAAAAAAAAAAAGigdkYHMEJ1dbUKCgrUuXNnmUwmo+MAANo4u92u77//Xn369JGLC99/u1Bc5wEAzQXX+KbFNR4A0FxwjW96XOcBAM1FQ6/zbbLIXlBQIF9fX6NjAABQy+HDh+Xj42N0jBaP6zwAoLnhGt80uMYDAJobrvFNh+s8AKC5+aXrfJsssnfu3FnSj09Oly5dDE4DAGjrSkpK5Ovr67g+4cJwnQcANBdc45sW13gAQHPBNb7pcZ0HADQXDb3Ot8kie81yM126dOGCDQBoNlgOrWlwnQcANDdc45sG13gAQHPDNb7pcJ0HADQ3v3SdZ8MYAAAAAAAAAAAAAAAaiCI7AAAAAAAAAAAAAAANRJEdAAAAAAAAAAAAAIAGosgOAAAAAAAAAAAAAEADUWQHAAAAAAAAAAAAAKCBKLIDAAAAAAAAAAAAANBAFNkBAAAAAAAAAAAAAGggiuwAAAAAAAAAAAAAADQQRXYAAAAAAAAAAAAAABqIIjsAAAAAAAAAAAAAAA3UIors0dHRMplM57yVl5cbHRMAAAAAAAAAAAAA0Mq1MzrA+QgMDFTPnj3r7XNxaRHfFwAAAAAAAAAAAAAAtGAtqsj+5z//WdHR0UbHAAAAAAAAAAAAAAC0US2qyA4A9bHZbMrKylJhYaG8vLwUEhIis9lsdCwAbRx/mwAAAAAAaFl4Lw8AaCiK7ABaNKvVqsTEROXn5zvavL29FR8fL4vFYmAyAG0Zf5sAAAAAAGhZeC8PADgfLWoj83feeUe33nqrrrvuOkVGRur5559XcXGx0bEAGMRqtSouLk5BQUFKT0/Xtm3blJ6erqCgIMXFxclqtRodEUAbxN8mAAAAAABaFt7LAwDOl8lut9uNDvFLoqOj9eqrr9bb161bN61YsUJjxoxp8OOVlJTI09NTxcXF6tKlS1PFBOBENptNERERCgoKUmpqqlxc/vedoerqasXGxionJ0dWq5UlndDscV1qWkY+n/xtAgD8FNf4psXzCQBoLrgmNT3eywMAmouGXpNaxEz2gIAAPfvss/r6669VUlKi77//XlarVaGhoSoqKtKtt96qrKyssx5fUVGhkpKSWjcALVtWVpby8/M1efLkWv/hK0kuLi6KiYnRt99+e86/DQDQ1PjbBAAAAABAy8J7eQBAY7SIPdmffPLJOm0REREaNWqUrr32Wn3xxReaMWOG1q5dW+/x8+bN05w5cy52TABOVFhYKEkKDAyst7+mvWYcADgDf5sAAAAAAGhZeC8PAGiMFjGT/Wzc3NyUkJAgScrMzFRRUVG942bOnKni4mLH7fDhw86MCeAi8PLykiTl5OTU21/TXjMOAJyBv00AAAAAALQsvJcHADRGiy6yS9KwYcMk/bg3Sm5ubr1j3N3d1aVLl1o3AC1bSEiIvL29tWTJElVXV9fqq66u1tKlS+Xj46OQkBCDEgJoi/jbBAAAAABAy8J7eQBAY7T4Irurq6vj5zNnzhiYBIAzmc1mxcfHKzMzU7GxscrOzlZpaamys7MVGxurzMxMzZgxQ2az2eioANoQ/jYBAAAAANCy8F4eANAYLWJP9nPZsWOH42cfHx8DkwBwNovFopSUFCUmJioyMtLR7uPjo5SUFFksFgPTAWir+NsEAAAAAEDLwnt5AMD5avFF9ueee06SNGDAAHl7exucBoCzWSwWhYeHKysrS4WFhfLy8lJISAjfLAVgKP42AQAAAADQsvBeHgBwPpp9kf3jjz/WunXr9NBDD6lfv36O9uLiYj355JNauXKlJGn27NlGRQRgMLPZrNDQUKNjAEAt/G0CAAAAAKBl4b08AKChmn2R/YcfflBiYqISExPl7e2tPn36qKqqSjt37lRlZaVMJpNmz56tO++80+ioAAAAAAAAAAAAAIBWrtkX2a+++mr95S9/0eeff659+/Zp+/btstvt8vb21rXXXqvY2Fi+WQYAAAAAAAAAAC6IzWZjuXgAQIM0+yK7r6+v5s6da3QMAAAAAAAAAADQSlmtViUmJio/P9/R5u3trfj4eFksFgOTAQCaIxejAwAAAAAAAAAAABjFarUqLi5OQUFBSk9P17Zt25Senq6goCDFxcXJarUaHREA0MxQZAcAAAAAAAAAAG2SzWZTYmKiwsLClJqaquDgYHXs2FHBwcFKTU1VWFiY5s+fL5vNZnRUAEAzQpEdAAAAAAAAAAC0SVlZWcrPz9fkyZPl4lK7ZOLi4qKYmBh9++23ysrKMighAKA5osgOAAAAAAAAAADapMLCQklSYGBgvf017TXjAACQKLIDAAAAAAAAAIA2ysvLS5KUk5NTb39Ne804AAAkiuwAAAAAAAAAAKCNCgkJkbe3t5YsWaLq6upafdXV1Vq6dKl8fHwUEhJiUEIAQHNEkR0AAAAAAAAAALRJZrNZ8fHxyszMVGxsrLKzs1VaWqrs7GzFxsYqMzNTM2bMkNlsNjoqAKAZaWd0AAAAAAAAAAAAAKNYLBalpKQoMTFRkZGRjnYfHx+lpKTIYrEYmA4A0BxRZAcAAAAAAAAAAG2axWJReHi4srKyVFhYKC8vL4WEhDCDHQBQL4rsAAAAAAAAAACgzTObzQoNDTU6BgCgBWBPdgAAAAAAAAAAAAAAGogiOwAAAAAAAAAAAAAADcRy8QAAAAAAAAAAAKiXzWZjr/p68LwAbRtFdgAAAAAAAAAAANRhtVqVmJio/Px8R5u3t7fi4+NlsVgMTGYsnhcALBcPAAAAAAAAAACAWqxWq+Li4hQUFKT09HRt27ZN6enpCgoKUlxcnKxWq9ERDcHzAkCSTHa73W50CGcrKSmRp6eniouL1aVLF6PjAADaOK5LTYvnEwDQXHBNalo8nwCA5oJrUtPjOW1+bDabIiIiFBQUpNTUVLm4/G/OZnV1tWJjY5WTkyOr1dqmlkjneQFav4Zek5jJDgAAAAAALorvvvtOf/rTnzRo0CB16NBB7du3V0BAgB566CHt27fP6HgAAAA4i6ysLOXn52vy5Mm1CsmS5OLiopiYGH377bfKysoyKKExeF4A1GBPdgAAAAAA0OT27NmjkSNH6rvvvpOrq6v8/f3l6uqqffv2admyZXrjjTf0wQcfaNSoUUZHBQAAwM8UFhZKkgIDA+vtr2mvGddW8LwAqMFMdgAAAAAA0OQeeeQRfffddxoxYoRyc3O1e/du/fe//9W3336rW265RadPn9b999+vNriLHQAAQLPn5eUlScrJyam3v6a9ZlxbwfMCoAZFdgAAAAAA0KROnz6t9evXS5IWL14sHx8fR1/37t2VlpYmk8mkAwcOaPfu3UbFBAAAwFmEhITI29tbS5YsUXV1da2+6upqLV26VD4+PgoJCTEooTF4XgDUoMgOAAAAAACaVGVlpeNDR39//zr93bp10yWXXCJJOnPmjFOzAQAA4JeZzWbFx8crMzNTsbGxys7OVmlpqbKzsxUbG6vMzEzNmDFDZrPZ6KhOxfMCoAZ7sgMAAAAAgCbVtWtX+fr66vDhw9q0aZMiIiJq9e/Zs0cnTpxQ165dz7qfJQAAAIxlsViUkpKixMRERUZGOtp9fHyUkpIii8ViYDrj8LwAkCiyAwAAAACAi2Du3Lm677779MADD2jhwoUKCwtTu3bttHnzZk2ZMkUmk0lJSUlq37690VEBAGhz7Ha7Nm7cqFWrVunTTz/V7t27dfr0afXo0UPDhg3To48+qtGjR9c57qmnntKcOXPO+di7du3SgAEDLlZ0OJnFYlF4eLiysrJUWFgoLy8vhYSEtPmZ2jwvACiyAwAAAACAJnfvvfeqU6dOSkhI0IQJE2r1XXnllfrggw80ZsyYsx5fUVGhiooKx/2SkpKLlhUAgLZm3bp1uv766yVJLi4u6t+/vzp27KicnBxlZGQoIyNDs2bNUkJCQr3H+/r6ys/Pr96+Dh06XLTcMIbZbFZoaKjRMZodnhegbWNPdgAAAAAA0OTsdrtyc3N14sQJmc1m9e/fXwMHDpSbm5u2b9+uF198USdPnjzr8fPmzZOnp6fj5uvr68T0AAC0bna7Xf3791dqaqqOHz+uPXv2aNu2bTpx4oRmzpwp6cdVaVavXl3v8Q888IA+++yzem9nK74DANCaUGQHAAAAAABNbvLkyZo2bZp8fX21b98+5eTkaMeOHTp8+LBuuukmvffeexo9erRsNlu9x8+cOVPFxcWO2+HDh538GwAA0Hpdc8012rVrlx5++GF169bN0e7m5qZnn31WN954oyRp2bJlRkU0RFlZmebMmaMHHnhAc+bMUVlZmdGRmgWbzaYtW7Zo9erV2rJly1n/+w0A2hKWiwcAAAAAAE3q66+/1rJly+Tq6qo333yz1iz0nj176o033lBAQIC++eYbvfXWW7rzzjvrPIa7u7vc3d2dGRsAgDajS5cu5+yPiIjQhx9+qL179zopkfFiY2O1du1ax/2NGzdqxYoVCg8PV2pqqoHJjGW1WpWYmKj8/HxHm7e3t+Lj42WxWAxMBgDGYiY7AAAAAABoUhs3bpTdbldQUFC9y7x36dJF11xzjSQpKyvL2fEAAMAvKC8vlyR5eHjU279+/Xrdfvvtuu666zRhwgQlJSXp6NGjzozYpGoK7K6urnrooYdktVr10EMPydXVVWvXrlVsbKzREQ1htVoVFxenoKAgpaena9u2bUpPT1dQUJDi4uJktVqNjggAhmEmOwAAAAAAaFLff//9L46x2+2S/vchPgAAaB7sdrvefvttSdKIESPqHbNhw4Za999991099dRTSk1NVXR09MWO2KTKysocBfZt27bJzc1NkvTEE0/oj3/8o4YMGaK1a9eqrKzsrF86aI1sNpsSExMVFham1NRUubj8OGczODhYqampio2N1fz58xUeHi6z2WxwWgBwPmayAwAAQ3333Xf605/+pEGDBqlDhw5q3769AgIC9NBDD2nfvn1GxwMAAI0QGBgoSdq7d2+9e6mXlJRo69atkqSgoCCnZgMAAOe2bNkyZWdny83NTVOmTKnV17t3b/35z3/W1q1bdeLECZ0+fVobN27UjTfeqLKyMj3wwAP617/+9YvnqKioUElJSa2bUZKSkiRJ999/v6PAXsPNzU333XdfrXFtRVZWlvLz8zV58mRHgb2Gi4uLYmJi9O2337IqEYA2iyI7AAAwzJ49e/TrX/9azz33nHJycuTn56fAwEAVFBRo2bJlGjx4sD755BOjYwIAgPNksVjUo0cPVVVVKTIyUgcPHnT0fffdd7rrrrt0/PhxtW/fXhMmTDAuKAAAqGXbtm167LHHJElz585VQEBArf6YmBg988wzCgkJ0SWXXCIPDw8NHz5c//73v/X73/9edrtdU6dOdaxYczbz5s2Tp6en41bf9jLOcujQIUk663+T1LTXjGsrCgsLJf3vy5M/V9NeMw4A2hqK7AAAwDCPPPKIvvvuO40YMUK5ubnavXu3/vvf/+rbb7/VLbfcotOnT+v+++//xTfnzZHNZtOWLVu0evVqbdmyRTabzehIAAA4TadOnfTaa6+pffv22rRpk/r376+goCANGjRIvr6+Wr16tdq1a6clS5bI29vb6LgAAEDSgQMHNHbsWJWXlysqKkp/+tOfGnysyWRSYmKiJGn//v365ptvzjl+5syZKi4udtzqW/nGWfr27StJeuedd+rtr2mvGddWeHl5SZJycnLq7a9prxkHAG2Nyd4SP7W+QCUlJfL09FRxcbG6dOlidBwAQBvXVq9Lp0+fVufOnVVdXa1vvvlGv/71r2v1FxUVqXv37rLb7dq5c6cuv/zyBj1uc3g+rVarEhMTlZ+f72jz9vZWfHy8LBaLIZkAAM7XHK5JRtu7d6+ee+45rVu3TocPH5bdblfv3r01cuRITZkyRUOGDGnwY/F8AgCai9Z4TTp69Kh++9vfav/+/br55pv13nvvydXV9bwfp3v37jp58qTeeecd3XbbbQ0+zsjntKysTMHBwXX2ZJekyspKDRkyRFVVVfrqq6/a3J7sERERCgoKqrUnuyRVV1crNjZWOTk5slqt7MkOoFVp6DWJmewAAMAQlZWVqq6uliT5+/vX6e/WrZsuueQSSdKZM2ecmu1CWK1WxcXFKSgoSOnp6dq2bZvS09MVFBSkuLg4Wa1WoyMCAOA0QUFBWrp0qXJyclReXq6KigodPHhQr7322nkV2AEAwMVz8uRJRUREaP/+/Ro1apTefvvtRhXYJTmOa0nv4z08PBQeHq6qqioNGTJEycnJOnDggJKTkx0F9vDw8DZVYJcks9ms+Ph4ZWZmKjY2VtnZ2SotLVV2drZiY2OVmZmpGTNmUGAH0GYxk72VfNMQANByteXrkp+fnw4fPiyr1aqIiIhafXv27NGAAQPUtWtXHTlyRO3bt2/QYxr5fPItbwDAT7Xla/zFwPMJAGguWtM1qbS0VNdff722bNmioUOHau3atercuXOjHuv48ePq2bOn7Ha7PvvsM40YMaLBxzaH5zQ2NlZr166t0x4eHq7U1FQDEjUP9a3W5+PjoxkzZrBaH4BWqaHXpHZOzAQAAFDL3Llzdd999+mBBx7QwoULFRYWpnbt2mnz5s2aMmWKTCaTkpKSzllgr6ioUEVFheN+SUmJM6LXKysrS/n5+VqwYEGtArskubi4KCYmRpGRkcrKylJoaKhBKQEAAAAA+PH99Lhx47RlyxYNGjRIa9asaXSBXZIWLFggu90uT09PDR06tAmTOkdqaqrKysqUlJSkQ4cOqW/fvpo+fXqbm8H+cxaLReHh4crKylJhYaG8vLwUEhLC5AEAbR5FdgAAYJh7771XnTp1UkJCgiZMmFCr78orr9QHH3ygMWPGnPMx5s2bpzlz5lzMmA1WWFgoSQoMDKy3v6a9ZhwAAAAAAEaw2WyKjIzUunXrFBAQoI8//tixZdvZ7NixQ3//+9/1yCOPaNCgQY728vJyLViwQPPnz5ckzZgxo9a+5i2Jh4eH/vrXvxodo9kxm81MFgCAn6HIDgAADGO325Wbm6sTJ07IbDarX79+cnNz0759+7R9+3a9+OKLuuaaa875Rn/mzJl6/PHHHfdLSkrk6+vrjPh1eHl5SZJycnIUHBxcpz8nJ6fWOAAAAAAAjPDWW2/p/fffl/Tjymu33357veN69+6tt99+W5JUVVWlxYsXa/HixfLy8pKfn58kadeuXTp9+rQkadKkSYqPj7/4vwAAAAajyA4AAAwzefJkvfjiixo+fLg2bNigX/3qV5Kk7777TpMmTdJ7772n/fv3a9u2bWddhszd3V3u7u5OTH12ISEh8vb21pIlS+rdk33p0qXy8fFRSEiIgSkBAAAAAG3dT7ddy8nJcXwp/Of69u3r+PlXv/qVEhIStGnTJu3evVt79uxRZWWlevbsqZtuukkPPvigbrjhhoueHQCA5sBkt9vtRodwtoZuWA8AgDO01evS119/rauuukrt2rXT/v3768w+LykpUUBAgI4fP64VK1bozjvvbNDjGv18Wq1WxcXFKSwsTDExMQoMDFROTo6WLl2qzMxMpaSkyGKxOD0XAMD5jL4mtTY8nwCA5oJrUtNrLs8pe7IDF85msykrK0uFhYXy8vJSSEjIWSfPAM1RQ69JzGQHAACG2Lhxo+x2u4KCgupd3r1Lly665ppr9MEHHygrK6vBRXajWSwWpaSkKDExUZGRkY52Hx8fCuwAAAAAADRTsbGxWrt2reP+xo0btWLFCoWHhys1NdXAZEDLYbValZiYqPz8fEebt7e34uPj+UwMrY7LLw8BAABoet9///0vjqlZcKe8vPxix2lSFotFH3/8sV577TU999xzeu2112S1WnkzAQAAAABAM1RTYHd1ddVDDz0kq9Wqhx56SK6urlq7dq1iY2ONjgg0ezWrOwYFBSk9PV3btm1Tenq6goKCFBcXJ6vVanREoEkxkx0AABgiMDBQkrR3714dPny43uXit27dKkkKCgpyer4LZTabFRoaanQMAAAAAABwDmVlZY4C+7Zt2+Tm5iZJeuKJJ/THP/5RQ4YM0dq1a1VWVsbS8cBZ2Gw2JSYmKiwsTKmpqXJx+XGOb3BwsFJTUxUbG6v58+crPDycpePRajCTHQAAGMJisahHjx6qqqpSZGSkDh486Oj77rvvdNddd+n48eNq3769JkyYYFxQAAAAAADQaiUlJUmS7r//fkeBvYabm5vuu+++WuMA1JWVlaX8/HxNnjzZUWCv4eLiopiYGH377bfKysoyKCHQ9CiyAwAAQ3Tq1Emvvfaa2rdvr02bNql///4KCgrSoEGD5Ovrq9WrV6tdu3ZasmSJvL29jY4LAAAAAABaoUOHDknSWb/gX9NeMw5AXYWFhZL+t3Llz9W014wDWgOK7AAAwDA33nijvv76az300EPq16+f8vLytG/fPvXu3Vv33HOPtmzZ4vjGOAAAAAAAQFPr27evJOmdd96pt7+mvWYcgLq8vLwkSTk5OfX217TXjANaA5PdbrcbHcLZSkpK5OnpqeLiYnXp0sXoOACANo7rUtPi+QQANBdck5oWzycAoLngmtT0jHxOy8rKFBwcXGdPdkmqrKzUkCFDVFVVpa+++oo92YGzsNlsioiIUFBQUK092SWpurpasbGxysnJkdVqZU92NHsNvSYxkx0AAAAAAAAAALRJHh4eCg8PV1VVlYYMGaLk5GQdOHBAycnJjgJ7eHg4BXbgHMxms+Lj45WZmanY2FhlZ2ertLRU2dnZio2NVWZmpmbMmEGBHa0KM9n5piEAwGBcl5oWzycAoLngmtS0eD4BAM0F16Sm1xye09jYWK1du7ZOe3h4uFJTUw1IBLQ8VqtViYmJys/Pd7T5+PhoxowZslgsBiYDGq6h16R2TswEAAAAAAAAAADQ7KSmpqqsrExJSUk6dOiQ+vbtq+nTpzODHTgPFotF4eHhysrKUmFhoby8vBQSEsIMdrRKFNkBAAAAAAAAAECb5+Hhob/+9a9GxwBaNLPZrNDQUKNjABcde7IDAAAAAAAAAAAAANBAzGQHAAAAAAAAAABtns1mY5lrNFhlZaVWrFihvLw8+fn5KSoqSm5ubkbHAuAkFNkBAAAAAAAAAECbZrValZiYqPz8fEebt7e34uPjZbFYDEyG5igpKUlpaWmy2Wy12qKjozV9+nQDkwFwFpaLBwAAAAAAAAAAbZbValVcXJyCgoKUnp6ubdu2KT09XUFBQYqLi5PVajU6IpqRpKQkLV++XF27dlVCQoI+++wzJSQkqGvXrlq+fLmSkpKMjgjACUx2u91udAhnKykpkaenp4qLi9WlSxej4wAA2jiuS02L5xMA0FxwTWpaPJ8AgOaCa1LTM/I5tdlsioiIUFBQkFJTU+Xi8r+5idXV1YqNjVVOTo6sVitLx0OVlZUKDg5W165dtWHDBrVr978Fo8+cOaORI0fq1KlT+uqrr1g6HmihGnpNYrl4AAAAAAAAAADQJmVlZSk/P18LFiyoVWCXJBcXF8XExCgyMlJZWVkKDQ01KGXTKSsrU25urtPP6+/vLw8PD6eft6mtWLFCNptNU6ZMqVVgl6R27drpscce0+zZs7VixQpFR0cbExKAU1BkBwAAAAAAAAAAbVJhYaEkKTAwsN7+mvaacS1dbm6uxo8f7/TzZmRkaNCgQU4/b1PLy8uTJI0ePbre/rCwsFrjALReFNkBAAAAAAAAAECb5OXlJUnKyclRcHBwnf6cnJxa41o6f39/ZWRknPdx+/fv17Rp05ScnKyAgIBGnbc18PPzkyStX79eEydOrNOfmZlZaxyA1osiOwAAAAAAAAAAaJNCQkLk7e2tJUuW1Lsn+9KlS+Xj46OQkBADUzYdDw+PC5pRHhAQ0CpmpDdWVFSUkpKStHDhQo0fP77OnuyLFi2S2WxWVFSUgSkBOIPLLw8BAAAAAAAAAABofcxms+Lj45WZmanY2FhlZ2ertLRU2dnZio2NVWZmpmbMmCGz2Wx0VDQDbm5uio6O1okTJzRy5Eilp6fr2LFjSk9P18iRI3XixAlFR0fLzc3N6KgALjJmsgMAAAAAAAAAgDbLYrEoJSVFiYmJioyMdLT7+PgoJSVFFovFwHRobqZPny5JSktL0+zZsx3tZrNZkyZNcvQDaN0osgMAAAAAAAAAgDbNYrEoPDxcWVlZKiwslJeXl0JCQpjBjnpNnz5dU6ZM0YoVK5SXlyc/Pz9FRUUxgx1oQyiyAwAAAAAAAACANs9sNis0NNToGGghapaOB9A2sSc7AAAAAAAAAAAAAAANxEx2AAAAAAAAAAAA4DzYbDa2FwDasBY7k33WrFkymUwymUyaO3eu0XEAAAAAAAAAAADQBlitVkVEROjee+/VE088oXvvvVcRERGyWq1GRwPgJC2yyL5r1y4lJycbHQMAAAAAAAAAAABtiNVqVVxcnIKCgpSenq5t27YpPT1dQUFBiouLo9AOtBEtrshut9sVExMjV1dXXXfddUbHAQAAAAAAAAAAQBtgs9mUmJiosLAwpaamKjg4WB07dlRwcLBSU1MVFham+fPny2azGR0VwEXW4vZkX758uT799FPNnz9fO3fuNDrOBausrNSKFSuUl5cnPz8/RUVFyc3NzehYaKZ4vdSvrKxMSUlJOnTokPr27avp06fLw8PD6FgAAAAAAAAADFJWVqbc3Fynn9ff35/PJluxrKws5efna8GCBXJxqT2P1cXFRTExMYqMjFRWVpZCQ0MNSgnAGVpUkb2wsFAzZszQwIEDNXXqVP3hD38wOtIFSUpKUlpaWq1vNCUlJSk6OlrTp083MBmaI14v9YuNjdXatWsd9zdu3KgVK1YoPDxcqampBiYDAAAAAAAAYJTc3FyNHz/e6efNyMjQoEGDnH5eOEdhYaEkKTAwsN7+mvaacQBarxZVZJ86dapOnjypjIwMubq6Gh3ngiQlJWn58uXq3r27pkyZotGjR2v9+vVauHChli9fLkltunCK2ni91K+mwO7q6qr7779fEyZM0DvvvKNXXnlFa9euVWxsLIV2AAAAAAAAoA3y9/dXRkbGeR+3f/9+TZs2TcnJyQoICGjUedF6eXl5SZJycnIUHBxcpz8nJ6fWOACtV4spsq9du1ZvvPGG7r77bo0aNcroOBeksrJSaWlp6t69uzZs2KB27X78n2HixIkaP368Ro4cqbS0NE2ZMoWlwMHr5SzKysocBfZt27Y5fvcnnnhCf/zjHzVkyBCtXbtWZWVlLM8EAAAAAAAAtDEeHh4XNKM8ICCAGemoIyQkRN7e3lqyZIlSU1NrLRlfXV2tpUuXysfHRyEhIQamBOAMLaLIXl5ersmTJ8vT01N/+9vfzvv4iooKVVRUOO6XlJQ0ZbzztmLFCtlsNk2ZMsVRMK3Rrl07PfbYY5o9e7ZWrFih6OhoY0I2Ifa+uTBt7fXSUElJSZKk+++/v86XC9zc3HTffffppZdeUlJSkv76178aEREAAAAAAAAA0IqYzWbFx8crLi5OsbGxiomJUWBgoHJycrR06VJlZmYqJSVFZrPZ6KgALrIWUWSfO3eu9u3bpxdeeEGXXnrpeR8/b948zZkz5yIka5y8vDxJ0ujRo+vtDwsLqzWupWPvmwvT1l4vDXXo0CFJ0oQJE+rtnzBhgl566SXHOAAAAAAAAAAALpTFYlFKSooSExMVGRnpaPfx8VFKSoosFouB6QA4S7Mvsu/atUvJyckaMmSIHn744UY9xsyZM/X444877peUlMjX17epIp43Pz8/SdL69es1ceLEOv2ZmZm1xrV07H1zYdra66Wh+vbtq40bN+qdd97RE088Uaf/nXfecYwDAAAAAAAAAKCpWCwWhYeHKysrS4WFhfLy8lJISAgz2IE2pNkX2WNjY3XmzBktXry41t4W58Pd3V3u7u5NnKzxoqKilJSUpIULF2r8+PG1lgA/c+aMFi1aJLPZrKioKANTNh32vrkwbe310lDTp0/XihUr9Morr+iPf/xjrSXjKysr9eqrrzrGAQAAAAAAAADQlMxms0JDQ42OAcAgjataO1F2drZMJpNuueUW9erVq9YtPT1dkjR//nz16tVLQ4cONThtw7i5uSk6OlonTpzQyJEjlZ6ermPHjik9PV0jR47UiRMnFB0dXWefabRNvF7q5+HhofDwcFVVVWnIkCFKTk7WgQMHHCtfVFVVKTw8XB4eHkZHBQAAAAAAAAAAQCvS7GeyS5LNZtOxY8fO2l9aWqrS0lK1b9/eiakuTM3s2rS0NM2ePdvRbjabNWnSJGbfohZeL/VLTU1VbGys1q5dq5deekkvvfSSoy88PFypqakGpgMA1Ke4uFiTJ09WQUGB+vTpoyVLlsjT09PoWAAAAAAAAADQYM2+yH7q1Kmz9kVHR+vVV19VQkKCZs2a5bxQTWT69OmaMmWKVqxYoby8PPn5+SkqKqrNzUhGw/B6qV9qaqrKysqUlJSkQ4cOqW/fvpo+fToz2AGgGYqIiFBeXp7j/tGjR3XNNdfIz89PH3/8sYHJAAAAAAAA0BRsNht71eO8tNTXTLMvsrd2NUuBAw3B66V+Hh4e+utf/2p0DADAOfy0wH7ttdfqkUce0d///nd9+umnysvLU0REBIV2AAAAAACAFsxqtSoxMVH5+fmONm9vb8XHx8tisRiYDM1VS37NNPs92QEAANCyFRcXOwrs2dnZeumll3TVVVfppZdeUnZ2tiQpLy9PxcXFRsYEAAAAAABAI1mtVsXFxSkoKEjp6enatm2b0tPTFRQUpLi4OFmtVqMjoplp6a8ZZrIDAAD8grKyMuXm5jr9vP7+/q1i+4vJkydL+nEGe4cOHWr1dejQQSNGjNDGjRs1efJkrVy50oiIAAAAAAAAaCSbzabExESFhYUpNTVVLi4/zvENDg5WamqqYmNjNX/+fIWHh7eIZcBx8bWG10yLLrKnpaUpLS3N6BgAAKCVy83N1fjx451+3oyMDA0aNMjp521qBQUFkqRHHnmk3v7Y2Fht3LjRMQ4AAAAAAMCZmGBxYbKyspSfn68FCxY4iqU1XFxcFBMTo8jISGVlZSk0NNSglGhOWsNrpkUX2QEAAJzB399fGRkZ533c/v37NW3aNCUnJysgIKBR520N+vTpo6NHj+rvf/+7XnrppTr9qampjnEAAAAAAADOxgSLC1NYWChJCgwMrLe/pr1mHNAaXjMU2QEAAH6Bh4fHBb3hCQgIaBVvmBpryZIluuaaa/Tpp5/q9OnTtZaMP336tDZu3OgYBwBofWw2m15++WX94x//0I4dO1RaWqpLL71UV111le6//36NGzfO6IgAAABo45hgcWG8vLwkSTk5OQoODq7Tn5OTU2sc0BpeMxTZAQAAcFF5enrKz89PeXl5uuqqqzRixAjFxsYqNTXVUWD38/OTp6enwUkBAE2tqKhIN910kzZv3iyTyaSgoCD96le/UkFBgVatWqV27dpRZAcAAIDhmGBxYUJCQuTt7a0lS5bU2l9bkqqrq7V06VL5+PgoJCTEwJRoTlrDa8bll4cAAAAAF+bjjz+Wn5+fJGnjxo266667ahXYP/74YyPjAQAugurqat1yyy3avHmzxo8fr7y8PO3evVtZWVkqKCjQ4cOHFRcXZ3RMAAAAABfIbDYrPj5emZmZio2NVXZ2tkpLS5Wdna3Y2FhlZmZqxowZMpvNRkdFM9EaXjPMZAcAAIBTfPzxxyouLtbkyZNVUFCgPn36aMmSJcxgB4BW6sUXX9Rnn32m0aNH6+233641M0GSfHx85OPjY1A6AAAAAE3JYrEoJSVFiYmJioyMdLT7+PgoJSVFFovFwHRojlr6a4YiOwAAAJzG09NTK1euNDoGAMAJFi1aJElKSEioU2AHAAAA0PpYLBaFh4crKytLhYWF8vLyUkhISLOejQxjteTXDEV2AAAAAADQpHJycrR7925dcsklGj58uFatWqW3335bR44ckZeXl66//nrdc889cnd3NzoqAABtkt1u18aNG7Vq1Sp9+umn2r17t06fPq0ePXpo2LBhevTRRzV69OizHv/5558rMTFRmzZtUmlpqfr166c777xT06ZNU/v27Z34mwBobsxms0JDQ42OgRakpb5mKLIDAAAAAIAm9eWXX0qSBgwYoHvuuUdvvPFGrf709HQ999xzWrNmjfr27WtERAAA2rR169bp+uuvlyS5uLiof//+6tixo3JycpSRkaGMjAzNmjVLCQkJdY594403dN9998lms8nb21u+vr7avn27Zs+erX/961/KzMxUhw4dnP0rAQDgVKzXBgAAAAAAmtSRI0ckSVu3btUbb7yhBx98UAcPHlR5ebn+85//yN/fX7t379Ztt92m6urqeh+joqJCJSUltW4AAKBp2O129e/fX6mpqTp+/Lj27Nmjbdu26cSJE5o5c6Ykae7cuVq9enWt4w4ePKhJkybJZrMpKSlJhw8f1rZt25STk6PLLrtMW7du1fTp0434lQAAcCqK7AAAAAAAoEn98MMPkqSqqipde+21WrZsmfr27St3d3eFh4crIyNDJpNJX375pf7973/X+xjz5s2Tp6en4+br6+vMXwEAgFbtmmuu0a5du/Twww+rW7dujnY3Nzc9++yzuvHGGyVJy5Ytq3VccnKyKioqZLFYNG3aNJlMJklS37599fLLL0uSXnzxRR07dsxJvwkAAMagyA4AAAAAAJrUT/difeyxx+r0Dx482LHP65o1a+p9jJkzZ6q4uNhxO3z48MUJCwBAG9SlSxe1a3f23WQjIiIkSXv37nW02e12vffee5KkSZMm1Tlm+PDhGjBggKqqqrRq1aomTgwAQPNCkR0AAAAAADSpn86IGzBgQL1jLr/8ckk/LjtbH3d3d3Xp0qXWDQAAOEd5ebkkycPDw9GWl5fn2BJmxIgR9R5X075ly5aLnBAAAGOd/atqAAAAAAAAjXDZZZc5fnZ3d693TE27zWZzSiYAANAwdrtdb7/9tqTaxfScnBxJP17D+/TpU++x/v7+tcaeTUVFhSoqKhz3S0pKLigzAADOxkx2AAAAAADQpK666irHkvG5ubn1jqlp9/b2dlouAADwy5YtW6bs7Gy5ublpypQpjvaioiJJUteuXR17sf9czWo2NWPPZt68efL09HTcfH19myY8AABOQpEdAAAAAAA0qY4dO+qmm26SJL366qt1+o8ePaqPPvpIknTdddc5NRsAADi7bdu26bHHHpMkzZ07VwEBAY6+miXk3dzcznp8zUo1ZWVl5zzPzJkzVVxc7LgdPnz4QqMDAOBUFNkBAAAAAECTmz17tsxms958881ahfZTp04pOjpaZWVl8vf31+23325gSgAAUOPAgQMaO3asysvLFRUVpT/96U+1+mtWqamsrDzrY9QsAf/Tvdzr4+7uri5dutS6AQDQklBkBwAAAAAATW7w4MF64YUXZLfbFR0drb59+2ro0KHy9vbWRx99pB49eujdd98952w4AADgHEePHlVERISOHDmim2++WWlpaXWWhK9ZCv7UqVOy2+31Pk7NMvE1YwEAaK0osgMAAAAAgIti8uTJ+uSTT/S73/1Op0+f1jfffKOePXvqkUce0VdffaXg4GCjIwIA0OadPHlSERER2r9/v0aNGqW3335brq6udcYFBgZK+nG2ekFBQb2PlZubW2ssAACtVTujAwAAAAAAgNbr2muv1bXXXmt0DAAAUI/S0lLddNNN2r59u4YOHap//etfZ13q3c/PT7169dLRo0e1ceNGTZw4sc6YjRs3SpJCQ0Mvam4AAIzGTHYAAAAAAAAAANqYiooKjRs3Tlu2bNGgQYO0Zs0ade7c+azjTSaTfv/730uSli9fXqd/06ZN2r17t1xdXXXLLbdctNwAADQHFNkBAAAAAAAAAGhDbDabIiMjtW7dOgUEBOjjjz/WJZdc8ovHTZs2TW5ubrJarUpOTnbszX7o0CE98MADkqQHH3xQvXr1uqj5AQAwGsvFAwAAAAAAAADQhrz11lt6//33JUkuLi66/fbb6x3Xu3dvvf322477/fr107Jly3T//fdr+vTpWrRokXr27Knt27erqqpKV199tZKTk53xKwAAYCiK7AAAAAAAAAAAtCEVFRWOn3NycpSTk1PvuL59+9Zpu/fee9W/f3/NmzdPmzZt0s6dO+Xv768777xTM2bMUPv27S9abgDNX2VlpVasWKG8vDz5+fkpKipKbm5uRscCmhxFdgAAAAAAAAAA2pDo6GhFR0c3+vjhw4frX//6V9MFAtAqJCUlKS0tTTabrVZbdHS0pk+fbmAyoOmxJzsAAAAAAAAAAACARktKStLy5cvVtWtXJSQk6LPPPlNCQoK6du2q5cuXKykpyeiIQJOiyA4AAAAAAAAAAACgUSorK5WWlqbu3btrw4YNmjhxory8vDRx4kRt2LBB3bt3V1pamiorK42OCjQZiuwAAAAAAAAAAAAAGmXFihWy2WyaMmWK2rWrvVN1u3bt9Nhjj8lms2nFihUGJQSaHkV2AAAAAAAAAAAAAI2Sl5cnSRo9enS9/WFhYbXGAa0BRXYAAAAAAAAAAAAAjeLn5ydJWr9+fb39mZmZtcYBrQFFdgAAAAAAAAAAAACNEhUVJbPZrIULF+rMmTO1+s6cOaNFixbJbDYrKirKoIRA06PIDgAAAAAA0EA2m01btmzR6tWrtWXLFtlsNqMjAQAAAIZyc3NTdHS0Tpw4oZEjRyo9PV3Hjh1Tenq6Ro4cqRMnTig6Olpubm5GRwWaTDujAwAAAAAAALQEVqtViYmJys/Pd7R5e3srPj5eFovFwGQAgLbi2LFjKigo0GWXXaYOHToYHQcAHKZPny5JSktL0+zZsx3tZrNZkyZNcvQDrQUz2QEAAAAAAH6B1WpVXFycgoKClJ6erm3btik9PV1BQUGKi4uT1Wo1OiIAoBXYsmWLHn/8cf373/+u1V5SUqJx48apT58+CgkJUa9evfTKK68YlBIA6jd9+nR99dVXmjlzpu666y7NnDlTX331FQV2tErMZAcAAAAAADgHm82mxMREhYWFKTU1VS4uP85ZCA4OVmpqqmJjYzV//nyFh4fLbDYbnBYA0JK99NJLevnll3XrrbfWap82bZr+9a9/ycXFRZ6enioqKtIf/vAHhYSE6Ne//rUxYQGgHjVLxwOtHTPZAQAAAAAAziErK0v5+fmaPHmyo8Bew8XFRTExMfr222+VlZVlUEIAQGuxceNGdezYUSNHjnS0lZaW6vXXX1fnzp21fft2nThxQgsXLlR1dbWee+45A9MCANB2UWQHAAAAAAA4h8LCQklSYGBgvf017TXjAABorGPHjsnX17dW2yeffKLy8nLdcccdGjBggCTp0UcfVY8ePbRlyxYjYgLAWdlsNm3ZskWrV6/Wli1bZLPZjI4EXBQsFw8AAAAAAHAOXl5ekqScnBwFBwfX6c/Jyak1DgCAxvr+++/l7+9fq+2zzz6TyWRSRESEo83FxUW/+tWvtHPnTmdHBICzslqtSkxMVH5+vqPN29tb8fHxslgsBiYDmh4z2QEAAAAAAM4hJCRE3t7eWrJkiaqrq2v1VVdXa+nSpfLx8VFISIhBCQEArUX37t116NAh2e12R9t//vMfSdKoUaNqja2qqpKbm5tT8wHA2VitVsXFxSkoKEjp6enatm2b0tPTFRQUpLi4OFmtVqMjAk2KIjsAADCczWbTsmXLNGrUKPXo0UPt27dX3759deutt2rVqlVGxwMAAG2c2WxWfHy8MjMzFRsbq+zsbJWWlio7O1uxsbHKzMzUjBkzZDabjY4KAGjhfvOb3+jEiRNatmyZpB8L7F9++aUGDx6snj17OsbZ7Xbt27dPvXv3NioqADjYbDYlJiYqLCxMqampCg4OVseOHRUcHKzU1FSFhYVp/vz5LB2PVoUiOwAAMFRRUZF++9vf6qGHHtKnn36qHj166IorrlBVVZVWrVql119/3eiIAAAAslgsSklJ0d69exUZGamrr75akZGRysnJUUpKCstfAgCaxBNPPCGTyaSHH35YPXr00JgxY2QymfTEE0/UGrdhwwb98MMPGjp0qEFJAeB/srKylJ+fr8mTJ8vFpXbp0cXFRTExMfr222+VlZVlUEKg6bEnOwAAMEx1dbVuueUWbd68WePHj9eiRYvk4+Pj6P/222+Vm5trYEIAAID/sVgsCg8PV1ZWlgoLC+Xl5aWQkBBmsAMAmsxvf/tbvfvuu5o1a5b27dsnf39/TZ06VXfddVetcUuWLJEkvuQFoFkoLCyUJAUGBtbbX9NeMw5oDSiyAwAAw7z44ov67LPPNHr0aL399tt1vunq4+NTq+gOtFY2m42CDQC0EGazWaGhoUbHAAC0YuPGjdO4cePOOebFF1/UkiVL1LlzZyelAoCz8/LykiTl5OQoODi4Tn9OTk6tcUBrQJEdAAAYZtGiRZKkhISEOgV2oK2wWq1KTExUfn6+o83b21vx8fHMSgEAAABQL4rrAJqTkJAQeXt7a8mSJUpNTa31OV91dbWWLl0qHx8fhYSEGJgSaFp8mg0AAAyRk5Oj3bt365JLLtHw4cO1atUq3X333QoPD1dkZKReeuklVVRUGB0TuKisVqvi4uIUFBSk9PR0bdu2Tenp6QoKClJcXJysVqvREQEAAAAAAM7JbDYrPj5emZmZio2NVXZ2tkpLS5Wdna3Y2FhlZmZqxowZrNqHVoWZ7AAAwBBffvmlJGnAgAG655579MYbb9TqT09P13PPPac1a9aob9++RkQELiqbzabExESFhYXV+pZ3cHCwUlNTFRsbq/nz5ys8PJw3oQAAAEAbUllZqVdeeUVr1qxRbm6uSktLZbfb6x1rMpm0f/9+JycEgLosFotSUlKUmJioyMhIR7uPj49SUlJYrQ+tDkV2AABgiCNHjkiStm7dqk2bNunBBx/UrFmz1KtXL3322Wd66KGHtHv3bt1222364osvzrqcfEVFRa0Z7yUlJU7JD6msrEy5ublOP6+/v788PDycft6mlpWVpfz8fC1YsKDO69vFxUUxMTGKjIxUVlYWe/8CAAAAbcSRI0cUHh6uPXv2nLWw/lMmk8kJqQCgYSwWi8LDw5WVlaXCwkJ5eXkpJCSEyQNolSiyAwAAQ/zwww+SpKqqKl177bVatmyZoy88PFwZGRm66qqr9OWXX+rf//63fve739X7OPPmzdOcOXOckhm15ebmavz48U4/b0ZGhgYNGuT08za1wsJCSVJgYGC9/TXtNeMAAAAAtH5PPPGEdu/eLX9/f02fPl1XXXWVvLy8KKYDaDHMZjOTBdAmUGQHAACGaN++vePnxx57rE7/4MGDNXr0aK1bt05r1qw5a5F95syZevzxxx33S0pK5Ovr2/SBUYe/v78yMjLO+7j9+/dr2rRpSk5OVkBAQKPO2xp4eXlJknJychQcHFynPycnp9Y4AAAAAK3fmjVr1L59e33yySfy9vY2Og4AADgLiuwAAMAQ3bp1c/w8YMCAesdcfvnlWrdunQ4ePHjWx3F3d5e7u3tTx0MDeHh4XNCM8oCAgFYxI72xQkJC5O3trSVLltTak12SqqurtXTpUvn4+CgkJMTAlAAAAACcyWazacCAARTYAQBo5urf3BQAAOAiu+yyyxw/n61IXtNus9mckglwJrPZrPj4eGVmZio2NlbZ2dkqLS1Vdna2YmNjlZmZqRkzZrBvGQAAANCGXHnllTpx4oTRMQAAwC+gyA4AAAxx1VVXOZaMz83NrXdMTTvf4EdrZbFYlJKSor179yoyMlJXX321IiMjlZOTo5SUFFksFqMjAgAAAHCiadOm6fDhw0pPTzc6CgAAOAeWiwcAAIbo2LGjbrrpJmVkZOjVV1+tU0w8evSoPvroI0nSddddZ0REwCksFovCw8OVlZWlwsJCeXl5KSQkhBnsANBM2Ww2/mYDAC6aW265Rc8995wefPBBffHFF3rggQcUEBDg+JI6AABoHiiyAwAAw8yePVurVq3Sm2++KYvFovvuu0+SdOrUKUVHR6usrEz+/v66/fbbDU4KXFxms1mhoaFGxwAA/AKr1ap58+apoKDA0danTx/NnDmT1UfEFxAAoKlERUVp3bp1WrhwoRYuXHjOsSaTSWfOnHFOMAAA4ECRHQAAGGbw4MF64YUXFBsbq+joaM2ePVs9e/bUzp07dfr0afXo0UPvvvuu3NzcjI4KAADaOKvVqj/+8Y8ymUy12o8cOaI//vGPev7559t0od1qtSoxMVH5+fmONm9vb8XHx7fp5wUAzte+ffsUFhamI0eOyG63/+L4howBgMYqKys76zaPF5O/v788PDycfl5cuLb0mqHIDgAADDV58mQNGjRIycnJ+vzzz/XNN9+oT58+uvnmmzVz5kz2YwcAAIaz2WyaOXOmJOmSSy7RuHHj5Ovrq8OHD2vVqlU6ceKEZs6cqfDw8DY5c9tqtSouLk5hYWFasGCBAgMDlZOToyVLliguLk4pKSkU2gGggaZPn66CggL95je/0Zw5cxQcHCwvLy+jYwFoo3JzczV+/HinnzcjI0ODBg1y+nlx4drSa4YiOwAAMNy1116ra6+91ugYAAAA9dq8ebNKS0vVoUMHubm56eWXX3b09e7dWx06dFBpaak2b96sESNGGJjU+Ww2mxITExUWFqbU1FS5uLhIkoKDg5WamqrY2FjNnz+/zX4BAQDO1yeffKJOnTppzZo16tKli9FxALRx/v7+ysjIOO/j9u/fr2nTpik5OVkBAQGNOi9aprb0mqHIDgAAAAAAcA7vv/++JOn06dOqrq6u1VdUVKTy8nLHuLZWZM/KylJ+fr4WLFjgKLDXcHFxUUxMjCIjI5WVlaXQ0FCDUgJAy1FdXa3LLruMAjuAZsHDw+OCZgcHBAQwI72NaUuvGYrsAAAAAAAA5/DDDz84fv7Nb36jkSNHqn379iovL9eGDRuUmZlZZ1xbUVhYKEkKDAyst7+mvWYcAODcrr76au3YscPoGAAA4BdQZAcAAAAAADiHHj16SJJcXV21e/duR1Fdknr16iVXV1dVVVU5xrUlNfsE5+TkKDg4uE5/Tk5OrXEAgHN78skndf3112vRokV67LHHjI4DAADOgiI7AAAAAADAOXh6ekqSqqqqdOzYsVp9x44dk91urzWuLQkJCZG3t7eWLFlSa0926cclj5cuXSofHx+FhIQYmBIAWo5+/fopOTlZM2bM0IYNG/TAAw8oICBAHTp0OOsxfn5+TkwIAAAkiuwAAAAAAADn9NPCcU1Bvb77P9+TvC0wm82Kj49XXFycYmNjFRMTo8DAQOXk5Gjp0qXKzMxUSkqKzGaz0VEBoEX41a9+JZPJJLvdrvfff1/vv//+OcebTCadOXPGOeEAAIADRXYAAAAAAIBz6Ny5c5OOa20sFotSUlKUmJioyMhIR7uPj49SUlJksVgMTAcALYufn59MJpPRMQAAwC+gyA4AAAAAAHAOxcXFTTquNbJYLAoPD1dWVpYKCwvl5eWlkJAQZrADwHk6ePCg0REAAEADUGQHAAAAAAA4hyNHjjTpuNbKbDYrNDTU6BgAAAAAcNG1vc3CAAAAAAAAzsNP97rt3bt3rb4+ffrUOw4AAAAA0Hoxkx0AAAAAAOAcdu7c6fg5KChIDz74oNq3b6/y8nJt2LBBBQUFdcYBAHAhKioqtHLlSlmtVu3du1fff/+9OnfurKCgIN1www2KjIyUu7u70TEBAGizWkSR/f3339eHH36orKwsFRQU6MSJE+rQoYMGDhyoO+64Qw8//LDc3NyMjgkAAAAAAFohm83m+Hnz5s365JNPHPfbt29f7zgAABpr27Ztuv3223Xw4EHZ7fY6fenp6UpISNBbb72lIUOGGJQSAIC2rUUU2f/2t79p48aNcnd3V58+fTR48GAdOXJEn3/+uT7//HO9/vrr+s9//qOuXbsaHRUAAAAAALQyQUFB+vbbbyVJJpPpnOMAALgQ3377rSIiIlRUVKQePXroD3/4gwYNGqRLL71Ux44d044dO/TSSy8pNzdXN9xwg7766it5e3sbHRsAgDanRezJ/uCDD2r9+vX6/vvvlZubq61bt+rbb7/V559/Lh8fH3355Zf6y1/+YnRMAAAAAADQCiUnJzt+rq6urtX30/s/HQfUsNls2rJli1avXq0tW7aw4gGAc5o3b56Kioo0fvx4HTp0SM8884yioqIUHh6uqKgoPfPMMzp06JBuu+02nThxQvPmzTM6MgAAbVKLKLJHR0crLCxMrq6utdp/85vfaMGCBZJ+XFIeaO327dunK664QpdddpmuuOIK7du3z+hIzUJlZaXS0tL09NNPKy0tTZWVlUZHQjPGB1wAAAA4X506ddKvf/1rSarzfqPm/q9//Wt16tTJ6dnQvFmtVkVEROjee+/VE088oXvvvVcRERGyWq1GRwPQTH344Yfq2LGj0tLS5OHhUe+Y9u3b65VXXlHHjh31wQcfODkhAACQWshy8ecyYMAASdLp06cNTgJcXAMGDKi1B1NVVZVuvvlmmUwm7d6928BkxkpKSlJaWlqtQmlSUpKio6M1ffp0A5OhObJarUpMTFR+fr6jzdvbW/Hx8bJYLAYmAwAAaP1mzZqlZ555RpKUkJCgWbNmGZxIKisrU25uboPGzpkzR9OnT6/3y879+/fXnDlztGPHjgY9lr+//1kLJ83F+Tw3TaklPDcNZbVaFRcXp7CwMC1YsECBgYHKycnRkiVLFBcXp5SUFN6HAKijoKBAV1555S9+catTp066/PLL9d///tdJyQAAwE+1+CL7559/LkkaMmSIwUmAi+enBXYPDw89+uijeuGFF1RWVia73a4BAwa0yUJ7UlKSli9fru7du2vKlCkaPXq01q9fr4ULF2r58uWSRKEdDnzABQAAYJxdu3Y1y6XUc3NzNX78+At+nH379p3X42RkZGjQoEEXfN6Lqamem/PVEp6bhrDZbEpMTFRYWJhSU1Pl4vLjYpLBwcFKTU1VbGys5s+fr/DwcJnNZoPTAmhOOnfurGPHjjVo7LFjx9SxY8eLnAgAANSnRRbZbTabjhw5on/+85+Kj49Xx44d2XsGrda+ffscBfZPPvlEvXr1kiQ9+OCDOnr0qEaNGiW73a59+/apf//+RkZ1qpol4rt3764NGzaoXbsf/5xNnDhR48eP18iRI5WWlqYpU6bIzc3N4LQwGh9wAQAAGMdutysmJkaurq767W9/q3Xr1hkdycHf318ZGRnnfdz+/fs1bdo0JScnKyAgoFHnbe54bi5MVlaW8vPztWDBAsf7jxouLi6KiYlRZGSksrKyFBoaalBKAM3R1VdfrY8//lhvvvmmIiMjzzpu5cqVOnz4MBMGAAAwSIsqsi9cuFBTp06t1XbrrbcqISFBV1xxxVmPq6ioUEVFheN+SUlJk2czahk1qXUtpYa6br31Vkk/zmCvKbDX6NWrl9q3b6/y8nLdeuut2r59uwEJjbFixQrZbDZNmTLFUWCv0a5dOz322GOaPXu2VqxYoejoaGNCotngAy4AAADjLF++XJ9++qnmz5+vnTt3Gh2nFg8PjwuaNR0QENAqZl3Xh+fmwhQWFkqSAgMD6+2vaa8ZBwA1/vjHP8pqteq+++7T1q1b9eijj6pfv36O/gMHDuj5559XamqqTCaT4uLiGn2uAwcO6D//+Y+++OILffHFF9qxY4dsNts5t3V56qmnNGfOnHM+7q5duxzbvAIA0Fq1qCK7t7e3RowYoaqqKh06dEjHjh3T+vXrtXLlSj399NNnnX04b968X7zwXyijllGTWs9SaqhfVVWVJOnRRx+ttz8mJkaLFi1yjGsr8vLyJEmjR4+utz8sLKzWOLRtfMAFAABgjMLCQs2YMUMDBw7U1KlT9Yc//MHoSIBTeHl5SZJycnIUHBxcpz8nJ6fWOACocfPNN2vGjBmaP3++Fi5cqIULF8rd3V1eXl4qLCx0TCaz2+2aOXOmbrrppkafa9GiRVq0aFGjjvX19ZWfn1+9fR06dGh0JgAAWooWVWS//fbbdfvttzvub9myRTExMXr22Wd18uRJLV68uN7jZs6cqccff9xxv6SkRL6+vk2arbHLqEkspYZzc3V1VVVVlV544QU9+OCDdfqXLl3qGNeW1PxH/Pr16zVx4sQ6/ZmZmbXGoW3jAy4AAABjTJ06VSdPnlRGRkabe8+Cti0kJETe3t5asmRJrS2rJKm6ulpLly6Vj4+PQkJCDEwJoLmaN2+eRowYocTERG3evFnl5eU6fPiwpB9X5Bs+fLhmzJihm2+++YLO06NHD40dO1bXXHONhg4dqpdeeknvvvtug4594IEH9NRTT13Q+QEAaMlaVJH950JDQ/XBBx/I399fL774ouLj49W3b98649zd3eXu7n5Rs1zoMmoSS6mhfu+//75uvvlmlZWV6ejRo7WWjD969KjKy8sd49qSqKgoJSUlaeHChRo/fnytJePPnDmjRYsWyWw2KyoqysCUaC74gAsAAMD51q5dqzfeeEN33323Ro0aZXQcwKnMZrPi4+MVFxen2NhYxcTEKDAwUDk5OVq6dKkyMzOVkpJy1lUZAWDs2LEaO3asfvjhB+3bt0+lpaXq1KmT+vfvr44dOzbJOX6+JPybb77ZJI8LAEBb4PLLQ5q3Pn36KDg4WNXV1fr666+NjgM0uf79+8tkMkmSRo0apcGDBys1NVWDBw92fFBlMpnUv39/I2M6nZubm6Kjo3XixAmNHDlS6enpOnbsmNLT0zVy5EidOHFC0dHRcnNzMzoqmoGaD7gyMzMVGxur7OxslZaWKjs7W7GxscrMzNSMGTP4gAsAAKCJlJeXa/LkyfL09NTf/va3Rj1GRUWFSkpKat2AlsRisSglJUV79+5VZGSkrr76akVGRionJ0cpKSmyWCxGRwTQAnTs2FGDBw/WiBEjNHjw4CYrsAMAgAvTomey1zhz5kytf4HWZvfu3RowYIDsdrvKy8tr7ZVkMpm0e/duA9MZZ/r06ZKktLQ0zZ4929FuNps1adIkRz8g/e8DrsTEREVGRjrafXx8+IALAACgic2dO1f79u3TCy+8oEsvvbRRjzFv3jzNmTOniZMBzmWxWBQeHq6srCwVFhbKy8tLISEhfMEXwFmZzWb99re/1SeffPKLY0ePHq1PP/3UkM/F169frx07dujEiRO65JJLdM011+jee++ttQonAACtWYsvsh88eNAxg33w4MEGpwEunt27d2vfvn269dZbVVVVJVdXV73//vttbgb7z02fPl1TpkzRihUrlJeXJz8/P0VFRTGDHfXiAy4AAICLb9euXUpOTtaQIUP08MMPN/pxZs6cqccff9xxv6SkRL6+vk0REXAqs9ms0NBQo2MAaCHsdrvsdvt5jTfChg0bat1/99139dRTTyk1NVXR0dGGZAIAwJkuqMh+4MABbd26Vd99952+//57denSRT179tQ111xT797ojfHll1/qn//8p+677z75+/vX6luzZo2mTp2qM2fO6KabblJAQECTnBNorvr376/t27cbHaPZqVk6HmgIPuACAAC4uGJjY3XmzBktXrxYLi6N36XO3d1d7u7uTZgMAIDW5YcffpCrq6tTz9m7d2/9+c9/1u9//3v5+/vLw8ND2dnZmjt3rj788EM98MAD6t69u373u9+d83EqKipUUVHhuP9L28IUFBSoqKioSX6HX7J///5a/zpDt27d1KdPH6edDwBw4RpVZH/99dc1b9487dmz56xjBg4cqD//+c+68847Gx1Okr7//ns9/fTTevrpp9WrVy/5+PiosrJSeXl5OnXqlCRp6NChevXVVy/oPAAA4Px98cUXev311/X8888bHQUAADQT2dnZMplMuuWWW+r0FRcXS5Lmz5+vF154Qb6+vtq6dauzIwIA0OLt2bNH27dvl7e3t1PPGxMTU6dt+PDh+ve//63bbrtN7733nqZOnaqxY8fKZDKd9XHOZ1uYgoICjblhjCoqK355cBOaNm2a087l7uauNR+todAOAC3IeRXZq6urde+992rlypWOZWi6d+8uX19fdezYUaWlpTp8+LBOnjypHTt26O6779ZHH32kV1555ZwX1HMZPHiwFi1apLVr12rHjh3avXu3Kisr1b17dw0bNkwTJ07U3XffrXbtWvzK9wAAtAgHDx7UP/7xD/3jH/9QTk6OJFFkBwAAtdhsNh07duys/aWlpSotLVX79u2dmAoAgOZn0aJFWrRoUa22rKysOqu6/lRZWZm+++47SdK4ceMuar6GMplMSkxM1Hvvvaf9+/frm2++Oef2ruezLUxRUZEqKis0uHiwOtk6NXl2o5WaS/W159cqKiqiyA4ALch5VaaffvpprVixQmazWY8++qgmT56syy67rM64Xbt2afHixVq8eLFef/119e/fX7NmzWpUwG7duikuLk5xcXGNOh4AAFy44uJivfXWW3r99de1ceNGST/u++bq6qoxY8YYnA4AADQnNavO1Sc6OlqvvvqqEhISGv05AQAArcmpU6d08OBBx32TyaTy8vJabfXp3Lmzbr/9ds2dO/fiBjwPQUFBuuSSS3Ty5Ent27fvnEX2xmwL08nWSZ5nPC80JgAATaLBRfbjx48rMTFR7dq10+rVq2WxWM469vLLL1dKSopuuukm/e53v9Mzzzyjhx9+WN27d2+S0AAA4OI7c+aMPvjgA73++utavXq1KisrHSvZDBs2THfffbfuuOMOXXLJJQYnBQAAAACgZZoyZYqio6Ml/fhldn9/fw0dOlRvvfVWveNNJpM8PDzk5eXlxJQNV7NH/JkzZwxOAgDAxdXgIvvrr7+uyspKPfHEE+cssP/UmDFjFBcXp4ULF+qNN95gNjoAAC3Ali1b9Prrrys9PV0nT550FNaDgoK0d+9e9erVyzGbHQAAAAAANJ6np6c8Pf83O/u+++7TZZddpr59+xqYqnGOHz/uWMbex8fH4DQAAFxcLg0d+Nlnn8lkMunhhx8+rxPExsbKbrdrw4YN5x0OAAA4x4EDB5SQkKCgoCANHz5cixcv1okTJ3TppZdqypQp2rp1q3bv3m10TAAAAAAAWrVXXnlF8fHxRsdolAULFshut8vT01NDhw41Og4AABdVg2eyf/PNN+rZs6f8/f3P6wQBAQHq2bOnvvnmm/MOBwAALr5rr71WmzZtkvTj0nRdunTR+PHjddddd+m6666TyWQyOCHQ+uXl5WncuHEqKyuTh4eHVq1aJT8/P6NjAUCTS0tLU1pamtExAABAI+zYsUN///vf9cgjj2jQoEGO9vLyci1YsEDz58+XJM2YMUNubm5GxQQAwCkaXGQ/efJko5eo6dOnjw4dOtSoYwEAwMW1ceNGmUwmde3aVc8995zuvPNOubu7Gx0LaDMGDhwom83muH/69GlFRETIbDZr586dBiYDAAA/V1ZWptzcXKef19/fXx4eHk4/b0PxvABN78CBA0pPT9fXX3+tkydPqqqqqt5xJpNJa9eubdQ5Nm7cqHHjxjnul5aWSpLmzZunhQsXOtqzs7Pl6+urqqoqLV68WIsXL5aXl5fji8G7du3S6dOnJUmTJk1qsTPxAQA4Hw0uspeUlKhTp06NOknHjh1VUlLSqGMBAMDFZTabZbPZdOrUKT366KP66KOPFBUVpRtvvFHt2jX4PxUANMJPC+xdu3bV448/rgULFujUqVOy2WwaOHAghXYAAJqR3NxcjR8/3unnzcjIqDVrtLnheQGaVnJysv7yl7/ozJkzjtXl7Ha7o/+nbRey+lxVVZVOnDhRp/306dOOorkkx3uWX/3qV0pISNCmTZu0e/du7dmzR5WVlerZs6duuukmPfjgg7rhhhsanQcAWjubzaasrCwVFhbKy8tLISEhMpvNRsdCIzX4k/Ofzq5pjOrq6gs6HgAAXBz5+flasWKF/vGPf2jbtm1KT0/XW2+9pW7dumnChAm68847NWrUKKNjAq1OXl6e47+xN27cqB49ekiS7rjjDh0/flwjRoyQzWZTXl4eS8cDANBM+Pv7KyMj47yP279/v6ZNm6bk5GQFBAQ06rzNGc8L0HQ++OADzZgxQ71791ZCQoIWLlyoHTt26OOPP9bhw4f19ddfa/ny5bLZbEpMTNSVV17Z6HOFhYXVKt7/kq5du2rWrFmNPh8AtGVWq1WJiYnKz893tHl7eys+Pl4Wi8XAZGis85qeVlFRoby8vPM+SUVFxXkfAwAAnKNnz56aMmWKpkyZol27dum1117TihUrdPjwYS1btkzLli2Tt7e37rjjDqOjAq1KzbKMXbt2dRTYa/To0UOenp4qLi7WuHHjlJ2dbUREAADwMx4eHhc0czogIKBVzrzmeQGazvPPPy+TyaS33npLI0aM0CuvvCJJCg8Pd4yZNWuWbrvtNj355JPaunWrUVEBAA1ktVoVFxensLAwLViwQIGBgcrJydGSJUsUFxenlJQUCu0tkMv5DM7KylK/fv3O+/bll19erPwAAKAJXX755Zo3b54OHjyotWvX6t5771WnTp307bffasGCBTKZTDp16pQSEhIM2XMRaE3KysokSY8//ni9/XFxcbXGAQAAAGj9vvzyS/Xu3VsjRow465ju3btr5cqVOn36tObMmePEdACA81Wz8khYWJhSU1MVHBysjh07Kjg4WKmpqQoLC9P8+fMveEVxON95zWQ/n6Vjfu5C9oYBAADOZTKZNHr0aI0ePVqLFy/W+++/r9dee00ff/yxysvL9dRTT+mpp57SsGHDdM899ygmJsboyECL4+HhodOnT2vBggX1rhSRkpLiGAcAknT8+HFJqrP6BQAAaD1KSko0ePBgx/327ds72rt06eJo7927t6644gqtX7/e6RnRfBQUFKioqMgp59q/f3+tf52hW7du6tOnz3kfx/OC5iQrK0v5+flasGCBXFxqz312cXFRTEyMIiMjlZWVpdDQUINSojEaXGQ/cODAxcwBAACaqfbt2ysyMlKRkZH67rvv9MYbb+gf//iHsrOztWnTJn3++ecU2YFGWLVqlSIiInTq1CkdP368VtHs+PHjKi4udowD0HadOnVKf/7zn5Wenq5Tp05Jkjw9PXX77bfr2WefVffu3Y0NCAAAmlTPnj1VUlJS674k7dmzR0OHDq01trS0VCdOnHBqPjQfBQUFGjNmjNO36502bZrTzuXu7q41a9acV0G5oKBAN9x4oyrLyy9isrqc+by4tW+vjz78kEJ7C1FYWChJCgwMrLe/pr1mHFqOBhfZ+/btezFzAACAFqBnz56aOnWqpk6dqp07dzr2bwdw/vz8/GQ2m2Wz2TRixAh5eno69uGqKbCbzWb5+fkZnBSAUcrKynTttddq586dtVaWO3XqlF566SV9+umn2rp1qzp27GhgSgAA0JQCAgK0bds2x/3Q0FCtXLlSixcvrlVkX7t2rfbt26d+/foZERPNQFFRkSoqKuT6G1e5dDmvnYFbhOqSalVsrlBRUdF5FZOLiopUWV6u07fdpupWuAKUy/Hj0rvvnvfzAuN4eXlJknJychQcHFynPycnp9Y4tBzntVw8AABAjYEDByoxMVHz5s0zOgrQYu3cuVMDBw6UzWZTcXGxEhISHH1ms1k7d+40MB0Aoy1atEg7duxQ165dNXv2bI0cOVJ2u10bNmxQQkKC9uzZo4ULF+ovf/mL0VEBAEATGTNmjDZs2KCtW7dq6NChioqK0l//+le9+uqr2rt3r4YNG6Zjx47prbfekslk0j333GN0ZBjMpYuLXC5pfUX2C1Xdo4eqKUKjGQgJCZG3t7eWLFmi1NTUWkvGV1dXa+nSpfLx8VFISIiBKdEYF6XIXllZqVOnTsnLy4u92AEAaEXqu8ZzrQcuzM6dO5WXl6dx48aprKxMHh4eWrVqFTPYAei9996TyWTSu+++q9GjRzvar776al155ZWKiIjQe++9R5EdAIBWZOLEidq3b59OnjwpSerRo4fS09MVGRmpTZs2adOmTY6xEyZM0KxZs4yKCgBoALPZrPj4eMXFxSk2NlYxMTEKDAxUTk6Oli5dqszMTKWkpMhsNhsdFefpvIvsu3bt0tq1a1VZWakBAwboxhtvdHy4vnr1as2ePVvffPON7Ha7OnfurKioKCUmJqpLly5NHh4AADQdrvGAcfz8/JSdnW10DADNzJ49e+Tt7V2rwF4jPDxcPj4+jqUFAQBA69CvXz8tW7asVpvFYtGBAwf04Ycf6uDBg/Lw8NC1116rIUOGGJQSAHA+LBaLUlJSlJiYqMjISEe7j4+PUlJSZLFYDEyHxjqvIvuTTz6pefPm1doL7qqrrtL69ev173//W3fffbeqq6sdfSUlJVq6dKm2bdumzz77TO3asTo9AADNEdd4AACan++//16//vWvz9rv5+enzz//3ImJAACAUTw9PWsVZgAALYvFYlF4eLiysrJUWFgoLy8vhYSEMIO9BWvwRh0ffvihnnnmGVVXV6tnz566+uqr1blzZ2VnZ+vZZ5/Vn/70J3Xt2lXPP/+8vvzyS23dulULFy5U165dtXXrVr344osX8/cAAACNxDUeAIDmyW63n3NbFrZsAQAAAICWw2w2KzQ0VGPHjlVoaCgF9hauwdPOlixZIpPJpMcff1xJSUkymUwqLS3V73//ey1atEgVFRX6+OOPdd111zmOufrqqzVgwACNGTNGb731lmJjYy/KLwEAABqPazwAAAAAAAAAAA3X4JnsW7duVefOnTV37lzHt+U7deqkefPmqby8XJdeemmtD99rWCwWXXrppdq+fXvTpQYAAE2GazwAAM3Xxo0bZTab671t2rRJks7az3YuAAAAAABcHA0ush8/flz+/v5yd3ev1T5w4EBJP+4FdzZ+fn4qLi5uZEQAAHAxcY0HAKD5stvtF3QDAAAAAABNr8Ffaz9z5ow6depUp71Dhw6SJDc3t7Me6+bmpurq6kbEAwAAFxvXeAAAmqf169cbHQEAAAAAANSDteMAAAAAAGiGRo0aZXQEAAAAAABQjwYvFw8AAAAAAAAAAAAAQFt3XjPZs7Ky5O/vX6fdZDKdtU+Sjhw50rh0AADAKbjGAwAAAABgvF27dunyyy83OgYA4BeUlZUpNzfX6ef19/eXh4eH08+Lus6ryF5eXq6DBw+ed5/044f0AACgeeIaDwBA8/fAAw80eKzZbFbnzp31q1/9SiNGjNDVV199EZMBAICmcsUVV2jo0KGKjo5WZGSkunbtanQkAEA9cnNzNX78eKefNyMjQ4MGDXL6eVFXg4vsr7zyysXMAQAADMI1HgCAliEtLU3S/77gZrfb64z5eV/N/auvvlqvvvoqM+MAAGjmunbtqi+++EJbt27V1KlTNW7cOEVHR+uGG27gS+4A0Iz4+/srIyPjvI/bv3+/pk2bpuTkZAUEBDTqvGgeGlxkv++++y5mDgAAYBCu8QAAtAyvvPKK9u/fr/nz56tjx4669dZbdeWVV6pz5876/vvv9d///lfvv/++fvjhB02fPl29evXSrl279O677yorK0ujR49Wdna2evfubfSvAgAAzuLo0aP65z//qVdffVVr1qzRW2+9pbffflu9evXSPffco/vuu48vzQFAM+Dh4XFBM8oDAgKYkd7CuRgdAAAAAAAA/LKRI0fq73//u6677jrl5ubq5Zdf1pQpUzRp0iRNmTJFy5cv14EDBzR69GilpqZqzJgxev7555WTk6OIiAgVFhYqOTnZ6F8DAACcg6urq2677Tb985//VEFBgRYsWKArr7xSR44cUVJSkq644gr95je/0ZIlS3Tq1Cmj4wIA0GZRZAcAAAAAoAWYNWuWysvLtXLlyrPuz9qlSxetWLFCZWVlmjVrliSpY8eOevnll2UymfTBBx84MTEAALgQPXr00JQpU5Sdna2vv/5aU6dOlZeXl7744gs98sgj6t27tyIjI7VmzZp6t5EBAAAXT4OXi3/ttdcu+GT33nvvBT8GAABoWlzjAQBoGdauXatBgwadtcBeo1u3bho0aJDWrVvnaPP29taAAQN04MCBi5wSAABcDL/+9a/13HPPKSkpSX/729/05JNPqrKy0rGcfO/evRUTE6O4uDh5enoaHRcAgFavwUX26OhomUymRp/IZDLxATwAAM0Q13gAAFqGkpISnTx5skFjT548qZKSklpt7u7uF3TNBwAAxikqKtLKlSuVlpamL7/8Una7Xa6urrrxxht17NgxbdmyRU899ZSWLFmijz76SFdccYXRkQEAaNUaXGT38/M765vxQ4cOyd3dXb169WqyYAAAwDm4xgMA0DIEBgZq+/btWr16tcaOHXvWcatXr1Zubq6uvPLKWu25ubny8vK62DEBAP9fWVmZcnNznX5ef39/eXh4OP28aHo2m00ffPCBXn31Va1evVpVVVWy2+0aOHCg7r//ft17772Oa/vOnTv15z//Wf/85z81depUffzxxwanBwCgdWtwkf3gwYNn7XNxcdHQoUO1YcOGpsgEAACciGs8AAAtw8MPP6zY2FhNnDhRs2fPVnR0dK0vwh07dkxpaWlKSEiQyWTSww8/7Oj7+uuvVVxcrOuuu86I6ADQJuXm5mr8+PFOP29GRoYGDRrk9POi6Xz11Vd69dVXtWLFCh0/flx2u11dunTRfffdpwceeEChoaF1jhk4cKAyMjLUr18/bdmyxYDUAAC0LQ0usgMAAAAAAONMnjxZW7du1SuvvKK//OUv+stf/qLu3burc+fOKi0t1fHjxyVJdrtdkyZNUkxMjOPYzMxMjRo1ii1eAMCJ/P39lZGRcd7H7d+/X9OmTVNycrICAgIadV60XMHBwfrvf/8ru90uk8mkkSNH6oEHHtCECRN+cYUCFxcX9evXT99++62T0gIA0HZRZAcAAAAAoIVYvny5brzxRj333HP64osvdPz4cUdx3cXFRaGhoXr88cd122231Truscce02OPPWZEZABoszw8PC5oRnlAQAAz0tugb775Rr6+vrr33nv1wAMPqF+/fud1/MyZM3X//fdfpHTGqjJVqcJUYXSMJldlqjI6AgCgESiyAwAAAADQgkyYMEETJkxQaWmp9u3bpx9++EEdO3ZU//791alTJ6PjAQCAC/Dhhx/KYrHIZDI16vgbbrihiRM1H190+8LoCAAAOFBkBwAAAACgBerUqZOCg4ONjgEAAJrQNddc0+gCOwAATamgoEBFRUVOOdf+/ftr/esM3bp1U58+fRp9PEV2AAAAAABaoLKyMu3fv1/ff/+9OnfurICAgF/cqxUAAKOVlZUpNzfX6ef19/dvEdfJXr166YYbblBUVJRuueUWdejQwehIAIA2qKCgQGPGjFFFhXO36Zg2bZrTzuXu7q41a9Y0utBOkR0AAAAAgBbko48+0rx587Rp0ybZbDZHu9ls1m9/+1vFx8fLYrEYmBAAgLPLzc3V+PHjnX7ejIyMFrHHvd1u1+rVq/Xvf/9bHTp00C233KLIyEjdeOONateOj/MBAM5RVFSkiooK9fEaLjdXT6PjNLnKqmIVFG5SUVHRxS+yb9iw4Zz9xcXFvzhm5MiRDT0dAABwEq7xAAC0HE899ZQSEhJkt9slSW5ubvLy8lJhYaEqKyuVmZmpTz75RE8++aSeeuopY8MCAFAPf39/ZWRknPdx+/fv17Rp05ScnKyAgIBGnbclOHbsmN5++22tXLlSn376qVauXKk333xTXbt21YQJE3TnnXcqLCzM6JiGuKboGnU+09noGE3u+3bfs988gGbLzdVTHu6XGB2jWWpwkT0sLOyse8GYTCZt375do0ePPuvxJpNJZ86cOf+EAADgouIaDwBAy7BmzRo9/fTTMpvNiomJ0WOPPabAwEBHf05OjhYtWqQXX3xRCQkJGjZsmG644QYDEwMAUJeHh8cFzSgPCAhoETPSG6tbt2566KGH9NBDD+nIkSN68803tXLlSmVlZWnZsmV66aWX1Lt3b0VGRioyMlIhISFGR3YaV7ur3O3uRsdocuX2cqMjAAAaweV8Btvt9kbfqqurL9bvAAAALhDXeAAAmr+UlBSZTCa9/PLLeuGFF2oV2CUpMDBQL7zwgl5++WXZ7XYtWrTIoKQAAKAp9O7dW1OnTtUXX3yhffv26emnn9aAAQNUUFCg//u//1NoaKguu+wyo2MCANAmNbjIXl1dfcE3AADQ/HCNBwCgZdi6dat8fHx0zz33nHPc3XffLV9fX33xBcuOAgDQWvj7+2vWrFnasWOHvvrqK91www2y2+3at2+f0dEAAGiTGrxcPAAAAAAAMM7333+vfv36NWjspZdeqv/+978XOREAAHCm3NxcrVy5UitXrtSuXbuMjgMAQJtGkR0AAAAAgBagT58+2r17t3744Qd17NjxrON++OEH7dq1S71793ZiOgAAcDEcPXpU6enpWrlypbZu3Srpxy3fevfurTvuuENRUVEGJwQAoG2iyA4AAAAAQAtwww03aOnSpfrDH/6gtLQ0ubm51RlTWVmpBx98UKdPn9aYMWMMSAkAAC7UqVOn9M4772jlypXasGGDqqurZbfb1bVrV40fP15RUVEaPXq0TCaT0VEBAGizKLIDAAAAANAC/PnPf1Z6errS09OVmZmpP/zhDxo4cKB69uyp7777Tjt37tSyZct07NgxeXp6aubMmUZHBgAA5+mWW26R1WpVVVWV7Ha7PDw8NHbsWEVFRenGG2+s90t2AADA+SiyAwCAZmXWrFl65plnJEkJCQmaNWuWwYkAAGgefH199eGHH2rixIk6fPiw5s6dW2eM3W6Xn5+f3nrrLfn6+hqQEgAAXIjVq1erXbt2slgsioqK0u9//3t16tTJ6FgAAOBnKLIDAIBmY9euXUpOTjY6BgAAzVZoaKh2796tFStWyGq1au/evSotLVWnTp0UFBSkG264QXfeeacOHDigb775RldeeaXRkQEAwHl4/vnndccdd6hHjx5GRwFatrIymX74wegUTa+szOgEAP4/iuwAAKBZsNvtiomJkaurq377299q3bp1RkcCAKBZ8vDw0KRJkzRp0qSzjhk1apSKiop05swZJyYDAAAX6pFHHjE6AtAqdHrtNaMjAGjlKLIDAIBmYfny5fr00081f/587dy50+g4gFN98MEHmjp1quP+//3f/+mmm24yMFHzkZeXp3HjxqmsrEweHh5atWqV/Pz8jI6FZqqyslIrVqxQXl6e/Pz8FBUV1ab3LbXb7UZHAAAAANBMFBQUqKioyCnn2r9/f61/naFbt27q06eP084HUGQHAACGKyws1IwZMzRw4EBNnTpVf/jDH4yOBDjNZZddVqdt6tSpmjp1qvbs2WNAouZj4MCBstlsjvunT59WRESEzGYzX8ZBHUlJSUpLS6v1mklKSlJ0dLSmT59uYDIAAIDzd+DAAaWnp+vrr7/WyZMnVVVVVe84k8mktWvXOjkdgJamoKBAN44Zo/KKCqeed9q0aU47V3t3d324Zg2FdjgNRXYAAGC4qVOn6uTJk8rIyJCrq6vRcQCn+XmB/corr9Q333xTq7+tFtp/WmDv2rWrHn/8cS1YsECnTp2SzWbTwIEDKbTDISkpScuXL1f37t01ZcoUjR49WuvXr9fChQu1fPlySaLQDgAAWozk5GT95S9/0ZkzZ2QymSTVXqHmp201PwPAuRQVFam8okLxw83y82x9fzfyiu1K3FShoqIiiuxwmgsqspvNZoWFhfFNOQAAWhlnXuPXrl2rN954Q3fffbdGjRp10c8HNBcffPCB4+dXXnlFw4cPd9zftGmT7r//fse4trZ0fF5enqPAvnHjRvXo0UOSdMcdd+j48eMaMWKEbDabY0lwtG2VlZVKS0tT9+7dtWHDBrVr9+Pb3IkTJ2r8+PEaOXKk0tLSNGXKlDa9dDwAAGgZPvjgA82YMUO9e/dWQkKCFi5cqB07dujjjz/W4cOH9fXXX2v58uWy2WxKTEzUlVdeaXRkoFkqvfde2Xv1MjpGkzMdPXpB+837eZoUeIlLEyZqLqqNDoA26IKK7Ha7vc4eb3FxcdqxYweFdwAAWjBnXePLy8s1efJkeXp66m9/+1ujHqOiokIVP1nqqqSk5Jzj2X8KzcVP92D/aYH95/enTp3a5ors48aNk/TjDPaaAnuNHj16yNPTU8XFxRo3bpyys7ONiIhmZMWKFbLZbJoyZYqjwF6jXbt2euyxxzR79mytWLFC0dHRxoQEAABooOeff14mk0lvvfWWRowYoVdeeUWSFB4e7hgza9Ys3XbbbXryySe1detWo6KimbBX2mUvt//ywBbGXnmBv5OHh+wdOzZNmGbE5OFhdAQA/1+Di+wPPvighg8frmHDhunyyy8/67js7Gxt2rSpScIBAICLz8hr/Ny5c7Vv3z698MILuvTSSxv1GPPmzdOcOXMaNLagoEBjbhijisrWu/+Uu5u71nzE/lMtydlmngwYMEC7d+92cprmoaysTJL0+OOP19sfFxenhIQExzi0bXl5eZKk0aNH19sfFhZWaxycw263a+PGjVq1apU+/fRT7d69W6dPn1aPHj00bNgwPfroo2f93wwAgLbsyy+/VO/evTVixIizjunevbtWrlypvn37as6cOfrHP/7hxIRobiozK42OAABtUoOL7C+//LLjW3Oenp76zW9+I+nHD8DOnDlTZ8YAAABoGYy6xu/atUvJyckaMmSIHn744UY/zsyZM2sV4kpKSuTr61vv2KKiIlVUVmhw8WB1snVq9Dmbq1Jzqb72/Jr9p1qYn+7B/lNttcAuSR4eHjp9+rQWLFigO+64o05/SkqKYxxQs2XA+vXrNXHixDr9mZmZtca1JK9dwDKQP13lxQjr1q3T9ddfL0lycXFR//791bFjR+Xk5CgjI0MZGRmaNWuWEhISDM0JAEBzU1JSosGDBzvut2/f3tHepUsXR3vv3r11xRVXaP369Y0+14EDB/Sf//xHX3zxhb744gvt2LFDNptNCQkJmjVr1jmP/fzzz5WYmKhNmzaptLRU/fr105133qlp06Y5MgMA0Jo1+FPz/fv3a9OmTdq0aZM2btwoq9Uqk8mkL774Qp6enhoxYoRGjx6tEydOXMy8AACgiRl1jY+NjdWZM2e0ePFiubg0fi8od3d3ubu7n9cxnWyd5HnGs9HnBJrC//3f/zmWjN+0aVOdPdl/Oq6tWbVqlSIiInTq1CkdP3681pLxx48fV3FxsWMcEBUVpaSkJC1cuFDjx4+v9eWwM2fOaNGiRTKbzYqKijIwZeNER0fLZDI16li73d7oY5uC3W5X//799fjjjysyMlLdunWTJFVWVuqpp57SvHnzNHfuXIWGhmrs2LGG5QQAoLnp2bNnrW3QevbsKUnas2ePhg4dWmtsaWnpBb1XX7RokRYtWnTex73xxhu67777ZLPZ5O3tLV9fX23fvl2zZ8/Wv/71L2VmZqpDhw6NzgUAQEvQ4CJ7v3791K9fP911112SpO+//16enp7q06eP+vfvrw0bNug///mPJMlkMiksLEzDhw/XiBEjNGzYMF1yySUX5zcAAAAXxKhrfHZ2tkwmk2655ZY6fTUFtPnz5+uFF16Qr68v+8yh1bnpppscRfb7779fUv1LxLe1/dilH2ccm81m2Ww2jRgxQp6enoqLi1NKSorj74PZbG6RM5PR9Nzc3BQdHa3ly5dr5MiReuyxxxQWFqbMzEwtWrRIJ06c0KRJk+Tm5mZ01PPm5+dnaKH8QlxzzTXatWtXnRVx3Nzc9Oyzz+qrr77Shx9+qGXLllFkBwDgJwICArRt2zbH/dDQUK1cuVKLFy+uVWRfu3at9u3bp379+jX6XD169NDYsWN1zTXXaOjQoXrppZf07rvvnvOYgwcPatKkSbLZbEpKStKf/vQnmUwmHTp0SDfccIO2bt2q6dOn64UXXmh0LgAAWoJGr//auXNnSVJQUJDWrVun8vJyffbZZ5o8ebIOHDigzZs3a8OGDY4PBC677DLt3LmzaVIDAICLxpnXeJvNpmPHjp21v7S0VKWlpSw1h1Zrz549uuyyyxz3f15g37Nnj7MjNRs7d+7UwIEDZbPZVFxcXGtJabPZzHsL1DJ9+nRJUlpammbPnu1oN5vNmjRpkqO/pTl48KDRERrtp8vZ1iciIkIffvih9u7d66REABqqoKBARUVFTjnX/v37a/3rDN26dWNrJTRrY8aM0YYNG7R161YNHTpUUVFR+utf/6pXX31Ve/fu1bBhw3Ts2DG99dZbMplMuueeexp9rp8vCf/mm2/+4jHJycmqqKiQxWLRtGnTHO19+/bVyy+/rBEjRujFF1/Uk08+qUsvvbTR2dBwbmFucuna+BUCm6vqU9XsNw+gWWtwkX3ChAkaPny4hg0bpquvvrrOLID27dvr+uuvV+/evXXgwAGVlJToyy+/1ObNm7Vp0yZt3ry5ycMDAIALZ9Q1/tSpU2fti46O1quvvtqgfeCAlm7Pnj364IMPHLPapR+XiG+LM9h/bufOncrLy9O4ceNUVlYmDw8PrVq1ihnsqNf06dM1ZcoUrVixQnl5efLz81NUVFSLnMHeFpSXl0uSPDw8DE4C4KcKCgp045gxKq+ocOp5f1qou9jau7vrwzVrKLSj2Zo4caL27dunkydPSvpxtnl6eroiIyMdW73VmDBhglPfM9vtdr333nuSpEmTJtXpHz58uGN1rlWrVumhhx5yWra2zORmkql9y1z96FxMbq3vdwLQujS4yJ6RkeG4gLq5uemqq66SJJWUlOjUqVPq2rVrrfFubm4aNmyYhg0bVusDQwAA0LxwjQeMd9NNN1FUPws/Pz9lZ2cbHQMtRM3S8Wje7Ha73n77bUnSiBEjDE4D4KeKiopUXlGh+OFm+Xm2vuJGXrFdiZsqVFRURJEdzVa/fv20bNmyWm0Wi0UHDhzQhx9+qIMHD8rDw0PXXnuthgwZ4tRseXl5OnLkiKSzX8NHjBih3bt3a8uWLRTZAQCtWoOL7IWFhfr8888dt61bt8pkMik7O1s9evRQcHCwrrvuunMu+QoAAJofrvEAAMCZli1bpuzsbLm5uWnKlClnHVdRUaGKn8ymLSkpOefjssQ10HT8PE0KvKT1LT0sVRsdAGg0T09PRUZGGpohJydHkuTu7n7Wa5K/v3+tsQAAtFYNLrJ3795dY8eO1dixYyX9uIeqq6ur/Pz8NHjwYH3yySfatm2bJMlkMunqq692zHIbNmyY4+IKAACaF67xAADAWbZt26bHHntMkjR37lwFBAScdey8efM0Z86cBj1uQUGBxtwwRhWVrXeJa3c3d635iCWuAQDGqfkyW9euXWUy1b/aRbdu3WqNPZvz/TKdJJWaSxsatUVprb8XALR2DS6y/5zZbJb04zfTVq1aperqam3dulX33nuv9u3bp7y8PGVnZ2vx4sWSJC8vLx09erRpUgMAgIumOVzj09LSlJaW1qSPCQAAjHXgwAGNHTtW5eXlioqK0p/+9Kdzjp85c6Yef/xxx/2SkhL5+vrWO7aoqEgVlRUaXDxYnWydmjR3c1BqLtXXnl+zxDUAtCH//e9/lZKSok8++UT5+fmqqKjQmTNnHP1Lly7VoUOHFB8fry5dujglU3l5uaQft+g5G3d3d0lSWVnZOR/rfL5M161bN7m7uetrz68bmLTlcXdzd3xBAQDQMjS6yP5zLi4uCg0NVc+ePbVv3z4VFhZqz5492rx5szZu3KjNmzc31akAAIATcY0HAAAX6ujRo4qIiNCRI0d08803Ky0t7awz4Gq4u7s7PqhvqE62TvI843khUQEAMNzf//53TZ06tVZR/efXzYqKCs2fP1+DBg3SXXfd5ZRc7du3lyRVVlaedUzN7HQPD49zPtb5fJmuT58+WvPRGqduCzNt2jQlJyefc9WdpsS2MADQ8jRZkb0+l112mS677DLdd999jX4Mu92ujRs3atWqVfr000+1e/dunT59Wj169NCwYcP06KOPavTo0U2YGgAA/JKmuMYDAIC24eTJk4qIiND+/fs1atQovf3223J1dTU6FgAAzdL69esVFxenzp0765lnntEtt9yiO++8U59//nmtcRMnTtSUKVP03nvvOa3IXjPT+tSpU7Lb7fV+Ya6mEP5Ls7LP98t0ffr0cXoROiAgQIMGDXLqOQEALccFFdmrq6vrtNnt9gt5yDrWrVun66+/XtKPM+n69++vjh07KicnRxkZGcrIyNCsWbOUkJDQpOcFAKAtc8Y1HgAAtH6lpaW66aabtH37dg0dOlT/+te/fnFmGwA0RwUFBU6dRfvTf52BWbTNx3PPPSdJeuONN3TzzTdLqjuLXZJ69eolX19f7dy502nZAgMDJf04W72goEDe3t51xuTm5tYaCwBAa9XkM9lfeOEFFRcXN9nj2e129e/fX48//rgiIyMd34CrrKzUU089pXnz5mnu3LkKDQ3V2LFjm+y8AACgtqa+xgMAgNatoqJC48aN05YtWzRo0CCtWbNGnTt3NjpWm+PMwqDUsoqDFE3RUAUFBRoz5kZVVJQ79bzTpk1z2rnc3dtrzZoPz/s1w/+Pmt7mzZvVq1cvR4H9XHr37q1du3Y5IdWP/Pz81KtXLx09elQbN27UxIkT64zZuHGjJCk0NNRpuQAAMEKTF9mDg4Ob9PGuueYa7dq1S+3a1Y7q5uamZ599Vl999ZU+/PBDLVu2jCI7AAAXUVNf4wEAQOtls9kUGRmpdevWKSAgQB9//LEuueQSo2O1OT8WBsc49sd1JucWB921Zs2a8yqEFRQU6IYbb1Rleestmrq1b6+PPjz/oinqKioqUkVFudyHjJNLp+5Gx2ly1aUnVLFtlYqKis77/0dG/I1p7n9fLlRpaan69u3boLGVlZWy2WwXOdH/mEwm/f73v9fixYu1fPnyOkX2TZs2affu3XJ1ddUtt9zitFwAABjhou7J3hS6dOlyzv6IiAh9+OGH2rt3r5MSAQAAAACAc3nrrbf0/vvvS/px67fbb7+93nG9e/fW22+/7cRkbcuPhcEKuf7GVS5dXIyOc1FUl1SrYnPFeRcHi4qKVFlertO33abqHj0uYkJjuBw/Lr377nk/Lzg3l07dZe7a2+gYzUbN35g+XsPl5uppdJwmV1lVrILC/9fevYdHVd7r/78nQzKJgcBwEsI5MWBFC0IUAZUgEFH4bpGKjfgrgra1ZWtskShoW7W4JUpFhYrHiptSEZUo0kpETp44FZJStYppAqIEKIdAQJNJyDy/P9wZHTIJyWRm1szk/bquXJC1nmfWZz2deNN8Zq21KeQ/R127dm3U1fqVlZX67LPP1KdPnxBU9Z2cnBz96U9/0po1azRv3jzNnDlTNptNX3zxhW6++WZJ0k9/+lN16dIlpHUBABBqYd9kP5PK//vEMc90AwAAAAAgPHz/qsaioiIVFRX5HNfYK/XQPDFJMYppH51N9uZyd+woN01ooFniYtsqwcHdSgJl5MiR+t///V+98MILnqa1L0888YQqKyt15ZVX+n2sDz/8UNdcc43n+5MnT0qS5s6dq8cff9yzvbCwUD169JAk9enTR88995ymTZumu+66S0888YQ6d+6sjz/+WNXV1Ro8eLDmzZvnd00AAESKiP5/WMYYzyfehw8fbnE1AAAAAABAkqZOnSpjzBm/9uzZY3WpAACElbvvvluxsbG6/fbb9eSTT3oa37WOHTum3//+9/rNb36jxMRE/frXv/b7WNXV1Tpy5Ijnq/ZDct98843X9tNvST9lyhS9//77Gj9+vCoqKvSvf/1LKSkpuv/++/XBBx8oMTHR75oAAIgUEX0l+3PPPafCwkLFxcXpV7/6Vb3jXC6X16foy8vLG3zd0tJSlZWVBarMM6q9/U9jbgMUKE6n06/bHIVybSJpXfxRUVGhkpKSkBzr+1JSUsL6zg+sC5rCqveLxHsGAAAAAAAEXr9+/bRkyRLddNNNys7O1q9//WvZ7XZJUs+ePbV//3653W7FxcVp6dKlnivM/ZGRkSFjjF9zhw0bplWrVvl9bAAAIl3ENtkLCgp0xx13SJIefPBBpaam1jt27ty5euCBBxr1uqWlpRp75Vi5qlxnHhxgOTk5ITuWI86h/Lfzm9RQLi0t1dixY70+sBAKIV0Xh0P5+U1bF3+VlJRo4sSJQT/O6fLy8tS/f/+QH7exWBc0hVXvF4n3DAAAAAAACI7rr79eP/jBD3T//fdr9erVnkemfvXVV4qNjdVVV12lOXPmaMCAARZXCiDSnHAZHav078M14eyEK/rOKVzU1Lh0qqbS6jICrqam+b3OiGyy7969W+PHj1dlZaUmT56smTNnNjh+9uzZmjFjhuf78vLyej/hV1ZWJleVSwOOD1DrmtYBrTtcnLSf1M62O1VWVtakZnJZWZlcLpdiL4lVTFJEP2nAJ3e5W64triavi79SUlKUl5fX5HnFxcXKycnRvHnzGvxwSUPHDWesC5rCqvdL7bEBAAAAAACC4YILLtCKFStUXV2tzz//XMePH1fr1q2VlpbGnfUA+O3u9TWSas44Dqj15cH1VpcQtiKuyX7gwAGNGTNG+/fv17hx4/Tiiy/KZrM1OMfhcMjhcDTpOK1rWqvtqbbNKTVqxSTFKKZ99DXZQy0hIaFZV8GmpqZG5VW0rAuagvcLAAAAAAQeV7kB4SM2NpbfXQB+iDl82OoSgiJaz8tqPCoZ/oioJvvRo0c1ZswYFRcXa8SIEXr11VcVGxtrdVkAAAAAAABA1OAqNwBApHI6nYqLj5dWrLC6lKCJi4+X0+m0uoyo8e2jkq+SyxXaW6KH9lHJ8crPX02jPcAipsl+8uRJXX311fr444910UUXadWqVdwWBwAAAAAAAAAQsZYsWdLs15gyZUoAKgGiQ3Jyst5evTqkVyU397GUTcVVyYH17aOSK+UYdI1iWnewupyAc588IlfBypA9KrkliYgmu8vl0jXXXKOtW7eqf//+ys/PV5s2bawuCwAAAAAAAAAAv02dOvWMj0NtiM1mo8kOnCY5OTnkzcRIeSzlw1fYleKMvscBl5S5/+9OPP6Lad1B9nZdA1RR9Ohx9hWKd0TfnRMqXWXNft582DfZa2pqlJWVpfXr1ys1NVXvvPOO2rdvb3VZAAAAAAAAAAA0S8+ePettsn/xxRdyOBzq0qVLiKsCEK3aOGxqF+//B3vCVRtH9J1TuLDbHWplj7e6jICz2x3Nfo2wb7K/8soreuONNyRJMTExmjRpks9xXbt21auvvhrCygAAAAAAAIDow1VuvpmqChnX1wGsKDyYqgqrS2jR9uzZU+++mJgYXXTRRXrvvfdCVxAAAGiUsG+yu1wuz9+LiopUVFTkc1yvXr1CVRIAAAAAAAAQtbjKzbfKLcsCVAkAAAAiXdh/JHXq1Kkyxpzxq6FP/AEAAAAAAAAAAAAAEAhh32QHAAAAAAAAAAAAACBchP3t4gEAAAAAAAAA4ammxqVTNZVWlxFwNTWuMw8CAAAtFk12AAAAAAAAADiD+EtukL3t2VaXEXA1xw8263nzXx5cH8BqAAAAIgNNdgAAAAAAEBWqbdVy2aLvysNqW7XVJQCQZItLkM2RaHUZAWeLS7C6BAAAgIhDkx0AAAAAAESFbc5tVpcAAECTvPfeew3uP378+BnHXH755YEsCQAANAJNdgAAAAAAAAAALJCRkSGbzeZzn81m08cff6yRI0fWO99ms+nUqVPBKg8AANSDJjsAAAAAAABapooK2b7+2uoqAq+iwuoK0IL0OPsKxTucVpcRcJWuspA9b94YY8lcRAd3udvqEoIiWs8LQPSgyQ4AAAAAABDFTJWRqYzOJoypat55tV6yJECVAC2X3e5QK3u81WUEnN3uCMlx3G4aifCP0+mUw+GQa4vL6lKCxuFwyOmMvg/xAIgONNkBAAAAAEBUuLjsYrU51cbqMgLuRKsTzXrefNXGqgBWAwAAwkFycrLy8/NVVlYWkuMVFxcrJydH8+bNU2pqakiO6XQ6lZycHJJjAUBT0WQHAAAAAABRIdbEymFCc+VhKFWaSqtLAAAAYSg5OTnkTejU1FT1798/pMcEgHAUY3UBAAAAAAAAAAAAAABECq5kBwAAAAAAQIt0csoUmS5drC4j4GwHDvC8eQAAACCIaLIDAAAAAABEsbiMOMW0i86bGbqPuZv3zPmEBJnExMAVFCZsCQlWlwAAAABENZrsAAAAAAAAUcwWZ5Mt3mZ1GUFhi4vO8wIAAAAQ3qLzY8wAAAAAAAAAAAAAAAQBV7IDAIAWp9pWLZfNZXUZAVdtq7a6BAAAAAAAAACIejTZAQBAi7PNuc3qEgAAAAAAAAAAEYomOwAAAFRaWqqysrKQHKu4uNjrz1BwOp1KTk4OybEqKipUUlISkmN9X0pKihISEkJ+3Mayal0k1qY+rItv4b4uAAAAAIDAM1UVMq6vrS4j4ExVhdUlRC2a7AAAAC1caWmpxo4dK5crtLfQz8nJCdmxHA6H8vPzQ9JoLykp0cSJE4N+nNPl5eWpf//+IT9uY1m1LhJrUx/WxbdwXxcAABD97Ha7MjIytG7dOqtLAYAWo3LLMqtLQIShyQ4AANDClZWVyeVyKfaSWMUkxVhdTsC5y91ybXGprKwsJE32lJQU5eXlNXlecXGxcnJyNG/ePKWmpvp13HDm77pIrE19WBffon1dACAU9h43ktxWlxFw354XEP6MMTLG+/2anZ2tTz75hMY7gGYh49FUVdXHrS4hKAJxXjTZAQBAi3Nx2cVqc6qN1WUE3IlWJ5r1vPmYpBjFtI++JnuoJSQkNOsq2NTU1Ki8ira56yKxNvVhXXyL1nUBgGByOp2KdziUuym0dzgKpXiHQ06n06+57pNHAlxNeIjW84oUP/3pTzVs2DANHTpUP/jBD+odV1hYqE2bNoWwMgDRhIxHUzmdTjkcDpUeit7scTTzPUOTHQAAtDixJlYO47C6jICrNJVWlwAAAIAIlpycrNX5+SorKwvJ8Zp79xF/OJ3OJt/d6NtfMsfLVbAySFVZz+GIpzFhkRdeeEGLFy+WJLVt21aXXHKJJKmiokKnTp1Sq1b8Ch9A85HxaKrk5GTl855pEAkNAAAAAAAAQNK3v1AN9S+ow/3uI9/+knk1v2RGUBQXF2vTpk3atGmTPvzwQ61Zs0Y2m03btm1T27ZtNXz4cI0cOVJHjnDHAQDNQ8Y3LP6SG2Rve7bVZQRczfGDfj9vnvdMw2iyAwAAAAAAAEAD+CVz/XhWa/P06dNHffr00Y033ihJOnHihNq2bavk5GSdc845eu+997R27VpJks1mU0ZGhoYNG6bhw4dr6NChat++fUjqBIBoZ4tLkM2RaHUZAWeLS7C6hKhFkx0AAAAAAAAA0CQ8qzU42rRpI0nq27ev1q9fr8rKSn3wwQf6xS9+od27d2vLli167733ZLPZJEn9+vXTv/71r5DWCAAAaLIDAAAAAAAAAJqIZ7UGxnXXXadhw4Zp6NChGjx4sOLi4rz2x8fHa/To0eratat2796t8vJy7dixQ1u2bNGmTZu0ZcuWoNYHAAB8o8kOAAAAAAAAAGgybqPffHl5eXr99dclSXFxcbrwwgslSeXl5Tp27JjatWvnNT4uLk5Dhw7V0KFD9etf/zrU5QIAgP9Dkx0AAAAAAAAAAAscOnRImzdv9nz9/e9/l81mU2FhoTp27KiBAwfqiiuu0MGDB60uFQAAfA9NdgAAAAAAAAAALNChQweNHz9e48ePlyTV1NQoNjZWPXv21IABA/Tuu++qoKBAkmSz2TR48GDPlexDhw5VSkqKleUDANBixVhdAAAAAAAAAAAAkOx2uyQpJSVFK1eu1NGjR7V582alpaVJkvbu3atFixZpypQpSktLU5cuXawsFwCAFosr2QEAAAAAQFQ4aT9pdQlBEa3nBQA4s5iYGA0ZMkSdO3fWv//9bx06dEi7du3Sli1b9OGHH2rLli1WlwgAQItEkx0AAAAAAEQ0p9MpR5xDO9vutLqUoHHEOeR0Oq0uAwAQBvr166d+/frppptusroUAABaLJrsAAAAAAAgoiUnJyv/7XyVlZWF5HjFxcXKycnRvHnzlJqaGpJjOp1OJScnh+RYAABrud3uOtuMMRZUAgAA6kOTHQAAAAAARLzk5OSQN6FTU1PVv3//kB4TANAy/fGPf9Tx48etLgMAopb75BGrSwiKaD2vcECTHQAAAAAAAACAMDZw4ECrSwCAqOR0OuVwxMtVsNLqUoLG4Yjn0VNBQJMdAAAAAAAALVLM4cNWlxAU0XpeAAAAgZacnKz8/NU8egpNRpMdAAAAAAAALYrT6VRcfLy0YoXVpQRNXDxXLAEAADQGj56CP2iyAwAAAAAAoEVJTk7W26u5YgkAAACAf2iyAwAAAAAAoMXhiiUAAAAA/oqxugAAAAAAAAAAAAAAACIFTXYAAAAAABA0b731lkaPHq327dsrMTFRgwYN0sKFC+V2u60uDQAA+Gnq1Kmy2WwNflVWVlpdJgAAQcPt4gEAAAAAQFDk5uZq9uzZkqSUlBS1bt1aO3fuVHZ2ttauXavXX39dMTF8/j/Y3OXR+4GGaD43AIgEaWlp6ty5s899ZDwAIJrRZAcAAAAAAAG3efNm3XPPPYqJidHSpUt1ww03SJJ27typK6+8Um+++abmz5+vmTNnWlxp9HI6nXI4HHJtcVldSlA5HA45nU6rywCAFumee+7R1KlTrS4DAICQo8kOAAAAAAAC7sEHH5QxRj/72c88DXZJGjBggObPn68bb7xRubm5uuOOOxQbG2thpdErOTlZ+fn5KisrC9kxi4uLlZOTo3nz5ik1NTUkx3Q6nUpOTg7JsQAAAABAoskOAAAAAAACrLy8XGvXrpUk3XLLLXX2T5o0Sb/85S915MgRbdiwQZmZmaEuscVITk62pAGdmpqq/v37h/y4AAAAABAKPBQFAAAAAAAEVGFhoaqqqhQfH69BgwbV2R8bG6uLLrpIkrR169ZQlwcAAALktdde04QJE3TFFVcoKytLCxcu1PHjx60uCwCAoONKdgAAAAAAEFBFRUWSpJ49e6pVK9+/ekhJSdG6des8Y0/ncrnkcn33LPHy8vLAFwoAAJrlb3/7m9f3y5cv13333aeXXnpJY8eOrXceOQ8AiHQ02QEAAAAAQEDVPgPc6XTWO6Z2X33PC587d64eeOCBwBcHACFSUVGhkpKSJs8rLi72+rOpUlJSlJCQ4NdcoLFSU1P10EMPady4cerTp49sNps2b96s3/72t9q6dasmTJigDz74QOnp6T7nk/MAgEhHkx0AAAAAAARUZWWlJCkuLq7eMQ6HQ9K3TShfZs+erRkzZni+Ly8vV48ePQJYJQAEV0lJiSZOnOj3/JycHL/m5eXlqX///n4fF2iM3/72t3W2jRkzRiNGjNBll12mbdu26e6779a6det8zifnAQCRjiY7AAAAAAAIqPj4eElSVVVVvWNqbxFb39WWDofD04gHgEiUkpKivLw8S44LWCUuLk5z5szRlVdeqY0bN6qsrMznnW3IeQBApKPJDgAAAAAAAupMt4L//r6GbikPAJEsISGBK8rRIg0dOlSS5Ha7VVJSosGDB1tcEQAAgRdjdQEAAAAAACC6pKWlSZL27t2rU6dO+RxT+5zi2rEAACA6xMbGev5e378DAACIdDTZAQAAAABAQF144YWKjY1VZWWlCgoK6uyvrq7W3//+d0nSkCFDQl0eAAAIok8++cTz9+7du1tYCQAAwUOTHQAAAAAABFRSUpJGjx4tSfrTn/5UZ/+rr76q8vJydejQQRkZGSGuDgAABNOjjz4qSTr33HPVrVs3i6sBACA4aLIDAAAAAICAu/fee2Wz2fT8889r2bJlnu07d+7UjBkzJEl33XWX4uLirCoRAAD44Z133tHs2bO1e/dur+3Hjx9Xdna2J/d/97vfWVEeAAAhQZMdAAAAAAAE3PDhwzVnzhy53W5NnjxZqampGjBggAYNGqSDBw9q3LhxuvPOO60uEwAANNHXX3+t3NxcpaSkqHv37rr44ot14YUXqnPnzlq4cKFsNpvuu+8+3XDDDVaXCgBA0LSyugAAAAAAABCd7r33Xg0YMECPPfaYduzYoQMHDuiCCy7QtGnTdNttt8lut1tdIgAAaKLBgwfr3nvv1ebNm/Xvf/9bH3/8sYwx6tatmy677DJNnz5dQ4YMsbpMAACCiiY7AACwjDFGH374oVauXKn3339fn332mb755ht17NhRQ4cO1W233aaRI0daXSYAAGiG8ePHa/z48VaXAQAAAqRHjx568MEHrS4DAABL0WQHAACWWb9+vUaPHi1JiomJ0TnnnKPExEQVFRUpLy9PeXl5+s1vfqM5c+ZYXCkAAAAAAAAAAN/imewAAMAyxhidc845WrRokQ4fPqxdu3apoKBAR44c0ezZsyVJDz74oP76179aXCkAAAAAAAAAAN+iyQ4AACxz8cUX69NPP9Uvf/lLOZ1Oz/a4uDg99NBDuuqqqyRJzz33nFUlAgAAAAAAAADghdvFAwAAyyQlJTW4f8yYMVq9erU+//zzEFXUspkqI1NprC4j4EyV/+d09OjRAFbSsOPHj3v+DNVx27dvH5LjAAAAAAAAANGEJjsAAAhblZWVkqSEhASLK2kZqjZWWV1C2Bk6dGjIjzlt2rSQHWvXrl0hOxYAAAAAAAAQLWiyAwCAsGSM0auvvipJGj58eL3jXC6XXC6X5/vy8vIzvvZJ+8nmFxiGovW8EDylpaVKTk72a15ZWVkQKvKtuLjY689QcDqdYb82rItvkbQuAAAAAAAgMtFkBwAAYem5555TYWGh4uLi9Ktf/arecXPnztUDDzzQqNd0Op1yxDm0s+3OAFUZfhxxDq/n28N/paWlVpcQdFdedZXeXr26Sc3B0tJSXTV2rCq/9+GWUMnJyQnZseIdDq3Oz2/y2owde5VcrsogVlZXKNfF4YhXfn7T3zNjx471+kBUKIR2XRzKb+L7BQAAAAAARC6a7AAAIOwUFBTojjvukCQ9+OCDSk1NrXfs7NmzNWPGDM/35eXl6tGjh8+xycnJyn87P6RXU+bk5GjevHkNnkMgcTVl4ITySm2rVFVWqqysrEnvmbKyMlW6XJo1zK6ebW1BrM46e48b5W5y+bU2LlelHIOuUUzrDkGs0Bruk0fkKljp57q4lNxpmOJi2waxQmtUVR9X6aFNTV4XAAAAAAAQuSKiyb57926tXbtW27Zt07Zt2/TJJ5+opqZGc+bM0W9+8xurywMAAAG0e/dujR8/XpWVlZo8ebJmzpzZ4HiHwyGHw9Ho109OTg55EyQ1NVX9+/cP6TH9EZcRp5h2MVaXEXDuY+5mPW/+5JQpMl26BLCi8GA7cECtlyzxe37PtjaltY++98u33M2aHdO6g+ztugaolugRF9tWCY72VpcBAAAAAADQbBHRZH/iiSf0xBNPWF0GAAAIsgMHDmjMmDHav3+/xo0bpxdffFE2W3ReKRuObHE22eKjb71tcc08p4QEmcTEwBQTRmwJCVaXAAAAAAAAAESkiLj0pGPHjho/frx+//vfa/Xq1frRj35kdUkAACDAjh49qjFjxqi4uFgjRozQq6++qtjYWKvLAgAAAAAAAADAS0RcyX76LeFffvlliyoBAADBcPLkSV199dX6+OOPddFFF2nVqlVK4CpbAAAAAAAAAEAYiogr2QEAQPRyuVy65pprtHXrVvXv31/5+flq06aN1WUBAAAAAAAAAOBTRFzJboVqW7VcNpfVZQRFta26WfNNlZGpNAGqJnyYKv/P6ejRowGspGHHjx/3/Bmq47Zv396veawLgDOpqalRVlaW1q9fr9TUVL3zzjv8bAEAAAAAAAAAwhpN9npsc26zuoSwVbWxyuoSws7QoUNDfsxp06aF7Fi7du3yax7rAuBMXnnlFb3xxhuSpJiYGE2aNMnnuK5du+rVV18NYWUAAAAAEHo1NTXavn27Dh06pE6dOik9PV12u93qsgAAAHCaFtFkd7lccrm+uyq9vLzcwmqAyFNaWqrk5GSrywg7/q5LaWmpysrKmjTH5XLpq6++avKxmqt79+5yOBxNmuN0OkO2Lv4qLi72+jNU/F2baPb9fC4qKlJRUZHPcb169QpVSQAAAABgiTVr1ig3N1f79u3zbOvWrZtmzZqlzMxMCysDIlNFRYVKSkqaPK+5vzdKSUlRQkKCX3NDgXXxjXXxjXWpH2vjW0talxbRZJ87d64eeOCBRo11Op1BriY8OOIcLeZcg620tNTqEoLuyquu0turVzepOdgS1uWqsWO1Oj+/yesyduxVcrkqg1iZtRyOeOXnN/39MnbsWK+Gayjk5OSE9HgOh0P5TXzPRLupU6dq6tSpVpcBAAAAAJZas2aNsrOzlZGRofnz5ystLU1FRUV6+umnlZ2drQULFtBoB5qopKREEydO9Hu+v783ysvLU//+/f0+brCxLr6xLr6xLvVjbXxrSevSIprss2fP1owZMzzfl5eXq0ePHj7HtpTGR/7bNHkCJVRX3lqpqrJSZWVlTXrPtIR1qXS5/FoXl6tSjkHXKKZ1hyBWZw33ySNyFaz0c11cSu40THGxbYNYoXWqqo+r9NCmJq8NAAAAACC61dTUKDc3VxkZGVq0aJFiYmIkSQMHDtSiRYs0ffp0Pfzwwxo1ahS3jgeaICUlRXl5eZYcN5yxLr6xLr6xLvVjbXxrSevSIprsDoejSbc73rx5cxCrqeuzzz7TtGnTtHjxYp177rkhOWb79u39nhuXEaeYdjEBrCY8uI+5m/W8+ZNTpsh06RLAisKD7cABtV6yxO/5D19hV4oz+t4vJWVu3b2+xu/5Ma07yN6uawArig5xsW2V4PD/v08AAAAAAESa7du3a9++fZo/f76nwV4rJiZGt956q7KysrR9+3YNGTLEoiqByJOQkBDWV3tahXXxjXXxjXWpH2vjW0talxbRZG+q5jSg/dG2bVvPn6E+tj9scTbZ4m1WlxFwtrhmnlNCgkxiYmCKCSO2Zj7Doo3DpnZR+H5p44i+cwIAAAAAwB8t6dmbwXDo0CFJUlpams/9tdtrxwEAAMB6NNkBAAAAAAAA+K0lPXszGDp16iRJKioq0sCBA+vsLyoq8hoHAAAA69FkBwAAAAAAAOC3lvTszWBIT09Xt27d9PTTT3s9k12S3G63nnnmGXXv3l3p6ekWVgkAAIDvo8kOAAAAAAAAwG8t6dmbwWC32zVr1ixlZ2dr+vTpuvXWW5WWlqaioiI988wz2rhxoxYsWCC73W51qQAAAPg/EdFk//DDD3XNNdd4vj958qQkae7cuXr88cc92wsLC9WjR49QlwcAAAAAAAAAfsvMzNSCBQuUm5urrKwsz/bu3btrwYIFyszMtLA6AAAAnC4imuzV1dU6cuRIne3ffPONvvnmG8/3NTU1oSwLAAAAAAAAAAIiMzNTo0aN0vbt23Xo0CF16tRJ6enpUXcFe0VFhUpKSpo8r7i42OvPpkpJSVFCQoJfcwEAAE4XEU32jIwMGWOsLgMAAAAAAABAANTU1ER9M9kfdrtdQ4YMsbqMoCopKdHEiRP9np+Tk+PXvLy8PB5rAAAAAiYimuwAAAAAAAAAosOaNWuUm5urffv2ebZ169ZNs2bN4rboLUBKSory8vIsOS4AAECg0GQHAAAAAAAAEBJr1qxRdna2Lr/8co0aNUoul0sOh0NffPGFsrOzW/zzx1vCFf4JCQlcUQ4AACIeTXYAAAAAAAAAQVdTU6Pc3Fx1795dH3zwgd59913PPrvdru7du+vhhx/WqFGjoq6x3Bhc4Q8AABA5YqwuAAAAAAAAAED02759u/bt26cvv/xS7dq105w5c/TBBx9ozpw5ateunb788kt99dVX2r59u9WlhlztFf59+/bV8uXLVVBQoOXLl6tv377Kzs7WmjVrrC4RAAAA30OTHQAAAAAAAEDQ7d+/X5LUvn17vffee7r++uvVqVMnXX/99XrvvffUvn17r3EtRe0V/hkZGVq0aJEGDhyoxMREDRw4UIsWLVJGRoYefvhh1dTUWF0qAAAA/g9NdgAAAAAAAABBt3PnTknSddddp1atvJ9i2apVK02cONFrXEtRe4X/L37xC8XEeP+6NiYmRrfeemuLvcIfAAAgXNFkBwAAAAAAABAyH3/8sdxut9c2t9utTz75xKKKrHXo0CFJUlpams/9tdtrxwEAAMB6NNkBAAAAAAAABF2vXr0kSZs2bdL06dNVWFiokydPqrCwUNOnT9fmzZu9xrUUnTp1kiQVFRX53F+7vXYcAAAArEeTHQAAAAAAAEDQTZ48WXa7XW3atNFnn32mrKwsDR48WFlZWdq1a5fatGkju92uyZMnW11qSKWnp6tbt256+umnfV7h/8wzz6h79+5KT0+3qEIAAACcjiY7AAAAAAAAgKCLi4vT1KlTdeLECVVVVWnatGn63e9+p2nTpsnlcunEiROaOnWq4uLirC41pOx2u2bNmqWNGzf6vMJ/48aNuvvuu2W3260uFQAAAP+nldUFAAAAAAAAAGgZ7rrrLknSiy++qMWLF3u22+123XLLLZ79LU1mZqYWLFig3NxcZWVlebZ3795dCxYsUGZmpoXVAQAA4HQ02QEAAAAAAACEzF133aVf/epXeumll7R371717NlTkydPbnFXsJ8uMzNTo0aN0vbt23Xo0CF16tRJ6enpXMEOAAAQhmiyAwAAAAAAAAip2lvHw5vdbteQIUOsLgMAAABnwDPZAQAAAAAAAAAAAABoJJrsAAAAAAAAAAAAAAA0EreLBwAAAAAAABBSNTU1PHscAAAAEYsmOwAAAAAAAICQWbNmjXJzc7Vv3z7Ptm7dumnWrFnKzMy0sDIAAACgcbhdPAAAAAAAAICQWLNmjbKzs9W3b18tX75cBQUFWr58ufr27avs7GytWbPG6hIBAACAM6LJDgAAAAAAACDoampqlJubq4yMDC1atEgDBw5UYmKiBg4cqEWLFikjI0MPP/ywampqrC4VAAAAaBC3iwcAAAAAAC1SRUWFSkpKmjyvuLjY68+mSklJUUJCgl9zgUi2fft27du3T/Pnz1dMjPe1PzExMbr11luVlZWl7du3a8iQIRZVCQAAAJwZTXYAAAAAANAilZSUaOLEiX7Pz8nJ8WteXl6e+vfv7/dxgUh16NAhSVJaWprP/bXba8cBAAAA4YomOwAAAAAAaJFSUlKUl5dnyXGBlqhTp06SpKKiIg0cOLDO/qKiIq9xAAAAQLiiyQ4AAAAAAFqkhIQErigHQig9PV3dunXT008/rUWLFnndMt7tduuZZ55R9+7dlZ6ebmGVAAAAwJnFnHkIAAAAAAAAADSP3W7XrFmztHHjRk2fPl2FhYU6efKkCgsLNX36dG3cuFF333237Ha71aUCaIS33npLo0ePVvv27ZWYmKhBgwZp4cKFcrvdVpcGAEDQcSU7AAAAgCY74TI6VmmsLiMoTriad16mqkLG9XWAqgkfpqqiWfNralw6VVMZoGrCR02Ny+oSws6JEye0cuVK5efna9u2bfryyy9ls9nUp08fXX311ZoxY4a6du1qdZmAXyoqKlRSUtLkecXFxV5/NlVKSooSEhL8mhtuMjMztWDBAuXm5iorK8uzvXv37lqwYIEyMzMtrA5AY+Xm5mr27NmSvv1vVOvWrbVz505lZ2dr7dq1ev31173uVgEAQLShyQ4AAACgye5eXyOpxuoywlLllmVWlxCWvjy43uoSECLTp0/X0qVLJUlt2rTRueeeq6+//lq7du3Sv/71Ly1evFirV6/WRRddZHGlQNOVlJRo4sSJfs/Pycnxa15eXl5UPdogMzNTo0aN0vbt23Xo0CF16tRJ6enpXMEORIjNmzfrnnvuUUxMjJYuXaobbrhBkrRz505deeWVevPNNzV//nzNnDnT4koBAAgemuwAAACQJLnLo/OWfs09r5jDhwNUSXiJ1vMCEB4mTJig2267TSNGjFCrVt/+6qG4uFiTJ0/Wtm3b9KMf/Ui7du2Kmitz0XKkpKQoLy/PkuNGG7vdriFDhlhdBgA/PPjggzLG6Gc/+5mnwS5JAwYM0Pz583XjjTcqNzdXd9xxh2JjYy2sFACA4KHJDgAA0MI5nU45HA65tkTvLY8dDoecTmeT5jidTsXFx0srVgSpKuvFxcf7tS4tQbyf75lo53DwnvHFn//GRLMnnnhC7du3r7M9NTVVr732ms455xx9+eWXys/P17XXXmtBhYD/EhISouqKcgBoqvLycq1du1aSdMstt9TZP2nSJP3yl7/UkSNHtGHDBh4BAQCIWjTZAQAAWrjk5GTl5+errKwsJMcrLi5WTk6O5s2bp9TU1JAc0+l0Kjk5uUlzkpOT9fbq1azLaZo6PlKtzs9nbXzIz1/NuviQ78f7JZr5arDX6tGjh84991z985//1Oeffx7CqgDr1NTUcFt0AFGjsLBQVVVVio+P16BBg+rsj42N1UUXXaR169Zp69atNNkBAFGLJjsAAACUnJwc8gZRampq2F8Jxrr4tnnz5pAe77PPPtO0adO0ePFinXvuuSE5ZkNNwoaEcm1YF98iaV1aqsrKSkniVvFoEdasWaPc3Fzt27fPs61bt26aNWsWjScAEamoqEiS1LNnT88jYU6XkpKidevWecYCABCNaLIDAAAAaJJQNxTbtm3r+TPcm5mhrI918S2S1qUl2rlzp+cK9uHDh1tcDRBca9asUXZ2tjIyMjR//nylpaWpqKhITz/9tLKzs7VgwQIa7QAiTu2dvhp6VE7tvobuCuZyueRyfffIsvLy8gBVCABAaMRYXQAAAAAAAIh+NTU1uv322yVJV1xxhQYPHtzgeJfLpfLycq8vIFLU1NQoNzdXGRkZWrhwoVwulzZs2CCXy6WFCxcqIyNDDz/8sGpqaqwuFQCapPaONHFxcfWOcTgckqSKiop6x8ydO1dt27b1fPXo0SOwhQIAEGRcyQ4AAAAAAILunnvu0fvvv682bdro2WefPeP4uXPn6oEHHghBZUDgbd++Xfv27dOPf/xjXXnllXVuF//jH/9YGzZs0Pbt2zVkyBALKwWApomPj5ckVVVV1Tum9gr1hh4NM3v2bM2YMcPzfXl5OY12AEBEockOAAAAAAAkSXfddZfefPPNJs9bvHixhg4dWu/+p59+Wo888ohatWqlZcuWKTU19YyvyS/fEckOHTokSZo/f75GjhxZ53bx8+fP9xoHAJGiMbeCb8wt5R0Oh+eKdwAAIhFNdgAAAAAAIEkqLS3Vrl27mjzv66+/rnff8uXL9d///d+y2Wx68cUXNW7cuEa9Jr98RyTr0KGDJGnQoEF6/PHH9fLLL+vNN99Uz5499fjjj2vatGkqKCjwjAOASJGWliZJ2rt3r06dOqVWreq2GEpKSrzGAgAQjWiyAwAAAAAASdLSpUu1dOnSgL3eW2+9pZ/85Cdyu9168skndeONNwbstYFIsG/fPg0aNMjr2euPPPKIOnbsaGFVAOC/Cy+8ULGxsaqsrFRBQYEuvvhir/3V1dX6+9//Lkk8DgMAENVirC4AAAAAAABEn/fee0/XXXedqqurNXfuXE2fPt3qkoCQOXLkiCTp4MGDiomJ0c9//nO9/fbb+vnPf66YmBgdPHjQaxwARIqkpCSNHj1akvSnP/2pzv5XX31V5eXl6tChgzIyMkJcHQAAoUOTHQAAAAAABNSOHTv0//7f/1NFRYVmz56tWbNmWV0SEFK1zyE+66yz1KlTJz377LO68sor9eyzz6pz584666yzvMa1RDU1Ndq6dav++te/auvWrV5X+wMIb/fee69sNpuef/55LVu2zLN9586dmjFjhiTprrvuUlxcnFUlAgAQdDTZAQAAAABAwOzatUtjx45VeXm5pk+froceesjqkoCQ27VrlySpXbt2MsZ47XO73WrXrp3XuJZmzZo1GjNmjKZMmaI777xTU6ZM0ZgxY7RmzRqrSwPQCMOHD9ecOXPkdrs1efJkpaamasCAARo0aJAOHjyocePG6c4777S6TAAAgopnsgMAAAAAgIDJzs7W4cOHZbPZ9I9//EOXXnqpz3E333yzbr755hBXB4TGV199JUkqLS1V+/btdfPNN6tHjx768ssv9cYbb+jo0aNe41qSNWvWKDs7Ww6Hw2v7kSNHlJ2drQULFigzM9Oi6gA01r333qsBAwboscce044dO3TgwAFdcMEFmjZtmm677TbZ7XarSwQAIKhosgMAAAAAgIBxuVySJGOMNm3aVO+42ue5AtGoe/fukr69Hfzx48f1wgsvePbZ7XY5nU6VlZV5xrUUNTU1uu+++2SM0SWXXKJf/vKXSktLU1FRkZ566ilt3LhR999/v0aNGkWDDogA48eP1/jx460uAwAAS9BkBwAAAAAAAbNx40arS0AAVFRUqKSkpElzqqqq9Je//EWStHjxYt14441Nfh5vSkqKEhISmjQnHPXr10+SVFZWphEjRmjEiBGKj49XZWWl3n33Xb377rte41qKbdu26ejRoxo0aJCeeuopxcR8+yTLgQMH6qmnntKNN96ogoICbdu2TUOHDrW4WgAAAKB+NNkBAAAAAADgpaSkRBMnTvR7/qpVq7Rq1aomz8vLy1P//v39Pm64OHLkiOfvH330kVJSUjy3i//oo498jmsJtm7dKkm64447PA32WjExMbr99ts1bdo0bd26lSY7AAAAwhpNdgAAAAAAAHhJSUlRXl5eo8YuWbJEb7zxhtq2bavJkycrPT1d27dv10svvaTjx49rwoQJmjJlSqOPGw1qn7l+7rnn6rPPPtPixYu99tdurx3X0hhjrC4BAAAAaBaa7AAAAAAAAPCSkJDQqCvKq6qqtGrVKnXo0EEbNmzQP/7xDx06dEhDhw7VL3/5S40cOVKrVq3SnDlzmnzr+EjWvn17SdJnn32mESNGqFevXnK5XHI4HPriiy88t4uvHddSDBkyRE899ZQWLlyoIUOGeF3N7na79cc//tEzDgAAAAhnNNkBAAAAAADgl5deekk1NTUaM2aMrrrqKu3bt8+zr1u3bhozZoxefvllvfTSS5o6dap1hYZYp06dPH+32Wy6+uqrlZaWpqKiIj399NM+x7UEF198sdq3b68dO3Zo+vTpuvXWWz3r8swzz2jHjh3q0KGDLr74YqtLBQAAABpEkx0AAAAAAAB+2bt3ryRp+fLlysjI0Pz5872aycuXL/ca19KkpKRo165dysrK8mxLTk5WSkqKSkpKLKzMGna7XQ888IBuv/12bd68WRs2bPDsi4+PlyTdf//9stvtVpUIAAAANErMmYcAAAAAAAAAdXXv3l2S1LdvXy1atEgDBw5UYmKiBg4cqEWLFqlv375e41qKI0eOSJJ2796tsrIyr31Hjx7V7t27vca1JJmZmVq4cGGdW+V36NBBCxcuVGZmpkWVAQAAAI3HlewAAAAAAADwS79+/SRJ+/fvV3V1teeZ7J06ddLAgQO1f/9+r3EtRe1t4I0xPvfXbm9pt4uvlZmZqVGjRmn79u2e90t6ejpXsAMAACBi0GQHAAAAAACAX2qv0i4vL9fAgQPldrs9+2JiYjzfn341d7S78MILZbfb1a5dO23YsKHOhw9GjhypY8eO6cILL7S6VMvY7XYNGTLE6jIAAAAAv3C7eAAAAAAAAPjl+1din37V9ve/b2lXbBcWFqqmpkZHjhzRHXfcobi4OGVkZCguLk533HGHjhw5opqaGhUWFlpdKgAAAAA/cCU7AAAAAAAA/PL9K7bXrl2rV155RXv37lXPnj11/fXXa/To0S3yiu1Dhw5Jkv7whz/oscceU1ZWlmdf9+7dNW/ePOXk5HjGAQAAAIgsNNkBAAAAAADgl9orto8ePaoZM2bo1ltv1XXXXaeioiLNmDFDR48elTFGhYWFLerW4LVX7vfo0UPvvPNOnWeP//Of//QaBwAAACCycLt4AAAAAAAA+KX2SuxHHnlEn3/+ubKysjR48GBlZWWpqKhIjzzyiNe4liI9PV3dunXT008/LZvNpiFDhmj8+PEaMmSIbDabnnnmGXXv3l3p6elWlwoAAADAD1zJDgAAAAAAAL/UXonds2dPrtj+HrvdrlmzZik7O1vTp0/XrbfeqrS0NBUVFemZZ57Rxo0btWDBAtntdqtLBQAAAOAHmuwAAAAAAADwy/ev2F60aJHXLeHdbneLvmI7MzNTCxYsUG5ubp1nsi9YsECZmZkWVgcAAACgOWiyAwAAAAAAwC9csd2wzMxMjRo1qs4V/i11PQAAAIBoQZMdAAAAAAAAfuOK7YbZ7XavK/wBAAAARD6a7AAAAAAAAGgWrtgGAAAA0JLQZAcAAAAAAECzccU2AAAAgJYixuoCAAAAAAAAAAAAAACIFFzJDgAAAAAAgGarqanhdvEAAAAAWgSa7AAAAAAAAGiWNWvWKDc3V/v27fNs69atm2bNmqXMzEwLKwMAAACAwON28QAAAAAAAPDbmjVrlJ2drb59+2r58uUqKCjQ8uXL1bdvX2VnZ2vNmjVWlwgAAAAAAUWTHQAAAAAAAH6pqalRbm6uMjIytGjRIg0cOFCJiYkaOHCgFi1apIyMDD388MOqqamxulQAAAAACBia7AAAAAAAAPDL9u3btW/fPv3iF79QTIz3r5liYmJ066236quvvtL27dstqhAAAAAAAi+imuxvvfWWRo8erfbt2ysxMVGDBg3SwoUL5Xa7rS4NAAA0AxkPAAAQmQ4dOiRJSktL87m/dnvtOAAAAACIBhHTZM/NzdW4ceO0bt06OZ1OnXPOOdq5c6eys7N17bXX8kt4AAAiFBkPAAAQuTp16iRJKioq8rm/dnvtOAAAAACIBhHRZN+8ebPuuecexcTE6KWXXlJxcbF27typgoICnX322XrzzTc1f/58q8sEAABNRMYDAABEtvT0dHXr1k1PP/10nQ9Hut1uPfPMM+revbvS09MtqhAAAAAAAi8imuwPPvigjDH66U9/qhtuuMGzfcCAAZ5fvOfm5qq6utqqEgEAgB/IeAAAgMhmt9s1a9Ysbdy4UdOnT1dhYaFOnjypwsJCTZ8+XRs3btTdd98tu91udakAAAAAEDBh32QvLy/X2rVrJUm33HJLnf2TJk1SUlKSjhw5og0bNoS6PAAA4CcyHgAAIDpkZmZqwYIF+vzzz5WVlaXBgwcrKytLRUVFWrBggTIzM60uEQAAAAACqpXVBZxJYWGhqqqqFB8fr0GDBtXZHxsbq4suukjr1q3T1q1b+T9uACKCqaqQcX1tdRkBZ6oqmjW/psalUzWVAaomvNTUuKwuIeyQ8QAAANEjMzNTo0aN0vbt23Xo0CF16tRJ6enpXMEOAAAAICqFfZO9qKhIktSzZ0+1auW73JSUFK1bt84zFgDCXeWWZVaXEJa+PLje6hIQQmQ8AABAdLHb7RoyZIjVZQAAAABA0IV9k72srEyS5HQ66x1Tu6927OlcLpdcru+uICwvLw9ghd+qqKhQSUmJX3OLi4u9/myqlJQUJSQk+DXXH+5yd8iOFUrNPa+Yw4cDVEl4ae557T1uJEXfe+bb8wLQHIHIeCm8cz7SMr6pWBffWBffWtK/l5uK94xvrAsAAAAAAAhXYd9kr6z89rbBcXFx9Y5xOBySvv0ljC9z587VAw88EPjivqekpEQTJ05s1mvk5OT4NS8vL0/9+/dv1rEbw+l0yuFwyLUlem957HA4Gmz2+OJ0OhUXHy+tWBGkqqwXFx/v17rEOxzK3RS975d4P98v0c7h8O/90hL489+YaBaIjJciI+fDPeP9xbr4xrr41hL+vewv3jO+sS4AAAAAACBchX2TPT4+XpJUVVVV75jaq9fqu9pg9uzZmjFjhuf78vJy9ejRI4BVfnu1Q15eXkBfsynHDoXk5GTl5+c3eDWhLy6XS1999VWQqqpf9+7dPc2ZxnI6nUpOTm7SnOTkZL29ejXrcprk5GSt5v1SR1PHR6L8/NWsSz3y8/NbzLk2RiAyXorunA9VxvuLdfGNdfGtJfx72V+8Z3xjXQAAAAAAQLgK+yZ7Y24Te6bbzTocjiY3z5oqISGhRVztkJyc7FeDaNCgQUGoJnywLr6xLr5t3rzZ6hKCqn379n7Ni/Z1kfxfm2gViIyXyHkrsS6+sS6+sS71Y218Y10AAAAAAEC4Cvsme1pamiRp7969OnXqlFq1qlty7XP6ascCQDij0eob69LykPEAAAAAAAAAgEgUY3UBZ3LhhRcqNjZWlZWVKigoqLO/urpaf//73yVJQ4YMCXV5AADAT2Q8AAAAAAAAACAShX2TPSkpSaNHj5Yk/elPf6qz/9VXX1V5ebk6dOigjIyMEFcHAAD8RcYDAAAAAAAAACJR2DfZJenee++VzWbT888/r2XLlnm279y5UzNmzJAk3XXXXYqLi7OqRAAA4AcyHgAAAAAAAAAQaSKiyT58+HDNmTNHbrdbkydPVmpqqgYMGKBBgwbp4MGDGjdunO68806rywQAAE1ExgMAAAAAAAAAIk1ENNmlb690W7Vqla644godOXJE//73v3XBBRfo8ccf18qVK2W3260uEQAA+IGMBwAAAAAAAABEklZWF9AU48eP1/jx460uAwAABBgZDwAAAAAAAACIFBFzJTsAAAAAAAAAAAAAAFajyQ4AAAAAAAAAAAAAQCPRZAcAAAAAAAAAAAAAoJFosgMAAAAAAAAAAAAA0Eg02QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOwAAAAAAAAAAAAAAjUSTHQAAAAAAAAAAAACARqLJDgAAAAAAAAAAAABAI7WyugArGGMkSeXl5RZXAgDAd3lUm09oHnIeABAuyPjAIuMBAOGCjA88ch4AEC4am/Mtssl+4sQJSVKPHj0srgQAgO+cOHFCbdu2tbqMiEfOAwDCDRkfGGQ8ACDckPGBQ84DAMLNmXLeZlrgx+3cbrdKS0vVpk0b2Ww2q8tReXm5evTooS+//FJJSUlWlxM2WBffWBffWBffWBffwm1djDE6ceKEkpOTFRPDk1yaK5xyPtzea+GCdfGNdakfa+Mb6+JbOK0LGR9YZHxkYG18Y118Y118Y118C6d1IeMDj5wPf6yLb6yLb6xL/Vgb38JpXRqb8y3ySvaYmBh1797d6jLqSEpKsvyNE45YF99YF99YF99YF9/CaV345HvghGPOh9N7LZywLr6xLvVjbXxjXXwLl3Uh4wOHjI8srI1vrItvrItvrItv4bIuZHxgkfORg3XxjXXxjXWpH2vjW7isS2Nyno/ZAQAAAAAAAAAAAADQSDTZAQAAAAAAAAAAAABoJJrsYcDhcOi+++6Tw+GwupSwwrr4xrr4xrr4xrr4xrogVHiv+ca6+Ma61I+18Y118Y11QSjwPqsfa+Mb6+Ib6+Ib6+Ib64JQ4b3mG+viG+viG+tSP9bGt0hcF5sxxlhdBAAAAAAAAAAAAAAAkYAr2QEAAAAAAAAAAAAAaCSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOwAAAAAAAAAAAAAAjUSTPQQuuOAC2Ww2JSQkqLy8vN5xU6dOlc1m8/qKjY1V165d9V//9V9avXp1CKsOnt69e9c5z9O/Hn/8cUnSnj17fO5v06aNBgwYoHvuuUeHDx+29oQCZO/evZoxY4bOP/98JSYmKiEhQT179tSwYcOUk5Ojt99+22t8RkbGGdfRZrPp/vvvt+aEAmTbtm367//+b51//vlyOp2KjY1Vx44dNWzYMN11113asWPHGV/j9ttv96zHO++8E4Kqg6u+n6HWrVvrhz/8oWbPnq0jR47UmXfs2DEtX75cd955py699FKdddZZstlsGj16tAVnEXj+rsvnn3+uuXPnKjMzU126dFFsbKzat2+vkSNHavHixXK73RacDSIJOf8dMr5+5Lxv5Lw3Mt43Mh5WIeO9kfO+kfG+kfF1kfO+kfOwCjn/HTK+fuR8XWR8XWS8by0h41tZXUC0+8c//qGPP/5YklRZWanXXntNN998c4NzOnfurLS0NM+czz//XKtWrdKqVas0e/ZsPfTQQ0GvOxTS0tLUuXNnn/u6detWZ1t6erocDockad++ffroo4/0z3/+U0uWLNH777+vPn36BLXeYFq/fr0mTJigEydOyG63q0ePHurcubOOHj2qLVu2aPPmzVq8eLHPf6D06NFDPXv2rPe1G9oXzr755hv99Kc/1bJlyyRJsbGxSk1NVVJSko4ePapt27Zp8+bNmjdvnq666iq99dZbPl+nurpaL7/8suf7P//5zxozZkxIziHYvv8z5Ha7tX//fn300Uf66KOP9Oc//1kffPCBevfu7Rm/ceNGZWVlWVRt6DRlXWpqatSvXz/P3O7du2vgwIHau3evNm7cqI0bN+rll1/WypUrFR8fb8XpIMyR876R8d7I+brI+YaR8b6R8QglMr5+5Px3yPi6yPgzI+d9I+cRSuS8b2S8N3LeGxl/ZmS8b1Gd8QZBNWPGDCPJtGvXzkgyGRkZ9Y696aabjCRz0003eW13uVxm5syZRpKRZDZt2hTkqoOrV69eRpJZvHjxGcfu3r3bc967d+/22rdjxw7Pa1155ZXBKTYEjh8/bjp27GgkmXHjxpk9e/Z47S8rKzMvvviiufrqq722jxgxwkgy9913XwirDY2qqipz6aWXGkmma9eu5oUXXjAnT570GlO7Luedd55xOBz1vtabb77p9TOYmJhY57UiTUM/QwUFBSY5OdlIMpMmTfLal5+fby6//HIzc+ZM88orr5iHHnrISDKjRo0KUeXB5c+6VFdXm3bt2pnf/OY3pri42GvO8uXLTUJCgpFk7rzzzmCXjwhFznsj4+si5+si5+tHxvtGxsMKZHxd5Lw3Mr4uMr5h5Lxv5DysQM57I+PrIue9kfENI+N9awkZT5M9iE6dOmW6du1qJJmlS5cau91ubDab+eKLL3yOry+wjTHG7XabgQMHGkkmOzs7yJUHV6BC2xhj8vLyjCRjs9nM4cOHA19sCCxbtsxIMklJSebrr79u9LxoDWxjjLnnnnuMJJOcnGz27t3b4Njq6mrz4IMP1rt/0qRJRpK59957Tf/+/Y0k8+c//znQJYfUmX6GnnzySSPJOJ3OBl9n8eLFLSa0jfG9Lm632xw9erTe18zNzfXMqampCXTJiHDkfF1kfF3kfF3kfP3IeN/IeIQaGe8bOe+NjK+LjG8YOe8bOY9QI+frIuPrIue9kfENI+N9awkZzzPZg2jt2rXav3+/unTpoqysLF1xxRUyxugvf/lLk1/LZrPp0ksvlSQVFRUFutSIdfnll0uSjDEqLi62uBr/lJSUSJL69u2rs846y+JqrHfs2DEtWLBAkrRgwQL16NGjwfGtWrXSvffe63Pf8ePHtWrVKknS5MmTNXnyZEnf3oImmvXq1UuSVFVVZXEl4cXXuthsNjmdznrnZGZmSpLKysp06NCh4BaIiEPOB1c0ZLxEzp+OnG8eMt43Mh6BRsYHXzTkPBnvjYxvPnLeN3IegUbOB1c0ZLxEzn8fGd98ZLxv0ZDxNNmDaMmSJZKkH//4x7Lb7brxxhsl+f8fDGNMwGqLFtGwJklJSZK+/YfYsWPHrC0mDLz11ls6efKkunTpogkTJjTrtV555RVVVlZqwIABOu+88zR58mTZbDatW7dO+/fvD0zBYWj79u2SpHPPPdfiSsKLP+tSWVnp+XtCQkLAa0JkI+eDK1rWg5z3Rs43DxnvGxmPQCPjgy8a1oSM90bGNx857xs5j0Aj54MrWtaDnP8OGd98ZLxv0ZDxNNmD5OTJk3rjjTckyRPUEydOVEJCgj799FPt2LGjSa9njNGHH34oSTrnnHMCWmske//99yV9++mWlJQUi6vxT2ZmpmJiYnT8+HGNHj1aK1as0PHjx60uyzKbNm2SJA0dOlR2u71Zr1X7j+Pan8HevXtr2LBhqqmp0UsvvdS8QsOM2+1WaWmpnnrqKT388MOy2WyaPXu21WVZrrnr8sorr0iSzj//fM8/rgGJnA+FaMh4iZw/HTnfdGS8b2Q8goWMD41oyHky3hsZ7x9y3jdyHsFCzgdfNGS8RM5/HxnvHzLet6jL+NDenb7lePHFF40kc84553htr33exB133FFnTn3Pd3G5XGbmzJmeZ528//77Qaw8+Gqfw1Df14gRIzxjG3rGS0FBgee1Iv0ZFf/zP//jtQY2m83069fPTJ061bz88sumsrKyzpza57uc6auwsDD0J9QMEyZMMJLMr3/962a9zu7du43NZjM2m83rOTG1z/kYMGBAMyu1zpl+hi666CLz9ttvn/F1ovUZL81dl1offfSRiYuLM5LMkiVLglg5IhE57xsZ7xs5/x1yvmFkvG9kPEKJjK8fOV8XGf8dMv7MyHnfyHmEEjnvGxnvGzn/LTL+zMh431pCxrcSgqL2Ezm1z5SodeONN+rVV1/VsmXL9Ic//EGtWtX9n2D16tWeZ7lUVlbq888/14kTJyRJv/71rz37Il1aWpo6d+5cZ/sFF1zgc/ykSZPkcDgkSaWlpdqzZ4+MMTr77LP11FNPBbXWYLvnnns0dOhQ/eEPf9DatWtVVVWlXbt2adeuXXrxxRfVs2dP/e///q8yMjLqzO3Ro4d69uxZ72u3bt06iJUHXu17PTEx0ef+l19+WTfccEOd7YsXL9bUqVM93y9dulTGGF1++eVez4m5/vrr9atf/Uo7d+7URx99VO/7LRKc/jN0+PBh7dmzRzt27NCiRYt00UUXNfj8kmgViHU5duyYfvSjH6mqqkpXX321fvKTnwS7bEQYcr5hZLw3cv475HzjkPG+kfEIBTL+zMj575Dx3yHjG4+c942cRyiQ8w0j472R898i4xuPjPctqjPeuv5+9Prqq69MTEyMkWQ+++wzr30ul8s4nU4jyfztb3/z2lf7qbjvf9ntdtOpUydz1VVXmddffz2EZxE8tZ9eWbx48RnHfv+Tcd//SkhIMOedd56ZOXOmOXDgQPCLDqFvvvnGvPfee2bevHlm5MiRxmazec75008/9Yyr/VTcfffdZ12xQXCmT8atXbvWDB8+3PPVtm1bn++nfv36GUnm6aefrvMa48aNM5JMTk5OME4h6Br6GSorKzNTpkwxkkx6erpxu931vk60fjKuuetSWVnp+fnq37+/OXr0aBCrRiQi5+tHxp8ZOU/ON4SM942MR6iQ8Q0j5xtGxpPxZ0LO+0bOI1TI+fqR8WfWknOejD8zMt63lpDxPJM9CP7yl7/I7XZr0KBB6tevn9e+uLg4TZo0SdJ3n5w73U033SRjjIwxOnXqlP7zn//orbfe0oQJE4JdeljbvXu3Z12++eYbffLJJ5o3b57OPvtsq0sLqISEBF122WWaOXOm1q9fr/fee0+JiYmqqKjQo48+anV5QdetWzdJ0p49e3zuHzVqlD744APPV3p6ep0x27Zt065duxQbG+v5efu+2me+vPTSS3K73YErPgy0a9dOzz77rLp166bt27dr5cqVVpcUFhq7LqdOndKPf/xjvfvuu+rdu7fWrFnTIj9diIaR84HXUjJeIufJef+R8b6R8QgkMj44WkrOk/FkfHOQ876R8wgkcj7wWkrGSy0758n45iHjfYuWjKfJHgS1QVxQUCCbzVbn69lnn5UkrVy5UuXl5VaWighw6aWXavr06ZK+DaNoN3ToUEnSpk2bVFNT49drLFmyRJJUXV2tDh061PkZrL0l1L59+7R+/frAFB5GHA6HBg0aJKllvGca60zrYozRtGnTtHLlSnXt2lVr165VcnJyqMtEBCDnEUjkfNO15Jwn430j4xEoZDwCiYxvupac8RI5Xx9yHoFCziOQWlLOk/HNR8b7Fg0ZzzPZA6ywsFAff/yxbDabz+eX1CorK1NFRYVWrFihadOmhbBCRKKUlBRJUlVVlcWVBN/VV1+t1q1b6+DBg3r99dd13XXXNWl+dXW1li9fLknq0KGDz2coSdLXX3+tkydP6s9//rNGjx7d7LrDTe0n/o4ePWpxJeGloXW57bbbtHTpUnXo0EHvvPOOUlNTQ10eIgA5j2Ag5xuPnCfj60PGo7nIeAQDGd94ZPy3yHnfyHk0FzmPYGgpOU/GBwYZ71ukZzxXsgdY7SfiLr/8ch04cKDerzvvvNNrPFquw4cPyxjT4JhNmzZJktLS0kJRkqWcTqduu+02SdIdd9yhvXv3Nmn+6tWrdfjwYSUmJmrPnj31/gyuWLFCkpSXl6dvvvkm4OdhpcrKShUWFkr67h97aHhd7r33Xi1atEht2rRRfn6++vfvb0WJiADkPJqKnPdGzjcPGe8bGY9AIOPRVGS8NzK++ch538h5BAI5j6Yi579DxjcfGe9bNGQ8TfYAqqmp0bJlyyRJP/nJTxoc+//9f/+fJGnjxo368ssvg14bwtfSpUs1cOBAPffcczpy5IjXvmPHjul3v/udli5dKkkt5hOUDzzwgIYOHarS0lINGTJEL7zwgk6ePOk1prq6Wq+99pp27drltb32H8HXXnutWrduXe8xRo0apa5du+rkyZN6/fXXA38SFikrK9PPfvYzlZaWKi4uTtdff73VJYWFhtZl/vz5euihh5SQkKC//vWvPp8bBEjkPPxDztdFzvuHjPeNjEcgkPHwBxlfFxnvP3LeN3IegUDOwx/kvDcy3n9kvG/RkvHcLj6A3nnnHR04cEDx8fFnvGXGeeedpwsvvFCFhYX6y1/+olmzZoWoSoQbm82mf/7zn/r5z3+un//85+rTp486deqksrIyffHFF57bzcycOVPXXnttnfkvvPCC1q5dW+/rX3755XrooYeCVn8wxMXF6Z133tHNN9+sV155Rbfccot+8YtfKDU1VUlJSTpy5Ij279/v+URbZmamRo4cqWPHjmnVqlWSzvyPZrvdrqysLD322GP685//rBtvvDHo5xVoDz30kJ5//nnP90eOHNHu3bvlcrnUqlUrPfPMM+rdu7fXnI4dO3r+7nK5JEnvvfee1/Y//vGPysrKCm7xQdSUdSktLdXMmTMlSW3atNE999xT7+u+9tpr6tKlS1BrR3gj5+EPcr4ucv7MyHjfyHgECxkPf5DxdZHxjUPO+0bOI1jIefiDnPdGxjcOGe9bVGe8QcBMnjzZSDKTJk1q1PhHH33USDLnnXeeMcaYm266yUgyN910UxCrtF6vXr2MJLN48eIzjt29e7eRZCSZ3bt3B702K1RVVZn169ebnJwcM2zYMNOzZ08TFxdnzjrrLJOWlmamTJli3n///TrzRowY4Vmbhr6uueaa0J9UAG3ZssX84he/MOedd55p27atadWqlenQoYMZMmSIufPOO82OHTs8Y5999lkjyXTp0sWcOnXqjK+9Y8cOI8nY7Xazf//+YJ5GQNX+DJ3+5XA4TEpKipk2bZr5xz/+4XNuY94zjfnZDEf+rMv3/xtzpq9o/W8QGo+cPzMyvi5yvmHkvDcy3jcyHsFGxjcOOe+NjG8YGV8XOe8bOY9gI+fPjIyvi5yvHxlfFxnvW0vIeJsxZ3iwBAAAAAAAAAAAAAAAkMQz2QEAAAAAAAAAAAAAaDSa7AAAAAAAAAAAAAAANBJNdgAAAAAAAAAAAAAAGokmOwAAAAAAAAAAAAAAjUSTHQAAAAAAAAAAAACARqLJDgAAAAAAAAAAAABAI9FkBwAAAAAAAAAAAACgkWiyAwAAAAAAAAAAAADQSDTZAQAAAAAAAAAAAABoJJrsQBTp3bu3bDab9uzZY3UpAZWRkSGbzaaNGzdaXQoAAJYh5wEAiE5kPAAA0YmMB6IbTXYgBPbu3asZM2bo/PPPV2JiohISEtSzZ08NGzZMOTk5evvtt60uEZIef/xx3X///Tp27JjVpQAAIgg5HxnIeQBAU5HxkYGMBwA0FRkfGch4hLtWVhcARLv169drwoQJOnHihOx2u3r06KHOnTvr6NGj2rJlizZv3qzFixfr8OHDVpfa4j3++OP64osvNHXqVLVr187qcgAAEYCcjxzkPACgKcj4yEHGAwCagoyPHGQ8wh1NdiCIysvL9eMf/1gnTpzQuHHj9OSTT6pXr16e/ceOHdPKlSv1yiuvWFglAADwBzkPAEB0IuMBAIhOZDyAQKLJDgTRW2+9pcOHDyspKUmvvPKKzjrrLK/97dq100033aSbbrrJogoBAIC/yHkAAKITGQ8AQHQi4wEEEs9kB4KopKREktS3b986gd0Qm80mm81W7/7evXvLZrNpz5499Y55++23lZGRobZt2yopKUljxozR+++/73NsRkaGbDabNm7cqG3btmncuHFq3769EhMTNWzYML3xxhv1HscYo6VLl2rEiBFq166dEhISdO655+ruu+/W0aNH65136tQpPffccxo5cqQ6dOig+Ph4paSk6Ec/+pFWrlxZ77zTvfzyy4qNjVViYqLWrFnjtW/btm3KyspSt27dFBcXp7PPPluTJk1SYWGh17gXX3xRNptNX3zxhSSpT58+nv8NatcFAIDTkfPkPAAgOpHxZDwAIDqR8WQ8EFAGQNAsXLjQSDJt27Y1ZWVljZ4nyTT049mrVy8jyezevdvn9rlz5xqbzWbat29v0tPTTYcOHYwkExMTY1555ZU6rzdixAgjyfz+9783cXFxpnXr1iY9Pd107drVU8ujjz5aZ57b7TaTJ0/2jElJSTGDBg0ycXFxRpLp1auXKS4urjPv6NGjZvjw4Z55vXr1Munp6aZz586e733Vt2HDBq/tzz77rImJiTFt27Y1H3zwgde++fPnG5vNZiSZ9u3bmwsvvNCzDrGxsWbFihWesW+99ZYZPny4cTgcRpJJT083w4cP93wVFBTU+78FAKDlIufJeQBAdCLjyXgAQHQi48l4IJBosgNBtGvXLhMTE2MkmcGDB5vXXnvNHDt27IzzmhvarVq1MjNmzDBVVVXGGGOqq6vNXXfdZSSZpKQkU1pa6jWvNhRbtWplsrKyzMmTJ40x34byggULPPv+8Y9/eM2r/UdJmzZtzJo1azzb9+/f7wnlIUOG1Kl/woQJRpJJTU01W7Zs8dpXVFRkHnnkEZ/1fT+0582bZySZTp061QnV1atXG5vNZjp27OgVzsYY8/zzz5tWrVqZNm3a1FmH+tYVAABfyHlyHgAQnch4Mh4AEJ3IeDIeCCSa7ECQ/c///I8nhCUZm81m+vXrZ6ZOnWpefvllU1lZWWdOc0N7wIABPucNGjTISDK/+93vvLbXhmLnzp1NRUVFnXkTJ040ksyUKVM829xut+nRo4eRZB577LE6c7766ivPJ+TWrVvn2b5t2zYjyTgcDvP555/Xe46+6qsN7d/+9rdGkunevbv59NNP6z3PlStX+ny9O++80/NJwO8jtAEATUXOk/MAgOhExpPxAIDoRMaT8UCg8Ex2IMjuuecerV+/XldffbXi4uJkjNGuXbv04osvKisrS3379g34M0SmT5/e4Pa3337b5/5bbrlF8fHxjZr36aef6ssvv1R8fLx+9rOf1ZnTrVs3/ehHP5Ikr2ev1D6/5dprr1VaWlpjTsfDGKNf/epXmjNnjlJTU/X+++/r3HPP9RrzxRdfqKCgQJ07d9Z//dd/+Xyd2u3vvvtuk44PAMDpyHlyHgAQnch4Mh4AEJ3IeDIeCJRWVhcAtAQjR47UyJEjVVFRoe3bt2vr1q166623tHHjRu3du1dXX321CgoK6gSQv37wgx80uP3zzz/3a97BgwdVXl6upKQkz2v07NlTiYmJPuf179+/zvE+/fRTSdIll1xyptOoY+bMmSooKFD//v31zjvvqGvXrnXGfPTRR5KkyspKXXrppT5fp7KyUpK0b9++JtcAAMDpyHlyHgAQnch4Mh4AEJ3IeDIeCASa7EAIJSQk6LLLLtNll12mmTNn6oMPPtDYsWP19ddf69FHH9Vzzz0XkON07tzZ5/azzz5bknTixIkmzfv+9hMnTigpKUknT55scE59xysvL5cktWvXrt559fn3v/8tSerdu7c6duzoc8zx48c9x/nwww8bfL2Kioom1wAAQH3IeXIeABCdyHgyHgAQnch4Mh5oDm4XD1jo0ksv9dzaZdu2bXX2G2N8zvv6668bfN1Dhw753P6f//xHktSmTZsmzfv+9tq5rVu39npNXw4ePFjneLV/P3bsWL3z6vPcc8/p3HPP1d/+9jfdcMMNOnXqVJ0xtXUNHz5cxpgGv/bs2dPkGgAAaCxyvmnIeQBApCDjm4aMBwBECjK+ach4tHQ02QGLpaSkSJKqqqo822pv5+IrRI8fP67Dhw83+Jq1t3ipb3vfvn39mnf22WcrKSnJ6zX27t3r+ZTc6T755JM6x6u9Jc2WLVsaPAdfOnfurHXr1umcc87RihUrNGXKFLndbq8x5513nqfm0/edic1ma3JNAAA0hJxvPHIeABBJyPjGI+MBAJGEjG88Mh4tHU12IIgOHz5c76fbam3atEmSlJaW5tlWG+R///vf64x//vnnz3jcRYsWNbg9MzPT5/4//elPcrlcjZr3gx/8QD179lRlZaXPmkpLS7VixQpJ0pVXXunZPmHCBEnSG2+8oeLi4jOey+mSk5O1fv169e7dW8uWLdPNN9/stcZpaWk6//zzdfToUS1ZsqRJr52QkCCJ29IAABqHnCfnAQDRiYwn4wEA0YmMJ+OBgDIAguaxxx4zP/zhD82zzz5rDh8+7LWvrKzM/Pa3vzU2m81IMnl5eZ59d911l5FkBg4caA4cOODZvnr1apOUlGRatWplJJndu3d7vWavXr2MJNOqVSuTk5NjqqqqjDHGVFdXm9mzZxtJpk2bNmbfvn1e80aMGOGZd+ONN5qTJ08aY4xxu93mySefNDabzdjtdlNYWOg1b+HChUaSSUpKMmvXrvVsP3DggLnsssuMJHPJJZfUWZdrr73WSDJpaWlm27ZtXvuKiorMvHnzfNa3YcMGz7bdu3ebHj16GEnm5z//uXG73Z59f/vb34zNZjNnnXWWee6550x1dbXX6xUXF5sHH3zQrFixwmv7uHHjjCTz1FNP1akZAIDTkfPkPAAgOpHxZDwAIDqR8WQ8EEg02YEgevzxx40kz1efPn3MxRdfbNLS0kxcXJxn+8yZM73m/ec//zFdunQxkozD4TADBw40vXv3NpLMrFmzPOFcX2jPnTvX2Gw206FDB3PRRReZjh07GkkmJibGLFu2rE6dtaH4+9//3sTFxZk2bdqY9PR0k5yc7KnxkUceqTPP7XabyZMne8acc845ZtCgQZ5z69mzpykuLq4z7+jRo2bo0KGeeb179zbp6enm7LPPNpJMr169fNb3/dA25tuAr63x9ttv99r3xz/+0djtds8/VAYPHux1DF/hvGTJEs++888/34wYMcKMGDGizj9WAAAwhpwn5wEA0YqMJ+MBANGJjCfjgUCiyQ4EUVVVlVm/fr3Jyckxw4YNMz179jRxcXHmrLPOMmlpaWbKlCnm/fff9zm3uLjYTJo0yTidTpOQkGAuvPBCs3jxYmOMOWNo79692+Tn55vLL7/ctGnTxrRu3dpcccUV5t133/V5rO+H4tatW81VV11l2rVrZxISEswll1zi9am907ndbrNkyRJz2WWXmaSkJONwOExaWprJycmp82nA09fmySefNMOHDzdt27Y18fHxpk+fPua6664zq1atqre+03366aeeID79Hz8fffSR+elPf2pSUlJMfHy8adu2renfv7+54YYbzKuvvmq+/vrrOq/3xBNPmB/+8IcmISHBE+C+jgsAADlPzgMAohMZT8YDAKITGU/GA4FkM+YMD6AAEPUyMjL07rvvasOGDcrIyLC6HAAAEEDkPAAA0YmMBwAgOpHxQGSIsboAAAAAAAAAAAAAAAAiBU12AAAAAAAAAAAAAAAaiSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBGshljjNVFAAAAAAAAAAAAAAAQCbiSHQAAAAAAAAAAAACARqLJDgAAAAAAAAAAAABAI9FkBwAAAAAAAAAAAACgkWiyAwAAAAAAAAAAAADQSDTZAQAAAAAAAAAAAABoJJrsAAAAAAAAAAAAAAA0Ek12AAAAAAAAAAAAAAAaiSY7AAAAAAAAAAAAAACNRJMdAAAAAAAAAAAAAIBG+v8BwN049bQA7SAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[47;1m retro filtered \u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9kAAAIfCAYAAADUq2x1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHklEQVR4nOzdeVyU5f7/8feAMBAq4JaiYIKa5TlprqnHPbfypx23o1aKWlnWccslyywPFi7l0U5HK/SIlZqalKdFslwyd02zNDEEXApXRBCFYZvfH36dEwGKMHDPMK/n4zEPmPu+7nve3A1eMZ/7ui6T1Wq1CgAAAAAAAAAAAAAA3JKb0QEAAAAAAAAAAAAAAHAWFNkBAAAAAAAAAAAAACgiiuwAAAAAAAAAAAAAABQRRXYAAAAAAAAAAAAAAIqIIjsAAAAAAAAAAAAAAEVEkR0AAAAAAAAAAAAAgCKiyA4AAAAAAAAAAAAAQBFRZAcAAAAAAAAAAAAAoIgqGB3ACLm5uUpMTFSlSpVkMpmMjgMAcHFWq1VXrlxRQECA3Ny4/62k6OcBAI6CPt6+6OMBAI6CPt7+6OcBAI6iqP28SxbZExMTFRgYaHQMAADyOH36tOrUqWN0DKdHPw8AcDT08fZBHw8AcDT08fZDPw8AcDS36uddssheqVIlSdcvTuXKlQ1OAwBwdampqQoMDLT1TygZ+nkAgKOgj7cv+ngAgKOgj7c/+nkAgKMoaj/vkkX2G9PNVK5cmQ4bAOAwmA7NPujnAQCOhj7ePujjAQCOhj7efujnAQCO5lb9PAvGAAAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAAAAAAAAAFBEFNkBAAAAAAAAAAAAACgipyiyh4aGymQy3fSRkZFhdEwAAAAAAAAAAAAAQDlXwegAt6NBgwaqUaNGgfvc3JzifgEAAAAAAAAAAAAAgBNzqiL7iy++qNDQUKNjAAAAAAAAAAAAAABcFMO/AQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUkVNNF//xxx/r008/VWpqqmrUqKF27dpp2LBh8vX1NToaAAAAAAAAAAAAAMAFOFWR/YsvvsjzfPXq1XrllVe0cuVK9ezZ06BUAAAAAAAAAAAAAABX4RTTxYeEhOj111/XoUOHlJqaqitXrmjjxo1q3bq1kpOT9cgjj2j//v2FHm+xWJSamprnAQAAAAAAAAAAAADA7XKKkewvv/xyvm3dunVTx44d1b59e+3du1dTp07Vpk2bCjw+PDxcM2fOLO2YAAAAAAAAAAAAAIByzilGshfG09NTYWFhkqStW7cqOTm5wHbTpk1TSkqK7XH69OmyjAkAAAAAAAAAAAAAKCecusguSW3atJEk5ebmKj4+vsA2ZrNZlStXzvMAAAAAAAAAAAAAAOB2OX2R3cPDw/Z9dna2gUkAAAAAAAAAAAAAAOWd0xfZjxw5Yvu+Tp06BiYBAAAAAAAAAAAAAJR3Tl9kf/PNNyVJjRo1Uu3atQ1OAwAAAAAAAAAAAAAozxy+yP71119r2rRpSkhIyLM9JSVFY8eO1apVqyRJM2bMMCIeAAAAAAAAAAAAAMCFVDA6wK1cvXpVs2fP1uzZs1W7dm0FBAQoKytLP//8szIzM2UymTRjxgwNGTLE6KgAAAAAAAAAAAAAgHLO4YvszZs310svvaRdu3bp+PHjOnz4sKxWq2rXrq327dtrzJgxat26tdExAQAAAAAAAAAAAAAuwOGL7IGBgZo1a5bRMQAAAAAAAAAAAAAAcPw12QEAAAAAAAAAAAAAcBQU2QEAAAAAAAAAAAAAKCKK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiogiOwAAAAAAAAAAAAAARUSRHQAAAAAAAAAAAACAIqLIDgAAAAAAAAAAAABAEVFkBwAAAAAAAAAAAACgiCiyAwAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAIBScf78eU2aNEmNGzfWHXfcIS8vL4WEhOipp57S8ePHjY4HAAAAAECxVDA6AAAAAAAAKH+OHTumDh066Pz58/Lw8FBwcLA8PDx0/PhxRUREaMWKFfryyy/VsWNHo6MCAAAAAHBbGMkOAAAAAADs7tlnn9X58+fVrl07xcfHKyYmRj/99JN+/fVX9enTR9euXdOIESNktVqNjgoAAAAAwG2hyA4AAAAAAOzq2rVr2rJliyRp8eLFqlOnjm1f1apVFRkZKZPJpISEBMXExBgVEwAAAACAYqHIDgAAAAAA7CozM1O5ubmSpODg4Hz7/f39VaVKFUlSdnZ2mWYDAAAAAKCkKLIDAAAAAAC78vPzU2BgoCRp586d+fYfO3ZMSUlJ8vPzU4MGDco6HgAAAAAAJUKRHQAAAAAA2N2sWbMkSSNHjtS6deuUlJSklJQUffXVV3rkkUdkMpk0d+5ceXl5GZwUAADXY7VatX37dk2ePFkPPPCA/Pz85OnpqYCAAPXv39+27MsfvfrqqzKZTDd9sBQMAMAVVDA6AAAAAAAAKH+GDRumihUrKiwsTAMGDMiz77777tOXX36pnj17Fnq8xWKRxWKxPU9NTS21rAAAuJrNmzfrwQcflCS5ubmpfv368vHxUWxsrKKiohQVFaXp06crLCyswOMDAwMVFBRU4L477rij1HIDAOAoGMkOAAAAAADszmq1Kj4+XklJSXJ3d1f9+vV17733ytPTU4cPH9Z7772nS5cuFXp8eHi4fH19bY8b088DAICSs1qtql+/vhYtWqSLFy/q2LFjOnDggJKSkjRt2jRJ12el+fzzzws8fuTIkdq+fXuBj8KK7wAAlCcU2QEAAAAAgN09/fTTmjx5sgIDA3X8+HHFxsbqyJEjOn36tB566CF98skn6ty5s3Jycgo8ftq0aUpJSbE9Tp8+XcY/AQAA5VerVq109OhRPfPMM/L397dt9/T01Ouvv65evXpJkiIiIoyKCACAQ6PIDgAAAAAA7OrQoUOKiIiQh4eHPvroI9111122fTVq1NCKFStUrVo1/fjjj1qzZk2B5zCbzapcuXKeBwAAsI/KlSurQoXCV5Pt1q2bJOmXX34pq0gAADgViuwAAAAAAMCuduzYIavVqoYNGxY4zXvlypXVqlUrSdL+/fvLOh4AALiFjIwMSZK3t3eB+7ds2aKBAweqS5cuGjBggObOnauzZ8+WZUQAAAxV+K1qAAAAAAAAxXDlypVbtrFarZL+9yE+AABwDFarVWvXrpUktWvXrsA227Zty/N83bp1evXVV7Vo0SKFhoaWdkQAAAzHSHYAAGCo8+fPa9KkSWrcuLHuuOMOeXl5KSQkRE899ZSOHz9udDwAAFAMDRo0kHR9itmC1lJPTU3Vvn37JEkNGzYs02wAAODmIiIidPDgQXl6emr8+PF59tWqVUsvvvii9u3bp6SkJF27dk07duxQr169lJ6erpEjR+qzzz675WtYLBalpqbmeQAA4EwosgMAAMMcO3ZMf/7zn/Xmm28qNjZWQUFBatCggRITExUREaEmTZro22+/NTomAAC4Td27d1e1atWUlZWlwYMH68SJE7Z958+f16OPPqqLFy/Ky8tLAwYMMC4oAADI48CBAxo3bpwkadasWQoJCcmzf/To0XrttdfUokULValSRd7e3mrbtq2++OIL/fWvf5XVatWECRNsM9YUJjw8XL6+vrZHQcvLAADgyCiyAwAAwzz77LM6f/682rVrp/j4eMXExOinn37Sr7/+qj59+ujatWsaMWLELf84BwAAjqVixYp6//335eXlpZ07d6p+/fpq2LChGjdurMDAQH3++eeqUKGC3nnnHdWuXdvouAAAQFJCQoJ69+6tjIwMDR06VJMmTSrysSaTSbNnz5YkxcXF6ccff7xp+2nTpiklJcX2KGjmGwAAHBlFdgAAYIhr165py5YtkqTFixerTp06tn1Vq1ZVZGSkTCaTEhISFBMTY1RMAABQTL169dKhQ4f01FNPqV69ejp16pSOHz+uWrVq6fHHH9eePXs0fPhwo2MCAABJZ8+eVbdu3XTmzBk9/PDDtr/Jb0fDhg1VpUoVSbrl8m9ms1mVK1fO8wAAwJlUMDoAAABwTZmZmcrNzZUkBQcH59vv7++vKlWqKCkpSdnZ2WUdDwAA2EHDhg317rvvGh0DAADcxKVLl9StWzfFxcWpY8eOWrt2rTw8PIp1rhvH8Xc8AKC8YyQ7AAAwhJ+fn23NtZ07d+bbf+zYMSUlJcnPz08NGjQo63gAAAAAAJR7aWlpeuihh3T48GG1bNlSn332mby9vYt1rosXL+r8+fOSlGe2OgAAyiOK7AAAwDCzZs2SJI0cOVLr1q1TUlKSUlJS9NVXX+mRRx6RyWTS3Llz5eXlVeg5LBaLUlNT8zwAAAAAAMDNWSwW9e3bV3v27FHjxo0VHR2tSpUqFft88+fPl9Vqla+vr1q2bGnHpAAAOB6K7AAAwDDDhg3TunXrVK1aNQ0YMEDVqlWTn5+fevbsKU9PT3355Zd68sknb3qO8PBw+fr62h43RscDAAAAAICC5eTkaPDgwdq8ebNCQkL09ddf29ZTL8yRI0c0ZswYHTlyJM/2jIwMvf7665ozZ44kaerUqfL09Cy17AAAOALWZAcAAIaxWq2Kj49XUlKS3N3dVa9ePXl6eur48eM6fPiw3nvvPbVq1eqmf+hPmzZNEydOtD1PTU2l0A4AAAAAwE2sWbNGn376qSTJzc1NAwcOLLBdrVq1tHbtWklSVlaWFi9erMWLF6t69eoKCgqSJB09elTXrl2TJI0aNUovvPBC6f8AAAAYjCI7AAAwzNNPP6333ntPbdu21bZt23TXXXdJks6fP69Ro0bpk08+UVxcnA4cOCB3d/cCz2E2m2U2m8swNQAAAAAAzs1isdi+j42NVWxsbIHt6tata/v+rrvuUlhYmHbu3KmYmBgdO3ZMmZmZqlGjhh566CE98cQT6tGjR6lnBwDAEZisVqvV6BBlLTU1Vb6+vkpJSVHlypWNjgMAcHGu2i8dOnRI999/vypUqKC4uLh8o89TU1MVEhKiixcvauXKlRoyZEiRzuuq1xMA4Hjok+yL6wkAcBT0SfbHNQUAOIqi9kmsyQ4AAAyxY8cOWa1WNWzYsMDp3StXrqxWrVpJkvbv31/W8QAAAAAAAAAAKBBFdgAAYIgrV67css2NCXcyMjJKOw4AAAAAAAAAAEVCkR0AABiiQYMGkqRffvlFp0+fzrc/NTVV+/btkyQ1bNiwTLMBAAAAAAAAAFAYiuwAAMAQ3bt3V7Vq1ZSVlaXBgwfrxIkTtn3nz5/Xo48+qosXL8rLy0sDBgwwLigAAAAAAAAAAL9TwegAAADANVWsWFHvv/+++vXrp507d6p+/foKDg6Wh4eHjh8/rszMTFWoUEHvvPOOateubXRcAAAAAAAAAAAkUWQHAAAG6tWrlw4dOqQ333xTmzdv1qlTp2S1WlWrVi116NBB48ePV7NmzYyOCQAAAAAAAACADUV2AABgqIYNG+rdd981OgYAAAAAAAAAAEXCmuwAAAAAAAAAAAAAABQRRXYAAAAAAAAAAAAAAIqIIjsAAAAAAAAAAAAAAEVEkR0AAAAAAAAAAAAAgCKiyA4AAAAAAAAAAAAAQBFRZAcAAAAAAAAAAAAAoIgosgMAAAAAAAAAAAAAUEQU2QEAAAAAAAAAAAAAKCKK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiogiOwAAAAAAAAAAAAAARUSRHQAAAAAAAAAAAACAIqLIDgAAAAAAAAAAAABAEVFkBwAAAAAAAAAAAACgiCiyAwAAAAAAAAAAAABQRBTZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABF5LRF9unTp8tkMslkMmnWrFlGxwEAAAAAAAAAAAAAuACnLLIfPXpU8+bNMzoGAAAAAAAAAAAAAMDFOF2R3Wq1avTo0fLw8FCXLl2MjgMAAAAAAAAAAAAAcCFOV2RfunSpvvvuO82YMUOBgYFGxwEAAAAAAAAAAAAAuBCnKrJfuHBBU6dO1b333qsJEyYYHQcAAAAAAAAAAAAA4GIqGB3gdkyYMEGXLl1SVFSUPDw8jI4DAAAAAAAAAAAAAHAxTjOSfdOmTVqxYoUee+wxdezY0eg4AAAAAAAAAAAAAAAX5BQj2TMyMvT000/L19dXb7zxxm0fb7FYZLFYbM9TU1PtGQ8AAAAAAAAAAAAA4CKcYiT7rFmzdPz4cb322mu68847b/v48PBw+fr62h6BgYGlkBIAAAAAAAAAAAAAUN45fJH96NGjmjdvnpo1a6ZnnnmmWOeYNm2aUlJSbI/Tp0/bOSUAAAAAAAAAAAAAwBU4/HTxY8aMUXZ2thYvXiw3t+LdE2A2m2U2m+2cDAAAAAAAAAAAAADgahy+yH7w4EGZTCb16dMn376UlBRJ0pw5c/T2228rMDBQ+/btK+uIAAAAAAAAAAAAAAAX4fBFdknKycnRuXPnCt2flpamtLQ0eXl5lWEqAAAAAAAAAAAAAICrcfg12S9fviyr1VrgY/jw4ZKksLAwWa1WnThxwtiwAAAAAAAAAAAAAIByzeGL7AAAAAAAAAAAAAAAOAqK7AAAAAAAAAAAAAAAFBFFdgAAAAAAAAAAAAAAiqiC0QFKIjIyUpGRkUbHAAAAAAAAAAAAAAC4CEayAwAAAAAAAAAAAABQRBTZAQAAAABAqcnJyVFERIQ6duyoatWqycvLS3Xr1tUjjzyi9evXGx0PAAAAAIDb5tTTxQMAAAAAAMeVnJyshx56SLt375bJZFLDhg111113KTExUevXr1eFChXUt29fo2MCAAAAAHBbKLIDAAAAAAC7y83NVZ8+fbR7927169dPCxcuVJ06dWz7f/31V8XHxxuYEAAAAACA4qHIDgAAAAAA7O69997T9u3b1blzZ61du1ZubnlXrKtTp06eojsAAAAAAM6CNdkBAAAAAIDdLVy4UJIUFhaWr8AOAAAAAIAz469cAAAAAABgV7GxsYqJiVGVKlXUtm1brV+/Xo899pi6du2qwYMHa8mSJbJYLEbHBADAZVmtVm3fvl2TJ0/WAw88ID8/P3l6eiogIED9+/fXli1bbnr8rl271LdvX1WvXl3e3t669957FRYWpoyMjDL6CQAAMBbTxQMAAAAAALv6/vvvJUmNGjXS448/rhUrVuTZv3r1ar355puKjo5W3bp1jYgIAIBL27x5sx588EFJkpubm+rXry8fHx/FxsYqKipKUVFRmj59usLCwvIdu2LFCg0fPlw5OTmqXbu2AgMDdfjwYc2YMUOfffaZtm7dqjvuuKOsfyQAAMoUI9kBAAAAAIBdnTlzRpK0b98+rVixQk888YROnDihjIwMffPNNwoODlZMTIz69++v3NzcAs9hsViUmpqa5wEAAOzDarWqfv36WrRokS5evKhjx47pwIEDSkpK0rRp0yRJs2bN0ueff57nuBMnTmjUqFHKycnR3Llzdfr0aR04cECxsbG6++67tW/fPk2ZMsWIHwkAgDJFkR0AAAAAANjV1atXJUlZWVlq3769IiIiVLduXZnNZnXt2lVRUVEymUz6/vvv9cUXXxR4jvDwcPn6+toegYGBZfkjAABQrrVq1UpHjx7VM888I39/f9t2T09Pvf766+rVq5ckKSIiIs9x8+bNk8ViUffu3TV58mSZTCZJUt26dfWf//xHkvTee+/p3LlzZfSTAABgDIrsAAAAAADArry8vGzfjxs3Lt/+Jk2aqHPnzpKk6OjoAs8xbdo0paSk2B6nT58unbAAALigypUrq0KFwleT7datmyTpl19+sW2zWq365JNPJEmjRo3Kd0zbtm3VqFEjZWVlaf369XZODACAY6HIDgAAAAAA7Or3I+IaNWpUYJt77rlH0vVpZwtiNptVuXLlPA8AAFA2MjIyJEne3t62badOnbItCdOuXbsCj7uxfc+ePaWcEAAAYxV+qxoAAAAAAEAx3H333bbvzWZzgW1ubM/JySmTTAAAoGisVqvWrl0rKW8xPTY2VtL1PjwgIKDAY4ODg/O0LYzFYpHFYrE9T01NLVFmAADKGiPZAQAAAACAXd1///22KePj4+MLbHNje+3atcssFwAAuLWIiAgdPHhQnp6eGj9+vG17cnKyJMnPz8+2Fvsf3ZjN5kbbwoSHh8vX19f2CAwMtE94AADKCEV2AAAAAABgVz4+PnrooYckScuXL8+3/+zZs/rqq68kSV26dCnTbAAAoHAHDhzQuHHjJEmzZs1SSEiIbd+NKeQ9PT0LPf7GTDXp6ek3fZ1p06YpJSXF9jh9+nRJowMAUKYosgMAAAAAALubMWOG3N3d9dFHH+UptF++fFmhoaFKT09XcHCwBg4caGBKAABwQ0JCgnr37q2MjAwNHTpUkyZNyrP/xiw1mZmZhZ7jxhTwv1/LvSBms1mVK1fO8wAAwJlQZAcAAAAAAHbXpEkTvf3227JarQoNDVXdunXVsmVL1a5dW1999ZWqVaumdevW3XQ0HAAAKBtnz55Vt27ddObMGT388MOKjIzMNyX8jangL1++LKvVWuB5bkwTf6MtAADlFUV2AAAAAABQKp5++ml9++23+n//7//p2rVr+vHHH1WjRg09++yz+uGHH9S0aVOjIwIA4PIuXbqkbt26KS4uTh07dtTatWvl4eGRr12DBg0kXR+tnpiYWOC54uPj87QFAKC8qmB0AAAAAAAAUH61b99e7du3NzoGAAAoQFpamh566CEdPnxYLVu21GeffVboVO9BQUGqWbOmzp49qx07dmjQoEH52uzYsUOS1Lp161LNDQCA0RjJDgAAAAAAAACAi7FYLOrbt6/27Nmjxo0bKzo6WpUqVSq0vclk0l//+ldJ0tKlS/Pt37lzp2JiYuTh4aE+ffqUWm4AABwBRXYAAAAAAAAAAFxITk6OBg8erM2bNyskJERff/21qlSpcsvjJk+eLE9PT23cuFHz5s2zrc1+8uRJjRw5UpL0xBNPqGbNmqWaHwAAozFdPAAAAAAAAAAALmTNmjX69NNPJUlubm4aOHBgge1q1aqltWvX2p7Xq1dPERERGjFihKZMmaKFCxeqRo0aOnz4sLKystS8eXPNmzevLH4EAAAMRZEdAAAAAAAAAAAXYrFYbN/HxsYqNja2wHZ169bNt23YsGGqX7++wsPDtXPnTv38888KDg7WkCFDNHXqVHl5eZVabgAAHAVFdgAAAAAAAAAAXEhoaKhCQ0OLfXzbtm312Wef2S8QAABOhjXZAQAAAAAAAAAAAAAoIorsAAAAAAAAAAAAAAAUEUV2AAAAAAAAAAAAAACKiCI7AAAAAAAAAAAAAABFRJEdAAAAAAAAAAAAAIAiosgOAAAAAAAAAAAAAEARUWQHAAAAAAAAAAAAAKCIKLIDAAAAAAAAAOAEzp07p4MHD+ratWtGRwEAwKVRZAcAAAAAAAAAwAHs2bNHEydO1BdffJFne2pqqvr27auAgAC1aNFCNWvW1LJlywxKCQAAKLIDAAAAAAAAAOAAlixZooULF6pSpUp5tk+ePFmfffaZTCaT/Pz8lJaWpieffFI//fSTQUkBAHBtFNkBAAAAAAAAAHAAO3bskI+Pjzp06GDblpaWpg8++ECVKlXS4cOHlZSUpAULFig3N1dvvvmmgWkBAHBdFNkBAAAAAAAAAHAA586dU2BgYJ5t3377rTIyMvS3v/1NjRo1kiQ999xzqlatmvbs2WNETAAAXB5FdgAAAAAAAAAAHMCVK1d0xx135Nm2fft2mUwmdevWzbbNzc1Nd911l06fPl3WEQEAgCiyAwAAAAAAAADgEKpWraqTJ0/KarXatn3zzTeSpI4dO+Zpm5WVJU9PzzLNBwAArqPIDgAADJeTk6OIiAh17NhR1apVk5eXl+rWratHHnlE69evNzoeAAAAAABl4oEHHlBSUpIiIiIkXS+wf//992rSpIlq1Khha2e1WnX8+HHVqlXLqKgAALg0iuwAAMBQycnJ+stf/qKnnnpK3333napVq6Y//elPysrK0vr16/XBBx8YHREAAAAAgDLx/PPPy2Qy6ZlnnlG1atXUs2dPmUwmPf/883nabdu2TVevXlXLli0NSgoAgGujyA4AAAyTm5urPn36aPfu3erXr59OnTqlmJgY7d+/X4mJiTp9+rTGjh1rdEwAAAAAAMrEX/7yF61bt0733nuvrl69quDgYL399tt69NFH87R75513JEndu3c3IiYAAC6vgtEBAACA63rvvfe0fft2de7cWWvXrpWbW977/+rUqaM6deoYlA4AAAAAgLLXt29f9e3b96Zt3nvvPb3zzjuqVKlSGaUCAAC/R5EdAAAYZuHChZKksLCwfAV2AAAAAABQMIrrAAAYiyI7AAAwRGxsrGJiYlSlShW1bdtW69ev19q1a3XmzBlVr15dDz74oB5//HGZzWajowIAAAAAAAAAYEORHQAAGOL777+XJDVq1EiPP/64VqxYkWf/6tWr9eabbyo6Olp169Y1IiIAAAAAAGUuMzNTy5YtU3R0tOLj45WWliar1VpgW5PJpLi4uDJOCAAAKLIDAABDnDlzRpK0b98+7dy5U0888YSmT5+umjVravv27XrqqacUExOj/v37a+/evYVOJ2+xWGSxWGzPU1NTyyQ/AAAAAAD2dubMGXXt2lXHjh0rtLD+eyaTqQxSAQCAP6LIDgAADHH16lVJUlZWltq3b6+IiAjbvq5duyoqKkr333+/vv/+e33xxRf6f//v/xV4nvDwcM2cObNMMgMAAAAAUJqef/55xcTEKDg4WFOmTNH999+v6tWrU0wHAMDBUGQHAACG8PLysn0/bty4fPubNGmizp07a/PmzYqOji60yD5t2jRNnDjR9jw1NVWBgYH2DwwAAAAAQCmLjo6Wl5eXvv32W9WuXdvoOAAAoBAFz7sKAABQyvz9/W3fN2rUqMA299xzjyTpxIkThZ7HbDarcuXKeR4AAAAAADijnJwcNWrUiAI7AAAOjiI7AAAwxN1332373mw2F9jmxvacnJwyyQQAAAAAgJHuu+8+JSUlGR0DAADcAkV2AABgiPvvv982ZXx8fHyBbW5s5w5+AAAAAIArmDx5sk6fPq3Vq1cbHQUAANwERXYAAGAIHx8fPfTQQ5Kk5cuX59t/9uxZffXVV5KkLl26lGk2AAAAAACM0KdPH7355pt64okn9Pzzz+vIkSPKyMgwOhYAAPgDiuwAAMAwM2bMkLu7uz766KM8hfbLly8rNDRU6enpCg4O1sCBAw1MCQAAAABA2Rk6dKg6deqkBQsW6L777pOPj4/c3d0LfFSoUMHouAAAuCSK7AAAwDBNmjTR22+/LavVqtDQUNWtW1ctW7ZU7dq19dVXX6latWpat26dPD09jY4KAAAAAECpO378uJo3b64vv/xSVqv1lo/c3FyjIwMA4JIosgMAAEM9/fTT+vbbb/X//t//07Vr1/Tjjz+qRo0aevbZZ/XDDz+oadOmRkcEAAAAAKBMTJkyRYmJiWrdurW++uornTt3Trm5uTd9AACAssdcMgAAwHDt27dX+/btjY4BAAAAAIChvv32W1WsWFHR0dGqXLmy0XEAAEAhGMkOAAAAAAAAAIADyM3N1d13302BHQAAB0eRHQAAAAAAAAAAB9C8eXP9+uuvRscAAAC3QJEdAAAAAAAAAAAH8PLLL+vixYtauHCh0VEAAMBNsCY7AAAAAAAAAAAOoF69epo3b56mTp2qbdu2aeTIkQoJCdEdd9xR6DFBQUFlmBAAAEgU2QEAAAAAAAAAcAh33XWXTCaTrFarPv30U3366ac3bW8ymZSdnV024QAAgA1FdgAAAAAAAAAAHEBQUJBMJpPRMQAAwC1QZAcAAAAAAAAAwAGcOHHC6AgAAKAI3IwOAAAAAAAAAAAAAACAs6DIDgAAAAAAAAAAAABAETFdPAAAAAAAAAAADsRisWjVqlXauHGjfvnlF125ckWVKlVSw4YN1aNHDw0ePFhms9nomAAAuCynKLJ/+umn2rBhg/bv36/ExEQlJSXpjjvu0L333qu//e1veuaZZ+Tp6Wl0TAAAAAAAAAAASuTAgQMaOHCgTpw4IavVmm/f6tWrFRYWpjVr1qhZs2YGpQQAwLU5RZH9jTfe0I4dO2Q2mxUQEKAmTZrozJkz2rVrl3bt2qUPPvhA33zzjfz8/IyOCgAAAAAAAABAsfz666/q1q2bkpOTVa1aNT355JNq3Lix7rzzTp07d05HjhzRkiVLFB8frx49euiHH35Q7dq1jY4NAIDLcYo12Z944glt2bJFV65cUXx8vPbt26dff/1Vu3btUp06dfT999/rpZdeMjomAAAAAAAAAADFFh4eruTkZPXr108nT57Ua6+9pqFDh6pr164aOnSoXnvtNZ08eVL9+/dXUlKSwsPDjY4MAIBLcooie2hoqDp16iQPD4882x944AHNnz9f0vUp5QEAAAAAAAAAcFYbNmyQj4+PIiMj5e3tXWAbLy8vLVu2TD4+Pvryyy/LOCEAAJCcpMh+M40aNZIkXbt2zeAkAAAAAACgMNOnT5fJZJLJZNKsWbOMjgMAgENKTEzUPffco4oVK960XcWKFXXPPffozJkzZZQMAAD8ntMX2Xft2iVJatasmcFJAAAAAABAQY4ePap58+YZHQMAAIdXqVIlnTt3rkhtz507Jx8fn1JOBAAACuKURfacnBz9+uuvWrRokSZNmiQfHx/WngEAAAAAwAFZrVaNHj1aHh4e6tKli9FxAABwaM2bN9evv/6qjz766KbtVq1apdOnT6tFixZllAwAAPyeUxXZFyxYIJPJpAoVKigwMFDPPvusunbtqt27d6tVq1aFHmexWJSamprnAQAAAAAASt/SpUv13XffacaMGQoMDDQ6DgAADu3vf/+7rFarhg8frueff14JCQl59ickJGjixIkaMWKETCaTxo4dW+zXSkhIUEREhJ588kk1adJEFSpUuOWyLq+++qpt+ZfCHjExMcXOBACAs6hgdIDbUbt2bbVr105ZWVk6efKkzp07py1btmjVqlX6xz/+IXd39wKPCw8P18yZM8s4LQAAAAAAru3ChQuaOnWq7r33Xk2YMEFPPvmk0ZEAAHBoDz/8sKZOnao5c+ZowYIFWrBggcxms6pXr64LFy7IYrFIuj5TzLRp0/TQQw8V+7UWLlyohQsXFuvYwMBABQUFFbjvjjvuKHYmAACchVMV2QcOHKiBAwfanu/Zs0ejR4/W66+/rkuXLmnx4sUFHjdt2jRNnDjR9jw1NZW75wEAAAAAKGUTJkzQpUuXFBUVJQ8PD6PjAADgFMLDw9WuXTvNnj1bu3fvVkZGhk6fPi1JcnNzU9u2bTV16lQ9/PDDJXqdatWqqXfv3mrVqpVatmypJUuWaN26dUU6duTIkXr11VdL9PoAADgzpyqy/1Hr1q315ZdfKjg4WO+9955eeOEF1a1bN187s9kss9lsQEIAAAAAAFzTpk2btGLFCj322GPq2LGj0XEAAHAqvXv3Vu/evXX16lUdP35caWlpqlixourXry8fHx+7vMb06dPzPL/VOvCAPaWnp2vu3Lk6efKk6tatqylTpsjb29voWE4rMzNTK1eu1KlTpxQUFKShQ4fK09PT6FhAuebURXZJCggIUNOmTbVnzx4dOnSowCI7AAAAAAAoOxkZGXr66afl6+urN954o1jnsFgstilxpeuz0gEA4Gp8fHzUpEkTo2MAdjVmzBht2rTJ9nzHjh1auXKlunbtqkWLFhmYzDnNnTtXkZGRysnJybMtNDRUU6ZMMTAZUL65GR3AHrKzs/N8BQAAAAAAxpk1a5aOHz+u1157TXfeeWexzhEeHi5fX1/bg2XfAACuwN3dvcgzwHTu3FkVKhgzjm7Lli0aOHCgunTpogEDBmju3Lk6e/asIVngXG4U2D08PPTUU09p48aNeuqpp+Th4aFNmzZpzJgxRkd0KnPnztXSpUvl5+ensLAwbd++XWFhYfLz89PSpUs1d+5coyMC5ZbTF9lPnDihQ4cOSRJ39AEAAAAAYLCjR49q3rx5atasmZ555plin2fatGlKSUmxPW6sRQsAQHlmtVpltVpvq70Rtm3bpo8//lhbtmzRunXrNHXqVAUHBysyMtKQPHAO6enptgL7gQMH9Pzzz6tu3bp6/vnndeDAAVuhPT093eioTiEzM1ORkZGqWrWqtm3bpkGDBql69eoaNGiQtm3bpqpVqyoyMlKZmZlGRwXKpRIV2RMSErRmzRq9/fbbCg8P17///W+tXbtWJ0+etFc+ff/993rllVcUHx+fb190dLR69eql7OxsPfTQQwoJCbHb6wIAAAAAgNs3ZswYZWdna/HixXJzK/7HDmazWZUrV87zAAAA/3P16lV5eHiU6WvWqlVLL774ovbt26ekpCRdu3ZNO3bsUK9evZSenq6RI0fqs88+u+V5LBaLUlNT8zxQ/t0YVT1ixIh864V7enpq+PDhedrh5lauXKmcnByNHz8+36wWFSpU0Lhx45STk6OVK1calBAo34o1l8wHH3yg8PBwHTt2rNA29957r1588UUNGTKk2OEk6cqVK/rHP/6hf/zjH6pZs6bq1KmjzMxMnTp1SpcvX5YktWzZUsuXLy/R6wAAgNu3d+9effDBB/rXv/5ldBQAAOAgDh48KJPJpD59+uTbl5KSIkmaM2eO3n77bQUGBmrfvn1lHREAAKd37NgxHT58WLVr1y7T1x09enS+bW3bttUXX3yh/v3765NPPtGECRPUu3dvmUymQs8THh6umTNnlmZUOKAbAzQHDBhQ4P4BAwZoyZIldh3IWZ6dOnVK0vWlIwrSqVOnPO0A2Ndt3VKem5urxx57TKGhoYqJiZHValWVKlXUpEkTtW3bVvfdd5/8/f1ltVp15MgRW9uSTFnTpEkTLVy4UH369JGPj49iYmIUExMjb29v9erVS8uWLdPOnTtVrVq1Yr8GAAAouhMnTmjWrFlq1KiR2rRpo0WLFhkdCQAAOJicnBydO3cu3yMjI0OSlJaWpnPnzunChQsGJwUAwFgLFy5UcHCw7SFJ+/fvz7Ptj49atWrp3nvvlcViUd++fQ3+Ca4zmUyaPXu2JCkuLk4//vjjTduzLIxrqlu3riTp448/LnD/je032uHmgoKCJElbtmwpcP/WrVvztANgX7c1kv0f//iHVq5cKXd3dz333HN6+umndffdd+drd/ToUS1evFiLFy/WBx98oPr162v69OnFCujv76+xY8dq7NixxToeAACUXEpKitasWaMPPvhAO3bskHR93TcPDw/17NnT4HQAAMCR3Jh1riChoaFavny5wsLCiv05AQAA5cnly5d14sQJ23OTyaSMjIw82wpSqVIlDRw4ULNmzSrdgLehYcOGqlKlii5duqTjx4+rSZMmhbY1m80ym81lmA6OYMqUKVq5cqWWLVumv//973mmjM/MzLTNWDxlyhSjIjqVoUOHau7cuVqwYIH69euXZ8r47OxsLVy4UO7u7ho6dKiBKYHyq8gj2S9evKjZs2erQoUK+uKLL/TPf/6zwAK7JN1zzz1666239Nlnn8nNzU2vvfaakpKS7BYaAACUvuzsbP33v//VwIEDVbNmTT399NPavn27rFarHnjgAf373//WmTNntH79eqOjAgAAAADglMaPH6+EhAQlJCQoPj5eVqtVLVu2tG374+PEiRM6d+6cUlJStGTJEt1xxx1G/wh53FgjPjs72+AkcETe3t7q2rWrsrKy1KxZM82bN08JCQmaN2+emjVrpqysLHXt2lXe3t5GR3UKnp6eCg0NVVJSkjp06KDVq1fr3LlzWr16tTp06KCkpCSFhobmuZkBgP0UeST7Bx98oMzMTD3//PPq3r17kY7p2bOnxo4dqwULFmjFihWMRgcAwAns2bNHH3zwgVavXq1Lly7Zln1p2LChfvnlF9WsWdM2mh0AAAAAABSfr6+vfH19bc+HDx+uu+++2ymny7548aLOnz8vSapTp47BaeCoFi1apDFjxmjTpk1asmSJlixZYtvXtWtXliW8TTdG/UdGRmrGjBm27e7u7ho1ahSzAgClqMhF9u3bt8tkMumZZ565rRcYM2aM/vnPf2rbtm0U2QEAcFAJCQn68MMP9cEHHyguLk7S9enga9asqcGDB+vRRx9V8+bN5eZW5ElwAAAAAADAbVq2bJnREYpt/vz5slqt8vX1VcuWLY2OAwe2aNEipaena+7cuTp58qTq1q2rKVOmMIK9mKZMmaLx48dr5cqVOnXqlIKCgjR06FBGsAOlrMhF9h9//FE1atRQcHDwbb1ASEiIatSooR9//PG2wwEAgNLXvn177dy5U9L1wnrlypXVr18/Pfroo+rSpYtMJpPBCQEAQHkRGRmpyMhIo2MAAIBiOHLkiP7973/r2WefVePGjW3bMzIyNH/+fM2ZM0eSNHXqVIp7uCVvb2+98sorRscoN25MHQ+g7BS5yH7p0qViT1ETEBCgkydPFutYAABQunbs2CGTySQ/Pz+9+eabGjJkiMxms9GxAAAAAABwWQkJCVq9erUOHTqkS5cuKSsrq8B2JpNJmzZtKtZr7NixQ3379rU9T0tLkySFh4drwYIFtu0HDx5UYGCgsrKytHjxYi1evFjVq1dXUFCQJOno0aO6du2aJGnUqFF64YUXipUHAABnUuQie2pqqipWrFisF/Hx8VFqamqxjgUAAKXL3d1dOTk5unz5sp577jl99dVXGjp0qHr16qUKFYr8vwoAAAAAAMAO5s2bp5deeknZ2dm22eWsVqtt/++3lWT2uaysLCUlJeXbfu3aNVvRXJJycnIkSXfddZfCwsK0c+dOxcTE6NixY8rMzFSNGjX00EMP6YknnlCPHj2KnQeuJTMzk+nN4dB4j+JWivzJ+Y2OtLhyc3NLdDwAACgdv/32m1auXKkPP/xQBw4c0OrVq7VmzRr5+/trwIABGjJkiDp27Gh0TAAAAAAAyr0vv/xSU6dOVa1atRQWFqYFCxboyJEj+vrrr3X69GkdOnRIS5cuVU5OjmbPnq377ruv2K/VqVOnPMX7W/Hz89P06dOL/XrADXPnzlVkZGSeutPcuXMVGhqqKVOmGJgMuI73KIritoanWSwWnTp16rZfxGKx3PYxAACgbNSoUUPjx4/X+PHjdfToUb3//vtauXKlTp8+rYiICEVERKh27dr629/+ZnRUAAAAAADKtX/9618ymUxas2aN2rVrp2XLlkmSunbtamszffp09e/fXy+//LL27dtnVFSgWObOnaulS5eqatWqGj9+vDp37qwtW7ZowYIFWrp0qSRRxISheI+iqEzWIt6q5ubmVqKpZ6SSj4a3l9TUVPn6+iolJUWVK1c2Og4AwMU5Yr9ktVq1detWvf/++4qKitKVK1ds/x9gNps1bdo0PfroowoODjY4aX6OeD0BAK6JPsm+uJ4AAEdRmn1SjRo15OnpqV9//VWS1L59e+3cuTPfZ+tnzpxR3bp1NWjQIH344Yd2zWAE+nnXkJmZqaZNm8rPz0/btm3Ls0xhdna2OnTooMuXL+uHH35gWm4YgvcopKL3Sbc1kv12po75o5IW6AEAQNkxmUzq3LmzOnfurMWLF+vTTz/V+++/r6+//loZGRl69dVX9eqrr6pNmzZ6/PHHNXr0aKMjAwBQ7l28eFGSVK1aNYOTAACA0pKamqomTZrYnnt5edm2//6D/lq1aulPf/qTtmzZUuYZgeJauXKlcnJyNH78+DzFS0mqUKGCxo0bpxkzZmjlypUKDQ01JqRB0tPTFR8fb3QMm+DgYHl7exsdo8zxHsXtKHKRPSEhoTRzAAAAB+Xl5aXBgwdr8ODBOn/+vFasWKEPP/xQBw8e1M6dO7Vr1y6K7AAAlJLLly/rxRdf1OrVq3X58mVJkq+vrwYOHKjXX39dVatWNTYgAACwqxo1aig1NTXPc0k6duyYWrZsmadtWlqakpKSyjQfUBI3liPu3Llzgfs7deqUp50riY+PV79+/YyOYRMVFaXGjRsbHaPM8R7F7Shykb1u3bqlmQMAADiBGjVqaMKECZowYYJ+/vln2/rtAADA/tLT09W+fXv9/PPPeWaWu3z5spYsWaLvvvtO+/btk4+Pj4EpAQCAPYWEhOjAgQO2561bt9aqVau0ePHiPEX2TZs26fjx46pXr54RMYFiCQoKkiRt2bJFgwYNyrd/69atedq5kuDgYEVFRZXoHHFxcZo8ebLmzZunkJCQEudxRbxHcTuKvCZ7ecL6LgAAR+Ls/ZLVanWoZWGc/XoCAMqPkvZJs2fP1osvvig/Pz/NmDFDHTp0kNVq1bZt2xQWFqaUlBT94x//0EsvvVQK6R0PfTwAwFGUZp80Z84cvfjii9q9e7datmypixcvqkGDBkpNTVWbNm3Upk0bnTt3TmvWrFFWVpZefvllvfrqq3bNYAT6edfAetel68iRI+rXr5/LjkK3B96jkIreJ7mVxotnZmbq/PnzJVrDHQAAOJ6C+nhHKrADAFCefPLJJzKZTFq3bp3Gjx+vZs2aqXnz5powYYLWrl0rq9WqTz75xOiYAADAjgYNGqSRI0fq0qVLkqRq1app9erV8vX11c6dO/Xmm2/qww8/VGZmpvr376/p06cbnBgoOk9PT4WGhiopKUkdOnTQ6tWrde7cOa1evVodOnRQUlKSQkNDKV7CMLxHcTuKPF38DUePHtWmTZuUmZmpRo0aqVevXrYP1z///HPNmDFDP/74o6xWqypVqqShQ4dq9uzZ3H0GAICDo48HAMCxHDt2TLVr1y5wPcCuXbuqTp06io2NNSAZAAAoLfXq1VNERESebd27d1dCQoI2bNigEydOyNvbW+3bt1ezZs0MSgkU35QpUyRJkZGRmjFjhm27u7u7Ro0aZdsPGIX3KIrqtorsL7/8ssLDw/OMXrv//vu1ZcsWffHFF3rssceUm5tr25eamqp3331XBw4c0Pbt2/NMqwAAABwHfTwAAI7nypUr+vOf/1zo/qCgIO3atasMEwEAAKP4+vpq8ODBRscA7GLKlCkaP368Vq5cqVOnTikoKEhDhw5ldDAcBu9RFEWRPxHfsGGDXnvtNUnSnXfeqcDAQP3yyy86ePCgXn/9dX3wwQfy8/PTzJkz1bZtW+Xm5mrHjh2aOXOm9u3bp/fee09jxowptR8EAAAUD308AACOyWq13nRZFpZsAQAAgLO6MS034Kh4j+JWilxkf+edd2QymTRx4kTNnTtXJpNJaWlp+utf/6qFCxfKYrHo66+/VpcuXWzHNG/eXI0aNVLPnj21Zs0aPoAHAMAB0ccDAAAAAAAAAFB0Juvv54W9iYCAAF27dk3nzp2T2Wy2bd+/f79atWqlmjVrKjExscBja9WqpaysLF28eNE+qUsoNTVVvr6+SklJYR1ZAIDhjO6XylMfLxl/PQEAuKGkfZKbm1uJRqubTCZlZ2cX+3hHQx8PAHAU9En2xzUFSu7IkSPq16+foqKi1LhxY6PjAE6rqH2SW1FPePHiRQUHB+f58F2S7r33XknX14IrTFBQkFJSUor6UgAAoAzRxwMA4LisVmuJHgAAALCP9PR0zZw5UyNHjtTMmTOVnp5udCQAgIGKPF18dna2KlasmG/7HXfcIen62gSF8fT0VG5ubjHiAQCA0kYfDwCAY9qyZYvREQAAACBpzJgx2rRpk+35jh07tHLlSnXt2lWLFi0yMBkAwChFLrIDAAAAAICy07FjR6MjAAAAuLwbBXYPDw+NGDFCAwYM0Mcff6xly5Zp06ZNGjNmDIV2AHBBFNkBAAAAAAAAAAD+ID093VZgP3DggG22v+eff15///vf1axZM23atEnp6eny9vY2OC0AoCzdVpF9//79Cg4OzrfdZDIVuk+Szpw5U7x0AACgTNDHAwAAAABgvKNHj+qee+4xOgb+z9y5cyVJI0aMyLecnqenp4YPH64lS5Zo7ty5euWVV4yIaJj09HTFx8cbHcMmODiYGx0AlKnbKrJnZGToxIkTt71Puv4hPQAAcEz08QAAOL6RI0cWua27u7sqVaqku+66S+3atVPz5s1LMRkAALCXP/3pT2rZsqVCQ0M1ePBg+fn5GR3JpZ08eVKSNGDAgAL3DxgwQEuWLLG1cyXx8fHq16+f0TFsoqKi1LhxY6NjAHAhRS6yL1u2rDRzAAAAg9DHAwDgHCIjIyX97wY3q9War80f99143rx5cy1fvpyRcQAAODg/Pz/t3btX+/bt04QJE9S3b1+FhoaqR48e3ORugLp162rHjh36+OOP9fzzz+fb//HHH9vauZrg4GBFRUWV6BxxcXGaPHmy5s2bp5CQkBLnAYCyZLIW9Fd5OZeamipfX1+lpKSocuXKRscBALg4+iX74noCAByFvfuk5cuXKy4uTnPmzJGPj48eeeQR3XfffapUqZKuXLmin376SZ9++qmuXr2qKVOmqGbNmjp69KjWrVuns2fPqkaNGjp48KBq1aplh5+u7NHHAwAcRWn2SVlZWfrvf/+r5cuXKzo6WtnZ2TKZTKpZs6Yef/xxDR8+vFzeNOeo/Xx6erqaNm2ab012ScrMzFSzZs2UlZWlH374ganKi+HIkSPq168fo9DthOsJ2EdR+6Tbmi4eAAAAAAAYo0OHDpo4caK6dOmiVatWFTh97D//+U/97W9/06JFi7R3716NGTNGs2fPVr9+/fTNN99o3rx5mj9/ftmHh8typPVay8NarY50PSXnv6ZcTzgiDw8P9e/fX/3799fFixf14Ycfavny5Tp06JDmzp2refPmMZ18GfL29lbXrl21adMmNWvWTMOHD9eAAQP08ccfa/ny5crKylLXrl353QUAF8RIdge6Kw4A4Jrol+yL6wkAcBT27pMeffRRffrpp/rtt99u+oF6cnKy6tSpo759+2rlypWSpN9++01169ZV/fr1FRMTU+IsRqCPd043RlQ5gvIwqsuRrqfk/NeU64niMqJP+umnnxQZGakVK1bo/PnzMplM8vT0LDfTyTt6Pz9mzBht2rQp3/auXbtq0aJFBiQqHxh5bV9cT8A+7D6S/f333y9xqGHDhpX4HAAAwL7o4wEAcA6bNm1S48aNbzlizd/fX40bN9bmzZtt22rXrq1GjRopISGhlFMCeTnSeq3lYa1WR7qeN/I4M64nnMmf//xnvfnmm5o7d67eeOMNvfzyy8rMzNSaNWu0du1a1apVS6NHj9bYsWPl6+trdNxyZ9GiRUpPT9fcuXN18uRJ1a1bV1OmTGEEOwC4sCIX2UNDQ0t0J5zJZOIDeAAAHBB9PAAAziE1NVWXLl0qUttLly4pNTU1zzaz2ezUI9zgnLy9ve02kiokJMTlR2VxPe2L6wlnkpycrFWrVikyMlLff/+9rFarPDw81KtXL507d0579uzRq6++qnfeeUdfffWV/vSnPxkdudzx9vbWK6+8YnQMAICDKHKRPSgoqNA/xk+ePCmz2ayaNWvaLRgAACgb9PEAADiHBg0a6PDhw/r888/Vu3fvQtt9/vnnio+P13333Zdne3x8vKpXr17aMQEALsyR1rkvD2vc5+Tk6Msvv9Ty5cv1+eefKysrS1arVffee69GjBihYcOG2fr2n3/+WS+++KL++9//asKECfr6668NTg8AQPlW5CL7iRMnCt3n5uamli1batu2bfbIBAAAyhB9PAAAzuGZZ57RmDFjNGjQIM2YMUOhoaF5boQ7d+6cIiMjFRYWJpPJpGeeeca279ChQ0pJSVGXLl2MiA4AcBHx8fEOs869M69J/MMPP2j58uVauXKlLl68KKvVqsqVK2v48OEaOXKkWrdune+Ye++9V1FRUapXr5727NljQOry7+zZs+rfv79SUlLk6+urdevWMSgBAFxYkYvsAAAAAADAOE8//bT27dunZcuW6aWXXtJLL72kqlWrqlKlSkpLS9PFixclSVarVaNGjdLo0aNtx27dulUdO3ZkiZciYBQmABRfSde5Z417qWnTpvrpp59ktVplMpnUoUMHjRw5UgMGDLhln+Dm5qZ69erp119/LaO0rqNJkybKyMiwPb948aI6duwoLy8vHTp0yMBkAACjUGQHAAAAAMBJLF26VL169dKbb76pvXv36uLFi7biupubm1q3bq2JEyeqf//+eY4bN26cxo0bZ0Rkp8MoTAAoPnutc+/Ka9z/+OOPCgwM1LBhwzRy5EjVq1fvto6fNm2aRowYUUrpXNPvC+x16tTRpEmT9MYbb+jXX39VRkaGmjRpQqEdAFwQRXYAAAAAAJzIgAEDNGDAAKWlpen48eO6evWqfHx8VL9+fVWsWNHoeE6PUZgAACNt2LBB3bt3l8lkKtbxPXr0sHMi13b27FlbgX3Pnj3y8/OTJPXq1UuXL19W69atlZGRobNnzzJ1PAC4GIrsAAAAAAA4oYoVK6pp06ZGxyh3GIUJADBSq1atil1gh/3dmB2oTp06tgL7DX5+fgoICFBiYqL69++vHTt2GJAQQGFYBgqljSI7AAAAAABOKD09XXFxcbpy5YoqVaqkkJAQPrgBAMDJ1axZUz169NDQoUPVp08f3XHHHUZHcmkpKSmSpEmTJhW4f+LEiZo0aZKtHQDHwTJQKG0U2QEAAAAAcCJfffWVwsPDtXPnTuXk5Ni2u7u76y9/+YteeOEFde/e3cCEAACguKxWqz7//HN98cUXuuOOO9SnTx8NHjxYvXr1UoUKfJxf1nx9fXXx4kW98cYb6tWrV7798+fPt7UD4FhKugyUZL+loFgGqnwqcq+8bdu2m+5PSUm5ZZsOHToU9eUAAEAZoY8HAMB5vPrqqwoLC5PVapUkeXp6qnr16rpw4YIyMzO1detWffvtt3r55Zf16quvGhsWAADctnPnzmnt2rVatWqVvvvuO61atUofffSR/Pz8NGDAAA0ZMkSdOnUyOqbLWLdunTp27Khff/1Vly9fzjNl/OXLl5WYmGhrB8Cx2GsZKImloFCwIhfZO3XqVOhaMCaTSYcPH1bnzp0LPd5kMik7O/v2EwIAgFJFHw8AgHOIjo7WP/7xD7m7u2v06NEaN26cGjRoYNsfGxurhQsX6r333lNYWJjatGmjHj16GJgYAADcLn9/fz311FN66qmndObMGX300UdatWqV9u/fr4iICC1ZskS1atXS4MGDNXjwYLVo0cLoyOVazZo15eXlpYyMDLVu3VoBAQGaOHGi5s+fbyuwe3l5qWbNmgYnBQCUtduaX+bGnfLFUZJjAQBA6aKPBwDA8b311lsymUz6z3/+o8cffzzf/gYNGujtt9/WAw88oGHDhmnhwoUU2QEAtyUxMVHJycmGvX5cXFyer0by9/dXQECAoRlq1aqlCRMmaMKECYqPj9fKlSu1atUqHT16VP/85z/1z3/+U/Xr19exY8cMzVneHTp0SE2aNFFGRoYSExPzrM/u5eWlQ4cOGZgOAGCUIhfZc3NzSzMHAAAwCH08AADOYd++fapTp06BBfbfe+yxx/TSSy9p7969ZZQMAFAeJCYmqmfPXrJYMoyOosmTJxsdQWazl6KjNxheaL8hODhY06dP1/Tp0/Xjjz/qhRdeUHR0tI4fP250NJdw6NAhnT17Vv3791dKSop8fX21bt06RrADgAu7rZHsAAAAAADAGFeuXFG9evWK1PbOO+/UTz/9VMqJAADlSXJysiyWDJmb9ZVbxapGxzFUblqSLAfWKzk52WGK7JIUHx+vVatW2Uazo2zVrFlTO3bsMDoGAMBBUGQHAAAAAMAJBAQEKCYmRlevXpWPj0+h7a5evaqjR4+qVq1aZZgOAFBeuFWsKnc/+hBHcfbsWa1evVqrVq3Svn37JF1ftq1WrVr629/+pqFDhxqcEAAA10SRHQAAAAAAJ9CjRw+9++67evLJJxUZGSlPT898bTIzM/XEE0/o2rVr6tmzpwEpAQBASV2+fFkff/yxVq1apW3btik3N1dWq1V+fn7q16+fhg4dqs6dO8tkMhkdFQAAl0WRHQAAAAAAJ/Diiy9q9erVWr16tbZu3aonn3xS9957r2rUqKHz58/r559/VkREhM6dOydfX19NmzbN6MgAAOA29enTRxs3blRWVpasVqu8vb3Vu3dvDR06VL169SrwJjsAAFD2KLIDAACHMn36dL322muSpLCwME2fPt3gRAAAOIbAwEBt2LBBgwYN0unTpzVr1qx8baxWq4KCgrRmzRoFBgYakBIAAJTE559/rgoVKqh79+4aOnSo/vrXv6pixYpGxwIAAH9AkR0AADiMo0ePat68eUbHAADAYbVu3VoxMTFauXKlNm7cqF9++UVpaWmqWLGiGjZsqB49emjIkCFKSEjQjz/+qPvuu8/oyAAA4Db861//0t/+9jdVq1bN6CgAAOAmKLIDAACHYLVaNXr0aHl4eOgvf/mLNm/ebHQkAAAckre3t0aNGqVRo0YV2qZjx45KTk5WdnZ2GSYDAAAl9eyzzxodAQAAFAFFdgAA4BCWLl2q7777TnPmzNHPP/9sdBw4kZycHO3fv18XLlxQ9erV1aJFC7m7uxsdC7DhPQqjWK1WoyMAAAA4jPT0dMXHxxsdwyY4OFje3t5Gx4AdJSYmKjk52bDXj4uLy/PVSP7+/goICDA6BuyIf0Pzo8gOAAAMd+HCBU2dOlX33nuvJkyYoCeffNLoSHASGzdu1OzZs/Xbb7/ZttWuXVsvvPCCunfvbmAy4DreowAAACiOhIQErV69WocOHdKlS5eUlZVVYDuTyaRNmzaVcTrnFB8fr379+hkdwyYqKkqNGzc2OgbsJDExUT169VJmRobRUTR58mSjI8jTy0tfbdhAob0c4d/Q/CiyAwAAw02YMEGXLl1SVFSUPDw8jI4DJ7Fx40aNHTtWnTp10vz589WgQQPFxsbqnXfe0dixY/XWW29RxISheI8CAACgOObNm6eXXnpJ2dnZMplMkvLOUPP7bTe+x60FBwcrKiqqROeIi4vT5MmTNW/ePIWEhJQ4D8qP5ORkZWZk6Fr//sqtVs3oOIZyu3hRWrdOycnJFNnLEf4Nza9ERXZ3d3d16tSJO+UAAChnyrKP37Rpk1asWKHHHntMHTt2LPXXQ/mQk5Oj2bNnq1OnTlq0aJHc3NwkSU2bNtWiRYs0ZswYzZkzR127dmVabhiC9ygAAACK48svv9TUqVNVq1YthYWFacGCBTpy5Ii+/vprnT59WocOHdLSpUtt/7953333GR3ZaXh7e9tt1GNISIjhIyjhmHKrVVMuhWWUQ/wbml+JiuxWqzXfGm9jx47VkSNHKLwDAODEyqqPz8jI0NNPPy1fX1+98cYbxTqHxWKRxWKxPU9NTbVXvEKxBpHx9u/fr99++03z58+3FS9vcHNz0+jRozV48GDt379frVu3NiglXBnvUQAASp/Ra99KrH8L+/vXv/4lk8mkNWvWqF27dlq2bJkkqWvXrrY206dPV//+/fXyyy9r3759RkUFAMClFbnI/sQTT6ht27Zq06aN7rnnnkLbHTx4UDt37rRLOAAAUPqM7ONnzZql48eP6+2339add95ZrHOEh4dr5syZds11K6xBZLwLFy5Ikho0aFDg/hvbb7QDyhrvUbg6q9WqHTt2aP369fruu+8UExOja9euqVq1amrTpo2ee+45de7c2eiYAJxYYmKievXsqYzf3XBrJEdY/9bLbNaG6GgK7U7u+++/V61atdSuXbtC21StWlWrVq1S3bp1NXPmTH344YdlmBAAAEi3UWT/z3/+Y7trztfXVw888ICk6yO5srOzVaECy7sDAOCMjOrjjx49qnnz5qlZs2Z65plnin2eadOmaeLEibbnqampCgwMtEfEQrEGkfGqV68uSYqNjVXTpk3z7Y+Njc3TDihrvEdhD++//36xj7UYXHTavHmzHnzwQUnXZ2+oX7++fHx8FBsbq6ioKEVFRWn69OkKCwszNCcA55WcnKwMi0UvtHVXkC9rUp9KsWr2Tgvr35YDqampatKkie25l5eXbXvlypVt22vVqqU//elP2rJlS7FfKyEhQd9884327t2rvXv36siRI8rJyVFYWJimT59+02N37dql2bNna+fOnUpLS1O9evU0ZMgQTZ482ZYZAIDyrMifmsfFxWnnzp3auXOnduzYoY0bN8pkMmnv3r3y9fVVu3bt1LlzZyUlJZVmXgAAYGdG9fFjxoxRdna2Fi9enG8q5dthNptlNpvtmOzWWIPIeC1atFDt2rX1zjvv5FnvWpJyc3P17rvvqk6dOmrRooWBKeHKeI/CHkJDQ2UyFa9wZLVai32sPVitVtWvX18TJ07U4MGD5e/vL0nKzMzUq6++qvDwcM2aNUutW7dW7969DcsJwPkF+ZrUoErx/54oP3KNDgA7qVGjRp5l0GrUqCFJOnbsmFq2bJmnbVpaWon+Vl+4cKEWLlx428etWLFCw4cPV05OjmrXrq3AwEAdPnxYM2bM0GeffaatW7fqjjvuKHYuAACcQZGL7PXq1VO9evX06KOPSpKuXLkiX19fBQQEqH79+tq2bZu++eYbSZLJZFKnTp3Utm1btWvXTm3atFGVKlVK5ycAAAAlYlQff/DgQZlMJvXp0yffvpSUFEnSnDlz9PbbbyswMJB15pCHu7u7XnjhBY0dO1ZjxozR6NGj1aBBA8XGxurdd9/V1q1b9dZbb8nd3d3oqHBRvEdhD0FBQYYWykuiVatWOnr0aL4ZcTw9PfX666/rhx9+0IYNGxQREUGRHQCA3wkJCdGBAwdsz1u3bq1Vq1Zp8eLFeYrsmzZt0vHjx1WvXr1iv1a1atXUu3dvtWrVSi1bttSSJUu0bt26mx5z4sQJjRo1Sjk5OZo7d64mTZokk8mkkydPqkePHtq3b5+mTJmit99+u9i5AABwBsWe/7VSpUqSpIYNG2rz5s3KyMjQ9u3b9fTTTyshIUG7d+/Wtm3bbB8I3H333fr555/tkxoAAJSasuzjc3JydO7cuUL3p6WlKS0tjanmUKDu3bvrrbfe0uzZszV48GDb9jp16uitt95S9+7dDUwH8B5FyZ04ccLoCMX2++lsC9KtWzdt2LBBv/zySxklAgDAOfTs2VPbtm3Tvn371LJlSw0dOlSvvPKKli9frl9++UVt2rTRuXPntGbNGplMJj3++OPFfq0/Tgn/0Ucf3fKYefPmyWKxqHv37po8ebJte926dfWf//xH7dq103vvvaeXX35Zd955Z7GzAQDg6IpcZB8wYIDatm2rNm3aqHnz5vL09Myz38vLSw8++KBq1aqlhIQEpaam6vvvv9fu3bu1c+dO7d692+7hAQBAyRnVx1++fLnQfaGhoVq+fHmR1oGDa+vevbu6du2q/fv368KFC6pevbpatGjB6GA4DN6jQMEyMjIkXV+CBY4tMTFRycnJhmaIi4vL89Uo/v7+rHUNoNQNGjRIx48f16VLlyRdH22+evVqDR482LbU2w0DBgwo07+ZrVarPvnkE0nSqFGj8u1v27atGjVqpJiYGK1fv15PPfVUmWUDAKCsFbnIHhUVZetAPT09df/990uSUlNTdfnyZfn5+eVp7+npqTZt2qhNmzaaMGGC/RIDAAC7oo+Hs3N3d1fr1q2NjgEUivcokJfVatXatWslSe3atTM4DW4mMTFRPXv2lMViMTqKJOUZMWkEs9ms6OjoEhXauWkhL25cAPKrV6+eIiIi8mzr3r27EhIStGHDBp04cULe3t5q3769mjVrVqbZTp06pTNnzkgqvA9v166dYmJitGfPHorscE3p6TJdvWp0CmOlpxudACgTRS6yX7hwQbt27bI99u3bJ5PJpIMHD6patWpq2rSpunTpctMpXwEAgOOhjwcAAGUpIiJCBw8elKenp8aPH19oO4vFkqe4m5qaWgbp8HvJycmyWCzyeMBDbpXdjI5jqNzUXFl2W5ScnFzsonBiYqJ69OqlzP+bycFoRt+0IEmeXl76asMGCu1AEfj6+uZZgsgIsbGxkq7fdFTY721wcHCetoCrqfj++0ZHAFBGilxkr1q1qnr37q3evXtLur6GqoeHh4KCgtSkSRN9++23OnDggCTJZDKpefPmtlFubdq0sXWuAADAsdDHAwCAsnLgwAGNGzdOkjRr1iyFhIQU2jY8PFwzZ84sq2i4CbfKbnKr4tpFdntITk5WZkaGrvXvr9xq1YyOYzi3ixeldetKdOMCgLJ1YyYOPz8/mUymAtv4+/vnaVuY4txMx2wgeZV0NhCuZ17MruJ4eI/+jz3en1zP/7HX73uRi+x/dGMNweDgYK1fv165ubnat2+fhg0bpuPHj+vUqVM6ePCgFi9eLEmqXr26zp49W+LAAACgdDlCHx8ZGanIyEi7nhMAABgrISFBvXv3VkZGhoYOHapJkybdtP20adM0ceJE2/PU1FQFBgaWdkyg1OVWq6ZcPsQHcAs//fST3nrrLX377bf67bffZLFYlJ2dbdv/7rvv6uTJk3rhhRdUuXLlMsmU8X8zcXh6ehbaxmw2S5LSbzFd9O3eTJeYmKiePXrKkskSJjeYPc2K/qp4y5iwJEx+9lgWBvaTmJioXj17KoP3qCTJy2zWhhK8P6//zveSxcKMSpJkNnspOrrksykVu8j+R25ubmrdurVq1Kih48eP68KFCzp27Jh2796tHTt2aPfu3fZ6KQAAUIbo4wEAQEmdPXtW3bp105kzZ/Twww8rMjKy0BFwN5jNZtsH9QCAsmPNTJfV4trrCVszjV1P+N///rcmTJiQp6j+x37TYrFozpw5aty4sR599NEyyeXl5SVJyszMLLTNjaKtt7f3Tc91uzfTJScny5JpUZOUJqqYU/F2YpdLae5pOuR7qNizgbAkTF72WBYG9pWcnKwMi0UvtHVXkO/N/24o706lWDV7Z8nen9d/5zNkbtZXbhWr2jmhc8lNS5LlwHq7/L7brchekLvvvlt33323hg8fXuxzWK1W7dixQ+vXr9d3332nmJgYXbt2TdWqVVObNm303HPPqXPnznZMDQAAbsUefTwAAHANly5dUrdu3RQXF6eOHTtq7dq18vDwMDoWAKAQGbtXGR3BpW3ZskVjx45VpUqV9Nprr6lPnz4aMmSIdu3alafdoEGDNH78eH3yySdlVmS/MRX85cuXZbVaC7xh7sZUxDfaFqa4N9NVzKko32zf2z4OBWNJGPtLGzZM1po1jY5hKNPZs3Zbmz7I16QGLv8ezbXbmdwqVpW7Xy27nc/VlajInpub/z+s1WotySnz2bx5sx588EFJ10fS1a9fXz4+PoqNjVVUVJSioqI0ffp0hYWF2fV1AQBwZWXRxwMAgPIvLS1NDz30kA4fPqyWLVvqs88+u+XINgAAXNmbb74pSVqxYoUefvhhSflHsUtSzZo1FRgYqJ9//rnMsjVo0EDS9dHqiYmJql27dr428fHxedoCLsfbW1YfH6NTGMrE/+/DRdj99o+3335bmzdvttv5rFar6tevr0WLFunixYs6duyYDhw4oKSkJE2bNk2SNGvWLH3++ed2e00AAJCfvft4AABQvlksFvXt21d79uxR48aNFR0drUqVKhkdCwAAh7Z7927VrFnTVmC/mVq1aum3334rg1TXBQUFqeb/jdDdsWNHgW1ubG/dunWZ5QIAwAh2L7I3bdpUHTt2tNv5WrVqpaNHj+qZZ57JM8WMp6enXn/9dfXq1UuSFBERYbfXBAAA+dm7jwcAAOVXTk6OBg8erM2bNyskJERff/21qlSpYnQsAAAcXlpamq2QfSuZmZnKyckp5UT/YzKZ9Ne//lWStHTp0nz7d+7cqZiYGHl4eKhPnz5llgsAACOU6prs9lC5cuWb7u/WrZs2bNigX375pYwSAQAAAACAm1mzZo0+/fRTSdeXfhs4cGCB7WrVqqW1a9fa9bUTExNt68EaIS4uLs9XI/n7+ysgIMDoGECpumKx6nIGS1tdsdjvGng9METuvnfa7XzOKCflnGFr09eqVatIfUhGRoZiYmJUr169Mkj1P5MnT9bSpUu1ceNGzZs3T5MmTZLJZNLJkyc1cuRISdITTzxR5BsFAABwVg5fZL+VjIwMSWJNNwAAAAAAHITFYrF9Hxsbq9jY2ALb1a1b166vm5iYqJ49esqSabl141I2efJkoyPI7GlW9FfRFNpRrk3dnCOp7EbyugKTp7dMZhdfT9jTuM+aO3furOXLl+s///mPrWhdkIULFyojI0M9evQo9mvt2LFDffv2tT1PS0uTJIWHh2vBggW27QcPHlRgYKAkqV69eoqIiNCIESM0ZcoULVy4UDVq1NDhw4eVlZWl5s2ba968ecXOBACAs3DqIrvVarXd8d6uXTuD0wAAAAAAAEkKDQ1VaGhomb9ucnKyLJkWNUlpooo5Fcv89R1JmnuaDvkeUnJyMkV2AHAiU6dO1cqVK/X3v/9d6enpGj58eJ79ly9f1ltvvaWwsDD5+PhowoQJxX6trKwsJSUl5dt+7do1Xbt2zfb8j1PSDxs2TPXr11d4eLh27typn3/+WcHBwRoyZIimTp0qLy+vYmcCAMBZOHWRPSIiQgcPHpSnp6fGjx9faDuLxZLnLvrU1NQySCelp6crPj6+TF7rVoKDg51+tL8jXU/J+a8p19O+uJ4AAACA46iYU1G+2b5GxwAA4Lbdfffdev/99zV8+HCNHTtWEyZMkLu7uyQpKChIZ86cUW5urjw9PfXhhx/aRpgXR6dOnWS1Fm+pgbZt2+qzzz4r9msDAODsnLbIfuDAAY0bN06SNGvWLIWEhBTaNjw8XDNnziyraDbx8fHq169fmb9uQaKiotS4cWOjY5SII11PyfmvKdfTvrieAAAAAAAAsIdBgwbpnnvu0auvvqoNGzbYlkz99ddf5eHhoV69eiksLExNmjQxOGnZyzJlyWIyflkYo2WZsuxyHmumVdaM4t1oUZ5YM7kGjuqKxarLLv4evWKx389vzUyX1XLVbudzRtbMdLudyymL7AkJCerdu7cyMjI0dOhQTZo06abtp02bpokTJ9qep6amlugOv6IKDg5WVFRUic4RFxenyZMna968eTe9kaAoWZydI13PG3mcGdfTvrieAAAAAIAiSU+X6aprf7gpSUq3zwecc7q4K9jfzS7ncmbxybn/tz49yos///nPWrdunbKysvTLL78oJSVFFStWVIMGDVx69sK9/nuNjlCuZG7NNDoCcFPX+zb6N3vJ2L3K6AjlitMV2c+ePatu3brpzJkzevjhhxUZGSmTyXTTY8xms8xmcxkl/B9vb2+7jSQNCQlx+VGpXE/74nraF9cTAAAAAFAUFd9/3+gI5Uols0l+Xjf/bNAVVDJzDcorDw8PPicCnIjbxYtGRzAc1wCuwqmK7JcuXVK3bt0UFxenjh07au3atfLw8DA6FgAAAAAAQLnFVLJMIwsARvP39zc6gsMxe5q5Lg7E399fnl5e0rp1RkdxCJ5eXrw/Ue45TZE9LS1NDz30kA4fPqyWLVvqs88+c+lpcQAAAAAAAMoCU8kCriU3LcnoCIYry2vwvh1mtxg2bJgdkji2gIAAoyM4nOivorkuDiQgIEBfbdig5ORkwzLYcznSkvL39+f9iXLPKYrsFotFffv21Z49e9S4cWNFR0erUqVKRscCAAAAAAAAgHLB399fZrOXLAfWGx3FIZjNZTMKMzQ09JbLod6MyWRyiSK7JO3atcvoCIqJidGIESO0bNkyNWrUyNAsVapUKfE5PDt5ys3PzQ5pnFvu5Vy73FQYEBDgEIXl8rQc6Zwu7gr2d+33aHxy7v+tTV9yXg8MkbvvnXY5l7PKSTlnt7XpHb7InpOTo8GDB2vz5s0KCQnR119/bZfOAwAAAAAAAChracOGyVqzptExDGc6e5b16R1MQECAoqMZhXlDWY3CDAoKKrTIfvLkSZnNZtXk3wxJ9ikql5Svr6/tqyPkKSmTp0kmr+Lf5FFemDy5Bo6qktkkPxd/j1Yy2+/nN3l6y2T2sdv5nJHJ036zpDt8kX3NmjX69NNPJUlubm4aOHBgge1q1aqltWvXlmEyAAAAAAAA4DZ5e8vq49ofbkqSiWUgHRKjMMveiRMnCt3n5uamli1batu2bWUXCAAAFInDF9ktFovt+9jYWMXGxhbYrm7dumUVCQAAAAAAwGUwlaz9ppEFAAAAUD44fJE9NDRUoaGhRscAAAAAAABwSUwlyzSyAAAAAPJy7duQAQAAAAAAAAAAAAC4DQ4/kh0AAAAAAOB2ZJmyZDFZbt2wHMsyZRkdAQAAAADKLYrsAAAAAACgXNnrv9foCAAAAACAcozp4gEAAAAAAAAAAAAAKCJGsgMAAAAAAAAAYIBt27bddH9KSsot23To0MGekQAAQBFQZAcAAAAAAAAAwACdOnWSyWQqcJ/JZNLhw4fVuXPnQo83mUzKzs4urXgAAKAQFNkBAAAAAEC50iq5lSplVzI6hqGuVLjC2vQA4CSsVqshx7qa9PR0xcfHl+gccXFxeb6WRHBwsLy9vUt8npLITc019PUdBdfBcZ1KsUpy7f8+16+BfeSmJdntXM7KnteAIjsAAAAAAChXPKweMlvNRscwVIY1w+gIQJngw/fr7PkBPMpWbi7v37ISHx+vfv362eVckydPLvE5oqKi1LhxYzukuX3+/v4ym82y7LYY8vqOyGw2y9/f3+gY+D/+/v7yMps1eyfvUUnyKuH78/rvvJcsB9bbMZXzMpu97PL7TpEdAAAAAAAAgFPhw/f8SvoBPFDeBQcHKyoqyugYNsHBwYa9dkBAgKKjo5WcnGxYBun6jACTJ0/WvHnzFBISYmgWf39/BQQEGJoB/xMQEKANvEdtSvr+vP47v4Hr+X/s9ftOkR0AAAAAAACAU+HD9/woEAE35+3tbdjIcUcUEBDgMP9mhISE8N8G+fAetS+up/1RZAcAAAAAAADKiNvFi0ZHcAj2uA58WAwAAACjUGQHAAAAAAAASpm/v788vbykdeuMjuIwPL3ssx4mAAAAUNYosgMAAAAAAAClLCAgQF9tYC3M32N6cwAAADgriuwAAAAAAABAGWB6cwAAAKB8oMgOAAAAAACAQuWm5hodwXBcAwAAAAC/R5EdAAAAAAAA+fj7+8tsNsuy22J0FIdgNptZPxwAXFhCQoL69u0ri8Uis9ms9evXq169ekbHAgAYhCI7AAAAAAAA8gkICFB0dDRriP8f1g8HANd1zz33KDf3f7OaWCwW9ezZU25ubjp69KiByQAARqHIDgAAXE5iYqJDfFj8+69GMvoD4/T0dMXHxxv2+n8UHBwsb29vo2OUiCNdU66n/ZWHawrAebCGOADA1f2+wF6xYkWNGzdOCxcuVFpamnJzc3XPPfdQaAcAF0SRHQAAuJTExET17NFTlkzHmPZ08uTJRkeQ2dOs6K+iDfsAPT4+Xv369TPktQsSFRXl9B/gO9I15XraX3m4pgAAACicu7u7OnXqpE2bNhkdxeUlJCTYCuzfffedatSoIUkaNmyYzp8/r/bt2ys3N1cJCQlMHQ8ALoYiOwAAcCnJycmyZFrUJKWJKuZUNDqO4dLc03TI95CSk5MNK7IHBwcrKiqqROew5zSywcHBJTreEZT0mnI98+I9CgAAgLJktVpltVrzbBs7dqyOHDlC4b2M9e3bV9L1Eew3Cuw31KhRQz4+Prp69ar69u2rH3/80YiIAAphj1np7DUTZXmYkc6RrqfkGNeUIjsAAHBJFXMqyjfb1+gYkOTt7W23UblMI3udva4p1/M63qMAAAAoLU888YTatm2rNm3a6J577im03cGDB7Vz584yTAbp+trrkjRu3LgC9z/77LOaO3eurR0Ax2HPWelKOhNleZiRzpGup+QY15QiOwAAAAAAKFfS3NOMjmA4rgEAOIf//Oc/WrZsmSTJ19dXDzzwgKTrIwazs7NVoQIf4RvJbDbLYrFo4cKFGjZsWL79//73v23tADgWe8xKZy/lYUY6R7qekmNcU3poAAAAAABQLvj7+8vsadYh30NGR3EIZk+z/P39jY4BALiJuLg47dy5Uzt37tSOHTu0ceNGmUwm7d27V76+vmrXrp06d+6spKQko6O6pPXr16tnz55KS0vT+fPn80wZf/78eV29etXWDoBjseesdOB6FoQiOwAAAAAAKBcCAgIU/VW0kpOTDcsQFxenyZMna968eQoJCTEsh3T9poOAgABDMwAAbq5evXqqV6+eHn30UUnSlStX5Ovrq4CAANWvX1/btm3TN998I0kymUzq1KmT2rZtq3bt2qlNmzaqUqWKkfHLvXr16snNzU25ublq3769fHx89Oyzz+rf//63rcDu5uamevXqGZwUAFDWKLIDAAAAAIByIyAgwCEKyyEhIYz0AADctkqVKkmSGjZsqM2bNysjI0Pbt2/X008/rYSEBO3evVvbtm2TyWSSJN199936+eefjYxc7h09elT33HOPcnNzdfXqVc2dO9e2z83NTUePHjUwHQDAKG5GBwAAAAAAAAAAwBUNGDBA8+fP165du5SZmZlvv5eXlx588EHVqlVLkpSamqodO3bojTfeUL9+/XTlypWyjuySjh49qujoaNva62azWdHR0RTYAcCFMZIdAAAAAAAAAAADREVF6ZNPPpEkeXp66v7775d0vZh++fJl+fn55Wnv6empNm3aqE2bNpowYUJZx3Vp9erV048//mh0DACAg6DIDgAAAAAAAACAAS5cuKBdu3bZHvv27ZPJZNLBgwdVrVo1NW3aVF26dNG5c+eMjgoAAH6HIjsAAAAAAAAAAAaoWrWqevfurd69e0uScnJy5OHhoaCgIDVp0kTffvutDhw4IEkymUxq3ry5bSR7mzZtFBwcbGR8AABcFkV2AAAAAAAAAAAcgLu7uyQpODhY69evV25urvbt26dhw4bp+PHjOnXqlA4ePKjFixdLkqpXr66zZ88aGdllZGZmauXKlTp16pSCgoI0dOhQeXp6Gh0LAGAQiuwAAAAAAAAAADggNzc3tW7dWjVq1NDx48d14cIFHTt2TLt379aOHTu0e/duoyO6hLlz5yoyMlI5OTl5toWGhmrKlCkGJgMAGIUiOwAAAAAAAAAATuLuu+/W3XffreHDhxsdxSXMnTtXS5cuVdWqVTV+/Hh17txZW7Zs0YIFC7R06VJJotAOAC7IzegAAAAAAAAAAADgutzcXG3evDnPNqvValAa15aZmanIyEhVrVpV27Zt06BBg1S9enUNGjRI27ZtU9WqVRUZGanMzEyjowIAyhgj2QEAAAAAAAAAcGBvv/22UlJSjI7hclauXKmcnByNHz9eFSrkLadUqFBB48aN04wZM7Ry5UqFhoYaExLlQnp6uuLj40t0jri4uDxfSyI4OFje3t4lPg9QnlFkBwAAAAAAAADAgTVt2tToCC7p1KlTkqTOnTsXuL9Tp0552gHFFR8fr379+tnlXJMnTy7xOaKiotS4cWM7pAHKL4rsAAAAAAAAAAAAfxAUFCRJ2rJliwYNGpRv/9atW/O0A4orODhYUVFRRsewCQ4ONjoC4PAosgMAAAAAAAAAAPzB0KFDNXfuXC1YsED9+vXLM2V8dna2Fi5cKHd3dw0dOtTAlCgPvL29GTkOOBk3owMAAAAAAAAAAAA4Gk9PT4WGhiopKUkdOnTQ6tWrde7cOa1evVodOnRQUlKSQkND5enpaXRUAEAZYyQ7AAAAAAAAAABAAaZMmSJJioyM1IwZM2zb3d3dNWrUKNt+AIBrocgOAAAAAAAAAABQiClTpmj8+PFauXKlTp06paCgIA0dOpQR7ADgwpguHgAAAAAAlJovv/xSDz74oKpUqSIfHx81a9ZM//rXv5Sbm2t0NAAAUEyhoaEymUw3fWRkZBgd065uTB0/Y8YMpogHADCSHQAAAAAAlI7Zs2dr2rRpkqTg4GBVrFhRhw4d0tixY/XNN9/ok08+kZsb9/8DAOCsGjRooBo1ahS4jz4eAFCeUWQHAAAAAAB2t2vXLr344otyc3PThx9+qCFDhkiSDh06pB49eui///2v5s+fr0mTJhmcFAAAFNeLL76o0NBQo2MALi8nJ0f79+/XhQsXVL16dbVo0ULu7u5GxwLKNW4lAwAAAAAAdjdr1ixZrVY98cQTtgK7JDVp0kTz58+XdH2ke1ZWllERAQAAAKe3ceNGdevWTcOGDdPzzz+vYcOGqVu3btq4caPR0YByjSI7AAAAAACwq9TUVH3zzTeSpFGjRuXbP3DgQFWuXFlJSUnasmVLWccDAAAAyoWNGzdq7NixatiwoVavXq0DBw5o9erVatiwocaOHUuhHShFFNkBAAAAAIBdHTx4UJmZmfLy8lKzZs3y7ffw8FDLli0lSXv27CnreAAAwE4+/vhjPfLII+rSpYsGDx6sf/3rX0pJSTE6FuAScnJyNHv2bHXq1EmLFi1S06ZN5ePjo6ZNm2rRokXq1KmT5syZo5ycHKOjAuUSa7IDAAAAAAC7io2NlSQFBQWpQoWCP3oIDg7Wpk2bbG3/yGKxyGKx2J6npqbaPygAl5aenq74+PgSnSMuLi7P15IIDg6Wt7d3ic9jpJJeU66n8/niiy/yPF+9erVeeeUVrVy5Uj179iz0OPp558e/ocbbv3+/fvvtN82fP19ubnnH1Lq5uWn06NEaPHiw9u/fr9atWxuUEii/KLIDAAAAAAC7Sk5OliT5+/sX2ubGvhtt/yg8PFwzZ860fzgA+D/x8fHq16+fXc41efLkEp8jKipKjRs3tkMa49jrmnI9HV9ISIhef/11Pfzww6pXr55MJpN27dqll19+WXv27NEjjzyi7du3q0WLFgUeTz/v/Pg31HgXLlyQJDVo0KDA/Te232gHwL4osgMAAAAAALvKyMiQJHl6ehbaxmw2S7o+Cqog06ZN08SJE23PU1NTFRgYaMeUAFxdcHCwoqKijI5hExwcbHSEEnOka1oerqcje/nll/Nt69atmzp27Kj27dtr7969mjp1qjZt2lTg8fTzzs+Rft8l1/ydr169uqTrs0g1bdo03/4bM0bdaAfAviiyAwAAAAAAu/Ly8pIkZWZmFtrmxhSxhU3raTabbYV4ACgN3t7eLjfqsbRxTeHp6amwsDD16NFDW7duVXJycoEz29DPOz9+343XokUL1a5dW++8844WLVqUZ8r43Nxcvfvuu6pTp06hM0oAKBm3WzcBAAAAAAAoultNBf/7fTebUh4AADifNm3aSLpe5Cvpmt0ACufu7q4XXnhBW7du1ZgxY3Tw4EGlpaXp4MGDGjNmjLZu3aqpU6fK3d3d6KhAucRIdgAAAAAAYFc31n88deqUsrOzVaFC/o8fbnzoXtgakgDyS09PL3HBKi4uLs/XkggODi50NgoArsvDw8P2fXZ2toFJgPKve/fueuuttzR79mwNHjzYtr1OnTp666231L17dwPTAeUbRXYAAAAAAGBX999/vzw8PJSRkaEDBw6oVatWefZnZWVp3759kqTWrVsbERFwSvHx8erXr59dzjV58uQSnyMqKoqpggHkc+TIEdv3derUMTAJ4Bq6d++url27av/+/bpw4YKqV6+uFi1aMIIdKGUU2QEAAAAAgF1VrlxZDz74oDZs2KClS5fmK7KvXbtWqampqlq1qjp16mRMSMAJBQcHKyoqyugYNsHBwUZHAOCA3nzzTUlSo0aNVLt2bYPTAK7B3d2dm1eBMkaRHQAAAAAA2N1LL72k6OhoLVmyRJ06ddKQIUMkSYcOHdLEiRMlSVOmTJGnp6eRMVHKHGl68/Iwtbm3tzcjxwEY7uuvv9bmzZv11FNPqV69erbtKSkpevnll7Vq1SpJ0owZM4yKCABAqaPIDgAAAAAA7K5du3YKCwvT9OnTNXToUE2fPl0VK1bU4cOHlZubq4cffljPP/+80TFRyhxpenOmNgcA+7h69apmz56t2bNnq3bt2goICFBWVpZ+/vlnZWZmymQyacaMGbYb7AAAKI8osgMAAAAAgFLx0ksvqUmTJvrnP/+p77//XmfPntWf//xnjRgxQs899xzrRLoAR5renKnNAcA+mjdvrpdeekm7du3S8ePHdfjwYVmtVtWuXVvt27fXmDFjmLYaAFDuUWQHAACGsVqt2rFjh9avX6/vvvtOMTExunbtmqpVq6Y2bdroueeeU+fOnY2OCQAASqB3797q3bu30TFgEKY3B4DyJzAwULNmzTI6BgAAhqLIDgAADLN582Y9+OCDkiQ3NzfVr19fPj4+io2NVVRUlKKiojR9+nSFhYUZnBQAAAAAAAAAgOvcjA4AAABcl9VqVf369bVo0SJdvHhRx44d04EDB5SUlKRp06ZJkmbNmqXPP//c4KQAAEeRk5OjPXv26PPPP9eePXuUk5NjdCQAAAAAAOBiGMkOAAAM06pVKx09elQVKuT9XxJPT0+9/vrr+uGHH7RhwwZFREQwzSwAQBs3btTs2bP122+/2bbVrl1bL7zwgrp3725gMgAAAAAA4EoosgMAAMNUrlz5pvu7deumDRs26JdffrH7a2eZsmQxWex+XmeTZcqyy3kuXbpkl/MUV0pKiu2r0VmqVKlS4nMY/TOUt+uJ8mHjxo0aO3asOnXqpPnz56tBgwaKjY3VO++8o7Fjx+qtt96i0A4AAAAAAMoERXYAAOCwMjIyJEne3t52P/de/712P6cra9OmjdERJEkjRowwOoKOHTtW4nNwPf/HHtcTzi8nJ0ezZ89Wp06dtGjRIrm5XV/5rGnTplq0aJHGjBmjOXPmqGvXrnJ3dzc4LQAAAAAAKO8osgMAAIdktVq1du1aSVK7du0KbWexWGSx/G9EempqaqlnA24mMTFRAQEBRscoN+xxPRMTE5WcnGynRMUTFxeX56tR/P39nfL9uX//fv3222+aP3++rcB+g5ubm0aPHq3Bgwdr//79at26tUEpAQAAAACAq6DIDgAAHFJERIQOHjwoT09PjR8/vtB24eHhmjlzZpHP6+/vb4d05YvZ01yi65KYmGjHNM6vZ8+eio6OLnYhk+uZV49evfTVhg0lup69evZUhsUxloeYPHmyoa/vZTZrQwnen0a5cOGCJKlBgwYF7r+x/UY7AAAAAACA0kSRHQAAOJwDBw5o3LhxkqRZs2YpJCSk0LbTpk3TxIkTbc9TU1MVGBhYaHtnKyyVheivSlZwM3qEsKOxWCxKTk4u9jXleuaVmZFR4uuZYbHohbbuCvI12TmdczmVYtXsnSV7fxqlevXqkqTY2Fg1bdo03/7Y2Ng87YCSSE9PV3x8fLGPt+fMFcHBwaWybA4AAAAAoGScosiekJCgb775Rnv37tXevXt15MgR5eTkKCwsTNOnTzc6HgAAsKOEhAT17t1bGRkZGjp0qCZNmnTT9mazWWaz+bZeY9euXSWJaBcxMTEaMWKEli1bpkaNGhmapUqVKnY5j2cnT7n5ud26YTmWezlXmVsz7XKutGHDZK1Z0y7nclams2dV8f337XKuIF+TGlRx7fenlGt0gGJr0aKFateurXfeeSfPmuySlJubq3fffVd16tRRixYtDEyJ8iI+Pl79+vUr8XnsMXNFVFSUGjduXOLzAAAAAADsyymK7AsXLtTChQuNjoH/396dR0dVpesffypTJWYijBIIQyBKCwiGoDIoURAV0AYFDWCj4HRvWrFlasHVg8MVGtqhUXEADRdQEAEFFKICoigIMop97RADCDKoYQoBMkD27w9+KQ0ZqJBTOTV8P2vVgpxz9q63Nid5snirzgEAwMMOHjyoG264QQcOHFDfvn01c+ZMORzWf/LUqqZyTcTGxrr+9IZ6rOAIc8gRHtifFHaEWfj6IyJkIiOtm88HOfj0Jv6/4OBgPfbYYxo5cqTS09P14IMPKikpSdnZ2Xrttde0evVqTZ06VcHBwXaXCj+QmJioRYsW2V2GpLO1AAAAAAC8j0802evXr69+/frpyiuvVOfOnTVjxgwtXLjQ7rIAAICFDh8+rBtuuEE5OTnq0aOH3n33XYWGhtpdFgDAS/Tu3VtTp07VpEmTlJaW5tretGlTTZ06Vb1797axOviTiIgIPj0OAAAAAKiSTzTZz70k/Lx582yqBAAAeEJ+fr769Omjb7/9Vp07d9bSpUu5/ygAoJzevXurZ8+e2rhxo3755Rc1aNBAKSkpfIIdAAAAAADUKp9osgMAAP9VWFio3//+91q/fr3atm2rzMxMRUdH210WAMBLBQcH66qrrrK7DAAAAAAAEMBoslfh8OHDdpegY8eOuf60sx4r7hXLev7KX+6962/sPke95fyUOEdRe86cOaO0tDStWrVKrVq10ieffML5BwAAAAAAAADwajTZq9ClSxe7S3AZPny4rc+flZVV4zlYz19ZsZ6wnreco3afnxLnKGrP/Pnz9f7770uSgoKCNGjQoAqPa9y4sd59991arAwAAAAAAAAAgIoFRJO9sLBQhYWFrq/z8vJsrMY37d+/X/Hx8XaX4TesWM/9+/fryJEjFlV0YXJycsr8aae4uDjOUQt5wzlaWFioH3/8sUY1WKVp06ZyOp0XPJ7zs3K/zefs7GxlZ2dXeFzz5s1rqyQAAAAAAAAAAKoUEE32iRMn6oknnqjWmP3793uoGt900403KfOjzAtuErGeZd10003KzKzZet54880qKiiwuLILM3bsWLtLUFh4uD5avpxz1CI333STltfwHL3ppptVWOgd56jdnM5wZWZe+Pnpz+655x7dc889dpcBAAAAAAAAAIDbAqLJPn78eI0aNcr1dV5enhISEqocY/cnhL1NYVGhjhw5csENItazrMLCmq9nUUGBTt5+u0rq17e4Ot8TlJsrLVzIOWqhAgvO0cLCAjmTf6+gqHoWV+dbSvIPqXDz4hqtJwAAAAAAAAAA8B4B0WR3Op0XfJnfK49cqejT0RZX5FuOhxzXhrgNlswVlhqmoDpBlszlq0qOlqhodZE1c9WvrxKadpb6x/XBSowL7HN055ES/XnVGUvmCoqqp+A6jS2ZCwAAAAAAAAAAwBsERJO9JkJNqJzmwu/D6w8KjHWXe3aEOeQId1g2ny9yhAX26/d20U6H6gT4ORrtDOzXDwAAAAAAAAAAUJXA/rgmAAAAAAAAAAAAAADVQJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNPtFk//LLL1W/fn3XY968eZKkiRMnltm+d+9emysFAAAAAAAAAAAAAPizELsLcEdxcbEOHTpUbvvJkyd18uRJ19dnzpypzbIAAAAAAAAAAAAAAAHGJ5rsqampMsbYXQYAAAAAAAAAAAAAIMD5xOXiAQAAAAAAAAAAAADwBjTZAQAAAAAAAAAAAABwE012AAAAAAAAAAAAAADcRJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN9FkBwAAAAAAAAAAAADATTTZAQAAAAAAAAAAAABwE012AAAAAAAAAAAAAADcRJMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAVMuyZcvUq1cv1a1bV5GRkUpOTtaLL76okpISu0sDAMDjQuwuAAAAAAA87Xih0dECY3cZtjpeaM3rP3z4sCXz+Iu6devaXYLXOX78uBYvXqzMzExt2LBBe/fulcPhUMuWLdWnTx+NGjVKjRs3trtMAABQA5MmTdL48eMlSYmJiYqKitK2bds0cuRIrVixQu+9956CgviMHwDAf9FkBwAAAOD3/rzqjKQzdpfhF7p06WJ3CV4lKyvL7hK8Tnp6uubMmSNJio6OVps2bXTixAllZWXp//7v/5SRkaHly5erc+fONlcKAAAuxLp16zRhwgQFBQVpzpw5Gjx4sCRp27ZtuvHGG7VkyRI999xzGjNmjM2VAgDgOTTZAQAAqunUqVPauXNnjebIyckp82dNJCYmKiIiosbz1FRJHpcEtHINgnJzLZvLV7EG8AU///yzGjZsaHcZXqd///566KGH1KNHD4WEnP2vh5ycHA0ZMkQbNmzQ7bffrqysLK/ILwAAUD1PP/20jDG6//77XQ12SerQoYOee+45DR06VJMmTdIjjzyi0NBQGysFAMBzaLIDAABU086dO3XbbbdZMtfYsWNrPMeiRYvUtm1bC6q5MHFxcXI6nSr8qtC2GryJ0+lUXFzcBY+Pi4tTWHi4tHChhVX5rrDw8BqvJ34VXsPzE+W98847evjhh+0uw6v861//qvAy+q1atdKCBQvUunVr7d27V5mZmRowYIANFQIAgAuVl5enFStWSJLuvffecvsHDRqk//7v/9ahQ4f06aefqnfv3rVdIgAAtYImOwAAQDUlJiZq0aJFdpfhkpiYaOvzx8fHKzMzU0eOHLGthpycHI0dO1ZTpkxRq1atbKtDOtvUjY+Pv+Dx8fHx+mj5ctbz/7NiPfGr5ZmZrInF7rzzTrtL8DpV3ac+ISFBbdq00TfffKMdO3bUYlUAAMAKW7ZsUVFRkcLDw5WcnFxuf2hoqDp37qyVK1dq/fr1NNkBAH6LJjsAAEA1RURE2PrJcW8UHx/vFY27Vq1a+cW/DetprXXr1tldgv7zn/9o+PDhysjIUJs2bWyro6rmp7u8YT29iRVrGmgKCgokiUvFAwDgg7KzsyVJzZo1c90S5lyJiYlauXKl61gAAPwRTXYAAAAAfs0bmqCxsbGuP72hnprw9fphr23btrk+wd6tWzebqwEAANVVesWtqm5BVLqvqqtzFRYWqrDw11uO5eXlWVQhAAC1I8juAgAAAAAAgP87c+aM6/71119/vTp16lTl8YWFhcrLyyvzAAAA9iq9Ik1YWFilxzidTknSqVOnKj1m4sSJio2NdT0SEhKsLRQAAA+jyQ4AAAAAADxuwoQJWrNmjaKjo/X666+f93j+8x0AAO8THh4uSSoqKqr0mNJPqFd1a5jx48fr2LFjrsfevXutLRQAAA/jcvEAAAAAAECSNG7cOC1ZsqTa4zIyMtSlS5dK97/66quaPHmyQkJCNHfuXLVq1eq8c44fP16jRo1yfZ2Xl0ejHQAAm7lzKXh3LinvdDpdn3gHAMAX0WQHAAAAAACSpP379ysrK6va406cOFHpvnfeeUd//OMf5XA4NHPmTPXt29etOfnPdwAAvE9SUpIkac+ePTp9+rRCQsq3GHbu3FnmWAAA/BGXiwcAAAAAAJKkOXPmyBhT7UevXr0qnG/ZsmX6wx/+oJKSEr300ksaOnRoLb8iAABgpSuuuEKhoaEqKCjQ5s2by+0vLi7W119/LUm66qqrars8AABqDU12AAAAAABguc8//1wDBw5UcXGxJk6cqPT0dLtLAgAANRQTE+N6c90bb7xRbv+7776rvLw81atXT6mpqbVcHQAAtYcmOwAAAAAAsNSmTZt0yy236NSpUxo/frwee+wxu0sCAAAWefzxx+VwODRjxgzNnTvXtX3btm0aNWqUJGncuHEKCwuzq0QAADyOJjsAAAAAALBMVlaWbrrpJuXl5Sk9PV3PPPOM3SUBAAALdevWTU899ZRKSko0ZMgQtWrVSh06dFBycrJ++ukn9e3bV6NHj7a7TAAAPCrE7gIAAAAAAID/GDlypHJzc+VwOLR161Z17969wuNGjBihESNG1HJ1AADACo8//rg6dOig559/Xps2bdLBgwfVvn17DR8+XA899JCCg4PtLhEAAI+iyQ4AAAAAACxTWFgoSTLGaO3atZUeV3o/VwAA4Jv69eunfv362V0GAAC2oMkOAAAAAAAss3r1artLAAAAAADAo7gnOwAAAAAAAAAAAAAAbqLJDgAAAAAAAAAAAACAm2iyAwAAAAAAAAAAAADgJprsAAAAAAAAAAAAAAC4iSY7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuIkmOwAAAAAAAAAAAAAAbqLJDgAAAAAAAAAAAACAm2iyAwAAAAAAAAAAAADgJprsAAAAAAAAAAAAAAC4iSY7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuMmnmuzLli1Tr169VLduXUVGRio5OVkvvviiSkpK7C4NAADUABkPAAAAAAAAAPAVPtNknzRpkvr27auVK1cqLi5OrVu31rZt2zRy5EgNGDCA/4QHAMBHkfEAAAAAAAAAAF/iE032devWacKECQoKCtLbb7+tnJwcbdu2TZs3b1ajRo20ZMkSPffcc3aXCQAAqomMBwAAAAAAAAD4Gp9osj/99NMyxui+++7T4MGDXds7dOjg+o/3SZMmqbi42K4SAQDABQjUjM/Pz1d6erpuueUWpaenKz8/3+6SAMBnnDlzRuvXr9cHH3yg9evX68yZM3aXBAAAAAAAAozXN9nz8vK0YsUKSdK9995bbv+gQYMUExOjQ4cO6dNPP63t8gAAwAUK1IwfOHCgOnXqpJUrV2rHjh1auXKlOnXqpIEDB9pdGgB4vY8//lg33HCDhg0bptGjR2vYsGG64YYb9PHHH9tdGgAAAAAACCAhdhdwPlu2bFFRUZHCw8OVnJxcbn9oaKg6d+6slStXav369erdu7cNVQI2OXVKjhMn7K7CfqdO2V0BKmGKTskUBvY5aoo4PysTiBk/cOBAbd++XQ6HQ7feeqtGjBihN998U0uWLNH27ds1cOBALViwwO4yAcArffzxxxo5cqRSU1P13HPPKSkpSdnZ2Xr11Vc1cuRITZ061S+yAgAAAAAAeD+vb7JnZ2dLkpo1a6aQkIrLTUxM1MqVK13HAoEiatYsu0sAqlTw1Vy7S4AXC7SMz8/PdzXYt27dqvDwcEnS5MmT9eSTT6pjx47avn278vPzFRUVZXO1AOBdzpw5o0mTJik1NVXTpk1TUNDZi7J17NhR06ZNU3p6uv7xj3+oZ8+eCg4OtrlaAAAAAADg77y+yX7kyBFJUlxcXKXHlO4rPfZchYWFKiwsdH2dl5fn9vPnB3OPVCvXoCSvxLK5fBVr4N32HDOSAvvf6OwaAJ5nRcZLNcv52jRu3DhJ0q233upqsJcKDw9Xv379tHTpUo0bN07Tpk2zo0TbnDp1Sjt37qzRHDk5OWX+rInExERFRETUeB471XRNWc+yOEftt3HjRu3bt0/PPfecq8FeKigoSA8++KDS0tK0ceNGXXXVVTZVCQAAAAAAAoXXN9kLCgokSWFhYZUe43Q6JZ39z6+KTJw4UU888US1njcuLk7OMKe2xW6r1jh/5QxzVtkEOZ+4uDg5nU4VflV4/oMDgNNZ8/VEWWHh4TVe03CnU5PWco5KUjjnqKWczpqdn/7KioyXLizn7bB3715J0ogRIyrcP3z4cC1dutR1XCDZuXOnbrvtNkvmGjt2bI3nWLRokdq2bWtBNfaxak1Zz7M4R+33yy+/SJKSkpIq3F+6vfQ4AAAAAAAAT/L6JnvpJ72KiooqPab002uVfZpj/PjxGjVqlOvrvLw8JSQkVPm88fHxyvwos8pPzp1PYWGhfvzxxwseb6WmTZu6GhUXIi4uTvHx8Rc8Pj4+XpmZ/rOeUs3W1Ir1RFkfLV9e4zVdXoNz1J/OT4lz1GqZmTU7P/2VFRkvXVjO2yEhIUE7duzQm2++qcmTJ5fbn5GR4Tou0CQmJmrRokV2l+GSmJhodwk15k1rynpazx/WtLoaNGgg6eytRjp27Fhuf+ltRUqPAwAAAAAA8CSvb7K7c5nY811u1ul0XlCzKT4+vsZNkeTk5BqN9yesp7XWrVtndwlepW7dujWeo6bnKOdnWZyjv7Li/PRHVmS8dOE5X9smT56sTp06acmSJXryySfLXDK+oKBAH3zwgeu4QBMRERFwn8r1NNbUWqyn/VJSUtSkSRO9+uqrZe7JLkklJSV67bXX1LRpU6WkpNhYJQAAAAAACBRe32Qvvezfnj17dPr0aYWElC+59P6IlV06EPBHNO3g7ThHcT6BlvFRUVFq3769tm/fro4dO6pfv34aPny4MjIy9MEHH8gYo/bt2ysqKsruUgHA6wQHB+uxxx7TyJEjlZ6ergcffFBJSUnKzs7Wa6+9ptWrV2vq1KkKDg62u1QAAAAAABAAgs5/iL2uuOIKhYaGqqCgQJs3by63v7i4WF9//bUk6aqrrqrt8gAAwAUKxIxfsGCB2rdvL2OMli5dqttuu01Lly51NdgXLFhgd4kA4LV69+6tqVOnaseOHUpLS1OnTp2Ulpam7OxsTZ06Vb1797a7RAAAAAAAECC8/pPsMTEx6tWrl5YvX6433nhDV155ZZn97777rvLy8lSvXj2lpqbaUyQAAKi2QM34BQsWKD8/X+PGjdPevXuVkJCgyZMn8wl2AHBD79691bNnT23cuFG//PKLGjRooJSUFD7BDgAAAAAAapXXN9kl6fHHH1dmZqZmzJih1NRUDR48WJK0bds2jRo1SpI0btw4hYWF2VkmAACopkDN+KioKE2bNs3uMgDAJwUHB/vNFU4AAAAAAIBv8vrLxUtSt27d9NRTT6mkpERDhgxRq1at1KFDByUnJ+unn35S3759NXr0aLvLBAAA1UTGAwAAAAAAAAB8jU802aWzn3RbunSprr/+eh06dEjff/+92rdvrxdeeEGLFy/m8oAAAPgoMh4AAAAAAAAA4Et84nLxpfr166d+/frZXQYAALAYGQ8AAAAAAAAA8BU+80l2AAAAAAAAAAAAAADsRpMdAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN4XYXYAdjDGSpLy8PJsrAQDg1zwqzSfUDDkPAPAWZLy1yHgAgLcg461HzgMAvIW7OR+QTfbjx49LkhISEmyuBACAXx0/flyxsbF2l+HzyHkAgLch461BxgMAvA0Zbx1yHgDgbc6X8w4TgG+3Kykp0f79+xUdHS2Hw2F3OVXKy8tTQkKC9u7dq5iYGLvL8Xmsp7VYT2uxntbypfU0xuj48eOKj49XUBB3cqkpX8l5XzpHfQHraS3W03qsqbV8ZT3JeGuR8YGLNbUW62kt1tNavrKeZLz1yPnAxHpai/W0HmtqLV9ZT3dzPiA/yR4UFKSmTZvaXUa1xMTEePUJ52tYT2uxntZiPa3lK+vJO9+t42s57yvnqK9gPa3FelqPNbWWL6wnGW8dMh6sqbVYT2uxntbyhfUk461Fzgc21tNarKf1WFNr+cJ6upPzvM0OAAAAAAAAAAAAAAA30WQHAAAAAAAAAAAAAMBNNNm9nNPp1N/+9jc5nU67S/ELrKe1WE9rsZ7WYj3h7ThHrcV6Wov1tB5rai3WE96M89N6rKm1WE9rsZ7WYj3h7ThHrcV6Wov1tB5rai1/W0+HMcbYXQQAAAAAAAAAAAAAAL6AT7IDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtostusffv2cjgcioiIUF5eXqXH3XPPPXI4HGUeoaGhaty4sW699VYtX768Fqv2Pi1atCi3Puc+XnjhBUnS7t27K9wfHR2tDh06aMKECcrNzbX3Bdlsz549GjVqlNq1a6fIyEhFRESoWbNm6tq1q8aOHauPPvqozPGpqannXX+Hw6G///3v9rwgm23YsEF//OMf1a5dO8XFxSk0NFT169dX165dNW7cOG3atOm8czz88MOudfzkk09qoWrvVNn3elRUlC6//HKNHz9ehw4dKjfu6NGjeueddzR69Gh1795dF110kRwOh3r16mXDq0AgIedrjoy3HjlvLXLeGmQ8fA0Zbw1y3lpkvLXIeOuQ8/A15HzNkfHWI+etRc5bI9AzPsTuAgLZ1q1b9e2330qSCgoKtGDBAo0YMaLKMQ0bNlRSUpJrzI4dO7R06VItXbpU48eP1zPPPOPxur1ZUlKSGjZsWOG+Jk2alNuWkpIip9MpSdq3b5+2b9+ub775RrNmzdKaNWvUsmVLj9brjVatWqX+/fvr+PHjCg4OVkJCgho2bKjDhw/rq6++0rp165SRkVHhLzYJCQlq1qxZpXNXtc8fnTx5Uvfdd5/mzp0rSQoNDVWrVq0UExOjw4cPa8OGDVq3bp2mTJmim2++WcuWLatwnuLiYs2bN8/19ezZs3XDDTfUymvwVr/9Xi8pKdGBAwe0fft2bd++XbNnz9YXX3yhFi1auI5fvXq10tLSbKoWgYqctxYZbw1y3jrkvGeQ8fAFZLz1yPmaI+OtQ8Z7DjkPX0DOW4uMtwY5bx1y3jMCNuMNbDNq1CgjydSpU8dIMqmpqZUee/fddxtJ5u677y6zvbCw0IwZM8ZIMpLM2rVrPVy1d2revLmRZDIyMs577K5du1zrtWvXrjL7Nm3a5Jrrxhtv9EyxXuzYsWOmfv36RpLp27ev2b17d5n9R44cMTNnzjR9+vQps71Hjx5Gkvnb3/5Wi9V6t6KiItO9e3cjyTRu3Ni8+eabJj8/v8wxpet52WWXGafTWelcS5YsKfOzIjIystxcgaKq7/XNmzeb+Ph4I8kMGjSozL7MzExz7bXXmjFjxpj58+ebZ555xkgyPXv2rKXKEYjIeWuQ8dYh561DzluPjIcvIeOtQ85bg4y3DhnvGeQ8fAk5bw0y3jrkvHXIeesFesbTZLfJ6dOnTePGjY0kM2fOHBMcHGwcDof54YcfKjy+ssA2xpiSkhLTsWNHI8mMHDnSw5V7J6tC2xhjFi1aZCQZh8NhcnNzrS/Wi82dO9dIMjExMebEiRNujyOwy5swYYKRZOLj482ePXuqPLa4uNg8/fTTle4fNGiQkWQef/xx07ZtWyPJzJ492+qSfcL5vtdffvllI8nExcVVOU9GRoZPhjZ8BzlvHTLeOuS8dch565Hx8BVkvLXIeWuQ8dYh4z2DnIevIOetQ8Zbh5y3DjlvvUDPeO7JbpMVK1bowIEDuvjii5WWlqbrr79exhi99dZb1Z7L4XCoe/fukqTs7GyrSw041157rSTJGKOcnBybq6ldO3fulCRdcskluuiii2yuxncdPXpUU6dOlSRNnTpVCQkJVR4fEhKixx9/vMJ9x44d09KlSyVJQ4YM0ZAhQySdvfwMymvevLkkqaioyOZKEOjIee8UyBkvkfNWIeftQcbDW5Dx3iuQc56MtwYZbx9yHt6CnPdOgZzxEjlvFXLeHv6e8TTZbTJr1ixJ0p133qng4GANHTpU0oV/ExpjLKst0AXyWsbExEg6+4vf0aNH7S3Ghy1btkz5+fm6+OKL1b9//xrNNX/+fBUUFKhDhw667LLLNGTIEDkcDq1cuVIHDhywpmA/snHjRklSmzZtbK4EgY6c906Bvo7kvDXIeXuQ8fAWZLz3CuS1JOOtQcbbh5yHtyDnvVOgryM5bw1y3h7+nvE02W2Qn5+v999/X5JcQX3bbbcpIiJC3333nTZt2lSt+Ywx+vLLLyVJrVu3trTWQLRmzRpJZ99tmJiYaHM1tat3794KCgrSsWPH1KtXLy1cuFDHjh2zuyyfs3btWklSly5dFBwcXKO5Sn+JL/1Z0aJFC3Xt2lVnzpzR22+/XbNC/URJSYn279+vV155Rf/4xz/kcDg0fvx4u8tCACPnvVcgZ7xEzluFnK89ZDy8DRnv3QI558l4a5DxtYuch7ch571XIGe8RM5bhZyvPYGU8TTZbbBw4UKdPHlSrVu3VufOnSVJ0dHR6tevn6TqvTOuqKhI48aN09atWyVJd9xxh+X1+pLhw4fL4XCUe6Smpro1fsuWLXr00UclSddff73q16/vwWq9zyWXXKKnnnpKkrRp0yYNHDhQcXFxatOmjYYPH6533nlHhYWFlY5/4oknKlz/0kfpeerv9u3bJ+lsuNbE7t279cUXX8jhcCgtLc21ncvPlP1eDw4OVpMmTZSenq527dopMzNTt99+u90lIoCR855BxtccOW8Nct6zyHh4MzLec8j5miHjrUHGex45D29GznsGGV9z5Lw1yHnPCtSMD7G7gEBU+k1W+k1XaujQoXr33Xc1d+5c/fOf/1RISPl/nuXLl7vu5VJQUKAdO3bo+PHjkqRHH33UtS9QJSUlqWHDhuW2t2/fvsLjBw0aJKfTKUnav3+/du/eLWOMGjVqpFdeecWjtXqrCRMmqEuXLvrnP/+pFStWqKioSFlZWcrKytLMmTPVrFkz/e///m+FvwglJCSoWbNmlc4dFRXlwcq9R+n3ZGRkZIX7582bp8GDB5fbnpGRoXvuucf19Zw5c2SM0bXXXlvmHjF33HGH/vSnP2nbtm3avn17pee3Pzv3ez03N1e7d+/Wpk2bNG3aNHXu3FlxcXE2VohARs57BhlvDXK+5sh5zyLj4c3IeM8h52uOjK85Mt7zyHl4M3LeM8h4a5DzNUfOe1bAZrxBrfrxxx9NUFCQkWT+85//lNlXWFho4uLijCTz4Ycfltl39913G0llHsHBwaZBgwbm5ptvNu+9914tvgrv07x5cyPJZGRknPfYXbt2lVtLSSYiIsJcdtllZsyYMebgwYOeL9oHnDx50nz++edmypQp5rrrrjMOh8O1Vt99953ruB49ehhJ5m9/+5t9xXqR/v37G0nm0UcfrXD/ihUrTLdu3VyP2NjYCs/fSy+91Egyr776ark5+vbtaySZsWPHeuIleK2qvtePHDlihg0bZiSZlJQUU1JSUuk8GRkZRpLp2bOnB6tFICLnrUfGew45f2HIec8g4+HtyHjPIOc9g4y/MGS855Dz8HbkvPXIeM8h5y8MOe8ZgZ7xXC6+lr311lsqKSlRcnKyLr300jL7wsLCNGjQIEmVX1Li7rvvljFGxhidPn1aP//8s5YtW6b+/ft7unS/tGvXLtd6njx5Uv/+9781ZcoUNWrUyO7SvEJERISuueYajRkzRqtWrdLnn3+uyMhInTp1Ss8++6zd5XmtJk2aSDp76ZiK9OzZU1988YXrkZKSUu6YDRs2KCsrS6Ghoa6fC79Ver+Xt99+WyUlJdYV78Pq1Kmj119/XU2aNNHGjRu1ePFiu0tCACLnvQcZf37k/IUh52sfGQ9vQMZ7F3K+amT8hSHj7UHOwxuQ896DjD8/cv7CkPO1LxAyniZ7LSsN4s2bN1d4/4vXX39dkrR48WLl5eXZWSpQTvfu3ZWeni7pbKCgYl26dJEkrV27VmfOnLmgOWbNmiVJKi4uVr169cr9rCi9dNW+ffu0atUqawr3A06nU8nJyZI4R2EPch6+jJx3DzlvDzIediPj4cvIePeQ8fYh52E3ch6+jJx3DzlvD3/PeO7JXou2bNmib7/9Vg6Ho8L7kJQ6cuSITp06pYULF2r48OG1WCFwfomJiZKkoqIimyvxXn369FFUVJR++uknvffeexo4cGC1xhcXF+udd96RJNWrV6/Cez1J0okTJ5Sfn6/Zs2erV69eNa7bX5S+S/Dw4cM2V4JAQ87DH5Dz50fO24eMh13IePgDMv78yHh7kfOwCzkPf0DOnx85bx9/zng+yV6LSt8Rd+211+rgwYOVPkaPHl3meKC25ObmyhhT5TFr166VJCUlJdVGST4pLi5ODz30kCTpkUce0Z49e6o1fvny5crNzVVkZKR2795d6c+KhQsXSpIWLVqkkydPWv46fFFBQYG2bNki6ddfLoHaQs7D25Hz1iDn7UHGw05kPLwdGW8NMt4+5DzsRM7D25Hz1iDn7eHvGU+TvZacOXNGc+fOlST94Q9/qPLYu+66S5K0evVq7d271+O1AaXmzJmjjh07avr06Tp06FCZfUePHtVf//pXzZkzR5J4x+Z5PPHEE+rSpYv279+vq666Sm+++aby8/PLHFNcXKwFCxYoKyurzPbSX9YHDBigqKioSp+jZ8+eaty4sfLz8/Xee+9Z/yJ8zJEjR3T//fdr//79CgsL0x133GF3SQgg5Dx8ATlvHXK+dpHxsBMZD19AxluHjK995DzsRM7DF5Dz1iHna1cgZDyXi68ln3zyiQ4ePKjw8PDzXobisssu0xVXXKEtW7borbfe0mOPPVZLVSLQORwOffPNN3rggQf0wAMPqGXLlmrQoIGOHDmiH374wXW5mTFjxmjAgAHlxr/55ptasWJFpfNfe+21euaZZzxWvzcJCwvTJ598ohEjRmj+/Pm699579V//9V9q1aqVYmJidOjQIR04cMD1brbevXvruuuu09GjR7V06VJJ5//lPjg4WGlpaXr++ec1e/ZsDR061OOvy1s888wzmjFjhuvrQ4cOadeuXSosLFRISIhee+01tWjRosyY+vXru/5eWFgoSfr888/LbH/ppZeUlpbm2eLhl8h5+AJy3jrkvOeQ8fA2ZDx8ARlvHTLes8h5eBtyHr6AnLcOOe85gZrxNNlrSem7XG655RbFxsae9/i77rpLW7Zs0ezZswls1Jr09HRdfvnlWr58ub788kv9+OOP2rp1q0JCQtS8eXN16dJF999/v7p3717h+L1791b5Ts7f/nAMBJGRkXrnnXc0atQozZw5U59//rn27dun77//XrGxsWrfvr26d++uIUOGKDk5WZI0ffp0FRYW6uKLL1bPnj3P+xx33XWXnn/+ea1YsUIHDx7UxRdf7OmX5RWys7OVnZ3t+trpdKpJkybq0aOHHnnkEXXo0KHcmHPf6SmdfWfib7cXFBR4pmD4PXIevoCctxY57xlkPLwNGQ9fQMZbi4z3HHIe3oachy8g561FzntGoGa8w5zvZg4AAAAAAAAAAAAAAEAS92QHAAAAAAAAAAAAAMBtNNkBAAAAAAAAAAAAAHATTXYAAAAAAAAAAAAAANxEkx0AAAAAAAAAAAAAADfRZAcAAAAAAAAAAAAAwE002QEAAAAAAAAAAAAAcBNNdgAAAAAAAAAAAAAA3ESTHQAAAAAAAAAAAAAAN9FkBwAAAAAAAAAAAADATTTZAT/SokULORwO7d692+5SLJWamiqHw6HVq1fbXQoAALYh5wEA8E9kPAAA/omMB/wbTXagFuzZs0ejRo1Su3btFBkZqYiICDVr1kxdu3bV2LFj9dFHH9ldIiS98MIL+vvf/66jR4/aXQoAwIeQ876BnAcAVBcZ7xvIeABAdZHxvoGMh7cLsbsAwN+tWrVK/fv31/HjxxUcHKyEhAQ1bNhQhw8f1ldffaV169YpIyNDubm5dpca8F544QX98MMPuueee1SnTh27ywEA+ABy3neQ8wCA6iDjfQcZDwCoDjLed5Dx8HY02QEPysvL05133qnjx4+rb9++evnll9W8eXPX/qNHj2rx4sWaP3++jVUCAIALQc4DAOCfyHgAAPwTGQ/ASjTZAQ9atmyZcnNzFRMTo/nz5+uiiy4qs79OnTq6++67dffdd9tUIQAAuFDkPAAA/omMBwDAP5HxAKzEPdkBD9q5c6ck6ZJLLikX2FVxOBxyOByV7m/RooUcDod2795d6TEfffSRUlNTFRsbq5iYGN1www1as2ZNhcempqbK4XBo9erV2rBhg/r27au6desqMjJSXbt21fvvv1/p8xhjNGfOHPXo0UN16tRRRESE2rRpoz//+c86fPhwpeNOnz6t6dOn67rrrlO9evUUHh6uxMRE3X777Vq8eHGl4841b948hYaGKjIyUh9//HGZfRs2bFBaWpqaNGmisLAwNWrUSIMGDdKWLVvKHDdz5kw5HA798MMPkqSWLVu6/g1K1wUAgHOR8+Q8AMA/kfFkPADAP5HxZDxgKQPAY1588UUjycTGxpojR464PU6Sqerbs3nz5kaS2bVrV4XbJ06caBwOh6lbt65JSUkx9erVM5JMUFCQmT9/frn5evToYSSZJ5980oSFhZmoqCiTkpJiGjdu7Krl2WefLTeupKTEDBkyxHVMYmKiSU5ONmFhYUaSad68ucnJySk37vDhw6Zbt26ucc2bNzcpKSmmYcOGrq8rqu/TTz8ts/311183QUFBJjY21nzxxRdl9j333HPG4XAYSaZu3brmiiuucK1DaGioWbhwoevYZcuWmW7duhmn02kkmZSUFNOtWzfXY/PmzZX+WwAAAhc5T84DAPwTGU/GAwD8ExlPxgNWoskOeFBWVpYJCgoykkynTp3MggULzNGjR887rqahHRISYkaNGmWKioqMMcYUFxebcePGGUkmJibG7N+/v8y40lAMCQkxaWlpJj8/3xhzNpSnTp3q2rd169Yy40p/KYmOjjYff/yxa/uBAwdcoXzVVVeVq79///5GkmnVqpX56quvyuzLzs42kydPrrC+34b2lClTjCTToEGDcqG6fPly43A4TP369cuEszHGzJgxw4SEhJjo6Ohy61DZugIAUBFynpwHAPgnMp6MBwD4JzKejAesRJMd8LD/+Z//cYWwJONwOMyll15q7rnnHjNv3jxTUFBQbkxNQ7tDhw4VjktOTjaSzF//+tcy20tDsWHDhubUqVPlxt12221Gkhk2bJhrW0lJiUlISDCSzPPPP19uzI8//uh6h9zKlStd2zds2GAkGafTaXbs2FHpa6yovtLQ/stf/mIkmaZNm5rvvvuu0te5ePHiCucbPXq0652Av0VoAwCqi5wn5wEA/omMJ+MBAP6JjCfjAatwT3bAwyZMmKBVq1apT58+CgsLkzFGWVlZmjlzptLS0nTJJZdYfg+R9PT0Krd/9NFHFe6/9957FR4e7ta47777Tnv37lV4eLjuv//+cmOaNGmi22+/XZLK3Hul9P4tAwYMUFJSkjsvx8UYoz/96U966qmn1KpVK61Zs0Zt2rQpc8wPP/ygzZs3q2HDhrr11lsrnKd0+2effVat5wcA4FzkPDkPAPBPZDwZDwDwT2Q8GQ9YJcTuAoBAcN111+m6667TqVOntHHjRq1fv17Lli3T6tWrtWfPHvXp00ebN28uF0AX6ne/+12V23fs2HFB43766Sfl5eUpJibGNUezZs0UGRlZ4bi2bduWe77vvvtOknT11Vef72WUM2bMGG3evFlt27bVJ598osaNG5c7Zvv27ZKkgoICde/evcJ5CgoKJEn79u2rdg0AAJyLnCfnAQD+iYwn4wEA/omMJ+MBK9BkB2pRRESErrnmGl1zzTUaM2aMvvjiC9100006ceKEnn32WU2fPt2S52nYsGGF2xs1aiRJOn78eLXG/Xb78ePHFRMTo/z8/CrHVPZ8eXl5kqQ6depUOq4y33//vSSpRYsWql+/foXHHDt2zPU8X375ZZXznTp1qto1AABQGXKenAcA+CcynowHAPgnMp6MB2qCy8UDNurevbvr0i4bNmwot98YU+G4EydOVDnvL7/8UuH2n3/+WZIUHR1drXG/3V46NioqqsycFfnpp5/KPV/p348ePVrpuMpMnz5dbdq00YcffqjBgwfr9OnT5Y4pratbt24yxlT52L17d7VrAADAXeR89ZDzAABfQcZXDxkPAPAVZHz1kPEIdDTZAZslJiZKkoqKilzbSi/nUlGIHjt2TLm5uVXOWXqJl8q2X3LJJRc0rlGjRoqJiSkzx549e1zvkjvXv//973LPV3pJmq+++qrK11CRhg0bauXKlWrdurUWLlyoYcOGqaSkpMwxl112mavmc/edj8PhqHZNAABUhZx3HzkPAPAlZLz7yHgAgC8h491HxiPQ0WQHPCg3N7fSd7eVWrt2rSQpKSnJta00yL/++utyx8+YMeO8zztt2rQqt/fu3bvC/W+88YYKCwvdGve73/1OzZo1U0FBQYU17d+/XwsXLpQk3Xjjja7t/fv3lyS9//77ysnJOe9rOVd8fLxWrVqlFi1aaO7cuRoxYkSZNU5KSlK7du10+PBhzZo1q1pzR0RESOKyNAAA95Dz5DwAwD+R8WQ8AMA/kfFkPGApA8Bjnn/+eXP55Zeb119/3eTm5pbZd+TIEfOXv/zFOBwOI8ksWrTItW/cuHFGkunYsaM5ePCga/vy5ctNTEyMCQkJMZLMrl27yszZvHlzI8mEhISYsWPHmqKiImOMMcXFxWb8+PFGkomOjjb79u0rM65Hjx6ucUOHDjX5+fnGGGNKSkrMyy+/bBwOhwkODjZbtmwpM+7FF180kkxMTIxZsWKFa/vBgwfNNddcYySZq6++uty6DBgwwEgySUlJZsOGDWX2ZWdnmylTplRY36effuratmvXLpOQkGAkmQceeMCUlJS49n344YfG4XCYiy66yEyfPt0UFxeXmS8nJ8c8/fTTZuHChWW29+3b10gyr7zySrmaAQA4FzlPzgMA/BMZT8YDAPwTGU/GA1aiyQ540AsvvGAkuR4tW7Y0V155pUlKSjJhYWGu7WPGjCkz7ueffzYXX3yxkWScTqfp2LGjadGihZFkHnvsMVc4VxbaEydONA6Hw9SrV8907tzZ1K9f30gyQUFBZu7cueXqLA3FJ5980oSFhZno6GiTkpJi4uPjXTVOnjy53LiSkhIzZMgQ1zGtW7c2ycnJrtfWrFkzk5OTU27c4cOHTZcuXVzjWrRoYVJSUkyjRo2MJNO8efMK6/ttaBtzNuBLa3z44YfL7HvppZdMcHCw6xeVTp06lXmOisJ51qxZrn3t2rUzPXr0MD169Cj3ywoAAMaQ8+Q8AMBfkfFkPADAP5HxZDxgJZrsgAcVFRWZVatWmbFjx5quXbuaZs2ambCwMHPRRReZpKQkM2zYMLNmzZoKx+bk5JhBgwaZuLg4ExERYa644gqTkZFhjDHnDe1du3aZzMxMc+2115ro6GgTFRVlrr/+evPZZ59V+Fy/DcX169ebm2++2dSpU8dERESYq6++usy79s5VUlJiZs2aZa655hoTExNjnE6nSUpKMmPHji33bsBz1+bll1823bp1M7GxsSY8PNy0bNnSDBw40CxdurTS+s713XffuYL43F9+tm/fbu677z6TmJhowsPDTWxsrGnbtq0ZPHiweffdd82JEyfKzfevf/3LXH755SYiIsIV4BU9LwAA5Dw5DwDwT2Q8GQ8A8E9kPBkPWMlhzHluQAHA76Wmpuqzzz7Tp59+qtTUVLvLAQAAFiLnAQDwT2Q8AAD+iYwHfEOQ3QUAAAAAAAAAAAAAAOAraLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG5yGGOM3UUAAAAAAAAAAAAAAOAL+CQ7AAAAAAAAAAAAAABuoskOAAAAAAAAAAAAAICbaLIDAAAAAAAAAAAAAOAmmuwAAAAAAAAAAAAAALiJJjsAAAAAAAAAAAAAAG6iyQ4AAAAAAAAAAAAAgJtosgMAAAAAAAAAAAAA4Caa7AAAAAAAAAAAAAAAuIkmOwAAAAAAAAAAAAAAbvp/GgSzlMs32Q0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "descriptors = filters.analysis.get_descriptors_filters(fragment_library_filter_res, bool_keys)" + ] + }, + { + "cell_type": "markdown", + "id": "abae9919-79c7-4606-b901-7111b0b567b1", + "metadata": { + "tags": [] + }, + "source": [ + "## 7. Development of number of fragments per subpocket during custom filtering" + ] + }, + { + "cell_type": "markdown", + "id": "70a7c527-6550-4761-9a3d-db3c872a42a2", + "metadata": {}, + "source": [ + "Inspect the number of fragments filtered out by each custom filtering step, assuming to remove the fragments not passing after each filtering step." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "7aa5d0a7-3032-4901-b4ba-a707fd18a967", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAJ0CAYAAAAbL/a0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQh0lEQVR4nOzde3zP9f//8fvbNjswsy02h7GpGUOOORYTkkP4qCQVo6TkTNLXoaFIYjIpRaZaqI/DxymSUDJyzmExInwifVhTGtvs+fvDb++Ld9vYe9478L5dL5f35bLX6/V8PV+P1+v9er+292PPg8UYYwQAAAAAAOBEihV2AAAAAAAAAAWNhAgAAAAAAHA6JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAjgpGJjY2WxWKwvDw8PBQYGqmXLlpo8ebLOnTtX2CFanThxQhaLRbGxsYUdSoH77LPPNGPGjHype8yYMapUqZJcXV1VunTpHMutWbNGUVFR2W6zWCwaMGBAvsRX1EVERKhmzZqFHUauxcTE6J577lHx4sVlsVj0xx9/5Fh28eLFqlGjhjw9PWWxWLR3794Ci7MomzRpkpYvX17YYRRZmc/qt99+u7BDyVFkZKRKlizpkLp+/fVXRUVF5cvn48SJE+rQoYP8/PxksVg0ZMgQbd26VVFRUTf87N4pgoOD1bFjxzzvn931y+5vicy/hU6cOGFdl5+/d28Fzx8gf5AQAZzc/PnzFR8fr/Xr1+vdd99VnTp1NGXKFFWvXl1ff/11YYfn9PLrD7P//Oc/euONN9SzZ09t3rz5hu/1mjVrNH78eIfHgIKzd+9eDRo0SC1bttQ333yj+Ph4eXt7Z1v2999/1zPPPKO7775ba9euVXx8vKpWrVrAERdNfCHB9X799VeNHz8+XxIiQ4cO1fbt2/XRRx8pPj5eQ4cO1datWzV+/HinSIjcquyuX7ly5RQfH68OHTrccF8SIoBzcS3sAAAUrpo1a6pBgwbW5UcffVRDhw7V/fffr65duyoxMVEBAQGFGCHyw4EDByRJgwYNUtmyZQs5GtxISkqKPD09b6mOgwcPSpL69u2rhg0b3rDskSNHlJaWpqefflotWrS4Ydm///5bXl5etxQb8h/v0+3nwIEDatiwobp06ZLvx7oT74+crl/jxo0LJyA55lkOwPFoIQIgi0qVKmnatGn6888/NWfOHJttO3fuVKdOneTn5ycPDw/VrVtXn3/+uXX7vn37ZLFYNG/evCz1fvnll7JYLFqxYoV1XWJionr06KGyZcvK3d1d1atX17vvvpurOLds2aJWrVrJ29tbXl5eatq0qVavXm1TJrM57Pr169W7d2/5+fmpRIkSeuSRR/Tzzz/blM3sAhEfH6+mTZvK09NTwcHBmj9/viRp9erVqlevnry8vFSrVi2tXbs2S0y5OZ9NmzbJYrFo4cKFGj16tMqXL69SpUqpdevWOnz4sE08q1ev1i+//GLTvelGMjIy9NZbb6latWpyd3dX2bJl1bNnT50+fdpaJjg4WGPGjJEkBQQEyGKx5NglJjIy0hr/9TFc37xYkj755BNVr15dXl5eql27tlatWpWna5OTzK45NztOZGSkgoODs+wfFRWV5dpl1jl//nyFhYXJ09NTDRo00LZt22SM0dSpUxUSEqKSJUvqwQcf1NGjR7ON7bvvvlPjxo3l6empChUqaOzYsbp69apNmdTUVL3++uvW96VMmTLq3bu3fv/9d5tymc3Ely5dqrp168rDw+OmrXM++ugj1a5dWx4eHvLz89O//vUvJSQkWLdHRETo6aefliQ1atRIFotFkZGR2dYVGRmp+++/X5L0xBNPyGKxKCIiwrqtZMmS2r9/vx566CF5e3urVatWkqT169erc+fOqlixojw8PHTPPfeoX79++t///pflGP/5z3907733yt3dXVWqVNE777yTb+/P119/rVatWqlUqVLy8vJSs2bNtGHDBpsymcc+ePCgnnzySfn4+CggIEB9+vRRcnKyTTyXLl3SggULrJ+DzGvz999/a8SIEQoJCbG+Dw0aNNDChQtv8M7Z93yy93x2796txx57TL6+vrr77rtzjCE3sUdERFjP9Xo5fd4yMjL0xhtvqFKlSvLw8FCDBg1yjHPPnj3q2rWrSpUqJR8fHz399NNZPhe5ea5lWrt2rVq1aiUfHx95eXmpevXqmjx5co7nL0nff/+97rrrLnXs2FGXLl2SdPPn1aZNm3TfffdJknr37m29J3J6lkrXWl/1799f4eHhKlmypMqWLasHH3xQ3333nU29FotFR48etf7OzPzMvvzyy5KkkJAQ6/pNmzZZ9128eLGaNGmiEiVKqGTJkmrbtq327NljE8ONPsc5yc2z+/Llyxo+fLjq1KkjHx8f+fn5qUmTJvrPf/6Tpb6MjAzFxMSoTp068vT0VOnSpdW4cWObvw0yrV27VvXq1ZOnp6eqVaumjz766Iax5nT9Tpw4kavutzf7vZtfz/I9e/aoY8eO1mtcvnx5dejQwXqP3+j5I0lnz55Vv379VLFiRRUvXlwhISEaP3680tPTrWUyz/+tt9666ecTcCoGgFOaP3++kWR27NiR7fa//vrLuLi4mFatWlnXffPNN6Z48eLmgQceMIsXLzZr1641kZGRRpKZP3++tVzdunVNs2bNstTZrVs3U7ZsWZOWlmaMMebgwYPGx8fH1KpVy3z88cfmq6++MsOHDzfFihUzUVFR1v2OHz+e5RibNm0ybm5upn79+mbx4sVm+fLl5qGHHjIWi8UsWrQoy3kGBQWZPn36mC+//NJ88MEHpmzZsiYoKMgkJSVZy7Zo0cL4+/ubsLAwM2/ePLNu3TrTsWNHI8mMHz/e1KpVyyxcuNCsWbPGNG7c2Li7u5v//ve/1v1zez4bN240kkxwcLB56qmnzOrVq83ChQtNpUqVTGhoqElPT7fW16xZMxMYGGji4+Otrxt5/vnnjSQzYMAAs3btWvP++++bMmXKmKCgIPP7778bY4zZvXu3efbZZ40ks3btWhMfH29OnTqVbX1Hjx41jz32mJFkE8Ply5eNMcZ6Hg0bNjSff/65WbNmjYmIiDCurq7m2LFjdl+bnOT2OL169TKVK1fOsv9rr71m/vkrT5KpXLmyadq0qVm6dKlZtmyZqVq1qvHz8zNDhw41nTt3NqtWrTJxcXEmICDA3HvvvSYjI8O6f+b9Ur58eTNz5kyzbt06M2jQICPJvPTSS9ZyV69eNQ8//LApUaKEGT9+vFm/fr2ZO3euqVChggkPDzd///23tWzlypVNuXLlTJUqVcxHH31kNm7caH744Yccr8ukSZOMJPPkk0+a1atXm48//thUqVLF+Pj4mCNHjliv/ZgxY6yfofj4eHP06NFs6zt69Kh59913jSQzadIkEx8fbw4ePGi9tm5ubiY4ONhMnjzZbNiwwaxbt84YY8x7771nJk+ebFasWGE2b95sFixYYGrXrm3CwsJMamqqtf4vv/zSFCtWzERERJhly5aZL774wjRq1MgEBwc7/P355JNPjMViMV26dDFLly41K1euNB07djQuLi7m66+/znJvhIWFmXHjxpn169eb6dOnG3d3d9O7d29rufj4eOPp6Wnat29v/RxkXpt+/foZLy8vM336dLNx40azatUq8+abb5qYmJgc3ztj7Hs+2Xs+lStXNq+88opZv369Wb58eY4x5Cb2Fi1amBYtWmTZ95+ft8xndVBQkLn//vvNkiVLzBdffGHuu+8+4+bmZrZu3ZptnC+//LJZt26dmT59uilRooSpW7euzX2Tm+eaMcbMnTvXWCwWExERYT777DPz9ddfm9mzZ5v+/fvbxFyiRAnr8uLFi427u7t58cUXbZ69N3teJScnW9+/MWPGWO+JnJ6lxhjz008/mRdffNEsWrTIbNq0yaxatco8++yzplixYmbjxo3WeuPj401gYKBp1qyZtd4TJ06YgQMHGklm6dKl1vXJycnGGGPeeOMNY7FYTJ8+fcyqVavM0qVLTZMmTUyJEiWs92nm+ef0Oc5Obp/df/zxh4mMjDSffPKJ+eabb8zatWvNiBEjTLFixcyCBQts6nzmmWeMxWIxzz33nPnPf/5jvvzyS/PGG2+Yd955x1qmcuXKpmLFiiY8PNx8/PHHZt26debxxx83kszmzZtzjDen63f58uVs/5bIfA+PHz9uPd+cfu/m17P8r7/+Mv7+/qZBgwbm888/N5s3bzaLFy82L7zwgjl06JAx5sbPnzNnzpigoCBTuXJlM2fOHPP111+biRMnGnd3dxMZGWk9jj2fT8CZkBABnNTNEiLGGBMQEGCqV69uXa5WrZqpW7euNaGRqWPHjqZcuXLm6tWrxhhjZs6caSSZw4cPW8tcuHDBuLu7m+HDh1vXtW3b1lSsWNH6B12mAQMGGA8PD3PhwgVjTPYJkcaNG5uyZcuaP//807ouPT3d1KxZ01SsWNH6xSjzPP/1r3/ZHOP77783kszrr79uXdeiRQsjyezcudO67vz588bFxcV4enraJD/27t1rJJmZM2fafT6ZCZH27dvblPv888+tiYdMHTp0yPYLfnYSEhKMJJs//o0xZvv27UaS+b//+z/ruswvI9d/mcjJSy+9lOXLaiZJJiAgwFy8eNG67uzZs6ZYsWJm8uTJ1nW5vTY5ye1x7E2IBAYGmr/++su6bvny5UaSqVOnjs2X6xkzZhhJ5scff7Suy7xf/vOf/9jU27dvX1OsWDHzyy+/GGOMWbhwoZFklixZYlNux44dRpKZPXu2dV3lypWNi4uLzWcnJ0lJSdY/kK938uRJ4+7ubnr06GFdl5vPe6bM+/OLL76wWd+rVy8jyXz00Uc33D8jI8OkpaWZX375Jcv1ue+++0xQUJC5cuWKdd2ff/5p/P39Hfr+XLp0yfj5+ZlHHnnEps6rV6+a2rVrm4YNG1rXZd4bb731lk3Z/v37Gw8PD5vjlChRwvTq1SvLOdesWdN06dLlhtclO7l9PuXlfMaNG5erGHITu70JkfLly5uUlBTr+osXLxo/Pz/TunXrLHEOHTrUps64uDgjyXz66afGmNw/1/78809TqlQpc//999u8Z9nFnJkQefPNN42Li4uZMmWKTZncPq8yP8PX/26yR3p6uklLSzOtWrXKcg9UrlzZdOjQwWbd1KlTbb68Zzp58qRxdXU1AwcOtFn/559/msDAQNOtWzfrutx+jjPl9dmdeW7PPvusqVu3rnX9t99+aySZ0aNH3/C4lStXNh4eHtbnqDHGpKSkGD8/P9OvX7+bxp3d9ctNQsSYnH/v5tezfOfOnUbSDROXxuT8/OnXr58pWbKkzbUyxpi3337bSLImTuz5fALOhC4zAHJkjLH+fPToUf3000966qmnJEnp6enWV/v27XXmzBlrd4+nnnpK7u7uNs1SFy5cqCtXrqh3796SrjWv3bBhg/71r3/Jy8srS32XL1/Wtm3bso3r0qVL2r59ux577DGb2QJcXFz0zDPP6PTp0zZdTzJjul7Tpk1VuXJlbdy40WZ9uXLlVL9+feuyn5+fypYtqzp16qh8+fLW9dWrV5ck/fLLL3k+n06dOtks33vvvTZ12ivzXP7ZHaJhw4aqXr16vjWJbdmypc0AnQEBASpbtuwtXZu8HCevsZcoUcK6nPm+tmvXzqaZ9D/f70ze3t5Z3scePXooIyND3377rSRp1apVKl26tB555BGbc69Tp44CAwNtmrxL1+6D3AxiGh8fr5SUlCzvd1BQkB588MF8e78fffTRLOvOnTunF154QUFBQXJ1dZWbm5sqV64sSdbuO5cuXdLOnTvVpUsXFS9e3LpvyZIl9cgjj2R7rLy+P1u3btWFCxfUq1cvm2uekZGhhx9+WDt27LB2jciU3efx8uXLuZpxq2HDhvryyy81atQobdq0SSkpKTfd53o3ez7l5Xyye5/yI/bsdO3aVR4eHtZlb29vPfLII/r222+zdCf757l369ZNrq6u1nPP7XNt69atunjxovr373/TroXGGPXr10+vvfaaPvvsM40cOdK6zVHPq5y8//77qlevnjw8PKyflQ0bNth0c7PXunXrlJ6erp49e9rE6+HhoRYtWmR5xki5uz/svRZffPGFmjVrppIlS1rPbd68eTbn9uWXX0qSXnrppZsev06dOqpUqZJ12cPDQ1WrVr2lZ/6tyK9n+T333CNfX1+98sorev/993Xo0CG742rZsqXKly9vE1e7du0kSZs3b7Ypb8/nE3AGJEQAZOvSpUs6f/68NQnw22+/SZJGjBghNzc3m1f//v0lyTpegJ+fnzp16qSPP/7Y+ss1NjZWDRs2VI0aNSRJ58+fV3p6umJiYrLU1759e5v6/ikpKUnGGJUrVy7Ltsx4z58/b7M+MDAwS9nAwMAs5fz8/LKUK168eJb1mV/oLl++nOfz8ff3t1l2d3eXpDx/Ick8l5yuyz/P1VH+eR7StXPJPI9bea/tOU5e5PS+3uz9zpTdgMOZ91rm9f7tt9/0xx9/qHjx4lnO/+zZs1nOPbv3LzuF8X57eXmpVKlSNusyMjL00EMPaenSpRo5cqQ2bNigH374wfpFKfP9yfzcZnfNchq4Oa/vT+bz6rHHHstyzadMmSJjjC5cuGBTx618HmfOnKlXXnlFy5cvV8uWLeXn56cuXbooMTHxpvtKN38+5eV8cnsf3Wrs9pxPamqq/vrrrxuWdXV1lb+/v/Xcc3ufZ47hULFixZvGl5qaap1aOvNLYyZHPa+yM336dL344otq1KiRlixZom3btmnHjh16+OGHb+k5lnl/3HfffVliXrx4cZZ4s/scZ8eea7F06VJ169ZNFSpU0Keffqr4+Hjt2LFDffr0sXlu/v7773Jxccn2Hvmn/Hjm34r8epb7+Pho8+bNqlOnjv7v//5PNWrUUPny5fXaa68pLS0tV3GtXLkyS0yZf2/9My57Pp+AM2CWGQDZWr16ta5evWodtOuuu+6SJL366qvq2rVrtvuEhYVZf+7du7e++OILrV+/XpUqVdKOHTv03nvvWbf7+vpaW3Tk9J+ikJCQbNf7+vqqWLFiOnPmTJZtv/76q028mc6ePZul7NmzZ3XPPfdkewx73cr5OErmH49nzpzJ8qXg119/zXJNCkpBXhsPDw9duXIly/q8foG5mcwvItfLvNcy34+77rpL/v7+2Q7CKynL9Lc3++92puvf73/Kr/c7u9gOHDigffv2KTY2Vr169bKu/+cgp76+vrJYLDe8Zo6See4xMTE5zirhyNmzSpQoofHjx2v8+PH67bffrC0uHnnkEf3000833f9mz6e8nE9u76PcxO7h4WEzwGymnD5XOZ1P8eLFbVr1Za6vUKGCdTk9PV3nz5+33t+5fa6VKVNGkrIdaPWf3N3dtXHjRrVt21atW7fW2rVr5evrKyl/n1effvqpIiIibH4XStKff/6Zp/oyZV6Df//739aWWTeS23vDnmvx6aefKiQkRIsXL7ap/5/P4zJlyujq1as6e/ZsrhMGRUV+PcslqVatWlq0aJGMMfrxxx8VGxurCRMmyNPTU6NGjbppXPfee6/eeOONbLdf37pVsu/zCTgDEiIAsjh58qRGjBghHx8f9evXT9K1ZEdoaKj27dunSZMm3bSOhx56SBUqVND8+fOtI5k/+eST1u1eXl5q2bKl9uzZo3vvvdemCf3NlChRQo0aNdLSpUv19ttvW6exy8jI0KeffqqKFStmaaYaFxdn00R469at+uWXX/Tcc8/l+rg3civncyP2/DfswQcflHTtD9PM2Q8kaceOHUpISNDo0aPzHIOU9ykD8+vaZCc4OFjnzp3Tb7/9Zv2CmJqaqnXr1uXL8f7880+tWLHCprvFZ599pmLFiql58+aSpI4dO2rRokW6evWqGjVq5LBjN2nSRJ6envr000/1+OOPW9efPn1a33zzjR577DGHHetGMv/oz7xPMv1zhqoSJUqoQYMGWr58ud5++23rffDXX39lOyvRrWjWrJlKly6tQ4cOacCAAQ6rNzefx4CAAEVGRmrfvn2aMWNGrqY0vdnzKb/OJ7exBwcH64svvtCVK1es7/P58+e1devWbFsaLF26VFOnTrU2y//zzz+1cuVKPfDAA3JxcbEpGxcXZ9NN8fPPP1d6ero1GZ/b51rTpk3l4+Oj999/X927d7/pl9G6detq8+bNat26tSIiIrR+/XqVLVvWrueVva36LBZLls/Jjz/+qPj4eAUFBd10/5yO17ZtW7m6uurYsWO57iqVG/ZcC4vFouLFi9tc97Nnz2aZZaZdu3aaPHmy3nvvPU2YMMFhsTpSTp/z/HqWX89isah27dqKjo5WbGysdu/enau41qxZo7vvvtua2LsRez6fgDMgIQI4uQMHDlj7m547d07fffed5s+fLxcXFy1btsz6Xzfp2hecdu3aqW3btoqMjFSFChV04cIFJSQkaPfu3friiy+sZV1cXNSzZ09Nnz5dpUqVUteuXeXj42Nz7HfeeUf333+/HnjgAb344osKDg7Wn3/+qaNHj2rlypX65ptvcox78uTJatOmjVq2bKkRI0aoePHimj17tg4cOKCFCxdm+WN4586deu655/T444/r1KlTGj16tCpUqGDt7uMIt3I+OalVq5aWLl2q9957T/Xr11exYsXUoEGDbMuGhYXp+eefV0xMjIoVK6Z27drpxIkTGjt2rIKCgjR06NA8nVetWrUkSVOmTFG7du3k4uJid2IjP65Ndp544gmNGzdO3bt318svv6zLly9r5syZ+dYv2t/fXy+++KJOnjypqlWras2aNfrwww/14osvWvu+d+/eXXFxcWrfvr0GDx6shg0bys3NTadPn9bGjRvVuXNn/etf/7L72KVLl9bYsWP1f//3f+rZs6eefPJJnT9/XuPHj5eHh4dee+01R59utqpVq6a7775bo0aNkjFGfn5+WrlypdavX5+l7IQJE9ShQwe1bdtWgwcP1tWrVzV16lSVLFkyS5ePW1GyZEnFxMSoV69eunDhgh577DGVLVtWv//+u/bt26fff/89y3/pc6NWrVratGmTVq5cqXLlysnb21thYWFq1KiROnbsqHvvvVe+vr5KSEjQJ598oiZNmtw0GSLd/PmUX+cjKVexP/PMM5ozZ46efvpp9e3bV+fPn9dbb72VY7cLFxcXtWnTRsOGDVNGRoamTJmiixcvZjvt6NKlS+Xq6qo2bdro4MGDGjt2rGrXrq1u3bpJyv1zrWTJkpo2bZqee+45tW7dWn379lVAQICOHj2qffv2adasWVmOXb16dX333Xdq3bq1mjdvrq+//loVK1bM9fPq7rvvlqenp+Li4lS9enWVLFlS5cuXz/If+UwdO3bUxIkT9dprr6lFixY6fPiwJkyYoJCQEJvpUXOS+Sx+55131KtXL7m5uSksLEzBwcGaMGGCRo8erZ9//lkPP/ywfH199dtvv+mHH36wtgLKi9xei8wpZvv376/HHntMp06d0sSJE1WuXDmb7lcPPPCAnnnmGb3++uv67bff1LFjR7m7u2vPnj3y8vLSwIED8xSnI+X0eze/nuWrVq3S7Nmz1aVLF1WpUkXGGC1dulR//PGH2rRpYxNXds+fCRMmaP369WratKkGDRqksLAwXb58WSdOnNCaNWv0/vvv27SusufzCTiFQhvOFUChyhxZPfNVvHhxU7ZsWdOiRQszadIkc+7cuWz327dvn3X6XDc3NxMYGGgefPBB8/7772cpe+TIEWv969evz7a+48ePmz59+pgKFSoYNzc3U6ZMGdO0aVOb2V+yGxneGGO+++478+CDD5oSJUoYT09P07hxY7Ny5cpsz/Orr74yzzzzjCldurR1Zo7ExESbsi1atDA1atTIEmN2o9UbY7JMr5rb88lpFo/szvPChQvmscceM6VLlzYWiyXH2V4yXb161UyZMsVUrVrVuLm5mbvuuss8/fTTWaaCtGeWmStXrpjnnnvOlClTxhpD5oj82V0DY65ds3+Ohp+ba5MTe46zZs0aU6dOHePp6WmqVKliZs2aleMsM9m9f5LM1KlTbdZn955l3i+bNm0yDRo0MO7u7qZcuXLm//7v/7LMxJSWlmbefvttU7t2bePh4WFKlixpqlWrZvr162dzH+Z0r93I3Llzzb333muKFy9ufHx8TOfOnW2m2TTGcbPMXD9d6fUOHTpk2rRpY7y9vY2vr695/PHHzcmTJ40k89prr9mUXbZsmalVq5YpXry4qVSpknnzzTfNoEGDjK+vr025W31/jDFm8+bNpkOHDsbPz8+4ubmZChUqmA4dOtiUy+mzkN3sE3v37jXNmjUzXl5eRpJ15pVRo0aZBg0aGF9fX+Pu7m6qVKlihg4dav73v/9le73+eYzcPJ9u9XxyktvYFyxYYKpXr248PDxMeHi4Wbx4cY6zzEyZMsWMHz/eVKxY0RQvXtzUrVs3y9SumXHu2rXLPPLII6ZkyZLG29vbPPnkk+a3336zKZvb55ox1z7/LVq0MCVKlDBeXl4mPDzcZhaZ7O7j06dPm2rVqpng4GDrNN65fV4tXLjQVKtWzbi5uWV7v1/vypUrZsSIEaZChQrGw8PD1KtXzyxfvjzb2bFyeha8+uqrpnz58qZYsWJGknW6XmOuzcLUsmVLU6pUKePu7m4qV65sHnvsMZtpmW/0Oc5Jbq/Fm2++aYKDg427u7upXr26+fDDD7N99l69etVER0ebmjVrWp9bTZo0sfn9ndP55zTj0T/dyiwzN/q9mx/P8p9++sk8+eST5u677zaenp7Gx8fHNGzY0MTGxtqUy+n5Y4wxv//+uxk0aJAJCQkxbm5uxs/Pz9SvX9+MHj3aOlOXPZ9PwJlYjLluGgkAuMPExsaqd+/e2rFjR44tKwAUnrS0NNWpU0cVKlTQV199VdjhFChnfj5FRUVp/Pjx+v333wttfCPAmZw4cUIhISGaOnWqRowYUdjhAEUGXWYAAECBefbZZ9WmTRuVK1dOZ8+e1fvvv6+EhAS98847hR0aAABwMiREAABAgfnzzz81YsQI/f7773Jzc1O9evW0Zs0atW7durBDAwAAToYuMwAAAAAAwOkUK+wAAAAAAAAAChoJEQAAAAAA4HQYQySXMjIy9Ouvv8rb21sWi6WwwwEAAAAAAP9gjNGff/6p8uXLq1ixG7cBISGSS7/++quCgoIKOwwAAAAAAHATp06dUsWKFW9YhoRILnl7e0u6dlFLlSpVyNEAAAAAAIB/unjxooKCgqzf4W+EhEguZXaTKVWqFAkRAAAAAACKsNwMdcGgqgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6jCECAAAAALitXb16VWlpaYUdBgpI8eLFbzqlbm6QEAEAAAAA3JaMMTp79qz++OOPwg4FBahYsWIKCQlR8eLFb6keEiIAAAAAgNtSZjKkbNmy8vLyytXMIri9ZWRk6Ndff9WZM2dUqVKlW3rPSYgAAAAAAG47V69etSZD/P39CzscFKAyZcro119/VXp6utzc3PJcD4OqAgAAAABuO5ljhnh5eRVyJChomV1lrl69ekv1kBABAAAAANy26CbjfBz1npMQAQAAAAAAToeECAAAAAAAcDoMqgoAAAAAuKMEj1pdYMc68WaHAjtWXpw9e1bPPPOMtm7dKjc3N/3xxx+yWCxatmyZunTpohMnTigkJER79uxRnTp1CjtcSdKmTZvUsmVLJSUlqXTp0vl2HFqIAAAAAABwh4qOjtaZM2e0d+9eHTlyRJJ05swZtWvXLtvymzZtksVi0R9//FGAURYOWogAAAAAAFCEpaamWmdWsdexY8dUv359hYaGWtcFBgY6KrQcGWN09epVuboW3bQDLUQAAAAAAChAERERGjBggAYMGKDSpUvL399fY8aMkTFGkhQcHKzXX39dkZGR8vHxUd++fSVJW7duVfPmzeXp6amgoCANGjRIly5dyvE4wcHBWrJkiT7++GNZLBZFRkZKujZLy/Lly7OUP3HihFq2bClJ8vX1tdnHGKO33npLVapUkaenp2rXrq1///vf1n0zW5asW7dODRo0kLu7u7777rub7idJa9asUdWqVeXp6amWLVvqxIkTebyy9iEhAgAAAABAAVuwYIFcXV21fft2zZw5U9HR0Zo7d651+9SpU1WzZk3t2rVLY8eO1f79+9W2bVt17dpVP/74oxYvXqwtW7ZowIABOR5jx44devjhh9WtWzedOXNG77zzzg1jCgoK0pIlSyRJhw8fttlnzJgxmj9/vt577z0dPHhQQ4cO1dNPP63Nmzfb1DFy5EhNnjxZCQkJuvfee2+636lTp9S1a1e1b99ee/fu1XPPPadRo0bl6Zraq+i2XQEAAAAA4A4VFBSk6OhoWSwWhYWFaf/+/YqOjra2BnnwwQc1YsQIa/mePXuqR48eGjJkiCQpNDRUM2fOVIsWLfTee+/Jw8MjyzHKlCkjd3d3eXp65qqbjIuLi/z8/CRJZcuWtQ5oeunSJU2fPl3ffPONmjRpIkmqUqWKtmzZojlz5qhFixbWOiZMmKA2bdrker/33ntPVapUyXItpkyZYucVtR8JEQAAAAAACljjxo1lsVisy02aNNG0adN09epVSVKDBg1syu/atUtHjx5VXFycdZ0xRhkZGTp+/LiWLVumSZMmWbcdOnRIlSpVckishw4d0uXLl62JjkypqamqW7euzbrr487NfgkJCdlei4JAQgQAAAAAgCKmRIkSNssZGRnq16+fBg0alKVspUqV9MILL6hbt27WdeXLl3dYLBkZGZKk1atXq0KFCjbb3N3dbZavjzs3+2WOm1IYSIgAAAAAAFDAtm3blmU5NDRULi4u2ZavV6+eDh48qHvuuSfb7X5+ftbuLrciczabzJYqkhQeHi53d3edPHnSpnvMzeRmv/Dw8CwDvP7z2uSXQh1U9dtvv9Ujjzyi8uXLZxnlNi0tTa+88opq1aqlEiVKqHz58urZs6d+/fVXmzquXLmigQMH6q677lKJEiXUqVMnnT592qZMUlKSnnnmGfn4+MjHx0fPPPOMU8ypDAAAAAAomk6dOqVhw4bp8OHDWrhwoWJiYjR48OAcy7/yyiuKj4/XSy+9pL179yoxMVErVqzQwIEDHRpX5cqVZbFYtGrVKv3+++/666+/5O3trREjRmjo0KFasGCBjh07pj179ujdd9/VggULcqwrN/u98MILOnbsmPVafPbZZ4qNjXXoOeWkUFuIXLp0SbVr11bv3r316KOP2mz7+++/tXv3bo0dO1a1a9dWUlKShgwZok6dOmnnzp3WckOGDNHKlSu1aNEi+fv7a/jw4erYsaN27dplzaz16NFDp0+f1tq1ayVJzz//vJ555hmtXLmy4E4WAAAAAFAgTrzZobBDuKmePXsqJSVFDRs2lIuLiwYOHKjnn38+x/L33nuvNm/erNGjR+uBBx6QMUZ33323nnjiCYfGVaFCBY0fP16jRo1S79691bNnT8XGxmrixIkqW7asJk+erJ9//lmlS5dWvXr19H//9383rO9m+1WqVElLlizR0KFDNXv2bDVs2FCTJk1Snz59HHpe2bGYwuywcx2LxaJly5apS5cuOZbZsWOHGjZsqF9++UWVKlVScnKyypQpo08++cR6E/z6668KCgrSmjVr1LZtWyUkJCg8PFzbtm1To0aNJF1rftOkSRP99NNPCgsLy1V8Fy9elI+Pj5KTk1WqVKlbPl8AAAAAQN5dvnxZx48fV0hISLYzrBRlERERqlOnjmbMmFHYodyWbvTe2/Pd/bYaQyQ5OVkWi8U69c+uXbuUlpamhx56yFqmfPnyqlmzprZu3aq2bdsqPj5ePj4+1mSIdG00Xx8fH23dujXHhMiVK1d05coV6/LFixfz56QcJHjUaofUcztkUgEAAAAAuFWFOoaIPS5fvqxRo0apR48e1izP2bNnVbx4cfn6+tqUDQgI0NmzZ61lypYtm6W+smXLWstkZ/LkydYxR3x8fBQUFOTAswEAAAAAAIXptmghkpaWpu7duysjI0OzZ8++aXljjM0cxtf/nFOZf3r11Vc1bNgw6/LFixdJigAAAAAAbtmmTZsKOwToNmghkpaWpm7duun48eNav369TR+gwMBApaamKikpyWafc+fOKSAgwFrmt99+y1Lv77//bi2THXd3d5UqVcrmBQAAAAAA7gxFOiGSmQxJTEzU119/LX9/f5vt9evXl5ubm9avX29dd+bMGR04cEBNmzaVJDVp0kTJycn64YcfrGW2b9+u5ORkaxkAAAAAAOBcCrXLzF9//aWjR49al48fP669e/fKz89P5cuX12OPPabdu3dr1apVunr1qnXMDz8/PxUvXlw+Pj569tlnNXz4cPn7+8vPz08jRoxQrVq11Lp1a0lS9erV9fDDD6tv376aM2eOpGvT7nbs2DHXM8wAAAAAAIA7S6EmRHbu3KmWLVtalzPH7OjVq5eioqK0YsUKSVKdOnVs9tu4caMiIiIkSdHR0XJ1dVW3bt2UkpKiVq1aKTY2Vi4uLtbycXFxGjRokHU2mk6dOmnWrFn5eGa3sSgfB9WT7Jh6AAAAAADIB4WaEImIiJAxJsftN9qWycPDQzExMYqJicmxjJ+fnz799NM8xQgAAAAAAO48RXoMEQAAAAAAgPxwW0y7CwAAAABArjlqKIBcHcv+4QIiIiJUp04dzZgxw/Hx/H/BwcEaMmSIhgwZkm/HuF5UVJSWL1+uvXv3FsjxHIEWIgAAAAAA4JaMGDFCGzZsKOww7EILEQAAAAAAcEtKliypkiVLFnYYdqGFCAAAAAAABSw9PV0DBgxQ6dKl5e/vrzFjxlgnFklKSlLPnj3l6+srLy8vtWvXTomJiTb7L1myRDVq1JC7u7uCg4M1bdq0PMdisVj03nvvqV27dvL09FRISIi++OILmzKvvPKKqlatKi8vL1WpUkVjx45VWlqadXtUVJTNDLGRkZHq0qWL3n77bZUrV07+/v566aWXbPaZPXu2QkND5eHhoYCAAD322GN5Poe8ICECAAAAAEABW7BggVxdXbV9+3bNnDlT0dHRmjt3rqRryYSdO3dqxYoVio+PlzFG7du3tyYTdu3apW7duql79+7av3+/oqKiNHbsWMXGxuY5nrFjx+rRRx/Vvn379PTTT+vJJ59UQkKCdbu3t7diY2N16NAhvfPOO/rwww8VHR19wzo3btyoY8eOaePGjVqwYIFiY2OtMe7cuVODBg3ShAkTdPjwYa1du1bNmzfPc/x5QZcZAAAAAAAKWFBQkKKjo2WxWBQWFqb9+/crOjpaERERWrFihb7//ns1bdpUkhQXF6egoCAtX75cjz/+uKZPn65WrVpp7NixkqSqVavq0KFDmjp1qiIjI/MUz+OPP67nnntOkjRx4kStX79eMTExmj17tiRpzJgx1rLBwcEaPny4Fi9erJEjR+ZYp6+vr2bNmiUXFxdVq1ZNHTp00IYNG9S3b1+dPHlSJUqUUMeOHeXt7a3KlSurbt26eYo9r2ghAgAAAABAAWvcuLEsFot1uUmTJkpMTNShQ4fk6uqqRo0aWbf5+/srLCzM2mIjISFBzZo1s6mvWbNmSkxM1NWrV/MUT5MmTbIsX99C5N///rfuv/9+BQYGqmTJkho7dqxOnjx5wzpr1KghFxcX63K5cuV07tw5SVKbNm1UuXJlValSRc8884zi4uL0999/5yn2vCIhAgAAAABAEWeMsSZQrv/5+u2OlnmMbdu2qXv37mrXrp1WrVqlPXv2aPTo0UpNTb3h/m5ublnqy8jIkHStC87u3bu1cOFClStXTuPGjVPt2rX1xx9/OPw8ckJCBAAAAACAArZt27Ysy6GhoQoPD1d6erq2b99u3Xb+/HkdOXJE1atXlySFh4dry5YtNvtv3bpVVatWtWmRcavxVKtWTZL0/fffq3Llyho9erQaNGig0NBQ/fLLL3k6zvVcXV3VunVrvfXWW/rxxx914sQJffPNN7dcb66PX2BHAgAAAAAAkqRTp05p2LBh6tevn3bv3q2YmBhNmzZNoaGh6ty5s/r27as5c+bI29tbo0aNUoUKFdS5c2dJ0vDhw3Xfffdp4sSJeuKJJxQfH69Zs2ZZx/vIiy+++EINGjTQ/fffr7i4OP3www+aN2+eJOmee+7RyZMntWjRIt13331avXq1li1bdkvnv2rVKv38889q3ry5fH19tWbNGmVkZCgsLOyW6rUHCREAAAAAwJ0lKrmwI7ipnj17KiUlRQ0bNpSLi4sGDhyo559/XpI0f/58DR48WB07dlRqaqqaN2+uNWvWWLug1KtXT59//rnGjRuniRMnqly5cpowYUKeB1SVpPHjx2vRokXq37+/AgMDFRcXp/DwcElS586dNXToUA0YMEBXrlxRhw4dNHbsWEVFReX5eKVLl9bSpUsVFRWly5cvKzQ0VAsXLlSNGjXyXKe9LCY/OhrdgS5evCgfHx8lJyerVKlShR1OFsGjVjuknhMePRxSz+3wAAIAAABw+7p8+bKOHz+ukJAQeXh4FHY4tzWLxaJly5apS5cuhR1KrtzovbfnuztjiAAAAAAAAKdDQgQAAAAAgDtUXFycSpYsme2rILunFEWMIQIAAAAAwB2qU6dOatSoUbbbMsckcdaRNEiIAAAAAABwh/L29pa3t3dhh1Ek0WUGAAAAAAA4HRIiAAAAAADA6ZAQAQAAAAAAToeECAAAAAAAcDokRAAAAAAAgNNhlhkAAAAAwB2l1oJaBXas/b32271PRESE6tSpoxkzZjg+oP8vODhYQ4YM0ZAhQ25a1mKxaNmyZerSpUu+xZOT2NhYDRkyRH/88UeBH5sWIgAAAAAAwOmQEAEAAAAAAHZJS0sr7BBuGQkRAAAAAAAKWHp6ugYMGKDSpUvL399fY8aMkTFGkpSUlKSePXvK19dXXl5eateunRITE232X7JkiWrUqCF3d3cFBwdr2rRptxTPmTNn1K5dO3l6eiokJERffPGFdduJEydksVj0+eefKyIiQh4eHvr0008lSfPnz1f16tXl4eGhatWqafbs2Vn2W7p0qVq2bCkvLy/Vrl1b8fHxOcZx/vx5NWzYUJ06ddLly5dv6ZxuhoQIAAAAAAAFbMGCBXJ1ddX27ds1c+ZMRUdHa+7cuZKkyMhI7dy5UytWrFB8fLyMMWrfvr21VcauXbvUrVs3de/eXfv371dUVJTGjh2r2NjYPMczduxYPfroo9q3b5+efvppPfnkk0pISLAp88orr2jQoEFKSEhQ27Zt9eGHH2r06NF64403lJCQoEmTJmns2LFasGCBzX6jR4/WiBEjtHfvXlWtWlVPPvmk0tPTs8Rw+vRpPfDAA6pWrZqWLl0qDw+PPJ9PbjCoKgAAAAAABSwoKEjR0dGyWCwKCwvT/v37FR0drYiICK1YsULff/+9mjZtKkmKi4tTUFCQli9frscff1zTp09Xq1atNHbsWElS1apVdejQIU2dOlWRkZF5iufxxx/Xc889J0maOHGi1q9fr5iYGJsWH0OGDFHXrl2tyxMnTtS0adOs60JCQnTo0CHNmTNHvXr1spYbMWKEOnToIEkaP368atSooaNHj6patWrWMkeOHFGbNm3UuXNnvfPOO7JYLHk6D3vQQgQAAAAAgALWuHFjmy/9TZo0UWJiog4dOiRXV1c1atTIus3f319hYWHWFhsJCQlq1qyZTX3NmjVTYmKirl69mqd4mjRpkmX5ny1EGjRoYP35999/16lTp/Tss8+qZMmS1tfrr7+uY8eO2ex37733Wn8uV66cJOncuXPWdSkpKbr//vvVpUsXzZw5s0CSIRItRAAAAAAAKPKMMdZEwfU/X7/d0f55jBIlSlh/zsjIkCR9+OGHNskbSXJxcbFZdnNzy1Jn5v6S5O7urtatW2v16tV6+eWXVbFiRcecwE3QQgQAAAAAgAK2bdu2LMuhoaEKDw9Xenq6tm/fbt12/vx5HTlyRNWrV5ckhYeHa8uWLTb7b926VVWrVs2SjLiVeK7v0vJPAQEBqlChgn7++Wfdc889Nq+QkBC7jl2sWDF98sknql+/vh588EH9+uuveToHe9FCBAAAAACAAnbq1CkNGzZM/fr10+7duxUTE6Np06YpNDRUnTt3Vt++fTVnzhx5e3tr1KhRqlChgjp37ixJGj58uO677z5NnDhRTzzxhOLj4zVr1iyb8T7s9cUXX6hBgwa6//77FRcXpx9++EHz5s274T5RUVEaNGiQSpUqpXbt2unKlSvauXOnkpKSNGzYMLuO7+Liori4OD355JN68MEHtWnTJgUGBub5fHKDhAgAAAAA4I6yv9f+wg7hpnr27KmUlBQ1bNhQLi4uGjhwoJ5//nlJ16ayHTx4sDp27KjU1FQ1b95ca9assXY9qVevnj7//HONGzdOEydOVLly5TRhwoQ8D6gqXRvsdNGiRerfv78CAwMVFxen8PDwG+7z3HPPycvLS1OnTtXIkSNVokQJ1apVS0OGDMlTDK6urlq4cKGeeOIJa1KkbNmyeaorNywmPzoa3YEuXrwoHx8fJScnq1SpUoUdThbBo1Y7pJ4THj0cUo+ikh1TDwAAAABk4/Llyzp+/LhCQkLyfXpWFC03eu/t+e7OGCIAAAAAAMDp0GUGQJ45omXSiTc7OCASAAAAANmJi4tTv379st1WuXJlHTx4sIAjKjpIiAAAAAAAcIfq1KlTlmlxM10/Ha4zIiECAAAAAMAdytvbW97e3oUdRpHEGCIAAAAAAMDpkBABAAAAAABOh4QIAAAAAABwOiREAAAAAACA0yEhAgAAAAAAnA6zzAAAAAAA7igJ1aoX2LGq/5Rg9z4RERGqU6eOZsyY4fiA/r/g4GANGTJEQ4YMybdj3O5oIQIAAAAAAOzWr18/3X333fL09FSZMmXUuXNn/fTTT4UdVq7RQgRA4YrycVA9yY6pBwAAAHByaWlpcnNzu2m5+vXr66mnnlKlSpV04cIFRUVF6aGHHtLx48fl4uJSAJHeGlqIAAAAAABQwNLT0zVgwACVLl1a/v7+GjNmjIwxkqSkpCT17NlTvr6+8vLyUrt27ZSYmGiz/5IlS1SjRg25u7srODhY06ZNy3MsFotF77//vjp37qwSJUro9ddflyS99957uvvuu1W8eHGFhYXpk08+sdnv+eefV/PmzRUcHKx69erp9ddf16lTp3TixIk8x1KQSIgAAAAAAFDAFixYIFdXV23fvl0zZ85UdHS05s6dK0mKjIzUzp07tWLFCsXHx8sYo/bt2ystLU2StGvXLnXr1k3du3fX/v37FRUVpbFjxyo2NjbP8bz22mvq3Lmz9u/frz59+mjZsmUaPHiwhg8frgMHDqhfv37q3bu3Nm7cmO3+ly5d0vz58xUSEqKgoKA8x1GQ6DIDAAAAAEABCwoKUnR0tCwWi8LCwrR//35FR0crIiJCK1as0Pfff6+mTZtKkuLi4hQUFKTly5fr8ccf1/Tp09WqVSuNHTtWklS1alUdOnRIU6dOVWRkZJ7i6dGjh/r06WOzHBkZqf79+0uShg0bpm3btuntt99Wy5YtreVmz56tkSNH6tKlS6pWrZrWr1+v4sWL5/GqFCxaiAAAAAAAUMAaN24si8ViXW7SpIkSExN16NAhubq6qlGjRtZt/v7+CgsLU0LCtRltEhIS1KxZM5v6mjVrpsTERF29ejVP8TRo0MBmOadjZMaQ6amnntKePXu0efNmhYaGqlu3brp8+XKeYihotBABAAAAAKCIM8ZYEyjX/3z99ltRokSJLOuyO8Y/1/n4+MjHx0ehoaFq3LixfH19tWzZMj355JO3FE9BoIUIAAAAAAAFbNu2bVmWQ0NDFR4ervT0dG3fvt267fz58zpy5IiqV68uSQoPD9eWLVts9t+6dauqVq3qsNldqlevnu0xMmPIiTFGV65ccUgM+Y0WIgAAAAAAFLBTp05p2LBh6tevn3bv3q2YmBhNmzZNoaGh6ty5s/r27as5c+bI29tbo0aNUoUKFdS5c2dJ0vDhw3Xfffdp4sSJeuKJJxQfH69Zs2Zp9uzZDovv5ZdfVrdu3VSvXj21atVKK1eu1NKlS/X1119Lkn7++WctXrxYDz30kMqUKaP//ve/mjJlijw9PdW+fXuHxZGfSIgAAAAAAO4o1X9KuHmhQtazZ0+lpKSoYcOGcnFx0cCBA/X8889LkubPn6/BgwerY8eOSk1NVfPmzbVmzRq5ublJkurVq6fPP/9c48aN08SJE1WuXDlNmDAhzwOqZqdLly565513NHXqVA0aNEghISGaP3++IiIiJEkeHh767rvvNGPGDCUlJSkgIEDNmzfX1q1bVbZsWYfFkZ8s5lY7GjmJixcvysfHR8nJySpVqlRhh5NF8KjVDqnnhEcPh9SjqGTH1IMizRH3HfccAAAA8uLy5cs6fvy4QkJC5OHhUdjhoADd6L2357s7Y4gAAAAAAACnQ0IEAAAAAIA7VFxcnEqWLJntq0aNGoUdXqFiDBEAAAAAAO5QnTp1UqNGjbLdljkmibMiIQIAAAAAwB3K29tb3t7ehR1GkUSXGQAAAAAA4HRIiAAAAAAAAKdDQgQAAAAAADgdEiIAAAAAAMDpkBABAAAAAABOh1lmAAAAAAB3lHdf+KbAjvXS+w/avU9ERITq1KmjGTNmOD6g/y84OFhDhgzRkCFD8u0YNxMZGak//vhDy5cvL7QYboQWIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAAUsPT1dAwYMUOnSpeXv768xY8bIGCNJSkpKUs+ePeXr6ysvLy+1a9dOiYmJNvsvWbJENWrUkLu7u4KDgzVt2rQ8x5KYmKjmzZvLw8ND4eHhWr9+vSwWi01Xl//+97964okn5OvrK39/f3Xu3FknTpywbr969aqGDRtmPZ+RI0daz6eoIiECAAAAAEABW7BggVxdXbV9+3bNnDlT0dHRmjt3rqRrY2/s3LlTK1asUHx8vIwxat++vdLS0iRJu3btUrdu3dS9e3ft379fUVFRGjt2rGJjY+2OIyMjQ127dpWLi4u2bdum999/X6+88opNmb///lstW7ZUyZIl9e2332rLli0qWbKkHn74YaWmpkqSpk2bpo8++kjz5s3Tli1bdOHCBS1btuzWLlI+Y1BVAAAAAAAKWFBQkKKjo2WxWBQWFqb9+/crOjpaERERWrFihb7//ns1bdpUkhQXF6egoCAtX75cjz/+uKZPn65WrVpp7NixkqSqVavq0KFDmjp1qiIjI+2K4+uvv1ZCQoJOnDihihUrSpImTZqkdu3aWcssWrRIxYoV09y5c2WxWCRJ8+fPV+nSpbVp0yY99NBDmjFjhl599VU9+uijkqT3339f69atu9XLlK9oIQIAAAAAQAFr3LixNbkgSU2aNFFiYqIOHTokV1dXNWrUyLrN399fYWFhSkhIkCQlJCSoWbNmNvU1a9ZMiYmJunr1ql1xJCQkqFKlStZkSGYs19u1a5eOHj0qb29vlSxZUiVLlpSfn58uX76sY8eOKTk5WWfOnLHZz9XVVQ0aNLArloJGCxEAAAAAAIo4Y4w1gXL9z9dvz2u9//TPujMyMlS/fn3FxcVlKVumTJk8HbcooIUIAAAAAAAFbNu2bVmWQ0NDFR4ervT0dG3fvt267fz58zpy5IiqV68uSQoPD9eWLVts9t+6dauqVq0qFxcXu+IIDw/XyZMn9euvv1rXxcfH25SpV6+eEhMTVbZsWd1zzz02Lx8fH/n4+KhcuXI255Senq5du3bZFUtBIyECAAAAAEABO3XqlIYNG6bDhw9r4cKFiomJ0eDBgxUaGqrOnTurb9++2rJli/bt26enn35aFSpUUOfOnSVJw4cP14YNGzRx4kQdOXJECxYs0KxZszRixAi742jdurXCwsLUs2dP7du3T999951Gjx5tU+app57SXXfdpc6dO+u7777T8ePHtXnzZg0ePFinT5+WJA0ePFhvvvmmli1bpp9++kn9+/fXH3/8ccvXKT8VapeZb7/9VlOnTtWuXbt05swZLVu2TF26dLFuN8Zo/Pjx+uCDD5SUlKRGjRrp3XffVY0aNaxlrly5ohEjRmjhwoVKSUlRq1atNHv2bJv+T0lJSRo0aJBWrFghSerUqZNiYmJUunTpgjpVAAAAAEABeen9Bws7hJvq2bOnUlJS1LBhQ7m4uGjgwIF6/vnnJV0bsHTw4MHq2LGjUlNT1bx5c61Zs0Zubm6SrrXY+PzzzzVu3DhNnDhR5cqV04QJE+weUFWSihUrpmXLlunZZ59Vw4YNFRwcrJkzZ+rhhx+2lvHy8tK3336rV155RV27dtWff/6pChUqqFWrVipVqpSka0maM2fOKDIyUsWKFVOfPn30r3/9S8nJybd+sfKJxRTixMBffvmlvv/+e9WrV0+PPvpoloTIlClT9MYbbyg2NlZVq1bV66+/rm+//VaHDx+Wt7e3JOnFF1/UypUrFRsbK39/fw0fPlwXLlzQrl27rE2F2rVrp9OnT+uDDz6QJD3//PMKDg7WypUrcx3rxYsX5ePjo+TkZOsbXpQEj1rtkHpOePRwSD2KKro3PRzHEfcd9xwAAADy4vLlyzp+/LhCQkLk4eFR2OHccSwWS5bv6EXFjd57e767F2oLkXbt2tlM5XM9Y4xmzJih0aNHq2vXrpKuzdMcEBCgzz77TP369VNycrLmzZunTz75RK1bt5YkffrppwoKCtLXX3+ttm3bKiEhQWvXrtW2bduso/R++OGHatKkiQ4fPqywsLCCOVkAAAAAAFBkFNkxRI4fP66zZ8/qoYcesq5zd3dXixYttHXrVknXpv5JS0uzKVO+fHnVrFnTWiY+Pl4+Pj42UxY1btxYPj4+1jLZuXLlii5evGjzAgAAAADgdhIXF2edKvefr+uHo3BGRXba3bNnz0qSAgICbNYHBATol19+sZYpXry4fH19s5TJ3P/s2bMqW7ZslvrLli1rLZOdyZMna/z48bd0DgAAAAAAFKZOnTrZNBC4XuaYJNkpxNE1CkyRTYhkym5u5X+u+6d/lsmu/M3qefXVVzVs2DDr8sWLFxUUFJTbsAEAAAAAKHTe3t7WMThhq8h2mQkMDJSkLK04zp07Z201EhgYqNTUVCUlJd2wzG+//Zal/t9//z1L65Prubu7q1SpUjYvAAAAAABwZyiyCZGQkBAFBgZq/fr11nWpqanavHmzmjZtKkmqX7++3NzcbMqcOXNGBw4csJZp0qSJkpOT9cMPP1jLbN++XcnJydYyAAAAAADAuRRql5m//vpLR48etS4fP35ce/fulZ+fnypVqqQhQ4Zo0qRJCg0NVWhoqCZNmiQvLy/16HFtmk4fHx89++yzGj58uPz9/eXn56cRI0aoVq1a1llnqlevrocfflh9+/bVnDlzJF2bdrdjx47MMAMAAAAAgJMq1ITIzp071bJlS+ty5pgdvXr1UmxsrEaOHKmUlBT1799fSUlJatSokb766iub/k/R0dFydXVVt27dlJKSolatWik2NlYuLi7WMnFxcRo0aJB1NppOnTpp1qxZBXSWAAAAAACgqLEYZxg61gEuXrwoHx8fJScnF8nxRIJHrXZIPSc8ejikHkUlO6YeFGmOuO+45wAAAJAXly9f1vHjxxUSEiIPD4/CDgcF6EbvvT3f3YvsGCIAAAAAANyJIiIiNGTIkHw9RnBwsGbMmJGrshaLRcuXL89x+4kTJ2SxWLR3716HxFZUFPlpdwEAAAAAsMe0JzoW2LGGL15VYMeCY9FCBAAAAAAAOB0SIgAAAAAAFLD09HQNGDBApUuXlr+/v8aMGaPMIT6TkpLUs2dP+fr6ysvLS+3atVNiYqLN/kuWLFGNGjXk7u6u4OBgTZs27ZbiOXPmjNq1aydPT0+FhIToiy++yFLmp59+UtOmTeXh4aEaNWpo06ZNt3TMwkZCBAAAAACAArZgwQK5urpq+/btmjlzpqKjozV37lxJUmRkpHbu3KkVK1YoPj5exhi1b99eaWlpkqRdu3apW7du6t69u/bv36+oqCiNHTtWsbGxeY5n7NixevTRR7Vv3z49/fTTevLJJ5WQkGBT5uWXX9bw4cO1Z88eNW3aVJ06ddL58+fzfMzCRkIEAAAAAIACFhQUpOjoaIWFhempp57SwIEDFR0drcTERK1YsUJz587VAw88oNq1aysuLk7//e9/rQOfTp8+Xa1atdLYsWNVtWpVRUZGasCAAZo6dWqe43n88cf13HPPqWrVqpo4caIaNGigmJgYmzIDBgzQo48+qurVq+u9996Tj4+P5s2bdyuXoVCREAEAAAAAoIA1btxYFovFutykSRMlJibq0KFDcnV1VaNGjazb/P39FRYWZm2xkZCQoGbNmtnU16xZMyUmJurq1at5iqdJkyZZlv/ZQuT6Mq6urmrQoEGWMrcTEiIAAAAAABRxxhhrAuX6n6/f7mj/PEZeyxRVJEQAAAAAAChg27Zty7IcGhqq8PBwpaena/v27dZt58+f15EjR1S9enVJUnh4uLZs2WKz/9atW1W1alW5uLg4LJ5q1arlWCY9PV27du3KUuZ24lrYAQAAAAAA4GxOnTqlYcOGqV+/ftq9e7diYmI0bdo0hYaGqnPnzurbt6/mzJkjb29vjRo1ShUqVFDnzp0lScOHD9d9992niRMn6oknnlB8fLxmzZql2bNn5zmeL774Qg0aNND999+vuLg4/fDDD1nGB3n33XcVGhqq6tWrKzo6WklJSerTp88tXYfCREIEAAAAAHBHGb54VWGHcFM9e/ZUSkqKGjZsKBcXFw0cOFDPP/+8JGn+/PkaPHiwOnbsqNTUVDVv3lxr1qyRm5ubJKlevXr6/PPPNW7cOE2cOFHlypXThAkTFBkZmed4xo8fr0WLFql///4KDAxUXFycwsPDbcq8+eabmjJlivbs2aO7775b//nPf3TXXXfl+ZiFzWLyo6PRHejixYvy8fFRcnKySpUqVdjhZBE8arVD6jnh0cMh9Sgq2TH1oEhzxH3HPQcAAIC8uHz5so4fP66QkBB5eHgUdjgoQDd67+357s4YIgAAAAAAwOmQEAEAAAAA4A4VFxenkiVLZvuqUaNGYYdXqBhDBAAAAACAO1SnTp3UqFGjbLdljknirEiIAAAAAABwh/L29pa3t3dhh1Ek0WUGAAAAAAA4HRIiAAAAAADA6dBlBvmi1oJat1zH/l77HRAJAAAAAABZ0UIEAAAAAAA4HRIiAAAAAADA6ZAQAQAAAACgAEVERGjIkCH5eozg4GDNmDEjX48hSZGRkerSpUu+Hyc/MIYIAAAAAOCOcnrUdwV2rIpvPlBgx4Jj0UIEAAAAAAA4HRIiAAAAAAAUsPT0dA0YMEClS5eWv7+/xowZI2OMJCkpKUk9e/aUr6+vvLy81K5dOyUmJtrsv2TJEtWoUUPu7u4KDg7WtGnT8hxLVFSUKlWqJHd3d5UvX16DBg2SJE2YMEG1amWdQbR+/foaN26czbrx48erbNmyKlWqlPr166fU1FTrtrVr1+r++++3nmvHjh117NixPMfrKCREAAAAAAAoYAsWLJCrq6u2b9+umTNnKjo6WnPnzpV0bVyOnTt3asWKFYqPj5cxRu3bt1daWpokadeuXerWrZu6d++u/fv3KyoqSmPHjlVsbKzdcfz73/9WdHS05syZo8TERC1fvtyaBOnTp48OHTqkHTt2WMv/+OOP2rNnjyIjI63rNmzYoISEBG3cuFELFy7UsmXLNH78eOv2S5cuadiwYdqxY4c2bNigYsWK6V//+pcyMjLycOUchzFEAAAAAAAoYEFBQYqOjpbFYlFYWJj279+v6OhoRUREaMWKFfr+++/VtGlTSVJcXJyCgoK0fPlyPf7445o+fbpatWqlsWPHSpKqVq2qQ4cOaerUqTaJitw4efKkAgMD1bp1a7m5ualSpUpq2LChJKlixYpq27at5s+fr/vuu0+SNH/+fLVo0UJVqlSx1lG8eHF99NFH8vLyUo0aNTRhwgS9/PLLmjhxoooVK6ZHH33U5pjz5s1T2bJldejQIdWsWTOvl/CW0UIEAAAAAIAC1rhxY1ksFutykyZNlJiYqEOHDsnV1VWNGjWybvP391dYWJgSEhIkSQkJCWrWrJlNfc2aNVNiYqKuXr1qVxyPP/64UlJSVKVKFfXt21fLli1Tenq6dXvfvn21cOFCXb58WWlpaYqLi1OfPn1s6qhdu7a8vLxszuWvv/7SqVOnJEnHjh1Tjx49VKVKFZUqVUohISGSriVjChMJEQAAAAAAijhjjDWBcv3P12/Pi6CgIB0+fFjvvvuuPD091b9/fzVv3tzaPeeRRx6Ru7u7li1bppUrV+rKlStZWnzkJDPGRx55ROfPn9eHH36o7du3a/v27ZJkM85IYaDLDAAAAAAABWzbtm1ZlkNDQxUeHq709HRt377d2mXm/PnzOnLkiKpXry5JCg8P15YtW2z237p1q6pWrSoXFxe7Y/H09FSnTp3UqVMnvfTSS6pWrZr279+vevXqydXVVb169dL8+fPl7u6u7t2727QGkaR9+/YpJSVFnp6e1nMpWbKkKlasqPPnzyshIUFz5szRAw9cm6L4n7EXFhIiAAAAAAAUsFOnTmnYsGHq16+fdu/erZiYGE2bNk2hoaHq3Lmz+vbtqzlz5sjb21ujRo1ShQoV1LlzZ0nS8OHDdd9992nixIl64oknFB8fr1mzZmn27Nl2xxEbG6urV6+qUaNG8vLy0ieffCJPT09VrlzZWua5556zJmO+//77LHWkpqbq2Wef1ZgxY/TLL7/otdde04ABA1SsWDH5+vrK399fH3zwgcqVK6eTJ09q1KhRebxqjkVCBAAAAABwR6n45gOFHcJN9ezZUykpKWrYsKFcXFw0cOBAPf/885KuDVw6ePBgdezYUampqWrevLnWrFkjNzc3SVK9evX0+eefa9y4cZo4caLKlSunCRMm2D2gqiSVLl1ab775poYNG6arV6+qVq1aWrlypfz9/a1lQkND1bRpU50/f95mbJNMrVq1UmhoqJo3b64rV66oe/fuioqKkiQVK1ZMixYt0qBBg1SzZk2FhYVp5syZioiIsDtWR7OYvHY0cjIXL16Uj4+PkpOTVapUqcIOJ4vgUasdUs8Jjx4OqadWSKVbrmN/r/0OiAT5yRH3naPuOUUlO6YeAAAA3BYuX76s48ePKyQkRB4eHoUdzh3NGKNq1aqpX79+GjZsWGGHc8P33p7v7rQQAQAAAAAA2Tp37pw++eQT/fe//1Xv3r0LOxyHIiECAAAAAMAdKi4uTv369ct2W+XKlXXw4MEb7h8QEKC77rpLH3zwgXx9ffMjxEJDQgQAAAAAgDtUp06dsh33Q5J1TJIbuZNH2SAhAgAAAADAHcrb21ve3t6FHUaRVKywAwAAAAAAAChotBABcEeotaCWQ+phdiMAAADAOdBCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAAUoIiJCQ4YMyddjBAcHa8aMGfl6jNsdg6oCAAAAAO4oUVFRd+SxihqLxaJly5apS5cuhR1KntBCBAAAAAAAWKWlpRXJuhyNhAgAAAAAAAUsPT1dAwYMUOnSpeXv768xY8bIGCNJSkpKUs+ePeXr6ysvLy+1a9dOiYmJNvsvWbJENWrUkLu7u4KDgzVt2rQ8x2KxWPT++++rc+fOKlGihF5//XVJ0sqVK1W/fn15eHioSpUqGj9+vNLT0yVd65IjSf/6179ksVisy1FRUapTp44++ugjValSRe7u7jLG6OTJk+rcubNKliypUqVKqVu3bvrtt9/yHLMjkBABAAAAAKCALViwQK6urtq+fbtmzpyp6OhozZ07V5IUGRmpnTt3asWKFYqPj5cxRu3bt7e2tti1a5e6deum7t27a//+/YqKitLYsWMVGxub53hee+01de7cWfv371efPn20bt06Pf300xo0aJAOHTqkOXPmKDY2Vm+88YYkaceOHZKk+fPn68yZM9ZlSTp69Kg+//xzLVmyRHv37pUkdenSRRcuXNDmzZu1fv16HTt2TE888USe43UExhABAAAAAKCABQUFKTo6WhaLRWFhYdq/f7+io6MVERGhFStW6Pvvv1fTpk0lSXFxcQoKCtLy5cv1+OOPa/r06WrVqpXGjh0rSapataoOHTqkqVOnKjIyMk/x9OjRQ3369LEuP/PMMxo1apR69eolSapSpYomTpyokSNH6rXXXlOZMmUkSaVLl1ZgYKBNXampqfrkk0+sZdavX68ff/xRx48fV1BQkCTpk08+UY0aNbRjxw7dd999eYr5VtFCBAAAAACAAta4cWNZLBbrcpMmTZSYmKhDhw7J1dVVjRo1sm7z9/dXWFiYEhISJEkJCQlq1qyZTX3NmjVTYmKirl69mqd4GjRoYLO8a9cuTZgwQSVLlrS++vbtqzNnzujvv/++YV2VK1e2JkMy4w0KCrImQyQpPDxcpUuXtp5TYaCFCAAAAAAARZwxxppAuf7n67ffihIlStgsZ2RkaPz48eratWuWsh4eHnbVlV28N1pfUEiIAAAAAABQwLZt25ZlOTQ0VOHh4UpPT9f27dutXWbOnz+vI0eOqHr16pKuta7YsmWLzf5bt25V1apV5eLi4pD46tWrp8OHD+uee+7JsYybm1uuWqSEh4fr5MmTOnXqlLWVyKFDh5ScnGw9p8JAlxkAAAAAAArYqVOnNGzYMB0+fFgLFy5UTEyMBg8erNDQUHXu3Fl9+/bVli1btG/fPj399NOqUKGCOnfuLEkaPny4NmzYoIkTJ+rIkSNasGCBZs2apREjRjgsvnHjxunjjz9WVFSUDh48qISEBC1evFhjxoyxlgkODtaGDRt09uxZJSUl5VhX69atde+99+qpp57S7t279cMPP6hnz55q0aJFlq46BYkWIgAAAACAO0pUVFRhh3BTPXv2VEpKiho2bCgXFxcNHDhQzz//vKRrM7cMHjxYHTt2VGpqqpo3b641a9bIzc1N0rXWG59//rnGjRuniRMnqly5cpowYUKeB1TNTtu2bbVq1SpNmDBBb731ltzc3FStWjU999xz1jLTpk3TsGHD9OGHH6pChQo6ceJEtnVZLBYtX75cAwcOVPPmzVWsWDE9/PDDiomJcVi8eWExt9rRyElcvHhRPj4+Sk5OVqlSpQo7nCyCR612SD0nPHo4pJ5aIZVuuY79vfY7IBLkJ0fcd0XpnpO47wAAAG4Xly9f1vHjxxUSEnLTMS1wZ7nRe2/Pd3e6zAAAAAAAAKdDQgQAAAAAgDtUXFyczdS5179q1KhR2OEVKsYQAQAAAADgDtWpUyc1atQo222ZY5I4KxIiAAAAAADcoby9veXt7V3YYRRJdJkBAAAAANy2mCfE+TjqPSchAgAAAAC47WR29/j7778LORIUtNTUVEmSi4vLLdVDlxkAAAAAwG3HxcVFpUuX1rlz5yRJXl5eslgshRwV8ltGRoZ+//13eXl5ydX11lIaJEQAAAAAALelwMBASbImReAcihUrpkqVKt1yAoyECAAAAADgtmSxWFSuXDmVLVtWaWlphR0OCkjx4sVVrNitjwBCQgQAAAAAcFtzcXG55fEk4HwYVBUAAAAAADgdEiIAAAAAAMDpkBABAAAAAABOh4QIAAAAAABwOiREAAAAAACA0yEhAgAAAAAAnA4JEQAAAAAA4HRIiAAAAAAAAKdDQgQAAAAAADgdEiIAAAAAAMDpkBABAAAAAABOp0gnRNLT0zVmzBiFhITI09NTVapU0YQJE5SRkWEtY4xRVFSUypcvL09PT0VEROjgwYM29Vy5ckUDBw7UXXfdpRIlSqhTp046ffp0QZ8OAAAAAAAoIop0QmTKlCl6//33NWvWLCUkJOitt97S1KlTFRMTYy3z1ltvafr06Zo1a5Z27NihwMBAtWnTRn/++ae1zJAhQ7Rs2TItWrRIW7Zs0V9//aWOHTvq6tWrhXFaAAAAAACgkLkWdgA3Eh8fr86dO6tDhw6SpODgYC1cuFA7d+6UdK11yIwZMzR69Gh17dpVkrRgwQIFBATos88+U79+/ZScnKx58+bpk08+UevWrSVJn376qYKCgvT111+rbdu2hXNyAAAAAACg0BTpFiL333+/NmzYoCNHjkiS9u3bpy1btqh9+/aSpOPHj+vs2bN66KGHrPu4u7urRYsW2rp1qyRp165dSktLsylTvnx51axZ01omO1euXNHFixdtXgAAAAAA4M5gd0JkwYIFWr16tXV55MiRKl26tJo2bapffvnFocG98sorevLJJ1WtWjW5ubmpbt26GjJkiJ588klJ0tmzZyVJAQEBNvsFBARYt509e1bFixeXr69vjmWyM3nyZPn4+FhfQUFBjjw1AAAAAABQiOxOiEyaNEmenp6SrnVpmTVrlt566y3dddddGjp0qEODW7x4sT799FN99tln2r17txYsWKC3335bCxYssClnsVhslo0xWdb9083KvPrqq0pOTra+Tp06lfcTAQAAAAAARYrdY4icOnVK99xzjyRp+fLleuyxx/T888+rWbNmioiIcGhwL7/8skaNGqXu3btLkmrVqqVffvlFkydPVq9evRQYGCjpWiuQcuXKWfc7d+6ctdVIYGCgUlNTlZSUZNNK5Ny5c2ratGmOx3Z3d5e7u7tDzwcAAAAAABQNdrcQKVmypM6fPy9J+uqrr6wDlXp4eCglJcWhwf39998qVsw2RBcXF+u0uyEhIQoMDNT69eut21NTU7V582ZrsqN+/fpyc3OzKXPmzBkdOHDghgkRAAAAAABw57K7hUibNm303HPPqW7dujpy5Ih1BpiDBw8qODjYocE98sgjeuONN1SpUiXVqFFDe/bs0fTp09WnTx9J17rKDBkyRJMmTVJoaKhCQ0M1adIkeXl5qUePHpIkHx8fPfvssxo+fLj8/f3l5+enESNGqFatWtZkDgAAAAAAcC52J0TeffddjRkzRqdOndKSJUvk7+8v6dpsLpmDnTpKTEyMxo4dq/79++vcuXMqX768+vXrp3HjxlnLjBw5UikpKerfv7+SkpLUqFEjffXVV/L29raWiY6Olqurq7p166aUlBS1atVKsbGxcnFxcWi8AAAAAADg9mAxxhh7djh58qQqVqyYpSuLMUanTp1SpUqVHBpgUXHx4kX5+PgoOTlZpUqVKuxwsggetfrmhXLhhEcPh9RTK+TW74P9vfY7IBLkJ0fcd0XpnpO47wAAAIDbmT3f3e0eQyQkJET/+9//sqy/cOGCQkJC7K0OAAAAAACgwNmdEMmpQclff/0lDw+PWw4IAAAAAAAgv+V6DJFhw4ZJujaQ6bhx4+Tl5WXddvXqVW3fvl116tRxeIAAAAAAAACOluuEyJ49eyRdayGyf/9+FS9e3LqtePHiql27tkaMGOH4CAEAAAAAABws1wmRjRs3SpJ69+6td955p0gOLAoAAAAAAJAbdk+7O3/+/PyIAwAAAAAAoMDYnRC5dOmS3nzzTW3YsEHnzp1TRkaGzfaff/7ZYcEBAAAAAADkB7sTIs8995w2b96sZ555RuXKlZPFYsmPuAAAAAAAAPKN3QmRL7/8UqtXr1azZs3yIx4AAAAAAIB8V8zeHXx9feXn55cfsQAAAAAAABQIuxMiEydO1Lhx4/T333/nRzwAAAAAAAD5zu4uM9OmTdOxY8cUEBCg4OBgubm52WzfvXu3w4IDAAAAAADID3YnRLp06ZIPYQAAAAAAABQcuxMir732Wn7EAQAAAAAAUGDsHkNEkv744w/NnTtXr776qi5cuCDpWleZ//73vw4NDgAAAAAAID/Y3ULkxx9/VOvWreXj46MTJ06ob9++8vPz07Jly/TLL7/o448/zo84AQAAAAAAHMbuFiLDhg1TZGSkEhMT5eHhYV3frl07ffvttw4NDgAAAAAAID/Y3UJkx44dmjNnTpb1FSpU0NmzZx0SFAAA2Qketdoh9Zx4s4ND6gEAAMDty+4WIh4eHrp48WKW9YcPH1aZMmUcEhQAAAAAAEB+sjsh0rlzZ02YMEFpaWmSJIvFopMnT2rUqFF69NFHHR4gAAAAAACAo9ndZebtt99W+/btVbZsWaWkpKhFixY6e/asmjRpojfeeCM/YgQAwLGifBxQR/Kt1wEAAIBCY3dCpFSpUtqyZYu++eYb7d69WxkZGapXr55at26dH/EBAAAAAAA4nN0JkUwPPvigHnzwQUfGAgAAAAAAUCDylBD54YcftGnTJp07d04ZGRk226ZPn+6QwAAAAAAAAPKL3QmRSZMmacyYMQoLC1NAQIAsFot12/U/AwAAAAAAFFV2J0TeeecdffTRR4qMjMyHcAAAAAAAAPKf3dPuFitWTM2aNcuPWAAAAAAAAAqE3QmRoUOH6t13382PWAAAAAAAAAqE3V1mRowYoQ4dOujuu+9WeHi43NzcbLYvXbrUYcEBAAAAAADkB7sTIgMHDtTGjRvVsmVL+fv7M5AqAAAAAAC47didEPn444+1ZMkSdejQIT/iAQAAAAAAyHd2jyHi5+enu+++Oz9iAQAAAAAAKBB2J0SioqL02muv6e+//86PeAAAAAAAAPKd3V1mZs6cqWPHjikgIEDBwcFZBlXdvXu3w4IDgIKWUK36LddR/acEB0QCAAAAID/ZnRDp0qVLPoQBAAAAAABQcOxOiLz22mv5EQcAAAAAAECBsXsMEQAAAAAAgNud3S1EfH19ZbFYsqy3WCzy8PDQPffco8jISPXu3dshAQIAAAAAADia3QmRcePG6Y033lC7du3UsGFDGWO0Y8cOrV27Vi+99JKOHz+uF198Uenp6erbt29+xAwAAAAAAHBL7E6IbNmyRa+//rpeeOEFm/Vz5szRV199pSVLlujee+/VzJkzSYgAAAAAAIAiye4xRNatW6fWrVtnWd+qVSutW7dOktS+fXv9/PPPtx4dAAAAAABAPrA7IeLn56eVK1dmWb9y5Ur5+flJki5duiRvb+9bjw4AAAAAACAf2N1lZuzYsXrxxRe1ceNGNWzYUBaLRT/88IPWrFmj999/X5K0fv16tWjRwuHBAgAAAAAAOILdCZG+ffsqPDxcs2bN0tKlS2WMUbVq1bR582Y1bdpUkjR8+HCHBwoAAAAAAOAodidEJKlZs2Zq1qyZo2MBAAAAAAAoEHlKiGRKSUlRWlqazbpSpUrdUkAAAAAAAAD5ze5BVf/++28NGDBAZcuWVcmSJeXr62vzAgAAAAAAKOrsToi8/PLL+uabbzR79my5u7tr7ty5Gj9+vMqXL6+PP/44P2IEAAAAAABwKLu7zKxcuVIff/yxIiIi1KdPHz3wwAO65557VLlyZcXFxempp57KjzgBAAAAAAAcxu4WIhcuXFBISIika+OFXLhwQZJ0//3369tvv3VsdAAAAAAAAPnA7oRIlSpVdOLECUlSeHi4Pv/8c0nXWo6ULl3akbEBAAAAAADkC7sTIr1799a+ffskSa+++qp1LJGhQ4fq5ZdfdniAAAAAAAAAjmb3GCJDhw61/tyyZUv99NNP2rlzp+6++27Vrl3bocEBAAAAAADkB7taiKSlpally5Y6cuSIdV2lSpXUtWtXkiEAAAAAAOC2YVdCxM3NTQcOHJDFYsmveAAAAAAAAPKd3WOI9OzZU/PmzcuPWAAAAAAAAAqE3WOIpKamau7cuVq/fr0aNGigEiVK2GyfPn26w4IDAAAAAADID3YnRA4cOKB69epJks1YIpLoSgMAAAAAAG4LuUqI/Pjjj6pZs6aKFSumjRs35ndMAAAAAAAA+SpXY4jUrVtX//vf/yRJVapU0fnz5/M1KAAAAAAAgPyUq4RI6dKldfz4cUnSiRMnlJGRka9BAQAAAAAA5KdcdZl59NFH1aJFC5UrV04Wi0UNGjSQi4tLtmV//vlnhwYIAAAAAADgaLlKiHzwwQfq2rWrjh49qkGDBqlv377y9vbO79gAAAAAAADyRa5nmXn44YclSbt27dLgwYNJiAAAAAAAgNuW3dPuzp8/Pz/iAAAAAAAAKDC5GlQVAAAAAADgTkJCBAAAAAAAOB0SIgAAAAAAwOnkKiFSr149JSUlSZImTJigv//+O1+DAgAAAAAAyE+5SogkJCTo0qVLkqTx48frr7/+ytegAAAAAAAA8lOuZpmpU6eOevfurfvvv1/GGL399tsqWbJktmXHjRvn0AABAAAAAAAcLVcJkdjYWL322mtatWqVLBaLvvzyS7m6Zt3VYrGQEAEAAAAAAEVerhIiYWFhWrRokSSpWLFi2rBhg8qWLZuvgQEAAAAAAOSXXCVErpeRkZEfcQAAAAAAABSYPE27e+zYMQ0cOFCtW7dWmzZtNGjQIB07dszRsUmS/vvf/+rpp5+Wv7+/vLy8VKdOHe3atcu63RijqKgolS9fXp6enoqIiNDBgwdt6rhy5YoGDhyou+66SyVKlFCnTp10+vTpfIkXAAAAAAAUfXa3EFm3bp06deqkOnXqqFmzZjLGaOvWrapRo4ZWrlypNm3aOCy4pKQkNWvWTC1bttSXX36psmXL6tixYypdurS1zFtvvaXp06crNjZWVatW1euvv642bdro8OHD8vb2liQNGTJEK1eu1KJFi+Tv76/hw4erY8eO2rVrl1xcXBwWLwDAedRaUMsh9ezvtd8h9QAAAMA+didERo0apaFDh+rNN9/Msv6VV15xaEJkypQpCgoK0vz5863rgoODrT8bYzRjxgyNHj1aXbt2lSQtWLBAAQEB+uyzz9SvXz8lJydr3rx5+uSTT9S6dWtJ0qeffqqgoCB9/fXXatu2rcPiBQAAAAAAtwe7u8wkJCTo2WefzbK+T58+OnTokEOCyrRixQo1aNBAjz/+uMqWLau6devqww8/tG4/fvy4zp49q4ceesi6zt3dXS1atNDWrVslSbt27VJaWppNmfLly6tmzZrWMtm5cuWKLl68aPMCAAAAAAB3BrsTImXKlNHevXuzrN+7d6/DZ575+eef9d577yk0NFTr1q3TCy+8oEGDBunjjz+WJJ09e1aSFBAQYLNfQECAddvZs2dVvHhx+fr65lgmO5MnT5aPj4/1FRQU5MhTAwAAAAAAhcjuLjN9+/bV888/r59//llNmzaVxWLRli1bNGXKFA0fPtyhwWVkZKhBgwaaNGmSJKlu3bo6ePCg3nvvPfXs2dNazmKx2OxnjMmy7p9uVubVV1/VsGHDrMsXL14kKQIAAAAAwB3C7oTI2LFj5e3trWnTpunVV1+VdK0LSlRUlAYNGuTQ4MqVK6fw8HCbddWrV9eSJUskSYGBgZKutQIpV66ctcy5c+esrUYCAwOVmpqqpKQkm1Yi586dU9OmTXM8tru7u9zd3R12LgAAAAAAoOiwu8uMxWLR0KFDdfr0aSUnJys5OVmnT5/W4MGDb9oqw17NmjXT4cOHbdYdOXJElStXliSFhIQoMDBQ69evt25PTU3V5s2brcmO+vXry83NzabMmTNndODAgRsmRAAAAAAAwJ3L7hYi18uc1ja/DB06VE2bNtWkSZPUrVs3/fDDD/rggw/0wQcfSLqWnBkyZIgmTZqk0NBQhYaGatKkSfLy8lKPHj0kST4+Pnr22Wc1fPhw+fv7y8/PTyNGjFCtWrWss84AAAAAAADncksJkfx23333admyZXr11Vc1YcIEhYSEaMaMGXrqqaesZUaOHKmUlBT1799fSUlJatSokb766iubZE10dLRcXV3VrVs3paSkqFWrVoqNjZWLi0thnBYAAAAAAChkRTohIkkdO3ZUx44dc9xusVgUFRWlqKioHMt4eHgoJiZGMTEx+RAhAAAAAAC43dg9hggAAAAAAMDtzq6ESFpamlq2bKkjR47kVzwAAAAAAAD5zq6EiJubmw4cOODw2WQAAAAAAAAKkt1dZnr27Kl58+blRywAAAAAAAAFwu5BVVNTUzV37lytX79eDRo0UIkSJWy2T58+3WHBAQAAAAAA5Ae7EyIHDhxQvXr1JCnLWCJ0pQEAAAAAALcDuxMiGzduzI84AAAAAAAACkyep909evSo1q1bp5SUFEmSMcZhQQEAAAAAAOQnuxMi58+fV6tWrVS1alW1b99eZ86ckSQ999xzGj58uMMDBAAAAAAAcDS7EyJDhw6Vm5ubTp48KS8vL+v6J554QmvXrnVocAAAAAAAAPnB7jFEvvrqK61bt04VK1a0WR8aGqpffvnFYYEBAAAAAADkF7tbiFy6dMmmZUim//3vf3J3d3dIUAAAAAAAAPnJ7oRI8+bN9fHHH1uXLRaLMjIyNHXqVLVs2dKhwQEAAAAAAOQHu7vMTJ06VREREdq5c6dSU1M1cuRIHTx4UBcuXND333+fHzECAAAAAAA4lN0tRMLDw/Xjjz+qYcOGatOmjS5duqSuXbtqz549uvvuu/MjRgAAAAAAAIeyu4WIJAUGBmr8+PGOjgUAAAAAAKBA5CkhkpSUpHnz5ikhIUEWi0XVq1dX79695efn5+j4AAAAAAAAHM7uLjObN29WSEiIZs6cqaSkJF24cEEzZ85USEiINm/enB8xAgAAAAAAOJTdLUReeukldevWTe+9955cXFwkSVevXlX//v310ksv6cCBAw4PEgAAAAAAwJHsbiFy7NgxDR8+3JoMkSQXFxcNGzZMx44dc2hwAAAAAAAA+cHuhEi9evWUkJCQZX1CQoLq1KnjiJgAAAAAAADyVa66zPz444/WnwcNGqTBgwfr6NGjaty4sSRp27Ztevfdd/Xmm2/mT5QAAAAAAAAOlKuESJ06dWSxWGSMsa4bOXJklnI9evTQE0884bjoAAAAAAAA8kGuEiLHjx/P7zgAAAAAAAAKTK4SIpUrV87vOAAAAAAAAAqM3dPuStJ///tfff/99zp37pwyMjJstg0aNMghgQEAAAAAAOQXuxMi8+fP1wsvvKDixYvL399fFovFus1isZAQAQAAAAAARZ7dCZFx48Zp3LhxevXVV1WsmN2z9gIAAAAAABQ6uzMaf//9t7p3704yBAAAAAAA3Lbszmo8++yz+uKLL/IjFgAAAAAAgAJhd5eZyZMnq2PHjlq7dq1q1aolNzc3m+3Tp093WHAAAAAAAAD5we6EyKRJk7Ru3TqFhYVJUpZBVQEAQO4lVKvukHqq/5TgkHoAAACchd0JkenTp+ujjz5SZGRkPoQDAAAAAACQ/+weQ8Td3V3NmjXLj1gAAAAAAAAKhN0JkcGDBysmJiY/YgEAAAAAACgQdneZ+eGHH/TNN99o1apVqlGjRpZBVZcuXeqw4AAAAAAAAPKD3QmR0qVLq2vXrvkRCwAAAAAAQIGwOyEyf/78/IgDyIKZFwAAAAAA+cXuMUQAAAAAAABud3a3EAkJCZHFYslx+88//3xLAQEAAAAAAOQ3uxMiQ4YMsVlOS0vTnj17tHbtWr388suOigsAAAAAACDf2J0QGTx4cLbr3333Xe3cufOWAwIAAAAAAMhvDhtDpF27dlqyZImjqgMAAAAAAMg3DkuI/Pvf/5afn5+jqgMAAAAAAMg3dneZqVu3rs2gqsYYnT17Vr///rtmz57t0OAAAAAAAADyg90JkS5dutgsFytWTGXKlFFERISqVavmqLgAAAAAAADyjd0Jkddeey0/4gAAAAAAACgwDhtDBAAAAAAA4HaR6xYixYoVsxk7JDsWi0Xp6em3HBQAAAAAAEB+ynVCZNmyZTlu27p1q2JiYmSMcUhQAHA7e/eFbxxSz0vvP+iQegAAAABkleuESOfOnbOs++mnn/Tqq69q5cqVeuqppzRx4kSHBgcAAAAAAJAf8jSGyK+//qq+ffvq3nvvVXp6uvbu3asFCxaoUqVKjo4PAAAAAADA4exKiCQnJ+uVV17RPffco4MHD2rDhg1auXKlatasmV/xAQAAAAAAOFyuu8y89dZbmjJligIDA7Vw4cJsu9AAAAAAAADcDnKdEBk1apQ8PT11zz33aMGCBVqwYEG25ZYuXeqw4AAAAAAAAPJDrhMiPXv2vOm0uwAAAAAAALeDXCdEYmNj8zEMAAAAAACAgpPrhAhwu3r3hW8cUs9L7z/okHoAAAAAAIUvT9PuAgAAAAAA3M5IiAAAAAAAAKdDQgQAAAAAADgdEiIAAAAAAMDpkBABAAAAAABOh4QIAAAAAABwOiREAAAAAACA0yEhAgAAAAAAnA4JEQAAAAAA4HRIiAAAAAAAAKdDQgQAAAAAADgdEiIAAAAAAMDpkBABAAAAAABOh4QIAAAAAABwOiREAAAAAACA0yEhAgAAAAAAnA4JEQAAAAAA4HRuq4TI5MmTZbFYNGTIEOs6Y4yioqJUvnx5eXp6KiIiQgcPHrTZ78qVKxo4cKDuuusulShRQp06ddLp06cLOHoAAAAAAFBU3DYJkR07duiDDz7Qvffea7P+rbfe0vTp0zVr1izt2LFDgYGBatOmjf78809rmSFDhmjZsmVatGiRtmzZor/++ksdO3bU1atXC/o0AAAAAABAEXBbJET++usvPfXUU/rwww/l6+trXW+M0YwZMzR69Gh17dpVNWvW1IIFC/T333/rs88+kyQlJydr3rx5mjZtmlq3bq26devq008/1f79+/X1118X1ikBAAAAAIBCdFskRF566SV16NBBrVu3tll//PhxnT17Vg899JB1nbu7u1q0aKGtW7dKknbt2qW0tDSbMuXLl1fNmjWtZbJz5coVXbx40eYFAAAAAADuDK6FHcDNLFq0SLt379aOHTuybDt79qwkKSAgwGZ9QECAfvnlF2uZ4sWL27QsySyTuX92Jk+erPHjx99q+AAAAAAAoAgq0i1ETp06pcGDB+vTTz+Vh4dHjuUsFovNsjEmy7p/ulmZV199VcnJydbXqVOn7AseAAAAAAAUWUU6IbJr1y6dO3dO9evXl6urq1xdXbV582bNnDlTrq6u1pYh/2zpce7cOeu2wMBApaamKikpKccy2XF3d1epUqVsXgAAAAAA4M5QpBMirVq10v79+7V3717rq0GDBnrqqae0d+9eValSRYGBgVq/fr11n9TUVG3evFlNmzaVJNWvX19ubm42Zc6cOaMDBw5YywAAAAAAAOdSpMcQ8fb2Vs2aNW3WlShRQv7+/tb1Q4YM0aRJkxQaGqrQ0FBNmjRJXl5e6tGjhyTJx8dHzz77rIYPHy5/f3/5+flpxIgRqlWrVpZBWgEAAAAAgHMo0gmR3Bg5cqRSUlLUv39/JSUlqVGjRvrqq6/k7e1tLRMdHS1XV1d169ZNKSkpatWqlWJjY+Xi4lKIkQMAAAAAgMJy2yVENm3aZLNssVgUFRWlqKioHPfx8PBQTEyMYmJi8jc4AAAKybsvfOOQel56/0GH1AMAAFDUFekxRAAAAAAAAPIDCREAAAAAAOB0SIgAAAAAAACnQ0IEAAAAAAA4HRIiAAAAAADA6ZAQAQAAAAAAToeECAAAAAAAcDokRAAAAAAAgNMhIQIAAAAAAJwOCREAAAAAAOB0SIgAAAAAAACnQ0IEAAAAAAA4HdfCDgAAAKCoCh612iH1nHizg0PqAQAAjkMLEQAAAAAA4HRIiAAAAAAAAKdDlxkAAID8FuXjoHqSHVMPAACghQgAAAAAAHA+JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6JEQAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE7HtbADAG4X057oeMt1DF+8ygGRAAAAAABuFQkRoACdHvWdQ+qp+OYDDqkHAAAAAJwVXWYAAAAAAIDTISECAAAAAACcDgkRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB1mmQEAALhN1FpQyyH17O+13yH1AABwO6OFCAAAAAAAcDokRAAAAAAAgNMhIQIAAAAAAJwOCREAAAAAAOB0GFQVAIqoaU90dEg9wxevckg9AAAAwJ2EFiIAAAAAAMDpkBABAAAAAABOh4QIAAAAAABwOiREAAAAAACA0yEhAgAAAAAAnE6RnmVm8uTJWrp0qX766Sd5enqqadOmmjJlisLCwqxljDEaP368PvjgAyUlJalRo0Z69913VaNGDWuZK1euaMSIEVq4cKFSUlLUqlUrzZ49WxUrViyM0wIAAChUCdWq33Id1X9KcEAkAAAUniKdENm8ebNeeukl3XfffUpPT9fo0aP10EMP6dChQypRooQk6a233tL06dMVGxurqlWr6vXXX1ebNm10+PBheXt7S5KGDBmilStXatGiRfL399fw4cPVsWNH7dq1Sy4uLoV5igCQ706P+s4h9VR88wGH1AMAAAAUBUU6IbJ27Vqb5fnz56ts2bLatWuXmjdvLmOMZsyYodGjR6tr166SpAULFiggIECfffaZ+vXrp+TkZM2bN0+ffPKJWrduLUn69NNPFRQUpK+//lpt27Yt8PMCAAAAAACF67YaQyQ5OVmS5OfnJ0k6fvy4zp49q4ceeshaxt3dXS1atNDWrVslSbt27VJaWppNmfLly6tmzZrWMtm5cuWKLl68aPMCAAAAAAB3htsmIWKM0bBhw3T//ferZs2akqSzZ89KkgICAmzKBgQEWLedPXtWxYsXl6+vb45lsjN58mT5+PhYX0FBQY48HQAAAAAAUIhum4TIgAED9OOPP2rhwoVZtlksFptlY0yWdf90szKvvvqqkpOTra9Tp07lLXAAAAAAAFDk3BYJkYEDB2rFihXauHGjzcwwgYGBkpSlpce5c+esrUYCAwOVmpqqpKSkHMtkx93dXaVKlbJ5AQAAAACAO0ORTogYYzRgwAAtXbpU33zzjUJCQmy2h4SEKDAwUOvXr7euS01N1ebNm9W0aVNJUv369eXm5mZT5syZMzpw4IC1DAAAAAAAcC5FepaZl156SZ999pn+85//yNvb29oSxMfHR56enrJYLBoyZIgmTZqk0NBQhYaGatKkSfLy8lKPHj2sZZ999lkNHz5c/v7+8vPz04gRI1SrVi3rrDMAAAAAAMC5FOmEyHvvvSdJioiIsFk/f/58RUZGSpJGjhyplJQU9e/fX0lJSWrUqJG++uoreXt7W8tHR0fL1dVV3bp1U0pKilq1aqXY2Fi5uLgU1KkAAAAAAIAipEgnRIwxNy1jsVgUFRWlqKioHMt4eHgoJiZGMTExDowOAAAAAADcrop0QgQAABSsaU90vOU6hi9e5YBIAAAA8leRHlQVAAAAAAAgP9BCBAAAONTpUd85pJ6Kbz7gkHoAAACyQwsRAAAAAADgdEiIAAAAAAAAp0NCBAAAAAAAOB0SIgAAAAAAwOmQEAEAAAAAAE6HhAgAAAAAAHA6JEQAAAAAAIDTISECAAD+X3v3HlR1nf9x/HUAuejxbuAqpKKrIkqFhLJewVhBXaNx17Ry1NbWy8/GoLy3gG6uhGbpmsqiiJqbTUmO6MxulgtF5lptKIaXaSvFQC25RkgI5/dH45lIN3U98D2e7/Mx44zf7+d7Pr5h3nOQ1/l8vl8AAADTIRABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOh5GFwDg1iUnJzvVPAAAAABwp2GFCAAAAAAAMB0CEQAAAAAAYDpsmQEA3BRHbLFimxZuBdsDndvLsw46ZJ7/2xTlkHkAALhVrBABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6RCIAAAAAAAA0/EwugAAAACY1wsPj3PIPE+/ts8h8wAAzIMVIgAAAAAAwHRYIQIAAIA73rlF7932HP4pwxxQCQDgTsEKEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiAAAAAAAANMhEAEAAAAAAKZDIAIAAAAAAEyHQAQAAAAAAJgOgQgAAAAAADAdD6MLAAAAAJxBcnKyU80DAGharBABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6RCIAAAAAAAA0yEQAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoeRhcAAAAAADBO90X7HTLPl96POGQeJVc4Zh7gBlghAgAAAAAATIdABAAAAAAAmA5bZgAAAAAATmPAtgG3PUfB1AIHVAJXxwoRAAAAAABgOqwQAQAAAJyIU93gkptb4g51om+QQ+YJOnnCIfPAObFCBAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOnwlBkAAAAA1zVg2wCHzFMwtcAh8wCAIxGIAAAAAGhSPAIVgDNiywwAAAAAADAdVogAAAAAAHAdL8866JB5/m9TlEPmgWOxQgQAAAAAAJgOgQgAAAAAADAdAhEAAAAAAGA63EMEAAAAAIAm9MLD4xwyz8M9Ft72HP4pwxxQiWtghQgAAAAAADAdVogAAAAAuCM44okfl8vWOKASx3xSL/FpPWAkVogAAAAAAADTMdUKkQ0bNmjVqlUqKSlRcHCwXnrpJQ0bRiILAAAAwBjJyclONQ9gJqZZIfLaa6/pqaee0tKlS/XJJ59o2LBhio2N1dmzZ40uDQAAAAAANDPTrBBZs2aNfv/732vGjBmSpJdeekn/+Mc/tHHjRq1cufKa62tra1VbW2s/rqiokCRVVlY2T8G3qKH2O4fMU2mxOWSe+pr6257j2/rbn0OSar6vdsg8tXV1tz1HVa2DarHU3viim3C7/eyIvnOmnpMc03fO1HOSc/WdM/Sc5Ji+c6aek5yr75yp56Tb6ztn6jnJufrOmXpOckzfOUPPSc7Vd87Uc5Jj+s6Zek5yjr5zpp6T+F3i5zii75z1d1pHufr12Ww37keL7WauusN9//33atmypV5//XU99NBD9vPz5s1Tfn6+cnNzr3lNcnKyli1b1pxlAgAAAAAABygqKpK/v//PXmOKFSLffPON6uvr5efn1+i8n5+fzp8/f93XLF68WAkJCfbjhoYGlZaWqmPHjrJYLE1aLxynsrJSAQEBKioqUps2bYwuByZAz8EI9B2aGz0HI9B3aG703J3JZrOpqqpKXbp0ueG1pghErvppkGGz2f5ruOHl5SUvL69G59q1a9dUpaGJtWnThjcxNCt6Dkag79Dc6DkYgb5Dc6Pn7jxt27a9qetMcVPVTp06yd3d/ZrVIBcvXrxm1QgAAAAAAHB9pghEPD09NXDgQB04cKDR+QMHDuhXv/qVQVUBAAAAAACjmGbLTEJCgqZMmaKwsDBFRETor3/9q86ePatZs2YZXRqakJeXl5KSkq7Z/gQ0FXoORqDv0NzoORiBvkNzo+dcnymeMnPVhg0blJqaqpKSEvXv318vvviihg8fbnRZAAAAAACgmZkqEAEAAAAAAJBMcg8RAAAAAACAHyMQAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAG7LlStXjC4BAIBbRiACl3HmzBmlp6drw4YN+vTTT40uBwAAl1dYWKiEhAR17drV6FIAALhlBCJwCe+++66Cg4M1c+ZMzZ07V/fdd59effVVo8sCAIdLTU1VTU2N/fjdd99VbW2t/biqqkpz5swxojSYxLfffqvNmzcrIiJCISEhOnLkiBYtWmR0WQAA3DKLzWazGV0EcLtGjBihNm3aKC0tTT4+Plq8eLH279+voqIio0uDi/vuu+80f/587dmzR3V1dXrggQe0bt06derUyejS4KLc3d1VUlIiX19fSVKbNm2Un5+vwMBASdKFCxfUpUsX1dfXG1kmXFBeXp42b96s3bt3q0ePHiosLFRubq6GDBlidGkwoerqan388ccaPny40aUAuIOxQgQuoaCgQCtXrlSXLl3Uvn17vfDCCyouLlZZWZnRpcHFJSUlKTMzU2PHjtXkyZN14MABzZ492+iy4MJ++jkGn2ugqaWmpqpv376aNGmS7rrrLuXl5enYsWOyWCxq37690eXBpD777DNFRkYaXQZcSF1dnRYsWKBevXopPDxcW7dubTR+4cIFubu7G1QdmoqH0QUAjlBeXm7/tFSSWrVqpZYtW6q8vJz/rKFJZWVlacuWLZo0aZIk6dFHH9WQIUNUX1/PD00ALmHJkiVauHChli9fzvsaAJe1YsUKbd++Xc8884zKy8sVHx+vw4cPKy0tzX4NH0K4HgIRuIzCwkKdP3/efmyz2XTixAlVVVXZz4WEhBhRGlxYUVGRhg0bZj8ODw+Xh4eHiouLFRAQYGBlAOAYy5cvV2Zmpnbs2KHJkydrypQp6t+/v9FlwcV16NDhZ8fZFghH27lzpzZv3qxx48ZJkqZPn67Y2FhNnz5dGRkZkiSLxWJkiWgCBCJwGaNGjbomtb36hib98AbGD084Wn19vTw9PRud8/Dw4BGUaFKbN2+W1WqV9MPjTjMzM+33rflxCAw4wpIlS7RkyRLl5uYqIyNDgwcPVs+ePWWz2diaiiZTW1ur2bNna8CAAdcdP3PmjJYtW9bMVcGVffXVV43C3p49eyonJ0dRUVGaMmWKUlNTDawOTYWbqsIlnDlz5obXlJWV6d577236YmAqbm5uio2NlZeXl/1cdna2oqKi1KpVK/u5rKwsI8qDC+revftNfUL1xRdfNEM1MKPKykr97W9/U0ZGhj7++GMNGjRIv/3tb5WQkGB0aXAhQ4YM0cSJEzVv3rzrjh89elShoaF82AWHCQwMVHp6ukaNGtXofHFxsSIjI3X33Xfr4MGD9JyLIRCBS6uoqNDOnTu1ZcsW5efn8wYGh5s2bdpN/XL60xtzAYArOH78uLZs2aKdO3fq4sWLRpcDF/LnP/9ZdXV1SkpKuu54UVGREhMT+fkKh5kxY4ZsNpu2bNlyzdhXX32lkSNH6vPPP+f3CRdDIAKXdPDgQWVkZCgrK0vdunXThAkTNGHCBN13331GlwYX8/nnn6t79+5yc+OhXWge//rXv1RaWqrY2Fj7ue3btyspKUnV1dWKi4vTX/7yl0arloDbUVNTo3feece+DXXx4sWqra21j7u7uysxMVGtW7c2qkQAuG1nzpzRyZMnNXr06OuOl5SU6K233tLUqVObuTI0JQIRuIxz584pMzNTGRkZqq6u1sSJE7Vp0yYdPXpU/fr1M7o8uCh3d3eVlJTYn3L08MMPa926dfLz8zO4MriqmJgYRUZGauHChZJ+eOx4aGiopk2bpqCgIK1atUozZ85UcnKysYXCZaSlpWnfvn3Kzs6WJLVu3VrBwcHy8fGRJJ06dUrz589XfHy8kWXCRV26dEkdO3aU9MOqkPT0dNXU1Gj8+PGNbmoOOAo9Zy4EInAJY8aMUV5ensaNG6dHH31UMTExcnd3V4sWLQhE0KTc3Nx0/vx5eyDSunVrHT16VIGBgQZXBlf1i1/8QtnZ2QoLC5MkLV26VLm5ucrLy5Mkvf7660pKSlJhYaGRZcKFDB8+XPHx8XrooYckXfs+98orr+jll1/WBx98YGSZcDEFBQX6zW9+o6KiIv3yl7/Url27FBMTo+rqarm5uam6ulpvvPGG4uLijC4VLoKeMyfWeMMlvPXWW5oxY4aWLVumsWPHyt3d3eiSAKBJlJWVNVqBlJubq5iYGPvx/fffr6KiIiNKg4s6ffq0evfubT/29vZutE0wPDycAA4Ot2DBAg0YMEC5ubkaOXKkxo0bpzFjxqiiokJlZWWaOXOmUlJSjC4TLoSeMycCEbiE9957T1VVVQoLC9OgQYO0fv16ff3110aXBROwWCzX3FSVZ9SjKfn5+dmfIPP999/r3//+tyIiIuzjVVVVatGihVHlwQVVVFTIw8PDfvz111+re/fu9uOGhoZG9xQBHOHDDz/UihUrNHToUK1evVrFxcWaM2eO3Nzc5ObmpieffFInT540uky4EHrOnDxufAng/CIiIhQREaG1a9dq165dysjIUEJCghoaGnTgwAEFBARwszc0CZvNpmnTptlvYHn58mXNmjWr0SN3JR67C8eJiYnRokWL9Pzzz2vPnj1q2bJloz3Nx44dU8+ePQ2sEK7G399fx48fV58+fa47fuzYMfn7+zdzVXB1paWl6ty5syTJarWqVatW6tChg328ffv2qqqqMqo8uCB6zpxYIQKX0rJlSz3++OPKy8tTQUGBnn76aaWkpMjX11fjx483ujy4oKlTp8rX11dt27ZV27Zt9dhjj6lLly7246t/AEd57rnn5O7urhEjRig9PV3p6eny9PS0j2dkZOjXv/61gRXC1YwZM0aJiYm6fPnyNWM1NTX27aqAo7ECE82NnjMfbqoKl1dfX6/s7GxlZGRo7969RpcDAA5RUVEhq9V6zT2TSktLZbVaG4UkwO24cOGC7r33Xnl6emru3Lnq3bu3LBaLTp48qfXr1+vKlSv65JNPeLoWHMrNzU2xsbH2FZjZ2dmKioqyr8Csra3V3//+d9XX1xtZJlwIPWdOBCIAAAD4WV988YVmz56tAwcO6Op/HS0Wi6Kjo7VhwwaerAWHmz59+k1dt3Xr1iauBGZBz5kTgQgAAABuSmlpqT777DNJUq9evRrtrwcA4E5DIAIAAAAAAEyHm6oCAAAAAADTIRABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAC44+Tk5Mhisai8vNzQOjIzM9WuXTtDawAAAP8bAhEAANDsLl68qJkzZ+ruu++Wl5eXOnfurNGjR+uDDz4wurRm5SzBDgAAZuRhdAEAAMB8JkyYoLq6Om3btk2BgYG6cOGC3nnnHZWWlhpdGgAAMAlWiAAAgGZVXl6uvLw8Pf/884qMjFS3bt0UHh6uxYsXa+zYsfryyy9lsViUn5/f6DUWi0U5OTmN5nr//fd1zz33yNvbW4MGDVJBQYF97Op2lj179qh3797y9vZWdHS0ioqKGs2xceNG9ezZU56enurTp4927NhxTb1/+MMf5OfnJ29vb/Xv31/79u277td26dIlhYeHa/z48bp8+bJsNptSU1MVGBgoHx8f3XPPPXrjjTckSV9++aUiIyMlSe3bt5fFYtG0adP+x+8qAAC4VQQiAACgWVmtVlmtVu3Zs0e1tbW3Ndf8+fO1evVqffjhh/L19dX48eNVV1dnH//uu++0YsUKbdu2Te+//74qKys1adIk+/ibb76pefPm6emnn9bx48c1c+ZMTZ8+Xf/85z8lSQ0NDYqNjdWhQ4f0yiuvqLCwUCkpKXJ3d7+mlnPnzmnYsGHq27evsrKy5O3trWeffVZbt27Vxo0b9emnnyo+Pl6PPfaYcnNzFRAQoN27d0uSTp06pZKSEq1du/a2vh8AAODmsWUGAAA0Kw8PD2VmZuqJJ57Qpk2bFBoaqhEjRmjSpEkKCQm5pbmSkpIUHR0tSdq2bZv8/f315ptvauLEiZKkuro6rV+/XoMGDbJfExQUpCNHjig8PFyrV6/WtGnTNGfOHElSQkKCDh8+rNWrVysyMlJvv/22jhw5ohMnTqh3796SpMDAwGvqOH36tKKjo/Xggw9q7dq1slgsqq6u1po1a3Tw4EFFRETYX5uXl6e0tDSNGDFCHTp0kCT5+vpyc1YAAJoZK0QAAECzmzBhgoqLi7V3716NHj1aOTk5Cg0NVWZm5i3NczVokKQOHTqoT58+OnHihP2ch4eHwsLC7Md9+/ZVu3bt7NecOHFCQ4YMaTTnkCFD7OP5+fny9/e3hyHXU1NTo6FDhyouLk7r1q2TxWKRJBUWFury5cuKjo62r4qxWq3avn27/vOf/9zS1wkAAByPFSIAAMAQV+/pER0drcTERM2YMUNJSUl67733JEk2m81+7Y+3wdzI1UDivx3/9NxPx202m/2cj4/PDf89Ly8vPfDAA9q/f7/mz58vf39/ST9st5Gk/fv3q2vXrte8BgAAGIsVIgAAwCn069dP1dXVuuuuuyRJJSUl9rEf32D1xw4fPmz/e1lZmU6fPq2+ffvaz125ckUfffSR/fjUqVMqLy+3XxMUFKS8vLxGcx46dEhBQUGSpJCQEJ07d06nT5/+r3W7ublpx44dGjhwoKKiolRcXGz/ery8vHT27Fn16tWr0Z+AgABJkqenpySpvr7+5785AADA4VghAgAAmtWlS5f0u9/9To8//rhCQkLUunVrffTRR0pNTdWDDz4oHx8fDR48WCkpKerevbu++eYbPfvss9eda/ny5erYsaP8/Py0dOlSderUSXFxcfbxFi1a6Mknn9S6devUokULzZ07V4MHD1Z4eLikH27KOnHiRIWGhmrUqFHKzs5WVlaW3n77bUnSiBEjNHz4cE2YMEFr1qxRr169dPLkSVksFsXExNj/HXd3d+3cuVOTJ09WVFSUcnJy1LlzZz3zzDOKj49XQ0ODhg4dqsrKSh06dEhWq1VTp05Vt27dZLFYtG/fPo0ZM0Y+Pj6yWq1N980HAAB2rBABAADNymq1atCgQXrxxRc1fPhw9e/fX3/84x/1xBNPaP369ZKkjIwM1dXVKSwsTPPmzdNzzz133blSUlI0b948DRw4UCUlJdq7d6991YUktWzZUgsXLtQjjzyiiIgI+fj4aNeuXfbxuLg4rV27VqtWrVJwcLDS0tK0detWjRw50n7N7t27df/992vy5Mnq16+fFixYcN0VHR4eHnr11VcVHBysqKgoXbx4UX/605+UmJiolStXKigoSKNHj1Z2drZ69OghSeratauWLVumRYsWyc/PT3PnznXEtxgAANwEi+3HG3QBAABcRGZmpp566imVl5cbXQoAAHBCrBABAAAAAACmQyACAAAAAABMhy0zAAAAAADAdFghAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiAAAAAAAANMhEAEAAAAAAKbz/2S+Oxs0qZExAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "update_results = filters.plots.num_frags_development(filter_results)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "5a1e8d9c-baad-4916-bc72-0bfbeb5629dd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pre-filteredbool_painsbool_brenkbool_ro3bool_qedbool_bbbool_sybabool_retro
AP1201.01188.0942.0496.0451.0251.0248.0145.0
FP1100.01078.0895.0706.0470.0224.0206.0139.0
SE743.0735.0608.0512.0384.0184.0179.0138.0
GA355.0347.0235.0209.0138.0118.0114.092.0
B147.047.034.031.013.013.013.09.0
B259.059.053.049.026.018.018.0NaN
Total3505.03454.02767.02003.01482.0808.0778.0523.0
\n", + "
" + ], + "text/plain": [ + " pre-filtered bool_pains bool_brenk bool_ro3 bool_qed bool_bb \\\n", + "AP 1201.0 1188.0 942.0 496.0 451.0 251.0 \n", + "FP 1100.0 1078.0 895.0 706.0 470.0 224.0 \n", + "SE 743.0 735.0 608.0 512.0 384.0 184.0 \n", + "GA 355.0 347.0 235.0 209.0 138.0 118.0 \n", + "B1 47.0 47.0 34.0 31.0 13.0 13.0 \n", + "B2 59.0 59.0 53.0 49.0 26.0 18.0 \n", + "Total 3505.0 3454.0 2767.0 2003.0 1482.0 808.0 \n", + "\n", + " bool_syba bool_retro \n", + "AP 248.0 145.0 \n", + "FP 206.0 139.0 \n", + "SE 179.0 138.0 \n", + "GA 114.0 92.0 \n", + "B1 13.0 9.0 \n", + "B2 18.0 NaN \n", + "Total 778.0 523.0 " + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "update_results = pd.concat([update_results, update_results.sum().rename(\"Total\").to_frame().T])\n", + "update_results" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/custom_kinfraglib/2_3_custom_filters_paper.ipynb b/notebooks/custom_kinfraglib/2_3_custom_filters_paper.ipynb new file mode 100644 index 00000000..806eed65 --- /dev/null +++ b/notebooks/custom_kinfraglib/2_3_custom_filters_paper.ipynb @@ -0,0 +1,1600 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysis of Custom-KinFragLib " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Aim of this notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting results of Custom-KinFragLib for the paper. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of contents\n", + "\n", + "1. Library sizes\n", + "\n", + " 1.1 Pre-filter KinFragLib vs CustomKinFragLib library size\n", + "\n", + " 1.2 Number of fragments after each filtering step \n", + "\n", + "2. Fragment space \n", + "\n", + " 2.1 t-SNE plot\n", + " \n", + " 2.2 Clustering coverage \n", + "\n", + " 2.3 Average Tanimoto similarity " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from rdkit import Chem\n", + "from rdkit.Chem import Draw, PandasTools, MACCSkeys\n", + "from IPython.core.display import HTML\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.manifold import TSNE\n", + "import numpy as np \n", + "from collections import Counter\n", + "import math\n", + "\n", + "from kinfraglib import filters, utils" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Needed to display ROMol images in DataFrames\n", + "PandasTools.RenderImagesInAllDataFrames(images=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define global paths" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Path to data\n", + "HERE = Path().resolve()\n", + "PATH_DATA = HERE / \"..\" / \"..\"/ \"data\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_original = utils.read_fragment_library(PATH_DATA / \"fragment_library\")\n", + "fragment_library = filters.prefilters.pre_filters(fragment_library_original)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1', 'B2'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_original.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['AP', 'FP', 'SE', 'GA', 'B1'])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fragment_library_custom = utils.read_fragment_library(PATH_DATA / \"fragment_library_custom_filtered\")\n", + "fragment_library_custom.keys()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Library sizes\n", + "#### 1.1 Pre-filtered vs custom library size" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "SUBPOCKET_COLORS = {\n", + " \"AP\": \"purple\",\n", + " \"FP\": \"forestgreen\",\n", + " \"SE\": \"c\",\n", + " \"GA\": \"tab:orange\",\n", + " \"B1\": \"tab:blue\",\n", + " \"B2\": \"darkslateblue\",\n", + "}\n", + "\n", + "def plot_n_fragments_per_subpocket(\n", + " n_fragments_per_subpocket, n_fragments_per_subpocket_custom\n", + "):\n", + " \"\"\"\n", + " Plot number of fragments and deduplicated fragments per subpocket.\n", + " \"\"\"\n", + " plt.figure(figsize=(8, 8))\n", + " ax1 = plt.bar(\n", + " SUBPOCKET_COLORS.keys(),\n", + " n_fragments_per_subpocket,\n", + " fill=False,\n", + " edgecolor=SUBPOCKET_COLORS.values(),\n", + " )\n", + " ax2 = plt.bar(\n", + " SUBPOCKET_COLORS.keys(),\n", + " n_fragments_per_subpocket_custom,\n", + " color=SUBPOCKET_COLORS.values(),\n", + " )\n", + " plt.legend([\"KinFragLib\\nfragments\", \"Custom-KinFragLib\\nfragments\"], fontsize=17)\n", + " plt.ylabel(\"# Fragments\", fontsize=17)\n", + " plt.xlabel(\"Subpocket\", fontsize=17)\n", + " plt.xticks(fontsize=17)\n", + " plt.yticks(fontsize=17)\n", + "\n", + " # Add absolute numbers of custom-kinfraglib fragments on top \n", + " bars = ax2.patches\n", + "\n", + " for bar, label in zip(bars, n_fragments_per_subpocket_custom):\n", + "\n", + " plt.text(\n", + " bar.get_x() + bar.get_width() / 2,\n", + " bar.get_height(),\n", + " label,\n", + " ha=\"center\",\n", + " va=\"bottom\",\n", + " fontsize=17,\n", + " color=\"black\",\n", + " )\n", + "\n", + " plt.savefig(f\"figures/n_fragments_per_subpocket.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In case the number of subpockets of the original KinFragLib and CustomKinFragLib differs, we need to add empty subpockets for the figures to add this to the statistics: " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The pockets: ['B2'] are empty in CustomKinFragLib.\n" + ] + } + ], + "source": [ + "if len(fragment_library.keys()) != len(fragment_library_custom.keys()): \n", + " difference = list(set(fragment_library_original.keys()) - set(fragment_library_custom.keys()))\n", + " print(f\"The pockets: {difference} are empty in CustomKinFragLib.\")\n", + " for pocket in difference: \n", + " fragment_library_custom[pocket] = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAK5CAYAAAD6qksLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXF0lEQVR4nOzdeVxV1f7/8fcB4TAIiCKKhopDzohD5qxp5tSgadp0TQktb4NDdp26OWXOQ9+sm6WpqVmXyltZ3SwV50pNi1RMSRMTRxBEBBn27w9+nAtyQGRwM7yej8d5PA57rbX355xT+D6btde2GIZhCAAAAMBt5WB2AQAAAEB5RBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATFDB7AKQf+np6Tpz5ow8PDxksVjMLgcAAAA3MAxDV65cUY0aNeTgkPc5b4J4KXLmzBn5+/ubXQYAAABuIioqSnfccUeefQjipYiHh4ekjA/W09PT5GoAAABwo/j4ePn7+9tyW14I4qVI5nQUT09PgjgAAEAJlp9pxFysCQAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgBv6AABuC8MwlJKSovT0dLNLAYCbcnR0lJOTU7EegyAOAChW169f1/nz55WYmKi0tDSzywGAfLNarfLx8Sm2O5oTxAEAxSYxMVFRUVFydHSUt7e3XF1d5ejomK9bPwOAWTL/ghcXF6e//vpLkooljBPEAQDF5uLFi3JyclLt2rXl6OhodjkAkG+urq7y8PDQ6dOndfHixWIJ4lysCQAoFqmpqbp69aoqV65MCAdQKlksFnl5eSk5OVkpKSlFvn+COACgWKSmpkrKmGMJAKVV5gWbxXGNC0EcAFCsmA8OoDQrzt9hBHEAAADABARxAAAAwAQEcQAAAMAEBHEAAMqIkydPymKxMC+/iK1atUoWi0XdunXL0VanTh1ZLBaFhYXd9rpQ+pWKIH727FmtW7dO48aNU7du3eTp6ZmvXzTh4eGaNWuWevXqpZo1a8rZ2VkeHh4KCgrSpEmTFB0dfdNj7927V4MHD5afn5+sVqv8/f0VHBysY8eOFetYAED5NWzYsFyDX6ZDhw6pZs2aslgsat68uc6cOVNs9WQG0Zs9pk2bVmw1FJVp06bJYrGoTp06ZpcClI4b+nz00UcaO3bsLY2JjIxUYGCg7efq1aurRYsWunDhgn799Vf98ssveuedd/TZZ5/pnnvusbuP1atX6+mnn1ZaWpp8fHzUvHlzHTt2TCtXrtTHH3+sL7/8Ut27dy/ysQAA5OWnn35Snz59FBMTo3bt2unrr7+Wt7e3/vrrLzVs2LBYj92xY8dc22rVqlWsxzaLl5eXGjZsWGZfH8xTKoK4p6enunfvrlatWql169ZKSUnR0KFD8xxjGIZ8fHz097//XU888YTuvPNOW9uvv/6qv/3tb/r11181cOBAHT16VFWrVs02/tChQwoJCVFaWpomTJigmTNnysnJSYmJiRo5cqTWrVunQYMG6dixY6pSpUqRjQUAIC+bN29W//79lZCQoPvuu0+fffaZ3N3dJUk1a9ZUREREsR5/586dxbr/kmjAgAEaMGCA2WWgDCoVU1OCg4O1efNmzZ8/X48++qgCAgJuOuaOO+7QyZMnNX369GwhXJICAwO1YcMGVahQQbGxsVq/fn2O8dOnT1dqaqo6dOigOXPm2BZzd3Nz04oVKxQQEKDY2FgtXLiwSMcCAJCbDRs2qF+/fkpISNCgQYP05Zdf2kI4gNKnVATxgnBxccnzl1PdunXVuHFjSdKRI0eytSUmJmrjxo2SpFGjRuUYa7VaNWzYMEnKEeILMxYAgNysWrVKjzzyiJKTkzVixAh9/PHHcnZ2ztYnr4s1M+edT5s2TdeuXdP06dPVuHFjubq6qkqVKnrooYd08ODBIqm1W7duslgsWrVqlc6ePavnn39edevWldVqVVBQkK3fgQMHNG3aNHXq1En+/v6yWq3y9vZW586d9a9//ct2d1Z7UlJSNH/+fDVr1kyurq6qWrWqHnzwQf34449FftFqXhdrZnXkyBE9/vjjtmvD6tWrpwkTJiguLq5I6kDZU2aDeH4kJSVJUo7AfuDAAV27dk2S1KVLF7tju3btKinjl17Wiz4LMxYAAHsWL16s4OBg25THd999Vw4OBfsn/MqVK+rYsaOmT58uwzDUoEEDXb16VV988YU6duyo/fv3F1ndmddrvfPOO3J3d1fTpk3l4uJiax8xYoSmT5+u8PBwubm5KTAwUJ6entq5c6f+/ve/q2/fvnbDeFJSknr37q1//OMfOnTokKpXr646deooLCxMnTp10hdffFFkryG/fvrpJ7Vp00affvqp/Pz8VLduXf3xxx+aN2+e7r77bp09e/a214SSr1TMES8OP/74o231ksxgnOno0aOSJGdnZ/n7+9sdX69ePdvziIgI+fn5FXpsSRR3Kk6JFxPNLqPUcfNxk1ctL7PLAFAGvPrqq5o5c6Ykad68eXr55ZcLtb8333xTTZo00ZEjR2wXdp4/f14DBgzQ7t27NX78eG3durXQdUvS7Nmz1a1bN61evVo1a9aUJNvJKkkaN26cmjVrlm1xBUk6fPiwgoOD9d1332nJkiUaP358tvYZM2Zoy5Yt8vDw0L///W/17t3btu+XXnqp0O9RQbzyyivq0aOHPvjgA9t1Z7/88osGDBigo0ePKjg4WF9//fVtrwslW7kM4klJSXr22WclSUFBQerXr1+29piYGEmSt7d3rn/Wqly5su15bGxskYy9UXJyspKTk20/x8fH59q3OMSditNbjd9SSmLKbT1uWeDk5qTnjjxHGAdQKLt27dK2bdtksVj03nvv6emnny70Pi0Wi0JDQ9WgQQPbNl9fX7355ptq3bq1tm3bpri4OHl52f/9ldu/bV27ds2xlnblypX16aefZtuXq6ur7fnjjz9ud19NmjTRmjVrdOedd2rlypXZgnhCQoKWLl0qSVq0aJEthGfu+6233tKBAwf0ww8/5PIOFA93d3d9/PHH8vT0tG1r0aKFVq1apa5du+qbb77R3r17ddddd93WulCylbsgbhiGRowYoYMHD8rV1VVr167N8ee9zG/rN869yyrrn9YSE/93xrgwY280e/ZsTZ8+Pdf24pZ4MVEpiSkasHaAqjauevMBkCRdOHJBG57coMSLiQRxAEXCMAydOnWqSPbVq1evbCE8U8uWLWW1WpWcnKzIyEi1atXK7vjcli9s3rx5jm2DBg3KNdBnOn36tD766CP9/PPPOn/+vJKTk2UYhq39yJEjunbtmi3A79y5U1euXJGbm5uefPLJHPuzWCwaMWLEbQ/iISEh2UJ4pi5duqh169bav3+/vvrqK4I4sil3QXz06NFau3atnJ2dFRoaqqZNm+bok/k/+/Xr13PdT+b8ciljNZSiGHujSZMmady4cbaf4+Pjc53uUpyqNq4qv1Yld/oMAJRVHTt2VKtWrbR48WLNmDFDhmFoxowZhdpnbuuMWywW+fr6KioqSgkJCbmOv5XlC+39G5vVO++8ozFjxmT76++NDMNQTEyMbWpL5hTQRo0aZTuxlVXLli3zXWNRadasWZ5t+/fv1+HDh29jRSgNytXFmmPHjtWbb74pZ2dnffLJJzmmpGTy9vaWlDFtJOu38qwyp6Bk7V/YsTeyWq3y9PTM9gAAlC+LFi2yTc2YOXOmXnnllULtL68VxTL/Qpyenl6oY+TnWD/99JP+/ve/21aB2bNnjy5duqTU1FQZhqG0tDRb35SU/02RvHLliiTl+W+ih4dHEVR/a6pXr37TtszagUzl5oz42LFjtWTJEjk5OSk0NFQPPPBArn0bNWokKeOs9qlTp1S7du0cfSIjI3P0L+xYAADsmT9/vhwcHDRv3jzNmjVL6enpev31180uq1BWrVolwzA0YMAAvfvuuznaL126ZHdcZsjO67opMwLvuXPnbtpmxhcElGzl4oz4uHHjsoXwBx98MM/+QUFBtikm27dvt9tn27ZtkqQ6depkW/WkMGMBAMjN3LlzNXHiREkZ1xBNmDDB5IoKJ/OkVG5rc+/evdvu9sypNREREblOaSmq9dBvxW+//XbTtiZNmtyuclBKlPkgPn78eC1evNgWwh966KGbjnF3d7dNW1m2bFmO9uTkZK1atUqSNGTIkCIbCwBAXmbPnq0pU6ZIKpqlDM2UeY2UvftpGIahBQsW2B3XqVMneXh4KDExUR9++KHdPsuXLy+6QvNp+fLlds/E79y5U/v27ZOkXKfEovwq00F80qRJWrhwoW1OeH5CeKapU6eqQoUK2rVrlyZOnGibn5aYmKiQkBCdOHFCXl5eOdY2LexYAADy8tprr+mf//ynJGnBggV66aWXTK6oYDLPhL/99tvas2ePbfvly5c1dOhQW3i9UcWKFfX8889LksaMGaNNmzbZ2pKSkvTCCy/kOrY4JSQk6NFHH9XFixdt28LDw2130+7VqxcrpiCHUjFHPCoqKtsV0FnvsuXj42N73rFjR33++eeSpD179mjOnDmSMi7omDdvnubNm2d3/3379tXkyZOzbWvWrJmWLVumkSNHau7cuVqxYoVq166tY8eOKT4+Xq6urgoNDc12/KIYCwDlUWm+eZgZN/CaMWOGHBwcNH36dC1atEjp6elavHjxba2hsEJCQvTee+/p0KFD6tixo+rVqydPT08dPnxY169f16pVqzR06FC7Y1999VX98MMP2rp1q3r16qWAgAD5+Pjo6NGjSkxM1IIFCzRmzJg87z4aFRV103+Hw8LC8lwNJavXXntN06dPV82aNdWsWTNdu3ZNR44ckSTVr19f77//fr72g/KlVATxtLS0XC/ayLo9Li7O9jzrvLGLFy9m+4Z6o/r169vdHhwcrGbNmmnevHnauXOnwsPDVbVqVQ0YMECTJ0/WnXfemes+CzMWAMqT0n7zMLNu4DVt2jQ5ODho6tSpWrJkidLT0zV27NjbWkNhuLu7a8eOHZo6dao2bNigkydPytvbW/fdd5/Gjx+vzp075xrEXVxc9N///ldLlizR6tWrFRkZqfj4eHXu3FmTJ0+2raiS18oq6enpuWaLTFlP/N1M27ZttW/fPs2YMUNbt25VbGysAgICNHDgQE2ZMkWVKlXK975QfliM3NbYQ4kTHx8vLy8vxcXF3ZalDKN/jta7rd/VyP0jWUf8FvC+ARmSkpJ04sQJBQQE5Lres/S//2dK483DMm/gxf/vJUtoaKgGDx6sVq1aaf/+/WaXg1Iuv7/LMt1KXisVZ8QBAGUfNw9DUclcDrFr164mVwLkrUxfrAkAAMqmqVOnKiIiItu22NhYjRo1St9//72cnZ31zDPPmFQdkD+cEQcAAKXOsmXLNGPGDFWqVEkBAQFKTU1VRESEUlJS5ODgoKVLl9rWHAdKKoI4AAAodWbOnKn//Oc/Cg8P19GjR5WWliY/Pz916dJFo0ePVps2bcwuEbgpgjgAACh1RowYoREjRphdBlAozBEHAAAATEAQBwAAAExAEAcAAABMQBAHAKCEOnv2rEJCQuTv7y8nJydZLBZ169bN7LIAFBEu1gQAoARKTU1V9+7ddeTIEXl4eCgoKEhWq1XNmzc3u7RyZ9q0aZKkMWPGcKt6FCmCOAAAJdC3336rI0eOyM/PT7/99psqV65sdknl1vTp0yVJw4YNI4ijSDE1BQCAEujQoUOSpE6dOhHCgTKKIA4AQAl07do1SZKbm5vJlQAoLgRxAABKkGnTpslisdjmJa9evVoWi8X2OHnypK3PsGHDdP36dc2ZM0ctWrSQh4eHLBaLLl++LEk6ffq03nzzTfXt21f169eXm5ubPDw8FBgYqClTpujSpUt51vLZZ5+pS5cu8vT0lKenpzp06KB169ZJkurUqSOLxaKwsDC79Q8bNkwpKSmaPXu2mjZtKjc3N9WoUUPBwcE6c+aMrf/WrVvVp08fVa1aVW5ubmrbtq2++OKLPOuKiorS2LFj1aRJE1WsWFHu7u5q0aKFZsyYoStXrtgdk/X9O3TokB577DFVr15dVqtV9erV04QJE5SQkGD3tWQKCAjI9llkfkaSlJKSoqVLl6pjx47y9vaWk5OTfH19FRgYqJCQEG3ZsiXP14TyiTniAIAS4cKRC2aXcMuKo+ZatWqpY8eOOnXqlKKiouTr66sGDRrY2l1cXGzPk5KS1K1bN+3Zs0d169ZV48aNdfz4cVv7kiVLtHDhQrm4uKh69epq1qyZYmNjFRERofDwcK1du1Y7duxQrVq1ctQxZcoUvf7665IkHx8fBQQE6MSJE3ryySf166+/3vR1pKSkqHfv3tqyZYsaNmyounXr6ujRo1q5cqW2b9+uvXv3av369XrhhRdUpUoV1a5dW5GRkdq7d6/69++v0NBQDRw4MMd+v/jiCz3++OO6evWqnJ2dFRAQICljKs+vv/6q9evXa/PmzapRo4bdur777ju9+OKLcnBwUOPGjWW1WvXHH39o3rx52rVrl8LCwlShQoVsn8WuXbskSW3atJHVas32WUlSenq6+vbtq++//962vUGDBrp8+bIiIyMVHh6uhIQEde/e/abvG8oXgjgAwFRuPm5ycnPShic3mF1KgTi5OcnNp+imjwQHBys4OFjTpk3T9OnT1adPH61atcpu308++UQ1a9bUjz/+qLZt20qSkpOT5eTkJEnq06eP+vXrp86dO9vCpSSdP39ekyZN0vvvv6+///3v2rhxY7b9btq0yRbCZ8+erZdfflmOjo4yDEMrV67UM888k+1MsT2hoaGqU6eOwsPD1axZM0nS8ePH1bNnT0VGRio4OFj//e9/tXTpUj3zzDNycHBQSkqKQkJC9MEHH+ill17Sww8/nO04v/zyi4YMGaKkpCRNmTJFEydOVMWKFSVJZ86c0fDhw7Vp0yb97W9/0+bNm+3W9dxzz+mFF17QzJkzbdN+vvvuO/Xv31+7du3SunXr9NRTT2X7LDJryHxNN/ryyy/1/fffq2bNmtq4caOCgoJsbYZhaPv27YqOjs7z/UL5RBAHAJjKq5aXnjvynBIvJppdSoG4+bjJq5aXKcdOS0vT+vXrbSFcUrYztj169LA7ztfXV8uXL9e3336rr7/+WufOnVO1atVs7bNnz5YkPfHEE5o4caJtu8ViUXBwsH7//XfNnTs3z9pSUlL0wQcf2EK4JNWvX18vv/yynnvuOf3nP//Rs88+q1GjRtnanZyctGjRIn388cf6888/FR4ersDAQFv7lClTlJSUpBdffFGvvfZatuPVqFFDoaGhaty4sbZs2aKffvop2/uSqWPHjlq4cGG2bT179tTTTz+tN998U1988YUtiOfXkSNHJEmPPPJIthAuZbxnXbt2vaX9ofwgiAMATOdVy8u0MFuaNW7cWB06dMizT0JCgkJDQ7Vz50799ddfunr1qgzDkCRduXJFhmHowIED6t27tyTp6tWr2rFjhyTpmWeesbvPkSNH3jSIt2jRQu3atcuxvXXr1rbn9vZfpUoVBQQEKCIiQsePH7cF8fj4eP33v/+VpGzhPStPT0/17NlTq1ev1ubNm+0G8RdeeMHu2Pbt2+vNN9/UsWPH8nxd9tSuXVtSxl8SbvxSA+SFIA4AQCnVtGnTPNv37NmjgQMH3nRaRNaLNo8fP660tDRJynF2N1PdunXl6emp+Pj4XPeZdV57Vr6+vvnqExERke3iyd9++81WV0hISK7H/fPPPyVlXNBpT8OGDe1uzwzPN16wmR/9+/dXw4YNdfjwYdWqVUvdunVTp06d1L59e3Xo0IGVb5ArgjgAAKWUu7t7rm1XrlzRgAEDdO7cOXXp0kWTJk1SUFCQKleuLGdnZ0lSly5dtGPHDqWkpGQbJ2VMqfDw8Mh1/x4eHnkG8dxqyzrn+2Z90tPTbdtiY2NtzzMvnsxLYqL9qU65HdPBwSHHMfPL1dVVO3bs0KxZs7R+/Xpt2rRJmzZtkpSx/OTjjz+u2bNny8fH55b3jbKNIA4AQBn0zTff6Ny5c7rjjjv0zTff2D0ra2/5wszwbRiGrly5kmsYz22ZwOKSeVGmu7t7gc5aF7eqVatqyZIlWrJkiY4ePardu3fru+++04YNG7R8+XIdOnRIO3bskKOjo9mlogRhHXEAAMqgyMhISdJdd91lN4THxMTo6NGjObbXr1/fFhZ/+eUXu/s+ceJEnmfDi0PTpk3l4OCgq1ev6sCBA7f12LeqYcOGGj58uD788EPt3r1bFotFe/bs0b59+8wuDSUMQRwAgDIoM3znNj984cKFtjnXWbm7u6tz586SpPfee8/u2Ny2FycfHx/bOtwzZ868rcfOfC8z73Z6K1q2bCkvr4wLkf/6668irQulH0EcAIAyqFu3bpKkH374Qf/6179sK6WkpqZq8eLFmjNnTrabA2U1adIkSdIHH3yg+fPn2wK7YRhavXq1FixYYFur/HaaN2+eXF1dtWHDBg0dOjRHsE1NTdX27dsVHBxcpKG3fv36kpTr3TEXLlyouXPn6sSJE9m2X79+XXPnztXly5fl4OCgVq1aFVlNKBsI4gAAlEEtWrTQsGHDJEl///vfVaNGDd11112qVq2axo0bp6efflp333233bH33XefJk+eLEn6xz/+oerVq+vuu+9WzZo1NWzYMI0ZM8Z258rbOee5ZcuW+uyzz+Tt7a01a9bI399fd955p9q3b69mzZrJw8NDXbt21cqVK7NdgFpYQ4cOlSQ9//zzatKkibp27apu3brZbrQUFRWliRMnqm7duqpevbratGmjli1bytfX17YO+5w5c+zeDAjlGxdrAgBQRq1YsULNmzfXihUrdPz4cV27dk1NmzZVSEiIhg8fbjtrbs+sWbPUqlUrLVmyRAcOHNDhw4fVpEkTzZkzR0OHDtX7778vKWPt7tupd+/eOnr0qN566y19/fXX+v333/Xnn3/K19dXQUFB6tq1qx566CHb2t5FYezYsZKkNWvW6NixY7Yb+GS+f6NGjZKvr6/CwsL0+++/68iRI0pNTVX16tXVp08fPffcc+rUqVOR1YOyw2Jk/q0KJV58fLy8vLwUFxd3W37xRf8crXdbv6uR+0fKr5VfsR+vrOB9AzIkJSXpxIkTCggIyHUKBEqn8+fPq1q1arJYLIqNjbXNgQbKolv9XXYreY2pKQAA4JZkXqwZFBRECAcKgSAOAAByeOeddxQWFqasfzhPSUnR22+/rRkzZkiSXnzxRbPKA8oE5ogDAIAcwsLCNGrUKLm6uqpu3bpycXHR77//bruRz9ChQ20XgwIoGII4AADIYcSIEXJyctIPP/yg06dP6+rVq/L29lanTp0UHBysQYMGmV0iUOoRxAEAQA49evRQjx49zC4DKNOYIw4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgCAOAAAAmIBVU4BS4Ez8GcVcizG7jFKlsmtl1fCsYXYZAADkiiAOlHBn4s/ovvfv07XUa2aXUqq4VnDVpuBNhHEAQIlFEAdKuJhrMbqWek2L+i5SvSr1zC6nVIi8FKlxX49TzLUYgjgAoMQiiAOlRL0q9dSsWjOzywAAAEWEizUBAAAAExDEAQAAABMQxAEAAIrYyZMnZbFYZLFYzC6lTFm1apUsFou6deuWo61OnTqyWCwKCwu77XUVFEEcAIAS7MKFC5o9e7a6d++uGjVqyGq1ysPDQw0bNtTf/vY3bdiwQSkpKabVN23aNE2bNk2XL182rYbiMmzYsFxDX6ZDhw6pZs2aslgsat68uc6cOVOsNWUG0Zs9pk2bVqx1FIVp06bJYrGoTp06ZpdiGi7WBACghFq6dKkmTpyoq1evSpKqVaum5s2bKyUlRadOndLatWu1du1a1atXT99++63q1bv9KytNnz5dUkZorVSp0m0/vpl++ukn9enTRzExMWrXrp2+/vpreXt7S5KcnJzUsGHDYj1+x44dc22rVatWsR7bLF5eXmrYsGGZeX0EcQAASqCJEydq7ty5kqRHH31UU6ZMUbNm/1s5KT09XXv27NGiRYu0YcMGRUVFmRLEy6vNmzerf//+SkhI0H333afPPvtM7u7utvaaNWsqIiKiWGvYuXNnse6/JBowYIAGDBhgdhlFhiAOAEAJ8/nnn9tC+PTp0/Xqq6/m6OPg4KCOHTuqY8eO2rhxo7y8vG53meXWhg0b9Nhjjyk5OVmDBg3SunXr5OzsbHZZKIWYIw4AQAliGIamTJkiSerUqZP++c9/3nTM/fffr5YtW0r637zbYcOG5dq/W7duslgsWrVqVY62nTt3avDgwfL395ezs7M8PT1Vv3593X///Vq4cKHS09OzHSdTQEBAnnOU09LStGLFCnXr1k2VK1eW1WpVrVq19OSTT+rAgQN268x6YZ5hGHrnnXfUunVrVaxYUVWrVtWgQYN09OhRW/+ff/5ZjzzyiPz8/OTi4qLAwECtWLHipu/frVi1apUeeeQRJScna8SIEfr444/thvC8LtbMnHs+bdo0Xbt2TdOnT1fjxo3l6uqqKlWq6KGHHtLBgweLpN6sn/XZs2f1/PPPq27durJarQoKCrL1O3DggKZNm6ZOnTrJ399fVqtV3t7e6ty5s/71r38pNTU112OkpKRo/vz5atasmVxdXVW1alU9+OCD+vHHH4v8otW8LtbM6siRI3r88cfl5+cnq9WqevXqacKECYqLiyuSOooKZ8QBAChBfv75Zx06dEiSNHr06Nu66sbq1as1fPhwGYYhLy8vNW7cWA4ODjp9+rS++uorffXVV3ruuefk4uKiWrVqqWPHjtq1a5ckqU2bNrJarbZ9ZZ3De/XqVT300EPavHmzJKl27dqqV6+ejh49qnXr1umjjz7S22+/rZEjR+Za21NPPaU1a9aobt26ql+/viIiIvTpp59q27Zt+vHHHxUeHq4hQ4bIxcVF9evXV1pamsLDwxUSEqL4+HiNHTu20O/P4sWL9dJLL8kwDE2YMEFz5swp1P6uXLmijh076uDBg7rzzjvVoEED/f777/riiy/0/fffa/v27WrdunWh65akyMhIBQYGKiYmRo0bN1bTpk2zfYEYMWKE9u/fL09PT1WvXl2BgYE6f/68du7cqZ07d2rDhg36+uuvVaFC9uiYlJSkfv36acuWLZIyVi7x8fFRWFiYvvnmGy1cuLBI6r8VP/30k6ZPn67U1FQ1bdpUlSpVUkREhObNm6fPP/9cYWFhql69+m2vyy4DpUZcXJwhyYiLi7stxzuz/4wxTdOMM/vP3JbjlRVF/b6Fnw036s6va4SfDS+S/ZUHvGclw7Vr14zDhw8b165dM7uUUmXx4sWGJEOScfHixVseP3XqVEOS8dRTT+Xap2vXroYkY+XKlbZtqampho+PjyHJWLx4sXH9+vVsY/78809j7ty5ObZn1nrixIlcjzdixAhDklG5cmXj+++/t22/du2a8cILLxiSDEdHR2PPnj3Zxq1cudKQZDg5ORm+vr7G9u3bbW3nzp0zWrVqZUgyevbsaXh5eRn//Oc/jeTkZMMwDCM9Pd2YPHmyIclwd3c34uPjc60vN0899ZQhyejatavxz3/+0/Za582bd9OxJ06csPXPbb9OTk5GixYtjIiIiGyvq0OHDoYko1u3bjnGZr4n+Y1wmZ+1o6Oj0aNHD+P06dO2tsTERNvzdevWGb/88kuO8YcOHTLuvvtuQ5Ixf/78HO2TJk0yJBkeHh7GN998k23fo0aNMpydnXOtN/O/1dq1a+frtRjG/15/165dc7TVrl3b9r727t3bOH/+vK3t4MGDRkBAgCHJ6NOnT76PZxi3/rvsVvIaU1MAAChBoqKiJGWsDlGlSpXbdtwLFy7o4sWLqlSpksaMGSMnJ6ds7bVq1dI//vGPHNtv5tSpU3r//fclSW+88YZ69Ohha3NxcdH//d//qUOHDkpLS9OMGTPs7iMlJUX/93//p86dO9u2+fr6aubMmZKk7777Tu3bt9eMGTNsZ3kzp374+fnp6tWr2rp16y3VndWuXbs0c+ZMWSwWLV++XC+//HKB95WVxWJRaGhottVVfH199eabb0qStm3bludUityWLrQ3baNy5cr69NNPVbNmTds2V1dX2/PHH39cgYGBOcY1adJEa9askSStXLkyW1tCQoKWLl0qSVq0aJF69+6dbd9vvfWWWrVqlddbUCzc3d318ccfq2rVqrZtLVq0sE3F+uabb7R3797bXpc9TE0BAKAEiY+PlyRVrFjxth7X19dXrq6uunz5sr788ks98MADRbLf//73v0pLS1ONGjX02GOP2e3zj3/8Q/3799fmzZuVnJycbYqLJFWqVElDhgzJMS7rtI1nnnkmR7uTk5NatGih6OhoHT9+vJCvJGP+/qlTpwq9n0y9evVSgwYNcmxv2bKlrFarkpOTFRkZmWuYzW35wubNm+fYNmjQoJte0Hv69Gl99NFH+vnnn3X+/HklJyfLMAxb+5EjR3Tt2jVbgN+5c6euXLkiNzc3Pfnkkzn2Z7FYNGLECP3www95HreohYSEyNPTM8f2Ll26qHXr1tq/f7+++uor3XXXXbe1LnsI4gAAlCCZASIhIeG2HtfBwUHjx4/XzJkz9eCDD6pJkybq3r272rVrpy5dusjf379A+81cwq9JkyZydHS02yfzTOz169f1xx9/qHHjxtna69evb3ecr6+v7bm9QJu1T2Hez44dO6pVq1ZavHixZsyYIcMwcj17fytyW2fcYrHI19dXUVFRedZ9K8sXNm3aNM/2d955R2PGjFFycnKufQzDUExMjO2seuaFso0aNZKLi4vdMZkXEd9OWZf5tNe2f/9+HT58+DZWlDuCOAAAJcgdd9whSYqLi9OlS5du6/SU6dOnq06dOnrrrbd04MABHT582Db1oH379po9e7a6du16S/vMPMOf18Vxfn5+OfpnlXV97qyyXsh6sz6Zq71IGVMTZs2aZbeO0NBQu/tZtGiRHB0dtWDBAs2cOVPp6el67bXX7PbNr9xqljK+GN1Yd3Ed66efftLf//53GYahESNGKDg4WHfeeae8vLzk6Oio9PR025eorHdxvXLliiTZPfucycPDo0jqvxV5/beW2ZZZu9kI4gAAlCBdunSxPd+yZYseeeSRWxqfGTyzTim40fXr13MdGxwcrODgYMXExGj37t3asWOH/v3vf2vPnj2677779MMPP9zSWc7MkHb27Nlc+0RHR+foX5zOnTtnW+0lq9q1a+c5bv78+XJwcNC8efM0a9Yspaen6/XXXy+uMm+bVatWyTAMDRgwQO+++26O9kuXLtkdlxmy7X15ymRG4D137txN28z4gmAPF2sCAFCCtGrVSk2aNJGUcXFjXoHanswzn3mFkcjIyJvup3Llyrr//vs1d+5cHT16VG3bttX169ftBrW8NGrUSJJ0+PBhpaWl2e0THh4uSXJ2dlbdunVvaf8FMWzYMBmGkeNx8uTJm46dO3euJk6cKEmaPXu2JkyYUMzVFr/M/x5yW5t79+7ddrdnTq2JiIjIdUpLUa2Hfit+++23m7Zl/j9mNoI4AAAliMVisU152LVrV76mP3z11Ve2wHPnnXdKyliPPCkpKUffDRs26Pz587dUk7Ozs9q3by9J+uuvv7K1ubm5SZKuXbtmd2yfPn3k6OioM2fOaP369Xb7zJs3T5J077335rhQsySaPXu27aZL8+bNK7JVVMyS+Rlm/ctEJsMwtGDBArvjOnXqJA8PDyUmJurDDz+022f58uVFV2g+LV++3O6Z+J07d2rfvn2SpH79+t3usuwiiAMAUMIMGDBA48ePlyS9+uqreuyxx2w3+cmUnp6uH3/8UUOGDNEDDzygy5cvS5K6d++uihUr6sKFCxo3bly2OyJ+8803evrpp+3eCfLw4cMaPny4tm3bluPM9d69e/Xxxx9LUo6VJjIvpMy8ocuN/P399fTTT0vKuEFR5k19pIybwYwbN067du2So6Njvu4iWlK89tprtnoXLFigl156yeSKCi7zTPjbb7+tPXv22LZfvnxZQ4cOtYXXG1WsWFHPP/+8JGnMmDHatGmTrS0pKUkvvPBCrmOLU0JCgh599FFdvHjRti08PNx2t9levXqViBVTJII4AAAl0vz587V48WK5ubnpo48+UrNmzeTn56c2bdooKChIPj4+ateunf7973+rfv36tjtZVqxY0XaG+V//+pd8fHzUpk0b+fv7q2/fvho0aJDt7HZW169f16pVq9StWzd5eHioefPmuvvuu1WnTh21bdtWZ8+eVdu2bTVu3Lhs44YOHSpJev7559WkSRN17dpV3bp1s63ZLGVc6Ni9e3fFxMTo3nvvVUBAgNq2batq1app8eLFcnR01Ntvv6127doV07tZPGbMmKGpU6dKyniNRXH3TjOEhISoadOmio+PV8eOHdWgQQO1bt1afn5++vDDD/OcjvTqq6/qnnvuUXx8vHr16qW6devaPtt33nnH9t9i5sWn9kRFRcnHxyfPR17TTW702muvKSwsTDVr1lTr1q3VpEkTBQYGKjIyUvXr17eta18ScLEmAMB00y3TzS6hwKYaU4tt32PGjNHjjz+u5cuX67vvvlNERITCw8NVoUIF1axZU3369NHAgQP14IMPZrv1+KhRo+Tr66uFCxfq119/VUREhJo2barXXntNTz31lN25wHfeeadWrFihrVu3av/+/Tpz5ozi4uLk5eWlLl26aPDgwRoxYkSOs+mZ4XPNmjU6duyYjhw5Iin7fGN3d3d9++23WrVqldasWaNffvlFf/31l6pVq6YHHnhA48aNM+XGL0Vh2rRpcnBw0NSpU7VkyRKlp6frjTfeMLusW+Lu7q4dO3Zo6tSp2rBhg06ePClvb2/dd999Gj9+vDp37mz7wnUjFxcX/fe//9WSJUu0evVqRUZGKj4+Xp07d9bkyZNtF9/mdRFuenp6rheEZsr6l52badu2rfbt26cZM2Zo69atio2NVUBAgAYOHKgpU6aoUqVK+d5XcbMYt3oVCEwTHx8vLy8vxcXF3ZaryqN/jta7rd/VyP0j5dfK7+YDIKno37ffzv2mh9Y8pM//9rmaVct9bVT8D+9ZyZCUlKQTJ04oICAg1zWGMxHEgbIpNDRUgwcPVqtWrbR//36zyymQW/ldJt1aXmNqCgAAAIpF5rSWW11/vrwgiAMAAKDApk6daruDaqbY2FiNGjVK33//vZydnfXMM8+YVF3JxhxxAAAAFNiyZcs0Y8YMVapUSQEBAUpNTVVERIRSUlLk4OCgpUuX2tYcR3YEcQAAABTYzJkz9Z///Efh4eE6evSo0tLS5Ofnpy5dumj06NFq06aN2SWWWARxAAAAFNiIESM0YsQIs8solZgjDgAAAJiAIA4AAACYgCAOAEAJdfbsWYWEhMjf319OTk6yWCx2b8YDoHRijjgAACVQamqqunfvriNHjsjDw0NBQUGyWq1q3ry52aWVO9OmTZOUcafTknRXRpR+BHEAAEqgb7/9VkeOHJGfn59+++03Va5c2eySyq3p0zPu/Dps2DCCOIoUU1MAACiBDh06JEnq1KkTIRwoowjiAACUQNeuXZMkubm5mVwJgOJCEAcAoASZNm2aLBaLbV7y6tWrZbFYbI+TJ0/a+gwbNkzXr1/XnDlz1KJFC3l4eMhisejy5cuSpNOnT+vNN99U3759Vb9+fbm5ucnDw0OBgYGaMmWKLl26lGctn332mbp06SJPT095enqqQ4cOWrdunSSpTp06slgsCgsLs1v/sGHDlJKSotmzZ6tp06Zyc3NTjRo1FBwcrDNnztj6b926VX369FHVqlXl5uamtm3b6osvvsizrqioKI0dO1ZNmjRRxYoV5e7urhYtWmjGjBm6cuWK3TFZ379Dhw7pscceU/Xq1WW1WlWvXj1NmDBBCQkJdl9LpoCAgGyfReZnJEkpKSlaunSpOnbsKG9vbzk5OcnX11eBgYEKCQnRli1b8nxNKJ+YIw4AQAlSq1YtdezYUadOnVJUVJR8fX3VoEEDW7uLi4vteVJSkrp166Y9e/aobt26aty4sY4fP25rX7JkiRYuXCgXFxdVr15dzZo1U2xsrCIiIhQeHq61a9dqx44dqlWrVo46pkyZotdff12S5OPjo4CAAJ04cUJPPvmkfv3115u+jpSUFPXu3VtbtmxRw4YNVbduXR09elQrV67U9u3btXfvXq1fv14vvPCCqlSpotq1aysyMlJ79+5V//79FRoaqoEDB+bY7xdffKHHH39cV69elbOzswICAiRlTOX59ddftX79em3evFk1atSwW9d3332nF198UQ4ODmrcuLGsVqv++OMPzZs3T7t27VJYWJgqVKiQ7bPYtWuXJKlNmzayWq3ZPitJSk9PV9++ffX999/btjdo0ECXL19WZGSkwsPDlZCQoO7du9/0fUM5Y6DUiIuLMyQZcXFxt+V4Z/afMaZpmnFm/5nbcryyoqjft/Cz4Ubd+XWN8LPhRbK/8oD3rGS4du2acfjwYePatWtml1IqTZ061ZBkPPXUU7m2OTo6GrVq1TJ+/PFHW1tSUpKRlpZmGIZhfP/998aWLVuMlJSUbOPPnTtnBAcHG5KMfv365dj/t99+a0gyJBmzZ882UlNTDcMwjPT0dGPFihVGhQoVDCcnJ0OSsXXrVru1OTk5GQ0aNDDCw//3/+GxY8eMOnXqGJKM/v37Gy4uLsbbb79tq/f69evG0KFDDUlG7dq1jfT09Gz7PnjwoOHi4mJIMqZMmWJcuXLF1vbXX38Z9913nyHJ6N69e47XlPl6nJycjHHjxhlXr161tW3atMlwc3MzJBmrVq3KdeyJEydytBmGYfznP/8xJBk1a9Y0Dhw4kK0tPT3dCAsLM9avX293LEq+W/1ddit5jakpAACUUmlpaVq/fr3atm1r22a1WuXgkPHPe48ePXTPPffYzvBm8vX11fLly1WzZk19/fXXOnfuXLb22bNnS5KeeOIJTZw4UY6OjpIypncEBwfrpZdeUkpKSp61paSk6IMPPlCzZs1s2+rXr6+XX35ZkvSf//xHw4YN06hRo2z1Ojk5adGiRbJarfrzzz8VHh6ebZ9TpkxRUlKSXnzxRb322muqWLGira1GjRoKDQ1VjRo1tGXLFv3000926+rYsaMWLlyYbe59z5499fTTT0vSTafF2HPkyBFJ0iOPPKKgoKBsbRaLRV27dtWjjz56y/tF2UcQBwCglGrcuLE6dOiQZ5+EhAStXLlSTz/9tHr37q3OnTurU6dO6ty5s65cuSLDMHTgwAFb/6tXr2rHjh2SpGeeecbuPkeOHHnT2lq0aKF27drl2N66dWvbc3v7r1Klim26SdZpNvHx8frvf/8rSRo1apTdY3p6eqpnz56SpM2bN9vt88ILL9jd3r59e0nSsWPH7LbnpXbt2pKkTZs25fhSA+SFOeIAAJRSTZs2zbN9z549GjhwoKKjo/Psl/WizePHjystLU2ScpzdzVS3bl15enoqPj4+131mndeela+vb776REREZLt48rfffrPVFRISkutx//zzT0kZF3Ta07BhQ7vbq1WrJkk5LtjMj/79+6thw4Y6fPiwatWqpW7duqlTp05q3769OnTowMo3yFWpOCN+9uxZrVu3TuPGjVO3bt3k6elpu2I5P/bu3avBgwfLz89PVqtV/v7+Cg4Ozte3XrPGAgBwM+7u7rm2XblyRQMGDFB0dLS6dOmib775RtHR0UpOTpZhGDIMQ507d5akbNNMMlcdsVgs8vDwyHX/ebXlVVvWf7tv1ic9Pd22LTY21vZ8165duT5Onz4tSUpMTLylujKnx2Q9Zn65urpqx44dGj16tCpVqqRNmzbp1VdfVc+ePVW1alWNGDFCFy9evOX9ouwrFUH8o48+0pNPPqnFixdr27ZtuS5NZM/q1avVvn17hYaGKjU1Vc2bN1d8fLxWrlypoKCgPJcTMmssAACF9c033+jcuXO644479M0336h3796qXr26nJ2dbX3sLV+YGbANw8jz39tb+be4KGTOB3d3d7d9kcjrsWrVqttaX9WqVbVkyRKdO3dOERERev/99/XYY48pPT1dy5cv14MPPmg7ow9kKhVB3NPTU927d9f48eO1fv16ffDBB/kad+jQIYWEhCgtLU0TJkzQmTNntG/fPkVHR+uJJ55QYmKiBg0aZPcXkVljAQAoCpGRkZKku+66y+7UiJiYGB09ejTH9vr169suzvzll1/s7vvEiRN5TkspDk2bNpWDg4OuXr2abU57SdSwYUMNHz5cH374oXbv3i2LxaI9e/Zo3759ZpeGEqZUBPHg4GBt3rxZ8+fP16OPPmq7iONmpk+frtTUVHXo0EFz5syRk5OTpIy7lK1YsUIBAQGKjY3VwoULS8xYAACKQmb4zm1++MKFC+2eoXV3d7dNWXnvvffsjs1te3Hy8fGxrcM9c+bM23rszPcy826nt6Jly5by8vKSJP31119FWhdKv1IRxAsiMTFRGzdulGT/6mqr1aphw4ZJktavX18ixgIAUFS6desmSfrhhx/0r3/9S4ZhSJJSU1O1ePFizZkzJ9vNgbKaNGmSJOmDDz7Q/PnzbYHdMAytXr1aCxYssJ1kup3mzZsnV1dXbdiwQUOHDs0RbFNTU7V9+3YFBwcXaeitX7++JOU6rXThwoWaO3euTpw4kW379evXNXfuXF2+fFkODg5q1apVkdWEsqHMBvEDBw7Yvrl26dLFbp+uXbtKkk6ePJntjIFZYwEAKCotWrSwnfj5+9//rho1auiuu+5StWrVNG7cOD399NO6++677Y697777NHnyZEnSP/7xD1WvXl133323atasqWHDhmnMmDG2O1dmTmO5HVq2bKnPPvtM3t7eWrNmjfz9/XXnnXeqffv2atasmTw8PNS1a1etXLnypuuc34qhQ4dKkp5//nk1adJEXbt2Vbdu3Wzz0KOiojRx4kTVrVtX1atXV5s2bdSyZUv5+vpq4sSJkqQ5c+aoTp06RVYTyoYyu3xh5rw3Z2dn+fv72+1Tr1492/OIiAj5+fmZOvZGycnJSk5Otv18u+fjAQBKtxUrVqh58+ZasWKFjh8/rmvXrqlp06YKCQnR8OHDbWfN7Zk1a5ZatWqlJUuW6MCBAzp8+LCaNGmiOXPmaOjQoXr//fclZVzHdTv17t1bR48e1VtvvaWvv/5av//+u/7880/5+voqKChIXbt21UMPPWRb27sojB07VpK0Zs0aHTt2zHYDn8z3b9SoUfL19VVYWJh+//13HTlyRKmpqapevbr69Omj5557Tp06dSqyelCG3PJ9PkuAHTt22G43m5v58+cbkoxq1arl2ufq1au2/Xz66aemj71R5m2Cb3xwi/uSjVvcm4/3rGTgFvdl17lz5wxJhsViMS5fvmx2OUCx4hb3BZA5PSTrMk03yjo3Lut6o2aNvdGkSZMUFxdne+R2cwIAAG6nzIs1g4KCbBciArh1ZXZqiqurq6SMCyVyk5SUZHuedWkns8beyGq1ymq15toOAEBxeeedd9SoUSN17drVdoOdlJQUvffee5oxY4Yk6cUXXzSzRKDUK7NB3NvbW1LGnbgMw7B7F86YmJgc/c0cCwBASREWFqZRo0bJ1dVVdevWlYuLi37//XfbjXyGDh1quxgUQMGU2SDeqFEjSRlnpk+dOmX3oo3Mmx1k7W/mWAAASooRI0bIyclJP/zwg06fPq2rV6/K29tbnTp1UnBwsAYNGmR2iUCpV2bniAcFBdmmiWzfvt1un23btkmS6tSpk23lErPGAgBQUvTo0cO2Ssjly5eVkpKi8+fP6+uvvyaEA0WkzAZxd3d39evXT5K0bNmyHO3Jycm29T+HDBlSIsYCAACg/CizQVySpk6dqgoVKmjXrl2aOHGibXH/xMREhYSE6MSJE/Ly8tL48eNLzFgAAACUD6UiiEdFRcnHx8f2uP/++21tWbc/9NBD2cY1a9ZMy5Ytk6Ojo+bOnasaNWqoTZs28vPz09q1a+Xq6qrQ0FD5+PjkOKZZYwEAAFA+lIognpaWpkuXLtkecXFxtrbctmcKDg7W7t27NXDgQDk6Oio8PFweHh566qmndPDgQfXs2TPX45o1FgAAAGVfqVg1pU6dOjIMo8Dj27Ztq08++aRUjQWAsqIwv78BwGzF+TusVJwRBwCUPhUqZJzrSU5ONrkSACi4zGv9HB0di3zfBHEAQLGoUKGC3N3dFRMTo7S0NLPLAYBbZhiG4uLiZLVa5eTkVOT7LxVTUwAApZOPj4+ioqJsq0W5urrK0dHR7l2HAaCkMAxDKSkpiouLU0JCgmrWrFksxyGIAwCKjZubmwICAnT+/HnFxsbq4sWLZpcEAPlmtVpVs2ZNeXp6Fsv+CeIAgGLl7OysO+64w3aGKT093eySAOCmHB0di2U6SlYEcQDAbWGxWOTs7Gx2GQBQYnCxJgAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGCCchHEk5OT9cYbb6hTp06qXLmyKlSoIG9vb3Xs2FGLFy9WUlJSrmP37t2rwYMHy8/PT1arVf7+/goODtaxY8duetzCjAUAAEDZVuaDeExMjNq1a6cxY8Zo165dcnJyUlBQkNzd3bV7926NGzdObdu21cWLF3OMXb16tdq3b6/Q0FClpqaqefPmio+P18qVKxUUFKQtW7bketzCjAUAAEDZV+aD+KRJk3Tw4EE5OzsrNDRU586d0759+3T69Glt3rxZlSpVUnh4uP7xj39kG3fo0CGFhIQoLS1NEyZM0JkzZ7Rv3z5FR0friSeeUGJiogYNGqRLly7lOGZhxgIAAKB8KPNBfMOGDZKkUaNGadCgQdnaunfvrmnTpkmSvvjii2xt06dPV2pqqjp06KA5c+bIyclJkuTm5qYVK1YoICBAsbGxWrhwYY5jFmYsAAAAyocyH8QTExMlSfXr17fbfuedd0qSUlJSso3ZuHGjpIwAfyOr1aphw4ZJktavX5/jeAUdCwAAgPKjzAfxVq1aSZJ27txpt3379u2SpPbt29u2HThwQNeuXZMkdenSxe64rl27SpJOnjyp6OjoIhkLAACA8qPMB/FZs2bJarXq448/1ksvvaTjx48rKSlJf/75p2bNmqX58+ercuXKmj9/vm3M0aNHJUnOzs7y9/e3u9969erZnkdERBTJWAAAAJQfFcwuoLh17txZO3fu1LRp07RkyRItWrQoW3twcLBeeeUVBQQE2LbFxMRIkry9vWWxWOzut3LlyrbnsbGxRTL2RsnJyUpOTrb9HB8fn2tfAAAAlC5l/oy4lDEF5OzZs0pPT5ePj49atWql6tWrS5I+++wzvf/++0pLS7P1z5xa4uzsnOs+XVxcbM8z56EXduyNZs+eLS8vL9sjtzPsAAAAKH3KfBBfvHixHnnkEf3xxx/asGGDLly4oP379ys6Olrbt2+Xl5eXXnvtNQ0fPtw2xtXVVZJ0/fr1XPeb9SZAbm5uRTL2RpMmTVJcXJztERUVlccrBQAAQGlSpoP4hQsX9Morr0jKCOT9+/fP1t65c2etXr1akrRmzRrt27dPUsa0Eilj2ohhGHb3nTkFJWv/wo69kdVqlaenZ7YHAAAAyoYyHcT37dtnm/rRp08fu306d+4sd3d3SdKPP/4oSWrUqJGkjLPap06dsjsuMjLS9jyzf2HHAgAAoPwo00E8vxc3Zp65zpzfHRQUZJtikrm84Y22bdsmSapTp478/Pxs2wszFgAAAOVHmQ7iDRs2tD3/+uuv7fYJCwuznTVv3LixJMnd3V39+vWTJC1btizHmOTkZK1atUqSNGTIkGxthRkLAACA8qNMB/GgoCDbDX3GjRunzz//PFt7WFiY7S6XtWvX1r333mtrmzp1qipUqKBdu3Zp4sSJtjtvJiYmKiQkRCdOnJCXl5fGjx+f47iFGQsAAIDyoUwHcUn68MMPVbNmTcXGxqp///6qWrWqWrduLT8/P91zzz2KiopSlSpVFBoaKqvVahvXrFkzLVu2TI6Ojpo7d65q1KihNm3ayM/PT2vXrpWrq6tCQ0Pl4+OT45iFGQsAAIDyoViD+OXLl4tz9/nSsGFDHTp0SLNmzVK7du2UmpqqX375RVevXlWrVq00ZcoUHTp0SHfddVeOscHBwdq9e7cGDhwoR0dHhYeHy8PDQ0899ZQOHjyonj175nrcwowFAABA2VfgO2tGRkZq8+bNat68udq3b2/bnpaWpilTpujtt9/W1atXVb9+fS1fvlydO3cukoILwsvLS5MnT9bkyZNveWzbtm31ySefFOi4hRkLAACAsq3AZ8SXLVumUaNG6cyZM9m2L1iwQPPmzVNCQoIMw9CxY8fUr1+/XJfyAwAAAMqjAgfxHTt2yMnJSffff79tm2EYWrJkiSwWixYvXqwDBw5o4MCBSkhI0OLFi4ukYAAAAKAsKHAQP336tPz8/LJd4Lh//36dO3dOPXr00OjRo9WiRQu99957slqt+u6774qkYAAAAKAsKHAQv3DhgqpVq5Zt265duyTJto62JFWqVEn169fXn3/+WdBDAQAAAGVOgYO4k5NTjjtX7tmzRxaLRR07dsy23d3dXampqQU9FAAAAFDmFDiIBwQE6Pjx47p48aIk6fr16/ruu+/k5uamli1bZut74cIF1swGAAAAsihwEO/bt69SU1P12GOP6csvv9TTTz+ty5cvq2/fvnJ0dLT1u3z5sk6ePCl/f/8iKRgAAAAoCwq8jvjLL7+sdevWafPmzdqyZYsMw5Crq6v++c9/Zuv3xRdfyDAMU9cRBwAAAEqaAgfxKlWq6KefftK8efMUERGh2rVra/To0WrcuHG2frt27VKLFi2yXcAJAAAAlHcFDuKS5Ofnd9P1wZctW1aYQwAAAABlUoHniG/fvl2//PJLvvr++uuv2r59e0EPBQAAAJQ5BQ7i3bp104svvpivvqNHj1b37t0LeigAAACgzClwEJcybmlfHH0BAACAsq5QQTy/rly5Imdn59txKAAAAKBUKPYgfuTIEf3222+64447ivtQAAAAQKmR71VT3njjDb3xxhvZtu3bt09169bNdcy1a9d0/vx5SRk3AAIAAACQId9BPPMOmZksFouSkpKybbPHYrGoX79+mjFjRkFrBAAAAMqcfAfxYcOGqVu3bpIyLrzs3r27mjdvrv/7v/+z299iscjNzU316tWTt7d3kRQLAGY5lZSkiykpZpdR6vg4OamWi4vZZQBAiZTvIF67dm3Vrl3b9nOXLl3UokULde3atVgKA4CS4lRSkhr/9JMS09PNLqXUcXNw0JG2bQnjAGBHge+sGRYWVoRlAEDJdTElRYnp6VrbuLEau7mZXU6pcSQxUU8eOaKLKSkEcQCwo1C3uAeA8qSxm5taeXiYXQYAoIwodBD/888/tXHjRh07dkwJCQlKz+VPtxaLRStWrCjs4QAAAIAyoVBBfPLkyZo/f74tfOd190yCOAAAAPA/BQ7iy5Yt05w5cyRJzZs3V/v27VWtWjU5ONyWm3UCAAAApVqhgrjFYtGsWbM0ceLEoqwJAAAAKPMKfPr66NGjqlKlCiEcAAAAKIACB3Gr1aqAgICirAUAAAAoNwocxFu2bKk///yzKGsBAAAAyo0CB/GxY8fq/PnzWrduXVHWAwAAAJQLBQ7i999/v2bOnKmRI0fqtdde0+XLl4uwLAAAAKBsK/CqKXXr1pUkpaamaurUqZo6dap8fHzk7u5ut7/FYlFkZGRBDwcAAACUKQUO4idPnsyx7cKFC7pw4YLd/haLpaCHAgAAAMqcAgfxrVu3FmUdAAAAQLlS4CDetWvXoqwDAAAAKFe4Hz0AAABgggKfEc8qNTVV+/fvV1RUlBITEzV06NCi2C0AAABQZhXqjLhhGJo1a5aqVaumDh06aMiQIRo+fHi2PiNGjFDdunVZMQUAAADIosBB3DAMPfLII3r11Vd1+fJl1apVSxUrVszRr3fv3jp58qQ+//zzQhUKAAAAlCUFDuIffPCBPvvsM9WtW1c//fSTTpw4ocDAwBz9evfuLQcHB/33v/8tVKEAAABAWVLgIL5y5UpZLBatX79erVu3zrWfu7u76tata3fdcQAAAKC8KnAQ//XXX3XHHXeoTZs2N+1bpUoVRUdHF/RQAAAAQJlT4CCemJioKlWq5KvvtWvXCnoYAAAAoEwqcBCvVq2a/vjjj5v2S0xMVEREhPz9/Qt6KAAAAKDMKXAQ79y5s65cuaJ169bl2W/p0qW6fv267rnnnoIeCgAAAChzChzEX3jhBRmGoRdffFFffPFFjvb09HS9+eabeuWVV+To6Kjnn3++UIUCAAAAZUmBg/jdd9+tKVOmKDY2VgMGDFDNmjV16NAhSdIDDzyg6tWra8yYMUpNTdVrr72mxo0bF1nRAAAAQGlXqFvcz5w5U/7+/poyZUq2VVG++uorSZK3t7def/11PfPMM4WrEgAAAChjChXEJWnkyJEaOnSotmzZol9++UWxsbGqWLGiAgMD1bNnT7m7uxdFnQAAAECZUuggLkkuLi7q27ev+vbtWxS7AwAAAMq8As8RBwAAAFBwRXJGXJIuX76shIQEpaen59qnVq1aRXU4AAAAoFQrVBA/efKkpk+fri+//FKxsbF59rVYLEpNTS3M4QAAAIAyo8BB/PDhw+rcubMuX74swzBu2j8/fQAAAIDyosBzxCdOnKjY2Fi1aNFCGzdu1NmzZ5Wenp7nAwAAAECGAp8R37Fjh1xcXPTtt9+qatWqRVkTAAAAUOYV+Ix4WlqaGjVqRAgHAAAACqDAQbxRo0aKj48vyloAAACAcqPAQXzEiBE6ceKEdu3aVZT1AAAAAOVCoYL4kCFDNGjQIH3yySdFWRMAAABQ5hVqHfEPP/xQgwcP1pAhQ1SpUiXVr19f7u7udvtaLBZt3ry5MIcDAAAAyowCB/GUlBQ9/vjj+uyzz2QYhmJjY7V3795c+1ssloIeCgAAAChzChzEZ8+erU8//VQVKlTQgAED1Lp1a/n6+hK4AQAAgHwocBBfs2aNLBaLNm7cqPvuu68oawIAAADKvAJfrHn69GnVqVOHEA4AAAAUQIGDeLVq1eTt7V2UtQAAAADlRoGDeN++fXXo0CHFxsYWZT0AAABAuVDgID59+nRVqVJFwcHBSkhIKMqaAAAAgDKvwBdrfvPNN3r22Wc1c+ZMNWjQQI899pgaNGiQ6zrikjR06NCCHg4AAAAoUwocxIcNGyaLxSLDMHTu3Dm98cYbNx1DEAcAAAAyFDiId+nShTXDAQAAgAIqcBAPCwsrwjIAAACA8qXAF2sCAAAAKDiCOAAAAGACgjgAAABgggLPEXd0dMx3XwcHB3l6eqpu3brq1q2bRo4cqQYNGhT00AAAAECpV+Az4oZh5PuRlpam2NhY7d+/X4sWLVJgYKDef//9onwdAAAAQKlS4CB+4sQJvfHGG3J2dla7du20YsUK/fzzzzp27Jh+/vlnvf/++2rfvr2sVqveeOMNhYeH69///re6d++u5ORkPfPMM/r555+L8rUAAAAApUaBg/i5c+c0fvx4hYSEaPfu3Ro+fLiCgoJUr149BQUFadiwYdq1a5dCQkI0fvx4JSQkaNCgQfruu+/0zDPPKC0tTf/3f/9XlK8FAAAAKDUKHMRnzZolV1dXLVy4MM9+CxYskKurq15//XXbttmzZ8vJyUnbtm0r6OEBAACAUq3AQXzPnj1q2LChrFZrnv2sVqsaNmyoPXv22LZVqlRJjRo10rlz5wp6eAAAAKBUK3AQT0hI0MWLF/PV9+LFi0pISMi2rUKFCre08kpROHDggEaMGKF69erJzc1NXl5eaty4sYYPH66ffvrJ7pi9e/dq8ODB8vPzk9Vqlb+/v4KDg3Xs2LGbHq8wYwEAAFC2FTiI16tXTydPntR3332XZ7/vvvtOJ06cUL169bJtP3HihKpUqVLQw9+yqVOnqk2bNlq+fLliYmLUpEkT1apVS2fPntWqVau0adOmHGNWr16t9u3bKzQ0VKmpqWrevLni4+O1cuVKBQUFacuWLbkerzBjAQAAUPYVOIgPHTpUhmHokUce0cqVK3X9+vVs7SkpKVq9erUGDx4si8Wip556ytZ29OhRXb58Wc2bNy945bdg1qxZmjFjhnx8fLRhwwZdvHhR+/btU3h4uGJjY3XgwAH169cv25hDhw4pJCREaWlpmjBhgs6cOaN9+/YpOjpaTzzxhBITEzVo0CBdunQpx/EKMxYAAADlQ4GD+NixY3XPPfcoPj5eISEhqlKliu666y716NFDd911lypXrqzg4GDFxcXpnnvu0ZgxY2xj169fr2rVqql///5F8BLy9ttvv2natGmyWq36/vvv1b9//xxTYoKCgtSyZcts26ZPn67U1FR16NBBc+bMkZOTkyTJzc1NK1asUEBAgGJjY+1erFqYsQAAACgfChzEK1SooK+//loTJ05UxYoVdfXqVe3fv19bt27V/v37dfXqVVWsWFGTJk3SV199pQoV/ncTz2nTpik6OlpPP/10kbyIvCxevFipqakaNmxYvs/AJyYmauPGjZKkUaNG5Wi3Wq0aNmyYpIwvFUU1FgAAAOVHgW9xL2WEytdff11TpkzRzp07dfToUV25ckUeHh5q2LChOnXqJHd396Kq9ZYZhqENGzZIkgYMGKATJ05o+fLlOnjwoFJTU1W/fn0NGDBA9957b7ZxBw4c0LVr1yRJXbp0sbvvrl27SpJOnjyp6Oho+fn5FXosAAAAyo9CBfFM7u7u6tWrl3r16lUUuysyx48fV2xsrCTp2LFjevjhh5WYmGhr37Rpk95++20NGDBA69atk6urq6SMOeyS5OzsLH9/f7v7znrxaUREhC1MF2YsAAAAyo8CT00pDc6cOWN7Pm7cOFWrVk1ff/21EhMTdf78eS1atEhOTk7asGGDnnvuOVvfmJgYSZK3t7csFovdfVeuXNn2PDPsF3bsjZKTkxUfH5/tAQAAgLKhSM6ISxmhMSYmRikpKbn2qVWrVlEdLl+uXLlie56enq6NGzeqSZMmkiRXV1eNHTtW169f18SJE7Vq1SpNmDBBDRs2tE0tcXZ2znXfLi4utudZz7IXZuyNZs+erenTp+faDgAAgNKrUGfE09PTtWjRIjVv3lzu7u664447FBAQYPdRt27doqo53zKnmkjSAw88YAvhWb344otycXGRYRj6+uuvs427cUnGrJKSkmzP3dzcchyzIGNvNGnSJMXFxdkeUVFRufYFAABA6VLgM+JpaWnq16+fvvvuOxmGcdP++elT1LJOAWnatKndPq6urqpbt64OHz6sP/74Q1LGtBIpY9qIYRh2p5hkTkHJ2r+wY29ktVpltVpzbQcAAEDpVeAz4u+99542bdqku+++W7///rs6duwoi8WitLQ0nT9/Xv/5z3/UsWNHubq6as2aNUpPTy/KuvOlYcOGcnDIeIl5BdrMttTUVElSo0aNJGWc1T516pTdMZGRkbbnmf0LOxYAAADlR4GD+IcffiiLxaL3339f9evXt223WCzy8fHRgw8+qB07dujhhx/WsGHDtHv37iIp+Fa4ubnZbtRz/Phxu30Mw7CdCc9c5SQoKMg2xWT79u12x23btk2SVKdOnWyrnhRmLAAAAMqPAgfx3377TbVq1bKd0c2cgnHjFJSlS5fKyclJCxYsKESZBff4449Lku3W9jf6+OOPFRcXJ0nq2bOnpIzlGDNveb9s2bIcY5KTk7Vq1SpJ0pAhQ7K1FWYsAAAAyo8CB/HExET5+vrafs6c3pEZajN5eXmpSZMmppwRlzLublmrVi1duXJFTz75ZLYwvnfvXo0dO1aS1LdvX9111122tqlTp6pChQratWuXJk6caFsNJjExUSEhITpx4oS8vLw0fvz4HMcszFgAAACUDwUO4r6+vtnWtc4M5b///nuOvvHx8Xmul12cXF1dtXHjRvn4+Ojbb7/VHXfcoTZt2qhx48Zq27atzp49q1atWmn16tXZxjVr1kzLli2To6Oj5s6dqxo1aqhNmzby8/PT2rVr5erqqtDQUPn4+OQ4ZmHGAgAAoHwocBCvXbu2zp49a/u5VatWMgxDK1euzNbvhx9+UGRkpKpXr17wKgupefPmOnz4sF566SXVrl1bhw4d0unTp3XXXXdp0aJF2rVrl91QHBwcrN27d2vgwIFydHRUeHi4PDw89NRTT+ngwYO2qSz2FGYsAAAAyr4CL1/Yo0cP7d69W7/99puaNWumRx99VK+88oreffddXbx4UV27dlV0dLTefvttSdKAAQOKrOiCqFq1qhYsWHDLc9Xbtm2rTz75pEDHLMxYAAAAlG0FPiPev39/tWrVSr/99pskqWbNmlq8eLEk6dNPP9Xo0aM1Z84cxcXFqWnTptwhEgAAAMiiwGfEg4KCtHfv3mzbnn32WbVu3VqrVq1SZGSk3Nzc1K1bN4WEhOR5B0kAAACgvClwEM/NXXfdlW31EQAAAAA5FXhqSqtWrdSxY0clJycXZT0AAABAuVDgIH748GElJyfneet4AAAAAPYVOIjXrFnTdqMaAAAAALemwEG8T58+OnLkSLa1xAEAAADkT4GD+D//+U95e3vrqaee0pUrV4qyJgAAAKDMK/CqKd9++62eeeYZzZ49Ww0aNNCgQYPUtGlTubu75zpm6NChBT0cAAAAUKYUOIgPGzZMFotFhmHo/Pnz+te//nXTMQRxAAAAIEOBg3iXLl1ksViKshYAAACg3ChwEA8LCyvCMgAAAIDyJd8Xa86YMUOrVq0qxlIAAACA8iPfQXzatGl6//337bZ1795dY8aMKaqaAAAAgDKvwFNTsgoLC1NqampR7AoAAAAoFwq8jjgAAACAgiOIAwAAACYgiAMAAAAmIIgDAAAAJiCIAwAAACa4pVVTdu3aJUdHxxzbLRZLrm1Z+7CyCgAAAJDhloK4YRjFVQcAAABQruQ7iK9cubI46wAAAADKlXwH8aeeeqo46wAAAADKFS7WBAAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExQqCDu6OioXr16FVUtAAAAQLlRqCBuGIYMw8i27cUXX1SPHj0KVRQAAABQ1uU7iE+ePFn//e9/FR8fn2e/AwcOKCwsrLB1AQAAAGVahfx2nDNnjubOnSsHBwcFBgaqc+fOxVkXAAAAUKblO4j/+9//1o4dO7R9+3b98ssvOnDggCRp69atateunXr16qV7771XqampxVYsAAAAUFbkO4gPGjRIgwYNkiTFxcVp+/bteuihh1ShQgXt27dPP/30k1577TVb//nz56tTp0666667VKFCvg8DAAAAlAsFuljTy8tLDzzwgCSpc+fOOn/+vNavX69hw4apYsWKkqQJEyaoU6dO8vLyUvfu3TV9+vSiqxoAAAAo5fIdxLds2aJr167ZbatcubKGDBmiFStWKDAwUJK0fPlyPfnkk6pevbrCwsI0Y8aMoqkYAAAAKAPyPWfk3nvvlZOTk1q1aqUuXbrc9GLN4OBgBQcHS5LOnDmj7du3F65SAAAAoAzJ9xnxp59+WvXq1dOPP/6o+fPn66GHHpIkHTx4UJMnT9a2bdtyvVCzRo0aevTRR4umYgAAAKAMyHcQf++993T48GGdP39en332mUaPHi1JunjxoubMmaPu3burcuXK+uWXXyRlrCeenp5ePFUDAAAApdwtX6zp4+Oj/v37a9GiRZKk9u3ba/369frb3/4mDw8PJSQkSJLatGkjb29v9enTR6+//rp27txZtJUDAAAApVih1xV0d3fXkCFDNGTIEEkZwfynn37S4MGDtWPHDn377bf69ttvZbFYlJaWVuiCAQAAgLKgyBf4zlwzfP369ZKkyMhIhYWFaceOHUV9KAAAAKDUKlQQr1WrlqpXr55nn3r16qlevXp6+umnC3MoAAAAoEwpVBA/efJkjm2GYRRmlwAAAEC5UORTUz799FMlJSUV9W4BAACAMqXIg3i1atWKepcAAABAmXPLyxcCAAAAKDyCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYIJyGcRPnTolT09PWSwWWSwWhYWF5dp37969Gjx4sPz8/GS1WuXv76/g4GAdO3bspscpzFgAAACUbeUyiI8YMUJXrly5ab/Vq1erffv2Cg0NVWpqqpo3b674+HitXLlSQUFB2rJlS7GMBQAAQNlX7oL48uXLtWnTJj388MN59jt06JBCQkKUlpamCRMm6MyZM9q3b5+io6P1xBNPKDExUYMGDdKlS5eKdCwAAADKh3IVxE+fPq2XXnpJAQEBmjlzZp59p0+frtTUVHXo0EFz5syRk5OTJMnNzU0rVqxQQECAYmNjtXDhwiIdCwAAgPKhXAXxkSNHKj4+Xu+++67c3Nxy7ZeYmKiNGzdKkkaNGpWj3Wq1atiwYZKk9evXF9lYAAAAlB/lJoivXLlS33zzjYYPH6577703z74HDhzQtWvXJEldunSx26dr166SpJMnTyo6OrpIxgIAAKD8KBdB/MyZMxo3bpyqVauWr+kgR48elSQ5OzvL39/fbp969erZnkdERBTJ2BslJycrPj4+2wMAAABlQ7kI4s8884wuX76spUuXytvb+6b9Y2JiJEne3t6yWCx2+1SuXNn2PDY2tkjG3mj27Nny8vKyPXIL9gAAACh9ynwQX7NmjTZu3Kj+/ftr0KBB+RqTObXE2dk51z4uLi6254mJiUUy9kaTJk1SXFyc7REVFXXz4gEAAFAqVDC7gOJ09uxZjR49Wl5eXnrrrbfyPc7V1VWSdP369Vz7JCUl2Z5nvfCzMGNvZLVaZbVab14wAAAASp0yHcSff/55xcbG6t1331WNGjXyPS5z+kpsbKwMw7A7xSRzCkrW/oUdCwAAgPKjTE9N2bdvnyTplVdeUfXq1bM97rrrLlu/hx9+WNWrV9fo0aMlSY0aNZKUcVb71KlTdvcdGRlpe57Zv7BjAQAAUH6U6SCe6fz58zp37ly2x8WLF23tsbGxOnfunOLi4iRJQUFBtikm27dvt7vPbdu2SZLq1KkjPz8/2/bCjAUAAED5UaaD+MmTJ2UYht3HiRMnbP22bt0qwzC0atUqSZK7u7v69esnSVq2bFmO/SYnJ9v6DhkyJFtbYcYCAACg/CjTQbwwpk6dqgoVKmjXrl2aOHGiUlJSJGWschISEqITJ07Iy8tL48ePL9KxAAAAKB8I4rlo1qyZli1bJkdHR82dO1c1atRQmzZt5Ofnp7Vr18rV1VWhoaHy8fEp0rEAAAAoHwjieQgODtbu3bs1cOBAOTo6Kjw8XB4eHnrqqad08OBB9ezZs1jGAgAAoOwr08sX5qVOnToyDOOm/dq2batPPvmkQMcozFgAAACUbZwRBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExQbm9xDwAoZS5HSYmXzK6i9HGrIlXyN7sKAHYQxAEAJd/lKOmttlJKotmVlD5ObtJzPxHGgRKIIA4AKPkSL2WE8Iffk3zuNLua0uPi79JnIzLeP4I4UOIQxAEApYfPnVKNILOrAIAiwcWaAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJynwQDw8P16xZs9SrVy/VrFlTzs7O8vDwUFBQkCZNmqTo6Og8x+/du1eDBw+Wn5+frFar/P39FRwcrGPHjt302IUZCwAAgLKtTAfxyMhIBQYG6pVXXtGmTZuUnp6uFi1aqEqVKvr11181Z84cNWnSRFu3brU7fvXq1Wrfvr1CQ0OVmpqq5s2bKz4+XitXrlRQUJC2bNmS67ELMxYAAABlX5kO4oZhyMfHR6+++qqOHj2q6Oho7d27VydPntTBgwcVGBioy5cva+DAgbpw4UK2sYcOHVJISIjS0tI0YcIEnTlzRvv27VN0dLSeeOIJJSYmatCgQbp06VKO4xZmLAAAAMqHMh3E77jjDp08eVLTp0/XnXfema0tMDBQGzZsUIUKFRQbG6v169dna58+fbpSU1PVoUMHzZkzR05OTpIkNzc3rVixQgEBAYqNjdXChQtzHLcwYwEAAFA+lOkg7uLiInd391zb69atq8aNG0uSjhw5YtuemJiojRs3SpJGjRqVY5zVatWwYcMkKUeAL8xYAAAAlB9lOojnR1JSkiRlC+wHDhzQtWvXJEldunSxO65r166SpJMnT2a74LMwYwEAAFB+lOsg/uOPP9pWMMkMx5J09OhRSZKzs7P8/f3tjq1Xr57teURERJGMBQAAQPlRwewCzJKUlKRnn31WkhQUFKR+/frZ2mJiYiRJ3t7eslgsdsdXrlzZ9jw2NrZIxt4oOTlZycnJtp/j4+Nz7QsAAIDSpVyeETcMQyNGjNDBgwfl6uqqtWvXysHhf29F5tQSZ2fnXPfh4uJie56YmFgkY280e/ZseXl52R65nWEHAABA6VMug/jo0aO1du1aOTs7KzQ0VE2bNs3W7urqKkm6fv16rvvInFsuZayGUhRjbzRp0iTFxcXZHlFRUbn2BQAAQOlS7qamjB07Vm+++aacnZ31ySefZJuSksnb21tSxrQRwzDsTjHJnIKStX9hx97IarXKarXm41UBAACgtClXZ8THjh2rJUuWyMnJSaGhoXrggQfs9mvUqJGkjLPap06dstsnMjIyR//CjgUAAED5UW6C+Lhx47KF8AcffDDXvkFBQbYpJtu3b7fbZ9u2bZKkOnXqyM/Pr0jGAgAAoPwoF0F8/PjxWrx4sS2EP/TQQ3n2d3d3t01ZWbZsWY725ORkrVq1SpI0ZMiQIhtb1p09e1br1q3TuHHj1K1bN3l6espiseS6ukxeTp06lW18WFiY3X6rVq2y9cntcf/99xfylQEAANy6Mj9HfNKkSVq4cKHtwsy8zoRnNXXqVP3nP//Rrl27NHHiRM2cOVNOTk5KTEzUM888oxMnTsjLy0vjx48v0rFl2UcffaSxY8cWyb5GjBihK1eu5Lu/p6enmjdvbrftxot1AQAAbocyHcT37NmjOXPmSMoIYvPmzdO8efPs9u3bt68mT55s+7lZs2ZatmyZRo4cqblz52rFihWqXbu2jh07pvj4eLm6uio0NFQ+Pj459lWYsWWZp6enunfvrlatWql169ZKSUnR0KFDb3k/y5cv16ZNm/Twww/rs88+y9eYli1b5nrWHAAAwAxlOohnvRnOxYsXdfHixVz71q9fP8e24OBgNWvWTPPmzdPOnTsVHh6uqlWrasCAAZo8ebLuvPPOXPdXmLFlVXBwsIKDg20/79y585b3cfr0ab300ksKCAjQzJkz8x3E8T9nz57V5s2btX//fv3888/6+eefbX9dMAwj13FfffWVvv32W+3fv19RUVG6ePGiDMOQn5+f2rdvr2effVadO3fOdXxycrLee+89rV+/XocOHVJSUpJq1qypvn37auLEiapZs2aRv1YAAEqyMh3Eu3XrlmewyI+2bdvqk08+ue1jYd/IkSMVHx+vTz/9NM812JG7gk4RWrx4sTZv3iwHBwdVq1ZNTZo0UXx8vP788099+OGH+vDDD/XSSy9pwYIFOcbGxMSoV69e2rdvn6SML76VKlVSRESEli5dqjVr1ujbb7/V3XffXejXVxqY+WXonXfeUWhoqA4fPqz4+Hh5eHioSZMmGjRokEaNGpXthmMAgOJVpoM4ypaVK1fqm2++0fDhw3Xvvffq5MmT+R576tQpDR8+XKdOnZKLi4vq1aunfv36qVevXsVXcAlV0ClCQ4cO1fjx49WpUydVrFjRtj0mJkZTpkzRO++8o4ULF6pjx44aMGBAtrHDhw/Xvn37VLVqVW3YsEEdO3aUlHFn2dGjR2v58uV66KGH9Pvvv8vT07NoX3AJZNaXoR49eujgwYOSJF9fXwUFBens2bPavXu3du/erZUrV2rLli3lbtocAJilXKyagtLvzJkzGjdunKpVq6aFCxfe8vgTJ05o1apV2rJli77++mu9+eab6t27tzp37qwzZ84UQ8UlV3BwsDZv3qz58+fr0UcfVUBAQL7GDR06VL17984WwiWpcuXKevvtt9W4cWNJ0scff5yt/fDhw/riiy8kyRbUM7m5uentt99Ww4YNde7cOS1atKgwL63UyPwyNH78eK1fv14ffPBBvsYNHTpU33zzjeLi4nTmzBnt27dPv//+u6Kjo/Xss89KyniPN2zYkGPspEmTdPDgQduF6+fOndO+fft0+vRpbd68WZUqVVJ4eLj+8Y9/FOlrBQDkjiCOUuGZZ57R5cuXtXTp0jzvRnqjSpUqadSoUdq6dav++usvJScn648//tCcOXPk5uamnTt36r777tPVq1eLsfqyz2Kx2IL4je9l5nr6Dg4OGjx4cI6xTk5OevjhhyVJ69atK+ZKS4bb/WVIki2cjxo1SoMGDcrW1r17d02bNk2SbF+aAADFjyCOEm/NmjXauHGj+vfvnyNA3Ez//v319ttvq1u3bqpRo4acnZ0VEBCgCRMm6Ntvv5Wjo6MOHTqkpUuXFlP15cO1a9ds87/btm2bre3SpUuSJB8fH1mtVrvj/f39JUnHjx/XuXPnirHSsiuvL0NSxjQgyf6F6ZJsF5CnpKQUU4UAgBsRxFGinT17VqNHj5aXl5feeuutIt13p06dNHDgQElSaGhoke67vIiJiVFYWJj69u2rU6dOqWnTphozZky2Ppl/wbh48WK2lYyyioqKsj0/cuRIsdVbluX1ZUiSWrVqJSn31Yoy/3LRvn37YqoQAHAjgjhKtOeff16xsbGaP3++atSoUeT7z5yv/Pvvvxf5vsuq77//3nZX0ipVquiee+7Rzz//rFdffVV79uyRh4dHtv7t2rWTJKWnp9tdRSg1NTXbnOaYmJjifQFlTH6+DEnSrFmzZLVa9fHHH+ull17S8ePHlZSUpD///FOzZs3S/PnzVblyZc2fP//2vwgAKKcI4ijRMs/wvfLKK6pevXq2x1133WXr9/DDD6t69eoaPXr0Le3f2dlZEn+OvxWVKlVSx44d1aFDB9WtW1dOTk6Kj49XaGiotm7dmqN/q1atbEvqjR07Vt9//72tLSEhQcHBwYqIiLBty5xCgdzd6pchSercubN27typfv36acmSJWrQoIFcXV1Vp04dvfLKK3rqqae0b9++XO9ACwAoegRxlArnz5/XuXPnsj2y3qApNjZW586dU1xc3C3tNzw8XNL/5ijj5tq0aaOdO3dq165dioyM1NmzZ/Xyyy/ryJEj6t+/v92bLK1bt0716tXThQsX1LNnT9WoUUOBgYHy8fHRmjVrNHz4cDk4ZPw6Kg/LFxbWrX4ZynTy5EmdPXtW6enp8vHxUatWrVS9enVJ0meffab3339faWlpt+tlAEC5RxBHiXby5EkZhmH3ceLECVu/rVu3yjAMrVq1Kt/7Pn36tNauXStJ6tOnT1GXXm5UrlxZ8+bN04gRI2QYhiZOnJijj7+/v/bv369p06YpMDBQcXFx+uOPP9SyZUt98MEHevXVV5Weni5J8vPzu90vodQpyJehxYsX65FHHtEff/yhDRs26MKFC9q/f7+io6O1fft2eXl56bXXXtPw4cNNeEUAUD4RxFFmRUVFaejQofrhhx9y3K1w165d6tGjh+Lj4+Xl5aWXX37ZpCrLjgcffFCSdOzYMcXHx+do9/Ly0tSpU/XLL7/o6tWrSkhI0J49e/S3v/1Ne/fulSRZrVYFBgbe1rrLgpt9Gbpw4YJeeeUVSRmBvH///tnaO3furNWrV0vKWKUoc0oYAKB4EcRx20RFRcnHx8f2uP/++21tWbc/9NBDRXK8tLQ0rVmzRu3bt5eXl5eCgoLUrl071axZU506ddLvv/8uX19fbdy4UXfccUeRHLM8yzrP/lanN3z00UeSpH79+uW6xCFuLrcvQ/v27bPNvc/trz+dO3eWu7u7JOnHH38s5koBABK3uMdtlJaWZltT+kZZt9/qPO/c+Pr6as6cOfrxxx916NAhnTp1SleuXJGHh4c6dOigfv366ZlnnlGVKlWK5Hjl3b///W9JUkBAwC3ddGnHjh3asGGDLBaLXnrppeIqr1zI7cuQvb9Q2JP5l6Nr164VbWEAALsI4rht6tSpk2OKSHHuz83NTRMmTCiy45Vn+/bt04YNG/Tkk0/abhqT6dy5c5oxY4btrLa9W6Tv3btX0dHR6tOnj5ycnCRlBMVPPvlEzz77rAzD0NixY9WhQ4fifzFlWG5fhho2bGh7/vXXX2vYsGE5xoaFhdnOmt/4GQMAigdBHChnoqKi1LJlS9vPqamptuc+Pj625x07dtTnn38uKWOZwddff12vv/66KleurFq1asnFxUUXL17UH3/8ofT0dDk4OGjSpEl69tlncxzz0KFDGj58uFxcXFS7dm15eHgoMjJSsbGxkqTnnntOCxYsKK6XXCYU5stQUFCQWrVqpZ9//lnjxo2Tt7d3tilgYWFhtnBeu3Zt3XvvvcX7YgAAkgjiQLlTkClCLVq00NKlS7V9+3b9+uuv+vPPPxUfH6+KFSsqMDBQXbp00dNPP53rhZbt2rXTyJEjtXv3bp0+fVonTpxQtWrV1LdvXz377LPq1KlT0b7IEs6ML0MffvihevToob/++kv9+/eXj4+PatWqpTNnzujs2bOSpCpVqig0NJR5+gBwmxDEgXKmIFOEvL299dxzz+m5554r0DEbNWqkZcuWFWhsWWTGl6GGDRvq0KFDeuutt/Tll18qIiJCv/zyi9zc3NSqVSv16dNHL7zwgqpVq1a0LxYAkCuCOADcZmZ8GZIylpCcPHmyJk+eXOB9AACKDkEcN/Vu63fNLgEAAKDMYR1xAAAAwAQEcQAAAMAETE0BSomH1hTNHUdRcK337ze7BABAGcIZcQAAbpCcnKylS5eqY8eOqlSpklxcXFSvXj298MIL+uuvv+yOCQ8P16xZs9SrVy/VrFlTzs7O8vDwUFBQkCZNmqTo6Ojb/CoAlHScEQcAIIuYmBj16tVL+/btkyTVr19flSpVUkREhJYuXao1a9bo22+/1d13320bExkZmW3pyOrVq6tFixa6cOGCfv31V/3yyy9655139Nlnn+mee+657a8JQMnEGXEAALIYPny49u3bp6pVq2rnzp06duyY9u7dq3PnzikkJERxcXF66KGHFB8fbxtjGIZ8fHz06quv6ujRo4qOjtbevXt18uRJHTx4UIGBgbp8+bIGDhyoCxcumPjqAJQkBHEAAP6/w4cP64svvpAkLVy4UB07drS1ubm56e2331bDhg117tw5LVq0yNZ2xx136OTJk5o+fbruvPPObPsMDAzUhg0bVKFCBcXGxmr9+vW358UAKPEI4gAA/H/bt2+XJDk4OGjw4ME52p2cnPTwww9LktatW2fb7uLiInd391z3W7duXTVu3FiSdOTIkaIsGUApRhAHAOD/u3TpkiTJx8dHVqvVbh9/f39J0vHjx3Xu3Ll87zspKUmS8gzsAMoXgjgAAP+ft7e3JOnixYtKTk622ycqKsr2PL9nt3/88UcdO3ZMktS1a9dCVgmgrCCIAwDw/7Vr106SlJ6erk8++SRHe2pqqjZs2GD7OSYm5qb7TEpK0rPPPitJCgoKUr9+/YqoWgClHUEcAID/r1WrVurcubMkaezYsfr+++9tbQkJCQoODlZERIRtW2JiYp77MwxDI0aM0MGDB+Xq6qq1a9fKwYF/egFk4LcBAABZrFu3TvXq1dOFCxfUs2dP1ahRQ4GBgfLx8dGaNWs0fPhwW5j29PTMc1+jR4/W2rVr5ezsrNDQUDVt2vR2vAQApQRBHACALPz9/bV//35NmzZNgYGBiouL0x9//KGWLVvqgw8+0Kuvvqr09HRJkp+fX677GTt2rN588005Ozvrk08+YUoKgBy4syYAADfw8vLS1KlTNXXq1BxtoaGhkiSr1ZrtbppZjR07VkuWLJGTk5NCQ0P1wAMPFGu9AEonzogDAHALPvroI0lSv3797C5xOG7cuGwh/MEHH7zdJQIoJQjiAADk044dO7RhwwZZLBa99NJLOdrHjx+vxYsX20L4Qw89ZEKVAEoLgjgAAFns3btXX3zxhVJSUmzb0tLS9PHHH+vBBx+UYRgaM2aMOnTokG3cpEmTtHDhQtuccEI4gJthjjgAAFkcOnRIw4cPl4uLi2rXri0PDw9FRkYqNjZWkvTcc89pwYIF2cbs2bNHc+bMkZSxksq8efM0b948u/vv27evJk+eXLwvAkCpQBAHACCLdu3aaeTIkdq9e7dOnz6tEydOqFq1aurbt6+effZZderUKceYrHfhvHjxoi5evJjr/uvXr18sdQMofQjiAABk0ahRIy1btuyWxnTr1k2GYRRTRQDKKuaIAwAAACYgiAMAAAAmIIgDAAAAJiCIAwAAACbgYk0AQOnxblezKwCAIsMZcQAAAMAEBHEAAADABARxAAAAwAQEcQAAAMAEBHEAAADABARxAAAAwAQEcQAAAMAEBHEAAADABARxAAAAwAQEcQAAAMAEBHEAAADABARxAAAAwAQEcQAAAMAEBHEAAADABBXMLgAAAAD5c/5cvOIvXzO7jFLHs5KrfKt5ml1GDgRxAACAUuD8uXiN/Nv7Sk5KNbuUUsfqUkHvrgkucWGcIA4AAFAKxF++puSkVL38Sl/Vql3F7HJKjVN/XtL8175W/OVrBHEAAAAUXK3aVVS/YTWzy0AR4GJNAABQ6iQnJ2vp0qXq2LGjKlWqJBcXF9WrV08vvPCC/vrrL7PLA/KFIA4AAEqVmJgYderUSS+88IJ2796tqlWrqnnz5jp//ryWLl2qpk2b6scffzS7TOCmmJoCAADy5a/L1xR79brZZeiF4Ce1b98+Va7ioyXL16rlXe0kSdeuJWruqxP16foP1O+BB7Vx+z5V9DB/TrC3u7NqVnI1uwyUQARxAABwU39dvqZ7F27TtZQ0U+u4fvGUojd9I0mytBuqf/6QKv2w09Zu1HxYFSpv0aULp9U7ZIIqdXrCrFJtXJ0c9f1LXQnjyIEgDgAAbir26nVdS0nTkiFBqu9b0bQ6/r3mfc2U5ODgoE3/N0HOVmuOPm8kDdbypYvk9deP2vjCv25/kVkcP5+gMR8fVOzV62UyiO/du1fz58/Xjh07FBMTI19fX/Xs2VOTJk1SgwYNzC6vxCOIAwCAfKvvW1HNanqZdvzP0xIlST4+PmpV19dun1ZN6kuSTp38Q1UrJKlaNVYYKQ6rV6/W008/rbS0NPn4+Kh58+Y6duyYVq5cqY8//lhffvmlunfvbnaZJRoXawIAgFLD29tbknTx4kUlJyfb7RMVFWV7fuTIkdtSV3lz6NAhhYSEKC0tTRMmTNCZM2e0b98+RUdH64knnlBiYqIGDRqkS5cumV1qiUYQBwAApUa7dhkXZqanp+uTTz7J0Z6amqoNGzbYfo6JiblttZUn06dPV2pqqjp06KA5c+bIyclJkuTm5qYVK1YoICBAsbGxWrhwocmVlmwEcQAAUGq0atVKnTt3liSNHTtW33//va0tISFBwcHBioiIsG1LTEy87TWWdYmJidq4caMkadSoUTnarVarhg0bJklav3797Syt1CGIAwCAUmXdunWqV6+eLly4oJ49e6pGjRoKDAyUj4+P1qxZo+HDh8vBISPieHqav3xhWXPgwAFdu3ZNktSlSxe7fbp27SpJOnnypKKjo29bbaUNQRwAAJQq/v7+2r9/v6ZNm6bAwEDFxcXpjz/+UMuWLfXBBx/o1VdfVXp6uiTJz8/P5GrLnqNHj0qSnJ2d5e/vb7dPvXr1bM+z/oUC2bFqCgAAKHW8vLw0depUTZ06NUdbaGiopIwpEoGBgbe7tDIvc969t7e3LBaL3T6VK1e2PY+Njb0tdZVGnBEHAABlykcffSRJ6tevn6x21hlH4WROS3F2ds61j4uLi+058/RzRxAHAABlxo4dO7RhwwZZLBa99NJLZpdTJrm6ZtyY6Pr167n2SUpKsj13c3Mr9ppKK4I4AAAoVfbu3asvvvhCKSkptm1paWn6+OOP9eCDD8owDI0ZM0YdOnQwscqyK3Mt99jYWBmGYbdP1mUjM/sjJ+aIAwCAUuXQoUMaPny4XFxcVLt2bXl4eCgyMtI2F/m5557TggULTK6y7GrUqJGkjDPip06dUu3atXP0iYyMzNEfOXFGHAAAlCrt2rXTyJEjVb9+fZ07d06//vqrKlasqCeeeEI7duzQ0qVLbcsXougFBQXZpqds377dbp9t27ZJkurUqcPKNXngjDgAAChVGjVqpGXLlpldRrnl7u6ufv366ZNPPtGyZcv0t7/9LVt7cnKyVq1aJUkaMmSICRWWHnxdLGZ79+7V4MGD5efnJ6vVKn9/fwUHB+vYsWNmlwYAAFAgU6dOVYUKFbRr1y5NnDjRNl8/MTFRISEhOnHihLy8vDR+/HiTKy3ZCOLFaPXq1Wrfvr1CQ0OVmpqq5s2bKz4+XitXrlRQUJC2bNlidokAAAC3rFmzZlq2bJkcHR01d+5c1ahRQ23atJGfn5/Wrl0rV1dXhYaGysfHx+xSSzSCeDE5dOiQQkJClJaWpgkTJujMmTPat2+foqOj9cQTTygxMVGDBg3SpUuXzC4VAADglgUHB2v37t0aOHCgHB0dFR4eLg8PDz311FM6ePCgevbsaXaJJR5zxIvJ9OnTlZqaqg4dOmjOnDm27W5ublqxYoV2796tEydOaOHChXr99ddNrBQAgPy7/82dZpeAEqRt27b65JNPzC6j1OKMeDFITEzUxo0bJUmjRo3K0W61WjVs2DBJ0vr1629naQAAACghCOLF4MCBA7bbv3bp0sVun65du0qSTp48qejo6NtWGwAAAEoGgngxOHr0qCTJ2dlZ/v7+dvvUq1fP9jwiIuK21AUAAICSgznixSDztq7e3t6yWCx2+1SuXNn2PPNOYDdKTk5WcnKy7ee4uDhJUnx8fFGVmqcrCVeUpKTbcqyy6ErCFbnHuxd6PwlXEpSelF4EFZU/CVcSFO9a+P9fEq5cka5eLYKKyqeE+HjF53Ib7Hy7kiAlF3If5dmVBKmQ/3YkXIlXenJiERVU/iRciVd8vP1MkF9XEq4oNTVJRw7/qSsJV4qosrLv9KkYpaYm6UrCFcXHuxb78TJzmpGf33sGityMGTMMSYa/v3+ufdLS0gxJhiRjzZo1dvtMnTrV1ocHDx48ePDgwYNH6XlERUXdNDNyRrwYZN729fr167n2SUr635lmNzc3u30mTZqkcePG2X5OT09XTEyMqlSpkuuZ9vIiPj5e/v7+ioqKkqenp9nllFt8DubjMzAfn4H5+AzMx2fwP4Zh6MqVK6pRo8ZN+xLEi4G3t7ekjCknhmHYDc2Z01ey9r+R1WqV1WrNtq1SpUpFV2gZ4OnpWe7/hy8J+BzMx2dgPj4D8/EZmI/PIIOXl1e++nGxZjFo1KiRpIwz4qdOnbLbJzIyMkd/AAAAlB8E8WIQFBRkm56yfft2u322bdsmSapTp478/PxuW20AAAAoGQjixcDd3V39+vWTJC1btixHe3JyslatWiVJGjJkyO0srcywWq2aOnVqjqk7uL34HMzHZ2A+PgPz8RmYj8+gYCyGUdg1pWDPb7/9ppYtWyo1NVUTJkzQzJkz5eTkpMTERD3zzDNau3atvLy8dPz4cfn4+JhdLgAAAG4zgngxev/99zVy5EilpaXJx8dHtWvX1rFjxxQfHy9XV1d9/vnn6tmzp9llAgAAwAQE8WL2008/ad68edq5c6diY2NVtWpV3XvvvZo8ebLuvPNOs8sDAACASQjiAAAAgAm4WBMAAAAwAUEcJdKiRYtksVhksVj0/PPP59l32rRptr5ZHxUrVlTjxo317LPP6vDhw7ep8tJv2LBhdt/PGx9hYWG2MfbanZyc5Ovrqx49eujdd99VamqqeS+qlImNjdXrr7+uDh06qHLlynJyclLVqlXVpEkTDRgwQIsWLVJERES2Mfn93G787GBfTEyMFixYoN69e+uO/9fevUdFdV1hAP8GmMFBBESlvhJQQVBRxECMNQZN6iNqpaZSsKKiTeIj1cQYa1w2atSkNc0SazRmRZCKSRtBKz6bSiuhSnxFID4QoqIgqDwEEQLKY3b/cM2N4wwgCM4I328tlnjP3Wf25Q4zmzvnntO9O+zs7KDVatGtWzeMGjUKq1atwvnz5+vtJz8/HxqNBiqVCh06dMDdu3cfQ/ZPvtqezzY2NujYsSOGDx+OTZs2oaqqyii2oqICe/bswfLlyzF+/Hh07dqVz/1GeJRzcO3aNWzatAlBQUHw8PCAVquFVquFu7s7Zs6ciZSUFDMckWXiyppkkbZs2aJ8/+WXX+Ljjz9GmzZt6oyxtbWFn58fgHvLy+bm5iIjIwPp6enYsmULoqKiMGXKlGbNuyVxcHBA//79a203tWqYh4cHXFxcAADl5eW4ePEiDh06hEOHDiEqKgoHDx5Eu3btmi3nluDUqVMYN24c8vLyAAAuLi4YMGAAdDodMjMzcf78ecTFxSEtLQ0RERFG8fWdN+DhV3xrrTZs2IAlS5agrKwMAODs7AwPDw9oNBrk5eUhPj4e8fHxWLZsGSZNmoTY2Nha+4qOjlYKlaKiIsTFxXHa2gZ48PlcXl6OrKwsJCYmIjExEdHR0YiPj4e9vb2yT0ZGBgIDA82RbovUmHMwePBg5OTkKPGenp6orKzExYsXERUVhejoaKxZswYLFy587MdjcYTIwhw7dkwAiJWVlTg4OAgA+fLLL2vdf/ny5QJAXF1djdpOnz4tffv2FQCi1WolJyenGTNvGaZPny4AJCAg4KFjAAgAiYqKMtheWVkpK1euVNrnzZvXtMm2MGVlZdKtWzcBIP7+/nL06FGDdp1OJ6mpqbJ06VL54x//aNDWmPNGxhYuXKg8X4OCgiQ5OVl0Op3BPteuXZNPPvlEevbsKY6OjnX216dPHwEg7du3FwAycuTIZsy+5ajr+VxdXS2RkZFiZWUlAGTp0qUG7WfPnhV/f3+ZPXu2fP7553Lq1CmxtrYWAJKQkPB4DqAFeJRz0LNnT/nd734nSUlJUlNTo2zPz8+XoKAg5XcsPj6+uQ/D4rEQJ4vz2muvKW9Yb7zxhgCQF198sdb96yrERUROnDih/NKvW7eumbJuOZqyENcbO3asABBnZ2eDF2UytH37dgEg1tbWkpub26BYFuKPbseOHcpzefXq1fXuf+fOHVm5cmWt7UlJScpFhX/+858CQFQqlVy5cqUp026RHub5/Otf/1oAyKBBg+rtj4V4wz3KOSgoKKg15u7du+Ll5SUAZOLEiU2V7hOLY8TJopSXl+Orr74CcG98WlhYGAAgISEBly9fblSf/v7+ykdmP/zwQ5PkSQ0zYsQIAPc+mr9586aZs7Fcly5dAgB07NgRXbt2NXM2rYtOp8N7770HABg+fDiWLl1ab4ytra0SY0pkZCQA4KWXXsLEiRPh7e0NEUFUVFTTJN3Kubm5AQAqKyvNm0grVts5qGuhQo1Go6yh8jD3WbR0LMTJosTExKC0tBSOjo6YOHEi/Pz8lDev+8eNN4Rwhk6z4zl4OA4ODgCAvLw8/tH4mCUnJytFwfz58x+5v7KyMsTExACAckFh+vTpAICoqCjodLpHfozW7sSJEwCAfv36mTmT1qux5+DOnTsAgLZt2zZ5Tk8aFuJkUfTFdnBwMLRaLYCf3rz+9re/NerN6+TJk8pNV56enk2UKTVEQkICgHs3vdV1paS1e/nll2Fjc+8e+pEjR2LTpk3Iysoyc1atw+HDh5XvAwICHrm/mJgYlJWVKRcVACA0NBQ2NjbIzs7Gf//730d+jNaooqIC586dw+uvv47Dhw/Dzs4OixcvNndarcqjnoOysjLExcUBaJrftScdC3GyGD/88IPyZqi/ggT89OaVk5ODgwcPNqjPM2fOYMaMGQAArVaLSZMmNVm+LV1iYmKt09+tWLHiofqoqqrCqlWr8K9//QvAvXOpUqmaMesnW8+ePfHXv/4V1tbWyM7Oxty5c+Hm5oZOnTph9OjRWLVqFc6dO1dnH3WdN5VKpXyUTIb0Mzw4OTnB2dn5kfvTD0u5/6JC586dMXr0aIN2qtuDz2c7Ozt4e3tj8+bNCA4OxrFjx+Dr62vuNFu0pj4HixYtQkFBAezs7LBgwYJmzPzJwOkLyWLor4Z7enpiyJAhynb9m9f+/fsRGRmJMWPGmIy/ceMGnn/+eeX/ubm5yM7Ohk6ng1qtxubNmznutgHqmgbv6aefNrn9ww8/VKbUq6iowIULF1BaWgrg3nRWq1evbp5kW5C5c+diyJAhWLt2Lfbu3YuSkhIUFhbi4MGDOHjwIJYtW4aJEydi8+bN6NChg1F8fdMXdunSpTnTf2Ldvn0bAAymYHtQSEgItm/fbrQ9KirK4OJBeno6vv32WwBQLgTohYWFYf/+/YiLi0NRUVGTFP0t2YPP5+rqauTk5ODatWvYs2cP2rdvj/Dw8Hqnt6XGa8pzEBERgc8++wzAvWlCu3fv3mx5PylYiJNFqK6uRnR0NADDq+F6+jevPXv2oLCw0OTwhrt37yIpKUn5v37xgICAAMyfPx/e3t7Nln9L5Ovr2+DFLy5cuIALFy4AAKytreHk5IThw4fjN7/5DV599VWo1epmyLTl8fX1xbZt26DT6ZCWloaUlBQcO3YMu3fvRm5uLnbt2oWsrCwcP35cGcpyfywXLWk4/fh8/TA2U7y8vDB06FDl/6dOnVLGut5Pf7Xb09MTzz33nEHbhAkT4OzsjKKiInzxxRdNMh69Javt+fz9999j2rRp+Oyzz3Dp0qUGf1pKD6+pzkFMTAxmz54NAFi6dKnRH6mtFYemkEU4cOAArl+/DisrK0ydOtWoXf/mVVlZiW3btpnsw9XVFXJvSk6ICMrLy5GRkYHPP/+cRfhjEhUVpfz8q6urUVhYiISEBMyZM4dFeCNYWVnB29sbU6dOxcaNG3H58mXMmzcPwL2bC3fu3GnmDFsO/ZW5kpISFBcXm9xnxYoVOHLkiPLVrVs3o32qqqqU1yhTFxU0Gg0mT54MgMNTHoWPjw+2bt0KAIiPj1eGv9Hj05BzsGPHDkyZMgU1NTV49913+enofViIk0XQvyHpdDp0797daFyrra0tioqKDPYlam3UajXCw8OV1UuPHj1q5oxajmHDhgG4N8NPYmJio/vZt2+fsirqkiVLTI7T37hxIwDg9OnT+O677x49+VZq4MCBykq9+qFA9Hg9zDnYsWMHJk+ejOrqaixevBh/+tOfHmeKFo9DU8js8vLycODAAQBAhw4djD5qf3Dfc+fO4cSJE3j22WcfV4pEFsPa2ho9evRAfn4+509uQoMGDYKXlxfS09Oxfv16/OpXv2pUP/p7Xezs7JQCxZSSkhLcuXMHW7ZsgZ+fX6Mei36aGrWwsNDMmbRedZ2DnTt3KkX4H/7wB/z5z39+3OlZPF4RJ7PbunUrqqur4ejoiKtXr+LGjRu1funvzOZVcWqJCgoK6p2is6ioSJk5pXfv3o8jrVbBysoKK1euBHBvus01a9Y0uI9r164pH89HRETU+Vqm7//vf/87Kioqmu5AWpHk5GRlTL+7u7uZs2md6joHu3btQkhIiFKEN+Z3qjVgIU5mp7+CFBISokzzVRv9zR1fffUVysvLmz03osdp+/bt6Nu3L8LDw5GdnW3UnpSUhLFjx6KsrAwODg4ICQkxQ5YtV1BQEN566y0AwLvvvovg4GCkpKQYLUhVWlqKiIgI5OfnG2zfunUrampq4OTkpMwdXpspU6ZAo9GgpKSEY/0bITU1VVljom3btvxdMIO6zsHevXsRHBysDEdhEV47Dk0hszpy5AgyMjIAADNnzqx3/ylTpmDRokW4ffs2YmNjlRcBopZApVIhIyMDb7/9Nt5++224uLigW7duEBHk5OQoH/06ODggJiYGnTt3NuojJSXFYBpPU958800EBQU1yzE86cLDw+Hq6oqlS5ciJiYGMTExcHZ2xlNPPQWtVotbt24hMzNTGRb0y1/+Ei+++CKAny4qTJ48ud6p3Dp06IAJEyZgx44diIyMRGhoaPMe2BPqwefz/VPniQi0Wi2++OILoxtnBw0aZPDHbE1NDQAgMDDQ4MZxDmmpX2POwaRJk1BVVQW1Wo0jR47U+prUpUsXxMbGNvsxWDIW4mRW+iEm/fr1e6gx387OzggMDERMTAwiIyNZiFOLMmvWLPj4+CA+Ph6HDx/G1atXceHCBdy9exdOTk4YNmwYRo4ciVmzZik3bD7o9u3bBtN4msKFrer21ltvITQ0FFu2bEF8fDzS0tKQnp4OlUoFZ2dnvPDCCxg6dCgmT56srNabmJiIixcvAni4iwr6/Xbs2IHExERcunQJvXr1arZjelI9+HxWqVSwt7dH//798Ytf/AK///3v0aNHD6O4oqIi3Lx502R/1DCNOQf6P1SrqqrqfD1ydXVtnqSfICp58DM3IiIiIiJqdhwjTkRERERkBizEiYiIiIjMgIU4EREREZEZsBAnIiIiIjIDFuJERERERGbAQpyIiIiIyAxYiBMRERERmQELcSIiIiIiM2AhTkRERERkBizEiYgIAODm5gaVSoVvvvnG3Kk0m7CwMKhUKqxYscLcqRARwcbcCRARkWnFxcXYtGkT9u3bh/T0dJSWlsLJyQmdOnWCp6cnhg0bhrFjx8LLy8vcqZIJqampiIuLg5ubG8LCwsydDhFZIBbiREQW6NSpUxg3bhzy8vIAAC4uLhgwYAB0Oh0yMzNx/vx5xMXFIS0tDREREWbOlkxJTU3F+++/j4CAABbiRGQSC3EiIgvz448/IjAwEHl5efD398f69evx3HPPKe0igtOnTyM2NhYqlcqMmRIR0aNgIU5EZGH279+P3NxcWFtbIy4uDl27djVoV6lU8PHxgY+Pj5kyJCKipsCbNYmILMylS5cAAB07djQqwuujUqmgUqlw5coVk+3ffPMNVCoV3Nzc6uzn/Pnz+O1vf4suXbrA1tYWvXr1wuLFi1FSUmJy//tv9GxoLADcuXMHa9euxeDBg+Ho6Ig2bdqgV69emDVrlvLzqE1mZibefPNN9OvXD/b29rC3t4enpyemTZuG+Pj4OmPvV15ejgkTJkClUsHT0xOXL182aP/666/xyiuvoGvXrtBoNOjQoQPGjBmD3bt3m/x5zJgxAwCQmJionJf6zg8RtTJCREQWZcOGDQJAAEhGRkaDYvVxly9fNtmekJAgAMTV1dWozdXVVQDImjVrxM7OTjQajfj6+oqXl5fSr6enp1y/fr1JY2/cuCE+Pj7Kfr1795ZBgwZJmzZtBIBotVrZu3evyePZtm2b2NraCgCxsbERb29vGThwoDg5OQkA8fHxMdh/+vTpAkCWL19usL2goEAGDx4sAGTIkCFSWFiotFVXV0tYWJiSX/v27cXX11dcXFyUbfPmzTPob9KkSeLh4SEAxMHBQYYOHWrwZernQEStDwtxIiILc+nSJbGxsREA8vTTT8unn34qV65ceajYpijE1Wq1jBkzRvLz85W21NRU6dGjhwCQl19+uUljR44cKQDEzc1NkpOTle3FxcUSFBQkAMTe3l4yMzONjsXa2loAyGuvvWZQPIuIpKSkyNq1aw22mSrEL168qBTNgYGBUl5ebhCzZMkSASDdu3c3+oPgwIED0qlTJwEg0dHRBm1RUVECQAICAoyOmYhIhIU4EZFF2rhxo1Jk6r86duwoo0aNkpUrV8rZs2dNxjVFIe7k5CQlJSVG7YmJiUr/J06caJLYpKQkZfv//vc/o7jKykql7zlz5hi0+fn5CQAJDg42eaymPFiInzhxQrmyPXfuXKmpqTHYPycnRzQajVhbW8vJkydN9hkbGysApE+fPgbbWYgTUX04RpyIyALNnTsXJ0+eRGhoKBwdHQEAhYWFOHjwIJYtWwZvb2+88soruHnzZpM/9quvvgoHBwej7S+88AKeeeYZAPduKG2K2H379gEABg8ejGHDhhnFqdVqLFiwwCguKysL3333HQDgvffee6jjetD+/fsxYsQIFBQU4MMPP8TGjRthZWX4thgXF4fKykr4+fnBz8/PZD+BgYFQq9U4f/48rl+/3qhciKh14qwpREQWytfXF9u2bYNOp0NaWhpSUlJw7Ngx7N69G7m5udi1axeysrJw/Phx2Ng03cu5t7d3nW2nTp1CWlpak8Smp6cDAPr3719r3IABAwAA2dnZqKiogFarxenTpwEAjo6O6NevX+0HU4s9e/Zg9erVsLKyQnR0NEJDQ03u9/333wMALl++jOeff77W/vTTSF69ehVdunRpcD5E1DqxECcisnBWVlbw9vaGt7c3pk6dinXr1mHhwoX45JNPkJycjJ07dyI4OLjJHq9z5871tpWWljZJ7O3bt+uNu7+wvX37NrRarRLn5ORUa1xdMjMzUVNTAwcHB/Tt27fW/YqLiwEA+fn5yM/Pr7ff8vLyRuVDRK0Th6YQET1h1Go1wsPD4eLiAgA4evSo0T4iYjK2srKy3v71q3nW1dauXbsmidUPY7lx40atcfcP99Dvr//31q1btcbVZf78+ZgxYwaKi4vx0ksv4fjx4yb3s7e3B3BvqJDcu6+qzq/hw4c3Kh8iap1YiBMRPYGsra3Ro0cPAIbFddu2bQHUXhBfvHix3r7Pnj1bb1ttV5EbGuvl5QUAOHPmTK1x+jZXV1dotVoAPw1XKSkpwblz52qNrY2VlRUiIyMxZ84c3Lp1CyNHjsSRI0eM9tM/jqm2+nDVUyKqDwtxIiILU1BQAJ1OV+c+RUVFSgHau3dvZbv++6SkJKOYmpoaREZG1vv4ERERJoeeHDlyRLlBcty4cU0SO378eADA8ePHTRa7VVVVCA8PN4pzdXVVbp784IMP6j0mU1QqFT799FMsWLAApaWlGDNmDA4dOmSwz8SJE2FjY4PTp0+bXLinLnZ2dgCAioqKRuVHRC0fC3EiIguzfft29O3bF+Hh4cjOzjZqT0pKwtixY1FWVgYHBweEhIQobRMmTAAA/OUvf0FycrKyvbi4GFOnTq3zirVeWVkZQkJCUFhYqGw7c+YMwsLCAACjR4+Gv79/k8T+/Oc/x6hRowAA06ZNQ0pKitJWUlKCadOm4cqVK7C3t8c777xj8FgfffQRrKys8I9//ANz5sxBUVGRQXtqairWrVtX7/GuXbsWS5YswY8//ojx48fj3//+t9Lm5uaGhQsXAgBCQ0MRERFhNLynqKgI0dHRWLRokcF2d3d3AMC5c+fqHLJDRK2YueZNJCIi0+5fWROAuLi4iK+vrwwcOFA6duyobHdwcJCvv/7aILakpETc3d0FgFhZWYmHh4f4+vqKRqMRZ2dnWb9+fYNW1hw0aJD06dNHeUx3d3fJzc1t0tgHV9b09PSUZ555RrRarbKy5p49e0z+rKKiokSj0Sgra/bv3198fX2lffv2DVpZU0Tk/fffFwBia2sru3fvVrbX1NTIG2+8oeRnZ2cnvr6+8uyzz4qbm5uoVCqT84XrdDrp37+/AJC2bduKv7+/BAQESEBAAFfWJCIR4YI+REQWp6qqSg4fPizLli2TESNGiLu7u9jb24tarZZOnTrJsGHDZOXKlZKXl2cyPi8vT2bPni3dunUTtVotXbt2lZkzZ0p2dvZDLeiTkJAgaWlpEhISIj/72c9Eo9FIjx495J133pHi4mKTj/kosSIi5eXl8vHHH4u/v7+0a9dOiXv99dflwoULdf68MjIyZPbs2eLh4SFarVbatWsnnp6eEhYWJv/5z38M9q2rEBcR+eijj5QVQmNjYw3avv32W5k2bZr07NlT2rRpI/b29tK7d28ZO3asbNiwQa5evWrU39WrV2X69Ony1FNPiVqtrnfBJSJqXVQitdxaT0RE9JDc3NyQlZWFhIQEzhxCRPSQOEaciIiIiMgMWIgTEREREZkBC3EiIiIiIjNgIU5EREREZAa8WZOIiIiIyAx4RZyIiIiIyAxYiBMRERERmQELcSIiIiIiM2AhTkRERERkBizEiYiIiIjMgIU4EREREZEZsBAnIiIiIjIDFuJERERERGbAQpyIiIiIyAz+D0N+fzMs360TAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n_fragments_per_subpocket_prefiltered = [len(fragments.drop_duplicates('smiles')) for _, fragments in fragment_library.items()]\n", + "n_fragments_per_subpocket_custom = [len(fragments) for _, fragments in fragment_library_custom.items()]\n", + "plot_n_fragments_per_subpocket(n_fragments_per_subpocket_prefiltered, n_fragments_per_subpocket_custom)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1.2 Number of fragments after each filtering step " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "PATH_DATA_CUSTOM = PATH_DATA / \"fragment_library_custom_filtered\"\n", + "filter_results = pd.read_csv(PATH_DATA_CUSTOM / \"custom_filter_results.csv\", na_values = [\"\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def num_frags_development(filter_res):\n", + " \"\"\"\n", + " Count the number of fragments passing each custom filter step\n", + "\n", + " ----------\n", + " filter_res : dataframe\n", + " Contains the calculated values and the boolean for each filtering step if a fragment was\n", + " accepted or not.\n", + "\n", + " Returns\n", + " ---------\n", + " dataframe\n", + " with the number of fragments per subpocket for each filtering step\n", + "\n", + " \"\"\"\n", + " # get the column names\n", + " frag_keys = filter_res.keys()\n", + " frag_keys.to_list()\n", + " # keep only the boolean column names (we do not need the computed values here)\n", + " bool_keys = [x for x in frag_keys if \"bool\" in x and \"retro\" not in x]\n", + " # create a dataframe to store the number of fragments left after each filtering step\n", + " update_results = pd.DataFrame(0, index=SUBPOCKET_COLORS.keys(), columns=[k[5:] for k in bool_keys])\n", + " # go through all boolean columns and count the number of fragments passing\n", + " for bool_key in bool_keys:\n", + " filter_res_temp = filter_res.loc[filter_res[bool_key] == 0]\n", + " update_results[bool_key[5:]] = filter_res_temp.reset_index().groupby(\"subpocket\", sort=False).size()\n", + "\n", + " # create a bar plot showing the numbers of fragments passing\n", + " ax = update_results.plot.bar(width=0.9)\n", + " fig = ax.get_figure()\n", + "\n", + " fig.set_figheight(7)\n", + " fig.set_figwidth(13)\n", + "\n", + " ax.set_xlabel(\"Subpocket\")\n", + " ax.set_ylabel(\"Number of fragments\")\n", + " ax.set_title(\"Number of fragments removed in each filtering step\")\n", + " plt.savefig(f\"figures/n_fragments_filter_step.png\", dpi=300, bbox_inches=\"tight\")\n", + " plt.show()\n", + " # return dataframe with number of fragments after each filtering step.\n", + " return update_results" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDsAAAJ0CAYAAAAcbSihAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxP0lEQVR4nO3deVRU9f/H8dewiyAKKoiiouKWuKcilbivmVlfK/1mqJllmihqmpW4hGa5m0ul4pLZpn3TytRcytRcylwyW8QtIUoRXBAU7u+PjvNrwoURxsHr83HOnON87ud+5n3v3BnkxefeazEMwxAAAAAAAIBJuDi7AAAAAAAAgIJE2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAE6UkJAgi8UiLy8vHT16NNfyqKgo1apVywmVSZs2bZLFYtGHH37olNe315EjR9SxY0f5+/vLYrEoJibmmn1Pnz6tRx99VKVLl5bFYlGXLl1uWZ2F2datWxUXF6czZ844uxRTi46OVsWKFW/YLyoqSlFRUQ6vx9Hy+z12rc+rxWJRXFyctd+V76xNmzZZ2z777DObPgWtML9HFy5cUFxcnM3+AIA7iZuzCwAASJmZmXrxxRe1ZMkSZ5dy2xo8eLC+/fZbLViwQEFBQSpTpsw1+44bN04rV67UggULVLlyZfn7+9/CSguvrVu3asyYMYqOjlbx4sWdXc4db/bs2c4uoVC41ud127ZtKleu3HXX/eyzz/TGG284LPAozO/RhQsXNGbMGEkqtIEMADgSYQcAFALt2rXTsmXLNHToUNWpU8fZ5dxSGRkZ8vLyksViydc4+/fvV6NGjfI0S2P//v2qXLmyevTocd1+2dnZunz5sjw9PfNVG2xlZGSoSJEizi6j0KtZs6azSygUrvV5bdKkiZMq+jtI8Pb25j0CgEKM01gAoBAYPny4AgIC9Pzzz1+335EjR2SxWJSQkJBr2b+ndMfFxclisWjv3r36z3/+Iz8/P/n7+2vIkCG6fPmyDh06pHbt2snX11cVK1bUpEmTrvqaFy9e1JAhQxQUFKQiRYqoWbNm+v7773P127Vrlzp37ix/f395eXmpXr16ev/99236XDltZ+3aterdu7dKlSolb29vZWZmXnObjx07pv/+978qXbq0PD09VaNGDU2ePFk5OTmS/n/q+q+//qrPP/9cFotFFotFR44cueb+W79+vQ4ePGjtu2nTJuuySZMmafz48QoNDZWnp6c2btyoixcvKjY2VnXr1rXux4iICP3vf//L9RpnzpxRnz595O/vLx8fH3Xs2FGHDx92yPuTnp6uoUOHKjQ0VB4eHipbtqxiYmJ0/vx5m34Wi0UDBgzQkiVLVKNGDXl7e6tOnTpavXq1TT3Dhg2TJIWGhtrsG0nasGGDoqKiFBAQoCJFiqh8+fJ66KGHdOHChWu+d5JUsWJFderUSStWrFC9evXk5eVl/WtzcnKy+vXrp3LlysnDw0OhoaEaM2aMLl++nOs9e+211/Tqq6+qYsWKKlKkiKKiovTzzz/r0qVLGjFihIKDg+Xn56cHH3xQKSkpNjXk5ORo0qRJql69ujw9PVW6dGn17NlTJ06csPaJiYlR0aJFlZ6enmsbHnnkEQUGBurSpUvWtvfee08REREqWrSofHx81LZt26t+LhISElStWjXrsbt48eLr7q9/+vcpElf2xeuvv64pU6YoNDRUPj4+ioiI0Pbt2/M0Zl72uSSNGTNGjRs3lr+/v4oVK6b69etr/vz5Mgwj15jLli1TRESEfHx85OPjo7p162r+/Pm5+u3cuVP33nuvvL29ValSJU2cONH6Ob6a631epdzfef8WHR2tN954w9r3398NhmFo9uzZqlu3rooUKaISJUro4Ycf1uHDh23GuXIazldffaWmTZvK29tbvXv3ti7Lz3v01ltvqWrVqvL09FTNmjW1bNmyPJ/mdL3P5JEjR1SqVClJf7+XV7Y9Ojrauv4vv/yi7t2723y3XtlfV1z5fl26dGmefg4AQKFiAACcZuHChYYkY+fOncb06dMNScaXX35pXd6sWTPjrrvusj5PTEw0JBkLFy7MNZYkY/To0dbno0ePNiQZ1apVM8aNG2esW7fOGD58uCHJGDBggFG9enVjxowZxrp164xevXoZkoyPPvrIuv7GjRsNSUZISIjxwAMPGKtWrTKWLl1qVKlSxShWrJjx22+/Wftu2LDB8PDwMO69917jvffeM9asWWNER0fnqvXK9pYtW9Z46qmnjM8//9z48MMPjcuXL191/6SkpBhly5Y1SpUqZcydO9dYs2aNMWDAAEOS8cwzzxiGYRhpaWnGtm3bjKCgICMyMtLYtm2bsW3bNuPixYu5xrt48aKxbds2o169ekalSpWsfdPS0qz7tmzZskbz5s2NDz/80Fi7dq2RmJhonDlzxoiOjjaWLFlibNiwwVizZo0xdOhQw8XFxVi0aJF1/OzsbOOee+4xvLy8jIkTJxpr1641xowZY4SFhRX4+3P+/Hmjbt26RsmSJY0pU6YY69evN6ZPn274+fkZLVq0MHJycmyOjYoVKxqNGjUy3n//feOzzz4zoqKiDDc3N+v7ePz4cWPgwIGGJGPFihW59o2Xl5fRunVr4+OPPzY2bdpkvPPOO8bjjz9upKamXvW9u6JChQpGmTJljEqVKhkLFiwwNm7caOzYscNISkoyQkJCjAoVKhjz5s0z1q9fb4wbN87w9PQ0oqOjretfeV8qVKhg3H///cbq1auNpUuXGoGBgUbVqlWNxx9/3Ojdu7fx+eefG3PnzjV8fHyM+++/36aGp556yrpf16xZY8ydO9coVaqUERISYvz555+GYRjGDz/8YEgy3nrrLZt1U1NTDU9PT2PIkCHWtldeecWwWCxG7969jdWrVxsrVqwwIiIijKJFixoHDhyw9rtyvP/783Nlu2+kWbNmRrNmzXLti4oVKxrt2rUzPv74Y+Pjjz82wsPDjRIlShhnzpy57nh53eeGYRjR0dHG/PnzjXXr1hnr1q0zxo0bZxQpUsQYM2aMTb+XXnrJkGR07drV+OCDD4y1a9caU6ZMMV566SWb7QgICDDCwsKMuXPnGuvWrTP69+9vSLL5/Pzb9T6vhpH7O+/Kd9bGjRsNwzCMX3/91Xj44YcNSdZ1//nd0LdvX8Pd3d2IjY011qxZYyxbtsyoXr26ERgYaCQnJ9vU7+/vb4SEhBgzZ840Nm7caGzevDnf79G8efMMScZDDz1krF692njnnXeMqlWrGhUqVLjh8XGjz+TFixeNNWvWGJKMPn36WLf9119/NQzDMA4cOGD4+fkZ4eHhxuLFi421a9casbGxhouLixEXF5drn+bl5wAAFDaEHQDgRP8MOzIzM41KlSoZDRs2tP6iWhBhx+TJk2361a1b1/oL7RWXLl0ySpUqZXTt2tXaduU/ufXr17f5xfnIkSOGu7u78eSTT1rbqlevbtSrV8+4dOmSzWt16tTJKFOmjJGdnW2zvT179szT/hkxYoQhyfj2229t2p955hnDYrEYhw4dsrZVqFDB6NixY57G/fd+NYz/37eVK1c2srKyrrv+5cuXjUuXLhl9+vQx6tWrZ23/9NNPDUnGnDlzbPpPmDChwN+fCRMmGC4uLsbOnTtt1v/www8NScZnn31mbZNkBAYGGunp6da25ORkw8XFxZgwYYK17bXXXjMkGYmJiVcdc8+ePdfdL1dToUIFw9XV1ea9MgzD6Nevn+Hj42McPXrUpv311183JFlDgyvvS506dazHkWEYxrRp0wxJRufOnW3Wj4mJMSRZfyE+ePCgIcno37+/Tb9vv/3WkGS88MIL1rb69esbTZs2tek3e/ZsQ5Kxb98+wzAM49ixY4abm5sxcOBAm35nz541goKCjG7duhmG8XfwFRwcfM3PT37CjvDwcJuAcMeOHYYk4913373ueHnd5/+WnZ1tXLp0yRg7dqwREBBg3Z7Dhw8brq6uRo8ePW64HVf7HNesWdNo27btdde9sv6/P6+GceOwwzAM49lnnzWu9re9bdu2XfXzd/z4caNIkSLG8OHDc9X/zyD6n8tu5j3Kzs42goKCjMaNG9uMd/To0TwdH3n5TP7555+59tEVbdu2NcqVK2f9nFwxYMAAw8vLyzh9+rRhGPb9HACAwobTWACgkPDw8ND48eO1a9euXKd/5EenTp1snteoUUMWi0Xt27e3trm5ualKlSpXvSNM9+7dba6nUaFCBTVt2lQbN26UJP3666/66aefrOfTX7582fro0KGDkpKSdOjQIZsxH3rooTzVvmHDBtWsWVONGjWyaY+OjpZhGNqwYUOexrFH586d5e7unqv9gw8+UGRkpHx8fOTm5iZ3d3fNnz9fBw8etPbZvHmzJKlbt2426z722GPXfL2bfX9Wr16tWrVqqW7dujb7vG3btrnuSCFJzZs3l6+vr/V5YGCgSpcufdX3/N/q1q0rDw8PPfXUU1q0aFGuaf43Urt2bVWtWtWmbfXq1WrevLmCg4Nt6r+y3Vf25RUdOnSQi8v//7elRo0akqSOHTva9LvSfuzYMUmyHqf/nL4vSY0aNVKNGjX05ZdfWtt69eqlrVu32hyvCxcu1N133229m8gXX3yhy5cvq2fPnjZ1e3l5qVmzZtb9fujQIZ08efKan5/86Nixo1xdXa3Pa9euLUk3fC/t2ecbNmxQq1at5OfnJ1dXV7m7u+vll1/WqVOnrKcJrVu3TtnZ2Xr22WdvWHNQUFCuz3Ht2rXzdPw5wurVq2WxWPTf//7XZl8EBQWpTp06uT4/JUqUUIsWLfI8/o3eo0OHDik5OTnXd0X58uUVGRl5w/Hz85m8ePGivvzySz344IPy9vbO9Z198eLFXKfc3OjnAAAURoQdAFCIPProo6pfv75GjRplc32A/Pj3nUY8PDzk7e0tLy+vXO0XL17MtX5QUNBV206dOiVJ+uOPPyRJQ4cOlbu7u82jf//+kqS//vrLZv3r3Snln06dOnXVvsHBwdblBe1qr7dixQp169ZNZcuW1dKlS7Vt2zbt3LlTvXv3ttlnp06dkpubW659HhgYeM3Xu9n3548//tDevXtz7XNfX18ZhpFrnwcEBOR6bU9PT2VkZFyztisqV66s9evXq3Tp0nr22WdVuXJlVa5cWdOnT7/hutLV9+kff/yhVatW5ar/rrvukpT7mLnafrpe+5V9deUYudZx9M9jqEePHvL09LReE+fHH3/Uzp071atXL5u6Jenuu+/OVft7771nrfvKuNf6/OTHv9/LKxfQvdF7mdd9vmPHDrVp00bS39eU+Oabb7Rz506NGjXK5nX+/PNPSbrhHVGuVvOVuvNy/DnCH3/8IcMwFBgYmGt/bN++/aa/s6640Xt05fi42nfD9b4vrsjPZ/LUqVO6fPmyZs6cmWvbO3ToICn35+9GPwcAoDDibiwAUIhYLBa9+uqrat26td58881cy6/8AvzvC3o68j+cycnJV2278p/5kiVLSpJGjhyprl27XnWMatWq2TzP651XAgIClJSUlKv95MmTNq9dkK5W29KlSxUaGqr33nvPZvm/34eAgABdvnxZp0+ftvkl/Gr7ML9KliypIkWKaMGCBddcXpDuvfde3XvvvcrOztauXbs0c+ZMxcTEKDAwUI8++uh1173aPi1ZsqRq166tV1555arrXAm08uvKcZqUlJTrl/KTJ0/a7KcSJUrogQce0OLFizV+/HgtXLhQXl5eNjNzrvT/8MMPVaFChRu+7rU+P86Q132+fPlyubu7a/Xq1Tah28cff2zT/8oFME+cOKGQkBDHFO0gJUuWlMVi0ddff33Vuy39uy2/d4v6tyvHx5Xw7J/yenzc7GeyRIkScnV11eOPP37NWTmhoaE3rOmfPwcAoDAi7ACAQqZVq1Zq3bq1xo4dm+sXiMDAQHl5eWnv3r027Ve7K0hBeffddzVkyBDrf/aPHj2qrVu3qmfPnpL+DjLCwsL0ww8/KD4+vkBfu2XLlpowYYK+++471a9f39q+ePFiWSwWNW/evEBf71osFos8PDxsfuFJTk7Otd+bNWumSZMm6b333tMzzzxjbV++fHmB19SpUyfFx8crICAg1y8mNysvMwRcXV3VuHFjVa9eXe+8846+++67G4YdV9OpUyd99tlnqly5skqUKHHTNd/IlVMPli5dqrvvvtvavnPnTh08eNA6W+GKXr166f3339dnn32mpUuX6sEHH1Tx4sWty9u2bSs3Nzf99ttv1z0dq1q1aipTpsw1Pz8FFebYI6/73GKxyM3NzeY0jIyMDC1ZssSmX5s2beTq6qo5c+YoIiLCYXXnxz+P6X/e7rhTp06aOHGifv/991ynktwK1apVU1BQkN5//30NGTLE2n7s2DG7j49rfSav9Xn29vZW8+bN9f3336t27drW2VDXc6OfAwBQGBF2AEAh9Oqrr6pBgwZKSUmxTjGXZD3HfMGCBapcubLq1KmjHTt2aNmyZQ6rJSUlRQ8++KD69u2rtLQ0jR49Wl5eXho5cqS1z7x589S+fXu1bdtW0dHRKlu2rE6fPq2DBw/qu+++0wcffHBTrz148GAtXrxYHTt21NixY1WhQgV9+umnmj17tp555plc14FwlCu3Tu3fv78efvhhHT9+XOPGjVOZMmX0yy+/WPu1a9dOkZGRio2NVXp6uho0aKBt27ZZbzf6z2tO5FdMTIw++ugj3XfffRo8eLBq166tnJwcHTt2TGvXrlVsbKwaN25s15jh4eGSpOnTp+uJJ56Qu7u7qlWrpnfeeUcbNmxQx44dVb58eV28eNE6o6RVq1Y3Vf/YsWO1bt06NW3aVM8995yqVaumixcv6siRI/rss880d+7cPJ0ecSPVqlXTU089pZkzZ8rFxUXt27fXkSNH9NJLLykkJESDBw+26d+mTRuVK1dO/fv3V3Jyss0pLNLft9IdO3asRo0apcOHD6tdu3YqUaKE/vjjD+3YsUNFixbVmDFj5OLionHjxunJJ5+0fn7OnDmjuLi4fJ/GcrPyus87duyoKVOmqHv37nrqqad06tQpvf7667lmO1SsWFEvvPCCxo0bp4yMDD322GPy8/PTjz/+qL/++st6i2FnunJMv/rqq2rfvr1cXV1Vu3ZtRUZG6qmnnlKvXr20a9cu3XfffSpatKiSkpK0ZcsWhYeH2wSWBc3FxUVjxoxRv3799PDDD6t37946c+aMxowZozJlytzwu2Lu3Lk3/Ez6+vqqQoUK+t///qeWLVvK399fJUuWVMWKFTV9+nTdc889uvfee/XMM8+oYsWKOnv2rH799VetWrUq1/WQ8vJzAAAKG8IOACiE6tWrp8cee+yqIcbkyZMlSZMmTdK5c+fUokULrV69WhUrVnRILfHx8dbrFqSnp6tRo0Zavny5KleubO3TvHlz7dixQ6+88opiYmKUmpqqgIAA1axZM19/NS1VqpS2bt2qkSNHauTIkUpPT1elSpU0adIkm7+GOlqvXr2UkpKiuXPnasGCBapUqZJGjBihEydO2PxC5+LiolWrVik2NlYTJ05UVlaWIiMjtXTpUjVp0sRmhkB+FS1aVF9//bUmTpyoN998U4mJiSpSpIjKly+vVq1a3dTxEBUVpZEjR2rRokV66623lJOTo40bN6pu3bpau3atRo8ereTkZPn4+KhWrVr65JNPrNd2sFeZMmW0a9cujRs3Tq+99ppOnDghX19fhYaGWgOEgjJnzhxVrlxZ8+fP1xtvvCE/Pz+1a9dOEyZMyDUN38XFRT179lR8fLxCQkLUsmXLXOONHDlSNWvW1PTp0/Xuu+8qMzNTQUFBuvvuu/X0009b+/Xp00fS379od+3a1RoObN68OdcFMG+FvO7zFi1aaMGCBXr11Vd1//33q2zZsurbt69Kly5t3aYrxo4dq7CwMM2cOVM9evSQm5ubwsLC9Nxzz93y7bua7t2765tvvtHs2bM1duxYGYahxMREVaxYUfPmzVOTJk00b948zZ49Wzk5OQoODlZkZGSui6k6wlNPPSWLxaJJkybpwQcfVMWKFTVixAj973//s15g91ry+pmcP3++hg0bps6dOyszM1NPPPGEEhISVLNmTX333XcaN26cXnzxRaWkpKh48eIKCwuzXrfjn/LycwAAChuLYRiGs4sAAMDMli1bph49euibb77J9504AJjXmTNnVLVqVXXp0uWq12261TZt2qTmzZvrgw8+0MMPP+zscgDALszsAACgAL377rv6/fffFR4eLhcXF23fvl2vvfaa7rvvPoIOAFbJycl65ZVX1Lx5cwUEBOjo0aOaOnWqzp49q0GDBjm7PAC47RF2AABQgHx9fbV8+XKNHz9e58+fV5kyZRQdHa3x48c7uzQAhYinp6eOHDmi/v376/Tp0/L29laTJk00d+5cm2s1AQBuDqexAAAAAAAAUym4y8IDAAAAAAAUAoQdAAAAAADAVLhmh6ScnBydPHlSvr6+slgszi4HAAAAAAD8i2EYOnv2rIKDg+Xicv25G4Qdkk6ePKmQkBBnlwEAAAAAAG7g+PHjKleu3HX7EHbo7yvnS3/vsGLFijm5GgAAAAAA8G/p6ekKCQmx/g5/PYQdkvXUlWLFihF2AAAAAABQiOXl8hNcoBQAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqXLMDAAAAAAA75OTkKCsry9llmJKHh8cNbyubF4QdAAAAAADkUVZWlhITE5WTk+PsUkzJxcVFoaGh8vDwyNc4Tg07KlasqKNHj+Zq79+/v9544w0ZhqExY8bozTffVGpqqho3bqw33nhDd911l7VvZmamhg4dqnfffVcZGRlq2bKlZs+efcN77gIAAAAAYA/DMJSUlCRXV1eFhIQUyAwE/L+cnBydPHlSSUlJKl++fJ7uunItTg07du7cqezsbOvz/fv3q3Xr1vrPf/4jSZo0aZKmTJmihIQEVa1aVePHj1fr1q116NAh6311Y2JitGrVKi1fvlwBAQGKjY1Vp06dtHv3brm6ujpluwAAAAAA5nP58mVduHBBwcHB8vb2dnY5plSqVCmdPHlSly9flru7+02P49QYqlSpUgoKCrI+Vq9ercqVK6tZs2YyDEPTpk3TqFGj1LVrV9WqVUuLFi3ShQsXtGzZMklSWlqa5s+fr8mTJ6tVq1aqV6+eli5dqn379mn9+vXO3DQAAAAAgMlc+WN9fk+xwLVd2bf/nBhxMwrNnJusrCwtXbpUvXv3lsViUWJiopKTk9WmTRtrH09PTzVr1kxbt26VJO3evVuXLl2y6RMcHKxatWpZ+1xNZmam0tPTbR4AAAAAAORFfk6vwPUV1L4tNGHHxx9/rDNnzig6OlqSlJycLEkKDAy06RcYGGhdlpycLA8PD5UoUeKafa5mwoQJ8vPzsz5CQkIKcEsAAAAAAIAzFZqwY/78+Wrfvr2Cg4Nt2v+d6hiGccOk50Z9Ro4cqbS0NOvj+PHjN184AAAAAAAoVArFrWePHj2q9evXa8WKFda2oKAgSX/P3ihTpoy1PSUlxTrbIygoSFlZWUpNTbWZ3ZGSkqKmTZte8/U8PT3l6elZ0JsBAAAAALgDVRzx6S19vSMTO97S19u0aZOaN2+u1NRUFS9e/Ja+9s0qFDM7Fi5cqNKlS6tjx/9/w0JDQxUUFKR169ZZ27KysrR582ZrkNGgQQO5u7vb9ElKStL+/fuvG3YAAAAAAIC8adq0qZKSkuTn5+fsUvLM6TM7cnJytHDhQj3xxBNyc/v/ciwWi2JiYhQfH6+wsDCFhYUpPj5e3t7e6t69uyTJz89Pffr0UWxsrAICAuTv76+hQ4cqPDxcrVq1ctYmAQAAAABgGh4eHtazL24XTp/ZsX79eh07dky9e/fOtWz48OGKiYlR//791bBhQ/3+++9au3atfH19rX2mTp2qLl26qFu3boqMjJS3t7dWrVolV1fXW7kZAAAAAAAUSlFRURowYIAGDBig4sWLKyAgQC+++KIMw5AkLV26VA0bNpSvr6+CgoLUvXt3paSkWNfftGmTLBaLzpw5I0lKSEhQ8eLF9cUXX6hGjRry8fFRu3btlJSUZLNOo0aNVLRoURUvXlyRkZE6evToLdtmp4cdbdq0kWEYqlq1aq5lFotFcXFxSkpK0sWLF7V582bVqlXLpo+Xl5dmzpypU6dO6cKFC1q1ahV3VwEAAAAA4B8WLVokNzc3ffvtt5oxY4amTp2qt99+W9Lfl4wYN26cfvjhB3388cdKTEy03in1Wi5cuKDXX39dS5Ys0VdffaVjx45p6NChkqTLly+rS5cuatasmfbu3att27bpqaeeuqW37HX6aSwAAAAAAMCxQkJCNHXqVFksFlWrVk379u3T1KlT1bdvX5szLSpVqqQZM2aoUaNGOnfunHx8fK463qVLlzR37lxVrlxZkjRgwACNHTtWkpSenq60tDR16tTJurxGjRoO3kJbTp/ZAQAAAAAAHKtJkyY2MysiIiL0yy+/KDs7W99//70eeOABVahQQb6+voqKipIkHTt27JrjeXt7W4MMSSpTpoz11Bd/f39FR0erbdu2uv/++zV9+nSbU1xuBcIOAAAAAADuUBcvXlSbNm3k4+OjpUuXaufOnVq5cqWkv09vuRZ3d3eb5xaLxXoNEOnvu65u27ZNTZs21XvvvaeqVatq+/btjtmIqyDsAAAAAADA5P4dNGzfvl1hYWH66aef9Ndff2nixIm69957Vb16dZuLk+ZHvXr1NHLkSG3dulW1atXSsmXLCmTcvCDsAAAAAADA5I4fP64hQ4bo0KFDevfddzVz5kwNGjRI5cuXl4eHh2bOnKnDhw/rk08+0bhx4/L1WomJiRo5cqS2bdumo0ePau3atfr5559v6XU7uEApAAAAAAD5cGRiR2eXcEM9e/ZURkaGGjVqJFdXVw0cONB6h5SEhAS98MILmjFjhurXr6/XX39dnTt3vunX8vb21k8//aRFixbp1KlTKlOmjAYMGKB+/foV4BZdn8X450k1d6j09HT5+fkpLS1NxYoVc3Y5AAAAAIBC6OLFi0pMTFRoaKi8vLycXU6eRUVFqW7dupo2bZqzS7mh6+1je353Z2YHcB1vPL3BYWM/O7eFw8YGAAAAgDsZ1+wAAAAAAACmwswOAAAAAABMbNOmTc4u4ZZjZgcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmwq1nAQAAAADIjzi/W/x6aXZ1j4qKUt26dTVt2jTH1HMNR44cUWhoqL7//nvVrVv3lr42MzsAAAAAAICpEHYAAAAAAACrrKwsZ5eQb4QdAAAAAACY3OXLlzVgwAAVL15cAQEBevHFF2UYhiSpYsWKGj9+vKKjo+Xn56e+fftKkrZu3ar77rtPRYoUUUhIiJ577jmdP3/eOmbFihUVHx+v3r17y9fXV+XLl9ebb755zRpycnLUt29fVa1aVUePHnXo9hJ2AAAAAABgcosWLZKbm5u+/fZbzZgxQ1OnTtXbb79tXf7aa6+pVq1a2r17t1566SXt27dPbdu2VdeuXbV3716999572rJliwYMGGAz7uTJk9WwYUN9//336t+/v5555hn99NNPuV4/KytL3bp1065du7RlyxZVqFDBodvLBUoBAAAAADC5kJAQTZ06VRaLRdWqVdO+ffs0depU6yyOFi1aaOjQodb+PXv2VPfu3RUTEyNJCgsL04wZM9SsWTPNmTNHXl5ekqQOHTqof//+kqTnn39eU6dO1aZNm1S9enXrWOfOnVPHjh2VkZGhTZs2yc/P8Rd0ZWYHAAAAAAAm16RJE1ksFuvziIgI/fLLL8rOzpYkNWzY0Kb/7t27lZCQIB8fH+ujbdu2ysnJUWJiorVf7dq1rf+2WCwKCgpSSkqKzViPPfaYzp07p7Vr196SoENiZgcAAAAAAHe8okWL2jzPyclRv3799Nxzz+XqW758eeu/3d3dbZZZLBbl5OTYtHXo0EFLly7V9u3b1aJFiwKs+toIOwAAAAAAMLnt27fneh4WFiZXV9er9q9fv74OHDigKlWq5Pu1n3nmGdWqVUudO3fWp59+qmbNmuV7zBvhNBYAAAAAAEzu+PHjGjJkiA4dOqR3331XM2fO1KBBg67Z//nnn9e2bdv07LPPas+ePfrll1/0ySefaODAgTf1+gMHDtT48ePVqVMnbdmy5WY3I8+Y2QEAAAAAQH7EpTm7ghvq2bOnMjIy1KhRI7m6umrgwIF66qmnrtm/du3a2rx5s0aNGqV7771XhmGocuXKeuSRR266hpiYGOXk5KhDhw5as2aNmjZtetNj3YjFuHJj3TtYenq6/Pz8lJaWpmLFijm7HBQibzy9wWFjPzv31pyrBgAAAKBgXLx4UYmJiQoNDbXejQQF63r72J7f3TmNBQAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJiKm7MLAAAAAADgdha+KPyWvt6+J/bd0te7HTGzAwAAAAAA2JgzZ45q166tYsWKqVixYoqIiNDnn3/u7LLyjLADAAAAAIA7SFZW1g37lCtXThMnTtSuXbu0a9cutWjRQg888IAOHDhwCyrMP8IOAAAAAABMLCoqSgMGDNCQIUNUsmRJtW7dWps3b1ajRo3k6empMmXKaMSIEbp8+bJ1nfvvv18dOnRQ1apVVbVqVb3yyivy8fHR9u3bnbgleUfYAQAAAACAyS1atEhubm765ptvFB8frw4dOujuu+/WDz/8oDlz5mj+/PkaP378VdfNzs7W8uXLdf78eUVERNziym8OFygFAAAAAMDkqlSpokmTJkmSFi9erJCQEM2aNUsWi0XVq1fXyZMn9fzzz+vll1+Wi8vf8yL27duniIgIXbx4UT4+Plq5cqVq1qzpzM3IM2Z2AAAAAABgcg0bNrT+++DBg4qIiJDFYrG2RUZG6ty5czpx4oS1rVq1atqzZ4+2b9+uZ555Rk888YR+/PHHW1r3zWJmBwAAAAAAJle0aFHrvw3DsAk6rrRJsmn38PBQlSpVJP0dluzcuVPTp0/XvHnzbkHF+cPMDgAAAAAA7iA1a9bU1q1brQGHJG3dulW+vr4qW7bsNdczDEOZmZm3osR8I+wAAAAAAOAO0r9/fx0/flwDBw7UTz/9pP/9738aPXq0hgwZYr1exwsvvKCvv/5aR44c0b59+zRq1Cht2rRJPXr0cHL1ecNpLAAAAAAA5MO+J/Y5uwS7lC1bVp999pmGDRumOnXqyN/fX3369NGLL75o7fPHH3/o8ccfV1JSkvz8/FS7dm2tWbNGrVu3dmLleUfYAQAAAACAiW3atClXW7NmzbRjx45rrjN//nwHVuR4nMYCAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATMXN2QUAAAAAAHA7O1i9xi19vRo/Hbylr3ctCQkJiomJ0ZkzZ5xdSi7M7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJM7f/68evbsKR8fH5UpU0aTJ09WVFSUYmJiJElZWVkaPny4ypYtq6JFi6px48batGmTzRgJCQkqX768vL299eCDD+rUqVO3fkPyiLADAAAAAACTGzZsmDZu3KiVK1dq7dq12rRpk3bv3m1d3qtXL33zzTdavny59u7dq//85z9q166dfvnlF0nSt99+q969e6t///7as2ePmjdvrvHjxztrc26IC5QCAAAAAGBi586d0/z587V48WK1bt1akrRo0SKVK1dOkvTbb7/p3Xff1YkTJxQcHCxJGjp0qNasWaOFCxcqPj5e06dPV9u2bTVixAhJUtWqVbV161atWbPGORt1A4QdAAAAAACY2G+//aasrCxFRERY2/z9/VWtWjVJ0nfffSfDMFS1alWb9TIzMxUQECBJOnjwoB588EGb5REREYU27HD6aSy///67/vvf/yogIEDe3t6qW7euzVQawzAUFxen4OBgFSlSRFFRUTpw4IDNGJmZmRo4cKBKliypokWLqnPnzjpx4sSt3hQAAAAAAAodwzCuuzwnJ0eurq7avXu39uzZY30cPHhQ06dPz9MYhY1Tw47U1FRFRkbK3d1dn3/+uX788UdNnjxZxYsXt/aZNGmSpkyZolmzZmnnzp0KCgpS69atdfbsWWufmJgYrVy5UsuXL9eWLVt07tw5derUSdnZ2U7YKgAAAAAACo8qVarI3d1d27dvt7alpqbq559/liTVq1dP2dnZSklJUZUqVWweQUFBkqSaNWvarC8p1/PCxKmnsbz66qsKCQnRwoULrW0VK1a0/tswDE2bNk2jRo1S165dJf19XlFgYKCWLVumfv36KS0tTfPnz9eSJUvUqlUrSdLSpUsVEhKi9evXq23btrleNzMzU5mZmdbn6enpDtpCAAAAAACcy8fHR3369NGwYcMUEBCgwMBAjRo1Si4uf89/qFq1qnr06KGePXtq8uTJqlevnv766y9t2LBB4eHh6tChg5577jk1bdpUkyZNUpcuXbR27dpCewqL5OSw45NPPlHbtm31n//8R5s3b1bZsmXVv39/9e3bV5KUmJio5ORktWnTxrqOp6enmjVrpq1bt6pfv37avXu3Ll26ZNMnODhYtWrV0tatW68adkyYMEFjxoxx/AYCAAAAAEyvxk8HnV3CDb322ms6d+6cOnfuLF9fX8XGxiotLc26fOHChRo/frxiY2P1+++/KyAgQBEREerQoYMkqUmTJnr77bc1evRoxcXFqVWrVnrxxRc1btw4Z23SdTn1NJbDhw9rzpw5CgsL0xdffKGnn35azz33nBYvXixJSk5OliQFBgbarBcYGGhdlpycLA8PD5UoUeKaff5t5MiRSktLsz6OHz9e0JsGAAAAAECh4ePjoyVLluj8+fNKTk7WsGHDbJa7u7trzJgxSkxMVFZWlpKSkrRixQqFh4db+/Tu3VvHjx/XhQsX9Mknnyg2NlZnzpy5xVuSN06d2ZGTk6OGDRsqPj5e0t/nCR04cEBz5sxRz549rf0sFovNeoZh5Gr7t+v18fT0lKenZz6rBwAAAAAAhZFTZ3aUKVNGNWvWtGmrUaOGjh07JknWC6H8e4ZGSkqKdbZHUFCQsrKylJqaes0+AAAAAADgzuHUmR2RkZE6dOiQTdvPP/+sChUqSJJCQ0MVFBSkdevWqV69epKkrKwsbd68Wa+++qokqUGDBnJ3d9e6devUrVs3SVJSUpL279+vSZMm3cKtwdWELwq/cad82PfEPoeODwAAAABmtWnTJmeX4DBODTsGDx6spk2bKj4+Xt26ddOOHTv05ptv6s0335T09+krMTExio+PV1hYmMLCwhQfHy9vb291795dkuTn56c+ffooNjZWAQEB8vf319ChQxUeHm69OwsAAAAAALhzODXsuPvuu7Vy5UqNHDlSY8eOVWhoqKZNm6YePXpY+wwfPlwZGRnq37+/UlNT1bhxY61du1a+vr7WPlOnTpWbm5u6deumjIwMtWzZUgkJCXJ1dXXGZgEAAAAAACeyGIZhOLsIZ0tPT5efn5/S0tJUrFgxZ5djKrf7aSxvPL3BYWM/O7eFw8YGAAAAUPAuXryoxMREhYaGysvLy9nlmNL19rE9v7s79QKlAAAAAAAABY2wAwAAAAAAmAphBwAAAAAAMBWnXqAUAAAAAIDbnSOv9Xc19l7/LyoqSnXr1tW0adOuurxixYqKiYlRTExM/osrJJjZAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAJnf58mUNGDBAxYsXV0BAgF588UUZhmFdfvbsWXXv3l0+Pj4KDg7WzJkznVht/hF2AAAAAABgcosWLZKbm5u+/fZbzZgxQ1OnTtXbb79tXf7aa6+pdu3a+u677zRy5EgNHjxY69atc2LF+cMFSgEAAAAAMLmQkBBNnTpVFotF1apV0759+zR16lT17dtXkhQZGakRI0ZIkqpWrapvvvlGU6dOVevWrZ1Z9k1jZgcAAAAAACbXpEkTWSwW6/OIiAj98ssvys7Otj7/p4iICB08ePCW1liQCDsAAAAAAEAu/wxHbjeEHQAAAAAAmNz27dtzPQ8LC5Orq+s1l1evXv2W1VfQuGYHAAAAAAAmd/z4cQ0ZMkT9+vXTd999p5kzZ2ry5MnW5d98840mTZqkLl26aN26dfrggw/06aefOrHi/CHsAIBC5I2nNzh0/GfntnDo+AAAAHei2+H/WD179lRGRoYaNWokV1dXDRw4UE899ZR1eWxsrHbv3q0xY8bI19dXkydPVtu2bZ1Ycf4QdgAAAAAAYGKbNm2y/nvOnDm5lh85cuTWFXOLcM0OAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCpuzi4AAAAAAIDb2eRHOt3S14t9b/Ute62EhATFxMTozJkzt+w1CwIzOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAwOQ+/PBDhYeHq0iRIgoICFCrVq20efNmubu7Kzk52aZvbGys7rvvPpu2jz/+WFWrVpWXl5dat26t48ePW5f99ttveuCBBxQYGCgfHx/dfffdWr9+/S3Zrmsh7AAAAAAAwMSSkpL02GOPqXfv3jp48KA2bdqkrl27qkGDBqpUqZKWLFli7Xv58mUtXbpUvXr1srZduHBBr7zyihYtWqRvvvlG6enpevTRR63Lz507pw4dOmj9+vX6/vvv1bZtW91///06duzYLd3Of+ICpQAAAAAAmFhSUpIuX76srl27qkKFCpKk8PBwSVKfPn20cOFCDRs2TJL06aef6sKFC+rWrZt1/UuXLmnWrFlq3LixJGnRokWqUaOGduzYoUaNGqlOnTqqU6eOtf/48eO1cuVKffLJJxowYMCt2kwbzOwAAAAAAMDE6tSpo5YtWyo8PFz/+c9/9NZbbyk1NVWSFB0drV9//VXbt2+XJC1YsEDdunVT0aJFreu7ubmpYcOG1ufVq1dX8eLFdfDgQUnS+fPnNXz4cNWsWVPFixeXj4+PfvrpJ6fO7CDsAAAAAADAxFxdXbVu3Tp9/vnnqlmzpmbOnKlq1aopMTFRpUuX1v3336+FCxcqJSVFn332mXr37p1rDIvFcs22YcOG6aOPPtIrr7yir7/+Wnv27FF4eLiysrIcvm3XQtgBAAAAAIDJWSwWRUZGasyYMfr+++/l4eGhlStXSpKefPJJLV++XPPmzVPlypUVGRlps+7ly5e1a9cu6/NDhw7pzJkzql69uiTp66+/VnR0tB588EGFh4crKChIR44cuWXbdjVcswMAAAAAABP79ttv9eWXX6pNmzYqXbq0vv32W/3555+qUaOGJKlt27by8/PT+PHjNXbs2Fzru7u7a+DAgZoxY4bc3d01YMAANWnSRI0aNZIkValSRStWrND9998vi8Wil156STk5Obd0G/+NsAMAAAAAgHyIfW+1s0u4rmLFiumrr77StGnTlJ6ergoVKmjy5Mlq3769JMnFxUXR0dGKj49Xz549c63v7e2t559/Xt27d9eJEyd0zz33aMGCBdblU6dOVe/evdW0aVOVLFlSzz//vNLT02/Z9l0NYQcAAAAAACZWo0YNrVmz5rp9kpKS1KFDB5UpU8amPTo6WtHR0ZKkrl27XnXdihUrasOGDTZtzz777M0XXAAIOwAAAAAAuEOlpaVp586deuedd/S///3P2eUUGMIOAAAAAADuUA888IB27Nihfv36qXXr1s4up8AQdgAAAAAAcIfatGmTs0twCG49CwAAAACAHQzDcHYJplVQ+5awAwAAAACAPHB1dZUkZWVlObkS87qyb6/s65vFaSwAAAAAAOSBm5ubvL299eeff8rd3V0uLswfKEg5OTn6888/5e3tLTe3/MUVhB0AAAAAAOSBxWJRmTJllJiYqKNHjzq7HFNycXFR+fLlZbFY8jUOYQcAAAAAAHnk4eGhsLAwTmVxEA8PjwKZMUPYAQAAAACAHVxcXOTl5eXsMnAdnGAEAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVp4YdcXFxslgsNo+goCDrcsMwFBcXp+DgYBUpUkRRUVE6cOCAzRiZmZkaOHCgSpYsqaJFi6pz5846ceLErd4UAAAAAABQSDh9Zsddd92lpKQk62Pfvn3WZZMmTdKUKVM0a9Ys7dy5U0FBQWrdurXOnj1r7RMTE6OVK1dq+fLl2rJli86dO6dOnTopOzvbGZsDAAAAAACczM3pBbi52czmuMIwDE2bNk2jRo1S165dJUmLFi1SYGCgli1bpn79+iktLU3z58/XkiVL1KpVK0nS0qVLFRISovXr16tt27a3dFsAAAAAAIDzOX1mxy+//KLg4GCFhobq0Ucf1eHDhyVJiYmJSk5OVps2bax9PT091axZM23dulWStHv3bl26dMmmT3BwsGrVqmXtczWZmZlKT0+3eQAAAAAAAHNwatjRuHFjLV68WF988YXeeustJScnq2nTpjp16pSSk5MlSYGBgTbrBAYGWpclJyfLw8NDJUqUuGafq5kwYYL8/Pysj5CQkALeMgAAAAAA4CxODTvat2+vhx56SOHh4WrVqpU+/fRTSX+frnKFxWKxWccwjFxt/3ajPiNHjlRaWpr1cfz48XxsBQAAAAAAKEycfhrLPxUtWlTh4eH65ZdfrNfx+PcMjZSUFOtsj6CgIGVlZSk1NfWafa7G09NTxYoVs3kAAAAAAABzKFRhR2Zmpg4ePKgyZcooNDRUQUFBWrdunXV5VlaWNm/erKZNm0qSGjRoIHd3d5s+SUlJ2r9/v7UPAAAAAAC4szj1bixDhw7V/fffr/LlyyslJUXjx49Xenq6nnjiCVksFsXExCg+Pl5hYWEKCwtTfHy8vL291b17d0mSn5+f+vTpo9jYWAUEBMjf319Dhw61nhYDAAAAAADuPE4NO06cOKHHHntMf/31l0qVKqUmTZpo+/btqlChgiRp+PDhysjIUP/+/ZWamqrGjRtr7dq18vX1tY4xdepUubm5qVu3bsrIyFDLli2VkJAgV1dXZ20WAAAAAABwIqeGHcuXL7/ucovFori4OMXFxV2zj5eXl2bOnKmZM2cWcHUAAAAAAOB2VKiu2QEAAAAAAJBfhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTsTvsWLRokT799FPr8+HDh6t48eJq2rSpjh49WqDFAQAAAAAA2MvusCM+Pl5FihSRJG3btk2zZs3SpEmTVLJkSQ0ePLjACwQAAAAAALCHm70rHD9+XFWqVJEkffzxx3r44Yf11FNPKTIyUlFRUQVdHwAAAAAAgF3sntnh4+OjU6dOSZLWrl2rVq1aSZK8vLyUkZFRsNUBAAAAAADYye6ZHa1bt9aTTz6pevXq6eeff1bHjh0lSQcOHFDFihULuj4AAAAAAAC72D2z44033lBERIT+/PNPffTRRwoICJAk7d69W4899liBFwgAAAAAAGAPu2d2pKena8aMGXJxsc1J4uLidPz48QIrDAAAAAAA4GbYPbMjNDRUf/31V67206dPKzQ0tECKAgAAAAAAuFl2hx2GYVy1/dy5c/Ly8sp3QQAAAAAAAPmR59NYhgwZIkmyWCx6+eWX5e3tbV2WnZ2tb7/9VnXr1i3wAgEAAAAAAOyR57Dj+++/l/T3zI59+/bJw8PDuszDw0N16tTR0KFDC75CAAAAAAAAO+Q57Ni4caMkqVevXpo+fbqKFSvmsKIAAAAAAABult13Y1m4cKEj6gAAAAAAACgQdocd58+f18SJE/Xll18qJSVFOTk5NssPHz5cYMUBAAAAAADYy+6w48knn9TmzZv1+OOPq0yZMrJYLI6oCwAAAAAA4KbYHXZ8/vnn+vTTTxUZGemIegAAAAAAAPLFxd4VSpQoIX9/f0fUAgAAAAAAkG92hx3jxo3Tyy+/rAsXLjiiHgAAAAAAgHyx+zSWyZMn67ffflNgYKAqVqwod3d3m+XfffddgRUHAAAAAABgL7vDji5dujigDAAAAAAAgIJhd9gxevRoR9QBAAAAAABQIOy+ZocknTlzRm+//bZGjhyp06dPS/r79JXff/+9QIsDAAAAAACwl90zO/bu3atWrVrJz89PR44cUd++feXv76+VK1fq6NGjWrx4sSPqBAAAAAAAyBO7Z3YMGTJE0dHR+uWXX+Tl5WVtb9++vb766qsCLQ4AAAAAAMBedocdO3fuVL9+/XK1ly1bVsnJyQVSFAAAAAAAwM2yO+zw8vJSenp6rvZDhw6pVKlSBVIUAAAAAADAzbI77HjggQc0duxYXbp0SZJksVh07NgxjRgxQg899FCBFwgAAAAAAGAPu8OO119/XX/++adKly6tjIwMNWvWTFWqVJGvr69eeeUVR9QIAAAAAACQZ3bfjaVYsWLasmWLNmzYoO+++045OTmqX7++WrVq5Yj6AAAAAAAA7GJ32HFFixYt1KJFi4KsBQAAAAAAIN9uKuzYsWOHNm3apJSUFOXk5NgsmzJlSoEUBgAAAAAAcDPsDjvi4+P14osvqlq1agoMDJTFYrEu++e/AQAAAAAAnMHusGP69OlasGCBoqOjHVAOAAAAAABA/th9NxYXFxdFRkY6ohYAAAAAAIB8szvsGDx4sN544w1H1AIAAAAAAJBvdp/GMnToUHXs2FGVK1dWzZo15e7ubrN8xYoVBVYcAAAAAACAveye2TFw4EBt3LhRVatWVUBAgPz8/GweN2vChAmyWCyKiYmxthmGobi4OAUHB6tIkSKKiorSgQMHbNbLzMzUwIEDVbJkSRUtWlSdO3fWiRMnbroOAAAAAABwe7N7ZsfixYv10UcfqWPHjgVWxM6dO/Xmm2+qdu3aNu2TJk3SlClTlJCQoKpVq2r8+PFq3bq1Dh06JF9fX0lSTEyMVq1apeXLlysgIECxsbHq1KmTdu/eLVdX1wKrEQAAAAAA3B7sntnh7++vypUrF1gB586dU48ePfTWW2+pRIkS1nbDMDRt2jSNGjVKXbt2Va1atbRo0SJduHBBy5YtkySlpaVp/vz5mjx5slq1aqV69epp6dKl2rdvn9avX19gNQIAAAAAgNuH3WFHXFycRo8erQsXLhRIAc8++6w6duyoVq1a2bQnJiYqOTlZbdq0sbZ5enqqWbNm2rp1qyRp9+7dunTpkk2f4OBg1apVy9rnajIzM5Wenm7zAAAAAAAA5mD3aSwzZszQb7/9psDAQFWsWDHXBUq/++67PI+1fPlyfffdd9q5c2euZcnJyZKkwMBAm/bAwEAdPXrU2sfDw8NmRsiVPlfWv5oJEyZozJgxea4TAAAAAADcPuwOO7p06VIgL3z8+HENGjRIa9eulZeX1zX7WSwWm+eGYeRq+7cb9Rk5cqSGDBlifZ6enq6QkJA8Vg4AAAAAAAozu8OO0aNHF8gL7969WykpKWrQoIG1LTs7W1999ZVmzZqlQ4cOSfp79kaZMmWsfVJSUqyzPYKCgpSVlaXU1FSb2R0pKSlq2rTpNV/b09NTnp6eBbIdAAAAAACgcLH7mh0FpWXLltq3b5/27NljfTRs2FA9evTQnj17VKlSJQUFBWndunXWdbKysrR582ZrkNGgQQO5u7vb9ElKStL+/fuvG3YAAAAAAADzsntmR4kSJa56iojFYpGXl5eqVKmi6Oho9erV67rj+Pr6qlatWjZtRYsWVUBAgLU9JiZG8fHxCgsLU1hYmOLj4+Xt7a3u3btLkvz8/NSnTx/FxsYqICBA/v7+Gjp0qMLDw3Nd8BQAAAAAANwZ7A47Xn75Zb3yyitq3769GjVqJMMwtHPnTq1Zs0bPPvusEhMT9cwzz+jy5cvq27dvvoobPny4MjIy1L9/f6Wmpqpx48Zau3atfH19rX2mTp0qNzc3devWTRkZGWrZsqUSEhLk6uqar9cGAAAAAAC3J7vDji1btmj8+PF6+umnbdrnzZuntWvX6qOPPlLt2rU1Y8YMu8OOTZs22Ty3WCyKi4tTXFzcNdfx8vLSzJkzNXPmTLteCwAAAAAAmJPd1+z44osvrnqKSMuWLfXFF19Ikjp06KDDhw/nvzoAAAAAAAA72R12+Pv7a9WqVbnaV61aJX9/f0nS+fPnbU41AQAAAAAAuFXsPo3lpZde0jPPPKONGzeqUaNGslgs2rFjhz777DPNnTtXkrRu3To1a9aswIsFAAAAAAC4EbvDjr59+6pmzZqaNWuWVqxYIcMwVL16dZtbwsbGxhZ4oQAAAAAAAHlhd9ghSZGRkYqMjCzoWgAAAAAAAPLtpsKOKzIyMnTp0iWbtmLFiuWrIAAAAAAAgPyw+wKlFy5c0IABA1S6dGn5+PioRIkSNg8AAAAAAABnsjvsGDZsmDZs2KDZs2fL09NTb7/9tsaMGaPg4GAtXrzYETUCAAAAAADkmd2nsaxatUqLFy9WVFSUevfurXvvvVdVqlRRhQoV9M4776hHjx6OqBMAAAAAACBP7J7Zcfr0aYWGhkr6+/ocp0+fliTdc889+uqrrwq2OgAAAAAAADvZHXZUqlRJR44ckSTVrFlT77//vqS/Z3wUL168IGsDAAAAAACwm91hR69evfTDDz9IkkaOHGm9dsfgwYM1bNiwAi8QAAAAAADAHnZfs2Pw4MHWfzdv3lw//fSTdu3apcqVK6tOnToFWhwAAAAAAIC97JrZcenSJTVv3lw///yzta18+fLq2rUrQQcAAAAAACgU7Ao73N3dtX//flksFkfVAwAAAAAAkC92X7OjZ8+emj9/viNqAQAAAAAAyDe7r9mRlZWlt99+W+vWrVPDhg1VtGhRm+VTpkwpsOIAAAAAAADsZXfYsX//ftWvX1+SbK7dIYnTWwAAAAAAgNPlKezYu3evatWqJRcXF23cuNHRNQEAAAAAANy0PF2zo169evrrr78kSZUqVdKpU6ccWhQAAAAAAMDNylPYUbx4cSUmJkqSjhw5opycHIcWBQAAAAAAcLPydBrLQw89pGbNmqlMmTKyWCxq2LChXF1dr9r38OHDBVogAAAAAACAPfIUdrz55pvq2rWrfv31Vz333HPq27evfH19HV0bAAAAAACA3fJ8N5Z27dpJknbv3q1BgwYRdgAAAAAAgELJ7lvPLly40BF1AAAAAAAAFIg8XaAUAAAAAADgdkHYAQAAAAAATIWwAwAAAAAAmEqewo769esrNTVVkjR27FhduHDBoUUBAAAAAADcrDyFHQcPHtT58+clSWPGjNG5c+ccWhQAAAAAAMDNytPdWOrWratevXrpnnvukWEYev311+Xj43PVvi+//HKBFggAAAAAAGCPPIUdCQkJGj16tFavXi2LxaLPP/9cbm65V7VYLIQdAAAAAADAqfIUdlSrVk3Lly+XJLm4uOjLL79U6dKlHVoYAAAAAADAzchT2PFPOTk5jqgDAAAAAACgQNgddkjSb7/9pmnTpungwYOyWCyqUaOGBg0apMqVKxd0fQAAAAAAAHaxO+z44osv1LlzZ9WtW1eRkZEyDENbt27VXXfdpVWrVql169aOqBMAADjIG09vcNjYz85t4bCxAQAArsXusGPEiBEaPHiwJk6cmKv9+eefJ+wAAAAAAABOZXfYcfDgQb3//vu52nv37q1p06YVRE0AUKgdrF7DcYNHveG4sQEAAIA7hIu9K5QqVUp79uzJ1b5nzx7u0AIAAAAAAJzO7pkdffv21VNPPaXDhw+radOmslgs2rJli1599VXFxsY6okYAAAAAAIA8szvseOmll+Tr66vJkydr5MiRkqTg4GDFxcXpueeeK/ACAQAAAAAA7GF32GGxWDR48GANHjxYZ8+elST5+voWeGEAAAAAAAA3w+6w458IOQAAAAAAQGFj9wVKAQAAAAAACjPCDgAAAAAAYCqEHQAAAAAAwFTsCjsuXbqk5s2b6+eff3ZUPQAAAAAAAPliV9jh7u6u/fv3y2KxOKoeAAAAAACAfLH7NJaePXtq/vz5jqgFAAAAAAAg3+y+9WxWVpbefvttrVu3Tg0bNlTRokVtlk+ZMqXAigMAAAAAALCX3WHH/v37Vb9+fUnKde0OTm8BAAAAAADOZnfYsXHjRkfUAQAAAAAAUCBu+tazv/76q7744gtlZGRIkgzDKLCiAAAAAAAAbpbdYcepU6fUsmVLVa1aVR06dFBSUpIk6cknn1RsbGyBFwgAAAAAAGAPu8OOwYMHy93dXceOHZO3t7e1/ZFHHtGaNWsKtDgAAAAAAAB72X3NjrVr1+qLL75QuXLlbNrDwsJ09OjRAisMAAAAAADgZtg9s+P8+fM2Mzqu+Ouvv+Tp6VkgRQEAAAAAANwsu8OO++67T4sXL7Y+t1gsysnJ0WuvvabmzZsXaHEAAAAAAAD2svs0ltdee01RUVHatWuXsrKyNHz4cB04cECnT5/WN99844gaAQAAAAAA8szumR01a9bU3r171ahRI7Vu3Vrnz59X165d9f3336ty5cqOqBEAAAAAACDP7J7ZIUlBQUEaM2ZMQdcCAAAAAACQbzcVdqSmpmr+/Pk6ePCgLBaLatSooV69esnf37+g6wMAAAAAALCL3aexbN68WaGhoZoxY4ZSU1N1+vRpzZgxQ6Ghodq8ebMjagQAAAAAAMgzu2d2PPvss+rWrZvmzJkjV1dXSVJ2drb69++vZ599Vvv37y/wIgEAAAAAAPLK7pkdv/32m2JjY61BhyS5urpqyJAh+u233wq0OAAAAAAAAHvZHXbUr19fBw8ezNV+8OBB1a1b166x5syZo9q1a6tYsWIqVqyYIiIi9Pnnn1uXG4ahuLg4BQcHq0iRIoqKitKBAwdsxsjMzNTAgQNVsmRJFS1aVJ07d9aJEyfs3SwAAAAAAGASeTqNZe/evdZ/P/fccxo0aJB+/fVXNWnSRJK0fft2vfHGG5o4caJdL16uXDlNnDhRVapUkSQtWrRIDzzwgL7//nvdddddmjRpkqZMmaKEhARVrVpV48ePV+vWrXXo0CH5+vpKkmJiYrRq1SotX75cAQEBio2NVadOnbR7926b2ScAAAAAAODOkKewo27durJYLDIMw9o2fPjwXP26d++uRx55JM8vfv/999s8f+WVVzRnzhxt375dNWvW1LRp0zRq1Ch17dpV0t9hSGBgoJYtW6Z+/fopLS1N8+fP15IlS9SqVStJ0tKlSxUSEqL169erbdu2V33dzMxMZWZmWp+np6fnuWYAAAAAAFC45SnsSExMdHQdys7O1gcffKDz588rIiJCiYmJSk5OVps2bax9PD091axZM23dulX9+vXT7t27denSJZs+wcHBqlWrlrZu3XrNsGPChAkaM2aMw7cJAAAAAADcenkKOypUqOCwAvbt26eIiAhdvHhRPj4+WrlypWrWrKmtW7dKkgIDA236BwYG6ujRo5Kk5ORkeXh4qESJErn6JCcnX/M1R44cqSFDhlifp6enKyQkpKA2CQAAAAAAOJHdt56VpN9//13ffPONUlJSlJOTY7Psueees2usatWqac+ePTpz5ow++ugjPfHEE9q8ebN1ucViselvGEautn+7UR9PT095enraVScAAAAAALg92B12LFy4UE8//bQ8PDwUEBBgEypYLBa7ww4PDw/rBUobNmyonTt3avr06Xr++ecl/T17o0yZMtb+KSkp1tkeQUFBysrKUmpqqs3sjpSUFDVt2tTeTQMAAAAAACZg961nX375Zb388stKS0vTkSNHlJiYaH0cPnw43wUZhqHMzEyFhoYqKChI69atsy7LysrS5s2brUFGgwYN5O7ubtMnKSlJ+/fvJ+wAAAAAAOAOZffMjgsXLujRRx+Vi4vdOUkuL7zwgtq3b6+QkBCdPXtWy5cv16ZNm7RmzRpZLBbFxMQoPj5eYWFhCgsLU3x8vLy9vdW9e3dJkp+fn/r06aPY2FgFBATI399fQ4cOVXh4uPXuLAAAAAAA4M5id9jRp08fffDBBxoxYkS+X/yPP/7Q448/rqSkJPn5+al27dpas2aNWrduLenv29tmZGSof//+Sk1NVePGjbV27Vr5+vpax5g6darc3NzUrVs3ZWRkqGXLlkpISJCrq2u+6wMAAAAAALcfu8OOCRMmqFOnTlqzZo3Cw8Pl7u5us3zKlCl5Hmv+/PnXXW6xWBQXF6e4uLhr9vHy8tLMmTM1c+bMPL8uAAAAAAAwL7vDjvj4eH3xxReqVq2aJOW6QCkAAAAAAIAz2R12TJkyRQsWLFB0dLQDygEAAAAAAMgfu68y6unpqcjISEfUAgAAAAAAkG92hx2DBg3i+hgAAAAAAKDQsvs0lh07dmjDhg1avXq17rrrrlwXKF2xYkWBFQcAAAAAAGAvu8OO4sWLq2vXro6oBQAAAAAAIN/sDjsWLlzoiDoAAAAAAAAKhN3X7AAAAAAAACjM7J7ZERoaKovFcs3lhw8fzldBAAAAAAAA+WF32BETE2Pz/NKlS/r++++1Zs0aDRs2rKDqAgAAAAAAuCl2hx2DBg26avsbb7yhXbt25bsgAAAAAACA/Ciwa3a0b99eH330UUENBwAAAAAAcFMKLOz48MMP5e/vX1DDAQAAAAAA3BS7T2OpV6+ezQVKDcNQcnKy/vzzT82ePbtAiwMAAAAAALCX3WFHly5dbJ67uLioVKlSioqKUvXq1QuqLgAAAAAAgJtid9gxevRoR9QBAAAAAABQIArsmh0AAAAAAACFQZ5ndri4uNhcq+NqLBaLLl++nO+iAAAAAAAAblaew46VK1dec9nWrVs1c+ZMGYZRIEUBAAAAAADcrDyHHQ888ECutp9++kkjR47UqlWr1KNHD40bN65AiwMAAAAAALDXTV2z4+TJk+rbt69q166ty5cva8+ePVq0aJHKly9f0PUBAAAAAADYxa6wIy0tTc8//7yqVKmiAwcO6Msvv9SqVatUq1YtR9UHAAAAAABglzyfxjJp0iS9+uqrCgoK0rvvvnvV01oAoDAIXxTu0PHfd+joAAAAAPIrz2HHiBEjVKRIEVWpUkWLFi3SokWLrtpvxYoVBVYcAAAAAACAvfIcdvTs2fOGt57FbSrOz3Fjh3IdFwAAAADArZXnsCMhIcGBZQAAAAAAABSMm7obCwAAAAAAQGFF2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMxc3ZBQAAbp3Jj3Ry2Nix76122NgAAACAPZjZAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBWnhh0TJkzQ3XffLV9fX5UuXVpdunTRoUOHbPoYhqG4uDgFBwerSJEiioqK0oEDB2z6ZGZmauDAgSpZsqSKFi2qzp0768SJE7dyUwAAAAAAQCHh1LBj8+bNevbZZ7V9+3atW7dOly9fVps2bXT+/Hlrn0mTJmnKlCmaNWuWdu7cqaCgILVu3Vpnz5619omJidHKlSu1fPlybdmyRefOnVOnTp2UnZ3tjM0CAAAAAABO5ObMF1+zZo3N84ULF6p06dLavXu37rvvPhmGoWnTpmnUqFHq2rWrJGnRokUKDAzUsmXL1K9fP6WlpWn+/PlasmSJWrVqJUlaunSpQkJCtH79erVt2/aWbxeAG4jzc+z4oeUdOz4AAACAQq1QXbMjLS1NkuTv7y9JSkxMVHJystq0aWPt4+npqWbNmmnr1q2SpN27d+vSpUs2fYKDg1WrVi1rn3/LzMxUenq6zQMAAAAAAJhDoQk7DMPQkCFDdM8996hWrVqSpOTkZElSYGCgTd/AwEDrsuTkZHl4eKhEiRLX7PNvEyZMkJ+fn/UREhJS0JsDAAAAAACcpNCEHQMGDNDevXv17rvv5lpmsVhsnhuGkavt367XZ+TIkUpLS7M+jh8/fvOFAwAAAACAQqVQhB0DBw7UJ598oo0bN6pcuXLW9qCgIEnKNUMjJSXFOtsjKChIWVlZSk1NvWaff/P09FSxYsVsHgAAAAAAwBycGnYYhqEBAwZoxYoV2rBhg0JDQ22Wh4aGKigoSOvWrbO2ZWVlafPmzWratKkkqUGDBnJ3d7fpk5SUpP3791v7AAAAAACAO4dT78by7LPPatmyZfrf//4nX19f6wwOPz8/FSlSRBaLRTExMYqPj1dYWJjCwsIUHx8vb29vde/e3dq3T58+io2NVUBAgPz9/TV06FCFh4db784CAAAAAADuHE4NO+bMmSNJioqKsmlfuHChoqOjJUnDhw9XRkaG+vfvr9TUVDVu3Fhr166Vr6+vtf/UqVPl5uambt26KSMjQy1btlRCQoJcXV1v1aYAAOAwB6vXcOwLRL3h2PEBAABuMaeGHYZh3LCPxWJRXFyc4uLirtnHy8tLM2fO1MyZMwuwOgAAAAAAcDsqFBcoBQAAAAAAKCiEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFTdnFwDkx8HqNRz7AlFvOHZ8AAAAAECBY2YHAAAAAAAwFcIOAAAAAABgKpzGAgC4M8T5OXDsNMeNDQAAALsxswMAAAAAAJgKMzsAJ5n8SCeHjh/73mqHjg/g/4UvCnfo+O87dHQAAADzYWYHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApsKtZwEAAGDjYPUaDh2/xk8HHTo+AADM7AAAAAAAAKbCzA4AAABHiPNz8Phpjh0fAIDbGDM7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKk4Nez46quvdP/99ys4OFgWi0Uff/yxzXLDMBQXF6fg4GAVKVJEUVFROnDggE2fzMxMDRw4UCVLllTRokXVuXNnnThx4hZuBQAAAAAAKEycGnacP39ederU0axZs666fNKkSZoyZYpmzZqlnTt3KigoSK1bt9bZs2etfWJiYrRy5UotX75cW7Zs0blz59SpUydlZ2ffqs0AAAAAAACFiJszX7x9+/Zq3779VZcZhqFp06Zp1KhR6tq1qyRp0aJFCgwM1LJly9SvXz+lpaVp/vz5WrJkiVq1aiVJWrp0qUJCQrR+/Xq1bdv2lm0LAAAAAAAoHArtNTsSExOVnJysNm3aWNs8PT3VrFkzbd26VZK0e/duXbp0yaZPcHCwatWqZe1zNZmZmUpPT7d5AAAAAAAAcyi0YUdycrIkKTAw0KY9MDDQuiw5OVkeHh4qUaLENftczYQJE+Tn52d9hISEFHD1AAAAAADAWQpt2HGFxWKxeW4YRq62f7tRn5EjRyotLc36OH78eIHUCgAAAAAAnK/Qhh1BQUGSlGuGRkpKinW2R1BQkLKyspSamnrNPlfj6empYsWK2TwAAAAAAIA5FNqwIzQ0VEFBQVq3bp21LSsrS5s3b1bTpk0lSQ0aNJC7u7tNn6SkJO3fv9/aBwAAAAAA3FmcejeWc+fO6ddff7U+T0xM1J49e+Tv76/y5csrJiZG8fHxCgsLU1hYmOLj4+Xt7a3u3btLkvz8/NSnTx/FxsYqICBA/v7+Gjp0qMLDw613ZwEAAAAAAHcWp4Ydu3btUvPmza3PhwwZIkl64oknlJCQoOHDhysjI0P9+/dXamqqGjdurLVr18rX19e6ztSpU+Xm5qZu3bopIyNDLVu2VEJCglxdXW/59gAAAAAAAOdzatgRFRUlwzCuudxisSguLk5xcXHX7OPl5aWZM2dq5syZDqgQAAAAAADcbgrtNTsAAAAAAABuBmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmIqbswsAAADmNfmRTg4dP/a91Q4dHwAA3J6Y2QEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAqhB0AAAAAAMBUCDsAAAAAAICpcOtZAAAA3FJvPL3BoeM/O7eFQ8cHABR+zOwAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKoQdAAAAAADAVAg7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJiKm7MLAAAAgP3CF4U7bOz3HTYyAAC3BjM7AAAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAAAAAmAphBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAAAAgKkQdgAAAAAAAFMh7AAAAAAAAKbi5uwCAAAAgII0+ZFODhs79r3VDhsbAFBwCDsAAAAAAHecg9VrOHT8Gj8ddOj4uD5OYwEAAAAAAKZC2AEAAAAAAEyF01gAXFXFEZ86bOwjXg4bGgAA3KYceUoBpxMAdx5mdgAAAAAAAFMh7AAAAAAAAKZC2AEAAAAAAEyFsAMAAAAAAJgKYQcAAAAAADAVwg4AAAAAAGAq3Hr2NuDIW4BK3AYUAADANOL8HDh2muPGBkzojac3OGzsZ+e2cNjYZsHMDgAAAAAAYCrM7AAAAACAfJj8SCeHjh/73mqHjg+YEWEHAKBQ4JQ9OIMjjzuOOQAAnIfTWAAAAAAAgKkwswMAAAAAcHMceVFciQvjXgOnTt2YacKO2bNn67XXXlNSUpLuuusuTZs2Tffee6+zywIAAADgZI68KwYcK3xRuMPGft9hI6MwMEXY8d577ykmJkazZ89WZGSk5s2bp/bt2+vHH39U+fLlnV0eAAAAcNtz5C+dEr94AihYpgg7pkyZoj59+ujJJ5+UJE2bNk1ffPGF5syZowkTJuTqn5mZqczMTOvztLS/p0alp6ffmoLtlJN5waHjp1sMh42dnZHtsLEl6Vy2Y8fPyDrvsLEzL11y2NhS/o9nRx53jjzmpNv7uHPkMSc59rgrzMecxHfd9fBd5xi383fd7XzMSYX7u87hMvmuu5rb+ZiTCvlx58BjTuK77lru1GPuSl2GcePjzmLkpVchlpWVJW9vb33wwQd68MEHre2DBg3Snj17tHnz5lzrxMXFacyYMbeyTAAAAAAAUACOHz+ucuXKXbfPbT+z46+//lJ2drYCAwNt2gMDA5WcnHzVdUaOHKkhQ4ZYn+fk5Oj06dMKCAiQxWJxaL0oOOnp6QoJCdHx48dVrFgxZ5eDOwTHHW41jjncahxzcAaOO9xqHHO3J8MwdPbsWQUHB9+w720fdlzx75DCMIxrBheenp7y9PS0aStevLijSoODFStWjC8o3HIcd7jVOOZwq3HMwRk47nCrcczdfvz88nYHIBcH1+FwJUuWlKura65ZHCkpKblmewAAAAAAAPO77cMODw8PNWjQQOvWrbNpX7dunZo2beqkqgAAAAAAgLOY4jSWIUOG6PHHH1fDhg0VERGhN998U8eOHdPTTz/t7NLgQJ6enho9enSuU5IAR+K4w63GMYdbjWMOzsBxh1uNY878bvu7sVwxe/ZsTZo0SUlJSapVq5amTp2q++67z9llAQAAAACAW8w0YQcAAAAAAIBkgmt2AAAAAAAA/BNhBwAAAAAAMBXCDgAAAAAAYCqEHQAAAAAAwFQIOwAAAHBNly9fdnYJAADYjbADt4WjR4/qrbfe0uzZs3XgwAFnlwMAgOn9+OOPGjJkiMqWLevsUgAAsBthBwq9r776SnfddZf69eunAQMGqF69enr33XedXRYAFLhJkyYpIyPD+vyrr75SZmam9fnZs2fVv39/Z5SGO8S5c+f09ttvKyIiQrVr19aOHTs0YsQIZ5cFAIDdLIZhGM4uArieZs2aqVixYpo3b56KFCmikSNH6tNPP9Xx48edXRpM7sKFCxo2bJg+/vhjXbp0Sa1atdKMGTNUsmRJZ5cGk3J1dVVSUpJKly4tSSpWrJj27NmjSpUqSZL++OMPBQcHKzs725llwoS2bNmit99+Wx999JFCQ0P1448/avPmzYqMjHR2abgDnT9/Xrt379Z9993n7FIA3MaY2YFCb9++fZowYYKCg4NVokQJTZ48WSdPnlRqaqqzS4PJjR49WgkJCerYsaMee+wxrVu3Ts8884yzy4KJ/fvvD/w9Ao42adIkVa9eXY8++qhKlSqlLVu2aO/evbJYLCpRooSzy8Md6tdff1Xz5s2dXQZM5tKlSxo+fLiqVKmiRo0aaeHChTbL//jjD7m6ujqpOjiCm7MLAG7kzJkz1r9ySlLRokXl7e2tM2fO8B8xONSKFSs0f/58Pfroo5KkHj16KDIyUtnZ2fwwBGAKL7zwgp5//nmNHTuW7zUApvbKK69o8eLFGjp0qM6cOaPBgwdr+/btmjdvnrUPf2QwF8IO3BZ+/PFHJScnW58bhqGDBw/q7Nmz1rbatWs7ozSY2PHjx3Xvvfdanzdq1Ehubm46efKkQkJCnFgZABSMsWPHKiEhQUuWLNFjjz2mxx9/XLVq1XJ2WTA5f3//6y7nVD04wjvvvKO3335bnTp1kiT16tVL7du3V69evbRgwQJJksVicWaJKGCEHbgttGzZMlfSeuWLSvr7i4kfjCho2dnZ8vDwsGlzc3PjNoxwqLfffls+Pj6S/r7lZ0JCgvU6Mf8MeIGC8MILL+iFF17Q5s2btWDBAjVp0kSVK1eWYRicLgqHyczM1DPPPKPw8PCrLj969KjGjBlzi6uC2f3+++82YW7lypW1adMmtWjRQo8//rgmTZrkxOrgCFygFIXe0aNHb9gnNTVVdevWdXwxuKO4uLioffv28vT0tLatWrVKLVq0UNGiRa1tK1ascEZ5MKGKFSvm6a9KiYmJt6Aa3InS09O1bNkyLViwQLt371bjxo318MMPa8iQIc4uDSYSGRmpbt26adCgQVdd/sMPP6h+/fr8IQsFqlKlSnrrrbfUsmVLm/aTJ0+qefPmKl++vDZs2MBxZyKEHbhtpaWl6Z133tH8+fO1Z88evphQ4KKjo/P0i+e/L3AFAGawf/9+zZ8/X++8845SUlKcXQ5MJD4+XpcuXdLo0aOvuvz48eN6+eWX+fmKAvXkk0/KMAzNnz8/17Lff/9dUVFROnz4ML9TmAhhB247GzZs0IIFC7RixQpVqFBBDz30kB566CHVq1fP2aXBZA4fPqyKFSvKxYUbV+HW+Pbbb3X69Gm1b9/e2rZ48WKNHj1a58+fV5cuXTRz5kyb2UZAfmRkZOjLL7+0nho6cuRIZWZmWpe7urrq5Zdflq+vr7NKBIACcfToUf30009q27btVZcnJSVp7dq1euKJJ25xZXAUwg7cFk6cOKGEhAQtWLBA58+fV7du3TR37lz98MMPqlmzprPLg0m5uroqKSnJejegRx55RDNmzFBgYKCTK4NZtWvXTs2bN9fzzz8v6e9bb9evX1/R0dGqUaOGXnvtNfXr109xcXHOLRSmMW/ePK1evVqrVq2SJPn6+uquu+5SkSJFJEmHDh3SsGHDNHjwYGeWCZM6deqUAgICJP09m+Ott95SRkaGOnfubHOBcKAgcdzdOQg7UOh16NBBW7ZsUadOndSjRw+1a9dOrq6ucnd3J+yAQ7m4uCg5Odkadvj6+uqHH35QpUqVnFwZzKpMmTJatWqVGjZsKEkaNWqUNm/erC1btkiSPvjgA40ePVo//vijM8uEidx3330aPHiwHnzwQUm5v+eWLl2qN954Q9u2bXNmmTCZffv26f7779fx48cVFham5cuXq127djp//rxcXFx0/vx5ffjhh+rSpYuzS4WJcNzdeZibjUJv7dq1evLJJzVmzBh17NhRrq6uzi4JABwiNTXVZubQ5s2b1a5dO+vzu+++W8ePH3dGaTCpn3/+WVWrVrU+9/Lysjl1r1GjRoRrKHDDhw9XeHi4Nm/erKioKHXq1EkdOnRQWlqaUlNT1a9fP02cONHZZcJkOO7uPIQdKPS+/vprnT17Vg0bNlTjxo01a9Ys/fnnn84uC3cAi8WS6wKl3H8djhQYGGi900pWVpa+++47RUREWJefPXtW7u7uzioPJpSWliY3Nzfr8z///FMVK1a0Ps/JybG5hgdQEHbu3KlXXnlF99xzj15//XWdPHlS/fv3l4uLi1xcXDRw4ED99NNPzi4TJsNxd+dxu3EXwLkiIiIUERGh6dOna/ny5VqwYIGGDBminJwcrVu3TiEhIVw4DQ5hGIaio6OtF4O8ePGinn76aZvbzkrcehYFp127dhoxYoReffVVffzxx/L29rY5f3jv3r2qXLmyEyuE2ZQrV0779+9XtWrVrrp87969Kleu3C2uCmZ3+vRpBQUFSZJ8fHxUtGhR+fv7W5eXKFFCZ8+edVZ5MCmOuzsPMztw2/D29lbv3r21ZcsW7du3T7GxsZo4caJKly6tzp07O7s8mNATTzyh0qVLy8/PT35+fvrvf/+r4OBg6/MrD6CgjB8/Xq6urmrWrJneeustvfXWW/Lw8LAuX7Bggdq0aePECmE2HTp00Msvv6yLFy/mWpaRkWE9hRQoaMychDNw3N1ZuEApbmvZ2dlatWqVFixYoE8++cTZ5QBAgUhLS5OPj0+uaxSdPn1aPj4+NgEIkB9//PGH6tatKw8PDw0YMEBVq1aVxWLRTz/9pFmzZuny5cv6/vvvuQsVCpSLi4vat29vnTm5atUqtWjRwjpzMjMzU2vWrFF2drYzy4TJcNzdeQg7AAAA7mCJiYl65plntG7dOl35b6HFYlHr1q01e/Zs7kCFAterV6889Vu4cKGDK8GdhOPuzkPYAQAAAJ0+fVq//vqrJKlKlSo257IDAHC7IewAAAAAAACmwgVKAQAAAACAqRB2AAAAAAAAUyHsAAAAAAAApkLYAQAAAAAATIWwAwAAFCqbNm2SxWLRmTNnnFpHQkKCihcv7tQaAADAzSHsAAAABSolJUX9+vVT+fLl5enpqaCgILVt21bbtm1zdmm3VGEJbQAAuBO5ObsAAABgLg899JAuXbqkRYsWqVKlSvrjjz/05Zdf6vTp084uDQAA3CGY2QEAAArMmTNntGXLFr366qtq3ry5KlSooEaNGmnkyJHq2LGjjhw5IovFoj179tisY7FYtGnTJpuxvvnmG9WpU0deXl5q3Lix9u3bZ1125RSTjz/+WFWrVpWXl5dat26t48eP24wxZ84cVa5cWR4eHqpWrZqWLFmSq96nnnpKgYGB8vLyUq1atbR69eqrbtupU6fUqFEjde7cWRcvXpRhGJo0aZIqVaqkIkWKqE6dOvrwww8lSUeOHFHz5s0lSSVKlJDFYlF0dPRN7lUAAGAvwg4AAFBgfHx85OPjo48//liZmZn5GmvYsGF6/fXXtXPnTpUuXVqdO3fWpUuXrMsvXLigV155RYsWLdI333yj9PR0Pfroo9blK1eu1KBBgxQbG6v9+/erX79+6tWrlzZu3ChJysnJUfv27bV161YtXbpUP/74oyZOnChXV9dctZw4cUL33nuvqlevrhUrVsjLy0svvviiFi5cqDlz5ujAgQMaPHiw/vvf/2rz5s0KCQnRRx99JEk6dOiQkpKSNH369HztDwAAkHecxgIAAAqMm5ubEhIS1LdvX82dO1f169dXs2bN9Oijj6p27dp2jTV69Gi1bt1akrRo0SKVK1dOK1euVLdu3SRJly5d0qxZs9S4cWNrnxo1amjHjh1q1KiRXn/9dUVHR6t///6SpCFDhmj79u16/fXX1bx5c61fv147duzQwYMHVbVqVUlSpUqVctXx888/q3Xr1nrggQc0ffp0WSwWnT9/XlOmTNGGDRsUERFhXXfLli2aN2+emjVrJn9/f0lS6dKludApAAC3GDM7AABAgXrooYd08uRJffLJJ2rbtq02bdqk+vXrKyEhwa5xroQIkuTv769q1arp4MGD1jY3Nzc1bNjQ+rx69eoqXry4tc/BgwcVGRlpM2ZkZKR1+Z49e1SuXDlr0HE1GRkZuueee9SlSxfNmDFDFotFkvTjjz/q4sWLat26tXU2i4+PjxYvXqzffvvNru0EAAAFj5kdAACgwF25hkbr1q318ssv68knn9To0aP19ddfS5IMw7D2/eepKTdyJWy41vN/t/17uWEY1rYiRYrc8PU8PT3VqlUrffrppxo2bJjKlSsn6e9TYCTp008/VdmyZXOtAwAAnIuZHQAAwOFq1qyp8+fPq1SpUpKkpKQk67J/Xqz0n7Zv3279d2pqqn7++WdVr17d2nb58mXt2rXL+vzQoUM6c+aMtU+NGjW0ZcsWmzG3bt2qGjVqSJJq166tEydO6Oeff75m3S4uLlqyZIkaNGigFi1a6OTJk9bt8fT01LFjx1SlShWbR0hIiCTJw8NDkpSdnX39nQMAAAocMzsAAECBOXXqlP7zn/+od+/eql27tnx9fbVr1y5NmjRJDzzwgIoUKaImTZpo4sSJqlixov766y+9+OKLVx1r7NixCggIUGBgoEaNGqWSJUuqS5cu1uXu7u4aOHCgZsyYIXd3dw0YMEBNmjRRo0aNJP19gdNu3bqpfv36atmypVatWqUVK1Zo/fr1kqRmzZrpvvvu00MPPaQpU6aoSpUq+umnn2SxWNSuXTvr67i6uuqdd97RY489phYtWmjTpk0KCgrS0KFDNXjwYOXk5Oiee+5Renq6tm7dKh8fHz3xxBOqUKGCLBaLVq9erQ4dOqhIkSLy8fFx3M4HAABWzOwAAAAFxsfHR40bN9bUqVN13333qVatWnrppZfUt29fzZo1S5K0YMECXbp0SQ0bNtSgQYM0fvz4q441ceJEDRo0SA0aNFBSUpI++eQT62wJSfL29tbzzz+v7t27KyIiQkWKFNHy5cuty7t06aLp06frtdde01133aV58+Zp4cKFioqKsvb56KOPdPfdd+uxxx5TzZo1NXz48KvOxHBzc9O7776ru+66Sy1atFBKSorGjRunl19+WRMmTFCNGjXUtm1brVq1SqGhoZKksmXLasyYMRoxYoQCAwM1YMCAgtjFAAAgDyzGP0+aBQAAuA0kJCQoJiZGZ86ccXYpAACgEGJmBwAAAAAAMBXCDgAAAAAAYCqcxgIAAAAAAEyFmR0AAAAAAMBUCDsAAAAAAICpEHYAAAAAAABTIewAAAAAAACmQtgBAAAAAABMhbADAAAAAACYCmEHAAAAAAAwFcIOAAAAAABgKv8HrSZS60tpv7IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "update_results = num_frags_development(filter_results)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of fragments removed by each filtering criteria:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
painsbrenkro3qedbbsybatotal fragments
AP13.02585951376811311201
FP22.02022603415732421100
SE8.013313019334479743
GA8.0119431216927355
B1NaN1332251047
B2NaN642613659
\n", + "
" + ], + "text/plain": [ + " pains brenk ro3 qed bb syba total fragments\n", + "AP 13.0 258 595 137 681 131 1201\n", + "FP 22.0 202 260 341 573 242 1100\n", + "SE 8.0 133 130 193 344 79 743\n", + "GA 8.0 119 43 121 69 27 355\n", + "B1 NaN 13 3 22 5 10 47\n", + "B2 NaN 6 4 26 13 6 59" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "update_results[\"total fragments\"] = filter_results.groupby(\"subpocket\").size()\n", + "print(\"Number of fragments removed by each filtering criteria:\")\n", + "update_results" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def num_frags_total(filter_res):\n", + " \"\"\"\n", + " Count the number of fragments passing each custom filter step\n", + "\n", + " ----------\n", + " filter_res : dataframe\n", + " Contains the calculated values and the boolean for each filtering step if a fragment was\n", + " accepted or not.\n", + "\n", + " Returns\n", + " ---------\n", + " dataframe\n", + " with the number of fragments per subpocket for each filtering step\n", + "\n", + " \"\"\"\n", + " # get the column names\n", + " frag_keys = filter_res.keys()\n", + " frag_keys.to_list()\n", + " # keep only the boolean column names (we do not need the computed values here)\n", + " bool_keys = [x for x in frag_keys if \"bool\" in x and \"retro\" not in x]\n", + " # create a dataframe to store the number of fragments left after each filtering step\n", + " update_results = pd.DataFrame()\n", + " # add number of fragments for the pre-filtered subset we are starting with\n", + " update_results[\"Pre-filtered\"] = filter_res.reset_index().groupby(\n", + " \"subpocket\", sort=False\n", + " ).size()\n", + " # go through all boolean columns and count the number of fragments passing\n", + " for bool_key in bool_keys:\n", + " filter_res = filter_res.loc[filter_res[bool_key] == 1]\n", + " \n", + " update_results[\"All filters\"] = filter_res.reset_index().groupby(\"subpocket\", sort=False).size()\n", + " filter_res = filter_res.loc[filter_res['bool_retro'] == 1]\n", + " update_results[\"Filters + retro\"] = filter_res.reset_index().groupby(\"subpocket\", sort=False).size()\n", + " # create a bar plot showing the numbers of fragments passing\n", + " ax = update_results.plot.bar(width=0.9)\n", + " fig = ax.get_figure()\n", + "\n", + " fig.set_figheight(7)\n", + " fig.set_figwidth(13)\n", + "\n", + " ax.set_xlabel(\"Subpocket\")\n", + " ax.set_ylabel(\"Number of fragments\")\n", + " ax.set_title(\"Total number of fragments remaining\")\n", + " plt.savefig(f\"figures/n_fragments_filter_total.png\", dpi=300, bbox_inches=\"tight\")\n", + " plt.show()\n", + " # return dataframe with number of fragments after each filtering step.\n", + " return update_results" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAJ0CAYAAAAbL/a0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABogklEQVR4nO3deXhM5///8dfIvpMgEUJip6itFEXsa1XpV1tdUFurllhqqSWhxNaqWqtFQlH6adGiH6WK1ofWVrVUtTS2SholEmuEzO+PXubXaYKEmUyS83xc11yXc5/7nHmfmUObV+77Piaz2WwWAAAAAACAgRRwdAEAAAAAAAA5jUAEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABACQ65hMpiy9tm3bdt9zRUdHa+3atQ9dT1RU1EOdw1FCQ0PVvn17R5eRZWPGjFHJkiXl7OysggUL3rPv7NmzVbZsWbm6uspkMunSpUs5UmNudu3aNUVFRWXp70Z+dPLkSZlMJsXGxj7Q8aGhoerevbtNawIA5F7Oji4AAIB/27Vrl9X2W2+9pa1bt+qbb76xaq9cufJ9zxUdHa1nnnlGHTt2tGWJsIPPP/9ckyZN0ujRo9WmTRu5ubndte+BAwc0cOBA9erVS926dZOzs7N8fHxysNrc6dq1axo/frwkKTw83LHFOECxYsW0a9culSlT5oGOX7NmjXx9fW1cFQAgtyIQAQDkOo8//rjVdpEiRVSgQIEM7cgdzGazbty4IQ8Pj4c6z+HDhyVJAwcOVNGiRe/Z98iRI5Kk3r17q06dOvfse+3aNXl6ej5UbbCWWz9TNze3h/p3okaNGjasBgCQ2zFlBgCQJ128eFH9+vVT8eLF5erqqtKlS2v06NFKTU219DGZTLp69aqWLFlimWZz57fm58+fV79+/VS5cmV5e3uraNGiatq0qb777rsHqufOUP23335bM2bMUFhYmLy9vVWvXj19//33Vn3Dw8Mz/e199+7dFRoamuGc06dP19SpUxUaGioPDw+Fh4fr119/VVpamkaOHKng4GD5+fnp6aefVmJiYqb1rVmzRtWqVZO7u7tKly6tWbNmZeiTkpKiYcOGKSwsTK6uripevLgiIiJ09epVq34mk0n9+/fX+++/r0qVKsnNzU1Lliy562eTnp6uadOmqWLFinJzc1PRokX18ssv6+zZs5Y+oaGhGjNmjCQpMDDwntOUwsPD9eKLL0qS6tatK5PJZJnmEB4eripVqujbb79V/fr15enpqVdeeUWStGrVKrVs2VLFihWTh4eHKlWqpJEjR2a4Pkn68MMPVb58ebm5ualy5cpasWKF3b6fVatWqV69evLy8pK3t7datWqlH3/80apP9+7d5e3trePHj6tt27by9vZWSEiIhg4darnnT548qSJFikiSxo8fb7nn73w258+fV58+fRQSEiI3NzcVKVJEDRo00Ndff33X706SoqKiZDKZtH//fj3zzDMqVKiQZQSG2WzWvHnzVL16dXl4eKhQoUJ65pln9Pvvv2f4zqpUqaJdu3apfv368vDwUGhoqGJiYiRJGzZsUM2aNeXp6amqVatq48aNVscfP35cPXr0ULly5eTp6anixYvrySef1KFDh6z6ZTZl5k79R44c0fPPPy8/Pz8FBgbqlVdeUXJystXx/54ys23bNplMJn388ccaPXq0goOD5evrq+bNm+vYsWNWx5rNZkVHR6tUqVJyd3dX7dq1tXnz5rv+fQcAOB4jRAAAec6NGzfUpEkTnThxQuPHj1e1atX03XffafLkyTpw4IA2bNgg6e+pN02bNlWTJk00duxYSbIMh7948aIkKTIyUkFBQbpy5YrWrFmj8PBwbdmy5YF/gJk7d64qVqyomTNnSpLGjh2rtm3bKi4uTn5+fg98zmrVqmnu3Lm6dOmShg4dqieffFJ169aVi4uLFi9erFOnTmnYsGHq1auXvvjiC6vjDxw4oIiICEVFRSkoKEjLly/XoEGDdPPmTQ0bNkzS37/xb9y4sc6ePas333xT1apV05EjRzRu3DgdOnRIX3/9tUwmk+Wca9eu1Xfffadx48YpKCjoniM6XnvtNX3wwQfq37+/2rdvr5MnT2rs2LHatm2b9u/fr8KFC2vNmjWaO3euFi1apI0bN8rPz08lSpTI9Hzz5s3Txx9/rIkTJyomJkYVK1a0BAGSFB8frxdffFHDhw9XdHS0ChT4+/c/v/32m9q2bauIiAh5eXnpl19+0dSpU7V7926r6VgffPCB+vbtq86dO+vdd99VcnKyxo8fbxW22er7iY6O1pgxY9SjRw+NGTNGN2/e1PTp09WwYUPt3r3balpYWlqaOnTooJ49e2ro0KH69ttv9dZbb8nPz0/jxo1TsWLFtHHjRrVu3Vo9e/ZUr169JMny2bz00kvav3+/Jk2apPLly+vSpUvav3+/Lly4cNfv7p86deqk5557Tq+++qolROrbt69iY2M1cOBATZ06VRcvXtSECRNUv359/fTTTwoMDLQcn5CQoB49emj48OEqUaKEZs+erVdeeUVnzpzRp59+qjfffFN+fn6aMGGCOnbsqN9//13BwcGSpHPnzikgIEBTpkxRkSJFdPHiRS1ZskR169bVjz/+qAoVKty3/s6dO+vZZ59Vz549dejQIY0aNUqStHjx4vse++abb6pBgwZauHChUlJSNGLECD355JM6evSonJycJEmjR4/W5MmT1adPH3Xq1ElnzpxRr169lJaWpvLly2fpMwYA5DAzAAC5XLdu3cxeXl6W7ffff98syfzJJ59Y9Zs6dapZknnTpk2WNi8vL3O3bt3u+x63bt0yp6WlmZs1a2Z++umnrfZJMkdGRt7z+Li4OLMkc9WqVc23bt2ytO/evdssyfzxxx9b2ho3bmxu3LhxptdZqlSpDOd89NFHzbdv37a0z5w50yzJ3KFDB6vjIyIizJLMycnJlrZSpUqZTSaT+cCBA1Z9W7RoYfb19TVfvXrVbDabzZMnTzYXKFDAvGfPHqt+n376qVmS+csvv7T6PPz8/MwXL16852diNpvNR48eNUsy9+vXz6r9hx9+MEsyv/nmm5a2yMhIsyTz+fPn73vemJgYs6QM9TZu3Ngsybxly5Z7Hp+enm5OS0szb9++3SzJ/NNPP5nNZrP59u3b5qCgIHPdunWt+p86dcrs4uJi0+/n9OnTZmdnZ/OAAQOs+l2+fNkcFBRk7tKli6WtW7dumd7zbdu2NVeoUMGyff78+bver97e3uaIiIh7fi6ZufO9jBs3zqp9165dZknmd955x6r9zJkzZg8PD/Pw4cMtbXe+l71791raLly4YHZycjJ7eHiY//jjD0v7gQMHzJLMs2bNumtNt27dMt+8edNcrlw58+DBgy3td76TmJiYDPVPmzbN6hz9+vUzu7u7m9PT0y1tpUqVsvr3YuvWrWZJ5rZt21od+8knn5glmXft2mU2m83mixcvmt3c3MzPPvtspp9RZn/fAQCOx5QZAECe880338jLy0vPPPOMVfudoe5btmzJ0nnef/991axZU+7u7nJ2dpaLi4u2bNmio0ePPnBt7dq1s/zGWJKqVasmSTp16tQDn7Nt27aWUQ6SVKlSJct7/dOd9tOnT1u1P/LII3r00Uet2rp27aqUlBTt379fkrR+/XpVqVJF1atX161btyyvVq1aZfpEn6ZNm6pQoUL3rX3r1q2SlOHJHXXq1FGlSpWy/F1lR6FChdS0adMM7b///ru6du2qoKAgOTk5ycXFRY0bN5Yky3d+7NgxJSQkqEuXLlbHlixZUg0aNMj0/R70+/nqq69069Ytvfzyy1afubu7uxo3bpzhMzeZTHryySet2qpVq5ble6tOnTqKjY3VxIkT9f333ystLS1Lx93RuXNnq+3169fLZDLpxRdftKo/KChIjz76aIb6ixUrplq1alm2/f39VbRoUVWvXt0yEkT6/5/TP6/r1q1bio6OVuXKleXq6ipnZ2e5urrqt99+y/Lf1w4dOlhtV6tWTTdu3LjrNLP7HfvPGr///nulpqZmuG8ef/xxq2lWAIDchSkzAIA858KFCwoKCrKawiFJRYsWlbOzc5amAMyYMUNDhw7Vq6++qrfeekuFCxeWk5OTxo4d+1CBSEBAgNX2nSelXL9+/YHP6e/vb7Xt6up6z/YbN25YtQcFBWU45522O5/Vn3/+qePHj8vFxSXTGv766y+r7WLFimWp9jvnz6x/cHDwQwVFd5PZe125ckUNGzaUu7u7Jk6cqPLly8vT01NnzpxRp06dLN/PnXr/OdXjjsDAQMXFxWVof9Dv588//5QkPfbYY5lexz9DFkny9PSUu7u7VZubm1uG7/tuVq1apYkTJ2rhwoUaO3asvL299fTTT2vatGmZ3iP/9u/P9c8//5TZbM70s5Kk0qVLW23/+/OQ/v5MsnIfDxkyRHPnztWIESPUuHFjFSpUSAUKFFCvXr2y/HfrYf5u3u/Y+903AIDciUAEAJDnBAQE6IcffpDZbLYKRRITE3Xr1i0VLlz4vudYtmyZwsPDNX/+fKv2y5cv27zef3N3d8+wmKOUMXSwlYSEhLu23flBr3DhwvLw8Ljregr//kz/HUbdzZ3zx8fHZ1gT5Ny5c1n6rrIrs9q++eYbnTt3Ttu2bbOMCpGkS5cuZVrvnbDinzL7HB/GnWv/9NNPVapUKZue+27vN3PmTM2cOVOnT5/WF198oZEjRyoxMTHDIqaZ+ffnWrhwYZlMJn333XeZPiL5Xo9Nzq5ly5bp5ZdfVnR0tFX7X3/9pYIFC9rsfR7U/e4bRokAQO7ElBkAQJ7TrFkzXblyRWvXrrVqX7p0qWX/HW5ubpn+BthkMmX4ge3gwYPatWuX7Qv+l9DQUP36669Wi3ReuHBBO3futMv7HTlyRD/99JNV24oVK+Tj46OaNWtKktq3b68TJ04oICBAtWvXzvB60B/o7kxdWbZsmVX7nj17dPToUavvyp7u/DD/7+98wYIFVtsVKlRQUFCQPvnkE6v206dP2/z7adWqlZydnXXixIlMP/PatWtn+5xZHfVQsmRJ9e/fXy1atLBMm8qu9u3by2w2648//si09qpVqz7QeTOT2d/XDRs26I8//rDZezyMunXrys3NTatWrbJq//777+0yCgoAYBuMEAEA5Dkvv/yy5s6dq27duunkyZOqWrWqduzYoejoaLVt21bNmze39K1ataq2bdumdevWqVixYvLx8VGFChXUvn17vfXWW4qMjFTjxo117NgxTZgwQWFhYbp165Zd63/ppZe0YMECvfjii+rdu7cuXLigadOmWZ6AY2vBwcHq0KGDoqKiVKxYMS1btkybN2/W1KlT5enpKUmKiIjQZ599pkaNGmnw4MGqVq2a0tPTdfr0aW3atElDhw5V3bp1s/3eFSpUUJ8+fTR79mwVKFBAbdq0sTxlJiQkRIMHD7b15Waqfv36KlSokF599VVFRkbKxcVFy5cvzxAUFShQQOPHj1ffvn31zDPP6JVXXtGlS5c0fvx4FStWLMM0locRGhqqCRMmaPTo0fr999/VunVrFSpUSH/++ad2794tLy8vjR8/Plvn9PHxUalSpfT555+rWbNm8vf3V+HChVWoUCE1adJEXbt2VcWKFeXj46M9e/Zo48aN6tSp0wPV36BBA/Xp00c9evTQ3r171ahRI3l5eSk+Pl47duxQ1apV9dprrz3Quf+tffv2io2NVcWKFVWtWjXt27dP06dPv+uTiHKav7+/hgwZosmTJ6tQoUJ6+umndfbsWbvcNwAA2yEQAQDkOe7u7tq6datGjx6t6dOn6/z58ypevLiGDRumyMhIq77vvfeeXn/9dT333HOWR8tu27ZNo0eP1rVr17Ro0SJNmzZNlStX1vvvv681a9ZkWAzS1ho0aKAlS5ZoypQpeuqpp1S6dGlFRkbqyy+/tMt7V69eXT169FBkZKR+++03BQcHa8aMGVZhhJeXl7777jtNmTJFH3zwgeLi4uTh4aGSJUuqefPmDzXkf/78+SpTpowWLVqkuXPnys/PT61bt9bkyZMzrM1gLwEBAdqwYYOGDh2qF198UV5eXnrqqae0atUqyyiZO/r06SOTyaRp06bp6aefVmhoqEaOHKnPP/88w4K1D2vUqFGqXLmy3nvvPX388cdKTU1VUFCQHnvsMb366qsPdM5FixbpjTfeUIcOHZSamqpu3bppwYIFqlu3rj766COdPHlSaWlpKlmypEaMGKHhw4c/cP0LFizQ448/rgULFmjevHlKT09XcHCwGjRooDp16jzwef/tvffek4uLiyZPnqwrV66oZs2aWr16tcaMGWOz93hYkyZNkpeXl95//33L46Dnz5+v0aNH54ppPQCAjExms9ns6CIAAABys0uXLql8+fLq2LGjPvjgA0eXgzwiLi5OFStWVGRkpN58801HlwMA+BcCEQAAgH9ISEjQpEmT1KRJEwUEBOjUqVN699139csvv2jv3r165JFHHF0icqGffvpJH3/8serXry9fX18dO3ZM06ZNU0pKig4fPszTZgAgF2LKDAAAwD+4ubnp5MmT6tevny5evChPT089/vjjev/99wlDcFdeXl7au3evFi1apEuXLsnPz0/h4eGaNGkSYQgA5FKMEAEAAAAAAIbDktcAAAAAAMBwCEQAAAAAAIDhsIZIFqWnp+vcuXPy8fGRyWRydDkAAAAAAOBfzGazLl++rODgYBUocO8xIAQiWXTu3DmFhIQ4ugwAAAAAAHAfZ86cUYkSJe7Zh0Aki3x8fCT9/aH6+vo6uBoAAAAAAPBvKSkpCgkJsfwMfy8EIll0Z5qMr68vgQgAAAAAALlYVpa6YFFVAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4bCGCAAAAAAgx6Wnp+vmzZuOLgN5kKur630fqZsVBCIAAAAAgBx18+ZNxcXFKT093dGlIA8qUKCAwsLC5Orq+lDnIRABAAAAAOQYs9ms+Ph4OTk5KSQkxCa/6YdxpKen69y5c4qPj1fJkiWz9DSZuyEQAQAAAADkmFu3bunatWsKDg6Wp6eno8tBHlSkSBGdO3dOt27dkouLywOfhygOAAAAAJBjbt++LUkPPd0BxnXn3rlzLz0oAhEAAAAAQI57mKkOMDZb3TsEIgAAAAAAwHAIRAAAAAAAgOGwqCoAAAAAwOFCR27I0fc7OaVdjr5fdkVFRWn+/PlKTEzUmjVrtHbtWl26dElr166VJIWHh6t69eqaOXOmQ+v8p9DQUEVERCgiIsLRpWQJI0QAAAAAAMiC7t27y2QyyWQyycXFRaVLl9awYcN09epVm77P0aNHNX78eC1YsEDx8fFq06aN3nvvPcXGxt71mNDQ0FwVjuQFjBABAAAAACCLWrdurZiYGKWlpem7775Tr169dPXqVc2fP9+qX1pa2gM/EvbEiROSpKeeesqygKibm9vDFZ5FN2/eNMwTgBghAgAAAABAFrm5uSkoKEghISHq2rWrXnjhBa1du1ZRUVGqXr26Fi9erNKlS8vNzU1ms1nJycnq06ePihYtKl9fXzVt2lQ//fTTXc8fFRWlJ598UpJUoEABSyDSvXt3dezYMdNjwsPDderUKQ0ePNgyguWOnTt3qlGjRvLw8FBISIgGDhxoNaIlNDRUEydOVPfu3eXn56fevXtn6bjExEQ9+eST8vDwUFhYmJYvX/7An6mjEIgAAAAAAPCAPDw8lJaWJkk6fvy4PvnkE3322Wc6cOCAJKldu3ZKSEjQl19+qX379qlmzZpq1qyZLl68mOn5hg0bppiYGElSfHy84uPj71vD6tWrVaJECU2YMMHqmEOHDqlVq1bq1KmTDh48qFWrVmnHjh3q37+/1fHTp09XlSpVtG/fPo0dOzZLx3Xv3l0nT57UN998o08//VTz5s1TYmJitj8/R2LKDAAAAAAAD2D37t1asWKFmjVrJunv6SYfffSRihQpIkn65ptvdOjQISUmJlqmvLz99ttau3atPv30U/Xp0yfDOb29vVWwYEFJUlBQUJbq8Pf3l5OTk3x8fKyOmT59urp27WpZ5LRcuXKaNWuWGjdurPnz58vd3V2S1LRpUw0bNsxy3Msvv3zP406fPq3//ve/+v7771W3bl1J0qJFi1SpUqUsfnK5AyNEAAAAAADIovXr18vb21vu7u6qV6+eGjVqpNmzZ0uSSpUqZQlDJGnfvn26cuWKAgIC5O3tbXnFxcXpxIkTOn36tFV7dHS0TWvdt2+fYmNjrd6jVatWSk9PV1xcnKVf7dq1s3Xc0aNH5ezsbHVcxYoVLUFOXsEIEQAAAAAAsqhJkyaaP3++XFxcFBwcbLVwqpeXl1Xf9PR0FStWTNu2bctwnoIFC6pgwYKWqTXS3yM9bCk9PV19+/bVwIEDM+wrWbKk5c+Z1X2v444dOyZJVmuV5EUEIgAAAAAAZJGXl5fKli2bpb41a9ZUQkKCnJ2dFRoammmfrJ7rflxdXXX79u0M73/kyJFsv8f9jqtUqZJu3bqlvXv3qk6dOpKkY8eO6dKlSw9Uu6M4dMrMt99+qyeffFLBwcEymUxau3atZV9aWppGjBihqlWrysvLS8HBwXr55Zd17tw5q3OkpqZqwIABKly4sLy8vNShQwedPXvWqk9SUpJeeukl+fn5yc/PTy+99FKe+6IAAAAAAHlL8+bNVa9ePXXs2FFfffWVTp48qZ07d2rMmDHau3evTd8rNDRU3377rf744w/99ddfkqQRI0Zo165dev3113XgwAH99ttv+uKLLzRgwIB7nut+x1WoUEGtW7dW79699cMPP2jfvn3q1auXPDw8bHpN9ubQESJXr17Vo48+qh49eqhz585W+65du6b9+/dr7NixevTRR5WUlKSIiAh16NDB6saJiIjQunXrtHLlSgUEBGjo0KFq37699u3bJycnJ0lS165ddfbsWW3cuFGS1KdPH7300ktat25dzl0sAAAAAOCuTk5p5+gSbM5kMunLL7/U6NGj9corr+j8+fMKCgpSo0aNFBgYaNP3mjBhgvr27asyZcooNTVVZrNZ1apV0/bt2zV69Gg1bNhQZrNZZcqU0bPPPnvPc2XluJiYGPXq1UuNGzdWYGCgJk6cqLFjx9r0muzNZDabzY4uQvr7RlmzZs1dn6ssSXv27FGdOnV06tQplSxZUsnJySpSpIg++ugjyxdz7tw5hYSE6Msvv1SrVq109OhRVa5c2Wr12++//1716tXTL7/8ogoVKmSpvpSUFPn5+Sk5OVm+vr4Pfb0AAAAAYEQ3btxQXFycwsLCLE85AbLjXvdQdn52z1NriCQnJ8tkMllWrt23b5/S0tLUsmVLS5/g4GBVqVJFO3fuVKtWrbRr1y75+flZwhBJevzxx+Xn56edO3feNRBJTU1VamqqZTslJcU+F2UjoSM3OLqEB5Yfk2AAAAAAQO6WZx67e+PGDY0cOVJdu3a1pDwJCQlydXVVoUKFrPoGBgYqISHB0qdo0aIZzle0aFFLn8xMnjzZsuaIn5+fQkJCbHg1AAAAAADAkfJEIJKWlqbnnntO6enpmjdv3n37m81mq8f/ZPYooH/3+bdRo0YpOTnZ8jpz5syDFQ8AAAAAAHKdXB+IpKWlqUuXLoqLi9PmzZut5gAFBQXp5s2bSkpKsjomMTHRskBNUFCQ/vzzzwznPX/+/D0XsXFzc5Ovr6/VCwAAAAAA5A+5OhC5E4b89ttv+vrrrxUQEGC1v1atWnJxcdHmzZstbfHx8Tp8+LDq168vSapXr56Sk5O1e/duS58ffvhBycnJlj4AAAAAAMBYHLqo6pUrV3T8+HHLdlxcnA4cOCB/f38FBwfrmWee0f79+7V+/Xrdvn3bsuaHv7+/XF1d5efnp549e2ro0KEKCAiQv7+/hg0bpqpVq6p58+aSpEqVKlmej7xgwQJJfz92t3379ll+wgwAAAAAAMhfHBqI7N27V02aNLFsDxkyRJLUrVs3RUVF6YsvvpAkVa9e3eq4rVu3Kjw8XJL07rvvytnZWV26dNH169fVrFkzxcbGysnJydJ/+fLlGjhwoOVpNB06dNCcOXPseGUAAAAAACA3c2ggEh4eLrPZfNf999p3h7u7u2bPnq3Zs2fftY+/v7+WLVv2QDUCAAAAAID8J1evIQIAAAAAAGAPDh0hAgAAAACAJCnKL4ffL9nmp9y2bZuaNGmipKQkFSxYULGxsYqIiNClS5fueswvv/yi7t2768CBA6pYsaLWrl2rsLAw/fjjj6pevXqGc8J2GCECAAAAAEAW7dy5U05OTmrdurVNzhcZGSkvLy8dO3ZMW7ZsUUhIiOLj41WlSpVM+8fGxhKM2AiBCAAAAAAAWbR48WINGDBAO3bs0OnTpx/6fCdOnNATTzyhUqVKKSAgQE5OTgoKCpKzs30ndNy+fVvp6el2fY/cjkAEAAAAAIAsuHr1qj755BO99tprat++vWJjYx/qfCaTSfv27dOECRNkMpkUFRWlkydPymQy6cCBAxn6b9u2TT169FBycrJMJpPlGEm6efOmhg8fruLFi8vLy0t169bVtm3bLMfeGVmyfv16Va5cWW5ubjp16pS2bdumOnXqyMvLSwULFlSDBg106tSph7quvIJABAAAAACALFi1apUqVKigChUq6MUXX1RMTEyWno56N/Hx8XrkkUc0dOhQxcfHa9iwYffsX79+fc2cOVO+vr6Kj4+3OqZHjx763//+p5UrV+rgwYP6v//7P7Vu3Vq//fab5fhr165p8uTJWrhwoY4cOSJ/f3917NhRjRs31sGDB7Vr1y716dNHJpPpga8pL2FRVQAAAAAAsmDRokV68cUXJUmtW7fWlStXtGXLFjVv3vyBzndnaoy3t7eCgoIkSX/99ddd+7u6usrPz08mk8nSX/p72s3HH3+ss2fPKjg4WJI0bNgwbdy4UTExMYqOjpYkpaWlad68eXr00UclSRcvXlRycrLat2+vMmXKSJIqVar0QNeSFxGIAAAAAABwH8eOHdPu3bu1evVqSZKzs7OeffZZLV68+IEDEVvZv3+/zGazypcvb9WempqqgIAAy7arq6uqVatm2fb391f37t3VqlUrtWjRQs2bN1eXLl1UrFixHKvdkQhEAAAAAAC4j0WLFunWrVsqXry4pc1sNsvFxUVJSUkqVKiQw2pLT0+Xk5OT9u3bJycnJ6t93t7elj97eHhkmA4TExOjgQMHauPGjVq1apXGjBmjzZs36/HHH8+R2h2JQAQAAAAAgHu4deuWli5dqnfeeUctW7a02te5c2ctX75c/fv3z5FaXF1ddfv2bau2GjVq6Pbt20pMTFTDhg2zfc4aNWqoRo0aGjVqlOrVq6cVK1YYIhBhUVUAAAAAAO5h/fr1SkpKUs+ePVWlShWr1zPPPKNFixblWC2hoaGWtUv++usvXbt2TeXLl9cLL7ygl19+WatXr1ZcXJz27NmjqVOn6ssvv7zrueLi4jRq1Cjt2rVLp06d0qZNm/Trr78aZh0RRogAAAAAABwvKtnRFdzVokWL1Lx5c/n5+WXY17lzZ0VHR2v//v05Ukv9+vX16quv6tlnn9WFCxcUGRmpqKgoxcTEaOLEiRo6dKj++OMPBQQEqF69emrbtu1dz+Xp6alffvlFS5Ys0YULF1SsWDH1799fffv2zZFrcTST+WGeEWQgKSkp8vPzU3Jysnx9fR1dTgahIzc4uoQHdnJKO0eXAAAAACCH3LhxQ3FxcQoLC5O7u7ujy0EedK97KDs/uzNlBgAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABiOs6MLAAAAAACg6pKqOfp+h7odstm5wsPDVb16dc2cOVOSFBoaqoiICEVERNjsPWB7jBABAAAAAOA+unfvLpPJlOF1/PhxrV69Wm+99dZdjzWZTFq7dm3OFZsLdO/eXR07dnR0GfdEIAIAAAAAQBa0bt1a8fHxVq+wsDD5+/vLx8fH7u+flpb20OcIDw9XbGzsAx9/8+bNh67hn2xxTQ+KQAQAAAAAgCxwc3NTUFCQ1cvJyUnh4eF3nR4TGhoqSXr66adlMpks25K0bt061apVS+7u7ipdurTGjx+vW7duWfabTCa9//77euqpp+Tl5aWJEycqKSlJL7zwgooUKSIPDw+VK1dOMTExdrvmOyM9Jk+erODgYJUvX16S9Mcff+jZZ59VoUKFFBAQoKeeekonT56UJEVFRWnJkiX6/PPPLSNptm3bppMnT8pkMumTTz5ReHi43N3dtWzZMqWnp2vChAkqUaKE3NzcVL16dW3cuNFu13QHa4gAAAAAAGAne/bsUdGiRRUTE6PWrVvLyclJkvTVV1/pxRdf1KxZs9SwYUOdOHFCffr0kSRFRkZajo+MjNTkyZP17rvvysnJSWPHjtXPP/+s//73vypcuLCOHz+u69ev2/UatmzZIl9fX23evFlms1nXrl1TkyZN1LBhQ3377bdydnbWxIkT1bp1ax08eFDDhg3T0aNHlZKSYglr/P39de7cOUnSiBEj9M477ygmJkZubm5677339M4772jBggWqUaOGFi9erA4dOujIkSMqV66c3a6LQAQAAAAAgCxYv369vL29Ldtt2rTRf/7zn3seU6RIEUlSwYIFFRQUZGmfNGmSRo4cqW7dukmSSpcurbfeekvDhw+3CkS6du2qV155xbJ9+vRp1ahRQ7Vr15YkqxEn9uLl5aWFCxfK1dVVkrR48WIVKFBACxculMlkkiTFxMSoYMGC2rZtm1q2bCkPDw+lpqZaXfMdERER6tSpk2X77bff1ogRI/Tcc89JkqZOnaqtW7dq5syZmjt3rt2ui0AEAAAAAIAsaNKkiebPn2/Z9vLyeuBz7du3T3v27NGkSZMsbbdv39aNGzd07do1eXp6SpIl+LjjtddeU+fOnbV//361bNlSHTt2VP369e/6PtHR0YqOjrZsX79+Xd9//7369+9vafvvf/+rhg0b3vUcVatWtYQhd2o/fvx4hnVTbty4oRMnTtznyq2vKSUlRefOnVODBg2s+jRo0EA//fTTfc/1MAhEAAAAAADIAi8vL5UtW9Ym50pPT9f48eOtRkrc4e7ubvWe/9SmTRudOnVKGzZs0Ndff61mzZrp9ddf19tvv53p+7z66qvq0qWLZfuFF15Q586drd63ePHi96z13zWkp6erVq1aWr58eYa+d0bEZOd8kiwjTe4wm80Z2myNQAQAAAAAADtycXHR7du3rdpq1qypY8eOPVDAUqRIEXXv3l3du3dXw4YN9cYbb9w1EPH395e/v79l28PDQ0WLFn2oYKdmzZpatWqVihYtKl9f30z7uLq6ZrjmzPj6+io4OFg7duxQo0aNLO07d+5UnTp1HrjGrOApMwAAAAAA2FFoaKi2bNmihIQEJSUlSZLGjRunpUuXKioqSkeOHNHRo0e1atUqjRkz5p7nGjdunD7//HMdP35cR44c0fr161WpUqWcuAyLF154QYULF9ZTTz2l7777TnFxcdq+fbsGDRqks2fPSvr7mg8ePKhjx47pr7/+uufjdd944w1NnTpVq1at0rFjxzRy5EgdOHBAgwYNsut1MEIEAAAAAOBwh7odcnQJdvPOO+9oyJAh+vDDD1W8eHGdPHlSrVq10vr16zVhwgRNmzZNLi4uqlixonr16nXPc7m6umrUqFE6efKkPDw81LBhQ61cuTKHruRvnp6e+vbbbzVixAh16tRJly9fVvHixdWsWTPLiJHevXtr27Ztql27tq5cuaKtW7fedQHYgQMHKiUlRUOHDlViYqIqV66sL774wq5PmJEkk9lsNtv1HfKJlJQU+fn5KTk5+a5DghwpdOQGR5fwwE5OaefoEgAAAADkkBs3biguLk5hYWFWa2UAWXWveyg7P7szZQYAAAAAABgOU2YAPDBGJgEAAADIqxghAgAAAAAADIdABAAAAAAAGA6BCAAAAAAgx/F8DzwoW907rCECAAAAAMgxLi4uMplMOn/+vIoUKSKTyeTokpCHmM1mnT9/XiaTSS4uLg91LgIRAAAAAECOcXJyUokSJXT27FmdPHnS0eUgDzKZTCpRooScnJwe6jwEIgAAAACAHOXt7a1y5copLS3N0aUgD3JxcXnoMEQiEAEAAAAAOICTk5NNfqgFHhSLqgIAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwHBqIfPvtt3ryyScVHBwsk8mktWvXWu03m82KiopScHCwPDw8FB4eriNHjlj1SU1N1YABA1S4cGF5eXmpQ4cOOnv2rFWfpKQkvfTSS/Lz85Ofn59eeuklXbp0yc5XBwAAAAAAciuHBiJXr17Vo48+qjlz5mS6f9q0aZoxY4bmzJmjPXv2KCgoSC1atNDly5ctfSIiIrRmzRqtXLlSO3bs0JUrV9S+fXvdvn3b0qdr1646cOCANm7cqI0bN+rAgQN66aWX7H59AAAAAAAgd3J25Ju3adNGbdq0yXSf2WzWzJkzNXr0aHXq1EmStGTJEgUGBmrFihXq27evkpOTtWjRIn300Udq3ry5JGnZsmUKCQnR119/rVatWuno0aPauHGjvv/+e9WtW1eS9OGHH6pevXo6duyYKlSokDMXCwAAAAAAco1cu4ZIXFycEhIS1LJlS0ubm5ubGjdurJ07d0qS9u3bp7S0NKs+wcHBqlKliqXPrl275OfnZwlDJOnxxx+Xn5+fpU9mUlNTlZKSYvUCAAAAAAD5Q64NRBISEiRJgYGBVu2BgYGWfQkJCXJ1dVWhQoXu2ado0aIZzl+0aFFLn8xMnjzZsuaIn5+fQkJCHup6AAAAAABA7pFrA5E7TCaT1bbZbM7Q9m//7pNZ//udZ9SoUUpOTra8zpw5k83KAQAAAABAbpVrA5GgoCBJyjCKIzEx0TJqJCgoSDdv3lRSUtI9+/z5558Zzn/+/PkMo0/+yc3NTb6+vlYvAAAAAACQP+TaQCQsLExBQUHavHmzpe3mzZvavn276tevL0mqVauWXFxcrPrEx8fr8OHDlj716tVTcnKydu/ebenzww8/KDk52dIHAAAAAAAYi0OfMnPlyhUdP37csh0XF6cDBw7I399fJUuWVEREhKKjo1WuXDmVK1dO0dHR8vT0VNeuXSVJfn5+6tmzp4YOHaqAgAD5+/tr2LBhqlq1quWpM5UqVVLr1q3Vu3dvLViwQJLUp08ftW/fnifMAAAAAABgUA4NRPbu3asmTZpYtocMGSJJ6tatm2JjYzV8+HBdv35d/fr1U1JSkurWratNmzbJx8fHcsy7774rZ2dndenSRdevX1ezZs0UGxsrJycnS5/ly5dr4MCBlqfRdOjQQXPmzMmhqwQAAAAAALmNyWw2mx1dRF6QkpIiPz8/JScn58r1REJHbnB0CQ/s5JR2ji4BD4j7DgAAAEBukp2f3XPtGiIAAAAAAAD2QiACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYTq4ORG7duqUxY8YoLCxMHh4eKl26tCZMmKD09HRLH7PZrKioKAUHB8vDw0Ph4eE6cuSI1XlSU1M1YMAAFS5cWF5eXurQoYPOnj2b05cDAAAAAAByiVwdiEydOlXvv/++5syZo6NHj2ratGmaPn26Zs+ebekzbdo0zZgxQ3PmzNGePXsUFBSkFi1a6PLly5Y+ERERWrNmjVauXKkdO3boypUrat++vW7fvu2IywIAAAAAAA7m7OgC7mXXrl166qmn1K5dO0lSaGioPv74Y+3du1fS36NDZs6cqdGjR6tTp06SpCVLligwMFArVqxQ3759lZycrEWLFumjjz5S8+bNJUnLli1TSEiIvv76a7Vq1coxFwcAAAAAABwmV48QeeKJJ7Rlyxb9+uuvkqSffvpJO3bsUNu2bSVJcXFxSkhIUMuWLS3HuLm5qXHjxtq5c6ckad++fUpLS7PqExwcrCpVqlj6ZCY1NVUpKSlWLwAAAAAAkD9kOxBZsmSJNmzYYNkePny4ChYsqPr16+vUqVM2LW7EiBF6/vnnVbFiRbm4uKhGjRqKiIjQ888/L0lKSEiQJAUGBlodFxgYaNmXkJAgV1dXFSpU6K59MjN58mT5+flZXiEhIba8NAAAAAAA4EDZDkSio6Pl4eEh6e8pLXPmzNG0adNUuHBhDR482KbFrVq1SsuWLdOKFSu0f/9+LVmyRG+//baWLFli1c9kMlltm83mDG3/dr8+o0aNUnJysuV15syZB78QAAAAAACQq2R7DZEzZ86obNmykqS1a9fqmWeeUZ8+fdSgQQOFh4fbtLg33nhDI0eO1HPPPSdJqlq1qk6dOqXJkyerW7duCgoKkvT3KJBixYpZjktMTLSMGgkKCtLNmzeVlJRkNUokMTFR9evXv+t7u7m5yc3NzabXAwAAAAAAcodsjxDx9vbWhQsXJEmbNm2yLFTq7u6u69ev27S4a9euqUAB6xKdnJwsj90NCwtTUFCQNm/ebNl/8+ZNbd++3RJ21KpVSy4uLlZ94uPjdfjw4XsGIgAAAAAAIP/K9giRFi1aqFevXqpRo4Z+/fVXyxNgjhw5otDQUJsW9+STT2rSpEkqWbKkHnnkEf3444+aMWOGXnnlFUl/T5WJiIhQdHS0ypUrp3Llyik6Olqenp7q2rWrJMnPz089e/bU0KFDFRAQIH9/fw0bNkxVq1a1hDkAAAAAAMBYsh2IzJ07V2PGjNGZM2f02WefKSAgQNLfT3O5s9iprcyePVtjx45Vv379lJiYqODgYPXt21fjxo2z9Bk+fLiuX7+ufv36KSkpSXXr1tWmTZvk4+Nj6fPuu+/K2dlZXbp00fXr19WsWTPFxsbKycnJpvUCAAAAAIC8wWQ2m83ZOeD06dMqUaJEhqksZrNZZ86cUcmSJW1aYG6RkpIiPz8/JScny9fX19HlZBA6csP9O+VSJ6e0c3QJeEDcdwAAAAByk+z87J7tNUTCwsL0119/ZWi/ePGiwsLCsns6AAAAAACAHJftQORuA0quXLkid3f3hy4IAAAAAADA3rK8hsiQIUMk/b2Q6bhx4+Tp6WnZd/v2bf3www+qXr26zQsEAAAAAACwtSwHIj/++KOkv0eIHDp0SK6urpZ9rq6uevTRRzVs2DDbVwgAAAAAAGBjWQ5Etm7dKknq0aOH3nvvvVy5sCgAAAAAAEBWZPuxuzExMfaoAwAAAAAAIMdkOxC5evWqpkyZoi1btigxMVHp6elW+3///XebFQcAAAAAAGAP2Q5EevXqpe3bt+ull15SsWLFZDKZ7FEXAAAAAACA3WQ7EPnvf/+rDRs2qEGDBvaoBwAAAAAAwO4KZPeAQoUKyd/f3x61AAAAAAAA5IhsByJvvfWWxo0bp2vXrtmjHgAAAAAAALvL9pSZd955RydOnFBgYKBCQ0Pl4uJitX///v02Kw4AAAAAAMAesh2IdOzY0Q5lAAAAAAAA5JxsByKRkZH2qAMAAAAAACDHZHsNEUm6dOmSFi5cqFGjRunixYuS/p4q88cff9i0OAAAAAAAAHvI9giRgwcPqnnz5vLz89PJkyfVu3dv+fv7a82aNTp16pSWLl1qjzoBAAAAAABsJtsjRIYMGaLu3bvrt99+k7u7u6W9TZs2+vbbb21aHAAAAAAAgD1ke4TInj17tGDBggztxYsXV0JCgk2KAgAgM6EjNzi6hAd2cko7R5cAAACAf8j2CBF3d3elpKRkaD927JiKFClik6IAAAAAAADsKduByFNPPaUJEyYoLS1NkmQymXT69GmNHDlSnTt3tnmBAAAAAAAAtpbtQOTtt9/W+fPnVbRoUV2/fl2NGzdW2bJl5ePjo0mTJtmjRgAAAAAAAJvK9hoivr6+2rFjh7755hvt379f6enpqlmzppo3b26P+gAAAAAAAGwu24HIHU2bNlXTpk1tWQsAAAAAAECOeKBAZPfu3dq2bZsSExOVnp5utW/GjBk2KQwAAAAAAMBesh2IREdHa8yYMapQoYICAwNlMpks+/75ZwAAAAAAgNwq24HIe++9p8WLF6t79+52KAcAAAAAAMD+sv2UmQIFCqhBgwb2qAUAAAAAACBHZDsQGTx4sObOnWuPWgAAAAAAAHJEtqfMDBs2TO3atVOZMmVUuXJlubi4WO1fvXq1zYoDAAAAAACwh2wHIgMGDNDWrVvVpEkTBQQEsJAqAAAAAADIc7IdiCxdulSfffaZ2rVrZ496AAAAAAAA7C7ba4j4+/urTJky9qgFAAAAAAAgR2Q7EImKilJkZKSuXbtmj3oAAAAAAADsLttTZmbNmqUTJ04oMDBQoaGhGRZV3b9/v82KAwAAAAAAsIdsByIdO3a0QxkAAAAAAAA5J9uBSGRkpD3qAAAAAAAAyDHZXkMEAAAAAAAgr8v2CJFChQrJZDJlaDeZTHJ3d1fZsmXVvXt39ejRwyYFAgAAAAAA2Fq2A5Fx48Zp0qRJatOmjerUqSOz2aw9e/Zo48aNev311xUXF6fXXntNt27dUu/eve1RMwAAAAAAwEPJdiCyY8cOTZw4Ua+++qpV+4IFC7Rp0yZ99tlnqlatmmbNmkUgAgAAAAAAcqVsryHy1VdfqXnz5hnamzVrpq+++kqS1LZtW/3+++8PXx0AAAAAAIAdZDsQ8ff317p16zK0r1u3Tv7+/pKkq1evysfH5+GrAwAAAAAAsINsT5kZO3asXnvtNW3dulV16tSRyWTS7t279eWXX+r999+XJG3evFmNGze2ebEAAAAAAAC2kO1ApHfv3qpcubLmzJmj1atXy2w2q2LFitq+fbvq168vSRo6dKjNCwUAAAAAALCVbAciktSgQQM1aNDA1rUAAAAAAADkiAcKRO64fv260tLSrNp8fX0fqiAAAAAAAAB7y/aiqteuXVP//v1VtGhReXt7q1ChQlYvAAAAAACA3C7bgcgbb7yhb775RvPmzZObm5sWLlyo8ePHKzg4WEuXLrVHjQAAAAAAADaV7Skz69at09KlSxUeHq5XXnlFDRs2VNmyZVWqVCktX75cL7zwgj3qBAAAAAAAsJlsjxC5ePGiwsLCJP29XsjFixclSU888YS+/fZb21YHAAAAAABgB9kOREqXLq2TJ09KkipXrqxPPvlE0t8jRwoWLGjL2gAAAAAAAOwi24FIjx499NNPP0mSRo0aZVlLZPDgwXrjjTdsXiAAAAAAAICtZXsNkcGDB1v+3KRJE/3yyy/au3evypQpo0cffdSmxQEAAAAAANhDtkaIpKWlqUmTJvr1118tbSVLllSnTp0IQwAAAAAAQJ6RrUDExcVFhw8flslkslc9AAAAAAAAdpftNURefvllLVq0yB61AAAAAAAA5IhsryFy8+ZNLVy4UJs3b1bt2rXl5eVltX/GjBk2Kw4AAAAAAMAesh2IHD58WDVr1pQkq7VEJDGVBgAAAAAA5AlZCkQOHjyoKlWqqECBAtq6dau9awIAAAAAALCrLK0hUqNGDf3111+SpNKlS+vChQt2LQoAAAAAAMCeshSIFCxYUHFxcZKkkydPKj093a5FAQAAAAAA2FOWpsx07txZjRs3VrFixWQymVS7dm05OTll2vf333+3aYEAAAAAAAC2lqVA5IMPPlCnTp10/PhxDRw4UL1795aPj4+9awMAAAAAALCLLD9lpnXr1pKkffv2adCgQQQiAAAAAAAgz8r2Y3djYmLsUQcAAAAAAECOydKiqgAAAAAAAPkJgQgAAAAAADAcAhEAAAAAAGA4WQpEatasqaSkJEnShAkTdO3aNbsWBQAAAAAAYE9ZCkSOHj2qq1evSpLGjx+vK1eu2LUoAAAAAAAAe8rSU2aqV6+uHj166IknnpDZbNbbb78tb2/vTPuOGzfOpgUCAAAAAADYWpYCkdjYWEVGRmr9+vUymUz673//K2fnjIeaTCYCEQAAAAAAkOtlKRCpUKGCVq5cKUkqUKCAtmzZoqJFi9q1MAAAAAAAAHvJUiDyT+np6faoAwAAAAAAIMc80GN3T5w4oQEDBqh58+Zq0aKFBg4cqBMnTti6NknSH3/8oRdffFEBAQHy9PRU9erVtW/fPst+s9msqKgoBQcHy8PDQ+Hh4Tpy5IjVOVJTUzVgwAAVLlxYXl5e6tChg86ePWuXegEAAAAAQO6X7UDkq6++UuXKlbV7925Vq1ZNVapU0Q8//KBHHnlEmzdvtmlxSUlJatCggVxcXPTf//5XP//8s9555x0VLFjQ0mfatGmaMWOG5syZoz179igoKEgtWrTQ5cuXLX0iIiK0Zs0arVy5Ujt27NCVK1fUvn173b5926b1AgAAAACAvCHbU2ZGjhypwYMHa8qUKRnaR4wYoRYtWtisuKlTpyokJEQxMTGWttDQUMufzWazZs6cqdGjR6tTp06SpCVLligwMFArVqxQ3759lZycrEWLFumjjz5S8+bNJUnLli1TSEiIvv76a7Vq1cpm9QIAAAAAgLwh2yNEjh49qp49e2Zof+WVV/Tzzz/bpKg7vvjiC9WuXVv/93//p6JFi6pGjRr68MMPLfvj4uKUkJCgli1bWtrc3NzUuHFj7dy5U5K0b98+paWlWfUJDg5WlSpVLH0yk5qaqpSUFKsXAAAAAADIH7IdiBQpUkQHDhzI0H7gwAGbP3nm999/1/z581WuXDl99dVXevXVVzVw4EAtXbpUkpSQkCBJCgwMtDouMDDQsi8hIUGurq4qVKjQXftkZvLkyfLz87O8QkJCbHlpAAAAAADAgbI9ZaZ3797q06ePfv/9d9WvX18mk0k7duzQ1KlTNXToUJsWl56ertq1ays6OlqSVKNGDR05ckTz58/Xyy+/bOlnMpmsjjObzRna/u1+fUaNGqUhQ4ZYtlNSUghFAAAAAADIJ7IdiIwdO1Y+Pj565513NGrUKEl/T0GJiorSwIEDbVpcsWLFVLlyZau2SpUq6bPPPpMkBQUFSfp7FEixYsUsfRITEy2jRoKCgnTz5k0lJSVZjRJJTExU/fr17/rebm5ucnNzs9m1AAAAAACA3CPbU2ZMJpMGDx6ss2fPKjk5WcnJyTp79qwGDRp031EZ2dWgQQMdO3bMqu3XX39VqVKlJElhYWEKCgqyerrNzZs3tX37dkvYUatWLbm4uFj1iY+P1+HDh+8ZiAAAAAAAgPwr2yNE/snHx8dWdWRq8ODBql+/vqKjo9WlSxft3r1bH3zwgT744ANJf4czERERio6OVrly5VSuXDlFR0fL09NTXbt2lST5+fmpZ8+eGjp0qAICAuTv769hw4apatWqlqfOAAAAAAAAY3moQMTeHnvsMa1Zs0ajRo3ShAkTFBYWppkzZ+qFF16w9Bk+fLiuX7+ufv36KSkpSXXr1tWmTZuswpp3331Xzs7O6tKli65fv65mzZopNjZWTk5OjrgsAAAAAADgYCaz2Wx2dBF5QUpKivz8/JScnCxfX19Hl5NB6MgNji7hgZ2c0s7RJeABcd8hp3HPAQAA4F6y87N7ttcQAQAAAAAAyOuyFYikpaWpSZMm+vXXX+1VDwAAAAAAgN1lKxBxcXHR4cOHbf40GQAAAAAAgJyU7SkzL7/8shYtWmSPWgAAAAAAAHJEtp8yc/PmTS1cuFCbN29W7dq15eXlZbV/xowZNisOAAAAAADAHrIdiBw+fFg1a9aUpAxriTCVBgAAAAAA5AXZDkS2bt1qjzoAAAAAAAByzAM/dvf48eP66quvdP36dUmS2Wy2WVEAAAAAAAD2lO1A5MKFC2rWrJnKly+vtm3bKj4+XpLUq1cvDR061OYFAgAAAAAA2Fq2A5HBgwfLxcVFp0+flqenp6X92Wef1caNG21aHAAAAAAAgD1kew2RTZs26auvvlKJEiWs2suVK6dTp07ZrDAAAAAAAAB7yfYIkatXr1qNDLnjr7/+kpubm02KAgAAAAAAsKdsByKNGjXS0qVLLdsmk0np6emaPn26mjRpYtPiAAAAAAAA7CHbU2amT5+u8PBw7d27Vzdv3tTw4cN15MgRXbx4Uf/73//sUSMAAAAAAIBNZXuESOXKlXXw4EHVqVNHLVq00NWrV9WpUyf9+OOPKlOmjD1qBAAAAAAAsKlsjxCRpKCgII0fP97WtQAAAAAAAOSIBwpEkpKStGjRIh09elQmk0mVKlVSjx495O/vb+v6AAAAAAAAbC7bU2a2b9+usLAwzZo1S0lJSbp48aJmzZqlsLAwbd++3R41AgAAAAAA2FS2R4i8/vrr6tKli+bPny8nJydJ0u3bt9WvXz+9/vrrOnz4sM2LBAAAAAAAsKVsjxA5ceKEhg4daglDJMnJyUlDhgzRiRMnbFocAAAAAACAPWQ7EKlZs6aOHj2aof3o0aOqXr26LWoCAAAAAACwqyxNmTl48KDlzwMHDtSgQYN0/PhxPf7445Kk77//XnPnztWUKVPsUyUAAAAAAIANZSkQqV69ukwmk8xms6Vt+PDhGfp17dpVzz77rO2qAwAAAAAAsIMsBSJxcXH2rgMAAAAAACDHZCkQKVWqlL3rAAAAAAAAyDHZfuyuJP3xxx/63//+p8TERKWnp1vtGzhwoE0KAwAAAAAAsJdsByIxMTF69dVX5erqqoCAAJlMJss+k8lEIAIAAAAAAHK9bAci48aN07hx4zRq1CgVKJDtp/YCAAAAAAA4XLYTjWvXrum5554jDAEAAAAAAHlWtlONnj176j//+Y89agEAAAAAAMgR2Z4yM3nyZLVv314bN25U1apV5eLiYrV/xowZNisOAAAAAADAHrIdiERHR+urr75ShQoVJCnDoqoAAAAAAAC5XbYDkRkzZmjx4sXq3r27HcoBAAAAAACwv2yvIeLm5qYGDRrYoxYAAAAAAIAcke1AZNCgQZo9e7Y9agEAAAAAAMgR2Z4ys3v3bn3zzTdav369HnnkkQyLqq5evdpmxQEAAAAAANhDtgORggULqlOnTvaoBQAAAAAAIEdkOxCJiYmxRx0AAAAAAAA5JttriAAAAAAAAOR12R4hEhYWJpPJdNf9v//++0MVBAAAAAAAYG/ZDkQiIiKsttPS0vTjjz9q48aNeuONN2xVFwAAAAAAgN1kOxAZNGhQpu1z587V3r17H7ogAAAAAAAAe7PZGiJt2rTRZ599ZqvTAQAAAAAA2I3NApFPP/1U/v7+tjodAAAAAACA3WR7ykyNGjWsFlU1m81KSEjQ+fPnNW/ePJsWBwAAAAAAYA/ZDkQ6duxotV2gQAEVKVJE4eHhqlixoq3qAgAAAAAAsJtsByKRkZH2qAMAAAAAACDH2GwNEQAAAAAAgLwiyyNEChQoYLV2SGZMJpNu3br10EUBAAAAAADYU5YDkTVr1tx1386dOzV79myZzWabFAUAAAAAAGBPWQ5EnnrqqQxtv/zyi0aNGqV169bphRde0FtvvWXT4gAAAAAAAOzhgdYQOXfunHr37q1q1arp1q1bOnDggJYsWaKSJUvauj4AAAAAAACby1YgkpycrBEjRqhs2bI6cuSItmzZonXr1qlKlSr2qg8AAAAAAMDmsjxlZtq0aZo6daqCgoL08ccfZzqFBgAAAAAAIC/IciAycuRIeXh4qGzZslqyZImWLFmSab/Vq1fbrDgAAAAAAAB7yHIg8vLLL9/3sbsAAAAAAAB5QZYDkdjYWDuWAQAAAAAAkHMe6CkzAAAAAAAAeRmBCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwnDwViEyePFkmk0kRERGWNrPZrKioKAUHB8vDw0Ph4eE6cuSI1XGpqakaMGCAChcuLC8vL3Xo0EFnz57N4eoBAAAAAEBukWcCkT179uiDDz5QtWrVrNqnTZumGTNmaM6cOdqzZ4+CgoLUokULXb582dInIiJCa9as0cqVK7Vjxw5duXJF7du31+3bt3P6MgAAAAAAQC6QJwKRK1eu6IUXXtCHH36oQoUKWdrNZrNmzpyp0aNHq1OnTqpSpYqWLFmia9euacWKFZKk5ORkLVq0SO+8846aN2+uGjVqaNmyZTp06JC+/vprR10SAAAAAABwoDwRiLz++utq166dmjdvbtUeFxenhIQEtWzZ0tLm5uamxo0ba+fOnZKkffv2KS0tzapPcHCwqlSpYumTmdTUVKWkpFi9AAAAAABA/uDs6ALuZ+XKldq/f7/27NmTYV9CQoIkKTAw0Ko9MDBQp06dsvRxdXW1Gllyp8+d4zMzefJkjR8//mHLBwAAAAAAuVCuHiFy5swZDRo0SMuWLZO7u/td+5lMJqtts9mcoe3f7tdn1KhRSk5OtrzOnDmTveIBAAAAAECulasDkX379ikxMVG1atWSs7OznJ2dtX37ds2aNUvOzs6WkSH/HumRmJho2RcUFKSbN28qKSnprn0y4+bmJl9fX6sXAAAAAADIH3J1INKsWTMdOnRIBw4csLxq166tF154QQcOHFDp0qUVFBSkzZs3W465efOmtm/frvr160uSatWqJRcXF6s+8fHxOnz4sKUPAAAAAAAwlly9hoiPj4+qVKli1ebl5aWAgABLe0REhKKjo1WuXDmVK1dO0dHR8vT0VNeuXSVJfn5+6tmzp4YOHaqAgAD5+/tr2LBhqlq1aoZFWgEAAAAAgDHk6kAkK4YPH67r16+rX79+SkpKUt26dbVp0yb5+PhY+rz77rtydnZWly5ddP36dTVr1kyxsbFycnJyYOUAAAAAAMBR8lwgsm3bNqttk8mkqKgoRUVF3fUYd3d3zZ49W7Nnz7ZvcQAAAAAAIE/I1WuIAAAAAAAA2AOBCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwnB1dAAAAQG4VOnKDo0t4KCentHN0CQAA5FqMEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBxnRxcAKMrP0RU8nKhkR1cAAAAAAMgmRogAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOHk6kBk8uTJeuyxx+Tj46OiRYuqY8eOOnbsmFUfs9msqKgoBQcHy8PDQ+Hh4Tpy5IhVn9TUVA0YMECFCxeWl5eXOnTooLNnz+bkpQAAAAAAgFzE2dEF3Mv27dv1+uuv67HHHtOtW7c0evRotWzZUj///LO8vLwkSdOmTdOMGTMUGxur8uXLa+LEiWrRooWOHTsmHx8fSVJERITWrVunlStXKiAgQEOHDlX79u21b98+OTk5OfISAThKlJ+jK3hwUcmOrgAAAADI83J1ILJx40ar7ZiYGBUtWlT79u1To0aNZDabNXPmTI0ePVqdOnWSJC1ZskSBgYFasWKF+vbtq+TkZC1atEgfffSRmjdvLklatmyZQkJC9PXXX6tVq1Y5fl0AAAAAAMCxcvWUmX9LTv77t6L+/v6SpLi4OCUkJKhly5aWPm5ubmrcuLF27twpSdq3b5/S0tKs+gQHB6tKlSqWPplJTU1VSkqK1QsAAAAAAOQPeSYQMZvNGjJkiJ544glVqVJFkpSQkCBJCgwMtOobGBho2ZeQkCBXV1cVKlTorn0yM3nyZPn5+VleISEhtrwcAAAAAADgQHkmEOnfv78OHjyojz/+OMM+k8lktW02mzO0/dv9+owaNUrJycmW15kzZx6scAAAAAAAkOvkiUBkwIAB+uKLL7R161aVKFHC0h4UFCRJGUZ6JCYmWkaNBAUF6ebNm0pKSrprn8y4ubnJ19fX6gUAAAAAAPKHXB2ImM1m9e/fX6tXr9Y333yjsLAwq/1hYWEKCgrS5s2bLW03b97U9u3bVb9+fUlSrVq15OLiYtUnPj5ehw8ftvQBAAAAAADGkqufMvP6669rxYoV+vzzz+Xj42MZCeLn5ycPDw+ZTCZFREQoOjpa5cqVU7ly5RQdHS1PT0917drV0rdnz54aOnSoAgIC5O/vr2HDhqlq1aqWp84AAAAAAABjydWByPz58yVJ4eHhVu0xMTHq3r27JGn48OG6fv26+vXrp6SkJNWtW1ebNm2Sj4+Ppf+7774rZ2dndenSRdevX1ezZs0UGxsrJyennLoUAAAAAACQi+TqQMRsNt+3j8lkUlRUlKKiou7ax93dXbNnz9bs2bNtWB0AAAAAAMircvUaIgAAAAAAAPZAIAIAAAAAAAwnV0+ZAQAg34jyc3QFDy4q2dEVAAAA2BwjRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYjrOjCwDyuqpLqjq6hAd2qNshR5cAAAAAAA7BCBEAAAAAAGA4BCIAAAAAAMBwmDIDAHkM07SQ0/LyPSdx3wEAgMwxQgQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHGdHFwAAAAA7ifJzdAUPLirZ0RUAAPI5RogAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4Tg7ugAAAADg36ouqeroEh7YoW6HHF0CACALGCECAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHCcHV0AAAAAAMBxQkducHQJD+zklHaOLgF5GCNEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdFVQEAAIBchAUuASBnMEIEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHCcHV0AAAAAAAAPJMrP0RU8nKhkR1dgaIwQAQAAAAAAhsMIEQAAAAC2kZd/W89v6gHDYYQIAAAAAAAwHEONEJk3b56mT5+u+Ph4PfLII5o5c6YaNmzo6LIAAAAAOFjVJVUdXcJDOdTtkKNLAPIcw4wQWbVqlSIiIjR69Gj9+OOPatiwodq0aaPTp087ujQAAAAAAJDDDDNCZMaMGerZs6d69eolSZo5c6a++uorzZ8/X5MnT87QPzU1VampqZbt5OS/5xSmpKTkTMHZlJ56zdElPLAUk9nRJTyU29dvO7qEB/aw9zP3nWNwz+VN3HOO8zD3XV6+5yTuO0fh37q8KS/fc5Jx/63Ly/ecJCmX/nyZl935u2A23//eMJmz0iuPu3nzpjw9PfWf//xHTz/9tKV90KBBOnDggLZv357hmKioKI0fPz4nywQAAAAAADZw5swZlShR4p59DDFC5K+//tLt27cVGBho1R4YGKiEhIRMjxk1apSGDBli2U5PT9fFixcVEBAgk8lk13phOykpKQoJCdGZM2fk6+vr6HJgANxzcATuO+Q07jk4Avcdchr3XN5kNpt1+fJlBQcH37evIQKRO/4dZJjN5ruGG25ubnJzc7NqK1iwoL1Kg535+vryjxhyFPccHIH7DjmNew6OwH2HnMY9l/f4+WXtEeCGWFS1cOHCcnJyyjAaJDExMcOoEQAAAAAAkP8ZIhBxdXVVrVq1tHnzZqv2zZs3q379+g6qCgAAAAAAOIphpswMGTJEL730kmrXrq169erpgw8+0OnTp/Xqq686ujTYkZubmyIjIzNMfwLshXsOjsB9h5zGPQdH4L5DTuOey/8M8ZSZO+bNm6dp06YpPj5eVapU0bvvvqtGjRo5uiwAAAAAAJDDDBWIAAAAAAAASAZZQwQAAAAAAOCfCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAACAh3Lr1i1HlwAAQLYRiCDfOHXqlD788EPNmzdPR44ccXQ5AADkez///LOGDBmi4sWLO7oUAACyjUAE+cK3336rRx55RH379lX//v1Vo0YNffzxx44uCwBsbtq0abp+/bpl+9tvv1Vqaqpl+/Lly+rXr58jSoNBXLlyRQsXLlS9evVUrVo17d69WyNHjnR0WQAAZJvJbDabHV0E8LAaN24sX19fLViwQB4eHho1apQ2bNigM2fOOLo05HPXrl3TG2+8obVr1yotLU3NmzfXrFmzVLhwYUeXhnzKyclJ8fHxKlq0qCTJ19dXBw4cUOnSpSVJf/75p4KDg3X79m1Hlol8aMeOHVq4cKE+++wzhYWF6eeff9b27dvVoEEDR5cGA7p69ar27dunRo0aOboUAHkYI0SQLxw6dEiTJ09WcHCwChUqpHfeeUfnzp1TUlKSo0tDPhcZGanY2Fi1a9dOzz//vDZv3qzXXnvN0WUhH/v37zH4vQbsbdq0aapYsaKee+45FSlSRDt27NDBgwdlMplUqFAhR5cHgzp+/LiaNGni6DKQj6SlpWn48OEqW7as6tSpo5iYGKv9f/75p5ycnBxUHezF2dEFALZw6dIly29LJcnLy0uenp66dOkS/7MGu1q9erUWLVqk5557TpL0wgsvqEGDBrp9+zb/0QSQL7z55psaMWKEJkyYwL9rAPKtSZMmaenSpRo2bJguXbqkwYMH6/vvv9eCBQssffglRP5DIIJ84+eff1ZCQoJl22w26+jRo7p8+bKlrVq1ao4oDfnYmTNn1LBhQ8t2nTp15OzsrHPnzikkJMSBlQGAbUyYMEGxsbH66KOP9Pzzz+ull15SlSpVHF0W8jl/f/977mdaIGxt+fLlWrhwodq3by9J6tGjh9q0aaMePXpo8eLFkiSTyeTIEmEHBCLIN5o1a5Yhtb3zD5r09z9g/McTtnb79m25urpatTk7O/MIStjVwoUL5e3tLenvx53GxsZa1q35ZwgM2MKbb76pN998U9u3b9fixYv1+OOPq0yZMjKbzUxNhd2kpqbqtddeU9WqVTPdf+rUKY0fPz6Hq0J+9scff1iFvWXKlNG2bdvUtGlTvfTSS5o2bZoDq4O9sKgq8oVTp07dt09SUpKqV69u/2JgKAUKFFCbNm3k5uZmaVu3bp2aNm0qLy8vS9vq1asdUR7yodDQ0Cz9hiouLi4HqoERpaSkaMWKFVq8eLH27dununXr6plnntGQIUMcXRrykQYNGqhLly4aNGhQpvt/+ukn1axZk192wWZKly6tDz/8UM2aNbNqP3funJo0aaKSJUvqm2++4Z7LZwhEkK8lJydr+fLlWrRokQ4cOMA/YLC57t27Z+mH038vzAUA+cHhw4e1aNEiLV++XImJiY4uB/lIdHS00tLSFBkZmen+M2fOaNy4cfz3FTbTq1cvmc1mLVq0KMO+P/74Q+Hh4fr999/5eSKfIRBBvvTNN99o8eLFWr16tUqVKqXOnTurc+fOqlGjhqNLQz7z+++/KzQ0VAUK8NAu5IwffvhBFy9eVJs2bSxtS5cuVWRkpK5evaqOHTtq9uzZVqOWgIdx/fp1bdmyxTINddSoUUpNTbXsd3Jy0rhx4+Tj4+OoEgHgoZ06dUq//PKLWrVqlen++Ph4bdq0Sd26dcvhymBPBCLIN86ePavY2FgtXrxYV69eVZcuXfT+++/rp59+UuXKlR1dHvIpJycnxcfHW55y9Oyzz2rWrFkKDAx0cGXIr1q3bq0mTZpoxIgRkv5+7HjNmjXVvXt3VapUSdOnT1ffvn0VFRXl2EKRbyxYsEDr16/XunXrJEk+Pj565JFH5OHhIUk6duyY3njjDQ0ePNiRZSKfunDhggICAiT9PSrkww8/1PXr19WhQwerRc0BW+GeMxYCEeQLbdu21Y4dO9S+fXu98MILat26tZycnOTi4kIgArsqUKCAEhISLIGIj4+PfvrpJ5UuXdrBlSG/KlasmNatW6fatWtLkkaPHq3t27drx44dkqT//Oc/ioyM1M8//+zIMpGPNGrUSIMHD9bTTz8tKeO/c8uWLdPcuXO1a9cuR5aJfObQoUN68skndebMGZUrV04rV65U69atdfXqVRUoUEBXr17Vp59+qo4dOzq6VOQT3HPGxBhv5AubNm1Sr169NH78eLVr105OTk6OLgkA7CIpKclqBNL27dvVunVry/Zjjz2mM2fOOKI05FO//vqrypcvb9l2d3e3miZYp04dAjjY3PDhw1W1alVt375d4eHhat++vdq2bavk5GQlJSWpb9++mjJliqPLRD7CPWdMBCLIF7777jtdvnxZtWvXVt26dTVnzhydP3/e0WXBAEwmU4ZFVXlGPewpMDDQ8gSZmzdvav/+/apXr55l/+XLl+Xi4uKo8pAPJScny9nZ2bJ9/vx5hYaGWrbT09Ot1hQBbGHPnj2aNGmSnnjiCb399ts6d+6c+vXrpwIFCqhAgQIaMGCAfvnlF0eXiXyEe86YnO/fBcj96tWrp3r16um9997TypUrtXjxYg0ZMkTp6enavHmzQkJCWOwNdmE2m9W9e3fLApY3btzQq6++avXIXYnH7sJ2WrdurZEjR2rq1Klau3atPD09reY0Hzx4UGXKlHFghchvSpQoocOHD6tChQqZ7j948KBKlCiRw1Uhv7t48aKCgoIkSd7e3vLy8pK/v79lf6FChXT58mVHlYd8iHvOmBghgnzF09NTr7zyinbs2KFDhw5p6NChmjJliooWLaoOHTo4ujzkQ926dVPRokXl5+cnPz8/vfjiiwoODrZs33kBtjJx4kQ5OTmpcePG+vDDD/Xhhx/K1dXVsn/x4sVq2bKlAytEftO2bVuNGzdON27cyLDv+vXrlumqgK0xAhM5jXvOeFhUFfne7du3tW7dOi1evFhffPGFo8sBAJtITk6Wt7d3hjWTLl68KG9vb6uQBHgYf/75p6pXry5XV1f1799f5cuXl8lk0i+//KI5c+bo1q1b+vHHH3m6FmyqQIECatOmjWUE5rp169S0aVPLCMzU1FRt3LhRt2/fdmSZyEe454yJQAQAAAD3FBcXp9dee02bN2/Wnf91NJlMatGihebNm8eTtWBzPXr0yFK/mJgYO1cCo+CeMyYCEQAAAGTJxYsXdfz4cUlS2bJlrebXAwCQ1xCIAAAAAAAAw2FRVQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAHnOtm3bZDKZdOnSJYfWERsbq4IFCzq0BgAA8GAIRAAAQI5LTExU3759VbJkSbm5uSkoKEitWrXSrl27HF1ajsotwQ4AAEbk7OgCAACA8XTu3FlpaWlasmSJSpcurT///FNbtmzRxYsXHV0aAAAwCEaIAACAHHXp0iXt2LFDU6dOVZMmTVSqVCnVqVNHo0aNUrt27XTy5EmZTCYdOHDA6hiTyaRt27ZZnet///ufHn30Ubm7u6tu3bo6dOiQZd+d6Sxr165V+fLl5e7urhYtWujMmTNW55g/f77KlCkjV1dXVahQQR999FGGevv06aPAwEC5u7urSpUqWr9+fabXduHCBdWpU0cdOnTQjRs3ZDabNW3aNJUuXVoeHh569NFH9emnn0qSTp48qSZNmkiSChUqJJPJpO7duz/gpwoAALKLQAQAAOQob29veXt7a+3atUpNTX2oc73xxht6++23tWfPHhUtWlQdOnRQWlqaZf+1a9c0adIkLVmyRP/73/+UkpKi5557zrJ/zZo1GjRokIYOHarDhw+rb9++6tGjh7Zu3SpJSk9PV5s2bbRz504tW7ZMP//8s6ZMmSInJ6cMtZw9e1YNGzZUxYoVtXr1arm7u2vMmDGKiYnR/PnzdeTIEQ0ePFgvvviitm/frpCQEH322WeSpGPHjik+Pl7vvffeQ30eAAAg65gyAwAAcpSzs7NiY2PVu3dvvf/++6pZs6YaN26s5557TtWqVcvWuSIjI9WiRQtJ0pIlS1SiRAmtWbNGXbp0kSSlpaVpzpw5qlu3rqVPpUqVtHv3btWpU0dvv/22unfvrn79+kmShgwZou+//15vv/22mjRpoq+//lq7d+/W0aNHVb58eUlS6dKlM9Tx66+/qkWLFnrqqaf03nvvyWQy6erVq5oxY4a++eYb1atXz3Lsjh07tGDBAjVu3Fj+/v6SpKJFi7I4KwAAOYwRIgAAIMd17txZ586d0xdffKFWrVpp27ZtqlmzpmJjY7N1njtBgyT5+/urQoUKOnr0qKXN2dlZtWvXtmxXrFhRBQsWtPQ5evSoGjRoYHXOBg0aWPYfOHBAJUqUsIQhmbl+/bqeeOIJdezYUbNmzZLJZJIk/fzzz7px44ZatGhhGRXj7e2tpUuX6sSJE9m6TgAAYHuMEAEAAA5xZ02PFi1aaNy4cerVq5ciIyP13XffSZLMZrOl7z+nwdzPnUDibtv/bvv3frPZbGnz8PC47/u5ubmpefPm2rBhg9544w2VKFFC0t/TbSRpw4YNKl68eIZjAACAYzFCBAAA5AqVK1fW1atXVaRIEUlSfHy8Zd8/F1j9p++//97y56SkJP3666+qWLGipe3WrVvau3evZfvYsWO6dOmSpU+lSpW0Y8cOq3Pu3LlTlSpVkiRVq1ZNZ8+e1a+//nrXugsUKKCPPvpItWrVUtOmTXXu3DnL9bi5uen06dMqW7as1SskJESS5OrqKkm6ffv2vT8cAABgc4wQAQAAOerChQv6v//7P73yyiuqVq2afHx8tHfvXk2bNk1PPfWUPDw89Pjjj2vKlCkKDQ3VX3/9pTFjxmR6rgkTJiggIECBgYEaPXq0ChcurI4dO1r2u7i4aMCAAZo1a5ZcXFzUv39/Pf7446pTp46kvxdl7dKli2rWrKlmzZpp3bp1Wr16tb7++mtJUuPGjdWoUSN17txZM2bMUNmyZfXLL7/IZDKpdevWlvdxcnLS8uXL9fzzz6tp06batm2bgoKCNGzYMA0ePFjp6el64oknlJKSop07d8rb21vdunVTqVKlZDKZtH79erVt21YeHh7y9va234cPAAAsGCECAABylLe3t+rWrat3331XjRo1UpUqVTR27Fj17t1bc+bMkSQtXrxYaWlpql27tgYNGqSJEydmeq4pU6Zo0KBBqlWrluLj4/XFF19YRl1Ikqenp0aMGKGuXbuqXr168vDw0MqVKy37O3bsqPfee0/Tp0/XI488ogULFigmJkbh4eGWPp999pkee+wxPf/886pcubKGDx+e6YgOZ2dnffzxx3rkkUfUtGlTJSYm6q233tK4ceM0efJkVapUSa1atdK6desUFhYmSSpevLjGjx+vkSNHKjAwUP3797fFRwwAALLAZP7nBF0AAIB8IjY2VhEREbp06ZKjSwEAALkQI0QAAAAAAIDhEIgAAAAAAADDYcoMAAAAAAAwHEaIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOH8P/nK/99Cet/UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Pre-filteredAll filtersFilters + retro
subpocket
AP1201248145.0
FP1100206139.0
SE743179138.0
GA35511492.0
B147139.0
B25918NaN
\n", + "
" + ], + "text/plain": [ + " Pre-filtered All filters Filters + retro\n", + "subpocket \n", + "AP 1201 248 145.0\n", + "FP 1100 206 139.0\n", + "SE 743 179 138.0\n", + "GA 355 114 92.0\n", + "B1 47 13 9.0\n", + "B2 59 18 NaN" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_frags_total(filter_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1.3 KinFragLib update" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Download data**\n", + "\n", + "Here we analyze the number of fragments in the old version of KinFragLib compared to the updated version, which contains a newer version of KLIFS data (from Nov. 2023). \n", + "To run this part of the code, we need to download the old KinFragLib version from zenodo. Please follow the instructions given in `../data/fragment_library_old/README.md`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_old = utils.read_fragment_library(PATH_DATA / \"fragment_library_old\")\n", + "fragment_library_new = utils.read_fragment_library(PATH_DATA / \"fragment_library\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "SUBPOCKET_COLORS_X = {\n", + " \"AP\": \"purple\",\n", + " \"FP\": \"forestgreen\",\n", + " \"SE\": \"c\",\n", + " \"GA\": \"tab:orange\",\n", + " \"B1\": \"tab:blue\",\n", + " \"B2\": \"darkslateblue\",\n", + " \"X\": \"grey\",\n", + "}\n", + "\n", + "def plot_n_fragments_kinfraglib(\n", + " n_fragments_per_subpocket_new, n_fragments_per_subpocket_old\n", + "):\n", + " \"\"\"\n", + " Plot number of fragments and deduplicated fragments per subpocket.\n", + " \"\"\"\n", + " plt.figure(figsize=(8, 8))\n", + " ax1 = plt.bar(\n", + " SUBPOCKET_COLORS_X.keys(),\n", + " n_fragments_per_subpocket_new,\n", + " fill=False,\n", + " edgecolor=SUBPOCKET_COLORS_X.values(),\n", + " )\n", + " ax2 = plt.bar(\n", + " SUBPOCKET_COLORS_X.keys(),\n", + " n_fragments_per_subpocket_old,\n", + " color=SUBPOCKET_COLORS_X.values(),\n", + " )\n", + " plt.legend([\"Updated KinFragLib\\nfragments\", \"Previous KinFragLib\\nfragments\"], fontsize=17)\n", + " plt.ylabel(\"# Fragments\", fontsize=17)\n", + " plt.xlabel(\"Subpocket\", fontsize=17)\n", + " plt.xticks(fontsize=17)\n", + " plt.yticks(fontsize=17)\n", + "\n", + " plt.savefig(f\"figures/old_vs_new_kinfraglib.png\", dpi=300, bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAK5CAYAAAD6qksLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPmklEQVR4nOzdZ3gV1f728XunF5IQCIHQIfQaEAsQiiBSVTgg2A6EgAURbCggHmkiiKIoloOKAQQRUfQIioJAKAGlK4QWMJBQpEhIISGkzPOCJ/tPyN4B0ibl+7mufbkzs9bMbyaR3HuyZo3FMAxDAAAAAIqUg9kFAAAAAGURQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwgZPZBeDmZWZm6tSpU/Ly8pLFYjG7HAAAAFzHMAwlJiaqatWqcnDI/Zo3QbwEOXXqlGrUqGF2GQAAALiB2NhYVa9ePdc2BPESxMvLS9LVb6y3t7fJ1QAAAOB6CQkJqlGjhjW35YYgXoJkDUfx9vYmiAMAABRjNzOMmJs1AQAAABMQxAEAAAATEMQBAAAAExDEAQAAABMQxAEAAAATEMQBAAAAExDEAQAAABMQxAEAAAAT8EAfAECBMAxDaWlpyszMNLsUAMg3R0dHOTs7F+o+COIAgHy5cuWKzp49q+TkZGVkZJhdDgAUGFdXV/n5+RXaE80J4gCAPEtOTlZsbKwcHR3l6+srd3d3OTo63tSjnQGguMr6C198fLxOnjwpSYUSxgniAIA8O3/+vJydnVWrVi05OjqaXQ4AFBh3d3d5eXnpxIkTOn/+fKEEcW7WBADkSXp6ui5duqQKFSoQwgGUShaLRT4+PkpNTVVaWlqBb58gDgDIk/T0dElXx1ACQGmVdcNmYdwDQxAHAOQL48EBlGaF+W8cQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAFgdO3ZMFoulVI39N+uYJk2aJIvFopCQkCLdb2nXuXNnWSwWzZ8/P9vy8PBwWSwW1a5d25S68oIgDgBAEcoKhNeHiOtdGx7Dw8OLpLbCsmfPHk2aNOmGx1wc3cz365133pGDg4MsFovGjBkjwzAKtaasIHqj17Fjxwq1joJQu3ZtWSwWTZo0yexSTMEDfQAAQKHas2ePJk+erE6dOpW6q8P/+c9/9Prrr0uSpk2bpldeecW6zs/PTw0bNlRAQECh7Nvf31/169e3u97Nza1Q9mu2mjVrqmHDhvLx8TG7lHwjiAMAANwiwzD0zDPP6KOPPpKDg4M+/PBDPfXUU9naPPPMM3rmmWcKrYaePXuWyL8y5NfChQvNLqHAEMQBAABuQXp6uoYMGaIvv/xSzs7O+uKLLzRo0CCzy0IJxBhxAABKmJCQEOu42vj4eL344osKDAyUm5ubqlSposcee0xRUVF2+6enp+vdd99V8+bN5e7urkqVKqlPnz7asmVLrvs9ceKE5syZo169eqlevXry8PCQl5eXWrRooQkTJuiff/7J0ad27doaOnSoJGnDhg03HMeclpamuXPn6u6771bFihXl4uKi6tWr67HHHtOff/5Z4Md0q1JSUtSvXz99+eWX8vDw0IoVK+yG8Nxu1rz2+CMjI/Xwww+rSpUqcnV1VWBgoMaOHaukpKR813v9japr1qxR79695e/vLwcHB82ePVuSdOXKFX333XcaPny4WrRooYoVK8rV1VU1atTQQw89pN9++y3X/URHR2vIkCEKCAiQm5ubAgMDNWbMGMXHxxf4Tav2bta83qJFi9SuXTv5+PjIy8tL7du311dffVUgNRQUrogDAFBCXbx4UbfffruioqLUqFEjNWnSRJGRkVq8eLG+//57/fzzzwoODs7W58qVK3rggQf0888/S5Jq1aqlSpUqacOGDfrll1/01ltv2d3f7NmzNWvWLGvgb9asmeLi4nTw4EHt3btXixYt0qZNm1SzZk1rn9tvv10uLi6KioqSt7e3mjdvnm2b145jPnPmjPr06aMdO3bIYrEoICBAtWrV0pEjR7R48WJ9/fXXWrhwoR566KECO6ZbkZCQoPvuu08bN26Ur6+vVq5cqXbt2uVrm2vWrNHo0aPl4OCgxo0by9XVVX/99ZdmzpypiIgIhYeHy8mpYOLae++9p+eee07ly5dXvXr15O3tbV13+PBh/etf/5KDg4MqVaqkmjVrKjMzUzExMVq6dKmWLVumTz/9VKGhoTm2u2PHDt1zzz2Kj4+Xs7OzmjZtqrS0NL3zzjtasWKFevbsWSD134qXXnpJb7/9tipVqqQGDRro+PHj2rJli7Zs2aKtW7fqvffeK/KabCGII1fxMfFKPp9sdhnFgoefh3xqlvwbQwCUHh999JGqV6+uPXv2qGXLlpKkc+fO6d///rd++eUXDRw4UPv371f58uWtfaZNm6aff/5ZHh4e+uqrr3TfffdJkpKTkzVq1Ci9/PLLdvfXs2dP9e7dWx06dMgWDs+ePavx48fr888/19NPP62VK1da1y1btkzz58/X0KFD1apVK7szwGRmZqp///7asWOHgoOD9d///ldNmzaVJGVkZGj27Nl6+eWXNXToULVu3VoNGjQokGO6WefOndPdd9+tXbt2qUqVKlq9enWODxV5MXLkSI0aNUpTp06Vh4eHpKvhvG/fvoqIiNDixYs1ZMiQfO9HuhpOZ86cqeeff976/UtJSZEkVapUSQsXLlSvXr1UsWJFa5/09HQtW7ZMw4cP19NPP63u3burWrVq1vWXL1/WoEGDFB8fr44dO+qrr76y3px68OBB9evXTx9//HGB1H+zTp48qXfeeUfvv/++Ro4cKQcHB2VmZurDDz/Uc889p/fff1/t27fXwIEDi7QuWwjisCs+Jl4fNv5QaclpZpdSLDh7OGvkgZGEcQDFRlpamhYsWGAN4dLVQPX111+rVq1aOn36tD777DONGTNGknTp0iXrUISJEydaA6skeXh46NNPP1VERIQOHTpkc39du3a1udzf31+fffaZfvnlF/300086c+aMKleufEvHsnz5ckVERKhmzZpasWJFtg8Pjo6OevHFFxUdHa0PP/xQs2fP1kcffVQgx3SzXnnlFaWnp6t27dpau3at6tatm6/tZWnfvr1mzZqVbVm3bt00bNgwzZkzRz/88IPdIL5gwQItWLDA5rqwsLAcQ0FCQkL00ksvZVvm7u4uSapcubL+/e9/59iOk5OTHn74Ye3bt09vvPGGvvzyy2zbWLp0qf766y/5+Pjo22+/lZ+fn3Vdo0aN9O233xbIB5ZbkZ6ertDQUI0aNcq6zMHBQaNGjdLu3bsVFhamKVOmEMRRvCWfT1Zacpr6LeqnSo0rmV2Oqc4dOKfvHvtOyeeTCeIAio02bdqoQ4cOOZZ7e3tr2LBhmjVrllauXGkN4ps3b1ZCQoJcXFw0YsSIHP0cHBw0evRojRw50u4+k5KStGzZMm3evFknT57UpUuXrPNmJyYmyjAM7d69Wz169LilY1m6dKkk6eGHH84Wwq81YMAAffjhh1q7dq11WUEc062Ij4/XxYsXC2RbkrKFxWu1bdtWc+bMyXWsf27TF9r6IDR8+PAb1rNhwwb9+OOPOnTokOLj45Weni7p6l89JGnnzp3Z2q9atUqS1L9//2whPEuTJk3Uvn17bdq06Yb7LkgvvPCC3eVhYWGKjIzUsWPHTH/4D0EcN1SpcSUFtC6cOVABAHnXrFmzG67bv3+/ddnBgwclXR1D7eXlZbNf1nAQW7Zu3ar+/fvr9OnTudZl66bNG/njjz8kXb0yvnnzZpttLl++LEmKjY21LsvvMd2sqVOnauHChTpw4IDuuecerV69Wm3atMn3dhs2bGhzeVaQzu2GzVudvjC383Dp0iUNHDhQP/30U67buP57m/WXhqCgILt9WrVqVaRB3MnJSY0aNbK5rnHjxnJyclJ6err2799vehBn1hQAAIqQg8PVX71ZVxrtuXa9vZv1qlSpYrd/1rrExETrsqz3uQ0bsbcuMTFR/fr10+nTp9WxY0etWrVKp0+fVmpqqgzDkGEY1qvzaWm3PqQxLi5OkhQVFaWIiAibr6yrsVnjmvN7TLeiSpUqWr9+vZo0aaK4uDh169ZN27dvz/d2PT09bS7P+jnJzMzM9z5utC9Jevnll/XTTz/J19dXH3/8sQ4dOqRLly4pMzNThmFo3rx5knJ+b7PO/7U3fl7P3gekwuLn5ydHR0eb6xwdHa1j4K/9f8MsBHEAAIpQ1rCLrOBpz4ULF3L0ud6ZM2fs9s9ad20Iynp/M/2ut2rVKp05c0bVq1fXqlWr1KNHD1WpUkUuLi7WNnm5Ep6lXLlykqSvv/7aGuxzexXEMd2qypUra/369WrWrJkuXryobt26adu2bQWybTOlp6friy++kCTNnz9fTz31lBo0aCAPDw/rtIf2vrdZ5z8hIcHu9os68J4/f14ZGRk212VkZFiPpag/INhCEAcAoAg1btxY0tXHvucma72zs7MCAwNtttm3b5/d/lnrmjRpYl2W9ef6mJgYu0MeIiMjbS4/evSopKvTEWbN7nGtCxcu2L0hMivM5aZFixaSZHdYij35Oaa88Pf317p169S8eXPFx8erW7duN5xju7g7d+6cNSx37tzZZht787FnDa3JGlpky41+1gtaenq63Z/FgwcPWv/adO3/G2YhiAMAUIT69OkjSVqxYoX1BrjrGYahsLAwSVdnKsma2eJ627dvtxlcExMTrUMJevfubV0eHBwsb29vpaam6r///a/N/c6ZM8fmvrLCt73x4bNmzbJ7FTKr77VDSq6XNYNFWFhYtjHgN5KfY8qrSpUqad26dWrZsqUSEhLUvXt3bd26tUD3UZSu/WBl6/u7f/9+/fjjjzb7Zs0R/u2332b7K06WgwcP3vKHq4Lw7rvv5rq8SZMmpo8PlwjiAAAUqSeffFIBAQFKTEzUfffdpwMHDmRbf/78eQ0bNky//fabHB0d9dprr9ndlrOzs0JCQrR3795s/R966CHFxcWpcuXKevzxx63rPD09NXr0aEnS5MmTs4Wr5ORkPfnkk9Yr39fLulL622+/6eOPP7YOD8l6ouWMGTOyPZznWvXq1ZN09cq0vWEiDz/8sNq1a6fExER16dJF69aty9EmOjpaM2fO1GeffVYgx5Qffn5+Wrt2rYKCgqxhPCIiosD3UxR8fHysN1s+++yz2QL1jh071KdPH7tjrgcNGqS6devq4sWLGjBggP7++2/ruqyHBBXUA4lulpOTk8LCwvTRRx9Zx9hnZmbqo48+sn7A/c9//lOkNdnDrCkAgEJV0h8MVtAP8/L19dWKFSt0//33a9u2bWrSpInq1Kkjf39/JSYm6tChQ8rIyJCrq6vmzp2rtm3b2t3WiBEjtGrVKrVo0UKNGzeWu7u79u3bpytXrsjDw0NLly7NMb78P//5j37//XetWbNGffr0Ue3ateXn56eDBw/q8uXLeuutt/T888/n2FfLli0VEhKi+fPn6+mnn9aUKVNUvXp1/fXXX7pw4YIef/xxHT58WBs2bMjRNygoSM2bN9fevXsVGBioJk2aWK/CfvXVV6pSpYocHBz0v//9T/3799fGjRvVtWtXVapUSbVr11ZmZqZiY2Otf0GYOHFigRxTflWsWFFr165Vt27dtGvXLvXo0UOrVq3K8TTTkuCtt95Sz5499csvv6hGjRpq0KCBkpKSdOTIEdWsWVOvvfaaXnnllRz93Nzc9NVXX+mee+7R+vXrVbNmTTVr1kxpaWmKjIxUvXr1NGLECL333nt2w7wkzZw5Ux988IHd9c2bN9f69etv6liqVaumBx98UCNHjtTkyZNVq1YtHT9+3PrzM3LkyBxPZzULQRwAUGhKw4PBCuNhXrfddpv27dunTz75RCtWrNCBAwcUGxsrDw8PNW3aVF26dNHIkSOtV5Lt8fX11bZt2zRlyhR9//33Onr0qMqXL6+uXbtq4sSJNqfGc3Fx0Y8//qj3339fYWFhOnLkiBITE9WpUye98sorqlq1qt3QOm/ePDVv3lzz5s3TkSNHlJKSoqZNm2r48OEaOnSo3fHFFotFP/30k1599VWtW7dOe/bssc6+kTUloXT1KvO6dev0zTffaNGiRdqxY4f27Nkjb29vVa1aVffcc4/uv//+HI9Mz88x5VeFChX066+/qlu3btq5c6d69uypH3/8UR07diyU/RWWe+65Rxs2bNCUKVO0detWHThwQNWrV9dzzz2nV199VStWrLDb9/bbb9fu3bs1adIkrV69WpGRkapataqeffZZTZw4Ua+//rqk3GdWSUlJyXXo0o1ubr7eW2+9pZYtW+rDDz9UZGSkMjMz1bZtWz3zzDN65JFHbmlbhcliXHvrMYq1hIQE+fj4KD4+Ptcf5oJyetdpfXLbJ3pi5xNlfh5xzgWQ0+XLlxUdHa06derYHZKQ9f9OSX0wWNbDvIrb//shISFasGCBJk6cqEmTJpldDpCr3r1766efftL7779v9wFGxdnN/Ft3rVvJa1wRBwAUOh4MBpRN0dHRWrNmjSSVuL8SFAVu1gQAAECe7dy5U3Pnzs0xl/iuXbvUp08fpaWlqVOnTmrZsqVJFRZfXBEHAABAnp07d05PPfWUnn76aVWrVk0BAQH6+++/FRMTI0mqVauWdbYSZMcVcQAAAORZy5YtNXbsWLVu3VqpqanavXu34uLi1KpVK02cOFG7d+9WnTp1zC6zWOKKOAAAJcz8+fM1f/58s8sAJEkBAQGaMWOG2WWUSFwRBwAAAExAEAcAAABMQBAHAAAATEAQBwDABH///beGDx+uGjVqyNnZWRaLxe6TKQGUTtysCQBAEUtPT1eXLl104MABeXl5KSgoSK6urmrevLnZpZU5WU8mfe6551S+fHlTa0HZQxAHAKCI/fLLLzpw4IACAgK0b98+VahQweySyqzJkydLkkJCQgjiKHIMTQEAoIhFRkZKkoKDgwnhQBlGEAcAoIilpKRIkjw8PEyuBICZCOIAABSRSZMmyWKxWMclL1iwQBaLxfo6duyYtU1ISIiuXLmiGTNmqGXLlvLy8pLFYtHFixclSSdOnNCcOXPUq1cv1atXTx4eHvLy8lKLFi00YcIE/fPPP7nWsnz5cnXs2FHe3t7y9vZWu3bttHjxYklS7dq1ZbFYFB4ebrP+kJAQpaWlafr06WratKk8PDxUtWpVhYaG6tSpU9b269evV8+ePVWpUiV5eHjojjvu0A8//JBrXbGxsXr++efVpEkTlStXTp6enmrZsqWmTJmixMREm32uPX+RkZF6+OGHVaVKFbm6uiowMFBjx45VUlKSzWPJUqdOnWzfi6zvkSSlpaXpgw8+UPv27eXr6ytnZ2f5+/urRYsWGj58uNatW5frMQH2MEYcAFDozh04Z3YJeVLQddesWVPt27dXTEyMYmNj5e/vr/r161vXu7m5Wd9fvnxZnTt31tatW1W3bl01btxYR44csa6fPXu2Zs2aJTc3N1WpUkXNmjVTXFycDh48qL1792rRokXatGmTatasmaOOCRMm6I033pAk+fn5qU6dOoqOjtZjjz2mP//884bHkZaWph49emjdunVq2LCh6tatq0OHDiksLEwbN27U9u3btWTJEo0aNUoVK1ZUrVq1dPToUW3fvl19+/bVsmXL1L9//xzb/eGHH/TII4/o0qVLcnFxsT4WPTIyUn/++aeWLFmitWvXqmrVqjbrWrNmjUaPHi0HBwc1btxYrq6u+uuvvzRz5kxFREQoPDxcTk5O2b4XERERkqQ2bdrI1dU12/dKkjIzM9WrVy/9+uuv1uX169fXxYsXdfToUe3du1dJSUnq0qXLDc8bcD2COACg0Hj4ecjZw1nfPfad2aXkmbOHszz8CmYISWhoqEJDQzVp0iRNnjxZPXv2tPuo+m+++UbVqlXT77//rjvuuEOSlJqaKmdnZ0lSz5491bt3b3Xo0MEaLiXp7NmzGj9+vD7//HM9/fTTWrlyZbbtrl692hrCp0+frpdeekmOjo4yDENhYWF68skns10ptmXZsmWqXbu29u7dq2bNmkmSjhw5om7duuno0aMKDQ3Vzz//rA8++EBPPvmkHBwclJaWpuHDh2vhwoV68cUX9a9//Svbfv744w8NGjRIly9f1oQJEzRu3DiVK1dOknTq1CkNHTpUq1ev1r///W+tXbvWZl0jR47UqFGjNHXqVOuwnzVr1qhv376KiIjQ4sWLNWTIkGzfi6waso7peitWrNCvv/6qatWqaeXKlQoKCrKuMwxDGzdu1OnTp3M9X4A9BHEAQKHxqemjkQdGKvl8stml5JmHn4d8avoU+X4zMjK0ZMkSawiXlO2KbdeuXW328/f312effaZffvlFP/30k86cOaPKlStb10+fPl2S9Oijj2rcuHHW5RaLRaGhoTp8+LDefPPNXGtLS0vTwoULrSFckurVq6eXXnpJI0eO1Pfff6+nnnpKI0aMsK53dnbWO++8o6VLl+r48ePau3evWrRoYV0/YcIEXb58WaNHj9brr7+ebX9Vq1bVsmXL1LhxY61bt07btm3Ldl6ytG/fXrNmzcq2rFu3bho2bJjmzJmjH374wRrEb9aBAwckSQ8++GC2EC5dPWedOnW6pe0B1yKIAwAKlU9NH1OCbEnXuHFjtWvXLtc2SUlJWrZsmTZv3qyTJ0/q0qVLMgxDkpSYmCjDMLR792716NFDknTp0iVt2rRJkvTkk0/a3OYTTzxxwyDesmVL3XXXXTmW33bbbdb3trZfsWJF1alTRwcPHtSRI0esQTwhIUE///yzJGUL79fy9vZWt27dtGDBAq1du9ZmEB81apTNvm3bttWcOXMUFRWV63HZUqtWLUlX/5Jw/YcaIL8I4gAAFENNmzbNdf3WrVvVv3//Gw6LuPamzSNHjigjI0OSclzdzVK3bl15e3srISHB7javHdd+LX9//5tqc/DgwWw3T+7bt89a1/Dhw+3u9/jx45Ku3tBpS8OGDW0uzwrP19+weTP69u2rhg0bav/+/apZs6Y6d+6s4OBgtW3bVu3atWPmG+QLQRwAgGLI09PT7rrExET169dPZ86cUceOHTV+/HgFBQWpQoUKcnFxkSR17NhRmzZtUlpaWrZ+0tUhFV5eXna37+XllWsQt1fbtWO+b9QmMzPTuiwuLs76PuvmydwkJ9se6mRvnw4ODjn2ebPc3d21adMmTZs2TUuWLNHq1au1evVqSVenn3zkkUc0ffp0+fn53fK2AYI4AAAlzKpVq3TmzBlVr15dq1atsnlV1tb0hVnh2zAMJSYm2g3j9qYJLCxZN2V6enrm6ap1YatUqZJmz56t2bNn69ChQ9qyZYvWrFmj7777Tp999pkiIyO1adMmOTo6ml0qShjmEQcAoIQ5evSoJOn222+3GcIvXLigQ4cO5Vher149a1j8448/bG47Ojo616vhhaFp06ZycHDQpUuXtHv37iLd961q2LChhg4dqi+//FJbtmyRxWLR1q1btWPHDrNLQwlEEAcAoITJCt/2xofPmjXLOub6Wp6enurQoYMk6dNPP7XZ197ywuTn52edh3vq1KlFuu+sc5n1tNNb0apVK/n4XL0R+eTJkwVaF8oGgjgAACVM586dJUm//fabPv74Y+tMKenp6Xr33Xc1Y8aMbA8Hutb48eMlSQsXLtRbb71lDeyGYWjBggV6++23rXOVF6WZM2fK3d1d3333nQYPHpwj2Kanp2vjxo0KDQ0t0NBbr149SbL7dMxZs2bpzTffVHR0dLblV65c0ZtvvqmLFy/KwcFBrVu3LrCaUHYQxAEAKGFatmypkJAQSdLTTz+tqlWr6vbbb1flypX1wgsvaNiwYbrzzjtt9r333nv1yiuvSJJefvllValSRXfeeaeqVaumkJAQPffcc9YnVxblmOdWrVpp+fLl8vX11RdffKEaNWqoQYMGatu2rZo1ayYvLy916tRJYWFh2W5Aza/BgwdLkp555hk1adJEnTp1UufOna0PWoqNjdW4ceNUt25dValSRW3atFGrVq3k7+9vnYd9xowZNh8GBNxIiQjiP/74o0aPHq327durZs2a8vDwkLu7u+rWratHH33UOieqPdu3b9fAgQMVEBAgV1dX1ahRQ6GhoTc1n6hZfQEAyM28efM0a9YsNWnSRBcuXFBUVJQaNWqkzz//XJ988kmufadNm6ZvvvlGwcHBSklJ0f79+1WjRg0tWLBAM2fOtN4w6e3tXRSHYtWjRw8dOnRIEydOVJs2bXT27Fnt2rVL8fHxCgoK0tixY7Vlyxbr3N4F4fnnn9fbb7+tli1b6vjx49q4caM2bNigY8eOSbo6r/m0adPUrVs3ubm56cCBA9q/f798fHz00EMPadOmTXrppZcKrB6UMUYJ0LVrV0OS4eDgYAQEBBi33XabUb9+fcPFxcWQZEgyXnzxRZt958+fbzg6OhqSDD8/P+O2224zvL29DUmGh4eHsXbtWrv7NauvPfHx8YYkIz4+/pb75sWpnaeMSZpknNp5qkj2V5xxLoCcUlJSjP379xspKSlml4ICdObMGUOSYbFYjIsXL5pdDmC6W/237lbyWom4Ij548GCtWrVK8fHxOnXqlHbs2KHDhw/r9OnTeuqppyRdHcP13XffZesXGRmp4cOHKyMjQ2PHjrX2PX36tB599FElJydrwIABNqd4MqsvAABmyrpZMygoyHojIoDCUWKCeI8ePazzjGapUKGCPvroIzVu3FiStHTp0mzrJ0+erPT0dLVr104zZsyw3nzi4eGhefPmqU6dOoqLi9OsWbNy7NOsvgAAFLb//ve/Cg8Pt97kKUlpaWn66KOPNGXKFEnS6NGjzSoPKDNKRBDPjcVisQbxS5cuWZcnJydr5cqVkq6O77qeq6ur9UaXJUuWZFtnVl8AAIpCeHi47r77bnl6eqpZs2Zq06aNKlasqJEjR+rKlSsaPHiw9XcVgMJT4p+smZKSYp1E/4477rAu3717t3VO0I4dO9rs26lTJ0nSsWPHdPr0aQUEBJjaFwCAovD444/L2dlZv/32m06cOKFLly7J19dXwcHBCg0N1YABA8wuESgTSmwQv3Dhgv78809NnjxZMTExatq0qZ577jnr+qwnirm4uKhGjRo2txEYGGh9f/DgQWsgNqsvAABFoWvXruratavZZQBlXokK4r/++qu6deuWbZm3t7dee+01jRkzRl5eXtblFy5ckCT5+vrKYrHY3F6FChWs7+Pi4kzve73U1FSlpqZavy7qRw4DAACg8JSoMeLly5dX+/bt1a5dO9WtW1fOzs5KSEjQsmXLtH79+mxts4aHuLi42N3etU8dS05ONr3v9aZPny4fHx/ry94VdgAAAJQ8JSqIt2nTRps3b1ZERISOHj2qv//+Wy+99JIOHDigvn37avny5da27u7ukq4+gtaey5cvW997eHiY3vd648ePV3x8vPUVGxtrty0AAABKlhIVxK9XoUIFzZw5U48//rgMw7A+ala6OjREujr049rpma6VNYzk2vZm9r2eq6urvL29s70AAABQOpToIJ7l/vvvlyRFRUVZx1E3atRI0tUr0zExMTb7HT161Po+q72ZfQEAAFB2lIognpaWZn2fkZEh6eoTwbKGiWzcuNFmvw0bNkiSateunW3mErP6AgAAoOwoFUH866+/liTVqVPHOtTD09NTvXv3liTNnTs3R5/U1FTNnz9fkjRo0KBs68zqCwAAgLKj2AfxHTt2aMKECTpw4ECOdWfOnNHIkSP11VdfSZJefvnlbOsnTpwoJycnRUREaNy4cdYr58nJyRo+fLiio6Pl4+OjMWPG5Ni2WX0BAABQNhT7IJ6UlKQ33nhDTZo0UcWKFdWqVSu1bdtW9evXV9WqVfXRRx/JwcFBEyZM0FNPPZWtb7NmzTR37lw5OjrqzTffVNWqVdWmTRsFBARo0aJFcnd317Jly+Tn55djv2b1BQAAQNlQ7IN4y5Yt9cEHH2jgwIHy9/fX8ePHtX37dp07d04tWrTQ6NGjtXv3br3++us2+4eGhmrLli3q37+/HB0dtXfvXnl5eWnIkCHas2dPjgcEFYe+AAAAKP2K/ZM1fX19NXLkSI0cOTLP27jjjjv0zTfflKi+AAAAKN2K/RVxAABQPB07dkwWi0UWi8XsUoqlkJAQWSwWTZo0yexSSpXatWvLYrEoPDw82/L58+fLYrGoc+fOptSVFwRxAACKUFY4u/bl4OAgb29vtWzZUi+++KLd51CgaF37QeP60JfFMAw999xz1u/j+++/X+h1ZQXRG71Kgqxas2aUK2uK/dAUAABKI29vbzVv3lySlJmZqePHj+vPP//Un3/+qU8++UT/+9//1KVLF5OrzJ2zs7MaNmxodhmmycjI0LBhw7RgwQI5OTnp888/17///W/r+oCAADVs2LDQJmeoUaOGatasWSjbLs4CAwPl5uYmDw8Ps0vJN4I4AAAmaNWqVY6rrJs2bdJDDz2kU6dO6dFHH9XRo0eLddioVq2aDh48aHYZpkhNTdVDDz2k77//Xm5ublq6dKn1Sd9Zpk+frunTpxdaDaGhoWVy2MvatWvNLqHAMDQFAIBiokOHDpo9e7Yk6e+//9aaNWvMLQg2JSUlqVevXvr+++/l7e2tn3/+OUcIB24GQRwAgGLk7rvvtr4/fPiw9X3WWNpjx45p+/btevDBBxUQECBHR0c999xz2bbx22+/6bHHHlPNmjXl6uoqX19fderUSfPnz1dmZma2tlOnTpXFYlHHjh1zrWvMmDGyWCy67777rMtu5mbNb7/9Vj169FClSpXk4uKigIAA/etf/7I75vpmbrjL7SbIffv2KSQkRHXr1pWbm5s8PT1Vp04d3XPPPZo2bZoSExNzPc4b+eeff9S1a1etW7dOlSpV0vr169WpU6dbqvP68xYREaH77rtPfn5+cnNzU5MmTfTGG28oPT09X7VKUnh4uCwWi2rXri1JWrp0qe6++25VrFhRFotF33//vaSrHy4WL16sRx99VE2aNFH58uXl5uamunXrKjQ0VPv37891P3/88Yf69++vSpUqyd3dXY0bN9bUqVOVmppa4Det2rtZ81qZmZl6//331apVK3l6eqp8+fLq1q2bVq9eXSA1FBSCOAAAxYhhGLmu//bbb9WuXTutWrVK1apVU8OGDbMF4f/85z9q27atFi9erIsXL6px48YqV66cNm7cqKFDh2rAgAHKyMiwth8yZIgsFos2b96sv/76y+Y+MzIy9OWXX1rb34zMzEw99thjGjBggH755Rc5OzsrKChIaWlp+u6773T33XfrP//5z01t62b9+uuvatOmjRYsWKCzZ8+qfv36atSokVJSUrRu3Tq9+uqrOnnyZJ63f+rUKXXs2FHbtm1TzZo1tWnTJrVu3TpfNS9YsECdOnXS5s2bVadOHVWoUEEHDhzQhAkT9Nhjj+Vr29d7/vnn9dBDD2n//v0KDAxU9erVrevCw8P12GOPaenSpYqPj1dgYKACAwN19uxZhYWF6bbbbtPPP/9sc7s//vij7rjjDi1fvlyXLl1S06ZNlZGRoddee0333HOP9QnjRemhhx7Ss88+q3PnzqlJkyayWCz69ddf1b17d7377rtFXo89BHEAAIqR9evXW9/buhFy7NixGjVqlM6dO6cdO3Zo//79euONNyRJn3zyiV5//XWVL19eCxYsUHx8vPbs2aPY2Fj9/vvvCgwM1HfffWdtL0k1a9ZU586dZRiGFi5caLOm1atX6/Tp0/L19c12RTw3M2bM0OLFi+Xm5qYlS5bo1KlT2rZtm86cOaMZM2ZIkl5//XUtW7bsps/Njbz00ktKTU3VmDFjdO7cOe3du1c7d+7U33//rb///lsffPCBypcvn6dtHz16VO3bt9f+/fvVqFEjbd68uUBuVH3yySc1Y8YMnTt3Ttu3b9epU6f0xRdfyGKxaOnSpdqwYUO+9yFJJ06c0Mcff6wFCxbo77//1rZt2xQbG6sePXpIkurXr69ly5YpLi5OJ0+e1M6dOxUZGanz58/r/fffV1pamgYPHqyUlJRs2z1z5owee+wxXblyRQMGDNDp06e1Y8cOHT58WL/99puioqKK/JkqW7Zs0YoVK/T111/rxIkT2r59u86cOaNx48ZJuvrXna1btxZpTXYZKDHi4+MNSUZ8fHyR7O/UzlPGJE0yTu08VST7K844F0BOKSkpxv79+42UlBSzSylRhgwZYkgyOnXqlGPdpk2bjKpVqxqSjCpVqhiXLl2yrpNkSDLuvfdem9tNTk42/Pz8DEnG8uXLbbbZtm2bYbFYjPLlyxupqanW5QsWLDAkGXXr1jUyMzNz9HvooYcMScbTTz+dbXl0dLS1rmtdunTJKF++vCHJmDp1qs1aHn74YUOS0aRJk2zLw8LC7J6fLFnncOLEidmWu7q6GpKMixcv2u17K649PicnJ0OS0bp1a+PcuXM31d9endduNyQkxGbf++67z5BkvPDCCznW1apVy9rf3mv9+vWGYRjG+vXrrcumTZt2S8d/rUceecSQZHz99dfZlk+aNMn6s3P58uUc/VatWmXd//XnwTD+7+c6LCzspmvJOv6sY8yS9bMjyZgyZYrNvnfffbchyejdu/dN7+9W/627lbzGrCkAAJhg9+7dCg4OlnR1GEdMTIx12ES5cuW0ePFimzOmDBs2zOb21q1bp/Pnz6tKlSrq16+fzTa33367atasqePHj2vnzp1q27atJKl///4aOXKk/vrrL23evFkdOnSw9omPj9f//vc/STc/LGXz5s26ePGiXFxcNGrUKJttxo4dqyVLlmj//v2Kjo5WnTp1bmrbualVq5YOHz6sRYsW5euJ3Ln5559/lJSUVGBTEto7P23bttWKFSsUFRVlt29u0xf6+PjkWGbvZydLZmamVq1apdWrV+vo0aNKTEy0DmPKmtt+586devDBB619Vq1aJenqeHhXV9cc2+zRo4dq1qxZpHPjOzk52T2vL7zwgtavX681a9YoNTXVZs1FiSAOAIAJEhISFBERYf3a09NTzZo10z333KPnnntOtWrVstmvadOmNpf/8ccfkqSUlBRrwLflwoULkqTY2FhrEPf09FT//v21YMECLViwIFsQ//rrr5WSkqLGjRvrjjvuuKljy5rSsGbNmjYDYdZxODo6KiMjQwcPHiyQID527FgNGzZMzzzzjGbNmqV77rlHd911lzp06KD69evna9tz5szRlClTdPz4cXXq1Enh4eEFUrO94S2VK1eWdPUmSntuZfpCPz8/6zZtOXv2rO677z5t27Yt1+38888/2b4+dOiQJCkoKMhun6CgoCIN4tWrV7c7BKlZs2aSpCtXrujo0aNq0qRJkdVlC2PEAQAwQadOnWQYhvWVlJSkvXv36t1337UbwqWrodmWuLg4SVevYEdERNh9Zc0akpycnK1/SEiIJGnZsmXZxgFnjRu/2avh0tUPGZJUpUoVu22cnJysV5Wz2udXaGiovvvuO3Xo0EExMTH69NNPNWzYMDVo0EDNmzfXd999l+dtN2rUSOHh4apatapiYmLUqVMnuze33gp7308Hh6sR7fpZbgp6P1mGDh1qvQn1iy++0F9//aWUlBTrz2fWjbXX33iZ9fPk7e1td9teXl75rP7W5PZzd+26/M6gUxAI4gAAlALlypWTJPXq1StbwLf3ygreWTp16qTatWsrISHBOqVd1lAVBweHW5rBIyuU/f3333bbpKen6/z589naS7LOAGPkMnvMlStX7K7r27evNm7cqLi4OK1Zs0avvfaamjRpon379ulf//qXfvzxx5s+jus1aNBA4eHhqlatmmJjY9WpUycdPXo0z9srLs6cOWMdYrJixQo99thjqlOnjtzc3Kxtrr8SniUrZOf2YaqoA++ZM2dual1Rf0CwhSAOAEAp0KJFC0nS77//nqf5py0WiwYPHizp/66CZ/23W7duqlat2k1vq1GjRpKujiu2F9D2799vHX/cuHFj6/KsK7e5hakjR47csAYvLy/dc889mjx5svbt22cdN//BBx/c3EHYUb9+fYWHh6t69eo6ceKEOnXqlOs47pLgr7/+kmEY8vX1tf4cXW/Lli02l2cNrckaGmVLbusKQ2xsrOLj422u27dvnyTJxcVFgYGBRVmWTQRxAABKgW7dusnX11f//POPPvzwwzxtIyuIr1mzRidPntQXX3wh6daGpUhScHCwypcvrytXruj999+32WbmzJmSpCZNmlgfNiNdveosXQ2Htq6o79q1Szt27Lileq59YFF+5hHPUq9ePW3YsEE1atTQyZMn1blz52wPXyppsm4KTkxM1KVLl3KsX7Nmjfbs2WOzb8+ePSVdnQ/d1l8qVq9erePHjxdcsTchPT3d7geurDnE77nnHtNv1JQI4gAAlArlypWzzg8+ZswYvfnmmzlCVVJSkr799lsNHz7c5jYCAwMVHBysjIwMjRgxQn/99Ze8vb3Vt2/fW6rFw8NDL7/8siRp2rRp+uqrr6zrMjIy9Pbbb1sfEDR58uRsfZs3b646deooLS1NI0aMyHYMv//+u/71r3/J2dk5xz4TEhLUv39/rVq1SqmpqdnWRUVFae7cuZKuzhxTEOrWrasNGzaoVq1aOnXqlDp37my9cbGkadq0qfz8/JSenq6RI0dmu39g9erVeuihh7INU7nWU089pfLly+vIkSMaPHhwtr+AbNu2TSEhIXJxcSn0Y7iWs7Ozpk2bpuXLl1uXpaWl6dVXX9XatWvl4OCgV155pUhrsocgDgBAKfHUU0/pjTfeUGZmpsaNG6cKFSqoZcuWuuuuu1S/fn35+PhowIAB+vXXX+1uI2vs+IoVKyRJgwYNkru7+y3XMnbsWD3yyCO6fPmyHn74YVWrVk133nmnKleurJdeekmGYejVV1/VgAEDsvWzWCx6//335ejoqO+//16VK1dW69atFRgYqLvuuktNmjTJNn1elszMTC1fvly9evWSl5eXmjRpYj3uBg0a6ODBg6pXr55ef/31Wz4We+rUqaPw8HDVrl1bp0+fVufOna0zxpQkTk5OeuuttyRdvbIdEBCgNm3aqFatWurevbtq1qypZ555xmbfypUr64svvpCLi4uWLl2qgIAA3X777WrYsKHuvPNO1a1bV/3795ckOTo62q1h1KhR8vPzs/vK+mvNzWjXrp369Omj/v37q0aNGrrjjjvk7++vadOmSbr6sKn27dvf9PYKE9MXAgAK1WTL5Bs3KsYmGhPNLuGWjB8/Xvfff78++OADrV+/3jqeOiAgQHfffbe6d++e6xXuBx98UKNHj7ZeFb3VYSlZHBwctHjxYvXr10+ffvqpdu7cqV27dqlixYrq16+fRo0apbvvvttm3z59+ujXX3/VtGnT9Pvvv1tD9DvvvKPRo0fbnA/by8tLX375pdatW6fff/9dp0+f1uHDh+Xp6ak77rhDffv21ahRo6w3tRaU2rVrKzw8XHfffbeio6PVuXNnrVu3zvRp8W5VSEiI/Pz89Oabb2rXrl06cOCAateurddee03jxo3Tm2++abdvnz599Pvvv2vKlCnasGGD9u7dq9q1a2vixIkaP368Hn30UUm5z6ySlJSU61SNtzqzzldffaXg4GCFhYUpMjJSTk5O6tq1q1566SV17979lrZVmCxGbrclo1hJSEiQj4+P4uPjc/1hLiind53WJ7d9oid2PqGA1gGFvr/ijHMB5HT58mXrg1js/dlaIogDZV3Tpk21f/9+/fDDD7rvvvvMLueW3ey/dVluJa8xNAUAAACFIiIiQvv375ezs7P1AVL4PwRxAAAA5Nnq1au1ZMmSbA+CkqS1a9dq4MCBkqRHHnnE+gAn/B/GiAMAACDP/vrrL40YMUJOTk6qWbOm/Pz8FBMTY51+MigoSO+8847JVRZPXBEHAABAnnXp0kWjR49WkyZNlJCQoF27duny5cu666679PbbbysiIkIVKlQwu8xiiSviAAAAyLMGDRrovffeM7uMEokr4gAAAIAJCOIAAACACQjiAACY4O+//9bw4cNVo0YNOTs7y2KxqHPnzmaXBaAIMUYcAIAilp6eri5duujAgQPy8vJSUFCQXF1d1bx5c7NLK3MmTZokSXruuedUvnx5U2tB2UMQBwCgiP3yyy86cOCAAgICtG/fPmaUMNHkyVef/BoSEkIQR5FjaAoAAEUsMjJSkhQcHEwIB8owgjgAAEUs6wmEHh4eJlcCwEwEcQAAisikSZNksVis45IXLFggi8VifR07dszaJiQkRFeuXNGMGTPUsmVLeXl5yWKx6OLFi5KkEydOaM6cOerVq5fq1asnDw8PeXl5qUWLFpowYYL++eefXGtZvny5OnbsKG9vb3l7e6tdu3ZavHixJKl27dqyWCwKDw+3WX9ISIjS0tI0ffp0NW3aVB4eHqpatapCQ0N16tQpa/v169erZ8+eqlSpkjw8PHTHHXfohx9+yLWu2NhYPf/882rSpInKlSsnT09PtWzZUlOmTFFiYqLNPteev8jISD388MOqUqWKXF1dFRgYqLFjxyopKcnmsWSpU6dOtu9F1vdIktLS0vTBBx+offv28vX1lbOzs/z9/dWiRQsNHz5c69aty/WYAHsYIw4AQBGpWbOm2rdvr5iYGMXGxsrf31/169e3rndzc7O+v3z5sjp37qytW7eqbt26aty4sY4cOWJdP3v2bM2aNUtubm6qUqWKmjVrpri4OB08eFB79+7VokWLtGnTJtWsWTNHHRMmTNAbb7whSfLz81OdOnUUHR2txx57TH/++ecNjyMtLU09evTQunXr1LBhQ9WtW1eHDh1SWFiYNm7cqO3bt2vJkiUaNWqUKlasqFq1auno0aPavn27+vbtq2XLlql///45tvvDDz/okUce0aVLl+Ti4qI6depIujqU588//9SSJUu0du1aVa1a1WZda9as0ejRo+Xg4KDGjRvL1dVVf/31l2bOnKmIiAiFh4fLyckp2/ciIiJCktSmTRu5urpm+15JUmZmpnr16qVff/3Vurx+/fq6ePGijh49qr179yopKUldunS54XkDcjBQYsTHxxuSjPj4+CLZ36mdp4xJmmSc2nmqSPZXnHEugJxSUlKM/fv3GykpKWaXUuJMnDjRkGQMGTLE7jpHR0ejZs2axu+//25dd/nyZSMjI8MwDMP49ddfjXXr1hlpaWnZ+p85c8YIDQ01JBm9e/fOsf1ffvnFkGRIMqZPn26kp6cbhmEYmZmZxrx58wwnJyfD2dnZkGSsX7/eZm3Ozs5G/fr1jb1791rXRUVFGbVr1zYkGX379jXc3NyMjz76yFrvlStXjMGDBxuSjFq1ahmZmZnZtr1nzx7Dzc3NkGRMmDDBSExMtK47efKkce+99xqSjC5duuQ4pqzjcXZ2Nl544QXj0qVL1nWrV682PDw8DEnG/Pnz7faNjo7Osc4wDOP77783JBnVqlUzdu/enW1dZmamER4ebixZssRmX5QOt/pv3a3kNYamAABQDGVkZGjJkiW64447rMtcXV3l4HD1V3fXrl119913W6/wZvH399dnn32matWq6aefftKZM2eyrZ8+fbok6dFHH9W4cePk6Ogo6erwjtDQUL344otKS0vLtba0tDQtXLhQzZo1sy6rV6+eXnrpJUnS999/r5CQEI0YMcJar7Ozs9555x25urrq+PHj2rt3b7ZtTpgwQZcvX9bo0aP1+uuvq1y5ctZ1VatW1bJly1S1alWtW7dO27Zts1lX+/btNWvWrGxj77t166Zhw4ZJ0g2Hxdhy4MABSdKDDz6ooKCgbOssFos6deqkhx566Ja3C0iMEQcAoFhq3Lix2rVrl2ubpKQkhYWFadiwYerRo4c6dOig4OBgdejQQYmJiTIMQ7t377a2v3TpkjZt2iRJevLJJ21u84knnrhhbS1bttRdd92VY/ltt91mfW9r+xUrVrQON7l2mE1CQoJ+/vlnSdKIESNs7tPb21vdunWTJK1du9Zmm1GjRtlc3rZtW0lSVFSUzfW5qVWrliRp9erVOT7UAPnFGHEAAIqhpk2b5rp+69at6t+/v06fPp1ru2tv2jxy5IgyMjIkKcfV3Sx169aVt7e3EhIS7G7z2nHt1/L397+pNgcPHsx28+S+ffusdQ0fPtzufo8fPy7p6g2dtjRs2NDm8sqVK0tSjhs2b0bfvn3VsGFD7d+/XzVr1lTnzp0VHBystm3bql27dsx8g3whiAMAUAx5enraXZeYmKh+/frpzJkz6tixo8aPH6+goCBVqFBBLi4ukqSOHTtq06ZN2YaZZM06YrFY5OXlZXf7Xl5euQZxe7VdOwvJjdpkZmZal8XFxVnfZ908mZvk5ORbqitreMy1+7xZ7u7u2rRpk6ZNm6YlS5Zo9erVWr16taSr008+8sgjmj59uvz8/G552wBBHACAEmbVqlU6c+aMqlevrlWrVtm8Kmtr+sKs8G0YhhITE+2GcXvTBBaWrPHgnp6eebpqXdgqVaqk2bNna/bs2Tp06JC2bNmiNWvW6LvvvtNnn32myMhIbdq0yTreHrhZjBEHAKCEOXr0qCTp9ttvtxnCL1y4oEOHDuVYXq9ePWtY/OOPP2xuOzo6Oter4YWhadOmcnBw0KVLl7KNaS+OGjZsqKFDh+rLL7/Uli1bZLFYtHXrVu3YscPs0lACEcQBAChhssK3vfHhs2bNso65vpanp6c6dOggSfr0009t9rW3vDD5+flZ5+GeOnVqke4761xmPe30VrRq1Uo+Pj6SpJMnTxZoXSgbCOIAAJQwnTt3liT99ttv+vjjj2UYhiQpPT1d7777rmbMmJHt4UDXGj9+vCRp4cKFeuutt6yB3TAMLViwQG+//bacnZ0L/yCuM3PmTLm7u+u7777T4MGDcwTb9PR0bdy4UaGhoQUaeuvVqydJdp+OOWvWLL355puKjo7OtvzKlSt68803dfHiRTk4OKh169YFVhPKDoI4AAAlTMuWLRUSEiJJevrpp1W1alXdfvvtqly5sl544QUNGzZMd955p82+9957r1555RVJ0ssvv6wqVarozjvvVLVq1RQSEqLnnnvO+uTKohzz3KpVKy1fvly+vr764osvVKNGDTVo0EBt27ZVs2bN5OXlpU6dOiksLOyG85zfisGDB0uSnnnmGTVp0kSdOnVS586dNX/+fElXZ2gZN26c6tatqypVqqhNmzZq1aqV/P39NW7cOEnSjBkzVLt27QKrCWUHN2sCAFACzZs3T82bN9e8efN05MgRpaSkqGnTpho+fLiGDh1qvWpuy7Rp09S6dWvNnj1bu3fv1v79+9WkSRPNmDFDgwcP1ueffy7p6tzdRalHjx46dOiQPvzwQ/300086fPiwjh8/Ln9/fwUFBalTp0564IEHrHN7F4Tnn39ekvTFF18oKirK+gCfrPM3YsQI+fv7Kzw8XIcPH9aBAweUnp6uKlWqqGfPnho5cqSCg4MLrB6ULRYj6+9ZKPYSEhLk4+Oj+Pj4IvnH8fSu0/rktk/0xM4nFNA6oND3V5xxLoCcLl++rOjoaNWpU8fuMAiUPGfPnlXlypVlsVgUFxdnHQMNlFW3+m/dreQ1hqYAAACrrJs1g4KCCOFAISOIAwBQxvz3v/9VeHi4rv2jeFpamj766CNNmTJFkjR69GizygPKDMaIAwBQxoSHh2vEiBFyd3dX3bp15ebmpsOHD1sf5DN48GDrzaAACg9BHACAMubxxx+Xs7OzfvvtN504cUKXLl2Sr6+vgoODFRoaqgEDBphdIlAmEMQBAChjunbtqq5du5pdBlDmMUYcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHACQLzygGUBpVpj/xhHEAQB54uR0deKt1NRUkysBgMKTlpYmSXJ0dCzwbRPEAQB54uTkJE9PT124cEEZGRlmlwMABc4wDMXHx8vV1VXOzs4Fvn3mEQcA5Jmfn59iY2MVHR0tHx8fubu7y9HRURaLxezSACDPDMNQWlqa4uPjlZSUpGrVqhXKfgjiAIA88/DwUJ06dXT27FnFxcXp/PnzZpcEAAXG1dVV1apVk7e3d6FsnyAOAMgXFxcXVa9e3XoFKTMz0+ySACDfHB0dC2U4yrUI4gCAAmGxWOTi4mJ2GQBQYnCzJgAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAh7ogxv65LZPzC4BAACg1OGKOAAAAGACgjgAAABgghIRxPfu3atp06ape/fuqlatmlxcXOTl5aWgoCCNHz9ep0+fttlv/vz5slgsub769OmT6763b9+ugQMHKiAgQK6urqpRo4ZCQ0MVFRV1w7rz0xcAAAClW7EfI3706FG1aNHC+nWVKlXUsmVLnTt3Tn/++af++OMP/fe//9Xy5ct1991329yGt7e3mjdvbnNd06ZN7e57wYIFGjZsmDIyMuTn56fmzZsrKipKYWFhWrp0qVasWKEuXboUeF8AAACUfsU+iBuGIT8/Pz399NN69NFH1aBBA+u6P//8U//+97/1559/qn///jp06JAqVaqUYxutWrVSeHj4Le03MjJSw4cPV0ZGhsaOHaupU6fK2dlZycnJeuKJJ7R48WINGDBAUVFRqlixYoH1BQAAQNlQ7IemVK9eXceOHdPkyZOzhXBJatGihb777js5OTkpLi5OS5YsKbD9Tp48Wenp6WrXrp1mzJghZ2dnSZKHh4fmzZunOnXqKC4uTrNmzSrQvgAAACgbin0Qd3Nzk6enp931devWVePGjSVJBw4cKJB9Jicna+XKlZKkESNG5Fjv6uqqkJAQScoR/vPTFwAAAGVHsR+acjMuX74sSXYDe0xMjIYOHaqYmBi5ubkpMDBQvXv3Vvfu3W223717t1JSUiRJHTt2tNmmU6dOkqRjx47p9OnTCggIyHdfAAAAlB0lPoj//vvv1llIsgLu9aKjoxUdHZ1t2Zw5cxQcHKylS5eqatWq2dYdOnRIkuTi4qIaNWrY3GZgYKD1/cGDB61hOj99AQAAUHYU+6Epubl8+bKeeuopSVJQUJB69+6dbX358uU1YsQIrV+/XidPnlRqaqr++usvzZgxQx4eHtq8ebPuvfdeXbp0KVu/CxcuSJJ8fX1lsVhs7rtChQrW93FxcQXS93qpqalKSEjI9gIAAEDpUGKDuGEYevzxx7Vnzx65u7tr0aJFcnDIfjh9+/bVRx99pM6dO6tq1apycXFRnTp1NHbsWP3yyy9ydHRUZGSkPvjgg2z9soaWuLi42N2/m5ub9X1ycnKB9L3e9OnT5ePjY33Zu8IOAACAkqfEBvFnn31WixYtkouLi5YtW5brfOC2BAcHq3///pKkZcuWZVvn7u4uSbpy5Yrd/lnj0qWrs6EURN/rjR8/XvHx8dZXbGys3bYAAAAoWUpkEH/++ec1Z84cubi46JtvvskxJOVmtW/fXpJ0+PDhbMt9fX0lXR02YhiGzb5ZQ1CubZ/fvtdzdXWVt7d3thcAAABKhxIXxJ9//nnNnj1bzs7OWrZsme677748bytr+EhaWlq25Y0aNZJ09ap2TEyMzb5Hjx7N0T6/fQEAAFB2lKgg/sILL2QL4ffff3++trd3715JyjH2OigoyDrEZOPGjTb7btiwQZJUu3btbLOe5KcvAAAAyo4SE8THjBmjd9991xrCH3jggXxt78SJE1q0aJEkqWfPntnWeXp6Woe7zJ07N0ff1NRUzZ8/X5I0aNCgAusLAACAsqNEBPHx48dr1qxZ1jHhNxPCY2NjNXjwYP322285xmpHRESoa9euSkhIkI+Pj1566aUc/SdOnCgnJydFRERo3Lhx1uErycnJGj58uKKjo+Xj46MxY8YUaF8AAACUDRbD3h2FxcTWrVvVrl07SZKfn58aNmxot22vXr30yiuvSLr61Mo6depIkry8vFS3bl25ubkpNjZWp06dkiT5+/vr22+/VXBwsM3tff7553riiSeUkZEhPz8/1apVS1FRUUpISJC7u7v+97//qVu3bgXe156sDw7x8fFFcuPm6V2n9cltnxT6fkqSJ3Y+oYDWDCcCAAC23UpeK/ZP1kxNTbW+P3/+vM6fP2+3bb169azv/f39NWPGDP3++++KjIxUTEyMEhMT5eXlpXbt2ql379568sknVbFiRbvbCw0NVbNmzTRz5kxt3rxZe/fuVaVKldSvXz+98soratCgQaH0BQAAQOlX7K+I4/9wRdx8XBEHAAC5uZW8ViLGiAMAAAClDUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwgZPZBQBlxamEU7qQcsHsMoqFCu4VVNW7qtllAABgKoI4UAROJZzSvZ/fq5T0FLNLKRbcndy1OnQ1YRwAUKYRxIEicCHlglLSU/ROr3cUWDHQ7HJMdfSfo3rhpxd0IeUCQRwAUKYRxIEiFFgxUM0qNzO7DAAAUAxwsyYAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABggkIN4hcvXizMzQMAAAAlVp6D+NGjR/XJJ59o69at2ZZnZGRo3Lhx8vb2VsWKFdWwYUNt2rQp34UCAAAApUmeg/jcuXM1YsQInTp1Ktvyt99+WzNnzlRSUpIMw1BUVJR69+6tmJiYfBcLAAAAlBZ5DuKbNm2Ss7Oz+vTpY11mGIZmz54ti8Wid999V7t371b//v2VlJSkd999t0AKBgAAAEqDPAfxEydOKCAgQK6urtZlO3fu1JkzZ9S1a1c9++yzatmypT799FO5urpqzZo1BVIwAAAAUBrkOYifO3dOlStXzrYsIiJCktS7d2/rsvLly6tevXo6fvx4XncFAAAAlDp5DuLOzs5KSEjItmzr1q2yWCxq3759tuWenp5KT0/P664AAACAUifPQbxOnTo6cuSIzp8/L0m6cuWK1qxZIw8PD7Vq1Spb23PnzsnPzy9/lQIAAAClSJ6DeK9evZSenq6HH35YK1as0LBhw3Tx4kX16tVLjo6O1nYXL17UsWPHVKNGjQIpGAAAACgNnPLa8aWXXtLixYu1du1arVu3ToZhyN3dXf/5z3+ytfvhhx9kGIY6dOiQ72IBAACA0iLPQbxixYratm2bZs6cqYMHD6pWrVp69tln1bhx42ztIiIi1LJly2w3cAIAAABlXZ6DuCQFBATccH7wuXPn5mcXAAAAQKmU5zHiGzdu1B9//HFTbf/8809t3Lgxr7sCAAAASp08B/HOnTtr9OjRN9X22WefVZcuXfK6K+3du1fTpk1T9+7dVa1aNbm4uMjLy0tBQUEaP368Tp8+nWv/7du3a+DAgdYHENWoUUOhoaGKioq64b7N6gsAAIDSLc9BXLr6SPvCaHuto0ePqkWLFnr11Ve1evVqZWZmqmXLlqpYsaL+/PNPzZgxQ02aNNH69ett9l+wYIHatm2rZcuWKT09Xc2bN1dCQoLCwsIUFBSkdevW2d23WX0BAABQ+uUriN+sxMREubi45KmvYRjy8/PTa6+9pkOHDun06dPavn27jh07pj179qhFixa6ePGi+vfvr3PnzmXrGxkZqeHDhysjI0Njx47VqVOntGPHDp0+fVqPPvqokpOTNWDAAP3zzz859mtWXwAAAJQNhR7EDxw4oH379ql69ep56l+9enUdO3ZMkydPVoMGDbKta9Gihb777js5OTkpLi5OS5YsybZ+8uTJSk9PV7t27TRjxgw5OztLkjw8PDRv3jzVqVNHcXFxmjVrVo79mtUXAAAAZcNNB/H33ntPdevWtb4kaceOHdmWXf8KCAhQs2bNlJaWpl69euWpQDc3N3l6etpdX7duXeuUiQcOHLAuT05O1sqVKyVJI0aMyNHP1dVVISEhkpQjwJvVFwAAAGXHTU9fmPWEzCwWi0WXL1/OtswWi8Wi3r17a8qUKXmt8YYuX74sSdkC++7du5WSkiJJ6tixo81+nTp1kiQdO3ZMp0+fVkBAgKl9AQAAUHbcdBAPCQlR586dJV0dt92lSxc1b95c77//vs32FotFHh4eCgwMlK+vb4EUa8vvv/9unYUkK+BK0qFDhyRJLi4uqlGjhs2+gYGB1vcHDx60BmKz+gIAAKDsuOkgXqtWLdWqVcv6dceOHdWyZcts4beoXb58WU899ZQkKSgoKNvTOy9cuCBJ8vX1lcVisdm/QoUK1vdxcXGm971eamqqUlNTrV8nJCTYbQsAAICSJc9P1gwPDy/AMm6dYRh6/PHHtWfPHrm7u2vRokVycPi/Ie9Zw0Nym63Fzc3N+j45Odn0vtebPn26Jk+ebHc9AAAASq4imb6wMDz77LNatGiRXFxctGzZMjVt2jTbend3d0nSlStX7G4ja2y5dHVGE7P7Xm/8+PGKj4+3vmJjY+22BQAAQMmS5yviWY4fP66VK1cqKipKSUlJyszMtNnOYrFo3rx5+d2dJOn555/XnDlz5OLiom+++SbbkJQsWePS4+LiZBiGzWEiWcNIrm1vZt/rubq6ytXV1e56AAAAlFz5CuKvvPKK3nrrLWv4zu3pmQUVxJ9//nnNnj1bzs7OWrZsme677z6b7Ro1aiTp6pXpmJiYbOPbsxw9ejRHezP7AgAAoOzIcxCfO3euZsyYIUlq3ry52rZtq8qVK2cbp13QXnjhhWwh/P7777fbNigoSO7u7kpJSdHGjRv173//O0ebDRs2SJJq166dbeYSs/oCAACg7MhXELdYLJo2bZrGjRtXkDXZNGbMGL377rvWEP7AAw/k2t7T01O9e/fWN998o7lz5+YIxKmpqZo/f74kadCgQcWiL4CbE3P5ss6npZldRrHg5+ysmtfcAA4AKDnyHMQPHTqkihUrFkkIHz9+vGbNmmW9MTO3K+HXmjhxor7//ntFRERo3Lhxmjp1qpydnZWcnKwnn3xS0dHR8vHx0ZgxY4pNXwC5i7l8WY23bVOynftRyhoPBwcduOMOwjgAlEB5DuKurq6qU6dOQdZi09atW61DYLy9vTVz5kzNnDnTZttevXrplVdesX7drFkzzZ07V0888YTefPNNzZs3T7Vq1VJUVJQSEhLk7u6uZcuWyc/PL8e2zOoLIHfn09KUnJmpRY0bq3Eusw6VBQeSk/XYgQM6n5ZGEAeAEijPQbxVq1aKjIwsyFpsuvaBNufPn9f58+fttq1Xr16OZaGhoWrWrJlmzpypzZs3a+/evapUqZL69eunV155RQ0aNLC7PbP6Arixxh4eau3lZXYZAADkWZ6D+PPPP6/7779fixcv1qOPPlqQNWXTuXPnXGdjuRl33HGHvvnmmxLVFwAAAKVbnqc46dOnj6ZOnaonnnhCr7/+ui5evFiAZQEAAAClW56viNetW1eSlJ6erokTJ2rixIny8/OTp6enzfYWiyXb/NkAAABAWZbnIH7s2LEcy86dO6dz587ZbG/rCZMAAABAWZXnIL5+/fqCrAMAAAAoU/IcxDt16lSQdQAAAABlSuE9jx4AAACAXXm+In6t9PR07dy5U7GxsUpOTtbgwYMLYrMAAABAqZWvK+KGYWjatGmqXLmy2rVrp0GDBmno0KHZ2jz++OOqW7cuM6YAAAAA18hzEDcMQw8++KBee+01Xbx4UTVr1lS5cuVytOvRo4eOHTum//3vf/kqFAAAAChN8hzEFy5cqOXLl6tu3bratm2boqOj1aJFixztevToIQcHB/3888/5KhQAAAAoTfIcxMPCwmSxWLRkyRLddtttdtt5enqqbt26NucdBwAAAMqqPAfxP//8U9WrV1ebNm1u2LZixYo6ffp0XncFAAAAlDp5DuLJycmqWLHiTbVNSUnJ624AAACAUinPQbxy5cr666+/btguOTlZBw8eVI0aNfK6KwAAAKDUyfM84h06dNCSJUu0ePFiPfroo3bbffDBB7py5YruvvvuvO4KKDUe+OIBs0sAAADFRJ6viI8aNUqGYWj06NH64YcfcqzPzMzUnDlz9Oqrr8rR0VHPPPNMvgoFAAAASpM8B/E777xTEyZMUFxcnPr166dq1aopMjJSknTfffepSpUqeu6555Senq7XX39djRs3LrCiAQAAgJIuX4+4nzp1qmrUqKEJEyZkmxXlxx9/lCT5+vrqjTfe0JNPPpm/KgEAAIBSJl9BXJKeeOIJDR48WOvWrdMff/yhuLg4lStXTi1atFC3bt3k6elZEHUCAAAApUq+g7gkubm5qVevXurVq1dBbA4AAAAo9fI8RhwAAABA3hXIFXFJunjxopKSkpSZmWm3Tc2aNQtqdwAAAECJlq8gfuzYMU2ePFkrVqxQXFxcrm0tFovS09PzszsAAACg1MhzEN+/f786dOigixcvyjCMG7a/mTYAAABAWZHnMeLjxo1TXFycWrZsqZUrV+rvv/9WZmZmri8AAAAAV+X5ivimTZvk5uamX375RZUqVSrImgAAAIBSL89XxDMyMtSoUSNCOAAAAJAHeQ7ijRo1UkJCQkHWAgAAAJQZeQ7ijz/+uKKjoxUREVGQ9QAAAABlQr6C+KBBgzRgwAB98803BVkTAAAAUOrlax7xL7/8UgMHDtSgQYNUvnx51atXT56enjbbWiwWrV27Nj+7AwAAAEqNPAfxtLQ0PfLII1q+fLkMw1BcXJy2b99ut73FYsnrrgAAAIBSJ89BfPr06fr222/l5OSkfv366bbbbpO/vz+BGwAAALgJeQ7iX3zxhSwWi1auXKl77723IGsCAAAASr0836x54sQJ1a5dmxAOAAAA5EGeg3jlypXl6+tbkLUAAAAAZUaeg3ivXr0UGRmpuLi4gqwHAAAAKBPyHMQnT56sihUrKjQ0VElJSQVZEwAAAFDq5flmzVWrVumpp57S1KlTVb9+fT388MOqX7++3XnEJWnw4MF53R0AAABQquQ5iIeEhMhiscgwDJ05c0bvvffeDfsQxAEAAICr8hzEO3bsyJzhAAAAQB7lOYiHh4cXYBkAAABA2ZLnmzUBAAAA5B1BHAAAADABQRwAAAAwQZ7HiDs6Ot50WwcHB3l7e6tu3brq3LmznnjiCdWvXz+vuwYAAABKvDxfETcM46ZfGRkZiouL086dO/XOO++oRYsW+vzzzwvyOAAAAIASJc9BPDo6Wu+9955cXFx01113ad68edq1a5eioqK0a9cuff7552rbtq1cXV313nvvae/evfr666/VpUsXpaam6sknn9SuXbsK8lgAAACAEiPPQfzMmTMaM2aMhg8fri1btmjo0KEKCgpSYGCggoKCFBISooiICA0fPlxjxoxRUlKSBgwYoDVr1ujJJ59URkaG3n///YI8FgAAAKDEyHMQnzZtmtzd3TVr1qxc27399ttyd3fXG2+8YV02ffp0OTs7a8OGDXndPQAAAFCi5TmIb926VQ0bNpSrq2uu7VxdXdWwYUNt3brVuqx8+fJq1KiRzpw5k9fdAwAAACVanoN4UlKSzp8/f1Ntz58/r6SkpGzLnJycbmnmFQAAAKA0yXMQDwwM1LFjx7RmzZpc261Zs0bR0dEKDAzMtjw6OloVK1bM6+4BAACAEi3PQXzw4MEyDEMPPvigwsLCdOXKlWzr09LStGDBAg0cOFAWi0VDhgyxrjt06JAuXryo5s2b571yAAAAoATL8wN9nn/+ef38889av369hg8frtGjR6tRo0by9vZWQkKCDh48qOTkZBmGoS5duui5556z9l2yZIkqV66svn37FsAhAAAAACVPnq+IOzk56aefftK4ceNUrlw5Xbp0STt37tT69eu1c+dOXbp0SeXKldP48eP1448/ysnp/zL/pEmTdPr0aQ0bNqxADgIAAAAoafJ8RVy6OiPKG2+8oQkTJmjz5s06dOiQEhMT5eXlpYYNGyo4OFienp4FVSsAAABQauQriGfx9PRU9+7d1b1794LYHAAAAFDq5XloCgAAAIC8K5Ar4pKUmpqqCxcuKC0tzW6bmjVrFtTuAAAAgBItX0E8MzNTs2fPVlhYmA4cOCDDMOy2tVgsSk9Pz8/uAAAAgFIjz0E8IyNDvXv31po1a3IN4Flupg0AAABQVuR5jPinn36q1atX684779Thw4fVvn17WSwWZWRk6OzZs/r+++/Vvn17ubu764svvlBmZmZB1g0AAACUaHkO4l9++aUsFos+//xz1atXz7rcYrHIz89P999/vzZt2qR//etfCgkJ0ZYtWwqkYAAAAKA0yHMQ37dvn2rWrKlGjRpJuhrApZxDUD744AM5Ozvr7bffzkeZAAAAQOmS5yCenJwsf39/69eurq6SpPj4+GztfHx81KRJE66IAwAAANfIcxD39/dXQkJCtq8l6fDhwznaJiQkKC4uLq+7AgAAAEqdPAfxWrVq6e+//7Z+3bp1axmGobCwsGztfvvtNx09elRVqlTJe5UAAABAKZPnIN61a1clJCRo3759kqSHHnpIrq6u+uSTT/Tggw/qgw8+0IQJE9SzZ09JUr9+/QqmYgAAAKAUyPM84n379tWPP/6offv2qVmzZqpWrZreffddjRw5Ut9++62WL18u6erNm82aNdPkyZMLrGgAuG3nTrNLAAAgX/IcxIOCgrR9+/Zsy5566inddtttmj9/vo4ePSoPDw917txZw4cPl4eHR76LBQAAAEqLfD3i3pbbb79dt99+e0FvFgAAAChV8jxGvHXr1mrfvr1SU1MLsh6b/v77by1evFgvvPCCOnfuLG9vb1ksFuvc5fbMnz/f2s7eq0+fPrluY/v27Ro4cKACAgLk6uqqGjVqKDQ0VFFRUTesOz99AQAAULrl+Yr4/v371axZM+v84YXpq6++0vPPP5/n/t7e3mrevLnNdU2bNrXbb8GCBRo2bJgyMjLk5+en5s2bKyoqSmFhYVq6dKlWrFihLl26FHhfAAAAlH55DuLVqlVTWlpaQdZil7e3t7p06aLWrVvrtttuU1pamgYPHnzT/Vu1aqXw8PBb2mdkZKSGDx+ujIwMjR07VlOnTpWzs7OSk5P1xBNPaPHixRowYICioqJUsWLFAusLAACAsiHPQ1N69uypAwcOZJtLvLCEhoZq7dq1euutt/TQQw+pTp06hb7PyZMnKz09Xe3atdOMGTPk7OwsSfLw8NC8efNUp04dxcXFadasWQXaFwAAAGVDnoP4f/7zH/n6+mrIkCFKTEwsyJpMl5ycrJUrV0qSRowYkWO9q6urQkJCJElLliwpsL4AAAAoO/I8NOWXX37Rk08+qenTp6t+/foaMGCAmjZtKk9PT7t9bmU4SUGKiYnR0KFDFRMTIzc3NwUGBqp3797q3r27zfa7d+9WSkqKJKljx44223Tq1EmSdOzYMZ0+fVoBAQH57gsAAICyI89BPCQkRBaLRYZh6OzZs/r4449v2MesIB4dHa3o6Ohsy+bMmaPg4GAtXbpUVatWzbbu0KFDkiQXFxfVqFHD5jYDAwOt7w8ePGgN0/npCwAAgLIjz0G8Y8eON5w+0Gzly5fXiBEjNHDgQDVo0EB+fn46efKkvv76a02ZMkWbN2/Wvffeq99//z3blfwLFy5Iknx9fe0eY4UKFazv4+LiCqTv9VJTU7NND5mQkJDb4QIAAKAEyXMQv9VZSMzQt29f9e3bN9uyOnXqaOzYsWrfvr06d+6syMhIffDBBxo7dqy1TdbQEhcXF7vbdnNzs75PTk4ukL7Xmz59uiZPnmx3PQAAAEqum75Zc8qUKZo/f34hllK0goOD1b9/f0nSsmXLsq1zd3eXJF25csVu/8uXL1vfe3h4FEjf640fP17x8fHWV2xsrN22AAAAKFluOohPmjRJn3/+uc11Xbp00XPPPVdQNRWZ9u3bS5IOHz6cbbmvr6+kq8NGDMOw2TdrCMq17fPb93qurq7y9vbO9gIAAEDpkOfpC68VHh6uXbt2FcSmilTW8JHrH0zUqFEjSVevasfExNjse/To0Rzt89sXAAAAZUeBBPGSau/evZKUY3aToKAg6xCTjRs32uy7YcMGSVLt2rWzzXqSn74AAAAoO8psED9x4oQWLVok6epTQq/l6emp3r17S5Lmzp2bo29qaqp1vPygQYMKrC8AAADKjlIbxGNjYzV48GD99ttvOcZqR0REqGvXrkpISJCPj49eeumlHP0nTpwoJycnRUREaNy4cdbhK8nJyRo+fLiio6Pl4+OjMWPGFGhfAAAAlA0lIojHxsbKz8/P+urTp4913bXLH3jgAevyjIwMffHFF2rbtq18fHwUFBSku+66S9WqVVNwcLAOHz4sf39/rVy5UtWrV8+xz2bNmmnu3LlydHTUm2++qapVq6pNmzYKCAjQokWL5O7urmXLlsnPz69A+wIAAKBsKBFBPCMjQ//884/1FR8fb11nb7m/v79mzJihfv36KSAgQDExMdq5c6dSUlLUrl07TZs2Tfv371dwcLDd/YaGhmrLli3q37+/HB0dtXfvXnl5eWnIkCHas2ePunXrVih9AQAAUPrd0gN9IiIi5OjomGO5xWKxu+7aNunp6bdeoa7e1GhvKkB7PDw8sj2kJ6/uuOMOffPNN0XeFwAAAKXbLQXxWw3DAAAAAGy76SAeFhZWmHUAAAAAZcpNB/EhQ4YUZh0AAABAmVIibtYEAAAAShuCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYAKCOAAAAGACgjgAAABgAoI4AAAAYIJ8BXFHR0d17969oGoBAAAAyox8BXHDMGQYRrZlo0ePVteuXfNVFAAAAFDa3XQQf+WVV/Tzzz8rISEh13a7d+9WeHh4fusCAAAASjWnm204Y8YMvfnmm3JwcFCLFi3UoUOHwqwLAAAAKNVuOoh//fXX2rRpkzZu3Kg//vhDu3fvliStX79ed911l7p376577rlH6enphVYsAAAAUFrcdBAfMGCABgwYIEmKj4/Xxo0b9cADD8jJyUk7duzQtm3b9Prrr1vbv/XWWwoODtbtt98uJ6eb3g0AAABQJuTpZk0fHx/dd999kqQOHTro7NmzWrJkiUJCQlSuXDlJ0tixYxUcHCwfHx916dJFkydPLriqAQAAgBLupoP4unXrlJKSYnNdhQoVNGjQIM2bN08tWrSQJH322Wd67LHHVKVKFYWHh2vKlCkFUzEAAABQCtz0mJF77rlHzs7Oat26tTp27HjDmzVDQ0MVGhoqSTp16pQ2btyYv0oBAACAUuSmr4gPGzZMgYGB+v333/XWW2/pgQcekCTt2bNHr7zyijZs2GD3Rs2qVavqoYceKpiKAQAAgFLgpoP4p59+qv379+vs2bNavny5nn32WUnS+fPnNWPGDHXp0kUVKlTQH3/8IenqfOKZmZmFUzUAAABQwt3ydCZ+fn7q27ev+vbtq9mzZ6tt27YaPXq0Vq1apTVr1uj06dOyWCxq06aNypUrp3bt2qlDhw7q2LGjgoODC+MYAAB5dTFWSv7H7CrM51FRKl/D7CoAlDH5nlfQ09NTgwYN0qBBgyRJbdu21bZt2zRw4EBt2rRJv/zyi3755RdZLBZlZGTku2AAQAG5GCt9eIeUlmx2JeZz9pBGbiOMAyhSBT7Bd9ac4UuWLJEkHT16VOHh4dq0aVNB7woAkB/J/1wN4f/6VPJrYHY15jl/WFr++NXzQRAHUITyFcRr1qypKlWq5NomMDBQgYGBGjZsWH52BQAoLH4NpKpBZlcBAGVOvoL4sWPHciwzDCM/mwQAAADKhAIfmvLtt9/q8uXLBb1ZAAAAoFQp8CBeuXLlgt4kAAAAUOrc9DziAAAAAAoOQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMEGJCOJ///23Fi9erBdeeEGdO3eWt7e3LBaLLBbLTfXfvn27Bg4cqICAALm6uqpGjRoKDQ1VVFRUse0LAACA0q1EBPGvvvpKjz32mN59911t2LBBiYmJN913wYIFatu2rZYtW6b09HQ1b95cCQkJCgsLU1BQkNatW1fs+gIAAKD0KxFB3NvbW126dNGYMWO0ZMkSLVy48Kb6RUZGavjw4crIyNDYsWN16tQp7dixQ6dPn9ajjz6q5ORkDRgwQP/880+x6QsAAICywcnsAm5GaGioQkNDrV9v3rz5pvpNnjxZ6enpateunWbMmGFd7uHhoXnz5mnLli2Kjo7WrFmz9MYbbxSLvgBQ5D7pZHYFAFAmlYgr4nmRnJyslStXSpJGjBiRY72rq6tCQkIkSUuWLCkWfQEAAFB2lNogvnv3bqWkpEiSOnbsaLNNp05XrwIdO3ZMp0+fNr0vAAAAyo5SG8QPHTokSXJxcVGNGjVstgkMDLS+P3jwoOl9AQAAUHaUiDHieXHhwgVJkq+vr91pDitUqGB9HxcXZ3rf66Wmpio1NdX6dUJCgt22AAAAKFlK7RXxrOEhLi4udtu4ublZ3ycnJ5ve93rTp0+Xj4+P9WXvCjsAAABKnlIbxN3d3SVJV65csdvm8uXL1vceHh6m973e+PHjFR8fb33FxsbabQsAAICSpdQOTfH19ZV0deiHYRg2h4lkDSO5tr2Zfa/n6uoqV1dXu+sBAABQcpXaK+KNGjWSdPXKdExMjM02R48ezdHezL4AAAAoO0ptEA8KCrIOE9m4caPNNhs2bJAk1a5dWwEBAab3BQAAQNlRaoO4p6enevfuLUmaO3dujvWpqamaP3++JGnQoEHFoi8AAADKjlIbxCVp4sSJcnJyUkREhMaNG6e0tDRJV2cqGT58uKKjo+Xj46MxY8YUm74AAAAoG0pEEI+NjZWfn5/11adPH+u6a5c/8MAD2fo1a9ZMc+fOlaOjo958801VrVpVbdq0UUBAgBYtWiR3d3ctW7ZMfn5+OfZpVl8AAACUDSUiiGdkZOiff/6xvuLj463r7C3PEhoaqi1btqh///5ydHTU3r175eXlpSFDhmjPnj3q1q2b3f2a1RcAAAClX4mYvrB27doyDCPP/e+44w598803JaovAAAASrcScUUcAAAAKG0I4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACUp9EJ8/f74sFkuurz59+tjtv337dg0cOFABAQFydXVVjRo1FBoaqqioqBvuOz99AQAAULo5mV1AUfH29lbz5s1trmvatKnN5QsWLNCwYcOUkZEhPz8/NW/eXFFRUQoLC9PSpUu1YsUKdenSpcD7AgAAoPQrM0G8VatWCg8Pv+n2kZGRGj58uDIyMjR27FhNnTpVzs7OSk5O1hNPPKHFixdrwIABioqKUsWKFQusLwAAAMqGUj80Ja8mT56s9PR0tWvXTjNmzJCzs7MkycPDQ/PmzVOdOnUUFxenWbNmFWhfAAAAlA0EcRuSk5O1cuVKSdKIESNyrHd1dVVISIgkacmSJQXWFwAAAGVHmRmaEhMTo6FDhyomJkZubm4KDAxU79691b179xxtd+/erZSUFElSx44dbW6vU6dOkqRjx47p9OnTCggIyHdfAAAAlB1lJohHR0crOjo627I5c+YoODhYS5cuVdWqVa3LDx06JElycXFRjRo1bG4vMDDQ+v7gwYPWMJ2fvgAAACg7Sv3QlPLly2vEiBFav369Tp48qdTUVP3111+aMWOGPDw8tHnzZt177726dOmStc+FCxckSb6+vrJYLDa3W6FCBev7uLi4Aul7vdTUVCUkJGR7AQAAoHQo9UG8b9+++uijj9S5c2dVrVpVLi4uqlOnjsaOHatffvlFjo6OioyM1AcffGDtkzW0xMXFxe523dzcrO+Tk5MLpO/1pk+fLh8fH+vL3hV2AAAAlDylPojnJjg4WP3795ckLVu2zLrc3d1dknTlyhW7fS9fvmx97+HhUSB9rzd+/HjFx8dbX7GxsXbbAgAAoGQp00Fcktq3by9JOnz4sHWZr6+vpKvDRgzDsNkvawjKte3z2/d6rq6u8vb2zvYCAABA6VDmg3jWEJK0tDTrskaNGkm6elU7JibGZr+jR4/maJ/fvgAAACg7ynwQ37t3ryRlG38dFBRkHWKyceNGm/02bNggSapdu3a2WU/y0xcAAABlR5kO4idOnNCiRYskST179rQu9/T0VO/evSVJc+fOzdEvNTVV8+fPlyQNGjQo27r89AUAAEDZUaqDeGxsrAYPHqzffvstx3jtiIgIde3aVQkJCfLx8dFLL72Ubf3EiRPl5OSkiIgIjRs3zjp0JTk5WcOHD1d0dLR8fHw0ZsyYHPvNT18AAACUDaU6iGdkZOiLL75Q27Zt5ePjo6CgIN11112qVq2agoODdfjwYfn7+2vlypWqXr16tr7NmjXT3Llz5ejoqDfffFNVq1ZVmzZtFBAQoEWLFsnd3V3Lli2Tn59fjv3mpy8AAADKhlIdxP39/TVjxgz169dPAQEBiomJ0c6dO5WSkqJ27dpp2rRp2r9/v4KDg232Dw0N1ZYtW9S/f385Ojpq79698vLy0pAhQ7Rnzx5169bN7r7z0xcAAAClX6l+xL2Hh4fGjh2br23ccccd+uabb4q8LwAAAEq3Un1FHAAAACiuCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAkI4gAAAIAJCOIAAACACQjiAAAAgAmczC4AAAAAhSM+Pl7Jyclml2E6Dw8P+fj4mF1GDgRxAACAUig+Pl4ffvih0tLSzC7FdM7Ozho5cmSxC+MEcQAAgFIoOTlZaWlp6tevnypVqmR2OaY5d+6cvvvuOyUnJxPEAQAAUHQqVaqkgIAAs8uADdysCQAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJiAIA4AAACYgCAOAAAAmIAgDgAAAJjAyewCAAAAUHg++eQTs0uAHVwRBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATEAQBwAAAExAEAcAAABMQBAHAAAATOBkdgEAAJQGJy+mKO7SFbPLMJ2vp4uqlXc3uwygRCCIAwCQTycvpuieWRuUkpZhdimmc3d21K8vdiKMAzeBIA4AQD7FXbqilLQMzR4UpHr+5cwuxzRHzibpuaV7FHfpSr6C+NkzCUq4mFKAlZVM3uXd5V/Z2+wyUIgI4gAAFJB6/uXUrJqP2WWUaGfPJOiJf3+u1MvpZpdiOlc3J33yRShhvBQjiAMAgGIj4WKKUi+n66VXe6lmrYpml2OamOP/6K3Xf1LCxRSCeClGEAcAAMVOzVoVVa9hZbPLAAoVQRwAgALSZ85ms0sAUIIQxAEAQLEz6vEvzC4BKHQ80AcAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBHAAAADABQRwAAAAwAUEcAAAAMAFBvJBt375dAwcOVEBAgFxdXVWjRg2FhoYqKirK7NIAAABgIoJ4IVqwYIHatm2rZcuWKT09Xc2bN1dCQoLCwsIUFBSkdevWmV0iAAAATEIQLySRkZEaPny4MjIyNHbsWJ06dUo7duzQ6dOn9eijjyo5OVkDBgzQP//8Y3apAAAAMAFBvJBMnjxZ6enpateunWbMmCFnZ2dJkoeHh+bNm6c6deooLi5Os2bNMrlSAAAAmIEgXgiSk5O1cuVKSdKIESNyrHd1dVVISIgkacmSJUVZGgAAAIoJgngh2L17t1JSUiRJHTt2tNmmU6dOkqRjx47p9OnTRVYbAAAAigeCeCE4dOiQJMnFxUU1atSw2SYwMND6/uDBg0VSFwAAAIoPJ7MLKI0uXLggSfL19ZXFYrHZpkKFCtb3cXFxNtukpqYqNTXV+nV8fLwkKSEhoaBKzVViUqIu63KR7KukSExKlGeC5y33S0pMUublzEKoqORKSkxSgvut/ywnJSZKly4VQkUlV1JCghIM49Y7JiZJqXnoV1olJkl5/Pc1KTFBmanJBVxQyZWUmKCEBNu//24kMSlR6en87smSmJSohAT3vPVNTNTly5zLLImJifL0vPXf4bcqK6cZN/PvsoECN2XKFEOSUaNGDbttMjIyDEmGJOOLL76w2WbixInWNrx48eLFixcvXrxKzis2NvaGmZEr4oXA3f3qJ9crV67YbXPtJ1QPDw+bbcaPH68XXnjB+nVmZqYuXLigihUr2r3SXholJCSoRo0aio2Nlbe3t9nllGicy4LBeSw4nMuCw7ksOJzLglMWz6VhGEpMTFTVqlVv2JYgXgh8fX0lXR1yYhiGzdCcNXzl2vbXc3V1laura7Zl5cuXL7hCSxhvb+8y8z9xYeNcFgzOY8HhXBYczmXB4VwWnLJ2Ln18fG6qHTdrFoJGjRpJunpFPCYmxmabo0eP5mgPAACAsoMgXgiCgoKsw1M2btxos82GDRskSbVr11ZAQECR1QYAAIDigSBeCDw9PdW7d29J0ty5c3OsT01N1fz58yVJgwYNKsrSSiRXV1dNnDgxxzAd3DrOZcHgPBYczmXB4VwWHM5lweFc5s5iGHmZ8wo3sm/fPrVq1Urp6ekaO3aspk6dKmdnZyUnJ+vJJ5/UokWL5OPjoyNHjsjPz8/scgEAAFDECOKF6PPPP9cTTzyhjIwM+fn5qVatWoqKilJCQoLc3d31v//9T926dTO7TAAAAJiAIF7Itm3bppkzZ2rz5s2Ki4tTpUqVdM899+iVV15RgwYNzC4PAAAAJiGIAwAAACbgZk0AAADABARxmO6dd96RxWKRxWLRM888k2vbSZMmWdte+ypXrpwaN26sp556Svv37y+iyouHkJAQm+fk+ld4eLi1j631zs7O8vf3V9euXfXJJ58oPT3dvIMySVxcnN544w21a9dOFSpUkLOzsypVqqQmTZqoX79+euedd3Tw4MFsfW72/F//PSjNLly4oLfffls9evRQ9erV5eHhIXd3d1WrVk333nuvpk6dqgMHDtxwO2fPnpWLi4ssFosqVqyo1NTUIqi++LD3s+Xk5CQ/Pz917txZH3/8sdLS0nL0TUlJ0Q8//KCJEyeqT58+qlq1apn7ObxWfs7lqVOn9PHHH+vBBx9U/fr15e7uLnd3d9WrV0+hoaHavXu3CUdUPO3atUvOzs6yWCxavny53XaZmZkKDg6WxWJRjx49irDC4ocna8J0n3/+ufX94sWL9fbbb8vNzS3XPq6urmrTpo2kq4+SPXnypA4dOqSDBw/q888/V1hYmB599NFCrbu48fb2VvPmze2ut/WUr/r168vf31+SlJycrCNHjmjdunVat26dwsLCtHr1anl5eRVazcXJzp071bt3b505c0aS5O/vrxYtWigzM1N//fWXDhw4oO+//1779+/XZ599lqP/jc6/dPNPWivJPvjgA40fP15JSUmSpAoVKqh+/fpycXHRmTNntGbNGq1Zs0avvfaaBgwYoGXLltnd1sKFC63B6MKFC/r+++/L5JSv1/9sJScn6/jx49qwYYM2bNighQsXas2aNSpXrpy1zaFDh/TAAw+YUW6xlpdzeeedd+rEiRPW/g0bNtSVK1d05MgRhYWFaeHChXrzzTf14osvFvnxFDetW7fWhAkTNHnyZD311FPq0KGDKlWqlKPd22+/rYiICJUvX17z5s0zodJixABM9NtvvxmSDAcHB8Pb29uQZCxevNhu+4kTJxqSjFq1auVY9+effxpNmjQxJBnu7u7GiRMnCrHy4mPIkCGGJKNTp0433UeSIckICwvLtvzKlSvGlClTrOtHjRpVsMUWU0lJSUa1atUMScbtt99ubN26Ndv6zMxMY8+ePcaECROMV199Ndu6vJz/0urFF1+0/uw8+OCDxq5du4zMzMxsbU6dOmXMmTPHqFu3ruHj45Pr9ho3bmxIMnx9fQ1JRrdu3Qqx+uInt5+t9PR0Y968eYaDg4MhyZgwYUK29fv27TNuv/1246mnnjI++eQTY+fOnYajo6MhyVi/fn3RHEAxkp9zWbduXWPYsGFGRESEkZGRYV1+9uxZ48EHH7T+zK9Zs6awD6NEuHLlitGqVStDkvGvf/0rx/p9+/YZrq6uhiRjwYIFJlRYvBDEYarHH3/c+gt25MiRhiSjS5cudtvnFsQNwzC2bdtm/Udx9uzZhVR18VKQQTxLr169DElGhQoVsv3iKa2WLl1qSDIcHR2NkydP3lJfgvhV33zzjfXn6vXXX79h+8uXLxtTpkyxuz4iIsL6IX358uWGJMNisRjHjh0ryLKLtZv52erfv78hyWjduvUNt0cQz9u5PHfunN0+qampRqNGjQxJRr9+/Qqq3BJv7969houLiyHJWLRokXV5Wlqa0bp1a0OScf/995tYYfHBGHGYJjk5WV999ZWkq+P3QkJCJEnr169XdHR0nrZ5++23W/+kePjw4QKpsyy6++67JV0dDvDPP/+YXE3hO3r0qCTJz89PVatWNbmakiczM1P/+c9/JEmdO3fWhAkTbtjH1dXV2seWrD9Xd+3aVf369VOzZs1kGIbCwsIKpuhSonbt2pKkK1eumFtIKWDvXOb20D0XFxfr80Bu5r6HsqJZs2aaNGmSJGnUqFE6deqUJGnq1KnatWuXKlasqE8++cTECosPgjhM8/XXXysxMVE+Pj7q16+f2rRpY/1le+248VthMBtngShr59Hb21uSdObMGT7A5cGuXbusIWT06NH53l5SUpK+/vprSbJ+QB8yZIgkKSwsTJmZmfneR2mxbds2SVLTpk1NrqTky+u5vHz5siTJ09OzwGsqyV5++WXdeeediouL0/Dhw7Vz50698cYbkqSPPvpIlStXNrnC4oEgDtNkhe1BgwbJ3d1d0v/9sp0/f36eftlu377depNYw4YNC6jSsmf9+vWSrt5ol9vVoNKiZ8+ecnK6eu96t27d9PHHH+v48eMmV1VybNq0yfq+U6dO+d7e119/raSkJOuHdEl67LHH5OTkpJiYGK1duzbf+yjJUlJSFBkZqSeeeEKbNm2Sh4eHxo4da3ZZJVJ+z2VSUpK+//57SQXzs1+aODo6asGCBXJ3d9eqVavUrVs3paena+DAgRo4cKDZ5RUbBHGY4vDhw9Zf3llXvKT/+2V74sQJrV69+pa2uXfvXg0dOlSS5O7urgEDBhRYvSXBhg0b7E6bl/UnwhtJS0vT1KlTtWrVKklXvx8Wi6UQqy4e6tatq/fee0+Ojo6KiYnR008/rdq1a6tSpUrq3r27pk6dqsjIyFy3kdv5t1gs1j97l0ZZM0qUL19eFSpUyPf2soalXPshvUqVKurevXu29WXF9T9bHh4eatasmT799FMNGjRIv/32m1q1amV2mSVCQZ/Ll156SefOnZOHh4eef/75Qqy8ZGrYsKFef/11SVenh61cubI++ugjk6sqXpi+EKbIuhresGFDtW3b1ro865ftjz/+qHnz5tmdX/Tvv/9WcHCw9euTJ08qJiZGmZmZcnZ21qefflrmxvrmNn1ezZo1bS5/4403rFPxpaSkKCoqSomJiZKuTtmV9Q9oWfD000+rbdu2euedd7RixQrFx8fr/PnzWr16tVavXq3XXntN/fr106effqqKFSvm6H+j6QsDAgIKs3xTJSQkSFK2Kd+u99BDD2np0qU5loeFhWX7MH7w4EFt2bJFkqwfrLOEhIToxx9/1Pfff68LFy4USOgvCa7/2UpPT9eJEyd06tQp/fDDD/L19dW77757w2lfUbDn8rPPPtN///tfSVen7axevXqh1V2SZY0Pl65OmVtW/r+9aebeK4qyKC0tzQgICDAkGdOnT8+xftmyZYYkw8XFJcfd6lmzplz/cnd3Nxo0aGA8/vjjxt69e4vqUIqF/Myacu3L0dHRqFixotG5c2fjo48+Mq5cuVJ4RRdzGRkZxt69e42FCxcaTz/9tHVqQ/3/GRXS0tKsbZk1xTBeeOEFQ5JRvnx5u20mTpxotG/f3vpyc3OzOXPPmDFjDElGw4YNc2wjNTXVqFChgiHJeO+99/5fe3ceE9XVhgH8GWCAgWFxARX1AwoCKoKg1G6U0qq1aCU1WrAiomlVNNaKe5pqNd1cAkbFpgnUqE2rohFciF2iolDrBhQVJSIKaJWlICLYgPB+fxhuHRkWdXSwPL9kIrnnvmfOPQ7wznDuewx9GR1OW6+t7Oxs8fHxaXdpR1ZNMdxc7tixQ5nPh8sd0r/S09OVspBN3/MbN2409rA6FCbi9MylpKQoZcn01fp+8JdtbGysTltb5Qs7o6dRvpB01dXVyZw5c5R52759u9LGRFwkNjZWKS9YUVHRrhg3N7dmr8G6ujrp0aNHi2/SRUQpc+rj42OIoXdo7XltZWVlKa/L1NTUVvtjIm6YuUxKShIzMzMBIEuWLHkKo/1vqKmpEXd3dwEg06dPl/j4eAEg1tbWUlBQYOzhdRhcI07PXNP6zsbGRvTp06fZWloLCwtUVFTonEtkTGq1GnFxccoupMePHzfyiDqWwMBAAPer7aSlpT12P/v371d2Nl26dKnetfbx8fEAgJycHJw+ffrJB/+cGzx4sLL7bdOSHno87ZnLXbt2YeLEibh37x4WL16Mr7/++lkO8bmyaNEi5Ofnw8XFBWvXrkV0dDSCg4NRU1ODqVOndrrqXC1hIk7PVElJCVJTUwEA3bp1Q48ePVp8AMD58+eVklJExmRqagpXV1cArNn8MH9/f3h5eQEA1q9f/9j9NN07YmVl1erPhqb1u49b5vS/pimhKS8vN/JInn+tzeXu3buVJHzRokX45ptvnvXwnhuHDh3Cpk2boFKp8P3338PGxkb5WqvVIi0tTXlT3dkxEadnasuWLbh37x7s7OxQXFyMmzdvtvhounOdn4rT01ZWVtZmucyKigqlcoqHh8ezGNZzw8TEBCtXrgRwv/TlqlWrHrmPv/76S6nWk5CQ0OrPhqb+f/zxR9y9e9dwF/IcyszMVEq2uru7G3k0z7fW5nLPnj0IDw9XkvDHeY13FtXV1Zg2bRpEBLNnz1Y2iAPub5q0Zs0aAMCSJUuUzdQ6Mybi9Ew1fYIVHh6ulCVrSVPFhO3bt6O2tvapj406rx07dmDAgAGIi4tDUVFRs/aMjAyEhITgzp07sLW1RXh4uBFG2bFNmDABn3zyCYD7v2DDwsKQlZXV7M/P1dXVSEhIQGlpqc7xLVu2oKGhAfb29krt8JZMmjQJ5ubmqKqqwu7duw16Hc+T7OxsZe8Fa2trvi6fQGtzuW/fPoSFhSnLUZiEty4mJgaFhYVwc3PTO1czZszA8OHDUVNToyTsnRnLF9Izk56ejry8PADAtGnT2jx/0qRJWLhwIW7fvo2kpCTlhySRoalUKuTl5SEmJgYxMTFwdHRE7969ISK4du2a8mdqW1tb7Ny5Ez179mzWR1ZWlk5JTX3mzp2LCRMmPJVr6Aji4uLg7OyMTz/9FDt37sTOnTvRtWtX9O3bFxqNBrdu3UJBQYGytOfdd9/Fm2++CeDfN+kTJ05ss3Rct27dMHbsWOzatQuJiYmIiIh4uhdmZA+/th4suSci0Gg0+OGHH9C7d2+dOH9/f503lg0NDQCA0NBQqNVq5XhnWtLyOHM5fvx41NfXQ61WIz09vcXv8169eiEpKempX0NHdvDgQSQkJMDExASbN2+GlZVVs3NUKhUSExPh7e2No0ePYsOGDQbZkfe5Zay7RKnziYqKEgAycODAdse8//77AkACAwNFhFVT9GHVlCdXX18vx44dk2XLlklwcLC4u7uLVqsVtVotDg4OEhgYKCtXrpSSkpJmsU3z355HXFzcs784IygrK5NVq1bJ8OHDxcnJSSwsLMTS0lKcnJxk+PDhsnz5crl48aJy/pEjR5Q5OnXqVLueIzU1VanUkp+f/7Quxahaem2pVCqxsbERHx8fiYmJabEChbOzc7tel53Bk8xle7+/O/vvpcrKSqXU67x589o8/7vvvhMAYmVlJZcuXXoGI+yYVCKd/G8CRERERERGwDXiRERERERGwESciIiIiMgImIgTERERERkBE3EiIiIiIiNgIk5EREREZARMxImIiIiIjICJOBERERGRETARJyIiIiIyAibiRERERERGwESciIgAAC4uLlCpVDhy5Iixh/LUREVFQaVS4fPPPzf2UIiIYGbsARARkX6VlZX49ttvsX//fly8eBHV1dWwt7eHg4MDPD09ERgYiJCQEHh5eRl7qKRHdnY2kpOT4eLigqioKGMPh4g6ICbiREQd0JkzZzB69GiUlJQAABwdHeHj44PGxkYUFBTgwoULSE5ORm5uLhISEow8WtInOzsbK1asQFBQEBNxItKLiTgRUQdTU1OD0NBQlJSUICAgAOvXr8dLL72ktIsIcnJykJSUBJVKZcSREhHRk2AiTkTUwRw4cADXr1+HqakpkpOT4eTkpNOuUqng6+sLX19fI42QiIgMgTdrEhF1MJcvXwYAdO/evVkS3haVSgWVSoWrV6/qbT9y5AhUKhVcXFxa7efChQv44IMP0KtXL1hYWMDNzQ2LFy9GVVWV3vMfvNHzUWMB4J9//kFsbCyGDRsGOzs7WFpaws3NDTNmzFDmoyUFBQWYO3cuBg4cCK1WC61WC09PT0RGRuLXX39tNfZBtbW1GDt2LFQqFTw9PXHlyhWd9oMHD2LcuHFwcnKCubk5unXrhlGjRiElJUXvfEydOhUAkJaWpvy/tPX/Q0SdjBARUYeyceNGASAAJC8v75Fim+KuXLmit/3w4cMCQJydnZu1OTs7CwBZtWqVWFlZibm5ufj5+YmXl5fSr6enp9y4ccOgsTdv3hRfX1/lPA8PD/H39xdLS0sBIBqNRvbt26f3erZt2yYWFhYCQMzMzMTb21sGDx4s9vb2AkB8fX11zp8yZYoAkOXLl+scLysrk2HDhgkAefnll6W8vFxpu3fvnkRFRSnj69Kli/j5+Ymjo6NybM6cOTr9jR8/Xvr16ycAxNbWVl599VWdh755IKLOh4k4EVEHc/nyZTEzMxMA8r///U82bdokV69ebVesIRJxtVoto0aNktLSUqUtOztbXF1dBYC88847Bo0dMWKEABAXFxfJzMxUjldWVsqECRMEgGi1WikoKGh2LaampgJAPvroI53kWUQkKytLYmNjdY7pS8Tz8/OVpDk0NFRqa2t1YpYuXSoApE+fPs3eEKSmpoqDg4MAkK1bt+q0bd68WQBIUFBQs2smIhJhIk5E1CHFx8crSWbTo3v37jJy5EhZuXKlnDt3Tm+cIRJxe3t7qaqqataelpam9H/y5EmDxGZkZCjHjx492iyurq5O6Ts6OlqnbejQoQJAwsLC9F6rPg8n4idPnlQ+2Z41a5Y0NDTonH/t2jUxNzcXU1NTOXXqlN4+k5KSBID0799f5zgTcSJqC9eIExF1QLNmzcKpU6cQEREBOzs7AEB5eTl++eUXLFu2DN7e3hg3bhz+/vtvgz/3hx9+CFtb22bHX3/9dQwZMgTA/RtKDRG7f/9+AMCwYcMQGBjYLE6tVmPevHnN4goLC3H69GkAwGeffdau63rYgQMHEBwcjLKyMnz11VeIj4+HiYnur8Xk5GTU1dVh6NChGDp0qN5+QkNDoVarceHCBdy4ceOxxkJEnROrphARdVB+fn7Ytm0bGhsbkZubi6ysLPzxxx9ISUnB9evXsWfPHhQWFuLEiRMwMzPcj3Nvb+9W286cOYPc3FyDxF68eBEAMGjQoBbjfHx8AABFRUW4e/cuNBoNcnJyAAB2dnYYOHBgyxfTgr179+KLL76AiYkJtm7dioiICL3n/fnnnwCAK1eu4LXXXmuxv6YyksXFxejVq9cjj4eIOicm4kREHZyJiQm8vb3h7e2NyZMnY926dZg/fz42bNiAzMxM7N69G2FhYQZ7vp49e7bZVl1dbZDY27dvtxn3YGJ7+/ZtaDQaJc7e3r7FuNYUFBSgoaEBtra2GDBgQIvnVVZWAgBKS0tRWlraZr+1tbWPNR4i6py4NIWI6DmjVqsRFxcHR0dHAMDx48ebnSMiemPr6ura7L9pN8/W2mxsbAwS27SM5ebNmy3GPbjco+n8pn9v3brVYlxrPv74Y0ydOhWVlZV46623cOLECb3nabVaAPeXCsn9+6pafbzxxhuPNR4i6pyYiBMRPYdMTU3h6uoKQDe5tra2BtByQpyfn99m3+fOnWuzraVPkR811svLCwBw9uzZFuOa2pydnaHRaAD8u1ylqqoK58+fbzG2JSYmJkhMTER0dDRu3bqFESNGID09vdl5Tc+jr60t3PWUiNrCRJyIqIMpKytDY2Njq+dUVFQoCaiHh4dyvOnrjIyMZjENDQ1ITExs8/kTEhL0Lj1JT09XbpAcPXq0QWLHjBkDADhx4oTeZLe+vh5xcXHN4pydnZWbJ7/88ss2r0kflUqFTZs2Yd68eaiursaoUaNw6NAhnXPee+89mJmZIScnR+/GPa2xsrICANy9e/exxkdE/31MxImIOpgdO3ZgwIABiIuLQ1FRUbP2jIwMhISE4M6dO7C1tUV4eLjSNnbsWADAmjVrkJmZqRyvrKzE5MmTW/3EusmdO3cQHh6O8vJy5djZs2cRFRUFAHj77bcREBBgkNhXXnkFI0eOBABERkYiKytLaauqqkJkZCSuXr0KrVaLBQsW6DzX6tWrYWJigp9++gnR0dGoqKjQac/Ozsa6devavN7Y2FgsXboUNTU1GDNmDH7++WelzcXFBfPnzwcAREREICEhodnynoqKCmzduhULFy7UOe7u7g4AOH/+fKtLdoioEzNW3UQiItLvwZ01AYijo6P4+fnJ4MGDpXv37spxW1tbOXjwoE5sVVWVuLu7CwAxMTGRfv36iZ+fn5ibm0vXrl1l/fr1j7Szpr+/v/Tv3195Tnd3d7l+/bpBYx/eWdPT01OGDBkiGo1G2Vlz7969eudq8+bNYm5uruysOWjQIPHz85MuXbo80s6aIiIrVqwQAGJhYSEpKSnK8YaGBpk9e7YyPisrK/Hz85MXX3xRXFxcRKVS6a0X3tjYKIMGDRIAYm1tLQEBARIUFCRBQUHcWZOIRIQb+hARdTj19fVy7NgxWbZsmQQHB4u7u7totVpRq9Xi4OAggYGBsnLlSikpKdEbX1JSIjNnzpTevXuLWq0WJycnmTZtmhQVFbVrQ5/Dhw9Lbm6uhIeHS48ePcTc3FxcXV1lwYIFUllZqfc5nyRWRKS2tlbWrl0rAQEBYmNjo8RNnz5dLl261Op85eXlycyZM6Vfv36i0WjExsZGPD09JSoqSn777Tedc1tLxEVEVq9erewQmpSUpNP2+++/S2RkpLzwwgtiaWkpWq1WPDw8JCQkRDZu3CjFxcXN+isuLpYpU6ZI3759Ra1Wt7nhEhF1LiqRFm6tJyIiaicXFxcUFhbi8OHDrBxCRNROXCNORERERGQETMSJiIiIiIyAiTgRERERkREwESciIiIiMgLerElEREREZAT8RJyIiIiIyAiYiBMRERERGQETcSIiIiIiI2AiTkRERERkBEzEiYiIiIiMgIk4EREREZERMBEnIiIiIjICJuJEREREREbARJyIiIiIyAj+D6ex3FEL89e8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n_fragments_per_subpocket_new = [len(fragments) for _, fragments in fragment_library_new.items()]\n", + "n_fragments_per_subpocket_old = [len(fragments) for _, fragments in fragment_library_old.items()]\n", + "plot_n_fragments_kinfraglib(n_fragments_per_subpocket_new, n_fragments_per_subpocket_old)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Fragment space " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.1 t-SNE plot\n", + "t-SNE plot of pre-filtered KinFragLib with fragments colored in based on each filter respectively. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def calc_tsne(fragment_library): \n", + " \"\"\"\n", + " Creates t-SNE embeddings of pre-filtered KinFragLib library.\n", + "\n", + " ----------\n", + " fragment_library : dict\n", + " fragment library organized in subpockets\n", + "\n", + " Returns\n", + " ---------\n", + " dataframe\n", + " with the t-SNE embedding \n", + " \"\"\"\n", + " # calculate MACCS fingerprints for t-sne \n", + " fragment_library[\"ROMol\"] = fragment_library.smiles.apply(Chem.MolFromSmiles)\n", + " fragment_library[\"maccs\"] = fragment_library.ROMol.apply(MACCSkeys.GenMACCSKeys)\n", + " pca = PCA(n_components=50)\n", + " crds = pca.fit_transform(list(fragment_library[\"maccs\"]))\n", + " crds_embedded = TSNE(n_components=2, init='pca', learning_rate='auto', random_state=0).fit_transform(crds)\n", + " tsne_df = pd.DataFrame(crds_embedded, columns=[\"X\", \"Y\"])\n", + "\n", + " return tsne_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def create_tsne_plots(fragment_library_concat, bool_filter, tsne_df):\n", + " \"\"\"\n", + " Creates t-SNE plots comparing pre-filtered and custom filtered fragment library.\n", + "\n", + " ----------\n", + " fragment_library : dict\n", + " fragment library organized in subpockets containing boolean column \n", + " defining if the fragments are part of the subset (specified in bool_filter)\n", + " bool_filter: str\n", + " filter that should be used for coloring the fragments (should be a column in fragment_library_concat)\n", + " tsne_df: dataframe\n", + " contains the t-sne embedding of pre-filtered KinFragLib\n", + " \"\"\"\n", + "\n", + " tsne_df[bool_filter] = fragment_library_concat[bool_filter]\n", + "\n", + " sns.scatterplot(\n", + " data=tsne_df.query(bool_filter + \" == 0\"),\n", + " x=\"X\",\n", + " y=\"Y\",\n", + " color='lightcoral',\n", + " alpha=0.5,\n", + " label=\"excluded\"\n", + " ).set_title(\"pre-filtered vs. custom KinfragLib fragments\")\n", + " sns.scatterplot(\n", + " data=tsne_df.query(bool_filter + \" == 1\"),\n", + " x=\"X\",\n", + " y=\"Y\",\n", + " color='green',\n", + " alpha=0.5,\n", + " label=\"included\"\n", + " )\n", + "\n", + " plt.legend()\n", + " plt.savefig(f\"figures/tsne_\" + bool_filter + \".png\", dpi=300, bbox_inches=\"tight\")\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# create bool_custom column indicating whether the fragment is in CustomKinFragLib or not\n", + "frag_keys = filter_results.keys()\n", + "frag_keys.to_list()\n", + "bool_keys = [x for x in frag_keys if \"bool\" in x]\n", + "\n", + "# go through all boolean columns (filters)\n", + "bool_custom = pd.Series([True]*len(filter_results))\n", + "for bool_key in bool_keys:\n", + " bool_custom = bool_custom & filter_results[bool_key] == 1\n", + "filter_results[\"bool_custom\"] = bool_custom\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate t-SNE coordinates once only \n", + "tsne_df = calc_tsne(filter_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### CustomKinFragLib t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZhcZZn9+e5Se3XX0nun9ySdjWwEQggkhEWRxR9GZRCRTRRGZzCgIyqCoAgijsPoOLiDozCOMuiwKvselgSSkK07S+97d3V1de13+X5/vPferuol6YSEJOSe58kDfavq1r23bvd36n3Pew7jnHPYsGHDhg0bNmwcBxCO9AHYsGHDhg0bNmx8ULCJjw0bNmzYsGHjuIFNfGzYsGHDhg0bxw1s4mPDhg0bNmzYOG5gEx8bNmzYsGHDxnEDm/jYsGHDhg0bNo4b2MTHhg0bNmzYsHHcwCY+NmzYsGHDho3jBjbxsWHDhg0bNmwcN7CJj42jFpFIBJdccglKSkrAGMNFF10EAGCM4bbbbrOe9+KLL4IxhhdffNHa9uSTT+Y952jD+HM4nvHQQw/h3nvvPdKHMQEPPPAAGGPYsGFD3vbBwUEsW7YMPp8PzzzzDADgtttuA2PsoN/rueeew7Jly+D1esEYw1//+tf3c+gHhTPOOAMLFizY53MmO8/a2lpccMEFB/2+U/2eH+94/fXXcdtttyEajR7pQ/nQQTrSB2DDxlT43ve+h7/85S/47W9/i4aGBoRCIQDA+vXrMWPGjH2+9sknn8TPfvYzm1wcA3jooYewdetWrFu37kgfyn7R2dmJc845B319fXj22WdxyimnAACuueYanHvuuQe1T845Lr74YsyePRuPPvoovF4vGhsbD+VhHzK8n/OcClP9nh/veP3113H77bfjyiuvRCAQONKH86GCTXxsHHKkUim43e73vZ+tW7eioaEBn/3sZ/O2m4vNkUAymYTH4zli72/jyGHXrl04++yzoSgKXnrpJZxwwgnWYzNmzNgvGZ8K3d3diEQi+MQnPoGzzjprn8890vff+znPqTDV7/l4aJoGVVXhdDoP6fvbOP5gt7psTIBZzn733Xexdu1aFBQUoLCwEJdddhkGBgbynmuWuR955BEsWbIELpcLt99+OwCgt7cX1157LWbMmAGHw4G6ujrcfvvtUFV1n+/f2toKxhieffZZ7NixA4yxvFbW/tpEV155JX72s59ZzzX/tba2AqBv2P/5n/+JxYsXw+12IxgM4lOf+hT27t2btx+z9P/yyy/j1FNPhcfjwdVXXw0AiMVi+NrXvoa6ujo4HA5UVlZi3bp1SCQSefuIxWL4whe+gHA4DJ/Ph3PPPRfNzc37PH8AGBgYgMPhwC233DLhsZ07d4Ixhp/85CcAaDE0j8XlciEUCmHZsmX47//+7/2+z2TIZDL47ne/i7lz58LlciEcDmPNmjV4/fXXAYx9Pg888MCE147/bAYGBvDFL34RVVVVcDqdKC4uxsqVK/Hss88CoGv8xBNPoK2tLe+zMhGJRPClL30JlZWVcDgcqK+vx80334xMJjPhff/pn/4J999/PxobG+F2u7Fs2TK88cYb4JzjnnvuQV1dHXw+H84880zs3r37gK7Jpk2bcNppp0GSJLz66qt5pAfYdwvob3/7G5YuXQq32405c+bgt7/9bd7rTCJx0003gTGG2travH2+8847+NSnPoVgMIiGhgYAwIYNG3DJJZegtrYWbrcbtbW1+MxnPoO2trYJx/7qq69ixYoVcLlcqKysxC233IJf//rXeb8T08W+Wnp/+ctfsHDhQrhcLtTX11v351TY1++5+dgPf/hD3HHHHairq4PT6cQLL7yAdDqNr371q1i8eDEKCwsRCoWwYsUK/N///d+E94hGo/j85z+PUCgEn8+H888/H3v37p1wn5rntWXLFnz605+29nvjjTdCVVU0NTXh3HPPhd/vR21tLX74wx9OeK/p/k0w79Xf//73mDt3LjweDxYtWoTHH38873j+5V/+BQBQV1c34W/g888/jzPOOAPhcBhutxvV1dX45Cc/iWQyuc9rboNgV3xsTIlPfOITuPjii3Hddddh27ZtuOWWW7B9+3a8+eabkGXZet4777yDHTt24Nvf/jbq6urg9XrR29uLk08+GYIg4NZbb0VDQwPWr1+PO+64A62trbj//vunfN/y8nKsX78eX/rSlzAyMoIHH3wQADBv3rxpHfctt9yCRCKBhx9+GOvXr8/bLwBce+21eOCBB3D99dfj7rvvRiQSwXe/+12ceuqp2Lx5M0pLS63X9PT04LLLLsPXv/513HnnnRAEAclkEqtXr0ZnZye+9a1vYeHChdi2bRtuvfVWvPfee3j22WfBGAPnHBdddBFef/113HrrrTjppJPw2muv4WMf+9h+z6G4uBgXXHABfve73+H222+HIIx9R7n//vvhcDisb8g33ngjfv/73+OOO+7AkiVLkEgksHXrVgwNDU3reuVCVVV87GMfwyuvvIJ169bhzDPPhKqqeOONN9De3o5TTz31gPb3uc99Du+88w6+//3vY/bs2YhGo3jnnXesY/vP//xPfPGLX8SePXvwl7/8Je+16XQaa9aswZ49e3D77bdj4cKFeOWVV3DXXXdh06ZNeOKJJ/Ke//jjj+Pdd9/FD37wAzDGcNNNN+H888/HFVdcgb179+I//uM/MDIyghtvvBGf/OQnsWnTpmnpcl599VXcdtttqKqqwtNPP23dR9PB5s2b8dWvfhXf+MY3UFpail//+tf4/Oc/j5kzZ2LVqlW45pprsGjRIqxduxb//M//jEsvvXRCRWPt2rW45JJLcN1111mLaGtrKxobG3HJJZcgFAqhp6cH9913H0466SRs374dRUVFAIAtW7bgnHPOwezZs/G73/0OHo8HP//5z/GHP/xh2ucwHWzatAnr1q3DbbfdhrKyMjz44IP4yle+gmw2i6997WuTvmZfv+eRSAQA8JOf/ASzZ8/Gj370IxQUFGDWrFnIZDKIRCL42te+hsrKSmSzWTz77LNYu3Yt7r//flx++eUAAF3XceGFF2LDhg247bbbsHTpUqxfv36frbqLL74Yl112Ga699lo888wz+OEPfwhFUfDss8/iS1/6Er72ta/hoYcewk033YSZM2di7dq1ADDtvwkmnnjiCbz99tv47ne/C5/Phx/+8If4xCc+gaamJtTX1+Oaa65BJBLBT3/6UzzyyCPWPTdv3jy0trbi/PPPx+mnn47f/va3CAQC6Orqwt/+9jdks1m7Ij0dcBs2xuE73/kOB8BvuOGGvO0PPvggB8D/8Ic/WNtqamq4KIq8qakp77nXXnst9/l8vK2tLW/7j370Iw6Ab9u2bb/HsXr1aj5//vwJ2wHw73znO9bPL7zwAgfAX3jhBWvbl7/8ZT7Z7b1+/XoOgP/rv/5r3vaOjg7udrv517/+9bz3B8Cfe+65vOfeddddXBAE/vbbb+dtf/jhhzkA/uSTT3LOOX/qqac4AP7v//7vec/7/ve/P+EcJsOjjz7KAfCnn37a2qaqKq+oqOCf/OQnrW0LFizgF1100T73NV3813/9FwfAf/WrX035nJaWFg6A33///RMeG39ePp+Pr1u3bp/vef755/OampoJ23/+859zAPxPf/pT3va77757wnUBwMvKyng8Hre2/fWvf+UA+OLFi7mu69b2e++9lwPgW7Zs2edx3X///RwAB8ALCwt5f3//lM81f2dyUVNTw10uV97vQCqV4qFQiF977bXWNvN63nPPPZPu89Zbb93ncXJO90U8Huderzfvfvv0pz/NvV4vHxgYsLZpmsbnzZvHAfCWlhZr+1S/b9M5T8YY37RpU972c845hxcUFPBEIrHPfU72vuY1aWho4Nlsdp+vV1WVK4rCP//5z/MlS5ZY25944gkOgN933315z7/rrrsm3KfmeY3/u7B48WIOgD/yyCPWNkVReHFxMV+7dm3ePqfzN4FzuldLS0t5LBaztvX29nJBEPhdd91lbbvnnnsmfEa5+xx/vW1MH3ary8aUGN9zv/jiiyFJEl544YW87QsXLsTs2bPztj3++ONYs2YNKioqoKqq9c+sdrz00ksAxvr25j9d1w/jGdFxMcZw2WWX5b1vWVkZFi1alDcZBgDBYBBnnnnmhH0sWLAAixcvztvHRz/60bxytHmdxl/HSy+9dFrH+rGPfQxlZWV51bG///3v6O7utlpuAHDyySfjqaeewje+8Q28+OKLSKVS070cE/DUU0/B5XLl7f/94OSTT8YDDzyAO+64A2+88QYURZn2a59//nl4vV586lOfytt+5ZVXAqBJqFysWbMGXq/X+nnu3LkA6Drmfts2t0/WFpoMH//4xzEyMoJ169ZB07RpHz8ALF68GNXV1dbPLpcLs2fPnvZ7A8AnP/nJCdvi8bhVdZAkCZIkwefzIZFIYMeOHdbzXnrpJZx55plWBQgABEHAxRdffEDnsT/Mnz8fixYtytt26aWXIhaL4Z133jno/X784x/Pqy6b+POf/4yVK1fC5/NBkiTIsozf/OY3E84dwIRz/cxnPjPl+42fTps7dy4YY3lVWkmSMHPmzLzPcLp/E0ysWbMGfr/f+rm0tBQlJSXTui8WL14Mh8OBL37xi/jd7343oUVvY/+wiY+NKVFWVpb3syRJCIfDE1ook5X++/r68Nhjj0GW5bx/8+fPB0AjwQBw1lln5T1+qBbcqdDX1wfOOUpLSycc2xtvvGEd1/7ObcuWLRNe7/f7wTm39jE0NGRds1yMv65TQZIkfO5zn8Nf/vIXa6T1gQceQHl5OT760Y9az/vJT36Cm266CX/961+xZs0ahEIhXHTRRdi1a9eBXBoApMmpqKjIa629H/zP//wPrrjiCvz617/GihUrEAqFcPnll6O3t3e/rx0aGkJZWdmEdlRJSQkkSZpwH46fBnI4HPvcnk6np3UOt9xyC2699VY89NBDuOyyyw6I/Iz/7AHA6XQeEDmd7B689NJL8R//8R+45ppr8Pe//x1vvfUW3n77bRQXF+fte2hoKK91a2Kybe8Hk93T5raDabmamOzcH3nkEVx88cWorKzEH/7wB6xfvx5vv/02rr766rzP1Pz9G//57+vcJ7tXPB4PXC7XhO257zXdvwkm3s990dDQgGeffRYlJSX48pe/jIaGBjQ0NODf//3f9/taGwRb42NjSvT29qKystL6WVVVDA0NTfilnUwnUVRUhIULF+L73//+pPuuqKgAAPziF7/A6Oho3usOJ4qKisAYwyuvvDLpdMj4bVOdm9vtzhOpjn8coD9uk12z6Sz6Jq666ircc889+OMf/4h/+Id/wKOPPop169ZBFEXrOV6vF7fffjtuv/129PX1WdWfCy+8EDt37pz2ewGkLXr11Veh6/qU5MdcBMYLjCdb4IqKinDvvffi3nvvRXt7Ox599FF84xvfQH9/P/72t7/t81jC4TDefPNNcM7zPof+/n6oqnrY75Vc3H777WCM4fbbb4eu63jwwQchSR/Mn8/x9+DIyAgef/xxfOc738E3vvENa7upfclFOBxGX1/fhH0eyD04HUy2P3PbZIv8dDHZ798f/vAH1NXV4X/+53/yHh9/P5q/f5FIJI/QHOpzB6b/N+FQ4fTTT8fpp58OTdOwYcMG/PSnP8W6detQWlqKSy655JC+14cRdsXHxpQwxYYm/vSnP0FVVZxxxhn7fe0FF1xgjakuW7Zswj+T+DQ2NuZtNyda3i9MAjP+G9QFF1wAzjm6uromPa7x0zpTnduePXsQDocn3Yd5DmvWrAEw8To+9NBD0z6PuXPnYvny5bj//vvx0EMPIZPJ4Kqrrpry+aWlpbjyyivxmc98Bk1NTQc85fGxj30M6XR60omt3PdwuVzYsmVL3vbJpmpyUV1djX/6p3/COeeck9f+mOqb7llnnYV4PD7BzO+//uu/rMc/SNx22224/fbb8ac//QmXXnrpfqcTDxdM4fx4kv7rX/96QjVq9erVeP755/MqDrqu489//vMhPaZt27Zh8+bNedseeugh+P1+LF269JC+F2MMDocjj/T09vZOuP9Wr14NgKqOufjjH/94SI8HmP7fhAPBVH/DciGKIpYvX25Nsb6ftuLxBLviY2NKPPLII5AkCeecc4411bVo0aJp6QO++93v4plnnsGpp56K66+/Ho2NjUin02htbcWTTz6Jn//854fcDyQXJoG5++678bGPfQyiKGLhwoVYuXIlvvjFL+Kqq67Chg0bsGrVKni9XvT09Fhjyv/4j/+4z32vW7cO//u//4tVq1bhhhtuwMKFC6HrOtrb2/H000/jq1/9KpYvX46PfOQjWLVqFb7+9a8jkUhg2bJleO211/D73//+gM7l6quvxrXXXovu7m6ceuqpE8ztli9fjgsuuAALFy5EMBjEjh078Pvf/x4rVqywJjz+67/+C1dffTV++9vfWlMvk+Ezn/kM7r//flx33XVoamrCmjVroOs63nzzTcydOxeXXHKJpZEyDecWLVqEt956awKhGxkZwZo1a3DppZdizpw58Pv9ePvtt/G3v/3NmoYxP6tHHnkE9913H0488UQIgoBly5bh8ssvx89+9jNcccUVaG1txQknnIBXX30Vd955J8477zycffbZB3QdDwVuvfVWCIKAW265BZxz/Pd///cHVvkxUVBQgFWrVuGee+5BUVERamtr8dJLL+E3v/nNBKO7m2++GY899hjOOuss3HzzzXC73fj5z39uTYeNr+rFYjE8/PDDE96zuLjYIhKToaKiAh//+Mdx2223oby8HH/4wx/wzDPP4O677z7kU0amfcaXvvQlfOpTn0JHRwe+973voby8PK+9e+6552LlypX46le/ilgshhNPPBHr16+3iPOhaucC0/+bcCAw/4b9+7//O6644grIsozGxkY8+OCDeP7553H++eejuroa6XTaqjQdid+JYxJHUFht4yiFOeGwceNGfuGFF3Kfz8f9fj//zGc+w/v6+vKeW1NTw88///xJ9zMwMMCvv/56XldXx2VZ5qFQiJ944on85ptvzpu+mQrvZ6ork8nwa665hhcXF3PG2ITpiN/+9rd8+fLl3Ov1crfbzRsaGvjll1/ON2zYsN/355zzeDzOv/3tb/PGxkbucDh4YWEhP+GEE/gNN9zAe3t7redFo1F+9dVX80AgwD0eDz/nnHP4zp07pzXVZWJkZIS73e4pp62+8Y1v8GXLlvFgMMidTievr6/nN9xwAx8cHLSeY04oTTaJNR6pVIrfeuutfNasWdzhcPBwOMzPPPNM/vrrr+cd0zXXXMNLS0u51+vlF154IW9tbc07r3Q6za+77jq+cOFCXlBQwN1uN29sbOTf+c538iZ9IpEI/9SnPsUDgYD1WZkYGhri1113HS8vL+eSJPGamhr+zW9+k6fT6bxjBsC//OUv522balrKvF/+/Oc/7/M6mNds/KQO52OTeWvXruXZbHbKaafJfjdWr17NV69evd/jNPeZO5FlorOzk3/yk5/kwWCQ+/1+fu655/KtW7fympoafsUVV+Q995VXXuHLly/nTqeTl5WV8X/5l3+xJuOi0WjeccGYYhv/zzzefZ3nww8/zOfPn88dDgevra3lP/7xjye9rpNdj6mmusZfExM/+MEPeG1tLXc6nXzu3Ln8V7/61aTHFolE+FVXXZX3+/fGG29MmLac6lpfccUV3Ov1TuuYp/s3YbJ7lXM+6Wf3zW9+k1dUVHBBEKy/cevXr+ef+MQneE1NDXc6nTwcDvPVq1fzRx99dNJrZWMiGOecfwD8ysYxBLOkPzAw8IHqKGzYsPHB4CMf+QhaW1unZab5YcNDDz2Ez372s3jttdcO2JfKxocDdqvLhg0bNj7EuPHGG7FkyRJUVVUhEongwQcfxDPPPIPf/OY3R/rQDjv++7//G11dXTjhhBMgCALeeOMN3HPPPVi1apVNeo5j2MTHhg0bNj7E0DQNt956K3p7e8EYw7x58/D73/8el1122ZE+tMMOv9+PP/7xj7jjjjuQSCRQXl6OK6+8EnfccceRPjQbRxB2q8uGDRs2bNiwcdzAHme3YcOGDRs2bBw3sImPDRs2bNiwYeO4gU18bNiwYcOGDRvHDWxx8zjouo7u7m74/f5J7dJt2LBhw4YNG0cfOOcYHR3db96gTXzGobu7G1VVVUf6MGzYsGHDhg0bB4GOjo59JgPYxGcc/H4/ALpwBQUFR/hobNiwYcOGDRvTQSwWQ1VVlbWOTwWb+IyD2d4qKCiwiY8NGzZs2LBxjGF/MhVb3GzDhg0bNmzYOG5gEx8bNmzYsGHDxnEDm/jYsGHDhg0bNo4b2BofGzZs2LBx3EHTNCiKcqQPw8YBQJZliKL4vvdjEx8bNmzYsHHcgHOO3t5eRKPRI30oNg4CgUAAZWVl78tnzyY+NmzYsGHjuIFJekpKSuDxeGyj2mMEnHMkk0n09/cDAMrLyw96XzbxsWHDhg0bxwU0TbNITzgcPtKHY+MA4Xa7AQD9/f0oKSk56LaXLW62YcOGDRvHBUxNj8fjOcJHYuNgYX5270efZRMfGzZs2LBxXMFubx27OBSfnU18bNiwYcOGDRvHDWziY8OGjQ8d9Hgcyt69yO7YAaWlBXo8fqQPyYaNoxa1tbW4995739c+XnzxRTDG3ve03KE4lv3BFjfbsGHjQwW1txfZN9+EPjxsbROCQTiWL4dUVnYEj8yGDRtHA+yKjw0bNj400OPxCaQHAPThYdq+n8qPFo0i29SE7ObNyDY3Q7O9XmzY+NDBJj42bNj40EDr759Aekzow8PQDA+QyaB0dCD15JNIP/UU0i+8gPSTTyL15JNQOjoO1+HaOEbBMxlofX1QOzuh9feDZzKH/z05xw9/+EPU19fD7XZj0aJFePjhh8E5x9lnn41zzz0XnHMAQDQaRXV1NW6++Wbr9Y8++iiWLVsGl8uFoqIirF27dtL3aW1tBWMMmzZtsrZFo1EwxvDiiy9a25588knMnj0bbrcba9asQWtr64R9vf7661i1ahXcbjeqqqpw/fXXI5FIWI/39/fjwgsvhNvtRl1dHR588MH3d5GmCZv42LBh40ODSRcgWaZ/ogieTE76HC0aReaVV6CPI0Z6fz8yr7xiV35sWNCjUWQ3bYKyYwfU3buhbN+O7KZN0A/zPfLtb38b999/P+677z5s27YNN9xwAy677DK8/PLL+N3vfoe33noLP/nJTwAA1113HUpLS3HbbbcBAJ544gmsXbsW559/Pt59910899xzWLZs2UEfS0dHB9auXYvzzjsPmzZtwjXXXINvfOMbec9577338NGPfhRr167Fli1b8D//8z949dVX8U//9E/Wc6688kq0trbi+eefx8MPP4z//M//tAwKDydsjY8NGzY+NGBOZ/4Gp5MqQNksAEAfGUF20ybIjY0QAgHraVpf3wTSY0Lv74fW1wcx5/k2jk/wTAZKUxN4KpW/PZWC0tQEx+LFE+/BQ4BEIoEf//jHeP7557FixQoAQH19PV599VX84he/wEMPPYRf/OIX+NznPoe+vj489thjePfddyHLMgDg+9//Pi655BLcfvvt1j4XLVp00Mdz3333ob6+Hv/2b/8GxhgaGxvx3nvv4e6777aec8899+DSSy/FunXrAACzZs3CT37yE6xevRr33Xcf2tvb8dRTT+GNN97A8uXLAQC/+c1vMHfu3IM+runCJj42bNj40EAsKYEQDBLZcbuhRyJEehgDCwYBSZp8kUqn973jw9zK4JkM9GgUXFHAHA4IhYWHZQG18f6gR6MTSI8JnkpBj0YhlpYe8vfdvn070uk0zjnnnLzt2WwWS5YsAQB8+tOfxl/+8hfcdddduO+++zB79mzreZs2bcIXvvCFQ3Y8O3bswCmnnJLnqWMSMhMbN27E7t2789pXnHPouo6WlhY0NzdDkqS8ytOcOXMQ+AC+YNjEx4YNGx8aCD4fHMuXI/v229AGBsCHhgAALBSCWFYGracHUBRAkiBWVkKaMYNe6HLte8eHkYTo0SiyW7dCGxgAVJWOrbgYjgUL8qpSNo48+H7cgvf3+MFC13UA1LKqrKzMe8xp3JvJZBIbN26EKIrYtWtX3nPMqIfpQBBIAWPqhYCJLsm5j+3rmK+99lpcf/31Ex6rrq5GU1MTgCNjJmkTHxs2bHyoIPh8YMEg5OJi6EVFgCgCDgeQTNIf2VAI+tAQ1D17AEmCVFYGsbQUQknJpO0uoaTksHyLB6jSk3nnHajNzeA5VSe9rw88m4Vr5Uq78nMUgRmto4N9/GAxb948OJ1OtLe3Y/Xq1ZM+56tf/SoEQcBTTz2F8847D+effz7OPPNMAMDChQvx3HPP4aqrrtrvexUXFwMAenp6rGpSrtDZPJ6//vWvedveeOONvJ+XLl2Kbdu2YebMmZO+z9y5c6GqKjZs2ICTTz4ZANDU1PS+fYCmA5v42LBh40MFrb8f6s6dEMvLoezcCXn2bKh79oAPDwOCAFZYSGLn+npk33oLwplnQgwE4Dz9dBI4Dw5CKCuD4PGAOZ0Qa2vBEwlo2ewhb0GpPT1QduwATyQAxgBRBBME8HQaanMztNmzx6pSNo44hEAAzO2etN3F3O7DVqHz+/342te+hhtuuAG6ruO0005DLBbD66+/Dp/Ph6KiIvz2t7/F+vXrsXTpUnzjG9/AFVdcgS1btiAYDOI73/kOzjrrLDQ0NOCSSy6Bqqp46qmn8PWvf33Ce7ndbpxyyin4wQ9+gNraWgwODuLb3/523nOuu+46/Ou//ituvPFGXHvttdi4cSMeeOCBvOfcdNNNOOWUU/DlL38ZX/jCF+D1erFjxw4888wz+OlPf4rGxkace+65+MIXvoBf/vKXkCQJ69atO6Dq1MHCnuqyYcPGhwo8lQJPJqEnEhBnzoTa0UGkBwCMlgFPp6Hu3g1IErTBQWh9fWCMwXnaaXBdeCEEnw88nYY2Oors668js3491M5OZDdvnvb0Tu7Is9rfD7W7O2/8We3thT44SMeWzZKOKJ0G1zTrGMe/15EYo54Mx6vfEXM6ITc2go1bnJnbTdsPY3Xue9/7Hm699VbcddddmDt3Lj760Y/iscceQ21tLT7/+c/jtttuw9KlSwEA3/nOd1BRUYHrrrsOAHDGGWfgz3/+Mx599FEsXrwYZ555Jt58880p3+u3v/0tFEXBsmXL8JWvfAV33HFH3uPV1dX43//9Xzz22GNYtGgRfv7zn+POO+/Me87ChQvx0ksvYdeuXTj99NOxZMkS3HLLLSgvL7eec//996OqqgqrV6/G2rVr8cUvfhElJSWH6pJNCcan06w7jhCLxVBYWIiRkREUFBQc6cOxYeO4gx6PW4s6c7kgFhcTEZmmADjb1IT0U08BggDHsmXIvPoqkPMNXSgvJ5FzPA7HKadAHxqCYCxkejoNaBrE6mrwdJqIRmsroKpgPh+kmhpA1/c7vaNHozT9k06DFRRAGx4G4xzM4QBzuWi0PpMBczjoWHMhCIDLBSYIcH3kI3DMm5e/z5xzMRfcD1ILpHR0TBj9F0pK4Dz9dMhVVR/YcRwM0uk0WlpaUFdXB9f+dF37QN69KMtUCbJbkh8I9vUZTnf9tltdNmzYOKLIXUS4qkLZtg36wID1uBAMQl66FHpvL7WEDEy16At+P4SiIuiDg9CHhsDcbjC/H+AccDrBCgqgd3eDGVNfPJ2mCbB4HGpbG/joKNTOTiI5oghpzhzwWIwIB2P7nd7JHXlmPh94PA6ttRU8FqNWm88H5nRCKC2FWFgIFgiA51ZMdB3QNLBAAMzjgdrdDT2VAh8dJVGpxwPGGHkSHeYx6vHYn9+RcN55x8XYP3M6D5vuy8bhh018bNiwccSgDQ5C2bIFejwOFghYxEMIBi0CoEUi4Bs2QFq8mPQv8TjA+ZSLPhNFOJYsQfbdd4moxOPgqgp4PBALCqzXQ6I/f4LXC57NQuvuhhAKQaiqglBQAA5Aa2+Hsn07HY+qQqyqon3uY3onb+TZ5YKyZYtFegBqYfFUCjyVglhdDWnOHKg7d+aRH1ZYCHn2bOjJJPSWFqjt7dB7egCXi6oLsgypoYGI4DTHqA/FyLztd2TjwwCb+NiwYeOwYqoFVxsaQua116yICcHphN7bS/qJbBZ6PE5kQNehd3RACAbBjIoNj8Us8jN+0RcCAajt7ZAXL6aWkqZRdSSdhpbT1hIKCsC8XjBNgxaNQqyogNraShNVmQxVZ5xOIiCjo+CxGLT2doi1tfuc3skjRdksHasoUmVJ04hwcU7bEwkIoRDtU1WJ7AkC4PdDCIehdnRA6+wEHx0l8XMiAV1RwDweKNu3Q6yoABRlv2PUh6xNdoT9jmzYOBSwiY8NGzYOGcaTHAgCTVQZCy5XVTBBgDhzJrS+Pmh9fVR9YYw8bDQNEARokQiRgBwJIk8moTQ302Lt8Vhtr/GLPnM6Ic+aZWlspKoqqHv3AooCqboaUFUItbWQGhuhtbWBeb0QfT6oTU1gkgR4veAdHYDRHlPb2iCEw0R+UikiCvtIec8lRVzTiPSoKhEaUaRz1TQiP8kk9FiMqjgOB6DrYB4PWEEBlM2bIfj9RJAkia4P50AmA1ZYCH14GFJ1NbTeXsjC1HMqh9Rt+Aj6HdmwcahgEx8bNmwcElhVhUwGLBQCRBHarl3gigLB7wd0nUTL6TS0kRGINTUQy8qICEgShHAYQigE5nJBy2SIJOTC4QCDEUth/D9PJietvgiBAByLF1skTKysJLKh62CyDOb1Qh8dpVZUUxOEcBjanj0AABYIQCgvh55IUKUlGoVQVgZNVWkMHoC6Zw8Ev39SwiAEAmChEB2b201kZXR0jMQ5HEQQfD4igi4XtL17IVZWQuvrg1BQQESrt5eImEmWBIHOAaB9Gf9EoyKV3bHDEoMzWR7TTSkK9NFR2tc4HKjb8JHyO7Jh41DCJj42bNh439DjcSitreCcQygqghaPgxkLM3M6oafTVN0wiUhtLbTWVqhbt1qkR1cUMK+XKhzxOBEEtxtIpSBUVECPRKD390MfGICeSEBwu0nnomlEtsaRkKkEqBZB0zRoPT3QR0YgFBYSwdA0cGPkXZo1iwwPjXMSUylovb1W7MVUhIGnUuCRCGmTAAhlZdBFEUwUqYrFGLggQCwpAdc0iIGA9f/M7ycNksMBwagq8XSaCJTLRa0mTSMiJMsQKiqgbNkCNRazzp/5/ZDnz4c+MEATZIxBGxigiTIjrJU5nRYRmo7bcG4lz3HyyVD37IHa1GTZAwglJXCuWmXre2wcE7CJjw0bNt4X9GgU2XfegdreDng8QDoNPZOBVFUF5b33qMpSXAypqgr6yAjEQABaWxst3sZ4tz46CgwMQD7xRHCHgzK2VJXaUpWVZEa4aRNYQQGEkhJgcBAAGQCK6TS0jo796lV4JgMtGoXa0QFlyxaIJSVQd+4E8/msaS+u6xCCQYiGTogblQ2hogLM44G8YAH0dBoCJicMPJOB0txMxKayEnp/P8RZs6DoOrSurjGiUFwMed486LEYtcEkCdrQEJRNm0hsrShgLhekOXPACgooZiOTsa4X83jgWLoUynvvQe/rA/N4wLNZ0kPF4+CZDOSTToK6ZQuEUAhaZyd9Dn4/hJISCA4HESDOwTOZSYlj7uertLcDmQxVqCQJYlERpPp6ImIOB8TSUpv02DhmYBMfGzZsHDRM/Ygej9MGUSTdTioFDaD2jWEgqGazEBsawFQVyo4dEIqKIBQUUAWlvx/QdSgbN8J53nkQQiHS8AgC4HCQ3sVon6m7d1PlRRAgFBZCKi+HPjS0T72KWeWB10vj8v39EI3JMT46Cr2vjypPTieYy0WkZ3SUXux0gsfj0EdGiHQEgyR8nqTFpkej4ADUlhYglbKIkFhdDedJJ0E3CBvcbmTeeAPMMFBEMglWVATXWWdB6++ncXZZhh6PQ160CKqp0THG4SFJEFwuZPv6wEzhNAwypijQ0mnIySS1uZJJqqiNjIB5vRA8Hqh794JHo2A+H4SeHmhdXXAsXDiBOPJMBmpHB0VqmJ8xjKrSggUQwmEic9nsPsmTDRtHE2ziY8OGjTzwTAba0BBVYTinxVYUwfx+8p3JWdys0W1TXKuqllmgHolAnjMHWkcH7TcaJQGvMTEFSYIeidDi6fVawmY+OgqxooIqJ0NDVOUIBABRpMrP9u1jxxqLQdm9G1JlJXgikdd+sowQdR3a3r0AAEGWx8bGTZGxKELr6YE8e7ZlSKcNDVFrqaAAQkEBTZ6pKvTBQUhFRWDGWPlk107Zvh3caD0xpxM8GoW2axf0nh4IgQA5Mo+OAtks5EWLiOhwDqm4GJm33gLTdSJIqgpWUgL5jDMgrlgxVs2JxSg2IRIBEomxwEhJosqPOTafyUBesgQ8EoFUXg61owOQJCI9ySTgdFKLL5WC2t5ONgDLluV9vprZFswhPRAECIEAsm+/DSEQgODz0eWcZErMTp23cTTimIqs6OrqwmWXXYZwOAyPx4PFixdj48aN1uOcc9x2222oqKiA2+3GGWecgW3bth3BI7Zh49iCHo0i8+abyLzyCtLPPIPU//0f0s89B2XXLmTfegtKc3NejILZ7mEuF00eGa0cAERwJIkIhDm5peuA1wvB74fe2Um6E1NvIoq0qIZCyL77Lng6DSEYhDRjBhwLFoAVFlLMhFHVQDYLrut5pobm8ai9vUg/9xwyL78MrbUVyvbttOArCh0HYHkHgXOqNjU3Q6yqIi+f0lISWrvdJORNpaxRbSZJU8YT6KmURay4QeQA0Mh5LEb7NNqBYIzOg3OIM2aQh1FXV95+eX8/lPfeg1hSArmujshDURG1roypOWv6TRSJoKRSpJHSNKg7d0Lv7UX6738HTyYhhkJEVoqKwDyesUqdqkIbHp4YkRGPj5EeQYBQXAxpzhwiboAVDcJV1ZoSM2M0dCPWQm1vp6pRWxuyTU3TjvywkY8zzjgD69atOyT7uu2227B48eL3vZ/a2lrce++9R8WxHAiOmYrP8PAwVq5ciTVr1uCpp55CSUkJ9uzZg0DOt4sf/vCH+PGPf4wHHngAs2fPxh133IFzzjkHTU1N8Pv9R+7gbdg4BsAzGSjbtkHt6aEMqUSCRq5HRqC2tEAoLSXywDkcbjcRFqPdY+o+tNHRsdFrAMhmaTxblgFZhlhWBj2dpskpzmlKSpJoAc9mIc2aBa2ry5oa0gUBImNgggBt925q81gHTNUocE46GcBqD2XffNPyB0JO9hXPZokwZDLQurupIhWNWlUqnkpZURU8HqfzcDpJu8QYWCAAsbycKjc51QyARvWRSlGbTlXHRMnm9dD1sZF0SbKm2Zgskw6nowPwepEsC6GzUkZcS8HHnKhUZTgiERqzj0QAWYbW1QUWDNKEVVcX7S+Tof3LMlhJCfRoFPrgIFXq6uqg9/ZCdzqh9fZCCIeplScI4A4HmEGgJuiWzM/R0Cyphp+SumsXjdWbk20OB8SiIjBVhR6NkpfSZC0ynw+MMcjG/WNj+njkkUcgH6b09+MNxwzxufvuu1FVVYX777/f2lZbW2v9P+cc9957L26++WasXbsWAPC73/0OpaWleOihh3Dttdd+0Idsw8YxBT0ahWa0dHg6ne+hMzICwRQnGwu+WFqal1bNXC4IAPRwGDweh1BYCG60N7iuQwyHAZ8PWlMThOJiaMkk9OFhMEWBUFQEBAKQGxuRfu45elNBoKpEXx/kefPGqieiaBESwe+nqoUgWOnYalfXGOkxn29A6+2FWFoKnTF6HeekeykoIBLm9ZJWxeula+BwGBeAUxSG1wvRIBWmN44ej5OwWxThWLiQ2mSMETlSVbDCQksUzIJBMKPqZFaTeCxGpMXjQU9dEI93PobBzl0AOOBworhqNi5SK1CjGMdiVrV27oTj1FORNcgpjIR3oawMcmMjMi++SNqe/n4ieHv2ENnKZqnCZngCQVGI3BnXV9m718pJg0HchGAQalsbmM9H1zaTAdxuIonGdeLpNL1fLAY9kYA2MEDXwO2GPjRExCoeJ/uAkhJI9uj7ASEUCh3pQ/jQ4JhpdT366KNYtmwZPv3pT6OkpARLlizBr371K+vxlpYW9Pb24iMf+Yi1zel0YvXq1Xj99den3G8mk0EsFsv7Z8PG8QiuKFSVGGccaMF4jKvqWItrXFq14HJBLCuDUFwMsa6OhMhdXYCiUAvrzTchBALQWltpgV66FPKcOZCqquD6yEdo8sjppCqRz0cLtKZB7eqCUFYGIRyGWFkJobSUxuQHB4l4KQrE6mqoXV3g0SjkhQshL10KsbKSJpkMvyC9pwdiURHE8nLICxdSe6enB9rAAHgqhezLL4NlsxBrasAM/QtSKUDXIc6YQRoYWbZID89mSbydTlMm18AAxJISuk6JBJkjlpZCcLmoOuJwgAsChKIiSDNm0LXRNMDjQSrkw2Pdz2NouBsAB0AapMGu3Xis9WnEZaONaH7r1zSoe/dCqqmBa9UqOFeuhHPNGkiNjVShKymxNFOmn5A+MjKWW2ZqgQw3aebxQNm1C+lnn0Xm5ZeRfuYZqHv3QiwrA3O5qFXn8RBRcjgoUd68VwyBM2MMWn8/shs2QOvupoiLRALijBlj72dkjB0NKfMHi9HMKLb2bcUbnW9ga/9WjGZGD/t75ra6amtrceedd+Lqq6+G3+9HdXU1fvnLX+Y9v7OzE5dccglCoRC8Xi+WLVs2ZSL7ZG20iy66CFdeeaX1c39/Py688EK43W7U1dXhwQcfnLCfkZERK2G9oKAAZ555JjZv3pz3nB/84AcoLS2F3+/H5z//eaT35wZ+GHDMVHz27t2L++67DzfeeCO+9a1v4a233sL1118Pp9OJyy+/HL29vQCA0nHfIkpLS9HW1jblfu+66y7cfvvth/XYbdg4FsBkmRYnQbB0MHkwHmNGe8banGsWmEqBRaOAywW9txfyrFmkPclmoezYQULjnh6IFRXQh4agm60Rv58WWK93YgvEICxSQwM5Kbe300LtckEoKoJj4UJAEKC0t4PpOi3MggBd0yAUFiK7YQOk2bPBRJEW46EhSJWVgCyT100oRO0yRQFUFcrOnRCrquBcsYLafZoGDkCaMQNSWRm0vj7LBVlPJOh16TSgqlC3bIFzzZox0Xc2C+5wQKyqgjx/PpEDpxMQRWQ2bLCuK89m0VXuRmTHKI2Ze31j4mtBwFByEB1aBLPdbqJEgQDFevT1Qe/uBmpraWqNMZrySqWoWpPNUtSHz0fvD0Cqr6ccsqEhurwOB8SKCjCnk/LNzPYWAGXrVjiWLKFj8njouqbTFALb15d/nzgcAGNQOzqgDwwQoQKFxuqiaAXHipWVZCOQ4wJ9JFLmDxat0VY82vQoIqmItS3kDuHjjR9HbaD2AzuOf/3Xf8X3vvc9fOtb38LDDz+Mf/zHf8SqVaswZ84cxONxrF69GpWVlXj00UdRVlaGd955B3quBu8AceWVV6KjowPPP/88HA4Hrr/+evTnGFlyznH++ecjFArhySefRGFhIX7xi1/grLPOQnNzM0KhEP70pz/hO9/5Dn72s5/h9NNPx+9//3v85Cc/QX19/aG4JNPGMUN8dF3HsmXLcOeddwIAlixZgm3btuG+++7D5Zdfbj2PjfuDzTmfsC0X3/zmN3HjjTdaP8diMVRVVR3io7dh4+iHEAhADAahJxL0Dd/Uo4BCM/VsliZ4nM4JC5RpFqj19YG3toJ5vdBaW63HuTnu7HBA7+wkL5/u7rHH43GKl6iuhhAM5reqDKM9fWQE8qJFdGyG/kjXdWiJBBhAYaBmBIYsQygrg3jiiXCcdBLU1lbyvlm5kgS+Xi+19bLZsffxeACXC0yWKQl9ZITEykZlR545k441VwejaUQyTLKg69D7+iB4vRR2Wl5OTswFBfRcw2wx8/bbtNDPmQMoClhhIVK8g9qMyeTYdfd6IZaXA4qChJ6G3DgHSkcHEc1IhCbZEglwUaTpOEUhDyTOiTSl02A1NdSa27KFjrGgAPL8+XCddRYFpRYXA4KA1OOP55EeAICqIvvuu3B99KMQKyogFBZC6+6GVF8PJZOhFpvx+TOXC2J5OTIvvGDlkcGI32BeL4nGg0EipC6XRaIBI47kA0yZP1iMZkYnkB4AiKQieLTpUVy1+Cr4nR+MnvS8887Dl770JQDATTfdhH/7t3/Diy++iDlz5uChhx7CwMAA3n77batFNtO4fw8Gzc3NeOqpp/DGG29g+fLlAIDf/OY3mDt3rvWcF154Ae+99x76+/vhND7DH/3oR/jrX/+Khx9+GF/84hdx77334uqrr8Y111wDALjjjjvw7LPPfuBVn2OG+JSXl2PevHl52+bOnYv//d//BQCUGS6nvb29KC8vt57T398/oQqUC6fTaX1INmwcz2BOJ+T588nRGIDGObVrCgog1dUBqgqppgZSVdWUi1Oe0DfvgZypLiB/+gtjmVaCzwfH8uV54mQmCBAqKyHPnw+luRnqnj1WXpVUXQ3B60XmpZeI9JhTZJkM9LY2ZNJpMh0cHIRUXw8xFIJsfLvUc6bBAFD6ulHREXw+KxSU+f2U6xWJQHC7J/r3jD9XxqB1dkLr7ISrrg5aSwt0o7qhj4yQd47TCWXDBoAxiDNmQF68GJ6hFBGEwkLap5ECr/X3Q6qthU82hN2xGLThYRJXx+MQvF5ItbXQPR4yjDTJnNsNob6ehNMDA+R+nUySCL2jA3pfHxwnnwypspKqRbo+pocyvyyabSxdtwiSEAjQNQqHIVRVkd2AJFEVaWAAzOezAlnl2lqo3d3QOjshlpRAKC2F1t5O18M4TubzURVqdPSA4jOOBNqibRNIj4lIKoK2aBsWlC74QI5l4cKF1v8zxlBWVmZVYDZt2oQlS5YcMl3Qjh07IEkSli1bZm2bM2dO3nDRxo0bEY/HEQ6H816bSqWwx4iD2bFjB6677rq8x1esWIEXXnjhkBzndHHMEJ+VK1eiqakpb1tzczNqamoAAHV1dSgrK8MzzzyDJUuWAACy2Sxeeukl3H333R/48dqwcSxCCATgXL6cfHzicSstnIkimM8HMRDY5zfy3Cmv/AeY5dRMb5QvLxRKSijPC4BUVgbBMPIzTfHEkhLat66DGa/Xk0moe/ZAnDGDSA9A+hdzugkA7+sDW7qU/n9kJO/YxZKSCdUlPjoK2QhQzW7fTtUXAPrgIBwnnEAhqfPmjQm6ZZkqRcZ4NwsEoBs6QVZWRtUiw4WZqyp0RQGiUXBBIOJWWQltcBBadzcq+kcRzIoYGqZ4CW5oZiBJKPKXoNpbDmVbE2Wf+XzQAbDRUfB4nAwOdX2MjABUbXG5kN24EYLPB57JQCwvJ12Ux5OXQA+Hg37OnTwTRSKRRsaZUFYGraUFYm0t9K4u0lO53fQZSRLkOXOQ2bqV4jaCQTCnk0b0Da2TEA5D6+yEHo1Sm7KwkMb843FLqzSd+IwjibgSf1+PH0qMn/BijFmtLLehuZsuBEEY84MyoOR8FuZj++qe6LqO8vJyvPjiixMeCxxlLcxjhvjccMMNOPXUU3HnnXfi4osvxltvvYVf/vKXlqCLMYZ169bhzjvvxKxZszBr1izceeed8Hg8uPTSS4/w0duwceyAOZ2QKir2+RyeyUCLRMiTRdOoJVNcbE15AfRN3hplliQKGPX7IZgTVQaEkhI4TjyRsqzMbT6fZYyXB0GA2tqaVzHiue0qUbRG0y0oCgS3m0S1OSLaCdUlzsEKC6ENDZF4GrCIn55IkNC3vBw8kYDc2EhVkngcYnExNCP8VKqqgrJjB1g4DHnmzDFhMWicHtksuKJAqqoaS64fGoIYCsEdTeLC2nPxWOvfMDTaT6SKMRRXzsSFMy+AN6FCyTk3yzvJ8NARiouh7tpFrS5JGmuxJRKAywU+PAxN1yFWVIAPD1M1qb0damEhkamiItILmQugpgGZDBGeaBSCQWAgyyQeX7CAHK41DTyRgNrSAhYIgEej0KNRyAsWQGtvJzLqcNBrMxkanc/5zLimQR8YgFBcDJZMUhVrss/+KIBVdTvIxz8oLFy4EL/+9a8RiUSmVfUpLi5GT0+P9bOmadi6dSvWrFkDgLorqqpiw4YNOPnkkwEATU1NiOZ4Mi1duhS9vb2QJClv4joXc+fOxRtvvJEnT3njjTcO4gzfH44Z4nPSSSfhL3/5C775zW/iu9/9Lurq6nDvvffis5/9rPWcr3/960ilUvjSl76E4eFhLF++HE8//bTt4WPDxiGEHo1CaWlBdssWS+MBhwNSTQ0cixYRKWhuhlRfT74/8TgZ7xUXUwTD0qWAqtJ/AarQaBpNi+0n9kAoKIBQWAh9ZMQiP8zhoMXVMAPMf4EwNgUlSbTo5iCvuhSPU5svEoG6a9eYwzNI4yTOmWO1n8TSUjgWL4Y2NESal7lzaZJreBiO5csplDUWozF9c5HXdTrPaBSqosC5fDnpdBwOoKAAaG1FeVsUnys/D10NWSRdAnyuQlQ7ihFwlU6ohljeSYOD1nQVT6VI38QYtJ4een+Xy2olIp2mNmCE2jU8lYLW30+WAYsWIauqY9UzACwUgmPpUmQ3bYJj7lzSViUSpPcKhWjEXRRJZ5RKQa6rg8oYOW4b1QHm81GbzDz+HF8jns1Shcwgb+quXTSmf/LJYIzRPWFUvpjHc8Sdn2sCNQi5Q5O2u0LuEGoCNUfgqCbiM5/5DO68805cdNFFuOuuu1BeXo53330XFRUVWLFixYTnn3nmmbjxxhvxxBNPoKGhAf/2b/+WR2oaGxtx7rnn4gtf+AJ++ctfQpIkrFu3Lq+ydPbZZ2PFihW46KKLcPfdd6OxsRHd3d148skncdFFF2HZsmX4yle+giuuuALLli3DaaedhgcffBDbtm2zxc37wgUXXIALLrhgyscZY7jttttw2223fXAHZcPGcQSeyYyRnliMqhhGW0lJJsETCThXrYJj0SJLr8GNb/nM7QZnDOqOHWDBINQdO2hCK5ulxbq4GPLcuTQOrmmTLnZiOAyprg5qa6vlNaQlEpT23t4+1lIzxrWFGTOgZ7OAQRLYJC0As7qk9fVB7e2F1tKSR3oAapOp7e0kvjVMErX+fvBkkqadDD2UOeEl+nwQZ86E1tKS80bCmOHiyAhVXUZGaLLMmFLj8TjcexKYKcvUiisUIJZKEAKBfMds02vJCFXVYzGq5MTjlGLf00Pi72QSUm0tVDPmQxDGTA49HsrxMrx49PZ2SPX1EObNs56jx2LQenrADBsDC243tbGiUXBDbC54POR+XVJCwbIlJeAnnkhttkSCrpM5qWYYOOrJJE2Mud0Qy8uhdXeDud1Iv/gipIYGaG1tVDU0Pj8hGDyi019+px8fb/z4pFNd/6/x/31gwub9weFw4Omnn8ZXv/pVnHfeeVBVFfPmzcPPfvazSZ9/9dVXY/Pmzbj88sshSRJuuOEGq9pj4v7778c111yD1atXo7S0FHfccQduueUW63HGGJ588kncfPPNuPrqqzEwMICysjKsWrXK0tn+wz/8A/bs2YObbroJ6XQan/zkJ/GP//iP+Pvf/374LsYkYHx8Y+84RywWQ2FhIUZGRlBQUHCkD8eGjaMKWl8flN27kd24ETybpfZWQYHVEuKCALGsDFJtLU0rTZLPpEWjyLz0ErVJslnSmTgcSAY96C52IOES4BPdqIwJ8DOaIMtd7PRoFMq2bTSVpeuAJEGqrUV261YaozZ8d4SSEjiWLCGXY4cDgt+/z6khnskg29yM9LPPEhnL/dMoimBOJ5xr1kAMhZDdtAlqW9uYQDccJtJWXAwhJ8cru2mTNfrOVZW0U0NDYA4HpFmzoDY1kUu1KEKePx9qdzeRLkmCWF4OqbwcjqVLLafobFMTEaxYDByGG3UiQVNnjY3kim1UnmC0FKVZs5B9+23ar9NJ7TpNg1haCnXPHjjXrCGCJgiUG2ZofMwJNMcJJ0Dr7CThuyEIZ4EAtN5eqDt3ggMQvF7osRhpwRwOwO2Gc8UKZN95x/IqEmtrLc0UslkIZWWUSabrgNtNAbBuN4W7cj4WTWJCksgjaj+f476QTqfR0tKCuro6uHLG6Q8Uo5lRtEXbEFfi8Mk+1ARqjhrS82HHvj7D6a7fx1TFx4YNG0cWZvo3BAFyQwPUjg5obW3kH+P3QygvB3M6oQ0M0AKWTIK5XPnEJRIhjY+mka5HktA9w4/Hup7D0B6a/oEsIwQPLqw7F1VxKW/UWQgE4Fi2bCz8UpZpFL+igpLh02laOAUBPBqF4PFYPjH7FGY7nURa3G7o5sJriHyZMebOnM4JpAcA+NAQlK1bwRYtgjRvnvU+phaIp1LUmioshODzgfl8RDLcbvrHOcVBFBdDmDGDxL+lpZDr6iy9C0+loA8OQtm2bYyAFBbCsWAB9GyWTAtDIWiRCKXXGzoqwe+nFmF1tZWTpg0MQN2zhxLvnU6qyug6kRazHZjNUhUqk8mPChEEwKjQ8GSS/mkamNtNnyfnkGbOpKqcolgZblpfHwnHDe8kszqVmlmNnjIXYkM9KAiVo7wjhYJgGdRduyB4vWPva1S5uCQd8ekvv9P/gU1v2Tj0sImPDRs2pg0zc0soKYHa0WFVJ6RFi2iSS1VpZDsQgN7bC6muDno8DqW1FfLMmdZ0kanP4bqOVGkQj3WQoNdyjtZ1DOkxPD7wCi6v+wS8qQyUtjYwWaaqis83YeETnU6IBrmycrRCIYsYTadCIBQUQKyuBuvro7wuzqlN53BAKC2l9lE0mu//Y4BHoxTambMo55k7GiSNeb3QR0fpmCQJans7tPZ2Ijbd3eCBAJxLlkCqqhojPUaOmtbfT545Xq9VZdMiEXBFsdqOQkEBbe/qsmIstP5+wOmEVFaGzGuvkadOKATHkiXgiQSkBQto3wUFNFGm6+SuHQxCj0SscXMIAoRwGNl334XW1ga5sRGacW5iaSm03l4wjwdiURGyxv0h+Hx07XWdrk1ZGbXBsln0zCrG69H3EIuMIq1n4IkPwyNncVqwHKXjJwOBsfvmKJ/+snF0wyY+NmzYmDaEQIB0N6EQtJ07qUVz8skURjkwYAlaxblzIVVXI7NhA4SiIvDBQfBIBI6lS2kRNMZnmSCgy5nG0FAH4HCOuUO73dD7+tA/sAVt7nmYubkHYkMDhKIiKO+9R/4zhnfXZDANFQ/m/MRwmBZ/Q0MDQaAKjN9PAuEp3G855xRhEYlQZpbR4pvsWASfD4LbTZqY4mIyKVRVaueEwzS+n0PUrBw1RaF2kZH1BUEAj8UoriORoBZfQQFVWRwOCE4nxJoaiLNn03Rafz8cy5ZBKC6mdlYmAyEUQvrZZ6lKpGmUS1ZeDtdpp5HbdThMrTPOwcJhZDdvJt2NKNLxV1QQQXO5IDU2UvaYcc2Y00kEMsczSR8aAnM6kQz78ebATjzR/Di6I+SuzzwelDuLIBeX4pzKEngHx0VBGNWoCV5KNmwcAGziY8OGjWmDOZ2Q6+poSsjjoQV39+4x0mOYFPJIBNmhIUg1NfRNX1Wp8tPUBNGo/OjRKHgshrguAbKDFlZZBmfMqp5AEBDXydWVj45CHRmBOGMGZX6dddYhH3s2s8eUpibwnIqD2SozSQ03CAIYo8XYmNgCqDqjtrUBnEOePXtKIa4QCFgi8NyW3WSVKStHzYgTYX4/TbZlMgBjdJ1z9+1yQfB4qGIzNGTplQRZhmg8l8kyuCQh/fe/E+nJmYrTu7qQfvlluD/2MTgaG61j1BMJSp13OCAUFJD4ubMTmvG+rnPOgTR3LmV2+XykX1LVsfaZ6QfjcqFTjOPR5sfQPdw+duCahu7RbjzW/CjmL/pnzMolPoYA3AyjtWHjYGETHxs2bBwQhEAA6fIQ9p5ci6TE4XZKqHRXwN1pLHKGzoP39UGYP580PaOjNP7c2wsuihDr6qwJL5/oJr2PywUhFAJzOKD29FjTWT7BBTid1M4ZHQWrq4M+OAitv/+w+L1M1p4yCYmuKFalBZnMWNinpoEFgyRg7uoCT6Uo1qG5GY5Fi6Zss023MmXlqAFgBQXUTjS9cYyIDqmhAYLHAzEUyiMH+yJW2aYm0kWJ4lhiO2PgnEPv7YXW3w+xsNA6xuyOHZYlADOMCrkZVmqYIUplZZapISssJJF1LGYRQ6GkBMzjQbfag+6h1jG3aENQzTwedA+1oVdKYbbpBWVOdfn9+9VqTQf2TM+xi0Px2dnEx4YNGweE1mgr/q/lL+hveoe0JD09CBeU4sK5Z6F8Rw+RFDN7x/BrMXOqtPZ2MEmCnkxCbmiAEAyiNuBGqbYbgyO9Y140AMAYwsEKVGZoETe9Z3IrK4cLkxESnslAa22FPHcuhXG2thL5yWZpqmvBAtLpxONAKmW5ER8KIa6VozYyQi7IkkTvbeR86fE4tZBqasA5z3PY3ud7p9Nj2WS5uhlZtqInco9/POFgxii69bPHYz1PbGigsf90mnLEdB1CYSHEqioo770HZTazHLDHTtSoDIkiVOhwrjg1zw5hulqtqWC6HSeTyQN2N7ZxdCBpTAaOd64+ENjEx4YNG9OGGdI4FO2hhdFYLIeiPXgMz+Fz9efAO5qF3ttLL3A6oadSpDsxzPPAOfSBAejFxci+9hrcixbhY3w2HleHMDTSCyEcBvP5EA5W4OOVZ8EX0UjfYghrRSP40xzX/qBcfvVolEbHUylIs2ZBqq+3NDFc16END4NJEqTqatouy4DhinwoINbUEMGJxSg8dWAALBCA6PNBbW2FVFEBpakJzONBtr9/en43hncQxh+jESXBPJ68458s5sOEEAzSRJ75s8sFsb6eyJBhoMgzGajNzYCuoxRBeDyFSBreRlaWWyYDt9OHcm8ppMrK93PJJkAURQQCASvTyuPx7DOGwcbRA845kskk+vv7EQgEIOY4vR8obOJjw4aNCbCmosZ58VghjcYCxbxeandkMogoMXT5OWa2RShwtLwc8Hqhj4yAR6MQKyqoOpFMWtENghEoXN7cj8tmrEBXMIOkV4anWETlCODesAu8pIS+7QeD4JoGta0Nen8/mNsNddcuOE46aZ9C50N2TUwCoOvQ2tqgDw5CLC9HdutWgHM4zzgD2XffJedjWQY4h1hVBeG0097X++rRKGmO0mmwQACMMUgeD4SlS2mUPBKBVFICPZu1xs55KjWttHPmdoOFw+A5cQXWY+Ew4HTmCYknC5EFiPQ4li/PI6FCIAC0t0Pr7Jz4xpKEeq0QK2ecild3P49UdizCxO304bS6VZhVPOdALtO0YQZam+THxrGFQCBgfYYHC5v42LDxAWEqMnG0wVpoc3OhDHGvFcIoCBQ3EIlALCmB1tcHnk4jriVJj1FTA3n+/DEzQKeTUriLi6Hu2UOuwZEIJKMdIhQVwd3Rh5mgiAN53jyoXXvACwvBjXgErusQg0EoW7fS1FIkAs2MRlixgtyQMxkwl8saeT+UyJskMie7RJE8jebOhbJly1jcgykSHh6G8s47EMPhgzoensnkfRb6wAARCVGE2t0NQZbJsRpkKugwcpTAGLXd9tNm44kEHEuWIMs5uFmlAwWsOhYtAkZGIMyYYR2LHo0CqgrHihXUHstmrRDZ8edntguVpqb8BHtDr+PPMnx2/iVwZnXsHWlBVlfgEGTUF9bh08uuRGGgBIcDjDGUl5ejpKQkL4jTxtEPWZbfV6XHhE18bNj4ALAvMnE0TaiMX2it7UYFwVtlOKVKEmlssllo3d3UnpJlFM6oh7M0CO5wQO3qgjxrFvn+BALQEwmKPzCqQCydht7fD6GsDI6TToK6dy85L8fjyL72GsTGRshVVVZ4qLJtG5TmZqqm6DoRHsNMMfvWW6QBMkS2QiAAx4knHtJKkBnAylMpS4vCMxkIhYUQCguhvPvu2JMZs9ye9ZGRfQqx90WI9Wg0/7MwXI71oSEglYJ46qk0Zq/rgCiSiNzhoBaVGaGxDzCnE+rGjZAaGyGccIIVH6KnUshu3Aj3OefQOUSjdO2NthBXVTC3G1JVFcRweMr9i4YJo+WybY65GxNa9ZXzcV3o62jra0I8Mwqf04+a0sbDRnryjk0UD8kiauPYg018bNg4zNgfmXAsXkxJ2f39h7ViMR1MWGhzwFMpVInlCLlDGBjeA+b1WplRWk8PwoFylHcnwAu9YKII0euFns2Cp9NQdu4EslnIixdTxSZ3+isWo/0zRtWJQIA8Z2IxZF54ASwUgvOUUyhWQdPyfHTE6mqobW0Q/H6KPzDPwwhPFVavPmTXMXfUnRmeO/rQEJE7E8a4ORwOMu4zqkRTCbFzCbF5LU1CLBYXTyQugkDuyIoCed48aF1ddF1M5+yKCohlZTT6jf373YglJXTtWlqg6boVVwHGIJWXkztzJkOkR5Ks0FkTWlsbnCtXQiwqmvqazZ8PTEH6mdOJQmcJFn4ARMeGDRM28bFh4zDDJBM8m4WeSFhGdaYdv9rVBeW99ybVTHwQ2pVc7K9C4FMEfLzx4/hr5AH0j7bTOfj9CHuKcGH9x+DtHKVpJiM0VKyshD46CiZJZGSYSFBLpq6OqgsuF/R4nFLCW1qgGy00qKoVlMlTKYskmZUUE0IgAK21FfCPy0nKZqG2tR3ykffcUXe9tpYmuFSVWnnG58kcDsDhyEuCn9SbJ4cQ68nk2L0xMgI9kYBUVwfB46HqiuEpxFwugDEifJ2dFrERwmGaoNq7F3x0lAwRs1lIdXX7rChN0Ow4HLQ9R7Oj9fXRFNs40gMYrbwtWyCsXDll23Zf9gA2bBwJ2MTHho3DDK4o0GMxinhIpSzTO8HthlBRAXR0TJiS0YeHD5tJ376wvwoBk2XUBmbgirmXokWejYSWgpc7UBEDPG81QTdaUEJxMQSvF1zT4FyxgsiArhPJSSQo/gAgkbLTCV3XaZFXFJr8EgTAmAYSgkFyQC4sBM8VpJrTQE7nmKmgSTZ0HUgmweNxqqIdwkXW1K6YyfN6NEqhn+XlRPJyCA8wcdrJhEmI9WQS+tAQtMFBmnwz0ssFYyKMqyrpnDweIpA+HyCKFEkhCGChEAnGdR1QFOgjI5Dq6gDGoGzfDhYIgJtWAJjYYpXKyiCcddZYxXGcZsckw3mkx+EgnZWmQRschNLeDqm8fMp79WCdtG3YOBywiY8NG4cZXFWhtrXl2faDMeicg3d0QJxiZFcfHj5sJn1TIU/HMg65pniFRRWYs9kLfTgLnk2NpW6Dqg/g3Dpfwe22Fj2trw+6z0dGf7295AM0OAipthb68DCEigrKiwKIxLhcpF1JJEhArOvgg4Njo89uN4TiYqq8pNO0GJuPgUZgs5s2HTYtVd6Cfvrp05p2MmGSGn14OJ/0ADT1FolA7eiAY/FiKFu20P48HqosiSJV0GIxML+fSAnndP2M6hMrLLTS2iHLRD4B8GRywsSX4PNNTVpkGTxXnOx0WgGjMEJIhRkzyFzS64UYDB61wn0bNgCb+NiwcVjBMxnomQwtyHkPGOnffv8+qyyH06RvMuRFNkyhyQDyWyTa0JAV2yAUFcGxZAmJb4EJ8QImsdIHBqxWFrJZ6MkkpZKDKgucc6p0KAoFWmYy4CMjEGtrwWbOtGIQWCAANjICvb197Joak1YsGAQcDvDh4WmNdk8H+2ob7a9yMuFayzIZPWramAs0kJ8FZlSthMJCiEVFlOHldkNPpSjYFKDXMwZxxgxoAwNAMgnB64WyaxeE8nI4lywhcbFRpRGDQfBYbNrGiuZnBoBaj7mkRxAgz5kDra0N2d5eCMEgpIoKCF7vWDTGUTzBaOP4hE18bBz3OBxj5uY+9XgcPBqFVFUFFQA3RLcARQ9IVVVW22cyHInFYrqajLyFPpkkK3nGiPTo+gSyBIwRK91sm5hTWKEQBIeDAjAHB4lIOZ0Qa2shFheTjiQQgOB0EpHIZGgRVhRIZWWWuaA5dSSEQpAXLACMStR0Rrv3Bz0apYR0c0JJFCEGApDnz7fI3b4qJ5NdZ+Z2jxGeHLBAgGIeOAc0jYiipkGqqYFYWgohk4E+cyYls6fTgNtNVaNUiio9iQRlaXV1IZ1IQCgqgrZ9O4SiIghGQnyunmtfvwPM6YRUVUXeRUbr0DQ8FKuqoA4MkF4rk6F2ZiIBrb8fak8PpJoa0nUdhROMNo5f2MTHxnGN8WPm3KgkSFVVVDXw+yEeIBHSo1Eo7e20GIAWDj0Wo8W9qspa7PVkEmpbG5zLlk26n6m0IR8EpqvJyF3orcUzENingFUIBCAvWGC5L3NNg9raCm10lII1FywgAiNJ4JIErmngySSkpUuR3biRiJHRemElJXCdcQbEqiowc/TdFBe73XlE8/04KPNMBtktW6C2t+d50ujDw6RjWr7cOtfpEuk8EpjroRMIQKqqgtLSArGsDMzrhTR3rkX0rNca01L66Ci4Md7OAgFI5eVQe3qIUCsKki4BPZUyRn1h+L0BzGAKCjxhqrYh537NZMaE1E4n5Opqi6iI4TCcK1ciu2EDtfKM6TWhuBi8vR16IgHm99M1j8XG7A7M8fdpGirasPFBwCY+No5bjB8z5+k0aVBGRqC2tpJ4NZWC3NgIqapqWt9WeSYDtaMDWmsr9FSKyA9j4IIA0emEsn07jRobAlixshJiZSW0zs5pa0OOVhyIgFU0p7EEgfKg+vrAXC5o3d3QGKMprVQK0DTIJ54IsbgYalMTZVP5fDT5BbremXffJYKYTFoZU8zrJTKQU03Zn3B7X9CGhiaQHgCAqkJtb4c0cyakiooD9msSi4shzZoFoaDAGuvXYzEiIgZpULZtg9bZSfdKjmdObmVO6+mB6vPRa5ubyeVaUdCzYAYea3sGI81OaD094Ok0wsFK/L9FF6MmGgUTRWi9vVCbm/PEy8znA2MMsts9lvlVVAR5yRLA6wU3yA+TZejRKPk0jYxA1zQiPIZfDxizwmYPRdXNho1DAZv42DhuketZw1UVWn8/+b/oOukq5s8HHx2FNjAAzhhkc6JmH9CiUapedHdDHx2lb8aKQq0LSSIhM+dWNUSqr4cYDMJ1ANqQow0H0yq0tETNzXSekkQVCFEkQXM6bYWbIpmEUFwMzRSIy/KYqNbrhd7RAbGgAMqePZBmzIDudEI0J77M9xunNTrgcxwdnUh6TKiqNT02pV9TczPkefMsU0HzOvFUCowxMJeLpv5GRsiTRxAglJVBcLvJ+ViWoUciE1ygTbKpJxLQ3nlnbIJNFJGqKsVj7c8ikhqC4Cu2gmOHot14rP1pXDnnM/Bs2QIOTBhT5/E4lKYmCCUlkEpLaVS+vx/ciCpRu7qATAbSzJmWISUUxYrqgCncHh2l6T5D6H6ocsts2Hg/sImPjeMWeRqHdJoWBqMNJTU0QGtrg9bdDQBU0u/vh2Pp0n0uoDweh9rRQYukptF/HQ7wSAS6psF1xhlQdu6kmAbGoHV0QB8chNzYCLm+/nCf8iGHNjgIZcsWatcYTsWC3z8tPYcQCMCxaBHUri5IM2bQoqrr9Flks2PuzKZDsyRBKC6mVpYoghtj4OAc0HWIxcWQ582jEFRDXA1MFGYfFMaL08dDFKc2fzTadtm33hobtwdVoFg4DGXHDjCXC3JjI52L0SbSBgeh7NlDFUJZBpMk0s50d0Ouqck7H7GkBGI4DG1oiO5rxtDlUzHU0kVxH6bbtGGlMBQfQAeimBXNUMtxEvB4nO5nzsem1QQBYlUVpOpqqK2tJEoPhaCNjABuNxEfg2CxggJoAwP56e3vo+pmw8ahgk18bBy3mJC9ZFQIhLIyqO3t+Qul4UGzP50CzxgLia4DRnin3t9PC6coQhsYoLgGn29ME/I+9A9HMv9LHRiA2tRE7+3x0GLd3w+o6rTPhzmdkCorKaoilYLgckFtbydPHsaoUqbrkAoKoGzaRI7CDQ2kRXG5IFZUAJoGsboajuJiy0FYN1yPD5VZHvP5qMU2rjKS95hBOJjHAwBjehmPh2wJnM6xlHLD/0bfvZtMGHt76T4BIJSUQGlqgmhUfDjnRAaNFpIejSI7PJxHLq0pu/XroWWzAOeIixqYxwMhFIK6d69xsAzM4QATRcTVJKCzsRF6hwPDc6rRLAwgmo4h4CrEXCmLwKZdFrGFIEAzprecp51G5ycIyGgaVasM0Tfz+Ygc7dkDGK2t91t1s2HjUMEmPjaOW0zIXjIngjweaF1dFA1gPVkgPco+dApqby8tfsZINU+loMfjEKuqoHV0gDEGns2S94rTSfEEOWnaB6p/0IaGLFNE09kXnEOePfuwLzDa4CCyb74JdfduaxsrKIBUU0NOv5I07fPJHaEHAMEgL8zng1RfD7WzE2pvL6WIj4zQNFU4bFXoBJ8P8syZea3BQ60jEbxe8hHauZPaVQCgqhAKCiheIhCAHo2C+f35DseCAGnWLPBIBNmODgAA13UwjwfynDlQm5vpXOJxwDAohCha4+1cVen+NMkJY2CSBB6LTfTicbkgLVwIYXgY0DQUeuIQht6k+0yWx/LDXC5AkuCTPGBOnUi5w4GdC0vx07fuwZ6urdZ7zaxZjH9efj3mGl8M9ESCRtkB6L29cK5aRSn0wSBYWRkdp8MBbXiYSI9JhIzP2BY22zgaYBMfG8ctxmcvMZeLFlPTNdccMzf8T5iLAjon0ykonZ1IP/ccGGM0ZTM8DHi9lFw+MAChpIQEt9msFQuQ59cyxX4tbcW4DC9tcBCZ117LE0SbREFpboZj0aLDtsjwTAbq3r0UUllfbxkM6r29UNvaSBSeTh+QniNXqCuOjpJAfGCA2kO57Ue3myoskkT/NYXDh1EPpUejyG7ZQgn0ogghFKJ7JBQCADCvF2pbG8VvjI6OmTnKMoSiIii7d0MfGKD7K5EANA08m7UE9GalkafTgOFezQKBsVwyk/SAWq56Ok0t1ByyzDMZKO3tUHftomiUkRFULpiNkCOAiBojgm1Um5jLhaKCMlQhADEEoLAQkcoAfrr+e9jTt9NyxGYeD/YMNOOnb/4E3z/pmyh8hybIpKoqqB0dEPx+qnAarTR9YGDsoskyBdd6vRArKyGVl9ukx8ZRA5v42DguwTMZaNEoeDwOFgxCKiqC1NAAPRKhRampiRYkh4PEpIWFY3lJ43QKejwOZedOiIWFAOdUpejpgbZzJ7U4CgoghMMQq6qgbNsGIRgci2XIQe5+eSYDtacHyubNY543ikLTXsuWQd21a0LMBY/HKSerpuawTs9oAwO0mA8OWos8KyyE1NAAdc8esOpq8GRy0uu0ryDW3CgIOGkKySKHug59dBSus8+GIEkfWOYTz2SgbNs2NtFlJJfDmF4SiouRefNN+jxdLqp+VFfTdGAkArGigkhwIkHmi4xZui89k4FguiknEpaWh0cikGbOpG2RCOlqysshlJZCCIWgDw/TOXNukUs9GqVx9HSahMbZLJybtuPCRefg8a7nEZEk+qxEEUWF5fh4/cfgU2UINRVQtmzBjrI09nRsoXveaFXxZBJQstg9ugE7ZjXjFF2HVFcHPRqFNHMmkTmnk7yMTNPLnHuV+XyQGxps0mPjqINNfGwcd9CjUagdHfl/qCUJUnU1Td4oCvjICPRkkvQQLhe1F4wRam10FHoyOVZ96euDunt3Xo6UUFUF51lnQe/uhlhbS2PWbjfEYJBaBTkVJID0D8zrhdrXBz0WA08kLHLDUyn6Bh0MQh8eRub11yHW1U16bub5HK7pGWtyybxuokgkYGQEans7BKPdIfh8ee02tbd3yjiHyYJY5aoqCOedR20z0/naiErgwSDE4uJDvphORsx4IkGGheZEl6JYImxt717IojhGzrLZMcdqnw9MVcFjMXDOIS9YQPou06+Hc7CiIkgnnUSkyqjq6MkkRLcbDIA4dy6khgYamW9pgdbZSTonXYdQXg557tyx9Hdjiso8DrroKsrebcGlZUvRXcKQKiqE3xtAta8SfskLOJ3IvPwy9EgEIyFmEXHmcNA9l3MPjWRj0LpH6NpIEqCqZKZYUmIZHHLOJ3gBSVVVNumxcdTBJj42jitYLYFxviWmHwsTRTiWLYNwyil5o8l6PA49FoNYWors66/T4hMMwnHSSVC2bwePRvPeR29vR3Z0FEIwCCGRoCDJ3l6IM2bQoud0jlWQ3G6INTVQW1qg7t1LU041NVR18nggBALgo6OUZVVYCD0SoQVxqnNU1cM2PWNNLuWkhZuxC3xkBEJVFZjXC3nOHGvB0+PxCaQH2H8QqxgIgKfTyLz2GgVyGgRDKCkhjyNZJi1RPE4VBo9nQhXJxP5E4FMRM2nOnAktSagqnb/hVAxdt4wveSYDfWgIkt8PZk6blZSQoaAZUGu2tkZGoA8MQKqvh+DxWCSSud2QZ82i6lkwiOw771jCZ+t8Rkag7t4NefZs+hyMqa8Jx6rr8HQPYVbUA0ewEaK3HFLlDACAsnevpdcJuArGxv/NKbocFMoFgDJIye81NZQllkiMpcMHAnC43VO6fe+v2jcdaNEoEWHDqVosKYFoi6VtHARs4mPjuILVEphkOgeqCm1oCEprKxGbsjIwUaRKT3c3wBiNqmez5FESj1M8gDHNY+ZVASDTwmgUQnU16RxKSoBgEEyWIc+ePebnYsQHKC0tNCGVydA3dlPXkUxCZ4y8UEztCGNU0XG5rLwkANZidTinZ7iiUAXM4SA9SjI5RiA4h1BQAKmx0ZquAkD+SONIj4nxQay5BAUAlF278lteggChsBCZ9eshL1gAdetW6ENDFMppuEhLs2dD8PkghsPkmr0fU8EpidnICGl2VNWaaAIAZLMkfHc6Lc8hJsvgmkZaGiO6A5pG5n7l5dBaWuj5xsQXdJ0qfJ2dkBwOaJ2ddHrFxZAXLIBYXAytq2vsPnU6iWgB1IpyOCgeJBKBGAjQ593XRzEVOaP81jULBum8ZXnsGo+O0r0tSZithtBQMR97urdNiNCoL5uHWQkPHYPhsyQUFVH7MaelOpWBpdrbS9NmAwNEEjmHWFQEx8knQyorm1ZFSOnoQOaVV/IIoFBSAufpp0Ouqtrv623YyIVNfGx8KGH9cU+lyKDNzBeSJExMRjJek81Cj0SgtbbSYouxb/3q7t00YZPNWlEAAMAjESCTATOddxUl71s38/tpkUilrCwrJJN534bNb7HcHBkG6L/mfpJJwPRaMbxtmCRR2yeZpG0OB1WXPJ7D2l4wKwtiURFlQwkCVUCMqAixuhpScXH+dd1P0Kr5+HiCog0PU/Wkrs6aEDKtBqS6OijvvktVsGAQ4BxaTw80VYXa1UWj4C4X5MWLobW2Tm4qaExFTUrMBIEctXt7Sbhr5nM5HBCMKSwmitD7+6EPDYHrOlWRHA7SAOk66ZT27iWTv1CInKRVlQiE00mkbGQEiMfJ4sDlgt7fD233bkilpZAbG5Hdvh3cMAFEYeHYuLwRbGpeO2ZETDBZhj46Cn1wcOw8SkutlhkkCdnNm+k+dLmsicbCTbvwz8v/GT99+z+wd2i3Rd7qy+biK4v/EYH1e4nwGzYDWk8PkM1CLCuDiKmhx+NWxY6rKv1+cA41HqcvD0uXQi4t3SdR16LRCaQHAPT+fmReeQXCeefZlR8bBwSb+Nj40MFcQPVoFJAkKLt2kUdMYSEgipBmzBhz/zXANc3K00LOGLs+PEyC50lIDwBa+DMZCB4PdMPx2fzGzAoLIRQVQW1qom+7qmpNXqG11Ro7z9NnCAItCLEYWDBIxErXSVtiett4vYDfT9WKXOIhSXCcckperMGhRm5St1hWlmf6KAaDkMrLJ7xmOl4+k7oeq6pV/RHKyqB3d5PVwN69lD7e3w9WWEjXL5GgSlk2S1Wo4mJk33uPFvfR0cnbX8ZU1GTETAiHoba1gcfjcCxZAk2SiKCqKrTubogVFRArK4kQJ5N0rJpG2W6lpWDhMKRwGGJ5OWmCFAVCeTlFlRgu1Vp3Nx2zQYKgaaSvyamkiGVlVnXFqjjlVq5yrq0QCEB2uyEUFJCzcjoNuFxElFQVQiAAtbMT8HqhNjVBrK2FEA5b5zX7zTbcsfRraBaHEE0MoVDyY1bCg8Bru6zoFaGkhK7Nrl0kpt+5k1q1U/hHaX19lCJvTqhZD2jQOjshL1iwX88nra9vAukxoff3Q+vrs4mPjQOCTXxsfKhgLqD66CiFX7a0WPobfWSE/tBHItSyMUSaAFV7IIqWEV8eBGHMSXic9kGPxcAKC2khqa8HwmH6Nm5URngqBS0apUXL4aBoDEPwrLS3w+F2j+kzQAQMALQ9eyAvXEiJ7sbrzVwvweejyZ8FC6xv/WZMATuM1xYY57mTSlk+RPtyRxZLSixh9niYQayTuh4bOhFoGqQZM6ACY20YVbUqX0BORS9nCgypFImTBwdp/DxHTG6CK8qUAaJmdpY2NETRIrW1lEKfSEAoKaHpKpeLKjkAkEzS5JZhtigUFEBetIhcuoNB6ENDpEfyeMh4kXOqHnFOQnfOIZSW0n1jpp8b0SW64c0z2bUbf9xSZSXEoiLo0Sj0dBranj3gug7NnPjiHNKcOVC2b4c8cyb0ZBK8txc8m0XhG+/hlBkzINWeRIGwCrXquOHQLNbUQO/upnvN7YY2NAShrQ2ark9w69aj0TFiaWihTBdrM3UemcwED6vxeiyMvy/GYz8VRRs2xsMmPjY+VLDaW+k0pVnnio4zGcpVSiTom3gyaaV3M0mCOGMGESNDb2GCG2PkeT4l5vspChx1deRYbGpwAAiFhbQ49vWR5kIQIJSXQ3C7x8StggBtYABicTHQ10eZR729tNDpOpQtWyDW10OYO5c0Hx0d0Pr6oGzaRFUfAGJVFXRDA8N8Pgh+/z5bD4cCuZ470xkrt1yFp5jqEnw+qNEoVdXMChJAYuWSEiI0mjYWWeH3UzwCkK9Hya0oMDa20BoLKQoKSEScA/PYJxAzg2QwlwuCx2NlTemDg1A7OyFzDmXvXkh1dVRhM4+5ogLZjRshV1RA7etDdsMGy8sGAFBWRmPoo6OkiSkrg9rSQm3Cigrr+CzR8DSu3WRgTidVeDZtosBQQaDKkyAg4ZXRrXajZ7YIJbMN5SfNQANfCG88a1UToapwnHIKnVcmQxNpfX3I/O1vVLkMBiHNnAltcJCqlcYXDrNyY34BQU5chfV5meJwwy4CQN5YvtLcPJbqrqrURta0fEPRXNhTYzYOEDbxsfGhgjXGPc74zYKu04SUx0N/pM1xbMag7tpFpGfcZIzW2grHihXIvvUWNKMKAACstBSO+fORXb8eYnW1lbVlTmwpu3ZRi0sQIM2cCbW5mX4GoBntEGHhQkBVqVQ/dy4ZAXZ1gfn9YKGQFVia3byZxNLFxaQFicXo23I2C3HGDPDBQfB4HNqePdMWjL4fHEgSOwBIZWUQ9hXEquvQenuJmIIqHVpnJ5FTRYGYydA0VjBIXjapFLWAjGmqvGMLBOj6gNpZrKAAyGahtbcD1dVj5MIQgTOncyK5MIz+xBkzqOpgnYg0prPiHPrgILVhjAkuRyhEU1y9veCDg2ClpeDZLLJNTRCrqmiqDyBN0vAw5XQZIa36yAgdk9HGnPLaud1UhRwZgZJIUHttklbThCqaKKK73I031RY89tZf0aNEwFMpuJ0+rKxcgc8EV6GyQ7fE9wDd46oxBQmArrUo0lRZczNZNRjIrdyY782CQfoCYI7xG+cOkDgZRhXOFF0rzc2AJBEZdLnod8loH2pDQzQplwOhpMROe7dxwDhmic9dd92Fb33rW/jKV76Ce++9FwDAOcftt9+OX/7ylxgeHsby5cvxs5/9DPPnzz+yB2vjA4M1xm38gZ4AM7XbaHWZZEWPx6Fu3z5xHBigKko4DHnFChKJGuPceiqF7IYNVG3JZiFVVVkLudbXR4uOqkKsqKDx+ZyKEfN4oHV0ID00BHn+fDBNA9c0OFesoAqRqoJzDq2/H1pnJy2umkbEThCAeJymu0ZGwOrqSLAtSXn6kKMNgjF1NR6mmSRzucCNtpDW2wu9r4+++csyCYg5p4mghgZo7e3UCty1izQ2xtQTCwQgzZgBZft2y0lZqquztFp6LEYEyghSNcnCZOSCuVwTEtkFr5cWdrO6xznpxRIJsHCYQjvdbvL+MSofZpvT1LqIxcVQdu6E3NgIPRAA45y0P6oKJgiTtgzNa6dHo8hu2kQtXFN3EwxCnjOH7r8cwjTeyylZ5Mf6ofV4ou0ZdEc7rEyxVCaO17vWw6UL+HzDpyE7HGS0KMsk4B4dpcpMIjEmZge1YAW/H3okYpF98z2t9x4dhWPpUhrJNwJ/AZpecyxdCoyOWgRUj0ZpcrKlhapVbW3UbmxqgmP5cvAtWyzna8CY6lq1ytb32DhgHJPE5+2338Yvf/lLLFy4MG/7D3/4Q/z4xz/GAw88gNmzZ+OOO+7AOeecg6amJvj9/iN0tDY+SJjiW2aIkVkgMNbucjot11whEMjTR+yvpSAGAmAA1HQa2ebm/KmZGTPgOOUUSs7u6KD2SDBI38w5pzywgQEiYozRAmmO1ScSFtniqRSUnTsBSYK2a9fYMTQ2klDV4yGRtttteb5YKfDGpFXu4nOsQI9GwYeHKZIiEoHg9YKpKpk9plKUwt7XB7jd0FpbycXYGBuXFy8GA2iSKRKB3tNDpEeWSQ/l91Nras4c2m9BAcSiIkiVlVOSCxNiIDBBcC0UFkKaPRuZ11+nwNDhYQqlDQZpCsyI7IAk0WI+MED3W2EhVaHMMFzOya9p5kya2BIEardWVJAgf+/ePM8bJsvQolEo770HZfduJIMedBXLiOsp+MQEqnrbUQiQZsw8L0EgTZGRl9Xp1jEqqegZMVq5bEwRllRTaGXD6Ej3YfbeLstJWgiHIRpTc7qijBFBUQTcbgiFhdAUhX63dN364mEZKxqWD9KCBWDz5uWZUQIANM0ieuZ9y1yuMdIDAIqC7JtvQlq0CKLXa1kJiKWlNumxcVA45ohPPB7HZz/7WfzqV7/CHXfcYW3nnOPee+/FzTffjLVr1wIAfve736G0tBQPPfQQrr322iN1yDY+QFji2+ZmcE2Do6iIFh/OwQFonZ2QamrgOPHECdWH/bVjrKmZYJCISzZL35olCcPNW9GhDSGupeBnLsyQixCon0naH4OYmAGOgttNkzSiSNsNzUOyuADtiW4kAx54nKWoiKjw9A5TRcFo85i+PUJRkTUBxnw+iA7HlJEahwt5hnIuF1UbDiIl3qoSGHYCem8vTTwZAlqpvHwsuTwQsBLLmdsNKAploZWXW342Ul0dpZ/39ECLxykMdPt2QFWpuuZwTOvYptIyAYC+dClN2o2M0CLu9YIZ1RxIElhpKZ3D8DD57YyMgAUClt+QWFlJ2wcGwAzSww2hevq558bIt9Em5ek0pax3d6O7zI3Hup7B0N5+qswACAcqcFHZVajLaTVpfX0k8o/FAMYQkyWktSxVckwjRSOclzmdyGSSiCejAHw0XWY4T2vxOH2eXu9Y2KlRodRHRqC89x7E8nI4TjhhLC0+JwCYj4xYBo3ciOUQKyrARDFPG8Zkme7nHGG5BUWBtn07UFYG5/LlR2VF08axg2OO+Hz5y1/G+eefj7PPPjuP+LS0tKC3txcf+chHrG1OpxOrV6/G66+/PiXxyWQyyORMBcTG/8LZOOYgBAKQ6uuR3bKFnGkNoSvzeOD+yEfytSXjXztFO8YEczohlZaCBwI0qhuNon2kHf/X/FcMDnaAGYt12FuMj7s+geoTTiD9SksLkS+zygOMfft3OtHpUfDY3qcwGO0mMqXrCHuLcOFpH0WVq5QWQsNHhSeTtK9EgpydCwpoATbIwOFOZgfyDeU4QE68paWQSkqIyPT2Qq6untaxMFkGF0WoxucllpeTUFySwEdHoaoqaWMkCVp3NxEKVYW6eTPpf8rLkd2yBfLixUQoDCdneeFCaNEo1B07LCsB8/2mi6m0THJZGZRdu6Du3WsJzNU9e+i4jTaZVF8PYdkyKNu20X3hcBDRyCG7ZpUOAGlbOjoopkTXaQS9pIQqWIoC+cQTkQy48Vj7oxiKks8UF0UwxjAU7cZjzY/jqtC1KMxkkN2yBWpnJ8TSUqipFHgsBq9SCBdnVsArTyaphWVMxzmYBJ83CEQy1jHydNoyptR6esYMFRmDWFFBfj6GpUNeYG7O9B83pusAY/rPsHEYD4ssTfY32LxugnDMVTRtHH04pojPH//4R7zzzjt4++23JzzWa4jnSsf9kSotLUVbW9uU+7zrrrtw++23H9oDtXFEwTMZKNu3EzExKxIApYiPjsJ1xhnvK81bj0ahbNsGZfdupBqq8Nd3/4ih0T7SqBgi3AhL4bG2p3HlkqvglfzgDge4MS3GSkosl2dWXIyEW8Rjex/FULwfTJIg+P0AYxjWs3gi+iaumHsJPAsWILN+PU1wGefCiorgWLAAyq5dkGtrAWOk+HALm3MN5ThjkGtrKU29pQWKzwexqop0K4xBzm29TAHm9ZLLsTEWznWdHI7NSlA0CqGxEcrWrUQeXC6oO3bQAsk5tK4uCKWl0HbtgtbSArG6mio8RmUhzz/J8LOZzjnuKx5BCAQgVlZCT6ehDw9DbWmh5woCEVSAtCoVFZDnzYPe3w/mcEBqaIBQVESaLqPFqcfj5IUzYwa0vj4IlZVANku+P6IIzemkapHbje5iB6LdCjk0j46OuUQDGEoMoD0zgHlDLitUVevqIl+h6mrUeCVsS46gsqQBPZlBqvwYHlBuwYk6VwUq+ilyg2saVRYDASJKHg8RQE2j1p/fT95KPT0Qy8shhkITnJwPdPrPzPxSxruqCwKYxzOWm/cBVTRtfHhxzBCfjo4OfOUrX8HTTz8N1yR+HCYYy3cy4cYf4KnwzW9+EzfeeKP1cywWQ5VtgX7MIdf7gysK1K6ufNIDkGlaRwfUvXv3W9nZ1/soTU3QIhHoIyPoZAUYilKcBXO7IVZU0KRPPI6B/n60BjZjdkSE67TTLOLCOacx9XAYQkEB9vJhDI72UZvI5SKNklEFGEYaHVoEDXt7KANr4ULLzE7PZKDs3g3JGMOfTLdyOJBrKCeWlkLt6BjTUcXjVCkwnJGFkhJI+2lL8ESC2lZOJ5EGI+PMnMyCroOBLAek2lpyuTa9kQDASILXUymqegEUlppOQ6qqAioq6HmqCnn27P1eo+nGI4jhMInPu7pI8G62jwyPIa7rEAyNjhgOAw4HxIICclIuLR0j5oYjs97fT6/x+6kNms1CS6cBRYHy1ltgPh9iZSo0MxU9HCYRNWDFSSQFlUw2TS2Orls2DC5BwCkzaiA2+PFE+3PojncDDgdcghMri5dirXwiPNsNAbIROKpHoxB8PjCXC44lS6DHYuRHlM1C6+ggXVIgYE2+ja/GHOj0nxgOg8+eDa2nZ6xaK0k07l9UNGHizYaNg8ExQ3w2btyI/v5+nHjiidY2TdPw8ssv4z/+4z/Q1NQEgCo/5Tnusf39/ROqQLlwOp1w2j4Qxyy44TGiNDWBp9OWfwlE0foWapbH9aEh+saaSOTlQx0ILJ8gw5QtrtGCJ5aU0BRWRwd4ypj4ESUkmAKtuw/pVArOU08Fj8XAnE7y5OnuhvLuuxiZVwB9cBCCsThaPicG4kkygdP7+qDnTp0Z34QFr9fSrUwVxrm/kM4DQg6ZFDweMmjMhTF1w+Nxao3sj/gYolnB6wUCAarQuFxEdgoLKe29pARCby+UlhaqbhmGf+YYuRmFYL2/okAoKqJF2+PZb7XBOvQDiEdgTifdQ+ZnYprymZOD2aylyeKGq7SmadCSSUhFRRSHYUyHMb+fKllvv01tIYPwSEuWEJEcHQVXFPiryy3tjB6LkZmlokAMhyEUFsLnLgS0Kf6s6zoqOkdx3qrTsbDmZHTHu6FqKkqlAOqSbrh27oVlAGF+WcxkIMyYAT2dpnvM7bbiNYSiIvqccu7VQ1GNkUpKwNasgbJlC4mzBYHeb9wkng0bB4tjhvicddZZeO+99/K2XXXVVZgzZw5uuukm1NfXo6ysDM888wyWLFkCAMhms3jppZdw9913H4lDtnGIwDMZaEND9E1WkizfEp5KTUxad7shlpeT9sBckAUB4pw5cNTX01RUcTH4PqqA+zwW8xutUW3wcpl8SqJRmuLJ9U3RdXgynPQU3d1WGrcWiZAmRxQhlJTA7yWBtJm7pWWzJP40FhSv6AZzJEmjYrQmrG/CpsBZlidkXXFVBRNFiLW1lFelaXmJ8OOddqeN3IrrOF8VAPk2ApN5KY0Dk2V6jcNBlRxRtDxtIMtUvfF4oEej5ExtTrSZJoW6Tm0bj4cqPj4fRFGktmFh4QFVHA40HkHw+2nsXZat6Slr2k6SKLJk716oW7daAZ9icTHYkiVj14kxIBiE8tprRIxdLiJKAJiuAz4fnGefDaRSqAl6UNywAAOdu8B0nUTuxkh9UHOiSgqD+QS65yYJ4mUeD/zuQpxQWooTSk8AAKidnVA79oDV11NVtK/PusdYQQHEhgYwxujYPB4ik15vHuEBDm04rlhUBGHlymm3yWzYOBAcM8TH7/djwYIFedu8Xi/C4bC1fd26dbjzzjsxa9YszJo1C3feeSc8Hg8uvfTSI3HINg4B9GiUhJqGZgEAmM8HedYsqx2Q+wderKqC0t5OUykAIAiQFy2C2toKrbkZ8PuhtrSQGNfthlRWNvE94/GxyS5joRLGCWOZwwE4HKgcAYrL69EffYdezBjA6X3DRTNQOZAFE0RwwxOGOZ3gw8MkTjbiEioiGsKuEIZGeigyI52m6pXPh5A7hGpfJZgrMSaOBWihBSzHZjidUHp6rAWYOZ00Bj46CvW116xv8EIwSAt0LAaeTMJx0kkHXPkSS0uJ7PX35y3ezO+3BMSQZSJm09i3EAiQHmjePCjbt4NHo3SumgYWDMKxcCF0zsEKC6H39BApMkNhGQMMA0DmcID5aCIJinJwC3Fua3QyjItHMG0R9P7+sdFxg+yJjY1QWlrI/wawqlP60BCy27ZBXryYJgO9XmB0FHpnJ90XJpkrKIBYW4vMG28QIcxkIAkCzl9xEp6skTDQ0WRVvcKCDx+vOhuuPR0Q5s0bExbn/G4wnw9yY+OkI+BaJAIMDICVlMBRXU0Ta4zRfSiK9P7GezmWL4fW1jZp2v2hJCYH2iazYWO6OGaIz3Tw9a9/HalUCl/60pcsA8Onn37a9vA5RsEzGSjbtuWRHoBaKNnt2yGUlkI0U8sBEmO6XMhu2AC5vh6qppERWmsrkQ1TF2GM+WbffBPCWWflLfxqb++UXj5SWVmeT5BYUgJ3Zz8uXHE2/trbi2FJsVpU4cIyfLx8DdzvdVBMQToNVlhotQggCNQKGh2FJ85wYcPZeKz9WQzrirVAhtwh/L/G/4dCdymy/h4SqxrxF+aUFwsEwBMJqJ2dUDZtIudpxohklZTAuWIF1D17KHyVMXIvdjjABIEqKCUlEIwKw3iSNxXEQADO00+nllAyCWa0PMwqjOlNJBjO0/sDczohz54NpbkZ8ty5VruIuVxgfj94Mgmtvx+OZcuQffNNaG1tkOfOpewuTYNYXU3BpIaAmRumeAe1EO9DPwhgQjwCczrhWLAAPJuFsmMHVSUBy0hR3bmTLA1yX+P3Q+vspBiSnh7w0VHI8+bRe5uVLFGEPH8+OXb39dH7GqPnZZtacOncpeg5ZSUSPAsvl1CFALyjKjg3ssRKSyFpGpF3o5oGxiBVVeVdE7W3F8qePTRJFosBnZ2WY7Xg80HweCCWlQHhcF7VRTQsHfZVjTmk7VUbNg4hGOeT1aqPX8RiMRQWFmJkZAQFuYuqjQ8cWl8fMm+/PWYWmAOeyZD5W0UF9K4uqnIEAoCuI/PMM4DPB7GiAlJ1NZR33qEFOZOh+AIjBRsAnKtW5bk353mo5EAIBuEySFLuVBe8Xgh+P2J9HeiuCyE+0g9vhqMyJsDdRaJSoZx0GfKiReCjo1B27CDn574+K5UbgoBkWRC9NQHEM6MomNGAusp58DuJtFuJ8yMj0Lq6iKgUFECaNQvM6UR2wwZy0DXcm83Kg1BWRpNNoG/lDCBiZZgpah0d5INTWEi6mBySt9/Px5x8kiRkXn99LLqBMYilpXAsWUJVpYULp7XgmQulnk5D7+sDNwW2iQS4plFbye+n9l42C+b3Q3A6xyphokiVnvfRFtGiUaSefHLSdpdQUgJ3jsZn/LGrfX0kyDVCasE50k88MaYBEkWwYJAqJek0HCedBG1wEFpnJ5ynnYbM888T6TH0Ss4zz0Rm/XrSCkkSbTdJjKrCefbZYKatgQnGIM6YAWXrVqpAAURCg0E4li6FZAq9kXO/j4zQRFl/v9VuZQ4HpNpaOBYuPKj2ldV2Tacth2iAqoViaalNgGwcFkx3/f5QVXxsfLjAc9O2TQgCiYBlmdodkQg0MwV6xw44Tz8dQnk5lepHR8HjcTIbNMBCobyww9wkdq2/f1LSAwD68LAliBYCAYgzZ9ICJIrQenvhyQIN63dDXrwYatsu8MggHbvfT4GO9fU0TVZcbCXAmz4ozGhPeeMKZg/LEP01cFQuzlsczNFg1czxMlPJjRgBfWSEpp3MVphBbngsBnHxYugjI1B37KBrIQgQq6qsNkZu4rw+PDxpJWwyiIaZYOb11yGGQpDKy2nRF0Wq1u3cCam6etoRGqYwXWtuhtreTp+dYYDHCgvBZs0C7+3NIyXO00+HZOZfHQLkVbPGT3XtIx6BOZ2Qq6uheb3IvPoq9OFhmsAztWSiSFUsMzhXEKiKY3gv6bEYWFERtaYMQT6M8E+Y2i5dtyo3MPx78kgPALhcUHbsmHAf64ODyL79dt7nat3vxj3DzElH8/2nIVSerKoDYIz0+P1Q9+61Wm5KUxPkujrI8+fb01k2jhhs4mPjqAWT5fwASkGAWFlJratMxvp2zAoKIM+aBZ5KUetAUcAjEdJLVFRYOU5wuSgTKUdwm0su+Dj9xnjkPa4otOg4ndAHByHV1EBVVSibN0Osq4MwezaYINB4eyYDPRKB1tkJ9b33IM+bB3VgALquQywvp0qNzwepro7yw+bPn/QbMTOrG4bDLwAymHM6yThPVen/zQknxsCzWRLKmunWpiGdLENpaSES5XbnEcxckrc/6NEo9NFRaAMD9D7GoskcDotgHojhnGZWCsxqhZlkPzICddcuOJYuza/GTEM8faCQq6ognHceVbMymQOKRxDDYThXroSyZQvZFlRX07i7mellfC5CSQldI8ObRtm5E85ly6A0N0M3fcckiQi+w0H/bxhbQpbzE85zwAyX6Mkw/nM17yEhHKbfqXgcQlkZuSzrOrXv2tvzYzBy9zdOTA9QVVGsrLQqPbmkBwC1a4eHKX9r8WK78mPjiMAmPjaOWgiBgKUlgKrSH+iODhrjDYdpPD2bBY/FoIoimNcLvbcX0uzZFOI4OEhCWK+XIh9CoTytkBAM5uV17fOPsCCAud1WhpJpIAhjrF3v6aEkb1kmkuFyWQub3ttLYZpGfIHS3AyxooKmYwIBOE48EUyWSVsRDu/zOHLHhbmqQhschFxSQudlvDcAWiTTafLV0XVkX3sNLBSCPHcu5YEZI9/IZgG/nwhmDonYHwm0nqcoFF0wPJyvw5IkcpQ2Js6mC2sE3jxfUaQJPM4td2oL0xRPHwzEQOCgc6ByJ5LEUMhqQwIkihdKSiDPnw+kUmNktr8fmZdfhvOss4CGBtJohUI0Sj40RD5BRtgpVJWqXD4fTS4a14S53XQ99kE0zUBYk9QJZWWko9q7F1JDA9T2dmh799L+CgvJgygUmlBVM/2s8tLfgTH/JqPNMNlkGXQ9L8ndho0PGjbxsXHUgjmdkOfPB9c0Cv/0eCis0vB4QTJJVR+HA0inqU0yMgJl40YKRayuBjiH1NhI00A56eimliUvlLKkhIzzxre7BAHS7NlQ3nsvz12YuVxEWowJIz44aKWkiznf5pkkEekxq1e6Dq2zExoAoagIYnm5pTPaH/IykNJpIhuiCFZaCj40NNYOMQgZKyujSoyqgieTUHt6INbWjo1dA3lhlbnXfrrQjdH8vCRzVR1LQj8QAjEuDR2ybPkQWT45ACBJkKqryRjwKIQ5kSSC4jxy89/0dBpIJsEdDgjFxYDLBa2zE8zng7pjBwnQRZHG2JctgyoI0NraiKTKMoTCQsgLF4L390NqaKD3M3RNalfXPg6KWmSmhomFQtCHhiDPng2xvh5aJELRGsEg3VNOJ3g8DqWpiUbwc+4J089qMvBUCjBI76Qwfg/s6AkbRwo28bFxVEMIBOBcvpw0Mt3dEEpLSSdh5FWBc/qGyxgtDNks4HBYY8+QJAh9fXCeeipg+JQwj2fSvK6pEtrF+npyYzZIDwAS2CaTyG7cCHnZMqhbttC3WyN/yTRb45kMmDmpM9kcwbhKy/6Qm4GEWAyQZWg9PXAsXEjajo4OSx/CSkvhWLCApuLMqkkkAqGyEvroKInBQd4uyE0gH1cJ2xe44SskFBbS9c6pFAmhEIQpKlhTTfwwv38sy8q4zvD56PgNXYxQVAQxGJyyJXi0IdclXBschNrSArWtzWpXMacT8sknA9ks1F27AK/XcoDObtsG58qV5FhttHX1RIKqoJkMtK6uvJbRlOQd5Gat7t1rtQp5TsVFDASgNjXRlwnjOjMjkDe3OmNZPYyOWgSJRyJ5rVJmTMaN9/kBQOdrPm5HT9g4QrCJj42jHszppFaQQW64qlIVw9TuALQw5iyOfHQUiMchlJZS4vfwMIlBVRVMVUmEOUmbZLKEdgDI7N498bgkibQMnMO5YgU932iJmVNFPJMhYiHL+e7CAFWujBbXgSBX6KxHItA1DWpPD6TGRrDGRov46LEYMhs3kmbDnKwxvm1rAwOQ580jzyCjkgAjLduxePG0vX14KgWpuhpqezs5LxcW0hRRYSEJqCepCuRO/MDwNzInwYRw2Nofz2Qs3RDzeiHV1UEqLwerqjomzey0oSFkXnuN7kWn0xqNZy4X3ccOB5IzStDlTCGuJeFzFKDaVwmps5OCVjmnSk8mA6G8nKb3BAFaNGrFgljkfeNGIkfGc6zg3s2bIc2dOzbZ53ZDLCigaqggWKSLmZljIyNg4TDFwORYPfBsFjyZhFBURFEWZrUR9HshlpZCi0bzjRRzQlk/qDBdGzYmg018bBwTMMviQjAI3ZjWEoJBqjJkszQZo2lUEQgEoPf2Uil/dJSmp/r7aXzcENxqbW1wrlwJsahownuNz/HK7tgx5XExI2xUqqyc/HGnE2JtLcTdu0lXYSSyM6eTsrq83mlXV8bvV6qsRDYSoTafzwe1qQl6fz/kWbOgbNsGGBNo+sAABUpGo6T7EUVy4A2Hifgkk9Y0ljnmfyDHoXV1QSwpGRvNN6a61OZmOE87Le/5ljbECP9Udu4kbyOPB/rwMIRQCGJdHemXDEM/K6TS46EokqNEF7Ivo8vx4JmMlbwOIE+HwyUJfGQEfSc24NHmlzA01GXFXASZFx9v+BhKDR8oSBK0tjYKKDWItDY4CJxwgtWOElwu0pAZ8R+QJNK5cQ4ei0HZtYvIaVERtc4MAox02qpAWdEbkmS5SOdVQo2kdH1wENl334W8eDG4YTvB3G5rbF0MhSwtkNn2PRxmhzZsHAhs4mPjmIDZ3pIaGqC2tVFY4vAwjeBWVUGeO5d0L4kE9N5eaguIIlg4DMH448uM8j1AEy7Kli0QVq7cf3r4+3xcKimB64wzkH3nnbzxYcHrnaAzOhAwpxNCcTEyGzeCJxIQQyHKAzNCUPVIhLxcDJ2MWFQEVlMDsb4e4rx50LZvt0S3ueCx2LTG2QGjtVJYmKefMjFZy8zShhikRwyH8wW1Hg9kxugcKiryidSuXdD7+6d9bKOZUewa2oXu0W7IkowKfwVqC2stb6T3g/0ZXY7HvjQxyGSQWTQH/7fhIQz2t1IlR1EAlwvRIif+b9sj+FzDR1FYVEGtMMaAVAo8mSTimkggk0hAmj0bUkUFTVIZGWAAaF+Kguy771oklxUUUEVtcBB6URFlcRUUgI+MgAsCXV8jEoW53eCqmneuTBAAj4fcwQcHx1qT40iNNGMGxOJiO3rCxlEFm/jYOCYgBAKUYTQ6CqmqClJ9PfSBAavtpezZQ6X3ggKIfj99oy0pAdc0ZN9+m76hjvME0g2Pn/1VEPapm5imHkaqqIBQUJDXQptMZ3Sg4NksLaimGWFXF8TqatJEGa0/3dBgCIWFkOfOJRPGeBzKJKQHOLBx9ql0UZOJx4EcQasRRKq2t9O0lvUEDqZpyG7eTJ95rp3BARxba7QVf9jyB7zW/hpSKhGOCl8FLmi8AKdWnYraQO1+z20q6PH4hPM1j20qDySuKJNrXkDj5G2RFgyN9lFlyxzh13XoIyMYCYfRO7MIQdXYpyiSQNoIQIUkUTspk4GyZQvppCYBj0aJxBgtKL2H3MChKODDw+Q0bWRyme0uM+ZCj8Wo8pObEydJlscQEwRIc+dOSmrs6AkbRxts4mPjmECuqJfH4+SFUlho+Zyovb0QZs1C9oUXaIIKgCwIYyPAmcyYzsWEkdq+Pxzo4r6v/bxfomPCFAcjHodgxFZwk9wZeVBiZSW1OzTNImiWyHYK0pO7/+kiTxeVTFpaITEYnPBcS9CqKJTsblR6xp5gOBerKv2bpPW2v2MbzYzi4W0P55EeAOiOd+PxpsfBOUfYHT7oys90jS5zYWW8TRIeypxOxLO9dC8LwljFJ5uFnkpBKChArKcNWipOLuWGz45QVETVG3NKSlWhx+NE/MfBnLBiLhfgdtNrjG366ChYQQGU3bspqqKqCszrpXMwqqR8eDi/imRUfJgkUQSKz2eTGxvHDGziY+OYgSm8HV8216NRqt709UEw/nBD18lnR9dJu2AawZkwpkvGT5ZMNW00mej5UFRsDgba4CCULVugx+MU2dHTQynatbUQwmFobW3k1ZNKQaipgVhURCQo51iZ00keLoYvjKnl0Pv7rZDTA4KqUgXOaOfofX3QJkmAt8bxTSfiXJiO2rI89RQc9t9abIu2Ye/w3jzSY6I73o1YJoa2aBsWlC6Y5NX7xwEZXRoQAgGgrc1y8M7zKpIk+L1hsB6BKpjJJO1DEEiQn0zCq0t0fcxrlMlAj8UghkLWVCAzdDeTjZEzSbIGAMSSEqqAGi7QWn8/nKtWUZu4uxs6ALG6GoLHQ62zPXsAjwdCUdFYfIyuExHy+SCGwwelU7Nh40jBJj42jilMVjYXAgGwtjYIhYWQKiqgbNsGfWQEfHgY8pw5ECoqADOsEcgbOc9dlLXBQWS3bKHWkCAQOSgspFFikPmcVFl5RPUJuZNBkGUgFgMrLgaSSTCPB1pnJy1IZlK510sC1PEtGIeDwlp7eqx9s1CIRvBHRg5oIeOZDJTmZrpmXi9NzhltHaW5GY5Fi6xrZlXuWlryRughilbQqZ7NQiwrm1QTM53WYlyJI6tnp3w8raYRVyYx1psmDkbzlRvEKtXUAKAqjDndVD3QhZC3CIM9ey0BvOn2HPYWo3KYQ5dSVDEyxMZIp8dE/4ZhIHO5iFhOQr7E4mLopuWD00kTdZkMxUp0dpJrs8sFiCKkmhpIlZX0JSCZpGyxJUuQfffdPPIj+P3vS6dmw8aRgE18bBzT6I12YXvfNgw7hxGEE7O1MhTPn09/3I2xdXnmTKjbt5PQ10j9Nn12zEVKGxpC+qWXKF5A16mVFghA6+qC2tlJNvzDw/S6E06YdBpMj8ehDQ5aHkOC4XzLFWXa0z/7woTJIMag7toF54oVyLz1FpiqWoGtKCiAWFpqVRZyWzB6PA5l40YiJy4XVcQA8EgEamsr3B/5yAEdnx6NApJElYx0mgwSDX8iVlCQN24NGJW7efMo1LO/f2whNRyvkUrBcdJJlC2Wo/+ZbmvRJ/vgEKaeTnNJLvjkg1+oD1bzJQQCcCxaNKFiCQC+/n5cWHU2Hh39K4ZivRQ3kk6juHYuLpxxJtwvb4Hm90NuaIDa20sBrppmjfqLtbXQ+vrAJAlCMAgtmyWBf06V07FiBVQjBw2qCjEUAtc0iGVl0Hp7gXgcuqHpMQm+1Qo22qfy4sVkhpnNUkU0FCI/qx073te9bcPGBwmb+Ng4ZvFux9v491d+hL39TbRBEFBfPBvXn/zPWBSemSe0NKMvJpss4ZkM1La2MdIDmk7RzKTtVApiVRWFi2azUHbuBG9shFRcbB2L2tsLde9eeiwWo324XJAaGsiR1xghBvY9/bMvTJgMEgRItbVQtm+3PHCEaJRGvmtq6Nu7kRTOFQU8m4XW15eXqi6a7UAzmFIQpp4+mgJc18F1nUaojYgGK59KFKlidvrpeedrhnqys86CsnnzmNmk10tVtrIySGZi+AG2FmsCNagP1qMl2jKh3VXhq0CBswA1gZoDOsdcvB/N11RCX3n2bMx45x18rvQj6KxKIZ4eha+oDDWhBrjbesBOPZUIdG8vXeeZMy0fHT2ZhLp7N3g2C3nuXKRfeIEExx4PkZFAAPLChdTyDAYhzZxJ0SAGueKpFIRgkIiw0wmpqmqsQpcbkWKIoM28O64o0HUdytat7/vetmHjg4RNfGwck+iNduWTHgDQdezt24mfvPkT/OC8H6Msp+Wwr8kSPRodS8U2IUlUNdI0+lYbi5Gzbc5r2CmnQCwqogpKUxPUPXss0gMAejKJ7LZtkKqrKVvMGPkeP/1j6YrMb9KMkc+OoS8ykTcZJAgQy8vBEwlozc10jvPnQ49G4Tz1VGQ3b6YICyPIUigthVhURI7PLhdVpXIFqsb1g64fkLBZ7e5G5q23oPf1QZwzB9lXXwUfGKCWjDE6rU3WajMvc2kpxNWrpySlB1M98Dv9+NT8TyGtpSdMdV3YeCFOrTr1fY+0T6b5EkIhIJOB2tmZpw+bDoRAAPL8+Shsb0dBOg1hBn1W+s4NUEdHwRMJsFAIUl0d9IGB/8/ef0dZdl/3nejnhJtz3cq5q6qrOqORCYAgGE2KFAFKY4k2n0hT5nhkS6LkJ9tay5ZnRrJscWTPeGRrbPnZy5at90aWZEskAFKSRTOAIAACaALoRufuyjncW7duDie8P/Y5594K3V3dROjm9F4LC103nHvi77d/e38D5vq6JCvRKKptQzoNikL9tdfE/d3nQymXBfgej2NMTqLGYoJX6+0Vz65MBltVsR2sj+rgdVr32cVkWbkc+P3iOZfPCybMMFA7OqRitLSEwvWZbXfj3Y9rYRjfre28W3E38bkbd2ScXz23Pelpiam1S5xfPUd3cm9RwZ1hNxpN0KgbbuUnGhXK+47WVqsOkLm2JpTglqQHkGpLuezR7Hd+31xbA8MQfIzbKmq1vUiltoGDW5lBSiiEMTuLFosJEDUeR0ml8Pf2Uj93DttV4nXox9baGvXXXsN34kTTD6sFoNpKG9/vAGasrVH99rcxl5agWhUl6KWlJr3aMUpVFOW6NPS3g+48nBzmFx/+RT4+9nGWi8vomk5vtJfh5Fuj4wPbWXrXcirfCe6+XmjJJObsLEpbG7WXXsJaWpLfaW+XakuphDE5KRWbrS3Uvj7sXE4qlufOyestAoleRadaxdb1pu1ELkf9zBmv5QV4tHU1HN52/ZVAAH10lPq5c83EXlFksovHsYtFTNuWRDeXQ9H1m5JDuBvvXLwV96i3nelpGTsaDcEThkL4Dhy4Y9S47yY+d+OOjFx1bzqx934tt+3v66nsKj6fmI46ZqOAlzQofj/4fFitVF7nfVcHyK7V9vbbcllJlrXn+3a9LhUYVd3O9HFc19F1GpcueV5MHjNodBTb8f9S29vFm2xtDfPqVYIf/CD22lrTqd3VXPH5hLHlMLg8ho5lbaON7wc87Dp8G9PTmMvLXmsNnw81nW7KBCgKts/XNKW8iUrSWxGxQIz7eu9723/nRk7lrV5a1ws3yWhcuOAlPQBWNovirqidSh/JpPhlOcmHfLClYmnbTZC087rdaMi+nju3LekBPDNS27bxh0Lb99c0ZUUfDIqWloOfMx3PL2o1Ag8+SH1lRSqIqvqOX+v/p8XNqIbDW3eP2rUajelp6m+8ISQQB4SvptPYpon/0KE7IuG9m/jcjTsyksHdGjHb3g8kvX/fSGVXTSZRNQ39wAGM6WlJfgxDvLTicbR4nMbkJJ6HuQsYdSZ4JRDYXTGCpuu5ql7zfbtSESbUDm0XDGPXSt1lBhnz8xhzc1gbG7IKLxZRYjF84+OyHUe7SPH5JOlxVv4gyRb5/HaGjpOg7Qej4q4aUVU5T6YpgNvFRZEVcIHK4bA4j5dKUllywLA/jHEjp/L9iGR6YRiSNPr9HsgewC4URFG7qwvFstAGB8XWw0k8AS/BbP643fSvQxJ8M5PBWFvDLpWaSbGbmDoiiDv31240mjIF+bxUlVTVA8Xj+nZ1dcl7fv8d1fa40+JmVcNByBtmJkOmM8IlNcNWbYtkIME4nbTnSvu+R81sVpIeN+l1TIqtpSXqjYaMQ11dt33l527iczfuyDjSdZSRzok9210jnRMc6ToK7F9l13fkCPU330Tr7UUZHPQE4myg9p3vbEt61FRK2DSODpCaTGLMz2+vGIFMSNGogKJ3rIDVVAo1FMKCPXVXZCebK3U3lFBIqPrVajP5CASwt7YwTBO/Q93HsiAUQg2FmvRnhJJvl8tNhk6jIcfm96PE4/tfNQYC0pLr7cVYWMDO5UQIr71dPJuqVcFBhUICnm1vx2o0sHK5235QvNm4kQjmfkQyWz+r+P2Czdppaquq4nXleLAZi4tS2fP5UFIprHIZJZHwlLAVRyLApbij65hLS2LtUq02kyLHQwvkXty5v4rP19QI2tpqVhIdnzoMQyxTOjsxstl9q5nfjZuPW1ENt3I5zOVlznfa/Pab/yeTS+c84sFo12G+ePJ/4p5CYV+Jj5XL7Up63LDX1+EmK0jvVtxNfO7GHRndyT5+8fG/uwvgPNI5wd9+39/z8D37VdlVk0kCDz0kgM9iUXRlolHBx4yNbfPYwrLQ0mlPB8jVplF8vm2sLjUcbrK6JidRHRNJRdfRBgdFFTcepxgPMB/soVgvEvNF6S37CM0sbVupe/ucywnQ1HE0x7Yl0fH5JIHSddSBgWYbCzxDSbWtTf7tHIM5M4OVz2/z2tqv35Si61j1OmpHB+bMjJzrqSl8994rtgebm2IeG4+jRCLi4L22RmNr67YfFG82dopg3uz7uz6r66htbXLPue0qJ9FQUymUYJDqd78rCWy1iuY62i8uNp3tSyVJrtvbUVQVtadHqoT5vMfkAprVIqdFpTht0dZQk0lYXRWlbbdl67ZHGw2UeBxrcxM9mURta7ur6/M2xs2qhruLlY2Uj99+4d81kx7bBsNgcuU8v/36v+E3Hv9H9DogfbhOK63VtmQvgVHDuPkq57sQdxOfu3FHRqFWIOCP8POP/11WistUGxXaAimOdB3dBmq+GZVdl/GyM5T3vMdTSr6WDpDe3S2smN5eAf1Zltg2ODo+WleXsHQKBdRIBHN+HrWtjXm9xFee/3dsLF31VmEdA+M8eeTH6c/ZnsCdt7+NhkyGjuWDpWmyAneqOtbiIr6TJ2m88YZ3bIqqovb14Tt61Fut2fU61taWJC6zs/LbDjD1en5T2/4ulwVvEgqJGKFp0jh9Gn1iAtXRUlI7O8VbKpORltcdMCjebHhq1Hu0u3Zev31tS1HwHTlC4/x5YWiBmLZ2dKAfOkT1xRex83lpUSkKFqBEIvgOHULx+9GGh1H8fmFZlUrQaGAVCtRPnxYft+Fh7HRaWhSFAubamny+rQ1cLFnrMbjSAz4fxuKisAVBKPOdnegDAxiTkyipFMETJ9B+yCp6t1PcrGq4u1i5GF5lKnO1mfS04A8n1y5xoThF12qbJM7XaaURDku1d6/9CAQ8GMDNVDnfjbib+NyNOy5mcjM8c+kZNjaXpDpjGKSTPdx38tO7mFw/qLM6IAyrxx67rsO0XasJ5dgBDu+kd1rr69J28vtlcAiFKFDj6TN/RCa3JC2oRgNMk/WFKzyjfIXP3/8FUt2D21k2rWBhkPZa6yrM76fxxhui25JKCbbG0cBRfD6sVEr0V4pFzK0tjIsXm5Uhh95+I78pkKRHHx7GKpXEM62tTT7j94NtSxXItj0fsda43QfFm41tPnJ7MGZuprrVqvDsO3y4KRboVAfNhQWshYVtUgR2pSIt0KUlfMeOoffJM1B/441tFTqtsxPj0iUBH9frkjw5oohWuSzChS0aPq2hJpOolQr66CgcOOAZpFqlEsaVK4KFSyZ3JT13Ou35doubHc/cZy1XyQkwvdGQa+eGrqMEAmyVsyKAGY9Tf+UVaWP398uiStOwazXqr7yC/4EH0IeGBBzfiksMBNCGh5uecDdR5Xw34m7iczfuqCjUCjxz6RnWV6Yx5+Y848TVmRm+vLbGX//AL5EaGPU+/1Y4q0OTcu2WgM1s1isBYxjXpYm6qy67VvO0UFAU5sbirE+elZaX349iWZ5PVSa/wqKvRHrn6jsSQQmH5XOGgdbVJbgNB99h5fMiUtffv2e7SuvqElbWyoqoPLdGC739Wn5TXmXDtrELBdR0WqwQikWh1IdC0kpxKM57nsvbfFC8lbiWj9x+mTI7kwNP4blSwXSUsRuvvdaslLVKEbj7EI/LfRQIYK6ubq9A+f0YMzPSgozFBM+VTHr+X/5HHsHX23vd/dXa2tB7eqRy6RIAbBu1owP/kSO7nqVWTzk0TZiJTqX0hw3n9U7FzY5n7rOW9MeFperzycLLXSgpCtRqJHwi8WCurqJEIhizs9vwiko8jj40JCKZR49KtTCb9QD4SiwmbNNcTkRIb/PrezfxuRt3VMzmZtnYXPKSHrsFYLc+d4npS68QC8TQnQHgVlV2C7UCs7lZio0iUX+UocQQoc3S7u0kEuhHjkAkIrR4t0+u6zSuXMF/4oSwYgwD27Yxp6eFhRUMUmyUAFs0V1zqvIOdUFSVYn17pcTK5WisrKD19AhWo1TCqtVQ+/pQAwH0Awek1dHTc0NmFj4fam8vquP0jaZhlUpYKyvSwriW31RrZcO2sTMZ9JGRJh4FIBiUQXhgALtQ2L6Nm2z9/CDxTlcbbkWPyGXJWYWCAI4d/yvf8eOS1K6uYs/MSBvBuU7NL7dIEbi6U85Et1dVzc7nBbCvKE32mKJglMvo4+O7qwV7nD99YEDsMmq1pidbIIA+uL0yaayvN5+VVraZs0j4YcN5vVNxs+OZu1g5pAcZSY8xOX+meW8oCoquM9J5iAnFUaG3bUl6ikXKPW0shhoUrQpRDforOVKGgd7VhQ3C5isUpCJkmtgbG2IRdJNVzncj7iY+d+OOimKjKHL7O5IeNwr5DcylJbSWSe5mndXdVlq2kvVeS+kxPq4epqfFOwqEJqqur2MsL2NOTnqvq52d+B98UJhNPh92tSqlZkcADssiqoebG2o0ZHJzdVcUhWiL0J5dq2GsrNB47TWKPpulTj+lNvnMYOoAiUQH2h4Vhr0mL7vRkH0pl2lMTXmfVRIJWbVVKtf3m3IqG/nKFnOVZYrmArGeBIPhbqJ2k0ZvTE5uuz630vq51bByORrnzmG6CZmmiXXD0aO3zWrUBZ5am5uY2awkZjtsUdy2hMe6qtW2swfd86uq25LKXVW1Wg21q0skFNbWtleDIhFJvFrBrdcRu/NPTGyrbCmRiIgrOorVtm1jXLmCcfVq8zccNqTpqIn/sOG83sm4mfHMXay0X7nCF+/5GX7b/jdcnTstrFRdZ6Rjgl+472/RSRv21pYIURaLLI2m+crGd5jaXKJuG/gVnZFQLz9hDzKaHMPvqHnbbW2yDy333+2e9MDdxOdu3GER9UWbwmtOuVaNRj1sSbyjTwCfOwbWVpXd64XbSstWsgIALpXAMNhQNnimMc9n299PeC3X3G5PD/UzZ3Y97NbaGvVXX0X7yEcEXxMKySrbTWzqdfrKftq7R9hYnXG+ZEnlR1Vp7xhkuHPM256Zy1F/7TUWEzbPzv13MpNNV/X27hF+7MM/y0hg+0RyrclL7eujce4cajiMHQ577UJ7awtzfZ3gDewGlECA2foaX3nx37OxNtPcj85hPvX4FxjpOu6d81tp/fygYddqu5SJbdPEXFnBLBTQR0dRnUHaLpXeNfyJ5UgAmNksWlfXrvaClcuJ5IDTklAHB1FsG9+xY5izs80Vv66jOSrfntXHTsC1w1I0Z2cFiO5qTCmKSA84yZfe07MvsTv32bJyOUme3QpQLIY5OYkSiWw/2Hoda3NTEu8WV/m7sf/YxbTap3edmkziP3GCk7kcX3rfr3M+f5Wt6hYJX5RDwX7aCzZ2ccuT56gMdvEHW9/mhdWXqFSbOJ6Z8AKNq238Ys8I8Wj6jk5c7yY+d+OOiqHkEOlkD6szM6AoaG7pXlVJRzvo19MyQORyMlm0TGY7PbFcFhWGIc7g0SgzrJGtZGUbCwue8B+qyka9zuKBD3FwQ222FgIB7I0NlJ6eXftqra1hFYvoAwPSIpqc9MxA7UKB0EqWp07+FZ5+/Q8kgVAUFFWlo3+cH3vk88Sj6ea2cjmKusmzc98ks7W87Xc2VqZ45uwf84WOIc+OYefk5SVxa2som5uow8MYp09LFcB1+tY0ATvuJbbYElu5Nb7y/PakB2BjbYavPP/v+cLH/wGJZOfbYkWxnzAzme1JT70uGKtyWVSQQyGq586hj4wI5imfF/zDLcj3/yBhNxrY1SpqIrEr6QGhJxuXLqH29qKYJqytYW5uYs/PSytxZAS9rQ21vd0TuHRjV1tS01CDQUzn362hpFJYmQxWNovhmI/iMMZ2VlStQgFjcVEWGn4/1vKy+Hc5QFetvx9jbg7fkSNN9XAXT+JKMFiW1xY2Mxlpl+g6Siy2rVJ7N5phLC5Se/FFwdU4wpNaOr1vQ1j3Weyhi65cF/WzZzHnN1Bim1gOLkzr6YFAgJn+MC9+9xRVq44vFGV84ASRcIqa3aCkmlzauMwDvvvuaND63cTnbtxREQvEePLkp/ny2hqZrRUR71tbIxVI8onUcfzf/C6NdBrl+HGsfB7FsvBNTAA0PbGmp8VgMZmU5KZW80QJt0YDkvQsLsrKKhqVicK2UQyDYq2Akk6LWBfIhAS7VXMVRb5XqwlDKplE7e5GHxnBzuex43HscpmuN6b53OG/ytIDDYo0iAaiHBg4TiK5o9VUq7EYbpCZ2p70uJHZWmE2N8uxrmPAds0dq1jEnJ+XxMfZX9/99+M7epT6qVMCiHXMTLVkcrv1wR4xu3ppV9LjxsbaDLOrlzixc/+deCdwN3ah4NkqYNtiN1KtyrGbpihZFwoYly+LJlNHh1R+3mHxNcXnkyQgHN7t8+aEubKCkkiIynYmI/ipZBJrZUWUkkOhXUmPG7sA12NjkmC1YEOUNqEwNy5exB4fx1xZEa2nYFC2aRhyHzcaWJkM5vq6VHNqNZS2Nurf//422QS7XvcSGiUaxVpuuV+dhEuNRkHXqb388p5+YfrAwG3Tjny3wyoWMbNZqs89h7W6ihKLec+qtbVF7eWX4ZFHbiphtKpVbMtC6+/HnJrCdGQ6rI0NlHCY1ViBciGLrvp48Mj7+frsN5nadFriqkq2uolWrXFkrWUB+A4vGn7QuJv43I07Lka6D/HXP/BLzOZmyM9eIRKz6curhC4uSzVlbY36mTMEHn8ce2ODxrlzEIsJkHNqSgbqUEj+nc/LytUpw4dLBubqqmAmEgmsTMZbMWMYhIdM9MFBTFWVz6RSEI+Ld5YbbhtB07Ati8b58yihkPhZDQ1RP31asBa1GhgGoYU1Dh87ht1ooFo+lM0Sll7cVsZWIhGK9jU0PBQFfD6KjWZZ2m0l2PU6xtISmwc6uRIps2nkSfniTPg1kpcv47v3XsypKY+RtZeA3c4oVPeepN0o1gp7vm5mMhjz80K/doUUbRvf+PhbNmDatRq2aaLEYgLctm0028baEOyXq1fku+ce1EhErmsoJG2hbPYd1RlSk0nUaHTvto8LlA8GpU1ULHpMPrtQQE2lsItFLNdE9xr767ERcznMfB61sxO1v78JaK9UaFy8KMlOKISdyWBVKhiXLolKs8PEUnt6RLbAwYZYW1tQLmOtrnr3n21ZaCByBpOT+N/zHhrlsqckjWmiBIPoR45gXLp0c35hb3PcrPfVOxHGygqNS5dQAgGsuTnUdFpIDa6Wl6JANotvbAxzZmZfz5GZy2FcvSr2JdPTzQWSbWMFAtjr6+jHQiiRCBM9xyXpyV4FxbHdsSxWisv8y1P/mn9y8pdIbzhWOHeIYrMbdxOfu3FHRmpglMhWhcq5U81SOggYVFGkIuNMKObmJporrOVMIKrfj+kOyA7mBqC/6qfNn2BTrWEuLzdxDqZJe+cwfas1GuunRf5/ZgZtdJTAQw9Rf+MNAQdPTKAGAvLboRDE41AsCi15dhZ9YkJedy0DHB2N+qlTWJubXptJTacJPPKIp8midXURW+zY3X5wqKRqNCr4J/dlJ3mxymUuHevgt9/8d8ytXeVQ/wni8Q6+G03x2JH7uc8fIOBYECi6vi/WVSwYv+770T3cz82NDWovvyyMMqfdp0ajaAMDNC5fxn/PPTc9YFrFIubGhmCUbBslHBaadSgkk7TTQrHyeaxiEd+hQxgbG6ipFPU338ReXRUpgWAQNZ0WdelM5qbxJ7c6aSqBAL4TJyTxaA3H+dzK5yXZUVUUt4IITcsIp1V2Q8sMp+1JJIKi6zSmp5sCdKoKPh/6gQOCg8rlMOfnPeFETFMmW4c+r/b3Y9u2aEg530VRpOXrCCUqiQT25iZ2rYbv+HFJ3pxrroTD2NWqgM73sGq5ll/Y2xnGygr1V16hqBksBKoUzQqxxRQHxu4n2T30juzDznCtKZRIRO7tWEzuh1pt+3hXq2Gur6NGItsSjz1JDZUK9VdeoXH+PPrYmJAPAgF5r1yWZGh+nu7CIL3JASKxNFNXp0FzqsGqTjKcJBlKUaiXeN6aprMtwoTaSTpbv6PESe8mPnfjzg0Hm+MNAu4qyEkMvCqMZW33w7Ks3U7WzuvhTJEnD3yUr2ZeZLXcZGml0/18sutxQhdXsDs6vITELTnrExOo0Sj1M2ewl5akVeDoWfjvv19YaM6g7nO0UOxKBaW9Xaipjg2Fm9KYCwtUn3uO4Ec+gu5MpCPjD9Ix/zzrK1NNYHc4jNbfT5sep98IS1stkfDArdmgxW+f/t+ZW7vKI0c+wvMLLzA3/03QNL4c/C98+uin+YlDTzBgRKTVsIOWvFcMdU3Q3jm8Z7urvXOYoa6Jba/ZtRr106cxZme9BBOQqoHjNn6zA6axsoIxNdW0CHEwKfroKASDUuUrlWTSaGvDd/QodqNBYGwMY3FREl8Xx6IoWBsb1F9/Hd/JkzelM3QrhpGtobW3YzssqVbqt12vS/sVmvd3a7j3r4OXuV54q/paDd+hQ0I9LhSayUg0iu/wYczFRRSQpEdVm/gc05QKnWWhtbd7z5OrUI5hyPPlWFgEHnwQNA1jeloENS9exHYc5lVHP0hta/PUvHfGXn5hb1dYxSL1V15hIWLw7OxfkMmveO+1z32HH/vQz3Kga3zf23urWrmuNYUWDEpF0u+X69K68HH/7Xr6OYmHEgjsJjX4fGIt4rZU3fNeq2FtbaH19WE6Xlu98wU+eeBjnK1Mg2UCCro/SFAPcaL7BKcWX2Uye5VEIMG55dMcjo/xxXv/Jkcz+h0DWr+b+NyNOzciERlsq1UPh+NFMCiDBXjmjl44bSovWlzU7VqNnrU6nxv7MWbsYYpWlagapK8WIvTmLASDnhiblkpJib9ex3fwILUXXoBKRTBA9Tp2LoeZy1GtVKS1Eot59hUu9sLM5WQCcasujpkkliUr4/V1tLhUWGJKkE899tM8c/FpMsV12Q+/n1Rd4+Phe/G/do6aqnq0bd/EBJemvsnU6kWODdwnSc/WnGzfMNgsbnBxa5JnVrJ8dugpEnt57+wRiWQnn3r8C7sAzu2dw3zqff/jLnySmcnsSnoAqNcx5udF7+cmBkzLaYkYk5PbsDF2vS5l/GRSBvKlJdA0keGfnpaKRC6HefkySjKJ79gxqX6423Wc6vfbdrsVw8i9Qu/o2GWLAjKJan192IaBfvSosLEcvSUXr+T6zF0vvHNrWVgbG01FaMdni1pNtKWc6oLb0nBxamoqJRioahVrddVrjamHD6MND4tKd6MhWLpgkMbUFNbaGmo8Lli5SkW2XalgmSZKKIQxMyOtGwcr1xr7abe+VWGurVHUdic9IHi1p0//EV944hc90sD14noSADfbyvUERJ12pJJMgmsO2hKqO9a4QH7DEKHKatVj1nkaYuvrKO3t4Cp/u+FWkZzfDM2v8vDB+zGDfo51HBNcpG2SCqW4mp1kKisLQg2VjfwKV1D57df/Df/k5C/RfYeIk94xic+XvvQl/uRP/oSLFy8SCoV49NFH+c3f/E0mJpqrS9u2+bVf+zX+7b/9t2xubvLwww/zr/7Vv+Lo0aPv4p7fjbcrtI4O9JERjKkpmVTdFVAwiHbggJfQaKmU5y+jOKrEVr0uJXm3WuC0whRFQfX5iAUTjE0VZbKhIO2pQMCbUK1kksbZs/KddBp9aAhrfV3A0K4YoWMnYa+toVgWxtQUmlMpcrEXZrapFaTEYlIFaVFNttbWMCIRrNVV7HKZXkXhs+kPM99dohLxE9oqk66qbGxtcEorEfVF6C+YxN98k8BDD5HXhWKcSPcyt/wdOdZGA7BB1aiaVTL5FZbCdeKVxr779CMDx/nCx/8Bs6uXKNYKRAMxhromdoOyEbDxXm0NQK6bYdzURGeurUmbZwcgWNF1mcB9PvFDKxbRDhzAWFrC3toSk9Z6XZLKbBZDVdEGB7Hm52UDTktpvyv0mzWMvF7stEVBVYXx1GhQyC6zoBUo+gqShMcTxMNJ7FwO34kTN7YxaD23loW9seG1SM1Ll7CKRZlo63W0oSFps62tyfmIROQYnVYiqipMx1qNxoUL+O67D7tSEWkARcGcmUHv6cHM5VC7ujCnp6X13CLQqaiqpyW1a1+j0T39wt6usGs1FgLVXUmPG5mt5W2kgettZ08W5fo61tYW/oceuikPs1YmqpnJyEIpm236pAFKe7u0b6en0dJpwbfVapL0xGKCYXTYdrZjZOx/4AHMcBjLUXr38FeGgW1ZIp4aidAzucF7DwzwYsdRFitrbJYzBPQgVzcuY2MzkhwlU1ihUa9SsxpMbVzmor1Gb/LefR/juxl3TOLz3HPP8XM/93M8+OCDGIbBr/zKr/CX/tJf4vz580SczPaf/tN/yj//5/+c//gf/yPj4+P843/8j/nIRz7CpUuXiMVunLH/PyW8cmythuWoxSoO1gHTvGPoiVoyif/BB2Ul65aBLUv8hw4flvK6s+ICYXXpIyPe6l8fGdnF6tL6+1G7u7FNE31sTHANrhVDoyET59CQrMydsDMZzNVV1PZ2zOXl7R42oRBqd7cMLC6zqCUUR7RQCYV2JT2ycZv6K6+gDw97f0dKDQ7hRzGizGxl+cPLzzYp7opCun2AJ0c+zkgmQzKSFgyRWd/u0aNKtSiIDyXsp2hVgdi++/RWsUg4W+SQ1Y4S678+rkXXPYf4PRljun5TE51dq+06j2ianF/XgNGypCISDMrk6zBh8PslCVYU7GIRNRDADoWaeKtweO8fvdZ+IC1V12cNkIRBVaVK0iIKeKPYSf9XAgGmrpzi6ck/YWN91qtUtrcP8NTxn+DAI49I6+kGoSaTgt9oEXNU29tlYmw0ZD8NQ/BQmUzTA65QkKqpC3JOpZrnWNOwNzZE9C4cFrZiuSwLh7Y28XlqaSFjmp7BL4j1ghKJeNVH2M7qeqfGHiUQoGjuNpf1Qte3kQauFZ4tjWFgFYtYKyvCLARpIYbD2GNj+2p/Qos1RSaD3teHsbCAduAAythYU60bMGZmvHtWCYVESDAc3pb0yJsKdrmMMTOD/7HHMDc2pCLntLfQdahWUfv60NJpGmfP0hOP8zcGf5zfmfuvnJl5mWAggo3FSGqMJwbfy9fPPivHZ5ug+skr9dt+znDjjkl8/vzP/3zb37/7u79LZ2cn3//+93nf+96Hbdv81m/9Fr/yK7/Cj//4jwPwn/7Tf6Krq4vf//3f52d+5mfejd2+7cLK5WhcvowNNM6fx8rlZLVWraL4/fiOHMHKZFCCQXwTE2gdHbf1zewbGECNxYSJVavJAB2PSwLX0bFNNM/1P3L9qgB8ExMyaVUqMiEGAjRee01wOyMj2OGweGu5K6JaTZKjaFQwIpYlPfhgUDQ2dhhyUqnI+YzHPXxEa2idnYJ3KBS2Jz3BIKsffoBzrLAZ2aQtrHE0PcTAUsXDVBStCs/O/rftuj62TWZjnmeUP+MLQxMc7TrGaNchAsEogVhS8CzYqCgk/DHatRiKboqKtPPzN2o73SyuRYlGpYrg+ku1nAMlmURLp2/ayHOnFo03ybqtGreUb1nNZMjVKWoRbfS8hhxl4f16t7n70aoR5NLnUVXsUAgbqJ8+fUusNbtWI1/I8PT5PyGTX2meH0Uhs7XCM+e/zBcGx0nSceNtVSqSyCwve5OhEgxKdSwclsqE09IqRX0sDYcplHNECiH6lQTBQgE1mUTr7fW8nOx63WvP+g4dwpiawlpfx8pkvARJHx2Fy5ebbVxdl5azkwDpg4Pog4OyT47A4l7q429naJ2dxJZSe76nBIOokcg20sBeMbl+hTc33iQbzdIWSnFE66Nrbg7KZTmuYFCAxadOwYkTst0bLCxbrSnMxUUxPu7oEAFKR46BSgUlGkUfGQHDkLHMTcZbF2b1uiyqGg2wbexcDqVeRxsclKpPsYjW1SWtR8eH0HfyJObKChN5jb917+eZiI2QauthJDlCprDC1y/8KQ1bdJk0VUcJRUmG09c6nNsu7pjEZ2dsOSW6NscVenp6mpWVFf7SX/pL3mcCgQBPPPEEL7744t3Eh5ZyLNC4cEHE3AIB6bObJoTD1M+cQe3qQikUaFy5grm2huYIpAG3pWjVXq7Qe8VegnrGygqN06cF4DcxgXHhgvhVqSqmI7+vhELyO5GIGJROTWElEtL22tiQPrsj2W7vIfqmRKNSQnaUUVtDjUYJPPootZdekvYCQDDIGz9yhH/0wv/MqYWXvUn7gd4H+V8e/4c8vBrALhZZiFfJ5PbQ9bFtMptLzDc2OBE9zC8+9kv8tyv/jWQkzeWNSwCkgin6EgMYtkk61sUAScCxR7hO2+lWcC1aMumJ6Vmq6iUISjy+p7nljULr7MSYn99u3eCC3EMh0Y9pYc2hKOJkHo1CsYjW3Y25siLJiqoKrucG3m3usbeyt5RoVBKHTKaZ9IBUHeNxeU4U5aZpvi5WZDaYJ7M2Ky86lHHFSegyW8vM5eZI9gxfd1veM1+tog8JQ8l2WotmNusJdNqmyWK7zrNXv0bmahatuxtMuTd+9In30XNxRaqjrq6PwzjT+vqofe97KK7QZ7UqiWBD2qba+DjmhQvNY9B1OXeh0E0nvG9HqNEoB8bup33uO9vwakowiNbfTzrRzVDy2syu70w/x699+1c5tfCKl9A/MPAQ/8vH/mdO/vl5KJel/aQoGFevSmW50dgX9mcvawrf2JhgsioVbLdS71RMXTYXc3OySDMMIXjU6yLhcPgwxsoKtoMRM5eXUdvb0cfGpLI0MEBtYQFrdRWtrc1TNR9c70RdWCJsRphfvcz51bNyDygKPl+QYCDMaHqMI51H3qrL8rbHHZn42LbNL/3SL/He976XY8ek97qyIj3arh0TW1dXF7Ozs9fcVq1Wo9ay0s5fQ0jshyE8dofPJxNXo+FhXvD7ZRVXKKAfPSqS/xcvonZ2omga+tCQrAiyWW+Av9NEq3ZG6ySudnRgb21hLSwInqfRQI1Gabz5pjzkwaBortTr4l5uGKh9fQKYdXrv+tgYDQfT44biDCz25uY1qeJ6Xx/2Qw+hptPQaDA/muYff+eXWSoscrBjAtO20DWd5eIS//i7v8G/fuKf0pfNUqiVvKrDzlD8foqKJDKjqVG6Q538woM/z59d/XPWi2toDYPNlRlSfVE+dugTRDacdsMN6OzXxLWoKgW1wZW5UxQbJWKhBEOd456C837NLfcTqtMSUXy+JqvLAeL6xsZEo2lyUq6PpqEND8t5cmjvdqWC2t0tjLihIfSDB9H7+q6b9LiaKrgtLU1D7e3Fd/IkVqWCvbLSfC66u/EfPYoxNYVvaOimaL6tWJGiXm55wzGz9fuF2g7Xb9E40SpkabdWI53WBraNbdtU+jp4dvYv2FgVsLcdCGCur7PekefplWV+KvpeInUF6nVpkRQKaAMDgg9aWBDZBqeNaDv4HiuTITA2hrW8LOfe5xMsk+PQ/m4nPW4ku4f4sQ/9LE+f/iOpnuo6aiRCOtHNUxNPXRPYPLl+RZKexVe3vX5q/mX+0Xd/nd/5yJfoeuZ5j8IPNNXE99C9MXM5qVxXqxAKoXV2ojlaT/sNJRCQcaReb0odNBrUHryHSTVPcUgjUq/Tt1YjtLCGubyMubJC4IknsFZX8T/6qGAhGw25b7e2CC+u89TJT/O1N/+Ev378c/wHfo/z6+fx+UO0J3sY7zjELzz8C3RFb38auxt3ZOLz8z//85w5c4bvfve7u95zBwU3bNve9VprfOlLX+LXfu3X3vJ9vB3Da2G4AliteAhHZVgJh2Uid6m1liUy9cEgSjZL9dhB5svLFOtFYoEY/StztL3DYmNvVbRO4kog0CwPVyoyiKuqVzFQfD4pW/t8MoEoClQq2KUSiqahRCI0Ll9G7epCHRuTc6yqwkB64w2CH/7wdSsbelcX1vw8ZrnMjLnG8Z576Ev2Y9kWC1sLvLLwMhF/hIg/yrnKDH1qgKgqLuhmvb69TeYMfrGoVENnMpNcufgCmmXzWPowtJ2k2qgQsITFVjdqYPv2ZSJq78QgAagqi90hnrn6LFubmuAGbJv27gP82Pv+BiODJ4TW7xobvgXeXXp3t+gA9fZ67TPbsiQ5aDTwHTok18DvRxsdFaaLO/E7fmhaby9UKvj2cCZvDatYxJia2sUi0/J5tJ4e9AMHUI8c8VbWVj5P7TvfkX1zWw/7ZK21JirRYNwD5bv77T2rfj/RcFJevg6F2m40KEV8zFtZCrUCUS1Ev50gZtuSwORyKKEQi6Eamak5ucd1XSZqvx87n2czobDUHWLsQgZF06Q1MjCA/+RJaQOrqmDhgkGUdFrsL1ZXhUEE+B96yNP50Xt7b4tKz8440DXOF574RWZzsxQbRaK+KEPJoeuyud5cP7s96Wmp9p6af5lzDy7RnUigd3cLIB9kPHHFRVsS4sb8PLXnn29WfRGj48Djj+MbGNj3cdi1Gla5TOXQCAtGhpJZQUuleH7h2+Tmrsi91WiQTnTzySMfomcyg7W0JADpwUGR4gBUB2elOBisnosrfGbsf2DZV+HX3/u/skqBqlUnHe3kSOeROyrpgTsw8fniF7/IM888w3e+8x36+/u917sdbMHKygo9Lb5Ja2tru6pArfH3//7f55d+6Ze8v/P5PAM3caPdSeG1MHy+7SJYrZ9xxffc1oGqei7oix0+vrfyHfL1PNVGlZAvREwN896QwsjQ8Xf4aH7w2DaJO+BLL+r15t+ul5WioA0OisCbkxwpwSBKWxvawADG3Bzm+fOYIO8FAlIZ6unxqhDm4uKeVTIlEMB39CgL82/ylcu/z3964z9RNWWVOJIc4SeO/iSbtU0GEoNs1vI8N9JOKtRBv3UUs3MEu1plbW0aE8GYdPSOMZweBaBQkFaMCSyvN+nbbjm8NG7hO3x4X4nIXu+XUmGeufosmcwCemzYG9g3Fq7w5W/9G77wI3+fZOfAW+7dtdN41m0RUa2igGBJfD70vj607u7dqtGGccOkB0R80asstYRdLgujUFVpzM9794zW1ycJpNPixOfbN2utNUEasBN0Dh1ibfbi9uTH76dz6BDDnWPbKdSqKrTnpSU5/mCQ+WCVp6/+FzbWZr1JOR3v5pOjH2NoZBSmpjBtmyIVD+SvhEJCfQ4GpaJZrVJpTxB4ZFxUsX0+bL9fNGHcZ8OyJNlJpaRVrijyDMTjYhVjGKixGMo7CFy+2YgFYjdkb7VGtpJFU3WHtWahIImPaQqWJlcTJmHj8mXU9na5Ni2JD8j1NnO5XUkPCKOz9vzzqB//+L4ZYVYux1xxkWfX/oL12Yv09o7z/MXvs6VUGU8cIFIqgW2RyS3xLN/gs70fJjS/KtjEWs2jwCvOs2W5rFPDIDw5z6jz3omhIfTBwTtCrHCvuGMSH9u2+eIXv8iXv/xlvv3tb3PgwIFt7x84cIDu7m6+/vWvc++9Qqmr1+s899xz/OZv/uY1txsIBAjcpg/iWxHbcAnhsLcqVjs6sLa2qBwcZPFYJ8VGWVaDWorQ1KJ82fXqsW3KHXFeYYavXXiGxdUr3vZ7Ow6ghYK0p3u3mWreCbFtAHb1MlIpz8vIqlQ8yqcSConFAUBvL4CAqMfGsIpFas8/T+DBB6nZNpbTWrWLRRRHswfLkm3V6zTm59Fh12BWCml8NX+KTDlD1ayBTF/Mb81T7CnSHungv5z7L6yV1ji9/DqJYJKfPPKTfGv660T9ET544P2sZGYYGbqXA13jnFs/R9Qfxa/79z5+h8YfDcX3PYB5bJOWdteCr0wmsyD3147KxsbyFDNrV7gn0fm2T3i7vKl2VJVu1S3eLpf39NKyHa0lfWgIc06qJb5DhzDm5zGXllAcNpWaSOAbHd3XMbQmSJFskScPfYqnzT8hU1iVe8jvJ53u41P3f4aYL0r93BvNpCeVov7qq56NRGW4h6/UXmbTb0o7VNNQVJVMfoVnJ/+czyl/meQ996BcvUoibaJnh2V8aKmGkUxiNxqEyw2q//1PZUzw+fAdOoTW2Sl+eKmUp/Rs53Le86Pfcw/m+jrW8jL6+LhUJx2TzdsFH/iDRCqUomrWMK2mVIOmaIT0IEajRjKQwFpZksQ3EkE/cMCRx2iG4vNhrq42kx5dFzHUcFgSJJ8PM5fbd+KTr2zx9Jv/hUx2UTBonR0sL2dRdJ1LuUlORHvRt4R9mMmvsjhsMeZUEu2tLQ+HpB84gO/ECaxCYduz3gqmvlMhDnAHJT4/93M/x+///u/z9NNPE4vFPExPIpEgFAqhKAp/+2//bX7jN36DgwcPcvDgQX7jN36DcDjMZz7zmXd579+d2Ma+CQSEqXTwIHY+j9bfz8qRPp5+4w/YWJ+TL9g2HcNHeHLko3Sur6PG4zJ5BwIsdQZ45vk/Zik3v+03ltanefqNP+J4z72cuMMSn9ZJ3HYAg/rQEAaStFjr6+LLtbGB1tYGloWZyWCVy+gdHdSef17sLxIJMQz83vfwf+ADcM890mO3LBn0NI36a6+JQJ4TRl8fgccf38aCms3NstnYIqSH6Ax3sFZeR0XhSNdRvj3zHB8Z/QjpcJrTK6dZLixTbpT5o/N/xE8c+h+Y3LjMdG2FH3/4p3hu7jtcnfq6t92x8CD+dCf1zG4BtHS0k8Fo377PWSvbxB0Qi0YZJRJB6+wU0cBtX1DZsIp8a+Y5tqwSyWCSIx1vX2n8elWlW644XcO01c7lhG2TSKDE46jxOMbCgrR9enqkLeR4hzXOnkV95JEbTvau4rZdqYBl0bfR4K8d/ivMGxlKRoVYqpPhrnHi0TTm6qrXFlOSyWbS49DqF6Mm69OTqJEIam+vvOeCo6tZFpOQrNXkd2pBkmaAzPrstkqw0mjQFu2gL4cnS6CEQkLhd+j1+uiomJ+ur3vtHmVgAH18nMbFi/gffBC7WMQuFDDrday1NY81eqdOnluZZUKKn/t67+fVhZdBRAAwbYOKUeWxocc4Fj+I/4FewVFWq5L0tBAfXDyd6cxl6Dr+Bx4Q9feVpq6QNjaGomn7annNVZbJZBYAGcOqjSroOjZQMavkQzZttu3sr0qxXhAyQK2G6vd7FjrG5CT+kycJvPe9t1wpvZ3jjkl8fud3fgeA97///dte/93f/V0+//nPA/DLv/zLVCoVfvZnf9YTMPyLv/iL/0dq+Gxj37hg5nod49w5tNFRKgNdPPPqvyNbyaI6Bp4AG+uzPF1/ls/d8xSBN84Lu6GtjeVGlqWN6d00YmBpY5qlwiInePCdPswfKLZN4g6rwZifR+vpQe3oQHGcs/0PPiitosVFlPZ2jIsXpXzv0NutrS3USETk4kslVIcRYczPo3Z370p6AKxsdhcLytULCSl+jnce5821N6mZNRQUNiob6KpOb6yXVxdfkYpQdQvDbNCwTbraBqgZNc5mzu3SHZkqzDKaHmPRUslvNgfUdLSTJyeeJJG8uWRgJ9skaa+ibnxPkp7WJEFVyfTGOZU5w59d/po3UI6kRviFh3+Bk90nb+p3361Qk0lp+7gAVTcsC7tQQOvoIPD+94Nh0Dh7FqWnB3NjA8tJXtjaws7l0IaH8bl6TNcIJRDwGHBu8hPZKHA4lMA38dC2RGFbdc0wpGrQMrEWrQqKpmEVCmJ7Eo/L+z4fSjhMsbwF8THUVIpYvc6nHvosT5/9r6xPnZP91nXa0wM8Ofpxgm/OiSGvA1Q3Zmcxzp8n8MQT1E+fRm1rQx0clKTLwV6ZS0tQrVL73vfk2DRNMFGjo9iFwp5st7fK8uHtDLtWY3r+TU5d+FP+3qN/l3/24v/OqwvfA8dw5r6+B/gH7/sHHFBSaPcf8oDMNg7DMxgUIUe/HzOTgWhUEsiJiV1JD8hYsd+WV9EsS1WuXkft6CBgKKLD5DC/GrriJKeAbRMNJdH74hjFIqVkiPmDCYpWgZhqMpRbJdk1eMuV0ts57pjEx96HnL6iKPzqr/4qv/qrv/r279BtHrvYNy7zx7Iwr1xhvt/P+tRZT5HVLpdFCMu2yeZXWIpbjHV2ehWNhrWJ7g9xqPso8bZuyjQIagHigQSlap5MI8/ZtbMMJa4PCLzdYuckro+Oeiub1ofcXF0VeqdtYy4sbN9IrQaJhOAabBu9v1/0TpaXZULakfTIxpVd6r6uXkgykkJdu8zx9iP4/WFKjRJdkS5i/hhny2cxLVnRV80aiWCCslFhLj9HqVGiP9ZHmxZjM7eCqcpEauk6k4VZnhr/EexikaJRJqqHGQh0kho4eEuDWCu+ZjiXpk2PsWFtH7Ar7XEW6xm0rKPe62CKJlcu8C+++3/wpQ//b3Qn919terdC6+hAHx/HuHx5W/KjBIPoBw+K+/m5cyLqVyhgOngJ+ZBgXexqFXNpCb2nZ19Vn+u17Lzfb2mL7QKdaxpRNdz0qDMMT7PI3trCLpeJHW3DmJqSBMUw6LJtPtv/IZYO/QjFQoZoKMlApBf/qTPCyOrslLbW1hZaV5cI5U1Ooh88iOoakTqCnObiorT/QMYYVz+pVMKYmkIfGsIulbax3Vy8klUoyHm2LGGAHT++L6HGtzKul4BZuRzFyhbVWpkzr/05f+++n6dw/8+wVcuTCMSJa2GCmQKmtSz6OM71NNfXxWPuzTelguKQJ7TeXnz33COg8h1Jj0uysNbWMFdXb5j4xHxRMei1bSGpKDF6k/0sFZax63UC7Um0vgR11SaYaKOejnGhUCV6bJw/O/ef2dhqVmw78qd5KvAZhpPDdyyW51pxxyQ+d+PmwpUod0OJx0XXwSm3Fqv5XQBnu1z2ALllzSLw6KOiBBoK0Ze/zBPHfoS/WPgOF0//KRoKnzzyY3xn/rtoqsZaLcOV/BRtoTaenHiS4eTwu3DUtxY7QbJ7hbu6Vvx+qXrtVA525d4dFVWvZbEH1dxji7F9whpKDtEWaiMLjPUe4czyG9Qtg4pVI+6PM5WdJOwL0TBlmwqgKCqGbfDtqW+iqzodgTYublzgx8c/xcbcJUxVEaaerlP2wQPpwzftIn6jSCQ7+bH3/Q2+/K1/w8bylPe6nm7nnsAg35t8Dvw6dqHgAeWvFt/g3NwpOom8pe2Oa01Ye70Oe+tS7fXZwH33yQp9fV2SCF1H6+jAf+yYR69vzMzIda3VPJCzV2XRNFHn3iet/UZtObeF5oJRXSVfwDNs7asGSMc6yWQXZMGzsiItye5u0tEOejMmdqkiApqbm1AqETx3ldF4HG14GL1TFIMbCwuCXZqclEQ6m/XsLPSDB2m8+KLc/8EggQ9+ECxLaPzFoogS9vV5yY9dq4nukXscLsPJofFbm5uYGxtgWZTaIizWFyiemSc5NM5w18F3BEe4DTCuaSx3BTm3tsCmUaA93E5UD7McrJMcHsdXMzn14pep+iCvG9StBoFInL9++DOYSxmM5WU5dk3DXF3FnJmR7Tr+WdTrmAsLco4cvTAvHHC4t2jdi1G5I4a6JpjoO0HBb1POZ9HUAP/DyE/xlYt/Qra+RXR1i3xbnILa4LHkMH8++d8o2w1WZzd474En0AqrmJaJX/fTlernhZnneVV5iXQgyeHEGJ1a4raswt1s3E18fkhD8fvFLsHv92iwlktR3doSqix4g7La0+M5MKOqRCJJfCMj3vb69DqXi3NMbU5iWQYPDz7G9xZeYnZrjoH4AJVIgWq1RBZ45tIz/PTJn76jKj83Cm91reueAN625EfX0Xt60Do7vYlTTae9c755sJcr4SKbjQKpYJLxepK2ucy2ASQWiPHkxJP83hu/x0JpmWg4iV8P0K7ofPDAB/n9M/83QT1IKtQmLUpVYyA5yMrWEna9zlDHMGtbS0wunedPGiZPtj3C6oXXUOJx9MFBgqubWKGYqL7aNtba2luGsxgZPMEXfuTvM7N2hWI1TzQQY0Ut80+/9euYAZ9n39DaiskVNqifOUPg4YffkoH0WiaR2tAQW+sLzFdXKRplYr4IA7EBwitZUcx2KOJaKoU2MoI5O7un0WTgwQeb1gSOeJxdrwsbKpmU1X0igZXL4Tt4EGNhAdP1AXMSKrWtjd3N4ls/TrtaFQza+Dhaf79UI1UVAgFC04t8cuQDfDX0PTYbFdREArWtjZQV4JN9HyLw/atYgYC0QdraRG26VJKkratL1JiLRbSDBwXnUSigHT6M1tHhtcLsWk3O2dycaAJtbeE/cULwcoODksysrjbPZTwu1R7n2XGfKyuXwyoUvKRnsSfEs5Nf81TJ1flu2juHeOqen2Sk9+0TytvmuaVpfL+zzpde/CecWz1Db3qYyewkPbFuPn3k0/zh93+PRDjFUyd+nP/++pfJl4UB1acf5MLim6S6HqD39GnszU20oSFJPp3KsqvwrSgKdrWKmkig9faitLU1F6SO2Ge5N81iuEGVBRJr6nWr6puUmdPyPH/pm5TWl8Ey6UsN85P3/hRdiR5qK0tM11ep5DeZ/f63MBo1ttpDTC2fo6bB+7oeJLO5yOGjT/AfXv8PnFs9S0cwTbhmMdJ9mF985G9zdC6Cb2zsjsVnwd3E54cyPLO6XI7G2po8RIaBkkigDw9jRSIM6O20946ysT4nK761Nayy6Jyk2wfomd2i4ZvG57DnNowtIr4wvaEuCr4iI+kxXlk+RdwfB8siX8qxFdggGIyQrWT3Zex3J4VXwalW0ScmpEXumjcGAmjd3cLeMgzq5841Qaft7Vx+zzC//drvMLl8XjZm24x0H+YXHvoi97Vo+9i1GtXiFpgm46kxcrUt+hMDrBZXCfvCpEIppjenGW0bBWx64/18ePhD/P73/yODySGe6H+cb809R1/nKEW7RmT4IF02bFx5k0TBZODQEMaFSa/NsJeI2g8Syc4B7kl0etWSbOk8Zjgo2jo7kh6AhB7FmJ5DHxtDd5hytxo7TSLdsIpF5qZe46vr32VjdUb2IRSijRA/2vU++gpWcyXt92NdutT0FPP5PE2b1vNkuKt2J9zESGtrw3fkCAQCkii4BpCO6aaVy2FOTqJ3d9/y+d55nEowiNbdjb2xge+eewTPt7EhFQVVpa/s56cf/TnmcjMUawXCFZO+DYP4SgWjXMbWNBQER6Imk8JeM02xWtncxK7X8R08SG1mBt/hwwLuX1lpKknH4/jvv99LppVwWCpiPh/G9DRKLIaeTnsLKrtex8xk8HV1CbvLmTztRkPaW4ZBqT3mJT1uhZBqlY3lKb6y+W/56x/+uyQ7+699kn6AaNVRWu4K8qWXfoM3187QHu9mMnuVzUqWzUqWP+QP+dGjn+KPz/0X/vPZP+CxgYc4delb9LYN8cH+x5mceZP11Sk+1/sJwqoqlbJcrnl+HVsV2+eT818sipWFMxYDoKosj6Z5du6/k13No+sHUbPBa1bVV4ur/IfX/gNL5SWGOg6ihPuolwr4FI0rU6/y+OCPM0+Iq6efEzFWn4YajFG3ZXG2lF/AHniUg2Pv8ZIeTFO8uFCYWrnAv3jpt/iNR/9n2t/CcePdiLuJzw9hmLkcjQsX5KYMBkUJVNeFrri8LGyi9XU+9Z7P88zlZ1ifPIvdkvQ8Nf4kgVNnqC6sCX2xo4Nio4htNOj2t9ET6SKih0kHUtiWRbVcwIgYYoTpxH6M/e6k2Ak69Y2PywCvKGhdXYJ58Pmov/HGtklx3Srwf138T0xvXCUWbwe/HxOLUkDhd+efphYLElsNMBjswlxf5/+e/QOem/4WZdVkvbKBLxDmowc/xjenv8njg+/jqUOfolQvcajjEEOJIb5x4c/4scM/Rr6Q4furr7NRyzK/NUfVrPHq8imurJ/hs4/9Vd5b6iLWUGi4Io2aRqYrwsXaArnzf0IqkuZI59EfGHPT2qI5WvQxmh7j6uLZXUnPSOchJhoJMFa2myneYrROWK1R9MPTF77CplL1/LkUXWd9dYFnKxU+N/xjhJdrUsnr6aH2/PMyOTn7q6bT+I4fl8pKJtPUcGqJ1gRS6+zEKpWEudTe3kyiTFMA0o6h7rXaWNdS773ecboeWPbmJoFHH8Xa2PBENq1CAf8b55loa4OaIkrkqgrpHoHilssQjaK4CYZrGqqqYJqiZp7Pox08iLm5iZJMStLifMYqFjHn5kSs0cGtuO7yajqNMTcniZLTrlGSSfSRERQHzOtOnIrP5wHjF33l7UkP4BoQb6zNMDPzBvck3h4PQQ8wrqqcayzy5upp7EYDv+5ns5J1P8X5tfM8Nf4kPZEuqlaDewcfYjTYi6IozF94FSsSIpNZYGG4zKF02vNDc8cMTzzWUePGtgWD8/DD1F55BWt9nXJ3SpIeI482NCQ4KkQ/aGdVfSY3w7dmvsV35r4je2iaBEp1xgO9RDeK5OxJ5lPzlNtiTdkJVcUqlwl0x4XgYlnUVIu6DufXznnnXlNUXOD21MoFLtYWeKwS33fb9naMu4nPD2G41FHbMATL4OAZFE0TJWvLQh8fZzSZ5POhNmYipzzAa29eJfTqFWmFLC4KqM62iahB/JqfYl6AumrHMWqV5oSlKxp+rYkzuJGx350YNwKdttKL3bjYWGItM0+6/yCZ2ia2ZRLxRzm1cZry4gsMRvsoLM+RsgI8OP4BFrekNWLaJtg2jVqZ/3b1v3Gy5yTj7eOoqCh+g+OJcUq1Ii+cF/PeSLKDi1uT5MoZIv4o8UCCnkg3C+pFXl18lQ/3/lVsw0A/fBiiUc4nKvyLF3+dqZULQmHVdUY6J/jFx/8u9w7szc7zsC+G4bV4FJ8PJRZDc/r+rbpRbcEgX7z/Z/mXtf+Tq/nve9sZ6TzEL5z4n0hddEDfezAFbzaupYy8wBaZjXmR8Qc03U9ycJza8Bg5o8KLvTWOdx2gtx6icfasULJb8DJWJkPjzTfxHTsmz9UeyRVsV+G1MhkMRZF2jtMSUvx+tPZ2SVCusa/7Ue+9ngK0Xa9jraxgbW0Jq2xlxTPJNLJZfBMTzkal8qImEpLkuW7fto3W3u5Z2Lg+ZlgWqqZBMomxtASJhOjMGAZqOi3tmXodradHHN19PmzDwFxZkWNx1aZtW8DfS0to/f2eBx44FdVoFHtlhUJDQNgeNd5RfXY/X6xsvW2TruLzSSWqrY3N0hXHjd7aptXjnG0qRoVMOUO2nKFQ3WJlY0Y0n8wGihJGCQYpNUoogXbMbFawMclksxIIHvYJnw+7WsXa2sJ39ChYFtNahq1LEfRol5f0uNFaVS/UCjxz6RmP9AAy1teCGperi5yI96JvFSkaFWLVsHi2WZZH1kgEdULVABWjRNDWKVTzHpnIp/kJWCpoeMnaVr2I0nto32rkt2PcTXx+GMMwsKpVecBab06fDyWRQNF1z6E8vFli9OXpvbejKFiVCtb58/S2RRhJjzG1fIFyKUe+mGEwOcRcbpZYIE5A9ZOICvOiLdR2XWO/OzmuBzrdNRAoCpt2mWVzk4XZ89StBr2xXmbzgodoNGosl1bx65BZmudM+3lURZJTTXWSAdumYdQ4tXSKwVg/o4FellYneY/Ry3j7EKNdh5hcv4ypa2xWNwGbUr3AeGyCYiFDIbvC2fVFrgx+jK5aG7Xnnyf/I4/zL0//C0l6nP0EmFq7xL94/n/nf/v4P99V+bFyOaHw6zrm4iLG/Ly0T8NhVMeEVEkmabz+elPtFZhIp/mNR/9Xzo2cYauaI+GLMdFISNJjGCKy9hYArK+ljFwwSh6eQtP9tB1/gP984Y+4tHoWgMOdR0n7k/yD9/1DTriO7S3nxGPHuOac1wn3+quJBNrAgMdMct3IW9mCO2O/6r3XU4C2q1VhF+q6aHDlcvKaqoq1SiQCjlGutbUlmlWzs80xQlVFvG50FNs0sbq7RY/KtkWB+I030Ht6MBYXMaenm9/p7SXwyCOi3BwMoiaTGIuLklQ5ZpatuBW7WBTMYUvyYlcqaD09mEtLRK2akAJsu6kgXCp5xx7Rw5hbW1jFolTSwmFh1OXzHqtMUQTUf7NAXDWZREmlMCYnSR5Igi1VKO95bImQFkKzAcsiGogKA7a9Xc65pmFvbRHRQmCaWCsr6I4vnHH1quyrqqINDaF1d6NomseKc1vohUhe9kffe5p2q+qzuVkyhTW6Qh2StLpmsH4/NU2jlEjR3tFNcuIYg/FB2meXyeSWBXwO+KsGE6kx8mYFajWpTNs2Ps1P2p9AMxwShoPLitsB6i++SPCJJ/Z9Xm+3uJv4/DBGICAPn2miDQwIs8QZgC3HvwhkMttzUGgpLyvOQBKtK/x45/upTlT57uWvc3HpTR4f/wCvB2KEfWEG2oYJBiO0hdqua+z3wxzbJiVFoZSOsraVoWhVqVsNUBQigShTazMEtQCRQAQVhbxZpg3AMNAUlbAewrJr6JoPw5G/t22bNl8C6g1Spp8BLU3w9FV+bvyz/Hbl3zJn5J1rrDGeGuOTB3+Ub7/5Nc9qY0upYTkr9EvWGlfnTgsA3kkK3Jhau8T51XPbEh8XV4KqYs7PYywueq0Lu1zGUlVprSYSu5IDK5Mh8eo53nfiXhqvv+60tRx8isOG2q8q7fVim/BfS8T8UZnwNY3kxHFJetYvgKKCbaGh8ebCa3zphd/kXxz7O7RnMnIeG43tbRanVdXqx7Qz3OuvJpOosRj2HhOWK1q3kzlmFgp7yx7ANirztY7T3bZ3PsJhGBwUYLGmeSJ2anu7JJyAubjo0a0Vvx+tr2+bj5YaCFD3+TAWFlD7+1FjMRFodCZtQBTPV1YwrlxBGxzE55jOulRtxTGP3RZ+v2CQdjC67FoN3733MlTZorN0jMzWilddVONx7EKBdKKHvmpAzDWnp733ta4utOFhGi+9hF0uo6XTAuZOpW4KwK8EAmjJJI1ikSPqAY733sebS69Rr1dJhdq8dteRjqNUynkCqp8Tgw/iNxRPWdt2vBDbByYYCHZDTapmxvy84MFOnpT2ZDCIMTmJceWKHGMsJhIJExPYuRxRRAbhWgsDt6qeL2xgrqxgp3z0+NIs5R2AeziMous0dIX2tmHxHvNFeerQp3j69B+yTvN+G9Y7+ejhj9EoF2jEEzw69DjzmUnUWmNb0jPad4yJehxr9Sq1F19ETaXekuf3nY67ic8PYdimidbbixoMYszMYLru9JqGOjDgMSrsRgPCYdT+fnEl3xFqfz9KNErjyhWUeJzeos7fSn2Uj33w/awYOfyqzl89+VM0VJuGau8y9ssXM8ysXaVYyxMNxhnuGLvjbC1uJloB0EosxmxmivrmGgPxftYKy6Co4qUFVM0qx7vvoVTZoqFYQlu1LFKRdvyan8ubV2lX2tioZjEUOJI+xET8AEsrUzw5+nECZ65gZbMcqnTy62N/k9c6a7ww/yIhPUipkue5839Kveq0InWdZKKLxp+/LKXqqt6cvH2+XSa+uVpu298urkSJRGSV3UrRd7R5zEwGPSzl/Z1hbW157dVd7uxvkXfTLuE/Jwb9HXQePM7qxTeoDcLVzBVUVUNRVBLBOLW6VHneXHmD88c2eL9jsul51QEEg6jpNObsrOjYtFS0vN9vcbW/1r64IGhP0K7lPatYFAXkycm9laIdAPb1tq339cn3nVDDYRSn8mQ7yY7v2DGhVLtVl81NtGRSDCpLJRpTU02pg2SSwMMPo4+NCfi5q0vYjIHAtlYUqpjdau3tzXMQCqG1t2NUq9vvF78fNZWSz7QwujwH+Y0NYpEITx79cZ45/2Uy+VWRY8hkSMe7efLgJwjP5bATtliGlEqCv7Is7Hpd8Cu5HGYmI0+art88gF9VUeNxepZL/IOH/w6/8cr/wbmlM4z2HGQS6In28BOH/jLfPPMVDiZG+ZmHf45XT30VK5eR8xSPk1LCfLLzvYTmVlBGRlDa2kQxP53GWlyESARzcRGqVUlIQyHRU7JtwWU99BADVZ10qI1NdktiuFV1u1YjXKyDYbCWmeODIx/im7PfYik37xnN9ugpfjT5MMGr8zRsm55wmL82/mlm4hcF4oCf3i2F8JlFR5ajzC8//P/mX37vXzK5fG5b0vMLD32R+DfOCoh+fX1f2kK3Y9xNfH4Yo1RC6+2VkqqT3LjlT2o1jIsX8fX3Sy9+ZobA449Lmb0l+VEGBgg88QSNM2fQOjqEqbSxgU9VGVdVDvX0EPzgB68poz69cpGvvPx7ZDabgljpVC+fevhzHOg+9LafgncjvElpbg7j8mWKsS2y81f4+PGPs1nNMZW5ioZMGCOpUT4w/AFeuPR1xtsOYhsGK5de55OPf57vXfkWofZj5I0iVcWko22Ap8Y+QTxX4YNDRwitbNJwxSkNg7b5LA9EBvjK6gxT65dkhRjwoeoJsCxGUiOMbSgeziIRiHuJj9JqzOpEMpDc9re3MndF8HaG6xrugHj3Ctsw8E9MvK0KsHthsBK6zscrWf5zb4ZsPUfJKHnH2BXpJlfZlAlYVcmZJaytgqzGOztl1ewwlwgEwLLQUinMahMoDezpan8tPBiwCwAP0qYy19dRu7uxdtp+gPz+PrZtLi5uT4h0XdpF8bhgaDY3BePhhNbVBX6/qJe3JHRqKoX/4YfRu7vRe3sxNQ1rc1OOcYc6txIO73pdTSZlknc0a9yKMzhSG37/NkZX80TY2MUi/YrCZ/s/yXx1mXI0QOSATr8VI7JZRunqkqTBMDwAtN1oCN2+txcLJNkyDEn6dP2mMEGKz+dpcB0/tcq/PPLLnD+5Sc4okk50E/NFyBTWeOh9v8KEkSR1Zp2xjg8xn96kZFWIBmL0B7sJTy0IpiefJ/jEE5iTk9iWhT46KpiefB5CIaxqVRYUzjNpra1hra8TjcX45MSTfHXxm2QrzWvTWlU3V1cZaERIx7rI1HPMX3yFx9oOoaTvo2rXSYXb+djAB0mv5L22nV0uE9oMcriexKoGKZhlFnxFil0NYr4IfVqao8Uo/+SRf8jF6hy5/DqJQJyJWoL4c9Ie98aNfWgL3Y5xN/H5YYxAQNRZSyVB6zv9dbvRkBVJKiU6M06J2y4WxWPKWT0pgYDo/ZTFg8lNelrDWl6m/uqrqLHYrow/X8zsSnoAMptLfOXl3+MLH/o7t3XlZ5ux600K/anJJFq5jDk3RyyqYfl1Nhau8N7eR/jA8AeIh5K8f+RDTK1e5I3pF9HKVaKNLWwT2oYPMbpkMJb6AIsxm0o8SDzdzVDbAUJrW1h2FhQ/lgOGVEIhjykSf+kMP//QT/Hb9X/PdHFeyu7RKMP+Ln5+9DMkvz8t7RtFYaKeZLTvGFPZyV37P9I5wZGuo9tec1fmiq5vd7D3PuBojqjqNXEwSiDwlruzX+t3Wn+jMTVFsqYyFO5F7+zjSPsRNEWlVCtyafUcui9IQg9Tr1dIRdtR2wNY09NSFVUUlEQCX28v1T/7MxSfD9/Bg/jvvVcYTw4zBk3DKhY9wLDHVNqxL1axiLG4iDE3J9o5kYgkAThWBsvLqOEwO1NLtbNz13m71rm8XqXJFVBsTZbsRoPqN76xXeUdsDY3t1mqqMkkSiwm++myrVqwJIqDHWrdP9/Ro9imKcdrmtIujEbxjY9vq/TtiVuybWKGymG60DtHZJyq1bDiRRqnT0si5TKjnM97Cbh3EJb3980Acd1WpZXL4RsaouPMFd7nmLBqo0mwyugDgxjT05hrs5jlMqG2NsbW1yEQQAk30Cc6sBwwN5EIajCI/thjoldUrQo70PEt81h0LgMXwTyRSnGg4yA/3THEbG6WYqO4q6puNxpEygZPTjzJV974AzLVCstLlwFZaD4euJfkm5Mog4PY5TLFoMK8kaW4uUiyZxi1qvKnL36ZzMacd906ho/wZPpT9C+aPN4xSvXlq8AW4GhStVaI79LZ78btElpXF+bcnDC7drynRCKy8ms0ZPAcHKT+6qtQKKD6fEKvtCyUSAQ7lxMm2E7sgTOYWNnsnqXOmbWru5IeNzKbS8ysXb1tDU23Gbs60br63VdYFmo0yoAqg0+2kUdpNDi3ep6GbfBw/3soV/ME8TERO4C+XqAt0cMnEg8RD3ZBLsehgor/4H2o4TD1185Qm5mRZLW7W1oFqooSj2Pn8zK41mqMP3eJXz/5ea50aeSKGyTjnUyYKeLfeLk5QNk28ZfO8MWP/CL/1xv/hqmNK95uj3RO8Lff9/d2AZvdFh44DudbW832hSu7n0zKKnaPFaCaSqG16BXtFW+XR5Ndq7Ggl7h0+gUORz9K1BfhzPLr3vt1owp6hOO9JzlMN/77DmIfPuxN7tbWFrWXXpKqgmEIGFjXCTz4IIphXDPJ2Ikpce8rJRiUagVgBYNo/f2SWASDaA4+pjXUzk4C73vfvtsJN2Ie7kyWjMXFXUmPG62WKorTljRnZ7d/XtelxRWL7Trm1laZXSwKwywaFZD2jgrWtXBLaiyG3tfn2cZY2WwzuXHbba3/bk3M3WSca4Pf94rWdqJVLIo2E1LlUHt6UKNRseRYW4NSadu5oFYTaxaQcdStOjnjrZpMYrzxhuxrvS7/aZosShz1a+p1eQac8x4jcE1NNMXnA9umvxrgs6kPsNBdpWRWiGgh+hsRQkublMcGWQoVyAXK/Pfpb1DdyuLLFehrPMyrK6eIRQLElQ5vcbw+dZavFAr89ANfIJFMonZ27gLdw94J+Z0SdxOfH8LQkkm0AwdQLl4UPQ8nlEjE04NQnEnKnJ9HGxqifuoUDVdhVVXF4O7RRzELheaGA4EmxdVtne2lnVLLX3f/irXCdd9/t2KbsWvr6ztWvzcKxefDNk0idZ1PjvwIT7/+Bxir8xyPpykkQyjVKv/o0X+IvZWnurpMtCdEX1EldHoG5T3d0loBYXSdOycrZscw1VpbE/xWIoHSgq9wP5+aWuM92STmfBbtQAJ9OEg9mdx1Hxwrx/jSR/43LuQmydVyJANJjnTtrePjTQSXL6MNDICqbmd1xeNSUUilaLz22rbvuknj9c7btRSX3wpVaSUQoFDeFI+w73+Tv/XEz/A7r/1/msmPonC4+yh//6G/S/tfvEqjrU00aXI5GmfONCdSRw3ZrlQwl5ZoTE8L+2ZH628vUcjW+0rrbwrv2dUq5sKCYED8frREAm1kBG1wUCbEcFjaLoj33n6TwZuprO2VqF7rfS2dJvDYYzTOnMHcEqFNN7nQhof33DclEPDEKd3k1lxf35bc3ggT5YGtk0lYXZWFW7HoyTDYhuHJKlhuC9J1Gg8Gt+Gv9hs3SiCtXE40i1phBK4vWqMhLC1XJsCydilU2/W6POdra01BQ0WR1mRHB0okItX661wXV1oC2xasz3qecblSQB2ifpaP9fP0mT8kEE3w/PopljbnCEcSTHQdBZ/G1fkzhLQA94RH8RWb5z6zNsO8kSGpDjahEDtlFm4iIb/d4m7i80MavoEBrHvukVWJ82ApzsrSHQisXE76+6++irW83PyyQ79snDuHPjbmDfo4TDEAgkEZpBwp/tZBLxqIX3fforcp42uXsWtL7DQUvV64pXJjdZWu8wv8VPhhFo8+RNEsE+8SVezQty87lGMbJWACplCRXVqrM5iZm5vegKroOoTDGJcv4zt0CCuTwXSk9VEUlFQKvbdXGFggWh3FIvrYmGy30RB2T72OXSzSnbyHnq7RfZ0bNZnEf889HlbCd/SoDN4+37ZVvJZMNtuEgQBaZ+d1z5ldq7E5fZE5Y4UiJaL+CANaG9Edasm3GkooRMy5H+uNCpeee5q/cd9nqJ/4HIVGiVgozr3xw4x/fwErnweHPrytUuro0HhVA0vUnq1yWapvLarEdi4HpZKAvZ0Jv/W+sms1r1IHkvxYpRKa3y8A5a4uT+W3cemSYGRajuWtshjxtnmDc7vzfa29HfvIEbh6VZJpTcOu1ai//DI89NA1q6KeHIJTobENQ453YEAYWPswZlUCAWGNKYrc48UiRCJioOqyut58E/z+JqsrFtuFv7qZc3PNBFLTpCq+sSGVkkrFa1UpDmvPE8F0WoWAp1BtZbPoBw9KErS66iXQSjSKz3ler3Wdty0UnHasXS5LO89p9ymRCJWhbp4+8/9lY2Wa/hOPsbQp7axyaYtLaxcY6JkA26ZSK5FPmLg1eNvZRrFewqpW0dJpQh//uAhr1mrgnJc7NemBu4nPHROFWqHZ5/VHGQz3ECkZ12wNKIEA/hMnrruKshsNwf20Jj0gD1MyiZXPo+g6/ve8R0q7LjssGJRJW1EwMxnUtjb0lgFiuHOMdKp3z3ZXOtXLcOfYW3ty3qK4mdXv9UIJBFCSSZS1NexMhlAGxpyExhcK0pg8K2q5uo7VaMhk6VQW7GpVBjzDEADhjoqCCyo0rl7F9/DDqB0dshJzVFgbMzMefRmfD623l8bFi+JJ5W4jGsX/nvfc9GSwn0rCfgxfW2N6+QJfPv17ZHItIPhkL08e+RQDFX5woTrTZKhrnHTnMJm1GeqNCudfelbaDm1tkOhmePRe1EAAS9OklZfJSKLv4uOc/+xKxdOMIRDAXFoSXy/LEjxcPI5+4ADW0hLm4iKqo3HUet9YmYynn+MmPzhJgPdcXsN+Y78WI3athpnLSVXEwdW00tRbQ+vsFMzfHgn/Xi3Ka1VFgWtWRe1aTZIen0/Unx0QvF0qUd/awn/0qIg77uf+SibxhUKonZ3N43N1fAoFtPe/XyZ+x1z5rQbQu6GoqjDhHFC17STBdiqF3tEh7WBFETr9iRO7FaotC2NyEt+JE6K3Vi7LGOD3Y1cq+O+7b8/93nVvOGBwpbsbdW1N2t4+H1Y2y0J9nY21WVAUKkbLvaQoVGrF5vii6zRwmL4uQUFViUaS1J57DjWRwP/ww/hdAcwfgrib+NwBMZOb4ZlLz5AprEm/uF6nzZ/gyeGP0ZcVddi9VoM3WkUpPt92qinIw9rdLaJtmQxGb6882LaN78EHZaCvVrEVBf+RIxjT0+g9PdAyYMWjaT718Of2ZHX92MOfu22BzTe7+r1u1OsykEUinjqrq8yqtLWJ/kithu+++0SVtdEQd+ZQCHNmhsAjjzRBj3uFqzWjqpjZrCRPgAIipBaPo0YinlkksI1GrnV07P9Y3qbYyq3x9Nk/JmvkpezvVBOzVpFnZ/+CvzbxaRJu++AWQ/H5iGyW+dSD/y+evfo1NjaXvOpMyg7x5PiTRLIVlPFxqYgGAliqCtUqajwuVgO2LfvmtE7UZBIrmxWWk08MWDFN7EoFo9EQp23YO0mxLE8/RxkcFK2t4WF8La2ia9lvANsUomE3EN9thzYuXRKlactCURS0/n58jsHoNnxNNIr/4YeviWvbmcTcSlXUchJ7u1gUKr1b7bJt0a4JhbAty1P/vuE1DQRkodXVtdviI5l8RyoRWmcnjTNnUNvbUXt65HlUFGlt+f34hofBstCHhtDSzfFOTSYluc5mRQbi0iVRv45GRW4klULr6blutWeXZUkohHHmjFQSGw3BkNVqFOtFD28Y1INSpXKYndg21VqZvvYRFjem8PuCKGHbE7Ns7xikvxHxJA9uptV/J8TdxOc2D1eOPLO5hLmx4bUp1q05vpLL8fl7/zqRjTxWoUD9tdfE/8bnEz2LUsmrCO0c8GA7aNUNJZWSh9JdgWiabKdeB58P/0MPCZVX14WCCXtSmA90H+ILH/o7jo5PgWggxnDnO6fjcytg2Ztd/V7vd9E0r79Po4HtgBnNmRl8J05gbm3hO3yY+qlT2MvL4PNJJa2tzUt61GQSzWHgsSMBUKJRUVcdGRGhufPnZUJRFBFBGx5GHx8XkHurIrGqeiJz72ZYuRzTl19hfeqc7J+ioHZ0iON4ocD62hqz8Xs4slFAjURuub3jJvq9cxt8hpMsdI5TUk0ilka/FSOec5hAzu/S1oZ55ox4ZA0PY1+8KCvyQECuSUcH+ugo9VYsU8v9b2ezKGNjgr1w7oVd95VlYa2vy/6lUh5419vGDRhI7vs7gfhqR4c8l9msp5dkl8viD1apiLDfgQP4Bge3nU+9uxv1Qx/aV4vyVqqidqMBwSCNM2fkXjbNJnU7m6Vx/jxKOIw5PX1Trbz9WHy8XaFGo/geeIDqN78p1SwHb6d2d8vzvbJC4D3v2ZWEKYEAvhMnsAoFuW7OvaBEo+gjI2L9cZ3j3+vesA1DNIBWVvDdfz+qIzobS4RkwVWpwNYWvbFelksr3rlfyc3z4aOf4LtXv0WsoWHXSti1Gu29o3zq/s8QPD3l/cbNtPrvhLib+Nzm4cqRm47jsqeJAWQ25pndmOSIrxfTBZvG457CrhIIeIJye1WElEBAgLJ9fSKqhWhs2Ovrwhpqb5cVgN+P3t6Oce4cZiDgDTRKezv+o0evqSwaj6bfFfbWnmDZSITKcC9zhYVrCire7Or3mr9bq6Gk0wL6PXpUMFOlEubMDDQaNKanCX70ozReeUWSFSeJwfFaqr30EqGPfnQ3JdjF+jiKx/rAgIcnUru7d7U2ZKcsmdAdPZedjJp3I9xyfaHieBZpmidSZxuGULwbDYq2MGR+EKyPEggI9mNyktDaGgcBFAWtt1esCc6fRx8eBkXBd+wYxqVLAjpeWREq+7FjTc0Svx9jdVVwJMGgtDYcawX8fjkOR5/GKpdRHZaM5txXxsKCTPqNhiS6mobusLq27fMNGEiKz7dny0lxFNvNxUVpsZXLzVZpvY5VLKI5537n+dxvi/JWqqJuZdnKZqUy41LRwbPToNHwWnm+o0exSqXrtur2a/Hxtka9Loarhw5519Q2DBGRrFSwstk990Frbyfw3vdiOIa3niWFYeAbH7/uOd55b9iGIWDqYFDa24UCjelpsCx6QwcFcpBZYHXxCh869H6+ufQCS7k5QuE4EfyUNzP8ykf/MdXCJsVSjrAaoN+KS9Kzoxuw31b/nRB3E5/bPIqNoihwuit+v18GYtsGTaOcCKFoMQGwBoOQSGCcPi2tD10XHxgn699rwNO7ugh+4APUvvtdAUI7lFClvR3foUOYjly9OT2NXauJEFoqJT5A2SzG2hpqb6+sgMNhWRGn371W1p74CFVlIWLwwmv/mbxap2bVCWpB3ph7hccnPrJNUPFmVr+7ftfVZ4lGBVfjDOhWNivJyokTGJOT0qZoNCQRgqafkRPWyoqsjJ2S940owa2lf28b12BKqbcI9Hwrwy3XR31SSleCQRS/vzmJO5XGWCyN0tB3tXduNuxSSfyzOjs9oL/tUIn1kRG07m60jg5sBy+i9fVJpWRzEyOXkyproYDv3nsxL16U6l9vL1Y0CrUaqqPWjWVJxW9xEXNrC/XYsW0TlTk3J20ZBwytdXWht7C83LiuLUU4jBKJiF/WykpTS8dxU3eVtO16fbfYpGVtr0Tdwvm8laqomkzC/Hwz6dn2pirnzrn/rVwOY36exrlzjr0J4POh9/UJ0QJZnJmbm3tSrGG7xcf1YmdVeGeV/EZVYrtWw7x6VZJY8PAyaiqFkk6LIes12HhaOi0tr5sU9Nx5b9i1muD8KhW0zk6USATf4CBoGlqxzlPH/zJPX3iazOo085Nv8PiBhwkf/gR9HSP0BDu3VeEbU1PUvvMdYG8pkmthjt4OGYq3O+4mPrd5RH3R5mDh82FtbMgKXlXRenoIreWozyyKJ49tow4OEnjkEeqvvy5y6C1eL9eaQHzDw0IFXVsTZeehIZmYFxZkJVureUJbdrWKXamgdnWhBIPi03PuHI3z5wFQe3oIPvGE9LjfhdirB15KR3lp9QX+dPrr5KnIyt0yGEgMEIu1k4527Kr83GxJ11xfx7h8GSUaxZibE1uDQAA1nZZz5QzwgY99DM2tmrn99p3hany4fzqU4NZBxtrauuYg44JJbZBB2ana2UDj8mX899xzS4PTrQ5yO4H5/UaYoKIwoLeRTvYKsFlVPU0SRddJtw8woKehcfMCdHvut9Na2iu0vj60ri6MmRmsYhFrdVVAq+WyJBOBAKozoavptCwwAgHstTXw+6Ua68gFuKQAe2sLc3oafWAAY26O+pkz8ty0tJbtfH5P7IRXpTp9WkCyjtih6lhLNM6dw3aZROD5MqFpTUyYZcm1d0X9HGamK2Nxq+fzmlXRtjZpg5dKGLncLrq6Eo8Lhm2n7k0gIOfYqZbYtu3hk5obV2lcvIi5vo4+PCyGq9GoZ72zs4KEpt1QUbh1YWAbhtDgq1VJaHM5wXKFQmiOyrXi91MKa8zm5ykUMkQJ0K8l8YfDYtcxOCiM2UAAY34eK5/H2tzEWFhASybxHT26q4V3IzD3tYRUW6n/SjSKub6O7/BhjJkZ6q+9JvdFtYrS1kZffJy/dujTLB4tUlIaxNq6Ge4a3xNycLNJrbmxIe1Ld0EWCHgsureSefh2xN3E5zaPoeQQ6Wgn6/k85vq6PNCKgppOkzJ89C0WsbbyHkXWWlqi9sIL+B9+mMarr+7WGbnGgKen05BOi7qsK1IWDGJtbKA6yQ/hsCfO5dKt7Y0NcGi7IIrO1eeeQ4nF3pXKz17Ht6AW+Oqlr1JSG8wWlyhkBVx5ce08i4Ul+tuGeTD6yE3/ljcw1etSoXEGPs/LqVbDymRkhWaaKOUyigNuJRyWQdptXbpVH0Xx8D7bfusmtG6sXE6SnAsXpL3gYCrU9nZ8R47c0mr/VrV2XGB+q+R+ygryieTD9Bc1njz8lLxvOKwzRSGd6OapiaeIVppJ4c0I0O2M/bRnrFwOM5/HmJmRyoQ7IVsWFItYhoE+MiKA4VJJqMjhcNPZXNPknh8YoHHliqeKbM7PY9dqGFevNn2qWllee2AnjJUV6q+84oFdsSyUdJpyZ5LZuVMUanniqS66etOEVwQnYpfLWI7qr5JIyPOZzzf3LxiUpDIeFwbaD3A+96qKKpGIAJevdX/YNvqBA2Kp4R6/c361vj4Bh1ersphqTY58PhmL6nX5v7ug8vubBIIW6rj3/DiK2HtFa1XYduwizKUl7HJZWKrt7bC1hVGpoMzMoI+OsuCv8Oz0n5O1S1IZr9dp7xvjE22PMJQ6Qv3111E1TbBUGxsQiaD192NvbGBtbmKbJoGHH973guNGQqouacXMZmUczue9lqGaSGCBJN8rK0SsTg6F4/hPnLjus3ozrX4zk6H2wguYmYwn9qn4/dhdXfAWyFC83XE38bnNIxaI8dSJn+DLhX/PmuOlpeg67W39fEI9TOj8otx0rhu0aYrn1oMPyio6lUIJBpuMHp9vNxOis9MrC2+7+atVaZn19sqqNxr1ysuWrosDNGxnHtk21qJUoEzTfMdLn3sN6Eu1DbbMInPFFQqV3Lb3zi+d5nvLL3Oo59hNOcpvG5hce49oFPXAAbQDB5qKrC5l1LYhEJDKQ72OkkqhdnVJpc4NTZMSdVfXtsTErtWonz0ria9heBUAEOaQPjEhLDxnZQhO0pPJyKTgKm0vLVFvNFA7Om4q8blVerULzG9NesBhbc1/nc92fISeyQw/1fZBFpMKxd4sUfz0B7qIbjSw/Y6g2y0I0LXGjVayalub6ML4/R5OxktGXVyV48xuNxooySTm6ir6+DiKbcuE4MhDmJmMgKIdjIrdaDSTD2fyVhOJ5mtsx07swu6oKlp/P7ObM3zt6gusL171ktiUFeRHR95L75Q4ylsrK+gjI6iHDgld3lVcDwbR+vpQo1Hqp04Jk3Cf5/NaVb7Wqqhdq+3tP1ap0Dh3Dm1sDNe5XEkmUSqVprZYIoHW3S24q+FhacXtrM651U9HPds2DFn8uc9Pa9XUtlG7urAdYc+97ku3KmwbBubWlvzbIQDYm5uoQ0MiC+HACSoHevnq5a+i+/x0hTqoDrcRsjWsSpU/b5zj00s2ocVF1JMnMc+ckR9xhC61nh6oVjHm5tDHxjxtp+vFXvgt2zQxlpawnnuOwKOPoqVSaF1dUvXRNIzFRRkTHLyQ1tfnnXPfwYPo/f37Gof30+q3azWM+XnM9fVtODK7UvHu5R9YhuJtjruJzx0Qw+2j/LUjn2HaP0GpUSKiBhlKj+L7xvNNbIiiyI0ej3u+Nr5jx7AtSyioGxuOj0yY+ptvYq2seNtXu7tlNeLzCQMslSL4oQ9hTE9j+HwobW0yyMzNNXfKFdxKpZrsLpf2C1jlMtb582+L6Nr1Yi98RMMSZddCZg8arm2zVc4xk5nkeO/Jff3GroFJ04Q2bNvS8nMApu7qU+vpwZyZkXL/wIAMDqurBB55hNpLLzWvhaKgdXV5iqiuHouVzdK4cgXXBNSuVLACAVEBdiZX4+pVb/88bZCWpMc73PV17FIJq1jcdzvvZujVrTGbm92V9IAk7pu+MvPWJgfrdSIbdcZLIbTOUaxMhkIpy5vdPlaUNfzBCH3JAQYWp4gFE9fUo7le3GglS63mtQf0gQEMZAJUIhFs2/acz+1sVv7d0YGxtoYSDqMPDsp1NQyvrWPlctiFAoqj1WQD+rFj0uZyTINth+Hnfs8Njy6uqtImbW8nX9jg2bm/YNMuy2SkKFirq+T6+vjq2vP8VOejhFeksmfn8+j33CNebgcPekae5sqKsKf8flSnLXGj2G+Vz3R1qAIBD6hrl8tC73fb5YkEZjYrwnw9PZ65qbm6SuPsWdRkEnNuDv+HPoQ2MOB5DNrVKhw4gOX43ym6Ll5Xly/jf+gh6q+8gjU/39y/vj78DzyAcfEieiKx533pme662EkXP+mOX7YtivQ+H/h8LLJFKBznmysvsrg2iRKJQK1Gb3KAD3V8nKXcFqORyPYFoGlCPg8dHbLohO3tu+vETskAu14XcU0nUTOHh2m89hr+hx9GCYWEDKAo29ibtnN+1VTKuy/326q+UavfyuUksW8Fz7u/W61Kq9e5Z34Q38O3M+4mPndIxLQwE1kdEMdtLWpTbxFXc9tfVqGAvbmJnc9Te+UVKb9PTIgPUCJB7eWXpf0SCHirWnN+nmq5jP+BB7zB3eeIVTXOnxcK9PHjsoJ12ziOYqjW3U3j4sVtSQ/ICtkuFvctuvZWxV7y9z2BNOh7m2f6fOKFU8hn4DqLsW34mnK5mez5fDLJaRrm4iKKpgmN3BUSNE3M1VWhGiuKrMyCQQ835X/0UZl4azXUSAStpwfNUdU2XG8ih+Jq5fOYhYKIRxYKGPPzMnjtZHqUStKS1HVhfMRiMjjatgzmhnFT1NT90qt3RrFxnYHesigHNWG9KYqweMpllgbi/OfVv+CF0y9RrpeEnZLo45NDH+Uh/QCDWhv+48dvOpHWUin8Dz3k0amVcNhbyRpOJRVNo3Hhguio9PRIJTWZFEbewgK+48dRSyWM1VUx2fT5MKamtkkGKPG4tMTKZVSHYammUjQuXKDhuq7rOmpnp9Cal5e3YSfsWg10ner4EHNbc5RqW9SCFivVDQJ685nFsjCXlsgNDLBytI9Do4dlwmprw1hYoHHqlGzQnYxt22N52vvQRrKKRRozM55vHzSTmdbn2crlaJw9K6xSJ5RoFG14eLuD+uoqgYcfpvbSS9IKTKexNjZQ/H70AwdoXLggOJVLl/AdPEjt1VexV1Y8IU4lkSDwwAPN9mO1Sv3VV/E/9BCcOCEq4n4/Vr1O9dvfRu/pueZ9uU2Bu8U1HhDvtLY2fIcPS5utWqUS0PjG7LdYLq965xJgaWuBb05/k2MDP9kc+1w7H3dB6rQhcXR69hOtFUDbNL2kx4tGw9PWCTzxxL7MY2+lVX2tRMlV3fYdPSqLTMPwqqN2Pi8LBt4i38O3Ke4mPndIKLGY9G43N8V2wLZR2tuFeh4Oi35HJgOVCkpnJ1a9LquAQgFjchJ9dFR60K1MCJdRYZpNl2CaLQy1pwelowN7fZ3Gm2+Kz9fQkFSWUikIhah/+9vbwYWA2tsr++TED8rKudnYKdx40GdxvPdeLq2ep9FoDio+X4B7eu9DzeaI9l4b87DXoGHlctKy8Pmw5ubQenvF3R7EdTuZlDah3w/FIurwMEo8TuOVV1Dvu0/wDLqOvdRkUGgDA16lx1hepv797wvQUtex1tZQkkl8Q0M0nITHbZeonZ3YoZBU5JyJRo1EsB0vIyufl33RNMFtOdWI/cZ+6NV7RdR3nd+wLCK2LkDVSARzeppSe4w/nvwW3115kUqj4vkQLSlLPHvla5gDHySpHyVx7hz+Bx7YdyK9p12CYcg5jEYF8GsY2JaFmk5jrq1JW9GZGLXBQWHp2LZMEn4/tm1jO/guNZ0WTIVTPTCXl9GGh6V97PeLVpPjLYXTprHW1micO0foox/dBWxeHuvg6bP/PzJrs6ipFMn2Ps5Up5lIHiTqtNQUVRXafD5PMbuCVa7LhOiA3r0Wa+uK3Fkk3ei8Wbkc9ddeEwkFd78cnRm7UPCeZzWZ3LsFWixiXLki49X6utznrYl+ve6RJ6xSicb582i9vRgLC5IEnTsnwHHwMHB2Pi/J0fHjHoBZCQZpvPGGkDBaw+eTif8a96WnX1YsNnF2oRC+wUGM1VVp2zlq6GpfH2U9xFJuvnneWhiYS4Ulyj5piVmVithHOGKi3mcVRSoz+3zmtmk61evbkx7blvG/VsNcXZVFlSOdYeXzTemFFvNYJRKRc3oTreprJUra0BDG5csYKyvCKnS0obSBAcGUaZosDms1jO9/X4g4rdu9TcQQ7yY+d0A05uepvfCC3NyFAnY2i7mxQeDee2VAd7VBqlWUjg58R47QOHvWS0bszU1vte+79155kAJiuGhcvOj9ju0kSzirQrtaxX/vvTTOhXuX3wABAABJREFUnhUZ/ulpTEDp6MA/MIDW3o7R1bXN8kLt7SXw+ONYS9spkT8IK+dWopUxkQQ+P/FXWNqY5UL2AqZtoSkqB2JDfKTjUUprSwyE9l6B7Ilv0XVRoa3XBZ/gUoedFZ2Vz6O2taEODnoTkDYwQP3MGWG2tGgxefvbgmMxczmMy5elPemoDBMMYudyGIEAvrExGXQcnIQxP49dreI7eZLGhQvyeafSYGWzTQVpp9Jh5XJSZRoa2lfycF169XXwN0PJIdpCbXu2u9LRTgZIAg0Pt7Gg5JkqzlMu52XSMk25H22bpa15CgM1FvQi0U1134m0Z5eg6xhTU9vaDebsLIHHHpP9VxSMy5fRBweFuZjNehgUAH1iAntjA8XnQ2trQwmHqV26hBqNyuIBqXIqquqV9O1sFiWRkOuIUNFlY7oclyMw2BrltihffeObZNYcexhFIaj6KVeLXNy4wMmuk+iZXBNzlMsR2ixhLIinm9LWhm98HH1iAuPChV3nQ21ru64Qp12rsbkyx3yyTtEfJOqL0tcIE5pZwpiaQh8a8ijfbgvUrSZ644euQz4vZputk5tpSqIfCEh17dy55n5Fo5gzM6jxuFSrQqFtbXzF7xc8z+HDwrjSddR0GmNxEd+hQ97zZxWL2MWitFSucV+6VWEMQyqNhoE+OirtS9sWexeXcWbbkM0Rjqep1EtNywkA2yYUiKAix2zOz+MbGZFWaS4H0aick0AA/eDBa9Lr7VoNM5ORyo5tS4s0GpW/dySuSnu7HGO9Lm2ljQ3sUgnfoUMYMzNe5UsJBj2GlVUoCLjdETfF5xP8l9s2b3mW3H0xFxexAcu2sTMZeRYcfSu1sxNra0s04GIxuQ9LJWHfnT0rWMdUCnN5WeQXdqjP3w5iiHcTn9s8WoW6rLU11P5+tHvukZvb7yfw/vcLlqNWw9zaEr+mN9/c/sBoGlpHB8aFCxhvvimvuVo9990nSZLj/m2rKo3z57FzOQHB9vSg9feLhoZjcqlGo/hGR2VC/NEflWpRpYLt90M4LEnPTqXhH4BF8lbEwfAAv3Lkb/JC5jU2K5sEVQEkl9aW+NGxHyEWSuz5vZ34Fttw/NFSKVnNOLpH+P2SWCSTYh46N4fpGIfauRyVwW5mknVK3RHi7Qp9tQgxSyb1nS7UdrEogx5I4rO1hdrejh0KyYTc2Ym1vCwthfZ2MAyM06ex8nn8998vHkDj45ibm9izs008VjqNfvAg5vQ06tDQvpOH/bpn74xYIMaTE0/uAji3hdp4cvQTRKcy2Ijthl0uUzQ16rb87VUQWyqJVatOyayAFd13Im3lcpLU7Eh6QAbgxpkz+B96CCWRQPH7Ma5eRe3pkcqmrqN1dsoz8eqrIvfvhNrVJeSAaHQbvsIGlFoN5ehRSVZ3iMAp4XBTsI7tbQ2AufISWVMqEbarx1Op0ZsaZGljmq3aFu2OB5i5tEQ61klfNQC2bMd2Wk/+970Pa33dS7rAUTV+7LFdQNXWdsZMeYmvnPr3bCxPeee4vfsAT534SXouOgscB7vm0pjRddS+PoypKcHGqKokQ5rmVYlQlGbi54D4vbYMNMcrd9xQlG1jhqLrnoaZ//hxSTSyWZTZWRHsc86j0tmJ/4EH8I+OXjepV5NJ/A88gDYwIPYjhiEVc1WVlk4sJonF+jrJ9jQT7RNc3pqiQkMmeSAUiDIe6CfdMYjWpWNevUpjdhbf+Lj4wDmtZsswJFm+BtC6fuYMxvS0SBdYFkpbG4EHH6R++rSXVLtJj//4caGsu4bRuo65siLXLxZDC4XERsORPzCWlqg+99w2fKba30/gkUfk3jBN7zq7VR5zfV0EPCMRj8ZuFQrSXl1f99TLjStXZAFWLIJhoB08KJIGlQpYliwibFvwhjuxQO+yGOLdxOc2D3N1tdmeUhShyRYKotOyuSlGioqCb3xcfJ6mppoeTw7GRBsdFUG9fF5WUo6rr722huHQSe2tLTEdXVmRBMcZkMyFBdEuCYfRDhzwHij3IXZp8B6zo2WgdeMHZeW8FaElk4ysd9GmHWMhvEnJrBBpC9HfniKZHLj2amzHBGtXq1ibm/gPH6Z+7pyU1NvbpXXV24ve1uZpGqGq2I0GK48e5WtX/oi1S2/IuejpoaNnhCcPfpK2YJJ5M0upeJFoPcpQYoigYUi5XlW9FbTt+HKpHR2oiQS+48dloDpzRqoQ4+OYFy9ij4xAo4GxsoLv8GGZaC1LdF/KZczpabSeHgHA30QVbj/u2XvFcHKYnz75000dH1+UoeQQsUAMS0+LA3m9jhKNElXBr/qlNeJiJly3eiCo+olooabmzz7CA7K2YLKAZoWgVMJYXIRyWSoHmiYDtcMKaly8KHienZ5pzuRvA8qOJN+uVMC28Z88SWNmRtoqrUKDrZtpOX9WLsfW4rSc30gExUn6Nqw8Hx75MF/Xvkneb1OvFwnaOsMd/Xwy8R5CV9a3HZddqUCxiO/kSU/MUAmF0Lq70Vs82na2M0rtMb5y+vfYWJpsYgdtm42lSZ7mj/hr459GN03UtjbMq1cxs1kMRyVYicfxHT4s++5cM7WzE9fKQYlEvORT7e5G7etDP34cpdGQz3Z0CEhc15uJEXhO4dg2CqBEIsJmqtUwLl4Ue5bRUQ/4j6JgZzLYo6M3vDeUQEAm564uGjMzUr1wMCtucqN2dDCgJxlNjRDt6CFXy1OvV/DbKnEtTG+inwMDxwhEDmCOjkryPD8viYLrlB4MbsP3eMmmU0025ue3A5NzOWqvvYbvnntQNE3GeUXBKhSovfSS3EuNhngqVqtNi5z1dUzAd/IkajyOmctR/da3msxRRzLDWlmh9vLL+N/7XuzFRU/bqVXXSOvsxJibw5yc9EgxSjAoIomBgIw1lYp81zE1xTBoXL7sGf2aMzMoXV34RkYE79WS/LzbVPe7ic/tHpYl1RZHy8Ou1zGuXJGHAeThKpcFNBuLSRlyedl74OxqFS2VonH2rAiopdPyoDgTgb2xgXb0KEpvL9b0tAwmyaRX/ne9ZKz1dbTe3mtWCG61KvBOhRIIoPf3k7AsErX2bYad16N67ppgHTBk/dw51HRaAH6NhgiVdXdTO3WqKR7n91MZ6eNPa6dZu3JGys9OhSZTWOP3Z5/hQPIAV7JXAKgZNXyqjw/1PU68Q6FHSRKaW5VBx+/HWl7GDoextrZoTE7KvjkGsurYGCYy6arJpFB6y2XMWWmZqKkUKAr60JCsxvc6tn2cw1vBacUCMY51Hdv1uptMGQsLqIkEg5urjJaGmSktUq7kBdTqMBT7UkPECNBvRNFSqX0n0i5+BxA5AUcTBkVBicUwNjfl/1NTovDc0SEq2dmsDPSJhDhs33efrFKrVUmmQiGhXxeLTZd19zfjcU/QTe/rw+juvqEonDvxRFV/sxLiJG2N3Cbn/Vfo6xjlZM+9ZLaWCOphwtkStiJYl1Z6PKbp+fNdK0ndq4U7b2TYWJuR7zj4MBdntbE0ycKREkciHaJLU6/LM+Q62JumkCbSaW+iNpeXwTTRh4ebSsy67iUpiqpKtaZYRMvn5fooCurAgBA0HBVqHFVqxdGncZMGu9GQSbZYxFxY8Koj5tKSVK/HxvYFolUCASEPtLXJuanXsdyWtK4T80d58vBP8NXFbxLYUbl8auIp4tE0ZsnANAzqFy+ipdMYV69KAu1Wx9bXBfun65Lsb26CzydJ0vq6VIwNQ/a7UsFeWMByKk9adzf1U6cwp6flh0Mh1MFB/CdOYC4sSOKnqrIdy8IuFqm98ALa2JhIm2haU8jU9UibnYWTJ6Ul75Ap3HtBiccxnKo/ALWanHuHraUNDQmI2U3mFAUlHsfa2pJOQXe3MP0iEWnPz86idXVt86fbj+/h2xl3E5/bOCznpmmcPQtIqVrr7JQBKeSsfHUdOxwWZlEyKUDXTMYrhard3QJ2BHk4MhmUtjZP5AxFQYlGqX3zm/jGxgQnpChSwdjJFrpBefJWqwLvVKjJJP5Q6Kb2bxe+xV2xV6siST87i97V5ale+0+eRHHAy2gaU1qWzOSKKM663yuXqScinJp7gXRIRB5z1RyXNi5Rrpe4vHiGx8KHqZU2+dHDj9NzQQZyAgHU9nYsd2XbCqJ01G897MfGhgyQiQR2sSisjFYQ7S1W4d5qeqqrCWMuLBCPpPjLR3+CWjTAC4svUamVsEolelMDfPLgj/KwPkxcS0myuc97ygOytgjhgRy/i6nAMASfEwhgrqyI1k467QGvtXRaEiO3ZROJoJgmvkOHqH//+9vacUo8Lsmlc5/sVxTOnXgGIknSwTYyqurtbyPo4/ziaVKRdg7GhtnMLAkbc3aWjdgsn+38COHFFu0bx36huVNNMK5bbbCKRcyNDWF6Oa23YjW/neXkqGi7/y4pdbT2dhqLi8IudET6WjGDlMs0LlwQTIlTHVJjMWnVOu1527JovP66VKMHBz0Qtm9sTADQ998voOWlJVwtHSUcRh8fxzh9GuXgQanOIElKa9LjHWepdFMg2tbnXPH70VoEEJVQiAMdB/npjqE9K5fe98NhqYYtL0vFyKnaKpomJtKOm7tVKGBubKB1dDQrVY5oppscVrrbmErUKGllIitrDJ48QuTAAWFptrVhzM1R/drXnJ0Xc1S9v1+qR7Ua1uYmWismbwcBBaR67bZiW6u/isNU3f5hqV7ZjYaHIfTuFaeiZ2WzHibPzuXQurtFXyyfRxkclF3dp+/h2x13E5/bNNwVGUh51y6V5AGpVIQ94IBdbdejR9c96mngAx9o0j7dXrrfD7mc3JRbW9tZJocPy0TiAN9w5PB3shD2M9ncalXgnYqb3b+dlSwlGIStLW+CMxcXsfv6MFdWRBTSZQ8pCpTL5I/EpbycyWzbbt6qUDEqVI0qNaPGpY1LVIwKGAZL+RnU/sfIrlzlq+vf5XNHP0p4s4Ta3o4+NoYxMyPYnrY2ryXjUn7NXA7VpS3ncugjI4K9aC0z32IV7u2ip6rJpCd/0FdS+Lmup/iR/g+wYm7h8wXoDXcxoCRvScdHCQTQBwaEQeQK46kq5d40C7ZGyWcTCxfp60wQWtwQEThFQevvF20k25b2ggtEdidFy6Jx7pxUY128haZJJaJUEmyQk2RgGPgfeUQYUfX63qJwzsQTKRt88sDHeHb6z8kk5JoVtCptWg8fOvBBFubOYhsNz7Mts7XC4lBDzFdBDIVHRkT6oJWVFQrJMV2+jFUoCEZodVUm+fZ2lGCQqD/aNLw0zSY9GsQ7LdEhMgz5vMgATE0J5kxRwJFV8J88KeOIc0/a+bxnk2JbFlaxKNd6Swxq7WIRNZ0W2YfpabQDB2Q7jzwi9Plq1QNOGxcvSjvl0iX8990HIODkHUmPW4HA58OYnESJx2+YoO+nYh0jsGfl0v2+Go2ihkKYxWIzYXT0dBQnkVUd7BAuBdxNMl0gf6PB8pE+np36M3JvSsvT3NwkPH6YBw88Rqa0ToIMh/vbaT+ve5UwLAsrmxUNr3JZtuvao7jVw1aavXNsttMq27bINQy5hu597Z5Tvx+1sxNFUbwKlasG7hrReu150xQvvNFRqRJ1doov3j58D9+JuJv43KbhrgDVYBBtcFAGMbdkWSwKzdwBzwGej5YraOVSobFt1IEBAUO7LuytN393N1a5jG3bWOUySjLpZfHbKOq3QXny3YqdlSx9aIjG5KTXt7ZVVVqMLq3WxVepKtFEJ2QvbdueEgxSd6rEQT3IVnVLkh7wznm1XkZNJslhsNQd4nD3oBhTrq5ib2561xZA6esTpVZNk4G+t9ezNrELBfShIcFp+f3XrXJdr5qzl5osvDX01J2TTqRY57gS4kS8CzUcl2QhGBSD3H0kPXvpj/iOHhVGZLHI0lCSry7+dzZyS0K5Pp+jPdXHJ5IP03PBaRcMDKA5rY/G9LTn1UW9jpnJoEciqNEoCjR1gGgRRTQM6lNTwp5raav6Bgf3rLR5E49t019Q+dzgk8yTo2iUKYRUJmffYGHuLEa9JhObo9auGAZln930EmtrQ+vu9hILN8xMhsbkpBxvNistlWIRwmGpPnR300+CdOcQmbVZaWG5Yn6KQnv7IEOpYexCHRswJyebml62jWLb2Bsb5IsZFt8zQrFWIKqH6SdJaCXbTLzdCkdruIs3nw/jyhUUp01m5fOo8Tja0JAn9ggOXktVpZK3U+XZTVrX1jAvXBDWJftL0H/QirUai0nlMBxutitbcV0OCUJNpUQsNhwWcHWhAA4mqNLXwbPzf0G2kkHRpZq02h/n+ct/xB9OP8NwYphXF17m/u77+JUf/WVOnFrGymTEGkPThEyxuSmVuFgMdXBQBFJ3qOur/f2erYfdaKB1dDQrXqGQXA+/38PTKfE49uYm5twcvsOH0dJpmW8iEUn4i0WpNCYSIunhjDfUaqixmKdG79Lw321T07uJz20araVHLZFAOXhQqIe2LRo6sL2vHwpJBSccpv766+I5VKuJ+ejcnJSJZ2dRurpkUNR11J4efEeOCC6lXsecmsJ38qTcmM6KDcO4bcqTsPek9k4JI7ZSPj3dI8vCmp8n8Pjjwr5zJ0HTRB0c5MDovaSWX8Ct9yjBIFp/PwHK9EZ7UVCoWy3MHycpDWoB7/oWa3nsehB9ZIT6q68KpsSZKJVkEr23l/rrr6MNDqKPjKCoKubKiiSqTola7+u77nlq9YdSHJ8qc3FRZPa7u3epybbGW0FP3Tnp2IZB49w5GqdPNz+zj8lrG2BXUSj6YUHZohTSCI/F6YyO86eX/iubIRu1ERFcQrXKRm6JZ8vf4LNDHyA0vwamiTE7K4Bn2M5Kqdex63W0tjbBvTkGsm4lR/H5aFy+jHH58jZQtRqNiv5OubyrcqW42k+VCoquEwUOlaNgR7gYNfluRrBa2ywCCgWUUIhY1wB6JIzW3Y0SCmFcvrxt0WIbhphmrq1twxQp0aiXRNjVKpGcylMnP80zZ/4rmfyK9zvpdD+fuu+vEo+00cjOC3D24kWvrSEHoLB8YoivLnyNTbMgJAkgnerhyYNPciAU8n7T/c9rBznnx1WstopFYSo5Fh+WK6vxxhtN1le9LlTtrS1ZgLj3SHe3YLbeeMN5QVoy+03Qf5CKtZpMynXcyyfM7/cU3M3VVbmOioLW20vgvvuoOS3TxbhNNrvpVcGKUR/fmf8Os1uzWFjc230vuVqO5+afx1LgX93/q3R8I4sdicj1KpUEb6goaNUqgfe8R9ThW1ldAwMEHn3Uq4AqPt+2xQeqitbXJ/pIDhTCXFiQuaC3V4RT29ow5ucFn9XdjdlooPX3S9J58aJc61BIqmDBoND1XVXnbLa5aHuHlf3duJv43KaxE1+jBoMiSlivow8NCT7BcYdWolG0wUEZ+KpVYVrUagJkdsTr6uvraBMT+O+9V0CBwSBmpSIYBceVWG1vl8E5GkU5dEgeAKfSczskPVYuR+PcOczNTa+Ndy3n47czlEBAFIdbyuLW6ir+D3xAfIiqVQgGUTs6iIRCfOrx/5FnLz1DpropAEe/nxFfN33xPq5mr+JXWwZKXac3ObjNyDKqh6EmDBt3Re8CL61KxWPWaPfdJ6Jmy8tCn3V8rm7U1jJzOYzJSQElzs429UMc5Wj7gQduiO96K+ip7qRjFYtUv/GNm64ubQPsKgrzgQpPn/1jMpkFWSzU64yMP8RUcZ6EGvYEB90JPLO5zGKfwcFEQloom5ue99m2FTN4A7fqsIyAbaa1xuysgHOdtoC1uYm1vi7VooMHRfPFGfDNTEawGYWC6OM45pn6gQNgGAx399Ge7mdjdWaXrks6nGZATUFdMDd2C4DV+1i12lwkuZYymQz60BDG7KyXwCuqykBZ56cf/yJzxQWKtSJRf4SBYDep7kFJVMpl8ehzWyHOuSv3d/LVzLfZWJkShqSzn5nMIs/wDJ8Ppwmtb2HOzEgbEKlO4fPJdtxE3sHD2LUaOEwna3oas6urqU2kqqIVk0yKFEE4LPumaSjxODVXVDUYbGJRePv1Y7y2qmvy7Iauow8PYy0vyxiu695+mUtL2JZF8KMfhUqFijWPZg1Co4Gdz7NmbnlJD4BhGc7/Gzw/9zznHljlw8PD3nigtLXB5KRc6pUVzMVF/I88AvfeKxUav18qdsvLKI6wojt2KqEQ2uAgVi6H/777MBIJca2v12UsaWsTjNfFi1KJ6+kRIkUigdrWhhKPi1hno4F+771osRjG1asYCwvYs7PynfZ2aUM6VXE7m31Hlf29S/KO/dI7GP/6X/9r/tk/+2csLy9z9OhRfuu3fovHH3/83d6tm4o9ReMcbQ/LMPCdOIHvyBFhANTrmPPz1M6fF52OcBjb75cJzO1/mybm+fNoqRSKogjoub0dLRbDKhQwpqZEqdXxqNEHBsTY0Cnp30q8ldUZu1YTvQtHndiNW3E+fiviZsrio9H7+ELfwV3AyEwlw3p5nXKjTEgPUTEq9MX7+eDgE8xffQ1oCv0pIV38frJZ7B3bVxwGimIY+I8cgYkJmcj2Uaq3cjnqr7winmCbmyJv7+puVCqYc3NYW1tiDXCdeCvP/a1Wl1qZKUU/PH32jyVZsG3s9XX0oSE2K1kurZ3nZOcJ/KkUlmVJUuAwvUo+WxKCmRnBzRmGtJFaKeuOTk3rpGEsLlJ78UWsbBZtcJDGm28KMLq3V1SgXRCpo67rquZqBw5Qf+kl73htyxI/sOFh7K0t/A8+SCAa5VMPf44vP//v2Shf8XYj3T7Ap+79DJGMUK/tSkVwNE5F0DWqVAMBacXm880EzrIwFxfRurpQk0lpayYSqMkkASCRa9t1XxsOQ8jFGCrxuNfSWYoaZOZWtiWSAGga2VKGufISR3vGJJmxbfThYdGKaUko1XhcDGMvXPAwU15brFDAclrKajiMlhZSgJZMYo+NeW1YrbfXS3q0jo7tVXHefv0YLZ0m8NhjNM6cEZ0jR9BSCYclsQiFMF2/Nudc4AhmGlNThAdDGFevSmUwHqdkVLykB0BXm1O2YRn8/9n77zC57vO+G/6cNr3ubO8FWHSABEBSIEhKlKhCSiQlO26K1Sw7ceQSX7KTuLx5Hju2pTexnDeWFCuWnyR+nMRxU8wmJZZEqrCJBSSIvlhs77M7uzM7fU57//idc3a2oBIgQZn3dekSsWX2zJlzfuf7u+9vWSpn0E/Oi9dxwmi1ffvE9VQuQ7WK/uKLYqSWTnv3h9zYiNzU5G2KPD+hyUlhPri4KAjTbW0iXNcRA+gnT4oNl+OP5RLY3c6mnEyK7tz4ONWTJ71xqHbggAD4p0+LjbVDwPfdeitWJvOGh5r+0AGfv/qrv+JXfuVX+OM//mOOHj3Kn/zJn3D//fdz5swZuh1m+VuhtiLbSYEAsqYJLsdrr4mF3iUXqqrwoLBtMRtvbl6TvNeXI0GUVBWlpQXDMARpUNdFiKKTy2NlMtjV6ubd7CXUPPVAB4Qz7jq1wOtoa5qZzHrQ44Q4uuF7xvT0FScQX6+6mrb4VpLuqD/qedzc23svM4UZqnqVuVIamptokiM8OPAAiYB4OBl1Lf11x+FwB6RIBPUaUtetXA45FBJGbk7sCYoCoZD4vJy5vRQKibiLDZlD15v/da3dpfprbdJY8kAPkoSRjJGVy0QiIZY1g5WATVsgKt5TRqSbo6pEoin0V4eRwLPf1w4eRD9xwjsvciSC0tDgPTSMxUVhElcfs2Ca2MWi2FnH46LL2toquiWK4qmbNnYHJFkWZqQzM55LMpEIfa07+Zl7fonxuXMUakXRiVFTAvRYFnalIiTEzphQaW+n9sorFAMyMyGdglkiGmmgp30f/vl5z23cWlxEDgaFEq3u3tnyunajIMJhEX2ytOR1U/LNNXFdhMOi0+VaJjhct0I+A5F+D4iY09PCJmBwUPyMoqCPj4uOjvs5Op0Rpa3N8wSSmps3jW3XJYqXyygup2ULn6o3Yn1QGhuRjx5dtymyy2VPham0tnoEZxuEGso0UVpa6CgUSCXayKzMYpXLBFJrx9uf6GdmdQZwOZo2MX8UmBcd5nhcjAgrFZTeXkG4dgQQWBZqf7/4Lcenx10v7WoV/fRpb32V/H4hnPH5sDUN27aZ3tbAbCjOfMlHWS/T6k+xe9lP06q5ZrzqmCjWjh0T3UdnlKZ0d2OMjAig5/d7vlLW0hK1V19Fu+WWN9zZ/4cO+Pz7f//v+fSnP83P/uzPAvAf/sN/4O///u/5yle+wuc///k3+eiurtZ1FRzyspXNCgVPOIz51FPiB21b+Ip0dAhgEgoJ5v2GcvOGJEkSPIpqVQRuFotCTeGqvDQNW9cxR0cFqLgCNY+xuCgWXssSi6ppQiKBZBiec+fFsmGupDNklctiN+ccnxSJCIv2dNqb4Ztzc/j27n3TzRKvplxAtLdlL/lq/qJyWUCMHJPJy3rCXGl5HRLHW8VdoAGQJPxHjgj32GPHoKGBwDvfKZRrji2+Xa2CaeK7/fbrOj643MPpot93+CFYFoVwwZPbFloTDC2fp1I0oFolYMnM5KYJaSESwSRWrYat66TirXSUfCjJpHjIJpNI8Tj6sWMCZLe0CLPI5mavzW9Xq0ICvyEDz90N28UiciqFMjAgDOHGxkQnxpGAazt2rBvHuOXuoOsfCPFEC7vG57DLPigBCMmxbRjis9B17FIJde9eaj/4ATMJeHz6W2RWF8T70TRSU908fPCnaDshHL3lZBJt//4ryu9ynYmVtjYRKDo8LMZzlkUkIIjnUiSClcuJ13N8wOxikYjsjAwdPxlJktaO2flMJVeJ6n3QEtru3RiLi9ROnBBOwpEI5PNITkBm/bqhdnRg6zrGhQvX7R651tq4KTJdE0HEplOqEw1IDlHbWl0lvFzgoYEP8vjoN1hamSXua6Ij2oFf8fPOnnfyrZFvkgw2IMsyexp30x3uQG7OiRHpyopHNJYjEdHZj8W8v+uaMoKwWXA/cyubFfQBd1PpGBIqra2YuRyv7olzbnWIP3n2P/HqwnEAor4o7+t/L/9y989zSzQqus6OKMZMp4Xzufu3YjHPT8wLNXWy8aylJQG23mBn/x8q4FOr1Th27Bi//uu/vu7r73vf+3juuee2/J1qtUq1bge5usGM7M0uye8Xu8rxcUzHgt62beRUCt/Ro0Lt5QKZYhGzWEQdHNxkzy+lUqg7dgiXWSdvRj9/HmtlRZBmX3tNpCHLstjVNTXhP3RImPVdRs1j5XIYk5NiZHbunOg0qar4mz09wqvDcR62s9l1bc0rSQ025ueFN4brUGpZgiyXTntdLbtQEHyUWo3A0aM3jXfQ1dTFjP7culJPmCst96Equ7t0BygoHR2oO3aIa6O5GSsaFfyKkRGv2yI5LuLa4cNX1WW6kroWgGdls5hLS8KbpFAgEhXKGiMZY2j5POVqEUlVOTd9grt3v5e0vsK5yVe5deAoWmsryarMh1J3Ehqdx6pUQFXRenvBtsXI1xlVgNMNLRaF/5CTe1YvFbaKReHm7biYy4mE4PwUCigDA0It5jzwTSeOZB1wcsre8EDY1AV2YiAk2wYXrIVCUC5TDMg8PvcUmXzak1bbhkEmPc4TM0/y8QMfImL7xEjbGRtdrLzOYLmMHA6LvKZUSgAmAFWlPx6kOTDHwplja+N1p1KJdjrM6Jobt8MtMefnBY9kbg4b0PbuRW5pEf49liU60ouLSKYpPhPXYXh8HKtaFed/ft4j5LvZVN494q6BDsDzHTz4ugH6aiHDePoCheoqkUCM3qZtxCKXPn9wEeqCc2yebYhzD3bMl/lYxweZ7i2x0hbn/u0P8P3Jp/lvr/05hZp4TwfbD/LJgz9DsGwK4Ov47kiKghyPo1zk/oHNHl4uL0xubhZf1zR8d96Jlcsxuy3F8wvP89en/5rTi6e5p/uddMY6MCyDkC/Mo+nv0uZvpHVgAGN2VhjjujE+sCZt9/5YXXq9rouYI8N4m9z8emppaQnTNGnZsBC3tLQw76gMNtbnP/95fud3fueNOLzL1lbjJNswhDrESf6VnaRuO59HX1gQvhGOkkhubBTgR1VFVyWREDN1RREou1oVqgNNwyyVMIaGUHfupPrccwL0gLj5DAN7cZHaq6/iv/fetRuo3u7fVV8sLWFMTGCurGBNTq6N12RZENcqFcxMRhgtlkr4brttLUZgqwBQWNcZMrNZKk89henkgWGaqDt3Ivt8WKoqkuAdHyMMQ+THDA6idnbe6I/rhpeZzYqdYqUiOnrNzevb+nVKomtZ0N2HqpurJCeTKA0NGNPT4jxOTCDF42i33oo5M4PlKG1cs0wpFBJk1Q08otdrcnilAM/rFJbL5MqrjAeyTA5aVKrQGAxxx90/yVMT36G8XBTt+1IJA5hYHuNDux5mObWXnqbtdBlhUoTJVDIc3xYgEmqlO9qFurACi4uii2GayC4nA3GNmgsL6MPDQqHkXsOKgrW4iNrbi2HbwjzS8UvR9u3DTKfRXeWf01XS9u5dNzbyPp8tTCbru8CWM+L1OqxO1IccizHjK5PJOH/HAWSSE1mwnE8zE7XZ17HrijYIlsP/Mp3duW1ZQp00PY3S2Ijv8GGS7e08HP1x/q5QID1yyiPnpxLtPNj7fmKS8A3CskS0zvy8SLl3RnN2qUTtxRfx3X23cCIulZDicbLTo4zFdBbUAD5ZpU1J0l5QCJw+izo4KMZE4N3/7rrhO3JEXIOVihgf+v3C48rJObuWGps/xyMv/DmZlbUA5lSynQ/f8XH6Wnde8nfrQauVy2EVi6LTEY2i9vWJdbOOfxXOFNgBaE2dnAtWWGnay//9rt+mUMsT0sJky1n+/MX/hztje/j5vvcSXk0JgBcOCyNFx7voSpz0JU1DbmoSPNGhIfE60Sh2rcbp5lYs2+T04mn+0Z4f57mp5/ju5HfRZI27u+4m7o/zvcoZWpcX2d29m4YFvyCol0pIDQ3ifdWPxp3Rpwu2JHhTJO0/VMDHrY1jHne8s1X9xm/8Bp/97Ge9f6+urtLV1XVDj2+r2jROUlW0/fsxxsY8q3LbNJGcXY05NweVitghuS/ieu84+Txqb68ATZWKpyaSnJGYOT8vukK1mpjF1p8fJ1/HymTAbY/W2/275fOJ1zAMZBDtUufYPXt0JzVedvJwai+9RPD++4H1ZNSNZZfLmNks+muvid2wQ96jUsEuFj2PD9NRMLgLqtzYKMaBb3Hgo09NeeG0bsnNzfjvvhutq+u6jJbWudVaFurevRgXLojZfySC3NoquAMNDYIw39YmiI2lEvrLL2NOT4sojWxWjF7TaeHK+8or67hA12JyeCmAl6/mGV8YIrcwRVTy4/eFeS53ij8//d8Zy40DEA3EOdpzF/cdfJhzS+coF7MAdHTs5J1td3Lm2DcxLYMDe9sIB4L8zeI3mJ06y6rPQg9odITb+InOD9D94hmhWAmFUHbvFjtr28Y2DCFLLpeFo3Zzs/isTFMALMf7R9m1C8UBN+bMjLinbBtJUYQxqWM06P6+y1uTVFXEjGxRkt+PbdsYY2MiUNhVOWqakNenUhSkOh6USzZ2/6eqlHwCwF2Jp4pdLnugB9Y4ZYAgTDtrQm/jAJ869GnGWs9Q1EtElACdUoJQFZGEPjsrZNoOB0jdtk24LjvqLbW7m9rTT3tk2fn93fxF8SmeHf4BpdwSSBLtqV4e3PEgt3U30V1PODcMcYyqKrrBDml/3f3T2gqHD6MURcr61TxwVwuZTaAHILMyyyMv/Dmffs+vXrbzIycSIu5hdBTZ6YrYto1+9ixqb6/ILXPpBiAAdbVKpbbA/zj+n8kYqximjiqrhJQASq7AM8sZ3v+Ou9kzsYLS3e11Jl1C+pUIMKRwGGtxUXAI3emH051fKWuUjQrv6DzCc1PPMZodRZM1Prr3ozw9+TTfm/weexp30x5qpS3ZyS8d+gw7enow02nx/HE2yFIigV0qCZ85x9hSCoVECHZb2xV9BtezfqiAT2NjI4qibOrupNPpTV0gt/x+P/43eSyylTmc0ttL7eWXvR2W5MxP7ZUV9KEh1J6eNYdNJyEZwxBhgdu3I8kySiSC9u53b7rwzcXFta5LqbSlS6fn5+KMxjaBHhCgqVr15LBeOYF1XrmeDaEQlps83tZ2WUKbXSgIhRECzNquRDUYxBoeRtu5E7Peir1SETtn9a13WdfznGzLQj97dl2yNoCVTlN9+mnkBx64aKjq1dS60UmlgmQYQna9tCTCHzs7hRnmSy8JfyJHmq309OC/5x6hRioWhRz+Bz9ASqWEM3A6LXyiYjEBjK7R5FCORDb9/Hh2nEdPfY3F6WHQdWp+hVC8kaHlYcYzI9iyhKQo5MtZnp14BgOLX37vb3J+9hSBQAS7VGRmYRg76EcqW2i+AI+c+GsmAmWGtQylXAY7YzBsvspUYYZ/dcfH6bqwjF0sYoyOeoRju1IRbsWBAOb0NNr+/ULJ44Aft3Oqbd8udsCFAoabb+S0+u1KRbgY12rCTiIaxRgbWxMVjI1hzc9vEgRYhQLm7KwAPW4eFICuY87OIvf1EY05YaQbNnxSKITk9xO2VGqvveZ93zYMoSbbYvTlZWZtVc765Fa8sYPdmQJIjnGjokJI3Lv+d7xDKMF0HX1iAmt21iNZy21tYhy4sgKRCMWmGH839yTPjH+fcrXgjefn8rM8Mfx1jJa7SDV3E1zYcCyOV0z1Bz9YPz6UJKyZGaq6jv/uu7Hn569KbDGevrAJ9LiVWZllPH2B/ZcBPlahQO3YMWEh4K6lzsjYGB1F7etDaWwUUSKBAIqzcZ3v1dFLBaK6CTUDMEAVuV7lYpEFCuxx3MQ3dnSuRIBhFwVBXgJsFyQ7diHJQJJ0dZnOeAffnfwuAHd33c1zU89h2RZ7m/cS0SIEAxFWKzm+fOwr/N4dv0n8hVOYS0uC0B8IoO7ejZVOC/l+LidGa42N150feKX11ntCXKJ8Ph+HDh3iW9/6Fh/5yEe8r3/rW9/i4YcffhOP7NK1lXxX0jSxA2xo8MhmkiQJlv3KCtK2bdi1GnI0iv/IEeRIRCQZu74Yuu6h+40XvqRpa5bqPp/4ecdW3e32oKri5gyHhdvrRodUhHkePt+aL8Wlyk08lmUxsmKzV9FWv1MPYiRZhlDIA2ab8mfcJGSXYPcmuYJerjaOgtyRkdv9MpeWMBcXUQcGMEZG1oFKK53GXFi4LsAH1kYnZjZL7ZVXoFwWDrQNDdiyjHHqlOhyOF08d7dmjo3hO3JEKMGWlgQfqLV1nbLJWl0VLrWKcl08VPLVPI+e+BsWR04JaW3Qx4JkkjT8PD3zHC2JdhZXpsWD2LZZzS8xkxlntbPA8vQFAS5dDp9p0tjaRyCeYoE8Q0sjVFQb/H6oCo7KyPxZnmsd4sG2HYTSuXW8OZfvI6kqSiIhOmWDg0h79ojzFI+jtLaixGJio1Eseqnt3uepaaJLExXqMmN0VPBfAgFBEHauff38eZSBAQGEXc8bRVnLU3LvB9MEXcc4eZLe995DY/s2MosT6zYeSmsrqXAT7auCH2SMjKyTuZsTE/iPHhWRKO57dUjLG3mDILoS68Ymjju1PjQkXKtdTlgdyNBHRz3+k7veKK2tyD4ftLYipVLMkmZkaoJyrQiW6angbMNgJjtFocNkqppm0OdbvyFznKE3gh43XsFeWPC6GhcTW2xVheqluZ+Fav6S3wexzq8DPc77t7JZpFhMeOJ0dKC5Hje5HNL27fgUZ22oHxk5ykFJ0/BF42i7OtYpta6mbCfOQorFkEwTKZXyfHr2BFoYXh0jGWjwfr470U2mnGEyN8lsfoaAIuJOgoqfW9sPM1Sa4h63W1upeOntSne3MPt0xBEEAq8r6ub11A8V8AH47Gc/y8c+9jEOHz7MkSNH+OpXv8rk5CQ///M//2Yf2kXLrlZRb7lFIG5nFwh4s1DJ7/cWS0mWBSHMSdpWOzsFv2ZlZZMb5sVuADmRgIUFsZiZJnJvL0WzzEzYoGCViagBOio+IkqjsDKXZUEcrQvFlBIJtN27xc5VVbFkWTws64Mz3YiNQMALhFTa27GB2vnzoi2bSq1z8vRePxhEikaRw2EsJ2UexIOGalW8BzeLpu6Y1L4+7HKZ6vDwm2JueKlyAU/1pZdEbIDPJ4L8cjnhYeKCAkcJZ0xOIre2ip1xfV1nLxK3syeFQqKTqGkQiWCn02uxBJGIAMCrq9irq1irq8IVfGVFKDi2kg87I1cXJLxeD5XxzAiLk0PYtRr5qI+h3Ai2FcAfjrFYTNMWacWUQbFsj1Rp1qootkRDuIml3AXx9VqNVEMnDzbexcL0GPmgLHhAckAsyCFh6YCikLXFfTHoAAOvM9LRIUApwmZCaWwUEmDLwjZNfC0tUK1SO3tW8LPa25FGRkSX1LY97p0UDGKVSiiGIa6Jug2EubQkfs/vXxtpOR0ju1xGGxxEP39erA0u+HGS0sNli4/c87M8du5RMrl5j1vR4E/y4LYPEiko1E6fFuDJDZuUJDHGPHECuU4gIKmql/m2DvxFIsIpfGOHVVU9viF+vxjx1I1Y1pHXFQV1YABzelqMrf1+mJggvz1IzXak1YbDUXQ70opCTZPIZ+awVjUxEqxWvREafv9mpVy9k3Ud8LDL5SvykIn4Y5f5fvSS3wenu76xa+4cm53Lga6v4yYauo49O0tbPEZ7spvZ1ZlNv9cWbqWNqFgTN4DQKy3JDVNVVRTH1NJwIpJaxsc58v7bmIx18jdn/pr54gJNoSYmc5MU9SJhLUy+mifqj7JYSPPq7DFyFeEHpjny+a0ELNg2miO5fzPqhw74/MRP/ASZTIZ/82/+DXNzc+zdu5dvfOMb9NTJ62668vmoPfccdl3mj+9d7xJz/8VFz83WS5aWJORwGG1wUCwqzc1XlS/j7sokScJYXmbhll4eef7PWBq74DHyG9u38ZG7fob+YBAiEbRdu8Quw+3CqCo4DrNab6/oWgUCGENDXqSCyxORfT7006fFaCqXo3bsmFCfuDbnTU2CpLgRuAWDmPE4SmfnWgKzqz5ydsva3r1rZOtKRTwsuruFKVephH7hAtrOnW+a87SXhl0qYSwuYpw65e1GbVVF6ewUZPXVVaT+fvHgdVU4uRxyV1edfZlT13mx0KemqL3wgniQOztjZft21K4u7wEihUW8gwe6HL6I5POhDw2h7dsnOonBoHgwO8Zs68JRX+dx5/MZkYEV0BhaPkOpkicaDOFTxOsalkHJKBNRQ0iWuJZUWaXRDvGevo8w1TxLvrhMxFDoKPsInpujMJikJokOkeT3ix2qEyeALBOwVUphH3JTxPNaUTs6AERArdu9dO4Jd0xh1WrCaiEQQH/2WSFZ9vm8cya1tGAtLGDNzaH09wt/k2IRgsE1IGFZSA0N1F5+WZx75/6XW1u9EFWlrW0tssEZoUnBIHI0Sme6zMdbPsBUi8j8igTj9HXtI1yxMEtzQhRRD0b9fgHgHE8dt4MqJ5NCVOCsoV72GGxS5FyJ9UU9ed1WFIypKcHBdGw67GyWiBHGp4vujRQKrYWmOmN0v6QJCb0sksjtbFY4CwcCGOfPo+3ciX7u3OausOuhVCftvhIPmd7mbaSS7VuOu1LJdnqbt132NdZ1bK7g+25HvFMP8dDOh3ns/OPMLo1576c90cWDfR+gUw8hBX3XvMGTEwlh4aCqYtxY1xWVAwFuPbNK6tB+fmrvRxnPjdOb6MXGJqD4yVfz+FU/pinoDourc1imSe34ca/D93oz0G5E/dABH4DPfOYzfOYzn3mzD8OrS/nUGIuLVJ9+GnvDrt6cn8d2ZJi2riPH4+IbztdUB/TAlc1xN5acSKAFgxTnJnj02f/IShDU7du92W5Wlnjs5Nf4VLyVeKJFdKPcBULXvbTfYiLIjLTIqjFOtLWBzv53EykaImiwVMI8fx59eBilvR1jZUWo0CYmxAPfCdqUfD7UnTu9UUr9TaHt2CHeo8/nKSHw+UQ69NCQWICdHa9drQpyc7GIfuqUMDlsa8O2LBHhEIuJHXexKOT20ajIQbtBN6AbRYDfj/7qq8K2fnbW27VjGAI8WpbgJxWLKI4RoRQOe7P3dZ9bc/N1dTg1s1lx/Tkp2C5XzM7nRQp8Zyfm5KRQ5bmybfC6FXapJMaymYx4OAUCYpzgAF93hHI9PFQiaohS1M+8mUVtSNGktBFQ/JSqBbaltqNIMpZtYUg2GhANxumNdbNDTxIpVNg+X8MugL2yxgPrKKp0xjq5EBA7Utu2vc+nPdGFnV0hFK6hNHeyMfOsXlpuO+RaKSAy1bBtLNvGePVVIR4wTeF9Mz0t/h2LCTNDTUN17gVXeYab6ZVKYY6MYM3NecaigMgXMwzkVArZ71+XVSWFw6h9fcJxt62NRDZLfMN9pY+PCyLwxg6criMnkxhTU8Imw+mwyMkk2sGDQnbuEJHdLKb6zvLVBNm65HVjZgZKJWxZRnK8vgA68gp9vhbGw7OU9JJzL5iARHtDD+GiQXdbN4olrj/bcXo2JycFiKxUUJz4iPprVnHBfF1diYdMLJLiw3d8fEtV10fu+PiVS9oTifVdcfcYHICw6eeDQSLlCnfEdmN2V8h3VyjXigTUIPFAjHfE9hC1/Wg7Bq95HfMieC5cEDlvbjmBqkpzM90/OMdHB+7jS7NfxTCqNAUbGcmOEFSDJANJ8gXRGe5vGMCPsmmM+Hoy0G5E/VACn5up1rX5ZBliMaTpaeF/EQwKom467Rl7uQ86c3gY7bbb1hw/Xc+VZBLf4cPXjdw6ZWZY0XOeFyjgERkzlJkszLC/pXuTizSSxEyDzBMr32VpZFq4NBsGTe3beMC/n2415WXUqD09SOEwtePHhSzdba1blpB2rqwggUgU3lAbdwvIMqbTHTLHx8VDAbxQUO3AAZHVI8uihT43R+3YMdTt20VnpVAQydNOYKK2YwdqV9d1H4eZS0tUn31WcF927cKcnBQPI+dYPfDj/ruOEC4HAijd3WIRr7f0b27Gf889143fA0LVY6XTYlft94uHoaqKkc3qKmp3t/BVcZO6QYwy4nEv3NCYmEAOBNBHR/HfeSc1wF5Y8Mz7rlfIramqDOVGObbwCuWaeAC3RFu5o/sIP7nnJ3h+8jmGOYeNUHW9s+duPt3/4yQvLEMqJdSF8Timk3kHEJzL8JP3/whTlQUuTBwXQNrnoy3Sxnva76K8tECjGudsYJVSUCGWG6YnLowl10nLczlvc2I7KhZZksSGxrnW9TNnUDo7RTK2qqJ0dGDMzmKMjnrnyZyZ8cC95PcLCbjLZ3OrUhGg3unAyM3Nojvj84kA3IMH18ZKWz1sdH1zQjqgtLWJ3DdJEtlmTmK6VSigv/IKvsOH13G9Nu7arzZqRI5ERNZZc7PXRbLSaSxdJ5jO8uFt76AWj/Ds/AsU86IL0Z7s5sFtH+R2uYfwihjLKf394py5GzOHLqC0tAhuoiSJkX4qhXbgwDpH+60sAy5Wfa07+fR7ftXx8ckT8UfpbV7v43MpKweloQHfgQPCM20DbcB3yy3C36mu6sUHXSX4YOMRpoxlilKNWKqN7mCbdx2+3s2bnEigNDYKqoAT3yL5fIKDqGnY+Tw7hy1+b/DnORYr8GN7/hHfG/8+I5lh8qUsNjb9DQO8t/c9+GtOiO4VjhHfjHob+NzAWudTI8tIiQTVF18Ui6HDf1Ha2/G/+91Un3pqkxpJf+01gg8+6NmKvx7PlotVwRAPEJ/qY1vPQWqaRKFWIOaLouoWZVPsCjcCkIJm8cSFr7FiFdcUH5LE0vI0T2h5Pt75IQIXLogWdDyO2tEhugKStGZrD8LZ1XHOvVht3C3IoRD68DC+w4fF79Vq4kGRSFD91rfEzrW9XTzUFxfF3Hp42LOJl20bKRrFLhTE52Pb+ILB69b5satVofBxF9h6C34X9DlGXlahgBSPC85H3eevxOMoBw4gd3SgdneLMURLy3UFPYBnNmeXy4LD44yz7EIBOSoWVdnJ63Hfg+w493qqvjofpepzzwkjur17BRhtahLA8nVes/PZGb783L9nf2o3meoKZxfPgG2zkJ9jNjfDx3Z/lH2x7fzk7h9HkmTatCQ78kGSZxeFJ4nLYVleFiGvui7EAfE4/QU/v37gl3i29SVWiksEZB92uUyltMpdt32Evx15ipX5gvf+G5u6eXjvj9Kb6PWuTdvhYwBr3Tr3nDkAAtPEnJwU9hORiCB++3xeBpa6bRtWPr92vTjdUAKB9d0Z2/ZyntSeHjF6sywvc+tynko4PKSN3Qc5GsWcmEBuahL3aZ2FhbW4iNzYiKSqF1VCXUvUiOcl5ZDEpUBAnL9ajY5lk88c+jHu334/c5kJVGRaidI+VyI4OQX9/WvCivr1wxmzKi0tKO9/vzh3fj+2aQpStdMhlhoaBDF9bs4zhJRjMRTHUmCrikVSF1VvXW7MJ/n9aH194hBLpbVg0VDoonyX+nU3oesktR03bEzkjkg3lm0YogMZCJAcX+JgbxOPTpxlT7Cb23cfpGbr+NAo5jMsLU0x2NEMjsnKGx1FcaX1NvC5gbXOpyYWWwM94I0FzHQaq1RCu+029GefXf8Czi7bJYndiIpGU/gCIXZtewf/+dX/wpmFU973drft57c6/m/v394iX60yOXOcTGZqjcDs+lKUSqwkfEwpeXZ1d+OJYP1+8T/bFjuxeqm2JF2VZbmcSODbv39N/l2roY+PIy0vew8IOR5HdxRRciSCOT4uHiCmibW6ilK3O8cZRV6vnYmVza65xoJn/GgVi0gtLV6GDYA5O4u2fz/W8jJy3Tjj9eSaXVW5RHrbxs6LhG/icfHQDQSQolERUGrbArjCmuLP8YySk0lsSRIAzrIwxsbEblFR8F2leeHF6szCaYYXzjLKEAda93Co7SAVvYImKyyuzjNfmGfozDMkLT8/HbmLiFVBjvkgFqO8rZspY4lVAkRqQTrlCKHlogCXfX1Qq9FHgMbQIaYCKxSNIuFkmKZYC38z+gSLk0OCdOyA9fTCAo/WdH7m6C94kSKbrl/bFkRbt0vmerQ4AEzSNAiH0V95RYgMnPPvhoZKPsHZcKMINoEGJ4LiUmD4Yg9ibe9e7GJR+OiMj68FToLwwmpoWItAqCfjGga2rl9UCXUtUSMbHY3lQEDYIjjrZGh6kT2qyh61W+SazZ8Tv+jzCcVpY+MmYYR3fvz+dWunXa1ipVLew9haXsYYH0cfHha8FllGjsdRBwao7OhjMj99WYdmj8NXLIrOaF3yOmwe88mJBL7du6+ak/lGdE0u5i7t8tekcBglHKYxV+UXDv08Xzr2x5yefEVwpsplBlp38cuHf4HGZd3rVL/RURRXWm8DnxtY69CuYWzi8bgEUXtxEXn//k2/L3d0iN3XDaze1AC37L2PP37hy+tAD5LE8MoIf/riH7O9YRutCUHodEd3q9bkmmuqLCM3NIjICCe5tzRgg66i3X672EUoighQzeXWu9Q6C/zVPuDrFwO7WhWO1e7xwJpsWNPWFsb60VLd6MB2FvTrVe5Irv7fcnMz+qlTYhR0+vQa+HGSugPvfreXofZGkv+UlpY18z23k+CU5KqRnPOjJJObgmfleBy5oQFzZkaE3G6o6/UeshXx8DZskzMzx6kqNplyBl2vgm3z7oH3ktRVHr7lx4gXFJSmJpSmJibJ8djp/0VmdV6k2lsWDXKYB/c8QFc1KKwhAgHUtjaixSK7qgkgATqcM/Okx04L0FKfLVepkD5/nPHBYfZ1HhTnoe6hYRuG4Ow0NiK1t4v73smtAsDvR0okhNw/HhdqnHAYuaUFymWUjg7PS8daXha5eZOT67OW2tpQBwcvCnouxbcxpqdFDtPcHEpbG2pvryARJxLIuZznqrtJgeSMuS42wriWqJGLhTGrvb1CtFEoiJFqJCLEEM5YDyeAU3K5UqYpFISahlUqYa+sbPp7kqMwMzMZz7jRzNXZFFgWVrHIVLDK49/8d2SqK57KbiuH5noag7myIpzOo1ExwhwdFX/T8bGqH/PdbHwXt7b6LADw+0XX2VUWqyp70jV+b8+vMHRrlpxRIE6QHaRoGF/F1kzx+Tgd45uxrhj4TE9P0/kWd8N9o2sd2t1KxihJwtMmHN5MYu3oIHDvvaivE/jMZ2c4s3CabGWFRDDJ7uY9HogBkQ+laX6GVy6I43VGMKqi0ehPMD4/xJmF07QmOoRR3dQUtiQRCcTWdrS6Ltyx43HIZrE1jbAhC8WX4yRrTEygNDSsJWGDcG/t6cF3BSGJlyrJ70ft6sLWNNS+PiG19vu9NGmc9Gfv77qxAy5ZV5av685E0jRhSeCMf8zxcc/grvrcc2gHDyLv2ydMvBoaUDs63jTVmZJI4L/77q1dou+5B3WDmZ3S1LRut4rfT/X73990/cL1DYVMBJJiPOoYPPosixY1RjUMpgTdiR5ub+ogfGYG2tpQmpooJUI8fvyvWK45HTjDAEkiE7F5fOpbfKLvR4nE2kToaCKBpCjrFv1CVYydJKdTWF92pUI+uwida7t+ubUVc3RUKAyXllBCIXyHDqErCpYbUumMt9Vt26i+8AKSLGMBWlsbEkJgUP+w8Mj9fr94QJsmUjyO75ZbLumBcim+jTkxgf+uu5B9PsyVFQF2ZRlZ01AaGwUvZqPCKJFYc2Rn6xGGHIngu+02aq+8Iv62S2x3VFwXu8a3Uv1I4TD6mTPCqd1xa1c6Oz1lqZxMIkUimEtL1H7wgzWun6KgdHfjP3p0099zgYq5uCgI4tUqtq6j3Xqr8MwJhyk1Rnl86K/JlDPrNk0bHZo3xe0YhthAzc0Jbls8jjk1ha1pSPG4uEZeZ5TLG1EXU2C5ZGUPnPp8NJsabc23Y+s6K6NnmbbmGAtWiCohOrVGkj09N6WPGlwF8Nm7dy9f+tKX+NjHPnYjj+eHqta1Dh2Ld69cwzGAYhE5mST4Iz8iOBeBgOBGvE7Q8+rUS/zR019gND0EgClLdDUN8E9v/wwt0Va64l1E/VHKlQKtvhRVDEzbRJEU/Kgoprjps9Usxvw8xtgYtVdewV5ZobWrhXipyootuCGSrosWeTxOKpCkb8cdBBvb11QcHR3oliXGJo5bK34/qgOMXm/JiQS+YBAzEhE3KE522eoqVq0m/HDm58VC5rjA2uUyUiwmuD/X0e1ZTiREl8u10TcMjHPnhBIvGBRjIIfUeTMsfFpXF/IDDwgircOHuNgIZavdqu/2269bcOrFanfjLgZS2xmZO+11SuWqTrAKA537uFXpJpw9LY5RVZETCSayw2Ty6bW4BTccc2aGdGmYMbuPwQUbJZXyeBj1i340J8YlWxGBAcKyf714QZJEZyISESPhYhF8PnxHjnicIsnvh3AYa2JCuDo7mx4rl0OSJKTt29f9jctJgS/2ML0k38aysKtVfIcPb3Z1b29fH/AJa55d9ZlPW2wUrGwWc3oaualJSOAdzyOltxf1MgB4q+tKGxxcO7eWhb20tM7qojY2hv7qq4KX5ozRkSSspSX0V19FaWxcl+tW/1ouUFdbWtDPnRO+TGNjTOg+FsfPiPenqgLwOSCv3qF5U9yOolBuijMTiVCwysRao7TRQnBmUXj0yDKVJ5+8pMz/ZqktTW8vEn8BMHr+JR4rPEumsCZcSUWaeWgxSH8yeVOCnyte7T/3uc/xC7/wCzzyyCN89atfJXUdHlY/7LWudaiqa21vRRHcCneu3dGB3Nj4uoFOfc1nZ9aBnqpis1TJMD0xR66c5ROHP823x77NQzseIhFIoMgKIUsCxS+OzzBAEhdxwh/HzGTE7ujgQcHdqFb5cLCfx0a+TmZl1ssVamof4OEdD5NMrPdNcoHJjfRykPx+VMcXyMxksJqahDNtqYTa2YnhjCDkZNIDPdrgIFI4jDEycs0GYFsdh/u5o6qe/5BUq6Hu3LnOFfdmKcUxmbuWUltb4c47RaegXIZQ6Lpfz02Gj19+xy/zR8//B0ZmBcBBlhlo280vH/4lUukCJsJUTxkYQPL7KegFj9AOeOGY7jivaFWwq8I6ovrMM0j33bduXNcVbKUh0sTy6gIbKxVrpTvULkInCwUxvgoERLxMpYLS1+fZJhinTgnSsuO/ZRWLqN3dgmitqkgOf8LW9S1HSBcbjVyKTHslfJutXrc+I810NwqOZ1e9z9bGEcZFA4dLJcyxMZH1VixusvS4lNXHpUCfG95rLS15cT5rf9TGXFxcN15aB1Scn5ebmkSmWiyGlc9jpdPk40HsYgFbkoUfkyQJtZ4DflyHZi/yxxkDjw+m+Mvh7zGdncQn+4hPnaKpYvPg/nfTuSpjS5IXv+PWtUa5vFm11fWSXZjksaHHBOhxyzTJrMzw2NBjfKq5m0RL9xt8pJevKwY+n/nMZ7j//vv59Kc/zZ49e/jqV7/KQw89dCOP7Yei6m9e+V3vovaDHwgSXB3ouR4jrY11ZuH0uk7PUiWDYYqb9Uz6FFWjwnJ5mUde+u88mLqbXq2Z0fmz3gIuqSrYQqK4Q2vHHJtCCoWwl5fFg8Pvpz1j8Y99tzN3a5iiUSKihekbOEQ8sXXo3MYbx65Wrygk8WpLcjpJVigkPHyqVeGme/AgtmVRCqlM6ovC1M3K01GsEana15Xg/HpNuy71QLjZ6nKBqtejbF1nd1rmc3f+a85VpsiWsyT8MQZpIjk0h9TTI7xIEARZgIgWWT+Cs6w1DpMsE4k0oHYEvX8bjk+NtbCA5PMRbmvjoYH7eezCN1jOr723VKyVh3Y9TDQYR8+OCWfyuTmhzqpWQVHEBsHvx5ycFA880xReSKEQ9uoqxtQU2uDgphH4lXLNLueZ47vrrqvm23jfdzLSlIaGS6Z713ebUBTRtdrY2XaOSXcUnkgSBAKiuxUOY5dKno8Vtr2J1H8x0OeKGi5atr2u61V/XqVAAIpFAbzyeZTdu0VuWbVKRHYk5bZQvtkrK+tAXqSOzG5XKpjZLNN7O/h3L35BAHKnOxiKN7KjYTtPpJ/mU4c+jeRYGZjT0+sjaK5DlMu11PUau00WZtaDnrrKFNJMFmbe2sAHoK+vj6eeeoovf/nL/OiP/ii7du1C3TAieOWVV67rAf4wlHvzKi0ta7lX13GktVW5ZFCAKoYHetwq1ApYpRIL58+z2t/OL+37Ob6s/Rlj+UksZ2fW37abX+z/KNFnXkW97TYqG9ylpVSKWF8foePTQlq+soJ8YRI70nDZh/RWNubXQ8m0ETBo/f3eTtOuVpksz/Poyf/FUnpCZNPIMqlQige3P0hPpcJlvFWvqq6VxLjp3EgSxWSI2YTEilXCtE0ivgghLUR3vNtTFr0Z5RogrstGgusfqOrIwVOzq9xphDHn82DkgLoQ22JxXTeiJ9FDKtLMokt6r4s8aOrfS5fWBLqITbCyWTGKioloAnN+HiyL3s5BPl5RmJZXKVoVwkqQLq2JZN8+YT5p21hzc5hzc56iUGlrE6PN3l4RQxEKib/rGENKiYSXs2SVSmuO5E6sxJU8lC7nmWPncp478rWOIC8F3jd2m1wPIKWzc228VKuJtaRQQGpoEDl7IOI3HHdgKRAAn88bpV1pfpakaVuCLHHgsjA0tCz0sTEh8a8bzUmqKlSdkiScshXFs3XoyMukkp1kVmYc1aLwPLIti8ZUJz0NfRizs1jlMla1SqmzmWfmfiBAT91nWK4WGMqOEGw9wMTiCNvzIkBVTqWwMhlkVzJvmoLD5Fw717rZsatVzGwWuyC6nJLPJ/LitniNK3HXvtJy7VAuVkWzfMnvv1l11cSGiYkJvva1r9HQ0MDDDz+8Cfi8XZcutakJbrBSCwQZ1C3TXuMo2A4/IqKGmXfIknnV5JaTaX7vrt9iaHWEbHmZhBplezVG4sUJ5FhMEDEti3rhqJ3JYPr9QoLqzMQvZ1qVr+aZzIyRL64wH14ir+Zp8MfY7euibaFyxaGBW9WlwJTS0kJ2YZJHX/k7ltITQonkmOwtMM7fzc7yicEfp0FVvUiCN6M2jQwkiemoxePDf8uYkeZ8dZaKVaU90s57+t/Dd8a/w4cGP0RvovdNOV7XAHGrup6BqvV8OUlVvRRrDEPwamCTk3DUH+Xh/T/G3+X/s3DbdUwjmwb28sHIYXzffQ7djd5IJNA6O4U/1C23iGNfWkJKJol3byPhRB9IoZDHzdJHR0UXp1Ra57Pj2Se0t+OmtBMIoAwMiCBO19cnFBL5VG4OXSyGVShQ/cEP1j5/x6ndd/Aganu79zeuxDNH6+/3xlbX6gO2UT1pZrNCvr2yIhSnmiZUmooivu+IF2xd9/L57GJRmIdKkiArO4nydqkkpPzZLPqZM8IbygE/l+u+yokErKwIp/Z6awxVRU4mkVtasPJ57Lk5jMlJwacKhbyOnxQICHdxVRW0Ayf4NTiX4cEd9/G4/S0yJed1JYnGaAsPH/oo/lPnqYyPg6Igx2LMqEVWCotrilHn5+1KhVKlTC6epWhVUFItAqzF48hNTQL8OR5KVqUCkiQiUNwMN0cVdSUbQcsRnRjj48IpvlYToaAtLWi7d68zaL1Sd+18Nc9EdoKCXiDii3imnRsrGk15Io5NpapEIg2bv34T1FWhlj/90z/lV3/1V7nvvvs4deoUTW/AA/zturba3bKH/uYdjKaHUCTRx7Adifee9gNoxYpYGKpVocDK52gqQuybrmX5EkQigkQai6EPDW3prGxls0J5UqthlUrCfXZ5GXN5edNudTw7zjeGv0HSH+crL36F1+Zexaf6SfoTDDZs5zeO/AsOpbmmkdPFOAZWPk/12DGUri4mqtMsG3mkVMoDPW5lcvNM6UuEn3sO+f7737SZu8dFcIiys0mZv5/7PvlEgJDRRG9F5UJujNnCLE+OPsk9PfeIWfotn7po5+dSY7PXPVJzHtoXresUqLpRaisFAiitrUiyLABFILDlKLG3cYCfueuXGJs6SRGdUI9BR17G/+Jr6/xf7GIRY3xc+Bi5ieEtLRgXLogAyIYGof5zScUOYdWLTKmvDaGhtiTh27GD2okTXpwHhoHS04O6cyfGuXNCwr13L7UXXxTdyVLJ45WYS0tY2Sz+d74T2e8XHSRZxnJ4N5LjpVUfcOrxZJyx1bWW132qVLBlWYgFlpZA17EqFSRFQensxK7VUNrbsfJ5jNlZ8VCvVsVxNTYKcLq6ij425qmEkCTvXNurq+senpcb+Ul+P1prK9LhwyLLbEnEkKhdXYLfl05jnDkjuHWxGJKmCd+isTFvjbCd79nO67lApO3kFB/rfw8zSUW4JPfuoDfRTXB8TmSYOXl2xtgYxaYOAqrTNXIDZCsVcLaIumwTshT048eFW3dnp4jTaGnBWF0Vn/vAALVjx0R30IkrccHE5TaCdrWKPjmJOTYm4j/c8Z9lCR6ULK8zaL1op9DnI9OV4vzk91nUV8Q5kWRGsqPolk5DsIGHdjy0aYPVE+uiqa2f9MS5NUNG5/ibunfQmxq45Of4ZtUVA58PfOADvPjii3z5y1/m4x//+I08prfrOlRrooN/fvev8UdPf4HhpfOosoZeK7On4xZ+ZvdPc+rpRyAWIhVupCMrFh/XCt9byN1dTJ3LsrdYOWGannTb8drQT51aJ/91W6jlZJjHhh4jFUzxlZf/E6/NvQq2TU2vsGKvcC59hs89+2/54h2/S881eOpsUlkgJMfm8jLm3BxaoUAutCxcSBVFhDHG49j5vPAKURSKZhlrufamzNy9Y3Yy0KR4nJPM819e+WvmS2lak13kqjmaIy08uP1DfOPMo8wsj2N1HWW5vMxEdoK9LXs3vd6lumC2YQiH6ULhqneZXrkGiBer68hLulbeVDzVxoFIg1Ad5XJUzz6D5SiAXJWfFIlgzc0JnpATb2BMTAg5eyyGlckIzkephDE1hdLbixwKIUWjm0cujuGbVSqJcUN39xroccvxdzHOn0e7/XbI5US3o1QSmXSWhaQoYmRTq2FOTmKMj4sHay6H4kiF3U6K5PeLjC+n43E9bAS8kUiphNzcjDE8LDZCkYgYX8XjyG1tmOk0SlubUIWdOiUevg7glRIJ1FRKdHS2bxcO5Y2N4n050Rlul8PWdS8650rsJdy8QTmZFCaMpok+PCzOfZ1XmL26in7uHEp7+7rrx65WUZqb0cfGULdvF+7u2SwoCqGlPIPlMOr2QWQrhVy20DOZNXAmy8jNzYRNGXspQ3uii5mFC2LtE+8AVJWOaAcd6RpKf78QT7heT6aJ0teH0tEheD5OtIbkeka5ilDHF+1iG0HLAZj1IdZr37QEyKkzaN3UKXTex9m+IF98/g8ZXrnAgp7FsHR2N+/lZ277J5xfGWa5vLxpg2Vls/jPj/DB5BEeLxQ9ro8ciZBq7ObDe37kTR3DX6quGPiYpsmJEyfe9vJ5C9WtXbfx/33g33Nm4TSL5UUMy0AuVTn19CPUjAqNwU4+1HmU4LELYrHWNLKHdjIcKbNiFkj64mzPB2mqKmvqDkURs/pyWUQbGAa2aWKVSpjz81jFIrLrjSPLXgt1/FAXy+VlQlqI1+brdtsO+MEX4+T0Mc7cMkG3cfXyzo07RNswhKnY3JzIaEokiPoQQYsuwFNVkRXU2Ii5vExYDoBkXHaMcCPK67xUq9iKwmJtmT8+8//Q3jHId2af5dtT36XozNMPth3ip3b/BE+88peUV5ex9BL5XBrDmBE8FUlCCoWQQqGLd8Fefhl8PpGdBmv8hCvYZdbXOgPEDXW9A1Xh2nlT9dESciolHrZuuG1dOKaXcO73Y6+uIiWTYjTjkFnltjbkUAg5EBAgOh4Xxn+VitfFsKpVpHgca2UFbdcu8bBzQY/TCZI0TYyAbFuEdBaLa/eYm5dmmuK/3Qd4oQCahjE2hrm0JDxzXnpJgB/Hk0rp7r4uNgL1IxG5tVWY8yGuHXN5WXStFhex8nm0W29FcmTkss8nFG3Ly6IrVamgnz8vRpL79olrrFYTGyNHyQZ46es2XJXxneT3o7a0QEsLtTNnMMfGtvw5e3VVjNbqrh9zYQF9aAi1q0ukwwcCSLa9FoMTjaI0NQnu2FZea9EoHTkdQ7J5d+c9PFmtMltacAC1xUDbHn6y9X3EVAtjfBxzbEyM2xzOk/9d7xJk59VVyAu1mKXrSNGoIOgbghd0qe6XrevYhrGlj5b4AXudQeu6e1qWUTo6WEr6+OIzf8DI9EmqET96VQDRM+lT/Jdjf8on9n2MMzPHWSoWGc+MsK/9lnUd9k5J5uPtDzBFVghGgnH6tx26ouDWN6uuGPh861vfupHH8XbdoGpNdNCa6MCYniaXXWCqNkPH4PsIywE6yn5iUgIjkcAuFDgVLfKls/+dkakTTufHpL9lF7/8jn/OjtVuz9fCrlREx0eWhZFYIiH4PtPTXhyFFAx63kXWygqrWbETyjty0HVOtoBli//O6qtiIW9ru6qRy8Ydol2pCNWH69WjKLRNF2jwJ8lU5jwvD8sxLmvu2013vAdF1T2+whuloqrvykjhMJgmQ/ocms/Hdye+y+jKCH51TWb9ytwrdEY72N62l4AaYHn0DMEOk+qJ58XD0eHAyK2tIgC2ritjVypidOEk1pvj48JlNR4XpEi47C6zvi5ngHjds8VeZ0mahhwOY0ejXsq5F7/h9yM1iM6Q5JBUJZ/PczJW+/vFA2x5GbmpSQTQbt+OunMnpgNIqNWwFhZEpEo+j5XLoQQCXrq6e5164Nq2PXWS5BiCStHomn+Q48lj5/OiM+WMVKxsFrtYFMGhrmuxM1q2SyVqZ8++LrVO/UhE0jTxgF1d9dRXBALi2OfnsbNZ5FRKZJE5dh3myIh4IWc0Z1erYrTk2qA4o0QXeEuJBFalghIKreNpXVVt9fB3x3+2Lc5T3X3tdgvtxUXRNfP5RIdPlpEaGpCam7FzObTt28XnVS+ZN03khgYii4s8fNs/5rHX/oa7UgeR+mJUzCrJcIp7uu6i/cQUhhOO7HVHHQ+32ksvofb0iBw5twwDO5cT9ifOGPVS3S/J5SltSJxf+wFJ2CU4r1Hvru12NYeScUamTwqeEXXdfVnm9MxxKjv+kefSvzozhhXqFZ+nu1mwbcJFnZ2EgTBUQSsacBMr9N9mJv8DKUnTCOdr7CiG0EdrgFhsDTmD3NrKytFb+fLxP2KsOi92qLUaKCqjS8N86fif8Pl3f47E6XHPFh7bRorFhFNyoYAUCFBuSTDbAvmoStQfpNMIE8oUwLKIKAGsQoFopMOb69cvVLIkMoySoRTm+MJV83w25czUmZTJTjJ38NwoD+5+N49L3yGTm3MWQ4PGRDsP9t1PcGwJ4nGsdJpaqYTa1XVdzBUvVe7OycrnBaDM55FbWlgp5QlHUoxOfouAEsCyTVRJxbBFq30iN8mB7fuwS2VSTd20p6tr1vtOm1yKRjGXlgQXRlVFF2xpyeEgsNa2r1ZFung4jJnJeJ4yV1pXY4D4ZpdnLtnS4vExbGc0Kzc0iK5QMCj4Is5D3qpWkRIJjPFx0ckAbwxsFQoYZ8+i7d+POjCAG5BJKIS6Z4+InCiIewDT9Lx9pFBIgC7ngWs7IbVyczPG0JDoMjlZaPj9KL294mHljHaQZexqVYgOnO6p3NgIu3ejnzq1du1fo1pnXdfTssT144IeWMePolgElwMVDAp5esSxEqhWxfgoGMSuVPDt2YO1uoo9MyM6RKGQCOIdHKSgWgwH80xNfwtlVqE53Mz21HZaIle2DshOyKl3fSuK+G8nF9E2TWrHj3uj3E28Mad7LakqSleX4I05I0W7WkVxR2qWhdLRIcaPo6M0p5v4x53vZrbJR6FWJGwpdJpRoss2diqFOTMjNoG1GgSDXsfPSqeRBgYwV1fF5tH9zF2zS1X18r0u9Z5ZWECORATvrH7c5WxMcaI6YM1Fu/bCC2JUmsuRq+B1IhVJ8YwgbV0Hy6JQy4vupqoSxndRvue66+cmDSd1623g8w+kXGBgLS+LDogjJ8WysObnGeq2GF08L1r3sryW1yNJjJVmOJsf5UgghNrZ6TmRWtks1aeeQkokWLhzD4+cfpLlhby4+TSNxmQHD/a8j/YlnU4jTLIiE6jZHGjZz2tzxz3yp0/1I0kS+zsPsUtPgZS/6htnU86MY1ImJRJCVuzIk9vOzPKxzruZ6VEoUCWCn04pTrzso5bLYedyWE6nypyYwH/06A01HLSyWfJmiUlpiYJWFHbvZoykP07VrlGqlYiHEuSqqwQUhYop8qpCWpCmQIrqhVM8eOgnCQ1tMNlzQY3TLpciEc/MzzZNr6PhVbUqwklLpTVwexX1egwQ38i6qLlkJII6OIgE4h4Ih6FaFdwLhArIAz1+v7g+nQ6Bce6cUOq89pqIYRkYwJqbW1MXFYvinnPHXYYhxi6hEHJz85preLUquiBzc2sp4uD9nJXLYS0uYmYyAuRIElpvrwjjBaxMRhhxplLCMoNrN8lb13FR1h6G6wCPM9ImEBBU3mBQnJtsVgCDmRnvOpSCQXEegkFsRcG3f78AiJoGmsaUvcKfTXydJ8b+nqwu1qauWBcf3vlh7uu/jwOtBy57zEpTE+rgIMb589i12jrQo/b1ifO+QS5/pbwxye9H27PHG+sbExOeMzWyjP/UMH2Kgtrfj9LVhXn+PFYsJrpIlQr4/VT2bmcmUKNgloj6IrQXGvHpumdoaczNYbtBwI6aT7tMnI/k96N1d4tRnSxvVnXt3ClGeXWv4ZpUGuPjqJkMiZDfI2b7DVBlDUOywBSfXUQV47lUxza6EMT0y9EBbtZwUrfeBj7/QMrNszInJ1F7ejAmJrxEYikUImeXPUWBLUmb5Im5chZrYhEcUzbAUzeUwhqPj36D5VpWLOLOTbiUm+OxyW/x8bb7ia5W+VDv+/g/U9/jnx38ef742H/ixOwr+HxBkr44g8lt/Obtv0bL6QXRZr6GG2fdIlYuY66uYoyPC6Kj+5C3LIJTC2xL+4XSxK4gx/1YYUM89OqIqtbKCvqJE8hHj96wsddEaY6/O/83ZLJrAbapph4+sOdh2iKt2NislrKEfWFUVaNBVkmGGuiOdNIT7uBwMkVsroyxvCyUR3WA0Xal3oaBVSgIQKhpokOgaVhbqZFA7MLfAiDmWutKH3bajh3i3DnEWcAbC1qFAl6oazAo/FNKJSiVMEZGUDo7Rfr33Bzqtm34Dhyg9tpra+DHNFFaW/HfdZcgMScS2LUaxtgY2u7d4rVczlAuh378OP477qB69qx4KA4MiCiUiQmUVEoQYR1OnZpMrnsf12KSVz8Ssctl5ETCU3Mhy975kJqahHQ9nRZO6Dt2CLNCR3knxePI0ShKX5/npmyl08iDg4IzFYlQ9MFfz/49T4x8gxWjIB7iwNTqFI+ce4RitUCzFKFJ919SeSj5/fgPHkTy+YRDd6Eg1rd4HLW729vsbZTLXylvTE4k8N9xB8b0tOjcSYLAbBeLYpxcq2GOjAjeYGen8NIJhZCSSeZ3t/HomUfILDprp6KQaujgR97187TZu4S7dTSK3NYmPt+2NrTBwSvqOHsk7+ZmtH37xLE5YP5io07Z+Z7Z2srOQISBjr2MLpxD1g0agw1kzDy6YbC7bR9aWai6Huy8j3DJAbJud6+eP+hwC9E0sf6m0zet8erbwOcfUCmpFP4770Q/eRJ1YEDMhgEpHCYZTq+BDXdmXPdgjPuiwLIHlOxSyZPlzsQsMgsTyM3NwizQtgWAsiyWqyvMtocYnM7RtrrKT3W/m1mq/MHdv8tcbYmiXiauhNhtNdJyehElFntdqb71i5jsPNjMmRnBL0gmRds9EBA3baEgwF44LMJTt/CksgqF6+roXF/5ap7Hhp9YB3oAlhbGeNL/97xv/wN8p/N7vDz9IsVqHmoSTZEWBiI9+Es6B0oJQrOnYXuDGJtsKLtQQOnuxkqnsZaWxC64VEJqaEAbHMTKZLDicdHBg7UO2e7dN2yxuhb5/MbfkS4Sf3C9j0FOJPAdPix28EtL4mFaqQjeVCSCpCiC+xAKrZfGZ7NIfX2CNL28jCRJAtDs2YN04IAAD5omzEvrvHmM6WnRiTMM0d1ZWRH8GmfMYC0uCoPApiaUtjYRhuncKy652SoWt8wWu1rCfv1IxMpkUAcHBWfJsalA15GamlDa2zEmJwUwGh3Ff++9+BsavL8p+XzC18fpYJjFIotH93JWXmKlvEJDqEaTr4Hh8SlW9Pw6ST7AZHaCYinHmbmTHM0mgEsbncqJBP7bbsOYnsZMp701znY8hbzzcY2jGC/qow6Q2KGQGBO7vlJ+v+i6KApyUxPVW3bx2Ik/J5OZXsc5Ws6neeT4X/LxgR8lGImIlHnLEkDtCkFP/XHJfj/6+PgaGHFk/fXnqv7aty0LO5sleuYMv3T0M3zp5S8zMnsaX82iJZSiu/Uw//TQz5FcKPHegW2E50rQIHhK7mdQ32GXUinslRWoVDDd82vbaIODN91G6m3g8w+slMZG5Dvv3LTb3aO30Z/sZ3RlVCw+LrhRFPobBtgZ6oFgWUgyVVW0VJ0dVcEWZGc5EkFtbiUWTFC2dUpGibAWImeVMJdXUdvaCIzPsb25GWlVZn8pgpzodDoyRaSGBk9OfT0evHIigX/vXszWVgFgOjrQL1wQvItSCXw+lK4ulLY29JMnNy264kXkGzavnshOsFxZXpv/uyVJzI2exN91F5+/9/f5s5P/jfHsOD7Fh1ypEjEVfnH/p0lOFsAZlag7doicKWfMaDt8EmtxEWVwEKW1VRASazVsy8JKp1G6u1G6u4XD7tKS+Gx9PqGSuQ61EWDYrkmbY0IofujSC6NH/K5U1ngx1apwAq7VvN32xgfhQmGBM+kzZKtZEoEEu5t20xJp2Rwq6uxQ5UgEORbbBIIkvx+1uxspFsOcnRVAJxoVBN6ZGc/Irj7UExDgw72edB3KZczz59f9iP+ee9b92yM+VyriM8pkBMCIx0XYZ18f1pkzGMPDXifGtiwRz6LrglDsKi831LXcT/W5XXa1SuDee7GWlsQDvlIR/KaJCZGDNzIi0tInJoQLs2VRefXVtVR620bu7ubEHe38u+f/LacWzyBLCmBzW8ft7G3ZyzOTz1IzDfEQlSThO6br6GaVbG0VEJ/v5dydJb9fmEhOTV0U8L2eUczG35VUVXgFhULCo6e11ePmSH4/c8sKmfx61aPk+E4tjp5mZscH6J+dxcIRBRw8iHqV3MKLZqXVnSu7XBYKO8ex2rhwQYDnZJLB50b4vXf8C4ZuWSBnFEkEk2zPasQfOSY6+9Eo9PWJY3fc0euDS61qVYDk/Bp4lSIR1P5+9PPn8R04cFN1ft4GPm+Rup7ZTVu1dlv8LfzyHb/MF1/4ogA/qgp+P73+Vn5p20+TOCuiLMzlZeTGRmG53tgIlkW0OYJUO4tcqRJr6+d/nvgfDKXPeK/90M6H+fn9H2P/iTmUZNLjnMihEGpvL9LAwI0NLnWcmO1qFbWnR4wuHL8MORbDnJ/fGvSoqmjX36B5dUEveAREa2XFAz+SJEEoRN6scNtKkN/q/yTnjHlyZomYFGAHTTRMLWM5OWdyPC68SsbHxft0jCTVbdvANDFOnvQ4DlY2K/xg8nnxUDl7Frm9Hf9dd2GXy2gb+ADXWhsBBuEwhrvouh4vl1kYvcW8UkGKRjFGRoQ9gWUJLk1HB0pXF3Y+v+5BeHz+uHcdu9Wf7OeXD/8iu2ZFRAChkIheGB4Wx6iqYixwER8jxen+uIu767WkNDSgDAxgzcxAZyfm/Lx48DnjWjmVEhEVDsfMra28duREAknTROZXICA6Sfk89uoq8o4d1I4fx5qaEkovyxIAaXUV48IFwesJBj0F1brXfR2+PhsNEO22NoyZGcElUlXw+TzQo/b0CCAajVL7/vfXOomOTH/8cDdPjD5BNJjgnb3vYjY/x8m548ysTjGbn+VgxyGeH3tajP5c8GbbaLJGwheDunSEy7k7bxI71NVWIatXdU4SCQGYnZGc25GTAGIx1M7OdddyvrKKFIuJv+kShy3Li1gpoRN497tflyhgKx8zt+xyGdNR3aKqGKOjwnPJWS/w+VBaWkien+X2XA67VELb2QK2jdncLAB4oYDp8NZ8dRtTlyelP/usuC8MQwBWSRLX5uiot+beiK75tdbbwOctUFY2iz456fnmuKBE6+6+ri3EW1pv4fPv+bzYKZeWiVZhRzlMcmhJ7Cx7eoSHyNwccksLdi6HFInQE+2iQYlCcwP/8+RfMLRw2nvNeCDB2flTfC7/h3xx76/TnpfWbOODQRQ3swbxoMstzzGZnSBvlomGk/Q2bbtufhCS34/a1gZt60NUJZ9PhEnWO5q6kvDXMXa7XEW0iBgb5HIiARo8GSlAJBBF6eigRddp1fqwVRX92DGs4pJwns7lREbS6Ch2tSr4AbWaeFApirAViETEZ2VZEAyitLQg+Xxryh/bxpqZofr97+O7667r8r427j6lUAh9eFjI3R3Qjq5jFwqXXBjdxVwKhzFGR8Xn44KHWk3wlpzft4tFrGyWpTCbQA/A6Moof/Tc/4/fO/BZGv1JwTdxMqNsZzwhBYNIqnrRboLa2gq33y5k65omdrpzc1S/8x0kn49SVzPz77+VfG6JiL1AZzBKqGRgzsyskX3dCIotvHYkvx+lp0eQXItF0UmZmUGSZdTWVqrf+Q6Ew2LMVa0KgOP3YznyenXbNuRoVByfU1eTzXUlJfn9aP39SKEQxoULSJqG0tAgjqdYxHf77UIg4NhE4PjiTB7q44/P/jl/9tqfiS4q0Jfo4wOD9/Pq3KtUzSq3tt0qrgtd98xRu+LdhNQQO9VWYL1L+KU6sZvEDu7XN8SaXOs5ULq7L5p3tfG1o4GYEA1s9VqyTCScwLdj/zUfD1x+dGcXCiBJYq0oFEQHx61aDWt1Vax14bBQZ7qmj52daDt3ClNFSRKj1g3roZXNejlh6ywFZFnwCHt6bjqV19vA5w2q+o7Noq/K2ZULZCtZEsEku5v30JrYOh/KrlZFDsv582tyZcRuWZIkNMeK/HpVS6SFlkgL+ugo1Ze/D+S975kzM8iNjULu2d7ucQnUXJmHd32YJ3IvMLR41vv5eCBOd6yL6cwY6dwsZ27N0G4mPdlr/QJkZbOMjr3Ko6/VEX19Ppp7dvLwoY/S17rzur3HjaWkUviPHl1zMZZl0Yq+jmO3raon0UMq2kzGdWl1eTqmSSrZTl/PAdSUAAPG/Dy1Z59FCocF78NxkZUjEczZWQEmCgWsxUWkVAo5GMQqlfBt344xNYXk5Clh29iyjP/uu4Xyx+E9WLOzUHl9WWlubemi7aoIN6aRO9f0xoUxX80zVhhl1b9I1KfTFpQJ1uchgeCO1N0Ttq5zJj28CfS4NZIZ5mx5gjuOLQu/qfl5L4bCrlQwZ2dFl4atY1OsQoHaiy+Cqgr/GdcZt1ZjdkcL36i+wuK3zwkrCF0n1dDBw3t+hO5wF/bKCr477xQRG5fKy1IUKgd2MlWep2CVie69lU61EX+ujLJjhwCqi4uiC9TcjBSNgq6LLkEggNrZidLRcVXZXNfSTVadcc5WOWC1s2INkFQVYjHKjVH+auV7jBbHMWwLy1k3zmfOY1omg8ntFGt5msMtNMRbWC5mQJLoinfz4W0f4t1Nd5CcWsF2PWuculwn9lqdvi9XdrUqDB3DYWRF8TYrUiCAOTGBkkyu+xs9LTtobO5lKT2+6bUam3vpadnxuo4HrmB0J0leaOzc4W2ctudZSQZpCKYYiPcxlh9nqbRMQyDJ7p130jktyPvm9DTm1JQI1G5r23IMbpfLSMkkWjwungmqilWpYI6OYl+jSvRG19vA5w0or+1vmpzpUHlp/BhLpSUivijnls7xl8f/G//syC9za9dtm37XdH93A4fALhTQh4aQm5uvGydj3etvNRt3uCG2Y2FPaa333FkJ0RxoZG/zXkxTR0GmWi0xvTQqzAkVhaxeQG7ZidLcvKnTszJ2bj3oAajVSE+c4xH+B59+56/cUCdQpbER+ejR675IXqqi/igP7XiIx4YeI1MnrU5Fmnl4/48RT4nOlJnNit213y9kqn19nqOvnEwKqfDiopA4O6GYtmkKCXWhIBaglRXB/9B1pGRSqE02ZO3ZlQpcQUDk5WorF+11IY4O2dVVBXr2A06NZ8d59PTfsZQe9wwZG6QQH+y9k7az5bVdpaMucondkqaRzWcvekz26iq58grW/LwACoYhvF4cor5dKAhPKleu7px7c2FBSJJ9PnHO6oI2pViMcmuSr68+SyY7u8Zf8vtZrqzw+Mj/5mO9DxNPNKJEo5c8r/rUFGMXjvHo6a+Ryc6J9xQO0zy4nw+ljtKytCQ6U4GA+H+HDItlgaqiObvxqxmVWNks+unTmG43TVFQEgm0PXsu2+m8WA7YOo6UqjLXGmTy7BSyLGOxXkk4snKBd3S+gwvL57kluYt7bv9dZuQ8si9Asy9JX14j+doclpMDpTQ2ivd/heOqa3X6vlR5nUhV9QJy3dpqBBdPNPPhuz/NI0//53Xgp7G5lw/f87PEE68/XsQdk9Z/jpLf75kbWo6txSu3t/Jvnv8tXp5+CU3W2NG2l45YBw9se4Dj6RNMroxTNsr85pF/yS1n/WtZfK7J5xYRNZZpio15XSSL1NSEtm+f4E46a+nNVG8DnxtcXtu/VuPlDovfevJf8cLUD9AUH5Iss79lP5888En+7OX/TFu0fVPnxy4UNoGeTd+7AcDnog9850byTNfcY9F1IsEg0ysTaxbq9Z4ftk0imEDt2GwKaGWzTJbmN6mbAKjVyGTnGU9fYP8NtkC/EYvk5ao30cunbvnUWhKyFqEn0bMuD6f24ovo4+MeD0nTNMxcDmt6WniL1CtWnP+3y2WkaFQs0htCCe2VFYyzZzeTawMBsUN7nW3prcifOHyQlcEOhmMVVsolklqU7aUwzZKE6ZjZFYMKj574GxYnxT3jXvuLpsnXFYWPth8kNJ32XMG915dl5ESCRDGx6XhsyxKjGNMk7otBYEUoEgMBrwvmqqfscllwijQNfWpqkyM1kQj+228XYwvLQiqVmJZVlgtO58P1j3I6E5nVeaatFeI0XvK8mtksK2eO8+joIx7oAdEpSw+9xhOD8FPtewgOT3g8EdnpSiptbWjbtl31OMuuVqmdOIExOSm6VA4QtdJpbF3Hf+TINQH/je7Aq8tzoKnUSmVaw63MF+fX/bxu1tjZtIdBPUHz0DgHojGs5WVKMZ253iRj7RZRy09H1U9oeRmtp0d4JV0nzuPV1mXHSlt8v79rH59+4DeZWBiiUM0T8UfpadlxxaDncl0523Won5tbe16oKmpnJ3IyiV0sMtWX4N9897O8PPUiiqSwt+NWzi6d5bnp5ziVPsW+5n0MrQzzrt538bnn/4Avffh36Tw9K2JKXLPJDWu3mc1Se+UVzxrFi1dZXEQ/cwZ13z7kq3ThfyPqbeBzg8vdHcy1h/nCD36fF6Z+gF8LUDGqGKbB89PPUzEqPDBwP68tnNgMfBwXT89AzE2/dWsL6er1qPrFq74kWUbu6NiE/KVgkD3+Lva1HODkwmub8mP2dx5iX+v+LSWatq5T0Iubvu6VZVGo5i/+/bd4Rf3RLQNGPVfn1VXBRalUQFEwolEhD+7qwnJdX5eXRZcuGhXXiWmKcVc6jZs/5RnO2bYwyKtboOX2dg9MvN629FbEUjmR4Gy3jy+99lVG0kPedTvQvpd/fvevsXs+hz40xHiHxuLkkJAFu+rCSgWqVRanh5m9/Sjbl4Q/DNWq2HEHAkLZlM2yM9BBX6SL0dWJtfvEMMA0GWjZxU6tHfQLoiMWDIrzIEnYLlnTIbPbqkr1ySc90GO7Ab2zs+hnz6L09GCeP4+taRSs8tr9Ceu7W0DRLAse0SXOq7mwwJS+xHJuXrgkOxELSBJ2fpVMPs1c7yEGFmKi2+T3IykKcjyO7+BBERx6lSMrM5MRoKdSWcsuw1ECnTuH0tuL1tt7VZ89bHYHDldkNFQWszPc0noLx+dfY764Bu664t3c3/deGr/2AyzTRDt4kOlAhSfmvsvyCxkR4aGqNEVbuf/wg1Rki9Wxp4nio5ME4ZKxpbLvRtXl7o+LfT+eaGb/NXR3LhU07FoZuCIAtacHWCNcY9se/+pMMMPL0y8B0JboZDw3Trokru+zS2f5wMAH+NszfwvAjuQ2TlcmaDl7ASkeR9uzB3VgAHNsDKXuuspl5hgLrFLcEydsyHSs2ARnFkVXt1hEbW5G3hjiexPU28DnBpeL/k9Xpzi9eBJN8QnQY6/5rrw6f5wf3/0TnEif4EjH7YSLa6Fydq22licE4sEVCnm76I2t1utV63w8tiDwKckkVjLpjYWkcJiOc+f4jSP/gs8//wecXHjNOQE2+9pv5bfe+a/pbR7c8m9JmkZEC1/iYGQiN2nK740sK5sVfi7Ly96oBU3DnJ9H6+vDKpex5ucF6dyysGs14duzuIiUSKD09aGfOOEFsmLbXhCp+AOOYWF7O/477xS/9zoUL/PZGc4snCZbWSGRSLAj1kBjSQCt7N4+vvzi5xnNTwqvGgfEj5Vn+OILX+T3b/ksqaUyq9nsevNMWUb1B2hq244UCDDmLyHf2klHLUhEl9AGB5ECASHNLZdJyjK/uOtTfOm1P2GsNOMt/v1Ng/zSzk+QuDCP3d6OMTKC1tuLYRjC28k0BYFTUVC2b8daWloDPY6sGk0T/IW5ObRbb8V0vh6RE8IYUpI8Qq+bx2SXy4SV4CXPqzE/j7W8TKGa83K7kCQBwEwTTMA0yS/NIadSyNu3C3AJIlohkbjsw3GrsvN5z9tpY86VXakI24dr2K2vFjKMlybIDwSISCrN1i7ax07RHetiMn2Bnclt7GveS82q0Zfo5/1d7yK1sJYuXgzIfGP8GXyBMG2NzVQwifjCJKJNfP6FL9AUaMSnCyCairfwUPf76VipsTI5zGxJo2hViPgi9MR7bkg6+I1UjG2sK5Gp13Pq7GJx3e9aq6sobW3CN6i8LK5LyyLkjzCzsr7zVjWrgM355fPc0/NOsjXBI0OWRaSOaaIPD6O0taF2dzOeHeeRc39BeuKsAHuSRCrRxoPveg+t5+ZF97RUQu7vv27n43rV28DnBpeL/lcqWRRJdGsMc7PZXNkoEVYCjF44xs6sTyhZJiaQotE1RUitJpB0qSSM5rq7b2iW1EYfj41kyY1jIW3bNg5fuMCX7vxdTlenWKlmSQaS7GveR0/ztov+HTmRoDvUSirRvnnc5fORSrTSe4nf/2Et27Gzt3VdhFyWSp4UXL9wAd/hwyIrbXkZ7fDhtRFLX58gvQJSNCoWRXcU5oKgUAiiUQIPPQQ+nwA9Pt81k7lfnXqJP3r6C4ymh7yvDbTt5hf2/Ay7xyuclWuMpM+JY3IN/xzgMLp0nnPGPEdJEJHr2veGgVyp0dm3n29PfpfZlUn29t7GcV+SxmQ7Dx/4CXqiTSwPnWBKyVAIV4kqQXorcX7/1n/BOWOOVUUnrkTYITWSHJrBmJoSgH55Gf3MGaFS6e4WarOGBiH113UBNF0/EsvCdoz4CIXEWCEUQnJsBLqUFI0NHaTHzggg4doShMM0de2gS2vaFBvglpuCLre1EZHXgmjdVG2v+6NpxNp6UKtx8fkVixAIoLg7/tOnMd2un0PYlgzj0mR1VRUg82LJ3mxN8r5Ujc2f45EX/pzMiriP7VqNxkgzD97xo0wvj2P6a0imhK4X6Y12cl/yMCdf/Ab/uPdhlN5e5GiU8QREOnp4cuwpZsZHQZbZ132YsZlvo1oSfiVAclJ06maSK/w3s8x7Bt/PN4f+F/okBCJCIdkQbOChHQ/Rm+i94uO/krqRirGNZWaz4jp0+TogOsDlMqyuYszOek7X9WW7ye6GAfE4UiBAg+zEYcgypm0hsf73/MracetmjYQvhjU3BLEYSjgsSPRNTZgrKxRjAcFNrGSxSyUs5zyk5+Z4dGWFT+z8KXwvHhdijJtszAVvA58bXq7nQzKYRAICaoDiFmOdZLABu1ymiI4UawRFQd2+HdNxb5Wbm9eSkWUZpa0N32VyXK7L8V+EwLjlzyYS+PbtozubpUtvu2KCsOT3k+zbycP82Jaqrg8f+ugNJTZfrq6nh9LVlOQ4Y3sEVhe8SBI4/C5JVYXZWzaLFA6jX7iAtmsXdjqNlEqhbtsmuiF1fCw3l0ptaREWCQ7h+VrJ3PPZmU2gB1lmZOoE/1n+7/zsrT/LXHaYozvfS664zLnZE5gy6x64rkFdd6idVKSZpdV57FKJ5tZtfHvyO8ytzhKOJInZIlgxXa3ymP1XvG/wAf738N+SqSyLXK1KhVS8jQe77+P2jEngnntQ29qovfYa9PRgLi4KIngshtzZ6Zm5WXNzmFNTwrNkzx6RP1Wtik6Qe/4VRYx4HWKx/667QFUJlMt8qKjwWDbH4vyol3uUCqZ4sPWdJHccuOgGxU1Bl5qa6FAa1oN/tyMXi5FKtNNlCxsAdH3dQ9aYnBTGnLnc2jn1+cTfdLybtgIvUigkfH9cr6W6vynFYuAm019hrRYy60APAKrK4tIkz730CP/izn/B8xPPsFJewY8Ab3Mjr/Hg9g8S9cWoFS9gTk9Tah3k20P/h9nVGdFZ0XWikRRnRv8P0WCc1rj43PLJIOdz5+kPKvzZif+X4bnThCJJdqr7SAQSLJeXeWzoMT51y6eue+fnRirG3NcE0M+d8zadttOVlGIx4WdlGMKDzAmAlRz6gV2pCJUooO7cif7ii5iLi+y+7xCH2w4Kjo+sYNkWmqyhWzq7Gncxk5/xjqMj1sketQOlR3SazXQapaFB+H4tLTFWnWJpaQopt0pb+yBSMEjFqhJQAti5HFOlOXbu24dyleG4b1S9DXxucLmeD7uWDAYiPciyQlkvUzLcB5HEOzrfQW+8h5fP/h1Bs4va2Kww14tEUDo61mz6cznkoGibK+3tNx1THq6dICwnEgzsvpNPt/YxmZ2kYJaJhBL0Nl8/H5+rLbtaxVxYEKoe92ul0hvGJ5ATCeR4XCxybigmeLb2rgJJbm4Wu8BCQbgILywgh8NQLuM7cMALlMU0hdOws2hfr1DRMwun14MeBBcs1tDO96efpT/ex8n51/ju+HfpTvZyd989vDDzAoa5tltO+GJIdpB4YzsP7XiQR099jcWVFQgEmSsuEFQCbPe3o8wuYFYqIgA00cH/OPU/sIqZtXEgkMnN8fjkt/np1LtRXnsNpbERbXAQfWICpaUFuakJc3ISs1IRHRonFVtuaRHjLOchI6dS64nNpgmVCnJXl1CBzc4iJRKYi4u0DI3yj1vvZPbWIxTsKhE5IMZxy6aXnr5VuepJc3SUxJ49PBR8mMfOPuqBHykUonnPYT584CdImJFND1m7WsWcm1sPekDkRmUy2LDlSMbKZjFzOdS+PnRnJAKOC3E4jDY4CA7J+0prPH1hPehxrgNCIdLpMWq1Mg8qe5kOrVA0y4TjMToKCvFAK+b4uOByyTJFdGbzs6K7Xash+XzUTBHJkdeL1GwdPRnjfOECJaNMLJLieOYUAGWjzNDSELe03oJf9bNcXmYiO7Elh+711vUWQ6xzKU+lhNFgPI4xNibGsU6XVG5uRtuzB+P8edERdACRbZpCgu5YYyjbtqGfOiXIztUqLd98if/rgd/k39i/z3xxEb/iR5EVumJdvHfgvXzlxT8G4M6uO3mg/320/M1zWD6fuEYVRfzPWYPypRxSqUx78zaemn2WmfELHm+vPdHFvp13ozYO3LTBxW8DnxtcrudDe6nKbxz5l/zBsf9AsVakgQYs22Jvyz7+6aF/wmvHvkG0Au0LFWxdp5QIMRsqUKyNEvWnaC/bRGQZ/dw51N5e1O7uN/utXfeS/H4Sbb0k2npv+N+yq1Vy2QUmCzMUzDLxSCOpUIr08jSF2ioR/HSYUUKLOWGOl8kghUKo/f2bnIJvVEl+P9qBAyInanJybTcej6O2tmLMixm9FAxijIxgr64KUNzWJjoCDhdEjscvOq68HpWtCA6YJEmEg2IUI6sqRb1EUPZRNso0GD6S4UYml8d42rbZ17yX05lzYJr0N2xjZ6ALrXcAORKhp2k7H2v/IJPRKcYbYNfCNmJlGy2vO50rW7TxbZuZwixtpirGT3Ut/0xujpkunUiugJlOo/X3o6kqdiYjxoeSJNLWnQ4qgYAgjDc1Ifn9WJOT+G67jdpLL63FLiBkuv477hAeQOApobAsQrNLbPOe+46ypqPjskZ77usYp0/TPTDAz9z7K0zVFinYVWLxJvq69xP1R9d1AyzH9NLKZjcJCbxylFr2Rv5OnTeYlEiI7LZUSvCKwmHBV3JGG1cD7gvV1a3fo6pCJELJrtKwYz9JB+xZpRKmmcZeXRVeVOEwxOPIhkXIF6ZsOLEiPh9+f0jwvZCRTJNVs0KpIK67mlVDlTVvjFs2yuQqOZojgkhc0LdWxd5MtdGl3FpaEgaf2awg4DvZX9g21sICRiRCqbuV6dI4+dwisUQz3U39BCfnPY6cFAiITDt31F2tcsv3xvjK7b/NGTVDwaowX5xntbLKqfQpjnYfpT/Zzyd3f5RdTxwXwDcaFRvujg4xek4moVoloiVojrbx5NhTzOVmxHXsALO56hJPzj7LgaZ9NLy5p/Wi9TbwucHleT5IEgdnJf7wlt/klD3PVH6KgBogqAY4OfICwbLJgx33ERxdYrY7xuNTXxe7Ps2H2tdHKtLMA5FDJHf2Mx6psrD4LL4VP+3xTnob+jctjG+0xPOtVFY2y9jUSR4bepxMIY0iK3R07OL5xWNElRCRxTx2Pi+IegMfpH2pgNrZiTkz4zkNu07BLrH0Rp1ztaUF/113iYwdJzvNKhQw5udRu7qEE2sqJRyZu7uRfD6Uzk7Ujg7vOK5mXHktlQgkkSSJWLSJsdw4+eoqWiDEfGGBuD9Ke2Mfxckxbm85yIscY3JlnKM9d4Nh0J/axj+/67O0t+1d62BMThJLtbGrYqEEIZXV19LAHX6QpKpU9DI+SRVjmnpVlVNFSQf8XldFjkTwHTyIfuYM0uAg+vCwAD+BgDCAVBQBZkF0G1ZW8B0+LMBDpSKSuA1DkP0dVZgLPi5ajgPxxWqdetIwMIeG8APbEEKCwM4DyP4I5tLSmsGm49EiR6PIra1rnk2rm4HHVhyLem8wu1gUkRouGdu2BRk2mxXE8Uupwuo9jgIBwnJAdMzcz6MO8AmH4gYvPgbEfSjZthhRukn3skzCiLCjYZCh3AiliohWWc2l6W/op1TOE9ChiumMfm1S/iToQ+LfhgE+HzVrzSgzot24a/961TqX8pERYaDa1IT+8str4cm6LsCdYTATh28sP0l6/KzX6Wzq3cXDd3yCjoYGISAAAYgddSCSBJUKLU8eo8U08d9zD4vBXoaCi9wS3kY82ojqCzA9d4HCrQm2r7bSMJMVI/Pt28XnVK2CqtKlNhCMJphdmRJdvTp1cdAXpppJM20uvw18/qGWu9uzCgXM2VlaMgnawmGKkd1MSyXKoQB7+7ppKc8SPD9HuSnO41PfXpvzGwYlxWKycJ5RaYX3DryP8ZVRJmdGUWUFFYU9HbfyjtZDtE+urudyXEbV8Q+x7GqVlclhHjsvQA9AU0MXTw5/k9nCLKFgjH1KB5pts5SZ5jHrcT7e/gAhZ0xiLS56r2Xl8xj1acjcmHOutrRgZTLYwaCQeQeDXuaOFIkIBc7iojCx6+tbB3reiNrdsofdnbfy9OQz5KurGJKNZdYEQdKf5PjMK8ixAP58gXvjB1lu0tnbup/39d3HTrmZxkUF2pxOxMyM4C00NGAtLdGZ6KLBF2e5lhMAploBScau1Uj6E8TNPHJIwnJ2w14pCpFQAhbL686FnEjgO3QIc2EBualJgBpHNCAFg2i9vWvmnU66ult2qSQkw7t2Iff0CCmxrguC6RbAQwoERP7XJa6FLdWTmoYcjwuuVqmEUSpRe/FF8f16KwvDECoen08o+yYm1h2DFIuhbdu2zu0YNniDOe/RqjOUVDs70S4TKul6HJnOWNXKZmnZ1k2DP0l65KQAZU40CUAq2b5JoCAnEsJ53vl9bBvJ56M7FKcv0knAklmNVtB9KpJh8RPbP8ILsy8RzenYqgg4bU90Mxjt54x2mkKtINY/20aTxHtuCDbQk+i56Pu4Waq+K2itrKC0t4sRqXNtuoIESVUpNcd5fPrbrJgF7EpFjD1lmUxxicfPPcLHuh4knCkIy4eNnUDTRAqFhPFpKERTNktztIfTDUW+9MpXhNWEU/2pbfzSO3+RHWcc/pxjJqo0NhKpQntDJ+FoA6Vi1tt0BH1hdsQH8OkyxZvLrHldvQ18bnBJmoZdq2HOzqJ0dGBMTmKOjuID+gF1cBBtTy/LygIXtsVZSCoMn1klFougFspkelK8NP8c5VqRZKwFJImvnfkbdqR2ML44TEesk0gogZld4f7wrdSLwi+XYvwPsaxslqlqmkwhveYerCjM5qZAkijViuSjhrdTyWSmmdmms21sFckZL9qmKQixTjq2FBZn3S6Vbsg5l/x+tL4+sUvXdajVkAwDuaEBpa1NKP5UFbW7G23Pnjf8s25NdPCTt36Mc8vnydVWKRllIqrGttR23tP9Lr5x4n/xI7t/lFenX+VAsI+OTI09XVH2yG2iFY/wsTHn5jwgIedyyO3thA2Fh7Y/yGNj3yBTmgJJBkUhFWniaGgn+VqejFkQQa11flepeCudJQ05GfACOtd1RAMBtP5+8fe34M1sJVeWVFVkYtWFULoKH0nTBBHV5coEAqiDg/j27r2y+AdXPVmpCGBi25gzM5ihEHY+L/K33F21z4ecTGJmMh6w0icnva6fy+WyZRnbtjcDL2OzqlSS5TUfJ6ejdLEys1kP9Eg+nwAtlQrBMxf44G2H+HqfyeL0MJYTwJsKJPnIHR/fkqvnhghbi4ve+Y5UbB7a9iEeG/k6vtw8ki8ClkXN1PlXu/4ppbkpsn6Tsa4jlFeXGZp7jXc138GTU99jNjdOSPYTLZkk42Ee3vHwDZG0X+9yu4K2ayJZKqG4eVpOpwZJwg4GmQnpZCbGkZubURIJYWtRKiGpKulKhcnofnZHewWAdvhsyDJKR4cYfTc0YM7MoI+NIVkWyzGFL770ZUbzwsjS1nWwbS4UjvNF44/43JH/D8khEZzr+lxJkQgtuQwHmveRKy5T0ytoskZcDuLTQenoIBpOvnkn9DL1lgA+4+Pj/O7v/i5PPfUU8/PztLe389M//dP81m/9Fr46c6TJyUl+4Rd+gaeeeopgMMhHP/pRvvCFL6z7mTe63EVHSiSEWZibWAwiYDCbZSI3yWPVH7B44SSpnQc4kz5F0B9le/8BXlx4kZVqjo6Gbkayo/Ql+8iUlhgCepO9VPQyrywcp3fHRzguL3GLv51ITRI7QScO4GZLxn0zy9Z1CkZJyD0d/5Jy1ZGMyzKy30/N9VhydjEFl4humuJnIhH0s2e9BQLESEHbtk08uJwx2PU85xtVJMgCANiFgpBKRyLrYkDe6Ar4QvzI3h+jUCuyUlkm4osyujzCN04/Ss3Wqdk65VqJ1QQM+tvpktea4LZhCODj+AjhODlb+Ty+d7yDrpUoH0vdx0yXTsEoE7FVOooa4ckCH9r5bp5If5+Vdg1zdha7UqEh2syDbfcSzttohw6QW5xmcnKefDlHVA3RqYcJF3WPpL7xc7paubKbW6W0t3vXlJxIoDh8oSspORJB0jRqx497KisplRI2A5IkglyrVay5OREqubLigT3ZSQQ3JifX+B2RCNqOHVvK6KVodE3KvrGuwBvMXFgQpG/LEuRaN9bAtml98Twff/+HmfCdo6gYxDr76e3YQ6K586Kvt+l82zadeZlP7PgJZsIGq4szRJQgXcE2gpPzSJE+7GqV7uZeHq89SXl8msnKKHcP3Eqw7z46E920qgm6fE00BG9OVdHGcr2BkGWQJKz5ebR9+5BaWkQuH4iOWCBAUbO9+9/KZMSo0/XpkmWK1DCnplA6O/EdOkTVMFDicYzZWbBtjKkp0flRFOTubs7LGc9UVPL51o2OJ7PjjJqLRHvDFAoZoqpEZzBJcHSarsYEbWoDPp8NqqN81DTkVIrGZPtN3Wl7SwCfc+fOYVkWf/Inf8K2bds4deoUP/dzP0exWOQLX/gCAKZp8sEPfpCmpiaeeeYZMpkMn/jEJ7Btmy996Utv2rFLfj9Kby/2xATmaF14ot+PHI9T7mzi0VNfIxuwkAIBArIPCWHalpaLzOsryNioqp9sJYsqqyiSQliL0BJrY3Z1hpHsKLOlOZ4ceZHXfB08uO2DdAWFugdZ3lLV8Q+1JE0jIjvRDI5UOSA7PVnbxrYsfP4wSDkkQPYFCLZ28mJsmZw6T6IlzmAtS4Pf70mFqdVgcRFreRmlt1d4q9yANOItVSQ3CaANa2GWiotMZycZTp9DlmSikQYCoSi1Qg2fLDYfyVgzD/f8KLFgk7cJsCsV7GAQY2xMqLUiEZE+XyxiTk+jtLQQmp1l21zRAZo6ctyH0tFM22SOTx76aWZCOvniCuGaTYcRISL5sW2b0dFXeb54lrxVpmJVCQWiRMMN3BnbQ+fq+lDWhcICZ9JnyFazJAIJdu0YpKmqXpFc+XrwqDwjOklCikYxR0bQh4eFUi+dRmpsRB0YwBgZWTM0tSzkaBT1jjtQt20TIyxFEUD4IserpFKo3d3rgBLgdQ0v6w1WB3TWWSw4Y5XwSolt5zJIwSC+WACpNoMdvzQI3Eoe3pBI0ADUlmTsYhkJE6NUwlpawpydpVnT+Ngd72dSHqAg6UQDMdpzEK2EUBIh4PpvQG5UeeBvclJ08+bmMOfmhLhhaspzGEfTCGsBQTI2TU/15o7DJJ+PiD+KFPaLcZbPR/C976X2yivIsRhKezvWmTOeYae1vEw2ZXoZf/h8Hj9IlVXeMfBO/ub8I8QrwpRT0fwMNO+ks7+dYjXNnl138/T496hml/HVEOG8vsRN32l7SwCfD3zgA3zgAx/w/t3f38/Q0BBf+cpXPODzzW9+kzNnzjA1NUV7ezsAf/iHf8gnP/lJfv/3f59YLPamHDs4LXJHduwm+WIY2Pk801qEpZlh1P5+pHgcRdHYufMoz00/T1slSlEvopg2umXQl+xnbnWWwaadrFSyPD35NNmy4AXc3XMP23tuYeHkMR7N/yWfOPAJwoqClU5jZrPIDhH3H3rJiQRdUpKGcCOZpSkBdnJ52mMdzBbmCGlB4koQtBKKBX2338d/GfoLTk28LHZkmkZ/tJtf3P9zDP5gfu0B5POR3dPL+UiZdHmKYDZMt93D9uadRP1RJrOTnFw4yXJlmYZgA/ua99Gd+OFR5nWpKRKrOgu6WEAt22Y1l6Yn3k1r1zvY03kLPYke7mp/B92FkCchB7Hom8vLAuiUy/iPHhU72WwW49QpIUFPJoXvjrPA24bhpZIHQwmSLS0ie+r4cZBNzPwC+XKWF5VRvjH9FLPpEW833dE8gLJXIxneS7ggOqLHzWn+9JU/ZWxlDFVWkZBoibTwS3f8Erd03vKGnEMXLEuhkCCtV6uUO5uYiUGhKU5EVuio5om0t2NNTwvQE4l4gEx11r3LleT3Cw8wRVkLtVRVyr3tjGpFCqPfJxKI0dt0ESsJN67GJcxuLJdT5LhzX2nX+WLycK8bVCqh9vdjTE0hOaA5vFxg21hRdL/yy4L03b/2GjdiA3KjSk4k8AWDwi/HMaRUBwbEuh0ICLCiafS0tdKQfpHl4uJad0ZVkWMxGuNtdJFAUoXYQu3sFCNJZ6MtOY7gBINivGkYxLXYGoCt48ntaNvH90e/Q3+sh3DGRDEs2vfdyd+NPM7o8gjtgSYqlQJ39r+Tg4PvJCEHabXC9LbtJHETd3vgLQJ8tqpcLkdDw1q7/Pnnn2fv3r0e6AF4//vfT7Va5dixY9x7771bvk61WqVal0S+uoUy4vWW0tws2vBbvHbBEGaGdqkkFCs+P/3hAc5mzqHJmmd/3xXvYk/THp6ffo50cRFVVtDNGhY2iqRQqhV5ZOIRDjXvYTyzyOTKOHtSg6L1rutvc32ckvx+Yk0dPNj7AR6vPU4mN0d67gLv2X0fzy8fJ6LL+CwZU5LoP3A3Ly++xpn5k2Lx0TQkw6Kk2vzZ1GPce+e7wErSH2gjY+Z5Ye5p0gsLTGfGOD7/Gt0NvXzq8M/Rl9rGv3vu33EyfdI7jn3N+/jNu3+TI11H3rRzcb3KrlYJDE/w4I6HqZ74S0YqBuWyyFYLKwmObDvExOoUcS1CZzWAnV/LXZOCQZTubsp///fiC5aFtbSEHI8LvxwnI8vjkpgmUiSC7OQ31UcEWNms54EiWxZziRpPHHuSueK8uO6dccBsYY7HR77B3lu3saOoMFSb5bef/u11n0/UF0WWZb70wpf43Hs+R0vkxncN6tVfdqnEbE+Mx4a/TmZmHklRsG2bVLiRh/f/OC2zgj+jXaOJqZxI4Dt82OuwTJrLPPrKX5DJrcUYpJLtfPiOj9PXunPd7yotLcjNzaIrZxjioeysoVJzs3DxVRSkZFKcc11/XQBkYzdI6ejA3rsXc2oKgkHk+XnsfF4Ap85O0QFx6vXmzr3RJfn9qJ2dwiE5k8EuFFBSKQEeHVPCSMXm4QM/zuMTf8+iYXih0Y3xNh7qv59w3hl3urwhXfeS5KVweO38yDJyKsWuQDMDbbsZzVzwIi2QJGLBBAW7SmOwEaUFWhOdfGvqu7yWO4tu1GiPtGFYBt+/8CQX0kM80PteboseJqpeIn7oJqm3JPAZGRnhS1/6En/4h3/ofW1+fp6WDbuFZDKJz+djfn5+40t49fnPf57f+Z3fuWHHCqINrm7bhjE5uc4QTQoEiPgiwm+hVhPqioZuvnnu69zSup8j29/Ffdvuw8QmqkU4sfAaUX+Ms5lztEXasGwbVVLY1bSL5eISZxZO8o722zm5eoysLAy/XN8ZbPst0/a94WXbdFUDfPLgp5i2sxSMMmFL4QOhW1iqLFNpbySsBlnWdP78e38HsZgXNdKeaOOVuVeZOD/Bam2Vb498i8HUIP9o9z/iL07+T2Zyk/TEe3jfzgf45tmvc27pHI9d+DpDS+sN/k6mT/K5pz/Hf3zgP77lOz9WNovt89Hy0gk+qd3CkSN3cDJ7XlzTq3kmjj9N465b+PD+H6ch2LrJ7dZcWkKOxTCdXbyVz4tE6Kkp8PtRKhXU3l5MXRcqljrQU8+5sXUdKRrFuHABa2mJ2UGZmdlzXqfOUzJJEjPmMHNWjs5wC9+ZeXYd6AHI1/KMrYxhWRZn0mfeEODjZUAZBqVUhMennmS5mkWLxmhu7IFwiAoGT1sjvP99R2kOpJCj1z5OcDssq4UMjz75l+tAD0BmZZZHXvhzPv2eX13X+VESCfx3372m6koksHI5wSvauZPa8eMora2oO3aAM2Z/vQBkUzeopQWlpUVwwbq6xHVR/1CHdaB4nSOyzyfGOrUatqMkkxwl3c2yMdyqg2f39nrvoU/T+JmuQcY6j1Mo54ioIbpICNBj2+ve+8ZzL0Ui2KWSJ7aJ5/P84vaf5ovFP2F0ecTz5An6Qtye2IPv3AiGbWPf2s5YbR69JowmDWttTDq7Ok3eKjOlFWl4C0wW3lTg89u//duXBR0vvfQShw8f9v49OzvLBz7wAX7sx36Mn/3Zn133s1tmltj2ll936zd+4zf47Gc/6/17dXWVrq6uK30LV1xqayuB97wH/bXXhMuqqiKHw/REojT172XxwgmwbcqVAna+QLQzxH994U9obOjkB9PPk87P857+9/Lg4INM5aZI+BOU9BL7m/dzqPUg/+vkX2FjU7VqlM0Kdiwi+D3VqtiRVSpvqbbvjSzJ78culQik0ww42Wel5jgzoVWKqkVcDdJZ9jNSmcVWFQF6LINUKMVLsy8zvTqFYQuFTbaS5djcMQq1Iu/b/gH+6sRfMJ4dB0nilo6DmJLNWHYUm7UWsu0Y3p2YfZUTc8fpCrbcNAvutZSt60iANTdH0DS5ZUJmR0cnMzGLQqxCpPFWejtvpyHYuuU4Q1JV1EHRnbQyGczZWbTBQQy/X0h6TVOMOQYHhROsLG/NudE0b0QEoJu6IIBXxSbAVWwBYJrUSgWmwnGWCpkt31e+lsfGJlvNXv+T5tRG7y112zaMqSmmQzrLcyvItkRH6yBPTn+fudUZbKf7NdY3xCe6P0xXOo02OPi6xtj1jss1TWaVCjVLxydr1ArzjKcvsH/DyEvr6kJ+4IF1Pj42YM3P47/9dtHpcYjK1zu40y2XV6UkEpckoq9zRI5GhULO9WaybaRolMrOfqbSpyjJBhF/lO5oJ/F48011X268d+LA/t7bxXsrlgFnVLphQ1AfquqOC81sVuTSWRZWJsPg8jK/t+cznNey5OwKcX+MoKny9bNnsBy/pEo1j1GtiG6eLAvTSKds26ZiVij5JM9c82Y6dxvrTQU+v/iLv8hP/uRPXvJnent7vf+enZ3l3nvv5ciRI3z1q19d93Otra288MIL6762srKCruubOkH15ff78b9BH5Da0oLyzneu2/EGEgkeToV4pJBnaW6UgOxjZ8d+np9/mbKkE6yssi3Wx67UTipGmaXSIr9x9Ne5sHyBkl4kU1rmayf/Et0SF71f8dMe6yBUMrFqGYyzZ5ESCbTdu99ybd8bVZKqovT2YgwPY+dyzPU38Pjkt8nMLmM2JVnNfo94IMHdg+8hqoYoWlXKehk7aLNYWvRAj1/xUzYrhKQQr86/yo/s/hEURdxS49lxjnQdoWpWMC0LyxbET9uyhLeJM0tfKS5RO37c8/5ZLWQYT1+gUF29NM/iJirXssHjB1gWwakFPNeWsEWgrXrRjqOcSCBNTKDu3CnUiI5LrdrXh6QoKO3tKInE5bOQTFM8zJyNTgsRQsEYpcIyIK2NZGSZoD9Cix2hpBiEtYu35g3LIOFPXNN5uVxdLFFd6eujVBvDrlZpiXfw5PhTzOam1/iBssxMYY7HR/83H+95mIgzxi5QYyI7QUEvXFU6ueu4vOq3GVoZEqaBTvxBMBDlPaUF9m/xe0oisS6SwMpm0V2Ctr75IWxXq2J8k88LIm40inIdHpAXUzxahQJWrSbsHnw+zxzQdoC0XSggRaPMJiSeOPH/kqmsiJFZJEJjrJWHdjxIX9e+m5obeSWZYRtVc3Y+j9LQIAjzmkZBNZkJ6RQq8zTUAuzNh4knGylQ5cWO7Sz5JrArFQKyH8USjYRoIIbk00SUkmkimSaBQIRQ1cKYmAC/H627+6Y9d28q8GlsbKSxsfGKfnZmZoZ7772XQ4cO8V//639FrjfyAo4cOcLv//7vMzc3R1tbGyAIz36/n0OHDl33Y7/W2mrHO9B7gE9H/zUT6fNUbAM518KpU39BUItQNWsML4pUa1XRkC2boOTnf597nFgoSVEveaCnP7UdvwHv6byHoCmLzpIsUwwpzBbHqORLxKTFK14Qf2hLVbFmZ5FjMco9rXx9/FFW1BqFphhDmTNUZZNIIE5Dsp2e1ADTq9OEtBCmZeI2bvoT/SwURJSB20+s6JW1zo5to1s6cSWAIsvIktMargM9AEl/AjtTRh8eZqY9xKMv/491eUcX41ncTOUG8W5JdHUdZP3+i3YcJb9fZGkNDQlPEtOEahVZ09D27RNhqldSloXS2IiZySAFAvSVghztOsozo9+lXHXGXJpGKJzgru6jDCiNzPpV/Kqf/kQ/o9nRTS/Zl+xjd/PuK/v7V1FeRMEGxaVdLmOOjxONN4oHc3uI2bGptXNri7gOn+onU0gzRZadlQhji8M8MfMUy+VlNFmjN9HLsdljyJJ8WTJ9xB+jpskC9JRXRVfMUWiVahlmVibIzk+QaL00YfVSD2Erm6V24sRmyf327YILVC5fMRi6mEO90tIiwNfwMDiqSxwvI2NoCDkYxDh1ygNBUiRCKRni8elvs5SeQE6lPE5lprrCYyPf4ONqjKSq3lDn89dbV5IZtvGzsYtFlKYmpkM1kQ03JsactmmSSnbwcNuHaX7qGA8cOshjM9Ms6zqSJNEf7cHU5+lOdLNaWMG2hYy9zZcinK/RXiiiL84JPpEkCYPKm7Dz85bg+MzOzvKud72L7u5uvvCFL7BY557b6qS/vu9972P37t187GMf4w/+4A9YXl7m137t1/i5n/u5N1XRdaWlRCLI1ThmPkNXrIPDLbdycuEkmj+AbdtoskpKS1BeWaR7Vxc9iW5Opk9za8chGvxx2qMdfHjwQbLDpynWMnQ2tmClzzA3kOLxmadYXsiiZDtRkkkagg08tOMhehO9b/bbfsPLrlYxRkZQOjsxRkaYVDIsTp7DSiawQ3F2NxzBr/jpSfSQq2R5R8cdPFZMM5OfoT3SjqZoDEQGONJ1hO+OfRcA0zZRZZWQFkRiDZBrsoZiS/Ql+jmxcGJTwvq+1gPsCfYihU0K8QCPPvdnZIqL6473YjyLm6kkvx+lrQ2lqwtzYmLtPSqKcIltbhajpkt0HK9H2rWkacItuaUFu1wmXK7yU23vx18zGS3PYgQ0NMOmP9TJj3Z9iEjRojvSgZQ5xo/u/lG+duZr68DPvuZ9/JOD/+R18XusQmEtJ811co5E1qTrW5RdKtEVayAVb6OCsebW7Ch4gv4IMQLYVpWCUaIYSvD40GOsKDU0WWMgOcAfv/THnEifwKf4SPgT7GjccVEyfW/zNvzxJKWF/DrQA9Ce6qW0nGbswjEORFKXBQAbH8J2tYqxsIB+4gRmJrMOHFvZLNVXXkFubhaj0sXFdf5DW3ULrGwW/fx58naFKWOZgl4kFk7Q072PCH7M+XlwsuusQgFJVbHm54Xf0b594kVMU6gKVZWZRITMpFA9uf+zVlexazUWMxkmYmcJz2XwHTx403YvrrTqPxtzYYHS6hKPX3iczKoDeiwBYpbS4zzu+wYf7dhL+0SOj8XeyUzMouRXOHT0nfz95FP8YPxpzEIWJIm2aDsP7XiIw+VGgrNZATYLBfShIeTm5ivfuLyB9ZYAPt/85je5cOECFy5coLNzvRGW7SyyiqLw9a9/nc985jMcPXp0nYHhzV7j2XEePfE3LM2NYmYyZAImy1aRD/Xfz7mVC+TjyxiFVeRCGQuwMst8sPVeHtr1YVTZR6GSw2dKnL/wInEtyoMDHyY4tkhpoIsn0n/PcmVlzacBWC4v89jQY3zqlk/9g+v8WNmsaHNXq0jRKKWIhdbYRGRwD18/8eesVLJ8ZNeP8MUX/oiFYpp3dN6Bruvc3X03+5v3s69lH6fSp/jb039DUAsSVAJUzRpHuo5QrJXwySpHuo+ys3k3TeEm+hu28eCuD/Pvnv23vDL9kjgIWRaqrsOfpfGZE9SqVaZu7WRxaRI5GNx0zJmV2S15FjdTqU1N+N/1LqrPPLMW6+E49/oOHMAuFi/74Hi9adeeCVy5jBSNImka7fN5Phm6h9kWk5JfJmRIdPmaCS+UsQMBIlKAD/XfzxOj/5uP7PoIVaNCqVYkFUxxb9c72ZXacc3HY8zPr4+iQORv+e64Y2vzwLqKWCoPdt/H0/Lk2hed0dOOWD9BWyHZ2EM2LPNNfQTdp5LyRWkMNXqgB6Bm1rCxL0mmj0VS3LfrQ5xPn2Vm9rz39fZUL/dtfz9TZ1+kEOjFTKc94HMluYDuKA9ZFgnjpZLnOm2Xy8I1u1IRRo+ORN59YNq2jW9Dt8CuVtGHh5kKlHls6AkyuTnxkNV1GkdaeXDbB2kbyWCl09jLy8gdHchtbZhullqtJsadtk12Xz/D0QqzyjKDt7wbbbXASHmWyty0GLe65qXlHKYe+KFTxcqJBFNzRTLlZQGs3UwvWUaSJJays8z0H2JwSSKs62xf1JFjEaShPNta38/9B9/BgpVDU/20lBXalyFiyiJLLhJBcsCPXSjcNF5j9fWWAD6f/OQn+eQnP3nZn+vu7uaJJ5648Qd0HStfzfPo6b9jcW4UK5OBWo2Y6mesuMQPxp/hrsgefPEdDFXPUqplaU/1YhULmKbOg9seIF6ymDLnKMplIjsP0Z6uEjo3C5bFdMpcNzbx/DUQ4GciO8Helr1vwrt+88rWdeEUvLgIhkG400e8rY9Hh79OrrrKO3vfxTNTzzCdn8GwDC4sj2BbJs/PPM+epj38+t2/wYn5E8iyQr6apzHcyEDDAJ/Y/3HOzZ3mn93+Czwz/RyL5SXKRoWCUSKdneb/uv1fMrN3nv8/e+8dJ/dd3/k/v2163dmd7UW7kla923LvFGNsCISEkBhMOI4EEnLJkfxCQu5IIdwdJI8kXHJ3SUi9u1TA2CYcBhuMZYOwZatYZVfa1fYyu9P7fNvvj8/s7K60suUmS/L3+Xj4AZr6ndnd+b7mXV6vdClFRAuyhTgdWTd2PE7RrzGrZYl2DuDzBEDXSSQnRGutTqGaf5FXdXmgdXUh3Xkn5tycCFx0uYSPS7EoWhqv80nj3FkGyeNBUVXCkkQkEiFfzjLlzXGyME4wGKQn1oH/1CnaPR7uH3gvE8VpcrMT+JDpqvrxH5miFs6jbd36sr/tW4XCeaIHRA5T7eBBXNde++Kvxeejq6jxlqYtjA3cyVR2EhcKoaqEpyrT3Lme/3fmW3xr8nFcgRDbOvfQ7vJiWiYe1cO2lq2cWjiFbhuN+bJjiWMcmz+2ZsurORDn1nW3I/feRiTchqVIlKtFNFti0+abCMrBxmD4UtXFXgoF1XXwelE6OpDdboo+hfHcJNnpswRlF12uFlxLlZ6667Tk9zfiGRon3Tp2oQDV82fCrEyGglfhwR/9A8nEmLhtfXg6Kc3z8PAj3N99L65TYjSAalUMXrtc4nmTSeR4nFMbQnx55J8YPztFRYWaUaEr3MOPb3oPx4aGqS0FoEoSfsmNnU5j1at0V8tWrOR2Uwq4xN+oz9fIOJNcLiSvFyuVokgV6+ysuIPXi7JhA1YqhT9TYutilq0ALhtzQlRJ5W3bljPflrbrVvxcLyeuCOFzNTOeGSeZnm6sVwJo5RqD4QGGy5PQpOE/u8DOrm14NsS4q+tWwmWbjqyE+9GDyB4Pm7dvB6MKVQ/G4kjDi6Fgrhia9HiQ/auHOAt64ZK+1ssBSdPEAGz9G3dX1YMaibB4dpFMNYNbdXM8cRzDFkOvuqUT8USQC/OcXDjBiYUT/MI1H+dDuz5Ippwh6A7SH+iBxALb2lr5t8STbNY6aG/bQM2sUjRK6KbOwcTzDMTWo1eSmKqMKWvoJ88y1+Hn68f+gTOhGscnDiG5XHQ0r+PO3tuZnj7ZED+BFZW5y3kAWm1pQQmFXlXL6tWwVsus4JY4mRriwflHyGQThGQvLlMithDl3nVvpytfxjO9wIZUAWOqVP/dyIjqaiqFbZq49+9/Wa/BTCTOEz1LWOm0EGZr5IFBfcC5uRlt0yaah4a4P3oHD2e/JVoSikLz1l18a+RRFNPC6w7yzh0/yZ89+2ccmTvC+7e9nycnnqQj2MGdA3exUFzAo3moGlXGs+Okq2sfU0+kB8s0aQm08leH/4aF0gJulxfTttjQvJH12z7SGFDWh4exAf3kSaxUqjG3Jnd0kLhhCw89+xCpcrqRth6LtvOOvu20nywLkVOriViMpZZofRh5JbZhnDcTZhsG4wunG6JHXGgLkVStktQ0puQc/Y03Ulr+3/pQeO7abfz18T/lyflnyJcz2JJEwaowWZzBpbq4e9ftHH3+UbBtYpF2OrOiBWRfhVuxoWAzSltb4/PQ1nVsSRI2EpaF35AhGGyIQHtJRK4MPl362dVd8IHln+tFxJ+8UTjC5w2moBfEL0zdNEr3usipBjW7wrrm9XS1DrItvh0r5MdXNPDM52nXPbgPnwSfD6tYRD92DG3bNqhUUNevx0oksJJJAp6Q+OWrh9WdS0C7PH8pX08a7ZA6vmSB9u5Oinpx1aC4W3Hj03wkCgk6g51Ilo0EVI0KatWgLVljffMANaNKdXqSgOZH01yo84vEN+3iq8f+mZGFYWRNIxBoQpFVHtj1AF/6wR9TM6vsaNvFp2/4NQ49+wjJ7BwhX1xsIFULzKQneJzvcXPrNcwunF2VbH127hQPHvw7FpNTjTTt5lg377r+Q/R3bn0j3tLzeLUtq1fDuS2YcWORA0ce499GvsVMYQa7VBLtopZNkK81NqP85TLG3Nz5LSjDwJiYQF2//qKdkZeO46Wuf7E8MDkQQO3uxrZtegsFHtj5QabkPAW7Siao8u2pJ0DT2N5zHf/r0P/i+dnnMWwDWZLxu/xM5iYp6kV6Qj0cmDhAi7+F3e27aXI3rXksvkyJOze+nV/77qfJmyUSlUWymSyypDCVnSBfyfHpWz9DZvQkNbVAvKLS61PxLpiNE11RMXjwmf9NqprBzuXEto8ksZjP82/xKj/VsRPfVN3HrH4ylcJhsQ5wzvsl1T+3zj3OQjmzxptpi9a1LFM0K6tub1UqSM3NVAe6mSjPMls7y2Pj36VUySNJErKq4sNHvpLjifEnuOfWtwIQC7dzX9db8I6lwOcTuWRXwVbsyr+PLleYJm+MtFqPjqnVMHM5qNVo8sboTJoikR2EeFQU8XNamX1pWSJSJZdbPYt2sfEnbxCO8HmDCWiBhmrOB10MZUco6yWxdVCd5bYNb+HA/FGqk2mM4WFxoutczzt33EL72VRDidu1mggwdLnQdu8Gw6AnPU9zvJfFzCzm5CRW3dlUDgRo8jZd1iFyrxdL7RArnRYldctCURRkZHa37aI90E6Lv4WKUWGhJGZVfJoXybaRZYVWT4xd7n5SgTkeOvw1psw0SaVMxawSj3azf9ft/N2hv2JkQcxKBHxRJnNTlPUy3x55lP6mfp4cf5LHRr9NwB1kd8t2pHENdTHNYMcWhhZOUTbKzOSmoOcmYtGORrJ1rpAUomdhohGGCbAwNcyDT/wFP/uWXyXS0vmGvbdvNOeuhxe8Mg+OfBV3e6d4PyUJ27YplbIMJU6wM7aNxdyc2IyqBhsr2OdhGMvmhxfJS1WHJLf7JQe6lyIMjOlpAvPzbJZFxfaR4klsy2Q0PcmtG+7imekf4dW8VAxIV9LE/XGS5STzxXm2tWzDsk3mCnNkK1nWRddd8D2biWbQq2VSlRSd0V7WKS4My8ClulmopXnkzDdI5uZ5YfIQHh1u7L6B92+/ibZjE2CaTEcVFl8YXv6SZVnCR6lSYXFhgtmdNzEws9i4XG5qQunpQZIkzKmp5fcmEBBZhue0FyVZJuBa48vaUjSGruNDQ2ppQV7yDvJ4mOsJ8/XD/8TC2eMMxN7LXHEeWVLwuXwolo0qyQQ0P7ppoMvwvu3vp7Mg4z2TECd7225Eg1ypWIWCCAKeF5uoKAqeapV3RvfxSPqHpK2iaHMZBi1dG7kneh3e50bEbSUJqblZ/FxMc9kFvd6lkEIhkSSvqsgtLSITrKkJbevWy3YmyhE+bzC9kV5i0U6mK0WGk+OUjTJSIICVzbKxdQtHzzzNM6MH2NWxB62pCSuVIpme4eHKo9zfeTe+RP3bVTIp/BNsWwTRpdN4Fhd5Z8eNPFx4lKRdwq5UMKemiG275rIPkXs9UVpaUDduhGoV2zDQpHk8mpcjc0foDHYR9UaZyEygSgoBVxDdNJBlheu6b+C20E6QbB469SBDSoqDC4dIF4WVfHc5wUxpjnikk9OJk1i2hSlZlGpFTCwmc1PsbtvdOI5TCyfYGNuA7nej5csE5rPsjG8l75HQsehtG+SWvlsabayxxBkWk1OrRM8Si4kxxuZOsTPUfNl+2LyerLUePmmkWEyM0RSuf7momyEClIpZcpEisYIl5qeUiLjNhWYSzmnFvBRKPI4cja7Z7pKjUZR4HHjp6pjkdqN2dmItLIihWyASEZXcfDVHSS9hA2W9jEtxcWz+GLf23krNqDGSGUG3dGxgY2wje9v3cjY9yub45vPfM1kmZ1fw+cO0u2VOLZ5iof57jQRRT5R3b3o3tia+ZJWKRQ6MPoG7TefDG+/Ac+osRaqN4F/xQpc3HO1ymZILMdhtmiitrUguF+bCAvqpU437vGiqvNdLt6edWKyLZLIulOptLMnnI+ZrpmOugmvvXmpHj2IePUp5XScPzj5IMjePOjCAW3EL0z7JplTJE1C8ICtIuo4mSQRcfjYs5LAXE43Hl5uaXnE0yBuNmclgzs01fg+tYhFjaEi8z1u20Jmu8DOR25hp1ihaFbytVVqPTRDISWILrp7jZpXL6IcP43nb27BTKTAMzMVFMAwklwttcBDbNNHWr0cOBi9pe/uV4AifN5igO8i7tv4YXy7+L8rTVSSfDyubpcMX5y2Db+d/Pf5FDEsnZ5eJ5vNI4TBUqyQLC0z7dNZnMsveMIaB1NyMbRjop06hdHTQMV3g/ta3MtVToWiW8Ste1nXtI/omrPYsIdXNtfShIahWUSybt/W/BYDvjH6b+3fcz/cti1w1x7roOgIuPz+++cf595t+hr5TKUY2waSe5OD8sw3RA1CtlZnOTbM1vhWvL0SxmMGwTCRJJuwKkqvmGq00ALmesVbQLGKKIj5A0nni69YhB4P0tWxYNbtTqObEt6xzRE/j+nLuqhrAfDmstR5e0IVQ8NjiY842zeV5BKBm6WBJ+KpAUBNr5msIFSkQeNmzCnIggGv//gtudb0cX5hzh7Y3qW20Bzs4vnAcX9180QaqZhXd1PnXE//KtZ3XckPPDezv2M+Olm0ki4t848SD7G3ZKSJCgkGM6WlRAdA0ZroCzKVm0TQ3xfI8UW8Tzb4WSnqJqdwUiVKCydwk21q2wLAQNOVKntHSFFPRHBsCAQKqT3wO1beEZJ9v1Xq8HxcSoG3Z0qieKPG4mDMpFBrp40uGmHa1uurkKUcihFwB3rXjfTw09BDJ9Ixw5bdtmlv7uHf9PQTOLFJ79lkhWLq7men2kzq2gKSqmNPTBAZUNjZvZHhxGAsLAwvNEMfcHxugywqhrotBW5tob4XDaJs3o1yk39zlwFI7yyoUqD77rLCYME1RnWlrE8Lw0CH0EyfQNm/GnyqypXUzSkcrZiZD+flprMQc537KyPG4sGPo6Wn8vdmWJWwAVPWyFzsrcYTPZUCvt517Om6jVQpSlW1c2QIYJrPZWUy3hiS50DGRFAVJVUHTkN1uygEX2qZNWKaJVSwihcOo7e3YmQwUiw2nVykcQdaKSLqMrAUaFgBvZla2GbZaKf7y6N+wp203d/XfhWkZ/Nzej6FbBoVqjutbr2FL3kf0iBguzVfzpJTKKtEDsJidY1N0D5ZtY8syfn8EVfXQH+2nO9xNsrTIukgfmqyhWzqFWoFmXwtp5WwjH0cOh5G83jVbkQH3ihTlNQi4/FfdAObFstbrDiyJglKJjmAH0/NnRC5epQKmiUvWiIWa6ZLCYiPJ6xXiYkVba6kCobyCNofa1oZ8553LPj5ut6gEvYKBz5W/r626zv17HmC0MEmqkmJP226em3ser+rF5/IxlZ/kyfHvsyO+g25vG19/7h/qL0Yi6o2ij42JZG5FgWiUomrx0KF/pHnbPipmlYPTyw74UU+UTc2bKNQKHJk7wq7WXULY1MNHa7ZBQS8ieQJ0WSGa472kTVFBWhIxGAaxQJzepnW42nvPcxVWOzpWxUrg8QiBL0ko9UwuORBoGF32DA/zocGfZNJIUTSKBLxh+np3EMCN5U+hHzkCkoRVLJLPJLB1HdnrxSoWmB87wQe2fYD/+8L/ZXhxSMwX2TYDrZu5f9NP0j2eR27vbYSvauvXo9arc1cCDQsBr5fas88KE9tqFZYCS+fmqAHq4CDG8eONmbalv5+VOWwrcyXleBz3Lbc0/g6u9C9XjvC5DLAyGTxlg7npYXC5sLNZrFyOjvW7sMslANSaidLWBpIkSpcLCbztVYypBZSuLpT16zHGxtBPnRKDzgCSxOymdr5+9J9IJsYbz9fSv5Uf8370snYDvhQstRn6aOXXbv51Pvf9z/Hk6cfAtnnENNnesYvfvP7X2fr4EKTTmIqC1NREQIoIY7n6gOaSGLFsg8XcPNd07KPQtp18NY9uGcwV53j87OP0RfoYy4zznq3v5asnv0ZroI1tsU2UUwksc0GsX8fjxILxNVuRffH1NDd1sTB9+rzXEmvupluNXRUDmK+EtV53t9pELNJBYm6UO7bdzmOVKjPZSSSXC583xEDrJt7dczfhihsJUOrDxEstUElVwe1es+1ysSzlSb0WrGyL7a2G+dCuD5GpZPj/bvp1/vK5v+TI7GFqeoWgK8hgbBP3b/9p/vTxLzR+R7d37mGz2kH1scfEgL8kIUWjzOzpwmpp4n8e+p+8ZePbOblwgtPpM4CYGeqP9POTW3+SLz/3lxRrBSTbFu34UgmX6ibgDiKpCr5CjXdfez9fP/xPpBAzOQCxpi7uG7yPyDmiZ4lGy61SAa8X/cQJ8eUNwOVC7e3FtXevEJKRCK6dO4lmMkTWmIsydB2lrU2ElyYSBJqaRLWjvuE1PXmSPt+13Nf3dmr9bwNZJmi7aXZFuMnoIlATQkBuahIBuVdYpadh5aBpWPPzy1tYKz6r7Lk55K1bl+0IWP33syqHrVoV70Nr6ysS/5crjvC5DLB1nW4ixAJxklJZOIdWKti5HB2RbtLlDKGCgVlIClt1VaW5e5BurQWkPMbJk5hTU+I6y8IqlZCamij3tvP1o/93lehBVUnmE5e9G/Ar5WKM1dbi+u7r+e93/SHH5o+RKaeI+mJsluI0f/cIpFIASNEoanc3HYkaPaFuflgffESSkCWF5lArA03r2RrfTrKc5vTiMKOpEbqivWyNb2VbfBtfPfFV+qJ9/PSOn+bW3luYTo7z8f2fYKGSFgGJ3jC9kbUjRUKBGO+64QEefOIvWFyx0htr7ubduz9AoGS9rAHMV/peXQ6ce+yS3y9yg0qlxm0CFZv7trybh8/8G1PTJ7kpthup+0Ykt4sdHXvZUgnhT9aw7eUTqMvrfUWr+JfivcxmEozPD5Gv5Ah6w9zYsZ9vjT/GUHKI+7e8nx8f/DGqVo3OcBfjybP82ff+gJJZAttie/c1/Ma+X6Z9ZBG9PgiMrmOn02TjNWo+N8fnjxH1x9jUvJnruq+nYlRQZZW5/BzJUpLWQFvDEwjLwh9pYX37FvpaB3ENNCGHw/RZFg9sv59JI0nBKInUcHecaPdqHye7WsVcWMDKZMQJORJBMk3MuTnxc8zlGqvvViZD7eBB5DvvbFR+LlRxWDqBS4EAkt9PZ0GlyR8j4wIkGdMyGDv9LPFYN76Wdta5OoiUoTc4gOfMpGgH+f2izSVJGDMzDbfty52V7V67Wl0WO9AwJ2zMsOl6Y35nqU21knNz2K42HOFzGSBpGv6Swb39d/Nw4vvMW2IjaH5qmHv33stoaoTy6GmoT9XHvDHu67wT7+Q8VrUqLNgLBeSeHkzAmp9H27aNUXflPNEjh0JIinJFuAG/XNYMfdQ0lF7RMnqpE1KX7qM1EcacK4NVQNu1HrOzU/T7ZRmrWsU4exZ3pcL9b/9xTqVPc3TyWWRkupr7hGeJt4k/PvjH7O/cz239t/Pj236C+fwcQXeIFxZe4Pru6/G7/NzWdxvpSpp7dr6X9kgv7Rf5Gvs7t/Kzd/1HxhKnKVRyBNxBut1xArkq2ob1F32yvVBA5lJY6uXMBcM9e3sxJyaWxY9t00OEn73rU0zkJ8mnE/hVL91qDH+yCFa1cd+l1/xKVvEvxXs5PHWMJ09/h3R+Aa/ixioWMS2Tt994P6ZLI5uaxVeo0u2OoT1xmIVdW+l/y38lU8sR8YTZonTR/OgPYeNG8S3fNEWelW3jr9iUpBJIErlyltHsGEW9iFt1Y9s2btXN9tbthNxBiiWx+uzVfNzYdi33dN3JVC1FUSoTqOboa1lPU8tuImuIxyVxmKsVGJ8+QS45g19y05m28GUrqBs2NN5PdWAAY2SkYfVhpdOrnKMvxJJdhQwoPT34pqa4t/MuvpE9yGIohCTLWKpKzajydm0jHZNFEauiy1iaJtbry2XM2VnstHC8X5rLUuvxSJcrK9u9jc+BurjBMMTPe6n6o6rI0SiSz4e2bt0V84XntcIRPpcBciSC5PHQla/wwfZ3MO7bSj49T8BQ6FxQQLqG6T3XUfIqBPwR2mdLeI+MYRmGyEean4dSqeG1IMdiqAMDFDPHxTD00qyPy4W0YjvlSnADvliW7OwLfpVJd41CrUDQFaBT8kFikimlQEEvEvSE6GvfTDh2vtSQNE0ktzc3Yy4uYudyol++lDQdDDbKxQOnkvzOjf+JRycew7RNskaRkcQpDo49xWDndo7NHeF0+gzd4R62t27nsbHHAHApLlyKi5A7xDs3vvNlb9ZZmQzeszMM5i3sigpWETmwgLpjx0WfZHOFJKNjhyhYWYJ+H11E8JcM7HL5srfmf9Fwz/FxtK1bRRTCipOu2+0mEu9aFiiZ5d/7lenhr/h45ubESUWSxOMoCnYq9Zq9l6fmjvNfHvssI7PHATA1hZZoJzd338Q/PvM3fOymX2QwvAVjfhi8ErrHQ/MPTnBLtSrmZUpJlG4dy+US7vBLzrrVKigKnQWZlphYQT85d4xr+m7kyPwRZouzqJKKJqtEPVF+97bfoVrMsv2G9cQtHyHJwzePfI2klceuVJCjUWKhVt619T30qM2rvmgsuT1P+XS+fvwrLIydFNlQpkks3M69XXfQcfo0clsbciyGMTGB3NaGNTPTqFRcyBvJrlYxMxkxm2WayO3tWJOTjbDT7mKRDw78ODMtGvl0goDioUv34RmbRfL5ULq60I8eFe7EPh/Vxx9HCoVQBwawZmcbbttLFafLlVXtXlVdfv/8fnF+WLIRaG/Hdrvx3HYbamfnZfu3/nriCJ/LgJVbG4EabBwrQbADTB3JZYKqsln2Y6eKSHkLfWhMfNCaJubkpAj5a2lB6etD3bSp0Y8N1qbXzH5aInAVrbNbmQxTPp0Hn/8HMqlZ4m39KJEIHn+YmlGjkksxnBymbNfoal3Pz+z9MIOtq1O3V5obKm1tInG87oKNogjRY1nCBdvjYeOhSWKhzRxtNfn7Y/8bv+LmZv9WUhZUzCrzxQSJ0gIbYxuZK8zRG+5lOj/NQHSA3vDa7azzXteKkMuiT2U8fZZcaZ6gy0uXK0JAF+u8xsgIcjC45odYvppnPDNOsb7l9P3h75CdWJ4TigXi3Nt/N115Gbtcvqw3w1403LOe/3RuSKY5P99oQa0ljF7NB7+RSGBNT4tVc0XBKhbBMHDt3ImVTL7q9zJfzfN/Dv9dQ/RU3QrJSoqpqVmShQW2hTfyzdP/j1vj19JhmtiJhEi6HxkRrsp1cSOFQqiBAPoLLzTcjlFVUBS8o9Pcfv1b2dd5Lc9O/oBnxp5ic/t2drbtREKiK9TFTwy8i0F3B1Lcj37mDAW7wt+e+QrJWnr551GrsTg5zNcW/pwPbX4/gbKF5PWK6s3oKAXZ4KHx/8diYlyIGFUF0ySZnuZhHuP+0K2EbBsCAczTp5G7u7FWmOWt9XOyMhmMqSmM+flGJUtyu5FbW1FDIfGFT9PwRSK0rKg62bqO3TWAretYqRSua6/FliSqjz0GloWdyTTCjO3FxYuuOL2RLH1+2eUydiaD65prqP3oR8LfzecTQjQaFa/Vst60ogcc4XPZsLS1YWYyYsZnKWhxRb6WrWlYSx8ySw6asoyVyyFHo8ihENq6ZYOyvvh6YtGO1XlddVa6AV8N5M1SQ/R0D+zisZmnyM1nmCjNUqTGhuYN7Ivt5OTwdzmzOMxUcY7fvOM/sz62/B6sFKCUy+ByobS1YS0uLpeLQXy4er3YySSRkwuEDA/9MzUwyxghP1PVeQpShYgnQraaxbAMctUc49lxBqIDbG7ZfFHmkY2Qy2yWmd4wD499i8XEOHI4jG0YNDd1cm//O+i2hU/NWifZscwYDw09RKqcoivYxXNzzzGTmwG3jVtxE9VC1CopHj77//hgz334i/pluRm2dMIyUymxwVivsBTcEmc9RebqgYmdZR/rqj6C7uCLtqBeC2FnzM1R/d73MKenG7MUUiiE2tND7cgRtB07XvV7OZ4ZZzoz2agm9cX62OOPoVs6LlljU3Qj2UqGBw/+PR8a/Am8qRT6sDARVHt6oB7GaysK+rFjDYf4la0uKR5n/USZ37vtd/izQ/+D04vDWKbBQmaG9mAHHx78KQYSJvL2iBANmQwTWobFFUP2ks+HmUqJNnplhkkjxWYioop49ChSMMikWmAxMXG+HYNtk0zPMN1lEbJYnkORJORoFKrVVd5HjbtVq+iTk9jpNMbp08sD0YAci+HauxfXOSZ6S61MY24O/eBBjJkZkdQOyK2tuK+7jurTTwvTykwGad067BXPdzlzru2BnU6j7d6NtLvuHaZp4HZjZ7No6y++LX414gifywjJ7UZtbUV2u9f8wFbXr8eYnsaanxcl6/qHqhyLoW3ejOzzrXq8UCDGu/d/kAcP/t0q8bPSDfhqYSI/RT67yL4b3sPx4iidXZvY5A7Slhrjm0PfYCwzTrmUZ1vbVl6Yeo6RhSGenHyS1kDrqsrLuW668s03oz/3HGY63YiIkJuaUDo7hV+IrhOwgo0P65zbprawiKslQn+0n9H0KKos/sxqZo19Hfv4qW0/9ZLVHjOTQT9zBikUotLexCOTj5CsZsTQu8cDqkrizDEeTC5yf8vbCEpu4bNRv79drZLNzPP1F/4vyUoalzdIyB3ikeFHmMnNoEgyLkUj5mvmxs4bKFeqTBgLbDICl91m2EoB0/DTkSSmIvAP0//GUxMHKBUySLLChoF9vGPLfQSVAK0lmS7Zh3/F5t1r1c4zk0lqhw41co2WjsnO5USbJhYTvlqv8r0s6AXcqhvFktg3cAvfHv02Y6Nn69dK3DXwVt636T0cP/48E7lJNsc7kOvxClIggLmwIHxcJAnXrl3UAHt6uvH4cmsr2qZNmDMz9PRs4Of3fZypwhTFWokWbxNb1S46cjROlEtCbskjqYGqii9j9Ypp0SgCEUBULZVgUNxnacOqYctgg6KCLFNQTKRQBDkchp07kWMxESx6Ae8jK5MB26Z28mRDvKAowprA78dcXMSYnj6vsrEqQHbpZ6dpjXac+7bbME6dwpyZWWVoeSUIhbXcwCW/f3WVs3ft7bo3E47wuQy5kJU9gDkzg7Ztm/CZ0HXhlaGqSLK85ozHurZNfOTO/1gPtcwTcAfpi18+oZavFSWzwuD+t/N/Rr7G14cexAbcqoe+SC8/s+/D/NvJh5jIjHND943iDqZJprC4ZkL9uQOuSix2nheLubiIFI1iJ5N05mRikQ6SmRlqtiHaB2iYksyd6+7k+q7r6Y30EvVEuaH7hpes9liZDMbkJPrRo9ipFONbW0gMHxbr7u3tmIkESpPIXEqmZ5nurrJxroQ5MoLa1tY4uY8pSRbmzqLICju6r2Uoc5awO0Q0HiVXyZKpZJjNzfCU/RQ3tV9HRs9jFyVsSUIfHRWv1+N5Q7daVs0jBfx0h2K4hrMUMvN8ZepHHFg4SEkvoXi9hAIxDs08h8fjZ3fbHkaqJfyqjw0tvaxPyvjzVZFG/SrbeXa1ijE5ubyR1LhCrAfbuRxydzcYxitKdW/8rnk8+BSVoO1mZ/91fH/yANO5Ka7vuZH2UCe6pdMT6eV08gxtHRso6EXMhVmU9nb0oSGUzk5R5SmXwePBLpVQ161D3roVKhWkSARb07CzWYa2NvMnT/4nzi6ewR+KgaLQHuwguPuDxDbtwh0Qr2NJyC15JC0f+LL4w7bxq37Qxb+LUT/T8iIps0RH12asYoG50hFMowYut/gckyQCqh8zlcJc+lInSbiuuw45GESJRs//Oei6sB5YXGwYJ2qDgxhTU5hnz0L9tVkLC6sGzVcFyNZdn+26Mai1uAimiZXLoW3cKAQdrFlxulxZc0D/Mm7RvRE4wucy5ULbJdrGjaIVs2I9UXK50DZuvKCKDwViV9X21lq4AxH+x9O/TV4vYNoWNjbYNicWTmLaFjesu4VHD3+Fml5pDHu7ajaFcvYlH/tCXiyuHTuoHT2Kdy7FvYN38bD0GClXQczauFz0hru5s/9OZvKi2paupPGqF565gnr5/uxZkYCdSoFlUTBKwn+jWMSybTG3tRQNIMsUrDKoPmzLEhb1Y2PYlQqFgI6UL9DZvZVHRr9F2axwJnUGRVIJe8JsjW/j9OIwc4U5yuiYPi9KtJ/K44+Lx1+qKL7EVstrnRa/NKw6Xpjm4aGvs5ibb5xYo5aHezvvoFCqMTo5TakiBpV9mp/JcoKbe29iMjfD985+j3RhEdWw6I+t52e3/DTXebromMugNDW9qhZUY85oae5rhRt0o5KxZEb5Mr5ZN1qbK5ye27rjdARasXxevjH5GPdu+TF+OPUDvjvxBH7NT1uwgybZzyf2/jzBnAe5uRljeBi7UsFKJsW3fV2HSkXEXpTLYNuoXV1ofX0Yp0+TbA/xxwf+G2fnhwjH2hnNTVKo5Tk+f4zR9Agf3PkAt8T20GMGkHw+pKYmuitKQ+wDqxLWY5EOutUmMGwm/ToPDT9C2i5SU+DwwjGi3ih37r6V6RPPEOnqRw/6kFSFTFuMtNlE5Lkh0botFNCPHUPt6cGcmDh/S06Wl9e2AaWzE2NycrnlteRbc06Vb2XLSlIUrFpNeA4tuU5LEmpnJ8biImos9orcth0ubxzhc4XxUsGGb1amy/OcTJ6iM9QlRA9gWiaqrHJq8RTv3PBObJcLl6yBqtLujUNNx2e9sj8BORBA7esT3xRrNXpNkw/v/xijniKHCsOgqUhIzORnMG1xUryYYFgrk8EulbDz+cbJPqDWv12b9VDAcFj827bBsgi4AijNTUiqil0oiJaQ34+vsEC8qZvHJp4g65Nwuzx0h3o4nT5NsVCkalSJeZtQFIUmX4yAP0rtmeexU6nloEl40a2WpbT4c1up797/wVdkkGllMhjT0+SsMg+NfpVkZnb5pKooJBMTPFT5Bjduegv6rLTs26JprPf3M5w6zeGFY2iyimWbgMRo8gxfGXkYO347d4cH8S0uoq3IkXq52LouZu+WqgWlUiPMEoB69VVpv1iTgnPaLyvwjk7zjvW7+bY8yh39d3Bo/jBzxQWi3hhRd4RSOUehtsB3xr/LjR0/g2QoWKkUcjiMefYs2s6dGIYhfp/qs2mSy4W2axdWIoGkaQzZ84zOnyIQjDGaGSNfzTVEzMjiaRZzs3zt8J/yM81vIVCooXR1EYrHuW/Lj/HQya+RqmbEwH8oRJO3ifsG30WgYpNXTL5+9F9I5hPIfj9KscjGUC+nC+N8b/5H3H3LvfzVc19mYWaBdaE+Hn7+n+kL9/KLWz/CxidOiXZhKCRaiGu1KBVFVGTcbjEHFAqJth4sC9Ilx+IVVb6l+9uWJURhqYRdq4mZybqvjdLXh9TRgRIKoe7e7YieqwxH+FyBvBKvkauddCVNzBfDskyafc1kyhlM28Sr+VAshZJeojPaQ66coTM+wJ1t11PWq/R44qu2fl7Ot3S1rQ05EGi0JsJuN/viceLGYGOgeIkmb9NFBcM2jOXqlvnUanTmZWKhVpKpaeG2qqoiI8fnIxbtoFtuEhtosDyADXQVZHzRFmZGJ2mJbObxscd5x8Z7MGyDs5mzpCspOoIdaIrGuwffhVdHVJngvAHUtbZaltLizx2eT6ZnXpFBpl2tok9NgWEwsTDE/LEfCTFRdwpWOjuFAWd2jqKko1n1NpNtY9gmLf44Y3OHyFQytPrjSJIMdRE8nhknH68y5a4w6PG87NDRVdtAug5erzhBtrVhzs0J8VNveynt7agbNrysk+Wq9suqJ7ZpOzbBtXftpGSU+eH0QeK+ZsxalVI+BS4NTXNj2SYpP8QrbpTublBVFK9XzNcMDCDVasKTprNTVDyq1UboaaYiqp6SpgnRU39eAAyDkl6kvDjJdEeJDalcQ/itG9zBz7b2MT57kkK1QCAUoyNl4htNYgWDTKopkqlpIcLm55E0jVBZY4d/gHC8n6enfoAXjR5fB7nULLahMzp7gi/Zf8nv7vow0ZE5yC5XZM/bONR18XvR14c5Nra63eZ2I4dCyP7lllwjlqEeIGvOzwtBqOti5btSQYpGMWdn0YeH0TZvRnqFESMOlzeO8HG4Kgi7QywWF1EkmYHYesblCfLVPLIk4VHc9IR72NO6i0oqgZnJUEzMct81P41naAx9xZzGyzWeW6sN1keAD+/6MOOZcQp6gYAWuKAb87lImiZmE4rFRrq3d2aRezfczsPy90gVFpE8HsyxMWJNHdzbcQf+qo3kUcW3+WAQZmexDQNfskDH+ja87gAqMm7Vw1dO/CvXdV3Pjd03optVtsV3cCY5jGpCl7TiNcuyOFEYy9EcdqWy6ljHEmfW3BgEXpFBppXJgMtF7Uc/Ih8prLrOLhSwFhdFhUXXkao1+n1djJVmKFfyqJKCbhtYtoVHcWNZJqqigSkCfBVJpmLVKComan9/o413sce1FKkg+URLkUoFbfNmjDNnkOuBlpimqMjW4xVeDhfcGKrPmPSbYX5ka0RMF6bspurxYLqDKC43UXeE5opKbmEa2+UWIkDTkINBrLExCATEbNjUFK5oVIi0rq7GU0Q8ooJo2CuS6RsRBxY+xUvZEin2dqGAXSpheL3CIHA+xaZKCAhBTkIK+SDWIewX9AKS1ysEnW2LqkqxiGZ5cbu9jEycojQ7geT2YFcroKhIPh+jcyc5vbnMNYYhfufcbpE9aNurTfo0DTuVEj5MLpdwa16qhqoqckuLmOlaefu64FM3bUIKhzHHxjAXFsT2W3Mzru3bqR44II47m8U4eVKYY15BruYOL40jfByueHKFJEapyK72XQxEB2j2t1Azq/hcforVIouFBfZHd2DaOpot4W/qoysUIJSxsU1ztWXAa7T1E3QHzxuavhjkSEQ4yUajYkbD60XyeulMVPlg171MRxXKQRfe7hKdRRVfsogUVZaN+LxeTK+3kZDdWnaz0z/AlFFjR3w7JxZP8oPJH/DUxAFsbNqDHWyKDUKugF8xqcFyvs+S62t9lshGiIAlUVhYqg5cgJdrkNmYRVnKWILl4eH6jJMcDCJJElHbw3t776bqVnhq6mmwLHyaH6/mI+KJYOpVJENsN6myikfz4g1ECEZbsbN5pM7OizumFTlSUjCIMTqKXSohRSJYlQpKWxuKx9PwxVG7u1FiL3++6UK/a5Isg89HQPKwo3krD7n8lGtFfLILye/D6/Kz0d2Jq2gQDDRhziwihULY6TSWZYn/n8thzs6irF+PbZoo0eiqtPlN7i762zazUEs33uul+Zj+lo2o+RKYJgHZA4gWrF2rYaVSWPn88t9P/Wck+f3YmQw+uyYqKpK0PG9jGMhuN6VKHsUCJFlUMSUZTAO7Kt6LjFlsVPoagrNYXLUl13CETqeF75bLJXx3ikUh/Fa8xiVPrtrhw41tWSuVQgqH8ezZg53LYWWzVA8cQA6HsXI5rERC/M7FYpiWdUW4mjtcHI7wcbjiGUucYXjkR/zqjb/G737/d3nq+aca193YfSOfvfWzDB1+kvdufS8+XIACfnfDzTrZ5OKUMUemliPqDjGoeGh7g0z8JLdbeDHZNrXnnxfmeIUCaBr+QphNnjD6gUMofX0oHa3IzZ0o9ZPt0slTGxxEn5hACgToqsi0qVFy+iIz6QRbQ+sxmzZSswx6wz1si2zi9PEnaenrh6iK3NpKuqeZISVJulIkqgbYUPASnc1hpVIYponm9SK53SIt/kV4uQaZkqZBrQZAZ0ElFmkXMz518WMbBpLbTUvXRnpi/fgLOp/o/QnesemdzFlZ/J4wpmWSKSbJ14deVVui2Ruj29tBEDfduh/Jc3420YVYGmSW/P6G6FE6OzHGx4VZ4fbtKEuzIYoi/FPq238vh6X2y1rtLqWlBbWri+3VEHcN3s1obgxdsnCpHkK4URfTxEJtdFY9mGePoW3ciGFZ2NlsQ/hIqoo2OCgqJFu3NgSyXS4Tmy/yS9f/B/7i8JcZz06Qr7e+Bpo38J6Be5n74XeJRTrozJx/3HalskpELf2cUBQ6cy5i4XaS2Vkxf7bUhlUUmn0xqFQaMzgNnyxTtHgjrhCST0Lt7hbHHwqtihaBNXxrKhXUdeswJyeR3O6GIGuYKJ45c575pTE8LC7TdXG/UAgrlxNCNhBAkmVx3HUBfDm7mjtcPI7wcbjiKVRzbNlwA7///d9jobjAnrY9mJaJIiskCvN8/sDn+eM7vojrsecwqmKlWensRIrHeSFU5kvP/3dGF4dFlQToj63nk9f9Muv9KhPFWdGucgUu2m351SJHIsJ4LRzGTqVEVcrnEyvuzzwDto05MoIcjaLt3HneSXwpbFNpakIeHua+Le/ma/PfZaw8QymbRHK76fS3c2t0N+OnDhL3tdDtbUNSVYb3dfHHT/0hI5NHwRKtj4HO7fzidb/Ehu8fRe3oEMaaPh893laa/C3MlhPk5Ro128Ala4Tw0B5oe9kGmXIkAgsLwg5gZpF7N97Fw3ynIX4kWdgG3LfpXfinC1Aq4a+pbM1KbF40UAcitA38FCHVx/cnnsTUa+xs2U53cz+dgQ76fV0gudG6L968bWVrxS4UkFtaMMbHsUsl3Ndei5XPU33ySRGqqSjIoRDq4CDuPXteVnVADgRw7d9/3oDz0kaREokQIcL73D+zan7MyuWIBuLc1383/jMLGJaFPjyM0t6O3N0txFR3twguNgxc1167WiDXRcOWhMJndv8yL2x/H0cXXhDXlw3mjz9LJNjCfV134j1Zb2u63ULsLFUGV75fde8iq1AgULG4t++tPDz2aEP8IEnEQm3cEtnNj7zfJZ9dEI9j22LuStYYaN/CoLcHuWkWc2EBpaUFQqE1o0XWWvbQNm48z517LcdvORAQ5o6FgrComJ4WFaRsFjyexnNJqipaZJe5q7nDxSPZdsNJygHI5XKEw2Gy2Syh0It/o3W4PDg6epCjuWE+8tBHGpfZLP9aB1wBvnzPX/C2s+Kbeaozwil9hqom843xR5lPT5EqJNB0i7fteA8eXxDDNon7W7AMk7HCJLql1zdW7qMv0ndJXpc+OkrlW9/Cqg/OKvVhamwb3G60TZvQ+l78WJaGcvNGkWOVcV5IvCDcv8tlEskJIr4Y962/h86KmwUjx2dO/xlnK7NitmKp5WGarAv18rudDxA5NYHn7rsxTp1Cbm/nZLPJHz/9h4zOnxLRCIpCf3yQ/3DLr7Kra9+qY7iYAXJjYYHKY48JY0DbptzRzHTApCjrBKKtrFu/F+37BynUCkwHDApWmYC/iR5vO97FHGpXF0XF5KyWZ1Gp8OjYY5SqBcKSF5ek0tzSw7u2vfeif4bm/Dz6yZPgdmMMDaF0dVE7dgxt2zasUglrYkKsT8uy+M/lQvb70bZtw33NNS+7OrDKx6fuGXXuDNlSBElBL+CrSXQmDfwlA3NhAePMmVW31bZta1zmuftuXIODq65f9bPRNGzDIDs7zqRaoFDKEnD5aTubxjt0Vogcnw+lpwe1vx8JhOCrr4CjaaI6pmlCrAcC6MPDlNubmHZXKRolAqEY3cEu3M+f4NQ6L196/n8xMvOCED+GQX/bZn5p/39g47MTolLT1yciJXbvRu3oWPt9ugivKWNq6rz3pvE4CwsobW3ox4+LNlcmI35H63NDam9vYxBcXb8edcV8lMPlxcWev52Kj8MVT198PU8tHlp1mYRoj6iSWDPOVDPIkY28EK3xZ4f+ELfmYrBvH7lajrZYD9vad9HX1MefP/fnvJB4gZpl0OJvoT/cx89f+wlGM2dJlVM8NPQQH9714UtT+fH7xYbO1JTwZUkkxAqyx4PS1fWiOWxLLG0ARoCb6WdX1z7GkiMUCin8m7z0BDrxly2q3/8+Q5vcjGbOIkkSdm6Fv5EkM1o7zenNFa4pl6FWQ+npITNzlu8+/w32tWzgmh17qNo6Hn8Y2e3mwMwPGWgZxF82V7mQ24aBJMsoAwPIXu95IkhtacFz881Un34ac3ERX67CxqKCEm/HNbCf2rEXmHCXeXj+uyTP1isQkkRzSy/3bb6PHlnGXyizLhDkyYkn8UzO4VVVJJeFDSwUT/J161/42f0/d1E/w0Z+W70aaOs61GrIHg/kcphLW3BLMRCWhV2pYC4svKLqwIU8o1aycn7MrlapLRzGtsWG05JLL4AUDgvRDMLVe41jOXdD1Jyfx1+osUlyg68Pq1pD6owgtfWIoNCleZ5iEbxetB07RAtQltFfeEGIQJcLpbkZe3YW1/btyENDbCiVhIni6UmULvG1ZMMPzvI7W/89p3eWyep5wlqQQZppqQRg61bRZiqVUJqbV81NreV39FJeUxdy0JYDAVEB7hU2E3axKFrgiiJET3+/mFN6icdxuLJwhI/DFU8oEKMt2IYqKxjW8maKKit4VC+GUSPqibLo0vizQ39Ca6SDJyee5Nn8EEfnjwLwmVt+i386+a88P/s8Ls2DYVawbIsjM8/zP575Mz628yMMzZ8gaRhruj2/HsiRCEp9M2Up/BJVRfb7kcPhVzRoGXQH2d6xa9VltZMnwbLIWiVR6fF4Vt/JtsAwyFqlhm9K7ZlnmG6BlNdGqiahlKinks+gxGLIHg9jyRE2TlaXRU+lgrm4CIaBmUqh9vbCGkOjamcn8t13n1f5sItFClKNhye+s2ycV2dx/iyPBL/Lh7b9DP4iTKoFFiaHxXu28vUYBgsTQ4ytHznvfViLxhzJxASS37/c2lnadmu8R/aqAV5qtQuGqb6WrJxzkQGlbvaHqqL29Ijw2ngc9y23oFzE78vKoEtKJeT6PJdx5oxIYK//bCWvF23jRnF7j4fq008LsVD3f7LLZeTWVhGKqqrgcgkDxUIBK5VC27MHRZKIvnCW/S4XUlOTEMLNXuxcWrScWN6yXBLHF/I7eqkE9VWv69zrwmG0vj60vj7MZFJkr9Wx8/nGz/ncGSOHKxdH+DhcFeyI7+SGnps4NHMIG1tUfCQwTYN9Hdew1dfHqcw4LkXjyYknmcvPcteOd7GtbQe6qdMWEmZzTd5YI4dIloSb65GZ5ylvr2EtLICqku9LwiVo8688qa1ayz3nZPBaPA9AxBMRVQvbBlUDY8XKt20RdoeQ45pYbU+lKO/ehDWSwi6s+EYcCIpKlMdDoZDCLtcrJYbRED1AY2AbXUc/fRqls3PVgPZalQ8jk2HKVT5P9Cw57iZzc0zaaTbhEm7XhiGchs81KzQMCoUUF8vSzJQcCKBPTCC3t4vWzNLG2crHX3p9to2ZySCv2IJ7vVg556LqOvbu3Q1jPnX9epTW1osSPXD+wDClEna5jLphg3iMetr5StNUu1gUgtk0V2dbqaqwIKj/HO1C3aLAstCfew7XTTehdnaCriO3tiJHIsjn5kqdY856Qb8j1vaauuDrWrr8nL8ltaMD2ed7yds5XNk4wsfhqmAgNsBv3fJb/PYTv82h2UP1yArY23kNn73pM3TPlDmqZAkFYsxNzPL2ne/lB9M/5MTCcSpmlcncJNP5ae7b/G7+9fg/Y+HFXHHiz9fqJ3fDwFuovqLNnVfCpXDqXtooGpSaGWjdxEhqBMnjwa4gTuSSRH/rJgaJo67XwDBwv+Ut+LJnwLKQXG7smvChsQt5zKkpJI8Hv+IF6pdXKqvMFXG7sdJpjLNnRabV5CRKNIq2fTtKc/OaxylpGkW7trwBtBLbBpeLkkvMYYTyI6L1s9SisqxVnkR+6eW9f5LbLVoigQDq3r2YhQK2243U1LQckbAUXREIIIdCQtRdok2g19LU9OX+ztm6vlr8LbEkonW94UfUwLKwFxex6uv1st+PunT8L9Lqe6mE9Be7/mJfl+OOf/XjCB+Hq4Zb+m7hz4N/zrHEMdKVNE2eJtbHBhhPnuVf3An83jAttW6u2XAb3zn7HU6nTtPsa4FqFlVWOZs+ywH1ANd138DxxAukc4nGYwddQZJALBCnW/df0u2O19upe2mjqHl0lF/c/u/40rEvM5oeEfMMbjcDLYP84u6P0aJHkGMh9JMnkTweOqbTNLnCJKsJJJ8fuyQqZVaxSJPkoyfQCYyKJ1m5/RMIMN8f46SWIe23iXpibFY7aD06hpXL4b7ppjW9cORIhGAoJoz58vlV4keqb+gEI3HUji565i2aQ20kCwnhtlytNpLBY+E2Oo3AKk+ii0HStEbVwk6lROCn3y+qA8mkOJ5QiNre7ZwN2xQKYwRVH72ZeSKtPS/75/JG8nJ+5yRNQ/J4zhekSzEeS4Pf5yLLYm2ci5+deSnxcTHXX8zrctzxr24c4eNwVTEQG2AgNgDAD8ae4v/75qc4NnsYZJkNzRtpCsa5sedGvjr0VSxsFksLhFwhJCQ6Q51M56a5uedmTs8dR1Pd1KwaO9p24TGE6Lmv/278eeNVhVxejqhtbUgeD1ufLfF7O3+ZITlF1igSVv0MWk00zxlIG2Pozz2HbdtIbjfeqQT3brmTh6ceI5lPiMqPrhOLtHNf79sIR1qpeWdFy2DpxBcIcGRriN//we9zLHGs7t1isr17H79x46+z8/kFjMlJMXR6zklMcrtZ17uTlrPrWZg5g12vKEgeD0osRnPbOvrqP/twpJX7Bu/l68e/ysLi6cYJORZu576etxKwNfThYVw7d170N/nGoHPdqE9//nmUdetw33KLaAnZNlM+nYfPPELyzHI7riV3hHe5P3DJtgEvNXIkghwMitmtle3MahU5Hm/45CxlasHy4LWkaS9rdubF/I6upAR1hzcWZ539HJx19quD8eRZPvHIzwvRI0nYhoEqKezpvwFZUZkrzPHkxJMA+FQfbYFWtsW3c3T+KDf33swTp7+DS9bY0raNX7zmF4kXodMM4i+Jdom2efNV+Y2wEc+wxnyDVSpRe+450d4Kh6l9//sAlLviTIcsil4Fv6XSmZNouuYmcbKrVLAlScy8nD3LXE+ETx77PMfmjoJeE4699UrB9q49/Mn+36MzZ6P191/w/R1bHOHrR/+ZxfSM8PdxuYhFO3n31vesCoE1FxdJHvkRk+U5ilYFv+yhizAhnzhxqj09qD09L+vnaGUy6MPDoKpim6lQQOnuxjh7lnJXnP+d/d6qjDYAubmZ5paeS7YN+FpiZjKY8/PCbNDrRYnH15wXWvq9sfJ50da0LORgEGX9eqpPPom1sIAUDGJls0gej0hcn55G27IF17ZtL6vy9kq2uhzeHDjr7A5vao4ljgnRs4RtY9gGh8/+kH3rb2FX6y5GUiPIkoxu6pRqRRKFBJtbNnPfxvt4S99dRNUAW7QuOhL1NgmiynM1b3e82HyDVSg0BkdtTUNqbcVOJvHOpVg/J07wViYpMqxGRtCff148qMuF0t6Oa/duThonOTZ7ZLklYouMKxSFY1PPcfKaabrUnhetqPU1D/CzN/7CS2ehmSZB1c8WT0/jOexqFXNqqtF6e7mVOzkSwbVzZ6PVaVerSKqKJEmM+Iuk5s4ZmlZVJI+HVDl1ybYBXyv0yUkhWhLLLV85Hsd9881o3d2rbvtivzfSHXeIrbBSCWnTJtECq1TQ7roLtbPzZc/OqG1tyHfe+ZJ+Rw4OF8IRPg5XJenyilL4iqJmzaxRrhYINa2n3deKaVsoikJJLzOUGmK3aze723YzEBtYrn6s3FR5E2x3XGi+YeUchqTruLZto3bsGPbCgrjQtlE3bkQKhciODTO9qYmCVSGgeOmsGPh/+EPS21kx71PfirKsRlp6upo977nWIoCLzbRgE0GSXMi4zruNrevY+TzW4uKaj7HkMvxyWev9kUMhCqe/u/qGqorS3NyITijoq4NXL2fMTOY80QNgJRJUn3wS+R3vOK/yc6HfG7VuvPlaCpWL8TtycLgQjvBxuCqJeqPL/1iRvg5wfPI5/t01H+MH40/x7MwzYkVXltnbvpfP3vbZxoyQs92xmlVeKPVtHW37dtB1JElCbm0FRWH0hQM8nH2C5NkpqDtox1p6uLf1VqLemPh51ENUzyXqbYKifV5FzUgmxUm4XAavF1tVsefmGuvTS4J0VZbT0tCtLK92olZVUYkIBLDLZbEC/SrTt+VIhHDnOuT55kaoq+TxrArADWhrn6hfrgvxpcCcnz9P9CxhJRKY8/MXvSIPjlBxuLy44oRPtVpl//79HDlyhOeff55du3Y1rpuYmOATn/gEjz/+OF6vlw984AN88YtfxOU6/9ugw9XN9vh2trfvWm531c3lAAZbt7JVbud/3vZFjpfHSFdzRL1Rtse3N0TPEs52xzLneaHYNlKttkp0pF54jocnv0MyNQ0rYkOS6Vke1h/j3bs/xfaO3RybeV6In6VqnCSxo3sfW/0DaJ3dq0SIPjZG5YknsGZnGw7Jyrp1uPbswcpkGivr5w4ry5GIiB2ot+mo1cRMUCgkBpTzeYxkUjy9z4c6MACGcVHRGmvRFxuguaWnMeNjG4Z4XssiFmylx9++6vZWoSAiMY4fFw7LsgzlshDcb/S8SqXy4te/xFq5g8PlzBUnfH7t136Njo4Ojhw5supy0zS55557aGlp4cCBAySTST70oQ9h2zZf+tKX3qCjdXij6I2t4zdv/S0+98Tvcmz2cCMdenv7Lj5zw6/TMVdGcrkYGLzzqp3XeT1YWQWz6kZzKApmOg2qyqSUFaGinLMzYVkks3OU8kl+4/pf5fd/8AUhfkCIno7d/OYtv0lf+8ZVYsNIJpdFT/22cjxOMurmdOo5slKNiOVlo9RM3NV0ns2AHI1iLiwgh8PiAkUBVSWxYx0n9EkWyylCniB9vi66TxwmUAOp3nZbq4r0YgTdQe4bvI+Hhh4imZ7BTKXIu20kj5c9Les5MH6ArS1b6Y2vx5ibQz95UojIug+Q5POhtLVhZTIv6kJ8STjXvftc3qRVT4ergytK+Hzzm9/k0Ucf5Stf+Qrf/OY3V1336KOPcuLECSYnJ+moh9n9wR/8AQ888ACf+9znnA2tNyHX993Inwb/R93XJ0PUE2FbZJAu048UfXO3rV4NktuNbdvoR45gLiw0WkhKSwuFwYBoIa3M+gKwTKRIlLxeZNdQjT/Z/zucMGfI1LJE/c1sj2+nN7buvOeyEoll0YNYgz61NcaXjvwFZ9JnqPndGEaNTfHN/MruX2CP0bJ830wGK5VC7REeOrZhIAWDPOOa57/96LM8NXmAmllDkiR2xnfyS9f8AjtrMToX6i7E9ZgQ1759F/170hfp44GtP83o+FFGOxc5PH+EE/PH+NSJX0Y3a2xv38Vv3Ppb7HohLUI9l8wPAbtUwpybQ25re1EX4kuB0tqKHI+v2e66UO6Xg8OVwhUjfObn5/noRz/Kgw8+iM/nO+/6H/zgB2zbtq0hegDe9ra3Ua1WOXToELfffvulPFyHy4Te2Lo1T6gOrxyrUKB64ADm0oxNfYbKmJzE171eZESNj2Pnc437SMEQSns7fktF29hHt+ymr7n/pcXnOdlKmU1dfOnIn3IqP8KimcEoitbX02MHyNeKfPGuL7CZTqC+sVX33BEHIXHGX+ZzT/43np54iopZ95SRZQ7PPc8fP/Mlfnnnz+GJtLIom8zaKXQrQceYzsbWLYQjF+cR48uUCVoaX37mzzk+e4TmcBut4Q5M2yJTy/Knz3yJ31n/c7TPls67r10qLW+crWgnvZyE+9cCJRLBffPNa291XWTul4PD5coVIXxs2+aBBx7g537u59i3bx9jY2Pn3WZubo7Wc76FRKNRXC4Xc3NzF3zsarVKdcUHTC6Xu+BtHRwcwJidxRgbO8+lV/J4aB/LEAu3sthpgNW+vEZuWURrCp0FFYI6Snv7qqrB0ondKhZFyGc9IZtzvuQMu3KcSZ9h0cxgmQbxSDdu1Y1pW2RrOU5kh+mqDhB0B8/b2CpoFsdyw7wwf4yKWWFpq8y2bXTb4OjcESrXyHyzeorHnv86OaMAbjeSx8321p08MPiTbAz2vajosKtV9KEhTsSSHJ89QlfLABOZMbLJjLiBJDGRneDEpp+kXfWv/QYvDWwvBXO+iLfS69mm1bq7kd/xDuHjU61Cfd7NET0OVzpvqPD57Gc/y2//9m+/6G2eeeYZnn76aXK5HJ/+9Kdf9LbSOds7ID7U1rp8ic9//vMveQwODg4Cu1oVxnHnZmWZJnalgm8uxb3b38ojyuMkzhwVJ+t6TMR9A28n7G8VoZQrTp5LJ3ZzYQFzagqrXBbmdz09SE1Ny4njQEbPU1XBqhl0xdczUZgmW6p758gyxxZP0Bnu5rqe61dtodmGwYS5SFpOixy3VS/KxsbG6/aTrWb55vDDWKrJRDFBvlhEUhSGFoeYSU/ymb2/TN+4irZhw5qiw8pksMtl0pUszeE2IXrKmVW3yVayvLD4Avs91+OJRFa1uwBQFORAQCTS14XUuaniVj5P7bnnUAcHxbbh61QBUiIRR+g4XHW8ocLnF37hF3j/+9//orfp6+vj937v9/jhD3+I+5w/7H379vHTP/3T/O3f/i1tbW0cPHhw1fXpdBpd18+rBK3k05/+NL/yK7/S+Hcul6P7HHMuBwcHgZXJrFrRXoVpgmXRTZifvfETnO0/RT41hx8X3a5mApX6CvzGjeLm8/PYhoExPIxVrWJOT4vtJl3HWlzE1nXkfB5t61awbczJSSJaEBOL5kgHE8VpsuX0sl2BbWOaOg8+/49s9vcRjrU3ttCshQUKWpGwK4QkKzQ8hBpIqLKGW/NQrBWZy82QN8siTNM00SWdEzOHOdD6FM3tdxK4QNyFretIHg9RTwS/J8QWf5z2cCe6peOSXczkpnl29pCIt6jMsWlgAGNkZNWA89IAuRwIiPfoHNFjVyqNaAgpGMQuFhsVoKJXWTZ2dAXoDa9h7Ojg8CbnDRU+zc3NNF8giXklf/Inf8Lv/d7vNf49MzPD2972Nv7pn/6J/fv3A3D99dfzuc99jtnZWdrbxdroo48+itvtZu/evRd8bLfbfZ6gcnBwWBtb17HhwoOvsZgIE3UH2dF3DXZ79TwfJLtcpvbss5jpNHI0in76tNi20rTlBHXAzmaRu7upHjiA++67ce3ZwxatxqaePUzmJsnOnV313BvjmykW05QKGc5OHmNnoKkhIoypKUJZjaCcY1vLVp6u5qgYq1e2t8S3YBkGmuIirxeXV+1tCyQFE4tUPsG4epqt/nVrBtVKmoakqmx19/COwXfyN8/9Fd+d+F7j+v5IPz+799/hlz0UVQtrahalqwtp3TokTUPp7kZtb192yF5yllZVZjv8HC+Pka8W8Hb5iOInambpxIu/XOXs5DEeyT1LWl8eLG/yNnHf4H0vmhN2ro+QHI1CtXrJ5okcHC41V8SMT0/P6mTjQP1DYWBggK6uLgDe+ta3smXLFu6//36+8IUvkEql+NSnPsVHP/pRZ6PLweE1QqpvImm7dqEfPnze4Kvr2mtXtUbO9UGyq1VqR49iTEyIioWmiYHeep6X5Pdj5/PLT2hZoOvYi4uovb10tLbyKe+v8Yc/+ENeSLzQECcbY4Pct/6dHDzzBFuC/RTK2YYwkdxu5ECA7lSAp8af5hN7fx5Jlnlq/IAYcLZt9nTs4xev/UVG505hYQv7g1pNiB6EB5SCjEd2U8gnsb29a8ZdLLXXwpaLhWKCXC2/6vpcLU8iP8e6UIzwwCDuvpY13Ywbw8zVKla1yvOdNv/liV8nXc0wkR1HN3Q+ccMvsS7Wz9N6hu5YN2axQC67AL5l37JUOcVDQw/x4V0fBlhVDep2xfEl88JHSNfFe20YyH4/6oYNwvHaNC/JPJGDw6XkihA+F4OiKHzjG9/g4x//ODfeeOMqA0MHB4fXBjkSQfb7sRYXUTdtQtq6VYSRahooCkpT04tWB8xksiF6gEZUBQCFAlJnJ6WWMNN+nYJZJtwm06724fZ6G0JjX6cQKRuaNlCq5vGoHoqlDAfPPEF/uBdX1SKg+lYJEzkSITCu8bbe2/jW8Pf4+JYP88DOD5Gt5gi6AqwL9NBlhUlVTtHlb+fUwsm6qBIu06qk0h/sgUIRf1ikjK8Vd7Fk8jg5eQhpZp49zdsp2TV0y0CTNRTTYnTkELfcuJ+++Hq0QGzV/e1qFXN+HjOZBFVlMSBxvMfkwMRj7Oq+hpHkaSbTE/zHW3+df3zhHxhKnibua8YwdXbEt/PBXR9iODOCbi2/9mwly4mFExycPkiqnBLGivk8TXh5Z+eddEgS5tgY1GpIfj/m6Cjm4iKum27CnpvDLpfRh4Zw7drlVH4crgquSOHT19fHWqHyPT09PPLII2/AETk4vDlY6d5s5fNYS0ncgQDajh0osdiL3t/O51cNRtvVKlIohF0ogMvFTHeIh049SDI5JSIfRt00hVr5scGP0bdCaGxr3caBM48zn5ojaem4ZI0twX5cVYtYIE43kdXZYm432saNdA8P8/6utzJpZihUS2wMDNCVlwmkTZDS3NR9E6F4F7PVRY5PHwZAlVR2tu7grtabKM5O0qlpEPdcsAIiRyKUpg1chk2ft4WhxSGqlTy1+iyS1xOkM9xN6BzRY2Uy6MePY0xNYWazDO9s5S9f+Fem7TTPTD2D3+XHp/n4rbf8Dn9+6M95fl4cnyU1UzWqnEoO8VeH/5oP7fkwpxZPNR63xdfCg0MP4lbcYj4okcBMJEjIMg/OzHB/+zsI9fWhnzwpfg4+H9bMDObkpAhiXVzELpfXbO05OFyJXJHCx8HB4Y3jVWWYnTMYbSWTqL29GOPjlDpbeHji0YbokUMhrGKRtFngwae+zEfu+QyR+v2C7iDv2/F+vpb/Msn0DJgAQvTc1383AUM7T5gsJatHMhnC9eOW/H7048exayKCo3NRJxJYR+dN/4mDs8+QqWQI2S7kVJbi7CT3dN1OICu9ZKp4wCviMsIm7GrZTtYqo1s1NNlFWPbS7lstIJa2t8x0GjOZJL2pi78a+wpPTj6JN9zMQnkBG5uJ3CRT+SmS5eTye2iZyJKEZVucSJ6iZtRWPzY22XKWFk8T5uIiVt2YEU0jmZ1jui2Nb6qG0tmJOTEh2o0A+TysELIvN8neweFyxRE+Dg4OL5tXmmEmBerOzoV6UrllYU5Po7S2MteukDluoPb3Y5umCD/1erHSaRbVPBOLZ4jElvOu+poH+NmbfpGzk8colLMEVB/dRAgYGtrGjWsKk7WO+9z8MX++ys6am/Vd72Bs+gTFah5/20a6ol4CuoS6ZyPKSyxl9MXXE4t2kEzP4DJsWvAAHrAgFm6nL75+1e2X1uDtWg1qNU6Hajzx7BPkKzmC0VYkJCRJxrQNEqUFQp4w1GeYZVlBkRRUzY1pVsmfM1cEEPaERVCrYSyHw9YrUAWrgp3JIXd1Cf24VE2XZXE8S+/dK0iyd3C4HHGEj4ODwyVDiUSWhcYK8WOXyxRlr5htsW1xcl5KU9c0JEmiUF3jhB5rZ2eg6ZVVn+pcqIKllctsLRpiw8kwkIIquN2obW0v+fihQIx37/8gDx78O1GRqhOLdvBj+z94XpurUU2pi5IFM0u+IsxUq3qFiDdKxajgVjxosoZpm0jIeDUvMhJut4+wK0iqVCOg+kgYBpKq0uRtYkfrDuaL81hW3ai1HuqKLYa4A7IHyK0SRFI0ilUuo7hc2KUSktfrDDc7XDU4wsfBweGSIbndqN3dYkZvSVCoQlAEXRnhriNJq4ee6wQu4EfzSqtPL/UYktuNy+t9xaJqXdsmPnLnf2QscYZCNU/AHaQvvp5QINbY2sobRSZqCxSqefz+Kh1yBPfcHG5FPIetyEymxuiPD3I2cxa36mauMMeGpg2Mpkdp8bdgWhatagRXocr1rfvY5RtgvRkh1NpNX+sgAIdmD7FYKGBbFpKiUAv5ySk60Wg3Ukucco+MpijgciEFgyjxOFYuB6ra2OpyBpsdrhYc4ePg4HBJkSORNQVFbzlLc7yPxcTYefdpjvfRWz+JX0peragKBWLsWGuIeXiYSbXIw6PfJFlIgNcLlQpNvmbetu92mj0yPa0bOJ0eoabrnEmcoj3Shd8VwCW7+Oiej1IzqhxfPEHNqlGVbTbF1vPJTR9m4PAMSiSCbJm4Wl1Ibjf3Dd7H18v/TGJ6mpwbhsoTRKwAe5WdfPXwPxCNtHJf34/T1XQ9Vi6HXangvuEGZK8XecMGR/Q4XFVI9lrrUW9icrkc4XCYbDbr+P84OFxiRieP8eCTX14lfprjfbz7ln9Hf9e2N+7AXiPsapXa4cMUZIO/G/+6ED2Aoqi0dmygIpvkagV2N+9gojLLt85+h+nCDLZtocgqUU+UW/tu5dnpZ+gMd7GzdSfTuSlafHFub7uBvgMnxRyPqqK0teHavl1sZlWrpIaPMarm+NHED7DKZahWmS7MUPRIbB+4AbfLi0dy0aKF2RzfSnvcCfd1uLK42PO3U/FxcHC4bOjv3s5H3vEbjM8PNdpDva2DF52MfrmzNMQ86S8uix5ZobNnK98e+TbPJY/hUTy0Xt9JZ7SXW+xbUWWVsl5mtjCLYRv4NC+Pn32cklHiA9s+wD+/8I8A/N/3/AN9S1YBhoFdqTRmh6xMBt98Bq3JYHr0KJKqkvNITNSmecfm9/J3R/6OY3OHaQt3EVGDbGnZzC/d9Cl2de55Q94nB4fXE0f4ODg4XFaEI3F2XCVC51yWhEjBKDUui8f7eWzoW4wWx3Gj8cmb/yPfOP1vPD35NIqsoMgKveFe3r7h7fzvI/+bx0a/w56OvczkppnOTTceJ1PNYFsK0tLwsmU1NrGsfB5zepq8pmIlkxhhP6dSZ7lj2z38/dG/59j8MQAMU2exNMeQZfNHT/xX/stb/ittLX2X5s1xcLhEOMLHwcHhkpArJOuDvjkCnhB9LevP2256PTk3k0ppaWlERFwqloRIQPUtX+jSmEmNYbrhp3bfz5ef/yt0SydZSSIBEXeEZ2eepWJU2Nm6k6+c+gpv7X8bPaFuvnbiq42HibgjYKTBJSIr5EBAZKNVq1i5HFY2S0AV8T85l005lcMfjHFs/ihLoa2yJFPVK9Qkk9HEEMfnjtIaandmfByuKhzh4+Dg8Lpzdu7Umqvd797/Qda1bXrdn9+Ym6N28CBWOt24TI5Gce3fj9rW9ro/f+M561le3WjEAnGShQQVowyShGLbhP1NPD/7HFviWwCwgZqpo0kq07lp3rHhHWxr2YZH8/C3h/+mHk0hcV33dWxxdWIbC2K+JxZD27EDye3GnJ/HKhaRAgE6yxrNrX3MmeLnUFxReXKpHux6q8y0LUAhU844js0OVx2O8HFwcHjFvFQVxyoUyC7O8ODRvydZToHPB+UyiiTjUt1898x3mCjNEgu00BvuJXiBlfWXSyPks95a0kdGsLLZVbex0mlqBw8i33nnJav8LEV+BIaHubf/bh4e/SYu1QuShNuSKBllVFlFRl6+D1CzauQrWSQkstUs84V5dLPKkuj57Zs/S9+sARs2IHm9qOvXN0wWbV3HzmRQe3vxTk/zru3vIzP5dc7Mn8Cv+gAJl+oh6o1SKWRAllFkBSyIuEKOY7PDVYcjfBwcHF4RL1XFWaqynPXkSJw4BIDk8+Hq6KQj2svj499j5vQUW3v30RrtIqoGeWfH7XRXva+qFWVlMstOzICZTmOl06i9vZjT08tGfdRDU6enkf1+JJcLORx+3ds6S9EZ6zIZPtzay4SeZCI7QSY9S5M7CrZNoVagyRMlV81j2iYyMpZtoqHwga0/xW19t3J7761EPFG2hjbQt2AgRTTweCCfx5yYQIlGkdxu0V6TJOGQHYvRVdL4+Z0fpb9tM9FgC7cM3M7JueNUizmQJDSXB7ek0d88wCa1zXFsdrjqcISPg4PDyyZXSC6LnqUTo2WRLCzw4KH/w4ev+ziugz/CSqcpxKuN+9mlEjHbx+MzB5jJTQFQM2pYhQKJqVM8OHya+1vfim8h94paUXa1in78OGYmQ9GvMankKYQK+FXoKmcINjdjzs2JrSfLEiaK1SpmLifMFL1e1O7ulwxbfbUs+QNFgAj9BCQ3X3vyL/EZEvs6r+Ho7GEG41uYK8wyn59DArbEt+KTXLyz4xYGj2VQ27dSe/Yo9vxxqoAUiyGHw7j27MFKJhstKjkSQYlGsTIZrIUFAMIzM9y8aQv/9sLDfHDDT/Dlyt9yonIMTfPQHIizITzAJ3f/PM0lxXFsdrjqcISPg4PDy2YscUaIHrdbzM2syHRayGYZHzjNQL21FFB8q++saczMC9GDLOOSFKzFRXC5SBk5pjxVNvLKWlHm/Dz6+DjTLRoPj3ybZG4eSdOwsllikXbefc39tI6WREyGrqMNDGCcPYu1sCAcpAFzfBz3jTe+ZB7Xa8m6tkEeuP7nmEqc5j/f9Jt86Zn/zsnpo7R4I3S2tdMb7eNndz7ApkWVpmMJ1HXrqB07hr2wICIoNA3bNDFnZqhJEtquXY0WleR2o23dim2aGBMTwufHMOiYyHL/9R9jxsrwu3f8LvPlRcrVIk2Kn01KG80lBc0xL3S4CnGEj4ODw8umUM2Bpp0negCo1cgnppBjMayFBTp1H7FIB8mMaIlVrJpoNykKXjQCVQm7VhXZXJpGKeyDWRMMAyudxkwkLkr42NUq5vw8xZCbhye/zWJiHEwTf6yd/e/4ACm5wuPVEVpva2OL3ULH0AJmKgWqil0qQSCAJMtY6TT60aPIN954yU76kttNWAvgHskzMK7Sf+1nOV4YJVPJEHGF2FIJ0/pCGTkYxKxWQZKw5+bE+6hpSD6fCCG1bcz5eTTDWNWikiMR3Pv3o65fLzLSFAUpEMAXidBUf40r56JeSeaZg8OVgiN8HBwcXjYBd90VdYXoUWSVeFs/ks9HUjMYbrbpIIQ/XeLegbt5eOSbJDMzeGQXqCoeU2awZRPqXApzxeCxr7tIdccg43NDFIwS4coE/dWWlxx8tjIZAKY9NRbnz+JVvFxz+08gx5r4o4Nf4lTyFLqpkymluKZjL//p5t9i71EJa2nuxzAaq+BWoXDpt5lkGaWtDbtSofX4FPEayN52ME2QakgtLdQOHmwk3EvhMAC2aWLn81CvWGHbYBjntagktxu1o+OCT/9aZJ45OFwJOMLHwcHhZdMXX08sEGehPjOiyCrdA7t4bOIJ0rMZduV38owl0aQEuHfjO+ha1Lm/+51MrytSjQZIaFUqC3OoC3mREu4T7bCWcDuarPI3z/81yVISO5tFya+jZfEZ3rXjffRF+tY8HrtaxSoUQJIoBVz4oy3suv5dDBUn+T+P/wGH5p4DIKAFaAu189zcYX7nwOf4H/s+S9vkZP1BVqT3yPIl32aSNA1JVZECAeE5NDuLVauJQFfLQnO5QJZFJUeWRZXK7YZ6pWfp+CVFuSRD2g4OVyryS9/EwcHBYTWhQIx37XwfsYioIMTb+oXoqWXY1LYNZSGFlc2yMDvK14/+M0XNItzUzmApwG7XOj7YfBcdTT3YuRx2Po9dKtHkCnP3xnfyrdFHWUyMCyHgFaveCxNDfP3418hX8+cdi5XJUHv2WWpHj6KfOoWvarFz99v5w0NfwrLthugBKOgF5gpzRLxRnp1+huP2/PIDScLED1VF8ngu+TbTkscPAJaFHI2KtHRJQo5GsXUdORpF6evDLhSQ43GoVkWVyu9H8vuRAgGU3l6U9vZLeuwODlcSTsXHwcHhFbGufTMP7PwgE6U55twVXqhM0BvtQ5lbRLJtUZGwLJKpaSbbFxicKOK64QbsVIqeYDcf1O5lIrqHQimDr2zRmbGZTs2xOD+G5PeDLCO3tkK5DLZNMj3NeGacba3LYaV2tUrt6FGMiQnsWg27UKDDHWN4PTw39Sx39N913nEX9AKtfhGJka7lOL0hTMGqEHR56TKDBBUvsteLDRhTU5dszX3J40cfGoJCAapV5HAYORBAWbcOu1JBcruxZmaQAwG0XbvQDx/GSiRAUUDTUNrbRar6JXakdnC4knCEj4ODwytCcruJrttEYEiiqE/QYnmgZmJaFrYphpOXKJoV7KqCNT9P7ZlnkAMBXOUy/bOzSNEoamcn+txpCiFR4ZFUFcnnw0qlkOttMCyLgl5YdQxmMtnYVJJkGXw+fAtZKr0aMhI+zb/msZu2iYVNwB3kK2P/il2rIckysWgH9219D73+GObkpBj0VVVwu9F6el731W45EsG1axdmMik8h+rY6bRoCYIQYYqClcmg7dqFJMviP79frK87osfB4UVxhI+Dg8MrZulEHZoGeaFJVCU0DbtaXXW7gCeIpCkYQ0PYhQK2pmED+HzY6TSGbaO0thKQ6sPSSzMsS+2n+mUBbfVJ3c7nlwWWpon2mMtFzOUloPrIVFLsbdvLoblDq+6nSAq7O/bgl9wk/RDyh3AZNikjz8MT3+b+rnfiPX6mcXspEECSJDSv95JUftSODmSfb5URI4iYDXVgAEzT2b5ycHiFOMLHwcHhZbNq9dnloi++nubWPk9ELiwAADPqSURBVBZmRsQW0gpi4XY6a15kt4SZSAgxI8vYMzPIXV1YioJdLCKvW0dnIUlzax/ZsAsrlxPVC9MEVSUW7aQ30rvqGGzLEqGjfr/Y6qoPJG+pbmVH6w6+cvRf+MQNvwSHaYifoBZgc/MWfum6TzKcOEVP7w5CnhB+U2P8+SdYWDjCdO9trF/5egsF9KEh5Hgc9RJtPi2JSmfF3MHhtcURPg4ODi+LcyMhANw+H/f2vpWH9G+QWFhoXBcLt3Nvz1345rPQ0iIqQYoiNqa8XqzJSaTmZqRIBLmpiZDfz7sCnTx0+hEWs1lxovf5aA7Gubf1FnxlE9zLx4DfjxQOY87OitV6TUOSZVoOneY3bvlVPn/oj/izH/0p793yXj6w/QOYtslAdIBWfyuf+c6neXrq6cZr2NOxj1+88eOc+va/UDBKyC0tQmSYpjjmalV44FzClW9nxdzB4bVHsu2VO5wOuVyOcDhMNpslFAq90Yfj4HBZsTRMXPDKTBpJCrUCQXeQLqWJQMWmumkdY/PDZEeH8FUtOksavrk0Sns7SkcH1SeeaPjNyPG4iFAolSASQVu3DnNxEW1wkFw1z0zIJpeaxW/IdBl+vGOzyM3NuG+6CSuRwC4UkAIBbFmmdvAgdjYrqkmahhwKoQwMMBv3clJOkKlmiGgh2i0/w4vD/O3Uw3x39Dvnvb7ruq/nI73vZUd8BwPPjGHnco3rpFAIzy23oK1ff979HBwc3ngu9vztVHwcHBwuGiuTYcqn8+Dz/0BycbJxeay5m3fv/in6igY7Bq7HCA5gjo2Jyk9nP/j9mHNzyK2tWLOz4rFmZkS1p7UVpakJuaMDG6gdOoSvq4v+oXnsXA7J60WOKli2jZVIUP3+99GuvRYKBexiESkYRG5tRe7uFtUZTcOqVLASCVrHy3Rt3Yq67gaM2Vl+OHaAYrPE0dnn8SgeKmZl1es7OncUe8cDdKTMVaIHRLvLmJhA7e522k0ODlcwjo+Pg4PDRZM3S8uiR5bFf5JEMjXN14/8M3mzBIAaj+PauRNt0ybU3l609nZcW7eirl+P1NQkHsyysItFlJYW1E2b0J99FnN0FCQJWVWxEwmoVITPj2UhBYMiZXxuTvjXgDDtsywol7EyGczFRaxsVqzAr2jFGSMjKJEIwVALeb1IqVIg7IngUTyrXp9bdSPLKt6RyVWXI8vI4TBYVsMh2sHB4crEqfg4ODg0sKtVzFRKnNxNU6xIt7Q0VqQn8lNC9KgqdrmMbRhi/RxYmD7NRH6KCOuA8+dTFEAOBlG6ukR7qy5mlHgcY3pabHHJssicWjkgbRhIkoSZzSL7/diGsXprzLaFv00qhV0qIXk8jSFnqX7cdrkMikJvqIsmM4eNTa6Sxe/yE5Ij2FhoioZH8RB1h5G0PPh8QlhJEpLHgxKPI6nqJXd0dnBweG1xhI+DgwNQHxg+e5bakSPYS1UNlwu1rw/Xrl1IikLJ0ukY3Eu5ksdjq9jZHNO5KVIuk5psMV6coa+QJBSIrfkcSiSCspYXjqIghULY5TJKRwdySwtyS4u4vKVFGPmFw0jBIGY+L0I5C8LTxy6VUPv70Ws1IcTqSIEAan+/WHkHsCyi6zaxJ62wr2s/z848Q7FWBEnCrbrxu/ysj21gW/MWlPYJIcAsS8REeDyN9PZL7ejs4ODw2uIIHwcHB+xq9XzRA6DrWAsLVA4cYG5zO98Y+wbffeERsUEly7S09bNn836OTv2AslFh3szylRNf4/aNd10wV2stJFlG7esTbskvvIBRq2GbJmp7O0YigTUzIzyCVBW5uRk5EMAqlYT4sW3sfF4MHXs8ouqjKOJ15fPLGVb1dfBt3h38zh2/wxee/gLHEi8gywoSEhubB/mNW36D3kgvtWAaWz3/41Hyel93E0MHB4fXF0f4ODg4CK+YUmm16EGc6M1UinJXnIfPfINKKY3PG6JUW8ByaZwonmX09DztvhbSlTTfPPUIKT0LmsKPb/nxl0xUX0KJxzHm5rDGx0U7qVZD27cP/fhxIV50XZj2+XzYlQrVJ5/Ec9ddSNDwuJH8fvQTJ8Rc0DmPv1KwSG43N/bdTHekl2Pzx0hX00TdUba3bqcn0gPQiI5YubIveb1og4POYLODwxWOI3wcHBzE3MpasyuqCtUq036d2cwCOaNAR/sGRlWbMjXmszOUjRK37/151kX6efTkIxiazN8f+Xt2te1id/vui3p+ORBAaWqi9qMfifkfXcdubUUCpGhUDDO73di6jpVKgW1jjI3h3rVrlRDRNm68aMHSE+lpCJ3zjscxD3RwuGpxhI+Dg4OYW1lrdqU+4zIfsDkyPkSpkEZCwh+IEg13oLm9GIaOX/Px8PP/iC4DpsJI6gzjmfGG8DnX6XnN0M9yWVzX0iJaWG632KKanRUDxuGwqP7UW1B2LoeZTKJ2dDQe4rUULI55oIPD1YkjfBwcHBoOyVIksrrdJcuUu1qYqSUp6yVQFKxKhUIpg+yCk/PH8StekoUEOhYomsjOUhSqpti8sjIZ9OFh8lQZVbLM2Xk0zU1noJ2eYBfhcFwIE49HiJlaTVR6loSYqorVd9Ns+PRg28JNuVA477U4gsXBweHFuKJ8fL7xjW+wf/9+vF4vzc3NvOc971l1/cTEBPfeey9+v5/m5mY++clPUqvV3qCjdXC4cpDcbrR163Dt3Im0cnhXkphp91M1qnQEOkQKuKZhVyq4ZA3dNulv3sBCcVEIkvrfW9AdpMUnIir04WEmyPKnU1/htw5+nv/2nd/mcw//Gr/36Gd45ORDjJ5+BiuTQY7HkdvbxbByNouZTCL5/UJIyfKqFXepqQm7VoP6ELODg4PDxXLFVHy+8pWv8NGPfpTf//3f54477sC2bY4dO9a43jRN7rnnHlpaWjhw4ADJZJIPfehD2LbNl770pTfwyB0crgzkSATXli0obW3LPj4+HxVjjMShx7mj9zYeH/8e0+lxUVWx4NrOa7ih+0b+6dm/Bb0uejxhbum9ja3xrViZDHm7wlcn/o2nZn9AKZ9qCJiZxTEeHnoIq6dMpAzRzbvw3Hor1QMHMEslzNOncd9+O1a1KuIocjlhJBiLoW7YgJVMNnx6HBwcHC6WK0L4GIbBL/3SL/GFL3yBj3zkI43LBwcHG///0Ucf5cSJE0xOTtJR7/n/wR/8AQ888ACf+9znnNwtB4eLQHK7Udvbob29cVlovgQtzcxWFrhl4A5QFcrVAp6KRaSpnR/OPsPG6HoM20SVFfqa1vHv936U1kArRmaKSSPFSOasaJUtVW0kCSyL6cWzZNvyjGcnCJwJoPX14bnzTsxkUkRGaJrI5pqexi6XkdxubNvGSibRNmxY2xPIwcHB4UW4IoTPc889x/T0NLIss3v3bubm5ti1axdf/OIX2bp1KwA/+MEP2LZtW0P0ALztbW+jWq1y6NAhbr/99jUfu1qtUl3hAps7J5/HweHNTm+kl1gwTkpNkbBzoINdq5DOpqkuzPMfNv04Z+MJsmaRcKCZrR07aW8bAMScTr6Wp2bVGn46S6JniYpZoWiWsctl9KEhtK1bMScnRRurVsOanUXy+cDlgloNJRqFeNzJzHJwcHhFXBEzPqOjowB89rOf5TOf+QyPPPII0WiUW2+9lVQqBcDc3Byt5ww0RqNRXC4Xc3NzF3zsz3/+84TD4cZ/3d3dr98LcXC4Agm6g9w3eB9N3qbGZZLHQ0vPJt59x8foDnVxS3gn93XdxR0b39oQPSDaZyFPCJekCcGzEkkC28ajuPArXuHfUy5jF4toGzciAeg6Ut2gUKpWUfv7UdvbcQ0OOkaCDg4Or4g3tOLz2c9+lt/+7d9+0ds888wzWPVvh7/5m7/Je9/7XgD++q//mq6uLv7lX/6Fj33sYwBI536wArZtr3n5Ep/+9Kf5lV/5lca/c7mcI34cHM6hL9LHh3d9mPHMOAW9QEAL0BvpfUmDQsntprdrG/3jvYyVZykp9RgISQJVpSPYQRAPXXK0cR9b11FaWx0fHQcHh9eFN1T4/MIv/ALvf//7X/Q2fX195OtZO1u2bGlc7na76e/vZ2JiAoC2tjYOHjy46r7pdBpd18+rBK3E7Xbjdj5MHRxekqA7yLbWbS/7fpF4F+/b/n5qPjdPzfyQUiGNXa3SEezgvg33sj+wibC/Tcz0sLzG7qylOzg4vB68ocKnubmZ5ubml7zd3r17cbvdDA0NcdNNNwGg6zpjY2P09vYCcP311/O5z32O2dlZ2uuDmY8++ihut5u9e/e+fi/CwcHhRZHcbtZ1buETusLbO29lXiqiItOhROiSIgRqkhA9tu1kYTk4OLzuXBHDzaFQiJ/7uZ/jP//n/0x3dze9vb184QtfAOB973sfAG9961vZsmUL999/P1/4whdIpVJ86lOf4qMf/aiz0eXg8AYjRyI0bd5FpN66AjDHx7H1YiNXy8nCcnBwuBRcEcIH4Atf+AKqqnL//fdTLpfZv38/jz/+ONGomA1QFIVvfOMbfPzjH+fGG2/E6/XygQ98gC9+8Ytv8JE7ODjA+a0rpaXFmeFxcHC45Ei2bZ8bZPymJpfLEQ6HyWazTqXIwcHBwcHhCuFiz99XxDq7g4ODg4ODg8NrgSN8HBwcHBwcHN40OMLHwcHBwcHB4U2DI3wcHBwcHBwc3jQ4wsfBwcHBwcHhTcMVs87u4ODg4PDqsAoFzEQCu1pF8nhQWlqQA4E3+rAcHC4pjvBxcHBweAM5V4wgSdjl8msuTIy5OWoHD2Kl043L5GgU1/79qG1tr8lzODhcCTjCx8HBweENoiFGMhkkrxdzbg5cLtSBAazZWeRw+DURJlahcJ7oAbDSaWoHDyLfeadT+XF40+DM+Dg4ODi8AViFAvrQEJLfj9LVheT3Izc1YedyGCMjSE1NDWFiFQqv6rnMROI80dM4jnQaM5F4VY/v4HAl4VR8HBwcHN4AzEQCY2REBLSqKnYmgxSJoG3ciD48jKRp2CwLEzkQwK5Wl2M+XC7kcPiiYj7savVVXe/gcDXhCB8HBweHS4xVKKCfOoWdz4O8XHi3MxkMQOnoANNcvrwuePShIexKBTweME0knw/J60VSFJAkUBQhYiQJORBAicWQ3O6XFEdORprDmwlH+Dg4ODhcQqxMBj2RQI7FcHm9oGlY5TL6iROQz2NnMshdXaAojftIXu+y6PF60U+dQonFMI4cwc7nkQIB5OZm7GIRJR7HmJxEiUZR2ttx7diBEo8jR6NrtrvkaBQlHr+Ub4GDwxuKI3wcHBwcLhF2tYoxM4P+3HOYk5NgGGBZSG1tuK+5huoPfwilEmgatq4DQphIqopdLgvRc+IEks+HMTGBncmAaWJXKpjT08jhMMbEBHIshrm4iA1IioJr3z5c+/dfcKvLGWx2eDPhCB8HBweHS4SZSlH94Q+xslnRytI00HXsuTlqkoS2fTv6kSPIzc0YQ0MNYYJhiAcwDOxMBqW5GXN0FGxb/AeQzyPFYliJBHJ3N1atBoaBmU5jZTJiM+yGG7AWFqBcBp8PubkZtaXljXtDHBzeABzh4+Dg4HCJsNJprERCCB5FEYJGFR/DdjKJvGcPrp07kWMx3DfdhBKPI2kaxvQ0uN1Iqorc0bEsds57Auv8/7UsbF1Hn5yk+uST4vnryPE47ptvRuvufj1ftoPDZYUjfBwcHBwuFbWa+F9dFwPKlcqqIWZME/c11yBHIoCYB6odP46Vz4vNrkgEORgUFZ+ZGexaDbtUagw5o6rITU3Ira2oioLkciEFAqBpVB9/XFR7loapLQsrkaD65JPI73gHSv05HRyudhzh4+Dg4HCp8HpFpcc0oVoFl0sIEdsGWRbCpi5A7GpVDDSXy0iahtrXh37qFNbsLNa6deDzISkKcjyOtbCAVa1CpYIcDGLMzyMD+sgI2saNmNPTmGNjYvMLQFGES7RpYiUSmPPzjvBxeNPgGBg6ODg4XCKU1laU7u7ljS1dFwLINFHa2lBaWxu3tTIZMdAM4HKhnziBlU4jRaOi6tPeDoqCOTEh1uIBuakJJR7HPH4cY3YWbds2rIUF7FJJiK2lFll9ILpR/XF8fBzeRDgVHwcHB4dLhBKJ4L7xRqpPPSVmbWxbeO7E42KmZ0XVZWmrC8A2DKzFRQDktjaMqSkwTbRdu7BbW4WQkiQwTcxMBikcBsNA8niwslmUdevqD2QvV31WttgcHx+HNxGO8HFwcHB4HbCrVcxkUlRjVBUpGEQJh9G6u5Hf/nbM+XlRaXG7RSXonFaTpGnL/1ghgmS/H3NkBIJBJF2nduxY/QmFqJECASSXCyuVgmIRK5vFqlSQ2tqwz42msG3keHxVpcnB4WrHET4ODg4OrzFWJkPt6FGMiYnGKroUCKANDqJ2d6NEIi85UyNHIkher2h3rRRBlgWKghKPY5VKYkC6nuqObWOXy2LgORAQG2Omif7cc7hvugn96NE1t7qc+R6HNxOO8HFwcHB4FaxV2TFOn8YYGxNzNPVKjJ3LiWFlwxCRFC+RtyW53WiDg+hDQ2BZyC0tSG43cmsrmqIgNzVh5XJIdcfmhqePLEOphNzVhVWroW7ejF0qYYyMoG7fjiTL4rk9HpTubtRY7A141xwc3jgc4ePg4ODwClmrsiM3NYl4iHx+eaBYkkCWsQwDKxYT21y6jl2rIXm9KG1taxoJypEIrl27sDIZSp0tTMydIl+ZINDsobNWxDM9jWvfPmqHD2Nns0J4aRpSRwfq4CCS241pmpjj49j5PObICFIwiLZ5M65NmxobZA4ObyYc4ePg4OBwkViFAmYigV2tIvl8mOPjGEvREyByt4pFzHQaubkZc3pazOdYVsOoEMCamUE/frzxbzkex3Prraidnec9p+R2M24s8uCTf87C7EjDnDDW0su7tt9H6/HjqBs2CDdmWYZKBatUQnK5qD37LNbcHEp7O3JPz3KQqWlyAQtEB4erHkf4ODg4OFwExtzcqqwrpasLfWgIpaUF2zDA5RLr5j4fVjKJtm4dZqUiqjuVCtRq2Jq2vKIuSY0NKyuRoPr008h3331eblaukOTBp/+ahanhVY7NyfmzfJ2H+OC6dxEwLczZWRGFUamIrS7AmpgQK++Tk5iaBpqGVH9Ota/Pme1xeFPiCB8HBweHl8AqFFaJHrseA1GK+JgOlCi2KPgrOp1KEH+xHkMhScvVHpcLajXRAiuXoVhcFkB1M0ErlRLuzOcIn7H5YRZnRS6XvTKbCyF+ZrYabJwTDs5KTw9yOIxcb6UpXV2YiYQ4FlVtiB7A8e5xeNPiCB8HB4c3NXa1KswCX2TY2EwklkWPYWBXKkxHJR488zjJkWnkpibsUolo5wC37L2HbNmLEvaSX7+FSqVIUPGx2YzRafqxEgn0ublG20lpa0MOhUBVsSsV0UZb8fz5Yv15bXu19w5CgBWMMnJ7H662NszxccyJCYxqFTkWw8rn0TZvRj97FuncfC/Hu8fhTYojfBwcHN60WJlMIxZiCcnrRRscXDX4a9erI7ZlYZdKlNqiPHT6EVKVFEgSLsVF33W34Q5H+Ysz/8SGlo088vQ3eG76EDFvE33hXiLeCJ++7lfZ+sRJ0fqSZbRt2zBmZkSchMeDXa1i5/Ornj/oDSMFAihut6j61GpicLouZAKuAMgK+uHD2Lnc8ouzbWzTxJiaQmlvx5qZaVzlePc4vJlxIiscHBzelKzMwlp1ebksLl/RCmpUYAwDLItpn87izAhyJILbH2bzNW/jYPoov/O9zzJfTvC3R/6O52efp9nfTLK4yHh2gtnMFL//5OdZvGMfIGaEjIkJ7GQSZBnJ60XSNMz5earPPYcxP48+Pk7HokEUL2Y6jbmwgF2poMRiIEk0dwzQHe1FgtWiB7AWF1G7usAwkH2+xuVyPI77lluc+R6HNy1OxcfBweFNSaO91dMDpRJ2pSISzr1e7JkZrEwGpbVVtJ78fiS/H6tUwrZtCpYQS+bCAltufDd/+cLf0RXqYjQzxs3rbuebZ/4fFhaUIeSNkK6m6Q52cnTiGU7uy3JLvb1lzsyQ2TvI6YhBRqoSVUtsKAeIHD+F5HKBbeM+O869XXfyMI+xmBhH8vlA02jdspf7Nr0bf76GJMui3VapCCFn22Kt3etF3bgRtaMDtafngi7RDg5vJhzh4+Dg8KbE1nXk9nZqTz+NuTRzY5rILS24b7oJW9dFK2xiAnQdbds27MOHMScnCUghQLTFDK+LY7OHaQ2I1pFu1RrPUTJKNHmbsGs2pmWCJJEuLKD29CDHYpzu9fClo3/ByAtDompjWQw0b+AXdv87thUrGGNjyG1tdIzP8jOx25nbFiSXnMVvynSrzXifGUY3TdzXXYdtmmJmqKtLJL37/UI8UQ9HdVpbDg6A0+pycHB4k2LLMtUnnsA8exZJVZF9PuRgEEyT2qFDoCgYk5MYw8Pox45RO3QIdXAQ92230de9jfi2fcixGPlyBgkJTRKbXC559dCwZVtIkoSC2KyKuCPohw6xIJX5k2f/lNHFYSFQVBXJ5WI0PcqXjv0Fiy0+rMXFxiZWwFIZOJVk13CRDaMFfIkMdiYDgDE2hrJuHZLHg20YyMFgQ/RIXq9jVOjgsIIrRvgMDw/zrne9i+bmZkKhEDfeeCPf/e53V91mYmKCe++9F7/fT3NzM5/85Cep1WoXeEQHB4c3K3a1ijU/jzU9jdzcLP6dSIj/5ucBsNJprEoFtb8fZf16AIwXXsDO53GfGOHerrtoMlwEVD8qMnPFBOujAyyWEmxoWt94LlmSibgjVGtltrduZ4vWibZnD8NamrOVGTEwnc9jFwriP13nbHGKIXNOPIBhYBcKyIEAdjrdWKVHkpBbWqBWwxgZQfb7xetIJrFLJWB5UHutSAwHhzcrV0yr65577mHjxo08/vjjeL1e/uiP/oh3vvOdjIyM0NbWhmma3HPPPbS0tHDgwAGSySQf+tCHsG2bL33pS2/04Ts4OFxGWJkMdrmMFAphFQqU4xGmQxYFu0oo3kX7fBX/s89iZzLYxaLItNq8GePkSczpaeRYjJ5AFx/a9tNMByyu772J0fQod/bdwdMTT3HnujsAmMxNEdD8xFwRot4on977y7QcOI5eLJKORKBWEz4/K1fNTRNqNbJ6Xvj/2LYYtNZ14flT9/1BUUTCe6UiXlMigdLVhSTLSD6fMCiMxRzR4+BwDleE8FlcXOTMmTP81V/9FTt27Pj/27v74Kjqcw/g33P25exLNrubhM3mjSRAMIGAgQQVpVBeBmrRi1cHi6NVZixXRASKOsVbZ6BzS0GnXudqC+Wl5ULtlTtqpyIiGLQKthRSIBjAvAB5f082yW6y2c3unuf+ccKSDYh4S1lz9vnMZAbO+e3m92xG8+X83gAAmzdvxpYtW3Du3Dk4nU589NFHOH/+POrr65GamgoAePXVV7F06VJs3LgR8fHx0SyBMfYtQoEAoNdDMBrRlB6H9xs+RmddE8R4K8QaQubtM+CcMB4d/QFYDClI1yfB5GlF6sQcGMoqILe3Q8jJQcL4SbBUVWFd4Wr8119eQ+nFv2KSMw8m0uPHd/4YDrMD/v5exEkW5PWZkeZPgnCnA9TVBXt8X3heDoZuLDgYdKz6eGjSDJAvhyKdDhAECHq9Mo9Ho4E4GIBkjwcAELxwQdnA0GqFMHYshx7GrmFEBJ/ExETk5eVhz549mDp1KiRJwrZt25CcnIzCwkIAwLFjx5Cfnx8OPQCwYMEC+P1+nDx5ErNnz45W9xlj3zKCTgdBp0N/dhreP/8/6OxuBgBoTWbYcyZhR+X/ovZ0Ayz6ONT31GJa6jSsvWstKrxtuD3ditSWfghxccohopMnY1JNDX4++ceoCDaj29cNm8aMnHYDbB8rJ6vrZ81SntgEvYDNBpkIuXBgTOI4XOq8oHQqGATkEAABY5x5yNWlQDR3QHa7oSsogCY9Xdmd2eHAwLlzyonsl4e0kpOhycxUnhaJojIxu68Pmih9vox9m42I4CMIAoqLi7Fo0SJYLBaIoojk5GQcPHgQtsFJey0tLUgetmrBbrdDr9ejpaXlK9/b7/fDP2S/DvewvTAYY+oj2mxAXR2aU81wlXYrFwUR8TkT8T9V7+JsxznIREiPT0NDD1DSVIL//NtreKZwOY71V+K+22bCnJiovEySINpsSKyqwp1tXpDHD+pzKUNYoghdbi5CNTUgrzf8hEe0WjHK6cSqgqfweuk2XGr5Unnyo9FgbHIuVk3+NyT5daD4eIhQdosO1dcr54OVlyuh5/JZXwYDBACBL76AaLWC+vsht7YiNGqUMuTldEbpU2bs2ymqwWfDhg342c9+dt02JSUlKCwsxIoVK+BwOHD06FEYjUbs3LkT9913H0pKSpCSkgIAkefQDCKia16/bNOmTV/bB8aYugiSBF1ODjw1nysThIngMWnQhwGcaSlFCDJkEAJyAJLOBH/Ai5KmE/AX/gh9RgGN5gDsgUB4KEm02ZQNCEURMJtBsgz090OTkoJge7tyTpfNBgQCkFtaEOruRsBgwASrFf+RthRVeX50h3ph01mQ4zHA/kUrggkBiDodQm1t0GZmItTUBMFshtdmRGNaKnqDfYgTHUjtEWCsbQZ8PohpaQi5XMrcpZ4eDBw/DnHu3KvO/2IslkU1+KxcuRJLliy5bpusrCx88skn2L9/P7q6usJzdbZs2YLi4mLs3r0b69atg9PpxPHjxyNe29XVhUAgcNWToKFefPFFrF27Nvx3t9uNjIyMf6AqxthI0KsNYcCoR7MpCA0JaO9phMGWOKyVAF/QB71WwkBwAB6/Bz5PF3pqq+C76IFu4kQIg8vQdbm5kLu7AY9HefJiMEDMyADV10MOBEBEkFtalInMg6vIpHHjYK+owDSPB4JWC0A5WV2Xm6vs4TNmDPpsJtT7W9GXBmhtffis+mP0XGgC9fZCMJmQYErA/WPnIKVSOYxUMJmgGTUKocZGQJavefApY7EsqsEnKSkJSUlJX9vOOziOLYqRq+9FUYQsywCA6dOnY+PGjWhubg4/Afroo48gSVJ4HtC1SJIEiScAMhZTqlvK8adj/w2dqEOfuxMXfU3o9/WiUJoJQRABkmGXbPD43QhSEJJgAAQBFl0cBI0Esz4OobomhFwuaFJSQB4PNImJ0E2YAOrrUyZPDy47l1tblQNI3e4rq7dEEZAkUCAAbXa28rRIlpVT3bVayB0dQCiEBnMA7516B53dTUgZPQGf136Brq5m3JaQA4tOBwoE4OrtwP6u43h86n0wODOhGRhQApDFArmjI+LoDcbYCNnHZ/r06bDb7XjiiSdw5swZVFZW4oUXXkB1dTUWLlwIAJg/fz4mTJiAH/7whzh9+jQ+/vhjPP/881i2bBmv6GKMhbl7O/Gnv+xCe30lWmu/xNyUe5BidsLj7UJN50UUphbCbkhARnwGGt2Ng68iTEstgp5EWAQj0jwiZJcLcn094PMhVFeHQHm58pRFr1ee6HR1KaFDkpTjJAYGwvN4xFGjlL17fD5QVxdCFy8iWF+vXBs8gNSbloR9Fz6AK+SBYDZDtNvR5G5Ef8CLClclBkTltHYhLg6u3jY0CB4Eysvh+/BD+A4fRvDSJUCSeGUXY8OMiOCTlJSEgwcPore3F3PmzEFRURE+//xzvPfee7j99tsBABqNBh988AEMBgPuuecePPzww3jggQfwy1/+Msq9Z4x9m9S0VqK9sUoZBpKDqL9YirtT7sCSSY8gQYjDv894ETMzv4MqV5Vy3haAwpRCPHfnWmi9PtxtzYehqk55MyJgYADk80F2uRAoL4cYFwddXh70+fnQpKcrJ6O7XMqKK50Ogt0O2euFMDj8pM3JUf4cDCLU2opQZyfI70ez04iOlmqQ1wvBYoHX7VJ2atZo4PW64dYGlRVcfX2gYBBeTQihmhqIiYnAwABC9fWQW1qUPYv4qQ9jYSNiVRcAFBUV4dChQ9dtM3r0aOzfv/8W9YgxNhJ5+rqUFVeDQnIQrrY6nOk8C29fDzJMTqyY9CQenvgwun09sBlsyLGOhb7ThVEuGXHeboR8vivvIQjKUnUi5elNWxuQlqYMXwUC0GZlQXa7AZ8Pgl4PwWSCkJQE7fjxygaJfj+0mZnKjsxutzLZOhCAx1ML0WoFdDpQdzcMhiRAEEB9fRAMBgQlLUTBoBye6vHA2K0sb5dlGYLFAurtVcJWKBQ+cJUxNoKCD2OM3QwWyXLVNV23B7clT0Rl25ewW5Ox4+jraOqug9EUj9zUyWj0/QX3p8yGqaEVsNuVsEMEwWZTJjQDV+bvhEIIVFQof5ZlyL29kL7zHeWpj9er7Ljc0YFgZSW0Y8Yow1t9fZB7e5WzueLiAL8fcWajEqgAZUjM7UGqLQNNXbVKWPL6Eerohnb0aCRoLUjzKMNoCAQgJCSAgkElKAWDypwjxhiAETLUxRhjN8toWyYSk4at3JRlWDp6MSt3ATzBPpgtdkzMmoYCZwHi+0LoIi/21R5C/+jkK3vn2O3QpqUh1NAQDj2CzaYsZfd6gWBQOUMrPh7+Tz/FwIkTCFZXI1hTg9ClSwi1tyN46RIEkyncBwCDq7uADNiQGOcI7wfU2lCBuRkzkWrPhNFoQbxf2ccnMc6Bf8mcD2NzZ3gOEQBlab0oKqvOdLpb8+EyNgLwEx/GWEyx2pLxQNGj+NPf/4DOjvrw9cSENNyTPRcHju1BKoxAAACUQ47J64VLENCcnYBcbxx0t92GQF0dAufPh4OJYLNBO348Qs3NEE0m5XDRnh6IRiOop2fwm1uVHZolSVn11dt7pWOiGJ73AwBmbxD3j7kX79cfRnt3N2SNgLovS3Dvbd/FGGce0NKKOI0RmaMnwVBZi9DQ875EEdDrlWXsgxssMsYUHHwYYzFFkCRkO3OxtGgZ6n0t6B3oQ5zejAyDExXBJsiga7xIALxe9Po8gF8HmM0QTSaIEycq82i0WmVrDaLw0Jd4eTXp0GEmWQb19ytzdwaDCgWDAACN3a5sPOhyKW2JkO4R8fjYB1Frq0af3A+TN4i0LoLxhLJhoTDKDGm0hNCoUcpwWUeHsqpMEKDNyIA2KwvajAxe2cXYEBx8GGMxR7TZkGA0wtadDAoEIOh0EG02xDX2X/sFWi0giojTmwGvMolZk52tDHP19ioHiPb1IdTcrAx/tbeDjEbldUOHmURRCTyBgHK2VjAIjcMBcfDcL+rvR8DrBfUP9oMIcd4QJmVNw8DJk0pI0sqAQ4Jot0NMSUHg/HmIg0+bhIkTIcbFKROr4+Kgsdk49DA2DAcfxlhMEiTpqpVOWY5xSLSnorOrKbKtKCIpLQcZBicA5Rwuam2FNj0d5HYrq6bsdshGI0KdndBmZCDU2AhNWhrkgQEIVivI5wOCQQgGAzRpaRANBghGI7Tp6eFwIkgS9AUFyhL0IYEMAORx4wC/HxQMKvOABAEIhaCbOFEJOEajcnQGBx3Grksgoms8141dbrcbVqsVPT09vPEhYzGouqUcfzq+JyL8JNpT8a93Po5Me/Y1Q0motRWh1lYAAAUCCNbUQNDroR0zBrLLBcFqhdzZqQxzmc3KsnajEbrbbrvh+TdydzcCFRVXngYB3/g9GFOzG/39zcFnGA4+jDF3bydq2i6g1+9BnGRBlmMc4uOGn+MVifz+cCiCKF5ZWj70qc2w0PRNn84M/R7/3/dgTK1u9Pc3D3Uxxtgw8XGJmPw1QWe4aw2dDfePbiJ4I9+DMXZ9vI8PY4wxxmIGBx/GGGOMxQwOPowxxhiLGRx8GGOMMRYzOPgwxhhjLGZw8GGMMcZYzODgwxhjjLGYwcGHMcYYYzGDgw9jjDHGYgYHH8YYY4zFDD6yYpjLR5e53e4o94QxxhhjN+ry7+2vO4KUg88wnZ2dAICMjIwo94Qxxhhj35TH44HVav3K+xx8hklISAAA1NXVXfeDUyu3242MjAzU19fH5On0XH9s1w/wZ8D1c/0jtX4igsfjQWpq6nXbcfAZRhSVaU9Wq3XE/dBvpvj4eK6f6492N6Iq1j8Drp/rH4n138gDC57czBhjjLGYwcGHMcYYYzGDg88wkiRh/fr1kCQp2l2JCq6f64/l+gH+DLh+rl/t9Qv0deu+GGOMMcZUgp/4MMYYYyxmcPBhjDHGWMzg4MMYY4yxmMHBhzHGGGMxg4PPEJWVlVi0aBGSkpIQHx+Pe+65B3/+858j2tTV1eH++++H2WxGUlISVq1ahYGBgSj1+Ob74IMPcOedd8JoNCIpKQkPPvhgxH211w8Afr8fBQUFEAQBpaWlEffUWn9NTQ2efPJJZGdnw2g0YuzYsVi/fv1Vtam1/su2bNmC7OxsGAwGFBYW4ujRo9Hu0j/Fpk2bMG3aNFgsFjgcDjzwwAOoqKiIaENE2LBhA1JTU2E0GvHd734X586di1KP/7k2bdoEQRCwZs2a8DW119/Y2IjHHnsMiYmJMJlMKCgowMmTJ8P3VV0/sbBx48bR97//fTpz5gxVVlbSihUryGQyUXNzMxERBYNBys/Pp9mzZ9OpU6eouLiYUlNTaeXKlVHu+c3xzjvvkN1up61bt1JFRQWVl5fT22+/Hb6v9vovW7VqFd17770EgE6fPh2+rub6P/zwQ1q6dCkdOnSILl68SO+99x45HA567rnnwm3UXD8R0d69e0mn09GOHTvo/PnztHr1ajKbzVRbWxvtrt10CxYsoF27dtHZs2eptLSUFi5cSKNHj6be3t5wm82bN5PFYqF3332XysrK6Ac/+AGlpKSQ2+2OYs9vvhMnTlBWVhZNnjyZVq9eHb6u5vpdLhdlZmbS0qVL6fjx41RdXU2HDx+mCxcuhNuouX4OPoPa29sJAB05ciR8ze12EwA6fPgwEREdOHCARFGkxsbGcJu33nqLJEminp6eW97nmykQCFBaWhrt3LnzK9uouf7LDhw4QLm5uXTu3Lmrgk8s1D/UK6+8QtnZ2eG/q73+O+64g5YvXx5xLTc3l9atWxelHt06bW1tBIA+++wzIiKSZZmcTidt3rw53Mbn85HVaqXf/OY30ermTefxeCgnJ4eKi4tp1qxZ4eCj9vp/8pOf0IwZM77yvtrr56GuQYmJicjLy8OePXvQ19eHYDCIbdu2ITk5GYWFhQCAY8eOIT8/P+IAtAULFsDv90c8IhyJTp06hcbGRoiiiClTpiAlJQX33ntvxKNNNdcPAK2trVi2bBl+//vfw2QyXXVf7fUP19PTEz60F1B3/QMDAzh58iTmz58fcX3+/Pn461//GqVe3To9PT0ArhzSXF1djZaWlojPQ5IkzJo1S1WfxzPPPIOFCxdi3rx5EdfVXv++fftQVFSExYsXw+FwYMqUKdixY0f4vtrr5+AzSBAEFBcX4/Tp07BYLDAYDHjttddw8OBB2Gw2AEBLSwuSk5MjXme326HX69HS0hKFXt88ly5dAgBs2LABL730Evbv3w+73Y5Zs2bB5XIBUHf9RISlS5di+fLlKCoqumYbNdc/3MWLF/HGG29g+fLl4Wtqrr+jowOhUOiq+pKTk0d8bV+HiLB27VrMmDED+fn5ABCuWc2fx969e3Hq1Cls2rTpqntqr//SpUvYunUrcnJycOjQISxfvhyrVq3Cnj17AKi/ftUHnw0bNkAQhOt+/f3vfwcRYcWKFXA4HDh69ChOnDiBRYsW4b777kNzc3P4/QRBuOp7ENE1r38b3Gj9siwDAH7605/ioYceQmFhIXbt2gVBEPD222+H30+t9b/xxhtwu9148cUXr/t+aq1/qKamJnzve9/D4sWL8aMf/Sji3kir/5saXoeaavsqK1euxBdffIG33nrrqntq/Tzq6+uxevVqvPnmmzAYDF/ZTq31y7KMqVOn4he/+AWmTJmCp556CsuWLcPWrVsj2qm1fm20O/DPtnLlSixZsuS6bbKysvDJJ59g//796OrqQnx8PABlhUdxcTF2796NdevWwel04vjx4xGv7erqQiAQuCoZf1vcaP0ejwcAMGHChPB1SZIwZswY1NXVAYCq6//5z3+Ov/3tb1edT1NUVIRHH30Uu3fvVnX9lzU1NWH27NmYPn06tm/fHtFuJNZ/o5KSkqDRaK7612xbW9uIr+16nn32Wezbtw9HjhxBenp6+LrT6QSg/Ms/JSUlfF0tn8fJkyfR1tYWnsYAAKFQCEeOHMGvfvWr8Ao3tdafkpIS8f96AMjLy8O7774LQP0/f57cPGjfvn0kiiJ5PJ6I6+PHj6eNGzcS0ZXJnU1NTeH7e/fuVcXkzp6eHpIkKWJy88DAADkcDtq2bRsRqbv+2tpaKisrC38dOnSIANA777xD9fX1RKTu+omIGhoaKCcnh5YsWULBYPCq+2qv/4477qCnn3464lpeXp4qJzfLskzPPPMMpaamUmVl5TXvO51Oevnll8PX/H6/aia3ut3uiP/ey8rKqKioiB577DEqKytTff2PPPLIVZOb16xZQ9OnTyci9f/8OfgMam9vp8TERHrwwQeptLSUKioq6PnnnyedTkelpaVEdGU579y5c+nUqVN0+PBhSk9PV81y3tWrV1NaWhodOnSIysvL6cknnySHw0Eul4uI1F//UNXV1V+5nF2N9Tc2NtK4ceNozpw51NDQQM3NzeGvy9RcP9GV5ey//e1v6fz587RmzRoym81UU1MT7a7ddE8//TRZrVb69NNPI37WXq833Gbz5s1ktVrpj3/8I5WVldEjjzyimuXM1zJ0VReRuus/ceIEabVa2rhxI1VVVdEf/vAHMplM9Oabb4bbqLl+Dj5DlJSU0Pz58ykhIYEsFgvddddddODAgYg2tbW1tHDhQjIajZSQkEArV64kn88XpR7fXAMDA/Tcc8+Rw+Egi8VC8+bNo7Nnz0a0UXP9Q10r+BCpt/5du3YRgGt+DaXW+i/79a9/TZmZmaTX62nq1Knh5d1q81U/6127doXbyLJM69evJ6fTSZIk0cyZM6msrCx6nf4nGx581F7/+++/T/n5+SRJEuXm5tL27dsj7qu5foGIKAojbIwxxhhjt5zqV3UxxhhjjF3GwYcxxhhjMYODD2OMMcZiBgcfxhhjjMUMDj6MMcYYixkcfBhjjDEWMzj4MMYYYyxmcPBhjDHGWMzg4MMYU61QKIS7774bDz30UMT1np4eZGRk4KWXXopSzxhj0cI7NzPGVK2qqgoFBQXYvn07Hn30UQDA448/jjNnzqCkpAR6vT7KPWSM3UocfBhjqvf6669jw4YNOHv2LEpKSrB48WKcOHECBQUF0e4aY+wW4+DDGFM9IsKcOXOg0WhQVlaGZ599loe5GItRHHwYYzGhvLwceXl5mDRpEk6dOgWtVhvtLjHGooAnNzPGYsLvfvc7mEwmVFdXo6GhIdrdYYxFCT/xYYyp3rFjxzBz5kx8+OGHeOWVVxAKhXD48GEIghDtrjHGbjF+4sMYU7X+/n488cQTeOqppzBv3jzs3LkTJSUl2LZtW7S7xhiLAg4+jDFVW7duHWRZxssvvwwAGD16NF599VW88MILqKmpiW7nGGO3HA91McZU67PPPsPcuXPx6aefYsaMGRH3FixYgGAwyENejMUYDj6MMcYYixk81MUYY4yxmMHBhzHGGGMxg4MPY4wxxmIGBx/GGGOMxQwOPowxxhiLGRx8GGOMMRYzOPgwxhhjLGZw8GGMMcZYzODgwxhjjLGYwcGHMcYYYzGDgw9jjDHGYgYHH8YYY4zFjP8Dj/OnB5CV5JAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_custom\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Ro3 t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wU5f3H37O9l9vrvcAdd8BxIB0EgdjLz6Axaoy9RfMzlvxMVTExGlONiTFNsUQTE2NBEAsKKNLrUe+O632vbe878/tjvYXlAFExqMz79boX7DMzzzxTducz3+dbBEmSJGRkZGRkZGRkTgIUJ3oAMjIyMjIyMjL/LWThIyMjIyMjI3PSIAsfGRkZGRkZmZMGWfjIyMjIyMjInDTIwkdGRkZGRkbmpEEWPjIyMjIyMjInDbLwkZGRkZGRkTlpkIWPjIyMjIyMzEmDLHxkZGRkZGRkThpk4SPzuWVwcJBLL72UzMxMBEHgwgsvBEAQBBYtWpRcb9WqVQiCwKpVq5Jtr7/+eso6nzcOPYaTmeeff55HHnnkRA9jBE899RSCILB58+aU9v7+fiZPnozJZOLtt98GYNGiRQiC8In39c477zB58mSMRiOCIPDKK698mqF/Ik477TTGjRt31HUOd5zFxcWcd955n3i/R/qen+ysXbuWRYsW4XK5TvRQvnSoTvQAZGSOxE9/+lNefvllnnzyScrKykhLSwNg3bp15OfnH3Xb119/nccee0wWF18Ann/+eXbt2sXtt99+oofykXR0dHD66afT29vLihUrmD59OgDXX389Z5111ifqU5IkLrnkEsrLy1myZAlGo5GKiorjOezjxqc5ziNxpO/5yc7atWu5//77ufrqq7HZbCd6OF8qZOEjc9wJBoPo9fpP3c+uXbsoKyvjG9/4Rkr78MPmRBAIBDAYDCds/zInjoaGBr7yla8QjUZZvXo148ePTy7Lz8//SDF+JLq6uhgcHOSrX/0qCxYsOOq6J/r++zTHeSSO9D0/lHg8TiwWQ6vVHtf9y5x8yFNdMiMYNmdv27aNhQsXYrFYsFqtXHHFFfT19aWsO2zmfumll5g4cSI6nY77778fgJ6eHm666Sby8/PRaDSUlJRw//33E4vFjrr/lpYWBEFgxYoV7N27F0EQUqayPmqa6Oqrr+axxx5Lrjv819LSAiTesP/4xz9SU1ODXq/Hbrdz8cUX09TUlNLPsOn/vffeY+bMmRgMBq699loAPB4P3/3udykpKUGj0ZCXl8ftt9+O3+9P6cPj8XDDDTfgcDgwmUycddZZ1NfXH/X4Afr6+tBoNNxzzz0jlu3btw9BEHj00UeBxMNweCw6nY60tDQmT57MP/7xj4/cz+EIh8P85Cc/obKyEp1Oh8PhYN68eaxduxY4cH2eeuqpEdseem36+vq48cYbKSgoQKvVkpGRwaxZs1ixYgWQOMfLli2jtbU15VoNMzg4yC233EJeXh4ajYbS0lJ+9KMfEQ6HR+z329/+NosXL6aiogK9Xs/kyZNZv349kiTxy1/+kpKSEkwmE/Pnz2f//v0f65xs376d2bNno1KpWLNmTYrogaNPAb3xxhtMmjQJvV7PmDFjePLJJ1O2GxYS3/ve9xAEgeLi4pQ+t27dysUXX4zdbqesrAyAzZs3c+mll1JcXIxer6e4uJjLLruM1tbWEWNfs2YNM2bMQKfTkZeXxz333MPf/va3lO/EsXK0Kb2XX36Z6upqdDodpaWlyfvzSBztez687Be/+AUPPPAAJSUlaLVaVq5cSSgU4q677qKmpgar1UpaWhozZszg1VdfHbEPl8vFddddR1paGiaTiXPPPZempqYR9+nwcdXW1vK1r30t2e+dd95JLBajrq6Os846C7PZTHFxMb/4xS9G7OtYfxOG79Vnn32WyspKDAYDEyZMYOnSpSnj+b//+z8ASkpKRvwGvvvuu5x22mk4HA70ej2FhYVcdNFFBAKBo55zmQSyxUfmiHz1q1/lkksu4eabb2b37t3cc8897Nmzhw0bNqBWq5Prbd26lb179/LjH/+YkpISjEYjPT09TJ06FYVCwb333ktZWRnr1q3jgQceoKWlhcWLFx9xvzk5Oaxbt45bbrkFt9vNc889B0BVVdUxjfuee+7B7/fz4osvsm7dupR+AW666SaeeuopbrvtNh5++GEGBwf5yU9+wsyZM9mxYwdZWVnJbbq7u7niiiu4++67efDBB1EoFAQCAebOnUtHRwc//OEPqa6uZvfu3dx7773s3LmTFStWIAgCkiRx4YUXsnbtWu69916mTJnCBx98wNlnn/2Rx5CRkcF5553H008/zf33349CceAdZfHixWg0muQb8p133smzzz7LAw88wMSJE/H7/ezatYuBgYFjOl8HE4vFOPvss3n//fe5/fbbmT9/PrFYjPXr19PW1sbMmTM/Vn/f/OY32bp1Kz/72c8oLy/H5XKxdevW5Nj++Mc/cuONN9LY2MjLL7+csm0oFGLevHk0NjZy//33U11dzfvvv89DDz3E9u3bWbZsWcr6S5cuZdu2bfz85z9HEAS+973vce6553LVVVfR1NTEH/7wB9xuN3feeScXXXQR27dvPya/nDVr1rBo0SIKCgp46623kvfRsbBjxw7uuusuvv/975OVlcXf/vY3rrvuOkaNGsWcOXO4/vrrmTBhAgsXLuR///d/ufzyy0dYNBYuXMill17KzTffnHyItrS0UFFRwaWXXkpaWhrd3d08/vjjTJkyhT179pCeng5AbW0tp59+OuXl5Tz99NMYDAb+9Kc/8fe///2Yj+FY2L59O7fffjuLFi0iOzub5557ju985ztEIhG++93vHnabo33PBwcHAXj00UcpLy/nV7/6FRaLhdGjRxMOhxkcHOS73/0ueXl5RCIRVqxYwcKFC1m8eDFXXnklAKIocv7557N582YWLVrEpEmTWLdu3VGn6i655BKuuOIKbrrpJt5++21+8YtfEI1GWbFiBbfccgvf/e53ef755/ne977HqFGjWLhwIcAx/yYMs2zZMjZt2sRPfvITTCYTv/jFL/jqV79KXV0dpaWlXH/99QwODvL73/+el156KXnPVVVV0dLSwrnnnsupp57Kk08+ic1mo7OzkzfeeINIJCJbpI8FSUbmEO677z4JkO64446U9ueee04CpL///e/JtqKiIkmpVEp1dXUp6950002SyWSSWltbU9p/9atfSYC0e/fujxzH3LlzpbFjx45oB6T77rsv+XnlypUSIK1cuTLZduutt0qHu73XrVsnAdKvf/3rlPb29nZJr9dLd999d8r+Aemdd95JWfehhx6SFAqFtGnTppT2F198UQKk119/XZIkSVq+fLkESL/73e9S1vvZz3424hgOx5IlSyRAeuutt5JtsVhMys3NlS666KJk27hx46QLL7zwqH0dK88884wESH/961+PuE5zc7MESIsXLx6x7NDjMplM0u23337UfZ577rlSUVHRiPY//elPEiD961//Sml/+OGHR5wXQMrOzpZ8Pl+y7ZVXXpEAqaamRhJFMdn+yCOPSIBUW1t71HEtXrxYAiRAslqtktPpPOK6w9+ZgykqKpJ0Ol3KdyAYDEppaWnSTTfdlGwbPp+//OUvD9vnvffee9RxSlLivvD5fJLRaEy53772ta9JRqNR6uvrS7bF43GpqqpKAqTm5uZk+5G+b8dynIIgSNu3b09pP/300yWLxSL5/f6j9nm4/Q6fk7KyMikSiRx1+1gsJkWjUem6666TJk6cmGxftmyZBEiPP/54yvoPPfTQiPt0+LgO/V2oqamRAOmll15KtkWjUSkjI0NauHBhSp/H8psgSYl7NSsrS/J4PMm2np4eSaFQSA899FCy7Ze//OWIa3Rwn4eeb5ljR57qkjkih865X3LJJahUKlauXJnSXl1dTXl5eUrb0qVLmTdvHrm5ucRiseTfsLVj9erVwIF5++E/URQ/wyNKjEsQBK644oqU/WZnZzNhwoSUyDAAu93O/PnzR/Qxbtw4ampqUvo488wzU8zRw+fp0PN4+eWXH9NYzz77bLKzs1OsY2+++SZdXV3JKTeAqVOnsnz5cr7//e+zatUqgsHgsZ6OESxfvhydTpfS/6dh6tSpPPXUUzzwwAOsX7+eaDR6zNu+++67GI1GLr744pT2q6++GkhEQh3MvHnzMBqNyc+VlZVA4jwe/LY93H64aaHDccEFF+B2u7n99tuJx+PHPH6AmpoaCgsLk591Oh3l5eXHvG+Aiy66aESbz+dLWh1UKhUqlQqTyYTf72fv3r3J9VavXs38+fOTFiAAhULBJZdc8rGO46MYO3YsEyZMSGm7/PLL8Xg8bN269RP3e8EFF6RYl4f597//zaxZszCZTKhUKtRqNU888cSIYwdGHOtll112xP0dGp1WWVmJIAgpVlqVSsWoUaNSruGx/iYMM2/ePMxmc/JzVlYWmZmZx3Rf1NTUoNFouPHGG3n66adHTNHLfDSy8JE5ItnZ2SmfVSoVDodjxBTK4Uz/vb29vPbaa6jV6pS/sWPHAomQYIAFCxakLD9eD9wj0dvbiyRJZGVljRjb+vXrk+P6qGOrra0dsb3ZbEaSpGQfAwMDyXN2MIee1yOhUqn45je/ycsvv5wMaX3qqafIycnhzDPPTK736KOP8r3vfY9XXnmFefPmkZaWxoUXXkhDQ8PHOTVAwicnNzc3ZWrt0/DCCy9w1VVX8be//Y0ZM2aQlpbGlVdeSU9Pz0duOzAwQHZ29ojpqMzMTFQq1Yj78NBoII1Gc9T2UCh0TMdwzz33cO+99/L8889zxRVXfCzxc+i1B9BqtR9LnB7uHrz88sv5wx/+wPXXX8+bb77Jxo0b2bRpExkZGSl9DwwMpEzdDnO4tk/D4e7p4bZPMuU6zOGO/aWXXuKSSy4hLy+Pv//976xbt45NmzZx7bXXplzT4e/fodf/aMd+uHvFYDCg0+lGtB+8r2P9TRjm09wXZWVlrFixgszMTG699VbKysooKyvjd7/73UduK5NA9vGROSI9PT3k5eUlP8diMQYGBkZ8aQ/nJ5Genk51dTU/+9nPDtt3bm4uAH/+85/xer0p232WpKenIwgC77///mGjQw5tO9Kx6fX6FCfVQ5dD4sftcOfsWB76w1xzzTX88pe/5J///Cdf//rXWbJkCbfffjtKpTK5jtFo5P777+f++++nt7c3af05//zz2bdv3zHvCxK+RWvWrEEUxSOKn+GHwKEOxod7wKWnp/PII4/wyCOP0NbWxpIlS/j+97+P0+nkjTfeOOpYHA4HGzZsQJKklOvgdDqJxWKf+b1yMPfffz+CIHD//fcjiiLPPfccKtV/5+fz0HvQ7XazdOlS7rvvPr7//e8n24d9Xw7G4XDQ29s7os+Pcw8eC4frb7jtcA/5Y+Vw37+///3vlJSU8MILL6QsP/R+HP7+DQ4Opgia433scOy/CceLU089lVNPPZV4PM7mzZv5/e9/z+23305WVhaXXnrpcd3XlxHZ4iNzRIadDYf517/+RSwW47TTTvvIbc8777xkmOrkyZNH/A0Ln4qKipT24YiWT8uwgDn0Deq8885DkiQ6OzsPO65Do3WOdGyNjY04HI7D9jF8DPPmzQNGnsfnn3/+mI+jsrKSadOmsXjxYp5//nnC4TDXXHPNEdfPysri6quv5rLLLqOuru5jR3mcffbZhEKhw0ZsHbwPnU5HbW1tSvvhomoOprCwkG9/+9ucfvrpKdMfR3rTXbBgAT6fb0Qyv2eeeSa5/L/JokWLuP/++/nXv/7F5Zdf/pHRiZ8Vw47zh4r0v/3tbyOsUXPnzuXdd99NsTiIosi///3v4zqm3bt3s2PHjpS2559/HrPZzKRJk47rvgRBQKPRpIienp6eEfff3LlzgYTV8WD++c9/HtfxwLH/JnwcjvQbdjBKpZJp06Ylo1g/zbTiyYRs8ZE5Ii+99BIqlYrTTz89GdU1YcKEY/IP+MlPfsLbb7/NzJkzue2226ioqCAUCtHS0sLrr7/On/70p+OeD+RghgXMww8/zNlnn41SqaS6uppZs2Zx4403cs0117B582bmzJmD0Wiku7s7Gab8rW9966h933777fznP/9hzpw53HHHHVRXVyOKIm1tbbz11lvcddddTJs2jTPOOIM5c+Zw99134/f7mTx5Mh988AHPPvvsxzqWa6+9lptuuomuri5mzpw5IrndtGnTOO+886iursZut7N3716effZZZsyYkYzweOaZZ7j22mt58sknk1Evh+Oyyy5j8eLF3HzzzdTV1TFv3jxEUWTDhg1UVlZy6aWXJn2khhPOTZgwgY0bN44QdG63m3nz5nH55ZczZswYzGYzmzZt4o033khGwwxfq5deeonHH3+cU045BYVCweTJk7nyyit57LHHuOqqq2hpaWH8+PGsWbOGBx98kHPOOYevfOUrH+s8Hg/uvfdeFAoF99xzD5Ik8Y9//OO/ZvkZxmKxMGfOHH75y1+Snp5OcXExq1ev5oknnhiR6O5HP/oRr732GgsWLOBHP/oRer2eP/3pT8nosEOteh6PhxdffHHEPjMyMpJC4nDk5uZywQUXsGjRInJycvj73//O22+/zcMPP3zco4yG02fccsstXHzxxbS3t/PTn/6UnJyclOnds846i1mzZnHXXXfh8Xg45ZRTWLduXVI4H6/pXDj234SPw/Bv2O9+9zuuuuoq1Go1FRUVPPfcc7z77ruce+65FBYWEgqFkpamE/Gd+EJyAh2rZT6nDEc4bNmyRTr//PMlk8kkmc1m6bLLLpN6e3tT1i0qKpLOPffcw/bT19cn3XbbbVJJSYmkVqultLQ06ZRTTpF+9KMfpUTfHIlPE9UVDoel66+/XsrIyJAEQRgRHfHkk09K06ZNk4xGo6TX66WysjLpyiuvlDZv3vyR+5ckSfL5fNKPf/xjqaKiQtJoNJLVapXGjx8v3XHHHVJPT09yPZfLJV177bWSzWaTDAaDdPrpp0v79u07pqiuYdxut6TX648YbfX9739fmjx5smS32yWtViuVlpZKd9xxh9Tf359cZzhC6XCRWIcSDAale++9Vxo9erSk0Wgkh8MhzZ8/X1q7dm3KmK6//nopKytLMhqN0vnnny+1tLSkHFcoFJJuvvlmqbq6WrJYLJJer5cqKiqk++67LyXSZ3BwULr44oslm82WvFbDDAwMSDfffLOUk5MjqVQqqaioSPrBD34ghUKhlDED0q233prSdqRoqeH75d///vdRz8PwOTs0UkeSDkTmLVy4UIpEIkeMdjrcd2Pu3LnS3LlzP3Kcw30eHJE1TEdHh3TRRRdJdrtdMpvN0llnnSXt2rVLKioqkq666qqUdd9//31p2rRpklarlbKzs6X/+7//S0bGuVyulHHxYRTboX/D4z3acb744ovS2LFjJY1GIxUXF0u/+c1vDnteD3c+jhTVdeg5GebnP/+5VFxcLGm1WqmyslL661//etixDQ4OStdcc03K92/9+vUjoi2PdK6vuuoqyWg0HtOYj/U34XD3qiRJh712P/jBD6Tc3FxJoVAkf+PWrVsnffWrX5WKiookrVYrORwOae7cudKSJUsOe65kRiJIkiT9F/SVzBeIYZN+X1/ff9WPQkZG5r/DGWecQUtLyzEl0/yy8fzzz/ONb3yDDz744GPnpZL5ciBPdcnIyMh8ibnzzjuZOHEiBQUFDA4O8txzz/H222/zxBNPnOihfeb84x//oLOzk/Hjx6NQKFi/fj2//OUvmTNnjix6TmJk4SMjIyPzJSYej3PvvffS09ODIAhUVVXx7LPPcsUVV5zooX3mmM1m/vnPf/LAAw/g9/vJycnh6quv5oEHHjjRQ5M5gchTXTIyMjIyMjInDXI4u4yMjIyMjMxJgyx8ZGRkZGRkZE4aZOEjIyMjIyMjc9IgOzcfgiiKdHV1YTabD5suXUZGRkZGRubzhyRJeL3ej6w3KAufQ+jq6qKgoOBED0NGRkZGRkbmE9De3n7UygCy8DkEs9kMJE6cxWI5waORkZGRkZGRORY8Hg8FBQXJ5/iRkIXPIQxPb1ksFln4yMjIyMjIfMH4KDcV2blZRkZGRkZG5qRBFj4yMjIyMjIyJw2y8JGRkZGRkZE5aZB9fGRkZGRkTjri8TjRaPRED0PmY6BWq1EqlZ+6H1n4yMjIyMicNEiSRE9PDy6X60QPReYTYLPZyM7O/lR59mThIyMjIyNz0jAsejIzMzEYDHKi2i8IkiQRCARwOp0A5OTkfOK+ZOEjIyMjI3NSEI/Hk6LH4XCc6OHIfEz0ej0ATqeTzMzMTzztJTs3y8jIyMicFAz79BgMhhM8EplPyvC1+zT+WbLwkZGRkZE5qZCnt764HI9rJwsfGRkZGRkZmZMGWfjIyMh86ej19bKyaSUv732Zlc0r6fX1nughych8bikuLuaRRx75VH2sWrUKQRA+dbTc8RjLRyE7N8vIyHyp2N6znUc3PErTUFOyrdReym3TbqMmu+bEDUxGRuZzgWzxkZGR+dLQ6+sdIXoAmoaaeHTDox9p+WlztbGsbhnP7niWZfXLaHO1fZbDlZGROQHIwkdGRuZLwx7nnhGiZ5imoSb2OPcccdt17eu49fVbuXX5rdyz8p7E/1+/lXXt6z6r4cp8QZHCYeK9vcQ6Oog7nUjh8Ge/T0niF7/4BaWlpej1eiZMmMCLL76IJEl85Stf4ayzzkKSJABcLheFhYX86Ec/Sm6/ZMkSJk+ejE6nIz09nYULFx52Py0tLQiCwPbt25NtLpcLQRBYtWpVsu3111+nvLwcvV7PvHnzaGlpGdHX2rVrmTNnDnq9noKCAm677Tb8fn9yudPp5Pzzz0ev11NSUsJzzz336U7SMSILHxkZmS8NrrAr5bOAgEltwqg2olVqcQaceMPeEdu1udp48P0H2encmdK+07mTB99/ULb8yCQRXS4i27cT3buX2P79RPfsIbJ9O+JnnAn6xz/+MYsXL+bxxx9n9+7d3HHHHVxxxRW89957PP3002zcuJFHH30UgJtvvpmsrCwWLVoEwLJly1i4cCHnnnsu27Zt45133mHy5MmfeCzt7e0sXLiQc845h+3bt3P99dfz/e9/P2WdnTt3cuaZZ7Jw4UJqa2t54YUXWLNmDd/+9reT61x99dW0tLTw7rvv8uKLL/LHP/4xmaDws0T28ZGRkfnSYNPakv8XEDBrzTQPNeONJMROu7udxdsXc0HFBRTbipPr7uzdOUL0JJc5d7KzdyeFtsLPcugyXwCkcJhoXR1SMJjaHgwSratDU1ODoNUe9/36/X5+85vf8O677zJjxgwASktLWbNmDX/+8595/vnn+fOf/8w3v/lNent7ee2119i2bRtqtRqAn/3sZ1x66aXcf//9yT4nTJjwicfz+OOPU1paym9/+1sEQaCiooKdO3fy8MMPJ9f55S9/yeWXX87tt98OwOjRo3n00UeZO3cujz/+OG1tbSxfvpz169czbdo0AJ544gkqKys/8biOFVn4yMjIfGmoyqyi1F5K81Azdr2dxsFGvBEvSkFJqb0UrUrLQHCAJXVLuKbmGsxaMwCDocGj9jsUHvpMx+0Ne2l1teKL+jBpTBRZi5Jjk/n8ILpcI0TPMFIwiOhyoczKOu773bNnD6FQiNNPPz2lPRKJMHHiRAC+9rWv8fLLL/PQQw/x+OOPU15enlxv+/bt3HDDDcdtPHv37mX69OkpOXWGBdkwW7ZsYf/+/SnTV5IkIYoizc3N1NfXo1KpUixPY8aMwWazHbdxHglZ+MjIyHxpyDJlcdu02/jTpj+xq28XdQN1AJSllVGTXcO27m0EogG0Ki3T8qYxLT/xppmmSztqv3at/TMbc4urhX/u+id7+/YSioXQqXRUZlRy6bhLU6xSMice6SOyBX/U8k+KKIpAYsoqLy8vZZn2QwtTIBBgy5YtKJVKGhoaUtYZLvVwLCgUCQ+YYX8hGJkl+eBlRxvzTTfdxG233TZiWWFhIXV1ie/miUgmKQsfGRmZLxU5phxK7CVUZVQxJn0MeqUek8ZEX6APQRAoSyujbqCOtxrfQqvSUpNdw/is8YzPHH/Y6a7xmeMZnzX+MxmrN+zlia1PsLR+KUOhA1al2t5a/BE/d8+6W7b8fI4QPpw6+qTLPylVVVVotVra2tqYO3fuYde56667UCgULF++nHPOOYdzzz2X+fPnA1BdXc0777zDNddc85H7ysjIAKC7uztpTTrY0Xl4PK+88kpK2/r161M+T5o0id27dzNq1KjD7qeyspJYLMbmzZuZOnUqAHV1dZ86D9CxIAsfGRmZLxV7nHt4ed/LnJJzCq/ue5Xzys9jeeNymoeaUSlUFFoLMagNnF56Oo9tfIwH5j9Aoa2QH576Qx58/0H29e9jQvYEMgwZWLQW5hbPpc/fhzfipdBaeFyFyPbu7by09yWcficKQYFGqUGpUDIUGmJp/VLOKz8vaZWSOfEobDYEvf6w012CXo/iM5qmMZvNfPe73+WOO+5AFEVmz56Nx+Nh7dq1mEwm0tPTefLJJ1m3bh2TJk3i+9//PldddRW1tbXY7Xbuu+8+FixYQFlZGZdeeimxWIzly5dz9913j9iXXq9n+vTp/PznP6e4uJj+/n5+/OMfp6xz88038+tf/5o777yTm266iS1btvDUU0+lrPO9732P6dOnc+utt3LDDTdgNBrZu3cvb7/9Nr///e+pqKjgrLPO4oYbbuAvf/kLKpWK22+//WNZpz4pclSXjIzMl4qB4AD9gX56/b2cPeps1ravpWmoCQmJmBhDQmIoNMTy/cvRqXQ09Dewq3cXgiDwg9k/4K/n/5UcUw5DoSG6vF38eu2v+fW6X7O+Yz1P73iaFlfLMY3DG/ayq3cXGzo2sNO5k61dW1nfsZ5dzl14w1529Oxgb/9eGocSfkjusJuh0BCReASAodDQiGiy4T4P7udEcLLmOxK0WtQVFQiHPJwFvT7R/hk4Ng/z05/+lHvvvZeHHnqIyspKzjzzTF577TWKi4u57rrrWLRoEZMmTQLgvvvuIzc3l5tvvhmA0047jX//+98sWbKEmpoa5s+fz4YNG464ryeffJJoNMrkyZP5zne+wwMPPJCyvLCwkP/85z+89tprTJgwgT/96U88+OCDKetUV1ezevVqGhoaOPXUU5k4cSL33HMPOTk5yXUWL15MQUEBc+fOZeHChdx4441kZmYer1N2RATpWCbrTiI8Hg9WqxW3243FYjnRw5GROeno9fWyx7kHV9iFTWejKqOKLFPWMTsAL6tbxq3Lb0WtUHPz5Jv5+ZqfMxAcSC6flDMJvUpPt6+b26ffTsNAA3Z9wofHHXITjoc5tfBU3CE37rCblS0rCcVC5JpymVM0h4gYSXGMPhwtrhaW1C3BHXKTb8lP5BaSwKAxYNPZ0Cq1uMNuTBoT/7v8f1O2VSlU2HV2lAolvz7j11xUdVFKn4PBA47Yafq0ERFqnzXr2teNCP0fnzmeH576Q2YUzDjKlieeUChEc3MzJSUl6HS6T9yPFA4nHJ2jUQS1OmEJ+gxFj8wBjnYNj/X5LU91ycjInFCGBY0/6icUC/HC7hfY27cXicQ7Wam9lBsm3cC2nm04/QdyfBzpoZ9tzqYyvZK9/XupG6gjTZ9GrjmXuBTHorVQaClkY9dGHHoHjYONuEIu7Ho7Pb4e1rSuocPbwbqOdZxWdBpqpZqFYxbS7mlnIDiAIAgMBgdpdbUyLmvcEY9nWKDkmnJx+pysallFu6cdlUJFtikbq9ZKdVY1BdYCSmwlNLuak9vHxBiReIRyWzkZhgy2dW1jIDhAh7cDQRLIMGSgFJT0BfoYDA6OiFD7LPmofEePnfPYSRH2L2i1n0n0lsx/B1n4yMjInDDq+ut4rvY5unxdlNpKWdW6im5vN6X2UqJilFg8RuNgI3/a/CeurbkWjUJDt6+buBQ/4kNfr9Rz3cTreGLbEygFJd2+bkKxEBmGDAosBXT7uhElEa0q8YaeYczAF/GxpWsLZWllzCiYQb4lH4C1bWv5z57/UGIvIRwLM6tgFkpBiS/qO+Ixtbpak1YZi87Cs7XP0u5pR6PQICHhDrkZCg4xGBxkZuFMLhxzIa/seyVF/BRaCzm//HycASfvNr/L+23vs6V7C3adnWJbMQa1gTPKzqDP3/eRQmyY4xEyL+c7kvkyIAsfGRmZz5QjPXD3D+zn4Q8eTpaYsGqtbO/ZjkPvwBfx0eProcXVQlSM8kH7B5TaS7FoLRRYCmj3tCfFz6EP/QJbAavaVnFVzVXolDoi8Qh9gT48IQ91A3U49A4ACi2FZBozCcfDtLnaOCX3FFa3rKa2txZ32I1KocKmtXFe+Xl0ejvp9HSypm0Nc4vnYlYfWTAcLIoCkQDtnna0Sm3Sf0ev0iNKIh2eDvr9/YxKG8Xc4rlMj00nJsZQKVTkmHOocFSwtn0tazvW0u3tRikocfqdBKIB0g3p/HvPv5mSOwUpKh1ViMHxmyY70fmOZGSOB7LwkZGROW4cLHLMGjMqhYo3G99MPnDDsTBqhZozR51JbW8ttb21iJKIUlASioWIxCOoFWoaBhuIi3HiUjzZd1+gj2X1y7ig4gIyDBn0+HsARjz0zVoz54w+J+ljM7NgJu80vUMgGuDUwlMJx8LMK57HBRUXsLp1NdnGbHJNubxa9yo6lY4sYxYftH9AjjmHmBTj/db3qXBU0OntZCA4QJGtiInZE494DkxqU/L/kXgErVJLKBZCpVAlorYEJdF4FFES6Q/00+XposRWglFjJC7GSTOkUWwp5pkdz5BjzqHd045OpSMUCxGX4rjDbgqsBTQNNTG7cDY7enagUWiOek0OFT3AJ5omO5H5jmRkjhey8JGRkTkuDFsVvGEvZWll6JQ6ljUsIxgNkm3OJibG2OPck4hWcrdxatGpTMqehEJQoFVpqXBUMDptNFadFVfYhUapQSCR3ExAwKKxICJi1VoxaAxkk01foC9FaAxTbCvmmpprkr5DU/OmEo1HiYgRTGoTGcYMerw92HQ2ltQtYbRjNG81voWERImthEk5k3D6nXR5u2h2NTMxeyKhWAiD2oCExJuNb5Jrzj2sYCiyFTE6bTT9gX7S9GlIkkSnt5O4FEeBArPGjElrIsuURTgWxqKzsKJpBVPzplLbW0ueJY9+Rz9berYwXTUdrVKLQlCgUqiIxxNCUJTERBI5Cc4vP58ubxete1uTzuAGtSEpQIPRIN3e7uTU3sEc6zTZMCcq35GMzPFEFj4yMjKfGo9vgFe3/hNPwMXY4sls7d1OpjEz6VDsCrkYCAzQ4momFouSUZzOqpZVPL/zeQxqAxWOCvxRP1nGLNo8bfT6ejFrzNj1dlxBFxNzJ7J/cD+7nLvY2beTPn8fDr2D08tOJxqP4g17R4gQs9Z82Af6sECLx+Ns7d5Kq7uVfGs+GqWGSDxCVExkqT1v9HkIgkBMilGZXslAcIBtPdswqAxHFQwDwQH2D+6ncbARgAnZE9AoNaiUKuJiHEEQUCvUjMscRyQeochWlPx/vjmfbl83Ro2RmuwaFCgYCg3h0Duw6qzJqDOFoMCoNjIldwrP1D5Du6cdizYRxZJvzufisRezt28vdp0dQRDY07cHs8aMXq1HrVRj1VqTQuijpsngQBRTblTBD2Z8jwfX/pxdfbuSy8dnjueHc34o+/fIfCGQhY+MjMynQnS5aGrZQl/bPqpHz2b/UCOv1S1BEmBP3x4AxmaMZXbBbPrdPaQ50nmv9T0UghKr1opVZ6XD28Huvt3ceMqNmDQmGgcbCcQCBGNBpuRNYWLORJ7e/jQFlgLGZ46nrr8OCYlt3dtwh9y83/7+R/qrDE/DrW1fy7O1zzI2cywv73uZbFM2Nq2NfEs+UTFKmb2MYlsxq9tWs9O5EwGBybmTyTRk8vVxX8cT8gCHFwzesJel9UtRK9RMyZvCHucezh59Ni+IL7CxcyNxMZ48H5dUXUKbp41gLIhOpaN+oJ5ntj9DujGdQDSARWfhq2O+SqGlEF/Uhzfsxagxkq/LJ92Qzo2TbuTZnc9S21uLw+DAH/ETFaP0+HrwhD3cMuUWnq19llFpo1jXsY6YGCPXnMv4zPGYNCY0Sg2SJOEP+w8rHA++vkNtDbSHnfhiAcwaE7+d9VPqQ50MRVzYtXbGZ42XRY/MFwZZ+MjIyHxihqtV+0Q3AMa0TJ5b+Sj7+vdRmVGFJEkIgkDTUBOBiJ/Ty84gEgvzftsaytPLybfko1Vp2encSUyM8Zctf+GP5/yR0Wmj6fZ3o1KoMGlM/H3H3ylLK0Or1PLm/jfZ2rMVlUJFkbWIiTkT6R3oPaq/yrCVJ9OYyQu7X2Cncycl9hJiYowubxe1vbVoVBoytZnYdDbWtK2hy9sFJJyunT4n7e527Do7OrsOhUJx2Cm2NlcbAgLvNL/DQHAAX9jH0vqlzCqcxS1TbqGuP1GfyKF38Jv1v0Gv0rO3fy/9gX4q0it4YMED7HTuJBwPY1Qb6fP18c0J30z66KgVarJMWRhUBqw6K7W9taiVatwhNxISwWgQf9SPO+SmP9BPIBrAGXBS7iinzd1GljGLDEMGK5pW0OJqIceUw5buLazrXMcV1VeMEI5SOExz+06W1L/GgO9AKoEMcw5nj7uAcHo+fjGEJ+I5qniSkfk8IQsfGRmZFLxhLw0DDXR6O5EkCYNCS5rSRKm5EKs1MyVR23C1apPRAMBQ2M2+/n0A+MJe7Do7rrALgP2uRr6qMeGM+FAqlOhVepoHmyh1jCLLmEkkHkWlUNHp7aTcUU7jUCP1A/VkmTLJNeeiU+mYlDOJl/a8lNx/u6ed5fuXMz1vOj3+npTpp+FEiBExwjtN7yAiYlKbkpmXh52MNUoNW7q3cF75eQSjQYxqI/UD9Vh1VgosBeRb8mkeaiYYC7K7fzcV6RVYdBaKbEUjzp0n7OE/e/6TnHoyaU00uhpZ2rCUrd1bKbIV4Qq56PJ24Yl4uGrCVex07kSURKoyqvj9xt8TF+Ps699HMBZkfOZ4Fp22iP+b8X+ExTBdvi56Pb1Y9VYaBxvp8/cl/H2Q0Kv0pBvSUSvUiIh4wh6unXgt+wf3c0rOKaxvX49GpeHtprfpD/Rj1VopsBYwFBzig7YP0Cl13DT5phTx4nb1sqQuVfQoFUr0NgcPbvot2bY8dCYrcPgoMbnqvMznkS9UyYrOzk6uuOIKHA4HBoOBmpoatmzZklwuSRKLFi0iNzcXvV7Paaedxu7du0/giGVkvli0uFr43Ybf8bP3f8YP3v4+//vqTSx65x5ebVjKHzb+kab6TYgHFREcrkZdgA2HKTNZbgGgy9tJvjUfm86GJImoBBUxMUq6IYN8Sz6bOjZi1pixaC1olFrUSjWCIJBrzuGNnS9jljTMKZjNGaVncFXNVeSb83lr/1v4oj4C0QC+iI+YGKPP35dMdjg8/bS9Zzs/eOcH3P/e/axsWcm/9vyLd5rewR/1oxASP3s9vh6KbcWIkkhUjLK0fikzCmZQllZGdVY1o9NG49A72OXcxUBwAE84McWlVWn5n4r/OewDfDA4SJOrCQGBaDyKWpEoWhmIBmjztCX6NDhwhVwoBSWBaABREpmRP4M1rWvY0LkBi9aSPJ6dzp08v/N5qjKrmF8yH4vGwuj00azrWIdJY0o4PItxJElCrVTT7eumP9hPr6+XUDzEK/teYUfPDv7vzf9LWH7SyimxlVCRXkGGIQOnz5mwFMWCNA010epqTTmeNl9nUvQoFUpyMkqoHDObbd59uAjSGujC6XcSjoWTUWLDZTSGrWzvt73PuvZ1vN/6PkvqlhxzyQ+ZVE477TRuv/3249LXokWLqKmp+dT9FBcX88gjj3wuxvJx+MJYfIaGhpg1axbz5s1j+fLlZGZm0tjYiO2gonC/+MUv+M1vfsNTTz1FeXk5DzzwAKeffjp1dXWYzfJbhozM0fCGvby4+0W2dm+lvr8er38QJIl2dxvvNL/D5KyJ/KdpKddJWtL01QhabbIatTEQ4/zSs9mpGcShdzAQHCAuiTT0N1BgK8CkNmJQG5iUPYlQ2M/+oUbiUhyD2oBRbUSFkoGIj7lFc9jfu4/2gURuH73GSL4mnY5IP+82vk2aKSM5XlESE9YNSSQUCwGJUPJeXy+Pbng0mR/o4NpX/ogfo8aIO+xmc9dmLhxzIc2uZoaCifwzQ8EhhkJDeMKeZOJDq9ZKhiEDhaCg2FbM5JzJFNmKUqwZAgLhWJj+YD/laeUEYgE8IQ9p+jQMKgOBWIC4GCcYCyaTJyqFhNVLr9ZTmlbKmvY1ZBgyMGvNzC2am4zcCsVCNA42kmHMoGGwAZPaxMbOjZTZyxibOZaNnRsxqox4w16CsSAGtYHxmeNpc7Wxt38veeY8Tis5je0927FoLWzr2UaFo4JmbzNKhRKDxoBKoSIiRkb4LfliASAhevLyKlndvoYZdhvLGpbjCXtIN2dh1poxaoyMSR9DOBam1dVKka2Ite1rWVa/jC5fV7K/XFMugiDg0Dtky8/H5KWXXkL9GVV/P9n4wgifhx9+mIKCAhYvXpxsKy4uTv5fkiQeeeQRfvSjH7Fw4UIAnn76abKysnj++ee56aab/ttDlpH5QtHqaqVpqIlwLIw35IaDyvi1u9uYVTCTJncb7WEnNpcLZVZWSrXqfK8CZU4R55Wfy9aebYCAWWtGrVQTE2NUOsZQaCnkL1v/SmX6GJwBJy1DLQSjQSqzqiiLjeLiyot5YvUjQEL0VNhH0dhfT2XhKeiUOhSSgEapIRwLY9aayTHn0OPrQaVQkaZPo8hWxObOzUnRA6BRHshxs61nGxOyJqAUlPT4epAkiSxjFgWWAgxqA5nGTLxhL5nGTFwhVzKEXpREcsw5ZBmzqMqsSkkI2OPrYW3bWjRKDZdXX079QD0IUGIrIRQLUWQtIhQLoVFpKLOXEYwGUQrKpDWpw9OBL+wjTZeGQqHA6XeyvmM9EhIWjYUx6WMYDA1i0CSmEwPRhBh5dd+r3DXzLkRJpN3dTq+/F5Wgoia7hgsrLuS+VfdR7ihnt3M3/zPmf3ir8S0UggJvxItWpUWURALhAMFoELPWjEaRSB+wsmllsk6aXm8AtZpMWz7vtq7CbnKwf6gRT9iDRW/DFXIxGBrEpDHhDrkpd5TT4emgz9/Hvr59FNmKsOlt1A/UJ/ypfF0srVsqh75/AtLSjp5DSebY+cJMdS1ZsoTJkyfzta99jczMTCZOnMhf//rX5PLm5mZ6eno444wzkm1arZa5c+eydu3aI/YbDofxeDwpfzIyJyO+qI+IGCEmxlJEzzBRMUpEjOKLBZJTXCnVqiWJnN4gV1VeTr4pH6PGSNNQE5s6NxGIBihLG8Wv1/+KQmsBmzo2MjV7CtdNvI7Ty85gVsEsfnPGb7CqjBTbS6jKqGKCtQJLWCAYDbKvcweTsmsY7RjN1LypVGdVY9Vaqe+vJ02fRiga4tTCU9ncuZkWVwtXVl/JDZNuYHredPLMeYnQcEHB1u6tVKVXMSlnEt+o/gZNQ01s6d7Crr5dDAWHeOC9B/BGvJxadCpF1iL6g/0MBgeJilFm5M/gpsk3YVAbkqLHF/Gxvn09rpCLbl83e/r2MC5zHDExhtPvJMuYxfis8dh0NnLNuRg1RlQKFRXpFUzNn8qmzk1E4hEcBgeReIS4mMhGLSGhQEEkHqFhsIFeXy8GdUL4DP8biodY0bSCuUVzuWfOPdw9625+Mu8nXFhxISuaVzA2cyxKhZIubxdp+jTiUpx2dzv55nziUhyVQoWElMwm7TA4eLPhDRat+BGPvPcLFr39I95qfAshKxP0ero8HVgMdsLRIAaNEU/ES1RMJGKMiTF8ER8KQUGts5bHNj/Gpq5N1PbW0u/vZ2b+TFSKxHt2l6+LLk8n8d5eYh0dxJ1OpHD4v3SXHx+8YS+7enexvmM9u5y7ktN7nyUHT3UVFxfz4IMPcu2112I2myksLOQvf/lLyvodHR1ceumlpKWlYTQamTx58hErsh9uGu3CCy/k6quvTn52Op2cf/756PV6SkpKeO6550b043a7kxXWLRYL8+fPZ8eOHSnr/PznPycrKwuz2cx1111HKBT6+CfjU/KFsfg0NTXx+OOPc+edd/LDH/6QjRs3ctttt6HVarnyyivp6Ulkcc06pHBcVlYWra2th+sSgIceeoj777//Mx27jMwXAZPahEahSTygBGHEcrVCjUahxqQyJKe4ABQ2G5qaGkSXC2/Mz9b6F/nauK/RMLif/mA/WqUWX8THv/f8G2/Yy/6hRgrMBSze/iQoFOjVegqthUzKnkShPpfcuBHiACIAGoWaPd21TC+bS09kgI3dm9GpdNh0NirSK7iy+kq0Ci1r2tYQF+P4o36UCiWxeIxCayF/3vxnzik/B61Sy6auTdQN1DE1byp6tZ59ffsYlTYKpIQlJRAL8PK+l5lZMJPbZ9yO0+8kGo8iIDA1fyo12TXs6t2VzILc5+/DF/UxFBoiGAvyXO1z3D/vfppcTYmorogPo8bI9ILpfH3s1/FH/IkcOkotj21+DAkJtUKNL+KjJruGuBTHE/YwPnM8SkGJN+JFp9Ilx5GmT0NAoNRWijfipba3lk1dm5hXPI9X615NJINUahkMDpKmT8Mb8VJiLyHblM2lYy9FQuL00tMBaBhoSFx3jYmpuVOxai0s3fYCUuyAn9aq3cs4p+ZrxFUaBIOBqEKiLzRAafooantrk/5Sw/0IgsD69vXs6dtDKB5CQCDPnIdGqaEqvYpaZy1SLEbE6ybauTe5raDXo66oQHGQ68LnleNV/uPT8utf/5qf/vSn/PCHP+TFF1/kW9/6FnPmzGHMmDH4fD7mzp1LXl4eS5YsITs7m61btyKK4ife39VXX017ezvvvvsuGo2G2267DafzgNO7JEmce+65pKWl8frrr2O1Wvnzn//MggULqK+vJy0tjX/961/cd999PPbYY5x66qk8++yzPProo5SWlh6PU3LMfGGEjyiKTJ48mQcffBCAiRMnsnv3bh5//HGuvPLK5HrCIT/Yw+G0R+IHP/gBd955Z/Kzx+OhoKDgOI9eRubzT5GtiFJ7KT3+Hsw6K97YQNLyU2AtJBwJUmoqpECbOeIBNVytuqN3FwNCAFXEy6rWVcnl/ogfd9iNSWNiT98epuZNQ1AqAQjFQvT6ehkMDXJKYTUOey4DQwf8QizoUKu0tA40s2DseWSbc+n19yJKInExTq+/FwGBZ2sTOW0kScKgNjAxeyI3nHID35ryLVa2rCTDkMHds+6mPK2cTGMm+4f24414k47E6YZ0LFoL7pCb1c0rKbDks75tHXFBoshWxJmjzgRS8/eE4wmn3mAsCCSsYrW9tWQbs5lZMJPJOZPJteRSYCkgEo8Qiodwh908vulxLqi4gAvHXEgwGqTQWohVa+Vn7/8sGeUFUJNdwzerv8nmzs1ExAgXVFzA2va1XFVzFfsH9+P0O+nz96FWqhntGE0wGmT/4H7iUpxwPIwn5KGkqIR2VzvP1D6TuJaWAi4ZewkPLniQweAgYzPGolFouHfpncQOEj0AsViE17f/m/87837G5taQbc1jXddGTi89PeHj5G5FQEjmY5qcM5l7V96LRqVBlMRkYdhMYyaj0kYlklIqzejUejZr+zCrDORjwxgIEa2rQ1NTkxI1+HnjeJb/+LScc8453HLLLQB873vf47e//S2rVq1izJgxPP/88/T19bFp06bkFNmoUaM+8b7q6+tZvnw569evZ9q0aQA88cQTVFZWJtdZuXIlO3fuxOl0ov3wGv7qV7/ilVde4cUXX+TGG2/kkUce4dprr+X6668H4IEHHmDFihX/davPF0b45OTkUFVVldJWWVnJf/7zHwCys7MB6OnpIScnJ7mO0+kcYQU6GK1Wm7xIMjInM2atmYvHXpx8U6+T9uH1D1JgKWBByQI0Mbio6FzsBaOP+HAaFgXDzsbDxKU4SkGZmEaD5L/DROIRdEodFpODC6ddySsbnkmKH01UZHbRbMryxvFO6yrebnobT9hDkbWI2YWzyTHmsGj1Irb3bken0mHRWfCEPaxsXclgaJBvjPsG+/r3kV+aT3laOfNL5wOkRINBoo5Yedpo6vvq8Mf8xOMx+txdFNiLmZ4zjX39+7Dr7Sn5exQoCMdSp2kUgoK1HWtZ17GOBSULWNm8EqsuEfLd5m4jx5SDSWvij5v/iFJQMj1/OlfXXM3Le19mbMZYZhXMYjA0iEpQ0ePr4Zkdz3B++fnJwqhdni6ahppwh930+nrJMmYxv3g+WYYsntv5HL5IwtlarVfzldKvMCptFDv7djI1dyrOgJPK9ErWt69nZ+9Obp16K1PypvB23XLCYpSwMk4cCaWgQIsKpSQQE2MoRIkxGWPQKDSU2ErY0buD0Y7RzCqYhUljSmaB3tO3hyxTFkOhIWLxGKcVn8bmrs2s7VjL2MyxlFlL2Dq4hea+fdgTrko4TJmcX3o2+d4Q4oe+Y59XWl2tI0TPMB+3/Menpbq6Ovl/QRDIzs5OWmC2b9/OxIkTj5tf0N69e1GpVEyePDnZNmbMmJTgoi1btuDz+XA4HCnbBoNBGhsbk/3cfPPNKctnzJjBypUrj8s4j5UvjPCZNWsWdXV1KW319fUUFSVyaZSUlJCdnc3bb7/NxImJAoKRSITVq1fz8MMP/9fHKyPzRaTYVsx3pn2HhoEGunxdiGIco0KHTWmkzFSI1ZZ11DfyYVGgU+lS2pWCEqWgxKxJPLyH/T2GGZc5jmxz4uWlJHsM1y24ixbnfnxhLyatmeLMUQhqDTqNMVnyoS/Qx1uNbzE9fzrbercBYFQb8YQ9hGIJ8VbbW8v1kxJvl23utpS38arMKkrtpUlHaF/Ig1mhpyytjDR9GmXWEi4d8zVUokB6WEl9Ry19gT6+PvbrpOnTGAwOolcnfGOGkx2W2Ero9HQCiVIVA8EBAtEAVp2VcCxMMBqkzdWWTL44NW8qe/v3sqlrE281vZWcGssz59Hsak6ey1xLLunGdF7Y/QK+qI9MUyZAomq8r5NX615FEiVGOUYxo2AGEhLphnTsOjt/3fJXskxZeMIepuRMoa5/HzmGTIJhPwaFFrPWjF5joCfcT0yMIcUSPl5qpQaHzo6KhGCdmD2Rd5vfZW7xXDZ1bmJj50b69f24wi50Kh1fHfNVnt/1PGaNmTJ7GRathdWtq+nz95FhzKDSUcmWrk0E/W5En5cJ1go0UZEBn5PXmpZzZdH/YP3Qd+zzykeV9ziW8h/Hi0MjvARBSE5l6fX6j9WXQqFI1H47iOhB12J42dFmT0RRJCcnh1WrVo1YZvucTWF+YYTPHXfcwcyZM3nwwQe55JJL2LhxI3/5y1+SDl2CIHD77bfz4IMPMnr0aEaPHs2DDz6IwWDg8ssvP8Gjl5H54mDWmpmUO4lJTDriOt6wl5bBJjpd7UTjEXKN2YzOqKDIVpT0Q8k15SZDmYctArnmRDhzj68n2Vd1ZjU3nnIjeuWBH2uLyUG1KfXNERJh1ataVqVYjPwRf/L/GqWGgeBAyjbBaBC73k5foA9f+MCDKcuUxW3TbkuGvouxKO6wn+rCKUzPm4ZzoJ0CQw5EIrS17URUKhhQK+n393NBxQUsqVuC0+dkbMZY4mIcozrhy/Py3pepcFRw9qiz6fH2kKZPvHW7Q268ES+BaICZBTNRK9S83fg2dQN1lKWVYdQYMaqN9Pp7afe0k2HIwBP2UO4op8RaQp+/L8XaYNVZ0av0BGNBBoODVGZUsrVhK42DjWhVWvIt+eRb8un192LT2WgaaiImxpiZO53BoS70UZG6tm1UWUcTjYYpT69gd9eO5PRmNB7BGXVRkz0Bz0AXW7q2kGXJQafW8c3qb/L1cV9nTdsawvEw/f5+VjavpNhWTIurhRZXC5eOu5T32t7DpDZh1phJN6YTi0XQxgWCcT8eQqQLWgJ6JW2xNgrUbaQF/Iz1JbJTfx45XLbuj7P8v0V1dTV/+9vfGBwcPCarT0ZGBt3d3cnP8XicXbt2MW/ePCAxuxKLxdi8eTNTp04FoK6uDtdBOb0mTZpET08PKpUqJeL6YCorK1m/fn2Ke8r69es/wRF+Or4wwmfKlCm8/PLL/OAHP+AnP/kJJSUlPPLII3zjG99IrnP33XcTDAa55ZZbGBoaYtq0abz11ltyDh8ZmeNIi6uFD5rf57Xaf9PubidMDK1Gz5yiOVw14SouqLiApfVLWVC6gHea3qHL14VZY2Zsxlh6fb3cOOlGgrEgN0y6AQkJT9hDJB7BHzt6zShI+KcUWgtpc7clxY9RY8SkNuGP+ke8taoVaoxqIwB6lR6lQpmyvCa7hocWPJSoGu/rwyro0Qpq3nj3b8QDB729a7Uo09ORQiG8US9js8ZyTc01NAw0sLFrIxdVXkRUjNI81Mxt027DE/LQ6emkPL0cXyTRT0SMEI1HaXElQvhvm3Yb+wf3Y9AYKLQU8l7svaSjt4REVUYVZo2ZXHMuOeacEdYErUpLRXoFdf11RMUokiQxGBzEoDagF/Rs697GmPQx2HQ2wvEQWqUGT9hNMBbAO9SLJImIwSB7nLup7d3JtROu4YnYX9nTmyg+KikECuxFXFtzHdu2LyeeZqNH2QP+hNgsTyvnvdb30Cq19Ph7cAVdnFZyGkpByb6BfUnrQLYpm8qMSoLRIGEphkalQBkTiUgxnHo1G3s2MhQYIN2Yzpa+Wsoco7ht8rcZr8pDisWQIhEEQUAwGFBYrSfUB2hY2B9uums4ncLngcsuu4wHH3yQCy+8kIceeoicnBy2bdtGbm4uM2bMGLH+/PnzufPOO1m2bBllZWX89re/TRE1FRUVnHXWWdxwww385S9/QaVScfvtt6dYlr7yla8wY8YMLrzwQh5++GEqKiro6uri9ddf58ILL2Ty5Ml85zvf4aqrrmLy5MnMnj2b5557jt27d8vOzUfjvPPO47zzzjvickEQWLRoEYsWLfrvDUpG5iTCG/aypvk9lta+SLOnlb7IEKF4CDEgMRAaZCg4xHdnf4+rJlxFm6uN6qxqfOFEiYo0fRpKQclLe1+i2F7MS3tf4r229/BFfBjUBqoyqrio8iLGZ44nEo+gEBSkGdJSyhyMdoxmfsl83mt5j6HQEHEpTr+/n9OKT+P9tvcRBAGFoEgmN5yePx1vxItepacivSJpfTmYLFMWWaasRHh1Tw+7nbtSRQ/Ah9XJFVYrFrWFXl8vu5276Qv0kWnIRJREev29BKNBBkOD5JpyOXvU2axoXpHsYjhiTpREWt2tNA410upuZU/fHvQqPRZdol9REjGoDfgjftL0aeSYcyiyFaVkVZZiMaRQCIuooMo+mkZPG1Nyp9Dj66FhsIHt3duJSTGGAkPMK57Hi3v+TZzEOfFEvBhNdiwKA1IggCs4RCTkY1/bNr5ZupBo1dfxxfzotEb6XV00d+8lKsZQHBQRlKZP473W92h2NWPX2enz95FuSOf1+tcZmzmWaXnTGJ85nptOuYkcUw69/l4cBgcIAn1xD3aVCUGjpd7ThFFnRqc1UpJRQUghUte7h0dWP8zPJv8AW+1+JJ8PVCqU6eko7PYTGv1l1pqT1r5Do7qOlM37RKDRaHjrrbe46667OOecc4jFYlRVVfHYY48ddv1rr72WHTt2cOWVV6JSqbjjjjuS1p5hFi9ezPXXX8/cuXPJysrigQce4J577kkuFwSB119/nR/96Edce+219PX1kZ2dzZw5c5J+tl//+tdpbGzke9/7HqFQiIsuuohvfetbvPnmm5/dyTgMgnToK9JJjsfjwWq14na7sVgsJ3o4MjKfK3b17uK9/e/w3NancEbdjEovJ9ucTVSMolFo0Co11OTUMKvw1CPWZ2pztXH/6vtZ07YGb8SLWqFGp9IRjoUpSyujJqsGgGZ3M4XWQkrtpSmhwi2uFl7c/SJNQ01ExAgmlYk5xXP4x65/sLdvL/3BhK9KdWY110y8hi2dW9Br9OSYc44adSOFw0Tq6xnau52/D7zLgPuA6R9BAI2GvPEzmF75FZ7c/iTvt76PN5LI31LuKOeiyosYmzEWu86erFS+ePvi5AMyHAtTN1BHw0ADBo2Bc0efy5K6Jexy7kKn1PH1sV9nU9cmmlxN6FV6JuVM4pScU7hu0nXJTNFPbv4b/X2tSF4vSAnX7AFlCFfUx7yKM+gO9RMX4zQMNSSdo88adRaPb/4jTa5m7Fob03KmkqtxMM1SRXvjdk6bdyWrm1eBQkHc6YQPfXy6dBH2D+7n0vGX0d2xD0V6OgpTYiqn1FbK9p7tvLQvUTct05hJh6cDrVKLWWPGprdx54w7eWLrE2zs3Eg4Hua04tPoD/QjIOCP+JiYPYm3m97CHXJTbC9htGM0vb4eTs2ezvqm9/jh9LuZvusgAapSoczORmE2f+Lor1AoRHNzMyUlJeh0uo/e4Aik1CBTmyiyyTXI/lsc7Roe6/P7C2XxkZGRObH4oj6C0SBRpcCp+XNZ176Wd1veRSkoyDXnMTFnIlqVnt19uxkKDtEX6MOqs6YIl8bBRnp8PYTjYTRKDWqFmkg8QjgeZn3HegosBejVehoGGhAQ0Kv0KaHCxbZibpp804gHz+Tcyezs3clgaBBRElEpVLS4WrAZbMf0Ri5otSh0OoyuIOcXfoXX2lYkxI8ggFpNuj2PBRVn8/vtf04RPQD1A/W8sOsFrpxwJRdVXZTcz8HWAa1KS6G1kGxTNrmmXHY6d+LQO3DoHYiSyAftHzAmYwzT8qdh19mpzqpmXsm8pL+LMRjnXH0Nr/TtZmAg4UCNVou1uJBJ5ho6m3fiTzNSN9jA9p7tdPsSwi3blE2BpYA5hXPINGZSZi5CExFp3LEaW1oOY7T57DJlMij6EDQaUCRy82hVAnnWAgiHQaVC+PAhoxSUqBUq8i35TM6eRM+HdcEcOkcyjP3sUWezumU1wWgQnUpHVIyys3cnZ406i719eylNK6PT14kv6md6wQzOGX0Oe/r2kKlPZzDkoiq7GnfIRcoj6kMrl6RSnfDoL7PW/F+L3pI5/sjCR0ZG5pgxqU3o1XoqMsawrn0tTa5mDCoDl0+4HL3aQDAapN3TTpGtiNqeWuaWzKXH18OqllWcPepsskxZuMKulLB2vUqP0+/EoDYQioWIiBFUoopyR3myKrs37GVN6xr0aj2VGZVkmbJGPHjMWnPS0jL8Rl6WVvax3sgVFgvK/Hzy+vr4Zs5ZdJZG8ElhTGoThfosagO9tLpaU0TPME2uJvoD/SkhzcW2Yq6puSZFpGUYM+j2dlNsK0arSiRefL/tfQaDg2zu2kyprZRrJ17LjIIZSdEjhcNEd+8mu7OPK6xz6cyJ4hdDGBU6FOnpvLznP8SRMMTM5FvyUSqUbOrcRK+/F4VCwY7eWqxaK7Oyp/HCB3/hf8b8D7a0HC6ceDnpfoEzxp3PDudOXJY8rBoLJlFFY9c+MmxZ1LdtQ5mejqBSoRSU5Ogzeb/lPd6oW8ZZo8+mob+eodAQhfYSmlxNZBuzGZM+hrXta2lyNZFjymGMtgJEkQ5XKxOza6jKHIsn7OGMsjMIRoJJPyVBqSGuhFPyp2DDCvhTT/KH023S5zz6S+bzjSx8ZGRkjpkiWxEWg53itFL+tfdFdEott0y9lSX1S9jVtwslShDgosqLmF04mz9t/hMV6RXs699H02AT1066FpvWliiXIElJa48n4sGgNqBUKNEqtVSmV/L0jqd5Y/8b5Jhz6PB0cGbZmYxJH8NzO5/j1qm3UpNdc8RxftI3coXNhtLhQNBoMIdCjAnrQaFAUOlQKA24Yh0jchANI0kSgYgPz2APcSEz6Yh7uLFkmbKw6W0srV/K2IyxnJJzCsFYEL1KT7mjnLGZY1OEmuhyER8agnAYw8AAoxUKAtl2Og1RgmE/ksNOxDWIXhTJsmShU+kwaxKV708rOo3zy88nHomwtnElk0bP4dSyeeTHTZjCAlvTAjy44l6292wnEo8gSiKTcibx49k/JE+dQb8QZCjqBiBdl8aa/e9i1Cb6fqt+OTW5E8kwZaFV67lwzIX4Ij7UCjVWnZU0rR1lOELQn8gvEwQ2DXRh1VopsBWyf3A/L+55kYbBRBZpCYnytHLGZFRSbKgEmlLO27A1SpCLdcp8CmThIyMjc8yYtWZml8whGA/h0Ds4tehUlu9fzq6+XagEFYIgJHxMBhtoGGhgTtEcomKUUCxEl6+LJXVLOHfUuWSbsml1tdLuaSdNn4ZRbURCIt+Sj06lY0PHBuoH6lEr1MTFOJDIWdPmbmNa/jQe3fAoDy146LiHPQ/XHovW1SGpDvw8DpdUsA8GUAiJGlrDWeFVChWCKEE8jh4NhrBIrLU1kQunvPyIjrjFtmKumnDVMfmKSNFowtqhUIBCQXeZIzEV19SNUqGicOIc1rrasWLCjgWrzorD4KDMXsa+gX3EpcQ5LMsZywVFZ1CAFUGtpkMV4ME372NbzzYC0UAyY/SGzg0seu8n/OHsP3Dt5OuTYwz4PTRLW9D44kzNnszGns1s6tiYHOe3ZtzGhZUXohJUFJhy6XO2Eox5k4JlOFTeobXh0KXx2/rXaBxqTDnWxsFGltYvZfa0iaRc3Q+n2wS9/gtR2kLm84ssfGRkZD4WxbZianImcsvUW7HqrDS5mimzldHuaU84OSs1SJLEjt4dfG3s16gfrKfb283otNHs6NmBTqljfsl8lIKS/+z9D0pBSSQeIcuYxemlp5NtyuaJbU8gSRKiJKJUKLFqrQSiAbq8Xcwvmc++/n3sce75TPK9HFx7TIpGEdTqRBV6rZbcaC5p+jRUChWesAdJklAioBc0jLaV4YhpyO30EQt6UJWWEq2vRzNhwhEdcY/VMiWo1UnxEMjPZFnHCrRmK7k5eYTECHFB4syy0wkbtJR+mIBxOLT6aMJqV90yantr0Sq16FS6xPkWlMSlONt6trHDuYN8a35yjGv3vo0mmhBHmUEF87Nn0C/6CMXD6JRapmRNpCa7Bm/YS7YqjQprKXVCMwHPAMQT4qs0cwxzLTVsCOynfqAejVIDHCgvpFVqqevbS1usj3EmU2pUl9mcKIr7KUPa5ZieLy7H49rJwkdGRuZj0eJq4Z3md3i1/lVqsmrY6dyJUW2kMqOSff37sOlsuEIuJCSCsSCiKBKOh4nEI6xpW4NWpaU/0M9ZZWdRai8lw5hI1OcL+xAlkcahRmJiDJVChV6lx6g24tA7ktMh4XiiRIQr7PrMjnG49tjBeMNe3ml5h4WVC1EICla3rMYdHCIej5OXUcoV47/BLH82Bl8UKRgk1tSEqqjouDjiKmw2lHY7ottNj0NFnmMK9f4WBoJOtEotTYN78YhB5hXNwS7pGGs7UFbkaMJqMJTI+9Pl7cIfPeBPY1QbyTJl4Q65U3yWTNqDImUkCUMgRiE6QAdRyNAk0gWYtWbOLzuHV31etKEYHkcGETFKnjWfywrOo6i2k+1VGrRKbfJ6QiLk36w1J7Jvx8NoZyxACocRFIqkpefTiJ7hbMeBQOBjZzeW+XwQCCRqnRyaufrjIAsfGRmZY2a4SGObq41cUy5mjRkBAU/YQ4engwpHBWqlmh09OwCwaq0MBYfIt+TjCrmSVpK9fXsZmzGWhz94mKsnXI0v6mP/4H46PZ1cXXM1Ndk1aJVaTBpTcupLo9AwyjGKU3JOId+SjyAIiVpV/6Usv62uVpx+J0PBIc4bfS7nlZ6FN+JDo1BhEtWUxqwUKE0oCg0J64ZaDVbrcXPEVRYVIfr9eNJiLN7wGHt6dib8j9TqRNRW/ixW1r3NOEMJEef2Y8p3Y9fZ6fH1pIgeAH/UT6+vlwxDRkrixOLMUSOKyA7jsOdSnHmgEGaRLosrSxfSaqjDHw9iVOrJD+sw1PeDKOJQp5FjyiYQCyJKIgpBQUyM4Q17sWgtpBszUOXlfbqTdghKpRKbzZasaWUwGI5ahkHm84MkSQQCAZxOJzabDaVS+dEbHQFZ+MjIyIwgJU/JQbl4hos0RsQInrAHlVLFKbmn0OJqQZRELFoLO5070Sg1TMuZRqYxk1Z3Ky2uFiy5FoqsRfQF+vBGvPijfiblTEJAYHn9cqblT6PUXkpUjJJryqXD08G2nm1UZ1Vj19sptZcSiUd4r/U9djp3kqZP442GN7h5ys1HdXQ+XgwLgKgYZXfrZsT+flAqE7lv4nEyT7uBWFMTUm9vQvRIEsqCAhSzZ3+q/YouV8LnKBQikOvgtdZn2T+4n6mlp5JuyiQcD6NWqOiLuLGaHPiJIAWDx1Tt3KF3MNoxmq3dW0csK3eUY9FaUsowHK6ILCREz1enXYnloDIjCpsNU1sb5R0RQAlEPvwDVCoqVDlMy5vGytZVyezWABathfkl8xmbMfYTn7OjMVzQelj8yHyxsNlsyWv4SZGFj4zMfwnpw+y/UjSKoNGc8PT7R6LF1XLYzLQXVFyQfPhrFBq8ES8v7HqBS8ZewlBoiJahFiLxCHqVntOKTuOSsZfwgxU/wB1xY9KayDHlUJVRxduNb5NhyKBxsJEzy87E6XMyKn0Ua9vXIiGRbcrm4qqL6Qv0UWIrwRfxUZZWRlyMU2ov5YVdL6BVadk/uJ+GgQaUgpI7Z9xJm7sNV9iFTWejKqPquFuCUuowDWcx/tDZWGG3o3f5E6IHkk684tAQ0a1bUTocyeR/HwcpHE6InmAQgPZgDwPeXs4acx7vtb/PssblSYfkUlsJ3576baKIIAhIweBHTrM5/U6umXgNkiSxrWdbsn1i9kSunHAlre5WpuVPS45FdLkoiJm4Zsa3aPN24Iv4k0VkLYfUVhueLozW1SWSIg7zob9OrjPEzRNvJCbFaXW3EhfjKBVKiqxF3Dz55mRqguONIAjk5OSQmZmZUohT5vOPWq3+VJaeYWThIyPzXyD51v7hAwwORAp9niJUhqeyDq1FNBgcZEndEmYXJKwXWpUWT9iDO+zmmR3PsKBkAWeWnpkUKCaNiQ2dGzhr9FkY1AZKbCX0+nvZ0r0laQVyhVzsce5hQvYEvj3l26xoWsHuvt30+nr55Qe/5IKKC5hRMAMkKLAW8M/d/2RZ/TJ0ah0xMYZCUBCMBlEoFDy68VH2D+5P+gYV2Yq48ZQbj6slKKVO03CUEokHfHpaHnndB64tggBKJYJWi+h2E3c6jyh8jiaIRZcr5Z7xxQKMto9mSesbtLvbmZE/gzxLHjExhlappdPbRa4mHb9BhdEf/chpNovWwuNbHud/Kv6Hy8Zfhj/ix6A2MBQc4m9b/sbDpz+MWWtO3L/19YnjAnSxGBV6PaqCcpSOkcVkh1FmZaEuKUmE4n8YlSbodAgqFYJGw/TcGvLshezs3clQeAi71s74rPGfmehJGZtSeVweojJfPGThIyPzGXPoW3uy/aDpCCkaJe50Jhw5dTqUGRmfyELwaRmeyjocg8FB1Eo1afo0WoZayDJmEYqFcIfcvLzvZYptxcwpmkOhtRC1Uk2mMRNfxMdQaIiX9r2EP+LnmppreH7X84RiIXRKHTEpRpunDQkJpaBM1Pay+VApVHR4Oli0chFlaWXcNv02VjavJBwPp+TRmVI4hfda3yPHnMO+/n3J9jZ3GwD3zb3vuFl+Dq7TNBCLgUoF0SgZBeVcUHQG+uXrEoLow/IWCpMpmW9GCocP2+fBgni4/tawIFZmZIwQLiaVAaPaQJ+vj4VVF7G2Yx1rO9ahFJTkmnOYmDuJSdkT2aHqZwLp2D7CAbQqs4pccy4rmlcQE2OEY2HiUhyloKQmp4aJORMT9299PahUiak834FpqXhrK9pZs1Cmpx+2f0GrRT12LBxB9AtaLYXawv+K0JGRGUYWPjIynzHDb+1SJILo9yfM/ioVCmOianiss5Pozp2IQ0PJbRR2O5pp01B9yrnsj8uhFcAPJRANcEHFBTQONtLp7STLmEWeOY8MQwYLShewvmM9K5pWJIuGTsubRo+3B71Kz5j0MTj9TkpsJSwoWYAv4sOus9Pl62IoOMQ7ze+gVCjxR/yEYiGCsSAGtYH+YD9apTb5QFYoFQgISEgU2Ap4t+Vdcs25KeP0Rry83/o+u527j+uU18GZmL3FA+h9YQpiJkwKC+EPo4QEjQY0GoRDrEKHkhTEoRA+LbQbQnSb3IQVQ1gG/Bi9RowqA7lGNcZAon5WATaUgpJZhbNZ37GepqEmlAiMdoymx9fDyqZ36fP2MD9nFjsiAl8tuY6isO2IFqUsUxa3TbuNRzc8StNQEypN4pFQai/ltmm3JYu3IggjRA98OJVXW4ti1qwjTtseLT2AjMyJQBY+MjKfMVI0iujxEGtvT7z1CkLCL0SvR5GbC+3tKaIHEg+UyIYNKBYs+K9aflL8WA6DUW2k2FbM1yq/hl6tJxKPgARtnjb+sPEPRMUoCkFBZUYlmcZMIvEIp884HYvGQkSM0OvrpdffS5e3CwmJ3c7dWLQWdou7cRgcBKNBusPdqBQqMgwZROIRyuxlWLVWCq2F7HTuTI5Fo0jkC7JqrcmkgipF4ictJsboD/TT7evGG/Ye1wKSydw7WQdNU8XjKHNyEL3eFMEDCRGrzMwc0Y/ociGFQrSbYmxw7eK1hqU0B7sYCA9h0duZWTKHmXnT2BL2MyN9AkUDIsZAjGpHFW3hXrq9XRg1RnJM2fQF+oiLUaLRMB3uDnQlZlyCh1f3vMQVttMwDh6I2jp0irUmu4aHFjzEHueehI+U1kZV5gEfqWGrU4ro0WgSFq94nHh/P9G2NlQ5OUe8Vw+XHkBG5kQhCx8Zmc8YKRYj1tqK5D8oZFgQECUJqb0d5RFCdsWhoaP6hnwWpPixHMLBSfFGp4/GucNJ01AT/oifvkBfcr0KRwWiJNLrTzj6puvTk3lgdvXuIsuURTgWZnvPdlQKFXv79zKveB5NQ01MzZ1KviUfAJVChU1nQ6fU4fQ7ubjyYmJijL39e1EKSqJiFIfewZiMMXT7unGH3OhUOhSCgqiYeFiLksji7YtTiqQeT1Ie6KeeSmTDhsNa7g53DaVoFL9BxbqBTSxrfJP2QBcD0SGUai0dvi5eq19Cp7uNXHMeq9re4+7qWygdgKqIna3GHDJMWcTEGA5DOt2+HpSSwITcUzBpTZiMdtKsWcTDYWqVTqrtGZiiikRF90BgRMRXlinriJYxQa1GOtg5WatF8vkQBwchGgWVikB+Bp3eRgJGNRZ7VjIKUEbm84gsfGRkPkOkcBjxw+rWqQukxEPDbD5q3aEj+YZ8Vhzsx3JoVNfB1c0PniKpH6hHpVARE2NUpldy/cTr2TewL7ndsFiCA8JqX98+grEgRrURb8TLQGCAmfkzkZDo9fUiSiLBWJBANEB1ZjXusJsOdwenFZ/G2aPOJhgLolaoKbIV0eJu4YO2DxAlEX/Uj1apRaVQUWYvw6wx0zjUmFLd/dNwNEdkVXY2igULDvhqabUoMzOPbAVRq2nHhUcM0eVuJ6wVEBRKhkIuIvEwkVCUvuAAYzKq2D24j390vcldY6/HpjIyORgnr2kZbe42ovEoSkHJlPwp7Onbw0BggCxjFq/sfYk5BadyzcRr+VfvO4y1lTPGZ8Rqz0LyeI45saLCZkMYTvanVqeKHoWC7jHZvN76Kn09zSjsdlS5uZiNaZxadCoARo1RFkIynytk4SNz0vNZhJkP9yn6fEguF6qCAmKA5HYn1xEsFlQFBUjekZW+k+ucAD+Iw1UUP1wNqYOnSJwBJzEphlJQsm9gH1ExOkIswQFh1e3rBhJTUmqFOlFFXWPi6R1Ps7d/L2qFGrPWzLzieVRlVPH32r9TbCumUFtItikbT9iDTq0jEA0wOXsyLa4WnH5nMhndqLRRXDbuMvoD/UDCMfvgDMSfBNHlIrp794EIJaUSpc2GeuzY5LSRwmQ6ZgudwmbD1xYhJCZy28QlEUGpJBI6IHZFKU5EjCIoFHSHnHSoAozLKqU6bOCcUefQMNiAO+QmTZ/G3v69DAYHybfm0+ProcxexvqujfQEnczJnckbO1cy1T6OSzTzKTRmpzhOH+07IGi1qAoKiLe2Ju7ncDgheoBgQRZL+9YwGHFDOAyiyJB/gI3ObWzt3sqcojn0+HuS6RA+C6ubjMzHRRY+Mic1h4aZS7EYKBSoCgoSobdmM8qPKYREl4toWxtEEg80QatF9HhQpKWhKChIhvWKgQCx1la0kycftp8j+Yb8NzjWGlIHT5EMJz0sthUfteBmsa2Yy8ddTqGlEIWgIBwP817Le3R4O8gwZDBx3EQEQUCn0qFT6YjEIwwEBrhh0g38ecuf2defsBZJSIzPHM9PT/spswpmMbtgNnEpjlljxqQxYdfbk9Fd8NGO20dDCoeJ1NYSa2tLyUkjDg0hxeNop01L3iPHKqQFrRZrVgF6Tx0IAkpBQPwwP5BCqcJuSCPLksuYzCpKHaMwqA0Eool0/WatmYvHXsySuiV0e7upG6hjMDhIka2IKTlT2NK1GaffiTfixRUcIj+tmIHQEF6DknfjDVxsKsL6oaVRdLkYamugPezEFwtgVhnI12ZiLxydFHRKhwPtrFlENm9OTOV9GL3WmaFmqC2A5PcTNetx62N0elpQqBK1zPgwKfJwOoTjYXWTkfm0yMJH5qTl0DBzKRQi3tuL6HYTa2lBmZWFFAyirqhAVVBwTPl2pHCYWHs78ZYWxGAwIX4EAUmhQKnVEt2zJ1Fl+kMHWGVeHsq8POIdHcfsG/J55VjFEiTEz8qWlWgUGjwhD7W9tVh0FtZ0rUEpKMkx5yQyRMcj3HTKTVRlVLGkbgmBaIAsUxb+SMJfyhv28rdtf2Nc5jgGAgPo1XqyTFlkGDNoGGhIViWHj3bcPhrxgYERogeAWIxYWxuqUaNQ5eZ+7HxNxVkVbOnfiSNvFB5XMxqVAZNkxag1JVIFhD28vO9lNnRuYGreVEY7Rqecw2HL3JbuLeSYcujwdPBa/WsU24rxhD1UZlTRMtTM9t7t/GfXC+jVesbYRlFlr2BqoxdBqaSlex9L6pcw4DuQydhhyuQC4XxK9VOTok2Zno564kQwGpE+FD9+9QCiy4XXrmdfoI2+gQC9gX4USiV2nR2VoEoWPT0eVjcZmeOBLHxkTloOTg4nxWLEnU5EtxtEEcnnQzF2LJLXS7yvD0kQUKtUHylE4i4XsZYW4l1diF4vqFQEM6x0pqnwazxYppRgDyvoj3nwa8FWWkCJ3YjxY/iGfN74JFOFw1NeS+uXkmXKQqvSYlQb0Sq1WHVWXCEXcTFOJB6hL9BHVUYVq1tX4/Q7k5YPnUpHhjGDD9o/IN+SzxuNbzAzfyYWrQW1Qp0ieg71NfrYx+j1jhQ9w8RiSB9OAR0xX1N9PeGqMtr83SllQAaCA9j1acwpnYe7zkubpx2D1oSIxISsGrLN2SypW4JBbWD/4H7+tvVvlDvKk1a2YbHZ5+/jr1v/mqxzpVNpKbAU0OJqZig8hFqRqIAuINDUv5//NC+lKvcb0LSPJd3LU0QPwIDPyZK617gmswhbViGiz5e4P0URwmFinZ0QDmMcZSFq1LEr3EZ7oAO0WoLxEIIoEIqFkikPevw9wKezusnIHC9k4SNz0pLi4xAKIYVCyWkoVVkZ8dZW4l2JekSKjAwkpxPNpElHtfxIPh+x9vbEQ1KS6C5J47XulQy0dKDSGSicuoC1/R9g0ZqxCWko2ltJ69+Y8H8oLf2sD/m44x7oprl9J76gOzFFgg2TpEZdXv6RFrJiWzFXTbiKzZ2bmZ4/nbgYJypGcYfc+CK+ZGi8UlDijXrRqXRUZVRh0phQK9UMBAaoH6hHlESiYpSxGWO5qOoiREmkfqA+uZ/D+Rp9bA51Tj8UpXJEluUkgkC7ys+yjX9lSBFKNpvUJkY5RvHK3lcw68x8tWohoiSiV+nxhD3U9dfxVuNbaFVaNAo1Dq2dFmc9u7t2kFk0N0VcVmVWUe4op36g/sOCowI6tZ6hIRflaeX0erpQKJSoUIBCoi/QRzsupGhkhOgZZsDnpM3XiUnSHIhWUyhQFhSgKiwk1tJCXkCNOjuH9vp1xAQJjVKV9LMqsBSwp28Pafq0lGOWkTnRyMJH5qQlJZpKFJP1lRTZ2cTa2lKtFqKI6PN9ZOFHKRxGYbGAKBLIsLK0+3UGBjtBoSAzq5R3m9+ly92OwWRnoj0TLZ/O/+FE1v/a76znvfq3GPL3o1PqEpaAUIhzS86goL4ezYQJx2T5mZw3mZ19OxkMDmLRWfig7QMi8QhKQUmJrYS4GKfIUsTT259GISg4s+xMgrEgdp2dybmTCcfDzC6czbiMcVSkVwAwNmPsUR2zPy6CyYRgMo1I4JeyLBoFQcBvUNGOK+kvk25IZ71zIwqtFnU8jlqpJhaPUddfxxv736DIVsS2nm3JHEXjMsexpG4Jk7InYdfbkUQRpQTxSIiYpGLI1UtkKLX6+nCU3W/X/ZZAJIAkSWiUGsod5cwvnseLtS9gUOkR4hJmgx2z0oAvFkCKR5N1x5RKFdacYkJKCMQCmNRG3ASJbN+O6POBUgkKBfGeHhR2O9rZs9GpVMxV2Hl/cBvt3g4EQYFGqSHHlMPswtm81fgW1VnVwKe3usnIHC9k4SNz0jIcpisFgwdKDQAKg4F4ZyfCwXV8PixGebTCj7GensTDLxoFpZIOhYf+3hYUZnMisZ3JQFdHB4iJUG13yE2mKeG8/En8H+IDA8mkiMKwRUKSjsna8mmp66/j56sfoLHzQELBXEs+84tOY1nzW1xReB62YwyXPjiEHqAqvQoJiVxTLqeXns66jnXU9tQyxjGGVncrWqWWckc57pCbiBgh15TL2aPOTslDc7z9SBRGI+rKSqL79iH5/UgAsRgKiyVRXsKWyI7cYRZ5renVpBVFqVCSP3oS6wY3s6b9AyLEiIkxMgwZXDjmQl6rfy2ZdTndkI5OpUOrTNRBi0txfGEv0VAgKcpVSjUGvRlpMDRChNt0Nr5Z/U0ahxqJxCOkG9J5ee/LvLD7X2hUKpQxCbPRRoWjAktMhUllAIUIajVKBGzFY/jnnhdod7ehVKqRJIlGTwvKysupEe0gSYh+fyKUHRB7etDOmYNC0lCdW8Ns7Ryi8SgmjYmmoSbeanyLqBhFrUxE6H1qq5uMzHFCFj4yJy2CVou6ooJoXR1CLIag0yWmu1QqFFbrgTDzD7PUCjodwGELP0Y7Ogi98w6CICB6vUhDQ3gtDhQGA6Lfj2AwEFIkptGQJFCpiHwYxjzM4fwfen29BzLqHlR1PN7fT/iDD1IcogWTCVVpKdFjtLZ8UrxhL+80vUOWORtbqQWtUoPbP0hdz27ebV3FqVlTaMeF9WNUvj7YUbfb282a9jXs7tvNoxsfTTw8FWrOKDsDu96e9AnKNGUmp7GOdyX2gxFdLiK1tcR7e5GUShRpaYl7xOHArxNo1HnwtX6AVmdkt3cXrsAAABG1grSMPF7a/xq7+nZj09lw+52E42F8ER8rW1ZSnVWNJEkICLhDblQGFf6onxJbCeF4mGgskhQ9AOWOcsJBH35DBkb/ARHuDXv5oO0DXm94HW/ES7u7ncvHXY4/4qfAmo9KUGHX2jBKavLV6eRo0inABoZEZFlIivJSw6sMhoYQFEpESWJu0VzSDem80f4uwbLZjN3Wi8EdTKRmaG9HYTYjhcPkpOXgCrrY07cHSPgRGdVGyh3lZBgzmJk3kwk5E2TRI/O5QRY+MiclUjiM29VLm68Tnz2IKd1EQdk0DIM+pEiEWF1d4oGj0aB0OBJTSB9aVQ5NOCj6fPR01lNXqmAo5iNtbB6jXMVYPL0J0aPVIuj1GEw2kCQEgwFBoUDzocPpMAf7P3jDXrZ2b+XZHc/S7etGQEg8EO0l3Db524xp8IwocyH5fMSamlAVFR1zcrpPwp6+Pbyx/w12dG9L5nMpsBYyp2wu6xtXQ6EWXyxw2PN0tEKsw46647LGYdKa2Nq9NZmBOSpG6fJ28dBXHsKgMhzXaayjIYXDRHfvPhDRpVYnovUkiU5jjNe61jLo74dIhH5dHLcUYl7hTPb27mTf4H6m5xbRMLSfXn8v84rnoRAUhGIhDBoDnrAHi8aChITT70Sr0qJX69k/uJ+zRp2F0++krjchJhAEqjKquLb6GmobPqC4MpMxgjYpwltdrXjCHtwhN63uVrwRL4u3L+aKCVewsWMjXd4uTBoTxap0CpQOLig5C1NcQ6dNR643g33BNrZ3byUqxsk153D26HPY1LmJF/b8ExGJ1QWnMj1nCmcXTsHiHSJ/VAGGPg+CVkuxLZ/zKs5jad1SunyJUiS+qI9cUy5nlp0pix6Zzx2y8JE56RBdLprbd7Kk7rUDjp0qFRmFFfxP1ULyowYktxsxEEDQaBB0OgSNhoE0DfskJ+7+NdgDaUnry3ZnLb/b+Vsau3Yn91GWX82t075Nbng8TsmXyAmk0pCXNYpuf6Jop1VnTa6fpk8jw5jBrt5dtHvacfqdLG9YTuNQIwPBAYxqIyX2EpqHmvnd2t/yk5LrsR/m2IZ9UA5nlToeeMNeXql7JZGAcHh6UJJod7fxXtv7jM8eSygexqS3pky3xXp6jljO4XCFWGcUzOCxcx5jZ+9OhoKD2LRWcvWZhN1uJIuasRljj/vD9HDCTPL7EwkLhyO6olEkUcRv1vLqrv8wpI0nLWtBMUzDYB1+MUSeJR9d3E67pw0kuHTcpezt28uOnh2IiEiSREV6Bf875X+TPk0SEv2BftL16QgILKxcyJyC2fiCboxoUXv97Fr1IpFYCE9aO9jHJ8WlL+ojFAshIeGNJCyVgViAxdsWMyF7ArMLZ1NmL6PSNppJplGYVUZ8WoFXVz+Cy92LtaSC6qwJIAhUpleyrn0d+/r3IiIhAJ6Il9cb38Cb3seYsJWYRsn5RWdQlpmJWWtiZsFMJEnCE/YQioXQqXRYtBZmFsyURY/M5w5Z+MicVEjhMENtDSypfy01miUWo6+tjleVS7h28vUYp08/EJqsULDbEeP3Ox6jOdCZtPyU2kv59pRv89jmP9LYuy9lP43tO/hD9DfcPek23m5byaAQZAA/Xyk7nQ/aP8CitaBVJR6Yafo05hbN5d3md3mn6R02dG5gTtEcXq17lXRDOsW2Yjq9nTQPNVNkLaJpcD91ZQNMP9IxxmJHLYPxaWh1teIOutGqtKiVaqLqD0tvfCh+ZhXMxG50UFIwPikIRJ9vhOiBjy7EWmgrJDekoXlgK0u2LmGtJxESrTIYKa9ZQFl2JRqVhh5fD8FoEIfBkRSjhzKcXPHgUPKDH8hHEmaqMWOSzr8HVo7RqYcBdzeK9HSQJDxaCVfYS5/PiTseIM+aT0iMEBGjjM0cy9burYkSIAIoJAVRorS529jVt4v5pfOxG+xolBqi8UT9sbNHn82bjW8SDfqJNTSk1nkDjFGB2P79qMvLgYS1UKfSERNTQ+6jYpTNXZtpdbUy2jEag9GCLS8RPdjatIGBoUTUYiQWodXVQoYpk0AswLbebRhVBgRAAhSCgqHAIF3hfiot+QwMtLHMv5Xr1KdiJjFV6dA7jpjt+0hTth8Ht8tJa28d3pAHs95KUWY5VtuJSfAp88VGFj4yJxWiy0V72Hn4EN54nLahZt5reY+IGMGWbmWMqQjicf7wwU9pDnUTV0Aokni77vX1UmQtIkAUhVKVyLo77I8hCDT17qMn3M+VFV+nywZ+IpjVZs4rP48+f1/yAZFhzOCd5ndYWrcUd9iNN+JNsQAIgkCWMYu+QB8SEggCQ6Kf+gIdvpgfs9JAXliLYcAHooig139mzs2+qA+rzopZYyZmSFRAjwpCMirOYLAxp/wMrI6cA6fV6RwheoY5tBDrwQLFiBZbj4el9csY+FD0KBUq8vMqeXP3a8xViry490XqB+rJNmaTZcoi25TNueXnkmfKY5RjFGatmRZXy2Frjw2XUDiiMHO7E/5asVgyogmAaBSXQWAgTUtMG0apVeKN+lCpNVjN6YTiYZSCkkg8QrurnYk5E3m3+V2sWisZhgwgUaoj05jJ+o71GDVG1nWsQyAxnfX1cV+nMqOS9Z3r6RtMlNxAqYR4Ii+Rw5pDXsQAgoQ4OIjSZqPIVsSO3h0UWAqoG6hLOQ6VQkWJvQQBAZPalDzH+70t9KsjWNCRFpMoSytjKOROiqfEnSyQprMTiPjJMueAWoWQlkauPQ2FXk+bq42xWWOBIyew3N6znd+u+y17+vYQFaNIksSY9DH879T/ZUL2sU2DNbXv5JX3n6Df2ZJsS88s5sJTr6O0YPxHbi8jczCy8JH5UjIc5u2N+WmK9dEa6CIcD5OpdRBXR5JTNEkEAadeZGPrKiS1iq3dW4GEVWfhmIU0+9sJixF8ER9d3q5k6YCGwQZcEQ/GrHz8vR2I0QPOqIKgwKuR6DRE8MdiGCU1eYIec0Ag0zY6aRHZ1bsLd8hNl68LrTLRplFqiIuJB91AYIACSwGQeGCGhTgRIc5/mt9ECgRAFHFYsjm/6Azy/SpUBQWfmWOzSW1Cq9JSkV5BXX8dKoWKcCycLBUxr3Q+ozLLR1yLozG8/FCBEh8aQopFKczIZdDTS1yMkZldyjttq5lYMp2nti+mxd1Kmb0MURLZ0r2FUCzEps5NTMieQJoujStrrmRly8oR1eYPTiGgc/aNFGYKRSKjdk9PIpJvuD6XTkdPRRbNoX3s6duDoNPh04I76iPTmIlZa8Hr6yYqRrFoLaxoWsGZo86kLK2MhoEGgrEgFq0Fq9aKRWuhzd1Gj6+HNncbdp2dnc6dvLn/Taqzqrmg4gJeGXwKZ7w1eT0dlmwuKD4DU3cQwuHkuTNrzcwqnIVRbaTT28ne/r1AQvRMyJqQTAGgU+l4esfTqAQVeqWWpmAXepWO0IDIV0f/D6s716BSfOjLRkIglthKECTo8nbhj3ipMBWzvncLefYixmVXH/Xa9vp6+dUHv2J953pCsRCBaABREun2dROKhbh+0vWMzxp/1BpebpdzhOgB6He28Mr7T3DdOT+ULT8yHwtZ+Mh86RBdLqL19bSrA7wX2suzO5+jaagR1GrMahNX11yN0yCSGVAkRUpAr2Rjz0aGoh40ygNOx01DTTQMNhCKhUaIHgC1Qk0wFqTF1cyYtGJ8Az0giigEBdbMfLpEF9vrXyHe3w+xGA5TJueXnk1BizEZdj7snwEkhUS7p51SeykNgw3ExBj+qJ9IPIJCUJBhzESpVCeizBQKiMUYjLpZNriOa+Z+B4PD8Zmd2+Hq6pAoUjocUq5RaCi1lzIxZ+KIbT5KhAlaLd6wd4RVhliMTncHDf0NzM6eSHdXPYLBQFdTO7ONZ7Ozp5YSRxmBaIBefy/+iB9fxMfWwFbGZIzh2Z3PYtVZ6fB2kG0a6Uc0nEKgPKwcsUzhcBBrbUXy+dBMnEhcpSLe20vAbuDVfa+iS88mJ6+CZl87zlAfvogPCQmL1sK4zHFUOCoY4xjDpJxJxMQYoWiIiTkTUSlU6FV6jGojG7s24o14sWqt2LQ2wvEw2ZpsomI0mdrgqsrLaVaX448HMSr15Id1GNo8yem3g8/t8HRTniWP9Z3r8YQ82HQ2HAYHoViIMlsZazvWkm3M5tV9r2LWmAhEA+zr3U2LwYGExLmlZ+GNB/GGvQwEBnCFXAQjfjwRL4Gon6q0MXjiienfzsEW3tr3OuP1xVitmYe9zjt6d/B+2/uE42FiYgzhw+JdkXiEdR3ruHTcpR+Zw6q1t26E6Bmm39lCa28d1bLwkfkYyMJH5kvFcNkAnyLG+55anq37F02D+xMLo1G8+NjRvQ1vxItJn40hkDDr94s+hoKDFGaUJYorHoRKocIf8RMTYymiB6DL00WhtZAtXVsQHR/mzxFFzAY7klqNKIkE3QN4FEGCmihtsTacXUu4rPh88toaSNNXJ/0zAMLxxBv8isYVXFF9BRISLa4W1Ao10/KmMS1vGlmmLHqCfWSWjmPQ2UY8GgaVCpdRTYfkwkb+Z3Z+D865MxgcTOYhOlp2ZGVmJgq7/bDTXcOFWFtdLSOsMhG1grhOw1B8CEt+CQBhKeG07Y8lroNepQcSU2T+qJ+oGEVAICbGGAoO0evvpaG/AZPKgElnGbF/X9SHoB350BS0WiRP4j6IDwygKi1FWVxMk6IfV0AioHBRlT2OgQ43e10NRMUoPf4eJudNochWxDPbnyHHksOVE65MVkqvG6ij29dNuiGdU3JPQZREyh3lxKU4Vp2VuBSnOqsarUqbTG1gTc9lzA4j4lAEGP5LPXeHXp8peVMYkz6GNlcbg6FB3m58m6gYZWNoI23uNuJSnElZNWxqWM2c4jm8J4q0DTSxQ70bY0iiYswszig9nZf2JBypM01ZdPm6mZI3lSmZNXzQsBIxFsFgsBIecNLSWkulmD6iHlmLqyXhExZ2J7NyKwUlOpWOuJQoR+INe0fksDo0Kac3mPp9HHENw96jLpeRORRZ+Mh8qRguG9Bu9NMf9xwQPZCw7kgS67o28s1x38AXckPADUBIDFOYXsacorls6NyQ0mcgGqDMXsbuvt0cijfq5fKSy9nt3E1UjKHQJx7EBemljM8cT2PvPnYP7MGniDI2pxq7Po2wFKOeAXoVfsr6jBRlJPwzMo2Z7OjZQbYp8db/99q/85XSr3Bx5cWMyRjD+vb11PbWsnHbRqKxCKXmQhaWX0h/617iYpy434/XOwCfXUobIDXnzrGElStMJjTTph0xqkthMuFz+QjHwkkLkoBAmsFOtiofrcHMUNxPnyrE2IxyLOZ0zHorSlWiHpeChO/NcOi7hIRKUIEoohKUeMNunK4uDBYVCoMhZWwmtQml7TDC7EN/GkGnQ2EwJJ2LvbiIREPs6Wsk0hGkumQaZekVhMUwcUmkOrOaZ3Y8w8SciWzp3sJjGx8j25zN5NzJiIhMyJ6AKIn0eHswa81MzJ7IquZVGDQGpuROwWFwJMd1rOfucJi1Zgpthbyz/R0UCgVahTaRN0qAxoH9xONRqktnsKe/jpmlc5k36nRUgpLZWZOp0Y8mFA1QM2MMzuggvliQtqEWujsbWLNtKbFYGIPBSrm5BHWcRAbocDAloeKwBc+hdySvCUBciiejvuJSHKPGCBzIYTVsrR1OJirFYhgtBqR4PDWh6MHXUI4ak/mYyMJH5kvFcBi3LxYgEAsdZgWJGHE29mzmtinfJqfSjj8eZLoU4PX9r7Ohc8OIyJiVLSu5a8ZdPLbxMdo97cn26qxqLh17Kb9d91tOLTyVBaULkJCwaW3oVDqWNSxjT19C9Jw26iu8Wr8kKZ5WZq2k3DGaK6uvpDM2QLGtmK9Vfo1+fz/rO9eTa85lVNooLFoLYzPH8tT2p2gYqGdc5jiikRBEozSGG3hJeoULC8+kr6cRYjH0vnCy0OlnycepxA6gys5GcZRCrHExzvae7QRjiVpX1ZnVfNCxlgF/f6LYpb8HDUomGU9FY7XT5e2iMqOScCyMUqFMPlgBSm2ldHk6AXAHXRRYCghFAsTb2qCwMCl+hksoKLSHERdKZSKkPT8fQXNg6tOkNuJRxQj6AiCJ7O+vZ4+rAVGAYCxIobWQysxK1nesp8nVxPS8aXR6Onm9/nWm501jWt7UD/3LEtOoL+19iWxTNjqVjjZ3G2n6NHLMOSmlHQ49d369kibFEN3uzaj9anLNuRRbi0cIz1ZXa4oVTaPQoBAUxMQYGzo2kGfJZ2XLSj5o/4CC/2fvT+MjOchrD/hfS3f1vksttXZpRprR7OPZPOMNrxhveIGwG0JYggMk5E14CUmueX9c+8JNSMINkMAlhN2AMcYejLGNd489Ho9n14yk0b61Wmr1vldXvR9K6pFGs4KxPVwdf/Coq7u6uqq76tTznOccZz0bfKsw04rDm8WeyeDHjBBcx5HYEQ4dO4Rq1mj2tWDWBFwFAdPYNNTUYMeYIJzvaj733q3eVlZXr+ZA+EBlO8p6GR2d1dWrK5YODpPDqNb29IAsow4MGDYSikKD00cg2Mx0dBRhvi4PQ+DcFOw45+/hEpYAFzDxuffee/m7v/s7Pv3pT/Ov//qvAOi6zhe+8AW++c1vEovF2Lp1K1/72tdYtWrVG7uxS3jdMDfG7ZBt2GbbRwufIFT+bzZZWdt6MWCIMB849sAi0gMQcobo8HfwVxf/Fde0XUM0F8Um24jmovzHK/9BUSuSLCa5uOHiyoju4cnDzORmSKsZ1oY2LCA9EhIBW4AXRnbRE+3lT1b9CflynlK5xGcu/gzHoscqguEjkSPsHt3Ns0PPUmUNICHilO0k84Y7cF+0l+KytwLgd1TTULL/Qc0Lfx+IDscpKxSpQorB+CBei5dcOscy7zJeDb/KwcmDlMolqu1VhJPjqLrKA8ce5JbO23ii/wnuXHsnj/Q+wlR2Co/iJlFI0OppZXv9xfyi6+d4LB7CqQmubLmScGwEfWYULZlEMJvxO6sXtOYWETOr1dBQnZTI3iD78LiCkB5AEARsigNJEJnMhKl1hhhNjuI2u5nMTOK3+kgX0siSCbvZzgsjL5AvF+gIdLCzZ2dlqqysl5FFmZyawySaTtkynNt3g/FBvrv/uzw58CSpYsrIM/O28PYVb2d7w/YFIuGTncBtZhuarhHNRcmXC5UKWbFcZDw9QcDkwbIqxEExxoQwjclkIWRSCAg2amQvcmTY0JSV5iprEHBUUTejoSsqgiyfuPGYfe9wKsxHN36Ub776TfaO760Q1NVVq/mzjX9GOBWuEFAtHgdBQB0YQPR4DI1VMomp28TNW2/hlwfvZyYzVanGBaqbeftlf7YkbF7CeeOCJD579uzhm9/8JmvXLpwo+PKXv8xXvvIV/vu//5v29na++MUvcs0119Dd3Y3TuVQO/X8Bc/lbDZgISC5afctOtLsEAUQRp9lJk6eJzurOyuvmQh6/uvur9Mf6K4+3elv51NZP0ehpREMjlo+xs2fngqmZHfU7+PS2T3M0cpRdI7vwWDy0edvwWD3kdRW31UvXVBcWSUESZNr97QzFB0kX0kxlpipkK5aL8cCxB7DJNnb27qxswzWt14Cu47Z4KOYytLib6S+VSBWSUC6TVfP4HdXc3Ho99pT6BzMv/ENhKD5Ef6yfa9quoXeml1p7LVk1S7OnmVguRqaY5vDEQdxWD88NPs1l9du52LESdJ0/Xf8hdHRGU2P0zvRycOIAv+h6ALvJzsV122h01nN0dD9/t+KjJOwTZF1WXIEQLXWdpyUXc5A8nhNeTrNwChZu3fhuhjKjJAtJjk0do9ZeQ7WzhmW+5RyZOsLKwAqssoVWbyvdU8cIOmtodjcxzDCaXqZULlHWy+wZ28O1y66lxl6DJBral02hTVhkC0/1P7XA88ZmsjEUH+KHh37Ir3p+hVk2YzPZKGtlwukwvzn+GwD8Vn/lc5lFM5F0xBCfS+ZKcKlVtpEv5TGJxk2CKIhYJIXLll3JA+NPsG9sLznN0I3Vmv3cGLyMt6y/mSf33E80NWsDIUn4fSFuXnYjjoksKIphpTB34zHbqptIT9DobuQ9q9/DOzrfQbKQNMw7FTc6OvlyvkL01JLRdhYslgrpAaBUIri7mw+seyfj9hJZScOhOGgKdiyRniX8TrjgiE86nea9730v3/rWt/jiF79YeVzXdf71X/+Vz3/+89x2220AfPe73yUYDPKjH/2Ij33sY2/UJi/hdcRc/pajt5ftVRdhdnrYG36VfClLJBelL97P9obtfOSijywyUFtfs557r7r3hNGa4qGz+oTR2tzUTJu3jYH4AJlihoAtgE228Z3932E0MVq5i27xtHDbyts4EjlCoZzHJtsolPNYzFY8Vg/7J/djkSwosmLc6UsmbGYb4zPjXL3qaqaz0xXXZrNopsZRQ4dvGYVMEg2NZn8bJpMZyhoX1WzgYm8N9pRqRGL8gcwLT0Y5Hqc8OQn5PFgshrD1d0iJn6sOZItZjs8c52D4IHvG9yAgUOOo4eL6bRyeOEhRK5EoJskLKodjXbSaV1AoZtFyWdpD62j2NNPiaeEtLW9BK5fonjhCLD3NX674EMGuMYKqimnVciRzLfI56EJEjwfz+vUnhLYmE6LHwyqK3Lj2Dsp6mQPh/SiyBZ81QJWjiqtar6KoFql3NTCViTAWG0FGYiYzzTJPK9WOGhrcDWyt24okSHRNdWESTSiyQqKQIFlI8rnffq5CvmVR5vpl1xPPx1nuW87LYy+jyAojyRGypSyiYOibRhIjXN16dcVXZzA+yMHJg4ynxhlODiMJEmbJTNARpN3fjqqViGamsZtsSIi8te2t9Mb7mE5FyIllBNmMrqqMx0d4KLmTcugK3tlyM9PlBGm9gEOTqcuacU8VKR46hFRbi3nNmoq4eW76byY3w3BimCpbFWbJjEW2YDPZ2BjaiEWy0OhprBA1wWQyzDfnCcsrKJWwdh2nvaYGZevWN2VFcwkXDi444nPXXXdxww03cPXVVy8gPgMDA4TDYa699trKY4qicPnll7Nr167TEp9CoUBhns9I8uQf3BIuOIgeDxMtPh49+FPG46OkyZEopQk6gvz55j9ndXDNaV1jg47gGR1lnYqz4jtycPIgg/FBnhx4kn3hffTN9GGWzPisPobiQ5hEE+9e827KWpknB55C0zWShSSRjHHXXNJKFYFnJBOhe7qbWD7GwfBBPFYPNwRuoMpehd/iwySIjMdHiYsa2WICGYF8OkutI0SzVIU9O0t6/oDmhfNRGhmh8NxzaJEIOhi5W8EgcnW1UXEKhzE1Np7TtjhMDsySme8d/B69M71cVHtRxaxxKjtFWS+zqX4zR6Pdhpi5rBOw+PnVkQeZyE7icVaTPfBffGDjh9hUt4lIepJsKcumtetZE7fhOxoFVUWYreacDzEUFGXRRdaJwiUtl/Hr3l/zauQACjK3r7yd//vq/6Un2k2Tp4nhxAi1jlru3Pghnu59jCqzF6/Fi0+wI2uGHsgqW+kIdFQcvC2yhV0ju+iP9Rt+TWqB1dWrub/rfrKlLB+76GPIosxwYphEIYGAgFkyIwgCsXyMo1NHWRFYQaqQ4gcHf8Du0d2sDa4lmosykhxBkZVKAOoVTVcwGRtlmasJk2iiyhnkB0d+TJ2jFgoldGb1crrORC5CUiwyXZxhWW9idscISKEQ5XDYaH8VCgvE1ydP/4UzhgGlz+rjhvYbFmiY5jBXrV1EesB4D1kGUbzgKppLePPhgiI+9913H6+++ip79uxZtCwcNn5YwZNOUsFgkKGhodOu89577+ULX/jCa7uhS3hDkSqk+GXXA0xNDiJOTuLP5/EDSBkOpH/FRVcsh1MPw5wTBuOD3H/kfh45/gibajdx3+H7sJqstHpbGY4PsyW0hVpXLUXVaDF47V7sZjsvjb4EwJrqNciiTFkr01nVia7pdE93Vwzm6lx1JKeSjKZG0XSN25reSoOthn989v/H3om9le1YG1zHe9a+hyeP/orapptxaDKmjo4/uLC5HI+fID2CgKm5GXVkhPLAACWHA6mhAUHXEQQBk9V61u2psldRKpfojnZXRtEDtgDT2WlEQWQg1s+m0CYORw6zqno1PrOLn4w8z3BiGF0SGU2MEHKFeK73CQ4MvMRljZcy2rWbhMnNptD1FdIjt7aCqp4TGVtQzbJakaqrkea9rtnTzNa6rRwMH2CDfzU/6/oZQ9PHUZCYSIzR7lvORHqCJwef5Mb2G4hPjhBwVHHZ8qtRLWYE2VSpDkbSEdxWN9vrt3Ng8gBb6raQLWbZWLsRWZJxKS6aPc14rV7W1ayjxlHDaHKUl8deRtM1JMGYdsqredKFNL3RXl4YfoGcmmP32G7WBNewo3EHhum3QIunhZ92/dRIflcNwry1aQcO2Y6eL6DncujlstG6mhUYF00iGbOEFAwarT+nE7GmBm1iAqm2FsnnA01boC873+k/QVGQGxoopRdqkxBFI9h3LjfvdapoLuGPFxcM8RkZGeHTn/40jz32GBbLKUSrsxDmxKuz0GdPwKfD5z73OT7zmc9U/k4mkzQ0NPz+G7yE1xXzow5yhQxjk31IkYhx4ZpDuczUSA8D/ftY5/CfdhT4bO/zUPdD9M70MpwYZl1wHYVyoWLDf9eWu3i4+2GODhwlkU+wd2IvVbYq/u6Sv+OfX/xnXp14FU3XuLb1Wpb5l9HoaiRbytJZ1clwYhiPxYMiKRV/HDA8hh7v/jXLnE2s27CWYrmAWVbI5JLsPPYwO+q3MeaXWVO3/g9OegDKk5NoEaNqJQWDqCMj6PG4sTCdBlVFzxnjzWJ1NfJZ2hLTmWm8Vi8uxUW6mGYsNUaLtwVRECmqBXTAJJlocNRzx8o7SOQSDMeHDCGsoKOIMm2+NqYig6T1ODo6Yk0N8XyeiQYXK0OGBxCqiqm9/az7aH41aw5idTXKpZdimnduWO5fzgp7M4pkpmeyCxFQBZ1cMUdf9Dit3hYEQaKlqgN3zQZ8uhWH3UdTcDnrQhs4OHmQg5MHwQ2SIHEocghVU2lwNiBLMqliimQ+SbaU5d9f/ndqHbVkShm6prpodDdy68pbebj7YXR0mtxN5Mt5JFFiPDVemY5TNZWuKSPhXUDApbho9bZSbatmPD0OZjMWUaHV1cSMZ5LeicPGh9N1KJfR83kEiwWLxY67ug3ZbUGLRtGKRcojIwiyjOTxVCbfTq7GnO/0n+T3o7e3U56YQJuZMXR5soxgNiMFAohO5+tS0VzCHzcuGOKzd+9eIpEIF110UeWxcrnMs88+y7//+7/T3W3k04TDYWprT+QERSKRRVWg+VAUBeV1uFgs4Q+DVCFF11QXD3Y/SCKfwK24CZr9DJUiCDUmCsUSVtlCoGzFPjED5TLpzMJ8qPPB3JhuqpBC1VRMogmzaOZ9a99HqVzin1/8Z45NG4GlPouPlVUr2TO+h+ncNH+z/W8YT47jUBzsGtnFq+Ov8l/7/guX4sJpdnJT+03Uu+oxS2YkQaKsG9Mr49kwI4UIvRMHFwZmzt0J2+1kzXrFP+VUYZxnC+k8L8wjk6LNRnmO9MxhdupGT6eNtPizEJ9UKUVBLRC0B2nxtJBTc/gsPgS3QKGcxywprKlag1zScGU1ylKRVcE1lNHQZJF4Okoql0CfHXXOlwtQKiEGAuQcZiRbbUWfczbSM7+aNR9aJELhuecQ3/a2SuXHqTi5qe1tPDb2jPEcAXJqHsVkwWKycGTyMH5HNWVdpTvZjyiIeMte+rOjdAQ62Bfex3TWyOKqd9bjsXj4+p6vM5mZJJFPkC6l+ciGj1BQC0ykJsiUMmwKbSKWjzGcGAZgU2gT4XSYK1uuRC2r+Kw+cuUcp4KOkZ7e7Gnmc5d+jvH0OGpZJSh7qM3KJC1jjJj6yRUzJ6Yfy2VCrjqcukJ9TkGwWtESCcPfKBAwKjDyicvIa1GNkaurEd7yFkoHD6Kl08b33GJBdDpfl4rmEv74ccEQn6uuuopDhw4teOxDH/oQK1as4LOf/Sytra3U1NTw+OOPs2GDYZtfLBZ55pln+NKXvvRGbPISXiPohQLlaBQ9lTLu/pxOJLebodwELwy/wK96fmXcvWJoCNZ1vpOXXnmFqXQEi2hG0gXeuuJGarZcTCmTJlHlYErIEvodtmVOiCvOBlamS2n+ZPWf8PTQ01zWdBnHoycME7OlLEenjhJ0BNk7vpehxBBdU10cnznOaGIUWZJZU70Gs2QmVUxxYPIAkUwEWZSNC9qsLqKkllDMNkOjMtuaqNwJiyJ5NY/D5FiUdVVQC1gkC5c3X85Tg09RLBcXJMLPjVOfN+ZXXE/yVQGMQM05zJKgM8FhcmCSTDjNTvrj/SiSUvG0sZlsrAysoMXTTCw+zu7R3XQ0rCeRnkYqlckqAlOZKao9dQg2G+g6VoeHpFRCkGWc7mrk4Lk7Wc+vZp0MLRKhPDm5oOXVZAnS6mykylZFXlCxa05yao6ZTBSP1cM1y67liYHfct/h+1AkBbfFzaqqVfzphj/FIhn7cW4k/csvfNkYh7e4yRQNw0RN06hx1HDv1fcSzUXxW/1c2ngpjx5/lGwpy03tN9ET7SGcDmMz2bDIFkKOECFHqPKbmI9aRy01jhrWBNewJmiEe6qjo6gjfdxWfx15QeOFkRfIFtIgCIRc9dy0/Aa2WTuwJ0tgKyE6HAh2+wLCA7ym+jIpEEDcsWORsHyJ9CzhtcAFQ3ycTierVy8smdrtdvx+f+Xxv/zLv+See+5h+fLlLF++nHvuuQebzcZ73vOeN2KTl/AaQIvHKR48iDo8XPFUERwOCms6+OXko5itjgUn+EsbLuXJgSexylbKuopZdnJr5+08PfgUD/b8klZXMy8NPEdNVQuftv5/WF+zfvF7ptMn/FwsFkO4O1sdmhvTdZqduMwu+mP9vH3F23l++HkAJFFC0AUUScFhdjCUGGKTbRNui5uiWsSluBiIDaDpmpF0rrgZiA+QLCQ5PnOcd69+t6FdmfU78Vl9hJwh3BY3NrOdnJhDQMBusqOjo2oqQUcQl+Li1YlXKyPOTsVJPBtnNDXKl174EpIgoaGxzLsMVVMZTY4ynZ3mrs13nVHMfSpIwSBidbVBEOZIjiAgOJ0VATEmk0HMzqGq1uRpQhAEbu+8nZ93/Zz+eD8us4tSuUTIG+LDG/6M6cwUQ4kRRtRpXLlJ7O4AidQ0iibgc1QhiCKC2UzIEUI0KwglueIPc17In8L0cj5OClwVPR5WxepZ7VvJgehhClqZeC4OwNaGizkYOVgJmy3rZVRNpTvazU+P/JQPrv8g6WKaKnsV46lxXhp9CU3XKGklSlqJZlczlzRfwr+99G8MxgeJF+JIgsQljZfwjs538K2932I8Nc5gfBC3xc32hu082vco7+h8Bzd23MjO7p0LfhshR4ibOm5aRHanTAW63DESpTRXLr+GK5ddTSwTRRYkaso2Gu0h7NOpivO5eetWykNDC8b8Bav1Na/GnEpYvoQlvBa4YIjPueBv//ZvyeVyfOITn6gYGD722GNLHj4XKPRCgdKRIwtIDxgtlMFwN1Phfnz1yxa8xiyb+dGhH3FH5x0Ius6KqpU8PfgUPbFevIqXFn8bsfAA/akhvrr7q9x71b0LLvxqOHzaeAC5pqYypltQC3RWd3IwfJBYNoZZMlNtq8ajeBAEgZJWIlvKomoqqq4Sz8dpdDfisXjoCHQgizKT6UnGUobDsM1kI1vKUtJKRqilmq/kX825+ebUHD3RHmRRZiA2QKqYotXTSiQT4aXRl/jO/u/w0uhLiIJRBVpdvZrPXPwZHut7jFZfK7Ig89zwc9jNdmRRZjA+yJrqNZUKw5xnzNmIkOTxoFx6qdESymYRqqrIVbsZNWVJC0UcCNRlzTgl0zldCJ2Kkxvbb2Rnz05uXXkrpXIJSZTwWDw0OBuYzE5yaPIQdb4muqPd/PLIL7hp9W10iV1ohQJrajsZyYwTsoa4qvUqxlPjZ8wOOyPOoB8EDL+aeRAUhdqaNj616RN8+dX/w57wCfF5R2AF8UKCXSO7jOfO/lfnrOPF0RfprOrk1YlXGU+Nc0fnHXgsRlDp3Oj5Havu4PsHvs/+yf24FTdm0Zjg6op0cT/3c+f6O3ErboM4IjCeGqesl4lmomwIbqBULpEsJFEkBbvZjiiIbG/YvmCf7A/v599e/Ff6Rk60UVsD7Xxyw8dZFZURJAkpUAfuhVUXyes9azXm5Myt87E4WMIS/pC4oInP008/veBvQRC4++67ufvuu9+Q7VnCawstHqcciy1yzwVI5xNImk7IFmRb/TaK5SJmwYRaVimXS/zy6INsrdvCla1X0RfrZ03VGtKFFLF8DBwOBEmiP9ZPV6SrcqHX0ulFpAdAi8Uo7t6NeNVVOB3GmO79R+5n99hu1tesZyo7xVBiiIn0BH6bn+5oN6Igous6iqQgizJXtVyFgECymCRVSGGRLQzEB3ArbgrlArIo4zA7cCtu8vY864Pr2VS3qXKRmhsNlkWZPWN7MEkm1gfXc/3y63EpLr6252scnzmO3+qnqBWN9ccG+L+v/l/evuLt6Oj4rX40tIqRnSAI/KzrZxydOkqTu4l0KV0xbDxVJWw+TA0NiG97G+XJSUbkFA/u+m+mI0OVNlwg2MzbN7yb+v5+ozVylgtes6eZO9fdyXB82BjpnzxIspDkxeSLTGWmKJQNDdCGxq3saL0crVzmHavfRZt/GTbFjlk0Y5JMZEtZttZtPeP00JmwoJp1EsTq6lNWIESPhw3Wi/lf3hAvRfYyFBvEZnbgsXr4l5f+pRKcKgoi1fZqhhJDpAqpynEfS41hM9mYyc0gCRKZUoayXsZr9XJw8iAWyYKAgI6OSTQhiRL7wvt41+p3USwXmcxMnth+QWI8Pc6PD/+YyfRkpSrY4m3hIxs/sqACNpme5Ku7v8pAYhCTw0W7swWX1U1RK/H45Av4mm6gyd96yvbV2aoxWjxumD/m80YLct7+lYLBJQK0hDcUFzTxWcIfN/RSaaGYF0AUyQZc5KvKVLtW0Z8cYjg+zO7RlxBKKn9/9RdYH9pIvpQjVogzkhyhN9qDNts6avK1UJ7V5wDEC/HKv8uRyCkTxMEgP3OC6GZPM9ctuw672Y5JMnEofIjV1avZ2bOTO9ffiY7O8ZnjqLpKja2GNm8bV7VexRP9T7CiagUBW4BkIcnm0GZenXgVu8lOUSvS5G5C07VFpAdOjAa/MvYKdc46LLJxMZzTBA0nhonn46TFNDo6mq6hSAqjyVE+uP6DjCRGuP/o/QzFh5BEicsaLmM6P40iGd4uc621/lj/KSthp4Lk8ZC1Sux84WvExAJSTY1xvESRGHkeOvZLPtB4M55zjNCYC9Y80HOA54efZzw9XjHAa3I38bblbwNRYHf4FQD2TO3jc5d+jm3128667nPFgmrWyVNdl122QN8zH4Ki0BxsR5VFHut/nP5YP+9b+z5EQURAwCQZhMVmsjEQHzAqWoqHsl7GZ/UxmhxlRWAFE+kJVE1FEiXyap5EIUGto5aCWkDVVBxmB4Jg+PeIgljRgc3BY/Fw/9H76Yv1LXj82PQxvrbnawuOa1eki/5YP7Ios7VhK88OPcPw8AnyGi0luct/F82c+jPDqas6wAnS43Si9vcbIvfZx00tLZhWrVqazlrCG4Yl4rOENy0Ek8kwLpuDKDJe7+TH0Sc5eniIw8leksUUrb423rXm3ahqkQMTB8iUMgzFBpEFia31W/HafMRyMXw2v+GfM09w61E8lX/rJ+k3Tsb85ZlShsnMJG7FzZHpI1zedDkFtcD3D3yfq1qu4sb2G5FFmc2hzSQLSfpm+tg1uosfHvoht3feTtdUFyWtxMbajfTO9NLgaOCqlqswy2beseodp6xWOBUnVrOVRCFBomAYycXzcZyKk+msEebpUlxkSpmKv0u6mCZdTFMoF7BKVuL5OGW9jNlkZt/APkLOEH6rf0FG2cmVsDNhKD5ENB1Bz+fRi8UK8RHMZqKlSUaI4z4Pw7nB+OACbcrcpNZQYohHeh/hwxs/zKHIiSEHtby4Gvj7Yn41i0IBZqsbpyM987HMv4zP7vgsPzz4Q9Dh0sZL2T22m7JexmYysrJEQWR19WrsZjtOsxOPxcNDxx7iI5s+wiM9j/D00NPo6BWXY6fZiSIr+Gw+VE3FZrJRUAsoslKZ/JuDJEiMJkZPuW0nH9c50t/ub+fZoWcZSY4avzdNA11nOD7IL4/8gj/d9Gen/D5WqjonaX2kurpKpWc+6QFAVY0q7rwk9yUs4fXGEvFZwpsWosdT0RKgqmQDLn4Wf5ZXU8cwWR3M5ONkShl2j+7GJMo0uZvYH97PLe238MTAE/RGexhLjlJlr8ZudtDma6OgniAvrd7WBXldZzwJiyIZq8Sx/t2kC0nykk7QWoUoyaiayt6JvWyt34rdZKdQLuC1eHGYHbjMLg6ED/Cr3l/RHzNGmnf27GRTaBM1jhqaPc189KKPYjfZ8Vq8LPMvO2OLZk5cDcbUVvd0N2ur15JX80blqFxEQKDKVkU8H2ciPUFJK/GlF77Ect9ybl95Ow8ee5BiuUimlCFdTFPrrEUWZQrlE/tmfiXsTEiX0ujlslEpm6/DkmVEl4u0mj2vEefx9PgCQe5cZUPTNYYSQ2j6iQqgVbZS66g91Wp+b0gezzkRnVOhI9DB3+z4G0biIyzzLeM/X/lPemZ60NFxmp2srV7LO1a9g5ncDC7FhcPs4EjkCPc8ew/3XnUvV7ddTU7N0e5r5+L6i+mOdjOTm8EkGpNvM+oM2+q3UeuoZSg+VCE/PquPoCNIppQ57bYlC0mG48McmjxEqpBiQ80GQs4Qjx5/FF3TjADSWbKp6BJTA0cYbOhmTeOmBevRC4VFpAc44d/kchl/n2xGCKBpC5Lcl7CE1xtLxGcJb1oIioJp1Sr0chl1dJRjgTK/2fMcWa2AXLYyk4siSyYcZgeJfBKzT2EgPsi3932bd656J5c2Xoqu69zUcQuvjO/hyFRXpaUzp2WZX9WQqqsRvd7F7S5RZKI9yM5D3ycaHQGgaBKJCBmuX30LDc4GRlIjFf8eq2zFaXZiN9txWVwoskJfrA9JNCagSlqJF0dfBGBlYCWbajdxZeuV57RP5mcgJfIJ8moek2RibXAtPdEeSloJh9lBspBE1VTW16wnU8xQUAtMZafYO7GXy5ovQ5EUiuUiOjqSICGw0ORzfiXsTLBjRkskjOmu+VosVUVLJnGYHefV0iipC6tDVpMRaJkoJIyJp7Kx3Cpb2dG4g+X+5ee87tcTTsVJZ7CTTjpZWbVyQf5bLB9jKjuFw+xgVdUqPBYPL4++TNAR5IGjD/DM8DOYJWNC7eObPo4syjwz9AzpYhqryUqju5H3r30/RyJHuLbNiOixm+w0eZp4ZeyVynf8ZEiChCzJ3PXIXRyKHGKZbxk90R5uaL+BGkcNE9ODlWqoz+4nINhBVUlOjqAH1yy4MdDi8UWkZw56LgcuF/optHlApYq7FD2xhDcKS8RnCW9qiB4Pytat5Jc3cuj4L0hRwG51ktcKhnOvppItZZFEiUQhzkx+Bo/iZs/4HkaTIzjNTroih/nktk9zdes1FMoFqmxVrKpetaiVIzocmLduXSRwzrXWs3P6qQrpATCXNFyKhUcPP8TNa2/jF8ceZDw9XslfqnXWckvHLaQLaYrlYqVqcTJMool8+Swj1PMwPwNpNDmK3WRn/8R+3rf2fTxw9AGeH3keWZSJqTE2BDfwntXv4dnhZxEEAV03tEdb67YykZqg1dNqiJ5tfmK5E5/35ErYmVCvOvDpVmbcmkGA5rUD/b46mvxtp6yknW7iJ+QMYZWtFedhWZQJOoKIgohJNOFSXHQGOmn1tp62Jfhmw/z8t8HpPl4YeIrnh4xICWQZp+Liri13kSlm+FXvr6i2V6PrOjk1x31H7uNvd/wtVzRfQaaUod5Vz1RmqjLevntsNx9a/6HKfuisNvbNXMjpfGyo2cCT/U9WWoWD8UHWBdcZ34voceodtUzHxvDaA2yp2ohlKoFusRjkdrY6M5mepCvSRSwVweNV6JBq8M8UF2jxhNnJuJN9fgDD4mBu+VL0xBLeICwRnyW86SEoCqNiGtFiQTYplNHIlrKVSoCOPptSLaCICnazg/HUOOOpCVZV+TgwdYj+WD+CIJBX8+TUHI3uxlNqWOSaGsSrrjrh46Mo9BMhenxk0XNdBQGLyYbf5OGvLv4r0oU0kihV/GPmHJOrbFWVcfX55Mdr8WIxWfBZfOe1P+YLnXtmeiiWDW3TLR23cFPHTZhEEzk1x2hylG/u/SZ+m5+ALWB8PtH4yXdNdXF75+2GIHq2kqBICk2eJj64/oPn7O1jz5W5qfEaHh5+nBm7Cm43aBp+dw03NVyDPbfYwLCiDSkUiPrMHFPDxIdTeN21LKtqZ0fjDl4YfoFEIUGmmDG8iuxBrmi5gk21m9jRsON3ntp6I5GITvCLF75NPjbOWqWJpJKnSJmyxUhm95g9bKvfhktxUSwXcZgd1DhqeHn0ZX5+9Odousb7176fVCHFutp1FefwwfhgxYww6Ajyqa2f4pt7v8lQfAhVU5FFmSZPE1e3Xs2nfv0pqiz+WX2QRiKfYIW/g9XVq/BavKx2L8evWbBOZ0HT8Mku6jUneqnE/vB+vrr7q/TH+tGLRfRsdsHo+xz5EWQZKRikHI8jOBwn2l2yjBQIIMjy6xamu4QlnApLxGcJFwTSpTQCAi3eFsKpMOF0mDZvG8OJYVLFlDGqrWnYzXbqXfXsGdtDvauesdSYESYZMXKRzJKRKfTs0LN8dsdn6Qh0LHov0eFYEGeRPtq36DlzMJc0LJrI5rrNp1zuVJy8pfkt/Pr4rzkweQBVU9F1HbfiZpl/GUF78JyrKyevd1PdJnpmeojn41Q5qniw+0GORI5w/fLr+emRn1Y0REenjrKuZh1D8SFiecNzKGAL0O5vJ5FPGMLoch5FUnCanYvaXmeCoCiExtK8v/oaRpU8mXIOu2SlvmDB1jOJcMnCVlRFG1IocMSv8vUD38Asm3HZvBQnVGonG7mm5RoKaoEXR19E13UkUSJgC1Blq0KW5PPKfvpD4kxGlydDLxQYGDlENGbol8wljQDGd7Eom+hNjHLT5ptwhB2EU2HsZjvjyXH2hfdxTes1FR8os2xm39A+RlIj5Eo5NF3j2PQx3rPmPXRWdeJUDLH0ltAWWj2tZNUsNtlGwBYgr+aps9fQN9NniONnDQnH4iO8c/WfkMjO4D42DOYiiCJ+Vw03N1yNbTrFVHOBr7701ROVpNmk9P7pHv7Pvv/gf67/DP5po3IpWK2VsXXJ56togebiLf4QZodLWML5YIn4LOGCgMPkYCo7xXVt181OoIzQF+ujxlHD9obt3LbyNmZyM0xmJtkf3o+Ghktx0eBuoNXXysPdD+NSXJitxsWmP9bPDw/+kL/Z8TdnrRw4FNdZlp/59SurV3L3FXfzrVe/xUBsAFmUERAI2oN8cusnz9s5eQ5OxcnqqtV8cu8nmc5Ms9y3nL/Z/jegQ7w1Tu9ML5PpSWwmGx7FgyVg4fKmy7my9cqKS3LvTO8iTchwcvicxtlhVhfldmObitFuPAIUgSKi14tUXb3g+XPakGjAwtcPfIOgO8Szw88x0m9kT2EyGbEaupFDVSwbCffJQpJf9f6KQ5FD57xtqUKK3mgv46lxTLKJkDNEs7v5NakUnc3o8mRo8TjpXOKU67IWNG5bfRtfe/lrHIwcrLRvWzwtXNN6DT8/+nOua7uOlYGV/Lr314iCSCwXI5qNMpOfIZKJMJWZ4ob2G9gU2sTj/Y9XMsDAuGlIReOkSml8Vj+vFl6tkB50nelMhJ8e+jHfuvGbuBkmI5ZwWN3UF63YxtIIdW6OpgcXtM8EUQSbDT2bpX+6h2NqmB14FpEaub4eqapqKXpiCW8qLBGfJVwQaPI04ba4GU+Ns6NhB1e3Xs3RqaPk1TzJYpIn+p4gko1Q76on5AxR1IqsqV5DsVzkG3uMqsL8kW0wJoiG4kNnrSA0Vy/D7w1V7tbnw+8N0Vy97BSvWoiLQhdR76pfIHLtrD67S/LZkCwmieViiILI8yPPs3tsNzsajf0jCAKSKDEwM4CqqTS6G7lj5R3UOmqZSE/QM9NzynWezzj76XRRcyTg5ArInKD1mBrGLJsN0jMbuGk8QadULvHfB/6bJk9TpTV3vts2GB/kBwd/wAvDL1T0QiFHiBs7bmR7w/bfLaNsFudidHmqz+2QbZwK1f5Gnh56irHUGFW2Ksp6GQFDv7ZrZBeXN13OxtqNFNQCOob5ZCwfI1PKIIsyiqwwnh4nWUjyw4M/JORcnEKn5/OkCnFafK0wx1/m5az5bQHsuonlEyp6MoXokRCUEoLDgamjg3hit2FXMD8nTpZhNj8uIRYxrVx5SlKzFD2xhDcblojPEi4IzBf1jqfHkQSJRncjikmpjIxft/w67n7qbo7HjKBQWZQxiSZsZltFazMfZtFcCR09E1wOP2/f+gEe3P29BeTH7w1x69YP4HL4z+kzzBe5/r6YS1sPp8O0eFqIZCJYZAt5Nc9Tg09xMHyQty5/KxtrNhKrjbG9cTtrqtdU3v90pGcO5zrODifporJZkKSKFcHJmBO0xotJXDbviUpP5QkC2VKWvJqnoBaQzYtPUWfbtlQhxf1H7l9AesAguju7d6Lrhov171r5OVejy/kQTCYa8OB3VBNNn+QKrSiEZ8JYTVZkUa5UfNLFNEOJIbbVb2PvxF6ms9O8OPIi1fZqNF1jZWBlxf0ZIK/mGU+PU+s8xYi/plHOZWmp20RHYCXdkSOVRR2BFby7808o9vch+v2IDQ0IdrvxGRQjkd0dMxnHdg6zFR9BlsFsxuuoWiI3S7hgsER8lnDBYE7UOxQfIl1K4zA5aPI0MRIfIZwO0zXZxcX1F7OtYRslrcSqwCqKWpF4Po7NZMNutlfWZZWtuC3uBb44cPppo5aaFXz4qr9mMHKcdCGFQ3HSXL3snEnPa4nu6W5+ePCHjKfH2RLawt6JvdS76tnRuIOpzBSlcomCmucnB3/MCl87N/i2sc62Gnke6fIqXi6quQib2UZezWOVrWSKGQ5GDlLSSuc8zl6BqqJNTVVGnLXJScqzbY/5IlbRY7RDPGYXRe2kcWZBAFHEZrIhCuIic745nG3bhuJD9Mf6F5CeOcxVRs6l0nc6nI/R5RxEjwfHkImbWq/n4f5fLyQ/skzQWUMmniOv5pnOTpMqpJBECVEQiWQiWE1W7LIVu8nI3EoWEkwkx1jmW0ambHxOi2zBLJrJq6eYEhRFzIKMkMnyrmW3kO+4mWwxg022Ys6pxMOD2H11aOPjaIDU2IhosyGHQqh9faywVdMaaKd/epYwa5pBhBwO2vzLfied2hKW8EZhifgs4YKCU3EuumA1eBrQh3Tq3HVsCG3gJ0d+wkhihIHYALevuJ3Noc0kComKsHn+yPn87KLy9DTx/mMMl6ZIl3M4FRcN5gDuqnoA7GYza+reWLfZ49HjfOmFL9Ef68dhcjCaHKXd387hyGEmkuO0eJoxiTIms4N3rn4nN9e8hYaXj1N0LmzB2Mw29k/uZ+/EiVDNdl87N3XcxEhi5LwuZHqhQKmnx3BsttvRVbUyylzq6cG8bl1lnwmKgqmjgxVhmT32eVoYQQCTCUEQyBQzrK9Zz0xuZtF7ncuofbqUpqgVT7s8r+bPqdJ3Opzt+J9quaAomNrbaejp4QNNtzBCnLSaxWF1U/a4GD0eZTQ5xmh2tCKA13QNu8mOU3EyEBvAKluoc4RIFBOIgkQ2n0Ivqeho1LnqERBwW9x4rJ6Ks3fl/S0WWoUWHILC+EgXerGIlkiQKpdBUaiqbaXBWotpdRAkCbmpCbmuzrgJyGbx50U+ueHj/J99/7GA/LQ6mxb5YS1hCW92LBGfJVzQmHOhdStudAx9yDtXvZNsMUtOzdHibuGaZdfwQNcDjKfHMYtm3BZ3xWdnrt1Rjkbp73mZh449RDQ5m38ky/jtVdy87AbqBQ/6zAyi04lpzRqkQGDRtkymJ+md7mUyO4mmazS6G+ms6iRbyp7Q9pxjAvqpkCqkeG7kuYrIVEfnZ4d/ysc2f4wfHvwhhyOHiKQnSWZnWBvayJ2r3kfDK/1GNWZeC2YyPcl/7v1PFFnBa/Eawa0Y7a+nB5/mn679p/PaPi0eB1k24gnyeaTmZqMVUi4juFyU43HkeW0Q0eMhZF3NdXaN5yde5NDkIYM0CQJei5doLsqfb/5zfnH0FwwlhiqvO5Xp5KngMDkwi+bTLrfIlkWVvvPBaY0u4ZSC7soyjwfzunV44kaMx5zQN02R2smXafQ0MpGeIFVMIQgC8XyctzS/haA9yLf2fouQM8R1bdeyL7yPseQYYklF1UqE7EEub76cQ5OHUGSFZnczfZFu1HzOCKNVFPzOam5efS3l6WmiM2NMJ8MIVitoGoHaNm7yb8faP4pms2Hq6ECuq0NQlBMmg5rGqqjM/1z/GcN+oJjEY3bR6esgkFUoHj161sm2JSzhzYIl4rOECxYvjrzIPc/dUzFkM4tmOqs6+Ystf0Gnv5MGT0OF2LR52xa1yOaW6YUC8cjoQtIjiui5HNPpAX5Z+gUf2vJRbHkberFI6dgx9I4O5KoTmqED4QM80f8EDx57kJGk4fnjtXi5tu1aah217OzdWRFXn2sC+skYig8Rz8Urf6vlEtlCiv947t+4ZfXtvGftezALZuyCmZAtSDIzw6ONObwmJ+0lD3Ytz/jkYfrj/RycPIhVtrIisIKyVqaklSrJ3/Pf41yQ0nIMamHSNWWc3jpqhqaxHO4xfF0kCbm5GS69dMG0k6AobGjYzP+65st878D3GEoMYZEtVNmraHQ3sqFmAxfXX/w7icGbPE20elsZiA8saneFHCFcimtBpe98cb6C7vk4ldDXicLNHTcTTodpcjdR1stkS1kua7qMdcF1vDT6En+9/a/Jl/IcCO9nR/0Oam3VRNJhVgU6Ceen+c3x35AsJNlQs54v/ubzrKlew4rgKpottdRIbloa1uD216J7C3yoqpHh9BjpQhqbYKah7MSeLiKsrAdFQW5oOFGhm2cyqJdKmGMlfKKOuSzjKOmYtQSFuWPNmSfblrCENwsEXddP7W/+/yiSySRut5tEIoHLdeYx5iW8cRiOD1es90/Gmuo1fO1tX6PR03hO6ypPTnJobD8/ffYbJx4URbRMBjQNwW7nnVs/RNvugcpiedkylG3bkAIBJtOTfHPvN3ms77EK6QEoa2VkUeaSxktwKk66proqy1q9rZWx7DldUUrNMFycIiOUcNo8NLkXmvS9NPoS+yb28ZMjPwHALlo4NL4fikZbx+8K8tHmd+KvbuC/Dn6XqUwEmyqCrtNQ38k717+XIzPH8Fg8/O9d/xtZlAnYAlhky4L98emtn+bWlbee077rDXfxbPfjzETHsDm9aNFpijNRbmi8htquMWP/ud3IoRCWU0w7wQmh9qlI6e+K00113dRxE9sbtv9exGcOC3x8FIWsz8FIIWJ8DrNj0fE7Gw5NHuL54edJ5pMsDyznoe6HGIwNMpYaYyozxTLfMq5uvYrJxAR1GQmXN8glK67l5ekDTGTC9M30sX/4ZXR0AhYfHsnBVXWX8uHQTTg0eUEoqF4oUI5G0XM5I1pCEBAdDiS/f0GrTi8UKO7fjxaPM2LO8fDAo8bNgSyjqyqBqiZurLqE0Him4v4ker2nPdZLeGNxOg3jG7We1xrnev1eqvgs4YLEoclDpyQ9AIcihzg0eeiciY9eKpHWThLCznqcCCYTej6/KPhRi8UoHTyIuGMHXZEuMqXMAtIDUCwXmcpOMZ2dps5Vt2DZ3Fh2lapQ6ulhRM6cEL3OOtz6vSFu7ri5MnrtMDkQEAg5QowlR9GLeXxWHx0NHQScNdgVO40NF/GNl79G70wvQdkLuk7ZJLF77GViepY7N3yQomoQJVVTmc5OU+OoWTA2fq7C5u7JLu598gv0jR9Bz+cRnU5qcHJV/WX8avhx3tv4FqxDYQRBOO20E5xat/X7otnTzKe3fpq3LXsbE+kJZEkm5AjR7HltfHxgodHlYHyQh7rvW6BL8ll9C47fuWzzM0PPsNy3nK+8+BVeGX8FAYEOfwdZc5ZINsJv+37LLW1vw06et7Zez+6pI4SzYX5y5Cfo5TLMZplN52eQFZH+9DAjxFmRs1diJ7R4nOLBg6jDw5V8tbmxddFmW3ABExQFua2NmSP7eLhvlvQIgnGxc7mYSUfYqT/Lex0XY49nEWT5jMd6CW8cKo7p8zLWhFMMIJzTegYGDHF7qQRms7GelpYLxo17ifgs4YLETH6x8HU+YoWF+otkOjo7kZXEYXHRXHViIkswmQyPFbO5Uj1BmL1/lSQEUcSmn5QrJIpo6TRaPE68EKdYXiymnYunKGmlUy6P52OUurtJi+rCSR9VNbQYssxD3Q9VspiaPE08PfQ017RdQ/9UD6pa4lpvPUOJIfqix0lEYlTbqtk1sZsmVwNisgCSREEGFYGj0WMU1SJm2czKwEqOTh9F1dQFY+PnIh7WCwUS8Ul+sO+79E10IUsmOprW4PYGKeTSRCwqrU0rGUenzWQ6EUp5lmmo1xpOxcnG0MY/+PukCike6n5okRh7Jjez4PidDU7FyVvb3srPj/6cV8ZfAQwdV1+sjyZ3E27FhSKaWV27jks9NYyWs8xomRPTcfOK92q5RAGVolYirWYBO3qpZAjRjxxZQHrASFEvdXej6zpmq3Xh3Xu5zJhbJ2bREC3Vhp+PqlKOGN/X6UKBic022sIzxoi7KL7ux/r/Ncxlpp2rbrDimH5SsKyey1Hq7l5QDTwT9EKB0uAg8fEBxkiSdyhk0RBSGoGRGVrk9W/IpOv5Yon4LOGCxNnyrbzKCQ+ZgfCxU3rwvH3rB2ipWYHo8dAQ8VHV0M7USE+F/AiShKAoBAINhCLziIt5VjgriuglY/R7bmJsPoz8MCOI9FTL3ZIDPZdjxJ5Z7O2iquj5PDPyTGX02qk4ubH9Rl4ceZHh5CjJYpJf9v+KXClHq7eV7Q3bDRdmTWciE6bF3YBJNKFRQNCNZPhUMUU8GefDGz7Mt/d9m6PTRytj4+ciHp67axwUpxmLDiKXYVvbpTw3touR8afR88aJ9eq2awm13W4EUmoaerGIYD694PhCxlB86JQTaGCQn/MZnc+reXKlHHazHU3TEAQBAYHR1CgjSZ11wbWomoqncRk9uV6sRQfmwux+FRZGjZT1MmZxltQXDIKfiE8ywBSpqgJOyUZdQcEWTRvHKJ2G2RbGfB2SXipVXKe1ZBItFjPITX52bL5YJJ1NIAaD6LGYUQF4E7Q9/lgxPzNtDmfTDSbikwzJM6QDAkmxSKKYxCKYaTBX0ZzV8Jx0zE+H8swMg9F+fjX6CPZgHb899Czj8RFsioN2fwfLp9Zzy8Z3/14Goa8HlojPEi5IrAmuYU31mtNqfOZCG5Pp6CLSAxCNjfPg7u/x4av+GpfDj7dhGTfzVh7SdIOEzLa5fPYAbxM7sR2fMl5oNiN6vYZ2xWJBMJno9HTy/MjzNLgaFrS7zJKZWkctAVuAZCG54P1bva2sdDbDxPjsHfkpMCsYnT967bf6GUoMES/EkUSZcGoCdHgl9RLTiQn+4uK/RC2XKGsqWUHFa3UhF08EozrNTqayU3RHu7lz/Z0USnlMSATNPjpdbQQd9afd5/PvGtNKFrNkZkVoDc+NvsBwfAhMJhAl0DRGkqP8dvApVvq2YwvPIAYCaKUSWjx+wZTDzxVnG40/n9H5OX2QVbYuCrWVRAmTbMbvqEb0eLBnTOjZHCZdoMFVz3BixCA/s5Ufp+Ki1dFIAx4Em4kRKc3z/U8RT4XJF7NYJQWHbubi+hWERlMG+VHVE5Ncs6hUREURPZGAchl91nMJTQNVxZYpIVVXo87MnHGybQm/HybTk4tIDxit86/u/uop41wG44M8fOQ+RNnE88d388LwC+TVPB6Lhzp7Le9f816uyDto5ezEJ5mZ4eGeh1Gcbn47apAegGwhTU+0G7vHf15VzjcKS8RnCRckGj2N/N2lf7dgqgsM0vN3l/1dRd8zGDl+yqgJMMjPYOQ4ax1+RI+HVutmPlRtTLxkyjkcDh8Nsh/znoNoXrXSskHTkPx+RKcT0eMhqBhTOTaTbcFUV8AW4Nq2awk5Qjzc+zD67EWi1dvGp9Z/nCrJTdmVxuoQcTe1k1Vz2E1WTIUyM5OD6LPvN3/0eig+xHB8mHghgV22Ui6rxoVOFBlMjaChsTq0jiNTXaizlRxFVpBFmeW+5ZhlozpQ0kp0Db6CJ6nyPvdl2KamgCnyZ8mbmiuVO2QbLtGKyetiePAx4wnlsjECXSxiNVnJz0QYa1LpCAQwb9iAFolQSiTOuax+oeBso/HnMzrvMDlQZIV2XzvHY8crnj6CIBjH0LuMFZY68s8/T60iUJyapMkX5Iam6/jV4G8YTgxDqYTX6uPKxsu5rfoa7Kki2WU1vDD8Ar/qe5TR8W5DmwGE3A1Iy61cG2jCFkkYIaKmhW1d0eOhYbIav83PZHn2gquqCGYzeqmE31VDXUxH8AiIPt9ZJ9uW8LujK9K1iPTM4VRxLnNtWEwmnhx6lj0Tr5AoJJBEmWQpjZiL8KNjP0OXJKpqTujfTicNGClEiCYmCNXWMT64UNOYLaRJqBms51nlfCOwRHyWcEEiVUjhNrv5h0v/gfH0OJlSBo/iYU1wzQJRc/qkSsvJSBdSlX8LioIn2IgnuFAUXd5qpXTwIFo6bfjNWCyGn8+8MMZ1NeuocdSwNbTV8PHRNBo9J3x81gQ6iScmccsOVsg1+IcLaJ4Ih+Qo3977PZ4dfYFUIQmCQFuwg9vabyVWSuKx+hZMIM2Z8wmiiNlknd3wEy2O/eP7eN/a9/Ojwz8iNfvZZFFmW9023rnqnRWSqBeLeBIlbqy6BOtQFF3XYVaYeqa8qTk04KFW8pK32DCZFEqlWU2HpuHz1NDkb8WSg3yoClNzC1o0alQUcrlFrZQLHU2eJnxW3ynbXb6Tjt+5rEsQhEqIbH/cuMhpusaqqk7e0/kuIv2HkfJgm8jytrqLeWT6Bdx2F59Y82Fysoau6yz3tLFGDGFL5sFRZDgxxCMHH8Dl8rF5xZUU1DwWSSGdnuGR/t+wat0naM8aERUnV+QERcHbuJybTTfywNgY0egogDHVVd3ETQ1XY+uLIni9WNauRfojq+i9mXC2uJaTl8+1YR0mO+FshEQhgSyZyKt5MmoWk2Riz9jLbGrYzMHJg+xo3HFGaUBaL4IkkT+VQaggUMK42fp9DEJfDywRnyVccBiMD/JI7yO4FTc5NUeqkMJv89PsbV40yfX7JqsDSIEA4o4dZ0yYThVSTGWmkGWZjkDHglFmB2Y8My70vJmM3cSonOWQO44sJ3mg5yHCpRk6a9dwPHqcmVSEvkgPD4gPc+eGD/KWlrcsKBnPN+eTJZkqVw1TC+IPJH58+Md8YO0HaPY2kylmKh44NpONVm8r6VIaW7pIdWIE27EJoxIFlfylM+VNzcGeVbmp5a08mz5MjaOGgl6ijI7T6mFtYBXueAF0HXtZRJ+eXrCek1spFzrm58idPNU13yTzXNd1Y/uN7OzZya0rb6WgFkgX09jNdla62nj21V+QHRvG76rhpqZrCY2leU/gUsa9AulyHlegkZa6ThyYKe7fX6nQTcgz1FW38vjgb42Kga4bzsu+Nq5pvopJMcuqjs4FHj7zIXo8NOWaubPtdkZaYmRKWeyiQl1GxtY7heByIXk8i0jPm3Xs+ULF2SYuT14+R0CypRyaoCNJMnk1X6kG67oOkkS6mOHg5EHaXM089PIPMcsKtfUryJfzWCQLFAo89PIP2bH2BkS3G4t80jEUBASLBbPFiAX6fQxCXw8sEZ8lXFBIFVI80vsIPouPr7/ydY5EjqCjo+s6m0KbuPuKu9nRuKPy/NciWR1OGM9VpilmTkxT5NTcKS96c6PMWjyOns8z6tLZnT7AzkOPkBaKLKtewX/t/w4BexUtrkZcFjfN/lay+RSybKHR3bioWlBlr8Jn82E32SmoBTaHNrNnfA/T2Wma3E3M5GZo9baypX7LKYWOq4OrDW+W8CEKY1MLF87LXzpd3pRgtRoXU12nPiVynX8zA/X9jKXHUVxePFYvpnwJTc/jd1TTgAdYrBn5Y8PpcuTOhfScTA6a3LXcue7Oyt16X7yPXCrOnn2/ojxb3Ismwzw89BjvD16LLTxDuxpAdFQhm+uQFSflyckFEzyiWeHxwd8yFBugzhnCpjjQdA1JkDg4c5Rr2q/H1NR+RlIi+Xx4apuxdxfQkiqoJdCLCFVVmDs7F+l6ytPTJyqls4MCc5XSPzad1+uFzupOWr2tp2x3nWoic46A2Ew2JEkGUURFq1SJxVnHdEUyjvvRyS6sdjdPDj3NeHK0sp6Qq54rm65AQaZ62VqEVIa6QCvj8WFjXbKM3RfEY/Odd5XzjcAS8VnCBYWh+BBuxV0hPXk1X5lKem74Of7ns/+T/33t/2ZV9Srgd09WX2CqN2tG1x/r5992/9uCk06Tu4lbV95KIjFNOTljjAibTEzb8xWRn7VUImOT2RV7hUcGHyepphnOjFPjqUdHYzo7hQhUWwNEp6ZptIdI5xKL8pYG44McCh/iotqLGEuOEclESBfSbKvbhlNxcmXLlbjMLtbXrj/rZBYmE2IohGizVRyWtUwGLRw29Buny5vq6DgxFqvr+KMFPth6GztjLxHTDK8j3SIZHkQN12BPqQvXYbW+bhe9Ux3DP6Tg8nfxI9LicUo9PaSFUiW/y2l109ywhtXB1RyePMyTg08a01Ra2RCQzyKaDDPamKcdKkL4OVJ5clWtSJmJ5Dht/uUMJ0foi58w4/TbAxT00qJjfqpqjdzQYFQJCoUTmWyKgtzYuOD16tTUCWfrOW0cgKqe1/j0EhYi6Ajyqa2fOu1U18m/+7k2rIBA0B5kNDlKtmQMUyiSgqqXafG0oMgKAgIFvciTQ08TSYdZWbceu81NsVxAkSwM5ifYoOa5ZeO7ePjIL7g6cDO/HXiC8dQENrubFdWdi6KA3qxYIj5LuKCQLqXJqblFpGcOByMHeWX8FRrdjZUf3/kmqxtmdAsrOBbZgkk0GeLReeia6iKSnOB99Tdy+PjLlccFu52pxgJD8SFWmqoYIU5KyzGeHMXh9JPMJyotK13XmcnFaHA2MJWaBHcjqMUFZetUIcX+8H6+/eq3sZlsrKpeRZuvDafiZLl3OU3uJho9jYtOOKe6+FtLJQSLBT2bpdR/4uQpuN3IbW3oudyZ86bWrzecfLUZDsd7SRRTrKm/CEVWkEQJh8lBg+zH0jeCrp+YWJszS3s9LniD8UF+eeQXRGNjFWLn94S4ZdWtb5pR27lw1xE5w68GHkO2WEBRyCfzeNO9XNZ+TeUitYA8zPObMpLZJUN7No9UnlxVKxVydFav4thMN/FcDNABAUmQ0Mtljk0d5fLmyyvfnzOZ3Zk7Oha0fQW7HT2TQR0dNQTPuo7a24t6/PiCbRa9XsrRqKEl+yPTeb2eWF+znnuvuvec4lzm2rA7e3ZyVctVWGQLT/Q/QV7N47a4CdgC3L7ydkLOEKPJUeodISLpMJuWXc5vh55kID6Ijo6AQIunmSvar2Wzp5kPbvozhuPDrG/eSrqQRhKlSqXnzU56YIn4LOECg8PkIFVIoaNT1suYRBObQ5sJuUKGv4nFgyAIDMeHWRVcVXmdy+Fn7TkYa81NQSTyCfxWPwW1QLaUpayVGYwPsjKwcsEUmVoucWTkVUqttyxYj57JUB4eJrUqitiwnPRwkXw5b1wU1CLoOtOpSZb5lnN85jigU56d4FH1Mq1V7QvK1oPxQb796rdpdDfy/PDz/KbvN5VlG2s2cs/V9yw64ZyKwPmsPm6su5LgkR5Emw3dZjPaW4CeSFCemjpr3ICgKLxc7D/1RN2lf1epeugO3xl1UX8opAopfnnwZ0wNd1dM+vRymbGZKb6dDHND2/XYbW6aPI3YM+obpj/R4nHSQolfDTyG1eNf1F54buIlPnbxXQY5sVjAaoVyGdHvR4/F0ItF7JIVZA3J611AKhe0JQGXZMVj8aCVVewm2yztETCLJlySDb2QZ3CqlzX1G8/J7G6OtGjxuEGe5ypATiflvj4Eu33hhy0W0WIxRLcbPZ//o9N5vR5YZFp4jtl1zZ5m7lx3J8PxYdZWr+WWjluI5+MA2M12MsUMo8lR3BY3VpOV1U2beXLoKY5NH6togQAG4oM82PNL1s1WlOefXy80LBGfJVxQmCvd6rqOSTTxzs53YpbNKLJCsVzEYXIQSUcYjA+CwILKT6qQYjg+TFbNki6mDZdayUxWzVIql6h11GKSTKQKKXxW34KpGpNoQpZkPrXlUxXHYwBJAzSNtJpZtK16JoOtZBAFd7ABS7IXNA1ZMLxu9o69wts6bwKMFp4kiAhAa9VyPr7lEwtOagPxARRZ4fnh5xcklgO8Gn6V+w7fx6qqVQs+63zSky6mmcpM0RXpYmCmn/euvAVTeJpaXxu2mYwx3ixJIMsIknTGYzAcH15EesCICrnnuXsqOWmnCuR8PTAY7VtIeopFEmKRnvBxsqM5gqKT8b6DVLd2cmPwcuqTRp7Z72Lf//tALxntLdliWUR6APpnjvNQ90NsCm1iYOo4Fp8ROxGJDKIrJgJVTTTXrcLS7kUKBhdFTcxvS66QavAqHhwoYLahoyMKInq5TMhWg1goMTQzQIYitpJAnahin+cJNActlUIdGzPMKM1mtIkJ1N5ew/wQkOrrUYeHMXV2Gm25ctlYhyAYx0MQDA8sk+lEXlgqZXzvnE6kJfHzKfHK2Cv8865/pnumG0mQDMsDf/s5hx07FWeFqAzGB7nv8H30TPdQ66zFYXbgVtxsqt2EU3HSGGjl10NPUOUIYpEVOqtW4ba4EQQBj+Khe7obm8n2uraRX2ssEZ8lXFBwKk42hTaxKbQJk2ii0d3IfUfu41j0WKV1tKpqFe9a8y6Gk8OUtBI3d9wMwM6enVhlK08OPElOzdHiaeHF0RdJFVK0eFtQNZWVgZVsCm3iO/u+w0hyhG112/Db/JS1MsVykcH4ICv8Kzg8dRgABRmTZMYhz7vDFQRKDgsWXzU5vcThyGGqfQ14/CHqgstJ5mK4HH5ShSSPHNvJlsZt3NF5B17Fg0k2c9OKWxZNp6ULaapsVTzR/8Qp98tIYmSBd8Z8N+FwOsyLIy8ymZk0ojN0cJmcrHa28XT3c1xfdwWhsTzoujGVMzfldRr8Pjlpr4fuJpWKUhQ0kqYixXIRk1Wmb2aIfMG4OBc0FT2VItJzkIc1jQ9UXYc9Uzpv+/7fF4LJZJhXKsoi0gOQR+VA+ABVFj+PHXiAbCZOrbueqxovIxMNc1PoLdhjGaTWFaedxJprSwZLJd639r10R7s5Hu1BQEDWBdq8y7i581aeOPALbHYP48UoLsnKPgo43HYa5QCt+HHkNbRolPLUlFHNKRQQfD6Ke/dWhPCCKKIXixVCIzgcaBMTJzZollCLDgfIMoXdu0+ZFyY3NCyJn2eRTEfpnenj75/5Bw5PHqbGWYMiK+i6xnhilG/u/jr/cPFnqXHXn/N3NpFPUNbKbK3fyuP9jxNOhzGJJo5OHyVgC+C1eBlNjiIJEreuvJVXxl9hKjNFoVzAIluYyc/QF+tjNDlakRqcby7dG40l4rOECw6rqldx9xV30x/r53+98L/oifYgC8ZXWZEVDkYOUj5Y5vOXfp6u6S7uP3I/tc5aZEHmt/2/JVlI4rV6eaL/CUaSIzjMDgZiAzS5mzgeO850dhqfzceKwAp+O/hb+mb6MEtmimqRrfVb+fimjxsuuqKJVCZGq7sZlzr7UxIEUl4rKaHIdmsNjx59GPxefFYflzddjqhpPHTgZ7S4mhhIDJJTc5RLRTYH1pMspRBNZvpifSiysqDiU22vXqRnmoMoiNhN9gXeGXP/ThfT7BrZRaaYwW6yY5EtSIJEqpThh70P8K6m69k59izvb7kJR0E/pYHdyTjfnLQ5HI8e57mR54jn4lhkCwICT+tPc2P7ja/ZCTNVSJHU86geB1XmGgrFHIqkENOzjGoFxEwWq2QmtGw9gsNOQdLZb5lhvTWEfSbzuvoMiR4PDqubfDK/aFlZFonmZwjYq9DyOdYqTSTtdRS1EiP5MB9bdjPegRm06jPrZeaqboPxQcJjI1zX8Bbe0nQ5+XIBm2zDJph44sCDOM0uqtwh+lJDfL/7uwxN9mASTbQ4G7g0uJX31FxLveIwqjWyjJZIQDaLNjlpVHFMJnRNQwIjGLevD/O2bZSyWcPtGQyDS4sFubMTtbv7/PLC/sA43+yr1wMD4WM81/04OUXi5eEXafMvZyQ5SqaURdSMit3IzCC3LLsR32AUU3v7WQnjcHyYXx//NVaTld8O/Jah+BDRXBRN13ApLo5OHeWty9/K+hqjnbV3Yi/Hosdwmp3UOmsZTY4ykZrg+we+z60rbyWaiwLnn0v3RmOJ+CzhgsSOxh2MJceYSE3gVJxIgkRezZMtZZEEiSNTRyqJ6v2xfuxmoyIznh7HbrLjMDsqLSNVU0kVZ3VD5TJjqTGuab2G7x747qz+BkrlEiFXiMORw3z/wPcxy2aeHnyai2ou4h+3f46OIzFa1r2XXFMNQ8VJZnIzmCQLy+U2BtMjzORmeGboGd7ZcTud1iYm8lOUBB2rbMGk2PjPV/6DgVg/JUlAQ6PD38FfX/zXbKrbBBgRHS+PvYwoiAtiDERBpN5ZT7WjeoF3xty/I+kIBbXAVHaKTDGDU3GiSAqiJCJIIoovQGLoFcYseVaU7ec0dXU+OWlz6J7u5t92/xtD8SFUTUUWZWodtWxv2M7Onp3cue7O8z5hTqYn6Z3uNQwjdY0qWxVjyTFMkgmT2cJgahirbCWVnaAvOcTFzduIzowT8NZz//HvMn5kAEFROOzfw35LE2/f8G7qoosjG84GLZ2mHImgFwoIFgtSVdU5ORcLikJLwxq86Z6FC0SRgixgFW1QLmPBhClbwFCoiWjpcaa8M3iLxXPSy8y1PePJKWpEF7/t/y3jCcN111vVgM3m4paVt3M42sVvh55keLoPdJ1SuUislOSF0V0oJY0Pud6Cs74eXdcNjZAoGu0sQTAcu0sltFQKwe02NEiFAqY1ayp5bYgigs2Gns9TjsUWkJ45nC4v7A+J/eH9fO3lr2GSTLgUF8VykZfHXuaty97Kupp1r8s2nIy5qB2z3UVKL1PjrGU4OUI8H69oszRdI1aIc3DqMJvsfhzzqpWnqqxGc1G+/vLX+WnXT7l+2fU81vcYLsVFk7uJqewUVpOVXSO7EAWRBncDtY5ado/uptXTSjwfRxREWjwt2Ew2ZFEmaA/is/qQRIm+mb7zzqV7I7FEfJZwwSKn5iiVSwYZQEPVVERBrFRG5hLRi1qRvHrirlrVVEraiYuFPqtjUDWVYrlI0B5EEiR6oicuSH6rn1QhRaFcIFFIcHXd1QgISKLE9w58l7ub/pSsJceX9/4Lz/Q/jc3iQDIprKpexccv+jjT2Wkm0hNMF2KsqV3HilntRTRg4fO7v0JfvJeomjQ8NoAXR1/kC898gX+65p/oqOog6AhyQ/sNvDDyAvvC+yoxBlW2Ki6u30aDHKBetRnGg253RQvVpXYRTofJlrKVzDCf1cfLYy+zP7yfbQ3bWL5iO2FTngZfNd7G5We90z7XnLQ5pAopvnvguzw39Byp4gmn7OHEMJIocVHtRed9wjwQPsAT/U9UIkLMohlBELi27VocZgc/OvhjorlpcuU8G2s2cuvqO0gXU2xtvoTeqV58Vh8RcZSyYFxEotMjPLjvx3xw/QfxnIfPkBoOnxjbnoV4htiPk+H213JZ+7U8N7Gb/pnjFU8UCxoha52hySktJgiVaa5ZvcyZUGl7miQmMjEurdkKDTvIa0U8/hCRxAQJIU9eLzIcG0ITjIqTppcpiDppNcdAfoKx6gKrAoETmV7ZbCWrS1dVY9qsVELZvBkkCXVgAMxmSseOoc/MILjdiC4XoseD6PNV3LxPxqnywv5QmExP8rWXv0a1vZpnh55dkLX3/PDz3HvVvef1vXytWrlzUTteixm71Y3NbK9YEOi6hoaOhIA2a0Q5QpwVOUMDNqIs9hVzmByEXMbkFlA5/yULSYYSQ2yr20bXVBfRXJQXR1/kf1z+P+iL9RHOhLHJNqPirJUJOoM80f8E07lpqmxVmCQTg/FB7lx3J93R7je9Y/MclojPEi5YVNmrsJvtxPNxFElZ0AryWDw4zMZdt1k0Y5EtlWWyKGMST1wshFkzL1mUyZQyiKKIIilU26srBMMiWxiMDxKwBTBLZtyKmxavcfeTKWYYDVq499kvc3T6GC6nn0QhSSGb5OnBp4nlYrxv3fsIOUPG+oMntBfd8f0czw4TLafQBKiyVqHICmWtTCwf4/DUYUKuEAAmwcRnd3yWXxz7BRPpCRRJocrspVpwsKV6A0dGXsUhWalXDAJzc8fNHJ85TqaUwWl2kiwkqXXWsq1+Gw90PUBBK5Ar5fnPY//FDW3X020e5haqaMZzxv1+rjlpc+iN9vLs0LMLSA8YSfG7Rnaxo2HHeZ0wJ9OTPNT9EI/1PVa5UOnopItpHj3+KM2eZjbUbuDA5AHMopktdVt4tP835IpZjkx1sWdoF82eFq5Y+1YODu+ZbVOWiU6PMKLH8XnO7UKnpdOLSA9wxtiPU2FZdTv/37f8PT88+EPG0+OYRTM6OslCkqvqLqOQmCHUcRH5Ug6rpKBlMrOasjyiw3HWCt38favbrUyZimiZGFJZp87qQtayCGYzdVIdWxq2cmTyCIVynoJaRBU0ZoQSaZNGOpdEm5ykdOwYyDLiypVIzc2UBwehVMLU0QEWC6X+frRIBNHlojw2hp7LGbqgXA6tXEawWlEHBxH9frSpqUXbey7t1tcKXZEuTJJpEekBQ6/2vQPf4x8u/4dzIi+nm6L8XbQvc1E7FslCKpegydPMocjhec8w5vKW+ZdjLuqzQcd2UmqGhwZ3ksgnqLHXoKOTV/NousbRqaOsDKxk1+iuBee/ZCFJWS+TntXAlbQS3dFuahw1rK5ajcPsmPX8Ueme7mY6Zzixp4opXp14lbXBtXx737e5c/2db3rH5jlcMMTn3nvv5YEHHuDYsWNYrVa2b9/Ol770JTo6OirP0XWdL3zhC3zzm98kFouxdetWvva1r7Fq1YU7dreE02N11Wqubb2Wx/ofI1PMIAkSZb2Mx+LhqparEAXD+6TV24pLcZEqpAg5QiQLSdLFNE3uJkaSI8iijNPsNCo4guFD0+RtQkCo6Fn8Vj8+q48tdVt4ZfwVmj3N/PjwjwFY4V/BZU2X0R07Tp27gbJeJlguIosy6WKaw5HDaJrGb/t/y5a6LcAJ7UViJkuBMho6dc46hhJDC5LcD0cOU22v5sDkAaaz00iCRIe/g7U1a6mzh7AWyvRO9fD9/d8lVy6gSAqtzkZuF26ktX0zN7UbU2NzRGo0OVohPW2eNhKFBBPZSew2N9Fc9Jz79Bc3XMzX3vY1Dk0eIlaI4VW8i3LS5jCeGqegLnaCBuPkmVNz53XC7Ip0kSllFlyodHRsso1wOmyM5FavZjg5zFXNV/H88PNMpCdo8bSQLWXJlXIcnepCE+Dty28g3T17QRFFssJiI7/ToRyJLCI9czhd7Mfp0BHo4G92/E2lWmAWzRyLHkMtFRkTcxSlMnk9h0XSsXusKE43os+Gae3as27vyftWMJsxK1ZCzhBPjj5HOB0mVUiRKqYoaSW21G/l/q6fYRJNZIsZJATygobZ5QVVRM/noVCgdPQopo0b0XM5RI8HXRAoDw4i19ZSjscRg0HKAwMgCMYNhNlsmGOKomEhYLEs2lbBceq8sD8U4oU4LsW1iPTMYSgxdE7VyJOnKPViES2TYWpqigcTP+BDWz6K23PuifWVqJ1Cga7oYe5YfzvHZ45zbPrY7DMEOgIreeeK24gOHMXh3wgFGC5MkcgnCDlDRkszbZi2JgtJ7CY7H9/0capsVUxlp2hyN1Xa/Xk1T0kr4TQ7qbZXM5wYZiQxQl7NIwgCY8kxnIqDqaxBVFs8LYwmR+md6eXK5ivZPbabsl5+0zs2z+GCIT7PPPMMd911F5s3b0ZVVT7/+c9z7bXX0tXVhX3WM+LLX/4yX/nKV/jv//5v2tvb+eIXv8g111xDd3c3TuebX3D1emFurDtZSDKTn6GklfCYXHQ4mqgqKRdMpk6jp5E/3/znqJrKYHwQQRAoaSVCzhC3rbyN4zPHK3lJOrph4tV6FU8OPEmmlOHq1qsXTXVtq9/GhpoNqGWV65ddTyQbocnVhNfqJV1Kky6mubzpciLz8rGORY9xePIwHYEO9k3sq5xsAALWAOtq1pFTc8TyMUrlhSV8j+KhrJfxW/2LSA8AOvyfl/8PVzZfCUBZLxPOhAGYnh7FJVr5+YH7yM3erSEIDNgHyIsan6puREREQGAoPsSvj/+6YkbW5mnj0qZLGYgPELAFKuP559qnn0xP0jfTR1ErUuesO6MY1CSbKgnxc+8zH1bZel4nzHghXmljzsEsmUnkE2i6hqYbbU8BgWpHNc+PPG/omgQRj8VDwFGNKIjEslGy5Rwllx1zsQyyjMO2WJ90OuiFAsgysZYqBpwqkVKMMhoBxYc9XcKWH6GlUHXOrY6TnZ9diotf9f6Kh/p/Tc/UUQBEUWJN9Rqq3SFCF9+ILRA463qbPE14Te4FZo7BQDO/7f8t6VKaSCZCTs1hla0MJ4Z5tvgsm0Nb2DO+B5MoYZatiJKEqTqIPpA1xtMlCX16Gj2RQLDZkFtb0bNZBMFIaJfq60+MwmuaMdY+G/ALIFVXG1UgWT7lVNfrde7xKJ5F36X5sMiWc6pGzrUTC2qBeGqKfGIGsybgUmUi4+P0255nzbLt59T+hBNRO5HoMJfUbaNn9DDXtVzDdW3XUSwXcCtu7LqZ6OAxPDY/DXgQrDIZsUSVrWoB6QFDCziVneKpwaf47I7PcnT6KE2uJg5PHSaai2KVrcTzcbbUbaHd384PDv4AXde5o/MOcmqOw5HDFNRC5be6sXYj93fdD0BBKyCLMrIgXxDCZriAiM+jjz664O/vfOc7VFdXs3fvXi677DJ0Xedf//Vf+fznP89tt90GwHe/+12CwSA/+tGP+NjHPvZGbPabDoPxQXb27ERA4OddP+d47Dg22Uqjs54qxc+nNt+FZTJLaiiPO9hIc7D9Tf1lvrjhYuqcdZXKg0fxUO+qp1gusqpq1QIn0YqJV3Btpax7a8etpEop4rk4dsUQPf/Lrq/QM9XNO9b8CS7FxWP9j1FQC6iaSqKQYHv9dqocVZhEEyWthN/qx2Vx0TfTRyQTQcTQHAFGWTgKja5GOgIdFE9KNe6s7qTD18FIamQB6TGJJm5ZcQs+m486Vx12s51WcysjiRFKWgldVemZ6afaFjhBegB0nWwmzgvDz/O2zptYHVzN9w58j8ubLqfOVYeqqZhEE5OZSfZN7KPN14ZFtmCRLZWIjLOd6PeH95/WMv9UniIhR4hGVyOqpjKdnV5Aflo9rbT7z+875lE8mCXzgsc0XauYWpolM7JonNrUWVNIHR1FUhAEAatkIZU3PmtWzZI1lQlgPq/sNjCqdt0rfTwV28OD+37BQGqYrJrHb/Nzfdtb2aCt49kDh36nqTW9UCCZmuYXXT9nLDmKVXEgIiALIkOJIb7fdR8bGrewgbqzrsueK3OjaxMPTUwQTRttCs1SxVR6ErfNSyQTQZEUmt3NSIJE70wvDZ4Gdo+9hMdaxbrAGoKWAF3p4zjtVdQ4nUbVp1wGQcC0YgVqfz/a1BRaNIro9aLn88htbdDTU3meIMtGxMUsAZIbG5EbGw1BsyQhOBxIr5PJ5Rw6qzvZPb77lMu8Fi9V9qqzViN7pnromurCaXbis/qwixae6X+VfCmLVXHQ4WkjrmU5dHwXuWwAl8N3Vu3P/KidsbGj1ASa8Vat4PHBJ9FEMKfylHNF/I5qbm69HodqwtTRjrMwio6+gPSki2lGEiPkSjk0XWMwPkiqmGJH4w4a3Y2E02FWBVex3L+cI5Ej9M30cUnjJeiaRpunlYC9impbFZIoM5WNEMlM8dzQcwiCgCzK2E12ahw1VNvOvaL1RuOCIT4nIzE7IunzGRMmAwMDhMNhrr322spzFEXh8ssvZ9euXUvEhxPlWAGBB44+QM9MD9lihkRmhnwhi1S1krtfvJdttVsYivRg7jfT5l/G7Stup6VqGWmKb0rTqkZP42l9Y+ZjvonXHPaH9/NfB/6L/lg/K3ztDMYH6Y52Y5Wt9EWOkS7ncCtuJKtEtb2aI5EjPNb/GE3uJrbUbeHY9DHa/e0Vy3ZBENB0DWH2PzDydRxmh6E7OukkGnQE+evtf81XXvwKh2d7+CbRxIc2fIjB+CD/+NQ/killWBFYgcPs4K7NdzEYH6SQT5MuZ3EUsyyCrpPNpwjnptnkuJS/2v5X/Ob4bzgydYTB+CCaruFW3HQEOtB0jTpnXWVb4czJypPpyUWkB4zJua/u/ir3XnXvospPs6eZGztuZGf3TmRRpqAWKOtlGl2N3NF5RyVX7VzRWd3J8yPP0+BqqLQo1LIhbPdb/UY7M59EFERjbH5WBF7tqDZCXKuW0z/VSyqfwCSaKGol/N7mM2a3zX32+SPPjY46dh57lsf7H2coOUy2nEfTy0xlIvy6/zdossia4NrzHvOdi4sYsgwxEOnBBJWRcWE2umIgMcBQfIgNtRvOuK45F+a6vMYHmm6p5IHNmEq0zTQwkJ9ARydTyhDPx5nKTrGyaiUbazfS4mnBbrYznY7wy/0/ZZW3g4cG9vK+msuxHuwGkwmpro7CSy8h5GeHB/J59FwOvVSi1N2N1N5O+ahRrZoTbgsWC4LViuT3v+FV5aAjyPXLrueF4RcW6NW8Fi9b67eeMih4Pp4aeIq7n76bocQQY8kxVF3lopqL+NNLP8wvnvs2uUKaQ9lBtktZHt9zP1JTE5LXe07an5OjdpyKiyuWXc10IUY6l8CmyTQqVThle8UVvakg8dzwc6iaSkEtUCwXSRVTWGQLt628jX3hfUxnpimUC+yb2MeKwAreuuyt9ER72NGwg92ju9k/uR+HbGNLcCNPDzzFFS2Xs2fsZQpqgfFMmOnsNBbZgt1kJ+gIklfztPvbFwWkvplxQRIfXdf5zGc+wyWXXMLq1UZpOBw2yv/Bk0Ygg8EgQ0NDi9Yxh0KhQGFeEnUymTztcy90zJVjHSYHx2PHyZayaFoZSZRxWF2Ec1MMxPpZ5l/OsckupEKRgUgPuVyad3Xcxq/Dz1WCKOHCM606GfMv4rqmYZNtvDzyEm3+5Uznpgk4a3hk/38DoJht1DpqSRVT1Dpqyat5NtVtIlvKcnzmOL3RXq5ddi2pYorDkcNGYjw6KwMreduytzEQGzhtavGmuk18cssnWe5fTq6Uo8Xbwq97f83x2HGW+5dTLBepcdQwlhzjG698g49e9FGOx6OIgoRZNi9aHwCiiEmxAtDmbWOlfyWB9QF29uwknA6TLqY5ED7AJY2XcHPHzRXtwNmSlbsiXadMhp4TjL8w/AKZUgaf1cea6jWV/LDtDdvRdUOwm1fzWGQLLsXFJY2XnDd5DjqC3NxxMzaTrTLVJQgCZsnMW5e9lSprFY/2PcrWuq2YJTNXNF+BS3ExnZ1G0zVSpQxNgTZq7EFW1aylfvnb2FR30RlJz4HwAR7qfohMKUOxXESRFDbUbCAtlRlOjqAKOtpcJUsQmMpHGUuPszq45rzGfOfHReTlebooXYdSCd1srojxC+VT66bmQ4vHK9ET9kyJFdgBO8fkDMV8Blk39Dd2s52cmqM/1k9/rJ9GVyM/PfJTVlatIJadYVX1CqxlkeHYGOPNAm02G1JDA1o6jT46Ci6XMdWlKOiz+h4tGkVZtgxtYsKYADOZkAKBSkL7G0165rCuZh33XnUv3zvwPYYSQ1hkC1X2KhrdjWcM3OyZ6uHup+9m99huQo4QJsmEqqrsDe+FffD29TfzyP6fIYkC+tz0mnqipXwyIR6OD3No8hAz+ZkFv5+To3ZqzlDlcypO2v3tZIoZYvkYuVKOVDHFu1a/qzKccXT6KKPJUQrlAnsn9nIgfID/cfn/YP/kfj6z/TPG9Gopj8fs4qnuR1HHxviTle/kp0d/ynLfcgCms9Osq1nHjoYdxPPxUwakvplxQRKfv/iLv+DgwYM8//zzi5bNnRTmMDeVczrce++9fOELX3jNt/HNiLkWRraURdVUNF1DEmXypRx2k52R5CipYppcKUNO1nAUIFtI89zYLpYHV5IYH2BF56UUtRKpYgqn4uRg+CB+q/9NUfk5Xyy4iKsqRTVPWdfoi/ZS46zFZXURsAUMkfTshdVmshHJRJAEiVguRiQTwSSZCNqD7OzZyfrgeq5fdj2ZUgazaCacDvPd/d/lnqvvYU31mtNuy+rgal4YeYGZ7AyyINMeaMdr9RqannSYveN7EQTB8BlRiyCKtLoa0cFwxC3PMzeUJOqDywm5jBPkYHyQ+47cRyQbod3fTkegg1wpV/kOzLWI5vRQZzqW8UJ80WOyKLOhZgO/Pm6QtaNTR9F1nfU16/n7y/6eHY07aPY0GzqmuYqhyfF7BRquq1lHjaOGraGtho+PplHSSmRLWTKlDG9f8XaypSwOs4Pr2q7j6cGniWQMXZaOjtviYXvTJSTVLJubLz7jdkymJ3mi/4kFU2QAo8lR1tWsQ7baKZYyxnGYO9doGsVivuIWfa5Ta/OJSrXFh1NxkZprgc6OLiNJOM1OqmxVwJlHqPVSiYzdxIg2Q6qQMqb+dDf1uos6Vz2R+FFDvzYbaeJSXHitXoaTw/hsPlL5FNO5KK2B5WTCo6DrpHMJpIYGzOvXo/b2giiiZ7OIFguC348WjaJNTiLM6o/MW7ZUfH7kUOhNUek5GauDq/mHy//hvL6fh6cOs3vMaJPl1BwuxQU65Mo59ob38p6176HKW0enbwXh+JjxIvnEJXc+IX5x5MXTZt9d3HDxOX+OVCHFZGaStcG1lba4zWTDIlmI5WOMJceYyk5R1srYTDZ0Xefl8Zd5YuAJdjTu4JXxVwC4LnQZ5WgUZ6pEGYgPHuMdrTdTNAmY5VuxKw6C9iAexcPK6pUXFOmBC5D4fPKTn+Shhx7i2Wefpb6+vvJ4zaxoLBwOU1tbW3k8EoksqgLNx+c+9zk+85nPVP5OJpM0NDT8Abb8jcdcC2PuCy8JEvlSDlUvo0PFGE8STEznolhNPiQEYsUESTXNqo7LGE5PoKGRLWYpqAWi2SgBa4DtTdvfwE/2u2HBRVzXMUvGybisa4wlxxARUIuzJXxZRhIkLm28lF0ju4jlYjjNTtwWN8t9y7m44WJeGH6Bn3X9DACH2YFLcZFTc6yvXY/f6uc3fb/hpbGXTlklcypO7lh1B7tGdvHo8Ue5v+t+cmoOWZBZUbWCG5bfQDQXpdnTjCAIrGreTMhew+D0cawbbYzODNMdPoyqlwl5G7lpXgr5eHq80vPvmuqqvOdcOfzq1qu5Y+Ud50RE5ifGz6HN28avj/+a3mgvIWeokij+4uiL/ONT/8i/X//vrKxeuUi8+/si6AguOOHOjRPH8saklSRKWE1WttRtYUPNhkWu0Tk1x03tN531M/dO91YqS/MxnZ3m6YGnWR1cwyujszqRedlWZsmEuQR6qXjOU2vz/WtW6FVc1nSZYQUwj/w4zU4ua7qMVdWrFoxQm0QTzZ5mgyQj4La4CdlreSy8k/jkIKaMEUvid9VwU+v1vKvlZqIDOTJ6gbJW5mj8KNe2Xkubr42fHfkZda4QQ/FhlvvbubTpUo4efR6pthZXfSuyHEJLJo3PWy6Dphlkx+tFDAaNm02zGcHlotTTA6qK6HQivI7C5fPF+X4/Z3IzlRaxIAhMZ6ZxKk5cihNdNzRlFwXW8tSx33B75+0IFgviSeGt6VL6nLPvzgVD8SGeHngat+Lm5fTLuBQXhyOHcVvcuBU3XYWuSqVQV3UsFguKpBDJREgVUgTtQQQEnA4/avaEFq9cVpkZNcxckWUSNTXsaNhxQZgVngoXDPHRdZ1PfvKT/OIXv+Dpp5+mpaVlwfKWlhZqamp4/PHH2bDB6HsXi0WeeeYZvvSlL512vYqioLxJf4ivBebrEqpsVZS1MtlSls6qTgZiA1zaeClBRxCn2WmMFpdyzGSmUMslCiYdGyJlvYTPUUVCzfCjwz9iX3hfZf0bajbgtXpp87ddcKx/wUVcEMhkE7T62uif6QOgUMrT4G5kJDGM1+ojYDfuYC8KXYSAQKOrkeuXXU84Heae5+7hrs13oeoqzww9AxgZWauDq/ng+g+iaipN7iZSxRQvjryIiLjoZOa3+hlPjpMv5REQsJvslLUyPdM9dPgNE8OfHfkZkUyEfeF9uMwu3rX6XRwY3YfT5uZPt36cTCZBbVUzfleQI1NHcJgd5EuLIxHAqNTIZhmLbDnnE1hndSet3tYF7S6ryUpvtJeALVAhPXPYO7GXA5ED1Lvr/+BVwWZPMx9a/6HT3rUHHcHfqeI0mZ085bhzSSsxlZ/i8sbL2Dcyz1Vb16myVREyB9Cmp3Gj0SCfvo02H/P9a/wzBT684r3o5TJDqRFDmG620ORv5SMXfQSbycZPjvykQnravG18fc/X2T+5H1EQcZgdtHpa+YtNn+C+4RepcwZxpopEk2Ee7v81H5DewQfW3ckvjz/EMt8yJjOT5NU8JsHERzZ+hIF4H5tqNzOZGqeYTlLo7cHvr6Pm6DiaW0WqrkZLJhG8XvR4HAA9HkefHfGX162jPDWFNjGB3N6O6PVSnpkBQbggpkbPBq/VazS0dZ1iuYhZMlccjnVdQ0ZibHqAamcNlFSk+npjpH8eHCbHguw7m2zj5o6b8dl85GYr8YPxwXMmPuOpcZ4eMrzDNoU2cf2y63l57GU6qzt5cuBJ8moeRVSQRKnSCSnrZVRNZSQxwiPHH6HV28pbWt5CQ8Ma/EMhorETQmlkGSkQwO+svmBG10+FC4b43HXXXfzoRz/il7/8JU6ns6LpcbvdWK1WBEHgL//yL7nnnntYvnw5y5cv55577sFms/Ge97znDd76NwZz0zcDsQGcipORxAg3LL+B0eQo2+q2sbVuKw92P8ijfY/S5G4iWUiyObSZNl8rthErmgiCLtDkaaLWFeLLv/kMr4b3LWgd7gvv4+t7vk6Hr+OCIz4LLuKyTO9kF9e0XsXjQKqQZGi6j8saL+Xg9BHqfU2omkpPtIdoNsqqqlV88bkvYjVZK34Y//LSv/DFt3yR9697P9lilpJWwmEyzL++9eq3ODp9tPLeF9ddzGcv/eyCKaiKh4tkxmE2PDMEBNbVrOOZwWe4pu0a/DY/B8IHGEuOkbakue/wj/mTznfSP9XDkZlublt1B88MP0t6+mBlvSv8KxZFXczBKlupddQuevx0CDqCfGrrpxYInAtqgWp7NaurV1dK5XMwiSY0TePZwWcpasU/eA7Sme7af9eKk3aa0NbB+CCdgU4aPU00uRqNqa5iFr/Ny/Vtb2WduZnk5BA3tVyHcrgHfZvvrBd70eNBsFqNdpemsWpa4u9XfoxjapiEmsbjrWVVcDVBR5DDk4crvjHNnma+vufrHJg8QKlcMtp5ipvdY7vRdI0/3fhe7tv9X6xzLMOULRDNzzDm1tEKxvc0VUzxaO+jHJ46PFfDIF/K4bP66PQsR0qm8fvrubnhGmwTWXRHGV0UQRSR29pQh4bQp6aMVp+uIzQ0ILe3Uzp2DPPmzejpNHoqRblYRItEECwWTB0dF2wYafd0N4qscFHoIl4ceZFYLkaV3Wg95tQcW+q2oIhm2upWU+drpi/ej3hS1W9OTzd3I2mTbXx000f5wcEfsD+8v/K8ty17GybJdE4tr2wpW2npvjrxKlvrtjKWMmJcGlwNWGUrmVKGglpAEiSK5SLN7maShSROsxOrbMWluPhN32/40PoPceuOD/PLgz8jmo5UpvH8zuqztsTf7LhgiM83vvENAK644ooFj3/nO9/hgx/8IAB/+7d/Sy6X4xOf+ETFwPCxxx77f9LDZ75w12EyQjhTxRQ/OfITrmu7jm0N27i/637qXfXUOGqQkBBFkV0ju+iZ6WFryw56Jo4QctbztvabCGcmeXVepWc+DoQPMJIa4WLOvRf9ZsDJF/Gyxcwr/c9zy/Ib2Np4Mbl0HI/Vw8c2/zlRNcnusd2sDKzkwWMP8nDPw5S0EqVCiaHEEEF7kIH4AOFMmGW+ZUxnpnlh5AXW1axbRHoAume6F01BzelAZFFmRWAFTBsCVgGB6dw0smDkW+2Z2GNEZ+QTlMolClqJoK+BglrgcPTIIj1JspBkRWAFx6PHF4zTW2UrOxp3sNy//Lz22/qa9dx71b2VSqKu6xybPsYr468siAIxiSY2hTbRE+3hoZ6HDA0EZx59fzOi0dOI1+KttNDmoGoq46lxNlavY+MVK4mUYqjFAgHFiy2WRYmlCJmqse4boGQNIzU1YWpuPuN7CYqCqaOjInBG0/BP57nEWruIKMw/zjk1x8HIwYpmC5idcvNxfKYXi91FW+1KsmUNj+xCsNnI5JI4XfW0edtIFVJ8bNPHeG74Oe4/+BNKWhGrbGFL3Rb+ovNDeMIprg41YpvJI7e2og4NoXZ1oVx+OcUDBxB9PsTGRqPt5XAghUKUx8chn6fw0kvGZ5MkpNpa5LY29FSK0rxsqTm8VpEPf0ikCil+ePCHHIwc5LM7PsuXXvgSu0Z2MZWJ4FbcXNp0KX+19S+pV6ppXPMOorko0e4UiXyCoD2Iy2Lo9BxmB73RXuocdZhEEzd33LyI9AD0zvSec8tLQKDJ3UQ4HebO9XeSLCR5duhZuqa6+Mp1X6F3ppfdo7sREdF1nRZvCxeFLmIsOUbAFqDZ00y6mObY9DF6o71sDG3kT3fc9Zpp894suGCIjz6vd346CILA3Xffzd133/2H36A3OeYLd3X0SlxASSuxs3cnW+u38uPDP0bTNQK2ADO5GTqrOqlx1CAKAhc37mCbfz0erOywdvBMoR+zZGZHww62N2zHLJnRdA2v1Vtxfj0cOfymPFGdCSdfxN1mFysdzYaRo89UGRNNTR5mMjOJruu8OPrignUkC0ka3Y2Vqsq2+m0cnjzMKxOvUFSLi0gPgCRI9Mf66Yp0VYjPnA4kYA9wKHKIFk8LXquXvJonaDfakdFclLJmCJkL5QJui5u8mmckOUKmlKHOVYdZNDOUGEISJdyKm8nMJJtqNxGwBpjOTlPUiphFM63eVt6x6h2/0/Gar68Zjg9jkS0LSA8YbsSpYoremV4kQapoivaH9/Ol57/El67+0jmX8N9IdFZ1cmP7jezs2bmA/HgtXq5ffj3rqtegHDkOko/iq6+iZY7D3KTorNZFz+cpj48j19aeU9VnLtJEL5UQTCe+h/MxXzeUKhi/7znSo0gKmq6RV/OYJTPT2WlcripWejsYfOVJyvkC4hoXv+l/nCfHnyen5tA1jRW+dr5x038QTk3gtXjY4VhNYPdRKJfJVdvoXW4mnRjAHpSps1Uj9fUhL1+OOBdEqihGOvvYGOXhYWPjdN3w8LHZ0DMZ1P5+5KYm9ExmQRjpnF5pIjVBIp+gqBUJOUO8d8176Qh08HriTARsKD7EeHqceD7Ot/f+X/5y86f4xKZPkMwncVlc1NtDKLEEy8olzEEzztkW7NGpo+wL7+O+Q/cZNzKijFW2sim0iTvX3YlFtiwiPQ6zA1mUORQ5xKHJQ2f9vZhEE5c0XoJJNPF43+N4FA9NniYS+QR7RvfwZxv+jC2hLYynx1Ekhcn0JKPJUd675r30xnoXnKt2j+3GZ/PR7Gm+YLU8p8MFQ3yWcH6IF+I4TI7KWHW9q94QI+eiaLpGPB83proECTCEzV1TXdQ563Bb3FhlK1uat1R8Io7FM7x/7ftRZIUfHPoBo8lR7ui8g30T+yhrZbbUbWEkOXJBjrifLJI9Feburp1mJ2bJvMjttayVF0zazIWEnpxPBUZFR5GNi9h8gfXca8DQEb068SqpQoqiVsRpdtIX68Nuti+If7BKVoKOINFcFEVWyKt5fFYfIWeIsdSYkcYuKnRFunj7irdT0koVH5rXquXU6Gnk7y/7e/7xqX9k78TeyuMd/g6cipPH+x7HbrYTTk1QUoug6+xKT/Hc8HPsYMdr+l053QXrVI8D5/zcD2/8MHaznaNTRyvj+CurVvLu1e/G5fCjdUiUBgeNqZ1CAUQRqa4O0eWqOB0LVus5p47PRZqc6XPOBeoClcgVAQGTaDIclAWRfLlArBCnUC7yH3u+web6LXx443tR8zmeG3iGdDlLh2853TO9ZLMJjg6+QmImzNuar2W7v5PgaJLS6CgTK2p4uO/nxJUy5ZkZBFHEZw9w8/Ibqdm1yyA9FgvKlVeCpmFqakJPp8k4TIzWmUjrBZyynbqCgi06LztsVsw95zHWH+une7qbnJqjWC6yZ2wPhyOH+czWz7A8sPx1aaefTjAuizJ1zjri+TgrAyvZULOBfDHH/33230iXcxRQKetl7ui8gytDOziai5IdfB6H2UGV4qVn4jBPDz5FLDeDpGroeoFsscie0ZfZWHdR5bc/B4fZQYOrgXTR2F+xwqnjUeZjdXA1Tw8/zZrqNejoiILITR038YvuXzBTmOEvHvkLPrHlE2wObUbVVFYGVjKeGuefXvgnPrH5ExV3datspc3bxkujL/Hs4LP4LV5WuZfRIPn/KPRZS8TnjxQOswOv1YvD7KiI1xL5BA6zg6HEEB6LBzCEbQ6Tg+vXXk+VrYp8OY9VttLiaWFt69bK+lbIK3is/zEe6X2Egbghin5p9CUG4gN4FA99sb5Kj/t8DdsuBMzdXSuywvqa9ewP719AfqyylY21G1lVvQq9UMAWz3JjzRW8GDuILMisCa7Bb/MbWWKKh3QxXdl3c3AqTm7uuJnv7f8ekUyEKpsRWCoLMle1XMUPD/7w/8/efwfIdZdn3/jntOl9tvemXa1WXbJkq7jg2Mbd9N5JwgsJJORJngTeJCQkDynvS/IjhAfypEHoMRiQDW5ykS3JsiVZdVcrbW+zM7vT+8wp7x9nd7QrrSzJ2GD4+f4HvKM5c+bMKdf3uq/7urDKVgL2QMVm/u1r384jQ49wcOogHquHSDZCKB1iddVqHhl6hEguwtaGrfxfW/4vng89j9fqZSY9g2ZonIycfMVA6s6WnXz59i9zPHKcRCGB1+pFERX+7Mk/w211E83OUS7ml009JdJz/PjEf/Ph7R97Rc6VS4VEXt96PQNzAyQKCQpqAYfiYNQ9yrHZY4TSIZMBkyx0+bt4Q8cb2De+b8WgyU9c84mKF5ama7isLjKlDOliGrfPh1Rbi+j1oicSKKtWoU5NoU0uiKKtVoxi0YxzeAW/Z6KQYHB+kDu67+Dapms5OHUQi2jBZXURyUQoqSW21G1hLj2LKMkMzg/y1PSzvGvVmxl47gCizYZLUdgQWEPSkaCYTWERFXpr11A3EkXPZMivamXP5E9JpOeo792KUd1OQTfjCw4Wh3hjRyP2iTAYBkYyiWX9eox8nlCLl58M/pj58Fhl34OeOu5uvZWWBfuFRTH3eGKcUDpUAT2ZUoap1BRlrcxkapKeYA+eSQ+3dt7KloYtP+cRvHQtzdxaKhgfig3x21t+m7/b/3dE81FqnDX0R/pZX7ee39r+W3z52S8SX8j1Uyx2Hp18mmgqjDurIggCnR1biBlZzkUG0DQVCRErMpJukCsUiHvn2dawjVWBVWiGhiRIlay/xfu3U3FellXXMRez3zj+DQ5OHSRbztLl7+Kdfe+kwdPAcGyYJ0efpKSVCKVD5NU8oiCSLqWZy8/RHexmND7Ke9e/l3947h84MHkAp2RD0QXW1W3kT677Q7ZOeFG6un5l9VnwOvD5tax0MV1ZtZ6InDDH1tUCLd4Wbmy7kRpnDU7ZyZaGLQxHh3nH2nfwo8EfVUadqxxVjCfGEUWRm9pvAkwNQZ2rzmQWJCttvjYOTB7AJtmQRZmZ9AzhTBivzXtVhm2/KrXIxiQKCe7tuReA0fhoxQV5fd16Prjxg1SrVkqnj2Hk8zQIAjvqe/nwpg/xvdPf5/GRx9EMjZJWojvYzfvWv2+Z22m6mCacCVPQCnT4O0gX0zR7mwlnwjgUB367n5H4CJ2BTgwM7lx1J2OJsQroWV+7nqOho8xmZkkUElzfej17R/dyZOYI31C+wSeu+QQ/HPgh17dez2x2dkUTtZ+nemt6afI2VdiSaDZKwBGgUC5cBHoAXLKDc6PPM9Y1zLqGjT/XZ18YErlYoXSIfznyL/hsPh4bfqziVyQisq52HTPpmQrr5ra4eWjwIURRRNVVU5guW0kWkpXj5LK6eGLsiRWBUWugHmXNGrBaUScnMRbc5RdDN/VEAm14GLmu7mWvmC/8nj6bj411GxmeH+YDGz6AXbFzOnKaTClDXs2zuW4TH9z4Af718L/S7GlCKRvk03GSqXnI5zFkGQGQY0mqfX70lAYalPJZ9HgWo1QitMpHcixFS+82nogeZnr2rBlBoSjUexrp3vIJ1qVNJk9wOEBVySg6e0YfJqZnUav9pIwCJb1MVEjwwNzTfLT2A7gEofLwzJQzJAvJCtOzCHoKagHN0JhKTeGyuPjcU5/j737j7+it6X1Zx+9ytQhswdSi/ffp/8au2Pnwpg/z48EfczZ6Fkk0RcEtvhZeDL3Ivxj/wts3vIuvHfpn1jdsosoW4JsnH0DWYYN3NQ5BpiwLjETHCadCCJrpxaTIFqpsAayaTjGTJGgL0BXoWjbWruoquXKOjbUbUSSF+/vvvySrHs6E+fej/85cbo4qRxUdvg6G48NMpab4wZkf8LY1b6POVccjQ49Q66rFYTHvKdF8lLU1axlPjNPp72Rz7Wa+deJbZktf09AFHZA4OXuMLxz8e/5px+dpWEGf9atUrwOfX8MaS4zxg4Ef4LK6KqJMm2xjIjnB0dBRPrv7s5yeO80fXPsHnI6c5v4z91dAT7Wjmp5gDw+efZBQJkSjq5Hu6m4y5Qz5cp5qRzWCIGCTbfhsPgzDIFPKmG0W7fzY9JUatv2q1CIbs/jQubv7bopqEUMw2FC7gQ21G6hRfJSOHasY0GEYqLIZEDqfm6+s5GyyjbJWJpKNcDx0HERTLzIwN8C+8X08Pvo4iqgQzUfxWr3cseoOnhh9gutbrue+1feRKWXore6l1lnL3+7/W3qrVqNqKmWtXGFzzsbOsrt1N7lyjkZPIxPJCdKlNDOZmUpu1bradaSLae7vv58aZ03FKfbnPU6LgDecCdMd7ObF6SMXgZ41NX1Yyob5kMzEVtrUVdXSB9bSShQSPDX2FG9of0MlWdou2zkePk40H+XGths5EjpSYez++pm/Zio1VZmA6wn28K517yJZSHIueo5nJ5+96HOWAkhHTQ16NmtOLlVVgShWQjoFmw1D11+y3XUp996X+p5W2YpVtjIcH+ZPd3yW8dQY05lZSnqRVC7Bdw5/HYcuIqoKRi6LzSWgSIqpBsrlwOVCUFXzN1oIDXWKNtBSGMkk6VSZ2lUbeDp+goCvjrbaVRTVIlbRQioT5cGJx+hq+A2ceb2SvD4pxohpaZJqlsHoILncAgiUJMZ8VeyQ7mBnz/bKg9OluCrC+2wpuwz0gNkeLutlTkZO8uTYk6+aPcLifUsRFWyyjYJeYCQ+wtaGrRwLH8PAQNZlZFHGa/VW9Dcf3vRhbum8lXtW38uXn/57VF2lnM+TDpRp83cSyUbQNRUV3YwgMQxUrcx8IUadrQpJUlBLRT61/VN8+fkv0z9n+u0sgp4/uO4POBE2JzVXWrCMJcZ4cuxJ9k3sA6CklcireVZXrWZgfoCR+Agz6RlubLuRc7FzzGXnUESF6dw0a6rWcGvnrTw9/jTbGrcRcAR4bvq5itu0KAgsSMc4OXuM08VJ6vOBK27bvhbrdeDza1gzmRmm09OU1BLN3mZava3o6BXBo6qr3N19N62+VhyKg8dHH2dbw7YKtXpk5ggI8Pz085yInKBkmGJYu2InnA0DUNbKld4zmBMkNslW+e8rNWz7VarL+cRo4fB50LNQp/OjHJw4wK7mXeQ1czVrl+2kiim+fuzr2GU7JyMnUXWVe7rvYSw5BlBJGU8Wkzw89DCb6jfRXdWNiEi9tYoN/j7OpkYoqSUkBERRIqfm0AytYqqmG7pJYxfTVDmqSBVT6Pk8ulpmXc06vnjgixydPYpdtmOVrZd1il1kEdP5BE5NphkvLiwIbjfSQt9fz2TQIhGMYpGAzcbvbvk4f1v8Ow6mwpXtrKnp48PrP8TAGfMm7ZTsP/dvcymgnSqmCGfDFdM2q2TlmoZr2N64nZJWYkPtBhrcDVhEC9879T365/pxWc6fu4PRQb5z8ju8c+07CWVCK4IrWO7Cq0ejqIKAsWDshywjWCxIVVUIsrzMpHBpXYl770stKEqlPLnZCXZTx48L03zvxW9g6LoJajQNwW7HbnXhKUvUiz6qvPVEU7NmjILFAoaBVFWFryjSbKkCcR4MA6cuI0oKrb5Wnpk+wGR2xvxuhkGLv423NL6ZadlgTX0HRjqNoChk8hmKapHB+DnypQVX6wXwmytkOJUaYmPHDhahS6uvlQZXPedm+1G1MoZhoOpmm6jd185sZrbCcMzn5181RtmluJAEia5AF2fnz5qj6oU4OTVnamYQEQShcu/z2XyV6+zW1jcwOnuGglowAa+iUDJUsFqZjg1gKArNvlZmo+cjlFStDFYrsqQwMHuSuJDnbX1vqwT5WiSL6ZAfPrEsomTp+bbIAi4OPSy+z2vzkigkaPY0M54cp6AWCKVD3NN9D06Lk1A6hCAIZMtZfjjwQ3JqjlAmhG7o2GQbWS2DKIhYRQuNvmZkyULZKBNV04Qammm+xHn8q1CvA59fwyqrZZKFJBPJCbLl89laTsVJi7cFq2ytXDDT6emK7fqFJQoi0XyU+/vvZ1VgFX6bn55gD4PRQWYzs7T72hlNjGKVrHit3orw8HJ5T7/K9VJeMBc90ASBdDlHVs3x4LkHK+3Gsl5G0zWSxSRzuTmsspWTMydZXbUaSZDQDR1FNLUPuqGTV/McnjlMi7uJVdYmRAMeGPgB7VWrWFvTR76cx28P4LA4eG7yOUp6CVk0naY1QyNTylDtqMJtcWEkk/T4uvhfB/6eo+EXF3bTBEov5RS7qCuJxmfQwmH0ZJKgq4a7W2+lMWGgdHcj+HyUX3wRPXYeHPQEg/zNzr9gf8chEoU4LsWJpWwwcGYfJdVMl25xXT5h/HJ1KaBd0kqV42mVrLx1zVt5eOhhjs4eBWD/5H4USeEzuz7DVGrKPB6YwuBFc7pzsXOmsZ+krPgZi7UISkSvF6m52Uww1/WK/4mwEFew1KRwsa7UvfelFhRGoYDTa8GZU9lZtZl9Vc8yMn/W9NtRVex2D93uWuqEII1xjbtbb2XP+KPEygtsjCgS9DdwT+edeDUX5boElEo0GR78gXq+c/THTKSnzO+0AGJCySkOjO5jx3XbMOYypjuxz4czq5Ay8uSNkhmuahjmhJtoAgdDVZeBF2de4531b2RiZpBEKYWxYATZ7u/guqbrOB4+jtNiuh7bZTtj8VFSiTAu2UGLox5EkcnMDDlBJWcUkSSFgOPyKegXVquvlQ5/B48NP8aamjWVKb7FRZ0gCGi6ho65gFwcFrHKVh4YeJB7V99jtvsW4kUsokJBKzA4e5qdq27m7lV38Yj2IBOpSRRRYXvbLjY1bsEuWihoJTyKx7TWMDSKWpFWTyuD0cEV93XxfFvURwXtQVLFFJIgYZWtuCwuLJKFVm8ra6rXcG/PvbR6Wtk7vpeJxAT98+dd3D02D3VyHaliimZPc+X+4VYcdFR3c3quv8KY7mjawX+HvsNnbvgsO2hacd9e6/U68Pk1LK/VRPolrcTO5p00U2jy7QABAABJREFUehop62UsooVsOYvX4gXMC8Zr9V70/vPRFeY49GI7K+gI8sENH+Q7p77DkZkj3NV9FxbJDE3c2rAVr817RXlPv6617IEmCGSDLubT8+TVvLkKBDxWDwPzA+ZNxerGwKCsmYCpoBYQBRGH7EA39Mr0mGGYD+CA4sVncfPo1FN0Vnfz0OBPOBkdMNtb6Gxt2MpvbvlN/vXov9IZ6GQwOohhGNQ6a+itWoNLcXLbxreSUDMcnXoBQ5aQRFNEuVgrjc0uriij6QhaJIKeTIKumw7A44/yvtpbcQ4MIHi95sp+SenRKDUvaFzb18dPxv6bc5lI5bWgq4Z7eu7B6/v56fJFDdaFjIxNtrGmag1eq5ePbf0Ye0f2mv4l3nYmUhMIgsDhmcN859R32FC3gfHkeEVXscieCYJAUSvit/krYHKlWgQlos+H6HZjyBffXgW7HdHnwygWz4+rWyyciJ+4CPQs1tLf5FLfEyBoD9CMD4wyrVGdP9r4Cb4z/COmExMoGnjd1dQWLdxTfyOO6TQO4H21tzLtE8lZDDyN7bQFOyvXrmi1UlIUnFNT+Jr8hHJh06dnAcAookzQ6mc2MkI6G0PwdaO0tCBYrbRYq/E6gyaovuCcaPA0gapVHtyLwawdRY0/2fRJnk69yInYINlShlBqhuPh41zbdC2PDj9Ki7eF+UyE8YLBc5P9GKqKxRekq7qbvKDy+NBjzGRmcHiDrK7to8PfcVUCfrfVTZuvjVAmRIe/g05/J8PxYcLZMH3VfQzOD6Kh4bf5KapFdjXvYmvjVjRdo6Omm4C7lttW38V8bg4HVqpxYpGtqLrK0cnnua3pRj6+8bcoymB3uHl05DEOTuwnkgmjCjqt3jbu7LmTicQEkUwEw3NpG5fF8206Pc2x2WO0+9sXMhcnkUWZKkcVNtmGTbaxKrCqwvC/afWb+M/j/7lsWy3eFnY07eDIzBFEQWRj7UaOzx6j2d20DPT0Vvcyn5njZPg4/+vA3/IVf+uvhCXFhfU68Pk1rLJWZkvDFvw2P0+NPVWJULBKVnY076hQppmyCWaubbqW56aeu2g71zZdS72rnp8M/oTpxASSqvPGVbfzO1s+jiCbAr/3bngvVsm0QL+w9bM0LuPVdux9LVTFdbdQQHC7GY+OoBaTdPg7FlqEQuWhWdAKrK9dTzRn+vIYmsZcehaX4qTV18JMOoRfMPVZgiCwJriaHk87mUKajqpVPHLuYSbj47QE2rFJVrJanvHEOB6rh9/d/rtEMhHu778fv91Ps7eFN695E//w9N9TZfHidPvx2L1kyznsisMMYV1SF47NLupKjELhPIuxUNHULFMtBbomksgOB4LNxoWlJxK00Mf7u9/GZDFCRs3hkh00W2vwN696RQSSF2qwFqvL38VtXbfxxQNf5JrGa3ho6CEAahw1bGvcxnx2HgGBydQk1zZdW2E0S1qpwvoEbAFWB1fzzPgzdPg7OBc7d9HnL2U5LzIhXCjBbkfp6cHI5y96Le6KmG0pUbxo23D+N7nU9wzYA9zdeDPO4XnzD7pOR1Tg9xreymRdjHRqHndNE81yFbYzIxX9hiOeY02gk3hbPQPpUYZGHj9/rfpqsW7fjtzVhSP2Ih2BLmLZ+crkkBUJsazhcLqRVB2poaoiVnbLTu7ruovx2CgzC0wamKDn5tYbmcmEKw/upcGsrfMGb3Ftpb2jk70TT2ETFFxWF48OP0qju5FbOm5hYOIoLQEXhq5TQuOFyf2M50PUexrMTDpdJ5eMckYYwC7br1rAL4kSTZ4movko17dcj4DA9099n09f92l+PPhjJlOTtPvaWVe7jqHYEBPJCX527mcEHUFOhk+ytXEr/fMD6JpKUHBxb/fdrKrpxSlYmMuEicyNUV3bwTdPfhPJYmUiOUEoG0YQBAbmzzCTnuET2z5Bvpy/5D4unm/poqnby6t5zkbPcn3LbvaNPc1EYpx5PULAEcQqW2n1tfLw0MNohkaVo4p7u++lxdNSWZBNJCd48NyDqLrKjwd/zCeu+QT/9uK/kcgnloGeu1fdxQ+OfxcUhVNzp67IW+i1WK8Dn1/DCmVDbGvYxs+Gfka2nK0Iku2ynWQxyQ/O/IBtTdtwKS6eHnuaz+7+LH/9zF8vAz/XNV/Hn93wZ3z92NeZmh/BSCbRymUGhOeIv7CfqvoOPnzzH+Bv6lxxHxbjMpZmOv2qOfZebVUeeBMTqGfPknEnSQ0NcM/6u4nlYwxGzyJiaqE+sukjXNd0HaOJUWocNWyu3ciPTvw3H9/xSR4+9zNa3E2m060gsSqwivu67sKTyBN1uAmXE0wkxhEw2zJ1rjpk2UJBLWAYBmuq17CxdiPratchCAKRTJgDw/u41tVDTi/iUBxkyzn8Nj+qcHEcg9/qX/bfFV3JkhbH0spqpsPwooh3pTJUlUDPenyXMeX7eWolDZZdtvNXz/wV2XLWFKYK5i0vV84Rz8fx2rxUOarQDR2n4mQiOYFdttNX04ciKjgUB82eZtxWN9V6NV3+LuKFOPO5+crnrsRyXsqEEFgugF8ov9UH5TKGxbIsEub86+d/k0tpzVxYKE1nlonrndkyq3GD1Ysg+DDm4wgt5x9UUm0tp6R5vnTgLy95rcoNDVRJMdZU9XKmdMLU7CycBna7hx5/F37ZtQwQiz4f3ZEgd7TdQlrPU9CK2CQrFItMhc8RaF1dAYrLWsSGgTNdZHfOTX37fTwdOUS0lOTa5h2ousrp0HFuaLiOqekBUFVScol8McNsPkK1e8miStfJF0y3ZKtsvSpNkEtxEbAHyJVynIqcYlVwFbtadjGTnuEvb/xL81wyDPZP7afd185cdo5mb3OFpZnPz7OuZh1n5s9g8/noT43wB7v/iMfOPUJMzyAJEnZ3DY6ol1BmlpxWwGlxki/nMTA4ETnBwNwATZ4m1tWu40joyEUgd/F8OxU+RbFcpMHVwHRigoNnHmdtTS876q4BUcRt99Hl7+RccqSy6JrPzTMcHyZbylY6Aw7Fwfra9TgUB1bJSjQX5f3r309RK7K+dj1W2Uo0O88PTt9PUTIQFhZLV+It9Fqs14HPr2H5rD4OJA8QzoZpcDdUxHe5co6h2BBd/i7GE+O0+lpxWpyEM2E+f9PniWQjpAop3FZ3JStqOHoWI5ms3JwUQQY05kMjjJ47jMcVRLrAz2FpXMbSGomPXBTT8FqspQJdwWZDqq5GdF2ZWFv0+ZByObSJCdwuCV0WiY2f5aaWG/iNjluodlTTGejkv078F98++W0Kah6LaGFD/UY+ef3/YHj6NDdVb0dWrIguJ+vrN9IV6GIqMsyYMYNhsVAUVCyKDb/djybBmbnTJIuphWktC+2+dhySjTpXHV859E/0Bnqo0xwEYio2QcCeU1lT1ctsNnzR/q+rWce62nXL/lbRlYii2ea4oJySHcSS+bq0skuNYLVe1pTvlagLNVhPjjxpuhZbPdS76vHb/CCYrOhYYoz1tevJq3nORc/xxzv/mEPTh3hy9EmKWhFREGnxtrC1YSuf+tmnsCt27lh1Bx/e9GFUTSVdTmMRLSiSYrqXl9LLNCUXfl89k0GdnkadmABZRnQ6K6GVfdZm1tVu4GT09EXHcKXf5FJas5dimhYNFJcCsUg5wZf2fvmy12qrr5UOTyvWbJEU5mi6RVTwYKPeUk2z4V3W6hWsVvzNXewkz08G9xBfbHHKMtUtPdzX9+bzx2kFzROaRldIp96xjekGmZzFIFlM4tEtTI2fNoW8hkFpwS1cNTTz/y8F5oZRmRS7minTVl8r9e56xhPj3Np5Kw+de4gDkwcASJfSqLrKjuYdjCXGOB05zVxujlWBVQxGB/FavWiGhtfqRRAEZrNh6tz16BaFD+/8BBOJCWKFGAcmD5AsphiNj1BQC8iSjNfmI11MY2Awn5+n1d/K+tr1rK9df8mBikw5w1xujje03cjjpx5kRp3g9MxxAFY1rqPWXsVA/z6oqUZWrPhsPopqkdH4KNsatzGSGOFrh79WcWz2Wr3c1HYT3cFuBuYH6Kvu4ydnf7Ls+CwF5hcukn5V6nXg82tY62rX8czEM8ykZy56rcZZQ62rlkw5g9vqZlfLLr76wleZSc9gV+zkymZoYY2zhtHEKEapVAE9NrcfwWol5C9jERTieg4tHL4I+CyNy7iwLoxpeK2VOjtL6dAh9Pj5lYzo92PZvh25ru7KNqLriC4XzSKsbt6M5PaQkVXS5QzN/jZ+cOaHHJoyBeVOxUmulOPk7An22Pbwmev+iHJ4Fpdkp61lHQmrzv85+n94duwZcok5+urWEQw0oIsC1Z56Ds8cJpGPI4oShmEgCRKiIPBC6DC/f+3vs9q3iuzsFEp1L2COLA8ffZKP3/AxvjP435y4cILo+s9cRF0v6kqiqmqOZC9pdwU9dTQVbUhBGRQFo1jkwhL9fqSampc8ZK9WRlOimCCcDmGoKoVyngZ3Q8W6oWyUKWtlsqUs25q2kcgn+M3Nv8lbe99KTs2hGzqTyUn+fv/fo6NTVoscHN9Plezht6/5GDHVuWLLaSVNyeJ5JdhsaNPTAOg2G1JTE6LLRX24wJ9c94d84YX/l1NLRKeX+k0uVZeLu7gQePZPX9m16ra6uXf923gg/W9Y4jOABTQIuqq4p/2NuFTlIkM70eejw76ND9W0MpGZJqvlcbkCy3REi/+uEsy6tAwDly6zrtH0izkVPsX+9GPoi9NLgoBlYQhAFiTz/y+EpJ5/3QSWVzNlurSdGMlEeNuat6FjCuQ312+m3lXPoelD9Ef6K4GgAqbFR6KYoKybIbGqrpJX8yQLycr9tsXXwt5je5EQKJULqGoJm2Q6rifzcZwWNzk1h8viosl1fmT/UmyVSzENaqfDw+yu3gJNOyrsmsvp48jkIToDHahWGxaLjXAmzFBsiCOhIxS0AgNzA1Q5quir7kMQBHLlHI+OPMpMeobf3vrbtPhaWFezbkX92UqA/FelXgc+v4bV4mvhpvab+OGZH1YuTDBBz+7W3XhtXlyKi3QxzYHJA+xu3c1XD3+V4+HjCAhIokRfdR9/sOMPsAgyBUD2+fE4AgyETlbEz6Ntc7TpcS5sdi2NYVipLvf6L6v0TOYi0AOgx+OUDh1CvPnmK2J+BEXB0DRi5RxFn4P/PPWfDEXPIUgSb1v7Dk6ET7C5fjMTyQlKWok6Vx3oOv2hE8xlIvxGoQqAgqpy/9AP2T+xn4JeRHA4GIwM8KaGjTR7W9AMjVQxBVDxB2r2NBGOTzMePksmnyRXymJzevGUz2tHyjIMTZ/iL2/6PNOpaeLFOH6rn3W1K/v4LH0QRGtM8LQ41XVP6604EwZKby+C30/56NFl710EjS913C7luPxKuEp7LR7KxTyxXJQfn/hv3rX1g+jolRu5JEpsa9rG72//fT6z9zOsCq6iO9jNfG6eb5/6Ni7FSUk1U+VlQ0TLZxmeOc3g6BEOxI8T17PLPm8lj5Wl55XUdH4KxigU0KamEDo6ECwWtkQsfPmWf+R04hzxYhyf1cdaXzdNZQdaJHLFUQFXw6xdzbXaVtXJh3f9LqOTJ8lk4jgMmaaSHXdURVrfuuK+CVYrvtoWfLUtFXB7eu70MnB7OU3U4nZbfa0E/Y3MJRLmCL4s49EN7FYXdfYaZGEJUyaK2G3uysDF1U6ZXs66YiwxhiRKBB1Bc+RbtpJXzX3PlrPYJBtFtYhskSnppQrwGk+ME01HCBh2Wn1tDMyZ4/tWyQqCgNviYk3NGmqdtdS76y+5f4vi+CbVgd+wEy0nCCWWM7irOq+hq76PBwZ+RFrPMbWQL9YZ6OT2rtuxSlYeH3kcRVKodlQTyoQq7z0ROUFezWMTbXxm92dWtlm4CkD+WqvXgc+vae1o3sEHNnyA05HTFLQCNslGrat22Y1gPDGOy+Lin1/4Z46GljywNFOjc//p+7lnw9s5cfZZ5ktx5mZGMBZWWw2+ZnLhGfboj/CRjr5lK7ilMQwr1eVe/2WVFolcBHoWS4/HzYfPFQAf0ecj57HyZOoo3z39Q2bTU/jsPvJakbyaZyo1RUkrYZUshFPz5GQrXsVNSS0SLyZBCIJhMFGcYyQ+UrmhCrKM5hB58Owe3rT6PgaigxyxHkUwQBZEWn2tbKnbwsNnHgSgrBbp8LXjsXqxqRL4NLONIop4nD46A51srN94Rcdm2YMgn8ShiTQLPlyGBcHlQlpgFSSf73yb0GpFqql5yWOWLqb57qnvLsvAeiWjT3pdbfRUrebgxH7yap7vHP5PbltzN3etugtFUlhfs55kMcnXj3+dmcwM4cwsO5t3Ei/EkQUZTdfQDA1FVAgqHiRESnqZ2WIUOVekxl9NUS9hEy0YpRJziRnms1nGoufdqJeeV0axiODxYKRMwGoUCujZLJLFgmCx0Oprpa22Gz2RMIFAaAZ14bssAoFXMirgaq9Vb7CetWUBdWgII2f68xilIqVDh2DbtkuyomOJMR48+yCyIGNgUFAL+O1+djXvoivYdUXBrG6rm3v73sSPNZW5iUEEVcWiS+xs3lmZ6hqODp2f6qrppd5d/7KnTF/KukKRFKqcVQzOD1ZsP3w2H4lCgnZfO4lioqKpaXA1VIBXppzBKBSIxULc1XsbofQMx2ePoS349jS6Grhv1d0gSZcEa5VzI5/HJgjc6d3GnuwThKQ4KUmlJOqsb9xCT8sm/uypP+dM4hxtgQ4ShQQAw7FhLKKFD2/+MLqhky6mK9l1YE71arpGtpQlVoixKriKf77jnzkZPnnZRdKvSr0OfH5FamkrwG1xU+WoYi47d8nWgNvq5j3r37PiSnrxRpApZyiUC8tBDyZ70OZrYzI1yd3dd7F+1Q5GpwdIzs1QRqPB18zNzdczOXYK5PyymzzAmpo1dPg7VqTQO/wdy2IaXku1Upvmal5fLMFqZdRvMBEJMxw1J4AESSKRjSKLEtlyhnzZhd/mA8OgWMqD4sYol/EpbgS3G1SVrFiqaBQq2xZFiujsGXqIT23/FB6rB7WQRREVUrk4JycO47P5sMo22mz1XLf1Uzxy6idECwurwXJ5YYz86h8GL/UgWCzR5bpiPRSYJpnfO/W9i1LPtzeZOXE/r1FdddnKp7f8Dn9ZynJy9hh5Nc+DZ35CvbuB96x/D//n8Ne4vedOAvYAFslCsVxgOjVNwBagxdNMvpxHFmWCFi/WbBkcChbJgmS180zoOcYn5sipeVStRJu3nTvabyEy1k9qehTd0VYZXV8sPRpFbm1FHR+vgB9UdRm7sTjefWHrZ3Ea7HJRAelimrHEGDOZGcpamQZXA6uCq1b8va/2Wr0UKwpckhVNF9M8ePZB7LKdx4cfYyY+YbajBIGnR5/ij3f/CT1VPVfEVLX52vjw9o8x1jVMJhPDKdmX+fisb9pCxigiS0plgfdqWGtYRSs3tNxAoVxgJj1NPBej3d+B6BdZU72G8eQ4kiDR4e/gvevfW9kHl2KKwDVdY3TwEB/f8JucaRtiPjeHRbIStHgx8nnu2fyuFff7onPDMGjKSNzZfSfPTB9kTssQcFfx07MPgiSRLCYxBNMqQ0CouLZH81EUQaGsl7HJ5ycxNd30D1JEhRpnDZ97+nO0eFv45PZPcmfPna/4cfxl1evA51eglq6WEExgEsvHkESJfDlfyR+6sDVwObrWpbguSg+XBImNdRs5FzvH2ehZtjRs4cXpIzQ4a/n47Z9lbuIcajJmgp7qIBSLF0UO1Lpq+eT2T15yquu1qu+5XBvhaiaQQoV5cnrBFG4aBroAiCKz6Vm6A90kCkmskpVPXvdpgs4AebVA0B6kw92K1j+D9brrcKuhikbhwlr0mpFEieMzJ8gXzv+OQYuHnU07WJ904lGtvL/lHiZJLBsjD1R3XfF3ebVqIjFROccskoVINsKx0DFi2XmeGz/AzW03ksknf67PEBSF9RGZv9/xOY6mBojnYgRc1UzMDfHwsfvpqe8lVUxxZ/ed1LpqSeYT9NWsYTQ+isviMo0LRZmyrpKzCgRsTlp8rYzFhjmXm2Q6O2tOOQFTySnmcvPc13UnTsG6MkjRdbTpaaTaWnO6StOQ2tpQ2toq/27pePeFZeTzy6ICUpkoY5EhMsUUbpsXi8PFkcgxHhx80Iwn0XXsgoVdTdfx7t530l7dtWx/rvZafTms6HhiHFmQefzcI0yHhyr6MMMwGM6+yDft/8EfbP4EXm/NFV1jbqv7PJuWSKCFw1Ao0GMPINXUXKQ5fDWqt6aXb5z4Bn1VfVxTv5WSXkISJJwWJ26Lh5vabkLVVW5svZHO4HkxQKuvlaCrhrlYjJJaYmBgHzXBFqodbSCJbPOvZ1X9GnyXYFNWOjeydokHj/+AWS1BSRF48NweJhLjbG66hv65flp8rdQ4awhnwyiiCXbSxTTpUpreql4G5gdwKA6qHFWVybK+6j4K5QKqrv7KDKVcTb0OfF7jtXS1tHdkL6liivHkOOlSmg5fB+9Y+45KIve/H/137u65u3ISL2WE+qr7LlpBLIpWl9aiT0k0F0USJaySlXQxxQuxcTqretjcvZlQaoY+27W4dJnjZ55aMXJgY91GvnDzF877+Fh9Zu/6F3ThXGgQdyX6CKmmBtHvX/HGfiUCXTjPzJUEDZfdi0W2UioXKl45z47u4+3r38nZ2DnesfYdfO3w1zgcOoxbcVHtqKbXt4o/ue4PuVZVKy6yo4nRSrtrsRpc5rTeBzd+kIDsYXi2n1K5gEVU6HC18Jb2u/BXd6FNTODMlVmNE3AiiHaUllfGO+fnqbHEGF95/iscmDrAqcgpAFq9rdzadjOPDv6UeDrCXDqCLZFFTyRedntH9PnMFtK5eQIlO1OKn5JhoT8Wpluqwy460AyNRD7BTGqGudQsSr5Ed/Vq3rfuvXz31HcYnh/CpTjxSHZWVa9md+cb+En/A6TLWfLl3LJJosG5fgpdt+L1VGPMmPt+0Xml6+hzpjeK6PcjNzYu+z0uFWlx4eujs2f40aFvEI2bQwz11e3MyyWOx/qJFeMYqoqRy5HTdZ7JP4ElV+Yj7W/B37Jq2fG8mmv15bCimXIGXdeYDg9hLMRnLB4zA5gKDTI2M0Dv6MxVtfLKk5MUn3kGPXJexyjW1GDdvRulufmKtvFyq9ZVy8e3fow/feLP+NnZA+iGjiTKrK1bxwfXf4Ch2QE+ce3vUudb7kq+VCQejc+g6RqhuVGThe24naaSE8tLGHqudG5MqvPMh4ZJugR8da1MpiYRRBGHxUlJLxPKhBAwHacLaqGi0cyVcry97+08PPQw2XKWdDFNsphka8NWfmvLb/H141+vfMZrfSjlaut14PMar8XV0t6RvcxkZnAqzgpLM5IY4Wfnfsau1l0cmDxAXs3T4GlAERX2T+7HY/Xgs/mAlcWibqubrQ1b2d64vRJb4bK46J/rRxZleqp6yJfzuBU3b9x4Bw8M/oi9o3s5NWuG5W1p2ML/uO4PLhk5UOuq/aVcKEt74IslOJ3E26oZSI9e0lBRdLmwbN9+yamuy7VwFkW66WKa1cHV1LrruXPNfWi6Riw7x1NjT5MppXl0+FH+f7d/iX9+/p8JpUO0eJqRkVALeU7OHucLB/8fvnzbP9BmreWtfW+loBXYv6BRARP03N1zNzuad9Dqa+Vj1/0OY9El1L+rEa+vlgwlxnQL6XTatPZf+PsvG/QsOkGPJ8cpqkU8Vg/JQpKx6DBoGhsbNvHC1PP47H6ay84rau9cqgSrFamtjfLwMPZIhFUAYobAmlt5SH6O6PQUQns7c8Icd666k5HJE+RHh1DkNDGpwAf73odFsaCVSthFK7lYmJ+d/CFOj59aZw0FrUgyG62M+XttPtwWD6PFEPWCF6NcRlo4r9SpKfOhXy6DooAkIS9MdS3b55XGuy94PZWJLgM9AFit5Apxjk8fod7XhJg7P32XL2UZyUwwWYzgGtQvOp5Xeq2+HFbUpbjIFzPmhOjiROAiWBRFLIJMVs1j5C2UBwdR+vrQs1mMTMbMGHO5kILBZdvWEomLQA+AHolQfOYZxDvueNWZH1tJ4P0db+Ltq99MqpzBrjiQVJ2R4cOQLxCJTV0EfOACkXg+abKw+HCpihn98hLH+MJzw1BVUuUYgs1GWS5R0s63xqPpCBvqNnAueo6ZzAw9wR5mM7PEC3G6A92kiinS6TT/cNs/EEqHmM3OIokSuq7z9eNfX5bFCK/doZSXU68Dn9d4ZcoZDAxmMjMoosLqqtW0+dooaSW8Vi/XNF6DYRjc0XUHXpuXFm8L3z7+bUYSI9hlOxvrNmKVrStOm4A5+v75mz7P3zz7N5yInEAQzKmunqoe3rT6TTw39Rw72nazb+IZYvkYDe4GemvWMDR/loHIAA8NP4ys2JiafpyAI8C66nXLqN1fdK2ojxBFTjkz/Ou+/81EfhbV0JBFmVZfK7+15beWGSrKdXWIN998VQJdMB/m+yf2Y5Nt1LvqeeDMA8xmZ8mWsgzFhqhz1fK2de/g0eFH2Fi3iXQxzbNjTy9EVNjBOO+NcXL2GKcS52ir76XN18antn+KO7ruIJQJIUsyDa4G2nxtld9xKfW/WC85KWVte9nH95WoRSdom2wjmo/S6m1l3BgjmYszlhhjR9N1NHtbuLf7bpwRFcMo/1xJ0EY2a+Zn1dSYwEOSaC6VeK9zJ1P+HIW6IJ7qRprwoJXbmQhEmBWznOj/Ibm5aZRsEaNYRG5sRJuZIeq30OyvZio1RY29imZ3I5pWRkKkWMwRjU4RF4PgbFj2oNImJsy2zEJ+l1Rbi7xkymuxLjneDQgOB1mnzOHpI5xMncOimF46lrJOQTP9dVS1RKGUw3GBN2VJL5NRcxjF/Ms+ni+HFW31teK3eC9y/QawW5y4M2olh0tPJFAnJymfPm0CHwBFQW5sRO4y27OCxYIWj18EehZLj0RWtNm4sC5khQWHAyObvWKWOFVMcHrooAliAXQdSVao9zdDUGIoPYYYca5ozeAN1rPBFXhJMfdKdeG5YRSLeKqr0XM5FKsFiyCbrtyCwI/6H+Bj1/0uPzzzQ46HjzOZmqQn2EObr403974Zp+ykt6a3AnifHHmSv9j3F5f87JWE8K+WDcWrXa8Dn9d4uZRFnYHC9a3X89jwYzw/8zwO2cHvbv9dvnToSxS1IifCJ9ANnRtabuD3r/t9/vXFfyVRSJAsJKlxmTejpYm+S+v6tutpdDdyMnKSZDHJDa03kC/neW7qOVwWF1k1y5HQEQwMUsUUc/kom5u24bV5+cnZn1DQivxg4AcAbKnfwp/f8Odc33b9L/xYwco98GjAyr+d+T88M/EsRUEDUUQ3dELpEIqo8Jndn7mI+bkagS5A/1w/D519iHpXPc9MPMPZ2Fm8Vi89wR421G1AERWSxSRfuv2f8Fq9nIicwKrYkQQR0bjAFFAQSJTOa1vcVjebGzYvu8mMJ8cveZOpZGslZ9Gz2crob7RU+rkmpV7uTe7C9+XVPJIgUe2sxmv1Mp2eptZRQ7OrEd3Q6Ah0UGerZrUeBGPhBv9zJEEbxWKltbS0HEA3YGlswVLbizo2RnEqQlc4TKrRIDCfN1PIJQnRaT6YxWAQn03BItvQ1TJzWRMgLz7QW3ytJFIRvDV2tNFR5OZm1IkJSidOYOTziPbzbWEjlVpRECxYreTbGxkbO0Y6l8RlcdIsBXCLdmaa3ew5/S3K+RxDC8J5u8VJj7+LeslW8bXRdA0UWyUsE1HEYnXgUpxQfPnH85KsaCCAZds2jGwWNZFYBhzcVje7arbyVHU3I+EzlffYbW56PO3Uqi6aLTUYagTDMMyFS2YJ2yCKlM+cQZubQ25rw8hmEVwuDMMgXx9g2lEmo+VxSXYaszL2SBIu05KrsMKFAlmnwpSSZaYURZVF6kQvHWU3rhJICy7XgsVC1iExnJoglo+RVbNoukrYqVNT0Ohr2Ypqs6BY7Tw7uZ9YKooQP4Zv6mk6fB28te+tF1kzXE7MfSkj1aWj/4LLRf1clOr6DsqpGQqpOC3OBiYS42TVBP917Ou8Z8P7eHvf2yup8+tq163I7l2t0H1wfpBvnfgWM5kZMw3e6qXeXf+K2FC82vU68HmNV6uvFZ/dx/qa9ewZ3MNUeqqSMv3DgR9yau4U1Y5qmj3NTKWmeGHmBf5m/9/w+9t/n3964Z8umgq6lINpZ7CTzmAn4UyYp8efZiQ+QsAW4Mz8GZwWJzk1h8/qI5QOEc6GCTqCxAoxptMzlPXzN9EjoSP8xdN/wb+4/+WXwvysdEM/I8yxb3wfZUx3V8MwRzbn8/PsHdnLXd13cYvrlqv+rMUssmQpyVhiDI/Ng9vq5mzsLADJYpIz0TME7UFKWoloLoqqqxycPki1wxyDRtMqrI9sCGbLRFHw25Zrr67G62Y8Mc783ATa1BR6LlfRVAhOJ3PNhZc1KfVyvXZWep+u65VR3Wsar+Fo6CixXAzRwBT/llXubr6FYPT8w+ty7Z+Xqitpz+iJBFoqhTo2BoUCrtqACXp0HaNcxlBVBK8XI5NBzgps3dBnOi1HTlS20+JrZXfzLsKxSbrLPoxyEm1yEqNYRB0aAosF0e9f9lBeSRBc0e5kTLAmIbCqdTPdLRs5NPEY6WKaRk89fQ0bGJw9Tb6UZTA+RKe/CwWJZm8LBaOEnkqbbTVMkNFu+GnxtEAu9nMdz5VYUcHpRBsbW9GHR/T5aCs6+cO1H+N7rj1MpaawIOEpCtSqHu7pugNXCbRCAcFmM8H6YimKCbBKJfN/29rMv1uthNr97Jl+nOjg+SywoL+Ru1tvocOy8lAALGGFCwWmPAbPZY6z5/ADzCQmQJJwuP3srL2Gd7h30vjMOHJ7O1OWPN+bfYySVeaJ8SeZTE2yu3kXyXyMa3rv5T9Ofhev4GAkP8WZ+UGqnNVsb9rOmfkzjMZHKWgFPrX9U1e84Lickeri6L8Wi+EuFLizahd74g8ymctwc9sb2Dv2BPFCnHprkEeHH2Fn6y7et/59L+lndDVC96HoEH+7/285Gz1LUS2iGRpui5t1teteERuKV7teBz6v8XJb3exu3s18dp6zsbMICHhtXqqd1ZyaO4WAQCwfo9HdiE22UdJKPDf1HMVrisiizCr/Kjw2T8UjxaN4mEhMcDJ8klghRsAeYF3NeU+GpSd/opBgNDHKNQ3X4LP6aPY2czpyGh2duewcVQ7TaE8Rz99EDcPg+ennORY+Rl7L/8Kpz5Vu6JFCjKJeQhPNPnV+IZgPICknmUpOkS6mr2o/l2aRuSwu5nPzNLgauKX9Ft7Q/gYypUwlvFXVVQzDwGP10D/XT6qUosPfwZb6LRwJHUE3DPJ6EZfFhSBKrK9dv8wR9XJeN/f13MdwbLiiXdJVFW162tRJLGEjFl24Uz1huArgs8ggXZgIfqn26eXeV9bL7J/cz5rqNUylpqh2VBOwBRCBdl87u1p3IieLZO1unDkDwWb7ubxrLteeEQMByoODYLGY4+SFAo0ZmaCvnuj8JAgCqt9D1FomHTBo8DRQJbj4qxs+xyNjjzMbn8IiKqSyUcLJEJ/Y/DH8p+Yw8nkTiC+C8YWHt+j1nv8bywXBF2p3JFGiuamPqUKYPQe/yMHpgwgG1Lvr8Shutndcz6GRfeRLWc7Gz7KpdhP3rX4Th8b3E1pwgLbbXOxqvI77XNdgOXwCYfPmKz6el2L5lrKiRrG4Yv6Ykc9TPn0aaaFF1RkX+R37zUw702S0HC7JTpNShccRBEFAamszxc8XsnOlhcWbYZiCbVUlK+s8GDtINLbcnT4an+ZB1wE+ZN1OYAGUXViLrHDWqXAgfpiHRh42QQ/mwimXT/PM0JNYqnN8UN6OpOd5YPwRrD4PyWKMnmAP62rXEcvO89a1b+f/HPtXTs0c593r381Pj+9FxyCej/HizFE21m9kvhBj/8R+7ui6g80Nmy97zC+yDJBl4m1VDCpJkqM/w59toa92LbW1tSbrI8vUn57ivXU3Me1USdpFbt59A3mtQEkrUV/dTk/j+iu6v12J0D1dTPPM5DP0z/Uzn5tHXfAgiuVjpIopRMSf24bi1a7Xgc+vQHUFu2jztVHnrCNZTFa8FmRBRhZlNENDEARUXaXJ04Tb4iZTzPCute9C0zVORk4yMD+Ax+qh2lHNN09+k2Ozxyrb31i3kU9t/xROxYnD4qDT38kXbv4Ce0f34lAcdAe62Vi7kX0T+9AxH6KLLE+Xv4twxvSI0Q2dsmbatc/n5jnZf/IVc+C90lpJH2GTrciKlXBmhtwF01HZcpZMKcNYYuyK7deXZpEJCFgkC7quoxka3+v/HqlCikPThxAFEafiZGP9Rp4ee5omTxM7mneQLqY5GT7Jp6/7NF88+EWOzh5FB1R0ttRuqjiiLj50hmJD/Ozcz1B11WSO8lG8Vi/bm7YTzoTJlXM8PPRwZf/e2H4rc26BQLx8kabCyGRwFA30TOaK23mLmpyV6lLt05d6n1W24lAclZF8AQG31U1ZLeGX3fz1k39Js68Vh8XJHV13UG+30TQ9gtvmvUjkeiV1OdE6xaJ5vhQKZmsKsE9FuHvNzewxHmfckuV0eYqJ8SnqHbW0e1r52+e+yN1993FH+22M+8eIFxL4bT569Spqh+bR43EElwtBljEAee1as81VLoPDgVEqoY2NmR4+S77PWGSIaHwGSZSoCbYQqGpmMD3Kvol9FLUyarmIYoiE41NYqzo5GjlGT80aTs+eIK8WyKai3LPhrbxB6WF2VYayWqRWddA2W8LeP4NusSBK0hUdwytl+bREwsxps1oRZPORYuRyGPm8Kei2WMDrRYvFcEkSvZ46UEQEhwMtHKY8dgrR50ObmMBy881Izc2IbrcJdAoFaG9HX8i/E2QZvVBgPHKWhEsyW16LfkiA4HaTcElMzA7ic/hXbCUtssKTJEjreWYSk+bfDaPCjubzaUYKM0zXqUgkkV0uDs4e4ZHhR0AUEUSRVk8Lt3TdymhsFL8jiC4IiIjIgKDpzKVCqNV9GKpKnvwyZ+SXqmWWAbLMmdV+/unEVxmJmG1Cweulq6GPT27/JOvs9ZW8N8dM1BTvA4hJBIcDqa4OS2MrstV9xa3qywndxxPjzGfnl4GexYoX4oynzl/3P0/u4atZrwOfX5GqslfRFeiqZMC4LW4EQTBzYRYymlYFVxFKhxiJjzCZmuTLz3+ZOncd9/bcyw0tN9DibeFLh77EmegZfFYfJb2EVbJyYPIAsVyM397625yLnavc3CQk7u+/H4to4d3r3s10ZppzMVNXsBjgGKgL8KMzPzJ78wugB8Bn8xHKhC7LCrzStZL9fYulhiZvM+cSwxf9+05/J3k1z2Rq8iWBz9KbRjQXJZKJICDgVJzMpGdQJIVD04ewSlbu6r6LJ8eeRJEUilqRk+GTlSycF6ZfwGvzkiqmOBk5yad3fLoyRlrrrGVL/RZafC2MJcY4GT7J2dhZcqUcbb42plPThNIhGj2NTKenOTB5gFZvK3ZluZ3A+Pww04UIjqoAttmYeWOUJDAMgr56mgXfFbtQw+UDHi/1+ku9T9d1/DY/7+h7B6IgMpedYyYzw77QQaYzU2RFlfHoCIdnDnND3bX0ujvYJrfTIgWwrFt31QyQ5Pdj2bYNPZEwJ4UcjopoXZ1aaJVIEuWBAaT6esT6elp0eOeuj/Fw/DlssSG2NV1LKhnhueF9CDYr47kQzxx/AWc8h5IwJy0HPXXc3fFG6tMuRI8HRBHR76c8MEB5ZoGdkGXEmhqU9evRQ6FlguBMMYVFttDdtZ3HJp+iLpknUUpxLHycVYFVLMJY3dCZmB+mo7qbazuvp6u6h00Nm9kc6MM2NUfp8ARdYAIS8qbWx2o1s9bU5Q+rlSqcCfPk2JNoukatsxYBgbnc3EXXs55IUD51Cm1ysvJeweVCamszM8kWGBrCYazbt1M8eJDyuXOIwSD6/DyCxYLc3k55YACltxd1cBBl1SqKL7yAMTsLspkBJ3i9WLduNYGJrpMpptFCIaTGRqirq4jWDU1Dm54mW5u5pI5pkRXOqDkKWuF88K5hmCJnWQa7HdWmkHMqyFaJvf1PMF9OLdvOWGKM2fQsBga5UgZFkJEMzO0tbLOklzByOXC5kKUre9wuZQDjbVXLQA8Aul7x1vlfN3wev9uN4HKZWr4FY0hk2fwuNhuCorysVvWlgFJezeO3+7mx9UYsokwkE+bY7HHKCxNlhWIOVSu/MrmHr1K9Dnx+RarR3Uizt5mR+Ag22YZu6PRW9XJ67jQBRwCbbGMiOkE0H2VtzVqypSyiYBrmPTb8GLd23ooiKZxY0CQYGFhEC/FCnJJWqmSzwPkWxjX117Cmeg39c/18++S3uaH1Bm5svZGyXqbD30HQHuTPn/pzynoZ3dAroGdbw7ZKG2xxe79I6vNC+/tORefunnuYSE0yHD8Pfjr9ndzdczdHZ4/S7mu/5PYuvGmIiIwmRmn2NmNX7AxMDLClYQvhbBgRkRpnDa2+VkYTo3gsHkKZEDe23UiTp4kvP/9lPrL5IyQLSayylcMzhyufs6t5V4XpORY6xteOfI3RxCg22capyKmFNtAuDk4epM3bRrZsaiHW1qylyl7Fvol9FNQCg/Nn2F6zmbKhISTz5qq5UCDoa+Du4A4c8RyG1XPFx/NyAY+Xev2l3lfSS+iGTjgbptZZy+Ojj1PSSkynpkkU4lQ7a9A1lYnoCGr9dvacewit+Q345D68p09j2br1ipkfPZGgfPYsGaFcMXJ0q17avHa8LpeZraaqGLqOGAyiRSJoc3Og60SEeQ7HD9A/149gWxALKyJ9NWt4aOwRXFY3Na4gkiChIFEmx4Ohp3hv2214fbVgsVA6fNgU68qy+XASBPRIhPLp09hvu20ZAHVbvazu3sF/nPov+iOnuaX7jRSMMkWtSLacxSJb0dUyogE6BrF0hPn5SYRsng3BALbRGbOVJoom27eU8TMM8+F+meM2lhjj34/+O/sm9lX+1uBq4OaOm5lJz1Su5z7fqpUdpjMZ1HPnEL1e9Lk5k/UqFtEjESw7dpitq3LZ1KBls5T7+5EaGlCnpkwQdPo0xuLElqqaOqtUygRH69aBKOKSHSb7MzeHkV5uwoqi4JSdl9QxLbLCLtGBTbKZx0oQKgG8RiYD5TJyvoTDUEjIOqHkNDanb/mGBAFJNFl3Q1BJ5BO0eVsZS4xW/olFkEEQaLDX0uBqeMnjXtnskt9nUEkuAz2GYSAIAkaxyHD4DP3hU+wOrkH0eNBTKQRxIZNPlpGqqhDdbrJOmZ+cvrpW9aWA0vWt1/PTsz/lqbEnGY6eI1lI0uZv55b2m3l08GeohkqTox6HJlHcv/+i3+Zqcw9frXod+PwK1MHJg/zd/r8zBczpKYZjwwzOD/LhTR9mz9k9lLQShXKBRCHBmuo1vHXNW/n+qe9XsmKG48MYhoFdsfPhTR+mpJZwWV3E83F+fObHlc/JlDJIgoTP5qOoFokX4nxk00f47qnvcnjmMI+NPgbAmuo17GzeSW9VL+tr11cmvsAEPZ/d/dllD3S4PGvwStfSiQkf0JfpY3frbnY276Ssl1FEBcMwKKklBucH8dq9K25nJZ2KRbYQyoRIl9JsqttEqpRC0zWskhUBganUFN2Bbq5vuR5ZNEMKdzXv4r9O/BcBe4CSenEUxdIgxUWn7oH5ARRRIVPK4LP5TAG11cPtXbfz4uyLC3lfJmOXKqT40MYP8cDAA4S1GZ4b3sf/vOkzVMtpMuUsLtFGY0rEESmhi3EoFDBaVw6WvLAWjS5Xalu9VADkS72vwdWAgLkqLqgFCmqBeCFOupSmoBbRdY2Mmsch2yjpZWaSk6Sbi0zJGVxx8YrHsY1ikfLZs0zKWfaM/Ixo5vwIdHC8gTft/AitviZTx3P2LHJLi/nwi8VAkshIKiVDRXC7zYfKwora66thZOJR2tzNaIU8hZzJBtgtTooeBzM1VjzRNILXiz4/D5ij6IAJgATBZENyuWX7Wx1o5KHxR+iPnAZM/ZxmgKprTCQmWF+7jvnsHPliFgwDUdPxGlZ2O3pQ9h2i7POhdHcj9/SgDgxcdDzEQOAljTjTxTTPju7DKdnYXLMBi2QlVU5zNnaOvSN7ub71emazs6Yp4YJWRrBYzLZUqVRhG0ilEKqrTSZisTQNY2YGrFaTXTt9+vx+uVxoY2OIHg/lw4fBbj/PxAgCgsWCHg5Dby+CzUazxUF1Sw9zoRHEQKDyuxjlMkFnNS2OukuygouscPOEiFu00+htZiY9fR7AaRp2u5sORxNNeQuJWAK/zU9aK+G1eUku3MsEQWAuO0dvdS9nIwOMzJxmV8suAMYSo1S7ahFLGvXWau5edeclmRWjWESLRtFTKROYulwILhd6KkViCctkGEblHFz0RIrPT6FmBZTVq1HHxjBKpQrTI7rdKD09nEoMYZNsuC0uPBYPVtnGZGqSsl6+aFFqFIskE2F+fOrbhHIRkmqGklrEIlvJFFJ8afYYm2o2IGkGd666E0MQyJQz2BQHb1v7dk6FjvEbtddhL6hooRCCw3EejC3U1eQevlr1OvB5jddEYqKSjHsqcoprm67lQxs+tGCN7uZzN36OVDFFpmiOOM/n5vn2yW8v673aJBtrqtfww4Ef8s2T3wTAIlpYXbWaj2z+CN8/9X1KeokqRxUW0cL9/fczkhihr7qPLfVbuLbpWm7vup1sOYtdtlPnquOWzlto9bXyL3f9CycjJ4nmo7gsLqocVRyeOXyR0/DlWINXu+pcdXT4Oghnw2TLZrbVXG6OY+FjbGvcdsnV2IU6laJaJF/O0+XvYio9hSiIKKKCy+KirJVp9bUyFB3iqYmnkAWZdn87Y/Exrm28llZfKxvrNtJb1Uu6mKaklypxI0uDFGcyM0ymzNaBJEpMJCdYXbWarN30BOqr6eNo6Ci1rlp6qnooqSW+efybTKQm+O0tv83DQw+TkKyoskRj3MA+nQU9jRAMIq9ahTY6itjaesXgYWk6+6Vy3672fW/sfCOPjjwKgCzKzOfmMQwDwzDw2XzkSll0QyOnFlBkU8NQ0EtktTzorisex9YTCTJC+SLQAxCNz/DjE//Nh7b9JhavF8FiQR0aQqyvR2xtBVnGWy9hzR9CKM1WtBQABbVIrpgBt7n/FaPAQprB8GmSfTqCzWmCgSUlOBwVHQxc7HQ8kwtTEnR0WULTyoSzYVxWLx3+TqaSE4zFR1nl78Luc0C5zAZfL7eIPfiHQiYzstB6slx/PfrcXAV0wYKr8c6dyx44F2YAJrIxHjz+35xLjjKXNY9XS6CdGzrfwKHQC5UFjlO0oWcyZgtVlhEbG1FHRiCfNzUwC+1VuaPDXPULwnngJ0mV1msF3CwyU4ttOEFYxtgIsmyKz0URy7p1BGSZe2IefpT8BnOTg2arC6hq6OK+be/D37D6JUG96PMRsK9nV8CB5PGyZ/AnTM+eQyiXsdvd7GrexZt8u7G9OIqv20+vbxWns2O027sYTY6SKqawSBaeHHuSv7jxc3z3+DcZP3eUF8cO0VO9mrt776M7sIpsch6nLnFtYOOK14meSFA6cQJ1dBQ9mQRdRwgEsF5zDaXjx/EtnCqLoEdwmVlfRqEAmoZXdqHNzppeQG43kt2OWFWF6HQi+nw8M/McX9j/NzwxsrfymZsbtvA7236HscQYZb1cWZQujviPSVFGI2cxJAmPzUlJtmEVFTQdBufOsK16E/f03M23+r/HZGoSSZAwDJ3bV93B7177e4TCw8TKadQWG02GC2fyYv+mK809fLXqdeDzGq+T4ZOcjJwETF1Nu6+dmfQMe87uYSg+RJO7CVEQuav7LgL2AI+PPE5ezWMRLVgkCyWtxK2dt/LAmQeYSk1RZa8imo8iCAKnIqco62WuabyG8eQ4oiDy4uyLZMqZSsTCgakDdAe7CTqC3Nx+c6WNs3gRL47Bp4tp/uPYfzAwf/Eq86VYgV9UtfhaaPe3MxIfIZQJoeoqsiizpX4LN7bdeMn9u5CpShaSDMWHeFPvm/j+6e9jk230VvWSKCTY0rCFrkAXP+z/IQKmEWSmlOFtfW/jZOQk3z75bQL2AFvqt7CpfhN3rroTl2L2/mczs6RLZkqyqqo4FAeKqCALMnbZTq6cQxEVeqt7afG28O5172Y8Mc43T3wTh+Lgru67eODMA9zacSt5NY/D5mIkPsJZxxx333wLjWkRI5tFGx1FqjcFkVfj5XK53LeX8z6LbOEngz8hV8pR76pnNjOLz+ajyh5keN7UkrV4m5nLmw9vm2gx41FE8YrHsY2y2d5aBD0lRSSFafRnlSzks9Mcnj6CkpvHtTpAs9Rl3qhFEaNYpGEqT4ezkbHMJAXOLyZEQcStuJAQzj+sFypfSKMZpjtyeWwMYZG9kOWLVr/LhM2JMQ5NHyKvFrBZHGAYnImd467uu7jPdx8/HXyQUCbEfD6G39C5MbCV91i24Ts9tsxEz8jnIZNB2bjRZJVKJQS7HamuDrm6etnnLQWltfZqDk8eYiQ+ilU3UASZslZiYn6Ypw2D9c1bzFR10UnDfJnyeD/q6Kj5sPZ4UHp7zQewJIGuI9bUmOBGFBGcTtSREYxMBrG+nnxbIxM39REqRylrKvVOhZZMHdYFR2skyfz9Fn2IDAMB04Fdqq3FKBZpGizx/tZ7mWxNklWzOEUbTWUH7ukMxhV0lQSrlY6mPqqrW1hXtYbp2DhquURNSaF1toxzLAHBIM2yj05/B67qemLFJG1+00BWEAQ6/B1sa9rOVscqTredIEkBt+KkxhIgl5jHbvPTJAfxSf7z5+SiceLCWL06ObmM+TMSCYpHj6Js2ECvw6CrbRPDMdPV3MjlQFHMFn5dL90FN3oibB6vuTk0QNm4EdHjYTgxwl88+bnKNLDb6kKRLIzFR/n6sa/z8Ws+zsnISVyKa5nxa8KVx+upYe/oXiYS4yYIlWXaq7rYVLMBu9XJUycewVBNrWm5VEAWLcRzUf7p0Je4vuYahmbNc6Oqto17Ou6gYTqzDPz8st3jXwc+r/FSdZXbu26nrJfpCfaQLWV56NxDDMWHAFPkOJeb49D0IZrcTfTV9PFi6EVKegm/zU+8EKfT38m3Tn2LeD5OT7CH0cQooUwIA4PB+UHe2fdONjdsZt/oPh448wBtvjY6fB2Igoiqq/TP9dM/18/2hu2X1Om8XFbgF1Vuq5vrmq9DN3RSxdT58X6rhx3NOy65fxcyVSW9hEW08P3T36cn2MM7+t5BupzmhakX2Fi3ka8c/gpFvYhLceGyuNhQu4GtDVv5zN7P4Lf56anqoaAWmE3P8vT407T72iuC8aJaxCbZ2NKwhXQxjaqrRPNRqhxVuC1ujoaOEnQEmUhO8OjwozgUBzPpGVRD5bau29AxvYnafG1srN3IcKgfUmF+MvQQ76u7DaeuI7e2VpiLq/VyuZJ09qt53yIoOjh1kCZvE89OPMvg/CD9c/1o6LT529nRdB0vjD9Hp7cZN1aaVBeS33/F4mZBUcio5kMlZTUYjA+SL2URBAGPu5rJ+Emq3HVkRgYxslm81Y3s7noDWiyOy2ajyhpkR2A3Fl+QaG6eaGaOwfkzCMANbTeSzMyTTC1nkho8TTglG4LVitzYiFpXd1mn48WW6qLRZZ2rzmxHaCoPnnuI3c07effa9+C1e1B0AVkXIDSLsaBNWToej6YhWCxI1dWXdAVeqYVrqCqh2ATRQoxaS4CgzU+0EDfBT3SEXe034LN6ud7VjSOSQlfNFiAL01B6NIoQDGLE4yAIaKEQaBpyW9t5J2aLhemAxPPxg+wZeoipyQEolXB4q9hZv41329upa23FiEZNB2JVNTU4mma2DaECGoxSCTcSqzMWtKkIRiEKQBnTQ8jo6roiEa3b6qbP3kp3yjxPjFIJXc6C1wKyjNvi4p7et/Hg9BNY847K+xbvbbWuWrQs+LVmykNDSEE76sQgRjJZ8eUqNYcRnU4EWaY8OGieD4qCOjlpmmtaLOaEn8Nh2iBMTaF7vQTcbn5n08f4p8P/zNDoUcBkgXtbtvKO9e9ibGoaZ6ebZtGFY85kjIxMhuL+/Zzq0jg8dWhBh1ZDNB+jUEgAsHd0L/euvpfOQCetvtZlxq+i3Xke9EAlXmQ6NU08H2dH6y5mklPYAEXxUFBFPM4AM8lpSKex1+wkqWkITifRRIg944/yvtpbccylLjrvf1n1OvB5DddYYoynxp/iO6e+A0BfTR8bazZik21U2auQRRmrbKXaUc1MeoYOXwfratZxLnqOWCFGUSuysW4jTd4mBARkUWYwOkhnoJNmb7MZrCdIVLuq+dwTn+PWrltJFBKIgki8EL9oWuhyWS0vlxX4RVWbr42gPXhV+3ehTsUiWjAwiBfiTKeneWb8GdbWruVU5BSpYooPbPwAv7n5N0kUEhU30z1n97C7dTciIrFCjFAuRL27nv0T+wnagwAkCgkG5wdp97ezd3QvOjp1rjoEQWA+N0+VowqP1UNvVS+qpiILMuOJcXR0BARUTcWpOPHb/IiCyJn5M6T1DEGrlXg5yYzHYPWSVadgt78sb5xXejzVbXXT4Grg0NQhNtVtYlfLLkbiI+aUV3yCR8/8lLW1a7m75U62y214JD9KX98VrxhFnw+X3UtJESugB8Bp9zKaGidtFMiqWco2hbzVweHZgxyND7AruImz2XFUu4UbXG9ELeRwy068fg9v6r4Xh2BlKjvNj07eT2JJSGmDp4mbW2/EIdrMz7/C/LfFlmqds450Ic31rdezb3xfRYvx8NDPWOPv4QNr38fA6HNoooA2Pk7EPcb7am7BMb3E+2YhfqFSi+0kzrMNo5kRUxS9ZAQ9XzQnoWyyjaKo4Sga1Fr8FEUdzdCpdtbwxsYb8B0bQkulEJ1OpKYmE5xYreaDM5ejPDAANptpzhkIILrdiFVVGBYLuWoPB9Mv8tOxx5jJhsxzUNcpGAYH0/3YZzx8dPt7sDx/DG1mxnzoShKCw4Hc3Y16/DjCqlXmuDsmSNGmpszWz5IystmrEtEutcEQLBakJW1NwW6nvXoVH6puveS9Q/T5EBwOxEAALRTCyGZNFk4UESQJPZ2mdOIEYlUVejqNNj+PVF1tsiCaBoWCeQwXRPD5ugAj3iJZKYd7VuRPN36a0bZhkmoGV6CW6Yl+Hn/oK2joCKJIVV07dzf9BvWTKfM3jseJ5c32nwHky3lUrbzwX+b5kCqkiBfMc3Ip+5sv54nnLwDqC8xbtpw1syIXxPOSIWAv6Li9ToqxKcSSSkEvYSQSSHV16LEY0dQsUy0Fulc4739Z9TrweY3W4ooMoMZZQyQbQdM0ovko0XwUn83HaGIURVQoaAUcsoOyXqbGWcPnb/o8Ba2ApmtYJAuaoeGyuBhPjKMaKpPJSWYyMzhkBzk1x1t634LT6sRr8+JUnEiCRCQfoc61fLW0UlbLhfVyWYFfVF3t/l3IZHltXkhCs6eZ61uv59D0IbY2buXF2Rc5Hj7OT87+BFEQEQWRaC7KW9a8BQODs9Gzy7YrIpJX8xTUAkW1yOD8IHk1j8fq4Qf9P+C969/L4yOPE7QH6fR3YpEs9FT1cFvXbTw99jQ9VT10BDoqDIFNsdHibWE8MY7b6sZr81I2VKSqKrT5+QXWw4xdWHTUvVq6+dUaT231teK1eZnJzCAJErXOWlq9reSr13BP732s9ffQbvhelo+PYLXS3rwO69Qj5OdM0CMIAha7i2Jeo8PXQV4tkLTphDJzlNw24qKGo6WD8Nkz9IePcTJxlnWB1ZyeOU6Dp4l60cMNvk28MHSCXfXXQvNOCloRm2SFYpFcNklrTWcFZKCqWK67DiOdNttOK+S/LbZU53Jz3Nh+I0+NPsW62nXsbNmJoevYRIW1nlUMDh2ixlsPdjt5VxBrGWaq7HSFFqa4LBbkjg70VAptYuL8cXA4yLfUMjY7SCafJK6UKSSiWJDMY2qzYVPsZDNxOvxtxMpJKGaRyhoOwG51s61mE9V5iWIyadoAjIyYInBBAK8XQVGwbNxogp5i0WzJpFKUz57FsmEDhq4zJaZN75zUgoWApiHY7QhWKwUMRo0YU0ac1dddZ3oBFQoVMa965gyoqhlau9k0AtSz2YtAD4KA4PGYjMrwMILHc1mAvpINBiy/VtxYL3nvEKxW09TRbkfLZM7ruESxIvDV43FEt9vcX1U121OLrU9NM49juUxoTSN7Rn5G4mQZwemERIqWTddTG2yhUNSYTI9QlkogiqguO2mPhQlhlsnUo7xn85tpSwnYRZGA3QRlkiQTy8awSBas4uK1IxB0BJnJzDCeGKdXOd8CLZZydHjbGEmOkS6aLI0uCkiyhTU1fWaQqUVBVE3PI6cniFtxESuZ7JxNUMzvUyohd3Zi5PMUanxYO1ZfUe7hL6JeBz6v0VpcAXptXna37OaZiWeQJRmH4iCcCbOmeg022VYZac6pORKFBH67H5fFxbeOfIvRxCiaobGzeSdui5utjVs5PH0YYckKcHPdZiK5CBgQy8Vo87UhizIW0VKZCoOVs1r+/6UuZLJuaL2BR4Yf4dD0IVRdRREV+mr6eG7qOcCcxFEkBUmUaPW2VlpZi+W3+Stsmk22kSwkK2LwklairJd5fvp51tWuw2P14La4qXfVc2j6ECfCJxiJjzCeGKdsmKu07Y3b2d64HZtk49HhR9nSsMUUX4rmdIdUV4entgXZ0viSYYgvxeZc5Ca7+J5XYDz1QnC5CICaPc3UeRoYL8yStBVY4wlQewWgZyX/kVv67mEoPUEoNY3H6SdeTuGwOFlTvYb7B36A1+rBKloYjp5DM3Q2NmyhPtjG0fmTTCbG2dl0HQAzqSn2nHuItdt6uLPjNh6MPEN09ryHTdDfwJu2vx+XKlEaGTTNEVXVfBBarSgtLSsybYstVc3QmEnPmIAHg4JawCM7iUQnGTh7gLr6bp4Yf8oEDqJoxi6Uo3xk3a00zBbMNkJdndlmWSxBYEJMseeJbxMzslAuU9+0muPJQXr8XXiiUaTaWgRJoN7fQig+wdrGDWAvUdLLWESFDncr63zdGOkSBqAND5ugB0z9jWFgzM+TykSZvraDTDGNS3bQhA/7bKyi76h45yythfuRoaqUMkki+Xkiaph4Zp6A3U+PowXf0ERFS2VkMiagsNsvdnkWBKSmJtRIBG1gAGkBkF8JQL/QBuNKg0Mr73e7Td8ch2O5n84iuBHFSmyJoCiml1RzM3o6Dem0aZzYWM2eyUeJ5aMIshtJEPFu3s5XT/0HU+lpeqt6OTB1kHU1a3n3jnfx/PA+ToePky6YbTWn3YMlXeRdTTfS5+5ia9M2BqNnMTDvLWjmMdrcsAWbbLKSmXIGsXpVhfGqs/gp5TO0OOoRvC0UJYMSGvlciqFQP/XrPkBfdR/ZUga31Y1HcpLMmJ5MDd4mBMxMO8FigWIR0e3GU9uCUtthXpvhU7/0UNPXgc9rtJaKapu9zdy56k6i+SiGYdDpNzOwFkEPmAaHdtlOtaOaf33xX3li7AlSxRQN7gb2T+znzu472Te+j3W165hITuCQHWys38jb17ydrx3+GulSmsdGHuODGz/IyfBJEsUEDsVBUS3S7m+/KKvll1W/rDTgpUxRupjmVOQURbVISS/x/OTzfGb3Z/hfz/wvDk0dAsybzO6W3dzaeStHQ0cr2/Hb/Gxv2o6IWBnpXjrabpHOU+z9c2bkQFegC93QuaXjFr7ywleYTE1iV+zYsNHma+Oahmv49xf/nd0tu7m542YUUeHF2RdZW2Pub9BdQ3vjGuSXOE7q7Cyl55832wpWKywYwckLOollbrIX1CsxnroUXGbLWQpqge+d/h4Dxwcqk0SLmUEb6zZecjsXCnaTBRMA7G7ZzaraXn6j542MJ8epdlTz9PjT/Ozcz8zrCoOiWqTO28h0apq8lufx0b1sqN/I4fGDy/LoZlJTzJSi3JSv4UPrP8CEGjUf9FY3bTVduBUX5bNnUc+eXZYwLrpcCKKImMtdxFy1OOvx6zaimQi6JBEqFyusgU9yEo9O0+pvPQ96wBQV22wkyfPTwnE+cN27cVvdqGfPVnQZAFmHzJ5zDzAfGUNcFDcXi/htfgbjQ2zw9mArFJgXEvzG6tt5duQpPDkdJacBIsGqBt607h14nAHKsUlEjwftzBnzwb74OYJAaH0rD07/lLCYJZmLUTJUmrzNvKPtLnrsdoxiEZfswCbbz/sMiSLIZqK4WCii+xQOR0/x9NlHTYsBQ6OjqouPbvogvS+GzsdXlEooPT3oyaRplLhQYl0dgtuNeuzYwh/Mz7lSgH654NCXKtHnQ3A6l03/VcpiQaqvRxsbQwuHTZGyICA1NGDdvJnikSNgGEx7DGKxOGIwCJqGu6GNb576DscjJzAw6BUENEPl1NxpfjD4AKuDq4lHXkCyKIgG5IoZXph6HhsSv9ncw59d/6f87XP/D3uHH6vsyub6rfzutt9hNDEGmKB7KePVqVrY2XY9+yafJV5MEymZsgmP1cvO1usYnjvDFt8aDoSex10WsbnMKcvOpnXsbNrB5Jnn0YsFdLsVj8uP2xZgNDpMvBBnMjXJcGy4sqj+RTv7L9brwOc1WheKar02L5lShmwpy+7W3UynpjkZOYnb4qbOVceull1srNtIopDgydEnSRVT9AR7mExNMpYY4/Tcae7tuZcPb/owuXIOv81PLB/ja0e+RiQXoayV6fC1oyDR4W3j2qZrqXXX0hPooa+m7zUBesYSY9x/+n5G4iOmyFiyXDL5+NUst9XNW/veuuwBezJ8ks/f9Hli+ZjJvNn8rK1ei9fu5bO7P8uPB39MopCg2lmNy+LCpbho9DQyFBvCIp6/UaaKKXqreiseN0CFfSsbZToDnayvW09RLWKVrSTy5u9d1st8dPNHORk+yZHQEToDnVhl6xWJy7VEAnV4GLGuDm183PQT0XUIh9FjMYytWy87fvpKjKcugstwJsyf7P2Ti1KiF91qv3DzF1Y8Hy8U7E4mJ3l++nmSxSS5co5wJkyymGTf+D6ua76OcMa0NpAECd3QSRaTNHubafO3M5edZzQxyu4FX5aleXRgDh1gGLitbta3mFlUi4xZuTSHOj5uinMFASwW9HgcfW4OLRo1LQUmJysBnlo0inVqijurdrAn/QjRhCmWloJBgv4GdrfdSCI0BlbredCzUHaLE7+3hoQFpu0lVpe1ZaAHzGiGaMqMlVlkXiLRCd7QeiNPjD9FigI2XUeXBAqCymd3f4ZcJkGmmDGT4W11+OtaTN1KLofocJjtrEKhAn5yTTU8GHuasdIs54ozZBMmEzM0N8hEdprPbPsfNIUT1JUzOOUidUqQWTVmtrlEEaNUotbfTCQ7R8AWYCIfIp0xf8fBuQGms7P8zab/Sdtxk+kSXC6Todm2zRQEZ7MmaPd4KD71lPk9bbbzAItX3z9GsFqRm5vNa2jpIkGWkdva0EMh9FLJ9Dla2C9tZsZsZd52G+Tz5PVJJL0FymWMVIqiAscjxyvgXxIkBEwGaTg+zOb6zWTLuUrQsUW2kdcKjBpRxkL9bJnV+X93/BXPrXkbsXwMt8WNDYWR+WFUUV82cZu1S5xtFJlNzbKj7zbGjTiOXAQtKQIGNY4amr1N/Ff/d9lau5lr/GtZ3bgeu2zHEdBweAI8dPi7iGWdnk03Y3F7eXjoYbJTgzwzuR+vw8/qml6aPE3IoowiKQzHhn8poaa/lsDnK1/5Cn//939PKBSir6+Pf/zHf2T37t2/7N26qlrJ/E0RFXJqjoJa4D3r38Ob17yZeD5OtpTlucnnuL//fv5o5x9R5ajCaXEymZoksaDiL2pFvt//fTr85rTWprpN9FT1VES2pXKBbDbBc2cep8ZVxyZ3N6HoFLubd79s0PNKsjPpYppvnvgm+yf2L/MIejnJx69EXY2Qu9ZVa1oGXPBvo/koc7k5cuUcdtlOXs2TLqT5yKaP8MCZB8iUM9hlO16bl4A9gIh4UdsMwGc3DSfzap63rHkL9/TcQ0kvXZF4W08kKD3/PFoiYeZLKUrFT4R8Hm1iAj2ZxLJt20sej1dyPLU/0n8R6FmskfgI/ZH+Fc/JpZ5LyUKSwzOHmUhOUNSKfPvkt/nzG/+ckfgIM+kZToRPcEPrDWiGxlRqilwphyRINLgaaHI38szEM0iCSEkr0+xrJZU7/yCzW5zUyf5lAvHE7DijQ0dIZ+O4vdXUJ+ZxJHJIdXWmC/QCU2EsuOsa+TzlwUGk9nZKBw+ix+PUiSLvCW5hqkkn77LglGx0dG3B4wpy3/b389MzDy77vnabm96mDVgtppA5k09i6A4TuCqKGeeg62TKcVPzYrebuhJNQ9M1pqcH2F17DR31a/C5gri9plWFC8uK7R51agokCT2fN1s6Hk+lpTPjUpmdjzGYGKYgLgFfosjI3DmejRzmvqbrcA0V2FGzHtnrZc/ow8wKJiNml+00+JrxKi4eGPgR6WJ6GWg5ETrG0+1HqanpxuPwIQXNoQDJ58Po6qq0YaWGhgrokaqrl0+78er7x0jBINadOymfOGH6HIlipf0l2O1IdjvaYl5bLmcepwXDTHVkBEeLHXVoyGQGPR4ypWwF9IA5xeu1ekmX0qYBq1YyGS10arw1JHIxRLebklYim09CTqL52dNIzQEejJxiYtF9vqqKquqWyqJoLDFWub+2+9sZmBtgc91mVlev5vjscRRRJpSa4TvHv4Pf5uXgzCHsdSIb8r1s9fWgZ8IIyLzHfyP9m2zsGXuUJ0/uZSw2iojIOza+h4G5Ae4f+AG1rlrcFjdVjio+sukjDEYHf+Ghpr92wOd73/sev/d7v8dXvvIVdu7cyde+9jVuv/12+vv7aWlp+WXv3hXXSuPhXpvX9HeRFL5x/BuMJ8Y5FzuHKIjYZBsBe8DM8ElNsL5m/bJ4hsVSJAUDA5tsY23tWrL5FM2aCyw+CpKf9f7VUCwyNXkaTRTI5M1WQTgTPp/Ya/OxpnrNRQ+fRaCz2IJ7ZvyZZS27n4fWPBc9twz0yKJMd7Abj9VDqpji+ann2da07RcKfq5GKL3Sv3Vb3RXwdFPbTUxnpimWiwxGB9ndshurYqXJ1US9u55WXyuHpw+vuG1ZlJEtMo2uxisOWgUq3h16MonocKDHYujRqGlCJ0ngcJishNdrzoI4HOjptOnTsqRe6fHUy00PXur1pedaJBthLDFGUSsiCiL1rnoK5QLrqtcxVDeE1+olVUhxe+fthDIhSnoJu2SjxdPC1577MoIk4bF4qHXW0N7dypGJ57G5fNgVO5ur19MhV6O0dSJYrYyGz/LAE19hPjIGmF4zvqLI3U2/QcN0GMHtxiiXEevqTLZEkkwfJV1fzg7oOo65FN1zZt6V3FqPnFXBBe11q7lWTXMqfoaSWsIiW/A5AxXQYxQK2BJZ9HIUQ1WRGhooHT1K1iZSaJbwWj3YPS5Eu43w9Dk0TUXTNUJzo+xsvI4NrTuXgdcV2z2KYmpWnE6w2UxzxAVgkq4pkVY08noRQZTN82dJZlU8FWHKE6erWKRhosytVS30rfs4YZeBpkjUyj7ms3N85chXiS/4jBmShCIqbGzYTI2vgZIEJxtga+MqbEv2Va6rQ7z5ZlOfls8jzc6aoGkFn6pfhH+MVFWFuHPnMvBo5PMYiYT5el1dReBsAHosBpqGVFtLYyZD0FdPND6Dns/jVM5P5/mtfmbSMzR6GglnTQbPIllAEGjztXFd47UcnXoBiy5gtdhxuYKIARFEkWbdzgc63lKJbPHUNNHetBb3Qnjp/afvr9xfPVYPo4lRXBYXNsXGmfkzNHubua37du7pvY+cmsMpOzEMDbvdWzmmRrlM0W3jq0e+is8ZZHjOXKRta93Jo8OPMJsJ47P5yJQyBO1BBuYH+LcX/40PbPzAL9zZ/9cO+Hzxi1/kIx/5CB/96EcB+Md//EceeeQR/vf//t984Qtf+CXv3dXVIqswkZggp+ZIFpKMJcawK3ZqnDX86RN/io6OYRj47X6uabyGdDFNjaOmYkC4tFYFV5mGYIL5kEgX06iaStYCfpcXp6BQyKcxRImamnYikVGcusKx2WOVNPLFulBvMTg3yFhijJJeIl0yt9vqa6WgFphITlTs0VeiNa+EGYrlY2xt2EpBLeBSXNS4anhy7ElORU6h6ipj8TFeCL3AO9e+8xfeL/55ahEQra1du/w4rMDWrKlZQ4e/Y0U25OWIzyveHbLpPLx4gwZAELBedx2l48cxjhyBQADbDTeghcOwYItvFIugaVi2bXtF2weXmx681OsW0UIkE6Gklyo6IUmUWF21mvHEOP3z/UylpphKTeGz+fBYPSRLSQ5OHSSej9HpbccpWFlTuxbd0OkIdrKpah3/8uK/Ei8lkRDpcARYVdtHus5H0OcjXUzz4+Pfr4AeAETR9C/hcd7nuwmXKCN1dqJOTJgGko2NlRFwpadnGbOxWIvaoKVjxt3Vq+ltWH9RBIihqviKIs1lJ0Yuh7x2LaXnnmPaB3umHiM8l+ZEYYxcOUdjsI2b19zJ9OgJNF0j6G+gvXndZQGBnkigDQ1RHh9Hqq83A0XPnTMn1XQdl81DKW0gOp0YhYKpT1oULReL2BaiV1AUKJdxzKVYlbHTt3o1iAqC1cE+Y56Cel74bJEs3Np9O8+FDvHk7EE21m3gBdcRXkyf5a19b6XVXn8eXFgsyI2NGOUy6tDQZX2TXu26UCukhcPnX5PlSpSHnsmYjsx2O3oqhTOW4Z7OO9kz8lPm4zOIhsD6mvVMJSdpD3QwFh9DN3Qa3A1sadjCupp1vHvtu5jLhHn07M/MiU7FT7unlRZLNaLn/PnjzJZZjRNworg6kBbuLeOJcUbiI8sGLBRRYWPdRsbiY6yuWs2Whi1888Q3OTZ7DEmUMAyD3S27adv2e0w5VRocDhAEBsUkZyIDbGndXvncOk8Dj47txcCg2lFdmWZVdZWB+QEzQukX7Oz/awV8SqUSR44c4Y//+I+X/f3WW2/lwIEDK76nWCxSXEJ/plKpFf/dL6vcVjdOq5O9Y3s5M3eG/vl+DMOgJ9jDH+78Q/ZP7EcQBPLlPHPZOeaz89zZfSezmdll21kVXMU9PfeQV/PYFTuarrHn7B6eOrcXh9XJt059m4nEBLWuWroczbiwcvf6t+C2u/nLQ3//knqLqeQUT088zWx6lgfOPMBwfBibbGN1cDW7W3ezq2VXJSZiLDG2jNa8ktTg47PHORw6zFhiDEVS0HWdweggpyKnGI2PYmAwm5nlXOwc2VKWP9r5R68Z76CrqcsxSLWuWj65/ZOXBKFX25JcfKiKTqepR1kQm0qNjcg9PejxOHJNDbrbbWY/DQ9XWgWCICD6fChbtyK/TDHoperlALyxxBgD8wMkCglmMjME7AE0Q6PFbY74e21eplJTHJo6xFvWvIVwJsyzE89yW+dtFW3cmqo1HBx/llQ2hsfiZlNwLU5N4i2Nt1B0KNjtHgQEhjPjzA8n+JD7Q+Y5abUT6FiDXbKiZ7PMpULoDgfRRIjpJo1ei8/U/GQySJ2dSIGAqeEAtGTS9HaJRC76ToaqLjOZXIkFNlQVv27j7vYbcJWs4LBAPk/WJrIn9ATRdARFlun2dXI2OcJ0dIwnxp/i+tbdlLUS965/G95g/Uv+HhVmMJ9HdDrRZmcRg0GU9etNJZos0+G102Q5x3Bs6DyIW2h3NfiaIV/EocuAmecl2O1os7OoXi96KIQBrL5mDe3+ds5E+kEQ2NiwiedCLzAYO4fb6iFVSmMvOnhi7AlyxTT31r+BdCKCe2F6zGUoKN3d532TFoXlum5OdW3e/HMD9FQmylhkiEwxhcvmoa26C48reNn3LfUJWla6fj7PbOEabJzN877GO5lqy5EI+tj4hk385/Gv8+DZBylqRSyShaAjyDvXvpNkIUEoE+L49FF0Q8dt9bCrcSdv7boX11wJgxVYrws8vDLlDJqhsa5mHa2+VpyKk/+x438wmZzEY/VwTdM1fPXwVzkZOcnOlp00e5oB8Fg97J14Gk0UCHRuxTY9RyKTRVqI8QEwRMFsxy1+XUNHEAQEQSBXzuGyuMir+V+4s/+vFfCZn59H0zRqL7gR19bWMjs7u+J7vvCFL/AXf/EXv4jdu2yt1E4qqkV+evanJPIJmrxN2GU7JyInmE5Pcyx8jKA9yMGpgwD0VvUSzoaxylY+uPGDtPnamMvNYZWsFNQCmWLGFNcqLqK5KA8OPohPcXMydIyZ9Ay6oRHOhBENg25HK0PTp6ivbmMkPoKAgFNxYmBU4h4imQjn5s/x5PiTjMRHeHbiWYbjwxWzxHOxc8QLcc5Gz2KVrcRyMT5+zcfJlU2H1JXcY2F5avB4Ypz/+4n/m9OR00TzUYpakTevfjNOixO7bGdLwxbK2oLpmlrkp+d+yl3dd7G9aftFx/dXrbREwlwpFgpgtyPV1LCxbiNfuPkL588Tq481NRe3Ha+kFh+qi7lKot+PFAigTk2hnjuHNj6O4PWibNqENj2NPjtrhiOm0wgLhm3a2BjSBSO/P6/J4ZUCvEWGLJ6PE8vH8Nv83Nl9pynKtbpYFVjFvvF9aIbGtU3X8oP+HwCmQdu9PfdS1Io0uBsoaSUm4uOE0jO0BTpobLueNd4uDg4/STgTYXftNuKxeVK+8w+tWD7GifAJHjz3IPvPPlEZH2/wNnNzyw1MycOUBYGMYMZFGIUCyrp1pvh5akGgbBgIfj/K2rXL2kaV32cFk8ml2rJUMoIjU6ZJc+KcL6FLOoamIXo8TFvyRKMLnyMIuGM51rvaSHl0NNlOb/MmtjZuvaIFgr6g/9Lm5832jK6b00lTU0hVVVi2bsXf0MB73e9nKj7O0NiLleysBl8Lb2jaTT6XpCFi6lFYAD0sxKYYC2Gt7meO8tGbP8h0dpaToWPU+5rZP/sCvdVr6PB1UNbLOBQHAgIPnP4hPuxEJszk8qCrhrs7bqd5wTPIct115jlYKJjj5FYrWiKB6HC8LONOgNHZM/zo0DeIxmcqfwv6G7hv+/tpr1v9ku9dOjWlJ5Po2azp1Ox2I7e3m27Xi2Pvuo4zmqEHUKobOevSuLfnHm7ruo2yWsIq25jPzfPRH32UzmAHd3bexTvXvotsIc0adzvdeTc+Rz1Ct/UlfYkWy624WVu9lmcnn+XHgz9G1VUa3A1kS1l+c8tvMpedYyw+xgc2fIADkwc4MnMEi2Rhc/1mNtRuIFFM8Gz0KFtaNhIMN2GTzHt9W6CDkcQosqgAhvlckGQkUSJXzpkgCOGXMtL+awV8FmupTw0sBLxd8LfF+pM/+RM+/elPV/47lUrR3Nz8qu7fSnVhO8km23jv+vfy5OiT7B01A+ZKWokmdxN399zN0dBRkoUk62vXV7YhieZ0SlEtki1lub7tehM0LZkmCtgDXNt4LS/OvshMZobmuq0MhU7jtbjA6kU3dBTZSpU9QGF8hPCquYWcFzej8VHTtXOh3BY305npCj09HB/GwDCFuuU8qqHiKDuIF+JsqN3AU2NP8ZUXvsKXbv8ScHEA6NKK5WOMJcb4r+P/xcnISbOdtxDBEc6GKaaKNHmaeGT4EQA03Qz7XF21monExK888ClPTlJ85pllTIBYU4N1925qm5tfkSm7ZW61uo68di2JodNMNVnJulTc9Z14Ag2EPCpT3gzFZivVljp6ih6qnj2JNjVlpmYnEmSdMmORIdL5BI5omoaUgDOWPb/avkqTw5cCeOlimhPhE5wIn0AURDwWDxPJCb57+rtMJE3TPp/Nx+6W3fzPXf+Tr7zwlQroef+G9zMUG+JbJ7+FKIi4LC6C9iC9Vat5cHAPWS2PIlnYWLuB7XVbOTq0HyO4GX1+HtFmM+MhMONFToRPkMwnzbafLIOqMpOcZO/E0+wKbmK2VMTb1IGkBFHWrjXBYzRqAh5JQnA6MRaMBsWaGvRIxPQ/WXBTFv3+FY+N2+pmtVFFORSl3D+IEY9T0nVT0NzQgBQMkhGWiHgXJq+UdJ4gIAeasVtMH6lTV+CpYuTzFdADmEBiYWRbT6Uqwu2eqh7+ZMf/5Nn6p4nn49hEC6gaBa3MHVU7cZyahGDwvNFiV5fpuryQUyU3NdHz1Fn+5to/ZF/LUUSHk8H4OSaTkzxw5gEMDFYHV2NgIIgCaf38Az2aibBn5Ge8v/VevNFoRbS/7Pqpq4OtW5GyWVO07fVeseYnlYleBHrADLr90aFv8JGb/+CyzI/o8yG1tmKMjCAKgunDZBiUBwaQ29oQymWz7bx4nF1mhlYoGeJPH/8M6xo2MBwfYSw5jqabADReiFJtr2JgUuEzmz5Jy7yGYJMqgvQr8SWqclZxeu40z08/T6qYqixcRxOjDMWGqHfV01fTx97RvRXT3Lf3vZ1nxp/hqbGnWFO9hipHFe3+dj6+9eP0tmxhYK6f69tuQJtgIVWgk7ncHAF7AKfiZCo1RbWjms31m9lUv+mKfoNXsn6tgE9VVRWSJF3E7kQikYtYoMWyWq1Yf8mBaeFM+KLV7U1tN/HVw1+lpJbQdA1JlJBFmaH4EHsGzQiEvJrHZ/NhkSwVxqPZ08ztq25HEiWaXc381Rv+6iLdSP9cf4V1KalFDEGgVDwfkicINrRSEcFqxSZZcCrOi0APQLqUJlVMkVfzlPXy+ZFLUUJdGtxoUOnvhjIhplPTbKzfeFlB20xmhvHk+MI+Cai6Wplw+um5n3Lv6ntRdRXN0BAQiBfinJk/g0VewUfjNV6V4MJyGUPXKQ8MLEvWBtAjEYrPPIN4xx1IL3PVurSWudUWCkypUX4Uf5L5+Ulku4Pazg0ks6M8dvIxXpw5igF4rR5uar2J3775vazbN4KeyzGWmeInz/2AaDFhskK5HEFfA3d33k5jKP+yTQ5rXbUXAbyxxBjfPfVdDk4dpFAu4La6afeaeWdDsSHq3fX4rD5UQ2UkPsLD5x7mA+tNw7Ut9VsYig3hsrgoqAVGYiOcjZ3lUP4QQ7EhPrr1t/ib/X9DqpTiVOQkm+o3kfPaKBhlcxJqfh6prg5Blk1/IO/CwIHVRc6jmSBgAfwIzTsJqjW0Na5BEswkczWVMoXhC6Jfo1BAsNkwSiWkhgZEtxt1dBSjWDT1IaOj6LOzlbH3ynmQyaDNzFDu7z+fBwVQLqPNzCC2t+P2LPj1XLDgExwOBKsVTdf4+vGvIwtyxSjRb/ezq3kXXcGuZe+pZGatVAsM0GKtquomGC0waY2QUXO4ZAfNgh+nLiNc22hOgpXLlMfH0WdmTNCk64j19WY7MB6n7aQTe+cGfqoPcHjmMNmFbDVN1xAEgeHYMH6bH8VqZ2njKJqJMEkCdypF8bnnlrcPBQF9eppiuYx1926M2dkK+3ElDNBYZOgi0FP53PgMY5Eh1l8G+OiZDKUjR1DHx8/7ES20jNWREeT29orTumCzIbW1oZ49y1xXHk0t0eCo5enhJ5ABSZAxZDB0A93QqRFc5PIpBFtwGaNzJb5Ec9m5ipeYKIjoho6ma1glK0W1iMtiWm88MfYEwP/H3n8HSHaXV97456a6lWN3VXd1jhN6ch7NKAtQDtgyYIIxYJsXcMLGXnvfd9cRvLv2YhscAC/Y/Ezw2hhJIxBCSAilkTSa0cSe6Z7OOVR15XzD74/bXdM9eaQZSdg6+kfT1V1161bd+z3f5znPOext2ssL4y9Y7bHIetw2N367n2QxyZcOfolP7PgkXzzwRY7FTrClbgt+u5+f6/k5js0d45WpVxhNjWKYBmtq1vCrO371TbFK+Q9FfGw2G1u3buWJJ57ggQceqP78iSee4L777nsTj+ziON/4rlNxcnzuOJ3BTsp6GYfosLwaFCcDiQHe1fku8uU8jZ5Gfnv3bxNxRzBMA4fiIF1Mk6vkaPI3nVc34lJcVddOm6wiCiI1/npUmwPdNPCqHmyqFwoFWtyNNPoaOT5//Jzjbve347F5cMiOc3xOzkZRKzKbm8Um2ogXrDDBSwnaKlqlepxgTS/VOGsQBRGbZEMzNEusjUWsdEPHZ/dhE20cnzv+prmCXgpntzTXuNsIjMxbXiSAHouhz88jd3SgDQ6uaIEYc3Pos7NXhfjAGbfaVHKWfYe+ykLBGocN1bczVJnhsb7HGU2OYJdUsuUsYVctg+lhvtL/Tf6fvT9PtGjj0VP7rEXBbq/u3uPJKfYNPsYHG+/CFctcFQ+VJUuDJwafYDQ1ik20Ueepo9ZZy4GpA2yPbufY3DEm0hPVMnq8EGd3027Kepl/6/03Xpp8CcM0KGpFWv2t3Nl1J4/2P8qrM69aDtiNO3lu7DkM0yRVSJLTi8heHyQUa5EvFhHcbnwOHwICqqyyqmYVfbE+8pKEubSQ+wO8e/v7kfxBTkyfJG2M42hx0JAWcUzMWfoXRbGqNB4PgtOJNjRk6V/sdoxUqmpgWOnvR+rosIhwsWj9nSRhZhY3IoJQHVOnUkE7dozWd9xATbST+PxoVWsjOJ1IdXV4XEHG0+PUOmt5YvAJxtPjyKKMgMCzo8/yO3t+h1U1q6rnXVBVq/qQPXejIrjdKyoIgqoSaO7C3WdglgpQAigjOKQqyagMDWEukfrF9Haprg7RZoP6eiZbfDyTPMxIZYqA3U+imKhWIUzToKgXafQ2kiim0CUTm36G3GW1vBWYehbpQbN8l8zZWStOA6qWArZNmy5Z+cmWLq79zJYyF30cQJ+bW0l6Ft+/kUwieL2Ifj9iQwOKKFqfbyqF0NWFWx0BXV9hoimYJoIpWkMIsh273U/Ba8fWcun3cs6xV7KIgkiDt4GwHqY71E2Dt4Gt9Vtp8bWgSip+u7/6+y3+FhaKC8zn5pnMTKJKKm6bG0VS2BHdQbqYrlZrF4oLFPUiqqhyQ/MNbI9uJ1PO4LF58Nv9bKzbeEXHerXwH4r4AHz605/mgx/8INu2bWP37t18+ctfZmxsjI9//ONv9qFdEJlShl/c9IuYmKSLafx2Pzo6siiTr+QtN1bD2nHJoozb5kYQBPa07GFX4y4GE4MMJYZWuGFezLSuxd/CkdkjRN1R8nqBne3X8/LUAVLZcRDALbvQ3EUaWnbTEejgZ9b8DP2xfoaSy/QW/nZ+Zu3PVEfpJVGiO9jNyKIbKIBdsuNUnFYOU3qqKnLLlXMcHXuFWnuAkC1AvHzuBEbQESTqiVLrqq22uMBqAaZLaVr9rdQ4as55X7e23UqsEGPf6X1virnhxTCbneX43HH+5sDfMLgwiMvmQhFk2uz1/OrGX6GnYE1XoWmYqRTa2BhiXZ21M16Oq+xFIqgqg6VpTmVHKDsq2GQVv8dJMT3PqbilofDb/TT6mplIjzOcGmU8NUa3r4NCJkGTvwUpLqHr+ornjSenmGzL073479frobJkaZApZ1AllUQxgcvmolApoIgKk5lJUqVUNSutoluThGPJMfKVPMPJYSRRIp6Lo4iKJYav5FhTs4ayXiZeiNO4KNwUBZGSUWZLdAuCYjsTO2AY1XbxUpvVb/ezqW4TqWKKilGhrJdpi3QzW1ngX1/6d1KxSQRNQxsbI+QOc/f6W6k/YXniCA4HRj6PpGkYCwtnXgeLAEvRKIKqWtWdRKI6Jm4WCijd3VT6+63vzBL5WUxKdxUMHrjhYzxy6mHiqZlqLlRQDbCn81Yms9P8y4l/YSIzUa0oi4KIlJf45tFv8tt7frt6/xBkGbm93crmWkZ+BLcbub39TC7VIublEidqsiRzcfyqjzX+Tur8jdUFWQqHEQMBa/JKkpA7OtAnJtAHBym0NfDQgX0QCXMqd5JdjbsxgeHkMJqhIYkybf429jTv4dR8L+GKRI3htIT6hoFbUEFVz52UW2bqaC4jHmahgJFMXrIq4la9l3j80hssM59fSXqWHZuZSkGlgtzYWP2xVqlgTk3R6gqzNrLuvJvLWlctAdWH6PXi8YVf07i+W3FjE62uwY0tN/LM6DM8O/Ys6uJm59d2/hq7G3fz8KmHiRfi1LpqmUhNkK/kcSkuMuUMQUeQkl7iROwE84V5tipbubn9ZuD8Ayy6qXNj641v2sb0Pxzxec973kM8HueP/uiPmJ6eZt26dXz/+9+npeWNVY1fCZw2J5974XPVuAOAP7jpD1gfXk/vfC8bIxuZzk5XW02iIFLnquOu7rto8bfQE+65osRxj+phT/MeBEHgdOw0fnuQ47FeprMzlneDaMMURZoa1yI6HETdUR5Y8wAlrURey+OUnZZYedGl+NbWWzkyd4SgPcgjfY8wlh7Drbipd9ezsW4jLpuLbx/7tlUarV/P0MIACiILM8Pc1n0Hz8+/Qlw/s2NaIm5BR5BmXzM7G3fy0sRLJIoJdENHMzTsikWq3rPuPVWxdaqYoi/Wxw3NN+BVvczl53h84HHuX33/m+Y8nSllGE+OM5efo3e+l28e/ybH56zqmV220+COMpTu4wuv/j1/uunThGJFq88PmKkUYlMTxtlPepVbs0Pjx3ix7ylODL2Eubgz9gbrKOllBKw851pXLeOpCRKLHjqmaZLXC0xV4pweHuD6puuZXhhd4d2CYZDVC4DVeny9HipTmSkKWgFREEkUE5Q0i0gpkoJH9TCfn0czNFRJxTCtsyaLMoZpEHKGqHHWEMvHME0Tm2SjpJcYTY6yq2GX5S3iDBHLz2OX7ETd9ehahbWBVawJrSLiXEu2ksMbaaatwZoqe3HyxerNXJVVbLKN4dgwAXuAVCnF1w99jUR6lk4pgjdrhVLGs3M8OvsTPrT5HuwnhzCmp5Ha261k7lwOHI4zRMIwEIJByq+8YplKLi6aYl2dlUc1MGDFICxFNiyee8HhQPR4aJwr8KHI7YxHLO8Wt8NHW9N6BopTxPIxXph4gfSySoZX9WIL2phMT3BgZD92Q8Bt99ISaMNuGMiL99Bq9hiApq1oFV2O9cXyxHpTktDGxy0NpqIwGZKIj47TEKlHQuChk99la8M2djXuQjM0uoJdDMRP89zYszR7mijrFYy0RRpC4RYaxQBafz/K6tVUTp2yyM9yJ+slD6Xcmbgf8zx+P2ejNdxJKBA9b7srFIjSGu48z1+dhbP8ry71+NLwQUNO4uObf4mnp56n1d9a3VzWusJsi27F7/CvcGC+UrT4W2gPtKPKKs+MPsN42sqeK+klIq4Ix2ePs7Z2Lbd33s5EeoJmXzO6qaPKqiU/UH0UtAKxfIy53BwLhQW+dvhr1cncKzF7faPwH474AHziE5/gE5/4xJt9GFVczKemf76fzz77WQ5OHVzxN0dnjlIxKnQEOshVcrT4WqoTVW2BNu7uvptmv2XI+FoS0Vv9rYQcIQ64DvD5lz7Pze238O4176aslRAQSFey/Hv/w2yMbrH8fzCrmpxsJUu2kkUSJFr9rbhtbmazs6ypXcN1TdeRKqWQRZlYPsb3+7/PY6cfo2SU2Fa/jQ9s+AB/9OR/5zd2/zpPTTxLUTD4aPd7WfCI5IziORfFvavuBcBtczOfm7cMtmxe6tx1PNz3MKqsVnv/mVKGNTVrmMvN8e3j30YRFbbUb0EzNDqDnTQ462gUfLjSJcuIzeNBugKB45ViJDbIw0f/lYg3yj/1foNbO97BwamDKJKCKIgUtSKT6UnaXA0Mxfo5pc2wB7/VPnC5rJvzWZM+Yjj8mrOEzodUco6Hnv0/2Lx+S3Qry5YBniAiC1b7w8TEoThJlM5U5gRBxKV6UeUYA/lZzFLRqgbIsnXcoohgs+GWHIB+VTxUVFlld+NubJKNTDmDU3FS1svMZedo8bWQLCZRJdUyvzNNHIqDFn8L6XLaEsQi4Lf7q61WWbRufzo6ta5ailqRJl8zD6x+gB312zg4/jIvn/4Ju/0bWGO2gBjC1nCmlbB8tLykleiL9RGwB7i1/VaS+QUmY8MYmQx9YoKNaiuq3YGRShGbOM14ZJ5uhwMUBbmx0Wp3qKpVFVjK9AqF0AcHMaanweWqngcjlcLUNMRQCFFVV2RVCS4Xclsbcn091NfjTybxnSVsLYwM0hvrXUF6wIpL6YufotYR4tWR/SSmhwFrYb9vy/tomClWCYNZKp0zIXQ+rSKcP2pkyXRQm5yEfB5TFBEMo9oyMjNZGpwRQs4QL4y9AIv6QZ/q5wMb3m+ZOJoSNruKKNkIecLc0/QO7P2jGIqCWSwiLcZHVIm4JCE1NZ2Znlo6Z8rF2/RA1T37fFNdD+z80OWPtPv9VSPDFcfg95+jNVoaPnDni/S4IhDawQ0tN/K9ge8Tz8exy3bqXBHqfY2XjKW5GJYieB4feJx9/fvO/NzmoS3Qxsb6jfzT4X+iJ9xjCaCLaQKOAMPJYbw2Lz7VV9VidgQ60AztHM+217JGXUv8hyQ+byUsL/MpokKjt5GXJ14GrKiBWkctx+eO41Sc5Cv5akvre6e/xye2f4J4Ic5IcqRKOtoD7Xx828erpOf1wKN6yFfyVujm/Inz/s50dpot0S3n+IdIgkRHsMNqsRk6/3jkH5EEiRtabuBbx77F+9e/H5ti4/rW69nbshdBEEgWknzz2DerVaNCOcfz489zR9MtbPFvRoqeu6CfvVuwiTb6F/oxTZOnRp7i0PQhBARKeonrm6/ngxs/yB8+/YcoosI7O97Jc2PP0Tt3nAZ7hA1qCxHTxT3RW4hOZhEWnYnlpqbXPOJ6IaTi03z3+f9DPDGFf02Q3qkj7G66DsM0qOgVbJLN8l/SCuTNMj5kkuU04Ee025Gam9HHxlbcpMVwGPWGG66avgdgdLaP2NwI9XI3UV+TJcyVZQqlPLpRoTu0itHkCJVlXhwO2UGbvw27zYFP9WGvQKGUw1hszeizs5i5HEFXiIaSHTFgw7Zz5+v2UFEllefHnufFyRetKo4jRJ27jvtW3ceupl1MZaaYzc3ikCw93Prwet7R8Q4OTh9kdc1qEsUETb4mMuUM2XIWEctvpMHTwF1dd1GoFOjydzA2P8hXX/oSTe4oYUctbWKIk0qavEPCmzpd3bgs/26OpkZp9jUjIDCVmcJpKpbmplSiQIm0xyA4P4/o8SB6vRTcNmxbNqBNTaENDVkkJhCwSIymgc1miZBnZ61KwHICXCyCKCIuVmDEcNiqDtlsSI2NqFu2nGkrnYckpyvpFd4qSzBNg0R+gaJWxC6pSKJEONQMqspjg4+zq/16OtR23BXxvBNCVxo1IrrdiC4XUjhcrSJ57GkERWFuboSt3dsRuu7hkdOPMJ2xyEajN4rf5uW+rR9nbOY0TUU7AZuPxryMs3/WOk+6bomDIxGM+XmrNajrlvfQxo1Wy3AR57MMuBDa6lbz0Vt/a9HH50wo7XLSczErBykYxLZxo2UKuoz8CIs6OykYXPF6y4cPmnIQsLczkUvwSx0/R94hIysqQVfNVametPpbWVOzhlvbbiVTziAKYlWH41JczORmqMxU2Nm4k6AjyAOrH+DZsWerTv0mVnj23ua91WDghcLCGx5Fcbl4m/hcQyz3qVFEhRZ/C194+QscnDqIKqk4FSfbotv441v+2HJhlo3qDltA4OtHvs4/3PMPeFXv6/ZsuRAU2drtLPV3nYqTbNmqTOUr+Wpa+NkExKW4eHzgcTRDW9GCm85M0+JvYTQ1ynBymKHkEC2+FsZSo3QFupBFmfWR9VaODFAo55jREhctN5+9Wwg6ramuj2/7OMVKkXQ5jdvmpsPfwWee+AzZSpZt0W08N/YcI/FBWvwt5OIzJP0epNQc+8wn+WDoVpzzaWuiyTSxORxXrfJjlkoMjx+r7gwzixEeTtlhiRkxMEwDSZCqCdQg47d5YXG4TvL5kDZuRGxoQG62Fh8pErmqpAcgU7R2/XMzQ9zacSNPjv2EqdQ4gxPH6G7Zwnt63sOPhp8gUzqTqbS1fisPrHmATDmDUtLo9rQScAZZWAxdFGtqqGnv4d62OwioYYtYvk7SM5Yc4389/78o6kX8dr/1vStlmMvPocoq/+36/8ZdXXdxS/stgNUujefiPDP6DC2+FhTRqrINLAywuW4z+UqebDlLk6+JWmctL4+/xP1r7udbh74OQNRdR8QV5he3fIyHT/6AhL6obZFlK+No3c/Q6m+tfjezlSwHpg4AVivILqorWixl09rQGGnre+9IFTHFPILNVs3Akjs7MTKZM1ELpml5LNntK3VdplnNeZJbWpAXM7lEvx+ptnbF9/h8hnumYWU8tfnbGE4OLzvLAqqkUuMIIZYrNDSsWZEGfzxxijXRDYstjEbOxmuJGql6Sckykt9PsxqgprGbeHKK0dGjbOzZyZ5b/oxsOYsiK0QcYYyFBY499xB3rrmX8CsnkZr9kFtWvVrMv5IiEaR3vcs6d6qKqeuWqHpREyUEgxT8TvqmjzBVmEMTTKLeBrpCXRckEl536ILTW9rMTDUzbAnLrRwEVUVpa7MOMZ+3CK4sWxuw1tbz3n+Whg+MZBJ/pULgAiPpVwNBR5B6Tz31rDS0LGpFZFEm5AwxmhzFY/Pw9MjTBBwB7l91P4qkkKvkmEpPcWLuBKtCZ4Txb3QUxeXibeJzDbHcp6bR21glPWD1T312H8fnjhPLx/jE9k/wZ8//2Yq/L+kldFOvisSuBaLuKK3eVnY17+Jrr36NI7NHqo9ti25jd+Pu6r+XbvKZUoZXJl9BEiUirgj17noUUUFA4NjcMd7Z8U4OTR+ydESLRK7OXU+Tr4lypcQH1r2ff3vln6rPK4vyZZWbl9Dqb+WDGz5YJWH5cp4fj/yYwYXB6s211lnLE/0/QJVUbIKCqeWpmBroOrHZESYay3SzGA2wOEp+tVpIRjJZzTgD8ChWmyKem2NjZCNH5o5WR/8FQUCWFNpDq1gt1wGWJ9KVjNq+HnjslmhTNzTGBw+zt24zQtMeSqZGXaAFxeWmp7YH3dTpj/dXc94y5Ywlptc02sQa3unaRGxzA1m9gFty0FBx4jo6CtvDVyXO4tjsMY7NH8MwDWqdtUQ9UWtDISkUKgWOzB2hZJR4ZuQZy4U5vJZGbyNNviZ2NuykqBepd9dT0AoYpoFdttPia+HmtpvJlrM80HE3e5xriW75FMlyGr/NS7uzgYdOPcT8WJ8lOl5KNp+d5eFyhY/s+WR1gVw+oWgWiyA7iPqamFjc2dsEGUQNDAgFGmgo2cHlonLokDUxZZqYmQxSJGItbDYbot+PWalgJBLnCsNNE0FRLkqGL2S4t2XdbczmZrm983aeHnmakeSI1R40DBrdUe7seBczE/0rSA9AWStfMHYGXlvUyNmOxu4y3Lfmfh459TCx5BTj030QH8Zrc7O3fhfaqTFcgsJ25y68OQU9GDwnjb56flQVpb39zI9KJYxQqLrJGl0Y4sWR59h3+nvW+xRFnL4QN7TfzAOrHmAmO3PRbMLqcyaTGLkc+tTUiuR14BwrB9Hvx7Z27SW9dZbjckbSrwbOF4wN1qbYITuIuCJEXBHSxTQPrn2Qf+39Vx6df5RaVy2nYqdYU7OG96x7D9lSFlmyqMUbHUVxuXib+FxDLGe7Ra14jo7HNE00U6N3vpcPbvjgOX+/s2En62qvbZmw1d/K+ze8nz985g9XkB5VUpnKTPGXL/0l7YH2amttqXV3dPYoAwsDAPSEe3j/+vfzjWPfwG1z88PBH7I1uhWX7OKTOz5pueNqZTKFJOlcnH975Z+qpodRbyNRR/iKF/jlVaBMKcNMboahhTNl9opeQpVUQs4Qqmm1ixRBBnTQdXJ6AVjMEtK0yxI4Xi7MSgW3fCZc0FYxWRvu4aHj/87Hr/tVOC5wMnYSsG4qG+o28hu7fpM6qQHTf3k3w6uFlsgqasKtxOZG0A2N6an+6mNSrsB73/EbxLQUuUqOtkDbOcGzIV89dwXXEhyeI2gYWEJmHbCqgFfrPSwUFxAFkVpnLaqsVvU5s9lZJtOTjCRHeG7sOR5Y/QCSKLEuvI6e2h4UUeHFqRdJl9P87NqfRZEUTsVO4bV7cckuhhJD+Ow+3tVxG/VDcerzfsAPeThFgrmhE1YFZtn7MItF5voPM9J9mvWNW6zzuHzRMAzmEuPc0nozPyrkSaTn8JYsE8GQv557m27DlTEx0mlEnw9xUdMlRiJQKCA1NFTTx42FBcxKBX1sbIUgV6yvR+7uviDpuZjh3ujECbbVbeXA9Ctsrt/Mja03WvlMgoJPcjA3OYBhU1aQHqDqj3WhFsZriRpZ4SVVKIBp0pgR+YXOn2XcXiSbT+KWnTT7mrEPTYLSYpGKoIoYCCB4PFbwq65jlssIioKRz2MmEudoygRVRfT70eNxUgvTPJ84yvdHfnjmfRoG5UyKfDnH7z31e2i6tkJisFygDdYGZ+m49UTCcjr3eJAaGixrAixX9LOtHN4oInOlOF8kClii9z3Ne6oyjFp3LfP5ee7supOgI4ggCKSKKXRTp2++D8diC3wpXPmtiMsmPhMTEzQ2nlvefBsXxnK2e7b5H1i7/UQhQa2rtvqlWsLOhp380c1/RHdt9zl/dyUYS45xbPYYC8UFgo4g68PrV+iDPKqHgl5gPDVO2BXGMA1EQURAQBGtgNJjs8do9jczlhxj//h+ZEFmfXg9XcEuRlOjnI6fRgyJ3N19N9899V1ciovR5Ch22c726Ha6Ql38eOTHPDv2LJOzZ7J8ot5G7llzL63h7te1QHpUD9c1XYdbcXNb222Mp8epd0cJ2gN4RSeSKWC3u/FWLAJkmiYuwY5ZSlvCR1G8oorTpSAoCk34CbnDxLNznB45yEc2fJivHv1H/v6FL/Duje/hAxs+gG7qdAW72N6w/U2bOvP5w9x//Ud56Nn/syJosybcyr17f5G6UBN1nHEyX1u7dsV0RpMaRnnmRYyzRNhwdUMhg/YgDZ4GRlOj1lizIDGVmSJgD7A2vNaKMFEcPD/+PNsbttNT20OLv4WvHf4aQ4kh+mJ9FLQCsijTHejCIaq0eDq5zreOlnA3Pn8YQw6tsPjPlqy2k2C3VyMYlmAWi2SS89Bo7fqdyTx3193EvqHHiAsZ9FKRybkB7u55gBZbGCancIt2Ggo23AUb8qoOSi+9hCCKGIBSX48AyF1dKzYByiqrbSCoqlWd1HUEnw/bpk0XdcK+mOHe4Ohh7tj7YZw2i/jF8jFsoo2wt4ZmJUzf5H68kZXu9Q67B7/rjAblfC2MiDvCr237FH/1wucZWhiwri1ZpiPUedEsueXtnKUqSMDlwt3bi1lcXKLyCwhL4a6aZpEetxs9FqP84ouWABwsAXNzM+qePedUGpeIij4/z6g9TboYYzY2xprWLXidAUKuGoLOENPZaVp9rdhkG69Ov0rFqJwj0F7KL6vGQWiatYGansbM5RB9PvTxcUxFQfD5MEul80YSvVnX/YVwoQmseCG+ghB5VA9uxc2epj0UK0WeGHqCklEi4AxUZRw3trx54+qXwmUTn3Xr1vGFL3yBD37w3MrE2zg/lu8CPbaVXwBVUqnoltvxfG6e9kA733z3N0kUEwTsAdbVrnvdpGf/+H4+++xnOTZ3DLAC4npqe/id636HiDtCk88yOEwVU6iSiom5gviUdKu8niglODJzhKeGn+LLh77McMKyLXfZXFzXdB1b67dycPogH9vyMTbXbaagFegIdLA+sr56Ye9q3IVu6KRakxRLWeySilfxsqf9xkuGJF4OlqbUIu4ID/U9hEu0syG4hpnEOA67k25vE8psEtM0CXnDNBRtVlSD17vYmrh6xU/R78c9qnBP+x3WQpid4+SpZ/lQ989hOFRkm4OwK3zV9VqvFe1N6/nonb/P6GxfVbTZElmFz38uaTnfdIa2Y8cFtQ1XK7V9dc1qbJKNdCmNV/VSqBSwy3aSpSRtYhthZxjvoteKU3ZaOrPkKNOZ6SrpAagU8xzre5Zjmkbt1o+ytdyBcjKOtqjDWL4Ae1JWu+Rs0rMEl6iu2PVHBYEPuPcyXlMiW5vALTtolEN4VC84V1kVCVUFlwtjdBSlqwvB5QLDsAwLBQGhq2vFa5yPFCyvBl5ITHsxwz3d0DFLZX5l26+cs8DFEpPMzg1hk84YhzrsHtY0bkS1nalinq+FYSSTrJnS+ZM1n+SUNmO1DB1+euo2UFfbetHP93xVEKW7+wy5MAzMWOzMJJnDQXl4mMqrr1qj/uqipkoQMGIxKq++ilRTU/3+rSAqizYLZVNn+6qbeHLiGTbUbeSl6QOUjTIVvUKNswaPzcNNrTfx9MjTVfKzJNA2ksmVgaOSRKHWx6TbTdYo4K3zUE8Ex6RlTHrctsAXn/xfFx3zf6vgfNe4R/WclxABPNr/KNPZaaaz01VrkXp3Pb3zvbQH2t+S5Oey7/af/exn+eQnP8lDDz3El7/8ZUKhS4/v/WfH8tKhXbazNbq1Kmz22X0kCtZCsaNhB2tr1r5uorMcY8mxFaRHMzTylTz7J/bzx8/8MZ++7tP8aPhH3LvqXhq8DTyw5gGKWhGXzYVbcTOTnSGv5VEllXpXPYPxQQqVAr+05Zeq5nHFSpFMOcNEaoK7u+6mqFlC43u67zmnxLlETK6ll4NH9bCzcadVlYgPsbt2Cz8afIJSLo1NkDGcZYKii3ub34lzJgFeL0p3N4LLhTY4aLUcrkJrRlBVlO5umvr7+VDLfYyz0kflahC9qw2fP8yG8xCdy4FcV8f8dRvpne8lWUgQcAZZU7OG+trLz+a6FIpakXtW3UO2nGUyM0m2nCXgCFDjrGFL/RZyiwLyqDvKOzregUf1kK1kSRVTVdJj6mdiJQAW8gtM2OvomshTeu45hNtuQ3Q4qq/Z5Kgj6K5lIT17zvGEvHU0O6NW6GQ2C6qKYLfjMgzWaE6EYCOZ3ALjQpr02HFcmkhDyYHHkDEyGeTmZoyFBSRZRpBly76gUjmv1uxCrZGLiWkvZbjnUt3nX+CWJpdiQ4xXYqSKSfyu4ArScz7PmOXEIpSDPfhZahkK+VkMRw1mLmeRN5utmpO1PKpl+c/h4qRvKbzXiMUs/dXyEXXTRJ+fX9FeWkFURBG35CBc08TXD32ROk89c9k5js0do6yXq1Onzb5mFMmyxHhp0vJYW9IQLrXGl9rkw6tC/GRukPn8PC7JgZJOopcmuWvDTThDdXzh0N8xnFvZOjzfmP9bGef7vhybPca+vn1MZc9UF0t6iYHEAPm+POvC61gfWf9GH+olcdnE5xOf+AR33HEHH/3oR+np6eHLX/4y995777U8tv8QWCodjifH+aOb/oi/fPEveWXqFRKFBCbmVWtpnY1js8dWVHqW0nABDs0cIlPKkCvnOD53nG8e/SZPDj9JvBBnW3Qbd3XdxYa6DYylxvCrfnLlHPvH9xN0BhlcsC5uv+qnolc4PHuY2ztvZyw1xkR6go9u+egF+7pnXziZUuayQhKvFB7Vw7roRgxnC+uMWsZLc5botstFkxRAsDs51TbPdGUBRZgjKvlp1O34r6LAWfT7sW3ceF4flcvBxbyf3mp4dfwAf/XsnzM011f9WXt4Fb9+/W+zuWn7VXmNTCVDppThveveS66cYzIziV22Y5omw8lhNkQ28J6e9yAgELRbLRm34q5mEMGiY+8i6Vny+ck7JKT6ehBFtOlpzHweY3YWwWbDVV/PvR138MjA91nInIlACHnruHfNfXgcPirJYbDbMaanremsUgkkiZkt7Xy/cpzY1KAlTNZ1y2um+Z3UTWXQxsdRurvPcfK9XK2Zkc2eQ3rgjJi2ee+O12y4tzS55PXXnqP3WO4Kv7x145NcrHJ5CZXOckxePKbKwIA1wi0IZO0CE0KanEvBnddoMDy4i6YlSD5L1H8h0mdWKiscmM/9BXOFIHz5eRXsdho1g2NSjlg+xl2r7ubvDv49yVISl2wNIhS1IrlKjieHn+S/3/jfeXnyZUzMqkBbWPQK0pNJenuC/OFLf8KxqTOp9B2RNTzQegffn36e7Z3vZmD/UUSv9xyX6/ON+b8RuFptt6ns1ArSc77HfqqJD0BbWxtPPfUUX/ziF/mZn/kZ1qxZg3zWB3no0KGreoD/EeBRPayNrGVtZC1tvjaOzx+/qi2t82GheOZmpRlalfQsIVVK0VPbw58992f0x/tZFVpFRa/wc2t/jq8f/Tp9sT48Ng+qrNIaaOW3dv0W/+OF/8GLEy9Wn2N1aDW3tN3CDwd/yMe3fZyhxBCPDz5O1BO95CJ9PhvzoCNYdft8rTibMDS3t7M+12zdKEslxgozfGPgn9k/8SJOlxddFAg5Q9zTfS+rKh7WcPVuQK9VxHi+c+NW3Fzfcj1lrYxmarhtbpyKtSt9MwnRTHLyHNIDMDTXx189++f82Z3/mzp/w+t+HbfiRjd1UqUUJa3ESHKkWskBy0phNjdruX0vatha/C1E3dGqCH9pQTaBhrpu0DRcgmq1mpJJqxXlXZxym5kBw6C1sZsPFSUmxDQ5o4hLctCk1BJoWw+FAqZpYkxPo09PV0fOC/UhHjn1EEmniJnPIzitaslCKcm+yaf4QMtenPHsGSFusWgd22KsxMW8YJagz82dQ3qWYCQSuFKF1224dzHH3bMdms1SiTZXE7+6+eP0xK01IR60cUqbJpFdICiWWVUbIZ/P8MiJfyeetoKkBbudoM3PvWvvp6mgXnZ+lqAo1qj/+SCKmLoOhkFleNga8V+m4RNkGY+u4hTtdIa6UGV7NRJHN61wTtO0zGLn8/NWJVxxEXaHWRPsJjk7xlh6nJRzAXt9iH8a+FeOTx1e8RkOpYb57vjj3Nf0LmZzs1CpWOJ0jwdBFM8Ev5omyVysStIuVP26FMxSCT2ZJFNIMV6YISuU8XpraQmd22q6HHfty0VFuzhR1/QLhNu+ybhiYcPo6Cjf+c53CAaD3HfffecQn7dxcXTXdl8TonM2lna9QDXIc+n/FUGmwR0lV8mTLqVp8bWQKCT4xc2/yLdPfJve+V4EBJyKk4pRQUDgr176K0xjcQR7cUT9VPwUHtUyuXIojmqMxcVMqzKlDGPJMZ4aeYp0KY1u6LgUF6qskiqmLjgqezm4KJmKtJKcHeM7x/exf+pF3L4Qr84eZj43D8ArU69wW+c7eZ/w82xr2HbFr321sNz7aQnJYpKXJl5i/8R+mn3NvDrzKlF3lFvbb+XHIz/m7u6737Q8st7ZE+eQniUMzfXRO3viqhCf5Xq55cGgBa1A1B21Kj1nZdR5VA/v3/B+JjIT1k1+sR3SWNfFzaEdZEcHqF9opDI2g+D3ozQ2Ujl92mqvzM1ZKdmBAL7mTvyL0QeC02llTbndVIaGLKfrfH6Fz86kWyM+Mo2khKvZa4bXjTdUT0WS+Ym/TFtLPe02BXVwMXgUELxejGyW0osvnmnLGIbVvtqyBTkarb7GpXLPzFKJtvY1lzTcuxSWV2mXFtfp0gR/tf9/MpQcBkWxWk2CwNjCEN+f+DFG+23MVZLsn3qZQjlPLD1D30Ift3fcTqVcwFwkPWY+j+B2E09O8UjvQ/zCmvfiLpiXlZ8l+v2QSCDW1FjhrUuQZfIBJ1MRlXzmFK7pMo1jNQS6ehCczmqIrqCq+FQv+VIWn92HT/WtuE/mK3nLZwvLbqPR18jHN32M3MQI3zr1MLGFCZBl/E2dHIudQHW4KS55CQkCZrHI4NRxyk23YJi65WhuGNb3RJarWiMAr6FQGRpCn5y0jk+SrAk0j+eyLC2MZBJtYoLRxAiPnH7UIpWiiOjzUdu2lvs2PFi9P1yuu/blVpyjnigO2bFiE7IEh+yg3v3Wa+vDFRKfr3zlK/zWb/0Wt912G8ePH6e2tvZaHdfbeJ1YH1nP+vB6js0ds3JwWCQ9psjHt3+cJweeQLHZOTF3Aptkw6t6scv2qgkbQMWoYJgGjd5G9vXtY2fjznNeZzQ5yv2r7idfzhPPx2kPtDOwMMDphdPnlFBHkiN8//T3qXPX8dVXv8pEegKbZEMSJdr97dy/5n5SxdRrcvs8H2EAmM5M85WDX2FP0x5i+Rh6wMsGdQeP9D1SJT1Lx5bXCvzFC3/BX97xl29az33J+0kSJGqdtRS0AoVKgc11m1koLtDobeTY3DGmslM8OfQkN7TccEmyeLGb2MU0FpeDZPH8VYfq45cwtbtcnD1quxQMqogK7+h4B0G7Vek5+xysqlnF7+/9fZ4df5ZkNo5S1DCTKbKjA9zdcBOOXqsaYuZyaCMjiC7XmcTwSARtYABKJcRg0Jr+WxIVp1LWv2X5nNZO1ihWpwUBci4FX7CG753+PmMLw6yqWY2QzbK3/Sbe13UP9SenEex25HXrKL/8slWdzOerRoZ6LIaRTKLeeCOiqloVJFHEWBz/FiTpDAFZxNJxXsxw73JQrT4Vi5iiiJlO06tMMjB1wnptUQS3G9lm57qm68lT4ku9X+fJ4aeYykwiIrGmZhW7GncSLyV4euRpbvNvQy5VSNl1NDmP4pWolOOM6wuswW99Hpdo+QmqilJXh7Btm5VlFouBLDPV5OXR+Ask5wyMXsusMOSt416lQlvnNvTh4SqpjKghgo4A6VKakCO0IoQ5YA9YmkHvTjoCHeyo20ZTUuDrpx4mnp2zWmnZLHnK6KZBspzG5/JQ1kpWBW/Rp6sgaDQYPtrcTdYGQdcxl30+7TXdrPZ0UH7hoBVSuxhXgiyDpl2y+mWWSlTGxkjFJnlk5NFqJW1JMD8/cpKHpe/ykW0fw6N6Luiu7ZAdrK9dXw0BdsgOnDYnx2aPUdJLF6zGN3gb2Fy/mWdGn6GklapWEw7ZwZ7mPXSFus55rbcCLpv43H777bz88st88Ytf5EMf+tC1PKa3cRXQ7G/m96//fT777Gc5MnsEEQFd13jvpveTLWU5cvJpbthyPyICGAbJYpJEMYFNtFV1EaIgVvPBTEwrxVmQwASXzYVdtuNSXPjsPlyKizp3Hd8+/m38dn91ImyphNoR6OCRvkcIOUJ869i3mM3NUtAK1dJyX7yP7/R+h7u67npNbp/LzSKXkCwmGVwY5ND0IWayMwgIVvvD38T/s/NTzOfmeWXqFV6eeBENg4pRoW+h703puS9hKQMt6omyr28fr0y/gl2y41at0Ne9zXu5p/se/uXEv3B64TS7m3ZftMp2sSpYk+amcvSoJc69wl3mEvz2wMUfv4Sp3ZXgtYYddoY6ibgjjCZHSc9PYidGNNeO4+S0RVoUBcHtxpieRunpgcV4A2101Bpn93ox4nHL+TefRxsfR2ptRXQ6ETyec1oubtlZzTyreF3gsPPkwBOMLVguyYook64UeG78BVRD4mM7Pow7VbRaZ/k8xmJGmyBJVsumXEYfG0MbGbGqCakUUksLgqpizM1hCoK1MLrdCLJ81WwEquLpfB4xHEY7fRpMk8R6G2axaBEuux0zl2NVx3piWoqXJl6i3htlIjWOgQlo9MZOYmByV8cdTKYnmYtsZH5hkHw2YU21lUo4VDe3ygXWVAJVc8ZLQfT7URwOK+k9mSSrF3js9P8lIZcxY8kqIY2nZ3jk1CN8JNqJf5lYupA7zUe3/Qr7x/dzV9ddPHr6UYaTw7gUF367H7/q546uOxZbXTLjhRmL9IDl/Gy34zQVSvkMdsWOuUJOYI3y16hBOgaS/MYNn+GVVC8LhQQuxUkul2QoNczHN/8ywek05cVoDWHJM0rT0BfJ3MWqX0YyCaUSE0biDOmpPmhgFovEE5PV+8P5NiIOUeXBtT/LVw59hensDOliCgOTLXVb+PTuT3Ns7th5jStHkiM82v8onYFO5rJzTGctS4GIO8LamrU82PPgW1aXeNnER9d1jh49+raXz08Rdjft5m/u/BuOzR4jlo+hSgqqIfLXT/wpml6hUimyIbKB47PHwLRG7IOOIIZpIIsyqqSimzoO2VF1u10yBUwUEqRLaQpagaJeJJaPcXjmMHO5OcuNWJSRRblaQv3NXb/JQmEBp+Iklo+RLlkxE+lSmmQxiSiIzOfn2Vy3uZq6fSU4myyVtBLDiWEOTR8iUUzQ6m8lV8nx9SNfZyQ5gk2yUeOsoae2h3vW3Me+vn0oooIkSFetSnElWKq8OEsmIcnDD04/xkuTL9HobWQwMchwcpgjs0eI5+Osi6zj/lX385VDX2E8PU65UiSTmkPTJi2diiAgOJ3knNIFq2D/58BXuDO4Czt5GhQ7zmTaqlBcxi5zOdZGemgPrzpvu6s9vIq1kZ6rdo7gtQXyLv87reKnNHgQPZMAt9siEoZxprW0lHCuqpjpNEIggJlKwaKYVayvR3Q6Ee12K1/K57MCJotF6zkEgYaSg5CvngUjS8Yl4bO7qqTHo3qrE0qFQpqh9Ajj+WlW52xWpUmWz7RDFrO+qtqkbBYUBW14GD0Ww7Z9O+UDByzyUyqBICA1N18VG4Hl4mmxrs4y5wOMTAa/WW/51pTLVgaW241XdpPVC/Qt9BNy1SySHgCBiqExnBjG7whiV+zMFOYolyyN09J7K5SyTOZmyLmbcRvyZRNvQVWRIxGIRBjvfZr54d7z/l48PcNYfoqA2l0lEe7ZJP19L7CreReiIBKwB9BMjVwlR66co8HTQE9tDzO5GW7zb+G4NnbmCRclHnImh9fhxy54yRRTJHJx6ztkGmyo38yNrh7GWwp84dk/pz83SkG2NpJra9fyWzt/k9WjFSs7LGP5vBmVimXKaLdb57hYvGj1y6xUMDWNrH5uq8n6BdMa31+8P569ETE1jXd03cFXDn6ZQ1OHiHob0CtlkCSOzR3jBwM/4Lb22xhOWhYmI8kR1kfWr6iwS4LEtug2TEyKWhG/w8+dnXe+pSfVLpv4PPHEE9fyON7GNUKzv5lmfzPaxASp5CzPZY7SGmjDJioYU9P8fM97+YZpcDp2Gp/NR0ewgwOTB1BllansFE7ZSUWvsCO6A4fsoNXfSrKYxGVzoYgK7YF2OvwdnIqfYv/EfjZFNtEb6yXkCCHbrK/XUGKomgmUKWWqbZzZ3GzVwXk5TsydYEv9livaLZztK5IqpsiWs8QLcRq9jdglO98+/m1GU6OYWFlFRa3I/on9rA+v533r3keTtwlVVq3071LmDdutLPeCaXAp2A2JU7FTuG1uxlJjJIoJRERUSaU/3k9nqJMXxl9ga/1WRBNOjr2K3HIvpf37qwnpUk0NQ3Ui8cSUZcC3iGQxyam5k+QzC4SbRKZ6DxDy1XNP823Uj6csL+tL7DKXo87fwK9f/9vnner6jRs+c1X0PVcTgqIgulyYHk815Zxy2VogVBUhGLSS0hdFqoLNZi08ponc3o42MoK+sIBYW4uRSCB3dSGvXo2+SEgol3HOJrhvw/18L/MKs6UxK6dLEPCoXtr9raQzsWpieNmokC3nAJtVOTJNq4q05B/kdmOWSpiZjFWZkiSQJKtqkcth27btjGvxohDazOcpnzx5QWH05WC5eFpQFGuBTaehWKQrbaO9bjVDUyegXMKsqJQqBcpmGUVSUCTFIt8IeFQPNtFqZwuiwKrw2morcbnmJupvppBLMR7IsaF1x2uylcgaZ22YBIGKw0Za1igbFcb1OO3LruulamHvfC+SIOG2uatByNFglLXhtYylxrir6y48JfsKN3ZBFEFVSSRneGD1Azx0+mHCvnaKzjo0Q6PV18Ivr/swnvEk/3P0/zA034+iKCiaCLrAzNRp/u6Z/82frPt1Qqllo/iahplKYS7aHGAYF61+CYqCIMu4JccFfsFquS7dH5e7a5uGgZnPo6pODk0dwiE7EEyTqCeKzxFgb+v1PD/+AvP5eeZyc5iYjKXH+BX1V8iVctUNlW7qzOTOVJtSpRTzufn/GMTnbfx0Q1AUXJkyTQWV+qyIFSuQJXn0IO/rup/A9gaeHv0JH938UWRB5tWZV3ErbgRBIJaP8d9u/G883Pcw6XIap+LEMA2avE3c3HYzs9lZPKqnOgK6ZH6oGla/V0CgVCkRcUVwKA5EUWRDZAPPjz2/gvj47X7aA+0cmT3CDckbrmhnf3bOTNkoUzGsndLqkJXM3Rfvq1axDNPAxLSqOwJ0Bjt5duxZmn3NHJ87znx+nr1Ne+kMXXjs92pgyf/EyGQwi0UcGZNIQwRFVJAl2cpRQkCVVTw2D/F8nDp3HebiDUrQdLY37bS0K9nFqtdimTzrUdBjMaS6OgRZpqSVLEFwMYNZLlNcrKzFU9PsG/sRHwjdgjMWr3rKXC42N23nz+783/TOnjgTphvpecuRHrDaI6LHA5FIVYRqLjozi8EgUiSC6XCALCMXi1aobKmE4PejjYxgLixWzxaJi5HNop08ibJhA3JHRzUgs8Xp5MM92zkUO8pwYohToTVQLpOaHccQrCgDBAGbqOC2uaxwWlm2Wkp9fVaVyTStyR9VRWpttaovi60dRBGzVLLcnxdFuWJNDaxdS+X48WolZXlI5pVghXjaMKzW3eL58B8e4Fdv+Rhf0L/M0OxJMAxsggKSTK2jBt3QqXNbBCBdSpPQEiiiwon5Xm5ovZGZzDRHCils5QqCqhL1N/OOjndgYDLrMvjOxBNIUxJhV5iuUNdlL6Befy2C3W4dpyCQ8djoSw1SKFmbgbHcNF87/LWqVuVs3VhOy1HWy9hlO7ubdhO0B6vuw2apRNNsuOrGjqpiplKUEwlms/t5f9ddtDT1kMwv4DNsrNKD1CbtPOcrM5QYOkNeJMn6bESRwele+tYvsCudRfD7z3zmi6P6gixX870u9n1mdpZGMUDIW7ey3SWKCHY7oUBD1WIk4o7wazt/jb9+6a8ZnD2FqetkyzkcsmWqWuusYTQ9ToujnUf7v8dwchi7bMerekmX0qQK1gDK8gzH8+GtGk66hLeJz38SLIUBNi7YV1wgeqVE4tRR6JE5PHWIolbklrZbuGfVPeQreZyKk0TBMisM2APsbtzNaGq0Wvb8f5/6f2n0NvKRzR8hUUiQr+SJF+IUtAL5Sp5aZy21rlrm8nM82v8oq2tWk6/krZ5zeB3JYhLd1Kvpv30LfUiCdMUXztk3MZtoQxEV2vxt3Nh6I0dmjmCaJnktj12y41N9eFUvTtmJKIjWtFlqjNHUKG6btTt6ZvQZfnfP77KqZtUlXv21w0gmyeh5xoQYWSWHR3JiFx10BTqYX4wZWQriTJfSrK1dS7FSZF//PtbWrmEqPsbuxl2kjNyKcEQ0DRfuarlccLurZn7moteIXTyjTYmnpplsqtBVLlczj64Edf6GtyTRORvLs6FYWswNA8HtRu7uRgCrfbWoPdHnLQG8YLefIT2qahFDmw0qFbRTpxBra6kcOQI2G3JHB8b0NLZAgI3NdUxkjuMxbUylF8fKTctTyOUN0u5ro0kOARkolZAiEfTp6TMp4oDgdCKGwxipFMb8PHo8bpEcQUBpbaUyOAiAEY9bRpyhEMbicZ8dknkl56kKSaq6Ii+Rse6XRvnjrg9zem2JlM0g7ItyZO4odWqIseQoOxp28PLkyxS0AgICrf5WDMPAJtlwKE7es+kDaJUSLtmJpNiQFAcvjD3Ll078I7G8NaXV5G3i/tX3c1v7bWys23jJY26t7SLcvYm5/sOURXMF6WlsWIMoySzkZlZoVS5XNyaoKoHmLu4V7uGRoR8wP3kaNM2K1/BF2GM2Uff0CHJrK1JTE3p/P4bXJOnOgmGgqk62rb4Vu91NXsvjUpzksykylSxGLofc3Gz5SMXj1gsuTvMpGzZcMsBUaW7GL4rcq9x97lRX6xru73n3ivezqW4Tn7v1c5yYPEwiMQ1uFzWqH5/oZCo3TSwfI+QK8fjwDwHLDmUiPUGrvxWf3cdCYYFs6eL357dqOOkS3iY+/0kgqCpyUxPusTHuaXkn+0Z/WL1ABKcTJIn2UAfxQpx9/fuYz8+v+PuuUBdPjz6NV/Xy3NhzCAgUtSK6qTORnsA0TVbVrEISJURBRBEVREQEQaCsl8mUM3QFuxhKDHFH5x08NvAYR+eO4rf7mc5M0xHsYHPdZk7FTrEuvO41XTjLb2ILhQXG0+P8eOTH9MX6EJdNvCz5GqmSWtUyFfQCJmaV9IDVovvG0W/wmT2fuWZtr9H8NN/t/1fiyTNeK3XrdhB11TOTnyOWjyEIAjbJZgU1KnYmMhNWVo7NQ5Ozjr6pYzxhOlkTug3n/JmogkbNRcgdJqGVrTHpQqZq+hb1RleMYAPkDKv6Jjqd1zwV/s3EpWIglqCsWmWNoieTZ2IrVBXR57ME4aZptWocDsxs1vr/fB5tcBCpsRFjYQFldpbdGzcirnPyyPHvMBUfAcCpONnTtJef2/4R/FII02/t8rXhYZS1a63nWtQMGakUlcOHUXfupHTSqrCIHR2gaWijo0ihkCWEFUWr/RZYKTg/OyTzciCFw5ZoOJHALBQQ/X5rcqpSsQh2qYT/YB87IhGk+nqEBY2At5Piqvt4eOB7JAoJa9LO10zUE+XWtls5NX+KE3MnODZ3jLu67yJdTBN2h6mz1fHM2DM8N/YcnJkoZzw9zkOnHiJXyhIW3NRW1ItOHnpUD/dteS8P2xROzRynWBEQ7D4aQq3c1vlOpjLWNXb2MMDl6sZEv592xw4+7IkwUnOCnF7ApThpyCrYB8dB19EHBxFdLqTGRgSbjYBDx+7xc8uGe/nX3n+jd/6MBmlt7RpuWfVO5DXN6MPDiB4PYn299fnW16N0d1fDai91XIrDQVuylo+0rGYsO0FOK+B2+WmNdJ/XviDijlDj38TCjMiQG3Y07SZVTpNJFGnyNeGz+6l11BJwBLCJNgazg2yIbECVrfMuidJ5k9xNTSMoumnUnNZ37gqnRN8ovE18/hNBCoVQr7uO5mPH+FDHzzAh58hRxu3ys+AW+f7IDzExqyOJy4NTdcO68dtEm6XPyc5gl1WKlSKiIHBs7hgfWP8BDs8eZiI9QYO3Ad3Q6Qx0ckPLDRydPcpwcpgWfwuzmVne1fEuNtdtJuqJWhNelQKnYqfoCHa8rlTf5TexkeQI+UqelyZfQjd02gPtjCRH8Nv9BBwBprPT1LnrCLvCDMQHsMv2c55vKjv1msbrLweZUsbaoSVXOp+emjhCa0MPO6LbGUmNMJmZoqSV6Ah0EHaHeWXyFTRdQzAMsvkkDruHUiLORKDIcocoV7bM3c238ejcs8Rj4yiKNZVU723g1pabmZjotSZIFgmQS7Qj+J3Ia9des5vVaxmfP3scv9ZZSywXI1PJvCZX68s9BtHvx7Ztm7WDj8XQZ2Ywi0WMRMIaO5YkjIUFcDqtSsjS8yeTCG1tloYiFqMx24GvGGXd7t9h2kihaWUitgCdvg6C0TPVRG1iwtLwaJpV3UkkLH2NpiHIMsb8PFJjI2JtLVJ9vRWG6fEg+v1VcbORy503W+xSvj/nvHe3G9vOnZbAOR5H7u7GyGSskWu73Zp2q61FikbRxsYQ/X6ah+a4++braQu2k6dSHWDQDd3SvQRamchM8Mtbfxmf6mM+P0/AHsDv8BPPx62W+Fk6nbHkKLl8it7pY+xJ+gHOcXdejlZ/Kx/Z/su8MPEC3XO92GU7AgJTmSl088x5ea2tGEFV8chOa/qMAJTAFDTMaNQin5pmfZfKlkC4J9zD7Vt+jm8c+wa9sZPVFilYQwb/+Oo/0tn+S0Tcbitl3jAQfD7kyyQ9y49LVFWcIyOsKgA4YKGEEBvAWCVVz9XStZSrWJODP0n+iMzxEbav28J3B7+HgUmNswZJsIhNq7+FglZka/1WyvoZp+ylydDlAucaxYcqi0QdEUanT9Fo+nCbCkp391tuI/U28flPBqmmBvG661CSSQLLdrtzlSRtgTaGEkPIokyNs4ZYPkZFK7M2tBq3qGLXRepcEeQ6mVcmXmY+N4cq2hAEkainnkZfI+3Bdn5+3c9zZPYIRa1IWSvz96/8PS6bi73Nezk6e5R14XXopm6RLEklW7YEhevC66j31K8woXs9aPW38t5172Vz3WZms7PsaNjBYwOPMbgwSCwfw21zs7dpL1vqt/DPx/4ZWTz3crCJtmvWrx5NjloO2zbbiugCVxme7v0+v7jzV7j+9hs4MneUglYg4orwxZe+iCRKbK7fjGHq1IRbUSQFl7+DyRqZrFlCdXmxySr5Sh5XRebnuh9gvm6GJEWGGifIJ+eZGD6C4XEjNTaCYRAUXbSEu7DVO60pmauA5YTFY/MQElzMTPaTLaTwyE4a8V/yxrg0jp8qpqq+RulSms5gJ7lyjtncLD677xyPkQtZ8i8XkrM4/YaiWFoKr/ccEiSoKnJzM4LXiz41ZREdjwckCX1yEiQJcdF4cAV0/Ux+VKWCczZB52yCM4qxOdQbVq/4k6X2olksYhoGRjxuEQyfD8HhQGprw+jtRTt9ulqJMQ0DORrFqFTQBwetaSNJOuc8vhYiK9fVId56a9VF2n7zzRixmLXAF4uWvml0FLmxEW1wEMHtpnk0Q2TtFg4Z43zt1a9xePYwAgK6qbOrcRe/sfM3+PyLn2coMYQoiEiixJa6Lexo2MGR6cMYpo4gSgiCYBkKVipU9BLJchqWPH4u4e7sUT00uBvYP76fVCl13vf2eloxZ7eBBVlG8HotsXaxiFRXV9Xm1Kkq3QvdTGenq35qYOkZO/zt7B/6Cb3d76Z2agYDEMNh1C1bkK8wC/OctPilny87V6OFaR7tfxRZkPE7/Pxg4Ackcws0hgJw4lVuWX0Tc/l5Ao4Abf52jswc4UdDT6KjW4apbbcCZ7LaloJLx5JjLORj/PDEI5RSCYYqVos25A5zT/sdNPX3Y9u48S1V+Xmb+PyU4GpmN50vSiGinhG9DSWGsMt26uw1NDqj/MrGjxIswM2udaQn5hBrvWwLb6JoVigbZdqCHazxd3Ni8GV6Onbw1UNf5cnhJwGodVkml+2Bdp4be46ecA+pYoqwO0yNs4abWm/inR3vvKbBpUtOzJlShhtabqjueHyqjyZvEwdnDp6X9DhkBz6775r1q7OVrNWLX2wpLJEfpVCmw9/OXGmBheHTdDVvoKxZY+o7GnfgU33kK3mLXFaK3Np2C48MPcb+6ZdpcNYx0dtHwF3Lra23MBkbwj/j4Z6221mdddOg2Hlo6lXK85NI4TD6/Dw1DV3cf8P78BRsKE1NV+UGtdw/SBIk6l0Rnut/Eq9gx1uyFoBL3RiXRmZTxRRRT5THBx/n0PQhNEPDY/Ows2Enu5t2M5WZWqHbuKAl/7ZPsWZKt3Q9TieCqqKdPm0tFrJsTUBdwMdIWqz+lF96CSOTsUiTz4cUDCJ1dGBMTkJjI/rMjLXwBYPWpiIUQvD7YTECYwnn89oR/X4ERbEyv+x2q5KUyWCm04irVlE+fBhjfNya9Fr0aDHTabSBAUvX43BYi+9Z1Z3X4+sjut0rWmRmfT3a5KSlJZJlsNmqpEduacHM5Sh5HHz9ma8zmhoFrKkfp+zkI5s+wlMjTxF2hYl6oszl5nhl8hWGk8OMp8fZ2biTF8ZfQBGsdnlFL1mmq6KC3+a1BOBLx3EJd+ezhx2W43whq1d0Tvx+izAvGcMuVuQEAK8XubFxxXc5XUzT6G2kzd+GblpeaBWjwnRuBtOukqSE/ZZbLBF7JIL0Gqoj56TFL4NZKJBKzvLo6KM4ZAdPDj1Js7+Zp0eeBmDE5mNPZBvZ2CBH4ycYz0xwZ+cdNPkaacm0MJQcYi5nhbh2B7vPcUdv9jfzoxP7MObmUTTNIqyCQCw9w76hx/hQy31XNQfxauBt4vNTgJHkCM+PPU+6lKaoFbHLdo6oR9jTvOeqRhUsid5653pJ5hfwlGBVwUXgiCW0fKDhJh7JPoY5FccejZAupvB5QzzQ9QDP9T9JxN/A0enDHJs9Wn1OTdcoG2UGFgZo8jbhVb1V8WLQEaQr1LXCRXgmOcGB5AskSykCrhrWRnqu2likR/WwuX4zm+s3r/i5y+biubHnViyUDtnBqppVr6vtdim4FbfVNkilEH0+64eLEx8+QWBHaAP2rlpyRhGP4sEu2zk2e4y53BxHZ48ylhpjS/1mnhj+EcliAo/q4YXZAwRUHyU9yY9nX+Sm4Ba87hAvGSO8ahcJaDbevf5B0vFpcl4bjkiehrSI67ljcN11V+V9ne2iXeus5cnTTzA5dxqHzcVG3ypsFYN4du6iN8YlrVadq44nh55kODFcbb9myhmms9NV9+qZ3AyjyVFqXbUXtOT/qxc+z59s/DQ1asBK7+7txUynrYVLVREcDgRZvmA1Qa6rgx07rLF1RcFIJjGmpyn9+McINhv5xgizd2xlMj1JReulzuaktSDhnpxEamiwKkRLERTn8doRVBWppcUSueZyViVlctKayOtoYmTkMNlgCK+vlmhewT4/D6qKsTheL3d2Ino81vEt4kKv9VohqCpKezuC04k2MICgKEjBoDVyn8th27GDk6mTjKasz2IpIPmXt/4y3x/4Pv989J+xSTZM06TV38odXXdwdPYouUqODZENlg8YAh6bm6AjSNgVxSk7WS3XASutLy42eXj2sMMSzo41ea3nQGpuPickdulcn/29CdgD1XveOc8ligRdNdhWbXjNxwOXdroey04iCzJPDj3JVHaKOs+ZKb9kOcXx9GlaPM0EHAGOz5+gpJd4+NTD7Gzcyd7mPUiCRMgRYnfjznPuh6PJUWLJKWuqdLmLuSgSM6YYb7GCmt9KeJv4vEFYriuYsOU5nugnUUwQdARZH15fDVY8G5lShhfGX+B7/d9bkYIbdUcRBIGQI3RVKyQRd4SIO0JlaIjSK88AmTOvOZnlgzW3MSHnKEZrcekiTfhxzerUtt3Jo6mXmFmYqZZ0ZUFCMyq4FTepUgpFUijrZWyi7ZwbkJFMWjv1V/6WoVi/9YKiSEfDOn59z6evODzvStAZ6uR39/wu3zj6DaayU9hEGz6776q23c6HFn8LIU+Y+JJL62JyOLpOKBClu34dvpCVdXN45jB/+fxfEnaFcSgOTsVPUdJK1LvrOTh1iGZfE7lKjvHUGGqoG9XmZCY3S2hdO8+NP08+VkCWZBymglu0c0/tbrbMS1ROWLtyA6BYvCLzwgvhbBdtE5Op9AQAhXKONEVqsCbK4tk5xjn3xpgpZRhJjjCRnrD8jNJjKzQaYInUp7JTmIuK2Gwly/zc/Hkt+QEG46c5WRhl58EFpEgEY2amGkNhFovoU1NWlQbOW00wslnKL78Msow+N2fFAixW6qa663jFPcMjz3yZqfSk1d5yeNnbcRPva7qTxoSB7brrEESxmvV1PkxIGY6ukYgXNPwOk46tu5F1kcd7v8v89CnrfPbnCdoD3Lv+XhoSJpTLVpXAbkdubERqaLACTlX1oq+1/FxfaTVZXmznVMNUl71W8uR+AOyynQZvA6trVjOYGGQmO4MqqYiCCIIlXhYFkRZfC+mS1coMOULEC3FKeolad4QH1z7IWl8n8UICu8uLK69V9VSXmjx8rU7fl4JZKlmGji4X4rLxdMFuRx8dRQoEVlw/y+ODzsb68Pqrkl5+0XMhCCxoGbLlLCOpEe7ovIMGTwNemxev6iXsCrNQXKCiV9gu7aSndh2maeBX/ZyO9dM7e4KSVmJ9eD0bwucStEwhiSkIiOGwdQ+TZcsGIhbDzOfJlnNXPCV6rfE28XkDUNUV6DqH6nW+dvCfGEwMYZNtVPQKHpuH3937u+xuOtcbYSQ5wqN9j64gPWCJbh/te/SqXThn47xiSMPAOZeiK5/HFl4H+TxgLViNRSdhew1RtxVaF7QHKGoFipUCpUoRt90KM90U2cS68LpzKj3TM4MrSc/i6w1OHuev9v8lf/aO/3FNDbFW1aziM3s+c9VvkhfD8l1pfNlodcgd5r4ND1ZJz1hyjB8M/ACP6kERFW5tu5VMKWO1GQPtBB0Beud6WVW7Gs3QrbwgXafWG2E8O8njQ08wlBjCKTswKiXaAp04nT4itbvwLjses2jFJlyueeGFcLYmqqgVV4g6y6ZGWbGTpmgZywlpWhVjUcFxpsKpGzpe1YsiKjR4Gs4hNLIoU9JLVS8ot+JmOjN93mNaMuBLFRIYMzMWUdA0kCRrgkpRMLNZjGzWIkJLOVnJJPrsrBUkarMh1NZCsWh5rggCgtdLoS7Ai5zmseEXmEqMWcZzqkpB0Hh+6iXsgo2PRu/B7/Fc9LzuH9/PH//kj9g/+jzGYvzBtug2PrXjU0wXZpEKBVAUUBQWtAyPzvyED4RuxRUrgiyjNDYi+v1X1CoZSY7wbyf+jaHEEGWjjE2y0e5v52d7fvaS1eSz22BLWO4ObJftbKrbxHdPfheXzUVJL60gsP3xfq5ruo6TQydp8jTwmZ2fBlHA7wxS0ook0vM8e/rf0Q292hptzFgk43IEs6/V6ftiWGorCbKMcNb7P18Lbnl80HLysz68nt+/4fcvuOm9Eiy1SfVEopoSL6gqgqIwGRQZzk0Qz8d5//r387XDX2NwYRDDNFhds5pmXzO3d97OwfmDDCeHSZfS/OLGD/N/j32brJZHNAX8qpdSpUDA7j/ntV1l0EdHLYPLRQgeD1JDA8bsLG7lrTcl+jbxucaois7KZQ43ifzuU7/H/vH9iIKIIIhE3BE21W3iz1/4cz7/rs+fcxFMZafOIT1nP3YtiM8Fd/yyfMbRNn+m6W5WKrgdDgbn+/EoLip62VqAsXb86VKGqDvKnqY9dIQ6VjylkUxyqji+kvRUHzQYmu9/Q/KzrsVN8lK41K50JDnC3778tzw18hSKqCAg4FScjKZGeWniJeQemfH0BDo6AgIGJiKCNYLskRhKjlQJg2CpEBhODPLtk/+XnTdsYnnTT7DbMfP5KzIvPB/O1kTZZXv1e1ORIG8T6C1NowgyomkymZnknwa+w33qA4QcoWqFM11KM5oaxWf3kSlluKn1Jh4feJyiXsRj81Tfj122I4kSLf6WFcGzSzANw2rF6Do+mxfsCYtA2O1Vj5ql6SmzULB8jxSFyvg4pWefxZibW/bm3Kg7dlg1JsNAyOeZEGUyWp6p1Ljl6LsUXopV4RrKjp23qrUcY8kx/uSZP+HFiRerpAfg1ZlX+Yv9/5uPbfhFji/8ECWVrXrqxHMxpjpF1jibUTo7r7idlSll+Oej/1wNpixpFik5MXeCXCXHp3d/+jUR/+XuwN2hbgYXBi3zzUKcGmcNs7nZ6u/qpk6ukmNjZCPTC2M89uq/sq5hE1OlOPOZGVoi3ThEAZskUy7F2Df8Az7U9bP4o22vK1z39eBS18f5Hl8eH5QoJQioAdZHLlzpP+c5LzGJaBYKCF4v5vT0GSNTWaa0poNHE8+hOjzsaNzBnz77pxyaPoQsyOxp3kPvfC8vT73M8bnjbAhvYCY3w3vXvpdTC3385p7foj/WR6qQZCEzh8fhZ11ozYrj0pNJ6oYWCMoe4uKZVpeZyaBPThLu3khL/Zq3lLAZ3iY+1xxLu4PpqIsfDH+P/eP7kRZHxQ1TYzw9jmZodAW7ODx7+JwLoVgpkivnqqK4pVHzJWi6dvZLXhUs9/FYDkEUERsarEVj+c8dDnrUJnTT4LqG3bwwuR9Nr+C1+zBNgw11m/jUjk+dQ3rAulFYUxsXgGm+KflZbxQuRLiWtDLj6XEm0hMki0lsko16Tz0Vo8Lupl1MpSdp87dxeqGfTClNnbsOVVBA1/E7/JyYOwGCgCxIi/b11kI/FOtnppKsvpYYjVrTZVy6hXApnC0sFRBo8DbSVz5FupQmPXuUidQ4AFujW2mOruHV2cM80vcI1zdfX61wCgi0BdqqAbpPjzzN7qbdHJ45TJOvicwimfbb/eyI7mA0OYqBwR2ddzCaGqU/3m9pgjQNdJ2OyBpWK1GoDGDqOoLDYRkFCgLm4o1ZsNstEiTLlJ58skp6TMOwzt/UFJWTJ5FaWtD7+zEVhaxRoGiUz1S1llW3YDGWQstf9LwemT1C73wvLpsbURXRdY1sKY0JHJh6mY9u/ihZr41AwWbZDyzu6PM2sPVsQVyMtrgSMnA6fprnx54nUUwQy8eq+qmFwgIPnXqIW1pv4frW66/481/uDuxVvaSKKTRT49jsMXY07uDY7LEVEQd17jpuab2Fv/zOf8HUigR9dRwcOYGoyBS0InG9gCLKqKJKQbFzxJHANjyBBxuN+HHlNQS7/YrCdV8PLnV9XOjxpfigK8WKScSl11g20l/dXBeLyC2W/mZJcD1gy7CQSCGbRSLuCH2xvuqxDCeGmc/PIyLSH+/n7u67cdgcPNT3EPFCnDZ/G0dnj9DgaeDu7ru5peVmPLEspq9U/V6l4tOMazF61t3EVGGW/Nw0s5On0Q2NoM3LvZ1347Vdm+GQ14O3ic81xhL7P1EaZyoziSiIFunhzK5uJjtDT20P46lxZrOzzOfmLZ8FIFfOUdSKZMqW1mZp1Nwu23HIDurd9dfkuFf4eJxHwCcFAhiBQNUATnC5aDh1is/s/E3+10ufp9PXxu6GXVSMClFvI3evupct0S3nfS1BWZzauBAE4aqmfP+0YDQ5ylhqjIGFAVLFFB6bB7ti58jMEW5uu5mFwgJHZ46yt2Uv+mLm057mvSTnJ6jxh7mt7Ta+cfQbyKKMXbZbLYZFnxgAfTHSQ4xGUa+7DmN+HsHheM2Lx1hyzNrRFhN0BDrw2DxU9AoGBje23khroJV4Ps5Dvd8FUaQ10MbqcA9/d/Dvef+G93MqdorR5OiKCqdpWr4iIUeIbDnL1uhWXDYXFb1CT7iHd696N167l+8NfK9KtGayM0ymJ9nZsJOXJl+iYpZor+3mV1f/Av6BGcxoFG1wEKW1FU3TMJcMClUVJAmpqwsjFjtDehbHqlEUK8dsehpl82b0xZ+7RT9O1c26+g147X7KZgVVtpPKL9A3c8KKpXD4LnheD88cZmBhgMnMZLXa45AdhJwh67qvCGQrWUqFLKLLhRAKITidCHY73oY2y1zwEovj+TCVmSJTzqwgPUtIFBP0L/SzqX7TFVd9ZrOzJPIJbu+4HVEQKRtlnhp6Cq/dy6GpQ3QGO+mp7aFiVGj1t7I2tIbTM70UtTwOuxu3zYPD5ma6MEtqIUvZqCBJMn67n5xe4JXJAwxNn6RsajR4G3lf6z20J8okxk4zlVfIGcXXPfl6MSy54J9viur1XD/nw+WMqS+f6DJzuRV/m9Xiln5NlpnLzVHjrMFZceK3+xlYGMBc/E9ExG1z89Cp7zKUGGZbdBuqrLK5bguKJBPPx5hLjHNw5Pvc5/0Q7Y3rGEmO8NCpbzEy28/CQpmSoFMfaOL+zZ/CNxqjPmUQyEqIrVfvfFwtvE18rjGW2H+imESVVARBxDDPrdJUjAp+u5+/eflvEEWROlcdz4w+Q72nvmr/niln0AyNWD5Gu7+dPc176Ap1XbNjP9vH42yx5Nl6BaWzk20DA3x+13/nRGmcRClJwB5gfXg9LeELZ16Jfj+rE02013Sf2+4SRdpru1kbXnvV399bHdlKtkqCI64I8/l50qU0uqnz2OnH+MS2T3BL2y2MJUf51LZPIUsyLWqE2jYVu8fPFBminijxQryqqxBEEVOWqXXWUOepx37vVrDZLNJjs6GsWvWaytL7x/ev0DDIosytbbeyqW4Th2cOky1lmc3PErAH+N0b/gtDC0PM5GZ4YugJKkaFsmaN8hd1S6+zFHA5nBimYlQwDANJlEgWktzccjOSKLEuvI6IO8KXXvkSQ4khSpUCNkPAJzhwuVooayU+c91nUHSBVUINgb5JtPFxi9AvLFDp7bUMAZubwWZDDAbRRkYsklMsVn14BMPAtNmsMr7TabUVnE4Enw8znaZJDDIaENk39RQnR56oumM313Rwa/c78BgKbU3rz3teZ7Oz/PVLf83W+q0rfl7QCsQLcQIOSyvnUb2o3gCi7LPIj80aEGgNdViL44kT6AsLljZvUbAtaNpFxeqKrFDSSueQniUICFds3nm2lUCunKPOXcendnyKE/MnGE1ZxNYwDFr9LTS7o3zzyP+PX1j3Ae7c8G5cNjcOb4QNDZsIZ2d5evApymi4VDexfIyA6ucdrbdyYvQVAE6pJxjKT/LLmz/Gj07+O5UxsLutCcklk72rOfkKK2NPzkc0r2ZbR08mre+hqlbbp0Y6bb1uOo02NbXCH8g6EIGcU2acJEnJZEf7DWR0K0NRkRR8og9ZlJEECQEBExMDA6/qZTg5goFBSS+RL+c5Nn2YFn8LIwsj7G3ei+Fx8szUC8huL4/0PcLJ0gQvJg+RyJ5pMZ+e6+WPtv0Ojv4TCNtcb7k2F7xNfK45ljwfot4oTcV53tF+G2PpcVLFFJPpSXSsBWlV0Ip76A51U9JLKJLCHV13MJIYwaW42BDeQLwYxzRNZFFma/1WPrjhg9c8QfxCAsbz/q7fj239epqTSZoq9ReMAjgbgqpSX9fBr237xPmnunb/xpua9Pta3IavBtyK24oFMXRr8TcNK9dMkJjJzjCdm8aluvBiJ5dZ4Pb6vXQdj6Gsaoe5HDWhMHd03s73Br6/Ypy21h3m7u676YmsRy7J1vsKBC7rszofxpJj5wg3A/YATw49iSIq3NJ2C/P5eQrlArqp0zvXS7aS5ZWpV6q/v1TRDDvDOGQHkiAxnBi2pgAlGw2+BmqcNeiGxnNjz9HoaUA0YTI1wZPDT5LPpzDSadA0HKqbVb4OvBWR+i4f65s2Uz5yBFpa0OfnMebnLbPCxkarLeVwYExPo4+PW6aBPT1gt1skQtctwrMoGMVutxYhpxN1716QZbRCkuMTz+NUnLglJxlJB0FgOjvNYGaYP7jxj6pC9bPRO9fLUGKI9bXr2Vq/lQNTB6qPFbQCQYLsbroOp81FIFCPtBgZsHwqUhsbozIwgJFKnRknttks59/FyI3ziaqjzjrqnGHm0tPVFO+lRbTJ24TT5rwi884lErdchK7KKidjJ/nSK1/i07s+zXPjz5Gr5FCQiOdiHDj9DLc07mGj2srpwkFOz55Ey/n4ydgzuBQXd6+5l339jyILEhWtjM1lbR4BSqpEvBinvpjhK4f/gYXENIYssVpej9/uZ6GwsMLf6WricmNPrhTL7zUAlVOnqptOc7EqKXi96NPTVhjxzIxVfSoWLWsMQWDCY7Bv6GEyxSSr1t7A3774RUZSo3x404fx2/2cnD9ZbZfLokzFqLA6tJpcOVfVzXlsHrLlDJlKDklWyBYTvDrzKi+c/CGC00kejf5YPwfnjtBZ00Vt614qRgWbpDCXmuaJ+RcJ796D+wrDcd8ovE18rjEEVWWq2cv+I4/wrb7vcF3rXk7F+kiX0qypXcPJ2En2Nu/lPevew77+fRyZOVI114u4I+xq2IXL5qLGWcN4ahyfw0fIEWJbdNs185d5PTifOeLlQPT72ezYzecCTZxMDpAqp/E5g/RE1r1ppCdTyjAy20dqdvxN0RO0+Fto8bVwaPoQuUoOt82NaRoYpklHoJ1kIUmqkGRz3UY2lWsITeYw3W6M2VlEl4uagsAvbvwwgigymhylpJdQJZUWfwsf3vThqxYqemz22Dmjum6bm50NO5FEib966a84MnOEkl4i5AhxY+uNXN98PQenDlJZbLd5bB50U6cn3MOe5j0cmDxAupAk4AyxuX4zz4w+wytTB3hR9TGeGueOzjvIlbO0+VtXkB6AQilLX2qQja4O0mODmOF1KN3dVEZHkSIRxNpa9LEx9GIRs1yupmKLkYjVzlpcZMRQaKWwWdehWERsarKmwKamEPx+RucHKA4P0OH0UFu3gywlDMPAJdgIKbUUzTIXwpJ27YdDP+SXtvwSJuYKQri2di2/vvPX6Qp2sbZ27TkCeLNUQp+eXkl6AMpl9HjcGi44T0vGSCYJpnTu7LyDTCnNZHoSTJOKqdPkb+Hu7rtJF9NXZN65ROKWY6k1f2zuGD9n/hy5co7p7DQYBmE1xNbgNu6rv43vn34CfWaGupLOgDtP2FnLeGaSFydfYnvDdo7NHqU90M7GyEZmcjO4aqPolSz1DhctoQ72T7xIQPFQ0PL0xfrYVLcJVVbPyeW6mnit97oLodquLBYRampIx6aYDuoUBYFZM0ahmCVoOugu1eDauJrR6VPkxSncupMGVcSt6+S9dvYNPUw8O0dP527+8cg/MZWdIlVK8XcH/o7/78b/j6+++lVmc7P47X4ypQxNviZua7uN0/HTADR6Gol6onyv71Giniin46exSTZUSbWqT7JMLB9jLj/H9sYdvDD2PD8a/XHVZqDV38otzncxEDJpeotNcy3hbeJzjZEpZdg3+kMqEuxq2sWL4y/SFezies/1OBUnH9n8EbbUbeHR/kf5zsnvkCvnqHXVkigmWCgsEHKG2Nu4l/HUOLIo8/Cph6sLx380CKpKfaSD+si5AuirjUwpw+n4aaYyUyiyUvW1GFoYomRYI9LZUoZsYhYtl2UuPobfGVocp706fjeXgkf18KGNH+JU7BTzY/NUjAqmYdDqbWZbeBOn506xVWkhoOr4Tw2ipdNWtEF9vVV27+pik9/P7/kazsQ3qH7WhtdeVTK5ULS0NaIgEnKEUGWVjXUbWcgv8OLki2TLWSu81hCJ5WP8ZOQneGwettRv4dXpV+kIduC3+7mx9UYi7gjv7/5Z0ql5JpVBVtf28Ozos6SKSRo9jfTPnwJMRlOjjKXH+O83/YFFXiqVFSX/QilL2qfh1AT0uTmU9nYUWcaMxzFyOUxBsNLWTdO6mdvtmIaBWFuLoKoYY2PYtm+nfOAAxuyZKSShthZ1507LAwhA08iaJTBNlFyJUA7OhA2UkezGRasmS9q1glbgX3v/lfesfQ8f3PBBsuUsLpuLTZFNbKzbWCU51QpDqoDps1n/1rSVpKf68mXQNEuYvQxmqcTw+DEe7f8+9powPTU9rAmtRhAEal21mIJI2BUmV8ld0ebqQgMIdtlOxB3BxORXtv0K2VIWCQFv3iA6V2IiHSc2NYDocoHPhyIVGEmOEvZEcNpc3Nx6E+tr1zEQP80zoz/hru67OTJ3lHzFmipdFekh4Ayg65aHTEErVN3h4bXncr2RWC5QFrxexkpzfH/qMerb1vHVw1/j1FwvkUAjIVctt3bcRmwiRsR0I6cUisUcQX8919VupFxKE89aZL1skxhID5MqpzFNk4JW4EsHvsQ7Ot9BvbueOncdoynLc6sv3keLv4U7u+5ElVSeHn6ailHBrXoYTo2ws2EnpUrRavGKIk7FSaOnkSeGn2A8PW5tGBa/ZyPZCX4y+QKdkTUXe8tvKt4mPtcYS2ZugiwTcIXY0biDTCnDTHYGRVK4vvl65vJzPDH8BBW9gk2yMZYao6gVMTGZyEywLrwOVVbRDI0HVj+AU3HSO9/LUHKItkAbrb5WPKrnqsZa/EfGSHKkOsZb0AqIgkhPbQ8RV4R8Jc8zY8/QO99L0B5gc+0GbGWDG5uuZ3LyZNVp2JWz/Dryfuc1PefrIuv4L3v/Cz39Pczn51GQmM/McHruFPd13M3cyYM4XT1IkQhCczOCzYbU2Ijc0FAlZUumlNcKQXsQURBp8DQwmholXUpzXeN1aKbGwMIAjd5GBKyE+aJZZD4/z3x+njpXHe3Bdv7L3v/Clvot1cU9Opbm/W330WyrBZ+P43PHEU3IlbN0167GMA1qXbVMpicpaEWinigT6VPnTFP53TU0luxVTyrR7ca2ZQuV3l6E7m4qp09b5Mdut5yzJckiswCGgZlIYNu2zSIPRcsrx9Q0S+y/OBUm+ny4k84LnxxZvmjVZPnod0Er8HD/w9XH2gPtPLj2QTyqBz0Wo3L0qJUJtjjRJXo8iHV11oSa17vCR2UJgutcjUUqOcsjffuIZ+eQcnO01jWR1PMUKjkUU6Iz2Emskuae7nsu+l1eErMvFBcI2AN4bB7u6boH3dQZSY2cmarDqvzUuerY3rC9+vdGMolmjnNqfv5M0r0o4nV7qHWHmcnNomd0+udPcXjqVXQRvHYfE4lRy7TStMwyPIqbI9k5WlwNFMt5sNkoG2eqbNcqcuZqouoN5HKRSsywL/Yj6qKdi6TnJI017Yylxwm6w3zz2LfY1bybA/FDpJOzqCVLLvFM62Y+uv2XUUK16IJJ1rT8s8q6FXcjCRI5Lcc3jn2Dsl7mv17/X5EEibArjEf10B3spsZZwzeOfYON9RvJlNIUKyW6Q13c0XUHB6deQZBlHLIDVVaJeqIMJ4aRRdnadCxmxFlaoeFrNnF8NfA28bnGWNptzGRnODh1kBZ/C2FnmIg7glf14lJc5Co58uU8FaNCvpKvkh6A2dwsc9k5BhODtPpb2R7dzlh6jKdHnwZAlVRubr2ZZn8zz4w+c449+7UQ9/00I1PK8G8n/q1KesA6T48NPEZHoIN6dz1DiSEM02A+N8+rxmE2hnp4avRpro9sZ3p+mHGSrBbcjBZnefTw09f8nK+PrKc/3k/IESJfydHubUXJFZg7eRC/K0RjUcWYn7dM7NraVpCeNwLrI+vZ3bibZ8eeJV1KY5hGdSpRlVQKlQKGaWCYRrVkLgoiuxp3cYvtFk7Mn2BL/RbMUgltchJ9ZoZo0E0pNk9aLnE61kdXzSom0uMMpYaxS3am0pMoiwagt7Xfxg9zOabTk9VjivqauL/9Tpy9KYQ1Z86F6Pdj27oVfXYWsbbWIjXlsuXJ43CgtLaeMe80DIsYLcLM562R4TVrEFtarFHiSoWmqVpC3jri6TMj2mCNxtfUNl+0arJ89HupTWQaBu2eFn514y9TkxdI5scZ7j9AppLA43TSUFJxzqWsY8/lwGZDbmlBO9tEzutF6eysimKXMJadrFYFdEMnNTVCRRHJUySZmuO65j3c1frARUnPkpj9yOwRIq4Iw8lhGjwNPLD6Af7x8D+yuX4z26PbOTB1AM3QaA+0nzOgIPr9KA4HflceKdls+SnZbARUibVmD2JMIpFfwKN4EIDrm/dglxz825FvIZgAJq3+NqLuOjZFNtHobSCVjaG6fATsAcpGGZ/d95aUBJyN5d4/E0aCeHaeYFM3vbPHCXvrGcuMkyqlqPPWowsmTw0/RcmoIBRLRJy1SAYMzffzSP8+2sMdzBbm8ajeFZ5QAGW9TNgZpi3QRq2rlrHkGPWeeqKeKP9w6B84OX+SdZF1tPnb8Nl97GrYxWMDj3Fy/iSpUroa5ZMupWkPthP1RJnPzSMIAgICbpubZl8zuUoOh+J4o0/jZeNt4nON4VbcZMtZDk4dZEfDDp4be44fDf2o+vhYaoz39LwHu2zHNE0M00ASJGuhWBx5102dklYiX8nz+ODjfOv4t9hcv5mXJ16m3lNPZ7CTn4z+xFpU5DM3+Wsp7vtpxWhylKHEEEWtiFtxY2JS0SsE7AF0Q0cSJXTjjLPsfG4evVZgPj0OzXsByOkF4qEQP5l9Ed3QibgiCAjM5+evyTn3qB5uaruJR/oeIVvJki2mMLIp/IE67q2/GedkFmQZubkZpafnDZ+iaPY385HNH6mO3Vf0CpqhEXQEqXHWMJOdwaE4qGgVXDYXHtUyHyzpJcZiYwCMzPbRPa1jVipoU1M4Ui7ujt7I0/ZJOkJdTGQmSJSS2CU7PtVLMp/ALYrEsrPYyybXR3YgNKsUjTJ20YYHlY45A9HnqwZ0rqiI2t00tzfgymnniFPNUum848qCLFuZWMtCKAVVJbBqPfcqFR459UiV/Ah2O+HuTdy/7mcv+T1YmZEXx2vaWC2ECY1XGHIc5dGxJ5ifHLA0RkDIW8c9Le8kOruAVFOD6PdTGRurVv3QLdsCUxQxTfMcLVpWy59zDLaKsRgjYsMhKJes9CyRHo/Nw3BymGQxSbKYRBREHux5kKdHnsaluLi17VaGEkN8cscnz1t1FFSVtoa11M53VjcQKtDka8LEJGDzsSnUQ6c9SijYwMjCEO/reS+5SpYyVt7bfD5OQc/z3ZPfJZGaweb0sKVpO/evvp89TXt+Ku59S9O/pqaR1QtWC1Vb3DyoLlLpIUBYtAeJ8pPRp6n3NGCgU9LLOApWm28uPsYaTztmsYhNttFT28MzY8+giArbG7bT5m+jI9jBgckDPDX8FLqh0+ht5G8P/C1TGUsL9MTgEximgYnJwamDfHr3p9nXtw+/3Y/P7sOpOKlz1zGZmmRdeB1zuTnylTyKqCCJEvlKnh0NOwi7Xlsw7huBnwriMzIywh//8R/z1FNPMTMzQzQa5QMf+AD/9b/+V2yLpmsAY2NjfPKTn+Spp57C4XDw8z//8/z5n//5it95o9Hib0FEpMXfwnNjz1UTi8EqCQ4sDPD0yNNc13wd3zj6jarviYCAIio0ehsp62UMDDLlDNlSlunsNOKMyKa6TcQLcU7MnWBvy17mc/P47D7KWpnZ3Cy6qV9Tcd9PI7KVLGWjXB2VzpQzKKLCeHqcFl8L17dcX41CWGqdLJXNi3rJ0qq4Pfz9yL/y3NwruFQPJia1rlru6LyDVDHFbG72qp/zsx2eXaKdJimIK1uBJh3B7UYKhd600VG3zc17172XXDlHppyhM9BJ/0I/de46dFNHlVRKthKiIKJKKlFvtDpBYmoa6dlx9HkFweEAQUCPxajPZLhz1yZOtt7EQ30PY5fsVPQymWIGj+phV912tFIBVQ0wrZTQJ4Yxi0WC3gjvbLwNV8ZA2bqZ1PwEfVPTPDT0PdKVLD5HAFVWz1TnIq0r3suVjivLdXV0uG/gI9FOxvJT5IwSHn8trbVdl73oRtwRwoqf8uHD1msKJeIhlWfmX0F32Im29GCWSsxNDxJPz7Bv9Id8MPJO3OUy4mIiuDY2VhV4C243yqpVyE1N5xyvxxOynLS187QiZBm3O3jRY10Ss2uGhl22kywmAZAEiaOzR7mz606Gk9a1tTW6lV/f+esXvRbOFyjqt/tp9DSyt34X+twMLl8jFUni+NyzVGQoFFPkJJ2mYBsHJ15meP40Wxq3U3HW43WH8DqCTKWnCDou/l7eKljyBkIUcUsW6faoXhDFFREfiqhQXmwfioKIoWnoNt2q6pkmdlMm6oiQik8xMNfPx7Z+jKJWpMnXxIGpA5imyQvjL1SnJfc070EWZY7NHaOsl3Hb3AiCgGmaCILASHIETde4qfUmprPT2GU7AYc1sbmqZhUO2YHH5sEpO6kYFZyKk+5QN22Btrd0pe2ngvicOnUKwzD40pe+RGdnJ8ePH+eXfumXyOVy/Pmf/zkAuq5z1113UVtby3PPPUc8HucXfuEXME2TL3zhC2/asXtUDze13oQwKqyo9HhVLy0+y+H25cmX+fkNP8/+8f0cnzsOWDEPzd5m7uq+i+fHn6fZ21ztpSqiQq6cs7KbJIVkMclMdoYjM0dwKS7qPfUE7UGOzh1FEqUVrZj/7HArbhRRYThhZdJgGEiSimmaVTO3bdFtPDv2LAYGsmKnJ7wePbQaxeOlI7SHE+kB5iopPA5flTwxD4MLg9zUehOt/tZqq+dq4rwOz2/elP8KuBQXyVycyfQk09lpjs8c5frWG7m57Wb29e0jU86wUFig2WvlAm2JbmF80b3ZLBZxOgS04WHEQMAKv5ydxczlCE4kuC9yA+MzpxnIjaEZGrK9hk5PK++K3MjkwgQ7Nl3Hjq6byOQSuMomDZobt2B9pkNDr3JCmOdEaYRSIYvX5qBQylHWLTK7vDo3m509IwK3+1mzqpvapXH/S4wri243AXc3Abpf8zmsGtEtjiT/0+C/8PTpJ6zqTS5HQ007t3bcwPjgYeLpGSaai6zOy4geD/LOncidnVZcgSRZRPgCx9sa6qC2eRXzY30ryY8sU9u8itbzuKsvx5KY3TTN6qK8ZMxqYlLUimiGRkWvkClneGrkqUvm3l0ousWNjfL8YcxcgRwKIZufeD5GcCpFUJapq63hx7k4UX8jNZIHb8mF3RZBcgfIVrI/NZu+KtkeG6NRDBDyRJAzeXoaN5MuZ2BxhH8mN8eqmm4cNhcigCAgiTKYBg67B5/goM50sT16F5MhmZJN5M/e8Wf8w6F/oNHbyM7oTv6l91+sjEjVw+DCIKtCq9AMjaJmRcHYJKtQoEoq96y6h0dPP0q8EMcm2fAoHtaF13F98/VMZaZ4V+e7eGLwCUaTo4iiSK6Sw2PzXNNw56uBnwric/vtt3P77bdX/93e3k5fXx9/93d/VyU+P/zhD+nt7WV8fJxoNArAX/zFX/DhD3+YP/3TP8XrvYgz8DWGU3biVb2sC6+rtlNKWonJzCRBR5BXZ17lveveyw3NN7C5fjPFShFRFNF0zfq99CQtvhZ0XWc0OUrAHqCgFciWszR4Gnhm1BLjzuZmSZVSdAY7eW/Pe7FJNo7NHWMwOUhzsvltrQ+LiejOEIVyzpp6MU0E2cQlO4i66hlNjhL1RnEqTip6hQfXPsiB6VcYSgzS6m2hxlVLspTk7lX3cODIoar/jCqpdIW66A51kyqlqlN43aFuPKpnhRA06AiyPnz5OT0/DWiSQ8hljf54P6OJYTBNTs+d4p2r7uR39/4uiqiQKWeoc9URy8cYT41XF82Q6ie6YOlV9EIBdc8ejHgcM5lEO36cQGQ9N3k3cnP9dVYrS1ZB05muxCHgJ+SNsC6yDrNUonz4MIg6emaWTDHFi44xnpx/kR8OPI4giMiItATauLX7djRdY6GwwFhyjKJe5CuHvnJGrIlAxB3hV3f+KpsaN70h53BJ55FzyuwbepjJwgS6LFESdHSnxEBhAmP6OW6o28D0VD85vYDorqsSMnnxvncpeFQP9214kIel7xJPTIJhoMh2NrbuwKbY+dHQj/Db/aytPf/0X9BuVVGWBLNA1QgPFrPZsMiQU3ZedtX5QtEtS9U3V77IPe13sG/8CeZTKQAqxTwhXKxydOCJFy3Rt8tV/dufhomuJYh+PzaHg2AwyL1eG48NP85H1v8C3xl4hPHMJNlKlpOxk9y16m6ub7qeo5MHUSQbqiHgsHtYXbuaenuYJtOHK1dhbX0LcmMjx2eP41N9tPpaEQQBl+JCdVjRRwWtgENxWO7kUNUEiYLITa038djAY3htXsbT45S0Eu9b9z4eG3iMvngfNc4aksUkt7XfxvvWvY90OY1X9b5lrVaW46eC+JwPqVSKYPBMGXP//v2sW7euSnoA3vWud1EqlTh48CA333zzeZ+nVCpRWpZEnj7PZMTrxZrwGl6cepGJ9MQ5j1WMCrqpc2TmCKtrLROpkeQIJb3EdG6aicwE96y6h011m5hMW1/+Jl8TU5kp1tau5eG+hxlJjrA+vJ5kMYnb5qYv1sdjA4/xYM+DxPNxSpXS21qfRXhUD+9sewe9k4c5MnMETa9QKGbY3rCDVTWreHXmVdoCbYiCyLs63sVgYpBUKcWOxp2UtBIFvYgkyvTO9fJru36NQqWAy+ZC0zUe6XuEfzz8jwwlhsiUMnTXdPNbu3+LsDPM/3zhf56bzHz977O7afebeDauDsxSCW1mmvZQJ5HpI0xUDDStRJEih0dfotHTQNBVQywfw2PzMJE5cx0EHUHubr4ex+MvVoM/jVgM0eez/HIMg0YhQMUmsZCcsKap3G5EjwdBdhFyBKs3WSOZxCwWyYXcjJt5hvwFTs2OY5cdhF112GwqBiaGKHBk5jDXNe8hr+WZzc/y+f2fX/H5eGweRFHkCy99gc/e+tk3xEtqSecxTtISHztsGDYZu6iiYyILImPFWbRWL0wLuF0BlNUbXlN7s9Xfyke2fYzR5Cj5Sp6SXuIfDv3DilZ8e6CdX9v5a2yq27Tib9dH1rM+vJ4js0coasWqHwzAuvC6anWgLdCGKquWLu11EJDlZoGtlQq/2NDB2LpJ0uNDFB0yszODKJmy5avT2IiwTNrw0zDRtRyCqiI3NtJZW8uHmrqYyE7zmV2/xXQpxsnYSQQEJFHigxs/yJPuenK5BC5Dxic4qLeHubftdlyZxXbn4vcpW8miyiphd5haVy0u2xliaBoG6AYPrvlZq+0v25BFGU3X6Ah00Bfrw2lzWi7h/lZ+MvoTEsUEmVKGBm8DFaPCYwOPcXzuONui20gWkz8VVis/lcRncHCQL3zhC/zFX/xF9WczMzNEzjKTCgQC2Gw2ZmZmzn6KKj73uc/xh3/4h9fsWMHq39/ReQfPjz1/jrutx+ahxdfCWHqMfz/17+xp2lPNSdnZuJM2fxuGYfBI3yMcmDrASHKEVDnF+vB67g3cy2hylKAjSK6co6SX8It+NENjNDWKLMjc2n4rU5kpdFP/qSn7XmsETAe3BrdzU8Ne0noeUZZJ5lNMZSapUYNc17ib3U27sYk2vnr4qzR4Gojn41T0Ck2+Jp4ff54nh5+kqBV5YugJdjXsYmvDVp4afgqH4kA3dVoDrRyeOczTw0+TrWSr4YBLODZ3jM8++1n+5s6/+amv/BjJJOOkOHXgh1zvX8WurbuYLswiGpBOz/P4y9/mQzf+Kh/c8EGCjuA57QxHLE3R60Vf3MUbmQxGJoM+Pg6qir1Y5J7WvTxaeZp4cWGR9Mgr3IvBqphMeAz2Dfwb05lp+pnn6aEfs7V5FztbruNbx75BxdAQBJGwO8w9q+8lnUgznho/x4AxU84wnBjGMAx653rfEOKzpPPIavOUbRI5PUOslCBZSLCtYTuNviZaAq2EA614vbUY4Sh5j8pr3cosVVhms7P83pO/t4L0AAwlhvjrl/6az936uRXvv9nfzO9f//tVgXObv42x1BgRd4R3r343Xzv8NTbVbeK+VfdV2+yvl4AsNwv0A/5IM0ZkPanYFMebThIvJqpRHksILiPFKxyRbTarxVcuW1oWm81qZb6BCe+XgqCq+CPN+CNn7g03tt5YvXY8iocbmvYyM3KCbCGFW3bShN8iPaa5IjNs+bkXEIi6o0xlpzA1DalYplBIYxg6T488TaqYRBBEbu+6A0EQOL1wmpnsDCYmH9ts6YXy5Tw2ybZiCGQ8Pc6e5j0oovKWr/bAm0x8/uAP/uCSpOPAgQNs27at+u+pqSluv/12HnzwQT72sY+t+N1zMkugKtK6EH7v936PT3/609V/p9NpmpqaLvctXDY21m3kc7d+jq8f+TqjqVHssp1aVy0+m4/uUDd//8rfUzEq/3/2/ju8rcO+98df52DvRQDcW6REidqyLMnyknfsOI4znDhO3Js6TTNv+0vb23vTm7RNbm930jRtkpsm3zSraUa97TjxtiXL1iS1SImbBEmQ2PMAZ/z+OCQkatjyiC05eD2Pn8ciQOBgEOeNz3i/eXrsaR4bfozuQDcus4sP9n6Qf93zrxyKHqLd186q8Cr6Z/vJSBlOxE/QE+xBQODw3GFEQcRsMNPp76TeVY9RNJKSUnitXpLF5EVV9v1N0mSpoVTIEZsboWQSOZwZotnfSoOjFrPRiiTlyWu690WymNS/AakyAXuAlyIvVT4IBEEgLaX1JPDEIO9Y9g4eH32ceCGOQTBQ76pHUvRW5WIbABZCL1WVvsh++qYP0GQLXzAfuK8FrVwmK2UoZ1JEknEYE8BlJ2lWKWkyyzxttFnraLbVIlgsZ4hvxZjH2NWFls+jxmIokQimri5kiwVB00BRaMyb+HDXe4l4BXKivMS9eJGsSeWB4UeISQnSgkRZLmO3ODg4c4BIZopLGjfz/PjzaJpKopBgKD5Eo7uRRCFx+kMCdPGjoZ3TmO+N4HTvrabOZpwTKdJGmcPTh7EIJm7ruY3dE7sJOkP8+4HvUVJLNHta2FB/lPbZ9tdtn3Cq47Ks6u11RVMwCAYGY4NnFX5bmrbw9Zu+Xmnfeq1eQM/q+vQln664JiuaskSAvJEszlW9y3v3ksFoWBrpscQR2eVCHhk56c2kaQguF8Xl7UxED5EXZZwWF82uRjye0AX1d3m2VmCo1aE/tlwB0Fulpw/ht3j1WdJ4Ic5cfo4d7Tv49dCvmJoeZHXjJp4deZpMPsX1rdcQLcxjMlroj/YTcoQwiQvbZgt/B9PZabxWbyUkexGzaMZutLOxYSPjqXGaPc0XdHfhLRU+n/rUp7jjjjte9jqtra2V/49EIlx11VVs2bKFb33rW0uuV1tby+7du5f8LJFIUC6Xz6gEnYrFYsHyJr25V4VX8WdX/NkZ33gPTB9g58RO9k7vRRAE6l31OMwObui8gWg+SlEusiywDEVVkFV9wj6SiejiyR7k6bGn9UFcjDS5GxmMHyctpRmIDfDzoz+n3dvO7T234zJduG/ENxOX0cHNrdfxwPEHOaFEWd2wnmcnnyc5lWR5cAX75w5S4wpzS9ct2Iw2ZFWmUC6g2TTdeFI0oWoqVqOVolJE0RQG5gd4x7J3kC/nEQWRRDFRycNZzNmChdJyuVyxd0/k5ikdOFCJwDh9wPZccxYXEoLJhFO0Vh4TmoYxncNfuRy8qvmcmVGi14swNoZx+XLdl6ZUAoMBY1sbgsGAob4eg9eL1esl8DJ/qxNKnFgxDoKApMmYEDGbbMSz05TVMpc2beH58edBEBBFA4Ig0OZr4+jc0XPepqzKFXflN5rR5OhZT9g3td2AY9pPeijBJfUb2TO1l0ZPM3sie5nLz+E0OUgVUwzMD2Az2iptbOA1mWkuCruiXCSWj+l53QuDyybRxEzu7BXzZm/zkmrlaHKUkeQI8UK88iXrVAGiSZIeo5HJgNGI4HJheAOqLOfaeHRmReRSFGVqCsxmBIcDeWgITVF0T6ZsFsHlIuIVeLDve8SKCbRMBsHppMZdyzu7b6Gtqfc3Hk3zejifzLDTt+YimQjbazdjDW2lxlfPw8cewGPxUMqlqTG5yIkqTe4m3BY3W5u2cmTuCIliorJUU2OvwWq04rf7sZvtlcH2Jm8TB2cOMpYcw21xs6152wU7V/qWCp+amhpqamrO67pTU1NcddVVbNiwge9+97uIC8nJi2zZsoUvf/nLTE9PU1enBwI+9thjWCwWNmzYcLabfEs4m2rf3rqdb7m+RX+0n0Qxgd1kZ9/0Pp4ae4o14TXM5nTLfFEQ0dCwG+2ciB+n3lVPvaset8VNSkrR4e9gNDWGpmmsDK1kPDWOKIhkShlemHyB1aHVHIoeqjo6G400RPJ8yH05hxqNfO/wD3EbHdQF6zgWGySnFamT0hzzHWNZYBmT6UnsJrte2tUgL+dZHliuv1ZGOxajBYOg+1egcdKHSVMxiSZMoqny4XCq6AHwWbxosQLl48c5Wm/gn/b885K8o3PNWVxIiF4vTck6At46YvGppRcKAgFPHU2W8BKTtiVXsVj0LK2BAdRCAVVRQJIQTSZMvb0YzzMPKacWMdTUoMRiWMw2yukYfpufaC6KJOup7yFnGFE0sDK4klpnrf4aGUy0e9sZTg6fcZttvrYzjPfeCDJS5gzRA7r31qOjj3HjshvZPfwsNe5afjX2JGtr1/D8xLN4LB7S+SQ+m68SzWAxWuib7WPv9F7ihTgm0USrt5W9kb2IgviKw/Rei94ej+VjAMzn5ykuPF8AiUKCvZG9bKh/+c/Rc21mLVZdSn19Z67cL1uG4PNBoXDeYuhsocGLn6tqMkn5+HGwJFFkGRa8jOSBAUSbDfnQoYoIEpxO8j47D0z+mvnoGGIgoP9tGgzEpAT3Dz3Mh41ufEbjeQc1vxWcT2bY6a+NXdJoSGi8WJ5iZP4EhVIOQRBw++pY17iRnxz+Cb8e/jW/v+n3eWHqBXLlHKIg0uHrwG1x0+5rJ7ngq6VpGmkpzSODjxDJRjCKRuqd9QiCQMAWuCDPNRfFjE8kEuHKK6+kubmZv/u7v2Nubq5yWe1C+ut1111HT08Pd911F3/7t39LPB7nc5/7HPfcc89butF1voScITqkVmKinflyClkuYTNY9f6spiEiYDNYkEtF7CY79c56+mYO8vkr/oyCXCBRSOC1eemf7afF08L6+vXcd+w+GlwNTGeneXHqRdaE15AtZ3+rHZ01SUIeGsLQ2IhjaAi1IDE0uh+/rw671c3lnVfjMDlo9baSLCa5tOFSHsg9wEhmhHpnPSaDiQ5nBxvrN/LkyJPk5TzJYhKP1YPZYEYQdJMxURArnjUN7gZGk6N6ls2i6BEEemvXsNLWiuBQmPcY+OrOf2QkN7HkeM81Z3EhIVgsePy13LriNu47/HNiyemFCwRqapq4teudOFVjZdjybLwRaddOkxPBasUQDuMt5hjLR2h3tZOQkqSkFHaTHavJRpuvjVuX30o0F6XOWcdIcoTbe27n50d+vkT89IZ6+dj6j72u5/1cFbzFKJuzMZ+fB1c7G2pW0+jrYEWwB4/Vi8NgJ51PIAgiJoxoqkpJLSHJEn2zfRXR0+Hr4F9e+hf6on2YDWa8Fi/dNd3nHKbvCfXQ5GpiJjtzhuhZHV7NRHqCvn19NLobX/G5OP2LnSZJyLOzlPv6UGKxJbEiajKJtG8fYiiEAKhzc0v8h85WaVGTScqDg2S0IhNynGw5h9vhpaW5FycWlJkZsNmQh4ZQs1kEoxF1ZgatVELs7dVvRFH0YFqjkSmvk9j4LILFUvlPTafRSiXmYjHG3EdxTMcwr19/QVd+zodTXxtldpZk/ATTuWl9wxWwObxYzDaeGXuGwfggZtHMs2PP0uhupNHdiNfi5S+u+gseOfEIz40/R6KYwG/zE3QEeV/P+/j+we9jXhiOjmQjPDjwIL2hXnrDvW/lwz4rF4Xweeyxxzhx4gQnTpygsbFxyWWLa3gGg4GHHnqIT3ziE2zbtm2JgeGFzmhylPv6fsrQ9BEGYoMYrDbSpQxbWraRltKsCq5kLHocQSqjUkYrFmhxNdIa6KTG6ufd3e9C0CBVStPsbsJmsnN0/ig9wR7dXwERSZHILzi2/jY7OqvJpF7mliT926Uhi9dfxyUrruGHfT8kJaV494rb+erurxLNRdncuBmpLLG9eTurQ6vpDffSH+3np4d/itVkxWqwMpYc47YVt+kbF4KBy5ovY5l/GUF7kE0Nm2hwNhB0BMkUUpRlCbPBjM1g5T3tN1PzXB8lSeLoOj9D84OItjNt3ocTw2/agO1rxRgM0rZsIx8pG5gozZPTigsthwDecCdaLveKJ47Xm3Z96iyD1emh27iKidQETd5mNjlr6Qh0coctgMfiZmZ2GK/VQ7sxiL/9Rh4cfoTbVtyGJBfJl3IEbAGuarqCFYHu13w8B2YOLImigJMVPEmWXuY3wagJ+EUnyew8kdgoxfAaclIGUTDgsbhxiTaWuzto9bZTVPT3VMAWoMZeUxE9oEcUaGgvO0wfdob5vY2/R3pnesnm6erwaj7U+yG+secbNHmalrwHz1Z1OV2kLs7WIIrIIyN6FpfZjOjzoRUKaLkcWrGIIRhEsOor8Fo2q8+saBpmm23JbWqSRPn4cUZsBZ6ffYlEPo7NYEGdyaCMPMk72m+gbiiGGo2ixeOIDQ2IdXUoyaR+A6USWK0gCMxvWckRa5I5OU7v1ltxFBT6ZvvJR8b0duuCQMsWUihl65sSSvxmInq9TEznKGQT1LsbiaQnUQwCLouLFyMv4TQ5sRgslZGJvZG9XNF6BfFCnDW1a2j3tZMv57EZbbwYeZEf9/+Ydn87B2YOUOusrYifSDZSFT6vlbvvvpu77777Fa/X3NzMgw8++Js/oDeQjJThvsP/xdT0IAOxQQqlHE6jiWQhwa6JXax1dXFD67X8SoHx+SFaw11YHR5q7EEua76MofgQw3PHKahFVjesZzIzRbwQR9VUHCZHxWwMdD+hxd77b6ujs1Yuo8kyytwcyDIek4XtHVfxwNAvyZQyXNl6Fc9NPMdUegpZkxmKD1FWy+ya2sXK4Er+1/b/xcGZg4iiSEbKEHQE6fB3cE3bNczn5vmH6/+Bx0ceJ1vKYhSN7J/ejxSSsBgsTEppCuU8VtFCnaOVQKKMIRQi5zAxJ0awmmyYDDYE0UCunFsyEP2bHLB9ozA1NuK3WPDMzOiBi2azHuyZy+ktjd/wSeP0WQav1VvJFmr1tNI320epXGRqZpAGZz3XhbdhPTZCndXKXR23M56bIj09jh2RRsmB4+AkJU8G08qVr/rb/mx29gzRAycreJ++5NMv+/t+q58P1l3Hs4WjrKtfT0HKsiLUQzQ1Ta0lxOa2y3hq9GmeGH+KgCvMO7veidvqQlEVrEYrq4IrOTZ3jLImV+bL+qP99M/2n7XlFbKH+PCaD7OjbQceiwdRFEkX08zmZtnStIVYIVZ5Dy62k7I2kQklTkLJokZNOB1eXA4/AXuAaHqa1NQILtFMozmIebHSUyqhJhIIDoeeKr8w6L8YxwG6+GFBWJ0qhNVkkhPWLH/z0lcZjh7Tr6tp1Pua2VG7lYdOPMKdDTdhPqZfhiRBsahvcZVKqLEYYm0tfav9fL3//zGWGqcsaqiaQounhd9Zezd7B/+NgqroxyUIOAQLWiKB6nSec0btYkSwWMg7zURTEa5uuZInxp5iRk1TVsvM5+forlmOw+zghYldKAvRSW3eNubyc4wlxzg8fxjQHdt3TuwEYEP9hspwvNGsS4sLNaj0ohA+b2fGkmPEElOk5Vyl5JgrpGjztDKSGccedPLE3l9w07p3U3fJ7zGSHCEnZRlOjvDZhz9Ne6CTD/R+gIyUQRREJFmqCJzFZGSAdm97xVNjkd/GLS/BZNK3ORbmDBqLFqxeN/F8nJSUxmK0cDh6GEEQuLLlSjr8HfqclJRhMj3J0fmjfHzTx/nw2g+TKqRwWpzUOevoj/bjt/vZM70HVVPZWLcRSZHw2Dw8MvgI8WKcgC2AWtbQBIiWEtw/+CA3tV3HQ/0/Ruts59jMIQSzGZfDT7u/nYyUqYifUwdsL+QBaGMwiMHtfl0tq9fD2eZM3BY3E8kJsuUs6XwSr8+JKVvksYFHeUfbdTRmClin5lgWzyJP5hfeG0lUQI3H0RQFy+bNr+oxnLopdTrDiWEShUSlOnU6fpuf1lAn1rwDT9nI8lWdPDj8CGs73sXO8efxe+p4auxpUoU4QXuQ39v0+3z9pa9zcOYgd6y6g2fHn6XeVc+OjmuYy81hNVmRZImx1BgJ6ewbbE3eJp4df5a5/Bzf7/s+mVIGp9mJqqm0+9q5sfNG/BZ/peoyaS9z7/7/YLQ0y0BqiIKUpbGmjXdvvptfDj2GXTPizin6jJevjptae6k7WtBFTqmE4HSebPuKYiXZexFNls+YCcvIOf7jxL0V0aNfUWM6Ncnj0pNc3rSdSTFN++Jli2JLEPT7EEXmL13Jt/b/Pc9FdpEqJNEEKKkyE5kpzCYLH9z+bp5/6oegaQS8dTSk9IUErVg854zaxYrbVQOhINPFOS7vuBqzw028OM+x6BEkqYjLHuK6jusq8RYhexBVLiOpJ6uVJtGE2WCmpJQoq/rzs2hMajPaqHPWvSWP7ZWoCp+3mGw5C6pKSS3rrpo2DxiNlLQy3TXddIdX0eHroL2+h58c+SkD0aPYTDZenHgBzSAyEBvgx/0/5o5Vd5AsJrmh8wb6o/0MxgZxW9xYjVYaXA1c33E9k+nJJYm5F5u51xtBJRNnAXssS11TA7lyllw5h6zKmEQT71n5HvZO7+XJ0SepddYSyURo9bYStAfJlXIMxgbpqekhJaXYPbUbh0kP3zwSPcLN3Tfzo/4fcWTuCO9b+T5+evSneCweLmu+jJ0TO5EUibAzzGWN2/AVjxNLzRDO1dPub2c4OUqmmGIkMUKLp4VsObsk2XqxfTIUO6GfoDWN9kAnn93yB6xtWP9WPa1LeL0tq9fDqevhLrOLolzkewe/x2NDjzGeGIVyGZ89wCW1GwkVRB4YfoQPt9yKo1BAnpk5M79KlpHHxzF2dp63MzK8coUuJaXOyKeCk1tQbmcAtdGAR1VZn83S1fJBpgxZtoQ2MGMqMLVnmkZnHZubtvKNPd9g//R+ZE1GFEQcZgcT6Qly5RzN7maeG3+OoCPIurp1+C1nZldpkoQ9mWdr/aX8x6Ef66vLxSSjyVEEBIbiQxTLRb5wxRd4bPjXlMx5ZucjGNxuhkZepCBlFx5zmn976Vu0uVsYmD7IaksLprzEfCbDwyGJD9SvwT4ZXbhTvaIieDy6tJeWtv4E45kzYePSHJOppTNwi7cVSU5At5WccnI+SZMk1GIRoaYGqaOJ8cI0U9Ioj48+TrqQQgB9XspoJlVM8sTwE7yn+zYAAp463tl4LbbRONjtoKovO6N2sXDq34dZNNMVWsFwYpioliagmBhLjFEuFZnJTlMoZihJ+niEz1FDbdN15JU5MuaTlWhZlWlyNzGRnqisvhsEAzajjW3N21gWWPaWPM5Xoip83mKcJieIuv+O2xVkJDWKJBdZ1bAOVRSwOt3MZgsMJUe5t/9nlNUSK2p7cTt8pKU0BsGge/SUsuyb3ofT7OSj6z5KUS5yaO4Qrd5WhhPD/L99/w+n2cnmxs3UOmt/Y94aFzqLmThqIqGX1FUVg8GAiMi62rXUOmu5rvM6Xoq8xLF5/ZulyaD/QY+lxnh+8nne3/N+wo4w39z7TYYSQ5UNrtWh1Xxy0yf5yu6vcGTuCKBbwJeUEtF8lMNzh1keXMHOiZ0MJ4YxGyysW7sWwWQiNnyEd695J78YeoiR7HjFQ2ZxJiTsDFfaJ0Nzg/q8hKqXoIcm+/nK03/N/732r6kNtr4lz+uFwOnr4QFbgMeGHmN93Xom0hOgaagCRAtzPD+zm+0NWykV55kQUiyXnPrG3dmQZf298ip4pRV4r8X7sltQcDLCQJ6awjk7y3LBAWV4sHQUVSoyGB9mW+vlvDT1IjaTjaIMiWKCkCNErBBjNjfLquAqVE1hJjtDqpiizde25DgqHjeFAlF/Cp/Vy3h6glZva8XKwWK0kClleHToUeyChaycYyYdod7TyI1rbuf+PT+iKBcQTCYOTx1gTXgN+VKOtEMmgJ7FNj83zvSay+iIzOvvW4MB0e/H0NyMIAgokydniwSnEyyWM9qLObGMxWQ988kUBDAaKZYK2O0mhGAQcdHAz2plptnDfQd+Qnz0GMvr76TGEaLGEcRr82FAJLlg2peR0mTlAu/tvYOGrIjtRFSvRGkaotN5UQ83z2ZnOTh7kIOzBxHRzzf64xbo8HcwFB8iWUzS4+smtLKGZ0ae4sS0/hnmc9Rwc8eNXG7spGBJIFrK2Iy2SmxSo7uRBlcDdqOdlcGVNLobWeZfxntXvveCnSGtCp+3mBZvCwFfA9lihvHYAbJKgU0tl/LC5AsEbH5+2PdDHhv6JR/f+PusadrAwYm9yEqZVDFFjTOEzWRjKj3FYGyQZ8aeQdEUNtVv4kTiBMfmj7GpfhPRXJSyWiZRTLB7cjfvX/X+Cz5E7jeJIRjE2NUFkoQmy5iEWawmGwdnDtLgaqTV18rDxx9GQKg4lAqCUMlLE0WRnx/9OWPpMSRFQtVUykqZvTN7kTWZ9XXr2Tu9F9BLwYvtqnghTovnpNicz81hMJooOyyQKRA9tId3dV6D7HGQp8Tq0Gq2NG2ptLGORI8wFDuxRPQsMhwd4PBMH2F33dtmAPPVcLb1cEmW6I/20+RpwiyayVEiL+dRNZVcOc+Mf46RdJyrhRzLjV69HXLKrMkSTmvFvBI9oR7afe1nbXedWsE7Vz7VIoLFgrGhAXVuTh+6BbxeNxiNZKQ0+XIeDSiUC3o232w/V7RcQUkuMZTU59M0oCvQxYa6DYwkhlkRWgEsDAsvJtCLImm1AJpGq7eVY/PHmMvPVTK4fFYf7+l5D7HcPD/u+yHz2SgGk5memhW8d8Md3PvSD5AXWhxlpQSiSEmTAb3dpBUK5M1g3rwZFAVDOIxgNqPMzVE+dqzyfn7ZVHmbF6+3FnvcSz6XXHiC9DaWYLfjNTmpnyli3rCBUl8fSl8fhbYG7p2+l2RmnpZLr2UmO8PhuUME7DUMxo9jN9pp9DQxOHsIl8WF2+Jm2VwCbT5auX3R78e0+rVFg7zVjCfH2T+zn+HEMBoasVyM+wfup9ZZy+09t+u+PukI71r+LnLlHPZMCUemxFWbLiEqJ1EVmQY8dEwUse8f45br38lD8Z0U5AID8wMU5AJOs5Nbu2+loBS4ofMG6lx1rxhK+1ZTFT5vMS6Li1tX3sa/5v6V0lSZNfXr2DW5C7PBzNVtV/P1l76Ohu6TcGjuMF21PSRzMTw2L0bRWPm2qGl6KvLymuUU5AL3HbuPDfUb2D21m95wL9uat1V6tZc1XvZbWe1ZRLBYMDU36xsnkoRB1bi+/VoAnhh5gj+p/xPcFjeSLOGz+TAbzPQEe+gN9epzIsV0xbF2cY7KYrAQtoQ5MneE7c3bEQURVVOZzkzT5m0jkokgyVKlDw7Q4m1FkoukTSoBgwHVZCA6ehhjWxuiy0Wnv3PJ7E5SSuqtmNNET+XyQvJtNYD5ajjbeni+rJfpNU1DRaUgFyqDvgAltUShlCOSnSbnb8PmdKImzpyBEZxOvQrxKgg7w3xm82fOudX1amayKsndCyJlubGWOlc9h+cOYzfpuUsaICkSZaXMz478jEsaLmFr81Y2129mdXAVsdw8Dx25lw3BNSjz84guF/LUFMrsLJhMRBqdzMSnMRkt5PKz+Gw+auw15Mt5JtOTxAoxxlJjdC7MvC3e6YGZg9Tba1le38tYPgKAacHWwWK2gViqvF8dmBEAU09PpXpiCIUw1NbqFTVBAJNJn8MrlfTNy1PERou3hfqaVgqqxLHpfgqFjO7Kr2m0h5dzWXATzlSM0p49umBpaiLS5CDeP0etv5lfH3uYjo4NrK1dx+G5wxSUIpIiQRrq3Q1YTVYmYiMU23pw1tbq7S2PB9OKFRjO02/uQiAjZZhIThDJRvjXPf/KM2PPICkSuVKOdbXr+NiGj/Gtvd/i50d+zm0rbiNWiCEgcGnjpSjJJIX9DxOMRk+5RT1KRgyFaA128jvN3ZW/N0VVcFqc2I12mr0XtlvzqVSFzwVAwBZgXf06REFgWWAZHpsXp1n/oL11+bswG8x4LB68Vi92s50mTzNN3iaKcpFkMUlZKRPNRWn2NLO+bj2jyVFmc7PIqoxRNNLiacFuspMr53CanMjahTlp/2Zyqm/MSjXOt/v+P9bXruOa9muwmixsqNuw0KaSqHPWkywmeHrkSTr9y5jLz5GX8xUrBdBPOouvQUktAXqv+8DMAd61/F30Rfvom+3DYXJgEAy0eJrZXL+JklKmbNBPbmiavhZss521Fem1eJeYH56O1+x+2w1gni9nG9S3m+wAzOXnqHfV6/44BkOlqmMWzdS7GykU0ky5VJa3t+vi4pS21mIFwvAa2hxra9fyVzv+6uQgusVLT+i1DaKf+n4Nl8vctf5uhrMTxItx1teuY9/MfmxGG3azncnMBM+OPcPq0GqabLXct+/HCw9GwGfzUR4dRVgcKPb5yBlV7t/7H9Ss2khRkdg9ddIB32/1syK4gkK5wL7pfawKrdJb80YriiYjiiLj6Qna6rZAZpKeutWk8wlsZgdu0Y7g1HOxAs4QLf42zHUtS8TMYqr8qbESWK26wBcEDOEwhnAY0ek8ubXH/dgtDpK5OCW5RL2nkQ+tvpMOoQbVEad88CAIAmouRyYZ1Yfs7TYiw8OUzAI3dd5ESkpxPHECgEQxydbGbawK9hAZPURk+XK6ZRNYrZg6OzGGQq/69XqrWGz3BmwBvrnnm4ymRiseVhoa+2b2oaFxc/fN/Ofh/6zYKiz+/Ri8XizbtyM9+yzqKeJHDIWwXH45Bq8XF1z028BV4XMBMJYcI1FIsGvqBRrdTezZ0AYAAIuVSURBVKiqyi9P/JJsKUs0r7/5uv3d3LP+HhRN4Yf9P+SnR3/K8prllJQSWxq3cGPnjTwx+gT3HruXO1bpMSCiIPLu5e/m3/v+nUPRQ5X7u679Orw27wXtBvxmsDiE20qYP97+P/jyM1/mhfGdLAt0MZ4aIy8X2NK4hSMT+0lm5xAFgSZnPRZMoOnbC6IgVsL6inIRURAJ2UP0hnTvCk3TeGr0KcLOMB9b/zGavc1sadrCUyNP0Rc9xLWtV5Pzz6Aqc7r5XihEwBU6ayuyJ9RDu7+Toan+Mx5Le00Xy421b4sBzNfC2Qb1LUYL7d52Ds4c5AOrPkCqmGIsNYZmMBC019DgbmRdaDWR3Ax5o4qxqUkXswstUMFoBIvlrG2X8yXsDL9hG3enDo1vkDx8ZO1HSBaT/Mll/4Nv7/s2B6cPUCoXcZlddAeWc1fvnXz9ib/VKymaRm/DelYY65Eef1wf8BcEBJ+PyPpG1KCfb+z9Btd23cDRuaMcTxwHIF6M0ya08b6V7+Mbe75BVspS1mT8zgCJXByzwYDJaKYkqHhsXt699g4ePfIA3b5OzJIKokjA38g7u9+J9zTRs0il5VYsgs1G+cgRtEXvHbMZY0sL5g0bMNbWvuJclFwuY6itRZmfR41Gcfr9oCgUF3KsEqlZ+ib30hNYwfbm7ZQ1GYtgoiewgrGpwzgtNrKUEf1hsFguukrPYrvXbrJzcPYgLrMLWdUtDQyCAUVT2D+zn/etfB+qpla83U79+zE1NSHedJNeDZQk/XkIh1+T+L9QqQqfC4BsOVtJza1317NrchcjyRF9K8tgRVIkTsRP8NDgQ+xo1302tjVto9ZZS99sH784+gt2T+6mM9BJWS0Ty8fo8HdwRcsVZ4geq9HKZGbygncDfq2cHvp4vvEcW5q28M/X/AMH5voZS41T727gyeHHGZ87TjKrO4U3e1u4uvUqovEpesOr2D35IgFbAKNoREPDarDS6etkec1ylvmXsXtqN6PJUewmO26rmyZPE//7if9NvbueK1qu4IqWy5mKjfGJzZ9krpjQAxJtnnP2x8POMJ/d+gd85em/Zjh6Mu29vaaLz6z7fWryhlc1gPlan6sLgdOPPegIUmOv0as6CySLSW7vuZ1HTzzKi1MvsiywjK1NW3FZXFxSfwnJoh66qBoEnCZnZZj4tazivxnP5XhyvNJi9dv8bG7YzNPjTzMQG+Cunjt4T/dtSGqJBk8jY7ER/uWpvyev5EFT6W3axP/c+AfUDc1TNhr1ymC5jJZIkAqVKNktHJs7gsfhZ3lNN5c2XUpRLmIUjcxkZojlY9S56iqtXUktE3Dqz3mXr5MdXdcTdoSwY2br+m7msrNkyzk9NdwSwte07AwzQmVuDjWZ1IWZ14ugKCgzMwh2O1o6XVl9V5NJSrt3I+7YUan8nKvisCj8BacTweGgIWvE7whgNTlAEFE1DamQYTAzisFowma2Y8RAr285TtUE5SIWh4ujapqcUMIVKdAa7MTtDLyhr+VvglPbvRkpg6qplYDuslLGJJpQFqqdhXIBWZWxG+2YjeYzqssGr/dtJXROpyp8LgCcJmclNVdWZUqK3ipZNMjLSlkKcoGiUiQtpZnORHBaXKhplbSUpqSUiGQjXNZ8GQAHZ/VvuG6L+wzR0+huxGwwXxRuwK+Ws4U+Ok1OtrdsB8BhdrzsCamxbMdVqGVkejeHhg6xsq6T9d0r6fR1YhZNSFKebHKOXx+6n9+58hM4zE52T+5GVmU8Vg9hV5jrO67nO/u/Q7Onme6abmrsNSiqXhn69civ2VC/AYfZwZWtV5IoJnjHmtup87Zwvm4XaxvW81fX/F+ORA+TLCbxWtwstzRSk1YxLes878rEuQIyL4Yok3Md++Utl/Pc+HMV8aNoChoaf3PN3zCVmWIoMYTNaMNsNDMQG6jMW53aVnwtq/hvxnO5a2IX//LSv3AifgKDaECSJeqcdfzJZX+Cz+IjGY9gz0o0WQKYnj7A3NqVtF/71yRLabxWDz2GRmoeewG6uvQ2kqLAQnvVUdTIC3kQRZL5BGPpcXLlHBajfrnZaGF1eDVei7fy3BoFA3WOMD3+5fitPoJmDxZFoCnYgivspDbZeIZ4XHR7TpeyjE0dIR2L4BAsNCRU7KkixmX66rOaTGLs6EAeGtLFj6qiJhIo0egrZmYt2lWIgKG5GfvkJLc0XMOu8jD1oU5mSvMIZjNOu1d3Xjfr8T9GkwXBbMbsC3B0/iiD4wcqLdGAr553bf4wbbXL35DX8jfFqe1el8WFhkZZPbmB5bF4KKtlFE03uWz3tVNjr+Gqtqsumi88bxRV4XMB0OJtwWP1EMnow4FXtF7B8+PPE8lESBaTuMxOWr2tlW9cLoub0eQosiqztWkrfbN9zOfn0QQNs8HMssAyrum4hvHkOC2elsqsj8PswGwwV+73YnADPl8Wy7zTqcmF3r+EaDQTcNbw9NjThB1hFE1hMDbI6tBqOgOdZ9yGYDLhyMvc0n4jDww/wnR0mLAjzJ6jT2C3OOn2LwMxhd9Rw9DUEd7R+Q6uar0K0Od5hpPDfOmZLxFyhsiVc+yb3keju5HecC/7pvcBYDaYdesCi5ubu25+1R84ajKJfyTK1owVregFVUV0JjGuXn3e1Z7Z7Czf2fcdItlIZX7MYrRcFFEmLxfu+czYM7x/5fuZy82d0QZZEVpBZ7JT/93kmb45r/XxZqQMz408g1HWcGHFbraDwcB88Y17Lvtn+/n8E5+vbApqmobL4sIoGvnSM1/ia9f9A5d4epBnB8EmULZaqdl1hMslSZ+XyccwNJVRzWbUWEwXPmaz3sYwGGjIigQDQTSgf7aPba2X0Tfbz0xuBqNgwCiacJld/NkVf8avh37N1oZLcWgmLBjIJqKsDjXx4K++gejz0VG7gvam1RjNllMqX5ZKxtakvcx9h3/O3OhRtAXH5oCnjlsar6b++HHE2lrEQAB5fByxthY1Eqls22nS2WM+MlKG0dgQmUwMp9FOc2MY29hMJey0KZcjUHsly1dfyf3Dj5IqZ2gTlzMUH8Jn9XF143bG+57D6QnSYAhybPcvUcxGDMEglMvEEhHu3f3vfHTH/++Crvyc2q6yGW2srV3L3shego4gsXxM9ygzmLik7hLcFjdfvPKLbG7YfMH+rf8mqQqfC4BTrfZLSomZ7AzbW7ZTKBeQFN2JOeQIEc1FSRQTjCZHcVlcpIopdk7sZFVoFSuDK7mq9SpuW34ba8NrafY2UygV8Nl857zfV/IauZgYS44xNDfIscmDFKUsLlcNq5s28sLUC4ylxlgW6GIkMUK9q55bl9/KtfK1rAyvXHIboteLYLXSmCny4ZZbmbAWKcTnmO3YQTE+hylTJpobZkfHFag1fv7s6S+QKWV4b897+c/D/4nVqLclDQYDje5GZnOzzOZm6Qp0MZOdocXTwlRmig5fx3m3QtRsFiUaRZMkYk6BI8njJLV5vH4PXYSoSeqrw/LQEKLLddaKz2IbJlfW16H7o/08M/5M5fLFWAev1XvBR5m8XLhnvBBnLjd3RkimMjuLVi7TZLZz98o7Gc9Nn3U+5LVwONLHg/2/IJIYqzgF13sauWbFO5guRF/3c5mRMjw58mRF9OjWCSXmsgXKcomA1cee6f0I9mXUKwpaNKon3Q8NocbjFXEjuN0YnU7Khw7pA/KSBEYjGAzYhqe4ast1PFC/kWfHnub50eforV3NmvBqEAQaXA1sb9lOnaOOP93yOYZP7CVRzjCcGiFPlImhAwA0eJp4ePRXJI7+J+vbt2Ax2/XKV8c7qBuOkRVl7h97lPnomC5ijEZQFGKJKR7gce5yX4Fb08DpRDl+HLGpCdV88ova2d7bo8lRHuj/OWqxSMmgkZeLBB01XF6/jeWGRn3V3WTC7vUStFhY1byx0pI0qQKmskomPsvGSz6CYDLx00f+EUWVoajH2hhqakCWiSUijEZPsPoCFj6nZtWNJkf5xKZP8M8v/jP7p/dTY6/BbrazzLeMT13yKRRV+a0VPVAVPhcMi0N7o8lRxtPjpAopGlwNerl5AZvJRqwQQ0MjI2VwmB0YRSMT6Qn9ZOpu4Yq2KyrXP18vkbcDsdxcRfS4XUFcTh8PDD7AYHwQTYOgI4Tb4ubg7EHihTixXIyPGD+ypPJz6tqwI1dghS1MeWoWv/cKHsg/RbwcRVFlJoYO0FH3DuwmO0bRiNFgxLCQr+W2uInlYxTkAj6rj0QxgazKpKU0Y6kxOnwdrAiuOC87AXlmhtLu3aiZDMeW+/ja7m8zFDmMye5kec1ymsNd9Pi7aZGdNIkmvGdZZT+1DdPoamTfzD68Vi8z2RmMghGryYqsygzMD7C2du0ZsSYXCpU2SXwaNZernASlYo54KUlGzmMwGBlNjVbEzKnmfItYbDZ6ursRw97XfUzT0WH+s+9HxAsxnDYPWrlMrpAikp7i10cf4orl17/u53IsOcZcfg67yY5JNOGz+bAZbZSVEoqqELD5SUkp7u3/Ph/pfh+2eJzy4CBiMIixuRkWwng1g4Fyf7/eOhKEJa0uIRSic7zAX1zxRb625+sMzB+jrJYZT40TcoS5tv1aTiROsKVpC/ZknuVJM0dNBoYOPVc5zrr6Lh4feYLpcgxUlWQuTthsJ16Ic1/fT/mQazsTxhzz0fEz7Rg0jVgiwlSjilvlpJeSICD6fCBJiD4fhtO2qzJShgeO3Aeaxr0jjzAcP1G57OHatXxx2/9kQ/PSqJHF+aDFvy05EtGT2oGDa2ugNgSRiH6MxeKSY81Kmdf1Wv6mOT2rbiQxwj3r7kFZpyAgYDfZcVlcjKZGubHzxt9a0QNV4XNB4bK46A338nuW3zvrzMClnZfywtQL9M/2MxAbqPiUdAe6efeKd1NjX7qB8EZ6iVzoKOUycrnIpV1XI2kK9e46TiRHaPG0MpIcoayUmUhPELQHGU4MkylneHbiWcLO8JIPgFPXhrVyGXHbNpr27+fDtTcw2VIkpxRwOnwcN5VJFpOUFk5Ai3NZi46oiqrQ7mvnRPwERlH/MyspJTbWb+QDqz7wih86SjJJ+cQJBLebZFuIf+77R4ZjJzCqApe2Xsaz0y/w0Ohj+Bw1XF2ziSZrmHeFPkw7+muakTIcjx1n99RuTKKJRlcjHquHBwcf5PLmyzkeO45RNFJjr8Fn013AQ44Q9a76Cy7K5FQB43CWCeMELKTFEmVTiWQ6xb7JlyhrMqtDvUiKhMvgJJwXaRTtOBa2mkA30nsjkrZH54d44uiDPD38BHM5ffjdZXHT7mkllY4SSU2iyfLrfi6z5Sx2k51CuUDIG2I8NU6imNBFq9FCvlxPjS3AZDzCeHqCFaF6xIV4BcHpRJmbQxnTq1HmtWspAdrUVOX2xXAY0/LlKJEIdU0dfHLTpzgWP0aqmMJj9WAz2ogX47xj2TtwWVzI5dTCceWWHKdgtxMZnqjEwZTkUuWyWDbKhDtFgjIxUwnJqWIy23HLRozxlL5WL4pkDQqC24vo8cCaNYiBgB4s6vNh3rz5jPmeseQYmiLzX8f+i6F5fQvNJJpY27CBkCvMI5NPIhtFVtavWfL3pmaz+heKROKksDGZcMgiyvw8hqYmPaNtwdl9EedFIBTOtvUWdASZz82TKWdwmpxc0XLFb7XogarwuSA518omwIuRF7lj1R0U5SL5ch67yY7VaMUgGs6auvxGeolcyLgMNm5a937+a+Bedk3u4vae29k7vQev1cclDfoGT6qYotnTDBkolovMZGfO2oo4fcDVEAhgikbxLhiqGUIhcvMH6A50cyx2jEg6Qpu3jZHkCJqm4bf5K0Z5O9p2sKVxCy3eFnxWH1ubtr5itUdNJpEnJij39aHF4xy7ooXBSB+SUWBV1waejDzPVHoSAUjk5okFC9gTER4Yepj/VttGrKC7sx6fP46CgsfiwW1xYzFauLLlSgyCgdXh1ZXWaawQw2PRZ8yMohFBEHhy+MkLIgQ1nY0xPLqXrJrC5XRgcHvZN3iMozP9zMhJEnKGZncT13XdyFBymCOzhxhLj7Oudj1DUgGbyUZrXQu2ooKtpNKgeXDki6/L6DEjZbiv76eUi3ksqojJYKaslMhIaYZTozTb68gpBQSBV20UenoArdlgZiY7w4b6Deyf3k+6mKbZ3Yzb4gZgZXAlqUKC2vplZMs5lLlpDHV1lAcGMDQ06FWeQgGsVrR8XjfHXLkSikUEr5eMSeNEYpTpbhM/3vfXnEicoM3bjs/uw2V2sb1lO9e0X1N5/Re3ppwLxomLFBe8qxZX583Gky2qkqgxZEiRKCbxemtJpec4OrMHk8lMd10nztkUaBpOowMlHkdJJMg7zUypM+TXh3F7Q7T6HJx+qs6Ws5TUMkMLG44m0cR13Teyc2Invx59nBpHkBOx42yIXrJk0FyJRk8aVRqNFNrqmbIUSZoUOpZdgoTMdGQGzeer+D4FfPW0hs6cC7wQOdvW29vt8/71UhU+FyjnWtm8uetm7h+4X58lEQ1IioTD7OCWrlvOqeLfSC+RCxWT2cqLkReJ5qJoqAtVFoF8Oc9cfg6HyUFZLVOUi8iqjNlgJl/Kn3Ne5FREp/OMb5vLWMadq+/kh30/5MDMAW7uvhlREBEEgYAtgKzKtHha2NG+ozK0nigmsBltZ7uLCpokUR4ZoTw4iBbXj23OUGSmnEAulLAZrBydP4ooGrCLFgyKpp90jHbiapbR5ChPjj6p5zL527j36L3M5mZJS2ka3Y1omsbNXTezvn49g7FBksUkY6kxjseO0+Bq4Nr2a/n8E5+nrJQrbZrFCuG5fJ/e6LT4xZmk6ew0Dw08SC4dw6fq1ZmommFDw0ZGUqMUkjOoqsJochSPzctt3bcxGh9mLD3FUyNPEcvPI5WLdPo7+UDP+3ErJnKJOd7Rdh2tr8PocSw5RiwbJWTxYygrBKw+YsVERfwInmZsBoHe8OpX9c16MYD21Ors9qbtCAjcvuJ2ptJT1LvqmUxPMp4ep8vfRZ2rju/v/f/42LrfxZW2ItbUIA8OohWLqLEYgsOhr64Xi3rsRUGPpTA2NTHd4uWB4w+hWc38+NmfMRgbwG8PoAkwODwIwFBiCIvBwu6p3YiCSJ09TGvASVPBQMBbTyypv7etorkS62GzuvA69DDU+fw8B6IHMFhtHJw5QDwfR9Rge+8N7D32FLZwA+5laxEQma+rQcZGPDpBpDhMIZplbngWQkECU6EztuQcopXcQtUb9I3HnRM7GU2OAiAiUFSkM4b2K0PSosh0u5/7hx4mnpwGQSDjs5F1mtjSsZaJsUPg8RCw+rht84cv6MHmKq+OqvC5yHglA6/fViYLszw9+hQrgj16BQwDGxs2cnz+OCfiJ7i08VI0NAyCgTZfG/lyXve1UM+RzfQKhJ1hrmy9kqJcJFvKIisyn938WTxWD9FsFKvJioBAJBNBWcgwOp9gWDWZRMvn0TIZUFUKLXUYLTbq/M0oqoLV6sBhcZEv5cjLRZwGK1ajBYO3BsFoJJKNEC/EqXXU8uiJR5nJzpCUksiKTLKYpMHdwL0D99LsaeZQ9BAei4c6Zx1fvPKLBGwBvrX3WwzGB1kZPDn4PZwYPqfv09lO1q8klF6O0eQoL069iKqqHI8fRxM0Av56yuUSqXyM4alBCsUMV7VehRgxk5MLiIJIWSlRUiSOxQc4MNePSTRSUsqomspgbJAHhx5ma2gjdVY3Dww/wu80dOB91Uenky1n9U2jsky9t5lIcpyw2YckqiiaisfqZV2wl9Xh1ed9m4sBtKfP4/1y+Jfc1HkTyWKSW7pvoVguMl+Yx2KwkJEyPDrwELlMnF+PPcm2+g8hyAbUeBzR40EZGcG0Zg2yLOvvJ0VBsNkQzGakdSt5KPIQSbOMRTAwGB/EIBqZzc6SK+Woc9bhtrgJ2AP82/5/Y8/US7jNLgKOGi5v3MYHQtfyzpW38eDR+zFabfh99bS3riVZSNDib8NithPPxXhm9ClMBjN7I/t4YXInDa4G/DY/u+b28t7L7+Fb+79FdiTDipoVfGPPv9Lsa+Wypm3s2nM/4WArOzquYbo4R9x45pZck8FPjS1QqTIF3bX8euxJAMwGfX7JatK/aJw6tL/Y4swHnDww+jCx+Ql9rshgwDmvYPe2MWnKc/OVH8VuddHa0FMVPW8zqsLnIuSVgg1/G0kWk3T4OxEFEYvRwtH5o2xp2kK6mCZTylBWygRsAWrsNawJr0FWZbKlLE6jrbL1I5jNemTEec5+rKldQ62z9ow2YkEunHVG63zWpivGcrIMdjtDnW6OTe+lpJYYnB9gRe0qcnIej91LupDE4w5SY/Yj2PV4hrKsVzI0NOYL8wiiQEkpYRSNKKpCvBBnMDaoB1YmR7Ab7YynxgnYA1zVehWDcf2b/qJR3SJn830618n65YTSy5GRMuye3I0kSzx4/EHuH7hfd1LWNJYHV/CeFe/mePQYkdQkG1suJZGOMl9K6hUMsxVBFIkV4ySLSYKO4JLbHkuOsSm0DiwWYokJJpQ4Xs5sDZ/zdVkYrtbKZexlAcFsZm5+mh0d1/D40K+JJMfRXwGBTmcz713zwVd1sjwSPXLWJQRN0/hh/w/562v+mv0z+/npkZ+iqgrlcol8KUfQEcRksupWDY4c48U09g3NNKpO7HY7ajaLoaMDoaRnZokNDWiSxHApWnl/Lm77aWgomkJKStET7MFv8/P48K/x2/xEMzPkzBmSuRhyWcJitHFP9we4MXg3Pzz2n/TP7GJ9/Qaen3qB48lhOoGxxAgGwcCWxi38R9+P0FSVqcwUiipz6/Lb6J/ro9ndhCiIpKU0Nc4Q09lpHjj+IFs6NnFsfC+Pjz3JFR07iGrpMzYOnWWRK4KbeKRpI30Teyq+TGaDBZ/Ni8PiIug8ORBdiWUIhRB9PiZNWeajY/ocj8kEsoxgtWJKZZGHx7D4t7HC24ypKnredlSFT5W3BR6rh+HkCOliCr/dT7KYYiY7ww2dN7C1cStra9diM9uI5WPsn9nPbHaW31373zAnMpQTRyu3I9hsmLq7z9sT51xtxNdalRNMJjCZ0HI5isuauX/0UV4c2cnNG2/jQWA6HaHeVU8kPUWju5EN4fU4jDYEoxG/zU+9qx6mqbjuWgwWvQWHgMviYiY7g8VgwWf10VPTg9PsJFlM0jfbx9amrZXjMIpGiuWC7vmiaSAIJItLAzzPdbKGswulV2IsOYbD7OBrL36tMri/yLG5ozxm+RXLaldwfPwgmqzgM3tJKjlkuYQoiJUKj9VgQVWVyno56PEtZbVMUSthqKkhpxbP+7hOzZES7HYabEa8RYG43cbU7HG2N26FtsuRlBI+R4AbV9xCXaj9vG8fzu2pZTFa0NCQFElPStc0NABRxG336rl+HiepQpKDc/0kkrPIQ0MEXGFuabiKusNjYLdjqKtDmZzE7POh5fNk5ZMtV8di0OkpOXAG0YDdZOdEYogtjhBoGqoiUy4pjM2dYNDZz1DzFTw/+yIGq416awtpOcfVbVejqgpmDKwKreJXg4/wxNCvK6JEU1WiuSh2s4OdU7vYF9mLx+plNjeDz+KlO7iCI7OHcbTuQFNVInPD0HUNLOjwU7fkBJOJzlmFL27+H/w/579T4wwRctWCpmE3OdjcsLmSeQi6z40mSWi5HMbly8nH+xCdTtRcThc9djuGcBhtapq6umXMGArkpnbjNSVpCbT/1lfV305UhU+Vi57Z7CyHZg/R4GpgS+Ol1DnrKaklrEYr2VIWi2gh7Ajy0tRLKIJGq7cVv9VHOZeh0dwOnJz3eKO2fl5rVU70ehHsdv0bKWkS+Thlg8bTBx7gss6teDwhbnW/m6fHnkJTVeyaoSJ6bu2+Fb/Nj9/mxyTqQ6gWg24kV5SL2E12FE0hXUqTK+eIZCIVU0sr1krbz2V2gaqi5fP6t+EF4eNWzajJZEUUvpIB5qs1yMyWs6SKKQ5FD9Hp1wdJBUHQT/SaxvH5QS6tv5QTgoDDZKcnvBIlJjKeHqfJ04Sogc1kx2v1UlIkFFn3OLIYLPpWk8WBzR0gU1DPe9vq1BwpweVCHh7GUixyc+flPDDxa+ImI7NSDEE2EHDXcvXKm6mreXWiB87tqbW4eYcA3TXduMwuMqUMdrOdGnsNbrMbl8VFPDePzekjPnECwWQilozwgPo4dzVejm18BmV6GkNnJ5qiYPD5cLkcMK3fh9VopTvQzfG4vhmlaXpLuKRIBG1B8lJOTypHBDTKcolsOU8kPkYsE9UzzdCdsmdyM6jZLB6Tk6JZ5KXJFzGbrFgMFj0JXdOoddYyl4+SK+coKSW0hUWAhJRkLDlKwB6gpJURAESRgpRH0/TstFNfN9HrRTCbWTUr8b+77mHYkCZTSJIsJKgxunGdUu3x2/w0GQOUDhyo2BvYDaKexVZbq+ezlUpoU9M0d2/g8YlnOHx4mhrNjiH+IjXB5ovC1bzK+VEVPlUueo5Ej/DcxHN8evOn+fpLX+e/Bu6tXLapfhNfuvpL/ONTf0NGyWLQBBAE2n0dbG1fjSOmEquxckyeIVlK47O46TZYqX0dWz+vB8FiwdTWBppGbnYv7pyCzWChIOXYM/QsmM0Y8hLLm9awpes6WixhAuEWWgMdlW+k7+x+J8+PP0+9s57x9Dhmgxm70Y7P5kPVVNaE1jCXn2Nj/UbihTjz+XnMBjMOk53VNSsxGyykpTSizYFBFFHKJertYVrxI09OYrLZECyWVzTAfLUGmU6Tk2xJ/0afL+fxWDykpFRF/OTlAnaLnc7G1bhq6qmzqLh9YW61B9lUuwFZlpjKREjmYqTLehXIJJrw2X2EHbWYTBZE0XBes1aLqMkkWqGA4HAgDw+j5fMYGhqoPTbBB13rme0OEjUWiZXTCKLIbHGegBR61dWBl/Pc6gn2sK1xG2kpzTu738lkehJRELEZbWhoHJs/Rp27ASR9oFn0elE1jVh6hqlGjU5AMBoxdXejxeOYVq6k1WaomN1lS1k+0PsBfnLoJ/TN9uE06xWgsKOWrkAXR6YOIAoGjKfY74iiiBFRF4Snx0ioKlaDlWQpSZOnmYnUOF6rl2QxiSQXsZsduK0eUoWkvkV4yq/G83GWB5djNOjD0oLVilUzkCoWCQSbl7xup/puBeYLBAQLdU3v44GJX5G0qBVBtmiiaB2aWOLp1Cg78Ws24nNzeixGOk190woen3iGRDFBi6tJT7FX1YvC1bzK+VMVPlUuepJSklWhVXzlha+QltKsCa1B0RQMgoH5/Dzf3vdtPrv9D7l3zw8pKSUa3I18oP1dtMhuDvnn+dr+rzESO47D5gGjkTpXPR+23c1yByfjD97EEE/R68W8ciUeRw5r4iVWGGoYSA2TzybQsllkYHh2gDtXf4htrdvPaMu1elsJ2AJ0+ju5d+BeZrOzxPNxZnOz9AR7WBNew86JnTR7mvX8Nk8jy73LWG9oon3zH/KXz32Z/dP7KMhFFE1mU8Nm7lj7IR7a+2NuXHYjrdNOcnYDNTY/IUeIofgQgiBUEqAtRgtdga5XbZDZ4m3hyNyRygp3h6+D8dQ4KSmFKIgYRCO1jjpu6LiR5yaeI1aIYzPaGEuOsm/qJX5/9e/yyc4P4jbaeWb8WSS1TFegiyZfC43uJgL2AAiwrWnbeb+O2inbX1o2ixgMIo+NoeXzTK3w8WR0F/ceu5fx9ASCwYDPHeaW7lv46PqPvqrqwCt5bi1aVdxjuWfJ/NhkepI6Zx072ncwcWKf3pJKJhEcDkSPh0LAhWlDI2o+jyDLmC+5BMFiwQVLzO4yUob3rXwfd6x8P26zC5fVzWRigudGnkYD7EYrgqyAKOp+Ra4W6s2BM8wIJVkiqaQxlS1IWpkbum7kl8cfZTw5hsfsAoubrkA3nb4OPW8wpVBSyliNNopykZJaotXXhlQuIFgs1DvqQJIInGNG7nTfrTaTiY92rT7DnduezFPOTyz5XZcsckv7DTww9QQJOQPZLILbTSKaZLm/C7MqgAF9kB0ueFfzKudPVfhUuejxWrxYjVb6o/3AqbMKGqCvl+fLeT7U9i7cFhc2b5CB7CjHxRiPDj9GWividYeZys5wfduN+O017Jndz2hmAkVVmM5OU1bLb2qIp2Cx0GKrwycZUBIz9DpCZGpqKdcomEUT7a5megM955xFcllcbG7cTE+wpxLzkC/nUTSF+4/dT4OrgbSUxmq0sq12C++3XYI1q/JPB77FxroNbGrYRL6cw2KwMp+e5Z+f/wdu9G/h3r6fcmv4E/zy+fsJNnTw4dUfroRnWowWEqUEq0KruGfDPZX5nvNNLndZXKwJr2Fr01Z2TuxkKDFErbOWZk8zRtFIb6iXzY2b+cJTX2DX5C7KShkNjTZvG1c0X863D32Pz6/6FJ8L3c7tDdcRM0ocig9QRtHNJtUSAVuAhSmZ83sdFnxrNFmuvC5qKkVyVRv3zz/PL8cfZzQziiCKGNFI5GM8OPggDrODT2765KsSyufjuXX6VmehVGAgNqBvD4oLtRNNQ8tm0QBbVkI+seBovGbNkvbt2TZEG2U7yvQMU2qBONO8e/ltPHLsASZiI/prZHVzRcsVfKD1nYSLJgLOEAn0ealkPs6x2SMUpCxpZyO3dN3ML8d+zXtX3YEg6BW7Wlcddc56vt/3fW7teicW0cKh2YN4bX7QNBrdjVzbtoND43u5ouUKrmnbgbck0tK0Cu8pPmWnRrkIViuGYBDDQuXJDaw6bSB50Xjx9Ne2KefkrvD1RPwGMnNTJLxm1swsw6KaEcwGMBoRrNbK71yIruZVXj1V4VPloqcn1LMke0qoDLUK+Kw+8qUcqUKSm+Ru9vpL/O/nvoBoENnaejmJYpKGQAs20cp1vlv47oHvcnjuELKqELAHaPG28JlLPsNocvRNL3e7LC7eufI27j9yL7FkhMBClT7gDXFr3TW4zK88p3L6rFFGytDsaSaSjSArMnXOOtpKTkzPvMALyy0MxgeZVhIcmthzyq0IIIpc07KD6HScF6L7qGnp4hsH/h+Ho4d5f+8HuKzlMgRBYJlvGZqmsX96P6uCqypmiosVCkmWMIkmru24Fr/NT7Oneclz2R3s5vPbP8/f7/x7Ds8fRtM0VE2lK9DFxzd+nB/3/5gXJl8gI2UqNgGHoocoyRIb6jZwTJ7mqqyLNqeLgfQwLx1/mmk5jrCQ+VTvrMdsNBOwBc7rNVxM+1781q+VyyDLHPZJzE0kOBo9snBFUfdWMjhJFBMcnTv6mqoD5+O5deprmpEy9M/1o2gKgtOp+/bk9C2tgKeOhrwu3MRQ6Kyt29PfH8rsLOVsia6cEZt9BbuLh/nE6t+lQJmyUsZrcbPe1U1LHASrkVtXv5f7hx4iEhvj6Ph+CsUM9e5Grqi9hOOHnub63mt4YvJZ3elZFPmvwfvZ1rQVs8HIz/p+wrrGDVzbcQ2JYhK32YXdaMMvOrm78320l104Evqmldl78tgrUS6Jk8P2i+7Oxtrasz5niwL2dESHA3fJhM/fgpw0c0zIYzHbEAy66DHU1FRaZsAF52pe5bVRFT5VLnrCzjBra9fis/lIFE5+GPpsPtq9bRyPHsNn9THttvK3L/w1tZ46nh5/lpHMOAdmD+IwOvjc1s9x3+B97J/Zh81kp6hIaJrG3shevrHnG9y1+i4OzB5AkqU3rdwter00j3n5yIo7mJDj5OQcDqODJqMfF9bz3jw7lcVYlN5wb+VnpaNHKakqKTWPViwiu+TTfkvTPYVUibRFw+n085XdX2U8Nc4nLvkUfruffDmP0+QkmosScuqBuotmiouiJ1lMMjA/QEEucCJ+gstbLqekls6oom1s2MhXbvzKGZWP+dw8Q8kh0lK6InoWGYwf59LGS4mXkoCLSWuRB/oeIpKNLJlBiWQjPDjwIL2hpc/BuajMkYyPIzgc+vNQF2AsH0GST0kL10AQRIqKhIJKtpQ9L3PM18uSfCbiGJqbUcbH8Rvd3NJ8DfahGGIohOXyyzGcx/tlUehphQJNeTM+9wYmTXky89M4BBPNlkacMU1f++7qotXr5W7rnbw08jxBgxurwQKSxFRkgGCohfsO/ZyUsYyklDieOEFaSjOUGOJ31v0O65o2sXtiJwdnDtLia8VtcnJz8zVsNLTQkBJAK1e2LBcrVUviJk5BTSQo7d6NuGPHGWajpz+uMy7zeDC1tmJqbaU9OUuoNECsEEewWpeInlczG1blwqYqfKq8LVgVXMVVrVcxkhipzPcUygWOzx9nXd0GVtpbOZwbQzSIPD3+LFOpST6w5k7W1K5FURXq3fWIiPgX2mJAZW5l/8x+3r/q/RyZO4LNaOOq1qveFOEjWCyYurpwDQywouwFvFAGwaj//PVsnZ1+PwBeqxcUBSMiCCJop85vaNiNNspGgbxaZCQ2xOd3fJFv7/s2e6ZPVoc21W/iL678C2xGW8VMEfRKz6LoAV2AqKrC/Nw492V/xEd678LjCVWO5WyVj5HkCCLiGaJHEPQ176JcxGjQP9IipZgueux2fUD1FCLZCJFs5LyEDyzMkdhsiE4n5fFxIhYbNqGAaSGDDUHAaDRRVCRkRcVsMKNqKkPJIZqTzb/x1ujpLSv7OiONZQfOvAydZgzh8HmJHlg6MKwVCjjzCssFK0J4vX4bC2nnotdbea0cORlLViIxPbL0tqxWEkqWY8lhmjzNpKU0AGW1zHf3f5c/vexP2diwkXw5T2+4lzZvGy2Oehw5GS1YPuN+4LS4idNQEwmUaPSswuf0x1X5+WnCyhtu5lbLB1+zD1eVi4Oq8KnytqAj0MGnNn2KP3/6z9k7vbfy8w31G/jiZZ+nKVLgBUuSGkeIqZEnuHPtXbw49SKH5w6jqApjqTEi6Qi3Lb9NN4nT1ErQooBArqS3DwpygansFBkp8+YNOp8yvHm2k8HrZdHQrVuooSO8nGgxjsvpJ5ONV8I922uWYSoptIS6MGDgz6/9S+4ffJCiUqTZ3cxkehIVlZciL/HV3V/lc1s/R6F88gSTKqYqogf0mZlCOoYSjRKVI4xY97Ci5MXU24uhpuaMYwS9zWA32SvbSKciCAJBZ4gaWw3Gzk7kZEJv/SyIHlmVkWSpIoqlsnS2uzgngsWCYDZjcDopGF2YEnGsJiutvjYmMpMUFio9giAQtAepd9cjlaU3rTX6Rpqavtr3nFYu4zTaz/h5USmiGAQShQQN7sYll5XVMkfmj1BWyrT52gg5QieF6Mt0kypxE6/h8vN9XFV3/Lc/VeFT5W3D5a2X8y3Xt+iP9pMoJvBb/XQEOhiKneBH1hgeu4f2QCfXd93IEyNPcDx+nKA9SLaUxSSaGEmO8Pzk82xp2kL/bD+RTASDYEDRFBwLK771Tv2E9mZud5wemvpGIzqdmDdvpmZ4mE/3/i7/fOg7GMxWRjSNTClLh7+Td3fdCrkiN624he8e/REui5v7Bu4D9OHynmAPR+aOoKJyKHqIWCFGp6+z4hVTUk+mdVsEM5e0bKGpthunJ4jP6kOzB5H3TKKm01guuwxD4Ey33BZvC63eVlYFV3Fo7tAS8bOudh29wV7CrjqM4UYaRN0kryAXKJYLzGfnKCslEARcVg/5cp7R5OirqsYIJhNaNovDKTIUPcJlXdvx2gPcf/wBDs8dAUEg5AhxS/ctXNZ8GZFMBLPBzGhy9LyrSxcKr+Y9J5hMNOEl4AwRy0YrP7carJRVGYvBspCdtxSTaCIjZYDzn515JcF/Ppefz+OquuO/vakKnypvKzoCHXQEOgB4ZvQZPvvIZ9k3vQ+XxUWzu4l6VwOXNV/GfQP3oaExl5/DbXEjCiIN7gam0lNsbdxK30wfdpP+LbYn2IMkS9Q76yuho2+37Q5jbS2C1crKPXn+cvV/Z8CQIIOE0WTBp1lxlaCmrYX/3Pd9EGRk88k176SUhDQ0uhuZz88jqzIZKcOywLJKdcYs6sPFFsHM1e1X88DxB/nx4Z8wkdJXjLc1beML2/4XG/bHkCcmEJ3OM05iLouLO1ffSawYo6SWkFW5EgZ7Xcd1eG3eygzGssAytjVv4+nhJ5lITSMvVO9cFjdbwxtJZedfdTVmcU6kSTPhMjg4cvhJVrRtYv0VX2Q2H0XW9IH4Q7OH+Obeb1ZiP8bT4/ye5ffetuZ3oteLc8zELe038sDwIyfFjyTR4e9gOj9DvpzHbXFX2l0tnpZKePCrmZ1ZrE6erd0l+nwYQqGz/FaVKkupCp8qb0uGYkOVtpfdZCdVTHGwkKDGEeT5iee5tPFSnh1/Fg2NslJmODHMhroNHIoeQtEUjKIRn81HT7CHT276JLO5WS5vubwSOvp23O4weL1YNm4kNDBAMHNyLmZxDuJwfpSEWSGoujFbdXfoxSiCpJSkzdcGQKFcoN5Vz6+GfoXT5MRldtHibmEmPcXKYA8PHH+QbDFDJDUFaAiCgT1TL/EXz3+Zf938JZrTBdRzGEh213TzB5v/gD2RPaSkFCbRhN1sR9M0Lmm4pCJiXBYXH+r5AFIug0kVkFUZo2ikzh7iEv9qJkb6IRR8VZW7xTkR5+Bg5STff/x56pp6+M+R+1nfuInx4XFihdiS30sVUhet+Z2STKLMzkKxCDYbhlDojHmhxVm0psFBPtxyKxMkycp5XHYv2wI3Ey3Mc3juMC2eFsZSY/isPi5rvowXp17k9p7bX9XszGJ18lxbXWeb76lS5XSqwqfK25L+aH9l1scoGnW7fODJkSe5ofMG1obXVoz3FFUhW8oSzUXpCnRxU+dNbG/ejtVoxWFycCh6qPL78Pbe7ni5OYhctlg5sdhMNtaG1zIQG0BDQ0DAJJooykVu77mdXw39in/b/28AOMwO1obX8pnNnyFXzvHjwz8hkppCQUFAxCQYEIA9ky9yeNM0LcbWJcaBp9MZ6CTsDL/iDEaT4uQd9VdQa/JRVKTKxtHEpD7XJRaLr7pyJ3q9mNesoS2Z5HfCLYxLc0hGjVkhS9ARZP/M/iXXtxlteKyei9L8rjwxgfTss6jRk+0rMRTCsn07pqamJdddfF68ySSe0943X7r6Szxy4hHm8/PcuvxWzAYzqWKK/3vN/10iVs8XY20t4o4dJ318LBa9ElQVPVXOk6rwqfK25NT5D/WU7SRJkUgWk3T6Owk5QiiagtVoJV/Kc3T+KOtq17Gudh0dgQ5Gk6PcP3D/GaLn7b7dca45iFOrXPlynjtW3cEP+n/AkTndy0bRFG7uupl6Vz0/7v8x7b52NPTcp5HkCP+46x/4zObPMpudRRRFRERETUBQNVgw30tKutHcuXxXzn7AZ/+xVi5jLWlMTx47+xXU88/sWnJ3C8+PF/Ci53IF3bU8cvyRJdezGW1013RjMeotu4upPaokk2eIHgA1GkV69lnEm246a+XnbO+bNbVrqHXWvqwx46tFdDqrQqfKa6YqfKq8LfHb/JX/F4Wl68wvTL7A72/8fZ4ee5o9kT3YTXZUTWVD3Qa+eOUXKzNC1e2OpbR4WyozO4qmkCvnuLP3TgrlAoIgsCa8BovBwv964n8xX5hnPj9fcUn2WrxYjBYKcgEDov5TVYXTXJR9Nh/ktDM8ioZiQ/RH+4kX4vhtfqxGK/tn9ldE6dlctQWTiSbBh9tXy3B2nJJaxiya8IkOGt2N2IN1xAtxDkUPve44klZvK5sbNtM/209JLWEWzXisnorogXMP8J7NhfitPqkrs7NniJ5F1GgUZXb2vFfk4fyMGatUebO46ISPJEls3ryZgwcPsn//ftauXVu5bHx8nE9+8pM88cQT2Gw2PvjBD/J3f/d3mBdcW6v89tAb6mVD3Qb2Tu9FXtgsWTxJrgytpCAX+OOtf0yunKMoF/FZffSGeiuiZ5HqdsdJlpjlLYifTClTqYK1eFv4/oHvM5IcIVaILYmGSEpJSOrbXVtatrFz7DndDXkxXkQU2Vi/kZWODkwNrUsGm58ZfaYyr6WnhpfY0baDj67/KKPJ0YWgS4EHBx/kI2s+UhEwotdLck6lwd/CvtghIulJjKKR7V3XsjN5mKAQYywfAU4GWTYpTr3FZzYjejyvyjZgWWAZy4PLl3gXRbNRSmqJelc9QUdwyfVns7McnjpAIh7BKzroKrvxjc4julwv60L8plAsvvzlr7BWXqXKhcxFJ3z++I//mPr6eg4ePLjk54qi8I53vINgMMhzzz1HLBbjIx/5CJqm8bWvfe0tOtoqbxUdgQ6+cMUX+POn/5x90/vwWD2kiilWhlbyqU2fYjgxjMviqpywq5wfp1bB4rl55HIJh8FCOjFL2ujEarKSklJnzcNKSkkEBP77pf+dkiyxZ+qlymUbGzbxxSu+QGfdiiVi49QhddCrd53+Tp6feJ6R5AhXt13NEyNP0BXo4obOGxhPjrMyvBKALCUejO8iPnmC7eFN0HwZToePFyIvsal5C06ri3QxjdPsRNQEfvHSD/hI8Foc2QX/poWh7vN1yD5VGA4nhjkRP4Hb4sZn9bEquIpnx55lZXAlK0IrODBzgK/u/EdODO+FhRyw9tByPr36HpYfe3kX4jeFU/Kpzsob6CNVpcqbzUUlfB555BEee+wxfv7zn/PII0v76Y899hhHjhxhYmKC+vp6AP7+7/+eu+++my9/+cu43e634pCrvIWc4etj89PobkRRFVaHV/9Wt61eDy6LC4dm5FcHH2V+blyv2ggCNcFmelZdSU+wh4OzB8/4vVXBVQjA8fH9/MNVf8NIdpxEMYnP4ac3tPqMahssHVIHCDlCTKYniRVizBfmubnrZoYSQ0xnpynJJVaHV1euO5YcI6HmIBRktpiBfAqTw8Xq5g187+D3ODp3lIJcQEBgbXgNH133UY7YM7hQyJZzuEQ7jeMiftvq8678tHpbef/K9/PL449ySf0m+qOH2B/Zz08O/QRZk9lQt4E/v/LP+UHfDxiaPVYRPQDD0WN8re//8aWuj+M7MXNOF+I3A0M4jBgKnbXdda7crypVLhYuGuEzOzvLPffcw7333ovdfqZL6K5du1i1alVF9ABcf/31SJLE3r17ueqqq97Mw61ygXCqr0+VN4Z0Nsa9z32HuZlhUBRYCIWdmxgk3bySO1begaqp9Ef7K7+zKriK9/S8hxPxE/itbnKFFLcEL3tFF+rTHZqdZidH549WKkoFuYCsyqSlNM9NPMdcfq5y3cVhYsForOR1+Vwh/nbX37I3shebyYaiKggIHJg5wL/3f5/PbPwUB+JDeP31ZNUoan6E9rF5VoZW0nxKOvjLEY1P4BPs/OOef+bg9AGafa10B7qQNYWiXOSbe7/JqtAqjozvPeN3h6PHGFiZ4lKWuhCfb8L9G4XB68WyffvZt7rOM/erSpULlYtC+Giaxt13383HP/5xNm7cyOjo6BnXmZmZIXzatxCfz4fZbGZmZuacty1JEtIpHzDpdPoNO+4qVd6OjE4fIzp6ZEm1AoMBwWplbuQoBa+Ba9qu4ZauWyjKRaxGK4ligpciL7G+dj2i3YLbX7ukarB4Yp/NzeqZW6IRi8FCwB5AQKgIHUVTlvzbZrRhMVjQ0HCYHaSL6UqcyOnDxPG8HvR6YOYAKvqm3+LtGEQje6b2oGzSiJtkvv3iP5Ar5XFaXFiNVtbXreeulXdyiWPZy87+aJJEanaCrKnIwekDrKjt5Xj8OPNz85XrTKWnuKb9GoxGM2db2k+VM4Cxch+L24WnZ0edPsz9RmNqakK86Sbdx0eSYGFrqyp6qlzsvKXC54tf/CJ//ud//rLXeemll9i5cyfpdJo//dM/fdnrCsKZe62app3154v81V/91SseQ5UqVXQ0SSKdmF0qegAUBa1YZHrmBNf13sOvpp7l4RMPkygkEAWRZk8z13dcT9ARJFfOLZmrWjyxH5k7wu7J3cQKMRpcDWxr3sZy/3Iua76M58afq/gFGUQDmqqxKrSKaC5KWS1X2piSInFs/hibGjYt2UKTZImx9BjtvnYsRgtaWUNR9bBTDQ2zwYTNZCclJbl/4D6MBhOZUgZFU1Atbl6cepF0MY1j42foHhMwLVt21tkfNZnEiZlkMU2zr1UXPfn5JddJl9IcnTtKV90qDmeeP+O59JhciD4rhlCIjJQ5Q/QATGem+c6+73BL9y3YTLbfWAXI4PVWhU6Vtx1vqfD51Kc+xR133PGy12ltbeVLX/oSL7zwApbTvmVt3LiRO++8k+9973vU1taye/fuJZcnEgnK5fIZlaBT+dM//VP+8A//sPLvdDpN02nmXFWqVNFRk8mzBlICoCgoqowXG3+07Y+4tv1aBuODCAjYzXbSxTS5co5bum4B4NDsIQpygQcGHyAjZXhx6kXm8nPky7qnUr6cZyYzw/tWvg9VU3l+4nmKchGX2UWTu4n3rnwvvzzxS5bXLCdRSBDPx5nJzvDQ8Yf4y6v+ku6a7sqw8bG5YxTLRQyigRpbDWkxTaKoO//aTXaMogmb0YoBI4liglwpR527nvHkOKPpMUyiicHYAF2BZbwneCUdg4OY16w5o/Kjlcs04eWYzYvfHmBLyzYaXA0U5AJ2k53J9CT3Hr1Xr1BZnIhuN2o6vWTAudtQi3lzN6LTydjsoTNET7KYrCTd17nqmM3NVipAAVvgTW2JValyMfKWCp+amhpqzpHEfCr/9E//xJe+9KXKvyORCNdffz0/+clP2Lx5MwBbtmzhy1/+MtPT09TV1QH6wLPFYmHDhg3nvG2LxXKGoKpSpcrZ0cplGvEQCLUQi46dcXkg0ESTtxmXxcX21u2srVt7hg9SrBDjm3u+yXBimFZfK48cfwSTwYTD5KAoFyuGk2OpMbY2beWvn/tr/unGf+Ke9feQklLYTDYOzx7mm3u+SawQQ1Ik2rxt3LDsBvpm+hhJjPDDvh/yR9v+qLKFtnNyJ6OJUYKOID01Peyd2UvIEcIkmlA1FZNoos3bTl7O47K4UTSV8dS4voa/gKppTGam+F7+Xv44/F68Z4nVEEwmHHmZ1YHlfHjtR/jKC1/hwOyByuVrw2v5/OWfJ5aPIamSvjbv86GVSnT4O/jMpk/TEOqtDDUvzikZBAN2k52SUkLRFLoCXSSLSZLFJJIsES/E+UHfD2jztnE8frxyf+fTEktnY4xGT5CV0jitbkK+RmJSkkw5UxVPVd6WXBQzPs3NS4cKnQsfCh0dHTQ2NgJw3XXX0dPTw1133cXf/u3fEo/H+dznPsc999xT3eiqUuUNQjCZcCQL3Lr2/dx34CdLxE8g1MJtl3wIj/ekGDjdBykjZfhB3w94fvx5CnIBq8nKXH4OURBRNZWQI0QkE6lcv6yWyZazHJ0/yhUtV7AqvIq9U3vpn+3nPSvfw3R2uiJeBE1g/8x+/HY/kWykEhHhsrhocDYwEh/hoWMPcfe6u1H2Kzw79iwui4toLsr25u18fNPHeXL4SRRNwW1xM54eR0Q3v9Q0FUEAi8FMf/QQww3Xs+4ssRqi14tgteIpqDww8ACDscEllw/GBnlg8AF2tO1gW902drTuOKub8eLMU0pKEc/HafG28KP+HxHNRYlkIoiCyDXt13Dr8lsZjg/jt/tJFpLky/kl9xcvxCs5YcCSapDb7OZE7Dj3Hv45iWISh9FGtpTFYXFyVdvVDKVHK23E3/Q8UZUqbyYXhfA5HwwGAw899BCf+MQn2LZt2xIDwypVqrwxiF4vosNB43yKjyy/g6mVWbLlPE6TnUZDAJ+//WW3tI7HjldED4DZoJuLCgjMZmdZV7eOQrmAQTSgqAq1jlo6fB14rJ5K9WNDwwZKSok9M3vISBnMBjOxfIxfDv0St9WNUTRiFs1LIiJavC08NfYUW1u28ujgo7y/5/3cteYuslIWWZUxCSYEQcBsNNPqaWUkOaIflyBgEAygabT52onl5kHTmJETZ43VWAwyPTbxDFPzw4TsQRRUVFVFFHVx98LkC9y24jZWhlae4WackTL0zfYxGBvEbDDT6GpkY8NGfnH0FxgEAzX2GuZyc6yrW0ffbB9/+fRfUuusZefETtbWruUPLv2DytzTIqliSp+fmtpdmXeaykwhInJpw2amczM8PfIULqublaGV7Bx+mrH4CB/d9DGOJY4vEU/Vyk+VtwMXpfBpbW1F0840SGtububBBx98C46oSpXfDhZP7OWBAZyZDF1FAVQbotOBaXUXhkDgZX8/kolURA9AWkrT5G5iOjuNxWjBKBiZz8+TK+do87bx3PhzyJpM0B7EbTpZuV0VXsXh+cMcmDmAoikYBAN+ux+jaKwEg5661eWyuLi562YeHHyQTY2bKCpFklKSkDPE7ond+O1+5gpzbGveRm+4l0dPPMrx+HG9EqUqrAj2cFXLlTx94nHqrDWYjOZzGhuKXi+pqTJmkxW/6GcqM0VBKVaWLKxGK06T8wzRM5oc5WeHf8auyV2MJEa4cdmN/PTIT9lQt4HHhx+nrJapsdewvWU7R+ePIqsyB2cPsrZ2LYqm0B/t5zv7v8MHV3+QY/Mn88mC9iD3DtyLxWAhWUxyKHqIQ9FDmEUTL0zuYn3tBt7RfQv3HruXAzMH6Qp1cWS6j4HZw9S4a5ktzF2UIatVqpyLi1L4VKlS5a3j5RLcXwmTcWmVZDA2yOUtl/Ps2LNYDBZU1Iro2dK4hb7ZPrY1b+Mfd/0jX7/p65Xfc1lcXNlyJTsndjKcGK78fDEYtM5Vd4Yjd6u3lY+s+ciSmaOgI0gsHyNeiFNWyxybP0ads46Prf8YywPLmcvP6RWlbJSnTzxOo7Mep8FGQ6DtZR+vz+ZHMJtxYabdbCVXyiGrMkbRiMPsoM5Zt+T6i9tbQ4khBmODbGncwuHoYZ6beI5GdyMmgwm3xa2v8msaqqYyl59DQ6OslhEQMBvMHJs/RkkuLbltDY1UIYXH6mFgfoC53JxuGWAyMJwYZlP9Jl6Y3MWmhk08PfY0K4O683UsF8NvPzmDeTGFrFap8nJUhU+VKlVeNedK4n4l6p311DvriWT1OR5Zldk9tZtV4VW0edswCAbe1f0uCnKBmewM7f52Hhh4AIfZwbH5Y0vMKDsDnfzJtj/hh30/JJKNVIJB61x13Np961nbMmfLXjs9f2wyM0m2lGVb8zZ+dvRnjMwPY0Sk3t2Ay+rh5hW30hpa9rKPsyfUQ7uvneHEMGaDGbPtZF5gu6+dnlDPkuuPJceIF+JkShkypQzLAsv4xbFfkCwmMYpGMlIGSZYoyAUa3Y1omlbxIDKJJqxGKwFbgFw5R6aUOeN4FiNbFg0f4WR4r6zKDCdH2Nx0KUClTWYWTRTlk5ldryXJvkqVC5Gq8KlSpcqbRqu3lZu7b+bBgQeXiJ9kIUljcyNfeuZLlJUyGnpVQxRE7CY7kiKRkBJn3F53TTd/tO2PztgcezWzKKfmj52+fXZV4SrSUrpixOi2uNnWfNkr3n7YGeYzmz/DP+3+pyUVqXZfO5/Z/Jkz2lyL1RRV1TfaVE0lWUwCEElHWBFcwcD8AAbBoPsZCQIOk4N2XzuFcoGALYDVaCVTymAxWpBkCYvRgt/mZ3V4NbO5WUqqXgkyivrHvqwpWI3Wk/9WZQQETKKJZl8r6UKClkA76XIBv81fzbSr8rahKnyqVKnypuGyuNjatBVN084QFE6zk1w5t+T6iqZU/t9n8Z3zNl/v7MnZbsNlcS31xXmVompt7Vr+asdfcSR65IzNrcWtrcUqU1ktE81FsZvt+nD2wtC3pmk8OPggn730s8iqzHhqnIyUwWPx4DK72N68nYcHH8ZkNDGdnWZteC0he4iyUmZ1eHUlu2zv9F6i2ag+yG0wYRJNpKU0a8JrSElpVAEMBiP17gZC9hrWBlYyHh9FMBrxG/3nrKBVqXIxUhU+VapUeVNp9baeVVAkCgl6Q71LMr4W6Q310hvufdOP9fWKqrAzfNYh5sUE90Ujwu3N21FUhWQxWZn/6fR3MhgbREPjewe+x1WtV3HTsptwmpxsqN/AUyNP8avhX1FUiswV5lhbu5Z3LX8X3z3wXVq8LZRVXfwspsYnC0l2Te4iV87hs/moM9bR7mvn4MxBru+4nt7Qana07WAmMUU+n+Tj2z6N3xmiecGXqUqVtwuCdrb1qN9i0uk0Ho+HVCpV9f+pUuVNZtfELv7Ps/9nifjpDfXyPy//n2xp3PIWHtkbQ0bK8N0D32U6M82BmQOVDTen2cmHej/EM+PPMJOdodZeS8AeYHdkNxkpQ76cxyga8Vl9XNNxDX0zfXQFuugM6OLIbXZTlIs8N/EcRbmIzWhjbe1a7uy9k1XhVWSkDA8MPoBBMLB7cjeZUgYBgfH0ODW2Gt694t0ICORKWRAELqnbSFdo+Vv8bFWp8uo43/N3teJTpUqVC4YtTVv4+k1fp3+2n4SUwGfx0RvuPe9k9AudxfbW4qAx6Ovt7+x6J9/Y+w1qbDXU2mvZ1rwNh9mB2+LGYDBQLBcZT42DAA6TgxPxE/RH+3nfyvfxl8/8JXXOOgK2AAG7bidQkAukiqnK7NBYcoyB2SN4rB7G4yPUeRvJlrLUOmpJSSn+ftffs3d6L7+7/ncZjA3y5OiTfGLTJ9hQf27X+ypVLlaqwqdKlSoXFM3e5reN0DmdRSGyOGgMcFXrVfx737/TP9vPqtAqru24lp8e+Sl7pvegaipG0Uizp5lr26/lP/r/gyeGn+Dq9quZycwgIuI2uymUC8xr83isnsqwckktVTax0pl5lKkpMiGFF4efxeGpYSw1jsPsIF/Os8y/DFmVieai7I3sZSYzwxdzX+RvrvkbVoRWvPlPVJUqv0GqwqdKlSpvCrPZ2ZODvlYvPcGeM+ZffpOo2SxKNIomSQhWK4ZgsJKJ9WaxKETM4sn1drvJzpG5I3T6O7m85XK+tfdbmAwmZrIzKJqCzWhjKj1FWkpzdfvVfGPPN/ig44MVg8eeUA/D8WEUTUGSJYxm/WO93llPi7cFTZKwp4uoqRT2+tbK/RaUAn6Dn0QhgYaGoikYRT2ktdPfSX+0nydHn6TR01id8anytqIqfKpUqfIb58DMgXOudq+tXfsbv395ZobS7t2oiZMr8aLPh3nzZoy1tb/x+1+kxduC3+ZHkiVsRhsFuUCunKPWWUskE8Fj8TAUH6LF21LZaFNUBYNoYGB+gJuW3cSOth20+doYSYyQKWVo97brc0ClPLJcQjPa6Ah08qHVH8JlcaHMztKQMxFwhjDkS7QHOomUYphFMyqqnvNVTNLmbWMyPYkoiBWPoPnCfNWxucrbjqrwqVKlymvmlao4s9lZDs4e5HD0MOtr19Md6ObJ0SeRVRmr0cqjJx4llo8Rdobf0BTwxXXxbDmLAwu1Q/PYUqkl11ETCUq7dyPu2PGmVX4WN6zuH7ifglxgYH4Ah8mBy+xiNjtLQS5gMVoqkTwioh51oekOzNlSlmw5y1x+jv/z3P/hPT3voX+2n3ZvO2tCvVg0A/W2EJd3Xk1nTRcAWrmMI5nnlpbreGjyCW5fdiv3TjxGrBDDZ/VhMVpIS2kuabiE/zr6X5gNZj2fDLAb7VXH5ipvO6rCp0qVKq+JV6riLF6+N7KXsZSe4r4qtIq719zNRHqCJ0ae4OHjD3O05ShdgS56Q72YDWYKcuF1tcIW18XjhTgASiKBNyFxS8t11E9lYcEkEECJxZCnphAdDgSzGdHjOa/ojdfDqYaJ8UIcs2hmT2QPE+kJHGaHHjEhpQja9TiNkqLPA2lomA1m1oTXcGz+GD01PXT5u9jRtoNiuYDX6mOZrZGOjBnneBbNJyFYLHqYqiBQP5XlzpqrmRLL9G76I04UJ1E0jbHUGC9OvchDgw8hCAIei4eyWqbd247FaKk6Nld521EVPlWqVHnVzGZnK6JHU1WQZdA0hmaP8dVdX+Hzl/9Z5fLFiASAQ9FD7JneQ66UYyI9Aehuxd2Bbv51z79yPH6cWmctRtH4mlphGSnDzw7/jOHEMNmynrwuKhoGi0Ix9Rz3hK8CucykpUi2nMOpWQiTY25miGw5h8vmobWpF0+g7pXv7HVwuj+QpEpMpCaI5+fpDfXywuQLLAssQ9VU4oU4oiCyomYFqqqyrnYdB6b28jtrP8IPD/6Qg7MHMAhGWn2trKtZzR+u/jgrY0bUZBJDOIzo9WLw+VCTSexzaZYBRMo4lzfwr8f+nY7mXmKFGJIi4bV6afe3YzVYefeKd6OhVR2bq7ztqAqfKlWqvGqORI/ookeW0fL5JVWUoYk++qN9lUrQ4pbRIpIsMZ+fxySaWFO7hms7ruXFyIu0+dpwmB1MpacwikaGE8P80+5/4q92/NV5V376Zvt4fORx5vPzlJUyRoMRo2DEb/EwEZthQ/eVHH7p18wnpjDIKk3L1rNr38O4seCW9PT0wFg9t237KK01Ha9wb28c6+vW8+HVd5HIzPHZSz4LwK6JnYQcIepd9bT72nnPivfw/NizPHXiCa5sv4rvH/o+x2ODOEwOzAYz5bLEC5O7+KoGf7X6DwmX9cwtwWLBtHIlmqIgj4/rIlWWWTEu8ZdbP8+gGmV9/Uams9OkiilUTcVkMKGhcUvXLdXB5ipvO6rCp0qVKq+apJREU9UzRA8Aqko8F0dTVQRRxGF2YDVaK4GXsiqjoXFdx3X0zfZxdO4oaSlNSSnR4evgqtareHDwQQpygeHEMEeiR85L+GSkDH2zfaSlNEbRyHhqnJSUwiJa2Nq8FY8rwFhhmtp1W+koCcwOH+KJmV1MKwlsgpk1nm7MZZVYIsJ9fT/lv2375Jt20ndZXFwe2sR9w/9O39Qj/MmWz3G0a5CElMBlcjKXnuZ7e77N5S3b2TP1EtvUbRyc2o+gqpiNVtxmN5Kkx30cmT/KMXmGWlNb5fZFrxfL5s0YOzvRslkwGBCcTuq8XuotvZXn7/VknlWpcrFQFT5VqlR51XgtXr1ycIroEQQBh80DRiNuq5uclMVqsWM2mGl0NzKZnqQoFzGKRlaFVnFg+gBXtlzJU2NPsXNiJ6DPsWyq38SHV3+Y7xz4DiWlRCQbISNlXvEkPJbU54hMoomj80fJl/NsqttEk6eJFyMvEsvHCDlC/Meh/6A3tIo/vPQPmXvmaSiXKVAmTZEa9DXzWDb6pm8zNePlwy23MkGSmVyOXHwGl83FbGwcQdXodLXw5P77aa5rwWX1EHQE9YR1RUHKpdFEAUEUUTSFlJxF9HqX3L5gsWCsrz/n/b8RmWdVqlwMVIVPlSpVXjU9oR7afR0M5fVoCUEQcLuCjKRGafI0E7QGeEf3zUznZnCanOTlPHaTnXQxTcgRImAP0OBqYHdkN6qmsqJmBaIokpEy7J/ZT9gRpjvQzcMnHiZZTPLV3V/lQ6s/RKu39azHk5EyTGWnEAWR6zquw2KwYDQYkWSJJ0efZCY3Q5tXXwEPO8Psi+zjmYlnCfsamJo5DkBJLcOC8EEU3/RtJsFkwpErsxwHDQYrh2cTxDLH0GxmUkaZstnIskAnAUcDLoMNuVQEQUCTZUAD9FadwWDE6wn/xoe0q1S5WBHf6gOoUqXKxUfYGebTl3yK9oWVaYfNUxE9H9/8Sf7u+b/lyPwRDkcP8/jI48xkZ7ht+W2sr11PT7AHAYFLGi9hT2QP+2f2MxAboD/aT0pKsTywnOHkMCFniFWhVWRLWZ4ff56fHf4ZGSlzxrGMJkf55p5v8qO+H/Ffx/6LfTP7MBlMNLmbdCPABdFzaeOlPDX2FDPZGWocNcRy80icHLw2iyb9f4xGBKv1Td9mEr1eBJsNoLJ+HnCFMeUlAkUDdYqdLoLcWXcDoiTTE1oJmoZgNCKYTAgmEyaLnZX1a1lZt/pNPfYqVS4mqhWfKlWqvCbW1a7lyxv/hGPFCaJKmsnUON3+Lr7x4r+QkXNMxI8iiiKiIHIoeghREPnTrX/K0fhROn2dDMYHuaXrFsZT4/TP9pMupUkUE2iaxurwauxGOx9c9UHuH7yfolxkODF8RvspI2X4Qd8PeH78eTKlDDPZGURBpN5ZT7aU5QO9H8Bn8zGZnuRnR35GWS2jllSC9iDT2Rlava1kfBnQNAomyFvMuJx+XDYvGhovTL6A0+x8Qz2GzoVgsWDq7qY8MADZLPVTWe4KX8dkh0rBacahiNTHVewn4ljXd/B76z/GN/d9iyPRwyAImMxWLm3cwh9s/cM31RG7SpWLjarwqVKlymtCsFioq+2gZkDmJbXM4fETJBwhovk5olKcdCldua7D5CAtpdk/u59/eelfCDvDxAtx9kzvocPXwXWd1/Ho8UdRNAWDYMBr9dJd083Xdn8Np0WvvJTU0hntp+Ox4zw//jwFuYBRNFJjryFVTDGeHufg7EGu77yeHx/6ceX6IrorsazK7J3eyycu+QT/sOsfiOVjjKXG8di8XOO9hq5AFzsndpIv57EarRy0HGRb87ZzttreKESvF/PatSixGMrUFB7AA2jZPGgaGkU0l4vGvAmv0EzbZX/OqDRDTpUIOcP0hnuroqdKlVegKnyqVKnymlk8UbunQJzzk9EkrFYH6czokus1uBpwmpzcN3Af09lpbCYbGhpBe5ChxBCaprEmvIY903sqVaIDMwcoq+XKbZhF8xntp0gmQkEuICDgMDkqLsiKqiAgUCwX2VC7gb0zexEXOvsaGiaDidXh1USzUdxmN13+LsxGM3ajHa/Vy77pfTw19lTlfuqd9QiCQMAWeFMqP8b6ekS7nfLAAFqhULlM9PkwdnSAouApl/GaTKz2bqrO81Sp8iqoCp8qVaq8apasPpudhEOthGrbcZvdKNrS9XZRELEYLbgsLg5FDyEIAgbRwJ7IHi5tvBSzwUw0F2VH2w4G4gPUu+r5UO+HeHL0SS5tvJShxBAm0US7r32JmV5GyiCrMhkpQ9ARZCQ5Qq6sr3TLqoyiKpiMJv7buv+GcEDgwMwBZE3GYXLQU9PDxzZ8jCPzR1hfvx67yU6hVODhEw8zl5/jk5s+ueQxRLIRHhx4kN5QL73h3t/8E8xJUakmk2jlMoLJpM8BVUVOlSqvi6rwqVKlyqvi9EgIAL/Nz+UtlzORmqDD18HR+aOALnrsJjuyqguOlJTCYrBQKBfw2XzsmthFV00Xbd42OvwdfHjNh1FVlV8c/QXPTTzHDctu4NbuW8mX86wIriBRSOCyuCrHEHKEaPI0sW96H9lSFrvJjlE0YhSNNLgaGIoPMRwf5qbOm/hA7wcoK2XafW3UOer5o1//ES9MvVB5DJvqN3H32rv5wpNfQBREeoI9uC1uSkoJi8FCSkoxnZ1+04QP6NUfQ7jauqpS5Y2kKnyqVKly3mSkDA8ff5iQI4TX4iVT0v11zAYzOyd2cvuK2/Hb/MwX5umb7cMoGhEFkRZPC+3+dub757EYLUykJlgZWsmRuSMcmz9Gq7eV4fgwh+cP886udxLJRPj4xo/z5MiT7J7cTdAe5Jt7v8nK4Er+x2X/g/5oP/FCHKvByq1dtzKSGCEtpcmX8zhMDhrdjVzZeiXxfJz3rnxvRXDtndpDLDPHodiRJaIHdNfnH/T9gLtW30Wdq477B+6vxGoANLmbuLX71jf7Ka9SpcobTFX4VKlS5byZSE4Qsof4t/3/VqnqAKyoWcFH132UWC7GtuZt/ON1/8iTo08yX5jHbrQTdAQ5MHOAVeFV7J/ej4bGnsgeumu66Q330uXvYn39elRUvr3v22xu3Mx/HPoPJtOT+G3///buPEqq+s7///Pe2quruqq7qvcdaJqGRtkUWdzAiAqK0Tiaxeh8E49rNCdxvjGT/EbMuCWayXzjRMcsOmayOFEzCQE3FBUUWQSBhpYGGnrfl+qq6tqrPr8/CgtbcEmitHS/H54+0Pfervq8bx+7X3zuZ8mlICvd61HfW8/dG+7m5tNvpjvYTc9ID8XOYk4pOIWFZQuJJqNkmbLwRXw0DjQyFB6irqCOJVVL2N9dz47O7Xyu+nwaGhuwGqxEkunVpHV0lFLs6tnFzaffzMuHXh4VegC6gl1sbN3IwrKFsqKxECcxCT5CiI8tnAzzq7d/ReNAI3n2PCxGC8lUkkAswNMNT/N/F/1fAGrzayl1lWbGATlNTmo8NXhsHoajwzQNNhFPxekb6WNh2UKWVy/n++u/T1+oD4vBgs1oo743vThiOBGmzFVGibOEjkAHO7t3ZtbzSaok8VScofAQ/aF+/FE/XruXZCrJSHwEhQLghaYXuKB0CTfMu56Dw4fxR4bx2D2Z3c/NBjPRZBSn2QkKGvsbR9Vt1I2Uu8pJppInfEVnIcQnS4KPECIjEA2wv28fnb52zLqJoqwCKj2TyHZ4AOgOdNM40EhZdhnNvmZ8EV962wSgbbiNzkAnc5gDHH8LhGJnMQtKF9Ab6iWRSlDsLKYuv47tHdvpC/Vh1s0MRYYyPTEAkUQEg2bg4PBBCrIK6Eh0MBwdPvqiCrIt2RwYPEBfqA+31Z0Z5FzsKEZDYzA8SFRLsNBcg55rIj8rH10zYNbNpFSKRCqOrhsw6kYMugGnxUleKi8zvT7HmsP0/OlYjJYTvqKzEOKTJcFHCAGkBy3/Zsd/sXH/y4Qj6R6V4uxSVtZeyryqhcQ0hT/qp8ZTw2B4EJfVhYZGu78dXdfRNI09fXs4reS0D1xLptxdTrm7/JjjBoOBsuwyBsODnFZ8GjPyZjA9bzoWg4UZeTMoc5WN6vXx2D10B7sB6Av1sXTSUoKxIJFEBO3I1g3FjmKWTlpKZ6ATgJFUhBmF05g6lKAkq5jtnW9hN9sxGEwYdCN2k50abw2V7krmFM1hODJMLBXDrJtxWV1YjOnZVCd6RWchxCdLgo8QgkA0wNN7/jAq9AD0BrtpGengjU0/YWbZHIYiw+zs3knPSA9G3YjD5GBmwUwODR0imUoST8Z5+dDLLCxf+Fct9mfRLSypXIJC8fs9vycUC5FIJphXNI/63nq2dm5lODKMxWih1ltLqaOUgdAA3cFukipJZ6CTC6ZcgMvqyjwu09DoDHSSVEkgHVh0t5s62yn8YMkPeGDTA9T37kHXDWhoTMmdwncWf4e6vDq2d23PBJ33yrXljppSL4Q4+UjwEULQ4muhqW//qNADUFM4gzUH1nJ62Xye2/8cRe4SKtwVdI90k1Ipwokwbf42PDYPWeYsOgOdDEeHiSajfGH6Fz72IODa/Fq2d29nQ8sGbEYbw7Fhbpx3I7/f+3s6Ah2E42FiyVhmZeZ7N97Lvefdi45OIB7AYXKQl5XHUw1P4Yv4jnn99wYWzWJhUeWZlLkrqO+pZyg6RI4lh5kFMzO9UZfUXHLcKfsra1bKwGYhTnISfIQQBONBYonoMcez7Tm0HWrl7MlLafW3ctjfwiU1lzAUHuLg4EGSKslAeIAzSs5gqmcqaw+s5aq6q/hd/e+YVTiL2UWzP9b7FzgKmJI7hf/Y+h/0h/oZiY9wasGpaGhMypmEP+rHZXERioc4MHiAfWofrza/yrWzrh0VRFZMXfGxA8sHPXYDqHRX8o+z/vHoIo0mBxXuT3+/LiHEp0+CjxACh8mB+TiPdmKpeHrwsqYxEB7EarLxp3f+xCkFp3BO5TkkU0nQoNJVyd0b7mZW0SwO9B9AoWjxtWSCz/tXej7epp+D4UGcZie1ebX0BntxWpzEU3G2d23HoBkod5XTGejEZkxvd9Hub+fAwAHmFM/JvMYnGViONzhbCHHyk+AjhKDCXcHkvKkc6mkc9bjLrJsoy6kgnAijUOianh5D47PwRtsbJFIJ+kJ9fLHui1TlVnFa8WmsblzN9LzpRJPpHqRmXzNr9q9BQ8NqsGI1WdnVvQub0Ualu5JqTzVOi5Mcaw6t/lb8MX9m7y0AuzG98nM8GSeejGM32VFKYTaY6Qp2HVOLBBYhxIfRx7oBf421a9cyf/58bDYbXq+Xyy67bNT51tZWLr74YrKysvB6vdx6663EYrExaq0QJw+nxckX6v6BM6cuxWY92jtiwsDMotkEYgEq3JVEEhFy7bm0DbdR7iqn2lPNssnLqPXUMr94Po+//TixZIyUSpFnzyMQDbBm/xp0dLa2b2VH9w7u3nA3X1/9dW59/lbueu0u/t+W/0ezr5mZ+TOZWzQXFLQMt3Bg4ABFWUWEEiEMuoFYMoZCoaExNXcqoVgIo0H+7SaE+OucND81nnnmGa677jruvfdelixZglKK+vr6zPlkMsny5cvJy8vj9ddfZ2BggGuuuQalFA899NAYtlyIk0Olu5LbFn2bC6cup8vXnt7vyl5Ef8rPY28/zlkVZ7GhZQM9Iz2UOEsoyCpgJDZCXV4dv9vzu/TMLpXEpbmo9lQzI38GLb4WlFK82voq8WScTe2bOOw7DEDfSB97evcQS8aIJWPcfNrN3Hn2ndz/+v30hnpZe2AtPzj3BwxGB9NrBPk7MepGqj3VLK9ezoGBAxQ7isf4rgkhTjaaUkqNdSM+SiKRoLKykrvuuouvfe1rx73mueeeY8WKFbS1tVFcnP5h+OSTT3LttdfS29tLdnb2x3ovv9+Py+VieHj4Y3+NEOPZ3p69bGzdiKZp2Ew2TLqJYDTIwaGDZJmy+OM7f6RxoBGFwmq0srB0If967r8yt2Qum9s383rL6zzV8BQ13hp+V/87AAyagUQqgd1kpy6/jlxbLl+Y8QXOrTyX4fAw+wb20e5vJ8uURZmrjG0d29JrB1lcJFSCDn8HF1ZfyIqpK2TAsRAC+Pi/v0+KHp8dO3bQ0dGBruvMnj2b7u5uZs2axYMPPsiMGTMAePPNN6mrq8uEHoBly5YRjUbZvn0755577nFfOxqNEo0enc3i9/s/3WKEOMmUu8uJNccyM6UMWnqxwUJHIU83PM2knEmcXnI6mqYxOXcy5006jzlF6QHHDpODQCxAPBUnnooD6R3bE6lEZjuJRCpBIpXAF/axunE1V864ko1tGzEbzARjQXZ07SDXnkuWOYuR2AjVOdXU5dfJnllCiL/JSRF8Dh06BMCqVav4t3/7NyorK/nxj3/M2Wefzf79+8nNzaW7u5uCgtGrxebk5GA2m+nu7v7A177vvvu46667PtX2C3Eyc1qco9a1Saokbf42qj3VPPi5B+kZ6SGajJJnz2NG/oxRqzZXuCtwW93omo5JNwGgoaFQGDQDSZVE13SMuhGr0UrPSA99I32Zaenvbg/RFejCpJv43OTPkWvNpdxdLqFHCPE3GdPgs2rVqo8MHdu2bSOVSgHwve99j8svvxyAxx9/nNLSUp566imuv/56ADRNO+brlVLHPf6u7373u3zrW9/KfO73+ykrK/uraxFiPPtbp4k7LU4Wli5kQ8sGfGEfVe4qWodbMWgGrEYrVqMVg26gyFGU2WoiGA9SV1An6+gIIT4VYxp8brnlFq666qoPvaayspJAID29dvr06ZnjFouFSZMm0draCkBhYSFbtmwZ9bVDQ0PE4/FjeoLey2KxYLEcu36JEGK0v3Wa+PT86Xx55pd5+dDLTMqdxGvNr9E40IjVaGWadxq13loWlC2g3d8OHN0LS6alCyE+DWMafLxeL16v9yOvmzt3LhaLhcbGRhYvXgxAPB6nubmZior0MvQLFizgnnvuoauri6KiIgBefPFFLBYLc+fO/fSKEEJ8KKfFybySeYTiIeLJOAtLFxJKhIgkIph0E8lUknZ/O0mVlL2whBCfupNijE92djY33HADd955J2VlZVRUVPDAAw8AcMUVVwBw/vnnM336dK6++moeeOABBgcHuf3227nuuutkdpYQY6zSXYmn1kOLr4WR+AgAG1s2ZsbwgOyFJYQ4MU6K4APwwAMPYDQaufrqqwmHw8yfP5/169eTk5MDgMFgYO3atdx0000sWrQIm83Gl770JR588MExbrkQAo59dDU9b7qM4RFCnHAnxTo+J5Ks4yOEEEKcfD7u7++TassKIYQQQoi/hwQfIYQQQkwYEnyEEEIIMWFI8BFCCCHEhCHBRwghhBATxkkznV0IIcTfJxUMkuztRUWjaFYrhrw8dIdjrJslxAklwUcIIcbQ+8MImoYKhz/xYJLo7ia2ZQupoaHMMT0nB/P8+RgLCz+R9xDiZCDBRwghxkgmjPh8aDYbye5uMJsxTp5MqqsL3eX6RIJJKhg8JvQApIaGiG3Zgr50qfT8iAlDxvgIIcQYSAWDxBsb0bKyMJSWomVloefmovx+Ek1NaLm5mWCSCgY/+gU/RLK395jQk2nH0BDJ3t6/6/WFOJlIj48QQoyBZG8viaYmlN8PRiPK50NzuzFNnUp8/340kwnF0WCiOxyoaJSUz4eKx9HMZnSXC81i+cj3UtHo33VeiPFEgo8QQpxgqWCQ+L59qEAA9KMd78rnIwEYioshmTx6/EjgiTc2oiIRsFohmUSz29FsNjSDATQNDIZ0iNE0dIcDg8eDZrF8ZDj6OOFJiPFCgo8QQpxAKZ+PeG8vuseD2WYDk4lUOEy8oQECAZTPh15aCgZD5ms0m+1o6LHZiO/bh8HjIbFrFyoQQHM40L1e1MgIhvx8Em1tGHJyMBQVYT7lFAz5+eg5Ocd93KXn5GDIzz+Rt0CIMSXBRwghThAVjZLo7CS+YwfJtjZIJCCVQissxHLaaUQ3b4ZQCEwmVDwOpIOJZjSiwuF06GloQLPbSbS2onw+SCZRkQjJjg50l4tEayu6x0Oyvx8FaAYD5nnzMM+f/4GzumRgs5hIZHCzEEKcIMnBQaKbN5Ps60s/yjKZQNdR3d3E9uzBNHMmWK3p3pvBwUwwyUgk0j1CdjtqeBiUSn8ABALpgDQ8jG63QywGiQTJoSFSPh/GwkL6Ftbx6uk5/O9MxWvzc+lbWCdT2cWEIz0+QghxgqSGhkj19qYDj8GQ7vExpn8Mq4EB9DlzMJ96KrrHg2XxYgz5+WgmE4mODrBY0IxG9OLio2HnmDdIHftnKoWKx3mz7U3u3Xgv9b31mctn5s/kn8/8ZxaULfg0yxbiM0WCjxBCnCixWPrPeDw9QDkSGTWImWQSy2mnobvdQHo8UGzvXlKBAMnBQXqmFNAwReFL9ZFTXEVt2Il3677MIGeMRnSvl1CxlxbDACPmBNkOhc00zA/X/5CGvgZMugkNjVgqRn1vPfduvJefXfQzyt3lJ/5+CDEGJPgIIcSJYrOle3qSSYhGwWxOz+pSCnQd3e3OhB4VjaYHNIfDaBYLu07J5d5Nd1Pfvh2z2cbcsvlMK5zB9KXT8Y7AlGET7kM9dE/KZc2+JxmMDKLHk5TVzEPv6GN983p0LT26wWwwk2PNIZqMUt9bT31PvQQfMWFI8BFCiBPEUFCAoawsPbA5mUz3/AAYDBiKizEUFGSuTfl86QHNQFeBlfs23UN9z27MZhsXTb+Ul1tf4U8H/0KBo4C5OXVkp0zcfOYtbGp4kb7WfehZWRROO41X+rYwyzyXeDKO2WBG0zRiyRhDkSHcFjexVIyh6PEXNxRiPJLBzUIIcYIY3G4sixZhKCs7ugaP3Y6hrCw9pudIbw+QmdUFsDfaRn33TjRNY27lAl5uXc/BwYOYDGam5FZzSuXp5OZXsMG3E0/pZEw5nvTYIZuVzuF2HGYHCkVKpTKvGUvGUKTHCuVYck7YPRBirEmPjxBCfApUNEpyYCC9SKHRiOZ0YnC5MJWVoV9wAcmenvTjLosl3RP0ntADoJlMmb8PRXyZv3sd+RzcvxqTwcznaz/P5rY3+U39b0mERzCaLCwqX8Si4hraGt8iPDJManiYWGSE2YWzRw1sBkipFDPzZzKzYOaneSuE+EyR4COEEJ+wlM9HbPduEq2t6ZlbgOZwYKqpwVhWhsHtPibovJ/udqPZbKhwmBzr0WtjyfQA6dNLTmdz+2YO+Q4zJWcycaXQ0Wj1tRCJdnFm8aloRgskkzy34w9ct/gGHtv9X+zp3ZN5rZn5M/nOmd+R8T1iQpHgI4QQf4fj9ewkDhwg0dycXmlZKdA0lN+fHqycSKS3pPiI/bY0iwVTTQ3xxkZmWMqYWTiL+p5dmA1mAEqyS3it5TUcZge6ApRCJRPYjXY6ew5D5VmYY0nm1i6hLdTFc03P85WZX0bXDYTiIXKsOSwuW8xkz+QTfMeEGFsSfIQQ4m90vJ4dPTc3vT1EIJAewHwk+KDrpBIJUh5PejZXPI6KxdBsNgyFhRjz8o55fd3txjxrFuU+H//fOXey9uBaUprihtNuJNvsJMeaQ15WHuHQMAAOk4MKWxFNzmFSNgslBdNo6Q7R0LKe9kA7Lza9SIGzkMtrL+fz0z5PhbvihN4vIT4LJPgIIcTH1BPsoaG3AV/Uh9vsYmrUiauzMxN6MJlIjYyQHBpC93pJdnSkZ26lUpmFCgFSnZ3E9+7NfK7n52M9+2yMJSXHvKdmsdCS6OeNTf+DjyH69TBJHXymIb4880s827AaZTCQa83h9II55PriOLImU1c0iwe2/YSG7j3MK5rLOeVnEteSmAwWYskYGtqnfr+E+CyS4COEEB/Dzu6d/HTLTzk0dAgAFYtRZS3ilun/h2n7EmAwkBoaQrPbSQ0MYKqqIhmJpHt3IhGIxVAmU2aKOpqW/gBSvb1EN21Cv/DCY/bN8gcH+NOmx+lrayRLKbIAdJ2REgud4TaumHkl7b4WPDET1o5hkuEw+a5CVCpJQ+sOMBh4q21LerC0yYR25D2XVC6RsT1iQpLgI4QQH6En2DM69KRSGFJgM1hZ59vGUM10cvsjlBicZI0c2YZC04729pjNEIulH4GFwzAycjQAGQxoViupwUGSvb3HBJ/mnv30dx1Kj+F5d2+uVAp7ay8Fniwml5WitXWgRoJoLheekilcXHoeW8M9mUdsmq6nxx9pR3t5ZO0eMVFJ8BFCTGgqGk0vFvghg40behuOhp5EAkMkxhmTzmJD03rWNj3HOZOWUNIZIqdkMmfNXc5w2IbBZSMwZTqRyAhOg53apBe3xUmrvw1/3zCOWi8lQQMOzZIOO0YjKhJBRaOj3j8wkg4oSqnR21sAjr4Ak+YUM/eUqwgmQthH4hT7wL6rmewzPEB6d/b3hx6QtXvExCXBRwgxYaV8vsy2EO/SbDZMNTWZrSMAfFEfkO7pUaEQNYUz2dC6kVZ/G8qgkzDqVC26CKczh180/Q/V3qms2bSWHR3b8dhyqXJVMil3MgvLFrKz4UVC8RHMupnJeVO51HE6hTv2gNmMikZRgcCo93faXGgOBwaLJd3rE4ulB04f6f3Jwc40YwHxPTtRfn+mzdPjucwsOpX63j1oxtE/6mXtHjGRSfARQkxI790La9TxcJh4YyPmWbMyPS9uizt9MpGAVIpsew5th1pImgyQUpw/9QI2tW3ilbdeYap3Gpt2baZ1uBVvlpf+QC92cxYjvWF299bzudKz2b3jT2gWK80jbYQLg9xQPh/7cBjNZCLZ20tQj9NZZCcQ8WMaCVOdW82Bxs0kYxE0iwWDx0NyYABv0STKcirQhiOjQg9A3vYD/POZt3Pf9n+nfqAhvUcYR3ZkP+ufZXyPmLAk+AghJqR3H2+1lTvZG2pmMDJEri2HGbZKyjrDpHw+DAUFBKIBvFle8rPyORQ+gEXXiKXipDQIxUPcdPrN/Hr3f1PiLOGQr5lzqpbw/MHnSZGCMGTb3IzER7CZ7LzTu4dLai4BkxkMBqKhIO/E2tk6dymxEcgxhimweFi380kGDsbRdJ1UKIQ52820U8/lwO4NeIsmobld6FPtzCiaRXtigBF9GOs0D8V+sHcPQSqFpuvMboeHFt7N3mQXvrifHEsOMwtmSugRE5oEHyHEhKTicbYUxfnhpnvY3b0LXdNJJOPU5s3gXxZ/j0XxOM2+Zt5ofYNQPMSX6r7EYzt+yf7efRiMJpKk8Ng9lLnKeeStRyjIKgAUiVQCi8GMrukowGF1Ek/GM/tkheMjaDYbRpMZb9EUtvfsIq95Pbv2vYbDkYtus7GsfAl6ZxMJ/zC6202sv5eupM6FF9zIn975X3x9bZiiOfzl4HO4jQ6W1lxAW9dbuMwuLpn9OYoHEuh2O5rZTFHnCOW180dtgCrERCbBRwgxIb2j9/Mvr93Jto6tFDtLcFicaGhEk1Ee2v4whef+gO1tu1i7fy2dwU6sRivnVpzD8ikX4bF7iask7QOH8YUHAQ2jbkTXDNhNduKpBAmVXtsnGAti0o1kmbPQNAM2ow0VCJBbXsvb3W/TF+rHZDCnByBbrdR37WIkEuDzk5bT3bkJZbeDrmPTraxtXIOhu4/sLCu7BxqJRILoWTqb+97mrNoFBINDvBlvYnnpaWQF01tbaDbbqPFKQkx0J83u7Pv372flypV4vV6ys7NZtGgRr7zyyqhrWltbufjii8nKysLr9XLrrbcSi8XGqMVCiM+qQDTAWz1vs61jK1O90/BFfdT31rO7dzc7e3aSJMXegUaGI8OcN+k8LppyEQDPNT3P7+p/x/++/SSXTFmOKQFZRjug6A52c2rBKTT7mqlwHV0RWUfDpJuJJqPMLZ5LMpUku7CclMlAX2SQSnclvkAvKhgkHglBMsmh4WZiJh00jbhJp98QZcRtpSnSQdxmxm+IYzSYycurpDM+wIbWDRwcaecP7zzFs83r2G8NgKZlBmofb0sMISaqk6bHZ/ny5UydOpX169djs9n493//d1asWEFTUxOFhYUkk0mWL19OXl4er7/+OgMDA1xzzTUopXjooYfGuvlCiM+QFl8Lg+FBirNLafe3Hdn9XGHUTVwybSXbO7fz060/pd3fTt9IHwvKFnB57eU8884zRIjQnujHaDCzou5S3I58FpYvomWohRU1K1i9bzVnVpwJQGegE5vJjsviosJVwTkV5/Dwhh9jNBiZkjWDSlclZ5YtYvf+1wEwaobMOj2hZISAJ4sD/v2EAoPYPfkMxwIMxXrIc1cSCESp79mOP5oe1DwQGcDlKaY7OMif29ZRO+dWXO4CCT1CvM9JEXz6+/s5ePAgjz32GKeccgoA999/Pw8//DB79+6lsLCQF198kYaGBtra2iguLgbgxz/+Mddeey333HMP2dnZY1mCEOIzJBgP4jQ7cVgcHPYdRh35b37pfDa3b6ZtuI0iRxEFWQUkUgkODBzg2QPPcuX0K/ntnt+SIMFIKsLiqefx7IFnuWbmV3nsrZ+zqfUNKt0VWDQTN592E3lZeXT6O4kkIoQiAQxJxaUzv0AsHmF6ySy2NL/BjtYt6KlkepHDVAqn3U0g5MNmsrE/3E44HkKlUuRacyGZxGx3YjJbOaNsIRXBKkwGE12BLnR0Dh/pbfInQ7Tjx22RQcxCvN9JEXw8Hg+1tbX8+te/Zs6cOVgsFh599FEKCgqYO3cuAG+++SZ1dXWZ0AOwbNkyotEo27dv59xzzx2r5gshPmMcJgdWk5VJOZPY3bM7c7w0u5SNrRspchQRToQJJ8K0DLdgN9qxGq0YdAMLSxfydvfbFDoKqXRXcvUpV9PS3sAPzvge7ckBdnW+jV2ZoKOLTUOvs7t7J5rLBcAX6v6B4eAAsViYfl8nmlLoI0em0ycSBAe6qcorQ+VUkUzGCSfTu7uXFFYzzTOVxv59VBfX8efG1fSGeukP9QNwSsEpnFm2mHA4gMGpcCYMmYUPhRCjnRTBR9M01q1bx8qVK3E6nei6TkFBAc8//zzuI4P2uru7KXjfrIWcnBzMZjPd3d0f+NrRaJRoNJr53P++tTCEEONPhbuCDa0b+GLdF9k/sJ+GvgZMuolKdyVfn/11XBYXPSM9GHUj+/r3EUqE6BnpIZKIMBge5JKaS6j2VAPgtDipdVQSfWcbFZqBpp4B+rsPpx9XeUxoNhtEIhQ5i9E6usjpH0KzWIhaB7mi+lJ+MzTAoe53wGBAGTS81lxunncTg4xgrklhSeqoWIx3mrbw+amX8N8HnqHV34rD5EDXdNxWNyqV4qn6/2FO/izMaBha2rF6+0jYuzEWFo7x3Rbis2VMg8+qVau46667PvSabdu2MXfuXG666Sby8/PZuHEjNpuNX/7yl6xYsYJt27ZRVFQEcMyS7JBe5v14x9913333fWQbhBDji9Pi5KLqi3j+wPNcUnMJK2tWUuwoZkf3Dl5sepHOQCcmg4npedP5wvQv8MeGP+KxeXBb3UzPm05BVgGheAinxQmA7naj2WzYOwa5pGIZq1PP0d/bgsViRw3FKc4uYWnZObQd2okKhVCRCDGjkfwKK/9aci0HaqP4kkHcJifVASs529o4WJPDYFczKhJBz8nBnFRgsWI12ZhXNA+AWq2WQDRA89AhUvE4nys/h+H+DjzOPEqGIbZlC/rSpcfs/yXERDamweeWW27hqquu+tBrKisrWb9+PWvWrGFoaCgzVufhhx9m3bp1PPHEE9xxxx0UFhayZcuWUV87NDREPB4/pifovb773e/yrW99K/O53++nrKzs76hKCHEysBlt1OTWYDaYOew7zB8a/kA8FSeSiGAymMi2ZLO3dy/DkWGunHEl+4f281bXW2xo2UA8GWd+6XyunHElVqOVLHMWpdOqMPl8FHcE+WrRhbSXjjDssdNUdohQTwdtzbtJBIbTb55MkmvKptxVjnHHG5wWCBzZViKC5nJhmjaN0uAg+XmVGE0WMBooLZhCX2yIHV3baQ90EE/G8dg9GDQDJdkldA+1o5Rikr2ES/LOwd4RJJVKHXfjUyEmsjENPl6vF6/X+5HXhUIhAHR99Ox7XddJpdKLgi1YsIB77rmHrq6uTA/Qiy++iMViyYwDOh6LxYJFZj0IMaHs7N7JT978SfpR1sA+zqs6j3AijNfuZVH5Iup76mn2NaOhMRgepMBZgMfuoWmwCZNuIteay7bObRwcPMi8onl0BDqo9dRwRd1SSgMGsuNxpqdSqFCCotAIfwnsJRkeyby/J7eYlVUXkhVOkqyqQrPZ0FKp9K7uRiOp/n7sQ8OcedpSfrrtZxzq38/txato6HuHQ0OHyMvKxx/1MxAawGl24I/6mVN+OudNXUZuwkxPOEiw2kXJkML8nkf5QoiTZIzPggULyMnJ4ZprruFf/uVfsNls/OIXv+Dw4cMsX74cgPPPP5/p06dz9dVX88ADDzA4OMjtt9/OddddJzO6hBAZPcEeHnzjQTZ3bEZD4/zJ59MX6uPtrreZ5p1GNBmlxFlCjbeGSCKCw+zAolt4puEZ6vLrcJgc9If7aRpsIp6MU51Tzeutr7O3by+BWJBvFX6BrGCUVDAIJhNFzUN8dfLFtDNMMD6CQ7NSqrmw7etCzS5EDQ2R6uwEoxFDXh6hXAdt3hRDuSYO9+9htncm2eYs0HUcZgefm3w+XYFOvDYPQ+EhkipJIBqg0l1F14GdvLL7VTAY0LOz8eZXstJSzuSxvulCfIacFAsYer1enn/+eYLBIEuWLGHevHm8/vrr/PnPf+bUU08FwGAwsHbtWqxWK4sWLeIf/uEfuPTSS3nwwQfHuPVCiM+S+p56NndsJpFKEE/FebHpRfLt+czIn4FRNzKvaB59oT7WNa3j1eZXOTR4iP5wP3OK5oBKjw96tzcoqZL4Y36GIkM0DTbxzDt/ZJfdh6m2FnNdHYayMqLTJ9OufAQTIRzGLEqUE2tLN5rdDoCxuhrN4YBUijZzmCea/5enD/yZP3Sv47+2/4qt3ds5c8pS1jau4Udv/JBcWw6BWIDOYBdeu5fhsI+irEJmFZzKgb1vpAdTJ5Ok/H76+1pY0/4ygWhgjO+6EJ8dJ0WPD8C8efN44YUXPvSa8vJy1qxZc4JaJIQ4GfWO9JJIJTKfx1Nx6nvriSajHB46TLmrnDNKz6Auv45wIkyVu4qCrAL6Qn00DTVRnF1MMBYkkUqgoWHQDITiIZRSHPIdYnfvbpwlDqpthQwko6wObWLg0Dvk55aiZTvRbDZOOWMGM+wVmAZHUNEoxooKgjadtQefZsgYx5BTSDzUjeZw4Mop4LHdT+Cy56Ch8UzDM8wvnc+C0oU4THZWTF1Bz0gPvb4OkvEopBJoZjMqkQBNY8DfQ4uvhbqCujG860J8dpw0wUcIIT4JDsuxA3139+xm6aSl6OhYjVY2tm6kP9RPlbuKJVVLeOXwK8SSMUKJELqmY9AMxFWccnc5Lb4WAJIqCUAsGeOFxrXsMXkwJRT+wS7K557D+pZX6GxvA03jL9pzLC09k8vKLqA0oKNGRmhjhAFfF3puLprRiFk3o+k62Vk5NDTuZUHpAipcFbQMN/N66+sY0NGAr556DbFEDNNQAAyGdEFmM5rRiKbrkEoRjAdP1O0V4jNPgo8QYkKpcldR663lnf53MsfiqTgvH3qZK2ZcQZW7irysPCwGCyPxEV5sepH5JfNZd2gdBVkFGDQD2dZsSkwlzC2eyzMNz6BQmddWKcVgqB9Llom39r/GJdUrWL13DZ3BzvT2EUoRCg3SNNzCX+LP8dWKlWSNxAkm0pM4ODKJw2V1YTPaiCVjoGkM+XuZmTMNVIr+yCCaSu8DVpxVxLmFC3jp+f9EOxJ8NE1Lv86RPx0mmdUlxLsk+AghJpRKdyXXz7ueR996dFT4mZI7hdNLTueJnU8wFBm96vFbnW9R5Chi2eRlRBIRVtas5PXW13mq4SniqThG3UiVu4rlU5ezq+ttyuyFhBIhOofbiNvMdA63jW6EwUA8FWMg2EsbPqaRhcNoz+zQDmAxWqjx1pBlTA9sNugGetsaObWoBmOBnXhkBKtuYVneAqb0wFsOLwPDXenX17T0JqVWK56cEircFQgh0iT4CCEmFKfFyazCWdw470Z8ER+BWACn2Ynb6iaRSuCL+I77ddu7tnNq4aloaHiyPHjsHq6YcQWxZAyb0UY8FUdT0OVrw4UFrye9VEcwfnQaO0qBUmhWK2aTFeIc6enJosyST155DUOpo9e7rW48Ng8Lyhbg0GwYjF6coSSmoQgqmsCbV0xNyoNND3Fx9Qr+cmANA8Fe0HV0p5O8ylounXFZZqFFIYQEHyHEBFTprsRj89DiayEYD+IwOahwV/BWx1uZx1bvpaHhNDuxG+0E40Gah5pZUrWEze2b6Qp24TA56B3pZWfXThaUnEFLXxPm7BQ2qxOHKes9L6SBUthMdtyeEvSEIju/FJNjErluNyvDeaxuXM1gePA9X6Lxnfm38+r2ZxhwBMCegmQSb04xK4rOwdLQBG435a4C/nHxzbQbgozoSZzZHio9kyX0CPE+EnyEEBOS0+I8ZqbT9PzpTMqZxKGhQ6OOj8RHOLPiTLx2L8HhIPFUnN09uzmj9Aza/e00+5qpzKkk15ZDy8BhzilbTHvHOyyuOguXslDsKqMz2AmAzeqktvRUrNYscm25VJXWYTgSTiotlfzjrH88JpA5MFM+RaMt2ntkWrydMi0HR9IMM2ZgOLJlhtXtxiMLsgrxoTSl1LH/vJnA/H4/LpeL4eFhWfhQiAloZ/dOfrrlp6PCz6ScSdw6/1Ym50w+JpRAelZYZpf3eJzu5r24zS4umXwhroSJA9Ygf25/ieGID3dWLhaznVxbLitrVn7s8Tcpn494YyMqHM4c02w2TDU16Ec2axZiIvu4v78l+LyPBB8hRE+wh4beBnxRH26Lm+n50ylwfPCefwCBaCATirJ0K2WGXBxxHc1kQne7CRI7JjT9tY+hVDRKyudDxeOZ19Wkh0cIQILP30yCjxBCCHHy+bi/v0+KLSuEEEIIIT4JEnyEEEIIMWFI8BFCCCHEhCHBRwghhBAThgQfIYQQQkwYEnyEEEIIMWFI8BFCCCHEhCHBRwghhBAThgQfIYQQQkwYEnyEEEIIMWHI7uzv8+4OHn6/f4xbIoQQQoiP693f2x+1E5cEn/cZGBgAoKysbIxbIoQQQoi/ViAQwOVyfeB5CT7vk5ubC0Bra+uH3rjxyu/3U1ZWRltb24TcpFXqn9j1g9wDqV/qP1nrV0oRCAQoLi7+0Osk+LyPrqeHPblcrpPum/5Jys7Olvql/rFuxpia6PdA6pf6T8b6P06HhQxuFkIIIcSEIcFHCCGEEBOGBJ/3sVgs3HnnnVgslrFuypiQ+qX+iVw/yD2Q+qX+8V6/pj5q3pcQQgghxDghPT5CCCGEmDAk+AghhBBiwpDgI4QQQogJQ4KPEEIIISYMCT7vsX//flauXInX6yU7O5tFixbxyiuvjLqmtbWViy++mKysLLxeL7feeiuxWGyMWvzJW7t2LfPnz8dms+H1ernssstGnR/v9QNEo1FmzZqFpmns3Llz1LnxWn9zczNf+9rXqKqqwmazMXnyZO68885jahuv9b/r4YcfpqqqCqvVyty5c9m4ceNYN+lTcd9993HaaafhdDrJz8/n0ksvpbGxcdQ1SilWrVpFcXExNpuNc845h717945Riz9d9913H5qm8c1vfjNzbLzX39HRwVe+8hU8Hg92u51Zs2axffv2zPlxXb8SGVOmTFEXXXSR2rVrl9q/f7+66aablN1uV11dXUoppRKJhKqrq1Pnnnuu2rFjh1q3bp0qLi5Wt9xyyxi3/JPx9NNPq5ycHPXII4+oxsZGtW/fPvXUU09lzo/3+t916623qgsvvFAB6u23384cH8/1P/fcc+raa69VL7zwgmpqalJ//vOfVX5+vvr2t7+duWY816+UUk8++aQymUzqF7/4hWpoaFC33XabysrKUi0tLWPdtE/csmXL1OOPP6727Nmjdu7cqZYvX67Ky8tVMBjMXHP//fcrp9OpnnnmGVVfX6+uvPJKVVRUpPx+/xi2/JO3detWVVlZqU455RR12223ZY6P5/oHBwdVRUWFuvbaa9WWLVvU4cOH1UsvvaQOHjyYuWY81y/B54i+vj4FqA0bNmSO+f1+BaiXXnpJKaXUs88+q3RdVx0dHZlrfv/73yuLxaKGh4dPeJs/SfF4XJWUlKhf/vKXH3jNeK7/Xc8++6yaNm2a2rt37zHBZyLU/14/+tGPVFVVVebz8V7/6aefrm644YZRx6ZNm6buuOOOMWrRidPb26sA9dprrymllEqlUqqwsFDdf//9mWsikYhyuVzqP//zP8eqmZ+4QCCgqqur1bp169TZZ5+dCT7jvf7vfOc7avHixR94frzXL4+6jvB4PNTW1vLrX/+akZEREokEjz76KAUFBcydOxeAN998k7q6ulEboC1btoxoNDqqi/BktGPHDjo6OtB1ndmzZ1NUVMSFF144qmtzPNcP0NPTw3XXXcd///d/Y7fbjzk/3ut/v+Hh4cymvTC+64/FYmzfvp3zzz9/1PHzzz+fTZs2jVGrTpzh4WHg6CbNhw8fpru7e9T9sFgsnH322ePqftx8880sX76c8847b9Tx8V7/6tWrmTdvHldccQX5+fnMnj2bX/ziF5nz471+CT5HaJrGunXrePvtt3E6nVitVn7yk5/w/PPP43a7Aeju7qagoGDU1+Xk5GA2m+nu7h6DVn9yDh06BMCqVav4/ve/z5o1a8jJyeHss89mcHAQGN/1K6W49tprueGGG5g3b95xrxnP9b9fU1MTDz30EDfccEPm2Hiuv7+/n2QyeUx9BQUFJ31tH0Upxbe+9S0WL15MXV0dQKbm8Xw/nnzySXbs2MF99913zLnxXv+hQ4d45JFHqK6u5oUXXuCGG27g1ltv5de//jUw/usf98Fn1apVaJr2oR9vvfUWSiluuukm8vPz2bhxI1u3bmXlypWsWLGCrq6uzOtpmnbMeyiljnv8s+Dj1p9KpQD43ve+x+WXX87cuXN5/PHH0TSNp556KvN647X+hx56CL/fz3e/+90Pfb3xWv97dXZ2csEFF3DFFVfw9a9/fdS5k63+v9b76xhPtX2QW265hd27d/P73//+mHPj9X60tbVx22238Zvf/Aar1fqB143X+lOpFHPmzOHee+9l9uzZXH/99Vx33XU88sgjo64br/Ubx7oBn7ZbbrmFq6666kOvqaysZP369axZs4ahoSGys7OB9AyPdevW8cQTT3DHHXdQWFjIli1bRn3t0NAQ8Xj8mGT8WfFx6w8EAgBMnz49c9xisTBp0iRaW1sBxnX9d999N5s3bz5mf5p58+bx5S9/mSeeeGJc1/+uzs5Ozj33XBYsWMDPf/7zUdedjPV/XF6vF4PBcMy/Znt7e0/62j7MN77xDVavXs2GDRsoLS3NHC8sLATS//IvKirKHB8v92P79u309vZmhjEAJJNJNmzYwH/8x39kZriN1/qLiopG/awHqK2t5ZlnngHG//dfBjcfsXr1aqXrugoEAqOOT506Vd1zzz1KqaODOzs7OzPnn3zyyXExuHN4eFhZLJZRg5tjsZjKz89Xjz76qFJqfNff0tKi6uvrMx8vvPCCAtTTTz+t2tralFLju36llGpvb1fV1dXqqquuUolE4pjz473+008/Xd14442jjtXW1o7Lwc2pVErdfPPNqri4WO3fv/+45wsLC9UPf/jDzLFoNDpuBrf6/f5R/7/X19erefPmqa985Suqvr5+3Nf/xS9+8ZjBzd/85jfVggULlFLj//svweeIvr4+5fF41GWXXaZ27typGhsb1e23365MJpPauXOnUurodN6lS5eqHTt2qJdeekmVlpaOm+m8t912myopKVEvvPCC2rdvn/ra176m8vPz1eDgoFJq/Nf/XocPH/7A6ezjsf6Ojg41ZcoUtWTJEtXe3q66uroyH+8az/UrdXQ6+69+9SvV0NCgvvnNb6qsrCzV3Nw81k37xN14443K5XKpV199ddT3OhQKZa65//77lcvlUn/84x9VfX29+uIXvzhupjMfz3tndSk1vuvfunWrMhqN6p577lEHDhxQv/3tb5Xdble/+c1vMteM5/ol+LzHtm3b1Pnnn69yc3OV0+lUZ5xxhnr22WdHXdPS0qKWL1+ubDabys3NVbfccouKRCJj1OJPViwWU9/+9rdVfn6+cjqd6rzzzlN79uwZdc14rv+9jhd8lBq/9T/++OMKOO7He43X+t/1s5/9TFVUVCiz2azmzJmTmd493nzQ9/rxxx/PXJNKpdSdd96pCgsLlcViUWeddZaqr68fu0Z/yt4ffMZ7/X/5y19UXV2dslgsatq0aernP//5qPPjuX5NKaXG4AmbEEIIIcQJN+5ndQkhhBBCvEuCjxBCCCEmDAk+QgghhJgwJPgIIYQQYsKQ4COEEEKICUOCjxBCCCEmDAk+QgghhJgwJPgIIYQQYsKQ4COEGLeSySQLFy7k8ssvH3V8eHiYsrIyvv/9749Ry4QQY0VWbhZCjGsHDhxg1qxZ/PznP+fLX/4yAF/96lfZtWsX27Ztw2w2j3ELhRAnkgQfIcS499Of/pRVq1axZ88etm3bxhVXXMHWrVuZNWvWWDdNCHGCSfARQox7SimWLFmCwWCgvr6eb3zjG/KYS4gJSoKPEGJC2LdvH7W1tcycOZMdO3ZgNBrHuklCiDEgg5uFEBPCY489ht1u5/Dhw7S3t491c4QQY0R6fIQQ496bb77JWWedxXPPPcePfvQjkskkL730EpqmjXXThBAnmPT4CCHGtXA4zDXXXMP111/Peeedxy9/+Uu2bdvGo48+OtZNE0KMAQk+Qohx7Y477iCVSvHDH/4QgPLycn784x/zT//0TzQ3N49t44QQJ5w86hJCjFuvvfYaS5cu5dVXX2Xx4sWjzi1btoxEIiGPvISYYCT4CCGEEGLCkEddQgghhJgwJPgIIYQQYsKQ4COEEEKICUOCjxBCCCEmDAk+QgghhJgwJPgIIYQQYsKQ4COEEEKICUOCjxBCCCEmDAk+QgghhJgwJPgIIYQQYsKQ4COEEEKICUOCjxBCCCEmjP8fDbxozC5zcOwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_ro3\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Building block t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZb3/36dMn9md3dm+2Z5k00gjEEILoShdROUCIk0URH8I6BXLBYkiiF69XCwoFlAEvYqACUUB6SWQAOnJpmzvdXZ2+pzy++OZmd3NbgohIUDO+/XKC/aZM+c8p8w8n/lWyTRNEwsLCwsLCwuLwwD5UE/AwsLCwsLCwuL9whI+FhYWFhYWFocNlvCxsLCwsLCwOGywhI+FhYWFhYXFYYMlfCwsLCwsLCwOGyzhY2FhYWFhYXHYYAkfCwsLCwsLi8MGS/hYWFhYWFhYHDZYwsfCwsLCwsLisMESPhYfWAYHB7nwwgspKipCkiTOO+88ACRJ4tZbb81u98ILLyBJEi+88EJ27Mknnxy3zQeNXc/hcOahhx7irrvuOtTTmMD999+PJEmsWbNm3Hh/fz+LFi3C6/XyzDPPAHDrrbciSdJ+H+vf//43ixYtwuPxIEkSjz322HuZ+n5x0kknMWfOnD1uM9l5VldXc/bZZ+/3cXf3OT/cee2117j11lsJBoOHeiofOdRDPQELi93x/e9/n0cffZTf//731NXVkZ+fD8Drr7/OlClT9vjeJ598kl/84heWuPgQ8NBDD7Fx40auv/76Qz2VvdLe3s5pp51GT08Pzz77LMcccwwAV111Faeffvp+7dM0TS644AKmT5/OihUr8Hg81NfXH8hpHzDey3nujt19zg93XnvtNZYvX87ll1+O3+8/1NP5SGEJH4sDTiwWw+Vyvef9bNy4kbq6Oj772c+OG88sNoeCaDSK2+0+ZMe3OHRs376dU089lVQqxYsvvsgRRxyRfW3KlCl7FeO7o7Ozk8HBQT75yU9yyimn7HHbQ/38vZfz3B27+5zviq7raJqGw+E4oMe3OPywXF0WE8iYs9955x3OP/98cnJyyM3N5ZJLLqGvr2/cthkz9yOPPMKCBQtwOp0sX74cgO7ubq6++mqmTJmC3W6npqaG5cuXo2naHo/f3NyMJEk8++yzbNmyBUmSxrmy9uYmuvzyy/nFL36R3Tbzr7m5GRC/sH/5y18yf/58XC4XeXl5fPrTn6axsXHcfjKm/5deeoljjz0Wt9vNlVdeCUAoFOLrX/86NTU12O12ysvLuf7664lEIuP2EQqF+MIXvkAgEMDr9XL66aezbdu2PZ4/QF9fH3a7nZtvvnnCa1u3bkWSJO6++25ALIaZuTidTvLz81m0aBF//vOf93qcyUgkEnzve99j5syZOJ1OAoEAy5Yt47XXXgNG78/9998/4b273pu+vj6++MUvUlFRgcPhoLCwkOOOO45nn30WENf4iSeeoKWlZdy9yjA4OMi1115LeXk5drud2tpavvOd75BIJCYc9ytf+Qr33Xcf9fX1uFwuFi1axKpVqzBNkx//+MfU1NTg9Xo5+eST2bFjx7u6JmvXruX4449HVVVeeeWVcaIH9uwC+uc//8nChQtxuVzMmDGD3//+9+PelxESN910E5IkUV1dPW6fb7/9Np/+9KfJy8ujrq4OgDVr1nDhhRdSXV2Ny+Wiurqaiy66iJaWlglzf+WVV1iyZAlOp5Py8nJuvvlmfvvb3477TOwre3LpPfroo8ydOxen00ltbW32+dwde/qcZ1770Y9+xG233UZNTQ0Oh4Pnn3+eeDzO1772NebPn09ubi75+fksWbKEf/zjHxOOEQwG+fznP09+fj5er5ezzjqLxsbGCc9p5rzWr1/PZz7zmex+b7zxRjRNo6GhgdNPPx2fz0d1dTU/+tGPJhxrX78TMs/qAw88wMyZM3G73cybN4/HH3983Hz+8z//E4CampoJ34HPPfccJ510EoFAAJfLRWVlJZ/61KeIRqN7vOYWAsviY7FbPvnJT3LBBRdwzTXXsGnTJm6++WY2b97MG2+8gc1my2739ttvs2XLFv7rv/6LmpoaPB4P3d3dHH300ciyzC233EJdXR2vv/46t912G83Nzdx33327PW5paSmvv/461157LcPDwzz44IMAzJo1a5/mffPNNxOJRHj44Yd5/fXXx+0X4Oqrr+b+++/nuuuu484772RwcJDvfe97HHvssaxbt47i4uLse7q6urjkkkv4xje+we23344sy0SjUZYuXUp7ezvf/va3mTt3Lps2beKWW25hw4YNPPvss0iShGmanHfeebz22mvccsstHHXUUbz66qucccYZez2HwsJCzj77bP7whz+wfPlyZHn0N8p9992H3W7P/kK+8cYbeeCBB7jttttYsGABkUiEjRs3MjAwsE/XayyapnHGGWfw8ssvc/3113PyySejaRqrVq2itbWVY4899l3t73Of+xxvv/02P/jBD5g+fTrBYJC33347O7df/vKXfPGLX2Tnzp08+uij494bj8dZtmwZO3fuZPny5cydO5eXX36ZO+64g7Vr1/LEE0+M2/7xxx/nnXfe4Yc//CGSJHHTTTdx1llncdlll9HY2MjPf/5zhoeHufHGG/nUpz7F2rVr9yku55VXXuHWW2+loqKCp59+Ovsc7Qvr1q3ja1/7Gt/85jcpLi7mt7/9LZ///OeZOnUqJ554IldddRXz5s3j/PPP5//9v//HxRdfPMGicf7553PhhRdyzTXXZBfR5uZm6uvrufDCC8nPz6erq4t77rmHo446is2bN1NQUADA+vXrOe2005g+fTp/+MMfcLvd/OpXv+JPf/rTPp/DvrB27Vquv/56br31VkpKSnjwwQf56le/SjKZ5Otf//qk79nT53xwcBCAu+++m+nTp/Pf//3f5OTkMG3aNBKJBIODg3z961+nvLycZDLJs88+y/nnn899993HpZdeCoBhGJxzzjmsWbOGW2+9lYULF/L666/v0VV3wQUXcMkll3D11VfzzDPP8KMf/YhUKsWzzz7Ltddey9e//nUeeughbrrpJqZOncr5558PsM/fCRmeeOIJVq9ezfe+9z28Xi8/+tGP+OQnP0lDQwO1tbVcddVVDA4O8rOf/YxHHnkk+8zNmjWL5uZmzjrrLE444QR+//vf4/f76ejo4J///CfJZNKySO8LpoXFLnz3u981AfOGG24YN/7ggw+agPmnP/0pO1ZVVWUqimI2NDSM2/bqq682vV6v2dLSMm78v//7v03A3LRp017nsXTpUnP27NkTxgHzu9/9bvbv559/3gTM559/Pjv25S9/2Zzs8X799ddNwPzJT34ybrytrc10uVzmN77xjXHHB8x///vf47a94447TFmWzdWrV48bf/jhh03AfPLJJ03TNM2nnnrKBMz//d//HbfdD37wgwnnMBkrVqwwAfPpp5/OjmmaZpaVlZmf+tSnsmNz5swxzzvvvD3ua1/54x//aALmb37zm91u09TUZALmfffdN+G1Xc/L6/Wa119//R6PedZZZ5lVVVUTxn/1q1+ZgPnXv/513Pidd9454boAZklJiRkOh7Njjz32mAmY8+fPNw3DyI7fddddJmCuX79+j/O67777TMAEzNzcXLO3t3e322Y+M2OpqqoynU7nuM9ALBYz8/Pzzauvvjo7lrmeP/7xjyfd5y233LLHeZqmeC7C4bDp8XjGPW+f+cxnTI/HY/b19WXHdF03Z82aZQJmU1NTdnx3n7d9OU9Jksy1a9eOGz/ttNPMnJwcMxKJ7HGfkx03c03q6urMZDK5x/drmmamUinz85//vLlgwYLs+BNPPGEC5j333DNu+zvuuGPCc5o5r12/F+bPn28C5iOPPJIdS6VSZmFhoXn++eeP2+e+fCeYpnhWi4uLzVAolB3r7u42ZVk277jjjuzYj3/84wn3aOw+d73eFvuO5eqy2C27+twvuOACVFXl+eefHzc+d+5cpk+fPm7s8ccfZ9myZZSVlaFpWvZfxtrx4osvAqN++8w/wzAO4hmJeUmSxCWXXDLuuCUlJcybN29cZhhAXl4eJ5988oR9zJkzh/nz54/bx8c//vFx5ujMddr1Ol588cX7NNczzjiDkpKScdaxf/3rX3R2dmZdbgBHH300Tz31FN/85jd54YUXiMVi+3o5JvDUU0/hdDrH7f+9cPTRR3P//fdz2223sWrVKlKp1D6/97nnnsPj8fDpT3963Pjll18OiEyosSxbtgyPx5P9e+bMmYC4jmN/bWfGJ3MLTca5557L8PAw119/Pbqu7/P8AebPn09lZWX2b6fTyfTp0/f52ACf+tSnJoyFw+Gs1UFVVVRVxev1EolE2LJlS3a7F198kZNPPjlrAQKQZZkLLrjgXZ3H3pg9ezbz5s0bN3bxxRcTCoV4++2393u/55577jjrcoa//e1vHHfccXi9XlRVxWaz8bvf/W7CuQMTzvWiiy7a7fF2zU6bOXMmkiSNs9KqqsrUqVPH3cN9/U7IsGzZMnw+X/bv4uJiioqK9um5mD9/Pna7nS9+8Yv84Q9/mOCit9g7lvCx2C0lJSXj/lZVlUAgMMGFMpnpv6enh5UrV2Kz2cb9mz17NiBSggFOOeWUca8fqAV3d/T09GCaJsXFxRPmtmrVquy89nZu69evn/B+n8+HaZrZfQwMDGSv2Vh2va67Q1VVPve5z/Hoo49mU1rvv/9+SktL+fjHP57d7u677+amm27iscceY9myZeTn53Peeeexffv2d3NpABGTU1ZWNs619l74v//7Py677DJ++9vfsmTJEvLz87n00kvp7u7e63sHBgYoKSmZ4I4qKipCVdUJz+Gu2UB2u32P4/F4fJ/O4eabb+aWW27hoYce4pJLLnlX4mfXew/gcDjelTid7Bm8+OKL+fnPf85VV13Fv/71L958801Wr15NYWHhuH0PDAyMc91mmGzsvTDZM50Z2x+Xa4bJzv2RRx7hggsuoLy8nD/96U+8/vrrrF69miuvvHLcPc18/na9/3s698meFbfbjdPpnDA+9lj7+p2Q4b08F3V1dTz77LMUFRXx5S9/mbq6Ourq6vjf//3fvb7XQmDF+Fjslu7ubsrLy7N/a5rGwMDAhA/tZHESBQUFzJ07lx/84AeT7rusrAyAX//614yMjIx738GkoKAASZJ4+eWXJ80O2XVsd+fmcrnGBanu+jqIL7fJrtm+LPoZrrjiCn784x/zl7/8hf/4j/9gxYoVXH/99SiKkt3G4/GwfPlyli9fTk9PT9b6c84557B169Z9PhaI2KJXXnkFwzB2K34yi8CuAcaTLXAFBQXcdddd3HXXXbS2trJixQq++c1v0tvbyz//+c89ziUQCPDGG29gmua4+9Db24umaQf9WRnL8uXLkSSJ5cuXYxgGDz74IKr6/nx97voMDg8P8/jjj/Pd736Xb37zm9nxTOzLWAKBAD09PRP2+W6ewX1hsv1lxiZb5PeVyT5/f/rTn6ipqeH//u//xr2+6/OY+fwNDg6OEzQH+txh378TDhQnnHACJ5xwArqus2bNGn72s59x/fXXU1xczIUXXnhAj/VRxLL4WOyWTLBhhr/+9a9omsZJJ5201/eeffbZ2TTVRYsWTfiXET719fXjxjMZLe+VjIDZ9RfU2WefjWmadHR0TDqvXbN1dnduO3fuJBAITLqPzDksW7YMmHgdH3rooX0+j5kzZ7J48WLuu+8+HnroIRKJBFdcccVuty8uLubyyy/noosuoqGh4V1neZxxxhnE4/FJM7bGHsPpdLJ+/fpx45Nl1YylsrKSr3zlK5x22mnj3B+7+6V7yimnEA6HJxTz++Mf/5h9/f3k1ltvZfny5fz1r3/l4osv3mt24sEiEzi/q0j/7W9/O8EatXTpUp577rlxFgfDMPjb3/52QOe0adMm1q1bN27soYcewufzsXDhwgN6LEmSsNvt40RPd3f3hOdv6dKlgLA6juUvf/nLAZ0P7Pt3wrthd99hY1EUhcWLF2ezWN+LW/FwwrL4WOyWRx55BFVVOe2007JZXfPmzdun+IDvfe97PPPMMxx77LFcd9111NfXE4/HaW5u5sknn+RXv/rVAa8HMpaMgLnzzjs544wzUBSFuXPnctxxx/HFL36RK664gjVr1nDiiSfi8Xjo6urKpil/6Utf2uO+r7/+ev7+979z4okncsMNNzB37lwMw6C1tZWnn36ar33tayxevJiPfexjnHjiiXzjG98gEomwaNEiXn31VR544IF3dS5XXnklV199NZ2dnRx77LETitstXryYs88+m7lz55KXl8eWLVt44IEHWLJkSTbD449//CNXXnklv//977NZL5Nx0UUXcd9993HNNdfQ0NDAsmXLMAyDN954g5kzZ3LhhRdmY6QyBefmzZvHm2++OUHQDQ8Ps2zZMi6++GJmzJiBz+dj9erV/POf/8xmw2Tu1SOPPMI999zDkUceiSzLLFq0iEsvvZRf/OIXXHbZZTQ3N3PEEUfwyiuvcPvtt3PmmWdy6qmnvqvreCC45ZZbkGWZm2++GdM0+fOf//y+WX4y5OTkcOKJJ/LjH/+YgoICqqurefHFF/nd7343odDdd77zHVauXMkpp5zCd77zHVwuF7/61a+y2WG7WvVCoRAPP/zwhGMWFhZmhcRklJWVce6553LrrbdSWlrKn/70J5555hnuvPPOA55llCmfce211/LpT3+atrY2vv/971NaWjrOvXv66adz3HHH8bWvfY1QKMSRRx7J66+/nhXOB8qdC/v+nfBuyHyH/e///i+XXXYZNpuN+vp6HnzwQZ577jnOOussKisricfjWUvTofhMfCg5hIHVFh9QMhkOb731lnnOOeeYXq/X9Pl85kUXXWT29PSM27aqqso866yzJt1PX1+fed1115k1NTWmzWYz8/PzzSOPPNL8zne+My77Zne8l6yuRCJhXnXVVWZhYaEpSdKE7Ijf//735uLFi02Px2O6XC6zrq7OvPTSS801a9bs9fimaZrhcNj8r//6L7O+vt602+1mbm6uecQRR5g33HCD2d3dnd0uGAyaV155pen3+023222edtpp5tatW/cpqyvD8PCw6XK5dptt9c1vftNctGiRmZeXZzocDrO2tta84YYbzP7+/uw2mQylyTKxdiUWi5m33HKLOW3aNNNut5uBQMA8+eSTzddee23cnK666iqzuLjY9Hg85jnnnGM2NzePO694PG5ec8015ty5c82cnBzT5XKZ9fX15ne/+91xmT6Dg4Pmpz/9adPv92fvVYaBgQHzmmuuMUtLS01VVc2qqirzW9/6lhmPx8fNGTC//OUvjxvbXbZU5nn529/+tsfrkLlmu2bqmOZoZt75559vJpPJ3WY7TfbZWLp0qbl06dK9zjOzz7EZWRna29vNT33qU2ZeXp7p8/nM008/3dy4caNZVVVlXnbZZeO2ffnll83FixebDofDLCkpMf/zP/8zmxkXDAbHzYt0Ftuu/zLz3dN5Pvzww+bs2bNNu91uVldXmz/96U8nva6TXY/dZXXtek0y/PCHPzSrq6tNh8Nhzpw50/zNb34z6dwGBwfNK664Ytznb9WqVROyLXd3rS+77DLT4/Hs05z39TthsmfVNM1J7923vvUts6yszJRlOfsd9/rrr5uf/OQnzaqqKtPhcJiBQMBcunSpuWLFikmvlcVEJNM0zfdBX1l8iMiY9Pv6+t7XOAoLC4v3h4997GM0NzfvUzHNjxoPPfQQn/3sZ3n11VffdV0qi48GlqvLwsLC4iPMjTfeyIIFC6ioqGBwcJAHH3yQZ555ht/97neHemoHnT//+c90dHRwxBFHIMsyq1at4sc//jEnnniiJXoOYyzhY2FhYfERRtd1brnlFrq7u5EkiVmzZvHAAw9wySWXHOqpHXR8Ph9/+ctfuO2224hEIpSWlnL55Zdz2223HeqpWRxCLFeXhYWFhYWFxWGDlc5uYWFhYWFhcdhgCR8LCwsLCwuLwwZL+FhYWFhYWFgcNljBzbtgGAadnZ34fL5Jy6VbWFhYWFhYfPAwTZORkZG99hu0hM8udHZ2UlFRcainYWFhYWFhYbEftLW17bEzgCV8dsHn8wHiwuXk5Bzi2VhYWFhYWFjsC6FQiIqKiuw6vjss4bMLGfdWTk6OJXwsLCwsLCw+ZOwtTMUKbrawsLCwsLA4bLCEj4WFhYWFhcVhgyV8LCwsLCwsLA4brBgfCwsLC4vDDl3XSaVSh3oaFu8Cm82GoijveT+W8LGwsLCwOGwwTZPu7m6CweChnorFfuD3+ykpKXlPdfYs4WNhYWFhcdiQET1FRUW43W6rUO2HBNM0iUaj9Pb2AlBaWrrf+7KEj4WFhYXFYYGu61nREwgEDvV0LN4lLpcLgN7eXoqKivbb7WUFN1tYWFhYHBZkYnrcbvchnonF/pK5d+8lPssSPhYWFhYWhxWWe+vDy4G4d5bwsbCwsLCwsDhssISPhYXFRw4jHCbV2EhyyxZSTU0Y4fChnpKFxQeW6upq7rrrrve0jxdeeAFJkt5zttyBmMvesIKbLSwsPlJo3d0k33gDY2goOybn5WFfvBi1pOQQzszCwuKDgGXxsbCw+MhghMMTRA+AMTQkxvdi+dGDQZINDSTXrSO5bRu6VevFwuIjhyV8LCwsPjLovb0TRE8GY2gIPV0DZDJSbW3EnnyS+FNPEX/+eeJPPknsySdJtbUdrOlafEgxEwn0nh609nb03l7MROLgH9M0+dGPfkRtbS0ul4t58+bx8MMPY5omp556KqeffjqmaQIQDAaprKzkO9/5Tvb9K1asYNGiRTidTgoKCjj//PMnPU5zczOSJLF27drsWDAYRJIkXnjhhezYk08+yfTp03G5XCxbtozm5uYJ+3rttdc48cQTcblcVFRUcN111xGJRLKv9/b2cs455+ByuaipqeHBBx98bxdpH7GEj4WFxUeGSRcgm038UxTMaHTSbfRgkMTLL2PsIoyM3l4SL79sWX4sshjBIMm1a0lt2YK2YwepzZtJrl2LcZCfkf/6r//ivvvu45577mHTpk3ccMMNXHLJJbz00kv84Q9/4M033+Tuu+8G4JprrqG4uJhbb70VgCeeeILzzz+fs846i3feeYd///vfLFq0aL/n0tbWxvnnn8+ZZ57J2rVrueqqq/jmN785bpsNGzbw8Y9/nPPPP5/169fzf//3f7zyyit85StfyW5z+eWX09zczHPPPcfDDz/ML3/5y2yBwoOJFeNjYWHxkUFyOMYPOBzCApRMAmAMD5NcuxZbfT2y35/dTO/pmSB6Mhi9veg9PShjtrc4PDETCVINDZix2PjxWIxUQwP2+fMnPoMHgEgkwk9/+lOee+45lixZAkBtbS2vvPIKv/71r3nooYf49a9/zec+9zl6enpYuXIl77zzDjabDYAf/OAHXHjhhSxfvjy7z3nz5u33fO655x5qa2v5n//5HyRJor6+ng0bNnDnnXdmt/nxj3/MxRdfzPXXXw/AtGnTuPvuu1m6dCn33HMPra2tPPXUU6xatYrFixcD8Lvf/Y6ZM2fu97z2FUv4WFhYfGRQioqQ8/KE2HG5MAYHheiRJKS8PFDVyRepeHzPOz7IrgwzkcAIBjFTKSS7HTk396AsoBbvDSMYnCB6MpixGEYwiFJcfMCPu3nzZuLxOKeddtq48WQyyYIFCwD4zGc+w6OPPsodd9zBPffcw/Tp07PbrV27li984QsHbD5btmzhmGOOGVdTJyPIMrz11lvs2LFjnPvKNE0Mw6CpqYlt27ahquo4y9OMGTPwvw8/MCzhY2Fh8ZFB9nqxL15McvVq9L4+zIEBAKT8fJSSEvSuLkilQFVRystRp0wRb3Q697zjgyhCjGCQ5MaN6H19oGliboWF2OfMGWeVsjj0mHupFry31/cXwzAA4bIqLy8f95oj/WxGo1HeeustFEVh+/bt47bJtHrYF2RZRMBk4oVgYpXksa/tac5XX30111133YTXKisraWhoAA5NMUlL+FhYWHykkL1epLw8bIWFGAUFoChgt0M0Kr5k8/MxBgbQdu4EVUUtKUEpLkYuKprU3SUXFR2UX/EgLD2Jt99G27YNc4zVyejpwUwmcR53nGX5+QAhpV1H+/v6/jJr1iwcDgetra0sXbp00m2+9rWvIcsyTz31FGeeeSZnnXUWJ598MgBz587l3//+N1dcccVej1VYWAhAV1dX1po0NtA5M5/HHnts3NiqVavG/b1w4UI2bdrE1KlTJz3OzJkz0TSNNWvWcPTRRwPQ0NDwnusA7QuW8LGwsPhIoff2om3dilJaSmrrVmzTp6Pt3Ik5NASyjJSbK4Kda2tJvvkm8skno/j9OE44QQQ49/cjl5Qgu91IDgdKdTVmJIKeTB5wF5TW1UVqyxbMSAQkCRQFSZYx43G0bdvQp08ftUpZHHJkvx/J5ZrU3SW5XAfNQufz+fj617/ODTfcgGEYHH/88YRCIV577TW8Xi8FBQX8/ve/5/XXX2fhwoV885vf5LLLLmP9+vXk5eXx3e9+l1NOOYW6ujouvPBCNE3jqaee4hvf+MaEY7lcLo455hh++MMfUl1dTX9/P//1X/81bptrrrmGn/zkJ9x4441cffXVvPXWW9x///3jtrnppps45phj+PKXv8wXvvAFPB4PW7Zs4ZlnnuFnP/sZ9fX1nH766XzhC1/g3nvvRVVVrr/++ndlndpfrKwuCwuLjxRmLIYZjWJEIihTp6K1tQnRA5B2GZjxONqOHaCq6P396D09SJKE4/jjcZ5zDrLXixmPo4+MkHztNRKvv47W3k5y3bp9zt4Zm/Ks9faidXaOS3/Wursx+vvF3JJJEUcUj2PqenaOux7rUKRRT8bhWu9Icjiw1dcj7bI4Sy6XGD+I1rnvf//73HLLLdxxxx3MnDmTj3/846xcuZLq6mo+//nPc+utt7Jw4UIAvvvd71JWVsY111wDwEknncTf/vY3VqxYwfz58zn55JN54403dnus3//+96RSKRYtWsRXv/pVbrvttnGvV1ZW8ve//52VK1cyb948fvWrX3H77beP22bu3Lm8+OKLbN++nRNOOIEFCxZw8803U1pamt3mvvvuo6KigqVLl3L++efzxS9+kaKiogN1yXaLZO6Ls+4wIhQKkZuby/DwMDk5OYd6OhYWhx094R42924mmAjid/qZVTiLYm/xPgcAJxsaiD/1FMgy9kWLSLzyCoz5hS6Xloog53AY+zHHYAwMIKcXMiMeB11HqazEjMeF0GhuBk1D8npRq6rAMPaavWMEgyL7Jx5HyslBHxpCMk0kux3J6RSp9YkEkt0u5joWWQanE0mWcX7sY9hnzRq/zzHnkllw389YoFRb24TUf7moCMcJJ2CrqHjf5rE/xONxmpqaqKmpwbm3uK49MO5ZtNmEJchySb4v7Oke7uv6bbm6LCwsDiljF5H1eic/e/uXNA03Z1+vzavl/y38ErO6ES6hNLtb9GWfD7mgAKO/H2NgAMnlQvL5wDTB4UDKycHo7ERKZ32Z8bjIAAuH0VpaMEdG0NrbhchRFNQZMzBDISE4JGmv2TtjU54lrxczHEZvbsYMhYSrzetFcjiQi4tRcnOR/H7MsRYTwwBdR/L7kdxutM5OjFgMc2REBJW63UiSJGoSHeQ06l3ZW70j+cwzD4u0f8nhOGhxXxYHH0v4WFhYHDKGB7poattAODaMy1/Abzf+kcbuDcguN06nF93QaBxs5Odrfsk3F3yVStmHGQ6Dae520ZcUBfuCBSTfeUcIlXAYU9PA7UbJycm+H1V8/ckeD2Yyid7ZiZyfj1xRgZyTgwnora2kNm9GzssDTUOpqBD73EP2zriUZ6eT1Pr1WdEDwoVlxmKYsRhKZSXqjBloW7eOEz9Sbi626dMxolGMpia01laMri5wOoV1wWZDrasTQnAf06gPRMq8Ve/I4qOAJXwsLCwOKrtbcJv7d/Loq79jYKgTgNzKqbzc/iq1/ho0GTb3bWEo0g+myTttbzIjfxrLchdyRG4J5vBwVvzsuujLfj9aayu2+fOFS0nXhXUkHkcf49aSc3KQPB4kXUcPBlHKytCam0VGVSIhrDMOhxAgIyOYoRB6aytKdfUes3fGiaJkUogeRRGWJV0Xgss0xXgkgpyfL/apacLaI8vg8yEHAmhtbejt7ZgjIyL4ORLBSKWQ3G5SmzejlJVBKrXXNOoD5iY7xPWOLCwOBJbwsbCwOGCMJEZoCbYQToXx2r1UKAGcO9swo1GQJCJulTZbhESuh5XbV9Kf6CKpxrBLKqoeZyQRYigVoj8+yFB0YNy+eyN9/Gznr7htznUUuX1Zt9eui77kcGCbNi0bY6NWVKA1NkIqhVpZCZqGXF2NWl+P3tKC5PGgeL1oDQ1IqgoeD2ZbG6TdY1pLC3IgIMRPLCaEwh66vI8VRaauC9GjaULQKIoQMLouxE80ihEKCSuO3Q6GgeR2I+XkkFq3DtnnEwJJVUWNH9OERAIpNxdjaAi1shK9uxubvPs8lQNabfgQ1juysDhQWMLHwsLigNAcbGZFwwpGEiPU5deR0BK8EhuhyjeFue4yYqkoK3Y8ysBQJ4Fpc/jLxv/DKdmoya0mFB6guKQOTQZNMgmnIhP271SdNA43sc02TJEcQALMaHRS64vs92OfPz9raVLKy4XYMAwkmw3J48EYGRGuqIYG5EAAfedOACS/H7m0FCMSEZaWYBC5pARd00QaPKDt3Ins800qGGS/Hyk/X8zN5RJiZWRE/BdETSGHA7xeTE1DcjrRGxtRysvRe3qQc3KE0OruFkIsI5ZkWZwDiH2l/ylpi1RyyxYkpxOlsBDJZsueu5lKYYyMiH3twrutNnyo6h1ZWBxILOFjYWHxngmFB/jH238hFA0yo3IBv3/nPjZ3bwBdR1XsnFZ3GkeXLGKop5WEatAV7iEZj5BMpWhMpah0lxIa6qU8ZwqaoWEaQqSQruo6vXAG4dAgZiRCMNRLqiuB7HKJOBddFxlSu4iQ3QWgZt0+uo7e1YUxPIycmysEhq5jplPe1WnTRMFD00QuKECJxdC7u7NtL3YnGMxYDHNwEH1wEBOQS0owFAVJUbLnZMoySlERpq6j+P3Z/5d86Rgmux05bVUy43EhoJxO4WrSdXFdbDbksjJS69ejhULZ85d8PmyzZ2P09YkMMklC7+sTGWXpZq2Sw5EVQvtSbXisu9J+9NFoO3eiNTRkywPIRUU4TjzRiu+x+FBgCR8LC4v3hBEM0tj8Fn2tW5k9dQm/W/1rNnetF0IilSJFkp1DO2nob+DckmPZOtJErqZlrRcj8WHIqWBtw0ucddT5bBraRvdIV9aiMb1oJufWncnzbz2KZLeTm1OEHLYDogCgEo+jt7XtNV7FTCTQg0G0tjZS69ejFBWhbd2K5PVms71Mw0DOy0NJxwmZacuGXFaG5HZjmzMHIx5HZnLBYCYSpLZtE8KmvByjtxdl2jRShoHe0TEqFAoLsc2ahREKCTeYqqIPDJBau1YEW6dSSE4n6owZSDk5os1GIgHpdHjJ7ca+cCGpDRswenqQ3G7MZBIMAyMcxkwksB11FNr69cj5+ejt7cLa5fMhFxUh2+1CAJkmZiIxqXAce39Tra2QSAgLlaqiFBSg1tYKIWa3oxQXW6LH4kODJXwsLCz2m0z8SNgYBiChSmzuXDfq1klbUVJ6isbuLWi1HycZMQgFe6j0V9EabAFAMzRSeoIXVj/CF878NseUL6Yr1IFTcRBJRnh+7QpSDoXa3KlM6zFJbd0Ksoycm4taWooxMLDHeJWMlQePh9SmTUKQ5OWBYWCOjGD09ICqIjscSE6nED0jI+LNDgdmOIwxPCxER16eCHyexMVmBIOYgNbUBLFYVggplZU4jjoKo79fbOhykVi1CildQJFoFKmgAOcpp6D39op0dpsNIxzGNm8eWiZGJ50Oj6oiO50ke3qQMoHTpMVYKoUej2OLRoWbKxoVrrPhYSSPB9ntRmtsxAwGkbxe5K4u9I4O7HPnThCOZiKB1tYmWmqEw9lxyefDNmcOciAgxFwyuUfxZGHxQcISPhYWFuMYSYzQPLCTkZEBvKaNKXI+PkXUwlF2SYHOpG57PW4AwskxsSyGkU0Zt8kqmAZRI4FdUtnasZYTZn+Mlw2D1lAbqqyCLFPoL6XOUcIMbw13t/2cxt4GkGVMFWpza/h/c67E/+rO7PHNUIjUjh2o5eWYkcg495MRDovqxoaB3tgIgGyzjaaNZ4KMFQW9qwvb9OnZgnT6wIBwLeXkIOfkiG7vmobR349aUICUTivfFTORILV5M2ba9SQ5HJjBIPr27RhdXch+v6jIPDICySS2efOE0DFN1MJCEm++iWQYQiBpGlJREbaTTkJZsmTUmhMKibYJg4MQiYw2jFRVYfnJpM0nEtgWLMAcHEQtLUVrawNVFaInGgWHQ7j4YjG01lZRBmDRonH3V8+4BceIHmQZ2e8nuXo1st+P7PWKyzlJlpjVdd7ig8iHSvh0dHRw00038dRTTxGLxZg+fTq/+93vOPLIIwHRMXb58uXce++9DA0NsXjxYn7xi18we/bsQzxzC4sPB83BZv6x/m/0dzWK7uaRCIGcEs6p+TgVmqhcrFZUZBe3jLunAj8BbxFem2f8DiUJm2pHTqTwOXJxK05yZBd2l4fXN/6LOVPm8vHpZ1Cg5qCVRPCZDqYqpTje2sjywovYXhlmWNXItfmYFrSRt7p1tE2DJGHabOOKGmbmo3V3k3zjDYyhIZQpU0ht3ozkdGLLzc3GDRnhsCgeGAqBYZDatg3HiSdCMolcXJxNhTd6e0VGVdpNJanqbtsTGLGYEFayLGJ2MgHFqRRmKIRcWyvaUPT1ZV2BmCbKlCmieGIwiFxdPXo+vb2kNmzAedppyC4XyYYGpIICtIYGUVNIlsU+0n2+sjWKdB10XbjyDIPU1q0o1dWo1dWYQ0OYbjempmGEw8hOJ2ga+tDQhLglMxweFT2yjBwIIBcWoneKEgRmNIohSeJa7JIlNpmLDIcDW2Wl1XV+PzjppJOYP38+d91113ve16233spjjz02ofnou6W6uprrr7+e66+//pDP5d3woRE+Q0NDHHfccSxbtoynnnqKoqIidu7ciX/MB+hHP/oRP/3pT7n//vuZPn06t912G6eddhoNDQ34fL5DN3kLiw8BI4kR/rHpUfq6GkUPqUgETJOB4S5WNv2LS4o/Tk5jI6ZpYne5hEUj7e7xRDXOqT2DDfEWZhXPYXPPRgBsip2APZdYOMjSumUUugqwFZoEyurojnTjd+QyzVvLljf/ic/h4/S5n8HV3IHW3U1eNxwtyyg1NUiyTGrjRkhbFwCxwMuySAvXNICseygjeoBsLJEZj4s4GLsdEgn0zk5sM2aIPlPpVG8zFsu2qjDDYSF4HA5wu0GSkPx+lNJSYbkZY80AxBxiMeT8fExNGw1KzqSiG8ZoSrqqCrGiqqLlQX4+elsbeDxES/JpL7cR1mN4JQflmg374KBIsx8cBJsNvaMDKS9PZFh1dIj9JRJi/zYbUlERRjCI0d8vLHU1NRjd3RgOB3p3N3IgIFx5soxptyPJsnD77Rq3lL6upGOWtLY25Lw8tO3bRVp9JrPNbkcpKEDSNIxgUNRSmsxF5vUiSRK29PNjse888sgj2A5S9/fDjQ+N8LnzzjupqKjgvvvuy45Vj/1lZJrcddddfOc73+H8888H4A9/+APFxcU89NBDXH311e/3lC0sPlS0BFsYGOqA9KKddVkBA8NddFRE8Q7rKOkFXykuHtetesqIjN9ZR+C4b/HPlmeJG0kMU8dpqjgVJ+dWfQzD7eLetl/RMtKGS3EiI9PmaeWSU69gdjf486qJv/WsOKgsI7ndGD092GbNylY+RlGygkT2+TDCYbFtuju21tExKnoy26fRu7tRiosxJEm8zzRF3EtOjkhV93hErIrHI66BXQRRY5qiFYbHg5IWFZnaOEY4jNbaCoqCfe5c4SaTJCGONA0pNzdr8ZDy8pDSFhrJ5cLo7RUWp0QC3G66avJ4vH0l/e3bARPsDgorpnOeVkZVKj2XjFVr61bsxx5L0jRFQcd0h3e5pARbfT2JF14QsT29vULg7dwpxFYyKawv6ZpApFJC3KWvb6qxUVwDpxPSwk3Oy0NraUHyesW1TSTA5RIiMX2dzHhcHC8UwohE0Pv6xDVwuTAGBoSwCodF+YCiIlQr9f1dkZ+ff6in8JHhQ9OdfcWKFSxatIjPfOYzFBUVsWDBAn7zm99kX29qaqK7u5uPfexj2TGHw8HSpUt57bXXdrvfRCJBKBQa98/C4nAknAoLq4RhjBM9GSJGXCxempa1DIzrVm2aeOMGpREZT0qiP9JH51AbncPt2JIaqsPFL1+9i609m4gODzAY7qM/0sv23q38cfOf0efNFkG9Doco4uf1igVa19E6OpBLSpADAZTycuTiYuFO6e8XwiuVQqmsROvowAwGsc2di23hQpTycpHJVFICkoTR1YVSUIBSWopt7lzh3unqEm69WIzkSy8hJZMoVVVI6fgXYjEwDJQpU0QMjM2WFT1mMone1iYEQDiM3teHUlQkrlMkIoojFhcjO53COmK3Y8oyckEB6pQpItNL18HtJpbvZWXnc+lK1iYgYpD6O3awsvlpwjbhasvUEkLX0RobUauqcJ54Io7jjsOxbBlqfT1aUxNyUZGw6IyMZO+PMTw82rcsEwuUriYtud2ktm8n/uyzJF56ifgzz6A1NqKUlCA5ncJV53YLoWS3i47ymWclHeAsSRJ6by/JNWvQOztFi4tIBGXKlNHjpXuMfRC6zO8vI4kRNvZsZFX7Kjb2bmQkMXLQj3nSSSdlXUrV1dXcfvvtXHnllfh8PiorK7n33nvHbd/e3s6FF15Ifn4+Ho+HRYsW7bYj+9h9ZzjvvPO4/PLLs3/39vZyzjnn4HK5qKmp4cEHH5ywn+Hh4WyH9ZycHE4++WTWrVs3bpsf/vCHFBcX4/P5+PznP098b9XADwIfGotPY2Mj99xzDzfeeCPf/va3efPNN7nuuutwOBxceumldHd3A1C8y6+I4uJiWlpadrvfO+64g+XLlx/UuVtYfBjw2rxicZLlbBzMWDyyU1hW0u6ZDGOLBY5oEZ5s+CsJu0xlxAemEySZWGSYP275Cw7VgZlMCjeHaYqaOakUjcNNbB1p4nhP1UQXSFqwqHV1opJya6tYqJ1O5IIC7HPngizT0ruTzUYnQ8kh8m25zEwWUZ4OwlWnT0dSFLEYDwyglpeDzSZq3eTni7mkUqBpIh6mogLHkiXC3afrmIA6ZQpqSQl6T0+2CrIRiYj3xeOgaWjr1+NYtmy0X1cyiWm3o1RUYJs9W4gDhwMUhcSaNekLKGMmk3SUuhjcMiLSzD3e0eBrWWYg2k+bPsh0l0tIIr8fkkmMnh6Mzk6orhZZa5IksrxiMWGtSSaR8/KQvF5xfECtrRV9yAZEZWzJbkcpK0NyOER/s4x7C0ht3Ih9wQIxJ7cbZFmk8xcUiEy4sc+J3Q6ShNbWhtHXJwQVommsoSjZxrFKebmIPRpTBfpQdJnfXzKFOgdjg9mxfFc+59afS7W/+n2bx09+8hO+//3v8+1vf5uHH36YL33pS5x44onMmDGDcDjM0qVLKS8vZ8WKFZSUlPD2229jpOPU9ofLL7+ctrY2nnvuOex2O9dddx29YwpZmqbJWWedRX5+Pk8++SS5ubn8+te/5pRTTmHbtm3k5+fz17/+le9+97v84he/4IQTTuCBBx7g7rvvpra29kBckn3mQyN8DMNg0aJF3H777QAsWLCATZs2cc8993DppZdmt5N2+cI2TXPC2Fi+9a1vceONN2b/DoVCVFRUHODZW1h88KnyVxHIK6cvEhG/8DPxKEAgt5TypBvZ6xIupl0WqEyxwPaejQzJwjKUcclgGJjJJK1mH9W+CuEaUZRxfZ3McJhgfAil8ijkvLzxrqp0gLAxPIxt3jwxt3T8kWEY6NEobzv6uH3Nj9nQuRbJBJvdyeyyeXzlqK9QdHQ1xU09+Nx+7Mcdh5Kfj+zxoA8NCatFBrcbnE4km010Qh8eFsHKacuObepUMdexcTC6LkRGRiwYBkZPD7LHI5qdlpaKSsw5OWLbdLHFxOrVYqGfMQNSKaTcXGJmm3AzRqPZ6y55PCilpZBKETHi2OpnkGprE0JzUBR0NCIRTEURqeWpFMbg4GiAczyOVFUlXHPr14s55uRgmz0b5ymniEaphYUgy8Qef3yc6AFA00i+8w7Oj38cpawMOTcXvbMTtbaWVCIhXGzp+y85nSilpSSefz7bj4x0+w3J4xENYPPyMHRdBFSnRTQIK9D72WV+fxlJjEwQPQCDsUFWNKzgivlX4HO8P/GkZ555Jtdeey0AN910E//zP//DCy+8wIwZM3jooYfo6+tj9erVWRfZ1PTzuz9s27aNp556ilWrVrF48WIAfve73zFz5szsNs8//zwbNmygt7cXR/oe/vd//zePPfYYDz/8MF/84he56667uPLKK7nqqqsAuO2223j22Wffd6vPh0b4lJaWMmvWrHFjM2fO5O9//zsAJekqp93d3ZSWlma36e3tnWAFGovD4cjeJAuLwxmfw8cnZn+Sf+h/ox/QTXNMVtfp5GiebFbX7hancCodyLrrL0vTxKk4SBqp7N/jXtZ1chUvsteLffHiccHJkiwjl5djmz2b1LZtaDt3ZvtVqZWVdOfC7c//iA2dbyPJCg63l6H4MC80PcdgfIirj7iSZ/pf45za06nNn4kt/evSiOzSFkPTUNIWHdnrzTYFlXw+0ddrcBDZ5ZpYv2dXsSBJ6O3t6O3tOGtq0JuaMNLWDWN4WNTOcThIrVkDkoQyZQq2+fNxD8SEQMjNFftMd4HXe3tRq6uFRQ4gFEIfGhLB1eEwsseDWl2N4XaT2rBhVMy5XMi1tSJwuq8PuawMIxpFKShAb2vD6OnBfvTRqOXlwlpkGKPxUJkfixk3lmFkBZLs94trFAggV1SIooqqKqxIfX1IXm+2IautuhqtsxO9vR2lqAi5uBi9tVVcj/Q8Ja9XWKFGRt5V+4xDQUuwZYLoyTAYG6Ql2MKc4jnvy1zmzp2b/X9JkigpKclaYNauXcuCBQsOWFzQli1bUFWVRYsWZcdmzJgxLrnorbfeIhwOEwgExr03FouxM90OZsuWLVxzzTXjXl+yZAnPP//8AZnnvvKhET7HHXccDQ0N48a2bdtGVVUVADU1NZSUlPDMM8+wYMECAJLJJC+++CJ33nnn+z5fC4sPI9X+aq5cfI2o4xMexGuoTJHz8Cki5kbx+/f4izy7OO/aNFOSCOhOinwl2b/HUldUz0xfNQBqSQlyupBfpiieUlQkBIdhIKX3b0SjaDt3sqkywYbOtwGw2V0MJYZJ6sKatL7rHeLzTQaJ8sTwm1zpOAp/+phKUdEE65I5MoJt6lT0nh6SmzcL6wtg9PdjP+IIUtu2YZs1KxvQLdlswlKULnYo+f0Y6ThBqaREWIvSVZhNTcNIpSAYxJRlIdzKy9H7+9E7OynrHSEvqTAwJNpLmOmYGVSVAl8RlZ5SUpsaMFMpZK8XA5BGRjDDYVHg0DBGxQgIa4vTSfKtt5C9XsxEAqW0VMRFud3jOtBjt4u/x2aeKYqoZZTucSaXlKA3NaFUV2N0dIh4KpdL3CNVxTZjBomNG0W7jbw8JIdDpOinY53kQAC9vR0jGBRuytxckeYfDmdjlfalfcahJCvs9/P1A8muGV6SJGVdWS6X613tS5bl0XpQaVJj7kXmtT15TwzDoLS0lBdeeGHCa/4PmAvzQyN8brjhBo499lhuv/12LrjgAt58803uvffebECXJElcf/313H777UybNo1p06Zx++2343a7ufjiiw/x7C0sPjz4HD6OKJu/x23MRAJ9cFDUpNF14ZIpLKTKX0W+K5+BdBuGrDVEVZki57Ks+Hi2lq2jcagxu6/aohlcd+S1FCm52THZ680WxhuHLKM1N4+zKA0lgqOvKwrJeMaFJr6kR1JhZJeLwegArYk+/NRmjzHOumSaSLm56AMDIngaxHFkGSMSEYG+paWYkQi2+nphJQmHUQoL0dPNT9WKClJbtiAFAtimTh0NLEak05NMYqZSqOkaPNrOnZgDAyj5+biCUc6pPp2Vzf9kYKRXiCpJorB8KudMPRtPRCM1psO65HRmr7EZiyEXFqJt3y5cXao66mKLRMDpxBwaQjcMlLIyUcsnlUJvbUXLzRViqqBAxAtlFkBdh0RCCJ5gEDktYLDZRPD4nDmiwrWuY0YiaE1Noi5SMIgRDGKbMwe9tVUEY9vt4r2JhEidz1ilVJWh6gIabMMMSw3kRYeYHbZR7P1gWn2ywn4/X3+/mDt3Lr/97W8ZHBzcJ6tPYWEhXV1d2b91XWfjxo0sW7YMEN4VTdNYs2YNRx99NAANDQ0EM8VAgYULF9Ld3Y2qquMyrscyc+ZMVq1aNS48ZdWqVftxhu+ND43wOeqoo3j00Uf51re+xfe+9z1qamq46667+OxnP5vd5hvf+AaxWIxrr702W8Dw6aeftmr4WFgcQIxgkFRTE8n167MxHtjtqFVVuObN49z6c1nRsIIBTRPtGDSNgpwSzq44ldLtIX5w1DfZGmtjWErgd+Uxw15OQdImssX20vZAzslBzs3FGB7Oih+/Ixdk0QDUYJdsNEnC5/AyAKCqROXxbqlx1qVwWDQuHRxE2759tMIzIOXmosyYkXU/KcXF2OfPRx8YEDEvM2eKWKahIeyLF2PE4yILqqBgdJE3DBHnEwyipVI4Fi8WcTp2O+TkQHMzpS1BPld6Jh11SaJOGa8zl0p7IX5n8QRrSKZnlt7fn82uMmMx0bxUktC7usTxnU4RaKwoIgg7kRDiCFG3SO/tFSUD5s0jqWmYPT2jx8jPx75wIcm1a7HPnCliqyIRjGQSOT9fpLgriogzisWw1dSgSRJmOqUfhCtLKSwcjfnKCGJZZuu0HH62/lc09m7NZvLVBaZy3aKvcIRaLp6JtOVLcrsPeeXnjLCfzN2V78qnyl91CGY1kYsuuojbb7+d8847jzvuuIPS0lLeeecdysrKWLJkyYTtTz75ZG688UaeeOIJ6urq+J//+Z9xoqa+vp7TTz+dL3zhC9x7772oqsr1118/zrJ06qmnsmTJEs477zzuvPNO6uvr6ezs5Mknn+S8885j0aJFfPWrX+Wyyy5j0aJFHH/88Tz44INs2rTJCm7eE2effTZnn332bl+XJIlbb72VW2+99f2blIXFYYSZSIyKnlBIWDHSVp1UNIoZiTDlxBO5Yv4VtARbCMeGcRsqlY5CfKoHs0aiYMsWTsibgbZ9O1rrdkhuIm6zicadM2eKdHBdn3SxUwIB1JoatObmbK2hWal85lYezfq21chjTfGSxLwpC3GmgLRI8LpyJ5xTxrqk9/SgdXejNzWNEz0A5vAwWmurCL5NF0nUe3sxo1GR7ZSOh8pkeCleL8rUqehNTWMOJI8WXBweFlaX4WGRWZbOUjPDYVw7I0y12YQrLldGKVaR/X5hXcvMJ1NrKd1U1QiFhCUnHMYYHMToEk1ejWgUtboabfPm0Tlkihy63aKPV7oWj9HailpbizxrVnYbIxRC7+pCSpcxyOJyZStNm+lgc9ntFn3JioqQy8tFx/kjjxRutkhEXKdMppqqMlRTxOPd/6Ikv4L8vBIcLh8hPUJDz2buevFOfrDoW/jX7xAFENP3T87LO6TZXz6HLyvsd83q+kT9J963wOa9Ybfbefrpp/na177GmWeeiaZpzJo1i1/84heTbn/llVeybt06Lr30UlRV5YYbbshaezLcd999XHXVVSxdupTi4mJuu+02br755uzrkiTx5JNP8p3vfIcrr7ySvr4+SkpKOPHEE7Nxtv/xH//Bzp07uemmm4jH43zqU5/iS1/6Ev/6178O3sWYBMnc1bF3mBMKhcjNzWV4eJicnJxDPR0Liw8Uek8PqR07SL71FmYySawwl44cg7ARwyu7mCLnkVtShVpdLbKVJunPpAeDJF58UbhJkkkRZ2K3E81z01loJ+KU8SouykMyPklkkI1d7IxgkNSmTSIryzDAZmNtnYPb3/xvGvoaGE4Ok9ASzCudz5cWfYkd7RvR7DIBX9Ees27MRILktm3En31WWGnGfjUqCpLDgWPZMpT8fJJr16K1tIwG6AYCQrQVFiKP6eOVXLs2m/puahr6wADGwACS3Y46bRpaQ4NoiaEo2GbPRuvsFKJLVVFKS1FLS7EvXJitFJ1saBACKxTCJF2NOhIRWWf19RjxuBApQ0OiDEA4jDptGsnVq8V+HQ7hrtN1lOJitJ07cSxbJgSaLIu+YekYn0wGmv2II9Db27HNnp1tDyL5/ejd3Whbt2ICsseDEQohKQqS3Q4uF44lS0i+/Xa2VpFSXZ2NmULTeOO4cm598VZagy3C/eVwUJlbwQklx7Cq8SW+fcw3OGbjmJgZVUUpKUH2+fY7+ysej9PU1ERNTQ3OMen075aRxIgQ9qkwXpuXKn/VB0b0fNTZ0z3c1/X7Q2XxsbCwOLRkun8jy3TVBVjZ9m8GWjpFxWCfj4LSWs51FFPR1ye6k0ejokfWWOEyOCiqJqc7kEfLCtlZrrKi6Z8M7ewl1+nHbkjk4+acmtOpCKvjUp1lvx/7okWjzS9tNpb4/fyyaCobejYwGB/EMA1UWaUx2ITuthPYh1/kksMhRIvLhWGa2T5aKIroym6ziVo3u4geAHNggNTGjUjz5qHOmpVdlDOxQGYsJlxTubnIXi+S1ytEhssl/pmmaAdRWIg8ZYoI/i0uxlZTk411MmMxjP5+Ups2jQqQ3Fzsc+ZgJJOiaGF+PvrgIHp3N6RbRcg+n3ARVlaCx4Ps86H39aHt3Imcny/KE3i9mIYhREsmMD2ZFFaoREJ0hM8gy+ByCQEVjYp/uo7kciEpimi4OnWqsMqlUsK1ZRjoPT0icLyvj1htOSu2r6Q73M3RVUsozCklZWrYJZXBeJBZJXMZjgcZt0SlrVymqh7y7C+fw/e+ZW9ZHHgs4WNhYbHPSDYb2GxEi3JZ2fYvBoKdKDYH+QuOIWGDQS3Kk+G3OD2whCk9AyLNOhwm1dyMberUbHZRJmi4a1oxTQUSj7X9k5ZECw6XnZA8QqE9FzMc4vG+l7m05pN4YglSLS1INpuwqni9Exa+Skcllf5KYPQXeV1+3bv6RS7n5KBUViL19Ih+XaaJlLZIycXFwn0UDI6v/5PGDAZF084xi/LY4o4ZkSZ5PBgjI6Ldh6qitbait7YKYdPZien341iwQDSDzYieREJYuXp7Rc0cjyd7DfXBQcxUKut2lHNyxHhHR7aNhd7bCw4HakkJiVdfFTV18vOxL1iAGYmgzpkj9p2TIzLKDAO9uVm40QYHs+nmmUalyXfeQW9pwVZfj54+N6W4GL27G8ntRikoINnWhhkKEa+bQodHI6zH8NkjTMmrotNnMhKMcMasTzCcDBHX4qQMDUO2oRkax1cci1/KBXYpOZCO6/qgZ39ZfLCxhI+FhcU+I/v9SG43nfkqA1s7UVQ7BceexJ83/x8NvZsBCUWxsWbmJ/jcrAsp7NpCuT2Aa/02zMFB7AsXCmuILBMtL2RzIMlbAxv584YHEVlYJoW+UhaVL8KBTO/29bS4ZjF1XRdKXR1yQQGpDRtE/Zl07a7J2N9f5LLfjxIIiMU/HUODLAsLjM8nAoR3U/3WNE3RwmJwUFjA0i6+THHHccfxepFdLhETU1goihSmM+GUQECk749x5RjBoHDtpVLCXZTu9YUsY4ZCol1HJCJifnJyhJXFbkd2OFCqqlCmTxfZab292BctQi4sFO6sRAI5P5/4s88KK5Gui75kpaU4jz9eVLsOBITrzDSRAgGS69aJuBtFEfMvKxMCzelEra8XvcfSvdO66ktY2f4sg42jAdOBnBJmLTiV+SXz6Yj28GzjM+Oz/Pw1zC6eTbV3JhOET9oaNaGWkoXFu+BD06vLwsLi0CM5HNhqaoj63UhuN3mzF/DnzX/Lih7V5iBuJNnQs57vvXwb6+nkga4n6Sz3YkQipBoakNLunq6aPH79zr10jWTSaEV/qr5IL2s6VjPiUUCSCBuiqqs5MiLSv2VZpKCHD3zNlEzvMdnnE+IkJ0f81+cTPcnS7TxMXRcBxrouBI+uZ7OWzEQCraWF5Lp14wKSd0X2+7HPm4daUYFSUIBaUYF95sxJC0SaqVRWhCFJSD4fRiSC0duL3tk5ob6K7HSiFhSgVlZiDgxg9vVh9vQgqyq2qVNRcnNRCwtRqqpIvPaaED2pVLZmj9HRQfyll8DpxF5fj23GDNSpU0VV63hcWMAylqX2dlJbt5JauxYJRKyT30+sLMDjnc8zGOrJXiNT0+gf6qAr2kOBr5iXml6gdbht3NxbQ2281PwiISM2bjzTpiTTjNbCYn+xLD4WFhbvCtnvJ7e0kilHn4zsdGJ2mZTlVtAX7SOqxdFNHUWSWd/1DskjPsdAsIsVw09xad2n8HR3YyoKSk0NLcYWNndvpLpgWnrPUnZh7xvpZrgkTp6u45Wd4HAId87ICFJNDUZ/P3pv7+S1fg7A+e3qnpLThRuNVCpraSGRGG32qetIeXkigLmjAzMWE20dtm3DPm/ebgNxJ7MGTbqdzTZq7cjJERWgM7VxTBNsNtS6OmS3GyU/f5w4mOw8MiQbGtB7ekQcU6bNhCRhmiZGdzd6by9Kbm52jsktW4T4Q/T4kvPyRIB6xjKWdqeZiQTtjjiDWrrp85hgccntJp4IYzocdPY1kmfzkZIMDNNAlmTcqouhvja6lSjTvd7xWV0ZAfoeU9qtnJ4PLwfi3lnCx8LC4l3RHGzmX03P8GzDE9SUzGR97wb8jlxqA9PY2L0ev9NPJC4qGY+kO773D7XRXjdMXVMXkqpiRKNEamJILhf98QGqC6bRPJRO/U5/sSX1FIG8MsoTYhHP1J4h3fzyYHb0nkyQmIkEenMztpkzRTPO5mYhfpJJkdU1Z46I0wmHIRbLViM+EIG4st+PkpcnBI/Hg6yq4tjpPl9GOCyyxaqqME1zXIXtPR47Hh/tTTY2bsZmy7aeGDv/XQWHpCjZAo0gRE1mu6jXLlyGqirEkmmKAPL8fHo6tjMjvwyb3UkqGUfsVcKm2AjIPhRDQsPAseRYEVyddp3tKtzeLZlqx9Fo9F1XN7b4YBBNZwbuWrn63WAJHwsLi30m06QxFOxlurcap11YXILxIFKolWkF9dhkhZ292wDw2X30pVJIDgfheChrJTH6+iisK0bV4Z32t/jY1I+BYQjxI8vIskqNv5pPFJ2Ad1AX8S2qSnB2NduLEwRzUuRLzcwO579vVX6NYFCkjsdiqNOmodbWZmNiTMNAHxpCUlXUykoxbrNBuirygUCpqhICJxQSzVP7+pD8fhSvF625GbWsTLgS3W6Svb37Vu8mXTuIXeeYbiUhud3j5j9Zm48Mcl6eqMGUJsdXILLGMnFRaUuRGY2iA0VyDrU5VQzGBtFNA0WScRgySkLH5XBR6ilGLS/f38s1KYqi4Pf7sz2t3G73HtswWHxwME2TaDRKb28vfr8fJdNXbj+whI+FhcUEzERi1EUyphZPtkmjYZCTlPE58llScSw7h3aiSAoBd4C17WswMJhbthCHIWMmk5iJBF7JKawT0Sgkk8xM5LK44hje6FrN01ueYH75kSwpOxpdgqrcKi5yHUPB829hFhUheTw0LCjl51v/SGNDi+jZ5XRSVzyDrx57A/NL5h/8azKm27ze0oLR349SWkpy40YwTRwnnUTynXdE5WObDUwTpaIC+fjj39NxjWBQpMTH40h+P5IkobrdyAsXilTywUHUoiKMZDKbdm7GYvvU7VxyuZACAcwx7QqyrwUC4HCMCySerIksCNFjX7x4nOuxyl9FwJVPX3+/GEhb6gAC3iLqzSJOKD+OV3Y8RywZRsR46bgcXo6vOZFphTP284rtmUxD64z4sfhw4ff7s/dwf7GEj4XF+8TuxMQHjexCO7YvlMuFrb5+tAmjLNPrMvjXpr9y6vTT6Y/10zi4k3xXPrLdwazCeXxp4TU0PP8oJJMEckuYIvtRKwNoO3eKwOj2IW6c9QX+V1LZ3LuRnQPbaR7cyayCmZwx7RKK1rRi5uZiJpMEZ1Xx84bf0hhszDYHNRMJdkTe4n/1n3DHybcTGE4Jt4jTmU15P5CMyyTKZHYpCsgytpkzSa1fP9ruIe2uM4aGSL39NkogsF/zMROJcffC6OtDb28HRUHr7ES22UQ/LERRQXu6jxKSJNxue3GzmZEI9gULSJomZnf36LmWlGCfNw+Gh5GnTMnOxQgGQdOwL1ki3GPJZLaJ7K7n53P4OKf+XP4x9EcGwqMiI+At4tzaMygYTvHZ2RfiSBo0DjeRNFLYZRu1uTV8ZtHl5PqLOBhIkkRpaSlFRUXjGnFafPCx2WzvydKTwRI+FhbvA3sSEx+kDJVdF9rseNqC4KkQlVKjqsGbPWsYigzw97V/5ri6kzi97nTqA9OJ6wkUE/76zp+oKC6iRq3mnOoz8I5I6L1doo7N8DBSPM70XoXb6i9hx1wIjgyQa9iYNmzD//ibSHV12GbMANNke+4QjeuaRRCx3S6EhySBYbCzaxMbW1ZzzJZY1qUi+/3Yjzxyjynv7xbZ7892Zc+6bRIJ5Nxc5NxcUu+8M7qxJGWrPRvDw3sMxN6TIDaCwfH3wjDA5cIYGIBYjNixR9Lqi4vK2YqDipEBcuylwkWVaaGxBySHA+2tt1Dr65GPOEIEIdtsGLEYybfewnXaaeIcgkFS27Zl+2+ZmobkcomMtEBgt/uvKZzGpdM/Q1uil7AWxau6qcCPZ0RDcjqoLZ/NNfnfoKWngXBiBK/DR1Vx/UETPWNRFOWALKIWHz4s4WNhcZDZm5iwz58vOmX39h5Ui8W+MGGhHYMZi1GhlJLvyqdpqImh1AhIEjEjwWNbHqUyt5K2/kZ0DD41+1OcMOU4/LKHjzlm4d/cjp5MYps/n9TGjaJmjaKArpPf0sfxRUeR6jNFr61EAqZPxwiFSDz/PFJ+PsFFPkgkRNr4mDo6ktOJEY0yHB3E6BtNbzfSzVPlpUsP2HXMpLqnGhqQ0jV3jIEBbNOmjW6UzkrDbhcVmtNWot0FYo8VxJn+WxlBrBQWThQusiyqI6dSdM0q48mOJ+lt2jRaObusjnNLzqNCzUFi7/VulKIiZJ8Po6kJ3TCy7SqQJNTSUlGdOZEQokdV0RobRUxQGr2lBcdxx6EUFOz2muVVTsPbYGAmYpAASGXPUXI4yHUUMfd9EDoWFhks4WNhcZDJiAkzmcSIRLKF6mSPBwCto4PUhg2TxkwcSIvFvrA3C4E3JXNu/bnsHNyJJMuYdju6lqQyr5rjKo7j6cZnSOlJllWfxFDHToYcDvrKKslTVeSCAtGs0u/HXlMjrAtOJ0Y4LLqEt7QQLg3Q4YgJ64DfQbm9BFf/CH5HOSm7QkyGlGlik1RcuoJNUiASIVf1AmPq+iSTaC0tBzzlfWyqu5GuSo2miViY9P2U7Haw27Np3zAxGwrGC2IjGh19NoaHMSIR1JoaZLdbWFdU8VUtOZ1CbFYWs7L9WYI20ThUCQQwwmH6Gjfx2MgIl5aeiTcJak3NHi1KE2J27HYxPiZmR+/pEVlsu4geSLvy1q9HPu643bpt91QewMLiUGAJHwuLg4yZSmGEQmhtbcKaIol6NbLLhVxWBm1tE7JkjKEhkm+8gXzKKe+r5WdvFgLJZqPaP4XPzPwMLpuLpJ4EE1pDrTzT9CyaqSHJMl5PHnJBARgG8dJ8nNNmiMJ44bBwwYyIdHcj3YLBME26Z5Swsvlf9Pc0i4OpKoHcEs6dex6BnGI8uQG2tL2RnYvT5mFKzhRml8xkesqPqXeM9pkyDIhGMcNhYUU7gItsJtVdKS4eFRW6jlJaijEyMk7wwMRspwwZQWxEoxgDA+j9/RCPZ7uXy+mMMFPTMJNJZLcbSVWRvV46lAEGO4JIsgs5P18EjBsGZirFwHA37TUJZko5pDZvRvL7MQdHO4nv6mJVS0qQTzll1OK4S8xORgyPEz12u6gOrevo/f2kWltRS0t3+6zua70iC4v3A0v4WFgcZExNQ2tpyTaWBETnbNPEbGtD2U3KrjE0dNCK9O2OcXEsuzC2KN60gmn0ruulcaiRSDJCX7Qvu93Mgpk4VEd23jm5RajFZYDo7m54vaLQX3e3qPzb309i7gxWrPsrg3oYOTc3u68hYmx2BHlizT+4YManSSTjbOhZB0jEUxH87ny+dNRX8b/RJlpMqGo29gdECmxy7dqDFks1bkE/4YR9ynbKkBE1xtDQeNEDkExiDg6itbVhnz+f1Pr1Yn9uN5LHQ0QJCQtaKITk8wmBZ5ooZWWiho7HhpxblO3Wjs0mLFGIdPJdM75kr3f3osVmw9S00QGHAzMcFnWV0k1I5SlTRHFJjwclL+8DG7hvYQGW8LGwOKiYiQRGIiEW5HEvpLt/+3x7tLIczCJ9kzE2jmWyQOzMYlbsLea6xddx9xt3s21gG6qsohkaMwtmctWCq9g6sBWAfFc+Vf6q7H4ywsro6xNuHZsNkkna9AGGjAiSJIlKwAC6jmkYDJsx1na9Q0v7Js6a9nEumH0BkVQUj+oimggTS4Qxh4dHr2k600rKywO7HXNoaJ9Su/eFPbmN9mY5mXCt0+0f0PXRKtAwvhdY2mol5+aiFBSIHl4uF/5YLlLrc5jp64QkoU6Zgt7XhxmN4vL0E9++A7m0FMeCBaIOUtpKo+TlYYZC+1xYMXPPALDZxoseWcY2YwZ6SwvJ7m7kvDzUsjJkjwelStz3D3IGo8XhiSV8LA57Mp28w6kwXruXqtx96+S9JzILpBEOYwaDqBUVaCAW6DRSTg5qRUXW7TMZh2Kx2NeYjPkl87njlDvY3LuZ3mgvmqmhSApbB7aSMlLku/L5RP0nxl3LjLDK9tlKZ2FFbCay34/e3Z1twomiIPv9hI0YWjJO3DR4ctvjwpWUsehIEtOW1CLl5AiLWjrrSM7PxzZnDqSrvO5LavfeMIJB0SF9aEgcX1FQ/H5ss2dnrUl7spxMdp0ll2tU8IxB8vsxQiHxmq4LoajrqFVVKMXF1CTcFE6dy8BguxBPLhd6fz9mLEYgt5jyiIqckyN6bkUiyAUF6Js3IxcUIKc7xI+N59qToJMcDtSKClG7KO06zBQ8VCoq0Pr6RLxWIiHcmZEIem8vWlcXalWViOv6AGYwWhy+WMLH4rCmOdjMioYVoigfwi3llV2cUHUCpq7j8+ZTFah9V0LICAYZat1OW7KPITmB4VZxeUK4ZxVSLk/HExQLuxGNorW04Fi0aNL97C425P1gX2Myir3F2crJGQFZ7a/Ga/NS5Z9cQMp+P7Y5c0STy3TDT0+0Bb2/X4iszDnLMqYs47V5USQFySGqDBuZ3lCYYLPj9+SjVKhIFRWiLUImuNjlGic030sFZTORILl+PVprq7BUpTGGhjB1HcfixVmhsK/1msaJwLE1dPx+1IoKUk1NKCUlSB4P6syZwtqSPgefw8cnZn+SFQ0rGBjpxUyntwf8JZxbegrurgjGyAikUkSdMl3lNka8AXweP1OkFDnugLC2kRZ0ra0iay4TSO1wYKuszAoVJRDAcdxxJNesEa68dPaaXFiI2dqKEYkg+XzimodCoKpCIGXS3/exoKKFxfuBJXwsDlsy7ReyoiceZ2i4h1UD23ir+XVOKD6KrqE2Civr+cTcz1Dtr97rPs1Egqa2jfy9+XG2xFrpifWDYVBiy+MY3yxGeto5e8rJlO4cAMNAKS9HKS9Hb2/f59iQDyo+h485xXP2aVvF70dvbhbiJh6nrC9BIKeY/o4dovt4ZpE3Tfyz7cwKzKC5e+voa2mLT11hPVP7JbFYR6PZHlOSxyPEwBhryt4Ct/eEPjAwQfQAoGlora2oU6eilpW963pNSmEh6rRpyDk5QjAARigkhEhaNKQ2bUJvbxfPypiaOdX+aq6YfwUtwRZCXS04vL2UhyRc27pFw9RUiq45U1jZ8gzD2xzoXV2Y8TiBvHI+Me8CqoJBJEVB7+5G27ZtXPCy5PUiSRI2l2u051dBAbYFC8DjwUyLH8lmwwgGRS+14WEMXReCR5azGWhIkmjrcQCsbhYWBwJL+FgctmTbLyAsPbHhARoGthFLRoglI1B9IgQl+tq28Q/tz1xx9BfJ8e6+WBvAcLCHB5tX8HLnazSOtKAZGoZh0OjOQXfamVlawWPRNVy58By8MR21thYlLw/nu4gN+aCxPxWps7FE27Yhe724t0Q4Z+rHWRGLCQtGWmAEckuYbRYzZf7V/Gz1L9jZvSXb+6m2cDr/b/aV+F/bAjNmkNq5E3XKFAyHAyXdFDN7vDGB2ft1jiMjE0VPBk3LZo/ttl7Ttm3YZs3KFhXMXCczFkOSJCSnU2T9DQ8LcSfLyCUlyC4XqYYGUVRwcHBCFeiM2ExF3MTf7sFMxMHhAEUhVlHMytZnGYwNIHsLhUsMGAh2srL1aS6fcRHu9esxYUKauhkOk2poQC4qQi0uxgiHxfNpGJBIoHV0QCKBOnVqtiAlqVS2VQeZwO2REWSPJxvYf6D6lllYvBcs4WNx2JJtv4Cw9oS0tOABsXDEQiK2AuiNRGjMf4u51UfvcQHdEW7h1bZXGdJCaHoKTTKJmnFCwyM8n3qBI46+jqfXPcqSmhNZFHKgt7Vh9Pdjq6/HVlt7ME/3oDA80EVT2wbCsWF8qpsp+PGaNmzTp+9VaMh+P/Z589A6OlDLypgSMbm06hO0KxHCsSBeHJSHJHJ6E5QH7Xyv+iq214cYJk6uPYdpYRf+17cJQWIYKIWF2GbNEk1QBwayx9k1MHu/2DU4fVcUZffFHyUJVJXkm2+OptsjLFBSIEBqyxYkpxNbfb0QDWk3kd7fT2rnTlBVsa2qitiZzk5sVVXjzkcpKkIJBNAHBoS4kCQ6vBoDTR3I+fmj1abTpRQGwn20EWRaMCFcjpNghsOY4TCaaY5mq8kySkUFamUlWnMzRjSKnJ+PPjwMLpcQPmmBJeXkoPf1je/e/h6sbhYWBwpL+FgctnhtYywqhkHSSP8aTbtfnOaYj4dpEo4N7zVOoSs+gOJy4zUUHC4vwXiQWEjUlxlOhDBNg1gywobQNmYXHo8nknpP8Q+Hsv/Xjt5tvLTtaYYi/TgVp7AExOOcVfMxKrZtwz5v3j5ZftTycoy+PsxYjJx4nOmtgxi9I8CIaGrq01FzcvC/9BJHSRJqXR2mlgJSUFwMuo5SWYm9sDBbQdhIVz0+UMXyJK8XyeudYBkZ91pacEhuN8BovIzbLcoSOBzZGj1hp0xbrJuRtm34SvIoH4rjbmgAw0AuKiLV0ICStviYpokZj2ddSEYwSHJoaJz7LFuIcNUqRvLcdHh0Gu0JBsv9+H35yNub0pOVkOx2JEUhrEXBkEZT6O12emaUslnuYyg+TL7Tzxw1imd7M22eCGGnjk9xUB4bxqu6cBx/vDg/WSah68JalQ76lrxeIY527hT3iPdudbOwOFBYwsfisKXKX0W+K1+4u2QZuzz6a7TMWyayizJIEl7VjRnZfZzC1u6NjOgRkug47S6S8RTB+DB1gWnsHNiOjomqiEUHw6SNIDMQ1X73J/5BHxjIFkXMVPbFNPfJ2vJeaehv4Icv3sbOjg3ZsbKcKZxcdRJPND3NJZVn49/H8xmbQg+IwocIQaHW1qK1t6N1d4su4sPDIpsqEBCuG8NA9nqxTZ06zjV4oONIZI9HNCLdulW4qwA0DTknR7SX8PsxgkEkn298hWNZRp02DXNwkGRbG8gyXXUBVva8xJCcQO/uRikqIh8351R9jLKOsHDlpdPbTU0T1pqMOJFEPJMZCk2sxeN00jW7XAQ8D/RSWjqNLSONuBM9TCsqwReMj8beqCpe1Y3kMIQ1y25n3dwAP3zzh3SFO3HYXeimQX3xbD4z81O8s+YF4qk4aBr5tlzOqTyNsnXrcBx/vOhCn5eHVFIi5mm3ow8NCdGTEULpe2wFNlt8ELCEj8Vhi8/h49z6c8VCoWnkRDy47B7y3PmcXLiYtp1rxYayTCCvjAr8QGrSOIU17W9y679vQVVtdIx00DjUSIG3iNnFc9jUs5ESXxk21Y5impTlTIFEQvziTgsfmDz+IRtbsUsPL72/n8Srr44LiM4IhdQ+Wlv2l5HECA+u/xM7+7eNBq8CnaF2nmt5gROKj6KNILnvIp5jbAq9MjKC1taG3tcn3EPplHe1rg7d5RIWFlUV/80EDh/EeCgjGCS5fj16Tw+moiDn54uiffn5AEgeD1pLi2i/MTIyKphtNuSCAlI7dmD09SE5nUT9Lla0PsPgcDc4ncguF+g6/aEOVvAvLi3+OJ5UCsnvFyLCMEZFDyAXFmLEhQBhjFg2EwmGWrezYvvDDCSDItssJ0yZr4zOSDfbtHbm5dViS2hITicFOSVU4EfJB3Jz6Sr38cNVtzCkhehNDDIcHEKxOdgwsImdQzv5xtE3sPqVh9ESMQZzVFa2PsPnik7DnkhkXWkZt3D23AMBUdCwvBy1tNQSPRYfGCzhY3FYYiYSDAd7CIW7mJs3E6NgNt46F+dGQzT272D7uhfQDQ1kmYLiaj5RdxaeERHcumucQk+4h0e3PkZZ7hQ0U+eKqhNY27WWfzQ8xsbejVTmVlDiLWFm0SwGQr2cUnUS7R1b8BYtSjdtZMJ+zUQCrauL1Lp1ozVvUimR7bVoEdr27RPaXJjhMFpjI2pV1UHNnmnuaaC9a5tY4DPiRlGQnE46Q+1QeTxhLTrhOu1OxGXPf0wrCBwiCylbzM8wMEZGcJ56KrKqvm89n8xEgtSmTaMZXenO5aSzl+TCQhJvvCEsNE6nsH5UVooK1YODKGVlIgMqEkGprqarwCAYjCLn5QlXmKIIy04yyUBfK+1TokzvDqNOnSoCggeFNVIpLUUuLhbtKYaGxDmbZlYsG8EgbYleBuKDItA4maSncROn1J/Ev9tfoivSTcgBBbKLgtxSzq09A69mQ64qI7V+PZtKRugKttGbGGA4ERJWJ9NE01Osbl/FxrotFAUq6A53Y8bjDHpV2p0J8hwOUcsoU/RyzLMqeb3Y6uos0WPxgcMSPhaHHUYwSFPbBlY0rGQg3CsGVVWkrc86nzkFs2h2VROOh/A6fFTI+XgiBgMBG1vNXob7XyEvms+swlkUe4tZ17OOp3Y8xabeTQDIksziKYv53snfY233Ok6qXoqma+S78unv2EF7xxb87kDWggQgud1EPCotPRvoCLaSikYoiilUJeO4BwaEhSEvD2NoiMRrr6HU1Ex6bpmF52Blz5iJBMM9bdhRRoNl00X2zHgcyeEgrifwunLHudu07u7dtnOYrBGrraIC+cwzRYPMTOXrdKsEMy8PpbDwgC+mkwkzMxIRBQszGV2plMhsMgz0xkZs6QwzAJLJbFC15PUiaRpmKIRpmtjmzEHv6yOkR9D7+gATye1BLisThQp1HRMIJ0YADxKgzJyJWlcnUuabmtDb20mtXSvce6Wl2GbOHO3+nkqlLYhiHgC6nqJt62qOL5mNVLaEsoIapvoqqfSW41M94HCQeOkljMFBhvJTOJwehkNN4p7qOqYiZa9Nf7Qfn+rCGB7OdoeP+kT2YabAoWmaE2oBqRUVluix+MBhCR+Lw4qsS2DbGNEDoGn0tTbwD2UFVy66irmO40dTk2WdTQGNn637OU3Rjmw8TW1eLV856iv8ffPfaQ62ZHdlmAavt71OT7iHafnTGIwOUuQsYOtAA5oZwZ9bzLkVp41akNxuOitzeL3pX6zcuoKOrm1gmjiTJsdVHMuFU4+ndEc/xtAQcm4uxuCgWBB3d46adtCyZ4xgEC92cnDidniJmqJIXkb8AOR5AtRUHJFd8IxweILogb03YlX8fsx4nMSrr6J3dGQFhlxURHLxfDpsUUa0KF5NZoqch09xT7AiZdhbEPjuhJk6Y8b4FhIgRJCqZisVYxgi/V6WxXEGBlB9PiTTFNlmRUVoXV2YsRjegHt0TvE4ZiQirFY2G0gSvoIyFG8OtmnT0HbuRMrLI/n22xi9veOmYA4Po+3YgW36dEBYC72qe8JcdUOjq3MbUtDN8YEFzPLUoJZPASDV2ChaTwB5zlx0M+1SM01RCFIaFT4uVQhaEomsG86LPfucyX4/dpdrt9W+92bt2xf0YFAI4XSlaqWoCMUKlrbYDyzhY3FYkXUJhHsnvqjrtA418VLzSySNJP6CXGZ4q0DX+fmr36cp3iUyWJIxolqMN8K9VOVWEUuJWiyqrKAZo/EYjUONnFBxPKXuIuaVLqBen4XX5qXSU4onomUXiIhH5bXGf/LEtifoHGrNLl7RRJhX217DUQKXlyzB3ZlO0ZYkYdFxOrP9koCs2+lgZs+YqRQV+Cl1FhKXdRqGdhCVwmLOpkld8QxOnP4xcgOlo5e1t3eC6MmwayPWse1DPDgo2d6LY6zLS5bpyDV5/NVfEPQqGD09mIkEgbwyzqk9gymbRTCx7PWiBAKi8/teigruVpgND4uYHU3L9v8CIJkUVg+HQ9yDeFwUVdR1JK9XCIe01cQIBpHLyginInRMcZDIcaFOn068vxtbQhd1blQVY2SEQE4x5XEnal0dSmEhekfHqOvI4RBCC4Rb0W4X1b8HB1H8fmS/n4qeIgI5JfSNSeXPXLNMjJpks42KwJER0RdNVZmlFTAtMJ0tvZuzMVsYBoqkMC1QT2RkiBK1IJuaX1BSQ4W7dJxLdXfVvrXubpKvvy4sXYYhmqkWFGA/+mjUkpJ9sgil2tpIvPzyOAEoFxXhOOEEbBUVe32/hcVYLOFj8ZEk8+U+okVo1PpoiXaS0BMUOQLotuSoiyaDJNHrMniz5QVMm8rbXW8Dwqpz/ozzaYq0gWEQTobpGOkglhKL6I7BHYwkRijPKacz1EksFcmKHxmJYl8JdfnTGEoMo5s6iqTQFu2m0l+ZbefQ2rORUCJEZ7gzO6eUTSbqszFoRlmn9rKzysMRvel04UxmTzgs4mwMA+x25Lw8ZLf7oLoXJJsNT1TjnJrTWdn0T5y5CiHiJI0U5TlT+OyRlzO1aPqEe7EnMq/v2j5EHxoidyDKOTUnZStdR0vyWNn6LEMOHbMjgplMItntDAS7+MfGR/hc7om4n28XqeBOJ7b589GbmycvKpjOippUmMmyqKjd3S0CdzP9uex25EAAMxxGUhSM3l6MgQFMwxBWJLtdxAAZhohTam6me0ENj7Wuon9tI4okUznrGF51dpDjcePtExazgDOfc0qW4trRim7aUIuLsdXXk9y8GTNdBJDc3NF0+XRj08y1kxwO8iqnca7tHB4bCTHQ35Y9j0yMmleziXpC69YRllK0OeMMl6TwKnbK2/u59ojP0xnuYk37m+L66xrzSuZx5tQz2LJtFbVOO6amEcgt4eyC43E2NGP4ClD2cG+NcDhrsTM1LWsd1MJhUeBw4UJsxcV7FOp6MDhB9AAYvb0kXn4Z+cwzLcuPxbvCEj4WHzmMYJDUtm202aK8FN/CAxsepHFoJ9hs+GxeLp9/Ob1ug6LoaHXfqEvhze43GUqFsCv27L4ahxrZPridpJbATCbHiR4Am6wynBimyF2EYRh0hjtxpPVUZW4F0wvqebjhETb3bSamxSjzlnFK7Sk83/w8Z08/m2p/NeFUmLgmir4hSUTs0BnpJJ6KIQF5oTaeHXwTx6JjmNEcF9YGn09YK2RZuF5ME0lVsR9zzLi2Bgca2e9HcjqZMhLn0spzaSNIWIviVd1UOIrIL5wx4T37Ustn1/YhAGgaA8EuVqae5ZKSk3F3DtDhTjHQ2IVSVoYRjYq4H03DTCQYCIfpKE4wdXsPUmEhyQ0bwOkUwmEy91c6K2oyYSYHAmgtLZjhMPYFC9BVVbhZNA29sxOlrAylvBxtxw4hPjUNQ9eRfD6U4mKkQAA1ECA+tZIVO/9BcLiX8vojkTweIuicMetcDEOnpMJGvqeA0vYR3DsHkHw+TMPIWlKUkhKR3p/ObANgrOVqzLWV/X5qXQv4fE4RzR2bCcdD+Jw5FLgL6NNCvOWP4Gl/G6fHxdMN/0TO8WEqcWLxZvLc+Rw37OV/lizn+YG36Iv04ra5sUeS0Bvkq8d8lYFwL1XTj6Qsdwo5rRGMoSG0rVuRXC6U3dSP0nt60FtbMTMZatkXdPT2dmxz5uy1hpXe0zNB9GQwenvRe3os4WPxrrCEj8VHikzbgLCs8XJoPQ80/JXGwR3ixVSKEcKs63qHkeQIXlcJ7qiIs+k3wgzFBqksrCOUCI3bpyqrRJIRMIxxogegO9RNVW4lKxtWcnLtKUwLTCOhJ/DYPDhVJ0OxIZqCTSiygtfuJabFWNO5hpOqT+LV1lcJuAJ4bV6cqhOAKCmaQ62Ek2kXh2mimTqSrPDs8NsMHXEUocQIefGt1CysIxQeYCQewufwMUXJx3lwL++4mjueSCxdh8iDJLuwVU6bdPFSioqygdm7kmnE2hJsHi96QKRE+/0M6XG6pviYhoOwmXbjZCxfkiSCajUNdJ2wHht9PRYTwcn9/SI43Dnx6pip1G4biGZ6Z+kDA6K1SHU1ZjQq4nKKikR2ldMpeoIBRKMo1dVIOTmk1q4lmuNk0/wiTLeL+mPOYEvnel575x9okoFkt1PqLub6xV9lep8dIxgDhwO5uFhY8zLdz9OtS4yhoXFp7WOv3a7z9pfXMq+gHCMYpCXew8M7n2TQCGPG48SHB+kzw5w54xwe2/R32sIdoplpMsnLpbP5+ozPc5E5l84yiVBbI17ViaM2wFNrVzKYDIo2G1ufI9+ey9lTTqB8cBC5pQXdMCb0IzOCwVFhmY6FyrjKsjFhicSEGla7xmMxWTXssezFomhhsSuW8LH4SJFpG9DmidCvh0ZFD2SDNl/vfJPPzfks4fgwREX37riRoLKgjhOrlvJGxxvj9hlNRanLr6Ohd8uE40VTEU6rOZVNvZvoj/ZjitJ2VOZWckTREWzo2cCOgR3Issyi0kXku/JJmSlkZFRZpaGvgfrCetb1rKPIU8Q7oXcIpyLZ/ftdeRR4CnB783hs62M81/0aieAgOb4CTFnm4zWn0t+yBd3QCXiL+ITvEmo5uE0gx9bc2Ze08mxV4d1kdcleL+GgcH1kihJmUrwBMAwhPFUXOQVlSD6fiK2B7D1N/4FXdgIhscBmFtr0QkpODrLbPXZq2blPEGZpkSE5nchud7bXlNHfj9bejs00STU2otbUCAtb2pohlZWRfOstusrcrOx5iS1vh+lOBWkNt+O3+Thh7hms2v4CqVSczuF2/tH6NLXm8XgApawsO79s0PA+XLvJkBwOon43j699gSE5jiSrmIZBSErQFevj3o33U+IpYTAUxu5z4DI9NMU7+WvoVa6fdikzNQVqygiT5IHGhxkyI6Iyd2OjqDvkHOQJp4vPeheTq2mQ/sGRsdxkfoAwpl1F9n5lgsNNE+zCujo2LT+1bdtoV3dNQ8rJEfFTym6calbWmMW7xBI+Fh8pMl+gYS1KNOM+GreBiYbOm91ruO6or1A6M4+IHuMYM8qTO57kjY430IzxzSifb36e/1zydX715i9pD7Vnx48oPoKLZ1/EQ6/fy4mVx3NC7UmYmPgdfpyqkye2P8Gmvk3IsswZU89gxbYVbO7bDMALxS8wLTCNS+deSkyLUe2v5jMzP0N/pJ+2UBsm4Hf6WVK+hOMrj+OB9Q8QSUWYlj+NvPwyWkKthOMhIskw51V+nL7unQyEe1m580muLKnJxg8dLHYXyLo71JIS5D00YvUYKnp3t2j4mXbrmJFItlaNW5eRDIPKwDQC/jIG9ahYYMe4TwL+MspDMpLfL1LEEe4sKScHkkn01laorBwVF+kgcMnhmCgu0nWJlClThNUheyLqqLXJNDH6+4UbJp3BZc/PJ1aUy8ruZxnob8PmLgBTJxTsIaQO8LKicETFPDZ2b4BUiqH+djqqNKaHVJEq7nIhp92Yu7t2EZdCozxE1/AabBEbZb4yqnOrJ9zzsU14AZBlRqQkcVlnddsqLpjzH7QNtyFLMrl2H8XuIjqGWmgbbmVGRBTWbAsY9PW0YPT3i2umKKKpaTJJX9MmOo5aRG5692MtN5kfIFJenrCOdXePziMtVOWioqyAzQRdp7ZtA1VFa2pCcjqRHI6s+1AfGBCZcmOQi4qsbu8W75oPrfC54447+Pa3v81Xv/pV7rrrLgBM02T58uXce++9DA0NsXjxYn7xi18we/bsQztZi/eNzC9lr+rGrU7i+MlkrEgSdpuLubVLAFGE8JGtj0wQPQBlvjJmB2Zy+5KbOa3uYwzFBnCrbiKxYR5e8wfiRpLBZJAlFUso9oov4Y09GxmMDRLTYhxddvQ40SMjU+Au4NW2V9k2sI0LZ19IXI+T0lPcuORGzhw4k4SWQDd1NvVuojXURl+0j5SeIhgPIhsi9sihOJAiXSQd6dgPVWXQCNMSbGFO8ZwDfGXfO7LXu9tU87KgScCZL7LtVBVzZESIF0kikFNEWUcELRjFAZxbdyYrW/7FUKkNva8PM5kkEJjCuUUn4u6MoE6ZQmrz5mwlZbWmBmNoCGNwECMUEunsPt+4FgoThJnLJVo77NKRXfZ4xMKeqc5smqIxZySCFAhgRKN0uJIMDHUiORzkJCSQRWNQdJ3WwSaOLT4KYjHcvnxyJBcRkkiyCpqGJMuTtnbIXLvmYDN/WPsHnmt6jpHkCIqkUJNXw3kzzuPYimOp9ldn3zO2CS9Ayi4TN1OEkxE0UyeV7k1nmAbDyRFkRUWxO4kohshOs9mIyEKMZlL1ycSUAaauE7WZGIODQqCMcdFl60iNjGBfuFCk5Hd2jp5PYSH2hQthZCQrQI1gECQJrakJ2e8XMVahEDQ0YF+8GHP9eiGG09Y4uagIx4knWvE9Fu+aD6XwWb16Nffeey9z584dN/6jH/2In/70p9x///1Mnz6d2267jdNOO42GhgZ8voP7C9jig4Hs9yO5XFRgo0DJoTZ/6qi7K92Z2mf3UeWvYlbRrOz7ir3FXLf4Ou5+424ahxqz47V5tVy3+DpK/OUU4WEkPszd235JY/+29AFlpk+Zx7XH/D+29G7htbbX8Dv91OXV4Xf5MU2TPFcem/s241AcKJLC9MB0moPNRBIR+iJ9WbE1FBvika2P4FbdPL798ewczq0/l+H4MAF3gJSRwiaJj21CT4gmqIYo8KcUFCCp6oQF74OOEQziGYpyTt2ZvDb4DiNSiuhQL84yJ15N5lj7NFyb2sDpRG9qYkrJEi7JPYnOfJnIdPDYPFQYPlydAxjeTiF6bDaU8nJkn0+4pmbMQPZ4kHJyUAoKUMvLdysuMih+/4Q0eDk3F3X6dBKvvSYahg4Nie7meXkiC6ylhXBxCklVkf1+lL5+iirysTlcpBJiP0k9gcvhZbqnEqfiIaekEjXXh6SqKGVloKqkGhvH1byJ2Exagi08uOFBntj2BHbVjtvmRjd0usPd/GvHvwAIuAJZy49Hdoqq3+l+WUFjBEmWcajivG1jetMZsoRddaKY4BoIkWzqAlXFNS1XWL/c7vFFMRUFSVXxevMhinA3GUb2h0e2sGI4jJSbizpnDtKsWeOKUQKg61mhl9m/5HSOih6AVIrkG2+gzpuH4vFkSwkoxcWW6LHYLz50wiccDvPZz36W3/zmN9x2223ZcdM0ueuuu/jOd77D+eefD8Af/vAHiouLeeihh7j66qsP1ZQt3kcywbfe7ds5tvBI7D4/b3W/TTwVpTc2wM5gI8dWHMsXjvxC1jqTYX7JfO445Q42924mmAjid/iZVTQru53s97PAtYQ78irYEtzBcDJEjtuPU3Vz39r7aB9uz/6KrvHXcP7M89nUu4mEnsCtuknoCVx2F3muPNb2rMWpOHGqTmJaDJtiw2130znYyamzT6U/2s/OoZ0MxAZw2Vz47D7q8uqIpCL4XXnUFUxHkWQiyTB2mxu9pCRbWHFc1/mDyHCwl5aeBhFc7cyl0l+JNyW/6y7xWStBMknXYCtNWh/xoX7sip1aWzFm/mixRtnvR3a5yDHzyHXniVYW3X3IpW6oyRHCpKYGU9fRu7rQw2FsM2agbd4MmoZt9mzRnXwf5ra7WCYAY+FCUcV5eFgs4h4PA1KUraVxerUQAd/xKEMh+oeGKYhAjbucIWcUQ4by3CnY8uPYdQh4A1SkPNnUdDORIP7vf4+63GSZrqkFPBlfT15+GW92vIlDddAWaiOaiiJLwtrXNtzGqbWn0hpsZXbxbIxgkPyQjqnrdITascs2YrJBOBUm15nLUVOOpmukO1t9O9eZS5WvglzZw5SkC8mewtQ0yochz3AwKCWFBSydTm/qOgF3AeXDEqkN61FKS7EfccRot/j0DxAzFsMcHhbuRUXBVFUkmw2lrAxJUcbFhkk2m4jpGRNYniWVQt+8GUpKcCxebLm3LN4THzrh8+Uvf5mzzjqLU089dZzwaWpqoru7m4997GPZMYfDwdKlS3nttdd2K3wSiQSJMVkBoV0/cBYfOmS/n66afFas/wvbQ01E9ChxLUGxr5gvHX0tc4rmTBA9GYq9xbt9DYSwKi2uw+svYn3PepqDzTzX9BzvdL/DzsGd2BU7+a58WoIt2GQbFx1xEbqh83zT8ximQSgRojfSi4SEZmgYpoHH7qE30ktDfwND8SHWd6/H7/JzVsFZFHoKKfGU0DzUTPdIF90jXbQPtxFJRYhrCeaXzKckp4S24TZ0UyfflU+Vv+pgXdosjW0beOzl39Hf24yMTHFhFe7icsqL6ihNOZnSXUBe5bR9KqQo2WyMKDr/WP9XgoMdFJSWovUlQNUJattZGYnzuSlL8apu9M5O9M5O0cZh3TrMVAqltJTk+vXY5s9HKS+HcBhSKWxz56IHg2hbtgg3Utqa826qWu8ulslWUkJq+3a0xkaUigo2ST387J1fsbO3AZ+/mNZoB0U5pXzyyLPp3fI2M3Pr2BZvJ8+Zhzth4DBlAjlFnFt7RraCN6qK1tYmGowaBmga0aJc/rH5UYZSIRxH5qLKKq3DrQwnhpGQsCt2JEliKD7Elr4tzCiYgZlI0NS2gce3PUmFv5ztA9vZEdpOnr8UE4OYnuTaRdeycttKZhXNRpEVEskYLsnGebVn4N46Iqwymoa7J8jZZct4MrSavs6d2dYa+e4A51SdhquzH12WRQD52Ia5Y7L/zHR2HaQLR06fPulzkRVLk30Hy7KYkywftHYsFocPHyrh85e//IW3336b1atXT3itOx08V7zLl1RxcTEtLS0Tts9wxx13sHz58gM7UYtDykhihD9t/jOre1azvmc9Q3HxhWxX7HSOdLL8pOV7FDd7oznYzMObHubJHU+yqHQRf9n4F1w2F7V5tbQGWzm67GhKc0pJaknsip08Tx4eu4dV7asAOKLoCFRZRTd0ZhXOwjRMGvobiGkxnKqT8pxyQn0h2kfaMUyDo8qO4uxpZ/Gbt+5lODqEhESuK5dqf4CFJQt4vOFxTq09laSR5BP1nzjogc3Dwd5R0SMpVFQfwb/bXqSzaSVubx7zKxZRavo4VzqHWtfRe6/j4/HQpg8wMCACx03DGONakRgIdtJZ76RuY7cINHY60bZsEQukaaJ3dCAXF6Nv347e1IRSWSksPGnLQkb0qLW1oGn7JMbGWbNcuVQVTSfXP5o6Lvv9KOXlGPE4/WqCn627l53920GWiYQHqcmrpmmkjUdbnuS8mWdAXwun5B3LCdNORVJVnOVJKlIe3ENxjFhE1MKZMoXh7lbaym1EklG8pZW0KSFijkKm+hfhcuUyr2QeJd4S2kPtvNnxJoYpqisDxLU44USY4WBPtg+dEunlhOKjoPJ4FLsD02ajbaSdP67/I7V5tVT5q0jqSdySg1ryqWkawejrE3V3ZBnZ76e8X+Nz0z9JW6CdsBbFkzAoV/LJsedj6F0opaUo+fnC+jYmLf3dZv9len6lwru4amUZye0Wljqn86C1Y7E4fPjQCJ+2tja++tWv8vTTT+OcpB5HhrH9ZUC4wHYdG8u3vvUtbrzxxuzfoVCICqsE+oeOsa0OoqkoqzvGix6ApJ7ktbbXeKbxGUq8JfslfjKF9rYPbqd1uJV5xfNI6AlM02RGwQy+fPSXWdmwki1NWxiOD/NW11sUugv59vHf5iev/4S3u94moSfIdeRS5ivjvBnnsb5nHYqkkOfMo8BdgENxUOQdXWRdigM9EmZmzlQWlRxJUk/gUJ3oWoq24TZyPPnUB+pZVL7ooIsegJaeBvp7mwEoLq4WoicoKgVHw0OEtAj2WIwVDSu5oqgKf3HlHvdnRiJEXekWEMmkKDiYl4cRConiAIZBBBE3o1ZXQzyOGQyOFvSLik7wRiwmCjkCckkJxOOoFRVQVia20zRs06fvVYiNtWZlKCiq5rwTPk9txRHZMSUQQO/tpSHRSWPftmxNISOVJDTUQ6WnEEl2MKWwjtmBmXjtHryefKqKp+HFLor70QM5OSBJtPRsY4PZRSjXRJchntpOaGSE3lSQh998lBxvAZFUmE19m6nMreSTMz/JyoaVmJhU5VYR1+MoskJruCPbkkU3dLr6msR8ZYWKKbOp8dfQHGrNBts7ZQfHFS7keFsN7kwAcrrhqBEMInu9+Ewbc8rnY4RCGAMDGMkkelubiEvy+7OZb7taY95t9p8SCGBOn47e1SX6iKXr/kh2O0pBwYSMNwuL/eFDI3zeeustent7OfLII7Njuq7z0ksv8fOf/5yGhgZAWH5KS0f7BPX29k6wAo3F4XDgsOpAfGgxEwma+razsmEFA/EhJIeDKf4qbIqNqflTSRkp7LKdaCpKw0ADST1JX6SPzb2b90v4ZFKERxIjaIaGTbZhl+1cMvcSUnqKn7z+E7b2bwUg35nPzMKZrO5cTX+sn/889j9pH24nrsUp8RazsXcjv1/9G8r9FWzp3cT0wpksrVqKXbGjSEq2aWRkZJBiZyHNfduJJUdr/LjsHurzpuK3FeCyu/A5fOMEoNfupSq3Cp/Dt9cmne+GkfgYV4TbkxU9GZJ6EnAyEO6lNdyxd+GTSuHRZNGWwe8XFhqnUwiY3FzQdXxF5cjd3aSamrBVV4s06EwNH8MYbZQKIusnlUIuKED2eoW1YC/WhgxjrVlj6e9t5rGXf8fnz/x21vIjORzIXi/BtIXCzBTlk2VM02BkZBBTTpGSDBqGdxBHwx3ysnZgI8dXHEdp94Co+gxEfA42uYa5550HaBxupj8+SDgV5qoFXyCux2iLdOFODTO/bCGD8SFah1sBOLrsKLrD3ZxacwqarpHvyicU7Jn03HRDp619E2cffyXHVB1LZ7gTTdcoVv3URF04tzaSLZGY+bGYSCBPmYIRjwuLiyvdod3pRC4oEPdJHV1GDoQ1Ri0qQlq2jNT69SI4W5bF8XbJxLOw2F8+NMLnlFNOYcOGDePGrrjiCmbMmMFNN91EbW0tJSUlPPPMMyxYsACAZDLJiy++yJ133nkopmxxgBhJjLB9YDudI53Y1NG6JZ6YzlDrdv6x7W/ZX7h2l4f80gW80/UOjcFGEQch2/nEjE9wWu1p9Mf6mV04e49WwD2RyZiS09aGcCrMf8z5D15oeYETq05kx8BowcRoKsqWvi0Ue4t5q/MtWoZb+NvGv5Ive5BlFbfDw0VzL8Zj97KgaC59kV7uX3s/i8oWsahsEd0R4b51K06cpod5ufXZvlh22UYOTuwJAzwGXpt3Qq+rhJbAJts4pWoZeWGN8qQbTzTd3mJMk853i8+Zk/3/uJmc8PrYlh+RTCXlPSDZbFQo+eTb/QwEO0FRsjVtsNkoKKmlMKeUhoJOwnl2cgImpSMFuDr7hdAwDLDZRA8r00TyelHSWUdybu67sjiMtWbtSn9vMy09Dcwd6/Ly+cgL54vjp7OnTF3H1DRkp5u5U47ihcZ/s3HTiyIbyfn/2fvzwLju+twff51l5sy+ShrtuyXvduIttrMQnAAhiRMocCk7pbQUGqD7LfTyS29LgLZfvmXvLaVAA7S3QAJJIJAA2Z3N8SJbtiVZ+z7S7PvMWX5/nNFIsuUtBLD56skfkTWjM+ecmTmf57zfz/t5bDT4WxA0nddJ3TgBBIEJr8G/PPU1Dk4fIuiurphY5tQcPxv+Gd016zgxe5xwapYWbwt1rjoMw+D2rtsZjQxRSqdotdTQJAcZc6sVjc6Z0EQBm83JptAmNoXM6pU6MYE6PojQ3m5GSczOVoJWBY8HqaPDrGYlkwgOh0kmnc5lhAde2XBcqaoKce/ei26TrWIVl4Irhvi43W42blzuTeJ0OgkGg5Xff/SjH+Wee+5hzZo1rFmzhnvuuQeHw8Hb3va238Qur+IVwEh8hG/1fItnxp4hp5qLaL2rnlvX3Mo1UgupYnJZ0np70xaeGnsKl9UUslpFK+/c8k6eGHmCB/sfpN5dzy+Gf8GG6g347D621m496zVn07OLk102H+urFye7Fiam3FY3HquHodgQd669k6fHngbMdoJgCCiSgsvqYjQxynbHdrw2L0W1CKpKQS5RMgrMRmdpcjXwixM/YiI3g6qVwGJhOj1dcYAO2AM0uxrQojp1ShXWdBhJtFPjawZFIa/lCfob8CgeDk0fqow4uxU38WycR4ceoX/sCNdVb6OYy3Bb62tomC1AMomRzWLdseOc7r/nQkuom6qaVubDI9gkcyESBRGnO4DF5SFHiXmLgEd2muPOF4Do8+EWbOxffycPnPgBkfiU2TrRNIL+Bl616TaeiBwiyii5UgZHYh6nR+Aadwt1p6bA4ai0QwSXy/zbUullLcTLqlkrIF1InbXva2PNdITWMThzwiRhZZ+ZjqZN9M734tfN1rxhGAi6zlR8jAd772PjNX9Bd1FBcLkYzQ/QHzuNU3EiIKBIVopakaJWYD4zz8bqDWi6yunwKV7VeROjiVFKpTzx1BxCPEGLrZr9TTdhGxynZX0H1c3dzI31LSc/skx1czetwQ7OhBaNwtwcQk0N1uZmc2JNEDDyZjacEY9XKmzWXbvQRkdXTLt/JYnJpbbJVrGKi8UVQ3wuBn/5l39JLpfjgx/8YMXA8JFHHln18LlCkSqk+F7v95aRHoCp9BQPnfgBWuhamjyNy/4mL8P9vd/n9WtvI6/mafe388TIEwzEBvApPrqDZjzERGqCzz//eT6171PLWl5HZo6c08tna+1WWnwtBOwBCmqB9TXr6ZnpIZaNYZWs1Dhq8Ck+BEGgpJfIlrKouopqqMTzcZq9zfze9t8nV8phs9jpGT/I80NPYmglqmwB5vNRVMNA1VXyap6APcAd3XfgtYcojs5we/st/Gj4Eey+IL8YfZyp5AR2m5stxi4cE16+fuTrPDfxHKIgklfzbKzZyHu2vof7n/8mNCrMTw/wwPH7eGf1TTiiSfR4HKGmBtFmM1POy54xFyJCXl8Nd173Pn7w1Ncgm6OpqpOSTSampSkKJdTMHOg6tYEm7MqFSZWgKFi6umju7+fd697KuBYlI6q4bB5CvgYejx3mweGHmYyMYCQSGKUSDbVrkFoc3NzRjFu2Y2SzFQGzUTbFezkL8dJq1kpwnaGhEhSFutoOPrz9g3z+hS8wONVrPiBJtNd0kZ5IER7vX/wDwwBJYnJmgKnYGB0jIpN+gXHPLFnVHE/XDB2vzfSAkkULqlFCM3RqnDWgG9gEmeudG8gpItuCm6jz7aIJH86UimFkcWZUXrP2Nh6zOZhLz+G0OLAiIUgy+9ffuUwHps7MUBocNCfJkkmYmKg4VosuF6LDgVRbC8HgsqqL5PdfsBrzSrZXV7GKVxJXNPF5/PHHl/1bEATuvvtu7r777t/I/qzilcVofJSh2NAy0rOAqeQEqeocumIxnXN1HaxWUsUUiWyURwd+ytaGq7m26Vq+mvgqG6s3kiwkiefj1LpqsUpWhmJDy7Q+s+nZs0gPmC7JS0nS/u79fK/3ezw/+Txba7cyl51jNDHKdHqaoCNIX6QPURAxDANFUpBFmX1t+xAQODrTg9PixG/384uRJ2hyN5BMzaFoUKtUUbAIVDur2RraukysbOnqoqm/nzd138G/DP5fHBY762s34fPUsKn+Kr704pc4HT1N0B6kqBexyTaGY8N888g3ecP6W3HZfNQ1ryevFzkWEthS3YFLt6CeOIE2N2dqaUqlSgaUXFt73vemvWkT73v9xxifHWCT/Fo+c+AfGYicRjAAQWB9aCO3du/nkaFHCLlCFxRdiz4f1i1b8MfjePN5krPjjBdiHIz3MjQ/gA87YasNNSibfj/5OX40+zRb9v4lVZZGU+gsSWalp6HhZbdFllazzkRVTSstoe4V9/0q+24+5W3kxPxJ4tkYXouLnKTxs2f/E23BDbws1DXyeQxdp6SrZP1+fjT6AHU7biCn5kmX0thlOwWtiFWykCllaPd1ICGSK2SosVURyluwzczRvHEHO7V6nJkSUBYViyJHs8N8qeerzKZnMTCJdJu/jfdf/f5lVgd6Om3GdCQSyK2tpmt1NmtOZ0WjiB4Plg0bVqyaXagao8fj5ih7Pm+2IMuQQiEzvX6VAK3iN4grmvis4rcb6VKaon62hsTQdQxdJ2+UcGoyfsFJJD6OWFSpWbOHzppudENnJjXNdHqakfgIuqEjCAKdgU4s0qIAM16IV34+ET5xFulZwFKS1Opr5bWdr8VpdWKRLBybOcbGmo081P8Q7976bgwMTkdPoxoqtY5aOvwd7Gvfx8+GfoZbcZNWM7gNDx/a82H+9fl/odruJZ2NIyFQtQLpgUViEJk8giAINPpbKsLSvJpnLDFGPB8nLaYxMNANHUVSiOQiNFW189zIAQZmjqNqKofDR9lsb+VO/14aykLgBeixGMXnn0fct++iKj+i3c73D3yWtkA7W+q2UtTMEf5kIckPTv2Avc17LzpCQ1AURJ+Pkf4XeGDMHMceVjI8PfoUTd5mrm+5nufDh9DK2pIZNcq0nmBz4zUX3PbFYmk166yprut/f9lI+5n7XlfXSY3VT+Hpp9FjMU5srUGx2MgW0qbTsSgiiCKGpuGwuam1BpiwZrA4XUQT02wObebo7FF0w8CtuCmoBZ4afZIPbP8AA/P9VNur2FVzNbbZDEFvHftbXoszulzHEwlY+cLBLzGcWS44PzV/ii+9+KVlFU4tHDa9d8p6NWHBubqclcZFCJVXquoAi6TH7UYdGsIoC8BLfX1Y2trOSahWsYpfB1aJzyouW7gsLqyiddnvDFU1L6KqSlBykU5HWdd0FeHGDqyayGD4JCVd5XR0AJtk4+q6q/EqHmK5GH57wPTP0SqzK/gUX+XnpSRoJSx9PFPKMJuZxat46Z3v5YaWGyioBe49ei/72vZxW9dtyKLMjvodJAtJBqODHJg4QH+kH4sogwF7mvfy/ms+wI+O/wDySRzeINe2XsebN7x5xQqJoChkrYYZkbCwT3lThzSfnSev5vEoHjKlTMXfJafmSOSTtNesYToxwaHR54hm55m3TpMr5viA/VU47fZKujiY5EcLhy9K+zMaH2U8Nc7AXJ+Zpl5eNAWrtRxoaVxShMZSDxowc6QAxhNjPDn6JJvrr+JErK/yfFU7W8D7y2KhmjU620e6kMKluGkJdZ+T9CyFFAyi7N1LqaeHds3O3vZX8czYU+SKWZNIGAZ2xcW1TXtp132clJKIPj+PDf2Ct65/CwWtwKGZw+TVPFbZyubQZvY27mVf/bVY2/Joc2FcVU7qEwJ+3Y1hxJa9/ikjzFBqFGFh1H8JzqxwGmXjVjEYRB0ZwUinEWtrTZdlXccoFimNjWG121es0FSqOmdofaSGhkqlZynpAUBV0WIxM3+rnOS+ilX8urFKfFZx2aLF10K7v53h+DA5NYegGzgMC4LTT0t1J1N6nCOnnsMWjhFav50X06dw27y8fdPbue/UfZyOnmYyOUG1swan1UVHoIOCuujS3e5vX5bXtZQEnQmLaKHaXs1jQ48RL8SxSlbWVq2tjLW/NP0Suxp34bQ4KWgF/DY/LqsLj9XD0Zmj/GjgRwzFhipOu4Zh8NzEs9S76/jja/+Eglqg3tPAmuCa87aFlsZRFNQCffN9bK7ZTKaUwWExYzFUXaXaUU2ykGQmPUNey/P3T/wdW0JbeN3mOznW/yzZQppnpp7jdVdfx4a4XAnRXICxxM38fEiX0lg0kywtFdIasozo8ZBX85cUobHUgwbAJdqRJQuqVmI8Mca1bTdUHrPLdupcdStt5peG11ezbHrrUrAwkWSJx3lH4D3YZYWh1BhFQ8VqsdEmBPmd5ttw5XTcNg+i5uBktJ/jT5zgDVv/B29e92ayaha7bEdVS1gjCa5+ulzBsVrByCI3NoLLBQuiY0zSkRDmViQ9C4gX4mjxuDm5VSgg1tYiuN0YQ0PIHR2oY2NoQ2bVU/B6kaqrkQIB8/WWwCgUziI9YCa0l/r6KuTcONOMEExStSTJfRWr+HVjlfis4rKFW3Hzpg1vIq/lOTB+ANkQGAz3sSawBr8tyEPH7selSXRVt9MkK0S1NAenjnFg5gV2Ne3m+pYbzJHf7js4OPUivXMnKtNSC4LlpcLm9TXrafe3n9XusogWbuu6jW8d+xanIqZHj6qr+G1+3r/t/bR6WhlJjlT8e+yyma3ltDrx2DwossJgbBBJlCrbXBinPzl/iqJW4ra1t1/UOVkQV0dzURL5REX/tDW0ldOx06i6StAeJFPMUNJLbK3dSjwfJ1qIESvEeH7yBbY1buHEdA+5VJJZKcsG4ezLwMXeiTux4koUsEs2curyO3s9mcRn9VxShEZazS77t19XaPY0M5YcQ9VKFMtZaHbZzt7mvawJrrnobf86saCB6SDEB6qbGAmfrlSPGvIKrqyKYS3R5KynV4qQKphJ9N8+cm+FQFoUO7WOGnZu+wuTlGoaWCyIXi+WzZsxwmHkDnNCa0Fg7J/Mnm+38Ip2cj/+MXo4jBAIoEciWLq6kNrb0aJRBElC8PvN1pyiYKTTlPr6kKqrl30m9Hj8LNKzACOXA48HY4VxeqDSWluNnljFbwqrxGcVlzVafa18ZNdHuLn9Zp4eeZI9tTsJuWr5+nNfQcxkyQL9DLFmw7UcPdnDXHaOZm8zPx38KaIg4La6ORE+zl3XfISb2m+moBWodlSzoWbDWQaG50pov6n9Jk7On6QvsthikUWZuewcX33pq3xw+we5t+deptJT2GU73VXd1LnruKP7DtKFNEWtiCiIlbbNUlhEC3ktf9Hnw6242d+9nwf6HmAiOYGh6/SHT/HuLe/ivlP389TYUwiCQEbNcFXoKt668a38qP9HKKKCgMDAXB/XN11rtqRkGYtkQXDYYWkCud+PVHNx1Y5G1UWt4SLv7aAvMUiusEh+2gOd7A1uW7GCda6JH7c7uMyDxlrU2OTpRDYEYmqSWnct63WToJ6rJXi5weMKstkVBECbn6c4fJTi6CioKlarlbqrgnTUrmUoPlLxJJJFmaDsoVEO4rL7UG64wRRuezzomQx6PA6FAtrk5LKW0bnIO0Cbu5k1URk9bFbUjCUVF8nnQ+3rg2zWJCaKYtoB+P3LqjN6Om2KoFOpCkEyotFlrVKh7Kx/ps8PYNoOLDy+Gj2xit8QVonPKi57uBU3TouTRHwWbWoKudZMsUYQwDBISiUkSSaai+KyuiloRWbSM4iCyIbqAEfnjjEUG0IQBPJqnpyao9nbvKJz80oJ7RoaPzn9k0q1aAE22UYsH0M3dP5k95+QLqSRRKkSFLrgpFztqMZhcZAtZZeRH7/Nj81iI2C7sNfNUrT6Wnnv1vdycPIghydeoM4R4qX549zZfSe3dt2KRbSQU3NMJif58gtfxipbcVjsCAggCGbVxDBorO+mzlkLQtLUn5TTsq1bt160t48zp3F78808OPYoNickvSpFvUSDt5HfbbqN1tx5tCGFApGAlVPqDPGxFH5vHZ3VXRUPGqNQwCgWcWUNrnJ3ooTqubF9H3bZXjm/VxK0SITCM8+gx0yHccpkJZDReMuaN/LzmQO4LA4Cih9dK1FlDdDlasEWjlE82Q+GgWXzZlKFFFN1dtJ6HLfooCU+W3HHXiDvn3v2nxma668YEbZXd/Hhze/Hf2QGcd26ylg9djuSx4M+N2cSHqfTNIEURTM+JJFACAYxSiXUmRlzCiwWwygWMbJZxKoqrFddhR6JVMiPIMtIoRBaPI7gci22u2QZqaoKQZZfUbPDVaziUrFKfFZxRSBdSptTTDabaZpnGAiyjKGq5ESNglpgTVUXffN9WGUrOjqN7kYmU5PsathFT7iHntmeiqvwk6NP8ld7/4ruqrPHk89MaL//5P1nkZ4FyKJMUS+yo2HHio+7FTc3tt7Iw6cf5ujsUVRdxTAMvIqXzmAnIWdomc7oYuFW3Gxv2M6J0RcRJQtVziD3n7qPY+Hj3LLmFr7b+13q3HXUumoZiAxQ66olW8yAIGCVFBoCrdy+9g6aBB+iVzDbKJJUyVy6WAiKQv1kmnfW3MyEkiej5XBKdhoLNhz98wjXrl32/Io2pFCgN6jyhcNfZCi66HbdVb+Z9+38A15QNeYmygu3KFJr8XO7+3rapCbk0PlH7X9dqFQ/CoULeiAZhUIleR1YNklXnxQpZSK8qfsNPDr8M47P9CALMv2lIqctx1nX+W5TLOz1Mi6neXD0J8RSAsVSnqSRwzdfzxs2vZn11etxK24221r5+3V3captnHjRbDeutTdTrbkoJPoo9feDriNWVZmts/XrMfJ5yOfNioyiVKI3kE37AKBCeoBKUro+P0/x8GEsW7dizM8DZYFzeWxdCgQqWqCFKcRfhdnhKlZxKVglPqu4IuCyuMw7yZoaBE2g3tfMVHwMQZZRRQhn57i2+VozlDE1DYBH8dDkbaI90M6DfQ/iUTxY7ebCPhQb4ts93+Yv9v7FBSsH5xM9X8zj62rWcfer7uarh77KcGwYWZQREAg5Q9y1666XnRTvVtzc0P1aPvKTj5JSM3gVL3+x9y/AgERHgtPR04wnxnFZXaytWst8dp5NtZvZVr+Nq6s3s9NownasH11f3oIzksmLGmcHkGpqEL1eHHMxuszfAEWguGLLbEEbEqmymaQnNmhW78rC6r7Rl/g34yt8bO0fktCblxOpgTDF8MWN2sO5o05eiUrR0urHAs7ngXQ+TYxjPslrt9/Gpw5+lqH5AYxy9pjd5sLtauYnvT/knR2vRaqq4oGB7xMTciRzJfqz4+TyKYTMCGOZKW7tupW99ddQNxQhmM2yFx/ggywIJY3i0GHTp0fTEDwes6I2P49eVWVmcXk8pkGkKJrnV5bNEXy7HUNVlx2rIIrgcGBks+jz85XW5JmkRm5sRKquXo2eWMVlhVXis4orAhVRL1EimsbNW+7kZ4OPMpWawi0LTCYnieQi7KjfgW7oFPUim2o2UdSKfOXFr2CVraj6crHlVHrqojxmzqebOHMy7FzYVr+NRk/jshba+pr1L5v0LGA0Nc5YfIQGXzPPTz7H4elD7G7aw762V1faahOJCTRdY0PNBt607k3Uueqoz1mwPPncMm3GAi5lnF10ubDu2nVOEnDmNhYErafUGYaip5eRHvMJBgOzJxluGGXXWAFBXCRSl7Jv54o6ua37NvY07aHV13rBYzsXKsZ/seWj5OfzQDJKpZU1L5jnKjM9TrVmx1a93sxiE2TcJRFLokAiGGSmswpUlRhZirJIf2KInFGqVGWm0lMkC0l+2PNd3uG+zswAOwNGPG6SmHILSp+eNglLqYQRiyE3NqKWM7kW2l2Cy4Wluxs9mTQrP+XWGbJsHo/LZYbKiiLyunUrkprV6IlVXG5YJT6ruCKwVNQbzUWZLkZ4VfdrUSxKZWT89V2v5+7H7uZ0zGydyKKMRbTgsDoqWpulsIrWi/KYOZfoeaXJsAtt55clOgtYEAdHMxGKeolCMYvL4iSSjfDI4E95fPgX7Gney61dtxHPx9nTvIdNNZsqr188eZLiCqRn6fYvFnJtLeK+fYvOv2WtkOT3n/XcBUFrvFjOxFpKesBcVHWdRCkNqmCOb1/ivp036qTvIQzDIGgPvuzKT8X4bwWci5gtHPcyzcvCY4pCujiDVYMqw4qhyyYZyWfRczlEj4fktJmNpU1Okqh2kEnFEN1uBLu9Mr6eV/PE0mHG3XHWnkF9FiasBJsNFv6m/Ds9lULweCidPm1GVTQ1ITid5jGURc5GLFZJkgdMwuVwmOSnnJG2Sm5WcaVglfis4orBgqh3ND5KupTGZXHR4mthPD7OTHqGE7Mn2N24m2uarqGkl9hQtYGiXiSej+OwOHBaFxcDu2zHa/Oe5TGTKqQWt2910eI1RbQriZ5fiYrNy4E2P0+ppwc9ncbX6sTI55nRJumu7qZP6CeSmaeoFXl8+DFe3XojtwauYYtjI/KSfRUUhVhnLX2WBPFSEr/FS1fJg3/EbFtccitCVdHn5irtHH12Fm2FBHjR50Ow2/FZPRX/mcWdEswFVRTxyi4wVialF9q380adlCsjF+smvRIuRLxWelz0+WB0FLm9/SxTP0GWcTuDCNOiadCZzZrbEEXT8ymbxanLIDlAkihijrYbhcKyc2GTbSCKZUuA5cRHkGXz/AqC2X4sExYEAS0cRrn+eoxMBn1qCh2QmpsRHQ7k+nrUwUFwOBCrqsy2FphePNksuFxIweBFTwGuYhWXA1aJzyquKLgV91kLVpOvCWPUoMHbwFX1V/F/e/8v44lxhmPD/M7a32FH/Q4ShURF2Lx05Hypx0zffB/39tzLUHQIURTxKB6avc3c2HojAE6r86woiV83lk4GYbGwvlDLprotHJvpYWR+kGZ3A52+DlRdpTO4hv21N9L0wmmK7uUtmOPWKJ8b/CqD072VbbfXrOWuze9n/bR+SQuZUShQ6u8nLaqMOzOk1Sxu2UEjFlz9/Vi3bKks0IKiYOnuZu2MTHt1F4NjR82NCAJYLAiCQHvVGrqFGhAyZ73WxYzanyvqZAH5cibWy8WFiNdKjy8EsZb6+5FbzM+coaqV6abmuUkCzirmp4cq7ceS3UpKseDz+hAcDoJ5maA7RHTBrVlVTYIkSTR4GhEQEGw2XHYvrMDNpOpq9GIRikVzosxmg0LBjJWYmDBdm202kCTklhbkhgZTm5PNQj6P9aqrKB4+vIz8iG73ii3NVazicsYq8VnFFY2x+BjHZo/hVbwYGJS0Em/Z8BayxSw5NUebt42bO2/mvhP3MZWewipa8dq8FZ+dBRJzOnKav3vi73hu8jlUXUUURNp97bw4+SIvTLzAroZdDMQGqHfX8/ZNb19xGmw2PUvv7HHimQg+xcs6fye13kbCpfhipcjmY331y6sUnTUZJAhUHxniY9f+Nfcc+BTHZnqYCg8CBpsat/GB9e+i6eCQWY1Z0oKZTc/yhZe+zHBheplnzlD4FF/s/Xc+9dp/wHEJC5kejzMuZ3hw6GEimTkoR2AE7QH2d91OSzyOvKQNIvp81Ns38mH7n/J5/Z8YnD1VqW60V3Xx4S1/QEioQ61OoycSi393Dt3QmVgp6mQpbLLtktykz4RUU4Po96/Y7jofMVvIWztT6AvgCoe5vekmHkj9gEhqlpTfTl+0n4BczzZnI99/6qsEapp41dV3og3+jJH8jOmZpGnU20O8uvVGJmdP45ddtPjboBgzfX+WtAqtu3ej9vejjo2BqiIFAhiahlRbizYzA+k0elnTIzc0mAaGC9Nnum6aHW7dahKuYtH0XwoEMLJZiidPXnCybRWruFywSnxWccXi2fFnueepezgWPgaYmp311ev5451/zPrgepp8TRVi0+HvOKtFtvBYqpDi8dHHK6QHIGgPMhAdoKgVmcvO0RnoZGDmBAPTvYxHhvn49f+Lzpquyr4cmTnC5575LIOTxyt37O1VXbx39wf4Ts936EssjmwvaIO21m69pOM9azJIFJGbm9lyPMbnN3+MEzvixLMRs21layKTiHCkWcJlqaKh5MBaLKLNztIbP2KSDVk2DeqWZGwNq2FOZceoo+Oi9yusJ3ky24vudVFfU4s2G2Z27DhhfYT7p6Z5V9ebCRhXL5t2EhSFq1t28WnHP9I700M8FzfHruVaqtIS8ppa5MbGxXFxRTEJx0UsqmdGnSxFvasej3JpbtJn4lIF3UtxLqGvpauLxkOHeGfoNQyvNTiU7ufVW+6kZBGYi0/T9eo3IueKPDv4BL/bdBu7u/dxPHYKFCuaKHB45Flc2HhN96sp9h5HnolV7B8knw/L5s1IVVVIfj9yZydGOo0hCGZSfC6H6Peb7TBFQW5qWqzQLZgMCgIZh8y4OmVW9Cx2GvHhikQoHTtW+cyfb7JtFau4XLBKfFZxRWIsPraM9AAU9SJHZo/wuec/x5de/6VlLamVWmQLGI2PMpueXTb1pcgK6WKavJonKAbIFdIVcefgxDGe7H+EasmNN1jHbHqWzz37z8tID0Bf4jT/+4m/4+aWGzkV66+IUIdiQ3z++c9XkrIXhMopNcNYcY6MUMLt8FX0RQtYNhkkikh1dRiZDNrJk1SdhH0bNlAaSRHe08wPX/w35iPj5vMNg2CojTdUvZuGvjAx26x5LKKI4HAg2u3LzseFwlqXYmDmBI8M/pTT4T4UxUF85iSJ5Byv6r6W8b6DRBLTTKgRXOeYdqqtbiXkqTvnuPPLqR4sjTo5c6rr9u7b2dO055duVy4TdJeJmRgIQKGAOjGxzI36YiD6fFg2bMA7NobdGqfK1sxXj36d3tnjlbiK9XWb+L0N7ySWSbKtr8S6xu301Yr0zPawztkGxSI/+sW/4rN6uL35JuqGo4geD4bHgzo4aIqhFQW5vh6jUECLRDBEEaOs9RHLep2l+yz6zDbbuJzhwckfMzfebxob6jpBRxX71+6nsa4ObXISgfNPtq3iN49zOab/prbzm8Iq8VnFFYljs8eWkZ5lj4WPcWz2GM2+5ovaVrqUxiItt8/XdA0DA1VX0XUd+Yw8q1gmwvD4Mba4ApwInzBdcs+YksoaRU5Mvcid3fvNdtKStsNCUna1qlDq719sFaXDFYfboL+e/d37K6PXSyeDBLsddXQUyeMhvq2bAXeBuBgj1L2eJ07+hHSkHGpZHj+OhEf4waH/4j2b34lPLae7LxGoLg22vJAv0QL6Zk/wqV/8LUfnjhFJhREsFppsIa5r3MvjE0+zp2ETUxOnSBuF846h/yrGnReiTl7f+Xqm09PIkky9q55W3yvj4wMmKVs4nnMllZ8p7j4fJJ8PbXSUgt3K1578N07MHDPfvzJ5PTHby79zL/975/9ESGSQQiEODt5HJD6NPj9vxlnkMkRyGR4c+xnvqHk1znjOrOrI8mLsRDxOsaen0vICKmProsOxbAETFIV8RxMPPvflRdJTnsSLFmI8MPhj3ll/K06XyxyTl+VLskNYxa8Pr8RntLKd4WHz2lEqmVN9djuWtrYrxo17lfis4opENB897+OxwnL9RTIdKQdFJnHZPLRWd+Ip5ye5LC4M3aDJ08R40iQMkihhlKeOWn0tJHLLt2eTFNK5BHo8blZIzpxQgkoFKatmV3w8no9R6usjLaqLpAdAVdHm54nIMg/0PcB7t74Xt+JenAzq6DAXH1HkZLPCF178IoPHTmCoKnu33sZPxn7EzuarCY7HFj1XLBYi4RHG1Qhr5Vraq7oYmi+TtSWk7GJ8iYxCgUR8lm8d/iaD0yeQLFKlEjWWHOepqWfZ6F1jerxYLLhkB1C8pBH5VwJuxc3V9Vf/yl/nQknlS7O0zgdBUZA7OpiZfMwkPWC+f5pmvofAyWg/YSnPlpYWxktzRIuJxc/WEuIdSUwz2VSiK2ZUfm+USua+9vYuIz1AJYzUMAysdvuy/R1XI8T0rOmUDgilEoamoWcyzGcyTISibGhYS3FmxhxxF8Vf+3v9/zVcims4vHKfUaNQoDQ8TPHIEfRo1PzsGQZiMIihaVjXrr0iCO8q8VnFFYkL5Vv5lUUPmeGZU/zg+f8gEpuq/C7or+fOXe+irXYtLb4WLJKFfW37+PnwzxlPjlNQC/hsPpq9zext3MNzp5+o/G29pxEKBVxeB0apZFZIymnrSyGL5tfLITtWfNwruTByOcadmUXSswBVxcjnicrRyuj1wmSQOj6OOjbGvFPg8899hcGpXjNuwm6nqBWJZSK8MH+EVzfuxJ4pmiPReTMINV3MsDZp466rPsAXDv+LSX6McyfWn4mFu8YRcZ7JyAiUSigWOzISJV0FXWMsOsSeht0UBI2gJ0RDWqqIYX8bcaGkcn1JGOgFoarki1ksFhslrTyZJggIYJISq528XkRubiaXKyBYrYuvvaRqB5DR8yDIld8LFgtaJIIaDmNkMoukeCEtPZ2Gcgtj6f6mS+lK5cnIZBb9fMrEKV1ImrldoRBGLGZWAK6gtseVhkt1DQdIxGcZlaOkqwSSYpFEMYlNsNJkraY1q+O7yM+oFo2apCe8eJOGYaBPTVEslRDcbiyh0GVf+VklPqu4IrEptIlNNZtWbHdtqtnEptAmwKz0nEl6ACKxKX7w/H/wvn1/hscV5I3r38h3jn2H7fXb2du8F1VXWVe1jvHEOD87+SNE1Zxuqfc0sq/lVWTjEZrwIVgsrPetN0ezx3uW3XU7BCvb63eQyafMdsUStPvbWeduhempsu/KCihva+notWC3oycSGPk8A9UqgzMnzW2XSubCKFnBMIil54nUFmm22ytZSwAuqxOyOhsiMp/c+qecKk2TII/X6mG9p4OQq/Gc53zpXWNayZqvZbEgZHMELR4iWoqSqIKuU9QK+Bwerm++CvupaYRAAL1UQo/HL/uL4qXCWJK79XIeP/O5AYuHKkeQ+XwUVVv8W4tsJegIEnTVIPp8ODOWxc+bxWIuQooC5WqLU7Ij2CRT5Gy3gyyjTU1h5Mz2V8U3qZyhBeaI/Zn767K4zOeVSubfLbg3l0OCXSgYmQxSTQ1qNHpRlgOreHl4Oa7hI/ERHuz9L0TZwtOnn+eZsWfIq3l8Nh8NzjreuentvCrvop0LEx89Hj+L9CzAmJuDS6wg/aawSnxWcUWi2dfMx6772FkC5001m/jY9R+r6HtGwqfPIj0LiMSmGAmfZrMrSKuvlbt23sVAZKCiCWl0NbKnYRfNlipimYgZjlookI1HuK3tNbhUU4gbUhQ+svujfE5fPtXV7e3kfbv/iG/1fBuLbKUr2IVH8WCX7VzbfC12yUbGY0Nz+mhau5OiXkQRrRSSMeZnhjDKd+JLR6/1eBw9HjfjC9TynbimmQsfkMwlaK7uZCwxRl4vAvZKoGQw0ECTHARSoOv4R+bZlcwher1mOjdz5C8yb8olO/CIdhx2D5ncLFYVQjYPRZ8ftVhgTbCLm4sdBKZSCIGAmeAdDlNKJC77i+KlojL59DIfP/O5a6Va1vm7GYgOUEBFMzQkQUJBpiu4jrW2BvJPP02dIuArSERFEdHjQU8mzfcykSBoD9KED7FKQRBFxLo61LExM3qiPMkFmAntUGlRCeW26FK0+FoI+hsIz8wsLnTldPegO0SD7kaPxZB9PsRAYNXX51eIS3UNTxVSPND3AFgs/GL0SV6cPkiiYLZHY/kYhqZyb8+9CJJMde2i/u2crbSlsSUrtO9R1Uuvcv4GsEp8VnFFIlVI4bV6+V/X/S+m0lNkShl8io9NoU3LRM3pQvK820kXUpWfz6UJqZeDDI8fI51L4PI6aMKHS7Vg6eqqLOBba7fy6df+I72zx0lko3itHtb5Oqn1NdIVWk9vuJcf9v2Q6dQ01c5qDowfIOwPk1LjfO+Z73Jk9igFrYBX8bK3eS/Xtl1DpJjAZw8sG702SiWTWJVK+G3+xQtQWXB6aqqH67v38eTIEyZRK5mBklUNa7hjwxtxhk1TQKNYRE8kEKur0UZHK62MC+VNLaAJH3WSn3xVN6dyWbK5FGJRxa7qdDRs5qbQHmqm84hXdYIkoUcippj6CrgoXioW3KhXanctGBReyraqxqTlrUgkDN2go7qTu7b+Ie4DPajJJHZZ5ramvTw09xRRI4VYU4MgilQ3drG/8/X4NTd6JgOlEnoqRfHoUaTmZuTWVoxg0GxRpFJo4TCC1YoQCICinLW/bsXNHRvewA/SaWZTKbNNBgS9tezv2o9Hd6POnkbw+7Ft3oz0W1bRu5xwqa7ho/FRorkoLouTmWy4QnowDIqlPFg9DM4PMJ+dZ2S2j03N28/bSsPhWFZVXAZFqWgFL6XK+ZvAKvFZxRWHkfgIPx74MV7FS07NkSqkCDqCtPpbz5rkcime827LdRETPt5gHVtcgfMmTKcKKeYyczgUJzXu0LJRdAcOjs8dx2/347a6cVvd+Ow+5vPzPDH8BBk9T407xHx2nkQhwTPjz1A0VG7v3s+NbTcum0ISLJaKZqO76KGjfgND4b7KXZgmCTw/8Ryv6X49r2l5NXqhgEtx01rTidviQvebx6Cn02iJBOqpU4vtknL+0oXypgCcWZXb217HgxM/R/HmSAZKFNFo9DXz1tbbaTg8gqaqiF5vZaFcwOV+UbxULLhRn2ti5lKqW4KiYFmzho0DA2YrUp0hXkjgtbhZpzQRmEhTmpiovFf140neUXMDU36BtJ7HE2qmrWE9LqwUjxyp7I8gy2Yrqq/PFB8XixjJpKnJ6OhAz2ZN48IlHj5L0epr5T1b382w/yoyxQxOwUqj7sE+G0Od6kfweJB8vrNIz5U+9ny54VJdwxfa5NlSDl1YUq0rQ8dAkGWypQzJ2XE0TyfFF14gLWtMNFpJaznckoOGgobrhRewbt+O3NJiiuOXZs4pClJr62Im3CVUOX8TWCU+q7iikCqk+PHAjwnYAnz54JfpDfdiYGAYBtvrt3P3q+5mb/PeyvNbazoJ+utXbHcF/fW01nRe1OsujFzPpmdNF+boogtzTs1VwlMXELAHKqPoC3ddqUIKt9XNjwZ+hCAItPnauO/UfTR4Gqh11mIvZfHbA5T0EjoGzd7ms4z2Mk6ZoXqZpGLgLab40LY/4ksHv8JQ+FSFEDUH29m/7o4VDRKlkOkbpM3MoE9OLn9wyXj7ufKmKpUNw6AxJfKu9jcw6h0mU0zh9lTRJAawT8XRVRXhHO2Oy/2i+HIg+nxYt249Lzk+F1YiB9bNm6mNxwnlatHicZBlSi8dgoVK2cJ7JYo4ZqJ0qVWIrmpkawOy4kabnV1egbJaUUdGTPGx243g8ZiVHUkCScK6ezeW+vrz7q/XF2JDuIXSWB96MgbqHIZhIFZXY12//ixdz9JMOSTJ9Dpyuy95fHoVi7hU1/CFNrnD4kCS5LME8KIogWHgkGw4saLNzjLhVHlw9BEiyZnK84KeWm5veQ1txSKWDRvMamE0at40CQKC221Om8bjiE7nZf/+rhKfVVxRGI2P4lW8FdKTV/NohtnmeWrsKT755Cf5x9f8IxtqNgDgcQW5c9e7VpzqesOud1VG2s/ESmGlQ7EhPvf855YltLd4W3jT+jdR46zBYTFT4L2KF0VW+PHAj3nn5neSLqUpqAV0Q+fnwz9nNj2Lx+ahoBcwMIjlYhTVIkFHkPnsPD7FR7aUNcvSSzASH6FnpocYUVL2OB6xgC+Z5q92/glT+TmSYhGfu5oNdZsvOJmFxUK2Psiko0Raz+GSHDRkZBwzsXOGlJ5V2TAMnJE0GwPd5oU4pwMlDEUxL8JNTRip1PJtXGLr55fBr7va8HL8iPR43Mw5E0qMEzddke1eWps24Q3VmQRmZMRsI+j6oiYHllsRlKt2C6RypaqakUwiVlVhCIKpxSiVQBBQs1nkJW3byvNXOH9yU5Np81AomFljC27Pzc3L/l6dm1tslyxdbFX1ihC/Xq64VNfwFl8LAXsAAYGQM8SYzUsia/6dIpmfqfZAJ1WShyZ8pI0CD44+QjwToaZtAyWHlayaw5AdPK0PUqWuxReqxwDT0ymVAknC0DSM+XlEr/eSq5y/CawSn1VcUUiX0uTU3FmkZwE94R4OTh2k2dtcaRG11a7lffv+rOzjk6q0fs5FekbiI2dVcGyyDYtoYSwxtuy5A5EBTs6d5OD0QR4ZfKTy+801m/ngjg8yHh/HZXGRyCfw2DyMJ8exCDLoOhahbEgIxHJRmjxNFLUiBgayKC8zEkwVUhyZOcLXDn0NRVaodlRTUgvUueqxWerYWb0Try901gVnJQJnL5WYsOX5QfZZ5ocWSVzQW8ftHTfRmFPOnzdVrmyEi3FOpoeIl2bw1fpZ526nWrOZi68sm6neS8rqL6f183Khx+OUenvRYrEKYZDK7siXy93oQrjruJzhweGfEFnwptJ1ghNPceeOd9JUcgAsTl0VCggeD0ayrF1bOL+iuIxUnlVVKxQQQyEQBIxweHk1yOlET6WWpb2fz+zO2t29rLIlOJ0YmUzFsdowDNSBAdTTizEtWK2Ifj9aJGJqyX7LdF6/TqzkGn6uOBe34mZ/934e6n+IfW37sIoWnhl5atlU17s2vYPr7WtxJlT6XDGT9Ky/mgeGf8JIYhTd0BEFkVZvC+2tV/Eq33qsdrv5GQgEzH1Y8vm73EkPrBKfVVxhcFlcpAopDAw0Q8MiWthRv4N6Tz2qruKz+RAEgbH4GBtCGyp/53EF2XwOorMUC1MQibw5GVNQC2RLWTRdYyQ+wrqqdcumyK6qu4r/6PkPvIp32XZ6wj18+cUv8083/xPratbhtXspqAUMw0DXVbLFDIl8nO5AV4VM6bqKYRg4rU5afC3LjARH4iN87dDXaPY28/TY0/xs6GeVx56ZOMA9N93DNcpyfdNKBC5gD/Cahuv5ae8PiTtAcDgqviyRxDQPzT3D7+37M5wXyJvqKY7xuaf+ydQXldFe081HrvtzrgrtAMy705fT+vllYRQKy52JZZlYaxV9lgkS/afxe2tZ5+8k5AiZvjS/If2JHo+TFkom6SnGzUDWsvXAXCTCD3Jf5b17/ghbeXRcbG5GMAwsGzeijY4u3vHLMpLfv4xUniW4liQEl8sUsudyi75SggD5vKnrikaR6+ouyuxugbTo8TiloaHFCpDbjTY4iOB0Lj/YYhE9FjM1X/n8b53O69eBsyatLjK7rtXXyru3vJux+BhX1WzlXRvfTrKQxCrINFtraM3acCaKCDYbGUuOYPsGHhx9hCOzPRS1xZZ3vJDkv059j3V1mwi5Qlc0cV0lPqu4orBQujUMA4to4S3r34JVtqLICkWtiMviIpwOMxIfAYFllZ8zM7HiRg5RksmqWUpaiTpXHRbJQqqQImAP8P0T32coblZELKIFWZL58M4Pc3L+ZMWV2aN4ODV/im11287a155wD1PpKXY27eTO7jt5dPBR0HVE0cJMapoaVy23rLmFH/f/mOH4MKIg4lU8XN9yPb931e8ta1cNx4dRZIWnx55mNDG67HUOzRziv47/FxuqNywLXl1KetLFNHOZOU6ETzAYHWRv+y4G+x/F1hDCWipPhUkSMVlkQkrh59yYiU+eRXoAhsJ9fO6pf+LTr/8stb6GX0kUxcVAi0SWkZ5Ta/18oads9CgIiF4v7d5W/njL+9mkhzAS5qTLy7Hv/2VglMz2ViQfXUZ6FjAfnWBkpo91Na0ImgbhMFoshjE+brYS29uRAwHEqiqk0PJq31ltSUlCtNnQyj8vheD3o0ci6NEoqqaZpEQUVxxZ1lMp1MlJ04zSakWfnkYdGDDNDwGpsRF1bAzL+vWmxYKmLY4/q6r5f11HsFgW88JSps+V4HYjrYqfV4Q6OUnhwAFTV1M2npSCwYsOhHUr7sqNoB6PUzx+HG1+HsGtI1hN/yeprg63HEX1ODhyrIeiUcIiK2xv2EGtp5aSruK3++mb76PG4ruiReurxGcVVxTcipvt9dvZXr8di2ih2dvMf/X+F6cip7CK5ijlhuoNvHXTWxlLjlHSS+zv3k8zvmVthTF1Do8vxC8mniJeSNDmb6uYFm6v387XD3+d8eQ41zRcQ9ARRNM1ilqRkfgIa4NrOT53HICCVkBAqLg0L0ASJKySlUQhwfHwcVp9rWyp3cJN7Tcxm5wi62kinU/y/PAz7GvfR4O7gZCzBoto5cb2V581nZYupKl2VC+r9CzFeGK84vAMi2OsADPpGZ4bf465TJhcKYshCCiywsaWnfzo6PdocTfiKZmLnOTzmY6/58GJ2d6zSM8ChsJ9nJjtpdbXsOLjvw7djZFKmaaNqkqstZovHP0/DE6fKD9oRjgMTvXyhdJX+PuNH6bG4TYrP79m8zXBYlk0rzyD9Czsayo6g2FUUzx82LQEsNkQfT70mRnTKdluP4v0LOAswXVnJ+roqClwXtiHQAC5uZnSqVMYXV1oMzOm75PNZm5TVU2iVCqhRyJoc3NmNadQQAgEKL70UkUIX5kWKxMaweVCn55e3KEy4RJdLpBlCs8/v2JemNzUdNm0I3/T0NNptGiU/BNPoIfD5BqqmXSppPU8biVJY+8hAuL2SyKMej6PoetIjY1oQ0No6TSIIvr8PHU1PlRDo1DIYhEt3LZ2P8+MP8OjIz/HJttwWBzmeHxeZ31YXNSW/ZpvGn5ZrBKfVVxx2FCzgbtfdTdDsSE+/cyn6Y/0V0JEFVmhJ9yD1qPx8es+zon5E/yw937e4b4WhBIPDj3MdGEew27h50NmPAVWK8OxYVq8LZyOnWY+O0/AEWBt1Vp+PvJzBqODWCUrRbXIrsZdfGD7B5BECYtoodXfSqOnkcKSkrAkSBgYWCQLqq7yvRPfI2APcEPLDdzUciMPHP0ugmAQLmTIqTkiiRle33QTyVIKUbIyGBtEkZVlFZ8aZ81ZeqYFiIKI0+Jc5vC88HO6mOb58ecolHI4LA4UWUESZYpqke+c+C9u6X4tjw3+nK01m1FsTgRZXmaYuBLi+ZUN1CqPnyPdXYtEUMfHMXK5xZR5w8DS1fWKXTCNQgFD08i4FSYdAqcdYWoDTdhFhVNTx1CNctXBZmM4PUa/LUWNWGO2haLRX6vPkOjz4bJ7zwq3BUwtjqrixGq2idLpijuzkUoh+v0Y6TR6uZ14rv1dqLrp8ThaMolYU4PY2FjRPem5HKVTp0yyY7djRCLouRxqX59ZCStPYol1dYhec18FWTYrVNks+uyseT4tFnMxBTAMtMFBrNdcQymbNbcDoGkINhvy+vWofX2XlBf2q8alZl/9OqDOzFDq60NQFPTxcabX1fHgxKNEhmYr01RVwSbeUO+ncUS6qO+RFo+jnj5txpcMDy+akhoGuqKgRCKsvboLryPA+pr1PDN+gKH4EDbJhtfmJZaLEU7P8vmDX+aTW/+U4Lx5k/Trvmn4ZbFKfFZxRWJv814mk5NMp6ZxK24kQSKv5smWskiCRO9cL5mS6R8TiU0ybjVt1iPpMElLEa/Vw/iCUFnXSRXLuiFNYzI1yc3tN/PNo9/kdNQUaJa0EvWeeo6Hj3Pv0XuxylYeH3mc13W8jrt23sU3jnyDVm8rt3ffjlfxkillqLJX0eRpYiY9QzQX5YnRJ3hL9++w3t7CdH6OkmBgl21YFAf/5+C/MBobRi6nxLcHO/nI7j9ha4NpqLgptIkXJl9AFER0Y3GhFAWRRncjNa6aZYRl4ee59BwFtcBMZpZ0MY1bcWOVFGRJxmfzUettQJUFkhSokb0EzjBMXAk+2/kaYSunu2vz8xSef96cKNN1EEVElwupqYlSfz/WLVsu+YI5m56ld/Y48UwEn+JlnbONQKzAhDXHD/WXiIxNMhDN89zYAZpdDVy3dh/PDj6JLkkY6TRGqUQsMkWhZwQxGDTdpSORS9afvNxFU1AU2po2EZx4irlIZPEBUURQFAIWLw1ZC7hFBEFYbFFpmkk2yhESF4zMKGt2cJrEtjQ8vGhAJ4pgsSC3tWFoGlo8jjY+jhGPV15LTyYxyuPzYmMjhmGQosiUJUaiy45LtNOgurBPzaOnUgheL0YshlEoYNm0CcFmq7zngsOBkc+bovMlpKeyr+fIC/tVQp2ZMb1rJJUJJW9610z6aevchq/2/N+FXxUWoikEpxMMg1xDNQ+O/5xIYnqxdYipy3ug/0HeVX8rriXEY6XKqpHLUXzhBUonTiB3dprDB4piPpbNmmRofJyGnJ8dddtor+riyGwPIWcIVSuh6Rpt/jbsFjsZSeUFYQpfwEKXWE0wWryizElXic8qrljk1BwlrWSSAXRUXUUUxEplpLgQ8qjry/KwinqJor5ksSjrGFRdpagVCTlDSIJEf6S/8pSgPUiqkKKgFUgUEtzUcBMCArqhM5oYZX/3fkKuEPf23MvBqYP4bX5qnDW0+Fr4wLYPMJ+dZzo9zXwhxqa6Lawtay8iVTY+/vxnmYgPI6kqBuZiMDhxjH9+4jN8+ubPUFvdSsgV4tauW3lm/BkOzxzGMAwEQaDaUc3uxmtokqtoVB2m8aDXW9FCnVJPMpOeJlvKEnRUkSwk8NsDHJw8yOGZw+xquIY3rH0DOTVHnauOa5uvXWaYuBLWhzbQXtO9Yrurvaab9UtE5VAWGx89ijo6uqyloycSIIpIdXWXfME8MnOEzz2zGBFiGAbtvjb+eNddPHP8Z8xNnsbIZrE53KDrjOVmeCr8Ipvad3B8/CWzLQP4ZBcIMfT5eYqHD2PZuvWSfIZeTmDkUniDddy54538IPdV5qMTFf1G0Bbg9tD1OOeKKwbcVqpEZb3M+VC5qy8UsKxda44ep1KLZMTlwrJuHdrkpBmGGo+bhGhBn6NpZoVO15Gqqxk3ojwQf4xIOIE2MQGYLs63t7yaxqyGsmMHSBLq8DBYrWYbLRpF8HoRy/5BYiBQcfM+Eyvlhf2qoKfTFF94YUXvmqqxJ3nDvg/SFuq66O2tNEV5oe/TSliIppBsNrDbmfToREanluuuyj9HclHGibM250SPxxEU5eyJPIsFoRxrYh54+bwXCuiJBFJDA1o5a6upb45b219LT7yPWC6CiEjQVY0BVDuqeXToZ8zn5qlyBHHKDr4VneaDW97Phoh8xYjWV4nPKq5YVDurcVqdxPNxFElZ1gry2Xy4rOW7blHEJTsqj1lFC1ZxyWJRXlhkUSZTyiCKIoqkUOOsqRAMm2xjJD5ClaMKq2TFq3hp87fhsDjIFXPcuuZWPvPMZ4jlYnQFu8gUM4zERxiODxPLxXjHlndQ7643tx9a1F70xY8wnJ2oRE5UPE8Mg6H5AXpnjxPy1JGmiEWw8Fd7/4r7T93PdHoaRVKotvqpEVzsrLmK3vFDuCQ7jUoN/uY17O/ez2B0kEwpi1txkywkqHPXc03jNdx34j6KeoGCVuB7J77HDS03MG1MY7BC/s4ZqPU18JHr/nzFqa6PXv8XZ+l7tEjkLNIDQLGIOj5u+v1cwgVzNj3L557952W5aOg6Q+E+vnrsG6xTGs2JMlEkKDgJeEJEU2HGIkPsrb/GHAWXZTpbrmJN3gWYpEWfnwfDuOi228sJjFwJbaEufu/Vf7oYiyI7aMjbcITjFTdcecMGcxpLkswYCk0DTUN0uS64v5Vzq+vo8/NY1q2r+PgIHo85kZVOV6oLSFKllYIkmW21TAYjnyeVjvCD3m8TSc4iBoOm3igeJxKb4sfeQ7yz9U4YGkIPhxE9HrTJSbO16XRCLoeuaQh2O+qIWWUzM+KWY6W8sF8VtHCYtHQ26QGYD4/ww6P/zftu+MhFkZdzTVEuGJleCioGouV2ZNomrvg8wekEUSzf2DkxVNU0qsznyTgtFW8op2GhYS6Jq6oKFpy/F1AomO97+TXto9Nc17kNqdrKrvpdKFY7WTVHQStwav4UkZxZnUwV0jw1+hR7anfyhcP/wie3/im1V4g56RVDfD71qU9x3333cerUKex2O3v27OEzn/kM3d3dlecYhsHf/u3f8q//+q/EYjF27drFl770JTZs2HCeLa/iSsXG6o28pv01PDL0CJliBkmQ0AwNn83HvrZ9iIL55Q76G2hSaqBQJOiqoViYp1DM0eRtNjU+oojb6kZAQBIkXBYXLf4WBASiZW+VoD1IwB5gZ8NODk4dpNXXyn8e/08A1gbXcm3LtfTO9VLnqkMzNNxWN42eRtLFNMfDx9F1nZ8P/ZydDTuBRe1FIlquRJUXHCOfXyRBQDw5x/BMHw/NPE40F0USJLqD3Wyu3UyDsx6ranAicoqv9H6DklbEJdpZ42jkd4TbaO/awR1ddyAiUNJV4vkY48kJ7jtxHwW9QIevnXg+znhynKAjSCQX4YG+B3jv1vde8EJ/VdMOPv36z3Jitpd4IY5P8bE+tGFFUbORSq3Y1gBMMqSql7TQnQifYGiuf3m1oHwXPBwZpLOt1VzY02nsVis7q7fyvHaQWDZaqQK2Bzv543XvJjipoS+J7BAE4aJbbpcaGHk+nBmLgiii+cy2Wyo6zYSUIm1J4RJtNHi8eBw+jHgcy+bNF44xWHpudR1jfr7itqv19aGn0+ZCWywitbSYgafhsHk+nE7zGAWBXFsDvfYYvcY0FoeIJ5/GVlVtjrHbbMxn5hhLjbNO9qHF44ihENrwsKlXMgxzEkxVzWpbqWS2wM7cV5drxbywXxWMQoEJJX8W6VlAJDG9bGjgXDhzirJQzBLPRBmfG2QuMcOHdn7onIL/lbDwni4Ixb2bmk2/pOxi5VpwuZDq6jAyGfPGrlDWuOXzTLh1Hhz6IZF0uLKdgMXLHdvfTsjhQM9mzZbkgv5KVTF0HaxWBKeTutPzXNvWwAFfJ3Nakt65XlyKm7nsHAYG7b52ppKTDEQGuKltH6fGD3PKCFPvu+qij/E3iSuG+DzxxBN86EMfYseOHaiqysc//nFe85rXcOLECZxlz4h/+Id/4LOf/Szf+MY36Orq4u///u+5+eab6evrw+2+9HLjbysW+r9hLcHJ9AiJUgqvw4/f5qeoFU0fmZdZov11otnXzB/t+CNUXWUkPoIgCJT0EvXuet647o2cjp4mYA9wR/cd+PFS6u/n9vZbzKmu0hz72vedNdV1TeM1XFV7FaqmckvnLYSzYVo8LfjtftKlNOlimhtabiBcvqAAnIqc4vjscdZWdXNo+jBT6UWH6Cp7FVtqt5BTc8TyMUra8sqGT/GZi7YonkV6ANw2Nz944V4SfgVBltEMjZmMeZEeiwxjE63ce+Q/SJXDWGXJwmlPM3lB58M1zQiABYnB+CA/GfxJWR8k0OFr59qW6xiOD1HlqKqM50dz0Yu60M+mZzkZ7SehZ/C7q1lfvf7cbtGyXEmIX1HIK8uXtNDFC/Gzk6EFAUPXkRHJaYXFFg0QGJnnxtDVRGtU9rZex63Ve1mTceB7agCxuxvDbq+0mASHY6WXXBELd+XGwgj4kqqdIIpmlWSJKeCFcOb4v6AoDA0c5IeD9zE/N2qeP1GkqqqJOza9mbbdu5Gqqi64XdHnM/UbS8wcxaoq1KEhjFLJ3M/y6L8eiWAAgs9H1udgurOKaTVGRhFQtQyJ5AyD86fRNRW7xcE6rxNXWSdCqUTOISN6qpAaGxffI103z40oVsiOVFNjVitkecWprl+XQFZQFNLa2eGyFcjysqGBc2FhirKgFphLz3JyppdCMYuCzMDkMdoc9dzYeRNttWsvar8q0RSRCHJDA3XTKaqbu4kW4otu3YqCkU4TdFbThA/BLiOIIhmHvIz0mAcqEMnO8+DIT3jX3jdhn0+aFblyewtZhnwesaEBKRikdPw4dR4P729+I/9n+gEimXmsklIhPXsa93D/yfsAKGhFEEWSQvGKEDbDFUR8fvKTnyz799e//nVqamp46aWXuP766zEMg3/+53/m4x//OG984xsB+OY3v0koFOI73/kOf/iHf/ib2O3LDno8TmlggOOOFF84/C+cjp3G5Q4ylBwl5Arx5vVvZiAygMvm4s7uO1lfvf6yJkC7m3bT4G7g2OwxYoUYPsVHo6eRolZkQ/UGWnyLBM66ZQtt8TjvDbUwVpgjQZ6bu28lVUoRz8VxKS68ipevHfoaw4lhbm6/maAjyI8HfkxezaPqKolCgj2Ne6h2VWMRLZT0EkF7EI/Nw+noIHOZOURMzRHAfG4eItDsaaa7qpuivrzds75mPe2BTgane5eRHlmyct2W2yg5bRh1NTTavCgWG+OJcUp6iYJaYGC+j3pXfYX0AKhaibHkGE8ZAq9P38760Aa+ffRe9rXcSIOnEVUvIUsy4fQch6cP0xHowCbbsMm2SkTGhS70R2aO8PnnP78suqPd386Hd314xXwwweUyqwgL+VJLyI/g8yEFg5d0wfQpvrN1LwuLbKFAlb2KKWFk8feahi0cY3NtO9dHfdhODGJkyzllC1lDZWfhczlWrwRBUczx7VzOPC5VXSSxdjsGUDx69GVNraUKKYZTg3x77D7iUhR30IclY07QRBIzPHDift7X3IWP6gtuy8jlTLfn6emK345gs5ntLYfDbJ1JEmIwSLTOQ7/TxpyaRJatzCT6uf/QdxgtzmK3uXnX1e/BW91IYn6SnJanL36aLVWbkOdjGNksdleGUrgXI59H7uiA/v6KGFuQZVMrVCZAcnMzcnOzuU9lg0Xp1+z8K9XU4J5aWawv2GyITucFpxz75/o5MXcCt9VNtaMaWZB55vTjZNUssmShyhZgPhfl3w9+lds3vxmH7cLan6XRFNrkJO6qKm5vex0PjT5KVMiZRDuVIuiqYX/7LbhUC5buLoxCwfSGWkJ6jGIRPZHAKBaZj00xFh9lbdGJ1NxsVn3SaaRQyGw9hsNo0SiWrVvRZmboTkq8ZfvvAOB3BJlKTTGVnOT+U/dTKk9IKrINweXC57iwQezlgiuG+JyJRLlEFwgEABgeHmZmZobXvOY1lecoisINN9zAgQMHVokPi9Md806DLxz+F07G+hBkmRNzJ0gWkxS0At/q+RYbQxtJp9I8PPAwx8PHWVu1ls2hzQCviHDvlUazr/ks35uVsHBH7QN8tAPmIv7vR/+dscQYd3TfwX0n7+PwzGEsogWv1YtqqATs5mes2llNb7iXR4YeocXbws6GnZyaP0VXsAtZlAjYAwwKg+iGjlD+DyDkCuGyukzd0RkX0ZArxEf2/An//MRnGBw7Cpik5zU738pIYoQPPfRBptPTIIpsq9/Gh3Z8iJH4COF8mLxaIFs8m6SoWolYMcFMbp7truv44z0f4aenf8qxuWOMxUfRDB2P4qG7qhvd0GlwN1T2FTjvhX42PXsW6QEYig3x+ec/z6f2feqsyo/k81XM9HRRrBAEweNZMdzyQlhfs5726i4Gx3uWV5AEgRpXLdf7t/KIfZg5Yd7UqwgCVYFG7mh9LY6JKEJtLdrMTCXkE8M4Z9bRUpw5vSW4XCZxiEQWSQ+YgmOPx2znCMIlj/kuaEWkfIkDQ08AYFdcdAc6cKeKpqA1Mc1YfAxfXet5t1VxYc7nkVvMCSWj3FrUolGzyogpEzjV5uALR77IQHKYqFQkmo/SVdXN2699P597/B9IZmP0zBwFWcapuEmlI+S0AonELIFUgaC3loaYgZEzJ81KfX1IXV1oJ09W3h9k2Tx3dvslE95fBUSXi7bObVSNPcl8eKTye8FmQ2psJOitPe+U42PDj3H343czmhhlMjmJIil0Bbv4g7138a/PfIGsmmW2ECUnFHni9M+p8zcTLsUuSvtzZjRFq6Lwe51/xnghTDqXwKHLNCvVuGVnxRXdKBRIjxXNtpWqYmia2U6WJKS6OoR0lrTV4BlpnnhkBL8zyNqaToLhDHJTE4WJCfTZWaRAoOJq3p5uYCo6xvD8AP3xIWYzZQsDQWBNcA05NUdHsHOZ0/zljiuS+BiGwZ/+6Z9y7bXXsnGjWZKfmTHL/6EzJkNCoRCjo6NnbWMBhUKBwpIk6mQyec7nXulYmO44pcQZiA4wX4hS520gXcrgtnnJlXIcnzvOmza8iW/3fJv7T93P5prNyJLMq1peRWewk8HoYEVE/HKFe5cLli7i66vXM5YY47mJ5/Db/WRLWWpcNXz72LdRJMUc/XbVkiqmqHPVkVfzbG/YTraUZTQ6xOnIaV7T+RpSxRTHw8fNxHgM1lWt45bOWxiODZ9zVHxrw9V86vq/o3fqCIliEn91M/f2fodjM0dp9rdQ4w4hizKpQoqvHPwKf7DtD0ynZ8n0EloJGjoWxQ5Ah7+DdcF1VG2t4qH+h5hJz5Aupjk6c5Rrm69lf/d+Ts2fArjgOPuJ8ImzSA+YwnCLaOGZsWfIlDIE7AE21Wyi2WeGV15suOXFIOQK8ZHdH+Vz+uJUF4JAR81aPrz9g3RErbzduYfJq3eQtUs4O2Qa8eIYN9OkjVwOsbYW0eFAamlBXrMGuaHhvKRnwVOFhZaWJCHW12PZuhU9l8MIh8nVVzHpMUjbBXy1zdTFZ/F6qi9pzHepVsRtLJ6XXCFNX2KQLc4OLFnzenXeFk0ZlYkuwMhkFh8otzYwDAzDIL6umS8c+yqDU70UHBY0QaVQyHBs+ij/YejcufF3+M7Rb/Hs0FO8a9t7GZUHzMqgZprdBd113N78Guw9o+b5DYXQIxGUzk706WmTZFosSFVVlYT23zTpWYCvtoU37PsgPzz63+a4uCwjOp0EvbXc0X3HOW/u+uf6ufvxu3l+8nnqXfVYJAsGBodnD8NRuH3T7/CfR+6lyhEgkTdv1POqSTSjuehZejotHkebnTXfF7sdqaYGyedb9rn0Al7OfaMgKAqeYJ0ZIFq2OjCKRbTGOjKSSmvbJv5z8scMDx8lnZzHkCU66jbwkev+nPVzEax79pjmlKWS+blNJAgNzPCxnX/OZ178ZzaHNtEzC7PZMGsCa7il8xbi+Tgf3vXh8wYjX264IonPH//xH9PT08PTTz991mPCGSXwhamcc+FTn/oUf/u3f/uK7+PliIXpjngxSQEVVTNFlAWtgEf0EsvEaHA3MBQdYjA2iCzKlPQSk6lJemw99Ef6eeumtxLNRkkVU7gVNz0zPQTtwcui8nOpWLqIexQPs+nZSlq6y+rCIlqwy3YEQcBusWOVrDgsDsKZMJIgmWZemTCSZKHaVcPDfT9iW+gqXt95C5mS6Xw6k5rmXw/+H/75dZ/jVTU7cWFdcV9qq1sIjM6hJZw8XaNT7aphY90WNENjLDHGsxPP4rP58CgeimoRq2ilyduEvuDpslTzIgi0VHVS7zHFlCPxEf6r978IZ8N0BbvoruomV8qh6iq6oVdyzxb0UOd7L1cyJ5RFmatqr+Lh0w9zOnaak3MnMQyDrbVb+Zvr/4a9zXtNF+GFYMNXILtra+1WPv3af6R39jiJbBSvxU23XEdVUsOwFfHWteItlcBqRfL7UUdGFkXMhoEgikj19ZDLYVkhmXwp9HQadWgIdXBwMRwUkJJJpLo65PZ2pnZ28eDAj4ik5zBiJbQj36e6oZM7rnorjYJw0VNrSx237VaHWbEqt0BzhTRJr0oQwGrF5fAB5x+hNkolMi4rE7Y8U8UIql6i1hKgXfJg93rRYjEEu50BW6oS6aEJBrquAWa8xPHZY7xx7RugrKF7buQZ3tL9O2xr2kU+k2CLq5ONI0WcYwnw+9F1HX12FqGsP7Lu3GlWI0ol5Pr6y6LScybaQl2874aPLJ5Hi2tZm3wlHJ87zvOTzwOmtYZH8VDSSmTVLIdnD/PWjf+DBm8zV9du5VTYrHrZZBvJkklEl+rpSuPjFJ56yhSVlyHW1KBcdx2WpqaLPg6jUKAha8XZ2smpxGkKqoBi8TKZGKLT3cYDgw+TKiRJk6a9qY10cp7B6V4+//zn+eTO/0lwytQnimWdlSDLUCyypSfC/7vlLzkpRshtKiFZLCiSgtPqZl3NuiuK9MAVSHzuuusuHnjgAZ588kkaGxsrv68te2bMzMxQV1dX+X04HD6rCrQUf/3Xf82f/umfVv6dTCZpuoQP2pWEhekOn9WDZmhYLTZKuopqaAiCgGqoeBQPmVKGklZCEiQkUSJXHmW0SlbiuThz2TmyxSwFtUAkG6HKXsWelj2/4aO7dCxdxItasVI9MTBIFVNIounAbBhG5Xxc13wdB8YPEMvFcFvdeG1eugJr2Nu4h+fGnuX+E6bgz2F1IEmmm+3e5r3sDmyhbnCe4mR6RWt3QVGwbNjAxPgxftD/n3zz6DfJqlkEoMPfye9u/F2iuSitvlYEQeCG1hsI2AMMRAbw2rycjgxwZOowJUOlPdDJmza8uVKJm0pPVQTXJ+ZOVF5T1VUKaoGb2m/iTevedMELPaxsTtjh7+Dh0w8zEBmg3l1PtmROnjw78SyfeOwTfPGWL7KuZt0rnt0VcoWWXXD1eJxSpA/yebNxJ4oIFgtyQwNSbe3ZrtGqekHSA6b5YunUqWWkB8DIZlGHhshWebj/wPeIRCbNLDC3GykQIKqleXDsUd7Veie+i5xaW6qvEmSZhto1TM4MVMhPUS+B1UZNy1paazqXjVBbRAutvlZemnoJAQGvzUuDs55erZcfvfQAM7FxAOxWJ3ub9vL27jdR1weaYRBT0xVnZckiIZQKFR2VgEBeK1S8fASrlSxFpidOERCcbJzNYR+fRTcMBL8fMRQybzatVgSPh1J/P6gqotuN8GsULl8q3Ir7gqL+pYjmopUWsSAIzGfmCblC1Mv1lLQSimxjbWANj/Q/TFdVN/W+ZvMcLuHA6VIaLR4/i/QA6OEwhaeeQnz965Eu1mIhHmeEGFbZxtDcAHm9SDg7R0nQ2dN+Iy/GjzMw34eGTrqQotZVi+xWGJzr41Rhkmud5joquFymJUS0PJpfLBLqGSVUfkxuaUFubr4izApXwhVDfAzD4K677uL+++/n8ccfp62tbdnjbW1t1NbW8uijj3LVVeZIXbFY5IknnuAzn/nMOberKArKZfpFfCUwm57lRPgE8UIcr+LFWydhK9m5umkXp2MDbK69il2N15DX8uRLeaocVZVWjVtxVxLFnVYnbf42vnfyezzU/1Bl+1fVXoXf7qcj2HHFsf6li7hVshLJRWjztzEcGwYglovR4m1hNDGK3+6nylmFBZGraq9CEARqnbXsa9tHJDvPZ5/+B96/4wOousozo0+RKWZA19neuJO/3vUXtGVt4DWzjErj48hw1sUsY5d4KHmQ+ew82bLhooFZBdhSu4WQK8R3e79LOBPmyMwRfDYfd669k4NTLxFwBPiTa/+caCbK2uq11HvqzRFUq4t8aeXsLVmUka0yNtl20Rf89TXrafe3L2t32S12BiIDVDmqKqRnAS9Nv8TR8FEavY2/8qrgWdlUZ1SVXm5avJHNnkV6ANPNOJ9nssNNJD4DgoAUDKInk+jJJILNRjiVYsy79aIdgJfqq+bzUW7qvoWfAVOxMTAMFJeXancrd257G4LFygO9i6Snw9/Bl1/8MkdmjyAKIi6ri/XV63nbhrfRFzuNTbKiaAK5YoZnxp/BJll5/1XvxdY3TMCfRvT5MAwDmySSMaxYLTaKegkB8FjcyKqBTbZTK7gxEgmCnhC3ubbj6J2ouD8Z8XglC0zesgVtbg59ehq5qwvR70crh2xeaaGWK8Fv91eqpvlSHotkYSY1Q5WzinQxhW5oHJ/pwWaxU+esZXfbdUznlpMbl8WFNju7SHqsVua2reGEJUKskCCgSGxMTtB6kcQnXIzz+Re+wNj8IJvqN7G+dTtHpo8QcJv+Y6fnB6j3NeNSXOiGTshVSzg1iyZKxLNRSicjiH4/clsbls2b0VOpZZYNgsuF3N5uEtkrJJdrJVwxxOdDH/oQ3/nOd/jhD3+I2+2uaHq8Xi92u9mO+OhHP8o999zDmjVrWLNmDffccw8Oh4O3ve1tv+G9/81gYfpmODaMW3EzHBumyh7kTWvuYHtoK9016/jv3v9mPDmOYZialFvW3EKDp4EaRw3N3mZm0jN4FS9rg2v57snvVjKxFnB45jBffvHLdAe6rzjis3QRTxaSRHNRbmi5ASjHIcz1cm3ztVTNV9EZ6MSpy0ynZ5iIj7Gxaj3/58DnzcmG8t38l5/9PH//6k8ynpoglo/jUzxssLfSWnRSPHTINMgrQ21oQLnuumXuvqPxUWKlBFbJSo2jhrnsHAICG0MbeWLkCW7uMKfMjs4cZSI5QaqY4v5T93Nn952cmD/B6ehp3rrhrTw19hS9872V7a4Nrj0r6mIBdtlOnavurN+fCyFXiA/v+vAygXNBLVDjrGFjzUYOTh1c9nyLaEHXdZ4ceZKiXsRn851/9P2XxPmqSi+74rTSCD7mIi9WVZERzUqJYLGY8Q7Foil8FkUMTSNdzFA6fhxx9+4LLvYLjtvRXBTN0JjOhbmh62ZTFyXAjtrtdNWsxeMKcnz2eKUt1upr5csvfpmjs0cpaSUMDLyKl95wL99Qv8GfXf9XPDX6JH6rj1QmQl/4JMOlMOPFMGt0na68mzZ3C0NzfYglEY/FhmALECnE6AqsIZeK0uZuYkfzbl5Xex0eTabZ14py9CRiWxuqKGLMzVXarkJTE3JXF6VTp7Du2GFGhKRSaMUiejiMYLNdUaGWZyIRmSYge9nVuItnx58lVUiazuhGkvnMHNe33ECbt533bP99ql01xPNxpnPhZSarFT3dTPkmwmrl2LWt3PPipzk2ebjyvM2tu/j4jZ9gd9PuC+7XyfQQQ2FTr3dq6hiNdV2MZaaYU+NsqN5AZ3UXo/FRBuODAEynpjEMna21V+FTvCCnERQFdXAQ69atKNde+7IrpZczrhji85WvfAWAV73qVct+//Wvf533vOc9APzlX/4luVyOD37wgxUDw0ceeeT/kx4+S4W7LouL4dgwqWKKVDHF9wYe4MO77uKnR/8DQRBo97cTtAexSlYmk+aY741tN/LYyGP4bX7WBNYgiRLTqWm8ives1zo6c5Tx1Di7ufAX83LC0kW8P9LPnqY9HBg/wI66HayvXk9JL1HtqOaDOz6IrpZITg4z01AievRbPNL/MKWF2IuyluREfIDx9AS3+XZhZDKo4+OItXaKR5aTHgA9Gj3L3XehzSGLMmur1sL8Yvr7fG4eWZCpc9Xx4vSLZnRGPkFJK6EbOp2BTgpqgRORE2eNoycLSdZWreV05PSycXq7bGdv817WBNdc0nnbWruVT+37VKWSaBgGp+ZPcXDq4OI5wSQ92+u30x/p54H+B/AoHuD8o++XI0Sfzxz/zp9ROdN1jFQKj78Fua0NikW0cBjB5TJH3MtDE46cSmniFFJrK5bW1vO+lltxs797f6V9pRkas7m5iv5qqfB86fucU3P0hHsqmi0ASZSwW+z0hHuIF5M8M/ksyXyCNl8b16+9iflchLSWQ/T7qS4WuWvXXXzx0Fc4Pd6DtaDjtytsadvH729+D/lYhBuv3kpb0oI77TI1U5F+5BtuoHj0KGIggNjcbLbkXC6k+nq0qSnI5yk89xwAQnmySO7owEilVpx2Wylj6nJbYI1CgeHxYzx76gE+tvdj3PPMPTw7foBIdg631cP1LdfzJ9d8lEalhn0d+yrGoJqhIWoGVVYfdsVJvbuB0cgQ9S4rsigyt23NWaQH4NhsD/c8dQ9fev2XLji9Gi8lQZKQDZE9G16LLgo8O/Es7YF2toa2IglSxZQVyi26XNSs/gTbOL1mjLSewi1qtMRn8YWaX3al9HLGFUN8jDMNy1aAIAjcfffd3H333b/6HbrMsVS4u6BZWcBwYph0KcOPT/8Y3dCpclTx0vRLrK9ej6Zr1Lpq6Qp2MZ+dx26x0+xtRhRE2nxtBOwB3rn5nVglK7qh47f7mUnPkCqY00yXy4j7xWLpIp4oJLil4xYssjmdsVTgqM3OUsrEuV8c48WJF5ZvxDBM7YMkUTBU5MZGtNlZhOlpUNWzSA8AgnCWu+9Cm6PKWcWx8DHafG347X7yap6QM4Tb6iaSi6Dp5l1jQSvgtXnJq3nGk+NkShkaPA1YRSujiVEkUcKreJnNzLK9bjtV9irms/MUdVMc3e5v580b3vyy3q+l+pqx+Bg22baM9AB0V3WTKqYYiA4gCVJFU3Rk5gifefozfOamz1yUDcFvGlJ1NXJXF2p//zLyI9hsyGvW0Fq3lupoO3Pj/ZWpsQVNTtBbR0PWgpFPok1NIdfVXXDRaPW18t6t772g0HZpWyxVML/fC6RHkRQEBKZSU6SKKSK5CJFclA5/O5OZaZ4ce4pbO27BkS6a02qqSrcg8L/bf5/+jTkS6Xm8dj/rnG14Dp4ATSNXIzHh10knhnCGZBocNUiDg8hr1iAuBJEqipnOPjmJNlYOATYM08PH4TBvCIaGkFtaMDKZZdNuejxOqb+ftFCqRC247V5amzbhDV58VfKVwPkImB6Pk84lyObTHH7pIf5/O/8nke0p4vkEPpuXoNWLO5GnUythDVlxL7yfs/1EkrP8bPBRCukEgyUdZJnq+k5u2bKefkv0LNKDKIIkcSx8jGOzxy74ffEpfgSbjbU1GzgeOYERl6hz1yIKEuFMmK21W0kUEowlxnBYHNhkG9c0XMNNHTdxInGKnpMPV7ZVnTzKHcrbaPW1XrFannPhiiE+q7g0xAtxXBZXZay60dNoipFzEXRDJ56Poxs6kmAmPuuGzom5EzS4G4hkI7R6W7m26Vqksj/NRHKCscQYVsnKt459i4nkBG9a/yYOTx9G0zV2NuxkPDl+RY64nymSXQkLUzk1tgBuxbPMNNB8glExMINylcBuxzgznwrMi1m5bGwssVJYaHMAbKvfxqHpQ6QKKYp6EbfVzWBsEKfVSUFd/Bu7ZCfkChHJRVBkhbyaJ2APUO+uZzI1iVtxo4gKJ8InuHPtnZT0khkx8Qq2nJp9zfzN9X/DJx77BC9Nv1T5fXewG7fi5tHBR3Fancykpimppg/NgfQcT409xV72vqKflXMtWCtNPrmwrvjclbahXH01gtVqOt2WXY6l6mqsGzdid/nY372fH8TvJcxUxbCvqr6D/WtuxzNXhDUBhPJU28UsIhcS2hqFAo148GtWIvkYbo856CEgLIr0DYNcKYeAgF22E8/FGBPGqHPXMp2YpEpy05C1moGhsRhkMvheOsUujweptQO5pgF1YoLSxATTa2t5cPD7xBUNLRpFEEUCzir2r7mN2gMHTNJjs6G8+tWg61haWkyDRJcLqaGhQn6MQsH0PVo4jvL3yigUKPX3My5neHDoYSKZObJ2iXk9jW8swJ0bfocNoY2/lna6Ho8vhnxKEtMhG73hCeJammpHDbIoMqVkaNuwB0WFZ576DhlJIymrFPUSitPD7617G1o4Qnx6lHEjRtoo4CwYPD/4JHokgkVVzZv5YpG5iX5+3KATMhqX70jZ6FEo52rFCivHoyzF+tAG9nW9joCnGmtsiGQ+wds2vZ0D4wfQ0bn36L3c2nUrN7XdhEWykC1lmU3P8u2j3+bP9/w5kiih6Ro2q52O2vU8N/EcT448SdDmZ4O3kyYpeFlW4S4Vq8TntxQuqwu/3Y/L6kIzNNN1OJ/AZXUxmhjFZ/MBoBkaLouLWzbfQrWjmryWxy7bqXfXc2P7jZXt2WU7NtnGjwd+zHB8mOuar+O5iecYjg/jU3wMxgapdpqL/sXmPV1JWJiIW2tUc33L9Tw5+uQy8uNWzBL3hpoNlYVTDAbR83lwOJi5ppteZonlYwTsQdaLtdQfm1h2AVloc/zHkf8gnAlT7ahGkRVkQWZf2z6+3fNtFFkhYA8QyUWwy3besvEt/PT0T3l24lk8iodwJsx0apq1VWv56emfEs6G2V6/nT/a9ke8MP0CXsXLVGoKzdA4Fj72ipHUvc17+eItX+Ro+CjxvCmkt4gWPvHYJ3ArbiKZOUqF3LKx+3hqjh/2fJff2/WBV+SzsmzBKkNwOJhq9nAg/BLJQpK8mscm2zgivsjVjm5KmTipUga37KDRFsJb3Yg2Orp8G3Y7lu5ulB07Kr44hq4vOjcXCrT6WnnP1ncz5NhAOj6LO1hH3Uwe+5NHKZUrIUahgBgIIL1Cx2nL57nVv5sHhx7GVoTNNZs4OtuDIinIkkxOzQEG2+u3M5cJIwgCyUKSNm8LTc46GkQf9tMT6KKIGAiYbtOZDIgiUiiEOjSEnk6TW9PCg+M/JpKcQWpoQPL7QdeJyxoPzR/g7e1XYR+bNT2BEgmsmzdj5HLIzc2maeXs7OK59HjMak+5IrbwvdLjcdJCqUJ6wnadF2ZeIJoxg2MPzR7hNR03s7/7DrY2XP1LnsFzo2L4WCY9L9UU+dSBT3IyfJy1DVs4MnMEj+LhtR2v5btH/5P2YCcf2P0B/vvprxKNmgLlBnkNfVO9iDXreerI14nEp8FmozbQxM/HHmeNsxl3Om+6WQsCRj5P1DtHa/06BLvd/I6UA2IF0dTmqbqK0+K8YFU9TwlVgu+fuI/+2ACzmVk6/Z28Y/PbWVPVzam5U4wlxjg8c5ip1BSSIBF0BJlOTjGXnaMm2EwsMcPWLa/lsy9+npemX8Ip2bDoAptqt/LXu/+C7WNeLJ2dV6w+C1aJz28lUoVU5Q63J9yDJEjk1TzN3mZe1foqapw1OGUn2+q3MRgZ5H9s/B/8oO8HlVHnKkcVo/FRRFHkxjaT/OTUHLWuWrOyICm0+lo5MH4Am2RDFmWmUlPMpmfx2rwXnfd0JWGhghOMFnjf2rdjaBqjqXFUXUUWLbRWd/L+be+nWlUo9h6pLJxCTQ2Hb2jjfz/zCQ6Ol1tkgsD2xp184tq/4bolrsVGoUA+nQBNo8vfSbyQoNHbxGx6FofFgd/uZyg2REegAwODW9fcykh8pEJ6Noc2c2j6EDPpGeL5ONe3XM/Ph3/OS1Mv8R+W/+BDOz7EfSfv4/qW65nJzKxoovbLYF3NOhq9jZXKSiQTIeAIkC/lzyI9AC7ZwcDwC4x0DrKpfusv9drLFqwlSIsqB4ae5KGJnzMVH68sKkFbgJmmvThzKpNhU+hZV9XBDfabGXFMERPjBOw+1lubqJvNL9OjqCMjKxIjry/Exqp1lBJWtKPjiwGQ5dBNPR5HGxxErq192XfMZx5nY0rkXS13MCml+MS1H+eLL32Fk/OnGE+M4bP52Brayrs3v5OvH/4Gnf4O0HTq7TU0615q4hpG0TST1KNRc6ormTQrVrkceiyGUSwyvcZHdDiGVFWFkUqhJxLmom2xMJ9OM7371XSWHaUFh8OsiFksqMPDCG43cjBoVoREc6pRi0SwhELmdFd58TRKpUrUQtYhL5KeMkEajwyRqUvwz098hk/f/Blqq1tf1vm7EJYaPk6HbHzp8BeJlRJsatpGz+wxYrkos2lzsObVHTfxk4Ef88UXv8SbN9zJ/c9/g/pAC69uvI5ULMoXer5KyFVjOnfpOrl8hkwyQn8+z2ZHG5Z0HsNiQcD0igragmxuuJpj4WOV/VF1lWwpy9bQViyShe+d+N45q+qz6Vn+/dC/M52dpdHXhIZpwxHJRfjhyR/ye9t+nxZfC48OPookSoScIQpagfnMHOtrNjCfnMVhDbJl/av57Iuf46XpQ6Bp6IIOSBybOcKnnv1HvrDn76i/RDfyyw2rxOe3ECPxEb5/8vu4FBd+m59YPoZNtjGWGOPQ9CE+ft3H6Z3r5c+u+TN6w71879T3KqSn2lFNd7Cbh/ofYjo9TYOrga7qLtKlNLlSjmpHNYIgYJNt+Gzm+Gu6mDbbLNqi/uFigv2uJAiKUold2DBf4G/W/SGn1BkSahqfN8SGus3UWHwUjxxZtiiO2fL87yc+xaHJl6j3NuJUzPajIIp848S3MSSRwKydZlsIbW6Ob4/+F08MP0ZW1JjLzWNRHLx2zev4xfAvuL75eu5ceyfpYpp11esIOUN85pnPsLZqLSWtRFErVqo5/dF+rmu5jmwpS4OngbHEGKliiqn0FAYGiqSwKbSJVCHF9058jxpnTcVp+ZfB0hbNbHqWrmAXhydfOov0rK/ZgLVkgKqSTkdX2tQlYemCtRQTtjwPHP2BOUZcDsPULBJHo4cIZ8J86OoPMBkexGa109K2iY88+T/pD59ELPuzLNzlbguDFomglSdclsLI5SrESKqpQc9kzMmlqqrFYNayR46h6+dtd53Lvfecx2kYODMlurDRlZHovP7THImfYDg+QtAeJJKd5z8PfhNF17GrFoxMBq/doM4bpCEtYWST4HIhLERuLISGiiJoGkYiQSpZQqypwchkEBwOpAVyIwgYqkoqMYdUX29O/pST1xFFxGAQdWwMfWbGjE3AzGaT29sRRBF5iXuzYLGQLls4zOvpZaTHfIJpnjgU7qN3poeQ58JaqZeDitGkKNKrTfH0xDMkMlF2tuxlODGMLMjYZTuj8VFuar8Jr8PPXGaOpqp2fnfrOzEwGD/5IqG2DQyNDGB3uKmy2DCKRWyiBXSdbCFN0qsTNAwolTCsVjAMfEWRv77mL7nnwKc4NteLgVEhPX+2+8/ome0BVnZ9HomP8NjIYzw59iRgxtYkcwk6A530hU8wEOnn5Mxx9rXt4+jsUYZiQ4iIFNQ8G2s28sZ1v8PjvQ8R6r6VtFjk0MzhyndWFAQW/AqOzRyhtzBOXS5w0W3byxGrxOe3EFPpKSZTkxTVIk3eJlq8LejoKJJSKZve3nU7Lb4WHBYHPxv+GTvrdyKLMulimpemXgIBXph8gZ5wD0XDFMPaLXYzpwUoaSXSS3KiREHEJtkq/75QsN+ViKU+MaFSiVpL27IJB2129qxFsTc3zExqmh0tu4nl42i6hlvxcDR8jGcnn2eNv4Ps5Bh+XWFH141MJkyTOc3QwDAoFbL89PRP2Vq3la6qLtOYTvHS6e9kIjmBpmtohlYxmtQMrZITphs6smh+xRVZoagVedO6N9HkaqLZ28z/c+D/4dDMIeyyHUVW2FSziY9d97Fzjs1WtC+qWmnxCBYLgtuNVO77L82zCths3LXtg3ym8A88m1xsd6yv2cDvbX4vJ0+ZF2mnZP+l35tzOSNPFeeZmh+upIJbJCtbWrfjsLjIa3kkp5OdW1+PjMg/Pf//8tLEizisTqzlhtTSu9zGdHpFcgUsi6XQIxFUQTDbObopYBWsVqSqKlPnco59vRj33vM5QBuFAnVTadzUMjT2FANzz9LUsZUGKcBkchTBbseuuGi3N3B78804+2YrmU6UF1+pqsrUnVmtlRwzp26SIUGW0RMJU3dSdpQWFAVPVT1C1oVUV4eRSiFYLBiqijYzYx5LOREewzBH2qemkBobzbbOwnH6fLgUN0axSF7KnZXBBlS0S/Fc/Fe26AoWCwgCmaCbY7NPkkhHAKMi3NcMFUGwoes6iXycmfQMJa3ERGoCp83BxMBLaFqJvKAi2GwU1QIINpP4FYrU+5qYSkyYNhhQ0T4FLB7q81ac4QJf2Pm39BYnmC/GUSw20yF/toeCtqjtW1pVX4g5WRh6AJAlC3arg1QhRZOvlZHYEDk1y+n5Pm7pfB1uq4dsMYvDYsdqSDx16mcUijlshkw8G68ME4mCiEWQqXaHUCw2NF0jpqbI1K8xndGvUKwSn99ClNQSibyp3M+UFvN5nBYnzd5mFFmpfGEmU5MV2/UzIQoikVyE7534HmsCa/Db/HQHu+mL9DGTnqHN18ZwfBhFUvAq3orw8EJ5T1cyzucFc9aiJAikSlnyeoFnxg9U2o0z6RkkQaKoFpjJzGCTITI1Tk/VCURBwjAMJLGsBDEMSmqBg1MHaXA34Ff8lIwS9/bcy+aazZVqj0fx4LA6eG78OYp6EUmUkAUZv91PJBshkU+QLCT55FOf5G9f9bc8NvwYR2aPlHfTXFiOhY+dc2x2YeIGWUabnEQdHzcXQ4cDsRxCKvh8lA4fXnR7BbqDQT699295pv154vkYLosTa8ng5KknKapFgq4aml0Nv/z7cg5n5FKpWGlvWUQL166/hfv77+d4+Bgg8NzEc1glK//z2r+mN2x6Hy24dS/c8fZMHaK3MEajY+t592Hh/Re9XqSmJnMCrNziEWy2ig/KSvt6se695zpOwHw9rxdnVuX2NbfxQOE+xgePcG3tVqjdiejzsdHaSPeUjnNgDrmpCVXXTTsGMKs0fr85bq5p6LW1UCzSaHioCjYSPn3MHG1OpdDLovygr466mRxSZ7sZU2GzIfp8qJOTZtusHBJb0a2IopnGfkbly8jlaHY2EHAEsVE0z1u5AiVIEk2eJpJZU9zrsfvozY0yPXiEklaizhGiQ6rGmSxUpsoEQTA/m5coxBV9PgS/n9H5/vLbb34GLAs3EKJCTs0hIGIRraZzsyBglRUeG32c6zp2MDU9gN3uAU3DKsiVSb/5Upx9bfv4+cgvsAgykigQalmHo7aJesnHhB6jwWqnbjpLneHnoBMejb606J9zBhaq6qPxUSKpMCF7tUlay2GwdqsDi2Sh1dtKV1UXr+u+lUZ3I4+PPUE2Po84P08eyANtniaSziooFPBVmWJ0SZBwWuw0+9sYjQ6TyJnnfzw6wjeOPs+dN/wBHTSuuG+XO1aJz28hvIqXeD5OUSuyt2kvDZ4GSnoJq2glU8rgtZpePKPx0RV9eRaM7iTBHIdeaGcFHUHes+U9/Ofx/+SlqZe4res2rJIVQRDYXr8dr817UXlPv61YtigJApGgQqlYJOiowqW4SBZSeG1ejs4exS6Zd3ICIkktSwBAVZEEEYdsRzcKyJLFzFMzDHRDx2FxYLfaOTh2kA3VG/jRwI84FTnFbNqspmyr38b7t72ffzv0b3QEOphMTRLNRhEEgS2hLRTUAmuDaxEQeGzkMYKOIPF8vFIVAlYcm13QlSCKaOPjqJOTldaFkc2iiyKlkycRvF5zoVsCPRKh5kWNazZs4IGR7zKQXlzYg64a9nfvx+v75e/cK1N0Z1RkaiUvbleQprouNjZcxSNDjyIg0OQxCahuGDw7/izf6vkWN3W+lh+euh9DEEzxsqZX3stYLo4QsJ2di7YEC++/6PMhut0YKyxYgt1uamnOmBzTUqmVbQ8wyY82O2sGVp7jOBe2DYBh0JSx8O6uNzOWmyWj53AUDFr9G7EePQXFIkKZwEqhkLlNq9UULi/J0RIVhaLFgnNigts3vZ4fxhPMz42ak4qiSNAbYn/Dzdh6T6MaVqTmZizl0FmhPLkolEW6y2C1msnhSye6+vpwFArcufWtFCYepid60mx3AU2+Fq5v3Mtzg0/QHOpCF+BTz/4j04U5DFXFVjTYE9rO21r3U/vsOEY2ixQ0p49Ev/+SjBIFRUHy+UjPprBh0F29nr65E2SLGeqctWWBfIHuQCczqWkEQeDq+m0UizmmUpPQer15vIUC7TXdeGQXqOZ7oqZTTOaHuG3dftYFuskKKo8OPkph4FkGixqi203AFmB/9200xkVcWDHyeYRzhOcuVNWTqXm0mRkMv4U6S5Cp5IRZrXM4kGULFtlKe6CDFl8rDouDN6x9Az85+n3mWPy8tco1vHbd6yhlU2iOAHua9tA710uNvXoZ6emuWYc1V2J+dpgfHvg67/N/HK/v3KGplytWic9vIUpaiW312/Db/Dw+8jhPjD4BmN4ee5r2VEqm6ZJJZq5pvIbnJp47azvXNF5DnauOhwcept5TTzgdJugM8tHdH8XQDQpagXdseQeKpCCJ0ll+I0vjMn7Vjr2XAyqLUj7PhFvnm4P/l2ktTkEr0BM+ht/mpyPQgYRETsuzpXYrmXwKXdARPB7QdfxO01q+P3aaKiHAfD6KKpij4Q2eBpL5JJ2BTn46+FOGY8N0BjqxSTaKepHR+CgexcNdu+4inA7z+MjjGBisr1rPmze8mb974u/QDG2ZlYHD4kAUxGXHcebY7IKuRHA60dPpCukxHzRbJVokguxwVFpKZ/59Mxt4V9ebGS+ESatZXLKDJqUGf9OaV0SrsVSDtZQUdBDkzp3v5N8OfQ1BUXhowIxbCdgC7KjfYVbfRJmJ5AQ76negAwWtSE7XcFjtWFQDAQG/I4A2Oorg92NEz9YkLRCa8+3Lggh6QRO09DE9nUbu6EAdHFzZKbpcYTnftuWGBvPvAQwDV1FgnVGFUcijhcNYAiqsX482MrJYdYnFkHw+pOZmjEyG0tCQmddVXY3o86Hs2oXc2UlzLMa7uv8HY4HTpI08LslOQ0bGPhwBiwWjUDCT1xfOgd2OVFWFms8v/7xYrYh+v/mcJRNdC8fSEDH4w+pb2dG0i2fGnyWXT5EspXlu8Akaq9p52+Z3cO+hbzJVmjMPM5Mhm89zQH8epWjwHscOHHFTQG0AyPKKRonnhSji8VQRHzjA7657M/8pfJe+mV62t+6mL9JPSBC5rvlaftB7H1tDW/jD7R/guy98Ez2VIhuZhWKRYnSeP173bp448RPiVrVCSv3BBnYra/BM5bl34iH0fAy5fL60qSnmjEl+kErx3p1/QFNeJmgPEONsS4yFqrpRKOBIF0FVCUfGuKH9Rn46+jNG46NIeRXJakORFVp8Lfzk9E/QDI0qRxW3rL2drHecdCmDCyv1CQFHz6T52RvJ8r92/xX3PPdPxHKxZaTnd9e+hcihZ8FiYX5ulNHZPjavEp9VXA6Yzkyzs34nD59+mEwpUxEk22U7iUKC75/6Pjsbd+KyuHhi5Ak+ft3H+eRTn1xGfnY37eYTN3yCb/d8m7XVa/nv3v/m5PxJM99JlNlWt42/f/Xfn1MPshCXsTTT6Upz7L1ULCxKsbEBHuz/LpO5CUZiw+zrejW5Uo7TsdOMxkfp8HdwU8dNXNN4DROJMYL2KmzpIiNHnuT23W/luYHHsFdtJKmmyQsa1YEmXtv5WobjwwQdQeaz84zER8zXRKDOXYdX8VLUzaDVbXXbsEk2djftJp6LM5ma5GuHvoYsyUiGhM1io6gVEQVxWbVnAX7Fv+zflTtzVV15US4bOC6IeFeCoaoEujfj+xU6wK6U1VWSixx56hsUtLypeSpHrhS1IuFMGEk0jRUzxQwOi9kayBdzlcR6u8XOjoadbHC0gSYg+f1o+TxGdjGTbIHQLD2Wc+WGAWcJ4MFsU2lzc4i1tejlhOxluMhta5OTywmRLJuBkx6P6SgdiyG3LLahpVAIrFaKzz+/rEUp+v1Yd+1Crq1Frq9HkyTc0ShrRjLlz0C5PSZJCA6HeexLPhuiz2fmluVypoao3PIDEKxWkwAtmehaPBEGzlSB6zJe1tW+nlPFKRJikTetuYMqRxXPTj3PeGHW1EoVi+Zn0jDIlnIMpUaZrN/KGjDJlqpi5PMYsnxJmiDBYqFJDOB3VxPpPcxbWl9PsctCQS/xvqt/n6JaJJKd55q6nVRbvEzNDbO7ZS+iIHJ19Rb8thwNSg2O3imam25jylEku9WJI1uiSXXhEhROuqPEEzKi3Y+ez5s3FOVKYiQ8wujcABvcHdzevZ+HJn9RiSYBllXVtdlZmkpOgu4Qw8UZDp56gOZAK93BbgqGisfhZ3fTHg7NHKrEZcxn53l45Ge8w30tjqSNeQf0BOaJu4r4rV66xBq2ZXx8YfffcTA7wNHpwzgkO0peJdLzIpoIQvlmKV1InX0CrwCsEp/fQvgUHwcSB5jNzFLvrkc3dERBJFvKcjp6mk5/J6PxUVp8LTitzv8/e/8dJtlZ3nnjnxMq566u6pynu2emJ0dJo1EEgVDERNsIEPIuvGAwZne9xvt6scFG3uQfBhsbFuNdXnKUNGQkUGCUJ2hih+mcq7tyrjrh98dTXd0905OkERJcuq9LF0x3V9WpU6fO833u+xuYz8zzqRs/RSQbIVVI4bF5cFvdLOQWCLqCVdADVNOID80e4vPPfZ4mT9M5fJCVcRkrayQ+wmef+Sz333z/q7rzs5KgW939nqfdfHbJfj8zOQvxCQOb7EXPWTg89Rxb6rZwXdt1OCwObmi/gS8d/hJfP/Y1iloRu2yhL7yZP7nhQ3SNmawL3Mi0xyTvteMN1tNW08H44iiDhSw2mwtFFp2aGkcNFsVCXstzcuEk8XwcRVYIOAJkShnu2XIP//kX/xmX1VX9/GVJZjG3yOa6zSJI9azaHN7M5rrNq362tDOXVLW6eK3+A8HdWHKZXaskm+2Kp7Of73VWvsbpkV9xfOEkDsVGg7uBgEOAupJWYjQxyvaG7TgtTsaSY+xq3MXm8CbhzC1JaIbG1rptfHjbB3AcOU1xPo6luxvr9u1C8VRRL6EoGJkMZqm0ilNy9rEYmQza9DTaxASoKrLLJUAAIvyR2Vlkp5OzoaUcDp9z3s53Li/UaVoyUFwJlsxymcIjj6wKogQw4vFVkSqy34/k8YjjXFKAVbgkktVazSpbeXyWvj5MXRfvV9cFGdrtxtLTg7oipX1N3pJhUJsw2KfVCBWY1cqz2QFyFpY5Lyt4WJgmZVMjaxRWPccSGLsQKfzskv1+3OMW7mh5PQeAyJkTQmUHZHM2JswEBiZ2Vz1fO/MdpmNjIEk4FDt63Qx3116H2zQwdB3nVITe+nqsbRuR24SlgVEokJkcwqzklpkVFZ1kt1dfJ5NPQkClI9TNvaG287p4m+UyrpzGG3rfxH8/+k+kC0lOzrwAQE2ggT7bVr5+/Ovsa93HQm4Bv91PUSuSLKd5xhoh2OLmn5/4e87MVLL9FIV1LVv5yJ4/ZuOMRE9tPUdO9ZMBlqQsS5xAAPdvKaXhNeDzO1ib6zbzxMQTzKTP3TmGXWHq3HVkyhk8Ng/Xtl7Lvzz3L8ykZ3BYHOTKOcpGmbArzGhiFLtir4KepdIMDQmJodjQmjbqK+Myzq6R+AinIqdetcBHm5sTu98VC8HK3e+lVNYoILvd1ORldtXtpC3YjiZDvlygwdvIj4d+zDNTT2MCTosTrVSgP3KKr578Btu3/QUNIwusT8tYu3cgO52Mjh7nJyM/4pHpJ+isXYfHGyJXyrG1bitTqSmm09OkKmaKMjKKpPD8zPO0+lp5a99b+dqxr1XNJQ3T4OvHvs5fXv+X/Gz4ZxyePVw97s3hzfzFdX9xzue5NMKDSsJ5Mrk8vqhwORS/vzryOLvkQAAlfOF2+MuV0ZQoJsjrBRYS08SyC9S761f7pOgaJb3E1vqtzKVmePfme/ijbe8jXRKLTIMtyDM//b/U9d7GunwebXwcVBXb7t1ImnZekHE2p2TpupLsdvRpkYdn2O0ozc0CWNjtKBV+zMqSw2Fs1123StJ+obpYQv3ZYEmbnj4H9CzVykgVyWZDbWlBHx9f/feqKkZcHs8573nlqMzMZER3yO0WJO2zOljn4y3JHg9qU5NQj80ncKScy7+UpKriC0nCIqm4ZDuw4tpc6jJdgBR+dkk2G5aeHloGB3l30+1Mtt1AppjBbXHSVtNJwgEHRx/jwNFvMx0dBcDp8NDjaCExeYYDmRzv3X4vdsNAWuo6lctIFT8n7ehRXJINSiXBl1IUIWs3DAF+SiXcVlf1vHuwndcTTbJYBOgr5Ngd6GN3/Q4KehG7YiNWTvLoxEGKks628BZssoWH+h9kLDlO2SiTXJ/k6OxhrLKK4nJjIDq3w1PH+Aft/8enr/lL2jw11IbbWYyMnfPateF22up6L/m8vprqNeDzO1it/lZu7LiR7/d/n0h2mUwadoXZ37Yfn92H2+ImXUzz5OST7G/b0ERuyAABAABJREFUz788/y+8MP8CEhKKrNAX6uM/XPMfmE3PAqLT47F5UGUVs6KacKgOovnoOa+fKCYueHwX+/0rVUYmcw7ogXN3vxcrt8WNrJt0OJuYsyf41+NfYTh2BiSZd219F4dnD7OjYSfjiTFKegmHM4heKnJk6jlOb52lyStiKzBN4hNDPDR4gFQmQm9gHcOxMd7YuI2+0AY0Q0ORFVLFFBISqqLS7mtnNj1LPB9nJD7CDe03sL52fdWGAKDR00hJL/GJ6z7BVGqKeDFOwBZgc93aPj5VXsngIEpLC8jyalWX1ys6CoEA5cOHVz12CTRe6Lyt6bh8HgBxueWzetFLYhf9i/6f8Pu73ouJyYnICUAEee5u2s1H9/4Jf/vT/4pDtqBIshiTZDO8Y9Pvk88nyZSzQo6dz6PPzFAeHcWMx88Z/a309KlmO624rpTmZRWMWSigT00hVToais+H0tmJ0toqgKXTKewCQACQSwSDl9NZWwuonu/3SjCIbd8+yseOoSeF0eYSuFDa29c8NslmQ21srD6XkUigLyysArcX40QtPW+bv40X5l+g0d3ITGZGdJtUFVPTcFocdHraaMpVAI7VKn5vt6/iX11qyX4/1q1b8ScS+M4CkAEgmprjCdWNM9SLRVLxGlbUhRiYJtHYNFNKlnVLNgGGsYrPZKTTNJUkgt46IpGIOI8V9ZukqgRDrbS6mpEvEK690loC0yRdTDO7MLrqbxbtOhk9z2J6nlw5x/f7v89IbBibaiPgDOK1eXh+6lkC9gDrPR1kEwvVx47Mnaa/OMUNvibu3n8fDzzxr6vAT224nbuv+6PfSmIzvAZ8fmfrmpZreM/W93AycpKCXsCu2Klz11WVV21+0T51W93803P/tGrnjy44Ot89+V3euO6NWGQLXpuXRCFRJUb77X5i+RhumwBQK1Vcfpv/gsd2sd+/UqVHIpe0+71Ytfnb6PS0cXzxJD8fe5jJpRBPU6dQLjCRHCdVTGFXbFgkBY/dh+pQkEyTjJ6vKofMYpHJYoRoRQnlLUr0eboYmn6B+7bcy9NzzxEvxLEpNhEiG+hgd+NuHhp4CBMTzdCIZCLiM1QsFMoFbKqNXClHJBuhs6aTrQ1bL+ncLC0ES1wJS18fZqkkFuYVu3jF718eE9psKOHwBc+ZWSwyOzdMv22WhJQiYPPSq9QTjBUvn5S6Rm1wt9Nbu56nJg6S1/J84/n/w80bbuXOnjuxyBa21G1B00t8//h3sACKpiNZhaVAo79VSLJNE7fiQFpqGhgGFIsYuZwg6q5wJTYTCchmBdm7suCvvK7MYhHJ6xXPiwA/RjaLYrUKgnJdnfBDqoBB42UAgyvrYuf27N8rtbWYGzfCmTMi3kJRMItFSs88A3v2nLcrWrVDqHRoTE0QftWWFqHAukinCoQ55r7WfUiSxA8HfijAj8uFw+JkX91u3tp+J67jE5hW67Kqy+M5h391OefmfACypBcJ5mXMrA6SAVIZs2L6KNntZIqpZQPAyqgQxGjKLBRwxlLc0X0LD6bTLM6PVQF0jTvEnetuw6OcH6yt2ihIEpLPhyufoKSYpBSNPBqmqmC3OskuZChpRTx2LyMxQXwvakV0XaNsCC+heD6GXrOu+vxmhbOXyCcxCgXagx3c96a/YHx+gEwxjdvmoa2u97cW9MBrwOe3plaGLHqsHmqdtSxkF1aFLq4EHx6bhz/c8oc8NPDQeYlxmXKGQrmwGvQgZOzt/nYmU5PYVBsfveqjPDf9XFUd5rf7afG2oEgKQ9Ehumu6V/FCNoY30hnoXHPc1RnoZGN445U+PVekLmf3e6Hy2Dy0BFp5fuFo9WaDJFxbPTY38UICm2KnK9DFC3NHGU6M4rK40PUy89kIU55GWjQXkixX3WyXylo2sJZhvP8Zbt1xK5vCmzkWOYZFtrCQW+DRsUexKBZsqg2XxcWOxh082P8g0+np6nM0uhv56FUfvWzLgUvpJMhu9yXzoQCOzB3ls8//L0YWB6s/66zt4cPbP0BflJdsVBcq2/jYzj/mk6Usx+eOktfyHHjhu2yo6+PdW9/DsZFneUP369nk62Zxdpg8gjDbWNPKTcE9TAw8TzDUSlPeipmPiUgGRQGbDX1mRuR6GQZmLidyqDo6MGZm0KenkSseRyuvGyMaRW1rQxsfr4IfKiBgaYE+X/zGWt2ktcosFtETCTFeqvBqVsrUV5YSDiMHAmsC/rVGlOfrigLn7YouBZBisaDH40gVEryZzVJKJrH29Qlzx0u4vtr97QQdQTaHNzOTmUHTNeqdYeHjky7BDZ2iwyLL1U7Py+Hw7LZ6kQMBdF2nbFVIqRplScEqW/CqblyaLCI5AgEsW7as5jNVuEcNw1Hes+XdTCYnSOcSuGUHLdYQnrwNy46eNY/7nGvDNDEzGVz1DUQmipxOnCFaiFIu5lkX3kDIGaLGXkOxXKjysnw2Hw2uOuFNVAGiSyDIXCFQ8Dt8FB97DNnnw7V3L1t691/x8/hK1WvA57egxhJj/HDwh0KRIglgEsvHhFtvWbj1rpXf0u5v595t956XGOe2uEmXVrPyFUlhW/02hmJDDEYH2dW4i9n0LLqp88HdH+Sx8cdIFBIoksJbNr6FR0YfYVvDtlXAp85dx0f2fuS8qq5XK7/ncne/F6pUMY1VUgm7wkJNpFpIF1JMJ6fpqekmV86T1/K8re/tNHoaKepF0YlzNfKTscd49zXvx63JuFXnms+vGzqRxAySVWIkNsJIYvk8Oy1Omr3NhFwhEvkE+1v3Y2JWAzq9Ni8bQhsu+b28XDWRmODnY48Q8Ia4JtBEMhtjIHKakdgZPnf0X/jb3X9OXSVm4sWWZLGwJaLyP675Kw6nThPPxXBbXFhSeRZOHeKeHe+kaV6np+UtXBvcwfH0GUzTgHyByeHjBHxh7mh5HY7BCNhsVYM+IxbDiMeFS3E2KxbyfB6tXBZp5LA2SDGMqn+O1NoKuo7S3o5lxajofPEbsNohGs4l4ktOJ0YkIhbHTEbwRiQJpbkZy4YNKKHQan6N2411797z8trOBjEvpitqJBJV40J9bGy522WayB6P4PcYRtX9+2LlsXnYXCdI+MsRH0lMh0NI838D4Znt4XUE3SFG5BKDsSFyqcp9VJbpCvfiaunAWmNDbW1FCQarj5P9fsGTi8VA03AMjLE+GERy14OiCLDZ0HDBbs/Z10bWofDjYz9gb3gn4/kZ5hKTmEC2nMUwdN6z+R4Ui5UNoY0oskKxnGcqPk6qkKIn2MtgdACLYkVXVcFJkiS66jfQU64BI3bZo/7fhnoN+LzKK11M88PBH+JQHTwy8gipYorx5DjpUppOfyfv2PSOaiL3lw9/mTt678BpcZ7TEeoL9Z2zw2/zt1HjqFn1s85AJ0OxIaK5KIqsYFWsRLIR0qU0TouTP97zx8RyMWyqjblKWJ+mn7s4bavfxv0337/s42PzszH8m/PxWdkhW6sjtlZd7u73Qq9bknRsVgcYBlq5gCzJZEtZnhh9jLdveSejiTFu77mdLx3+3xyZP4rH4ibkDNHj7eB9u/8901qcDf4uWubDBN3h6rirWqpKSTa5pfMN+G1+vnfqe0ykJlAkhYA9wHXt13F7z+38euLXLOaWjcoUWeHa1mtfcYPJscQYn3/283zr+DeqzsEtgXb2t17D0/2PMDx5jNPrhghOJZBdrhc93lky52sbWqSm5GDKEiAr67gMH6/zX4c3Idr67rzOzimJvp7XMz7XT84n4bp6Fw2TaRzHxqFCIpVDIdSuLkoruUwrJPxmLIa0bp3gXlR4GOdcV4aBsSD4FHIgUCXvVp/jIgqkpd+fTcSXQyGoBI5SLIpokVxO5IPl88LYr6MDS2vrqvOp1tcj33zzJY0oX0xX1CyXwW6nfOoUsZYahpw24qUUAauX7rSdmsFBJKcTfXT0skZ5lxLx8XKV1x3k1l2/z/0P/9UqbkxjsINrGvbyk2MPcO/rPobPH1z1OMlmw7Jli3C/rnDEjIUFJLcbtbMTSqULAre1ro1JbZHIzBCJzBjrPV3sqdlKySzTGe7l0TMP87P+H9IV6EKVVSYWh4W5JHAmNsSdG+7k0dFHUXShkDM1ja7GPv5kz4cJvDBRfY3LGfX/NtRrwOdVXuOJcVRJ5ZGRR5jJzOCyuKpdmpHECD8Z+gnXtl3Lk5NPktfyNHobscgWDk4exGvz4rf7AdbsCHlsHnY17mJv095qbIXb6ubUwilUWaW3tpd8OY/T6qS3tpfvnPwObpu7SgzdULuBd/S9g0Z345rHXueue0W6O2OJsTVHfG9ofx2lbIZ0MYnb7qU9tA6ve8Vu7DJ3v+d73XQxzfrgeuo8Ddy28W50QyeWXeDRscfIlNL8fPjn/N3r/hv/dvTfiGQXaPW2oKKgFfKcKpzky8/9b/7m9fcLImVrN3dKd/DQwIFl8KOqhFp7uXPj3bT522j0NLKtflu19d/gbqA72I0bK+1SDROZabJ6Abc7QHuw6xUHPUvZQuPJcUGOrbTbJxaHeaJcZnPjZk5MHSapZTCN4Evi+kg2G0p7O+XhYRyRiPB4kSSUxkakQADt1CnU9nahCurrQxoYYN1UQki0fSpKqBEpXCEkW61o8/OUjx8Hux05EBCqHNMUJFZFEaRdv1/wfyQJs1xGqVxX2tSUAEnlsgBSioJaUXWtOuaLKJAki2XNkZNkswnC9PS0GLHlcsvk61IJI5NBKa7NnbrUEeWL6YpKFgtoGv09Xj537IuMzC6rRDvrN/CRbe9nc6VjVh4YwNLXh5HNXnBUd6kRHy9nlUsF9tTvZE/LVRS0PHbVhlkoMTV5EgOT8djomuZ+Sm0ttmuvRasE3lbl+ZqGpWftEddSnX1tmJpGqhxDstspyCXOzB2rekwVijnmM/M4VQcvjDzN3bvfyY/MA4zER/DYfWimzmRqmv95y/8inlkkkV3EJzvoMUIC9JRWGyde6qj/t6FeAz6v8sqUM5iYzGRmsMgW1teup93fTkkv4bP52N20G9M0edO6N+Gz+2j1tfL1F77OSGIEh+pgW/02bKptzURfENL3T934Kf7u13/Hscgx0RaXFXpre3nz+jfz9NTT7G3eyy9Hf0mimKDJ20RXoIuxxBjDsWGOR46zu3E3Xz78ZWqcNWwObaYr2PWKna+lRXUl6AEYWxzmm4l52j3NLKbnsSt2jk48y/7e19NRv776d5ez+z37dQ9OHMSu2mlwN/CD/h8wl50jW8pyJnaGencdb9v8Dn4+/DO21W/HMHV+PfoYkiThVB1gLntjnIqcYDYj1HSy30+nYw/3htsqACaP212zCsCsbP0vlZFIUBo4ij2fpwcACclRxOLU4cpTHi6rxhPjxPIx7KodSZIwKwsjpslEYpx9zdeAJOF3BJDK6jnjncstM5sV+VnhcFVBY5ZKUCqhdnai1NejhEKYui7Sx5uaRKckHkdLJARpOZ3Gsn07en+/6P41NmK43VAsIlfcujEMobaZnkZPJpE3bVq1UOkTE2IsUyFDK3V1qCtUXkt1wVgKpxPJ5UKbnkafm1v20qkQa5ectM1S6VyzScNY3Yl6EefzxXRFZb+fxeQMn3v2i4zM9a/63cjcaT577H9z//V/QzAurlttcpLyyZMC+ABYLKhNTajrBAFXslrR4/FzQE/1ba6I+LhQnW2hIDmdmNnsJVsqpItJIpERwsFW7DabGCXb7NTVryMSnySTiZ5XjacEg2LkdZmGnmdfG2axiDcUwsjlsNhE0OySQqx/7gTX9dzEfHqWwfghRsZe4K7mW7BsClDva6TGWbuqC18eGaH4+ONAcs3XPh/n6OWwoXi56zXg8yovt8VNQStgkS1c13Ydvxj+Bc/OPItTdfLhvR/ms898VkQizB/DMA2ub72eP736T/nSkS+RKCRIFpKE3eJmtDLRd2Vd134dTZ4mjkeOkywmub7tevLlPE9PPY3b6iZVTAl1mFYgXogTz8fZWrcVr93L0bmjfOPkN/juqe8CsLNhJ5+4/hNc137db/xcwfKiurK0chGPKlLog65aSuUimqHR4mvB46kl6A6d0/m53JbuqYVT/GjwRzS4G3hi4gkGY4P4bD56g71srd+KRbaQLCb57K2fw2fzcXrxFG67B93QkVeAHhDJyoXyCjWPzYa/rhXFH6iO78aT4+cd3y2RSU0QnYVyGaxWTKA8OIh169YXdXN6sTe5s8eOeS2PIimEXCEC9gDxQlwoYiot+JKk09W0ifXWRkSE4uUZ0K153AsL5/290tSEUleHNjaGkclgzM8L9U0uJ8CEzYZcWdDlYFB4rdhsmJEIWK3oi4uQFWaQkt+PkUphJpPoo6MiCHRigtKxY5j5PPKKRHIzlVqTOyHZbOQ7mhgbO0o6l8RtddGi1OCRHSgtLQIUSNIyMKrkMqEoywaThlEdz1Vdk202wUkqFl/0+TxvV7SmBuuePZjZLFoicY5cfUCfYyQyuMYTykI6XZ7mGs2GaZpVftLKvyn396MvLKC2t2Nms8KFemnEuBRounQuKllZF6qVyihT18moBpMkyDlU3AjnZmxWZnyQlTXcVjGKXkjNkUov4saGVbbQVN/DozNP4nPV4HX4KZUWCdoC9LXuwpksUJx8DsXvx9LXd84I72Jk7vMZqa6U/ktuNw0LUUINnZRTM9g1yOXzwttHVRlfHOb27tvY13Q1ne4Wajxh2ut6Vt3vlupyQa2+uEj52DHhOq0owqeooqK7ksrDl6NeAz6v8mrzt+F3+NkS3sKBgQNMpaewKTbeuvGtfP/09zmxcIKQM0SLt4Wp1BTPzTzH3x38O/5075/yuec+R8lY3a5cSvQ9u7qCXXQFu5jPzPPY+GOMxEeosdfQv9iPy+oiUUwQdobRDR0TEZqZLqbpX+xnZ+PO6vMcmj3EXz/213zR88VXpPOz1vtzqy5+NHCAhUIMr6uGpJZBN3UG4kNkB75Hc00Hu9e4EVyslrLIkqUkY4kxvHYvHpuHwZi4wSeLSfqj/QQdQUp6iWguimZoPDX9FH6LF6fiIFFOUDDKOFUHqimhKhZq7TXUnBUbcb7x3dnjS6gQIIHy6dOC76Hrgp9SW4tl48YXtdt/sV47ax23YRi0+UVswu6m3RyePUw8F0NWhOdJnbuBe9a9jWB0+dq9HAO6s+tSxjNGIoGeSqGNjQn3XJttuYOSyWBoGmpnpyAMZ7Oo3d0YTudysrmiIHk8qC0tlIeGqq7I+uQkZrGIdubMck7VSpXXGtyJ0bl+HnjmK0QzAqwpSHS37aCreROJuYNoSpF6Zz0tTSGcs1HRycnlMCquv5LPJ/gaqdTy8dntIrXc6xUKtJdwPtfqikoulyAun+f6SJRTolNRLK4GKpXznywkMQteJLsdI7vCUdxiEQtxqST+t71d/NxqFaMYWRbnc+n5JEkAvooj9lq1UhllFotMOoo81P8g0dg02O2YtTV0dexgaHaIdHoRX00jBcokszGuCe1k4tTT6IU8e656M08sHqIttI4nRh9lIjlRUWzpbG7eyad3fxxjdAYjHsfUdWx7917yhuNiRqpL0n89FsNTKHBb7bUciP+QgrudQWmcXCZBo7uB62t3EVmY4PaOW+ho2XTB7+rljPr1aJTiwYPo0Wi1WytZrZh1dXAFbChe7noN+LzKy2PzsL9lP4vZRQZjg0hI+Ow+Qq4QJxZOICERy8do8jRhV0UG09NTT1PcXUSVVboD3Xjt3mVFj8XLRGKC4/PHiRVi1Dhq2BxeNq5bqchKFBKMJkbZ3bgbv81PnbuOE5ETGBjYVTu1zlpMTCzy8k3UNE2en36O4/PHaNc9v/HW51Ji8cqSZJlIboGAO8RYYoypxDJpbyI5yW2JQdYXzyV/X6hWZpG5rW4Wc4s0uBu4oe0Grm6+mmwpI3LNFEv1/HhtXk4tnCJVShF2hOjyd3Amdqa6S/dY3DgMhe5gDxvr+qqvlS6m+eaJb3J64XT1c1xyYn5o4CHu7r2b4dhwNQx2vaUJ9+AgRjQqFoXKyMOYmaFULiOHQpcFfF6svPp8Y8eyUebg5EE2hjYylZqqSG4DlMpFugKd3NbyOrpGkpgVg7oXY0C3si62k5VrakT6vNVa5clgGKJzUFGVSXaRzG6Wy0h+P/r8PGpPD5JpigXBZhNAJxpFqXQlzExGdFaWwEdl8ZZ9vuWfsZo7kcpEBeiJC9d1RVZoae5jqjDPvz78NQqFDGVDw2Z3cV39VfzB9htoe2EKNA1jbg61sxN5/Xohl19Ke7fbUZqakN1uSs8/j2XHjks+n+fr8q3siprF4tr5Y/k85ZMnUdatw2/xVl2G0XUhm5Yk4QNlt+OzesR50zQ4uzu3xDWpkG9NTRNS8bo6jPn5VSAK00Suq8OU5SooO7uWlFGmppE2ixwY/akAPZJE2imj2hX+7+EvEy8maXXUo2Un8bprKeRTPK3p7N9wDdlMjLxWoCXYzsGxXzMRHammzquKjYX4NN859V0+EroV53wcbWICdd26qrfThWot/pap62gzMxiPPYbtmmtQAgGUuroqR6jh5BTvqr+RaZdGwg6my47LULFrEu2tW/A3tF3SffhSRv1msYg2OYm+sLCKR7YEJJfO8csdT/NS6jXg81tQ64LraPe3U++qJ1lMohs6Rb2IKonAUN3UkSrZQs3eZjxWD5liht/f9Pvohs7xyHFOL57Ga/MScob46vGvcnTuaPX5t9Vv40/2/gkuiwun1UlXoIv7b76fR0YfwWlx0lPTw7a6bTw+8ThGJUmobIgb97rAOuYzwhXYrNzUAOK5KOVTp14W07UL1ZJSbeViWzY0aty1TKen0bTSqhtlMh/n9MIptjVsPyej6ny1MotMQsKqWNF0jUQhwff7v48syZyJD6PKKrlSju5gN0fnjtLqa+WalmtIF9MMJ0Z4365/z5ef+yKnKmRxWXHRXdvDR6/7T9T7m6ojojOxM/xk6CdohohXiOaj+Gw+9jbvZT4jXFl/euan1ePrcDTywXVvp2dm5lxn4YUFzGwWI5O55HHe5cirV9ZaY0cAm2oTUR2GRq4siJimptFgq2Wvs5efHv0ON/beQoIMps1GRo8hj87R4m2hO9h92eTsi+1kKRbF+ysUxGgKMONxJJdLuJRXks/NWEz8/1AILRJBcjpRW1uRvF7hxVMZ6xiJBGY6jeR2C2dhQN20SYy5ymVwOjFLJfSxserjlmoscoZofAZFVggHW6mpbWEgPcoTE08wn4uQLWZB1yC3wIF8gkQuyke2vY2mw2MCUKRSqFu3gsWC1N0t+D6ahj43J76PVityZSxxsbrULp9ekatjs1WJumYuJ+T9U1NgtdLrq6PD285I7IwAO6YJqopZKNCuhlg3XaZw5ADWm29GaWkRrsWmKUBoRwdGLoc+MYGkqhiFAvrgINY9eyg9+yzG5OTy8TU1Yd21C62/H9XnW/O6rIbuFgpM2TNEE4JPV3bZGUicYUd9MxPxMZGf5W0hUYxjKjLRfIzjM0eptdXwZP8v6Gzdyu6Oa8gV04Q89RiKhGzRsGkScrbIVGyMqWCGbk1DgtXjuwvU2ZYBZqmEkUqBpqEnk+jt7ZQPH8a6dy+Sw1HNe3PORAV5H0BOC75afT1W1Vn1h7qUUfXFRv1GIiGA/Ury/NKxFgpi1Fu5Zl5K7uHLWa8Bn9+SqnXUsq5mXdWR12P1IEkSZaOMaZookkJ3sJvZ9Cwj8REmU5P847P/SL2nnrt67+L61utp9bXy2Wc+S3+0H7/NT8koYVNsPDn5JLFcjPfvej9DsaHqCEVB4bunvotVtvIHm/+A6cw0Q7EhAGRJptXXSk19DQ/0P7AK9AAE7AHIXLrp2pUqj83Dnb13ruo0+Bx+XFZxI80VVwdzyrKCppWYSU1fEPisvGmczJ1iOHoGSZZxWVzMpGfIlDMMx4fx2rzc2XsnD488jNMiPHgmU5PUu+vx2/08N/0cPruPTCnDYHyI9+y6j6JWIFPK0OJtYU/jbur9TYwlxjg+f5zB2CC5Uo52fzvTqWlm07M0eZuYTk/z5OSTtPnacFgcq451OHqGf0z9K5/sezf+o4MiXNJaIT5WiMSXI029VHn12XW+sSqIcVfAHuAdfe+gUMphLehQKHA6M8ILyX48+S7Gk+P8+MxPmM3OE3QGafA0cFPHTbxry7vOGe9drJRAAOuePcJTZonEXNnJalNTlT9SKJ8+LXxUGhpE+97vx8hm0aemsGzejJzNos3Pi5BNiwVtZAR9YqKqpJG8XjESy+WQvV6QZeRAgPLp05SXUtdVFTkcFrLm2dlV3IlMMYVVtdKzbi+/mHyU+mSeRCnFQGyQXDmPVbZgQ3QI0/kE48UIT8lT3HXTPjyKE7mmBm1qivLzz4snXOL8mKYAZna76JhcpIxMhvLYmPABcrnEU1TAzMrvs5FIUD5xAn0l+HC7UdrbRSZZBXgF5wv8ydV/wj889RlGIgOiQ5ZO01nTxUe2/nv8B4exbNiANjCApbub4nPPYc7NgaoKEOfzYdu1a3n8WChQeu45rHv2wJYtwkXcasUolSg8+ihqQ8N5r8vqmM8wlp3SgZTVoJAtU8IQrytJaJKJ2+5jMDqITbUDUKps+hYy85yJDeOyuNAyMRSHE6fiBqcVzdQxXA4SVl2AtyUO1iXUyg6gqetV0FOtcrnqrWO7/vpLCo99MaPq8wGlJddtS1+fGF9qWrU7aqZSYsPAlck9fLnqNeDzW1JNniZafC2MxEewq3YM02BD7QZOLpykxlmDXbUzEZ0gmo+yKbyJbCmLLMnMpef4xfAvuKXrFiyKhWORYwCYmFhlK/FCnJJe4ljkGHlNfCmWFGC7G3azMbSRUwun+Prxr3N92/Xc0HYDZaNMZ6CToCPIJx79hOj+rOii7GrcTZ+zHRCy+5eqyrncOtu40WVxMRQ7w+Hp5zBZPk5ZVtgQ3kg6LZxOz1dn3zTizjm0XIaiKhFyhjg9cZpWXyuJYoJUMUXYFabJ28R4YpxmbzOR7Dw3d7yOzXWb+cdn/5H7dtxHspDEptrojw1UX+f6jhurnZ6js0f5wqEviKBY1c6JyAk6/B1c23YtT00+RbuvnWxZgLhN4U3UOmp5fOJxCloBJImR6BBDG4vsDQbFDiyREDcnux2j0o241LoUefVatdbYcalKRgnDNJjPzgtC8eIiOafKoeQpslqBhUKUH5/5MWOVnfdSJtzjY49jV+y8f9f7L7nzs2ZcgqaJkZPbLQi/moZpGMjBIHokgr6wUHXYVVpbkYJBYbjn9wuiuGliRiIikT0YxKg8L5qGPjuL0t4uVEVWK6Xnnxe7fVUVi5MkCZPBkydxvOENqwCox+Zjfc81/NuJ/49TkZO8vueNFMwypiSR14VZqUVxIpvi+rXIKjmzyM9zxwhbA/RG6gg7/QLwrEgnF2/crAKgi52v0uHDIlW9Uks+M2Y6Xf0+y37/2iPQTAZtaAjZ5xMeNaqKWSyyMaLw6Wv+kv7SDMlSCm/epDvnxP/rMyj19WhTU6gdHYK8vaTY0jTBYUqlKJ8+jWXz5iqBWbLbKR89ir4EXJfKYhEL/3muy2robiaDW6lsGlSVslXB1HUsuik6c5KEakqYFpVkIUmtW3RWrJXRtVkuY5gmFosNQ1bwemsZiQ6TTsVRFRvZdJSRhqtp6miiKaNe8nduladTqbQa9Cx1yopF9Pl59Pl55GAQ2evFSKWqHj0rw2Mll0uc08sYVZ8PKCltbWiDg2hzc0JVWPGGUlpaBKdMUcR5KRbRDh3CTK82yH21mCG+Bnx+C+qpyaf47wf/uyAwp6cYjg0zsDjA+7a/jwODByjpJQrlAolCgo2hjbx141v59olvo5uiAzMcH8Y0TRwWB+/b/j5KWgm3zU08H+fB/gerr5MpZVAkBb/dT1ErEi/EuW/7fXzzxDd5fuZ5fjH6CwA2hjayr2UfG2o3sKVuC4dmD1WfY1fjbv5q/3+lZeasL9lLUOW8mPLYPKvUa+/o/T2OzR5mMDqEYRrIkkynv4PrmvbxwuTz1Dtq13yec/gtkoTT4WUuv4BmaDT6mkiVREio3+ZHlmQWsgtsr9/OzR0347F5SBaSdAW6+MmZn1DjqKGklc4hnS/lp8GyU/fpxdNYZAuZUga/3S8I1DYvt667lSNzRyjpyx27VCHFvdvu5Qenf8C8PoMmyyTNvDjvsgwuV7XTYSQSYrzTdmlz/wvKqy/Av1lr7LhUje5GJCpqNsMgZTMZz00zm5nD5/BjUawMRIewyCoyUNJLaIZGvCDCV9dSJ65V1bgEVUUbGVk1btDHx7Ht2yeOX5LQBgdRW1tFmnYsJhZXnw8AtbcXc3ERyWJBqalBcjopDgwgu91iR4/gAUmyXG3pm7EYks+HUeHaSM6KC3elm0DFYHBlhWqa+NH4zzgVOQmARbagm2AYuhAWyCa6ZKJKKo3+Fs4kRmmInGBk8QyFbJLOmi7+ePsH2Lh+PdqpU+ecD7mm5oJGnGaxSHxugkl/iYzVjtvipqnsxDE2gzYygtrWVpV8L41Al7qJZqlU7TaQSiGFQqsXe10nOJNiny0ISpjiE79cPi63G31sDNnrFd0qh2NV8rpktQo+z4YNwj1bVZGDQbTpaSzr11c5WUYmg5nJiJHKea7LpVBUNI3mtEHQHSZmZrEaYiORSkRo9bcRLyUxyxqmbCIrKrKk0FrTQSojQHg2E8chW2nxtTJbKDMSGyGtZbFY7AQtPpodjeRj8xzIDXPvnvfjukBnRY9GRWfHNMWI1O0W/z4LuEq1teI9lkpirLS4iJnNYlm/Hm1srNr5kuz2qsLKSKcFuV2SBFfNYhH8r4p30spNabqYZiw6THJ6FDcqjaYVVzQtvguFAvrcHHI4jJFMojQ2ipGkJAn3clmmfOIEktst4jxmZ4X9whIYq9SrwQzxNeDzKq+JxASffuLTHI8c50TkBFc1X8W9W+/FZXXhsXr4qxv+ilQxRaYoJM6LuUW+fvzraMbyLsGu2NkY2sj3T3+frx7/KgBW2cr62vXct+M+vn3i25SMErXOWqyyle+e+i4jiRH6Qn3sbNjJVc1Xceu6W8mWszhUB/Xuel7f9Xra/G188fYvcjxynHg+RsDqo8/ZLkDPWe30l6IiuRLV5+7k97vfxkTjNPlyFotsIZWL88Lk81zVtJd17rY1H3c2vyXrVCnmM/QE17OQj6BIChbZQo2zhoHoAE3eJk4vnubh0Ydxqk5u6riJh4cf5k+u/hPa/G1sq9/GhtoNpItpSkapGjeylJ8GMJOZYTIlRgeKrDCRnGB97XqyDuEJ1Bfu4/DsYercdfTW9lLSSnz1ha8ykZrg/Tvfz0/P/JSEYsPmCZDzxnFMp0V+UTCI2t2NPjqK3NZ2yV24S03PPrvWGjuCAHlv7HojPx/5OQAl2WQgfgbTasEwDRrdjeTKOUxMQeSVxYjAMA10U6dklC44Rjv780OSzgE9IG7A5WPHsO7Zg+TzIVmtaGfOIDc0ILe1iV1zOIwpy5Sfew5pxahCrqsT6i+3W9z4KwDGBKRiEamvTyiEzjKBk5zOZcM6zjWFW8gtYEoSqmyhrBWJpOdxOXy0B9qJFWKYgClL1LjqmMpM0+BqYCGzgKqI79dw9Ayfe/6fuP/6T+GNRKqgCyquxvv2nUNUXTnOGMvN8MDz/8ri7Eh1s1Jb38FdW95OQ/9s5U0I5dSSjBlVRW5qQhsZgXxecGMqho5LXSIkaRn4KYr4b2ksA8sL/NJ9o0J8rp43VRXkc1nGunkzqCp6LIY0Pk55dLSqlJPCYay7dmHt6rogqJf9fqy7dlEzP8/dzUEeGvsppflhnA4v/ZHT3Lb9LYzEhhkYP4zbEsZn89ER6GBXeDtPnRIbQLvVSTE6z31XvY8f9D/A7MBPCDmC2BQbrd5Wbm67gam5QTSbwbSjSPA8ROvSsWNoo6MYyaT4ntbUYNu9m9ILL1RB9RLosW7eTOnwYfFzXRfnYW5OfH4eD4rDgVxbW3U712ZmKDz2GMaK7p3c3Izt6qvFtaHr1c95SYG5uDCBPjODqevU+hu4o/0NNMWFLYK+sFB1L9eGhkTXJ5MBTUPp7haWBvk8GIbYRJgmZuV9raxX2gzxNeDzKq/j88c5HjkOCF5Nh7+DmfQMBwYPcCZ+hmZPM7Ikc3vP7dQ4anh45GHyWh6rbMWqWCnpJW7puoUf9P+AqdQUtY5aovkokiRxInKCslFmd9NuxpPjyJLMkbkjZMoZZEmg9CennqQn2EPQGeTmjpsJu8Kr8r6WZPBVZcdi+pz38FJVOVeifP46XhfYyffis0QzcUpGGats4fqGq3lL++34/GsDgLM7VZMkOHHmIB/a80H+/tnPYJEtbKjdwFxmjg2hDWwMbeSh/odQJBH3MZ2a5h2b38FIbITvnv4uNY4adjbsZHvDdm7rvg23xY2qqMxl5kiX0rT52tA0DafFiUW2oEoqDtVBrpwTrxXaQKuvlT/Y/AeMJ8b56rGv4rQ4ub3ndn7Q/wNu6byFvJbHaXczEh9h0LnAHTe/nqa0jJnNoo+OojQ0COnpZXThLiU9e626UF6cVbXy0MBDnE7PkdfyuO0O2vxt3Nx5M8crhG8TEwMTBXH9K5KCVbZecIy21ue30gwPEDdiVSWt6MxOHyGZm8S9voYWZR2uZEFkSxWLlPv7BZ/nrF3r0uJvAtJZIN+s+KhYt22jPDYmxiorjQZXPs2K82ckEiSnR/FqKvWuMEWzzERqgpvDt9AT6iVfLjAUG0IzdFw2N06bky3BPg6O/ZpGR6hyWBIj8RFOZ8e4dtu2qpmh5HCg1NejhkKrXm8lmM3Wenjgha+wODNcHYthmizODPMg3+Y9Pe9A1XXkmhr0M2fQYzG00VGxWHu9WDZsENeGooBhCO8j0xRAyOWqgk+5vh65qQl182akcln8bSgkSOKqugyMoJoUjmkiAZLLJdRMxSJafz+S3Y7a1SX+RtcFCI1GMbsubqUh2USWVmexjvc6ahgL9HOzpcB0eoZCfJHtSgtb+9bh8Aa5yypTkgwGFvrpbN+K1ZTxKk4afc1sbtiKqtrocDVTMIrYNAnKZSbHj6PrGpLVSkYvLF8fS2Cz0k3WJidXdf7MRILi4cNYtm5FUhTMRIKsU2UiP0cqchh3m5OmqBWXIYjextIYe2EBHbBs24bs9aInEhR+9SvRKYOqsaExN0fxmWewXnst5vQ0ksWySoG51CU2k0ki0RM8EI1yj/9GXEUTJRxGstnQ+/tFt89iEX5KsgyaRnlwUBgzRqPoY2NIdXVYOjsF32sF+Hmlpe6vAZ9XeWmGxq3rbqVslOkN9pItZfnR0I84Ez8DiF3wQm6BZ6afodnTTF+4jyOzRygZpao5XFegi6+d+BrxfJzeYC+jiVFmM7OYmAwsDvDOvneyo3EHj48+zg/6f0C7v51OfyeyJKMZGqcWTnFq4RR7G/eed7zwYrsCv6mSbDY6WjZxn2ljshgho+Vwq05abGECLd3nPb6zO1UZLUfAV883D32FbcE+9nTup2xqPDv1LH67n2+f/DZZLUuju5E6dx0+q4/1wfV84tFPELAH6K3tpaAVmEvP8dj4Y3T4O6qE8aJWxK7Y2dm4k3QxjWZoRPNRap21eKweDs8eJugMMpGc4OfDP8dpcTKTnkEzNd6w7g0YGCzmF2n3t7OtbhvDs6cgNc9DZ37EPfVvwGUYqG1tVRXI5XbhLiU9e606e+y4VEug6MmpJ+kJdFGjeJnITHFk+nmMyihyJDkm+GiKFVVWCdgDdAY6q2PBix5zhb8DgM1W9YRBlpntCvLD4e+RiCgY6TRmNkttqJU71t1Gc8wQIyufTyRs79ghdqmFglgYHA4hv85kllPWl17T660auqlNTWj19Rc1hVtaBN2yFYpFWhwNzKQEd+W5M4+zq/s6/vTqPyVeiFPUiritbn408EOenX2eVm8zydSyi7FUGXOq4dB5QepaFgWTWpTFyJh4TMVKwKwQZhdnhpnamGWjKyR8aUoixV6qqK/QdYxoVHCh4nGQJPTZWdB11Pb2ZSdmVa2CFEmWRbcmk0FJpcTnI0nILS2Y8biQvGuaWFR1XYwNoQoazHJZLLKZDPrUVLU7os/MCBfmdesuiUQr2Wx43TVsKAfYoElk3E1M2mNktSwu1UWLJUiqMcAPp39JrTsEbgEelzq1XncQV9bHfGFRkLwtFtG9KRarANkRiaPXLCKpKuWBAXE9WCxok5PCXLMihZecTiELn5rC8PmQPB5m6h088Oz/ZWG84nqtKNQ2dPHmve+mYSwugJ8si+cxDMxMhuLBgyjr1mFMTQnAs2RkWuFiGuPjsG0bck0Nst/PeGJouStrmuIzrnRloolZpps11i1kMfN5lLY2QWJe6oBKEpLXi5FMYiYSyPX1QunncmEmEmjj4yh1davy6S4l9/DlrNeAz6u4xhJjPDr+KN848Q0A+sJ9bAtvEx46jlpUWcWm2gg5Q8ykZ+j0d7I5vJmh6BCxQoyiXmRb/Taafc1ISKiyykB0gK6aLlp8LRimIRx03SH+6pd/xS3rbiFRSCBLMvFC/By1UKKYuODxvtiuwG+qZL+fGscW/JdxfGfzW9yqE2w2JuKjTCTHGUiP8da+t3EycpImbxNv2fgWnBYniUIC3dBp9jbzxMQTXN9+PTIysUKM2dwsDZ4GDk4cJOgQxomJQoKBxQE6Ah08MvoIBgb17nokSWIxt0its1akqtduQNM1VEllPDGOgYGEhKZruCwuAvYAsiTTv9hP2sgQtNmIl5PMeE3WK8umiC+2C3el5akem4cmdxNPaU+RLmZo8jQxk5vHafVwa89t/OTMT1jILhB0CFXXde3X8ba+t10ysblKZF1hhAeQqw9wYPIRovkoii0s+Dk2GwtzozwY/xrvCt6MK1sWHYZgUHQrlkY2LheSrmNZv57SoUOrzfi8XgEuK52dSzWFWxqptrj8aIUCN7XdwC/HH2UmNYXF5uBbJ79F40QT79n6HiLZCE7VSSQ7j4RMWRfKzuUnl/G7VoQPS8vO4EvdBiOTQV9cFEqvyugtU0gtuzyD6LIsjeVMk6xUQqmtpTw9jZ7JEK/3MtBQJFFOE7D56C65qM3kKZ8+LTglle6Q7PEg19ZiWq2i02gYlI8cEcn0ra1VErZl3TqMSATrzp2CtDwzw1IEg+R0ovb0oL3wAlJ3t+CWIMi/K0FP9X1ms5dFol35PXfnTTbgB/xQBkm1Egx1c2+obc3OJQg+W9Bew4JLpJmj6wJsyDK1vgaaklA6dgy5thYjnUZfXEQJhZY7VRXTTDOTAbudxas2csqTI6PHWVhcRGpuxqZq6OUS2O3Ekkm+/8t/4h7P9Thmo8j19ajNzaJ7VCxixOMoKzl5Z5lGgpCeL41iV42Ol6JNVlTGEH5gZrksHrNEnq84rksulzBLlSTB90okUOrrMWIxAZJahU/cpeYevtz1GvB5ldZS6xEg7AoTyUbQdZ1oPko0H8Vv9zOaGMUiWyjoBZyqk7JRJuwK86kbP0VBL6AbOlbFim7quK1uxhPjaKbGZHKSmcwMTtVJTsvxlg1vwWVz4bP7cFlcKJJCJB+h3r16t+S3+S963C+2K/Cbqss9vrM7WS34l7/sTidZLYddtXNk7ggvzL+AiYksyciSTDQX5S0b3wLAYHS1Xb+MTF7LU9AKFLUiA4sD5LU8XpuX7536Hu/a8i4eHnmYoCNIV6ALq2Klt7aXN6x7A4+NPUZvbS+dNZ3VKAy7xU6rr5XxxDgemwef3UfZ1FBqa9EXF8loOUDIkl9sF+7lkqeuJEHPFBfY3rQLp8WJTbVxY8eNaIaGIik0e5sv28dHstlQW1rQp6aWYytkmbE6C0PpBCWbjE0p4LV4sKRzyC4XcanMTLOb7jOCbFp86qllIrLVimIVDtPlkydFftQS30JRRCcimxXcoArIQNOwXn21UESVSmubwlVGcq6cxm0dt/Cj0Z+zv243tF6L6XTQkxjGqlr5Xv/3sMpWtLCGw+pkPD5GfTiMlJUE+JFluhr66NVqBABZOg8OB0pzM9rgIEY6jVwxYZSsVpTaWiS7HbfVDeWyIMDq+rI8GkBR8PhCIucrk6G/xcJnX/gHRuYqr2GzCWn63o/QPeAUXB+LRaixKjEppmFgZDJCUp8UeVBmJoMcDIKuo4+PU9jYxYwlTnp7CPe2Rpp1D64S1dEWmiaUSDt2AIgw07NAD4pCrs7PZDFC9syjeHyhcwKJ17pOLtax9mA7b8fbY/NwR9ebeDD9LQFUKoAx6K3nzrZbcE5nMFwmsscjjndJAr4EMitjOkyTEzd28+ln/ifHF07QEuxgYHGAW3pu5c2bf4+Z5BRuiwtrQWPo6Z8ytt6OJdxAVirjUWO07tqMWhnVshSPIklVldpKECxVMuaMRGL16NgQ3c4qj0iSsPlqOLOhTNYm4bMmqG8J45gVrvCSt2JOuQSIJEk8rlRC7eoSXaJwWOTiXULu4W+iXgM+r9JaMn/z2X3sb93PExNPoCoqTouT+cw8G0Mbsav2qqQ5p+VIFBIEHAHcVjdfO/Q1RhOj6KbOvpZ9eKwedjXt4vnp55FWXPw76ncQyUXAhFguRru/HVVWscrWqioMoDPQycbwxt/4eXg11MpOlq9cZktNiQNTj1AwRCvYIlvoC/fx9NTT1X9bFAuKrNDma6uOspYqYA9Uu2l21U6ykKxaCZT0EmWjzLPTz7K5bjNemxeP1UODu4Fnpp/h2PyxqqqpbIrFcm/TXvY27cWu2Pn58M/Z2biTVDGFVRbqDqW+Hm9dK6q16YJdrgt1c9Zyk4UrI089mwQ9kxF+NwHVwx2NN9FctCPZ7CjeELLt4q9xdjZYm68Ne1+fGGdlMsy0+Xk+38+p2IC4wcdKOB1eupUw7sUMmCaZlihKTSW8cXS0mtVFqYQejaK6XMhuNxIs+wCxwhRR0yiNjAj1nKaJhdBmw9LaumanrTp2NE2a0zLvar2dSRJktByT1jzDCwPkKeO2uhmNjzIQHeDWdbcSy8eJl5LU1DSQyifpqF3Hhze+j+D8aiK3Ho1SHh4WEvNYTIxUMhlwOkX3ob6eZnwEw21EI+NihFWJOkGSqK1tpS3Qjpkusei38NmjX1gGPYBkmkzMDfDj6V9x4/6riKUiWFQb9bhpnCtiXeJ3LHU4VpYsg2ky0+DkhwPfYtqts1iIkc+naPO18a62O+kaWqwSn81MRmw8HI5zXZ4VhfltHTx0+hssjvcjeTzILhfBQCN37333qkDis+uldqzb7HW8u/0uxl19ZPU8LsVBc9GOczqz3B2pxJZIFovwkmppEaqrdFqMFK/dzKef/V8cnz1aIYDDrta9PDbxOIfmDrGuppuDEwfZWreFf//6f8fRhUnGjj5WtUkI92zjtpqraG1uBo8HubUVY25uGWBVrjG5ubka62GWy7SFljcfS8B3iaBub2phoDBFf/+vMStgpkazcvuGG2hKCLBtZjKCfO7zYVLJtLOKsa3s8aDU1VW5WXolC++VDDV9Dfi8Smtl67HF18Jt3bcRzUcxTZOugCDuLYEeEAaHDtVByBniS0e+xC/HfkmqmKLR08jBiYPc1nMbj48/zua6zUwkJ3CqTrY1bOPtG9/OF57/AulSml+M/IL3bnsvx+ePkygmcFqcFLUiHYEOPrL3I9UU31eyXqk04JWdom1FH6/rej0j8RFKRolnJ5/lL/b/BZ9+4tM8M/UMIADM/tb93NJ1C4dnD1efJ2APsLd5LzJyVdK9UtpuVZYzhk4tCDnyupp1GKbB6ztfz+ef+zyTqUkcFgd27LT729nduJsvH/ky+1v3c3PnzVhkC0fmjrApLHanQU+YjqaNqBfolGhzc5SefbbKTUHX0aenhc1+ff05brIr60rIU88mQTtL0DCZxvHr45Qqi+aldJfOzgYrFLJYkHld2034un2EXD38eOC7WL0BYcZWLmMWi+TkDIN6ji3+DizpHC5dQRsfF1JpWK1KKZUwSyWUmhqUxkaUxsZV9v6SxUJ5cBBtcHAVqVp2u5FkGTmXQwkGV123ksuF5PdXIwjcwPqcG0wXRXeKjJ7HY/MyGh8lXRICgp+c+Qk7G3ZyU8dNJEtJdtbvZIOrjcDAaiKpqWkYqRRGJLKKUyS53VUQYRYKuBIyd217Bw8d+y7R1Fz1OYLBZu7e8ft4XTWUY5MMuXKMzPdXOxQAqmzh6k238NjMkzw99zyp6VEAGgOt3NFzOzvdHZTVMml7CY/dTn2hEcfEfJXEnAu6OTD5MAOONM9OvEA8F8XUNJ6efpbT8SE+edVf0HN4ejm+olQSUu1kUhBnK1VY38GBuUdZnKj4Y1UW/Gh8hgee+Qr33fwfLtr5ebEda9nvxz07S89UCVCAUuU/RKewoQF9bEws/LkcSBJKYyO2HTsoVkamp+wpAXoq8R51vgaemXmuuhm4uuUaUqUkh+cO80+H/5n/uPdPOTz+DN6SjCVbIJqY4cDiD3l3x5vxFwrYrrqK4lNPrVZ1tbRgu+aaagdUslhWbT6imia8qRYX8YWaafZ3cPrQw5h6WYwYSyViis6B6Ue4p/b1eGQ7ermM0twsuor9/eL6cjiEC7TdLuT6S67OsVj1uvlNO/sv1WvA51VaZ6tWltx+s6Us+9v2M52a5njkOB6rh3p3Pde2Xsu2+m0kCgl+NforUsUUvcFeJlOTjCXGOLlwkrt67+J9299HrpwjYA8Qy8f4wqEvEC/E2dW4i/W166lz11Hvrufu9XcjyRLdgW76wn2vCtBjJBKUT55Ej8ervh3nSz5+Octj8/DWvreuWmCPzx/nUzd+ilg+Jjpv9gCbQpvwOXz8l/3/hQcHHiRRSBByhXBb3cIfxdvEmdgZrPIy2EkVU2yo3bDscQPV7lvZLNNV08WW+i0UtSI21UYiLz7vslHmj3b8Ecfnj3No9hBdNV3YVNs5Uvm1Sk8k0IaHBSlxYoK0VGbakiWTnsAzNE8Hu3BeRH56JeSpSyRoI5Oh8Mgjl91dOjsbLJ6cp3/yCLlsksHpY1zr2YzDX8tIZpL1FjuN7kamo6PVBTxXSJPy6vT4GmjKWkRshV249XKWGmvpxi1XVEawomNWKomsrEoeFVYrRjyOsbAgukXd3eiTk9Ubvh6NCm5GOi38cfJ5zEIBtaMDNI2++na6giIaZgn0gIiNiWQjFPUi2VKWsCtMqGxDWyNGoJoNVum2GNEoalsb2vh41SRQkmVacir37v8wE5kpMsWMSIa31xOobxVeLbkcSakgAMuK8cz65q08vXiY45ET9IX6qqBpJjrG9yd+yghxahJlZqZOI1mtwh1+4xtoXCxDPs+UTWJKSfPs/GHi5ZTgmFSO+djEc/ys6ZeEN78R/5Eh0e1xu0WHZs8e0b3KZkFRGKk1WDh8smr0t0TkBwF+xiJn2PIiAokvpapj1fHx1deuqqK2t2PMzmKUSoLgXeHI6DMzmIaB/Q1vgHyehHGMcLAVm2oTirAV5p0Amq4hIWOaIi8wWc5wOjWM0+qip3EdXuxE5+eZchTxzM2hT09jvfpq2L4ds1AQHCsQHjuStIrr1+Zo4G3tt3E6cYZEKIFXt+JTnDx08N8El9DpRHK7hWmix0Pc5WKm3s5GtRG5pgbJ6xVmneUyhe19zLjKpGJzeEpZGkfmcZuVsWrF0RxFwYzFfqPO/tWP5Df2Sr/B+vznP8//+B//g9nZWfr6+vjMZz7D/v37X+nDuqxay/zNIlvIaTkKWoE/3PKH/N7G3yOej5MtZXl68mm+e+q7/Nm+P6PWWYvL6mIyNUmikACgqBf59qlv0xkQaq3t9dvpre2l0dPIdHqaX4z8gicmniCWj+GyuLim5Rr2Nu2lzlX3okHPlezOmMWi8LuYmFjlEfRiko+vRF1Ipn121bnrhGXAWX8bzUdZyC2QK+dwqA7yWp50Ic192+/jB/0/IFPO4FAd+Ow+ahw1yMjnjM0A/A5hOJnX8rxl41u4s/dOSkbpgse0VEYiQenZZ9ETCYxEgtn2AA8NPyDyiyqLZGhsPXdf817qlgiNa9SVPPcvtru0MhusUMjSP3mEbDIKpsn07BBS8z7i+RgDkVO4JRs3td3AI6bOTGpGdBIkiYAnxB2+m3GOxTErqiY5HF7tS1XxqVm5aGjT0xSffBIjFkNpbaV8/LggRjc2ChfoSqfCrLjrLrnmKh0dlJ56qvp+TcMQeWDt7ZjJJNbdu6l3u/nI3o/wj8/8IycXTlYPo9PfyVs2vqX6njP5JKbhFMZ3Fgv5plomjTgZWx53uIbGVM1yoLBhoE9Po9TVIfv9Yqzp8yH7/dgAX6LmnHGPVlEI+UoiBmEp8R1JwuutZXLuICWtiEVW0ZbUQw4bxxZP0lO3kdqaRuS4C1PXictFDkw9zD31t+LM58mYRaKWMvHyiniGFdfbfGqWfs8414TDyE4nSlCAF8Xvx1y3rjqGzSwdk6oie72rvJcAMsVz7TauZCnBILZ9+ygfOyZ8jiqGlpLTKXhWDgf6Ul5bLieOtWKYqY2N4d/mJ5KeI1lIgCzjcHiwyBYkJAp6AVVRMTCwqkLluJhbxMzlyOZyDBSLbA32YaurI6vlQctDsUj52WfFSC0SqfKX5Npa5FCoyl8yEglGJ4/z0MABosU4RjKJ5HDQ2LqBZMCGR/YLInkkIiIwUilkRSGTT4K/pdrZlAMB5rd38uCJ77IwOVi1dgh3beK20H7qn3hCnAurFcnpxLp9O0Y0+hsPNf2dAz7f+ta3+OhHP8rnP/959u3bxxe+8AVuvfVWTp06RWuFWf7bUGtmTtl9wt9FsfCVF77CeGKcodgQsiTjUB3UOGowTIOJ1ARbwlsYjg+f87wWxYKJiV21s6luEwWtwAP9D5Av5wk6gtS56pCQGIwOki6mq/lV85l5TkVOVRPAN4Y2ngOIVnIrXIaFxoSBK567Im1NPRpdDXpkWcyRK+F72tQUanPzbxT8nE+mfal/67F5quDpxvYbmc5MUywXGYgOsL91PzaLjWZ3Mw2eBtr8bTw//fyaz63KKqpVpcnddMlBq7AsaTaSSWSnk4yi89CZA0QXp0Qb3mqnvnMTks/LT2eeYNf6TtojGq5YdhUAutLy1It1j873+5Xj4WRmsQp6ZEnGEQhhuly4vX6I+Yk6TOyFBa7vuhkjk6VgFLGrdq7xbqb+UGUsULHft+zYQfnYMUHYVRRktxulpqa6aGgLC8IkbmXMgq4L36TZWcF7KJeFf00ls2lJ3XR2d0CSZSgWxZix4pKM2822+m18aM+HWF+7npyWw6kK8ncsH0M3RR6UPZHFKIsR0UyjiwOH/w8WuwOcLgp6nhp3mGsb99E0ZxVAzDAwFhaQHQ6hRFvx3VlzEapEQfTaWugMrhN2CZUqFnMYEgRctSi6WeWPFK0y5VyZYjFHwSo6DhIC4MWUPLOtXjZ29OJXohTjP6l8wCaSJGEqwhx0W+MOOsO9zJJmqDFEe1M39hXHujJR3JOfqJpRng16ANyXGXD7YkqprUXet28VV8jM50VsDKDU11cJziYINZSuU1jXwnzsKPXeRpJFQf62yGp1A7Q1vJVMKUPYGcau2plMTeC0OKqk5bxeIGXmCaZKeHqDSCU3ck1NFUCqnZ3i9GqaIBtX7pdmsUh8YoiHBg8QzUTE51wqISPjNK1MlBYIherY2rQPRVbJaTkCVh+2dBFvJQAVBFco67HxwKGvEcssLIMhn4+FiQEeika5p+lGHPMJJIcDY3GR0pEjWLZt+407+//OAZ+///u/57777uOP/uiPAPjMZz7Dz372M/75n/+Z+++//xU+usurpa7CRGKCnJYjWUgylhjDYXEQdoX5y1/+JQYGpmnid/i5qmkP2WKGOme4akC4srqD3UL5IYlFIl1Ms5hbZD47z00dN+FUncK7wuKiUC7w85Gfky1mOTp3tJpGvlSdgU4+svcjbKvfBsDAwgBjiTFKRolUMYVhGIxaPHQ3NtAxV6rao6/V1ryUztBCKc7JbguJcp6A1Uevqw0jnmBQmideTlMTT7K+nKChvusVN0u8nFoCRJvqNq0m5a7RrdkY3khnoHPV57BUL4Z8XnWlrnirzLg1oicFUVeRVdq2X8fDQz9j5vQYkt3O8Y499Ehh7uh9Hc0Zpar6sO7Zc0WVGhcDr+f7vVW2EslEKBklsloGw6KgaiauuiZOxwbomD/GQmqO+dQsC/koUtMejJKCNiVcioO+eprkbSiBgFh8AwEkn4/yoUMCZNfViciKcFgEmfr9gqw5N7cMemCVssXMZpGDQZSuLrSJCWEg2dQkwNFSdMIanbSlRWPlgrCuZh1PTDxBppyp/gdiIfMXZVrKLsxcjsKmHn74zBdw1Dfw06lHGZ+eQJFkbJKFx6d+zZ9t/zBtxwQPSA4EsGzZckn5XfqZM5THx6ltbOTD2/8fPid9gZEFwaWxWRz4HQHCjhC5eEQ8nyShI7KmRLiqKjpasozNaqe7fSdjRowRYoRsIVr9bTwz+XQ1Tc+qWLml51ZORE/xjVPfotXXypMWL13pjby1760EHcHVJPamNjrKPkKNXUTjM+e8h2Cgkfbwugu+zytVZ3OF9CUTQYQLtbRCNCBViNpTRJgcO8bvb3on3zj5LQYWTpPT8tS56nBb3Oxv2883jn+DvJZHAq5uvoaSVlpFjC8ZZYL2EC32OiRMEZRbKTO7zAmV3e7qZ24kEkwWIwL0gMink1Va2jcxmpqgxlvPxvrN/OvRf+WF+WOokoosydzQfj2f3PVnIiTV4QBZZlrOshgZR3YsW6FIVitGIk60MMV0q8G6WeHPZBqGcI/WtN+4s//vFPAplUocOnSIP//zP1/181tuuYUnn3xyzccUi0WKK3aQqbPMyF7p8tg8uGwuHhl7hP6Ffk4tnsI0TXqDvfynff+JgxMHkSWJcrlIJpvgVPYot/XczlxmdtXzdAe7ubP3TvJaHofFgW7oHBg8wHh8nNd3vp6vvPAVDs8dxiJbsKsi4uL9O9+PRbacA3oARuIjfPaZz3L/zfczlZzisYnHmEvP8YP+H3Amfgan6qS3tpfr2q7jhrbrsRqwwdJMw3xhVVvzUlKDj04f5h+e+Z+cmT4BkoTVYuPOrW/nVOQkp/sPYpgGks1GV0MfH9n1QbY7rn7VeAddTl2sg1TnruMjez9yXhB6uSPJpUVVdrkwDYOMLgiXssdDw7ptPDLxKLP5CBaXl/Wt22kLtGMUyjyRPcHrPduoNaxYtmxBvcItaiUcRg4ELmr6t7LGEmOcXjxNopAQVg1YmS8n6Aj3cDo2gM/qZSE1x9GpQ9yy8XYGkiM8M/Ekr+u6BUd9PYGizO3Ba3COzGEUCqCqWNrbwTRRmpqQK6MKEPwYM5sV+VKV3LOVUmEjm0WqrRV5SAjSqzY+LjKkurpQamqgXBZci2RSeLusBE6VMs9aEM7uAiuSQsgZwmbKNAQCTJlJmp0+JgtzlGt8PDj6I0aiQ9Vjs8gqWtLkm9M/5aNb34bbtKK2tFTHRueramcwn0d2udBnZ9lYCvK3u/+cAX2OpJEjHGjC467h16d/hlFY/i4rNplWfxuqjugyaRpWp5sN6/fz5WP/h4ViHLdDLM5/sOkP2Nm8i+MzL2AaOlvrt3IydpqSLrhMPsXFnDHDRGGeRDFBo7uRw3OHsSpWfDYfDZ4G7uy9k7v3vpsHnvkKi9GpqiS/NtjC3bvfdUFi86XUpXS+16rz5t0ZRhUEZbQcuq6RGBvgnevuptB7N0XKfGDXB3hi4gke7H+QRDGBaRr0hTbysas+xq9HH0dCwjQFcG7yNXNn7S147T6M/Nrj4rM9vMxyWdhdWK1VhV19zzZ+Of8sHaH13NB4A//03D9xcuEU17ZeS4u3BQkJr83LgZlf0aQEqe/qQpuZIZPJr5bNVwnw4t8ZvbD8+3IZs2Lc+Bq5+SXU4uIiuq5Td9aNuK6ujrm5uTUfc//99/PXf/3Xv4nDu2it9aUqakV+PPhjEvkEzb5mHKqDY5FjTKenOTb/As2OOp6behaA3tr1FLNJhtTT/P62e2jzt7OQW8Cm2ChoBTLFjCDXWtxEc1F+OPBD7lx/J3//5N9zeE4oj8pGGTQ4uXCSLx35Ep+88ZOMxEeQkHBZXJiYaIaGKqtEMhGGFof41fivGImP8OuJXzMcH0ZCQpEVhqJDxPNxhhaHcKsOsoUMH7/6P7F3KUZgDfdYYFVnaD41y2ce+28Mz54SHQbTZMvGq/nWqe+yIbSBG696B+lSGqfqJJNP8vnDX+RTgRYa6i5uWf9qLz2REDvFQkE4BYfDbKvfxv033798ndj8bAxf2s337FpaVJdkq26jBqW2VigvDJ352WE2t+xgQ/dVDMeHWcgvko1F6D92jJHuG3lP2920jo+jnCX5fakmh5dq+rfUIYvn48TyMQL2ALf13EammMFhcTDSNMRTM0/js/m4pulqfn7qAGWjzFMTT3FT9+uwyBZ2Nu6iR/MTxEW0EOXoOjtuZz2tnhbU+TgsLIjASF1Hzi2Pbc18Hn1+nvLQkFBHLV3DioKxsIDa3o5mmpiZTNUvxbJ5M3okQnlJ/l7pKlk2bRI737O6PmuZTK7sAseyixyfe4FMuchJLcKw6sCjWwham0iaeQF6QJguyjJlUydaTDCZnWbaY7K5acMlbRCMREJwqyq7c9Mw0MfG8E2pXF1bi3XXDaiNjTR7mjEyGX49/CvyRdGN6vS2sbftGnxFmcnZfjBNutt38uVj/4fB2BANgRYKWoHF3CL/9Ow/8fH9H+cNXW9kIbdAq7eVrx77KkW9zK7mPWiGRo1qx6pY+c7J73DX+rs4ExMO9kscuYcGHuLebfdy7zUfYiwySLaQwmURBG13Agxn4kUvspfS+T5fVX2CBgdJmwUmtRiZchZPnZfWQC/KfAK3XWSZ6bpGbEq8L7m2loOZg4SdYf7rDf+V6dQ0DouDQqnAc1PPErb5ue/qD7KYnsfvrOEW3y5q4yVkrxclFLokJ33JYsHtCmCm09VgVMNey9R0P70t25hKTzEaH+G9W9/LwcmDHJo5hFWxsqNhB1vrtvJY4RT1sQU2tm7EN98oYjZ0vXrdr/QOcqsOUCv5YJUYkldC0v47BXyWaqVPDYi8l7N/tlQf//jH+djHPlb9dyqVoqWl5WU9vrXq7C+VXbXzri3v4lejv+KR0UcAIZFu9jRzR+8dHJ49TLqQoq5uW/U5VFmlYJo4NRlbyeCm9ht5aPDAKjVRjaOGq5qu4sjcEWYyM+RLeU4unFw1GjNMA1VWGYwOspBdQELCY/OsktICeKwepjPTFDRhIDYcH8bExKk6yZfzaKaGs+wkVojRXreNp8d+zf1P/Q/+8dbP0s65AaAry8zn0RMJTkaOMRIZECRBiwWzXCbgqWWf61p+dObHTA98n0JJ5NysD23gzb13058Y/q0HPuXJSYpPPLGqEyCHw9j276eupeWKqOxW7kIlw6CtuY/u9BnSxRSS18c7bvwQqCrj6Qk0ycRqdeKta+a6cAczM4M8dOoB3rPhnQQSCbIulbHIGdL5BM5omsaUVOUCvRiTw5W8jZVScdntJl1Mc2z+GMfmjyFLMl6rl4nkBN88+U0mkoKf47V5ub7tej689yP8f4f/TxX0eDy1tHiaeL7/V5i6zh7vRlyml+8t/gxTK1P2OMmXy9QWh7iuZgutPz8pzpPTibJxo3BvNk1MTROy5HwebDaRWB2JiPFWLodW8f5RNmxAqYAbfXoaIyp4R5KiILlcmKkU+sRE9fFLvDVJVZEDgTXPjcfmocl0c2TyUR47dYDp+LjoHFgsNDX2cnvg9yhL+jmPkyQJzdQwZYWcVQC4S/FUMfP5KuiBCg+pwuExUqkqcbu9touP7Px/eEP9tcyX41gUC/WyF4fdw8+Gf46WFSCwZJEYjA0R8taDJLGYXURC4urWq/mbJ/6Gnpoe5tKzXNu+n/ncPEFHkIcGHqJslNlQu4GQK0S8EKdQXjYuzGt5BhYHcKgOxqLD9CasdD0zuur7U6qvh127ULJZQdq+jAV3PjN/0c73xb6Tst/PdLObBw89RDQ2LXLFgKDi4a5t76ClUEPQHV4eOVXUX1oqzYnkND6bh7nUNDbVzlRqmiPDB7Grdv7Tnj+FhSjXb7qBUNqoKt4km+2SfIkkl4umlExAchLVxUajQBk0jVw5h4HJhtBGHh59uGqa+/a+t/P4+OM8Nv4YfbUbaXTW0xBo5kM7P0hd6wYi8yNIwaAQn1RMMWtctTRpLmSfIkj+TidKQwNKQ8MlfQZXsn6ngE9tbS2KopzT3YlEIud0gZbKZrNhe4XHImt9qW5sv5F/ef5fKGkldENHkRVUWeVM/AwHBg6wv20/ulbCZ/ejKhYcqgM0jUZvM7d338YWuZF29wb23LT3HN7IqYVT5MoCLCzmFvHZfSQLSYp6JeFYkqrt44JWwGVxnQN6ANKlNKliiryWp2yUMSvTeUVW0FYqr0wDHXGzP75wnBOJQdrrei5KaDMzGRL5RPWYTFVFAhr97fz9M3/P6ehpPBYPVF63f+E0PwCuarn6JXwar0yt5DmZhkH59OlVydoARiRC8YknkN/0JpQr0Bpe5VZbKJAoxBkvzXNw4tfU5Fuor2nlmZlnyJVyDC4OYJg664Preeemd9LbsYPoicNM6jGSmSkeevp7RIsJjLk5zFyOoL+RO7pupWk2/6JNDmW3+5y/H0uM8d0T3+bhoZ+TL2VxO3z0hDcwGh/lTOwMDZ4G/DY/mqlxJnaGHw39iLs3vZWOmk5a/W0Uy3mmYmOotRtIJubx2Lw89Pz3sHR384ORHzM80F+x9zf4ccsuPvG6P2XDkTnMbBZtZKRKODYLBfD5kOx29KkpLFu2CCVPBfxQyZmydHcjKQpps8BYeZpMjQO34qQpZ8E5L+TyZqmE0tiI7PGgjY5iFotiFDw6ijE3d44gwMhkGJs5zYFTDzCTnKzuqM1ymemZAY7UHqHB27jig17e9HnsPqwWGy5DpfTCC8uP1TShJltj9FXNzFqrKh2gpfLVNrEtmgGpUTynpEJZ5l3db2VyXZycojNamqch0IKqWMiWsmiGxs6GnTw2/hij8VEa3A04rS4M02BgcQCXxUWTt4nRxCiSJBHLx8iX86jy6uUrr+VJFpKkU1GKT4+vHh9KEsb0NMVyGdv+/Zhzc5cltjgVObUmtw4E+DkVOXVR4JPKRHnwqf/LwvTQqu7eoprigSPf5L3b38sdnbdyYOQnRAsx5JoajHgcl8tLrRnghwe/glYU923DaSfgDaGVijhdft4Ueh3u+QJSbe2qjs6l+BKZ2SyuWIY7mm/mgP4LoslZ7JLoArssLqwWG83eZh6feByAa1uu5cnJJzFMg03hTbgtbhx2N6lCkn8+/C98bO+f8LNnv8FidEqQq4FQRx+3h67FdWq6unmQa2uvOD/wUut3CvhYrVZ27tzJL37xC9785jdXf/6LX/yCu+666xU8sgvXWl8qp8XJicgJ1tWso6SXcMgOZEnGaXFyJn6GN6x7A+lShl5PJx+/+s8IusM4TIUGSw3NBTvusors9+OxnWuz7rK4sKvCn8RpdRLPx3Fb3fhsXkxMFFnFa/WQ0/KEXCGafc2cWDhxznF3+jvxWD04VEdVJnt2X81EdNs0o4zT6iaXTRDPCZXaRQltmobfukzOk2QZU1VRVZXTUeEau7qRZ9K/cJpcOSckz6+QK+jF6uxRkOR0oo+NVbtf+uIi+sICalcX2vDwqpukEYmgz89fEeADy261ycQ8Bw5/mdJihG21m3A2tPKd/u8yHBsWnkOeRiZTk/RH+/nmqW/zX6/+OEfCUySsBo+efkCQSe32asp0NDHDgeGfcE/zbbgW01fE5DBdTPPgse9wZuY4+VQUl8OHRbZQ1ks8M/0Muxt3czxynKnUlOB9IRErxLiq5WqyxYzwrMpGafW2MLUwTF/jVjxOP2q4nu8PPMBIcqziTyMW+ePTR/iS85v8vz1/SGBoZtmMEKp8H0lVUfx+tDNnUHt6kPr6ROyDz4dSX4/i9TK6MMQDg98hcuYYmsdJyqITcIe4c+ebWDen47G5kZxOtJERMZay24WcuBJ7UD5zhnhHHacWT5MoxPFbvWTVbDXEdEkBhS5GCAdHH+cTN3+SjQ1bOBU5We12e+w+OkPdNHgaaExJ4jWHh0XXpuJTpI+PY9u3D6W2dvm92mzLZodnlbSCJLv0t5bWVsoDA8K1usKfdGsOtvTuRPb7KY78ClUR333d1MXIsX4nLqtL2GwEe5lJzzCTmqHB08BoYpRmbzMd/g5CzlpMwGV1ie95uYyy4j5SMkq4dOUc0LPE9THn5wUnC84rtlirLpZTeLHfA4zND54DegDQNKKJGabVLBt93dzb1MWkHiOTieFI5onZDT554M/QpBVKylwBh+QCXcVjceGtaVil1LqcWtqANkZK3NP0JqY3KZRcNiJkcEo2ClqZgGO5+9jmbyNWiLGQXWAmPY1dEXEnDsXG9sZdRPJR7rv5PzAWOUOmkMSpK7RIAdySDXbUidgWqxXs9pcUdfNS6ncK+AB87GMf45577mHXrl1cffXVfPGLX2RiYoIPfOADr/ShnbfSxTT3brsXE5NUIYXf7kdHR5VVcuUcHpsHzRA3Y1VWcVvdSJLEVW3XsKN5N41x/SzZuIKlt+e8X4A2fxsvzL9Ao7uRklZiW/02Tswfp1gZdzlVB6ais7m2j02hTVhkC4OLg4wkVsy2Kx4isiRjV+0ossK6wDrGEmPVv7EpNlwWF36bn8nEBAuFKGFPCKdq59jgr2n1NOMIBlc5eS6V5HAgeTysL9fTWdvDyGIl68o0yRYzBO01pIrpVbtNWVKocdVS0AucGH+OZluYQGv3q0bltQR4is89J2IDrFYR5JdMInu9y6BA0zCTSbSJCeT6eoyZsxQqV8AscGVJNhvDxVn6M2OUHGWsqoxftTKZmERCIl6M0+xtFn+LxMjiENlyFjOXQ0cnlqsYrJ0VRRBNzDDdkaOn8u+XanI4Fh1mYWKAEkW8nhCjyTFcpo+AO4hVsTKZmiRZTFaz0sp6mXg+zkRigrxZYiw+CobBhGHQGeqmyVrLA0e/xfqOXYycGAKLpQKuKwupLDOWGmewM81VFWBQ7Yw0NQlQCoLHVFuLmUhgGgamrmOtq4NikdhIPw9OPEicHJmQh8HEMLlEGuYNRuMjvKn9Fq7xbKZN18U1scIoUV9cRGlu5pSvwGd/9h8ZWRgU4xFd562730vObcWZKa2Sf2OaKEhEshHu3f3v+Pnwz5lKToruiCwTctfxBz1vxZ2yUDp5Uuy+l+IUJAkjl6N87Bjyvn3LXQNVRe3sFEGtK8Gf243a2bkcZLpUqipCSbNZMQb0+1fxwFaqE22Kjau7rubJqSf56fBP8dv8PDH+BI3eRvY27mVfyz4kJHx2HxPJCTKlDN3BbvY07eHHgz+m09tGVsuTL+fQDY1AvY+Qs1aMiVZ2qVbcX5aCOUGAn0vxkLlYTuGl5Bims/Hz+mChaWRKGdTe5ko8aiva1BTazBn61SJhXwMzqenVjzFNGlz1NOAR0RBngdBLLakSpirJMl5XDc4hQcQPdO3mR8OP4duwnvZAB991fZdINkLIFWIiMUG2LBTA6WIaj83DQibCkZlDJAtxPBY3Wzr3AisFLCuEQ6aJpb39FduY/s4Bn3e84x1Eo1E++clPMjs7y6ZNm/jxj39MW1vbK31o5y2n1cn9T95fjTsA+Ksb/orN4c2cWjjF1rqtzGZmq6MmWZKpd9VzW89ttPnbMMPFy8qX8dg87GvdhyRJPDz4C96/49/zz4f+mUMzh3BanFgVC43eZv7s6v9Ii6OOtDvNmze8maJWPMdDJFFIcFP7TRyZPUyNvUYoxZLjuC1uGj2NbK3bgs/q5wf93yddSrOrcRfZyCzfHPgutaFW7lx3G63BUJX7ACsIeA4HtdPTfHj7B/jckX8R4Mc00Y0y3TXdzGbmmEvPABKyrOCz++j0d2AaBr9OHgdZZqu8yBZ1z0tWc7zYWiLgphLzuAoG9ZMp7OOCk2GqKkpzszAWS6WQOjvFTqiykJjJJHJLC+fcKq/wzWJk8jhPD/ySkyPPCMdc08TqDeC3+0nmYhiSOB6LbEE2RC5T0SgTdIdwmTaIxWlYtw1UhZwjgEMRKdPz00Nk9Dwg+CAv9SaXTkcrqiAHowtHSZZSOJzC4M1r8zKfmUczNGyKDaOiclFlFcM0qHHW0B7oQNNKqMh0ulupmUwQ82cFnwEEKVPTQCsDQnmiSgpJuYQcCok08bo61KYmAPTp6WqXTlJVUFWReG63Y5RKmJEIk+4ckVOH0NwOBjOj5IqZqo/PTHKKdDHFgbGf8t4978eSzYLDsQwkDINYc4B/ePwTDM+dWgZFkkS5nCdVSmNx+rBkK8dQUcu4bV46a9bxQuQFdjfvZVfzHgpaAb/Dz3Ut19FWsKPnZtGnplaD6AqPKuO1Mzj2LBmjgNvupS3Qgd0wUCv30Gr2GJyjyLmUINuV6kSrYuXJySeRJRmXxUXIFWIsMYZu6pS0EgFHgO3127m6+Wrq3HWEHCEmkxMUy0W8Ng8jyVFqLD4WUjNsDPex09/Ht5//v9y27ybCB0+uDlqFZQ+lFdLuS/GQuRJWEhcL13VbV3dDlzrizWUnd66/i4cGDzCzOFp9P43+Fu7oeCPNZSeSw/qiN3iy3y8sHFRVqA8ryuaG4Sh/0HwTs6aVvC/Muza/i9HEKO2+duEFp9hIF9NVl2kMg4XULIauUzp6tDpGfKkZaC9H/c4BH4APfvCDfPCDH3ylD6Naa4UmLn0JBhcG+fQTn+bQzKFVjzk2d4yyUaYr0EW2nKXN11ZVVHUEOri953Za/cKQ8cXky7T72wk6gmzy9XJw8iD/8aqPUdTLpIpJbJIVmwZHj/2Sze4uWv2tmJhV35AlDxFFUmj3t+OUrFzl2UhfYD37W/eTKMSRZYVYLsZPh37Cw2d+QVbLsTm8mfu23cexH38FHBYWZ0d4yDjAe3rejm/9ejEiOOtLYenuZtPQEH+77WP0a3MkCgkaatt4fOxx0DRaPc3oGEiSRLYgdh6xbJTvnPgmAA/ZPdw8+zre2vNmWh31ImcpmxV29h4Pyss4DhtbHObBY98hml1Am5xE9nrxJYrc0fM6GgbnxU05nxddq0IBI5tFsVrF+MDlEsd51g5RDoevqMNpMhHhgSf+FavXLzoHFbdi1ZTIlNK4rC6MYgaLrKAY4obrs/nxWzzc2HMn2XySltZNPDLxBDPpaTHqKpdpDLRyc+8NeFQXUL4iJoce1UVN8zrsFpM3+kI4LA4yxTTzmQjN3mYi2dWScIfFQZu/jVQphYmJ3+LByKcwCwVMu7iWvWVFxINU3rdwIhbdD4/dh1kq4UMAAgwDtalp+dpckeZtaloV9KidnWCaGKZJcmYMM5MhadfJa0KVSKmIqaigKBRkgyR5JtOTdNls4vwtZXoFg5xODDE8c2JVZIZpGIxMn2J73XamMlOQXRYIOF1+ru24gW0N29jWsG1NX6jy2JggK5/dgdN1ZruCPHTyq8QK8er7DAYauWvH79M0V6gChqUsppV8kssJsl1SJz4//TyLuUUssgXN0IjlY5iY6IbObGaWrXVbmc/O8+Dggzwx8QR2xc7Wui2MJsbYXr8Nl+qg099BsZSn19fJ6cEnKRZyPJh5iHdvfhO2IyeX5+GKgtLSck78yKV4yFwJK4lWfxvB2haii5Pn/C5Y20Krf/XmfEl84M4X2OvdiN5aIN1aIF/KYlcd+OxervL24TFtF+zwX6wkmw1LXx+cOYM2OLj8C1XFU5bwy/Voz09j7bqJz01/EU0rEnLUMpwYxqE6CNgDpDOCvtBZ04UN5Zwx4kvJQHs56ncS+LyaamVookW20Oxt5tmK/Nzv8BNyhDgROYHT4iRXzlVHWj8a+hEf3P1BovkoY4mxKujoDHTygV0fqIKel1IemwfKJaaHDjN9nr+ZyEyzpa71HBdpRVLoquliJD5C//Cz6OPjmJpG887r+Un/AcqlPNf3vIHXd97Mde3XIwHRdISJ2QFK5TyyywaaxuL8GJPtC/jpQGluPuf1Zb8f65Yt1CcS1JWbQZbR43H+dMeH+PST/43jM0ew2l0sZCPsbbuGt298O19/8gsASKoF2YQTiyeJ5uP8fsMtNEylcJUkyOeR3G4svb2oLS1XfByWjM7yg4P/usx9SaXA6SQan+EAD3NP4404pioLta6Lm3GlNS/b7SitregTE6tu0nI4jO26664YvwdgfH6AxcgYDWoPjb4WZpKTSKpKNhunw99BNB8jYMoY5TJO1YXH7uGGthvYQSNNBRuLzloOnnqGmeQElMvIbjdGJsNMfIKDtue4df1e5EBplQz9xVZG0fnRxCM8M/MMJaOMbhpsCvfxzk3vpNYRIpKNEM1FoeJMviW8hdd3vZ5Ds4dYX7teADuHA3Qdi6QiSTpqrkiPp4MtzTs5NvGc4PjIMh6rh05vG2FrDR1ykNOWFDmHgjc5VN24rNzJGskkss8HCFK+5PcjSxLunEg4L5kaZi6LZLWJjp0kIdlsOBxu4lNnSGfjyIGACNzUNJF0bbORKFTGnCvIbJIkcWrqCPs230qzr5msOkXJKGO1OljXvJm377inurFa0xeqXD43IR0obuoRQD05h+zzocgK4WAr2Gz8ZPhnXNW5ny5bJ+6yvOau/XKjRurcdQRdQTaFN1Wz505ETogxKiZW2Uq9u54t9Vv484eFN5vH5sGq2Fjf0Eu6kGYmOsbW4EacpRIn+p9AN3QkVSVWiDMTkOl0OqvjQTkYxLJ1K+ZKp+w1LAPOV5diJXEhKwefv467d/0hDzz/tVXgJ1jbwpt3vQuffzUwWCk+aMnBbbVXM6nFyEolvMEGWh0N1evwpW7eZL8fpbYWtaNDjAIlSbhf20U8iZlOs37I4G96PsAhb4a39b2Vx8YeZzg6RDqXwMSks6aL17ffjK0kNmuXOkZ8Jeo14PMy1srQRItsoc3fxuee/RyHZg5hU2w4LU52Ne7iUzd9Srgwq4KQaWIiIfGVF77Cl+74El6b9yV7tpyvMpogo1pVK52duyioJulSBq/Vg02DfEXpdXY2lcvi4mdnfiaA2tIsXZIoxRYwrRZk0+DHh78FWhlnfQv9i/10Bjq4K3S92GEt3cgNg0wxfcF289m7BdnpZNeZPJ+75m85WZpksRRDN3TCzjD/+Oh/p6AVkBQVr93LSHyUuXKM0ckTNBseinNT3NHxBpoMMY4pDwxgmiZWh+OKdX7MYpHRyePL7rFLi0zFHCwan2G6WWMdFedWnw9yueqIC0Dx+VC2bkVuakJtFYuPUld3RUEPQLog2tqRuRFu7rqeRyYeYyY5yeDEC9y84SYGkiOopuAnhAM+2rwt/FH7W2nSXFAssGDE8WDDaXOTK8UwczkkpxOnzY3fV0c85KR5x/6XDHomEhPcf/DvKOlF/PYAC7kFFEnmZOQUPxr6MX97w99wd8+dvLHrDZiA0+Ignk/w+PjjtPnaBPm+YprmrAnjd9Uiy0WCvno2p1184qqP8yXXvzGaGBN8GE2jzhXm3h1/xIOnf0pcr3BbVJXaUCt3bXoL7f726rVplsuYFS5WtVtXKtGUkgj6GohJ4jybpSKUiiArNAXboVTGSKdxlSWUtjaMdHo5UNQ08Vt9Yjxzlh2Hjs5TI4/x12/8b3g7ZLJGEY8/RHuoe9VIZa2FmAoPSfL7qzEKANMusRGRXC4Uq42mpg38cvzRKon6RLyfDY1buLP3Ttr9525SXkzUyFIYs0210e5vJ2APUOeqI1PKUDbKrKtZh9Pq5PWdr0eRFVyqi3whTTIZwWl1M784j5bNMLcwuup5ZbudnFMR4Z/FIthsmLouTCUr4bFSTQ15v5OB2ReYyUfQJJNGbxPdwe7zjqXq3OfPLrzYmE+y2eioX897d/07JgtzZErZVSGwa91/VoJrf7lMwNL7so2JJIdDpK+fVaYmwlJlu53A2CI72kM8OH6aPkcrezbuoGSWsWIhm46yuDhJT1MYEPe833QUxaXWa8DnZayVoYnN3uYq6AERGuqz+zgROcFibpEP7v4gf3fw71Y9vqgX0U2dGztvfNmO0eMJYnW46O6+in8+/AVemDta/d3Whm389Y2fWv7birNwupjm+ennUWSFOlcdpulmdnYezTSJjvbzhi03ciI+wOl8ErMAqqTQVdvN73XcxvyxZ4RT6YovhEtxXJZluez3Y928mbZEgtZyI6eKk3z7+a+Q9NdVPYVcDgF60sUUYYcbUytQMIrEkrMcGP0Z7+54M865oiBrVqTkV2pnYiQSIrxvqSqZQaamiUUxlyNjiEVAn5nBsmULRiyG7HJVH/JScs0upzx2oZrTDY3J4aNcW78dqWUfBaOEU3HyzqvfQTwfI1lM4pOd9Cr1BNMGlMXYJlPK4i1KbK3tI+lJUzZKWGQrPtmBNW+QpXxF5KrH549zbOE4kgl1zhANngY0Q2QdzSVnmEiOkcsmORp5AUnTMS0Wuup6afG1sLdpLwW9gNcVJInJOl8nVk0hGGrjzo434i052KI5+Mue9zNgzJMopfBbvXQ6m3ig/wEWJgYEv6YydozMz/Ngqcz79n2oukCec/2aIq/KMRXhjo038UDyaUbt4+QLgqfXWNPGzR03M/78r6gNt9FUtGOm09XQUMkqOBvrcy666jYwEuk/55y01nbRHeql3t+05jk730Js2bQJM5tFXbcOfWwMI5EASRJ8LIsFyemkLtS+CvQAlLQSsXysahJ4Njh4MVEjZ4cx++w+uoPdPD/zPIqkCGNV00Qvl9ANg6nkEBKwqWY9DslGU7ADymtL7d3OANbO3uq/zWIRIxisLsbjsRGeHvs1B4Z+JN6nLOP0Bbmu80be3Ptm5jJzF3VoXrKhMLJZ9JmZVcnrcO6YT/b7qXE48CfqLpnv8psaE53PXXqJvya5XCguF7XJIh/a+QE+d+jznJw4LDhT+Txd9Rv4yK4PURsrVzvVv+koikut14DPy1grQxMLWuEcHo9pmmimxqmFU9yz5Z5zHr+3aS+bQpcWgvliqz3Yxaa+G/nMM59ZBXoA+qMD/MOz/0BXTVd1tLY0ujs2f6zqmtrgrOPG3l1MDjyPZpaIHHuWe657L8WWN5JUNPzeMBPxUUZPPYXhsK0CPUFvPa2W0GUv8CtvBh1FH6HpTtTyChKjLJMuprBY7dgql7ldFiTbaHKWKUt2WW2kaVd0Z2KWy7hV56pjkZxOjMVFkdYdieCWbUAWKknd9ptuEsqc3zD5r62ul9pwO4uRMXRDY3ZmecYvh9vp9LXjcXVWz48+Pr7qXHmcPrGrzRcJYQfsYAAVPtCVCoWMFcTCaGCymFtEM4S5mmbqlPUyiXyS8Zl+7t36LrLFDI21HTQF27HIFp6eeZpcKcMfbnwHRa1ALhOnr2Y9feUgrngZ7DpqfT2hMxlq837ADznoJ05k5KS4XldmyxUKRAaPMtYzxObmHeJcrVg0TE3DSCSQamuR6utpODXDe1v3cPU1N3A8MYCp6VAuMzlxgkBNI3euuw1PVkWuq4N8HqWpqeqlEzqW4MO7/5jPPfePq8BPV0MfH933H84Lei7Et9GmplDq69FnZ1EaGlDb20HX8fglZJdLEOxttlWgB0RXGCCWjzGeGD9njPZiokbWCmP22/3c1H4TfeE+5jJz2FU717fu54Fj3yGnxME0cdjcdAY6aet6HaZh4Ak3kS5l8VrdWEo6i/HZc3K5JJuNnN/JWHSYxfkx5soJTifPEMlUfN8Mg1I6Sa6U5eO//Diarq2iGJzt0LwybkePx9HHxwVvsKlJWBNQyak6a8z3auO7LNUqX6+V4MdmE13nCpiTVJW+SIm/6fsoA9sTJLUMPhz0EqRmLIVp0YWaz+N51Shqz65LBj5TU1M0r8HBeK3OX0ttXOAc8z8Qs/p4Pk7IFapye5Zqb9NePnnjJ+kJ9ZzzuMupicQEx+ePEyvEqHHUsDm8eRU/yGPzoFqs9EcHV/FJbKqdgCPA0bmjHJ8/Tqu/lYnEBE9NPoUqqWwOb6a7ppvx5DiD0UF+pR9iX8t6ZsZPoEsmrniWHSk71j3XogSDjOpeEnUzLEwuL6xBbz13brgLf+f6l7TIe2we7tryNn49+jhNdd3MpKbQJBOL1UGtowbFlKgPtMBS8KNpktXzmMWyGH9UXKGvVEkWCy34l11Y83mx0MzNoc/MEOraTHvndmx1GnJNDWpT0yti4gXg84e5e/99PPDEv7IYGav+vDbczt3X/RH+4GpXVSUUWqXO6LBJBGefJFp8eUMha+w1ggReMXhUDAM3VjQFDIuTRm8jH978PuxZgxZXF4FgLzm/k387+m9E4zPoi4ssaJr4vN1uCvk0mzreguwVUSCK34+kKKtu+pmiGDtJdvs5nBizUCCdWIDm5V2/XF+PPjICsixArtOJdedOykeP4piZZ9ucTG9rJzP1DnIeO45InKacFddIFHndOiRA7V5tv2Dp7mbz0BB/u+s/06/Nkiwl8dsDbGzcQkO487zn60J8G318HNu11yJbrejxuCBUyzIt1mZCjeuIpucp6IVVj3HYPfhdNdV/r9zULZXsdmPdvZvS4cPitSv3k6UIkvNd42eP0d0WNyFXiO+c+g7xgngPESnCdd2vq5giwu76Xaxzt3EyMcinf30/x2eOiCeTJLa07OK/XPf/nqPkXNq0LS5MEEnOMFGMkCvneMuOP2QqM0PAWUONM8hsZpZ2XztW1cqR2SOUjfI5Ds3nxO1omthAzc6KHDefD31yEtNiQfL5xDXyEqNcfhN1PgXWElm5qmK0WgnrFhrCezDLZeIjp5kyZhl1FPAoTpottQTa2l6VPmpwGcBn06ZNfO5zn+Oee87tTLxWa9fKNq7Hunrna1NslHXhdryQXaAz0MnXf+/rxAtxAvYAm0KbXjLoeWryKT79xKc5HjkOCAflvlAff3bNn1HnrqPF14LH5iFZSOK3+zExMUwDWZKRkKpOzvFinBfmXuCXo7/ki4e/yGhc2Ja7rC6uabmG3Y27eW7mOeSOehTSBO0BOnr34qhtrH6xO5r7eLdpY7IlRlbL45LttDjq8YebLxqSeCnV7m8nuDFId6iXBwYeYCY5TTYbR9EMGgNN3FR3FRPHn6qk00u4TAtmPoXk9QoX3rO9SF5CyX4/7nHLsgtrJoKZzyPX1xN01XJX9+141SBKZ/hVcePrbNnMfW/6C8bnB8gU07htHtrqevH5z92hn71b9UE1FHJlInYw0Mib9777itkIbKrdyObgRo7PHhVjJNNEMgwsOmxu3sE2qYW6AdERUVuFxHo8MUQ0HVmOW5AkJIcDfXqaSG6IUbODnnkTJRis8jBW3vQ9SVPcuNcgAgO4ZNvqkF1JEmNct1vwfrJZsFopXbOLyVKETDGNx+GjzdmAc3wOU7Yh1bkgZAjDQklC6u5e9RpL5P6GRIL6css53cDzLaYX5NsYBmaxiHXXrlULnMPv5+6ae3ngma9gVezVP3fYPWxo3orNutzFXLmpqz5tIoE+NYUcCom4jYrnkdLejnoRRd9aAb2399xe7QTpps58foEaRw139d5Fq6OemdET/O/n/4VEZoGQpx7D1JElhXhyni8e+d901q6rjqdW8i0xDEqG6Fqur+/jG/3fEb5AZ35CyShR1svUOmvxWD3c0H4Dj449WgU/Sw7N58TtKAr5kI9pt5uMkcdb76GBOhzTC5jJJMgyhUceuaDM/9VSa3Wkzhd/ATAy+BwPZQ6KTV7FEyroDnPngoPOQOBVCX4u+W7/6U9/mg996EM88MADfPGLXyR4BRar3/Va2ca1q3Z2Nu6sEpt9dh/xSnrunqY9bKzd+JKBzsqaSEysAj1Lo4Gnpp7iU49/io9d8zEeHn2YO3vvpMnbxJs3vFnEU1hduC1u5jJz5LQcNsVGw/+fvfcOcOM+z/w/09A7tvfCXW5hFyWKonqX1W3FkXuLE8dxcjk7+SVOcpde7s4pju1LbKddEjtOHMuqlq0uURJFSaTYyeX2vosFFr0Mpv3+mF2QyyZKIiUq1vOHLQJYYDAzmHm/7/sUbz3DiWGKWpHPbvosTslJspQkU8own5vnYOwgq4LtqIZKdUMnd66+k/AppJkR91pC59HLwe/0s6VpC33VfQwmBtk58SJmvgClItPpKUy3EyGvE61uoSEtIAQCKN3dCF4v+vDwmzYAOxGC04nS3U3z0aN8vPVOJkmR0wv43EHam9cSjL792TSvh2CohnWnKHTOBu11PXzqsl9ifGGQfDGD1xOktWoVoepTj2HeDJp0D1++9Nf50x3/h30zdqAuosja+vX81uYv0hArYmCb6kmdnQhOJzktZxe1y+R7txtjKVIDQSDlgsFGhRxx/EMv0uG6nIA7WPnMZncdEV81i5n5k7YnGqijxdOAdvQoOclgqspkxkihG3PUGRE6O5uxclmOSknu3//PpLILBAQXLm+QUN7i9pYbaFgsIckywhJ/wtK0U3LNTjcaOROZ9mz4Nqd63/a6Htt1Nz7CpBYnXUoR8kZWFD0Rd4TWE37fpw0cLhQwRkcRPR476uOEXLDjo1pOzAs7VSdoWZJvzM9zpDTJSPwoEuBFBmQ7vcYwGVk4uiJG4ni+JaKIQ1RYXdvLj0eeoNHfyFR2iv2x/ZSNcsWrrCXYgiIpbKrfxM5p22Nt2aHZ0uxucd4jMy1lSdf52b0wQqqwiNfhI1vaRdoX57Zbb6G74MMlCJjp9Ip982ajXN4pnOp8Sc1P8ODAg8fyxQAMg0Ry2uaC1bQQqn3rCuRzjbMufD7/+c9zyy238JnPfIb+/n6+9a1vcccdd5zPbfsvgeUf72Rqkj+4+g/4q5f+ildnXiVZTGJhnbOR1onYP79/RaenoBUqpm6753aTVbPky3kOxA7w3X3f5cnRJ0kUE2xu2MytXbeyrm4dE+kJQs4Q+XKeHZM7iHgiDC8Os1BYIOAIYFgG+xf2c3fP3SiWyLpAF5sbLiYYOvWN/cQfjqWqZxWS+Ebhd/rZ1LCJiCfCAwd/SKIYA7cLqamJKmeEWzpvZK6Us4sRM0tjvoxPtc4pwVkMhXCsX08olSL4Jgq9M90QLjRok5PI27fTviJQdRrtiitQzlHgr6VpXBRz8LXL/pADpQlSxUVCziB91FI7EENorbK9SLAVPbDUlTjeB8k0K0VPNuJhjEWemjw2IqnOH+TWqstonFcRHA689fXc0XkLDw79iMXsse+2PKL1u4OMKTPszB/hoUOPMj0/ZHNl3CE+sOmjGILJ0xPPMp2eAsPALbtZ7VmFkUnx0OQTfKL7Z/CVTwhUPkuu2et55jguv/wN822WEfBFWeeLEghVr+DeAJWOi9/pZz43X5F2ByUvq70BoqrIid5TZjKJNjRkK8gEgZxLYErIkPcq+Ao6jaYfX8mq2A0cT+o/VSdoeT+lypmTHj/2AmtFjMTxoznB5SKQ9+J0BpjOTnFX7138895/JqWm8Mq2wKCkl8hreZ4cfZLfvep3eXn6ZdsLasmhWVAUpvwmj4w9QqS5k29v/wcOxg7gcnlxSk4CzgDbGi/jj174M67pvI5b3VfQ39yMMTm5MoLmHES5vBkcf+zORN5+PUzkplcWPcchkYsxkZt+dxc+AO3t7Tz11FN8/etf5wMf+AC9vb3IJ4wIdu/efU438L8C/E4/fbV99NX20R5s58DCgXM60joVlsmgYHd7loueZaTVNP3V/fzZ83/G0cRRVkdXoxkaH+z7IP+8758ZiA/gd/htmWm4jS9d+iX+14v/i5emXqq8R29VL9e1X8cjRx/hVy/5ZTaUoriGJrB8kde9Sa8YESzhXCiZTjSLvHf9h4nn42S1LF4VpKLKw3u+Tzw2jhbwkhXLBD0R7uq6g55ShjDnjnT4ZkmMJ+0bQSAf9jATEkiaBQzLwOfw4VHsVenrOcKeTxip1Ekp8nAeAlUVBQyD+pk8dXoQY64IegGwZcyCIGDl8yt8WVpDrUR9NSwsLv0WlkZWmt9Dzi1RzKftbpAo2oTl0YM8lMnwUe82PHP2SKStqZuPlySmxAx5s4RXctOsVBNuX0tOz/Nici8/mnyS6dhw5f1box38y4F/5bK2K5lYHEX22De1kq5zNDvG2lAzi0aOKUeRZiVY6Qj6ZQ+tiomYS9g5R2oGnytAW/Wqk0aGr+eZY6XTOLZsOW1H6GxutGfquOyZ27PCzM9SVdq9zfzyxs/Rn5BtxZ9LYFJfJFuKE9QtGj0+kpR48NAPSWRsQrHgchFxhLij7y6ai86zzs8SFGVFjt8KiCKWYRAwHWijo0jV1StGc4Is4w5G7YgbdxSn5CRVStn71TJwSk5beGLqLBQWKkHNNb4aeiPd6DMzZMs5Hhx6GNHn55GRn3AwfhBDgIV8HEVSKBtldsVeY33TeiKeKA9PPUlN6HqqolHMRIJC1MeUs0TOKBIsTdChVuPD8aYXO5aqYqRSWDm7yyk4HHZe3Cne48RjB6cmb58Nlu1QToe8UTzj8+8U3jCxYXx8nB/84AdEIhHuvPPOkwqf93BmdFd3n5dC50REXMeIiNbxOTWWhSLINPoayGsFMmqG1mAryWKST238FN87+D0OLRxCQMCjeNBMDQGBr+78Kpa5Mk/rcPwwAWeAsDuMU3bhTelY1qnb9cvIqlkmEqNk80nmvHGycpaIM0Cfo5n6+dJZhwaeCsebRVb2gzvCHavvoL+2n9T8BP+w+6+Jx8bJRjwMzB+gkLfbz6Mzh7it+1Yul2+ho7H/DX/2ucJJIwNBYMpv8tDgfzKqxziqzlAyVRp8DVzXcR1Pjz3Nbd230RZqe0e215ifP6noWca5DFQ9XjUlyDJSVVWFuyMsq2VOcBJeJr3/MLtkJClJIAi4m1rZKoSZ2Lsdw7INBgWXC9HvZ2F6kOlLttEVW3JiDocJtqwiZJr26zweW73k8zExspOsWWRmqaOzjIAvysjYY6xp3Ihqasi6juLycFXnDXYsgWUSVoLkAi6+e+BR5pfUU5LTRbeUYGT2IKX52UrcQlW0mTu3fmLFeXk2njlKRwfiddcd4wAtRVK8ke7C8R2X5ZvrrDrFV3f8b0ZSo5V8MwSBkfhRvvba3/CH/f+NUiHNfWOPM1KYpqyXcCb8XFKziansFKX0rG0qWCgg+HwkUjM8eOh+PtF7L76idVbGd2IoRE+yeWWOHyDLDlaHV9FS242ZzXBg9iWaJqpoWt29QjYvuFyV65vP6cMlu1akvRe0ApJg21DIokxTsInPbfg5QgdGKY2NMVovkcgtEAoHmUxPUNRVFFnBsHTCjjBFvcjO6Z30RLuJleKoosEOzwKrHWGc1TX8+NBDLKRs21ip0EpV7GVu9V9Ew4xNNBeWVFFnsxA0Uyn0yUn0sTH0yUkol0EUkWprUfr6Vhi0zufmTyp6gJPI22dKG1hxfvijJ+eiHTsY+HyRkx+/APCGqpZvf/vbfOlLX+L666/nwIEDVFdXn6/teg9vEWtr17K2Zi37Y/sr5meWZaFYIp+7+HM8OfQ4isPFwdhBHJKDgDOAS3bxyswrlffQTA3TMmkKNPHQwENsadpy0ueMp8a5qPciSlqJQV8Bn7+K0dQe0ouFk1qoY6kxfjT4I8LOIN985W+J5WP4XUEUUaY92M4vbvx5Ns2duXA6HVaQF4/DbHaWb+/6NtuatxEvxNFqIoQjIfYceLhS9ADMpKfIaHkeePGf+Mwtv/mOZXtVSJOCQN7n4LAny4H0IJ7mNlbp9RhxJwOpIWZyMzw58iRXtl55Wl+VZZzpIna2F7jTolQ68/PnKFD1RKmt4HIh1dUhiCJSZyeiy3XKUWJbVSefvvyXGZ3cTx4NT6tOSTR4+PG/tYueJVjlsi1BdzjIW8duHPrQEGgaxdZ6pj1lcvkSAauBlnQteb1AyVRPCthdJs4qooKBTfa8c/Wd/Mu+f2Hf/D7cshtMk6varuEjq+8heThGGZPa5l4e2vefJHMLrHO1oRTs4jc2OcAPS3/Lp6/+VQIOP4LHYyvHikW7GJOkYwXIcfsLbEXVWxmjLI9EkoU4IdFHtxlh0JhjaOag/dmiCD5fRRwwMnuYsU15Hhn/Mdvnn6ekFXAiIxedRAN1vDDzAhf7usA0SbsMdLmAEpDQygkmjUV6CdnH43VGfoLTSX1dJ7+y+fP89av/l5H4UWTZwZbmrexLHMKICWQP7QPTtEeTjju5veNmHhr7ceUaYZgm3dFuJEEi5AqtCGEOu8I2ZzCwhc5wJ5fUbaZ3UkMbG7MDRXXbA6xAGUmSMSwD2VLwOwJk1DSiICEi4HX4yRsF/v7Vb9FT1cO2yAYShUW21W5mMTOP6VQQFIXYkd084BjhY7U34lnIVIqJ11sIWqqKNjGBMTqKPj1tFz0ApokxP293v44zaD0UO3TKvDG37GZt9VpemHiBbDmLW3bjcXjYP78f1VArC8gTF1itgWaq6zuIjR+xix9Zts8JWaa6ZTVt0c6zOMvefpx14XPzzTfz8ssv8/Wvf52Pf/zj53Ob3sM5QEuohd+64rf4k+1/wt75vYgIGIbOvRs+Qk7NsffwM1y56S5EBDBNUqUUyVISh+igbNo/HlEQK/lgy/k5kiBhWAZBZxCXZK+afA4fbtnJUXORf3zxqyyoCdxOe1a+3ELtDHfy4MCDRN1Rvvnqt8hrBZJqmrKpE3AFOJQ4zNde+xu+fPEX6XsTnjoryItLSJVSDC8Os3t2N3O5OXvcZ1lEvVXctOVD7JvcxYHZvUiqhmRByVBJLk4xFhti3TtU+CyTJqcCJv80ex8/GX+SnJbH5/JT5anmtu7b6K7p5d8P/juDi4Nsbd56Wl8VOHMXTNVVvrPvO8zkZnBIDoLOIPX++lNe4E4Ll+vMz59DXtKbDTsMRutZ74vYqqN0mgMTr9hFjyDYRcvSCtvK5xG9XnySCzHqRR8ft/OrOqI8PPMIiXzc5gjJMtWNXVzaeSUep/+k7CeHqIAkkS4maQ61srZ+faXoAXssJ0oKr83txjB1PtL3QQ4vHgUBppPjUC6T8ZSJCgJll0xGKDObH2Z3Yj8brHrcMwmkFtvp14zFsJbiL/D5EGT5nOSiwbGRyHBiyPYnyuXoqOriQ5f9PE5dQLU0O44ln0fw+RAdTvzeCBPlGA8NPGi7gosiisNNVAxSMIpMZqZorepkdm6YQi6J4PWCquJ2+rhOLtKrhe2C6izsJcRQiI3urfxpuJnDqSHKRpknBn9Ct1yLO16ocGkSmTkePPwAn67/4orRXVbNsqZmDU+PPs2tXbfy8ODDjKZG8SpeQq4QIWeIW7puWRp1yRiJhUpnwye57a6RpaCWi4RcIUpGCafsJF1O45U9+B0BnJKT4cQgt/bcQWu4DUmUEIo+Ro04zW1rmBNzmMkkZiZDXMgy1VSw/cWWst+Q5TMuBM1UyjZgzeWOFT2VJ017zHmcQevxvKdluEUnP9N3D9/e/W1mc3NkSmlMLDbVbeKLW7/I/tj+UxpXmqkUzqPD3BreykO5fIXrI/p8RKtauKv//e/oGP5MOOvCxzAM9u3b956Xz7sIW5u38o33fYP98/uJF+I4JQWnKfLXj/8xuqGhaSXW1a7jwPx+sGyJfcQdwbRMZFHGKTkxLJuUaVomLtmFU3IS9URJFpOk9TRFvYhqqMSKCV6cfJGDsf1IThd1ihNZlCst1P9+6X9nsbiIR/EQK8RIFpPU+uqYykwymh7DISociB2gt6oXR9ed9PDGzrMTfUVUXWU0Ocru2d0kS0lagi08OvQor06/ikNSCLlCrKtey6amzTw9+jQB0Y1LtDOUcurJnkvnG5UU9/w83qjAQ1NP8sjIj/F5QoxmJhhOj6KZGgOJAa5uu5q7Vt/Ft3d/m8nMJGWtRDYdQ9enscplWxbt8ZD3SKftgn3z1W8ScAQqBHjN1HBIDop68XU7SMdDqq1FrKk55bjrXAeqwpvnTR0fLdGs1FBV126Pv5aLn6UYg6ivhiYhhOAsY2UyFNsbeGjyCRaNLKKqEW3tRfM4yKCzO3OENXVraZnuZFwfsMddgkBGTdMZ7WI2OclNvbchKY5K0SMJUiWuZrG4yJHFAcqizTspakV7OywLzdLJ+J0cXRyksOT2vGfmNfbmX+RW3yYaXnvN9sx55RW7+FFVEASklpZzkou2YiSi63bhY5oMzxzk73f9Hdf13cIjr37PzsDy+bDKZbwOHyOZcQpageySCzSAphaI6xqK7ESQJGaLMYpqzi5uloqToppjOj9H3teCz5TPmucnOJ3U13ZSX9vJ3kPP4BidOuXrEpk5JgozrHd2VxYIB+YP8MDAA2xp3oIoiIRdYXRLJ6/lyZfzNPob6a/uZy4/x/WhTWAeU/c1qS6i4QaEbJ6gM0izYDGfn0czDWRBwjANtjRuIewM0VvTz48GH+HhwYeJeKIkC4t0RDr50tYvMbfvGaz8kvoQOxrGLCk2QV/X7UDdMywELU2zw3VPIJQfe4G1wqB1mZxdeVrXuaHrFr6961vsmt1NY6ARzSgjLrlm/8WOv+CLF/8KLw8/RzyfZywxzNqGDStG8k2CyMcb3rdCvdqx6qJ3rGt+Njjrwufxxx8/n9vxHs4TWkIttIRa0KemSKfmeT67j7ZwOw5RwZyZ5cP99/Idy2QwPkjQEaQz0skr06/glJ3M5GbwyB40Q+OShktwy27aQm2kSik8igeH5KAz3ElHsIOh5BCPjTxGa7iV2fwcqq4iO5ba38kRRlM2CTWrZvE4vJT1MlOZSZJLpMLlYcFsbpbvHv0Bv17d+YZWCyf6iqRLaXLlHIligqZAE/FCnOHEMA7JgW7qZNQMidIis6lJ+qO9LGppDFlAcLnwSa4KJ+LtwPFdGUvXqREDvLDwKorDxVhqjEQpYWdNAaOpUS7VL+XFyRe5qP4iRAsOT7yG3HoH6o4ddgTHEgdmpE4kkZyxDfiWkCqlOBQ7RNkssyqyiqfHnibgDNAabCVdSiMg4Jbdp+0gnQgpFMJ5xRUnEZzPR6DquYCgKPh0kTtW3cZDoz8mnp61V8qWRVVVM3d0344nlquElU77DBYXMkgIVK/ewA8GH2AkMWTb+AM3rn4fH974Uf5t378xPj8ApslEcpyPrf8I04tjHIofpq9uLVWeKkQE3IoH0zIoaMWKb9ayualbcSMLEj1Na+mo7yOWm2dLQzsFQ+Xo4lFq6jsRyzo7Z4e50d2Oks/j2LwZDMMueJd8fKxCgfLhw2/JJO/4kYhlGPaNdYlzNDk/yA2dN+APVIHTiaFIyIoTh+Sgxl2NA3lFfp+lyBQtg9niAk3V7RiWWXEztwo2ObYh1EIxn2YynGdd2yVv6re3HANz7GALaG4HGVmnbGpMGgk61GzlurJM1D60cAhJkPA5fOS0HA7RQUOkgb6aPibSE9zadSt+1YV6XGfPkyxwx7o7ePjIg9zWdSvfPfTv+GUfHdVdxPNxou4od/fezfax53htfg8jyREkUUYSZQRJYiQ1ygOHfsi26FoWCgOV9/XhwEqnsJZsDjDNM3a/BEWxX3dC1/H4fSDIcuU9+mr66Ah3MJIcwVpSOTpcHl6ZeRW37EYzdMqGhiDoKJbCrqmXyazPYi4JBDLTo5ieNixVPcZDtCy8eY0evIAXVFDyOlzACv33mMk/JRAUBW+2THPRSX1OxA6Ry5Hat4sPdd1F+OJGnhl/ls9s/AyyIPPa3Gv4FB+CIBAvxPmfV/1PHhh4gEw5g0fx2NwffxNXtV3F4YVDKLKDRHGR7uhqJEFCNVScprNCGMypOcxcDr+vEdM08Dn9jKbHjm0fdvHjlF3M5GbP+sa7jBMzf8pmGW3ZpCzaw8H5A+TLOQKuAHktDwgYlsFYapSbum6h24SB+BFWuRtpzMuUDx9Gbm4+J+aKZ8IyN2k2O0u6lKZslpEDDrLlHCYWGTWNLMhYlh1gKyBQ56vDsiwa/A0IusHFzVtQSrpd9EClTZ7zKxjxuM2FkWVUXWUgPsBiadE2qNTtG0VGzTCeHqfWW8vRxFFqvDWndOY9HZTmZsT3vc/mFCwFQp6PQNVzATEUQvT5aE7pfKzhfUy15MhpebymTLMUJRRoxsLmWMilEgVXCUGWiVS3VooeoNIpGkuO8q/7vsN/2/Kr5PQciWIS3dSo99RyXffNHI4fZjY/h2CBbpSZL6QQRBGP04soiIiCnQS/UFhAUhzctO5ufjz4KDsX95I1iqTLWaLuCDd23sS/7/0u07kZPrD6/YxG/WzIllF37kRY4hiJVVXQ14d24EClA/BmTfJWjESWOUxLxpFyvojb4UX0+dk/sxsUB4Iss63tCq5quQJH2aQl3MZEegJDhIKWx7RMXpl+mY9t/AR75vYwUUzj1DQEp5OGUAs3dN6AicW81+QHU48jzUjUeGvoinadtcw6EKpGcLns7okgkPU7GEgPU1TtxcBEfpZ/3POPlVHuiXEZeT1P2Sjjkl1sbd5KxBXhqtar8Dv9WKqKFA7boyXTRKqvp/5ojHvLfcyqbvov/W2m9ARlXWWhmGAuN8dEaoyGYCM/HPjhUtFjh806JAdquchMehKtdlOlaI24IjRmRNudvFy2x5ZL+V5nOp+Zn0f0+WyfoOPHXaJoG0k6nZX3qPXV8itbfsUeYc4fwcAiq+Zwy26inihZNWt3iSwLzSrjEGQyatp2zJZlvDjQBgaQXmfyc6GGky7jvcLnpwTLqpimRRfRQF1FTmpoKskj+6BfZs/Mbkp6iWvbr+X21bdT0Ap4FA/JYpKSViLsCrO1aSvj6XEUUWEsNcbvPvO7NAWa+PTGT6ObOkW9SKKYoKgXKWgFqjxVOJGpEn2ESyKussWqSBdH4oePbZsgggBd0W6KehGH6HhDN144OfPHITpQRIX2UDtXtV3F7z/9e5iYJApx/M4A1d4a6v0NuC2FgOTlqeEfc3HtJm4Lb8G5/yiaadrW/tu2IVVVndNjcTzGU+MMJYYYz4xT0krIokyNp8ZerRoapmXhkl2U9BIOyUF3pJuSVuKhow/RV93LTGKCrU2XkjbzK8IR0XW8+CrtcsHnI12yR5Nlo4xDcqxQsWTUDC3BFhYKC2TL2VM6854JUih0QRY6J+J4krQ/m6WnJILpQ/D5kLu7EQAhGKxwT3xiHADNpawsegBdhJKusmPoGT7Qdw9/98rfcnRxkKpAHW6Hh9ZAC/f2/gzFQpbWQDP75+2xomUaFNU8AXeI/pr+SgaWIEpMFOcQBAFTEEiqKbsAtkyGkyNYFowkhvjPw/+Jr9/FKscleNva0IaHATATCduIMxrFXFiwH3uTJnnHj0QESVqhDDUdMmK5zPWBjVzVfDlFwcDj8FLvqeG7O/+em9qu59bVt/Pw4CMcShzGtAxAoCHQQJO3gaQnxurV3QQVP17Zg6Q4kBQ3L05s55sH/4l4wd7nzYFm7uq5i+s7rmd93frX3ea26i5qujcQO7qHsmitKHqaGnsRJZnF/NyKUe6ZJPsnnTf9/ViGgVko2PwvXcdTKrFKFzEPzNPfWM1sY5RMtIUnUo8TNd0kJbWikL151c1Ue6orxVW+mEE17CKnurGLWyOX4n5tKWXeNO1A2XXrXjfAVGlpsQUsoniyqqunB7m5ecV7bKjbwJ9e96ccnN7DXHYO2eUi6AyQKiQRESo8TssyMQWLgOzHyuWINq6iGTu+4vVUhRdqOOky3it8fkogOJ3Izc34Jia4vfVGHhp/zC5+llrOSBId0U4SxQQPHX2IhcLCir/vinbxzPgzBJwBnp94HgGBkl7CsAymMlNYlsXqqtVIooQoiCiigohIsphkfVU/tY4Irb138MTgE3y4716+e+h7HFw4hCiIyKJMZ6STW1bdwpH4EdbUrHnDN15Y6TuyWFxkMjPJ02NPMxAfQDM1REHExELVVQRLwC+4sWQvdd4a3t/7frb5+mk4mlqRrKzt24e4bdt5G3tNpCfYPrG9kkkEEHAEqPPWYZomFlal6GkONONSXExlp/A7/fgcfpo9dQzM7Odxy0Nv9HpbEbKEJt1L1FdDUi9j5nKoxaytXrJMou4ohrkyimH539We6pOcef8r4WxJ0srq1TRP2Pb7mWU/kqXRgSmAIsoUS1lqw03sie3lUOwgAPHMHPXhZg7OH+CvU7P88sW/yGc3/hzffu3vKsWPLMhsadzC/3f5b+CW7BFysVxkNDXKluatjOWncKW9lPQSuVKWp4Yf52fX/CxYJqOLQxQoM1maZdV4AikatYmwooiZTCKHwyu+x5sxyTt+JIKigMNhj68Mg5a6HlhMMn9kN4LPh+D3U5Zl3LVlAoEqBpKDbKpZz2XNW1lbtw4NHa8zSLUjhNeSmY6PMqMl6G/YQI2vhjpHHc9NPMfzE88fm3kDk5lJ7j9yP3k1R43go1pzntHfxu/0c+eme3nAoXBk7gAlTUBwBWmMtnH9qhuZydqRKieKAU5nkngixFAI55Yt6FNTdhyJIIAs2+RuhwPP9AKd0wso69bRX3Mn044i454ybaF23tf9Pn509BGOxI8gCxJuxUNnuJPfvfp3aQxeRO1sEV/SQOzrs4ue+nqU7u6z6jiLoRCK241YU4Oydq29baZpu5ifZtRZ66ulKrSBV0q7SKBxWfM2RpMj5EsZFkqLdgCwqXFR42Z8ukDEHeH2puvxFuwRpiCKJye5L3ELURQ7uDUWu2CNV98rfH6KIEWjOC+7jJb9+/l45weYkvPkKePzhlj0ifxo7DEsLJyyPaI6Pjh1+aboEB1Ue6qJF+J4FA9FvYgoiByIHeCjaz/Knvk9TGWmaAw0YpgGTYEm7u3/EC8NP0upmOeG7pswdZUvXfKr9Ff3M5+fwyE7KWpFjsSP0BnppN5f/6ZvvMdfxMZSYxS0Ajund9IR6WRscWTJir6V3kg3c1NHqA3UU5yfoVwu0qiuPtl1Npc7p47OxyOrZhlLja0oegBenHqRO1bfQcQdIVaIMZYaQ9VVOsOd1PhqeHX6VXRDRzBNcoUUbpcfNZlgKlzieIcob67MbS3X83BsO4n4JIpiYBUKdERbaI+uwgJag62Mp8cBkESJjlAHH+z74HlTY7wZR+oT/0Y4TfzBud4GO2ZlHXdG3Dw69bTNlTJNME28Lj9VzghTiTFa6rpQ9WOyfl0vUyoXMUydQ7H9xIuLlBLz/MaWXyNj5MmV8wQUL13hLi5quKjydy9NvYRTdoLshDzM5eaYy80jAAigmToIIg7FhW6ZFGSrkoC9TG428/lTZou93gr9RBw/EhlJjtijFF2nI9LJJzd9lmce+3uEYBDR78fMZhE8HuZHDnLthusZyU0wW4jRVb8aVdApGzpN/nqsQomR8T383KWfZyQ/SaacJewKE3KHSBQS9vj1BJ7ORGqcfCHNodn9bEuFgDMbnbaF2vj0xT/Pi1Mv0h07hEt2ISAwk51ZYV/wRjvKy6hEfRxXkFgeD6LXe8xXyunEV9bokaLUVtfysfUf4/sH/4OJ9ARexWuT17US85lpHtjzPX6n/VP4yiXEQMAuWIJB5LMseo7fLtHpRBsbO1aMJBKYsdiKfXX8uT9hLvLI1NO8NPoc16y9ncHFQRJqirZgK2OpMdbVbeXLl/8G1VNZLu38AN7ZAkRsvuDyMah4jokiQjSKlUxCqYSxPOqyLJTu7gsupf29wuenDFJVFeJll6GkUoSPW+3GtBTt4XZGkiPIokyVp4pMKcO62nWsrlqNR/EQdUep9dXikl28MPkCs7lZu7MjiNT562gJttAR6eDDaz7M3vm99mpVzfE3r/5fqvBxTfOVPD7wYz7achveCR1/9dX8W/nHzKoLOEQHa2rWUO+vr1jiv1W0hdq4d829bKzbyF2r7+JHg4+QKqYw1CLzU4PU+uu5ruN6ilqRO8KX4Jk6hZpLFM/bvHq5M9UcaGYyM1l53MLiPw7+B7940S/y1Zu/yu7Z3RT1IrXeWr6+8+tIosTG+o2YlkFVTRuKpOANdTJdJZOzVJzeAA7ZSUEr4NVkPth9Nwt1c6QoMd4yR0NVK7OlOCk1xVWtV5It5zgUP0S9rx6fw/eGuFVnwokFhiUIGNPTFRNC+0VnvjBWXKxLJbvg0XVQVYRIBMple7Xtcp10IzydJf9JoaJLK1TR50MMBE4qggSnk46mNdzuC7A/fpDRxRFkRApagdHYUUwRmgLNxE+w7TdMA2lplJgtZ5mdH2RyfnDFa/qvXL3i38tdzlTJHnEtc7s0S0dExKk4ccouQkoAtyngzhYxVQO5oQFT0zCGh23/F0k6aT++mVX38kikEkshe1lt1ZBITaEHPAiahpnNIgYCWNkshqIwPXWYj2z9OfJGge/t/x5HY4ewNI18LklnXT8fvuyz/PnOv+Rw/DAOyYkkSlxUdxGXNF7C7tndth+OKNtWGpYFmoZmqEvxFPbxfT13Z7/TT6OvkR2TO0ir6ZOeP35fvxmcOMYRZBkhELDPz1IJqa6uws2pczrpXexhPjuHaRxbSIY9UXojqzk8/DIDXXdzycwMJkuigE2bkN8gt/C0WWnH7SurWLSz5QSNKbfKd4d+yKKaxBeo4pkDD3NTx/W4HG5EUaa/qhdvyWLNyzO4hybA74f2dvv7LrmjHx9caqqq7RKezVb8pASfD7mjA+3oURzr119QnZ/3Cp93Cc5ldtOpJMG1zpUrPJ/Dx5WtV/Lq9KuUzTIz2Rnm8/MMLQ7RU9VDT7SHnqoeNFNjVWQVLcEWfnjkh3xk7Uf4u91/xyszryAIAmW9TMAZQIx08/Tkc1xefRGTpOgxvXQkBL604ReZInPG+fpbgd/pZ3PjZgCuaruKsYVBEpl5jI0mPsWLx+WnIS/jfGXvyZJQWUZwuc7bvDqn5ZjPzXNl65U8N/5cpfgRBZHOSCd1gTrmcnN0Rbso67ZM/ZKmSwg6gxS0gl1caiWua7+WB0ceZcfsyzR66pg6NEDYV811bdcyHR8hNOfn9vab6SkGEeoC/MH2P+KVmVewRBEBuKhhM795+W+QLKbY2rz1nOz/EwsMvF70o0ft/17qPrzehbFyMS+VEPx+9OFhjNlZ+zg5HMiNjUjNzVjZ7Iob4Wkt+Td/gd4ZA0tVyVcFmBLSpBcG8JsKjQs+/KIL0ec7ZTehJdTC5zZ/ziaFxgcpqDmqvNWsruvnnr57eGr4SS5uuoQ9M6+hWTqSIOASFGTFic9x8v6Mhhtoq1m14rHWUCs+xcfOqZ1gWThEBb/io2xptIXaSJcyRJ0hat3VRE0XjWmw4nH0oSGb1+N22zffE7o7b8XXp9ZXu4JcbKkqHpePqkgT8cwcgqJgZbN28RgOE/JEqPbX8sRz30BJJNHzOYpqDpfs5gOXfIzHx54g4o5wZetVxAtxds3sYjg1zFh6jHW163hm9GncigeX7ERCtAtjcSme4rh0hNdzdz5R7HA8ThWy+kYghkJ2wbxsDLtE/BUAAgHkpqYV57JaytMT7MSIrEIzdRRRRjIsCpk4lstJhhKua699S6KAk9Lij4NVLGIkEhhTU0zKeR4aeRRHKMKOse0ASB4v4XAdL41uxygVscplGjZ9mnWhjXhLOUynE3I5jNlZmyx/nDu6sESc1l54ATObtTmFlmWr+TIZ9JER5NbW89Y1f7N4r/B5F8BMpUhODDKpxiqZPk3OGsItXee0hXj8Ck81VB48+iARj33xyKgZrmq9iqdGn2LX7C7W1a5jMj1Jva+ey5ou47Hhx7ih4wZemnqJZ8afoaDZVym37MawdA4uHKQ/shqczqV8Fy+Cy0UwVEvIaYfYZdUsQ4tDjKfGKRklarw19Ff3v6nwvFPB7/SztmnTSY8biQRqcGxl9tGSJHx5lHA+4FN8+Jw+9s3vY23tWra1bKsQjzNqBofk4OKGi8lrefyKH5fsYv/8fmL5GPvm9zGRnmBT/UYeH32CVCmJ3+nnxflXCDuDqEaKp+df4srwBkxB4LnCQerDzbw0/ipBR4CgM0Ray2AsqW3+9Lk/4Tcv/y0srNff8NfBiatPweNBGxy05e5LRTuahpXLnfHCuHwxF7xe9JER+/gsF6dlm7dkLf29lc9jplLEvZzekn/HX/E/1v0KU54C++Z34hWdKEjMpacIecJsq9lMW1o9bTdhQ90G/njLb3NoZg+LospoeozZ2Cjfe/kf2ZU6SMQT4ee3foGp9CSmZeKRXLgkJyHTYRs5LhUk0XADd2/5+Ek+J36nnytar2D37G5mc7O0hdsRBRFJlLi08VIeH3qM9kgHH+x5P1uMFtzxIXA6MRcXEaurkVetQvT70UdHK+/5RrK5zgaC00m4ZRV3yp/kgd3/ZtsleG2z0qgnyt1bPk4sPUMiPYcDidWhVQxnxrhp3d38cOB+/nnfPyMvWTO0hdq4edXNvDrzKrqpsbFuI08MP06xnAfLxC25aQ224JE99Mh1wEqX8DN1Yk8UOyzj+JDVt7IPpJaW0+agnXjehFxhCrljrzu+LBVEkZC3CsfqdW96e+D1VVRWLkdO0Hho5FESuRhhv6fynFHIk1Wc9NavRS3mkDN52q0QNY+/jNDQgNLTY5+/goDU1HTS9dBMpSo5YSsWj6KIaZrQ2nrBqbzeK3zeJiwb1BW1Ii6Hi7HkGKlSiog7wtqatbSETp1ga6kqo5P7efDoQytScKO+Gu4QbqfD/eY8L06H5RXe0yNPc2jhUOVx0zLt7JmqHjbIG7i44WJUw1YsTGYmuavnLvbO72UyO4lgr30QENBNnWQxiVt2oQu2O7JP9iCIK3OVxlJjPD36NP+y918q1vF+h30j+PmLfv4Nh+e9EUjRKM5t29D27bMdUEWxkt10/Daea7SGWqn311PUiwzEByjqx1ZsHeEOrmq5is4ly/c9c3v4qxf+ihpvDW7FzZHEEVRdpd5Xz66Z3bQEm8lreSbTEzij3TgdHmZzs/i7b+XwzD70+Bwj6hwzmUl8rgA3d93CDw/9AM2yL0ivzewmWUq8IfPC0+FUq08rs0S6PsFddlmCf+KFMatmGc2NkHEu4Hdo1LtF3MLKJHNM85iEf+k9DsUGT2nJLwoiGS3Hg4nt/OTQw7hcPorlPH5HgKtar2A4Psrk5AIfbLuVjkTp1IVYLkdw5wHWygL/svA8k44cA/MH0UpFLl11KUF3mP84+B/kyjlmM9PU+ur4QM/7WeVrpW1VlLzf7v601ZwcOroMh+TgA30fIFVK4ZKdRF0RDNNkaHGQ7qithCoNHOHH6Ve4bc2tNCYtKJftLoHLhdzUhNTY+Iayud5MN7mjoY/PBH51KUw1i8957Hu9eNj2fBNkmYApcmPXzexOHGC6MItpWWiGBgIMJAbQDLtjnCvnqPXWUOutZT4/jwV0RDu4u/su1kR6SBSTuLwBm1y7pDB7vU7s2Sq23igsVcUYH0fwehElyb7ZL10zjPFxpHB4xf7rq+2no2Y1I7GBk96ro2Y1fbVvPRvwjPtCEMg5YI+ywFF9hs19V+JwuLnRdQ9+p58GXx1z+Rhlo4xf8eEolImkZTAMjKkpO1He5UKsr0c+RdfGKhYRwmGUYNDml8kyZqmEMTKCVSjY0vwLTOX1XuHzNmDZoE7VVTbVb+Jvd/0tw8lhXLILzdDwO/z8xuW/wdbmrSf9bTo1z4MDK4segEQuxoMDD/GpmlZCtacumt4KTmVtrps6B2IHWCgssKZmzQrlV7wYRzM0Qs4Qsijjkl3opo5hGRiGQcAVRLN0IuF62lrW4gjVVi4OWTXLM6PPrCh6wOZGbB+327G/e9XvnrPOz6kgVVUhbtv2huMQ3gqOX5W6ZXfFx6fB18BH1320UvTMpab56vY/Z2RxiDlvmHvXfoS0mkY3ddrDHUTcYQ7FDrG6ugfdNCjrKpZh4PcEWVRTPDv+LBPJMdyhKsaSI7SFO7i582YubbmM7WPPVrYnXcqcMf7ibHFiEWPpemUsANgFy3GGeMvkyGWMpcZ4YeIF0tk4xVwSV9GDzzK4tK2L+sPFY6tKUbTN+5bM8gRFIZVNnbQ9AgJV7ip2z+6ixlfD4OIghmx/XoO/kX87/H36o73MLwzSHGmj1ruR4NJ3SKdijM8PkC1l8Dl8NDbXMpUeJ5GawS+KrI+uIeu0EGQXA4kBsuUsvVW99ES6kUyLPaMvEVZFPtNwO6HwqjO2+3dM7uD3n/19nh17FgsLyzTZ2nQpv3TxL/HA/v+kvBinv7afSNoOVn147lk+Gr0Ob7wEsoyytBp/I6MSM5VCO3gQY7mbJklIoRBKf//rdjoDvugpo118zmOp6YIoori9xOfnkSQRE3NphAVgMZwa5tKmSxmIH6HB18DvXPabmCIE3SF0wyAVm2D7yH0YpkHUV8PtHbfQlF1amJzF9zxbxdYbQaUTKcuVgNxlnGoEVxdq5L9d8Wt8dftXVhQ/HTWr+dUrf526UONb3iYxFEJQlBXHUXA6ERSF6YjIwyP3IVoWW7qv4292/Q2DiSFMy6CnqpfmYDM3r7qZg7GDjCaH7evK1t+GwwvHsviWTD5PFVFjGgb60aNY88ecrYXqapS1a9H2769cSy8kvFf4nGcsG9Rl1Sxbm7byP5/5n7w4+SKSYJtZ1fnq2FC3ga+8+BX+8qa/PKnzM5GbPqnoWUYiF2MiN31eCp8Trc2Xsaz4WjZdW0ZRK6JIChPpCep8dbaK4ji5tGVZrIqs4srO6whFV27veGqceCG+ouhZRrZsd8oOxQ6d18IH3nwcwlvB661KzVSKg5O7ODq7n5KlIzlcZNQM/3bg3wD40JoPMZmZwsBAQMDEQkTAKhZxeqqYSk8ykRwDqPj2jCZH+NHQI3xs3cdXFD5BV4C5wvybVrws41TkT2QZHA6S3Y0MBkokiwXCip+ugpcaQcCIxxE9HvJuiRcnX+SRo48wnZmqdHTqlShil4sbGurwTM3b8urj318UEUMhQvnQSdvjVbzEC3EWCnEUyYHicJFV0/gcPsqmZofkVq8iXozzwszLbO7pJaQojEzu5/7tf088Zu8/q1wmWtVM/6Yb7fu2YaAsprECEkFnkMH5w2CaFAppSrlU5fNHchNMkqoUU6fCRGqCP3ruj3h15lVEQawokHbPvcZfvPSXfHjth3hg13fxFy17ZCYIJPJxZlaJ9HpaUFatesPjLEtVKe/bhz4xgVUuVwpRMxbD0jScW7e+qcK/rWYV0XCDHQmiKBQLaRTFQaqYoN5bTyw/j21ZatuWls0yfTX9zC6O8+hr32dN4wbKkoBsmAiSTFlUcUgyZTXOQ6M/5uNd9xBqaD9nnMc3itcdK53i+Y3NF/Nn7/sLDs0ftAn3zhB9tf1nXfS8XlfOKhYRAgGs2dljXVBZRu3t5OHk8yyaOa5quYovP/vbvDqzC1mQuazlMg4tHGLnzE4OxA6wrmYds7k5Pr7u4zw1vZ3ETb0EshpdGReho1OIHg/iCaRrI5WivHu33dE9zkfMWlhAO3QIee1axPr6C4rYDO8VPucdy8qdrkgXz44/y4uTL1ak4pZlMZWZQjd1uiJd7Jnfc1Lhk9Py9kVpiTBWSb9dQt4onviR5wQrfDyOgyzKXNp4KSFXaMXjIXeIslEmVUqxtWkrO6Z2MJWZqgSdXtxwMV+45AuVLsbK75ircIJOBd3UT9mB+q+C061KLVVFO3qUmJhkrhBD08s4PT50S6cn2sORxBGmMlO0h9oZXDxKVs1Q56vDKShgGFR5ogzHBkAQUGQHXsGB1+EjV84xkhpFlo79/C9quAi/w16pvxXFCxwzyzx+3CWGQhxucfC1vd+yt2lJct3ZsIb/dsWv0TeXRhsYYKzFxcMDDzOTm7HP8yWlzExuhocHf8SaDb/MqrgLIRi01V0+nz3iaWjATKXocTXS7mtmJDNe+Z1YWBT1Ih3hDrKlDIIoUeevZyI9znB6hFpPDXvn9nIofpgbOm9iXszTKpvc/+RxRc/SBT0+Nch0Uyd6VRh5eg5LUSibpp3IvtTVOt4YEuy09pxeOGO7f9/8Xl6b2YWuqbgkJyWjhC7YI52XZ17m5y76OVprulBml25qSyv6ggMc/ZvsvKw3OLIyEgm76CmV7OiI5ZtWsYh25AhSWxtKW9tZHvVjCPii3LXl49y/859J5BZwWTJYMJ+ZYWPdBvbM7WU+P1dxa28JtnB50za+fv//wNJLNEbb2Z84TKmURbMMdEVEEWWcopOi4mKvO4ljdAo/DpoI4S3op1T2nS+83tjmdM/XhRrfVHdnhVBg+TOOk/QfLwKQW23S9jLhesiRZTGZRpBlFrU0B2IHEYC2cBtjqTEWCguIiBxNHOX27tvxOrx87+C/kywusru6l+TwYTpqe/iVbZ9jXbgXY3QU6bjzKp2YZdSVId8fxKuLNCYt3NMLdlc3n0euqUE8bpFyoeC9wuc8Y3n1XNSLzGRnkASpkna+jLncHP3V/UykJ8jkEnjzx0LlPOWlUcEyN2LpZrC8ivb5Iudlu0/08VjG8WnrHeGOSpei2lvN9w99n5/p/xm+f/D7tIXauLTpUnRTpynQxPt738+mhpOJxWDfaD2K55TPgX0jOV0H6r8yzFSKrFXCNDQwLS5u3sKq+n4WC4t8euOn+dd9/8rOqZ18eO2HMUyNXDnPtpbLSS1MURWq4br26/jygf+OIjuJusI482VaAy2MZybJlDO2Lwx20fPFy36d/Qv735LiZSI1wf75/SyWFokEw/RVNdKQtgNAU2va+frLf8pIdgJBkipF/Ghxmr/e+df88YYvEo0XmU4tMJOzjeYEBHzuELgtCFqogsSET0Pc1ESD6sanCSjd3QguF/qQnSAeFkW+0Pspvrb3m4wWphFke5HRGmylNdTKS8PPEnSHORI/THKpmLYsC1mUGU2N8ezY09zcdTMT8aFjRc+SrJold9zC9ASuqjD61CxoGg7Rg8PhAkHA7wrYnZPlxYlp4hAVfO7gaW/K+twcyXQMU9ewDAPdMOxAYcVlRxwYGoVyASuXQ/R4ECIRBI8HweUi0NiOGAq97s3xVLCytqHl8UVP5blSCXNxEetNrNbnc/OMFWZp6txIt+igTg4xMZRCKxeZjA3TE17F2po1lE1brba14VL2jL5ESS/QEGqmPdLBK/OvMZGfIacXMEUBSZIJuUIYIhxNDJLPLuKSnPglD9uqNtG4WCY5MchMQSFvlvA5fLQGz61CdBmnKuyXsSz1Plc4G5n68Zw6K59f8bc5PVFxbk8UE4RcIVRdxa24mcvN2SNVLEREvA4v9x2+j+HUMOtr1qMaGoLXy2h+iq8f/Vf+6KLfIDQ4iFRfj9zSwlhqjPuPfJep8QNkFIOyYNIUauHeq2+m9UjcdnguFBA7Os7Z/jhXeK/wOc9YXj1n1SwOyYEgCCvs35ehmRouycXI0C56Ug5byTI+ToPfSXXjKhamh+ziZylYTgiFqG5ZTdspOijnCif6eIScIfpq+iojpxO7FLd138bDRx/mnr57KOklClqBak8117Zfe8Y5e2uolSpPFR2hjpPGXX6Hn9ZQK301fef+C17gsDSNSX0RsVTkoxd/mvsP/5Cdsd0U9BJ39tzJNW3XcHv37WhGmS9s/gKyJNPqrKW63YnLH2LeytEYbkEv5pFUu8Piy2l0+VrA6aSvupe/veOb+B0B9i/sx+vwvmnFy47JHfzJ9j+ppL0DrKnq58sXf5GNQyUOiyrDsSOArfJazn1C0xiJH+WIPsc2QmiGXeALCPidfkaTdiq9YRpYWOxJHMCsXsuEp8zauvW0+qtZHNjHlLxItkogZRXQyiof2/hxHLKbhJZGkRyk1BSPHn4Yq1TCFQqTOs7fpTXcxkxmBkV2MJGeoGyUyWoZ+3e6ZFhoHxALweFgfnaIGy/6Aq9MJUlk5gi6w6iaSm9wFbIlkI5N2dlqDgeeUDUdoXbam9eesoAwcznKO3cSavVXRAEAhqGBqSMpTkTRzvNyBEKIchDR60VwOIi4I7RFO+2b46FDZIwiU0qGnFHE7wzQLCr4zuShIi+FiZ4u2RvesAz5RCsBq1xmla+VT235eeKxSUxnCcEQ0LQ8bYEmrqu9lP3DO7i8/Uq2RNdR74gSd2pM5qaZys9RNlQQRXxOP2W9zHxunq0NW3hk13cAqKtqoywL9NT08JOB+9AmwOULAraCazmX61zi+NiTUxWa53KsY6RSdhHtdFa8r8xMxv7cTAZ9ZsaOqzgB1lJUjd/poK+mH9Uh4pSceB1evIoX51JkjYBgh+ViEnQGGVvKTzQtA6eoUMjlwOlkJDXCgDbNZdXVGMkk+YCLBwceZKQ0x+HCMMWi7YE2NHuQieQYv9nz8zS+PIjg9V5wYy54r/A571i+qdd6aynrZW7ouIGJzASZUsaOeljq/HSFu6h1hIlJZQZCCyCKhNcE8cpu1pS38bhSQC8W8RQNEASq6zu5a935c9hdxok+HmdCW6iNT6z/xBtWUfidfq5uvxoL6yRV15WtV/LZiz573vk9Z8KyIi+n5c7rSvJECIpCTsuTTs6zKCfIawVyxQwhX5QHjtzP5a1XcknjJbgNkXx2kZvrL6frQBxldQfE8jRF67mh7Vq2Dz1FUVtSVVkWQcvJlS3Xc0XjNuJqkpyW4/bw7W9a8TKRmjip6LEsi6NzB3l88ln01Vczn0/y4ct/AdkS2T/2CgcWDqAbxxReywZ19Z5a3LIbSZAYTY5SNmz/olg+Rr6cZzQ5yn2HfsC1rddiCgKlQp6fDP0QMRrhvl33M7I4hN8ZoD3YRpUjxC9f8SW66vr4f3v/H1e3XM4T+SwxM4dLcqIaZXqqeri08VK+89o/I1sCtd4aZNM+J5cJndZy8bMcVyGLhGQfn7r8l5iU8+QyCUzRIl5zMf+x5zukRAEEGbfDy7b6LXxw8ycJRutPue+MWAwzmaSvuZWNdZvYMbVjKdvKPlamqbO1+TI8Di/hcD2SbN9Ejpdl6xMTjKsxHhr9cSWDD1GkqraNO7pup/00xYvg8di+P8teS1ApgoRAAByONyRDns/Nn2wlIMsMxgf4x1e+zRcv+zV2jj9PspjEiQz5PPOHd/ORrltpLtZQfm03VnKc5O3rkICyVrTNGAUBt+JmNjtLo78RZUkOrzoldi/sQ5MFZgvzPDv2LB5fmB55LSFXiMXi4jlRKZ4KZxt78kZx/LgSQDtypKLQswzDLoACAdvPStcx5ubs7lOpZDuLY3frjLidd6a2VPOvr/07++f38YmLPkPIFeLwwiHqfHVopoYsymimRk+0h0K5gIiAAfidAWRs3hyShJnPk8rMox3OI8bjjKqTzMTHGE6P0dmwhoA7RNks45QcpNMxXioc4ba1ffjeYDju24X3Cp/zDL/Tz+Utl/MPr/0Djx59lKvar2IgPkBGzdBf3c+h+CEub7mcD675II8N/pjX5veSK+fwO/3U++rYssSn2VS3mcnMBN2hLlp1L231PYQuwDylN6uiaAu1cU/fPWyo28B4ahzVUKn2VNNfc+58fN4oLFVldGGQhwYeJFFK2ioJWT5vK8kTIYZC+D1BdJfM/kPPs66qB7O6n7Kp4XMFkEU7WPYT/R9hQ7mK6HQey+fDnJ9H9HrxFQ0+sv5jOEWFkdRYxSOoI9TGBzd8xOYc8NYVJfvn968oegCcgsIH1/8sGT3H/3zu9zgSP0KqlKLWW8NNHTdxxapr2X70iUosSsgRQLDcdNesYlvLNl6ZfoVMMYXfFWQyM4lmaPTX9JEuJlnMxxGw+IfX/p4P9X0Q3A7uG7CLHoCsmmE0PYbhbeBrL3+dP7vlK9zWfRsPvfYfXFF7MZ7qRrqjXUiijG5oPLD/P3EIEmF3FT3BVdQ5ozSKVVTVthOfO+4mbllYuk51UxdNchRvLEFvKISRKqEPDFBoiNK27vPMiTk0Q6PW8tJhRYkS4HRYNhusPTLLb1/yJf5I+HNemjxW/Gyq28Svbf01uiJd9FX3nbSgsFSVdGZhZdEDYJrE58d4UHyET9e2LnkeH/d0KoWRTiO3t6OpKuaS3YAgywheL0p3N5RKb0iGfCh26CRO4DJPazB2hHk1zu3SGqY8SfJGEW8wQGNOIuiqwxgbs1PVRZF4Ic7muosoGxpjmYnKvm/w1bOl8RLG0+OYHjeJ0gIaBgvqIiXD3o/L1hAb6jbglJ3nRKV4OpxrMcQKl/JoFH1kBDEYRB8dxUqlKl1SsaYGpb8f/ehRBFmuFESWYav9lqMzkqvq+Mbub7JQiCFbAv/56r/wi1d/iX987R+JFWKEXCGyapbmYDM3dNzA4OIgFtDkb6Ql0MLM0d1YslhRZQZlPzjsgixbSJMtJFlXs5btMzuYGBus8PZaQq1s67mR+aoqai4wNdcy3it8zjOyapbnxp/Dq3i5rOUydk7tpCvaxRW+K/AoHj618VNsqtvEQwMP8p+Hf0Bey1PlibJYWiRZTBLxRLm86XIOLx4mpHh58NB9/MG6/4Zf9r7TX+2cw+/0s7F+IxvrN573z8qqWQYTg8xkZ1BkhUZ/IwFHgOHFYZLFRUKSj3ZHDY8cfJCFzJTN8VgyNVzk/K0kj4fgdNLWtoEX0vsxTJ2F2JjdfRBFsoqCW3SyPtpPOGcQOjKMnskguN1I9fV2272ri45QiM8FT+23cq6wWLIN4kRBJOqO4pSdbKhdT7wUZ/vEdnLlPAoSiigzn4/x45GfcEXLFbTV9zIwe4CuSBc9rmaUtk6cvhAf6b6HTHqBaWWYomViWSYtwRbW1ayzvYdMjXQ5TVpNkzNKlGWR4cTgipZ/Vs1AsIWR5DCHYoe4puMaPnHxZxgZ2kVJNDnCPsbiI2TVLN2BdmRRwik42BDupdPZgHt8lru2fpL7d/wTC7PDlfetqu/g7ss+jXcuZT+wpITCNPFMLbBqCo75MeeQGmWsVafvmlQ6BOUy6/cm+Pq63+bgpgUSaoqgM8CqUAfttavxO/0rOo/j6XFag614UgUm9cTKomcZpkkiOcOEukCIYzwLS1XRJyftG2cohBCJoESjdkfL6wVFsf9f094QX+V0AgRBlsHnI0OJyOrLCC8Ve2ahgGHEsDIZjJkZRK8XgkHckpOnh5+kv349l7VsQ8Og1lfHjskd3H/4fj6z4VOUygW0ki2IMEwDHcMeCckyRb1IupSmxme7Vb9VleLbgRNdys143Db4TKWw4nG7+yhJdhdwfh7d56PQUsdUYYxseoFAqIaW6g7cE3P2OQkMuHKM5idxFFRq5RCqaPIvu/+J6zuupdpXS6231uaVqmkOxQ/THmzn1q5bcYgKc2MHMAwNwemBUonOprV06yHEsK0q9Ckh6vwN/GT0cSbTE/Z5vFSYTaoxnpl5ke7qnnd4r54e7xU+5xnLqi6n7KTBW4ur8VJS5QxzuTkUSeGKliuIFWI8PvoEZbOMLMqMpyco6SUsLKayU6ypWYNTcaKic0XXdbwqzpKbH8af8tMebqct2FZZ/b1TEs93E8ZSY/zrvn/lhYkXKiGr/dX9VHur+cngj5HyRaxSicbG1Xxg1Z0kZgfR/V5QVYx4HKmurrKS7A91ndd9HqppYl3HVh4cfZRiMWsrYQwDt+Cgp7YPJZ7FUzSQamsRWloQHA6kpibkxsbKdpzOb+VcIeKKIAoijf5GxtPjlW5mrpzlaGKQ9nA7Ja2Mz+knrWaYyc0SL8bpDHUQjtTzC5f/Cg31a+x2vqrSMJHhI+130uKoZk4uMJ2ZYTw1Vil6AEzTZCw9jiVYFMzSMdXjcdAt20xt+YYc8EVZ13YJ2uHDRJvv5geFHzKijaNh4FBcdPha+Jm+e/GbMrph0BhT+eRlv2g7ppcy+BQvTWYAX9IEw7CJrMEgZip1+p0jy2fsmkg1NYjhsO0AXC5Tu28Uu4cgI4aduK7rQXT6GIgP8J1932EmN4NDchB0Bqn313Nb3dW2stPhOMkccvnzC6K+4iFjubOQy9lZZ0vjDAwDy7KQ6ushlbKJ42c4l48ns4ddYfwOP7d33Y5hGYylxziaOFrp6C07FMuNxzqMZiqFYFkYCwt2N61QAFGk0aymt7afPXOvoU2VEUSR1bV97J7bTXuolXQujoG5ZGRo4ZacOAzB/reug8NB2Ty2L96qSvHtwAqX8uFh26eouhrt1VdtLhbYiy9RBF1nOgg/WnyS2NjhitdOdVsvd275BI2RCIIkkWbAHl0aBpIBHsAQNH6w79/RDY3fvOLLBEQ3LreDYL2P1VU9hD1Rvrfvu5TrWhBVncXMHC11vfzKhs8RGcvbVgqyTLMcIeKvYSI5Znf1jgvG9Tv8zCbGyBulU3zTCwPvFT7nGcurjWQuztDMQVpCLbR7GjC9jXicXvyKl6yWp6gV0QyNvJavFD0A8/l5YrkYw8lh2kJtNIZbGU4Os3d+L4Ig4JScXN12NetCq2mYyNgXjyW8nqrjpxFZNct/HvzPStEDNl/i0aFH8SpeVodWMZUbQrIsjsQO8/fFFB/ruJuDR184FrWwpJLIZhOUx/JvSEnzZrCh6SJu6LuN4YWjlHUVxRLxaxJKPEXUV0NTyYm5sGCb2LW3ryh63g6srV3L1qatbJ/YTkbNYFomZaNs5xJJCvlyHgQBw9DxyR4sxYNDdnJx0xauclzDawv7WFO/Hp8K+vQ0xtwcDREfanyBYXmOHx65b+nXYP9vR6id2cw0WTWLR/HicfpOKnoQBBSHi7JRXKEIFEMhHJs20T4/z2d9n2VSjZFXc3gVD83OWsK1LceyrgwD70yCHiQgvEQYjSP19iK2ttpSYk2zCaaBwDF36uVNcLmQqqvPeC6IPh+OLVtWxh8oCmIwiNLbi1UoMFCY5C9f/iqjydEKIdXEpKgXeShf4OqaS1YUTxU4HEhVVfjcwRWfaeVyx7xeTBNrcdGOFljqXslNTSivEyq5TGbfO7+XWm8to6lRGv2N3N1zN/+055/YWL+Rixsu5pWZV9BNnY5wx0kCBTEUQnG7Ebxeu3hcIo83E+KezjtQkBhOjWKKYBo6VzZfwapQB68eeQZpSQzvdwXpj/RUTCytQsHO9xLsW9tbzeV6u3A8l8pMJpEaGhAsqyJoQZYrat5CTZCHpp4gaeSwSiX0kJ+MWGYuP0LyyL/xuea7iSYKhIK+k4jrkmFR56mhMdxKyBthJjVN0B+l0b+G7+z+J2bjY3TV9tIR6cTj8HFZ01b650SiY0XIZitdb58KLZFmAv4o8XwcURCQEAk6bH6dppWQlQtPxr6M9wqf8wyf4kMtFxiaOcj6xk08N7GdyZGJyvOz6Rlu778bl+zCtExMy0QSJPu/sU9awzJQdZWCVuDHwz/mewe+x8b6jbw89TL1/nqCziDkCwSEFo4fgL1eivFPI8ZT44wkRyjpJXyKDwvbQj/sCpMv56j2VDEsHMEDSILIofkDaH0/u+KGIlkCNe5qCsU0r5gx/F5PxU/kfOxzv9PPPWs+WMkdskolzHSaUKSRO+qvwTOdA1lGbmlB6e9/2491S6iFT2/8NEOLQ6RLaTRDQxEV/A4/EVeYRD5O1FtFoVTAKTsxloInVUNlIm7/FsbmB+ieNSqFhDvt5baGq4gVt1PjrSWWj2Fh0RFq59KmrTxy+EH6avpwWTIOHTpre2x+yVLnx+8KIogSHYFjN9wVHVGXi3AkQihfcxI51VLVU8qVBVm2M7GOC6FcVvgIimITUZe5Mi4Xcnc3jjVrXvd4yHV1iNddhxGL2Z46uRyWZWFMTzMYsXhw4TkePfqjii+R32F3eo8mjuKudlC2dKKOEIng0k1uaRyKLBONNp9849d1ToQgihVTSGHJI+h0WCaz753fi9/hZzQ1SqqUIlVKAXBL1y3cd/g+ilqBVeFOyqbGr2z5lVNy9QSnE7mxEXNhobK/fUWTLYEejGaVTEMeFQO36KAp2s7eyV30hDopoZMKNFOlBNkU6sVQVerkMDPpMTyiE3/BIBx88yrFtxvLXUFr2USyUEDyL223INhdHUHAcruZ9mgkxscQq6vJhVwcLY5QKGQQZJnh0gzt/mau9PfTo9TTUd3N8MRe+30ctnnnpe1Xsjd+kGdHnkGzdLYFruIbr3yDeHYeR6nEwaGXKrEgkzMD/MnW30HMTUFVVSW0ecpnkEjP01vTTyK/QFErIIsOXKKCppXoaVxHxFv1TuzKs8K7ovAZGxvjD//wD3nqqaeYm5ujoaGBj370o/z2b/82juPMkSYmJvilX/olnnrqKdxuNx/+8If5yle+suI1bzdaQ63IyLSEWuyiJ32s6PE7A8wsjvPM2DNc1nIZ39n3HTRDw8REQEARFZoCTZSNMiYm2XKWnJpjNjeLOCeyoW4DiWKCsfQYm+o38ZPSCB3VtXSV/Hhz5UocwIWWjPtOIqflKJvlilQ6W86iiAqTmUmCziANwSZEQQIMnKaIIjnI6UveGKaJJEo0VnfwwsSLjGq7wbLIUCLojXLXqtvoLvnx5k+d9fRWcKLDs1d00SxF8OY0aDYQfD6kaPQdK3B9Dh/3rrmXfDlPtpxlVXgVRxJHCDgDLBTiWFjomDhFkWp3hIZAQ0W+bek6mflJjAUFwe22u0PxOPXZLB+65EZ6a3rZt3CQbDnHfHaWJwcfozfawz2dd1AjeJlSy9zTfw8/OPxDRlIj+BQfHcFWqhxhfnndZ3EsJNk7cZhsMW0H/GpevHmtYnp34nF6o3Jlua4O0edDamioeOKIoRBSdfVZHw/R50NQFMp79lRUVomok6dTO0AQubXzZmKlRfbO7yVbzjKaHKU12Eq6nEN3O7mj+7aV0TaCQHV9B3f1v/+kG7/g9x+Tsp+IU8QwnIhlMrtu6rhkV6XgsSyLg7ED3LH6DsLOIC7Jxc0dN3JpzUXUVbed9v1O2t+WRVNG4Naqy5j26mQWpvFJbpqVei6VHEx1bCSnZrHCIcayEwweeAGrUOCKzo2426+nKdRCnRyi2VFNxH1hqopOxLI3EKIIgoA5N4eydi1CbS1WImG/yLIQXC7yigWiSFkWGFgcoWioNo/Ksh9PU+Shycf5eNPt/MpFn+er5a8ykhwGTWN1zSr2zu2l0VVDdKGA1NyMLMociB1ANizqHBFEQagsICZSY4wYC/jbvORyCfyyQJXbxyMjj+CoqsYhO3E7vLhlt30+KG66ol20hNsu6E7bu6LwOXLkCKZp8s1vfpNVq1Zx4MABPvvZz5LP5/nKV74CgGEY3HrrrVRXV/P888+TSCT4xCc+gWVZfO1rX3vHtt3v9HN927VsH3+OH4385LjH7ZagzxPi5emX+fC6D7NjcgcHYgcA2222JdDCrd238sLkC7QEWuw2t2AXRPlyHr/TjyIpFLUiI6kRjiwc5hXJRUeog0uq+9AzaXySm1Y9f5Kq46cVPsWHIiqMJkdRdRVFVBAFkYg7gmaUiRcSrK1fz+DIq0iaQa2nhvaqLnwXe8lZKjW+GkYzE4QdQUp6joHUoJ0mvQDji6O8r+0GLguto+08pBGfUjF3gdSzXsVLKp9gKjXBYOwIu6QXuGb1TdzWfTsPHX2IbDmLINiZWTevuplNDZuYTE8CtvzW4xbQR0cRw2FEnw9jfh4rn6d+pppnrQmaDTeaN0STI8rlNRejlDSMZIrVpsCavg8x49HZVL+ZRCGOVioQkL30CLXkxqZ5IPc0WbNIyVTxuPz4vREuC/TTlCmt6M7N5+aPeVa5QvSu7qZalc9Kriz6fG85Ab1iRCcITPlN/t/wv/Pw2E/wuAMciB2gLdrJjZ038tjwY2TLWayluAe/P0pHcxefqmllIjdN3iji89keP6fqdkjRKHJLC/rExMriZ6lrKEXPzAdbJrNbllWJ1lj2JrOAolagWMhQKKQx8nnCI/NYgTMbIZ5KHh4JhYgA5biIlS8iYKAXdLrjZYyZBCgZ+rZsZKLNT07Q8LsCNKTBX/IghTxA/l2z6KsUfxMTiOEwxuwsxuwsyvr1GJOTNsFZEEBR8CouxHCYjJGnWC4gOByVcZjgcOBy+pjzppkOi6xzdPJnN/0vDk7vJV1K4fAFeGrfg7gXS+ByYS4uko1mwDTRdQ3VYeCRJAAUycHlvTfy3aEfMpebxa24qXdV0xntItLSxXR2hptW3cTjw48znhpHFEVULYvH4bvgO23visLn5ptv5uabb678u6Ojg4GBAf7mb/6mUvg89thjHDp0iMnJSRoaGgD48z//cz75yU/yx3/8xwQCp5eUnm9E5ABVzjD9NWvQTd22tNd1MtkFFI+X12Z3c++ae7my5Uo21m+kpJUQRRHd0FF1lenMNK3BVgzDYDw1TtgVpqgXyZVzNPobeWb8GY4mjhIvxCloBVqDLVhrP46SzjEdG6Y628Od3nvPu/z63YDWUCtRT7QSg1E2yiiiQq6cozPSSbacocZbw6CiIBtw27p7+Mngo7wwth1TEqkO1lE2NN7fcxeP7b3fLnqwLxJ1te0oVTU8UTpCVTpBu9hOd7Qbv9O/0tXYHWFtzdqT4knezWiWo4QyGvOazRUpaxpPHXqEi9q28uuX/TpO2Um2nKXOW0e8EGcyPVm5aUadIRoWdax8HqNYxLltG2YigZVK4TowyPtuuJoHBx4knZkD06QsSUR9NdzWdC3+vIzDEyJcW2tnT+3ZA6KIsZglW5zkZWmEH009xUxsuLKabqzpRFqjEPauwZuzO6J7jCm+vfvbK3g0tb5afnnLL7OhacPbsg+XeR55j8xDIw8wXZxCkhVMTMKeCJPpSXZM7mB93XpenXkV3dRp8DXQGmpFcDoJ1bacVW6f4HTiWLcOQZKOhVrKMsm2agaUFOmRHxFyheir7jvleCrist3iBUFAEqSTnnfLtp+MLMqEHAGs1Nl1nU8nD690gwoF5I4O9MlJhLRtQOldzLFqNI8YDGJlFxGcTsSOY+/xRnyI3mmIoRAOtxspErGDYxcXkTs7bY6Yy2UTiBWF1vo6IrGXmc4P28WQZYEsIwYCNAabEbD9pgoOm69VMz9PKBXCKrnYpafxlEybL7RElPYp3spoy/5NSgiCyNqOrfzw6AP4HX4OxA7gkJ18aM2HeHDoEQYSA1R5qkiVUlzfcT0fWvMhMuUMAWeAzQ2bL+huD7xLCp9TIZ1OE4kci2vYsWMHa9asqRQ9ADfddBOqqrJr1y6uueaaU76Pqqqoy2RGIHMCQfFcoLWmk1dmXiaXiZ/8+UYZ3TLYO7eXnuoe8uU8Y6kxVENlNj/LVHaK21ffzoa6DUxnpslpOZqDzcxkZ+ir7uOBgQcYTY2yrmZdxZJ8aHGYh4Ye4dM9H2Z6cZxFM/e2yK/fDfA7/VzXfh3PjT/HfN5OE9ZMjf6aftbXruepkaf4zLpPgCBw1bpbmcnNsm/8ZXzugE06FSUUYF/sAPdc+klUrYTf4aNs6tx/5H4OvPb3DC8OkVLT9Fb38qWtX6LGU8P/fvF/r/C6WVuzlt+64rfY2rz1HdoT5w6WquIaHOf21Xei7vsewyWdYjGLCowJ++kOdDCsjiMqNu9nKjtV+duIO8JtLVfg/slLNnXZNDHjccRgELG5GUyTZoJ8rP5mpqzUUjcjSouj2s5o8h1L6TZTqYoHimiazIbKPLzrSWbzc3a3YWkcMJOb5aHhH7Fm4ypW5yUGyjP83vbfW3F8/A4/oijytZ1f40+u+5O3xUtqmecxScoeWbkdSKKCYVl0RDop6EUWi4s0+OxrXHu4nY+u++ib+k2LoRCOzZsrHZZ9xjRf2/0NRpece+FYPM2Gug0r/nZt7VrW1qxl7/xeSnqJkCtEsmgTs9fU9JMqJvE7A7T6m+mR64DSWypATuwGSY2NWGvWYExOgtuNODeHlc3ahVNTk90BWcIb8SG6ECA4nchNTUjV1RiJBFYuhxSN2pSFJVNCX8nizvUfJDX+Q0b0GIgigsNBY7CZ6zquYyZrR74sq9ksTaskyfu9wor9g6LgNkXe3/t+SloRWVLwik40LGqDDUTcUTwOD5e1bKMj3MGz48+SLCXJqlkaA41opsajQ49yIHaAzQ2bSZVSXNFyxdu+394o3pWFz/DwMF/72tf48z//88pjc3Nz1J6wWgiHwzgcDubmTuFxsYQ//dM/5fd///fP27aCLaO9YtW1PDexnZHYQOVxt8uPz+GjLdTGRGaC+47cx7bmbWxu2IxTdrKlaQvtoXZM0+TBgQd5ZeYVxlJjpMtp1tas5Y7wHYynxom6o6TVNEW9SFSIUjJKTKQnKFhlpKoqO6DuPBp5vdsgWAJratZwadOllLQSkiiSzi1yZHY/fsXL6po+Lr1hM4LTwR8+84dYfh/CUgcu7ArzwuQLPDn6JCW9xBMjT7ClaQsXNVzEU6NP4VbcaKZGZ6STPXN7eGb0GXJajoH4wIpt2B/bz59s/xO+8b5vvOs7P2YqheVwUPvKPj6pbGDr1i3sTx21c6AyWcb3bKeqdwN3rfsIEXfkJGdvdzxDKRDAWFrFm9ksZjZr39icTqRSiUBbG6tnC1glE0nyIWjaSZwbS9MQ/H70oSHMeJyZbpHpmSM2d0JRjimZBIFpY5BZM02Tt5anp184yYBxmUdjmiaHYofelsJnmeeR0xcoOyTyRpZEaZHFUpJN9Zvor+pHkRQ2N2xmc/0mLqndTJf/za+slzss87l5vv7kN1cUPQAjyRH+eudf86fX/emK798SauG3rvitCsG5PdQOQKO/gXt6PsD9B+7jytYr+bmejxCNL0WQvMUC5KRuUG0tUm0tRjyO2dyMVSpVojwqf3NcbtYKR2SHwx7xlctYS0oyYUlJd6GIQASnE/m4RTyA1dZW+Q7tisIvNX+RjqY1pIopXLILAYGZ7AyGZaxQsx2/75sJEfXV2IW104mQzpBNLaAbOk+MPkmplEOWHWzruJq6UCODi4PM5maxsPjsxs/aUUTlAg7JgWEek7BPZibZ1rINRVQu+G4PvMOFz+/93u+9btHxyiuvsHnz5sq/Z2ZmuPnmm/mZn/kZfu7nfm7Fa0+ZWWJZp3x8GV/+8pf54he/WPl3JpOhubn5bL/CWaOrro8vX/e7/Ovef2UmPYVDdhDyRvA4/HRHu/nbV/8WzdR4dvxZHht5jNXR1fgdfj689sP8zat/w4HYATrCHaypXcP++f1k1SxDi0P0VfchIHBw4WDlsxp8DdT7GyiLFoFANQ7JQaqUelcYeb0d8Dq9pIopDi0cwjJNpEKJ1TW9XN50GQ7ZhV9wsqEY5pnSKKYk2EWPqRP1RHll5pVKuJ8gCKTVNOOpcY4uHuV9Xe/jydEnSZVSTKYnafA3oBr2qHLZnuB4k794Ic7u2d2E3eF3dSfO0jQEwJydxW0YbBgXWd3YxHTAJBco4avaSFvTJUTcdQhO50nFtyEXkLu7sQoFzEQCY2YGpbsb3em0Jb2GYY85uruRQiF7hXsqzo2ioI+MVOTomqGBJNn/FoSKYsv+UINyIcekN0g8lzjl91rm0ZzOmO9c4ETvLXnVKnyTaTKyzsHZgzgFhQ/03s32iRd4buI5AA4uHODyxm1cRivlqQJKd/dbsk843nFZN+3xumEZSILE0cTRUxZ+W5u38o33faMyvg25QnglD4nsHP/72j+mx6omGlfBNM95cOcylnlVUih0RiL6Ckdkvx99dBSWsqywLAS/n1JvJ1OJw8yKOXTBosHXQFe064L6XZ5Y/NUB17Rdw4MDD1a617AyzgRWhqp6Czq3d9zCQ5NPsDA9SH11O49NPE1GzXJj8zVk1QyGQ2ZfbB813moUUalcu1JqitncLCFXCJfswi27K59pWRYOZK5vvgpPuogVdFwwReSp8I4WPl/4whe49957z/iatra2yn/PzMxwzTXXsHXrVr71rW+teF1dXR07d+5c8VgymUTTtJM6QcfD6XTifJsO0OraPv6/q7580op3z+weXpx8kV2zuxAEgQZ/A16Hl5tX3UysEKOkl+iKdtkOpabO1W1XM5OdwSW7qPZU8+z4s5iYyIJMa7CFo4uDDCQGGEoO8YPDP6Aj1MEH+j6AX7lwfsTvJDyyh2vbrubJwceZT09zaceVPDexndR0krZwOxOpMZ5yVXNF93X4ZQ95U6WoFbHclm08KSqYlolLdlEyShiWwUB8gFu7bq0YIiZLSer99WimhmZqmJZ5kskfwK7ZXUxkJioRGCcSbE/Hs7iQICgK1lKuFQCmiXty/piDsdfEVa+eluchhkII4+PIPT12uvSSS63c3o4gSUgNDUih0OtnIRmGfTNbWujU4sPjDlDILQKCzZNQ7dBLt9NHreWjIOl4ldO7oOumvsIH6FzidInqbe19eGbDZIaTXNKwmVendxHLzeGV3ITcIXS1xGRqjIeyj/Lx1jvxLRG0c5TfVKbccmFX0kvEC3E0vWzzSSwLRXYSy5+6Y94SalnRrTRTKbTEAFa6CBQr32e5ALFU1R7fLPnBCH4/0jnospw4CkMU7XypXA6zXGY+Mc4RzzwpJUfIctLdGCI0OIOVySD4/cyERV6e387DE48zk55C8PnwOLxsa9nGR9d99ILmRp6o9jxVPuKJqrmmrMjHO9/PuG+QWFji4NAcAU+YYjGDR1TICQLNgSZ8Dj+XNV9GcCFIqpSqiGqqPFW4ZBcRTwS34kY3ykimQKe3mWDOQE+Ng9OJ0tJywXrIvaOFT1VVFVVVZ6f1n56e5pprruGiiy7iH//xHxGXPC2WsXXrVv74j/+Y2dlZ6uvtQMDHHnsMp9PJRRdddM63/c3iVMqcK9qu4Fv+b7E/tp9kKYlH8bB7djfPjD/D+tr1lWpeFEQsLDyyh6HFQRr8DTT4Gwg4A6TVNJ2RTtvN1rLor+lnIj2BKIhky1lemnqJdTXrOBA78LaFbF6oaJIj5GcmuTywhnDrjfxk7AkCkgd30MN0dhpLKxPLxQiF62mNdjKZmcSjeOzWrgUFvUBPtMc+VrIHp+xEEiQKWgEsjvkwWSaKqFSUYyFXaEXRA+BRPCwWF3n46MNsbdrKN175xoq8o9PxLC4kiKGQnbh+qs7qkkIEp/O0PA/B6UTp7kYbGMAsFjENA1QVUVFQ1q5FPltVjmkiVVVhJBIILhftBTfbmrfx/MgzFNWlbqei4PGGuLxlG51SFTNOGafspCPUUQnHPR7t4faTjPfOBSoRBSd4BVnFIu6xGW7suIGXR56nKlDH4+NP2+GyriCN7jqm4qO0hdtJ5GJMkqKn5GN0YZCHp59isbiIIiq0hdrYNbOrolg8E5k+5Ayhm7pd9Giq3RVbMr4rl8voxSKpuXFCdWceYZwpuNNMpSjv27dCSSb4fChdXQjhMBSLZ10Mnc6hXqqttYuvoSHiAZEj6jRxM8tkZorphVH2Tb2CmknRWdvLF9Z+hp6jFoWgix2FI/xo8ilmtYT9vXWdgp7m+aGncRoCv3Dx585pxMu5xtnkI554bAL5PL1UM28tMhofoljOIwgCkUAd6+ov5t8P/gdPjDzJL178i7w0/RK5cg5REOkMdxJwBugId5BR00gISGWTgOnASiSoF6rRFmYQfD5bgex2X5Cdn3cFx2dmZoarr76alpYWvvKVr7CwsFB5rm4p/fXGG2+kr6+Pj33sY/yf//N/WFxc5Nd+7df47Gc/+44qus4WNb4aWlRbsl7QCpT0Ei7JhU/x4VE8KKKMKEiIloDf6afB18C+ub38zlX/g6JeJFlMEnKH2D+/n9ZgK5saNvHAkQdo9Dcym5vl5emXWV+7npyWe9tCNi9EWKqKa3iSW5uu5cHhR1iU5hiZ2IvgctPW2M8lLZdhWDotwVZSpRRbGrcQy8cYzY7S4GtAkRQ6fZ1sbtjM06NPU9ALpEopgq4gDsmBIAhopoYoiIiCiFNy0hhoZCw1hlN2klEziIJIna+O3qpear21qIZKwBng73b/3Ukhj6fjWVxIEJxOpPp6pOZmjPHxY50fSULweBBrauxR0xl4Huci7VpQFNstubbWbusXVT5UfxPOssFIcQbdpaDoFh2eJj7QfBu+vEmLrxEhsYsP9H2AHxz6wYriZ23NWn5+08+/pf1u5nK2MaGqHnNy9vmOSddPAatQoMrv4aKqdTSFO+mt7kMSRAxDJ1awlaCyqFBWRHJGkbwnxEMDD5KUbIViZ7iT//vK/2VfbB8OyUHIGWJ11erTkun7avpo9jczmZpYUfQA9NWugUyW0aFdrPdFX1eyf+I4JqtmGZs5THpyGK+u0xj24EnkbBJ7KoW6ezdiTY09Kl1YsIuh1auRm5tP2S0wUym0wUHiboMj+hypcoawO0xvbT9uS2YoMcicN8cjhx8hVUqxd34fM8kJuqq6uL3vTp555QcMzx/ma9a3+MOuz5MQi2RzZWay03bxvtQpwjTJC1mGHQcYCe9iXdslF2z34mxx/LEx5ucpZOLM5mYrylSvO4jX5ee5ie0cXTyKIipsH99OU6CJS5suJegI8gfX/AGPDj3KjokXUUs5EAR6w13cu+FT9C46cc+kQBSxcjm0gQHEmpqzX7i8jXhXFD6PPfYYQ0NDDA0N0dTUtOK5Zf8ISZJ45JFH+PznP8+2bdtWGBhe6FjOjnpt9jWOJo4SdAUplAtc0XYFqqnS6GtgYOEIy+vpJn8jfdV91HhrqHJFeP/quxAsSJcztASacSseDscP01fdZ/srIKIaKgXdjrNYLL49IZsXIsxUCqtQoFEt81H/lezwJVhd1cOq7i3cd/g+npp4hrt67uKrO79KLB9jS9MWyprKFS1XsK5mHWtr13IgdoDvH/w+LsWFS3Ixnhrn7t67EbDlvZe3XE5XpItqTzUXN15Mo6+Ram81lmXREe6gxlNDtpwl7Arz7d3fRjVUbu26lbncHAJCZaa+jJHkyNtGsH2zkKurcV59Nerzz9vxGQCiiBgO41i/Hiuff90bx1tNu66YwBWLCH4/gqLQMJflk54rmak1KDhFPLpAs6MG73wRy+XCJ7i4reMWHh55lA/0fQCH6KBklPAoHvqq+uiKdr3p7dHn5lZGUYC9P7ZsObV54HHokKuJiD5SuTiziXGcLi9JNYVu6NT6aknnE4RD7Sz6JR5Th9EcMlGHnypPVaXoASgbZSysM5Lpa321/MLmXyBVSHBwcnfl8b7aNXxm7Sc4+OpPaOnyYcRilcLn+MDU043VxlJjPDjwIPGFCYyZGaxCgWigjttbb6R+MoOVz2OVSrbRo8uWwC/fMC3LwnFCt8BSVbShIQ4GCvz1rv/LyMJREARkQeJ9a+4mriYp5tM8O/Mio4tD9DduJKfnCXrCDMaP8pD4EJevuoz9wzvpbdzI7kiebDFF2NvK+7iTp6eep5hO2J1JQQBBQFUL5HKL/+Uc8MVQiMnZPMVckoZAEzOZKRBFfC4/Y3Mv41W8tgWFmuVo4ii7Z3dzZeuVJAeSbKhbz0XhfjKaTYQ2M2mODu7kUseltoDAZ4tBKtEo7xU+bw6f/OQn+eQnP/m6r2tpaeHhhx8+/xt0DrGcHbV7djeDiUGy5Swu2UW8GOflqZ20BtrY2nQZmqExujhM0BUiV8rQHGzmotqNvDzyPIvlFGVLZ13jJqay0ywWFzEtE6/irZiNgc1tWSY4/7SqvCxNw9J1jIUFPLpOc5OT3vp1PDD4I2Zzs1zZeiXPTz7PdGYa3dIZXhzGMHV2TL9Ef3U/v3XFb7Fvbh+SKJFVs1R7q+mMdHJ9+/XE83H+4qa/4MnRJ8mVc8iizGuzr6HWqDglJ4OJQRZL9n4POUN0hDq4qP4iymYZt+wmVUoRdocp62XyWn5FAXQ+CbbnCkpTE8J112HMzdmBiw4HyDJWPm+PNM7zTeNELoPgciHJMkFBIBQKkS2mmXJnOJwbx+/30xJtwHvkCPUuFx/r/ABHihPcf/iHpHJxgpKX8dkjvDz5Enf23/2Gu6NmLndS0QN2DlN5504cl1xyxr/3Kz4+XH8j24uH2dC0md2xPciCRLU3Qnewk9X1a9kx9RJ7XthLja+Ovro11Dg9GJaBW3GzpmYNg4lBdFOvnEf7Y/vZP7//lCOvGk8Nn+i9F637Hhxur+0MXC5R0jS6erbiF/0VYvhyQTObniKVX6RolKj21XJnz11EPFGiniixfIzvHvgu6VKagKkgLS1QE5k5Hhp/jI9Gr8WVSFSS7Y8PubRyOVBP5oSZqRTxgMxXX/wrRuYO26+1LLqbL+KHA/ezUErwoTUfZvTAEACFcoFEcZGg4sfj8HF0YYDbV93GB6/8BR4ZeZSfzD+PaRqIokjYFeGDGz7C9574GiXTrIxtHUh4VDBL2XeNGeLZQHA6KfgcxNIzXNt6NU+NP8OikUUzdVLFJF2RVXgcXl6efMkOhAXaQ+0sFBbIpmKkl6T1OBwYE3YawfSajXQtZ74tq+uOO64XEt4Vhc9/ZSxnR6m6SracBSBRTNAabGWxuIhbcfHAofu4ruNa7lp9B9WuKIolMrowyCv7fkK4YFHV0oIUDCIKIqquVgqc5WRkgI5QB07ZuULZ9dOo8hIUxSbALq24m1QXcihEfDROSk3hlJ0cjB1EEASubr2azkgnoiCSU3NMZ6Y4Ej/CFy7+PB/f8HFSxRQ+p496Xz37Y/uJeCK8OvsqpmWyuX4zqqESdAd59OijLJYWqXJXIQsyOSNHTstx35H7qPJU8czYM3yw/4MMJAZYX7ueycwkHeEOsmq2ctM6nmCbySUYiw2RUzP4XAHaqlddMBwEuboaKRB4SyOrt4JTjcwWnDoHE0d4YO6HpPOLRCU/HtUiuhDm9vabacoW0aeneGnxWaT5OFFdB9KYwEIyyQOGzqe3fO4NdUeNWOykomcZZjJpF2anyAMDmxAsVVXRmmsjqMm0XLSaf9n/HWLZOdB16oKN7Jh+Ccsyyal5Pn3JnXzj5W+wb34fP7vmZ3l2/Fka/A1c3XY1C/kF3IobVVcZS4+RVE+9Tc2hZp7a/yC1vlr+4dW/Z6GwgNPhxrBMuqq6WbXmMwhOuwPw4MCDDC8c5cjUXlJahnhpEd3QODC7l1++7L/zFy/+Of3Vvbw49AwIAm7FQ5e3Dn/JNttLZOaYblDpXB6JLpGRj4el6ydxwixd53BmqFL02A9aBLxhRiZHKBglVOtYpp4oiJT0IkGHH7fDyyXNW+itX8fDgw8xX4yTL+eZSo6hCxZehw+n4uSGDe/noV3fAcDj8tPurKOxqGC9RS+iCxEBfxXUVDNbWuDKzmvxekMkyymOLBxGU0tEvAFu6rwJ1SzjFB3UeWowdW1l8OnysTMM8uZSGvvycT2L+JN3Cu8VPu8wlrOjdFNfIXU2LINVkVX0VveyvnY9UU8VoqZjqCUcosKLB39CR3UXVt7AmJhA6OoiJaS4edXN7I/t50j8CLIgYWkaHZEO3t91J4uZGCjHLjDLBlc/TaiMQ5bgSeSob24kr+XJawV0U0cRFe7pv4dds7t4euxp6nx1zGZnaQ+1UeWpQixrLCamqK1qZVFNsXN6J17Fi9/p51DsELetvo3v7v8uhxYO8cH+D/L9w98n6AxyecvlDCeHsSyrEuHQW9WLLMpky1n8Dj8jyRE8iqeSxZTTciuSrUfnjnD/zn9mNjdHhhJlU6Mx3MJHNn2Snoa179RuXYG3OrJ6KziR+Lpfm+KhI4/w2PBjTCTHQNMIe6JcUrcZcjEeGrGVUZPFORbmRk4eQek6CxMDjK0aZm3Dhje0Ha/3/JnywESfD7mpiaBp4i6Pckl4DdRdRMlUCYbq2PXqPnJajrt638/f7/579sf229wyRHyKj6nMFAWtQHOgmecnn6fWV8v62vVEnJGTtmV5bNXXfgn/tPsfsCSRhdIiqVQSUZCYSk+QLWX48lW/Q2zsIJlSBr/ioy3aybMTz6EbdkEwtDjEjonnUXSLmdQUulpCMi0KQpFBd5m13kaUnP1dc6atvhOCQbu0P2F/CbJ8EifMUlVSpZMLt7KpYS3djGXx2C2tVM5T563D6/Bx06qbeG78OQ4sHOA/Dn6fslGmylNFd00vA/EBilqBZ8ae4ZZrbgLA7fSyreky7g5egWcmCTU17zozxFPh+N9HkyNIxB0lKaeJWRlqDSfx9ByCWiaem0cuqYiqfWwtl4/a+mvIGQo4jhMWmSZiIICZyeAVXUDZ7padZfzJO4X3Cp93GD7Fh0N0oEhKRepc1stc3HgxsijTGGhiOjPNS9M7eGLPAxT1Avdu/iQ1LatxqDJIZXJhD/HMGMWUis/h4zMbP4NVLpPKLjDTfC1aKsn87ucxFQmpqQnR51thcPXThOVxiJlM2i1100SSJERENtZtoM5Xx42rbuSVmVc4Ej8CgCLZF7zx9DgvTe1ga99nSXnTfHPXtziaHKwouNbVrOOXLv4l/mrnX3Fo4RAApmVSNsrECjEOLhykOdhMqpRiNDWKR/Hgc/rwOrw8N/Yct6++ncPxw1iWVTENW1Z11fpqyeQS3L/znxktTDOQHqqQEocSg0xmpvid6/+QVTXd78yOvQBwojw8UeXir/b9JXVVrUxmJu3QXstiMbfAyzMvc03tVqzMHJOkyKpZON2KXtfJ5RZP/dxp8HodLsHpfF1C93KEgX+6yPz0s2CIdkhlbpZ0OUtKTRF1R3lt7rVKSGSylKTGV0MinmA+P8+aajsmJ5aLkQ6maQ+3r9iO5bHVYnERn+LjUOIQGTVDS7SdNmEVuqnhkJ0slJP8aPhR/A4/s9lZMmqa2kAdn7ro5/inV//O5g8KAjOZaarcVWCZqOh4kMCyKBQyZOvbiBRs8rRP8SBGZKSWFgRBwJg65uYt+HywtH9W7DNRJOQInrQvHaJie7VZoGolOiKrGE2OkjdK1Prr6I508/jw4ySLtmK2O9pt+3ABRa1Ic7CZidQYJa0EksSvX/llag0PbfNl3IMxcLlsz6B3Mbl5PjfPwdl9JNNzhBU/q6U6okmN20KbeTj5EkkzT7y0SLu3iWDv3bw4/jwLs8MAuF0+Lm++nCucqyk4MySd5rGQ23IZIRCg2l9Ls1yFWO1EDASQIhGU/v4LlhP1XuHzDqM11EpHuINkKcmR+BGbSNt2JTumdlDrreW7+7/Lj4Z+xNqatXz4ss/y3Re/TaaUYk/8ALfUX8V8UGf79AvECgu2sZsg0B5s46aGK7lhSGKmuoOHEo9hGBoYGsbUFNE1F1/wIXLnE1J1NXJ3N6gqlq6jCPO4FLedWuxvoi3cxo8Gf4SAcMyhVICWYAsuQyQtlviXw//GaMaOFjEtE83Q2DW3C93S2VS/iV2zuwBWGIAtFhdpD7VjWRa6pVPQChVvDEEQeHbsWa5tv5aN9RtZKCywrmYdW5u3VkjNY7EhZnNzK4qeZYzEBtg+9gy1wfqfyuN6Knn4EX2OkdgAYX91RQSxzDlYzC2QqMrgzpnk1Cw+aSkZ+zScBK/kPuXjp4NUU4MYDp9y3CWGw0g1NcDrd8cEp5P2xj6qFtpYLNrFl0fx2AGlRtn2kVqyWVhO2b6y9UrKepnh1DBl0x79dEW72NywmdHkKL01vQCVsdWyBN7v9NMcaiWtphmID5AoJjAtu5MSdoW5p+8eksUk3z3wXQrlPKIgsrZ2LR+76FP8wyvfqtg3aEaZYilLfaCBdOqYsZ4mgdzeTkQJ0N51Me4eN8bCAtqRI5XxyfGqrhNvmoLbTY+jgY6aHkZiR5YeFMhkE3SEO1hQFxmfO8oNq25i++Tz7I8doKgVuaHjBg4tHOJzF3+OVClVCYI2MQk7Q2xp3MJUfBSTMi7JwTVDGlbcDtBFURAjEZR16y7Ym/iZMJGa4LW51xhaHEIWJPKFNM8cfpSGUAu/vPFz9C8qfDR0NTNVCnmzhCdbJjid5LqeNcz12JyfWstL24KJZ884t990B48svkhC1zHicdB1oo4Qd6y+g6DhQ1zlRfT739bx9pvBe4XPOwy/0889/fewkF9gz/QutjRtYcfUDhySg2var+HrO78OYP9YLYsb197BXMpeVaWkMjumdhDLzoIkg2HQGu3k0PwBdo2/xF9v+C0aDkzysdobmWopkTeKeCU37U2bCf8UdnuWISyZa2kDA6CqSKbFTR03APDU6FP8RsNvEHAGUHWVsDuMQ3LQV9XHuuo1+AyZuVKCl+d2k1JTFR6VU3JS66zl0MIhrmi5AlEQMS1zaUTWzkx2BlVXUQ0Vt+JGERXaQ+0kCvbNJewKU++v55nxZ1hbuxbTMlkVWbVCyZVTM2QonVT0LCNZTP5UEtaBU8rDU2XbL8kh2L8NlkmrS0VQySyDKeJRodlfbVv5J6dPeu+or4YWX+Mb2h7R58OxZctpVV1vJMnd7/Rzx+o7KkWKU3bSEmxBNVQirgiqoeJRPKi6imZo3Hf4PjbVb2Jr81a2NG6ht6qXTCnDg0cepCPcwUB8gAZ/A69Ov8q++X34FB+XNF3CwdhBJNH2owq7wlR5qijqRSbTkySKCcbT43RHunFKTgrY5+CeuT00eOvZ0LCRRTXFQmaOVVWr2TN3kDvW/QwvjWy3FUPYnZmqmlbu/P/Ze+8wue7y7P9zyvS+szvbu7QrrXbVi63iJmPjbmPgBRODgTg4gEnCjxReeAEnEJIXeBMwIUCAkECoobhhYnCVXGSrr9pK2t5nd3o9M6f8/pjdkdaSbcnYsmWfz3Vx4Z05c+bMmdGce57v89x35w3l7x8pFEKqqSlVX+fSx+cNMQ1FWXDxFP1+qkZs3Ln+o3x997/SH+5DEAT6In3ctPIdzCox9g08xbO9D7Gu6yIuaLyQak8NNslGd9Uyfrz/RyyvWUGLv4Wh+BAAMSXOQGyAGm9tqV/PUoHcGoKampLrtM+HZelSpDP0m3s9kFJSjMZHmUhP8K87/5Unhp8gqSQwDIOVNat4//rb+NWz/8nde77JF1Z+nOBshq7qpUh11WjxOLk9vyEQDp8wIKXUCyqGQrRULeL9TZ2lib5cAqcu02SrwiO7Xvdi52RM4fM6oNlRy011l1FvqcDjC+Fz+PFYPWAYXL/keqySlbHEGDvGnuHtS2+mUMyzadGlpNUMstXOZHKC58Z2UO+tZ1PdBTx07LcU8hkOrZ6hWhRRfE6iliLxok7AIlNjFAi81i/6NebkZYZlepTv7P8+q2tWcXnb5dgtNtbUrikvU9W6azE0jdnkJJIHEvl4yZFZK5bjUBRNIZwJ0+RrKv/KlgSJvVN7uXHJjewP72f/9H5cFhejiVHW169nRfUKhhPDdIdKyxHTmWl6Qj1YRMtplyLdNi8F/YUbLO2y/U3ZsA6nT+H2W0v+XclsjEZvI6PRQQRZxlBVMAzsopWgt5IGwYevroXrHVdxb9+9pRyjOYLuUOnXrP/se5bkmhrErVtP+PjYbKVK0Mto+DzZoTdTzNBZ2cm3dn6LeC7O2rq19E734rP5cFgcjKZGeWz4MVZWr8Rv9/Pfh/67FN0zt59Hhx7FIlqwSlbaA+24LW6+vevb3NR5EwfCB9gxfsIBv8JewdKqpeSKOXZP7qY71E2Fo4KCqpBTcwiCwEhyhMtbL6dHsPLc+HMkszEsso3pyeNsqV4HTZtBEtnQvInO+uWnuArLdXULYiXSdoFRNUpGKOCtbqSlugOvO1j6wbJ4MT3HjvGF1X9Z9vHxO/x0VXfjMGSOtV7DZGyUjF3kueEnefjwb1jduB5JlOiP95MspLim4xq2jWzjWPQYAKlCmgvq1nNx42aapzVET6D0GbHbsSxahDxXnTsfmF+6DDqCfGvntxhKDJFQEtgkG7lill2TuzAwuKHrWh7a/yuOqFNswl/+9yP5/di2bEHZtg09fOLfgRgKYbvoIiS/Hw+c9z+uTOHzOkCPx7HnVMLDh7Es9WDoBg8d/x/SxQxTc3bxbf423rHsnVR7avnZwZ/xgwP/xXVdN3F45jAN3gY+c9ldPDXwGA/1/YaiUCobp4sZjiwJcff+b54oDQOL2tbyZ45PvK7dgM8F88sMLVTzV1v+hi888QWeGXmKxcEORhLD5DWFDQ0XcGBkJ8lMtLSUKFmQBAmvzUtKSaEZJ5ZG8moeURAJOUP0hEqNxoZh8NjQY1S7q/mT1X9Ck7+JTY2bKGpFnhx7kkpHJbPZ0mjoypqVXNl+JTk1d9qlyJbQIuoDTRyPHDvltdT5mxBk+U3ZsA6nD8FcItfQVtlB39RBLuq4jCc0jdHECIIsE3BWsCTYyY2NV+PL2xCA1sZu3mvYGFXCpNUsbtlJoy1EoPHlj+LP50m9Epzs0JtSUkwkJ0gqST615VN8e9e3OTJ7hLyax2VxsbhiMbf03MI/bvsH7BY7hm7wkQ0f5ie9P+G3/b8l4AggINDib+HO9XdS767ne3u/x41LbuTQzCGOx0oj4dF8lFahlXcueyff3PlN0kqanJqjxlNLrpjBAGrctfgsbg6P7+d9q9/Pbw/dR2dgEZJSZHJmsCwe2+rXnvY8lpcp83lGHQr3Hvo1kXgpYRyrlarmTm5c8x5aa5aUfrAsX05NPE51seGUvqhVRZGeSdhujfLc4UfI2gRmUtN4HCURHMnO8rv+37GydiUbGzYiiSJBewWLfW2ssbYSHMhAE4gVFaWA3POs0jNfFXRanOyb3ofH6ilZGhgGVsmKohXYPbmbdy97F5oozFVF/Qv+/VgaGxGvvhpterrUdD73PSmdxz1Oz8cUPq8DjGKxnJpb763nmbGnGYgPErD7cUgOclqOwfggdZ46mnxNHIsep9pdjWEYHJw5yMGZgwzGBlletYyiXiw1noki9YFm7n7iawtED7LMQGr4de8G/HJ5ITv7l+LCxgv5+uX/j70zvQwnRqjz1vPkyDYePvJgSfQATYEWLm7awvTMME3exlKfgyghizIGBnbJzqLAIpZULmFxxWJ2jO9gKD6E0+LEa/fS6GvkM498hjpvHZe2XspH1n6EmBLjA54PICDgtrlxyk6a/E2n7dPxuoO8Z/VtjCbHGAifSHuv8zdxedc15CmeVcP6mZjQvV55/vssuFwITidGNlveJhgtcOeqO7h737fYMfYMPcGlbGrciNPmZlPdhazKV+CKFDCME43FFY7l+F/GKP7L/dydDVPxcQ5NHySej+F3BLiwfgMPDz/KoZlD3LnhTvqj/ei6Tq2nlqH4EN949huohkYsPcUnN3+SY5Hj7JzcWaoMKmmKeoGR+DAVjgq2NG/hF0d+wY7xHSypXMKFjReSV/PIosxUaopINkKtp7bsC5RVszhkB5XOSmpd1ayoW80Vi9+KEysbV3cyk54mXcy8oHg0FIWp+BiH48eJ5WIE3B5agzU8uO8hooX4iSXJQoFIfIpf7/hPPrj1/ytXfl6oL2r+Ar5ErqUttIRjsWM8M7idP73oL0o/MnIR4vkYh8IHcVlcLKvqYiqb4cbQJXQcTUI+j+BylZa5BAF1YqLstv16Zzg+XO4DSykpdEMvV6RVQ8Uu2mDud1qmmEFBxW/1IhinhshKfv8bSug8H1P4vA4QLJZyau5BPY6ilZZKEvkEVe4QQl4gp+Yo6kWyapZqV4jloW6S2Ri17hom05McjR7l0tZL5nYosLxpLRkldYroEb1eBEk6L9yAz5ZTQh8FgUzAyYRfICOqL3lxbyg68eRqGJzcwYH+A2xYshlrwaCgF7CKFpRinsHJQwxMHuGWLX/Cb/of5ImRbai6is/uo9pTzZXtV/K9Pd+jyddEZ2Unlc5KNF1DFER+P/h71tStwWV1cVHTRYymRrlm8TVnJVaW1PXwqa2fY9vgE8Sys9gtTkRZJk+R6zquO2PhcvI0zzznS5TJC4V7Ss3NaCMjJ8SPrtOd9fAPb/lHDiX7iccm8clulsg1BCMF0JXyY+e/+F/OKP4LHY+ls/MVmwTaOfos//bctxiM9pdGtlWVancNH97857hsXvqifRwMH8RQi9y/60dsWnold6z9EDktR9BRSb23nu/v/T4GBulCGjDw2XxousZochRN17CIFiLZSHkU3ibbMAwDu2xnefVy/DZ/uTopCxK1rmo6g514bF5kyUpay9FU1Uqo2k9NvOEU8TgvDpOFNL2ZAb6+6xsMRI5hLRqIRY2GxmW8rfVqIhPHUT2eUpjpnMFhJDbBUPg4y1/Cr2rerqIyrnDnuo9y986vczh+jGf6n2B93Tqyag6v3YdoQI01SCCtlXq4xAqO1ilkDCtedYLapIhzeBJUtdyXJc/FI71eOXmZ22PzYGBQ1Is4ZAc5NbfAD95pcdIWXMQSeyOWlvbzpjfnlcIUPq8DRL8fwW6nIZVnFLi05RKeGNnGVGqSeC6G2+qmLdBGnacOq2ihw7+IQ6N7EYA1zWvZNbWbyfQkBa1ktd5Ts4JPXfwpJuPjCD5fqalTFEu/jE8yCjsf3IDPFENRKB47RtolM2orkC5kwOVgKH6YVDiBYbOSMwoE3VVsbr6IRcFFp+zjZAF638CDTMRHeOrwQ6DrOG1uOquW4C2CIEkcHN3FVYuvZmPTJqDUzzMQH+DzT3yekDtEpphh9+RuGrwN9FT3sHuyFAVglaxYJStem5drO6496wqLHo/TNJziBqmbUU+8tCTj8NHa2IPPX3tG+5hOT/O93d9jIj2BVbLis/mwybbzIsrkxcI9teFhLMuWlaIQTrro1ths1FS1nBAo8VMFysv94jcUheLUFNhsJV8amw0kCSP6ysUcHJ4+wOce+Qy9k3sB0IWSuV7BKvJ/n/oSn7n4MzT7mgm5QyiFLEgy/3PgHiaKEdoq2jkS6eP/2/gJZrJhirqKTbLht/tIKkksooV8cS5JXRA4MN3L5uYt9IZ7mc5MIwsyFsmCx+rh/1z8f/h9/+/ZWH8BLsOKKMmMxUfpqezi/z70GTS7lbbgIu5c/acsl+oXVL70eJzi0aOMuVSOF6f4+v5/41D4IKIgIhkCXoudI9MH+F4uyq2Lr+HA4W2ILldJxM5N26WV1GnPT0pJMRTpJ5WK4JadNDVU4xieojsGX1jz1xxRJ4kbOdyeCraPbCeWj+MR7cixJEF3iIs63sLP9/yYmdRU6VgjEYJVTdyw/J3UHpksu22LW7e+ris/Jy9zO2QHK2tWsmtiF1WuKiLZCMJc6NHq2tWIgsSdF/45dfXdbzrRA6bweV1wstV+QLPSmJa5tvktzBTj5DQFh+wg5AoRycySyEQ5NnMEQzBA0zgwvJOu2i6WVy/n0tZLubHzBpbXrKDJ38SjhUcRHS88hnuyG/D5jh6PM+Ys8us9PyYenSTYsoSItUilu5qCrDEVOcax+AB5TeGZsWf46IaPndKgd7IAfW/zDey1RzgQ2oVFF/BqFqypkmtpp68dn7+a7+/7Pnsm9/DOZe/kZwd/hl22o2gKkiTR4G1gOjPNdGaajmAHU+kpmn3NjKfGaQ+0n/Gy0nR6mkPhQ8SVOD6bD6moETEm8MkeOgjRmXIgKCKCMoLhrjjtl9j8klamWJrE6Q338sTIE+X7HbKDzspO/Hb/6z7K5EXDPXM5jExmQcXGUBS06enyEtTphNEf8sWvhsPo4+MYmUwp4DKTAVXFumIFeiTyB8ccpJQUjww+VhY9qmCQ0XLMJGLElQRBe4CnRp+m1lOHrBnoeZUlNd0cmeyl3e1jPDOF0+LEJlsRhJLxXEErkMgncVocWCQLR2f6aA20sLZ2LY8NP8YTQ4+zvGYFK6pXIAoidZ46tjRvodZVyycv/AQDx3cxS4adkQOImsYz/Y+XphvzOv0j+/ha5itz00J5BIcDub0ddWCAtKjyTOIAKaHAE0OPz71BBlbZDo4KnKKVQ+GDFDvfXuot8flORB8A7tP8exmKD3Ff7y8QU1kMSSCvFahwVrC5fiNttgZqRJFaS1v5fd7UvLm8vOvUZSp1Bz/v/SkRu4ZoryqH7EbCw9yz/2e8r+N/4Tg+gh6LLcgqez3S7G+mwlFBNBdlKD7Eh9d9mK8/+3X2TO6h0lmJ0+pkcWAxH13/UTRdY2X96jel6AFT+LxumJ8yaolPU5Xch5iLUuEJIcgn3qKQvYJYLg6Ufp0ZkkTR0Dgy2cvy2pVsqlhNS8PS8vZdoS7aAm2nJH4DC9yA3wiktGxZ9DS2r+SBmScZT4wSzkcootEeXMTyym4eOvogfbNHSChJ/u6yzy+o/JwsQF2ZHCsd9ey1NxOZHS39S5nzePGkCjitbopakQpHBbIkI4kSmWIGr81LJBshp+YI2APE8jFUXSWpJBlODNMeaGdp1dIzWt7aO7WXr+34GkPxISodleye2IVHdnJl6xWkE2Hqq9rpquikWXXTKFrwn+Yie/KSVoOngd1Tu/Hb/Uylp5AFGbvFjqqr9M32sbJm5SmxJq8X5pdJtGgUPZMpfWELAmmbwKA9w5SewCLbqM85aVWceGyeF12CeiWcpdWpKZTHHkMbHy9nOwleL3JTE4V9+7AsX/4HxxwMx4eZzc5itdgRJJlKuxerbKOoFdB0jaCjgkQ+wRNHHuLty27mWKaXfDZBa1UHCT2DKFtYWrWUcHqGFdUr2DmxEyiJH6/Ni2EYLKvuZnhmgM9d/Fm+uauGvkhpTHwiNUGls5K3tL2F47HjXNh4Ic54liVxK0/6s/ym9xcnDlQUS+dZFBmYPXpiWiiXo7h/P4LHw5g9z30H7mNl84YFr7Gg5onkIri8TVgkK2l1zq5BEBADAVAUgoE6WkILq7QpJcV9h+7BVjB4eGQbE/GR8n2Phx7jrzd8nKWLNiy4uM83iM8HyB6xJ5k6+GzpTrsdqbYWbWKitLwWHmZ8WaY81v1SbtyvNc+3PRiMDXL7qtvRVmkICDgtpX8XQ4khrlp01eu2qnsuMIXP6wjBZsNf3cQNtltO239xXf1WJjPT9M0coXdqb6lxTRDoqVnJpy78axotC+3oq93VfGzDx/jajq8tED8nuwG/URhJjZFKzLJ249s4mBmgTVzCiqa1DEYHeaDvPoYTIySUBF11K9g5/iyHZw6xbXQb1e7qBV8AJ4+5+4pFbtpyO/fs/hGzsYmSU6lhUFnRQEtlJwOxAfJqyUCuMNeXZZWsxPNxNF2jLdBWMg6bs9EvaAXW1q3l3d3vfskvnan4OF/d9hX6w0cI+erYPbGLmUyYiG7QFzhOyFHJv+74OgFXJZdVrqPRXs2NoffSRuk9NRSFRHyaew78iEg+htXhwWvzcv/R+7mo6SKORY4hiRJOi5NGbyPFgkI8NUPIU/O6mww7WcCUs38EgTE//Hj8Nzw5sp1sOo4gSixuX8vVXdfjkdxUZ0UaRCeuk7x7jFzuFVmC0iIRCrt2oY2OnsguEgSMZBJ1ZAQxGARV/YNjDtLFNA6LnVQxQ72rkeHEMJF8tCRaZRvZYh01nhp+Gx9hKj7Olo4r6Js5XKpuOZzsm95PX6SPcWGC21ffjiRKPDf+XGm8XRBYWbOC93TfwuzEELV1fj689sMciR4hkU/gs/twyA6i+SjXLL4Gj82DWkwAJzySFp4UrSwA56eFoBTYKnm9jGlRjqeH2WC9FE0AEZCRaA624bS5EAWZCk8V1cEmwnX16A47ZLMEA3XctOG9p+TRDceHkVSdh4//jonEaPk9wGJhIDHIj4/9ko+7avDXNi94r08OkE2HlBPvXT6PNjuL1NiIHo1ipNOkiyea5c+H6sjJtgfpYhq3xU2Vq4rZzCypYgq3xc3FzRe/qUUPmMLndaR7Zx4AAHoiSURBVMnpPrzN/mbcWKmbynH3xr/joDJKTIkTsPlZZmukLikgtvhP2dfKmpV8cesXy8slfpufrlDXG0r0AGS1PJ0b3srPh36D3+GjzlNPXsuzpn4tb1l8BV/a9iWGE0NsatwMEwJ5VWEqPXXaZZ2TG1zbaOCDwfq5UNAUbpuHltAi9s8eZnHFYo5EjjCRnKDV38pgfBDDMKhwVJQdb7e2buXChgtp9jcTsAfY2LjxJas9ejzOwdHd9A/swuXwYogC+WIOn81L0FnJU2NPcX3n9WAYxDKzRKpyOGMT3Nf/Gz5Q04orp1Hs62NYiiDni9TYK/H5a0kqSS5uvhhZkOkJ9XAkcqRkdpYYocnTSC6Xwi9WExRc7B/Y8boIQU2mIwwM7SKtJ/C4XTR6g1iPJkjHp/nF2LNsn9lBtphFcjjwuoPsmtiN3e5iVc1q+pUsLtnJ4qpmFkVEXCmllBify/1BS1CGoqCOjqLH4+ULfekOA1QVI5lEbGwsNcaeZXPz8wNokQwmUpOsrFvF7qk9JJQkTd4mvLbSePayqmXEslG66paT0nPsn95LhTvEfx3+KYuqOvnunu+SLqTx2X3MZGfY2rqVdy97d2lM3d+CX3QyOtbHqs7NfPzJv+HI7FHWNKwj6AzisXrY0ryFy9suL39fzAu5eY+kBa8dyufDb/VCtvR3psLNEVuYiVyE9U0XIhkCy6uXs396P131KzgWOcbs7Cx2yUZXcAlDs/1cuuomrKk8nooQTb4mfIFT+9fSxTSGoTM+O1B+fsHhKIUQ6zpj08cYHNnPsunYgkbzkwNk3ZKzVK3SddD1Uk+RrmPkcoiBAG6rC8gtcNt+vXOy7cE8b7Tv+z8UU/i8TjndhxfAsmgRdX191OYqgApIg+DQX7RBs9pd/Yb/4Nvcfv792X/kxq638W+7/42903sREdHR2VC/gb/a8ld8+P4Pk1AS5DUFvyiSLWQXVNVeCK87eMo0yWIW857l7+G/9v8Xe6f2cm3ntYhCKTIk6Aii6irNvma2tm1lIlXyJInlYzjkF48+MBSF4uAg8UwYr6+KweQwvjTMZEtmYiF3NXktT1ErLnQglp1E9TRDkX46RhWMfJ54QGd7eCdpQ2Hi2CxFQ6WgFnhX97voru5mNDlKPBdnKD5INBelylfLxYuu5KePfJ2Z7AyCWOoJCQbquHHDe2mtWXLaYz65D8lv99NV9YcJ6/mepMn0JA/03U8mGSGg27AiEdDtXFd/GelsgYHRcbL5UsOr0+JiNBdmS/NmRpMTPDb4GLH0LLKq0xZcxAe63sMF9gbqpuJIFRV/0BJUuc9IkkoX+rl0auCEADCMsx5pnw+gjcQmyrfVta9AURVuWHITI8kxaty1jCZHGUmO0FHRQbW7mh/s/0/+eNUfk8klqAs08+2932E4OYouQJWzElVXSeQTHJo5RDQXRTM0Lmy4kCtatuKcSbBk0Vv4/7Z9lv1Te7HZXDwy+HDZKPOp0af483V3ssLZTpPmRnA6ESoqWCI6aKvsYGD2aOlA56rPiCJtlR0skWtALDBQYfCD4QfY1b8Pl9XN8egxnhvfyZ9v/AvuP/oA6UKay9svR9N1FgcXszzUzc7jT7JD28U7ghdRc3AGuclBYWT6lCk5l2gnX8ieED1Wa0n0zL0XFkEmo+VOqfKdvGRVn7dR4a0mGp8sNVHPIXo8BGQvDXIlYkA7a7dtk9c3pvA5z3ipYMM3K+O5aXpqVvCD3h+wd3rvgvt2jO/AZ/Nx68pbySjpkmeO1U22kC3lHL0Mqt3VXNJyCXk1T7qQRtVU/mzDn+Gz+winw9gtdgRKfRLzJodnEgyrx+MY2Sw+u4/B5DCpXIJgxYm4hIJWJK+WYi/mv/Dtsg3JX4kgy6TTUYycSMZl4feDD5MophjJTJAXNSySFZ/dx6/7fo3P5mMiNUHAHiDkCvGBVR+k27uYx5/5KTPhIQSns9xYGolNLPBROZn5PqTTLaW+HIPMofgQz44/i67rHIsewxAMghV1FIsFMrks+vgo9+YfYNOSt1CcFMoVCMFiYZGrjaPRY+yd6cUiyuiGBggMRI7zi/77MEKXcpWvE+fsLJaTLnJni1EslnrvRPGEd5AknRA9oojo9yPVntmUHVAOoD1Z9ADsGXmW9pouIrlZruu8llwxz0x2BrtsJ5FPcF/ffUTSYR4bfpzr2q4irWY4EunD5/DzyOAj3NT1NnaM7WAsNVaKuHBUlIKMV36A1WErRsbF7+3j7J/ai9ViJ56Po2hK6fUA+yb3EM1G+NXTv+WPKt+CO11Aamigqrq65JG055sMRI+XtrdYaA8u4mOrPkQwWmSoQuAL+77Gzpm9TGXDuC0uHFYndruDu5+5m7u2/i3f3vVtjkWPE3QE+c3RB/jVwV+wuXET/73jG8x2h/kT/1aaBeG0S5SNUgV+u/+E8JQkyOeBUrCmV7PgtnqgWFrinK/yzT/e0HUcExGuq72YB4oPY3F7ELxeCl4ngZYgG/0r8MoB5K3dpuh5g2EKn/OQl+M18kYnno/T7G/mu3u/i9vixsBA0zWKehHd0OkN93Lloiv5/fHf0eBvYl39etKFNG7ZsWDq52x+pa+oWUGNu+aUZcScmjttj9aZBMMaxSIUi/hsNqrcIVK5BAUlR9ARJJKLIAoiTb5morkIWCxUuCqptFaUhArzYZoKo8RR0gksVgepaBKnO0BRKxLJlXxa3rb0bTwx8gQhZ4ih+CCLg4toc9YxEx6aOxBjwXGdzkdlOj19iugBGIgNvCyDzJSSYsfYDhRV4f5j93Nv372lcFHDYEnVUt6x5GbSiTSR+BQZoYhFF8rHqhoaVa4QQ1O7iOfjVLtCc1NMpdcxHB8mFVIYs+XptNvLF/Yz5WSDQqNYBIcDQZaRamrQpqZK4mdumUeqrUVevPisLpZD4eOniB4ACYGHDt7DHZd8gt7Zg/zs0M/RdI1cMUe6kKbKWYlNtmNg4HH6mUhNUOutR54Tfr869EvWN2zggsYL0HWd9fXrSSpJRKWAkSlVdWL5eOnJRLEkeubOKboOmkZKSTI7O8p4XZbF0WRZ+K3oXMYXL/k8h2YPzUVHBOjIuQgcmCFVV8m22f08M/Y0WC2g62SUNLJkIZKLcFnLZdzTdw/90X48VjfxXIxELs5EchzN0FnRtI6R5Cj3JX7PbZXvx8VC8QLgLopsCqxkW+MKjo/uK39mHXY3nf5F1DpraZQroFhadi7HMswFyGrT0xiJBLWxGFdsuI6fTj7EePQg1qwLT04n0TTLDUtvos0UPW84TOFj8obAZ/fRH+sve5OouoooiGXzLrtkxyk7aatox2lzcWjmEH+88gNYYymKscPl/Zyt8dwLLSOerkfrTBoKBYsFLBZyUxO8bdH1/NK4l6HoIB21SzgaO0aFPcBlbZfxwMF7CNj9rA+twiWXLsIVjoq5MM0B0moWa1HHbXUjSxZEBLx2L3um9uC1evHb/Syr7CLkqiaaizCTCpPIJ046EKHU9zDX0I0gkD75fuBQ+NBpJwaBl2WQORwfxmV1cfezd5M9qakU4MjMYX4l/JqbW64hldyPoBRoczYwlJ0gl08hCxJFQ0U3dOySDV3XkCULzC0JSoJIXi+QkTTktjY4i6Wuk3OkBKezdF7yeSxLl6IeP444F2iJppUqsmvWnLXZXVo5TbMw4MWORbaRL2QREMop87IoE3QGqXAGcfvc5JUMRyZ7yQhFDkzvJ+SupiPYydGZIzw5vA1RlLDKNloDpWBcZ4MdKImcgN1fep1zfWlA6T03DMDAY3UzrZdS7I10GiObRXU4kJqaqJiOsSnnB/yQE0oCvLOC48VxppNxVHSslKprBgaJbAy3zUOjr4nHhx/j8MwhKl1VTKUnCdj8dFQt4ejMETY3bkJJxZgNDzMqplgilCpqJy9RChYLLVGDv1z+p/zEfQ/jmUks+SIeTaZGDnB9+9W488aC7Q1FwchkkJcsQfD50IaGSAtFfnvgHrRigvrqatSxMUSXi0hiinsP/4rbHAF8vtCbvqr+RsIUPibnPdPpaQ5MH8Bv93NJ8yU0+Boo6kWsopXJ1CRHZo9gt9ixyTasspVFFYsIOasoZlI0WNuAE1+mr9TUzwv1aL0Uot+P4HTiznmY3nkPN7RdRLH9KvKawi1d78QqOzAkAX2JhpjJ4sjrCB65XFHyOaopOCZxi6UKkAcrNbZKkoaCXbJjES0kC0ni+TgHZw/htnmodFQiqCq6qs4dhIgkyVR5ahEcDvJ6AYdkwyU50OPxsih8KQPMszXITBfTJPIJDoQPsKiiNEQsCEKpZmMY9M32YXTcgCAIBAw7NzdfhWKTeHLsqZLJpMWFw+LEb/ejFRUEVUewWJBFGbvFgcPtxxOoxkikEOrPLG395BwpweNBHRjAyGYR/H70fB6ppgbJbi/5zsgycmMjUvDsG8HdNu9pb7cWdToDizAMnc7KTjxWD6lCCpfVRaWzEq/Vi8fmIZqZxe3wYaSjdFR0MpgYRJbS1HnrGUuOIQsSHRUdFLQCbYG2skAGWGZrpKdmJX2xuX6dOaGLYbC8dhXWtAKahlu0A6lS82+hgB6NoqdSJyw3DAMjk0FwuUhGp5AlsVw5skk2FE3BMHS8Ng+T6Ymyq7A+t9wcU+KQhDpvPbIk4SpaQdZIpyIIzpbSvk+akptf4m+P5fmz2rcxJmVIxaZx6RINmgdP1grSXP+P0wmSRGHv3rK9gR6NIvh8TLV7SOx9GrHgRx0bQwoE0JNJ9HCYmUyGoeB+luqVr6gTt8lriyl8TM57DoUPsX10O3+69k9RdIUf7P9B+b6Oig5u7rqZvtk+LOJcPwgCNY4QGwMrcEV0IpX2ctJzwOalU7JT8wcaz71cBJsNS2srzTaBQKiR6cO7SssyosiQ5xiC00mFIvEX7dcTqdbI2SW8jW20BNvLFSVLZyeNIyJBd4iCMotbdqLoGqIg4LK4aPY1o6gKPVU9hBxVRGMTuKw11FgCVIVakPwBAlUNPDjwP8xOzyAWVYyiSkZScRcE2hzrStYLL2GAebYGmW6Ley5OAbLFLD6bj4SSKIsfQRBQDJWqxk7cLYvpy47Qal/Biq5LqHaGUNQcmq4Rz0RIKQoYBrIhUOkI0uiow4ONxqILwS6f8QVsvpFZcLnKokeqr0cdHkbPZEh3dzAhQ1rI47H4aC748SnusxbNLaFFBAN1p13uanXWc+Xiq5hVYlzfeT1jybFyNdPA4MjsEWq99aDkSfXu4d2r3sbPB+5lJDlCyFNNODVFZ2AxN3ZejyBJvGPZO8oC2cjlqJ3O88kL/5IvPfdPxPNxCmqpErSidhV/uvJ2Dv/uZwT9ddTHTz1uI58/YTEwf5uq4pYc6IUCjb4mRhMj+O3+Uv+QmsdpdeG1eUnnUzR460kVTvhGxZQ4rYE2mr1NJAZ3Ifp8OHMqWBZGi8BC3y13LscSwYkQXI42Oopgs5Vd6ssmisePn2J+qR49SsLqR4/H0ZNJRK8XPZnEUBQEtxtBFEmrWQzllflBZPL6wBQ+Juc9cSVOd6ibv338b6lx19DiayGcCSMgMJwYZt/UPv73lv/NXY/fRaaYwWP1cGnjRYhFlYMVGnfvubs0nTLX8NoWXMTHLvgLFrlkRjKT5zzEsxSWuZSbbB/i3oO/IJKcBosFPZnEn4Nr6y/Gv+sIVatXY19xwSkX8fmwzRsqHNzXdy+Kx87h+DGShRTLQstYUb2Cp0afoiXQQiqXwO0K0BZcTJseoLD2Bn559Fd89+mfMjS3jBXy1rGlcTPhseN8X81ynRMcHh8BR6kxuj/ajyAI6IaOJEjYZBsdwY6zNshs9jdzaOYQVsnKVHqK9kA7I3P+S6IgIksWaj11rFy8kv8efIhwNoxVspCcTJJRUnx4xe18ZNEteGUnT4xsQysWWFHVQ2NlG/XuOtqcDSDYsDQuOuOL18lLK0Y6jVhVhTo8jJHNEl7fwX0jv2Nm5+FS34skURlq4YaV76StddVZVQe87iA3bnjvKQ3O8x42Nf56aqjndtvtC/rHxpJj1Lpr2dq2ldHju9HUAjO7n+Tmti0UW11UBxrwrHfhMewErF4629YuEMjz/khrwlb+af1n6V01ykhqDLtkx6aoHHnmQTyuANc3bMVxeO64bLaS2LFaT3gYzZ+jOe+i+rSERSuytfUyHh58hNHECD6rB2xeOoKddAQ66HXs4fDoXjy+SqqdIfKagiiItFe0Y8/rpBwOKgQXDXkbeDnt5Orphj0sHR2nuHOfzvFbdLsRPB7cRRHBbod0uhRZkUgg2O3l53LLTlBO7TEyOX8xhY/JeY/f5scu29k9tRuLaKEn1ENboK283OW0OJnOTNNZ2YlbdrO6fjWFYoFd4iSPDTxG0sghWaxYijpXrHg7doeLbeEdHMkMoKpFRtPjFPXiOQ3xFGw2mgQ/t2g9jPnbSesKnlCQRjGAK5GD1bVYlix5wYurYLPR1tDNB6qay6nN2WIWzdC498i91HvqSSkp7FYnm+ou5CbHerLpKN/Z8y1aGntQUAn56pEECUHX2TnxHEs97UwefJDOuuX8ft+jrKxdyXuXv5dvPPcNjkePY5NtxAoxukPd3L7m9nJ/z5kml3tsHlZUr2Bj40aeGn2K/lg/Ne4amnxNyGLJe2hDwwY++9hneXrsaYpaEQODVn8rFzddxHcO/Aef7v4onwjdzM31VzAr5Xlo6GHGEqOkkrMMCIfYVdXEDY2VtHD683bKeZxbWjHmlgHnL4xK92LuPfYAs5P9pRHqOS+Y2egY9+z7ObfhoKJr1VlVB1prlvDBrf/fKZ5RJ0/SPd/jK1fI0RfpK00PiqXmak0rEj62D4Ct3e9k8fFJAOxXXYX1Bcw6jWKRJouFRrWORK6GUTlNupig58L3UTMYw3F4sCRynE6kpibklhbI5080cM8ZB6JpoGl4fSFudL2Fn40/xI2dN2KzOcioWQKOClp8zfzuwH1c3XYluXyGgXAfbpeXopanwd/Ada1vpW/vIwQ9Ia5reSvuqIZUX7/gs66n02jhcKkyY7cjVVUhnVx5en4V6jQ9XYLVitzUREMhTdBbzUwyWZrUs9tLn1FJIugO0Yif+eXwP9SJ2+T1gSl8TM57ukJd5eypol5k99Tu8n2Vjko8Ng+JfIJWfyvtgXa+vevbWCUrW9u2ElcSVAca6K5dQYu/lW/u/hYHwr0UdZUqVxXNvmY+uv6jDMWHznmIp+hy4bG46RiLY+QVYAKYQLPbkRoaXjSHbZ7n9xqllBRNviYm0hOomkqtu5bWghvLE8/wzBI7s4U49sw0k7ET9v9WiwOn1YUiGbgcXo7H+rmg6QJ+sP8HHAkf4ZaeW9jcvBlBEFgcWIxhGOyZ3EN3VXfZTHH+17ahqgiiiNTejuhwnCKCOqs6+fSWT/OVp77CwdmDGIaBbuh0BDu4Y+0d/Lj3xzwz9gwpJVW2CTgQPkBBVVhTu4Yj6iSXpj20uj1sG9mGfXQKhywjWHUMYCZzmHv0n/OBDXec0Xs4n/Y9Xw00ikUoFBi3F4impk8kwQtC6aKv60TiE4xkp04bIfJSnM4z6vmc/J6mlBS9M71ohlZamnG5SrlhQNBXS322JNzEUOi0x/L8CVFtehpXusASwQbOFnSlgFDvR6hpAk3DmO/nyWTA4cCyfHlpCVAUKR44gBGPg9WKVFlJ7bTOjcuu5b/6f8lgZhRRsuDBiiWUx2NYmd63gxvb3kJxyXVk1RxOqxO7LtOu+VnW804axQpcWRWh0r6gb2o+bmLehBB4yQT1F3LQFt1uvEUbN7S8h/t89xPJzJbEz5zoub7tKlwp9SX3Y3J+YQofk/Oeanc1K2tWEnAEiOVOfBkGHAGa/c30hnvx2r347D6+vevbNPubeXLkSaZ6p+id7kVH566L7+JnR37Onsld2C0OcloewzDYO7mHf3nuX7htxW3snd6LoirnLMRT9PuRqqoQrNZy+CWyjOhyIfp8L6vR0mPz0FPdQ091T/m2wuHDFHSdJHkGEkM0hNoXPCan5Snki+gCYLNS56nju3v+nfHkOB9Z/xGCziDZYha3xU04EybkDhHOhE+YKc6LnrlIAFQVLRpFbm4GXT+laXRt/Vr++ap/PsUmYDYzS3+8NLk3L3rmORo9xgUNFxAtxAEPo3KamdGjpXNmt5/YUFWZGeljaFE/PXUrX/J8lftIRkYQXK7y0k45T2qekxqCDVUlXUi9YJjqK8mCfCaiSE1NaCMjVMhermu6HGd/BDEUwnbRRUhn8HmZF3pGLgfZLKLDgWCzlfpj8nnEYBDRbi9NP3Z0lIN9laeeQpAkhKoqoLQslK0O8D+9v0KUi7SLVeizEYz0DAMjD9O5+nImkAgPHECwWhEqKpAdBm+t3ERDXJwTw8XylOW8OD45buJkXipBfcHrev59Xi9tTT18sKmToUg/yfFBXFhpxF8SPSe5QpvNzW8MTOFj8oagu6qbS1suZTA2iGZoSIJErphjIDbA6trVeK3euZ4QK0+OPMlYcoxbl9/KypqVpcqHpxYMqHBUllPMRUFE1VV2jO3glp5bODRzCIfs4NKWS8+J8Dm5eVM4KaX6+ReDV+J5ACxWOyklyUwmTEugrdzjgwF5PY9FthDw1uKwORmIDvD5rZ/nO7u/w87JneV9ratbx99e8rc4ZEfZTBFKlZ550QOlfhksFigWKR47hlRfjxQMlo/ldDYBg/FBRMRTRI8glMa882oeWSp9paXVbCkry+ksO1CXUVXS6Zd27J5H9PuxOhyIbjfFkRHE2lrc1pMuriftf35JzGVY0OJxxJOm4F4tnr/85Vwl01B04c6qsMiKVF19RqIHFn7m5sWPkcshL15c2oconmKaamQyJxyTtRPvzZicZnZ2pNz8bKRLTcyartK3+/fcvPl2qL+4FO5b3UiTvxmvq+KU/pyTP+cnx008nxdLUD/ldc3fftK/JQ82eupWojtbXnQ7k/MfU/iYvCFoD7bz0XUf5a7H72LX5K7y7evq1vHnF/45+6f2Y5ft1LhreGL4Cd638n08O/4sB2cOomgKo8lRxlPj3Lj0Rn5+8GcYOChoCvqcAV6mUBJDOTXHeHqclJI6Z43Or7ZT97yhW0ArNXbvGd/NFYuuAMNgKD4EgkDQUUmNs4bNtRsYSo7z4fUfPkX0ADw38Rxf3fFVPrHxE7iMkpkilKo986IHAJsNPRZDHRwsZVqNjiIFAlh6epAqK097nG6LG6fFSYWj4pSoEUEQqHKHqHRUIi9ahDfVX57KAShYRJLkKehFrKIFi3R2SxaCzYZgtSK53chr1tCQjlDhr2U2nS69Nig7CFdWNdEoBUui7hxNAr1c+4TTcbafOaNYXCD+5klruVK1pFgEeeGlRtNVUrPjrNFqkQJ1yK5W5OqG0p0vYhj4UgnpL3b/mb4u0x3/jY8pfEzeMFzUchHf9nyb3nAvsXyMCnsF7cF2+iP9OC1Oqt3VpAtp3rrorTwy+AjHoseoclaRUBLIosxgbJAn5Se5sHEjB8IHmEiOl/ftsroAqHPXoRTP3XIXvPpO3aLbjXXDBtwDz3Dz4hv4xbF7+V3/71gR6uHCxo047R46gx34jFKkgd/upWBxniJ65jkQPkAkF2FN5WLmvWIWTP+43UwsqeagMU3MVaTCXkGXXEPd/hH0ZBLb5s2n9cJp9jfT4m+hu6qbAzMHFoifVTWr6KnqodpTi1zdQNO0TqW3hkg6TMKqczRyhKySBkGgLtDEkcgxKoONZ9WoLlgs5aqFK5rhhuXv4D7bvYRH+kp9NapKsKqJq9bdwoRFoC89hEd20hyfxl/ddMbP83rgbD5zgsVSmoqS5QXi1i3NxaqI4mmFkUu0g6KW93Gmx/WH3n8mr8t0x39jYwofkzcU7cF22oOlHpUnhp7gzx78M3ZP7sYhO1hauZSgK8jFLRdz/7H7MTAIZ8P4rD4EBOq99Ywnx9ncuJmD4QNYZRt5Nc+aujUoqkKdu64cOpoupl/iSM4v5JoaWu0beeK5Q7xtyY0URIOsruAUbVh1gdlkGFdFM5MDR1i3/K30JU/v2OyUnai6SkpJ4fOf8IqZv/hlayrY2yzxnb1fYyDaTyafYio1weqGdXxm06dYsyeCOjpaGjV+3kXMY/PwnuXvIZKPUNALqLpaDoO9ov0K/A5/OQvN56/m+s7r+MXx+3h2+FFyc2Gmdb5GttZvoT9yjGhf+qwa1cuNznNGfTV7IvxRy5WML76CdDaB2+LE4fTx26O/YSY6Wn5cVXIfN9huOSfTgK8Fot+P6PGUerdOWs5sUOxUhlqI5CKlqo/NVjJ65KTGa4t8Vr0z89XJ0y13nU8J6iavLYJhPC+U501OMpnE5/ORSCTwek/vpmry+qc/0s+f3P8n7JrcVbL51zQsooUtbZdgkSxMpafYNrINKF2sa9w19IR62De9jy1Nm3ng2G8QBZE1dWv4yLqPMJ2ZRtVUZrIzaIbG25e+/ZxVfM4lQ/GhF8wZ8ykCQyO95Cgw6TJ476/eS1Y9ES3hlJ0EnUFyxRz/cdN/kCvmiOaiVNgDLHW1Io1P8ph2nG8e/D4HwwcAA7/NT6O3kf7IMVbXr+VfN3yepqSEpa3tBX9xH48cZ+fEThJKAotowWl1YhgGGxs3LgiB1WZn6R3ZyfaJZ8jrBeyiFaNQYLYYR1OLSNXVvKPnXWf1PurxOMWjR0GWS9NM6TRSYyPq4CC5hhA/TDx2yjKcWFlJZVXTOZsGfCXR4nG06elS+KfDgRQKnbZfaD7WQ0+lSkt/uo7o8TCxqJJfb/suszPDCB4PeiJB0F7BdU2XUzeewdLVhbW7+6z6oF7OVJfJm4MzvX6bFR+TNyS94d4TvT5z2r6oF3lq8AkuWXQ5K6tX0h/tRxREilqBdCHNTHaGrqouru+8gUtbL8Mu23FZXBwIHzgR3siZpayfrzy/UfbknDF1bIwlGRfgojLo5aLmLRyYOYiu64iiiK5r5NU8N3fdzO/6f8d393wXAwMBgY2NG3n/ituIxrIcnDnIfHhoXIlDSqDGU8vOsWc5uG6SZrnlRf1SFgUXUe2ufuksNE0jreeZSoyXltrml1vm9m3k82dduRP9fqwrVpSN7AxFQZBlBEGg35UhOvW8pmlZRrDbieai53R59JWgODqKsm0bejhcvk0MhbBt2YKlsXHBti/UF9Nms/GBy/6CweO7SGfjuJdU0ChV4M4bSJc3ItfXn3XvjFxTg7h16wkfH5utVAkyw0RNzhBT+Ji8IXn+r+558ppCMp9kccVi6jx1aLqGJJYmwA7PHmZVzSpW1ayiPdhern48X/ScScr6+cwLNcqe3IfROJHlrzd8gr/d9nl2TjxXulEUefuyd1DnqePHvT+mLdCGgYEkSIQzYb723N3cvvr2ubFvobyveD5Oo7fU2BpXEqc810sinP5mo1jEbVhOBJJqC6fB0HXclrO/WJ6u/0P0ekkfe3ThhrKMVFlZzrI6n5ZHtXj8FNEDoIfDKNu2IV599SmVnxfqi/HXNLPCHXxFhYrodptCx+RlYwofkzckFY6KF7xv99izfHj9h3l6+MnSRVsUEUSRNbVr+Nwlnyv3CL1Y9ePNyAIvFFVlw7SNb17yZQ5mh4jl4wRcQVwWF5965FPM5maZzc5izFV2at21VDorEQWxNH4uigsanrW5ZPCAIwAZ45Slj/5IP73h3tLSmaMCu2xnz9Sesig9nau2YLHQKATwBmoYSI+UJ7q82LEoKhX2ChpUZ2kE+gXcpM/m3PjqWxGnK8vVJcFuPxHgCS8osk7nQvxaX9S16elTRM88ejiMNj19xiPyYAoVk9cX553wURSFDRs2sG/fPvbs2cPKlSvL942MjPCRj3yERx55BIfDwS233MKXv/xlrCd5oJi8OegJ9bCmdk1puUtYWBLorl7OEktD6aKdGyKmJAk4AvSEesqiZ55Xckz4fOcULxRVpXEkRZOjAUvnVkS/nx/s/QGD8UEiuUhZ9AAk8glyxRyqprI8tJz94f0l8TO3DCmJEmsbN7DM1Y6lvmWBCHli6ImyTYEkSBS0Altbt/LB1R9kKD6ELMoICNx/9H7et+J9ZWEq+v3EZ3TqK5rZHTnARHIMAIfsYFP9BVxXfyn246MUDQPB6URubwdVfclojReiJdhOZVVTudqoqAqJdJSCXqDOU0eVq2rB9tPpaQ6O7yUWncAvuugoegkMzSJ6PK99v8r8iP4L8RJj5SYmr2fOO+HzV3/1V9TV1bFv374Ft2uaxjXXXENVVRXbt28nEonwvve9D8MwuPvuu1+jozV5rWgPtvPZiz9bvmAacx4ra+vW8bktn6FxIoNgsdA+d8E2OTNO7uUIawkOp4aIqxECsSxdchd2i52EklggegA0XSOlpRBFkXd0vR1VVzk0ewgD8Nv9tATa+LP1d7KodukCsdEf6V/gzSQKIosqFvHk6JMMxge5rPUyHhl8hI5gB29d9FZG4iMsq14GQJoC90efJjp2nC3V66BpM3k1j0u009LQzWFm2eaK4LV7aHE20HhoL+4CC1K9n+8q/WKc7KI8EBvgePQ4XpuXgD1Ad1U324a3saxqGUtDS9k7tZevPvVPHB/YVZ6Cagst4c7lt7PkyIu7EJ8TTna7Ph2mp43Jecx5JXwefPBBHnroIX7xi1/w4IMPLrjvoYce4tChQ4yOjlJXVwfAV77yFW677Ta+8IUvmBNab0Ke7+sTsAforuikpehBWGyakr1cBJuNXmOSf9rxTxyaOVR2yu6q6uLd3e+mq6qLfdMLf5gousKamjUIwNGRvdyy7F3k9QKCINAT6mFZ1bJTqm3wvCZ1IOQKMZYcI5KLMJub5dqOa+mP9TOZnqSgFlhevby87XB8mJiegVAV0/kUZBNYDIna5kV88Zn/y1BiiGgmgiAIrAit4M/WfZQVhSD1M3MuxHPePNa1a8/4c9Lib+F/Lftf/M+x37K+bh294QPsmdjDTw/8FNVQWVO7hrsuuYsf7v8h/dNHFvjeDISPcPf+f+PzHXcQOD71gi7E5wKpuhoxFDrtctcL5X6ZmJwvnDfCZ3p6mttvv51f//rXOJ3OU+5/+umn6e7uLosegCuvvBJFUdi1axeXXnrpuTxck9cJJ/v6mLwyTKen+fL2L/HM6NMUtUJpKVEUieVjbGrcxLuWvQvN0DgQPlB+THeomxuW3IBQKPKurnfisLnxVtS8ZM/U85vU3VY3h2cPlytKOTWHqqsklSTbR7czk50pbzvfTCzIcjk2ocHVyDd2f5Pnxp4l4KigoBUQRJG9U3v46nN38xcr7sDur2XKqTKqR1G0MNVDabqqu6nx15/R+QlHRwkITv5p59fZN7mXpkALncEOVKM09fatXd+iO9TNoZFdpzx2IHyEvmUJLmChC/GZJty/Ukh+P7YtW04/1XWGuV8mJq9XzgvhYxgGt912G3fccQdr165laGjolG2mpqaoft6vkEAggNVqZWpq6gX3rSgKyklfMMlk8hU7bhOTNyK9k3t5emgbqlo4caMgULQYPDb0GC3+Fq5ovYLrO64nr+axy3ZS+SSHxvfSXONjpacKf+2iBVWDlJJiOD7MdGa6lLklytgkG0FnEAGhLHQ0Q1vwt0N2YJNsGBi4rC6S+WQ5TuT5zcT5bIqcM8/+qX2ohsq8l7BhGBQNlf1T+8ivE3lAPcLPnvkRSSWJzeZEsthYXrOc25bdyipX+4uKDkNRSEyPkrbk2Te5l6U1PRyLHmN2Zra8zXhynMvbLkeWrZxuaD9RTAHyiWDOOY+c02VHvZrLtJbGRsSrry75+CgKzE1tmaLH5HznNRU+n/vc57jrrrtedJvnnnuOp556imQyySc/+ckX3VYQTp1rNQzjtLfP88UvfvElj8HExKSEoShMJ6cWih4oZzI9O/4st/Tcwq7x53j4+EOkcgkkQaLN18IN7ddygasTd9Gy4II9bxtwaOYQO8Z2EMlFqPfUs6lpE0sqlrC5aTPbR7aXPYEkUcLQDbpD3YQzYdKFNAF7gApHBfF8nIPTB7ig6UKa/c3lXC9DVYknwwQ8VWCAXbJT0ArlYzcwcNhcJAopfnHkFxTQCCsREslBEEWOzBxmLD7C5y/4NIuHJSyLF59WdOjxOG6sxPNJmgItJdGTnV2wTbKQ5PDMYTpquzmYenJhhhngs3gQA3akUAhDUU4RPQgCaVFldOhZcn4nHqefZt+rM20o+f2m0DF5w/GaCp+PfvSjvOtd73rRbVpaWvj85z/PM888g+15v7LWrl3Le97zHv7jP/6DmpoaduzYseD+WCxGsVg8pRJ0Mp/85Cf5+Mc/Xv47mUzS+DxzLhMTkxJ6PI7bcupSMwCGQVFVMDD4+KZPcG3bVUxEh5ERqbMGacjbcRdlLB0dQGlkOqVmuOfozxlVptkxtoOZ7AzZYpbDs4fJFrNMpaZ457J3ohs6T44+SV7N47F6aPQ28o5l7+DXR35NT6iHtJKiUFTQtSK/3vMTlrpa8AVry83GszMjFIp53BY3NosdiyATzUZOOngBWbRgk62klTQTyTEShVRJ0GkaipblwOR+Hh9/ktrKy3AfPYp1xYpTKj9GsUgjfo44/FQ4g1zYvIl6Tz05NYfT4mQsOcavD/+6VKGyuRG9XvRkckGDc6dUg3VDJ6LbjTY9fYroGfPo3DdwD5F0GLGyEtHtLo/zBx3BE/YLVverJohMTM5nXlPhU1lZSeULJDGfzNe+9jU+//nPl/+emJjgyiuv5Kc//SkbNmwA4MILL+QLX/gCk5OT1NbWAqWGZ5vNxpo1a15w3zab7RRBZWJicnqMYpEWey1doWUcCh885f6uyi5a/C14bB7WtFzA6tpVp7j5GrkchZ070WIxBgNFwsf2EfbpRDIzZNUs+pynz3BimI2NG/nH7f/I1676Grevvp2EksBhcXBw+iBffvLLZIsZANr8rVy7+BoGw0dJpSMMjvaywl1R9mIaHDvAcGwIq8vDBXUb2DbyxJyH4olqcFeoC1VTsUpWEkqyPGpfcpkW0DGYzYQZNo6xzNVadm8+GcFiwZVVWR5cwntXvo9/fuaf2Tu9t3z/yuqVfPqiTxPJRlB0pdSvEwhgFAq0V7TzsXV3Uh/qKTc1lx2sZZnROgd9yhj7Zg5AlQdLwM5MchqPaiGai/LD/T+k1d/Kseix8vOdzt/o+TzfR0gMBEBRzlk/kYnJuea86PFpalqYbOye+1Job2+noaHk+HrFFVfQ1dXFrbfeype+9CWi0Sif+MQnuP32282JLhOTVwjBYqEhJfGh1X/Ct3Z/e4H46Qot4461dyw0EXyem6+hKBT270cdGQFVJWXRMLJZ8nYdVS2g6dqCpemiXiRdTHN49jAXN19Md3U3u8Z30Tvdy41LbqCoF7GIFkRDwGfx8vTQI3R52kjnEmVh4rF5WOZuoz6q85MjD/GhVX+MhsaTw9vJawoYBqvr1nLn+jvpCx+mqBdL8RaaBieN5YsIOCQ76VQEw9F82lgN0e9HsNvx5XTu67uPo5GjC+4/GjnKfUfvY2vrVjbVbmJry1biShy/zU9XqItqd+lczfc8JTPTeH0qEa/O3z3+GXJanp0TOxEEkes7r+empTcxnhynwllBPBcnW8wueL5oLsq9fffy/pXvB1hQDfJavfRPHyEaHcdj9xGy+EkPjOOyOmmqWoxrJgGadk76iUxMziXnhfA5EyRJ4oEHHuDDH/4wmzZtWmBgaGJi8sog+v24hyW6pRo+1P1+EkaWdDGD2+LCJ7lYUb38RZdWtEikLHoA3JIDALtoRdc1RAT89gCSKKHpGjWuGtoD7fjsvvKU1pr6NRS0Ar89/luySgq7bCeTjfP0sUdo8zVjVXTcsnOBMCkdt4Urmy/hf44+xoe73s9tK95HQknisbppdTfRoPuYKR6nydvEoZlDnBA9AlbJSou/GUs6j2suZfx0sRrzJo9HRp9gfHaAkLMKDf1Enpmh88zYM9y09CaWhZaVhc48hqIwOHOcpyaeJqsrhDy1pN0u/n33tymiYpcdyKLMxqZNbBt5gt1Tu1lcsZinRp9iZc1K/uKCvyCcCZfE2xyJfKLUPzW+g2guiqIqjKfGUTWVi+s3snt8J48ff5iWilY+sOy9HNj2U7yhem7a9AHqpxWMXI5iXx/WlSvNyo/JG4LzUvi0tLRwulD5pqYm7r///tfgiExM3hwINhuWjg4ajx4lILQyKsRJS1ncNh+tjT34grUv+ngjlVrQzNug2Al6a8jpaapcIfKoTKWnyBQztPpb2T6yHdVQqXJW4bWcqNx2V3ez/fgjTEeniMxFUXR52rAqOkF3iEb8C4TJycf9roYrGNXipJUsHe52GlIi7pgGQoyLay7AHaxhMjfNvvHdYBhYJSsra1dxfdMVFAcHqfdbIGR/wQqI6PeTGC9itdipECsYT42T0/LlSpZdtuO2uE8RPXo8Tmz0OE/Hn+OhwYfZ0rmV7+/9Pt01y7n36H1YJSshV4hLWi9lz+QepjLTkJlmS9MWNEOjN9zL9/Z8j1uW38KR2SPl/VY5q/h136+xSTbi+TgHwgc4ED5ATslwcGofq6pXc+niK3jo8P18T/8Pbu25jt49D3FP7y9435L/hWs2hZHLnXZpz8TkfOS8FD4mJiavHfMJ5f54HN9JvTtnVA2QF37lOCNprmu+gvtGf8/6hg38bviRsui5sOFC9k/vZ1PTJv7p6X/iX67+l/LjPDYP71j+Ln6V+i6R2ARoACXRc33bVbhVyynC5HTHLbhcFA8exCjkwDCony3i97TRdPEXeHryOWL5GB7RgZxIUxwc5Jr6S3AnhJdMFQ84KhCsVjxYabPayRQyqLqKLMq4rC5q3QsF4vz01pgrw33HHmBVywZ+N/QoT48/Q4O/kaxaWsIKZ8LUemrLf0NpOVCYq0odmT1C4XkTdwYGiVwCn91H32wfM5kZ8mopkqI/Nsjq2jU8NfYUK+vX8NzI0xSX/S8AIrFxRtUISyhF/pxuac/E5HzEFD4mJiZnzQslcb/k49xuBLcbIz2XVK7r1I2nubXqcp5q0qkPNOG1esmpOabSU7RVtHFf3324rC6OzB5ZYEbZUtnOBzbfyeBoL+lcArfspBE/btWCpaPjtMLkdMe9IH/MMHAl86xSbHTUXc3Q+CEySgqX30GDw4G7KCCv7kB6iaGMrlAXbYE2BmIDWCUrVseJvMC2QBtdoa4F2+vxOEYux4QlwkRyjCu9N/L4zruJ5+NYpROvI6EkUFQFh+wgMZdkbxEt2GU7QUeQTDFDqpA65Xh8dl8pL23O8PEEBkVdZSg+xIUNFwKQVjNzJ0sgXcjAnPA53dKeicn5iCl8TExMzhmS339CaJwkflw5nVQhxX/u/Q+sc4aEuqEjCiJOixNFU4gpsVP25wvWssJdccrk2Nn0opycP3byPiy5HMsyamnCSVURPDLYbMg1NS+5/2p3NR/b8DG+tuNrDMQGyre3Bdr42IaPndrbM1dNme/NyWp54vk4AJOpSZZWLqU/2o8kSCU/I0HAZXHRFmgjX8xT6Qjikp0ohSxu2UlYVRFkmQpHBcurlzOdmaaglypBsjj3tS+KYIhY5v4uzgkit+xCsNsxdB231QXZkmGi2dxs8kbBFD4mJibnDMFmQ25sLPXozQsKuSQoAtZhEITyBRpKTs3zBGyBF9znH9p7crp9CDYbVofjZYuqlTUr+eLWL3IofOiUya35CIqUmmGkMENaSeFyKVQ5gjisLmzSiQrRfX33csf6P+U3x37DSGKElJLCZ/PhsXrY0ryFh449RIXkwprOc2H1WlY621mk+fFWN9JS3QnArsldhNNhDF3HKdmxiVbSxQytgRYmM9MYooBFlOmq7cGSLyJWVFBh9dMoBxEcKpbOTrOx2eQNgyl8TExMzimi339aQbE856cn1ENvuPeUx/SEeuip7jnnx/qHiqpqd/Vpm5iLR48yKme4b+BBIukwOByQz7OkaTVr2jYhixY6Kzs5PHuEnJbnW899i+s7r+fqxVfjtrhZU7eGxwYf4/5j95NRM7gsTpYEF/GxJe+nfe8Ekt+PqGtYq60INhvXd16PksvQP9ZLWlMIOCqo8dSwIrSc3xx/kIZAMxa7iw+u/hMO9W2j0lvDDWtvwe+oRVxshvmavLEQjNONR72JSSaT+Hw+EomE6f9jYnKOeXr0af5+298vED89oR7+90X/u9yDcj5jKAqFvXtJiyr/OVxyXwawylY6Fl9ATtSxWh3MZmYpGkV+N/A7pjPTYBhYJCs+u4+Lmy9m5/hz1PsaWFG9gvHkGFXOEJfWbKRl++HS1JwsI9XUYO3pQaouVZiiR3vZJ8/w0MijJHMJJFFkKDmC31HBjUtuRBREVLWAQ7DSXd1DS2jRa3y2TEzOjjO9fpsVHxMTk9cNFzZeyL9c/S/0TvcSU2IEbAF6qnto8je99IPPA+abmEddmQWiZ+mSLXy39/s8O7Ubj9XDpy76NE3uJnRDR5Zk8sU8E6kJVEPFaXHwyOAjZNUst3Tfws8O/ASAH73tx7TMWwWoKkY+X+4d0uNxnNNxjGCORGQCr7uCHCot7gasVid/9bu/JJGL88drbue50R0srlzM7evuYE3dC7vem5icr5jCx8TE5HVFk7/pDSN0ns+8EEmfNI6+uGUN39v/fQ7MHqQ10MqfrP0QDxx7gF2TuzAMA0mUaPI18db2t/Jf+3/Is2M7uGnp25jJztBe0c6mps08O7aDuBLH0CUEcS53XtfLk1h6KoU2Pk7Ukqd34Bl0m5WpQoTWqg6OJQdR0chpecZT4+ye2MnR6DHGM1P838v/L0tDS8/5eTIxeTUxhY+Jick5IZmOMBQ+TlpJ4rZ7aalahNcdPGfP//xMKqmqqpyJda6YFyJu+UTQa8EicGTmMI2BFra0XsS3d30bi2RhKj2FZmg4ZAfjyTFSSoorF13Jv+3+Dhc2XIhmqPzD9n+g0dvATV03E7AHQI2CtdQYLbrdpWw0RUFPJtETCQJy6XwrkoGqKlhtDrLFLDldIa/lsYgWdF0rGyI+OvQoDb4GM+jU5A2FKXxMTExedQanjvDrHf9ZMhucIxio48YN76W1Zsmr/vzq1BSFHTvQYydG4sVAAOuGDcg1Na/685ef0+9HcDhoxELQHSKSDpMqZgi6qxhNjlJhr6A/2k+zv7k80abpGrJo4Xj0OFctvoo1dWuwWez8Ys8vKepFBuKD1Hhq6XQ0YqjhUn9PMIhl+XIEmw1teho9k0Fwu1mcc9NevYR9yVKGWEEvYpWtxLJx2v3tTCUnAdDn4jpmc7MMx4fpru4+Z+fIxOTVRnytD8DExOT8ZTo9zaMDj/Krw7/i0cFHmU5PL7hfT6eJDR3l18/+gEguCk4nCAKSKGGVbTx6/Pc8PvAoB8IHSCmnGu+9XAxFQZueRh0bQx0bo9jXh55ILDy2WKwkhub9hM4B81lebsPCdW1XEXSH8Fhc2CxOUoUUOTWHTbaVE+rLrwcDVVfJFrJki1mm01MU58b+G7wNtPvaKERnsSxejKWjA+uGDWWTRaNYxIjHkZubqZhIcGfPH7OkumSgaBUt6EC7v50tzZt5duRpEEVEoXRpcMrOckaaickbBbPiY2Ji8rLYO7X3BQ36VtasLFdZBu1Jwod2ASA4nVjr6qkLNPPI8GNMHBtjWfNaGoKt9IR6sEpWcmoOv91PV1XXKaPgZ4Iej59wYga0WAw9FkNubkYbHwd9TlSIImlZ4/j4HrIuC26rm2Zf86u+rDMfndEaj/P+6mZGtBjt49sZTA3jsrowMEgqSfw2PwklgW7opZwvw8AqWuis6KDZ18zNS29mS/NFOCQHmXyCYUeeUKCByoSKNjKCFAgg2Gyl5TVBQBsfRwoGWZZ18MX1n+apJTegCyJb0pewffgJ7jn4K4qoiJKMLMm0+duwyTbclnO7HGhi8mpjCh8TE5OzZjo9XRY9hq6XRqgNg/7pI3z16X/mixf9Hd4du9FjMdIhpfw4I5slaDh5ZGI7E8mx0o06dAY7+ded/8qx6DFq3DXIorxARJ0phqIQGznGqBRhxq+gSAaS38Ba42SxWqQyFCKtZRm3F4h7ZB4ZfpjCIQGbxQ66TtBTzQ09b6elsv2ln+wPYN4fyA/4gQ/qH2QsOUY0O0tPqIfHhx6jO9TDZHqSmWwYi2BlSdUSNF3j6pa3sK//Sa5oupTv7/kPeqf3AQI1/gbWhlbx8eV3sCwil0NFRb8fKRBAj8fRZ2YAqJqQWb+kid8cvo+enk38rv9/KBol0eOyuVlUsZibu27GwKDZ3/yqngsTk3ONKXxMTEzOmkPhQyXRo6oY2eyJKgrQP7qfQ+EDrJ9bWnJLzoUPtliYmB5DFmU6a5axuf0Snp14ltZAKy6ri/HkOLIoMxAb4Gs7vsYXt37xjCs/gzPHuOfYf3PUmCFrFHBaHNgsdhZ5W3kmuY9LF13O00//HqvTzfZje5jIhXFanXRWdOBVBGaiUX6V/C4f2HznSybNv5Ksrl3Ne5ffSiw1w5+t/zMMQ2f3xG4qnZXUVdfSHljEu7vfxaGxfcwOHyVU1cb3e/+T3un9gIDV4kDXVJ4Ze5qvGvDF5R+nem6CTLDZsCxbhqFpqCMjJZGqqtSNJLj1wg8xqSf4+8u+wLOTu4grcVwWFza5FBtyXcd1ZmOzyRsOU/iYmJicNaXRaf0U0QOArhNLhBGDlegzM9QXnQT9dUTipcbmvF5ARuSC9i3smt6Df+YgSSVJQSvQHmjn0pZLuf/o/eTUHAOxAQ6FD52R8EkpKe7ru5cJI47T6eWpgd8zFB/CZ/Hxlxf9NU0NXexPHqNm1UZC1gC/+f02KBTIGgZ9seOs8HViLepEYhMMjvaywl1xzhyLPTYPF4XWcc/Af7J//EE+vuZORpZMkFCSVDoqsKUUxg/v5KqmTdyXeohKWxW9U/sBsMp2Ao4AilIKFz00e5gj6hQ1ltby/kW/H9uGDciLFpUy0iQJwe3G6fdTMfcau2tXMBwfJl1M47a4afa/+st+JiavBabwMTExOWv8Nn+pcnCS6BEEAZfDB7KMYLNytNKgDi+uWJbr2q/ivv4HicQncMoOlrduYFf0AOuaN/L48OM8NfoUUGriXVe3jvcufy/f2/s9ClqBifQEKSX1khfh4fgwkVwUl6+KX/X9mnA6zEfW38nG5k38y3P/wtHIURRNIaWkWF2zijsu+TO+/9hXyWg5coUMSfJUziWRp3OJ8lLRuaIJP+9tvoFR4mRiKerEOgp6EGU8gltw0BS6HOsTe7ly/SZ6LTEq3aFSE7KmoWSSGKKAIIpohkZCTZ8SKirYbMh1dS/4/B6bx5zeMnlTYAofExOTs6Yr1EVboJ3+bClaQhAEvJ4qBhNDNPqakBHZxwRPe7O01DfQnfFxa9N1TCzKE2uqZGr0Capd1Tw78Sy6obO0cimiKJJSUuyZ2kO1q5rOYCe/Of4b4vk4X93xVf5o+R/R4m857fGklBTj6XH8gVpcVhct/lbev+aD5FWFzzz6GfZM7wHAZXFR56ljz/RevvrsV/nAhtv4z6f+FSiNdjMnfNyys2w2eK4QLBZcmSJLcKGnjdKyVKFQCnTVFSzWAkVBwK5o2J0W1EIeBAFDVQEDEACQJBm/r9rM1zIxeQFM4WNiYnLWVLuruXP9R/natq8wMHsUl8NXFj13bPgI33z2G4TzEWyiBcMw6K7s4o87byEo1XHXzi9wYdMmNjRs4P88+n/Iq3mKWhHVUAnYAywJLmEgPsDlbZfTHeomXUjz5MiT2CU7H1r7oVMqP0PxIe45+CuOhA9yKHwQwWql0lHJWHKcGk9NWfQICGSKGabSU1Q4Ktg1sZs/XnV7eT9W0QIaBN0hGvGXzQbPFfMeP0YuB7qOGAigx2IIhQJCIIBRLCIGAjT5mhgxRugKLSu9Xnnua1wUscg2ltWtZFnt8nN67CYm5xOm8DExMXlZrKpZyRfW/jVH8qOEtSRjiRE6Kzr45rPfIKVmCOdnSeQToOsMJUeYys/yvy/6NG/rejseq4ej0aNc13EdI4kReqd7SRaSxPIxDMNgefVynLKTW7pv4d6j95JX8wzEBk4x00spKe7Z/3NmRvrwCDp2TUQQrCQKSX555Jf81ca/Km9rzJnyZQoZKp2V2GV7yTfHWwGiQM4CzkAt19ddiTsrYADq2BiC1Yro873qFZR5j59iXx+k06AoiD4fotuN1NqKkc8j2GzYjw7Ts7qdD63+E761+9scCh8EQcBitXNBw4X8xcaPvywbABOTNwum8DExMXlZCDYbtTXtVPapPKcXOThynJgrRDg7Q1iJkiwkS/4zkoQgSWT1PPvD+/nGc9+g2l1NNBdl5+RO2gPtXLHoCn577LdohoYkSPjtfjorO7l7x924bSUfmYJeOMVMbyjSz8xIH6gqVqAzsIjRfJg0KkPxQWRp4VecOOfZqus6GAYBe4C1DeswMLAIFkTRRsIGjfYKtNFRjGKxVFGx2bA0NZ3SN/NKI/r9WFeuRItESp5DcxixGBgGAiB6PDRkLfiFJlo338WQMkVGVwi5q+mp7jFFj4nJS2AKHxMTk5fN/IXaOw7iTAUpQ8Fud5FMDS3Yrt5Tj9vi5p6+e5hMT+KwODAwqHJW0R/rxzAMVlSvYOfkTsQ55+C9U3sp6if6bKyi9RQzvVQqUmqyBgoWkYKh4LV5scoGiys6iOfirKlZw66pXQhzPTAAFsnCytpVpJQUPznwEzS1gCCIeOw+RtLjfLLu3QQOnngNgtuNIAhYHI5zUvmR6+oQnc4FRoxQitmQ29tB0/AVi/gtFpb715n9PCYmZ4EpfExMTM4aQ1HQ4/FSRcRqpSW0iMrqFrw2H9rz4hZEQcQm2/DYPBwIH0CYi6zYObGTCxouwCpZCWfCbG3dSl+0jzpPHX/U80c8OvQoFzRcQH+sH4tooS3QtsBML6WkyKMyIWcRrFZGokMo+VJFSLGKFLUCFlHmA6s+gLBXYPfkbgx03BY3XVVdfGj1hzg0e4hbV74Pl9VJJBPhviP38vjxh3lb81u54OTXm05T7OtDDIWQz9Gk17yoLJ9ni6XUB2SKHBOTPwhT+JiYmJwVz4+EALA5nVzXfAW98aO0B9o5PHsYKIkep8WJqqu4LC4SSgKbZCNXzBFwBHh69Gk6Kjto9bfSXtHOe1e8F13X+eXhX7J9dDtvXfxWbui8gWwxy9KqpcRyMTw2D0PxIe7tuxe5oCHIMjvGnyWn5qi0V2DTBGwFnWWVXRyPHieai3FV+1t5d/e70QyN9kA7Na5q/vJ3f8VT40+VX8PqmtV8aP0dfPPxf2KmEEesCpVEhqaBJGEoSskD5xyOuM87PJuYmLxymMLHxMTkjDEUheKxY8y6DI7Y4sQLSQI2L52SnbqxNMElmwg6g8zmZtk/vR9ZlBEFkWZfM20Vbcz2zmKTbYwmRlkWWsahmUMcmT1Ci7+FgegAB2cPcn3H9UykJrhj7R08OvgoO8Z2UOWs4lu7vsWyqmX8zea/oTfcSzQXRdQM3rLorfTFjpNKJJnNR6mxBWlw1rK19lL6lDHesewdpJUkfouXWt3F0emj/OPk9xeIHoDdU7sRELhh+Tuw25xo09MYyWT5fsHrxdLZea5PuYmJySuMKXxMTEzOGD0e54Azxd17vsnA7NHy7W2VHdy56g5WZlQ2NW3in674Jx4depTZ3CxO2UmVq4q9U3vpru5mz+QeDAx2Tuyks7KTnuoeOio6WF23Gh2d7+z+DhsaNvCTAz9hLDlGhaOCalep6tEb7uXzT3yej6z/CFPpKXRJYCo/Q0/lMjY1bqSgFahz1mBP5RmfHcCRy1JVZXBd69Wok5M8M7SdTKXAkdkjOGUnWTW74PXtnd7Le1e8lwbdi5GcXHCfkU6jjowgNzaay00mJucxpvAxMTE5Y8Jagrv3fJPByDHcTj/IMqquEi5E+c6hH/CZTZ+klmqWhpbS4GsoRyB4LB46g50EHUESSoL+aD9FvchMZoaNjRu5ZvE1fPqRTzOTncEm2XDIDnrDJXPEnJqj0ddIvaee8dQ4e6f2klJS5WOy2ZwcSvVDtIihKCQqO6gzPDBnQOjCitrfj1RXh8dbRao4SDqbIOQMEc6GF4gfh+zAIdtpHEgsfOGiiOjzga6fc0dnExOTVxZT+JiYmJQxFAUtGkWPx0HTEFwupKoqRHdpmupwaojByHFcgRBHY/3E8zFEQcQiyIwkRtif6qeWDuD0EQh1njoubLiQcDaMqqvUeeroDnWza3wXM9kZrKKVWD5GXsuXH5NX80iCxPHEcapd1Yyr4ySUE8JEQKDe28B4dAh0HashlkXPvBmhkcuBJNHsbaBCS5IpZpBlKxX2ABVCBbqhI4kSsihT7QrhzqUxnE4wDBAEBLsdKRRCkOVz7uhsYmLyymIKHxMTE2CuaXlwkMK+fRjxeOlGqxW5pYXC6mWMC2mmlQjuyhoi2SguqwtNVxlPjSOJEio6e2b2sbJ+9Qt6yTT5m2jyN51yuyRJNHobieairKtbx7KqZXRVdWGTbCyrWkajr3FB1SfoDDKVngJgJjvD1rat/L7wIFF1Ei92QCfoDnF921W4UurcC9QJtC5hdUxiTf06dk3sxGl1IkkWZFHGaXHSWdnJ8ooupJoRjHy+lEUmigh2e9kh+Vw7OpuYmLyymMLHxMSk1LT8fNEDoKqMikkefOJu3K0dzOaj7JrcTTgTRhZlPFY3y0Ld9Ef7yak5ilqRhwceZmPTxhfM1TodNtHGZS2XYWDw4wM/JlvIomoqa2vX0hvu5dmJZ0nkE9hkG0srl9LgbiCSjTCVnkIzNCZSE1yz6Gqa7dUI2RxuyUEj/pLoMUqOzfPj4N2O5fztZX/Ll576Er3hA4iihIDAoopF/PXmv6bZ30zBE8OQT/16FByOV93E0MTE5NXFFD4mJiYlr5hsdqHoAbI1Ae4b/B9slSF+f/S3BPzVtPhbmM5Mo+ka2WKO0eQolc5KXFYXE6kJEkoCRVN4e9fbXzJRfZ6loaXsmtrFE8NP4JAdJAoJ/nTtn/Ljgz9mPDVOrphD0RSqnFUk8gm+uO3v+cLlf4+ISKqYwm1x0+SqxXaoHyM/37NzYknqZMEi2GxsatlCo7+Z3uleYkqMgC1AT3VPuRo1Hx1x8si+4HBg6ew0G5tNTM5zTOFjYmJS6ls5Te/KuLNIZGCS+qYWRmdHOZzs5/rO64nlYhyPHkczNCK5CBfUX0BHsIMHjj3Au7rfxY96f8TKmpWsql11Rs9f7a5mUcUivv7s15nNzpIpZlhRvQIBgbZAG0klic/mI1fMMhYbZjwyyLahx7l15fsWiCu9QzpjwfJCy25gmgeamLyRMYWPiYlJqW/lNL0raT0HgkBSVpnOzSJZrPz68K9ZXr2cS1ouQdM1EKDF18Lnn/g8K2tXcmz2GAYGw/HhsvBJKanyhJfb6qbZ13xKNSiai+KxelhatZRwOozH5qGoF9k1uQtJkGjyNTGVmsJjdWM3RGaS0wxF+umpW1nexyspWEzzQBOTNyam8DExMSmJA6cTwe9fsNzlFh0UvS4yWo4iGhZBLI2cx208Ofokqq4yk53h3d3vprWilXV167i37166qrpQNAWAofgQ9x+9HwEBu2THbrGzb2ofDtlBi7+FxcHFeGweAvYAI8mRUrgpAi6LCwCnXHJ+LmpFiloB3dABEadkI52OnvJaTMFiYmLyYoiv9QGcDQ888AAbNmzA4XBQWVnJ2972tgX3j4yMcN111+FyuaisrORjH/sYhULhNTpaE5PzB8Fmw9LainXFCoSTmnfrC04cNfXEiima/M3k1TwVzgpGE6M0+ZpYHFzMle1XsjS4lA11G/j3Pf9OYU6cVDmrSCkp7j96PyIiT488zc7JnXz+8b/jA/d8gDsfvJO7Hr+Lr+74KkPxIXpCPaypXQMGDCeGORY5Ro2rhqyaRRKl0n4xEASBtopFWAsGLsnx2p00ExOT85LzpuLzi1/8gttvv52///u/57LLLsMwDHp7e8v3a5rGNddcQ1VVFdu3bycSifC+970PwzC4++67X8MjNzE5PxD9fqxdXUg1NWUfH4fTyeVU85093+Oi5ot4YvgJpjPT1HvqqXZVkylk6K7q5kcHfsRAbADN0PAJPhYHF7MstIzh+DCGYfDw4O/BMNg18RwD8UEAZjMz9E7vB13Hpgl8aN0dfPbiz/IP2/+BcDbMA8ce4K5L7yKuxBlJjDCVnMQiynQEO3jbohvRI1Ga3PWv7UkzMTE57xAMY27W83WMqqq0tLRw11138cEPfvC02zz44INce+21jI6OUldXB8BPfvITbrvtNsLhMF6v94yeK5lM4vP5SCQSZ/wYE5M3MgenD7JtZBuCIOCwOLCIFtJKmuOx47gsLn55+Jf0RfowMLDLdjY2bOTvLv071tSv4ZmxZ9g+vI1fHfwlHVWd/Kj3Ryd2bBg4LU7W1qyh3VbDHctuY3nLenpzwxyJHGEsOYZTdtLkb2Ln+E6i+SgBux+bJuBMFrh28dW0dawzG45NTEyAM79+nxcVn927dzM+Po4oiqxatYqpqSlWrlzJl7/8ZZYtWwbA008/TXd3d1n0AFx55ZUoisKuXbu49NJLT7tvRVFQFKX8d/KkUEITE5PS9FNhqEA0V+qnkYSS2WCNu4b/PvTftAXaWF+/HkEQaK9o5/K2y1lduxoAt8VNRsmgGSpF/aSpsXlvHQSKepGCXiSdS1Ds66N12SK2jW7DKlnJFDPsmdhNk7ueJns1+XyatZXdtIWCBBoXm6LHxMTkrDkvhM/AwAAAn/vc5/h//+//0dLSwle+8hUuvvhijh49SkVFBVNTU1Q/r6ExEAhgtVqZmpp6wX1/8Ytf5K677npVj9/E5HzGY/Nwfef13Nt3L9FcFM3QGE2Osji4mC+/5ctMZ6bLHjvLQssWuDY3+5updAaRBAmLuHBqTBIkMHQsooxVtOCWnRiZHK6MyrUd13Jv372ki2kAhhJDVIhurmsvmRSao+UmJiYvl9dU+Hzuc597SdHx3HPPoes6AJ/61Ke4+eabAfj3f/93Ghoa+PnPf86HPvQhAARBOOXxhmGc9vZ5PvnJT/Lxj3+8/HcymaSxsfGsX4uJyRuZFn8L71/5/hMj6RY3zf5TR9Kfj8fm4dLGi3hyeDvJXII2fysD8UEkQcIh2/FY3DgFG23uJhrxA0WMYpGW6pf3fCYmJiYvxWsqfD760Y/yrne960W3aWlpIZUqJTF3dXWVb7fZbLS1tTEyMgJATU0NO3bsWPDYWCxGsVg8pRJ0MjabDZv5y9HE5CU5XejombC0cgkfX/1R/qvvZzRXtPDY4KMMRQfwWNysqF7OGv8ybm68EleylKk1n4X1cp/PxMTE5MV4TYVPZWUllZWVL7ndmjVrsNls9PX1sXnzZgCKxSJDQ0M0NzcDcOGFF/KFL3yByclJamtrAXjooYew2WysWbPm1XsRJiYmL4pgs7G6qoda3UWfNslljZegaHlkFWoFD+2aH1eyCIZhZmGZmJi86pwXPT5er5c77riDz372szQ2NtLc3MyXvvQlAN7xjncAcMUVV9DV1cWtt97Kl770JaLRKJ/4xCe4/fbbzeksE5PXGNHvp86xjJp4fSkeA9CGh+f+u+S1ZWZhmZiYnAvOC+ED8KUvfQlZlrn11lvJ5XJs2LCBRx55hEAgAIAkSTzwwAN8+MMfZtOmTTgcDm655Ra+/OUvv8ZHbmJiAqc6KktVVWYWlomJyTnnvPDxOZeYPj4mJiYmJibnH2d6/T6vIitMTExMTExMTP4QTOFjYmJiYmJi8qbBFD4mJiYmJiYmbxpM4WNiYmJiYmLypsEUPiYmJiYmJiZvGs6bcXYTExMTkz8MPZ1GC4cxFAXBbkeqqkJ0u1/rwzIxOaeYwsfExMTkNeT5YgRBwMjlXnFhok5NUdixAz0WK98mBgJYN2xArql5RZ7DxOR8wBQ+JiYmJq8RZTESjyM4HGhTU2C1Ire3o09OIvp8r4gw0dPpU0QPgB6LUdixA3HrVrPyY/KmwezxMTExMXkN0NNpin19CC4XUkMDgsuFWFGBkUyi9vcjVFSUhYmeTv9Bz6WFw6eInvJxxGJo4fAftH8Tk/MJs+JjYmJi8hqghcOo/f0YySTIMkY8juD3Y+nooHj0KILFgsEJYSK63aSUFMPxYdLFNG6rm2ZfMx6b5yWfy1CUP+h+E5M3EqbwMTExMTnHJNMR+qd7SVbmcFf7qM9acSSTGPE4KiDV1YGmlbc3FIWh+BD39t1LNBdFKWSJZ6L4HH5uXHQdnXItbk0CSSqJGEFAdLuRgkEEm+0lM9DMjDSTNxOm8DExMTE5hwzFh9h+9GHimRnyUgaHbMftsbBhWQO1B8cw4nHEhgaQpPJjMg6pLHpi6VmOjO0jV8xi5PMMDO7l6vpL2OjroXYwhlRVhTo6ihQIINXWYl2+HCkUQgwETrvcJQYCSKHQuTwFJiavKabwMTExMTlHpJQUT/Y/zn37/pvx8PFSVccwqKtqQ+q6icubanAMTYDFglEsAiVhMiany5WeI2P7yBUyGIqCoapMRIZI1ea459CvuDV0Jc6REcRgEG12FgMQJAnr2rVYN2x4wakus7HZ5M2E2dxsYmJico4Ymj3Ovbt/wkR0CAyjVNURBCZmBrj30K+Y7AiB3Y5YWYkRjZaFSYYCAPFMlFw+VdrZnGjCMMjrRSIzI0y4VYxEAtHphEIBVBUtFkOPx5FrarBu3Ih1/XqsPT1YN2zAunGjOcpu8qbDrPiYmJiYnCPG46NMRAZBEEr/mxc/wER0mClLniUrViAGg9g2b0YKhRAsFpzjw+jJJEoxD6JYetxJ2EULAGktV7pB10/8v65jFIsUR0dRtm1DP2mCSwyFsG3ZgqWx8dV/8SYmrxNM4WNiYmJyjiiqc9NThoEgyxiqukDEqLqKbd06RL8fAD0ep3DwIPWiSlC1Ywm04XVXoGgF7KKNdCZKOjIN+TyC04nb6kGsALG6GlmSEKxWBLcbLBaURx5Bn5kpCScAXUcPh1G2bUO8+mqkuec0MXmjYwofExMTk3NErbMah81NTkmXxQ8AhoHD7qHWW1cWPYaiUOzrw8jlcMkyK3u28g/PfImnRp4kr+YBWF23ho9u+DBHn7iXCleQunCpIqROTyMCxf5+LB0daOPjaENDpSoTgCSVXKI1DT0cRpueNoWPyZsGs8fHxMTE5ByxuGoJm1u24LDNNRPP9eg4bG42t2xhcdWS8rZ6PI6RKy1dTYZsfPmpLxNJTrOxcROralfTU91DPBPh7h1fo2HZeq6vfwsuVUIKhdAOHkSdnMTS3Y0+M4ORzZ7oCQLQNIx8/kT1x/TxMXkTYVZ8TExMTM4RPn+IP1r7AWy6xEBikIJexCpaaPO18o61t+Hznxgrn5/qAjiojLJ/cg8AM5kwQXsFNqsTiyOAiEh93RIaJxxgUdHicQSfD1QVwW5HTySQWlvndmqcqPqc5BOE6eNj8ibCFD4mJiYmrwIpJcWxyDEmUhNYZAt1njpafC20NfZwh+evGJ7uI62kcNs8NFd3LhA9AILFUv7vWD5e/m9d1wjHx0EUS31CikIkMUlxVwwEAcHtRrBa0aNRyGTQEwn0fB6hpgbj+dEUhoEYCiFVV7+ap8LE5HWFKXxMTExMXmGG4kP8cP8PeXLkSXJqabmqzl3HtZ3XsrFxIy3+Fpb7X9w0UPT7ERwOjFyOgN1/6gaShDG3dOW3ekGIg2Fg5HIY2WypqVmWQdMo7t6NbfNmivv3n3aqy+zvMXkzYQofExMTkz8AQ1FIxKcZSY+T1nJ4PEEe6H+Q7UPbSp47c8tL48kx7u+7H11V8deJuIsigtWK6POdNjJCsNmwdHZS7Otjma2RnpqV9E7vKy1VWSwIooih6/Q0rqGrEABGSs8lipDNIjY0oBcKKOuWM0aCdOIg3jWNNMqrcKULCDYbUmMjcjB47k+aiclriCl8TExMTF4mejzO4Ggv9/bdRyRdqqTUNnbx9NSTxNIz2DSh5KUjCCCKjKtDJIJTDFn7WVoMYBQKCA4HUk0NclXVKfsX/X6sK1fSFI/zfy75LA8cf4CJ5BgW0Uo4OYmqF/mbTX9N1bZBDEEAWUawWBDq6pCXLGHMkuXeww8wM3io1DMkCFRWNXHD6nfT3tJZniAzMXkzYQofExMTkzNET6fRwmEMRUFwOklGJrl3oCR6JFEiFGxCtNkoqgrxQpKA4MSSL2Loenl0PY9KamII5eC+8n7FUAj7xRcj19ef8pyCzcawOstju3/JaHGchJ5FRKS1ahG3tN3EomeGkVtaoLq6VO3J59GzWTJ2kXue/S9mJgcQ3W7EuapSTCpw39BDfLC9B985OWsmJq8vTOFjYmJicgaoU1MLsq6khgaG1Qlmo2PIdgf19Ut5ZPgxmrV2EtkYU6lJ8jYf1ZIXUZbJSRqqnqEoGmSqvOxpz+MW7dRnZJxTsyhPPYV41VWn5GYl0xF+uOv7bB9+tOT/M3/75DCetMafNlyDW9PRJifRE4mSmaHPx2hxhpmRPpAk9ESi1CxtsSAIArPJJMPTfS/ZZ2Ri8kbEFD4mJiYmL4GeTp8QPaJINuhm0pNjSrSy2LMZu83N7wd/T1JNk8xEqbIH8dn9KIUcU1YB0RCIpyN0169mKDrIocn92FWB4ESSoKea69ovp24ijhYOnyJ8joaP8OTwNnJKutTMPNfQnM2neHL0Sa5qfyvdYwpGNovU1ITo8yFaraQLcUS3G11REESxtAw2P8oOpJXUOT2HJiavF0zhY2Ji8qbGUJSSWWCx+ILNxlo4XBY9E/VuHhh9GJethQeG/oc9E7u5ceW72Tb2JD6bl1UVF7Cu4mLWZ7cQzs6QKCRwyS50Q6PCESSeCPPk8cdwO31cWrWWaDbNA8nnuHXp9djy+dIy2knPP5mdJlvIlETPyd47QDabYFpPsLx2EdaaGrThYbSREVRFwbk0iFEsIlVWoqfTCCzEbfO8WqfUxOR1jSl8TExM3rTo8Xg5FmIeweHA0rmw8deYczbOBt3cN/wQVreXh4ceYSYxiSxZKWgKbZWLWd+wge0j28kbRQ7MHCBXzGGRZDxWL3WeOqpd1fzymf+gqCnEUmGiNSqOaJ5w/wFGPMtZMpPASKUWPL9Fsi7w9EHTMAqF8p+yZAFDorh3L0YyWb69Pm+nwhMimoggejwl9+Y5KkMtNFd3vsJn08Tk/MCMrDAxMXlTcnIW1oLbc7nS7SfFOMxXYMZseSLJKQSnk4nZQSRRpsFTz8bWLdgtDn64/4cICNx79F4eGXyEfdP7eHToUQ7NHGLf1F6+vftbbFp6eWmnkky+kMXIZEAUyQhFBIsFLRwmduwAvWO7eer4Y1h1gS0Nm5AUFSOTKVWmHA4A6ivbqHPVIMAC0QPgGBjjhmVvI+itLvn5zFEZauHGi/74FMNEE5M3C2bFx8TE5E3J/PLWaJOHg9khovkYFY4AyxwtNE7k0ONxpOrq0tKTy4XgcpEuxDAMg7xeKC09ZbNcs/49PD32DHXuOu7pu4ctTVt4eOhhAPJqHq/Nx2x2liZfI8+MP8PVi64BUQJBwC5aydfYiToMwrVunlZzVNuC/G7vT4gcLyKIIopWIG2FK1e/nYf33sOi2qV4fSGsDhfLqnsQgF3iBPYlQeqS4JyKwdwUWUNK4rbuWxn36mS03Au6RJuYvJkwhY+JicmbEqNYZEdtkX986gvsn9qHKIioWpGlVcv4zOZPsalYLC2FjYxAsYiluxv31H4oFrEJlnK6ussd4Be7/4U/Xf9hKuwBVL2ILMiIgohdtlPrriWSi2AYBgFbAEXNgyxT6Qlhdbh5NPIsnqKbhw89wFBiGNHh4MqmyxAn+lGTCayBAFI+x7g+ykff+ml+degXjMz0ItkcHJ4+yL0aXNZxJaOTO/FZfVy/6i3URVREpxPBasWtGHRXdpmxFCYmc5jCx8TE5E3JYXGWzzz+WZ4bf5Y6Tz1umwcBAUVTuHvXN6i/+PM0jcZQjx7FSKdBlmnqWkRoySokm42GpmVMJMbIKGlUXWUsMcbW1svZ0HABsmTBKloZSYxwaOYQ6UIaUZRYFFxEpbOSgNXLurp17BrewZbWi1lW08NgdIALahcxHBng/v7fcE3zFUxNPIXhdOLVDKq8jWwffgIxm6POHiKipZhNjGFIEo+MPMamqm4mJ45y39RjvK/lJlyZUsip4HCYRoUmJidx3vT4HD16lBtuuIHKykq8Xi+bNm3i0UcfXbDNyMgI1113HS6Xi8rKSj72sY9ROKkJ0MTExARKAaI7p/fw3PizdFQuIa7E6Q33sj+8n73Te9HQ2R87zM/zO3myDWKL6gCwHzjKNa41KLNhtrZupc5RjcvixCZaafQ2MJIc4evPfp17++7l3/b8G0ejR3nrorfit/mJ5CK0+Ft5S+tb+PqlX+YtzVu5Y9PHGEgM8b8f+mu+9dy/8s/P/DO7ZvaypmUjms0CgkDRIjIrKeSdMuPJMSp1B1JRI5KewZBljEKBsYk+BJcTQ1WZnRxgVJ0FTjRqny4Sw8Tkzcp5U/G55ppr6Ojo4JFHHsHhcPDP//zPXHvttfT391NTU4OmaVxzzTVUVVWxfft2IpEI73vf+zAMg7vvvvu1PnwTE5PXEcPxYaK5KHXeBsaSo3Pp5wayaOH6JTewa2IXX3v2a6STEWKZCBsaL+DjS/+YJYej1I2neU/wIqZDNfT4FmPY7bx/5W389vhvsck2HBYHq2tWE81H0XSN4cQwV7Zfyc7JnVzXeR0jkX6mxo/StmgtX3riqxwJHwRDB0BA4MjsERBEPrHhLxgIujiWPEo2FcUZDJEopIgqU1S6GyAnlBqj9dJjc+kEosdTapS2gNzcgRQMmqLHxOR5nBcVn9nZWY4fP87f/M3fsHz5chYvXsw//MM/kM1mOXjwIAAPPfQQhw4d4oc//CGrVq3i8ssv5ytf+Qr/9m//RvJ50w4mJiZvbtLFNB6rB/f/3969B0dd3f8ff372vsluNskmm3sCSIAAKlcRoSDgF1S0WJWpt6rzVX8iIjhqpzg6hc7Uorb+OlNbLYryBe3od7xMRUQQqgh+yyUSwEBMguR+J9fNJtn7+f0RWAngpd8fdWX3/WAyA+dzPst5f3ZIXnw+5+wx2+jydqNQhFFMy53G3oa9VHVVgQJzYhIhq4n9HYd57th/0To2F4CEE27GqDQuy53GpK4E5ub+BJ+vD43Bu0lH2o7Q7e3GF/LR1NvEnOFzmJw1mZ1Vn1DVW8tbVZs44W3naPtRjCYLiVYHSYlOEi120mwuGt0NaHoDlQMN9Ps8qHCYVEsqhEIMhH14QgOEUIOrtcxmMBqxaCbCXV0on49EZUDT6yX0CHEOF0TwcTqdFBUVsXHjRvr6+ggGg6xdu5aMjAwmT54MwJ49exg/fjzZ2dmR8xYsWIDP5+PAgQPRGroQ4kfIZrRhMVoYkTIChYq05yblUt1dTXpiOgPBAXr9vdT21NLsaaG0o4wSXTNNuXYwmdBstsFNRC+5hASDldnDZuMN+QmGg+h0Ojw+DzVdNVR0VLCvcR89vh5SElIpSB3BJblT6PN5SDI7sBgs9IcGaOtrpc3TSmd/JxZjAgpFQAVBKXIyCxnjHIXDmgxmM36PGz0aqn9wOXxWQgagUH4/qSYH2R4D4b6+qF1fIX7MLohHXZqmsX37dhYtWoTdbken05GRkcHWrVtJPjlpr6WlhYwzVi2kpKRgMploaWn5xtf2+Xz4Tvu8Drk7JETsK0guYFfdLm4dfyuVHZWUnSjDqDMyLHkY9068F4fZQWtfKwadgfL2cvqD/bT0teAO9rFnoI7rRs8i0ekEBj/jJyk5A7+mMOgN6HV6OgY6CIaDoEE4HKbb20W2LZvm3ib2BAawJ6ZgNycxLn0cZe1l+IK+wR3cAYfFQYEjn86BDu669C48vR0ov58vj+9jTt5s/lG5lebOOobnXUxTv58UayrzsmZQX3GQtLR8rs+cjaW0gpAxES0hAUNmZjQvtRA/OlENPqtXr+Y3v/nNt/YpLi5m8uTJLF26FJfLxe7du7Faraxbt47rrruO4uJisrKyAIbsQ3OKUuqc7aesWbPmO8cghIgtdrOdawuvZeuxrfx09E9ZNHoR2bZsSlpK+Oj4RzT1NmHUGxmbPpabx97M22Vv4w14sZnteJxBDif2MCXgIenko6SC5AIcVgcGnQFXootQOETnQCfeoJd8Rz5d3m4uzriYnn4br3y+jixbBiOdI8m0ZdLQU0duZi5KhdHrDPj9A1jCOvp6OtEH9TTVlaFLSQGfj7aWr7h9/K14LBq+oB/nuJvJN6ThqTrGlBHZ5KcMx1LTBDYb4Z4e/Pv2oZs376z9v4SIZ1ENPsuWLeOWW2751j7Dhg3j448/ZvPmzXR1dZGUlATACy+8wPbt29mwYQMrV64kMzOTffv2DTm3q6uLQCBw1p2g0z3++OM88sgjkT+73W7y8vL+P6oSQlwIUg12Lk4dS4LewlfdVfz30f8mqIJ4g16MeiNJ5iSOth2l29vNjNwZ9AX7sBjM7G0t5X+O/YPDX+5k0aTbyNenkmAysajwp9R21dLkaSLPkUeyJZlUayqzCmZR0lRCOKR49cA6fGEfNT21HGku5WdjbqC8/Uvqe+oxGUwADHcM52ejFtHYVE6KaxQ5Iy4Fg55AKMiI7LG8XPxXylqPkKGzowspRqQV8tC4/2TknmqMhQOELRb06emEGhshHD7nxqdCxLOoBp+0tDTS0tK+s1//yT1mdLqhU5J0Oh3hkysapk+fzlNPPUVzc3PkDtBHH32E2WyOzAM6F7PZjFkmAAoRV6pbynnrwGuE9Dr2t5UwtWAGgdDgY6MZ+TMobS2lprsGDY2a7hpuLrqZ9IQ0uga6MemN2AxWXEnZ7Gkt5oDBglOfyHBbAdcO/w96w168QS+BcICyliNs+PwVnLZ09tT9D97Q4GN1nU5PSAvjHuhibsGVOBPT8Ya8JBgTMRvMdLQ3oO/3UZg2itcPbqSqvZJrxy7i2b1/4Fh7Bbm2bPQDIZQWoupEJX+ueI3f/mQ5rkQXer8fNA3Nbifc3j5k6w0hxAUyx2f69OmkpKRw11138etf/xqr1crLL79MdXU1CxcuBGD+/PmMHTuWX/ziF/z+97+ns7OTxx57jPvuuy9yl0gIIdyeDl4/sJ7Paj8jEPRx+UWzafE080XLYUanF+H2u8mx5zA6bTTeoBeDZiDFksKWrz7kjnG3oQIhZhTO478ObeBE/wlS7C60UIiRqYXcfultfN5yiJ5AD22eNo60HSHXls1PCmaxo/ZjkiwOQqEAeqVhDemw6xKwBXS4j38JBgOhtDR6DQaUCpGU7KKpqQIXiVhc40hNzqbq4HFM6On2tGM2JKMLh9FMJqpOVFChtZNS3kmoogJMJvR5eejS02VllxBnuCCCT1paGlu3buWJJ55g7ty5BAIBxo0bx3vvvcell14KgF6v54MPPmDp0qXMmDEDq9XKbbfdxh/+8Icoj14I8WNS2VbOZ7WfMeAfXPW09/inzL/0RorSi9Bpei7LuYyDzQfZ07CHkAoBMCl7EkunLMXt6WTqiBm8++W76M1mPB4vHV1fYdD0HHfX0OptZ/WVq9D0BjoHOpmUNYnDjQf4qGYH3qCPNKsTFOQkZJCflMfltiIuzcnifd+HdHjaCLW2gsWC05DE5ePms2XnOgwBP2np6fj63Ri8PjCaCAR9+IxhrJo2uFO7TkdPqI9QTQc6p5NwRweh+noIhQinpAzuNyYBSAjgAgk+AFOmTGHbtm3f2ic/P5/Nmzf/QCMSQlyImvtbI6EHIBgOUt1WSSgc4lhnJZm2TKZmT2Vc+ji8IS8FjgJuGHUDVScq2Vb5AaMzx3Go5SBdvh5MBjP+sJ8BXx8K+KjqIy7NnsCCi67GaXWSm5TLgabP6Qv20+JuQinF6LQx/HTsjVyVOgVnqwfCOu4sWER9uJNedzv29BzyAomUdzej7DZ0RiOquxt7TgKgQcAPegNhgw5NM6AZjSi/H0fQAP39hMNhNLt9cJuNUGgw/JzccFUIcQEFHyGEOB+MetNZbceaj/AfI+exHTDoDZTU7aPX28OI1JGMzp/LjqObqfXU0dpVT0H6SBLNNk54O/B4+wirMGa9mYHAAApFnbuev1f8HYBQOITb18u9k+/DZrThCwyghRWtXQ0Y9UVoiUmo3l4S+wKM8miE2zUMNjv4fCQmWiEwuN+W8nox9g4wNnM8ZS2lEAqhCwRR/V40h4MRKSMo9FhBr4dAAC01FRUMgqahgkHUydcRQkjwEULEmZzkPLKT82nqrou0BcNBPv9qF1ePWsCE7ImUpx4lwWDB5Fd0VJfhyC+kuKKY7IQMLHozIRXGZDDj9nvQgLAuHPkgRKPOwIn+E9hMNj6p/oTC1EKe/+z/kpeUx8XOIo7Ul0AgwPQ5l5Ba246hoGDI1hOawYDy+cgjGafNRcdAB+h0VHyxk//8yZ28ykYq249hDg1+TMeItFE8NOZOkneWDwafkzSdDnQ6NMPgXSEhxCAJPkKIuDIsdQTXX7qY9w+/NST8uJKyuSj1IjobviLQ1kDPaecor5dEYwLpKTmYjVYK00Zzor4dDVAnfwFc5BxJs6eFLFsWvqCP2p5arsi5HJSivqeOGXlXgE4HmkZPoBflOe1bsE6Hdtqy88T+INePuIb363dworubgBbiyO73+D+X3YZlqpP+ng6SDTbGpI4m+WgNoVBoyGthMg0uYzebZXd2IU4jwUcIEVfsZjszhv8EhcLd34U36MVisJCUkEKBLYcd5fvPOseiN6MPhDCgR+k0rh9zPb1+Nx9XfwInPyR1pLOQOcPnsLdhLwadgdykwX29AuGvHzMFwgE0TUMZjThMSUD/4CMpQJ+SgpaURLizc7CzUuT26rjzohupTa6mLzxAQn+QnCaF9XAjeL1o6UbMkwyEnE5Uby/h9nYwmUDTMOTlYRg2DENenkxsFuI0EnyEEHFnWPIwnGOd1HbX4gl4sBltFCQXUNP4JaFw6OwTfD6yk3IxGUyEVIi67jqWTn2QSVmTafY0YzPaaOtr43DLYablTKPsRBlOqxOLwYJR9/VjplO/v8g1hjGWPHRpHehdLnQn9/1SAwME+vtRAwODJyiFrT/ExcOm4j9wYDAkGcLgMqNLSUGXlUWgrAxdcjKGUaPQxo1DZ7OhWa1oNhv65GQJPUKcQVNKqe/uFj/cbjcOh4Oenh75/B8h4ozb08Er/3iOjq6mIe16nZ5RI6fRHO7GExz8QFWjzsglGZfQ4G4Y/LBDTaPb201VZxVTc6ayr3EfNqMNh9nBzmMfReb4DPgHWD7xAcZ2DO6ebpowYUg4UT4f4e5uVCCAZjRGHlP5KyrA50MFg2gGQ2RvLwyGwYBjtaKToCPi2Pf9+S3B5wwSfISIb9Ut5fx938Yh4ceZks3Ppt2JMyXnrLtEAF+0fsEXrV8A0Bfo49OaT7Gb7MwbMY/KjkrCoRBz8mZiCWqM1mfg7PSjmc0YR4/+3vNvwt3dBCoqvr4bBGhW67/0GkLEMgk+/0sSfIQQbk8HNW1f4fH1YjPbGeYaSZLN+a3n9Pp6I6HIpDNh1BvpD/STaEykILkAG6az7uT8q3dnznU3SO7wCDFIgs//kgQfIYQQ4sLzfX9+677xiBBCCCFEjJHgI4QQQoi4IcFHCCGEEHFDgo8QQggh4oYEHyGEEELEDQk+QgghhIgbEnyEEEIIETck+AghhBAibkjwEUIIIUTckOAjhBBCiLhhiPYAfmxO7eDhdrujPBIhhBBCfF+nfm5/105cEnzO0NHRAUBeXl6URyKEEEKIf1Vvby8Oh+Mbj0vwOUNqaioAdXV133rhYpXb7SYvL4/6+vq43KRV6o/v+kGugdQv9V+o9Sul6O3tJTs7+1v7SfA5g043OO3J4XBccG/6+ZSUlCT1S/3RHkZUxfs1kPql/gux/u9zw0ImNwshhBAibkjwEUIIIUTckOBzBrPZzKpVqzCbzdEeSlRI/VJ/PNcPcg2kfqk/1uvX1Het+xJCCCGEiBFyx0cIIYQQcUOCjxBCCCHihgQfIYQQQsQNCT5CCCGEiBsSfE5TWVnJokWLSEtLIykpiRkzZvDJJ58M6VNXV8f1119PYmIiaWlpLF++HL/fH6URn38ffPAB06ZNw2q1kpaWxo033jjkeKzXD+Dz+ZgwYQKapnHo0KEhx2K1/pqaGu655x6GDx+O1WrloosuYtWqVWfVFqv1n/LCCy8wfPhwLBYLkydPZvfu3dEe0r/FmjVrmDp1Kna7HZfLxQ033EBFRcWQPkopVq9eTXZ2NlarlSuvvJKjR49GacT/XmvWrEHTNB5++OFIW6zX39jYyB133IHT6SQhIYEJEyZw4MCByPGYrl+JiJEjR6prr71WHT58WFVWVqqlS5eqhIQE1dzcrJRSKhgMqvHjx6s5c+aokpIStX37dpWdna2WLVsW5ZGfH2+//bZKSUlRL774oqqoqFDl5eXqrbfeihyP9fpPWb58ubrmmmsUoA4ePBhpj+X6P/zwQ3X33Xerbdu2qePHj6v33ntPuVwu9eijj0b6xHL9Sin15ptvKqPRqF5++WVVVlamVqxYoRITE1VtbW20h3beLViwQK1fv14dOXJEHTp0SC1cuFDl5+crj8cT6fP0008ru92u3nnnHVVaWqp+/vOfq6ysLOV2u6M48vNv//79atiwYeqSSy5RK1asiLTHcv2dnZ2qoKBA3X333Wrfvn2qurpa7dixQ3311VeRPrFcvwSfk06cOKEAtWvXrkib2+1WgNqxY4dSSqktW7YonU6nGhsbI33eeOMNZTabVU9Pzw8+5vMpEAionJwctW7dum/sE8v1n7JlyxY1ZswYdfTo0bOCTzzUf7pnn31WDR8+PPLnWK//sssuU0uWLBnSNmbMGLVy5coojeiH09bWpgD16aefKqWUCofDKjMzUz399NORPl6vVzkcDvXXv/41WsM873p7e1VhYaHavn27mj17diT4xHr9v/rVr9TMmTO/8Xis1y+Puk5yOp0UFRWxceNG+vr6CAaDrF27loyMDCZPngzAnj17GD9+/JAN0BYsWIDP5xtyi/BCVFJSQmNjIzqdjokTJ5KVlcU111wz5NZmLNcP0Nrayn333cdrr71GQkLCWcdjvf4z9fT0RDbthdiu3+/3c+DAAebPnz+kff78+fzzn/+M0qh+OD09PcDXmzRXV1fT0tIy5HqYzWZmz54dU9fjwQcfZOHChVx11VVD2mO9/k2bNjFlyhQWL16My+Vi4sSJvPzyy5HjsV6/BJ+TNE1j+/btHDx4ELvdjsVi4Y9//CNbt24lOTkZgJaWFjIyMoacl5KSgslkoqWlJQqjPn+qqqoAWL16NU8++SSbN28mJSWF2bNn09nZCcR2/Uop7r77bpYsWcKUKVPO2SeW6z/T8ePHef7551myZEmkLZbrb29vJxQKnVVfRkbGBV/bd1FK8cgjjzBz5kzGjx8PEKk5lq/Hm2++SUlJCWvWrDnrWKzXX1VVxYsvvkhhYSHbtm1jyZIlLF++nI0bNwKxX3/MB5/Vq1ejadq3fn3++ecopVi6dCkul4vdu3ezf/9+Fi1axHXXXUdzc3Pk9TRNO+vvUEqds/3H4PvWHw6HAXjiiSe46aabmDx5MuvXr0fTNN56663I68Vq/c8//zxut5vHH3/8W18vVus/XVNTE1dffTWLFy/m3nvvHXLsQqv/X3VmHbFU2zdZtmwZX3zxBW+88cZZx2L1etTX17NixQpef/11LBbLN/aL1frD4TCTJk3id7/7HRMnTuT+++/nvvvu48UXXxzSL1brN0R7AP9uy5Yt45ZbbvnWPsOGDePjjz9m8+bNdHV1kZSUBAyu8Ni+fTsbNmxg5cqVZGZmsm/fviHndnV1EQgEzkrGPxbft/7e3l4Axo4dG2k3m82MGDGCuro6gJiu/7e//S179+49a3+aKVOmcPvtt7Nhw4aYrv+UpqYm5syZw/Tp03nppZeG9LsQ6/++0tLS0Ov1Z/1vtq2t7YKv7ds89NBDbNq0iV27dpGbmxtpz8zMBAb/55+VlRVpj5XrceDAAdra2iLTGABCoRC7du3iz3/+c2SFW6zWn5WVNeR7PUBRURHvvPMOEPvvv0xuPmnTpk1Kp9Op3t7eIe2jRo1STz31lFLq68mdTU1NkeNvvvlmTEzu7OnpUWazecjkZr/fr1wul1q7dq1SKrbrr62tVaWlpZGvbdu2KUC9/fbbqr6+XikV2/UrpVRDQ4MqLCxUt9xyiwoGg2cdj/X6L7vsMvXAAw8MaSsqKorJyc3hcFg9+OCDKjs7W1VWVp7zeGZmpnrmmWcibT6fL2Ymt7rd7iH/3ktLS9WUKVPUHXfcoUpLS2O+/ltvvfWsyc0PP/ywmj59ulIq9t9/CT4nnThxQjmdTnXjjTeqQ4cOqYqKCvXYY48po9GoDh06pJT6ejnvvHnzVElJidqxY4fKzc2NmeW8K1asUDk5OWrbtm2qvLxc3XPPPcrlcqnOzk6lVOzXf7rq6upvXM4ei/U3NjaqkSNHqrlz56qGhgbV3Nwc+TollutX6uvl7K+88ooqKytTDz/8sEpMTFQ1NTXRHtp598ADDyiHw6F27tw55L3u7++P9Hn66aeVw+FQ7777riotLVW33nprzCxnPpfTV3UpFdv179+/XxkMBvXUU0+pY8eOqb/97W8qISFBvf7665E+sVy/BJ/TFBcXq/nz56vU1FRlt9vV5ZdfrrZs2TKkT21trVq4cKGyWq0qNTVVLVu2THm93iiN+Pzy+/3q0UcfVS6XS9ntdnXVVVepI0eODOkTy/Wf7lzBR6nYrX/9+vUKOOfX6WK1/lP+8pe/qIKCAmUymdSkSZMiy7tjzTe91+vXr4/0CYfDatWqVSozM1OZzWY1a9YsVVpaGr1B/5udGXxivf73339fjR8/XpnNZjVmzBj10ksvDTkey/VrSikVhSdsQgghhBA/uJhf1SWEEEIIcYoEHyGEEELEDQk+QgghhIgbEnyEEEIIETck+AghhBAibkjwEUIIIUTckOAjhBBCiLghwUcIIYQQcUOCjxAiZoVCIa644gpuuummIe09PT3k5eXx5JNPRmlkQohokU9uFkLEtGPHjjFhwgReeuklbr/9dgDuvPNODh8+THFxMSaTKcojFEL8kCT4CCFi3p/+9CdWr17NkSNHKC4uZvHixezfv58JEyZEe2hCiB+YBB8hRMxTSjF37lz0ej2lpaU89NBD8phLiDglwUcIERfKy8spKiri4osvpqSkBIPBEO0hCSGiQCY3CyHiwquvvkpCQgLV1dU0NDREezhCiCiROz5CiJi3Z88eZs2axYcffsizzz5LKBRix44daJoW7aEJIX5gcsdHCBHTBgYGuOuuu7j//vu56qqrWLduHcXFxaxduzbaQxNCRIEEHyFETFu5ciXhcJhnnnkGgPz8fJ577jl++ctfUlNTE93BCSF+cPKoSwgRsz799FPmzZvHzp07mTlz5pBjCxYsIBgMyiMvIeKMBB8hhBBCxA151CWEEEKIuCHBRwghhBBxQ4KPEEIIIeKGBB8hhBBCxA0JPkIIIYSIGxJ8hBBCCBE3JPgIIYQQIm5I8BFCCCFE3JDgI4QQQoi4IcFHCCGEEHFDgo8QQggh4oYEHyGEEELEjf8Hp7opo3qfCdEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_bb\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Brenk t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wU9f3/n7O93u7eXu8F7rijHb2DSLDr12CJGiN2TUwMan4aY1RMjMaYYkyMJlHRGEmMRg2CFUTp0jnqHVzve21735nfH+utLEdTUVTm+XjcA/YzM5/5TNmd17w/7yJIkiQhIyMjIyMjI3MKoDjZA5CRkZGRkZGR+bKQhY+MjIyMjIzMKYMsfGRkZGRkZGROGWThIyMjIyMjI3PKIAsfGRkZGRkZmVMGWfjIyMjIyMjInDLIwkdGRkZGRkbmlEEWPjIyMjIyMjKnDLLwkZGRkZGRkTllkIWPzFeWvr4+LrvsMjIyMhAEgQsvvBAAQRBYuHBhYr0PPvgAQRD44IMPEm1vvvlm0jpfNQ49hlOZxYsX89hjj53sYQziueeeQxAENm/enNTe09PD+PHjMZlMvPfeewAsXLgQQRA+875WrFjB+PHjMRqNCILA66+//nmG/pk47bTTGDFixFHXOdxxFhUVcd55533m/R7pe36qs27dOhYuXIjT6TzZQ/nGoTrZA5CRORK//OUvee2113j22WcpLS0lNTUVgPXr15OXl3fUbd98802eeOIJWVx8DVi8eDG7du1iwYIFJ3sox6S1tZW5c+fS1dXF8uXLmTx5MgDXX389Z5111mfqU5IkLr30UsrKyliyZAlGo5Hy8vITOewTxuc5ziNxpO/5qc66det44IEHuPrqq7FarSd7ON8oZOEjc8IJBALo9frP3c+uXbsoLS3lu9/9blL7wMPmZOD3+zEYDCdt/zInj/379/Otb32LSCTChx9+yMiRIxPL8vLyjinGj0R7ezt9fX18+9vfZs6cOUdd92Tff5/nOI/Ekb7nhxKLxYhGo2i12hO6f5lTD3mqS2YQA+bsbdu2MW/ePFJSUrBYLFx55ZV0d3cnrTtg5n711VcZM2YMOp2OBx54AIDOzk5uuukm8vLy0Gg0FBcX88ADDxCNRo+6/8bGRgRBYPny5ezduxdBEJKmso41TXT11VfzxBNPJNYd+GtsbATib9h/+ctfqKqqQq/XY7PZuPjii6mvr0/qZ8D0v2rVKqZOnYrBYODaa68FwO1285Of/ITi4mI0Gg25ubksWLAAn8+X1Ifb7eaGG27AbrdjMpk466yzqK2tPerxA3R3d6PRaLj33nsHLdu3bx+CIPD4448D8YfhwFh0Oh2pqamMHz+ef/3rX8fcz+EIhUL84he/oKKiAp1Oh91uZ/bs2axbtw745Po899xzg7Y99Np0d3dz4403kp+fj1arJT09nWnTprF8+XIgfo6XLVtGU1NT0rUaoK+vjx/84Afk5uai0WgoKSnhnnvuIRQKDdrvD3/4QxYtWkR5eTl6vZ7x48ezYcMGJEni0Ucfpbi4GJPJxOmnn86BAwc+1TnZvn0706dPR6VSsWbNmiTRA0efAnr77bcZO3Yser2eYcOG8eyzzyZtNyAk7rrrLgRBoKioKKnPrVu3cvHFF2Oz2SgtLQVg8+bNXHbZZRQVFaHX6ykqKuLyyy+nqalp0NjXrFnDlClT0Ol05Obmcu+99/L0008nfSeOl6NN6b322muMGjUKnU5HSUlJ4v48Ekf7ng8s+81vfsODDz5IcXExWq2WlStXEgwGueOOO6iqqsJisZCamsqUKVP43//+N2gfTqeT6667jtTUVEwmE+eeey719fWD7tOB46quruaSSy5J9Hv77bcTjUapqanhrLPOwmw2U1RUxG9+85tB+zre34SBe/WFF16goqICg8HA6NGjWbp0adJ4/t//+38AFBcXD/oNfP/99znttNOw2+3o9XoKCgq46KKL8Pv9Rz3nMnFki4/MEfn2t7/NpZdeys0338zu3bu599572bNnDx999BFqtTqx3tatW9m7dy8///nPKS4uxmg00tnZycSJE1EoFNx3332Ulpayfv16HnzwQRobG1m0aNER95udnc369ev5wQ9+gMvl4sUXXwSgsrLyuMZ977334vP5eOWVV1i/fn1SvwA33XQTzz33HLfeeiuPPPIIfX19/OIXv2Dq1Kns2LGDzMzMxDYdHR1ceeWV3HnnnTz00EMoFAr8fj+zZs2itbWVn/3sZ4waNYrdu3dz3333sXPnTpYvX44gCEiSxIUXXsi6deu47777mDBhAmvXruXss88+5jGkp6dz3nnn8fzzz/PAAw+gUHzyjrJo0SI0Gk3iDfn222/nhRde4MEHH2TMmDH4fD527dpFb2/vcZ2vg4lGo5x99tmsXr2aBQsWcPrppxONRtmwYQPNzc1MnTr1U/X3ve99j61bt/KrX/2KsrIynE4nW7duTYztL3/5CzfeeCN1dXW89tprSdsGg0Fmz55NXV0dDzzwAKNGjWL16tU8/PDDbN++nWXLliWtv3TpUrZt28avf/1rBEHgrrvu4txzz2X+/PnU19fz5z//GZfLxe23385FF13E9u3bj8svZ82aNSxcuJD8/HzefffdxH10POzYsYM77riDn/70p2RmZvL0009z3XXXMWTIEGbOnMn111/P6NGjmTdvHj/60Y+44oorBlk05s2bx2WXXcbNN9+ceIg2NjZSXl7OZZddRmpqKh0dHTz55JNMmDCBPXv2kJaWBkB1dTVz586lrKyM559/HoPBwFNPPcU///nP4z6G42H79u0sWLCAhQsXkpWVxYsvvsiPf/xjwuEwP/nJTw67zdG+5319fQA8/vjjlJWV8dvf/paUlBSGDh1KKBSir6+Pn/zkJ+Tm5hIOh1m+fDnz5s1j0aJFXHXVVQCIosj555/P5s2bWbhwIWPHjmX9+vVHnaq79NJLufLKK7npppt47733+M1vfkMkEmH58uX84Ac/4Cc/+QmLFy/mrrvuYsiQIcybNw/guH8TBli2bBmbNm3iF7/4BSaTid/85jd8+9vfpqamhpKSEq6//nr6+vr405/+xKuvvpq45yorK2lsbOTcc89lxowZPPvss1itVtra2nj77bcJh8OyRfp4kGRkDuH++++XAOm2225Lan/xxRclQPrnP/+ZaCssLJSUSqVUU1OTtO5NN90kmUwmqampKan9t7/9rQRIu3fvPuY4Zs2aJQ0fPnxQOyDdf//9ic8rV66UAGnlypWJtltuuUU63O29fv16CZB+97vfJbW3tLRIer1euvPOO5P2D0grVqxIWvfhhx+WFAqFtGnTpqT2V155RQKkN998U5IkSXrrrbckQPrjH/+YtN6vfvWrQcdwOJYsWSIB0rvvvptoi0ajUk5OjnTRRRcl2kaMGCFdeOGFR+3rePnHP/4hAdLf//73I67T0NAgAdKiRYsGLTv0uEwmk7RgwYKj7vPcc8+VCgsLB7U/9dRTEiD95z//SWp/5JFHBp0XQMrKypK8Xm+i7fXXX5cAqaqqShJFMdH+2GOPSYBUXV191HEtWrRIAiRAslgsksPhOOK6A9+ZgyksLJR0Ol3SdyAQCEipqanSTTfdlGgbOJ+PPvroYfu87777jjpOSYrfF16vVzIajUn32yWXXCIZjUapu7s70RaLxaTKykoJkBoaGhLtR/q+Hc9xCoIgbd++Pal97ty5UkpKiuTz+Y7a5+H2O3BOSktLpXA4fNTto9GoFIlEpOuuu04aM2ZMon3ZsmUSID355JNJ6z/88MOD7tOB4zr0d6GqqkoCpFdffTXRFolEpPT0dGnevHlJfR7Pb4Ikxe/VzMxMye12J9o6OzslhUIhPfzww4m2Rx99dNA1OrjPQ8+3zPEjT3XJHJFD59wvvfRSVCoVK1euTGofNWoUZWVlSW1Lly5l9uzZ5OTkEI1GE38D1o4PP/wQ+GTefuBPFMUv8Iji4xIEgSuvvDJpv1lZWYwePTopMgzAZrNx+umnD+pjxIgRVFVVJfVx5plnJpmjB87ToefxiiuuOK6xnn322WRlZSVZx9555x3a29sTU24AEydO5K233uKnP/0pH3zwAYFA4HhPxyDeeustdDpdUv+fh4kTJ/Lcc8/x4IMPsmHDBiKRyHFv+/7772M0Grn44ouT2q+++mogHgl1MLNnz8ZoNCY+V1RUAPHzePDb9kD74aaFDscFF1yAy+ViwYIFxGKx4x4/QFVVFQUFBYnPOp2OsrKy4943wEUXXTSozev1JqwOKpUKlUqFyWTC5/Oxd+/exHoffvghp59+esICBKBQKLj00ks/1XEci+HDhzN69OiktiuuuAK3283WrVs/c78XXHBBknV5gJdffplp06ZhMplQqVSo1WqeeeaZQccODDrWyy+//Ij7OzQ6raKiAkEQkqy0KpWKIUOGJF3D4/1NGGD27NmYzebE58zMTDIyMo7rvqiqqkKj0XDjjTfy/PPPD5qilzk2svCROSJZWVlJn1UqFXa7fdAUyuFM/11dXbzxxhuo1eqkv+HDhwPxkGCAOXPmJC0/UQ/cI9HV1YUkSWRmZg4a24YNGxLjOtaxVVdXD9rebDYjSVKij97e3sQ5O5hDz+uRUKlUfO973+O1115LhLQ+99xzZGdnc+aZZybWe/zxx7nrrrt4/fXXmT17NqmpqVx44YXs37//05waIO6Tk5OTkzS19nl46aWXmD9/Pk8//TRTpkwhNTWVq666is7OzmNu29vbS1ZW1qDpqIyMDFQq1aD78NBoII1Gc9T2YDB4XMdw7733ct9997F48WKuvPLKTyV+Dr32AFqt9lOJ08Pdg1dccQV//vOfuf7663nnnXfYuHEjmzZtIj09Panv3t7epKnbAQ7X9nk43D090PZZplwHONyxv/rqq1x66aXk5ubyz3/+k/Xr17Np0yauvfbapGs68P079Pof7dgPd68YDAZ0Ot2g9oP3dby/CQN8nvuitLSU5cuXk5GRwS233EJpaSmlpaX88Y9/POa2MnFkHx+ZI9LZ2Ulubm7iczQapbe3d9CX9nB+EmlpaYwaNYpf/epXh+07JycHgL/+9a94PJ6k7b5I0tLSEASB1atXHzY65NC2Ix2bXq9PclI9dDnEf9wOd86O56E/wDXXXMOjjz7Kv//9b77zne+wZMkSFixYgFKpTKxjNBp54IEHeOCBB+jq6kpYf84//3z27dt33PuCuG/RmjVrEEXxiOJn4CFwqIPx4R5waWlpPPbYYzz22GM0NzezZMkSfvrTn+JwOHj77bePOha73c5HH32EJElJ18HhcBCNRr/we+VgHnjgAQRB4IEHHkAURV588UVUqi/n5/PQe9DlcrF06VLuv/9+fvrTnybaB3xfDsZut9PV1TWoz09zDx4Ph+tvoO1wD/nj5XDfv3/+858UFxfz0ksvJS0/9H4c+P719fUlCZoTfexw/L8JJ4oZM2YwY8YMYrEYmzdv5k9/+hMLFiwgMzOTyy677ITu65uIbPGROSIDzoYD/Oc//yEajXLaaacdc9vzzjsvEaY6fvz4QX8Dwqe8vDypfSCi5fMyIGAOfYM677zzkCSJtra2w47r0GidIx1bXV0ddrv9sH0MHMPs2bOBwedx8eLFx30cFRUVTJo0iUWLFrF48WJCoRDXXHPNEdfPzMzk6quv5vLLL6empuZTR3mcffbZBIPBw0ZsHbwPnU5HdXV1UvvhomoOpqCggB/+8IfMnTs3afrjSG+6c+bMwev1Dkrm949//COx/Mtk4cKFPPDAA/znP//hiiuuOGZ04hfFgOP8oSL96aefHmSNmjVrFu+//36SxUEURV5++eUTOqbdu3ezY8eOpLbFixdjNpsZO3bsCd2XIAhoNJok0dPZ2Tno/ps1axYQtzoezL///e8TOh44/t+ET8ORfsMORqlUMmnSpEQU6+eZVjyVkC0+Mkfk1VdfRaVSMXfu3ERU1+jRo4/LP+AXv/gF7733HlOnTuXWW2+lvLycYDBIY2Mjb775Jk899dQJzwdyMAMC5pFHHuHss89GqVQyatQopk2bxo033sg111zD5s2bmTlzJkajkY6OjkSY8ve///2j9r1gwQL++9//MnPmTG677TZGjRqFKIo0Nzfz7rvvcscddzBp0iTOOOMMZs6cyZ133onP52P8+PGsXbuWF1544VMdy7XXXstNN91Ee3s7U6dOHZTcbtKkSZx33nmMGjUKm83G3r17eeGFF5gyZUoiwuMf//gH1157Lc8++2wi6uVwXH755SxatIibb76ZmpoaZs+ejSiKfPTRR1RUVHDZZZclfKQGEs6NHj2ajRs3DhJ0LpeL2bNnc8UVVzBs2DDMZjObNm3i7bffTkTDDFyrV199lSeffJJx48ahUCgYP348V111FU888QTz58+nsbGRkSNHsmbNGh566CHOOeccvvWtb32q83giuO+++1AoFNx7771IksS//vWvL83yM0BKSgozZ87k0UcfJS0tjaKiIj788EOeeeaZQYnu7rnnHt544w3mzJnDPffcg16v56mnnkpEhx1q1XO73bzyyiuD9pmenp4QEocjJyeHCy64gIULF5Kdnc0///lP3nvvPR555JETHmU0kD7jBz/4ARdffDEtLS388pe/JDs7O2l696yzzmLatGnccccduN1uxo0bx/r16xPC+URN58Lx/yZ8GgZ+w/74xz8yf/581Go15eXlvPjii7z//vuce+65FBQUEAwGE5amk/Gd+FpyEh2rZb6iDEQ4bNmyRTr//PMlk8kkmc1m6fLLL5e6urqS1i0sLJTOPffcw/bT3d0t3XrrrVJxcbGkVqul1NRUady4cdI999yTFH1zJD5PVFcoFJKuv/56KT09XRIEYVB0xLPPPitNmjRJMhqNkl6vl0pLS6WrrrpK2rx58zH3L0mS5PV6pZ///OdSeXm5pNFoJIvFIo0cOVK67bbbpM7OzsR6TqdTuvbaayWr1SoZDAZp7ty50r59+44rqmsAl8sl6fX6I0Zb/fSnP5XGjx8v2Ww2SavVSiUlJdJtt90m9fT0JNYZiFA6XCTWoQQCAem+++6Thg4dKmk0Gslut0unn366tG7duqQxXX/99VJmZqZkNBql888/X2psbEw6rmAwKN18883SqFGjpJSUFEmv10vl5eXS/fffnxTp09fXJ1188cWS1WpNXKsBent7pZtvvlnKzs6WVCqVVFhYKN19991SMBhMGjMg3XLLLUltR4qWGrhfXn755aOeh4FzdmikjiR9Epk3b948KRwOHzHa6XDfjVmzZkmzZs065jgH+jw4ImuA1tZW6aKLLpJsNptkNpuls846S9q1a5dUWFgozZ8/P2nd1atXS5MmTZK0Wq2UlZUl/b//9/8SkXFOpzNpXHwcxXbo38B4j3acr7zyijR8+HBJo9FIRUVF0u9///vDntfDnY8jRXUdek4G+PWvfy0VFRVJWq1WqqiokP7+978fdmx9fX3SNddck/T927Bhw6BoyyOd6/nz50tGo/G4xny8vwmHu1clSTrstbv77rulnJwcSaFQJH7j1q9fL33729+WCgsLJa1WK9ntdmnWrFnSkiVLDnuuZAYjSJIkfQn6SuZrxIBJv7u7+0v1o5CRkflyOOOMM2hsbDyuZJrfNBYvXsx3v/td1q5d+6nzUsl8M5CnumRkZGS+wdx+++2MGTOG/Px8+vr6ePHFF3nvvfd45plnTvbQvnD+9a9/0dbWxsiRI1EoFGzYsIFHH32UmTNnyqLnFEYWPjIyMjLfYGKxGPfddx+dnZ0IgkBlZSUvvPACV1555cke2heO2Wzm3//+Nw8++CA+n4/s7GyuvvpqHnzwwZM9NJmTiDzVJSMjIyMjI3PKIIezy8jIyMjIyJwyyMJHRkZGRkZG5pRBFj4yMjIyMjIypwyyc/MhiKJIe3s7ZrP5sOnSZWRkZGRkZL56SJKEx+M5Zr1BWfgcQnt7O/n5+Sd7GDIyMjIyMjKfgZaWlqNWBpCFzyGYzWYgfuJSUlJO8mhkZGRkZGRkjge3201+fn7iOX4kZOFzCAPTWykpKbLwkZGRkZGR+ZpxLDcV2blZRkZGRkZG5pRBFj4yMjIyMjIypwyy8JGRkZGRkZE5ZZB9fGRkZGRkTjlisRiRSORkD0PmU6BWq1EqlZ+7H1n4yMjIyMicMkiSRGdnJ06n82QPReYzYLVaycrK+lx59mThIyMjIyNzyjAgejIyMjAYDHKi2q8JkiTh9/txOBwAZGdnf+a+ZOEjIyMjI3NKEIvFEqLHbref7OHIfEr0ej0ADoeDjIyMzzztJTs3y8jIyMicEgz49BgMhpM8EpnPysC1+zz+WbLwkZGRkZE5pZCnt76+nIhrJwsfGRkZGRkZmVMGWfjIyMh84+jydrGyfiWv7X2NlQ0r6fJ2newhych8ZSkqKuKxxx77XH188MEHCILwuaPlTsRYjoXs3CwjI/ONYnvndh7/6HHq++sTbSW2Em6ddCtVWVUnb2AyMjJfCWSLj4yMzDeGLm/XINEDUN9fz+MfPX5My0+zs5llNct4YccLLKtdRrOz+YscroyMzElAFj4yMjLfGPY49gwSPQPU99ezx7HniNuub1nPLW/ewi1v3cK9K++N///NW1jfsv6LGq7M1xQpFCLW1UW0tZWYw4EUCn3x+5QkfvOb31BSUoJer2f06NG88sorSJLEt771Lc466ywkSQLA6XRSUFDAPffck9h+yZIljB8/Hp1OR1paGvPmzTvsfhobGxEEge3btyfanE4ngiDwwQcfJNrefPNNysrK0Ov1zJ49m8bGxkF9rVu3jpkzZ6LX68nPz+fWW2/F5/MlljscDs4//3z0ej3FxcW8+OKLn+8kHSey8JGRkfnG4Aw5kz4LCJjUJoxqI1qlFoffgSfkGbRds7OZh1Y/xE7HzqT2nY6dPLT6IdnyI5NAdDoJb99OZO9eogcOENmzh/D27YhfcCbon//85yxatIgnn3yS3bt3c9ttt3HllVeyatUqnn/+eTZu3Mjjjz8OwM0330xmZiYLFy4EYNmyZcybN49zzz2Xbdu2sWLFCsaPH/+Zx9LS0sK8efM455xz2L59O9dffz0//elPk9bZuXMnZ555JvPmzaO6upqXXnqJNWvW8MMf/jCxztVXX01jYyPvv/8+r7zyCn/5y18SCQq/SGQfHxkZmW8MVq018X8BAbPWTEN/A55wXOy0uFpYtH0RF5RfQJG1KLHuzq6dg0RPYpljJzu7dlJgLfgihy7zNUAKhYjU1CAFAsntgQCRmho0VVUIWu0J36/P5+P3v/8977//PlOmTAGgpKSENWvW8Ne//pXFixfz17/+le9973t0dXXxxhtvsG3bNtRqNQC/+tWvuOyyy3jggQcSfY4ePfozj+fJJ5+kpKSEP/zhDwiCQHl5OTt37uSRRx5JrPPoo49yxRVXsGDBAgCGDh3K448/zqxZs3jyySdpbm7mrbfeYsOGDUyaNAmAZ555hoqKis88ruNFFj4yMjLfGCozKimxldDQ34BNb6Ourw5P2INSUFJiK0Gr0tIb6GVJzRKuqboGs9YMQF+w76j99of6v9Bxe0IempxNeCNeTBoThZbCxNhkvjqITucg0TOAFAggOp0oMzNP+H737NlDMBhk7ty5Se3hcJgxY8YAcMkll/Daa6/x8MMP8+STT1JWVpZYb/v27dxwww0nbDx79+5l8uTJSTl1BgTZAFu2bOHAgQNJ01eSJCGKIg0NDdTW1qJSqZIsT8OGDcNqtZ6wcR4JWfjIyMh8Y8g0ZXLrpFt5atNT7OreRU1vDQClqaVUZVWxrWMb/ogfrUrLpNxJTMqLv2mm6lKP2q9Na/vCxtzobOTfu/7N3u69BKNBdCodFekVXDbisiSrlMzJRzpGtuBjLf+siKIIxKescnNzk5ZpP7Yw+f1+tmzZglKpZP/+/UnrDJR6OB4UirgHzIC/EAzOknzwsqON+aabbuLWW28dtKygoICamvh382Qkk5SFj4yMzDeKbFM2xbZiKtMrGZY2DL1Sj0ljotvfjSAIlKaWUtNbw7t176JVaanKqmJk5khGZow87HTXyIyRjMwc+YWM1RPy8MzWZ1hau5T+4CdWpequanxhH3dOu1O2/HyFED6eOvqsyz8rlZWVaLVampubmTVr1mHXueOOO1AoFLz11lucc845nHvuuZx++ukAjBo1ihUrVnDNNdccc1/p6ekAdHR0JKxJBzs6D4zn9ddfT2rbsGFD0uexY8eye/duhgwZctj9VFRUEI1G2bx5MxMnTgSgpqbmc+cBOh5k4SMjI/ONYo9jD6/te41x2eP4377/cV7ZebxV9xYN/Q2oFCoKLAUY1AbmlszliY1P8ODpD1JgLeBnM37GQ6sfYl/PPkZnjSbdkE6KNoVZRbPo9nXjCXsosBScUCGyvWM7r+59FYfPgUJQoFFqUCqU9Af7WVq7lPPKzktYpWROPgqrFUGvP+x0l6DXo/iCpmnMZjM/+clPuO222xBFkenTp+N2u1m3bh0mk4m0tDSeffZZ1q9fz9ixY/npT3/K/Pnzqa6uxmazcf/99zNnzhxKS0u57LLLiEajvPXWW9x5552D9qXX65k8eTK//vWvKSoqoqenh5///OdJ69x888387ne/4/bbb+emm25iy5YtPPfcc0nr3HXXXUyePJlbbrmFG264AaPRyN69e3nvvff405/+RHl5OWeddRY33HADf/vb31CpVCxYsOBTWac+K3JUl4yMzDeK3kAvPf4eunxdnD3kbNa1rKO+vx4JiagYRUKiP9jPWwfeQqfSsb9nP7u6diEIAndPv5u/n/93sk3Z9Af7afe087t1v+N363/HhtYNPL/jeRqdjcc1joNDnp2OFna2b2dD6wZ2OXbhCXnY0bmDvT17qeuP+yG5Qi76g/2EY2EA+oP9g6LJPCEPu7p2JfVzMjhV8x0JWi3q8nKEQx7Ogl4fb/8CHJsH+OUvf8l9993Hww8/TEVFBWeeeSZvvPEGRUVFXHfddSxcuJCxY8cCcP/995OTk8PNN98MwGmnncbLL7/MkiVLqKqq4vTTT+ejjz464r6effZZIpEI48eP58c//jEPPvhg0vKCggL++9//8sYbbzB69GieeuopHnrooaR1Ro0axYcffsj+/fuZMWMGY8aM4d577yU7OzuxzqJFi8jPz2fWrFnMmzePG2+8kYyMjBN1yo6IIB3PZN0phNvtxmKx4HK5SElJOdnDkZE55ejydrHHsQdnyIlVZ6UyvZJMU+ZxOwAvq1nGLW/dglqh5ubxN/PrNb+mN9CbWD42eyx6lZ4ObwcLJi9gf+9+bPq4D48r6CIUCzGjYAauoAtXyMXKxpUEo0FyTDnMLJxJWAwnOUYfDtHpjEf/BIO0pkis69+BRwoR0gjodSa0Si2ukAuTxsSP3vpR0rYqhQqbzoZSoeR3Z/yOiyovAuK+QEtqltAX+MQRO1WfOihC7Ytmfcv6QaH/IzNG8rMZP2NK/pSjbHnyCQaDNDQ0UFxcjE6n+8z9SKFQ3NE5EkFQq+OWoC9Q9Mh8wtGu4fE+v+WpLhkZmZPKgKDxRXwEo0Fe2v0Se7v3IhF/JyuxlXDD2BvY1rkNh++THB9HeuhnmbOoSKtgb89eanprSNWnkmPOISbFSNGmUJBSwMb2jdj1dur66nAGndj0Njq9naxpWkOrp5X1res5rfA01Eo184bNo8XdQm+gF0EQ6Av00eRsYkTmiMMez8Ehzz6Tho+8O3iz8T3a3a2gUCCYTJi0ZkZljiLfkk+xtZgGZ0Ni+6gYJRwLU2YtI92Qzrb2bfQGemn1tCJIAumGdJSCkm5/N32BvkERal8kx8p39MQ5T5wSYf+CVvuFRG/JfDnIwkdGRuakUdNTw4vVL9LubafEWsIHTR/Q4emgxFZCRIwQjUWp66vjqc1PcW3VtWgUGjq8HcSk2BEf+nqlnuvGXMcz255BKSjp8HYQjAZJN6STn5JPh7cDURLRquJv6OnGdLxhL1vat1CaWsqU/CnkpeQBsK55Hf/d81+KbcWEoiGm5U9DKSjxRrxHPKaDQ55bdUHeqF5Gu7uVmEIgRIRY0EVPoJe+QB9TC6Zy4bALeX3f60nip8BSwPll5+PwO3i/4X1WN69mS8cWbDobRdYiDGoDZ5SeQbev+5hCbIATETIv5zuS+SYgCx8ZGZkvlCM9cA/0HuCRtY8kSkxYtBa2d27HrrfjDXvp9HbS6GwkIkZY27KWElsJKdoU8lPyaXG3JMTPoQ/9fGs+HzR/wPyq+eiUOsKxMN3+btxBNzW9Ndj1dgAKUgrIMGYQioVodjYzLmccHzZ+SHVXNa6QC5VChVVr5byy82jztNHmbmNN8xpmFc3CrD6yYDg4pLk93Eu7u5WQUqIn2Es0FgGViqAUodXdSo+vhyGpQ5hVNIvJ0clExSgqhYpsczbl9nLWtaxjXes6OjwdKAUlDp8Df8RPmiGNl/e8zIScCUgR6ahCDE7cNNnJznckI3MikIWPjIzMCeNgkWPWmFEpVLxT907igRuKhlAr1Jw55Eyqu6qp7qpGlESUgpJgNEg4FkatULO/bz8xMUZMiiX67vZ3s6x2GReUX0C6IZ1OXyfAoIe+WWvmnKHnsKRmCa6gi6n5U1lRvwJ/xM+MghmEoiFmF83mgvIL+LDpQ7KMWeSYcvhfzf/QqXRkGjNZ27KWbHM2USnK6qbVlNvLafO00RvopdBayJisMUc8B4mQZkEgJMTwaQWcYQ9RlQKFWo8kiShjIqIk0uPvod3dTrG1GKPGSEyMkWpIpSiliH/s+AfZ5mxa3C3oVDqC0SAxKYYr5CLfkk99fz3TC6azo3MHGoXmqNfkUNEDfKZpspOZ70hG5kQhCx8ZGZkTwoBVwRPyUJpaik6pY9n+ZQQiAbLMWUTFKHsce+LRSq5mZhTOYGzWWBSCAq1KS7m9nKGpQ7HoLDhDTjRKDQLx5GYCAimaFERELFoLBo2BLLLo9ndjUpsGjaXIWsQ1VdckfIcm5k4kEosQFsOY1CbSjel0ejqx6qwsqVnCUPtQ3q17FwmJYmsxY7PH4vA5aPe00+BsYEzWGILRIAa1AQmJd+reIcecc1jBoLBa8dlN7MWBpNDgjfpodjUTk2IICBg1RlK0KWSaMglFQ6ToUlhev5yJuROp7qomNyWXHnsPWzq3MFk1Ga1Si0JQoFKoiMXiQlCUxHgSOQnOLzufdk87TXubEs7gBrUhIUADkQAdno7E1N7BHO802QAnK9+RjMyJRBY+MjIyn5subxcrG1ciSRLD0obR6e1EkqSEQ7Ez6KTX30u9s55gJMhpRafxQeMH/GvXv9Cr9JTby/FFfGQaM2l2N9Pl7cKsMWPT23AGnIzJGcOBvgPscuxiZ/dOun3d2PV25pbOJRKL4Al5BokQs9Z82Af6gECLxWJs7dhKk6uJPEseGqWGcCxMRIxPVZ039DwEQSAqRalIq6A30Mu2zm0YVIajCoamQAcv975Hi6sZvxRmdOZo1AoNKoWKiBhBqVCiVqgZkTGCcCxMobUw8f88cx4d3g6MGiNVWVUoUNAf7Meut2PRWRJRZwpBgVFtZELOBP5R/Q9a3C2kaONRLHnmPC4efjG7HbsJhwNYNRZqunZj0dtQKJRo1TosWktCCB1rmgySLXk/nPhD3q17lyU1SxLnamTGSH4282eyf4/M1wJZ+MjIyHwuGp2NPLv1WVY1ryLDkEF/sB9XyMX0/On8a+e/iIgRhqcPZ1r+NFpcLaRaU/mw6UOUgjIubnQ2Wj2t7O7ezY3jbsSkMVHXV4c/6icQDTAhdwJjssfw/PbnyU/JZ2TGSGp6apCQ2NaxDVfQxeqW1cf0Vxl4eK9rWccL1S8wPGM4r+17jSxTFlatlbyUPCJihFJbKUXWIj5s/pCdjp0ICIzPGU+GIYPvjPgO7qAbOLxg8IQ8LK1dSkQhUZxRxq6uXXy7Yh7h2Et81PYRohQvPTA8fTiXVl5Ks7uZQDSATqWjtreWf2z/B2nGNPwRPym6FL497NsUpBTgjXjxhDwYNUbydHmkGdK4ceyNvLDzBaq7qrEb7PjCPiJihE5vJ+6Qm+8Ov4w9uz8kbUgRtY59BKIBsg2Z2K3ZGDOMmJVmJEnCF/IdVjgefH3XNq/FHXJ/UlIjrYIzS86kJ9iDRWNhZOZIWfTIfG2QhY+MjMxnZsB/pN3bDoBKqaK6qzqRN2dS7iTWtKyhvr8eX9jH3NK5BKIBNu7dSFlaGXkpeehUOjocHUTECH/b8jf+cs5fGJo6lA5fByqFCpPGxD93/JPS1FK0Si3vHHiHrZ1bUSlUFFoKGZM9hq7erqP6qwxYeTKMGby0+yV2OnZSbCsmKkZp97RT3VWNRqUhQ5uBVWdlTfMa2j3xY7JoLTi8DlpcLdh0NnQ2HQqF4rBTbM3OZgQEVjSsoDfQizfk5d26d5lWMI1bJt5CTU+8PpFdb+f3G36PXqVnb89eevw9lKeV8+CcB9np2EkoFsKoNtLt7eZ7o7+X8NFRK9RkmjIxqAxYdBaqu6pRK9W4gi4kJAKRAL6Ijz5/H5dXfoccWwHukIfKrJG0ulvJtuRTYCng3QPv0uJuIduUzZaOLaxvW8+Vo64cJBw9IQ/rWtaxrHZZ4hoD5JvzuXTEpQyzDyMshnGH3UcVTzIyXyVk4SMjI5OEJ+Rhf+9+2jxtiJKIWqFGo9SQZc4aFALd5GyiL9CXcK4NRoMJ0XOg7wDfHvZt1rSsAaDOWcc8zTw8IQ9KhRK9Sk99Xz1D7EPIMGYQjoVRKVS0e9oZkzOGjtoOantr45Fg1kLUSjVjs8fy6p5XE/tvcbfw1oG3mJw7mU5fZ9L000AixLAYZkX9CkRETGpTIvOyUlASiUXQKDVs6djCeWXnEYgEMKqN1PbWYtFZyE/JJy8lj4b+BgLRALt7dlOeVk6KLoVCa+Ggc+cOufnvnv8mpp5MWhN1zjqW7l/K1o6tFFoLcQadtHvacYfdzB89n52OnYiSSGV6JX/a+CdiYox9PXELzciMkSw8bSH/b8r/IySGaPe20+XuwqK3UNdXR7evO+7vg4ROFZ/CCkWDiFKMLr+D8eXT2e6o5qzyc9jQugGtUsd7De/R4e3AorWQb8mnP9DP2ua16JQ6bhp/U9L1bXQ2srRmaZLoUSlUFFgL+Mumv1BkLSLTFM9nc7goMbnqvMxXka9VyYq2tjauvPJK7HY7BoOBqqoqtmzZklguSRILFy4kJycHvV7Paaedxu7du0/iiGVkvl40Ohv540d/5Ferf8Wd793JNf+7hrtX3M2y/cv4y8a/sLR2aVLJhoHpHovOgl6lJyZ+EoXlCXnQq/RYddZE5FZYDJNmTCPXnMuG1g2YNCZStCloVVrUSjVKhZLS1FIWbVtEf7CfIbYhTMmbwndGfIdCSyHvHngXb8SLP+LHG/YSFaN0+7oTyQ4HxrO9czt3r7ibB1Y9wMrGlfxnz39YUb8CX8SHQoj/7HV6OymyFiFKIhExwtLapUzJn0JpaimjMkcxNHUodr2dXY5d9AZ6cYfiU1xalZb/K/+/wz7A+wJ91DvrERCIxCKoFfEIL3/ET7O7Od6nwY4z6EQpKPFH/IiSyJS8KaxpWsNHbR+Rok1JHM9Ox04W71xMZUYlpxefToomhaFpQ1nfuh6TxhR3eBZjiKKIO+Smy9uFKEm4Q27UKg0ftqzmzvfu5M5376Tb301pail5lnxKbKWkG9JxeB1xS1E0QH1/PU3OpqTjafe2f2LNU6ioTK/kwmEX0uZpA6DH34PD5yAUDSWixAbKaAxY2VY3r2Z9y3pWN61mSc2S4y75IZPMaaedxoIFC05IXwsXLqSqqupz91NUVMRjjz32lRjLp+FrY/Hp7+9n2rRpzJ49m7feeouMjAzq6uqwHlQU7je/+Q2///3vee655ygrK+PBBx9k7ty51NTUYDbLbxkyMkfDE/Lwyu5X2NqxlZqeGrp8XYiSSJOrifcb3mdU5qi45UQSsevtmLXmxHSPVqWlPK2cTk8nepWeQDSAhIQn7CHNkIZRbcSgNjA2ayz9wX4KrYXEpBgGtQGDyoBGoaEn3MO5Q89lQ9uGRNSQSqFijjAHtULNWwfeIsuUlRjvgDVKlESC0SAAJrWJLm8Xj3/0eCI/0MG1r3xhH0aNEVfIxeb2zVw47EIanA30B+L5Z/oD/fQH+3GH3InEhxathXRDOgpBQZG1iPHZ4ym0FiaVLejWhNjtqcPhd1CWWoY/6scddJOqT8WgMuCP+omJMQLRQCJ5olKIW730aj0lqSWsaVlDuiEds9bMrMJZicitYDRIXV8d6cZ09vftx6Q2sbFtI6W2UoZnDGdj20aiYhSAiBjGrkmlMqMSV8BFIBpkZNZIWlytbO/cgUljZlvHNvJT8mnztKFUKDFoDKgUKsJieJDfUiQaSVyHSbmTWNeyjlJbKW/tfwt3yE2OOYcUbQpGjZFhacMIRUM0OZsotBYedoosx5SDIAiJ+0fm+Hn11VdRf0HV3081vjbC55FHHiE/P59FixYl2oqKihL/lySJxx57jHvuuYd58+YB8Pzzz5OZmcnixYu56aabvuwhy8h8rWhyNlHfX08oGqI/2J9wxAVocjUxNX8qza5m3CF3Ykqp0FpIqj6VvkAfVp0VAYEyexkd3g4KLAWYNCYKLAVExSjl9nKyTdm8UfMGFekVOPwOGvob8Ef8lKeVU2Qt4sLyC/npip8C8YdtmiGN6q5qLq68GLVCjYJ4BfNQNIRZaybbnE2ntxOVQkWqPpVCayGb2zYnRA+ARvlJjpttndsYnTkapaBMRJ5lGjPJT8nHoDaQYczAE/KQYczAGXQmQuhFSSTbnE2mMZPKjMpPanGFQuy2R/l99VNs6drKnKFnsq9nHwqFgmJrMcFokEJLIcFoEI1KQ6mtlEAkgFJQJqxJre5WvCEvqbpUFAoFDp+DDa0bkJBI0aQwLG0YfcE+DBoDELceAfxv3/+4Y+odiJLIjs4dKAQFEhKV6cM5d+i53LPiHq4eM5/pBTP488Y/oVaoEQQBd8hNijaFFncL/pCfQCSAWWtGo4inD1hZvzJRJ82mt6FX6Sm2FbOqaRWZpkzq+utwh+Kizhl00h/sx6Qx4Qq6KLOX0epupdvXzb7ufRRaC7HqrdT21sb9qbztLK1ZKoe+fwZSU4+eQ0nm+PnaTHUtWbKE8ePHc8kll5CRkcGYMWP4+9//nlje0NBAZ2cnZ5xxRqJNq9Uya9Ys1q1bd8R+Q6EQbrc76U9G5lTEG/ESFsPxCuaHqV0cESNExSjBaDBhGTBrzVxQfgGp+viPskVnoSqriuHpw5lTPId3DrzDprZN+CN+hqQO4Y8f/ZECawGrGlcxNmssN429if8b9n9My5/G78/4PRExgllrJt2QTpYpC51KRygWYmPbRqqyqhhqH8rE3ImMyhyFRWuhtqeWVH0qwUiQGQUz2Ny2mUZnI1eNuoobxt7A5NzJ5Jpz46HhgoKtHVupTKtkbPZYvjvqu9T317OlYwu7unfRH+jnwVUP4gl7mFE4g0JLIT2BHvoCfUTECFPypnDT+JvIUFsTtbh6UzU8Xv1XGj0tWAyp+EJeclKyiYpRHD4HmcZMRmaOxKqzkmPOwagxolKoKE8rZ2LeRDa1bSIcC2M32AnHwsTEeDZqCQkFCsKxMPv79tPl7cKgjgufgX+DsSDL65czq3AW98y8h9um3MbCWQv5/vib8Uf9XD3mamKSyPrW9UzKm0xMitHibCbXnAtCXFhKSIRjYfQqPXaDnbf2v8Wdy+/kl6t+yZ3v3cn79e9TlVWFXWenxd1CuiGdQCSASWNKTDWKkkhUjOINe1EICqod1Tyx+Qk2tW+iuquaHl8PU/OmolLE37Mdfge9gd6vRJX5z4on5PnSx3/wVFdRUREPPfQQ1157LWazmYKCAv72t78lrd/a2spll11GamoqRqOR8ePHH7Ei++Gm0S688EKuvvrqxGeHw8H555+PXq+nuLiYF198cVA/LpcrUWE9JSWF008/nR07diSt8+tf/5rMzEzMZjPXXXcdwWDw05+Mz8nXxuJTX1/Pk08+ye23387PfvYzNm7cyK233opWq+Wqq66iszOexTXzkMJxmZmZNDU1Ha5LAB5++GEeeOCBL3TsMjJfB0xqE5qP880IgjBouVqhRqVQoVPpkiKaDk4WOODjkqpLZUfnDs4aehZapRZv2Mt/9/4XURTxdfgYlzOO/b372RndSaOzkRxzDmOzxpJpzEzkoxlAKSjZ2rGVM0rPICbFWNO8Bp1Kh1VnpTytnKtGXYVWoWVN8xpiYgxfxIdSoSQai1JgKeCvm//KOWXnoFVq2dS+iZreGibmTkSv1rOvex9DUoeAFLek+KN+Xtv3GlPzp7JgygIcPgeRWAQBgYl5E6nKqiLW1ZWoxbUv1klXuJ8GVyO9gV52O3bz7cp5uEOeeFRX2ItRY2Ry/mS+M/w7+MK+eA4dpZYnNj+BhIRaocYb9sb7lmK4Q25GZoxEKSjxhD3oVLrEOFL1qQgIlFhL8IQ9VHdVs6l9E+6giyxTFkqFihStmQZnI8XWIjo8nXyreA4ZprhVSyEomFsafznc37s/ft01JibmTMSsNfPMtmcIRAOJc79412KuG3MdaqU6XhxVoaQ/2E95WjnVXdUJf6mBfgRBYEPLBvZ07yEYCyIgkGvORaPUUJlWyZ6ePUzKncT/9v0Pi86S2PZkVJn/rJyo8h+fl9/97nf88pe/5Gc/+xmvvPIK3//+95k5cybDhg3D6/Uya9YscnNzWbJkCVlZWWzduhVRFI/d8RG4+uqraWlp4f3330ej0XDrrbficHxSNFiSJM4991xSU1N58803sVgs/PWvf2XOnDnU1taSmprKf/7zH+6//36eeOIJZsyYwQsvvMDjjz9OSUnJiTglx83XRviIosj48eN56KGHABgzZgy7d+/mySef5Kqrrkqsd+gPtiRJh/0RH+Duu+/m9ttvT3x2u93k5+ef4NHLyHz1KbQWUmIrodPXiU1nIxgNJqa7Ci2FeMNesk3ZpGgHRzQNJAvc1bWL9xvfJ2AMsKJxRWK5L+zDFXJh0pjY3rqdImsRG9s3JpZ3ebvoC/YxvWA6JbaSpKkqrUqLhESzq5mrR19Nqi414X8UE2N0+boQEHihOp7TRpIkDGoDY7LGcMO4G/j+hO+zsnEl6YZ07px2J2WpZWQYMzjQfwBP2JNwJE4zpGHVWTGoDbR52mh1tdIX6KM30Isn7OHMIWcCybW43LEAB5x1iUi2iBjhtb2vMTF3IlPzpzI+ezw5KTnkp+QTjoUJxoK4Qi6e3PgkFwy7gAuHXUgwEqDAUkCK1sKvVv8qEeUFUJVVxfdGfY/NbZsJi2EuKL+AdS3rmF81nwN9B3D4HHT7unH4HMSIMTJ9BO/sf5uIFMUb9tHuaUOj1rKvZx//2fMfAPJT8rl0+KU8NOch+gJ9DE8fjlqh5salNyaJHoBANMAz257hd2f+jgk5EyiwFLClfQtzS+bGI7ZcTQgIWLQWLDoL47PHc9/K+9CoNIiSmCgMm2HMYEjqEIptxYRjYWw6G0qFEp1Kh4BAt7/7S60y/1k5keU/Pi/nnHMOP/jBDwC46667+MMf/sAHH3zAsGHDWLx4Md3d3WzatCkxRTZkyJDPvK/a2lreeustNmzYwKRJkwB45plnqKioSKyzcuVKdu7cicPhQKuNJ8f87W9/y+uvv84rr7zCjTfeyGOPPca1117L9ddfD8CDDz7I8uXLv3Srz9dG+GRnZ1NZWZnUVlFRwX//+18AsrLiTo+dnZ1kZ2cn1nE4HIOsQAej1WoTF0lG5lTGrDVz8fCLE2/qoiTS5esiPyWf04tPJxQNMaNwBlPzpx7xx31gCmzA2XiAmBRDKSgTTrgD/w4QjoXRKXVkmjK5ddKtSc7JKoWKybmTuXT4pSytXcrbdW/jDrkptBQyvWA62cZsFn64kO1d29GpdKToUnCH3KxsWklfsI/vjvgu+3r2kVeSR1lqGaeXnA6QFA0GEI6GGZM1huquanJMOSgEBV2+LnLMOfxf+f9xoO8ANr2NfLU+sY1arcUddCUdS0SMsK51Hetb1zOneA4rG1YmrBvNrmayjFlYtGae3fw3FIKSSXmTGVI1hNf2vpZI9NgX7EMlqOj0dvKPHf/g/LLzE4VR293t1PfX4wq56PJ2kWnM5EeTfsSibYtYvONFImIEjUpLZlYmMwpmsKV9C+nGdCbmTKTL30VlWiXrW9ZT3VXNDyf+kAm5E3ij5g1iYizhDzVgyRkQlzExxrD0YWgUGoqtxezo2sFQ+1Cm5k9Fo9SgV+sJRUO8Xfc2ITGESlIRjUWZVTSLTe2bWNe6juEZw6nKrGJV8yqsOiu+sA8JiRxTDnNK5sTLbnyK8hkngwGr5uH4tOU/Pi+jRo1K/F8QBLKyshIWmO3btzNmzJgT5he0d+9eVCoV48ePT7QNGzYsKbhoy5YteL1e7HZ70raBQIC6urpEPzfffHPS8ilTprBy5coTMs7j5WsjfKZNm0ZNTU1SW21tLYWF8TfP4uJisrKyeO+99xgzJl5AMBwO8+GHH/LII4986eOVkfk6UmQt4seTfsz+3v20e9uJilE0Cg1qpZpsUzaF1qPnYRmYAtOpdEntSkGZyNQMJPw9BhiRMYIsc/zlpSqriofnPMwex564k63WSmVGvP5UVIwiEo/m6vZ3827du0zOm8y2rm0AGNXGRIZhAYHqrmquHxt/u2x2NSeNvTKjMsm6JCHR4engrCFnsb1rO//Z8x96/D0ICNT01PDdkd9lae1Srqq8HK1ejxQIYBUMlNnL2dy+OUlEAYzOGk1voBd/xI9FZyEUDeH09yNGoqiUKvItBYzLncCenj1sbN/Eu/XvJqbGcs25NDgbEucyJyWHNGMaL+1+CW/ES4YpAyBeNd7bxtLapZg0JoxaEwhg1dlwhVz0BnrZ0LqBUZmj8IQ9TMiewN6evaQb0nGFXKgVasxaM0aNEWfISUyMJYqhapVaLDoLkViEmBhjTNYY3m94Py5m2jbxUdtHbA9vpdRaik5jYFrBNJ7Y9AQqQUlMjDIxbyKrm1bj8DmwG+xU2CvY0LqBRmcjNp0tbkWMeGn3trOifgUzC2ceV/mMk8mxxvdljv/QCC9BEBJTWXq9/nCbHBGFQjHIry9ykGVzYNnRZk9EUSQ7O5sPPvhg0LKDBdJXga+N8LntttuYOnUqDz30EJdeeikbN27kb3/7W8KhSxAEFixYwEMPPcTQoUMZOnQoDz30EAaDgSuuuOIkj15G5uuDWWtmbM5YxjL2iOt4Qh4a++ppc7YQiYXJMWYxNL08EeUlIJBjykmEMg/Uhcoxx8OZO72dib5GZYzixnE3old+8mOdacpMJMY7GKVCyQeNHyRZjHxhX+L/GqUmMe00QCASwKa30e3vxhv65MF0qHVJlETyLHnU9tYyOnN0PBePGEGr0NLh62B5/XLGZI+h2ddBZXk5kZoazKEAl5Z/m3AsTLWjGon4b1G5vZyzh5xNp6cz4fjtCrro8zhAG2Za/jQUChXv1b9HTc8+SlJLMWqMGNVGunxdCUdid8hNmb2MYksx3b7uJGvDQO6kQDRAX6CPivQKtnwswHwRHzFvjAJLAYIQzynU0N9AVIwyMWci9f31eCNeVjWvotBSSCASoCKtgs3tm4lJ8VxMoVgIT8jDmKwxNDmbEs7aOrWO7436HpdWXsLerl2oNTo8YS9rmtcwJHUIza5m/BEfeSl5rG5ejVltxqqzYjfacYVcqBSqpCnGcCzM7u7dVKRX0OvvjVuxDnPtvwocLlv3p1n+ZTFq1Ciefvpp+vr6jsvqk56eTkdHR+JzLBZj165dzJ49G4jPrkSjUTZv3szEiRMBqKmpwel0JrYZO3YsnZ2dqFSqpIjrg6moqGDDhg1J7ikbNmz4DEf4+fjaCJ8JEybw2muvcffdd/OLX/yC4uJiHnvsMb773e8m1rnzzjsJBAL84Ac/oL+/n0mTJvHuu+/KOXxkZE4gjc5G1jas5o3ql2lxtRAiilajZ2bhTOaPns8F5RewtHYpc0rmsKJ+Be3edswaM8PTh9Pl7eLGsXFfkhvG3oBEPNleOBbGFz16zSiI+6cUWApodjUnxI9RY8SkNuGL+Aa9taoVaoxqIwB6lR6lQpm0/GDrUpu3jXAsTF1fHcv2L0tKtFdoKWT4sOEIgoA34kWRaUVTVUWhswth9w4uHnYRZ5edgzfsRafS4Q66aXO3UZZWhjccF1thMYwkifQ624mIEa4cfx0H+vZjUOvJT8lnbWxNPCuypeDjsPRKzBozOeYcss3Zg6wJA7mTanpqQBTRSyosmhRUqrgloK6vDp1KF/fXigXRKDW4gi5cIRf7+/YjIdEf6GeHYwfVXdXMHz2fQDRAdVc1AAICQ1KHcMPYG3hm+zNcVHERXb4u8MXF5sSMsTi9vaSY09jXvY+eQA/T86ezSbmJ6q4dieuTacqkIq2CcCSUuA6BaCARCdbqbiUYDdIX6GPZ/mW8vu91fjjxh3Hn7oATo6SmQJOOWW1CYbEgnETXhIPTNxzKQDqFrwKXX345Dz30EBdeeCEPP/ww2dnZbNu2jZycHKZMmTJo/dNPP53bb7+dZcuWUVpayh/+8IckUVNeXs5ZZ53FDTfcwN/+9jdUKhULFixIsix961vfYsqUKVx44YU88sgjlJeX097ezptvvsmFF17I+PHj+fGPf8z8+fMZP34806dP58UXX2T37t2yc/PROO+88zjvvPOOuFwQBBYuXMjChQu/vEHJyJxCeEIe1jSsYmn1KzS4m+gJ9hGJxh9oS/x9OH193DHzp8wfPZ9mZzOjMkfhDXlRKpSk6lNRCkpe3fsqRbYiXt37KquaV+ENezGoDVSmV3JRxUWMzBhJOBZGIShINaQmlTkYah/K6cWns6pxFf3BfmJSjB5fD6cVncbq5tUIgoBCUCSSG07Om4wnHM8gXZ5WnrC+HMyAdWlX1y62dm7l/Yb3B2UXbnI1saZ5DfOr5pOiTqHL28Vux266/d3kZpUl/KH6/H24Qi5yTDmcPeRsljcsT/ShUWhAEJCk+JRac3897a5W9nbvxawyYdenUtdfj6BQYFAb8IV9pOpTyTbHpxgPzqocioZwBV2ExTBFlkJiAR9TcibjjHhodrXwbv27RMQI/rCf8TnjefvA24kpwmA0iF6tJ92QTre/G2fQiTPoZE3zGuaWzOXSykvxR/0Y1Uba3G1s7diaSGMwQKo+ld9+9Hva22sZkjuS3X17qEgfzuqm1RRYCrh+zA0JkZBjyqbH14PdYEchKBLh8wpBQY+/B41SQ6o+lbHZY9nSvgW73s7P3/855ZZSdP1eiEaxmzI4v+Rs8huNqMvKUJykqZOB9A2Hi+o6Ujbvk4FGo+Hdd9/ljjvu4JxzziEajVJZWckTTzxx2PWvvfZaduzYwVVXXYVKpeK2225LWHsGWLRoEddffz2zZs0iMzOTBx98kHvvvTexXBAE3nzzTe655x6uvfZauru7ycrKYubMmQk/2+985zvU1dVx1113EQwGueiii/j+97/PO++888WdjMMgSIdL2HEK43a7sVgsuFwuUlJSjr2BjMwpxK6uXaw6sIIXtzxHZ7CbSCyStHxExgguHn4p84rPxhRRIGg0g97Sm53NPPDhA6xpXoMn7EGtUMfz9URDlKaWUpVZBUCDq4ECSwEltpKkUOFGZyOv7H6F+v56wmIYk8rEzKKZ/GvXv9jbvZeeQA9RMcqojFFcM+YatrRtQa/Rk23OPmrUjSfkYUntEu5efjfesDcpgaNGqcGqtfLA7AcYmjqUZ7c/y+qm1XjC8fwtZfYyLqq4iOHpw7HpbIlK5Yu2L0o8IEPRENvat+J3dmNJSWdW8Wm8VvM/djl2YVKbmDf8Ila1rKHJ1YRepWds9ljGZY/jurHXUWgtTEQUOXxddLjbUaDAHXRR49hDvj6bu8f+GIfgoy7QyvKG5Qgo6PJ2kWPJZVXTKhqcDVi1VsZljyMYCzI6czTv1r3LL2b/ghUNK9AoNFQ7qglFQ8SkGJFYBFfIxRUjr2BD6wa+M/w7cYsPUGIt4Q/rfoc5LCCo1IwqGM9HHZtI0VrINmeTl5LP6KzRLN65mC3tm1FFRSYUTaXT70BASITv7+3ZS1SMYtfbseqsCWvKxraNzMieTEHgk/vGbsrgqsL/wySq0FRVfSbLTzAYpKGhgeLiYnQ63bE3OAJJNcjUpmP6vsmcOI52DY/3+f21svjIyMicXLwRL4FIgBDRuOiJRkGK56Kpyh3HsOwR+GMBtnRXUxWwYfRHEXQ61OXlibf0ur46Or2dhGIhNEoNGoWaSCxMOBZiQ+sG8lPy0av17O/dj4CAXqVPChUushZx0/ibBj14xueMZ2fXTvqCfYiSiEqhotHZiNVgPa43crPWTKouFbvejiiJiTpaGqUGm86GQW3AorUMEj0Atb21vLTrJa4afRUXVV6U2M/B1gGtSsuwjApcxkyq0kay37GXdL2ddGM6ChS8feBtRueMYWr+VGw6G6MyRzG7eHbC36U30Mv+nhpe3/1f+n1xP6Z8SwHnlZ1PGnre3ruUC0bOY0+whvq+erZ0bAXiU2Jjsscys2Am6cZ0csw57O3ey7t17zIkdQhmrZkcU048eaTGnHA894V9WHXWeGkKUw4CccdWtUKNTW9j/phrCIZ9GNVGPEEPw6xDMetSiBBjUu7EuC9WJIRNacIT87C9q5ozh5zJ3u69lKaW0uGNF6GdkDOBc4aew57uPZSmluJocZBlyPjYwvSJuOn1OmjBybCAEdHpRHmUaN0vmoH0DTJfT2ThIyMjc9yY1Cb0aj0xxITosWgs3DbnZ7iiHrwhL4JKzQFvMzt6NjKlaBqitxtTo4viIeNIMdlxhpyfOCeLImqVGofPgUFtJBQNERHDaEQ1ZfYycsw56FS6+BRb0xr0aj0V6RVkmjIHPXjMWnPC0jLwRl6aWvqp3sjzU/KZVjCNnV07cYVcSJKEUhGPRhuVOQpJkmhyNiWJngHqnfX0+HuSQpoPTu44INLSjem0OVvQaQzMMNpY1byGVU2r8ES8bG7fTIm1hGvHXMuU/CkJ0eMJefjf7tfodDSQo00nxxjPDq1SqNjfU0OKsgCHuw23p4eJ1pHoxt3ME5ueYEfXDsKxMLscu7Bo41m1f7P2N5SkljAkdQjXj7keh8/BpSMuZZdjF/kp+Zg0JqJilA8bP6TYVkxdX10i3FytUFNuL+eZbc+wsuHjEORYjJGZI/neqO/xwuZn8UV8nDPkbPqdnfic3eSl5CGqlUTEKA3OBkZnjWZExgjcITdnlJ5BIBygpqeGiBhJZKieUzqXtt4GSDYo4o36AWNSLiUZmU+LLHxkZGSOm0JrISkGG4XWQnqdHRhUBm6f+3P+uvXvbGrfhFahQaVQMi53ApcNv5Q/7niKKfaxdHfWkd63lf8bexlWrTVuVZAkVAo1oVgId9iDXm1AoVCgUWopTxvG8zue5+0Db5NtzqbV3cqZpWcyLG0YL+58kVsm3kJVVtURx/lZ38gLrYWU2cswa8wJHxqNQoNFF5/CUSlVg3IQDSBKIu6wm/19+0Eg4Zt0uLFkmjJJNaWxtHYpo7OqmJQ3mUA0gF6lp8xexvCM4UlCrcnZRG9/G+FIEK/fiSAIGPUWUECLt42ZldPJVivxRnyM8xmxZo0kZ/Yv6Qn24osEsOgsqBVqdjl2cdP4m6hIr0CURPpD/ZSllnH38rvZ3rmdcCyMKImMyR7D3dPvxqg0st++n/r+emJSjKH2oTy/43m6vF3o1XqC0SCSUsnO7t28sGsx54+Yx77eGswqIwadiaBOSZu3iejHkWIQt46laFMoshZxoO8Ar+x5JX7OIFGktdBSyGj7CHr8ySlMTCoDhECQi3XKfA5k4SMjI3PcmLVmphfPRIyEcfp6mVg0nX/uWszm9k3oVFo0Cg3hWJjN7ZvwhNzMKZyNQ/Lg0UoovA6W1Czh3CHnkmXKotnZRKu7Fas+Po0kIZGXkodOpeOj1o+o7a1FrVATE+MPzTZPG82uZiblTeLxjx7n4TkPn/Cw54OdVwdC8OET59WGvoaEg+5AVniVQhXPf/Nx4scB69QH0gecV3beEcsYFFmLmD96/nH5ingjXhBFNB8XGk0xp9PgasQTitcW3NGzi7beBsaVTodeiewOL2KqkT3OnfSLPlo9rUDcYjezcCYSEka1Eb1Kz4J3FrCtc1tiag9gY9tGHlz1IH8++89cUH5BYoy9vl76g/0YNAbyUvISEVkIAru6d3FV1VX8uPwcVIIKo8lG2BElKsXQKDRISIiSGM/0rLNg19n5Q+0fqOuvSxxnKBbC4/GwbP8ybp9wKz0tnwgfuymDfKwIetVJc26W+WYgCx8ZGZlPRZG1CG3+aaSZM+mPuNnQuYkyezktrhYC0SAmbbxS9/bOHVxaeSktrma2e2oZpq2grXMHOqWO04tP/zjC678oBSXhWJhMYyZzS+aSZcrimW3PIErxquhKhRKL1oI/4qfd087pxaezr2cfexx7vpB8L4ebnhoQJMFIkFR9KiqFCnfIjSRJqBQqwrEwpbZSwtEwH7V9RH+gnzklc1hau5T5o+cfcZrteC1TJrUJFApS0JGakskBVyM6jR6LMZWYFKPYXoqoEFjXvZWKsu9gVhkpsVq5lqqjCqtlNcuo7qpGq9SiU+ni51tQEpNibOvcxg7HDvIseYkxvrb3tYQPkEljosRWgi/sS0y72bQ2qrKq8IQ8GFVGCiwFKAQFLe4WwrEwEHeATzOkxa1jvfsT2aIlSSISi5BuSKfF3YI3FgSVKhHVdUHJ2ZiiatTlZZ87pF2O6fn6ciKunSx8ZGRkPhWNzkZeqXuV5TvfYGTJJHZ17UStVDMsvZx93XsTDziRGP5ogEA0yK6ePaSaM+IPWZWWHn8PZ5WeRamthDRjPFGfN+RFkiTq+usSD1K9So9RbcSutyemQ0KxePi8M+T8wo7xcILEE/KwonEF8yrmoRAUfND4Aa6QC2/Yy1D7UL4z4js4A046vB30B/oT2YhPRBmDQmshdlsu3S4XNqOdApWAM+QiEPFTYCmk3ddFs6eVgtRitoebGZc2DrNWixntUffdF+zDoDbQ7mnHF/kkEaRRbSTTlIkr6Eoav1VrTdpeo9Sg0WsSn9MMaYnz963Sb9Hubac/2E+ZvYyYGCPfks+0/Gn8a+e/OK/sPGx6W1JY+ICo0iq1mDQmzpt+DQZRRYE2HbPKiMJq/VyiZyDbsd/v/9TZjWW+Gvj9fmBw5upPgyx8ZGRkjpuBkOp6ZyMBtYRGGY/I8oV9xESRdGMGDn83giAgSAIpuhRam1sQkQhEAwkryd7uvYxIH87v1jzKpaMuJxINsb//AG3uduZXzacqqyrx8BuY+tIoNAyxD2Fc9jjyUvIQBOFLzfI7kL24P9DPOUPP4Vsl3yIcCxOTYoiiSF1/HXqVnhkFM4jGoujVevIsefgj/hOy/8mFU3nN20HI7aM30Mve7r3kWwvIMGWwsnEl43LG80bNG6QZ0qh2VB9XtXCbzkantzNJ9AD4Ij66vF2kG9KTEiceWubjYEpsJVRmfFJPMVWXypySOdgNdsKxMBqlBnfIzRu1bxAVowgIpBvSUSlUiJKIQlAQFaO4Q27MWjNpxjQmF037fCftEJRKJVarNVHTymAwHLUMg8xXB0mS8Pv9OBwOrFYrSqXy2BsdAVn4yMjIDEIKhRCdTqRIJCkXz0CRxrAYRlCp8Ib9DLGX0dDfgDfiJTcllw5vJ0pBybi8cRhVRjZ3bkVEIipGKbQU0u3vxhP24I34KEuv+DiU+x0m5k6k1DaEmBgj15RLi7uF7Z3bGJExEpveRomthHAszKqmVex07CRVn8rb+9/m5gk3H9XR+UQxIAAiYoTVTavZ07OHsdlj+feuf4ME9592P89se4bqrmoMagOiJDI9fzp3Tb/rc+230dnIkpoluIIucq35iALYDDauHXsd/X4n+/r2UZkxHH/YT44pBzj+auF2vZ2h9qFs/Tj0/WDK7GWkaFOSyjAcrogsxEXPrZNuTRKhBdYCVjWvYkPr4JIEepWeUCzE5LzJvHXgrUR2a4AUbQqnF5/O8PThn+5EHScDBa0HxI/M1wur1Zq4hp8VWfjIyHxJHElMfNUQnU4iNTVIgUCiTdDrUZeXJx7+GoUGb9jL6zWvc+nwS3nzwJs09jeiU+mw6qxMyp3EpcMv5e7ldxOVoqToUsg2ZVOZXsl7de+Rbkinrq+O88vPw+FzUGofwtqWtQiCggxjBhdXXozD76DIWowv7KM0tZSYGKPEVsJLu15Cq9JyoO8A+3v3oxSU3D7ldppdzfGipjorlemVJ9wSdLAACIvx6TyNUoNKoeLiiot5ofqFRLmHAT+E/f37eXrr05TZyz7TeAYsbAPTQXu797KhdQMqpYqN7ZswqU2sal4FQLG1mB9N/BFK4gVhj6dauMPn4Jox1yBJEts6tyXax2SN4arRV9HkamJS3qT4MX18/46IpvGrKfew19OIK+xOFJE99PjM2ngKgCU1SwhEP7mXBrJoe8NeLh1+Kd6wlyZXEzExhlKhpNBSyM3jb06kJjjRCIJAdnY2GRkZSYU4Zb76qNXqz2XpGUAWPjIyXwJHExNfpQgVKRQaNE4AKRAgUlODMT+eKVWr0uIOuXGFXPxjxz+YUzyHM0vOTAgUk8bER20fcdbQszCoDRRbi+nydbGlYwsZxgyaXE04g06q27YxIW8iP5r4I96te5c9PXvo8nTyu7W/5fxh5zM5bzKiJFFgKeDfu//Nstpl6NQ6omIUhaAgEAmgUCh4fOPjHOg7kPANKrQWcuO4G0+oJejgOk0aRdyvxR1yU2gpJM+Sx9Pbnk6sKwgCWqUWq9ZKk6vpqI7YSVmANaakEh0DFrYBwmKYVH0q+3r30R/o546pd5BjziEqRtEoNbR72jFpTKQb0un0dR6zWniKNoUntzzJ/5X/H5ePvBxf2IdBbaA/0M/TW57mkbmPYNaa4/dvbS1eIUILTrxRP3a9hXH5k7HYs4/Y/6jMUcwpnpPIsj2QGkCrild+n5g7kaGpQ9nZtZP+UD82rY2RmSO/MNFzMEql8oQ8RGW+fsjCR0bmC+ZYYkJTVYUUiRBzOJBCIQSdDmV6OgrTl1/pWXQ6B41zACkQIF+ZTao+lcb+RjKNmQSjQVxBF6/te40iaxEzC2dSYClArVSTYczAG/bSH+zn1X2v4gv7uKbqGhbvWkwwGkSn1BGSInS4WtELKjQKNWMyq3Bb3agVKjrd7Tz4/gPkphZy25TbWNmwklAslJRHZ0LBBFY1rSLbnM2+nn2J9mZXMwD3z7r/hFl+Dg51D0VD6FV6antrOW/oeShQICCgVqhRCArMGjOZpkz06rgD7ZEcsQemsfoCfYn6Wxa9hQvLL6QyvXKQcNEoNKiVaoKRIBdVXsTmts2saFiBUlCSbc5mXM44RmeNRqPSkEUWZvXRkzZWZlSSY85hecNyomI0Ua5CKSipyq5iTPaY+P1bW0uLyscb9W/R6/1kisjelMO3p11HUVrpEc/ZxcMvPmptq4MTT8rIfBnIwkdG5gtGdDqRQiF603Tsi3biDLuxaVMoV2Zh7wsRbWsjsnMnYn9/YhuFzYZm0iRUn3Mu+9NyrIy4poiCC8ovoK6vjjZPG5nGTHLNuaQb0plTMocNrRtYXr88UTR0Uu4kOj2d6FV6hqUNw+FzUGwtZk7xHLxhLymaFBSxGF3+blY0rEChUBKI+AlFQ/giPgRBoD/Yj1apTTyQFcq4yJCQyLfm837j++SYc5LG6Ql7WN20mt2O3Sd0yuvgUPfZRbNp87YRiUYwa81kGDPi50hjwqgxJiKUYHA0FCRPY/X5++jydRGMBmlyNdHr62V28WzSDGmEoqFETiGLzoJCUDC1YCoftX6UEFZD7UPp9HayvH45bZ42JmRPwB12M7t49lEtSof67Kg08TEf7LMT6+rCK0QGiR6A3v52/lf9MtdOu+WIvkRHSw8gI3MykIWPjMwXjBSJsCs1zJ+3/pE6Rw0IAigUlKaX88OqGxnR2pokegDE/n7CH32EYs6cL9Xyc6yMuIJaTZE1j0sqLkGv1sdD1yVodjfz541/JiJGUAgKKtIryDBmEI6FmTtlLimaFMJimC5vF12+Lto97UhI7HLsQqtQkx8oIFWfiifipfdjy4BZa0aSJEptpVi0FgosBex07EyMRaPQIEkSFq0lkVRwQGxExSg9/h46vB14Qp4T+pAdCHUfkTkiISpCsRDjs8fT4mlJEjwwONppgIFprB5/D7W9tezr2Ycz6CQSi6BVaSmwFBCIBAhGg/FK7YZUtCotmaZMtEotm9o2oVKoKE0tpdvfTUSMEIgEaHG18K3ib4EAL+95mWJrcSIVAMStLQdHfFVlVfHwnIfZ49gT95E6xGdHisSntw4WPWGNkl5VCHfMT23PFsqa1zA2e+wRRaZc20rmq4QsfGRkvmC68fOnjX+m3vHJVAyCQJ1jH3/a8hd+Neb/YT3MdmJ/PzGH40sVPgqrFUGvP+x0l6DXJ/yRhqYNxbHDQX1/Pb6wj25/d2K9cns5oiQmKnmn6dMSD71dXbvINGUSiobY3rkdtUJNg6uJfGshe7r3MDF3EtmmbJQKJWqFGqvOik6pw+FzcHHFxUTFKHt79qIUlETECHa9nWHpw+jwduAKutCpdCgEBRExbrkSJZFF2xcdV2j3Z+HgB/pdM+46rminAbwRL6FoiIb+Bvb17MMVdCWq3fvCPg70HWBNyxquqbqGf1b/ExGRNEMamcZMNEoNw9KG0epuJducTae3EySYkDMBs9ZMljGLQksh/cF+ImIEo9qISWNCQKDb3z0o4ivTlHlE0SKo1R/XyIrj1kps9+6ltm8/gUgAtUrLpLzJtHvayTBmUGwrTrIqych81ZCFj4zMF4gUCrHHWUt97/5DFkgQiVDfe4B90Q4mH2X7LxNBq0VdXn5ER+yBKLSDp0hqe2tRKeI1rCrSKrh+zPXs642LvFR9KoXWwkQ/Aw7C+7r3EYgG4pW9wx6cASezik5DQqLL24UoiQSiAfwRP6MyRuEKuWh1tXJa0WmcPeRsAtEAaoWaQmshja5G1javRZREfBEfWqU2bgmxlWLWmKnrrzuu0O7j4WiReceynByKSR3PcB2OhXGH3IlyEVExGi/vgEiPv4dObyf5lnwq0yoZkTGCVH0q/YF+1jSvQSKe7VgpKJmQN4E93Xvo9feSacxk2f5ljM8ezzVjrmFT/yYMGgM6lY4SWwmt7tbjTqyosFox6S0AhNUKdntrPxE9CjXnD7uA1U2r2dq5lVJbKeNyxpFlzGJG4QwAjBqjLIRkvlLIwkfmlOdoPhCflYEHpOj14vT2IOh0SMEgxD4p1ohCgaDT4fL3caSv4skId1dYrWiqqj55wKvVh82Ye/CD3uF3EJWiKAUl+3r3EREjSQ6sAww4CHd4O4D4Q16tUMerqGtMPL/jefb27EWtUGPWmpldNJvK9Er+Wf1PiqxFFGgLyDJl4Q650al1+CN+xmeNp9HZiMPnSCSjG5I6hMtHXE6PvwfguEK7j4XodNLfvJ+WkANv1I9ZZSBPm4GtYGjCEnY0y8mhFFoLsegtxD4u4CkhJf4tthbT5m5DlETCsTB7uvcQjoWZWTgzMcV29pCz2d+3H1fQRao+lb09e+kL9JFnycPhc5CXkseGtg10+jqpSKvgpT0vUZ5WjkltItOYmeQ4fbTvgKDVUpw/EntTDjXeRnpCTgKRuCgenz+J3d278Ya9uENuomKUbl83ux272dqxlZmFM+n0dQ6aXpOROZnIwkfmlObgqBqAUDSEUqFkev50FAoF2eZsiixFn0oIiU4nkeZmCMdzvVh11rjTsFodFw+SFPfzARAELHob4BnUj8JmQ5mR8bmP8bMgaLUoM4/9AD/4QT/w8CyyFh3VgbXIWsQVI66gICVexykUC7GqcRWtnlbSDemMGTEGQRDQqXToVDrCsTC9/l5uGHsDf93yV/b1xK1FEhIjM0byy9N+ybT8aUzPn05MimHWmDFpTNj0tkR0F3DM0O6jIYVCNLTsZEntG8lRTaYMLhDOp0Q/MSEMj1dIm7VmLiy/kC5vF9s7tycctoutxUzJn8LKhpWMzhodz2tUcTEGtSGRBfrgaKkOTwc1vTX0BfootBYyIXsCWzu20uZpSwiScTnjiEkx9Co99f0HmJMyG6Minpqg0Rm3mLlD7ni0nUrHDu0OphVMSwgViz2bb0+7jqc2P0W0fzsoFCAIDEsfxtrmtXT7uskx52DT22h1t6JT6XCH3PDxbX68CRVlZL4MZOEjc8pyaHI4Z9BJdVc1za5mPmz8kJGZI3EGnJxXfh5T86ce19uqFAoRbW3F1dNOqxCv46S3WJgz9Aw+PLCCaCAQF0AKBQClaWUMz61C0brrsFFdJyOk/bPyaRxYi6xFrGxciUahwR10U91VTYouhTXtaxKh2X2BPsKxMDeNu4nK9EqW1CzBH/GTacrEF46XWPCEPDy97WlGZIyg19+LXq0n05RJujGd/b37E9YUSE5A+GlxObtYUvPG4Kgmr4MlNW9wTUYh1syCQUIaBjsTH0xleiUXDr2AwpQCWt2tiJJEk6uJtc1r42U/EHhp90tsaN0Qz3ljH5p0DgeipbZ0bCHblE2ru5U3at+g2BZP/DgiYwQN/Q3s6NzBf3b/B6WgoNRWypklZ5DTG8Wl7WBd+zqW1S6j3due6DvHlIMgCNj19oRQKUor5btjrsJiTKWuvw61Qo1RbaTR2UiRtYhmV3Ni2k6lUGHT2VAJqkTR0xNhdZORORHIwkfmlOXg5HChaIg9jj00u5qJilE6vZ1cMvwS2j3t7Oveh1JQolfpjzmNEXM6aepvZEnLm/Q4mkCpJKJToyzM54zR81i693+MsFdgNdnRa03MKJmNyZaBbs6cT/L4aLUoMzK+NqLns0wVDkx5La1dGo9SUmkxqo1olfHEds6gk5gYIxwL0+3vpjK9kg+bPsThcyQsHzqVjnRjOmtb1pKXksfbdW8zNW8qKdoU1Ap1kug51Nfo09LsbRskegbo9Tpo9rahtNoGiR6IWzuW1i7lkspL6PZ1J50nYyDGECGDLl06W1o+osHTQkwSEQSBCTkTSNWnsqRmCQa1gQN9BwZlgR4Qm92+bv6+9e94Qh5StClolVryUvJocjXRH+pHrfwkWq/Z2cT7jSuZlZVLo6OWN/YtocPXmTTmdm87S2uWMjJjJCMzR9Ll7WKPYw9hMS5sNrZtxB1yc/aQs0k3ptPsasYX8WFUG+M1lSJ+gtFgIuVB58f9fx6rm4zMiUIWPjKnLAf/CLuCLvqD/QmfkzNKz2BV0yo2t28GYHj6cHY7dnPt2GuPavnxBFws2b80/pAURTwWLbW+RkLbdzFq6FR+dvr9vLb3VVp9nWQLWaxuWc3unt1xi0BJyRd9yCecmp4aXqx+kXZvOxqlBovWQrY5+7j8OYqsRcwfPZ/NbZuZnDeZmBgjIkZwBeOWsoHQeKWgxBPxoFPpqEyvxKQxoVaq6fX3UttbiyiJRMQIw9OHc1HlRYiSSG1vbWI/h/M1+rQcHNV0OHyxwKAsywMMiOYnNj6B4mNLH4BNbWGGfQxr9y5HpdNyefkl+KUQqNX0B/vZ0PoR79a9i1alRaNQY9faaHTUsrt9BxmFs5J8riozKimzl1HbW4sv4kMpKDFoDBzoP0B5ajkOnwOj2ohKUKJRqnH6+miR+ukI+Gnvb0bQaAaNu93bTru3nZgU+yTPj0IVn1YsmM6qxlV0+7spSy1juWs5afo09Go9fcH4OchPyWdP9x5S9amJPj+P1U1G5kQhCx+ZU5ZDay8NWAhGZ41mTfOapAdlVIzS7m0/pp9Cc7QHbWY2qempqDV6/P31hHv8xASJSCjIq7teZn/HLgwmGwX2YuDz+T+czPpfBxy1/PrDB6nvOxD3WVKpMGiMBKKB4z4es9bM+Nzx7OzeSV+gjxRdCmub1xKOhVEKSoqtxcTEGIUphTy//XkUgoIzS88kEA1g09kYnzOeUCzE9ILpjEgfQXlaORAXqicyWZ7ZbAeVCqLRwQtVKkymVLwRL0pBSbohHQkp4S9j09t4c99StEoNKkkgLEVRqjV0Se2sbVzFGPsI+nsb0DjqAFDn5PGfPf8h25KHTW9DEkWUEsTCQaKSin5nF+H+7UnlTgai7P6w/g/4w36iUhSdSke5vZxZhbP4V/WLSJKISqkm15iNSdDijfqJCJG4zxkkIuH0aj2haAidSockSjy37Tm6vF2JaLkdnTsothVz1/S70Kl0KBVKQrEQTa6mROmMbFM20wum827du4zKHAV8fqubjMyJQhY+Mqcsh9ZeUgrxuj3phnQ2tm1Eo/zkLVilUKFRaI7qp1DbsYtVXR9RF2pHq9Dg6G+koWc/Uyrnsn7Pe6SYUtnetwfEeKi2K+giwxR3Xv4s/g+x3l6iLS1IgQCC6uOvsiShLiv7wut/uXo7WFX7LnVtnyQURKHAbxCp6alBr9If9/EcXAoCoDKtEgmJHFMOc0vmsr51PdWd1QyzD6PJ1YRWqaXMXhYPBRfD5JhyOHvI2UnTkCfaj6QwJZ+0rGK6G/fGRaZSCSoVgkZDekE5RfZSmp3N5JhzWFG/IslfZoi1lCG2Uj6oW0HU7yWklOgJ9VNoL6HV2UKJpYgdrhrKbUNICQkYVDq8QTdKmwpvyEMk6P9EnCjVGPRmpL5gotzJgNC16qx8b9T3qOuvIxwLk2ZIY1ntMt6re49Ugx0VCkxqI0XmfFKiKkwqA1qVEr3GSFQRL0z61oG32P9x6gWD2kBUjDI5bzKhWAhBEHD4HNT11SEisr1zO/fNvI+IFKHYVszorNFEYhFMGhP1/fW8W/cuETGCWhmP0Pu8VjcZmROFLHxkTlkOrb1k09noD/ajU+kotBTS5mmLr6cxJ4oqwuH9FPa1VvPrFQ+w01lDt7sDRJGs9GLG5Yxhfet6huVXESEWz+qrUIBKlajwPcDh+h3wrTi06nisp4fQ2rVJDtGCyYSqpIRIbS2a0aO/MMuPFArR6KhFUikZVzINrVKDy9dHTeduon4/foUiPl31Kfw5DnbU7fB0sKZlDbu7d/P4xsfjD8+Ppx9telvCJyjDlJGYxjrRldgPRnQ60ezcwznq4Sw19dDr7wWFgqjZgMaSyvC8MaxqWoVNZ6Pd047DH/cFkkQRolE6XK1Ud2xnjK2Snb4d9AT6EnWx3BEvCo0WpU5PS7CLodpcNGGJYvsQvBEvkWg4IXoAyuxlhAJefIZ0jL4AotOJMjMTT8jD2ua1vLn/TTxhDy2uFq4YcQX9gX5SdGZUggqb1opRUpOrTiNbk0Y+VlDr+fbwiwiJEZbXL0en0lFsLcIf9jOv8iIEQWBz+2aGpQ3jvbr36PB2MDV/Kuta1pFrzsUZcjIkdQjOgJM93XsAEBAwqo2U2ctIN6YzNXcqo7NHy6JH5iuDLHxkTkk8IQ+NzkY6vB0U24oZnjacs0rPoravFm/Yy/9q/ocoiZg1ZsrsZeRb8hP1kg71U3B7e1nesJxUew6TbOkolUoczg42tKxnXSTAEEsJFks6ZqMNemsRDAYEhSJR4XuAg/v1hDxs7djKCzteoMPbgYCAL+Kj2FbMreN/yLD97kFlLiSvl2h9ParCwsQD8YugoXs/i2teYWffXnY7dgGQbylgZuksNtR9SCwaJSyGB50n0es9aiHWg0tBmLQmtnZsTWRgjogR2j3tPPythzGoDF9azScpFCKyezfRpiZyRJEr7TNoTQ/RpY/hUkXZ1buHh1c9RAwRi86CIAnMKJjBqvqVRLxeUCrR6jU4nG1Ull+C0WDBHXaj05kJxoJs79pBRIqys3sXFk0Kqblp6LubuGDY/7HVsYNWZzNqhZpRuWOoyBzOENsQGjyt5GfmMjygTNRWa3I24Q65cQVdNLma8IQ9LNq+iCtHX8nG1o2Jqu1FqjTylXYuKD4Lk6hlT0qM6sZdqBQqVjauRJIkcsw53DD+Rl7f9zrbOrchITExZyIWnSVead1Zz1lDzmJP9x6sWitF1iLOKz+PpTVLaffGS5F4I15yTDmcWXqmLHpkvnLIwkfmlKPR2ci6lnWJH2oAvUrPtIJpXFJ5CYFIgGZXM93+bswaM1adFa1KizfsRYGCNk9bItIo05TJ1q4dvLr/f2xp3QSAKEChrYgLRlzEf3b+m6mF09HoTZSnVbC3rxa/rwO9Sp+wIEHc/yHdmM6url20uFtw+By8tf8t6vrr6A30YlQbKbYV09DfwB/X/YFfFF+P7TDHJnnjVpZjFRv9rHhCHt6oWYLL1wvRKGZtCp6QmxZXM6uaVzMyazh7+mvJMeUk+XNEOzsJf/TRcRdinZI/hSfOeYKdXTtxhpzoVXqsWit+r4t8m53h6UNPuEXrcNa1NB/E+vsTvj2Gbjd56SnsDNTwZsv7dER6EXQ6BI0Gf9hPbW8tkiQyI38GjX11aCMSMQEurJzHqvZ1rG1aQ4gogViQivRKfjDxB/T7+vBG/YhI7OurxW4bTSzQz2UjL+PMkrkoFSpWNKzgo+b1/HvrC0TFKLuGnMEPKq6m6uPaat6Il2A0iISEJxzPCeWP+lm0bRGjs0YzvWA6pbZSKqxDGWsaglllpFsb5U8f3ktDfwNVWVWYNSbUSg3DM4bzTt077OvZl0iqGIqGWN+yLp6eQaUnEA0wq3AWlRmVmLVmpuZPRZKkpFxAKdoUpuZPlUWPzFcOWfjInFIMTAkcmrckEA2wtnktOqWOm8bfxI8n/zgpNLnT20mbu41RmaN4dN2jRMUoJbYSfjjhh7y480VanJ8kylNI0NzfyCrhQ84cejZWvY0htiHUuuo4vfRbrG1ZGw85/tiClKpPZVbhLN5veJ8V9Sv4qO0jZhbO5H81/yPNkEaRtYg2TxsN/Q0UWgqp7ztATWnvkctcRKPHLDb6WWlyNtEb6CMFHWI0SrGliAZXY0L8TMufSokwhCtHXZl44Ile7yDRA8cuxFpgLaAv2Mcra1+irm0XiPGSDkMzKvjhpB+iUesJqiQ6vZ0EIgHsBntCjB7KsULut3duP2ydrR+OupFhh/TVqg3iCYZod7Ug6PUgxR2ZRYWIK+RiT/cehqWU0OFspcyQT7YxmxVdGxCREBQKRAkiUpR2TwfesI8JeZMIimG0Sg2iKGK05XL20HN4p+4drJoUXt31MvW9B5LG0OFu5087/sqvz/k9WcSthTqVjqiY7HwdESNsbt9Mk7OJofahGIwpWHPj0YN761cmjldCojfQh11vR6/WU9NTg1KhTPSjUCjwRnx0ejqZXjgdb9hLl68Lg9oAxKcq7Xr7ESuwH2nK9tPQ7GxmZ9dO+oJ9pOpTGZkxkgJrwafqQ0YGZOEjc4oxMCVwsOgZIBANsK93H6saVxERI4zNGotaqcYX9rGxfSMKQcGGlvX4wz780QAfeR0UWgoJxsIoENCotISj8dpaggSNvXXMKTyN0pRCxuaOozwWwKw2c17ZeZ/kc1GbSDems6JhBUtrluIKufCEPYRjYSQkevw9CIJApjGTbn93/A1cEOgXfdTm6/BGfZiVBnJDWgy9XhDFpGKiJxpvxIug06FxKSmzlVLbX0eBMQcsBUTFKEPTh3FD8ekMSStLbBNzOAaJngEOLcR6sEAREHhn/9s0dexLiB6VQkWmJYdfrX+Ui0dcwvO7/klNbw1ZxiwyTZlkmbI4t+xcck25DLEPwaw1HzOpYJe3a5DoAajvr+dPm5/gF0XXYevvj/tmAX4pgtGWgT2nlDAxNGot/kgAZ7Afk9pIRIzgl8J4I15qemspya6gp7GHQnsxldmj8EcDhKIhUrRmltYuxaw1s693HwIClemVfKt0LhXpFWxo20AoGqbe0xyPmvvY18esTQFRpMHfxt6+WrKsuRRaC9nRtYP8lHxqemuSjkOlUFFsK0ZAwKQ2JSIB+z0OpHAYVCoCIR9DU4fQG+glKkYRBAFJkhAAmy4VX9gXT0ioVJGqS6U8rZyoGKXZ2czwzOEfj+vwCSy3d27nD+v/wJ7uPUTECJIkMSxtGD+a+CNGZx3fNNj6lvU8tPohdjo+caYfmTGSn834GVPypxxzexmZg5GFj8w3koEfd0/UR3PIgcfvwqTQ0k+AQMh32G28YS8H+g6wonEFWzu2AvG3/nnD5vH2gbeRolG8YS9tnrZEraIDfQfoC/aRaytEcCroDfQmxA+AQWtmZu4MSkIpSFIKgqBB8AtkWD+ZqtnVtQtX0EW7tx2tMt6mUWqIifHw+l5/L/kp+UA8rD4kxAgLMf7b8A6S3w+iiD0li/MLzyDPp0KVn/+FOTab1CYElQql3U5Kby+jLGW4CRIWI2jUOsZkVjEkoyxpm2MVWh1YfqhAaehvoL73ADOKZ7Ch7kOiYpTyrOGsal7NjOKZ/H3bM9T311FgK0KURLZ0bCEYDbKpbROjs0aTqkvlqqqrWNm48rBJBQdC7vc49gwSPRC3nNV17aWmuJuJ/f1x8WUwEMvJp67tQ1Y2rgSlElGQsOqsjMwYiUapwRf2oVXrUOoMSFGIaVSMyK1iU8sGeoL92Ix2ADp9nQgIdHo7aXY1Y9PZ2OnYyTsH3mFU5iguKL+Al/e8jKBQIGk0IMZ9zkpsxXjCXgSFCmfICcRFx7SCaRjVRto8bezt2QvERc/ozNGJFAD5KjvhHTvipVJ0+nghWoWC/eHdnFV6Fuvb1qNSqD4OZ9eiVWkpshTR7mknGA0mhPjWjq34wj6qsqqOem27vF38du1v2dC2gWA0iD/iR5REOrwdBKNBrh97PSMzRx4151Ozs3mQ6AHY6djJQ6sf4olznpAtPzKfCln4yHzjEJ1OIrW1tKh8vNHyHo6GPRCJIOh0lA6bDIowUjiclLQtHAvT6m5lSOqQpDD2+v569vftJxwNIYXDSaIHQK1Q4Y/46Pb3kG7OJCZGQScgSiIpOgsz8qeTX9NFsKsaotFE5BWNjYmw8wH/DIg/qMLREC2uFkpsJdT21aIQFfgiPsKxMApBQboxA6VSjaDTxa0Q0Sh9ERfL+tZzzawfY7Dbv7Bzm0gBQB/KzEx0wSA6UQSFArstl7Ls4YO2OZYIE7TaQeVDAILRIM3OJlZFIozMGs7u9h2kGGy01DdjN2ZQ7aimyFKIP+Kny9eFL+zDG/ay1b+VYenDeGHnC1h0Flo9rWSZBvsRDaQQGBAPByOJYkJUuoUwysxMYl1d9Jdk8vSmvxJWC5Sml9HoakaQYjiDLvb11DA0dSjF1hKGZ4wgw5RJqi4Vu97Ov6sXYzekk2MrRELCqDWxrWMb/qgfi9aCVWslFAuRpckiIkYSqQDGZY1jePpwomIUlUKFgIAn4kNSxItgWbXWxJgHpptyU3LZ0LYBd9BNijYFFQr8rl7OLToDXasDjEaiNTUUFdnIsReyr2sPymiATY3rGJ8/nuyUXELRIKIk0uJqpdXVQkgMo1aoGZkxkmH2YSzdv5Qubxev73sdq956xHp2O7p2sLp5NaFYKG5J+rh4VzgWZn3rei4bcdkxcz7t7No5SPQkljl2srNrpyx8ZD4VsvCR+UYhhUJEamrwKqKfiJ5gXFRIwSB+Zw9uvUSGyooj5onnYwF8YR8apYY0Q1q8uOJBqBSqeG0oUUwSPQCd7k4KLYVs69hGcWExKRpz4iFVYMpleDQVT8xBa7YSp1pC0sYwRJsx6kzkNu8nVT8q4Z8BEI1FEBD4oP59Lh/1XSBuCVEpVEzKncSk3ElkmjLpDHSTUTKCPkczsUgIVCqcRjWtkhMreV/Y+T04BUBfoA/h4ymqo2VHVmZkoLDZDjvdNVCItcnZOMgqY1QbybcWEo2FqcyrAiD6cZJJf9SPQlCgVemIIeIJefBFfETE+PmLilH6An10+bqo7akd5Ew+gDfiTRIPCaLRxPSaRWVEVZKLsqiIA7oOmnY3EdKpGJ87kUA0yIH+OkRJpN3TzllDz6LMNpQ/bXgcq95GVfYYKtIqKEofSrOziQPdNQTFMOPyJqAQFJTZy4hJMSy6eJX2UZmj4o70H6cCGJ4xnExTJvX99YRiyZazElsJlRmVg67PhNwJDEsbRpOzCY+nF703RL7CiH5PGxGnEwSBjrJM3tz9OhcN/T+e8fezp3MnzrCbkBhibN5E5lVcxNMbnkQQRSblT6Y/0E9JagmzCmexpX0LGqUGm95GbW8ta5rWsFJcOShbd6OzkSZnE66QK5GVWyko0al0xKR4ORJPyDMoh9Wh/li9gd7B1+cg+kOHn0aVkTkSsvCR+UYhOp1IgQAtRh+9rs6E6AEgFsPR1UBhSRU5Q8/k/eYP6YzEH7Y6lY4peVMos5exvnV9Up/+iJ/S1FJqHHsH7c8f8TG3+FvsduzGG/YmomBy9NncMOxKAl43L3W+TasuQH5uBRpJTygWpkBRQBcBSruNFKbH/TOyjVnsdewhx5RNsxjlX9UvcnrJHC6uuDheBbtlLdVd1WzctpFINEyJuYB5ZRfS07SXmBgj5vPh8fTCF5fSBkjOuXM8YeUKkwnNpElHjOpSmEx4nV5C0VAiKaGAEHdWzhiOP+IjEAshqdQMSS8n05xNqj5u1QpLERTEfW8GQt8lJFSCipgYQykocYacNDgbyEvJI82QljQ2k9pEsbWYEltJ8nTXx/40JWllDFNmIfni06NOwU1MgF5/DysaVjAyfThT86cRkeL7npw7mX/tXMzIrFFUd1Xz+r7X2JiykaGpQ1EolBSllaIQlLhCLlJ0KYzJGsMHDR9g0BiYkDMBu8GeGBd8kpH5cI7Xt0669YgOwmatmeHWoYQbfUgBCYggxmKgUNCbaeQfrW9Qr2xDVd/FRZUX852Rl8X9eExpTDWPQBOVKJhxH/2ij+5QH7u7d1PdVc2CtxcQiAYotZVy9pCz2dezj2A0iCvkSrLcDFjw7B9fp4HvRUyKJaK+YlIMo8YIfJLDqtHZyNLapagEVSL7dW5KLpFYJKne2MHYtIeLb5SROTKy8JH5RjEQxu2N+hNv7AcTi0VoOrCVcydezqSJd9Cp8BKNRVEICt7c/ybrW9cPioxZ2biS/zflJzy18S+0ulsT7SMzR3LF8MtZvP5vzCyYzoyS05CQsGqtDNPlouno5fm6/9GqDzK8dAp/2/o0Wzritb+MahNnDz2Lq0ZdRVu0lyJrEZdXfIe/Bf/Guua1ZJmzsaUOwaJNoSprNM9vX8S6lg1MLZhKJByESIS60H5elV7nwoIz6e6sg2gUvTeUKHT6RfJpKrEDqLKyUBylEGtMjLG9czuBaNyiNipjFOtb18edwMNeHD4HCkngNMMcMq259AV6GZpWRjAaRKlQJh6sAMXWYlrdrUhI9AX6yE/Jxxv2srZ5LTMKZpBqiNeOGiihYNaaB4sLQaAkrYxbx3wfe+8niSatmhRCRImIUQRByfaObQiCAlGIO8fPLZlLaWopm9o3U9NXi1JQYtXbWLxzMdPyp3FaUfwekSSJ+v56Xt37KlmmLHQqHc2uZlL1qWSbs5NSAVRlVfHwnIfZ49iDK+QiTZ+GSqHE7+ql2reeAnMeFkvGoGs+8BKQQKmkPVvPFq2DVze/jicWgFiMNU0fkm/OY6SpFIvKxPDydIb5jNjRUJOp5fXmN1hSG8+qrVQo0Sq1NLmaWFq7lFlFsxCJf88OttwM1C0rsZUwImMEOzp3JIYRk2JISIzIGJGwwpnUJjwhD0trl6JX6fmg4QPMOjMp2hTyzHmMyhxFTW8NopT8nR4ooioj82n42gqfhx9+mJ/97Gf8+Mc/5rHHHgNAkiQeeOAB/va3v9Hf38+kSZN44oknGD58sN+BzDeTgTBuk8qQiMJJXkEgJkbReENUZmQz+uPCoF3eLl7e8/Ig0QOQY85huL2Ch6bcy9zS/8/ef4fHcd/X/vhrZmd7R1tg0QESAEGCRWwiKYmSqGJJlmSrOLZkW243dlxTndhOcuX7deQ4yU2xI8dxfoltucRFtorVrC5SpESKvQAEQPS2WGCxvU/5/THcJUCATZ25OM/Dhw92FrOD3dmZ83m/z/uc6winQ9gkG8l0lAf3/oiMmmMmF2FT7abiClyZnOSI2stEboampZfMIT0GDDR4Gtg5soueUC+/t/z3yCgZ7IrEH136R1zXfB1ZOaNPhgV7ORo4zI7BHaBpGBBxSnZiGb383xfqJbfkPQCUOiqozdvfUvPCNwLR4VhwbL1gJum1eEkn0izxLmF/YD9HJg8jKzLl9nIm45PImsJvex7jzmV38Fz/s3x05Ud5ovcJgqkgbrObaDZKk6eJTTWb+GXnL/FYPIzFx7i68Wr6wn2cmDnBUGwIu8lOlbNqTmtuNrmIZCO4TS5a8x5Kg8k5BLpNqqSpbClTk/sAMJuszCRDJOUUbWXLiGfj2Ix2+mb6yCs5MJhI5VM4TA62D28no2RYUb6Ch44/VGwNKZru6J2W0xhF44ItQ5/Dh8/hYzAyyK8O/jd9gU5y+Qwm0UiTo47bm95LY+2KOdN8p3s5pcqcvBJ6hd74JPFMDE5+V/JKnpH4GBaDmRuW3siYKcOwEMVotCAabIzHx3GanASTQQyioUhO+yP9fMj5Ifpm+nCb3XNadIX/A/EAv3/J7/P9/d9n3/i+IkFdUb6CT13yKQLxQJGADkWGkASJFwdepM5Tx/ah7YzERnis+zG+sPEL/PTwTwkkA+QUnYh2VHTw1Su+uqjvWcQF46IkPq+99hrf//73Wbly5ZzH/+7v/o5//Md/5Ic//CEtLS184xvf4Nprr6W7uxunc9FE6/8FiB4PgtVKLUZK3ZUEZ2ZOtbtO6nlKXZXUGssxVFQUf+9cLYVKTzUV2Ilnony757v0T59M/xZFWmpW8dlLv0BXsItdI7vwWDws87aQFPLEDXkMkrFIegCqXdWMxkbJKTmCyWCRbMXTEXb3vkBeFHju+BPF5290eEBV8dpKyaWTNLob6M/niWdjoCik5AyljgpuaboBe1x+y8wL3yoMRYboD/dzbfO19M70UmWvIiNnaPQ0Ek2HSeWSnBjvxGi1sWPgRa6o3swGRxtoGvesvgeA8fg4vTO9HJo4xK86f4XdaOfS6kvxO/28Ovoq7297PxX2CmpdtbSXtbOuet0ZyUUBaiRCPto9p2pSljbwhU1fIr7zb+mb6SOciZDTZFZXruaO9jvYN7YXh8VJNBvFeHIyL5QKUeuuRYjp2iNFU1A0hdfGXuO6JddRaa/EIOral3X+dVgkCy/0vzDH88ZmtDEUGeLHh37M7sGXsYgmRNGArMpMyGHSIxqfF6yUWFcUKz8Jo8qgPUlCTuGUbGC1koyp5LJzo1IAEEU66jfwTGAnz0++QiQZAkliaWkLjd5GVE0llU8VSY/JYNIJi7uedD6Nx+yZ49Zd+H8iMUGdu467VtzFne13EsvGdL2V2a23spRMkegl8nqr2GlxFkkP6CTqO7u/w0dWfYQKewUmgwmP2UOHb9HHZxGvDxcd8UkkEtx99938x3/8B9/4xjeKj2uaxj//8z/zta99jdtuuw2AH/3oR/h8Pn72s5/x6U9/+p065EW8jRDMZoytrTh6e7ml+SYeNRiYDgzomg1RpER0cEvbLXgbO+ZVH05f9XvMHtorThmtiR4Pa6yb+Ka3lq7ICaK5GC6bB4tk4wcHf8BodLSoM6lz1/F7y+5EMQi6MHoWnGYXg7EhHEY7aHqLxGgwkjeJBGdGubHjdsaTAUZC/STTUSxGK15rCe3lyxByeVRUGkqbMRpNoKisrVzDJm8l9rgMmvaWmReejkBkjM7JY0QyYZ3seZZQnjdfcEp8oTqQyqXoDfVyOHCY18ZfQxAEquxVbKndzMDEcUQEar31mMw2Ms4cPmsJqXyKrqku1lStod5dT4O7ga2NW8nIGQ5NHCKQCPC+tvfxy85fkpEz1C+vx2qynpd3jOjxYFq9Wm8Z5fMIRiOix8NqcvzBuj8gmU8yHB3GYXJgk2xk5AwbajdiNVr522v+loMTB3m893EEQWAkOkKDpwGf3UeVo4qN1RsxCAY6pzoxikbMkploNkosG+Mrz32lSL4lUeKGJTcQyURYWrKUJ3sex21ycjzaR17OImn6lNRQdJit9Vu5PFKDwadXhh7s/SUnRo8UK0MuZxkrK1eRCndTV9rEcHxUr4oKAmtq1vLS6MvIqozf6UcwmcjIGUZiI0wmJqlz11Fhr8BmtCEIAjklR17JMxQd4idHfsK6qnV8sOODxRbd7ADg4egw5bZyTAYTFsmCzWjjEv8lWAwW6jx1xc/CYXSQkTO4zK4i6Zl9jjzY+SCrKlfxhxv/8E0PoV3E/1u46IjP5z73OW666SauueaaOcRnYGCAQCDAddddV3zMbDazdetWdu3adUbik81myc7yGYnFYgs+bxEXD0SPB6mxEf+RI9xt28xoyyqScgqHxUWDvx13mX/BlgvMX/WfDsFspsrXjMNTweHJwwxHhnhu4DkOBg7SP9OPZDDitXoZigxhFI1c0nyZfkyCiHpSMKtqalF8KwgCdpOdYDJI93Q3qUyc1omjtNsbWenrwGfXTflC0QBTmRlC8gypXBQJgUwiRZXDT4OhHHvqJOl5C80LZ+PAyGv8y45/oD/YrYdxAs0VbXxx/edYHnRCIICxru68jsVhdGAymHjg8AMcn+ri0ppLmU5N6waOyWlUFNbUbSQnKuwd38dr43tI59N8b/+/k5RTrKlczYMHf8Y9l3yCjTUbGU1OEE7P0NBaz3Q6xINdD5KRM/gd/qKJ3/lCMJvntQ2dmFlZuZIne5/kmf5n2FK7hfH4OL/r+x2hVIgSawkui4vrmq7j0+s+zS+P/RKTwYTT5EQSJSyShbScxipZaS1rLTp4WyQLu0Z20R/uL4aYrqhYwYOdD5LKp/j02k9jlswMRYeJZqOIgohDsiFqEE6F2Dd1mNWeNgzZOD85/BN2Du8klYkXx/K9+SqCuTAO0czWlmvZPrSd4cgQCAI+dw1j6SD1nnq9XXeSyEUzURRNodpVzd6JvQQSATQ0DIKBDf4NHJg4gCRKRLPROZXS06f/AskAoOuqbmq5aY6GqYB6Tz0eq2ce6QGdAJolMybRdEHht4tYxEK4qIjPz3/+c/bv389rr702b1sgoH+xfKddpHw+H0NDQ2fc5ze/+U2+/vWvv7kHuoh3FFo2S76zEyUQwDw5SXOx1TWJoTaDeqXrjMTnfDAYGeTBYw/y7InfsaZqLb86+kssRivN3iZGIyNsqN5AlbOKnJzD56zEYrDoidbDu1DRTq58zWTlHKt9qzAh0T3dTVpOI0gSZqeXwNQAzISRc1muqdzM3Ss/zF/v+D/sm9hXPI6VvlXctfIunu96nKr6W3CoEsbW1rdc2ByIjJ0iPZruJK1lMpwY3M+/ZP6Bb7R/kZLxKIIgYLRaz3k85fZy8kq+6DisqApltjKmU9OIgsjATD83LrmRnx75GU6zE5fZyQv9z9MfHURDY9/4ftb4VrGj91kOD+7m7kvu4b+7fkTnVCflnmocZgd+h59tTdtIy+kFb7qn41zxCA2eBjZWbySWidEX7uO5geeIZqKnrA+A5weeZ71/PXe038Gx4DEcJgfXNV9HW1mbXjE5WR0MJoK4rW421Wzise7fks9nmUmFWO5bwfLydo4Fj7LOvw6HycGW+suJZaKMx8bYO/YaCuqpqTYlx3B2CjkUYefwzuL5hMMBsoyMylBsmKubr+GloZfoqFrFlobLUVSFlpIWdo3u4tDkIXJKjpySQxIlGjwNWCQLZbYyVvlWkVWyhNNhqp3VrK5czZ6JPaypWsPSkqXIqjxnLP1Cp/+cZieX117OZGJyzuOSKFFmK8NpcuK2uC+IuC5iEQvhoiE+IyMjfOlLX+Lpp5/GYrGc8XmCIMz5WdO0eY/Nxle+8hX++I//uPhzLBajtrb2jR/wIt5WzPb+sGWhMhPFPDU1b5xdGRlB7u8/o9D2fF7n0e5H6Zs5QSoaIu/LkVGyaJrG0rJWPrPhszza/Shd011EM1H2Teyj3FbOX17xV3xn97dPTrdoOE1OlpXV8MHlv8e+if0YBANei5cyWxmSwVg8tjAZRojyTM+TLHHWs2rNSnJKFpNkJpmO8djx37Kl5lLGSiU6qle/5aQHoHPyGP3Bk7EIgqBrYBTdX6cv0EX3yjCXJlLku7sRKyqQziG0nk5O47V6cZldRNMRAvFxmryNiIJYdMHW0H19rqi/jEQmQX9kAAQBAYHp1BQWo5VgepxEKsLodD8fX/ER+uMjGIxGHFY3AgJpOc3NLTefs811vvEIS0uXcih4iFfHXtU9jQTduDItp0HQx+vdFjfLy5fTUtqC3WSn3lXPCt8KOnwdHJ48zOHJw+AGAYEfHfwhw+FB1lWtQ1Vlto+8jN3koLW0le2DLzEaG2E4Okz/TD9NnkZuXnYrz/Y+DZpKrbsOTVVIiTLT8amiFgdAEEUwmUiRw2X1UOmopMJWQedUJwBrKtcwlZoqtrCAYuDoYGSQSkclHouHT6z5BGOxMXpDvcRzcXaM7MAqWWn0NOIw6efr6dWYC53+W1K6hFtbbuXQxCG6Z7oxCAbMkhmnyUlrWeu8ibdFLOL14KIhPvv27SMYDLJ27driY4qisH37dv71X/+V7m79QhwIBKiqqio+JxgMzqsCzYbZbMb8NtwsFvHWIJ6N0znVycPdDxPNRHGb3dhiWdr9K5GurCKamKHE7GFZ1k3Zq52Qy6Elk3PyoS4EhTHdXFZvHxhFE2bRxIdW3k1OyfEPr/wDx6ePA1BiKWFZ+TK2979ATs7w/13xdQYiA8TzSbw2LyemT/DjPf/FRDZIWs7QUr6MrfVbMRlMGAQDykmzvvFUgJFskN6Jw3NH9EURwWZDsNtJmbSiA/JCYZyFCA8tn79gDc7piGROefEIgoB2kvQUEM3FAQNaIqGnxZ+D+MTzcbJyFp/dR52rFlWRKbWUIroFskoOk8FEh28FRycOsXNgB5sbLsNucqChISCgaaqeTH6ylZiU02RHurmt7SYyFgMps3DOakMBFxKP4DQ78Tv8p/yDNI28ktfH6zWNVC5FKp9CEiViuRiJXIKckmMqNUVrWSsHAgeYTk3rvyvLSJpI33QvTe5GAokAg9O93L7sdn585Cf0R/qxGq00eZuZSYd14gdc4l9LKBZgW+M2EvkUDqubqLJwK0hDJzMNnga+cvlXGE+MIysyZoOZrukulpQsYf/E/mJWF0AsG+PSmkuJZCI4TU5KrCUMRgdxW9y0l7XjtriLrTrgTanGLKtYxr1X3ctPD/+U8cQ4JtGE2+KeN4m3iEW8Xlw0xGfbtm0cOTL3YvTxj3+ctrY2/vzP/5ympiYqKyt55plnWLNmDQC5XI6XXnqJb33rW+/EIS/iTUI8G6c31Mt4fByjZMTv9NPgbiCUDs1LWi+xlnB72238857vcnzyGG7JQS6boqN2PV+98cusGVIQy8vRzlIFPBsKK1qTqAuIM/kkd674AC8OvcgV9VdwYlaKdkF4W+upY0f/iwyuGuQ9I3biSPyO44Sy41zXuI2UQUFW8kwlg/zw4A9Z51/HOv+6oi4iL+cxm2y6S7Ksa3kQBJAkBFEkI2dwGB3zsq6ychajaGRb/VV4EzLVOdscLZCxtfV16YE8llmGcZo2b7vb5ARS+g+nkaKF4DA6MBqMOE1O+iP9aKrKRGSUUnsZZqOVFRUrKLOU0RnqIi1nQBBRNF0fpaoKqCoOo53q8nZyap7VvlWsLinHPi1jbFt6QaP9FxqPUO2spsRSgs1oQ1ZlXaSu5EnLaWySjdayVp7uf5qfH/05ZoO5WAH6xJpPYDGcqlxrmQylGQMl1hIMBomZTMHFWuOW1lsptZeSk3NU2MvZVLOJp048SSqfZlvzNvoD3cQS09QZK6iVStEcGn6Hf8Eg3ipHFZWOSjp8p/xvXh19lUgmwvXN16OoCocmD6FqKqIgUuuq5brm6zAIBkZjo5TbynUdnN03h/DAKV+kNwOtZa382ZY/O+822SIWcSG4aIiP0+lkxYq5JVO73U5paWnx8T/8wz/kvvvuY+nSpSxdupT77rsPm83GXXfd9U4c8iLeBAxGBotCzUL53u/wc8PSGzAajMRz8TkX+MtrL+dfX7ufY4HDCKoCZjeYTBwZ3ct9O+7j28u/TPnOnRjKyxGtVqTK+RlOk4nJU5NdJ8eJC4LnworWbXJhNdnpm+zhuuU381D3w+SVU2PkVoMFt8XDSHSYtVVrQRSJZKMIZi+jmUmiaprtvc+A0YgqGQhkp5GVPBiNTCQmin4nJdYS/E4/bosbm8lOWkwjIGA32tHQkFUZn8OHy+xi/8R+bEYbiqrgNDuJpCI80/80PcMHubx8LXImw3vabiKdjpHIT+EcjNK4ZC0ux4Vle7X7ltNU0aq3u2Z7JYkizZXttColYMzrxOw8qmr1nnoEQeD29tv5deev6Y/0oxoFpjIzrHR38PFVHyenyTSVLGHfxD5G46NFSwBBEPA5KqkwuHCm8pQ6alidL8eezL8uofcpwrEwTo9HqPfU017RzpHgEQKJgC5KPhktcUvrLbww8AKTSV2zomgKsirTNd3F9/Z+jz9a/yWGxzoxIOKzllHuMHOnvwG72YEGBKMTNJY0871932PfxH5kRY98uLR2E3d33M0P9v0nscQMplSWKks5t9Reg6VvhPr2Zt7b+l4e635sznfD7/Bzc+vN8wJBBQROzJyga6qLlRUruazuMlL5FIIgEM6EsRgsDEQG9OPXZL648YtsH9o+L+3+za7GXGibbBGLOF9cNMTnfPDlL3+ZdDrNZz/72aKB4dNPP73o4XORIp6N8+CxB+eQHoDxxDi/7vw1Hb4OalyncqkkUcJj8TAUHcJpcyNqApLRTD6TRNNUjowfoHNtlCuyWdR4nNzu3Yjbts1peR0MHDyjl8/qytXFMd2QLNNasYzuiaOMx0Yps+jhkGW2MjQ0ckqOSCaMrMrImoKAQImtlG6jxkBcxah5cXp9JNNRBFWjzFLCdGYGWdPJTEbOFG8mBTfftJymJ9SDJEoMhAeI5+I0eZoIJoO8OvoqPzj4A14dfRVR0KtAKypW8LHVH+Oh3T9CrLVitdj55oFvUyE4MOVVDKKBhtww1aV1JHPJeSTvTKj0VPOly/9UFzhP92K02Gn1tVPva6Hd20JwegyjScJpMJ5XO81pdvLelvfyWM9jvH/Z+4vtIo/FQ62zltHUOMeDx/n0uk/zL7v/hR1DO7h92e2Abr53ed3lOFPCHC+jQkXrQtt5JZaSs24/PR7BaXbywRV63MNDXQ8xFh8DdPfoS2su5eHjD3MseAzgZFtOQ1NVuiaPEs1GYCZMVUUzL43vxqkZcQk+Yvk4NZ46/u22/+T+1+7nwPgBjKKE2WhCFESOTx3n4c7f8OnVn8RvLqfKs5FaPLqHk5bCnpTZVLEOJZEklouR0XJYLU7cNi+bazfPIScHAwd5uu9p+sP9jMRG2DW6C6/Fy8aajVQ6KvHZfKyqXMWS0iVzqi7N3uZzVmPO1HZdxCLeaVzUxOfFF1+c87MgCNx7773ce++978jxLOLNRcHYbjbpKWA4NqwHONp9XFpzKbIq0+hpJJaLMZWcQjiZA+21enFZnWTTCTRNJZKNIDocCAYDajg8R+szmZicR3pAT2j/9u5v881t38Tn8HFL6y08cuwhlLExVnpacYg2UFVychafvYKu6S40TUPVVDR0QnZl09VIgoHngq+ioWEy2RhPT1HrrCYWn8KsQKW5jKxRoNxezmrf6jkme4XRYEmUeG3sNYwGI6t9q7lh6Q24zC7uf+1+TsycoNRaSk7NYZEsDIQH+NHBH/H+9puoKmtkKjXFqsaNGAUJj2AFo8QPDv+YYGaaenc9iXxiDsk7G9bUrudvb/xHuiY7SalpXuh9huB4L7GjB0DTKPM18L41H6LmpJD8XASkwdPAPavuYTgyTDgT5vDkYWLZGK/E9NiKrJJFEAQ+ufqTCKLujfT+tvfjNDuxmWzYRQu1hhIceRGhWvfbeT0apg5fBx0VHQu2u84Uj9DgaeDLW77Me5a8hxMzJ8gpOWxGG6qmsnNkZzE4VRRE/azM5zEgkMqnqfDW8OLIThpql7O991mGh57B4vSQyCepsJXTP9OPUTCQVfMYBQlRFDCLEscDR7GsuJsNih97Mg+crDYKAmoige/Yca43lDJqtpNU0jgkL40Va/HMakUVzvfh6DBXNlzJkeARplPTKKrCiZkT1LpquXP5nQu2r85VjSm0XaOZKOW2cjQ0drCDlb6VrPStXCRAi3hHcVETn0X8z0YinyCnznWZlUSJltIWbEYbNa4aemZ6GI4M0x/p56Guh/jq5V9lrX9tUVSazWcIxSZxmKzksik8Fi+CKVXcnzbLw6kz2DmP9BTQH+6nM9iJz+HTb9JLbmfQ1EKCHGaDmWFfD/sPP8utl9yCqqkcm9JX+WW2cpq8TVzbdA3/sv3vycgZ5HyWyrIGbmi9iSe7H8dvLSeRimBAoGwB0gOnRoP3ju2l2lmNRbIgIBBMBpFEieHoMJFMhISou9+qmorZYCaUDlFX1sxYepL/PvozBiODmAwmLq+9nGB6irwmk8wni62100ne2VDpqcZudfFfO+/HEs+A0Q7lVhBFwmR49PgjfLTuFjznGaHhNDup89RxqOcQLw+/zHhivGiAV++u58alN+pRFrNIyVcu/wqX1lx6zn2fL+o8dXz18q8uPNV1lngEp9nJlrot+Ow+7nv5PvrD/Xx45YeLZMdoMGIQDUiCCJqMyWCk2l7JhCuFO+7l5ZGdZJCpr2zFKBqRJBPJfIpYLk6dV9ez5eQsZqMFARHJICIJBuzJ0yJWLBbyXV2oMzPYgBYADEAMMXQQdVtpkegXzndJlBAQqHJUUeWoIq/mMYpGHEbHnAy0hbBQVQcokh6/089z/c8VW26Pdj/KtsZt3LH8jnktt0Us4u3CIvFZxLsWDqMDk2gq/iyJEhurN/LC4AsksgkQIJ1PU+2q5qalNzGTnuHgxEGS+ST9M/2omorL7KLWW088HaGjfBntWjlwytdpdlUgko2c9Xhmb3fkRdqSdjCXIHf38am2D/GdzH+w48Bvuarlcm5qeS9mg4lLqtaSzMT4we5/Jx2ZRpNlDDYbY9P9mA1mLq3dxHBkEEQRm7uUyxou587ldy64InaanVhNVqLZKNFsVD+mTASn2cl0arroepvMJ1E1FYOg5yrFcnFm0mEskpVIJooASJKRvRP7KLWVUmotnZNRNpvknQtDkSFCiSApo8a0miBDFqvBTKnogESQESK4LyBCYzAyOEebUpjUGooO8UTvE3zykk/OISSyMj9b7Y1iU+0m7r/xfo5MHiGcDeM1e887HmFJ6RL+fMuf89PDPwUNLq+7nN1ju1E0RXc9VkEyGLm0ZhOrtCqs1izhygR9wxMEM9NMzgT1eAg5zbUt15NRMkSyUQyigTJHBaqmYjfasMkGyiTXPHG5IAio0eiCx3Z6hbNwPreUtvDC4AuMxEb091tVQdOYqZ0GVeUT6z614Pl4upgedK3PxuqNxUrPbNIDukt5f7h/TpL7IhbxdmOR+CziXYt6Tz1N3iYGIgOk5TStpa28MvIK47FxlpQu4UToBLFcjNHYKGaDGZ/dx8HAQW5uuZnnBp7j+PRx0vk0o/FRtjVu43PtH8d3aKK4f9HrnZPX5TF7zno8bpOTfH+/XiUyGBDKyiCbBVmm7XiYb7R8hm5jlGg+jttWwjKTnxkj/PPRB0lHQ/rYtyhCNovJaGRkuo+r1n2Sa5dej9lowe+qZmnp0rPeDGaPC2flLN3T3aysWElGzmA32skpOQQEym3lRDIRAokAeTXP3+78W5aWLOW29tt4/PhjZJQMsWwMl9mFWTLr1THlVPXrXCSwgEQ+waQaY3fgFcKpUPFxr62UDZXrSCiZC4rQGE+Mz7lRmgymk67XKkPRoTnp3FbJSpWjaqHdvGHUeepedw5UYSJpJDLCkpIl/Pvef6dnpgcNDVGFdvcS/nDVH1A6ncFrtmIXLYyFhkhlY2A2kconUQwCw5FhWktbCSQChDNhMnIWp8lJSJ6hrWYzTY46iMSL5EewWnUx+VmIppbNFs0Z49k4ayrX4Hf6eerEU7oDdz5f3J9ZMzA1cIzB2m466tbN2U/Bz2o26QE9of3h7oepd9WjoS04WZZTc3OS3BexiLcbi8RnEe9aOM1O7lh+Bxklw66RXZTZyjg8eRi3RTekK5iuOUwOIpkIDZ4GhqJDfH/f9/ngig9yWd1lyKqMx+JhW/UVrNw7CTm9dSZ6vZg2bpwjbG6vaKfJ27Rgu6vRXsvSsJHs0e0AaKqKYLFgWrsWweVCi8XwnghwKYBkwVDpQnQKDDvymDCAqupGcgXk8wj5PLGpMS4tWcnK1svP6z2ZnYEUzUTJyBmMBiMrfSvpCfWQV/M4TA5i2RiyqodnJnNJ0nKaQDJAajTF+pqNGEUTiqYU4wd0RdQpnIsEFiAgsHtiL+HTboDhVIg9gb18vOMjFzRZlZfn3rStRmsxeV3V1OLknFWysqVuC0tLl573vt9OOM1O2n3ttNPOsvJlp6YETS4a8BKLTLLXmMBscVJtbyKTT4MgoGgKqqqgCRoPdv6aL1/2ZZ4feJ6Xhl4ikUtgNVr10M+Vd/NEcCc3NF9FHZ5ijpg8NnbmgzKZ2GsO8s0n/oEjwSMsKVlCT6iHm1puosZVQ4WplHJ7GXk1j9PsptZcTnR8gNjkCJqvY051tOBntRCi6SiaSyMjZxbcXqjiLkZPLOKdwiLxWcS7Gg2eBr608Utc23Qte8f30uHrwGa06SJMTQFN98sRBZF4Lk4sF8NtcrNvYh9D0SFMBhMus4stVZdiWrMGFAXBZsNQUTHPwPBMCe2Nrno+v+RuvIdPZQgJooiWSpHbtw/junXIhw/rZn2ShKGsDNHpxNjaijM7iku0YjU7SGfnX+i9Vi81hrNPEs3G7Ayk0dgodqOdgxMH+fDKD/Obrt/w8sjLSKJEWA6zxreGu1bcxfbh7UWtyUBkgM21mwkkAjR5mtDQKLWVEk6fGtNu8jbRXtF+XseTl/M4zU7Cxpk51QIAh8mBYll4sutMEz9+px+rZC0K2iVRwufwIQoiRtGIy+yivUwnqGdqCb7bMDv/rXu6mx8cfIDRyROYMOASrGgeFx9c/zF+ceTn5OQUiCImgxGjZOQXx37Bl7d8mSsbriSZT1LjqmEqOcVgZJBQNsRjY8/PaRkZKioQvV7UcHjecUyubOC+XX/D0WldfzYYGWSVbxUiIq2lrRwJHOKZgWewGq1UO/wstdVydd2VOAQz6kmdVsHqYTQ+SpO3CZPBRN9MX9HEEcBtcQN69tjpsErW4vbF6IlFvFNYJD6LeNfDaXZiN9oRBZFELkFGzhDPxYuVAA0NURAxCAZMogmH2cF4fJyJxARG0UhWzpJWs2jpFFouhyDLiG63nmF0GhZKaG+TKnFu36ebB86CIElomQyCpmHetAktm0UQxaJ/jGA2U581UOXwk3I30x3tm0N+mira2OLuwClaL+j9mC107pnpIafkODRxiFtbb+Xm1psxikbScprR2Cjf3/d9Sm2llNnKAJ1IAHROdXJ7++26IPpkJcFsMFPvqedjqz92XvoegOn0NFfUX8F2tjMcHS7qQ+o89VzRsJXpzPwb8OyJH4/FQ1bOogkaq3yraCttY0vdFnYO7ySajZLMJXWvIruPKxuvZF3VOrbUbrkozexOhE7wrZ3foj+smzQiy1glK/5MLYa8xJ0dH2Q0PorL7CKn5HCYHFQ6Ktkzuodfd/0aVVO5q+Mu9o/v471NN6DGYkwnkwyG+ujwrwZAdDgwbdxIuPsII/kpEkoap8FGjbGMbsMMVpON25fdjqIpWAwWPFYPta5aHjr+EFaTjTVVl5DLJpFyCuPRUXZN7OEm32Vo+fwcq4dkLslUaoplZcv45JpP0h3qLpIfs2RmpW8lg5HBOUaKs0NZ30yzw0Us4kKxSHwWcVEgkU8gINDobSQQDxBIBGj2NjMcHSaei+sCXUXGaXZS76nncOAwdqMdVVOpsJczGhshKFvwntDdkJWhIcxbtmAoK5v3WqcntOe6usjJC4toBVEEVUWqrl5wu9Ps5NZVH+Ch6WksMsTcMjk1T7W7hg/Vvpe6yTyG9ooFf/dscJqdrKteR89MD5FMhHJHOQ93654xNyy9gV8e+yWVjkoaPA10TXWxqnIVQ5EhwpkwJoOJMlsZLaUtRDNRXRitZDAb9Eyk09teZ4Pb7Gb32G46fB1sqdtC7mTERCwbY/f4Hq5punbO8wvakGgmSom1hEeOP4LL4qLcVs5AeIClJUu5tvFasnKWV0ZfQdM0XdhrK6PcVo5kkN41uhA1kUAJBnXCa7HopphnMGyMZ/Vsq0IlsZCflUEhko+hZBXuWH4nBwIHCMQD2E12xmPjHAgc4Nqma4lkIvidfrqCnai5HKWSk4mZMEouS9Tbg6yWYSgvRzCbGbVkeMRwmOmZYZ2sSxIVFQ00G1qZTEzydN/T5NU8bWVtOIwO7mi/g4OBg2iahstgo9buJ5oPYjHacBmsTGVmEI3lfPvVU5XQgi6sa7qL/zzwn9yz+p5TUS3WkuLY+pKSJXqcTDpajLd4K8wOF7GIC8Ei8VnERQGH0cFUaorrm69n+9B2RmIj9IX7qHRUsrl2M7ctu42Z9AyTyUkOBg4W9QNNniY212xhMNRHd1kFhcFnNRwmf/gw4pYt5/R7eaPbG30tfOLqP2LgxD4SyTB2g5WarAVHUMa0YcPrTop3mp2sKF/BF/Z9genkNEtLlvJnm/8MNIg0Reid6WUyMYnNaMNj9mAps7C1fitXN11ddEnunemdN7I8HBs+r3F20HVRde66YuDlbCzUMitoQ0qtpTxy/BGWli7l5eGXebb/WQDKbeWIgggarPOvm0OkHu99nCPBI+d9bGeKOnkzbrhyIEBu9+45LaWCbmwhN/ChyBCRdOSMx3nXiru4f8/9HA4eRlZlUvkUjZ5Grm26ll93/Zrrm6/HarTSE+xiS9VGHj72GzY5ljER6caWksm++ipSSwuZ6nIePfEoYTmOwXvKbNFosvJfB/6LqZTuiVTnqiORTXB8+jitZa0oqkIqn0IWsthMdjqqVuLKGzBlVZJalq7E4Jz2byExfTo1Tdd0FzlZ186dTmo21mykvbx9MXpiEe8qLBKfRVwUqPfU47a4GY+Ps6V2C9c0XUPXVBcZOUMsF+PZvmcJpoLUuGrwO/3k1BySKDEaG6Ur1EWrpYaoO87sU15NJIrahbPhbLqJ0yfDzgRPZT2rHKWnKgRm84I6owtFLBcjnA4jCiIvj7zM7rHdbKnT3x9BEDCIBgZmBpBVmTp3HXcsu4MqRxUTiQl6ZnoW3OeFjLOfSRdVMEI8fR8FQpqVs7gsLl4efpmh6Cl7gYKA+YeHfki9p77YmrvQYztT1Ml7W9/L5trNb8hDRk0k5pEe0Mn0Qm7goP/dC2leQE95f2HoBcbiY5TbyvUcMgRkVWbXyC621m/lkqpLmIiN6waVSh63yYnB5qDUVUlN1oKWiEE2y8DIEULxIII0933T0OiP9OO1ehmIDFDpqGTvxF4ycoZkPonb7NbFyIpCIDpGu2sJpryeB+fy1dIdHySZS6JoSjEx3SJZqHRUkpWziKLIHcvuWJDULEZPLOLdhkXis4iLArNFveOJcQyCgTp3HWajGZfJxaHAIa5fej33vnAvJ8J6UKiGRntZO7e23sIr+x/jzsabgVku0KKIdh4eMwXdxJlW+OdLXkSH4w0TnQIKaevTiSlqnNWE0iFMBhOykien5DgROsGG6g00eBrIK3mavE260/VJwnAm0lPA+Y6zwyld1LHgMaZSU0WtULO3ed5zC4LWVD5Fua28WOkpQBREUvkUGTlDVs4imeZfos51bGeLOnms+zE0TaPUWvq6qw5KMLggCYb5XjkFOIwOBIQFw0NdZhcnZk5gNVqRRKlY8UnkEgxFh7i05lL2T+znx4ceIKfkEQWB1pIWrmi9lmttHdhGYoCe8J6Qo7ru7LTXL0xYeS1eSq2liCfDbQEm4hPUe+r1TDGTCVlVSYp5xLJKSr3VWO0estEsU6mp4v4KFR+LZEEySVQ7qhfJzSIuGiwSn0VcNCiIek8vm49ERggkAnROdrKpZhOX1l6qj3UbHYiIvND5JC1lzbTm3RSJjyQhWCzzPGYKhELL5xFMJkS3G8FsRqqsRNy27U2v2LweREMTDIwcIZGO4nTYmJwZwWP1sq3xatrK2nh+8AV+0fkL4tk4V9RfQWtZK+uq182pknjMHjRFQcvldEGyKCKYTAgGQ3H7hSAtpzk6dbQ44nxw8iAl1hJuab1lTnWlMI6fk3NzJoFA9+wRELAZbYgnE9gXwrmO7WxRJ+OJcWLZ2BvykJnt9n2+2+s99bw49CLbmrbNM/WzSlaqndUMRAbIyBmmU9PEs3EMogFREAkmgzjNTkySGZPBhKppBFNTvDyyk9XVdwA68REkCQd6fMrpsEgW3bZAEFhRsQKLZNH1XILAseAxvnbF1wgmg0wkJsBgQJSMlJXX8Z7m9/BU31OU2cpYVraMrukuAGRVZjo1TaWjkpbSlvOeAlzEIt4NWCQ+i7iosFDZvNZTizakUe2uZo1/Db849gtGoiPk1TyxdISNpWv4YtvH8R6f1n9h1sj5bI+ZaGiCnvEjTGSnMRpM+I0l1IzbcZfpwmXBZEKqrn5dGVBvFgan+3ho538SCo+jqSrtSy9lSWU70ZPi11dGX2UmPYPX4qXGWYPP7qN7unteDEWbrY5GqYK+k9EaAJokIbpcNPvaLuhGFs/GeaznMUyiCZ/dR0bOFCM1Hut5jHtW3VOsrhQqdy8OvEh5ury4D5PBhNfiJatkSeaSrK5cvaBPzPmM2i8UdTIbGTnzhjxkXo/ma3YQ6xX1V6Ch+9x4rB6WeJbwxIknGIuNMZoaRVZlVE1FVVRsRhtOs5PeUC95JUcsEwNNw+GqpX+8k12Ow9xc2ow9rZOdWjyUOioIM9dDR0CgvbydeC5OIpfAaXbitriJZWNUOavYPbqbVZWr2GrZislg4sr6K1lfvZ7hyDDTqWmimSifXPNJ/vPAf84hP7XO2gVbmotYxLsZi8RnERc1Ci60brMbDY28kucDyz9AKpciLaepd9ezyt2Ct3MY1SXrlQ2LpeizU7hJDU738ePd3+floZdJ55IAVDn93NJ4A2u15WREhUQqgtPqpqG2A3fpfMfgycQkvdO9TKYmUTWVOncd7eXtpPKpU+Px55mAvhDi2TiPHP4VobBeLTCoGvlkgk+u+QT/uPufSOSTumcPInXuWjp8HQSTQV3fMUsboyYSuF/r5PPLP8F3lP+gP6hP4yDLNJqr+OLaz13Q8Q1HhrFKVp7rf46ZzAxXNVyFJErklBw1rhoGI4Nzwj0bPA3c3n47RyaPcCx4jK7pLgQEskoWr8VLKB3iD9b/AQ91PTRH/3Mm3dDpOD3q5HRYJMsb8pB5vZqvQhDr6RVLgAOTB6jz1DGRmCCeiyMKIrF0hPVNV1PtrOY/9v0HJVYvCAIei4dGbyPJyQnC6TBjHo26xiWMqjME1CgryzbSOdVJKp/CYdJbbCoqf7Tpj3is5zF2Du8kK2dpKWkho2RYU7mGA4EDSAkJv8PPza03s756PU6zk3g+DkBezdMd6uae1feQk3PEc3GcJictJS1EU1Ee6nroDZ3bi1jE24lF4rOIixavjLwyJ0zSJJpoL2/n8xs+T3tpO7We2mKlQXNXn2phGeemd8ezcX51+OdzSI+maUyEhnjRvpv+9DgusxMJkUwsgzfRyxUt17KkoqV4LIcCh3i2/1kePv4wIzHd6NBr8XJd83VUOap4rPexYh7W+Sagn45CLlYBleXNJMwCvzv6K1b7VtNU0syJ6hNYjRaurLsSp8VFXsljNVpJ5pMkcgmOTh4lOjWGzZqgbsrKN1o+S/fysB6zYXTSmndTmfOe5SjmI6tmkVWZS/yXsLRkKf++9995dexVVE3FZDBxVcNVfOXyr8z5e51mJ5vrNnPftvt44NADDEWHsEgWyu3l1LnrWFO5hk01m+b4KbVXnN9N9fSok9nwO/y4zK435CHzRjRfZxL63tJ6C4FEgHp3PZqmoih5VvsvYZVvNbvHdvMH6/+AnJJl39he0kqWVDaJwWrB5iwhWm7jN5GdPHHiSZZUtPHq3t3k1TxltjK8Fi+NnkbuXnk3rWWtNHubuXHJjUwkJhAFkWgmSigdosnbhEWy4DK72Fy7ufi9mU0QlXyOmfAEiAIZJUs6n0ZWZX529Gdv+NxexCLeTgiapp09fvf/McRiMdxuN9FoFJfL9U4fziLOgOHIMJ974nNzAisL6Kjo4P4b7z/vrKWjk0e5f+c/cWx4X/ExTVFwWFxMZKb5zKbP89SJJ5mZOaXLaK7u4C+u+ktay3RvlO/v+z5P9z1dJD0AiqogiRKX1V2G0+ycM/Ld5G0qtp4KuqK4nGQ4N0VSyOO0eYpuxgW8OvoqTxx8EHV6GoNooK3tMg5MH+Hf934PgDtXfojHex7jLy7/Cj8+9GOOTXdiNVpRNZVVvlX8yaY/4UjwCJnJcZSxMUpdldxcfx3+scQcXYhp40ZMy5ad13u3b3wf9++5n4OTB3l/2/t5vPdxuqa68Dl8TKemUTWVenc9a/1rzziGPsfF+U0adz7TVNfNrTezuXbzm2KeN8fHx2wmVeJgJBuc50Z9vjgyeYSXh18ml0lR667j6YFn6Iv062ac8Qlay1rpqOjg8OQhLCYbVfZKrm+8jonkBE/0PoHPWUXvTC8jsRFsRhsWyUKTp4m1/rVUOavmODzHs3FOhE4wk54hKScRBRG/wz8vKy6ejfODgz8gEpmk0lTK8wPPMx4bJWsSCeWjtJW20V6xnD3je4q/M/vcXsS7C2dyTH+n9vNm43zv34sVn0VclDgyeWRB0gNwJHiEI5NHzpv46JqQ06a7NA3BaKTZsYRn+p9jKDqMc9bXpX/mBD89/FP+bMuf0RnsJJlPziE9ADklx1RqiunUNNWuuQaHhdZTuWwm39PDiJTkt/1P6hWdkxqkUq9/jjjYYXQgWCy6IZ23lqcGnsFitHJV8zZ8Tj+17lr+4vKv8vNjP+fI1BEEQdQNAAUDR4NH+Y/9/8HdK+/mWEivGoViAX479DQf8V2HbSpWPLbz1TB1Bbu498V7eW38NaKZKHe038G+8X1YJAuTiUlKbaVEMhEEQTjrGPpbMe5ciDopVDckg97GafC8OT4+MHdKT3ej/vm8pPLTxd3nOuaXhl7C7/Lz/T3fpTNwBIxGqkvqSeaTzKRnOBY4zCW+1UTkBFsbthLMTpNWsowkxlhRuZJnB/QpuUKMSzgTJpqJYpbMRUH32Ub9S2wlc94fp9nJLc03sf3YEzzR9zvGY6NkjAKaZKDZ0UwwOUl+Usbv8NMf6cciWS7IDmERbx8Kjulv5Bwt7OfFgReZTk2Tyqewm+yUWku5svHKN2QT8XZikfgs4qLETGbhgMQCwtm5+otYIsRg8ASJbAyHxUVD+RJcjlLgpCbEbNOT0wuVD0FA1hTKXZUcCR7FIIhzX0AQGE+M68Z02Qg5Zb6YtpAknlfzC26PZMLku7tJiPIp0gMgyyjT04QkiUe7Hy2u1Os99ZQ6K4goGiXeOhrMMn53DUenjnJ48jC/PPoLvnXd33E0eBSrZCOn5hAEAbNkxm60cyR4hJycQ7TbUS0WtEyGUCzAaF2GQtPufHyJtGyWaGSS5wee5fDEQcyima31W7EZbbSWtiKJEql8CkHQJ7SMoj45dyEj8m8GnGYnl/gvectf52xJ5bM/v3PBaXbynub38ODRX+qkByCfZzo0SnNZs/5ZCkY21lxKWssRiAfwu/wEErob+ewpOVVTkVUZRVOKQu9EPvG6Rv1rFQfL3EvZZXkV0WZjOjNDUk5xNHgUDY1QJsz1G67XdUI2CUmU3vbP+v81FDLTzlc3+Gado/FsnBcGXuBHB39Ez0wPmqahaipLS5eSU3Lc2nbrRUF4F4nPIi5KlFjOHuzpNZ/SqQwEjvPw7geKomCAUq+f9238KI2VbbrnTMkSBmb6SEVDxfFuSTBgMdlQNAWzZoCCw7EogiRhEk0k8gk8Zg8mw3wxrXiSLBlF44Lb3QYHWjrNiD05R7sDgCyjZTLMSDPFlXphImrXyC6e6HmSnpkeplPTjMfH8Tv93NT6XsbiYxhEA06TE6vRilWyFlf+APFcHMFkwlBTgzI6ipbJkFTSgOG8NCpqJEK+u5tBcZrp2CRGBa5tew8vDm9nMDLIsZMBmBW2CpaVL2MyOUlezZPMJXGa3vlS+FuBsyWVz6RnLmh0PiNnMGgC5faKk2aBImZVJBcKokgi/sp2nEY7ays3kJbT7JvYVzy3CgSzgEK1ryD0dhgd9IZ6ORI8wmRysmhEWDCJPNOov5bPk03HcWHhaLyfnukeVBHCmQigi8WnU9Os9K2kP9yPZJIu2A5hEeeP2ZlpBZxLW9Ub6uX41HGySlb3yFKySKKE2+wmK2fP+xw9MXOCHxz8AUeDRxEQyMgZFE1h3/g+MvkMfqefFb4V7/rKj3jupyxiEe8+dPg66KjoWHhbRUdxiiiWCM0jPQCh8DgP736AWCKE0+zkjuV3cFnjVmyecgSbDdFmo6q0nhW+DpAVDMop0iPYbNhMdtwWNw6jg/aKduxGO7Wu2jmvYTKYqHJUUWYrI5aNzdnW5G1imbMBgIScWviPPFl9mj16XWotZTg6TFJOYpEsBBIBPBYPE4kJXhl9BZ/dRywbI5wJY5EseK3eOe7HBfIhOhxITU1kG6uJ1pTyu9UWXl3hIOQ4c06Xls2S7+5GS6dJyClskoXV/jXsGt7JaHSEifgEy8qWISAQyUQYigxhlaxEMhHKbGWk8ikGI4Nn3P/FinONxl/I6Hwin8ButGHTJJx5EVtWw5BXQNMwyCqSorHE2UC9p55ENoHNaMNhdNDsbWYqNUW9+5R2qWAR4La4KbGWYJEsHJo8RCgdIpqJEslECKVCRSNDWHjUXzAacUg2wmKWoegwWSULGphOEq2MnGEqOcXyiuUomnJelgOLeH2YTEzOIz2gt86/vfvbTCYm5/3OYGSQ3WO7GYoOsWdsD4/1PMaTvU/yTN8zPN33NJ1TnYzHx+f93kIYiAzMIz2gm8UemzpWrCDFs/E3/se+hVis+CziokSdp46vXv7VOVNdoJOer17x1aK+ZzB4Yh7pKSAUHmcweIKVjtIFNSHVjmoMwM6BHfTPnABBt/C3mey0lrVS5awqCnFvab0Fm9E2Z6qrzFbGdc3X4Xf4+W3vb4uJ3E3eZr64+jOUG9worgRWh4i7voWUnMZutGLMKsxMDqKJ+rpk9mTNUGSI4cgwOVlvYymaQjQbxW60k5bTWCQLm2s30z3djaLqF6XCqn5pyVJM0qnK02RuhrHkGOnBp4vC67OtHNVIBC2tt0cckg1TTmNpeRvPDD6PCLzQ/zwfXXMPgiAwGB4knotT7arGZ/fxqTWf4kjwCIPRwfMuq18sONdo/IWMzjuMDgRJorqkgbHwUDHtHkEAUaTaW4fFbOO/Xv4OE5kpjoZ7uMS/lsvrLufVsVe5rO4yGIbJ5CSN3kZay1oxiSbWVq1l+/B2xmJjOuFJhwCK1aJCi2qhUX/R46F2sgK7zYWi6O00Wc7iMDlI5BLUuGvpD/fT4GmgtaR10dfnLURnsHMe6SlgIW1VocXlMrvoD+tC+aySLdpHxHNxjgSPMJWaIp6NF7+XZ5IGpHIpVE1d0GC04E11oVXOdwKLxGcRFyXi2Thuk5u/uvyvGE+Mk8wn8Zg9dPg65oiaE6dVWk5HYtbK5EyakL+46i/56eGfMp4YxySacFvcVDmr5oQxrqpcRaWjko3+jbqPj6pS5znl49NR1k4kOolbctAmVVI6nEX1BDkihfjPfQ+wfXQn8WwMBIFmXyu3tbyfcD6Gx1oyZwKpYM6XzCcpt5VjNpiLFzCAPWN7+Njqj/HDgz8srrokUeLS6kv5wPIPFEliIpdgNDrKqvIVvDq0E01TQJKKK8eFpnJmx3vU4oFUmrqqOrzWEsLpGbJKlh8f+jG3tN7Ch5Z/iFguRkdFB0aDkeOh4+TV/EVxUbxQFNyoF2p3lZz2+Z3Pvl4UNK5pv4lnOx9nPDIM6G2r5vIWPrDsTp7Y+SOmEkEkUaTJWsH+sddoLF3C7W23YzPZuKrhKuwmOwICgWSATD7DWHyMnxz6CVvqtnB1w9W0lLbolg3xCY4Ej2A32WkpaVlw1F8wm/HWLeVG443sHd/HsVCXnqkmZ1lesYLNdZt5tu9ZGrwNfGTlR857qGARF45zaadO315ow7pMLkptpQxEBoo5cHk1r7c7DWZC6RCHJw+zpW7LWaUBXpsXl9m1YEXHbXZjN9mBC6tyvhNYJD6LuOgwGBnkid4ncJvdpOU08WycUlspDd6GeRddh/nslgSO86g8tJa18mdb/uysI9fxbJyp5BSSJNFa1jpnvNOBCc+MCy1tRFMUMOXBZmPUlOY/jv6MweQoy6pW0BfqYyYepC/Yw2/E33LPmo9xVeNVc16nYM5XSFSvddUSy8WKqzC7yc4DBx/goys/SoO3gWQuWfTAsRltNHmbSOQTTCemSEZDvHL82aIHC6IINtsZp3Jmx3vYUzI3NVzLjuQx2tzNKCVLkFGxmexomsYLgy+gaAqNnkY9A2oW3u0XxQvF7By50ydmZpPj891XweF567Lr0WSZdC6F1+xms2slmZFRguMnip+VKy3Rbq0hruTZPb6bu1fczbrqdQD84OAPisdjkSysqFjBI92P6OLzXIqR2AjVzmqua76OUCpUHPVf6HhFjwd/uo6rmq7m0oYtxLJxDAaJqdQUT/Y+Sa2rlmZP87zv37t17Plixbm0U6dvL3zXRmOjXFZ7GTPpGXpDvcXrR72nnnVV6+ib6cMoGml2NfDonp9iksxU1bSRUTJYDBbIZnl0z0/Zuu42ttZv5eXhl0knTonj3WY3Wxu2kpN1If0bMQh9O7BIfBZxUSGejfNE7xOUWEr47t7vcix4DA0NTdNY51/HvVfey5a6LcXnN1QsodTrX7DdVer101Cx5LxetzByXZim6J3pLU5TpOX0WcdECy0iLZvVQyD7+hivcfJstI8njz4MBgMGk5kady0NpU2kMnEkyUKdu27e6rvOXkWjrZp+tZvpaIBl5cs4EDjAdGqaenc9o7FRGr2NbKjZsGC7aoVvBVo2y28Cv+TY2IG5G1UVLZUCh2PBlaXo8SBYrXq7S9OoiYtcV7qO/vI+xhLjmF1ePFYv0UwURVPwO/wIzNcMvdsviq8HZ8qRO99JmdPJQdHhOR3FEklSK5Vi3n+M/b6TVbdZn5Upnafc7kZ0OrCarDjNTo5OHp1zPjpNTp4bfI6B8AA1zhqqXdXUe+oxGUyYDWb+ZNOfcIn/krMeb31JI8uqOnis+zGGY8Nk5SyKprC8fDl3tN/B8orlc57fPd19qlJqMOE265XSCx2fXsQptFe00+RtWrDdtZC2qvBds0gWnh14lgZPA+v868ireYyikWQuyW97fstHV30UgK7JTqx2N88Pvch4bLS4H7+rhqvrr8SY07hz+Z1omkbvTC95NY8oiNQ4a7ih+QYGI4OU2kvfFJ+stxKLxGcRFxWGIkO4ze4i6ZktsNsxvIO/2f43/P11f1+8CLscpbxv40cXLN2+f+NHiyPtp2Ohm1F/uJ9/2f0vcy469e567mi/gwp7BTajTW/Bmd2YJTNP9D7BR1Z+BGs+jybLaJqGMjBA0mnmoeCLJEvt5CQBQQBNyTMcGSKcmqHO7ieRjhLNRucckxqJYA5McVvV1aTTMXaOvcJ0aJTVFSspd/i4uvFqXCYXq6tWn1VjoUYieIxOvWoApzQkoGtKZHnBlaVgNmNsbS0KnNE0SkNZPtZ0G4+FXyWs6q7XboubJm8TW2q3zBNNXmjr543g7a42vB4/ooK3SigeRMtkQFUpdfq4teMOVvhWoExOkh/sAnMOWVVxGKynfvnkZ4XJVBTCF250p1fVVFTGY+O0l7UjCnoyezKfRBIkplPT3Nxy87z3ZqH3b3PtZjRNI5aNFTPZXGZX0aSzgO6pbv5p9z8xEB5AEqVibEZhkfA/Tef1dsHn8PHFjV8841TX6d/7QhtWQKDUWsq+iX1F+wOzwYzdZKfGVYNZMuu6Hy3H80MvEkwEWFa9GrvNTU7JYjZYGMxMsEZOsdK3EgGBZC7JeHwco8FITsnRNd1Fjbvmgquc7wQWic8iLiok8gnScnoe6SngcPAwe8f3UueuK375Givb+OS2Pzkp1ovjMDtpqFhyRtKzkNGXRbJgFI0MR4fnPLc31EvXVBd7J/bydN/TxcdXVqzks+s/y0hkhFZjKVomg2CxoCUSdLfZeH73LjaWXENaTgEComjAZnboOh93Hci5OeRDy2aRAwHy+/djN2pcV7GGjo5lYDbjsZdR7vJRX9I474KzUNq8ls/TZm2g0VVPf6Dr1JMNBgSLhSZv8xmnckSPB9Pq1aiRCCPqDEcjvURzcTpq1mKWzBhEAw6jA4tk4am+p+Z8Pq+n9fN6MRgZ5MFjD9If7ien5jAZTDR5mrhj+R3vmmpDQXgaCo/DTBif2w82M5lcmuePP8WNrTdRltcv0YKk/1+TtVDqqiQU029eaKemDWeTytOraolsglW+VYiCyJHgEabT08VqnM/uYyw+Nkfcejazu1tab5lT2aqzV2FPysijowgmEye0aR7qfZSnTjxV/F2nyUmjt5GeUA9Wyfo/Tuf1dmJ15Wq+ue2b5xXnUmjDPtbzGNsat+mVn/5nycgZ3BY3ZbYybl92O36nn9HYKDUOP8FEgHVLtvLc0PMMRAbR0BAQaPQ0cGXLdaz3NOjTpZFhmkuaSWQTGERD8fx7t5MeWCQ+i7jI4DA6iGfjaGgomoJRNLLevx6/y4+syngsHgRBYDgyzHLfqdK7y1HKyjMQndko3IyimSg+a7muscinyasqJyK9LCtbNmeKbE3VGh44/ABus3vOfg4HD/Pd177LP1z7D4gVzQhWK8gyqUovR8LdpNJxErEZWspadV8UVSElp3EYrMiaQlN5yxzyoUQi5PbvZ8yt8dvhZwn1TRS3lVU28f5rPjvvglPw3ClMYgEIVitidTWeYwN8YcWn+I46K6RUUWh01vHFDV84a8VIMJvZk+tfeKLu8q8Wb2j3OOYHcr4dF8V4Nj7PmTin5DgUOMRofJTrm6+nxFpCg6eB6eQ08Xz8HdGfDEWGCMWDMBOm2rd0XnthINLPx1d/HL8ggCAg1tXh1DRuWXE7vx363akKpiRR6q2eQypPF1xLBgmfw8dLQy8xk57BIBgA3WsqkonQF+7jxMwJ1lStOS+zu8JnrEYihPt7OZINkpBTOJ2lPDjyO5LMNeyM5+IMhAeod9cTzUT/x+m83g7MMy08z+y6QjjucGSYlRUrubX1ViInPZjsJjvJXJLR2Chuixur0cqK+vU8P/QCx6ePI89auAxEBnm45xFWnawoz76+XmxYJD6LuKhQuKBrmoZRNPKB9g9gkkyYJTM5JYfD6CCYCOp+MQJzKj/F6ocso+VyJA0Kw1qYidw0+ZOaFKPBSDwbp8paMWeqJiRmkAxGPrvhs3RNdxUFwS6zi+PTx1lbtXbesR4OHmY8MY5Qu0FvEfX1MZbP69NRqsqhoT28d9V7eYzHiuRHkTSaypfymQ2fnXNRUyMREpLCb4efJxSdmPM604F+Hj36az5ZXj/nb51NerRcDjWZhGAQIRxGrK+n9ehR/r+ln6FnefRUSKlSQpWx5qyfwXBkeB7pAT0q5L4d9xVz0t6KKIrzQW+odw7pSeQShNNhplPTnJg5QYm1hAePPchVTVexxreGkdgIiqa8Lvv+N4JEPoGWyeBz++eRHoCx8DC/7X6UD/tvwqkYIBhECYepHMlzt3cDY00KmRIHzrIqGnyt86MmZgmujQYjXouXcDqM0aCL1AsVnwZvA72hXk7MnCB7MnzUJJowCIZ5FdWJ+AR7x/bqWiLRhhCN87veRwnFdQF7VU0bzw+9wDVLrgVVQ9NOjePHsjE0NHJqrriA6Q316u0SyYjf6afB/eZFivxPwt6xvfzfXf+X7pnuovFkS2nLeQfCOs3OIlEZjAzy86M/p2e6hypnFQ6TA7fZzbqqdTjNTmrLmpjqfxyXxY3JYGKFr4MKWzmCKOIxe+ie7sZmtF3UovVF4rOIiwpOs5N1/nWs86/DKBqpc9fx82M/53joeNGhdnn5cj7Y8UGGY8Pk1Ty3tN5CHR7yPT0gScgDA4x5RfZow/x28HdMJAO6KaHFSXt5Oxv863n0wC8JxsZZXr0Gl81LXE2TkTMMhgdYVtrGkamjAEVPjNkmgaCPH5tFE4lsHCUYRPR4ECsrSWmjEMxRXdbEeHSElw4/zmVNm3jP0hvJanmqXTW8f9lt80eCs1nGbHlC/XNJTwGhaGBO+2C2546aTBLPxRmVkiRI4chGqcvbcC5bhue119hoMumtFCmPoUyZE1i6EN5ITtrbobsZj48Tz8XJyllUTWU6NU0kEyGrZMkqWURBZDQ+yuM9jyOrMh3lHQSSgQu273+jcBgd+nttM88jPQAmDEwFBhhxj9N8YBQ1FAKLBdHjwRYI0+rzIVlLMPk6FsxXmy24TufTmJeYeWnoJfrCfYBOfJpKmrii7goePv4wN7bcSDgQxiyZ8Vg8OM1OsnIWo8FIOp+mO9RN51QnFfYKotkoJQYnu0Z2YZbMYFUxagYsWoq0nKFv+gRNngb6gt2nDkgQkJUc1Y5qLJKFf9n9LwvmhW2u3fyuaUe+05hMTDIwM8Bfv/TXHJk8gt/pxyyZUTWVkegI3979bf5o0x9dEGGMZqIoqsLGmo080/8MgUQAo2ika7qLKlsFbquXSDqCJEpcv/Q97Bnbw86RnSiqgkWyMJOZoS/cx2hstEiM3+5FwxvFIvFZxEWH5RXLuffKe+kP9/O3O/+WnlAPkqCfymbJzOHgYZTDCl+7/Gt0TnfyyLGH+LDzMhyCgNzfT9Iq8krqOE+M6EnTmEyQSpESRU6ETxBOhfDaPNSXNbF98CWGZwZQJQMROcH66vV8au3/QhQNGEUjDd4Galw1upvtSWiahlmQ8JhceAx28p2dCFYrhvp6XPkqgscfY1vtFTynvcR4bJRj4wfZ1nErNfYSbEYbfeE+zJJ5TsVHsNtJaNl574W+UQCjcU77oOC5o+XzjJjSHLNFiUl54nIKpyQyovSxLOWhbs0alP5+RJcLwWpFkKQ5Y+sL4UJz0goYnO7jkcO/0uM5DAYEs5lSZ8WbesGMZ+NklSzVzmrKbGUomoKmaXRPd7N3fC+yJmORLNyz6h58dh+SQcJtdeOxeuib6XtbfYbqPfWUOirI5DPztlmNNpxZASwaiVwcNZEAo1GPMonHEb1etEQC1eFAjUQw+BZueRSqboORQUZiIyyvWM6mmk3k1Twmg4mZ9AwPH38Yi2Sh1FrKidAJQukQj3Q/wnB0GJfZhd/p55KqS6h115JX81gkC0PRIWRDlh0jL2OUzJRZvGRyaapLG0jlU+we282HV32UXDbNSEEXp2k0OOq4s/0OHu1+9ILywt5qXGj21duBg4GD/Lb7t3jMHl4efpnW0lZGYiOk8ikUVUEURCpmKnjPkvfw0uBLvLflvef8Hg1HhnnyxJNYjVaeG3hOb7emQ7odBgJjhmEub7qS5RUrqHBUsGdsD8enj2M32imzlTGZnGQiPsGPD/2Y9y97f9EI8+1eNLxRLBKfRVyU2FK3hbHYGBPxCZxmJwbBQEbOkMqnMAgGjk0dI5nXp4xC4TFGTEGWUYGWSDDqMRHPZBmPnkxTV1WdPMgyiqIwGh/jpqYb+O8j/81gtB/BIGDUNPwuP0eDR/np4Z+gahqvjr3Ke5rfwxc2fIEfHvwhDe4G3tvyXkqsJaRyScpsZTS5GyGSQEunUYaGaGhdQVnLKsajk2xtvRbJaqfCU81/HfgvekM9lJo9GDSBptIlfGnTH7G6WjdUNPh8OMfK9eMsCFoBBAHB6UR0OOYIWgvkJW6CTmua7x/4Cb3BblbXrKXcVYnLVoJatQ6HzYy7V9H3I0m6BsjjOet7fyE5aQVEQxNsP/YEkgpus0v3BpFlQpHJ133BVBMJlOlpfawbGLXLPDz6NH5XNQPhAR7uegir0YqqaZTby3lf2/vomu6i2dvMz4/8nIOTB3GZXXgtXlpKW/jkmk/SHeq+YP3J671pOs1Obl15J88ff3LO41aTnRZXI8ZYDs2o4BAtCIIABl2Xg6J/XuTzaJnMHGPJhVDQ7FTaK7FKVp4deLYYoWIQDdiNdq5qvIqskqU/0s+ukV0MnhS1ZpUsI7ER8mqeqdQUm2o2oWoqAgIuqwefy49BNFDrqmEqPkkwHaLWU89UMkgil+QDKz6AIgrIiozDaOdK30bkVJoTMyfmkJ4CzpQX9lbiYOAg9++5H6PBiMvsIqfk2DO2h/cseQ+rKle9LcdwOgrRFBX2CjRNw+/0MxIbIZbVPbsMggENjWg2StdUFz67b873aKHKaigd4rt7vssvO3/JDUtu4Om+p3XDSnc9k8lJPFYve0Z3owgaNe4a/A4/e0b30OhpIJqJIggCDZ6GYv5fma2sGInzdi8a3igWic8iLlqk5TR5RfeRUNHTqGdbqRcT0VWVhJxCQ9flJJQ0GXWW+LJAJDSNZD5Jpb0SWVDpmjpWfEqpo5xENoGmqqRyKS6vv+LkTVVlKDrELa234HP4eODQA+yf2I/D5MDv9PO481G+svnLrI270eJxHFmNWy/5II92P0owPUObs45/3/fv9E53Uyq5EVMZNKBv9Aj//NK3+Ntrv0VleQOiw0FTy3rKR3YwFegv6iZEux2lphJNkkjLaY4Gj1Lvrsdx0nNn3K7y7zv/g95gN9e1v5ddo6/w7PCLIIg87Kzk9vY7uK5tPV5ZptZhx1u3dMG2yWwUctIWanfNzkkrvr3ZLJ3BYzzR97v53iCNVxNIhC74gikHAsj9/eSPH0eLxUj5S/lN9CXytVX8YuAlTIIBj8lFRsuhoTIYGcRtdvOXV/wl39n9bQ4EDiAIAqIgIgoiXdNd/OeB/+Se1fdckM/Q6wmMnI2GsmZubH0vA5EBxsLDmEQjLiwYcwqC10sJVmoEz/xfLLQjVfWcFbqCe288G+d9be8jr+QZjY+iqAqSKFHlqOKOZXewe2w3oGtADKKBvJLXHZqVPFbJiqzKtJW1kVfzZOQMA+FBjoeO47V6CWfClFhK+E3ng3yo4y5M0hqOTh3jhYHnUPJZnEYHV1VfhiFTw4xFJps7Qz4dC+eFvVWYTExy/577qbBXsH1oezFuBuDl4Zf55rZvXtB5udAU5bm+TwuhEE3hsXgos5bhMDn0z0UwFImnQTCgaRqyKqOhMZOeYTgyjN1snydOdxgd+F365BZAXtXJciwbYyg6xJrKNXROdRJKh9g7sps/veIv6A31MpGcwCbZqLBXAHr48HMDzzGdnsZn18n9WHyMe1bd87oWDe8UFonPIi5alNvLsZvsRDIRzAbzHCGmx+LBYTp5AxNFHJIN4eTp7jBYsYiz0tILHjaCQF7No6JiEo1U2CuKjshGo4WJRIAyaxmJTIxkOkpoegREkan4JPdd+7d8a+e3CKdnWOJtRtA00tEQhyJT/M2O+/j2+v9NjdOJls/T4DulveiP9DOVnMIneZAUDbvNo+uQVJlgJsSxqU58rioS5BgTEqzd9D6e7XmKXCqOSTASM6rE8hG22Fp5Yv8vUUQo9fi5dfn7qWttZWj4GTonj7K+diO7Rl/RRd+iiGQwMhof4+j0MQYmOrmifit5bYBbKacBz1nf9/PNSSsgGpnk4e5H5ulYxmOjPD/wPFcs3XZBF0w1kSDf3Y3c14cW0ysXY7Y8oYEx3LVVHBjeQ11pE7WuGkxGK7Imo2oqWTlLSk6xa3gXAnqauclgKop8u6a7UDTlvH2GzhUYuVDsx0KoLG/gk5d+9lQb8KS/kjdr4L3VV6PJCieWlxNPR3AYbFQnJRyKBIqC6HCcs0JXeG/zap7j08d537L3kZNzxHNxSqwlJDNxApExcnIWWZUxiAZETSzGGTR6G5lKThHOhDkyeYSHjj+EWTLz/rb3s7xiBceCR4mJMaLZGD6Hj2A8QEpOYRQk2u2NWGVwCRbyQ4P81plm25rbMOYUNFVFEOfnZC+UF/ZWoTPYidFgnEd6QNerPXDoAf5q61+dVzXyTFOUxtbWc35Gp6NgIGoymAilQzR4GjgaPDrveS2lLaRyqWLQbEpO8dzgc0QzUSrtlcX8LFVT6ZrqYlnZMnaN7sIoniLLsWwMAYhmInr4aD7N6MwQPruPlRUrsRvtmAwmckqO7lB3sb2VyCXYN76P9vJlr2vR8E7ioiE+3/zmN/nNb37D8ePHsVqtbN68mW9961u0trYWn6NpGl//+tf5/ve/TzgcZuPGjdx///0sX37xjt0t4sxYUb6C65qu4+n+p0nmksUpFI/Fw7bGbYiCflEt9VZTa66ALAgOBzVZESdm/O5a/WYsivo/ScIgCLjMLiodlZg0A/HMyRuywYDL7KLWU8f4ZB9SlYIaiQCgGY2MxIY5OHkQTZbJK3qaNpIBNJEj4wfoVMap7BcxVFcDp7QXvTO92AUTKGlcznIGooO6l89J7A8exGsvZdfka0ynpjEIBqpLGzFXmqmyVzERGSUWmmD/iR2klSxmg5lMIsIjiswnNn6GhJZDMJko99bw7Oh2EPSVYvqkB1JezTMemwKblXB66rzbTptqN3H/jfdzZPII4WwYr9k7LyetgOHEGNFkaMH96O+/cEEXTCUY1Ns8sVPvU0LVbzZ5JY+qyAzPDFBmKUE0WCixlmCUTAyHB5lKTqFpKmaDLuB1GB1kT1b/JFFCEqTzbrldaGDk2dBQ1swntnyu2J6wixb8IZmZfJzfzuwjZMiQMiawiRZKXVYusy2jJmLHuHLlOSsKs9/bAvkB0DIZRCGGwe1iPBFgJh1GFEQSuQSKqmA06OS/L9yHpmmU28oxiAYimQjRbJSHjz/MJ9d8ku/t+x4T8XGSuQQmVw2Npc28dOI5svk0PlMD3lAGwZwHk4lQIkhOkGmyVjOYniBzsgpbgN/hXzAv7K1CJBvBZXbNIz0FDEWHzqsaOWeKUhQJlZg4LgeI5IbxjgRp5xIqPdXnfVwFD69YNkZvqJd7Vt/DiZkT9IZ6i89ZVraMW9tu5YWBF1hSuoRoNkoimyCaieJ3+nmu/znGE+PF/diNdj6z7jOU28qZSk1R765nKDoE6EMaiqpilSxU2yoZmxlkKhnEZ69AQz+fzZKZvJLDgEidp57x2Bj94T4ur7+Mff3PXNCi4Z3GRUN8XnrpJT73uc+xfv16ZFnma1/7Gtdddx2dnZ3Y7Xow2t/93d/xj//4j/zwhz+kpaWFb3zjG1x77bV0d3fjdL77BVdvF+LZOMORYWLZGDOZGWRVxmV24bF4yCk57Cb7RTGeWOep4w/W/wGyKjMYGUQ4WbHxO/3ctuy24ujyra234sVNvqcHqakJ+8AAm7xtGFpsc6e6THZW+laypnINGTXL5iVXMpmcRFFkLCYbXcFjDM700+StIxafLh6Hls+TzCb0MflMBpRZF3PRgGAyEcnG0DIWXZ8xCx6zBzQNu9U9j/SAzp++s+df2digx3AomkIgedK8Lq+wr28HPRPHSGdPEjRBwGb3kEFmMNSHz+HDaLaRV/Kn2iOigKIoiKKI2WAmbbMVb/7n26ePJUJEZibwqiZqnUuL6c0LISGncGHBarKTziXnbRcEwwVdMLVsdt776DDY0FQVl2bCaDCRV2WCsQlITyPKKhubr6C9tI0aZw3N3mbMgoRZFZENAnaTHYMoYZbMVNgqzvs4CqvynJIjnU+TU3Jo6DYLkigRSAbmmAKeC6eP/0fNE+zofYQf9z1E31R3kaA3ly2BDg+3bXovtrKyc+633lOPw+iYY+boNjowhMJIddUcDR5jJj2D11FOKDNDjauGocgQqqZiN9kZiupu6U3eJsKZMOpJ4tg13cVwbJgVFSv4/PrPYxD11ovdaGM6Nc3+0deIWcDltGHM5EEUESwWcpkUt9VeT85mZOfk3jlTXWfLC3sr4DF7TrXEF4BFspxXNVKNRNAyGZJOM0dsMX589P/HRHwcZJlkOkqTfwVfuvxPzqv9CaeiKXpCPWys3sie0T1c03gNNyy5gbScxmlyIiDw4uCLlNvKERAosZZgEA2U28rnkB7Q/ZqmUlO8MPgCf77lz+ma7qLeVc/RqaOE0iGsRhuCAKt8q+goW8FTxx7hmrYbqPRU0x8eIJqNoqZ1OcHG2o0s9S7lV8d+BUBOyV/wouGdxkVDfJ566qk5P//gBz+goqKCffv2ccUVV6BpGv/8z//M1772NW677TYAfvSjH+Hz+fjZz37Gpz/96XfisN91GIwM8ljPYwgI/Lrz1/RH+mnyNDGT0RN872i/g95QLw6Lg/e1vo/28vZ39cm8qXYT1c7qYuXBY/ZQ46ohp+RYXr58jmmeadWq4gRMYzZLhdTByubNDGcDxLMJ7GY7DpODf9r1jxwPdnFt87UMRYaIpiNsqNmArOSpc1ZzuX8zrw7sKB5Ds6+NckvpgjdkVAUtl8NrK8FQZps3Kt5e0U5TyRIm4xNzSI9RNHLtsptw2D14smXYTXaaTE2MRHWhqSbLTMUDDCfHT5EeAE0jlYzQLXQzk5iiw7+SS+s2Y7XYsds8GEQDCGAx2/FavBgN+ii7RbIUIzLOdaE/W3pzY2XbvOc7naWYMNDqXUJ3+MQc8mO1OFnpX31B55hgNp8S+p5EdcpEqacKYSrEysqVHJ46Sl6WdVJptpOJzXBJ2SouyVWw3tFWNG00Wa0IRiuCybRg1tHZ4DF75ngEFZzEjaKREmsJIiI/OvSj85q2OR3xbJwj8T7+q/Mn9Mf6kSxmBA0QBPqjQ/y48+esqdvAGs5dRQilQ/hdfvZP7C/eDC2axCbfWpw2D4cP7MZp87J1yTZ6Qye4pfUWnuh5goFIP6Ig4jK5aPI2sdG/ga6pLsrt5SRyCayKFUmQuK3tNp488SQDkQFsRhsiImPxMW5cegPHBl/jUHaa1pKluGUJQZJwGKzUxEU+v/J/caPyfiYSE0gGCb/DT4Pn7fXxaa9oZ/f47gW3eS1eyu3l56xG9kz1cHT6CBFnFLNkZnImwKvDu0jkEzjNLpo8jUylpvje3u9xz8p7cFqc51xYzo6m2D22m2Vly1hWvoztQ9sRBIHx+DjhdJgqRxXbmraRltPc2npr0dx1NulJ5BKMREdI59Oomq53i+fibKnbQp27jkAiwJKSJSwvbaNnqofu0HFu7HgfBycPI4oGrl1yHaXWUhAgI6eJZxMcnz6OWTJj1Ix4LB4qHZUXtGh4p3HREJ/TEY3qF+mSEn3CZGBggEAgwHXXXVd8jtlsZuvWrezatWuR+HBqukNA4Dddv6Fnpge32c2xqWNklSxltjJ+cvgnLCtfxssjL9MVOMatS29mq38zjeVLSJB7V5pW1XnqzugbMxuC2Txn7NcDDAYO8ptDD9Ef7qetpIXByCDdoW6skpVnep5kZUUH5f6NOCxOPrzyI+wb2MlLBx5FFtTizfILHZ/Ca/DTUbWKIyP75r1uR9UqltubECyReUJUn8PHlzb/Ed955V84drKHbxSN3HnJhxkI9/O1575GLBdjecVyHCYHn1v/OQYjg2QzCQS7rdjbnwNNI5WJo2gqPoePP93yp/yu93dUufx0Tx9HQ09TrnHVIKsy1c7qOWGiZ7vQxxKheaQHIBQe5+HdD/DJbX8yr/LTUNpMeW0LjPSwyt1KjAw5NY/JaKG5sp2VVavP+HoLwVBRgTwyguByFdtdtsAMN9dv4/GJF3lP7eVImkh/uA+LzU2bs4GlQgW3l1+F7/gYX1j5v/jO4ZOO1Sen5M6UdTQbp09vVToqKbeV0xvqnROfklfz1LhqillYFzq1VoiL8Fq8RV2HKIjYjLaiX9RAdIChyBBrqtacdV+zncivqL+iqPkwqwI+czn94X4UVWE6O8NgeJCjwaOsr17Pn27+U2RVxmgw0hvq5eDEAV4Z3QUaWAwWjseO4zA62FC9gf/76v9l18guREQkUaLD14EkSrw4/CJXN1zJgYFXGFVmsNpq8dsqqMWDYJFwe3xcYj739/athM/h44YlN7BzeOccvZrX4mVjzcYFg4Jn44WBF7j3xXvpnDpGKp/GaXJQ46rls5f/Ed/d8U/EszFGUwEcFidPnXiKJd4lJPKJ8/K9OT2awmv2csOSG/RKfXoGRVVwmB3YJFvRMDSejbNjeAeyKpOVs+QUXctlkSzctuw2PdA4OU1WyXJg4gBtZW28Z8l7OD59nJW+1ewd3kNPqJuO8hXE0mFi+STHp45zcGI/U6kpotkYKTnNmsrVmEUjPkclGTlNS2nLBS0a3mlclMRH0zT++I//mMsuu4wVK/TScCCgl/99p/lZ+Hw+hoaGzrivbDZLNnvKHyUWi53xuRc7CtMdDqODE+ETpPIpKh2VxLIxnCYniVyC0dgoHb4OpmMBZiITLC9pY2Sylw+23saTgR3FIEq4+EyrTsdscaqmqtgkG3tGXqW5dCnT6WksRguvDb8KgNPu5bqarXzCsInLt64kIifwuH0snTHg2T2Isc3KVzf8Kfepf8+RsVPkp8N/CV9d/ydUTWXPOCq+uvoSPrfh87SVtpLKp6gtaeDRnsfomelhSekS8mqeSkclY7Ex/m3vv/H7a3+fE5EQmVyKWlctPeGpefv0u2twGPUWcLO3mUprBX+4/gs8eeIpppJTpPJJeiaO0lbVwV0dd9Ed0o3mzhUiOhg8sWDSvcEgodltPD+8nfjJC3tHRUfxgnzryjt5xPAQofAYFlUFUaTUW837lt92weRZdDgwtrYiGI3FqS40jarBMB+95G7GTCk6rI2kJBWDIOLOCNRoLmzDM6CqtB0P842Wz9C9MkGMLB5nOcurV52V9BwKHOLR7kdJ5pPklBxmg5l1/nV8fPXHCaVDHAwcRDs5Hbi6cjV3Lr+Tp/ufZmv91gsa850dF2GTbMXHVU0llU/hMDmK2rXZ3lFnQuE7D5xqkaILxNPGCBglVINIhaeGcCbCMwPP8MzAMyd9XUQ+uOKDHJw8SDwTZ6m3iUQ+Ra27ltH4qB5Cmxhnz+geDILua5VX8xwLHuOSqksIp2fIajInEsOYNJFlNau5xX8DjrwRY2vL65p2eiuwqnIV39z2TR449ABD0SEskoVyezl17rqzZsv1TPVw74v3sntsNyXWEjLpMHaTnX2BfXAA7lh9Fz87+ACj8VFaLHolNCXr02wL+d4MR4Y5MnmEmczMnO/PhfgJOc1OWkpbSOaShDNh0vk08VycD674IIORQcpsZXRNdzEaGyWrZNk3sY9DgUP8763/m/2B/dyz7pNk5QwqMJoKMBgdZCQ+wrVLrufZvqeRDEZIhcgpOZpKl7KldjMzmfA5Fw3vNlyUxOfzn/88hw8f5uWXX563TRCEOT9rmjbvsdn45je/yde//vU3/RjfjSi0MFL5FLKqT7oUxiGNBiOxbKzobptHxYxAOp9kz/ghlvqWER0foK39cnJqnnhO1y4cDhx+283G3izMEafKMjk5g6Kp9IV6qXRWsaxiOXHLFJJg0EfiUzG8vVHWJ5MgCBjba5D79d8XrFY69vbz7bY/ofOSGJFMFI/JRXvGTdmzXQhXXYWh4syl4KW+NnaMvEwqFUUFmkqbcFldqJpKIBFg3/g+hJPC65ycA1FEkXNcU3clicjUKU8iwO+u5ZrGbdgsJwMnQ330Ht+JQdXYUroMSlYTI0Min2ImMcVMKlSMbDhXiGgiO39hYDBIeBra+O9jv0Ac+C3DsRE0TWN15Wr+8oq/ZEvdFho8DXxi3afetOwuqbIS0eHA4PfrPj6qiqaqWPJ5nHkbmuSGvC6oNVR5kQcHUQttRlmmJJDg8qYmkGVMDavOehOeTEzybP+zPN339BwR7GhslEuqLuGaxmu4o/0OErkEFsnCRGyC+7bfx1r/2qIO6Hyn1mYTFZfFhcvsKnruqJqusTAZTDhNTspt5cDZ3bAT+QRZOUskEyGei6NqKk6TkxKzG4tkI5KLs7RqOYH0FEenjlLrqqU/0o+AQJm9jN0jr7Kx7lJimRjjM0MgGZhJhdhcs5mPr/44T/Q+oU+BCWLRWiKv5tk9upublt5IvbuWa5ZeR6mtjHJrGaX+Zkwe37uG9BSwwreCv9r6Vxd0fh6dOlq0ACiQXvFk5XRfYB93rbwLRJGsJqNo+rlnk2zFc2E2IX5l5JUzZt9tqt103n9HPBtnMjnJSt/KYlvcZrRhMVgIZ8KMxcaYSk2hqAo2ow1N09gzvodnB55lS90W9o7vBXQJgc1sxySZkVWZ/YH9bKjZiMNoRxMEVleuxmVy4jZ7WFax7KIiPXAREp8vfOELPProo2zfvp2amlOZQpWVlYBe+amqqio+HgwG51WBZuMrX/kKf/zHf1z8ORaLUVtb+xYc+TuPQgujcMIXTLA09C9t4X9JkPRxVIMdo2gknIsSkxMsb72C4cQEKrqXTVbOEkqFKLOWsbl+8zv2d71eFG5KAGgaJoN+MVY0lbHYGA2eRtKFaook4Ta7MNS5UUZG9OkNkwnBYkEoKcFQW4s8PEzZi/u5AvRt5gyaPI5YUQFWK3JfH8rY2ILjrU6zk1uXv59dI7t46sRTPNj5IGk5jSRItJW3cdPSm4pjrYIgsLxhPX57JV1jh7lhxfswYSAQGcMkGCAvk5GgvrQJgHg8pJszAhNTA8XXzBtFNLL4rGVcVn/5eRERh9k17zF3VQP/fewXdE130lbRTiqvr2pfGX2Fv37hr/nXG/6VZRXL3vTsLtHhQHScassVxonJZPTbjygiGI1I1dUYKiuRT35uhaRzZBljy7krD73TvTx8/OF5kz/TqWme638OURTZObKT5EntUuEmKAkGkpk4iiqf99TaHIKkwdb6rbw09FKR/GiahtPk5Ir6K1hesXxOirpRNNLgadBJMoKevm0toy/cx7HgKUNPSZSoc9dR2nQ9paYyFKNIDoUXun7D7e23IyAQzoSpdvoZigzTPXWc/33lvUwmAuTUHDajHYvBwmhsFE3TTQ4lQULWZIyCEfXkTT6SjZJVcjze9xQrKlZQ765nlBied7i9dSZc6Pk5k54ptogFQUAQBHJqHovBQkbJkMwlUUX9cYNooMnThFkyz/mME/nEeWffnQ+GIkO8OPAibrObPYk9uMwujgaP4ra4cZvddGY7i5VCTdawWCx6hEt0hHgmippMIpjN+B1+/A4/J2ZOACCrMsdPVoX9Dj9LS5aypnLNRWFWuBAuGuKjaRpf+MIXeOihh3jxxRdpbGycs72xsZHKykqeeeYZ1qzR+965XI6XXnqJb33rW2fcr9lsxvwuW328mVATCZRgEC2bpdQhoSoyKVK0l7czEB5gZcVKNlRvQFZlFFUhK2eZTgbRVJXqkjpiqbBeDXCUE5WT/OzozzgQOFDc/5rKNXitXppLmy861l8YGQVAEEimojSVNNM/o2cZmQwmXUSrKDRXtNImVSJaY+D3AyC6XLBkCWoiQXbHDszr15PVNNSTrVUtkUDw+TCtWcO0Eue4O0wkFzvjeGuptZTx2DiZfAYBAbvRjqIq9Ez30Frais/h41fHfkUwGeRA4AAuk4sPrvggL3Y9icNk5+q6KwmEBmmqX0Ojr4VjU8dwmByYJBMLwZRXKcNEs63mvC9gDRVLKPX657S7MgY4Pt2F3ewo3vwL2Dexj0PBQ9S4a97yqqDo8WBavfqUgZzRiOjxFImNeDLeYaFtZ8NkanLBcee8mmcqM8XW+q3sHN6p2ymoMiICFY4KKmzlpDJx7AYbtdLCE2+nYzZB6p3pnWc46DQ5WVK6hP+19n9hM9r4xbFfFElPs7eZ7772XQ5OHkQURBwmB6t8q3j/svfzyvAraIKGJOoeUcPRYTpD3Xx45Yf55Uv/Hx9d/VHEk1NZH1n5EWRVZiDSz6XVm5hMTtI/08dfPfc1nBYXJsnMza230FHRwXBsmCXeJbo/FPp1WkNDQKDR20goPYPJYKKttE0PQ53pBYF3jT7wjcBr9erLRk0rtj9jmRhl9jLI6MnnoiDiMrvw2X1c3Xj1vMR7h9ExJ/vOJtm4pfUWSmwlpPNp7EY7g5HB8yY+4/FxXhx6kXA6zDr/Om5YcgN7xvbQXtHO8wPP6/ou0YxBNOidEE3PbDMbzETTEdSpKUq9fuqkMu5eeTej8dE5lg1+h78opr5YRtcXwkVDfD73uc/xs5/9jEceeQSn01nU9LjdbqxWK4Ig8Id/+Ifcd999LF26lKVLl3Lfffdhs9m466673uGjf2cgBwLkdu9GjUYZr3bw+Mhz1FTVsn36EBuqN7CxeiOPdD9CJBMpltE3VG+gxlVDS2kLl9VtZv+Jl6n31FPl8vN3v/tj9p90vC3gQOAA333tu7SWtF50xKcwMtof7gdJoneyk2ubtvEMEM/GMCgqgsVCk6uBL679LCVjMZSpKdRUCqm8nOyOHWA0IrrdqNEo2VdfxXTVVbBqFeRyaKoKJhNHxSDf2f89+qd7iq/dXN0xb7y1UGY3GUw4TA6mUlMICKyqXMVLgy9xbfO1lNpKORQ4xFhsjIQlwc+P/je/1/4B+qd6GMgGuG3jh3lpeDsn+p8p7neJrQ5TaQW5UHDee1DqqKDOcf7+Ii5HKe/b+NE5AueUnMJlcVPlqqLvNF8bo2hEVVW2D24np+be8hyk0wXs57vtbFDPENo6GBmkvaydOncdNa4aXTchZym3lenaDZODkegILb5lTIaGcDlKzkm06j31lFhLmEnPzDMcTMtpmr3NdPg68Dl8HJ08WryRNnga+O5r3+XQ5CHySh4NDbfZXdQeffmyL/PDgz/EIlnIKTlsRhurKleRzqe5pHotkWyUocgQR6eOFmoYyGqeMls5VY5KxiJDeM0ePBYvgsGArMhIooRBNHB98/W8MPQCnVOdxZvpptpN3NJyCw8ff5g/WP8HBBNBxuPjpHKpYgXiYtYHdk93Y5bMrPWv5ZWRV4hkIpTbyokLcUKpEJfXXU6Du4HPrPsMPoePaCaqC5JnmawW9HSFhaRNsvH7636fnxz+CQcDB4vPu3HJjRgNxvNqeaXyKYJJ/Xu+f2I/G6s3MhYfw2gwUuuqxSpZSeaTZOUsBsFAVs7S6GkkkoviNrtJOyq4pfZaLH0jtKxaxVcv+yo7RnYQSUewSBYEBNJymptbbr6oietFQ3z+7d/+DYArr7xyzuM/+MEP+NjHPgbAl7/8ZdLpNJ/97GeLBoZPP/30/5MePmoioZOecJhUuYvfDj1NKBZgJjbJpbVtVFWt4dGeR6l2VVPp0DN8TAYTw9FhBARubLmJZ7oep8FRzY0tNxNITrJ/VqVnNg4FDjESH2ET59+Lfjdg9shof7gfxWJib//L3Lr0JjbWbSKdiOC2uGn3dVAum1FSYwglJcjHj+tJ76oK2SxqNIpot6NGIgjJJGJJCVoyiTwywkylYx7pAeifOTHP3bdQApdEibayNpg+lf4+nZ5GEvR4gdcmXiOrZIlmouSVPFk1j6+klqyc5Wjo2Dw9SX98iObSJYypIrHwKYFrqUMPCHV7LowMNFa28cltf8Jg8ASJbJygFuexE0/QF+4vtjlAJz3r/OvoCfXwaM+juE62yS4k0uHdgDpPHV6LHsswG7IqMx4fZ3n5cr5+5deJZ+PIqkyp1cvDXQ/RO91DOp9iR9/zLPe28Re2r9JWs/qsr+U0O7ml9ZZi+6pAfgr6q9mr7Nmfc1pOczh4WNftnWxZG0QDVqOV3WO7ua39NrbUbiGRT1BuK6fWXUv3VDerKlfR7G0mno3z6XWfZsfwDh48/Avyag6j0czy8uXc0Hw9Pz30E/wuP2aTjUtrN7F9aDu/6vwVf731r3ng0AO0lLRwZd2VZJQMlY5KNvg38Nr4a4QzYb796rd1N3SDiUuqLuH65usZj48vOO12Nr3SuwXxbJyfHv4ph4OH+Ystf8G3dn6LnSM7mUxO4ja7uazpMr648Yt4zV6ubb6WUDrEo92PAicNGi26Ts9hctAb6qXaUY1RNHJL6y3zSA/olb/zbXkJCNS76wkkAtyz+h5i2Rjbh7bTOdXJP17/j/TO9LJ7dDcierRPS0kLa/1rCcQDtJUto13yE0iESBhS1EcmWeJbgs/he9O0ee8WXDTEp9A3PxsEQeDee+/l3nvvfesP6F0OJRhEDesX6lFzhlBMv+Epqsz40FGMtbX899H/RtVUymxlzKRnaC9vR1ZkhqNDXL/keu5q/z08WNlibeWlbD8mg4kttVvYXLsZk8GEqql4rV4CCd2orZATdTF9KU4fGXWbXCxzNFCeNyOUnGqHKJOTaMkkmqahjM6NXiCbBbf75GpXQ6qpQZmcRJiY4LgcmEd6AN2P5TR330Kbo8xexpHgERo9jXitXjJyBp/dh9PkJJQOoaj6qjGrZHFb3GTkDCOxEZL5JDXOakoMTsKRAIqoVzlUSaIvPsStLTegJRIk5BQOyUatuQJv7bmzuRaCy1HKypNj68ORYaqcVQxGB+c8p7WslXguTu9MLwbBUByxPRg4yLde/hbfuuZb513CfyfRXt7Oe1vey2M9j80hP16LlxuW3kCHr4NfHPsFkqxyZOwAR0JdxURyyWCk0lxG/3QPPz32C75c3nzO70eD51SkydluNrPbYvFsHDil0zMbzIiIRDNRJFEinomTkTMYRSMPH38Yv9PPx1d/nOf7n+e18ddIy2k0VaWtpIV/u/l7BOITOCxOys3l/NPL30JWsrRVrmBZeTsTyQArfSsptZXyVN9T3Lj0RtwWN6qq6seowe6x3ewY3oGAgKzJWCQLZbYygskgz/U/xxX1VxBIBuZMuxX0ShPxCaKZKDk1h9/p5+6Ou2kta+XtxNkyt4YiQ4wnxolkIvz8yM/5/PrP85l1nyGaieK2uPHZfDze8zhNpU2s8K0ofp5dU10cCBzg50d+ri9kRAmrZGWdfx33rLoHi2SZR3ocJgeSKHEkeIQjk0fO+X0xikYuq7sMo2jkmb5n8Jg91HvqiWaivDb6Gp9a8yk2+DcwnhjHZDARTAQZi43x8TUfpy/Sz8G9jxf3VR47xK3mu2jwNFy0Wp4z4aIhPou4MGjZLJz0jEmomWL+T8FAL545lfIL+sRI51Qn1c5q3BY3VsnKhoYN1JnLcUp2jkeSfGTlRzBLZn5y5CeMxka5o/0ODkwcQFEVNlRvYCQ2clGOuPscvnO2XgoJ2ILplO5nDk62tQSbPoIsngwJjeSG5+/sZDwGzBVYF9ocAGv9a9k/sZ94Nk5OzeE0OekL92E32cnKp8aYJUFC0RRe7H8eSZQoN5dwfLqL21rex/RwN4ooINhsqJJExKjiLS1DzMYQLS6M5U2IDs8FvlvzUeep4y+v+Ev++oW/Zt/EqVH+1tJWnGYnz/Q9g91kJxCfIC/nQNPYlZhix/AOtrDlTT1XzlQxWOhx4Lyf+8lLPondZKdrqouMnMEiWVhWvowPrfgQPodPN/3rfBSXzctI/zBG0cglNeup89ShyHnMBhMmo5nhyDDLfeeO0DmX0DaejZNTcsWgyIKTr4CAUTQiCAKSQSKWiJGSU6SVNP918L9Y6VvJZ9d9lqyS5eXhlxEEgaUlSzkRPkEyGaFrcC/RmQA3NlzH0pIGXh3bzVhklKtarmXX6CscDR7l2HQXdpMdn93HDUtv4O93/T15NY/X4uVvrv4b8mqerfVbCSQCVDoqWV+9HkVTsEpWotkoPaGeIkErVK0KY/z94X66p7tJy7oT9mtjr3E0eJQ/3vjHLC1b+ra00+dkbhkMTPgsHAuOElNT+J3VRDIRlpUtY03lGmRV5v+89H9I5BN6WKimcWf7naTkFL3Tveyb2IemaVgMFg5MHuDFwReZTk/ruXFaimQuye7R3ayvXl/87hfgMDmoddWSyOnvUTgbXuhw52CFbwUvDr9IR0UHGhqiIHJz68081P0QM9kZPv/E5/nshs+y3r+enJJjRcUKgokg/7zrn/nSpV/CIBpQVAWLyUpzZTu7R3ezY2gHTrMTv92Pw+yg1l17US1uF8Ii8fkfCsFkImE1MGZKEbao+OuXoyVTBMOjelqyRW87KJqCw+jghpU3UG4rJ6NksEpWGj2NrGzaWNxfm9TG0/1P80TvEwxEBri87nJeHX2VgcgAHrOHvnAf5XZ9vPZCDdsuBhSNByUJQ2UlSiAwl/xIElJVFYaKiuJqUSwtxZMpQTKaaapqx25xklWyWE722QvvXQGFNscDBx8gmAxSbivHLJmRBIltjdv46eGfYpbMlFhLCKVD+nSOp45AbBwtl6O+vIFgdJy+8U5+k1e4pWQTk137EdxuknUV9E0eYyg+imCxAFASfPNI6pa6Lfz/2fvvMMnu+soff91QOVd1Vefc090TenKQRppRAgllMmZBEsGYNdjgzJrd9WIvNvu1d1mMMTaswYAxwUiAkATKaTRRM6PJPd3TOXd1V8510++P213TPXmEAMFP53n0PKPurlu3bt1wPu/3eZ/zpdu/xNHoUZLFJD6bD4to4S+e+ws8Ng+x3BxKqWBmcCwgmZnj4WM/4EPb/vNrcq4snXBaRNARZGfzTnrnekkWkxTVIk6Lk2HPMEdmjjCdma7EOHQEOri57WZeHH3xvG3c03UPH9/y8cq4+aJ5XLacJVPK0OJvYVvTtcQLMSKuam5sv5m9Y3vYP7bH3IggsKFpGze23/Kafs5kMUnffB93dN7BNQ3XsHdiL1bRitvmZi43R0EtsKlmE9OZaSyihdXh1fyg9wdcU7+NfRP7CDqDOGQH7cF2NEeRUi6FVbSwsnoVNRmRVCHJje03s2d8D5OZKe5eeS9rqtea012yk3QpzZvb3syusV3ohs5Yaoz71t7HfGGe65qu45G+Rzgye6Sy743eRnY276zERCxWrUaTo0xnpiukZ9FTTNEUxtPjdIW68I57ubX9VjbVbfq5j+HFsCxzS5I4FCnzuT1/zcB8H+/d9AH+1+7/j3ghTsQV4VT0FJvrN/O7W36Xv33pbyvTjLIoM5ocZWPtRr5x5BuMJEe4ofkGVF3lZPSkGf9g6MiijCiIJIoJGnwNbKnbworgCjRDQxIkZFE2c9MMDVVXcVlcl62q65iL2W8d/RZ7J/aSU3J0BDr4rdW/RZ23jsH4IM8NP1cJHJUEiZAzxHR6irn8HJFQE4nUDOvX3cbnX/6i6fdWzqMaKmsja/nYlo/x/Ojz3LHijl+rxe25eIP4/AbCKJUYK0X5UfJ5YtERFI+DY/lh/I4AtzTdyGR0AJtoZVPdJgZjg7xnzXv4cd+POTV3CoAqZxWjyVFEUeSm1psAU0NQ464hVohhk2y0+FvYM74Hu2RHFmWmMlPMZmfx2X1XZdj264LFCo5RLCJ3dWEARiIBhmGKZmtqsK5fb/oBnTxZSWjuCod5c8+9/Nvxf6NvoeUlCAKdoU7uW3vfMrfTTCnDbHaWolakLdBGppSh0dfIbHYWp8VJwBFgKDFEe7AdA4NGbyO3tN7Cdw9+gyZ/Mzc07OC5sReoj7STNUq4WlZQbcDM7BCpZJSCP4c2P49UU4Mgyxc0Uft5sDKykgZfQ6VaEsvFCDqDFJXieaQHwC07OTN8gJGOQXrq1v9c773U+G8ppjPTfPXQV/Hb/Tw1+FTFr0hEpKe6h6nMVKXq5rF6eKzvMURRRF0YQbfJNlLFVOU4uW1unh159oLEqDPczbGZo2yu2cje0d2VdheCgMXmYL4wz1ODT7G+5uoiOi71Of12P+tr1jM4P8gD6x7AYXHQN99XqUrd1HIT7+t5H3/z4t/wptZbODx9iLnsHNvrr8Gqg6GqFCgwGB9knb8bOa2CBuVCjvl0gQbRT119C0+NPMPdK99Kb6zXbMcIAk6Lk0ZvIx/d9FEmMuZoe8gZoqAWcFqcPD/8PLWeWjpCHab/kGglXU7TF+tjbfVaBEGoaJayihmuuVjpWSQ9i47YE+kJ3FY3n3n+M/ztm/6WlZGVr+r4XQ56Mlm5dqer7fzTkX/EkATeteH9PNz3MP2xfmRRpqyVafI3cXTmKAWlwHvXvpevHvoqXaEuFF3Bb/fz5OCT1LhrkEUzw2osOcZEeoKyZhJtSZRwWswK8Wx2loA9QEewY9lYu6qr5JU866vXY5EsPHjqwYtW1Wezs3z98NeZy89R5ayizd/GYGKQifQED51+iHetehc17hqeGHiCanc1Na4aEMxg3y0NW0nk56kOtNLcsIrPv/z3nI71kSvn0AwNWZQ5Fj3Gl1/+Mh/d/NFf+8XtG8TnNxCp5Cw/6f0xSZsGdjuWbJHOQBv9qSGemXyJG1fexmR2ij++5o85GT3Jg6cfrJCesDNMV6iLR/sfZTo7Tb27ns5wJ1klS0EpmIF4goBdtuO3+zEMg2w5i022UdTOxidcqWHbrwsEmw1LV1dlNWjp7ARVNdPOq6uRqqsRLBbKR45UbpwABYeFkeQIqWIam2yreCcpmkI0F+Xo9FEQTb1I71wvL46+yNPDT2MRLcQKMXw2H3esuINnh59lZ9NO3tr9VrLlLCvDK2n2NfNM789466q3E8vPsz96mLlygvHUGCW1yMvTBzkzd4z3bno/K+ZTjMfGYSFI1e4L0VPdQ6aU4cFTDxJxRSpOsT8PlrZoZrOzdIY6eWXy0HmkZ1VkNVbFAFUlm41faFNXhaXGf0uRLCZ5fuR5bm69mbm86cnkkB0cnT1KrBDjxpYbOTR9CIfsYGPtRv56118zkZ6oiLS7Ql28t+e9pIopzsTO8NL4S+e9z1ICuaP1RmYL8/x07GmznSkIWGQrVa4wHqsHRVcuuSjQkkm02VkoFsHhQIpEkJZ4Pl3oc9pkGzbZxmBikE9t/xSn5k8RzUWRBInpzDT/dPCfeHPbLYgGvDj8PC6LE5tkw6ZLpvmj201BLZAyCoRkGVQVl2gnrc4zOnCY+jXbeNeqd3Fk/gTt/nbWVq8lr+SxSFZmsjO8OPYim+s2kywksYgWskoWm2ijI9TBrrFdHJk5Qq6cw8Cg1d/Km9rehFW0LjPLdFvclBeCcnPl3DLSA2YVRdEVjkeP89zIc78we4TFljaiyGkjSlLNciYxwPq6jRyZPYKBgaabRMBn8zGTneHk3Enet/Z9bKrdxC1tt/DNI9/k5tab2T+5n5AjRGdVJ3O5OWRJpqAWEAUR3dARDKHixq0bOrlyjk9u+yRfOvAlTs2ZfjuLpOePr/1jjs0eAy7s+jySHOG5ked4cexFYCE4Vy3QXdVN73wvQ4khpjJT3NhyI2fiZ5jLzZn3mHyMZn8zW+q28ODJh3hvz3tx+qp4ZeYIHptZobaIZ2N2jkWPUVALv/aL2zeIz28gxrKTxLJRMm6ZuTobBdXAIVvoCm9DKeVpi3TREGql2d+M0+Lk6eGn2Vq3tVJaPTR1CAQ4MHmAY9FjlI0yVtGKw+JgNjcLmKuExd4zmFlCdsle+f8rNWz7dcLlfGK02dllpAfgZGGYvWN7uL7xegqauZp1yA7SpTTfPPJNHLKD49HjqLrKPZ33VATCuqGjGzqpUorHBx5nQ+0GOqs6ERGptgbp8XWSK2V5duApYqU4YW8tY9kJ4vkYHpsXn81HrauGCfE0+yf382b/ZrTcONjt2EQ7PZEePr/n8xyeOYxDdmCTbZd1is2UMowlx8ireTLlDJlSBrvFTp2njhafGS65NM8qaA/y0U0f5Qulz7MnPVvZzqrIaj609oP0njZv0i7J8XN/Nxcj2ulSmtncbMW0zSbZ2FK3hW312yhrZdZVr6POU4dVtPL9E9/n1Nwp3Naz525frI/vHv8uv7Xmt5jOTl+QXMFyF9611WtpCbaRKWeQBAmbbMNj9dBV1XWegd1SKOPjlHbtQo+etR0QIxFsO3ZgWTBVvdSCIlvOcnjmsOnRM3+KozNHsUk2Evk45XKBu7ruqlynFkOk0V3PVHrCJPBWK4qhIlVV4S+JNFqrGJViaLqKWsgjGtDmbWb3xB6mcjOkyxkMw6A90MZbV74Nj9XDptpNTGWmcFtMInV05ignoicqbtO6oTOVmeLA1AGubbh2maal2d9MjbuGozNHzUlGQUAUzMmjVn8rM9mZSoVjvjD/C3voChaLOXgQNDgxd5K943uJF+Pk1bypmUFEEITKvc9tcWN1WHFIDjbUbmDP+J6FdradZl8ziWICr83LQHyAFl8Lrf5WRlOjFY2TbujYZTtOi5P54jzjqXHetfpdqLoKmF5iHpuHY7PHlkWULD3fFquAi0MPi6/z2X0ki0kavY2MpkYpqkWmM9Pc03kPLquL6cw0giCQU3I8NfgUiqBRRmUiPYHD4jDJGQJWyUp7sB27ZEc1VCRBYnPdZgrK8nvdrxPeID6/gciqeaZcGi+N72I2e3Z8udpdw/UN2/HJrsoFM5mZrNiunwtREIkVYjx46kFWBFcQsAfoCnXRF+tjJjtDq7+V4eQwNsmGz+arCA8vl/f064xLecFUVouVPxbIKHlyap5HzzxKUS3S5GtC0RU0XSNVSjGXn8Mm2zg+dZzuqm4kQUI39MoqSzd0CmqBg1MHafI00G6rY2p2kGvUOlpq24j4apmZnsVqtRMvJHBbPVgkC03+ZvPGpKocGz/EzpprTPfmqSl6bt7B5/f8Hw7PvrKwm6Zzy6WcYkeSIzza/yhO2cn+yf3sGd9DQS1USup3dd1Fm7+Nr73yNdOkbgHdoW7+dPufcrrtDhLFOG6LC6ti0Hv6Rcpq+ap9hC6GixHtslauHE+bZOOdq97J4wOPc3jmMAC7x3djkSx8+vpPM5E2p/UEzIfuojndmbgZQmqRLBd8j0UskpImXxPbG7dXJpOsovkQssm2i+6rlkyeR3oA9GiU0q5diHfcgeT3X3JBkSqmwGdWgJq9zYwlx0gUE/hsXvJKnjpvA82+ZsIWH4XYLDc338izo88zrcQAsIpWQoE67mm/E5/mpimfp6q6BQyDhmAzjx3+KiPJEXNMXrYjIhIvxDk0+TIf3vjb9MfP4LP7aPY3c3DyIOPpcayS1TyWC9FBsigzm51F1dVl5CVWiLG5djOHpg4RL8TJlrMYhkF3VTebazdzZPYILquZPeeQHYykRpjMTqJoCmFnGKdkJ5uO4ZJNs0iPYUFwOpdNY10JRL+fXMDJdwe/QzDSSLxoEt3FRZ0gCGi6ho7pezZfmMcwDPwOP/6Cn3etehdrImuoclbxcN/DhBwhylqZozNHuaH5Bu5YcQePDzzORHoCi2hhR/MONtZsxCpZUXUVr81rWmsYGiWtRLO3uZKjLKMyswABAABJREFUdy4Wz7dFfVTIESJdSlfIttvqxipZafY1syq8yrRD8DbzzOgzjCVNcrwIr91LjWzmNjZ6G5FFGQEBh8XB2uq1nJo7VamYXlN/DUdmjvAXN/zFFR/X1xveID6/gTBsNl6a2EM8H+Paxu3UeutQdAWraCWv5DGsZ8cyfTbfea9fLPNLgoTP5mMqOc7A+DG6a9fw4Q0f5l9e+RcOTh3k7s67sUpWBEFgc91mfHbfFeU9/aZiWfK6IJALuZnPzFNQC5UUda/NS+98L5Ig4bF5Km0vgKJaNFO4ZSe6YfqelLWy6YZrGAQtPigrBDQrjVKIyckh7u98N18v5cloKkFHgFQpTdgVZm1kLf9x/Hu4DZmWQBsl0cxlw2YjK2scmjhgCrVFqZL4DVxwbHZxRWkVrewZ38P+yf1kyub49HzeHMv9Ue+PaPI1nUcOTsdO8w8vf4k/W/sxHn/lQc5kzz7YX62P0IWw1PhvKeyynVVVq/DZfPznzf+ZZ4aeQTd0Wn2tjKfHEASBQ1OH+O6J77KuZh2jqdGKrkIzNHNOShAoaSUC9oDpzmxoF9yHRVLS7G+m1lNbITpLsbgoOHdcWstk0OfnL7hdPRpFm51F8vsv+jkBfA5fJUIh6AxyXdN1HJ89TrqQRFJ1nIaF9f6VeCUHUrHM5GQvO6q3IPj9CFYr2+q3sSK0onLtBm027nXAo/0/JeQMMp2dNluWhoFDdmAYOl6Lh77pExQLWbyyu3LtS6L58BUF0XRAXwKP1WMKmM+Z6MqUMnx4w4cZSAwwGB+kpJWIZqP0x/u5puEanhx8kmafOZp9ZPoITw8/TVEtUiwX2BLZwLbIBkZP7cNv9XF361toLJuhwBeKiLkYBJuNKb/AZHYKd7CGjkAHA4kBorkoq8Or6ZvvQ0MjYA+QLWcRENhSvwVFKfHcmSf5/ev+ELfFTUkt8Vurf4t4MY5DdqDoCnvH9xJwBPjA+g9gl+0E7AGeHHySx848Rqacod5TT8Ae4M6uOxlLjhHNRjG8F7dxWTzfJjOTHJk5QmugFZfFxXh6HFmUqXJWYZft2GU7K4IrKhX+t3W/jW8c/caybTX5mtjesJ1DU4cQBZH11evpne+lK9S1jPR0V3Uzk53hyOwR/m7P39EWaPu1sKQ4F28Qn99AlLQyHoeP65qvZ9/4Xp4bfb7yu3W16yksaHGySpaQM8Q1Ddewb2LfedvZVr+NkC2IJZ5iXcf15CWVsC3EZ2/8KzLlHEWtyPvXvR+bZFqgn+s3ks7GFkzu0rjtXlrCHXjdV2bd/+uIpQJoweNhNDaEWkrRFmhbaBEKlYdmUSuytnotyWKSjmAHdZ466j31lLQSVsnKcGKYgGCa5gmCwKpQN13eVqZmhrin/Q5sx86QipQ5OfYi93W9FVt9E0+PPINhwGxmmgePfx9JEDEUjZHUKC2hdtLHDxMrFs3KgGEgYQpUF9O+F3Hu2OyirqTaVc10drpCeoCKN09/rJ8qZxU++/lEejg1wrSe4v7OdzFeir4mPkLn4lzjv0V0BDq4reM2Pr/n82yp38JjA6ZPScQZYUv9VuZz8wgIjKfHubbh2kpFs6yVK1WfoD1Id6ibXaO7aAu0LatoLWJplfNi+7K4KHAVNMp9y7VgejaL3N6OOjhYsZxYhlLpstu+pv4anhh8ovKzKmcV2xu3kywkKKUTNDtq+LP1H+eJvp8SK82i6RrTiXHCfi9vatrJXG6Op4eePuuu7a+mzbGVByLN7Jo/TFdVN+liEsEAGbGSxm5zhAhafdzbfCv+hYdg0BGku6qbVDG17HzxWD20BloxMJZNdC1+lt75Xqpd1dQ01XB4+nClevHk4JPUe+p5y4q3sHtsN42+RrPikptDKebZW96LViywIdjM9FQ/jww/zn11d+DJZFD6+rCuX3/F51lOVLF5A8zn59nZtBOA7x3/Hn+8/Y95uO9hxtPjNHobGUwMsqV+C39y7Z/w/X1fZ2fTDh47/Sgz+VmKWgm3zU1RKbKyaiWdwU7G0mN0hjo5MHmAsCvMgckDpIopDAxCjhAvT71caQd+fOvHL9lKWjzfMqUMU9kpCmqBM7EzvKntTbw4+iIjyRGSxSQeq8esAPqbeXzgcTRDo8pZxb2d99LkbaosyMZSYzx65lFUXeXhvof5+JaP87VXvkaqmFpGeu5ccSffPvZtnBYnJ+dOXpG30OsRbxCf30BM56Z59+p381DvQwylRmChlbEoRn7o9ENsbdiK2+LmhZEX+K87/it/veuvl5Gfaxuv5b/d8N84eux51q+6mc8f+AKHpkwRqA2Jntr1/Neb/oJrmy4cTjo8c3pZrAFAKFDHW7fdT2tN9y/08/+qUBFAj42h9veT9aRID/Ryz9q7iRfi9MX6ETFJRpu/jZtabyJXSHNs5ihHZ49iAL+98beZTE/SXdVNXs0jCRIrgit4a8ddeJMFbm5ehWMmgZJI4K4OUVaLnOjdxZaqd3No/AD9832mzxDgkp0IooWIr5ZgDu4L3Mxko8ao24VTdiLLViTx/FtAwBZY9v+LK/OiWqxoD5ZicdxW0ZXKmPK5SKlZgl078b+KrKwrxYWM/xyyg8/u+iw5xRTXyoL5efNKnkQhYQZ5OkMYhoHT4mQ0NYpDdrA6vBodc+S42duEWiqQjE2yrW4LsULsgoRmaZXzYiaEbqznCeABjGIRbW4OsaYGfWqK87DkOF1s2wD7Jvct2zebbKPaU0PA1846oQ5XLM/9TfcwTpIcZbzVjehWC1/Y/4VlhG6pu7a/uolW0mysWsvpqWMUFvPYNB2v1UuXr4NG1YVbOUugm/3NdIe6iRfilNQSqq5W2iceqweP1bNsomsRmqExlZ1CEiTqPfUkLAlq3GblRdVVM1+wei37J/dTUksVX6hMKc1MfhbBb057xdIzTDRl6S6KGLKMnkxecVyJ2+LG7wiQL+c5Hj3OitAKrm+6nqnMFH9141+RU3LE8jGCzgBha5CTcye5fvWt7Bp9CVVTiKamkaxWFE2hPdjOZHqSv7jhL3hy8ElUXeW29ttwWpxMpiepclQRL8aZzk5XTHqPRY/RO9dLg7eBnuoeDk0fuuj5dmL2BCWlRL2nnkw5w49P/5j2YDudoU40Q6PaWc32xu0cnjlcWXTN5+cZTAySK+dIFpOVCJO11WtxLgjfY/kY96+9n5JWoqe6p2J2+OCpB7FIlspi6Uq8hV6PeIP4/AbCb/OzJ7WHbDlLT3UPuqEjCiJ5Jc9gYpAVwRWMJkdp9jfjsrqYzc7yP2/6n0RzUdLFNB6bB7fVzUR0kK7mdRXSAyAuZPEcnz7CX7/4Wb581z+fx/jT2dh5pAcglpjix/u/xYdv+ePXdeVnabCrYLcjhcPLUsAvBdHvR8rn0cbG8Lglim4b8Zl+rm+8jje1vZmgI0C2nOPk7AnSmTgvT+0nmY3hl93oksiusV2siayhwdNAvbeezlAnPcFuHNEUuhEHwYouy2CxUK97CPlriSWnGRk/wV1tb+FRXac/MYAoSkiiTKu7nrc3305hYhTHSIYOQcBf1cDG6nWciJ8+b/97Ij30VPcs+9niytwu25e1xRax6DliES3ntTUW4bf5X3VW1tXgXOO/54aeYz4/j9fmpdZdi9/uRxAEFE1hNDlCT/Xaymr5U9d9iv2T+3lm6JnK67fWb+Xuzrs4MPgC7tk0RjjKAyvexbgaI6tkcYl2GqUg7qyIVo4u05Scuy96NosyOYI6NgayjOhymYaYgOB2w/Q0otPJufUeMRI577hdzODwUpWmoKMGPZnEpyj4LR2Ifj9RJcmfP/Pny4IoAYYSQ8siVZr9zbR5m7HlSqQpUtYVrKIFL3ZqrWEaDd+yVq/H5uGdq99JUSuye2w3Ja1ESStR567jrs672N64fdlE17nQDI2CWjCz6iLrcFhN88M6bx3fOvotM1TZ0M5OCxoGqqFR1M8S75xWAN3c9nn6u0tgsVU5mhzl1vZbeezMY+wZN/2YMmUzlqTGHqbb38FXzvwzp+ZOcWfXXTzS/wiNngY6QyuYz82DbIaGRlwR/HY/f3rdnzKWHCNejLNn3Lw/n4ieoKAWkEUZv91fqQDNF+ZpDjSztnota6vXXtTFO6tkmcvPcU/XPXzjyDdIFBMcnDoIQHugHa/Ny3eOf4frmq5jLj+H3+6npJYYTgyztX4rQ8khvnLwK/TO9wLgs/m4qeUmOkOd9M73sjq8uhK3sYilFeJzF0m/LniD+PwGoqe6h11ju5jKnL9yjLgiVLurySpZPDYP1zddzxf3f5HBg30Y5TIaOgFvhAfWf4DJ2CiOBvcS0iMiGYIZvgkcnzl2wVLnSHTgPNKziFhiipHoQCXu4PWGSrBr4uxKRgwEsG7bhlxTc2Ub0XVEjwenX2LOUmJ47jReZ4Dh5AiqoXFP1z2oagmvw0eqkKJcKuARLKyuXovL5a9kQN2x4g7WO9soHz5GaWTENEWsqUEMBEAUcRV17q6/mZ8UH8Oiw/Mv/5DrO3dwR/ddGLqBR3JiKSrMHN7N9pVvM/fNMKjae5JPv/lP+dyRL3JiicCxJ9LDp3d++rzvc1FXIiBQ665lLDVWaV/IooxNNn2dnBbT0O5ctAXalvkVXQi/qIymZCnJbGYaQ1UpKgXqPfWmdYNgtukUTSFXzrO1YQ3pYoqPbPgIt3fcTl7J47Q40TSFHxz9HjWuakpugTRFRkaP0tq5BbcqLdgbDLFYBxMcjgtqShbPK8FuR5ucBEC325EaGhDdbkS7Hamp6bwKmBiJYNu5c9lI+6VwubiLcwnUqclT55GeRSyNVPHYPNy79l38KPM1rIkpwAoahNxV3NP6Ftyq5bzP3OJv4ZPbPskdHXcwnZ1GlmTq3HW0+FuWfbeX0i3VemrZXL+5Ut0Yig9Vqo6SIFWq2QgCsiBhF88Sb5fkqDjWL9PfXQZL24nRbJR3rXoXOqZAfmPtRjMvb3Qv3zz6TY5HjyGIEoIg4rN5GU2OkFdydFetJK8VTJuAYqpyv23yN/HMkWcqk2GZcgabZKOgFNB0Db/dT6acwW110+A+O7J/sQk2t8WNZmgki0laA62sq1lX8QkqKkX2T+xndWQ1FsmC3+5nNjvLQHyAQ9OHKGpFeud6qXJWsTq8GkEwx+ufHHqSqcwUH938UZr8TfREepZ5Cy3iQoukXxe8QXx+A9Hkb+Km1pv44ekfVpJ6wSQ9O5p34LP7cFvcZEoZXhx9kTBuLFINJTGPVbBg0Rw8dvB7bG3ZTrJoPshEQcQp2RHUJcJOXSdxgZtV9gIPv+W/z1zy978qLA12XfbzRILy/v2It9xyRZUfwWIh57Lw+PCTbK/eQj4VY3piiEZPEMHtIpmb539e+9+YzEwxWtWHKEq4DQuetIrD7kIKVAFQLhdQhk+aFQJdN6MnolGkujqzsqBp1I1luc95PVMBHxOtMyQyMeRcHmk2RsLjQQwGCYQbqM+evdQFl4tN+SBfevMXOJk8Q6KUIGAL0FN9YR+fxQfBo/2Psr1xO5IoLZvqavI2cXfX3bQGWvna4a8te+1iy+RSUQMXc1x+LVylfVYvSqlAPB/j4WM/4L2bPoCBwbGo6YkiiRJbG7bwh9f8If/1qU/TFmpnMjNJ/9xpwGBtZC022caZ1CANupfBsaPsTk4QSb7CXeHrqS8ur88YhcJ5mpKl55XU0HD2b4tFtIkJhLY2BKsVyedDamtDamqCcpmsU2bCkiPPBO5o8orJ4OXiLpZiaWTK5X7fUtXOh67/fYbHjzNPjqJkICMyJuRwNbZSc4G2pcfmYWPdRuAsuT05d3IZub2cJmrxMzf7mzk6e5Q6dx1T2Slssg2LbEVRVTw2LzXOatOXCAh5a2hQ3Qh2O4LDccXi5spnvQyBjKansMhWuqu6kGUbXquHRD6OjsFsLsrq6h5KpRKyVaasl89zqM6X89R76zkePV7R9YmCaIrxw6uodlVT66m96P4tHsuCWkA3dNKldMWLbRFVziqubbyWpwafoj/Wz6m5UySLSdqD7dzecTs2ycbTQ09jkSyEnWFTvL6ARb8eu2jn0zs+zd/s+ptl5Odii6RfF7xBfH5Dsb1xOw+se4CT0ZMUtSJ2yU61u7oyedXsb2Y0Ocp8bAJxeIxAdrHProBQwOFx0ulpIW0XcFmcSDoIypLSsiBgaBp+i8dsCS256bkXUrgvBvfrdOJrabDrudATCbRo9IqIj+j3Mx4tEp0dREhluD60EqFmK0W1hMPjR5+NYh2aoEWAlqgKkgGCZq5elwhbnbqMlpgzfVYAQZbB6UTt78fS3Y0ei6EVCjim5mmfTfCh9W/hseQ+5kZPm3oBwyBo9XN3x5vx5WSINIAsY5TLGNkszf51tFR3XtGxafG38MC6BxhLjtFT3cN7Vr/HNK602Jat4lv9rRUfH7/Nz6rIqkuSnkwpw/dOfG9ZBtZrGX2y0t1CV1U3e8d2U1ALfPfQN7ht5d3cteJOLJKVtdVryRazfOfotxnPjjOVm+a+te9HVcvE86ZL+UB8kI01G7jFfy3jI8fBbmU+McVPMo9zf/vbcWXKIIrmcU0mIZdDi8WQ6+qA5eeVUSoheL0YaXNxYBSL6LkcktWK4HAgV1cj2Gy/UDK4FEsjU67k975QLRSn+fc9/8ZQfMA8Z2WZ9lBHRRN0ISzaIciCjIFBUS0ScAS4vvF6OkIdVxTM6rF5uK7pOgRB4NG+R5nKTlHlClO0FNga2cDWhamukLeGe1rfgqdsQ/R4sHR1vSot2aUIZLKcYT4zSzwfw2pz0i87afG3MJQcBjAtKxY0NXXuuvMcqvvj/dy54k6mM9McnT2KoputuGp3Nbd13IZFslzUEmTpuSEJEs2+Zubz8xQUkwQpuoJTdrKhej0/7nuYofgg1zZuJ1lMAjAYH8QqWvnQxg+hGzqZUqaSXQfmVK+ma+TKOeLFOCtCK/jHO/6R47PHL7tI+nXBG8Tn1wRLWwEeq4cqZxVzubmLtgY8Ng/vW/u+S66iskrWTBzPLjdFs0o2etqvI4uCgI3f2fK79E4f49DwXspGuXKz66ley0q9Ci2ZRF5SQm+JdBAK1F2w3RUK1NES6fgFHKGfH0ap9HP9fhGCzUZOVEzdQT7LVL53YQOGmfM1NUnG381KawNBdxWx+YlKSd4olzGKRUKBOppsYdBnl2974e/UgQEs27YhhsOm94soUp8t8p+kzUyu7iGnFXB7wzTXdmM/eQYtc7bKJrjdWK+55qofBh6b57IBm1cS+LoUByYP8P0T3z8v9Xxbg5kT9/Ma1YUVG3+06ff4q3KO4zNHKKgFHu37CbWeWu5b836+8/LXeXPX7XjsPmyynZJS5PEzj7OjaQdrI2so62XGU+NUyz7GTx5EkwREwTxuc5NnGHWcpmMwjZHPI3i9yK2t6FNTaJOTiE4not+/7LzRYzHk5mbU0dEK+UFVKy0ywWa7aPzGlUaMZEoZRpIjTGWnUDSFOnfdsjH1pVgVWUVboO2C7a4LtShns7N88eCXGM6NLzt/ztUEnbs/j/Y/isviYigxVBHBR3NRxlPjvHv1u+mq6rqiSlWLv4WQI0RPpIep7BSqplLlrMIp2cll4myt30qjFMKDtVLpeS0F9IsIOIJIVjsURGRRZjA5xC2tt2CZtDGcGDIjKQSJtkAb71/7/vMcqlVd5YnBJ3j/2vezM7WT+fw8FtGCy+oiXojzkY0fueD3de65oRkaM9kZNtZs5ET0BFOZKRStTL6QIVvOMZeL4rf7KwGqgiCY4uVCDItgTuXZ5bPGs5quVdyaI64In3nhMzT5mvjEtk9wZ9edr/lx/FXhDeLza4ClqyUEs7cdL8SRRMnsDS/kD527GrzcKsptcVeqCYuwynbW7LiXrx//FnO9s3idAYLBeuZLMe5Y/w5+euonlNUSPdVr+a/b/pTqo2MY22phCfHxukO8ddv9F5zqetu2+1+3wubL3SCv5gbqEe0gCKa2wDAqFTJTMO3ALTlwRJO8desDPDrxNLHUjBlx4HDgL0vc034nHs1FSRQv/Aa6DooCoogWj5uVBsAJrBBFRK8XUXYhZcvQZK7MDFU1q0Y2G1I4fMWf5ReFmeQkL428SDw7Z5Lphc8az82zb3QPt7TcSLaQ+rneQ7BYWBuV+bvrPsPR/CDJUhqf3c9keoxnB5+mPtBMtBTnjs47iLgjpApJIq4wk4lxfvDKv7Oj7QYODb7Eek8nIUMD0Ypgt2MUixiFApliCiOZAk3DKBRQFQWp3jRkvOAYta6jTU6aESdNTaBpSC0tWFpaKn93sfgN4LyogKVO2QF7gLAzzNHo0UpFRNVNp91rGq7hHSvfwcrwymUP1Gp3NZ/Y9gm+uP+Ly8jPxVqUp6JXpglaitHkKFbRnAp6fuR5xtPj5qEwdOo99YQcIRRduapWXk+1qS8ZS45xfPY48WKcoCNIXaidwC+hErEqsorV1WvYp2SZzs5iYPDt4//OprpNvGXzx1gdWY2qq9zYfCPtofbK65r9zdS56xiID1BUizzc9zCdoU6q3dWVoNwNtRsuWu250LkRcoT41rFv0eBtYDI9ycB8P5IhkFOyKJrC+uq1CKJE2FFl5tAZGplShkw5w8qqlfTO9+K0OKlyVlFQChgYrA6vpqiYU5yXIrW/rniD+LzOsbhacsgOnhl6hnQpzWhqlEw5Q5u/jfeseQ/RXJTpzDRfP/x17u66u3ISL60IrQ6vPu+m0uxvJuSvZYbBys+6enby9ePfoj/WT43sRzN04olpqt0R6v1N/O2dXyBTzhBxVFFdXLihL00pX0BrTTcfvuWPF3x8MrhtHloivzwfn1cjlpUiEcRA4ILtLjEQQIpELvu+i8Z0DXKIkLeGuaWmdLqOnkoRaV9Dg1yFpaeB6sOHea/UwqS/hayo4nEFaGndgE9zmxNigQB6MnkeQRXcbjAMLG1tiDYb5VOnzAqCICDY7cgtLcidnWhjYxXdg/lBRCwXENH+sqEnk5wcP0Q+nzr72USx0upLKFHmMlHsyZwp6r5KjcYiRL8fwW4nr2R5of9pRjPjrKjq5Pj8SdLFNAFvxBSHFpJMpaeYS88g5gqIWpn1VWtotITxqTLekinqFx0OBK8XPRYDVcUt2kE7+yAy4nGEjg4MVYWFc+G880rX0edMbxQxEECur1/2fVwu527x90dmjiwjLKvCq3DIDgbjgyRLZhL9fH4eVVeJF+LE8jFuar2J65quW7ZAWl+zns/d8rkralFejSZo6f567V7+7di/MZwcrrhpA5yJn+EHp35A0Bnk2eFnr6qVt3d874W1J5eIXXmtUO2u5mNbPsZUZoqJ9ASaoWERLWiGRkewg6MzR/mDa/7gvHbQYiV+IjPBUMIUap+aO0Wdu45b2m4hXU5f8vNf6NwoqAVennqZozNHub7pOrr87aiGxoaaDTw98CQDsQGC9gCiIJIqpipV43w5z7tXv5vHBx4np+TIlDKkSik2123mdzb9Dt88+s3Ke1yM1P664g3i8zrHaHIUWZB5ZugZprJTuCyuykTNUHKIn535Gdc3X18Rm9Z567CIFnaP78Zr8+K3+4EL6wM8Ng/3rHs3P5yZZX7S9PBQvE7TjM4WQFQxRZeCzKratXzn2L/js3oZmTHHoHvqNvDpbX/CtovoXrzu0K9keutC+ogqZxW3tNzCTHbGvLkvmrQtuZBFtxvrtm0Xneq6nL5HTybNKZ9SCVdVFfd038tPdI1YehZDUTCSSULeau70bsHf1o1y4ABGMolDEOiIGQsEIIM4Uca47TbTF2j1agxNMwXOi1oftxtLVxdyYyOi34/o8SDW1JgtS01DcLuRQgvHXdcxMhmQZfPnv6DS/9XAKJVQ+vpICknS+QSNvibG0+PmyLFhgCQhCAJ+R4BGxXXVBnRLIdhsJFrC/MNT/5uhqGn9fzyb5JqOG9k1vY/9Uwe4xX4Lc8Icd664k6HxYxSGB8wXyxqBWj87V91OKT4HgSr0fB5tZgbBZiMUbqa+ZOaMFerDTHoNsqKCP6hSm0njFe0YioK0cF6pExPmIkFRwGIBSUJemOpaisvl3LktbrPldE6Vxmvzkiqm2De5jxZ/S4X0gDmGPZ2dJl1KX7BddqUtyqvVBC3ub76c50z8DKliCkVXKsTHIlqYzc1SUAqVVt57VpuLuUu16saSY+eRHrh07MprjWK5yJva3sTbut9GTsnhsDhQVIUnB58kVogxGB+84D50VXXx6es/za7xXSQLSeyyHQGBglrg7s67L7lAO/fcKKklZhUz2d0u2xlODFMoZSkqBSKuaoKOENOZKWZSk3TXrKI/foZkKUVnsJN0KU0mk+H/3vZ/mc5MM5ObQRIldF3nm0e/uSyLES5Pen+d8AbxeZ0jq2QxMJjKTmERLXRXddPib6GslfHZfGyp34JhGNzRcQc+u48mXxPfOfodhpJDOGQH62vWY5NtF9UHtNWt4sO3/DHD/S+TSc8zIVupkf2I6sJq2WKhJ7KOH535CafnetlUt9k0yNM0Tk4f4x9Pfh3Llk+gHD6E2+mjObwCf+ji0wi/aFxIHyEJEiIin931WfJKnrySN43p/M38zqbfWSbIlGtqEG+55ayPj81mrtgvQ3qMUgll0Z/F7Ubp7aW6UOB93muZcKTISRqeDTXUTubwFGygKGgjIws7uGQsF9BnZswqT20tot+Pbds25I4Ok9hI0nkERrDZTI3VknZjhYQtMcoTHA7EVyn0fC2hJ5MYhQJ+v5e+mZPsbL+BF8dfYmx+ofJoGDT6m7m3825cURXDUK7KgO5c9GaGGS5OIzidYBhogsD+6GF6atbitXnZVLOJleGVNOBFU1oZC0bJFlK4NIn6rJ2kNcJPMo+RtCsYsRjYbFT5a7m79kZcU3mmtqzgkbGniA3PgKYhzvoI2oPcs+bttC0Zo9bGxszkdV0HUUSqrkZeMuW1iEuNd1c5qwi7whycPMiRmSMVZ2NZlClrZRTdTDXPlXPnmU2qukpRLZIqpV61dupqNUGLn2f3+O4K6VkKSZRIFpMVb5jR5Cgvjb/EQycfYiprtsmdFifX1F/DbR23AeCyuhhODF9wxBouHLtyIZxbFW5y1uLKqZUYkcvlfMVLcR4feByXxYWBgaqr2GU7HYEOVoRWMJGZ4ET0xAWrzR2hDqrd1ZcUc18I554b2VKWrnAX8UKcNZE1VLsi5JU8HouHTDnNfevu49H+Rzg2cZhEZo6VwS7q/I28feXbcckuVkZWVgjvc0PP8Zcv/uVF3/tCpPbc6JWrzUb7VeEN4vM6h9viNgMSRQs7m3fy1OBTHJg6gFN28vvbfp8v7v8iJa3Esdlj6IbODU038IfX/iH/8sq/kCwmSRVTRNxmi+ZcfcAiAk0deFwB9GiUXeoAstuLYLUiWCzoxSJOi5PT0VOAgSyIoKpIVhsNwRZeGt3FmtAqMi/vBaCqto233vBR2lvW/bIPFXDhHnjQEeSlsZfYPb4bh8VhhgwaOtOZaSyihU/v+PR5lZ8rNSxchDY3h9rfj+B2o46NYcTjYLPh1EN0YkUQRQTFQN6wDclmMwXJknR2Sm4pBAHKZ43YBJsNua5u2U1GT6UuepMxSiWU/n4z/9liMSsMVisGoPT3Y1237lXdnF6t1865r2tQndgFgW65hqZgG/sGX6CnZg3X1Ww1jfFkK06rm249BIZJ3K7GgO5cJEtJs7xvPevxoqFXxn+31W9jTfUa1JERShNROmYXKnT5PGgaNQ4H97ffy1RQIhOexm3z0Oiux35mjHyVh58MPmwK1MHU/5TLxErTPDL8BB9q7MQ9Nkb52DGMQgHRcTaJ3kinL2iT4LF5uLnlZr519FuMpkYrk24t/haub7qe75/8fkXnB1RymayStRJuq+oqTouzMqEjiRJemxenxUmqlLpsO+1iuKQmaMvvUZUDNTmx7CHosXlo8DYQdAQXoltM2GU7XpsXRVNwWpyU1BK6ofNI3yMV0iNgBpv+6PSPODF3gptbbmYmN0OtuxZFUzAMA83QFpLEQRJlLJLlso7CS6vChqqi5/MEigJ3191EfdL8HkWHA6nZ1NoIVis5p8Rgeox4IU5ONYml3+6noBS4vul6/HY/HpuHPeN7iKfjDCYG2TuxlzZ/G+9c/c7zWliXE3Mv1W8trVAvHf2vdldzeu4071j5Dp4deZanh55GXcj+667qpsnXzEdXf5BU97vMEFpfDaur11ywune1pDYVm2Z4/DjZQgqP7KQBP27DgqWz81W3pn9ZeIP4vM7R7G/G7/CzNrKWR/oeYSIzUUmZ/mHvDzkxd4KwM0yjt5GJ9AQvT73M/9r9v/jDbX/IP7z8D5T15RECF7vhyaEQhEKsyQbpGOphKDFk3vwzmYXMGIOQo4pyycx2CbmqGE2OksonyKtnqwrz00P8+IWv8GHPf/+VVH4u9PmsopXd47vJKTmskpWSZt5g5wvzPDP0DHd13sWb3W++6veqODyXy2aFxm5HsNlM0gOmxiMWM/O7NA0hn0dYELfidJqaFlU1KwCLVR9BMMmK3b78vS5SwbmQWZ6eTJokp7cXPR432yuGgVhVhWXVqldVPXm149UXel1At3OnfxsNCYXfW/87fOnwP3Fy+ih6LgeCQEf9Gj6x6fcIxc5OQ12NAd25uJL2jJ5MoqXTqCMjUCyaERGaZn436TT23iG6t25FGRoFIY71mk5Uu51JS554IWFW4iwWRK8XLZVCCgSIKylGxk/QXfKhDgyA1WqaTy6d8rqATcKRmSP844F/xCJZaA20ouoqnaFO1kfW89LYS2RKGdoCbWyu28zRGXMUej4/T7KYRECg2deMZmhMpifJKWa8RMAeQDd0mrxNzOfnL9tOuxQupAla6WklMDKHkuut/N3S81M3dG5uvZmXJ18mVTLdictaGU3XuKb+GspamVQxhdfuZS43V9mGy2JWdzLlDMOJYYwWc6HgtrpJl9JYJSvZUgbV0BAwSaBdduCxXnrqrUJ6ikXzOp6aYi6f5+FYnPdXvQl3KoVaKCCMjCC3tzNhLfD9maco22SeHX2O8fQ47+h+B7F8jPetfR/fOPIN7JKducIcffN9RFwRtjVs4/T8aYYTwxS1Ip/c9skrtmY4V78Fy2NEFodWBuIDpEopJtITzOXmsMt2ihiomspMdoahxBA1ioNrwxtobVxzSUJyNUL3kflBfrT7a0xnZypO3vXeBt7b/lbaz5zBunbt67ry8wbxeZ3DY/Owo3EH87l5+uP9CAj47D7CrjAn5k4gIBAvxKn31GOX7ZS1Mvsm9lHaYt5cLYKMns1WHq4u0Y6WTJol92IRHA6kSKTiDLv05B+YPIFRKOCQ7YQcIbqCKxie6gVDwybbSS34QjhlBxkAQUBx2+krTbJvaj8NWsdr5sB7pbjQDb2omaV/u8VuVsFKZyeFUnKKidQEmVLmqvZzmcOz1WqOM7vdiK2tSK2tZsVGks4KdheS0fW5OSiXEQIBxOpq9Nkl4+qSBJKEVF29jJgYpRLlEyfQ5hY8fRbiDsCcHJK7utDj8UrEBiyQnljMfMguCIb1qSnKioIYDl8V8Xm149UXfZ2e5ZHxp7gv/Ga6T8zzP9s+Qp8zTyofxye76JJqCY0VMCwWBFl+VQZ0S3G5lezKYCdKXx9YrSZxLRbPklFVBVGk0NZAX6DI9EY3VquDWnuaxrXd5HPDJmkJhUzSqqrIra0Vm4iskgPFab5ZuYyeSCD6fGYVbgFLx93P1e7Iosz2hu0MJ4Z5cuBJ9k3uQzd0VlatRNVV3tT2Jp4eehpFVzg6c5Q3t72Zt3W/jRdGX6Bvvg8DA7/dz9b6rdS4a/jywS/zkY0fuejU0Lm4WJVvqSbIKJUumj+WGDvDVN6Cpmt4rKZzcbJg5kPJkkyTr4kNNRsQBIGdLTspqSV6586SJwOjomnUDI2iWqSklsAwWFezjmOzx1AX/HIMzErXmuo12ETbRa/pxaqwoapoqRRGoVAZAJhPTDLZrNAxMlfRmxVa6/jR6BPY/F5SpThdoS56qnsoaSU+ue2TfH7/5zkweYAPrP8Au4/tBsxr49DUITbWbiRRTLB7bDd3dNxRMXO8FC6k3yprZQ5NHeKvXvgr/mz7n9EaaGVN9RrihTh2yc6+yX1EXBEafY1gmIazilYmUUzQvWYjbfWbr4iIXInQPVPK8PCxHzCcn6QvNVDJbhuInWE8M8mfb/gEHT9Ha/qXgTeIz68BFg2+alw1pEqpiteCLMjIooxmaAiCgKqrNHgbcFqcZEoZrqnbSsQSIDU7hlYsEPJUU5+TKbz4OPrMTGX7Yk0Ntm3bECwWBKuVdYGVfO6Wz3Fi5GUSc+OEa9oYS4ywq+9pdMPUDWi6ebPpiqzEWlBAEMgEHPSnhsiXsnRFT7IvduQXYrp2KVxIH2GVrNgtdtKlNKquVoSVADklR7acZSQ5csX26+c5PEsShq4jGAbKqVNQLJpVnYXqjVRbizYyguD1QmOj+aCbncV27bWU9u49+10IAlJ1dSWiwCiV0JJJ9Hgc5cwZ82G8MDat22ymC3A2i6EoZkVhAZa1azFSqWWkZxHG3BxGLoeezV5xO+9qxquv5HWCLJOw5BnXE6woFgkMzHCNw4EUaUefiZERpjlRayXtkjBsNrJaHHF4hkZv40X9aC6Fy61kwyUZpVCAUolSTxdj2Qmy+SRuW4j6NKQCdr5f2M/uF/eSyyYQ7HbqXLW8teedtFStoK5jPUW1gF12gKIQTU6iZDIIbjdu2QnYSKxp5YwjS0LJEHRa6SyHCIzMmx4+Sx5Ii+PisijTGeqku6qb6cw0u8Z2YRgG6VIaURA5NnuMLfVbOBE9wZrIGl6ZeYWSVmIiPcF96+7DZXFxx4o7KKgFFFXhlZlXePDUg7itbqyS9YqO4ZVW+VLJWUbEebK2fKXl4SpoTLg1Hun/AYkxna2dNzIQH0CWZDbUbkASJXP0fvYo3zvxPVr8Lewe281nb/ksW+q3kMzHkREpaEX6Zk6iCDqSIGGX7aSKKX7S+2M+sfX3+ccDX+al8Zcq+7Klfiu/v+X3ePL0YzT4Gi54Xi5WhY1i0SS2C0MDhmGAppEzSlAomJVXi4VJUshuN3tnDvHE4BMgigiiyOrwaq5pvIbTc6eJuCKVEFYDo/JdrAqvqiSgL3VGvhTOtQzIlrNMpCcoqkVGU6Pc1HITXz38VT6x7ROEHCGcVieiIFZS1OFs+zPgDKFapYo/1JW0qi8ndB9NjjKdnaYvcZb0LGJovp/d84ep9tfh5+Ltul813iA+vyaoclTREeyoiOg8Vo8ZtqibfW5JkFgRWsF4apyhxBDTmWl+ePwH1DtreHvnW9ELBe7quB3L7oNoc3PmzXZhVauNj1PM57Fu3myO4zochLu62GE0U9h9BKwZ/vNt7yeejnJ86jBgihK7wit5b9c7iR3ag+K2V0gPmP37jKFcsenaa4UL2d+7rW7aA+0cnj58Xnp4e6CdglpgPD1+SeKz9KbhzKvUyBpOUTRJTyaDIElok5MIkmSOkY+MVETg2uwsYjgMgoA6OYlot5ttsGgU6/btUCphlEqILhdSbS2S32y9qLOzZquqXDZ/lk6jZTKIXi9GJoM6Pm7qKM5pAxm5nJmnJsugKAgejxmGaRjmzVxVr9iFGq58vPqqXqfr5O0SltWrQRDQczmMfJ6pRi/fjz6DnrFQyJT56cDPmM7NEnKGqPXUcnPrzbx/7fuvmki3B9r5/a2/z2hylJJWIuwMszqymmp3tTltJQhM+Ax+vPfbxLVMxX+pa8U1DOVPsWfkRYqSYR5HVWVOSTCan2b/mWOcnHiFUt6sStR5G7i57RYm8nkC3moaxSAnAyW+2PuvDE6dAEzi1xbp5vfXfoRV0/oym4RkyZzyub3jdnaP72Y8NU6mnGEgPkCDtwFN1xAlEUVXODR1iO2N23n36ndza/ut1LpraQ+2s29iH/948B8Bs81rYKAbOl6bF5/dR0EtnH+AzsFsdpbnRp5D0zWqXdUICMzl5867nkeSIzx84jvMjfdXXhtyR7it+06e6nuSWDaKaA1yfPY4n9j2CT6/9/M8duYxukPdPDz/MG6rm5tbb+ZHvT/ibSvfxoMnH2Q4OYxHcpJOz9FRs5I3t72J5waeodXThIBAWS+TKCb56sv/zCe2/h73rb2PbDmD2+qhUM7wpZf+L51VXRc9/ypVYV2vCM0Bsx3s8eAJ1mBZGYQFjWPBJvHMqWeZV5ZH8Yynx5nPzS87nrqhIwgCsmCSIEVXiOVjVLurkaUre9wunZ4qa+UK6VlEXslXvHU+c8NnqPHUUOOuoaSW0AytInj3WD2VeKJX06q+GFEqqAXCgQZ2uAL4HH5UVcEiyRTVItPpKbBZmVASjFymXferxBvE59cETZ4Gql3VDCYGsIpWFE1hZdVKTs6dJOgMYpftjMyPkCqm6In0IBrQ4WlBNVROxE/yZ92/Q4PipLik0oMomqseTTPFtosrn4W8IbG2FiEcxpibY80Tp/ji9j/h1IYUyXKakLeaqeQ4I/ueQlPLpC22CumpD7eZD44FjnGpqsAvAhcybnznqncyk51hMHHWs6g90M7dXXdzeOYwrf7Wi27v3JuGNjeHW5PYsepmtHQGZ1qn0RLGNjVler24XAh+v2kqaLVCNovY0oLg9aIcOIC4cSNGsYggyxhTZw0epcbGSqVHnZ6mfOgQejKJIMvo0SiC34+luRllgfAstkvESATD4UBfGHk3VBXR5cKQZfO16bS5L5IEdjv6QjXiSnEl49VX/Tpdx2XIGLkcgsuFNjxMrsrDQ4PPMSfmKCkie6f2M5IcAVEkVogB8OLIi9glOx/d/NErJtIXiksoqAWafE1Uu6vNbDWnzCPDjxIrJaBQwFiYskul5zkcP0oWBVmwVEhmV2QVj408gdvmoTrUzBn6KapFFHWO56Z3c3vLDq7zr6VoFfmHg19mOGtO/KGqIAgMRU/zpZNf53O3/S3OJd9FwBbgrs67+N6J73EieoK7O+9GNVREQSRZSOK2msMOkijR4m9hIj3BQHyA+fw8OSXHWGqMJl8TFtF05V2q8VsUAV9O8zSSHOHrh7/Oi2MvVn626DMzlZmqXM/N/mZ+0vcTYudU9WLZKN8d/DE1dj9kAFGkpJU4Hj3OH23/I3LlHHklz76JfczmZnno1ENsqtvEvol9jCRH6K7qRhYk0swxFh8hq+S5Z+W9dFhrmElOYhWtWEQZl8XHd4/8Gy9PHFj2/mFnGKtsvej5t1gVns9mz+rs7HYkh4OA4aB2JIHSPwqiiFhfT152MJ2axO5aftwWBeSSIGGTbCQKCZp9zQwmz95jJEFCFESqHFXUuesuedwXsfT7yZVzy0iPYRg4ZQdGqUT/7CmOzx6jO9RNo7eR8fQ4smg+0h2yg66qLmo9tYRdYb5/8vtX1aq+GFHa2byTn/X/jN0TL9E7e5JsKcMNrTezvXE7I+lxrJKFkewEVYU6/uPQfzCRmVi23deLGeIbxOfXAK+Mv8w/7v4CzVUdHJt+hVdi/Yynxnhgwwd57MxjlLUyRaVIvBCnJ7KG9675LZ4+/BDFgrkKPZWYY7j5Lho8ISwbNpgXus1mOs2ePl15H6O8EEdht2OoKkaxiHXDBpQTJ9Cnpqh6/jA7ASEcxrqlicmGVn4c7mV+eoiyYT6E68NtvHntW5kux5Z9hlc7RfJqce7ExGx2lh3NO7iu8ToUXcEiWjAMg7Japm++D5/Dd8HtXEinkpJV9k/s53Cil+urNjF5ah/hxm7uXLON2t5p9HQaMRhEbGqqaHykxkbKx46Bw3FW0LwES3UsWjKJ2t+PPj9fyYDCbsdIJlFtNiwdHWgz5ug0koQ6Po5RLGJZvx6lt9f8e1E0TfPicXMfXC7T48fpNIXYpRJGc/MV9f0vNV69mPt2ta8LuSM04gcU81xTVSaENEPZcfzhBkoUGYkPVcb8y5pp858oJhhKDF0xkT7XAHRxWgjgxdEX+dR1n6LT38L4eIq58X5EtxtdUcwFgSBQRKGoFSnbJSySreLC7fNHGBx7ggZPA6lSCh0Dj92LLMpYbE5WVq+mfl5kt2+aoXmzGiI6F7Q+sgyCwLAa5XR+jFrOOvu2Bdt4bvQ5TkTN6pAsygiGgKZrlarkTHYGv92PKIiMJEcYSgyxb2IfBbVAR7CDuzrv4t6ue3mw98HzjkdXsOuCI+dLj9dLwy/ikuxsjKzDKtlIKxn642d4ZugZdjbvZCY3Q1bJVlqZilUkYdcoK0WsogUvdubTE9TUVpv+UQu6s5JW4uDUQXw2H1bJyvdPfr/yvjXuGp4beQ5D1xmMneH2FbfT6WpCN3Sssp0NwVWcOvgkNNbj8/hoDrSyKbKeQ9OHuaP7bhRdwSpZmc/Nk8knaA93XvS8XKwKP6z+iLlcDkNVkcJh/CWRu33bcAzNmd+RbeH7jpuu2BmtjM/uI7VwLysoBUpaiU21mxhLjbF3fC83t92Mjs5wcphady25cg6fzccdK+64ZGXlTOyM6WVlGNS4a6h11zKeHl9mSWAYBj1Vq8ll4xTLeeaLcUbmB3gld4C3dr+V50aeI1fOVSo9tZ5a7u26l6nMFIEFA0O/3Y/b4qZ3vpeSVjpvUbq4L/sn92NggAH9sX4skoVUMcWRmSP0RHqYzUZZVd1DZ2gFgiAwk5tFEAW+c/y7hFwhar31HJo+RMgZqpCxRbwezBDfID6vc8wkJ/n7Xab52vBcPze17OCDGz+MLMm4rG4+c+NnSJfSZEtZRlOjlEo5njn242WrBASBlKig9vaiHl/wvhBFhKoqLBs3opw4UUn/NkQR5dQpjGTSFMHW1iI1NCB3dJgVhgWfGktbG+1+Px/2/HdGo/2MlaKMpcYQLBamy7FKQN8ifp4pktcCNe4a2vxtzOZmySk5LKKFufwcR2aPsLV+60VXY+fqVEpqif7MMCW9RFrP42loIUQZu9PH3twQt3euRIrFTM8WQUAIBDCSSQpNNYz4y+RqXHirBOpLLjy6AIaxLKcJwMhm0RdznEQRI5VCrKrCcDjMibFIBH162vTzqaoCVUU9ehQ9nca6aRPq4CCWzk60RAJjdLRCsoRQCHnFCrThYcTm5iue7rrS9Oyred097XfiHophYMZuGPk8WU2ibCiUdQWFBfHvknF/3dDRDI2yXr5iIn2uAehSDCWG+Pdj/86fbP0kOdkkkUY2i+D1miRUEHD6q7BknOj5jNnmWkBRLZEupdE9+nn6ilQxRXqNjmC3kywvb48ITqcZG7KAc03h5vPziIKIRbSYrYPMNEFHkJZAC69Mv8KZ2BlaA620+dt4eepl6jx1JIqJyvU2lhzjeye+x1/s/AtOzp2kd/6sULgn0sOfXPcn5wlVl2YAJnNxfnLiIfpSg8xmZxEFgTZ/Kze03cz+6ZcxMNvqLouLyewkNsmGJmuIThcjY32oahmH1UVdqJmioSBVVSHIMpJganoMDGySDYtkqWRHAcse8LquI+rQPL+wOBBK1NQ76Fr1dooRP97qJuyynVPRk2TGsrww8jypUgpREOmpXssHN3yQm9vfdMmKYIu/hQ9t/m1GGvvIxGdwqiI1Exlcc2nwehE8HnPia24Of1WIlf4VnMyN0OroYDg1TLqUxiJZ+Paxb/OZGz/DVw5+hZ8N/IyXRl/irs67aAu24ZAd5JU8JbVEV7Drgvszkhzh28e+zbPDzzKWGkPVVVYEV/CxLR/jm0e/Sbq4EGa7QHru77mP7x/+FvPFOKqm4JadTM8c47RSYq2nE4fDQ3vVCoKuKpr9zRVB9NLq3baGbfzptX9aIT+L19Jilef03GkOzxwm4orQFmhjdWQ105npist0T7iHWztu5adnfkp/rJ+Z7AwFrcAdHXdwV/fdHBjfT7KYJJafx2Vx4badf+//VZshvkF8Xuc4NXuy4jgrCiJBXzWDiSF+euYx+uNniLgiWCUrd3XehV2yMTRz2px6EEVztbwwTeRTRbT5ebPiUCiY2VHRKKquI9XXY6RSGIJgVhIUpbLS1iYmEEMhBKcTqbUV0eVaFvznD9XiD9XSVsrwr0f+9aqrAr8sNPmbaA20mvqnrHkRy6LMptpN3Nhy40X379wHbKqYoqQr+KqbGJzt4+jMUV7ufxpEkTp/A93XbGPVT4+afyyKGIrCzPbVPHbmP4j2HTErO7W1hGvbuGfF3QTtfsa1OLnsadxls49uV1VTi7P4Hcqy6WMjiojhMKLPh6WnxxxxP3YMwWJB6uxEO30ao60NFAV1ZgbLypXmg1bXMQQBI59HGx5Gqq1FsFqvyhvnStKzr/Z1uhxC6etDL5dNIbBoalJsko3iOcQZzPNfEiSs4sXbGOdiqQGogLDMbM4iWZjJzXBw8hBZNUt992YoK0Rjo2gsEK5cjhpXNVk1v3zDgjlqDSYZXopEMUHRULCuX09gJIXgcFS+x8W4gEUsbWuMJEfYP7mfolok7AqjG7pZ5Yn0sDK8kpJS4kz8DJPpSWrdtQQdQTbWbOTxwccr+1LWyyQKCWayMzyw/gHKaplMOYPf4WdLzRY6w53L3m8pKa12hDkwsZ/jsVOomumuXFBLnJzvRcdgff0mSlqJ9mA7Tww8wZn4GZ4ZfgZVV2n0NnLTytsolvLYbA5z0KK2EwOD4cQwEVekQj431Gxgc91meqp7ODp9BBEBWZAwDANREKl11xI2nECqIjj25WHFWBZ76zYs1e1kShl+fPrHeOxebm6/xVzoGQYeycVcfBJ/u4PLwWPz0NO0GaO6hDIygqKfBJ/PrEDmTNGuGA7TKPtpD7ThDtcSL6VoCZgGsoIg0BZoY2PtRj513ad4c/ubcVld7B/fz3Rm2qwo62WC9uAyfc8i2cyXsjzS9wh7JnYzlhpDWRhSGU2O8i+H/4X7192PTbIxnBhGEkWS+QRffeX/UdRLFIwya6vXYCmq5n1AkpiaMydEN6xvZqW3hoHkGP/jub/gyOwRgEpw6tGZo/z9/r/nz6//c/ZP7sdtcS+rbBfUAmsja9k1tosnB5/EZ/MRcoYI2AOsjazFY/Pww9M/JFFI4LA4KOtlJEFiIj3BUHyILTUbcUt2SuUCZaWAIdmXkf1zz/tfBd4gPq9zlHWFaztupKwrtIU7iRcT/HTgp/THz6CjYxgGs7lZ9k/up9ZVg9/po1TOk80nMRbM69rDnayIy2YVJxQyWx0LiezG/DzS6tUIdXXow8Oop08j+P2VFe9irpA+N4dUV3fRCsGrrQr8suCxebi28Vp0QyddSlNUixUDte2N2y+6f+c+YMt62fQWSY2SFcpYHS5Enw+jVGJGTfLjvp/QWrcJx3QMrFYKbfX8tHSU6JljpinaQoUmlonyndGf0Opv5UzcjAspqWYq8i31O/CGBWoFP46xWZO8WK3o09MYTid6KoUyOGjqTTIZ84HR0YGGqc8S/X7E6mqT6IyOAmbsBoKA3NxcqVxcrTfOlaRnX83rRL8f6/r1qBMTiD4fTYlZ2nMtTJXSIBm0BFoZSZn7b5WsyKJMwB6gLdB2xUR60QBUQMBj81Q8YURBpN5Tz0hihFZPM4mpIY4l+6gPNvHmrtuYjo9hl2wEbH5u968irxXIlDIki0nySp6AI8BNLTcxnZ2uhG4uotHbiCzJCDYbq+vX0V6z8rKmcIsPHotoIVVKEXKEKtv92cDPuGPFHfzhtX9IopigpJri7O8c/w5PDj2J2+qmpJ0lXyWthMvqYnV49UVJ6oVauKpaZiA+SKwQx2f14Lf7SRaTlLQSvfOnub5lJzWuGgYSAxXtSb2n3qzCaWWGUyN0hboYTAxWHrAlrcTNLTfz/ZPfZyo7hUN2IGo6ajbNH239JJ/f/wWOTb3CdHKCNn8rqqGys2477umsKdBXVULeGurSAoLbjY7pUzVamiCrZIl4qhf8tCbM9iRJkhOHGXK8RE/HduSamsueI4LNZg4PBIOA2fLXF1vSsozH6uaele/i0clnsRWcldct3tuq3dXM5eYoqAUePv0wK0IreHzgcUZTo4iCiNPipHeulypXFTbZZuqiElNELEEOje9nID6ATbIhKAo2u5t0OcPeib20+Fqo9dSyvmY9/3jgS+wb24Nu6PgcfjbVbeH+dfcxNHOa+vZ1IIpE50bQdI1sNk5p925Odijsm9iHVbLisjjJKwWKhtkJeGH0BT6w/gO0B9tp9jcvq2w3eBt48JQpMgdIlVI0+kwNUbwQZ2fzTsbT41gkCwJCxXVbFiSGU+Pc3n4ruUKKnuoeksWkaRXgdldI/8Ucvn+ZeIP4vI4xkhzhmdFn+Y8T3wOgNdLF6sga7LKdoCOILMo4LA4skoWpzBSt/lYags3EsmYwpiCKtNWv4RObPk7g2ZMYomga6gWDCD5fRa8guN2Unn0WS0cHFIsIgmCKb8+dFiqVztvHpXi1VYFfFlr8LYQcoavav3N1KotTMplyhiZ/Mxktbx5HRcHQdVIUmNnYRndmNUgSQ1Kc2OAMckuLWUMoFjHyeco+FwfHdhNymJlayWKSvvk+8uUc/ZPHuM65klIuwV0rd1DbO2XGLdhsiFVV6JpmVuwWEtkBU+9jsZh6CkHAWKjuiT6f2b6xWpdNcb1ab5yKaeOCZ5AUDl+1y/VSCDYbotuNNjGB1xXgnavfxXfHHkOXRe7w3MlPz/zUnOpymFNdO1t28q7V77ric2rRAHSpER6YidaL4ZI51VzdN1W1c2DmIH2JAdaGVjGRm8bnDvGO0Lt55syjTGemQYAaVw26pnNv97189dBXl9kjNHob2dm8E5toVkSv1BRu8cFT46ohU8yws3knL46+yHh6HI/Nw/dOfo+GsQYeWPcA0VyUiCvCRHoC3dCXvT+Ax+oh7AwvOchn/7lYbZjMTnJ6/jQ+mw+bbO5rqpymUM5il+2mILmUw2f1gOhDN3SqXGG6qrrYN7mPqcwUNa4armm4hoJaMHPCCinm8/P8sPeH+Ow+FE2hPdhOvaeelVUrcVvd+KxupESGgfEXaYh08plr/pyknidXyhJxRTg0to9yKY8mlzAKBYLuKu6uuRFXUkVeswb16FGEFSvIeEwvLqNcRptYJD1nkc0lLuiKfTGIfr9pNFoomPmES9qagsNBa3gFHww3X/Te0exvJuQM0RZs4/D0YaK5KE6LE1mUsUpWxjPj/Nuxf2Nl1UpimSja/DzFsB1VVympJQpKgSpniEQpTVbJUeOuIeKO4LA4ODJzhHu67uWOjtsplPM0B1vZO7abP/rZH+CS7ARx0lTVzs0NO5kYP4mzZBpjxgtnK7rKgo2HgYGwcEKkiinSC63YpZVth8XBVGZ5W1g3dFRdNcNMyxlkUUbVVSRRwiJacFvdFMo5JEFE1zSePf04H9j6QZ4afIrp2QGTRFqtFzRD/FXgDeLzOsXiiszAIOAKkcjFUAyFWCHGXH4Ov93PcHIYSZAo62WcshNVV2nxt7Ktfhu6ouCTXKy0NVBVtlCUJLPFZRhmWyubPTtlsnKl2bqy280WiyCYN4BzbhhXIoR9tVWBXxaudv/OrWT57D5InX3A7Z/cXxEgO+we3NE0KdtpSgNFyOdJr/Ka49qx5WLvtF6goBYqhmx9833mWKyqMpUeQWy4jvjMAI/OvcT9q2/DmcghVlUhd3SgjoyY2p5g0HzvUskkPT4fWjKJaLOZ0QnJJHJbG+rQ0DIx9bmaoivFMtPGBSwGuF7JyvpiWExQN7JZ6nMCvxu5i2FLhpSscHPLTeT0IqIg0eBtuGofn0UD0P0T+zkxZwqGRUGskNkWfwsFtUjKrjOdmyXgrkIUJdY2b2V64HEMw+B/7/3flNQSc/k5PFYPHquHol7kP07+B2/peAuJYoKyVsYqWUmX0kRzUVZGVlZIRlkt84fX/iGzmVmz7XQBU7jFB89cfo4bW2/k+eHn6anu4bqm6wg7w4wkR7DJNh46/ZBJvhcM/PZO7K3oZMAkPbe03cJEemKZriPoCLK9YTuP9T/GeGacVn8rx2aP4bF66Krqwm/3YxEtxLJzNAeaSStZyqU8ZaW4cBy99IRXky1lK622J4eeZCA+gCRINPoacVlcfGD9B/Db/aRLaRwWBxPpCR7pf4QH1j1ASS+hZ7PoqopWLDA6dpTRsaPcvvJuNkxLICdZs+o2zrgKJFuS+AQH3WINoTwYVSVzEENVUfr6cG1sBDBtEM4hPQgCbm8VgsWDOjiI4PVelqALNhuWrq6LuqMLNhsebBe9d3hsHurcdYQdYaaz0xUyueinI4syQ4kh6j31Ff8gu2RHFmVEQaCgljBEkWwpS0fVCkZTo/TF+pjNzjKUGOJdq9/FxpqNZEoZJjKTxItJSmoJh8WB1RNkXs/yYvwQ9669i3A+COIMQUdg4XCIlJUCkiAiC2cf+QFHgHjRFDcvrWyX1QURdzFVqSSKgojH6qEn0oMkSGaVcSFipMHbQMAeYGCuD6fswGaICEA0Osb/2vQphvKTpMQyAXf4vPP+V4U3iM/rFIsrQLfdy7am7ewf24NFtOKyuJjNzrIqvAqbZCO/oD3Iq3mSxSQ+m48OSy2+ZJY+fZbdyjhBb4QVq5oJOBzoo6PLAjGFmhr0fB7DMNDzeQS/39SWiOIyYakYCCzzG/n/J5xbybqh+QaeGHyC/ZP7UXUVwWLB6QnSaa9Hns/ibrSCao7Kun0RiPct255gt1OWzH8vGrJVvEAWjnmxnEf0+0miMlXjYGVNE+rkJNrsLEYiYbYrF/5WqK9Hqq83J7wGBxHq6kzzQkHAyGSQm5tNndZC/tpSjdZSXKqac55p4+JrEle3sr4Qzn3ouLJl1ogOYpEq+sQ4hm4+WOq99a8qG6zZ18x7Vr+HmcwM4+lxwq4weSWP2+pmVXgVD/Y+hM/mxSZaGYydQTN0NtVuosnfgmponBj6GWsiC1Mv5Qz9sX4irgjV7moMDPZN7Ku8d1ugjU9u+yQFtcDTQ0+f11a9rum6C073LD54NENjKjPFdU3XVUbvPVYPvXO96Oi4rW6GE8P0xfq4s/NOVgRXVDK6dHQ6gh2sr1nP6EKLcBEDsQGeGnyKRl8jA/EBqpxVzGRnUJ0qffN9rK9Zj91qo97XyERilI31Wyg4qitauFpXDQ3eRqZyMwgIPDH4BAPxgYpHkG7onJ4/zXRmmvvX3c9ocgSXxcVcLsqp+dMUtQVysuidswQuyQGiylStk0dPP0TCYYCqoqfTHPXWcHfzm6kdWWK3kc3SKAYIOoLMzc0t2xaCQFVDJ7XREuXeXqQFQn4lBH2x9VoJ3bzEtXIh1Hvq8dq9hJ3hZX46i1NNFtGCy+qiJtBAweLG4/RzbeO1TGWnGVXH0QyNGk8No6nRSptRFEQ+sP4D/ODUD/ja4a+xKryKPeN7uLbxWu7f/CEOTh5kJDlMIhfDJtlYEejgVOIA7224kVWeNq5puIZXZl7BADRDhwWfoW0N2yqxHlkly+rw6spiIOAIoGgKLqsLn+jDZXHR6G1kKDHErrFdvG3l2+gOdZMoJoi4ItgkGwPz/TS56mjw1LMi0EGHp4UGezWp+DTrpTD+pg6k6moypQwnZk9cdd7fa403iM/rFEtLj7W+et604jbmC+a0VFugDQOjQnrANDh0yA4csp18Ic3fnfgig7OnKySmo2Etv7fqATpV1UyYlmXE2losq1ZROngQymW0oSEs69ebD9eFKgKqWrlp/DwtjdcKrzYo8+fF0kpRppThRPQEJbVEWS9jFa14VAlxZJygr5b6tGimdDc10dq+gcD0bhbrPYLdjtTQgI08de66iiFbBQuk1C7ZKj492VIao2xHbmuj/PLLGOm0+d0Agt+PXFdH+ZVXkJqakNvaEEQRbWbGJKqGAbqOXF9/yRu4OjND+cABM3NqIadKm5xE7uhArqlBi0bPIz2LuFDe1NXi3IfOMW2Sfzj8DwynRip/cyXmZ+cKdlNFsyWyo2kHa6vXcnfX3YymRgk7w7ww+gI/O/MzYoWY6barlqjx1TOZnqSgFXh6+BnevvLtwFmncjDJT6acoSPYwda6rWyr27bM3t9pcfJI/yM81v/YMlF1jbsGWZRJ5BN0hDqWnbdNrloCup1YNoouSUwrpYogNOKOUNSK+G3+Ze26x/ofY1PtJm5uvZlUOcWmmk0EHAEe7X902VRlSS0xmh7lePQ4qyOrAUiX0tS6a5nOTiOLMqliCkmQuGXFbRwY3UMhnyKbTwJQ52/ilq7biHhqGEwO0+Bt4Ienf2hWmgwqk17v63kfz408i24YDMVNL5tWfwu3tr4Ju2TDbXGTc4PXW4XsrSE21o/fFaKhZCcfwky4LyUQVVPHZpTLzCUS/KRY4AMbPojtSG+F/LjLcE/XPfw49W2ik5OVz1pV08qdns04jgwvnFimncSVEnTBZnvVUQvN/maqXFW4rK7zfuexethYu5EXR17kzOwpM+JGEOiqW8cDGz7Ivx75OopgYJNtaOjc1HITR2eOcmPLjTzU+xAn505W9DQ6OnvG9yAisiK0gsn0BGFXBEHXSeVinJg4gB2JjzR28Zmdf8H/fOlveGH0+cq+bKu/hj/b/meVkF63xb2ssm0VrWyr32YSesGgzlPH3om9FNUiW+u2snd8L+3BdvaO72U2O8ummvUEfaux+S3c3Hkrz/c9QT4eZUyBSHUbznANDfEk7oKPkfQoQ4mhyvn5y3b2X8QbxOd1inNFtW67l1Q5Q66cY2fzTibTk5yInsBj9VDjruH6putZX7MeSZD55olvMxztP5s1pKoMDB3kH1SVv7nhM4SSCqLdjlYoUD50CIpFpLo6xKoqRLcbwe1G6O4GUURaqPS8HkjPSHKEB08+yFBiyCQckvWiyce/SHhsHt65+p3nh2+ua+Du+psI5iywxYYYDuNyOHjrjt/mkb6fECsmTHNDq5U2Sw313noG4qYhZQWyTJ2/aVmQpVt2QskwnWWDQXMVuyC81AsF1OFh0yto40a02Vm06WmkYLCSc3W5tpaWTKIODiLW1KCNjpqj9LoOC87RxubNl9V3Xe73V4LFh85sdpYvPfOVZaQHLm9+dq5gdzw1zoHJA6RKKfJKntnsLKlSihdHX+TaxmuZzZrWBpIgoRt6RcTZEmhlLjfPcHLYbG1iOpUvxaKuJuKKVAjxoj1/tpxl1+iuyrSLy2rqi07MnaAv1sddK+5i1/iuyg1/MeW609fOtOyikIkTjU5hBAOEAnVsqdnCM6FnmM3OVkgPgKIrRHNRSlqJXDlHxBUhq2TPs5JIFVMUF1pWi87l/bH+io6oqBYp62Z2llWy8rFrP8FEYpSCkjcrVc4A17XsZD43z1x+jpAzVKlILJKfaxqu4eT8SU7N9dIR7CCvmIuyk3OnEASJN3fcyhf2/T2JYgIUhVZvM/et/0/sVBtxjqfpr5NNk0pVxbBYMEqlSn7W3PApRqp7Wd3Vhdrba1pxuN20+Ov44NbfYci5imwugUty0ORtwvL8HvP8tdvPZuXx2hD0S2GxrbprdNcyPZdDdnBDyw0cnj5sfn+ybLaodZ2+qaPomsJf3/RZCrpCSknz0thL7B3fy2hqlNtX3M7J6EngLMFc/PdQYoi7Ou9CQqSgFnDJTlqCbbwyuIdhI8bI9Cm2zOj8w87/jyPZfpKFBF6bF4/k4OT0ccqCumziNuQIsaNpB2PJMT60/oOsCLQznTOvGZfspCPQTpOviYf7HqbeW8/G2o20+dvo9rXTELQR9tbxHwe/gTI/iSNURUNdN8+OPMvUzFO4nD421W/B4/TT4G0w/a4kC4PxwV+qs/8ifiOJz5e//GX+7u/+junpaVavXs0XvvAFduzY8averavChczfLKKFvJInr+R539r38fZVbydRSJAtZ9k3vo8HTz3I+3reh9XlIRhpJjY7Yo6DLmBw7AinM0Ncl/Ii1tQgVlUheTzomQzq0BDq2Fglo0ZubESqrzfH11/ljeK1rM5kShm+fezb7B7bvcwi/tUkH78WuBohd7t7Ix+uX3He3y7qtfJKHofsoKAWqPc2cHPTDYwPmNEgi0Z/gkNGAIx4HOOc7QsLEyiCqmJdtQq6ukxfpiso1evJJOUDB8xMsEQCwWJBT6XMh0WhgDY2hp5KYd269ZLH47VMYj43q2gpLmV+tnQyJVVMcXDqIGOpMUpaie8c/w7/48b/wVBiiKnMFMdmj3FD8w1ohsZEeoJ8OY8kSNR76mnyNfH8yPNm6K9aZk1kzbKRdVmU8Vg9yx4aBycP8n/2/B/64n3saNrBd45/h7ArzJa6LfTO9VYIy3h6HEEUKq65d7S+hUf2foNYwhSTli0iNrePN625G79ho7V9I153iE9s+wRf2v8lTs6drOxHm7+Nd6x6R+UzxwtxNN38PG6Lmy31W9B0DZ/NR0+kh7H0GBbRrBSqusr+yf30VPfQ4m9hdXg1zb7myue50Hm9b2JfxaHYbzcfYLph+hjVuGt4augpM7IBKm1Yp9VFUS1weq6XW5pu5HTyDKpWRtIFDk69zK31naAnyRolc9rQ6TSNOxfMOdFMEpfNxNDFFGIkguh0IoXMoQCfP0JPx/ZKG1aqy1NeID1SOLwsDBZeG4J+KXSEOvjUdZ/i34/9O1PZKayiFZ99YRzcESDgCFBQCuSdOkY+j6HrjKfG8ZVEtsVcPF5V4PH+n5IsJkEQTGIuSkhIKLqCZmj4bX4KSoE7VtzB7vHdPDH4BIZhELAHmKnfyvae24nGx8kVUpCXaH6pF0ujl0ejh+hbOFfEqiqqwk2VidtFP6HdY7vJl3NI+SIf2f57xMopYsU4VY4Q0+kpfnzyIRRBR0kqiIJIWSuzPbie7qzMaaaIkUeqryesO3n65CNMJcaQRQur2q7nxcndHJ16BZ8rSLWrmipnFR/e8GH6Yn2/VGd/+A0kPt///vf5gz/4A7785S9z3XXX8ZWvfIXbb7+dU6dO0dTU9KvevSvGhcbDfXYfsmgKy7579N8ZTY/RH+tHNbSF8dw6pjNTDEX76AmvoeQOkEnPL9tuspwB0W+ailVXo6qqKRpUFESHw3T4BfRYDKNUqpR9ryRsbpHo5BRzSmbX6K5lLbufp6x5JnZmGelZDHH02rykS2kOTBxga8PWXyr5uRqh9IX+1mPzVMjTTS03MZmdpKSUmM5HIRImLLq5u/0O/PZqRL8fdUlJfykEUTSTxd1u5Kso0xulkumjk0ohOp3o8bgpwi4UzIeO04mlq8ucDMM039MXcsmW4rXWf13O3Oxiv196rkVzUUaSI5S0UuXBXFAKrAmvYaBmAJ/NR7qY5vb225nOTlcGBBq9jfzzoX8GzBH6vJLnIxs/wrePfZt4IY5FslDrrmVFcEXlodE318dfvvCXHI+a5qAFtUBZKxPNRTk8fZhGXyM5Jce6mnWEnWFskpmjpOoqu0dfrJAeAKuiYyQSHFZe5P7me3HlVHCbqdkf3/pxuqu6yat5nLITm2wzyY6hkSwmGUwOUlJKqKrKqrpVfO3w1/DZfYSdYYpakTp3HZvrNnN45jDZcrZiSFflqGJn885l186FzmuXaKeQTRJ2hPFYPZyaO1URVvdEeiquwDbJRq27FlEQcdlcOCQ7p2dPEXSFKvcGQ9c5lRrgzFqdHZHt+KUYYuYVM9x3oZ0lyDKiKFNd24ESCXLIiOKNVNNSvwL7EqIt19Qg3nKLqU8rFJBmZsxKzwV8ql5Lgn4xdFV18afX/eky8rjokAzmd5kqpiirRSyGiCevIeYKeIQq1rva2dG0g5HkMJqh47F6KlmM1c5q4oU4HcEO6jx17JnYg0M2/Yr8dj+NvkYOzhwmVkxwZ8utuG0hxKApdWjUHTzQ9g7GSZJV83gjDbQ2rMFj85ApZXjw5INn76+qiqqWiRcTzBXmyasFXpk+wt1dd3Nr523kywWcViepYop4Po7b5gEKZJUcyDLa1BQ0dDEVNz9vV8tGnh5+mlh+YVGST9DkbaR3vpevvfI1Hlj/wC/d2f83jvh8/vOf58Mf/jC//du/DcAXvvAFnnjiCf7pn/6Jz33uc7/ivbs6LFYVxpJj5NU8mWKaUi5NXtSocdXwly/8lZnjg0l6NtVuIlvKMpIa5drG7cTOvchlGb/dB3kwFIVMKcNwcYyJ6ixqg0StLUKb4sGlShiKgjY0hFEqceQKwub65voYSY5Q1k3DNFVTafY3U1SLpjmXfvHA0iupDMULcTbXbaaoFnFb3ETcEZ4bMa39VV1lJDHCy9Mv81trfuuX3i/+ebBIiNZUr1l+HC5QQZIiETOG4gJam1dDPvRk0pxgkeVKhagy0SII2K69lvLRoxiHDkEwiP2GG9BmZ6FcNg0QSyXQNKxbt76m7YPLmZtd7PdW0Uo0G6Wsl8kpuUqmVVeoi7HUGKfnTzORnmAiPYHf7ido85Mqp9g7sZe8kqfJ14QkSrQF2tANnfZAO42+Rr566Kt0hjpZW70Wh8VBT6SHTbWbaPY3kyllODhzsEJ6FvdDFEQUzWxFdYY6ubX9Vl4ae4lnh59lW/02CmoBv83PO7vejiRKyzREYOZdjZPEt+Th3RHsYNeYuZhY/A9MDU+6lKakmJNn71nzHv7vvv9Ls7+ZfRP7eCr9lJnxZHGyZ3wPv73xt/nWsW+h6iptgTbev/b9l10w6MkkdfMKxdlpqkM1fHDtAzx4+iGGEsOI4tkohMZAHeV8Bp+7GVmQyAglTswcZ2P1ehSlhKHrCKKIJMkE3RGmlTiPUiRsC+P0BsksIfeSING4ajN75g4xdmwSm8uL6HZTlTnGvavfRrOj9qwQ2WpFrq/HUBTUgYHX7Bp5tTh3oXNi9kTl3zbZRsRt7oeezaIr87gdXox0ibZXYvzRxo/zT8e+xpl5M/9tVXgVE+kJGn2Npsjd0Lmm4RpGkiNUu6oxIgZ5Jc9gYhCbZGM6O02VO0KTEEb0nj1/XDmFblyAC4u7DWnhOx9NmrqbpQMWsijjtvs4MH2I1mAbH9n8Ef7l8L9wZPZIZRx+W8M2fm/L7+F0BxCcAm7BCbqOkctRXKJbdHlCDA4NErAHKtvXVNP+o3e+l7Ja/qU7+/9GEZ9yucyhQ4f4L//lvyz7+a233sqePXsu+JpSqURpSfkznU5f8O9+VfDYPLhsLp4ZeYb5uTH0+XnKNpmyz8kfb/9jdo+9hCSISIpOPDaBze4i4K5CMVTUpb1+WaajeT3dYjUIRcZIsa//RR459hCT8RH0bBaHaOO6hu38lusa6uI6tg0bmLco55EeWK63mEhN8MLYC8xkZvjR6R8xmBjELtvpDnWzo3kH1zddX4mJGEmOLCtrXklq8NGZoxycPshIcgSLZEHXdfpifZyInmA4MYyBwUx2hjPxM+TKOf7suj973XgHXQ0uV0ES3W6s27ZddKT8asnHonOz6HKZZnELSdVSfT1yVxd6IoEciaB7PMhdXaiDg5VWgSAIiH4/ls2br6rKdCVYFVlFW6DtsqZ/SzGSHKF3vpdkMclUdoqgI4hmaDR6GhlLjeG3+5lIT7B/Yj/vWPUOorlZ9o/t4U3tt7K1ZjPzpTgRV4T/d+j/oegKbcE2bm65Gd3Q2Vq/lSpnFUFHEAGB/lg/s7lZPuj+ICPJEbKlbCWMUkBgJjdDd1U3p+fNHLwWfwsvjr7ITHaGt7S/hY5gB1kli4DAcGqEmqoWJqOD532mrJpf5qV1bhV4MQZCN/QKWQs7w8wX5vHb/RyePsxkZhK7bEdAoKgWOR49zv7J/dy/7n40Q2Nn407aQ+3nvfdSGKUSSn8/iCobV1zPiVgvNZYwn9r6J8TLCRQ02gLt+Gw+dh1/DL14thWddoo0+ZqYy8zSEeo0hyVsdqocVRyeOUyzr5lD04cAeEv7W1A7mkhNjOApQ52/hT1zh/BoMpaigmEpY5RKzI2c4uFSkfe7d+CYiVcE+aLHg6Wr6+w1smDSiq6b18jGjT83Qb+SyveFcNHcOl0/m1unx6BYZO2hWT7T/RFOrZgjIyjsaN7Bv77yr/z0zE/RDA2LaMEiWeiJ9JiRE+Uss9lZDAyskpUmXxNNgRbcCYsZCXMOzvXwWtSF9UR6aPY3Y+g6IXuQqewUHruXtmAb3z72bQbiA+xo2lFpcbqtbo7OHMVn8xFu30TjpEDIESQqjGJf1C0KAiWthEOyoy8h96JgVuQMq5WCWvilO/v/RhGf+fl5NE2j+pwbcXV1NTNLU8mX4HOf+xx/+Zd/+cvYvcviQhdVSS3x0/6fkiwk8foiWGQf8egI6cQ8+2fP0GQJcGLc1IMIDgeFbJKVwW4i3hqmU5MUPR4QBNrDnXxiw+8Smi+RCzjZM3eInw4+zlR2yrxBlMsUKLN7Yg/2iM4HpC0Ir7xC73X1DCWGzrP7l0WZaDbKmfkzPDf6HEOJIV4ae4nBxCACArIocyZ+hkQxQX+s3yzL5+N8bMvHKsLHC7nHwvLU4NHkKP/t2f/GyehJYoUYJa3E27vfjsvqwiE72FS3CUVTsMt281id+Sl3dd7FtoZtv/Tv77WGlkyaFZZiERwOpEhkeVm/VDIFwa9SfL74UBWsVpAkc0UcDKJOTKCeOYM2Oorg82HZsAFtchJ9ZgajXMbIZBD8fgSnE21kBOkcHdHPa3J4paZ/ixWyRCFhjuHaA9zZeSfZUha3zc2K4ApeGH0BwzC4puEaHjr1EAB5Jc+9nfdSKOdoCbTSIgTpLU+yZ3wP71j5dhyyA5/DR0bJMJk1PWtKWon5/HxFOBwvxDk2e4xHzzxKnbuukh5vlaycnjvNDS03YBhmVEbIESJZTPLenvdyInqCPRPmIswwDDoC7XxkzQeYmR85r+rjdvjOM5lcrAKPJ8dJlpLsndhLtpw1Hy6yA0VTaPQ24rF66IuZNgqSIFUeiggwlZmi0dPI5vrNV7RA0JNJxuUcjwz9jFg2StkicpQiPleIt3bcxcrwSvzVTdR6apmMjzAw8kpFm9PhaaE50sHhqcNEcjEwDIKOIIdnDuOxeiqVufn8PN86+i0+tP5DbNy2hbn0LA3+RvpPJihqJWI+FREVj0XDJ7mYPXWI0a4mOuMLD/YFTzKlrw/r+vVYr72W2cQEpwtjJMsZ/Had7tQktU7nqzLuBK6o8n0xLCWtY6kx5nJzFNUiTZ4G3tV1N66ojr4YZ1IuU31slGrAsm4dJ60KH97wYd668q3ky3kcFgeqpvLZ05/FJtlo9DayJryGsl4m4ooQdoap89ZjCTdc0peosm8WD2vCa3hp/CUe7nuYVDHFikA7qqHxwPoPMJud5fjsce5bex+7x3dzdOYoNsnGxpqNeCNeEsUEL8UOs6lpPfc43sGP5uYgm6cu2MxUYgy31U3A4iWn5BFFCY/VTUkxPeUsSL+SkfbfKOKziKWGXsCyMLxz8ed//uf80R/9UeX/0+k0jY2Nv9D9uxDOvajssp33r30/zw0/xzPDzwBgaBptnmbe3vVWytP9DBRGCIZXwsTCRgQBQ9fxGza2BNby5uabSabn8MluuuUaQvNlBJuNKb9AZjbHVHYKQ9OW9cILxQxDxWkmaw06zsRI5B3n2f0vwmP1MJmdrASiDiYGMTBMoa5SQDVUnIqTRDHBuup1PD/yPF9++ct88fYvAucHgC5FvBBnJDnCvx39N45Hj1fEe4ligtncLMVUkRp3DU8PPV0hY2FnmO6qbsaSY7/2xEcZH6e0axd6NFr5mRiJYNuxA0tj42vSWlrmVqvrpjPuwAByQwOC241YUwN2u5k073Ri1Naak2T5PMrBg2gTE2aURjKJ4HKZZEfXUQ4fXqYFejUmh+tr1vO5Wz53diGwxPQvU8pwbPYYx2aPIQoiXquXsdQY3zv5PcZSY4CpedjRtIP/cv1/4Z9e/nKF9Ny37j6G4oP8+7FvIyIQcYVp9bWwItzNo32PUDZU7uq6i5/0PUK6lCZWiLEmsoawM8w7V72TqcwUmqFRUkscmz1GqpDCb/OzJrKGE9ETprYnH+X54edZGVnJ21e+nfZAO+9e824OTR6iL9ZnJo5LViKuCGPpcR4fe5otkU6mZwYqNgUhd4SWi1RiPDYPqqHy9PDTPHTqIYYSQyi6gtPiZGvdVlaEVmAIZyXwgiBgGIZJ2gxzyshhNbUhV+KpklHPkh4wdUhVWCGZYd/pZ1gZWAGY2pY/3/4pXqp9gUQhYa76VY0oWe7quJOfHn8I7FY0XcNj9XBrx63sn9jPfH4eAYGdLTv52tGv0eJr4fTUMd6x9rd4OrqPKkcV41On0dHxOAN0hbupszsX8tMWKmKqamYRyjJaLMbR5Gm+uO+LDEVPVz5HW81Kfn/zx1mfW2kK/32+K9b8zGZnL1v5vlzlp8Xfwg3NN/DU0FNIgoQsyhSVAl85+S0+2P2fWKU4z5rKAoLHw4Qlz/dP/4jHh58iYA8wkZkg6AjyjpXvwCJaGE2NIokS8/l5djTtIOgMVkT3os1zRb5EVa4qTs6d5MDkAdKlNIIgoGNweu40g4lBql3VrAqv4vHBxxlODmMRLbx95dvZNbqLp4afYlV4FVXOKloDrfz+po/xQOd7mChFWdNxLc8MP4Nfs1PnqmYoPkSdt5ZGbyPR9DRhZ5hVtevYULvhir6D1xK/UcSnqqoKSZLOq+5Eo9HzqkCLsNls2H4JgrdL4UIX1U0tN/HPB/+ZslpG0zVznFYUGUoM8sO+H/PW5ttYqeapcoZx2NyV/mydt4G7VtzJOqmeFt9KxGb/2RM/bJ74ublXzqa3L7Q3lpqKlVHJGmUEux2/xXOe3f8iMuUM6VKaglpA0RWMhXkjSZRQ1bNpy4teH2Gn6Wo6mZ5kfe36ywraprJTFSM2QRBQdRWPzYPP7mPfwD7u7b4XAQFFL2MA0XwU5sEqWy+53dcjjFKp8j0Zuo7S22tOtyyBHo1S2rUL8Y47kF7lqnUplhkHFosIqoqeSKDPzyPY7SYBslopv/wy+sSE6TFktSI1N2PbuZPy3r3ouZw5Dr9vH0IohNrfb5I1WUb0ek1i9CpNDqvd1ec9TEaSIzx44j94+syTFMo53A4fnZGVDCeGGYgPUOupxW/zoxoqQ4khHj/zOPeve4DV4TVsqt3EQHwAr9VDXskzHBtkNDnGidkTNMwd53e2/i4vjD7PC6MvMJQcptpVbdr8GwbRXJRnhp5hZ/NOZnIzpj+Qzxw42Dexj/vX3s+3jn2rQn7KepmSWuL2Fbdjk2xMZacq+UaSICEIgmk4aveRLKcR6vwIBR/6/DxBZxV3192EfWiC8tS8KTBf8n3PZmc5OHWQh049VMmDEhDIK3kOTB3g5tabafSaizdJkCqaDIAqZxVumxtN1/jXI/9KLBM1nYR1nZCnmnt73klL1XLCNVaaq5CecxHLRhkrzeGnDYAVVZ2EYkXGbVGyah637KRRDFK0i2y4aTVpSaWsKTw3+hyHpg6RK+dQdZVNtZt4YfQFhhPDNHgaaK9eiYbGeHqCZDFJfagBymVsTg/z5SSCFaRQGObSZ+9dqopRLBItx88jPQgCg5Mn+Afl7/mbHZ8hNJOpVD+upAL0aicNl2I2O8tXDn2FXaO7lt1L3bILXYD/uuK3CZar0Bauv2J3Gz85/T0G1WFOz59mZXglI8mRSnv1naveyfdPfh9N1/Db/ai6el424pX4Es3l5ipeYqIgmpN6ooQkyRSUAm6rm3pvPc+OPAvA9Y3Xs2d8j9keq+7BbXVX7A2+dOif+Oy2T9O1P4c2mWCl92amLGXWXr+Vh4YeZTw6SC41j9uQaavq5A+2/mriK36jiI/VamXTpk089dRTvO1tb6v8/KmnnuLee+/9Fe7ZpXGhi8ppcXIieoKOYAdlrYxDdJgrN4uFocQg5Q4Bb1lku7Ob7df9d6KWEjIidZYgDUU7bkWusPtzT3y3xW3m8QCIIrJoobtxLV5vFWVdod5dh8dVB+MTrHS30uBrqNj9L0Wbvw2P1YNDdlTGZC+GolpkNjeLVbRW2gKXE7QpqnJ2PzEnuXTd7HFbJSuqrmJU6BYICLitbqyilRPRE78yV9DL4dxW0GLLaLEkrc3Po83NIbe3ow4OLiOlejSKNjv7mhAfOGscqCWTlA8fhkIB0eNB+P+x997hcd3nlf/ntul9MBhg0EECYAHYOyVKItWru+Ui27GTOLE3yf5SNomzSTbJs042a2+yaycbO3bsJE7sxJbVJcu2RDVSYu8FIHoZlBlM73Pn3t8flxgC7KQoyc7q+NEja4CZubgz93vP933Pe47Phy6KqMePo6fT1Z1oPuBmwpomGzuKc2MbDQkdVzRq6IHq6s5VqM4674peL4Ik3RAPlXQxzRNHv09/+Bj51Cx2qxtFVChXSuyZ2MP60HqOzRyrZlgJCETzUbY0baZSUfn+ye+zb2IvFb1Cvpyn1dvGjkXbeXHgBQ5MHmR1/Rpubt7Gi8M7AeM7a5JMWBWjOhLOhKvfNrfVjYCAWTbT4mnhuf7neKDzAT68/MNVofTaurXUu+o5HTlNJBsxjBJ1nbJWRkDAptiwKlZanc00WYL0eNzYnRKNRQu2MzPoPh/oOuX+fqba/ByPniRWiGFX7MiSXM1TEgQBRVIoV8rkyjn+9di/8pd3/CUbQhs4ETlRbc/V2GpYU7eGens9w4lhorPjaNPT6KUSCAIz0SiPpZJ8+qZfw+2vr573rFheUIlYAFkmJ557XDCb8TZ34OjV0It5KAIUcahWbuvahujxsHNwZ1X/NKdZWVu3FrvJzuq61XT5uwinw4wlxqh31DOSGGJV3SoGYgPkMuNouo6pZimH8gPUNLbTMJ4+d41oGqeyIxeQHl1VQdcZmD7F6eIYW/Gg5/PV1tiVKj/XO2k4HydmTlxAegAyapZXwq/zge4Psq27G0UUQZIYyAwSN1fQVKNjMT+TrS/WRzgdpsXdwraWbbjMLpbVLmNL46UDly+FTDljTAW7GvCVfZQqReyyjSZnI7H8LOhGBXUOLZ4WYoUYkWyEifQEZsmMw+RAkRQ2hDbQmxtj29l2vLlQwHvWmmD54l/mdGuYRCmFx+RiiaWJUN07E2/0H4r4APzmb/4mjzzyCOvWrWPz5s18/etfZ3R0lF/5lV95pw/tkkgX0/zCql9ARydVSOGxeKhQQRZlcuWcUdrWzpY/RdEQhAkqtS1L6GpYgTWeRY/Hz0UYWCWUrs5LXswtnhaOTB8h5AgxrYXZ2L2FN8J7GY28gSAI1FkDFAMJPrRyO4s8Dbx/6fvpi/YxmJjX2z7rISIKIhbZgiRKdPo6GU4MV3/HIlmwKTbcFjfhVLhqnpYtZTk6up+AxYvf5GW2dOEEhs/qI+QMEbAHqi0uAEGHTClDq6eVgDWAfnYxEBBo87SyvW070XyUp8489Y6YG14Oc4SnuG8fWixmhCHW1Rnj5C7XOVKgqujJJOroKGJdHVp4YWAgN9iLRDCbDR8gmw25pcVotzgc6DMz6LGzrUink8nOWp4af4HZ0TCCw4kUDOJTXDzQchf1FxsfVlX0UsnwGeLNe6gMzw4QGe2lRBGXM8BQchi77sbr8BtBkKkxksUkoiBWp6ri+TgjiVGy5SyjiWFEUSKanUUWZQZiA1QqZRb7O4gWYqRLaXpqe/jkik9S1sqYJKMtE8vHqtXJglrAZ/WxqWETzw88Dxg3BWuNlZHECGWtTKlSYkVwBYligjdOvYHP6mNtaC3NA83kSjkqeoVoLopJMuGz+ojmZ3EoVrpyErbZDGjGgEUlGkVqbOSwN8+zh/+BcHYSk2RCEiSS+ST3dd7HM33PUNYMTxWTZELTNQqVApF8hC9s+wJPnH6CkeQIZsmMJEo4zU7uXnw3Pz35DLVFEwTaKGglrJIZLZcjMjvB0NgxVjp81fXDafUg1RiViAXkR5aRampwWN0LPyhZRqypQc9mjWBdj2eBDmy+eN0smdm8aDO7x3fzo4Ef4TF7eHXkVUKuEGuDa7ipeSshZz3j6Qkm0hMUK0XaPG10+Bbzjye+w0zjdn6x/S6i2WkylRwuv0BZ1JFFBVWb932c52eWKKUBj/FwPo+WSFyxKnK9k4bzMZObuYD0zCFTzhApxpE7GquP5cpDiA4HzrITm2KrpqDPoVApcGjqEI2uRtq8bTQ4ri7S5Xw4FGOzKIsyDsmKXtQhnabD2cLQ9BnuXnQP60PrqXfUM52ZJmAPMJoYJVPOYFfspEtp7CY74VSYvewlXoghKApKu1EF1BIJyr29+PN5tuIBPAi6FaV10dtiL3Ax/IcjPh/+8IeZnZ3lT//0T5mcnKS7u5tnn32Wlpa3VzV+LbCZbPz57j9nz/ie6mP/7db/Rk9tDycjJ1kZXMlkZrJ60QiCQI29lvs678PjaUGvLV5TvozT7GRr81YEQeB05DS7Rl/jWOwUqlom6AjiFu28Gt6N7nHyn623EXKEeO/S91JUixd4iCQKCXa07uDIzBF8Fp8h3kuN4lAc1DvqWVm3ErvJzveOfc8ojdb3MBwbwKqJxMb6ubXnPnZFDjBbObcgzJVrfVYfze5mNjZuZM/4HoP86DoVrYLdZMdldvGh5R9C1SpIokiykKI32sv21u24zC5mcjM83/8871nynncsGG+uhaXlcqiRCOrx49WqiC7LSI2NaDMz6KkUQnu7ITQ+G1WgJ5OITU1o57/oDV4symNjlPbsMapLZ3fGUkcHclNTtQ2aD/l5avzHzCbOkjDdcJKOmyo82fsEn+z5BE7FbpCcs5oSzrZQ5vBmF7l02nD2NdmsDEUOkyylsNqcKKKCy+xiOjONqqmYJXN1dyyLMpquGdoHWw3TuQiarmGWTFQqKsOJYdY3bqSiqawKruLFoRd4/PTj6Bg6u5V1K7lr8V2MJcbIV/KsCq5iXcM6AN6YeKOqUTPLZkyyiaHoEF6Ll3QpzcmZk7gsLv58159jES04TA50XcdustMT7OH49HEOTR6ipr0GVRT5l8gL3Ne0g9BEppppdape5A9e/iP2Tx0w/JqANXVr2NS4iWf7n2Vt/VremDCywgRBQBIk/FY/zc5mjswcYWVwJSuCKyioBTxWD9uathFNTxO01vDC0DOEk2PV8xtyN7Gj5Vay5Rzl4WHD4sBioclbi98bYlaWq20xRBHBYsHvrF0wkXM1QbbzxesmyWTELwgidsVOwG4Ess5V5UL2eu7tuI9IPsJYchSzZGE8Ocrz/c9jFhQyYpm/nX0G4VQvgs2GlKmjYDexackO3jj9gkF+5pEeJAmPyQXZcw/pF/H7OR/XM2l4PiyS5bI/N0sLr4+5injAHqDD30GmmKm2lACskpVOfycBe2CBmea1osXTYvxtsQFyOaN1qAOpdIS1wZUEZBd+Z4iHlz/MaHKUVncrOjoW2UKqmMIkmShVSujohFMTaLpG6fDhahvxzWagvRX4D0d8AD73uc/xuc997p0+jCou51PTF+nji69+kQPhAwuec3TqKGWtzCLvIrLlLC3ulqqIt83bxv2d99PsMQwZrydfptXTit/qp85ex77JffSEVmEWFERVI1NMo9tN7J7ez32zZwyxJHp11zvnISIJEq2eVhwmB9OZaZYGlrKlaQvJYhJZlInmojzb9yzPnXmOolZkXf06Hlnxcf76hT+nafOvE50c4CX9KT684qPEXBJZrXCBf82DXQ8C4DA5jEmIUo42bzsOs4MnTz+BIpmo6BqCYJznJnczM9kZvnf8eyiiwpr6NaiaSoevg3pXPblSjmg2iizLhJwhWt2tb1k7rDI7izo2BmYz5UOHkFtbjeqNJBl6GVWFfN4YJS8U0LJZpLNGhILdbuyYzwt0FGtrrztL6KLHmEhQfPVV44am69WWhp5OGynwjY1URkeZsJWZTU7C3K5TkqqVnLiiMjo7wJKKHywW9OlpIy3e4TCIEzfGQ8Up2/E1Lsai6NztDmBVrJQqRWYyM7S4W4gX4pglc1XMa1WstHhaSJVS1RaVx+I5m80FiCKiBhVNZdtZ0WlFUwk5Q6RLxojvkakjWGQLD3Q+QEkrLZiEmj9aXlSL9EZ78Vq87GjfURUTf/PQNzkZOUm5UuZ9S9/H6+OvcyJygiZXEzW2GqyKhc2Nm3jizFN02Zw8NfJjHgneiS2SIud38E/932d/eF/1PAIMJ4fJq3mW+JfgNrurxAeMCI3b225nVf0qVtWvuqgvVDYd48WhFxaQHoBwcowXpnaxvmaFkdt2djJL8fm4f/VtPB3eSUxeaDsxX09yLUG2c+L1/RP7ieaiKKKCqqnE8jF0jM3NZHqSNXVriBfifP/E9xlNjWISFcySGY/iYn3TOl4YfpFOfyeddXUINht6Pk9FL3KqMMGSplUcH9l3LpRZkljctJIusZazPTiABZYBl8LVThpeDi2eFto97Qsq59XX8bRfQFzmRuABVtet5sjUEYL2IEOJIXxWH5IosapuFc3u5gWfw7ViLoKnUEjxauYF8iWDFdY7G9jeuI2VphbS4SnazHUcSu6lrJXxW30MJAaxSGZcZld1A9Dh60BCvKCN+GYy0N4K/IckPj9LmO9To4gKja5G9o7vBcBj9RCwBjg+cxybYiNXzlVbWs+ceYbPrf8cs/lZQ8x2lnS0e9v5lXW/UiU9bwZOsyHyzJcNbUleL4EE2KwIGA60k5lJ1oTWXOAiLQkSi3yLjMA5rcK3j3wbSZDY1rKN7x77rhGdoZi4ufVmbmq5CVEQiOcT/Nux75JTczhkO2ga0akhIi1herwbkEIXXhjnR0PYRQuhmMYJc4KdAy+yP7wPWTaRKCa5teVWHu5+mP+563+iiAp3LrqTg5MH+fsDf1/NvJnMTBJyhqohjfd33c+Wpi03vB1WiUYp7tplaF+WLqUyOopcf1Y3MWfHP7cgVyrGje1sG0G0WJCam6mMji644Ym1tZi3bbth+h6AyvQ02swMgs1mVJKKRZBldE1DT6WQm5uphMPGBM2cxkBWjMXM4QBNQx0ZIW2JUR6cxLxlCyVAn55Gz2YR/f4bFnKbkSo8M/oCe8J7ULUKHpuXoD3IQ10PsalpMxPpCWayM1glK6Ig0lPbwx2L7uDA5AGW1Bhp0k3uJtKlNJmS4aODKBJ0BKmxBvj24W8ZU2IWN5lyFrWiYpbNhqje4iRgDTCSHKluXOZ/N0eSIzS7mw0fn8yUcRMTYH94f/Wm/ujJR9nQuIFNjZuwyBY2NWxiX3gfOwdfRNM1lgS2MhvuY7y5QCcwbi4wMn02ZX3eVGqikEARFba1bAOgu7a7WgXd3LiZT6/5dPUmeDFfqFKlQPxs1WABFIV4fIpiPmt873SdnN/BuDlDduAoW9s3YjIb65RdsV9gsHmtQbZBRxC/3V+NBDHLZo7PHCdbzlYrCjX2mmoQJxhVE7fFg0Uy47P6GU4M01WzxCAvZ7O9bAWNkKWWlmCnEfEhCFCpsMi/mF9f+Vlq4ucqPOd72lwOl5s0nMPlfH4W+xbzyMpH+Ocj/3yBbOCRVY+w2Ld4wfvNH4EHcDQ7iGajrK5fzZ3td2KSTATsgUtG5VwLWj2t/Kcln+Iu/xam1DiyKBMy+Q29aN5EMgmVzDTvab6LOkcd71v2fl4eeZm+aC+zuSgg0Onr4NbW26oxSVfbRnwn8C7xeQsx36dGERVaPC18Ze9XOBA+gFkyY1NsrAut48+2/xl/+OIfosmGIFNHR0Dgn478E9944Bu4zK5LXmhvFops7HYssoVbWm7BptjIlIzKVK6cM7w/uAgBUew83/88qqZWW3CiIDKZnqTF08JIcoShxBCDiUFa3C2MJcfo8C7GLppZFuxGyZ919tTOVpguU24+39hPsyXYODDA3936JU7khpktxhEEwz32j3b+EZlyhvWh9RyZPsLJyEluabmFZ88Y+Td5NY+ma4ScIcKZME/3Po2u6/it/htW+dGLRcpHj567CZTneY3MTdHpOggCWiaD4HYbi7Z87nKU3G6klSsRGxqQm5vh7I7pRpIewGhHYSxSottt5HQVi+iZDKLTaZSq6+txCGVAMPQbXq+R42axUInHoVLBIVtBzVLcvRuluxuxu9tIqA8EkG/A+P1oYpQ/3/UXlCpFPBYvxUqBdDHNTHYGi2zhD2/+Q+7puIcd7TsAoxoxm53llZFXaHG3oIgKoiDSH+tndd1qcuUcmVKGJncTNbYAqWKKJYGlhhN4MUWzuxmHyUHQHmQsOUp4doTTkd0gy0bGUff7afW0Vr+bmXKGfeF9ANTZ64hmo2TP7pxLldLZ6lSJV0dfBaDeUc8i7yLsJjtvjL3OTc03UVQAk4lsJQ9IZHTDmwdJWmDHoekakVzEMCBs2caGhg1omkazp5llgWULvscXuxGX1BJdvg5Ol4rkc+cMW20WBx1SHaVsGkQH4TorT438mNmUMSUrxVsIhBZdMnbmeoJs59o5ZtlMq6cVr8Ugs5lShrJWpsvfhc/iZUvTVibSEyiiTLqQIqOWKGtl3GY3dskKhYV6ntqCxPrgWjbcteHs2ummq+LDH80b16AgkPXZmfRIRCdfJ5E3AlebXE10+DsuuRZcbNJwDlfy+XGandzWdpshus9Fq7KBGlsNt7XedtH3vJZMwDcLp2ynJ2Ghh/p5j5bQzQK22Qz3dd7B0+MvIqk6e8f3ErDWsGrZSlRdRREUptKTDMyeoX35J4Gz68pVtBHfCbxLfN5CzPepaXQ1VkkPQLFSxG1xc3zmONFclM+t/xx/sesvFjy/WClS0Svc1n7bW3aMIUeIVlcrm5o38a1D3+LI9JHqz9aF1rG5cXP1v+cW+XQxzf6J/UiiRNAepN5RjyIqCAgcmzlWrbRsbd5aJXJ1jjpa3M2I5Qqf7n6EE/ufr76uXbJeVbl5DqLHg6m7m/ZEgjZTkJPqJH++78vUu0LVylizu5kfD/wYVVOpc9Sxc3gnboubUqXEWGqMZrdRMQtnwqSKqRsakqclEudcY6HqzaJlswjBIHokUv1RJRxGWbECLRZDPJuTBlzTqO2bguWs7kDX0dNp4xjcbtB1Y+LM6cS0YQOtokpQGq0mzFePVVWp8TbQKHgQ3GWjAjQ0hGAyIUgSpms0L7wUjk0f42jkGIIOQVuAGkcts/lZZEkhX85xePowakXlleFXSBQSLKtdRqOrkSZ3ExsbNlKoFKh31FeJr0W20OJu4ba228iUMrS4W8iVc7jMLgpqAYtswWf1cWryGFoshrW2RPxsnMLM9DRPlMp8euvnqzeg+ROKOjqqrlY1PQIC+XIei2ypErA5Pcs3Dn4Dj92PpIMFw1vGGWxC8XnxeErUlg8TdASZyS4cJ9d0DbtiZ1Vw1SWrv5e6EX+s+6O4VJlVdatJ5uKU1AImUcElO5CnIjjsHnK6tID0zH3Wl4qdgStruC728/Mdjd0WNx3+DvaH9yMJEoemDuGQHWxr2cZLIy9xfOoYOjo2kw2/vYYlNUvw6mbgvIkzXSdg9rGi/Zyfl14sovkNnckoSfbEjjI6PMrTZ55mLDWGLMo0u5u5vf123tv1XqYyU1d0aJ6TMUxnDYsBi2xBFuVq5f58n59WTyvvX/b+ayIy15IJ+GYw39drPoSzafKNWYVPtDzEiJTjd7f8F770+pf4/vF/o6JpgM7a0Fp+e/Nv05iY99xrWNffTrxLfN5CzPepKaiFC3Q8um4skCcjJ3lkxSMXPH9jw0a6A2/tF77V08rHVnyMP3nlTxaQHrNkJpwO89d7/pp2b3t1cZ1r3R2dPkp/rB+A5bXL+VjPx/iXY/+Cw+TgxwM/Zm1oLXbZzuc3fJ6QM0RFU1FzWaRMnhP7n6d01kfI76qjWQlc8w1+fs+4rejmgSUPMhg7t8BX9AqqpmJVrFT0Cjp6dSqiVDF2i3MoqIUbGpKnl8sLWlR6uYxYW0v5+HGjFXTixDnyIxr9cMv27YY25W0W/0nBIGJtrSG41nX0s+0CMMiXFAohqCrucpmH1nyEp0Z+QrycrP6O313Pfb5l2CcycFbzMx836m+IFWKIgojf5scsmxFFCR2YykwxnhpnQ3KE10Zf471L3oskSnTXdrM8sBxFVHgj/AapUooPLPsAiqRwOnoal8WFXbYzGB/EbXGzPrSemdwMbsu5CaXp1CTZ2SlC9voF50UvFJjpO8xw5xl6GtcAC2/gBbXASGKErpou1obWVm/iczdDt9lNq6eVqdQUze5mgvYgHrMb2WIjUNdGa/0STJ4gbZRojx3g5vLNvDr66gLys7Z+Lfd13ndJ0nM5w73d46/jqG8mEx4hoLhBcRtVEEXBW99OY0Zm3JxfSHqgWpGcC9w8/2Z8PVlyFwtj9lg8bG/dzvLa5UxlprAqVhocDeTKOXpqe6qVnsW+Dha5Wqm3BUlVsmRKWVyKAyGXJxIP01q7sHUkmM3kPDbOzJ7hyPQR8uU8w8lhpjLG36lqKpPpSbKlLL//4u+jVtQFEoPzHZrnyxiG4kO8PPIyIWeIjQ0b+engTwGwm+wX+Py8XUTmWrHA12s++TGbjaqzpmHPllmWM+HymPndtf+Z2VVJkqUMXouHWksNai7NuBaj0e7GoStv/cbtOnHVxGd8fJzGxsYr/+K7qGL+LvBiY4yCIBDPxwnYA9VFcQ4bGzbyp7f9KZ2Bzjd1DFOJCU5OnyBRiOOxellWu5w6T0P1506zk3wlz1hyjFp7rWFeddYQTREVDk8d5tj0MZo9zYwmRnl97HVkQaantocOXwcjyRHOzJ5B9Ivc33k/j51+DLtiZyQxgkW2sD60nhX+pUSGT/Nk5DkiY32gGm0uv6uOB5c+hKd9yZu6QTrNTrY0bcGhOLi97XbGUmO4zC6sihWLbMEkmbBIluo5nutBp4qpqoPqjQzJExQFwWKpCoUrw8MoK1ZQPnrUaAWtWYPY0wO6jujzITc03NCQz2uB5PFgvvnmi7tEb9uG7PdXH2unkU8HWhbsVpvMtSivvIF2nggbbmwopM/io8HZwEhyBFVTkQSJcDqM1+Klu7bbiDBRrOwa28X6hvUsDyynxdPCtw5/i8H4IL3RXvKqYcb2viXvQ5GNzLc19Wvoqe2h2dPMg9LCG3CxkCVkr2dH8y2MDRxecDx6oUA6EYFGo5JgS+S4v+5Wnhp8DkU0cSp6ilpbLb+69lf5pvRNjk4frXr3rAut497F9/J/9vwfBNGoiK4NrcXtqeXuxofwnCUzTsxVcf/c1FqhUqDF3cKnVn2KlXUrL3m+Lme49/LIy3zhpi9wzGRnNj5Rbb/6XUHuVbqxnYmQCS5sUQgWy4KK5MU2CqLDQWnjKob6D5DOxnFKNhqKZhwV+bJBthdr5wTsAb5/8vvEC3HihTiRbIQNjRsoqSXyap7F3sXUO+o5FT3J/3zjrzgyaXw+ZsnMluat/O7W38Xl8C94nzmicjpympHkCMliknw5z2dWf6a6/gXsASK5CK3uVkyyiUOThyhr5QsqN+fH7RTUAgW1wKHJQ0SyEZrdzewa24VdsdPsbiZRTFx3ztfbiUtNYM2JlfW8ETXRmACvt55JXwPxcppj4UNMR0colwtYJAtOxc7NXXfQ9g6bA18KV018uru7+cpXvsIjj1xYmXgXF8f8XaDTtLCUaZbMlCuG23EkG6Hd286/vu9fiRfixmIe6H7TpOfQ2D7+96tfYnDGyOypiAJNgUV8dsPnCDrraHI34TQ7SRaSmCUzOvoC4lOsGD35eDHOkakjvDj0Il8/+HWG4oZtud1kZ0vTFtbWr+XA5AF+cc0vsrpuNXk1zyLvInqCPdUL29G4nE/oZsaaYmTVPHbRQpO1Dk9tI5Lff8m/4WoxN6UWdAR5vPdxRESW1CxhPDVOppRhZd1KDk8dRtM1bIqt6s/S5GoiUUgsMEp8sxA9HkSn85yNvqqinj6N3NmJaLUabSC7/boztm40lKYmxHvvNXLBisXL6okutltVN2y4YcGpl8KSmiWYJBOpYgqX2VVtHSWKCdrENmpttbjMLgBsss3QmSVGmExPVkmPRbbwYOeD/MPhf+D4zHGCjiABW4BOf2d1Nz//BpwNzHLyxMuMDRymct7GBMAumqseJXo+T0gQ+LjjJsYdKmPBUWayM9hMNn5r82+RLWfJlrJ4zB4C9gCvjLzCXR13EbQHqWgVxpPjSIKEr8O34D2upPG41M30coZ6qqaSKqb49LpfvOB1rfEspZk9OKRz896CxYJ01sV7DhfbKAwnhnly5Elmc1NouSyoKn53PQ+t+xBtwcvHlVzse3V/5/1VclHWypyOnl5gdbFzaCffOPRNhpMj2M3O6tp1LHqcvzv0ddprFi/IdZt7rZJWQtVUBARWBFfw+OnH2dCwgZ8O/ZSyVkatqPhtfpwmJ7e23spLwy9Vyc9c5eb8uB2LZKE70E2dow5VU6ukdO/EXsaSY0iixO+/8PvXlfP1duNiE1iC2XwBIfJ5PJgocbTvKV6d2kM4PlrVLoa8zcg+PzXe6/MWeqtx1cTni1/8Ip///Od5/PHH+frXv47/Btys/qNjfhnXIltYG1pbFTa7LW7ieeNGsaFhA8tqlr1pojMfU4mJBaSnKOlEC7OMj0ySzCf45LrP8NOhn/Jg14M0uBp479L3UlAL2E12HIqDqcwUOTWHWTIbI+9je9k7sZfbWm/jvV3vJVfOYVNsZMtZxpPj3N9xPwW1QKqU4oHOBy4YzRQ9HnzWHjxvoZeD0+xkY+NGlgWW0T/bz9LAUn4y8BOiuSibGjeRU3OMJkZp87Yxm5+lydXE/Z33U2uv5UcDP+KTjk/ekIt0fsmYed4nQqmEvGQJUk3NDfhrbyyksyZz1wO5rg62bEGLRCCfB5sNsaYGORC4YcdXUAs80PUAmVKGifQEmVIGr9VruBHXryFbNm7UIUeIOxbdgdPsJFPOkCwkq3Eut7XeVo2VAKPyly6mOTx1mP/x2v/gf9z+P/BavdX3DFj95LRC1fl4PvyuOpptIcp9fWSkCuM1GlN6imQ5g6Ns5aG2e+jLjqDIJr57/LuE02FEQSRoN/Q6NzXfxEBsAKtsxSyb8dv9ZMqZi7aQLtUauZyY1mv2XvD78+E2uy/+unVOxB07aIuGqS33VTVd80nPxTxj5hMLwWRCOvv7CVSeGv4RH7a7iWQjF1h6zI9qEUymBflZlyN9x6ePkygkOBU9hShKmESpeiwVXeNk5OSC9tJ8ojJn1rcssIwXh16kydVEOB3m+MxxipUieTWPTbbR7G5GkQxLjD0ThsfaHKGcq3jpqopc0tjevp1DU4eYTBsmk73RXhKFBB9f8XHGU+PIglzNkZvDteR8/SzgYoRoeLqPp3ufZjI7teA7Mpmd4unep+mp7aEn2PN2H+oVcdXE53Of+xz33HMPn/nMZ1i+fDlf//rXefDBB9/KY/sPgflpyn9665/y12/8NfvD+4nn4+joN6yldT5OTp9YUOmJFmZRK0b5+uTMcYpqgWwpy/GZ4/zr0X/lhaEXmM3Psi60jvs67mNF3QpGk6O4zEYApNvmYVPjJvpj/fTH+7Erdo7PHCeSi3Bvx72MJkcZT43zmTWfuaSR1vkXTrqYZmT6zBVDEq8VTrOT1aHVeG3e6u62VCnx2TWfpVQp4Ty7OxQQyJazRLKRGy5wfrOmXZfzfvpZw5UCVW8E0uU06WKah7sfJlvKMpGewCJb0HWdocQQK4Ir+PDyDyMg4LMYVROH4qhmEMG5GBgwdugrgivwWrzo6Ciiwv7J/czmZjk6fRSHyYFVl2mv76IgQTE8VjXCm2vROq1uhpUwe7K9vDS0m9fHXyddTGFVbHxyzS+gKFZeHn2ZkeQIxUoRu2ynxlbDWGqM18de597Oe8mUFraMrlZrdqXQzD+46Q+u23BPdDjwOjp5j+dTC9o5sNC7Z361ySSZGE0aSdznYzA+yLP9zzKSMEbzi6UcMjK3t9yKtyzTgBt7zPCsOl/UfynSlylnLumCDIbGb37Va/55dVvcmLNm3GY34XSY9y17H/985J9JFBPYFTsCAgW1QLac5YWhF/jjW/6YvRN70dGrDs0OxWFsaOIJWhev5+sHv8GJyAly5RzlSpm1obUsqVnCsZljfHbtZ3n05KNsbtzM6+OvL5A1XG3O143G+bE50nUOIYQzYcKZ8GV/9nNNfADa2tp48cUX+epXv8r73/9+li5diiwvfImDBw/e0AP8jwCn2cmy4DKWBZfR5m7jeOT4DW1pXQyJwrm2QxG1SnrmkCllWB5Yzl+89hf0zfbR5e+iXCnzoWUf4p+O/hO90V6cJicVvUJXTRf/9eb/yqMnH+XVsVcREdHRafW0sqVxCz8e+DG/su5XGIwP8vzA84ScoSvepOcLA+fgs/ouOSp7tTifMNzefjvRbJR02QhUjefjfP/k9zk+c5xGVyOKqFBjq+G+jvtIFy69kF4Prte062LnxqE4uLnlZkpqqToxZFOMXek7SYjmDBDnkx648YGqDsVBRa+QLCYpqkWGE8PVSg4YVgrT2WnD7fusRqbF00LIEaqK8OeqQk7FyS+v+2Wi+Siz2VkUSWE4MUyulCPkCgFGNaWrpgs9U6LN1UxXwy2U0gnskpUmJYC3rYeMmmV3/Agvz+xhz+R+0kVjNLw72M2/n/oBN7duoz/Wj99mVMeLapHJ9CTtnnYKlQJ2xc5sbpZkIUlJKxlaNNFyVVqQK4VmjiZH37Th3uUqLudXm9bUr2Hn0E42Nm6kzmG0tYqlHIlcnGOREwQsPoqlHLlSjtPjR8jlU/QN7ucm3ypKpTzvWf0RGmbVq87PciiOC+QDc5BFmXKlTEWrsHNopzHir5z7XbNsptndjCiI+Kw+rJLVCJ3FmJYzSSZj8ERTieQiRiVcsRN0BFnkW8TB8EFi+VnSao6a2jqeG/4JJyMnKagFbIoNxayQyCcIp8OsCK7gVOQU4+lxZguzdPo76Zvto9PficvsolQpES/ESReNted6Nztz6144EyZZSOIwOWh0N17UoPVq3LWvFmX18uPqauUi+W4/A7jmqa6RkREeffRRfD4fDz300AXE511cHp2BzreE6JwPj+VcqXuuVK+ICqtCq6lzhgg66quCvFZ3K/F8nF9Y/Qt878T3OBk5WRViTmWnMIkmvvz6l6uvIwoiqq4ylBhCFERa3C1YFWs1xuJylZN0Mc1oYpQXh18kVUwZxmuKHbNsJllIXnJU9mpwOTK1PLicY9PH+MbBb3B85jgdvg6OTB+pTsrsD+/ngc4HUGSlGknwTuB80SQYhnV7xvfw+vjrNLubOTR1iJAjxI72Hewc3sn9nfe/Y3lkcwaIF8ONDFSdr5czy2a6arqq2p2QI2RUes5zEnaanXxsxccYT48zGB/ErthRRIVfXvfLPNX3FAcnDyIJEhW9Qrunna2NW3n6zNN8ctUnOTZzjIHYAHcuupOMLjBjg2bPIpptIdw1IUSHg9HBPaS1PJO5mSrpAQg4gvxk+EVWnXUNL6pF7CY7nbWdeCwuZMmEoOnVMN25ykWrq5VwJsyX3/hytSI859T+S2t+ibWhtdX3uJrQzNvab7ui4d6VML/iki6mGZ4dYCY9xb6pg1hQkBCpYJCFeCHO3vE9bGu8iWQxyXQqjEmxUChkyGTi7J88gNPsolA0IjnCiVGExi3Mhvt4/NB3+dSqT2GPpq/K+K7F08JgfJClNUs5FT1Vfdwm22jzttET7GEyPcmByQO8Nvoa93XcR42thmguChiTY3bFjkW24LK4sCm2atYZQK6cQxKM9pksyjS5m/jEqk/wnWPf4dWRVykVsmysX09WLzKWGkcSpap1gSIpDCWGOBM/Q8gZwqE46PR3YlNstLhbWBZYxqMnH2UoMWSc10IaURB5Y+KNaoab2+ym3ll/VRvB4cQwr4+9zkvDL7F7bDfpUhpZlFkZXMn7l71/gUHr1bprX23FOeQMYZWtCzYhc7DKVuod9Rc8/rOAa2Itf//3f89v/dZvcfvtt3P8+HECN7CH/y5uLJYFl9Ne28XgTC+SIBlOxp33cGDqIGubN/HY6R9S7woxkZqoWvxbZEvVhA2grJXRdZ0GVwPP9D3DxsaNF7zPcHyYHa07KJaMyAUkiVRkglJMuqCEOpwY5tkzz1LnqOMfDv0D46lxI3RRlGj3tPOepe8hWUheV8vpYoQBYDI9yd8f+Hu2Nm1lNm/suIK2IM/2P7tgPHg0OUqunOPLu7/MX9/z1+9Yz31OiyAJEgFbgLyaJ1/Os7puNbFCjEZXI8dmjhHOhHlh8AW2tWy7Ilm8nI7iTbfUzhogXhI3KFD1/LFnj8XDqrpVKKLCHYvuwGcxKj3nH3tXTRdfuOkLvDr2Kl6zl0+u/CQHJw9WSc9clMV0dpoXhl+oTjbKosyK4ApeGHyBRDHBYk87IdmH0+rhZu0WiIokKykks4WKvnBXO2eVIEtGTlhFr9ATWM4rw68wHB8i6KwnWUiwo/12VgS62TO5j1pbLR/u/jBf3ftVo/2ai1QrVKeipxhJjPDHt/wxTrOTGlsNJtFkxDvoejVBXhbPLedzLZnLGe5dDeaqT/FCnJJqGB6OZieYzkyhVTS2BNeze3IPqWKKFlcTWqXCvqkDTEWHKRfzyDYHIXcDIUeIdPElwolxWtzNpFNRdE0jrxbQKxWikVHG1FmWYOhErmR85zQ7WVG3gs+u+yxf2/81TkVPYZWtbG7aTN9sHydmTvCDkz9A1VSaXE3YFTv3LL6Hnwz9pLpGVLQKja5GBARcZtcCN2WvxWtoBl0bWeRdxOaGzbw2+hqvjrxKXs2jV8rsH9rFQ+s+jsPsxGFy4DK7EBEZThpZYwICHouHklbi24e/jVk2s6VxC7FCjJXBlYynxvFYPOxYtIOvHfgaZ2JnqHPUIYtylUxc6dpOF9PsGt3FzqGd7JnYUyXRqqZyZPpIlZDNGbRe0l3bZGKyycWp0ReYLSWwylZsJhvHpo9RrBQvWY1vcDWwun41r4y8UnXfnjv+rc1b6fB3XO1X7W3FVROfu+++m7179/LVr36VT3ziE2/lMb2LG4A6TwO/cfNv879f/RJnon2saVzPnvBePtzzEZ4b+BGHpg7xcPfDTGWnsMt2vFYjAd0kmqq6iDnfm7JWRkM7G+5opqKdE3taFStWxYqCiJ7LUZmawiJ2UwpPGq9xtoSa99p5svdJ/FY/3z32Xaaz0+TVPBW9glky0zvby6MnH+W+jvuuy1Pn/CkLMColA7EBDk4eZCozdTbBvY2AP8Cv+3+dmewMeycM0bYsyhQqBXpjve9Iz30OcxloIWeIp3qfYv/kfiySBYfZCH29qfkmHuh8gH878W+ciZ1hc9Pmy1bZ5k8dzWFOR3FGneZfjv4L4Uz4mneZVViuMA13A8Xr1+tiu9hvTPeMJcZQJIW9E3uRBKlK+O2KnTpHHQcnD/Lh5R+mXCnT6e/klZFXyJazOCUbcqFMQo+wZ/R1Doy8wc2hTRwvjtLgbsJmcS14P0VUQJKI5CK0uFsI2oNV0gOgaxWC9iDpYorp9BS/uOozJIpJIvkIM7kZprNG2KpJMlGulMmUMrw6+io7h3ciCiIjyRFua7kNj9nD0ZmjiIKI2+wm6AhikS1XHZp5Jcy1s2K5GK3eVl4e3IksKtS56gknJ2hyN7EkuIzuXBfHZ07xvo6H+P7pR0kUEpSL+bOfWQtdvi4ePfkDltQu48XTz4G3tRrCakE2nM0FgUwxDRhtwasxvpub5FzkXcRQYohKpcLTZ57GLJs5FT1V1dKMpcZ47PRjbAhtWPD9SRfTdNd2s3NoJ/d13MfTZ55mKDGEXbHjsXjwmD3c03FPVe/TH+s/V9kQBBbVdjKUGGYgNoDD5ODM7BkaXA3ouo4kSLgtbiyyhYPhg0aVXFMRBYFjk0dIF9NsbdpKl6+T/uleToaPgCBQMOVxWJzk1Ty90V6ssvWyG8GRxAipYmpBiPUcVE1lKD60QL94gXu2KJILejnaLPEPR/+OkfQYiWKSycwkq4Kr+M3Nv8mxmWMXNa4cTgzzdN/TLPYuZiYzw2TGWPODjiDLapbxweUf/JnVJV418alUKhw9evRdL5+fI6xuWs9f3Pu/ODl9gmgpzoGpAyRLKQ5NHQJgJjNDl7+Lvtk+pKKEVbbis/qqO16zZMZr8WISjV2YWTbjNDmxyOc8cTRdwy5bEUplKrOz+BQXoaSArmkIolgtoQ6vbSKWj2FTbERzUVLFFA6Tg1QxRaKQQBREIrkIq+tWU1SvvUpwPlkqqkWG4kMcnDxIvBCn1dNKtpzl20e+zXBiGLNspsZaQ3dtNx9Y+gEe730cRVSQBOmKbYS3AnOVl2QxiUky8eyZZ9k7sZcGVwMD8QGGEkMcmT7CbG6W7mA37+l6D39/8O8ZT42TL+cZTY6SV/NkSgZx8tl8NNvqMfcNLDQjEwQyUoW+mYP8Y++/MX226lXWypgk01XtMudjgQHiebjRgapw/eZvczq7VDnFYv9iIrnI2RuRSFkrG9NICIaVg2BUAMZSY9RYa7CoAjbRTF+sn+UNK7HbPJjcATYKdSDJnI724nPXEctGQRCIFOO0e9sZjg9XpyWf7X0KMGwsHIqdWnstxycOUQksI5aeYaYcJ6AHMMtmUsUUVtlKuVImWUxWr7XpzDRWxcrOoZ30Rnv51fW/yt/s+xuOzxwnWUwiCiI3Nd901Rqey2G+eHpt3VpeHHoBWZQZTY3SG+/DLts4GT3JZHaS39782wwfGGMmNUnQ5OPOxXcTi45jEhXKlRI7B18iVoizpsWoGKsVIzE95GuBOYdzXcchmNFVtRqVcrWfa0/QmBx69OSjvDD0wkV/byw1xnRuesH35/j0cZ7ofYKNTRsRBRGvxYuqq1XrgQZnA8sDy5nKTlFrr10glEeWcdn9nJnto9ndjFk2DF/LlTKSKFGsFFlRuwKbYmNfeB+KKBO01iIJIo2OEKgqqwM9SOkc/bkJQygNqFIWDQXRYiGv5kkWkpfdCGbKGQpq4QIfuDlU9MoCg9YFuilRJNzg4BWxn6+//C+cjJxEFwXsJjvt3nZORE7wo/4fcXv77QwlDAuT4cQwPcGeBRV2SZBYF1qHjk5BLeCxerh38b0/05NqV018fvKTn7yVx/Eu3iLUeRqo8zTwxvgbTOdm6JvtwypbEQSBo9NHuafjHtBhPDWO1+JlkW8R+yb2GRdyJoxNtlGsFNnYsBGXyYVJVJjKTGJVbFQ0ldX1a1hR082/7v0mq91LeDCwA9vJCaMScHa8UYvHSSWMykC6mK62caaz0xTUC1slJ2ZOsKZ+zTXtFs73FUkWkmRKGWbzszS6GrFIFr53/HuMJEfQ0SmqxtjqrrFd9NT28JHuj9DkasIsmzFJJtLF9Nu2W5mvTaqz11GulDkyfQSP1cNocpR4IY6IiFky0zfbx2L/YnaP7WZt/VossoUXh15kc9NmvnP0O4QzYayyla6aLtpMddzn2UijcC4bbNyp8cPxJ8knFH548oeU9DIus4sWdwvJQhIB4Yq7zPm4kgHiDc8We5NwKEb+Vr2zfgFZ1HQNl9nFIt8iRhIjKJKCLMp4TS66LE2UtBIbFt/CU2eeom+2j2WBpYTjYywNreSX1v4yfrufF4deJF1KcyJygo+v+DjhdJjx5DiLvO2sCK1CRCRgD6CVykykRtF0DVVTq9eA0+Ss5si5zW7KlTJBR5BMMUM4HcaqWDFJJsySmaHEENPZaX513a9SrBTJlXJVIXQyl+SxU4+9KZO8+eJpi2KhqBYI52MkCgl0wGN2U9JK7A/v5/j0MVxWDxVRYCA2gMfqpff0bgBEWaHR30QZDa1SQVEsyIJEyNXIjpZbGT1lBDb7a1toKNkQRFC6uq7L5uJiJpom0VT1JytVSguu67lq4cnISSRBwmFykClnMIkmQr4Qy2qXMZocNQYfiunqBhBAkU0EPSGyao77mzawc3gni7yLcJld1cyx+zrv4z//6D8DUGsL0GFrxF6R8eUFoEJpNoogy5jEc9UtSdfRk0l0WUaQZUpa6bLmqg7FUY3JuBgkQcIiW6qvMd9dO+d38NToTyi0hjg6fRQdHVk0YVfsmCQTn179aV4afolILsJMdgYdndHUKJ81f5ZsMXuuZahXmMqec/lOFpNEspH/GMTnXfx8w6E4UDUVu8kQEgOousqP+n/E6rrV/OKaX+TFoRf5zOrPIAsyh6cO4VScCIJAspDk9276Pb514JtsbNiIqlcoVUos9i3i/ta7ODN+jLva76BOdJOwCUy2SjjNVhpVO7ZZY6fhMBs3HKtiRRRFVgRXsGt01wLi47F4aPe2c2T6CNsS265pZ39+5k9JOxdLscRvJHP3zvYarTq9gqZr6OhGdUcwkpNfHX2VZndzdUz/pqabWOxffJl3ffOY2znNpmfQCwWm0wPUBRdhlswokkKikEBAqFbbZnIzqJrKSHKEezvuZXC2n3WhtTx75tnqWOlcmdzi0nkq9hyfaHkIe7ZM1ibz1OATDGrTCLqZYqWIIIpGKTw5QtAepG+2j1p77TW1G6/FAPGdRounhXpnPSuCK5AFmXghjsfioVgp0uXrYlVwFX6rH6tsJVFIUCs4kWNJLA0tPHGW9ACIgoQoiERzEX546od8bMXHuHPRnaBDvBCnxlbDw8sfpi/WR1+0l3wpR66U5djkYVwWD0trlhDLGynYFtlC6qwh44raFTze+zhjybHqbt1tdnNb620MxgfxWr20eduQRIlsMctX9nylOnSwtGYpH1j2Ab57/LvVCsD1muTNr3qqmorNZGfgLBHS9Ao6oAgyZV0lVojjMNlRZDPrQ+vxFCVsdg+5YgZNLZOcGqHZE2CVdymtW1oImn1Eh08z1n8ITZEI1C/hoTUfQdTMHLakGBv/CVJYotZeS4e/46pvoM2eZrwWo2UPRnUtXohTqpTwWrwUK0W+dfhb1Vbu+bqxrJqlVClhkS1sbtqMz+LjlpZbcJqdpItp2r3tDCWGKGtlNjZs5I3wXp7vf579M4eptdfy0Z6PUlSLhDNhKpUKiXyCJTVL8JjdmLIlStk0fnOIKbODXDGDRTXazqlolGZPC5PpScwVI7ZGL5UQZJmQI3RJe5C57/OR6SPUOwwiP7/dJYsybd42Y2Nz9jVEhwPTxo2U9uxh3JxlqhxDLDnR0ZEkmU5/J+OpccySmWfOPGOsI7IFl9lFqpgimTcGUOZnOF4MNzIC6K3Au8Tn/xG0eFrwWD2ciZ2hydXEWGoMMFocB6cO0uhqrI5k3tV2O+/peohcOYtNsZPLp9ALRX556SNMqjFmMjPYKxK50SFePfK3CGYzzau38b1j38PrqMEXyYGiUONt4IHWuwB4fvin7Jx+gyU1S8iVc0ZFobabRCFBRa8gizJ+m5/emCHGvtYL5/xFzCSaUESFNk8bt7TewpGpI+i6Tk7NYZEsuM1uXGYXNtmGKIjGtFlylJHkSNWL5JWRV/jdrb9LV03Xjf0w5mEkMUJ4doREaoZS2QiLdLj8tLpbyKo5amw1CIIRcjlHgmRRxqbYCFhr2NW/kw+s+DDfOvxtnNZzOVN5NU+ykkXOJBkjwRLsjJFgNjND2pzDpZsWHEfqbCJ5JBchXUpfc4THmzFAfDsx/3tila3VUfI6Rx0PdD6AgECzu5mAPUCimCAaGUUDRNlUJT1us5tyuUjI18JAYogT0VMsDSzl20e+jdPk5M5Fd3Jg8gCLvYvpCfYYsQeVMhMpI+Q0no9xKnqa5bXLabbXGyGQZeMz6An2cHDyICejJ6loRsZcja2GpbVLmUhOcDJykv7ZfpbULEEXdG5tvZUfD/wYHZ3e2V6eH3ieTn8nJyMnges3yZsTR4NBIDibDq+f/Z+IgFWy4FYseC1ear01uCsKujaLlojQ1bCC3vAxculZdAScohXiCe5r3Iq7AOHOJjJtWRxmB01KDfFCmr8K/4Cnh54nUTYm5JpcTbxnyXu4vf32y8ZzzGFZYBn3d97P031Pky1lF5Ce7W3bKamlC7QqV6sbc5qdfGD5ByhUCszmZnll5BUKaoGAPYBFsXBw6iAnIie4s/1ONjVt4qm+p5AkCY/iIBGfosVUy8e3fY4CKh2lTbgsboKajaHJ0ySzMXa0bufozDEiU2cF1ppGu7edj6/4+BUDTLc2b0UURCRRumCq671L3suWpi0LXkOuq0PcsYP88C7ScSt1JiuIIiFXA+F0mFg+Rr2znr0Te6su1+OpcVo9rbgtbmL5GJni5dfnGxkB9FbgXeLz/wicZic3N93M7tHdbGvZxisjr1QTiWtsNdhMNhb5FhHNRflR37MLQhkBlrgXc+fxMgebBA7tec5YCCvGTjNU08ELoy8Rzkxit3uMn4ki0eQkuzMnmS5GydpkunwdDMQHuGfxPTzX/xxHZ47isXiYTE+yyLeI1XWrOR09TXdt93VdOPMXsVg+xlhqjJ3Dhh5CnBcaqmpqVag9p2XKV/Lo6AsM2Abjg/zL0X/hd7b+zlvW9ppIjnNodC/5eR5Cus2GXXEQLyRIFpMU1AImyYQiKUZ0g2gi5KinzlHHUm8HQ9F+hEqlqquaQ1nQQJbJlLJoGZ00SfRSCU2pEMnO0OptYyQ5Uv39OdF6wBa47C7z5x1Xe7N7sOtBnlAfI5JIUFILiIKI0+Skxd1MQS0wkBgkXkjgt/kJZ8JEc1GiuSg/HvgxGxs3Mhgb5ODkQe5cdCceq5edgy9UBc65UpYlgS5+eeVnUCWRdDlNvpTnhaEXeP+y97Mtt414Po4kSIwlx/jHw//Ir238Nb5/6vuUtTK3L7qdklrilZFX6PJ3cTJ6EkVUGIoP0e5tX/B3XI9J3rLaZVUDxNn8LB2+Dk5FTlKulLHJNipqGRmRbt8SorOj1Npl+pNhdiy+nQOZ5xEKKitdnaRqNDz2Gt6z+D4WxWVsQzG06Wm6OjvRCyZEh4msPc+/R37E0wPPElczCGdJ1lhqjCd7n8RpclJQC9Xr81KTh06zk8+s+Qx2k52jU0eZzEyiiAqN7kZuar6J8dQ4cGHI6tXqxlo9rfzGxt9gz/geprPTSIKEWTYTzUbxWrykS2meG3iOoD3IpsZNOE1ONtWt58zoUVa2b+Sv9vwVBycOIAoSVpOVlbUr+J2t/4UVtct5pe8FtluXQ/cGCloJf30bt3TeySL/oqs6Lr/VT09tD+9f8j6S+QR2xUqjrZ5Wf/sFmWVgVH48gUYaZxcTsAe4e/Hd5Mq5qu2Dx+LBbXHTaGrEJJoYyAywIrii2i2QRGlBhR2oShjMimFrcnzm+M+s8eq7xOf/ISz2L+a3t/w23zv2Pe5adJfhfItOjb2GRmcju8d2G+O9smyki8/rmbtNTiCGQ7Yjm60Eg23gsFOoFHHVtpI+cQTJ6cSkWEABQRTRNY2MXGGoGKcmacKh6yzzdjCdnuauRXexum41IWfImPAq5zkdPc0i3yLqnfXXfeOdv4gNJ4bJlXPsmdhDRasYgtPEMB6LB6/Vy2RmkjpHHbX2Wvpn+y+a1xXOhG+oo/N8pItpwonRBaQH4MjEAba234rX6mEmN8NwYpiiWqTV08rmhk2GqVo+i1kTOBE+ws1dd2LWJFDVqq4KwCRbED027LqMFo1it5jQczkcDiuvRQ6yffHtMEqV/MzZCnxo2YfessXqesbnz39OwBaomlJezwj+1R5Dq6eVT6/7RYabeulPDLIhtJ5kIcF4fIQ6XzPxQgJZlBf4vwAMJYbY3radslamL9bH3R13M5wY5vZFd1QHA0yiwk0tN9MVOudq+8b4G8iSTF41QoMH4gPYFXs1Z+xU5BSbGjfRE+hhdf1qZrIzNDgbaPW0VsXN09lpSpXSBX/LtQr2g45g1QCxd7aXBzsfJJwO0zvbi8/iQy0X6PQtZlPdOobCp9AJUo5G8C338AsbfpkxkkSKcQomAVmDfDlP0ezGpmlEtnZzSowSz8fx2UoETD7ODI8RL6cXEHdRENF0jYH4ALvGdtHmbQMub3Ta6mnl8+s/z+7x3ZycOYlFtiAgMJ4aXxA9cr2tGKfZicNs+PLMIWALUGOv4XT0tOHZZLaTKWUwSSY2NW1njW0xv7H7v3Jq5iQ2xYasCwhljRPjh/jyri/xf5b/Dp9QNjBhK5PVCjjcfto7t+HxX70HjtPsZJm5kY5YFj0/p4/KIkz1o3VJVbH43Hc/W85S0SoMJYb4ztHvcHfH3eyZ2IMoiPjt/upgS4unhaJaZEvTFsrzTHDnPoO5CrsiKnT5u+iP96MXdArlAgICL+kvvaM+Y5fCu8Tn/zF01XTxm1t+84Ldbq6co9XTymB80Fh8bDakQomO4DKaatpIU2TPMjttzka6N9zLD4/9O+HhEdB11unbGclP0RVcSo23lZoWP3m9TE7NIbn8BMU82sgIusuJHE/hDQap6EYZ3yyZjUVCNNFd2029s36BCd2bQaunlYe7H2Z13WqmM9NsaNjAc/3PMRAbIJqL4jA5uKnpJtbUr+E7x75zUYGgSTS9Zf3qkcQI+XyGkKuR8NndKICkwTOnnuAXVn+aB+76Kw5NHSav5smVchyfPoZDtvKpnkeYDp+hzduOWzfT6GhgsjBTjVWwmuy4KjJeyUpzbQeKpUiLohFoW46am6bO7OPFvudZHuxhS8MmLCbDBdphctwwkjefYDhNTmRB5vWJ14nn49Ub0pUWxjnhd7KQrPoapYopFvsWky1lmc5O47a4L7gRXsr9eL6QfG6Huk/ZR8gRosHVcAEJcpqd9DSvI+Cq58nep8iWMvhddSiyCbvJiDdocjUxlZlacNzFStEYawcK5QKJYoIDUwtd7be3377gv+eqnIlCAlVT6ZvtI1fO0eJuwW/1s6NtBz84+QOeOfMM/fH+anjn2tBasuUszw88j0W2YJIWtjFhYevqarGqblXVADFVTPHfb/vvnIieYDB6BgpFUplZhiZOcWvjVsYGDuN31FI/kcW1rANNU/nOof/L4PRZc0FdZ3njWh7e/Bn++vW/5FjkBKIgIaCzoXETS4NLeWH0ZcpqCVmSjRuw1c9IcoSumq4FWsCLjVbPh9PspMHRwOtjr5MsJi/6t72ZVsz5zzXLZhpdjQRsAZKFJCvqVtDgaKhWEZ+OPcmJ8BFMmnD2GTqIIoLJxLHwIU6unOWW8CwdnB0KWLMV5RpIDxheXefbVgALnLBH8pM83fc0siDjsXr4Uf+PiGajLAks4cf9P+aejnvIFDPUOmpp8bSwL7yP5/ufR0Oj0dnI9rbtwLmsNqfZyS+s+gVGE6Mkigm+uuerjKXHquvonMnq031P88mVNyYH8UbhXeLzc4Ibmd10sdKu0+xcYHGvmCysbdnC/on9xLUML/T/lEouQ2ugg4e6309R0ozJC13HbLZTFFSKukpHcBlP9T3JYGyg6mWh6RoPLrmX2Okj6A47eqGA4HBQY6vh1tZbDXfca/Bluda/dc6JOV1Ms61lW3XH4za7aXI1cWDqwEVJj1W24ra437J+daacIZKZZnvLrbw48lKV/EiazrLAUlo8zRwZ3EtH03JKaol8KcsdzbfSqNSQnQmzWG5na3sPL0y+xvaa9bwYfo1wehKrbKXDWksQB/fb1mA51gdtbdiTOe4PbOXxoz9gOUEkMwyFT1Dwprmj6x4qWoU7F915Q87/+QSj1l7L031PIwgC6WIaHf2KC+Oc8DtZSBJyhnh+4HkOTh5E1VScJicbGzayuWkz4XR4wY3wUuGdn1v3OfaG9xLLx1DLRby2AM/0Pslkegqf3c/a0LpL+hgZvli/xVf2fIVwOlzVjy32LeaORXewb2Ifmxs3sz+8n1KlhEk0IWnG9JNZunBC6WJeOy2eFhyKgz3je/BYPARsASbSE4ylxljTtYZ/OPwP7BrbRb2jHlVTiRfijKfGeb7/eTr8HfisPvw2P6l5LtKXeq+rxfkGiCvrV3Jk4hBHBnahy350U46xgcN4HDU82HInjqzIrFPiK698naGk0dZD17HIVu5d9X6eG/wRLpuPW1pvZTI9yYnICUaSI4ylx9nctJldo7sQEKptpFQxhSIqF1Rjr+QQf/6ww3xcLGT1WjD32nMDCWgaSBIms5klgSVsaVyoqYmXkggWiyENODtdiSQZG0xRJEERy/btb2ooQEskLiA9c9DzeZKJaZ4eeRqrbOWFwRdo9jTz0vBLgDFNuKp+FaPJUcaSY0SGIrxnyXtYH1pPqVLizOwZJjOTHJo8xGLv4gvc0Zs9zfzbrn8jnJ5AUjV0vQiCwERqvGqy+lZVza8X7xKfnwMMJ4bZNbqLVDFFQS1gkS0cMR9ha/PWG1pCnL/DK1aKPNn3JF6bj2g+hq5ICHY7J2Oniez/Oh/r+QivDb1EiQpeVy3rGzdyS8stfP3Q1zkwfs79uc3bRsgR4t9OPcoHm+8mHp+sttB8Vh8d/o7qRZQupumP9TOSGKFQKVBrr2V5YPkNG4t0mp2srl/N6vrVCx63m+y8Nvraghvl3Ej4m2m7XQkOxYFmVpiYPsPNwfXQfBOFShGLZIZikcWmepavXGGUvxUHjbIf88HjaJkIlekYejKJ1NDAw+bVhIUiK1Z+liwlxFIFjyrTqDpwlE0IQTu6poHFQlNF4VPdH2d0dpBUwEGlUsZWFrAWJJoXrcaL+8oHfgWc76IdsAV47sxzHJs5dlYj00KmnFngPn2xhXFOq1Vnr+OFwRcYig9Vp5XSpTSTmcnq86eyU4wkRgjYA5cM7/xfr/8vPrrioxRLeSTZxYGpQ6gVo+1UKOWJZGYwy+ZLVhNW1a3i8xs+z86hndgUm+GtNHmE/7bzv2GSTbhMLn59w6+TLCRwmpysCPZwc+s2ZF1AV1VDxMyl87KcZic3t9zMwcmDTGen2dS4iT0Te1BEhdV1q/nhzh9Sb6830uiLWVLFFG6zmzOxMywJLOGexffQ4Gzgp0M/rb7mtWRzXQ2cZic3tW+j29bCUP8BMkocu28VjUULjqyMacMGTiVPMZQcRrDbQdeRyhr3r32Yx/uf4p+P/jPK2dZgu7edHYtu58jUEbLlLCuCK4jkIgBYFRv1jnpa3C3ky3kC9gtTAi5XiT1/2GEO58eaXO85eKDlTh7f80/MxqPVx/3eEA92X7hx8Fl8VZJzPgRRxGevwdS14rqPB67sdD2amUAWZF4YfIFwJkyd81wmV7qUZjw1TqOzkYA9wNHpo4ylxnj89ONsatzE+5a8D7vZjizIbGzceMF6OJIYYSIxip7JLJBHIIpMaKPoLfrP3JTXu8TnbcJcxSZfzmMxWRiOD5MoJPBZffTU9lSDFS/2vN1ju3mm75kFKbghRwhBEKpW5DcKczu8nYM7q5MhcxBkmYoscTLeR8UiU+sOIVgslKnw/qXv58j0EQ5OnivnW2Qz+VKO6ew0VslM0SwbF4YoXrAADSeG2Tm0k38+8s9V63inybgR/PLaX77mcdxrwWL/Yn536++eczEWTbgt7hvadrsYWjwt+J21zKoqk9ExQ6NzFn5viI76btxnS97q1BSlXXvBbkdQFPTZWVBVRJsNa18fHW43hGfRIhEEvx/RakUvZ5A2bkQdG0OIRkGSQNexiSLLA8vQIhHKx/qr72mpXU555soBkVfC+S7ac/4fYCyyczERYGiodC5cGNPFNMOJYcZT4zhMDkZTows0GmCI1OeeD2craDORi4Z3ioJItpzlVOQUj5/8Idvbd/CTwZ+i6RqNrgZOTZ0kXUpXKwsXI2LTmWm+uverWGQLJ2ZOoGoqA/EBEoUEAVuAzU2beab/GeyyjUMT+6mx1/L+Je/jI20PsS6wgqRYxmPxXjYvSysU2ORfSbGmgtVqTIj5rD6mMlM80PUAuq5zKnKKsdRYtTWcK+do87ThtrjZ0riFjQ0brymb63qqyZ66FlY6/OcSvs1mwyPG4SBx6nXAWC9wueiuWc7B+AnCmUlMkhlREBEFkbHkGAICLe4WUsUUQXuQdm+7YWgqijS6Gmn2NBPJRMiVcyiiUhXXwpXbVdfr9H0l6MUiodEUnwjdx1goQUbN4ZBtNOHBMZpC9xYXXD89wR56ans4NnPsgtfqqe25IenlV3K6zpSzaKUis8lJ7lx8O3XOEC6TC5fZRa29llghhlpRkSWZRncjxXIRXdd5Y/wNdo/txmPxsLZ+7UWPNZNPsti7iCZ3C7lKDrtsI1/IcGDwNYq5HIVS7mduyutd4vM2YK7sX1SLrKlfw98d+DsG4gNYZAvlShmnycnv3vS7bG660BthODHM071PLyA9YNwwnu59+oZdOOfjUmJIWZQRJImMmq9mcFX0CtF81DBcswepVMoICFQqZZK5OMlcnA2NG2nyNNHuXY2rrolW/6IFlZ6Xhl5aQHrAuEm+OvIqAH98yx+/pYZYXTVd/M7W37nhi+TlMH9XOivL1bK531HLQys+WCU9lUQCtb/fWExFEamtzfDL0TRErxfBakWLRBBragxiqarolQqCy4WeyVAZHESPxw3RermM4PUi2GwI52Xt6YUCXEVA5JVwPokpqIVq4CMYhGUuvLOiV6r2A3OYq3BWtAouswtFVGhwNlxAaGRRplgpVvUfDsXBZHryguMREKix1rB/cj8Be4Ch+CDDiUXk1Tx+m590KcPahvVki2mOTx1lc+tN1b9hNDHKseljxAox7CY7PYEe4oU4I8kRRMG4Obd52lhSs4TB+CDpQop6f5BtLbcgaTqHh97AWxT5TOgBPM2LL3tey2NjlBOzPL3/u+SKGTatvp9nzjxDvJzmvo77OD5zHL/Vj8viYql5KTW2muq5NMkmNjduptnTfMlN1MUwnBjmByd+wGB8sJoQ3+5p5wPLP3DFarLocFTXgPmYrydSZBNddct57NRj2E12ipVilcAKCPTN9rGlaQsDI/00OBv4aPdHkSXD2sJucvB8//OMpcbQ0atVWI/Fc9Xtqut1+r4ctEQCPZfDDizBDtihCFBGp3zB9dPsaeYLN3+BL776xQXkp6e2hy9s+8I1fV6XgujxkPXZGSvOkFFzOGUbjXiw51QQBGxlkXIuw3t6PsA/HP42A7F+KrrGkpolNLubuXvx3RyIHGAgNkC6nOZTKz/Fv534N3KqMd2bK+XQdA3vvPDrOWQqeR7re7JqggiGtcAHez7AzmNP4VGcP3NTou8Sn7cYc2X/dDHN5sbN/NFLf8Tusd3VrKA6Rx2r6lbxpd1f4q/u+qsLLoJwJnwB6Tn/Z28F8bmUGHIuhM5pclbL0mBMbSiSQrqUplIuGb1s/dzOPlVM4VGcbGrYguRfOF45khghmosuID1zSJeM3ejbkZ/1ViySV8KVdqVaIkFp717Kw8PViRdFUagkk2jj4yjLl6OnUufO9dl/6/k8gtNpLNLnhRLq8TjqqVOYt21b8LhgsaDnclcsm18J5+/uLLKl+r0pqkVUTWUmO1Pd+QsInIqewmfz4bf6qxXOOWNFt8VNupjm1tZbeb7/eQqVAk6TEwGh+vqSKNHiaSGSjVxwPHbFTjQXZTY3i0WyEHI1Uu8M4TS70DGIuyBJVNAxKxaS+ThOxcnrY69fcLOqc9Txnzb8J0SM7KVoLkqpUjpLfAYo5TJkLUkKmUT1OYOZUcZI4L7Mea0kEsRPHmYwexyP1UuumMEqmbGbHAwmhxlJDmOWzPTH+qnoFSRBwmvxUu+sZ139uuuKCEgX03zn6HfYNbqLdCldJaInZk6QLWf5zc2/eV3Ef/4ofKe/k4HYAE6Tk9n8LDW2Gqaz04BRCazoFXLlHMsCy4nmIrw68grNzkb+beYQ8UKCh7sfJlFIMJmZRNVUeqO97GjbwYOL7sOWyKGWkxcE777VuNL1cbGfb27azN/c+zccmz5GvBjHa/bSE7x0pf98XKkqN5Kf5InES0RGe6uVY7+jlgc77qNJ8tFUSLG4sYf/9uqfcXDyILIgs6V5CycjJ9kb3svxmeOsCK5gKjvFw90P0zvby+/f/Pucip5iOj3N6ehpamw1F4SOjiZG+dbBbzKVCqOIMmVNRUfnZOQk3z/5Az7W8xG21m/6mRI2w7vE5y3HXNm/w9fByyMvs3tsN7Ioo2oquq4znhpH1VQ6fB0cnj58wYVQKBfIlrLVxW7uBjIHtXLxjJY3i/mL13zIosymhk14LJ4Fj3usHkqVEh2+Dk5HT1c9fubQUdNFT92KC0gPGBWCXDl3weNzUDX1HcnPertwKcI1N6mhpVLoqZRRkZEkVKcTXdMQm5rQUikEjwc9FjMCCJ3OqseSaLUaMRKCcO4f0Yiv0KNRIxzyLMRQqDoKfzUBkZfD+cJSAYFmV7PxPdYqhojyrIHmhtAGNjZsZG94L7O9s9zcfHO1wikg0OZtI1FIEC/EeWn4JTY3bebw1GGa3E2ki2lCjhAei4cNoQ2MJEbQ0Lhn8T2MJEfom+0zrjN08mqeRb5FyKJMrBCjb7YPp9nJcGLYCNmVFEpaGVVX8Zo9WGQLv/fC71VJj6qpSILE/vB+Hjv1GNtatvFk35PYFBu6rld/DlwglC9pZTJq7rLnNTk7yVFHimg2wwOrPsSpqePkM0ka3U0cixzj8ORhPrLio7wy8gojyRFcZhcmyUSTu4nPrPkMQUcQvVg0iG65fFVk4MzsGXaN7iJeiBPNRav6qVg+xuOnH2d763Zubr35mj//+aPwLrOLZCGJqqscmz7GhsYNHJs+tiDioN5Zz7bmbXzyh59A0yssWb2MdMm4we8L72N13WpW1q1E0zX8Nj8b6tYyMXyMpK5UqxqCxYLS1XXVGV9vBle6Pi7182utxs1h/qDAHOaP9M9truNaFqmurlo5josaT8++zsdd27Bny6h2jb5oLwLQ5GliKD5EJBdBRKRvto8HOh/ALJt57PRjxHIx2rxt7B7bTbO7mQ8t/xB3LLqDnUM7aXY3V4lM/2w/LouH9y//AAW1yFB8sGp8GMlG6KpdwiLTz150xbvE5y3GXMk8r+YJp8NIglRdjOcwlZlieWA5Y8kxpjPTRLIRsuUsANlSloJaqFqRzxkOWmQLVtlKvePaxh6vFvMXr/OnY35946+zyLuIdm97tUoRsAf4/snv85Gej/DdY981yM/Z6sO60Do+v+k/0VrbedH3cigObIrtkscii/J1jeP+vENLJNCSSbRYDAoFg5goCpWpKZS2NrR8Hm1qCrmlBVXT0EslpOZmQ+fj8SC1tVE+etQgO7JsfB6SdE5LdFaIKIZCmLdsMZ5ntV73zWOuLRQvxFnkXYTT5KRcKaOhcUvrLbR528iWsuyd2GtMg7ia2dC4ga/u+yof7v4wp6OnDSfreRVOXTeci/1WP5lShrWhtdhNdsqVMstrl/O+rvfhsrh4pv+Z6o1hKjPFRGqCjQ0b2TOxB1VTaXG30FXTxROnn6CiVzg8dZhtrdvIq3lGEiNEshEqegW/LcCdi+/idPR0lfRoukaunMOm2LDKVg5OHuTTqz9dfdwiW/BbfawPbcBv9WGXrYi6wGxyktNTxw03bqv7kud1aOo0j5/4DkcmDtIf6UUQRDoae7iz635ucnuJFWL0x/p54vQTbGjcwL0d91ZbB1ubttLiaUFLJC4YZxas1suSgXA6TLqUXkB65hAvxOmL9bGqftU179anM9PEc3HuXnQ3oiBS0kq8OPgiLouLg+GDLPYtZnlgOWWtTIunhSW+JRybPlZtq6SKKWpsNUxlppiZnjG0QIKAx+Kh3lGPVTAxm55BkRScko1ba9bTHisRHz1DOKcYwwBvcvL1chA9HgSr9aJTVG/m+rkYzh8UmMP8kf75mjpBlhHmtR9nUzOMOeMs0e3MZmcJ2AJYyzY8Fg/9sf55TtwidpOd10+/Tn+8nzV1a1BEhZ7aHiRRYjI9iVpReebMM6yuX83W5q1Gm/T0D3hp5CVsihVRkGjztPKHt/4RT59+kmTekDmI7TfufNwovEt83mLMlf3TxTQmyYQgCOjzWkBzKGtlPBYPf7P3bxBFkTp7Ha+MvEK9s54NDRvYO7GXdCldLa+3e9rZ2rz1gtLjjcT8Ka+LiSXPr1LM2cU/3P0wBbVArpwjYAuwvW37ZVtILZ4Wamw1tHvaL2h3OU1Gf/h6x3F/nqGXy2jZrFE6t9shlzO0PUC5vx/TunXIbW1osRjKunWGN4gsQ1sbgtNY8AWn01ig575zcyTIZgOnE8uDD4LJZJAek+m6AyLPbwvJosyOth2sqlvF4anDZIoZpnPTeC1ePrD8AwzGBpnKTvGtQ9+irJV575L3AlCoGHodAQGn2clQ3MhG0jQNSZRI5BPc1nIbkijRXdtN0BHka/u/Vp3oUiSFBkcDi72LkUWZ/7Llv1CulEkUE7wy/AqJYgKLbGE0Ocb3jn+PTY2buK/jPhRJodYW4PT0STS1QqwQqwZcqpqKw+SgolWosdUQz8cNd2t3CyPJEWpttSypWcJ3jv4LLw+/RCoXR5EUVtSt5ObOO3BqCm1NPRc9r6nMrDEdVIhjEozlWNc1+saOkEnHeN+S93FH3U3c0nILgiThMrkwy2Yi2Qhui5tWTyt6sUh8rJ9Bc5xJKYYimQgpPhoLFRx9fZhWrrzoeyuyUm09XgwCwjWPIZ9vJZAtZavtwbnR9XAmTEWr0OxuJmiv5av7vspDXQ9xS+sthJwNdAe7MckmalI1vDLyiqEL0iqU1BIz2RnW1q3hmwe+DkCTp4XM0hKbQhv5yakfUh4Fi8OYTLyc0eGbgWA2o3R1XZJo3siW23BiGEVUcJvdC8wYY/kY46lx9of3L9DPzaGoFkkWkhRLGcaUHE3BRnyah3w5hygIyIJsyC0QjBBXjJDe8dQ4IqKhnasUODB5gEZXIy6zi0guQi6b4Oj4QRa5WqtWE5FchHjeaKcfnDzIYHyQ9y95H9/c+zU8dv/b1oK8FrxLfN5izJX9bYqNmew0i32LORU9dcHvdfm6kESJTn+nYX4mKdzTcQ/D8WHsip0VtSuYLcyi6zqyKLO2fi2PrHjkLe+dnu/jcTm0elr55MpPXrNA2Gl2cmvbrejoF0x1bWvZxi+t/aV3NOn3RnooXQsERTGqM5pm/DNHXgQBMhn0TMbY4QkCeiKBYLdT7u9HWboUfWYGwe9HXrwYtb9/QQSJ4HAgd3YiB4NQLBqtEa/X2MlexyI1mhi9QAvjtXh5YfAFFFFhe9t2IrkI+VKeil7h5MxJMuUM+8P7q78/V9GstdVila1IgsRQfMjwxJFMNLgbqLHVUNFUXht9jUZnA6JuRH68PPIyywLLeOz0YwwlhjBJJrwWLw2uBlbXr2Zz02b+8cg/sq11GyejJ5nOTFGqFNHQCafDtHva+cGJf+e9S9/Hi2d+zHuXvhe3xU2imKBUKVUFxGbJjMfiwWl24rf5+b2bfg9REFGQeLr3KVyKHUHX0QWjvXUicoKgs54/veVPqkL18zE8089sPAxOJy7RhtXiIF8wqsThxBjRXJSgycnryV7q3A1kyhky5cyCqcjB8eN8Z/jf2TW2i3zJqBSHXI080HEfGx1LabuEWL3WVkvAFiCWj1W1ViXNcH1ucjVhM9muaQx5OjN9QYXYLJs5FT3F1/Z/jd/c9Ju8NvYa2XIWAYHp7DQ/6n+ejQ0b8dl8TGan2D3+OqPJUY7OHKXGVsMHln2AF4dexKpYmcnOUGcPIonGjV4VdE7MnsI+5CSj5jgwdQhNllgi9+CxeK5odPhmIHo8mFatOtdaVJTrvn7mY76zMsATp58gUUzgMrsoVUp4zB4aXY3sn9xPQS1weOowHquHRCFRlR8kCgl6o73k1Tx6sciY/TRP5U+xfNV2VtavZufQi4RcDZQqJWRRpqyVWeJfUm1FS6KE3+rHZ/WxrWUbZa3MUGyQXCmDns+j5bKcGDvAaHSQseQY60Pr8Vv9lLUyiqQYnYtchId6PsiKq8hYeyfwLvF5izHn+XAofJBYdpY72u+golXoi/VVxZnbWrbx4e4P81TfU1VPC7fZTdARZFPDJuwmOzW2GsaSY7itbvxWP+tC637mlPJw/QLhVk8rH1j2AVbVrWIkMUKxUiRgC7C89sb5+Fwr0sU0R6ePcnT6KGDsgCO5yEWdgt8KiB4PottNZXLS0OPMxVFoGoLbjZbJIJjNiLW1hg4ok0F0udCmpxHtdsjnMa1cCaKIlkgYuitJqi7aNypU9Nj0sQtGdR0mBxsbNiKJEv97z//myNQRipUifqufW1pv4ebmmzkQPkBZM3RGTpOTil5hee1ytjZv5fDkYQqq0bJYU7eG18Ze49DUIfaH9zOZnuCO9jvJlbO0ultocNTz44EfM5QwDPNKlRLxQhxdN4j0kpol3N95Py+PvExPsIdbW26lP9aPIilEsxGeOPkY6GCTLFgkEzbFRlrNscS/hKMzR6vXabFSJFFIsKVpC1bFyv7wfmoVL9limv6xI2iSyGJPO4IoGVlwooJbcVDQL4yQmENmzmwwk8HqC9AlQ2/0VJX8FKQKmkXiv278Y/Jq/oINRbqY5tHexxeQHoBwapynzjxDpbVETW0z53/Sw4lhxpPjbG/bTrKYZCxljJZbZAtBe5D7Ou8jVUhd0xjyyZmTF9UE1thqODZzjA/pHyJbylaFyi6zi8W+xawNreWV4VdIFpLIoky8EKfR1chMdoaDkwdZXruc/lg/Da4G1tWvYzQ5imKxoVVKOGWFVDlDvpwHWSav5uiN9rKqbhVm2XxFo8M3A+Gs4eCNwnyX8g5/h2E06G7mhaEXGEoMoeuGGLy7tpuHlz/M833P4pLtSBXwmb2UKmUqeuUc6alUaJBr8NpqeGzw+zw5/hN+5Y7fIpqLkiwkscgWZFGmyd3E7W23c2b2DDo6dfY66hx1PNn7ZDX+pKe2B5vJTsjVCMUiiXyC2VyUntoe9oX3sXN4Z/V32zxtPLTkIZbWLL0hE2tvBd4lPm8x5jwfXHI73q1f4G8Pfo0VwR62t22nWCnS4Gjg9vbbebrvaR499SjZUpaAPUC8ECeWj+G3+bmp8SbGkoYV+BOnn6jeOP6j4VIGg28F0sU0Z2bPGC68sjEu7TK5GIwNUtSMEelUMcVgfJDp7DR9s33U2mrZ0b7jAqfgtwqC2YyyciWVaJTK6GhVkyO43ch1dahThkBUsFpRBwbQUykEqxWpvt4ou3d0nCNPF/FbuVGIFQx9wVzMgFk2s7JuJbFcjDcm3iBTyiCJEqImEs1FeXn4ZZwmJ2vq13Bo8hCLfIvwWDzc0noLQUeQ+zvvZyg+RLaUZW39Wl4be43ZXJQGVyOnZk5SocJAfIDp3DS/s/l3sMk2I2pFEKrHVKqU0NGZzExycuYkt7XfhlW2MjA7wFB8kNdGXyVfylJWjcV6kaeNeDZGs6cFQRI5NXWKz63/HH+77285Mn2k2hJYFljGr238NY5MHTn7IYF+VsgvVjTKmXOuySpQcoQuWzVxmF3G/9F19GwWj7uW1S4fKTVDiQprOm9lfevmKsmZqzyOJEdocbcwmhhlMDW8gPTMIZwaJ63lGS1G8HAuuHTOG+y5vudo8bTQ4eug09+JKIgE7UHsip1aey3ZcvaaNleXGkCwyBZDfI3OZ9d9lkwxg45OJBfh+MxxxlJj7AnvIWgP0uxuxq7YORM7Q6OrEV3XuaP9DlbXrWbfxD6e7nuah7oeYiIzWU2v99lrEESRsqidJT95koUktY5a4Ppzud5OnO9S3hvtZTozzUhihFPRU2RL2Wom3NHpo4QcIbY230Q8FyOcHKfO08jSwFJ2je4mrxrtt3pLgPe03MMPj/+AcGoCdJ3ByVN8qOO92GwuFMnEVHaKWD5G72wvLZ4W7u24F7NkZufQzgUt0FZPK07Jzo6WWxmfOMWShpXUO0M8M/R8VWyv6Rq6rpMsJjkYPkhP4MZPG98ovEt83mLM93zYFBdp7v5NjutTjKXHzgqULczkZvjJ0E8oV8qYJBOjydFqGvF4epzu2m7MspmyVuauRXcRtAcZip5hIj5CyN1Iq6/9goXx7WzJ/LxhODFcHePNq3lEQTQcou1BcuUcr4y+wsnISTwWD8sDy8mUMmxp2sKeiT0XOAUv93Rc0yTNtUIOBjHfdBPlvj5D4yNJaJkM6tQUclMT6uAgut+PFAwiNDcjmExIjY3IDQ3V47iU38qNgs/iQxREGpwNjCRHSBVTbGncgqqr9Mf6aXQ1IiBgkkwU9AKRXIRILkKdvY52Xzu/d9PvsaZ+TfU7/Nroa9yx6A4CFj8N7iZORU9hNzk4OXOiOhKgo3Ns+hjFShGTpJyLApiHuSytuRty0BHk02s+zQ9O/ICJ1DjDsUEKYoEmdzPbmm/mePgwOxbfgUmyUNbKDMQH+Oy6z5JX86QLacyymaJaZDA+SLFSxGf1saKmhyNDey55bkyy6bJVk9baxfi9IaPdpeuQTmMCapDwe5tY17DWmD6LDvDE0e8zm5kx4g7MZvzOWlbXraYiCheECs+hoJfIiQs1PPO9wSazk7R52jBJpqrHzsr6lQwnhnmg84HLrh/zPY68Fi9Ok5MHOh6golcYTg5Xp+rAqPzU2etY37B+wXFU9AqnI6fRdI1ILoIsynT4O/CYPQzEBjDLZo7PHDcS5iMnqbXXVkN1Vd14bUVUKKoFBFEmW0rhMDmqLTt4c7lcbxfmu5Q/P/A8HouHJYEl/N3+v8MqWwHDMkQSJUpqkWZ3M6djfewefrUacryx9SZ+dcOv0uYzPk89lSKSnGQiMWJsCgSBVGaWExNHCCfHMHv8bF92H7X2WpxmJ52+TmpsNfzLsX9hVf0q0sU0J2ZO0OZt45EVH0dLJhmfOIXH5meJXMdxZz3D8SEEUVwQjOsyueid7b1oWO7PCt4lPm8x5jwdtEyGSjhMcNZDvd1O1rGMcSFH3mZhuDJLrpSjrJXJlXNV0gMwnZ1mJjPDQHyAVk8rmxo2MZ4e59XhlxERkJHoaVxLV3Apr4y8csmRx3dhIF1M84MTP6iSHjDO03P9z7HIu4h6Rz2D8UE0XWMmO4OqqXT6O3ll5BV6gj2cjJysfjbp9Cyl4ew1TdJcD+RgEG12Ft1qBVVFsFpBllEHBxEcDvRCAS0SAVlGaWtbQHreDvQEe9jcuJlXR18lVUyh6VpVo2CWzOTLeTRdQ9M1TJIJ81n33k2Nm9hu2s6JyAnW1K8hXUyzf2I/h6cO0+HroD92BlGWOTpztPpeEiJes5dMwfCdyZVzdPq7cFvcpErnUu7n2iizudkFE4GtnlY+u+6zbG7azKHJgxRKecNdPD3JjiX38MHuD5MuGq9T1sqciZ2pPreYMwSjDy19iFtbbqXF04JeLjE4fvyCoFkAq8XJokDnZasmLoef92z8xNn4A2OaraSImN1e1i69g7HcFL5cisf2ftv4+bzYg1lV5SfZKIt8i+mNnDJ0XOdFBlgdXhzWhTEk873BVE3lTOzMAkPJzY2brxgqOSdmPzJ9xNiIJYZocDbw3iXv5duHv83q+tWsD61nX3gfqqZeNC+s1dOK3+qnzl7HYMK45pwmJ06zE5tsq5pTioJIqphic+Nmau21fPf4d43qAjo+i48ufxdeq4+1obVMZiaptdfit/gpaSXcFvfPpCTgfMxVpXR0huJDrAutQ9d1MqUMqqZila3YbXbMspkVtSvYPb4btaKSKCRo87QiihLRbIQne59iY9MmzsyeoZSK4pbsC95nKjbGHS23MVSYQrWZUDWVemc9IWeIbxz8Bqcip+gOdledwH9j42/QFzkNuQLH+3fjsfl5sP0e/PEybd5m6p31TGdnEAQBAQGHyUGzu5lsOYtVsb4Tp/Kq8C7xeYshKAp6qUQlHEZqaEAdHaUyOIgJaAfkzk4mOxQkUULXdTRdQxIMjYCGsYhV9Ep1kX9+4Hm+e/y7rKtfy/Hxg9Q7QzT7F/HN/d/AYXEusHR/K8V9P68YSYwwGB809COKAx2dcqWM1+KtCvsq2jln2ZnsDMsDy+lP9bO1eStgOBHrpRLWvIquaUYmERjmf/PSkG8U+RDMZpS2NmOKpFyGUglBVRF9PqT6eioTEyDLyM3NKMuXv+1TFM2eZj69+tP0x/pJFpKUK2VUTcVn9VXHkq2KlbJaxm6y4zQb5oPFSpHRqBFlcXT6KAcmD5Av5zkQPsBYcoylNUvxmD3YZRvZs6POHouXRmcDZ6K9BOwB7JKVyfgQ60PrmM5Fqp+hKIgU1SJt3rbqDXd+RdRj8fDB5R8iko1cVDdzsYBLs3yREEoz3Nx1B5Ji5qnTT1bJj9Xi5ObOHXyw+8NXvPba6pbwmR2/xfBMP5OFCOFMmIJe5uXx1yhn07RY6xmc6cOZPmsMajIher1UZmepBLz4Pc3YLE5yomiI4c9Wv0LeZtz2Cx2Oy+qFBnuyKCObjNuBIilXrPTMkR6nyclQYohEIWFETQgiH1z+QV4afgm7YmdH2w4G44N8fsPnL6rVc5qdrG9Yz/HI8QXnu8ndhI5OwBagq6aLgD3AquAqfnjqhyyvXW5oeoAaWw0bGjbw2thrHJk6wkhypBof8p4l72Fr09afi7VvripVUAtU9AqRXIRGZyNgtJDjhTiSIFWvqVdGXmF57TKaPM1M5WdI5OI4ZBuxYpygs46QM8REqYSlYqwFsqiwomU9i72LsDhriE0OEElMYFYsNLoa+dt9f0s4HSZZTPKTgZ9UieWG0Hr+YvufU5kKs2jp+2jCgz1TYdyhEkvOsLx2OTXZQDVSRBIlcuUcGxo2UGuvfcfO55Xwc0F8hoeH+bM/+zNefPFFpqamCIVCfPzjH+cP/uAPMJnOWd2Pjo7y+c9/nhdffBGr1cpHP/pRvvSlLy34nbcbczt/weNBHR1FTybP/dBsRstkcFnr8dv8jKfGq74nAgKKqNDoaqRUKaGhkS6lyRQzTGWmODR1mOX13cTyMQ7PHmNr01ai+Shui5uSWmI6O12NA/hZS8Z9J5EpZyhppeqodLqURhEVxlJjtLhbuLnl5moUwtyky5wAd650a0bGkywTKidRE2d1NnY7yuLF6IUCejb7pmMfzsf5UySIIkgSeiaD3NSE4HAg+d+50VGHycHD3Q+TLWVJl9Is9i6mL9ZHnaOOil7BLJkpmoxzapbMhFyhc6JhtcjR6aOcjJzEZzXaZqeip9g3sY//efv/5EPLP8yxmWOUKkVy5TxD8QFqbDXsaL6VBtHNRL7A9rbtPHrqMQZTgzgUB+3uFmpMfn5p5S9ycOIA6XKGSC5CppQhXUwjS3K1Inr+tXGtAZdtdUvwOwL0hFYTzk0Zu2hPI52BJVd903U5/LQpJl46/K3qe+qlElo8Tlyw0pcfY4W3AyWegrOPi243Skmj2dXM1uatRhVTNAhByBHiga4H2NK05YJjCDlDWGVrteI5H1fjDTYnZlc1FYtsIVFIACAJEkenj3Jvx70MJYxra21oLb+x8Tcuu/5c7Hx7LB4anY2srV/L9058D0mQiOQi+G1+Ov2dJAoJ7CY7LrOL7xz7DidmTrC5cTM1thrqHHXUWGsIp8L4rL6rOv/vNOamfxVRQRIkjkwd4ZGeR1gVXEXfbB9gbIC9Fi8WxXAqt0gW+mf7KVfK2GQrog6yIKOjs2tsFxtCG9AKeZoCHXQEl3B05hilcoFj/WcYy0/hs9ewtXkrsiifvb5KOEyOquWKIAiMJEeZys5Qb3WQySQZl6HG5+eZwWcw1QSwyFacJqNCV9bK2BQbnf5O2rxtP9OVtp8L4nP69Gk0TeNrX/saixcv5vjx4/zSL/0S2WyWL33pSwBUKhXuu+8+AoEAr732GrOzs3zyk59E13W+8pWvvGPHLpjNSK2t6CMjVAbnTTyYzYhuN5OrWnh56HnuWnQX6WKa4zPHAaPk2exq5r7O+9g1totmV7ORkyUYhChTzmAz2ZFEmUQ+wXRumiNTR7Arduqd9TRagozOnKEiGiFy78KAQ3GgiApD8SGKahFFVBAFIzS1XCkzm5tlXWgdr46+ioaGTbGxsnYlXf4uQs4QdfY6FjtbaGvuwjYcR0smoVSCSAQtFkNqbUXyeN507MPFcNEpkhtIrt4M7IqdmewM46lx4oU4A/EBNoQ2cFvbbTzV+xTpUppYPkazy8gFWhNaw1jScG9OFpJkrVleHHqx2m48Mn0ESZB4rPcxlgWWEbTVkigmcMgOmh0NNJlr2eHfwKKwypJlHyFsU1lTv47ZXJRyIYdVsaBpOv9n95dwWDxIiomCWqDB1UCzq5mB+ADAgorodGa66lnltXh5T9d7SBfTpMvpK1ozuBx+Vjj8vJmM7flGdHqhQGVyksrsLGZ7kGx8hpSljhqnEz2dNr5zAJpGyBniNzb+BvcuvpfJzCSyJBNyhAxB6kWOt8PfcY4ozSM/Vtl6Vd5gc2L2uSkjMKoSc8asBbWAqqmUK2XSpTQvDr94RVuLS0W3AByLHCOWjyEJEvF8nDOzZ9gb3otFtvDIikeYykzR4mlBkRSSxSROk5NaR60hAv852fTNkb9do7to87ZxcPIgBycP8sjKR9g9tptT0VNIgoRNsWFXbLR72ylVyuRKWRwmB7ImIMsmLCYrHrOHoD1Il78Lm8nG+tYtfOWN/81sfpbOUDdjM6+hKGbMspmB2ABd/i5UTaWgGlEwJskoFJglMw90PcBTZ54imotilS3UWwIs8nfga+5gIh3mrsV38ZOBnzCSGEEUjSBgp8n5loY73wj8XBCfu+++m7vvvrv63+3t7fT29vJ//+//rRKfH//4x5w8eZKxsTFCoRAAX/7yl/nUpz7Ff//v/x2Xy/WOHDsYbpri2bHjuXRyVBU9neYE03x979/xhe1/yLbmbayuX02hXEAURdSK0XefSE3Q4m6holUYS4zisXrIl/NkShkanA1VMe5MdoZEIUGHv4NHln+MWsnFxMwAloRRgXg77Nx/1tHiacFv81djMEqVkkEkSxmW1CyhoBZodDZiU2yUK2U+uOyDHJg8QH+8n2ZXMy6TkxPyAX6t+xcJzpEeAIuFyfWLOCXGmM0P4Uq6aRPb6PR34jQ7FwhBfVYfPbVXn9Pz8wCLbGE8Nc5kZhIRkWwpy2ujr7G2fi2/d/PvIQsy6VKaOnsd0VyUseRY9abpNDs5EzvDTHaGeD7O72z9HXpnexlKDPHS8Eu0e9tp87biU9yk8wlq7UFCFTsb7F04MxImmwdv0IhsKB0+TEZUeSa2n+cmXsLnruPwzBH2hfeBICCLMutD6/nQ8g8xmZ4klo8xmhilUCnw9wf/nqH4kLHBQCDoCPJrG3+NTY2b3pZzWNV5qCqVaBRRrRBs7MLnqae9dQ0ZrYyzUMBss6Fns9VA2zlSsSa05qrex2l28vEVH8ciWarhpA7ZwbbWbdgUGz8d/Ckei8cgnBdpT/ksRhVFEISqed7c1BtQTbgXBRGbbLvqqvOlrDDmqkGRXIQd7TvYNbaL4eQwAgLxgmGc57f66Z3txW12U2OvueCc/jxgTvO02LeYfz/x75yOnebuRXfT5mnDZ/GRr+SxK3ZW16+hd6aXSHYaWZCQdYP0BFx1NLtbEBAwy2asJisbGzdyfPo4Dd4WHFYPdouLWkewGn2UV/NYFWvVVFfTz7q5CyK3tt7Kc/3P4TK5GEuNUVSLfKT7IzzZ/wy9s73U2GpIFBLc3n47H+n+CKlSCpfZ9TNrtTIfPxfE52JIJpP4fOfKmK+//jrd3d1V0gNw1113USwWOXDgALfddttFX6dYLFI864YLkEqlLvp7bwZSbS2VcNgIkzwP8UKcolbkS699id+66bfJlrIMJ4YpVopMZicZT4/zQNcDrKpbRTgVNsiOu5FwOsyywDKe6H2C4cQwPbVGarTT5KBvtpen+5/ms8s/RSGXpqlsv+G6k59XOM1OdrTt4JWRV6phiWXNiD9YGVzJnok9fGDZBxAFkbsW3cVAfIBkMcmmxk0U1SKZbIK8ycm3x57gti23guZlkbWeWT3LN4/8HX2xMyRyMcLZSVbVr+a3Nv8WtbZa/nL3X16YzHzzF9jctPkdOhM3DulimmfPPMtDXQ/x13v+mj3je6o3wVghxu+Hfp9ILkI0F8VpcjKePicC9ll99DT38P89//8BxmfRF+2j2d3M5qbNlLUyPouPGqsPMZfHZTGzqmYlq8oBI6PJYakSei2RQC8UGPdX0DUrXQ0riBVi1NhqEAWp6gB9dPooQUeQtXVryVfyTOem+avX/2rB5+M0ORFFka/s+Qpf3PHFt8VLak7noRcKSJpOU+tKBtOjTMRP09Owimw5Szw6jiqK2HI5/N4QD6344HXtrOdE3iOJEXLlHMVKkW8c/EZ1YgrOxdOsqlu14Lk9wR56ans4Mn2EglrAY/FUBeHdtd3M5mcxSSbavG2YZXPVdPF6Mb8alC1n2diwkY92f5TdY7vxWr0cmTrCRHoCt9nNxsaNOEznprh+Hia65sNpdrKxcSPLAss4M3uG6cw0Xf4uYvkYp6KnEBBIFpJ8fOXHeWnkZbJqHpOoYDFZaXa3VO024NzfnilnMMtmah21hi7OZGgSZVGm09+JRbLwsRUfI5abJVvKcWBiHwF7kDZPG73RXmwmGz6rj1ZPKy+PvEy8ECddTNPgaqCslXmu/zmOzxxnXWgdiULi58Jq5eeS+AwMDPCVr3yFL3/5y9XHpqamCJ5X9vd6vZhMJqamps5/iSr+/M//nD/5kz95y44VjHFiefFi1NFRIzTyLASLBa/VD4JAWs3wxVe/yNamrawLrcMsm9nYuJE2TxuapvFk75PsC+9jODFMspSkp7aHB70PMpIYwWvxki1lKVaKeEQPmq4znByhJGg82H4P9rSKrpdvuO7k5xWCLtBd282mxk3V6tpMxjBLK1VKdNV08Zd3/CUm0cQ/HP4HGpwNzOZmKVfKhNz1HJw8xEjfCKlSip8O/IRNjZtYU7+Wnw6+QKwwi8fiobOmi8NTh3lp6CUy5Qy90d4Fx3Bs5hhffPWL/M29f/NzX/kZSYzgMDn46r6v4lAcfKTnI5RUwxV2PDXO3+z/G357829zW9tt+Ky+C9oZvdFeGlwNDCeHAZhITxBOh9k1tgu32U2sLkadrZamvBm/xccqXwB7tnxBRIBeLjPu1PjX/sc4OHuMRCXLwcmDLAss4/3L3sejJx+lrKlGUGpsmLV1ayiqRcaSYxcYMKZLaYbiQ2iaxsn/n703D2/roNP9P+do3yXLlmx5txM7cWzH2Zuk6V66t5SylVIo+87Mj2UuywzLzHAZLjB3gJmBAWYKFIbhFiht0xW6p1na7E6c2I73Xbb29Ug65/z+OLESZ2vSljYp+jwPD40ky0dHic6r7/K+wZ7XRPjMz3nMxeNUljcQErOE1RQ6QYc+n6TaGWCpvwOdTodhiUqNuw6v4+UPkM5XWGaSM3zxiS8uED0Ag5FBvr/j+3zzym8ueP117jq+tOlLxQHnRncjo7FR/HY/b1nyFu7eezddlV3c0npLsXX3SgXIidWgdn87Hf4O+uf6OVJ7hGg2SoWtYoHoKbMcG+w+3hHZarSSL+RJ5pLIqozdqGUFHh+++XpzqgrepQ2XFv/tOAwOLqpdzxM1a4hmosU4i8nEJLIqL3jtx597AYGAPUAwHWRd9TqeHXmWXeM7qXXWsGt6Nx6zi+ubr8XnDjCVnKI31EswFURF5YMrPqhFEeXSGHXG4hIIwFh8jI11GzGIhvO+2gOvs/D52te+9pKi48UXX2T16tXFP09OTnLttdfytre9jQ9+8IMLHiuc4OMBFIe0TscXv/hFPvOZzxT/HI/Hqa2tPduXcNboKysxX3kl+X37tLkQvR7RZqPdUcHqmnXsmtZcbJ8ZeYbHBx+n1duKw+jgXR3v4oc7f8iB4AGaPE20+9vpnunWDPjC/bSVtyEIAgdnDyKglfKtBgt2ox233k61ZAazCNnsn2Xu5ELEZrIRzUTpme2hoBQIpUMs8y3jopqLMOvNyKpMLBNDEASi2Sh6UU9BKeC1enlxcifj8TEKR9s00WyM4dgIh0O92jxL/4NEslFAIOAIIMlaq3K+AnK8yd9ceo7dU7vxWDznzQfuyyGZT6KgsGdqT9E4UFXV4muusFYwnZpmTfWaU7YzLHoLN7bcyFx6jt5QLzsndxY9ZOY3HSscfioqq7m5/k24cJ0yIiBpUHhw8BFiUkhzq85r79FA+Ai5gsS6mnVsGX0e0D4r8rksBlFfzBk6kUQugYp6WmO+V4PjE9WtRiM3N9/A/al7KbNXMh49zHByDAWIz+3HaXRi0OmpddbSF+6ns3I5TTNNr9iy4njH5ePX2nWCjr5Q3ymF3/ra9fzb9f9WbN/OxyXsnd7Lp9Z+quiafOJF+NVkPk6nxl1zxkH04x2RA44ATw49SbaQJZKNoKgKAXuAyxou4zn1OS3wVVWoslex2Lv4vPp3eap/O5c3XM4DvQ8Uq9dw8hD+vKAOZ8LFduFwdJinh59mKjGJX+ciFZ3jmoarCGbmEPR6bTNTLhBMaV/U5/8dTCWncJvdxZDseYyiEaveyupqzVn7fBKRp+J1FT6f/OQneec733nGxzQ0NBT/e3Jykssvv5z169fz4x//eMHjKisr2bFjoZFYJBIhn8+fVAk6HpPJhOk1av/o/X50l166IN9lkdvNVy/7Kl9/5uvsmtqFIGgXTJvRxrWLriWYDpItZFnsXYysyBSUApc1XMZEfAKL3kKFrYJnRp4pboIpqoJe0OPS2fEnVHJ7diC43Rja2rTspxJY9VauaLiMJ/r/yFB8mMvrL+P58a28OPEiTZ4mRqIjOM1Obmq5CYveQkEpkMlnUC2a2+y86DHpTGTkDIqicGjuEG9qflNxEyyajVDjqiGv5LUWi6qcZPIHsGtqF6Px0eLF6/gB2zPNWZxP2A12UrlUcQUWKPp6AOhEHUnp9IOmde465BGZNy95M8FUkEQugVln5srGKzHrzKwMrKTR3fiSA7JjcphQNoxTMKMXdFgMFkRBICfnmExMclHteraPbcdpcpCT81SavLT429g5u++0z1lQCgt8gF5NTpWoXmW18t6OO3khvJ/ewQcZjA0zk5zGIBqL8xiCoKPe3UDvXC8WvaU4oA28LAPTeWGXLWQJpUNF4SqrMgbRwHTq1BXzOnfdgmrlcHSYoegQ4Uy42No6/iKsShJyKKQNZ+v1CA4HulfB8PPEwWijaMSgMzCdnCaR07yhnEYnPpuPPw78EUmWmEvPFT1/hqJDMAwus4t/e/HftHlKVWZj3Ube3fnu89oH7XRD4ce/7yduzU0mJllctpj9wf00OOqwqXotBDYVp9zgIJgKUmHz4bP7uKb5GiYTk0SyEQyigVQuRbm1HLPeTJm1DKvRWhxsr3XXapYCUc3JeWPdxvP23L2uwqe8vJzy8vKXfiAwMTHB5ZdfzqpVq7j77rsRjzPyAli/fj3f+MY3mJqaoqpKW8d8/PHHMZlMrFq16lU/9pfLqTZzLmm4hB87fkx3sJtINoLVYGX31G6eHnma5f7lRTUvCiIqKlaDld6Q1h4IOAI4TU5iUgybwYasyDS46rmk6iIagtogdcqqYzI1RDaRxinM/sU7Otfoy0hNjnGxs52rm6/i4SOP4NBbsTmsTCQmSOfTzCRnOOw5zGLvYsbj41gNVq20e9Q6uMndxEzy6Pty9O9irpDTKhRoIkdRFQyiobg55ja7F4geAKtBG/7c3LeZ9TXr+bcX/21B3tHp5izOJ+YHxkVBPOk+k85UTFo/3ZyHw+TgxpYbeaD3AXQZnbYNJCWwGqy8teOtLPMvO6vjSClZdOXlGEMhqq2VzOYjBBzVTMYnNIduRNoq2qh11rK4rJnr3GsJiyoGnYEmd1MxHPd4jvcBejVRJekk0QOaF5RlaALJkeeF8e2ogkC2IGGz2olIUbKyxPaJ7Xxm/WcYig4Ry8Yw6U1FH6RwJoxBNNDgbmDX5K7ixuKZhundJnex8gkwl54jW8gW749kIuya3MWqwJk/R890EVaiUXL791MYHdW8hgDB4UBqb2HclCEpJbDrrdQ5anC5fGcUQ8dXyebd0uerIcPRYR7ufxiXyUW2kEUv6lFUbVTAa/HyqwO/wml0UmGroNJeWXRD3jK2hRsW30C2kKXV24pBbyAuxXli8AlubLnxvP7ycTb5iCe+N3OpOdrK20gnoxye3E8ml0IQBGxuHyaTlcnkJHfvuZtbl97K4dBhUvkUoiDS7GnGaXLS5GkiKkUx68yoqkpcivNI3yNMJifRi9pWoSAIeC3e8/Jac0HM+ExOTnLZZZdRV1fHd77zHWZnZ4v3VVZWAvCmN72JtrY27rzzTr797W8TDof53Oc+x4c+9KHXdaPrbPHZfTRLDYREK3P5GIVCDovOjN2g9Z/1ol4TPqqKw+gg4AiwZ2oPX73sq6TzaSLZCDajDUUusNhaxx3ey7HuHWeq2cuDE08Snomii9ag83j+oh2dVUnCPDDGDTVX8MDAQ6QTOl4Y3ord7KKzZiWXNFyKqqjUu+uJZqNcVH0RD6YeZCgxRMAewKAz0GxvZn3tep4aegqAuBTHa/Fi1BsXtFXnPWuqndUMR4cx6U3EpTiiIFJpr2Rp+VL8Nj+SLOE0Ofnp7p+eFPJ4ujmL8wmHycGaqjWsr13PcyPPFbe1TDoTXquXTl8nOkF35uiGs/jm+lLYDXYEsxmd3095NkU0nmBD9UX0W4+QkBI0uBtIpMP4TF4+WPcWvHNZbEsaEUICt7Xdxu96frdA/HT4Ovjwyg+/ovMeT4YYDh4hKcWxm500VCzCafdqF+7MyT46oImftDlFspDGarCBoG1Mzf/dimajCIJAQSmQU3JFH6R50dPsaebfX/x39gf3Y9QZcZvctJa3nnaYvs3XRq2jlunk9Emip9PfyVh8jP2791PjrHnJc3HiRViVJAozM+T370cOhY7FiogiE26BB1/4D8JyUqtG5/N47T5ubr2JxtqOU26hKtEo+f5+5iwyhwvTRHNxPJYymv1LiKsZ9k7vxWvx8vjA40wlp7DoLeyZ3kMyl+SOjjsQEMjKWUZjo5j1Zho9jaRyKZwmJy1lLTS6Gtk1vYvR2Cg6Ucfuyd2MRkd538r3XfCfl8e/NwdmDvD82PP0RvqLOW8Wm5vZTIhcehqrwYpBZ+C+Q/expnoNNc4a3CY3f3/53/PIkUfYMrqFSDZCmaWMClsFb297O/fsuwej3ohe1DOZnGRz72Y6fB10+M+/zK4LQvg8/vjjHDlyhCNHjlBTU7Pgvvk1PJ1Ox0MPPcTHP/5xNm7cuMDA8HxnODrM/fvvZWCqh95QHzqzhXguwYaGi5EUiYA9wMHZg8U2QsARoK2iDZvBBqrKxXUbkRWZRCZOm6uZLrGGmoEw6eZaNgcfI5yNaGv0R79p/SU7Os9np1VLOd7tuITnHTG6KlewrnkT9x2+j+dGn+PWpW/hezu+RzAVZF3NOnJ5iU11m+j0ddLh7+BA8AD3HrwXs8GMWWdmJDrCrUtv1WasBD0X113M4rLFVFgrWFO9hmp7NRW2ClRVpcnThM/qI5FL4DF7+MnunyDJEjcsvoHp5PSCteB5BiODr9mA7cultaKVr1/2db655Zv0zPYgIKATdSzyLOLO5Xcyk5p5yTmPs/nmeiaOn2Uw213U6BvonT2MT+dieVUbDeZK6mqv4qLKNeQSEXZas3hkD1c3Xc0fB//IbW23YRSNZOUsVoOVtvK2l/S0ORND04cXRFEAeD0B3rzuPdQWzjzsazfYcJndKKqCIAiIR93cQTMKNIgGAvYATZ4mpIKEUWfEa/FSbi0vih44FtZ6pmF6v93PR1Z/hPjWOOPHxW50+jt5d8e7+dHOH1Hrql3wd/BscgHnW3mIIoWhIS1S46jrdNpp4oGRxwjNjiJWVBR/JpQM8kDvg7xHNVNm6VxQ+VElifyRIxx0STw+9hQzqWlMOiNxKcGa3EY2H9lMQSlwaO4Q/eF+Lqq+iMaqRkaiIygoJHOaY3dBKXBx3cVFI0cVlfH4ONXOav67+7/ZPb0b0NqcDqOD0fjoG+7zst5dj0E0kFFzxZw3WSegFhRcJid2o50OXwcFpaAN+M/2UOusJdwbZnnlcpo8TaTzaSx6Cy9MvsCvu39NU1kTe6f3UmmvLIqfyeRkSfi8XO666y7uuuuul3xcXV0dmzdv/vMf0KtIQkpw/8H7mJjqozfURyaXwq43EM1EeHHiRfyOAOtq1iHJWjhia3krZr0Zk87EnZ13UqF3MhUZRwQCXh9V4wmsU1OgKIx75QUfuuiPvd1/qY7Oaj6v+aTMzmItFKg3mNhYu54HBx5lOjnNpQ2XsWVsCxPxCQpqgYHwALJSYNvEdpZVLONLm77E/un96EQdCSlBha2C5rJmrmq8irnUHP98zT/zxNATJHNJ9KKePVN7kHwSJp2J/lA/4ax23t0mN03uJlZVrSKn5LDoLUSzUTwWD7lCjlQ+tUAA/TkHbF8t1tWs41tXfoud0zuJZqKaGZreyExqhhsW3/Bnv2icOMvgNrvpqlqBAZGrqjbiEazEhRw/6/kVsWwUt9OHObWPcms51zZfSygT4g+H7iOa1DKORqYO88LYdm5Zdus5f9uPJ0MniR6AUGSSP+z4Be+76KOYz/DztZYqVlat5GDwIHaDHUmWsOgt5OQcbRVtlFvK6Qv1sWNiBzXOGm5suRGHyYGsylgMFtp97fSH+oumgqBtEnbPdJ+y5eWz+njP8vdwZeOVuEwuRFEkno0zk5phfe16QplQ8e/gcHSYzX2bUVUVqSCRyqcos5SxJrAGp8mJ1+olGJ8iNjGEQzRSY6zAOF/pOeo6Pe4vOxbMqigLMsZCySBjUhD3CVuoSjRKryPDV7Z+g+7pvdptAmxovIRD4UNsGd3CW9veygN9D2jvgRQnlo1hM9pI5BL0hfpoLW9lWcUynhl5hieGnsBj9iDJEisqV2A2mHlm+BkQIFPIYNKZsBqsDEYGqbRXvqE+Lx0mB1c3X82R8BEmlFHUdJq8UqDGWcvamrX8tud39IZ6SR+Niim3lHPD4hs4Ej7CSHSEg3MHAc2xfevYVgBWBVYVh+Pn408KcuHUB/A6c0EInzcyI9ERQpEJ4oVUseSYysRodDUwmpmmoayJ/3fgN1y3+Ho+tvpjxVXfyfgE39ryT1gFE19c/3lWBY2QN1KYnQCdDhSFpHxceKbZjGhbGFh3IZl7vVoIBgNqNlusftVkTZjdTsLpMDEpjklv4mDwIAW1gM1gIy/ncZvdTCWmODh7kJ7ZHj655uO8p+s9RDNR7CY7VfYquoPdlFnL2Dm1E0VVWF21GkmWcFlcPNL3iOYnYylHL+hJypqvye8P/55yazlPDz/N25e9nd5QL8v9yxmLj9HkaSIhJYoXreMHbM/nAejWilYCzsAralm9Ek7VMnOanBwJHeHRqR08PfwM4XQIo96EtTBHq9gKwI6JHUyGR9HNzOEtFIAYCjAbiXC/XOD96z56Tq9hOHjkJNEzTygyyWhyglaL5ZTtLsFioaG8idvabkMn6uid62UmNUOFrQK3yc17lr+H3xz8DZFsBKfRyUdWfYR/feFf2Tezj3e0v4NnRp4h4NA2lWZTs1gMFqSCxHBsmIh06g22Wnctz40+x2x6lnv230Mil8ButKOoCk2eJq5bdB1lpjISUoLNfZsREPj9od/TF+4jnU+jqAorK1fyhYu/wP2H78esM6Akk5h1ZhwGO+saKqk6lNEETi6nfTYdrdYjitr/5GPr0clC+qQt1EQhxT39vy2KHgAZhUgmwp7pPSyrWFaMlwGt1aygZR+aRBMG0cAHVn6A3/b8tph7Ne8yncgl+E33b7ij8w7++8B/o6oqOTlHQkqQt+WJZWNvuM/LMnMZl9Rfglqvks2lcZhclFnK+OwfP8tobJRyazkei6e4GT0/TiEpx3zvDKIBo85ITs4Vz/18q/ts4k9eL0rC53UmmU+CopBT8tpwmcUFej05NU+zt5klFUupdlbT7utgc99memZ7iEtxJuPjdFWuYCB0iG9u+zY/2PAPVE2l0S9ahBIMokSj6Ms9jJfryap5LFYDFeSwcyy37EIz93o1EN1uLd38KNZQkqraalL5JKl8ioKiCaL5b3vBVJBqZzWoKooiky1kEKQc4fA4/vJ6wlKUHRM7sBm08M2eYA83tt7If3f/Nz2zPbx92du599C9uEwuLq67mIHIAKqqksglEASBpeVL0Yuaq7HD6GAwMojVYGUoMkS9q55kPrkg2Xrv9F6+v+P79IX6imvHrd5WPrv+s6yuXn3K1/xa80pbVq+E41swDqODbCHLz/f9nMcHHqfd187z41sx67VgRkEU6Z3rpauyi1gmysB0D+UF3cInLBSYHe1leNEAHYGusz6OpHRmI9RkLoWhdfVJA87z3kQmu5sNtRtQVZWJwAThdBijXlsZrnPVkZNzNHoauarxKn6y+yfsD+4nr+QREbEb7IzHx0nn09Q6a9kytgW/3c9y/3LKTCdnV6mShDWaZkPgIv7nwK+11eVslOGo5o48EB4gm8/y1Uu/ytPDT2PSmXhi8AniuTjZQrbYgusOdvPbnt/itrj5/YF78evc6BSVgKcOse5qrgpUYB3XFgLsolmb9zGZjs39HIddbz1pC3VUmmUkNrrgNkVVySt5BiNDrK1ZV4xbgGMVn+ayZtoq2tg+vp1tY9t4evhp9KIej9lDu6+dgfAA+6f3MxQZ4kubvqRd6NE+Aww6A3k5r7lbvwE+L48fDK82OpFyGSJ5LdJIrzeCeGyJJpQJFX9OFESMOiMpKYXZeKxWWVAK1DprGYuPYRC190sn6M46/uT1oiR8XmfsBjuI2l8qp6OCodgwmXyaRb4lKKhU2ispyAXG4+P89uC95NUCHrOblvIlGHXaX7T9U3s4kBnBN1UAoxHDihUcUKf408AjDGYmGUuMI4giHrOHdTXrqLRX/tm8Nc53BJMJQ2srSiSCmtREp06nQ0RkRWUXlfZKKmwVZAtZZtPaEL3FoAklg2jAby6nSl9GzBbnP3b9mL5IP4qqoKgKnb5OPrHmE/zLjn+hZ7YH0Czgc3KOYDrIwdmD1LpqiWajDEWHsBqs2E12bEYbzw4/y02tN3Fo7hCqqjKVnEJFLW51+e1+ZpIzfH/H9+mZ7WEuPVcUadvGt/H1Z77Od67+Dq0Vra/PiT0PmPdrmfdzmR9yXVm1krH4GK3lraiqSiqXYiQ6Qr27noJSIJaNUW50k8tnAdvJT1wokEyGT779DNhNZ16osJscJwXPnuhNNB9hsHNiJ3tn9hZN6g7NHWIsNkZUinLj4hvZM72naLsQyUbw2X2E5kLMpGZor2inoBQIJoPEXDEaPY0LjuP4lfpgWQyP2c1ofIwGd0PxOU16E4lcgkcHHsVhdCAI2jHYjDa6KrvYN72PvJLHZ/PxzMgz3LLkFvJKAUlXwIqOycgom4U/sWzph2menAVFoSZvo9zfQERNay3449zzvXYftSbfScPNKTFfjMOYRzyaXQhaWyWWidFe0Y7H4qHR3YjD5OC2pbdpTu3JGXJyjmhWM/xTUdk6tpVyazmyKhNKhzQ7EFGPx+RGj4go6JBVmYA9cEF/Xs4kZzg4tZ9IbBqPwUGrrhJvJM+N7tVsjmwnoqSK52Vj3UZ0gq446C8KIq3lrVTZq8jJOVwmVzHkNplLUuOsodpRjVVvZVnFMmqcNSwuW8zblr08V/HXgpLweZ2pd9fj9VSTzCYYDe0lLqfoqlnJ7qndBBwB7j14L48ceYSPrP4Iq6vXsHPiRSJH/4L6LeWosgyyTDQdojASBVUl0hLgB4f+nbHMNJc2Xc6zI88yFh8jko2wY3wH72h/x3kfIvfnRFdRgb6lBSQJtVDAIMxgNljYN72PakcNHouH0egoOkGHw+ggL+dBELi4fhOXO7vI6BTuOfRrhuJatIiiKuTlPLumd1FQC6ysWsmuqV2AJpaK8Q2ZMI3uRlRVpaAWSOfTRW8MQRB4ZvgZrmi8ghVVK5hNz9Lp62R97fpiG6sn2ENfqG+B6JmnO9jNzumdBJyBv8j3NSElTjKxkwoS3cFual21GEUjOkFXHPbN5zTn3mg2SqO7EYvOhFE0gHzq57fpLKe+4zQ0+Bbh9QRO2e7yegI0+BYBpwmePQ6HycHq6tV0z3YXbS3sBjsqWismK2eLNgt6Uc+B4AEub7iccks5kWwEURRp97Xjs/roquxiKDLEUt9S4ISVep2OODkEUUeDu4HDocOap89RI0qP2cNb295KJBNhKDrEwVltxsNv89Pp72TP9B6sBs0OQipIIIrIKIBWQZsMjzBjlFi6bh3IMha/n1vbm3jwyMPMTvQfOzd2Hze33oyndvFJK+0Oixuf3Y/H5iWS0qoROkQyhQx+ux+LwcLOiZ18ePWHuWf/Pdyz/x5sBhv7K/ejoPD5jZ+nIBfw2XwUlELxi02Du0Eb4lVlHEYHTe5GpsOjgDZ/1FrWyrs7331B/rsajY6yZ3oPR8JH0As6UukYTx96hIC7jk+t+CjLwgbe7b6MyXIDKSXLdGKa50aeo8PXwab6TciKjElvIpQJ8fO9P+f/XvN/6Q33kilk6J3T/t9utHNL6y1k5AzXLrqWKkfVa9refjmUhM/rjMPk4JZlt/LD1A/JTeRpKV/CrqndmPUmLq7bxM/2/gydoA3S9oZ6aSlvZSgyiF7Qk5KSR2dVVNwGJxTmEMrLOZwd48jgLkSvlx0TO+jwd7CxbiM5OYdRZ+Timosv6G8vrxTBZMJQV6dtnEgSOkXlmqarAXhy6Enu6LiDZ5VniUtxGj2N2Aw23t72Nt7dfgfh0BxhnY6dM3sJZ8MLWmN+k5+e2R421W0q+vhMJaZodDcymZhEKkjakKrBgkE00OhuLH7L9Jg9VDmqeHrkaTr8HSiqwqKyRQtmd6JSFKkgnSR6ivdnom+oAcxz4fhk83nSeW0wc95baexoJWMoOgRQNASN5+JYDHaa7HXEIyeb9XntPurs1ed0PE67lzeve88pt7puXfcenHbvWT/XiUPbJr2JOlcdkixRZi5DkiWsBqsmOFStyljlqKLWVUuVo4qAI6CtcReyDMWG6J3rJeAIMDTRQ1wZxe10EHUY6R7vQRAEUvkUHpOHcks5mUKGsdgYoUyIkdgILWUtTCWnisc2nZzGYXRQaa/EIGptIZPepAWYGs2QU4uDy/m8hAAY2toQ3W6agPdX1DMcGiCZDGMTTNQaKnAYbKi5HKokLRA/9e566sqbuEi+mO1j24hkwoiCwFh8jBtbbsRj9tDoaeRHO3+EKIhsqN2A16IFEu+b3scv9v6cD6z8IE6TFropos0AaaJHodO/HJ0osqxsCZcFNmhVLFc1tyy9lZbylnN6/19PElKCsegYk8lJfrjzhzw78ixxKYaqqnRVruB9a+/ivhd+wQ/2/IhvdH0G71yKNv9SdAE/o9FR2n3txa3A4+nwdbC0Yikb6jYU/73JiozdZNdasO7z2635eErC5zzAa/GyIrACURBo8DTy/OjzTMQneGbkaRK5BCadiXAmhNfi1dZ103NEM2GqbD7Q6+mo6qIt60JwudBXVRFJTWnbS7kcGM3aEKGsHB0eVEi9wYb0Xg7HtxmWKWF+uv9nrKxcwVVNV5ErSHxo5YeQ1QKpXJp11WvJ5DPsmd5DlbOadCpDVs4WrRQAJFkimApq8xeKltiuE3Tsnd7Lm5e8mf3B/eyf2Y/NYGMsNsba6rUs9y9nJDZCu09rR8ykZujwdWAQDadsRaIK99sAAI3HSURBVLpN7uLg4KlwGE9vEvhG51Sv22qwAjCbniXgCPDixIvc1HITAEPRIXSiDrPeTIWlgmWV7XgtS3ig9wFCyWN5evMVCJf73IfHGyuX8IErP3vUxyeB3eSgwbfonETPPCcGdbaWt/IfO/+DaCbK6sBqume6cZlcrK1ey9MjTzMUHcJv81PnqqN7Rssha3Q38uYlb+ap4acwiAYEVcWoKpSJAj/Y+hOuX3IjeTnPjoljDvhl5jKWViwlk8+we2o37b520vk0i72L6Q9plZqYFKPJ04TH7KHWVUsoHUIv6jEbLQhGEQoFbdC1rA5j9cKgZIfJQUeg61jLTZpmpsyoefSMJvC4qlhW1YHf7i8KQAC72cFsapZsIUu9q547Ou9AJ+joD/fzi32/QCfomEnNsHVsK/XueiaSEwBMxCa4ZtE1PDn0JH2hPgyCNpy7OrCa25beRigyQ1dFO/lsBo/Zw6ZFV7D4aIXsQmC+3eu1ePmPnf/BcGyYmBTTXObzaXZN7UJF5Za2G3l8/30cLkyzEXdxkPz4HLaTQpUv+VJxI/BC/3JVEj7nASPRESKZCNsmtuO2ePjNgf8BVWVpRRuKKpMrZNk59iLXtd5AOp9iz+gOQEVURToqO/nyus9TnXRRKIuSP3wYz8Xat1M9Iuuq1vDMwJOMRY8FEMqFHC2OBhorl7xOr/j8YL7N0ICfv9n0Bb7x7DfYPrqVufQcKApray/icxv/hm9t+Sa7xl8EQcBrr+Cv13+Gcms5qZzmZjof1icVJERBxGf10eHTvCtUVeXp4afx2/18eOWHqXPXsbF2I3k5z/Pjz1NuKdd+H9BV2cU1zdeQKWRO2Yps87XRWtbKtoltJ72WpeVLMeqNb4gBzJfDqV63SW+iyd3Evul93N5+O7FsjAf7HmR1YDVXNF5BwBGgwd1AKpdCFQUaa9t5j2piTAqSLKSx663UmnynbLucLU67l86XIXROxfFD4wkpwWR8krgU58ubvsyPd/2Yw3OHcVvcjMfH8dv8dPg6eH70efSi9jFf6ahkx/gO/nn7P1NmKUNVVZaWL+Vjaz5Grbueu/fezU0tN3Fo9hD9EU3UhLNhGoVG3r7s7fxo549ISklenHiR61uuxySaGI4NYzfaMelNOE1Orll0Dffsv4dya3nx91qsLjbWbaS1uvOU57HYcpMkDnoL/GDPvzI416fdKYo013byV+v/mq7Krpc0ukzmkyyvXE7fXB/dwW5kRSaZS+K1eAllQgTTQQYiA6yvWc+muk2YdCZqnDWE0yEaLNX4jSYEVcBuNVJr8lFWfn4O556K49u9VoOVfTP7cBgdmqWBqmLUGZHkHLundnP7snciiwLRXBxwLxgkPz6HLSJF8Jg8dPhP7/x9IVISPucByXyymJprN9qLa55JKYHH5CGVT5EvSGw+eB//dO136PK2I4giyys6aI0aKX9oLzmzGdHrBUVhcdpBs38JVm/lSaLHY/Uip5L8Yccv+MCVn31Z3z7PZ87GWO1UrK9dz79e9c/sne1mKDaMw+ig3hrgB9u/r4meo6iCVi3w2Xyk82nC6RCiKCIKAjajnUZXI0vKl7C4bDE7JnYwHB3GarDiNDupddXylSe/QsAZ4PLGy/nE6k8QkSK83/F+BISXLBn77X4+u+GzfP2Zry/4Nra0fCkfXPFBZtIvbRL4apyr84ETj73CVkG59ZiIBM3h+La223j0yKO8MPECi72L2VC7AYfJwdrAWqLZKIORQWRVZoNhA6LbTZmlE/dpho3P5Xj+HOdyOjpBz8xBotkIbouH9dXreGLkKXpme/jUuk8xEB5AROTNrW8mmo3y4uSLKChk8hk21W4inA4zGtccizP5zLEhe6OVTfWbuKf7Hvw2P63lrVxUe1Ex8mE6MU0oHaLKUVV0i36o7yHWBNZwzeJrsOltdPo7qXPVISsyqXyK0egoOSWHUTTS5Gk6adA1ISXome1hNDqKCPg9ZfgNXv7jxe8yGD5y7EUrCoOzfQvcy8+0NTgvgP12Pz6bj5nkDOOxcZZULAFVy42bSU4TSs3htXq5rvkalGyWmrKV1A0nsEZSxFYv4bA0zqAwjGcyeV7ZRZyJ49u9CSlRNL8EKKgFzKKpOMOWyqeQKOA2OhFUy0mD5CfmsL3RKAmf8wC7wV5MzZUL2nDs7qndTCYmaPO3M5eeIxIPssjXRiwyjXFghJsbr6XqhTBKOKwlrxcKiHV1yICnb5xPXfRx/pTYy8N9xwwdPVYv6ypXY83IhNKTDAePvGrfRs8HTtzqAfAYXNxUfzV1uIu5Pqe7kNXkrTgylQxN7WA42Y2h7WIOzvVoHiOATqdHJ+r5zYHf8LkNn+OJoSd4YvBPoKi4rWXUuxu4seVG/v6Zv2d97XpayluosFYgKzKiIPKnoT+xKrAKm9HGJXWXMJYY44bFN5yTWFldvZr/c9X/YV9wH9FsFJdJyykaj4+fk0ngqc7VhRJlcrpjv6T+EraMbimKH1mVUVH5P1f9HyYSEwxEBrDoLRj1RnpDvUXfkePbii81bHwux/Nqnsu947t4tP9hZhKaW3EsFSan5Pnohk9jMznpDfdyMHiQJk8Tu6d3U+usZXVgNXklj9VgxWF0sHdmL+uq15EpZMjLeZxmJ1JKYjQ2iqzI6EU9c+k5JuLjpPJpTHoTqqpi1pvp9HfiNrmL51ZVFabjE7gMdlSTjFlnJibFaKto4xNrPnHKisz8KnW/NMHdh/+Hzf0PEcmE0ckq9bZqru+4lTW1FzE0cQhJLxzz9VHVs3Yvn3fvBthUt4nnRp9jOjnN4dlDrK9Zz8bajdyw+HqEbI7llgbq9kwhmM1E21x0+2OEAwJ9Uw8zFh/jSGSAglK4IPLyYGG712FyaEP8Sr64gXW8H7zVYKXJu4gl5loMDc2vOCj2QqMkfM4D6t31uMwuJhOTBHQe/m7T3/GDF3/AgeABZuJT+CzlbGrbyLva3klVUqDSvxjLvmGUQgFdbS3yzAyk05ofhk6HWFbGcl8nMatAT8NlZGUJs85EuWjHmpEXVJTeKBxvrGY32Enn09gNNrw6B0+OPI3f5kOvigRCFTT4WnB5TzbWEgwGbOkCNzVdx4ODj5DIJYrBm6IgYjFYEREpqAW+8/y3+dfr/5Wrm65ClvOIgp6ZxCT37f8fAs5KXhjbTn/kCLWuOjr8Heye0mzwjTqjZl1gchbdds+F4egwfxz6I1OJKWLZGDklR8Ae4I7OO85aQM0kZ/iv3f/FZHISo86Iy+TCpDddEFEmp9reAm1j7tmRZ3nHsncwm5o96aK71LeURdFF2s9GFwqUV7LhmJAS3H/gd8zNHg3f1OsRbTbCvHrnsnt6P3/7xJfpntoLaG7FAXcd62vX891t/8yXL/ky9a56fHafNvjsrONI5AhxKY7H7GEuPceG2g34bX4OhQ4hFSTsRjtxKa6Fx+aOXTD3Te/j0oZL6Q5qW2R6QY9BZ8BhdPB3l/4dfxr4ExuqL8KmGhF1esajY3SUt/F/Hv8KgtXKZc1XsqF2AzajbUHlS4lGyff1MWzP85Ohe3lw4CFmU7MICIjAUGKU+w7dx6rKlVy59Doe6v69djFWlKLPz+ncyxNSguHoMJPJSQpygdVVq9k6tpVaVy03LL6BmeQMbrObG1tvpFLnxhCNU1UwYe7WRE/vMi/ff/FbJNQM+8KHmMvM0ehu5E3Nb2LX1K4LIi8PFrZ7LXoLXZVd7JrcRYWtglA6hIB2HldWrUQUdHxq/V8TqG7/ixM9UBI+5wXHb22MzA4zNXqQj7e/j5QoIxWylBndLDPW4u/R/HjyvcOa8ZcsI4+NIfp8CBUV6Boa0C9Zgs7vR+d2UzE4QV3WDJghD7BwG8h+nl7cXg6j0dGim+xgdBCr3sqVDZdzf/AAgiDgNjiYiIxQ6aji5iW3cEnhMlr9C1O3RbcbwWymJpHlPfW3sM08g8NgI2d2oygyos5ATsnhMXuIpENMRscYHNhJZaCFP/Tdz5KyFpYoFYQVyMoSM6kgwfQsLd4WppPT1LvqmUhM0OxpPutWyPEuzS6Ti0PBg+waf4GcksdhdlJhrUAURR4beIyA49Sr7PNtmFRecwbvDnbz7Oizxfstegut5a24ze7zPsrkVNtb84QzYWZTswuOPSElODBzoGhoeDph9HIZmjjI7OBBbZFA1AZ5lWAQXXU14aPH+0rOZUJK8Iu9Py+KnoKgkpIz7JvZR1yKUe+qZ9v4dprKmskWshwIHuCGlht4bOAxBsIDxKQYBp2hGDD6mwO/QVZlFEnBrDdj1BnpD/VT76pnTWANT408pa0z+ztY7l+OKIgEHAE21W+iylbFF9d/jsEju5gjxc7QAURZZvvAMwCsq1zN4wOP8ftDv+fKpiuxG+1a5av5BqoGQyTFAnvSA/RG+hmZb7+rKjpRD3oLo7FR2iuWYbN5jlV7RLEYtXO8e/k8w9Fhto9vZ//M/uLWpMvkotPfSY2zBp2oO7nqZNNambONteyP99MT2sWqRZtQUNi2RbOhGIoO8fjA46yrWcfhucMXRF7e8Vl1w9FhPr7m4/zrC//Knqk9lFvLsRqtLPYs5pNrP4msyHRVr/yLFD1QEj7nDfNDe8OhAeITQ9hkI7WyG1u6AEkVSKM6HCjzLq+SBEYjiCJKPI7o8SA6nRgajxmUna2XyBuBuBQvpmubdCaaPU38aehJjoT7cZndrAqswmyycWCmm0gmwlRqhnfp72SR99g5mDc3zPf2YktlWGEJ0OleyqFoH6FCnALaWq4kS2yoXs8adzsdNoGozkw4V42+f5aCw8q4NENSyOI2u4lJMW1lWoozEhuh2dPM0oqlZ1WdmXdpHooM4TTYUVAZjY9xcfV6QskgBnTkZAm/3Y9RNDIaHWWZf9mC5zi+DVPjqGH39G7cZjfTyWn0gh6zwUxBKRQdjE1603m5GTYv3vrD/QRTQVwmF6DN8cSlODk5h1lvZiQ2UrzInakF9WoIu+jMKOPBAVz2ciw6E2oiwUxiDNVhQ56YQGhsfMXnciQ6wmhslAqHH5vJQZN3EW6Lm1QuhVTIscjTBILA93Z8j3U16xiMDPJg34O0VbRxSd0lxKQYAUcAs87ML7t/SUEpIAgCkizhNDlRVZV2fzvd0918+ZIv49vloz/cjyAITCYmKbeWc3XT1RyJHGF97Xqs0TRLokaed6d5uPt3xeNcFliu+YWlpxB0OmZTs9iNdsKZMPfvv5d3OzYxbpY4ON5DtrAwpkNWCqQLGdxmF6oAqaP5UACC1Yogigvcy+dJSAm2jW1jMDLII/2PFG0KAFq9rXxk1UdOmi2ab2XO/9vaNbmLkZgmwjr9nXx2w2f57tbvki6kGYoOcUXjFcfe7/M8L+9E24OhyBAfWvEh5BUyAoLW8jQ5GI4Nc92i687bqu5rQUn4nEcUVzutDae0stcvWkRhYgJlZgYlFIKjK4ii14th6VJEq3XB872aXiLnO+FMmOHYMNWOamRVZrG3hd3Te3CaXUSyEVRVZSg+Srndy2B8mGQ+xXNjzxWHJec5fs3dn8/z6U2f5Qe7f0h/5MixiIiyVj6z8hO0/GEHZDIcWWZGH9eqKXGTSm52DmOFmyZPE4ORweJ2S07OsTqwmtvbb3/JD53p6ASP9T5MtT1ApdUPAsyl53h2+BnqnLV4zB5+uf+XiKKOMpuXVYHVLPMdEz0JKUF/qJ8dEzswiAZqHDW4zC42923mkrpL6A/1oxf1xTyeuBTHZ/MRcATOu82w4wXM8dk/elGPUWckktUCfQVBoKuqS/O10VuZTk0XjQvnbQBerXbe8NwAv3/m3zkcPUJPUDPzC7hrubL+EsZGDqBaTCip1Cs+l8l8EpPeQiQboz2wgudGtzAQHcCiM+M0uYjVXMTNrloOzx1GFERWB1ZruUlyjgpbBZIs8XD/w+gEHXctvwsVVTtXR9senf5O3rLkLWwb28aSilY+uPKDjMRGiGWjOM2aQ284Gy7OjxWOxhto20DHcFo9jA2OFqsz2UK2eF8oGWTMEWUqlyKXy2hOy0fb7SICLosHo96ISW+i3tNIbVkDmzpuIJpP0BcfpM5VV3QvP56R6AiKqnDfofsYiY0gIBRX0302Hz1zPbww8QJrq9cueK/nHdAHI4OaEETAYrAwGh3lob6H+NplX+O+w/exc3InknzMUfpUFafzjVNtvVXYKphLzZHIJ7Ab7Fxaf+lftOiBkvA5LzmdlT2APDmJob0dtVDQhI/BgKDXI4jiSZP58Op6iZzPFNQCi8sWMxgZZLl/OQFngKubrsasNxPJRphLzzGbnqXS7ieVTxOVYkwnp0/Zijh+wHUlNfyTt+FYKKjJTZuvjbK5DBlHD2ouR3VcxOsOEIpOklMLoNNhwYAsiFzZeCXra9ZT767HY/awoXbDS1Z7lGi0mHs0EBnEYXZSUGXq3fW8b9UH+O3B33J189XoRD2yUiCTyzAUGeKPA3+kq7KLUCbEA70P0D/Xj4yMy+TCaXJi0pu4rP4ydIKOTn8nwVSQSDZCKBPCZdJmzPSiHkEQeGrwqfMiBHUmOcNTw08hKzJV9ipqnDU82Pcg28e3o6haAGW5tZybWm7i4OxBdk3sYi41x2LvYuZSc9iMNpZVLKMv1MdEYqJYhXglLaiElOD+/fcyNzuKExGryU5aSjIZHeMJnmWTdznTuTBes+ecjUJPDKA16oxMp6ZYVtnOtrGtjMfH2FS3iRpnDQDNnmYOzh5kVWAVoXSIHRM70KkCU4kp3rqsjPsP389AZABZKdAT7OG9Xe/l9mW3E86GqXfXYzfYGYgMcEXTFfQED5LOJlHkPGaznaSUYHVgDVc1XVV8/+fXnt3GhZEcuflw0KPzOMdHS+RElTE1SryQpcLpZ63FQd9cL5PJKSrsPsKZCDYBHCYnA3P9TETHkJQcbouHz1z0GQKOAM2e5pPOVTKfJCElODR3CFmVMYgGbmq9iR3jO3hy6EksBgvjsXEOzh5cMGjeE+xhMKLFMRhEA+XWcrKFLDklR89cD5IsMRGf4KaWm7DqtS+Tp6o4na+cauvtfG7RvR6UhM95yum2SwwtLZrjsCwXE40FoxFDS8tp+7WvppfI+YrdaCeYCnLr0lt5sPdBekO9HJg9AMAS7xLe1fEudo7tOGrvr6ITRNJS+rTzIsfjt/tP+uBQSGLs7CS3fz+W6TA3tV7Fg8IThI1JRIcDwWik3lXLlU1XMpnQqm2RbASL/szRB6okMTU9wD0HfsVgdAhJljArBYw6I4fnDqOqKk1lTaTzabKKhEVnRlEVTHoTeSXPcHSYp4afIpaN0VjWyB8O/YGZ1AxxKU6NswZVVbmx5UZWBlbSF+ojmo0yEhuhP9RPtaOaq5uu5m+f/Fvycr7YpnmprZZXOy1+vq01lZzigd4HGI+PF92qC0qBtdVr6ZvrYzg2TLm1nKHoEE6Tkze3vpnh6DADkQFtXi42gqzItHhbeFvb2/CYPeyZ3kNzWfMrakGNREc0k0NRxBDP0uJpoi82WBQ/1GzEm9Nx8zkOTc+3X+YvygCbajfRWr4Ek2jk2ZHnuK3tNraNb+e50eew6q00eRqRVYWPrPoIjx15DLPOxMBsPzWuWvZO78VqsOAyOYlJceYys/xw1w/x2XxsqNnAlQ1X8lD/Q8ylZ/lt9/8jmg5R72mk3dfBfXvuAWBu6ay2HSdoA/5VVj8NXjtLRAtN5S1Fvx2jaNBEz9FMwApbBQDRdJjDwQPUmH3sm+3m6cmtrKpczSfXfZpfHfhvyq3lVDuqMRqMtJW3oRNEftP9PyAIyKrMr7p/xaa6TTw7+uxJW3JG0UhcihereWur17JtbBtD0SFtaFrQFhFOrPId37LS6/TIOU00iaqITtQhCiJrq9dyaO4Qi72LF+TllXhjUBI+FxgvFWz4F4sKF9dezGNHHuNI+Ai1rlrKzGVEslq20GMDj3Fty3UMhI7Q4GlElWVCmbmi+eC5Itrt6BsatMpbLke9LPO+dR9h0JxiV7IPDHoEtDmJ+Q/mswmGVaJRDmfHmEpOki1kUdFWT7Nyllg2xlRiiksaLkFRtPBTgAqbj6XlSzHpTUwmJwlnwlTaKnn0yKNMJ6eJSlEKcoFoNkq1s5o/9P6BOlcdB4IHcJlcVNmr+NplX8Nr8fLjXT+mL9zHsopjbbMzbbWc6mL9StZ/h6PDvDDxAoqiFGdNFpUtIpvPEkwH2TGxg0g2wqUNl2KfsuMyuUjkEiRzSQpqgf5wP/1hzXxPVrR19t5QL48OPEqHr4NaVy29c70YReNLHMnpSeaTIIoIRiOqTocjkqHT3kjcpZBXC9SVNXCxvR2P7+zN745vvxzPY4OPcf2i6zHoDFzedAV7pvcymZjEZXLhMrlI5zNMJCZ4avgpWstbGQoPkswnKbdXcO/Be/nYmo+xuW8zeTmHSW/GarDS6G7krq672B/cj8lgIpeXCMYmMBrM7J/Zz2x6llXVa6h0VmG3OPnBC//KcGwYi95Cha2Cy2ou5nbf1Xx65cf4/u4fMhg+Qjwbp7ZMm2laV70Wu9FONhXn0PBO3Ho7aiSKK56n2lLJ3qmdeGxlfOPKb/DL/b8kmA6Sl/M8M6wNSa+uWsXve35PKp8m4AyAcOoWpUFnwKw34zK5iEkxqp3VPDOiPcd8mrjNoIXOHl/lm29ZFRQtL28uPUcyl8Rp1KqiZr2ZSxsuZW1gLTXOGt6/4v0l0fMGoyR8LkBejtfIG52Z1Axrqtdwb8+9xcHMVm8rRp0RRVXYP7Ofi2ouIpKOsKpyJXoFhpNjOM3O4tbPuRrP6SsrEe125GAQVZJwmUys9vnwFVpPOVR7NmvTaj5PNBdHlgs4zS5ySr74AW3QGcgUMjiNTlI5zVjNqDPis/spt5YDkC9oLQcVlbnMHIIokJNz6EU9siITzoTpC/WxqmqVZl6ntzIaG8Vr9XJ5w+X0hbVv8CfmgZ1qq+V0F+uXu/6bkBLsGN+BVJDY3L+ZB3ofQFEVFFWhraKN25bexoHgAUZjo6yqWkV/qJ/W8laOhI8gIKATdYSzYeJSHJfZhU7UFV/HcHSYDl8HTpMTj9mDQWd4iaM5+djm5yYy+QxVFY1MxxMUZBklHseQyDBfU62VHbgCDYj2s5/vOb79cjyqqvKr7l/xrau+RbaQZe/MXnw2H5l8hmAqSMARwGawIRUklvmWYdGZuG7x9XitXhZ5F1NmLuNT6z7Nvsk95NQ8AUcAi8FKXIoTTGnRHMVhY1FEkiWGo8O8te1tBDNz/P7QfUSyUSLZCEbRwEximlxewqS38KHW2/nmZf9Iz1wPsVySty57KzuGniMdDaEISSKhcVyYucK/ntGeHRgMOjp8TdisTmalML/r+R17p/fit/sJp8OkcimmElMUZK2qNxYfI1vIFueRTmxRpvNpquxVXN5wOU8NP1X0ZdIJOpwmJzXOmmLlCY753LT52mjyNLF/Zj9TiSky+Qw+m0+rknoa2T21mwf7HuQtS9/CUt/Skuh5A1ISPiXeEDhMDvZM7cGsN9NW0UZBKSAK2jZIKpfCarTSVt5GvbWa3uluoqkIb17xDjb3bkYVjll7navxnGi3n3SBa8B+Rlv9MyEYDLiNTqKpEEvKl9Azd4h0IU1OzuE2u7EZbDSVNfHlJ76MXtBR5aiiw9+JSW+izFJGwBGAKYquuyadCVEQERBwmBxMJ6cx6Ux4zB7aytuwG+1Es1H2z+xnQ+2G4nHoRb3m7np0oFsnaKLieE53sYZTC6WXYiQ6gs1o4wcv/KAYMDp/0euZ7cFpctJV2cVzo88hKzJ+u59MPlM8XpPOpEUlHPWecZlcDEeHySt5REEkr+Qx6oxc2XRl8fnPhvnh6lg2RoW1grySJ5wJ09J2MfGZMaYm+yhkM6AolFfU0dS2Hr2/8qyfH06/MWTSm1BRkWQJAaGYD6cX9XitXhwmLSA0k8/QM9vDYHiQn++/B6/Vy8rKlfz6wK/p9Hfy/hXv5/vPfZem8kXUlzWxpmZN8XeYj7ZfFVUpnnO72cFwYpSByODRrUEDqqqSyaXomzvMYWcjo3UztM4obMy4ATdkBLoqbmQskCIpJYh7lzMwsIux/t3ISgGkAqZUDovDRHNZM9vGt9Ez20Myl2Q4Nozb5GZJeSt9oX7WVq9lMjFBIhnSHIePcnyL0maw0Rfu48bWG7EZbVTZq6hz1SEgYNKbWFaxTHPCP4rD4CAhJZhNzfLmJW+mwdXAU8Oa83VcirO0fCm3d9zOt7Z8S4v+iI3zu0O/w21x0+Bq+IsfCH4jURI+JS54ZpIzHJg5gMvsosnTRI2rRrvIiUamElOMxcZQVBmTaCCSirPU3UJZpYdH+x6lwl2FSX/sg/XV2vo5k63+mRDdbpZEamkpb2V/6CB2g40GTyMzyRksBgtLvEuodlRz3aLriGQj6AQdFr2lWFEqs5RRZinTNmfQUuPtRjvZQharwYqsysRzcVL5FJOJSWxGG0adETPmYttvPt+noBQw6U3IioxO1AGaCJgXhS+13nuu67/JfJJYNsaB4AEWlWk2A4IgoEPbyuqd62VtYC2iIOKxeIrhnHpRz6a6TeTlPEfCR4hmo8iKjM1go62ijfH4OFaDlSp7FYs8ixiJjbCuet1ZHdO8YWIsq62FPzH4BMF0kEZ3I9FsFI/ZTWvXFSQTYXJyjps6bsNdfu5W/6fbGJrfvEOA1vJWHEYHiVwCm9FGubUcp9GJw6QFdlbZq9jcu5mElCAhJcjms6yrWceW0ecQEHjvqvfzwuSLNHmaCNgDxd9RYa/AY/OSKmQQEHBaXAiiSCKXQCfqSOWS5OQcNqMNuZAnk88QLyRJhKdREhaEo5tcqCq2VJ6lNg9KVKVHTfHc+GFt9kcQQFWJixIFpUAwFUQqSJj1JmRVxqQzaX9f4hBwBrQfUaDWWQs5CbVQQNDrF2zJzX+ZGIoM0VXZhcPoYH3NemZTs1gNVirtx8RnubUcvU7P3XvvLlZiB8OD1Lpq+eDKDzIWH2MiNsG3tnyLWlctY/ExuoPdTKemafW28pTy1AXhal7i7CgJnxIXPD3BHraMbeFjqz+GpEjcs/+e4n0tZS28te2tDIaP4NBZmT5q3G60OnDZPNiNdprLmskVciRyCRwmB0adkbHoGG3+136LQzCZqKps5jOrP80/vvgdHjvyKIqqEJPiVDoq8dl8fHrzp1hVvYpNdZu0QdXaDSz2Li4KtZtbb+b50ecJ2AOMxkcx6oxY9VY8Fg+KqrDct5zZ9CyrA6sJZ8LMpecw6oxYDBaWli/FrDeTV/LEpbg2O6MUqHXWciR8hJycw2vRKg0vtd57ruu/doO96CKczqeLsxvz4idTyGA32dlYs5El5UtwmBw0eZrw27Th8/65flq9reyZ2oOkSsSkGOPxcerd9egF/bHnNbvOettq3jCx0lZZFD3rqtfx7MizTCYm2Vi7kWQuhd9awarKFbjzOlRJOueZu/n2y6kqaG0VbWys2UhcinNz682Mx8c1J3G9BRWVw3OHqXHWaO2rdFCLKpBzTCWnWF97Ec+PPs+e6d28f8X7WFm9ircte1tRIIczYexmJ+vqNrBrYic5JYf7aICp3WDHZXYRSs2hopItZDGLJuSjXkA2jKjZLMIJFU+1oG02VseNeF1VhGJTCHo9aqGgbT0KIg6jJtbKLF4URcFpchKX4kSlKA3uBtxmDxXmMi6u3Ug6FUPNZvFW1C143473rQllQkSzUa5ovILnx54vbjGCVsW9rvk6Hjry0EnLDJv7NhPJRMjkM2wZ20KNs4ax+BhxKU6VvQq9qCdbyBKTYue9q3mJs6ckfEpc8ESlKO2+dv7+mb+n0l5Jg6uBYCqIgMBIbIS903v5u0v/lvtevIeklMRoMDNaCNFZ1YXdYOene35Kb6gXr8WLSW+i1lFLmaUMr817zOX3NQzxFN1u1lgu4m8Mn+fShktI5zNUOQPsmdrN3bv/C0GA7aNbWVKxhA+s/MBJF/EGdwNei5dFZYv4Q+8fmEnOEE6HmUnN0FbRxnL/craObaXOVYdZb6bGVUOjuxGDzsBfrfsrfrL7J7w48SKz6VlUVNp97Vy76Fp+tudnrKtdR8ARoMxahsfiwWfzMRAeQBCE4nq5SW+ixdtyzuu/9e56emZ7tBXu5DTNnmZGY6PEpBiiIGIQDVTZqriu+Tq2jG0hnAlj0VuYTEzy9NDTXNl0JbctvQ2TzsTemb2oqkqnv5OLai7CbXLjtXpBgI21G8/6fZxvraioTCYnaato49mRZ5lOTnNN85vYNbGLpw89QoW1nMewcWXgYm5ruYWmxhWntJc4HX67n0+v+/RpB8XnAyM/ZPrQgvmx8fg4VfYqrmy6kkePPApwdDPJhKIqGEQDdS7tZy0GK3/V+e4FArnoj+Sq5jKTg4KqsNi7GK/Fy5HwEZxGJ3OpWURB1CqCOgGXyUWjq4FaYzkoE8dehCCQsuoZMyRI5OdweI1cU3ELjx18gFB0EkGv+S6VW93UOWsx6UyMxUYJOKtBBo/ZjUFnZLl/OS2exRSScUZmB6iucOI9zYzcib41DoODG1tuPMmd+1SO3z67jxpHDdPJadp97RgmDDhNTsZiY7jN7uLvMuu1HLLz3dW8xNlTEj4lLnjcJjdmvZnd07sxiAY6fB00eZqK7S6rwcpUYlr7Fmmvoqm6jVQ+jV7Q8+jAo+SVPHXOOoLJIJc3Xo7P6qN7ppupxBSyIjOVnCKv5F/TEE/BZKLZVMmPR16kJ3QIRB1t/g7u6noPeTlPlb2Kdy1562krFw6Tg3U162iraCt+6KfzaWRV5oHDD1DtqCYuxTHrzaytXIvb4mYmOcMv9v6Cdyx7B5W2SiRZwqAzMJ2c5qe7f4rVYOWPA3/k5pabuXv33XRVdfGezvfw7y/+O0fCRzDpTURyEdp97Xxo1YeK8z1nm1zuMDlY7l/OhtoNbB3bykBkgEp7JXWuOvSing5fB+tq1vHVp7/KtvFt5OU8KipNniYuqrmI58eeZ2PtRq5ffD3XLLoGh9HBQGQAURCJZqPkFK1apS6Iazwz862VeUM+p8nJSGyElZUreW7kOWZSMwg6FUlUSRYyDKbGuH/fvdyFhbK2FedU+emq7OKbV37zJM+o4+ekTrzQZ3IZekO9TCYmi+1NAEEQ0QkiBp2x+HrLLeULzvupzO4yhQz3H76fVC6Fx+zhhpYbeKTv4aIrstPk4NK6S3l3063YEyrqfLVHFJko0/HAwMOEUrNabpnZTIVi4bq172IqO0M0n8Tu8YPJwH/t/RlvaXsLj/Y/QnewmzKLl3Q+zSJ7gCvrL+Ngz7OUO8p455K34c6J1Ne24z4uLfxUFgrt9mOC5MTZslPZF9iNdjbUbeDw7GGcJid2ox29qMdtdlPrqsWoMxKwB4pzZqd7nhIXHiXhU+KCp83XVsyeyit5dk/vLt43/2EfzUYxub00e5r58a4fYzaYubzhcpK5JEu8SzCJJhrKGvjZ3p9xcPYgsiLjtXqpd9fz6bWfZjg6/JqHePp0Lv5q+Uf5wZ4fMTjXx/B4N8NAU3kL72t6G7Vi2Us+x4mzRgkpQZ2rrhjoWGWvIpPL8NVnv8qbl7yZmBRjX3Af/77r34s/Y9aZcZqcxRT4RC7BRXUXcc/+ezgcPMy7Ot7FxfUXIwgCiz2LUVWVPVN7aK9oL5opzn/blgoSBtHA1c1XU2Ypo85Vt+Bctla08reb/pbvbv0uB+cOoqoqiqrQ4m3ho6s/yq+7f8328e0kpETRJmAgPEAql6LT34lO0DGdmiZgDzCVmOLJoSfJFrLYjNpac8AewKg3Ftt1L8V8/tG8qEjn0yRzSbyWMh4LH0Ev6MjLeexGO5lcjkaDQig8xWh6Gnc0es7bl6fyjDqR49/ThJSge7YbWdWGvX02X3Fbq95Vz2x6FoAOXwcd/o4zPhfAgZkD6HV6JFmi2lnNodlD3NX5HkSd9jorrBWs9XSweFoBk4Khs5PC4CBJm4E/7PkvQnNj2qq/2YwuK2Fd2sp3Dv8nTpODiJqit7efi+s2oRN13H/gd6yqXcuNrTeRyWfwWsqwqHoWy246Ft9KrViGLVJAMJsxuo+dk5djoXA6B+1KeyV2o53L6i8DYDY1W3QED9gDC3y4zvQ8JS4sSsKnxAWP3+6nq7ILj8VDJBMp3u6xaM653cFunGYnLrOLH+/6MfXuep4ffZ6pxBT7Z/Zj1pv5/IbP82Dfg+yZ3oPVYEWSJVRVZdfkLn6080fc2Xkne2f2IhWk16zcLbrdtI86+EbXZzhcmCaai+M2Olmir6Q8rTunVso8DpODDv/Ci+B9h+4rWvePxkZZG1irbRAdrRRk5SxIsEi/CJPehNPk5N9f/Hcm4hN8Yu0n8Fq1b+t2g2Yi6bNrF995M8V50RPNRumd6yVTyHAkfIRL6i8hp+ROqqKtrl7Nv1z3LydVPuZScwxEBxaY1gHIqsxwdJiLai4ip2jeRk6zk3v238NUcmrBkOtkcpLNvZtPKwROdb7mZ6Z8Nh+youUezW+ISfkMJr1JG9Q1GMgIMhNuHeP6JI2FFOf+Dp0bx8+5AGyq28Rzo89h0Vu4uO5iHh94nA5fB1+65EvFdtmZOD7oci6tOWBL+QypTIJySxlXu1dRNZXRcu1aWorBvmM9TxNOzSFYrXDUSd5X3sCTR/5ETJ9nNDFD/9HE+KHoMB9c+UEEQWD/xG6Ggn2sLmvHKJm4rnwDNWHxaKUsj2CxYGhtLVbOXq6FwvGv60TqXHVc2nAplzZcWox5AV6WD1eJC4OS8CnxhqC9op3LGy5nKDJUXL/O5DMMRgZZWbUSp9FJMB3EqDPy/OjzjMfHubPzTpZXLkdWZALOACIi3qMld6A4t7Jneg/vaH8HPbM9WPQWLm+4/DURPoLJhGHxYsp7e4+tDKdBsAgYWhe/aqaV80PINqONmBRjNj3L4rLF9If7F4gfm8FGh68DnaBjMDzIP175j/x090/ZObWz+FxrAmv4+8v+Xpu9OWqmCFqlZ170gCZAFEVmbnaU+5P/zXs77sTl8hVf06kqH0PRIUTEBaIHtAw0i95SjC0ASOfSTCWntG0eceHH3GRyksnk5FkJHzg2M1Vlr+K50edYWbUSs96MVMhi0puK50/RiYyGh1DlAmuiwwymxrnF9s4/e2v0xJbV+1e8HykvMZ2e5vpF19Ph7zgr0QMnB12GMiEAPNYyrq9/E7W4EFoXmqaqqRRJOXPS30fBbCYiJzkcHaTWVUdc0vK9ckqOn+z+CV+4+Ausq16HnJfo8nex0r0Up60MNZU6rTnry7VQOPF1zXOiv9bKwErKrGUv24erxIVBSfiUeEPQ7G3mk2s+ydef+Tq7pnYVb18TWMNfr/9r9k9rlZ1KeyXPjjzLe7veywsTLxTbWiOxESbjk9y65Fbu7bkXRVXIFbTqgYBAKqeFkGYKGSaSEySkxGs26Pznduqe3ygqyAVava3smtrFJfWXoKoqw7FhADxmD1WOKlq8LaQLab559TfZ3LeZrJylzlnHeHwcBYUXJ1/kezu+x+c2fK7osQMQy8aKoge0zZ9MPEw2FuZQbJJtnu0EJl001Hbg8ladeIiA1mawGqyn/OaeKWQIOAIsKlvEysBKxqJjVNori6JHVRRt7kRVQRDI53PndI4cJkfRK+ajqz7KzsmdrK5ew+DcEQpyHp3OgN/mZ2p2iPaqTgRZJaxLvmat0Zdrn3AqTjX7cyYfKjWfx663nnR7Vs4i6wQimQjVR7PF5skreQ7NHSIv52n0NGK1uXD7j4qzMxg/vhILhbN9Xef6+ktceJSET4k3DJc0XMKPHT+mO9hNJBuhzFxGs7eZgdAAVoMVv91PMpfk2sXX8uTQkxwJH6HcWk4yl8QgGhiKDvH8+POsr11P90w3k4nJYrL38TMiUv61a3fBn9+pe36j6E+Df+L6xdfzyJFH2D6+nSZPE2tr1mI32Gkqa8JtdFPnruN3h36Hx+zh/t77Aa1i1FbRRs9sDwoKB4IHCGVCLPIsgintd8y3oABMgpG19euprWrB6vLiNruxWL08tPP3WEae5taNH6Ch/ORQynp3PQ3uBtor2jkwe2CB+FlRuYLWslYCjgDt/naMohGH0UGmkKGQl8hKKWS5gE7Q4TG68BfMKNHoObULbQYbk8lJVFSS+SR3dr6bPx55nFQ+zXB4kNHwMM2eBt7W/k4yioRbzWEQDZpr9FlWl84XzkVICQYDtbjx2n1ahtlRzDozeaWASWc6qeoGWkBoQkoAZz8780otFM72db2aQrLE+UdJ+JR4Q9HsbabZq100nx1+lr965K/YM70Hr8VLnasOr9XLpfWXsrlvMwoKs+lZnCYnoiBS7axmIj7BhpoN7J/ej9WgfYttq2hDKkgLhh3faNsdXZVdlJnL+OGLP+Tm1psxiZqxnCiIpAtpZpOzrGtdx093/xRZlbGbjl2o5o3napw1zKXnKCgFElKCxd7FxeqMUTQiIOCxeFgbWMNTw0/z3Pg2RqLDTCQmWF+zni9u/AK79zzM/fvv5f0bP3HSN2yHycEdnXcQyobIKbmiyWK9q543Nb8Jt8VdnMFY7F3MxrqNPDn4BFOxCQpHq3cOk5PFviU4RSv5vj6My5efdfVsfk5EVVVC6RD3HvodLWWLafG20BM8SJnJQ31ZI4+OPsFUcqr4c6PxUT5i+sgb1vxOdLuxjxi4qek6Hhx85Jj4kSSay5qZSk+TzqeLXj1wbPDaZrCd0+zMmfyOLqQE9RKvL4I674FeAoB4PI7L5SIWi+F0Ol/vwynxMhkIDfDhzR9m19QurAYrqVwKRVW4sunKok/Mc6PPAWDVay6vnf5ODgQPsKl+E08OPomClhH1iTWfYCY1Q0EuMJvW0qrfuvStb8hvhPPxDKeabwilQ/x090/JK3nqXfX8/bN/X8xHAq3qEkqHyOQz/PzWn5PJZ4hmowiCACr8aehPWA1W9s3sI5vPFmMo6ly19If6WRVYxVfWfYFnB57g7evef9rzeyR0hJ2TO4lJMQyiAavRiqqqbKjdsOAC2jvXy/ee/2eGQwMUlAJ6UU+V1cd632pSkVneXXcj7rpF51RNG44Os7lvMxa9hScGn2AyOcmm2k38ceiPrK9Zz2hstDgXM09beRtLKpZckOZ309EJemYOEs1GcFs8tPmWUemuPulxSjRKvq+PpJBnjCjJQhqH1Y3qLePvnv0aB2cPUu2oZiQ2gsfs4eK6i3lh4gVua7uN29tvP6eh4Vc7GLfEG4ezvX6XKj4l3pB0B7uLsz56UVvPBXhq6CmuXXQtXf6uovGerMgkc0mCqSAt3hauX3Q9m+o2YdabsRlsHAgeKP48vLG3O8403zCVnMJn9wFgMVjo8nfRG+pFRUVAwCAayBay3NZ2G38c+CP/uec/AW1oelXVKt6/4v3Mpef40+CfGI+PIyMTlaLoEiJV9ip2jO8gtCYOonjGitoi7yL8dv9LzmAU5ALt7laW2RrJyhJmnQkkibFxba5rjCiufP40v+X05+e9y9/LaHSUTn8nSSmJWW9GEAQqbBXsmd6z4PEWvQWX2XVBmt/tGXuR7z33HQaDvcXbmnyt/NWmz7Gids2Cx4puN8bly3FHtXN6/CzaP17xjzxy5BHm0nPcsuQWjDojsWyMf7rqn1hbvfacxeDZ+B2VKHEmSsKnxBuS4ysW8+GLAJIsEc1GWVS2SFtPVmXMejPpXJpDc4dYUbmCFZUraPY2F6sfJ4qeN/p2x+nmG46fw0jn07yz/Z38svuX9Mz2ANpa+Y0tNxJwBPh1969p8jShoqITdEwmJvnutu/yoZUfYiKhuf3q0PK/wpkI1Q5t+DWajSOYzefmlyKc+uZEPsF0YhJlbu6U9ycLaQTDuaW0g3Z+lvmXLbitylnFI/2PLLjNorfQWt5ajE64kNqj09GJk0QPwGCwl+899x3+6fp/Pqnyc7pZtOWVy6m0V76qQuVs/I5KlDgdJeFT4g1JmeWYuZ8oiAvu2z6+nY+t/hjPjDzDzsmdWA1WFFVhVdUqvnbZ14ozQqXtjoUc74UiqzKpfIo7Ou4gk88gCALL/csx6Ux8+ckvM5eZYy49V1yHr7JXUW4tRxREREFERUVWC0UPZeXoirrb7EZSpJMqagOhAbqD3YQzYcosZZj1ZvZM7ymK0lO5atsNdgSzmZzFQLyQIqfkMYoGnIKWRi7ZTbyQ6ccRnH3FcSQN7gbWVa+je6abnJLDKBpxmV0LAnBPJ+ZO5UL8el/Ue2YOniR65hkM9tIzc/CULa/TURIqJc4nLjjhI0kS69atY9++fezZs4eurq7ifaOjo3ziE5/gySefxGKx8K53vYvvfOc7GI3G1++AS7wudPg6WFW1il1Tu7SUcZ2peJFc5ltGppDhbzb8Dal8imwhi8fsocPXURQ985S2O45xoheKrMokcoliFazeXc89e+9hKDpEKBNaEA0Ry8bI5DMU5AIdvg66g93oRB2yoqCiIgo61tVcRKWjkotqL1ogQp4dfrZoU6ATdOTkHFc2XskHVn6A4egwelGPgMDmvs28d/l7iz9b767HYDSzIztMOhYCRUEQBLzuABaTjb7EMDMhzeW7zFLGzc03UCvbNdsAoxHR5Ton24DF3sUsqVhSrDaqhQJKMgmKgtfhp862cE1/JjnDvpl93HvwXubSc+hEHeFMmAZ3w+s+rxLNRs58/0uslZcocT5zwQmfv/mbvyEQCLBv374Ft8uyzA033EBFRQVbtmwhFArx3ve+F1VV+cEPfvA6HW2J14tmbzNfvfSrfP2Zr7N7ajcus4tYNsYy3zI+ueaTDEYGcZgcxQt2ibPj+CpYMBUkk8+g1+kZigxh1psxG7RAxxPzsGRFJiEnEEWRt7a9FVmR6ZnrQScKuMwumsua+eTaT7KyauUC0TMQGljgzSQKIovKFvH82PMMRYe4ovEKnhx6khZvC9cuupbR6OiCNlSTp4meYA8ZWYJCAbvRgWrQc9Oyt5DKp3BSwG60I6oCv3/xl7y34mpsyaP+TUddg8925X1BWnhkEjkcJmFSEcwWVlYsYsvIFpZVLKPet4i903v5w6E/cH/v/cUcrHJrOSsrVzIcHT6jC/FrgdvsOfP9L7E2XqLE+cwFJXweeeQRHn/8cX73u9/xyCML++mPP/44PT09jI2NEQgEAPjud7/LXXfdxTe+8Y3ShtZfICf5+ljKqHHWICsynf7Ov+i21SvBYXJQUAv8fN/P6ZntKTplt1W0cXv77bRVtLFvZuEXE0mRWFW5ChWVLaNbePuyt2sxGYJAh6+DZRXLTqq2wcIhdQCfzcd4fJxQJsRcZo4bW25kIDLAVHKKXCFHp7+z+NiR6AgD4QHNjBGVbCGL3+ZHQeF7O75Hz2wPmUIGAYEu/3I+sOID9FgTOJBJ5lM4RCs1oyJlls6zrvw0uBu4a9kd9I7sYbg6xIHgAQ7PHeZLf/wCKSlBR1UXX7zsb7ln/y+xGW1F0QMwl55j9/Ruuiq7zuhC/FrQ5l9Gk6/1lO2uJl8rbSfMOJUocSFxwQifmZkZPvShD/GHP/wBq/Vkl9Bt27bR3t5eFD0A11xzDZIksWvXLi6//PLX8nBLnCcc7+tT4tVhJjnDt7d8m53TOynIBURBREBg69hWNtZu5J3L3omiKnQHu4s/017Rzs2tN5PKpXhb29twmBwsLlv8kuLzRIdmu9HOoblDxYpSppChoBSIS3G2jG0phnKCNkwsqzLTqenibTWOGr697dvsmtyFxWApZm/tnd7LL7rv4dOrP8ne0ABep590PsiL+WFaRuIs93XgcvvO6vzMRacYy8zwg70/5OBMN3WeBsqcfsrwkSik+dGu/6Dd185YfOzkn03PISvavNPx7SRVko65d7+MNty5Uumu5q82fe6UW11/fcnnz2m+p0SJ840LQvioqspdd93FRz/6UVavXs3w8PBJj5mensZ/wkaBx+PBaDQyPT190uPnkSQJSTq2tROPx1+14y5R4o3IrqldPDH8BNlCtnibUWfEY/bwzPAz1LvruarxKm5quYlsIYtZbyaSjfDC5AusrFyJzqFjZdXKBbNT8xf2oBzjUHKYaD6Bx1qG1+pdEJgqq/KCP1v0Fkw6EyoqNqONeDZejBM5cZg4nA6TKqTYO70XBW3Tb/55dKKenRM7kdeoRPV5/t+u/yBTSGMyWTEYLayqWsmtrbdS5qig1lV7WrGWkBI82PsANoeXgzPdLK3soD/cz9zsAUQE9KKekfgoVzVdxVz61Ntm87NoxQywaJR8by9q5ljkx7m24V4OK2rX8E/X/7Pm4zO/jeU/tY9PiRIXEq+r8Pna177G17/+9TM+5sUXX2Tr1q3E43G++MUvnvGxgnDyXquqqqe8fZ5vfvObL3kMJUqU0EhICQYjgwtED2hBoZFshL3Te7m943ZemHiBh488TCQTQRRE6lx1XNN8DRW2ClL51IK5KiUaJd/fzwFrgh/s+RH94X4kUUbWiXxszce5uO5itoxuKfoF6UQdqqLS7msnmAqSV/LFNqYkSxyeO8ya6jULttCkgsRIfIQmTxMmvQk1rxYrKyoqRp0Bi8FKNBtl85GHMRhE5tJRzEIOM3meG3ue2dQc71x+O0+PPM31i68/pRPzSHSEUCaMYjJR52nQRM9RgaMcFVnxXJxDs4fwmD00uhsXtLsATDoTlfZK2nxtqJJ0kuhBEEiKBcaGXyDjtuKwul/xVtrpqHRXl4ROiTccr6vw+eQnP8k73/nOMz6moaGBf/zHf2T79u2YTijtrl69mjvuuIOf//znVFZWsmPHjgX3RyIR8vn8SZWg4/niF7/IZz7zmeKf4/E4tbW1L+PVlCjxxmckOoJZbz7lfTk5R07JoaLy+Y2f5+qmq+kL9yEgYDVaiWfjpPIpbmq5CYADMwdIZKJYo2mcLg//vvMnHIr0MieFKch5EAS+t/17fGHTF1BUhefHnidbyOIwOqh11vK2ZW/jsSOPsaR8CZFMhHA6zHRymof6H+IfLv8HWstbi8PGh2cPk81n0Yk6yi3lxMU4kaObS1aDFb1owKI3oxN0RLMRElKCKmeAkdgokegABtFAf7ifOk89HZWdJ22QzZPMJxHMZhxGB2VWL+vrN1LtqCZTyGA1WJmKT/H7Q79HRSWajfKm5jfx+MDjCwac69313NV1F367H3lm5iTRM+5QeHDwfkLJIGJ5OaLdXlzn91q8x+wXjPY/myAqUeJC5oKIrBgdHV3QgpqcnOSaa67ht7/9LevWraOmpoZHHnmEG2+8kfHxcaqqtLXR3/zmN7z3ve8lGAye9XBzKbKiRInTs318Oz3BHv5r739xIHjgpPsvrr2Yb171zWIoZ0JKnOSDFMqE+O3B3zIYGUTKJjFIBRweH3r03Hfo92Ty6WNPaDDgMLv4/nXfJy7FiUkxLAYLB2cOcvfeuwllQkiyRKO7kRtabmA2OUtfuI/rFl3H5zd+HofJQUJKsHV8K8ORYSpsFfznrv9k17Q2MG0QDSiqgkE00Oxp5ubWm/nF3p8Ry8aI5uOEM2GtIiQaMIkm3rzkzYg6HRdVX8TFdRefZHVwYOYAvz30W5a6W8iS41+2f4+9M3uL96/wr+CDKz9IKB1CUiS2j29nUdkibAYbFoOFjbUbWVm1sjjUXBgfp3DkCOj1jAUs9Erj7Js9AKpCoZBnNj6Dw1GGSa8FgTa6G+kP9xd/36n8jU4kngwxHDxCUopjNzvxeWoISVES+URJPJW4oHhDRVbU1dUt+LPdrvXum5ubqanRHF/f9KY30dbWxp133sm3v/1twuEwn/vc5/jQhz5UEjAlSrxK2A12RqIjvK/rfdy99+4F4qfd187H1n5swUX2RB+khJTgl/t/yfOjz5MpZFAlCTWTwZSfoaAUaK/s5MWx7cd+oaoloR+aO8Sl9ZfS7m9n18Quume6eeuytzKVnCqKF0EV2DO9hzJrGZPJyWJEhMPkoNpezVB4iIcOP8RdK+5C3iPz3MhzOEwOgqkgm+o28dE1H+WZwadRULGbnQzFRwAQEVFVFQTQiTr6Qv2sqlp1Sifm+faaqDfwwMHf0RfqW3B/X7iPB/se5MrGK9lYtZErG648pZvxvGCMp2ZwugqEnAr/8MxXyMhZdk7uRBBEbm69mVuX3spEfIIyaxnRTJT08aIRbTj8gd4HeF/X+wAWVIOcRidHQv384eDviOcTKIpCupDGZ6vk2sXXcHDuEJIsnZV4KlHiQuKCED5ng06n46GHHuLjH/84GzduXGBgWKJEiVeHenc9XpuX3rlebl1yK+9Y9g7S+TRWgxWTzsSSsiVnrA70h/qLogeA+fk7VWV/cD/vW/4+IlIUg8FETs5j1BvJy3lcZldRaKyqXkVOzrFzeicJKYFRZySUDvHYwGM4zU70oh6jaFwgTOrd9Tw98jQb6jfwaN+jvKPtHdy5/E6SUpKCUsAgGBAEAYPeQL2zjoGY1noSj84UoWqJ4lPJaQRBIC7FT+nEPO/l8/zY8xyeO4zX6qVMLUNRFXSiDkVV2D6+nVuX3soy37KT1tUTUoL9M/vpC/Vh1BmpsJSTtMPdu39MngJmvQW9qGdD3UaeG32W3dO7WVy2mK1jW+mq7OL/u+j/K849zRPLxuiZ7WHHxI7ivNNEYgIRkfXV6ygIKk8MP0Uql6TC5iM4+ASH53r43MX/iz3TexaIp1Llp8QbgQtS+DQ0NHCqDl1dXR2bN29+HY6oRIm/DI436ZtKTBHLxsgpOQL2AO/ufPdLWgdMJiaPiR4AvR5EEZ2s4jA5MButHI70M508tom5vnY9FdYKnIZjldt2fzsH5w6yd3pv0UeozFqGXtQXg0GPFyYOk4MbW25kc99m1tSsIStniUpRfHYfO8Z2UGYtYzYzy4a6jXT4O3n0yKP0h/oBFVVVWVK+hFWBVTwz8ixlljKcZudpjS8b3A3snNCiUAyigcnEJJIsFZcszHoti+xE0TMcHea3B3/LtvFtDEWGuG7xdRwMHqSrsosH+h7EqDPis/m4rPFy9kztYTo1A6kZNtVtQlZluoPd/Nee/+Jdne/i8Nzh4vNWWCv4Q+8fMOlMRLNRDgQPcCB4AKNoYNfkTrqqVnBZw+X8/tDvmE5O47WWsWtyF9vGnmeZv4PDc4cvyJDVEiVOxwUpfEqUKPH68UoyzAz6haGggiiC1Uomk2BtYJ3mu3Oc6GnxttDh6+D/bvu//Nv1/1a83WFycFn9ZWwd28pgZLB4+3wwaJWj6iRhMp+sfvxxV9gqCKVDhDNh8kqew3OHqbJX8aGVH6LV28psehYBleHoKM+MPEvAEcBhdLC+ev0ZX6/X4sVmtAFgNVpJ5VIUlAJ6UY/NaKPKvjC+IiEleKD3AQYiA/SF+lhfs56DwYNsGdtS3FYDCKaCVDmqSBeOtbTySh4BAaPOyOG5w+QKuQXPraISy8RwmV30zvUym5olW8iiN+gYiY3QWbmcF8Z3sLZ6Hc+OPkuFrQKAqcQUi72txee5kEJWS5Q4EyXhU6JEiXPm5WaYBewBAvYAk8nJ4m2CXo9qs+KxlGEQDXx41YeRZAmjzsh0cpoHex/EZrRxeO7wgorSIu8i/tfG/8Wv9v+KyeRkMRi0ylHFLa23nFKYnOq4T8wfG0+Mk8wl2Vi3kd8d+h1TySnMBjOd/k7KreXc0HIDreWtJz338bT52mjyNDEYGcSoM2K0HMsLbPI00eZrW/D4kegI4UyYRC5BIpdgsXcxvz/8e6LZKHqdlkUGEJNiSAUJi95CTIoB2oC2WW/Ga/GSyqdI5BInHc98ZMu84SNwNCwWCkqBwegQ62ouAkBRleLzHv9cpwtZLVHiQqMkfEqUKPGa0eBu4MbWG9ncu3mB+Kl21nBZ42X847P/SF7Oo6KiqAqiIGI1WJFkiYh0cnBma3krn9/4+ZdVfTr+mE5VwQplQlyWuYy4FC8aMTpNTlZUrnjJ5/fb/Xx63af5/o7vL6hINXma+PS6T5/U5pqvpiiKJjoUVSGajQIwGZ9kacVSeud60Qk6zc9IELAZbDR5msjkM3gtXsx6M4lcApPehFSQMOlNlFnK6PR3MpOaIadolSC9qH3sF1QZ89FtMABZKSCgCaIGTyOzmRAOo4PZ9CxllrJSpl2JNwwl4VOiRInXDIfJwYbaDaiqepKgsBvtpPKpBY+XVbn43x7TqYMzX2716aWew2FyLPTFOUdR1VXZxTev/CY9wZ6TNrfmt7bmq0x5JU8wFcRqtGrD2TqtQqSqKpv7NvNXF/0VBaXAaGyUhJTAZXLhMDrYVLeJh/sexqA3MJWcosvfhc/qIy/n6fR3FrPLdk3tIpgMaoPcOgMG0UBcirO6ajXpfBoVFZ2ox2FyUOOooc3Xxlh8HKPeSJml7LQVtBIlLkRKwqdEiRKvKQ3uhlMKikgmQoevY0HG1zwdvo6iN9BrySsVVX67/5RDzA/0PsBgZJDeuV4yhYw2oKzIRLPR4vzPorJF9IX6UFH5+d6fc3nD5Vy/+HrsBjurAqt4euhp/jj4R7JyltnMLF2VXbx5yZu5e+/d1LvrySua+JkfSI9momwb30Yqn8Jj8VClr6LOXUcwGeSW1ltoLW+l0dPIVGKKeDbB5zZ8jgpLBbWLTx/RUaLEhcgFYWD4WlIyMCxR4vVj29g2/vdz/3uB+OnwdfClS77E+pr1r+ORvTokpAR3772bqcQUe6f3Fjfc7EY77+54N8+OPst0cppKayVeq5cdkztISAnS+TR6UY/H7OGq5qvYP72fFm8Li7yaOHIanWQLWbaMbSFbyGLRW+iq7OKOjjto97drGWJ9D6ITdOwY30Eil0BAYDQ+SoW1gtvbbydbyBLLagaRy/3LWepb+jqfrRIlzo03lIFhiRIl/jJYX7uef7v+3+ie6SYiRfCYPHT4O6hz1730D18AzLe35geNQVtvv7nlZn6060eUW8qptFaysW4jNqMNp8mJTqcjm88yGhsFAWwGG0fCR+gOdvP2ZW/nH579B6rsVXgtXrxWL6Cl1seyseLs0Eh0hN6ZHlxmNxPxCXx2H1JBImAPEM1G+cZz32Dr+Fbe3/V+9k3vpcnTzJc2foGu6pWv27kqUeLPRUn4lChR4ryizl33hhE6JzIvROYHjQEub7icX+z/Bd0z3bT72rm6+Wru7bmXnVM7UVQFvainzlXH1U1X8z/d/8NTQ09xZdOVzKRmMIgGvBYv2XyWOXUOl9lVHFbOKbniJlY8MUckNEHMHufRvodwWNyEMiHsRjuSLFHr1PIJU7kUw9ERzDoz//LMt/inq79FZUXDa3uSSpT4M1MSPiVKlHhNmEnOHBv0Nbtpq2g7af7ljfz74dhKuFE8tt5uNVjpme1hUdkiLqm/hB/v+jEGnYHp5DSyKmPRW5iITxCX4lzRdAX/sfM/uL39dupd9WwZ3UKrt5Xp5DTJXBKpIKE3ah/rAXuAenc9qiRhyOToDfWxzL4a0KI3snIWt6gJIINO81fSi3oi2QhGvZHBYC8Hp/fjd1YhnBAQXaLEhUxJ+JQoUeLPzt7pvadd7e6q7HrD//555rO85r14MoUMqXyKSnslk4lJXCYXA+EB6t31xY02WZHRiTp653q5fvH1XNF4BY2eRoYiQyRyCZo8TSRzSURBJFvIYtKbaPG28O7Od+MwOZBnZjAK2nxQKh2jqayZUDZczCBzmVxk8hka3Y2Mx8cxioaiM340E0WJRtH5X1uBWKLEn5OS8ClRosTL5qWqKDPJGfbN7ONg8CArK1fS6m3lqeGnKCgFzHozjx55lFA6hN/uf1VTwFVJQolGUfN5Zo0S39v2LwzFhhc8ZjAyyPd3fJ9vXvnN16zyc3zkR6aQoXeuF5vBhsPoYCY5Q6aQwaQ3FYWHiKhFXaiaA3MylySZSzKbnuV/b/nfvKv9Xbww8QJ+u5+bW24mp+TwWDxct+g6WspbtHORz5NMhrmi/jKeGdvC1Q1XsnXqBWbTWmvMqDMiCAJrfGt44PD92I12DIjIgNvoRM3nz/CKSpS48CgJnxIlSrwsXqqKMn//rsldjMS0pPN2Xzt3Lb+LsfgYTw49ycP9D3Oo/lAxmsKoM5IpZF5RK0qJRsn39qJmtOHhHneUgbH9CFYrgn7hR95A6AgHJ/bhtbUhGI2ILtefva1zvGFiOBPGKBrZObmTsfgYdqMdo86IJEv4rD6i2SiyIqOoCgoKRtFIp7+TF8dfxGVy8UDvA6wJrCHgqKLS7sdhsJOWszw3+hxNniYcJgeCwYBNZ2Fi4hAbKlYgmiysWPlRQrkIebnAaHyUsdgYTwz+CaPOiF1vRZRVmspbWKKvRDAYXvpFlShxAVESPiVKlDhnZpIzRdGjKgoUCqCqDMwc5nvb/oW/veTvivfPRyQAHAgeYOfUTlK5FGPxMUBzK271tvLDnT+kP9xPpb0Svah/Wa0oVZKIjPYzpgsx65aQdCpz+RgxMYc1J2AUtfwsCgVURUEv5clJaQ7E95EspHFYXDTUduDyVp35F71CTvQHkhSJqcQUXouXJeVLeGbkGZaULyGv5IllYxh0BhZ7F1NQCiz3L+fxgUcREcjlsmwfehaj3sSb6q6g54VHEGqqEe32Yqio6HZTO+PDbfUyNaulzk9P9FJev5SHBzazvHo104kp0lISj6WMJd4lVOo9fGrFRylP6xDd7j/ruShR4rWmJHxKlChxzvQEezTRUyigptNwNGoBYGBsP93B/cVK0PyW0TxSQWIuPYdBNLC8cjlXN1/NC5Mv0OhpxGa0MRGfQC/qX1Yrami2n/v7f0ufOktazWE1WFhTdxFpOUssl8ArqNiOdm50eYV1zZfwp6E/YZqNFqtB3pEAt278AA3lZ06afzVZWbWSj67+KI/0P8JdXXeRLWTZMb6DgCNAjbOGJk8T71j2Dp4fe55H+h6i1llLucVLRjAhIrC0fAnMhijEooiqgtDcXNwgE0wmPHWLuVm4iQd6HySUDCIrMnOTR3hXx53UlNVxTePVpPJJlHwel2hhieinPK3DsHhxabC5xBuOkvApUaLEOROVoqiKcpLoAUBRCKfCqIqCIIrYjDbMejPZQhbQQjFVVN7U/Cb2z+zn0Owh4lKcnJyj2dPM5Q2Xs7lvM5lChsHIID3BnrMSPgkpwYO9DzCpRrFanWwd/BPD0WHcZi9/s/F/AZDKp3CbXRTyOQ4OvsD+8CFa9H7tddjtCKJIKDLJ/fvv5f0bP/GaORY7TA78dj/jiXF+feDXfGLtJ3jL0rcQyUYw681Mxie5//D91LnqSBXSyGoBUwES6SRt/nbe0/J2Dmx/CFQVJZ1GSaUWhIqKbjdNlrW8z1fPaHKClJzBbi+jwdtcfI3Hz0UJBgOi210SPSXekJSET4kSJc4Zt8mttbeOEz2CIGCzuECvx2l2kpKSmE1WjDojNc4axuPjZAtZ9KKedl87e6f2cln9ZTw98jRbx7YC2gDvmsAa3rP8Pfxqzy/IyFmmk1MkpMRLipCR6AihTBibq4L7ev9AMBnkE2s/xYb6jfxo5484NHeITCFDKB1iVdVKPrv+s2S6/4AleFS8FQpg1NbMQ8lgsVX0WqETdXRVdhHLxni0/1GSuSRei5eMnEEn6Gj3LePnL/yEMoePG1tu4orydeREBSEcpfu5P5AXjuaaqSpes+ekUFHBZMLtr8PtP7VHkmAylba3SvxFUBI+JUqUOGfafG00eZoZSGvREoIg4HRUMBQbpsLmwyhDhcVLf6gfr9WLzWilydNEOpfGZ/PhtXqpdlSzY3IHiqqwtHwpoigSz8bZO70Hv83P4opWnu57nFw2zX/t+BG3dL6NBnfDKY9HlSTi0RkoFNDZDASTs3z+kv9FTs7zlae+wp6ZPegQsRntNLgbOBI+wvbx7Rh0JlCSR5/kuPQeUSy2il4r7AY7Jr0Jn93HTHKGXVO7SOQSKKpCQSnwjqVvx2VyUWfyU4uLhucPM9Xi58HxbnKF7LFWnbuKm0uhoiVKnBbx9T6AEiVKXHj47X4+tfaTNB1dmbZZXEXR85Ylb2Hv1vt5f9sdLHI2MBebIp+IYyiotPvaaatoQ0Bgbc1adk7uZM/0HnpDvXQHu0nkErSWL2EoOoTX6mVJZTvGnMzsaC/3H7yPhJQ46ViUaJRw734ymQQui5tyazmfv/jz/ObAbxBFkT0zewCQUYjn4kwnp7EZbMwlgwSV+LEnEgTt//V6BLN5QavotWDe4wcgr+Rp9DTiMDoQBZFmTzNSPsMiez1X115GMhlGLC+nqm+GO92X87b2t3Pdslt4a8c7eG/zW2nwLX5Nj71EiQuJUsWnRIkSL4sVlV18Y/X/4nB2jKAcZzw2ilEWmNm3DUXOc2DrZu5cciP5JRYMBiNV+jIc/loOhQ+zyLOIvnAfN7XcxGhslO6ZbmJSjHA2jKIqLPcvx6y38O7l76H/4BYoFAhFJk5qP6mSxNBYNw/0PciUNMe+WC+C1YrPVUWzdxGZfOak407lU5Rby5lMTdHobmK8PERWyWE2KpTrjTjsZTgsblRUto9vx260v6oeQ6fjeI+fYDJIQkpQ76qn0l7J5Y2Xk8jGkU21TEweZq29FUNXF/m9e7GMB1mk0yFYLOiqnJhWLUe0v7airUSJC4mS8ClRosTLQjCZqKpspry3wItKnoOjR0AUkQs5kGVyhSwH9v4JgBs6bkOst/Lo4GP8bO/PWFS2iHAmzM6pnTR7mnnTojfxUN9DAOgEHS6zi6XlS3is9xEaCkcHbBXlpPZTLDpT3FQyAq2eRYxlg0wlphiMDHJp/aULjxkBRVWQFZndU3v42JpP8L1t/5fR2CiiqMNt8XCV+ypavC1sHdtKOp/GrDezz7SPjXUbT9tqe7WY9/jpD/WzY2JH8ZgHI4PIqoxKFrfLT63OixqNYujqQhBF7X82Gzq/vyR6SpR4CUrCp0SJEi8b0e3G2NWFcwLE2TLUbBbBYECVpAWPs9Q38puRh/jT+DMMRgfx2XyoqFRYKxiIDKCqKssrl7Nnag+iKGLUGeiZ3o94wtzNie2n0eQEoWQQnajD562jymSiRm0ib9QhICCoAqsqV7Frepf2ZwRUVAw6A22+ZQRTQVxmN1d5W5BRcJpcuM1udk/t5umRp4u/J2APIAgCXov3Nan8rAyspMxaxgO9DxDOhIv3eT0Bbm6+AbdsL21flSjxMikJnxIlSpwzCSnBSHSEZD6J3WjH72vAV9nEzEQ/yPKCx3pdVUzKUVJylqHIEEbRiE7UsXNyJxfVXIRRZySYCnJF4xX0h/qpdlbzro472D68la7ydmKTQ8iigNdTvWBTKSElGMlMM2OQWFbdxTMjW5iOaKaIklGkIIIkZ3n/ivcj7BXYNbULAJvBRlv5Uj686iMcnDtIZ9VyXCYXM8kZnhh6gtn0LJ9Y84kFr2EyOcnm3s10+Dro8Hf8mc+uxvEOz8l8ErvBTr37z99yK1HijU5J+JQoUeKcGI4On1SJKLOUcUn9JTyXzzM9O1uMi/C6qrip7ip2pEPklByZXBq7yU4mn8Fj8bBtbBst5S00uhtZVLaIOzrvQETk0b5H2Du5mysaLqO5bR1zmRCLKlqIZCI4TI7iMejRoTea+e2h3zGVnKLcXIZJFjDlFHJGla1j2xAFkesXXc/tHbdTUAo0uZuotFXyN3/6G7ZNbAO0TKyVVSu5q+suvvrUVxEFkbaKNpwmJzk5h0lnIibFmEpOvWbCB052eC5RosQrpyR8SpQocdYkpAQP9z+Mz+bDbXKTyGn+Okadka1jW3n78ncxU3kRscFerJJCddqAdSCEp7oSo96Eiko6n2IsNsYy3zJ6Zns4PHeYBncDg+FBDs4d5KaWm5hJTHNr+1v54+AfeWDwEaocVfx4909YVrGML1z8BbqD3YQzYSptlVRXNPHw4KOgqsxlw/isFeTVAjajA5fZxbWLriUmxdAJIoOz/exN7mLv3P6i6AFQUNg3s49f7v8ld3beSZWjigd6HyjGagDUOmu5pfWW1+O0lyhR4lWktM5eokSJs2YsOobP6uPne3/OV57+Ct/e+m2+8tRX+Pnen+Oz+gilQnQ2r2f98utp97Xj9tdhXLWKdscibHoLi7yLUYF4Ls7OyZ3Uumq5ovEKrm2+ljU1a1havpT/3P2fKILKrw/8mv+/vTuPjqO88/3/rqpeJbW6W2rtq+VVtgzeABsbO8YEAjYxQyAhC4GbhAshxHBJMiE3OYGcCUtC8psMZJIhkPALMIEZQmYAsxgTA7aDsY2NbdnC8iJrV2vvbrXUa9Vz/xA0CAMhE7Cw9H2do3Osqurq51sG6eOnn2VPcA9JM4mhGQDU99Tz480/pjy3HIDekV6KPMV4cvLBbieumQyYUeKaRV52Po39jXRFu1hcvphofIg/7X+U3CwfDb2v4zJcx9W3t3svC8sW8uemP48JPQBd0S62tG551yn1QoiTh/T4CCE+sJgZ47ev/ZbG/kYKsgpw2pyYlslQcog/NvyRf1z6jwDYCgsxvN7MFgiVdjsXz76EXLefhw88zNGBo6SsFL3DvZxZcSarp6/mB5t+QO9IL07Didvmpr5ndHHEWDpGhbeCMk8ZHUMd7AnuyYQPU5mYyqTaV42pTCKJCIGswGibEkMoRgdHbzi6gdNLTyfXk89IOkY4HiKQFaB/pJ+Y+daUd6fhBAWNfY1j6rbpNiq9lZiWecJXdBZCfLgk+AghMlQiQTDUzuuhI4QSYfzZAWYXzcnslRUcCtLY30hZTiktoWbC8fDoC3Wd1nArnUOdLGABcPwWCIspojS3jCXlS+gZ6SFtpSn1lFJXWMeujl30jvTi0B0MxgeJm/HM6+LpOIZmcCR8hKLsIjrSHYQT4bc1GnKduRweOEzvSC8+l4/h1DDwxmwsNAZiAzgMBxfMXIPH4SGt0uiajs/tw4cPALtux9ANDN3A4/RQYBVgKhNDM/C7/MwunI3T5jzhKzoLIT5cEnyEEMDoCsh7gnu469Vf0dR3aPSgrjOtfC7fWLwOt+EmkogwI28G4XiIoqxCsnU3wWgXKStFOBaivree08pOe89NRSt9lVT6jt8ryjAMKnIrGIgNcFrpacwpmMPsgtk4DSdzCuZQ4a0Y0+uTn5VPMBoERj/uWlWzimgySjwdR2N0BebSnFJW1ayic6gTgKSV5LK6y9jevp05hXW81vUaOY4cXDYXTpsTu25nZmAm1b5qFpQsIBwPk7SSOHQHXpcXp210yviJXtFZCPHhkuAjhEAlEnQFj44NPYCmFL3hIP/00j/xubrP0Rpu4UBPPcFoNzbdRq7Tw9TCmTQNNgEa8VScPzf9mTMrz/ybFvtz6k7Orj4bxejYnpHkCGkzzaKSRdT31LOjcwfheBinzUltoJbynHL6R/oJRoOYyqRzqJNPTfsUXpc383GZhkbnUCemGp1en2Mf3acr351PYVYhv9j+Cw72HcTQDdJWmml50/jusu9SV1DHrq5dmaDzdnnuvOM2/xRCnFwk+AghsEIhDsbbxoQeeGMPrtAxZpXU8eyRZwk4cqnyVtMT7cFSFtHUMC3hVvwuP267myN9h4kmoyTMBJfMvuQDrzlTW1jLruAuNrdsxm1zE06G+fqir/PwgYfpGOogloqRMBMUZBUQjoe5fctt3HrObejoDKWGyLHnUJBdwKMNjxKKh467/9sDi8fpYWXNSqbmTaW+u57BxCB+p5+5RXMzvVFvbh3xzin7a2XzTyFOehJ8hBCoVIpQMnL8CZuNoUSEgqwCDg4c4lBsiAtmXchAfIAjA0dIWyZ9sT6WlC1mZv5Mfv/a/XxmziU8uPdB5hXPY37J/A/0/kU5RUzLm8Yvd/ySvpE+hlPDnFp0KhoaNf4aIokIXqeXWGqE9sEWOvqPsaX5JS6fd8WYILJmxpoPHFje62M3kMUDhZjIJPgIIdDsdnyO3OOOp600AJamSFkpOqNdPH3gceYVnsLy6hWkrTQ6GlO8U/jnzT+hxFdOT6iTowNHaAm1ZILPO1d6frdNPwdiA3gcHmoLaumJ9uBxekhZKXZ17cLQDCq9lQSHgngcObiUTm+km+b+o8wtnZe5x4cZWGTxQCEmJgk+Qgh0n49ZgxXUBGaM+bjLpttwONx4nLnE03EwDLoinRg2O63t20hbKYZiYS6ZfQkluaWcWX4mz72+Huw6CXN0v67mUDPrD61HQ8NluHDZXewN7sVtc1Ptq2Z6/nQ8Tg9+l5/WSCuRZAQNjWx7NgBZtizSVpqUmSJlJrGUBehkGU6i0YHjapHAIoR4PyfVAoZPPfUUZ5xxBm63m0AgwMUXXzzmfGtrKxdeeCHZ2dkEAgHWrVtHMpkcp9YKcfJ4c6f1dYuupSYw460TlsWc4lOo9FaSbc9G03WU3aB9oJka3xSm503n3OnnMcM/nWn+aTx34AlSVmp0OnhWAUOJIdYfWo+OzrbWbbza9So/fumf+MrjX+Gbz3yTH730I/5l+7/QHGpmbuFcFpYsBAUt4RYO9x+mOLuYkfQIhm6QNJNYKDRNoyZvGo6kIttwj99DE0KclE6aHp/HHnuMq666ittuu42zzz4bpRT19fWZ86Zpsnr1agoKCti6dSv9/f1cccUVKKW4++67x7HlQpwcdJ+P+e4l3O6v4PXQEcLJCL6sPOw2J/ftuo9llcuwWixaB5vJyfaR5/ASSkaYmT+L+7b/mlRqdO0dT5af5VWfYE7hHFpCLSil+POx50EpdnXupCl0DICBkX729+wnaSZJmkm+cdo3uHnFzdyx9Q56Rnp46vBT/GjljwglQrSGWwlGurDrNmbkz+DiaRdh9Q9QmVM2no9MCHES0pRSarwb8dek02mqq6v50Y9+xFe/+tV3veaZZ55hzZo1tLW1UVpaCsAjjzzClVdeSU9PD7m5x49feDeRSASv10s4HP7ArxFiIjvQfYAtrVvQNA233Y1Silg0hBUZwptXzCtdOznS/TppZWLTDarzpnD1knXMK1/IK+2vsLVlC/914E/MKJjJH+r/AICu6aStNG67mzmFdeS587hkziWsrF5JOBbmYP9B2iPtZNmyqPRV8mrHqwzEB/C7fDhNjaxIkjXTL6BmxmlozuOnnQshJp8P+vv7pOjx2b17Nx0dHei6zvz58wkGg8ybN4+f/exnzJkzB4Bt27ZRV1eXCT0A5513HolEgl27drFy5cp3vXcikSCRSGS+j0TeZWaLEJNYpa+SZHNyzEwpFY9jhgeJ9wa5YdYlHCvsIWwO480JMKf0VEqKpwKja+cMJ4YxVZqUlQLeCj0WCtAwrTRpK00oFuKJxif43JzPsaVtCw7DwXBqmNc6d1OZU0alq4h4PMqiQB01hfn4K6ZL6BFC/M1OijE+TU1NANxyyy384Ac/YP369fj9flasWMHAwOgP42AwSFHR2NVi/X4/DoeDYDD4nve+/fbb8Xq9ma+KioqPrhAhTkIep4dPz/w0ee68zDHN5aKgchYXnX01FbnlLPeeyqfLz+HsGedmQg9Ala+KQFY+hmZg1+2Z4xYKm2aglImhG9h0Gy6bi4HYAL3DvayZsQaFIpqKksakOdxMJBbivJpzWVAyn7yZp6D7fCfyMQghJohx7fG55ZZb+NGPfvS+1+zcuRPLsgD4/ve/z2c+8xkA7r//fsrLy3n00Ue5+uqrAdA07bjXK6Xe9fibvve973HjjTdmvo9EIhJ+hHiH/+k0cY/Tw8qK5fylZSuRWJga3xSOhVuwaQYum4ssuxubZqMkpySz1UQ0FaWuqE7W0RFCfCTGNfhcd911XHbZZe97TXV1NUNDozsxz549O3Pc6XRSU1NDa2srAMXFxWzfvn3MawcHB0mlUsf1BL2d0+nEKd3lQvxV/9Np4rWBWdy44Dr+vfE/qcqr5qXmlzjU30iW3U1tYDbT82ewuGIx7ZF24K29sGRauhDiozCuwScQCBAIBP7qdQsXLsTpdNLY2MiyZcsASKVSNDc3U1U1ugz9kiVLuPXWW+nq6qKkpASA5557DqfTycKFCz+6IoQQ70tzOllQMJcSK5tGs4tVVSsJJcIk00lsukHMStIeacdUpuyFJYT4yJ0Ug5tzc3O55ppruPnmm6moqKCqqoo777wTgEsvvRSAc889l9mzZ3P55Zdz5513MjAwwLe//W2uuuoqmZ0lxDjTfT5K3XMoDpWhUilaPSGebNnIYCqcuUb2whJCnAgnRfABuPPOO7HZbFx++eXEYjHOOOMMNm3ahN/vB8AwDJ566imuvfZali5ditvt5gtf+AI/+9nPxrnlQggY7fkx3vjYuYZyvlJQJWN4hBAn3Emxjs+JJOv4CCGEECefD/r7+6SYzi6EEEII8WGQ4COEEEKISUOCjxBCCCEmDQk+QgghhJg0JPgIIYQQYtI4aaazCyGE+Pt0R7tp6GkglAjhc/mYXTCbopz3XtleiIlIgo8QQowjKxrF7OlBJRJoLhdoGioWQ3O5MAoK0HNyPpT32RPcw13b76JpsClzrMZfw7oz1jGveN6H8h5CnAwk+AghxDhJB4Mkt2/HCoXQ3G7MYBAcDmxTp2J1daF7vTjOOANbcfHf9T7d0e7jQg9A02ATd22/i9tX3S49P2LSkDE+QggxDqxolFRjI1p2NkZ5OVp2NnpeHioSIX30KFpeHtbg4Ggwikb/rvdq6Gk4LvS8qWmwiYaehr/r/kKcTKTHRwghxoHZ00P66FFUJAI2GyoUQvP5sM+YQerQITS7HQVYg4OYPT3oOTkMJYbe2ubDkUOV94Nt8xFKhP6u80JMJBJ8hBDiBLOiUVIHD6KGhkB/q+NdhUKkAaO0FEzzreOJBM2hZp5ofIJwPIzP5SNlpvBn+cl355NtuCnQPFQYeWQnFGgaek4ORn4+mtOJz+l73/b8tfNCTCQSfIQQ4gSyQiG6epp5PX+IQbcdv93D9FgOvgYThoZQoRB6eTkYRuY1w24jE3ry3Hk8fvBxpudPZ+verXQNdVKZU86CwFxmDGdzYeEyStqGMPx+jJISHKecwuzC2dT4a971464afw2zC2efyEcgxLiS4COEECeISiR4rXM3d+/+NUfa9kE6DZZFTXEt3zzta8x4pRlGRsBuR6VSAOh+P+22KAOxAfLd+TzW8Bh5WXlsbd1Kc6gZTJNwPMT2ju1keefzZOvzfCn/bLL6+lGAZhgULlrEujPWveesLhnYLCYTCT5CCHGCBAfauOuVu2gKHxv9KMtuh1SKpuDr3K3dxz/N/d/49h5BDwRINzai+/04zjiD4XQzAIl0gqZQEzMDM3m+6XlQCpTCQjE41MtAfhJ3T4iOihTTk0lIpzEHB7FCIeYVz+OmM29if+9+BmID5GXlUReoY0bBjPF9KEKcYBJ8hBDiBHl98BBNPQdHA49hjPb42EZ/DDf1H+XwghRLTz0VPT8f57JlGIWFaHY7WR0tWJEIwx5QSpGyUmPuq6MBELeSAAxb8dETlgWWhUql2Na2jdu23EZ9T33mdXML5/J/z/q/LKlYcgKqF+LjQYKPEEKcIIPJ8OgfUik0lwsVj48ZxBw2R3Ce9kl0nw8YHQ+UPHCAMj2NP2UnpTlIpeJoCkwzja7puO1uAlkBdHcAy2bQn2fDKCrmiBEh6kiTm6Nw28P8ZNNPaOhtwK7b0dBIWknqe+q5bctt/OsF/0qlr3IcnogQJ54EHyGEOEH87vzRnh7ThEQCzeEYndWlFOg6fl9JJvSoRIJUYyMqFiPbMFg+5wKea91EWXYxnYPtLCpZyHBqhIKcQpoHmxhORDHjMUxPKRu7/0IJuXQdPUTpjAXoHb1sat6Ero3OIHMYDvwuPwkzQX1PPfXd9RJ8xKQhCxgKIcQJMrtoDtMqTnlrxlYqBYkEmCbTimuZXTQnc60VCqFiMQCGvS5eeuU/8fXH+P6y77Oi5hMsrliC15nL9vbtNIdaUEBxXiWnFJ7CiweeYVPXy8ysW84LvdvpH+knZaZQSgGQNJMMxgdx6A4ABhODJ/Q5CDGepMdHCCFOkGJfGeuW3si//OXnNPUcGu3p0TRqCmdw/bJvUewry1z75qwugLZ0P73Bo6PfaNBMkJ50mItrP8P8kgVYKJyanbgZ5/XQMaJeJ33pdla54HC4iWVTVqBQWMrC0EZDV9JMohgNQn6n/8Q9BCHGmQQfIYT4CAwlhjjcf5jOoU7sNjulnlKqvdXMrziNOz71cxq6D4zuku70MbtozpjQA6DZ7Zk/RxNDmT+nXU727duKzZlFtCzEI3seJImJUxnENJOCnEKyHdl0DrQQHO6mNdxKJB5hXvE89vfsH/MelrKYWziXuUVzP9qHIcTHiAQfIYT4kDWHmnlo30P8pfUvxNKjH1eV5pSyZuYazqw4k2pf9XFB5510nw/N7UbFYuS8bVuKuJUATWNWSR29I72E42GyXblYGpjKZCA2QN9IH8U5xWTZskiaSe7dfS83LbuJB/Y9MCb8zC2cy3fP+q6M7xGTigQfIYT4O6hEArO/f3T7CZuNYY+DPx76TzY3b2YwPoipTAzNoDXSyvrG9VjpNL5SnZyUjuZwoHu9aE7ncffVnE7sM2eSamykwpZNftEUBkb6cOf40LKz8fqKONJ/mJr8afSN9GEqE1OZ2HQbvSO9LClfQiQR4dyp5xKKDfL04af50twvYdMNoqlh/C4/yyqWMTV/6jg8NSHGjwQfIYT4H7JCIZL79pFubR1dkwdoqsnhQHc9beEW0srCUha6pmPTbaTSScL5QZodR6lN+VHJJJrbjVFcjK2g4Lj76z4fjnnz8IVCrF51NbuDu4gmh/nSkv+N03Dx3OENfHLOGl5u3sKRSDNOm4ssexaLShexZuYaUukk8XScJ4P76B3p5ZXWv1CcVciFtRfxD7P+gSpf1Yl+ZEKMOwk+QgjxAXVHu2noaRgdm+PwMiPhwdvZORp6dJ2R/BxaXMP0JweJpxOkVJpYKoZpmThtDkAR0VIMBVtJ1O/N3FcvLMS1YgW2suM//tKcTurTHfx/L/+E/b0NJFUKTTeYmjedry9dx3/teIDp5bOYX3Eamq4TjofpH+nHrtl5/PDjNPTsZ27hXM6ecja6gizNgc0Ep/z4F5OU/JcvhBAfwJ7gnjF7XalkkimuEq6b/RVmHbLoLHLxZMtzWK5yuqPdBIeDGLqNHEcOoXiISFIRS8dRusZgQS6vxePk4KBs2EZWsI/Eyy+jn38+ek7OmPftjnbzs5fvZFvby6TNt2Z67U0MoZTJRad/mUcPPsZweoTWcCuheIhKbyWmMnmheRMeu4eXW/9CnstPvuHBsEZncp1VveKvjjMSYiKS4COEEH9Fd7R7bOixLAwL3IaLjaGdDM89jecPPk08PYg75cXv8pPj8NAX68O0TDwOD+FkmFn5s+gd6eWJwaPoyTT5x3rJ9xRx4dRzKO0MYfb0HBd86rvreaX9FdJmanQAMxaWUujpOHuCe/hs3ec43NeIw+FmeeVyyrxleB1eUmaKhaWL6Ix0YEMnV8/CMFXmvqFE6EQ+QiE+NiT4CCEmNZVIjC4WmEq952Djhp6Gt0JPOo0RT7K4Zjmbj27iqaPPoJZez4vHXiA7x89Co4YLZ32aMyqX0DfSRzgRzsyumuKbgs2wcaj/EE7DgbOqEK1/mKciO7m89tM443FUIjHm/XuGe0hZadKaYiQdw1JW5pyRTpCyUlx+6pcp8ZbxUstL/KX1L4QTYab4qukd6WH1jNW81vTymHWBAHxO30f3UIX4GJPgI4SYtKxQKLMtxJs0txv7zJmZrSPgrd4RZVmokRFmFs9lc+sWWiNtKEMnTor8sqnMK13Ajs6d9MT6ONR/iLRK4zSc5DpzqfZVYzNs3PXKXURTUQzNoDy3jGX+eVjHGmj1nMKs3jBqaGjM+xdkF3D+jAsYTg5j1+10Rjp4tWMnKSuVmcXlceXyyP5HaIu0ZdqcSCeJxqO83PoyCwtmc6DzrTFFNYUzx6wSLcRkIsFHCDEpvX0vrDHHYzFSjY045s3L9LxkekfSabAscrP8tDW1YNoNsBSzCmqp7z3Ag/seZE5BHdvat9HQ25BZGXle0TxCsRDtQ+3MLZrLtvZtoI1+hLYt/RqriucxrKXQ7HbMnh6ieoqukmwGzSjPHX2O14J7qO+ux7TS1PimcGHtWp58/XFmFdSS6/AwkpU3JvQANIebWVi2iKN9h8nNemtl5prCmdyw/DsyvkdMWhJ8hBCTUubjrcpKGBlBxeNobje43ajOTqxQCKOoiKHEEIHsAIXZhTTFDuPUNZLW6HibkdQI157+DV5ue5nSnFL+u/G/OatyOZtbNuMwHKTMFC6bi2gySp47j5ZQC0vKl4y+v2WiGXaCsV66Skx6SnLYlo5R5Mxn455HcITK2DrwGm3DnSgUC0oXUB+spyS3jBynhxuWfoupeVMZjIdxGk6m5U0bndEV68dSFh6Hh+KcYqb6prCo9AzOqDzzPVeJFmIykeAjhJiUVCqFXlJC8uWXMYNB0DQwTfSCApzLlqFSKZpDzTx+4L+IhHu5dObF/G7kdxzqfh3DZsfEIj8rnwpvJfe98EOuOf1a/C4/KSvFSHqEHEcONqeNXGcuSinSVppcZy7A6Jo+ZhJdN4gkIjhsTv7c8BSt4VbsnlyWVZ3FsLI43HsQl9uDaZkkVILvLPsOG49u5JkjzzCnYA6bjm3CVCY3LL6BpJnEYThYUr4Eu24nkB0gxzE6ULq2aA51RXXj+biF+NiQ4COEmJSUrpN46SWsjg40j+etAcWmSXLXLtIrz+TxfY/S29oI6TSvD/Tx5emfJTHDxOXOIaVM2vuPEYoNkLLStIfbWDVlFYvLF2M37Dh0B70jvRzqP4SlLOLpODX+GgqyCkiYCXKduUTiYSq9VVwwfTX//+7f4skv5FBfI20HOvj8KV+gN9qDPRUlLyfANP80Xmp+ifZIO5qmMZwapjXSSqmnlBebX2TVlFXs6NhBLB2jMr8Sp220njx3nixUKMTb6OPdgA/q0KFDrF27lkAgQG5uLkuXLuWFF14Yc01raysXXngh2dnZBAIB1q1bRzKZHKcWCyE+rlQigdXdjdXRgR4IjH7f0zP61d0NQEtfE70dR8DhgKwskmaKA4e2cqR5Nw07nubTNedjT0O2LQu7bqMst4y2SBu/3PFLnmh8gntfu5e93XtZWrEUh+4grdKZXp+rFlzFRbMu4rK6z3NW1Vns7niV/d317OzYSfdwD7phw25zAZA0E3RHuynKKaJpsImUlSKWimFoBnMK5jCcHGbD0Q0UZhdmNkbtHekFRkPP2plr8bxtry8hJruTpsdn9erVzJgxg02bNuF2u/nFL37BmjVrOHr0KMXFxZimyerVqykoKGDr1q309/dzxRVXoJTi7rvvHu/mCyE+RqxQCBWLoeXmYkWjxAp9dORaRFWC3MJySroTRDqOYba1jX4klpuLUVQ0OhA6kcDKzsJjZLOm7iJ8OYV86dQv8+yRDbhsLtx2NwuKFzAQH8C0TFrCLSwsW4hSimpfNY8eeJRQIoTH4SHXmculsy/hF1t+jm4YmMoiFB8cbaOyKPNXcnDgMFZaMZwaxm7YsRt2fC4fDsPBvu59DL5x/YGeA5xefjp23U5eVh6rqlcxPX+6hB4h3uGkCD59fX0cOXKE3/3ud5xyyikA3HHHHfzqV7/iwIEDFBcX89xzz9HQ0EBbWxulpaUA/PznP+fKK6/k1ltvJTc3dzxLEEJ8jKhUChwONLebzvIcnmz/M/2tnei5XvRmRdWpyygsn0FN3kV4XV4CjjwG+tvpHekj2HEQM5XCbThZNuMcnj78NEsqlvDk4Scpso0Ohg4OBclyZOEwHHQOdfLFuV9ka+tWSnJK+Mel/0jTYBPT86ezq3MXv9v9O6KpKDlGLilrdDB0KD6IrmksKj+DuEpzLHSMHHsOuqaT48hhcfliHIYDn8uH3bDTNdQFwIYjG6jyVlHprcQx1SGhR4h3cVIEn/z8fGpra3nggQdYsGABTqeTe+65h6KiIhYuXAjAtm3bqKury4QegPPOO49EIsGuXbtYuXLleDVfCPExo9ntaHY7sSllPNnwB/pDo8HBlpWNf/pc7j30H7TsaSfbnk1LuJnTS0/n/yy+gVhSUVE+h+HBXipySvH5Krn8lMvZ3LyZldUr2RPcQ9pKo+s60USUSCKCoRt0Rbso85QRioeo9lVjKpPOSCebjm2iI9JOtiMLDRhJDON3+aj21xA3Ezz2+mOcUnwqy6uXs7h8MQMjA9QW1vLogUcJDgfpG+kD4JSiU1hetZyUmULXdYZTw/QM94zjExbi4+ukCD6aprFx40bWrl2Lx+NB13WKiop49tln8b2xyFcwGKSoqGjM6/x+Pw6Hg2Aw+J73TiQSJBKJzPeRSOQjqUEI8fGh+3zQ2kpXaTYDe0IAGLqdKad+gv2hg0wLzGBW4RwMzeCR/Z3s6NzBP7/yC74276u09x/j83Vr8fpGf954nB6qfFUYmoHdsGPoBv2xftJWGrthZ+3MtbzY/CJ9I30kzAQuw0Wlt5J/qP0HVlavJJVOEElEsCwTl81JICuf1TMuJNuexfnTL8Bu2EmkE7zc9jKnlZ/Gfx/8b7qHu7FpNnRNx+fyoaHx0L6HqPBWMBAbYF/3PmoLasnLymNe8bxxe85CfByN6+DmW265BU3T3vfr1VdfRSnFtddeS2FhIVu2bGHHjh2sXbuWNWvW0NXVlbmfpmnHvYdS6l2Pv+n222/H6/VmvioqKj6SWoUQHx+a04l9+nSGUlH0ggIcVdUUn/VJNra/yC+2/4KHDzzCg/UPcqD3AJfNvQyX7mJX56tohoHf7SeukmO2gKjyVeF1e7HpNgqzC8l352PX7SwqWcT+3v0cGTiC1+Ul15HL/t79vNjyIk8deopsm4u6vFq+Mv8rfG3eV/j24htZWnQ6DR172d22k41HNrC/Zz957jwa+hoIx8NoaCwoWcCswCxWVK2gxldDa7iVY6FjVOZWAlCRW0FruJW7tt9Fd7R7vB6zEB9L49rjc91113HZZZe97zXV1dVs2rSJ9evXMzg4mBmr86tf/YqNGzfy+9//nptuuoni4mK2b98+5rWDg4OkUqnjeoLe7nvf+x433nhj5vtIJCLhR4hJIGozSboddGWlmeqbwhNHn2aEsftZtYRbGIwNsKxyKS82v8hwYohEaIBw/DDxo0PY58xBs9nIcjhYO/3TtAy20BntpMJbgc/lY3HFYl5ue5mR1AhKKV4LvoalLIYSQxwZOMKFMy6kvu01OjobKRxIEQbKS6dw4RkXs699N2W+ckbSCfb37KfAXYDD5uBA7wEUit7hXvKz8jE0g7LcMpKDSdAgkBVgTsEctndsJ22laehpoCjnvX8GCjHZjGvwCQQCBAKBv3rdyMgIALo+toNK13Usa3TDviVLlnDrrbfS1dVFSUkJAM899xxOpzMzDujdOJ1OnO/YkFAIMbEdCx7k0V0PYho6vSO95ObkUd//OrWFswENULgMJ4l0giMjPSytXAaahseeg2Y4yXbkYLZ2Yg4MYJSUoIaGmF5dygVTPsmQFSeejmemne/t3kuWLYu2SBumMoHRBQx9Lh/DyShra9dSkVuBx7LjtnTKjTzah3sIdRyl12uwI7iLwfggX5z7RcKxMJqmkW3PJsueRTz9xnuZKc6bdh6fnPpJoskouqZT6inlYN9BwonwuD5rIT5uTooxPkuWLMHv93PFFVfwwx/+ELfbzb333suxY8dYvXo1AOeeey6zZ8/m8ssv584772RgYIBvf/vbXHXVVTKjSwiREYn289Cu+9naspVUOsHiqSuIqiRDiQjheJhSTyn9sX48Dg99b6yHk7bSnFa6CIfS8WhuyoZ0rIEBME0Mvx+ztRVHfz9nzJ/C08l9hFNheqI9uO1ucp25VHorOTZ4DKcx+o+s6fnT6RjqoG2oncGeNppi28nPKeTCmvMhlQCXk2ReLt3RZopzivE6vZxadCqN/Y3MLZxLMBoknAiTNtOU5JTgcXqIJqI8efBJ/qvxv/A4PCypWMKcgjl4nd7xfNxCfOycFAsYBgIBnn32WaLRKGeffTaLFi1i69atPP7445x66qkAGIbBU089hcvlYunSpXz2s5/loosu4mc/+9k4t14I8XFyqOcgW1u2EksOk7bSvHL0JUpzSqgtqMWmGZxVdRZV3ioGYgNvbDEKFd5yvr34W3jJYkrxTA6aQY7M9BMrL2Q428bhKje780YY6ungs5Xnc0ntJVxWdxmLyxezsGQhRweOkjJTuO1upvinMDAyQHFOMT6XD7+3EGw2+qM9/KHjGZ6K7ORP+/6Dsvxq+mMDBKNBvjD3Czxy4BFu23IbRdlFhBNhoskoJZ4S0tbowojT86ezqXkTM/NnMpQcYlvbNvYG93IsdIyhxNC4PnMhPk5Oih4fgEWLFrFhw4b3vaayspL169efoBYJIU5GXSPdxJLDme/TVppjPYcwLZPDA4cozilmcfli6grriKVjVPuq+dysz5KM9PPC0fWE+zqwBgcx0Jm14JMcCx1g5PUDpHPcRBwW/tRuPn3qpeS784mlYnyi+hN0RDoYiA+Q48ghkBWgNlDL6hmraQm1oLlcGMXFJOLDvNqzi0BeGRQW0NB/kLlFc5kVmMXurt2Z6el/2P8Hzqo8i5KcErId2ZxSdAobmzayuWUzvSO9pKwUpZ5SgtEgCTNBwkzQEmqRvbqEeMNJE3yEEOLDYDccxx073LWfT05bxfOA0+5iS+sW+kb6mOKbwpzAbO575ZfML5pPtLdzdAgQUFQ+gyebnyWUGmJ6aQ2Hel4nFoqSMtvZ0fcaiyvPxLRMeqO9fP+s79M40EjfSB9Ow8nrfa/z1KGnOKfmHDqHOjFtECFBXDdJ6BaazYahGTT0NpDrzOXI4BFCsRAep4fekV5eaX+FkfQINs3GD1f8kNd7X0fTNJyGk5HUCNPyppFIJ9A1nXg6TjQVPbEPWYiPMQk+QohJpcxXQamvks5Qa+ZY2krz6pHNrJ1zEUXeEopyinAaToZTw+wK7saJjQMNB1lbuZKe9kNgs6H58+jq78E0U7Sl+ojFo1huF32xAdKxXk4tnc8Lx17ggukX8MMXf8hgfJCi7CKcNif7e/ZT5a1CQ2N51XKCw0GS1ui+gi6bi3AijNflxW1zkzST2HU7HUMdTMubBsBIagSN0SU/dE1nat5UXml/BbthB0BDw9ANbLoNl81Fjj3nxD9oIT6mJPgIISaV6rwaLjz1Up7c++iY8FOYW8qswlk8vP8/CCVCY15jGAZNw+2kfR6MVBF6Xh4Ju0KNjJDIshFLxcAwSDgN0rEk2Gwk0glawi3ku/NpCbcAUOmtJJEe3Zk9baXpjHai3hhJ5NAdlOaUor3RpeS0OZkZmEm2LZt4Ok5+Vj4NvQ1UeavIy89jKDGETbeR787Hpo39UW7oBh6Hh5KcEnKdubI7uxBvI8FHCDGpeJwelk45C4UiMjJIPB3HZXORm+XHbjjfdfq3Tbeh6TojJDECAayhIVz2LLTsbEwjjd3hIu5yYWlvDIfWdZy20RlcI6mRzH1My6Q/1k+VtwpLjS7FEU/HAajx11CWW8aRgSOZ630uH/nufAqyCyj1lPJq56t0D3cTSoQYTg4zu2A2DsPB3KK59MX6ONh3kBzH6J5eZ1acySeqP8GZFWfKnl1CvI0EHyHEpFPtqyZ/dj4toZbRDULtOVT5qni149VMD8zbaWh4HB6ybFlEU1F0jwfdlkVZYAqd8R5QCs1ux9DSYLdT6a0klorhsrnIsmdl7mPoBpayGE4Ns6JqBYl0gtmFsynLKaPKV0V/rJ/ekV4GYgNvvbemse70ddyz6x7mFs3FtEySZpIp/iksLFnIow2PUuOrYe2MtXx+zudHZ4u5fZTklFDlq5LQI8Q7SPARQkxKHqfnuJlOswtnU+OvoWmwaczx4dQwZ1WdRSArQDQ8OlC43xziwnmf43DfQba3bkNzuXAZGlNzAiypWML2ju0sLlvMcHKYKm8Vg/FBEukEfpef08tOx+vykufO48zyt3pkPE4P/2ve/zoukAF8atqniCQimR4qQzNImSkunXMpU31TyXPnSdAR4gPQlFLH//NmEotEIni9XsLhsCx8KMQktCe4h7u23zUm/NT4a1h3xjqm+qe+ayjZ172Pfd37gNGQ9FLzS3gcHlbVrOLowFEqvBUc6j/EYGyQQHaAHEcOee481s5c+4HH3zSHmnmi8YkxvUF/6z2EmMg+6O9vCT7vIMFHCNEd7aahp4FQIoTP6WN24ey/ut/VUGIoE4ocugO7YWckNUK2PTsTTN4Zmv7W3pm3v8f/9B5CTFQSfP6HJPgIIYQQJ58P+vv7pNiyQgghhBDiwyDBRwghhBCThgQfIYQQQkwaEnyEEEIIMWlI8BFCCCHEpCHBRwghhBCThgQfIYQQQkwaEnyEEEIIMWlI8BFCCCHEpCHBRwghhBCThuzO/g5v7uARiUTGuSVCCCGE+KDe/L3913bikuDzDv39/QBUVFSMc0uEEEII8bcaGhrC6/W+53kJPu+Ql5cHQGtr6/s+uIkqEolQUVFBW1vbpNykVeqf3PWDPAOpX+o/WetXSjE0NERpaen7XifB5x10fXTYk9frPen+0j9Mubm5Ur/UP97NGFeT/RlI/VL/yVj/B+mwkMHNQgghhJg0JPgIIYQQYtKQ4PMOTqeTm2++GafTOd5NGRdSv9Q/mesHeQZSv9Q/0evX1F+b9yWEEEIIMUFIj48QQgghJg0JPkIIIYSYNCT4CCGEEGLSkOAjhBBCiElDgs/bHDp0iLVr1xIIBMjNzWXp0qW88MILY65pbW3lwgsvJDs7m0AgwLp160gmk+PU4g/fU089xRlnnIHb7SYQCHDxxRePOT/R6wdIJBLMmzcPTdPYs2fPmHMTtf7m5ma++tWvMmXKFNxuN1OnTuXmm28+rraJWv+bfvWrXzFlyhRcLhcLFy5ky5Yt492kj8Ttt9/OaaedhsfjobCwkIsuuojGxsYx1yiluOWWWygtLcXtdvOJT3yCAwcOjFOLP1q33347mqZxww03ZI5N9Po7Ojr40pe+RH5+PllZWcybN49du3Zlzk/o+pXImDZtmrrgggvU3r171aFDh9S1116rsrKyVFdXl1JKqXQ6rerq6tTKlSvV7t271caNG1Vpaam67rrrxrnlH44//vGPyu/3q1//+teqsbFRHTx4UD366KOZ8xO9/jetW7dOnX/++QpQr732Wub4RK7/mWeeUVdeeaXasGGDOnr0qHr88cdVYWGh+ta3vpW5ZiLXr5RSjzzyiLLb7eree+9VDQ0N6vrrr1fZ2dmqpaVlvJv2oTvvvPPU/fffr/bv36/27NmjVq9erSorK1U0Gs1cc8cddyiPx6Mee+wxVV9frz73uc+pkpISFYlExrHlH74dO3ao6upqdcopp6jrr78+c3wi1z8wMKCqqqrUlVdeqbZv366OHTumnn/+eXXkyJHMNRO5fgk+b+jt7VWA2rx5c+ZYJBJRgHr++eeVUko9/fTTStd11dHRkbnm4YcfVk6nU4XD4RPe5g9TKpVSZWVl6r777nvPayZy/W96+umn1axZs9SBAweOCz6Tof63++lPf6qmTJmS+X6i13/66aera665ZsyxWbNmqZtuummcWnTi9PT0KEC99NJLSimlLMtSxcXF6o477shcE4/HldfrVf/2b/82Xs380A0NDanp06erjRs3qhUrVmSCz0Sv/7vf/a5atmzZe56f6PXLR11vyM/Pp7a2lgceeIDh4WHS6TT33HMPRUVFLFy4EIBt27ZRV1c3ZgO08847j0QiMaaL8GS0e/duOjo60HWd+fPnU1JSwvnnnz+ma3Mi1w/Q3d3NVVddxYMPPkhWVtZx5yd6/e8UDoczm/bCxK4/mUyya9cuzj333DHHzz33XF5++eVxatWJEw6Hgbc2aT527BjBYHDM83A6naxYsWJCPY9vfOMbrF69mnPOOWfM8Yle/xNPPMGiRYu49NJLKSwsZP78+dx7772Z8xO9fgk+b9A0jY0bN/Laa6/h8XhwuVz88z//M88++yw+nw+AYDBIUVHRmNf5/X4cDgfBYHAcWv3haWpqAuCWW27hBz/4AevXr8fv97NixQoGBgaAiV2/Uoorr7ySa665hkWLFr3rNRO5/nc6evQod999N9dcc03m2ESuv6+vD9M0j6uvqKjopK/tr1FKceONN7Js2TLq6uoAMjVP5OfxyCOPsHv3bm6//fbjzk30+puamvj1r3/N9OnT2bBhA9dccw3r1q3jgQceACZ+/RM++Nxyyy1omva+X6+++ipKKa699loKCwvZsmULO3bsYO3ataxZs4aurq7M/TRNO+49lFLvevzj4IPWb1kWAN///vf5zGc+w8KFC7n//vvRNI1HH300c7+JWv/dd99NJBLhe9/73vveb6LW/3adnZ186lOf4tJLL+VrX/vamHMnW/1/q3fWMZFqey/XXXcd+/bt4+GHHz7u3ER9Hm1tbVx//fU89NBDuFyu97xuotZvWRYLFizgtttuY/78+Vx99dVcddVV/PrXvx5z3USt3zbeDfioXXfddVx22WXve011dTWbNm1i/fr1DA4OkpubC4zO8Ni4cSO///3vuemmmyguLmb79u1jXjs4OEgqlTouGX9cfND6h4aGAJg9e3bmuNPppKamhtbWVoAJXf+Pf/xjXnnlleP2p1m0aBFf/OIX+f3vfz+h639TZ2cnK1euZMmSJfzmN78Zc93JWP8HFQgEMAzjuH/N9vT0nPS1vZ9vfvObPPHEE2zevJny8vLM8eLiYmD0X/4lJSWZ4xPleezatYuenp7MMAYA0zTZvHkzv/zlLzMz3CZq/SUlJWN+1gPU1tby2GOPARP/718GN7/hiSeeULquq6GhoTHHZ8yYoW699Val1FuDOzs7OzPnH3nkkQkxuDMcDiun0zlmcHMymVSFhYXqnnvuUUpN7PpbWlpUfX195mvDhg0KUH/84x9VW1ubUmpi16+UUu3t7Wr69OnqsssuU+l0+rjzE73+008/XX39618fc6y2tnZCDm62LEt94xvfUKWlperQoUPver64uFj95Cc/yRxLJBITZnBrJBIZ8/97fX29WrRokfrSl76k6uvrJ3z9n//8548b3HzDDTeoJUuWKKUm/t+/BJ839Pb2qvz8fHXxxRerPXv2qMbGRvXtb39b2e12tWfPHqXUW9N5V61apXbv3q2ef/55VV5ePmGm815//fWqrKxMbdiwQR08eFB99atfVYWFhWpgYEApNfHrf7tjx46953T2iVh/R0eHmjZtmjr77LNVe3u76urqyny9aSLXr9Rb09l/+9vfqoaGBnXDDTeo7Oxs1dzcPN5N+9B9/etfV16vV7344otj/q5HRkYy19xxxx3K6/WqP/3pT6q+vl59/vOfnzDTmd/N22d1KTWx69+xY4ey2Wzq1ltvVYcPH1b//u//rrKystRDDz2UuWYi1y/B52127typzj33XJWXl6c8Ho9avHixevrpp8dc09LSolavXq3cbrfKy8tT1113nYrH4+PU4g9XMplU3/rWt1RhYaHyeDzqnHPOUfv37x9zzUSu/+3eLfgoNXHrv//++xXwrl9vN1Hrf9O//uu/qqqqKuVwONSCBQsy07snmvf6u77//vsz11iWpW6++WZVXFysnE6nWr58uaqvrx+/Rn/E3hl8Jnr9Tz75pKqrq1NOp1PNmjVL/eY3vxlzfiLXryml1Dh8wiaEEEIIccJN+FldQgghhBBvkuAjhBBCiElDgo8QQgghJg0JPkIIIYSYNCT4CCGEEGLSkOAjhBBCiElDgo8QQgghJg0JPkIIIYSYNCT4CCEmLNM0OfPMM/nMZz4z5ng4HKaiooIf/OAH49QyIcR4kZWbhRAT2uHDh5k3bx6/+c1v+OIXvwjAl7/8Zfbu3cvOnTtxOBzj3EIhxIkkwUcIMeHddddd3HLLLezfv5+dO3dy6aWXsmPHDubNmzfeTRNCnGASfIQQE55SirPPPhvDMKivr+eb3/ymfMwlxCQlwUcIMSkcPHiQ2tpa5s6dy+7du7HZbOPdJCHEOJDBzUKISeF3v/sdWVlZHDt2jPb29vFujhBinEiPjxBiwtu2bRvLly/nmWee4ac//SmmafL888+jadp4N00IcYJJj48QYkKLxWJcccUVXH311Zxzzjncd9997Ny5k3vuuWe8myaEGAcSfIQQE9pNN92EZVn85Cc/AaCyspKf//znfOc736G5uXl8GyeEOOHkoy4hxIT10ksvsWrVKl588UWWLVs25tx5551HOp2Wj7yEmGQk+AghhBBi0pCPuoQQQggxaUjwEUIIIcSkIcFHCCGEEJOGBB8hhBBCTBoSfIQQQggxaUjwEUIIIcSkIcFHCCGEEJOGBB8hhBBCTBoSfIQQQggxaUjwEUIIIcSkIcFHCCGEEJOGBB8hhBBCTBr/D/iEXVwIJRbnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_brenk\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### QED t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wU9f3/nzM723dvd6/3Cnd0DqRIEQTU2GPU2GLElug3xajJT02MLTEaNfnGmK8xxZYYTUyMBUENNhQERJqUgwOu97a3vc7O/P5YbmW5A1FBNMzz8bgH7GdmPvOZsjuveX/eRVBVVUVDQ0NDQ0ND4xhAPNoD0NDQ0NDQ0ND4vNCEj4aGhoaGhsYxgyZ8NDQ0NDQ0NI4ZNOGjoaGhoaGhccygCR8NDQ0NDQ2NYwZN+GhoaGhoaGgcM2jCR0NDQ0NDQ+OYQRM+GhoaGhoaGscMmvDR0NDQ0NDQOGbQhI/GFxa3281FF11Ebm4ugiBwzjnnACAIAnfeeWdqvRUrViAIAitWrEi1vfLKK2nrfNHY/xiOZZ555hkefPDBoz2MYTz55JMIgsD69evT2vv7+5k2bRo2m43XX38dgDvvvBNBED71vt58802mTZuG1WpFEARefPHFzzL0T8WJJ57IhAkTDrrOSMdZXl7OmWee+an3e6Dv+bHO6tWrufPOO/F4PEd7KP91SEd7ABoaB+LnP/85L7zwAo8//jhVVVVkZmYCsGbNGoqLiw+67SuvvMLDDz+siYsvAc888wzbtm3j+uuvP9pD+Vja29s5+eST6enp4Y033uD4448H4Oqrr+bUU0/9VH2qqsoFF1xAdXU1S5YswWq1UlNTcziHfdj4LMd5IA70PT/WWb16NXfddReXX345TqfzaA/nvwpN+GgcdsLhMGaz+TP3s23bNqqqqvjGN76R1j70sDkahEIhLBbLUdu/xtFj9+7dnHTSScTjcd555x0mTpyYWlZcXPyxYvxAdHZ24na7+drXvsaiRYsOuu7Rvv8+y3EeiAN9z/cnkUggyzJGo/Gw7l/j2EOb6tIYxpA5e9OmTZx77rlkZGTgcDi49NJL6evrS1t3yMz9/PPPM2XKFEwmE3fddRcA3d3dXHPNNRQXF2MwGKioqOCuu+5CluWD7r+5uRlBEHjjjTfYsWMHgiCkTWV93DTR5ZdfzsMPP5xad+ivubkZSL5h//73v6e2thaz2YzL5eL888+nsbExrZ8h0/+7777L7NmzsVgsXHnllQD4fD5+9KMfUVFRgcFgoKioiOuvv55gMJjWh8/n41vf+hZZWVnYbDZOPfVUdu3addDjB+jr68NgMHDbbbcNW7Zz504EQeChhx4Ckg/DobGYTCYyMzOZNm0af//73z92PyMRjUb52c9+xtixYzGZTGRlZbFgwQJWr14NfHR9nnzyyWHb7n9t+vr6+Pa3v01JSQlGo5GcnBzmzJnDG2+8ASTP8bJly2hpaUm7VkO43W6+853vUFRUhMFgoLKykltvvZVoNDpsv9/73vd44oknqKmpwWw2M23aNNauXYuqqjzwwANUVFRgs9lYuHAhe/bs+UTnZPPmzcydOxdJkli1alWa6IGDTwG99tprTJ06FbPZzJgxY3j88cfTthsSEjfffDOCIFBeXp7W58aNGzn//PNxuVxUVVUBsH79ei666CLKy8sxm82Ul5dz8cUX09LSMmzsq1atYtasWZhMJoqKirjtttt49NFH074Th8rBpvReeOEFJk2ahMlkorKyMnV/HoiDfc+Hlt1///3cfffdVFRUYDQaefvtt4lEIvzwhz+ktrYWh8NBZmYms2bN4qWXXhq2D4/Hw1VXXUVmZiY2m40zzjiDxsbGYffp0HFt2bKFr3/966l+b7zxRmRZpr6+nlNPPRW73U55eTn333//sH0d6m/C0L361FNPMXbsWCwWC5MnT2bp0qVp4/l//+//AVBRUTHsN/Ctt97ixBNPJCsrC7PZTGlpKeeddx6hUOig51wjiWbx0TggX/va17jgggu49tpr2b59O7fddht1dXW8//776PX61HobN25kx44d/PSnP6WiogKr1Up3dzczZsxAFEVuv/12qqqqWLNmDXfffTfNzc088cQTB9xvQUEBa9as4Tvf+Q5er5enn34agHHjxh3SuG+77TaCwSDPPfcca9asSesX4JprruHJJ5/kuuuu47777sPtdvOzn/2M2bNn8+GHH5KXl5fapquri0svvZSbbrqJe+65B1EUCYVCzJ8/n/b2dn7yk58wadIktm/fzu23387WrVt54403EAQBVVU555xzWL16NbfffjvTp0/nvffe47TTTvvYY8jJyeHMM8/kL3/5C3fddRei+NE7yhNPPIHBYEi9Id9444089dRT3H333UyZMoVgMMi2bdsYGBg4pPO1L7Isc9ppp7Fy5Uquv/56Fi5ciCzLrF27ltbWVmbPnv2J+vvmN7/Jxo0b+cUvfkF1dTUej4eNGzemxvb73/+eb3/72zQ0NPDCCy+kbRuJRFiwYAENDQ3cddddTJo0iZUrV3LvvfeyefNmli1blrb+0qVL2bRpE7/85S8RBIGbb76ZM844g8WLF9PY2Mj//d//4fV6ufHGGznvvPPYvHnzIfnlrFq1ijvvvJOSkhKWL1+euo8OhQ8//JAf/vCH3HLLLeTl5fHoo49y1VVXMWrUKObNm8fVV1/N5MmTOffcc/n+97/PJZdcMsyice6553LRRRdx7bXXph6izc3N1NTUcNFFF5GZmUlXVxePPPII06dPp66ujuzsbAC2bNnCySefTHV1NX/5y1+wWCz84Q9/4G9/+9shH8OhsHnzZq6//nruvPNO8vPzefrpp/nBD35ALBbjRz/60YjbHOx77na7AXjooYeorq7mV7/6FRkZGYwePZpoNIrb7eZHP/oRRUVFxGIx3njjDc4991yeeOIJLrvsMgAUReGss85i/fr13HnnnUydOpU1a9YcdKruggsu4NJLL+Waa67h9ddf5/777ycej/PGG2/wne98hx/96Ec888wz3HzzzYwaNYpzzz0X4JB/E4ZYtmwZH3zwAT/72c+w2Wzcf//9fO1rX6O+vp7Kykquvvpq3G43v/vd73j++edT99y4ceNobm7mjDPO4IQTTuDxxx/H6XTS0dHBa6+9RiwW0yzSh4KqobEfd9xxhwqoN9xwQ1r7008/rQLq3/72t1RbWVmZqtPp1Pr6+rR1r7nmGtVms6ktLS1p7b/61a9UQN2+ffvHjmP+/Pnq+PHjh7UD6h133JH6/Pbbb6uA+vbbb6favvvd76oj3d5r1qxRAfXXv/51WntbW5tqNpvVm266KW3/gPrmm2+mrXvvvfeqoiiqH3zwQVr7c889pwLqK6+8oqqqqr766qsqoP72t79NW+8Xv/jFsGMYiSVLlqiAunz58lSbLMtqYWGhet5556XaJkyYoJ5zzjkH7etQ+etf/6oC6p///OcDrtPU1KQC6hNPPDFs2f7HZbPZ1Ouvv/6g+zzjjDPUsrKyYe1/+MMfVED95z//mdZ+3333DTsvgJqfn68GAoFU24svvqgCam1traooSqr9wQcfVAF1y5YtBx3XE088oQIqoDocDrW3t/eA6w59Z/alrKxMNZlMad+BcDisZmZmqtdcc02qbeh8PvDAAyP2efvttx90nKqavC8CgYBqtVrT7revf/3rqtVqVfv6+lJtiURCHTdunAqoTU1NqfYDfd8O5TgFQVA3b96c1n7yySerGRkZajAYPGifI+136JxUVVWpsVjsoNvLsqzG43H1qquuUqdMmZJqX7ZsmQqojzzySNr6995777D7dOi49v9dqK2tVQH1+eefT7XF43E1JydHPffcc9P6PJTfBFVN3qt5eXmqz+dLtXV3d6uiKKr33ntvqu2BBx4Ydo327XP/861x6GhTXRoHZP859wsuuABJknj77bfT2idNmkR1dXVa29KlS1mwYAGFhYXIspz6G7J2vPPOO8BH8/ZDf4qiHMEjSo5LEAQuvfTStP3m5+czefLktMgwAJfLxcKFC4f1MWHCBGpra9P6+MpXvpJmjh46T/ufx0suueSQxnraaaeRn5+fZh37z3/+Q2dnZ2rKDWDGjBm8+uqr3HLLLaxYsYJwOHyop2MYr776KiaTKa3/z8KMGTN48sknufvuu1m7di3xePyQt33rrbewWq2cf/75ae2XX345kIyE2pcFCxZgtVpTn8eOHQskz+O+b9tD7SNNC43E2Wefjdfr5frrryeRSBzy+AFqa2spLS1NfTaZTFRXVx/yvgHOO++8YW2BQCBldZAkCUmSsNlsBINBduzYkVrvnXfeYeHChSkLEIAoilxwwQWf6Dg+jvHjxzN58uS0tksuuQSfz8fGjRs/db9nn312mnV5iH/961/MmTMHm82GJEno9Xoee+yxYccODDvWiy+++ID72z86bezYsQiCkGallSSJUaNGpV3DQ/1NGGLBggXY7fbU57y8PHJzcw/pvqitrcVgMPDtb3+bv/zlL8Om6DU+Hk34aByQ/Pz8tM+SJJGVlTVsCmUk039PTw8vv/wyer0+7W/8+PFAMiQYYNGiRWnLD9cD90D09PSgqip5eXnDxrZ27drUuD7u2LZs2TJse7vdjqqqqT4GBgZS52xf9j+vB0KSJL75zW/ywgsvpEJan3zySQoKCvjKV76SWu+hhx7i5ptv5sUXX2TBggVkZmZyzjnnsHv37k9yaoCkT05hYWHa1Npn4dlnn2Xx4sU8+uijzJo1i8zMTC677DK6u7s/dtuBgQHy8/OHTUfl5uYiSdKw+3D/aCCDwXDQ9kgkckjHcNttt3H77bfzzDPPcOmll34i8bP/tQcwGo2fSJyOdA9ecskl/N///R9XX301//nPf1i3bh0ffPABOTk5aX0PDAykTd0OMVLbZ2Gke3qo7dNMuQ4x0rE///zzXHDBBRQVFfG3v/2NNWvW8MEHH3DllVemXdOh79/+1/9gxz7SvWKxWDCZTMPa993Xof4mDPFZ7ouqqireeOMNcnNz+e53v0tVVRVVVVX89re//dhtNZJoPj4aB6S7u5uioqLUZ1mWGRgYGPalHclPIjs7m0mTJvGLX/xixL4LCwsB+OMf/4jf70/b7kiSnZ2NIAisXLlyxOiQ/dsOdGxmsznNSXX/5ZD8cRvpnB3KQ3+IK664ggceeIB//OMfXHjhhSxZsoTrr78enU6XWsdqtXLXXXdx11130dPTk7L+nHXWWezcufOQ9wVJ36JVq1ahKMoBxc/QQ2B/B+ORHnDZ2dk8+OCDPPjgg7S2trJkyRJuueUWent7ee211w46lqysLN5//31UVU27Dr29vciyfMTvlX256667EASBu+66C0VRePrpp5Gkz+fnc/970Ov1snTpUu644w5uueWWVPuQ78u+ZGVl0dPTM6zPT3IPHgoj9TfUNtJD/lAZ6fv3t7/9jYqKCp599tm05fvfj0PfP7fbnSZoDvexw6H/JhwuTjjhBE444QQSiQTr16/nd7/7Hddffz15eXlcdNFFh3Vf/41oFh+NAzLkbDjEP//5T2RZ5sQTT/zYbc8888xUmOq0adOG/Q0Jn5qamrT2oYiWz8qQgNn/DerMM89EVVU6OjpGHNf+0ToHOraGhgaysrJG7GPoGBYsWAAMP4/PPPPMIR/H2LFjmTlzJk888QTPPPMM0WiUK6644oDr5+Xlcfnll3PxxRdTX1//iaM8TjvtNCKRyIgRW/vuw2QysWXLlrT2kaJq9qW0tJTvfe97nHzyyWnTHwd60120aBGBQGBYMr+//vWvqeWfJ3feeSd33XUX//znP7nkkks+NjrxSDHkOL+/SH/00UeHWaPmz5/PW2+9lWZxUBSFf/3rX4d1TNu3b+fDDz9Ma3vmmWew2+1MnTr1sO5LEAQMBkOa6Onu7h52/82fPx9IWh335R//+MdhHQ8c+m/CJ+FAv2H7otPpmDlzZiqK9bNMKx5LaBYfjQPy/PPPI0kSJ598ciqqa/LkyYfkH/Czn/2M119/ndmzZ3PddddRU1NDJBKhubmZV155hT/84Q+HPR/IvgwJmPvuu4/TTjsNnU7HpEmTmDNnDt/+9re54oorWL9+PfPmzcNqtdLV1ZUKU/6f//mfg/Z9/fXX8+9//5t58+Zxww03MGnSJBRFobW1leXLl/PDH/6QmTNncsoppzBv3jxuuukmgsEg06ZN47333uOpp576RMdy5ZVXcs0119DZ2cns2bOHJbebOXMmZ555JpMmTcLlcrFjxw6eeuopZs2alYrw+Otf/8qVV17J448/nop6GYmLL76YJ554gmuvvZb6+noWLFiAoii8//77jB07losuuijlIzWUcG7y5MmsW7dumKDzer0sWLCASy65hDFjxmC32/nggw947bXXUtEwQ9fq+eef55FHHuG4445DFEWmTZvGZZddxsMPP8zixYtpbm5m4sSJrFq1invuuYfTTz+dk0466ROdx8PB7bffjiiK3Hbbbaiqyt///vfPzfIzREZGBvPmzeOBBx4gOzub8vJy3nnnHR577LFhie5uvfVWXn75ZRYtWsStt96K2WzmD3/4Qyo6bH+rns/n47nnnhu2z5ycnJSQGInCwkLOPvts7rzzTgoKCvjb3/7G66+/zn333XfYo4yG0md85zvf4fzzz6etrY2f//znFBQUpE3vnnrqqcyZM4cf/vCH+Hw+jjvuONasWZMSzodrOhcO/TfhkzD0G/bb3/6WxYsXo9frqamp4emnn+att97ijDPOoLS0lEgkkrI0HY3vxJeSo+hYrfEFZSjCYcOGDepZZ52l2mw21W63qxdffLHa09OTtm5ZWZl6xhlnjNhPX1+fet1116kVFRWqXq9XMzMz1eOOO0699dZb06JvDsRnieqKRqPq1Vdfrebk5KiCIAyLjnj88cfVmTNnqlarVTWbzWpVVZV62WWXqevXr//Y/auqqgYCAfWnP/2pWlNToxoMBtXhcKgTJ05Ub7jhBrW7uzu1nsfjUa+88krV6XSqFotFPfnkk9WdO3ceUlTXEF6vVzWbzQeMtrrlllvUadOmqS6XSzUajWplZaV6ww03qP39/al1hiKURorE2p9wOKzefvvt6ujRo1WDwaBmZWWpCxcuVFevXp02pquvvlrNy8tTrVaretZZZ6nNzc1pxxWJRNRrr71WnTRpkpqRkaGazWa1pqZGveOOO9Iifdxut3r++eerTqczda2GGBgYUK+99lq1oKBAlSRJLSsrU3/84x+rkUgkbcyA+t3vfjet7UDRUkP3y7/+9a+Dnoehc7Z/pI6qfhSZd+6556qxWOyA0U4jfTfmz5+vzp8//2PHOdTnvhFZQ7S3t6vnnXee6nK5VLvdrp566qnqtm3b1LKyMnXx4sVp665cuVKdOXOmajQa1fz8fPX//b//l4qM83g8aeNibxTb/n9D4z3YcT733HPq+PHjVYPBoJaXl6v/+7//O+J5Hel8HCiqa/9zMsQvf/lLtby8XDUajerYsWPVP//5zyOOze12q1dccUXa92/t2rXDoi0PdK4XL16sWq3WQxrzof4mjHSvqqo64rX78Y9/rBYWFqqiKKZ+49asWaN+7WtfU8vKylSj0ahmZWWp8+fPV5csWTLiudIYjqCqqvo56CuNLxFDJv2+vr7P1Y9CQ0Pj8+GUU06hubn5kJJp/rfxzDPP8I1vfIP33nvvE+el0vjvQJvq0tDQ0Pgv5sYbb2TKlCmUlJTgdrt5+umnef3113nssceO9tCOOH//+9/p6Ohg4sSJiKLI2rVreeCBB5g3b54meo5hNOGjoaGh8V9MIpHg9ttvp7u7G0EQGDduHE899RSXXnrp0R7aEcdut/OPf/yDu+++m2AwSEFBAZdffjl333330R6axlFEm+rS0NDQ0NDQOGbQwtk1NDQ0NDQ0jhk04aOhoaGhoaFxzKAJHw0NDQ0NDY1jBs25eT8URaGzsxO73T5iunQNDQ0NDQ2NLx6qquL3+z+23qAmfPajs7OTkpKSoz0MDQ0NDQ0NjU9BW1vbQSsDaMJnP+x2O5A8cRkZGUd5NBoaGhoaGhqHgs/no6SkJPUcPxCa8NmPoemtjIwMTfhoaGhoaGh8yfg4NxXNuVlDQ0NDQ0PjmEETPhoaGhoaGhrHDJrw0dDQ0NDQ0Dhm0Hx8NDQ0NDSOORKJBPF4/GgPQ+MToNfr0el0n7kfTfhoaGhoaBwzqKpKd3c3Ho/naA9F41PgdDrJz8//THn2NOGjoaGhoXHMMCR6cnNzsVgsWqLaLwmqqhIKhejt7QWgoKDgU/elCR8NDQ0NjWOCRCKREj1ZWVlHezganxCz2QxAb28vubm5n3raS3Nu1tDQ0NA4Jhjy6bFYLEd5JBqflqFr91n8szTho6GhoaFxTKFNb315ORzXThM+GhoaGhoaGscMmvDR0ND4r6Mn0MPbjW/zwo4XeLvpbXoCPUd7SBoaX1jKy8t58MEHP1MfK1asQBCEzxwtdzjG8nFozs0aGhr/VWzu3sxD7z9E42Bjqq3SVcl1M6+jNr/26A1MQ0PjC4Fm8dHQ0PivoSfQM0z0ADQONvLQ+w99rOWn29PBW/XLef7DZ3lr13K6PR1HcrgaGhpHAU34aGho/NdQ11s3TPQM0TjYSF1v3QG33dT2Abe8ciN3vnoTD759L3e+chO3vHIjm9o+OFLD1fiSokajJHp6kNvbSfT2okajR36fqsr9999PZWUlZrOZyZMn89xzz6GqKieddBKnnnoqqqoC4PF4KC0t5dZbb01tv2TJEqZNm4bJZCI7O5tzzz13xP00NzcjCAKbN29OtXk8HgRBYMWKFam2V155herqasxmMwsWLKC5uXlYX6tXr2bevHmYzWZKSkq47rrrCAaDqeW9vb2cddZZmM1mKioqePrppz/bSTpENOGjoaHxX4Mn6hnWpioKaiyGGo3iCfaP+JDq9nTw25W/orG3Pq29sbee3678lWb50UiheDzENm8mvmMH8p49xOvqiG3ejHKEM0H/9Kc/5YknnuCRRx5h+/bt3HDDDVx66aW8++67/OUvf2HdunU89NBDAFx77bXk5eVx5513ArBs2TLOPfdczjjjDDZt2sSbb77JtGnTPvVY2traOPfcczn99NPZvHkzV199NbfcckvaOlu3buUrX/kK5557Llu2bOHZZ59l1apVfO9730utc/nll9Pc3Mxbb73Fc889x+9///tUgsIjiebjo6Gh8V+D0+hM+6zKMmooBIoCQEZCT2zzZvQ1NYjOj9at69k+TPQM0dhbT13PdvKdRUdq2BpfEtRolHh9PWo4nN4eDhOvr8dQW4tgNB72/QaDQf73f/+Xt956i1mzZgFQWVnJqlWr+OMf/8gzzzzDH//4R775zW/S09PDyy+/zKZNm9Dr9QD84he/4KKLLuKuu+5K9Tl58uRPPZ5HHnmEyspKfvOb3yAIAjU1NWzdupX77rsvtc4DDzzAJZdcwvXXXw/A6NGjeeihh5g/fz6PPPIIra2tvPrqq6xdu5aZM2cC8NhjjzF27NhPPa5DRRM+Ghoa/zWMyx1HpauSxsFGVFlG8flAlkEQqMofyxgpH9Uz/CHliQwetN+RLEmHE3/UT4unhUA8gM1go8xRht1oP6L71PjkKB7PMNEzhBoOo3g86PLyDvt+6+rqiEQinHzyyWntsViMKVOmAPD1r3+dF154gXvvvZdHHnmE6urq1HqbN2/mW9/61mEbz44dOzj++OPTcuoMCbIhNmzYwJ49e9Kmr1RVRVEUmpqa2LVrF5IkpVmexowZg3OfF5IjhSZ8NDQ0/mvIs+Vx3czr+O3KX9PQuS1p7QGq8sbwvZrFOBt6SMRiIEnoioqQiosBcJpcB+13f0vS4aTZ08w/tv2DHX07iMgRTJKJsTljuWjCRZQ7y4/YfjU+OerHZAv+uOWfFmWvxXLZsmUUFaVbHo17xXsoFGLDhg3odDp2796dts5QqYdDQRSTHjBD/kIwPEvyvssONuZrrrmG6667btiy0tJS6uuTFtajkUxSEz4aGhr/VUyyjeJnFVdTXzWAx9eLU2+nRswjqzspgsjMRBkYQG5oAElCys9nXN54KnNrRpzuqsytYVze+CMyVn/Uz2MbH2PprqUM7mN12tKzhWAsyE1zbtIsP18ghL1TR592+adl3LhxGI1GWltbmT9//ojr/PCHP0QURV599VVOP/10zjjjDBYuXAjApEmTePPNN7niiis+dl85OTkAdHV1paxJ+zo6D43nxRdfTGtbu3Zt2uepU6eyfft2Ro0aNeJ+xo4diyzLrF+/nhkzZgBQX1//mfMAHQqa8NHQ0PivItHbi3PzbmYXFBDf7kNfnY/cWkd8cBBEEcHhAL0eKiuJrVuHuHAh+c4ifnDCjz5ycBZFEATKc0Zz1YxraPG00B8bPOxTUJu7NvP8jufpDfYiCiIGnQGdqGMwMsjSXUs5s/pMZhbPPGz70/hsiE4ngtk84nSXYDan+Y0dTux2Oz/60Y+44YYbUBSFuXPn4vP5WL16NTabjezsbB5//HHWrFnD1KlTueWWW1i8eDFbtmzB5XJxxx13sGjRIqqqqrjooouQZZlXX32Vm266adi+zGYzxx9/PL/85S8pLy+nv7+fn/70p2nrXHvttfz617/mxhtv5JprrmHDhg08+eSTaevcfPPNHH/88Xz3u9/lW9/6FlarlR07dvD666/zu9/9jpqaGk499VS+9a1v8ac//QlJkrj++us/kXXq06IJHw0Njf8q1HAYNRRCCQbRjRqF3NaGOrjXmrJ3ykCNRJD37EHMyCDR348aDDJRKODeBb9gh6+BQW8PZpONWCTA26v/TgwFXXY2Wa5Czq45+5CmoIb8doLxIBaDhbgcJ6bEUj48jYON7OjfQcNgQ2obSZTIMGZg0BkYjAzS6mlNEz5qNJr0M4nHEQwGRIfjiDjTfhytnla29mzFHXGTac5kYu5ESp2ln/s4Pm8EoxF9Tc0wB2fBbEZfU3NEr8XPf/5zcnNzuffee2lsbMTpdDJ16lR+/OMfc+GFF3LnnXcydepUAO644w6WL1/Otddey7PPPsuJJ57Iv/71L37+85/zy1/+koyMDObNm3fAfT3++ONceeWVTJs2jZqaGu6//35OOeWU1PLS0lL+/e9/c8MNN/D73/+eGTNmcM8993DllVem1pk0aRLvvPMOt956KyeccAKqqlJVVcWFF16YWueJJ57g6quvZv78+eTl5XH33Xdz2223HYGzl46gHspk3TGEz+fD4XDg9XrJyMg42sPR0Djm6An0UNdbhyfqwWlyMi5nHHm2vEN2AI7V1xN59VUQRQzTphFdtQr2eUiJBQUgSaiBAIbjj0cZGEA0m0EU6Xfq2RnvZFCIEFPiiJEou5s3EJP3+gXl55Nlz+WK2isOavlp9jSzpH4J3oiX4oziZG4hFSwGC06TE6POiDfqxWaw8f1Xv5+2rSRKuEwudKKOX5/ya84bdx6QdKw90AP3SFkaRmJN2xruWXkPW3u3ptom5k7kJyf8hFklsw6y5dEnEonQ1NRERUUFJpPpU/eTJkD1+qQl6CgI0GORg13DQ31+axYfDQ2No8q+D5EtiU5+t/H3NHmbU8srXZV8a+q32NS9id7gRzk+Ms2ZI1pfRLsdMTsbpb8fZWAAwWxGsNtBVcFoRMjIQOnsRDCbUdxu1EgErFa2Z8n8bsNvaejcTsikoz82yLiccVw5+XJ27F5DTI6hRiK4JTctnhYm5E0Y8Xj8UT9L6pfgDrsptBXSG+hlRfMK2nxtSKJEvi0fh9HBpLxJlDhKqHBW0ORpSm0vKzKxRIxqZzV5llzkzk6UcBjV7086lVosCIKAGgod8TDq/Wn1tA4TPQBbe7dyz8p7ePj0h48Zy8+RiN7S+HzQEhhqaGgcNRL9/UTfe4/o++/T1dvMQysfoKFtC4KcwCyZMYgGGtwN/GH9HxifPZ5iezE6QQeAO+xmSf0S/FF/Wp+CTodhyhTE7GwQBNRAICmCwmEEoxE1EEiKICn53idarQxkGvjdpj/Q4G4AoxFFBBSF7d1beWzDo1RlVaN4vaiyDEAgHjjgMbV4WnCH3QBkmDJYunspbb42DKIBAQFvxEuzp5kVzSswSkbOGXMOFc6KtD5KHaWcU302FSET8fp6oqtWEVm+HE/LLup8u3nfV0e9SyZoM6BGIoeUPM8f9bOtZxtr29eyrXfbsPN2KGzt2TpM9KSW9W5la8/IyzQ0vkhoFh8NDY0jyoH8UhIDA0Tfew9lr/9NfV6Yho5tiAYDJr2ZXQO76A50E1fivNf2HpWuSjKMGZRklNDmayOhJnCHh1tfRKcTubUVfW0t6HSoiUTSOhKJkBia1gLEjAwEqxUhkWBnoptG957kNJKiIBpF1GgUvWTEas5AyHSRWTwKsyUD0WzHrj/wNNe+oigUC9Hma8OoMzIYGSSWiGGWzCiqQruvnf5gP6MyRzG/fD7Hy8cjK3LKKrQwazqutkHk9nbUYJCu6jxebn+dgcZeBKMRwWgkp7ias0pOovxjwqiHpt6GBBkc2GJ2MNwR90GXD0YPng9JQ+OLgCZ8NDQ0Dhv7ixxEEbmhIeWXosoygiiiGzWKRE8PiZ6epPVFEPDE4qCqmC0O6t276An2kkBJ9d0X6mPZrmWcXXM2OZYcuoPdwHDri2A0oh89OukPE4kglZQgNzZCPI5UWgqyjFhejlRTQ6KlBcFqxZPoSE55Aeh0GGUVs9HGwtEns7pjLX/b+jT+7lYwGBhVPImFVScd8BzY9LbU/2OJGHp0DIYGiMpRVEDRKQiCgKIq9If66fR1UuGswKK3EIqHcJlcLMyfTcGGBgS7HdXnI1SUw8vtrzHg6dp7kAJqJMJAoJeXG1/liqIqnAcYz75Tb/syZDH7OH+lfck0ZR50uct48HxIGhpfBDTho6GhcVhIOd9GowiZmaDTkdi9GzUeR7TbQVGSBR0jERJeL7qyMnT5+SAIIEk47VEwGEjoJTwRL7KaSCU3ExDIMGSgoOAwOrAYLOSTT1+oL01oDCE6nRhqa1MiTFdUBIkEKAqCXk/QKlHnaaQzoxsplsBstKOgIsTjoNMhiiInlJ/Amo73aR5spCKzEjWRwCqZydDb+E/Dfyi0F44oGMqcZYzOHI036Maht+IwOhgI9KKoCRRU4rEICRSyrdlE5SgZpgxe2/MaihynwlLEdZOvpbgjSLy7G0GSQKejwxpnwNv90U5UFVQVgyiRXziaVZ4txN0bUs7gFr0l5Qgejofp8ndhlIb7AI1kMTsYE/MmMjF34ojTXRNzJzIxb+Ih9aOhcTTRhI+GhsZnxhcYoLF5AwHVhz07m8LAIHbVAKqKYDSiRCLJEPMhIVJeTqK5GXnbNpAkxKwsRluKqcoaTXOsG1VVQFFQRRFREDmu8Dj2uPewrXcbW/u20hfsI8ucxclVJxNPxPFH/cNEyIEcUJs9zbxe/zotnmaCQQ9GVUdl7hiqK6dR17IBcwxqSmsZWzoN2ahn/qiF5JlzaVftWIIyFtF8UMEwEB6gyd3IyvrXqbKVUZs3mQQJJFGPoioIqgoqjM4ezWB4kNGZo7nuuO+SIZoZIxWQ2eUDu4SYnw8kQ+8DCQlBkpI+RnstZAa9mbE1c3l8+1P0bO0lw5iMYim2F3P++PPZ3rudWCyM0+Cgvmc7DrMLUdRh1JtwGB0pIXQwf6Uh9o2o+96M77G8YTlL6pcQV5JTbBNzJ/KTeT85JhybNb78aMJHQ0PjM9Hsaealjf+gr3UnWCwQieCMipxVcjL5W3cnrSw5OUglJSheLzqnk0RLS9LSYzAgmEwofj/O9z7ke4su45H259nSty3ZuapSWzCF6UXT+cvmv1CSUcLE3InU99ejorKpaxPeiJeVbSs/1l9l6OG9um01T215ipbBJoS4jKqqVHRX8u3p16IqCrnWXF5vfpN1H26nxdNMvjWPPEMWXxt1Fv2de1D35gIaSTD4o36W7lpKhs7CSWNOIxKPMKloCp64j3Ud65LbqipjssawsHwR/9r0NyoNeVSYq6nuFYhvfgfZak1OFZpMSGPGIGRkYBP3isi9FiDBYKBm8iIe3/4UOwZ2km3JJhgLElfidAe68UV9fGP8RdRtf4fsUeXs6t1JWA5TYMkjy1mANdeKXWdHVVWC0eCIwnHf6/te63v4or6PSmpkj+UrlV+hP9KPw+BgYt6xkcdH478DTfhoaGh8aob8RwYCe8PMdToSPT30h8O8zOtcWjQdc1sP6uAgciyGrqoKQZaJ79iBmJ2NmJGRzKnT2wuKwug3t3Pz+d9jXO4EOgIdSKJENBHjH1v/QVVmFUadkf/s+Q8buzciiRJljjKmFEyhZ6DnoP4qQ869udZcnt3+LFt7tyKqYBaNSAg0e5r549qHueukX/DcrhcosOZhNliJhP0EvQM00M/zaoJzSr7CQNwLMOIUW6unFQGBF3YvobG3nhxTFv/c/ixTS2bwnenfodndCLJMf8TN0+sfZ3buNJTOTryebchuC4GvzGXH4C4GEwEyDVZGxXzkTp5M8UAnWY4CBoJ9yK4MQlYJ2WahfmAXBp0Bb8SLiko4HiYYD+IOubl43IUUukrxRf2My59Iu6+dAkcJpY5Slu9ZTpuvjQJbARu6NrCmYw2XTrp0mHD0R/2sblvNsl3L6Ax0ptpL7CVcMOECxmSNIabE8MV8BxVPGhpfJDTho6GhkYY/6mf3wG46/B2oqopFNJKps1FpL8XhyE3LF5MK3d5b2BBZTjkyD7g76BhzPKPakotUjyfp8ByNJteXJBS3GzErC6zWpA+OKFLSG+WEwuP5645/sK13O3rJQJmzDL1Oz9SCqTxf93xq/22+Nl7d8yrHFx1Pd7A7bfpJCQRI9PbiV8K82PgCg4Sw6W00e5oBSKgKITmMTbIgqiot/jbaAp209O9BDYWRVR0mg4V4Ik48Gqaxfw+xytMgkiDTnEmZs2zYufNFffy77t/JhIWA0WhhT+82/IkQG7o2MDZzDO83rwJZxm60M3bSBHauXsbc6gnUj3Hyf2t+TqOnCTUaBVmmqnA8153wIyZmTuBr1aU80/gC73evZ3zWZNp8bfSF+lBUBRUVs2Qm25KNfu+Umjfmo3bsAjb2bOLUmtNZ274Wo87E602v0xXowmF0UOIoYTA8yHut72HSmbhm2jVp4qXZ08zS+qVpokcSJUqdpfz+g99T7iwnz5acThwpSkyrOq/xReRLlceno6ODSy+9lKysLCwWC7W1tWzYsCG1XFVV7rzzTgoLCzGbzZx44ols3779KI5YQ+PLRbOnmd++/1t+sfIX/Pj1W/j+S9dw55u38dLupfzfut/TuOuDtJwxQ9M9gsmUzIujfBSFpUajBKUEmEwpvxQUBaxWRLsdpb0dwWBIhmbvncJBkqjLivPH939PPBxkQs545pbM5cIJF1LmKGP5nuUE4gFC8RCBWABZkekL9qGipo1H7u4m8uabRN99l+bmD+mtW4/c2EgsHkEU9v7s7Y2sSkWOqSpBOUiEBLtDbWx378RhcSHq9RjNVlAhrETIsmXz1ZqvjvgAd4fdNHoaU7W+EqioqPhDHvoCvYzLHceY3LGMzx5HqTGf3r4WnPZsMrIL+N22x2ho34Kg06X6a+jczu8+eBh3rpXc0hoqC8Zx8ZTLaPI0YzfYkUSJhJJAVVX0Oj1dgS76w/10B7sJJcL8+cPH+KBzPbe+cSt9oT6qMqsodpRQ6aoix5JDb6A3aSmSwzQONtLiaUk7ns5AZ5roURWFsc7RbO/ehj/ioy/YS2+wl6gcHZZXacjKtrJ1JWva1rCyZSVL6pekhKfGJ+PEE0/k+uuvPyx93XnnndTW1n7mfsrLy3nwwQe/EGP5JHxpLD6Dg4PMmTOHBQsW8Oqrr5Kbm0tDQwPOfVK133///fzv//4vTz75JNXV1dx9992cfPLJ1NfXY7drbxkaGgfDH/Xz3Pbn2Ni1kV39u/AH3aCqtHlbebPpTablTeHfjUu5SjWSaZ6EYDSmpnsESUKXnU3C708KoL2J/qwxECyWZNVqvR5dYSG9aoB6h4vBsIrL4KSaHJzbQxAK4Z0zmd9t+sNHVdJFkXEV05FEPa/ueZV8W35qvIqqpKwbETkZim7T21ACAWLvv5/KDxRI7A2lj0QwxVTsBhveqJdYIoakNzGteCb51jwEUcRhchJX4gyE3SiKzECgjxJXGXnOfIwukamF05jrnIzLWZZmzRAQiMpR+sP9VGdWE5JD9Af6kCQ9CCJyIo5BbyIcCxEN+rGgB6OBrLwyKvOnsEcXoGWgkbzC0UgZTqJyFEVVMKgiA3EvO9y7yLHmsNu9G5vexrqOdVS5qhifO551HeuwSlb8UT9hOYxFb2FS7iRaPa3s7N9JUUYRc0rnsqF7AzaDnU1dmyjJKKHD34FO1GExWJBEiZgSG+a3FJc/yg+kyjK6SIya7DG8VL8EX9SHP+qjebAZk8HMmOwxROUoLZ4WypxlI06RFdoKEQSBLHOWZvn5hDz//PPoj1D192ONL43wue+++ygpKeGJJ55ItZWXl6f+r6oqDz74ILfeeivnnnsuAH/5y1/Iy8vjmWee4Zprrvm8h6yh8aWixdNC42AjUTmKP+JNWmn20uZtZU7JbBq9rbRFe3F6POjy8ihzlpFpzsQddiOYTIiAmJWFGgiQ5cin2JCD6AiiKgq6nBy2WXz8bvVvktM54TCqLFNVMI7vT7+GMbud7HbE0kSPYLHwYc8Wzh93PnpRj0iygnlUjmI32imwF9Ad6EYSpdT0U6KjNyV6AGy6j6o9h7rbmZ43FUEQ6Q50c0rVKbzf8T7vtL5DhasSi95COBGhKmc0DX27UFSFFk8zXYEuLhj7dWrlXBzZhWkJAbsD3axuXY1BZ+CSSZewa2AXCFDhrCCeiOOwZROJh8gwZpBry2NU0QR2dm0lW2dlsH0Pr+z6kIp5Z5JTPpa+yAA7W97BEx4EVKwGG6OyqnFH3FgMluQxxEMAvLTzJX44+4coqkKbt42eYA+SIFGbX8s5NV/ljhV3Up1VzbbebXy15qu81vAqgiDgi/rIMGbQ5msjFA0RjoexG+2pzNJvN76dqpPmMrswS2ZCsSBqKERN/kT2DDbgi/pwWFwMRgYR5AQYkn5G1VnVtPva6Qv2sbNvJ2XOMpxmJ7sGdiErMp2BTpbWL9VC3z8FmZkHz6Gkceh8aaa6lixZwrRp0/j6179Obm4uU6ZM4c9//nNqeVNTE93d3WkVZI1GI/Pnz2f16tUH7DcajeLz+dL+NDSORQLxADElhqzIaaJniLgSJ6bECcgh1L2Zgu1GO2fXnE2mOfmjLJpM6PLzyc4p5eyKUzHtaSPR0QHxOIPlOTy06n/Z7WsiqMYIWHREHBb2RDp4eM8z+BfOxKtGkrW1LBYEmw1BkogmoqzrWEdtfi2js0Yzo2gGk/Im4TA62NW/i0xzJqF4iHlFczB19KF6POgnTUI/dSq6oiJK7cVk51eAINDVtZsZ2bVMLZjKNyZ9gxZPC4qqUJ1dw7jscTy7/Z9MzJ2IIOrIdxSljr04o5jTq0+noLiGoF5NiZ5ALMDatrV4Ih66Al3U9dUxIXcCsiLTG+yl0F7IrJJZFDtKKXKVopP0dPg7KdJlcXr2bPp3bQVFITcjn2Z/Gzv7d+KJeAAVEAjKYfYM7qEn0INFnxQ+Q/9GEhHeaHyD+WXzuW3ebdw05yZ+tuBnnFNzDm80vcn43PHoRB2dvk4yzZkk1ARtnlaK7EUgJH11VNRUNuksSxav7n6Vm964iZ+/+3Nuev0m3mp8i9r8WsyCARSFDIuLaDyMzWgjHA9/FF6vKARiAURBZEvvFh5e/zAfdH7Alp4t9Af7mV08G0lMvmf3hnoZCA985vIZR5PDUf7jk7LvVFd5eXmqGrrdbqe0tJQ//elPaeu3t7dz0UUXkZmZidVqZdq0abz//vsf2/cQ55xzDpdffnnqc29vL2eddRZms5mKigqefvrpYf14vV6+/e1vk5ubS0ZGBgsXLuTDDz9MW+eXv/wleXl52O12rrrqKiJDiUM/R740Fp/GxkYeeeQRbrzxRn7yk5+wbt06rrvuOoxGI5dddhnd3cnkXnn75e3Iy8ujpaVlpC4BuPfee7nrrruO6Ng1NL4M2PQ2DKIh+YDamzhwX/SiHoOoxybtnbraS7mznCtqr0hO+4S9mDxBSkz5WLrdqKPNybIRsRg7fA3s8O5mIDKILHzkCySJEgmvjp3+Jly2nGHFNnWCjo1dGzml6hQSaoJVraswSSacJic12TVcOulSer1d1Ld/SIllEtZACEQRJZFAdDgwrF/PGdVzWaaT6O/cQ9tAE8cVHYdZb2Zn305GZY4CNWlJCckhltQvYUbRDC6ZeAkNA7sxiAaC0QB6yYSUn09Lz7ZUFuS+YB+BeIDByCBhOczTW57mrgV30ehpZCA8QCAWwGqwcnzJ8Vw4/kKCsSCGKiAUpm3nhqR/kSiiEyWK7EUMRgcpyChCURV0og5/zI9JMtEb7CWeiJNpzkRAoNJZiT/mZ0vPFj7o/IAF5Qt4qf4lREHEqDPiDrvJNGfij/mpcFWQb83n3LHnIQoiJ1clXw53D+xOXneDjRmFM7Ab7Ty26THC8kfV35/Z9gxXTbmKuWVzae/ahcVgoy88wJjssezo3Y64Vx8LCNgMNgRBYG3bWur66ogkIggIFNmLMOgMjMseR11/HTOLZvLSzpdwmByp/Xya8hlHi8NV/uOz8utf/5qf//zn/OQnP+G5557jf/7nf5g3bx5jxowhEAgwf/58ioqKWLJkCfn5+WzcuBFlHx+8T8rll19OW1sbb731FgaDgeuuu47e3o+KBquqyhlnnEFmZiavvPIKDoeDP/7xjyxatIhdu3aRmZnJP//5T+644w4efvhhTjjhBJ566ikeeughKisrD8cpOWS+NMJHURSmTZvGPffcA8CUKVPYvn07jzzyCJdddllqPWG/H2xVVYe17cuPf/xjbrzxxtRnn89HSUnJYR69hsYXnzJnGZWuSrqD3dhNDvzyQMryU+IoJRoLU2krpcSYi7iPbx0kLT8T8iaQ6Okh3rwDwRol3tycWq7GYrizRAbCA8TlWFI47e1bVmL0B/pwR9zMLZ1LpasyFRUFYJSMqKi0elu5fPLlZJoy6Qn2JB2TlQT/3Pos7YMtnFF2Mq0RO5Xv7SJcmE1HgZmw1YF1WhkFLR6+YZlF15wFhDPt2K0u9gzuwR/zpxyjsy3ZOE1OLHoLPcEewvEwJr2FgfAA/rifnIzkS9W+fjDRRNKpd0gsxJU4W3q2kG/NZ3bJbI4rOI48ay6zsmrJiRtZF9tFd/ce5PZ2RKcTKdMJikJXoJsLJl5I+5oONndvTv1m1ebX8s1J32R9x3piSoyza85mddtqFtcuZo97D73BXvqCfeh1ekZnjSYcD7PHvYeEmiCaiOKL+Kgoq6DN28bft/09eS0zSrhg/AXcs+ge3GE343PGoxf1fHvpt9NED0BYDvPYpsf4w2m/x2GfTpcuRO9AC6dWnkwkEqDN2wqAxWjDYXIwrWAat799OwbJgKIq5FhyKMkoIdeay6jMUVS4KoglYrhMLnSiDpNkQkCgL9T3ictnHA0OZ/mPz8rpp5/Od77zHQBuvvlmfvOb37BixQrGjBnDM888Q19fHx988EFqimzUqFGfel+7du3i1VdfZe3atcycOROAxx57jLFjx6bWefvtt9m6dSu9vb0Y9768/OpXv+LFF1/kueee49vf/jYPPvggV155JVdffTUAd999N2+88cbnbvX50gifgoICxo0bl9Y2duxY/v3vfwOQvzfLaXd3NwUFBal1ent7h1mB9sVoNKYukobGsYzdaOf88een3tTr1Z34g25KMkpYVLEIgwznlZ2Bq2T0MKvMEENTYENVzD9aoGI22YjLsdTnfYknYph0JvJseVw38zoeev+hlPiRRInji47ngvEXsHTXUl5reA1f1EeZo4y5pXP5T/NKYkEfyyIRjj9hKl1jCni5/U0GWjsQrDZ0ZWU4+0OcVXkq4zNr0e99u9w3GgwgJseYkj+FLT1bKLQVIgoiPcEeCu2FfLXmq+xx78FldqXl7xERicrRtGMRBZHV7atZ3b6auSVz0EdkXDvakAGL0Z+sCaaqJDo60IkSBcVjKHaV8s+6fzMpdxKzi2cxGPUgCRLdgW7++uFfOav6rFRh1E5fJ42DjXijXnoCPeRZ81hYvpA8Sx5Pb32aQCzpbK036zmp8iRGZY5ia99WZhTOoCfUw7jscaxpW8OWni18b8b3mF40nZfrXyahJDDoDKljAFLisjPYxfFKFSXI7NQXsKezjolZY5lbMgedwYgoJS2AdX115NnyGIwMIidkTiw/kfWd61ndvprxueOpzavl3dZ3cZqcBGNBVFQKbYUsqlxEp7/zE5XPOBqk0jeMwCct//FZmTRpUur/giCQn5+fssBs3ryZKVOmHDa/oB07diBJEtOmTUu1jRkzJi24aMOGDQQCAbKystK2DYfDNDQ0pPq59tpr05bPmjWLt99++7CM81D50gifOXPmUF9fn9a2a9cuysqSuTQqKirIz8/n9ddfZ8qUKQDEYjHeeecd7rvvvs99vBoaX0bKneX8YOYP2D2wm85AJ4qSwCqacOqsVNlKcTjzDih6gNQUmCDt99MiCOQqVsblTaCuZ1tyKm0f8TMudzz59uTLS21+Lfcuupe63rqkk63RybjcZP0pWZFRSEZz9YX6WN6wnLgcBSVBq6eZqEFMih5PJyCgBoOgKLgJscy7jiuN01PFPMfljkuzLqmodPm7OHXUqWzu2cw/6/5Jf6g/KQL76/nGxG+wdNdSvj7u6ymHbrM+6RvT6U9GLlU4K+jwdQBQk1VDQk6Qr09O6aiyTGFcwqXPoF/oRzJbKR43g7X+Oro61vJ603K8UR9mvZmSjBKaPE0AmCQThRmFZFuzeXb7swTiAXJtuQB0+DvoCHTwUv1LqIrKqKxRzCqZhYpKtiUbl8nFnzf8mTxbHt6ol+kF09nRv4McSw7eqBe9qMdutGM1WPFEPSSUBBE5QkJNYNQZcZgcxBNxTHozGy0RrMEYXxlzBvHGV3mrfRV6czft0R6Mkomvjfkaz2x7BrvBTpWrigxjBu+0vENfsI8caw5js8aytn0tzZ5mXCYXZY4yAvEAnYFO3mx8k3ll8w6pfMbR5OPG93mOf/8IL0EQUlNZZrN5pE0OiCiKqPu/jMT3iejbu+xgsyeKolBQUMCKFSuGLXPuZyE+2nxphM8NN9zA7Nmzueeee7jgggtYt24df/rTn1IOXYIgcP3113PPPfcwevRoRo8ezT333IPFYuGSSy45yqPX0PjyYDfamVo4lalMPeA6/qifPe49tHhaiCQi5FpzGZ8znlynE2Hvj65gs6EG9j4IJAmj289Vkxbz2Na/smNgZ6qvcbkTuOq4qzHvE32VZ8tLJcbbF52oY0XziqQD9hB7f5QlnZFgLLBX9OxDIoFoNuMODdAa7cNJZWof+1qXFFWh2FHMroFdTM6bjIBAXIljFI10Bbt4o/ENphRMoT/Yz9k1Z7Okfgm9gV7G54wnoSSw6pO+PC/seIGarBrOHH0GSjxKpZABxFAjESx+P2c6ZrBMJyFbTCzvXc36rg0s0p2C3ZiBpNMzEBqgzddGjiUHX9RHdVY1FY4K+oJ9adYGh8mBWTITlsO4w27G5oxl4+6NNLgbMEpGijOKKc4opifYg9PkpGmwCVmRmVE4g8bBRgLxAO+2vkuZo4xwPMzY7LGs71xPQk0AyWk8f9TPlPwptHpa6ZF66PK2k63L4Jwp3+D48afwVuu7jE9E6A/283bT25Q7y2n2NNPsaeaiCRfxbuu72PQ27AY72dZsvFEvkiilTTHGEjG2921nbM5YBkIDSSvWCNf+i8BI2bo/yfLPi0mTJvHoo4/idrsPyeqTk5NDV1dX6nMikWDbtm0sWLAASM6uyLLM+vXrmTFjBgD19fV49snpNXXqVLq7u5EkKS3iel/Gjh3L2rVr09xT1q5d+ymO8LPxpRE+06dP54UXXuDHP/4xP/vZz6ioqODBBx/kG9/4Rmqdm266iXA4zHe+8x0GBweZOXMmy5cv13L4aGgcRpo9zbzd9DZPbXmKdm87KipWg5V5ZfNYPHkxU2pqiO/ahVRZidzYiBoIIBgMFJnzeLflPywe/w0UScRpzSZGAm/UQzQRIygfvGYUJP1TSh2ltHpbPxI/oogkGSm1lyBGYukbiGIyMSKAJBES06fg9rUudQQ6iCViNLgbWLZ7WVqivTJHGePHjEcQBPxxP+PzxnNF7RXsHtjNus51nDf2POJKnKbBJq6beR2+iI8uTyeLC0/H2rf3zVlRQJYp2DPIeeNPYJVrEHlwE0ajBYvBSq+/G5cli1JHKSoq43LGYTfYKbQXUmAvGGZNMEpGarJrqO+vJ67EUVUVd9iNRW/BLJjZ1LWJMdljcJqcRBKRVGkLb9TLbvduVFQGw4N82PshW3q2sHjyYsJymC09W4Ckw/KozFF8a+q3eGzzY5w39jwESWKAEG90r6Q6s5p3Wt7BqDPSHezGE/ZwYsWJ6AQdOwd2pqwD+bZ8xuaMJRxP+g8NiTVZkQnEArT72onIEdxhN8t2L+PFnS/yvRnfQxIkQnIyUaVO0JFpyTzqmZ/3Td+wPwfK5n00uPjii7nnnns455xzuPfeeykoKGDTpk0UFhYya9asYesvXLiQG2+8kWXLllFVVcVvfvObNFFTU1PDqaeeyre+9S3+9Kc/IUkS119/fZpl6aSTTmLWrFmcc8453HfffdTU1NDZ2ckrr7zCOeecw7Rp0/jBD37A4sWLmTZtGnPnzuXpp59m+/btmnPzwTjzzDM588wzD7hcEATuvPNO7rzzzs9vUBoaxxD+qJ8VTSt4astTdPg68EQ8RPcmD3SHBhgI9vPTebcxZvJklL25ftRoFEEUMZvNnFVdwis7lpBvLeEfO/7FO63vEIgFsOgtjMsZx3ljz2Ni7kRiiRiiIA572I3OGs3CioW82/wug5FBEmoC0STgTOg5wTWVgrD+o2k0UfzICXtvgkWb2THsmIasS9t6trGxeyNvNb01LLtwi7eFVa2rWFy7mAx9Bj2BHrb3bqcv1EeuJRdFVVIO0e6Im0JbId+dfDWljfvkQxLF5J+i0B/upyveSiToJRr00e1updReTLO/DUEUsegtBGNBMs2ZFNgLKHOWpWVVjspRvBEvMSVGuaucTl8n0wun0x3oZrd7N5u7NiOrMoOhQRaUL+Bfdf9KTRFG5AhmvZkcSw59oT48EQ+eiIdVras4ufJkLhh3ASE5hFVvpcPXwcaujciKnEoSCcmH/Lst79LkacJlctEX7CPbks0ru15hfO54ZhbNZGLuRK457hoKbAX0BHvIsmQhCmIqfF4URPpD/Rh0BjLNmUwtmMqGzg1kmbO4c8WdnFJ1CitbVtIZ6MQsmanJrqHSVXlUo7+G0jeMFNV1oGzeRwODwcDy5cv54Q9/yOmnn44sy4wbN46HH354xPWvvPJKPvzwQy677DIkSeKGG25IWXuGeOKJJ7j66quZP38+eXl53H333dx2222p5YIg8Morr3Drrbdy5ZVX0tfXR35+PvPmzUv52V544YU0NDRw8803E4lEOO+88/if//kf/vOf/xy5kzECgrr/xN4xjs/nw+Fw4PV6ycjIONrD0dD4QrGtZxuv7XmNP234E57IINF4JM1XZ0LeRC6Z+A2+UXE2triIYDAgOhxpfkGtnlbueucuVrWuwh/zoxf1mCQTUTlKVWYVtXm1ADR5myh1lA572DV7mnlu+3M0DjYSU2IYRAPl5gK+ZpiCvS/A33qXM+DrRrBa0RUWIuj1CCYTWfbcg0bd+KN+luxawo/f+DGBWABF/Sj016Az4DQ6uWvBXYzOHM3jmx9nZctK/LFk/pbqrGrOG3se43PG4zK5KHWWYsNAbPPmVO0yVZZJDAygDAywudLAFqGbV1reYFvvNvSinq+MO4v3ut6nxduCWTIztWAqxxUcx1VTr6Jsb6boJfVL6A520+HrQEDAE/HQG+wlGAtyVs1ZeCNeEkqC3YO7U87Rp44+ld9/8HuaPE04jU6OKziOSCLC5LzJLG9Yzs8W/Iw3m97EIBrY0ruFqBwloSaIJ+J4o14umXgJa9vXcuH4C+kJ9gBQ6axkc/dmnt+ZrJuWa82l3deOUWfEbrDjNDu5cdaNPLbxMdZ1rCOaiHJi+Ykpn6lALEBtfi07+ncgKzJZ5iycJmfKmqKoCqF4iGA8mLoGZslMbX4tBfaCTx09FYlEaGpqoqKiApPJ9Im33/deSdUg09soc2o1yD4vDnYND/X5/aWy+GhoaBxdhupkqahJ0ZNIpC1PJGT6/b009+5hbMSOGgohmEzoa2pS1pcGdwPdgW6iiSgGnQGDqCeeiBFLRFnbvpaSjBLMejO7B3YjIGCWzGmhwuXOcq6Zds2wB48lnCDR08PXxpbzcst/cBNG3PvDeChv5HajnUxTJlnmrNSDV1EVDDoDLpMLi96Cw+gYJnoAdg3s4tltz3LZ5Ms4b9x5qf3oa2qI19ejhsPJsh4OB6LNRkaOiNqwi3xzLi0mBwE5yPLmN6ktnMLsktm4TC4m5U1iQcWClL/LQHiAHf07+Of2f9IbTEbvlDnKuGjCRfhjft5qeotRmaPY497D5u7NdAWSPhsF9gJKMkqYVzqPHGsOhfZCdvTtYHnDckZljsJutFNoKySuxFP1vwCCsSBOkxNf1JcsNUFy6kov6nGZXUwtmEpfqI+B0ADRRJRsczZ6XbKEyGmjTuOd5neSKQEkE3ElztaerZw66lR29O2gKrOKrkAXuwZ2Mb1wOqePPp26vjqqMqvobeulylXFst3LyLHmpM5xWA7jjXgxSsajHv01lL5B48uJJnw0NDQOGZvehkVvQVES6aJnrz+HThCx6AwE4kG8gRidWRKBYC/2Zi8Vo44jw5aFJ+pJ+eeoioJOp6Mn1IPVYCUiR4grMaSEDl/ES31PHZkGB52DrRTZCsm0ZDEuZxx5trzhDx4j6JxOqoCrKsd/qjfykowS5pTOYWvPVrxRL6qqohN12A12JuVNQlVVWjwtaaJniEZPI/2h/rSHsuh0YqitRfF4UOPxpPXJaqU86ObdgY3Msc5HsttZ3fE+gXiA9Z3rqXRWcuWUK5lVMisleobqqG3r3YbD6CDXmktCSaATdex27yYSjzAYGSQqRynOKEYn6vig4wN6gj0IgpDarja/lvvfu5/KzEpGZY7i6ilX0xvs5YIJF7CtdxslGSXYDDZkRead5neocFXQ4G5IhZvrRT01WTU8tukxVrWs4uyas2nyNBGMB5mUN4nN3ZvJteQyJnsMq9tW0+hpJN+WT7WxGlmRafI0MTl/MhNyJ+CL+jil6hTCsXDKT2koQ3WFqwKTNNwiE1OSPlxf9OgvjS82mvDR0NA4ZMqcZWRbsqlwVtDvS2ZLRxQhkcBhzCDPmIXUP4iSkeBp3xr6duxBzMgAWSbHvZGvTr0Ip9GZLJegqpBIoOgSROIhzHoLoKIX9egFCTUSYUAXoTPQzdaWdWTqHWzs3UxV3hium3kdtfm1Bxznp30jL3OWUZ1Vjd1gT/nQGEQDDpODAnsBkk5KjyjbB0VV8MV87HbvBoGUb5JgNKLbL5eY02bj7BnJ8PhpxTOZWz6fsBzGLJmpzqpmfO74NKE2VEctHA/TF+pDFESyzFnoRB0dvg7mls6lN9hLTIlRnFGMSTJhN9jJMGZwYtmJnFV9FnpRz7bebVwz7RrG5oxFURUGo4NUZ1bz4zd+zObuzcQSMRRVYUrBFH4898dYdVZ2Z+2mcbCRhJpgdNZo/vLhX+gJ9CDpJF7e9TLTCqeRb8vHYXLw1Zqv0uHrQC/qcZgcOIwOfFFfaooMktaxDGMG5c5y9rj38Fzdc8lzBuRYcrAb7YzPSfoJ1fXXpZ03g5jMM/RFiZ7S+HKiCR8NDY1Dxm60c2LFiSTkGL6wh/r+nSnRM6dkLnOypxLqbqexcxu9e7YiOp2osRgoCgOBXpbUL+Gro86izFZMy0AjvlA/it4ECIgkfUeURIJeTxuKAL5YgFgimSDQgA7F56NBt5uH3n+Iexfde9jDnvd1XjVKH/klDU2VNbmbUg66Q1nhJVFK5r/Zm/jRH/WzqmUVK9QVnFl95gEdccud5SyevPiQLFNDddQkUUIURIrsRbR4W/BFfYiCyLyyeWnrO0wOsixZVLmq2DmwMxWibtPbmFc2LxmJp7dilsxc/5/r2dS9KTW1B7CuYx13v3s3/3fa/3F2zdmpMQ4EBxiMDGIxWCjOKKbd186a9jWp/d5/8v2cM/YcJEEi35bP9t7thOUwBtGAioqiKggIyfGZsvjNrt/QMNiQ2j6aiOL3J32tFk9enCZ8zJIZh8nxhYqe0vhyogkfDQ2NT0S5s5zTixdSaMmnPdyNXpCwCAZ6G7cT3V3P3Cln8tK25xk0q8imGAadATkeR431093lY6K9mq/XnIusyqza8zYKIjpBR6G9iJMrT8If9vJe+3+I61UkQURQVUqdZfgCAyDLqLEYjYON1PXWHZF8L2m1x/YTJJF4hExzJpIo4Yv6UFUVSZSIJWJUuaqIyTHe73ifwfAgiyoXsXTXUhZPXnzAabZDtUwN1VETECjOKKbV24rNYCPXmowoM+vNnFx1MtmWbEZnjk4TBwcTVsvql7GlZwtGnRGTZErWCBN0JNQEm7o38WHvhxQ7ilNjfGHHCykfIJvBRqWrkmAsiKzISKKEy+iiNr8Wf9SPVbJS6ihFFETafG3EEslpqgm5E8i2ZCetYwO7U9miVVUlnoiTY8lh98BujJKRQlthWlRXgb3gsERPaTE9X14Ox7XThI+GhsYnotnTzEsNL9G7YyMxo4Q36MZlz+Ls8tOoClWxSQ6xyb+TcNCH0zSKRm8TkVgIpyMPb2CAPFM2FcZ8FmbP4uSSBcg6gWA8SDQaBFnmX43vEhMUdJKBIms2Jr2ZqWWTeH/Hm8kB7M1O64l6jtgxjiRI/FE/bza/ybljz0UURFY0r8Ab9RKIBRidNZoLJ1yIJ5ys0j4YHkxlIz4cjrhDddSavc3kWnMxSSZ8UR+heIgyR1kyjH1gNyeUnYCiKmkC52D7dkeSeX86/Z1pEVRWvTWZ7TniTRu/0+hM296gM2AwG1Kfsy3ZqfN3UtVJdAY6GYwMUp1VTUJJUOIoYU7JHP6+9e+cWX0mLrMrLSx8SFQZdAZ06Lhh1g0EogF0oi4l5j6L6BnKdhwKhT5xdmONLwahUAgYnrn6k6AJHw0NjUNmKKR6wNOFYLNhiMfJHAhDXyur3UsoHnMeHdE9hIJe7BnZNPla8Ed8qDqRDl87dp2FmBxheecbnJA/k7YV75A/ejKLco5nWcdmWiLdzCufz/yKEzGZbBhEPe83vceLO14gQ2/DKCeTESrBIA5MKIEAou3z8fdo8bTQG+xlMDzI6aNP56TKk4glYiTUBIqi0DDYgFkyc0LpCcgJGbPeTLGjmFA8dFj2f0LZCXQFumj3tTMYHqSur45SZyn5tnxWNK9gemGy5la2JZstvVsOKd+Ny+SiO9CdJnoAgvEgPYEeciw5aY7E+5f52JdKVyXjcj+qp5hpymRR5SKyLFnEEknLny/q4+VdLyMrMgICOZYcJFFCURVEQURWZHxRH3ZjMtPz9KLpn+2k7YdOp8PpdKZqWlksloOWYdD44qCqKqFQiN7eXpxOJ7qhxKSfAk34aGhoDEONRj+KRNonF0+qSKOiQDSKYLUiulyo0SjuuI/d1jCh3W0UukrxmwT83k4EUURWE4TlMOOyx+ILDdLpa4eyeQg2G33eLuImL5eL02mukNggt6BEopRZC/lT3V/Y0rMVgLgqk6d3oYtEqHRVMdotEdnzNobp05H2Fik+kgwJgLgSZ2XLSur665haMJV/bPsHqHDHiXfw2KbH2NKzJRn5pirMLZnLzXNv/kz7bfY0s6R+Cd6Il3JnOTpBR7Ylm6umXoUn5KHeXc+E3AmEYiEKbYXAoVcLzzJnMTprNBu7Ng5bVp1VTYYxI82ReKQispAUPdfNvC5t6rHUWcq7re+ytn14SQKzZCaaiHJ88fG8uudVArGPxFWGMYOFFQsZnzP+k52oQ2SooPWQ+NH4cuF0OlPX8NOiCR8Njc+JtKRnBttRT79/IBSPJ5V7ZgjBbEZfU/PR278oosZiKG43utxcEj09qJEInrifnu4GTpp0Cu8Fd1DnTtbkUgSVclcFJ5TOZc3ONxlfOBmT1U72uCmYVImozYG5vgm91Un7rtWIOTn0N+/ksumX8jh/pa5vB/F4lKgJxptL+f6YxWSs/pC4JCVD6WfNQvV6k1miTSZ0OTmH3RK0rwAYCqs26AxIosT5Y8/nqS1Ppco9DPkh7B7czaMbH6U6q/pT+SMNWdiGpoN29O1gbftaJJ3EB50fYNPbeLf1XSBZIPX7M76PDh06QXdI1cJ7g71cMeUKVFVlU/emVPuU/ClcNvkyWrwtzCyemRpLi6eFmBzjhlk30OPvwR/zp4rI7n98dmMyBcCS+iWE5Y/upSF/nUAswAXjLyAQC9DibUmF55c5yrh22rWUOks/8fk6FARBoKCggNzc3LRCnBpffPR6/Wey9AyhCR8Njc+Bobf2/dPcH830+yOhRqPDRA+AGg4Tr6/HWrI3t4okoUajEIuR6OxEzMpC0OtxufIRigvpCHbxlYITyDdlE0cGvYFWbytbO7cwrWIO77aupCXQgd/dDaJId81XyJ6zgJCvExIJEm1tqFlZ7GzZwOJxlxIziQRCPooziimNWwl0tLBntIOigIRepyO2bh2Ke68lam+pCsNxxx1WS9C+dZqGwqp9UR9ljjKKHcU8uunR1LqCIGDUGXEanbR4Ww7qiH0wQZyysO0lpsTINGeyc2Ang+FBfjj7hxTaC5EVGYPOQKe/E5vBRo4lh+5g98fmu8kwZvDIhkf4as1XuXjixQRjQSx6C4PhQR7d8Cj3nXwfdqOdZk8zS3ctRRIkVFQicgSX2cXckrmMyhp1wP4n5U1iUcWitCzbDpMDo5Ss/D6jaAajM0eztWcrg9FBXEYXE/MmHjHRsy86ne6wPEQ1vnxowkdD4wiz/1v7EPtOR4TiIep66/BEPThNzlSSvs8bxeMZJnqGUMNhSnQFZJoz6RtsQLBaUWUZNRIh0dVFlrOAUW6JDy1ZuGU/g/5eWgab6YoPkBBUgrEgC8tO5N2WVXgiHjJ0FhAELHoL0UiQJa3LWVRzKqLDAYKAGo0SatjNlu5ODEXFFOoz+aBtB2uamlJjyimp5kxhPkXuBEpf30fH4fUCIM6ff9gsP/uGukflKGbJzK6BXZw5+kxERAQE9KIeURCxG+zk2fIw65MOtAdyxN5XEA/V33KYHZxTcw7jcsYNEy4G0YBepycSj3DeuPNY37GeN5veRCfoKLAXcFzhcUzOn4xBMpBPPnb9wS2K43LHUWgv5I2mN5AVOVWuQifoqC2oZUrBFPxRP0t3LcUsmXmz8U06A52p7d9teZeb59xMTXbNAc/Z+ePPP2htK7vR/rkIHQ2NITTho6FxhBl6aw/EAvQF+4jIEUySKZWOf13HOp7e+vSIPhMHS9J3JFA/xvRvi4ucXXM2L7qfpNffimi1gt1OliWbsypPI6sjwBnmybwS30ZvXzMLi+bydu/7eBIBJuROwGK04UkEqcwZjT/kJSe/AofBQb/sxRMMcXwshFOwMDDQnrTeSBLE4+S6SnivaSW5EemjHy1BwB0ZZEn9EhbXXIhpX5+NWAy5pYVEb+9hnfLaN9R9QfkCOgIdxOU4dqOdXGtu8hwZbFgN1lSEEgyPhoJ0QewOuekJ9hCRI7R4WxgIDrCgYgHZlmyicjSVU8hhciAKIrNLZ/N++/spYTU6azTdgW7eaHyDDn8H0wum44v5WFCx4KAWpf19diRDcsz7+uxs69mGJEjDRA9A42AjT295mv835/8dcNr2YOkBNDSOBprw0dA4wgTiATp9naxuW81AeCCV9C7LnMVxhcexpm3NsCiZxsHGI5ak72AIHxMiKuj1lDuLWTz2Epr01QQTYayqgUIfWNbVoygKBaLIZSdfSFugnWAizPGz5iEbJGJKjJ5AD/2hfmRFJjejgFZPKwOD/aihEEo4zGb3Nk6cdBYrNr/IgL8PVBXBZMJsc5AhmpEGB4C9eTwEEYCBQC/t+hBViUQyizQkRVMohBoIJP1+9imS+lkZCnWfkDchJSqiiSjTCqbR5m9LEzwwPNppiCFB3B/qZ9fALnb278QT8RBPxDFKRkodpYTjYSJyJFmp3ZKJUTKSZ8vDqDPyQccHSKJEVWYVfaE+4kqccDxMm7eNkypOAgH+VfcvKpwVqczIMHyKtTa/lnsX3fuRxXE/n51APICKmhI9AgJ2gx2jZCSWiFHXX8eq1lVMLZh6wHtVq22l8UVCEz4aGkeYqBxlRcuKVGFJAFEQUVSFNW1rmFk0c8TtjmSSvgMhOp0IZvOI012C2ZwqNOrILmTMh1aUwRhqLIwa+ihkW8zMxJbQMSZoBazozWWpkg3beraRZ8sjKkfZ3L2ZqBxBjUSSgkVRUOQEqxpWcFHtZfRFBwgKcaySFa9ZR4PejmIJo4aCSdGjqiBJCBYLgdAgRCJJC5EgpHL9qKpKbPPmtCKph5N9H+g3n3DzIUU7DRGIB4jKUZoGm9jZvxNvxEs8kbS4BWNB9rj3sKptFVfUXsHftvwNBYVsSzZ51jwMOgNjssfQ7munwF5Ad6AbVJheOB270U6+NZ8yRxmDkUHiShyr3orNYENAoC/UNyziK8+Wd8D7zKa3EZEjQFL0OIwOOgOd7HHvIRQPYZEszCqeRae/k1xrLhWuii+s476GBmjCR0PjiOKP+vFGvZil9GRpQ9W/C+2FWPSWA25/JJP0jYRgNKZVFE+1743qGrKciDYbhpkzib3/PomBgZRwEbOzMUyZgjIwkNpuX8Ex5CC8s29nMtJHlkFRUAWBouwKiITp7WumL7eLUXt8qPE4ulyRPdXOZPi8w4GYmZkskCoIYDIhRCJY40JSCMXjoNOBKCK4XGAwoA4OEq+vx1Bb+5ktPwcK84ePt5zsj01vS9YDS8TwRX2pchGyIifLO6DQH+qnO9BNiaOEcdnjmJA7gUxzJoPhQVa1rkIlme1YJ+iYXjydur46BkID5FnzWLZ7GdMKpnHFlCv4YPADLAYLJslEpauSdl/7ISdWLHOW4TQnr6FVb6Uj0EGDu4FQPIRBNPDVMV9lZctKNnZvpMpVxXGFx5FvzeeEshOS2xismhDS+EKhCR+NY54jEWY+9IBsCjTS7mljTskcAFq8Lal1SjKSWWw7/Z0H6mZE35AjzUgVxUWnc5hokPLzERctItHbixoKJUO4BSEpehRlmFiCjxyEuwJdyYa9Yd9FjhIWlsyjdfNK1EAAf8CNGoqhKy9Hl5NDfksXmUYnbiWYnI6Lx5Mh9YkEOYVVFKlOUHpTVeLFzEz0EybAXkuUGg6jeDzDioV+EhSPh/j27SQGB5MWJZ0OndOJfvz4lLg7mOVkf8qcZTjMjlQdLXXvFJ6KSoWzgg5fB4qqJKeT+uqIJWLMK5uXmmI7bdRp7HbvxhvxkmnOZEf/DtxhN8WOYnqDvRRnFLO2Yy3dwW7GZo/l2bpnqcmuwaa3kWfNS3OcPth3wG60c0LJCaxsWUlPoAd/1E8oHkJAYHbJbLb3bScQC+CL+pAVmb5gH9t7t7OxayPzyubRHez+QkYwahy7aMJH45hm/zDzqBxFJ+qYWzIXURQpsBdQ7ij/REJI8XiIt7ZCLIaPXqyCkeU7l1FbNJXZJbOJK3H0op6+UB/vtrzLNdOuGbGfA/mGfB6MVFF8JESbLeU8nLKGOJ0HFEuQdHa9ZMIllGaUEg77MMoCyoCb1m1rUHQCutxcMvJK0Bv0qJKEmkhg7uznqwsu4cV1f6W/pSlpKUIlO7+Ss2eei715EGHGjKRPkMEABkNyym5vdBd8vOP2wVCjUWJbtiC3tu7ddxJlcBA1kcA4c2bqWA9mFdoXu9HOOTXn0BPoYXP3ZgSElOiZVTKLt5veZnL+ZHKtuZw/9nwseksqC/S+0VJd/i7qB+pxh92UOcuYXjCdjV0b6fB3pATJ9KLpVLgqsOqtxJQYLrMLq94KJL8D77W+hy/qSznef2j8kDmlc1JCZVTWKG6eczOPrH+EhsGGVPTamJwxvNf6Hn3BPgrthbjMLtp97amSGuxNinyoCRU1ND4PNOGjccyyf5i5J+JhS88WWr2tvNP8DhPzJuIJeziz5kxml8w+pLdVNRpFbmsj0dyMEg5jyZKR1ACjnJWsa1mTfA4YDAh7nXBnFc1iZtFM1ravPWTfkC8qhyqWICl+3m5+G2/MT6K/n0RXF6gqaiBAlrOQgq4Q8YZ2SCTQH3ccuqws8re1cWnGfDpyZhCIBrCJRooiJqybGhGys5PWHb0ewWZLhtoPDKQsSvDxjtsHIzEwMEz0ACDLyK2tSKNGIRUWHjT540g+RuNyxnHm6DMpySihzdeGgECHr4P3Wt9DEAQEBJ7d/ixr29cmc95kjU47h0PRUhu6NlBgK6Dd187Lu16mwlVBMBZkQu4EWjzJKu7PbH2GZk8zLrOLRRWLmF44HYPOwKbuTSzbtSwtYqvQVoggCGSZs1JCpSa7hqumXEWeNS8lfqx6K82eZsqd5bR6W1PTdpIo4TK5kAQpVfT0UBIqamh8HmjCR+OYZd/kcFE5Sl1vHa3eVmRFpjvQzdfHf51Ofyc7+3aiE3SYJfPHCpGEx4Pc3EyisxPF76cwnsU7ga1cOekbPF73NLvde5iSW0uOswiH0cFJlSdR6ar8RL4hXzQO1cKxL/vmxOnz+RB0OlBVMjOLOLv0K5h3diankxIJCIUQc3JItLRgdrsZpdfvdWSOIbokFHcLOpuNeEMDUnExitGIThTTRc9+vkaf+Bj9/uGiZwhZTkWPHTD5465dRMdV0RrsSptOGggPoBN0OE1OVretptXbiiAI6EQdtfm1ZJozWVK/BIvewh73nmFZoIecq/uCffx545/xR/1kGDMw6owUZxTT4m3BarDSF+qjydOEgIA34qXJ00Slq5KntzydFrE1RGegk6X1S5mYO5GJeRPpCfRQ11tHTEkKm3Ud6/BFfZw26jRyrDm0elsJxoNY9dZkTaV4iIgcocPfQZ41j+5gN8DHJlTU0Pg80ISPxjHLvj/C3oiXwcggsiKjF/WcUnUK77a8y/rO9QCMzxnP9t7tXDn1yoNaftRAALmtLfmQTCQwd/RxWvVcXt28ksUVZ2KcWcqyXUvpCXQjCRKr2lZR11/H2TVns6BywZE+5MNOor+f+JYtKIEA6HQIRiOi3X5IUVRDFoumnDp8eS1YMVDoljG396EmEknhIwjJv3gcJAkxJyc5laXTJUPgh6w6ioIuJwf9uHGgqinnahjumP2pkD7mp1KnO3DyR0GgTQqybN2fGRQjqWab3saorFG8uONF7CY7Z9WchaIqmCUzvqiP+v56ljcsxySZsOiTjslbe7eyvnM988rmpU0ZjcsdR3VWNbsGdhGMB9EJOiwGC3sG93B80fHU99Wnpqd0oo6IHMEb8eKLJbNhj0RnoJPOQCcJNfFRnh9RYk7JHOaWzuXd5nfpC/VRnVnNG943yDZnY9abcUeSLxMlGSXU9dWRac5MO2YNjaONJnw0jln2r7005GQ6OX8yq1pXpT1YZEWmM9D5sX4KfUKIuskOBuN+XJKL0V4TBdubuDhvFp2mDJ5tXInkDTDKloPZ6AA+m//D0az/5enroKn+ffzxQewWC0VRI5ZeL8jyIUdR2Y12JhbVEutLWkZUfQRZ504KH0FAcDpRFAUpI4P45s0gCEhVVaiynKzJVVgIiQS60lIMOTnosrMBUHJyDuqY/UkRbDYEmw01MNxikVoWj4MgELRItOEhIIewSxayzdksa1pGZ2IQnxIipsoY9Ca6lARv7nmdCmc5W7o/ZGtvshjrhNwJLKlfwtT8qbjMLlRVZTAyiDfqRRIlmj3NNAw2pDkLDyUi/M2a3xCKhZBVGZNkoiarhoWVC/npmz8FSGWVNuqMxJQYipJ0ngaSOYFcVZj1ZqJyFJNkQlVUntz0JD2BHow6I5Io8WH3h1S4Krh57s2YJBM6UUc0EaXF25IqnVFgK2Bu6VyWNyxnUt4kIJk/qMxZ9pmug4bG4UATPhrHLPvXXtIJybo9OZYc1nWsw6AzpNaVRAmDaDion8KH3R/y/sBaBmK92CQre7wt/KOrnmvmfIPqlbtRMxT0wRBZvgSiUUWNRBD2OgZ/Gv+HPQN7WNm2Ek/Yg0kyISCwQl3BmdVnHvHomeb+Bl54/0n69mxNtWVl5HNW2SkU9rhBkg45imrfEHoAca94EWw2pMpK5PZ25O5uhKyspLOyTocuKyuZ/0dREG029KNGpWVo/izRWyMhWq1Ea8fS3FVPIOLFrrNQFNZjjajoq6vROZ0oHg/tdoWXG19iIPBRziYhJ5tcSw7bdr6FPx5AVRRQFLIKK9nSvZlJWWOTgspiQZAkjDojvqiPhJogKkcZCA+kxIkoiJglM62+1mFi2Wly8s1J36RhsIFYIka2JZtlu5bRMNCAQTIgCmKyfpjJiVEyJu95ow6rlMwyPSV/Cq/teY1mTzOiICaFDyonlJ5APBFHFVR6g700uBtQUNjcvZnb591OXI1T4apgcv5k4ok4NoONxsFGljcsTzry6/TYjfZUiQoNjaONJnw0jln2r73kMrkYjAxikkyUOcro8Hck19ubpdZhSlpoRvJTeL/9fX7y5k9Y3/FBcppLVZmYN5FvTriUP+54mtsmXUwANwQBw15BtTfJ3hAj9TvkW7F/Da/6/nrue+++NIfoQlshiyoXsXTXUhZPXnzEHjL+qJ9Vje9gMNvIrByHWWdECQbp7W7k5ZblfDPvFGyRyCeKoto3hF7n9ycdxPv6iK1blyo8KlVVkTCbkxYWSUr+O+Q4fJgrse+L4vHQ1LaVl3a8yICvJ5mzSBDIza3gtImnEhF8BFrew2iyst2/DU8oOc0W04v4JJlBbyNvd7zH+KxR1LVvSvkKxeUYgUSYoBojRBxjJIRksRGMB6lwVhBNRJEVOSV6IOkMPRgZJCpH08SyP+rnvdb3eGX3K/hjftq8bVwy4RIGw4NIosTY7LH0Bnsx6JJFQu0GOw6TgyxzFiWOEnKsObzR+AZmyUxRRhGBaIDzxp0HKqxsW8nYnLEsb1hOh7+D2SWzWd22miJ7EZ6oh1GZo/CEPdT11QHJJIdWvZXqrGpyrDnMLprN5ILJmujR+MKgCR+NYxI1GiXh8VAUSPDNnJNpy/awoOxEmrzNhOIhXqp/CUVVsBvsVGdVU+IoSdVL2t9PoSfQw69W/4r17euSDXsddbf2bOUpnuaMkoXsdslkiYWoPXFElwui0Y/KK+xl3379UT8buzby1IdP0RXoQkBIPhBdFXxn2nd4dferw8pcdAY6ebPxTeaVzTui0TN1fXUs2/MKHf2NqYzNhY4SFlXNp61hM+2lEcaEpGFRVL7AAM29ewhEfdhMGZTnjCLDlpVaPhQVpsvLA6MxGek1JA4VBcXvx3TSSYiSdFinsQ6GGo0y2LqbJbtexh3am6hRlhFVMOvN3LPxt+QqFgyxBP2mBF41woLS2ezo2UrdQD1hNUamLYedPds4a/SZ2K0u5GgYndmCjMKaznUogkpPuA+DqCdbr2OPew+njjo1ZV3Ri3qOKziOSXmTqMqsommwiQxjBgk1kRLLQ5Fb3oiXFm8L/pifJzY/waWTL2Vj50ZOKDuBzd2bCcQCOIwOarJrKLAXML1oOn/f8ncEQWBFywoUVaHAVsA1067hxZ0vsrF7IwDTCqaRbclOVlr3NHLqqFOp66vDaXRS7iznzJozWVq/lM5AJyoqgXiAQlshX6n6iiZ6NL5waMJH45hD8XiQ29qSETiBAHqgUpKoLitj5rizaYx10+ptpS/Uh91gT00NBGIBREQ6/B30hfpS1pftHZup69qSjECCpLOtIIAksbVvGxdOvAivLs5UZwXZWcUMuDuSpRZMptSYMs2ZlFoLkHt6aAl08G7vOv664+80epsRhGRtpApXBU2DTfx69a9ZWLFwxGPb98FzJPBH/bxY/+JHUUA6HSQSdHrbeLP1HebmTyGYCCPa8tOcm5u6d/Li+39lYPCj6KEsVyHnzLyMivwxw/ajLylBPP10Ej09BNQobYqbgBrFHmii1FWGIyf3sAuekaxr2UFoi/ampq4EUUSVJHLtBbzZ8AZd8QFMWWPIxkBYibLbXU9QiVCUUUzQIyOEYugQ+PrEi1nV8R6rmlZiNpjxxvyMyxnH96Z/l+bBZgJyCItkZiDUj8PsQkDg3LHnckrVKYTlMG83vc3q9tU8sfkJ4kqc4wqO49yx56aqrwfiASJyBBUVf8wPQEgO8cSmJ5icPxlVUbmi9goyDBnYjXYyzZlkGDP4+bs/Z497D7X5tTj2+pxNyJ3Afxr+w87+nalzE5EjfND5QSoLeVgOM79sPuNyx2E32pldMhtVVdNyAWUYM5hdMlsTPRpfODTho3FMoUajxFtbkXftSndUlWXklhZMokjttGm4jv9BWo6f7kA3Hb4OJuVN4oHVDyArMpWuSr5/3HfwenqR9voHAUnRo6pJISRJhOQwzgwnlm43ZxWfxMvq63iMCsLeSKFMcyZnl52CqbkLd28bLza/hFJSQEPndgRJQjUY8Mf8NA02UeYoo95dz6KqRQc8xogcOWLRMy2eFrxhbyrKSTCZkr42e8WPUDIHm9WFfsyklDDxBQaGiR6AgcFOXnz/r1y16Idplp8hdE4nrZFuXnzvafo6dqesPzm55Zwx8xvE9Toikkp3oJtwPEyWJSslRvfn45zAN3dvHrHO1vcmfZtQYr9ILVlGMJuTx2s2E1NlfEY9nqifvkAv3kSIIkcx3cEeMqUMyjLKWNe7CRUVQRSIKHFkJU6bt412fzs1WdU05CQTVWaYHEwvnsmZ1Wfyn4b/UOmq5PGNj7Old0vaEFq9rby25zXOqj4LSFoLTZIJWUkPuY8rcdZ3rqfF00JlZiUVrgqOLz4egLcb304VL1VR8Ua9WPQWzHoz9f316MSP7mmdoCMcD9Pt72Zu2VwCsQA9wZ5UuZVyZzlZ5qwDVmA/0JTtJ6HV08rWnq24I24yzZlMzJ1IqbP0E/WhoQGa8NE4xlA8HohGR4zOQZZJDAwQb26mUFH4Zv5ptOv89MU8rOtchyiIrG1bgxyLoMoyewJbeCjyv3y79mrMqoRJbyGyN7PuUOkEVBWXNZtxueORXEYq9Hquqp70UT4XvY1SawHGpk7i9fW0O2MM+Loxys7k5rKMAKhGI/6YHxU19RBymBxE4hEkUUpNhamoOM3OIxY9E4gHcJgcWAxWQhYFNRT6yPKiqggZdipqZqaiqwCae/cMEz1DDAx20ty7h0l7hc++OYECOpkX1z9NX+eelOjRiRJWRzYPrPlfTppwJk9u+xv1A/XkW/PJs+WRb8vnjOozKLIVMSprFHajfVh2bkivUN4T6BkmeiApLpY2vsrM/ONwFZRj0pkgGqW/uxHBZsOUk08chbBBICQHiKtxzGY7ESVGRI4QlWMMxAcwm210B7qpcFUysaCWuCoTl2OEYkFWNLzF8bOnMTd3OjE1TqGzlPnlJzI2ZyxrO9bSE+hBRSXDmJHMhAwYdAbsBjuCINDgbqDUWUqZs4wPez6kJKOE+oH6tOOQRIkKVwUCAja9LSUC2/3tBGNBjJKRcDRIpbOCrkA3siIjCEKyBAngMrrwx/zYjXYknUSmKZOa7BpkRabV08r4vPHAgSuwb+7ezG/W/Ia6vjriShxVVRmTPYbvz/g+k/MPbRpsTdsa7ll5TyryDWBi7kR+csJPmFUy62O319DYF034aPxXknrDD3sxCBKemBdP2IvTYKfGlo1DkoYlpFNjMRS3m0RzM4muLvRAlctF3xgTr+15DVWWUWMxVL8/5bi7J7oVb/UgNY4q4qJKe6DrI/EDTCuazsz8aZhlgbp4B0E5jl1wpr0NJ3p6kCMR1ECAgD05XWbRmT+qMJ5IIOy1HsmKnIzOkYz0BHroD/UjK3JqKizHksO8knlHbHrBprdhlIzUZNdQ319PaK/PC6qK2WCltnQGzpyitG0Cex/YByIQTU7N7J/1uEnvoa+5LpmF2e8HVSU3v5I3W99hSsXxPLrpMfYMNlDqKkdRFTZ0bUhOyXR8wOT8yWSaMrms9jLebn47TfRAegqBut66YaJHEiVmFs3k9ZY3aRpspLO3kXAsSJGjhLOnfJ1tfdtZ17EOo8FMy96kgxNzJlDpqKAr3ItBNCR9kRRQdSJTi45jXfv7uCOD2IwZ9AZ7yLHmMsY1mvruOtbtegv0ekbnDHCyaxq2QgNn15zNv+r+lUoCWOooRSfoyLJkEU/E8Uf9qSK2dqOdOaVzkkVE/R3s6N+ROo7JeZP5StVXCMthTJKJv3z4FyRBwmFy4A670YsSW2MxTq44iVXtq5FEiagcxSgZ0ev0lDpK6Qv2EYwFiSViCILAxq6NBGNBavNrD3ptewI9/Oq9X7G2Yy0ROUIoHkJRFboCXUTkCFdPvZqJeRMPGoXY6mkdJnoAtvZu5Z6V9/Dw6Q9rlh+NT4QmfDT+6xh6w/d4enCZXTy/80X6gr1UOMrxhQepcFbwvTGLGbNzMCV+1EQCxedLVv7WfWTiVwYHGXSrI4oeAASBgKeX741ZzP/teBK9IhAWZGQ1wbiccfxo5o1Y3UGe2PWPpJ+IJKHLzibLVZiyOKjxOOrecdh0ZlRZRvIFqcwaRWP/3ikeWUYVBERBJNeaS4m9hEpnZeohlVATWCUrNx5/I1VZVUfs3A6lAIBkNXJvxEtMiWEQDVS6KplUUDtsG5sx46B92oz2EbMeB+JB1GgUVZYRrdakdcliobOxjbnW09jau5USRymheIieYA/BWJBALMDG0EbG5Izhqa1P4TA5aPe3k2/LH7bfoaioIfGwL9VZ1bzb8i5tvnaKbIXUZFVTP7CLwUSARzb+idmFM6nOHctgZBBf1E80EWWHeyejXFVMyJ3I8SXHU+IoxmqwUWDLZ8mOl7BIForzSxEFHaWOEvqDA9T17WBu0axkGRNBoCijmJK4FcXjoTyvnOPyj2Ns9lhkRU5Z9gbDg6mCpvsWsR2abirKKGJtx1p8ER9Ok5MsSxYROUKVs4rV7avJt+aztH4p88rnMTprNNt6thGTo6xqfpdpJTMosBURjodJqAlaPC10+7uJK3FEQWRi7kTGZI1h6e6l9AR6eHHnizjNzgPWs/uw50NWtq5MRagJe4t3xRIx1rSv4aIJF31sDqutPVuHiZ7Ust6tbO3ZqgkfjU+EJnw0/qsYqr814O8lU7Tw/M4XaXTvAaDJ20ypvZiGvl38Lv4od4+6BteeZCp9NRZLZh62WFCj0bQ+HaIluVxRhodoKwpOk5Pqd3dx9+zvUK8fxBv34zBkUJPIxBK28Jf6v+Px9pCfXQ5mI1EhgR4d77W+R5Y5C4ten/L3KQpKZJpd9Nd/yLnHncXzvEyjuwEVsItmCq0FnFZxMht3vsPcwuOhYGbSmVRvQtAd+a/zvikA3GE3ubZcIDl1dKA8LeW5o8hyFY443ZXlKqQ8d9TwrMeCgD0jh8Lq44jIYSx2F8rgIFE1ef6Dcmiv5ctEAgV/1E8wHiSuxBEQkBUZd9hNT7CHXf27MEvmVDqCfQnEA2niYYgMYwZtvjYAjHozLnsRU6xOWsPd7O54H73RwsLyhfyn4T90BZLCoM3XxoKKhYzNGsOyXcsIy2GK7IWYJTOjsqvp9HfgCQzQH+qnJLMMf9RLri2XYCwIQGV2NZdUnYN1QE7dZ+Nzx5Nny6NxsJFoIv2+HKmIrd1oZ3rRdMZkj6HV04o74ub1hteJK3HWRdbR6m1FURXOGXMO/6r7F6ePOh13yM2HeyO+FCXBccUzuGDc13lsw6NYdGaOLzked8hNZWYl88vms6FzAwadAZfZxa6BXaxqWcXbytvDqq83e5qTPmFRLwklQVyJoxN0mCQTCTVBLBHDH/UPy2G1vz/WQHiAgzEYHTzocg2N/dGEj8Z/FUP1t9RIhJjFlBI9AP6oDxwigk5Hk7+VelOA4/cuEyQJXXExYlYWifb2tD5r4g6qXJU09O0atr9KZwU11nIEhw/Xns69/UmI2RbE3Ax2BjoY7GmluGISb3W9R6e/M+kLYzRSlF3BqMxRzMiphZ4eBKsVc1sPZxUt5OXEm/RsWMVXq+cj15wJkp5JrhoysbBs5ZPE1DjBlt1JC9WQGJMkfFkT4AiX+Nq3OOZIjqz7k2HL4pyZl40Y1fW1mZeRYctC9rQTtOpTGY+xWemNDtIrBvGrPkzRODopwficajLs2WSYnSRQialxRJJpAeJK8jyoqEiCREJJoBN0eKIemjxNFGcUk23JThubTW+jwllBpasybbprKHeOy+Qix5qDIEmYbA4S4U7iqkxPqIe3Gt+iNmci04tmEFWiJFSFOSVz+PvWZ8iz5dPp72S3ezc7+ndSnVVNX7iPHHseMgptg61Mzp3IV8eegxCLM35iOXPzplPmFkBVUqkAhjIyj+R4fbAitnajnVJnKW9ufhNRFDGKyUzNCDAYHuTv2/5OvjWfxzc9zlnVZ3Hh+AuIylGKbAXMs0/CIKsUH38Lg0qQvqib7X3b2dKzhetfu56wHKbKVcVpo05jZ//OZPmLqDfNcjP0ApJlzkpdE4CEmkhFfSXUBFZDskL8UBRis6eZpbuWIgkSKioROUJRRhHxRDIR4ki4jK4R2zU0DoQmfDT+q0iFcSsKITkybLmsJGtoCWYzPqOK8YQTIJFAFQTk3buTome/xIKu5n6+P+v7PLTud+zxrU+1V+WN4fsTrsLx3mZ0paXoKyuBZD4aQZKI796NTxkgN6eMt3rW0NGzB+Tkw1kXs+J0SqxrW5tMnui0Uji2CkMwSMGOTr5ZNJ+OcoGQVY/dlUd+swfLtk72jM0mhpy0SiUSJBKJpCOxLIMsYw5EUaPRI5rbBg7syHogKvLHcNWiH+7N4+PHZrRTnvtRHp9WPLzUksx4nDDqMWXmssNdT0SJ0RfoQRBEss1ZTLWegNmVjTvsZnR2NRE5gk7UpR6sABXOCtp97aiouMNuSjJKCMQCvNf6HieUnkCmJTlVN1RCwW60DxMXBp0Bl8nFzOKZ2AwfRcgNRU7pBB2yKrO+az2CIKIIEJbDnDrqVKoyq/igcz1be7cmLRw6E3/f+nfmFM9mRvEMLIKBSDxMIOpn9Z4VXDH660wKGLFs7UDNzUW029NSAdTm16aK2HqjXrLN2QiiQIe3g55gD4X2whGnmvYtwgsk/Y4EEUmUWN22mgsnXMjOgZ3sXrubDIOdfEsuUxxjmFyTx5iglSwM1OcZebH1ZZbsWgKATtRh1Blp8bawdNdS5pfPRyH5fdnXcjO070pXJRNyJ/Bh94epcSTUBCoqE3InpKxwQ07XS3ctxSyZWdG0ArvJToYxg2J7MZPyJlE/UI+ipn83h4qoamh8Er60wufee+/lJz/5CT/4wQ948MEHAVBVlbvuuos//elPDA4OMnPmTB5++GHGjx9/dAer8bmRCuMWRSySadhySdx7ywsCLms2+sqkP4wSCCDX1Q0TPQCi3c7krPH8YtZP2VFVhzc8iEOyMTpsw7W+DRQFIRZDKilJZRBO9PSghsPYjAYEh4OOPbtSokcS9cwas+j/s/fecXLd9bn/+5w503vZnd3ZXrRNvVlWsyxXbGNjg0koAUMIIcGh5pIEuOFlbvIzl9wbkktwckOSCwZMCMXduGPZcpNkWXUlbe9tdqf3mTPn/P44mtGuVtW4KdnnH2mnnDlzZuZ8n/P5PJ/nYffobvYGD3JZ8zb8zgDuooH3br6GmlAbRlnGqaoUg0HEnEJhaAK1WKQmpcNj8TIXHdCyrKC8z15bZVkf8mZHNrwZcNi85emt+UjkEjwy8jShk+GWLl8N+0NHeXniFTKFNA6jQ6sq5OM8cOJB3tfxPp4ZfJaPr/o4v+77NcF0EKfRSSwXo9nVzObazfz82M9xmVxMJCa4qukqBiID9If7GYlraeXV9uoFrbn55CKai1JhrsBlcpE9jTxXWCtY5V/FbHoWAKPBTDgVIiWn6fB1ksglsOitDIQHKBTzoDOQLqSxGqy8MPoCveFePt7xIXYdfhiL3cNOzwZWTotYopoAXBDFMwaq+m1+/DY/w9Fh7j14L78Z+g2JfAKdoKPJ3cStHbeypW7LglbT6V5OFoMFRVVI5pMU1WK5QlZUi9rUlt5Gi7+DCUOWUSGGXm9C1FmYTExiN9gJpoLoRB0ZWWtJDkYH+bD9wwyEB3AanZrX1cnXLP07nZjmD9f9Id9//fvsn9xfJqgrKlbwB+v+gOnEdJmAjkRHkASJXUO7qHfVn9RYjfFoz6N8btPnuO/wfUynpsvVuJWVK/naFV9b0vcs4aJxSRKfffv28f3vf59Vq1YtuP1v/uZv+M53vsMPf/hD2tra+Ou//muuvfZaenp6sNuXTLT+K6Akvg3JMoaiQLOntdzushsdWmVEFGmuaFugjxBtNgybNpHfswclckozILrdGDZtQudyUQ1UZCXyva+hzM0CsyCK6GprMVx+OcVgEHlsDMFkQnS7EcxmapJpBLv+JOnRhJ0ddWvZPfYiU8kp/JKLfDYFTghlwjx84kE+Im3A3Dd6ah/a2yGbBYsFczDGzQ3X8HA6TSg6pYmiFQWvrZJbmm/AmpAvKiri3YCR6AiRQgydz0cmGcNq9/L8wd1EMmEEBCwGK9lChnQhzQvDu9heu4XLbB2gqtyx5g6Aclvp0NQhfnHsF1j1Vi6vuZyAPcCr469yW8dtmijcUUeXr4sNNRsWVUhK5KKEWlftojH4emc9N7fdzP9++X9jEA1EslHyqsyaqjXc3nU7+ydew2ayE8vF0OsMFJUikWyEZlcTo2j6mjwyZqONrZUb+UD9TTiLNvALWrs1EGBWynFs8LkFnjcWvYWR6Aj3HbmPx3ofwyAZsOgtFJUi08lpnux/EgCv2Vt+XwbRQDAZ1MTnOgOqqmLQGcoO5HpRax0JCBglE+9pu5FXgwfYGzxANBUCSWKZt40mdxOKqpAupMukx6AzaITF2UCmkMFldJFX8uULj9K/U8kp6p31fGTFR/hg1weJ5+Ka3sro1FpZxWyZgCYLSVRU7CZ7mfSARqL+Yc8/8LHVH6PSWolBZ8BldLHSv+Tjs4Q3hkuO+CSTST760Y/yL//yL/z1X/91+XZVVfn7v/97vv71r/P+978fgHvvvRe/389Pf/pTPvOZz7xTu7yEtxHzxbeR8BTv73w/95+4n9nULE2uRuKJEC01K/jC5i8u0kdIVVWIV19NMRgst4t0lZXlKo7ocqE3mxHdbs0PKJ9HsFhAkoj0HmWsGCJZzGAXTNTqfbiaW7HunWNlQycPmhxksnEQRBzOCibHd+EzeRCzMvqTP8OCQaQnPMbrHevxG/0EwjKW6Qjo9WAwIHo8pMw6UkKBde07UM1GLAURq8NLrWLHmtDGyk+PinirUIxGKc7MaKTMZNLaM4UCgsGA6HRecLutVB0Iywkmc5P4lVaiWY18FtUiCiqKqqCgUuduwGC0kLXn8Zs9pAtpjs8eZ331ehpdjTS6Grmy6UpyxRwHpg4wnZzm1o5b+fmxn5OVszQsb8BsMF/QuP/ZtEwAn173aVKFFKOxUWwGGxbJQlbOclndJsx6M//zmv/JwamDPNb3GKIgMJOYotXVjNviYW1gPe93baUpqsMyMIdaKWpGlYUCh+VxvvfsP5dbbpIocUPrDUSzUZZ5lmkj9JKRsfgY6YIm8AYYi41xTfM1ZV+d4egwh2cOM5mYZDQ+ik7QYdAZ8Nv8eMweLq+9nOnENHpRjyiIXNl4JYeDh4nn4gRsAQSDgaycZSw+xkxyhnpnPZXWSix6C4IgkC/mKRQLjMRG+MmRn7ChegMfWvmh8vGZHwA8GhulwlKBQWfAJJmw6C2sC6zDpDNR76ovfxY2vY2snF0gLJ//HfnlsV+yumo1X9z0xbcsjmUJ/zVwyRGfO++8k5tuuolrrrlmAfEZGhpienqa6667rnyb0Whkx44dvPzyy2clPrlcjty8KZ54/NyeI0t496PR1cgdrR9kaOQQqWSUyzd9g5iSJp6L43L5WV6z5qyiUNFmO2fgpWA0Ivn9qC4XxZkZitEoo7FRHup9kLm5MQSdDsFsxmut4BbTbdQvX85yvcrVNdsZyk6SL+axG+xUSS7EdB6zyYZTbyOajWq+ONkEy2aP8dLMCF6rj5u3XU+dyY8SizHm1/NS8hiRVBSTKqFOxpDlPDev/RDW9EnSYzYv0Ie8VSiMjZHbvRslGEQFMhUOJv0mMpUubAWB2mkf7vplF7QvNr2NueQsLw7tIiVnuLxxG4qqkR1J1KGqCnqdgRX+Feyfep19k3vJFDL839f/mZScZl31On5y+Cd8Ys0n2FCzgZnkDKlCio+u+iij0VF+efyXZOWstqCfNPG7UJxNy7SqahWP9z3O04NPs7VuK5OJSZ4ceJJQOqTFQZgcXNd8HZ/Z8Bl+3v1zzDoTHr0Tm2KgXfawrHembG1QmugLVVr5h9f/gaHYMLIik5NzrKhcwS+P/ZJ0Ic1n1n8GSZQYjY0Sy8UQEDDotDH4SDbC8dnjdPg6SOQS/OTwT9gzvodV/lWEMiHG4mMYJSOpQooWdwu/t/L3eKT3EVZUrkAn6mh2NzOZmKTF3aK1604SuVg2RlEtUuOo4bWp15hOTpdNNC8LXMaBqQNIokQsF1sgvj59+m86pU1Peswebmq76YwGmw2uBlxm1yLSAxoBLCXKv1VxLEv4r4NLivj87Gc/4/XXX2ffvn2L7pue1n5Y/tO0DX6/n5GRkbNu81vf+hbf/OY339wdXcI7CjWXw9jdR+tE5GRFYli7Q6dDV2fA5FTht0h0UKJRCt3dFPr7ybTU8eCBnxFKzGjxDbkcgsFAWMjwyMhTfGLtJ7FJNm6r2snD3Q8QikZx+QTEXAGzyU6HrwNBr6dnroeMnEGQJMwOD7FcjIiS57HoHu7o/BCTy6v49sv/i4HJo+X3EnDVcc2y63ms/zE+1nQbNkU6oz7kzUYxGj1FegSBqUY3j4w9TWhoCsFmQ1dXh1c1c4twM83my867PxXWCubSc0RSISSDiWw+TYevgxNzJ5BEPYqi0FHZxcHpQ9gNdhxGO88N/obB2DAqKvsm9rHSv5LH+h7jN0O/YWv91nK7a0NgQ5n0XN18NRk5c0Gu1ueLR2h0NbKpZhPxbJyByADPDj1LLBtDEqXyePpvhn7DxsBGbu+6ne5gNw6DnZuab6Cxsg0pbkRVVdIOkzbJRp4YScx6M4VCjnA6xHL/CpZXdKEoCq2eVtxmN6urVlNlq2I8Ps7eib0oqoLuZFxKVs6SzCXpC/Xx0uhLZOQMeyb2sNK/kq31W0EFQRBocjXxo8M/otndTIOrgaJSpM3TxjODz3Bo5hD5Yp58MY8kSjS6GjFJJnwWH6v9q8kVc0QyEWrsNaypWsPeqb2srV7LMs8yZEVeMJZ+sdN/dqOd7XXbmUnOLLhdEiV8Fl85Uf6timNZwn8dXDLEZ2xsjC984Qs89dRTmEyLRaslCKWogJNQVXXRbfPx1a9+lS9/+cvlv+PxOHV1db/9Di/hbcX8qAO1UECemDjVhimhWKQ4NoY8OHjeys65XqfQ00MxHEaJxRgXHISik5rQ2GxGFwigzM2hJJPMBoMMuw7RFtbRtHYtH8+JjBfmyDmtzHTdSC6nxT1MZoIUiwWskoVqewBJpy/vW4QsY8T4ef/9DCVHEe32cgjqdDHKbyZf4or6bUx4JVbWrHnLSQ9owm0lqIV2ZvwujfREp7Tjk0yCLBPKBHm45xE+WdmAy39uHcZcao7LqtczHhpiJjvHnvE9XNW4E0nQaTEdqorT5MSatnBFwxUks0kGo0PlWJDZ9CxWvZXeTC+KqrCVrayrWkc4G2Zz3WY2BDYgIJCRM9zcdvN521wXGo+wzLuMQ8FDvDrxKuFMGEEQUFRF08EI2ni90+Sk3duO31JBpd7FZv8GXBW1UFnL0Gwfj/Q8TCgTRjCZODHUw0RsnPXVG5CVAi+M7WY4Nkqnr5MfHbqXanuAZD5J92w39c56buu8jUd6HkFFpcHZQLaoTbhNJibLWhxZkTk2ewzQtDwOo4NmdzMek6d8+9qqtcymZ8stLKAcODocHabKVoXL5OL31/4+E/EJ+kJ9JPIJdo/txiyZaXI1lSffTq/GXOz0X6u3lfe1vY9DU4foCfegE3QYJSN2g72cKP9WxbEs4b8OLhnis3//foLBIOvXry/fViwWeeGFF/je975HT4+WTzM9PU11dXX5McFgcFEVaD6MRiPGt2GxWMJbg0QuwfBMD7GZMewYqMWFTTRp1R2PR5t4EkXUQgElFNJG11MpbVrqDRCfktGemsuBopAsZkAQ0FVWoqoqxbEx1MzJyAqdREooUJycIZvJ4NqyBWc8jmAyUWHy8tOJx3lp+AWCYppwJky9r4Xt9dvR6/ToBB1FVYuvmExPM5k/aeJ2Mj8JVQVFYSo/h2C1kjZo3kBnC+M8X0jnRWEemZywFMqkp4yTKfWhZJDR5MR5iU+ikGAwNMBKbyc7ndVEczFa3S0Iqkosn8BhsLPCv5L7j93PS8O72dqwDavBVp4QKigFMoVMedQ5V8yRLCTp8nVRbavGa/Get9pQwsXEI9iNdgK2wCn/IFWlUCxo4/WqSiqfOjnlZUEvSoiqwFCoH0Myg60iwKMTvyGiyyPabKiyjFEw0B/up97VyFRikr65Hj608iO8OPYSw9Eh8kqeVf7VhLOabgZgQ2AD08lprmq6Crko4zF7yJweqnoSKhqZaXQ18tXtX2UyOYlclDHqjByfO06rp5XXp14vZ3UBxHNxLq+9nGg2it2gpboPx4Zxmpx0+bpwmpxlsTTwplRjOis7uWvnXdx3+D4mk5MYRANOk3PRJN4SlvBGcckQn6uvvpojRxaejD75yU/S0dHBn//5n9Pc3ExVVRVPP/00a9euBSCfz/P888/z7W9/+53Y5SW8SVBzOYqhkJbXJEkIdjs6p5ORzBQPdT/A7FB3OXrCa/dzy8oP4JuZgfDJaRxRRNfRgaG5GTWTQayoQD1HFfCc+1KamBI1UalV1SNWVqJEo4guF8p892FFwZJTEWw21MlJ1FgMZXaWYjiM3ayjQfTiaXsvUaNKMhMjno7w1NGH8Fc0sqPxyrIuoiAXMBosCDZbORcLQdCOhSiW09hPD+NUZRmfzsHWxivYPfw84WJiYSL8aU67F4x5FdekutgraX7kR+osi/B82PQ27BYnr08f49jUYRz2CnYPvUCrt4UKm5ZR5TK7OR46QU7OgiBSVIsIgkBRKSIrMma9mQpLBUW1SMAWwKgzYpSMNDgbLqricLHxCDX2GjwmDxa9BVmR0ev0FIoFMnIGvainq6KTpwae5FdHf4HL5KLWUMEyzzJ+/7I/JJ6KctJ7ETWbxVU04DA50Yk6ItkoAB6Tmxtbb6TaUU1ezuO1eNhWv40n+p8gXUhzc9vN9IZ6mU5OY9FbMEkmArYAAVuAyeRip+xqWzVVtipW+k/537w6/irRbJTrW66nqBQ5NHMIRVUQBZE6Rx3XtVyHTtAxHh+nwlKhTb9Z/QsID5zyRXoz0O5r5ytbv3LBbbIlLOFicMkQH7vdzooVC09gVqsVr9dbvv2LX/wid999N8uWLWPZsmXcfffdWCwWPvKRj7wTu7yENwFKNEr+8GHk0dEyuRFsNnIr23lo5glC8ZkFYaMhOc5DB37GR2ouwxwOgyiiX70aeXiYYm8v2O3IQ0PoKioQzWakqsUZTkoyeWqyy2TSHnuyOlSamBIMBjAYqIlBRXUzwejr2pMFAVRAFPH6aqmZzSOIOlSTCWQZwWhEjUSYcFrp6dmDYDJRMEocSg2QySW1LKrIKGqjVs3wmD0E7IFyInpGzCAgYNVbUVGRFRm/zY/D6OChI79gdmZIOx6ShKqqiBYD333pO1QKNgzokN0O4kqG8fg4c+k57tx451mF3meDzu/XyF4wiE1nKb9v2W4hYZMoEMegV3FIVmw2z3m31+BqoNpZS0ftak6MHyKemCVgriCdT1MoFthSu4WsmqfV08r+qf2MJ8apcdQwHh9HFESqbdUYJSNWg5WALYDNYCNZSL6hhTicDZ/z/tPjERpcDXRVdnEkeITpk8nmpWiJWztuZdfwLuZSmudPTs6RM8gMhfr44eEfcXPH+xhOjGIRDDhMdUzqJ/jdihqMkonR2Ch2ycbawDq+t+8eDr5+kKJSRBJ0bKnfwu1dH+Rf9v8Lk4lJhqNaBWZL3RaeGHiCD3Z9kPe2v5dHex5dQH4CtgA3t9+8iOwKCPSH+zk+e5xVlavYVr+NdCFdFk2bdCaGokMU1SKyKvP5TZ/nhZEXFqXdv9nVmIttky1hCReKS4b4XAj+7M/+jEwmw2c/+9mygeFTTz215OFziULN5Sh0dy8gPaDpSIane5idHkQ8vU2pqsyOnmBq6xW0THoRXS7k4WHUSASMRnRer6ZRSSTI79mDePXVC1pe8vT0Wb18pKoqRJcLwWxGkGV0lZWYx4PcvPkaHpyeJiIV4GRFxeus4pbqnZiPjEFVFeRypLx2xqwp4p12olYBOehAn8qiz+Rpd7bQExsgqxZB1az6S4uJx+yh2l5NRs7QG+pFEiWGIkMk8gmaXdo0zr/u+SdqizbUwWHNGVeWtVH7tU0M9vViqlyOQZDoGd1L1iAgiCLD0WHWVK6mwuRBl5exmRw0VpxyUz4bdC4Xxu3bye3eTU26iNdXz7ApzVgxRFYoIqVEUBSqPHWYjedvfZQngHgYi8FCIh3Db6/GY/XR4G5gPDVJz2wPn9nwGf7Pnv/D7pHdfKDzAwAUigW21W9jNj1bFjBPJibf8ELsMZ2bqJ0ej2A32vnQig+Ryqd44PgDTCQmAM09enPtZh7peZgTQS0pXRQEFFQc9gpeHn+ZGnc9L47sxiaYtFBbXyePH36MnZ3vIVVI8ZdX3cW/H/13Dk8fAhUMOj06RLqDx4BfcseaO3AanTS4GhAQmExMUlSLhFIh1vrXUigWiOfiGHUaKRQFkS11WxYck4PTB3lq4CkGI4OMxcd4efzlsmN1la0Kv8XP6qrVtHpbF1RdWtwt563GvKnt1SUs4U3EJU18du3ateBvQRC46667uOuuu96R/VnCmwslGqUYiSwgPSUkszF0iorfWYtqqyJbzGIy2iCdYTI/SHxuArGiAqm+nkIshlBRoSV9Z7OINhuCTocSiSzQ+ijJ5CLSA1pC+3ySpG9vp9DdTXFiArGykkAwz++ZNjPZ5CFZGcSaU6mJi5iPjmsVIL2eyavX8Ur4RSLJOUx5BZehku7UEC32BuyJPPZEntXWFhIOAwW9yBr/mgUme6XRYEmU2DexD71Ozxr/Gm5YdgPToVHGxo9xIptge80aJsePa7qmbJZ0TDOiUw16RJ2ZNfYN5IUiFqOdSmsFDx97gKnZIVY72zEUFLzuALdu+jhNVR3n/Gz0dXWIN96IYWaGHVIjz798N0dCJ8ptuC7/Cm5qv4WnBp/Cb/Ofd8ErTQCdCtZ8irG5AY5OH2L3+Eu4LR5UVD615lMIokAqn+K2jtuwG+1YDBYMogG9Tk+6kGZTzaY33BZZ6V/JysqVZ2x3nS0eodHVyJ9t/TPe0/oe+sP95It5LHoLeTnHvrE95WRzHSJui4eh2DCpfFJ7nM7EUHiIRCFJJBum09dOOpPAJOjJy3kOTB44qffSAj71goRO1HFg+gAfWvEh8sU8M6lTU1A6QcdkcpJ/P/rvzCRnylXBJncTn1736QUVsJnkDN/d811GY6Nc2XglR4JHmEvPUVSK9If7qXPU8cHlHzxj1ex81ZhS2zWWjVFhqUBFZTe7WeVfxSr/qiUCtIR3FJc08VnCf26ohcLiCAlRRPT5MFcJuE3NPD76G6biExiRENNZavyt7Fy1FYfRiTqbQE0mNbPBkxA8HoR5GpT5SezFYHAR6SlhPkkSXS50ra1gMIBOR3F6GkseWl7pR79mDfJIH2p4Ttt3p5PRFdX8/fB92PV2rFYXWTFDtWjmd7d8mvv3/JA2cwB9OodeVvEJNiqq2hY5C5eIwWsTr1Fjr8EkmRAQCKaCpFNRigaJ3vAoG1q2UQgZkOIpEARMqoRJb+ay+i082fc4o/ExJFFHm6+D54d3UWWpIFtIEyeLDwOhyCQP7vkRn7r6Ty+o8pM263j85Z9R72liRfVq8kXNJTiei/PgiQfZWr91wYjzuVAK1nxmz69RJqeQZJm4MUUiGSaRivCU+iQrq1aVp5EAvrr9q1xee/k5tnpxqHfV87XtXzvzVNc54hHsRjtb67fit/q5+8W7GYwM8oGOD5RJj0UyYxD1GHQGErk4oiDgNnuQJAOJfAJBECkoMtvarmE2NsXm+i1k1DwKKpU2P7FslKJSxGKwogqac7IoiGUdWAkuk4tfHv8lA5GBBbefmDvBPfvu4VtXf6vc2jwWPMZgZBBJlBAQqLZVU22rpqAU0It6bPpTAvKz4UxVHaBMegL2AM8OPltuuT3c8zBXN13N7ctvf2P6siUs4U3AEvFZwrsWgl5fFhED5XiIUSXCRDjMK5OvEk6HkCQDOsmI0WhnKjTCy3mF91R3oEwPowYCYDRCLgcmE4IolqeOgAXj3/NJ0Jmw4P5CATWVAqMRZW4OqaEBWZYpHDqErqkJsa0NQRTJNFTxi/77qHM18UjfI/SGekEUERSVLQ3b+J3L72Dv0WdwyQZ0Xi++6mZuXf7+M14R2412zAYzsVyMWC4GQDQb5cTcEYR0lkKxwGRiiu7MEO2eRmyRDEIqzUfWf4IfH7mP18b3lCsyK6rXMBEfJ51LUGX2kFcKgAGAUGSS4WD/GXO1TsdIdISxxBjHZo+RyqeQFRlJlLAarFpMAupFGc4NhwaYHe0pV/nKoZSqyujcgOZHMw9ycXE18LfF5rrN3HPjPRyZOUIkF8FtdF9wPEKrt5U/3/rn3Hf4PkySicvqLufETDcGQcJn8lAsyiAINFe2YzVYcRtdVNr8uM1uRhPjDIUHeLrvSSKZCH95zf/AY/GQyMbxWSqQdBKyImPRW8jJOYySsTz5V4JO0DEeGz/jvg1GBjkWPFYmPtFcFIA2bxvPDT/HdHKa1VWrqbBUUFAKJPIJXhp9aUEMxnycLqYHTeuzqWZTudIzn/SAFuQ6GBlckOS+hCW83VgiPkt410J0udCV4iFkGdHnY1af56X0ABZPNYM9w8ykgsQzMVRVwW3xsMa3EqfRy5y+gEunQ4nFEKzWcuTD/LaZ6Hajq6ws/31ODxxJImXVc2JwD8lcHJvOTI3Pji0HKArK1BS62lqNrBWLCCYTgsHAuBBHMpp4qPdheiP9oNMhCAKqoPLy2MtU26v5+LY/RK+A3eah0dtyzsVg/rhwTs5pbs+FDGo8TFNFA16zh0w2QY84wmprPXaDjWQhRX/w+KlpMLQFKCtnSSBSZa7EIOph3hqazCUu6DNKFrSWzWBkcEGgp0kyUeuoLU+cXSgSidCCz8gmmpF0euRiAVSVfOEU+TRLZqpt1WfazG+Nelf9G86BKk0kjUXHWOZdxj+/9n8ZiwyjUwX0BhPNlR3cvvx2wpkwZqOVCqOHkdAw6Vwck85ETi0g6vX0hfqptlYRz8YIpoPoRT12g52wHOby2suptlUzEh0pkx+P2YPf5idVSJ113+K5eNmcMZFLsLZqbbkqc13Ldbw4+iLPDD4DQIOzgeUVy2n1tLKpdtOC7SRyiUWkB7SE9gd7HqTB0YCKesbJsrySX5DkvoQlvN1YIj5LeNdCMBrRL1+OWiwij48zUWng3r5fMFeIYipU0jvbg9loJeCsIZfPIgoC4XSI1oSBtF9Fv24dqCpSezvK1BTK7Gx52yXB8nxhs66yUsvhOr3dJUlMr6rjkdf+RZsiA1RFwWvy8L71H6bK4UCNx1Hn5rTGgCShMxgQDAZSuiI6SU9fpF+rNpXemyCAAMfmjpMsZrip/aYLOibzM5Bi2ZhmVCeKqJIOq6yjWfDwu6s+TFbOsda/Gptg4sX4MaolNya9GVmREXUSNslKOpvAZreCIODABJxqK9ou8EpcQGAsNoZBZ1hAfLJylvH4OFaD9aImq2ySZcHfbsVIvaOe0fgocrGgETQ00rO1fivLvMsueNtvJ+xGO13+LrroorOis5z67jK6iGQjzKZnsRlsLK9cgU1vpSd4nHpXA7OJaeRMGlUn8ETPY3xh6xd5qOcRXh5/mWRec3aud9bzsVUfozvYzXUtWkSPVa8d59cmXjtre0on6JB0Enf++k6OBI/Q6mmlN9TLTW03cVXzVfSH+9Hr9DS7mzHqjDiMDqaSUzzY8yBdFV0LCPlIdGQR6SkhlomhOtRFyfYlGEStsrgUPbGEdwpLxGcJ72qILhfGTZvILqvnsdf/jYlskEpvPTE5DYJAJp9mrljEIVnJFbLEi2HCVfVE7RKPJfpxG1y0paGqrQ2am7VqjMWyIHy0/FpnSWjPdjTzcM8DhFOniJMgioTSczy0/9+5Y8MfYDp8QnMtPpm/JNrt6NvbsefGyRfziIJ4qm0zD3pRT7Z45gXiTJifgTQeH0dVFJBlagMd7PRt5NjrT1MUBZALGCxtyBU2jDEBKZXFaTMRyoXJ6/JMxyZodDWSVnL4LRUYMqf2zesO0FjZekH7U5ALKKpCg7OBkdgI8dyprLtWTytd3q4zVrDONvFTb6vBa6sklNScoQ35IisdrUiqgNVsx2qw0uXrotndzAeXf/CSaJXMT33vmevh6aGneWHkhXK7ymFw8KGNn0DIFXhi8CkQRewmOxVWH9978e/5ys6vc23LtaQKKWodtcymZhmODhPNRdkzsWdBy6irUjs283OzSlhbtZbfDP6mrF0ajg6z2r8aEZEGVwOP9DzCXHoOSZRwGB14zV6a3E3EMrFydWYmOcOx4DHGE+M0u5sx6AwMhAfKJo4ATpMT0Kp+p8Msmcv3L0VPLOGdwhLxWcK7HoLRyLiYJKxmMBrM5JGZS87Q6GpkODpMTs4iGOyYDBZUs4m0UeD+3ofoGX0dURVo9rXxBd9/Y0XahprPI8gyotMJZ3BuPlNC+6A6Q/jo7OL9kiRC2TATaoSuzZu1x4tiOShUMBppyOmosFRg0VtIF9ILyI/b5MakN513hPp0zBc6Hxjfi1EWUKJRJqKjCA31SIIAioLd7UeZjUAsRsBdz2RyCr/eRd6sZzQ6wg1tNzKbDVPIZ+nVxzDrjLS7Wrltze+dV9hcwlxmjm3123hx9EX8Vs1ssKgUqXPWsbVuK6FMaNFz5mtD1HweJZXCa3Jzc/v7aPQ0cUv7zTzc+yhjxRBzSpJsMcfq+g3c3v5+dDoDZvOlaWbXH+rn2y99m6HIEC6jC9WoVWbcJjdTiSk6nS3c0H4jiCIZOUO6kCGYnqV7tpsHTzyIoip8bNXHSOQSrK5erRkminqGo8PlaTO/zc/nN32e7+//PiPRkbLmqsHVwDXN13DvoXv5QOcHKKpFTDoTLrOLOkcdx2aPIYkSVdYqimoRnajFhYzFxmjztpEsJDk4fZDv7vkug5FBUvkUs+lZOn2dfGrtp+gJ9ZTJj1Eyssq/iuHo8AIjRbNkpt3XjlEyvqlmh0tYwsViifgs4ZJAspBEMJlwpKzo9VYOTh7gurYbABiODJUdiUVRZHNgE9997tug0+E1uhiKDPAP+/6Bv2r6A9z92hRMcWQE49at6Hy+Ra91eo5X8vjAoseUIIgiSSWHVFNzxvvtRjs7G3fyeP/jHJo5hKzIWvaU0UmrtxW/1U9XZddFHw+70c6Gmg0cHnqFqalBjUDEYqipFDqPB1dBT/VoHMHmIB8Lc3XDTp6deIHJ0AgWoxm9ZKDG1YC74COSDpMv5jDojMgGPTHOLfKeD6fRyZ6JPSyvXI7D6Fgw1fVI7yN8fdvXFzx+vjZESSZhcopKVw2CHh7vfYzLfGtYVtXJlWvex5PDz0JqGr2oJ56K8a+HfsCfbPnCu0YXUqp+RHNRXCYXXRVdZzWDTOS0bKtSJWZ+m8coGYkXZTqX386Byf2MxcfQiRIj8RFScpq1pnVEs1HqnfUYJAMHRg4wlhgrx3ScmDvBR1Z+pNyOcplcXBa4jGZXM2k5jUWyUGnVIlUm4hP8uu/XFJQCHb4ObHobt3fdTjQbJZaNYZJMOIwOcsVcORE9nU8jIJRJT2mfJVHi+Nxx/u3Av3HHmjs4MXcC0LRGpbH1Vk8rD/Y8SCwTK8dbvBVmh0tYwsVgifgs4ZKATW/TksudXmw6C3WuBp7qfZw1gbVsq9+O2WjBqrcyNNfPywO7KCh5QEcoH8NvqaB/7DA9bTFKg89KJELh8GHErVvPG+xpMzrOc/+5T+CdlZ3cdeVd/Mvr/8JQZKg8Puy3+vncps9dtHNyCXajnZuXvZf7h7/H3GwQ0WxGV1eHx1bJzZ7NWLrHUefi3FR/NY8nXmO7byNC007yZj1t/i4e7n2EvnDfIk3IcHxkwdjzudBV2UW9s37BiHkJze7mRaSupA1R83mYnKK2ppNnR59ncnAMgCOVB7ihcDO/HH+KscjwoniO7+757gXvWyKXoC/Ux2RiEr2kJ2AP0OhsfFMW3PnVj/nv9/ObPs+aqjWLHj8SHSGaiZ51Pz+y4iN8f//3ORw8jKzIpAtpmlxNXNt8Lb86/iuub7meTl8nj/c9jiiIRDIRQukQ4WyYYCrIbGqWm9puYkNgA08PPs1ceq68/WQhia1g498O/Buz6VlyxRz1jnqSuSQn5k7Q7msnko1Q46hhLDamVX5sVWVy4zQ7KciFBe+1lJg+l57j+Nxx8rIWbno6qdlUu4muiq6l6IklvKuwRHyWcEmgLOolTKZY5EOrPszj/U8wEB9hMjuLQzUScNdj1Vt4afB5kPQIOh0FtUiukMUsCMQKCeZ/5ZWTHj+6c4TYAjRWtuJ1BwhFFk+oXKgeZn1gPbWO2gUi167Ks1cILhS1OTO/Z9vGhF8mmYljk8zUGf04jJXI7hSIIoGJKB9tvIoJe5FMhROHy890cprecO8Zt3n62PO5UGqtnI0EnL6NUqVDSaWodNVopCc2Vr4/rxSIKhleHXuFKlcNkrjwFHWh+zYcHeYnh3/CS6MvlZPKA7YA721/L1vqtvxWHjIl47/TdTSDkcGzErNkIXlGzQtoKe/PjTzHRGKinDcmICArMi+PvcyOhh2sq15HTs6homLQGYhkI6QKqXJVZjI5STwX577D9xGwBxa9horKYHQQt9nNUHSIKlsVr029RlbOkiqkGI4Ms7V2K68KrzIWH0NRFSRRImALcFv7bYzFx0jlU1ob7GRiukkyUWWrIifnEEWR2ztvPyOpWYqeWMK7DUvEZwmXBOaLesOZMMFcmPe034RRb8Qh2ZiZ7KOqqpWvPPJ5CrLWqikFkRYFFUEQcertwLzQzJOp7eeDw+bl1k0f58E9P1pAfrzuALdt+vgF62Hmi1x/W5TEwbHkEFKdBb0iIuRTCIJIwqHnsDpEtDmPx+qlXWyi0lKJb56guy/cd87tlzxeLgRrqtbwrau/RXewm9n0LEadkQZXAy3ulkWPLQtaZRnB4i5XekowiHqShRQFOUdOziEZFp+izrdviVyCX3b/cgHpAZhMTvJoz6OoqnpWb5oLQcn470w4GzGz6W0ICGcMD3UYHfSH+zHrzUiiVK74JPNJRmIjXF57Oa9PvU4oE2LfxD68Fi+yItPl6yq3pECbpJtMTlJtXzziX5qwcpvceM1exJPhtgBTiSlqHDU83v84l9Vexpa6LVRYK6i2VeMwOvCYPfRF+phNn9K5lSo+JsmEZJCosdUskZslXDJYIj5LuGRQEvWeXjYfjY5yaHgPrvAcy6q7ODbTDVAeH9eJOpor22kvOCkTH0nSvHZOho6WcLZpo6aqDj519Z8yHOwnmUtgM9pprDx/rtVbgZ65Hu47fB+TyUnUQoGR8WN4DE6ua7qGrD7F473/gZCXiQXHEJwOWgIr+ML2P2WNrbm8DbfRzfqq9VgMFrJyFrNkJpVPcTh4mIJSwGV0XdQ+ZeQMR2ePlkecD84cPGMCfKlyNytFyCr5BdswG204ZAmbXhuxP92cr4Tz7dtIdITByOAC0lNCqTLy23jInI94nen+BlcDu0Z2cXXz1YtM/cySmRp7DUPRIbJylrn0HIlcAp2oQxREgqkgdqMdk86EQWdAQCCeizMWH6PF00K+qB1Hk2TCIBrOOEZukkzoBM1DakXlCkySCbvBjiAIdAe7+foVXyeYCvLa5GsAbKvfhs/iY2NgI08MPIHP4qPT18nxOS13TFZk5tJzVNmqaPO2vSGd2hKW8E5hifgs4ZLCmcrm9a56fBX1DCaCfGr9p/l/B/6fpjnR6dCLEl2+FXy+45O4T5zUPcwbORddrvJ2euZ6+PHhHzMYHkQURRxGB/XOenY27gTAarDSVHPm8ey3C6XJoMHIIDa9jZHoECgyNd428i4reyb2kihmQJWxV9SS0hUYSo0tasFYDBYOzhxk/9T+8rbbPG3c3H4zY7Gxi1rIErkEj/Y+ikE04Lf6ycrZcqTGo72PcsfqO8rHrFS5e6jwK3TJU8TEbLTR7mxBn8hjyCt0Va1k7gwTYWfSDZ2OZCFJ/jRSNR9ZOftbecicj3id6X670c57297Lo72PckXDFahoPjcus4tWVyu/7v81E/EJxtPjZQG8oipY9VbsRjtDkSGMkpFqWzXxfBwBgWg2SraQRUGh3lGPgIDT5MRldpWdvUsQEOiq6CKRT5DMJ7Eb7ThNTuK5ONX2avaM72F11Wp2mHZg0Bm4suFKNtZsZDQ6ylx6jlg2xqfWfop/O/BvC8hPnb3ujC3NJSzh3Ywl4rOESxrT0QmOzXRTafJSYfKCKPKpyz5DOp8mI2docDaw2tmG+9goikPW4iJMprLPTknY3B/q56+e/ytenXhVM/kTRJpdzeyb2Mfe8b1sqtlEX6SPgD3AR1d+lHZf+6J9mUnO0DfXx0x6BkVVqHfW01XRhbUgnBqPN5nQVVQs8hC6EJw+GYQAKgKbm7fz4siLCHodzw4+TTQTxW/zsz6wnkw2ouk75rVgZpIz/PP+f8YoGXGb3ESymmdRb7iXXcO7+N/X/e+LWshGo6OYJTPPDj5LOBtmZ+NOJFEiX8xT66hdMG4NWuXu9zf+IUNTJxhLThKNz+CQJfSJPILRyEBmgs9s/CMeOP4AI7GR8vPOphs6HTa9rWySdyaYJNNv5SFzLq+ccxGzRlcjd6y+Y1HFEuDAzAHqXfVMJadOZndpxGZn406qrFV8f//3CdgDXNdyHQemDzCijpAr5igoBfxWPzsad3Bk5ggmycQy9zLS+TTpQhqbQWuxKSh8afOXeLT3UV4afYmcnKPN00a2mGVt1VoOTB9ASmqanpvbb2ZjzUbsRjuJgubgXVAK9IR6uGPNHeTlPIl8ArvBTpunjVg6xgPHHzjvZNsSlvBuwRLxWcIliwNj+/g/u/83g8EeAIqiQF1FC5+57LN0ebuoc9WVKw2qswYlGkUtFBD0+rLPDmiEYtfIrjLpAfCavfSF+8gX84QyITbXbcZn8ZHMJ3nwxIPc2n4r7RWnyM+h6UM8M/gMD554kLG4pltxm9zc1PIe7rDtoLovWA5cLblGS1VVF/V+T58MkkSJ61uvp2euB73egM3owCiZMOst3NxxC83uFgrFAma9mVQhRTKf5OjMUQajgxyeOYxZMtPh66CoFMvBlDpRd9bpo7Mhp+SQFZl1gXUs8yzjn1/7Z16deBVFVTDoDOxs3MlXt391wbST3WhnVeNG7GYnDx36OaHYFFRIiFYrTmcVa6vWsrl28xsSgze4Gmh2NzMUHVrU7grYAjiMjt/KQ+ZiBd3zcTah7y3ttzCdnKbB2UBRLZIupLmi4QpW+1fz6sSr/OmWPyVXyPH69OtsDGzkPa3vYS49R6evk3A6zJP9T5LMJ3l/5/v5y+f+koycwWfx4Ta5aXI18dFVGllvcbdwY+uNTCWnEAWRWDZGKBOi2d1cHmXfUrel/LuZTxAzhQwjkREEUaBQLJAupJEVmZ8e/Wn5d3OuybYlLOHdgiXis4RLEtPRiQWkB0CnqEzO9HPvnn/mf974nQUtKcFoPOv01kh0hJnkTPnkDZpPSTKv5VC1eFoYj4/zUM9D5fuHokN86fIv0e5rZyY5w8M9D/PUwFNl0gMQTod4tPtBzPU5Pu3dhmVWczVWIhHye/YgXn01os1GIpdgNDpKWtYErTpBh8fiKeuLSpg/GSSJEhuqNzCTmuGJgScAWFW5iqKi8N+v/Et+fOjH/OuBf8MkmVBUhdX+1XT6Onmo5yFcJhez6dkFAlXQMpRQLk7YvH9yP/fsvYeDMwe5reM2vvXitzg+exy/zc9ceo58Mc+JuRNnnXZq8rfxqR1fOOu48xupHtiNdm5ffjvZYnbRVNfN7TcvWNjfKEqC7vnErMXTQjKX5NXxVxfowy4Eja5GPrziw9Q56ohn4yzzLePhnofZPbKbycQkwVSQFk8LO5t2cmz2GMdmj9HibqHKVoWqqizzLkMURM0yITqERW9hLj1Hs6uZWkctTw48ScAewG60sy6wjkQuQX+oH4NowGKwIAoiAVuAZd5lC/a5pMkaiY5gN9h5tO9RxuJjmCUzWTlLV0UX66rWsXdyL3DuybYlvPM4m4bxndrOO4Ul4rOESxLHZroXkJ75GAz2cGymmyrXmU0FT0eykESvWyhyLipFVFT8Nj8j0RE6fZ0L7h+KDHHf4fv4ytavcCx4jFQhtYD0aBspEk7P0pMeZdyRpW3eXUokQjEYZFSe49HeR8utosnkZNnhttndvEAcPH8yyGV28fzI8wTsAbbXb6fWUUuTu4kNgQ38rPtndM92oxN1qKqKTtBxNHiUf3n9X/joqo+WPVfmC1Tnj41fqLD5ePA4d+26i32T+4hlY9zedTv7J/djkkzMJGfwWrxEs1EEQTjnGPpbMe7c6GrkC5u+UK5uSDqtjdPoenN8fGDhlN5wdJgHex5clFR+urj7fPv8/MjzLPMs4zuvfIfXJl9DQKDd1461YGUmNcPTA09zfev1jMfG2VizkaHoEMlckv/o/g9uaL2BgYhmtpkupDW/n2yEWDaGUTKWBd3nGvX3WDwLjo/daOf6luv5effPy8ReJ+iwGqzUOmqZSWpt3YAtwGB0EJNkuig7hCW8fZjvmF7CxX5HS9vZNbSLufQc6UIaq8GK1+zlyqYrfyubiLcTS8RnCZckotnIue8/rWpxLpddm96GqqjUOerK5KVEGmwGG1a9dcEoL2gVl8nkpNZ+ykXLkzULoGrGgFklT6qYAXQL7k4oGR7ueRaDaFgw6ZORM/TM9WCWzDzc83A5i6k0GXRty7XIRRlJkOj0dWI32OkOdvNU/1P81VV/RXewG7PeTL6YRxAEjJIRq97KkeAR8nIeg2QoT+jIirxgbPxCxMOJXILh6DC/GfoN+6f2Y9QZ2dGwA4veQru3HUmUSBfSCIKARW9BfzJY9GIqSW8GStWNtxrnSiqf//mdD3ajnfe0vIdfHf9VebpKRWUgPEC9sx6H0YFe1LO+ej3NrmamE9MEHAGmk5ob+fy8LEVVkBWZolosC72TheQbGvWXizINzgZNOG1ykcgnyMk5jgaPoqISzUX57MbPajohi4QkSm/7Z/1fDRfjGg5v3nc0kUvw3NBz3HvwXnrDvWUR/jLvMvLFPO/reN8lQXiXiM8SLkm4TO5z3z+vanE+l90GVwN6nZ6rm67m2aFnGYuPkZNzuExajlGto5anBp4qP9dusCMgYBANJAtJXEYXBt0ZxLQnfYRMogGrzgwsJEfjxTDhTBi/1b/I2yUjZxZdqZcmg14Ze4VnRp/h+Nxxnhx4kunkNAF7gBvabtCqG6KEzWDDrDdjlszlK3+ARD5BNB5dMKFTGhu/EI1K6apRL+oZj49TKBZ4T8t7eHXiVYajw3TPaVYClZZKOis6mUnNUFAKpPIp7IZLpxR+MThXUnk4E76o0fmsnCVTyGA1WFEUBUEQEBCYSEwwHh9npX8lsiKzrX4bGTnD/qn95e9eiWCWUKr2lYTeNr2NvlAfR4JHmEnNlI0IS9W+s436JwoJQpkQAgJj8TGGIkOaFiwbBSCZTzKXnmOVfxWDkUEkg3TRdghLuHBcrGs4QF+ojxOzJ8gVc2TlbNn/yWl0kpNzF/wd7Q/384ODP+Bo8CgCAlk5S1Etsn9yP9lCloA9wAr/ind95WeJ+CzhkkSXfznNle1nbHc1V7bT5V8OXLjL7vu73s9Pj/yUDYENbK3fiqzIdPo6ERD4qxf+qhzrYDfYaXI3ISsyTpMTm95Gk6uJF8deXFAxAkCnw2OroN1ST23OxHziI7rdJPUnK0Jn8F0BFlypl+A1exmJjRDJRsrkw2F0MBIbIV/Mc1ngMmK5GAWlgNvsxm12k8qnys+3G+zMpmfLEzqZQgYRsdy6qLYtNr8rYf5Vo9PoxCSZ2BDYwCvjrzAUHdKCNn2dnJg7QTQbZSQ6gtvsJpwJ0+nrJF1IMxwdftefFC8W5xuNv5jR+ZJmwiyZF4Xa6kSNqARsARpcDbw28RoWvQWb3kaLu4XZ9CwNzobyJJxBZ8BtcuM0OfGYPZgkE/sm9xHKhIhlY4iCqC1+JmdZ53WmUX+b3qYZFYoSY7ExcsUcZsGMXtRTUApk5SyzqVmWVy6nL9x3QVXDJbwxvBHX8OHoMHsm9jASG2E0NspobBRZkcti9lX+VUwmJi+I+AxFhxaRHtAqk92z3RddQXqnsER8lnBJospVwxe2/7dFAufmyna+eMVXyvqeC3XZbXQ18rnLPkdfqK+sCam11YIA17devyBjS1Zk2rxtVNury0LcW9pvwaK3LJjq8li8vLflBn7HdgWWgTnEigoEoxFBktDV12M3xZEUkUZ7PdvrtmlGgnozqXyaw8HDC67USxiJjjAaHSUva22solokloth1VvJyBlMkoktdVvomeuhqGgnpdJV/TLPMgySts2CUmDX8C4m4hPUOevKWVvny5sqVTZMkol0Ps3yiuU8N/wcAM8OPssn1n4CQRAYjgyTyCeocdTgt/r5g7V/wJHgEYZjw+/6k+LF4nyj8RczOm/T2zBKRto8bfRH+suePoIgIIkSLe4WHCYHd794N+F0mEg2Qoe3g+3123l14lW21W+DUZhJzdDkbqLd145BNLC+ej0vjL7ARHyCaDZK6KRHUqlaVGpRnWnUv8HVwKGZQ/gsvnJLNytnsRlspAop6h31DEYGaXQ10u5pX/L1eQtxsa7hpYsVh9HBYGSQycQkuWIOAYFcMUcin+BI8Aiz6VkSuUT5d3m2Vlo6r5FxURAXGYyWvKkutsr5TmCJ+CzhkkQil8BosPIn2/8b08kpsoUMHqObLv/yBaLmi3HZPZsm5EuXf6nslGwQDThNTqrt1QvCGFdXrabKVsWmwCbNx0dRqHfN8/HxByn09KAkEohWK8WxMWqqfKzwtPOzI//Oy+OvlE3n2io6ubXzVjKFDB6zZ8HodcmcL1VIUWGpwKgzlk9gAHsn9vKJNZ/ghwd/SCKn3SaJEpfXXM7vLP8djgSPaNvJJxmLjbG8Yjm7RnahqipGyXjevKkSBARm07Osq16H1+wllAmRLWb58aEfc0v7LXx4+YeJ5+OsrFyJXqfnROgEBaVwSZwULxblHLkztLtO//wuZFuCIPCBrg/wq2O/YjCqLXKqqrK8oovf6bid7778dwzHRxFEEVEQ6aEHv9XPBzo+gMVgYWfjTqwGKwIC06lpsoUsE4kJfnLoJ2yt38pVjVfR5m1DVVWmElMcCR7BarDS5mk746i/3Whna/1WLHoLeyf20hvqRUUlJ+dYVbmKy+su55mBZ2h0N/KxVR+j3lX/2x3QJZwVF+saXrpYcRgceC1ehqJD5Yu3glLQ2p06I6FMiMMzh9lav/WcrTS3xY3D6CifW+bDaXRiNViBi6tyvhNYIj5LuORQ0pnMRSZRk0mQZbyuatat+d1Fk1xvxGX3dLT72vnK1q+cM2FazeXwpcArNSL42hCdzrJPkEoOZXYW0WxGNRjAYACzmXQ+wS+O/ZL9k/uod9QxGodYLkZ/qJcn+5/k99f+Pjubdi54nZI5X6n1VueoI56Pl6/CrAYrPzr4Iz6+6uM0uhtJ5VNlDxyL3kKzu5lkIclMcoax2BgPnHigLIotjbefK2+qhNn0LDsadzCTmqHeWU+LpwUBAZvBhqqqPDf8HEW1SJOriZnUzILtvNtPiheL03PkSjg9qfxCt1VyeL6t8zZyco50PoXH6GKZo5mh8aMMjR8FUQSLBUWSiGQieMwe9kzu4aMrPsqGmg0A/ODgDxZU6FZUruChnoc08Xk+zVh8jBp7Dde1XEcoHTrnqH+jq5FoJsr1Ldezs2knmUIGvahnOjXN432PU+eoo8XVsoj0XOpjz+82XOz5rPRbG4+Ps61uG+FMmL5QX/n80eBqYEP1BgbCA+hFPXWOOu7Zew8mycTltZeTL+Yx6ozEcjHu2XsPf7zhj9nRsIMXR18kM8953Wl0sqNxR3li9LcxCH07sER8lnBJoVS6nZ0eojg6ippOAzAzPMwDwSC/v/PLuOtOhWO+UZfd01EauVaSSc2FOTxO4aQLM7JMoacHNXPqRCCYzejb2xFdLs04MZNBzeXAYEDu6wNB4ESrxEjfa1TYbOTyaVocjUh6I6gKBslEvbN+0dV3hbUCj8WDVW8lK2dZ6V/Jvsl9zKXnaHA2MB4fp8ndxGW1l52xXbXCv4JELsGh6UPsmdiz4L754+1ny5sqVTaKapHJxCTLvMtYXrGcqeQUtY5aPGYPsWyMolokYAsgICzazrv9pPhGcLYcuQudlDmdHJQdnjMxTNEUgiRx/+v34fDXaU9SFO27b7ORJ4+AQK2jFrPBjN1o5+jM0QUkzG6w8+zwswxFhqi111LjqKHB1YBBZ8CoM/Knm/+UdYF159zfFk8La6rX8GjPo4zGR8nJOYpqkeUVy7m963aWVy5f8Pj5mXIGnQGnUauUXuz49BJO4WLPZ6Xfmkky8czQMzS6GtkQ2FA2LE3lUzzS+wgfX/1xAI7OHKXSWskLIy8s0CvWOeq4ouEKcvkcH1z+QVRVpS/cR0EpIAoitfZabmi5geHoMF6r97cyCH07sER8lnBJYSQ6wlxkskx6VFkuj43PjvYw1LMXu9GOVFkJvHGX3TMtRuZIivyePSiRU6P0otOJ1NUFViuCXq/FUhiNIEkU+vowrFqFWiigyppWozg0hJpMIphMRAppQEVMZzHmJWSDiizLYDCQt1gW5S0NR4d5pPsBGoxVHFN1HJ45gtVkZ1PNJhxGB1c1XYXD4GBN9ZpzaixGoiOYJTOqqmpu0qqqTaCJYnm8/Wx5U/MrG0W1SF+oj6uar2IwMlg2gHSanDS7m9lat5XJxMJptYtt/fw2eLurDW/Ej6hUvZxKTBHLxsgr+XIsygr/CoozMxSGj/OacZaiUsSkM516sqJA6fuiLLzSPr2qpqAwGZ+ky9eFKGjJ7KlCCkmQmEvPcXPbzYuOzZmO35a6LaiqSjwXL2eyOYwOttVvW/D8ntke/m7P3y3QxikoZOTMJSF+fbfiYs9npYsVAQGv2cv+qf1l+wOjzlgeajBKRq0Fpsq8MPIC08lp1levx2v2UlAKGHQGQpkQSTnJKv8qBARS+RSTiUn0Oj35Yp7jc8epddZedJXzncAS8VnCJYVkIYmaTC4iPSUk4nMUJyfRzWs1ncll91zxB2cy+nJLdm4UO6mOLSQjxVAIcXYWeWqK4sBA+XaxshLDxo0o0ahGiLJZBJMJNR7XSIai4JbmnRwKBTAatfejKCAIC8hHIpfgodd/Rqj/CFXuem6pu4ZrGq9CpzdgMzlYfXIs/0IWr1QhhQEdXc5lHAsePfVgQUDV62lyN50zb6pU2ZhKTJEqpBAR2VK7BaNkRCfqylNATww8sUAA+UZaP28Uw9Fhftn9SwYjg+SVPAadgWZXM7cvv/1dU20oVS8HI4MMhAeoc9YtikVpKWiaCZtk0Z6UyxFw1DIZH9f+Pvn9N4iGBaTy9KpaMpdktX81oiByJHiEucxcuRrnt/qZSEwsELeey+zulvZbyt8pu96Oz+pjNjXLq+OvYjfYUVWVx/oe44n+J8rPLU1D9oZ6MUvm/3Q6r7cTF3M+K12sPNr7KFc3Xa1VfgafIStncZqc+Cw+PtD5AQL2AOPxcapsVUwnp7m6+WpeHnuZZ6LPoKIiINDgaihX67xmL6PR0bJbuU7Ulb9/73bSA0vEZwmXGGx6m3aVC+VKhWizIRgMoKo4KmpAEFCi0QURFfNdds+F0mIUy8bwmytQZVnTMygCL0UPcqOvE0vwFPkRq6vJHz5cJlklKMEg+X370F17LbrKSgSzGU5WfVAUyOdZlq6kuaqLwZkTJ5+kaBM8okhzRdsC8jE820eo/wi1NZ08O/o8kwOnytABbxMt1zUvOuGcbfG6rHoj/b2v8vur7uD/Hf4hx4Ld5ePZ5Wrj8xs/d968qUQ+wXf3frcslgZYWbmSr23/WnlBu8O2OJDz7TgpJnKJRc7EarFI3/QxQokgt7bchMXsoMFVjzUla/ltBsMCXdbbgRJ5HAgPsMq/alF7YSg6xBfX/BGNgkCd4Katfi0pNcd7V9zGcyO7mIqMkaaAWTLT7G5eQCpPF1xLOgm/zc/zI88TzoTRCZqZpiiIRLNRBiID9If7WVu99oLM7kqf8XB0mGcGnylXgKrt1Tw98DSV1soFz03kEwxFhmhwNhDLxv7T6bzeDiyatLrA7LpSOO5odJRVlat4X/v7yh5MVoOVVD7FeHwcp8mJRW9hS+0WXhl7RZsMnXfhMhob5dd9v2Z99Xr8Nj/L/cvP8orvfiwRnyVcUmhwNeB1VTMzPAyCgM7nQz3ZpvHaKqiVvJoOJxrVSNF8kXEup+ltZBk1n9eIk06nEaliEcFmY5ggsWyManMlzxx7jMnoqPbCokiVzkXbZV2smhPLgaOC0Yg6N4dQvdj/RgkGUZJJpLo69O3tFAYGtOeJImoigWc6zufXfIbvHvhnBoMnQBAQRJHW2lV8YfMXF5zU4tFZKlw1GumJLYzGmAwN8WD3r1hetbK88J2+eCXzSWZTsxwLHmMoMsjOrp28cOIJPtrxuxSXQ7KQwqa34hQsrDCfuxU1Gh3l7t13LyA9AEeCR7h7993cc+M91Lvq35IoigtBX6hvIenJ58lkEoynQ0yGR2k319Lb/SKVzV2817+D2rgIqrpAl/V2IFlIEsvGqHPWLSI9oMWi/KTnF3wwcB2hYoSDwUFGIsPIY3la3E00Ne+gxtNIm6+NVf5Vi6Im5rcl9To9bpObSCZSjmcpVXwa3Y30hfroD/eTK+bIFDIYRAM6QbdoZHkqMcVrE69hNpixGWwcmDrA432Plw04L6+9nBdHX+T2rtux6C0UioWy8D4n50DQ/Klsei2jri/Up7VLJD0Be4BG55sXKfKfCa9NvMbfvvy39IR7ysaTbd62Cw6EtRvtZaIyHB3mZ0d/xvHZ42QLGUw6Ix3uVm6uuZqkWGC5fzkvjb9Ela0Kk2Siq6ILp8mJJEg4DA565nqw6C2XtGh9ifgs4ZKC3WjnljW/ywPBIKHYNBiNqMEgbqOLm9wrMfzmRQpeL8LKlSjxOIKioG/XUtQLvb0gSchDQ6iyjOhyURwfR83lEN1uUBRiLUa8OgfPHH+MYHySzpo1WC1O8koeIxJ748dp8XVgPVn1EYonFwZRXLijgqCRqlyOYjCI6HIhVlUhNTejxuOoDgdqOk3bwRx/3fkn9G5IESOHy+hged36RdNpNtGIYLEwOXhaHthJRFOhBe2D+Z4708lpXhl7hZnUjBZjoWrTH6saN/OL139Cg70WR07Aa6tkW/MN2AriGV+jhCMzRxaRnvJ9wSMcmTly1pHmMvl8C6ssk4nJcqyCXCygkxXCuTByMU+hmCcjFFETCYK9h3lEUfh4xfVYUwXUTIZCTw+GNWvelsqPTW8jr+TxWXyLc95O4sD0QRqdjdx34F4GQ/3YTA7qXPXsmz5Au78Tk9m+iPSUML8tmSlkMLYaeX7k+XKel4BAs6eZK+qv4METD3Jj241EpiMYJSMukwu70U5OzqHX6ckUMvSEejg2e4xKayWxXIxlnmV8f//3iefiCAiIokgqnyKei9Mb6qXaVs3+qf3l/THoDIiI1NhqMEkm/s+e/3PGvLAtdVveNe3IdxozyRmGwkN84/lvcGTmCAF7AKNkRFEVxmJjfHfPd/nS5i9dFGGMZWMUigWqrX7yuTR6QSKfzxGLz6Ea9cymZhmLjaEX9dzWeRuvTb3GbGqWnJzDJJkIZ8MMRAYYj4+XifEbyfx6J7FEfJZwyaG5qoPf3/llRqLDxEf6sNpVauIi5hNTWjUlGCR/+DDG7dtR5+YodHeD3Q6CgDw4qE1Xmc3a/+NxMBhQIhFEpxNLSkZR0wSTM2xovYKnh59lMDygEZlikY21m1i9eQ2bRLNWoXG7weFALc67Mj4ZVYFOh6ooFI4dQzCb0TU0QEMD+UOHND1NLgeyjHs8wvYVK1ALBURFjxDJo0hJRNspnUa9JQDSmX+uZqMNp96+oH1Q+n8yn+TlsZdJ5VNY9VZMkgmdoCOWjfPQ1MN8evOdjMz1c5l7Fc0FO9aEjFCjP+PrlBDOnjmeoYRI7sw5asVQCHlsDDWTQSi9F1VF39b2plVZErkEuWKOGnsNPouPgpzHIOoZCA1wfOYISiGPQacn0LoGwWYlp1M5aAqzxhzAGk6hZjKL2qRvFRpcDQRsgTO2fax6K7FcDLfJTSwfZzA5Bno9STnNeGKSBncjE8kpKk6G6J6tslaqug1HhxmLj7G8cjmbazeXBavhTJgHTzyISTLhNXvpD/UTyoR4qOchRmOjOIwOAvYA66rXUeeso6AUMEkmRmIjhNIhDs0cQhRELHpLWdxeVIs8PfA0X7j8C8yl58pO0vliHqfJyfu73s/DPQ9fVF7YW42Lzb56O3Bw+iCP9DyCy+jixdEXafe2MxYfI11IU1SKiIJIZbiS97S+h+eHn+e9be89L/EYjY7yeP/jRDJhDEWRTCbBweluZEWmzl3P2NQUyyuX0+BqoKuii/1T+zkxdwK7wU61vZrx+DhTiSl+fOjH3NZ5W9kI81JxbC5hifgs4ZKEu64FayxDpvu1U1NJoImEBQF1dlb7P1CMRNAZNIdaNZkEvR7RYKBYEiqf1NwA1GYNYIDW6i6eHH6GgXA/AgKCCiajheG5fn5y8Mc0uz+A60AfupYWjJddRv7gQQSnE6m9HdFo1F7bbAaHA5JJ1EyG4sgIUnu7dns2q+2zJCEYjeT37ycpKUw6VZLTWewTbppa1+Oq0tpOTl+AVZUreNhoI5M7tVCajTbafe2YLPYFgtbS/4PJIDk5x2x6VsvLMtox6oyIOhFFUClQJDjWg962HGuqgGA2n5eEeEyec382xsU5asW5OcLdBxgrzJIsZrDrLNSILpzuKgq9vRhWr77oKouSTFKcmytbGoxbZR4cf4qAo4ahyBAPHn+g7EZcafZx1bLrGJztpdIZ4MeHHmCyewjBaOSodx8HTQ3cuvbD1IQ0zc/F4I0umnajnY+u+igPnHhg4e0GOzWOGibjk9j0NnSiDqFUQQSSxTQIAplC+oL0MqW2Z5W1CrNk5pkhTZMDWgyGVW9lZ9NOcsUcg9FBXh57meHosGZSWMwxFh+joBSYTc+yuXYziqogIKAX9Vj1VkRBxGF0kCqkmEpMUe+s15y7cwk+svIjuEyu8vi0z+IjmU0yFBlaQHpKOFte2FuJg9MHuWfvPeh1ehxGB/linr0Te3lP63tYXbX6bdmH01GKpqi0VqKqKgF7gLH4GPGc5tmlE3SoqMRyMY7PHsdv9S8gHmcaaghlQvzj3n/k58d+rl2oFQrUOeu5omUHR8f243VU87evfZc6ex2V1koanA3sGd9Ds6uZaDaKKIg0uZqw6C1IooTf6sdj9qATdQyEBy4pc9Il4rOESxcntTll0nNyGqo06VKuwiiKNgFWgqKUNTraA9Xy7ZZImvbVXQwWg5yYO1F+iFlvxmFwUEgnmEpO0tdS5PLGRlBVlFhMIzw2G/nDh1EnJ8FkQrBaEV0uDOvXa1NoySTkcuirq8u+P4LPR37fPiZc8MjULsLjwfJr+kZf4LarP0uTvw3RZmNVYC1X11/JYGyIvFLAIOpx6Kzo3B5USSIjZzgaPEqDs6Esbj0mH2M6OU26kMZn8RHPxfGYPeyd2MvB6YNcXnc5yzq2MK3PUuepxF2/7LwEZKV/JSsrV56x3bWyciUr/SsX3KbmcgyNHOKhgV8Rik+Xb/c6qrhF/17qzVUXXWWRp6eRBwcpnDiBGo+TDni5P/Y8hbpq/mPoeQyCDpfBQTQXpSjqGY6PYp918uXLv8wj3fczVRqzFwQMop7Q3BgPHvh3PrHmE7j05654zccbCYycj3ZfO7e138ZwdHjB6Hc8H6fR3ai1kITFrcdSdaWklzkXSm3PRC7BrR23UigWGE+MU1SKSKJEta2a2ztvL/s6DUeH0Ym6sj6nUNQE1LIi0+HrKOdzzaXnkBVZC1aVMzgMDrKFLH+y8U/Q6XQ8P/Q8NoON+0/cz2B4kDpnHXWOOhpdjTR5mjgeOl5+H/NxprywtwozyRnu2XvPGb1rXhx9kW9d/a2LWsjfrFZuKZrCZXLhM/uwGWza5yLoysRTJ+hQVVWLNUElnAkzGh3FarQuEqfb9DYCDm1yS9tR7Zw3FhvlhdHdfGnrl/nl8V/SG+pjLDrGLR3vI11IM52axiJZqLRWUlSK+O1+nhl8hrnMHBWWCvQ6PcPRYe5YfQc9oZ5LRrS+RHyWcOnCatVckLNZ7Wp4/mi7yYRgMGj+pKJ4qrVy8u8FmpwScRJF0i4z09ODeEyek1dbCoIgUlRkwslZqiyVoKjEyKJz+0GvR83n0S9bRu6llyCTQfB6UfN51GiUYjRKNpNBv3o1ot2OWiig8/sxrFmDcvL+lFXikelniaXCVAfaECwWsormmPri4PP4XJpwekJIcvnam0j2PkE+ncAg6InrFaKFCOssTfzr6/+KTtSVx7Zvab+F/nA/qYKWjB7Pxam2V3N57eXcf+x+ckqOTCHLP5/4f9zUcgM9hlHeRwWNuM552Otd9Xxt+9cWCZxXVq7ka1d8bZG+Jxad4eGeRxaQHoBQfJqH+x7lE5d9GudFVFmUZJJCTw/ywIDWqgQmLAWiw9PUdKxgdmQWi9HG6qo1FNUiqUJKa3MWchRVmeN9e1B1IoLNhlky4ZAloEhobowxNYrHdWEL3RsJjDwT2ivaF8WiqGheOZfXXE5WzvK7y3+XUCaEQWcgmApSKBbIFXPlwNJzobQYFZQCJ+ZOcGvnreRlLfak1lFLLBdjKjlVri4YdAZkRS7HGTS5m5hNzRLJRjgyc4QHTjyAUTLygc4PcGXjlewa3kW6kOaq9qtwmBw8Pfg0R4NHqXHUsGdiD+FMmAprBZFMhEKxgNfs5YXhF2jztpUz4ubjTHlhbxWOBY+h1+nPKC4/EjzCjw79iL/c8ZcX1L5RotFzGpleDEoGoiX/nEZXI0fnW0+cRJu3jXQ+XQ46Tstpnh1+llg2RpW1qpyfpagKx2eP0+nr5OXxl0+d89DIT44iU4kpAHLFHA/3PMydl93JiooV2Aw2jDojsirTM9fDXGYO0Cb1Xp96nVX+VfzbgX/jjjV3XDLmpJcM8fnWt77F/fffz4kTJzCbzWzZsoVvf/vbtJ8UroKWZ/PNb36T73//+0QiETZt2sQ999zD8uWX7tjdEs4OXUUFUnMz8uCg1qoqVXtMJnRNTeUft87t1jxycjkEm027KsvnEZxObeEURY1AAeOmPP1Tx1i++hoEVSWejZdfz2mwU+9tIjk5hjMnkN+3DwDB60VqaECZnUWw2bQJIYNB0/7k86jBIIKiIA8OoqvRRMuC0YjO76cYDjNhlYmNhKhrWaNNbc0TMNfVdtEY6ODQzCHm0nPoBB013iaMVUaqrdUMRYc4EjzCvYfupVDUdBv9oX6yxSxf2PQFbm67GYCiUiSSjTAeHy+TnhZXi7bopWewWpyEMqEL7tNvrtvMPTfew5GZI0RyEdxGNyv9K88oah5NThBKBs+wFY38jOXncOlrL/RjpxgMQqFQJj0AKTVHXdt6hhPjHJk+hCDqsOjNuK0+GpwNWPQWZqLjzCWDqEUZimA22Wj3dqCfO5k7JIqkhcIFX6FfbGDkuXB6LIpBNHAidIJsIctkWHM+tugtGEQD9Y56fBYfQ9Ehfm/V7533s5q/GJXIj07QEbAHeLjnYaaT0yRyCRL5BNsbtlPjqOFY8BiiKFJprWQgMoCqqlRYKtCJOqLZKLFcjPuP388frPsDwpkwja5GBEFg1/AuNlRvYCg6xCr/Kp4beg5REFFUBbvBTkbOIIoi6UIar8m7aF8DtsAZ88LeKkRzURxGx1nF5SOxkQtq36i53CnSI4qEPAZOyNNE86O4x4J0sW7RwMK5UPLwiufi9IX6uGPNHfSH++kL9ZUf0+nr5H0d7+O5oedo9bYSy8VI5rRJwYA9wLODz5an7eK5OFa9lT/a8EdUWCoIpoILquOxbIx0IUW1rYqZ5Az5Yo4Dkwdwm9zodXqGokOYJTP5Yh4RkQaX5hLfF+7jqsar2DOxh6JafNc7NpdwyRCf559/njvvvJONGzciyzJf//rXue666zh27BhWq2by9Td/8zd85zvf4Yc//CFtbW389V//Nddeey09PT3Y7e9+wdXbhXI5NpdDyWZBUbTUcJNJG+t+BzxN3gh0LheGjRtBUVBOjq+jKAh2O/rOTtRwuHzFBdpUl9TcrE11FQpIzc2LprrSVgnV5UTJ5thSt5Wx+DiKqgkJc/k0wfg0K6s6WZY45aCrhkIUZ2YQfT6KU1OQnFfuNZsRq6o0D59sVmvNzYNgNJIsZqisaj7jqHqskOQf9v4DVzVeBWjC0emUVjnJFXL86vivODxzuJyaLQoi4UwYWZW5sfVGREQEBEaiIzze/3jZjKzF1cL2hu0MRYfwWXzllsOF9ulnkjMMhAfIK3lq7DXn1LUk5bQmzBbFhS3Gk0iRv6grYjWXW3Qcba5Knj30cxprlyOKOhRUUrkkqUKaRDrCRv96vDo7TY4GWis7MYgSjoIOYw4wmcp6K5tlsT7pbChdleeLeTKFDPliHhUVvahHEiWmU9MLTAHPh9PH/x1GB4/1PcbTA0/TPduNJEroRB0dvg4+uvKjfGXzV2jztZ13uw2uBmx62wIzx05fJ88OPkuykCSYCpKRM5glM/2hfgACjgCTiUmsBisjsREcRgct7hai2SiKqmDUGTk+d5yR2Ahei5drm69lNj2LKIgs8yxjS63m8KyitWJyxRwO0YHP5AO06AWf1YdZMi+Y6jpXXthbAZfRVf7tnAkmyXRB7RslGkXNZknZjRyxxPnx0X/V2qmyTCoTozmwgi9s/9MLan/CqWiK3lAvm2o2sXd8L9c0XcMNrTeQkTPYDXYENKJZYalAQCjrbSosFQtID2jnhdn0LM8NP8efb/1zuoPd/Kr7l7S5m6mwVuI2exiJjrC2ei2HhSNEMhGqHdXYDXZGY6Mkcgmi2SgFpcCm2k20elr5RfcvAMgpOSRRQhKkS0LYDJcQ8XniiScW/P2DH/yAyspK9u/fzxVXXIGqqvz93/89X//613n/+98PwL333ovf7+enP/0pn/nMZ96J3X7XQYlGKfT2ogKFY8dQolFEl0tzFjYY0Hd1oYRCCCYT+vZ2dBUV72oCpK+rQ7TbKc7MQC4HRiOiw6ERuIoKRJervP+G1avLWhI1l9Oe396uiVkzGTAacYhzFI9Oc2J0gg+sv5F/6/4xxyYPlRftLbVb+Fzn71MxrVIoLeRmM4LJhBIOQyq1cAczGe14OhzofL5FC7+ushL7pBuhsHBUXS+ZWNm2BZe9gng+jtVgpdnQzFhME5rmZE10msglFpy4FVUhlosxEh1hPD7OptpN/OjQj9jRsIMaRw2yIqMX9cykZjgwdYAWTwsmyYRJMpUjMs53or9YXYvd7tUqYBaLJkSedwwEkwm7p+qivmOC0VgW+paQV/JaWGdkmg5fJydCPShor5ORs6jAWvcK1qZc9OqqCYUntCearNp0nsGA1x2gsbL1gvfDZXSRzCeJZCLMpefIylmKahG9qMdj9iAicu+hey9o2uZ0JHIJphPT/OLYLxiLj+EwOgBtARuNjfKrY79iW/22C9pWKBMi4Ajw+tTr5cXQa/IylZzCa/ESTAUx6ow0OhuJZqNsDGxkMjHJRHwCURCxG+w0u5tZH1jP4ZnDVForSeQTmItmJEHi/R3v5+lBjZz1hnppdjcTy8a4puUaHul9hHwxj07QYZbMmCQTBtGAy+Rie/12ttdvZyo5haSTCNgCNLreXh+frsou9kzuOeN9bpObCmvFeds3vbO9HJ07QtQewygZmQlP8+roy5qztdFBs6uJ2fQs//e1/8sdq+7AbrKf1/dmfjTFnok9dPo66azo5IWRFxAEgcnEpEZObNVc3Xw1GTnD+9rfRyKXQEVdQHqS+SRjMU0YbTPY0KNjKDrEN6/+H9x78F4OzR3l2tb30O5tZ9/EPpZXrmB152oOTh9EJ+i4tuVavGYvqqC1zRK5BCfmTiAIApIoYdVbqbJVUWmpPOv7ebfhkiE+pyN2ciLH49EmTIaGhpienua6664rP8ZoNLJjxw5efvnlJeLDvHIsUDh+HCUcRjAaUWZntStoi4X84cOIlZWkCkkm+kKkgyacvhoa/dqV5bvRtErncqG7gIpBqb00H/L0NIVDh1BiMXTt7VTOTOLKCYRTMboPPsPHmt9LYdn7SRbTuC0eLs9X43v2ILLNhq6mhuLcHKLXiyqKCGazZqZ4WoyGYLOBwYBgMiGcJpwVbTaaWtfz8pGe8m16ycT2tbfwQO+DDEeHycpZOnwd2Aw27tx4J8PRYYLZID6rr5ysPh+KqmUiKaqC3+bnS1u+xJP9T9I9281wdBhFVXAanbT72lFUhRp7zYIw0XOd6N+IrqXR20JFfTuzoz0agTwZNSIYDFQ0LaepuuOsr3cm6CorkcfGEByOcrsrF4/S7mxmIDzMlcu2ISIwGBlA0hvxGdy0WOv4SMVO3APTZWO/UHhC259iEa87wG2bPo7Dtrj9Mv+9z5/eqrJVUWGpoC/UVyY9oLWTah215Sysix3zLTluu03usq6jNDIuidopezg2XL5CPxfmO5Ff0XBFWfNh0VuoDFcSyUZQUUkVUkSz0TIJ+eSaT3LTspvQ6/T0hno5MHWAV8ZfISfnMOgMTMQnsOqtXFZzGX/76t+WW8KRbIRoJkqqkOKxnse4ue1mfnX8V9rndpL8OE1OPGYPy7zL3vHzh9/m54bWG3hp9KUFejW3yc2m2k1nDAqej+eGnuOuXXdxbLabdCGD3WCj1lHHZ7d/iX/c/XckcnHG09PYTHae6H+CVncryULygnxvTo+mcBvd3NB6A/FcXMvKU4rYjDYskqVsGJrIJdg9urucuZcv5knkEycrQT7kgpYFJyKwe/gFbm65kUgmQl+0ny9v+VO+88p3ODhzkDZfGzOpGTKFDLWzteyf3s9sapZELkFGzrCmag1WvRW/zU9WztLmbbvgwOd3Ay5J4qOqKl/+8pfZtm0bK1ZopeHpaa387z9tYfP7/YyMjJx1W7lcjtzJq3+A+DzdwH82lFLC0eu1oM1Coax5wWDQ3IyTSaZW1PLgoQcJn5hGrKxE0OkwNTTT7G1hIDxwyZpWnQ4lmSyHjooVFaixGOajfdzceRWPTP6GqKhwZM9jIAj4vHVctvz9+Pb3gtmsGSDW1KAWCijhMGoohNTaSuGkpqcEwedDam1FjUTOOiruqmpgdXorj4w+TTqbYFXj5TzU+zD5Yp4OXwf5Yp4qWxUT8Qn+6bV/4g/X/yFD0SEyhQz1jvoz6kzqnHW4zNprtbhb6PR24lvj49HeR5lOTpPMJzk0fYht9du4pf2W8gTb+UJEz6ZrkUQJvajnpdGXSBVSeMweVlauLJ+Q37fqgzyke4BQZKLsXu1113Dr8vdf9OIn2mzo29sR9PryVJdNMGJPFFjpX0E8Heb66u2Ymm8AVcWi6NjqW0/1iTAoCoGRGB+vfx8TXTJpix671UVjTdc5Sc+h6UM83PMwqUKKfFETnm8IbOCTaz5JKBPi4PRBLY4EbcH64PIP8tTgU+xo2HFRY77zHbctpXwuNDKbLqSxGWzlKa9cMXe2zZSxwMgydUpcbpJMWmyBqp1PrQYrGTnDYGSQwcggAVuAn3f/nA+t+BAHZg6QyCZocjeRymuC6MnEJFvqtjCZnGTv+F7qHHVYDVZcRhfD0WFW+FdwInSC61uvZ//UfkLpEBa9hXZfO9X26ndVkOXqqtV86+pv8aNDP2IkNoJJMlFhraDeWX/O/eyd7eWuXXexZ2IPHrOHbCaC1WBl//R+OAC3r/kIPz34I8YT47SZNHKfljXrhTP53oxGRzkyc4RwNrzg93MxfkJ2o502bxupfIpINkKmkCGRT9BV0UWTq4kWVxOD0SH2T+5nJDLElQ07MKVlrl19K92z3Xx5y5dJ5BKkC2mimSjDsWHGE+O8p+U9PDnwpCa2TofIF/Ms8y5ja91WotnoOQOf3424JInPn/zJn3D48GFefPHFRfcJ89TqoP2oT79tPr71rW/xzW9+803fx3cjyv4khcKpVO5SdtRJl+FMtZdHBp8gFJlEONnKySkFXhvaxYlQDx9a+SHC6TCJvKZdODx9+G03G3uzUAwGy0nrgtGojZsrCtXHp/hYzRVMtfqIe8exiUZqClbscwWKOh1qSpsSIpNBTaUQdDoEq5VCby+i34/Y2qodY52OpFRkLDFMxlelVc7IY2dxW2d1zVqu6biRkegIy/2rkPRGZlOzmqYnOc3+yf0IgqD5jMh5DKKBXDHHzqadDEWHyiZxAA3OBm5edjM+s6anGI4O87PunxFMB2nzttHuaydTyCArMoqqoKJSVIsXFCJa0rXMhyRKrK1ay+P9j9Mf6ef47HFUVWVN1Rr++xX/na31W2l0NfL7G/7gTcvukqqqEG02dIEAajpNk1SkyjxNWE1jkmUKySSFaBp0OgyeGmozxlMtNkXBmszTVdkMsoyh8dweQjPJGZ4ZfIanBp5aIIIdj4+zrnod1zRdw+1dt5PMJzFJJqbiU9z9wt2sD6wvH68LHfOdT1QcJgcOo6PsuaOoCrIiY9AZsBvsVFgqgHOn0CcLSXJyjmg2SiKfKIuMvWYvdY46hqJDuM3ucqSJw+jAbXYzGh/FY/HwytgrXF53OfFcnP5wP3qdnpnkDFvqtvDJNZ/k132/RifqCKaDLDMto83bRm+olyMzR2j3taOicudld+I0OkkVUlwWuOxdUek5HSv8K/jLHX95Ud/Po7NHyxYAJdIrnqyc7p/ez0dWfQREkZwqU1S1755FspS/C/MJ8Stjr5x5SnL719hct/mC30cil2AmNcMq/6pyW9yit9AX7qPC5OOFkd1EkrPE5STLPMuQiwUmZgd55viv2dFxHa9NvgZowws2oxY2LCsyB6YPsLl2Mxa9BUEQWFu1FrvBjsvoorOy85IiPXAJEp/Pfe5zPPzww7zwwgvU1p6aBKmqqgK0yk/1vNykYDC4qAo0H1/96lf58pe/XP47Ho9TV1f3Fuz5O49ym0WvX2j6Nw8TDoXQbBCKxXIGVpwMuWwaxa4QzUSZTc+SzqfJyTlC6RA+s48tDVve5nfz20OdV+mjWDw14q4omMdmaPcFKPSmgBSCOQP19ejq6ymedB8ut688HnR1dcijoxSPHaMIYDIx1V7FIwNPE5ETSPoWxLgVz9SZq2R2o53bl9/Oy2Mv80T/E/zy2C/JyBkkQaKjooOblt1UHmsVBIEdjTvwmD30h/v52OqPIRdlhqJDiIKITtDR7G4uV24mk5Plnv/88eFSOfya5mu4vfP2CyIi8xPjS2hxt/B4/+P0hfoI2AOkC9pV7Svjr/CN577B9274Hp2VnW96dpdos5XdrT3A+yrtp/xLTJr4vETmPEUbsrNioWu0LKNvazuvvqhvro8HTzy4aPJnLj3Hs4PPIooiL429RCqv6btKi6Ak6EhlExQV+YLHfBcQJBV2NOzg+ZHny+RHVVXsBjtXNFzB8srli4JolWwWD2ZubriOOsFNQZehZ/YEveG+8rYlUWIoOsTHVn8MhjRCVVSKHI8e57rm62jxtPCL7l8QcAQYiY5wfPY439z5TaaSU5qnz0lPq/H4OKqqmRwWlSKHZw7T7G5mlX8VOkGHxWCh1lHLo72PkpWz1Nhr2Fa37V1Hekq42O9nOBMut4gFQUAQBPJKAZPORLaYJZVPoYja7SWbCaNkXOSwfqHZdxeCkegIu4Z24TQ62Zvci8Po4GjwKLFcjJuW3cSBydeZjk9SEFTkokyruxnF7iWupDHojPitfgQEamw1BGwB+sOa2F1WZHpCWjs+YAuQ8qRYW7X2kjArPBMuGeKjqiqf+9zneOCBB9i1axdNTU0L7m9qaqKqqoqnn36atWu1vnc+n+f555/n29/+9lm3azQaMb6Lxbu/LebrEpwGB+1eK55IHrGiAiWRILp2GT2Sj1gujsvgQFGKqFPahI9gNIIskxcLVLlraXI38cvjv+TR3kfL219btRa32U2Lt+WSY/0LFjydDiWTQXC7UU9WgZRMRht5j8W0NtXJ6UECAQBNRN3aipJMktu9G+PGjeRUFWVkhEyFk0eGniBcTCA1NSHo9RQjEWZnZ3kw9hM+edkf4nQtFAN6zV4m45NkC1kEBKx6K0WlSO9cL+3edvw2P7/o/gXBVJCD0wdxmVzc2nErzw4+i8fi0doqqTAdFR0EHAG6Z7uxGWxkC9kzvn9JlJAMmrPxhZ7AStMm89tdZr2ZvlAfPouvTHpK2D+1n0PBQ9Q6a9/yBW9+NtWZrtpFm+2UuZxev0D4fi7MpGfOOO5cUArMZmfZ0bCDl0Zf0kI9FRkRgUpbJZWWCtLZBFadhTrp7G20+ZhPkPrCfYsMB+0GO63eVj69/tNY9Bb+o/s/yqSnGItRHB1lOpnk/oF+fqflVmatUTK5JIlkCPR6BFFEVmQGI4O8MPQCn1j9CR7rf4xWTyszqRmycha9oOfT6z/NUGSIzTWbmU5O0x/u5y+e+QscRgcWvYXbOm5jReUKRuOjtLpbNe0YCsPRYfojmtv5x1d/nGOzx3h96nVuabtFC0MN94HAu0Yf+NvAbXajoqKqarn9Gc/G8Vl9kNWSz0uu1n6rn6uarlqUeG/T2xZl36mKol2IqSqHJ17n8PShCyY+k4lJdo3sIpKJsCGwgRtab2DvxF4UFPQ6PSOxERQURERktYgqwGh2hkR6mI7gcl6f08jrzqadfHTVRxlPjC/4rQdsgbKY+lIZXT8TLhnic+edd/LTn/6Uhx56CLvdXtb0OJ1OzGYzgiDwxS9+kbvvvptly5axbNky7r77biwWCx/5yEfe4b1/ZzB/+kaVZdR0muaKNv6k8xN0NTTQ45P5hz1/z8Bkt/YEVeWmLR9nrsKEN29FdDpRk0kMThO1Fe3c33M/krDwK3Ng+gD/uO8fafe0X3LER1dZieh2o0QiqLkcaiaD1NCAjBZtoczOItXXU5ybQ+fxgKJQDIVQ0mmkigpyu3dr8RdOJ0osRu7VVzHs3AmrVzOkTBPrsaO3VYOqarlgWY2ABCcmGLR0sbJ1C9LJSiWcEo4bdAZsBhuz6VkEBFZXreb54ee16QqLl0PThxiPj5PIJ3jgxAPc2n4rx+aO0R/u50PLP8Tu0d10z3WXt9vh7Sh7qZwOs2Sm2rY4Wf5smD9tUjoh5uQcldZKVlSuKJfKS9CLehRF4YXhF8gr+bc8B+lcV+1nErdfCJQzjOCD1kLs8nVR76yn1lHLeHycnJyjwuLTtBsGG2OxMdr8ncyERnDYPOclWiXH7XAmvMhwMCNnaHG3sNK/Er/Nz9GZowsqPcXRUZRkEopFQpEp+qxpZsJjXN9wDXazi9HoCJKktUgtegsr/CuI5WIUlAKJfIIn+p6ge7YbURBRNetP3CY3lbZKhqPD5ek/j9lDoVgoj9df33I9z408x7HZY5qsQNVaJbe03cKDJx7kjzf+McFkkMnEJOl8mqPBozhNzktaH9gz14NRMrI+sJ5Xxl4hmo1SYakgISQIpUNsr99Oo7ORP9rwR/htfmLZmCZInpd2X9LTHZg+UL5NLdlezPvORWIzFMbG0F9AJyJdSGsePWgV1wprBa+Ov8pMaoab229GOfm5miUTNY46ZhIzJHJxkCT0kgGzZMZhdPDkwJN8cs0n+dq2r7F7bDfRTBSTZEJAICNnuLnt5kuauF4yxOef/umfALjyyisX3P6DH/yAT3ziEwD82Z/9GZlMhs9+9rNlA8Onnnrqv6SHz/zpG1VRymPEgzMn+J76A76+7ev8w3N3MTjXp40an2x7jUyeYEIOYa2pxzQxi2Ay4bJ5kUSJqcQUTqNz0Wsdmj7EWGKMzVx4L/rdANFmw7BpkyZwDoWQ6uqQx8bQVVcjVlQgKAqCxaJ5BckyxYkJBJ8P+cQJLeldUSCXQ4nFEK1WlGgUIZVC9HhIp2bReb1w0riwRHpKSKYi5PfsQbz66nK7Zn4rosPXAXOagFVAYC4zhyRo8QL7pvaRK+bKKcuKqtDqaSUn5zgWOrZITxLPxenwddAf6ievnBp9N0tmttZvZZl32UUdt9OnTVRV5cTcCV6bfG3BlJle1LMhsIHeUC8P9z5cHsm+mEiHdwPqXfW4TW4i2YXhq7IiM5mYZHnFcr555TdJ5BLIiozX7ObB4w/QN9dLppBm98BvWO7u4C8sX6Ojds05X8tutJenzuaTn1LLbv5V9vzPWU0mNe3ZvInCmJLG5vPzHwf+Hz53DWv9qykIRbyWCuqcdfTM9rC6ajUt7hYSuQSf2fAZXhp7iZ8e/inZYhaTZKLd2861Lddy35H7aHY3Yzfa2Vq3lRdGXuAXx37BN3Z8gx8d+hFtnjaurL+SbDFLla2KywKXsW9yH5FshO+++l0UFAw6A+uq13F9y/VMJibPOO12Lr3SuwWJXIL7Dt/H4eBh/mLrX/Dtl77NS2MvMZOawWl0sq15G5/f9HncRjfXtlxbNgaFkwaNJk2nZzPY6Av1UWOrQS/qycu5RaQHwKW3kdu9G/HGG887vSog0OBsYCQ2gqoo6BSYjI7is1UiCRIrK1cwpRvBXBQpZDKYDG4qHNVUO6pxGp00uhpJ5pOcmDtBX6iPdYF1+E8G4b4Z2rx3Cy4Z4qOeNiJ8JgiCwF133cVdd9311u/QuxwLpm9kecGPaTDYQ3e8j4GRg9qJUq/XHiNJnJg4zObOa5D1IrpKAfR69DYnkk6iydWEx+zhY6s+hkFnQFEV3GZ32fm1lBN1Kf0opKoqxKuvphgMouZySC0tZQ3I/HZIcWYGNZVCVVWK4+MLN5LLgdN58mpXRaqtxTETRZiSKEYii0gPgFVnRolEKAaDZeJTanP4rD6OBI/Q5GrCbXaTlbP4rX7sBjuhTIiiol015oo5nCYnWTnLWHyMVCFFjaMGg2hgJDaCTtThNDqZSc2woXoDPrOPufScZmInGmh2N/PB5R98Q5+X3+YvV21Go6OYJNOi0fp2XzuJfIK+cB86QVfWFB2cPsi3X/w2377m2xdcwn8n0VXRxXvb3sujvY8uID9uk5sblt3ASv9K/qP7P5BkhSMTBzgSOs5YbBQASaenyuhjcK6X+7r/gz+raDnv8T5fy66EBbqh+Vl0ADodLquXY3Ov01G9AlnQBhmimQjPj+ym1lHLJ9d8kt8M/oZ9k/vIyBmKSpFGVyP33HQP47Fx3GY3VdYq7nntHix6CysrV9LkbmI0Nsoq/yq8Fi9PDDzBjctuxGlyoiiKto8q7JnYw+7R3QgIyKqMSTLhs/gIpoI8O/gsVzRcwXRqesG0W0mvNJWYIpaNkVe00euPrvwo7b523k6ci4CNREeYTE4SzUb52ZGf8Scb/4Q/2vBHxLIxnCYnfoufx3ofo9nbzAr/ivLneXz2OAemD/CzIz/TLmRECbNkZkNgA3esvoMfvvav5E8jPStr1tJV8KIEuynOzJyX+OhFvebvNArDs31MxSdocDUQzkbpnTvBbZ238Xp+N2PxcQxmKya9mTX+VexovYb7j/6CqHDqXLVnYg8ei4dGV+Mlq+U5Gy4Z4rOEi0M0F9V6xfLJtOl5wl3g1Al8vsBZlpF1Kq+ceJa/eO+3CHT6SYsyNrOT8fg4o7FRDDoDPznyE8bj49zedTsHpg5QVIpcVnMZY/GxS3LEfb5I9mwoTcQJBoM2AXeaczCKoomdLdoIcqllMTs7u2hbXkcVtTkTkF8gsC49B2B9YD2vT72uGRQqeewGOwORAawGKzn51HPMOjN+m59QJoRRMpKVs3jMHgL2ABOJCS2NXTRyLHhM04sohYtOET8f6l31/Pcr/jvfeO4b7J/aX7693duO3Wjn6YGnsRqsTCWmyMgZVFVlOjnNC6MvsI1tb+p35WwL1pluhzP7Up3psZ9a9ymsBivHZ4+TlbVqSGdFJx9e8WH8Nj+3tN/Cr489jMPiZmxwFL2oZ13tRupd9RTlAkadAYPeyGh0lOX+80fonE9oWzKu9Fu1z0+tNDM5Oo6s5EEUqXBWYzJaeX50N4eCh8lTBEWh1dfGH6z9AwRB4MXRFxEEgWWeZfRH+plNzbJ7dDfD0WF2Nu7UzP3G97BnfA+3dNzC0wNPYzPa6A/3l9O5b1h2A//r5f9FQSngNrn5/676/ygoBXY07GA6OU2VrYqNNRspqkXMkplYLkZvqLfcSitVrUpj/IORQXrmesjIGeRigYMTr3MieJyvbPoy7b62c1oOvFmYLxjXi3oaXY3sn9yPJErU2GuIZqN0+jpZW7UWWZH5H8//D5KFpBYWqqp8sOuDpOU0fXN97J/aj6qqmHQmDswcYNfwLuYyc+TkHGk1TSqfYs/4HjbWbOR9nbfxi9fuLe/Hypq1fG3jn1Lx4smYitz57QtW+Fewa3QXH+h4P2IHGHVGqmxV/PvhnzIYHWJ65Djrq9aytvFyHGY3Y+Ehwqk5fvT6D7is7nL2zh1EVmTMkpkWdwt7xvewe2Q3dqOdgDWAzWijzll3SV3cnglLxOc/KZyS7ZRLrqKUK2aCJEGxiNs0z5pf1AIbS9ktRUFAr9OzqnlT+SEl19Vf9/2aoegQ2+u38+r4qwxFh3AZXQxEBqiwauO1F2vYdimgPBEnSeiqqihOTy8kP5KEVF2NrrKyvHC2e9uxYyQtuMg6TWQkbZJuWeVKolRgSeQXaD5KbY4fHfwRwVSQCksFRsmIJEhc3XQ19x2+D6NkxGP2EMqEMEtmfmfF7/Bk/5O8Mv4KDqODYCrIVGKKDl8HT/Y/STAdZENgA3+8/o/ZO7UXp9HJZGKSolrkSPDIm0ZSt9Zv5Xs3fI9DwUNEs1GcRid6Uc83nvsGdqOdYCpILBdboDOaTEzyk8M/4QubvvCmfFdOn3ACTUdxRcMVHJ89TjQbLZv3DdmHODh9kKnEVDnGodXdylXNV/HCyAuLtnFL+y3cufHO8rh5yTwumU+SyCVodDWyqX4z4UyISqufK1uu4pXRl9kz+rK2EUFgbf0mrmy5+k19n9FslJ65Hlx6OztXbGbkyMu4HBXc2HELPzz0C+LxWbxWH/FCinX+NVzZeg0vjb1IV8Vy9k7sxWV2aYucpwWv2Ysn5UESJVb4V/D04NPMJGe4cdmNvDL2CpOJST7Q+QFWVKwgr+SxSBbiuTjXNl/L7tHdKKrCaGyUj636GHOZObbWb+WRnkc4OHOwvO91jjquaLii7DZeqlqNREeYSkyVSU8mn2YuPk2+mGcyPk6nt419Yz6uarmGjsDK3/oYng3zfZT0op4Wdwv/uO8f6Q/385n1n+FvXvobQpkQldZKjgWPsaFmA3+88Y/5mxf/pizsl0SJkegI66rX8cODP2Q4OsyOhh3Iikx3sLv8O5BECVEQiWQj1Dpr+VTXx7iyahPRvDZo0lXwUvHyAGmfnQlLgSzjOIPiOavqCgo6QcdPDv+YmegEoNLsbuHTGz9Dq6sF3fg0Q7kpMjMRRkIHeT07QFiXZzYxTVYosqpmLUMRLQPu7179O7pnu0nn08iqzKrKVXx242fZNbKLG5fdeEld3J6OJeLznxBqLkeHWEWTrY7Bac1ThWIRdDoEs5nmynaWW5tpqV3JwGQ3gsmk6QNkrarRXN1FW8xIYWgI/cnpuYycocpWpVUWdEYaXY28PPYyJp0JSZSYTEwyk5zBaXJelGHbpQLR5dKcmbNZpPZ2VNCmv1RVE81WVWFYs4ZReY6Hu08tvoVclkBdHcenD3Bo6gDJbJy/TUyxrmYD39j239leeWqyK5FLMJOcIVvM0uxuJpFLUOesYyY5g0VvwW12MxgZpMXTgorKTctuYjg6XCY9q/yreH3qdaaT00SzUa5ouIJnh55l/+R+fqT/EXduvJP7j99fbjOcyUTtt0FnZSe1ztpytSSUCuGxeMgUMotID2hk+rmh57ix9UbWBdb9Vq89f8Gaj6nEFN/f/31cJhdPDzxd9isSEVnpX8lkYrLstWM32Hms5zHEk5NPNr0No2Qklo2Vj5PNaOM3w785IzFqq/j/2fvvOEnu8t4Xf1dVV+ee7p6emZ7pyXk2512tNiiCMhIgkDFIYETwNclw7MMx91yn43B9bWN8bGSDAZt4kC0hhCSUtSutVptznN3Jeaanc+6u8PujpmtnNmlXCIH46eHFS9LMdHd1dXV9P9/n+YQejk4dYW3tanYN7zTHXQgCss3BbG6W5/ufZ2Xtyjd8vs9/nz67j5W1K0nkEwwIMX7rxs/gT5Q4a0ni9tdwg/tdpLQ8HoeXSCHKvx/+DsPxEapdhmuzXTZk//3Rflp8LYwmRymoBWK5GAOxATLFDHd03sG2oW28b9H7OB05zeGpw6aTdGNFI59e82nGUoa0PeAMkFNyOGUn2we3U+epoyPQYfgPiVaSxSS9kV6WB5cjCILJWUqXjHDNcqdnNjlFXi2QnXMgH0+Ok7dm+H+3/wX/8+b/RUfN62eUvZGa76PU5m/jv078Fw7ZwcdXfZzHex/nTOQMkihRVIs0+Zo4MnWEXCnHh5Z/iG8e+CbdgW5KWgmf3cdz/c9R667FIhoZViPxEcaSYxRVA2hLooRTNjrE0+lpFDRuOK2hzWSBLIgzTLYHeGLkBaLTSSyWTsSo/ZJd9en0NN85+B3C2TCbGzej1BVJF1LYJCuRqSHuLS5iVLfRd+Rlo8sNdAQXcyhzFovmYToXpspRxergaoPDNH2UdDGNqqtYRAtHZ47y0L6H+PTaT7/tN7fvAJ/fwFLjcbxHzvK5pZ/gn7R/Y2DmNPrceKa1opnPr/scjRNZPr/pS/zT/q/TN3RoHuhZwhdW/V9UvLSPfM0wgtuNpbqadClNrpQzAvEEAbvFjs/uQ9d10sW0MWZRz82Hr9Sw7e1Sgs2G3N1tJjDLXV0Gr0IQkIJBpGCQjKzzs8P/uXBR9FTz7UPfZiI5ToevDd3mps3WgSBK/Kj3v8gJCqIo4rf7ORU+xSvDr/DC4AvIokwkF8Fr83J75+28NPgSW5u2ck/PPaSLaRZVLyLoCvI3O/+GnqoeSmrJ2B3PdXPORM+wpXkL2VKW+op6I2iwmGIiPYGOjk2ysSy4jFQhxSMnH6HGVWM6xf4iNX9EM52epivQxb7xfReAnqU1S8mWsuSUHJPpyV/oNWHhgjW/4vk424e2c2PrjYSzxtjRYXFwZPoIkVyE61uu58DkARwWB6vrVvOXO/6SseSYebzdgW4+tOxDJPIJzkbO8uroqxe8znwAuaX1eqZzs/x85AUjmFUQkC1WqlzVeKweSlrpspuCqfg4J6dPEM/H8Dn8LK5ZsiDV+2Lv02axUeM2AHQq4GL77DaOTp+iN97HVC7MspqlLHL6sQkyY7ERJFFEFmV0dGazs9S6a82Ik3JoqCzKlNQSw4lhRpOj3NZ5GwOxAVp9rawIrjD/pjyyXBtaSzwXRxZl0qU0NtFGR6CDHSM7ODx1mEwxg45Oq6+Vm9tuxipaF5hlumW3SbzPF43A1zLoAYO7UtJKDMz0smNoO0Fv3S9l0S3ft2RRxm6xk9fyDMQGWBtay+Hpw+joWDQLFtGC1+ZlKj3FifAJPrz8w6ypW8NNbTfx3cPf5cZWI7E84AjQVdVFOBPGIlmMdPo5haWgC6Ybt6ZrpLU8R1ZW45yWqAsbI8snRl4gqiSRmpsR57ypLrZhGYoPsW1oG6+MvAKArqrYMkW6bCHcs0ky+lFGly8mW+lBcDrRSyVSFVb6p0/h8rqp8zWgYQDXSmclu8d347a6KagFZPFczM7RmaPklNzbfnP7DvD5DSw9nUZPJuk+Dn/e+gnOLkqSKKXxWivoKnioLVUidQRY7fPxV7YqTrYdJVFK4ZU9dGZd+LadJFdbyXhFkfzEXrx6M1bRikN2MJ2ZBqCklkgXz4EbURCxS+cSy6/UsO3tVKLPh3Xlykt6wQzPkxeXK1/KmyGTToeHbKZAhc1Lb/QMeyb2EnAEODZzDEVTeE/XexhKDAGGqVw5cPSZvmdYVbeKrqouBAS8Ni8d/g7Gkoa3i6qrSKJkEFR1FWHuf+V2OhiLY1Etcu+ie2l0N9LkbeLvX/t7Dk4dxGFxYLPYXtcpNlVIMRIfIatkSRVTpAop7LKdkCdEi9cIl5zvG1Vpr+TTaz5NqpBa4IOztGYpDyx/gJ+c/gkAFukXvw1dCmgnC0mmM9NmvINNsrEutI4N9RsoqkVWBFcQ8oSwilYePv4wJ8MncVvPXbu9kV7+z7H/w28t/S0m05MXBVew0IV3eXA5LZVtRkaSIGGz2PBYPXRXdV9gYDe/Do3u4x93/B0DM+dy29pquvnClj9gVeO6y75PMGwFjkdOEpMNd2eppFJl8xMpJPh538+5s/tOACRRIlPM0OxtNjo8SgGL1YKqq3RXdZMsJHFajVywslu0XbLT5mtj/8R+Gr2NZmenM9BJZ2UnmWKGNXVrmEhN4Jbd5JQcR6aOcHzmuOk2rekaE6kJ9k7sZWPDRpPPBga/rdZda3RQ1DxFQUMQRNA1WnwthNPTtPvaAIjlYr+0Rdctu5EEiY7KDs7MnmHX6C5i+RhZJYuOjoiIIAjmvc8tu7E6rDgkB6vqVvHa6GsU1AJ2i51mbzOxfIwKWwV90T5avC20+loNxdUcx0nTNewWO07ZSSQfYV9sAK2Qp7LCwYaWzaRPVGBxBU3QU67511u5C1gWPQAIkkTBLnEmP87yihCWRJq0ksOTd2JpbqaIQl/4OHmnjIbKdDaMoilMpifNY9J0DQEBq2Q1wowlO4quIAkSa0NryZVyb/r5f6vqHeDzm1iKgpbPoycS+MbGWFf+uRxD8HoR6jrNhPLK2Rzrnp8jzzEFosjkohBPjL1IZHgSOd+JFKujs7ITv91Pd6Cb3kgvU+kpWn2tDMYHsUk2vDavSZR9vbynt3NdzgvmYotSTjWiIUYSIzhkB5lihpnsDKqmki1lCWfD2Cw2jk0co6eqB0mQ0HTN3GWVA0f3T+yn3lOP3+anpJf4/tHvs7xmudntqbBV4LQ62T26m6JWRBIlLIIFv8NPJBshkU+QLCT5yx1/yZ9d/2dsG9xmci/KkS6Xc4odig/x5JkncVqc7Bnfw2ujr5FTclQ5q2jztXFn9520+dr49qFvGyZ1c9UT6OEPr/1D3tX2LmL5GE7ZSbaU5Senf0JeyRNyhwi5Q7/w53IpoF1Ui+b5tEk27l18L8/0PcPBqYMA7BzdiSzJfGXzVxhLGmo9AcH0stF1nbNRI4RUluSLvka5yp9/k7eJaxuvNZVJVtGK1+7FZrFd8lin4uMXgB4wFJj/uOPv+H9v/yq1vvrLbigS+QR4DR6fr6IGR9wD+RQ2UaY/M0OVqwaX3YNDdjKUGGJr81ZeGX6FTMlwnC4r/W5tv5WiWmRl7Upz1NFZ2cl3D3+XlXUr2Te+jxcHX0TAcCReF1rHFzd+kWPTx/DavTT7mtk/vp/R5ChWyWqcy7noIItoMcY6mrIAvERyEdbWreXAxAH6cjEyxTS6rtNd1cM1des4OX2caqvBS5QtVoYSQ4ynxympJYMLJ9mYSE7gtDkNwC9YqHRWXrXKtNnXTJu/jef7n2dxzWJTBFLe1AmCgKqpaBiAcDY3i67r+Bw+fDkfH1j8AZbWLKXKWcXjvY8TcAQoqkWOTB3huubruL3zdp7pe4ax5BiyKLOleQura1djlaxzVggB4kKcuK7ys/EXaG5atCBj7WLXW5kfFXAESBaSJti2WK0UJImM109VdS2+7qU0VTRRNTxJb7yfvE1EtLkQgSqxyuRsNVY0YhEtCAg4ZAfLg8s5GT5pdkyvqb+Gw1OH+ePr/viKz+uvW70DfH4Ty2YzJNSqSq4xyHiFRlrL4RYd1JecOKxWwAgtPd9QLVdfbYCe+IRBdrZY0BWFvtGj9NQt5cFVD/KtQ99i/8R+7uq6C6tkRRAE1obWmqnLv04BhG9lzV+UJEHCZ/eh6RrNvmY0XaPSbhBHT4ZPIgkSHpsHHZ2SaowZ80re4E5YjJu3VbJSVIvouo6mazhlJw6rg/0j+1lSvYSnzj7F6chpptNGF25NaA2fXPNJvnXwW7RXtjOeGieajSIIAiuCKygoBXoCPQgIbBvaRsAZIJ6Pm10hMMDPseljC4BPeUdpFa28Nvoae8b3kCqmACO2wSJaeOzUYzR5my4AB6cjp/n6vq9z//L7+c6h75jRGWB4mtzVfdebQpKcb/w3v+wWO4urFuO1efndtb/LiwMvous6rd5WRpIjCILA/on9/J/j/4cVtSsYTgyjaArZUvZc90wQKKgF/Ha/4c6sqxc9hvLn3+xrps5TZwKd+VXeFJyvHIunIozM9l/0eQdmejk5fYJaX/0l3yeA1+E1IxTsTg+LmlZxevokkmRBttjQgZ6qRWZQ5p7xPSwLLqPN14bL6mJD/YYFOVqftH0Sh+xgz9germm4hpAnxJ6xPYwmR81RmU2ycWjqEE+ffZrNTZvZ3GREUkiisfiKgohVsi44To/VQ07JXaDoShVSPLjqQQZi/QxE+ymoRWbTYfqiZ7m2YSO7+1+mKtDIWHaKxGSGFwZfIK/kyRazLAsu44aWG/jhrh8ym52lK9BFo7eRNn/bVRH4PTYPLb4WJtOTtPnbaPe3tKbNIgABAABJREFU0x/rZzozzZLqJfTO9qJiiEMKSoHNjZtZW290P3JKjjp3HePJcQpKgd9a8ltE81EcFgclrcSu0V34HX4+tvJj2C12/HY/z/U/x1NnnyJVTBkbG7ufO7rvYCQ+wkx6Br3i0jYu5ettPDXO4anDtPpbcckuRpOjWEQLVc4qY1xnAaGyhqLPzYSc59aeO5k68h8LnqvJ28S1DddyYOIAoiCyMriSU7On6A50LwA9PVU9TKWnODx9mL997W9p87e9LSwpzq93gM9vYOmqihQKMWYv8MTQs0SG5xYbSaK6sYt71CW002JItJ1OxIYGtDlvmvEKnciI8feCx4PgcKBOT6NqGieiL3Pv6g+z8oa/Yzg3RVEv8ZEVH8Em2ZBE6QK/kWQ6wtBMH+lCEre9gpbqjrdEjvqrqvKilMgnCHlCPNH7hLFoKgWG4kPUuGroDHQiCiJ5Nc/y4HLi+TgdlR2EPCHqPfUU1AJWycpgbBC/YJjmCYJAd6Cb+op6kvkkHZUdPNv/LIOxQToqO7BLdopakeH4MBW2Cj634XPMpGfYPrQdHZ3FVYv5wJIP8L9e/l+ouko8H0fTDfWHU3aaad/lihUWGvWVeSVBV5DJ9KQJeuBc3teZyBmqnFV47RcaXJbBxB1dd5AsJE05eIWtgmsbr31TQPL5xn/l6vB3cEvHLXz1ta+yrn4dT/U9BUCNs4b19euZzcwiIDCaHOWahmvMjmZRLZpdn0p7JT2BHnYM76DN37ago1Wu+V3OSx1LeVNQNrSb/7toepZr2q9jd//LKJpywfObBOzLPPc19dfwbP+z5s98zkpWNa4jno+TUAyQcd/S+3h56GUm0hMomsJgbJA2Xxtbm7YSzoR5YeAF0+qgxdfCFzZ8gbMdZ+mL9rE8uJxDU4eosFWYmXBl4muikGBR1SLzHFQ6Kump6iGRTyy4XjxWD63+VnT0BYqu8ns5NXuKoCvIpqZNHJ48hF2QcVjsBujxh1jRtI7d43tp9DaiaArhTJhYPkZRK5IpZgg4AwzGB03JvMPiuGoiriRKNFQ0EMlF2Nq0FQGB/zz+n3xp45d4vPdxRpOjtPpaWRZcRl+0j5HECE+ffZqAM8Cx6WOsrV/LrtFd2GU7+VKeRVWL6KrsYiQ5Qlegi73je6l2VbN3fC+JfAIdnYAjwL6JfeY48DPrP3PZUdJ8AD2RniCn5DgbOcvNbTfzyvArDMWHiOfjeKwebBYbzb5mnul7BlVXqXJWcXfX3TRVNJFXDF7mSGKEJ88+iaIpPN77OJ9Z9xm+fejbJPKJBaDnjs47+MHRH+CUnZwIn7hgk/R2qXeAz29iZTLkQlU82fcI0VLC8JaZ695EC3GeOP1THmzoxCnL6END2LZsobBjB9rYGGnN+LIJFRVYWlrQkklD4j4zg5LLEXMdZ+WZDIvq6rDfeOMlbdQHp07z0z3fIxI7t8MP+EPcs+EBWmt73pLT8FZXeVHaObKTp848xUhyhFQhxa0dt7J3fC/7J/Zjlay0+dq4ruU6NjZsJFVMEc/HCWfC/Ov+f+X+Ffcznhynp6qHrJJFEiQ6Kzu5teNWBuODBJwBZrOzDMWHAGMsU+cxXFeLWhFZlFlTtwa7ZGdj40biuTjjqXG+ffDbWCQLki5hl+3mwj6/21Muv82/4L/LO/O8kr/ooqzqKoqmUNJKpkz5/MopOd7T/Z5fqgPsxYz/HBYHf7HjL8iUDHJtOXIlW8oSy8Xw2r1UOavQdA2X7DJGkhYHS2qWIIuyqVzy2DxUa9V0+DuI5WPMZmfN171Yl/NSJoQA/3743y/o2CTyCQ6Ge1lWu4QTE0cueG/zw2Ev99y7x3cveG6bxUbQHaS+op6gO8hAbICtzVtNjsny4HLcVjdf2/O1BYBuvrv26pAxiumP9eOxeRZcAzbRRpWzCp/Nt8AVvNnXTE+gh2guSkEpoGiKOT7xWD14rJ4Fiq5yqbrKRHoCSZCo89QTl2PUuevo8HeQVLMMxodYHlzOnvE9FJSCScrOlrKMpcZYFzIG+6liioJiuJvbLLar4gS5ZTeVjkozXqMz0Mnmps1MpCb48+v/3LiWdJ2dYztp9bUSzoRp9DaaXZrZ3CzLapbRO9trdF6T4/zxdX/Mc/3PoWgKt7TfglN2Mp4cp8pRRTQfZTI9aVqOHJ05yqnwKRoqGlgWXMaByQMXBdAem4fj08cplArUe+pJFVP89PRPaa9spyvQhaqrBJ1Brm28loNTB81O5Wx2lv5YP5lihng+TlEt4pSdLA8uxyk7sUk2ItkIDyx/gIJaYFlwGVbJykx6hkdOPoIsyeZm6fxN0tul3gE+v4llszGSGCaaCSN6PGYSu14qoUWjRPx+huPDLPF1IlitRh7XDTdAJoNXncSinzUCDS0WdFU1XI1zBiByizYggzY5SXHfPkSP5wI30WQ6cgHoAYjEJvjpnu/x4E3/7de68zOfoHu1Rn8tvhai2Sg7R3bSU9VDLBfjbOSscROrWYZTdnJdy3V86+C3eHn4ZWYyMyQLSRZVLeKjKz/KrtFddFV10eBpoL6inq5AFx2VHZycOYmma7itbuyyHZfswu/wI0syOSXHifAJYrkYkijhd/hJF9Pcv/x+vvz8l82wxGwpiyiIzGZnWRZcZqaJz69lNctYFlzok1Lemdst9osCJUmQsIgWZFG+YKxRLp/N96ans1+szn+NbQPbiOQiNHobqffUE3AEjBRt1eiQLQsuM3fL/2PT/2DP+B62DW6joBYQBZEmbxNrQ2v5wtNfwCE7uL3zdj6+6uMoqkKqlMIqWpElQ92UKqYWcErOPxYtneb4+CHCI71gsSC6XIYhJlDtrubI5EEqnAtBJxgE58XnmR5e6lxertNU6ai8ACxlS1n+6MU/WhBECTAQG+B/7/nf/PVNf03QHTTIx55aat21FJSCQaifR9z22r0LRr0em4d7l9xLXs2zc2QnBbVAQS0Qcoe4s+vOBZ2+i/GWVF0lrWRQ0VlcsxSH1TA/DHnr+d6R76FoCqqummChLAaY7x6uaIoJxq5GZVoeVQ7Hh3l3+7t56uxTvDZq+DGlikYsybWN1zIUH+LEzAnC2TCdlZ30Rnrx2ryoumpE+wiGV1WNqwaf3ccfbvpDRuIjRPNRXht9jXQxzfGZ4+SUHBbRgs/uMztAs7lZmv3NLA8uZ3lw+SU3DOlSmnA2zHu638N/HP4PYvmYmZfX7m+nwlbBj479iE1Nmwhnw/jsPgpKgcHYIOvr1zMQH+Ab+7/BqdlTAHhtXm5ouYGuQBenZk+xpHqJGbdRrvkd4vM3SW+Xegf4/AaWFAySGQE9leL8CbHgciG43aRLaYOo29REcd8+SKUQZZlGq5uA3U9UyIOuGzlfc6An4KujPima7s9aNHpRG/Whmb4LQE+5IrEJhmb6WP5rCnzmB7uW62qzpYpakRp3DTbJhkNy0BnoRBIl8qU8oYoQPz/7c/aM7aGtso1MMYOma5yePY1DdnBH5x0MJ4aZSE1wR+cd+J1+/u3gv/HK0CsMxAdYWbuSNn8bFtFCY0UjY8kxxlPjJAtJAESMEcT+if00eZu4d8m9/PDoD01zSU3X+NHRH/H/XPf/8Gz/sxycPGge97KaZXxl61cuaF2XR3gCAnXuOlMaD4ZZm81i+Do5Zad5HPOrzd/G4prFlz1nv6yMpnghbqSbJ8eYzcwa4Z4zxxEEg8Bc0kpkihnWN6wnnovzydWf5N5F95qdhLHEGP+w6x8o6SWySpZXhl/BZrHxmXWfwaW4LgoyLsYpUaamKO7ZQ9w+izo+DoBmtyM1NCC63bjtFWxouhbnee+5raab39/6hwsk7Zer14u7OB8s7R/ffwHoKddAbICTMycJuoN4bB62NG5hx/COBX/vsDjoruqmzlN3gaChPCq7veN2JtOTWCQLIXeIFl/Lgs/2crylOk8da+vXmt2NgeiA2XGSBMkk5ouCiCiIC6TXFtGCVTSA5dWoTOePE2fSM3xg8QeMdHNRZnXdaurcdewZ38PJmZNmIKiAYfERL8QpaSV0dBRNIafkSOQTpEtpPDYPTb4mXjz8oqkMSxVT2CQbuZIRGeKz+0gVU7itbhrcDZf83Mrllt3m+LrV38qK2hWmT1C+lGfP2B6jeynJ+Ow+ptPT9EX7ODB5gLya51T4FFXOKpZUL0EQDHn9cwPPMZGa4NNrP02Tr4llNcsWpMeX62KbpLdLvQN8fgNL8vnwtXYjnHYZxoRzJbhcph+EW3ajFwqoo6NIzc0U9++nND2NRRS5rbuTJ6O7SfisJsgJ+Op4T9O7cPRHoBxqarFA7sI5dPoii9/C36cu+/tfVc0Pdp1f5+9+X6/cshtFVah0VuK2uvne0e+ZNv8PrHiAg5MHWV23mryax2ax4RaNm/LZyFks3RYaKhoAUHSFR048ws6RnRS1IlXOKk7MnGBdaB2N3kaDpyNKJAtJBAQskoUWbwuTqUnTgO76luvpqeoxbQgAQp4QRbXIn2z9E8aSY8QKMfw2P8uCF/fxKS8ET555kmsbr0USpQWqrqaKJu7qvotWfyvfPvjtBY8tg8bLnbdLOS6/Ga7SXpuXgdgA05lpHj31KJ9c80k0NI7PHDfl/usb1vPFDV/kKy9+hZ6qHtaE1jAYH+T7R7+PLMqmeslr8xLJRTgwcYBtg9voi/VdMPq7mMeKlk4bQbixGO4Gh/m3ej6POjaG0NaGYLVS563nlrZb2NK0hUQxSbWzGotsJY9yVTl4V9NZK3OHruT3HYEOvrzpy/zw6A8ZTgxTUkuIoohVtHJTy00XPTaPzWOaU5bB7YnwiQXg9vU4UeXnbfY1c2T6CCF3iIn0BDaLDYfFYbpxN3gaTD5KmdtSFlxcrcr09QDkUHwISZQIOAOIgojNYiOnGPfCTCmDXbKbNgFFrXiBQ3W2aPhrHZs5ZvL6REE0yPjViwm6gtR56i55fOVzWQboyUKSk+GTC/6mylnFxsaNPN//PGciZzgZPkk8H6e9sp3bOm7DJtl4YeAFZEmm2lm9wE+r7NdjF+18ZctX+Ksdf7UA/Fxqk/R2qXeAz29otTYuI7jiGmZnhs+5NrvdiHa7eSPQ4nGwWinu24c2OXfRqyp1Jyf4SP0aJgJ+ci027P5J6vM2HCfGYS6zCrvd6ATZbOiFwgJ1mHsuhftS5f41VXwtCHY9r+bvfl+vmn3NhDwhjkwfYcfIDkYTo7hkF6quki/lGU4MkyoaMQdVzioqbBWmhLosa1V1lXQhzUBswLyh2i12LE4LT555knt67qEv0mc6aYuCSKu/lXWhdfys92fmjnMmPcOtHbciSzL5kgG0ssUsM5kZ2irbWFG34orOTYuvhY+u+Cgj8RGWBZdx35L7DONK2bZgF9/qaz03JrT5WFxz+TFhqpDix8d/vCAD682MPvE7/NS4apjOTJNVsvzbgX/j7p67ubPzTmRJZlXtKmK5GN898l0m0hO0V7bjsBjgpOyHVPahccjGzxVNIVlIEslGaPO3oWgKsiiTKWYYiA8wk5kxk60B1JkZtJjBhWgo2AlU1BJJGhJlPZ9Hy2SQrFYqHZUsCS7FY/P8UsHg/JrPHbqS33dXdfP+xe/n6b6nmcnMYJWsJAtJvrbna3xm/Wcu2RUt2yFYBAs6Onklj9/hZ3PjZjoCHVcUzOqxedjUtAlBEHiy90km0hNUu6pxya5zqq5jP8Rj9ZiqrjpP3RtWmV4OQMqSTJWrit7ZXkRBJJKL4LP7jM6Lr5V4IW5yakLu0AUO1WeiZ7ij8w4mU5McmT5ijuiC7iC3dNyCLMmXBGvzrw1JkGj2NjObnSVXMkCQqqnUuGpYUbOCx3sf52z0LJubNhPPxwHDpdsqWvn46o+j6RqpQsrMrgPM58gUM0TzUToDnXz99q9zbPrY626S3i71DvB5m9T5o4AmZx2ujBFAKlitiF7vBblPdy//wGV3UUopYfB+Js9zztV1nJkSnQMpbOsXoVa4UFPjqOVsKrsdsaICXRBQIxHEykos87xtWmo6CPhDFx13BfwhWmo63tyT8ybV1ex+L1cem0HcPDZzzARSoiCiaiouq4tYPobD4jBccks5huJDpjz41vyttPhayCk5wxpfW0gWLnNsnul7hi9s+AKLqxdzdOYosigTzobZPrQdWZKxWWy4ZBerQ6t5/PTjjKfGzecIuUP8/jW/f9WLgcfmed2Azfmp7VdSe8f38vDxhy9IPd/QYOTE/aJGdUW1yAeWfICiWqQ30ktWyfLj4z+mydvE7Z23s3tsNyFPiEpHJVbJStAd5GzkLF6bl5AnhK7rJpcklotR5axClmQqbBXsn9jPy8Mvo2oqs9lZ6ivqubH1RvZP7F+QbD0/iNYZSXNX87t5Yvg5E/ygKAu+l5eK37jSiJFUIcVQfIiJ9AQltUTIHVogU59fi2sW0+Zvuyjgv9iIcjo9zT/u+ceL/v2luqKpQoonzzyJS3YxEBswSfAzmRlGE6N8cMkH6a7qvqJOVYuvhYAjwLKaZYYyTVWoclZhk2xMpib5k+v/BE0zOnnlDd4vw1rDJtq4ruk68qW8aRvR5m9D9Issrl7McGIYSZBo87fxkeUfucChWtEUnu1/lo8s/whbE1uZzc4iizIuq4toLsonV3/yosd9/rWh6ipT6SlW167m+MxxJlOTOGQHZ6NnWRZcxmR6Eq/NS0EpICCYFgSRXARZMNyw7ZZz5oiqpppuzTWuGv705T+lydvE5zd8nju673jTz+Ovqt4BPm+DKiP8SGoGPZ9HLxaptHp5T8ut1EeN1GXB4UDu7kacx7d5vV2UIMtQPE+FIwiItbVo0Sh6JIISChlcIV1HXrcOdXjYOAZBwLp4McrgIJa6OpgHfCrcAe7Z8MBFVV3v3fDAry2x+Wp3v5erbDGLRbRQ46oxnVAT+QQjiRE6KzspKAWShSSfWv0pvHYvmVKGSkclVY4qtg9t50sbv0ROyZkchfOr7DUjiAID0QEG4ucWIqfspKGigWpXNfFcnC1NW8xddllGvqh60RW/l19WjcRHOBM5w5rQGqySlWguiq7rVDoqkQSDpF3udr3RcskuEvkE9y66l6ySJVvK4rQ4GU2N8vMzP+djqz5GspDkjq47CLqD+G1+JFEino9TX1HPbGbWIM2qJXN00uJroS/aR3+sH6fsJJwJU1ALRHIRsqUs6+vXA+c6Vvb5XlmaRmg8zf3BdzPWlCej5vC2dNHaci6/61LxG8AFUQHzifh+u59qZzVHZo6YHRFFM5x2r2m4hvcvej+LqhctWFCD7iCf3/D5S/Lazgcxb6QrOhwfxipaTYuFsou3pmsm4bykla5qlLcsaPBLRuIjHJs+RjQfpdJRSZvvrfGVWVSziO8d/R6Lqxazum41Ja2ERbDgtDrxWg2CsKIpXN98Pe2BdvNxzb5mQu4QfdE+8kqex3sfpyvQRdAdNINyV9WtumS352LXRsAR4HtHv0dDRQPZUtbw2SqkjNwzTWFZzTIskmFmWo7+SBVSpIopFlUt4tTsKZyykypnFblSDh2dJdVLyJcMFefVjvrfDvUO8Pk1rzLCj8QmUGdn0YtF9HSasDbCT+NxPrbq47hmk2ipFMWDB7F0dyPIspHHksngKJVYZK1BrO68wKywHLw5vwS/Hy0ahWwWRBEkCT2TQS8WQZaxrl9vpL5bLGjpOaXE/JTyuWqt7eHBm/7bnI9PCrfNQ0vNW+fj80bIsle7+73c60qShNvqNgiOJSOfJ1VM8fLQy3x4+YcZSYzw3kXv5V/3/ysHJw/ilJ347D46Kzv50sYvUVAKpovsYHzwAgAQcofQdI13t70bn83HoycfZSQ5YgAGu5+tLVu5s+tOXh15dYH0WhIl02TuV1lD8SEe2vsQr429xvGZ48iizP3L72cgPsDDJx42jB+9zUQyEapd1W94vNPsa8Zr93IyfJIDEweI5+MEHAGmM9PUumvJK3mDHJqLM52apquyi+8d/R4ralZwY8uN/PT0TxlODOO1eSkpJZZUL+GW9lv41sFvmWaBRbVo7qb7o/3c1nEbeSVPopBgOD7M4poWRL/fHHehaTjDSboA0V+FvX4Vou0c+fb1FEjl359PxF9cvRiHxUF/tJ94wUiin83OomgK0VyUSDbCDa03sKlp04LzubJ2JX99019f0YjyjXRF06U0FfYKvn/0+wzGB003bYCz0bP818n/otJZyUuDL13VKG/X6K6Lc08uE7vyZlXQHeTTaz/N/3zpf/LamddQdRVZlFlRu4IHlj/Akakj/P41v38BCPPYPHx4+YcZS40xEDOI2ifDJwm5Q9zUdhPJYvKy7/+i7vBKjn0T+zgydYRPrfkUFbYKVF1lZe1Knul7hiPTRwi6gqiaSl7Jm+c+W8zywSUf5Jm+Z8iUMqQKKRKFBGtDa/nUmk/x3SPfNV/jakb9b4d6B/j8mtdwfJhIagZ1dtYIxVQUk3AcmR1leLafxXIIdXQUFAWhogJEEXV0FMFmQ5jLeLlYR0iw2ZBCIcT6erQ5pYlgtaKHwyCKCFVVBqfHasVSVYVy4gSqzYY2M6dkqKrCumQJgvviiokKd+BXot66GD+iylnFTS03Gcnll5CpX+3u91Kvmyqk6An00FDRwAeXfBBFVZjOTLN9aDvZUpZtg9v42i1f4x/3/iPjyXFq3bXouk6mmOHQ1CH+Ydc/8He3/N0FkuAy+Ck7Hl/beK3JJ1pZu9Js/de56+gMdAKgaYYhmmyRL6qo+VVUGcwPJ4YpKAUqbBUsqV7C031PE81FqXXXMpGawG6xU9JKvxDXx2PzcGPLjTzf/7xJfJ3JzrC+fj1t/jZ+cuonXNdyHWEhzAeXfpAnep8wPHWmDtLkbeK3l/42kigB4La6OTx9mB8e+yF+u592fzupYgpVV3Fb3VglKx6r4fwbyUaQBIl0KY3odmPdsIHJsV561SnipSR+2UuXFKSuoRvxvO/P6ymQ3LL7okT8ClsFiXyC3eO7afG1mKAHDBn2ZHqSZCF50fN5pSPKN9IVdctussUsZ6NnSeQTlLTSgvDR6cw0uVLOHOXdt+Q+ZjIzlx3VjcRHLgA9cPnYlTe78sU8N7fdzHt73kumlMEhOygpJZ7rf45ILkJ/tP+ix9Bd1c1XNn+FHaM7iOfi2C12BARySo67uu667HV+/rVRUApMl6bx2/3YLXbGUmO8OPgiiqZQ7aim0lFJJBthIj1Bd6CbqfQUsXyMrsoukoUkqVSKf7jlH5hMTTKVmUISJTRN47tHvrsgixGufNT/dqh3gM+veaVLaSN+QplTj1itCKJoePNIElmvA0HyYOnoMECO14ty5Ah6PA4WC1JtreHHk8tR6u3FunLlgs6PJRjEfsMNFF59FXVmxlBrzYEeuacHdWwMsaEBdXAQvVBArKhA8PvR43H0aBRlZgYxFKJ48KDhAl1djSXwqxtlXYwfIQkSIiJ/seMvyJaMcYdFtNDsa+ZTaz61gJB5Nbvf819358hO7BY7de46Hjv9GFOZKXKlHGejZwm6g3x4+Yd5of8FlgeXkyql2Da0DQFhgSEYwMGpg4zER1hdt/qKJMHzW//luhw59lcNfMrtervFTiQXodnbTLOvmW1D2wBo9DZSYaugp6oHm8X2CydBz2ZmafQ2sqRmiSn1zRQzpItpbmq7iTW1a1hUvYiiWiTgDLChfgPhbJiB2ACD8UEyxQyTqUl+Z9Xv8NPTP6XN38aG0AZq3bW4Ci4jXylvyJiThST7xvcxlBjiQ0s/hEc2zvVxpvjHke/QP33a2LiIIu3BHr7Q8EVWUrvgeC8n765yVlHtqmb/+H4OTx0+l8skWiiqRUpaibySJ1PMXKA4UzRlQSfqjZzPN9IVbfY1s3N0pwl65ld5rFi+/ofjw7w6+iqPnnjUjDdxyk6uqb+GWzpuAcBldTEYG7yoxBouHrtysTq/K1ztrGY2M0uqlLqiLnG0EOWZvmdwyS5TTGC32Onwd9AZ6GQsNXZJNV5HoIOgO3jVhp7nXxvpQpru6m6iuShLa5ZS46phU9MmHJKDydQkH1n2ER499ShHpo8wmhylO9BNi6+F9y16Hy6Li0U1i8x727aBbfzZK392yde+GKj9ZdlQ/LLrHeDza15u2W12eJBltNlZ9FQKRBGprg7HTJzi0Dja9DToOmJTE7aNGykeOgT5PHo+b3Zk9FwOLR6/IGRTbmlB8HiMTk6hgNLcDKUS6tiYIV0vFIzfKYrB78nlEINBBLsdbWoK5cQJSicNKaVYV4f9uuuQW1reytNk1sVm4JWOSl4deZWdoztxyA4jZFDXmExNIosyX9nylQs6P1fb0j0ZPslTZ56izl3HjpEdnImewWvz0h3oZnlwObIok8gn+NqtX8Nr83Js5piZWF0emZSrPBYrV1kSrBcK55LhEzl0r/WC8SWcI5MKCMZuu5TFZXUhIPDkmSf56IqPvqGb0xu9yZ3/uJySQxIkql3VeG1exlPjrKxdafKh/HY/HqvHVHfB1RnQnV+xQuwCqe/82lC/gaXBpbwy9AqT6UmOTh8lW8oym501A2CX1hggoTvQjc/uw21zc2zmGC6ri1Ozp0y7gFZfK6PJUUYTo2wf3M61jdeya2QX3z36XcK5CJLDabomDyaHL8qdKHepvnfkewwnhk2lW4uvhc1Nm3n4xMNIgmRe5+VcJqtkNX1sFE3BKTtNhY4kSkaQrewkUUi84fN5qa5oZ2Unn13/WcKZMIPxwQvk6g0VDVQ6KhfYKpT5ZiW1hFN2UlAKaLrGE71PmKBHwAg2fez0YxwPH+fGlhuZykxR566jpJZM8rnxPQJJtCBL8us6Cs/fGOiKQiQ7y2w+yvrQeuP47RUEHAG2NG8BDLBV7axmMjlJJBchoxjA0mf3kSvl2Ny0GZ/dMOl8bfQ1osko/bF+do3tos3Xxr1L7r1ghPV6ZO5LGanOl/4H3UFOh0/z/kXv56Whl/j2wW8TyUWI5+N0VnbS4G3gfT3v44NLPmimzi8LLrvo/e1qQW3vbC8/PPpDJtITWCUrXpuXOk/dm648/GXUO8Dn17yafc0E3DWEk0nUcBgKBYOAHAjgV2Tqx9NoiSRCRQV6Mok2MUFh506sGzZQ2rfvHGiaK71UuujrWAIBCATQ0mmU4WGDj2C3o83OIs6BH5xO9PLz6Tp6oYA+Owuhc+na2uQk+ZdfRvB4fiWdn4vd0K2ilZ2jO8mUMlglKwXVuMHO5mZ5ceBF7uy6k3e533XVr6Wl06gzM6S0HI+d+U/GE6O0V7ZzJnoGgEQhwenIaTOhOZKNoGgKu8Z3Ue2sRhZl8kreiJqY6/qIgohTdlJpr1z4WvE4pd5e00wSLj6+BGMMICDwk1M/4Wz0rMmp6K7q5gOLP8BIfOR11Vnn1xuVV1/scZqmmeTNdfXrODh5EE3TSBfTJlemu6obt/VcW/9qDOjOrysZzwzFhxhLjvHy0MvE8jFzQS5pJSbTk+SUHDe13cRkepLpzDS3d95OwBkwozBsko2QJ8TGxo08c/YZI0eplGLn6E7ShTTP9D1j5lSlCikT/FyMO3F46jBf3/t1ZEmm1d+Koil0BbpYWbOSV0deJVVI0eZvY21oLUemDCn0bHaWeD6OgECztxlVVxlPjpvJ6367H03XaKpoYjY7+wudz/O7on6bnypXFS8NvXTJ60PTNW5svZF94/tIFAx34qJaRNVUrqm/hqJaJJFPUGGvIJwJm8/hko3uTqqYYjA2iN5inDe31U2ykMQqWUkXUii6ioABAu0WBx7r5VVvJujJ54mmw7w6sZtYNsJYZIglwaUcTQwRyUXYPrSdm9puYjgxTCQb4fqW6/nB0R8wGB/k/T3vJ5KN8OHlH+Y/Dv8HdslOOBemd7aXGlcNGxo2cHr2NIOxQfJqni9s+MIVbzhez0i1LFrpi/aRKCQYS44RzoTJlXI0eY1O10hihMNTh1E0w1Ps/uX3X9bP6GpG/X2RPv5m599wJnLGdPL2WI3O85thQ/HLrneAz695lWXpj6W+zcxckKhgsVBV2cAd4iIcJ8dB1xE8HnSLBVTVCBxdt84YWfn9CHY7uqIgWCwgy6jxOOr0NOTz4HAg1dSY7stlPkJxzx60fN4YmYVCYLMhut0mv0ezWBCdTuMgRdH8Zy5Uxbi7QH5sN161+S1vfV7shp5Xjda/XbYbgY2FhPm7hCXBWGKMVCF1VcdZduLVYjGGmxy4BRsb6zbQ6mtla/NW8kreDG9VNAVd16mwVXAyfJJkMUmbv40VwRUcmT5iLoI2yYYsyawIrlgwttILBSan+jltmyQuJPHbKuiWaglEC5R6e7F0dxsqvEIBwW4nQYxHTz7K6chpkoWkOfLYP7GfbCnLkuolVwV83qi8+lKPK2kldo7uZHH1YsaSYwYInHvfqWKKpoomREGkoBSwWWxvyIBufr3eTra9sp2f9v6UCmsFFbYKYvmY6d1TDnH02/1YBAvZUpYWXwtHp49yV9ddqLpKrbsWn81HupTmbOQsW1uMwM+Z9Ay5Uo5syUhDLy/ezd7mBQB9PnfifO6ORbRwbcO1DMYGea7vOXaP70bTNRZVLULRFG5uu5kXBl6gpJU4MnWEd7W9i/f2vJeXh1+md7YXHR2f3cf6+vXUumt5aP9DfHL1J6/4fF6qyze/K5oqpC6aPxbNRXnkxCPc0nELqmYsjE2+JuI5Ix/KIllo8jaxqnYVgiCwtWUrBaXAqfAp8zl0dLP7qeoGObegFEDXWVG7gqPTR1Hm/HJ0jE7X0uBSbKLtkt/pcldYVxRyiQgjuQli2QgA/alh1jZfy/6+J8mrBVxWFx2BDqZSBjfw2f5nuan1JibSExTUAl/Y8AW+uuer7B3fy8dWfoydR3ea7/3AxAFW160mlo+xc2Qnt3fcbno7Xa4uxt8qqkUOTBzgz1/+c/77tf+dVn8rS4NLjZGxZGf3+G5qXDXYLDYEBDbUbzDtM27vvJ0NDRuu6P52JaP+VCHFjtEdnAyfXMAji+aiJAtJRMRf2Ibil13vAJ+3QbVUtfPRxb/NoLWbTCmDS7TTHGhHfnGHwckB45+ahlBRYRCUCwXkpUvRNc0wUJudBZsNwemkeOwY2tSU+fxibS22DRsMNZjViuT3Y7/pJpTBQRRZRqisRAwG0UZGzh3UXOdH8PsNdZcoMtkV5ImxF4gMTSLn2pFidb8U07XL1cX4EVbJil22myCgTKwEw2U1XUwzFB+6Yvv1+U68WCxEqh3MDqdZHlpJb6SX5/ufxyJaEAURl+xiZd1KXh56mYaKBq5tvJZUIcWx6WN8aeOX+Oqur3JwyoiNEASBFcEVpiNqedEZjg+xe3QXhWKOVCZC79QJmirb+Nyq32XRcBr9+HGUvj7z+CKr3ZyJ9C4APeU6GT7JZGaS6fT0FY/zrkZefSWPs1lsOGXnOUk+AiPJEa5rvo5Ts6fYMbIDr82LVbJybeO1rK9fz7bBbTRUNFzSj+Zy9Xo72VQhZdy080mubbwWDY2h2BA1rhpUXSXgMHg/Z6JnCDgCLK1eyomZE1Q5q9jatJXGikZySo6QLYTX5mUwPsh4yiCtl4mrH1r6IQKOANlSlmpnNclikm1D28gr+QUdqbJc3CJa6Ap00VPVw2Rqkh0jO9B13VhYBJGj00dZV7+O4zPHWVqzlENThyioBcaSY9y/4n5csrHg5ZQcJaXEoalDPHLykXMk7Cs4h1fa5Sv7UHltXvP9hrNhIrkIe8b24LK6aPQ2Gu7lkoVVdauQRMmQ3k8f4cfHf0yLr4WdIzv5i5v+go2NGwl5DNViIp/gptabCGfDvDryqmkL8bNTP+Xz6z/H1/c+xKujr5rHsq5+PZ9b91meO/0UDd6Gi16XZdCp5/MklYwpGlBFgVQxiaorhtmfIOC1e0kWkkymJ0kX02wf2o5LdvHY6cdYUr2Eaxqv4XT4NDWuGjOEVUc3P4vF1YtN8DzfGflydb5lQLqYZiw5Rl4xzE9vaLmBbx78Jp/f8HkCjgBOqxNREE3yPpwbf7b523Db3KY/1JWMql9v1D8cH2Y2M7sA9JQrlo8xnDz3vf9Fcg9/mfUO8HmblEdy0h21AF7QNCS3TlHXDZLzXAipGAigpVLosRh6Mklh715j5NTdjdTUhOD1UtizBy0SMbghmgaShDo6Sj6bxbp2LXo0ao5QAIO7I4rIy5ahp9Po0bmboCAgeL1ItbWUTp8mF6oyQE987sttMS6tKzVde9PO00Xs791WN+3+dg5OHrwgPbzd305OyTGaHL0s8JnPr9GyWVPKH2sL8vPxn2O3Ofinvf9k8hkGYgPIkkxBLXBs+piZhbNvfJ95Mz02c4wvXfslU0YadAVZU7eGJl8TQ/Ehdg7v5LWRV3m2/1nC6RlEUWJRoJvr269jd//L/NPBh/jzho9RnVkYNlrKZ3FIDsLqLIIgmEGOAD67j2Q+eVXS1CuVV1/N4zTN4PLct+Q+46adCTOdmcbv8HNz2814bV40NKK5KP924N84PXuaOk8dN7beyEeWf+SqgXS7v53Prf8cw/FhCmqBamc1S2qWEHQH2T22GwCLZOEnp37C6rrVrK1bi6ZrtPhamMnMsHtsN7+97LeZycxwZPoImxo34ZAdPDfwHK+OvGouOo0VjdzcdjOz2VmaKpqQRZmQP8Qjpx4xwyPL6e8PLDfiS+ZzJ+IFQ+VzW8dt7BzdyWhilFQxRV+0j4aKBlRNRZSMjLEDEwe4tvFaPrjkg7y7/d3Uuetor2xn99huvr7/64Ax5tXR0XSNClsFXrv3iryRptPTbBvahqqpBF1BE8yc/30eig/xo+M/YtfoLvOxIXeI61quY+/4XnJKjryS59j0MT6/4fN8dddXeersU/QEenh89nHcVjc3tt7IY6ce472L3suTvU9yW+dt/Mu+f+HQ1CHsFjtO2UmTt4nfXfu7KKoRPBrLx/nmvn/l8+s/y/3L7yddTOG2esgVU/zzq/9AV1X3Ja8/syusaRS10rngXVFkff0G2ivbed+i9yFLVlLFFH67n1Ozp4zgUTAX+9HkKLOZ2QXnU9M1BEHAIhggqKSViGQjBN1BLNKVLbfzO4BFtWiCnnJlS1nTW+dPr/vTKwqPfSOj6ksBpZySo9JRyX1L7sPv8FNUimZY8lhyzACBWN6U3MNfVr0DfN4mJXg8iF6v2WXQdR2hqsqQnjudhq9OJAK5HEJNDVqxaCSyp1Io/f1Y2tsRJckcVQEgioZiTFVN8jJgKsDEujqE6mr0cJjSsWNGzldzs9FZ8vvB4aC4fTtoGuNuhciQAXoEtxvB5TJf5hdV5VxtXcy48d7F9zKVnqI/1m/+Xbu/nbu67+Lg1EFafa2XfL4L+DWCQNohMRGyEA6UeGzPY3xyzac4PH0YWZT57aW/jaqrDMYHqbBWMJme5PqW62moaOCf9/4zD65+kEQ+gc1iMxdDgM2Nm81Oz6v923jy2GPkLTrhlEFc1zSNU5FeRASW1Szi+MgBznRlCPq60B0OoyOnKFRgp8nbSLKUMnauc8DHZ/fR5GlAVxXic639K6krkVdf7eOKmsE7ms5ME3QFeWHwBYpqkfHkOCWtRHegm5PhkyQKCT609ENEcsbxvjL0CnbJzqfXfvqKgfTF4hJyisGFCLqDuGU3BaVArpilqaKR10aMcQWCETy5qWmTYQ+gG9eWy2rEj5yYOUGqmKI7YGwSckqOnJLj4ORBbmi5wVDeWT386/5/ZTo9jd1iJ6/kEQSB4zPHefjEw3z1lq8uAKB+m587u+7kx8d/zPGZ49zVdReKriAKIvFcHLfVTV7JI4kSLb4WxpJj9EX7mM3OkillGEmM0ORtMo3q5jt/l0nAr8d5GooP8Z2D3+GVkVfMn5V9ZiZSE+b3udnXzM96f0Yil1jw+In0BE+ffZpGbyMnwyeNLk0hYQL9TDFDtpRl99huI0Pt5KOsCa1h99hubm69mYdPPMzxmeOAIddWNZWJ5ASPnXqMDy/7MFbRiixacMle/s/h77NvbO+C1692VmO1WC95/ZW7wrPpNFZRBkXB7wiwrmUjhyYP8d3D3+XonGJsY+NGtjZvJVPM4LMb560MlMoEckmQsEk2YrkYzd5m+uPn7jGSICEKIlWOKkLu0AXHcrGa//lkipkFoEfXdewWo3t9dPooR6eP0hPoobGikdHkqHls88Njq13VPHzi4asaVV8KKG1t3srTZ57mwNQBDk0dYjY7y82tN7OpcRMTyQkzcDVSiPDQgYcYS40teN5fFzPEd4DP26BKo6MUdu5ErKgwOjrRKOrsLLZVqyidOWMYCJZKkM8jVFcjL15M6fhxc8HTYzHj32UZedUqA+DYbOi5HMrp0+br6HNgiTlOkJ7PY121itLx42gTE6iDg6iAUF2NtbERqaoKJRhEm5wkrRlfTsHtxtLSco7/M1e/iCrnjdT5ionp9DRbmrewqXETJa1kREToOkWlSO9sL16H96LPoxcKF4CeMR/89OSzRPpn6Ln5XkaTIxTUAj6bD1EQebrvaVbVrmJr01ZDZqwV2dy4me8f/T6VjkqKSvGCKIr5PJahSD+JeJiJ+AjuynM3B6toZX3jtdRV1NHkb8NeUUnWJbNv+jhOTaR51RJsJ/voLnoI2PwE7H4aPfVouoYoiGSLGewWO+lMjAp36wUZa5eqy8mrL8e/udzjQu6QqWbLK3nySp5YPkaqmMJusSMJEpGc4YWjaApF1bD5j+WN8NUrBdJlhZvD4uDFgRdNtRDAK8Ov8OVNX6bZ14yMyM6zL3FX9x08oWmciRgEdYfdATrc030Pp2ZP4ZAddFR2UOWs4vHexwm5Q2YGks/uwyJa8Nq9LKlewtnoWZq9zZyaNTgrVc4qBARsFhuSIJFTckSzC89NW2Ub24a3mQu/RbQg6AKqpppdyan0FD67ca0NxYcYiA2we2w3OSVHR2UHd3bdyd3dd/PIqUcuOB/dld2XNeJMFVIcnTpKk6+JW6234pbdZEoZtg1t48WBF9navJWpzBTpUtocZTqtTnTd4OKUuw0jyRF6qnsWfM4FtcD+if3mGPPhEw+br1vrrmXb0DbqKurYs38PlY5KnIKhgBMFEbfVzZHpI7x/0fvx2r00+1tZU7OSA5MHub3nLkpaCatkNeTo2Rjt1V2XvC7LXeHHlcfIZxJoisJN7Tezf+YQiq4yOech5ba60XWdR089yjUN1zCROueFA5Ar5SioBdbUrWEkMcKu0V3c2HYjGhqD8UHq3HVkihm8Ni+3d95+2c7K2chZRpOj6LpOrbuWOncdo8nRBaOkMrdrKj1Fppghlo9xcvYks5lZ7um5h21D28gUM2anp5xTNpGawG/3IwqioUiU3ZyaPUVBLVywKS0fy57xPQb3UIczkTPIkqFKPTx1mGU1yxhJjLAutI56Tz0IMJOZQRRFfnz8x9S6a+nwd3Bg8gABZ+BcR22ufh3MEN8BPr/mpcbjFHbsQJuZQZuZQWxoQFqxAsFqRbBasV1/vaG4KhRQEwm0bJbSsWML1VyShFRdjXLqFMqxOe+LslfP6tUGSNI0w+1ZFCmdPIkejyNWVyPV1SE1NGDp6DDAlcWC6HYjt7cbzs933ok2M4OvNI6s9iK4XBeAHvjFVDlvRtW6a2nztTGdmSZTypjZVoenD7O+fv0ld2NaPL5ASZVxWnhi6CnipRShuk4k0YLT4qbWXUu2lKWoFbEIFp4deBaLYKHV38pQbIhr6q+h2dfMytqVLKpaRKqQoqgVUXX1ghTqVCpCXjEIsVbRCoKAVbJyz5L38fLwKzwz8AxLq5caHZFiipsatrL70OM4oy9zz4r7kFMZPrXqk3z1wD9xeOIA2WIWHZ1lwWXcv/Qj7B/ayf21t17U2uBidaXp2VfzuFvbb+W5gecAY3Gfzc6i6zq6ruOxeky/F1VXzRunpmuoukpRK14xkB6OD2MRLBeAHjBuwD88+kP+YP0XuKl2E2dGjvDyqZ+zpekabu24FUm0sCy4nLHUGP+875+xSufiQ1YGVxLPx6l1117Ar0gWkty35D68du8CWwKAgDOwIBvpfFO42ewsoiCair/J1CSVjkpa/C0cmjzE2chZWv2ttPna2Dexj5AnRCwfMwMxR+Ij/Pj4j/njrX/MifAJE3SB4Wr8B5v+4AKiarkzWmGtIJwN89D+hzg0eYhMKYOAYLoR/+T0T9DRkQQJl+xiPD2OTbKhWlTW1a/jxYEXCefCWEQLHqsHq2Q1u0SSYHB6ygo4WTI2HsIcR7G8wJe7G4IgmKGwAFaLFZfVhSiKfHjZh7Fb7JycOUFqJM3LQ9tJFBKIgsiy4HJ+Z9XvcGP7zZftCLb4Wvj42k8w1NjLRHSYWSXFQHyAolqkwVNPjaeWdDHNyfBJXFYXt7TfgizKrAmt4cfHfwwYQaU/OPoD/vT6P+Ub+7/B031P8+rwq9zZdSdtlW04LA6ypSwFpUB3ZfdFj2coPsQPjv6AlwZfYiQxgqIpdFZ28nvrfo/vHvkuyXwSMDo9i6oW8eFlH+Y7B79DLB+jqBZxWBwcnjpMtpSlwWNYBvRU9VDjqqHZ12wSoud37zY0bOAPN/6hCX7K36Vyl+d0+DQHpw5S46qhzd/GkpolTKYmTZfpZdXLeFf7u3j67NMcnjrMVHqKvJLnjs47+Oz6zxLLxYzNXtNmVF0139f8+lWbIb4DfH7NS52ePjeeEgREnw89laJ05ozRyfF4QBCQu7rA4UAdGDA6OnNxE6gqUns7pdOn0ZJJcDgglzPGYDMzKJqGVF+PnkgYoaNTUwbAmbshqWNjiIEAgtOJ1NqK6HIZgGeuU1CWwbcVGqjOnbzqrsBbVU2+Jlr9rQzEBphMG19ii2hhTd0arm+5/pLHd778f5Q48cQ0Tcs38cKpn/Mhy1buWXQPg/FBFlUv4sj0EdObRxIl0sU0H1jyAY7NHONHx35EpaOSNXVrWFW3ijs678Atu7FIFqbSU6SKRkpyhcVNlSeIu6IKm8VGsKKO7kA3Lw+/wtlYHxIiCAI1rhp6w6c4NXOCD7TdxUtnnuXoa39Fl7MRiyDxvu57uLPzDjRdQ9dUMtk4+4d28rvLHiQQKaL7Lm5tcLG6kvTsq32c1WLlZ70/I1vMUueuMzsZrf5WZtLGNd/qa2UiaQAWURCRBAmreOkxxvmVLqXR0ZlITyAgLDCbkyWZqcwU+8cPkMknuL3nTmTJylRiHKsgQ77AzMgpjub7TX8cswRDag3GOGZ+RXNR0OF3Vv4Orwy9YmaPlY0G59f8scZQfIg943vIK3mqXdVoumZ0eWqWsah6EYVSgbPRs4wnx6lzG8KB1bWreab/GfNYilqRWC7GVHqKj678KEWlSKqYwufwsa52HV3VXQtebz4o7anq4QdHfsD+if0mCFV0hQMTB9DReU/XeyioBdor23m271nORs+aLsFNFU3c03MPBycOkCtm8Ngq6PZ10j97BsFqJeQJmeBzVe0q1tev50PLPmTmQS2pXsKuil04LA6sktUEmZquLRAk1LpqWRpcSqqQ4qenf4rHXsGN7Tej6AoFtYiu65yK9HJT++vbU3hsHpY1rWVpcBkvD71MrbMGu81JOBsxR6uLqhfhtrpZE1rD8uByToVPsblpsxFTIgi0+dtYXbeaL2/6Mu9qfxcuq4s9o3uYTE0aHWWtSKW9cgG/pww2U4UUP+39KTtHdxqAFxEBgeH4MN86+C0eWPEANsnGYGwQQRAYT43z1V1fRRAEcqUcK2pXkMwnGYgbfMLjYaNL+NGVH6W+op6h+BB/vO2POTx9GDBEHpIgcWTqCP+45x/5o81/xJ7xPbhl9wIFZk7JsbxmOTtGdvBc/3N4bV4CzgB+u5/lNcvx2Dz85PRPiOaiOGQHBbWARbSQU3I8ceYJQu4QvZFetg1tY3lwOe9qexd7xvcsAD9Xk3v4y6h3gM+ve2ma0W3RNIRAAL1YRDl71gA9YIywslmU8XFEjwexpsZIW9c0Q8aezyP5/ZSOHzeMBwMBtHgc5si5+uws0pIlCKEQ2uAgyunTCD6f4Q0zpxTTwmG0cBgpFLpkh+CNdgXeqvLYPGxs3IimayQLyQWBndc2XnvJ4xPkhQteWslSE2jipYEXmSpFSORi3LPoHv74pT/m/hX3A3Bk+ghu2Y3b6mZFcAVrQ2v5yotfwW/3013VTV7JM5Wa4uXhl2n1tXI2ehYwFlC7ZGdL0yYmCrPktQK9I7tZHFpBo7eJZweeQwB8Dj8SIstqlrFz+FWKWoEHVjzAYHKYdLLIsp7FHI2cQJ6uoJhNITld3NR8A7IT7q+9lUCkaFwf5723KzmHb4SndanHlUHRrrFdNHgbeHXkVXpne5lKTaGjszK4ksU1i3mi9wmskhWLaMFv99Pmb7tiIO2WDU6MgIDH5jE9YURBpN5Tz1BsiFZPM7GJAY7Ge6mvbOJdHbcwGR3Bbnfgt/m4ramHrJojVTA4U9lSFr/Dzw0tNzCZnjRDN8vVWNGIRbLgsXlYW7+WlbUrX9cUrrzwyKJMopAg4AiYz/t039Pc3nk7X9z4RWL5GAXFIGf/6NiPeG7gOdxWNwX1HPgqzMmwl1QvuSRIvZjVQF7Jc2zmGLlSDrvFbnKSVF3l4MRB7lt8HzWuGvpifSb3pN5Tj6qr5JQcL/U/z2JPO8enhwl47XQ6G5hOHsdeU2mCHofFYSaAW0QLLw6+yGR6ks3JzeaoeFPjJvpifabTtCzKFNUiLd4WdHSG4kOkC2nSpTQ1niBT6Sn2jO0hljfuifsn91PprOTWjluviEQr2GxU+UIEKxsJAvXFNOFM2LxHVLuqWVazjAOTB6hx15iPK9/bgu6g4aGj5Hj89ON0Bjp5pu8ZhhPDpi/XqfApqlzGRuZnvT9jIDaAR/awc3Qnp8OncVoNA8cqZxXRXJRdY7to8bZQ56ljZe1K/mX/v/DS4Evo6IaxYtMWPrz8w+we282729+NVbRyPHwcRVOYSk/xNzv/hts6buO1sdewSYaKMlfKkdeNjtrLwy/zsZUfo72ynWZf8wIFZkNFA4+cfITB+CBg+JE1eg0OUTQXZWvzVkaTo8iSjICAKIg0VDQwkhhhKD7E6trVDMQHqHHVMBQf4pXhV1gWXGaaiF5p7uEvs94BPr/GpcXjKMPDxigKEGtqkGpqjAgKh8MYV1ks6E4neiplAJaaGvRIxCQti7W1iN45/oooGoquykoEr9dUgwluN4WXXkLu6DB4QoJgOD6ftzDqhcL5h7ig3mhX4K2qFl8LAUfgqo6vHORaHne5LU6w2ZhIjoEo8l+nH+XeJR+gxlXDqfApHlz9IFbRSjwfN91MnzjzBFuatyAiEs1HmcxOUuepY+fITgIOw+Qxno/TO9tLq7+Vv93191BSWBVagyBKnJw4Qk/NYhorGvFYPbRXtjOTnGTPyC6KmvGZpOdCBgWHA0XSySk5EnqOQBHIJqgNyvRkXMDcKMHhuMD48EqqbNpY9gySqqsvyJq6mvLYPITcIfaM7WFV7So2N21mKD6E2+pG1VT+4/B/IAkSAUeAOk8dW1u28oElH7jia6rZ14zP4VtghAdGovVYcgxVV8kohiquqaqdvVP76Y31sTywmLHMJF53gPcHPsiLZ59kMjUJgtF10FSNu3vu5psHvrnAHqGxopGtzVuxiUZH9EpN4coLT62rllQ+xdbmrbwy/AqjyVE8Ng8/PvFjGkYa+OiKjzKTmaHGVcNYcgxN1xa8PmC4XjurWEQ1Oj4EwYqI0UEpqxMH0wPMzs7l+c0pMMuREhbRYirB7BY7Oro5luqu6mb3+G4mUhPUumq5puEackoOq2glV8ri1xzUyZVcX7mW4tmzfNi2nuNeCwdmj7K4ajFOqxNN0/j3Q/9OUTXGISWthKqpvLvj3ZyeOc2n1nyK7xz+Dvsn9qPpGrIkU+2s5s6uO/nhkR/y7s530+BpAAyp93zQU66ZzMxVkWjn89HcVvcC88xKRyXLg8tZHlx+yXtHs6+ZgDNAW2UbBycPMpOZwSk7sYgWrJKV0dQo3z/6fRZVLWIyNUnvbC+LqhcZwaFqnlK+hMfmYSo9hVWyEnAEqHHX4JCNUdaDKx/kxpYbySpZOio72Dmyk88+9Vk0NCyihZW1K7mm4Rp2ju4kWzBUX2UgU+5warqGjm5yrhL5BMmiMUqbPzp2yA4mUgvHwuXOW6aUIVVMYREtKJqCJErIoky1q5r+aD+iIKLqKkPxIQPwRwcYTY6yqWnTRa/7X1W9A3x+TatMqgUQXC70TMYgMedyaLmc0c2Jx9FF0fi5xYKuaQguF7YbbjB+NidXR9eN6Il43HBcTiTQ02lDcq4osGiRMbqy20GWjTFYLndB+OiVEGHfaFfgraqrPT7BZkPu7jYJzo34jDGiKCI4nWSULHaLnUNThzgyfYSfnfmZ6cAcyUZ4/+L3o6ObZNlyiYim1LegFOid7SWn5KiwVXBq9hRLAovYP/Qai+tWcEvru3C7fPhsXmrdtaRzSexWJyvqV2MRLaQLScOpds5IUhYsIAiUdAWpqgp1dpa0kgWMcUjZruBKPs/5Nd+00Xwffj/WDRuw1NZe5pGXr3KC+kTa4IIEXUGcshObxcZf3vSXxg1WkN6Qj4/H5mFL4xb2jO0xRwGiIJqLXIuvhZySJ2HXmMxM43dXIYoSy5vXM9n3DLqu83e7/o6CUiCcDeOxevBYPeS1PP954j+5teNWk29hlawkC0lmMjMsqllkjjSKSpEvbvwi06lpY+x0EVO48sITzoa5vvV6tg9uZ1lwGZuaNlHtrGYoPoTNYuPR048aEvU5A79dY7tMngwYoGdL0xa6S35Kp87xewSnk1xTkKGpXtK5BDG5RD4ewYqEFAgg2O24rC5ypRxeu5eiWjS7PWCMSZq8TaQLaXPU9tzAc/RF+5AECbvFxsrgKr644fepz0iMnjnA2sXNOPpGkS1uQoIXye1jJj1Dhb2C4cQwYHjbdAe6KagFtg1u46bWm/DIHv5g4x8QzoaJ5+NouuHq/ZPTPyGv5Hmy90k+sfoTxvnKhC8APaIg0lzRjEt28Xz/89RX1L+uf8yVdqwvde8oA/hqRzWT6UlsljkqwJyfjkW0MBAboN5TTyKfMMCiZEUSJQQECmoBv+AnU8zQE+rh1OwpeiO9TKenGYgN8NEVH6WnqodkIcl4cpx4Po6iK8iiTJO3CVVTORs9y0eWf4RoNopFtFDpMNzfJUEiU8ogCRIW4dyS73f4ieYNcvP80XFRKeK1e0nkE2YnURREw5m5ZhmSIBldxrmIkYaKBoMEX8wgiYaKraSWSBfTvKv9XWaO2C1tt1xR7uFbUe8An1/TKpNqRbsdqakJdWTEADGyDOm0ITO3WAw+Dpg5WoLDgWC1UjxwwBhp6TpiY6NBhi6nsM+7UQq1tWjZLLquo2WzCD6fubAzz/9F9PuRamr4/8cSfT6sK1eixeN4SyWWVxZ5YuxF8nPdFlmUWVKzxPSDkUUZWZKRRIlmb7M5yiqX3+43iZtlQ7ayF0jZZ0hBA7udk+EToGt0WXqwyXYcspN94b1MJCfQ0NDQ2dRwLY0VjbhcfgKOSpK5BFgsWEWr0ZWpraUi2ITFWo8gyws4WvPrcmZjC0wb55UWi1HcswfxppvecOfn/EWnTEJ2W5xsDl2LXsjjsnloqXhj2WDN3mbuW3IfU6kpRpOjVLuqyZayuK1uFlcv5pFTj+K1VWATrfRHzqLq2pyfUguKrnJ84GkzqytVTHEmcoYaVw1BdxAd3fzcwdjRfmHDF8gpOV4YeOGCseqmpk0XVfeUFx5VV5lITbCpaZMpvfdYPZwKn0JDw211MxgbpDfSyx1dd9BZ2WlmdGloNHka+UTnfQSm55G/BYERMckTL/2IqJ6BUom6hh6OJHrp9ndQEYkgBYOIiCypWcKJmRPUeYwsrLIicFHVItr8bUykDK7Us/3P0hftMztDaknlyNRhemdP09y+GK3aj+qroeBrwaNFIWXcp4pa8QIvrXLAqkN28NTZpxAEgYOTBxlNjtJc0cyW5i1sH9puEp8n0hOIogFe57s8g7FAb2zYyLGZYzxy6hFW1a5CR78i/5hftGNd76mnwl5BtbN6gZ9OmdclizIuq4sWfwt22U61s5prG69lMjXJRGoCTdcIeUIMxYfw2X1meOvHVn6MR04+wkxmhq5AFztHd7KxcSOfWvMp9ozvYTw5zqnZU9gkG+3+doZiQ2xs2Eijp5HNTZs5PHXYPIby57WhYYMZ65EupVlSvcTcDPgdfkpqCZfVhVf04pJdNFY0MhAbYMfIDt676L30BHqI5WOGW7RkYyI9YRpVCgh0BbpwWV0kCglCnhArgytNbtbx6eO/8lDTd4DPr2nNJ9VKXi9CZ6cRMqrrhocOnAM9YJCWLRZwOikeOoQyNASFghE+OjKCpasLZXgYIRhETxgLo1hXh7x4MYX9+6FYRB0YQF65EnV62hhryYbHRXlX/4uMNN6sWhDUabUier1X3bl4IyXYbCa/aWXBy83t72IgNkBRK7J3dC9f2fIV/mrHX7FnbA9gAJgtTVt4d/u7OTh50Hwev93PhoYNiIim1He+tL1M6rSIFgRRBKuVkkUgreX50jVf4qF9DzGdmcEiyYYCxN/OiuAKvrr7q3xi3aeIpGbYM7Ufp9WF126MOAOeGlrrF2O5zA1mfj5Uha2Colpk7/hebu24lRW1Kwz37/NAT7m0WAx1ZuYXuj7OX3SUYoGB0aM8/eq/o2pG1yHgD3HPhgdore255POcT9hN5A2PmS1NW1geXM5d3XcxnBim2lnNy8Mv8/TZp4nkIobbrlKg1lvPeHKcnJrjhcEXed+i9wGYxwAG+EkVU3RUdrA+tJ4NoQ0L7P2dspMnzjzBU2eeWkCqrnXXYhEtxLIxOgIdC274Ta46/JqdSHoGTZKYLBXMEVSNu4a8ajg8zx/XPXXmKdbUreHG1htJFBNGyryrGX/v+AJVZ8Zp4YmzjzE7M4RYPRf8Wijgt/vpjfWxwtuNPZ9nOD7M76z8HX549IeMJcdMZV1XoItPrP4ENa4a+qP9NFQ08JPTPzE6TTqm0uveJR/gxeGX8MoeXEWBfWdfocHbyL0976fLtoppJU7IHTLl2tOZaVyyyzw/Q7EhRFFkKj3F4anDZsRHJB/h46s+zncPf9fcIGSLWd7T/R7GEmPsGd9jvtfVtaup99Tz74f/HTDARlErXrF/zC/SsW72NVPlqsJldV3wO4/Vw+q61bwy9ApHpo8QzoYRBZH1ofV8YvUn+LcD/4ama3hsHpy6kw31GzgydYTrW67n0VOPcjx8HAGBRdWLkASJ/eP7kQXZdPYOuoKUtBLTmWl2ju1EEAQS+QRfvOaL/MOuf+DlkZcBo9O8sXEjf3jtH5qcG7fsXrD5sIpWNtRvYNfYLkRBpM5dx66xXeSVPOtD69k1uov2ynZ2je5iOj3N8trlZEoZNjZsZEPDBh4//TjJQhK/w0+duw6f3cfZyFli+RijyVH6o/1mJ/GtdvYv1zvA59e0zufXiHa7YUpYLGJpbjYUWjMzYLUiuN1ITU1ItbUI+TzK4CAUCgaROZlEj8cphsNI3d1YV61CL5UQ7XbUXI7igQOQzyOFQohVVYhut2FA2NNjJMDPdXp+HUCPFo9TOnECNRYzx3iSz4e8ZMkb4qu80fLYPNy75N4FC+yx6WP8rxv+F9FclHg+jt/uZ2n1UrwOL//3lv+bx3sfJ56PU+2qNjgEspv6inr6on2GZH2ukoUki6oWLUhst4pWVF2lpJdor2xnee1yM8cqnouzfXA7Ra1Ik7+VQ9NHsFoN87JyztXrkctH4iM81/8cK2tX8vLwy+wb28tsahpNU9kx+DJ/fdNf012wXvLx8Pr8ryup8qKTTEf49ot/TyS2kGcQiU3w0z3f48Gb/hsV7gsDcM8n7I4mRtk7vpdEIUG2lGU6PU2ikOCV4VfY2LiR6fS0OQLQdM0kcbb4WwlnZhmMD5rgURKlBa9V5tXUuGrMhbLcMUsX0+wY3kFRKxrSb6vBLzoePk5vpJc7O+9kx+gO84afiEwyOHqMLm87kxYXuVSUmZkJ9Eo/AX+IdbXreDHwItPp6QXy+JJWYiYzQ0EtkClmqHHVUF2yoZwXTDxKnEhyLhV97nczkRFubL6el4a3kySPXdMQRMOd+StbvsJEesLIurJ68Nl9rKhdwWxmlnA2TMAZMDsSZfBzc9vNHA8fJ5lPoLtqmRw1Rll9s2c4q89y1+J7+MHBHxDNR83uWWdlJw7ZQSKfMJLk0bBLdqZSUyQKCWazswC8NPgSK4IruKf7Hv7r1H8hizK17lpafC18dv1nqXRWMpOZMcZxFU38yfY/oaSV8Nv9xuc2dzp+2f4x5bHqjuEdC/hcDouD61qu4+DkQVLFlNkFUjSFvRN7KWkl/v6WvyeeM87nifAJ+iJ9BhCa6/aBATBFRBRdAR36on3c3nk7um5w+pwWJx2VHTzf/zw6Ovun9rNnfA9f2vglPrbqY8TzcSqsFQgIHJk8giZoCxS3ZdL0SHyEB1c/SIO3gUg2QqqYMp+7s6qTn53+GaGKEKvrVtPma6PZ20ykMkJjRSP/uv9fyZayfHzVx6nz1PFs37PsGtvFK8Ov0FDRQFdVFw0VDVhEC7Ik0x/t/5WEmv5GAp+HHnqIv/3bv2VycpIlS5bwta99jS1btvyqD+uq6nxSrfFDEV1R0BQFefly5MWL0XM59GIRdXSUwsmT2DZtQnQ60a1WAxzl51w/VRX15Ekkvx9BEAzSc1UVkseDlkqhDAygjIwYUndZxtLYiFRfb8jX3yDoeTO7M3qhQPHoUeMYlXmmXrEYuqoaWWNvQeenXFfTFg+6g6yrX3fB30ZyEcLZMNlSFofFQU7JkcqneHDVgzx2+jHSpTQOiwOv3UuloxIR8YKxGYDfVUlBKVDQCnx5y/+gpBqOvVfSqh+KD/HQ3ocYiA9wNnKWodggXtlNk6eRscggR4f38t393+YrS/4vLgd93sxzPzTTdwHoKVckNsHQTB/LLwJ85itTEvkE+yf2M5IwzCV/dOxH/Mn1f8JAbICJ1ARHp49yXfN1qLrKWHKMbDGLJEjUe+pp8jaxfWg7doudolJkac3SBZL1sk/N/EVj//h+/v61v6c32suWpi386NiPqHZVsy60jlPhUyZgGU2OIoiC6Zp7e+utPLHrP8z3W5RFbG4vNy+9C59uo7V9NRXuAJ/f8Hn+ec8/cyJ8wjyONl8b71/8fvM9R3NRTmoZkrYwXqsbt6eKgdw4E8Uo3StuQErn6I+coZjLoGoq4+On2BJcR1vdYnzuAB5vjfl+LnZd7x7bbToU++w+GioazFFYi7eFfRP7sOgi9fYaNJtMQdJRrTKvjO+krbqTm5pv4HTsDIqucEPLDRyaOmQYic6F9DZVNNFR2cGjpx6lpBqGhOWx2FhqDItoYVnNMgLOgOGkjWFTcWvHrSZ5XA2pJuhZVL2IXGlhPMcv2z+mI9DBlzd9mR8e/SET6QmsohWvfU4O7vDjd/jJlXIoToXZ7KyZR9YX7ePFgRfZ3LSZbxz4BhbRQmNFI4mi4U8kC0aHV9VVfDYfuVKO2ztvZ+foTp7tfxZNNyJgyjYBg7FBIrkIyUKS/733f7O5cTPHZo6ZMv3FVYvpqe4xN0VlP6GdIztp9bdyKnyK1bWrWV23mnQxTaWjkvHkOA8fexirxcpQfAhRECmqRdor25lKTyEg0O5v5+OrPs72oe18/9j36Y/2IyDwwIoHOBM5w3+e+E+C7iAeq4cqZxUPrnqQ3kjvWx5q+hsHfB5++GF+//d/n4ceeohNmzbxjW98g9tuu42TJ0/S1NT0qz68K67zSbUAgt2OKMsgSShHjhigIh4n11DDuF8g7avA60xTW2HDpTjPSd7nl2TsXAWLBSkYRFEUw725VEJ0OGAuakKLRNALBXO8cyVqnvlAB0AdHl4wsiuTat9Id0aNRBaCHlE0/IVsNvRCAWVsDEtDw1sKfq6mLX6xv/XYPCZ4uqHlBsbT4xRKBXojxuJpk200uBuo89TR7Gtm//j+iz63RbRgsVqod9dfcdAqnOuQlEc/z/c/D6pKQokzous0+ZvZ3LyVlup2no7vpXaZm66cG//Q7ALw+Wbzv9KF5Ov8PnXxn89TpsxkZhiKD1FQC2a7Pl/Ks6x6GX21fXhtXpL5JLe138ZkepKiVsRpcRq71gP/Chhjx2wpyydXf5IfHP0B0VwUWZKpc9fRWdlpLhq94V7+7OU/49hczEFOyVFUi8xkZjg4eZBGbyPxQtzITNM0SsU8WjbDZDHLjqHtC0CetaShx2IcLL3CA81348oo4DZSsz+z/jP0VPWQVbI4LQb5O5qLouoq8Xyc/ng/Q7P9SLNRFnVs5Ie7v06Vo5IKl59E3uBabFx6CwePPE2+mEPVVCbDg2yq38iK5k0LvjsXu65dsgubxUa1q5pKeyWnZk+Z47ClNUtxyy7QDAXYtJqgVChiESuI5qJMpidp9jaTLRlmmq+NvUa7v507u+7EKlmxSTa2DW3jsVOPkSkZKjuHxYEsyqyuW82KmhWousrSmqVcU3/NAjA/P1E8nAtzZOoIkiiRK+VMUFWut8I/pruqmz/c9IcLwGPZIbl8vGVen4DA2ehZimqRpcGlTKQnaPG1MBgbZDY3i8fqMT3Hgq4g0VyUjsoOQp4Qr429hsNicAX9dj9N3iYOTR0ino9zXct1+Gw+kpVJrKIVRVN4V9u7TN7Y4prFXNtwrRle+siJR9g5stMUWAzGB3Fb3dhlO7lSjsOTh7m7+25u77qdXDGH0+okkU8QzUbNc5otZanz1PGNA98wVa5gjJmf63+OcDaM1+YlXUwTcAQ4NXuKbx/6Nh9d+dG33Nn/Nw74fPWrX+XBBx/kE58wWP9f+9rXePbZZ/mXf/kX/vqv//pXfHRXV/NJteUICS0eB1lGcLlQt29ncnGIJ8ZeJDIVMToq4d34FSvv6biD4Ki4YNYvBAKmLFUvlQygks2iZTJIra0Gp0BRQJbRSyXUgQEDVFyBmkcJh1HjceP1ikVDVebzISiKwSnSNDMDzLpy5YKb7JV0hrRcDikUMo9PcLtRhobQZ2YMr6FYDHVyEuvSpW/p2OsXrTIgKhP/LtdBWlyzmDZ/2+t6wlxplTskdovdWMA0zSS0l5QS96/9ON8++G2Gj3+POjlAhdNHm7uJz674FEvCogHIVRXr+vVv6ijUbat4nd9fvIPlEu1GeKymkS1lzUyrnqoehuPDnJw9yVhyjLHkGD67jwpbBYligl1ju8iWsjR5m5BEiTZ/G5qu0e5vp9HbyDcPfJOuQBfLg8txyA6W1SxjTd0amn3NpAop9k/tN0EPGKPJsrJlJjNDm78NXdOgZEjFPbqVXDhMzK4Stfov+l4i6RlGMcj05eqo7GDHyA7SpbT5fzD8n5KFJIU5XlBXzya+d+T7NPiaeG18NzOD02TnuDE7a3fyhdWf4eDRZ1E1lYA/RGvjstfdMAzFh3i271leHn6ZtXVruWfRPVjPWplMTZodlkpHJdX2AP0zpymhGfmBaIZlxpy7tUt2kS6lEQXRHEECeG2Gkmw+300URO5dfC8nwif4wdEfUO2qptZdy2RqknuX3LvQmsLqZm39WrKlLM/0PfOmfUfeaJ2/0Tk+fdz8d5vFZvoBzaRnkETJ7KiciZ7hlvZbeH7geQZiA+SVPEtqljCWHKPJ28SJmRNousY1DdcwFB8i6Aqi1+hkS1n6Y/3YJBuT6Unq3HWmErJcU5kp89/r3fXmvWU4PsxAbGCBwEIWZVbWrmQoNkSbv41Pr/003zr4LQ5PH0ZEREdnQ8MGPrvus4Q8ISodlciijEW0cHzmOFuaz01Y6ivq2T68HREjs6ysZlU0hVOzpygqxbfc2f83CvgUi0UOHDjA//gf/2PBz9/97nfz2muvXfQxhUKBwjx+QjJ5+d3mW12CzYZgs6EMDaGGw2izhrW/GAhQunkrT534ITHBUHOhqujZLDEnPDG5nQ/XL8Exasz2hUAAS3c3whxwQNMonTmDFothaWujeOQI+tSUoeayWBCqq7GtWQOi+LpqHi2RQBkZMUZmp08bnSaLxXjN5makpiaDiC2K6PH4gqiECwJAubAzpExNoU5OosfjRsdK01AjEbSZGbOrpafTaNEoerGIfdOmt7Tz82bV63WQrtQT5kqrvHBWu6pN8q4syqytX8ct3bdzKtLL4pol1LtDTCbH0TMZ+lMn+Cfl6/zF4s9RpcjIa9diuYLYi6uplpoOAv7QRcddAX+IlpqOC36uxeOEZkv48yKR9CwWh2Hj0OCpZzg+jNfuZSw5xp6xPbx/8fuZTk/z6sir3NJ+i7EDLyToCnTx0sBLRPMGGLyx5UY0XWN9/XqqnFVUOioREDgTOcN0Zprfcf+OaaZXDqMUEJjKTNFT1cPpWSMHr6SVTNCzonYlUsngpxW1PHZNMqwmisUL3lNayS7g+p2vfivHQGi6ZoK1WlctRUHFYnOwfdTgmrhkFxZJNrKypg7yzOhLLGteQkktcvfyD+AN1F328yh3BiO5CNWuag5OHaQ70M39y+9HR8dpMdLTvTYvz55+koJaNIj5gChItPlamUxO0BpoN7O3qhxVHJw6SLO3mQOTB5AQ+e2lv82K4ApeGngRDZ21obWcCJ+gqBaNz0S24yw42Ta0jXjBIEofnDpo+mXVeep4T/d7+MKGL/CPe/6R/kifsVHSddoCHXx+3Wd/YX5PMh1haKaPdCGJ215BS3XHRflm59elcuuKWnGByEHRFA5NHWJD/Qaub7meek89f379n/Mfh/+D7UMGl6+sGl1Ws8yInCimmU5Po6ObtgNt/rYFgczz63wn/XQpjaqrLKtZRrPPsAH4g2v/gNHEKBW2CtoD7fzg6A/oi/axpWmLOeJ0W90cmTqCz+7jlvZb2D+xn6n0lBm5AgZ4VVQFAcFUlAmCgCAIprIyp+Tecmf/3yjgMzs7i6qqBM+7EQeDQaampi76mL/+67/mz/7sz96Kw3vdutg4SVcUlDNnDF8drxfRYjEW/FSKEXuSSCaMnjV2TTgchk9PNkvM7Wayq57uqhBIErqiGCovlwtBllGzWZTeXiw9PRRee80APWDs+hUFPRymeOgQthtuOAd6yjdhTTPMENNp1NlZlOFh1FgMbWTk3HhNFNGjUUr5PGokYhgtZrNY160zx18XBIDO1fzOkBqPk3/pJdSZGYN/pKpYenoQrVY0iwUxFDJ9jFAUlLNnUbu6sDQ08HYvNR5HnZ42eFoOB1JNzYK2/nwl0Ru5oZd3WW6rG5tkY0lwGd3+TnaP7eKps0/x6shOLKJEZ2UHtzTdyO4Tz6OoJfrHjtHbPU2g6EEdGkI6Tx5/OVn8lVSFO8A9Gx7gp3u+twD8BPwh3rvhAXOhMTtkuQSunErOrtPYtQZvIclim5OOyk62D29H0VWuabiGR08+Chjhknd3301BLRDyhMxU+LORs7RVtrHJvYllNcvoi/UxHjY8awpqgdnsrKlGieaiHJ0+ypNnnyTkDpncCatk5XT4NNe1XIeuG1EZbtlFtbOKNl8bN1dfw2jvATRNIVQfQovFEGTZCAg+//NxeC/oXpa5ZaPxUeKFOLvGdpEupimoBRwWByW1RGNFI5X2SgbjRtRBecGxSTYQYCozzQeX3Mfa+rVXRCgtdwTKXlOKprBtaBuvjb1GT1UPv7f291gdWk2dp44zkTPMpKfNzmFzRSOLa5awe2Iv7mwFiqZQ6ajk4NRBPFYPmVIGXVEoZbM8vPtb/NbGT7IhtI4z4dMsDi7je8e+jyzKbG40jA6dshNZlPmvE//F3T130xftAzA5cmWi7F9d+8ecmDlBIh/HK3vosTdRFbeiOeNvuCM8OHX6otfk6ykNYSFoHUmMmM7QIU+Im1pvYiA2YIocFE2hN2J4uHUHunlp4CXu7r6b+5beR7KQxCE7UFSFvzj9F9gkG40VjSytXkpRKxoEd2c1jRWNLKpedEVO+h7Zw9Lqpbw6+iqP9z6OoimEPCEyxQyfXPNJptPTHJs+xv3L72fn6E6OTB3BJtlYXbuaihpjlNkf7WdL0xaOTB/BKlmJZCN0VnbSH+vHIllM4GORLEiiRLaUNaN9fhWS9t8o4FOu+YZewIIwvPPrj/7oj/jSl75k/ncymaSxsfGXenwXqwvGSRYL8vLlKIODqIOGdbiuqggeD3J3N+rkJKli3Lhplp9EEIwbjiSBKJJzymDR0PN5RJfL8PJxOJDq61GnpgwTw2IRPRxe4O2Drpsuz2SMeTs2m3Fs82/QVqvxHIqCCIbaau7YKZWM55lLjReDQUpDQxT37cNx223AhQGg80vP5VDjcUpHjhhZZbpuGCzm8+i5HGkbjHd6SUWncIsO6hNFHMk0YmWlMQ58mwOf0uioGU5bLrGmBtuWLQQbG98UZcr8XaiiKfz+hi+wY+QVrm3egt/hp7GiianUJKfCJ3l1fBfL2tZxYuoouqaRKKVQxxIIVitaPE7GZWFkZoCwluAbB//NIKNKBlC+Eg+V86u1tocHb/pvc7vrFG6bh5YaY3edKqQ4On2Uo9NHje6B1c9oYpQfnfgx44lRRMBp97CxaRNf3vxlHtr3kAl6HljxAH3RPn547Idm6nfAEWBF7QoeO/0YJa3E+xe9n3/Z/y+ousrJ8EmW1iyl2lnNvYvvZSI1gaqrFJQCR6ePksgl8Nl8LK1ZyvGZ4wa3JzvD9sHtLKpZxPsWvY/VNSuZig6RjM9weOowOWeRBm8jH+i8h21Hn0ArJhA8HqRCkZpAE9hsYLGg+itIU8TDwu6lx+ZB0RVeGHyBR08+ykBswAQF60Pr6Qx0ogvnuC2CIKDrugHadAMkOKwGN+RKPFWiuagJeuAcpwxgPDlOumh0DsvclmeDy4lmZrGKMslCkpKucHvH7fz4xI/pCnShaioeq4d3d7yb/WP7jI2bppGnyPde+kf+nzv/BrdqQZSd1LhqGE2M8tjpx9DR6Qn0UO2qJpaPkS/lzWPMKTl6Z3txWBwMRfrpjltZv2deziEnKdbWwtq1SJmM4Wd1FWKLZDpyAeiB11cazq8WXwvXNV/H8wPPG2aCogVN13j01KPc0HIDuVLOBHAAIXeITCnDgakD7J7YzdrQWp7rf45KRyXvX/R+ZFFmODGMJErMZmfZ0rSFSmel2dGZzyG8nACjylXFifAJ9o7vJVlIIiBgES0Mxgfpi/ZR565jcfVinul/hsH4ILIo875F72PH8A6eH3yexdWLqXJW0epv5ffW/h5bm7ZyPHyc61uuRxIlptJTtPpaCWfDVDoqcckuxpJjVDurWV23mlV1q67oM3gz6zcK+FRVVSFJ0gXdnZmZmQu6QOWy2WzYfsVjkYuZw0ktLRT37ze6L5pmtI5FET0Wo9Tbi6W5GY9VMECGIJiuvVitSIEAosdDRXU9js7Oc/yZOfM6NRw+13XJZk1AgTrnVSIIIEnGTWFuNHYB6AEDNBUKxt/Ml9CK4gLya3n3JzidaOm0oTarq7sgAPT80tNptERi7pAEgyfhcDDR7OXxI/9JXCqizs6CrhHwhbir5SbqhqLGOXmb1Xyek65plE6dQpudXfA32swMhR07EG+/HelN4DHN34Um8gl0AU7OnGQsPoJFtjESH6bN38Ztre/iuRM/49qqVUaHwm7H569DV0fQslmG0mP8bPej1Aaa+d6Z/+TkzAksFitVFbU4rM4r9lA5vyrcgQvUW0PxIX58/MeGr0gpj8fmoc3bRn+0j4FoH0FPLT6b17DNjw3yzNln+Ohyw/W23d/OtsFtBqk3PUksF8Nr95IsJBmMD/LFa77IjtEdvDb2GsPxYdbVrzNs/nWdmcwMLw68yNbmrUxlpgx/IC947V52j+3mgeUP8L2j3zPBT1ErUlAK3NZ5GyulBk5Zq3hZeZWg2IrT4kDOFnnx6M/YsvhWXu1/iYRTJNTQzIuDLxAvJOkJLiE8mKZyau8FPifT6Wn2T+zn0ZOPmnlQAsboYO/EXm5svZHGCmPzJgnSAmuEKmcVbpsRB/LdI9/FIlhMwqvf4Wdz42Y6AgtHiaqmmovx+ZVTcgs8jnqqejgTOUPAGSCv5Gm2tCEJEiWtxBev+SL1FfXkS3m2DW/jwMQBlGL+XAc5m0VTFOLhUW5xrODn2in2T+wnU8wgCAKqpiIIhiIuV8pdEPiaU3Ik8glSyQiF3cMLNg0IAtr4OIVSCduWLehTU1cltnijSsP5NZ2e5hsHvsGO4R2myk8URNp8bTw/8Dw3td5Ed1U3vbO9+O1+rmu5jifPPInb6iboDrJ3fC9D8SFzvHrv4nt5+MTDqJqKz+4zu2nzOzpXIsAIZ8Imt0oURMOQUlOxSTYKSgG31bDeeGnoJQA2N27mtdHXjPFYcBluq9u0N/jGgW/w2fWf5Z/3/TOnZg1lmM/u44OLP8ixmWPsn9jPcGIYTddYVLWIz63/3K/Eyfntt0JcpqxWK2vWrOH555/nve99r/nz559/nrvvvvtXeGSXr4uZwwmyjDYzg1hZaQASUTQWf1lGj8UQOjpoyMpU1TQTcTgMYrIkGV0du52Ax5Cmzjfem//cZXM0rFYoFMi1hBj3aKS1HG6Lk/qCA+d4GFwuRK8XLRy+4LgFn894vMVyDnhdqhTFiN0QRWNkxYVeRRd7zHwQI4gi2bpKnhh5nkhiCsnvN0FVJD7JTz27eff628gVB/HOKL8yV9DXq/NHmoLTiTo0ZHa/1NlZ1HAYS3s7Sn//AlCpzcygTk+/KcAHzo1OhuJDfOvgt0iW0lR7gqiKgkt2MjRr8CRWNqxF1TWWNq6mKbQILZelf0MrVZqdJ08/QSQ2QWVtCydnDLm1ohSZTU5R52/EIslviodKqpDiB0d/wPP9zzOcGMYqWqn11FLtrGb3xB5WhFZzbOYYw8kRJF1AQyecm2Vj40aeOP0E725/N6PJEUqqgq7r+B1+LKIFt9Vt8io2N25m29A2REQzhqLssj2RnjBVQl6HFwEBm8VGs6+Zp/ue5q6uu7hvyX0mUXpN7RrqKurYN32cfzv0r0xGh1EEnZl8BKvFRk9lF9mx7TzQ/V6iNpUf9T6CT3DSZK/EmsijW/JEifLkmSe5t/1uZmaHSOWTxGUVWbKYeUqCICBLMiW1RLaU5UfHfsT/967/j/Wh9ZwInzDHc1XOKlbXrqbOVWc4WM8p+UaTo4ZhJgI7hnfw3zf9d7qrus3z7ra5CblDpqP2/Aq5Q7ht54ipHpuHTU2bDDBdSJAoGBuX8oLc7Gtm28A2k/9kusMLgrExk624/TVsnznKUGkCv91HLB8zuxC6rqFhdCun09MopQIW+dzGtagVcanSBaCnzPXRp6dhjtN5KbHFxeqNKg3n14mZEwtADxh+UAPxARoqGmj1tbKufh1W0YosyYwmRrm983bDcmLfQ7T6W83HnYmeYSI1QbO3ma3NW6mwVSxQal1Nlcnm9RX11Kg1dAW6qK+oNwj83mZskg2f3Wf+fbOvmWg+SjgTZjw1jk2y4ba6kSWZ9aH1JPNJcxwfzUfJq3lsoo2tTVtZF1pHqrjQH+pXUb9RwAfgS1/6Evfffz9r165l48aNfPOb32RkZITf/d3f/VUf2iVLLxSwrFyJAEbshN1u/EIUjU6NzWYufoIoolutIAh4HD7u7rqPJ4afJ1ZKmM/3eqZ1os8H09MIbje6qjK1vpvHRp9lYHyCoq5glay0uRp434pbaa+uRhBF1NlZg1w8V4LPh7x4sZHrZbGgWSzEN6/irDVOTEnjt3joTNrxDU6D3W50eXQdKRRCB4pnziA6nYbSLBpdEI8BBsFZ8HgQXS60uZR5gHGXQmRg3DhHJnASSFd7OBjdhzvTzPTEOMKom4AvxN1L3vuWu4JeqsqAp7BvH1o0imC1ItXWoiUSiBUV55RRc0o4ZWQEsbYWbeK8BedNMAucXx6bB71QoJBO4CjqICqIgkC9O8SYOspQfJDNjZvoqFnMk7HH0aZ7SZ08ilRdjeB20+hrRopIpOZkyOVSlCL5Yg63w/icflEPlbORs+wc2WmYwEk2YvmYmS8lizJjqTEShQSiICAIFkqqQiIXpz/Wz4b69eRKGaySjTORszhlJ6qmkiwksct2Ao4AiUKC5bXL+fCyD6PqKiF3iKXVS4nmoiYRPK/kqXRUck39NTzb/ywAPrsPR5WD4fgwJa1EUS2yPLiceCHO7lO78Tv8bGzZRLp+FXaLnXQhyeOnH+dMop9ZZ5zVtuuwa6BnMlSVrBiOexrq7Cz2UBNBWxWPnvwvcrFZHJKNcSHJZC7CnV138uSZJylpJURBxCpZ0XSNvJonnAvzla1f4fHTjzOcGMYm2ZBECY/Nw60dtzKVnuLhEw8zlhpD1VQzY0nKSvzo6I/4g01/YN4/nBYnN7XdZCaslyvkDnFT2004Lc4Fn1OTpYr7g7cykp0goxfweKtpqT6XsbZAnTjXXdbnRtiL2jYwPnKSaDHB6cwprmnYiA4MxgfnQjGN1PtrG67lqTNP4tQteOxeVF2jpJXwWD14nf5zOYTlmnd/mc+n0nO5BWKLS9UbVRrOr5nszALQUy5N1xhJjJApZbiz4U7z55lShr0Te5lKTyFLMqKwcHOZV/McmjpkgCZ/6wKl1tWUW3ZjFa3YLXaua76OV4ZfYcfIDmySjXQxzec3fJ6NDRt5/PTjJsF9LDFGtpTFJbtIFVO4rC4mkhPsZS+xfJQa2Uew7QbgQjd1MKJZrmu57le2Mf2NAz733XcfkUiEP//zP2dycpKlS5fy85//nObmt5Y1flVltVJ87TX0sbFzP7r+esSaGrRwGCkYNGS6c19YQRAQXS7kri7afD4+Xt18Vfkygs2G3NSEIAjEI5M8XNzHq7EDZFNRc2w2lJukFAzw+44bcLrdyIsWGTeSchfGYoFcDj2fR25p4WhukH/a/3X6hg+bN5z20FI+t/kzLB4uUDp+HLmnBzWRoHjgAILTCaUSUkMDUnU12jzwY4ZoOhyoXi9SQwPq2Bh6Pk9am2u5S5Lh3FxdTdEuczbdR04tkCtk0AUBPR4nHI/zeC7L71zzu1ekvPhlVHmEpWWzKOEwyvHj5m5Ut1iQGhoMsnoyidDWhlDuoAF6IoHY2Ih2/pO+yaPZ0ugo8d5juGcS2HMK2UJ6LrTSSqutlpxTY1XjOs5OnqRTr8Q+NAtOJ+g646UIZwf72NK4BbfVY1w/Zb6Ypi0Yg/yiHioTqQlySg5REInlY6apoCzJeGwewtkwiqZgk6woumooiEQRXdPYULuGnK5w+v/H3n/Hx3Ge5/7wd2Znd7ZXLBZY9MYCEuydEiWq2OrFlrtk5bjGdsovTjtO3uQcpzjNOU5i2YlL7BQ7jmNbllUsq5CSSJESxSJWkACJDiywKNt7mXn/GO4QINhFSnKi6/OxKewCu7Ozu/Pcz31fJdKLopaxG23EszGk00RLSZBYXbua7f3b+cnxn+jZWgt8C3h3+7sZiY2QLWdZEVjBmro1ALw69qp+MZclGZNkYmB6AI/ZQ7KQpHuyG6fZyV/u+kteHXkVBQWrZGVT/Ube3/VB/vD5P8BusvP84HZW1azgcLyXBZ42nHnt/BkUlXZvG/+875tMxMdwFLTbnTVNrKlfy5OntMiKV8e0rDBBEPQk+0ZHI4cmD7E8sJxlgWXkSjncFjdbGrYQy8WYzkyze3Q3iVmdDKfsxFplxWgwsmNwBwWlgNvsps3TRr6cZ0vTFn0sZpbMCAhkS1ka3Wf80SpcRWM0Stvp20RPDtP6INRo16TZ6sS+6ZPauLxcpjWwiA8s/RDPP/2P1CxaiQGBx47/lNV1a9hQv0GLaPF2MBAZABUaXA0oJU0SHcvHWeBdgMfs4c/2fZlPb34PC3b16Z0eHae74mr6TJF+sZE7XJnS8GyYDeYL3i8b5n6vK+IDv81Ph6+DVD6lj5QALAYLC3wLNF+ls5Ral4MmdxOtnlZkSWbH0A5GEiMA5Mt5ArYAR8NH6fR3clv7bbqsvqyWkSWZkqIFpRbKBVRUQokxFFWhcPCgPkZ8oxlo1wL/7QofgM9+9rN89rOffasPQ8eFfGpKU1Pkd+5EPWtXX56YQFUURI9Hi5hwadb5nL5NWrBAn01fSb6M6HZjtFgYHkuwe/seclYjolylE5vzJhO7w/u4c+YkK31LtG5U5QJR1OS5CAJpt4WQKcZf7fk6/YlTyF43hrJ2oenPjvHVA//EnwQ+jC8YpBSNIloslIeGtAX/dIiqYDIhLVoEs3hIlfNjXKi13AWTCSWdxuEqaZEaFfK1IJCQS6TTMVAUzJKZWHpGJ2xPZrP0V7/OEmszgtOp8ZLSaU1u73BoOWjXiONVnpmhNDICskzx9deRmpu17o3BcKb9ns1q3KVcTvNTOh1BIths2nGeFT8gVldfdHd6WccYi5HfuRObU8WYyrHA00pvvJ9sOa8VteUyDsFEUHBx6uAR9Eu3wYBgsSAbBE5lwqj5HFIkxmJ3B93ho9po1mTSox6uhoeKLMlsrN+IyWDSbPSNVo1MnJqkydVELBfTss4EAVVVkI1mGt1NZHIp3CUjglqi2d5AT7gbFAVZ1H5XKaW5ufVmnut/jlwpR6OrERWVVD7FoYlDmCUzdy+4m4JSmKOEmi0tz5fyOjfj5tabdTLxP7/+z3RPdWubFVUkU8qwc+RlFFXlwRUP8Wj3o0RyEcbTE4iSpGdnmYoK1b5Gnut7lu7xw/htfjg9ZpuJj/NC6UUW+xZjlx164QNahMYtLbewonYFK2pXnHOxeXnwZbqnu+cUPaCp3Vo8Lewa2cXO4Z16Mnebp41PrPoE+8f36zES8Xx8Xmf5coJsK+rEY2OHiMbGcQkWOhIyQ4MjlMtF1GSKOmsAn9XH7uHd+mt3yW4eXPYRBqL93NtxNwOxQRrdjdjMTowGIzuHd1IoZHkk9a/8SddHcb/ee6YQNxgwNDTMG8tfdOTOpSsNL4QmdxOt7lb6Y+fwGHK3zitcKuIDgJU1Kzk0cYiALcBAbACvxYtBNLCiZgWNrsaLxtJcCJUInmdOPcMTvU+cud3koMXTwvLa5fzrwX9lSfUSjQCd03K4BmID2Iw2qm3V+ti1w9uBAXHeGPGNZKBdC/y3LHzeTpjjUyOK4HQijI5qdEOLBSwWrQNgNGrFxOmFrnzyJMa1a7VIilhMDyQVPR5Ma9ZcFY6HIMtMFKPkJBVRmr8byZayjKfGWRVcNc9FGkFgzCvyZPRFPEqA10KvoZZKSKqAT7AhC9rFZCAxyKlVJmoCrRQOHtRk6afJjCgKSjyuEWYBwzmUWHNMHItFWo0K1dIo01ND2m2pFHmLEQoFgoF2RJOMOj2tcQYcDpREgsRoP0WTxo9RUykEh0OT9tvtGBcuRGpouOqmh+XpafK7dmk+SYsXUx4eRqo97ZdSLp8pfio/zyKEi2YzhsZGysPDcy7SYnU18pYtV43fA1AOa8qXOsmHz1kD0QmW2VtIWg0USnlMZhstRQfyTAJO51MhGTV/KbsdlyJjLkI2n2aq/3U+tumjfId/ozt8FEkBsyRfsc/Q2ZANMruGd/Hq2KsoqoLP4qPGXsO9C+9lQ8MGQskQ4XQYi8GCKIh0VXdxa9utvHTyeVqbb+dE+ASbGzcSSoUIp8JIKoiCkbbAMjY2bOR7h75HnVOLrDgxfYKiUtR3tQ6zA7/Fz1B8SOeOzd7JDsWHaHQ1aj4+qQltERNgX2gfRtGoy3lB20n3zJzg5tabaPY0M54I4ZHd1HoaODl2hAQ5qjCBLDMSHsFoMCErInDaaylXJC3GaWpqQkVlafVSykoZm8nGxvqNfGzVx/RF8FyLTaKYmJeQDmgdr4HtCIIWPVAoF7AZbUykJvjnA//Mp9d8GrNk1kccZ+/aLzfINmAP4LN1Uho3aVE8qRQzZgeC0cjk5CCrF6xF6Libx08+zvjphbXeGcRtcnLvyjuYyszwk+EfYjJZEDNTmjQeFUGSGMhNcNJTZp3VqhXC5TKiz4dx+fI5jvaCxXLJ3/0LKQ0ruJCVQ7u3nYeWP8S/H/r3OcVPq7uVh1Y8RLt3btdotvgAwN5oZzo9zcralbyr9V2YDCb8Nv9V6Z40u5tZXLWYm1tuJllIIgqizsOxGW1MpCcoThRZX78er8XL/YvuZ+fwTnqne8mX8qiqygJvBzc2b9Ucyrn0MeJbgXcKn2uIOT41oojgdpN/7TWtu2MwgNGIIRhEvukm8tu3z1MjFQ8dwnL33XosgyDLVz0w1ChpBUplvms1WkkVNHlrppjR08LPLkBSRoUnT/2EqJJGqsytBYFSucSMkiBg9iFmcqilItHoOOXpot6hwWbTuhygOToXChdsN88maLuBe+X7ebzncaZPt6zNSpJ6u8zNrTcz/PpOUBRNQZZMoqbT2C0uSidOajyhUglRVREcDtRUSnt/VBWTxXLVOj9qPk/x8OEzi0DltUnSmaJPVbVuQyqF4HJBJjPn/Te4XBiWL0esq0Nq1CTOhkDgqhY9gJ7lZp2IcnfbLTwx/Dwz8XG8OS0apbq6lTvk5aQyMUBTEYoej5bjZjZjjGZZ4GjGY/USKeU4tvtJHlp6D+qyBzGIRgLOGpY0rHrDRc9wbJi/2fU3Wkr5aQVLMp9kMjOJLMn88fV/zJ0dd3JT602AxnObSc+wY2gHflctlEoYEHjq0I/52Nr/xVRminByHKNBJqlmmcnM0ORu4ujkUURBpNHViN2kkXqtspVUPkXfTB82kw2fxceNLTfS7G7Wd7KpYoq9ob0A1NhqmE5Pky5o45RCuYDFaKFQLqCc/twrp8ugDfUb+N6Bf8VutHFf+12kk1EKShEwkVMLWExWfGYPhvyZkSGqijVTwqGaWN60ltV1a1EUhUZ3I53+zjmL4LkWYlVRKZQLtLhbGIgN6L9b66jlpaGXWOxfrC18skNPgz82dYxFVYswSabzpmlfLKj2XPdXui2CJGFwu2mUPVTVL2AmFmJo6DDLl6xn801/SaqQwigZCViqUSIRjrz8GNVL1pKLTFFwuxGZu3ETzWaSVgHzu9+tceJkGbVc1jZFiuYmnfbaGHcbmB5/RQ8IbXA20OHrOG8hcS6lYQUHJw6e11x0Rc0KHLKDrS1bERCYzkzr0SNV1iq2Nm8953O+mWMir8VLraOWWuYaWuZKOSRRwmfVnLIdJgcvDr6Ix+LhvkX34TK7yBdzTCTH6Zs5SeuShwHtunIpY8S3Au8UPtcQc3xqnM4zRQ9ou3yzWdslZTIY166luGvX3Acol0FVMba2XrNjDNqDNDub2dC4ge++/l0OhQ/p960JrmFj/Ub950oBkswneX1sH4oIAVuAWnutNuc9XemXRJU8JaxmM2oO3JJd46XIskZwDgTmSrVPKzouFWdfDKRCme7BffQNHqFcOr2TNRpRp6bwuWpoEL2o0T5Ntl8uoyQSGE6PDtVUCk6PIq/WzkSJxTROVgWnX5uSTiMEAtoY7jTKoRDGZctQIhHE0zlp8MZyzS4LFSK9olDbN8ODNTcx1lAkreSxW5001S3FrkikhCIBwzAzuagWXFs51lKJFrGKd9lWML2yjlQ5i12wUDdjxRZJY1rbjOkqyFWPhI9wZOoIiqrgt/oJOoJ6dla2mOXQ5CHySp4dgzuI5WJ0VndS76ynwdXA+rr1HAkdpGQU8XrrKOWyOLMqdlsTBVmgWbbjMXvIFDM4ZafOYfFb/ZglM0+dfIoj4SOMJjQOXqu7FRWVBzof0Beg2Zb7KioltYTdZNc8xBDIFrOYJTNGUSOp2ow2/DY/3z7wbdw2H2q5RDI5w/WBtSyqW465qJJ32xkvRslFp8mcTQxXVfxGN5sC63C5z52Tdr6F+MNLP0w4Hea29tt4cfBFBmODus+Z1+Klw9tBppjRi54KMqUMqWLqvGnaF9s4nOv+s8OY7QW4d/F9PH7iZ0zHQoyM98DMAE6TnetqN1A6MYxNMLLWuoGjggXRYjnvtcNt9WFqPaNOU/N5FJ8PtVhkmDh7IocZHhzmyZNP6sq2Rlcjt7Tewv0L72ciNXFRE86KiWY4rVkMmCWznrwOzLNyaHY3897O915WIfNmjYnO5y5tlsxYJAsBW4CALUAil+B9ne/jR90/Ytfwyyyp6uTkdC+rg6v5nY2/Q33szN9eznX9zcQ7hc81xJxqt1Sax+NBVTWJ5dQU4rJl8/5erKtD9Puv6TE2u5v5yLKP8MUdX5xT9MgGmVAyxN/t+TtaPa06gbHC0D8cPqy7pi6pXsJHuj7C9498n4JRMy1UDCKCKNHWsorFgS4MVTKqqmqjrcquC8BkQnS7L3uBn30xUPN5PGmFmeQkU1OnZayKgs9Vwz0Nt2KLZynC3NHSLO6MWipd1Z2JejqeY/bPYnU1xaNHkTdtonDs2JniR9Tm4eabbtIz1M7mOV1LGAIBjUR/egRpDc3Qcfo+sVrAvLIeoVTCVSxy76oPzVMQ+ly13OntxDswiVdRABPaSEZbMK/Wa4jkIoiCiN/qR5Zk3cMlnAozlhhjMDbIy8Mvc/+i+zGIBpZWL2WJfwlG0ciroVdp8rUiIuK3eHmm/1k8Jhc+UxVCScJglFkbXMtkZhKX2aU/p0k08aPuHzGTnZnjGdMf6+ffD/07K2pW6OZrsxeNXCnHUGyIhVULWR1czb7QPgyCQV8MXbKLZnczE4kJGl2NBGwB3LILUTZToMTq2lW43AFSFDgaOU6xmOPE8Otk0jH9GNpql3D9glvOW/SEU+F5RQ9oC/Ero6+wqmYV+8f3s7J2JTc036B3gIbjw2SLWRRVmadAskpWUsWUHrh59mJsqK5G9HjOOe46X5DtvDBmVaU+KfJw+wOMmHOkMjHspyMxzP1jYGzSvrtemUV2D+/quh+n1Y2ilimWi4iIDMYHyZXz8zhlgiwjut3EY2F2D71CT7yPF0d2MnK6oC0pJcaT46QLab6w/QuUyiVdzXcuE87ZaqWB6AAvDb1E0BFkfd16nu9/HgCbyTbPyuHtxnep4OxIlAqcspPNjZv1z6/f7mcqM8UdHXfwoaUfwm/xYZbMVJurKGWSjCoR6m0u7KrxbZubeMmFz+joKPW/5G64bzbmVLvnsKRHEDRPG5ttPom1rg7z1q1Ib7DwGY4NcyR8hEgugtfipau6a44KwyE7yJazjMRHqLZVo6iKbohmFI0cnDjIkfARGt2NxGOTPLb3e8xExpAoomSzCCYTx6eOI/pF7lpwl+awajJhMMq0VS3hN9f9OrW+dkpDQxi8Xm3cNavokZqaMC1b9oYWSEGWaWno4qNGF0PuXtK5OA5PgJqTk1gGItDu1TO+EEWywSpCtQZShTIOg5VGhwn3VdyZCEajJrc/LaktDw5iXLaM4uHD5HfvxrhqFWJXF6gqoteLVFd3VceXlwOD2418/fXndonesgXJd6at30r9PAVhg1yNccer+ghnNq5marvX7KXOUcdQfEiTNQsGQskQHrOHzupObCYbFqOFXSO7WFu3liX+JTS5m/juwe/OiVuwm+y8Z9F7MEpGFEWhylqlfyfuMcy96Cuqwkx2hiZXE2PJsTnH0x/rZyg2xMralaj5PNZYhrtqbuSJ/qcxiiaOTx+n2lrNZ1Z/hn82/DOHw4cRELAarawJruGO9jv4hz3/gCBq3J/VwdW43NXcVn8v7tPfTweythABFtlOPDVNoVwg6KrnwRUfZUHNkvOer+7J7nMGdQK8NPQSf3Cdpijrj/YznZnGJJqwGW0sqlpE91S3PuKuoNWtqX4qhcC50rRFu53C+hUMnNpPMh3FYbBSl5exl6ULBtmePUYXjEY8Nhv27m7U3OklKhNBqKvTlaWix0PRXiaQreFb+79Fz+kkcJfsYmvrTfzqml+d16Gp8C0HxWniiWkK+SzDU31nRtDA4uoV/OLk0yRycRbM8jI6u3NTyS+rfFZypRy5Uo7Xx19nKj1Fo6uRXSO7sBltNLoaieVjbzjK5c3A+UZrM9mZOa/XITuwG+1sadpCIZ/lcOgA4ekhisUcZoMZh9HG9QtvpeVtmpl4yYXP0qVL+epXv8pDDz10LY/nvxXmtHFNcy8kGAxnnJLTaUSPB8t73qNxLsxmRL//DRc9r4y8wpd2fklPjlZUhSX+Jfzept8jYA/Q4GrAITuI5+LIBlnP9KkUPhVVRzQfpTQxwcDY64QPvYqay2F32jAXCmSzWbDbOTZ1jF9d86usrFlJtpSlzdNGV6BL/2JLdXUUFQXTunVaEagoIMtIwSAG3xuXmotuN16LBZfdq+0e0yLlvKYFUQoFzQ9ncpLxBQGeGH+BaHda496YTPjzC7m/5ldo5upchES3G9Hh0Iqe6WktQ+zECU2JZ7FoJpM221Xna10pjA0NiHfcoeWCneZDnI9PdK7damndunlqHtHjwbR+/VV7fYuqFmEymEjkEzhlpz46iuVjtIgtVFurcZ72WrFKVprcWoE2nhzXix6zZOaeBffwnYPf4ejkUQL2AH6rnwW+BfpufvZFvy/SR8AWYCypSXTPRr6cnyNeCAoCD9qvY9ReYiQwzGR6EovRwmdWf4Z8OU+mmMYlu/FYPbw2+hrv7ng3AVuAslJmND6KQTDg7fDOeY6LcTzOt5heyDOppJRI5BN8es2n5z3uquAq/mHPPxBOhfXfb3W38t7O987pApwrTXswNsjjQ48zk5lAyaShVMLnquXeNe+nJVBzwff3XEarxgULznSCFAV1elofAactBnZ1/5Rtx57EUCrT7G6mpJSQRInRyAA7jz3NEt8inXg8m2+ZkjPkyrnTXCqNhFu5HvusPl4YfAGv7KaYTaOqmhIXmNO5GYoNzTkfZoOZpf6l1NhrKCkl3ZjvtbHXGImPYBANfGHbF87L/3k74Vzf8fPFXwA80fsEOyf2EIoO69zFoKcRyeujynNl3kLXGpdc+HzpS1/ic5/7HI899hjf/OY38V2Fxeq/O+a0cSUJIRg8Q2w2m3UHY7GuDrGq6g0XOrMxHBueU/SUlBKZYoZXRl/hT3f8KZ/f9HmeH3ieexbeg0d2kc+ldCl7RXFV+RC7TU7KMzOkimnEQABBFDEpKrdUryReTpEpZpCtGjciUUhw94K750kzRbcbk8UyLz7jao5zBFlGOu0LVJ6ZQfH7KfX1oWQySPX1JLw2nhh9imghrr3G0/EeMUORx/ue4n855vMWrvQ4Ku87kqSRqhUFoVBAWrQIQ1XVVXi1VxcGt/uKidNSTQ1s2qS5e2ezYLVe9c9zrpTj7oV3kyqkGEtq+VAei0dzI65dRfq0eWLQHuTWtltxyA5SxRTxXFyPW9javFWPlQAtwy+ZT3Jw4iB/9fJf8Ve3/BUei0d/Tq/Fq4cpng2HyYHfWkWxt5eUocxolUKoHKNULlKr+Hio9X6eG9/J+MwIzx18lEwuSdDTyP3LPsD/e/ZPKJtNWM0OLJIFWZLx2XykiqlzjpDONxq5EJnWI3vm/f5suGTXOR9Xl5lPHmP/xH4EVXOnjmQjugP0uTxjZndABJMJw+liIUaJJwZ/wQdsLqbSU/NywS5k9XGuTlDlmjEUPkoiEyUUHcYIuJAACRQollL0R/vnxEjM5lvaJStmgxmTQdbMDAVBu96VyxTLBQQVBEXFoKgoqaT2nAbNlqFSUFY6XvlSnmwhy9aWrRwMH2QiqZkN9kz3EMvFeHDZg4wmRpEEieH48JxzdqVRLm8VzvV5ORI+wpM9TzKentALRIDx9ARP9jxJV3UXXYGuN/tQL4pLLnw++9nPcvvtt/Pxj3+cJUuW8M1vfpN77rnnWh7bfwvM/vKKN95I4dVXKYdCc4qeqzHSOhtHwkfmdHpmX8APTBwgmU8SyUZ4bO/3uCO4laXeRRwZe10ryiRJywZTFLpqV7DE3EL5xAj2Kitks4hllfrW5WwbeYmR2BAF2UBZFFBUhY+v+vh5jbTO3tUl80mGwicvGpJ4uRBOd5IUqxVVUTDk86jlMuM1IqmcjXrvIlSjkZySx2q0oqoq06mZcy46V4oLXbQvBXry+FU+N9cCFwpUNV6lwN9kMUkyn+SDSz9IupBmLDmGWTKjqioDsQGWBZbxgSUfQEDAa9a6JnajXc8gArAarXrRYzaYWRZYhsfsQUXFKBrZN76PmcwMh8OHsZvsrKxZyZrgGl4be21OVpXD5GBL0xYW25oZiY+wJ32CJ7qfZix8CsplLLKdLe238EDLnWTUMDdUrSGUniATmyY0PUipVMBSklno7UCW5n4ezjVCOhcuxOH5hz3/wB9e94dn3JHPwsU8lQL2AAF7gFZvK4/3PK4nz8NcV/jZ3SaTwcRwfBi7aX4nqD/az89P/Zyh2BAGwYDb7MYgGPBb/fiwsJAqfBGtC3w2qf9cnaDKecoWz50fBlBQinNiJGZz+Bpw4xAtGBFodDUynA6dpiKoWAxmTKIRh2SFfAE1k0G1WhEsWmxJxYTTbrQTy8Xoi/RxU8tNfPv1b3Ns8hiZYoayWmZV7SoWVS3iyOQRPr360/yk+ydsrN/IK6Ov6FyZyrl5o1EuV4KrNXYLpULnjDKZfd8vdeED0NLSwvbt23nkkUd473vfy+LFi5HOkmAfOHDgqh7gfwdUvryGQOBM7tVVHGmdC5HcmTZsSSnN27XG83GUTIZwby+ZXD1/sO63+dK+r3B08ujpoMwyXXWr+cLK38D38iGk1aupOXUMdxZkp4fnTzxFKDWBwWzGnCpg9wcxiAae6XuGoCN40UX6XDbmXov3vFLZS8XZBUNjax22tEZezqZ7aWhZxra+57VFymAAVSXoCHJTy80k49NcpWkXcP6L9sVwrnNjN9q5vul6CqWCrhiyGjXS51tZEFUMEOdkI3H1A1XtRjtltUw8HydfyjMYG5xTjIiCSDgdxmvx6hy2JncTQXtQJ+FXukIOo4NPrfkU09lpZtIzGA1GBmODZAoZgs4goHVTykqZexbeQ0kpEclGUFQFSZRocjfxydWfxFISeC56iJ+PbGNssk8fXWeVPDtOPYexpPBwaTkd6TJZfxujnjrCdpXeqsU4BQtmRfOvqXQEMRhwiNZLWpQuxOHpj/YzHB/W3ZHP1RG6lEXuQmO2s7tNq2pX8cLAC6yvX0+NXRtrpQopptJThFIhOrwd+K1+BAR+3P1j+qJ9OAQzjdZaqq3V/PrKX2XJjHTJ+Vl2o13PUDsbqqJgVARsikRxYECLVpnF4bNlSmzyLMdoMmNrN/PU0HMMT/YiGUwIZZUNdespp1PEI+OglKFcRlUU2n0dtHnbOBA6QCQbIZlP0uxqZufQTo6Ej5AvaxspWZKJ5WKEkiGWBZZxfOo4o8lRZnIzLPAtoHemlwW+BThlJ4VygWguSvJ0kXalm53KdS+UChHPxbGb7NS76ml2Nc97jIvJ7i8HxdKFRSGlcumC979VuGxV19DQED/5yU/wer3ce++98wqfd3BhSH4/XGOlFqDvegHdUEoURGrsNViNVhwmBzW2GsqBMkmpzPI9If7hhr+kO9VHLBfFbXLRWfJR9VIPot1Ofs8ebOUyd9ffzMvyOKHhn2uPXRCxWpws9LTrLfELdU6S+STDsWG2D24nkU9oxmtGG7IkE8/FzyuVvRRcsJgKNGMPR9l2+Jt60aOmUqjFIqOxGM8nk6y1tFMaG0Oqq7vs575aOJs0CRDLxdgzuodXRl+h0dXI6xOv6zlJLwy+wF0L7nrL8sgqBojnwtUMVJ2tmpIlWU+xzpayBO1BrdNzjmTqjyz7CKPJUfqj/diMNoyikU+t+RRP9D7BgfEDGAQDZbVMq7uVzfWbefLkkzy84mGOTB7h+PRxWjwtvK/zfRSVoi6lX1K9hIA9wOH+PSSVLKH46Bm+HoAokknH6U8NM+ZZxIJoCctMivqmWkqmAl1BTQkmCCLhiVMoec3zJOCsJ52K8rev/i2T2RlNFq+UaPG08MlVn2R1cLX+FBfLPYvlY2xt3aqHRcbyMdyym87qy9vZzx5vJPNJBmODDMWGGIgOsMS/BJvRxvHp45gMJuL5OL0zvSiKQqqY0uT/KoTTYY5OHkUQBBK5BIPxQVAUksU4OBvon+7lq6//E3++4vP4pnOXZHzX5G7CafUQdDcSip0ZIanlMhajlVZXC/U5mdJ4H6XhYYwdHQhWK2omoynHEgIe1wqGyz7W33AdsfQ0QqFEMC8jtLj42t6vEZ21WWxzNvOJ1Z/ge0e+x86hnZgMJuqd9VhMFibS2ngrX84jCiKSKDEYG+Rk5CRBRxC70c4C3wKsRitNriY6/Z38pPsnuodSMqcZBr469qpGNDeYcMkuah21l7QRHIwN8srIK7w4+CK7R3aTLCSRRInlgeW8t/O9bGrYpD/GxTqFs8nbl1KEBR1BLJJlziakAotkodZeO+/2twMuq2r51re+xW//9m9zyy23cPToUfxvwgL+Dq4MXYEuuqq7ODJ5RLPLF0TaPG2MJ8dZF1xHJD1Nf+wUXqcTY00N6ole6mIKVU+fTk0mDHa7pjwKBin29GCor6e2e4iWddV0+pdQoIxksSFZrKRKGZTMDK2eVk5FTnEycnLebnUwNsjPT/6cGnsN33n9O4wmRjEZtFiDVncr9y2+j3gufkUjp3MVDAAzyUl+tv8/eKjhHnKlSaLxCY13k0zOaX/HslHymQT53bsRb7/9LSMdV0iTlVFAtpQlW8yysmYlkVyEemc9RyaPEEqF2Na/jS1NWy5aLF6IR/GGR2qnDRDPi6sUqHq21NZtdrOiZgVG0citbbfiNWudnrOPfWHVQv7guj9g58hOPLKHh5c/zIHxA3rRU3FTDqfDbBvcpisbJVFiWWAZz5x6hng+Tru3HaNo1B9/JD5CpBzFIJtPuzLPwumNRlEtkVZyqIKR8MIAPzv8Q6Ynh0j5HfQm+vF4arm5/V2MDR3FbfVxy9K7+OvXvsJ0McZgZkwfex2fPs5QbIj/c8P/wSE7qLJWYRJNRLIRzXzzdIL8bMl9ZSRTGVtdKSrdp2guiiRKDCeG6ZnuIV1M66KIjfUbSRaSrA+uZzQ5yr7QPgZiAyTyCaxGKwurFhK0BxlODLN9YDtN7iamU5MgGkEyYHdWMZmZ5ER5gs1ox30xewmH7OC6li0ICDxx6EeEYsOoioLVbGdT9Vrud6zHuHsfxXIZwelEMBqR2tspDwzosnlrskD7QArJVEfxtd4zIcySxJ+s/F+c7CoQL6VwVzXQ5mnh0YGn2Tm0k2xJk/u/MPACn179aZyyE6fsxCW7MAgGBuODlJQSAgJus5uCUuBfDv4LsiSzqX4TkVyE5YHljCZGcZvd3Nx2M9/Y/w1ORk5SY69BEiW9mLjYdzuZT7JreBcvDLzAnrE9ugVBSSlxKHwIg2hAVVV8Fh8O2XHeTqFFstDl79JDgC2SBavJqneyzteNr3PWsbJ2JTuGdpAv5XWrCYtkYXPjZjp8HfOe6+2ASy58brvtNl577TUeeeQRPvrRj17LY3oHVwGN7kb+4Po/4Es7v8Sh8CFq7bWMJ8f5wNIPMJkK85Wdf01JKSOVVHrDx/m9ZQ/Skc+fITbDnLBJ/V9VxZMRWFy1iLzXSaQQRzaayRfzuOxe/vPof+I2u3VFWKWF2uZp4/Gex/FZfPzgyA8Ip8NkS1kt7M4g0zPTw0+6f8KdHXdeMs9hNs5WWYCWdF+ORJgYH2cgVU3WbqTD3kxvvI+spaQZKhYKmEUTC5ytFBIxlIg4z1r/zUSqmMIgGAg6gjzR8wT7xvdhNpixy3Zq7bVc13gddy+4mx8e+yEnIyfZ2LDxgl22OZEpp1HhUZwshfn+4e8TSoUue5epw3zh4MWrGah6pS627b52AvYAI7ERjAYjr429hkEwaL5JqorNaKPGXsOB8QN8YMkHKJaLLPAtYMfQDjLFDHXOOnpnesmX81q458hubmy+kSprFWkljdPpJ57NoqqzvjcGA0ZBwm5xkWvz8rPDP2I6PAiAI5Zjma2VpAB9Uyf58NqPUp+SOJidIJwJM5wOkVSyCAYDxXKRVCHFzuGdvDD4AqIgMhQfYmvTVtyym8OThxEFEZfsImAPYJbMVyUXDc6MRCKZCJ3VnTx98mlUVSVgDxBOhWlwNbCqdhVHJo+wunY1Le4WfnD0ByQLSeJ5zeupyd3EIt8iftT9I27ruI2pzBQLqhYQzyfIF7NU26oZjQzikJ1ElQwIHi2/7xLsJZrdzfg6fSyrWUYoNkKhmKc6Z6B5ooile0zvwqmJBMUTJzAEg3N4d2o+j6G6muLAAFJHB6WTJ7XiRxDwnAyx3mZD6liEqFbRk01wKnJK72xIokRndSf98X5OzpzEbrLTM91Dg6sBVVUxCAZcZhdmyczh8GFubr2ZGnsNXouXaDZKsVzklpZbWFO3RuP5THVjEAy6iWa2lKVnugeLZLngRnAoNkQin2A8NT7Pd6mklBiIagVo5THO7hRKokSXv4sNDRv44dEf8uiJR4lkI4ynxlkRWMHnN36eI5NHiGQj84qwwdggT/Y+SbunncnUJOOpcUArtjurOnnfkve9bXmJl1z4lMtlDh8+/I6Xzy8RNjZs5Gt3fI0j4SPMZGfIFrNsG9jGvsFdlJUyRoMJn8nOwMhhfig/y28t/SSp1Ys4ac8SLafwmFx0JC348xoXBkkCWabUVM9zh37Ert5XKKtlBEHkIyseYmBCk/AKgoAkSkiipLdQf2vDbxHJRrAarUxnpknkE9hNdhL5BLFcDFEQmcpMsbJmpZ66fTk4u1hSSyXK0Sjl8XHUXI6sy4JDtmMfmaLL5CEhuylQRnZZcQoWDOFpbEEZhNJFrfevBSqdl3g+jslg4ucnf85rY69R56yjL9rHQGyAQ+FDzGRmWBpYyn0L7+NbB77FaGKUbDGrGc+VsqQKWuHktXpptNYi9/bNKXoQBFKGMr2TB/jXnh8STmtjqqJSxGQwXdIuczbmGCCehasdqApXbv7mkB10BjpJFBO0+9r1JHdRECkqRU2NhNYZFQQBp+xkJDFCu6edkfgIFqOFRC7Bmto1+Kw+zaa/lGdxdSevjr2K3VNNMnE6I85gwGJz0WoM0OhqZESN6UUPggCiiKmk4p3MIqQmUNvz2NIqMTUBkkQyr/1bLBeJ5+M6GTacCmMxWnhh4AV6pnv4zNrP8LW9X+Po5FHi+TiiIHJd43VXJRdt9khkdc1qdg7tBGA0OcrJyEksRgtHp44ynhzn4ZUPYxSMHJ8+jsPk4OaWm+mL9CGJEpFchCd6nyBXyvHhrg9jNBhJF9LklcLpqAPts5nMJwinw6StTdgV6ZKN7xyyg67a5XTVLqfQ3U1u97Pn/D01kUDNZObw7srhMMWeHqSGBs252mxGUFWt21QogMOBwe9HTadJ24pziPICAnWOOnqmemh0NWI1WhlNjFIoFzCIBvLlPMuql+E0OenwdvDC4AtsH9hOlbWKidQEC7wL+OMb/5g9o3sYTgzrPlGpYoo6Rx0us4tsKUs8F7/gRjBVTJEr5eYQpmejrJbJlXL6Y1Q6gaAVPevr1qMoCn+288/onuzGITswGUy0elo5NnWMX5z6Bbe03sJAbACjqHHhugJdczrsBsHAmuAaVFRypRxui5s72u94WyvVLrnwee65567lcbyDa4RGdyON7kZeHX2VvWN76Z85qbdkZUHCoIBiLDGRmuCwaYZ/mfgefSOHT3d+yrQGFvMbG36ThYlGMJmY3rKc5yKvsqhmKfXeJk5F+ngttBdFUXhl9BVWBFbQPd2Nz+JDMmkfr/5o/5l5dj6pj3HC6TC50vxRybHJY6yqXXVZu4WzfUXUXE7LAMtmEZ1OrKJM7WgKr8mtZVHBaeOyGIK9hLt5IYLLzetSBLdhhpZ88k3brczmJtXYaiiWixwKH8JtcTMcHyaaiyIiIhtkemd6afe1s3tkN6trV2OWzGwf2K6FbB7+HqFUCItkYWHVQlpMNdzpXk+9cCYbbNSh8Ojo42RjRh7tfpSCWsQpO2lyNRHPxREQLrrLnI2LGSBe9WyxNwi70a7FrDhq5xSLiqrglJ20edsYig1hNBiRRAmrSXMrVlWVW1pvYdvgNvoifXT6O+mP9nNnx518dPnDPHfqWY7nEqAoWCQL1zVv4T2eG7CEY8Rqi0RrnRSUIiajGWdJQkpoRGtUlVQhDZg02wi1jN8RQJZt5MsFAvYAqXyKUDKExWjBZDAhG2QGYgOE02E+s+a0R1Aho4+W45k4Pz3+0zek1pk9EjEbtWDSkcQIsVwMVVVxmV0oqsKBiQPcGLuRRb5FFMoF9ob2YjQYebbvWQS0ArLKWkU8H6eoaJ00AJfZRZOrkdFp7brQ6m2nlEoxYk+zrHndldlcnG2iKYpkajyMWYuklCxuNUxrvkH/XldUlurUFKogaHLsYhFBFBG8XoTqatR4HGNHB478KCbxjFw7X87T5m0jV8qxrm4dLw6+SJunDZfsotXditvs5s4Fd/JUz1OcmDlBKBXCbXYjIGAymMiX83x979fZ0rQFo3imu5Uv5RmOD9MhdWCWzBSUwjk9kyqwG+16TMa5YBAMmCWz/hid1Z262q/S1dzUsIljk8f0x7AZbZgMJj628mO8OPgiU5kpJtOTqKgMJ4b5tPxp0vm03mEvq2Um0hP6c8bzcabSU/89Cp938MsNu9FOSSlhM1g0srMKp/8PwWajrW013zv2AwbyE5rpYqEABon+6ZN89eA3+IubvkQ6NMQ/Tf+c7xz8LoJoQBQNtFd18KtrfxVREMmVcqSLad38UFa0ea+AQL6YJ2ALYDFaEEWRZYFl7BreNafwcZvdtHpaORQ+xJbYlsva2c/LmVEU/UJY5WugoezAdOI4d3fexBPCC8zEx7VioFzGXFtPfc0CXgm9iupyUpiM4c2c4rqG62j3tV/gWd84Kjun8eQ48Vyc8eQ4ywLLkA0yRoORWC6GgOal4jA5mMnMUGOvQVVV6px1FMoF3rv4vTx98mldVlppk5udKk9EnuajTfdiSxdJWyWe6P8Z/UoYQZXJl/MIoqi1wuNDBGwBemd6qbZVX9a48XIMEN9qNLmbqHXUsiywDEmQiOai+mh2oXchKwIr8Fl8WCSLvsgn8gla3C160QPoJp/jqXEeO/5THlz2IPcuuheARD5BtaUKh3cRE9WTDIR2c2zymPZ5UxSsZgcLPO04ZkogCNhNNsjAIqmWhdWLeaznZ0Tj/fpu3SW72Nq8lf5IP26LmyZ3E6qqMBIb5iuvfEXP2VpctZgHOh/gB0d/oHcArlStM3skUlJKmlnk6fOhouoZZAoK0+lpFK+CUTTis/goK2XdyC+RTxCNRfFavMRzcT645IOMJEbYM7aHsWQIxSjR6mrnfYsfwKgIhG0KPxl9DkPIQLWtmg5fxyUvoKLbjWA2ayo5UWS8zaeF7vaPgyRhpI+q1BF9lHt2XIZQKqGWy1pgakMDotmM2NSEIMs05Q20eloZiA1QVIqsq1vHy8Mvs61/G0fCR/Db/Dy47EHy5TyhZIhyuUwsG2Nx9WL2TezDbrKTLqTxWDw6J+vo5FHe3fZuxhJjelyIoiqki2nShTRmyUzQHjyvPUjl81yhMgzHh+eMuyRRosXTom1sTj9GwB7Q1X5O2clQXHMfl0QJu8lOs1uzaJANMk+dfEq7jkhmnLKTRD5BPKsJUGZnOJ4LV0JXeDPxTuHzPwRN7ibcFrfW5ZjN40HzNzEYTIwnxhFkGUEUtXbv6S7BQGaMvuwY+6Z2MZAcRhHAIIokiykOThwknovzsZUfI5qNkilmtLFaKUummMFv9eO3+ZnMTPJk75MsqlpEppjROgrVS4nlYpTVsp7+2xPpwSAYLvuLMy9n5rQRo89dy93N78YWTlNUFGq7QzxUfz1jTQZS5JFtTnqzI2QLKXbEDzERT+pGXDuGdvD7m3+fhbOs6682hmJDnJo5xVBiiFxRS0H2W/00uhrJlrJUWasQBC3kMpFP0OnvJFfM8UTvEyypXsKJ6RN8fOXHCafDp0m2WjGbLWWJl9NIqTgjxFiEjRFizKQmScoZnOpcJ/FEPkGjq5GpzBTJQvKCu8xz4Y0YIL6ZmP05sUgW4rk4BaVAjb2GuxfcjXDa28Vv8xPLxzgxpZH9XWaXXvS4ZBeZYgaHyUG+mOPJE4/T6e/kvw79B3aTnRvabmLP+F4WeDpYU72CXCJG0N1AaGYQgEwuSW/0FMvdC6h1BmmQfEASc15heWA5r47vIzIdp6yUUVGpslax2L+Y0cQoJ6ZPcCpyiqXVS7Eb7eSLWcTTm5CemR6e6XuGBb4FdE91A1dukjd7JCIbZMpqWcsbU0v6Z0wUREyiCZfZhYCAx+LBKTsZjA2yrm6d7n9UUdxNpafwWDyYDWYeWvYQsVwMm1GLGrEabewc3sk3jv0L0xktwLjB2cB9i+7jltZbdCfkC8Hg9yMtWECpt5e016YVPXGt6BF9PgSrdR5X5VL9thyygweWPECunGMmM8OOoR3kSjmtkJFM7B/fz9HJo7yr9V1saNjAE71PYDAYsJvsxHNxXLKLDy39EB6zh2w5i8PkYCI1QaaYYSo9xXWN13Fg/AA9Mz2AVmy2elp5cNmDFw0w3dy4GVEQMYiGeaqu+xfdz6aGTXMeo2JSuWNwBydnTlJlrcIsmfFZfIwlxohkI9Q6anlt7DUKSoGSUmI0MUqzuxmX2UUkGyGVv/D1+XKvH2823il8/ofAITu4vuF6dg7tpE/p1WSdioLFZGOhpx1BEBCMEkK5iCoIWibOLISzU8zMjGCyGDUew2keT1ktM5oYRVVVFlYtxCAaEAVRS6FG40sUygWShSQd3g76o/3c3n47T596msOTh3Gb3Ywnx2nztrGyZiUnpk/oF/XLxRzyazaOOZGldjCKY7o4h6htGQnTPikj2O2cbC4RzyXYFTvBBMk57qP90X6+f/j7/O7m371mY6/h+DA7h3cSzZ2Je3CanNiMNuK5OPF8nFwph8lg0oIajWZGk6N6Vo7f6mc4PsxQbIh2b/ucgrEoKGA0EhPynLBBnzpDbf0ihHKM3pmTNHtaGIoP6b9fVjQyqN/qv+Au85cdl0qSvmfhPRRKBW2XXy7qo5tGVyPjqXFEVSCamcFhcRFKhYhmZohmZnipbzvL6lcxFBng+PgR3tN+N7csuI3ne39xpvjJpzAHarl/7SdxG3yo7iJjhTHGBkK8t/O9bMlsIZqNYhAMDMeH+ddD/8pvrP91Hj3+KEWlyK1tt2IQRLK5FBgM2MwOjKKRgegArZ7WOa/jSkzyZo9EZrIztLhbdDWXLMoUyhrfpdPfSbqY5sjkEYLOIPcsvIdfnPoF0WxUU9q5Ggk6gtzccjMnpk5wbPIYRyaPcOeCO0nkElTbq7Gb7OwY3sHLwy8zWx43khjh8Z7HcZgc5Eo5VNQLKg8FWUZetQrBZCKkholMpRBcLsTT8TDCaeuVs8UAl+q31exu5jfX/yZ7RvcQToc1uoAkM52exmP2kCwkebrvaQK2ABvqN+AwaQq8Nk8b93fez6Pdj3Js6piWg2gw0uHt4Is3fhFBFXhu4DmCjiCraldRUkqsql3FPQvuoc3XdknH5bP4WFa9jA93fZjJ9CQlpUTAHmCJf8k53/eAPUCnv5OVNSvx2/xsbd5KppjRbR/cZjcus4t6Uz0m0URfqk/rRJ823DSIhnlJ7hUKg2zUbE2OTh592xqvvlP4/A9Cu6+d39/8+5qSJzGKURVxGWzU2mtZXLeSnw+eJgaeoyuknF4U3UYnfns10WwUq9FKtpRFFESOTh7lwa4HORg+yGhilDpnHWWlTLunnS1NWzgcPsxAbIAmdxPhZJh3t72blTUrCTqCmsKrmOXE9AnavG3UOmqveOGdTX5VYjEKxT7KY2OoioLg8WiqDbNZG+elUqRKINishCZGEGy2eY8XSoWuqqPzbFR8UWYXPQC7R3dzz8J78Fq8TGYmGYwNki/lafO0UW2vZt/YPkplLZdoKjOFyWAiU8roO/EKTJKZpEukPxei/9Q+po0Fuqe6cfuCtPraqXYH2TG0Qy9+KrYC7+98/zW7WF2JfP7sv/Fb/Uynp0kWk1ckwb/UY2h2N/PpNZ9mY8NGTkyf4PWJ14nn4vRF+6i112I1mBmI9OO0unWvLICR2BDXtdxAUSnRHzlFTigxPTnIDR23wiJtJGyWzKxpXE9L8Iz6KjM6imIQyJa00OC+aB82o41MMYNZMnN86jgb6jewpHoJq2pXMZUKs7FhE0emjhJ01OkmjpWiZDYu5vtzNmaPRHpmerhnwT2EkiFORk7iMXvIFDMs8S9hVXAVu4d30+hu5Pn+5/ni1i/S5m1DQNAFDGWlTEkp0expZjQ5yqdWfwqX7GIqM4XH7MFtcTOTmdFG4soZYYEoiCiqQl+0j10ju2jxtAAXNjoV3W7ktWvJDb6M1NAAoohgNutFTwVXOopxyA7ssl3nKoG2UaiyVXFi+gT5Uh6bbCNVSGEymOjyd/Hwiof53uHv0TPTo/N5VFVlLDnGdw9+l1vbbtVz44pKkUZX4yUXPbOPyybb2Da4TS9GemZ6ODp5dM65qnz208U0ZaXMQGyA7x3+Hrd13MaesT2IgojP5kM2yHjMHprcTeRLeTY1bKJYPmMxUHkPKh12o2hkoW8hp6KnUHMquWIOAYEX1RffUp+x8+Gdwud/GBZWLeR3N//uvN1uppihxdNCf7Rfi6uwWjHkCnQEOmmoakEyyoxY8nhkP+vr1rN7ZDfjqXGtsyOI1DhqaHQ10upt5cNLP8yh8CFypRyFUoF/2vdP2Ew2rmu8jsPhwyytXkpZ1dr4skHWLhKiiaXVS6l11M4xoXsjEN1u5KVLKdfUoKRSKHV1FE+dQolEtI6XyYTDHSBfiiJYLNrrPgsm0XTN5tUVCX6Ds4GRxIh+u4rKfx37Lz6z+jP8/W1/z4HxA2RLWQK2AI/seQSDaGBl7UoMooGu6i7Mkpn7Ft6H1+IlVUhpi2U5o3EvJBmr04fRH8BdzmEr+CmqZUKpCVbVrODDnR8krxSIFxLUO+uxm+xXrcibXWA4TA4kQeKVsVeIZqOYJfMlXRgrxO94Lq77GiXyCdq97aQLacLpMC6za95CeD7349lE8soOda9xL0F7kDpn3bwiqDJKaHA2sDe0l75IH3WOOkwGEwfH9mExyDQ6GzVfmlkolPMYT5NFM8Us5VyW8dHjc37H0rRlzs+VLmcsF6OklOid6SVTzFDvqMdn9XFzyy38+PiPefrk0wxEB0gXUkiCgc+s/QzHZ3p4uu8XmCXzvGR1mDu6ulRURiLdk90k8gn+fOufc2z6GD3TPURzUSZSE+wc2smG+g082/csNfYadgzt4EOdHyKrZPnu69/lYPggAgJltcyG+g38f+v/P77y6lfoj/br45nVNatZV7eOA+MH9LG3KIj4LD6G4kMsrFo4hwt4Lmn1bAiyjNMdQHQ6z/va3sgo5uy/lSWZemc9fqufeC7Osppl1Nnr9C7iicgJXbVV2Zx4zB6a3c1s69/G3QvvZl9oHwBd1V18fNXHL6vogfP7mM0+VzPZGZ7sfRJJkHBb3Pzi1C+YTk+zyL+IZ089y+0dt5PKp6i2V9PkbmJvaC/PnHoGBYV6Rz03tdwEnMlqqwSXDseGieVjPLLnEUaSIzpJumKy+mTvkzy8/OG3VefnncLnlwQXMqG7XJwvfXe2xb3RZGZ10yb2je0jqqQYT07Qnx4hEelmUdUiFvkWsahqEUWlSLu3nUZXIz898VM+0vURvn3g2+wN7UUQBMySmXwpT4unhZeHX2ZJ9RLiuTjV9mqqrFXc2Hwj72p712X5slwOBFnWnZjVfB6pqQklFtOS2WWZVqfMofEEwsj8r4JFsuAyu67ZvDpVTBFOhdnStIUdQzv04kcURNq8bdQ4a5hITdDh66BQKiAIAuvq1+kck8Phw2SKGRpdjYwlxnhx8EVUVKYyU7R6Wrmj/Q4K5QJPnfw5N7bcSCgZorHcyKuDu5jOzdBor2PXyC4a3E18cOkHyZSyXN90/VU5/2cXGNW2ap7sfRJBEEjmk6ioF70wVi7m8VycoCPIM33PcGD8ACWlhMPkYH3dejY2bCSUDM1ZCM9nyf/ZNZ/ltdBrehHllJ384uQvmMpOYZWsLPYvPq+PUaO7kV9d86t8dc9XCSVDmkOvJNPmbeX2jjv51qtfA0HAKEisCK6kxduG0SjT7uug0d3E4MS4PkoE8HmCNFfPJc43uZuwG+3sGd2D2+zGb/UzlhxjODHMurp1fOfgd9g1sougvRZBEEinokwmxsnnM1zfegNeixef1Ucin5jzuG/E1+dsA8TltcvZN7aPZ/qewSyZsZlsetGzpWkLk+lJAo4Af7LjT/ROYlktY5WsfGzFx9g+uJ1qWzVBR5DJ9CT7Q/vpi/UxnBhmfb22oRIFUR8jJfIJjKIRszTXL+piDvHzxA6zcK6Q1ctB5bFnkpNz4kZMsswi/yI21c/l1CRy2qaixd2ic6WKSpFwOozboim9/uymP8Mje+gKdOmRK5eDc/mYVRDJRjg5c5Ldo7uxSBa29W+j0d3Ii4MvAlr23IraFQzHhxmJjzA1MMV9i+5jbXAthXKBkzMnGU+N8/r467R72ue5oze6G/nhrh8ykhwhX8qTUTPaiDYxrJusXquu+ZXincLnlwBKLEZxeBjyedRSSWvbyjLGxsZL9ru4FMze4eXLeR7vfRyP1ct0NkIkH2NL0w1sH9jO/vH9LAssYyQ+Qq29lk31m3i271lubb2VV0df5cWhF8kUM8DpFGiTg75IH/XOepyyUycvei1eOnwd+pcomU9yKnKKodgQuXKOalv1eWfUVwJBlpFqa6H2jI26CbjetIWdIy/PWSgrkvA3Mna7GOxGO3bZzuHwYboCXWxu3EyhXMBkMJHIJzAZTKwNriVdTOMwOjBLZo6EjzCZnuRw+DBD8SFW1a7i+f7niefjWkp5IU3AHkA2yJyYPkGVrQqHbGc8PkaV7CFv9rEhuJYDU0coKSUyuSQnx4/xr+lvcl/X++eNy64EZ+8+/VY/T598miOTR3CYHDS5mkgVU3Pcp891YaxczGtsNWzr38ZAdEBXKyULScZT4/rfT6QnGIoN4bf5z2vJ//9e+X98ZNlHcMkujk0d40fdP2I0MUq+lMclu/BYPMiSfN5uwoqaFXxu3efY1r+NUrnEkqrF9E+d5MeHf0BLVQfD0308uOZjxPIxemZ6UVSFfCnPvrG9LK9bzNjYccpKGZ8nyP3rP4rzdHJ4BQ7ZwfVN13Ng/ADhdJgN9Ru08QMiy2qW8egLj1Jrr2Vt3ToEQBEBQdAKZtHA7e23U+eo4/mB5/XHvJxsrkuBQ3awtXUrXquXp089jcVood3bTiKfYDI9yefWfU7jnMW196ISkPyp1Z/i56d+zvcOfw+TwYSqqjS7m7mt/TbNn6o4w7LAMs0HDAG7STPsbHI1kS1m8dvmpwRcqBM7T+xwGmfHmlzpObi76V08tuffmIlO67f7PEHuWfqueY/tMXv0a97ZkESJGlsNdy6884qPBy4+uhtPjSMJEtv6txFKhahx1Oj3JQtJRhOj1Dvq8dv8HA4fZiQxwmMnHmND/Qbes+g92GQbkiCxvn79vOvhUGyI/lg/E6mJOX5CkihRUkpc33T9207l9U7h8yah0vbPFrOYTWYGo4PEcjG8Fi9d1eev8tV8ntLICKXeXtTUmQ+PYLcjCAJGi+WKOz/nQmWH90L/C7oyBLSE9z1je1hUtYgV0grWBtdqcmi0C+99i+7jUPgQI8kRBDQisYDGVzCIBgyCAaPBqC3somneBWgwNsgLAy/w74f+nf6Ytmg5TNpC8KnVn7psOe7lYA73KRXSlSpXc+x2LlSk1RX5+ey8m1ZPKzc03qC3vA9OHOTvdv0d1bZqLEYLJ2Y0PkGNvYZ9oX00uhqZSE3QPdXNAt8CXUWzoW49j3b/mOfiz7DQv5hYehqftYqNjZuxlAQcSW1uP5PqI9MWe0NZaRWcvfus+H+AdpGdXVyFUiFU1HkXxgr/aTQxit1kZzgxTFktz/mdklLS/x60i//U5NQ5LflFQSRdTDOWGOPfDv8bywPLOTShWfq7ZBfRXJT9of1YjVb9NZxdiIVTYR557RH6Zk5hyORY33wdY7FhxmPDKAaRT2/6Df7z2H8yFBsimtM4cJsbNnNnx+2EYiHu2PQwFlGmubp9XtFTgclg4r2d7yWWi2E1Wnl4+cMUygXGkmPcvfBuJFHi+OQxJpLj3NR6C7X2WkqiqituNtVvYn3d+svK5roS3tXymuXU2GvOmQP20+M/BcAsmalz1rGoahF90T4mUhPIBhlREEHQyMuiINLoatQsAGzVtHva9XiMemc9je5GplJTZIoZjKJxTpr9xTqxV+r0fTGo+TzB4QQfDd7JSDBGqpTBLllpwI19OIHqyc+5Js+ODzobXdVdVyW9/GLnQhAEUoUUg/FBvUB2mrSojWpbNZFcROMNGiTqXfXki3lUVeXV0VfZPbIbt9nN6trV5zzWaDZKq6eVFlcL2XJWt4J4vv95pjPTpAqpt53K653C501Ape2fL+VZVbuKf9r/T/RF+zBLZorlIg6Tg9+/7vfZ2DDfG6FciRxIzV0Y1FSKYk8PYnU10lV2x4VzkyFLSomjk0eZykyxtHopU5kp/b7p7DTFchG37EYSJcySmZJSoqSUiOVi1DvrtXylwAqWVi+d1+l5ceDFOUUPaItkxTH2/9zwf66pIdb5uE/Xci59Pml10B7kwWUP6kXPcGyYX5z6BQ5ZU+7c3HIzyXySglKg1dOKx+Lh2NQxFlUtoqSUyJfyFMoFfBYvQ/EhjkwcoVDK4bZ46A0fw2H1IJtsrPbOHX/kSjmS2eQbbkufXcTkSjkMgkH/ufK5yJfylNUykWxkjjncYGyQXcOau7hTdmIUjdQ56uYVNJIokS/ndf6H3WhnPDk+73gEBKosVewb38e6unUcmjhEs7uZbCmLyWBiKjOF1WhlPDXOeGocp+zUX8NwbJgj4SNEchFsJhtd/i5CM0NkSgn29O+gK9DJpqbrcNt8nIqeIpGLYzPZcJqdiILI8enjmI1mbmq+CZvDe8Hz+srIK3zxpS/y0uBLqGgZXEurl/K5tZ/j9fHX+fnJn2M3agT8XDlPKBXCJbvIlzKYJBMb6zfqhqWXisHYID8+9mP6o/0UFK3b2Opu5YElD1yUkHq+HLDZfCKzZGZFzQp+evyn2Ew28uX8nAK2d6aXTQ2beGnoJeocdXxw6QcxGoz4rX5sJhvPnHqGkcQIKqrehXWb3Zc8rrpSp+8LQYnFUDMZbMAibIAN8gBFVIrzAlZnxwfNLn66qrv4gy1/cEWjrbNRGZPOfh9dskvPzsqVNBn+R7o+wncPfpe+SB+KqrCoahGNrkZua7+N/VP76Yv0kSwm+ZXlv8IPj/2QTEnr3GcKGRRVwWP2zHvubDnLU71PcTh8WN+ELPEv4UNdH+IHR36AzWh726lE3yl8rjEqbf9kPsnG+o388Yt/zO6R3XpWUI29hhU1K/jy7i/zlXd/Zd6XQE2l5hU98+67BoXP+ciQlS+Sw+SYU/hki1mMBiPD8WFq7DWaidcsTkO+lCdoD7K5YfM84t5QbIjpzPScoqeCZEFbiC9XjnsluBYXyYvhYrvSwdggX3/t62wf3I5RNCIgYDVaGY4P8+roq0hLJEYTo1p0CIKuLprJzuAw2knlk5ROqzGk08VHtpjlWPgw62tWzTkWs2QmqRbfcFv67N2dWTLrn5t8KU9JKTGZnkQURN0I8Pj0cbxWLz6Lj90ju3mq9yndWNFldpHMJ7mx+UaeOfUMuXIOh8mhdxbNkhmDaKDJ3cRUemre8diMNqYz08xkZjAajLjMLmxGGx6zB6PBiKqqukIxmo0Sz8VxGB28MvLKvMWqxl7DJ1Z8gn/d+03yxSLHxg+TEcusbdzASGqMVCoCkjRHRTQQHUBtnt/Vmo3h2DB/tuPP2BfahyiI+vu5L7SPf9jzD/zq6l9l5/BOJlITlNUyZqMFWTLjsXpZ7V5zRREByXyS7x3+nh5MWSlEj00eI11M8/mNn7+iwv9sd+C+SJ9mvpmdocpaRTgd1n+3rJZ1hdhUZkovgB6dfpTpzDQfXPpBYrkY46lxSkqJnukebm65mdvabmM4NnzFyr43gosFqJ7r/tnxQdF89LL5PBfrys1kZwg6gxwYP6AbmVokCxvqN9DmaWM6Pc26+nX8+c4/58D4ASRBYnPjZrqnunkt9BpHJ4+yLLCMifQEH1z6QXpmevjC9V/g+PRxwsmwNja3Vs0LHR2ODfPPB/6Z0cSoPtpSUTk2dQy64cNdH2Zl7cq3FbEZ3il8rjkqbf8ObwcvDb3E7pHdZz4gqspoYpSSUqLD28HB8MF5X4QUBQbqTaTKWRwGK3V5GetM6ozUvFw+x7O+ccy+eM2GJEpsqNuA2+yec7vb4qZQLhDLxdhYv5FXRl9hNDGKKIioqKwNruXX1v3aOdUKqWJK5wSdCyWldNly3F8mnK/gqhTNI4kRRhOjxHIxTAYTtY5aikqRDQ0bCCVCtLhb6I30ksgnqHVoxNdiuYjL4iYcC2E3mLFanMiCkRp7LQWlyFh0CEU481x1/lYtGLLwxs3HziaWCgg0OhtJFzQJ7XB8WCdyrwuuY33del4LvcZMzwzXN17Pkz1PEkqFEBBo8bQQy8WI5qK8OPgiGxs2cnDiIA2uBpL5JEF7ELfZzbrgOoZiQygo3N5+O0PxIXpnevULcbaUpc3bhtVoJVfMUSgX8Fq8HJ8+jkEw6Bdml9mF1WjFLJn539v+t170lJQSBsHAvtA+FFXh7oV38C/7/5kqs5eyqlBUimfGMIIw53xUHJgvdF4PhQ/RPdWNRbJgN9kplAukC2kkUeK10Gt8ctUnuanlJt1+wCk7MRlMNLga+PiqjxOwBy5bAHFy5iS7hncRzUWZzkzr/IxINsJjJx7jpuabuL75+st+/892B47n4pTUEkfCR1hXv44j4SNzIg5qHbVsadzCg48+SFkt8/GVHyeei2M32dkb2svKmpUsr1mOoir4rD5W1qzkhcEXUFQFAYGpzNQ5lX3XChcLUD3f/ZfbjatgtlCggtmS/tkigC1NW/TMLLNkRlVVkvkk4XQYv81Pz3SPfiwD0QGmMlOIiPTO9HL3gruRJZmfnvgpkUyEFk8Lu0d20+hq5P1L3s+tbbfywsALNLoa9e/LqZlTuM1u3r/k/eRLefqj/brx4WR6kqXVS3GZXJf9mq813il8rjEqu7xsKUsoGdLcT5XSHJ7DRGqCJf4ljMRHCKfCTKWnSBe1LJ8dQ88RPf66XuD4nDXc3fQugmMpzaPiGqWIz754na2OqaStt3pa9S6F3+bnR90/4n1L3sePjv2IZnczG+o3UFJK1Dvrec/i97AquOqcz2U32nVuxbkgidIVyXF/2TEUG2I4PsypyCk9LkBA4OWhndy96B4imQhHwkfY3LSZolIkU8iwqXETx6eO0+xu5paWm/mzbf8Xp9FBq62JeHQCl9HCdDmHIIgYDdoFus7fyq3L7mO8MPOGFC+VsVA0F6XN04bD5KBYLqKgcEPzDbR4WkgX0rw29pqmBnE2sq5+HY/sfYQPLP0AJ6ZPMBQb0nesoPmdVFmr8Fl8pAopVgdXYzPZKJaLLKlewnsWvgen2clTp57SF4aJ1ARjiTHW161nz9geSkqJJlcTC6sWsnd0L6uCq3iu7zm2NG8hW8rqBoWVgMY7Ou7gxPQJveipEHStRisWycL+0H4e7PoIpXKR6VwEv72a5cGVTGVmaHQ3kS3mkCWZseSYxiMSDHrUxLlwcOIgpyKnGEuOoZxOeLdIFi39/bTfSrKQ5Gcnfsa6+nXc0XGH/libGzbT5NaUipXohQoEiwXjwoXnFUCEkiGSheScoqeCaC5Kb6SXFbUrLnu3Hk6FiWai3NZ2G6IgUlAKbO/fjtPs5EDoAO3edpb4l1BUilp6u3cRR8JHyJQyuv+Pz+pjIjXBZHiSkfgIgiDgNruptddiEAyEkiGMBiNmg5lFVYs4FTnFruFdRDIRLd/qGnaBRLdb8wGbHf57GoLFclUFJ5ciU5/NqTs7M2s0Mcrq2tWU1TKT6UmqrFVYi1bcZjenIqc4HUCCiIjNZOOVE69wKnqKVTWrMIpGuqq7MIgGxpPjlMolnjr5FCtrV7K5cbM2Jj3xY3YM7dCiiASRFncLf3zjH/PYiceIZCNMZ6a5pfWWq3Y+rhbeKXyuMSq7vGQ+iclgQhCEOWZnFRSVIm6zm6+99jVEUaTGpnliRDIzLKiqwT6dgnKZmcQETww9y0PBO3Ba3Rh85yZJXg3MVnmdiyx5dpfirgV38WTvkzzQ+QC5Uk6PrLip5aYLjpCa3E1UWatodbfOG3c5TA6a3E1XLMf9ZUaqmNKLYKtkJV1IoaoKqWKa5/ue5xOrPsENzTcwFBvis2s+q3Orbmm5haAjSLFU4IaWG5meGiYenUBVFeQC1Bi9dNYso8nVzIeu/wyC0ch4YQaX2XXFZO6zx0KSKHFzy82sqFnBwYmDpPIpwpkwHrOHB5Y8QH+kn4n0BN99/bsUlSL3L7ofgFxZ4+sICDhkBwNRLRtJURQMooFYNsbWpq0YRANLq5cSsAf4xr5v6Iouo8FInb2Odk87kijxe5t+j2K5SCwfY8fgDnaP7ubX1/86fZE+ftz9YzbUb+C6xutwmBx6ina6mNa6a6IJFZWSUtKN+KqsVUxnpkkXM5qDuQr3L30fLtnN9498n+HEKPFcHEVVWFq9lNvabyNdSLOlYcs5z2slBX117eo5t2dLWaYz03gsHgpGLVLjV1b+Ck6TE1mSmUprXY5mdzNqPk905BT9cpRxQwSjwUTQ6KU+V8be24tp+fJzdn6MklEfPZ4LAsJl873OthJIF9LU2Gv4tXW/xrGpYwzFtcK2rJRpdDVSbavmkb2PcO/Ce9navJU6Rx1LA0sxSSaqElXsGNqh8YKUMoWS1kVYUbOCb+z/BgCt7lbes/g9rAmu4SfHf8LLwy/r16cLGR2+EZyd8aXffrrQvJpik8HYIEbRiEt26d5Xo4lRItkIo4lR9oX2zeHPVZAv5bVOW6lEo6tRD0g1Goy4RBeSKGl0i9MxNwpaSO9oYhQRUePOlXPsH99Pg7MBv81PsphksX8xfdE+GpwNepdpKjNFNBtFReXA+AH6o/3ct+g+HnntEapt1W+7MRe8U/hcc1QW9YAtQKFU4NbWWxlODJPIJbSoh9Odn3ZPO5FshLGZQYKqnXLAzuhUHwgCvVKBZZ4mjGnN1TRSShCqNlHVuuyqfsnOhfMRGM+FZnczDy9/+LIJwg7ZwY0tN6KizlN1bWnawidXf/ItTfq9EtXL1YDdaCdXypEtZKixBZhQFYpKCVmSmUhNEMlG8Fg8TKTGKZQLBGwBfnHqF9y/+H6OTB6h2lLFlobreD7yM1LqjP64DbY67ul4DxvrNzDtX/iGydzDseF5XBiP2cO2/m0YRSM3tdzEVGaKbCFLWS3TPdlNqpjSTdsAPVyx2lqNRbJgEAwMRAcolAuaOshTpwVgqmV2j+6m3lGPbJAZjY/y0tBLdPo7+emJnzIQG8BkMOExe6hz1rGydiUbGzbyr4f+lS3NW+ie7ub41HHqnHWsr1+PJEh4LV4Ojh9k98huemZ6eP+S9+Myu4jlYxTKBZ2MLRtk3GY3brObNm8bv3fj/49GZwPdU91888C3UFR0vpDRYCScChNOh/niDV88ryFdJQW9y9/F6trV7A3t1e/LlrJ48bImuEbzfilr/KtUMTVHFdk/epTvDf4Xu0Z2kS1oneKgs567O+5kvX0xLWeRbSuotlbjt/qJZCM616qgaK7PDc4GPZn+UlEp4mZ3iGVJ5vj0cb6x7xt8fsPneXnkZT3IOJwO88ypZ1hftx6v1ctEeoJXRl9hOD7M4cnDVFmreKDzAbYPbMditGgeQbaAbpBnELR8su0D28mUMhycOIgsyciS9j5dzOjwjeBSM74uF7OdlQF+duJnxPIxnLKTQrmAW3ZT76xn3/g+cqUcBycO4ra4ieViOv0glovRM92Disr9i+7nkdceoXuqm19Z8Su4zW6OTx3Xx+WSKFFUiizyLdJH0QbRgM/iw2vxckPTDdhNdo5NHuOA9wCPHn+UnukeUvkUvdO9jMRHWBtci8/io6gUMRqMjMRHdCL1ypqVb/RUXxO8U/hcYzhkB9c1Xsd3Xv8OT/c+zQ0tN9Az3UMin2CJfwnd091sqN/AB5d+kL/6+R/SaqunFIuRMbtRUykEWSZTKpFwqlSpVs1h2Gwm53Vc1Zbq1cKVEoSb3c080PkAK2pWMBQbIl/O47f6WVJ99Xx8LhfJfJLD4cMcDh8GeNP5BE3uJppcTbw6vJtMJkbAWg0GkUK5yFL/UspKCatkYX39BhL5BOFUmDpnHUfDR/HZfBQpc0vTjci5MolCgny5gGww4TQ52dx2AzXuOmqoe8PHeSR8ZJ5U126ys75uPQbRwN/v+XsOTRwiX87js/i4ofkGrm+8nv2h/RQVjQjqMDkoq2WWVC9hc+NmDo4fJF/OYzfZWVmzkpeHX2Z/bj+vjb3GWHKMd7W+i1g+Rp2jjoA9wLN9zzIQGwCgUC4QzUVRVa2QXlS1iLsW3MVLQy/RFehiiX8JLw+/TDwXJ11IMxQfQlEVlgWWYTVaccpOimVtMTg8eVgnUefLeWK5GJsaNmE1WpnKTuGQHUxmpxhNjgIa+dksmVFURUu8NtrnyfBno8Jde7b/WT656pOoqHMKwk5/J7+5/jfp8HbQ6e+cV6Qm80l+0vPYnKIHIJQY5YmTT1FuLlBV3Yj7rOcdjA0yGh/lppabiOfjjCQ0GwqzZCZgC+hZWpfD96oUcbMhiRJV1iqOTB7h/er7SRfSOlHZKTtp97azOriaHYM7iOfiSKJENBel3lnPZHqSA+MHWFK9hFORU9Q561hTu4aR+Ahus8YplCWZdDFN7vR4MV/K0zPdw4qaFciSfFGjwzeCS834ulTMdinv8HVoRoOuRrYNbGMgNoCqqpTVMkurl/KBJR/gqd6nsEgWyuUybtlNqVyirJZ1a4zb22/nh0d/SCgVIp6P8497/5E/uuGP+M7r39HME81ukvkkDa4Gbmm5hZMzJ1FRqbHVUGOv4fGex6mx1xDPxzEZTJgNZl1UMJ2ZZjIzSVd1F3tDe3lh8AU9KqXF3cK9i+5lcdXiq6JYuxZ4p/C5xkjmk+wY2oHNaGNT4yb2jO6hw9fB9fbrsRqt/K+V/4sl/k5ODO6HfB6HWsKgaDu2je1bKYoKsmTBikS5FKM0M4PU0oLd8vYjjL1ROGQHK2tXsrL22u8SkvkkJ2dOalwByaj7WvRH+skrmkQ6kU/QH+0nnA7TO9NLtbWam1tvnucUfK3gkB18dPlH6Z48ypHRA2SyCSSTmYCzljZPK7uHd1HMpPE4/ewY3cVIYgSvxcuq2lV4LV7uXnA3Te4mgs5aBidPkconscuOC/rIXAkiOY1fUIkZkCWZ5TXLiWQivDr2KqlCSguvVUSmM9O8NPgSDpODVbWreH38ddq8bbjNbm5ovoGAPcBdC+5iIDpAqpDSi56Z7AxBe5BjU8dQ0PKbJjOTfH7D57FIFi1qZRapuFAuoKIynhqne7Kbra1bsUgW+mb6dEXZqcgpFFUboVWZqygpJTr9nbhkFzuHd/LZtZ/l63u/zqHwIX0k0Onv5NfX/zqHJg4BWldmdmFzdu5avbP+gl2TCnctW8ryo+4f8YHOD/DQsoe06BGTjRWBFSyvWa4XOZXO41B8iCZXE8OxYfoTg3OKngpCiVGSSpbh/BRuzgSXJvNJdo/s5unep2lyN9Hh7WCBbwGiIBKwBbAZbVTbqkkX05fF9zqfAMEsmTXyNSqfXvNpUvmU7jB+dPIoI4kR9oT2ELAFaHQ1YjPaOBk5Sb2zHlVVubX1VlbWrGTv2F6e7H2Sexfeq6nbTqtGq23VSKKkdYIk7VxW3OHhynO53kyc7VLeM91DOBVmKDbE8enjpAtpTAYTiqpwOHyYoD3IdY3XMZnROFDN7mYW+xfzyvAruh+Y2+wmnA4TyUZQVY3g/4293+DW9luptddSY69hKK7xg3pmemhyN3FHxx3IBpkXBl7Qi9Oh+BDr69aTLWVp8bSQzCexGq3UO+p5buA5RuIjOGUniqqgqirxfJwDoQN0+d+4P9G1wjuFzzVGhXgmSzJ+m591detI5pNMpCYwGoxc33g9e068QK3Jy0JHK3IsT0P7Crb1P8ueyQMk80kEs5mVwVXcGdhC1lNAdLjpnuqmP9ZPi6eFZlczDtlxVWMt/jtjMDaoy3grIatL/EsI2AJkihl2DO/QwjzNbpb4l5AqpNjUsIk9Y3vmOQU3uZuu6RhsaWApf3rDF3mm9xdMpiewWVxMZqY4MH6AmxpvYO+pHQgxK121mvOzw+RgU/0m1tSt0Y/Dafex7CoWOmfDa/YiCiJ1jjqG4kMk8gk21W+ipJY4FTlFvbMeAQGTwUROzTGVmWIqM0WNrYZWbyv/+7r/zaraVfri/vLwy9zaditus5smVxMnpk/glJ0kCgk6/Z0oqkKVtYpQMkRJKWE0GLUC5iyug81kQ0DQF+SAPcDHVn2MR7sf5e4Fd/PUyac4FTmF0+yk2dWMbJB5aMVDCAgUlSJ90T4+vebTZEtZkrmk3lHoj/aTL+c1IrirSe80nQtmyXzBrsls9WS2lOVnvT/T72v1tPK+zvfhkB30TPecMdg87dFS66hlZc1KyqIwL1S4gpxaICPO5fAMxgZ15dx4epwWdwsmg0n32Fleu5zB2CB3L7j7gp/lcixGORyGXA7MZpyYUdJpTXRhMiEYzrwfFYfitXVr5xxHWS1zYuoEiqowlZlCEiU6fB24ZTd9kT5kSebo5FEtYX6qm2pbNUPxIT3/S0XFKBrJlXJarl5B+x5WRnbwxlWKbwZmu5Q/0/cMbrObRf5F/NO+f8IiWQDNhsIgGsiX8jS4GjgVOcX2we3Ec3EAbmi+gd9c/5u0eFv0vLaiUqRQ1uJuDIKBdCnN9498n0K5wB9e/4d6nIxDdrDAu4AqaxXfP/J9VtSuIJnXLA4W+hZyR8cddE91k8wndXuKoCPIQHQASZTmBOM6TU56ZnrOGZb7dsE7hc81RmW3MZGaYH9oP03uJqqt1QTsAZyyE5vRxr2tt+MajxMtH0OuDrJtdAfjsTFa/E2MpMdpCXZiMEjsy/Vzz6J7CKcmeHHoRQBkg8yNzTeyzL2Q4HBCC988jYupOv4nIplP8uNjP9aLHtBIkE+fepo2Txu19lr6o/0oqsJkepKSUmKBbwE7hnbQFeiie6pb52WFkiG2D24/r8z0amFF9TKq0yInciMklCwJTwaf5OTVUy9RQkEQ0aXQN7fcPKfoeTPQFehiY/1Gdg7vJJFPoKiKzlGQDTLZYhZFVVBUBZPBpLv3bqjfwE2mmzg2dYxVtatI5pPsG9vHwYmDdHg7ODF9ApPBxNHJoyyp1lSPQ/EhZIPMWGIMyaAZGC7wLcBpdpKe1fWojFFmMjNzFIHN7mY+ufqTHAkfodPfSaaU0bkNXouXrc1bSeY1vlFRKXIyclL/23xGI4zeu/hebmy6UQ/33RvaOy9oFjSe02L/4gt2Tc5WTwoI2Iw26l31PLD4AWYyM0QyEf7+tb/XFxkBAQVFI0Cnp2nzttMzdVz77s8ufkQRi90zrzscSoV05VxJKXEycnKOoeTG+o0XDZUsjoyQ37mTcjiMaLOhxGK0r+2k1dXCqeGDCLKM6HAgmLQF+Fx5Yc3uZnwWHzW2Gvpj2nfOYXLgkB1YJatuTikKIol8go31G6m2VfODoz/QuguoeMweFvoW4rV4WR1czXhqnGpbNT6zj4JSwGV2ve3M886FyjqhojIQHWBNcA2qqpIqpCgpJSySBZvVhizJLKtexiujr1AsF4nn4jS7mzGIBqbSUzx24jE2Nmzk5MxJmlxNc7zUQOuEVlurafG04Lf5GY4NU+uoJegI8u0D3+b41HGWBpbS4m7BZXaxoW4DT596muNTx5lITWCWzCysWkgin6DV20rQEWQqPYUgCHrUSKOrkXQxjcVoeStO5SXhncLnGsNutJMqpNgf2s+6unW8PPwyz/efydIZjg/zuys+hxzPsWnFXRzI9tF34Flkk0Q6MkXXwnW8GtpDJBuhyd2MJEo81vMYK2tX8troa9Q6anHJLkhncAqN2GY9t5rNUuzpwbRixTudn9MYig3RH+3XfVVUVIrlIh6zRyf2VS4WAgKT6UmW+JdwKnGKzY2bAU67IvuYyk5RVsoEbAGd/3MtCJWCLFNb00ZVTwk1l2PUqSI5C/Q7TzJeiiCIIhbJwubGzbxvyfvedBVFo7uRj638GKcip4jn4hTLRUpKCa/FS5W1ionUBBajhWKpiM1kwyFrPIF8Oc/wtBZlcTh8mP3j+8kWs+wP7WckPsKaoFbAtXnbNB+jfAyzwYxTdjKVmcJmtBFOhTGKRtYG1zKdmdbfQ1EQ9XDcyoI7e1TkMru4ufVmptJT5+TNnCvgUpbmh1BW3LetRiuPnXhML348Zg93LbiLDy390EXfj9nqyUguQjgVpqyW2TO2R+9svTDwAvmyJm5wmBy0eFroneml099Jo7sRq9lBRhShVAJVBUEg6GnEZZtvT1AszTfYk0QJyaQtB0aD8aKdnkrRI5hMWuhvLod7z1F+485P8kztbsKxMcwmKwnyFNUSn1v3uXNy9Ryyg7V1azk6dXTO+W5wNaCi4rf6WVi1EL/Nz4rACh49/ihLqpeQLWqbliprlXZdHXmZQxOHtIwwq5+NDRu5b9F9bG7Y/LZUFZ2NSlcqV8pRVstMZaaod9QD2gg5motiEAx6EO2OoR10VnfS7G5mJjvDTGYGs2QmlovphYzZaGaJfwk7hndo35G6tbS4W2jztrF3bC/bB7ZTVsrUO+v5+t6vE0pqXKDn+p7TC8v9of18fuPneaLnCdxmt+5zVWOvYSw+xtLqpUymJ/VIEYNoIFPMsK5uHdW26rfylF4QvxSFz+DgIH/6p3/K9u3bmZiYIBgM8uCDD/KHf/iHmExnrO6Hh4f53Oc+x/bt27FYLHz4wx/my1/+8pzfebPR5G5CRKTJ3cTLwy/ricWg7UpPTJ/gX3r+k2Wmak6+8BL1a7ZQbatGMBioq2rhxeEdTKXC1Hm0kUqHr0PbrY1DV/VSxpMhDo6/zlJ/JwfL06yQg9gLAmo6DaqKms3Os1D/n4xUMUVBKehS6WQhiVE0MpIYocnVxPVN1+tRCBWlS4WAWygXtJa9vYbHjj9GqphCVTUfDL/Nz+3ttxPPxQmnw1edUDlbRdJcLFIVbGVZ+yZCmQlK5RK19to5MSBvNuwmOx9c+kHShTTJQpJ2Tzu9kV5q7DWU1TKyQSZv0s6pbJAJOoNnSMOlPIfDh+me6sZr8epRD6FkiN/a8Fvc1HwTT/Q+gdFqJF/OM5WZwiJZWFmzkunMND6rj5tabuKx44/Rn+jHZrTR4GrAZXLxseUfY9/YPjLFDJOZSVKFFMl8Eskg6d25s9+nyw24rORWrQ+uJ5wJoygKje5GOv2dl/x+BOwBrEYr3z34XT3RvsPXwYmpExgEA1uatpDMJ9k/vp9kIclAdIAmVxOZQoZGZyObGzdrXUxRKwiC9iB3L7ybTQ2b5h1D0BHEIlnmZMNVYJEs1Npr590+G+VwGGVyEhQFQZK0hHJRZLyjmm0v/htT1SYi+Si5dIkmfzsPr/rYBb8L5zrfbrObekc9q2tX85/H/hODYGAqM4XP6mOBbwGxXEyLBpGdfO/I9zg2eYyN9RupslZRY6+hylJFKBHCa/Fe0vl/q1Ex/TSKRgyCgUMTh3io6yFWBFbQO9MLaEaYHrMHi9GCQTQgG2R6Z3oplouYJTNltYwkSqio7BrZxab6TXxi9SfIlXI0uBrYG9qLqqrsHtmthyFvbtyMJEocmTxCoaz5H1UsVwRBYDA2SKlc4sbmGxlPjWOWzHgsmmJzYdVCLJIFh0nr0BWVIlajlQW+BbR4Wt7WnbZfisLnxIkTKIrCN77xDdrb2zl69Cif/OQnSafTfPnLXwagXC5z55134vf7efnll5mZmeHhhx9GVVW++tWvvmXH7pAd3Nh8I8KQMKfT45SdNLmaGIkN0TvdQ2ttDYpJopRKkpoKYXf6iJWShNITCIDVaCWa18L7REQyxQxui4d4PsFgfIiR5BjPnHyFQ6Y63t15DyVZIZmK4JCsNJXS81Qd/1NhN9oxikYGogPkS3mMohFREPFavBTLRWYyM6wJrmHn8E4UFKxGK8url7PQt5CgI8hC30JGEiPYTXYypQz9sX5Nij0FfZE+bmy+kWZ3sz7quZqYrSJxA24a6WL5VX+eK4HNaGMyPcloYpRoLkpftI91wXVsbdnKEz1PkCwkiWQjNDq1XKBVwVWMxLXuSDwXJ21Js31guz5uPBQ+xHR6mldGX2FZYJmeWG40GHGYHDS4GlgTXMNAbICtzVupd9aztnYtk5lJPeCzrJT5oxf/iEZnIzaTjUwxQ52zjkZnI33RPoA53blwKqx7VnnMHu5beB/JfFKLRbiI3P9ybB/OhwrPwyAYCDqCPN/3PE+dfEpT6k0epbOqk3e1vYtn+57Vw14LSoGgI8hvrv9N7mi/Q0vhNkgE7UGa3c3nPN4OX8eZQmlW8VPpGp4dSzAPOc1rCVXV/gdk6/w8MbqNmVgIi7WeuqkMgsWCwZJn++D2i1olnC+6BeDI1BH9vESzUU7OnOS10GuYJTMPLXuIidQETe4mjAYj8Xwch8lBtb1aI4FfI0XX1Ual+Ns1vIsWTwsHxg9wYPwADy1/iN0ju3WHcavRitVopdXTSrFcJF1IYzPZKCklzJIZm8mGW3YTsAVo87RhN9n5y1v/km8f+Db1znrWB9fzw+4f6oadfZE+FvoWUlJK5EpaFEyFH2QUjdzaeguPn3gMsVTGgAFFEllSs4zrG68nlAzx7vZ381zfcwzFhhBFLQjYYXJc03Dnq4FfisLntttu47bbbtN/bm1tpaenh3/8x3/UC59nn32W7u5uRkZGCAaDAPzt3/4tv/Irv8Kf//mf43Q635JjB7BKmkR2afVSvRWfL+UZS45RKBWQFIG8WkBwuTAYjCxatJndo6/QWNC8EQRVRVEVWt0tjCXGqLJWkSvlGIoNcWDiAABjiVE6mlcyOHSUv9n3d6wNrGY8PgqFAv7kIu61ffBNsXN/u6PJ3YTP6tNjMArlAkbRSKqQYlHVInKlHPWOeqxGK8Vykfd1vo/94/s5FT1Fo7MRv81PIp/g7oV3s//Qft1/RjbIdPg0dUw8H2ckPoIkSizwLcAhO+aEXXotXrqqLz2n55cBZsnMaGKU8dQ4IiLpQpqXh19mde1q/vf1/xtJkEgWktTYapjOTDMSH9HVUA7ZwcnISSbTk0SzUX538+/SM9PDQGyA/zr6XywPLKfF08L6+vUUFW13WzHIbPW0UuesY0lgCcl8ku8e/C4m0cSpyCl2Du+k1d1K93Q3+0L7tE2DILI2uJb3L3k/48lxItkIw7FhcuUc3zrwrTk8moA9wK+v/3U21G94U85hhefht/rZ1r+NSDaiE1v9Vr/eLV5es5x9oX2UlBJBe1AvKs7njH42HLKDB5c9iNlg1kMt7ZKdLc1bsBqtPN//PG6zm07/eZLdzWbtX0HQ4znGnCozw6Ezt1f+laRLlpSfzwqj0g2aykxxc+vN7BrZxWB8EAFBV9H5LD56ZnpwyS6qbFXzzukvAyqcp3ZvO/917L84ETnBbW230eJuwWv2ki1nsRltrKxdyfHJ44ynx7VIIFXFLJmpd9bT7GpGQECWZCwmC2vr13I0fBSX7NLuEzQOmWzRsvOypSwWo0U31a04hwMs9y9lV/9LtLia8eQEAnGBxq5NPHbqFxyf0bK7YrkYt7TewoeWfohEIYFTdrImuOZt3e2BX5LC51yIx+N4vWfamK+88gpLly7Vix6Ad7/73eTzefbv38/WrVvP+Tj5fJ58Pq//nEgkrvqxLq5ezKuhVxlNjM67z2PxIBZLmDJFBKsVTDKttjaOz5xANphAVTEaZG5pvVlL157updndTCgZIpFP6KqGdDHDT4cfY31wHTPDY9pOTJJAUYgoqTdFfv3LAIfs4OaWm9kxtEMPSywqWvzB8sBy9ozt4YHOBxAFkXe3vZu+aB/xfJwN9Rv01HNJlOie7OY3NvwG2WJW23GVSzze8zj/cvBf6I/2k8wnWVC1gN/e+NtUW6v5691/PT+Z+fo/YGPDxrfqVFw1JPNJfn7y59y78F7+bs/fsWd0j04Aj+QifCH4BaYyU0xnpnGYHLrnDWjjo67GLn7rmd8CtPeid7qXRlcjGxs2aiZrgoTdZNejJWrsNQQdQWRJnhOxMRQb0j1QikqRDfUbSOfTBGwBWlwt2GQbZUULxdw/vp9FvkVkShnCmTBfeeUrc94fh8mBKIp8dc9X+dLNX3pTvKQqPI+KDN9r8WI32VFUhTZvG/lSXpf1A7R4Wnhw2YNX9J1udjfz6TWfZig2RKaYIV/O8+0D354ziq/E06yoWTHnbw2BAGJ1NeVwGLVUArOZlKJ1jgSrFbVcBoMBwWxGtGmswzdSgMzuBqWLadbXrefDSz/M7pHdeCweDk0cYiw5hkt2sb5+PXbTGRXXL4OiazYcsoP19evp9HdycuYk4VSYhb6FRLIRjk8f1yI9cgkeWv4QLw29RL6URxIlbCYbza5m3W4Dzrz2VDGFLMlU26vx27TUe0DfmFkkC7+x7jcQRAFFURhPjTOeCBGw+jk4cQiDICK7PNTUt/PcyIv0pfuI5CLUOesoKkWePvU0RyePsia4hlguxvWNl5/v9mbjl7Lw6evr46tf/Sp/+7d/q982MTFB4Cwei8fjwWQyMTExcfZD6PiLv/gLvvjFL16zYwWtDX57++3sGt41z912RfUychMhSCZRxsZQvI08e+IpVtQs48ZF7+b65hvwWX3sHNrJs33PMRAbIFFI0FXdxY1NN3J08igLfQuZSIxzIPQ6KwIriSlpRJMJUgqGqiqEy9h1/U+AoAosrV7KhvoN5Io5RFFkMqWZpRXKBRZWLeSvb/1rTKKJ7xz8DnWOOmYyMxTLRRpcDewa2cW2gW3kSjme63+ODXUbWF23WneYLatlmj3NHJw4yIsDL5IqpvRwwAqOTB7hSzu/xNfu+NovfednKDaE3WTnkb2PYDfa+VDXh7ROpqglx39t39f4nY2/w9aWrXgt3nnjjJ7pHuqcdQzGBwEYS44RSobYNbILl+wikUuwtXkr2WKWaC46p+iZ3VJPF9MEHUF+ceoXnJg+oXOHNtRv4Pqm6/mPI/9BQTnT4dvcsJlENMFIfGSeAWOFR6MoCt2T3W9K4VPheeRKOb3g6fB14DA58Fl91Npr8Zg92GU7K2pW0O5tp9ZxYT7OhVDpsIRTYb6w7Qtzih6A/mg//7DnH/iLm/9izus3uN3I119/RtXldmM3iQhWK6LfjzI9jehyYQgGdVXXGy1Azu4GLQ0spSvQxcnpk5xq0LLs/Db/nKJndlE82xHZarJSLBVJFVKU1TJ2k5YVODt8863GuTp4lXiaVDGFw+hgU8Mm1tWvI5aN6XEWoWSIslqe89pnn3sBgaA9yGRmkvV163l5+GUGo4NMZ6fpnekl6AiyoW4DA7EBNtVvZFUsRHximBYjqFaFgcIE5UIeWTTOUYyNJEbY3LgZo2h823d74C0ufP7v//2/Fy069u7dy5o1a/SfQ6EQt912G+973/v4xCc+Med3hbNSkQGdpHU+fOELX+Dzn/+8/nMikaChoeFSX8IlY3nNcv7i5r/g3w79G0PxIcySGb/NT8Dko9a9ihP7ngNVJZtLoSZTOOqtfPOVR9jQfiP/dujfODp5lFZPK12BLo6Gj5LMJ9k2sI0PLvkAIiL/eeQ/UE9LXDuDy3H46zAastgtLkwGE7Fc7Jeq7XstYZNtxLIxuqe6KSklZjIzLKlewob6DTpJMJ6NIwgCsVwMSZQoKSV8Vh97Q3uZSE2gon2uEvmElgQe7eXOjjvZNrhtDk8jX84zlhjTOyCzTf6mM9McGD+Ax+J521xwrwSpYgoFhdfHX9eNAyukb9DGNBPpCdbWrT3nOMMiWbhrwV1MZ6bpmelhX2if7iGjqiqFcoGpzBR3LrhTl+6ei3NjNVrZ1r+NeD6uSb5VBYfs4FD4EOFUmPX169k5vBPQCpu+SB/1znqi2bmmgxVUeDTnM+a7Gjg7DuWO9jt4eeRlbCYbfoufk5GTxHNxjk0dwyk7MRqMtHvaOTZ1jOU1yzkYPviG7RNmOy7PlrUbBAO9M73nLPyMDQ2Id9yh+/i02E0ELBPMxEKIbW2INpte9LyR4NsLocKrqnfXX5CIPtsROegIsn1gO7lSjmguiqIqBO1Bbmy+kZ3qTi3wVVXecrHAuXCu787W5q083vO43r2G+ST8SkEdyUb0ceFgbJAXB1+kqBSZzkxTKBdo97aTLqQZjA1yc9NWlGKBYipBh70JaSpBLp+klM9RVEu4zW59DAtgEk1YJStr6tYwHB9+WxWR58JbWvj82q/9Gh/84Acv+DvNzc36f4dCIbZu3crGjRv55je/Oef3ampq2LNnz5zbotEoxWJxXidoNmRZRn6TpN5LA0v5oxv+aN6Od3J8gPBID9Pj/ZhFE4vqlvHKxD6yQhFBEMiVcnT4OigrZUpKia0tWxlLjFFUtA7El1/+ay0nRTSytKaLX/Q+zcDBAXpmehAkiVZ3K+/tfC8O49v3g/hmwipZuaH5Bp4++TRD8SFuab2FXcO72Du2l1ZPK0OxIZxmJ3cvuBuLZKGklMgWs6gWVTOeFDXDPLNkJlfO6Tbxd3bcSaaY0eWnlTycolJEUZV5Jn8A+8f3M5wY1hev2QTbC/Is3kawG+2kC2ldAgvovh4ABtFAKn9+ommju5HyUJn7Ft3HZHqSZCGJ2WDm5pabMRvMrAquosXdclGCbLFc1GW/AgJWoxXZIBPPxxlODLOxYaPOf1BUBUEQaPG0cHzq+Hkfs6SU5vgAXU1UFuSzF+xbW24lmony4uCL9EZ6mUxPauaPpRxWoxWzwUyzu5me6R4skkUfYwNXZKZZKexypRwzmRm9cC2rZYyicU7i92wY3G4Mpz3CvMB9vgcvWICc7ZYedAR189U3grOJ0SbRhNFgZCI1QbKgeUM5TU6qbdU81/cc+XKe6cy07vkzEBuAQXCZXXxt79c0/xu1zObGzTy47MG3NTfyfKTw2ef0bNVcKBmiw9vB4cnDWCUrJyMn9ZgVq9FKIhvFa3RSyKRYXLcCYXwC1QlmUcagaFYJsmjEa/ViNVkRBZGSUqLB3aBZCsSGcMpONjduftueu7e08KmqqqKqqurivwiMjY2xdetWVq9ezXe/+11EUZxz/8aNG/nzP/9zxsfHqa3V2r/PPvsssiyzevXqcz3kW4JzVe2O5mV83PFHDE32klNLiPEAR4/+BxajnUwxo1fzoiCiqApG0cjRySM4ZReh1Lgut7530f280P8CkiiRziXAoPmZJAtJXh19lWXVyzg6efRNC9l8u0KWZPaF9hF0BtnStIUXB1/EZDDR6GpkLDmmnfNUmBOeE3T4OhhNjOoqIVTIlDIs8i0imotilazIkoxB0PwrULXwxIphn1E06soxt9k9p+gBrUsRyUZ4svdJNtZv5Gt7vzYn7+h8PIu3EyqEcVEQ590nG2Q9af18HUeH7OCuBXfxeM/jGLJaGGfFFv+BrgdYElhyScdRULQxZe9MLy6zZtrnsXiYykzpdvp+mx+X7KLN00aNvUZ7jwxGWt2tejjubMz2AbqaqEQUnO0VFMlG2Da4jUX+RXxlz1d0tY3dZCeei1NWyrw88jKf3/h5BmIDxHNxZEnWfZAi2QhG0Uizu5n9of26YvFCZHq37NY7nwDTmWlypZx+fzQbZX9oP6uDF76OXmgRPtstHTTJ/e0dt+sBzZIkXVIxdL7Q4KWBpXoxGYqOkEpHWdd6Hcenu9nWv52uQBc/OPoDnCYnfpufGnuN7ob88sjL3NlxJ7lSjoW+hRglI4l8gm3927hrwV1v683HpeQjnv3eTKen6azqZCQxQiwXo6Ro7t5quYyEiFIskn59H7fe8DD7Bp8iUtQ24a2OJsrFCRrdjYSjY5hlKyUUCuUCT/c+TSgVQhI1VaEgCPgsvrflWvNLwfEJhULceOONNDY28uUvf5mpqSn9vpqaGgDe9a530dnZyUMPPcTf/M3fEIlE+J3f+R0++clPvqWKrkuFwW6nnHcwlQzhdwRYXb+OgegAdqM2f64oUoDTJlZVhFNhqiw+ugLLCDrqeHfHu/jH176OiEhRLWEQDdQ56hhPjfPa2GssDyzXk53fjJDNtyOS+SS/6PsFG+o38Hzfc4waRnlp8EU8Zg/rGzZwXeN1KIpCk7uJWC7GhroNPJF+goHkAEF7EKPBSJu9jTXBNbww8AKZUoZYLobLrI0UBUHz/REFUfesqXPWMRgbRJZkEvkEoiBSY69hcdViArYA+XIep+zk2we+PS/k8Xw8i7cTHLKDtbVr2diwkZ1DO3W1lmyQ8Vl9LKtehkEwXJDncSk714vBbrTjNrtZHlhOJBshmouyqnYVxXKRWC6Gx+LBa/FS76zn3kX3MpmepNZey0BsgPd2vpefdP9kTvHTVd3Fp1Z96g2d9/N18CrS9XNhOjON1+zVu4qV779mrlkilo1hEERURaGgFHQuU6XoafO08fW9X+fw5GFMBhNu2c3CqoXnJdN3VnfS4GhgIjUxr+hZFljGSGKEwwcOU++sv+i5OHsRTuaTHAkf4XuHv0fPTI/ejVNR6Y/1860D32JZ9TIUFLqnugnag9y18C42NWw65/WpUtgMx4eZSk+RK+VocjXx4WUfRhIk9o3vo1Qu0uhpxuZfzPHpHh7tfpTRxChLqrUCOlfOMRwfxiyZafG0kC6kccpOFngX8P9n773j5Ljr+//nzPZeb/dur9/p7qSTTl06q7nJDReMMcQ2jsFAHAimJASSAPn+gG8gfBMgBZJ8EyAQOnxNcZEL7pZly7LVTzrp7nS93+3e9jJbZn5/jG6ls2Rbso1siXn64YetLbOzs6uZ174/7/fr1ehqZM/UHkbiI+hEHXsn9jISG+GDqz943p8vT/5sDk0f4rnR50jmkydEjyyjFAoUZJm0lERymHHNprnDeQnjTpmMSceaTZfwu5En2T7+HBOJMVoDS4hLSVZUrmDX2C6sRvW7OpGaYFvPNjoCHXQE336ZXeeF8Hn00Uc5duwYx44do6amZsF982N4Op2OBx98kI997GNs2rRpgYHh2535X0P7JveVf61m8hkubriYnJwrhzPOLyOEHCHWVa/Db/GzonIlTpMLvSAynZrGYXLitnjIFrPUuGpVfwVEpJJEpqjGWfw+3IXPF4Zjw4QzYUSpwGbHMkSnk5WBFVzRchX3Hr2X50ae412L38W/7vpXZtIzdNZ0IhUkttRtYXlgOR3BDrpmurjn8D2YDWbMOjPDsWFuWnITAmoezua6zbR4W6iwVrCueh0he4hYNspUagpRgWZPEwa9kSZPE9/d+12kksR1LdcxlZoqXxROZiA6cM4abF8vbRVtfPnSL/O1HV+je7ZbPRaijkWeRdyx4g6m09Ov2edxJr9cX42TexmqHFVYDBZG46NUO6tZE1pDo6eRm8034zQ6OTR9CLvZjlFv5MqmK3ls4DFubr8Zo2gkV1KXlNr97a/tafMq7J/aX46imGe+gicVpVd5Jhh1RgzHG0jzpTyyLFOSSwiAXtRhFk0sdjbT4G4iV5Iw6oz4LD78Vn9Z9MCJsNZXa6YP2oN8ZO1HSDyfWDB5ujy4nD/u+GP+c/d/UuuqXfAdfKWqy8nMixSDaODJwSeZzcyWXadj2Riz6VmiuShLK5aWK3TzF0xFUU6pFiSlJNt6t5UjRgw6AzajjYHYAN/Z/R2cJif/sfs/yOYzKCh86qI/x2lyMp4cpyDny4akJp2JzXWby0aOCgpjiTGqndX8rOtnZYuQolzEYXQwkhi54M6X9e569ftVKuEwOlRbjlIJFIU6Vx2R5Az+qhqq9R6scoKW2QKi047Qk6Sm+QbaKhYTL6RwOrzcd+Renht4hoyiXmMq7ZVl8TORmtCEz+vlzjvv5M4773zNx9XV1bFt27bf/w69icxnR+2d3EtfpE/tb9CbCWfDvDT+EiFHSL34ltRwxHm3TLfJzWWNlzE4N0h3uBsZmc5QJ26Lh0g2gqzI2Ay2cnI2qL0t88sNf6hTXqlCCqVYJD87zWSxSJV+McsrO3jk2CNMpSa5pP5SdozuYDwxTlEp0j/XT0EusHN8J0srlvKFLV/gwNQBRFEkKSWpsFXQ7G3misYrCKfD/NPV/8QTg0+QyqfQi3p2T+ym0ujl/1v/V4zkpuiLHiMuJZlKTDCeGGNl5UpKSgmL3lKuSuSLedKF9AIB9PtssH2z6Kzp5B+2/gO7p3YTy8ZUMzS9ken0NNe1XPd7v2i8vJdhvgGzzd9Gg6uBrukuMsUMT0Wewm/1847gO/jtkd/isXi4pvkaItkIvznyG6ZSUxh1RvZM7qFptIn3LH3PWf/an05NnyJ64EQF7xPrP/Gqz6+0VbK6ajWHZw5jN9iR5RI2g5V8KU+7fwl+q5994UM8OfI0PkeQGxerfTQlpYTFYGFZYBl9ETWDa/571DXTRdd012mXvALWAO9f8X62Nm7FZXIhiiKJXILp9DQbajcQyUbK38Gh2BDbelVxIhUl0oU0XouXdaF1OE1OfFYfM+kZfnboZ8RzcRrdjeUq4Py0XNAWJFtUM9zmgzTnmUipVh0vPz+NxEbQCTruPXovPRF1SlJRFDqCHfgtfjWXzewmnVfPceOJceLGGAFbgInkBJOJCdp8rWyq28wzw8/wxOATeMwepJLEqspVmA1mnhl6BgQ14d2kM2E1WBmIDqhJ5hfQ+dJhcnBl85X0R/tpFBsZjA6SyEeoc9ezpXojQxNHuKXxBsxPqebBWCzoWlqQ5+aIFOMc7n4GgJqW1bwwqA4MYDBQFNTm+Pn4k2Kp+Eq78JZyXgifC5n57CipKJXN8CLZCPWueqLZKM3eZn5x6Bdc13Idf7b2zxhPjpOUkgzGBvlfT/4vfFYft3XcpgYrCmqD4rzAmS9hAjS5mzDpTQv6LP4Qp7zsBrtqsV88fmwkiWpnDY8PPUVCSmDSmzg8cxhBELi0/lKavc1qn5SUZCwxxpHwET667qO8f+X7iWfj2E12quxVdM104bV62T25G1mRWVu1tlxlSyl5dob3s8TXhllvYSo1Q6O3iXsO/z9GkmPkijn+aOkf0RPpYUVwBaOJUZo8TSSlZPmidXKD7du5Abqtoo2QM/SGlqzeCKdbMnOanIzGRhFFkb5IHz6Lj1QhxbbebTR7m8u5WP1z/RycPrjAzXgwOkiulONTnZ86q/dw8qTUyxmIDhDNRk+bBwbqUnaLv4Wb229GJ+o4Fu4lnA5jt1bgMbl5/8o7+cWhXxDPzhGwVvCRdR/j3178Nw5MH+CWZbfwzPAzhBzqpNJsehaLwYJUlBiKDxGVTj/BVuuu5dmRZ5nNzPLjgz8mmU+WR+qbPE28Y9E78Jq85aqLgMBvjvyG3rleMoUMsiKzunI1f7P5b7jv6H0E7UGkooTL5MJmsKETTiS1J/NJKu2V5Wq9QTSU3YLnyRVzp5yfMsUM23q3lUUPqIZ7k8lJJpOTvK/jfRhEQ/k+vagnU8xi1JtwGtWJuL/c+BnuPXpvOfcqV8xRlIsk80l+2fVLbl9+Oz879DMEBPKlPEkpScGmhoFeaOdLr9mreu4I6pi7GQPIMqnJEapMi3BFc2CzlbPflFwOjEZSxRNB2BbBgMPkJCklyi7e8yL3TOJP3io04fMWM58dVZSLC0adS0qJRb5FLK1YyrLAMlq8LTzU+xBD8SFEQeSpoacI2oL0RHr4edfPuXXZrcRyMa5ZdA1dM130RnpxmpyY9WaqHdVc3Xw1Y4mxBYm555u515tBvbsen8XLLGEAZiIjtNZcTrqQJl3IUJSLGEQD71n6HvZM7uGpoaeotFcykZygwd1AhbWCdD6tBkT624lLcXaN78JmUMM3u2e6ub7ten7W9TO6Z7tBAbPBTL2rnr/Z/Dc8OvAosqIa1On1xrLfTTKfxGF0MBAdwGqwlrOYUoXUgmTr+eWT3khveey4zdfGX274S9ZWr321t37OeKNLVm+Ek5dgHEYHuWKOHx74IY/2P8qywDJ+fujnZZdbu9FOT7iHlZUrmcvOsWdqzyn5VdliludGnuPaRdeesTMyvHaFLi7FXzUPLGgPsrF2I4qiEA/NksrEEfR6zHqzumRYklkaWMqWxsv4zz3/ycGZg2pvGSJ2g52xxBiZQoZaZy07RncQtAdZEVyB13RqdtX8MWvxtfDU0FO4TC7GEmMMxVR35P65fnKFHF+85Is8PfQ0Jp2JJwaeIJFPkCvmym6/XTNd/Kr7V7gtbrb1bWM0MYooiKysXMm1Ldfyy0O/JFdS+4dKSglBEKh3qcufJzf8g+oE/vLzU0pKMRQbWnCbgjp9NhIfUR2IT6qSTiTGqXHV0uhu5Ormq9k5upMXx1/k6aGn0Yt6PGYPywLLVME7dZDB6CCf3/J5ZEUuV2ENOgOFUkF1t74AzpeKJCHHYiiFAtVGJ1I+S7QQV+/L5yklEpT6+/GavYQoQOq42BME0OlAkrDrreXtZWJhNtRsYOfYTpLHTSx1gu7M40/eIjTh8xZjN9jL45cnjzorsoxc0U6FtYLv7/8+bd42fnDgBwCsDa2l1llb9tqI5WKk8in2Tu7FbrTz4VUfJlfMcWj2EA3uBgaiahOh3Wins6aTSnvl781b4+2Ow+TghrZ3cl/0R0RSM+UIEZ2gY3XlairtlVy16CpemniJo+GjgJpWDTAcH+a5see4pf0WgrYg/7Xnv+iP9pcnuJYHlnP3urv5l13/oooewKg3ks6nOThzkF8e/iWbajczFB/iqSF1uaXV38pkapLtQ9u5oe0GjoSPoBwXRgpKuSckaA+Wl0+6Z7sJZ8Llit7OsZ18+Zkv840rv0FbRdtbc2DfBrx8PNxn8fFo/6OsrlrNaGKUNn8biqKQzqcZjg1T766nKBeJ5+LYjXZyhdxpt5stZplMTZ7VvrzWCLzb5H7Nhu75CIPB8W4S0yPY9VZqcfN0sp+SlGVwrp/Lmq/khbEXcJlcFOUi0VyUgD1AJBxhOj3NsoplFOUiM6kZ4q44jZ7GVzxmdoOdofgQM+kZWnwt6AQdRbmISW8imVeHAhxGB4IgcCR8BJvRxsrKlRyYOkBBLhCwBXhm+BluXHwjgiBQlIsYdUYOTh/EpDNxfev13Ntzr7pNnYlWbytb6rYgCALPjz1f3qeQPaRmGb7s/KQTdbjNbsaT4+Xb5vvqPGYP4UwYo86Iy+hiReVKlgaX4bf6uWbRNTw++DhHwke4ZtE1VDurF1R8/FY/FoOFRE51wteLqlP4/IBCSSmVo0HOV+RUitL0tOq7BKDTYZYkrvesZVv0BaJyGsFoRCgWqahp5TrPRVj2qnl2CAKC349gt0OpRC1ufPYAkdQMU+EhOmtWIMslpgpzIAjUOGto8bbw3qXvfdv2RGnC5y2m3l1Pk6eJaE4N30vlUwiAiMjSinZeGNvJ7uP+MgoKAgK5Qo7ZzCz1rnrsRjvjiXF6I71sH95OSSmxLrSOY9FjHA0fZV1oHTPpGQqy6nGya2wXtyy75W0fIvf7pLGihfe3vpdRaYZUMUNYp8dqsLJ/ap86Tutp4KG+hxAQMOqMalPp8V+npVIJURD5addPGU+ME8mEyR6fginIBYpKkdVVq9kzuQdQT8xFRRUo/XP9bG3cSkkpkSlm1Okdi5d0Po0gCDwz9AyXN17OqqpVzGZmWR5YzobaDeVlrO6ZbnojvQtEzzxdM13snlJH9P8QP9fTjYdLRYmumS5qXbUYRSM6QVdu9i3kVefeWC5Go7sRg86AXtQjlU7fdKzXnd2psj3QTpOn6bTLXSdX8F6rOuYwOeioXkl+FpR0FijgdjtBrycpJdSeNRQKpQJ6Uc+hmUNc1nAZfoufaC6KKIosCyyjwlrByuAKBqMDLAksOeWY6QRV/HvNXqwGK0fDR8vj7QoKHrOH97S/h2g2ymBskMOzhwEI2oIsDy5n39Q+rAYr48lxpKKEVJRwGB1IJQlZkXlp4iUub7ycT3V+ikKpwLLgMpxGJ4dnD3Pv0XvL3+dXS5X3WrysCK5gNjPLTHoGUC0+zHozi/2LiefiKIrCLR238OL4S3x373epsFawJrSGRC7Bv1z9LwzGBxmMDuIyuzgSPoJFb2FJxRIOTR/CYXJQYamgxdvCkfARZEWmKBdp87a97miQt5pSLEZpago5qi5xyuk0xZ4eBLsdQ3s71dEcf+y+lAm/gbScwxKUCHaNYE8IiB0dIMug1yNnsxT278d89dXYo1FuaHoHDww8TCQ1w+hUD2sb1mO2Oqix11DlqDqny9uvB034vMU4TA7es/Q9TKeneXH8RUpyiVw+Q5O7gUsbLuVLT39JLbkK6keloJAupLEZbJSUEqPxUfXkpyjkijkW+xeTLWa57+h9rAmtYdf4LjqCHWyq20S+lMeoM7K5ZvN5/evljSKYTHjqWrD3yChSlifkKFc2bkVWZJ4eepq/rvlrPGYPuWIOj9mD2WCm3d/OYv9iEuk5YrkYo7Fh5rLRBUsjhVKe7tluttRtKXsundyjk5ASJKQEXrMXu8GGfNwkTlZkPGYPVY4qnh5+mo5gB7Iis8i7aEHvTkyKIRWlU0RP+f5s7IJqwDwbTjcenimovQiKoiAjM5oYpcHdoBrWQdkQNJFPYDPYqLJXcSx67JRth+yhcj7WmRK0B/lk5ydfcarrbHqyBJMJQ1sbhZ4elGyWxfpKqhzqpKfdYFeNIgVV6KGofS9VjipqXbWEHCFCjhAiAiW5SDg9SzwyidPuZXC8m/D0EDq9EY+niunMLDajjbnEHF6zlwprBZlChrHEGJFshOH4MK3e1gXVr6nUFA6jg0p7JQZRXRYy6U1EshFafa2MJ8ZJ5pPIiqxmtZkc3Nx+c/n8szSwlFWVq5hMTSIIAk6DE7PBTCqfIiklF1w86931LK5YjIzMsbljpPPpcuBzR6ADt9lNm6+Np4eeYSY9g9fspb2inYnEBBaDhf/Y/R+srlpNs7dZXSouSUglieHYMCFHCKvRytHIUbY2bmVl5UoKcoF6Vz3vWfIeWv2tZ/X5v5XML2fJqRTS3r2k8inGbQVShTR2p5+GLZ0YnnuJQnc3hiVLsM2laQ8uQRcKUorFyO4bR56ZQn7ZdsVAAF1FBWJdHY2xGB8M1jMizZIRi9gtrre92DkZTfi8DfBZfKwJrVHLqqUCZp0Jh9FJoZRnc+0m7EY7PlsFqytXMxwbZmnFUhZ5F5GX88RyMQqlAjPpGepcdayuWs1QbIjp9DRFuYhe1FPvqsdqsJIupLEb7OUKxB8yotuNceVK5FiMpfIc3zv4P6ytWsO7Fr8Lg87AsopllJQSBblAyBHCIBqIZudwmV3kCxJ6QU+2kDmRRA2kckkqrAHysjqhohN0GEQDIXuI2uPWAhXWCp4b3sGqylWMJsYIOULYDDaKcpHp9DQdgQ4MouG0S5Fuk7vcOHg6HMZXNgm80Dnd+7Ya1F6E2cwsIUeIl8Zf4obWGwAYjA2iE3VqdIylgnWhdXgtXjI9GSZSE+VtzFcgXo+Hy8rKlXxt69dONKKb3LQHXl8j+snf12ChwB2r72QgNUpSSrI2tJau6S5cJhfrq9fz9PDTDMbUyal6Vz1d02oOWb2rjiubr+b7O/+DGxquIZGPIGez+Hx+Hjj8W27ouJmDM13sGj/hgO81e1lSsYRsIcveyb0sCywjU8jQ4muhL9IHqP1KTZ4mPGYPta5aIpkIoiCSyWeod9WXxX9ndSedNZ2nuAqvDq1eECvhN3vV8FMBlgdXsDzYgdPuK0/tAdiN9gU+Prcvvx2doKNvro8fHfgRSyuWMp2eZu/kXurd9VQ7q9l+aDtmvZmrmq8iJaXoj/WroZ9SgssbLqfZ28yO4R3ctOQmMsUM1eZqrll0TblCdj4gx2IUenrAYiG/dy/jfgMPTD5OZHBaHVcH/NWLuHH9LQSf7y4PeSgF1QT35Bw2eWamvF0xEMB08cVlp25dMIgbcNN0Lt/em4YmfN4GDMeGiWaj7BrfhZjO0lm5lgfGHsbhDvDk0JMYRAPL/cu4a/WHGYgPcX/v/TzQ9wDt/nakksSGmg28Y9E7eHLoSe49ei+3LlNjQERB5N2L382PDqpZX/Nc1XQVbov7be0GfC4QTCZ0wSANBPmrLX/Dv734b/z80M9p9jQzkhghW8iysXYjL4ztJJIOY9KZjjfryZiNFow644IxXEHUoSATsAboCKjeFYqiEMlGeGn8JVYEVzCdniZgD1IpVGHUm/Bb/MRyMUC9UF7dfDXZYva0S5HtgXbavG3sHN95yntZ4l+CUW+8IBowXw+ne98mvYkmdxMHpg5w27LbiOfiPND7AGtDa7m88XJ1WdPdQDqfBmBD7QZkRSYhqU27Zr0Zp8l52mWXM2U+T+rNYP77CrBGcvGBlR8gISX4wpYv8J093+Fo+Chui5uxxBhBW5COQAfPjTyHXtRTkosk8ylKxTy62ShP65/F56ykyl6Jwemh2lPPf+/7b97ZdiNHZo/QF1VFzVxujkahkT9a+kf85+7/JCWleGn8Ja5tvRaTaGIoPoTdaMekN+E0Obl60dX8+OCP8Vv9iKJIqpAqN7q+XPTMM7/kFs/FqbIEeLz7QSZiIwDcZ7Sxtf5S3rvmDhorF79mX1SqkGJF5Qp6w710zXRRkktlawlQJ8p2DO9gkXcRG2s3IiNj1VtpdDfy4sSLOM2q2W2LtwWnyUmb//zpmVMkqVwVFAwG0nqZB0YfIxKdgJOSDsLjx9jme5zbKpdiPC58BMOJabgFOWySBMe/d/Oi50JAEz5vA1KFVDk11+Ww8OzYc4zEhmmx2AnagsRycUYjAzzS+yB1viYcRgcbajZQ66xl/9R+fnPkN+wa28Ui3yIKcoFIJkKzt5lL6i85RfSY9WbGkmNvezfg18uZGKudjg21G9CLepb4l5CQEtyy9Bb2Te3jwb4HmU6pDYFtngYurt3C5MwQPouPjD2NwokoEZPeRIu3lcX+xbR4W9g1vouh2BBWg5U1oTXctuw2vvjUFwk5Q1zWeBmfWv8polKUDzk+hICA3WTHqrdS5z59wF/QHuQvN/4lX37mywvSxJf4l/Anq/6E6cxrmwS+Gcfq7cDL973CVoHf6iecCZcfE8vFuLn9Zh459ggvjr9Ii6+lLGLWh9YTy8UYiA5QUkpsNGwsNxO/nlH8c3EsR2IjdE13MZebw2vx0lndyTMjz9A9280nOiaTV5QAAIbnSURBVD9B/1w/IiLvansXsVyM3RMvoSCTKqRo9jSzqnIlkWyEeMBO9/Q+xBmRvsnDrFlxFSF3Db848v940f4ibf42Lqq9iFwxh17UM5WcIpKJUOWooigXyct5Hux9kHWhdVzdcjU2vY3lweXUueooySXShTQjsRHych6jqBp1vrzRNSkl6Z7tZiQ2AgKq10+pyNGpQ3isHmYSE2pGXj7NQGyQe3f9iA9v/cty5eeVlnPnBXDQHiRgCzCdmmYsPsa1Lddi0VsQEcnLeXZP7sYgGvBZfSiKQo2rhqJcJFPI4Lf5KcgF1Ql6Yvfbyi7i1ZBjMZSsuvSuSBLj9iKR0ePLksdH0udHziPxKcb9rbj1egS9HvFloubkHLYLEU34vA2wG+zl1NzJ+AQPHrkPgMHpXlY3dtI310cyOs1UNownH2A2M0ubr42xxBgJKUG+lGciNcHmus0AHJhWf+E6Tc5TRE+NswajznheuAGfLacLfbQb7Gyp3wKAzWh71QtSSVFP2l0zXeyd2ssHV36QXCFbDoDN5NO8OPwcxnSeW7f8Kb8beown+h8nU8jgs/qpsAW4vOlyfrDv+9S76mj1t1JhraAkqw3Rjw8+zprQGmxGGxfXXcxocpTrWq47K7Gytnot/3jFP3Jg5oAalWFy4TA5GEuMnZVJ4CsFZJ4PUSavtO8X11/MjpEdZfFTUkooKPzjFf/IeHKc/mg/Fr0Fo95IT6SnnHF38rLi6xnFPxfHcufoTv7jpf/g2Nyxcl9Llb2Kv97813hMHnrmejg8c5gmTxN7p/ZS76xjXfV68qU8VoMFu9HBSHSIeD7J/pkDRFKzXN9yPYZsHkWWSUhJjDojkUyEscQY6UIak96EoiiY9CaWB5fjNrnLx1Yv6hlJjKDX6fFZfLjNag/bkool3L3u7tOKx6SUZDQ2SlSKcu/Re3mo7yGkkkQ0GyVgC3BD2w0YMdAT6+ei5kt4of+Z40KrQCQ6wdDMMZbbfa96nObduwG21G3h2ZFnmUpNcWj6EOtD67EZbThNToTj/1iNVkJ2dbnZaXRS564jlo2xZ3IP/dF+inLxvMjLgxPLVaBWB1Py8SlFUVSblHW68nIXokjaoCBYrRgaGxHOUVD32wVN+LwNqHfX4zK7mEhOEHAEWFa7hkIug14GIZlmq2ctMW+OmC5Pha2CRncjeyb2IJUkNtZu5OD0QcKZMIqgYNQZafG1cEXzFYzERqh31Zd7fWxG2wKjsPPBDfhMOdlYzX483NViUJejtg9vJ2ALUFJK9EZ6WR5YziLfolO2YTeoJfs2fxs94R5GE6P85shvQFaT1etd9TgVIzklz6HR3VzTdA0XhTpBAL2gZyDWz1ee/jsq7AHShTS7J3ZT66qjI9jB3knVBt+oM2LUGXGanFzfev1ZVwWGYkM8NvgYk8lJ4rk4eTlPyB7i9uW3n7GAmk5N8/2932ciNaGO/5pcmPSm8yLK5NXCPbcPb+eWpbcwm5495aK7JLCERbFF6nNjp08Pf737c3DqIG6TG52gw2FyYNQZ6Z/rf9OOZdd0F3/75N+WJwUVRcFhcqATdXxl+1f4x6v+kXpXPQF7AJPeRJ2zjmPRfgoFCavRxmxmlsbjU6GP9j3CeGKEjTUb2Dm+k0tMreSLFnIuC6Koo3v2MJvqNnFwuoup9FS5T81hdPC/LvlfPN7/OJ3VnWSLWdL5NH2RPhxVDr78zJfZUreF50ae46Lai7AZbQsqX/NuzyF7iCcGn+B3/b8jnU+TLWbJl/IMRAd4oOcB1oXW0eBrYvvIs3RULuXwxAGMogFKkJKSr/gZDMWGmEhNUCwVWVu1ludHn6fWVct1LdcxnZrGZ/Fx/eLr2TG8g7nMHJ01nfTP9asZfTWd/OTgT/BavHitXr7w5BeocdZwVfNV7Jncc17k5cHC5Sr0ehwOnyp0DAYoFNRqjyiqY+l6Pe6mxRjr2v/gRA9owudtwclW+7Iik1EkFFFGJxqoczfixIzbFqI3rQbz7Z/aj8PkoJAr8Pzo8ywLLGNpxVIua7iMmxbfxMrgSurcdWTzWTwWzyu+7mt5jZxPjMRGym6yA7EBLHoLlzVcxqGZQwiCULaeDzlC3Lj4Rq4sXnlK6vfJvxZXVq7Eb/VjNVoRZAWzaMKm6KFUQjCbMVjsPHTkPqbCQ1zUejk/PfQzNZQUHblilnypwHR6hpnMLK2+VqZSU9S76hlPjtPsaT7jpZCTXZpdZheHpg+xc2wnRbmIy+yiwlqBKIr8rv93hBynH2WfX4ZJF9Relq6ZLraPbC/fPx/r4Da73/ZRJq8W7jmXnWM2PXtKSOah6UNlQ8NXEkavl0Mzh3hp/CUm05MYdUZm0jNIRYkPrPgAPZGeN3wsk1KSpwafKoseWVGTsNOpNLliDrfZzf7J/VTZq1TvrplDXNd6Hb/r/x2DcwPEpDgGnQGfxcdS/xJ+tu9HFOQCgqCj07sMwWIn2rWbdTf+KasrV/HU0FNsH9zOiqoVLA8uRxREQo4QW+q3UGWr4s83/DkPHXuImdQMU6kpRhOjPNr/KKDaORycOcivjvyKrU1bsRvteC1erm6+mscGHsMoqhWlgegAQ7Eh/FY/CSlRDmAeig2xtmoNfnslT/Q9yqbajViMNpyYARn7aT6nodgQL4y9wMHpg+oYfUl1i14eXE6NswadqFvwOW+s2ViuRpXkEplChmNzx7h7/d3oBT1feOILFOQCg7FBHu1/lM6aTo6Gj54XFXLR7UawWFCyWZRYjPq65fhHmwlP9IPBgCCKCBYLupoa/BV1NNYt/4MUPaAJn7cN8017Q7EhRhIjxLNxXGb1l/g89YZ6ItkICgpJKYnNaEMv6hlNjKoXU2c9lzReUn78mXqJXAgkpEQ5XdukM9HkaeLJwSfpm+vDbXazJrQGp8nJgekDzGXniKQjfED/gQWVn5dnPdmNdlZWrqIv3INP70JXPO4KWyphNdkRizJ6qQj5PJYCoJQwmkzEsnEyxQxus5u4FFdHpqUEw/Fhmj3NLKlYckbVmXmX5vmLRDqfZjg+TGd1JzPpGdy4yZVyBO1BjKKRkdjIKWLu5GWYGkcNe6f24ja7mUpNoRf0mA1minKx7GD88liTtwvz4q1vro+Z9AwukxpqGcvFysu9Zr2Z4fhw+SL3aktQb4aw2z+1ny89/SVeHH8RQVCXTmqcNWyu28wPD/yQ25ff/oaP5XBsmNnMLFaDFYNowGPxYNabKZQKFOVi2YTvX3f9K501nWrlpPcB2ivaubjuYuJSnCpHFXvGdvN43+9Ud2dRx2xyClf1FnJyHtlspKv7af7Xxf8fFdYAPZEeSorMWGKMClsFVzZdybHoMTbUbmA4NsxwbJjB6CDPDD9T3s+1obU81PcQDpODaC7KbHoWu9HOXHaOnx78KSFHCKfZya6xXeSKORRFUf9FoSSXQFSXz0rISMcHBhQB2jyLMEoyPk+IhsDCKm1SSrJzdCcD0QEe7nu4bFMA0OZr4yNrPnJKb9H8Uub83609E3sYjg8DaijrJy/6JN98/ptkihkGY4Nc3nh5+blv9wr5y20PbDMxbtrwQe7vf5C51Czo9Qh2O35P6A/axw004fO2wmFy0BHs4COmj5z2hH3Root4YfwFuqa76In0lH1K2nxtvHvJu/Fb/Qu292Z6ibzdmcvOMRQfotpRXY5x2D+1H7fZTTQXRVEUhuPqOPlAdIBkIcmzo88StAcXnABOnhrJFDJ8fsvn+d7e7zEUHVRHPxWFJu8iNtVu5Nk990KphFHQl5sG0eko5LKIilAWnfMTJflSnrWhtdy27LbXPOlMxcb5Xc9DVNtDVNmrKCklwpkwTw89Tb2rHpfJxY8P/hi9qCdgC7A2tJalgROiJykl6Yv0sWt8FwbRQI2jBpfZxbbebVxcdzF9kT70oh6/1Y/H4iEhJQjYAoQcobfdZNjJAubk7B+9qMeoMxLNRXlp/CUEQWBl1UqkkoRVb2UqPVU2Lpy3AXizlvOORY7xnT3f4fnR58u9QjpBx1hijB0jO2jxtZAvvvGYg1QhhdVgJVvIEnAHGImPEM1F0Qt6THqT+l6PGw6Kgsja0FqKchGrwUrQHiQ1m2L78HaKpSI1vgasZgez0XGUQp68XMRssaOrqcGhsxNSXNy97m6Ozh0lnlN/eFn0FuZyc+X+sXkhlysudLmusFbw+MDjLPEvOeX+idQEVY4qUvkU6Xz6+N8H1YxVRMRj9mDSGzHqTDS6G6l31WNcoWeFbxm9kedwe4Lc1Pl+nC/r7xmODSMrMr898luG48Nlw9G1obUEbAG6w928OP4i66vXL/isTw6QLcpFBAQsBgsjsREe7H2QL136JX579Lfsnti9wNDyfKiQn2x7oBQKNBgMfLj2zxlJT74l2XlvVzTh8zbklUY2AV6ceJFbl91KrpgjU8hgNVgx683oRN1pU5ffTC+RtzNFpUiLt4WB6AArgisIOUNc2XQlZr2ZaC5KOBMmnotT56qDJOQKOaZSU6ddinh5g2urr/WU4yfPzdFQ0UL/9BESiTB17npGjp+IPVYvBkVAFES2Nm5lQ80G6t31eMweNtZufM1qjxyLlXOP+qMDOC0u8nKBBncDd62+i3u67+HK5itVwzi5QDqfZjA6yGP9j7Hy+OTO/T330xfuo0QJl8mF0+TEpDdxaf2l6AQdy4PLmUnPEM1FiWQjuExqj5le1CMIAk8NPPW2CEGdTk3z1NBTlOQSVfYqapw1PND7AC+MvYCsyOgEHX6rnxtab+Dw7GH2jO8hnA7T4mshnA5jM9pYWrGU3kgv48nxchXijSxBJSVVNA/F1Nw8AaGcGZUr5hhLjLGxdiPZYvasjUJfHkBr1BmZSk2xJrSGfZP7SOQS1DnrcJrUseulFUuZSc+wJrSGSCbCnsk9rKlaw30993FR9UX8tOunzB33n2r2NJMuZWkItjIyN4jfW40oWKggyMolF/Pp5z7H0XAva2rW4bP6cBgdbKnfwhVNV5Q//3khZ9abF+x3WfyJulPuN4gGZEUmV1Srk16Lh95wD8l8impnter7I4o4zS6OzR2jJ9JDtpAFQeDKi95LyBHC56k+5VilCqrJ4ZHwEUpKCYNo4Ia2G9g1tosnB5/EYrAwFh/j8OzhBY3mJwfIGkQDfqufXDFHXs7THe5GKkmMJ8a5ofUGrMdzqc6nCvnJtgcATmDZazSF/6GhCZ+3Ka80XXJ96/Xc33M/UklSpztKEjajjRtab3hFFf9meom8XbEb7cykZ7hpyU080PMAPZEeDs2qE22LfYt5X8f7eH70+XIas1FnJJPPvGK/yMmc7vjJ2PjE2j/j27v/L0enDrOl7XKeFQSyYomANUBOlqh31bO1aSsTSdUQL5qLYtFbTvcSZRRJYnKqnx8f+ikDsUGkkkS+VMCgM3A0fBRFUWj2NpMpZMrLO/OTNwW5wFBMzQGL5+I0ehu598i9TKenSUgJapw1KIrC9a3Xszq0mt5IL7FcjOH4MH2RPqod1VzZdCV/++TfUigVyr/uX2uq5c1Oi09KSYYjA0TSYbb1P0T3zGEyxSw2k4OSUmJ99Xp6w70MxdUlwMHYIE6Tk3e1vYuh2BD9UbWxeDg+TEku0epr5b3t78Vj9rBvah/N3uY3tAQ1HBsmlo1h0pkQBKEcZDkvfub/e7Yj7fPLLydXZ7fUbkFA4OYlNzOeGCfkCDGWGGMkMUKrt5UqRxX/s/9/+NCqD/G7Y79jiX8J23q3Ec1F6Yn0ELAFyBQyxHNxBqIDVNormc1FuLz1arY2X4F1No6lxs9fPvtFDk7tx2Sy8eTgE+TlAqIg0h/tx6QzqR5jgkiFVY10yBayeMweojk1CsEgGnCanEhFCY/ZQ4WtAoBwJkzXTBcus4vDM4fpj/bT6mnlE52f5BeHfkGlvZKgPYhBZ2CJfwkCAr84/AssegtjqQl+2PVjttRt4cmRp0+ZkjOKRhJSolzNW1+9np2jOxmMDarVJEGkqBRPqfKdvGSl1+kp5VXRJCoiOlGHKIisr17PkfARWnwtF2SF/A8dTficZ7yWgdcfLApsrt3M7479jmNzx6h11eI1e4nm1Gyh3/X/jutarqNvro9GTyOZQgaDaFD7C14Hot3OysAKvrL8L+gpTZEopnlH09UIOh2H4n1g0CMgMJGcKJ+YzyQYVo7FOJobZTI1ofZCAFajlVwxRzwXZzI5ycUNF1OSVVdpimpe0hL/Ekx6ExOpCeayc1TaKnnk2CNMpaaISTGKpSKxXIxqZzX39txLnauOQzOHcJlcVNmr+NKlX8Jn8fGdPd+hd66XpRUnls1ebarldBfrNzL+OxQb4r6D96Avyjw7tpOeWB8FpUSjuxFFkTkSPkI0F+WShkuwT9pxmVwk80lS+RRFpUjfXB99c6r5XklWRUhPpIdH+h+hI9BBrauWnnAPRtH4GnvyyqQKqXKVdd47yKgzliNK9KKeRncjq6pWnfE2T15+OZnfDfyOaxddSywX44a2G9ScvuwsZp2ZpJTk4b6Hy6G3bf42zDozfXN91LnqeHLwSd6/4v1IRYmx5BhSScJr8apBxis/xOoZI0raxuPmcQ5O7cdoMBPLxdQfVXoji/2L1ZDkfd9n9+RuLHoLAVuAi2ouYkXlClL5FC+Ov0i9u54l/iVkChkmkhM0e5vLzspPDz2NWW9mMKrmewkITKQm6An38NWtX+UnB3/CbGaWQqnAjuFnQRBYW7WWXx7+Je0V7VQ7q0E4/RKlQWfArDfjMrmIS3GqndXlviNREDHqjNgMNoAFVb75Jat5355wJkwqn8JpVKuiZr2ZSxouYX1oPTXOGj606kOa6LnA0ITPecjr8Rq50JlOT7Oueh33dN+DIKiCo83XVr4gHZw+yEVrLiKai7IiuIKiXCRVSOE0O8tTP2drPKevrKTabqdyZgZFktQScyBAbXHxaXu0zqShUCkUiOUTlEpFnGZ1iatYUk/QBp2BbDGL0+gklU+xtGIpBtFA0BEs93cViuqSg4JCOBtGEAXypfxx994Sc9k5eiO9rKlaw2BsEKveykh8BJ/Vx2UNl9E71wtwSh7Y6aZaXuli/XrHf5NSkvsO/5bwzDBBSwVjI4cQLToS6VkGCgUag60oisJIfIQ1VWvoi/TR5m/j2NwxNaVb1DGXmyMhJXCZXehEXfl9DMWG6Ah04DQ58Zg9GHSG19ibU/dt/sdGtqBOS1r0FlZXrmbv1F7CmTA6QV3mWVO1hmtbrj2r937y8svJKIrCT7t+yj9c8Q/sm9rHPd33UJJLZAtZUvlUOfJEKkosDSwllouxqXYTFr0Fr8XLZGqSK5qvIJPPUJSLrK9eT0JKIEp5lLT6XYkedw5HFMs9LVX2SkKOEI8NPKZWdrJRMvoMcSlOtpDFrDfzZ2v/jHcveTfberexZ3IPHYEOMoUMI3HVdbkv0oeMzMrgSv5f9//DpDcRsAWQShIlpcSvu3/N/qn9BO1B5rJzpPJpJlOTlOQSW+q2MBQfYiw+hg71uL58iTJTyFBlr+Kyhst4auipBb1WTpOTGmdNufIEJ2JN5oc+Dk4fZDI5qfZP2QJqldTTyN7JvTzQ+wDvXvJulgSWaKLnAkQTPhoXBA6Tg32T+zDrzbRXtFOUi4iCSJOniXQ+jdVgZYl/CRXWCvZN7WMmNcPH1n2MbT3bUASlvJ2zNZ4T7XZE+8IG1gbsr7sqJxgMuI1OYukIi/2LORI+ol4o5BIesweb0Uazt5nPP/F5dKKOkD3ECtsKTHoTXouXkCMEk5Rdd006U7kPxWFyMJWawqQz4TF7aPe3YzfaieViHJw+yMbajeX90It60oU0UlG9SOkEVVSczCtdrOH0Qum1GI4NE4mOU5qYIFuj9laYSgIGnZFkJooe1YhtXsQF7UG1F+T4/pp0JvxWP3pBj0FnwGVyMRQbUieZBJGCXMCoM7K1aWt5MOBMODlHqsJaQUEuqK7QS27m4WMPs6pyFUW5iFSSaHA38JE1H2FF5Yoz3j688sSQSW9CQUEqSWov0fEmer2oV/twTGpAaLaQpXu2G6fRydNDT2M1WKlyVPHM0DME7UFWVa3ixbEXafQ0EslEsNaYAVXkeMxuQB2VBxAQ8NsqyhYQm+o2IZUk4lIcURAJZ8J4LB4urruYw7OHcZlduMwussUsWxu3YjVYiUtxWn2tPNb/GNv6tlGQCxTyqjCpsFaUqzOHZw+TyqcYig/hMXto9bXSF+ljVdUqjkaOEsvFVM+itNqgfvISpc1go3eul+vbrsdmVENm61x1CAiY9CaWVizFbjzxd9NhUE0UZ9OzvGvxu2hwNfDU0FN0z3ar5ov+JdzWcRv/sOMf1OiP+Bi/PvJr3BY3Da4Grap+AaEJH43znunUNIemD+Eyu2jyNFHjqlEvcqKRyeQko/FR8nIeURCZTk/T4G6g2l7NQGyAXCm3wDLgzZr6eb1VOdHtZnG0llZ/Gwcj3VQ6qvBb/EylJrEYrCz2LabGUcMNrTcQzoYREcu/7m9su1E1YbN4MYhqRcOkM2E32skVc1gNVkpKiUQ+QbqQZiI5UTa1NGMuL/s5jA6KcpGiXMSkN1GSS+Wm1aHYUFkUvtZ479mO/6YKKZRcDiWTwXx8KUrMF/FZPERyUZRiCYfBRkrO4bF4yuGcelHPlrotFEoFjs0dI5aLUZJL2Aw22ivaGUuMqULAXsUiz6KyJcCZcHKOVMgR4omBJ5jJzNDobiSei7O6cjUus4uklMSgN7CldgvNvuazet/wyhND85N3CNDmb8NhdJDMq1YWfqsfp9GJw+RgNj1Llb2KPRN7qHZWMxgdpCgXqXHWMJIYQZgUuGbRNeRLeZo8TdTZqwFVtC411dJRuZKeaC8CgtpMX8qXm5HDmTDpfBqjzoiCQlEukswn6Z3rZTI5Wf77U1JKTKWnCNqCDMYGkRWZnWM70Qm68mRdoVTAaXIwk54p96iVlBJmnbk8fRlyhoDjKfP2KuZyc1RYK5hKTy2Ykpv/MTEYHWRl5cpylM9sWh3/r7RXlh/rt/rR6/T8YP8PypXYgbkBal21/MnqP2E0Mcp4fJx/2PEP1LpqGU2M0jWjmji2+dp4Sn7qvHA11zgzNOGjcd7TPdPNjtEd/NnaP0OSJX588Mfl+1q9rdzcfjM94Z6yGFB/0frRi3rsRjvN3mbyxTzJfLLsvDsaG6U9eO6nOASTiarKZj699pP8/Z5/5rGBx4hZo8SlBJWOSipsFXzkgY+wpWELlzZcitfsZWPtRlp8LWWh9s62d/LcyHOE7CFGEiMYdUaseiseiwdZkVkRWMFsZpa1obXMZefKPSo2g5Xl/qWY9GZyskRCSqi9M3KRWmctx+aOkS/l8VnUSsNrjfee7fiv3WA/YamfShFy1zIRG8WYLRA0unHpbaytWotEiSpzAFlM4A524rB7qHM3EMlGaPO1sW9yH5KiVijGEmPUu+vRC+qpLlPI4DK7znjaat4wsdJWWRY9ndWdbB/ezmx6lts7bsdutGPQGzDpTISzYQJS4KxF86t5brVXtLOpZhMJKcE7297JWGIMUVAFr4LC0fBRapw1JKQETww+wXWt11GSSwzHh8vCx6K3cEPbDRybO8Z7l74XlyVI3jKJks1SNZ3jcxs+y9df+mf2yfuJSXFqhDoqbZUs8i5i5+jOsuDRi3qU46PoAgLxXJyAPbBgf3PFHEadkfHEOPWueobjw5j15uM9awqG487l06lp/FY/siLjMrlQJIWYFKPB3YDL5MJv9bOpdhPjiXFqnDWn9Mid7LsVyUaI5WJc3ng5z40+V55iBLWK+47md/DgsQdPGWbY1ruNaDZKtpBlx+gOapw1jCZGSUgJquxV6EW92l8nxd/2ruYaZ44mfDTOe2JSjGWBZfzvZ/43lfZKGlwNzKRnEBAYjg9zYOoAn9/yeb78zJdJF9I4jA46qztZFliGzWnje/u+R0+kB5/Fh0lvotZRi9fixWfznXD5PYchnqLbzTrLRfyF4S+4qEYNi6xx1bB3ci/f3fNdikqRR/sfpdHTyAdWfOCUi/h82OYi7yLu7bmX6dQ0c5k5ptPTtFe0syK4gudHn6fOVafmt7lqWOxuYbWulqbOT/Pve/8vL46/RDgTRkZmWWAZ1yy6hv/Z9z901naq48VGN422ahpttfRF+8gpRWTU8XKT3kSrr/Wsx3/r3fX43CGmhSGmJ46xtfVinmA7E7FR7IKZQEKhJtDGNUuuR5qdIhmowqa3gsnMb178H3RVId695N2YdCb2T+9HURSWB5dzUc1FuE1ufFYfCLCpdtMZf47zSysKChOpCdor2tk+vJ1IJsLH13+cseQYX3n2K4wlxjDoDNQ6a3ln2zv58OoPn1V14LU8t+atKu4y3bWgf2wsMUaVvYqtTVt55NgjFOQCD/Y+yJqqNWyq3USTp4mNtRuZzcwiFSU+sf4TJ5qDTzK7WzNj5J/Xf5H9hRGOzvXS5GliKDbEixMvUlJK5ZF9oNwQbzVaycv5Be9DKkqUDCWmU9MkcgkubbiUp4eeLosfQRCoc9ZR66wtR3tUO6vJk8dtcmPQGegIdFDvqmc2M0v3bDdLKpZQ46w5bY/cy4c9HAYH17def4o79+kcvwP2ADWOGqZSUywLLMMwrk6mjcZHcZvd5dcy683Epfjb3tVc48zRhI/GeY/b5MasN7N3ai8GUT1xNnmaystdVoOV6fQ0bf427Ho7q6tXkyvk0Ak6HulXLxZ1zjpmUjNc1ngZAWuArukuJpNqo+VkapKCXDinIZ6CyURRKfLzQz9nNjOLTtCxqnIVt3bcSlEp4jK5eM/i97xi5cJhctBZ00l7RXv5pJ8pZCgpJe4/ej/VjmoSUgKz3symyg3cYlmPOSXz7f3f5aql11BhCyKVJIw6I5OpSb6393tYDVYe63+Maxddy2MHfkKVr4E7V3+Qr+/4R7qmD4JOh6DT0RHo4K41d5X7e840udxhcnDjylv4zews4fE+Rnv3sCW0Asuiq6m2VhEU7DQuWoNh+y61EmUvkpCniAUc5Mx6DBNjTJlMXNtyLVcvuhqH0UF/tB9REInlYuRltVo1fwE/E+aXVuYN+ZwmJ8PxYW5ddiv7p/bz7MizDMYGyxOCs5lZtvVuw2a0cfe6u89KKJ+J59bLL/TZfJaeSA8TyYlyRbMgF3hh/AUAblt2Gw8fexiAD65YWK14udldncHAVFbixcndDMeGSUpJrmu5jkgmUnZFdpldbKnbwiUNl5DIJQjZ1WUpnaDDYrBQKpWQShJ1rjouqr6I+3rv451t78RlUnuAapw1hBwhvrPnO9y05CZ+d+x3dM10UWmvVJuL7Y2srlrNLw7/gkpbJTe03cDg3CCd1Z0Lvuuns1BYZj8hSF7eW3Y6+wK70c7Guo0cnT2K0+TEbrSjF/W4zW5qXaowC9lDCAivuh2N8w9N+Gic97QH2svZUwW5wN6pveX7/BY/DpNDPam6G2n2NPOdPd/BbDBzWcNlpPIpFvsWYxJNNHgb+J/9/8Ph2cOU5BI+q496dz2fXP9JhmJD5zzEM2gLsqF2A7vGdhHNRTk4cxBmKAcrui3u19zGy3uNklKSOlddOdCxyl5FY96OYfsLvLDYzLQU5sDMAf5jz3+Un2PRWXCYHDhMDkbiI2TzadDrkeMxfvz0v/FHDdfwnqbrSck5HHYvJpOVfZP7WFaxrGymOP9rWypKGEQDVzZfidfipc5Vt+BYNgZb+fAVf8lg326SyTnsoplqyYQjZ8S4fj35rkOMmLI8MP0UkUHVH6maTg7MdtFWsRhdKsGUaYqQPcRkcpInB58kV8xhM6pjzSF7CKPeWF6uey3m89vmRUWmkCGVT+Ez+5hITHBs7hgKCqIgIpdkzLLaq3Jk9sjrqg6ciefWyZ9pUkrSNdtFSVGbvQO2ADPpGXXfj1dNADoCHXQEO07Z1svN7hzTs2VH6GpnNal8io+s/Qj5Up5CqYBJb0JAYCY9g8fi4fblt/PYwGMYRAO/PPRLBmIDOI1OFvsXs39yP7d33M62nm3MZGZwmV083PcwG2o2YBAN3HP4HjbUbOD6luuRZAmzzkxRKaITddzecTsG0cBsZpYWfwstvpbyPr4eC4VXctCutFdiN9q5tP5SAGbTs2VH8JA9tMCH69W2o3F+oQkfjfOeoD3IysqVeCzq2O08HouHenc9XTNdOM1OXGYX39nzHerd9Tw38hyTyUkOTh/ErDfz2Y2f5YHeB9g3tQ+rwYpUklAUhT0Te/jP3f/JHcvvYP/0fqSidM7K3fXuetor2sueKLliDrPeTIWtgjpX3Vm7AsOJWJSTL4L5I0fIyzIJcgzEh2gILUFEREad8smWsiiSwiL9Isx6E3qdgdLEBDQsoyfRj37Gij9vAJ2OSUFA5/Mhms1lM8V50RPLxegJ95AtZjk2d4yL6y8mL+dPqaK5K+tZYfdReplNgJJOkxLyPDDyOJHYiYuRkkjiNjjojQ+w0urCAjjNTn588MdMpiYXNLlOpCbY1rPtFYXA6Y7XfM9UwBagJKvLPtlitmxWOD9tJQhC2b05lU+dkTnmG+XkPheALXVbeHbkWSx6C5vrNvNo/6N0BDr4/MWfP62z+8uZF3rzvV9eixenyckjxx4hlovR6mvFZXbhtXi5ofUG6t31uM1uvvn8NzHoDCytWIqAQDgbZlVwFb889EuMeiN2o53u2W6mU9McmzvGn6z+EwRBYNf4Lrpnu2n2NuO1eGnztzEUGyqL0pfbQLxeC4WT39fLqXPVcUnDJVzScEk55gV4XT5cGucHmvDRuCBYVrGMyxouYzA6WB6/zhayDEQHWF21GqfRyUxmBqPOyHMjzzGWGOOO5XewonIFJblEyBlCRMRn8ZVHnQVBQFZk9k3t45Zlt9A9211OfT8Xwufki9rJY7ln6gl0pswnNBuMZpJSgkgmQqu3hd65vrL4yZVy2Aw2OoLLsenMKNksebv639zcLMWwOhot2B2IFguYzWUzRVArPfOiB2AyNYnVYEUpKDzc9zCd1Z0LGrRPZxNQjMUYM2YXiB6A6fFeti65mCfndhNXsliATD7DZGpSneYRF57mJlITTKQmzkj4wImeqSp7Fc+OPMvqqtVYjVZ0gg4Bobx9BUVNCEdCVmT6Y/3Uxep+70ujL1/++tCqDyEVJKYyU1y76Fo6gh1nJHrg1KDe2cwsc9k5rm25lgZ3wylp56BWSeZyc0glaUG2lUFvoDvcTaW9EgGBqdQUAHk5z3f3fpfPbf4c66vXkylk6Ah20ORuosJWcUp/zsnf89drofDy9zXPy/8urQ6txmv1vm4fLo3zA034aFwQNPua+fi6j/PlZ77Mnsk95dvXhdbx5xv+nINTamWn0l7J9uHtfGDlB3hx/MXystZwfJiJxAQ3Lb6Je7rvQVZk8kW1cVNAIJ1PA5AtZhlPjZOUkufkJHgunLp1gQCix4OnBE2+RRyaPMDG+o0oisJgfBAFdXmtyqGOgxuKCjXrL0OnN7Fp8RW4sJCeO0BJLqKkkpTGxhDM5rKZIkA8Fy+LnnlPoWPRYzw5+CRSUeK50edo8jRxe8fttPnbTrufgsFAWsmDXq8Gxh6nJBcZOfIiW1ZsYNGitbgdFYzGRqm0V5ZFSVEuLvAkkgrSaV/jlXCYHGWvmI+u+SgTqQnsJruaDxcbKAdk5kt5QvYQIWcIqSCds6XRN9PU9Gy/c6lC6rRO2PlSHkVRyBQyp0S1FOQC3eFuCqUCjZ5GArZAef9fbanvjVgonOn70tzxL3w04aNxwXBxw8V8x/Eduma6iOaieM1emn3N9Ef6T6RV51Nc03INTw4+ybG5Y/itflL5FAbRwGBskOfGnmND7Qa6pruYSE6U/UdO7hGRCuduuQt+/07dot2OsbMT+8AL3NxyI7859gC7x16kydPEupr12Aw2mrxNuI1uQq4QP3vx+4zODWEr6ZgoRWm11XNF+0WMdO+iJBeR02m8grVspggsmP7xWry0eltp97cTtAVxm91Y9BZ+dPBHjCXG+Pzmz7PIt+jU/XS7cTh9iA4HcjK5QPzIVjNT2VkucdXSEVqJUTTiMDrIFrNkC9lybIcoiOXbT/YkOhNsBhsTqQkUFPrn+rmi8QqCtiD399xPT6QHqSgRtAe5oe0GNtdtZiI5gVFnVF2jz7C69HbhbL5zdoO9nOQ+L24BjDpjOTz05VU3UPO9klKyvI0z4Y1aKJzp+9Lc8S9sNOGjcUHR7GsuG8htH9rOpx7+FPum9uGz+Khz1eGz+rik/hK29W5DRmY2M4vT5EQURKqd1YwnxtlYs5GDUwexGlT34PaKdqSitKDZ8UKb7tBXVtJo3sj2l7q5qe1G8qJCVikgCAKZYobZ1CydbZ18d893GctMgaJQykt0Vq1mcPIIT+S3s7mmg4nRo/jcVbyz/moqfC3lvgqjaERAwGPxsC60jieHnuT5secZjg0zlhzjopqL+JtNf8P39n2PZ0efJWgPnvILWzCZaKxfQcXgImYnjqGUSqAoCGYzOp8Pf2UjDcc/+xZfC5vqNvH4wOMMx4cXTGVdFLgIg2hgW+82PrDiA2f8S36+T0RRFGbSM3xv3/fY2riVv734b5nNzKIoCj6rj0PTh/ivPf9VjssYSYzwEdNHLljzu3p3PVWOKrLF7ILlzISUoCPQQSQbIVPI4DQ5SUgJ9TnHG69tBttZ9c68mt/R+ZSgrvHWIijzHugaACQSCVwuF/F4HKfT+VbvjsbrpD/Sz59u+1P2TO7BarCSzqeRFZmtTVsx6oxMpaZ4duRZAKx61eV1eXA5h2YOsaV+C08OPImMTHtFO3evu5vp9DTFUpHZzCwlpcR7lrzngvxFOB/PcLr+hkgmwvf2fo+8nEcvFbFPzKGPpyg6rCRMCu9a9h6CCYXqhIB33WYoFBhVojww8hhTcpy+1Ahei5cD0wdORCyYnNQ6a+mJ9LCueh1/0fkXjCRGuLLpylc8vkPhfu47+P8IRydAEBCMRnyeat619N0LLqA94R7+8bl/pCfSU3af9lv9dAQ6GIoOsaluE5vrNp/V5zgUG2Jb7zYsegtPDDzBRGqCLbVbeGzwMTbUbGAkPkIkG1nwnHZ/O4srFp+X5ncjsRG6pruYy83htXjpCJy+X2j+ezOZnCSei5OX89Q6arlq0VX8n2f/D12zXVQ7qhmOD+Mxe9hct5kXx1/k5vabuW3ZbWfVNPxmB+NqXDic6fVbq/hoXJB0zXSVe330or7cdPnU4FNcs+gaVgZX0j/Xr07iyCVS+RQz6Rlafa1cu+hattRtwaw3YzPYODRzaEHT5oU83fFq/Q2TqcmyS6+cyVAUEsgGA/pcAW8ObNEMi3ozGJYsodjfT2HfPvyiyK2hWoYXLWenaxCz2cYTA08wEh9BRiYmxRCTIiFHiBfGXkBaJ2HWm1+1otbgb+ZDmz7+mj0YxVKRRncjFbYK8qU8Rp2RhJRg59hOinIRBeWsK3cN7gY+sOIDjMRGWB5cTkpKlY35KmxqDtzJWPQWXGbXeWl+t3N0J3//7N/TNdNVvq0j0MHnt3yeDbUbFjz21b43//vy/83Dxx4mnAlz4+IbMeqMxHNx/s8V/4f11evPWgyeid+RhsaroQkfjQuSkysW8+GLAFJJIpaLsci7SB1PVkqY9WYy+QxHwkdYVbmKVZWraPY1l3/Fvlz0XOjTHa/U33ByH4ZotaKrq0MZGkJJqeLBrhjQt7YiOJ3Eh3oZX+wlJeew60oYpCLhQ7uQFy9iLDlWHgMHiOai1DhrAHV5REB4zZ4PO0aWUIGCG0EwInJqc22ykGQiOUF3uPu028gVc6/Ll8VhcrA0uHTBbVXOKh7ue3jBbRa9hTZ/Wzk64XxaHh2JjZwiekD9QfH3z/49/37tv59S+Xml782KyhVU2ivfVKFyJn5HGhqvhCZ8NC5IvBZv+f9FQVxw3wtjL/Bna/+MZ4afYffEbqwGK7Iis6ZqDV+69EvlHiFtumMhL/dC0bndCK2tKOk0PrOXxiWbMGBi4NAOHog/Q2RovLwMZipU0rRoKVmDXv08RCjJpbKL8nwsgs/iYzo9fUpFrRiJIM/MQDYLFguKXo8yNVXO9hIsFgxtbYhud/k58023RtFINBctT3RZ9BacJicBe4C57ByHZg694TiSBncDndWddE13kZfzGEUjLrNrQQDuK4ms07kQv9UX9a7prlNET/m+mS66prvOeEQeNKGi8fbivBM+kiTR2dnJgQMH2LdvHytXrizfNzIywt13382TTz6JxWLhfe97H9/4xjcwGk/9NahxYdMR6GBN1Rr2TO5RU8Z1pnLlZmlgKdlilr/a+FekC2lyxRwes4eOQMcpydradMcJTueFIlqteH1qjpLXXc/cob08MPo4kegEKb+dnsQg2UQSB3H2Tezm9os+Qrt/Cd3hIyCeqMYZRAMbazcStAVPWf4oDA2Re+YZ5MlJEAQoldA1NmJcvRo5FkMQVWFb6O3FuGJF2Zeo3l2PzWgrL9Ml80lEQaTOWYesyEwmJ+mL9AFqevc1zdeo5oOvM5utxdfC4orFC7yLZlIz5OU8IUeIClvFgsdPp6Y5MH2Aew7fQzgTRifqmMvO0eBueMv7VeZyr26+GJWir3q/hsbbmfNO+PzVX/0VoVCIAwcOLLi9VCpx3XXXUVFRwY4dO4hEInzgAx9AURS+/e1vv0V7q/FW0exr5ouXfJEvP/Nl9k7uxWV2Ec/FWRpYysfXfZyB6ICaDdV24wXbr/P74OQq2Fw6TLGQx6YzkYhOk9DbGRUSRGKTFB1WVfQcH1dGkohKUcajw9y69FZ+cfiXdIe7ERBwmV00eZr4+PqPs6pq1QKxUYxETogeAEFADASIeEz0ze0lLuRxyxZaBT8Boxc5FlsQwdDkaeLI7BHqXfUoKBh1Rgyigfe2v5dEPoGIiN1kJ2AN8A87/gG/zb8g1ftsstlOFoYD0QGOzR3DaXLiMXtYVrGMZ4efZWnFUpYElrB/aj/3HrmX+3ruK+dg+a1+VleuZig29KouxOcCr9n7qvd7TJ5ztCcaGm8+55Xwefjhh3n00Uf59a9/zcMPL1xPf/TRR+nu7mZ0dJRQSA3O++Y3v8mdd97JV7/6VW1C6w+QU3x9LF5qnDWU5BLLg8v/oJet3ggOkwObouehI48xEBskLxcwigaa3I0sb7gIweEgYSyQTSTLz0klIjRWNSOIOh7veYQ/WvpHFOUigiDQEehgacXSU6ptAPLMzAnRAwguF0eX+vj2ge9yLHqMvM1EsZhncWAJn171cVYXT1RVhmPD9M/1s6VuCwoKuWKOoC2IjMw/vfBPdM92ky1mcZqctPpauXXprRyeOYxO1JGX88ykZ8gX83xk7UfO+HvS4G7glqW3sH14O53VnXTPdNMd7uazj32WhJRgddVqvnzpl/nJwZ9gM9rKogcgnAmzd2ovKytXvqoL8bmgI9hBR6DjtMtdZxr3oaHxduW8ET7T09Pcdddd3HvvvVit1lPu37lzJ8uWLSuLHoCrr74aSZLYs2cPl1122bncXY23CSf7+mi8OSRSEX60/4fsnd1PtphVzemKRYbiIzi9Vcj1NeTDwwueoxgNJItpmu21VC0JUuWto8Xb8triM5td8MfY4hq+feDfOZrsJ1yKUUyrS1/PD+0gmU/zjSu+zhKqAbWZuKSUmEpPlZ9f46jh6zu/zp6JPWqauFxCL+rZNbaLolzkPUvew3B8mOUVyykpRWRZ3fZFwTW43IEzOj5DsSFi2Rjf3/99Dk4fpMnTRI2zphxp8V97/otlgWWMJkZPeW44E6Ykq31LJ7sQn2nC/ZtFnbuOz2/5/Omnus4w90tD4+3KeSF8FEXhzjvv5KMf/Shr165laGjolMdMTU0RDC78deTxeDAajUxNTZ3y+HkkSUKSTkztJBKJN22/NTQuRPZN7+e3vfcTzZzwq3GYnDS6Gjg6eRibzYnZ5UXM+UBR1L4coNLsJ52IMKPPcbF36ymp8cOxYRLpOexFkRrRg0NnhZf9yOk1JjgWPUa4FEMuFQm4azHpTZQUmXg+QXe8lxqpGYfJcUoz8VxmjnQxzf6p/eUMMgUFRVHT1fdN7uPudXcTyYb5wZ7vkStmsZns2M1O1gRXcVPbTXgdFdS6al9RdCSlJPf23EuNo4aD0wdZWbmSvrk+Ds8eRkBAJ+oYS4xxRdMVhDPh025jvhdt3oX4lbyVzmYZ7vWwoXYD/37tv9M13UVUiuIxec4q90tD4+3KWyp8vvSlL/HlL3/5VR/z0ksv8fzzz5NIJPjc5z73qo8Vjp9gT2Y+NfmV+NrXvvaa+6ChoaGSlJLsnty7QPSotycYjA8hyDIfW/ppuib2MzjbRyabAEEg5KnjisatTOYj+BzBBX1V8xf28OwIpbEx5GwWnyPADXVXUudrRldXR2lkBIBYIYmkBzlfpCawiLH0JBa9GZvJjqQUmUhPcjR8lHXV6xZMoUlFieHEME2eJkx6E0pBKVdWADV802gnKSV5uO9hjHoDsUyCPCUQRZ4dfY7ZdJhbV9zG08NPl0M7X85wbJh4No7b5KbJ00TfXF9Z4MyP8CfyCY7MHsFj9tDoblyw3AVg0pmotFfSHmgnKSVPET0Ak8lJvr/3+9zQdgMWg+X3VgGqc9dpQkfjguMtFT4f//jHufXWW1/1MQ0NDXzlK1/hhRdewGQyLbhv7dq13H777fzwhz+ksrKSXbt2Lbg/Go1SKBROqQSdzOc+9zk+/elPl/+cSCSora19He9GQ+PCZzg2TLFUOO19SSlB0QWirPDRjZ9gY+MWDk7sR1FKICtM5mO43UFubLsRgEPTh8gWszzQ+wB5KYtufBw5k4FCgUh4lAcKD/PHyavwLF2qRmSMjuI2OCgh43eHGMtM4rdXMBofZSA+BILA0Ugvz44+x99d9ne0+dvKzcZHZ4+SK+RU92aLn4SYIJpTJ5MEBCx6C2a9GaPOSDqfZjqfosoRYiwxxmhiFFEQ6Zvro85TT0fl8leMu0gVUrjMLhxGB36rn831m6l2VJMr5rAarEwkJvjNkd+goBDLxbiq+Soe7X90QYNzvbueO1feSdAe5ND0oVNETywXK0dDVDmqmE5PlytAPovvnC6JaWicj7ylwsfv9+P3+1/zcd/61rf4yle+Uv7zxMQEV199Nb/85S/p7OwEYMOGDXz1q19lcnKSqqoqQG14NplMrFmz5hW3bTKZThFUGhoapydVSKEIArXuekZjw6fcX+EIUuWuwWFysKlhC8urVp7igxTJRviv3f/FQHSABk8DD/c9jFtno80QxFEsqstjQCQ+yXhtFuuOHZje8Q6Mq1fTbsizuG41o4lRrNkCo4kxYlIcBIFFvhYimQiD0UF+evCnfHbTZ8tTaM+PPc9QdIgKWwXt/nb2TO0hYAtgEA0oioLL7KLOVUe6kMZhciArMmPJMRL5BEWliEEwUJJLjMRHGEuNc1H1Rad1YrYb7Jj0JhxGBx9Y+QH+5YV/4cD0iQnUVcFV/O3Ff0skE0GSJV4Ye4HOmk4ub7wci8HCptpNrK5aXW5qnjc91Ak6rAYr+VKeklKi1ddKLBcjloshFSXmsnP85OBPaHQ30jfXV369M1kSS6QiDM0cIyUlsJudBDw1RKQYyUJSE08aFyTnRY9PXd3CUqvdrq7dNzc3U1OjOr5eddVVtLe3c8cdd/D1r3+dubk5PvOZz3DXXXdpE10aGm8SdoOdVCHN1pareaLvdwvET627nne230SDt6l828t9kJJSkp8c/AnPjTxHtpjFbDAzm5klWpqlYM6w1laDIZkpPz4t56BQQAmH0dfXEwoG+Yzlr/innf+EJOfpP17pWeRdxNbGrTw+8Dheq5eJ1ERZmDhMDqrt1QzODfLg0Qe5c9WdlPaVeHb4WRwmBzPpGS6uu5i7193Ni+MvYtKZ8Fp9jE9PUFSKCIgoigKCuiTWG+ljTdWa0zoxzy+vmfVmfnH4F2WfoHl653p5oPcBtjZuZVPVJrY2bD2tm/F8z1NcijOXmaPeXc/Pun7GTHqGieQEoiByRdMV3Lj4RgbmBvBavcSyMTKFzILXm8vOcX/P/Xxw5QcBFlSDnEYnxyJ93Hv41yQKSWRZJlPMELBVck3L1RwOH0EqSeekn0hD41xyXgifM0Gn0/Hggw/ysY99jE2bNi0wMNTQ0HhzqHfXE7AHGI4Ns7ZuA5sbLyFfkjDqTFiNNlZWrnrV6kBfpK8segCMOtVctCAXGE2MsihUj9VVwawuS66Yo7PBz2zQQ43FglJQl9jWVq/lE+s/we6p3RycOohRZySSifD4wOM4zU70oh6jaFwgTOrd9Tw9/DQb6zfySO8j3NJ+C3esuIOUlKIoqxWdolIkW8hQZaukPz5ISSkhHm9IRlETxSdTUwiCQEJKnNaJed7L57nR5zgaPorP6sOreJEVGZ2oQ1ZkXhh7gZuW3MTSwNJTxtWTUpKD0wfpjfRi1BmpcdSwtnotvznyG3SCGrI6m55lVdUqDk4f5O+e+Tsq7ZU8P/o8KytX8hcX/QUz6RkK8onlyHguTvdsN7vGd5X7ncaT44iIbKjupCgoPDH0FOl8igpbgJmBJzga7uYzm/+afVP7FognrfKjcSFwXgqfhoYGThcqX1dXx7Zt296CPdLQ+MPgZJO+k5O4Q2YXt3bc9prWARPJibLoATWbq9ZZy0hsmFKhSNws88z4DmaSUzS4G/jxnv8hpxT4wiVfoNNwYpx8WXAZh8OH2T+1vxxF4bV60Yv6cjDoycLEYXJwfev1bOvdxrqadeRKOWJSjIA9wK7RXXitXmazs2ys20RHcDmPHHvkeLVGnfpa7F/MmtAanhnejtfixWl2vqLxZYO7gd3jahSKQTQwkZxAKknlIQuz3ozdYD9F9AzFhvjV4V+xc2wng9FB3tHyDu7pvoc1VWt4YuAJCnIBv9XPlvotHAkfoSgXOTB9gJWVKykpJbpmuvj+vu/zvuXv42j4aHm7FdYK7u25F5PORCwX49DMIQ7NHMIoGtgzsZuVVau4tOEyfnPk10ylpvBZveyZ2MPO0edYGuzgaPjoeRmyqqHxSpyXwkdDQ+Ot441kmBn0hgV/7o30cnH9xWxnO+H0LDPp2bLo2VizkUd7HqKoF/j7Hf+Hf7/+/zIvNRwmB5fWX8rzo88zEB0ob28+GLTKUXWKMJlPVj95vytsFUQyEeaycxTkAkfDR6myV3HX6rto87Uxm5lFQGEoNsIzw9sJOUI4jA42VG941ffrs/iwGW0AWI1W0vk0RbmIXtRjM9qoslctePz89FZ/tJ/eSC8bajZweOYwO0Z3UOOswaAz4DQ5ERBQFAVZkZnNzKKgUJALCAgYdUaOho+SL+YXbFtBIZ6N4zK76An3MJueJVfMoTfoVM+iyhW8OLaL9dWdbB/ZXo7WmExO0uJrK2/nfApZ1dB4NTTho6Ghcda83gyzkD1EyB5iIjUBQFEusmt8Fx3BDhrcDSRzSdp9i5lNTfPY4OMU9QIoCl2Rbg6Fu6n3NZa3tci3iL/e9Nf89OBPmUhNlINBqxxV3Nh242mFyen2++T8sZJSYiw5RiqfYlPdJn595NdMpiYxG8wsDy7Hb/VzXet1tPnbTtn2ybQH2mnyNDEQHcCoM2K0nMgLbPI00R5oX/D44dgwc9k5kvkkyXySFl8Lvzn6G2K5GHpRT1JKIhUlssWsaoaoKOWAV4NowKw347P4SBfSJPNJXs58ZEu2mKUoFwE1vFc5/hkMxAbprLkIWJifdvK2Xk+SvYbG2xFN+GhoaJwzGtwNXN92Pdt6ti0QP7FsjNq6Wr6y7ytqZUGWAQV0OhBFBEE4bTBmm7+Nz2767OuqPp28T6erYEWyES7NXkpCSpAr5jDrzThNTla9Rh8TqGnkn+z8JN/a9a0FFakmTxOf7PzkKctc89UUWVZFh6zIxHIxACYSEyypWEJPuAedoFP9gAQBm8FGk6eJbCGLz+LDrDeTzCcx6U1IRQmT3oTX4mV5cDnT6WnysloJ0ovqab+olDDrTeU/l+QiAqogavA0MpuN4DA6mM3M4rV4tUw7jQsGTfhoaGicMxwmBxtrN6IoyimCwm60ky6m1V4Yne6U575SMObrrT691jYcJsdCX5yzFFUrK1fyta1fo3um+5TJrfmprfkqU0EuMJOewWq0qs3Zx5u+FUVhW+82PnXRpyjKRUbiIySlJC6T6hW0pW4LD/U+hEFvYDI1ycrgSgLWAIVSgeXB5SwPLgdgz+QeZlIzaiO3zoBBNJCQEqytWkumkEFBQSfqcZgc1DhqaA+0M5oYw6g34rV4X7GCpqFxPqIJHw0NjXNKg7vhtIIimo2+7YIx36ioCtqDp21ink9wnzci3FK3hZJcIpaLlft/FnkX0RvpRUHhh/t/yGUNl3Fty7XYDXbWhNbw9ODTPDbwGLlSjtnsLCsrV/Kuxe/iB/t/QL27noKsip/5hvRYNsbOsZ2kC2k8Fg9V+irq3HXMpGa4se1G2vxtNHoamUxOksgl+czGz1BhqaC25ZUjOjQ0zkcE5XTjUX/AJBIJXC4X8Xhc8//R0DjH7Bzd+YrBmBtqNryFe/bmkJSS/GD/D5hMTrJ/an95ws1utPPHHX/M9pHtTKWmqLRW4rP62DWxi6SUJFPIoBf1eMwermi+goNTB2n1tbLIp4ojp9FJrphjx+gOcsUcFr2FlZUrub3jdpYFl5GUkjzQ+wA6QceusV0k80kEBEYSI1RYK7ht2W3kijniuTgWg4UVwRUsCSx5i4+WhsbZcabXb63io6Gh8bbhQg/GnF/emm80BnW8/Z2t7+Q/9/wnfoufSmslm+o2YTPacJqc6HQ6coUcI/EREMBmsHFs7hhdM1380dI/4u+2/x1V9ip8Fh8+qw+AbDFLPBcv9w4Nx4bpme7GZXYxMjdIlbuGVD5Fpa2SuBTnq89+lT2Te/iT1X9Cb6SXWmctH1v3MdaEXtn1XkPjfEUTPhoaGm8rLuRgzHkhMt9oDHBZw2X86OCP6JruYllgGVc2X8k93fewe3I3siKjF/XUueq4sulKftH1C54afIqtTVuZTk9jEA34LD5yhRxhJYzL7Co3K+flfHkSK5EMUxofJxko8eLAs9hcfobjI9iMNjKFDC3eFopykZn0DHsm9jCVnOJL6S/xj1f8o1b50bjg0ISPhobGOWE6NX2i0dfspr2i/ZT+lwv59eHESLhRPDHebjVY6Z7tZpF3ERfXX8x39nwHg87AVGqKklLCorcwnhgnISW4vOly/mv3f3Hbstuod9WzY2QHbb42plJTpPIppKKE3qie1kP2EPXuehRJwprIIcfjWEMN5dfNlrJ4dV6i2SgKCiWlhF7UE81FWeRdRNdMF08NPUWNq0br8dG4oNCEj4aGxu+d/VP7X3G0e2Xlygv+9eeZz/KSihIWvYVsMUu6kKbSXslEcgKXyUX/XD/17npKSgmAklxCJ+roCfdwbcu1XN54OY2eRgajgyTzSZo8TaTyKURBJFfMYdKbaPW18sfL/xiHyUFpeprqtAGfPYAuk6fJt4iJfASjaERGVnO+cjEa3Y2MJcaO+/uorZ/hbFhzbNa44NCEj4aGxuvmtaoo06lpDkwf4PDMYVZXrqbN18ZTQ09RlIuY9WYeOfYIkUyEoD34pqaAz4+LpwopBAQe7X9U7ZE5iYHoAN/a9S2+tvVr56zyc3LkR7aYpSfcg81gw2F0MJ2aJlvMYtKbypE8IqqHEYrqwJzKp0jlU8xmZvn7HX/P+5a9jxfHXyRoD/LO1neSl/N4LB7esegdtPpbAVAKBWyxDDfUX8WDY09yc8uN3Dv6KJFsBI/Zg0lvIiElWF+9nt8e+S1GnRGdoNoJWPVWzbFZ44JDEz4aGhqvi9eqoszfv2diD8NxNcV9WWAZd664k9HEKE8OPslDfQ9xpP4IjZ5GPHoH14cuo1ayIJjN6CoqEO1n7xY8Py4+l50DYDA6yEB0gIvrL2bX+K6yczGokRm7x3fjs/mwG+1vqvh6JU42TJzLzmEUjeye2M1oYhS70Y5RZ0QqSQSsAWK5GCW5hKzIyMgYRSPLg8t5aewlqmxqQ/Mn1n+CvJzHb/XjNruZTE7y7MizNHmacJgcCAYDCAKh8RS3+y9nXCzQse6zHMuNUVIUhuPDvDj+Ig/2PoggCLhMLgpygSZ3Eya9SXNs1rjg0ISPhobGWTOdmuZbu77FSHyE9op2nCYn+VIek87EAz0P4DA4yqLoZKFxaOYQuyd3k86nGU2MApAr5pBTKWbGjnJvbx93BK/COptA9Hgwdnair6w84/1KSkl+dfhXDEQHSBXU5PVMIUNfpA8ZmRXBFRycPohUlCjIBVJSirgUZyQxQq6Yw2PxsLl2M4t8i970Y3YyL/cHkmSJyeQkPouPxf7FPDP8DIv9iynIBeK5OAadgRaf2oC8onIFzw4/y6cu+hQ/OfgT/nnXPyMg0OJrod5Vz12r76In0lNeohLdbnQeD3IshnU2QQvARAH74mr+79Ef0VzXQSQbQSpJuM1umrxNmHVm3r3k3SgommOzxgWHJnw0NDTOmu6ZbkbiI3RWd7J9eHtZxADUOmtZU7WmvLQ0P2U0j1SUCGfCgOpMbBYMyOEwGI3MFROMmSVaATkaJb9rF+LWrWdc+Tk4fZAnBp8gnAlTKBXQ6/RUO6rJy3kOzxymM9TJVGoKEZF0Ic3VzVfzxOATHJ49jFlvBmD78Hb+etNfv2Ye15vJ6qrVfHTtR3m472HuXHknuWKOXWO7CDlC1DhraPI0ccvSW3h+9Hke7H2QK5uv5GddP+PQ7CE1+NRgI1/K89LESwiCwJ0r7ywvUQkmE4alS1FKJYojI1AsQrHIkhGJv9v4t/TKM6wOrWUyNUk8F0dWZAw6AwoKN7TeoDU2a1xwaMJHQ0PjrIlJMVp9raeIHoDRxCj39dxHq6+V7tlubEYbZr2ZXDEHqNlcBbmAIst4DA68shklnwFFAYOBjMsKkyUoFpGjUUozM2ckfJJSkoPTB0lICfSinpH4CHEpjkVnYVPtJgRBoNnbzOc2f45sMcvTA0/TO9eLWW8mnAlTaa9EL+oZiA7w04M/5bObPnvOLvoOk4OgPchYcoyfH/o5d6+/m3cveTfRXBSz3sxEYoL7e+6nxllDupBGFET2T+2nKBexGWz4rX5iuRiyInNw+iD5Yn7BEpXodmPq7ES/aBFKKgU6HYLdTpXbTcjUUT5+byTzTEPjfEETPhoaGmeN2+TGaXKeInqMohEFhWg2Sq2rlqJcxKgzUuOsYSwxRq6YQy/qMYgGPDo7nZVrMU9EKMVi5W1Ya9NIy9sYnuohVczgyo3QJFW85kV4OKb2ERlEA0fCR8gUMqyrWketq5bdE7uZzcxSaavkB/t/wNrqtXz6ok/z04M/5dDsIYpyccEo+ERq4pxPM+lEHSsrVxLPxXmk7xFS+RQ+i49sKYtO0NER6OBfd/0rVfYqgvYgta5aAPKlPOPJ8XLFSlEUssXsKUtUgsmEPhR6xdd/MzLPNDTOBzTho6Ghcda0B9rZPrJ9wW0mnYloLorX7GVJxRL8Fj/JfBK7wU6mmMFqsBLPxQnYKqi0BFgsBDFPq0nsgtUKQIWrCoOo53/2/YBIJoISj6NLNlIRfokbl7+XBnfDafcnKSUZT40jCiJXNV+FSWdCr9MjFSWeGnqKqfQUTe4mRuIjNHma6J/rZ+fYThSUcg/S/Pg4qALuXE8z2Q12THoTAXuA6dQ0eyb3kMwnkRWZolzEYXSgE3WYDWb0op5IJoLD5CgvT81Pghl1xnPSpK2hcb6iCR8NDY2zJmgPsrluM/cevZdoLopRNJZFz/tXvJ/7e++nwdXAaGKUVD5Fo6eRmxbfxNGpw9xScTkOSWCbtJ3poRehVAJFweeu4h2t1/Ng3zYisUlEjwcsFhAEZkd6uE/3Wz609k9OuaAPxYb41eFf0TXTxXR6GrvRjkFnoMZZw3B8mKn0FI3uRjprOvlV968w6814LV5m07MLtjM/wm3RW3CZXed8mmne42cuO0dBLizw6mn2NJMupGn2NLO5bjPTqWmWBpZyeOYwNqMNl+jCrDcjCALrQ+tZVbXqnO67hsb5hCZ8NDQ0Xhfrq9dzy7JbODJ7hHQhTSKXYFXVKu7ruQ+DzsCB6QNIJQlREDk0cwiAL2/6WxZHjeDQ837DDYx4VpPKxLBmZapjCuNzU4SnhxBsNhBFxGAQsllQFCLR8VOWn5JSkp8c/AnPjTxHMp9UG5cFkZA9RCqf4raO2/BYPIwlxvhV968oyAXkvEyFtYJwJkzIESoLnnwpj0t00eZvw2fxoaDwwtgL52zM/WSPn5nUDEkpSb2rnkp7JZc1XkYsF8NpcvLSxEtU2av44MoP8oP9P+DQzCGMOiM2g401VWv4y41/ec4dqTU0zic04aOhofG6cJgc3LrsVu7vuZ+D0wcJZ8IYdUZKSolUNsVUaqrsAGzRW9g3tpsdI88SHK/ALikYs1maJicRPB701dUUpvpIOdUKj6DXI1ityHNziMeXwZDlU5af+iJ9PDfyHNliFr2ox2/1E8+p4+kHpg9w9aKr+fmhn5cfLyKWl7deGHuBH9z4A5L5JJPJSURBBFTTvlZfK8+PPk+mkMGsN3PAdIBNdZtecantzWLe46cv0seu8V0ACAgMRAcoKSUUFOpcdRh1RkZiI3xo5YcQRRGDaCBoC9IR7NBEj4bGa6AJHw0NjdfN/IV69/hu9k/vx2F04LV4eWnupbLoARBQHYTDiWnGdWZaJYN6r9WKEo1SVBR0wSB24Xh4pyiiZDIgCCdeTBRPWX6aSE6QLWYRELAZbGUX5JJcQkAgV8ixpnINe6b2ICKWn2fUqUaAM+kZCqUCrd5WDHoDVr0Vl9nF3sm9PD38dPnxIXsIQRDwWXznpPKzOrQar9W7wIgRVIPIa5qvoVAqkCwktekrDY3XgSZ8NDQ0zpoFo89GO+2Bdg6HD2PUGUlKyQWiRxREdIoAioJFMJFSJBBNKBMTiDU1yDodSjqN2NhIdSqCP9hA3GVETiTUMfZSCfR6fJ7qBZNKSSlJUS6SlJJU2CoYjA2SLqQBdWS+JJcw6A18aNWHEPYL7J/aj6zIWA1WlviX8Kdr/pTucDcdwQ4cRgeJXIKHjj3EbGaWu9fdveD9TqQm2NazjY5ABx3BjnNyjE92eNZGzDU03jw04aOhoXFWvDwSAsBr8XJx/cWMxkdp9jRzJHwEUEWP1WBFLMo0+RZhSKSwG2tQCgWwWJBHRxH8fgS3G9HrxWmzcaO9mvv7thGOxxHdbgSrFb8jwA3Bi7FmS2A6sQ8BW4BaVy17J/eSyqewGqzoRT16UTUu7J/rZ2BugGsXXcttHbdRKBVodDcSsof47OOf5YXxFwB1OWl99XruXHknX3zqi4iCeIojdVyKM5maPGfCB7QRcw2N3wea8NHQ0DhjklKSh/oeImAL4Da5SeaTOEwOjDojz48+z81LbsZr8RLOhjk4fRC9qEcURBp9tby76Qby3d1U20GJxxEDAeTZWZRwGMXtRp6boxQOU9vWxh2ha5lYrJCYm8RWFKkp2rA89BxZfw+Fizu5f/xB5rJzmHVmbmy9kcHoIAkpQaaQwWawUeOs4dKGS5nLzPHepe9VjQz1Fp4beY7p5DRHI0fLogfUANADUwdQFIU7lt9BlaOK+3vuP8WR+sa2G9+Kw66hofEmogkfDQ2NM2Y0NkrAGuC/9/13uaoDsMS/hA+v+jCRdIRNdZv456v+maeGniKcDWPVWzEqOkpTU1zf/A4se/tBlpEnJtRqTzCIzutFDIVQgPyePVhramjqmUZJJBAsFkSPDllRkGdmGOzbTViaQDSbmU5PE3KEWB5czsbajUglCZvBRiwXoyfSQzQbZVlwGZc3Xs7eyb080PsAf7LmT+g+2o1JZ0IqSeX3oKBwYPoAd6+/mycGnjjFnHEypYZ/bqzdqC03aWicx2jCR0ND44zJlrJl0aMoCsgyKArd04f4733/zVcu/woASwJLqHHVLOhPqW6wYB4Yp+COoMzNgSyjpNPoa2vRt7QgPfmk2tCs0yHq9ZRmZgBQikUUlwvB4UBJJkkmwyj5FJjNlJQSBblANBslnAmTkBL4rX5Kcol0IV3uNfpd/+9YH1rPmtAaCqUCcSmOz+Irh3PqBB2yImPRW0CBnnDPgvetF/XUueooyaVz7uisoaHx5qIJHw0NjTJJKcmxuWMMx4bJlXIEbAGWViwtj0hPJadU0VMqoeTzqvABEEW6x/czmZiA0Brg9P0pJbsPXXU1ZDKqY7PDgS4QoDg+rooeUUTJ5dSG5nmKRQRBoBSPI9ps2EX9wvsVcJqc9M31MZuZxW12l5ucQ/YQAgJz2TmMOiNrQmvwmD3oRB0GnQGfxXd8EwoG0YBO1KETdThMDirkCkpKCZ2gw2P20B5ox6Q3nXNHZw0NjTcXTfhoaGgAasPwU4NP8eMDP2YgNgCAw+jg4oaL+dDKD2HRWUhICepd9RQLEkKpRC6XZjYTJq+U0Is6EtkYiVQEp9132tfQud3o3O7T3KFDcDpRsll0oRBiRQViRYV6e0UFosuFeLzqU6sr4dOPEjtezZnNzLK1aSupfIpcMYeAOgIfsofY2rSVieQEAHk5z63LbmXX2C5afa3sm9yH3WjHrDdj0pswiAba/G00uBtYXbWaeC5OXs5jFI24zC5MehPAOXd01tDQeHPRhI+GhgZJKcnTg08vED0A6UKantkevrbja9y85GZG4sPsHd+NrMiYRSNWo426YDMTyUn0og5FgF93/5bLWq84K7M/QRTRNzSgAMVDhyjm8yilEvqqKoozM8gTEyi5HIJejzUQ4IZNN/Hg1NPMZecoKSUmkhNcs+gaXGYXs5lZTDoTAgITyYlyBpfdYKfB3YDP4iNgDfAvu/6Fo+Gj6EQdRbnIIu8i/nrzX7OsYhl7JveUhc7JeC3eU8I/NTQ0zi804aOhocFwbJhwJrxA9AD4LD5653rZULOBR449gt/oZLGvlZ7ZoxSRkZQCg7FhnEY7TqOLron97JraDQYd72l/zxk3AesCAYpTU8jDwwh6PUo+j2HtWgqHD6Ok02QrXIxXG0iJRRxWhZqeEd6/8ibGlHi5h6jCVsE93fcQy8VO2f7JgsVhcnBZ02U0e5vpmu4iKkXxmDx0BDuoc9cBlKMjXj6yf2PbjVpjs4bGeY4mfDQ0NEgVUmQKmVNuN+lN5Ybh7tluerNJrm25DhmFnrk+pKJEpBBhQ/WNXFy7hf+741/I6kr8+MCPWVm58ozDMkW7HZ3XS/7FF9X+n1KJlJRktN7ClNXIZGqKTHSG6YljFKUsfneIm6rcLG1dh2A6UZm5vvX6MxYsde66stB5OZp5oIbGhYsmfDQ0NLAb7FgN1lNun49+mJ+emkhN8rM9P2RL46VcsehqSnIJWS7R5G7g3578BzIUAB39xxuk54WPIknIsRhKoYBgNKr9OqaXLSVls+p9wSDjPh0PTj/CRHSUA7GjZKUkIV8jW+s3MdK7h0h8kvt7H+CDgTrcwRPi5c0ULJp5oIbGhYkmfDQ0NKh31+O3+mlyNy1Y7tKJOpwmJw6jg1wxBzodUj7L4/2PIphMVFj9TERHeWfr9WRkCQwGKBbVxx33yJFjMQq9vSSRGNDFmVKSGAwmqu1V1DlqcLkCqggym1ESCVI+Ow/0P0rUVCKpL5KV1CmqiegIT5RKbK5eyeREL5H0LCOp8QXCBzTBoqGh8eqIr/2Qtw8PPvggnZ2dWCwW/H4/7373uxfcPzIywg033IDNZsPv9/PJT36SfD7/Fu2thsb5g8Pk4NLGS7ljxR00uZvKt4uCyOqq1dS6arEZbAiiiGA0gizjNrlJSEma/C3MpsOq6Dn+981hclBhrUCRJAq9vYwICb49+Vs+89JX+P+2f4m/ffxz/N2TX2Lb0fsZ6HsJORZDDAQQq6oYtxUJzwyhZLPkBRlQ4Pik1kRsFMHhALMZRJF0KXvOj5WGhsb5zXlT8fn1r3/NXXfdxd///d9z+eWXoygKXV1d5ftLpRLXXXcdFRUV7Nixg0gkwgc+8AEUReHb3/72W7jnGhrnBw3uBt7T/h5WVq5kODaMVJIIWAMYdAa+t+d7bK7bjDwsMxIdwmn30uxqIJZPcFHtBn65+4dQOC56zC4urr+UpYGlyLEYSSR+OvEw9w09zFxiBhQFAYG0LJEdfIC5UopLdCUaa5dhueQS0n1PgSgiRyKYWkJgNKlVpOOeQTlRRldRAYDd7n3LjpeGhsb5yXkhfIrFIp/61Kf4+te/zoc//OHy7W1tbeX/f/TRR+nu7mZ0dJRQKATAN7/5Te68806++tWv4nQ6z/l+a2icbzhMDlZVrVrQlHx4+jAX1V6EIAjcteYuFEUhm4ohJ5K4vJW8MPkSrZ5FFI97+TR4G/nTNXcRtAcpxsYYEOPsDR9kLjNXFj0mq52IFGN69DnafYvZMb6Tpyd3cuPqW/G0dGCILUbJ5XDq9NgqQmRSUVX4iCJWu4d4KkxFbSsNvua38GhpaGicj5wXwmfv3r2Mj48jiiKrVq1iamqKlStX8o1vfIOlS5cCsHPnTpYtW1YWPQBXX301kiSxZ88eLrvsstNuW5IkJOlEXk8ikfj9vhkNjfOMOncd+aH8gkkpJZejFI+Sm53izxe/h8HADPFSGpfdz9LQCqoqVUEiGAxMlaJqf9BxDCYLUSlOviiBIJCRJXIliXgmzv0993PL0luoqGsjEp/ClE7T5llEr9BPtpgl5KhGMBqoaGjnXUvfrU1ZaWhonDXnhfAZGFCbLb/0pS/xT//0TzQ0NPDNb36TSy65hN7eXrxeL1NTUwSDwQXP83g8GI1GpqamXnHbX/va1/jyl7/8e91/DY3zGYfJcYqvjWA2U1G3mBvqrqAmpae2VIVgtaILBBDtJ5yNRbcbg8GMXtCd2KBORz534seGQdRj1pmIiyJz2Tlm07MnXs84hxcPq1x+DKKBK5uvxGv2Uueu00SPhobG6+ItFT5f+tKXXlN0vPTSS8jH1/a/8IUvcPPNNwPwgx/8gJqaGu655x4+8pGPACAIwinPVxTltLfP87nPfY5Pf/rT5T8nEglqa2vP+r1oaFzIvN4xccFkotrfSJWtkuHUGMliFFk5nu8lCDS4GzAIejWPy2wGVE+hZcFlmo+OhobG74W3VPh8/OMf59Zbb33VxzQ0NJBMJgFob28v324ymWhqamJkZASAyspKdu3ateC50WiUQqFwSiXoZEwmE6aX+4loaGicwusdE28MtnHFkusQzRZ2ju1Ux9yPi54bFt9InaWSqcwMgt4AnMjC0sbSNTQ0fh+8pcLH7/fj9/tf83Fr1qzBZDLR09PD5s2bASgUCgwNDVFfr9rQb9iwga9+9atMTk5SVVUFqA3PJpOJNWvW/P7ehIaGxqviMDnY0LQFWRTYXL+FIrLa86MoSIUcU/k5ZJMqerQsLA0Njd8350WPj9Pp5KMf/Shf/OIXqa2tpb6+nq9//esAvPe97wXgqquuor29nTvuuIOvf/3rzM3N8ZnPfIa77rpLm+jS0HiLaXA34FviYzg2TLqQBuDZ4WdJyWnQqUvRWhaWhobGueC8ED4AX//619Hr9dxxxx1ks1k6Ozt58skn8Xg8AOh0Oh588EE+9rGPsWnTJiwWC+973/v4xje+8RbvuYaGBpy6dNVe0a718GhoaJxzBEVRlLd6J95OJBIJXC4X8XhcqxRpaGhoaGicJ5zp9fu8iqzQ0NDQ0NDQ0HgjaMJHQ0NDQ0ND4w8GTfhoaGhoaGho/MGgCR8NDQ0NDQ2NPxg04aOhoaGhoaHxB8N5M86uoaGhofHGmE5N0z3TTUyK4Ta7aa9oJ2h/ZWd7DY0LEU34aGhoaLyFyKkUpZkZFEkiYhc4kh8jnk++6cJk/9R+vrXrWwxEB8q3NXma+GTnJ1lZufJNeQ0NjfMBTfhoaGhovEUUp6bI79qFnExydLGHb+/8LgNzxxCdTgSj8U0TJtOp6VNED8BAdIBv7foWX9v6Na3yo/EHg9bjo6GhofEWIKdSRHu6OGpLs3ORjseju7EarehlATmRQCmVysJkOjX9hl6re6b7FNEzz0B0gO6Z7je0fQ2N8wmt4qOhoaHxFjA408u9/b8mkphizK/n6aGnqXPXs6X1Ml7ofYpSPo9gsZSFSdAeJCklT8R8GO3Uu84s5iMmxd7Q/RoaFxKa8NHQ0NA4x0ynpvmfnl8wJk9gdBoo6QREQWQkNsyzQEeog8PxvvLj41KcodgQ9/fcTzwXx212///t3XdwXOW9//H32b6rXa1Wu+pWsSwX2ZYtFwwuYLAJBAw4gRAgkEB+CUNzgEkZTJIb/MtcAikM90ICARK4EELIBZLgGGNjAriAe5Ns2XJT722LpO37/P5Q2CAMhHt/xLJ3v68ZDfI5z66e79EgfXTOU4jGo7hsLtxWNxa9BYNmwKg3joQYDYrsRUx0T8RhdpBlzvrE/vyz80KkEgk+QghxCjV6G6nrrsOdVYDF6sBusjMUGaJrqJtjXYdo9jaxcNwCCBxPvsZj9SRDT7Y1m1cPv8pE90S27N9CW6CNfHs+Uz1T6R7qZlruNN5reY9yVzmzCmZxw4wbmJo7lXJX+Uc+7ip3lTM1d+qpvARCjCkJPkIIcYoEwgF2t+/mqT1P8XbD25BIADC7cA5fqfoKf4z8jub+BiLE0UwmYCSYGA1G+oP9uK1uXql7hWxbNluat9DobSQcD+ML+djWto0SZwlbmrcw0T2R+t56FAqL3sItc2/hzrPv/NhZXTKwWaQTCT5CCHGKHO8/zn9u+08afY1omobS6SCRYG/7btDgi1Vf4pebH8JstaPp9clgEoqFAAjHwpzwnmCyZzJvnniThEqQUAkUio5AB1PcUzjQfYAFxQvYFdk10n7gBE3eJqrzq1m5YCUHeg7QH+wn25bNdM90JuVMGuOrIsSpJcFHCCFOkRMDJ6jprsFmtGHWmwnHwyidDqUUe9v3clP117lmzte4YMJSLp54CVNzp2Iz2tjVtgun2YnNYGNu4VziKg6AQgGgoQEQTURH/TeWiBFJRAhGg2xt2cpPNv+E2u7aZH+qcqv4/rnfZ37x/FN5GYQYUxJ8hBDiFAlEAgAEo0GcFie+kI9wPAzaSHCJxCOsOPtblGaVAiPjgf548I90BDo40H2A8VnjKXQUMtUzlT3tewhEAvQO9+Kxeci2ZmM1WJmUPYmZeTOx6C1kmDLIt+djMVr4t7f+jbqeOow6IxoakUSE2u5afrL5J/zq0l9RklUyZtdFiFNJgo8QQpwibqsbk95EJB4hEA6QYcrAqXOSUAmMOiPjs8YnQ08gHGB1/Wr6g/3YjDYuKLuAPx/+M3s69rB0/FLcNjdGvZGpuVM51HMIf9iPN+Sl0FHI/q79aGi8d/w9Lp90OdvbtvNW41votJGl20x6Ey6Li3A8TG13LbVdtRJ8RNqQBQyFEOIUmZE3gwXFCzDpTSgUw9Fh/GE/kXiEmfkzmZE3I9m2ydtEf7AfALvJzh/r/kjDQAMTXBModBQyu2A2Jr2JLc1baA+0o6FRkV3BjNwZvHzwZfZ27OWa6ddwoOcAfcN9RONRlBp5NBaJRxgIDWDSjQygHggPnPqLIcQYkTs+QghxipRklXDPwnv46bs/5WD3QRIqgU7TMS13GvcsumfUXZfB6GDy81AsRH1vPQDV+dVsbd1KNB7lxuobmZk3E6PeiF7TE4lHaPA2MM45jmAsiMviotnXzJLxS1AoEiqBXtMDI+Hn/TFCLrPrFF4FIcaWBB8hhPgXCIQDHO07SnugHaPBSKGjkDJnGfOL5/PI5x+htquWgfAALrOLqryqkx412Y325OdD0aHk57kZuaw7vo4iRxHBaJDna58HSIaafHs+GaYMjvUfo3OokyZfE/6Qn+r8ag50Hxj1NRIqQVVuFVV5Vf/CKyHE6UWCjxBCfMYavY08X/M87za/SzAWBKDQXshlky9jQfECyrLK/umYmtKsUrKt2fQH+8kwZiSPRxNRzHozVblV9Az34A15cVlc6DU9CZWgL9hH73Av+fZ8bAYbkXiEp/Y8xcpFK3mu5rlR4acqt4p7zr1HxveItCLBRwgh/j981J2d14++zqbGTQyEBoirOHpNT7O/mTX1a0jEYmQV6rBHdWgmEzqnE81sPul9HWYHV0y+gtX1q4kn4kzLmUamOZOZeTMx6A1Myp5Ei7+FKZ4pdA91k1AJ4iqOUWekZ7iH+ePmMxgZ5MrKK+kd7mX98fVcX3U9ep2e4egwLouLRcWLmOCeMAZXTYixI8FHCCH+lz7qzk5FdgXlrnLaAm1E4pHkOB6DzkA0FsHn7uSQ6RDD0SDeiB+X1cXU/Cryc8pOev+yrDK+Xv11WrwtnFVwFptaNtE+2I7b6qbZ38yO1h3cMfcOnt73NM2+ZgwGAzbjyFo/l0++nExzJqF4iM1Nm2kLtLH++HoKHYVcVXkVX5zyxeQMMiHSiQQfIYT4lLoGu6jrrsMb9pJjy2Fj00a2tmwlGAuioZFhzKBnqIeGgQameKawvW07wWiQeCKO2WBCA/oI8kb7Zv52cE3yfctzJ3P34nuoLpp90td0mB0E40EeePcBdnfsJpaIoaExIXsCnyv/HC8ceIFlE5fRF+xDr9PjC/noG+7DYXLw612/Zn/nfuYUzOG8kvNIaAkseguReCS56KEQ6UaCjxBCfAr7OveN2uvqnHHnsKZ+DVNzphKKhcgwZdAw0IDH5qG+r56l45fiDXmxm+x4Q178EYXNmEFvsA+dphHQRdGjw4yBE931/Od7D/PgJb84ad+srsEufr3r12xt3UpCJZLHD/ceRinFnMI5RBNRdnfspsXXgjfkpcQ5MmZnc/NmzHozW1q2YDVasRltybV8lpQtkbE9Ii1J8BFCiH+ia7BrVOiJJWIEo0F0mo6uoS4KHYXU99UTjoUJx8NYDBY0TWMoOkQ8EcdhcuCL+Ch3ldMf7KdnqIfOcB+mOBj0RjyWbE70H6Ouu+6k4FPbVUtdT93InlxKJffm0tCo76vn8xWfpy3QRt9wH+eVnEeRswinyclQdIhzxp3Doe5DKE1hMViSoQdk7R6RviT4CCHSWiAcoMnbxGB0ELvJTqmzFIfZMapNXXddMvSEYiF8IR8lzhI6hzqp661jYfFCmrxNWAwWcrVcprincE7ROSOBJ+xLzq6akTeDw72H2du5lwQJzEYbs/KqycsswGgwMxAaIBAOjPr63UPdaJpGQiVGFiH8+9o7MBLAYokYswtmMyt/FhubNvJu87v4wj4muSfRGejkC5Vf4K2Gt5L7e71P1u4R6UqCjxAibTV6G5PbQrwv25rNFZOvoCyrLHnMG/YCI0Gjd7iX6vxq9nfux2114wv5SKgE2dZsCh2FtAfayfZkc6DnAPu79mPWm8k0Z1KWVUaZq4z73r6PodgQJp2JZdOXsad9Nxsa3yLDkslA2EdroHXU18/JyGFe0TwqsitQStHqb2VH2w6iiZEQ5LQ4segtPLPvGVr8Lck+K6UIxUNsbd3KrIJZ7GrflTwna/eIdCbBRwiRlj64F9YH9Qf7WV2/mq9Xfz155yXLnAVAOBYmloiRY8vh5bqXuWLyFWiaRk5GDj3DPdR01TCnYA4Tsifw2M7HiCQiAFTnVeMNemn0NvKlqV/i2ZpnOXvc2Wxp3kKzrxmrwYrL6sJmtFHTVUP3UDfXTLsGX8jHG8ff4L3m92gNtDIQHKDQUcgXK7/Inw/9mZn5M6nOq6bZ3zwq9AAc6j3EgnEL2N2xmxxbTvJ4VW4V3z/v+zK+R6QtCT5CiLTU5G0iGA1ybsm59A73jiwEaHXhtrrZ1b6LJm8T0/OmEwgH8GR4yM3I5dDwoZFHTokoCZXglbpX+PEFPyaSiDCnYA4Hew4yOXsyv9zxSzRNQ4cOi8HCYGSQbGs2bxx7g0cufYSa7hrGZY5jc/NmNDTcNjdVeVXsaN2BTqdjY2gjmaZMlFLsbN9JggTjs8aDgmm508jNyOW+8++jzFlG52AnRp2RiuyKkRldwT4SKkGGMQOX1cVlky5jXuE8FpYs/NhVooVIJxJ8hBBpKRwNM6dgDr947xfs69yHpmlE41Gm5kzl3kX3EoqGaPQ28m7zuwxHh/nK9K/wX/v+iy0tW9BrehSKTEsmBp2BH2/8MXfMu4N1x9ahVWj0hfrINGWSac4k05RJQiWIJWJYjVbebX6Xc0vOZbxrPG2BNkx6ExoaB7sPjmw2qmk4zU56hnvY0ryFmfkz2dm2k5AKcetZt7Lh+Ab+cvgvTMuZxtrwWuIqzt3n3E0kHsGkNzF/3HyMOiOeDA9208i2F1V5VUzPmz7GV1yI04MEHyFEetLBqo2r2NG2gyJHEZnmTDRGws8Tu5/g/y7+v7zX8h6vHXmN9sF2LAYLX576ZT434XPYTXb0Oj1H+o7QF+wjmojS4G3AaXZS5CjCY/OgoWHUGTDoR37MBqNByl3luCwuHtv1GDfMuIHtrdu5YvIVjHeNJ8+ex9njzqbJ28Tu9t2Y9CYO9R5idsFs9Do9Fa4KNjZupNXfmpwx1uxvptBRyDuN77B0/FJ2tO0gGAtS4i7BbBhZDTrbmi0LFQrxAbp/3uT0cOTIEZYvX47H4yEzM5OFCxfy9ttvj2rT3NzM5ZdfTkZGBh6PhzvvvJNIJDJGPRZCnK4C4QA1XTXsbNtJpacSX9hHbXctNd017O/aD8CxgWP4Qj4uLL+QSysuBeCFAy/QHmjn5bqXmT9uPuFYGKvBikLR7m/HojdztP8oLouL7uFu2gbbGY4MYdabSJAgHA/jMDu4efbNVLgqWLloJV2DXTy+83F+X/N7ntn7DA0DDdxYfSPhWBgYGVfUP9hLoT2fxoGG5FR6vaZnWs40hiJDrD++ntyM3OT2GT3DPcBI6Fk+eflJs9SESGdnzB2fZcuWMWnSJN566y2sViv/8R//wWWXXcbx48fJz88nHo+zbNkycnJy2LJlC319fdx4440opXj00UfHuvtCiNNIk7eJ/mA/xZnFtPpb8Ya8ABh1RpZPWc7u9t08suMRWv2t9Az1ML94PldVXsUrh15he9t2JrknUWAv4MvTv0yRvYhzS86leaCJpWVL8Yf93Dz7Zo71HyUUCxOJRWj2NTE1dxolzhJ+s+c3xFSMJWVLCMVDBCIBBiODyb71Bfs42neUye7JZJoyMSqNaHiYcDSEQ29DpweDxYZJb6Kmq4aB0Mh6PAe7DzJv3DyMOiPZtmyWli1lonuihB4hPuSMCD69vb0cO3aMp59+mhkzZgDw4IMP8thjj3Hw4EHy8/N54403qKuro6WlhcLCQgAeeughbrrpJu6//34yMzPHsgQhxGlkMDqIw+TAbrbT4G1Iro1z9riz2da6jRZfCwX2AvIy8oglYhztO8rao2u5Zuo1/P7A76nrqeOyiZdx+aTLWXt0LTdVfY3n9jyNQdPRM9zNKwdfxp3hIcOUQbbZxfcWfg+Hzsqe3hpunXsroViIKZ4pPLL9EewmO/OK5hGKhdBpOoaiQ7zd+Daz8mdxTtHZxJQiTByz0YpZM5BlymTauDno9QayLFkY9UY6Ah0ArD+2nlJnKSXOEkwTTBJ6hPgIZ0TwcbvdVFZW8txzzzF79mzMZjNPPPEEeXl5zJkzB4CtW7cyffr0ZOgBuPjiiwmHw+zevZsLLrhgrLovhDjN2I12LEYL5a5yarpq0NBQqORMqwJ7AcFYkGAsSJOvCZvBhsVgQa/Ts2DcAvZ27iXfnk9ZVhlfnfFVmlrrWLXo3/hd/X9j18zkWArJDhoIDoY43LuRMnsRhc5iIrEIFqMVf9hP33AfDd4G9Do9+fZ8Wvwt9AX70KHDZrRhMVooyiigw9/K16pvZP64+QSH/VTkTuaVgy/TNNSWfKQ1I28G55WeRzQeRacbCU/dQ91jfJWFOD2dEcFH0zQ2bNjA8uXLcTgc6HQ68vLyWLduHVlZWQB0dnaSlzd6qXeXy4XJZKKzs/Nj3zscDhMOh5P/9vv9/5IahBCnj9KsUjY1b+K66ddxpO8IdT11GHVGyrLK+Oasb+I0O+ka6sKgM3C49zDDsWG6hroIxUL0B/u5YvIVTHRPBEY2Ea20l1HbvIuMLi8TA3oSQ4OQSDCYa+P8OV/kT0f/Sjwe5Uj/ESIqxoz8mdyz4B5m5s2kpruGuu46Ch2FFDmKMOqNZFuzybF5yMCECR3GmKK75TCLxy3kt4dfoHWoA72mR6fpyLJkoaHxfM3zFDuL6Q/2U9NVQ2VOJdm2bKrzq8f2YgtxmhnTwc2rVq1C07RP/Ni1axdKKW6//XZyc3PZvHkzO3bsYPny5Vx22WV0dHQk30/TTt5tWCn1kcff98ADD+B0OpMfxcXF/5JahRCnD4fZwaUTL6VvuI8rJl/BvYvu5eGLHqZrsIt1x9bx8LaHeanuJfZ37edLU7+EUWckGA2Sac7EabQzxV5ORvQfP1d0WVkMEkHT6dAyMtCsVtDpKC+axprjaznSV09cG9lfy6gZqOnczyuHXmFe0TwyjBlMz5ueXMAwGA3iDXrZ3rKNDn8bTd3HKLUW0N7bQGuoG9CYWVDNFM8UFpcupjyrnGZfMw3eBkoyR9bnKc4sptnXzCPbH6FrsGuMrrIQp6cxveOzYsUKrr322k9sU1ZWxltvvcWaNWsYGBhIjtV57LHH2LBhA88++ywrV64kPz+f7du3j3rtwMAA0Wj0pDtBH3Tvvffy7W9/O/lvv98v4UeINGA1WJmcPRmT3kSDt4H/rvtvookooVgIo95IpjmTg90H8Ya8LBy3kOHYEDaDDWfMiNbcQl9ngo5iB8MmsJvsOPNL0R81Ewd0TifKYsFgy+C4rwFN06H/+wahOjRMmpE3jr/BlZVX8trR12jxtSSnn5c5y1g2aRkbG9/hrPGzKTS42de9n4TVSKZBz8GeAyRQ9Az14La50Wt6ijKLiAxEQAOPzcO0nGlsb9tOLBH7yI1PhUhnYxp8PB4PHo/nn7YbHh4GQKcbfYNKp9ORSCQAmD9/Pvfffz8dHR0UFBQA8MYbb2A2m5PjgD6K2WzGbDb/b0sQQpyB9nXu4+GtD488yuo7zIXjLyQYC+KxeVhYspDarloavY1oaCPbTFR+iVxbDv7gAHZlQudy8dyhV+mv70fndoNOR6a7kEnTzuNYaw3xeBQVixGMhbHqLZhNViKxfyytYdIZKcksZig6xJLxS3BZXcQTcawGK2aDmSO9RxiMDhFUEdY1vkEwFOD8qsvxBr2gadiNGdiMNkKxEKFYiGg8ysUVF/O5CZ9jMDKITtNR6CjkcO9hfGHf2F1oIU5DZ8QYn/nz5+Nyubjxxhv50Y9+hNVq5amnnqKhoYFly5YBcNFFFzF16lS++tWv8vOf/5z+/n6++93vcvPNN8uMLiFEUtdgF7949xdsa9uGhsZFEy6iZ7iHvR17meKZQjgepshRxGTPZEKxEAbNQLbFxbpjr/N/pn2VAmcRmxvewdtxgqjFSCCoiISGMAc6GSocZGLxDI72HyUxOIhNb8ZlclLmGk/HcCeZFicqEafMNZ7mwMg0+hMDJ+hr7xu5A+WZjNVgJaZi5Gbk0jHchcHuIMNsYXpeFfV99VTlVtE52Ikv7CMWj1FgL8BhdjAYHuSvh//Kn+v/jMPkYH7xfKblTMNpdo71JRfitHJGBB+Px8O6dev4wQ9+wJIlS4hGo0ybNo1XX32VmTNnAqDX63nttde4/fbbWbhwIVarla985Sv84he/GOPeCyFOJ7VdtWxr20YsEQPgjeNvcH3V9UzLnYaGRlVuFXs797K1dStxFUehmFM4mxVz78AYjKFlGjlcdxStIIPmvgaG+6KEExHiKkHWUBPnly9hZt5MBoM+jJE4R70n2NGxk2g8hsfqJsvqos3fRmlWKRoal068lL+d+Bvtg+3UdNWQZcnCarDyhclf4Kk9T+ENeblt7m28ePBFXj/6OtdMu4b6vnoGI4MUOYoIxULEEjEmuifyQu0LTHZPpr6vnq0tW4nFY0xwTWBueK5MbRfi786I4AMwd+5c1q9f/4ltSkpKWLNmzSnqkRDiTNQ91J0MPQDRRJTa7lrC8TANAw0UZxZzVuFZTMuZRigeotRZypcnf4mIv593jr+G3u6gc7ib5oFu4gYdIRUlEQqidBpd4T7ebPgbl0+6HLvVSdNwA5+fvIymQDMtvlb0egM6vYHqotlcMfkKmrxN+MK+kanoiSgt/ham50xnODrMluYtVOZUMsUzhT0de5LT01848ALnlpxLgb2ADFMGM/JmsOHEBjY1baJnuIdoIkqho5DOwU7C8TDheDi54aoQ4gwKPkII8Vmwm+0nHavpqmFp+VIATHoje5q3Ewj5KM+uYMq4JRw48DYnhtsIdzVT6KgGs5lwKIovNESMBFajlWBkmISK0zPUxV/q/wJAJB7h7RNv8+0Fd9Pmb6djsIMMk536vnpeO/IaF5ZfSHugnc6hTroHu6nrraPAXpAcl1PXU0emOZNjA8fwBr04zA56hnvY1rqN4dgwBs3Ajxb/iEM9h9A0DbPezHB0mIrsCsKxMDpNRygWYjA6eFLNQqQrCT5CiLQyPms8lZ5KDvUeSh6LJqL87cTfWDZxGYtLFlPj2o3NYMEUUfQ21aErmsS79e8y016BCobIceRzdKiZSDSKAsKJCAk1MnanxddKHIXdZOfthre5dOKl/Py9hxgIDZCXkYfZYOZA9wFKnSOPus4rPY/OoU4iiZHBzxaDBV/Yh9PixGqwEolHMOqMtAXaqMiuAGA4OozGyJIfOk3HhOwJbGvdhlFvBEBDQ6/TY9AZsBgs2I0nhz0h0tUZs0mpEEJ8Fsqyyrhl7i1UeipHHa/IrmBR8UK6m+uItrfiaz5GT+dx4vEYoegwIV2cgNNMnzbMJVMuY5yrBJQigSKhEpRllXFO8QJ2tO/EqDMSjoVp8jXhtrpp8jXhD/sxG8yEY2EyzZnEEjHaB9uT22WYdCYK7YVojKwPZDaYmeyZTIYhg1AshNvmpq6nDo/VQ3V+NVW5VVTlVuG2ujFoo/+G1ev0OEwOCuwFZJozZXd2IT5A7vgIIdKKw+ygOr+a2+behjfkJRAJ4DA5yLJkka23U9tz4qTXWPQWSCSIkgC3C1/Iy9KSC5iSPYmQipJhyKDT28ra469TlFlEz3AP4zLHASN3Z94XT8TpC/ZR6iwloUaW4gjFQgCUu8opyiziWP+xZPssSxZuq5ucjBwKHYXsat9F11AX3rCXocgQU3OmYtKbqMqrojfYy+Hew9hNdnSajgXFCzi/7HwWFC+Qgc1CfIAEHyFE2inLKhu5E+NtYjA6iN1opzSrlMa2Q8QT8ZNfEA5TmDkOk8EEQE/cz6S8St5r30Zd7yFMOhMRFWWcs5jZBbOp66nDbXVjMViwGW3Jt9Hr9CRUgqHoEItLFxOOhZmaO5UiexGlWaX0BfvoGe6hP9iffI2madw5706e2P0EVXlVxBNxIvEI413jmVMwh5fqXqI8q5zlk5Zz3bTryLfnk2XNosBeQGlWqYQeIT5EU0qpse7E6cTv9+N0OvH5fLL+jxBpxj/Yx2//9hB9A+2jjut1eiZVnE1HwstgbOQOjlFnZEbeDFr9rSOLHWrayLo8/Sc4q+gstrdtx260Myt/Fn86/KfkGJ9YIsbZ484m355PtjWbr1d/fVQ4CYQDJwUygNX1q/GH/YRioZENUzX9SD8MRiZkTSDbmi1BR6S1T/v7W4LPh0jwESK9NXQe5i/bnxsVftyuQr549tdwu4o+MpTUdNVQ01UDwFB0iI2NG3GYHCwtX8rx/uMUO4s50neEgeAAngwPdpOdbGs2yycv/9Tjbxq9jayuXz3qbtD/9D2ESGUSfP6XJPgIIfyDfTR2H2MwHMBudlCWW0Gm3f2Jr/ngnRqTzoRRb2Q4OkyGMSMZTD4cmv6nd2c+6m6Q3OERYoQEn/8lCT5CCCHEmefT/v6W6exCCCGESBsSfIQQQgiRNiT4CCGEECJtSPARQgghRNqQ4COEEEKItCHBRwghhBBpQ4KPEEIIIdKGBB8hhBBCpA0JPkIIIYRIGxJ8hBBCCJE2DGPdgdPN+zt4+P3+Me6JEEIIIT6t939v/7OduCT4fEhfXx8AxcXFY9wTIYQQQvxPBQIBnE7nx56X4PMh2dnZADQ3N3/ihUtVfr+f4uJiWlpa0nKTVqk/vesHuQZSv9R/ptavlCIQCFBYWPiJ7ST4fIhONzLsyel0nnHf9M9SZmam1C/1j3U3xlS6XwOpX+o/E+v/NDcsZHCzEEIIIdKGBB8hhBBCpA0JPh9iNpu57777MJvNY92VMSH1S/3pXD/INZD6pf5Ur19T/2zelxBCCCFEipA7PkIIIYRIGxJ8hBBCCJE2JPgIIYQQIm1I8BFCCCFE2pDg8wFHjhxh+fLleDweMjMzWbhwIW+//faoNs3NzVx++eVkZGTg8Xi48847iUQiY9Tjz95rr73G2WefjdVqxePxcOWVV446n+r1A4TDYaqrq9E0jX379o06l6r1NzY28o1vfIPx48djtVqZMGEC991330m1pWr973vssccYP348FouFOXPmsHnz5rHu0r/EAw88wFlnnYXD4SA3N5cvfOEL1NfXj2qjlGLVqlUUFhZitVo5//zzOXjw4Bj1+F/rgQceQNM07r777uSxVK+/ra2NG264Abfbjc1mo7q6mt27dyfPp3T9SiRVVFSoSy+9VO3fv18dOXJE3X777cpms6mOjg6llFKxWExNnz5dXXDBBWrPnj1qw4YNqrCwUK1YsWKMe/7ZePnll5XL5VKPP/64qq+vV4cPH1YvvfRS8nyq1/++O++8U11yySUKUHv37k0eT+X6X3/9dXXTTTep9evXq+PHj6tXX31V5ebmqu985zvJNqlcv1JKvfjii8poNKqnnnpK1dXVqbvuuktlZGSopqamse7aZ+7iiy9WzzzzjDpw4IDat2+fWrZsmSopKVGDg4PJNg8++KByOBzqlVdeUbW1teqaa65RBQUFyu/3j2HPP3s7duxQZWVlasaMGequu+5KHk/l+vv7+1Vpaam66aab1Pbt21VDQ4N688031bFjx5JtUrl+CT5/19PTowC1adOm5DG/368A9eabbyqllFq7dq3S6XSqra0t2eYPf/iDMpvNyufznfI+f5ai0agqKipSv/nNbz62TSrX/761a9eqKVOmqIMHD54UfNKh/g/62c9+psaPH5/8d6rXP2/ePHXrrbeOOjZlyhS1cuXKMerRqdPd3a0AtXHjRqWUUolEQuXn56sHH3ww2SYUCimn06l+/etfj1U3P3OBQEBNnDhRbdiwQS1evDgZfFK9/nvuuUctWrToY8+nev3yqOvv3G43lZWVPPfccwwNDRGLxXjiiSfIy8tjzpw5AGzdupXp06eP2gDt4osvJhwOj7pFeCbas2cPbW1t6HQ6Zs2aRUFBAZdccsmoW5upXD9AV1cXN998M7/73e+w2WwnnU/1+j/M5/MlN+2F1K4/Eomwe/duLrroolHHL7roIt57770x6tWp4/P5gH9s0tzQ0EBnZ+eo62E2m1m8eHFKXY877riDZcuWceGFF446nur1r169mrlz53L11VeTm5vLrFmzeOqpp5LnU71+CT5/p2kaGzZsYO/evTgcDiwWCw8//DDr1q0jKysLgM7OTvLy8ka9zuVyYTKZ6OzsHINef3ZOnDgBwKpVq/jhD3/ImjVrcLlcLF68mP7+fiC161dKcdNNN3Hrrbcyd+7cj2yTyvV/2PHjx3n00Ue59dZbk8dSuf7e3l7i8fhJ9eXl5Z3xtf0zSim+/e1vs2jRIqZPnw6QrDmVr8eLL77Inj17eOCBB046l+r1nzhxgscff5yJEyeyfv16br31Vu68806ee+45IPXrT/ngs2rVKjRN+8SPXbt2oZTi9ttvJzc3l82bN7Njxw6WL1/OZZddRkdHR/L9NE076WsopT7y+Ong09afSCQA+MEPfsBVV13FnDlzeOaZZ9A0jZdeein5fqla/6OPPorf7+fee+/9xPdL1fo/qL29nc9//vNcffXVfPOb3xx17kyr/3/qw3WkUm0fZ8WKFdTU1PCHP/zhpHOpej1aWlq46667eP7557FYLB/bLlXrTyQSzJ49m5/85CfMmjWLW265hZtvvpnHH398VLtUrd8w1h34V1uxYgXXXnvtJ7YpKyvjrbfeYs2aNQwMDJCZmQmMzPDYsGEDzz77LCtXriQ/P5/t27ePeu3AwADRaPSkZHy6+LT1BwIBAKZOnZo8bjabKS8vp7m5GSCl6//3f/93tm3bdtL+NHPnzuX666/n2WefTen639fe3s4FF1zA/PnzefLJJ0e1OxPr/7Q8Hg96vf6kv2a7u7vP+No+ybe+9S1Wr17Npk2bGDduXPJ4fn4+MPKXf0FBQfJ4qlyP3bt3093dnRzGABCPx9m0aRO//OUvkzPcUrX+goKCUT/rASorK3nllVeA1P/+y+Dmv1u9erXS6XQqEAiMOj5p0iR1//33K6X+Mbizvb09ef7FF19MicGdPp9Pmc3mUYObI5GIys3NVU888YRSKrXrb2pqUrW1tcmP9evXK0C9/PLLqqWlRSmV2vUrpVRra6uaOHGiuvbaa1UsFjvpfKrXP2/ePHXbbbeNOlZZWZmSg5sTiYS64447VGFhoTpy5MhHns/Pz1c//elPk8fC4XDKDG71+/2j/n+vra1Vc+fOVTfccIOqra1N+fqvu+66kwY333333Wr+/PlKqdT//kvw+buenh7ldrvVlVdeqfbt26fq6+vVd7/7XWU0GtW+ffuUUv+Yzrt06VK1Z88e9eabb6px48alzHTeu+66SxUVFan169erw4cPq2984xsqNzdX9ff3K6VSv/4Pamho+Njp7KlYf1tbm6qoqFBLlixRra2tqqOjI/nxvlSuX6l/TGf/7W9/q+rq6tTdd9+tMjIyVGNj41h37TN32223KafTqd55551R3+vh4eFkmwcffFA5nU71pz/9SdXW1qrrrrsuZaYzf5QPzupSKrXr37FjhzIYDOr+++9XR48eVb///e+VzWZTzz//fLJNKtcvwecDdu7cqS666CKVnZ2tHA6HOuecc9TatWtHtWlqalLLli1TVqtVZWdnqxUrVqhQKDRGPf5sRSIR9Z3vfEfl5uYqh8OhLrzwQnXgwIFRbVK5/g/6qOCjVOrW/8wzzyjgIz8+KFXrf9+vfvUrVVpaqkwmk5o9e3Zyeneq+bjv9TPPPJNsk0gk1H333afy8/OV2WxW5513nqqtrR27Tv+LfTj4pHr9f/3rX9X06dOV2WxWU6ZMUU8++eSo86lcv6aUUmPwhE0IIYQQ4pRL+VldQgghhBDvk+AjhBBCiLQhwUcIIYQQaUOCjxBCCCHShgQfIYQQQqQNCT5CCCGESBsSfIQQQgiRNiT4CCGEECJtSPARQqSseDzOggULuOqqq0Yd9/l8FBcX88Mf/nCMeiaEGCuycrMQIqUdPXqU6upqnnzySa6//noAvva1r7F//3527tyJyWQa4x4KIU4lCT5CiJT3yCOPsGrVKg4cOMDOnTu5+uqr2bFjB9XV1WPdNSHEKSbBRwiR8pRSLFmyBL1eT21tLd/61rfkMZcQaUqCjxAiLRw+fJjKykqqqqrYs2cPBoNhrLskhBgDMrhZCJEWnn76aWw2Gw0NDbS2to51d4QQY0Tu+AghUt7WrVs577zzeP311/nZz35GPB7nzTffRNO0se6aEOIUkzs+QoiUFgwGufHGG7nlllu48MIL+c1vfsPOnTt54oknxrprQogxIMFHCJHSVq5cSSKR4Kc//SkAJSUlPPTQQ3zve9+jsbFxbDsnhDjl5FGXECJlbdy4kaVLl/LOO++waNGiUecuvvhiYrGYPPISIs1I8BFCCCFE2pBHXUIIIYRIGxJ8hBBCCJE2JPgIIYQQIm1I8BFCCCFE2pDgI4QQQoi0IcFHCCGEEGlDgo8QQggh0oYEHyGEEEKkDQk+QgghhEgbEnyEEEIIkTYk+AghhBAibUjwEUIIIUTa+H+AfUsFKIVJ5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_qed\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### SYBA t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hU9b3/X+dMb7szO9t7gV2WuiBFQEFAY0NDsESNEVvUa/IzaIppGk2MxuTmxmtiTHJji9HExFgQxCgISkd6WdiF7XW2TO/lnN8fw44suxQVROW8nodH93va95SZ855PFWRZllFQUFBQUFBQOAMQT/cEFBQUFBQUFBQ+LRTho6CgoKCgoHDGoAgfBQUFBQUFhTMGRfgoKCgoKCgonDEowkdBQUFBQUHhjEERPgoKCgoKCgpnDIrwUVBQUFBQUDhjUISPgoKCgoKCwhmDInwUFBQUFBQUzhgU4aPwmcXpdHLNNdeQnZ2NIAgsWLAAAEEQeOCBB1LrrV69GkEQWL16dWrszTffHLTOZ40jz+FM5sUXX+Sxxx473dMYwrPPPosgCGzZsmXQeF9fH5MnT8ZsNvPOO+8A8MADDyAIwsc+1sqVK5k8eTImkwlBEHjttdc+ydQ/Fueddx5jx4495jrDnWdpaSnz58//2Mc92uf8TGf9+vU88MADuN3u0z2VLxzq0z0BBYWj8fOf/5xXX32Vp59+moqKCjIyMgDYsGEDhYWFx9z2zTff5IknnlDExeeAF198kT179rB48eLTPZXj0t7ezgUXXIDD4WDFihWcffbZANx6661cdNFFH2ufsixz9dVXU1lZyZIlSzCZTFRVVZ3MaZ80Psl5Ho2jfc7PdNavX8+DDz7IjTfeiNVqPd3T+UKhCB+Fk04oFMJgMHzi/ezZs4eKigq+9rWvDRofeNmcDoLBIEaj8bQdX+H0ceDAAc4//3xisRjvvfce48aNSy0rLCw8rhg/Gp2dnTidTr7yla8wb968Y657up+/T3KeR+Non/MjSSQSxONxdDrdST2+wpmH4upSGMKAOXv79u0sXLiQtLQ00tPTuf766+nt7R207oCZ+5VXXmHixIno9XoefPBBALq7u7n99tspLCxEq9VSVlbGgw8+SDweP+bxm5ubEQSBFStWsG/fPgRBGOTKOp6b6MYbb+SJJ55IrTvwr7m5GUj+wv7DH/5ATU0NBoMBm83GlVdeSWNj46D9DJj+33//fWbMmIHRaOTmm28GwOv18t3vfpeysjK0Wi0FBQUsXryYQCAwaB9er5dvfOMb2O12zGYzF110EfX19cc8f4De3l60Wi333XffkGX79+9HEAQef/xxIPkyHJiLXq8nIyODyZMn8/e///24xxmOSCTCz372M6qrq9Hr9djtdubMmcP69euBD+/Ps88+O2TbI+9Nb28vt912G0VFReh0OrKyspg5cyYrVqwAktd42bJltLS0DLpXAzidTu68804KCgrQarWUl5fz4x//mEgkMuS43/rWt3jmmWeoqqrCYDAwefJkNm7ciCzL/PrXv6asrAyz2czcuXM5ePDgR7omO3bs4JxzzkGtVrN27dpBogeO7QJ66623mDRpEgaDgVGjRvH0008P2m5ASNx7770IgkBpaemgfW7bto0rr7wSm81GRUUFAFu2bOGaa66htLQUg8FAaWkp1157LS0tLUPmvnbtWqZPn45er6egoID77ruPv/zlL4M+EyfKsVx6r776KuPHj0ev11NeXp56Po/GsT7nA8t+9atf8dBDD1FWVoZOp2PVqlWEw2G+853vUFNTQ3p6OhkZGUyfPp3XX399yDHcbje33HILGRkZmM1mLr30UhobG4c8pwPntWvXLq666qrUfu+55x7i8Th1dXVcdNFFWCwWSktL+dWvfjXkWCf6nTDwrD7//PNUV1djNBqZMGECS5cuHTSf733vewCUlZUN+Q589913Oe+887Db7RgMBoqLi7niiisIBoPHvOYKSRSLj8JR+cpXvsLVV1/NHXfcwd69e7nvvvuora1l06ZNaDSa1Hrbtm1j3759/OQnP6GsrAyTyUR3dzdTp05FFEXuv/9+Kioq2LBhAw899BDNzc0888wzRz1uXl4eGzZs4M4778Tj8fDCCy8AMHr06BOa93333UcgEODll19mw4YNg/YLcPvtt/Pss89y11138eijj+J0OvnZz37GjBkz2LlzJzk5Oalturq6uP766/n+97/Pww8/jCiKBINBZs+eTXt7Oz/60Y8YP348e/fu5f7772f37t2sWLECQRCQZZkFCxawfv167r//fqZMmcK6deu4+OKLj3sOWVlZzJ8/n+eee44HH3wQUfzwN8ozzzyDVqtN/UK+5557eP7553nooYeYOHEigUCAPXv20N/ff0LX63Di8TgXX3wxa9asYfHixcydO5d4PM7GjRtpbW1lxowZH2l/X//619m2bRu/+MUvqKysxO12s23bttTc/vCHP3DbbbfR0NDAq6++OmjbcDjMnDlzaGho4MEHH2T8+PGsWbOGRx55hB07drBs2bJB6y9dupTt27fzy1/+EkEQuPfee7n00ktZtGgRjY2N/P73v8fj8XDPPfdwxRVXsGPHjhOKy1m7di0PPPAARUVFvP3226nn6ETYuXMn3/nOd/jBD35ATk4Of/nLX7jlllsYMWIEs2bN4tZbb2XChAksXLiQ//f//h/XXXfdEIvGwoULueaaa7jjjjtSL9Hm5maqqqq45ppryMjIoKuriyeffJIpU6ZQW1tLZmYmALt27eKCCy6gsrKS5557DqPRyB//+Ef+9re/nfA5nAg7duxg8eLFPPDAA+Tm5vLCCy/w7W9/m2g0yne/+91htznW59zpdALw+OOPU1lZyX//93+TlpbGyJEjiUQiOJ1Ovvvd71JQUEA0GmXFihUsXLiQZ555hhtuuAEASZK47LLL2LJlCw888ACTJk1iw4YNx3TVXX311Vx//fXcfvvtvPPOO/zqV78iFouxYsUK7rzzTr773e/y4osvcu+99zJixAgWLlwIcMLfCQMsW7aMDz74gJ/97GeYzWZ+9atf8ZWvfIW6ujrKy8u59dZbcTqd/O53v+OVV15JPXOjR4+mubmZSy+9lHPPPZenn34aq9VKR0cHb731FtFoVLFInwiygsIR/PSnP5UB+e677x40/sILL8iA/Le//S01VlJSIqtUKrmurm7QurfffrtsNpvllpaWQeP//d//LQPy3r17jzuP2bNny2PGjBkyDsg//elPU3+vWrVKBuRVq1alxr75zW/Kwz3eGzZskAH5N7/5zaDxtrY22WAwyN///vcHHR+QV65cOWjdRx55RBZFUf7ggw8Gjb/88ssyIL/55puyLMvy8uXLZUD+3//930Hr/eIXvxhyDsOxZMkSGZDffvvt1Fg8Hpfz8/PlK664IjU2duxYecGCBcfc14ny17/+VQbk//u//zvqOk1NTTIgP/PMM0OWHXleZrNZXrx48TGPeemll8olJSVDxv/4xz/KgPzPf/5z0Pijjz465LoAcm5uruz3+1Njr732mgzINTU1siRJqfHHHntMBuRdu3Ydc17PPPOMDMiAnJ6eLvf09Bx13YHPzOGUlJTIer1+0GcgFArJGRkZ8u23354aG7iev/71r4fd5/3333/Mecpy8rnw+/2yyWQa9LxdddVVsslkknt7e1NjiURCHj16tAzITU1NqfGjfd5O5DwFQZB37NgxaPyCCy6Q09LS5EAgcMx9DnfcgWtSUVEhR6PRY24fj8flWCwm33LLLfLEiRNT48uWLZMB+cknnxy0/iOPPDLkOR04ryO/F2pqamRAfuWVV1JjsVhMzsrKkhcuXDhonyfynSDLyWc1JydH9nq9qbHu7m5ZFEX5kUceSY39+te/HnKPDt/nkddb4cRRXF0KR+VIn/vVV1+NWq1m1apVg8bHjx9PZWXloLGlS5cyZ84c8vPzicfjqX8D1o733nsP+NBvP/BPkqRTeEbJeQmCwPXXXz/ouLm5uUyYMGFQZhiAzWZj7ty5Q/YxduxYampqBu3jwgsvHGSOHrhOR17H66677oTmevHFF5ObmzvIOvaf//yHzs7OlMsNYOrUqSxfvpwf/OAHrF69mlAodKKXYwjLly9Hr9cP2v8nYerUqTz77LM89NBDbNy4kVgsdsLbvvvuu5hMJq688spB4zfeeCOQzIQ6nDlz5mAymVJ/V1dXA8nrePiv7YHx4dxCw3H55Zfj8XhYvHgxiUTihOcPUFNTQ3FxcepvvV5PZWXlCR8b4Iorrhgy5vf7U1YHtVqNWq3GbDYTCATYt29far333nuPuXPnpixAAKIocvXVV3+k8zgeY8aMYcKECYPGrrvuOrxeL9u2bfvY+7388ssHWZcH+Ne//sXMmTMxm82o1Wo0Gg1PPfXUkHMHhpzrtddee9TjHZmdVl1djSAIg6y0arWaESNGDLqHJ/qdMMCcOXOwWCypv3NycsjOzj6h56KmpgatVsttt93Gc889N8RFr3B8FOGjcFRyc3MH/a1Wq7Hb7UNcKMOZ/h0OB2+88QYajWbQvzFjxgDJlGCAefPmDVp+sl64R8PhcCDLMjk5OUPmtnHjxtS8jnduu3btGrK9xWJBluXUPvr7+1PX7HCOvK5HQ61W8/Wvf51XX301ldL67LPPkpeXx4UXXpha7/HHH+fee+/ltddeY86cOWRkZLBgwQIOHDjwUS4NkIzJyc/PH+Ra+yS89NJLLFq0iL/85S9Mnz6djIwMbrjhBrq7u4+7bX9/P7m5uUPcUdnZ2ajV6iHP4ZHZQFqt9pjj4XD4hM7hvvvu4/777+fFF1/k+uuv/0ji58h7D6DT6T6SOB3uGbzuuuv4/e9/z6233sp//vMfNm/ezAcffEBWVtagfff39w9y3Q4w3NgnYbhnemDs47hcBxju3F955RWuvvpqCgoK+Nvf/saGDRv44IMPuPnmmwfd04HP35H3/1jnPtyzYjQa0ev1Q8YPP9aJficM8Emei4qKClasWEF2djbf/OY3qaiooKKigv/93/897rYKSZQYH4Wj0t3dTUFBQerveDxOf3//kA/tcHESmZmZjB8/nl/84hfD7js/Px+AP/3pT/h8vkHbnUoyMzMRBIE1a9YMmx1y5NjRzs1gMAwKUj1yOSS/3Ia7Zify0h/gpptu4te//jX/+Mc/+OpXv8qSJUtYvHgxKpUqtY7JZOLBBx/kwQcfxOFwpKw/l112Gfv37z/hY0Eytmjt2rVIknRU8TPwEjgywHi4F1xmZiaPPfYYjz32GK2trSxZsoQf/OAH9PT08NZbbx1zLna7nU2bNiHL8qD70NPTQzweP+XPyuE8+OCDCILAgw8+iCRJvPDCC6jVn87X55HPoMfjYenSpfz0pz/lBz/4QWp8IPblcOx2Ow6HY8g+P8ozeCIMt7+BseFe8ifKcJ+/v/3tb5SVlfHSSy8NWn7k8zjw+XM6nYMEzck+dzjx74STxbnnnsu5555LIpFgy5Yt/O53v2Px4sXk5ORwzTXXnNRjfRFRLD4KR2Ug2HCAf/7zn8Tjcc4777zjbjt//vxUmurkyZOH/BsQPlVVVYPGBzJaPikDAubIX1Dz589HlmU6OjqGndeR2TpHO7eGhgbsdvuw+xg4hzlz5gBDr+OLL754wudRXV3NtGnTeOaZZ3jxxReJRCLcdNNNR10/JyeHG2+8kWuvvZa6urqPnOVx8cUXEw6Hh83YOvwYer2eXbt2DRofLqvmcIqLi/nWt77FBRdcMMj9cbRfuvPmzcPv9w8p5vfXv/41tfzT5IEHHuDBBx/kn//8J9ddd91xsxNPFQOB80eK9L/85S9DrFGzZ8/m3XffHWRxkCSJf/3rXyd1Tnv37mXnzp2Dxl588UUsFguTJk06qccSBAGtVjtI9HR3dw95/mbPng0krY6H849//OOkzgdO/Dvho3C077DDUalUTJs2LZXF+kncimcSisVH4ai88sorqNVqLrjgglRW14QJE04oPuBnP/sZ77zzDjNmzOCuu+6iqqqKcDhMc3Mzb775Jn/84x9Pej2QwxkQMI8++igXX3wxKpWK8ePHM3PmTG677TZuuukmtmzZwqxZszCZTHR1daXSlP/rv/7rmPtevHgx//73v5k1axZ3330348ePR5IkWltbefvtt/nOd77DtGnT+NKXvsSsWbP4/ve/TyAQYPLkyaxbt47nn3/+I53LzTffzO23305nZyczZswYUtxu2rRpzJ8/n/Hjx2Oz2di3bx/PP/8806dPT2V4/PWvf+Xmm2/m6aefTmW9DMe1117LM888wx133EFdXR1z5sxBkiQ2bdpEdXU111xzTSpGaqDg3IQJE9i8efMQQefxeJgzZw7XXXcdo0aNwmKx8MEHH/DWW2+lsmEG7tUrr7zCk08+yVlnnYUoikyePJkbbriBJ554gkWLFtHc3My4ceNYu3YtDz/8MJdccgnnn3/+R7qOJ4P7778fURS57777kGWZv//975+a5WeAtLQ0Zs2axa9//WsyMzMpLS3lvffe46mnnhpS6O7HP/4xb7zxBvPmzePHP/4xBoOBP/7xj6nssCOtel6vl5dffnnIMbOyslJCYjjy8/O5/PLLeeCBB8jLy+Nvf/sb77zzDo8++uhJzzIaKJ9x5513cuWVV9LW1sbPf/5z8vLyBrl3L7roImbOnMl3vvMdvF4vZ511Fhs2bEgJ55PlzoUT/074KAx8h/3v//4vixYtQqPRUFVVxQsvvMC7777LpZdeSnFxMeFwOGVpOh2fic8lpzGwWuEzykCGw9atW+XLLrtMNpvNssVika+99lrZ4XAMWrekpES+9NJLh91Pb2+vfNddd8llZWWyRqORMzIy5LPOOkv+8Y9/PCj75mh8kqyuSCQi33rrrXJWVpYsCMKQ7Iinn35anjZtmmwymWSDwSBXVFTIN9xwg7xly5bjHl+WZdnv98s/+clP5KqqKlmr1crp6enyuHHj5Lvvvlvu7u5Ored2u+Wbb75ZtlqtstFolC+44AJ5//79J5TVNYDH45ENBsNRs61+8IMfyJMnT5ZtNpus0+nk8vJy+e6775b7+vpS6wxkKA2XiXUkoVBIvv/+++WRI0fKWq1Wttvt8ty5c+X169cPmtOtt94q5+TkyCaTSb7sssvk5ubmQecVDoflO+64Qx4/fryclpYmGwwGuaqqSv7pT386KNPH6XTKV155pWy1WlP3aoD+/n75jjvukPPy8mS1Wi2XlJTIP/zhD+VwODxozoD8zW9+c9DY0bKlBp6Xf/3rX8e8DgPX7MhMHVn+MDNv4cKFcjQaPWq203CfjdmzZ8uzZ88+7jwH9nl4RtYA7e3t8hVXXCHbbDbZYrHIF110kbxnzx65pKREXrRo0aB116xZI0+bNk3W6XRybm6u/L3vfS+VGed2uwfNi0NZbEf+G5jvsc7z5ZdflseMGSNrtVq5tLRU/p//+Z9hr+tw1+NoWV1HXpMBfvnLX8qlpaWyTqeTq6ur5f/7v/8bdm5Op1O+6aabBn3+Nm7cOCTb8mjXetGiRbLJZDqhOZ/od8Jwz6osy8Peux/+8Idyfn6+LIpi6jtuw4YN8le+8hW5pKRE1ul0st1ul2fPni0vWbJk2GulMBRBlmX5U9BXCp8jBkz6vb29n2ochYKCwqfDl770JZqbm0+omOYXjRdffJGvfe1rrFu37iPXpVL4YqC4uhQUFBS+wNxzzz1MnDiRoqIinE4nL7zwAu+88w5PPfXU6Z7aKefvf/87HR0djBs3DlEU2bhxI7/+9a+ZNWuWInrOYBTho6CgoPAFJpFIcP/999Pd3Y0gCIwePZrnn3+e66+//nRP7ZRjsVj4xz/+wUMPPUQgECAvL48bb7yRhx566HRPTeE0ori6FBQUFBQUFM4YlHR2BQUFBQUFhTMGRfgoKCgoKCgonDEowkdBQUFBQUHhjEEJbj4CSZLo7OzEYrEMWy5dQUFBQUFB4bOHLMv4fL7j9htUhM8RdHZ2UlRUdLqnoaCgoKCgoPAxaGtrO2ZnAEX4HIHFYgGSFy4tLe00z0ZBQUFBQUHhRPB6vRQVFaXe40dDET5HMODeSktLU4SPgoKCgoLC54zjhakowc0KCgoKCgoKZwyK8FFQUFBQUFA4Y1CEj4KCgoKCgsIZgxLjo6CgoKBwxpFIJIjFYqd7GgofAY1Gg0ql+sT7UYSPgoKCgsIZgyzLdHd343a7T/dUFD4GVquV3NzcT1RnTxE+CgoKCgpnDAOiJzs7G6PRqBSq/ZwgyzLBYJCenh4A8vLyPva+FOGjoKCgoHBGkEgkUqLHbref7ukofEQMBgMAPT09ZGdnf2y3lxLcrKCgoKBwRjAQ02M0Gk/zTBQ+LgP37pPEZynCR0FBQUHhjEJxb31+ORn3ThE+CgoKCgoKCmcMivBRUFD4wuHwO1jVuIpX973KqqZVOPyO0z0lBYXPLKWlpTz22GOfaB+rV69GEIRPnC13MuZyPJTgZgUFhS8UO7p38Pimx2l0NabGym3l3DXtLmpya07fxBQUFD4TKBYfBQWFLwwOv2OI6AFodDXy+KbHj2v5SbjdROvqiO7cSbS+noRS60VB4QuHInwUFBS+MNT21A4RPQM0uhqp7ak96raxtjZCb75JePlywqtWEX7zTUJvvkmsre1UTVfhc4ociZBwOIi3t5Po6UGORE79MWWZX/3qV5SXl2MwGJgwYQIvv/wysixz/vnnc9FFFyHLMgBut5vi4mJ+/OMfp7ZfsmQJkydPRq/Xk5mZycKFC4c9TnNzM4IgsGPHjtSY2+1GEARWr16dGnvzzTeprKzEYDAwZ84cmpubh+xr/fr1zJo1C4PBQFFREXfddReBQCC1vKenh8suuwyDwUBZWRkvvPDCJ7tIJ4gifBQUFL4wuCPuIWOyJCFHo8iRCO5A37AvqYTbTWTNGqRDxdEGkHp6iKxZo1h+FFJIbjfRHTuI7dtH/OBBYrW1RHfsQDrFz8hPfvITnnnmGZ588kn27t3L3XffzfXXX8/777/Pc889x+bNm3n88ccBuOOOO8jJyeGBBx4AYNmyZSxcuJBLL72U7du3s3LlSiZPnvyx59LW1sbChQu55JJL2LFjB7feeis/+MEPBq2ze/duLrzwQhYuXMiuXbt46aWXWLt2Ld/61rdS69x44400Nzfz7rvv8vLLL/OHP/whVaDwVKLE+CgoKHxhsOqsg/6W43HkYBAkCYC0hIbojh1oqqoQrR+um3A4hoieAaSeHhIOB6rD1lc4M5EjEWJ1dcih0ODxUIhYXR3amhoEne6kHzcQCPA///M/vPvuu0yfPh2A8vJy1q5dy5/+9CdefPFF/vSnP/H1r38dh8PBG2+8wfbt29FoNAD84he/4JprruHBBx9M7XPChAkfez5PPvkk5eXl/Pa3v0UQBKqqqti9ezePPvpoap1f//rXXHfddSxevBiAkSNH8vjjjzN79myefPJJWltbWb58ORs3bmTatGkAPPXUU1RXV3/seZ0oivBRUFD4wjA6ezTltnKaXE3oVTricoyYSUQrqilPK2WUOh/ZHRz6kgqHj73jU+zK8EV8tLhb8Mf8mLVmStJLsOgsp/SYCh8dye0eInoGkEMhJLcbVU7OST9ubW0t4XCYCy64YNB4NBpl4sSJAFx11VW8+uqrPPLIIzz55JNUVlam1tuxYwff+MY3Ttp89u3bx9lnnz2ops6AIBtg69atHDx4cJD7SpZlJEmiqamJ+vp61Gr1IMvTqFGjsH4KPzAU4aOgoPCFIcecw13T7uKPH/yRtw4uxxXoB6DSXkn1qHHUaT14zL2ka4xUuzPJy6lIbqjXH3vHp+BX/ADN7mb+secf7OvdRzgeRq/WU51VzTVjr6HUWnrKjqvw0ZGPUy34eMs/LtIhi+WyZcsoKCgYtEx36NkMBoNs3boVlUrFgQMHBq0z0OrhRBDFZATMQLwQDK2SfPiyY8359ttv56677hqyrLi4mLq6OuD0FJNUhI+CgsIXijxzHmW2Mr4+/nqC0RBGjRGzzszB/oM0uVsYk1HF243/IXbgNb51zmJqcmtQ5eQgZmcP6+4Ss7NPya94SFp6ntr2FEvrl+IKu1Ljuxy7CEQDfH/m9xXLz2cI4ZDr6OMu/7iMHj0anU5Ha2srs2fPHnad73znO4iiyPLly7nkkku49NJLmTt3LgDjx49n5cqV3HTTTcc9VlZWFgBdXV0pa9Lhgc4D83nttdcGjW3cuHHQ35MmTWLv3r2MGDFi2ONUV1cTj8fZsmULU6dOBaCuru4T1wE6ERTho6Cg8IWitqeWV/e/Sp+vB2Ixzh91Cf+s/SfN7mb0aj0zimbg8zuZXTGXJzY/wUNzHyLHmoPu3HOTAc59fYi5uYhGI4JOh6q0FDkQIBGNIqann9QYjr1du3lj3+u4An0gCKBSIYgirrCLpfVLmV85n2mF007a8RQ+GaLVimAwDOvuEgyGQXFjJxOLxcJ3v/td7r77biRJ4pxzzsHr9bJ+/XrMZjOZmZk8/fTTbNiwgUmTJvGDH/yARYsWsWvXLmw2Gz/96U+ZN28eFRUVXHPNNcTjcZYvX873v//9IccyGAycffbZ/PKXv6S0tJS+vj5+8pOfDFrnjjvu4De/+Q333HMPt99+O1u3buXZZ58dtM69997L2WefzTe/+U2+8Y1vYDKZ2LdvH++88w6/+93vqKqq4qKLLuIb3/gGf/7zn1Gr1SxevPgjWac+LkpWl4KCwheK/lA/fcE+YiSoKZjE2ra1HHQ1EJcThONhZGTavG28374WjUrDXsceEg4HgiCgO+cc9Jddhmg2I4fDJHw+ouvXE9mwgXh7O9GdO084e8cX8bHHsYdN7ZvY3bObbZ3b2Ni+kT09e/BFfMS7u2npa8Dp6kxlncnhMHIiAYAr7KLV3Tpon6cjjXo4ztR6R4JOh6aqCuGIl7NgMCTHT6FL9Oc//zn3338/jzzyCNXV1Vx44YW88cYblJaWcsstt/DAAw8wadIkAH7605+Sn5/PHXfcAcB5553Hv/71L5YsWUJNTQ1z585l06ZNRz3W008/TSwWY/LkyXz729/moYceGrS8uLiYf//737zxxhtMmDCBP/7xjzz88MOD1hk/fjzvvfceBw4c4Nxzz2XixIncd9995OXlpdZ55plnKCoqYvbs2SxcuJDbbruN7Ozsk3XJjoogn4iz7gzC6/WSnp6Ox+MhLS3tdE9HQeGMQ/L7Uy91Qa9HlZWVFCKRSDK4NBZD0GqPan1ZVreMby7/JgAXV1zEczv/SiTxoUC4rHI+27u2I4gi14y+mqkZ47nEXwiiSJ9Vw/5YJx45jFXWUhmxYGvug3gcwWxGXVICknTc7J1mdzNL6pbgCXsoTCtM1haSwag1YtVbsaiMTItks1Pbzz3LFw/eWBQR9HoEUeQ3X/oNV4y+Inld3O4hGUUDL9xTZWkYjlhb25DUfzE7G92556IpKvrU5vFxCIfDNDU1UVZWhv54cV3HYNCzqNEkLUGnUPQofMix7uGJvr8VV5eCgsJp5fCXiByPE9u7F6m3N7VctNnQTJqE1N2NfFjxs6O99HMtuVRnVrOvbx8xOT4oeDLXnIsgiAiiiCzLRCNB0tVmEEX22uP8buv/0tC5F7VKy6iiCRTbKxg9qpJir4GCkEi6IBw3e8cX8bGkbgnOkJN8cz49/h5WN6+mzduGWlSTa86lUJcNObMoTh9FsbWEVnfLhzuQJEgkKLKWkGPMxu1opTXYSYevi7gmSq7eSnnMgikQO+Vp1EdyvHpH4iWXnBFp/4JOd8rivhROPYrwUVBQOG0k+vqI7dqF5PcjWK3EW1qQfT5Emy0lABJOJ/KWLahrapKCxe8HWT7qS9+gMnDLxFt4avtTaEQNKlGFSlSRZcxifM54nCFnckVJItuYwyh1Lv0Z8IedT6LTm5g29iKyLDn0hfr5oGsLL9f+m1m2CRTGzXy56DoKBeGY2Tst7pbUMdL0aTy/63navG1oRS0yMp6wh3DIz+uhID8pPosFo77Ca/tfHSR+itKLWVB5OXbJwLL6ZSypW0JnXxOIIsa0DGbmTuXavAsp9KvhBNOoT0bKvFLvSOGLgCJ8FBQUTilHc1El+vuJrFuH5EpmM4k6HVJ3dzJ+IhpF8vuR3W6QJKS2NkSbDUGnQ0hLQ/Z6U+LnyJd+kbWI1a2rWVSzCL1KTzQRpTfYizfspa6/DrvBDsC4nHFcWDQHe3eU9VYXdmse7zStIBwL4Yy4cYfdVNhGcEnlxXT7unB7O3G3LuGO0ivJPUb2jj/mT/1/MBqkzduGTqXDFXYRTUQxqA1oZRGXt4eWQCdzMs7CX+olFA8RlWJoRQ0mi43ZOdPY3rqJNxqX0+luS6YQR6MEXL2si69HF45zk/V8LDHtcdOoB1xvKdEHZBgyuLzq8o+WMn+a6x0pKJwMFOGjoKBw0jhS5CCKxBsaUnEpcjyOIIqoRowg4XCQcDhAlpMZTfE4JBIgiiSczqTF57AQRDkYJFZfn3RvGY0pt9eRL32LzsIlIy9JxdjMKJrBysaVBGNBzi0+l0g8wpzSOXx99DWMbA4SMKgIa0T2uw6gUmnIN9ppbWsjTZ9ORI7ybstqqjNHsS/YQkNTB2XWUubmZlHK8BYWs8ac+v9oIopOpSMcD6MW1WhVWlSCimgiSkyI4wj1cbbXwC3WuckaQ1IYq9FKddoIersbcMY8dHrbkzs7FPRMIkEwFqIx2EF7pp/KbgmNePQ8lcNdb4fjDDlZUreEm2puOnHLz2msd6SgcLJQhI+CgsJJIRV8G4kgZGSASkXiwAHkWAzRYgFZxidHaFf7CTQ5MObk4Zpkwx10YlVbGJWWSXp3FoJGQyISAZXqw52LIgGbkdYohDQOLFobhRgxBePD1k4ptZZyU81NtLhbCMQCTC2YSiwRIypFMWvMZJmy6HS3s8rm5J3Gd8hIy+GdxneQZIlSaykT8ifR6Gqk09dJo7uRibkTaQ51UWDJx0OIJQ3LuMkyvGAosZYwMmMkfcE+MgwZyLJMh6+DhJxARMSitWDWmdHpDfhjAfZnxJhU72VmXh4JhwMxTYVo93LQ20s46keWpKQwFIQPhaAsE5VihOQYrsoiDvj24Nm3Caveyuis0Rg1xpRbKxQL0eXrQqceKkqcISct7hbG5ow9oXt8uuodKSicTBTho6Cg8Inx+vtpbN6KX/Ziycwk3+/CImtBlhF0OqRIhI50mSUHl+F2O8geP41X1zxBj7OdsvQSfEE3pfYK/t/YRVTtdIDfD1otGAwQidA9qZylDa/Q21yLKi+PmEmPzmDm/IoLyEw4KI4Yh4gQi84y7At9wO0TS8R4t2kl3Z5OZurPJU2fhi/iIybFCcfDXDX6KgRBIC7Hqc6spjfQy/bu7Yhq7TEFQ3+on4POgzQ4GwCYkDsBrUqLWqUmISUQBAGNqGFs9lj6Y27qDf1IEwuxReMU2MowecKg1WI2Z6B3tUMslqzvo1Yjx+MpC5lZayaen8N9u/5Mk7clFedUaCnkyjFXsq93Hza9DUEQqO2txaK1YNAY0Kg0pOvSU0LocNfc0Tg8Psg4tZTcBgv6uqZUDzQxOxvdrFlKfI/C5wJF+CgoKHwimt3NvL7tH/S27gejEcJhrBGRy4ouIHf3AZAkQmMrWdq5iX53F9mFlbxy4DUa3c0Qi9Hkb6dYl01Dyw5+j8DPx95BWm9v0vUVjxMaV8ky3yac7QfJLx5NvCiXrmAvMURWdK2lKFzKyrbVx41XGXh5r29bz/O7nmdM9hhWNK1ElmXG5I3HZshAQKTUWkp5Rjnvtb7H7p7dCAhMzp9MtjGba8dfizfsBYYXDL6Ij6X1S9GIGqYUTKG2p5aLR17MS9JLbO7YTEJKuqvGZI3h6tFX0+ptJSRFaAh1oHf5ebdhDxfnziJ/f5CCwizSDGnkpxfS6etMiki1GlQqjKZ05oy9jKd2P0uzYz+SUU8kGiAmxej2d+ONeLlzyp08v+t5RmSMYEP7BuJSnHxLPuOyx2HWmtGqtMiyTCASwBfxHdXd1exuZl3rOrwRb6qlhiVTz/TymRSFtaDVosrJUUSPwucGRfgoKCh8bAbiR/r9h1wfKhUJh4O+UIg3eIfrC6ZgaHPQIXjpbdmPYLMRSzPRuP8AHHqJ+6I+MOUDcLBlO3UTAsw8++xkDI8o0mhP4FxbR/GoKazo28S2ra8RF2QQRYrTi/lW3gQc/Y5jxqsMWHmyTdm8tPcldvfspsxWhiRLiIJIi7sFjUrDSPtI7EY761rXJcUGkK5Lp8ffQ5unDZveht6mRxTFQbE8A7S6WxEQWNm0kv5QP/6In6X1S5lZPJM7p9xJXV+yP5HdYOd/Nv4PBrWBbV3bkGJRJmeO565z7mabz8GuTDV2TYKzjDVodUZe3f8anc5mBJUKe1Yx1VmjUekNbO/fjaSWiYYDyMiEYiECsQCesIe+YB/BWJCeYA+V9kpaPa3kmHLIMmaxonEFze5m8sx5bO3ayoaODVw//vohwtEX8bG+bT3L6pfR6e9MjRdZikgfm4nHXkBUCmCOxiiJqJT2GgqfCxTho6CgMAg5EiHR34/k8yXdKqKIoFIhWCyojigamErdHgiujcdTgcz9zg46Rp3NiDbwSyHkcAhRlUkwcagAnyhCNAoaDXER0GhAEPCGvTgLi9nn6cMVcCKrjVira1jh2Ex9pIOAHEUURNQItHnbWH5wOWcXnE13oHuQ+2mgEKJPCvFa46u4CGLWmGl2NwOgElTEEjG0Ki1bu7Yyv3I+oVgIk8ZEfX896fp0itKKKEwrpMnVRCgeYm/fXqoyq0jTp1FiLRly7bwRL/+u/Tdt3jbSdGmYdWYa3A0sPbCUbV3bKLGW4A676fR14o16WTRhEWtb3iddZaY8ZxQPbXoUTQLc3h4MwTgVBWP55qzvcl9eDR2RHoKJEC5/LxqNnv39+2l2txCXk+4zg9pApjETjahBQsIb8XLzxJs56DzIWXlnsbFtI1q1lnca36Ev2Ee6Lp2i9CJcIRfrWtehV+m5ffLtg8RLs7uZpXVLB4ketaim2FrMHz74A6XWUnLMybie4bLElK7zCp9FPlctKzo6Orj++uux2+0YjUZqamrYunVrarksyzzwwAPk5+djMBg477zz2Lt372mcsYLC5wvJ7SayaRORNWsIv/MOoddfJ7xyJbEDB4hu3kysvn5Qy4YBd4+g1yctOIdiPiApoALqBOj1mEU9kAzONWpMyXUjkaSoEgQ0ohpBFFGrNejTrfz4g1/ys42P8rtdf2Zr707aRA/7wq0E4kHCiTDBWBB/1E9citMb6EVGHjSfeHc34ZUribz/Ps3NO+mp3UK8sZFoLIwoJL/2uv3dlFpLkWSJmBRjaf1SphdNpyKjgvE54xmZMRK7wc6enj30h/rxRpIuLp1ax5ervjzsC9wZctLobkRAIJaIoRGTgdfBWJBWb2tyn0Y77rAblaAiGAsiIjCtaDorW1axqX0jWp2RhJy8jg0de/jDpt+TmVnIjBHn0errwJ8I8/Tuv6ISVYiiCkmWkGUZjUpDl7+LvlAfDr+DcCLMa/tfY2f3Tr73n+8lLT8ZlZRZy6jKrCLLmEWPvydpKYqHaHQ10nJ4IUWg09+ZEj1qUc3orNEsGLWADl8HAH3BPnoCPUTikVSWmC/iAz60sq1pXcOGtg2saVnDkrolKeGp8NE477zzWLx48UnZ1wMPPEBNTc0n3k9paSmPPfbYZ2IuH4XPjcXH5XIxc+ZM5syZw/Lly8nOzqahoQHrYX7lX/3qV/zP//wPzz77LJWVlTz00ENccMEF1NXVYbEovzIUFI6FHIkQ27uXeFcXUl9f0tUky8geD/GmJsScHOKNjciyjNZgQNDpUu4eQa1GlZlJwudLipp4HABTFASjkULBSmZRJW6jgFaCCvsIGvoOgChiMaSnUrUnjDiHza0baeyrT05KFPEkAqhFDZ3+LnLNuan5SrKUtG7IEuF4sr6MWWNG8vuJbtqUqg/kP2RhksNh9FEZi9aMJ+JhS+cWFoxaQJO7CVcoua4r5MIVduGNeOnydxGOh0nXpZNlzEIUkvE/k/MmU2ItGWTNEBCIxCP0hfqozKgkGA/iDXvJMGRgVBsJxoMkpASheAhJltCpdagEFQa1gQxTFjnWfN5q+g8Zxkz0OiMlBaORJQmtLNIf87DPWU+WKQtXzINZY6bJ20J/yMm4nHFs7tiMXq3HF/ERiie70Y/LHkeru5V9ffsosBRwXtl57OjeQZouje3d26myV9Hka0IlqjBqjahFNVEpOiRuKRZPlgpQi2qmFUxjfdt6KmwVLD+wHG/ES74lnzRdGiatiVGZo4jEI7S4WyixlgzrIss35yMIAnaDXbH8fEReeeUVNKeo+/uZxudG+Dz66KMUFRXxzDPPpMZKS0tT/y/LMo899hg//vGPWbhwIQDPPfccOTk5vPjii9x+++2f9pQVFD5XSG43CZcr6a4KhwfX0PF4EIuKkDweVIdq9ahyciixlpBhyMAZciLo9YiAaLcj+/3YrXlkWQs4aHThk7xMrbmEhkgn2xrWcWnlfF4T3sDp66HUWIA/EaKicByXjrqMX759f/KgoohgNLLTsYsrR1+JRtQgIqJVaYnEI1h0FvIseXT7u1GLajIMGZRYS0h09KRED4BZ9WFDyWB3O1NyJiEIIt3+bmRZJseUQ1FaEUaNkWxTNr6Ij2xTNu6wmzRtGhISkiyRZ8kjx5TD6OzRgwoCdvu7Wd+6Hq1Ky3Xjr6O+vx4EKLOWEY6HKUkvIRwPo1VrqbBVEIqFUAmqlDWpyd2UPJbBiiiIOAI9bG3/AJAxac2MsFfiDDsxao3Jc4gFAXh9/+t8Z8Z3kGSJNk8bjoADtaCmJreGBVUL+Onqn1Jpr2Rvz16+POrLvN3wNqIg4ov60Kl1SLJEMBIkFAth0VnQiloEBFY1rsIdcWPVW7EZbBjUBspsZbzf8j455hwaXA14I0lR5w67cYVdmLVmPGEPlfZK2r3t9AZ62d+7nxJrCVaDlfr+euJSnE5/J0vrljIuexzjcsad8mf6i0RGRsbpnsIXhs+N8FmyZAkXXnghV111Fe+99x4FBQXceeedfOMb3wCgqamJ7u5uvvSlL6W20el0zJ49m/Xr1x9V+EQiESKHVRv1er2n9kQUFD6jyLFY0lV1ROHAFIeWyfF4qmigRWfh8qrLUyJA1OtR5eZi9caYPfJ8Xt75Gr2udgSzGX84k1g0yPmjLsIV7Of7079LAolINEymYGJM0SQ2dm8hodMgCFpQJ91fkUiQzR2bqcmtwagxUmorxRP24Aw5qe+rZ0LuBMKxMOdXnM+Wji043V1YxpvJVlvxOzowWyyk5xbjcbTR1XWAqRNnI6lEbAYbWzq20OnvxKKzMNI2kofef4j5lfM5tyRZ6HBXzy4ArHor0wunc8ukWzBqjLy09yWcISf+qJ+NbRtxh90k5AS1vbWMzR7LDscOegI9jMkaQ645lwP9B7AarJi0JtSimqrMKspt5by892UEQcCmtxGNR9GoNLhDbkAGBALxEAddB3H4HVTaKwEwapICKJwIs6JxBbNLZlNmLaPV24pZY0YtqlnRtIIx2WOQZIlOXycZhgwScoI2TxuFlkIScgK1qEZGTlWTthvtLD+wnGUHlpGQE6gEFZdXXk5Nbg1qQU2bt42x2WMJxUKYtWb80UNuTkEgLsXxR/2Igsiunl1s7thMIBpAFERMGhMzCmewvn19Svx0ejsYTfZxG85+VjkdsUvnnXceNTU1PPbYY5SWlnLbbbdx8OBB/vWvf2Gz2fjJT37Cbbfdllq/vb2d7373u7z99ttEIhGqq6t54oknmDZt2jH3PcCCBQuwWq08++yzAPT09HDLLbewYsUKcnNzh3RsB/B4PHzve9/jtddeIxwOM3nyZH77298yYcKE1Dq//OUv+e1vf0swGOTqq68mKyvr5F2kE+RzI3waGxt58sknueeee/jRj37E5s2bueuuu9DpdNxwww10d3cDkHNEAa2cnBxaWlqG2yUAjzzyCA8++OApnbuCwucBQaNJBhyLYrJY3pEcWiao1YOKBh5eLNAf8qB3B8jS23l5/ys4dXFU+flEdSrqu3aj0Rv5vx1PUWbIY8/GPwFQnlnJ90d/g0yfhNVkH/ICVAkqtnVt40sVXyIhJ1jTsuaQm0jPjMLpXDf+a2hVWn62+mf0uNuJS3H6Qv2MzBjJLWOuZ//Wf1BWOYWwCiKdbbT1N3FWwVkYNAb29+5nRMYIkJOWlGA8yKv7X2VG0QwWT19MT6CHWCKGgMDUwqnU5Nawx7EnVQW5N9CLP+bHFXYRiod4YdcLPDjnQRrdjcmsrqgfk9bE2UVn89UxXyUQDSRr6Kh0PLHlCWRkNKKGQCzAhNwJSJKEN+qhKms0KjGZ8aZX61PzyDBkICBQbi3HF/Wxy7GLDzo/YE7pHF6vex1RENGpdDhDTjIMGfiiPspsZeSac7lmzDXIyFxQfgEAB/oPAGDWmpmaPxWLzsJT258iFP+w+/uLe17klom3oFFpyDJmoRJVuMIuqjKr2OXYlYqXGtiPIAhsbNtIbW8t4UQYAYECSwFalZbRmaPZ1bMLOR4n6vMQ69j34bN3GrrMf1xOWvuPT8hvfvMbfv7zn/OjH/2Il19+mf/6r/9i1qxZjBo1Cr/fz+zZsykoKGDJkiXk5uaybds2pMNi8D4qN954I21tbbz77rtotVruuusueg4rZCnLMpdeeikZGRm8+eabpKen86c//Yl58+ZRX19PRkYG//znP/npT3/KE088wbnnnsvzzz/P448/Tnl5+cm4JCfM50b4SJLE5MmTefjhhwGYOHEie/fu5cknn+SGG25IrScc8YUty/KQscP54Q9/yD333JP62+v1UlRUdJJnr6Dw2Ue0WlHZbEiBAIJe/2GxPEBIT0eKRhHNZtDphrygBooFJhwOYs372G/qptedDIBFkvDGky/BRk8zvoCLCWPHpgKhG3v283fLMu7JLGV07mjKbeU0uhpT+9apdcjItHpauXHCjWhFLcGID42gRpZkwiEvv9/1HHU9tRRbinD7eojFItSGd/K0KPL18Vewf/86KvLGUD3zAhIZViwmGwddB/FFfanA6ExjJla9FaPGSIevg3ZPO86Qk/5QP76ojwtHXAgMrt8TSSSDegfEQkyKscuxi1xTLjOKZnBW3lnkmLKZbq8hK6Zjc7SeDzxt/H3XC1w+6nIWjFpAKBaiOL2YdF06v1jzC3b37EY6FNxck1vD18d/nS0dW4hKUS6vupz1betZVLOIg86D9AR66A30plLxQ7EQB50HScgJIokI3rCXspIy2txt/HXXXwEoSivi6jFX8/C8h3GGnIzJGoNG1HDb0tsGiR6AUDzEU9uf4jcX/oYp+VMoTi9ma+dWLii/IGn18LQgIJCuSyddn87kvMncv+p+tGotkiyRZcyiKK2IbFM2IzJGYNQYCQc95OkzIaJL1iXiUDuST7HL/MflpLb/+IRccskl3HnnnQDce++9/Pa3v2X16tWMGjWKF198kd7eXj744IOUi2zEiBEf+1j19fUsX76cjRs3pixGTz31FNXV1al1Vq1axe7du+np6UF36B7+93//N6+99hovv/wyt912G4899hg333wzt956KwAPPfQQK1asIHy8HnAnmc+N8MnLy2P06NGDxqqrq/n3v/8NQG5uMuixu7ubvLy81Do9PT1DrECHo9PpUjdJQeFMRtDp0IwZg5xIkAASsowcCCCkpaEuK4N4HHVJCeqioqO+nAZcYP54cNB4VIohaDX4PN7U34fT4WmnPeFkvHkMd027i8c3PZ4SP2pRzdkFZ3P1mKt5bd+rrKx/C2SZovRiZhWfiz8RYnfHNkAmQoxYPJrcaSLO3rZtREddRczn5YDuABOrz2N8+dkAg7LBAKLxKBNzJ7LLsYt8c/6heBsH+ZZ8vlz1ZQ46D2Iz2AbV7xERicQHN+YUBZH17etZ376ec4pmognHse1rIw4Y9X50qHAEHPzpgz+iETVMLZzGiJoRvLrvVcZkjWFm0UycYSdqQU23v5u/7vwrl1VehkWTfKF2ejtpdDXiiXhw+B3kmHKYWzqXHGMOL+x+AX80GWytMWg4v/x8RmSMYHfvbqbmT8URdDA6czQb2jawy7GLb039FlMKpvBG3RskpARalTZ1DpAMIE9ICRJSglFZo9CKWsqsZex07GSkfSQzi2Zi1ppTVaBre2vJMefgCruIJ+KcV3oeWzq3sL59PVWZVTT2HWBa1iQMvgjxAx0gSQhmM+rycmSf74S6zJ9OUuUbhuGjtv/4pIwfPz71/4IgkJubm7LA7Nixg4kTJ560uKB9+/ahVquZPHlyamzUqFGDkou2bt2K3+/HbrcP2jYUCtHQ0JDazx133DFo+fTp01m1atVJmeeJ8rkRPjNnzqSurm7QWH19PSUlyVoaZWVl5Obm8s477zBx4kQAotEo7733Ho8++uinPl8Fhc8jotWKbtq0ZB0fvz9plRmo42M2o7Jaj/mLfMAFZlYbB41rRQ1xWUIQBORDfw9arjUQODRUk1vDI/MeobanNhlkq7MyOjvZfyqRiGFVGdGIGrxBFxsb3uNL5q/AIQGTkBOHxScJIEkEEsFkur0sExQTqWOOzh5sXZKR6fJ1cdGIi9jh2ME/a/9JX7APAYG6vjq+Nu5rLK1fylWjr0oFdBs0ydiYgWKHZdYyOrxJS1eVvYpEPEGuJj25/3gcu2SAWIwRtnKaXM1cXr2A2r5aPuj8gLcb3065xgosBTS5mwDQq/Xkp+WTacrkpb0v4Y/5yTZnA9Dh66DD38Hrda8jSzIj7COYXjQdGZlMYyY2vY3/2/p/5Jhz8EQ8TMmbwr6+fWQZs/BEPGhEDRadBZPWhDviJiElCMfDJOQEOpWOdH06sUSMhJRgYu5E3m16l9mls/mg4wM2d2ymz9CHO+JGr9bzlVFf4cU9L2LRWqiwVZCmS+O9lvfoDfSSZcpCI2ooM+STEVPzVu0bfD37Aoy9XmS/n3hjI+qSkuN2mT/dHK+9x4m0/zhZHJnhJQhCypVlMBiG2+SoiKKIfERcX+ywezGw7FjeE0mSyMvLY/Xq1UOWWT9jLszPjfC5++67mTFjBg8//DBXX301mzdv5s9//jN//vOfgeQNWbx4MQ8//DAjR45k5MiRPPzwwxiNRq677rrTPHsFhc8Pgk6HOj//mOv4Ij4OOg/S4m4hnAiTbcpmTNYYsq1WBIOBIjTYzdmpis5p6DHoTKDRUJxWhNffn9qX0WTFlpGHxWRLjeWYc1KF8Q6nSJ/N3vYdhKKB1JjpkMgSBRUaYehXmlljRjQYQJIwSh8uzzHnDLIuSbJEYXoh9f31TMiZkKzFI8XQiTq6Al2saFzBxLyJ9AX6UgHdPf5kAHNCSmDSJGN5Xt33KlX2KuaPvBQpFqFcSAOiyOEwfYKfrISB60Zfy27nPrY7dlDXt5/yjApMWhMmjQlHwEGbt40sYxbeiJdKeyVl6WX0BnoHWRvS9ekY1AZC8RDOkJPqrGq2HdhGg7MBnVpHYVohhWmFOAIOrHorTa4m4lKcqflTaXQ14o/5eb/1fUrSSwjFQlRnVrOlc0tSPJJ04/kiPibmTqTF3UJPoIccUw56jZ6vj/86Xx37Vda1riOcCNMb6GVl40pK0kto8bTQ7G7mmrHX8H7r+5g1ZixaC5mGTLLjdjRuH/1yF+1FYSpFkUCGiQ5NkKDUSlowQqnfQJrZfuRt/EwwXLXuj7L802L8+PH85S9/wel0npDVJysri66urtTfiUSCPXv2MGfOHCDpXYnH42zZsoWpU6cCUFdXh/uwml6TJk2iu7sbtVo9KOP6cKqrq9m4ceOg8JSNGzd+jDP8ZHxuhM+UKVN49dVX+eEPf8jPfvYzysrKeOyxx/ja176WWuf73/8+oVCIO++8E5fLxbRp03j77beVGj4KCieRZnczq5pW8fyu52n3tCMjY9KamFUyi0UTFjGxqgpzfT2XlV/MG43L6ff3oEVFcUYZklrF+OyxbG/ZzPxpN5Cbnk9EimLSmgjFQ8fsGQUwwlzCzKKZrGtblxI/gbCP8XkTaXO1YIyL+NVa4ofcXaNzxqI9ZOSxm7Mp1g3OIDncutTh7yCaiNLgbGDZgWWDCu2VpJcwZtQYBEHAF/MxJmcMN9XcxIH+A2zu3MwV1VcQk2I0uZq4a9pdeMNeutydLMq/BFPvoV/OkoQvHqD5wBZyysZyQcX5uCNujBoDRWlFrI6txqg1UpxejIzM6KzRWLQW8i355FnyhlgTdGodVZlV1PXVEZNiyLKMM+TEqDFiEAxs79rOqMxRWPVWwokwWpUWT9iDJ+LhgPMAMjKukIudPTvZ5djFogmLCMVD7HIkM9kEBEZkjOAbk77BUzue4orqK3AEHBBICt9x9jHsbNlEXKOi099Ff7Cf80rPQxRE6p31KetArjmX6qxqookwPpUKi0mPJhAmIIXpyLPwRsMy+t2diDk5CFotWZZcLpl6LVFBJhhPFqpUCSoyjBmnvfLz4eUbjmSgnMJngWuvvZaHH36YBQsW8Mgjj5CXl8f27dvJz89n+vTpQ9afO3cu99xzD8uWLaOiooLf/va3g0RNVVUVF110Ed/4xjf485//jFqtZvHixYMsS+effz7Tp09nwYIFPProo1RVVdHZ2cmbb77JggULmDx5Mt/+9rdZtGgRkydP5pxzzuGFF15g7969SnDzsZg/fz7z588/6nJBEHjggQd44IEHPr1JKSicQfgiPlY3reb5Xc/T4e3AHXYTOVQ80Bnspz/Qx09m3ceoCRMoc7u5KaeE1kgvQTGO2ZCOSlDxyr5X+NqUm1l+YDlP7Pgj/qgfo8bI6KzRXFF9BeOyxxFNJNtSHPmyS7fm8LXSy9FLIo3+VqJSjE5XG3dPvouX97xEa3stmTobfbiotFdyS83N7Gvfgd2czeXlF2NRm4ac04B1aY9jD9u6t/Fu07tDqgu3eFpY27qWRTWLSNOk4fA72Nuzl95gL9nGbCRZwhFwEIqFcIad5Jvz+eaEWylu9HzoehNFzCoDCSnO7t7dGOmj09POvt59WNRm0nVpOII9SLKEUWMkEA2QYcggz5JHibVkUFXlSDyCJ+whKkUptZXS6e1kSv4Uuv3dHHAeYEfXDuJyHFfQxZzSOfyr9l9IJAs+huNhDBoDWcYseoO9uMNu3GE3a1vXckH5BVw9+mqC8SAmjYkObwfburYRP9SxfgCVLLClYzP97i405jTcwX5sBhtvHVxOdeZophVOY1z2OG4/63byzHk4Ag4Moo6g7KTW20h5WgFaczpv7H6Tfk8XqNWIJhOiJGMwpfPL1Q8xteJc3mtZQ6e/E4PakCoB8GlnTx3OkeUbBsgwZBy1mvfpQKvV8vbbb/Od73yHSy65hHg8zujRo3niiSeGXf/mm29m586d3HDDDajVau6+++6UtWeAZ555hltvvZXZs2eTk5PDQw89xH333ZdaLggCb775Jj/+8Y+5+eab6e3tJTc3l1mzZqXibL/61a/S0NDAvffeSzgc5oorruC//uu/+M9//nPqLsYwCPKRjr0zHK/XS3p6Oh6Ph7S0tNM9HQWFzxR7HHt46+Bb/Hnrn3GHXURigwsdjs0Zx3XjvsbXyi7HHBOHrdHS6m7lwfceZG3rWnxRHxpRg16tJxKPUJFRQU1ODQBNniaK04uHvOwktxtX6wHaIj3440HMGhPF6aUEnN3USd24I14sRis5OjshIYYhCkVyOmZZg3bChKPGKPkiPpbUL+GHK36IP+pPZVYBaFVarDorD855kJEZI3l6x9OsaVmTbLAKVNoruaL6CsZkjcGmt1FsLcaMluiOHaneZXI8ji8e5PnON9kjOMjOLmNtx3r29OxBI2r4ytgr2dq5lUZ3Iwa1gUl5kzgr7yxumXRLqlL0krol9AQcdHk7ERHxhj10BLrwRf1cVnUZnrCHhJTggOtAKjj6opEX8YcP/kCTuwmrzspZeWcRToSZkDOBtxve5mdzfsbKppVoRS27enYRiUdIyAliiRieiIfrxl3HxvaNfHXMV5MWHyBbY8Mb9vDm7leQVCIqg5E2f0eybo/WjFlr5nszv8dT255ic8dmIokIRrWRcnMRs4rOweHp5P9NuI2X3n4MSMaGCTodufYS1vn3YtNb6Yq5cMc+rKtmUBuoya0hz5L3sbOnwuEwTU1NlJWVodfrP/L2Awyq46MxU2JVepB9WhzrHp7o+/tzZfFRUFA4vfhjfoKxIDJyUvQcajWhETVMLpjC2LzxROMRtvbuoiZkwxSMI+j1g2q0NDgb6PZ3E0lE0Kq0aEUNsUSUaCLCxvaNFKUVYdAYONB/AIFk883DU4VFq5UMw3isbneyAJ5Gg2i1kp6VT47DAeFwMhhTEJHd7mTmkEGNpqrymIHZFp2FDH0GdoM9WdU4FkSSJbQqLTa9DaPGSLoufYjoAajvr+elPS9xw4QbuGL0FamXoKaqilhdHXIohKBWY0nouHzU5bhd79IX6CXLYCddn05YirKhbQOjskYxrXAaNr2N8TnjmVM2JxXr1B/q50BfHa/t/TeuQDJGqii9mAVjr8Qb9fJu07uMyBjBQedBdnTvoMufjNnIs+RRlFbErOJZZJmyyLfks693H283vM2IjBFYdBbyzfnEpBgWrQW1mHwtBKIBrHprsjWFOR8BIXWv89ILyUrLZWRxDc5gPzIQS8RAJSLJEpeOuIT3mt8jFAuhV+uJSTHUKjVtwS62O3Zy05iv0eXrQhVLkFNSjZBhIxzyk5ZZhK25FZs5m41NO0g/LO4rFA/hCXvQqXWfavbUcAyUb1D4fKIIHwUFhRPGrDFj1BiRpMQg0XPZ6K+wsX0De/v3McpexW7TdnbpS7m8/GIK/DKx5mY0I0Ygms24I27iUrKXlyxJqFQqHEEHJq2JcDxMTIqilTRU2ivJt+Sn+lCtbVmLQWOgOquaHHPOkLRnlU6H6pC4kg+11ZAzMlLC6ETqwxSlFTGzeCa7HbvxRDzIsoxKVGHRWhifMx5ZlmlxtwwSPQM0uhvpC/YNeimLVivamprkXA6JtAqTiTsDVbzdugq1RkdBRikb2jbgDDvZ0rmFcms5N0+8melF01Oixxfx8freV+nuaSJfl0W+KY+4FEctqmlyNiDEEnjDHiLxCIVphahEFR90fIAj4EAQBPb07CFdl05Nbg2/WvcryjPKGZExglsn3kpPoIerx17Nnp49FKUVYdaaiUtx3mt+jzJbGQ3OBuaVz6PT14lG1FBlr+K5nc+xq2M7F428mEZ3E4FYgJrciTS5GknXW6nKrGLDzo00uhvJNedSqaskLsXRqDSASH/Ug8GYQ+lZc2gIdxKJdBORIzj9EpJeR1FGCbq2ofcrKiVjtz7N7CmFLx6K8FFQUDhhSqwlZBozKbOW0edNVkufXDSNjW3r6fR1km/OQwyE0IhR+hO9vLr5r3w9+0uY+nzITifaSZOw6qzJdgmyDIkEkipB5FAbBLWoQqfSUZU5iud2PsdbB98iz5JHu7edCysuZFTmKF7Y/QLfnPpNanJrjjpPQaf7WPVgSqwlVNorsWgtqRgaraglXZ9OniUPtUqdEm1HIskS3qiXA84DIJCKTRpuLnlmM7N1KpbWL2VCzgSmFUwjFA9hUBuotFcyJnvMINdJi7uFflcH0VgYf9CNIAiYDOkgQoe3g+nFM2gKtBGVohSmFaJX67FoLaTp0jiv5Dwuq7wMjahhT88ebp98O9VZ1UiyhCviojKjkh+u+CE7uncQTUSRZImJeRP54Tk/xKQyccB+gEZXIwk5wUj7SJ7b+Rw9/qSgert+OTX5E8ky52DRp3NV5VcIhjypVPh0XTreiDflIoNkXSZ3UYAavZ19YiNvNf6HRmeyzkua0YZZZ6E0awRnFUxmb1/toOumFZN1hj4r2VMKn08U4aOgoHDCWHQWzis7j0Q8ijfkpq5vP3nmXDa0racovZhiQy5xZz8WjUyirxOX1Uq74KUynkDy+4nV11NeUXqof1U9vnAQrcaAVqNHQqYgrRC92sDm9k3U99WjUWlISEnLUoevg1ZPK9MKp/H4psd5ZN4jw6a8f9LzGwheHSjKBx8GrzY5mxAFkWgimqoKrxbVyfo3h1o0DFinVsurmV85/6iBuKXWUhZNWHRCsSL+WLKmklbUIAgCaZYsmjzN+CJeREHknJJzObwZQbo+HbvRToWtgv39+1Mp6maNmVkls5KZeBoTBrWBxf9ZzPbu7SnXHsDmjs089P5D/P7i33N51eWpOfYH+nGFXRi0RjLTcunzdvNB++bUcSdcMJY5I87HL8TJNeeyt2cvoXgIrahFRkaSpWRxRbUWjcHEiqYVtHvbU9snEjEc/m6W1S/lhgmLBgkfg9pAuj79M5U9pfD5RBE+CgoKH4lSaymXFM4l35hLe6gbnUpHhj6D+tbtRJz9VFrK0AQiyH4/QlYW/ngQyRdFzMzkoNbHK9uWMbdsLpFYiPcaVyGKSSFRYcrh/IoLyDXn8vT2p4nLcaSEhEpUka5LJxgL0unrZG7ZXPb37ae2p/akC5+B80v1HjtCkIRjYTIMGahFNd6IF1mWUYvq5PxtFUTjUTZ1bMIVcjGvfB5L65eyaMKiowa+nmisiFljBlEkDT0ZaTkc9DSj1xpINyWbj+o1euZVzMNmtDMyY+QgcXAsYbWsbhm7HLvQqXTo1XokWUIlqEjICbZ3b2dnz04K0wtTc3x136upGCCD1kierYhwNERCSqASVeh1JkpzR+GL+DCpTRSnFyMKIm3eNqKJpJtqbPZYMox2moOd1HftJV1jAV06EjIqRNI1Ng701aNX68g35w/K6sqz5J2U7Cklp+fzy8m4d4rwUVBQ+Eg0u5t5veF1evZtI6pT45C9OCNu5pXNpbt+B4J3INMr6coyS2qQI7QWmvjVtt/R5G/F0JHB3OI5nF86F1GtxRV2EYgESEgxDjoPEpEiqAU1erUeo9qITW+jwZV0h0QSyRYR7oj7lJ3jcILEF/GxsnklC6sXIgoiq5tX44l48Ef9jLSP5Ktjv4o75KbL34Ur5GJl40pmlcw6KYG4JdYS7LYCej0ebCY7xWoBd8RDKBakOL2ETn83B/sP8KWSOdhkPWOsI1MxTcc6tjOcrPvT6eskEDusKKTGlKz2HPYMmr9VZx20vVqlwWz4sIJwhjEzdf3OrzifTn8nrnCytEBCSlCUXsTMopn8s/afXDZyPmqtnmjkw/YmcUEgKkVJU5tQoebu6Xfjj/hRiaqUmPskomeg2nEwGPzI1Y0VPhsEg8nn5cjK1R8FRfgoKCicMAMp1f3uLgSzGW0sRrY7QVeknw3hdznHNpGuRBOyLxn8a0/PpSCkJVxhY51rBw2OfYgmEyGvk2V1S5D6+5k77at0BbqTlaBdzSyadDOTcieiU+sxqA0gw/bOLSQOVcvXCmqkQIB09Eh+f7Jx6qfAQPViV8jFJSMv4fzy84kmoiTkBJIksa9vH8vr30QvaikxF9De24BUOOOkBeKeXTKDV/1dRLwB+kP97OvdR5G1mBxzNuub32dG/tmsqnuHscYyoj07TqjbuU1vo9vfPUj0AARiARx+B1nGrEHzP7LNx+GU28oZnf1hP8UMfQbzyudhN9qJJqJoVVq8ES9v1L9BXIojCiIWow2nFEsK5YF2CJKETqMlz5TFlIIpH/+CDYNKpcJqtaZ6WhmNxmO2YVD47CDLMsFgkJ6eHqxWKyqV6mPvSxE+CgoKQ0hlRcVig2rxpJo0ShJEIggmE1q/nipzFfWeRgSLBbk9DCoVmXkjmV92EcaN+zlgjOMKOhHEZPNLJAlBFBH0ekRB5OW9L3Nl9UKq0svRIJBvzqfL10Vtz15GZowkkYiDKFJuLSPg6afMUMBIp5rwwVVop0xBfahJ8alkQADEpBhrWtZQ21fLpLxJ/GPPPwjGglTbRxEN+ohKErI+B9njIdTvwJj9yY7b7G5mSd0SPGEPBdYiJAFsRhs3T7oFV9DNAWc9ldnV9EY9pJvtBIgih0In1O3cbrAz0j6SbV3bhiyrtFeSpksbFEh8ZJuPAcpt5dw17a5BrsdiazHvt77PxvahLQkMagOxRJQZxTN57+AKfBFvqh6URZfGrLLZjM4a87Gu1/EYaGg9IH4UPl9YrdbUPfy4KMJHQeFTYlDRM635tJffPxqS252qPTOAYDCgqar68Ne/KCJHo0hOJ6rsbCw9PYxXFVBsLWJ8ZSYWWw4l2ZWo316NHI3iz7dg0BgQ9HoEWcZktCLo9cR0RoLxEFVZVezv2Uco5GVfXx0zymfhDDkZmTEymQJ9SPRcUDyHXkcz/2/0jaSt30lMrU5aCqZPR/Z4kCMRBL0eVVbWSbcEHS4ABtKqtSotalGNiIAoyUlBCMQPBRNbtWnktfmQsj+eZWrAwjZQJXhf7z42tm9ErVKzufMD0jQW1rSuAaDcWsa3pn6LGBIIAnIodNxu5z2BHm6aeBOyLLO9e3tqfGLuRG6YcAMtnhamFU5LzaXF3UI0HuXu6Xfj8DnwRX2pJrJHxltZdMkSAEvqlhCKf/gsDcTreKI+rh5zFVI0TIunNZWeX5JezG2TbyfXWvCRr9eJIAgCeXl5ZGdnD2rEqfDZR6PRfCJLzwCK8FFQ+BQY+NV+ZJn701l+fzjkSGSI6AFSFgRT0aFKqWo1ciQC0SiJzk5Eux29RkOJpYhRehuyVovU5kAYORI0GtJzRWh1UGDOwy/EkxlJvhDIMu2edq4adw39oV7eqH2dA45m9vbs4bIxC5hWOJ0sgx2VqEYTS6APxhihmYV1fUOyjpAsgygS3bwZyelMdZMXrVa0Z511Ui1Bh/dpGkir9ka8lKSX0OfvIR6LptZVCyrKs0cxM30chv1dJIp6jip8jiWIUxa2Q0SlKBmGDPb378cVcvHdGd8lz5Ks6aNT6ejwdZKvzSRgVGMKxI7b7TxNl8aTW5/ky1Vf5tpx1xKIBjBqjLhCLv6y9S88esGjWHQWmt3NLK1filpQIyMTjoexGWycU3QOI+wjjrr/8TnjmVc2j0ZX46DSADp1Mt19UsFkqjIqqXXsxR1xJ0VUzphTJnoOR6VSnZSXqMLnD0X4KCicYo781T6AM+RMVSQOxoLU9tQmv/z1VkZnDf0F/Wkgud1DRM8AcihEkSqPDEMGva4GBJMJOR5HDodJdHVht+aR1xlATjchqFSoTCakaLIreX5nnJjbxeVjruCvtS8mCwBqtSBJFFjyyTNl4w06uW7c1/CG3OhUWgK+fl5f8xSzs6fyjYm3ov7PO0mxI32YuK0qLibe0oJosSD19X14Hh4PAOLs2SfN8nN4qnskHsGgNlDfX8/8kfNp6K2jtvkDskxZ6LVGzsqp4ZqcL1FY3weSlBSJw3C4IB7ov5VuSGdB1QJGZ40eEh+kFbVoVBrCsTBXjL6CLR1bWNm0EpWgIt+Sx8T8SUzKnchOdR8TyMR6nADQ0dmjybfks6JpBXEpnmpXoRJU1OTVMDFvIr6Ij6X1SzGoDaxsXEmnvzO1/fst73PvzHupyqw66jW7csyVx+xtZdFZPhWho6AwgCJ8FBROMQO/2v1RP72BXsLxMHq1nixTslP45o7NvLD7hWFjJo5VpO9UcDwLgTkmcnnV5bzmfJYeXyuiyQQWC3ZjJpeVX4yp3Ue8sRF1aSmJ1lZUBQVIPh9GWWb+qMtYF66n1FLMhMKziMkJ0rRpiIkEnrCXV/a9QnVGFV6Xg4iQQK8xMCpnJH3BftpwUzYQAHvYr3TRaiXR3AyWI1yG0SjxlhYSPUe3tHwcDk91n1M6hw5/B7F4jEkZYxmvLUZQqxmXUc2oPhXGQ6IHGDbO5nBB7Aw6cQQchONhWjwt9Af6mVM2h0xjJpF4JFVTKF2fjiiIzCiewab2TRg0BkRgpH0k3f5uVjW+S6+vm7l5M9kZFfhK2S3YI8ajWpSOjNlRa5OvhMNjdvY49qAW1ENED0Cjq5EXdr3A92Z+76hu22OVB1BQOB0owkdB4RTjj/np9Hayvm09/aH+VNE7u8HOWflnsaFtw5AsmUZX4ykr0ncshONYCASNhlJrIYuqr6NJU0kgEcIka8n3gnFzHZKUjC8Rs7IQTSbkRALd9OkIWi1lkkRHADZ59tAXTv763+3YTSTs56ycGrSiBrVOT1Z2CbGgHzke40DbLgxWOw78lNtsyN3dH05GFJOuLp0uGdOSSCTHICk4gkFkvz8Z93MC7SpOlIFU97E5Y1NuKl/Ahb6zlwIPGPf7B1mlRJsNVfbQCOcBQdwX7KO+v579fftxh93EEjF0ah3F6cWEYiHC8XCyU7sxA51aR445B51KxwcdH6AW1ZRllNMb7CUhxYjFIrR72tGXWXALXv5W+3fKrGXJatKHONLFWpNbwyPzHvnQ4nhEzI4/5kdGTokeAQGL1oJOrSOaiFLbV8va1rVMypt01GdV6W2l8FlCET4KCqeYSDzC6pbV9AQ+zCIRhWQzxw1tG5hWMG3Y7RpdjaesSN/REK1WBINhWHeXYDCk0qPTM/MZtdOE5IoiR0PIwQ9rsYh2O8gyciCZIi0aDKkA20yHmxxLLpF4hB3dO4jEw8jhMBpRSzgaxBNy4wr0U2wuIBD1Q3oaISFBu7OF6KRJaDfHkfv6kpYfSQKDATErC8nvh3AYBoKdDwkPWZaJ7jix1O6Pw+Ev9Lixm+imTUnxN3AtbDa006YNa3Xyx/xE4hGaXE3s79uPJ+xJNvok2SD0oPMga9vWclPNTfxt19+QkMg0ZpJjykGr0jIqcxTt3nbyLHl0+btRyQIT8s/CrDNjNtmwp+fiCruISTFMGhNmrRkBgd5g76Cmr5C0/BztOTNrzITjYSApetJ16XT6OznoPEgwFsSoNjK9cDqdvk6yTdmU2co+s4H7CgqgCB8FhVOKL+LDE/Ek69EcxkD373xLPkaN8ajbn8oifcMh6HSDOoqnxg9ldQ1YTkSzGe20aUQ3bSLR35+0tEgSYmYm2okTkfr7U9sdLjgGAoT39+5PZvrE4yBJeAP9VOWMxR1y4g25wVyAHA4jSxIF9jJCnj7aRAeVpaUII0YktxNFBKsVweNBam1NWn9isaQrTBQRbDbQapFdrhNK7T4RjhWIrM7NRZw3j0RPT8rKpMrOPqqrzawxJ/uBJaJ4I95Uu4i4FE+2d0CiL9hHt7+bovQiRmeOTlY9NmTgCrlY27oWGZlYIoZKUDGlcAq1vbX0B/vJMeWw7MAyJudN5qaJN/GB6wOMWiN6tZ5yWznt3vYTLqxYYi3BakjeQ5PGRIe/gwZnA8FYEK2o5cujvsyaljVs695Gha2Cs/LPIteUy7kl5ya30ZoUIaTwmUIRPgpnPKcizXxgnx3+DlrcLcwomgFAi6cltU5RWrKKbaev82i7GVIp99NguI7iw3U3H/SiDwaTpeQFISl6JGmIWIIPA4S7/F3JgUO1W7xRPzeO/zp/2vB7iEaJRcPIsRgFeSOZlzuT1v0f4J9QgaAyJoVEJAIaDXIshjo3NznXQCBVBE/MyEAzdiwcskSdSGr38Wh2N/Py3pc/zFBSaSm3lnPlmCtTbiPRbD7hmKISawnphvRUHy0ZOfXfMmsZHd4OJFlKupN6a4kmoswqmZVysV084mIOOA/gCXvIMGSwr28fzpCTwvRCegI9FKYVsrFjI92Bbqozq3mp9iWqMqswa8zkmHIGBU4f6zNg0Vk4t+hc1rSsweF34Iv4CMaCCAjMKJrB3t69+KN+vBEvcSlOb6CXvT172da1jVkls+gOdH8mMxgVzlwU4aNwRnNkmnkkHkElqjin6BxEUSTPkkdpeulHEkLN7mbWta7DF/WlXAMd3g4qMiqYXjSduBRHI2roDfbyfsv73D759mH3c2Ql3E+TE+1ufviLPlX00Go9qliCZLDrdWOvozitmFDIiy4uIPU72bT3bcaYy5meP40yewVxlxNiMdodB4hHw1gy84hvbEy6uuLJDulCdjb6885DVVSEUFQEsoyg1YJWm3TZHcruguMHbh8LX8TH33b9jXWt6wbVpGlyNRFOhPn2tG+nnpETFdIWnYUFVQtw+B3s6N6BgJASPdOLprOqaRUTcieQbcrmyuorMWqMBGPB1LYD2VJdvi7q+utwhpyUWEuYkjeFbV3b6PB1pATJlIIplNnKMGlMRKUoNoMNk8YEfPi8eiPeVOD9Tt1OZhbPTAmVEfYR3DvzXp7c8iQNrgY0ogZREBmVNYp1revoDfSSb8nHZrDR7m1Hr9bjjXjhUFHkwzMYFcuPwulGET4KZyxHppm7w252OXbR6mnlveb3GJczDnfIzfyq+cwomnFCv1Z9ER8b2jawunk1/aF+gtEgoiCiFtWk69J5pfYVtGptqtHj9ILpTCuYxsb2jcethPtZ50TFEiTFz6rmVXiiPhJ9fSS6utAZdez31GHz9VAY0tLZtBtkGVVeHll55eR3hSAWQzCbkaPJmjlyJEJk+/Zk8HAwCBoNgtmcTLXv709ZlOD4gdvH4kD/gSGiByAUD7GudR2XjLiESfmTPnK9ptFZo1kw8nJK0opp97YjyTItnhbWta5DEAQEBF7a+xIb2zcytWAqI+0jB13DgWyprV1byTPn0e5t5436NyizlRGIBhibPZYWdwveiJcXd79Is7sZm8HGvLJ5TMmfglalZXv3dpbVLxuUsZVvzkcQBOwGe0qoVGVWccvEW8gx5aTEj0ljotndTKm1lFZPa8ptpxbV2PQ21II61fTUGXKelL5lCgqfFEX4KJyxHF4cLhKPUNtTS+uhCrLd/m6uGnMVnb5O9vfuRyWoMKgNxxUiLe4WVjevZmvnVtp97ahFNaFYiBJrCXq1nqkFU0nIiWTchM7K+eXnU24rP2ZWzWedo7W3OBaH18Tp9XoRVCq0kTgzC2dSkVHB/m0rDu1cwm6wc1nV5Rh2tSAFAqDRJGN51GpEkwmprQ1VWhqxhgbUhYVIOh2qgYyvQxwZa/RR6fR1DhE9A4TiIbr8Xces17S0filXjb6K3kDvIEuQKZRghJCNQ5/F1rZNNPnaSMgSgiAwJX8KGYYMltQtwagxctB5kL9s+wuV9srUszEQXN0b6OX/tv0fvoiPNF0aOpWOwrRCWjwtmLQmeoO9NLmbEBDwhD00uZsot5Xzwq4XBmVspc7X38nSuqWMyx7HuJxxOPwOantqiUpJYbO5YzPeiJeLR1xMlimLVk8rgVgAk8aU7KkUCxKOh+nwdZBjyqE7kMzGO1l9yxQUPgmK8FE4Yzn8S9gT9uAKu1JuqC9VfIn3W95nS+cWAMZkjWFvz15unnTzMS0/nf5k2no4HiaaiBKJRzBrzTQ4G4glYvzsvJ/xyv5X6PZ3oxE0rG1bS21fLZdXXc6c8jmn+pRPOom+PmK7diWzqlQqBJ0O0WI5oSyqAYtFU1Yt3pwWTGjJd0vIwRijRy/EHw9iFvQUZ5Rh6o2SEEXErKykK0ulQg4Gk/FEcrJVhCorC83o0SDLqeBqGBqY/XHQqI9tLVKr1EOqLA8wIJqf2PwE4kC6PWDTpHOufSLr9q1ArddxbdVVBOVk7JIr7GJj+ybebng72aFekwxM3t2zmy2dW5hVMmuQy2h09mgq7ZXU99cTiAVQCSqMWiMHXQc5u+Bs6nrrUu4plagiHA/jCXvwRr0UphUOe06d/k46/Z0k5MSHdX5ENTOLZnJO8Tm83/w+vcFeKjMqWeFZQaYhE4PGgPNQqYKitCJqe2vJMGSk9nl42w8FhdOFInwUzliO7L00EGQ6IXcCa1vXDnqxxKU4nf7O48YpBCIBCtMKiUkxymxl+CI+9vbsRa/Wo1Vp2dO7hxZPC7nmXMy65PE/SfzD6ez/Fe/tJV5Xl7T0GI3IkQiJnh6Ix084i8qiszCuoIZobzIAWVaFife1MuJQA0khXYUo+xBzcoht3w6CgLqiAjkeT/bkys+HRAJVcTHarCxUmZkASFlZxwzM/qjkm/PJN+cPsYwcvswf86MSVGQZs1JtHfRqPXajndqeWsw6M7FEDI1Kg5xI0NHfxOMNa5mcPpr27gN09DQAoMkv5J+1/yQvvRCbwYYsy7jCLjwRD2pRTbO7mQZXwyD32UAhwt9u+C3BaJC4HEev1lNlr2Ju+Vx+svInQLKMgkVrQafSEZWiSFIyeBpALaqpsFVg0BiIxCPo1XpkSebZ7c/i8DvQqXSoRTU7u3dSZivj3nPuRa/WoxJVRBIRWjwtxKU4WpWWPHMe5xSfw9sNbzM+ZzyQdPmVWEs+0X1QUDgZKMJH4YzlyN5LKiFZETjLmMXmjs1oVdrUumpRjVbUHjNOYWf3TnwxH6FYCI1KgyvkwuF3cHbR2Wxo24AgCASiAdq97aTr0vGEPWSbk4XtPk78w8H+g6xpW4M75Eav1iMgsFpezfzK+ac8eybR10d00ybiBw+mxoS0NNQlJSQcDlCrTziL6vAUegDxkHgRzGbU5eXE29uJd3cj2O3JYGWVCpXdjhwOJ1PozWY0I0YMyqb6JNlbw5FtyuYr1V/h9f2v4wg4kJGJxqMUphVyWdVlyRgXdyv5lvxBFY7VoppLRl7CAecB1retR0ZGliSKjHlcOPJi1ja9z+SM8ch+PxiNCGo1RrUef9iLyqYmEo/QH+pPiRNREDGoDbR6W4eIZaveytfHf50GVwPRRJRMYybL6pfR0N+AVq1FFER0Kh1WvRWdWpd85nUqTGoTalHNxNyJvHXwLZrdzYiCmBQ+yJxbfC6xRAxZkOkJ9NDgbEBCYkf3Du6fdT8xOSnyJ+ROIJaIYdaaaXQ18nbD28SkpNCz6CypFhUKCqcbRfgonLEc2XvJprfhCrvQq/WUpJfQ4etIrneoSm26Ph0YPk5hU/smfrTyR6gFNR2+DhpcDeSYchibPZb9vfsZmz2WbFM23qgXi9aCgJDq8D3AcPsdiK04sodXXV8dj657dFBAdL45n3nl81hav5RFExadspeMHIngbtxPi8GHr1yDWWWkIKDG2O0i3tKCKicnWYPnI2RRHZ5Cr/L5iLe1kejtJbp5c6rxqLqigoTBkAxeVquT/z3kxjrZndgPp9ndzN92/Y3djt1oVVpGZIxAr9YzMiMZaJxtyub9lvex6W10+jrpCfYgIGDSmKiyV/Fm/Zvs79tHjjGbPn8PJBK0RVtY2fIu+ZmlOLUx+s0CaVICrSSijcqU2Ufgj/mJS/GU6IFkMLQr7CISjwwSy76Ij3Wt63jzwJv4oj7aPG1cN/Y6XCEXalFNdWY1PYEetKpkk1CL1kK6Ph27wU5RehFZpixWNK7AoDZQkFaAP+LnitFXgAxr2tZQnVXN2w1v0+HrYEbRDNa3rafAUoA74mZExgjcITe1vbUAqXOvtFeSZcpiRsEMJuRNUESPwmcGRfgonJH4Ij6a3c10+bsos5UxJnMMF1VcRL2zHn/Uz+t1ryPJEhathUp7JUXpRal+SUfGKTj8Dl7b/xol6SVIssSc8jns6trFK/tfYU/PHorSiqi0VzKjaAYv7X0p5QIb6PA9wOH79UV8bOvaxvM7n6fL34WAQCAWoMxWxp2T72T5geVD2lx0+jtZ2biSWSWzTmn2TFPvAV47+DJ9fa2pis329DwuqzifvIZ+hOJi5GBwSBaV199Pc89B/BEvZn0apVkjSDPbU8sHssJUOTmg05Ho6vqw9YMkIfl86M8/H1GtPqlurGPhi/h4ee/LrGtdRzgexqQxJRuKJiL4Ij6qs6r53abf4Y64SdenI8gC5xafy07HTg70H6DIUkCLuxlX0MWFZV9CnacmHo+g1ujpDfWRrksnQpzdrv2YRQNVWaNQ97Zw+agvs61nJ90BBxpRw1l5ZzE+ZzwVGRU0uZpI06WRkBMpsTyQueUJe2jxtOCL+nhmxzNcP+F6tnVu49ySc9nRvQN/1E+6Lp2qzCryLHlMKZjC33f9HUEQWN2yGkmWyDPncfvk23lt/2ts694GwOS8yWQaM5Od1t2NXDTiImp7a7HqrJRaS5lfNZ+ldUvp9HciI+OP+ck353NhxYWK6FH4zKEIH4UzjmZ3M+vb1qe+qAEMagMzi2dy1eirCMVCtHpa6Q32YtFaUq4Bf9SPiEiHr4PeYG/K+rLTsZPlB5ezp2cPACIi04um89C8h9jeuZ3ZpbPRa/RkGjKpsFVw0HkQvVqfsiBBMv4hy5TFHsce2rxt9AR6WH5gOQ2uBvpD/Zg0JspsZTS5mvjN+t8wt2zusOd2+IvnVOCL+Hijbgn9/kPtN1QqSCTo93TxRusKrs+dS3oikazvc1hwc1P3fl7b9Ff6XR/GyNht+SyYdgNluaOGHEdTVIR4ySVJt1kkkmxFodMle2/ZbKiysk664BnOutYb6KXR1ZjK6BqwwsSlOG83vo1GpSEmJS1b4WiIhv6DqIAccx5N/Y2oZAGdoOHqsVezp3cvu7p3ohbVhBMRRtor+a8p/8Xezl04oi7ieqh3HWRC9jgSIRfXjLuGy6ouIxQPsappFevb1/PMjmeISTHOyjuLhdULsWgsqXmF42FkZHxRHwDBeJBntj/DhNwJyJLMTTU3kaZNw6KzkGHIIE2Xxs/f/zkHnQepya0hXZd8Hsdmj+U/Df9hf9/+1LUJx8N80PlBqgp5KB5idslsRmePxqKzMKNoBrIsD6oFlKZLY0bRDEX0KHzmUISPwhnFgEvgyLolA/VY9Co9t0++nW+f/e1Bqcnd/m46vB2MzxnPr9f/mrgUp9xWzremfIt/1/6bFveHFZklJNa2rqXL10W5rRxHwMGIjBFs797O2YVnk5ATyZTjQxakDEMGs0tm827Tu6xsXMmmjk3MKpnF63Wvk2nMpNRaSoevgyZXEyXpJdQ565hXMe+o5xiOh09Z9kyLu4X+kDMpRABBr0/G2hwSPx1FMawmE5pRo1LCxOvvHyJ6APpdnby26a/cMu87gyw/A6isVuRwmMi6dSQ6OlLWHzE7m+i0Gro0YcJqmW5/N6FYCLvRnhKjR3K8IPAd3TtSmUsDlNvKWTBqwRCX5EC3dG/ES0yKJVtMxOOoRA2xSJCD/QcZYSnFIqkxSirGZI1hW9e25LMkQFxOICHR6mlhb88esiw5xEWZ/oQfjcGMPiuX+ZWX8Z+G/1BuK+fpbU+zq2fXoDm0elp56+BbXFZ5GZC0FurVeuJSfNB6MSnGls4ttLhbKM8op8xWxtmFZwOwqnFVqnmpjIwn4sGoMWLQGKjrq0Mlqj68F4KKUCxEt6+bc0rOwR/14wg4Uu1WSq2l2A32o3ZgP5rL9qPQ6m5lt2M3zrCTDEMG47LHUWwt/kj7UFAARfgonGEMuASGy84JxUPs79/P+83vE5NiTMqdhEalIRANsLlzM6IgsrFtA8FogGA8xCZ/DyXpJYRioVSRwoEXjyAINLobOaf4nFSsT5mtDIvGwvzK+R/Wc9GYyTJlsbJpJUvrluKJePBFfUQTUWRk+oJ9CIJAjimH3mAvMnLqJZSuTyccC6MW1SlXmIyM1WA9Zdkz/pgfQa9PppQbjUmX1oDlRZYJpelRV1WlsqsAmnsODhE9A/S7OmnuOcj4Q8Ln8JpAALEDBwa7vESRjnSZtzb8mfyxU3l6z/PU9deRa8olx5xDrjmXSysvpcBcwAj7CCw6y3GLCjr8jiGiB5LiotPXmRQ6hzKaBAR8ER+JRBw5kUAji6ikZFVoSafDYLAQkWME5SgJJLyeXspzy3mneQVpunSyTDlIskRCimPUGNnWsZVbJ9zENVVXEpVj5FuLmV16HtVZ1Wzs2IjDnwykTtOlJSshA1qVNhknJgg0OBsothZTYi1hp2MnRWlF1PXXDToPtaimzFaGgIBZY06JwHZfO4FoIGnNjPgps5bR7e8mLsURBCHZggSw6Wz4oj4sOgtqlZoMfQZVmVXEpTit7lbG5IwBjt6BfUf3Dn674bfU9tYSl+KoZIHRmaNZPPUuJuZOOCHL3Ya2DTy85mF29+xOjY3LHsePzv0R04umH3d7BYXDUYSPwheSgS93X8iNSVJTKFkwR8BDB6FIYNht/FE/B50HWdm8km1dydiGcls5C0ct5K2DbyHH4/ijfjp8HYRiSdfHQedBfBEfBWkFdHg7CMQCH4ofBPIt+VRnVuMPeTDJGgoEA5agQLZ1ZOoLf49jD56wh05/JzpVckyr0iJLEjLgCjopTisCkmn1oiCiU+tw+B30BfuIS3EsWgtltjKyjFnMKpp1ytwLZk0ysFiVmUmiry/ZnDQeT7WKSCsegTora/B1PfTCPhr+SNI1I7ndg5qjJlwupP5+1GVlxBsaQJII5tp4o3UFeWVjeHr7M+x31VNsK0WSJbZ2bU26ZDo+YELuBDL0GdxQcwOrmlcNW1RwICuqtqd2iOhRi2qmFUxjZ/dO3CE3Da6G1HUuMOcTCHkotRThC7iQ/QHCUT/dAQf51kICiTCSLNOX8LHTW89XR06nzFZOQ98BJEFGEFVoRA155jzEeIK67r1srl8FGg0js/q5wDYZc76Wy6su51+1/0oVASxOL0YlqLAb7cQSMXwRX6qJrUVnYWbxzGQTUV8H+/r2pc5jQs4ELqy4kFA8hF6t57mdz6EW1KTr03GGnKhFNYFogHll89jQvgG1qE5ZtTQqDcXpxfQGeglEA0QTUQRBYFvXNgLRADW5Nce8tw6/g/9e999s7NhILB5NFp6UZdb5e0nEo/xq0g/Iyyk/Zs2nVnfrENEDsLtnNw+veZgnLnlCsfwofCQU4aPwhWPgF36/q5OEy0XC4cCus3FZ8fnoVQm0Qhg5Gk1aLQ4RTURp97YzImPEoDT2RlcjB5wHiMYjyNHoINEDoBHVeCIeso3ZSJKUjLE59Eu5OL2YqswqVtW9RbTXAfE4dnM2l5VfTFGzCU1lJaLVmorPgOSLSkrEcfi6qcio4GD/QSRZIh6LIicSiIJItimbIksR5dby1EsqIScwqU3cc/Y9VNgrTtm1TZUAwIkqNzeVUo4oYrcVUJZXPWQbsy7tmPs06yzIkciQjvDE4ynrj5ibi9TZSYcxRn9jF5mmydT27CE7PZ9gLIgj4CAQDeCP+tkW3MaorFE8v/t50vXptPvayTXnDjnuQFbUgHg4nEp7Je+3vE+3v5tbJt6CVq1lp2Mn3rCHRCTMlMKplFpL2dnyAd6gi/5oPyq9ge5AD3PL5jKlaCr51kLMGhPpunQy1Bbs+VPQ6gwICMSkGO3uNnwBJ9PzpyZ7iwkCBWmFFMVMSG43pTmlnJV7FtWZ1cSleMri5Aq5Ug1ND29iO+BuKkgrYGPHRrxhL1a9FbvRTjgepsJawfr29eSacllat5RZpbMYaR/JbsduwvEwq5pXMb1oOoXmQkKxEAk5QYu7hS5fV0pwj8sexyj7KJYeWJoK6rcarEftZ7fTsZM1rWuIJCKIkowKARGIJ2JsbN/A3rFtZNbFjlnzabdj9xDRk1rWs5vdjt2K8FH4SCjCR+ELxUDbgH5fT0r0EA7TH04G3141cgHmgEyumE53wo+gSsYxBKIBtCotmcbMlEthgIFfxEjSINED0O3tpiS9mDfq3mBu+TxG2kcSSUQwaUzJRo0hN353D14xRFSboC/eRazzHW4pvRJzaytagyEVnwEQi0cRZYH3Dq7kyvHXIMsSze4WRFHELBrIN+VxcdkFbNv/Hufknw1505LBpBo9gurUf5wPLwHgDDkRDqWRZxgyjlqnpTR7BHZb/rDuLrstn9LsEUmBc7joEQQCmWm06Wz44wHScrXkYccvJ4O2ffFkJ3adWk8CCV/ERyAWICbFEBCIS3GcISeOgIP6vnoMasOgYPIB/DH/IPEwQJoujTZvGwD1/fVcUH4B55WehzfoRBWTmFp0Nh6Xg7r4B4SJIapUCCoVY3PGUZ1ZzVv1ywnGg+RZCsgx52CzZBGOBNDHRPb17ceanoU35CI/vRCvP2mNKs+s5LqKBZj64ylX35jsMeSYc2h0NRJJRAbNcbgmthadhSkFUxiVOYpWdyvOsJN3Gt4hJsXYHN5Mq6cVSZZYMGoB/6r9F5eMuARn0Mm27m34o35iUozphdO5cvSV/Gnrn9CpdEwvmo4z6KQ8o5zZJbPZ2rkVrUqLzWCjvr+etS1rWSWtGtKPrNndTIu7BU/EgyxJyZpLgohRbUAtC8QTMfoibuRQ+qCaT0e2QBmuGvbhuCKuYy5XUDgSRfgofKEYaBsgh8NJs3o4nFrW7+miP+JiumYE6rI0lna/R3cs+aWqV+uZXjidSnslG9o3DNpnMBakIqOCup59Q44XjAW4oOx89vbspS/Yl/olXpxezLjscTQ49rO3vxa/HCFCjISUoNZzkKkVszlbKCTR20tJVjI+I9uUzY72rRSa82mVWnl51z+YVT6HhaMWkmXKpspSRqakZ9maZ4nKMQItBxAzMpLnCaBW47WPhVPc4uvw5pjDBbIeSZrZzoJpNwyb1fWVaTeQZrYTd7cTMGlow40/HgSzib5gHx2+VoJyAKPPh0mdoDyrmpjFiMGQRoQ4UTmGSLINxEB2lYyMWlCTkBKoBBXuiJsmdxOFaYVkGjMHzc2sMVNmLaPcVj7I3TVQO8emt5FhzEj1mkr09RJvb0cdyWN6xELphG/RoHLjE6J0eTvxx/z8bcdfGZc3nnZfB3XOeiRZ5uIRF7MvVItOq6csawRNrkYmZY5n4dir6O1qYvK4Gs7JmUKJUwBZSpUCGKjIPFzg9bGa2Fp0FoqtxazcsRJRFNGJyUrNCOAKufj7nr+Ta8rl6e1Pc1nlZVw15irC8TB55jwKLAUE40HuOfseYlIMb8TL3t697HLsYvFbiwnFQ1TYKrh4xMXs79ufbH8R8QwqqDjwA8RuGBy0LskSwXgIs9qIKINJmwyOHhB6kttNrL4ehGRbdzkex5ZmQU4kUj9SjsSmsw07rqBwNBTho/CFIpXGfegX5pDliSAjmr18qbKMcVMn0y36iSeSZvw3D7zJhvYNQzJjVjWv4nvTv8sfN/+Bdm97anxczjiuG3MtL274M7OKz+Hc8vOSwcU6K3q1nmUHllHbW4tbDtIfdhEN+kBK0A+sbnqXnOzzqVCrMcTjTM+YSKg8SKerjfbeBrItOVgyrNh1VsbbRtHXuJccgxWMBqLEkSMRSCRIJBLJQOJ4HOJxDP4IciRySmvbwNEDWY9GWe4obpn3nUN1fHyYdRZKsz+s49OKm9dbXqff30NCp0Gfkc0+Zx2RRIRAwI3aqydPl0mupYa+DB19oT5GZFYSjodRiaqU4AQos5bR7m1HRsYZclKUVoQ/6mdd6zrOLT6XDGOyd9RACwWLzjJEXGhVWmx6G9MKp2HWHpYhp1aDJGEStBjbexnhjyGXGtljjNLgPEB17jhGZlayt28fuxy7EEWRYCzEX3c8xzmFM5hWNB1LTIWuTItGVmEJCYzRVVEUMWPc3YGcnY1osQyKeanJrUk1sfVEPGQaMhFEgQ5PB46Ag3xL/rCupiN7h2lFbSoIf33ber469qvs799P/cZ6zFozmcZMitOL+XLVl3EEHACMzxnP2ta1vFH/BgAqUYVOpaPF08LS+qXMLp2NRPJzdnhBxYFjl9vKGZs9lt3dH2alSbJEAomx2eMo1ecBcQSNJunurK8HtZp4UxMBvUC7LkymJYuanAnU9u8nJg/+bA40UVVQ+Ch8boXPI488wo9+9CO+/e1v89hjjwEgyzIPPvggf/7zn3G5XEybNo0nnniCMWPGnN7JKnxqpNK4RTH57whMoh4kL8Z+H6Mrx/5/9v47Po77vPbH3zM7u7O9YAEssOidAHuRKIqUKImSbNmSLDmSr2tkO4l7iZ0bJ7bvN1e+31z5OvHXv8SxfW+qu+NYslUtqxeqUiLFDhJE74sFFtv7lN8fw10CBNhsWRJvcPzSi8bO7uxsm8+Z53nOOaxvbQWMIcy7e+9eQnoAgq4gq/3d3LXt/+G6tuuJZiPYJTvpbJx79v6QnFZgvhBjW8O28hX4kZkjzGfnSSlp5vIxiidJTwmZfJoXwq/iG4/gqawjqGmsrWzi01s+STqbQFGLWHUTmfA0R48+S2FqkjVd9axKO6mw+5mLDYIgIECZ4Pmd1eX5kNc7suH1gNvpL6u3FiKZT/Lg6ONEToZbev1B9kWO8vLES4Z6zeykoOSZdlRS6BV5e8f1PDbyJH+47g95uP9hwpmwEQGSj9PqbWVb/TZ+0fsLvFYvk8lJrmm5hsHoIAPzA4wmjLTyWlftotbcQnIRy8eoslXhtXrLs1cliA4HlYFm6jJmEEWmgg4eG3+Kl/Uxnh5+ipsElUpngEeGHyOv5rEIhhqsqBV5buRZEoUEH225jb6XHqaqaRW7bNtwhKIIsvEZCqK4bKBqwBkg4AwwEhvhhwd+yFPDT5EsJDEJJlp8Ldyy6hYub7h8UavpdC8nu8WOpmukCilUXS1XyDRdI10wktXXBdbhtDiNaAyzDbvJznRyGpfFRTgdxiSayp5GQ7Eh3ud6H4Pzg3hkj6EOO/mcpX9DyRAf2/Qx/um1f+Lw1IHysXRXrebjmz5OfdKEYDOMKLVYDAQBZXiYSa/Ag6OPEUmEsPTZeO/W2/iXQz9kIj1J/mQ1bm31Wr5y5VdW5ntWcMG4KInPq6++yj/90z+xbt26Rbf/zd/8Dd/61rf4wQ9+QGdnJ3/913/NddddR19fHy7XionWfwaUhm8jigJmM1it5XaX31NrLFgWC6LXi6m6uvy4c7UUarx1VOMgmYvz7RPfY2juhHEHUaSzfj2fuuyzHAsf48XxF/FavbT52vDavOR0BUXJnyQ9Rvm+saKFRDxM1CEzKfnxaLWg68iZIkePPWOouWKx8jEIbjcoCk7Jji0c56ama3kgkyESm0ZXFNA0/M5qbm69AUdSuaCoiLcCRmOjRItxQykWjeJxVfHywZeI52IACDYP5FVSSoZnR55hR/3lXOpcBbrOHRvuAGAqOUX/fD8Hpw9yd+/dOMwOLqu7jKAryMsTL3PrqluNoXB3Az2VPWyp27KkQlIiFyXUe+uXyOD9nhpu7HwPzhd7SdX4eHDoYeK5KP5aHz5nFWZBoqgXiOcTWCQZVVOxm21ougaagqqqZE0afncN7/Rtwy36ENfUgSgaarlgkFkpT+/Q04s8b+xmO6OxUX56+Kf8+sSvsUgW7GY7qqYSSoV4dOBR4/hs/vLrsogWwqkwBa1gqAR1HYvJUvaPMotGO01AwCpZuanzJnrDvRwOH2YuPYcsyazyr6LF12K0qIqZMumxmCxGxeyknYNX9lLQCuULj9K/06lpGj2NvH/N+1F73kMmn8Iu2aiSK1hLAKdqwtzViSDL5e9t2nqK9AAUiln69jzKh9e/B81hQzKZ8cpe1gZWfHxW8NvhoiM+qVSKD3zgA/zzP/8zf/3Xf12+Xdd1/u7v/o6vfvWrvPvd7wbghz/8IYFAgJ/97Gd8/OMff7MOeQVvIErDtw+deAiTvRqtpp1MMkqFxc3lzh7svSGkpiYsmzcvyXc6/arfK3vpqT5ltCZ6vWy0bePrvgaOxQaIFxK47V6skp3vH/g+E/GJ8lV0i7eFd3e/m6Pho8zGJjFIj06jt4kr6rfz0pFHWN3TRkrPG20qSaLK5qe1aQNRLY21RkNLxAmHhtAEAb+/nnpTBRl3hrRQZFPXTnSbjL0o4nD7qddcOJInZeWnRUX8vrDQUM5n9dHkbSJXzGGz2C4oJb5UHdCLRfS0MaAcz54aWNVOquQ0TSVeSFBEITQ3gpAJs1/fw3BshPes/wDXtlxLs7eZq1quIq/m2T+9n1AqxC2rbuEXvb8gp+RoWt2EzWI7r2M70yyTEwuFTVZCxUlihyQsFXVsCrSyo+MaCloRm2Sj1dfGgekD/Lr/15hEEVkw47Q7sUgWatxBtrd0YJ9Po2lhhEAA4WQMxyFlgu88+Y9l8i2JEje030AsF6OjooNXJl9BlmTGE+NkihlEwahqjsfHubb12rKvzkhshEMzh5hKTjGWGMMkmLCYLAScASpsFVxWfxmhZAizaEYURK5qvopD4UMk8gmCziAOi4OckmM8Mc5MaoZGTyPVjmrsZjuCIFBQCxTVIqPxUX5y+Cdsqd3Ce9e+t+wftTAAeCw+RpW9CsFkxiLJOM0Odga3UW3yLIocEcxmdEVhQs6VSU8JhWKW473PYaqp4T1bP/p7i2NZwX8OXHTE59Of/jTvfOc7ufbaaxcRn+HhYUKhENdff335NlmW2blzJy+++OIZiU8+nyefP6WWSCTO7jmygrc+mr3NXNd6HT8+9GMGIv3ouo61IDNCjPdfdxtdVavOGGp5+lX/6RBkmdpAG05vNYdmDjEWG+XJ4Sc5EDrA0PwQksmMz+ZjNDaKWTTzvrXvY5W3g3wqhkU0k0jM8tLxJ6l216AnEji9zSDLTNiLPNh3L8OFECeyE2T1ArXWKnZtvIpsNsENtg3MCzovmCaIpmNYdQl9Ko6iFLhp43txZE6SHpvtrJ4orxcWGsoJCHRXdbM+sJ611WtJFVMcDB1ke+P280qJd5qdaOk0ysgIeiaDFQkRwaiSoCNoOogioklC1HRkTURPpVBDIXJuMIsi337hW3zsko9T46rBZXGRLqb5wLoPMBYb455j95BTcgSdwbKJ3/niTLNM5poaUv3HMKkaTcF29sf7eXj/b5hOz1Bhq8Bj9XB96/V8fMvH+cXRX2AzWWlx1OM02WjWvNhDRoK9qbIS4aQLdqTawT+89g8Mx0dQNIW8kmdN9Rru6b2HTDHDxzd/HEmUGIuPEc/HERCwmAwZfDQX5djsMVZVriKZT/KTQz9hz8Qe1gXWEclGGE+MI0sy6WKaNl8bH1z7QR488SBrqtdgEk20+lqZSk7R5msjmU9il+zG0HIujqqr1Lnr2Du9l1AqVDbRvDR4Kfun9yOdtHRYWCk9Xf1XGg6vsFVwTefbqF3GYFP0ehFsNlKJ7JJtiKIxXyWKv7c4lhX858FFRXx+/vOf89prr/Hqq68u2RYKGT+swGmzDYFAgNHR0SX3L+HrX/86X/va117fA13Bm4pkPsndvXfz4ujzjEaGUBRjJsAlu4lkI3xh2xfocPacYy9nxkhshHuO3sMTA4+ysXYzdx/5BVazjTZfKxOxcS6tu5RaVy0FxWgxNPtb+eXRfyaXjgEQrGplV2Abqakx6jwe0jYTDw4Z+VduBDZUryNBnoJWYLw4xyfX30E0FuIbL/wtg1NGHhgmE0FvA9d2vI1fD/yaD7XcilOTlp0Peb2x0FDOJJi4qvkqXhx/kaeGn6LWWWs46eqGe/XC1suZ0OioxaeYCacNY0l7QWBV5SqOR/qQBBMoCoLJhEnVWVO1BoduQUsk0AsFLJU+hsJH8bmqODyxj96ZI1RVt3Bg5gAOs4MtwS1l0rOrdRdZJXtertbnikcQvV48dS0EcmvYFz3Bo8OPMZedxyyayRQyCAg8NfwUlwQv4bae2zgaPorb4uKdrTfQXN2JlJDRdZ2M22oo2SgQJ4XNbKNYzJPMJXjnqhtp83fglt00e5vx2Xysr1lPjbOGicQEr0y+gqZrmARD7ZRTcqTyKfoj/bww9gJZJcueyT2sDaxle+P28mfS4m3hR4d+RKuvlSZvE6qm0lnRyRNDT3Bw5iAFtUBBLSCJEs3eZqySlUp7JesD68mreaLZKHWuOjbUbOCV6VfYWLuRjooOFE1ZFI57oeo/QZaRGhpwpRabSSKKCHY7gsWCYLX+3uJYVvCfBxcN8RkfH+fzn/88jz32GFar9Yz3E07KIEvQdX3JbQvx5S9/mS9+8YvlvxOJBA0NDb/7Aa/gDcVC74++4hjPDj+ziPQAJPMJdo88yxUN2wk4A8vmQ50LJZnu4PwAmXiEYqBATs2j6zodlV184tJP8UDfAxybO0Y8F2ff9D781go+9847GRzcj1TIQzZPJhPn5q0fwqs6Oa5HmUvOQLGIYLUiWx1US6c8Z+a0FL/o/xXDqTFElwt0HQSBkBrjqakXuLJxB5N+ibV1ZzaBez2x0FBubWAtL46/yHBsGDBmOvJKnkg2wkN9D52X6saRVrip4Trum5omkggRnRjg5ua3YxEtJPIJ9GIByWqjRarm7atuQkunDbsCUUTVVKocVWyru5w9I8+jayqRxAybajYxn5tnW8M2tgS3ICCQVbLc1HnTOYnY+cYjNPvb2Bvez9RkiLlsBEEwqlRZJQuCIa/3WD2srlpNp78Th8VBk7sJqboaubqe4dl+I/A1O49gtTI0NkKPv5stmy+hoBbIq3mmE1PEc3G+88p3qHXWki6m6Z3tpdHTyK3dt/Jg34Po6DR5msiphsJtKjlVnsVRNIXe2V7AmOVxy25afa1UWCvKt2+s2chsZrbcwgLKgaMjsRFqnDV4rV4+uvGjTCYm6Y/0kywkeW78OWySjRZvS1n5dno15kLVfya/n5bOS6mafom5+QlD1i5JCBYLpspK/K7q31scywr+8+CiIT779u0jHA6zefPm8m2qqrJ7926+853v0Ndn5NOEQiFqa2vL9wmHw0uqQAshyzLyG7BYrOD3g2Q+ychMH/GZcVxYqMfLtDiGzWSls7qbolbELFooFnMMRwZI5hPE88lF+VAXgpJMt5DPgKZhFi3IooX3rfsABbXAN1/6ZjnVusJaQXdVN88P7yav5Pl/r/grcpFZnLKLujhYe8fIT08T73Gjzc0h+v1gsZRnfkqYyoSYKkSMP07Ou6DroGlMF+YQHA4yFt0YED3N/E30eM56+2+D+dypYd8qexWPxB5ZtL1ktDeVmmIqNXVO4qMXi9TnZD7ov4bJRoV0MYvkqyagO0hreXJKDrvXj30uxeUJPxXuarrXuUhpOdJVLg7P9fLs6PNlRZ6mKaSKKXoqe6h11uK3+89ZbSjhQuIRXLKLoDN4yj9I1ymqRUNer+tkChkyxQySKJEoJEgVUhTUArOZWboqu3h86hmipgKi04mkiVzfeh3ffvU7hNNhYrkYiUKCP9n4J6i6ynh8nHQxzZbgFqK5KGPxMQC2BLcQSoW4puUaFFWhwlZBVl2mVYThb5TIJ2j2NvPlK77MVGoKRVWQTTLH5o7RXtHOa9OvlbO6ABL5BJfVX0YsF8NlMVLdR+IjeKweeip78Fg95WFp4HWpxnir67n16k9w/6G7iaTCRsXHasXvqj6jSeYKVnAhuGiIz65duzh8ePHJ6CMf+QirVq3iL/7iL2htbaWmpobHH3+cjRs3AlAoFHj22Wf5xje+8WYc8gpeJ+j5PGokgp5MGld/Lhcmj4fR7DT3H72X2eGjBlkAAu56mrsv4fDsEaYSE5SUVAFnDeuD6+mdPoTZbCFV+O3mBEpXtJaTiphcMc3ta97DM6PPcGXTlQxEBsr3zRQzHJs9RoO3kRdHdjO+cZK3zdhR5yfR43F0kwmxuhqXww6ShJ4xyJRaKGAKBsuzH0WliGyxGy7JJ3OxylfColhOYz8960ovtYiam1FHRgwTuFKqus2Guavrt5oHqrBWlP+/oi+V/8smmRTG+6SoS7efDsFsBpMJR0alYyoOJhP64CitgRomnSoZnx1XoIGa2VHso1GkFi/tx+ZAEBgQZXb37md1sIWkRaegFZGdHryuKmRJpsnTdEEVhwuNR6hz1VFhrcButqNoCmaTmaJaJKtksUt2uiq7eGzoMX5+5OfIJrlcAfroxo9iNZ2qXLd7m/m3Qz/iSPgINc6askO4pmnUOmv52+v/lkg2gt/m54rGK3hk4BEyxQw3dd7EicgJQqkQdrMdq2Ql6AwSdAaXDeKtddZS46xhbeBUJe7liZeJ5WK8re1tqJrKwZmDaLrhstzgbuD6tusxCSYmEhNU2auMOThHYBHhgVO+SK8Hmivb+Oj2T593m2wFK7gQXDTEx+VysWbN4hOYw+HA7/eXb//TP/1T7rrrLjo6Oujo6OCuu+7Cbrfz/ve//8045BW8DtBiMQqHDqGMjZXJjeB0kl/bxf0zjxBJzJRvB/BX1bN7dDdOi+PUTgSBmdQ0B3WNnQ07sGYUrNl5FG8IqWZphtNMauaUsuuknLg08Fy6ovVY3NgsDgZnTnD96pu4t+8+iuopGbnNZMVj9TIeH2Nz7WYQRWL5OILsQ49GQdeN6ossE5xX8VsriMSnEex29FwOPZdDcDqpsFUQdAXxWD3YLQ6y4klSo2mgKOi6jtfkpEGupjg9bUj4Nc2o8mQyaMkkygsvGERJEMg11zJhzpBSZnGNxGlp33zBLb+1gbWsrV7L4fBhZJOMgIAgGIGspUwsh9mBLMnUOmvPsbeTQ62CgLmnh2JvL3oshmA2Y59P0SVWIm+4HE3XKWSH0dJptHgcwe1GTySoS0lUVjYQVQtUFs0g2TG5ahAk6bdaiBdWs5bD6fEITd4meqp7OBw+XE42L1W8bu66maeHny6bAaq6iqIp9EX6+MXRX/DhDR8mWUhiFyyIJjOD84NUO6oxiSbMJjNmzOxo3sHfv/z3jMRGiOVjmAQTOxp3cHvP7fzzvn9mKjnFSMyowFzecDmPDD7C7T23c2PXjTzU99Ai8hN0Brmp66YlA+cCAgPzAxybPca66nXsaNxBppgpD01bTVaGY8PG8esKn9v6OXaP7l6Sdv96V2MutE22ghWcLy4a4nM++NKXvkQ2m+VTn/pU2cDwscceW/HwuUih5/MUjx5dRHoA9FSKkVAfs6EhxNPaNQWLyK/3PsBV7deiqCpDsSHQDXM4h9nOTT23kBsaok6qobBnD+KuXYsUXgdCB87o5bOhZsMin6Cu6m76po3KUqXVCIestFeio1NQC8RyURRNQdFVBAQq7H76zDqJbhcuk51gUsA2NoM9leKmtmt5cOwJolqx3MYqLSYVtgpqXbVklSx9c31kcslydai1spPtrh6sk7MU9+9HnTg5F6EoCNXVyNu2oQwOIvr9TFXLPHjibua1FIIoYhJNNBfGqPM3ki6kl5C8M6HR28hXrvgKdz13F3OZOboru/FYPRTUAibBRDgdpqgV6agwBnPPBUGWMXd2UjxxAnN3N6hqub0huFzomQxqOIxlyxYKe/agjo5i7u5GAeyxDO/afDsPTT5NJDdfVkn9tgvxwmrWcjg9HsElu3jvmveSLqS599i9TCYnAcPO4LL6y7jv+H0cDR81XufJ/9W56nhp4iV6qnrYPfwMTsHKFe3XGOZ9ioJJNOGxevjgug/y44M/5sDMATyyB4toKLh6w73cwz3cseEOPLKHJm8TAgJTySlUXWUuPce26i2oqTSJQoKcXsBmdeGx+7i84fJF78mB0AEeG3yMoegQ44lxXpx4sexYXeOsIWAPsL5mPe3+9kVVlzZf2zmrMcl88tR9LM4LsjhYwQp+n7ioic8zzzyz6G9BELjzzju5884735TjWcHrCy0WQ41GF5GeElK5OCZNJ+CpR3fWkFNzWGWnEXGQivLK6IusrurmsoZtFJUcZtHMbCpMOpdku2sVjsk0mqahhsNl4jOTmllCesBIaP/2nm/z9V1fJ+AMcHPXzdx/9F7UyUnWebtwinbQNApKnoCjmmNzx9B1HU3X0DG8WK5qvQZJMPFk+GWsBQ0tnaYYneedrVdTOxihdjDCB2uuIdTkJZVP4q5vo6Wup7xQlKTBNtFCdH6agpyjzl3P+9tuoUn1UHj1FbT5eQSbzagGSRJ6NErhtdeQVq0iYodD4jiejh4cuorTZAOzxPcP/Zhwbo4mTxOpYmoRyTsbtjVs47vv+C5HZ45ikkx888Vv0hfpK4sJ1gXWcUvXLTw29BgBZ+CcC57o9WJZvx4tFkPL5dBmZtDzefREwhhmVlU0QcC8YQOCKKIXCsirViHKMi0WCx9pXc24Ok9ay/1ObZGF1awl284wqN3sbeZL27/E29vfzsD8AAW1gN1suCS/MP5COThVFESqHdWMxkdJ5pPk1Tx2k5WR6CjXma3MZuaQBBOJQoK8msdn9XJw5iDWk1U1HR2zaMYkmtgf2s9717yXglooV5RKiMdCtPSleZvJz4TsIK1mcUo+Wqo3411QASt938fiY1zZdCW7R59lLDrKfGqWl8de5L1r3svtq29ftmp2rmrMSGyEB/oeIJ6LU2WvQkfnOZ5jXWAd6wLrVgjQCt5UXNTEZwX/d0MvFpfmbYkimUo3uSqVavdqZrJhxmOjDM72oaVSfOCKTyE73KCqTIWHyUk6hWIOQRCwYKJOqiA4mS7vV1/g4dQb7l1CekoYig7RG+4l4AzQ7G3mjvY/YMTSSYoCsklmLHCC1w49wbs23YymaxydNa7yK+1VtPpaua71OnYPPI3FZicnZqmqrqS7dROPHtzNe2q2YZ+K4EgV6YyaMbmasJym0CpJg4cne0nMjOGU7DTgxRFRwFVAi8chl0MvxXToujErk0oxFbTzdGw//37k54zGRhFFE5c37iCcnaWoK6SL6XLW1ekk72xo9Dbis/n41ovfor2inU21myiohoQ/kU9w3/H72N64fZHE+WwQZBnR60U9cQJlbAw9lULLZtHjcQSPB6GjAz0UQguHy4+Rr7gCqb4eL+Dld3fxXVjNWqLqOks8gkt2sb1xOwFHgLuev4uh6BAfXPdBREFEQMBsMgiL3WxnODaMSTThlb1IkgXZLDOdmGRVZRfTqRCJfByXxUVOyRPPxQm6guSUHIqm4LQ4je+yycjdKvnjlKAXCthm42jzCexAJwAmIIEYOYC2y18m+gu/7y+PvsAaVweXV285KQgwsz1wCQ0sTbRfiOWqOkCZ9ARdQZ4cerLccnug7wF2tezittW3nZfH0wpW8PvACvFZwVsWgtm8OG9LFJmqd/Hvkac4dmSUI4l+EoUkDZ4GdrZfw/7xV4nFZmjw1JOORxAzKRxOJ/aMDppKW6CDVWknaKcGmxeSi1g+dtbjWbjdWRRZlXaAXIHSN8gfr3of/5D7Z57b/yBXd17BOztvRDZZ2FS7mUw+yVBkiKcmnuVE5ITxmjSNTbWb+MLGzzAdytHudiO1tCBIEubVq5dVXLlkFz2WOpR8FvIARUPWLcuQyRiVMVk20tpFkdiaZvqrRfoTrzGcGsMiWYnn4hR1BUkys3d6H367H7/NvyijbCHJOxdGY6OMJ8fpne0lXUijaAqSKOGwOIyYBPQLMpxTSwPaqZOPOali0+NxlP5+LJs2LSI+qOoye/ndUKpmHZ45TDQfxSf7zjseod3fzl9s/wt+euinoMMVjVewZ3IPqq6Wq0CiILKmeg0OiwOf7CVrz/BQ36/5yOY/4tf9v2b36LNouoYsyTgsDlwWF7Ik47cbn5PdbCev5JElGVVf/Pp92KmLL39sWjS6qMJZ+j7rmkYxlaIvdZiumtW47T4KWpGZ7BzRsX4qbOuW/T6Wqjqnz/psrdtarvQsJD0AWSXLUHRoUZL7ClbwRmOF+KzgLQvR68Xk8xnhhYpCptLN3bHdvJY8jtnmZD4XI11ME55+jfnMPGur1nAiNcIdGz/KvcfvY2i2D5sIkijSVtPN59b9CRXH507t3+dblNfllb1nPR6PxUVxaMioEplMCJWVkDciJ1Ydj/LXnZ+gzxwnXkzisVfQbQkyb4b7pw9wf/8DnIgOGI8TBHRB4LWZA/xi8D4+v+lTWFcFEaxWTH7/WWXmC+ModEVBnZvDXF1tkB6z2SACksSJKzr5hyP/QnxGJaTEODRzkHp3Izf23MpDx+4jp+ZI5BO4ZTeyZARploZy4dwksIRU0ZBoD0WHFgV6WiUr9e76suLsfKGnUqdIDyCYTOiCYAyDx+On5PxgqNrO4MD9u6LR2/hb50B1VXbx59v/nPHYOO0V7fzj3n/kxPwJdHRcFhfrqtdx++rbmc/OY5MdWNJmZlIh/nb3/+L/3XUX17VeR1bJ0FHRwbb6bfRF+pjPzmMRLXgsLlJKnEvrL8NrXjw/VWGr4Ma6bdhfOnbGY9Pz+bI5YzKfZGPNRtL5JCOZI2xp2c7usecYHzKk8pFMhHGpkXdV2GitX1yxK/lZLSQ9YCS039d3H03uJnT0ZZVlBa2wKMl9BSt4o7FCfFbwloUgy5hXr0ZXVZSJCY5Xqjz66nNktDySamM+G0EymcvJ0W3dHdx95BfsHX2ZL17xJRINV6AKGu2+DjbkKvAdOzUkLfp8WLZuXTTY3FPdQ6uvddl2V4ujgY6omfyR3YBxlSxYrVg2by4rjHwDIS4DkKyYatyILoExZxGTZKY/OoCwoHolnFRZDcaHCStxzF07zus9Kdn669msUe1RFINMBQLokQhoGrEN7fzDkX9haOY4nqZOimoBdBiJjyAIsKXhMsyiBVVXy/EDJ3PeyzgXCSy/DgTG4+NYTJZFxCen5JhITBimfReirDp9nstsLvsQoeunKjyShNTYiMl/4V5MbwRcsoueQA899NBd1b0o/y2aizKbmcVpcbK6eg1uq4eXJ/dQ66rloRP38/Tw02iCjtPi5ks7voQkSuwe3U2+kAGzkw5PK59c90f0FH20tNaTFpXyXJN1cpb86e3hEiwW9sphvv7wNzkcPkx7RTsnIidwW9x8bPMf8/Tgk+gmkVpfA06LE5/ZRSQZ5sG+B/ho1eKZqZKf1XKIZ+Pobn1Jsn35MEQLsNTscAUreKOwQnxW8JaG6PUib91KrqORwwP3kiSPw+Yip+UNFYymkClm8NsqCCWnCSWmqLFX0zt5gBePPQYnqz2br74Ly+YqUFUEux1TdfWSvK4zJbS3uJv4TPsH8B0aL98miCJ6JkNh3z7MW7agHDpkVCpO5i+JLhfmri5c+QkKagFREE9mTy2GWTSTU5dfIJaDIMuYu7oo9vVBIgFmM+r0NJZ16ygeO4Y2Pk6/K8/QzDEwWzBJ5vJzSyaJ4dgIlzdsJ5QK0eptRUfHb/cTXRAK2uprpaf6/CI9ikoRTddo8jQxGh8lkT+Vddde0U6Pv2fZdsaZFD+Cy2WYN5asC0QRnE5DqSaKIMuIlZWYfL4ztgTfaliY/9Y318fjw48bROZku8ore/nYpZ8kmTPmohBFLCYzZsnMfxz9D/5y+19yffMuMsU09e4GxHQWUyyOIyvRmbZh2bCx/D5o1QKiz4cWjS45jpl1zdz14v/kyJwxfzYSG2F9YD294V5UdHrn+wglprCZbdQ5gxzP9tLla0dcUJ0pWT1MJCdo9bViMVkYnB8smzgCeKzGXJBVWuqwb5Ns5e0r0RMreLOwQnxW8JaHIMtMiClEqxXJLKOikSlm8Mge4vk4iqYgCqIxpyII1LvrScRCUCyA2cLodB+D2QnCqQIpJYNL8dDsseFZpk2yXEL7KqkG1+59S6oRgiQZfju6jrxtG3o+jyCK5aBQQZZpypuosldhN9vJFDOLyI/P6sNqtp5TQn06RK8Xy4YNKJOTaPPzaKqKMj2N1NWF0NVF3DyI6PGiqyqSCug6XquXeCGBJBo/+d7ZXt7d826i2SiJbAwzhndMk7eZj13y8fOa7wGYy86xo3EHz489T8ARoNHTiKqpNHga2N6wnUg2suQxC2dD9EIBLZ3Gb/VxU9e7aK5oQWpsNIab83n0QsHwJXI4kFpakGprERoaFqV6XywYiAzwjRe+wXB0GK/sRZeNtp3X6iVRSOC1ermq9WrcspuCWsBpcVLjrGHvxCs8cuxBVF3lg+s+iJRXqa4NsFebxSXaaYrN4A0YbTnR6cSydSvRvsOMF2dJqVlcJjv15kr6TPNYLTZuaL+BoppHNlnxyB5uaL+BqeQUJpNEi68VGxLmokaWNH3xITb5A6SKqUVWD+lCmtnMLN2V3fzRxj+iL9JXJj+yJLMusI6R2MgiI0WbZKOrsgtZkl9Xs8MVrOBCsUJ8VnBRIFVMISDQ4mshlAwRSoVo87UxFh8jlo1S765nKjFJm7eZqxqv5Jm9vwKzBUkX2dZzLXcf/yWuSBrBZAQ6+keD3Lr9j2iubFvyXKcntBeOHaOwjKQeTlYkNA2prm7Z7S7ZxdXNV/Obgd9wcOYgimaYDnpkD+3+dgKOwHlXVxY9rywj1dVRmJ+HXA7R6UTp60MLh/FcHjRUXhYL+Xwar+TG6u+kPzpAPB/HYrLgt/tp87VhckM6nyBTzGKXrFRavHg4cxbe6fDIHvZM7mF19erygl1SdT144kG+uuOri+6/cDZES6VQJydBEJiVotyf/Al3dNyOu6XFmF+amDDaW6WQSrsdTCZMZ4mgeSOhpVKo4bBBeK1WTFVVS6qIJSTzRrZVqZK4sM0jSzLJeJKbLrkJZ8hJKBnCYXEwlZhif2g/b2u9nlguRr2nAUmy8PjoE/Qnh7EXBRJ6Fu9ckFvX3k5PlVFdm7DmuN90iLn5sXL8SXV1M22mLgYjgzx+4hFMgkibvwNBNPHu7nczFh8jnArjMdmRZR9gVNhykk68YPz2FlZCS3Nhx+aO8a/7/5U7NtxxKqrFVlGWrbdXtHNf333Es/FyvMXvw+xwBSu4EKwQnxVcFHCancxmZnlb29vYPbqb8cQ4g9FBapw1bKu7jNvXvIcXRp6j1uJnX98zKGoeBDOr6tfz3PTLtDrrcRbMCDYbAJHoFPcfupuPbv/0OU/A56osnGt7d3U3d151J//82j8zHB1GEiUEBAKOAJ/d+tnzrq4s97xiVRX5ffvQ02lMFRXIl19Ol12nvWkjgzPHSMbCeLwBioLKptpN1Dpruab1Gm7uvIl9Iy9SnAmVB4bjJ/+LRab4o11/dl6Ozj3VPTR6GsuBlwuxXMusNBuiFwoG6TGbDZKWzzMbDjNiX01P3si9MgWDxkyPyYSez6P096OFw0tMJ8+EZD5Jf6SfqeQUZslM0BWk2dP8uiy4SihEYc+eRS2l0tzYcm7go7FRYtnYGY/z/Wvez3df+S6HwofK7dsWbwvXtV7Hr479kmvbrmN1ZQ8P9z+CWTAxlQ2TzMTI51II6RHG0lO8s/OdbAlu4fGhx4kqSUy+U2aLZouNf93/r+SLGQBqXLWMJcaJZaNsqtlAvpil1dvCzPwYETFBjTOASbIgiCIem4eiUlzU/pVEiUp7JXOZOY7NHaNwMgz4dFKztX4rPVU9K9ETK3hLYYX4rOCiQJO3CY/Vw1Ryiu0N27m29VqOzR4jp+TIFtKEpgcZmx9GKBRJFFMIdgeC2YzHU01ybj8Vcitoi6W/kVT4vJQlpurqM85NnK4MOxM2BzdT765f1ELrqT63S/K5oBcKRjaXIKCOj6NOTuJrbuYzGz/Odw78I0OJURLpCE5vgAZvE7d130ats5ZsOkYxNL3sPiPRqfMOcT3TXFTJCPH011eqdGjpNAhCmfSUkNZyCKpK4eBBo5210M6ApZLsM2EkNsJPDv2EF8ZeKCeVB51Bbuy6kcsbLv+dPGS0VGoJ6Skd23Ju4GC87uVmXgA6/B08Pfo0k8lJquxVqCedvjVN5dXxPVzddBVbay+hoOQRAZNJYi4XIVtMYxMlkCSmUlMk8gl+euinBF3BJc+hozMZH6fKGWAyMYnd4mDw5OeVLmYYS05wVdOVvKg9x3hinJyu4BSN3K9bu25lMjFhtB0X5MRZJSs1zhrySh5RFLmt+7ZlSc1K9MQK3mpYIT4ruCjgkl1l9+Kp1BQmwUSjpxHZLBO0VFIdynLltiv4zjPfJJo+2Uaw27FZbGwNbMI2lYDTo0tE8byUJaW5iTNd4Z9P9QGWttB+F5TS1kmnyXU0MiEkSWVFXCY7nkovsVSEm1bfislqw4YF2eagO7Cm/PwvHnv8rPtP5ZPnfSyluaij4aPMZmaRTTJN3ibafEvbiOWB1lIC/QLSA+AQrYYPkaIY/1ksy772syGZT3LP0XsWkR4w0uIf6nsIXdfx2/y/ddVBDYeXJcFwZmLmNDsREJYND3XLbgbmB7CZbUiihKIp5IpZCoUsx+KTXF6/jQPT+0nmE7wW2o/N6qSgFemp7KGo5MumlTklx1RqilrX0ny0nJJD1k3UOAIEnDWLZs0imQitnhZePfYUa+vWsb3hchwOL1XOAG7ZTZetgWQ0ZMSklCCKYLcjSRKSRaLOWbdCblZw0WCF+KzgokHJvfj0srk9lqGYGkWbSPI/Oj9Jf0+UmJLC6/BjE2UePHTI8HxZuIhKEoLVukRZUiIUerGIYLEgejzGPE1NDeKuXadmOmR5WWXYG4F4ZJrh8cOkcwlEj49n5x4lPjuJZHdS1bmOR0/8B0JBIR4eR/C4aQuu4fNX/Nki0uWU3WA3ojZK7SREEbJZ0HWcF0gKskqWI7NHyhLnAzMHqLBVcHPXzYuqK6Wss1kpusSV2++ppS5jBp/ZqCos9OxZgHO1FkdjowxFhxaRnhJKlZHfxUPmXMRrue1N3iaeGX2GXa27lpj62SQbda46hmPD5JQcc5k5ivksFtF4H6bTIdyyiyIaGTWHSZOZzcwxEB+ivaKdgmq0maySFYtoWVZGbpWsIAj4VAs3NFzNjBonU8wgiRLxRJgPdd7GffEoR6cOArC6cTNeewXbg5dhHRxnlb2a1spOhuZOGDvUNIMIOZ20+dt/qzm1FazgzcIK8VnBRYXlyua614IwOorodlPrqKXy6FG0eB6dBPlVrVTVtjKfj5UHm0uSc7+repGyJB6Z5sTUYabzc5hNFuosfvxRD/M2zfBKsThpqntz5xNG5ga594V/JRKdoraqhecHDlAsZljbvZE6fxOPjT5FUs2CruCqqidtKjKcHl8SQ9ForcaXhbnpkfK+BbsdU00NFbKP5ur28z6mZD7JQycewiJaCDgC5JQcVsmKgMBDJx7ijvV3lN+zUuXu/uIvmU2eqir5PbXc1Hgt9sEIWlUBU02N0cI7DefTWkwVUxS0whm355Tc7+Qh89vMfLlkFzd23shDJx7iyqYr0TF8brw2L+3edh4eeJjJxCQTmQlDnajr6LqG2WzFLjsZjA7jkGw0e5qZL8QMwpKLkyvm0NBodDciIOCxevDavMTzi+2bBQRaqzpxF8xYkkVku5d51U02kyLoqWB+fJArarYiWK1gEtnatJ2uunXGRUVmHH9O5LMbP8E/7P8/i8hPq6tp2ZbmClbwVsYK8VnBRY1QbJLemaNE5Sg+ZDrVGqpWr4ZCARQFm8fDre2f48He+4ikwuXUb7+retEQ5sjcID/e8088P/o82UIaSZS4vucmxhITmDQdRZYo6gpBV5APrP0AXZVdS45lJjVD/1w/M5kZNF2j0dNIT1UPmWLm1GzPeSagL4dkPsn9h+4mEjWqBYLVSk7J01TbxX3Dv2ZL8VLuP34vJkEi4AywObiZbC6Kjr4ohkJLpbDsPcyNwat5MJsjEjP2p2cyeLPwru3vP6/B5hLGYmPYJBtPDj3JfG6eq5uvRhIlCmqBenc9I7GRReGezd5mPnrJxxgOHiU+eBx7XqMuY8Y+GDGqctkslksuQTl2zJgBOonzbS06zc6ySd5ysEpLK30Xgt925qvZ28wd6+9YUrEE2D+zn0ZvI9OpaZKFJIqgk8zF2Na8g6Cjhn/b9y/Uumq5oe3tvBbaj6KrZNUcRa1IwBFgZ/NODocO4ZLsrPGuYnZ2nFR6vmwAqegKn9/2pzx74nFmx/qwKNBV0UlCzbC95hImQifQUgJ+ZzU3d91Ma90W43HFk++/prE6IvE/N3yR40qIWCGB1+Kmp6KLyoxM4dixcyrbVrCCtwpWiM8KLlrsH3+Vv3/umwyF+4wbRJHWqk4+d+lnWe9vL3u9tAIf9X36jMqSZD7J3Yd+XiY9AF01q/n1wMOk1RwVtgra/e1UOipJFVLcd/w+bum6ha6qU+TnYOggTww9wX3H72M8YRgd+qw+rm+7nlpnLQ/1P1TOwzrfBPTTMRobNcjbSUgWK+vqNnEwfAjBZMImO3BbPWiazk2rbqbV10ZRLWIz20gX06QKKY7MHCE+O4ndnqauYOVDDTcy2ZImpWZxmmzUFe1U5G0XdFx5LY+iKWwKbqKjooN/3PuPvDz5MpquYTFZuLr5ar58xZcXvV6X7GJd62UojhaKBw+iZePQ0IDocCB6PEg1NUj19b9Va7HJ20Srr5Xh2PCSdlfQGcQtu38nD5nfZebrTIO+N3fdTCgVosnThKqrZIsZrmq6inWBdbw8+TJ/evkXyRezHA0d4YrgNna1X1f20Ylm5nnwyK9waBLrW3bx60e/S0vdai4LXolYKOJ0+mhpWIvHX0ubr42R9kFSqXkcgow/Z2IuO0ePr9MIvpWr8TV0lKtWiyJSikUs0SIVoo5FlXAWdSxanPyRE+W25dmUbStYwVsFK8RnBRclQrHJxaQHQNMYmjnOt/d8m//1jm9Rs6DlcDZlyWhslKHYUJn0ALjtPkLjM2SUHG/reDtPjz5DKD1T3j4cG+YLl32BrsouZlIzPND3AI8NPlYmPQBzmTl+cfQX7GjcQae/syz5Pj0BPZlPMhYbI6NkSBVSmAQTFfaKsptxCaliqhzaahJNVHqD9I4P8pvBRwBYW7MOEPlvV32FHx/8Mf+y/1+xSlY0XWN9YD3dld3c33c/uZkp1MlJ/O4abmq6ns5JHTQLoALJc86wLMS+qX1895XvcmDmALeuupWvP/91js0eI+AMMJeZo6AWOD53/IyJ71IggGnnzlNzVWbzInPC36Z64JJd3Lb6NnJqbomq66aum7i84fLfuV253MxXpsLJUD5MamJkkRv1+aDZ28z71ryPBncDiVyCjsoOHup7kN2ju5lMTjGbDtNW0ca1Lbs4NttLfDZFm6+NBmcdhXyWtwd2QKHA6KEXUHMZjqdfYi48yoeC78CVExHzY+jOClyyi7XBDWWp/2vqBBZJpNbWRKOtBo83sKhVV4pI0WIxxi1ZHux/hEgiBJKErihUVjVxY80OglNpBM6ubFvBm48zzTBeKM7kvH6xYIX4rOCiRO/M0cWkZwGGwn30zhylxru8qeDpMGZCiotuK2hGwvnamnXsHtvNSGwEq/lUJWQ4OsxPD/2UP9/+5/SGe0kX04tID0BBLTCbmWUuM0ede/GxlFpPWSXLQyceKreKplJTZYfbVl/rouFgp9lpzGBIEtW+Bh4ffBRNELiqeSe1rjqavI185Yqv8B9H/4Ojs0cxiSbDD0cwcSR8hH9+7Z/5wLoPcDRiVI0iiRAPjj7GhwLXY589FTVxvifCY+Fj3PnMnbw69SrxXJzbem5j39Q+rJKVmdQMfrufWC6GIAhnTXwXZPl1NyVs9jbz+a2f5x3t72A6NY1kkgg6gzR7Xx8fHzBIWWlxN9yof74kqfz04e5zHfOzo8/SUdHBt176Fnun9iIi0lnZia1oJ5Se4eHBR3hb+9uYiE9wWd1WYrEQM6EBpKkwgtuNlj1J3otF5uLTTDSmWJUT0SUJLRbDFAicXeovX06zfOp4BVlGamtj/uh+Hhx8hEhyhoLNTNImUtA0IqkRinqRDzt34IhlECTpvC0HVvDGQovFKPb1LZqdE2w2zF1diF7vee9nJDbCM8PPMJeZI1PM4LA48Nv8XNVy1e9kE/FGYoX4rOCiRCy3vJy4vP20dPFSxtByczZOsxOLbDeqKSdL9hbRjKZr1LqDHB16AlEwLdqfJBreKaOxUWL5WFlZsxAlyXBRKy67PVFI8EDfA1hEyyKlT1bJ0jfXh02y8UDfA3xkw0dwyS6avE34XdXEVJ0KXyPVSYV6TyMWs5WDMwf5Ze8v+ebbvsnR8FFsZhsFtYAgCMiSjMPs4HD4MAWlgOhwoFmt6LkckUSIicYcnSeP6XyGh5P5JCOxEZ4afop90/uQTTI7m3ZiN9vp8nchiRKZYgZBELCb7ZhF87Kfye8bLtnFpuCm3/vznC2pfOHndy64ZBdvb3s7vzz2S/ZO7QVAQ2NwfpBGTyNu2Y1ZNLO5djOt3layySgd7hYGChoaLFbJ6TpoGmk1C5pBQPRi8beT+qsqkx6dqFUj5fBwLNpPNJFCyaYxCSJD+Sm2XbKTjaEc2O1Gjt0FVA1XcOE42/lsOej5/BLSA6BnsxT7+rBs2HBeFzzJfJKnh5/mhwd+yIn5E+i6jqZrdPg7KKgF3rXqXRfFoPsK8VnBRQmv1Xf27QvSxRdmDJWwcM6mydtEW0U7w/ODZOJGwnkiE6XJ24QoiOjoSKZTPxWXxYWAgEW0kCqm8MpeLKalw7SiYLSlzKJ52e2SIDGfnSfgCCzxdskqWeK5OLIkl6XXJUXUi+Mv8vCJ33Bi/gRzmTlm0jPUu+r5g9V/QCgVQhIlnBYnNrMNm2RDFESiJ4lispBEsFgw1dejTkyg53LG4ojpvGZUSjlbZtHMRGKColrk7W1v5+XJlxmJjXD0ZABmtb2a7qpuZtIzFLUi6UIal+XiKYVfCM6WVD6/IODzfJBTcmSLWRwWB5qmIQgCAgKTyUkmEhOsDaxF0RR2NO6gXrEzMn3ckP5DuQ1ahq7jMNnKtwtmM/2Rfg6HDzOTnsEkmMrRE3Bmqb9eLJLKximgcjjax1h0FEXU0XOGbD5WSPBaZoCuQDOOaBoslosuR+1iwrnOZ8shHpthVJonVSmQEAvECwmsgoUGSxXNGQ3vyWrguTAwP8D3D3yfI+EjCAjklByqrrJvah+5Yo6gK8iawJq3fOVHPPddVrCCtx56AqtprV6qrAJore6iJ7AaMK6MTj9JwKk5m5nUTHkmZEfLTuzeKgS7nRPxIW7suol2fwcIQpnEuCwuWnwtaGh4rB6cZic91T04zA4a3A2LnsNislDrrKXSXrkotRyME1WFzQgnXc53BShLshdKr/02P2PxMdJKGqtkJZQK4bK4GEuM8dzoc1TZq4jn40RzUaySFZ/NV17YSscPRptGam0l31JHvN7PoxusvLzGScQpnPE9X1jZKEnWtwS38NLESwxFh5hOTtNd2Y2AQCwXYzQ2ik2yEcvFqLRXkilmGImNnHH/FyvOJY2/EOl8aWbCJtkQBAFN11B1w3HcJBpEJegM0uRtYiw/S84MgsdD0eMw/JgWEA6/t5Z6xWiPCnY746YUB2cOEslGiOfixHIxIpnIou/fclJ/wWzGKdmJinnG4uMU1QL6yQw1gKJSYC49y0i1CLp+3m7mK7hwnM/57HSMxEb48dGf8Xy6l+8c/Tc+/utP8rnffJ4vPfVl/utz/w/3Fw4wmgsvedxyGI4NLyE9YDiDH509Wq5yJi/AAPXNwErFZwUXJWq8dXz+iv+6ZMC5tbqLP73yz8vzPb3h3iUniRIWzp0sNxNS76wHAUbjo4sythRNodPfSa2rtqwOu7nrZuxm+yJVV6W9kuvbrifoDPJg/4PomgaKQquvjc9t+ASSJCNpIs2uRq5o2EFOyRkKrEKGQ+FDZUn2Qun1aGyUsdgYBcVoY6m6Sjwfx2F2kFWyWCUrlzdcTt9cH+rJiI7SVX1HRQcW6VTlaaYwz2R6kuzIY+XB67NdOS6sbFglK5lChtVVq3l65GkAnhx6kg9v/DCCIDASHSFZSFLnriPgCPDHG/+Yw+HDjMRHzrv1c7HgXNL4C5HOO81OZEmms6KTgehAOdRWEATjM/S1U2Ot5N+e/wcimQhCLk9DRTMvWidwFUXckhctFsNv8/OutnciWt302QoUPAqHxp5mOjltEJ5sBKBciZTsEpIoLSv1F71eGmaqcdjdFEstW0VBsFjQi0Ua3Q1EotPMeNOsrai4IDfzFVwYzvd8VkLpYgWzmadGd/Pq9F7i+TgmUSJRTCFmw/zs+N3oJhNVNafm387USssUMmi6hiiIZdJTQsmb6kKrnG8GVojPCi5KJPNJZIuDz1zxXwmlpskVs1TIPnoCqxcNNZ9rrmTh9jPNhHzhsi/w00M/ZSo1hUW04LF6qHXVLvIBWl+znhpnDVuDWw0fH02j0XvKx2dtZQ+x+AweyckqqQb/WJ5MtYM1FV38/PC/8+LES2XTuc6qbm7pvoVsMUuFrWKR9LpkzpcupqmyVyGbZPJqnmTBuMJ6ZfIVPrzhw/zgwA/KV12SKHFZ3WW8Z/V7OBw+bOynkGI8Ps7qqtU8M/oMuq4jS/ISxdlCLKwECAjMZmbZVLsJv81PJBshp+b48cEfc3PXzbxv9ftIFBKsrV6L2WTmeOQ4Ra14UZwULxQlN+rl2l2nf37nsy9BEPiDnj/gl72/ZChmLHK6rrO2ajUfXfUBHn/xJ4QT00aOmSAwxQiXuHuweSpodTbiNbtostcSJc9Ph3/DfDpFt7SGnx36Gdsbt3NN8zV0+jvRdZ3p5DSHw4dxWBx0VnQuK/UXZBlfYwfvML+DvZN7GYucPCZFobG6gysbdvDy4LPc4qvEuu4qTBcwKLuCC8OFnM/g1MWK0+wglAkTz8eRTGZySo60ksFsMvPq5CtsabiEQzOH2N64/aytNJ/dh1t2L1vR8cgeHBYHcGFVzjcDK8RnBRcdRmIjPNz/MB7ZQ1bJkswn8dv9dPvqlii5Fs76LIdzbQfoquziz7f/+VkTppP5JLPpWSRJoquya5G804kF77wbPWch7TAzIWU47IkhaUkeHXuaeDHJ+toN9EdOEEqGGIic4NGBR/noxo9ydcvVi56nZM6nY8Q5NLgbSBQS5aswh8XBjw78iD9c94c0+5pJF9LlQFS72U6rr5VUMcVMaobx+Dj3Hr+X4klFWylx+0wKrIWVgNnMLDubdzKTnqHR00hbRRsCAk6LE13XeXrkaVRdpcXbwkx6cfn9rX5SvFAszJE7XdW1kByf775KDs+3dt9KXsmTKaTxy152ujegToQJTfSVs7IESULJZpixJWA+xpbgJayt20CKAg8d+D5RMYcgSuSKOdZUr+H+vvuN4fNChvHEOHWuOq5vu55IJnJWqb/o9RLMNnJ12y4KLVdSLOYxi2YS6Qgv9z9NtTtInbdxCel5veTTKzBwoeez0m8tU8yiCTomk0ROyaGUWlS6DiYTqUKaQzOHaHA38N1XvotVsnJZ/WUU1AKySSaej/PdV77LJ7d8kp1NO3l+7HmyqVOD0h7Zw87mnRQUoyL4uxiEvhFYIT4ruKiQzCd5uP9hKqwVfG/v9zgaPoqOjq7rbAlu4c6r7mR74/by/Xuqe2j1tS5bHm71tZ53xlDJB6hUAu6f7y+XgLNKdtlFryRl1mIx9FyOCbfOntRBHjr8MCmhQHv1Kr5/4N+otFfR5G3Eb6+kq3IVmXwKiyTT6GlccvXd6KilxV7HkNbHXDxEd1U3+0P7mcvM0eRpYiIxQYuvhUvrL122XbUmsIZkPsnB0EH2TO5ZtE3RFOYyc9Q4a5a9slxY2VB1lankFB3+DlZXrWY6NU29u54KWwXxXBxVVwk6gwgsnRl6q58UfxucKUfufEjPcp4oZYfnbBxrLE2D5Ed+7SivBU7aLizIyiq9w6LbTcaiI8gyozP9i76PLouLJ0eeZDg6TL2rnjp3HU3eJiwmC7JJ5s+2/RmbgpvOerxNFS10167lob6HmExMGCGyuk6wqoWbem6hubpj0f3VuTmKhw6hpVJgMiHIMqLLdcHy6RWcwoWez0q/NbvZjskkgSiioJUH4kVRNJSfJoOMHpk5QrWjmt2juxfZczS4G7iy6UryhTy3r74dXdfpn++nqBURBZF6Vz03tN3ASGwEv8P/OxmEvhFYIT4ruKgwGhvFI3vKpGfhgN1zY8/xP3f/T/72+r9ldbUx3BxwBvjc1s+dsXR7JunlcovRUHSIv9/z94v20+Rp4rae26h2VGM320nmk3hkD7Ik83D/w3xo3YewFYuk7RIvRvfy8MjjJJQUo9lpAr56NF1jNjOLIEDAWslgqo9GR5BUMb4kb0mLxZBDs7y79hqy2QQvTL7EXGSCDdXrqHIGuKblGtwWNxtqN5xVUjoaG8VhdrAluIUqexVFrYjFZCGcDnMwdJC8kl/2yvL0yoaqq/RH+rmm9RqGokNlZ2qP1UOrr5XtDduZSi5Wq11o6+d3wRttsnY2k8wzoaSSm05OE8/FKWiFcizKmsAa1JkZiiPHQC6gaBpO0wJX7ZMzY1gsZSl7aaE7vaqmoTGVmKKnsgdREI1WRzGNJEjMZea4qfOmJe/Ncu/f5Q2Xo+s6iXyiPODult1sb9yx6PHK7OwpZ+uFajNFuSD59AoW40LPZ6WLFQGBgCPARGKCTDEDgGySUU5WZWVJNuYXdYXdo7sJpUJsrt2M3+Yvnx8i2QgpJcW6wDoEBNKFNFPJKcwmMwW1wLG5Y9R76i+4yvlmYIX4rOCiQqqYIqtkl5CeEg6FD7F3ai+Nnsbyj29DzQa+vuvrp4b1TrZ+zkQOSovRwitmq2TFLJoZi48tum9/pJ9js8fYO72XxwYfK9++rnodn7rkU4zHxuky+xknRlLLMpWYwObxMzUXwiRIqGiga8xl52lwNzCbnAFPIyiFReRDz+dRQiGKr72Gw6xzffVG1q7tBlnG66ikyh2gqaJlyQlnuVZDupjGbXUzn5nniaEnyvdt8jRxfdv1zGfnz1gJW1jZmE5Oky6mERG5vP5yZEnGJJpwmp1YJSuPDD6y6PP5bVo/vy1GYiPcc/QehqJDFLQCFpOFVm8rt62+7S0jtS0Nng5FhxicH6TB00ClfXEsSlvRmJkQJONUXZ+34nfXGO7JcCrBXhQXkcrTq2qpfIr1gfWIgsjh8GHmsnPlalzAEWAyOUkynzyVXbfMb6BUxby56+ZFla1GRy2OtIIyMWEMPOs6Sn8/ysDAqQOwWBB9PtRIBBaYKa7gwnEh57PSxcpDJx5iV8surJKVJ4aeIKfk8Fg9VNor+YPuPyDoCjKRmKDGWUMoFWJX6y5eHH+RJ2JPoKMjINDkbSpXsf02P2OxMdoq2kjlU5hEU/n791YnPbBCfFZwkcFpdpLMJ9HRUXUVs2jmkuAlBN1BFE3Ba/UiCAJjsTFWn5S0g3GldD7GWqXFKJ6LE7BVoSsK2WKWoqYxEOunu7K7PCAMsLF2Iz869CM8smfRfg6FD/G9V7/HN6/7JmJ1G6mxAjk1hyoKJItpNE1lJjlNZ0Vn2Qgsp+TRBFB0ldaqzkXkQ43FKLz2GpMenQfHniAyOF3eVlnTyq3XfmrJCedMTq32oJlfHPkFlfZKKu2VzGXmAEO95p/1c9euu876XrlkF8lCkm+/8u1F78Xa6rV85YqvlKsedziXBnK+ESfFZD65xJlYV1WGQsfJJuf5dNv7cdu8iF4vejr9ps2flMjj4Pwg6wLrlrQXhmPD/OmGT9AsCCAIZBoDTOpxNq25lqdGnyYXncOCAJKE31e3iFSePnAtmYzg2mdHn2U+O4/ppCGnKIjEcjEGo4MMzA+wsXbjeRkylj5jLRajODSGks+jKwqCy4U6OIjgcCx+sYUCWjSK6PGg53LoxcVO6Ss4N5Yorc5y8bYQpXDcsdgY66rX8a6udxHLxQBwWBykC2kmEhN4rB7sZjuX11/OS+MvGcrQBRcuY/ExHu5/mM21mwk4A4vOrxcbVojPCi4qlE7ouq5jFs28p+c9WCQLsiRTUAs4zU7CqbDhFyOwqPJTqn4klTRjhVliehbRJJFRMhTVIrXOWswmM8l8klpbNU/0/pqpmFHhiYg5JJOZT136KY7NHSu3ddyym+Nzx9lcu3nJsR4KH2IqNYXQcCmeQAPWRD95FGSMxfWFsRe4bc3tgHGFLQoCqqDTWtXBJy791KKTmhaLkZJUHhx7ikh8etHzzIWGeODIL/mjqqZFr7VMekSRSIWF42qI+eI45qSD1VU9PDr4GOsC69B1nbyaRzbJWCXrsmaLCzEWG+Ou5+5aRHoADocPc9dzd/Hdd3yXRm/jb9X6eT3QH+lfTHoKBfRsllQmw3PzD3OdbS09R6NIra2YAgH0RAJ0/bey7/9dkCqmiOfiNHgalpAeMGJRftZ3D58P3k5MTfFA+CUi0WnEcYWArx5bawv1Fc0EK5tpDnQtIpWntyXNJjM+q49oNorZZDhplyo+zb5m+iP9DMwPkFfzZItZLKIFk2BaUlGdTk6zd3IvNosNp2gjmBSR+/vRk4bKx1RfjzI2hrmnB8xmw1tI142ZEkUx/tU0BLMZPZ9HjUSMx0oSgsuFaWX4eVnsndzL//fi/0fffF/ZeLLT33neYccu2VUmKiOxEe4/8kvmZseMz0bX8bsC3NS2i5RYZHVgNS9MvECNswarZKWnqgeP1YMkSLgtbvrm+rCb7StZXStYwRsFl+xiS3ALW4JbMItmGj2N/PzozzkeOV72vVldtZr3rn0vY4kxilqRm7tuphEvxRMnGJfSPDj8CGPKLG5vgKcmniOWj9Pia0HRFLoru7k0eAkP7P8F4cQU3XUbcNg9ZLU8BbXAaGyMHn83h2aNRT+v5hEQFpkEgqGWkEULqXwSNRymqaIFT0UNtRWNhFIhPHYf8XyCe479kp2NV/Lu7nfjtDixm+3c2v1uGr2Ni194Ps+kvUhkaDHpKSESDy2SiWuxWJn0HPUr/P3B73Bo/hjpYhpBFKlzN3D76tv5x73/iN1ixypZ0XWdJm9T2TjxTDg8c3gJ6SlvCx/m8Mzhpcdfel/eAJXPVHKKTCFdHr7VMhnDZVhVyagpZoQ03ckkygkjVdxUVWVUfi7Qvv93hdPspKAVqLRXLiE9ABIiE6F+Bj3j7N5/H5HIBFit6F4v06EBxECAlM3E5YG3LbvoLGxLZotZ5HaZZ0efZTA6CBjEp7WilSsbr+S+4/fxjs53EA1FkSUZr9WLS3aRV/KYTWayxSx9kT56Z3updlQTz8fJpeJIeYVdDVfijZkJZiRcxWKZ0AhOJ9r0gu+r6WSVyekESSK/Zw/K2JjxOQGC04m5qwupoWFl+PkkZlIzDM8P81fP/hWHZw4TdAWRJRlN1xiPj/PtPd/mC9u+QLPn/DPo6nNW3q+uY7Kui8R8CIciUp+24zo8RqzTzWx6lvH4OGbRzK3dt7J3ei+z6VnySh6rZGU+N89gdJCJxESZGF9oLt2bjRXis4KLDqurV3PnVXcyFB3if73wvzgROYEkGF9lWZI5FD6Eekjlq1d8ld65Xu4/ei8fdO0AociDQ79hOj+HbjPz5NCTxoJjsTAcHabJ08RAdIBoJoLP7qWuspnHR55kaH4Qk0kiq+TYWr+VT2z5BIIoYhbNNPuaqXfXk1dPZRPpuo4sSHgtbrwmB8XeXmS7ne2Nl5LTCvz40I9pstgZjY+SU3Jk1Cw9VatJF9PYzDYGo4PIkryo4iM4HKT0M+QfCQKYzYsGWkuthEiFzN8d/h6hfIRqdw1FtYjVbLgp33v8Xj6y8SM8MfREWZElS/I5VVfzueXjGUqI5pfPUVMjEZTxcfRstjyzgq5j7ux83Ra6ZD5JUSmQSM9jEkRkwYxJFEEU0VXjJG02Wciv72bSoZA2pXDZrNTbPDjmDfLzRs2fNHmbCDqDy8r7nWYnej6PxSoSKkSIpGaNCoqioCeTiD4feirFvDNyVl+kUtVtJDbCeGKc1dWr2Va/rTywOp+d577j92GVrPhtfgYiA0SyEe7vu5+x+Bhu2U3QFWRT7SYaPA0UtSJWycpofJTjoYOkZqc4ETrKFZ515JNx3rXxv1AtCKiDg1guu4xiJoMePzmkr6oIVitSTw9KX98i0gOgp1JGlVLXsdhsb2jlJ5GKMBIeIJVP4LS6aa5qx+30v2HPvxwOhA7wYN+DeGUvz489T5e/i/HEOJliBlVTEQWR6vlq3t7+dp4deZYbO288J/FQYzGUgQFcFicdozG0qIaeTYOeYG6ThweHHmF19WqavE30VPWwb3ofx+eO47K4qHXVMpGYYDo5zY8P/phbu28tG2FeaC7dm40V4rOCixLbG7czmZhkOjmNS3ZhEkwGiShmMAkmjs4eJV00kqoj0UnGLScTyVNhEuYCHoub8dKgsqaRLJycG1JVJpKTvKP1Br5/6AcMzg8gICBoKkF3HYfDR/jRwR9jkSw8M/IMb297O5+99LP84MAPaPY0c2PnjVTYKsgU0lTaK2n1tEAshZ7JEByDGztvoMJuSL5FQcQm2XDJLv5x7z8yEB1ANsno6HT5u/izbX/GlrotAJgCAVyTVQbJKQ20AggCgsuF6HQuIiyC2WhnHNNniKspjs/3MZOeoc5Vh8fqQZasOMwOKm2V5NV8uXx+PqqrCmvFWbf75KU5aurcHPNH9zNenCWlZnGZ7NSJXjy+GoonTmBZv/6CFzotlUKdmzNk3cCEQ+HB8ceptlXhkOyMxUYxSxb8Fi+Wk4tu0B6gsqKeHx35KXMzwwiyjGC14vfXc8vG91EXUS54/kRLpVDDYfR8HsFqxVRVdV7OxS7ZxQfWfYB7j9+7+HaLixZ3I4VEHJfZbDiGC0K5YoKqGt+DYhE9tzRi4nSUZnZqHDXYJBtPDD9RjlAxiSYcZgdXt1xNXs0zFBvixfEXGYmNoGO0QMcT4xS1IrOZWbbVb0PTNQQE1tdtJu/rwGay0lS3lfGp4zya2MclWztpGkmSL6aYXF1FzlFPWihgUnUqbF4acwnkaHQR6SlBT6XgZFXwjRp+Hg4d54FXfmrk8ckyOTWHb7KKK9qvpqPm/OwuXm+UoimqHdXouk7QFWQ8MU4ib3h2mQQTOjrxfJxjs8cIOAKLiMdyijxHVqXwyisUe3uR2ttRBgdBlo25q3ye3iqVXzz5S+qnG6h2VNPkaWLPxB5ava3EcjFEQaTF24LdbEcSJQKOABW2CkyiicH5wYvKnHSF+KzgokVWyVJUDR8JDQ1FUxZZqZcT0TWNlJIpP66gFSloCxa3k0RC0RQKaoEaRw2qqHN87nj5LpWOSpL5BEW1QDwf59q6axEwspRG46Pc3HUzAWeAHx38Ea9Nv4bT4iToCvJr1wN8+fIvsTnpQU8mqcpLbKrdVJ69WFW5im/v+TYjsREjJwljEXtp4iW+9uzX+OZ136SrqgvR6aS18xKqxp9jNjRUnpsQHQ7U+hp0SSKrZDkSPkKTpwmn14tgsxHVZzgQOsBsZpZVld1MJCYYTYwiYJgdXlZ/GbeuupWskqXWWcuO02TJy2FtYC1rq9cu2+5aW72WtYG1i27T83mGRw9y/+AvT6mRAL+7hpvNN9Joq7nghU4JhVCGhigeP46eSJAJ+vlV/FmiYh5zTSfvbLqOXxd+zVhslIQmsLP9KupddTRXdXIodBCLxYZJlNBODg5H5sa5b/+/8+ENH8Z7kjSe73GUZdsnUQp7lWpqzvn4rsoubu26lZHYyKJYlGIhR6evjVp81ArupQ8sJbFr2jkrdCX33mQ+yS2rbqGoFplITqBqKpIoUeus5bbu28q+TiOxEUyiiaJaRNM1imoRm2RD0RRWVa6iqBXJKTnuP/Eb8vkMjRXNHEicYL23i31HXyC95ibaetrZM/kEQamGF/c/Q2h+HLvHT5e7lVZvC++s2EptRFycKH8SunLh5PO3RSIV4YFXforN4eGp0WeYSkyUt+0e282Xd/13ugLnT35eLwuFUjSF1+ql0laJ0+I0PhfBVCaeJsFkKOg0BR2d+ew8Y7ExHLJjyXC6z+zhRvcWahInMwNL73s+jxaPM3fFen5+7Af0R/oZi49z86p3kSlmCKVD2CU71Y5qVE0l4ArwxNATzGXnqLJXYTaZGYmNcMf6O+iL9F005qQrxGcFFy2qHFU4LA5iuRiySV40iOm1enFaTi4IoohTspe3WUQzFnHB4nbSzEsSJdLFNBoasmg5ebWlIQgisiQTToWpsFUQzc6TKaSJzI2DKDKbnOGu6/4X33jhG0Sz87T72hB0nWw8wsHYLP/zubv49iX/nXqXC71YpDlwavZiKDbEbGaWgmpkb1XaKpElGVVTieaiHJk9QtAdBGBSSLF52y08ceIRCpkkFsFMwqwRK0bZZG/hX177F0yiqSzbbuzqQpwcZyYdpt5dz0Rigmg+Wh5qTRVS5JU89wzew86mnUzr02VH6LOh0dvIV674ypIB57XVa/nKlV9ZMt8Tj83wQN+Di0gPQCQR4oH+h/jwpX+C5wIWOu1kS0QZHDQGk4FJe5HYSIiaug50dCqd1bxvwwfRdB2TyczL06+wb+JVhpPjnDjxMkFPPbvW7GR8+BClpTcyN864HqPCe35XrFoqtYT0AGjRKIU9exB37Tqvyk9XVdeSWBQ3MoG8hRvrrsGqQNvq7USzUWwmGS2dZk5NoKoqfmf1OSt0pcWoqBU5PnecW7pvoaAYsSf17nri+TjTqelydcFisqBoilEFNMm0+FqYTc8SzUU5PHOYe4/fiyzJXN16Da+O72EoOoQlMcFcOsz7Nr2XyfgYD774AEFvAy9OvMRMZga/owIhm6RPHcBmc/PgyKN80H8l9tnEkuMVJKlcsfx9YyQ8gGSSlpAegKFwHz85+BO+tPPL50VezmYBcKGzLyUD0ZJ/TrO3mSPhI0vu1+nvJFPIlINmM0qGJ0eeJJ6LU+OoKednWXSRF2Zf4+2V3VgnWOytlM/Ta5pjJmn8PvNqngf6HuDTl36aNVVrcFqcJz1/FPrm+pjLGirQZCHJa9OvsS6wjn/d/6/cseGOi8ac9KIhPl//+tf51a9+xfHjx7HZbFx++eV84xvfoKvrVEK3rut87Wtf45/+6Z+IRqNs3bqV7373u6xeffHK7lZwZqypWsP1rdfz2NBjpAvpsgrFa/Wyq2VXOVHd76ujQa6GfAG/s5pCfo58IUuDp9GY8RFFXBZX+SrKLbup99Qj6DqJnHFidtu8eKwe6j0NDIX7sOomtFgMAN1sZjwxxoGZA+iKQrGkZJFMoIscntpPrzpFzZCIqc6I1CjNXvTP9yMgoKNT56pjND66KMn9SNhwUj04c5C5zBwmwUSdvwW5RqbWUctwbJjD4cP88OAPKarG3MZAZICcmuPzWz+P2WSh3d+BWTQzHB8BjKFWDY02bxvxfJzxxDh+u5G3db59+m0N2/juO77L4ZnDRPNRfLKPtYG1yw41j6UmiaSWT3+OJEKMF+bwmuvP+3NXw2GjzZM49T6l9TwNnZt5cuwZpkanMVlk7CYbl3dfy3Q2jJrP0WEJEslnQVWZmh/lSfE5rmjcyvT4MWMnokhGKJ53y00Nh5eQnhK0aBQ1HD7vsM7TY1EcopVgRGG+mOTx+X3MmnLMm/PIoo7FbabJ3kMyNsu71t1+zs9q4WJUIj8mwUTQFeSBvgcIpUIk80mShSRXNF1BnbuO3nAvoihS7ahmMDqIrutU2aswiSZiuRjxfBxd17m8eQe/7P0lstlGnbuO3RMv0OppYiw2yprgBp4bfx6zJjCn69RY/GSVLAmxgLlYZMJaoPO0YxWcTqP98kYp6/IJkOUlpKeEqfjEebVvTrcASBVSzKZnOTZ7jIn4BJ+59DNnHPhfDiUPr0Q+QX+knzs23MHA/AD9kf7yfboru3nXqnfx9PDTtPvbiefjpPKGUjDoCvLk0JNMpQwDUT2fp9bsp2NLJ2vsdrRMBsHjKc9fRfNxCoUcAWeAmXSYgppn/9R+fFYfZpOZ4dgwNslGQS0gItLkNVzi++f7uab5GvZM7kHV1be8Y3MJFw3xefbZZ/n0pz/NJZdcgqIofPWrX+X666+nt7cXx0nPiL/5m7/hW9/6Fj/4wQ/o7Ozkr//6r7nuuuvo6+vD5XrrD1y9UUjmk4zFxkjkE8zn5lE0Bbfsxmv1UlALOCyOi0Ke2Oht5JOXfBJFUxiJjSAIAkWtSNAV5N3d72ZgfqBsmufDQ/HECW5qvcFQdRVn2dW6a4mq67L6y9hYsxFN07m2/W1MJacoqHlsZjt9c8fpnztBV2UHqeSpqzq9WCSdTxkl+lwO1AWzC6IJwWIhlk+g56zGfMYCeGUvqq7it/mXkB5j5/APr/wD1zRfA4Cqq4TSJ6/Minl+eeyXHJo5VG7riYLIfHYeRVd4R/s7cJgdXNt6LYPzg4uqM23eNq5ouoLh2DCV9sqyPP98+/QzqRkG5wcpaAXqXHXl9OblkFIyIBl2+cu1NtIULmih0/P5Je+j01vNkwd/wVR0DMxmNF0jmZglmY7y7MAT7AhcgqWoYnHbQJYRBIHp1DSCbEGw2YyqnyThtC+dTzrrcWBccKU9NiateVJ6Dpdkpy5rwZLJGHM/50mkTpf/x+Vpnuu/nx8P3svgbB+6KKCI0FbZwYfWfoj/su2PqKlsPud+m7xNOM3ORWaO3ZXdPDn0JKliinA6TFbJYpNsDEQM08GgO8hUcgqHxcFofBS37KbN10YsF0PTNWSTTF+kj+varsNsMjORnOCKpivoi/TR4KkDk4miXjSyoDQdRS2SF1UcVjdFVEzV1WQcZpCUZVVdb9Rgs1N2k1NzZ9xukSzn1b4ptRPzSp7p1DSHQodIFpIICOyZ3EOFvYK3t7/9vKTncCqa4kTkBFvrtvLKxCtc23ItN7TfQFbJli/Unhl5hip7FQJCed6myl61iPQAFASNY5kRfjxyH+/bfitNcyqVbjeJTIxJMYHT7uFEdID1wY0cmj1MNBul1l2Ly+JiLD5GMp8klotR1Ipsrd9Ke0U7dx+9G4C8lkcSJSRBesuvGSVcNMTnkUceWfT397//faqrq9m3bx9XXnkluq7zd3/3d3z1q1/l3e9+NwA//OEPCQQC/OxnP+PjH//4m3HYbzmMxEZ46MRDCAjl9OdWbyvzuXncFje39dxGf6Qfp9XJLV230FPV85b+Mm9r2Eadq65cefDKXurd9RTUAqurVi8yzbOsX09LLMZHAk2M5WeJk+O6rneSLCaJZWM4ZAdOi5P/34vf4sRsH+9ecxv7pvcxkwqxsWYjuWKWjoo2bmp7B8/2/qZ8DG2BVVRZ/csuyGgqeqGAz16BqdK+ZOHvqe6hq6KL8eT4ItJjFs28a9W7qLBXUOeuw2Fx0GppZTxuDJrmFWPoNJlPnpplAjRdI56PMxobZSIxwdb6rfzo4I/Y2bSTOncdiqZgFs3MpGfYP72ftoo2rJIVq2QtR2Sc60R/tvTm5U7sLpcfwWIBu90YRF7wHghWK66Kmgta6ARZPjXoexIFrUA0u7T6UtCKZJUsqqaAyYZbcmC3u8lmjPc6pxWNAXGLBb8vSHN1+wUdh64oTFbLPDj2ayLRKaPSJ4pUVjdxa1cj9QcP/laqtWQ+yeHkIP/W+xOGEkNIVhlRB4sgMB4f5+e9v+DSxsuoofmc+4pkIwTdQV6bfq28GPqtfqZT0/jtfsLpMLJJptnTTCwX45LgJUwlp5hMTCIKRjW01dfK5uBmDs0cotpRTbKQxKba0HSNcDpsDEJrBXRdQ0ICRcFikhEEEQRjHk2TTAiShEW0IFiteBrbsDZWGwPNJhOC04nJ631D1VzN1e34piqX3WazuvA6Ks7Zvjkxe4Le2V5cFhdV9ipEQeSxgcfIKBksJgs+q49YNsb/2ft/uGPdHbisrnNeWC6MptgzuYfuym66q7rZPbobQRCYSk4Z5MRZy67WXWSVLO/qelfZ3HUh6UkVUkzEJ1CKeVRd40DsGE8WIlzWeBmR0BwnQoe5RHwbHVVdvDr1Kqur17C+ez0HQgcwCSaua7sOv82PLhhts2Q+yfG54wiCYePhMDuocdZQba/+7T6ENwEXDfE5HfGTJbqKCkNhMjw8TCgU4vrrry/fR5Zldu7cyYsvvrhCfDhVjhUQ+NWxX3Fi/gQe2cPR2aPk1TyV9kp+cugnrAmsIZVM8Zv+33AkfIRVlatYF1gH8JY0rWr0Np5XGVmQZUyBAF7ASytgLOL/dvDfGIoOsaqik5HYCH2RPmySjV8d/DnbG6+gsuU6ZLOVT235JIcnXuPxV35BEQXBYqHV18pn1/4xPlOQtbXrOTy+b8nzrq1dz2pHK4I1tmR2IeAM8GeX/xnfeulb5R6+WTTzkY0fYSQ2wl89/Veki2lWVa7CaXHy6Us+zUhshHAuTKWjspysvhCarpFVsmi6RsAZ4AuXf4FHBx7l6OxRRmIjaLqGR/bQVdmFpmvUueoWhYme7URfUpucHpI4FB3i23u+zdd3fX1J5afZ30ZVYxezYydTxU/66wgWC1Utq2mpXXXWz+10mKqrUcbHEdzucrsrn4jR5WmljyFyeqE8/O2wOKm0VqBqKoLbiSWVZVXNWo6HDpPNJLCKFsPAzRfk1q1/eFYJ8+nqLcHpJFPr58HhX50iPQCaRiQ9xwPjT/KHvqtxXqA3UGlWxGf1lb8ToiCW1TQAw/FhRmOjbKzdeNZ9LXQiv7LpyvLMh91sp3q+mmguio5OupgmlosxnZpGMkl8ZMNHeGfHOzGbzJyInGD/9H5emniJvJLHYrIwmZgsG13WOmuI5+JU2ip5LbOX+UyE9qouYrkYDb5mxqPDSIAomLBJNjxWDxW2Cpr9bUhv8vnD7fRzRfs17B57jqFwX/l2m9VFd/16aj31Z23fPD38NHc+cyej8VEmE5PIJsNY8M+3/zl/+8LfklEyJPIJdEHnkYFHaPe1kyqmzmv25/RoCp/s44b2G4xKfXYeVVNxyk7skr1sGJrMJ3lu7DkUTSGvGN5jyUISWZJ5d/etHAodZCYdJqfmeGF6D92Vq3jHlls4FjnOF0+ehw7MHKCzspOZ9AzZYpb62Xr2hfYxm54lmU+SVbJsqNmAw+wg4AyQU3J0+jvPO/D5rYCLkvjous4Xv/hFduzYwZo1Rmk4FDLK/4HTlCGBQIDR0dEz7iufz5PPn/JHSSSWDtv934JSOdZpdjIQHSBTzFDjrCGRT+CyuEgVUkwlp7ht9W389NBPuff4vayrXodkkriq6Sra/e0Mzg9etKZVp2PhIq5rGnbJzivjL9Pm72AuO2fk2vQ9DIDL4eOK6i18QF3PpVe2E1NSeD0BOuZNePeMYF5l4yuX/lfu0v6Ww5OnyM/a4Ca+csmfUTubR7DZlr3y31K3hc9e+lk6/B1ki1lafC38pv83DEQH6PB3GEozZw2TiUn+997/zcc2f4zh2DDZYpZGd+OySc0Nnga8NuO52nxtdPu7qdxQyUMnHiKUCpEqpDgYOsiOxh3c3HVzWcF2Ljl7SW1yOiRRwiyaeWHsBdLFNBW2CtZWry2fkN+17nbuN91LJDppVHxEEb+vjltWv/uCybN4siUimM1lVZdTkHEli2ys3UBCLJJPJ7CIZip1Gy2eZmSXF7JZ0HXcWY0NNRuQ7S62NG3D3rGL5rqes5IeJRSi2NcHxaJR1TOZEINBpuudzJ84ec44SXwEpxNTZaVho+CLsSrrOG/V2sJZEfuCgXxN18gUMzgtzvLs2kLvqDOh9JsHyi1SMLLnYrkY6Mb51GFxkFWyDEWHGIoOEXQG+cXRX/DeNe9l/8x+krkkLb4W0gVjIHoqOYXT4uTg9EGq7FXUOAL4rF4cFgfhdJgNwc28Ov0qm2s2kC9mmMmEcZoddFV2UeuqfUsFWXbU9PDlXf+dnxz8CVPxCSySBa+jgtpzBG6emD3Bnc/cyZ7JPQSdQcwmMzo6+2f2w0F439r38YMDPyjbV4AxfAzL+96MxcY4PHOY+dz8ot/P+cRSlOCSXXT6O0kX0kRzUbLFLMlCkveueS/DsRG89gqOzvUymZggp+bZN72PA6GD/Ped/50DMwf44uVfJJlPkilmiGVjjMRHmEhO8Pa2t/Po4KPGsHUmQkEt0OHvYHvDdmK52FkDn9+KuCiJz2c+8xkOHTrE888/v2SbIAiL/tZ1fcltC/H1r3+dr33ta6/7Mb4VUWphZIoZFE1B07WyHNJsMpPIJ6i2VzM0P8RgdBBJlChqRSaTkxyyHuJE5ATvXfte5jPzJAtGoOGh0CH8Nv9b5iR2IVi0iCsKBSWHqmsMRvqpcdXSXb2apHUWSTAZkvhMAl9/nEuyWbLBSqYtAiOZCZytTpr8Lta+NsC3V/0ZvZsSxHJxvBY3XWKA9MgIextUPJV1NFPAxdIr/zWBNbww/gLzmXkkQaKzshOfzWfM9KRC7JvahyAIuGU3BaWARbSQV/Nc3XI1w7FhRuOnyH2Tp4mbOm6i0maU8EdiI/z86M8JZ8J0+jvpquwiW8ye+g6czD07nxDRktpkISRRYmPNRn4zYJC1Y7PH0HWdDTUb+G9X/je2N26n2dvMR7f88euW3SXV1CA6nZiCQfRMhhZJpcYWYl7PYFUUdEsKVJW4muHmTe9jcrqPRHbSeLCuUyt6uTl4A/VZB5bOs3sIaakUytDQIhUZgCmRIFmZQ6yoQKisLPvr6MUiyvg4Un09qXwScJy3PHshUXFb3bhld7kFqumGZYPFZCm3VeDsEupU0VDuxXIxkoUkmq7hsrjw2/w0uBsYjg3js/nKw7hu2Y3P5mMsMUaFvYKXxl/isobLSOQTDMwPYDaZmUnNsK1+Gzubd7Jvci/tvlYcZjvRVIQ/3/EX/PLgz9l77ClW16zBZ3bz8S0fp8LuJ1vMsj64iQ5/x1vufNEV6OFLO798Qd/PI7NHyhYAWSWLW3ZTVItklAz7Z/bzX9b8F5o8TWyo2cDR8FEA7JK9fB5eOE/30vhLy6skr/gK2xq2nffrSOaTzKRnWBdYV26L2812rCYr0VyUycQks5lZVE3Fbraj6zqvTL3CE8NPsL1xO3un9gLGCIFTNsKGFU1hf2g/2+q3YTfbEQSBjTUbcVlceGUv3dXdFxXpgYuQ+Hz2s5/lgQceYPfu3dTXn1KC1Jz0zAiFQtTW1pZvD4fDS6pAC/HlL3+ZL37xi+W/E4kEDQ0Nv4cjf/NRamGUvvAlE6yShFlHxy27SRfTFNUiJsGESTSRVbLkVaPEHcvGmM3MkilkyCt5IpkIlbZKLm+6/M18ab8VFi3iuo7FZCx+qq4xmZik2dtCNjprbJckPLIbU5OXCSnNA6OPEuvT0GIxBJuNaluIG+q6qdl9gCs1DaxWprsc3D/+Q6JKEklqQ0w4qJhevkrmkl3ctvo2Xhx/kUcGHuGe3nvIKlkkQWJV1Sre2fHOsqxVEAR2Nu+kwlbBwPwAH1r/IRRVYTg2jCiImAQTrb7WcuVmKjVV7vn3zvaWn7NUDr+29Vpu677tvIjIwsT4Etp8bfxm4Df0R/oJuoJkisZV7UsTL/FXT/8V37nhO3RXd7/u2V2i01lWTVUA76p2nVLWWK3G7bYKdrTuxNt0HcPjh0ll4zglOw14cSpmzJ2d52xBqXNz5crSQuiZDPaUgp7JoCWT6IUCJlEiUNeB0N1IwWklbzGRMov4zlOevWi+SoedTTt5dvTZMvnRdR2XxcWVTVeyunr1Igm1WTTT7G02SDKCkb5tq2QwOsjR8ClDT0mUGI4N86H1H4Jhg1Cpmsqx2DGub72etoo27j56N0F3kNHYKMdmj/G1q7/GdGra8PQx25hJzfCT/T9EMpmRdBE0lXw+Q0dFO5fbu5G615IXNGx2L+r4BMfUXnSXk0saLnvLkZ4SLvT7OZ+dL7eIBUFgLj1HwBkgKAUNh3TJSntFOw+eeJCuyi5ava3IkrzoM04VU+edfXc+GI2N8szwM3hkD6+kXsEtuzkSPoLH6sEje+jN95YrhbqiY7VaEQWRifg4yVwcLZ1GkGWCziBBZ5CBeWPYXdEU+iJGKzDoDJKuSLOxZuNFYVa4HC4a4qPrOp/97Ge59957eeaZZ2hpaVm0vaWlhZqaGh5//HE2bjT63oVCgWeffZZvfOMbZ9yvLMvI/xeH4i1M9K2yV6FqKplihp6qHoajw6yrXseldZeiaAqqppbnCnT0clZPqRTe4mvhnmP38NCJh8r731izEZ/NR5u/7aJj/YsWcUEgnYnTWtHG0LyRZWQxWYwhWlWlrbqLVVIN2UCBhwaeJEoW0eJC9PlAVQmfOMhv2jTet64H64FjZKs8PDj8CPNqEqmlBcFsRo1GmZ2d5b74T/jIpR/D4108DOi3+ZlKTJEr5hAQcJgdqJrKibkTdPm7CDgD3H30bsLpMAdCB/Bavdyy6haeHHqSCnsFO5t2Mp+eZ1XVKoLuIEdnj+K0OMkVl1etSKKEZJGwStbzPoGV1CYL2102s43+SD+V9soy6Slh3/Q+DoYPUu+p/70veAuzqZa7al/vrDiVE2Y2I57nIK2eySwhPQC6plGXFKn0BZlNHMdkMtO46hKemHmRocgkVrubfucx9rkaeU9bHc2c+/excL6qf75/ieGgy+Ki3d/On2z+E+xmO/9x9D/KpKfN18b3Xv0eB2YOIAoiTouT9YH13Np9Ky+NvYQu6EiihKIpDEWH2D28mw+v/zC/Hvg17RXtzKRnyCk5zIKZP9n8JwxHh9lWt41QKsTA/AB/+cRf4pbd2M12drXs4rr263nw6H2kkhF0XWVtcBNNlmpePPwAAGIggGC3I8YS1HRuRPB56Z/vB4G3zHzg7wKfzWdcNuo6BdVQy4WSIcPstJBE1VX2h/ZjM9sIOAJc03LNksR7p9m5KPvOLtm5uetmKuwVZItZHGYHI7GR8yY+U8kpnhl9hmg2ypbgFm5ov4FXJl+hp7qHp4afIqfkkEUZk2gyOiG6YW8hm2Ti2Rja7Cx+X5BGqZIPrPsAE8mJRb/1oDNYHqa+WKTry+GiIT6f/vSn+dnPfsb999+Py+Uqz/R4PB5sNhuCIPCnf/qn3HXXXXR0dNDR0cFdd92F3W7n/e9//5t89G8OSuqb4egwLtnFeHycd3a8k4nEBJfVXcbWuq3c33d/WaKqaAo3dNxAnbuOans1jZ6TgZqyh1X+Vdx97O5yJlYJ+0P7+d6r36OrouuiIz6LFnFJon+ml+tad/E4kMwnMKkagtVKq7uZz23+FBWTCY6Zo8yFRwzH5MlJEEUEqxW9WCQ8cIjp66+hu7GDYS1EvM+F2VkLuo4yNGRI3YHw5CRD9h7Wtl++yN23tGBbTBacFiezmVkjGqBmPc+OPGuoK+x+DoYOMpGYIFlIcu/xe7ml6xZ653oZmB/gvavfy3Njz3F07mh5v6v8qwx3a32plNwm2ah11i65/UxYqDYpnRDzSp5qRzVrqteUS+UlmEUzmqaxe2Q3Ba2A1+o9q/T9d8XZrtpLw+0XjGUk+AB6LIazupqb2m/k/mgM2e3jkchLHIkdo7aiCb+tgqHMFNMkyR35KV/Y9oVzLvZN3iYqbBXMZ+eXGA5mlSxtvjbWBtYScAY4MnOkvJA2e5v53qvf4+DMQYpqER0dj+zhQOgAuq7zpR1f4gcHfoBVslJQC9jNdtYE1hDPxylqRZKFJI/0P8LR2aOIgliuAvusPqqd1YzERsrqv1Iki9fXymcu+yx5tYDLZGeTtRVtdBTQEdweLFUBqnUHro6t9KfGKCZTJAupcgXiYp4P7JvrQ5ZkNgc389L4S8RyxoVlUkgSyUS4ovEKmj3NfGLLJwg4A8RzcWMgeYHJammebn9oP2CQno9t+Rg/OfQTDoQOlO/3jvZ3YDaZz6vllSlmCKcNz6zXpl9ja91WJpOTmE1mGtwN2CQb6WKavGLE1OSVPC3eFmKFOB7ZQ9ZZzc0N12EdHKdz/Xq+suMrPDf+HLFsDKtkRUAgq2S5qfOmi5q4XjTE53//7/8NwFVXXbXo9u9///t8+MMfBuBLX/oS2WyWT33qU2UDw8cee+w/pYfPwsFdp9nJcHSYZCHJfxz9D97W9jYua7iMe3rvoc5dR43TyPApqTUArm65mqdHnsZn9dFR0YFJNDGdnMYje5Y818HQQcaT42zj/HvRbwWcvoirVgt7h57nXR3vZGvjNrKpGB6rh57AWqoUGTUzSUbMIlgshnGdroOqoudyhrS5UCCTTWCqaCKTnsXk94OmLSI9JaTSS919SyVwSZRYVbkK5k6lv89l55AEI17g1elXyat54rl4OVagvaKdvJKnN9K7RI6eyCdYVbmKgcjAouR1m2Rje+N2OvwdF/S+na420XUj3mPv1N5FKjOzaGZLcAsnIid44MQDuGUjeuFs0ve3IkSv1yC3p32GaBp6PE6z7xI+ctWfsk8b45G9vaxv2spgZIDR6AigQ1JiLDXJzuad7Gzeedbncskubu66udy+KpGf0vzVwqvshZ9zVslyKHyoPLMFRg6XzWxjz+Qe3t3zbrY3bCdVTFFlr6LB00DfbB/ra9bT5msjmU/y8S0f54XxF/jZoZ+RU3NYJStd/i6ua7uOnx7+Ka2+Vlyyi+0N23lm6EkOhQ7SU9WDVYEuZwvOmla83maqe7YQNykEXUH2zL7GnpfvIYmR8r6pdhNvazP8sZYzy3y9Ih9+n0jmk/z00E85FD7EX27/S77xwjd4YfwFZtIzeGQPO1p38Lmtn8Mn+7iu7bqyMSgYFRO31ZjTc1qc9Ef6qXPWYRbN3Nx18xLSA0bl73xbXgICTZ4mQqkQd2y4g0Q+we7R3fTO9vKtt32L/vl+9kzsQcSI9ums6GRzcDOhZIhVld30SEFCqQgpU4am2AztgXYCzsDrNpv3VsFFQ3z0hcGMZ4AgCNx5553ceeedv/8Deotj4eCujk6ykAQM59aH+h9ia/1W/v3Iv6PpGpX2Suaz8/RU9aBqKjXOGjr9ncxl5rCZbTR6GssBdRW2Cj607kNYTBY0XcNn85WdX0s5URfTj+L0RdxjcdPtbKaqKCNUnGqHqDMz6Ok0ToeEnkwu3slJ7x5BEHBINqT6etwzMYRpCTUaXbpgAg6TbYm7b6nNUemo5HD4MC3eFnw2HzklR8ARwGVxEclGUDXj+fJqHo/VQ07JMZ4YJ11MU+euwyJaGI2PYhJNeGQPM+kZttRuodJWyVxmzjCxEw0p/u2rz+38uxwCzkC5ajMWG8MqWZdI67squ0gWkvTP92MSTOWZogOhA3zj+W/wjWu/cUFutm8WTFVVSJ2dKCdOLPosBasVqaMDUyCA8+gcOVMSPZ/j+PwQyZInkyCAKBLNRdk3tY9NtZvO+X6fq2VXwsK2WDJvfCdLpEc2yYiIxHNxJFEimUsabSzRzH3H7yPoCvKRDR/hqaGneHXq1ZNeRyrN3ma++87vMhGfwGfzUeOo4bt7v4vdbGdt9VpafC2MxcdYX7OBTDZJMZ/FpIuMZ6e5d243f9R4Czc53s5L0QM8PP4MCfIk9RxmyUKlvZJwOsyTQ09yZdOVhNKhRWaZpXml6eQ08VycglYg6ArygbUfoKuyizcSZyNgo7FRplJTxHIxfn7453zmks/wiS2fIJ6L47F6CNgD/PrEr2n1t7ImsKb8eR6bPcb+0H5+fvjnxoWMKGGTbGwJbuGO9XdglaxLSI/T4kQSJQ6HD3N45vA5fy9m0cyOxh2YRTOPDz6OV/bS5G0inovz6sSr/PHGP+bS4KVGNIrJQjgVZjIxyUc2foTB2BAH9v66vK+qxEHeJb+fZm/zRTvLcyZcNMRnBReGWD6G0+wsDy/Xu+uNYeRsBE3Xyu0tk2AYwWm6Ru9sL3WuOiKZCM2eZnY07MAkmqiwVTCRmGAsPobFZOEnh3/CRGKC23puY//0flRN5dK6SxlPjF+UEveFi/iZUFLlNEh+/J5aIvHp0+6g43fX0Gg3crVKLYvZ2dkl+/K7a6jPW4FC2f134WMANgc389r0a4ZBoVbAZXExGB3EYXGQV049xmayEXAGiGQjyJJMTslRYasg6AoymZzEJbuQRZnecK8xL6IVieVjr2vLqdHbyH+78r/xV0//FfumT0n5u/xduGQXjw8+jsPiYDo5TVbJous6oVSI3WO72cGO1/W7cqYFSz+Z+K0XiwgWC6LHQ4rCed9X3rQJwWJBnZ01fIgkCVNVFZY1a8ryevPIBEgSyXwCs2hmQ90mqty1FHVDieWz+RiLjbE6cO4InXMN2paMKwMO4/MrOfkKCJhFs2EuZ5JIpBJklAxZNcu/Hfg31gXW8aktnyKv5nl+7HkEQaCjooOB6ACz6VmeG3uOkdgIVzdfTU91D3sm9rBnYg83r7qZxwcfxyk7GZgfQBREGlz13Np+E8/s/RWKVmTIepTLgpdwqVBPvGUrr2T6aXP66a5bh6qr2CQb8XycE5ETZYJWqlqVZPxD0SH65vrIKlkKaoFXJ1/lSPgIX9z6RToqO96QdvqZBsYlUaLOVUcsF6O7spuNNRtRNIX/8ez/IFVMGWGhus7tPbeTUTL0z/Wzb3ofuq5jNVnZP7OfZ0aeYS47R17Jk9EzpAtp9kzs4ZK6S8q//RKcFicN7gZSBeM9iuaXj0dZiDWBNTwz9gxrq9eioyMKIjd13cS9ffcyn5/nMw9/hk9d+ikuCV5CQS2wpnoN4VSYv3vx7/j8ZZ/HJJpQNRWrxUZbjfH5Pzf6HC7ZRdARxCk7afA0XFQXt8thhfj8XwqnxYnP5sNpcaLqKoqmEM/FcVqcjMZH8Vq9gBGB4DQ7uWHdDVTZq8ipOWySjaAryNWtV5f3Z5NsWCUrD/c/zHBsmCsar+DliZcZjg3jlb0MRgepchjy2vPNe7qYUDIedBRFbuq8iQdPPLiI/Pi9tdzceROeymB58e3yd+FCJiN4yXmsZCXDVK+jei0xqrAnC4uGa0ttjh8d+BHhdJgqexWyJCMJErtadvHTQz9FlmQqbBVEshFsko33rHkPjw48yksTL+GW3YTTYaaT06yqXMWjA48SzoTZEtzCJzd/klemX8Eje5hKTqHqKofDh183krq9cTvfueE7HAwfJJaL4ZE9mEUzf/X0X+GSXYTTYeL5+KI5o6nkFD859BM+v/Xzr8t35UwhkTc1XY97NsV4boaUksFldmBzVfD/Z++94+S46/v/58xs73t7t9d7lU53OvUuF+Fug40NhGBswCEQCIGQ9g1JCIHky/ebfEMIAVMCBEwJBBeMbVxlSZbVu07teu+3t73Pzvz+GO3oTs2SC9j8/ObhxwPd3e7Ozs7O5/V5v1/lickd9EWH9BiHOk8dd9ffTtlwRHOYPluC1YqxuRnzqlUaIEomURVFH2+q6TSix0NFcQNF7lKMoT5ubLyZXaO7eWFkBwAus4toOkpDwZU7Q1/J+wylQnTNdnFr062srVjLntE9mEQTDrODmfgMSTnJipIVTMemubb6Wm5suJGXhl+ipbCF/WP78Vg9WA1W6gvq8Vl9FMQLMIgGlhQv4fn+55mKTXFr463sGdnDeHScuxfdzZKiJWQUjSc0m55jSd1qjg0fIKlm6Az3sLR9DbnkMMuqVvNE1xMcnTqqH3ulq5LN1Zt1t/F812ooNMREdEIHPbFMjNHIKNlclpHICM2+ZlwjLm6sv5EVZSte8zm8VM33UZpPGO+d6+VjKz7GP+/6ZwLJAH67n1PTp1hZvpI/WvVH/PPL/6wT+w2igaHQEMtLl/ODoz9gMDTIpspNpHJJOiePk8pq5qKIIoIgEEwFqXBXsKpsFY0FjeTUHJIgYRANxDIx/f5tN9pfsauuoG1mHzr2EHtG9xDPxmnwNvB7rb9HmauMvrk+tg1sI5PL0BXoQhIkfDYfE5FxZhIz+H1VBMOTdCy9ia8c+Jrm95ZJIKsy7f52PrHqE2wf2s6tjbe+pTa359fbwOd3sKLpqL74Hp8+jiRIpOQUVe4qrq25Fr/dj91gZ0XZCvoCfbxvyfv4Zdcvdalzoa2QodAQoihyXa0GfpJykhJHidZZkMzUeGrYPbIbi2TBIBoYj44zFZvCbXFfcd7TW6lEjwfBakVNJql2VfLBqjsYVUPElRR2o50qZyXe2sUMy7P86uS5xTebTlFWWcnpySMcmzhCLBXhX6MTLC9fyec3/i2b/OeUXdF0lKnYFKlcijpvHdF0lEp3JVOxKWxGG16rl/5gP/UF9aio3NZ4G4OhQR30tBe3c3jiMJOxSUKpEJurN7N1YCuHxg/xkPEhPrnqkzx6+lF9zHAxE7XXUov8i6hwV+hdlEA8oKtTzgc9oIHpbQPbuLXhVpaXLX9Nr31+SGS+AtFpfnzov6hwlLNvdC8ZJYvJbCOiJGksaKBr9gy5s/ns/YE+kuFZ/qjkTuyKAkYjgsGAmkqRnee+LA8OoiaT+mvkgVFNQR3vXHwnNrODXSO7dW8ll9lFnaeOodAQz/c9T0dJx6s+3+e/T4/FQ0dJB32zfdy/9H6sRitds12kZI2jc13Nddzbfi9Hxo9Q4izhe4e/x2hkFJ/NRzAVxGLUZP99c33UeGoYiYyQzqUJJoP0B/uJZ+Lc1ngb2wa38e5F7+ZM4AxHJ4/qTtKVrko+seLjnI72I6s5BJuNETmAzWhj+8B2Sp2lNPgaNP8h0UQkE6Er0EV7cTuCIOicpVhWC9fMd3ryoCclp8ipOUYjozhMDr6w/Qv88zv+mUX+Ra/q/L1SzfdRqvPW8YuTv8BqtPKRZR/h8a7H6Q50I4kSmVyGKk8VxyaPkcwmeX/7+/nOoe/Q7Gsmq2TxWDw81/ccJQ5NvBDPRJGVHLPxGeRcFofBhoiAajQiIzMVm8Jr8dJQ0LBA1i4rMolsgo7iDoySkYdPPXzJrvpUbIrvH/4+M4kZCm2F1Hnq6Av2MRoZ5ZEzj/Cexe+hxFHCs73Pal1uezHpXJrZ+AyL/a3MRqawmXwsXXw9Xznw75wJdBHPxMmpOQyigePTx3nwwIN8bOXH3vKb27eBz+9gDYYGeeT0IzjMDrwWr3aDM1gYDg9zeOIwf7Ppbzg5c5I/W/tnnJw+ycNnHtZBT5GtiGZfM092P8lEbIJyRzlNRU3EsjGS2aQWiCcIWAwWPBYPqqoSy8S0Mcu8sL8rCfZ7K5VgNmNsbibb1YWaSOAuLMctF4MgIBUXIxUXEzeq/Oro/yzsODiL+N6R7zEeGaPBU4dqdlBnbkAQJX7a9QuSgowoingtXk7PnOaloZd4YeAFjKKRQDKA2+zm1sZbeXHgRTZXbebOljuJZWIsKlpEsb2Y/7vr/9JS2EI2lyWTy+jdnO65bjZVbyKRTVDuKteCBjNRxmPjqKiYJTNtxW1E01EePvUwfrtfd4p9LTV/RDMVm6LJ18SBsQMXgJ4l/iUksgmScpKJ2MTFnuqqav6CNb/SqTgvje1nfdUG/Rq3uws5Mn2MqcQ0zb5mTgU1f5JEPMTO2ee5wdzGogMjAIg+H8a2NtRUilwgQG5kZAHoAVCTSbJdXTg6OljqX8pMfIbO6U4WFS5CEs9ym3JpPBYPWSV72U3Bpdx7L/c+zQYzZoOZvmAff7X+rzg1e4rp+DSSoAkSHj39KI0FjZglM0PhIYyiEaOouQzPJmYpcZToESdWg5WknMQoGsnmsgyFhxiJjHBL4y10B7qZS87pqq6MnGEwNMjzg1tpLmsjlAwhihKxbAyzaKbB18DO4Z0cnTxKPBNHRaXWU8s76t6BSTQtMMt0GB068T6eiS8APYBupto53cm2wW1vmD1C/r5lFI1YDBZSSor+YD8ry1ZydOooKioGxYBBNOA2u5mMTXJy5iQfaP8AK0pXsKVuCz88+kOur9USy31WH6qiYFREDAYDKTmFiEAOBVEVIZtFNWl8yXgmzqfXfJqv7/86p2Y0v5086PmzdX/G8anjwMVdnwdDg2wb3MZLwy8BkMlpKsCWwhZOz56mP9jPeHSca2uupWeuh+nYNIlsgrScYol/Ce9edDfbTz5JcfNtxMQMhyeP4DK7SOfSGMVzHlTHp4+TlJNv+c3t28Dnd7DGY+OMRcfIyBkq3ZVUu6tR0BKV87L1O5ruoNpTjc1o44WBF1hdtlpvrR4aPwQC7B/bz/Hp42RUjQxrNVqZik8BkM1l9dkzaFlCFsmi//uVgv3eiiV6PJg6Oi7pBTM0T16cr1RWIx67zC5sVieJeBqX2U3XXDf7xvfjs/ronO5EVmTe2fROBsODgMa5ygeOPtP7DMtKl9FU2KQZ05ndNHgbGI1o3i45NacbTebUnM71UFRFz3YyG8xkchnuWXQPlY5KqtxV/Ovuf+Xw5GGsBitmg/kVnWKj6SjDoWEScoJoRusqWowWypxl1LhrcJqdC3yjCiwFfGzFx4imo4xERvTnWeJfwn3t9/HomUcBMEiv/TZ0KaA9lwkxHBlmWbZDPw/t5ctpK19OKpdiZelK6ouaeL77GeKxGRLJJFNSgnw/QQkEyHZ2YlyyBDUWuwD05EtNJlFCIRqKG7SugCCRyCWQFAmzwYzT5KS5sPkCA7v5dSXuvZfbUMQyMQ5PHmY4PMyp2VMcmzyGWTLjsXjonevljuY7ENCCJeOZONXuaq3DI6cxmAzk1BzNhc1E0hFsJi0XLH+/MIpGOqc6MSGxpeEGrEYb2Vwak2jGZDBR4axgRekKLcrC6CApJzk2eYwT0yd0t2lFVRiPjrN/fD/rKtYt4LRUe6opcZRwbPKYpmQUBERBUx7VemqZjE3qHY7Z5Owbtug6jA4kQaKhoIHu2W72jOwhmAqSkBMaZwZtPJW/9zmMDkxWE1bJyrLSZewe2U06l8ZisFDtriaYCuIQzETiAdzuYqo9NYyEhlDyYh1VxWawamPD1Cwj4RHe0/oeZEVLrDdJJs0hf+r4goiS+cAj3wXMix7yj3Nb3FpemquSofAQKTnFRHSCdza9E4vBQiKTwGa0YlIldp55gXQmiUU1EEpoSk1FVRAQMEkmLcxYsiCrMpIgsbJsJcnsxb8Lb4V6G/j8DlZWzhJOhRkOD+turYA2knFXYTaY9S/MWHRMt10/v0RBJJAM8PCph2ksaMRr8dLsa6Yr0MVkbJJaTy0DoQHMkhm32a0TD18p7+mtXJfzgrnYopTMadEQw+FhrEYr8Uyc6cS0biQ5k5jBbDDTOd5JS2ELkiChqIq+y8oHjh4cP0i5sxyv2UtWzfKj4z+i3d+ud3tcZhc2k429I3vJKBkkUcIgGPBavQQSAcKpMJF0hH/a+U/8w7X/wLaBbTr3Ih/pcjmn2MHQIE92P4nNYGPf2D52j+wmKSf1lvrtzbdT56nje0e+p5nUna0WXwt/sf4vuKHuBoKpIDajjUQ2waNnHiUlp3SH2NdalwLaUTmBnMtiFI2YDWaubbuDX3Y9zsEJzW+ozd+GxWDhY8v/kJ9v/yYJkhglo6bGAlBVlLk5VFm+IBH+/MoT4KvcVayvXK8rk0yitgiZDeZLHuuVuvdebkMRToXBrYG7alc1w6FhgqkgRtHIVHyKYnsxbotbM8ULD7K5ejMvDb2k3yPySr+b628mk8vQUdKhc0xsRitGVeT2Re/k8OQRhkNDGpFaMrK0uJ3ra6+nZ64Xt8VNtaeag2MHGYmMYJJMmi/Q2eggg2hgKjaFrMgLwEsgGWBl6UoOjR9iLjlHLBNDVVVaCltYWap1W+wmO6CNSAfDg4zFxsjmshoXTjIzHhnHZrZpgF8wUGAruGqVabWnmjpvHc/3Pc9i/2KCKY1QnN/UCYJATsmhoAHC2eQsqqrisXrwJD28Z/F7WOJfQqGtkMe7Hsdn9YGq0jV5kt+rXsttjbfxTM+vmYlPYxSMrKnZSEvxYsySGVmRcZldmrWGmiOdS1PtqtYdk8+v/P0mz4/yWX1E0hEkQQPbDpMDk2Si2l3N4qLFmh2Cq5qtQ1tJhGYRZ2dJASmg1lVJxF4I6TSewnI46+xvNVppL27n1MwpZhKaUGNt+VqOTh7l89d8/orP65ut3gY+v4PlNmtIP5PLsKFyA+WucrJKFpNoIp6N4zZpXjxDoaGL+vLkxxKSoMmhx0Mj9I4cp6V0CQ8se4DvHvkuB8cPckfTHZgkE4IgsLJspZ66/GYKIPxN1vxFSRIkPBYPiqpQ7alGURUKLBpx9NTMKSRB0hREqGRz2oKZklMad8Kg3bxNkolMLqPvvmxGG1aTlYPDB2ktauWpnqc4EzjDVEzrwq0oW8FHV3yU7x7+LvUF9YxFx5hLlpCV1QABAABJREFUzCEIAkuLl5KW07T4WhAQ2Da4DZ/NRygV0rtCwEVls/kdpUk0sXtkN/vG9un2CLMJTZb72OnHqHJXaaBhXp0JnOEbB77BB9s/yPePfF+PzgDN0+SO5jteF5LkfOO/+SVJBmoL6nFbvbx79f083fu01kVw1zIUHkJE1E0X7171HnZ2P4/DXkCyJIt1dFozLxQEyOUQLBbt/1/CWiNPgK/2VFPqLNWBzvzKbwrOV59NR6f1oNjza/5ncqn3CeC2uvUIhQJbARuqNmhdGsmExWBBRWVx4WI9KHPf2D7aituo89RhN9lZU75mQY7WR80f1XyARvdxU92NXFNzLfvH9jMVm8IimVFVBZfRSdfECZ7teYbr69/BxqqNOM1OJFFbfEVB1FPc8+U0OTUC83mKrmg6ygPLHqA32EvfXB/pXJrp2DTdc92srVjLc33PUe3WpNlHJ47ywsALpOQUiUyCtuI2rqu5jp/s+QmziVmafE1Uuiup89ZdFYHfaXZS46lhIjZBnbeOem89fcE+puJTtBa10jXbRQ7N4T4tp9lYuZGV5Vr3IyknKXWUMhYZIy2n+b3W32MuNUfP5CmySpKu8U5sZgcfXfZRrctjdfBc3/P88vRjpJWMtrGxeLmt+TaGQ8NMx6ZRXZe2ccnfb8aiYxydPEqttxa70c5IZASDaKDQVqibTjYWNOod/rta7uKZY48ww6z+XBX2UjY0bmEuEaDAVcrm6ms4EzijjYLngZ6WwhYmY5McnTrKv+z+F+q8dW8JS4rz623g8ztY2VyWFWUr8Fq8bB/czo4hTVlilsysr1yvt0xj2Rg+m4+1FWvZO7r3gudZU74Gn7kA41yYpQ0bSUgyRWYf/3jtF4lm4qRyKe5dei9mSbNAP99vJBILMDjdSywdwWFxUVPUcNkE7Ld65RelcCpMmbOMJ7qeQBAE0nKawdAgfrufRl8joiCSyqVoL24nlArRUNBAmbOMcme5nok2EBzAK2j8LEEQaPY1U+4qJ5KK0FDQwLN9zzIQHKChoAGLZCGjaNJsl9nFp9Z8iunYNNsHt+uL3Xta38OXdnyJnJpbYGVgM9r0tO98nS+bzfNKiu3FTMQmdNAD5/K+ugPdFNoKcVsuBNJD4SFkRea2ptuIpCM68dZldrG+cv3rApLPN/7LV2NBE++ofQf/se9rrK1czxM9WtxKka2IVeWrCCQCCAgcGD/Ah5d+iPU1Gzl+ahv7QtPc0bKF0tPjYDYj+nzkhoYQvF7UuQtBh2C1Ino8lz2W/KYgb2g3/3fTsWlurL+R5/qeu8APCc59Jpd77rXla3m271n9Z4W2QtZXrieUCpGUk4iIvG/J+9gxuIPx2DiyIjMQHKDOU8ctVe+gPC6h9o+StViQioqo8dTw6TWfpqehh1Bslpwq0xvspcJeggFR4wEpWcxWHybBwKLCRXqnt8BaQEthC+FUeMH14jQ5qfXWoqIuUHTl38vp2dMU24spqSrh8MRhvXvxXN9zlDvLubnxZnYN76LSXYmsyMzEZwimgmSUDPFMHJ/Nx0BoQJfMWw3WqybiSqJEhauCQDLA5qrNCAj8z4n/4bPrPsvjXY8zEhmh1lNLW3EbvXO9DIeHebrnaXw2H51TnawsX8mekT1YjBZS2RRrazZytH8PSiZFS1E7/XP95ExOfnTsISbTM8TlJMX2Yg6MH9DHgZ9c/cnLjpLmA+jx2DhJOUlPoId31L2Dl4ZeYjA0SCgVwmlyah1ATzXP9D5DTs1RaCvklpY7SLhHiMkJVJuVgdlenjvwM3JKDpPBxIc67uNHJ35COBVeAHpua7yNHx//MTajjZMzJ6/IW+jNWG8Dn9/BmohPsLpsNU/3Pk08G9cJyXkfjUfOPMLqitU4jA52DO7gbzb9Df+0858WgJ91lev422v+lmPHt9Ox+Hq+sv+rHBo/pPFBkGgr7eBvrvs866ouHk46MHmGX+57iEDw3A7f5y3jzjX3UVvS8oafg99G5RelXcO7eKr7KYYjw0TTUW5uuJn9Y/s5OH5Ql01fU3MN6yrWEc1ECaVCzMRn+NbBb/HBpR9kLDJGS2ELCTmBJEg0FjRyc8PNDIQG8Nl8zCZmGQwNAppTa6mzFLfZTUbJYBSNrChdgUWysK5yHaFkiLHoGN87/D0MkgFJlbAYtdgCURAXdHvy5TV7F/w7vzNPySmdezC/8nLbrJLVZcrnV1JO8s7md76hDrAXM/6zGqx8aeeXmE7OklbOcSRiGU1F5LF4KLRpKfaCIGBXTUyO95ATVJ4M7uGDHTdjT6lgNoOiIHm95FKpi8rd51sTXMqEEOC/jv7XBR2bUCrEyZmTLC1ZekHsByz8TC733HvH9i54brPBTLGjmHJXOcWOYvqD/Wyu3qz76LQXt9NqqsC07xjpeYBO9HoxrVmDs6SE5WXLyU1NkY6GKRFcJHNnx+c5BZfJRbO7AY/BvcAVvNpTTYuvhbnkHGk5jazIGEQDAgJOkxOnyblA0ZWvnJpjPDaOJEiUO8sJGoOUOEpo8DboQK29uJ19Y/tIy2mdlJ3IJhiNjrKqbBUA0UyUtKy5m5sN5qviBDmMjrME7gQnpk/Q6GtkY9VGxqPjfPHaLxLPxlFVlV2ju6j11DITn6HSXal3aWaTs7T52+ia7aK+oJ6sIvM3N3wRWzhJpeyAsqXssUzhDhzAYLESTAWZiE3oJr3Hp49zeuY0Fa4K2orbODRx6KIA2ml2cmLqBOlsmnJnOdFMlF+e+SX1BfU0+ZrIqTmKbcWsr1zP4cnDOlF8NjHL04MvcK9zI4g5dmT6yDgseOoW4zI5MSsiPbM93Nd+H+lcmrbiNt3s8OFTD2OUjPpm6Uq8hd6M9Tbw+R0sj9nD7vBupuJTlDnLUFQFURBJZBP0zvXS4G1gKDREtacau8nOVGyKL133Jabj00RSEZxmJw6Tg9HpPpqrl+qgB0A8G2zXOXGUf3rpH3nw9m9dgPgjscAFoAcgEBznl/se4oEtf/am7vzMJ+herdFfjaeGucQcu4Z30VLYQjAZpCfQo93E/G3YjDauqbmG7x7+LjuGdmjnPB1hUeEi7u+4nz0je2gqbKLCWUG5q5wmXxMNBQ2cmj6Foio4TA4sRgt2ox2v1YtRMpKUk5ycOUkwGUQSJbxWL7FMjA+2f5C/ev6vsJvs+ucvCiKziVnaituIZ+IXHH+bv4224rYFP8vvzC0Gy0WBUt5zxCgaLxhr5Mtj9rzu6ewXq/NfY1v/NgKJACWOEsqd5RRZi0DQuqKDoUHai9tJykn9sYfGtuJLJcBgYHZmmNGqJK0FdaSefhrBaMTY2Ihp2TItqiSbJWZUGMnNEY+dwZFZ6PB7/rFMxaY4OHaQXcO7sBgsFNmLcJi0c1vsKObgxEGKbEUXvKeLfSaXOpeX6zQVWAsuAEv2rEBq61YtgmVeKcGFkSqix0PphJul7mYipDRbANGICwsmRUKwWBaMep1mJ/e03kMql2LX8C7SuTTpXJoyRxm3N92+oNN3Md5STs2RlJNaVp1/KVaTtmkrc5Xx0LGHtFBlNaeDhbwYYH63TFZkHYxdjco0P6ocCg1xY/2NPNXzFLtHdgMaoJIVmfWV6xkMDXJy+iQziRkaCxrpCnThNrvJqTmNQiBoXlV+ux+XzUtr2WqUUIih1BSnh7uYS4U4PXuapJzEIBrwWDyEU2FNbZecpdpbTXtxO+3F7ZfcMMSyMWYSM7yz+Z384OgPCKaCOnCu99bjMrv4aedP2VC1gZnEDB6LRwOE2Sj7TNPYHTa+tu1bHJk4or//pWXL+MSqT3J69jStRa163Ea+5neIz98kvVXqbeDzO1htxW3sHN7JeHT8gt/57X6KHcXEsjGcZicbqzbytX1fo+9gF2omQw4Fr8vP/R0fYiwwhLXCcQ70iBIIAmk1hygIHJ88dtFW5+B07wWgJ1+B4DiD0720v0mBTz7YdX4i8dVmS2WUDH6HH7NkxipZafRpWWepbIoyVxm/7vk1+0b3UVdQRzwTR1EVzsyewWq0clvjbQyFhxiPjnNb4214bV7+8/B/8tLgS/SH+uko6aDOW4dBNFDpqmQ0MspYdIzI2YgEERFJkDg4fpAqdxX3tN7DT47/RDeXVFSFnx7/KX93zd/xbN+zHJ44rB93m7+Nz23+3AWfZ36EJyBQ6ijVpfGgyYzNBs3XyWa06ccxv+q8dSz2L77sObuYW/KVJKe/UoXSIaaiE6iyTCqbpMxZpsvas2qWbC5LPBNnVfkqwskwisOOudmP310GRiODdhlmzlDYUklAjhBThnEP56htWsWcnLwoyLgYpyR/XXksHl1M4LV4WVOxhhJHCW6Lm01Vmy7g3F3qM7lUvVLcxflgKTvWfwHoydf8SBXBbKa2so3Soe2YguOACXKAQUQq9OFz+i8QNORHZbc23MpEbAKDZKDMUUaNp2ZBp+9yvKVSZykry1fq3Y3+uX696ygJkk7MFwURURAXSK8NogGTqAHxq1GZzh8nTsemec/i96CgCQ6Wly6n1FHKvrF9nJo+pQeCCmgWH6F0iKyihcTKikxSThJOhYllYwhmMwmPjSePbkcVtbDPaCaKWTKTzGqRIR6Lh2gmisPkoMJRccnPLV8Oo0MfX9d6a1laslRPik9lU+wb3UervxWjZMRj8TAVm6J3rpdDE4dIykn2je4jJieQJAM5VeOzHZ/u1P16qjxVtPnbLiDdw8UB+Vul3gY+v4NV5aniutrrePTMo/oXEzTQs6l6E26LG4fRQTQd5aWhlyjCgVEqIS0mMAlGjDkrTx38Gatr1hNKaQuZJBkpd5VjPitLlQSJhJwkkAxc8Pqxiyx+C38fvezvf1s1P9h1fvUH+/navq/x5S1fvqLOj8PoQM7JFNgKcJgcPHT8IXrnejGIBu5beh+HJw6zvFSTU5sNZhyidlPuCfRgaDZQ4aoAQFZlHj75MLuGd5FRMhTaCjk5fZJVZauodFdqn4MoEUlHNJmyZKDGXcNEdEI3oLu25lpaClt0GwKAMmcZmVyGv9/894xGRgmmg3jNXtqKL+7jk18Inux+kvWV65FEaYGqq8pVxR3Nd1DrreV7h7+34LF50Hi586aEQpo/0kVMAfO8mVdbbpOLbDrJXCLA48d/wftXfggFRb+RS6LE6orVfGrVH/Mvz/8jxTYfK1vuZHvvC4yNn6HV34YRkYgks6F4FSO9nahDZhbJ4wymxi8Y/V3MY2X+dbW2Yq3+t8FUkH2j+9hSt0WLJ3BXckPdDWyq2kQ4E6bEVoLZaEZAuKocvKvprM2PTHml37t9pdy14QEeP/4LhuNjzKZDpJQE1WIBW2q2XPTYnGanbk6ZJ3SfnDm5ICLklThR+eet9lRzbOoYZY4yxmPjmA1mrAYrKTmFzWijwlmh81Hy3Ja84OJqVaavBCAHQ4NIouZ6LAoiZoNZ7xzGs3EskkW3CcgomQscqhMZzV+rc7pT5/WJgojFYNE6zPZiSp2llzy+/LnMj/oi6YgO6PNVaCtkXeU6nu97nu5AN6dmThFKhagvqOeWhluwGW0cmjiEUTJS7Cxd4KeV9+uxiBY+t+lzF7dZuApA/mart4HP72itr1zP/Uvv5+T0SS1pWbJQ7ChecCMYCg0xGxhFHBjGG8u3grMgJLE6bTQ5a4hYBBxmJxXuSp0wly+P1YvDrAGo+Tc9x9kU7kuV402q+Jof7Hp+9Qf7OTV96oqAT7WnmjJnGcemjrFzeCcj4RHsRjs5NUcqm2IoPEQ0E6XGU0OhrRCX2YWAoCtg8m38WDpGf7Bfv6FaDBYMNgNPdj/JnS130hvo1Z20RUGk1lvLqrJV/KrrV/qOczo2zc0NN2OUjKSyGtBKZBJMx6epK6hjaenSKzo3NZ4a7l96P8OhYdqK23hf6/s040qjecEuvtZTe25MaPaw2H/5MaGaTjMx2ccZ8wQhIYLX7KJZKsE3l17glvxqa5GjhubCFvYM7yIpJ/nvgz/gpsV3cHvj7RglI+3+dsLpMP/vpX/GCNTYy3l2eCuB0AhWsxOrZObkXBfJbIJULs2m0uVMBkeIyTECiQB13jrd5yaeidMf6mc6Pk1PoEdf8OdfV5F0hEpXpe5rFEwFmYnP4DBpvJL24nacZucl4zde7xy8Vzq35/++prCeaxffwtO9T6PGtdFmJB3hq/u+yidXf/KSXdG8HYJBMKCikpJTeK1eNlZupMHXcEXBrE6zkw1VGxAEgSe7nmQ8Nk6RvQi70X5O1dX5E5wmp67qKnWWvmqV6eUApFEyUmgvpGu2S7f98Fg8WufFU0soHdI5NWWOsgscqrvnurmt8TYmohMcmzqmj+iKHcXc1HATRsl4SbA2/9qQBIlqdzWziVmSZ6MwckoOv93PUv9SHu96nJ65HjZWbdTv3X1zfZhEEx9Z/hEUVSGajlLtPvda+eeIZ+LMpeZo9DXyjVu/QedU5ytukt4q9TbweYvUfPmr0+Sk0FbITHzmounBoH1pP9D+gcvuomLZGGo8jhpbOP82SWba6jcQI4uAmU+u+RQHxg9wavrkuT8SBMqcZfQEemgsaFzQ8qzxN+Dzll103OXzllHjf+15RW9EhdKh1/T7fDnNGnGzc7pTX/BEQSSn5LCb7ARTQawGq+aSm00yGBrUnXRvTt1MjaeGpJzUrPGVhWThPMfmmd5n+PSaT7O4aDHHp49jFI3MJGbYPrgdo6R51tiNdpaXLefxM48zFh3Tn6PMUcZn1n7mqhcDp9n5igGbVxL4Or+OTB7lawf/lf7Zbv1ndYVNfGrZx2kNaN2gS/kmXUkVZc18dsUf88VMnM7JoyTlJE+e+RWlzjI+0P4B/vPgt7ml+TYaCuqZGD6Fy1nIvqHj+K1uGo1lJNQMyWwCJImJ8ChC5UakiAGH1cPBMwd5aWgHqqIwmwhQ5irjutrrOTB+gH1j+yiwFVDjqVlw3XQHunX/nDz4yQfL5r+Xl4rfuNKIkWg6ymBokPHYONlcljJH2QKZ+vyS/H5Er/ei4y7R60WaF6kCWvfq3/f9+0U3CJfqikbTUZ7sfhK70U5/sF8nwU/HpxkJj/De1vfSXNh8RZ2qGk8NPquPNn+bpkzLyRTaCjFLZiaiE/z9tX+PomjGnfkN3hthrWEWzVxTdQ2pbEq3jajz1iF6RRYXLWYoPIQkSNR567i3/d4LHKplRebZvme5t/1eNoc3M5uYxSgasZvszCXn+Ojyj170uM+/NnJqjsnYJMtLlnNi+gQT0QmsRis9cz20FbcxEZvAbXaTltMICLpreyAZwChoqjyL4ZzxbE7J6W7NfrufL+z4AlXuKv5kzZ9wW/Ntr/t5/G3V28DnLVDzd0sI2mx7LjmnufVmNbfei+0GX2kX5TA6tKTpeWUyWFiy6V18v/MhZk5P4bJ5KSysYiw6xj1L3svDJ39BRsmyuGgx7219L1sHttJR2rEA+LgcPu5cc99FVV13rbnvTUts9pg9r+n38yuRSWAQDfjtfhRVwWKw6KaSjQWNpOU0kXSEP1z+h7gtbuLZOAXWAgqthWwf3M5n132WpJzUOQrnVz7DRxAF+uf66Q+dW4hsRhsVrgqK7EWEkiE2VW3Sd9l5Gfmiojcm6+hqajg0zHODW/G6iljvLSeWDIMKdquLJ8ZfJFu2iRY5juc1vIZgNNI+beBfNnyBY4k+QukIbouHscgw23teoNnbSCQd4drKTSiFKxHNFt5lc+OVHMjxGPYCP61NGxgODmKUDDhcPiTJyLbhHfQH+3EYbQTjc6RzacLJIOlsihXlmrIoD1LmXzeyIuv+ORuqNpDJZdhSs4XNNZv17+Wl4jeAC6IC5hPxvRYvRbYijk0f0zsisqI57a6tWMvdi+5mUdGiBQuq6HBgWrOGzL59C8BPXtUlOhZyY15NV3QoNIRJNOkWC3nAp6gK5c5yfFYfWSV7VaO8tmKNX3J+xEed5zfjK7PIv4iHjj/E4sLFLC9dTlbJYhAM2Ew23CY319Vch6zIXFt9LfW+ev1x1Z5qyhxl9M71kpJTPN71OE2+JoodxZgkEw3eBpaVLrtkt+di14bP6uOh4w9R4aogkU1oPlvpKElZM09t87dhkDQz07wFQTQdJZqJsqhwEadnT2Mz2ii0FZLMJlFRaS1qJZXVVJxXO+p/K9TbwOdNXvndktVgZWv/ViLpiD4qqfPU8b4l79MTub9/+Pvc0XyHfhHP7wi1FrVecFOp9lTj85QySZ/+s+a2zXy/8yG6A92UGDzkVIVgMoiAQIWrgv+47evMJeYwG8xMxiYBkHMXSpxrS1p4YMufnfXxieIwO6nx/+Z8fM43iLuSm+pi/2LqvHUXvbFfCUF3/utKkoTD5NAIjtkkoiASzUTZMbiDD7R/gOHwMHctuotvHfwWhycOYzPa8Fg8NBY08tl1nyUtp3UX2YHQgD7uyleZQ1Pr3Vh3Ix6zh0dOPcJwZBhJkPBavGyu2cztTbfz8vDLzCbOGZVJoqSbzP02azA0yIP7H+Tnnf8NWc1Z+T3t76c/1M9TJ59BURX6A72s8HfwLvvvverxjujxIFgsJLIxdnS/wFB0hMbCJjpnTxJJRfC6/OTUHFPpAMzO0NaymW39W5mOTeKy++ju78NiMLO2cj2/PvMY19W/g1uabmG6cw9GJAQE0vK5jLr+QC83N9yELGeYSwcZCg1dcF3JiqzzMeq8dTp5N1+vpEDK//58Iv7iosVYDVb65voIpUOk5BSziVlkRWYuOUcgEeC62uvYULVhwfk0lJQgbtlCbnoaNZ3W3Mn9/gtAD7y6rmgsG8NlcfGj4z9iIDRAJpfRTVJ75nr4xalfUGAr4MWBF69qlHclER9vVBU7ivnYyo/xty/+Lbu7d5NTcxhFI0tLlnJf+30cmzzGZ9Z+5gIQlu/Ej0ZH6Q/269dCmaOMLXVbiGQil33/F3WHl5McGD/Asclj/OGKP8RldpFTc3SUdPBM7zMcmzpGsb2YnJIjJaf0c5/IJHhv63t5pvcZ4tk40XSUcDrMyrKV/OGKP+SHx36ov8bVjPrfCvU28HmT11BoCINgYGv/VsZj49iNdl1R0x/q5+mep9lYvVEnm5a5yjCKRnaN7MJlduGxeICL8wOcZifvXPpeHp2cYnZMixnIumyaGZ3ZiyiDYDJhM9loLmzmFyd/gcPs4MT0CQAWFS7ifa3vu2TkgMvh+62oty7Gjyi0FbKlZouWXH4JmXqxo5g/WfMnl1R1vdKXPv+60XSUFl8LFa4K3tv6XuSczFR8iu2D20lkE2wb2MZXb/oq/77/3xmLjFHiKEFVVeKZOEcmj/Bve/6N/3fT/7tAEpwHP3nH4/WV63U+UUdJh976L3WU0uhrBEBRNEM0o8F4UUXNb6Py7fqh8BCIIggCHWXL+HXvrwkmg/gdRcxEp0grGeaU2GtKghbMZoI1RfzH8/+P/mnN+r8zFmJtw7XsnNjLvvH9bLFo5OKG5rWcnD5BJBnCbnYyEBkiJicYS0ySHlFYWb2O4zMnSCgpCm1FNHrrCabDmpPzWXWR2+KhwOKja/Ikhd4yYtkYSxxL+Myaz7B3dC/pXJp4Nq5lPEkm1lasveC6eiUFksPouCgR32V2EU6F2Tu2lxpPjQ56QJNhT8QmiKQjFz2fosNxUaBzfr2arqjD6CCRSdAz10M4FSarZPXFNx+nkcwm9VHe+1q1zdzlRnVXGvHxRlYqk+Idde/grpa7iGfjWI1WsnKW5/qeI5AM0DfXd9FjaC5s5nMbP8fOkZ2EkiEsBgsCmsrrjqY7Lnudn39tpOU0U1kt2d1isDAaHWXrwFZkRabIWkSBtYBAIsB4bJxmXzOTsUmCqSBNBU1E0hGi0Sj/dtO/MRGdYDI+iSRKKIrCD4/9cEEWI1z5qP+tUG8Dnzd5xbIxVFTGY+MYRSMthS3UeGrI5DK4zW5Wla9CVVVubbgVt8VNlbuKnx77Kf2hfqwGKx0lHZgN5kvyA+rKFvPAlj9joPsA0cgsowYTJQYPoqztliWTmY6SDl4ceJFQOkS5q5x6bz2DoUG6Al3sGNrBO6quZdfhJ3DY3FQXNeLxXVqN8EbXxfgRkiAhIvKPO/+RRDZBIquNoao91fzhij9cQMjsKOngy1u+fFUE3fzr5v1ZSh2lPHbmMSbjkySzSXrmeih2FPOB9g/wQt8LtBe3E81G2Ta4Tc87mu+NcXjyMMOhYZaXLr8iSfD81n++LkeO/W0Dn3y73mKwIAgCqtFIkaOY5wdfBKDSXQmCgMVsRzAYXnMS9OnoAAOpCQSbDVSVnCCwb/owbSXtuMwuVpSsYFHRIjK5DD3BPhoq2hiLT2IjjhUXnmyCiegEtzXdxo6hHRgkA2vK1lDk8OM2ODFLJnK5LBIi6XSCQGCURHgWxezRFyoFhZ3DOzk+dVw382svbmd1xeoLjvdy8u5CWyFF9iIOjh3k6ORR3dnYIBrI5DJkFS3VPJ6JX6A4kxWZlJwinA6/6vP5arqi1Z5qdo3s0kHP/JJEiVAqpF//Q6EhXh55mUdOPqLHm9iMNtaWr+WmhpsAsJvsDAQHLiqxhovHrlyszu8KF9mKmI3PEs1Gr6hLPJee45neZ7Ab7bqYwGKw0OBtoNHXyGh09JJqvAZfA8WO4qs29Dz/2oilYzQXNTOXnGOJfwl+u58NVRuwSlYmohPc23Yvj5x+hGNTxxiJjNDsa6bGU8O7F70bu8HOIv8i/d62rX8b//DSP1zytS8Gat8oG4o3ut4GPm/ychgdpOQURtHI5urNPN/3PPvH92Mz2PjUmk/xtX1fI51Lc3zqOIqqcE3VNfzpuj/lu0e+SygVIpwK43doBMVLLSDeqgacdi/K9DQ75V4MDheCyYRk0pKdQ8kQRyaOkM6lmUnMMBWfOmuAFyOaCvNC7/OED+wCoLC0jjuv+Rj1NVemFnq962Iz8AJrAS8Pv8yukV1YjVYtZFBVmIhOYBSNfG7T5y7o/FxtS/fUzCme6n6KUkcpO4d30j3XjdvsptnXTHtxO0bRSDgV5qs3fxW32U3ndKeeWJ3PV8pXfiyWr7wkeP6Neig8dMkbc348KiBou+1sArvJjoDAk91Pcv/S+18V+Hk148OLPS4pJ5EEiSJ7EV6LFsuRFVSt+wMoAnhdxRQ5z30GV2NAd36F0iEEUQTTOb5UDkUfN60pX8OS4iXsGXyZydgk+8f2E88lmUsF9QDYJX7tO9Psa8Zj0cwYT0+dxCvZCYWniSZDAFR5qglFpjGqIp64SgUuJsa7+ffd/8pwZAiv9Zzh20hk5KLcCafZyfU11/PQsYcYCg/pZoc1nho2Vm3k5yd/rvP8AD2XySSZdB8bWZGxGW26QkcSJS3I1mgjnA6/6vN5qa5oY0Ejf7z6j5mJzzAQGrhArl7hqqDAWrDAViHPN8vmstiMNtJyGkVVeKLrCR305NPkHzvzGCdmTnB9zfVMxicpdZSSzWl+Ofnvc/5cGCXjKzoKz98YpGXtvhZKhVhVtkrLMLS48Vl9bKreBGhgq8hWxERkgkAyQFzWgKXH4iGZTbKxaqN+Xewe2c1cZI6+YB97RvdQ56njntZ7LhhhvRKZ+1JGqvOl/8WOYs7MnOHuRXfz4uCLfO/w9wgkA4RSIRoLGqlwV/Dulnfz3tb36qnzbcVtF72/XS2oDQcmGBjpJJYM4zTYqMCDQzVibGp6zTYUb3S9DXze5FXtqcZj9dDub+eJricYjY5ilszcs/geHj39KCdmTlBkK9LN7A6MH+D/7Po//OmaP+U/DvzHBaqgS93wDD4f+HwsiRXQ0N9Gf7Aft9nN/rH9uGpdJOQExfZixLP/i2filNhLOTi0m2srN+vPMzvRzy93fJsHnH/3W+n8XOz9mUQTu0Z2Ec/GMUkm0jntBjubnGVr/1Zub7qdGxw3XPVr5W9M4UyYwdAgLosLp9lJ95ymUAqnw5wJnMFn9ZHJZQgkAsiKzJ6xPRTZijCKRlJySouaONv1EQURm9FGgaVgwWtdjbx5ODSMgMCjpx+lZ65H51Q0FzbznsXvYTg0/IrqrPPr1cqrL/Y4RVF08uaq8lUcnjis5b1JWqSB3exgaWmH7moMV2dAd35dyXhGCYUgmWLf8B6CiQAms41cTiaTyzARmyApJ9lSt4WJ2ART8SlubbyVQpuPeDJMrbOSAVXBa/GyqXIjxwb3ck3FRm73rsU6Ms0hwyh9o50asLPZEAznbrsX404cnTzKN/Z/A6NkpNZbi6zINPma6PB38PLwy0TTUY0bVLaSY5OaFHo2MUsoFUJAoNpdTU7NMRYZ05PXvRYviqpQ5apiNjH7ms7n+V1Rr9lLob2QFwdfvOT1oagK19dez4GxA4TTmjtxJpchp+RYW76WTC5DOBXGZXExE5/Rn8Nu1Lo70UyUgeAAao3m1OwwOYhmohhFI5F0RJeO5/PnnKbLq97y12QoFWIqNsWB8QPMJmbpCfTQUtjCUHiIQDLA9sHtbKnbov07EeDammv58fEfMxAa4O6WuwkkAnyg/QP84OgPsEgWZpIzdM124bf7WVOxhjOzZxgIDpDKpfj0mk9f8YbjlYxU86KV3rlewukwo5FRZuIzJLNJqtxap2s4PMzRyaPIiuYp9sH2D17Wz+hqRv2Ds308tut7TMQmdSfvclcF76+/k/qeHkzt7W/qzs/bwOdNXk6zk02Vm5iNz9I9142AgNvipshexImZEwgIzCXnKHeWYzFoGUx7R/eSXqUZjxkFA0ospqVMSxJ20UIuFCI3NQWpFFitSH4/0lmEPv/in4nPaF0RyYjX7KXEUcKJqRPkyJ3N/rJoqeEGK1EAQSDrsNCVHmPv+D4qcg1X3BV4vepiN/RUTmv9W4wWrQuWDuu/CxvCjIZHL/AieqWaf2NymBzMJmYpc5RxQ+0NXF97veZxcza8VVZkVFXFZXZxauYUkUyEOm8dS4uXcmzqmJ6bZJbMGCUjS4uXLhhbRdNRfnbiZ5yeOa0rs/JOzL/q+hV3Nt+pE1o9Fg8iIo+cfoQzgTNE0hF95HFw/CCJbILWotarAj6vVl59qcdllSy7RnaxuGgxo5FRDQSefd/RTJQqVxWiIJKW05gN5ldlQDe/Xmknu6igiWxXF7JLwWG0EyQAiqI56sopVFXFa/FiFAyo2Sxlnmq6p05xe/MdqLLM7Fgv9zTeiVEyEU4GuWXT52gaSWMfDKK2lhFSzhp6KoqW8eVwaB2oszWfO3E+d8cgGlhfsZ6B4ADP9T7H3rG9KKrCosJFyIrMO+rewQv9L5BVshybPMYNdTdwV8td7BjaQddsFyoqHouH1eWrKXGU8ODBB/no8o9e8fm8VJdvflc0mo5eNH9sLjnHwycf5qaGm8gpOZwmJ1WeKkLJEJlcBoNkoMpdxbKSZQiCwOaazaTlNKdnTuvPoaLq3c+cqpFz03IaSZBoL27n+NRxHfTk/2ZJ8RLMovmS3+l8VzgtpxkODxNKhnQBQD7LbPvgdnJqjmFpmAZfA5NRjRv4bN+zbKndwnhsnHQuzafXfJqv7PsK+8f286GOD7Hr+C79vR8aP8Ty0uUEU0F2De/i1oZbdW+ny9XF+FuZXIZD44f44o4v8pfr/5Jaby1LipdoI2PJwt6xvfjtfswGzfByTfka3T7j1sZbWVOx5orub1cy6o+mozx+/BcMJMboCveSPBt90xvoYSQ6xl8v+xMaXqMNxRtdbwOft0DlDb5K7CWE02Hda8EgGDCIBnKqBkRkRabCVYHT5CSWjnFXy534jG6iU6NMzg3isRdSHjeQfOkZlMlJ/fnFkhLMa9YgGI0IJhNLvYv48pYv80L/CxTZCllUuIgVZSvYNrCNHNpNRlVVZDVHs38RpmQWBIGo10p3uJ9EOkbz9En2Bo6+IaZrl6uL8SNMkgmL0aKDgHxbHDSX1VgmxmBo8Irt1+ffmAQEbWSlKOTUHD8/9XMiqQj7xvYhCiJ2o52O0g52DO6gwlXB+sr1RNNROqc6+ey6z/KVPV/h8KQWGyEIAkuLl+qOqPlFp3eul6d7ntayh3IZAskAbrObNRVrmIpNkcgmeKb3Gf347m2/V4uVSEcv4HmcmjnFRHyCqdjUFY/zrkZefSWPMxvM2Iy2c5J8BIYjw1xTfQ2nZ0+zc3gnbrMbk2RifeV6VpevZtvANipcFZf0o7lcvdJOtihtIJtMMiNOs6l6E9uGdzIUHsRj9ZBVsxRYfawtX0vfXC+V1hI2Fa1kaLqfmLWaVdXrMFJKLBPDYbJTblqMtX8GZXJaAzgGA16zm9byZbhsXjK5DGaThYgcp3uuRxuXzOtI5eXiBtFAk6+JlsIWJqIT7BzeiaqqRNIRREHk+NRxVpWv4sT0CZb4l3BkUhtFj0ZG+eDSD2I3agteUk6SlbMcmTzCw6cexmHSSNVXcg6vtMuX96Fym906UXcmMUMgGWDf6D7sJjuV7krNvVwysKx0GZIoadL7qWP87MTPqPHUsGt4F/+45R9ZV7lOzxgMp8Jsqd3CTGKGl4df1m0hnux+kk+t/hTf2P8NXh55WT+W1eWr+cTKT/DLM7+kwl1x0esy3xUOp8J60Clo8vp8NziQDGA32vUYlonYBLFMjO2D27Eb7Tx25jFai1pZW7mWMzNn8Nv9egiriqp/FouLFpM6q/qb74x8uTrfMiCWiTEaGSUla+an19Vcx3cOf4c/WfMn+Kw+bCYboiDqrtVwbvxZ563DYXbo/lBXMqp+pVH/UGiIidgEXcFzoCdf/bPd7Jo9TLGnDA+vLffwjay3gc9bpAqthTQUNOgkOqfJiSAIWi6Mqmop3r5GJqIT9Af7GQmP8OD+r1PlruLulnfTUr+G1b6lGHcdJDczo7Uhz3aBciMjpBIJTCtXos7NIVitFDU3YzfYeOTEL3hK+hX3r3iA8eg4p2Y1XoQgCNR56tjgX0ng0G6yDosOekCb30fV7BWbrr1edTH7e4fJQb23nsMThy9ID6/31pOUk4xERi4LfOaT+E4mTtEX6EUQNWAzHh3HKBnZN7YPs2Tm9qbb2Ta4DaNkJJ1L0znVSWtRK4IgcGDsAG6Lm0g6Qud0J59d/1ldRlpsL2ZF6QqqPFUMhgbpnOqke66bRCZBjaeGscgYE9EJyl3ljEXH2D2ym2p3NVajdcGxzsRnkBUZs8FMLpujzFmGw+TQunNGG1k5y+np01d8A7pSefXVPE5RtNHQ+1rfp9204xp3zGv18o66d+A2u1FQmEvO8Z+H/pMzs2codZZyfe313Nt+71UD6XpvPZ9a/SmGQkOkc2mKbEW0+lspdhQjj46CIGC1OHjs9GMsKV7CspKlyGqOCk81k/EJDo4e4ANtH8AUTzM01cO1lRtIxiLUTOewnBrT09oFlwuprg41FkN0uUAUKbT5GY6O0tn1hHYwokhVQS3X1F/PdHJ2AXcilNZUPrc03MKukV2MhEeIZqL0zvVS4aogp+QQJZGskuXQ+CHWV67nva3v5cb6Gyl1lFJfUM/e0b184+A3AG3Mq6KiqAouswu3xX2BNcLFaio2xbbBbeSUHMX2Yh3MnP99HgwN8tMTP2XPyB79sWWOMq6puYb9Y/tJyklScorOqU7+ZM2f8JU9X+Gpnqdo8bXw+OzjOEwOrq+9nsdOP8Zdi+7iya4nuaXxFr554JscmTyCxWDBZrRR5a7i4ys/jpzTgkfnUnN848A3+OTqT3Jv+73EM3HsJk3x+qXtX2Jp6dJLXn/5rnDeSFASJe1jQWR9xXoaChq4Z9E9WI1WQinNH+n07Gk9Ry2/mRiJjDAbn11wPhVVQRAEDIIGgrJKlkAiQLGjGIN0Zcvt/A5gJpfRQU++EtmE7q3zhWu+QImzhBJHCWk5TU7N6YR3p8mpxxO9mlH1pYBSUk5S5K1gk92L2+pBlrMYJQMpOcVEZBzMJkazQQZfh9zDN6reBj5vkSp3llPprqQ/2I/l7IhpUeEiTs6cpMBWgMVgYTgwTCAZYIl/CYlsnAKLl0gqzPbBHZQ03YVHMS/o9CCKqKkU5HIo09O6maGaTJLt6mJJVQsry1ZxcPwAPzz0PW5ovJmbG24mLaepcldR5azgxPM/IydniBjNOugpL6pDMBrhLMZ4raqcq62LGTfes/geJmOT9AXPeRbVe+u5o/kODk8eptZTe8nnOz9LKmibRE7ESBsEimxFnB4+zYqyFUzFpxAR8du1wMaB0AAuk4uJ2ATX1lxLhauCr+//Og8sf4BwKozZYNaTlAE2Vm7UOz1HJ47y7UPfZiA0gMVg4cT0CWo9tWys3siekT3UuGt0/sYS/xIKrYW8NPwSKTlFSk7ht/uxGqxYDBZGIiMMhgYxS1p20VhUk9BfaV2JvPpqH5dRNN7RVHyKYnsxLwy8QCaXYSwyRlbJ0uxr5tTMKcLpMO9f8n49E+6lwZewSBY+tvJjVwykLxaXkJQ1LkSxoxjBaCRuNyIhsrJqDb1zvUwmpkllk2zrfo7msjZafM24VQutniZUU4JELMSthRtIGVSOrfARSgp4DU4a004KpmeQamqQPB5iJnh+739Tbili1F5IMK6NVEZCQxwbP8I/3biQ2Ow1e7m96XZ+duJnnJg+wR1NdyCrMqIgEkqGcJg0sYMkStR4ahiNjNI718tsYpZ4Ns5weJgqd5VuVDef45dTNRLwK3GeBkODfP/w93lp+CX9Z3mfmfHouP59rvZU86uuXxFOhhc8fjw2ztM9T1PpruTUzCmtS5MO60A/nomTyCbYO7qXqfgUj5x6hBVlK9g7upd31L6Dn5/8uW6ZkZbT5JQc45FxHjv9mAY+RRNmyYzJYuIHR3/AntE9C17fZrRhMVguef3lu8LTsWkMooG0nMZn9bGxaiOdU5384OgP6JzuxCgaWVW+is3Vm4ln4ro1SN49PU8glwQJs2QmmAxS7a6mL3TuHiMJEqIgUmgtvKTtx/k1//OJZ+ILQI+qqlgMWve6c/I43VOn2OBbwUuuF+mPDOkjVKvBSnNhM6XOUorsRfz85M+valR9KaC0uXozT3c/za7Rlzk9dZJYOso1tddrafWREUySkcHYKIXJMv7n0P8wGh1d8LxvFjPEt4HPW6D2jOzhn3f9s0Zgjo7SN9dH12wXH1n2EZ7ofoJMLkMqmyKUCrG4aDH3LL6Hnx75EZm0tgvtmT5FuO4GeixRJm5rIJgKUmD1sthYQfGz++HsblXNZDQ/EosFVZapikp8ftPf8MWd/8TB8QM8ceZxAFaWreJ9LXdTJvkYK6pgdqKfjKrJVMuL6rih/U4mMgvDS1+LKufV1PmKianYFJuqN7GhcgNZRTPMU1WVjJyha7YLt9V90edR0+mFAZqCgM3qYjKpdVXK3OVEMhFySg6zpM3XRyOjNBU0sblqsyYzVjJsrNzIj47/iAJrARk5cwHpfD6PJb9Qn549jVE0EsvE8Fg8GoHa7OKWhls4MnlEG5tIZnaP7CaSivDhjg/z2OnHiGViGEQD9d56eud6dfv5bC5Lka2IwdAg0XSUTdWbrgg8XE5efTn+zeUeV+Yo09VsebAWTAWJZqJYDBYkQSKQDCAJkj7ikxWZYEoLX71SIH2+AWheLQTw0tBL/NWGv6LJU0P3XIKH9v8XTeXtdM12cTqg7fCrvFWossLH2j+CfSxAzGjGXmClylXFkBrgn07+B/1zvSBJoCjUFzbxx8s+RptUjDo7y4g7TWB2mEJR5HrfSgL+NClVxmIwUyg6EJILr4O6gjq2DW3TF36DaEBQBXJKTu9KTsYmNS6XIDIYGqQ/2M/e0b0k5SQNBQ3c3nQ772p+Fw+ffviC89Fc0HxZI85oOsrxyeNUeaq42XQzDqODeDbOtsFtbO3fyubqzUzGJzVl4dlRps1kQ1U1Lk6+2zAcGaalqGXB55zOpTk4flAfY/785M/11y1xlLBtcBulrlL2HdxHgbUAm2BDRUUURBwmB8emjnH3ortxW9yYDCYaCxr5/pHvoyrnRtf5EdqiokWXvC7zXeGMnGEyPklaTnNj/Y0cn9b4QmPRMawGKy6zC1VVeeT0I6ytWMt49JwXDkAymySdS7OidAXD4WH2jOzh+rrrUVAYCA1Q6iglnonjNru5tfHWS3ZW1HSaXCBANBlmRJ7FYbZSai9hJDq6YFSd3+xOxiYJxGchm6U30ENN0spftPwB/z34K8YzAcwmG26LW88pG4+O47V4EQURj0WzWDg9e5p0Ln3BpjSajtIT6GHf2D6Ne6hqMStGSVOlHp08Spu/janYNIuL22jyNSIIApPxKQRR4Ked/43P7qPUVc6hiUP4bD4dKObrzWCG+DbweZPXfKOuE9MnWFuxlg8v/TB2kx2nyckXrv0CkXSEWFqTOM8mZvlp509J5M61Xw2iAbPVyVcOfo1nTz+h/3xl5Ro+f/Pf0fFiLySTCDYbqiiSPXUKNRRCLCpidUUF31z3vzkpj+m2+K2OOuo9tYgeDw84/46h6W6G09MMh4cRjEYmMoEFhEN4baqc16NKHCXUeeqYik8Rz8b1bKujU0dZXb76krsxJRRakBoetxlIJ2M0+VqYSU4jCRJG0YjD5CCby1LtqaY30Mv24e0YBAO13loGg4OsLV9LtaeajpIOFhUuIpqOklEyetzI/CDF8di4busviRLD4WFaCluIW+P0zvXS6m/l8MRhih3FNBc2k5Ez/PjYjxmODPOxFR/jhb4XuKPpDvqD/ewY2qF7pzT7mrm18Va2DmgL2JWChytNz76ax91cfzPP9T8HaNfnbGIWVVVRVRWnyakfc07N6TdORdV4VBklc8VA+nwD0PnVH+znJ8d/widXf5LHh59jODzERGSUTVVrubnhZlJymkJHEYutNQjDYzSOqYAEZAgtE/ja/v+kf64PDAYEQQBJoj/Yx9ePf5cvb/oHCmIWYvkNgKJgDSWotNkQDHaQAWRi6eiCY5pNzCIKoq74m4hOUGAtoMZbw5GJI/QEeqj11lLnqePA+AHKnGUEU0H9+zYcGuZnJ37G5zd/npMzJzk9e44o3OZv4883/PkFRNV8Z9RlcjGTmOHBgw9yZOII8WwcAUF3I370zKOoaGN1u9HOWGwMs2QmZ8ixqnwVW/u3MpOcwSAacJqcmCST3iWSBA2Q5LOijJK28RDOGj/mF/h8d0MQhAUjXJPBhN1kRxRFPtD2ASwGC6emTnJH/a08ln2MwdAgoiBS7ijjnU238/4l778sqK/x1PCxlR9jXeU6TfkoZ+gOdJMWtW52ubOccCrMyZmT2E12bqq/CaNoZEXZCn524meAFlT64+M/5gvXfoFvH/w2T/c+zbaBbTQXNnNn8500FjRwavo0MlmaCpouejxKKESms5NhOcATA88QiExisjl496o7+OHJnxJJacR4VVVZVLiID7R9gG8e+CZks6CqWCUzjw49zc0NN3Fb5RbioozR7qLAXki1p1onRM/v3q2pWMNfrPsLHfzkv0v5Ls+ZmTMcnjyM3+6nzltHq7+VieiE7jLdVtTGjQ038uueX9Md6GYyNkkyl+T2htv4xJpPEkwGtc1e1UaNIB4evoBr+Ns2Q3wb+LzJq3OqUzfqEgWRWk8t49Fxnuh+gt5gLxXOCkRB5Pam2ymwFvBC/wvazPmsIy6qSrmvhr5gL/2B3gXPfXBkH198+Ut8c9OXKd17GlUQyE1Oal+qszek3NAQFTEfVe4SpLLliHa7FgNwVqro8ZXi8ZVSdwllB1y+K/CbqipPFbXeWvqD/UzEJnQTuRWlK7i25tpLHp+aXWi4NkKIE727+OTqT/CV/V/FKBpZVLiIUCrEirIVNBQ08OipRxEQkESJWCbGe1rfQ+d0Jz/t/CkF1gJWlK5gWekybmu8DYfRgUEyMBmbJJrRUpJlWWuhG0UjBsGA1WAlkU1or1W0iCp3Fb/f9vsMhYb48fEfYzPauL3pdh478xg31t1INBvl6ORR7ll0Dz6bT+OFCCKziVm2DmxleelyHCbHVXXhriQ9+2ofZzKY+FXXr0hkEpQ6SvVORq23lunYNIB2vUc0wCIKIpIgYRJNVwyk5xuACggLzOaMkpHJ+CQHxw7itLpZv+hGIokgx6Y7kdUcnJWdO6pvpVysAc6NHLrUafqmu7SR7jyFFmgEz9OpEa7ruAbXYAbBatW+TwbDAjUXgGPe+RsMDbJvbB8pOUWRvQhFVbQuj7+NRUWLSGfT9Mz1MBYZo9RRSoG1gOUly3mmTzPRA22EGEwGmYxNcn/H/WTkDNFMFI/Vw6qSVTQVNS14vfmgtKWwhR8f+zEHxw/qIFRWZQ6NH0JF5Z1N7ySdS1NfUM+zvc/SM9ejuwRXuaq4e9Hd2qZCMiIrMu3+dhRV0TPr8uBzWckyVpatpK24jWMTRxERMAiSPsYxSSZMkua5pKjKAkFCib2EJcVLUNNpvBNhaqoK2VCxjrl0EHIqlaKHprQLLxfv4M6vfNp7e3E72we3U+rUzmlSTjITn0FBYVHRIhwmByvKVtBe3M7pmdNsrNpIJpfReI7eOpaXLuevNvwVW+q2EEtH8dkKsYkWTkwcxYaBdE5GlM9tBPNgMxCfQY5FMduhd64fk8OFKRHC5ykjMD3MA0s/hCpJDIWGEASBsegYX9nzFZLZBJIg0O5fgqKobB3bid3uYWL0DABFVS3c3H4Xg6FBPr/t8xydOgpoIg9JkDg2eYx/3/fv/PXGv2bf2D4cRscCBWZSTtLub2fn8E6e63sOt9mNz+bDa/HS7m/HaXby6JlHCSaDWI1WMkoGk2gilUvzRPcTlDnK6Ap0sW1wG+3F7dxQdwP7xvYtAD9Xk3v4RtTbwOdNXrIic0vDLTrvIZ6J81TPU/QGNRCjqAoziRn2je2jwllBq7+VIxNHyCgZVKMRslkq3VX0BXqJp2IgiJrF/lkJ9cGRfZxcNU7VokUoAwPIZ84geDyaAZUggKKgzMygzMwglZVdUqL4arsCv6lymp2sq1yHoipE0pEFgZ3rK9df8vgEo3HBv2NyAq+7hJ8deogOXyur6zaRVWUOjB6go6SDBw8+SFpJ4zA6cJgcLC1eysqylXxu6+fwWrw0FzaTklNMRifZMbSDWk8tPXNaXEhaTmORLKwoW6ErsgLJAIW2QpwmJ4cnDuOz+RgOD/Nc33PYjDbGo+PIqsxNDTehoHkT1Xhq6CjuYDoxzUtDLyEgUOutRRIkNldv1v1xrrYLdyXp2VfzuDwo2jO6hwp3BS8Pv0zXbBeT0UlUVDqKO1jsX8wTXU9gkkwYRANei5c6b90VA+m8AaiAgNPs1D1hREGk3FnOYHCQcmc5W/u3Mhmf1MJ3l91L71wvJsmEy+zC6ywnIXnY64wgptJ4swayEhhtDuSzisoFJYqEczEEs5ma8sUUltQuCOvNl89bRo2/ATgn/TeKRsLpMD6rT+/6Pd37NLc23sqfrvtTgqkgaVkjZ/+086c81/8cDpODdC6tP286l8ZustNa1HpJkHoxq4GUnKJzupNkNonFYMFisJCSU+TUHIfHD/O+xe/Db/fTG+zVuSflznJyqqYy7Qp00exrpi/YhyRIHJ44TDqX5vqa6/n5yZ8zHhvHarAi5hTkWITPrv40X9n3VY6PH2EiNEqdp5Z4Js76yvX0Bft0p2mjaCSTy1DjrkFFZTA0SGXain02ShPQEFPIjUY1viIahyqbFVEbGjCUvDKXzWl2UuuppaFA+yximRgz1pkF1hFt/jYOTRzSzWDh3L2t2FHMTHyGvkAPp4ePkMwmdO6k1eyg2V2PcyZCrmCWEYMWwdIf7OfMxAnic1MUeEtZXNDCcKiPO1e9h+d6n2VsaD/y6HN4HT4+2PEhvnnwm7w48KI2+kNgS80W7lt6HyemOllWvQaH3YskSuSUHP2RIf7vrv/LLQ23sHt0N2ZJU1Ems0lSqgbedwzt4EMdH6K+oJ5qT/UCBWaFq4KHTz3MQGgA0PzIKt2VjERGmEvOsbl6MyOREYySEQEBURCpcFUwHB5mMDTI8pLl9If68dv9DIYGeWnoJdqK2xbk011J7uEbWW8DnzdxDYYG2T60nf8+8d8AtPpb6fB3YDFYKLQWaiMsg5kiWxHj0XHqPHW0+dvoCfQwl5pDEEVq/S28o/4Gvr3/m0zm5ZSCAPPcgkPpMOmX+zE2NEAqpcUIpFIXLPpqOs3l6tV2BX5TVeOpwWf1XdXxiR4PgtWqj7scBhuYzQwHBxgOD9EVHeSe1vdwYvoEkXSE+zvu56PLP0ooFcIkmXCb3TzR/QSbqjchIjKXmmMiMUGps5Rdw7vwWbUss1AqRNdsF7XeWrYObEVBocRRgiAIzCZmKbQVaqnqhYuQczIGwcBQaAgFzflZzsnYjXZ9ln9mVjNOrHHXMB4bx2VyXXDTfjVduNdbnuo0OylzlLFvdB/LSpaxsWojg6FBHCYHOSXHD47+AEmQ8Fl9lDpL2Vyzmfe0vueKr6m8Aeh8IzzQEq1HI6Pk1BxJOampX8wOjk0eYyA4QJOvien4NH67n8a2Rr535mdMRycxCQYq7eVYsk7WL7mZPV1bkeV5PB1RRLDZ8Fg0h2aXw8eda+7jl/seWgB+fN4y7lpznx7am194SuwlRFNRNldv5qWhlxiJjOA0O/nZyZ9RMVzB/Uvv149rNDKKoioL7BkAnCYnRbaicz+Yh8vy3Yax2BhnZs/gNrsxG7TubT5SwiAadCWYxWBBRdXHUs2Fzewd28t4dJwSewlrK9aSlJNaTlgyzGxilkdPP4rb4iaby1JfUE+5s5xFhVrnxG1yIAWj9I68RIW/iS+s/WtCSoJ4Oobf7ufY6GE+vuLjfO/o9zg4fhBFVTBKRopsRdzedDs/OfYTbmy8kVsL1mJB4yXmRkfPgp5zpcbjZPbtQ9yy5YoyyObz0RwmxwLzzAJrAe3F7bQXt1/y3lHtqabWUoapIEU4ESJjTWESjbhkAyVCAeUhlVD/GR7PHmAyOU3XbJcmBVdVrfuTCLCmdBU/6vofCsxunE4fPqcfr7WAo5NHeaDjAa6vuZ6EnKDCWc6xiSN85plPYxAlTBjYXLWJNeVLGZjuoivYQ0qQdSCT73AqqoKKqnOuwqkwkYw2Spvf/bUarYxHFwL1fOctno0TzUQxiAZdEWcUjRTZi+ib60MURHJqjsHQIB0lHfTP9TMSGWFD1QbgynMP3+h6G/i8SSu/IwPw2/1Mx6fJ5XIEkgECyQAei4eB0IDGBcilsBlsZJUsfrufL173ReKZOCLgM3uJ51KMhkdQVfXcC8y7WXrMbgRzDCwWMBpBEFCTSYTzbhhX4sT5arsCv6m62uMTzGaMzc06wbkSjzbaOLvAxeUEFoOFI5NHODZ1jF91/0p3YA4kAty9+G5UVLoD3QueV0TUpb5pOa3dCM8uII+ceoR72+/lhf4X8Fl91HvrMUkmmgubuanhJnYM7qC5sJm6gjq9Q2AxWqhyVzEUGsJp1mSs/aF+ttRtYWv/1gVk6lfbhXslN9lXW9WeatwWN+MxjQtSbC/GZrRhNpj5py3/pN1gBelV+fjkDUD3je7jxIxGGBYFUV/kajw1ZGQt924sOkaRvQhREFlbsZZne59FVVW+sucreqyB0+RENJmpwsbpmS5aalZwcvzYuaBSg4F6XwOL/Yt1C4RK2cGH1/0Rw9FRYpk4DrOTGn+DDnrg3MIzk5jh2tpr2T6wnbbiNjZUbdAJ6WaDmUfOPKJJ1FWVpSVL2TO6Z0HHyWlysqVuC6OR0QW8jgJrAesr1vNU91OMREeo9dRyfOo4TpOT5kIthsNuspPMaiAwk8vo3R7QxiRV7ipi6Zg+anuu/zl653qRBIlKdyV2o50PdXwIj8VDJB3BarQyGhnlie4nuH/p/aSVNEoshiLL5FJJhoaPMTR8jFsW3cGyCQkMIZYsvo4+Y5o/X/fneoyEoirEMjEePfMoKTnFk11PsmRlI02AEo9fAHoQBASXC4xG5L4+zWKgqOiyAOhKO9aXunc4zU7uqL+Vx6M/xzA+DYhADp+riHdW3YBtLEaPRyAQHCNMQqMjCAIIApIgMhwa4h0tt3Ko51H+6tq/4ZsHvkl39y9p9bcSTUe5f+n9tBS2EElHmIpPk8xlyOaymAxmqr11hOQY+yOnuLH1RmIjL3M6cIYCq+b+LgkS8WwcSZAwCOeWfK/Vy1xKIzfP7/5m5Axui1vzOTrbSRQFEafJSZu/DUmQtC7j2YiRCleFRoLPxJFETcWWzWWJZWLcUH+DniN2U91NV5R7+Juot4HPm7TyO0C3xc2mqk3sHN6JQTJgM9qYik2xuGgxFoNFlzQn5AShVEhzdTZ6mB7rIZCLcEpO0lLewZqq9RwaO0AoHtCdgkEjOLcaylDVUZREAsHj0Rd25gEl0etF8vvPP8z/X5To8WDq6EAJhXBns7QXZHhidCsp5aw7tmik1d/K3tG9+r+NkhFJlKh2V+ujrHx5LV6duJk3ZMt7geSDJveP7aetuA2X2YXT5KTUUcq+sX0cnzquq5qyZ5V0a8rXsKZ8DRbJwnN9z7GibAWRdARJkBiPjrO5ejPNvmasJutlu1yX6+ZczE0WXh956vmLTp6E7DU4uaPseirSFgSzBclVhGh+5d37xfxH3tf6Piajk4xERiiyF5HIJnCYHCwuWswjpx/BbXZjkAycmT2DoipsrNyo+2a9MPCCntUVzUTpDnTjt/spd5VT5anm1DwCsW6KKJvJ9HdBOo0qy1gNBprNdoxViy6aY5RfeHJqjvHoOBuqNujSe6fJyemZ0ygoOEwOBoIDdAW6uK3pNhoLGvWMLgWFhoIGOko6GAoPLXj+3kAvz/c9rxsJFtoKmYxNIttkuma76CjpQESk1d/KyemTlDq1LCxFVRAFkUWFi6jz1jEe1bhSz/Y9S+9cr94ZUlSFM7NnmIxN8tm1nyWUDmE1WFFROTZ57BzwVhTtv3lll6wgyoyX2niy6xHGHDlGU9OMREaodlWzqXoT2we368Tn8dg4E9kAzVYvzMwseC4EAamiAnl6mtzp00hnR12i14tpzZrLjr5ea8e62lLMfTXvYsjeSjyXxC5ZqUhbsI1pzvlxJU2JswyHQcZitGASTYSDk5wcP0pIMpHMpVlatpxnep89G3sjYBJNfKjjQzx86mGm49M0+Zp4eeRllviX8EdrPsm+0b1Mxac5OHoAFRWLycZMYoZ1FeuodFaytmItRyePal0fVUZURQRB0Jycz8Z6xLIxWota9c2A1+olm8tiN9lxi27sRjuVLs1KZefwTu5adBctvhaCqaDmFi2ZGY+N60aVAgJNvibsJjvhdJgyZxkdxR0sKV5CNB3lxNSJq877e73rbeDzJq35rcdKdyW3Nd5GIBlAVVXqvfUAOugBzeDQarBiN9rpnOrkx10/ZyQ4REf5cmbSIW5qvAmv1cuRsYP0B/pQVJWVlav5+02fp/jFTshkyPX3Y+zoIDc1pY21jEaQZf2mcSUt4ze6Xm1Q5mstwWzW+U0daTfvqL+B/mA/GSXD/pH9fG7T5/jfO/83+0b3ARqA2VS1iRvrb+TwxGH9ebwWL2sq1iAi6lLf+d2YPKkT0GfiDQUNKKrCDXU38OCBBxmJjGA1WrFgocZTw6qyVXz/yPfZVLWJLXVbMIpGjkweYYl/ia6CWlm+8rLnaX4+lMvsIpPLsH9sPzc33MzSkqUXuMnOr9dDnnr+omPLQOlIFOvLnWTOLpRXsnidT9gNpzSPmU1Vm2gvbueO5jsYCg9RZCtix9AOnu55WvcIyuQyunggnUuzfWg7d7XcBUBOmUdOzUSJZqI0FDSwumw1a8rWLLD39xs9ZLu7kbu7UWNnv8dGI+LZqAoxkUDy+RZ0UIvsRVR7qgklNQND0BReOTWH3+EnlUvhMXsWjOue6n6KFaUruL72esKZMCtKVuC1enmy+8kFqsq0nGYoMkTndCetfi2qJJKOUOooZSI2gUE0EE5pie0f7vgwPzn+E0Yjo7qyrsnXxB8s/wP8dj99c31UuCp49MyjWqdJRVd63dt+L3tH95KSUxyZPIKAQJ2nltuabsdn9RFLx4g6wOUqxOAqITDcjcfuoyJtIeGDJ0ZeoMsa5cDIcRK5lJ7PFUgF+Miyj/DDoz/UNwiymsPY3IwSDpMbG9Pfq1hSguB0Ih89evYHosZTDAavaPT1WjrWoseDY2KCptEMefWfbmZmMiF5POw88Qi90UHdZbnSWcGmxi1s792K1WCh2FXKofFDcJY7c031NTxy+hE9nmhR0SIMgoGu2S6e63uOVn8rZ2bPIBoMKKpCXI5rXUAExv1jfH7T3/F/dv0ftg1tP3uUKmvK1/KX6/9Sv784jI4Fmw+TaGJN+Rr2jO5BFERKHaXsGd1DSk6xumw1e0b2UF9Qz56RPUzFpmgvaSeejbOuYh1rKtbw+JnHiaQjeK1eSh2leCweegI9BFNBRiIj9M316dfnb9rZP19vA583aZ1PPHVb3MQyMeKZOJuqNzEWGaNzuhOnyUmJo4SNVRvpKOk46zvxMKPBYW5cdBu7R3bzwtA2TCd+xg3Nt3Dfsg/jsxbgMNpZbKmiZMdx1GiUZFkhY4UGEo4QDoeTypZazKIV6Wyn580AegZDgzx88mEdcJgk0yWTj9/Icpqd3NN6z4IFtnOqky9d9yU9+NBr8bKkaAluq5u/2fQ3PN71OKFUiCJ7kcYhMDood5VrJFrxHNiJpCMsKly0ILHdJJrIqTmyqsaZaC9p13OsQskQ2wa2kVWy/MHyP6BzqpNDE4eoL6jXc65eaaw1HNLI0h0lHbw89LJuInh86jh9c318fOXHX1F++nrIU/OLjhKLkdq6FSW4MGH7lRav8wm7I+ER9o/tJ5wOk8gmmIpNEU6HeWnoJdZVrmMqNqWPAHJqjmAqqHVx3FXMxGe0oF6Lpg7Ku/vqx3J2VOy3+/WFUonFyE1Pk80EkYeGNH8ZQQCTCSUYRJmZIRcIYGhsJDcygrG5GdHjoTfQy86RnUxGJ0lkEwSSAaKpKNfWXktSTrKqZBVbfVuZik3poAe0zLPp+DTpXJp4Jo7f7ieWjV1gJRFOhUlltW5J3rm8O9Ct84jyQbmCqLkzf27T5xiPjWtZVyYnHouHpSVLmY3PMpOYwWfz4bF4tFDUs+BnbcVaegI9uhmooAKo9Af7ebbvWQosBZwOnOaloZcgm6XWVc0HO36fzXIltpEI3WUGRqUo+6cOkxSyhNMRPT/rxYEXWVq8lDub7+QXp3+BUTRS6ijVOrGrV2s2HPE4SBKCy0V6+3atq2Sx6MAnf/3kpqffsHuZYDZjqKwkNzS08No1GEjVlLJz+AWC2Qhmg1nnyIxER9kliNy7+gEMkhGr2c5EbAKfzUcwFcRldunZZRqxWURWZVC16/uulrtQVZWknMRmsNFQ0MALfZoZ6ORMP5GZUf5p85foiw0SSgZxmz04JQsnJzrJCPICrp/P6mNT1SaGQ8M8sPwBKtwVBBIBopmo/tyNhY386syvKHOVsbx0OXWeOqrd1QQKAlS6KvnWwW+RyCb4yLKPUOos5dneZ9kzuoeXhl6iwlVBU2ETFa4KDKIBo2Skb67vN+rsr38kv7FX+g3Wgw8+yL/8y78wMTFBa2srX/3qV9m0adNv+7Cuqi5m/mYUjSTkBCk5xQfaP8C7F7+bYDJIPBNn78heHj71MPe230uFt5oCRxG7R/YwGBoENJnrU6cfJ6fIrC9awe3N78VhsKNscDIUHeGJ/qeZHZ6AZBKMRooqm7ijfAu19opXfaOYH/MgmEyIbverTuyNpqP8+PiP2TW8a4FF/KtJPn496mra4sWOYlaVr7rgbwPJADOJGRLZBFaDlaScJJqK8sCyB3jszGPEsjGsBitui5sCawEi4gVjMwCP1aNnDt29+G7NnE3JXFGrfjA0yIP7H6Q/1M9AcACr0ar7bgSTQV4efpnh8DB/vPqPL3s+Xk95am56+gLQk6/LLV7zlSnhVJiD4wcZDg+TzqX5aedP+ftr/57+YD/j0XGOTx3nmupryKk5RiOjJDIJJEGi3KkBn+2D27XQXznDEv8S0vI5Yn/ep2b+oiGPjZHevRtlbg6pqopsZyeC3Y5UVkZuZgYyGuBQIxEEUdTc0bu7Gax28H/3/j+9myYrMoXWQjbXbGY0PMrHV31czxr7+r6vc3LmpH4cdZ467l58t/6e55Jz5BTt/TiMDlaVryKn5HCb3bT52xiODGMUjfrr7BvbR1txGzWeGlqLWql2V+vv52LX9d7RvbpDscfiocJVoY/CShwlvDz8Mhk5gyRokn0VFZNkOsvVmaPWU8Nccg45l0FSBA6OH+DG8iZQQsTUNAFjlriaJpzWDEFNkkkHaqPRUQyigTZ/Gz6bj0ZfIwCSx4Pa0EBm3z6UYBCprEwHPVJRkWbNMa9eSaDxWkvy+TBv2ED2+HEtHFoUESwWRm1Z4pEcLf5FdM12IdtkZhOzZ8nbJuJKiq29T7GxaiO7R3ZjEA1UuioJZ8Kar5OgWQTk1Bwes4dkNsmtjbeya2QXz/Y9i6JqETCry1fz/rb30zV9mmQmQSwR5pmX/4um2pUEQyNMBg4BIBYWUlhUpW+KBkOD+v211lvL6ZnTLC9ZzvLS5cQyMQqsBYxFxvh5588xGUy6b1Iml6G+oJ7J2CQCAvXeej6y7CNsH9zOjzp/RN9cHwIC9y29j+5AN/9z8n8odhTjNDkptBXywLIH6Ap0/Uad/eF3EPj8/Oc/5zOf+QwPPvggGzZs4Nvf/ja33HILp06doqqq6rd9eFdcFyPbuS1uzd9FMvLQsYcYCg3RM9eDKIhYDVbNhj0+zYmJY/x++7083fPrC543p+YIiilGDQmWFNcRkuM8eWYbc9kIotUKds0PJBAY5Yn003y4uPqKw+bmj6HsipGykII9mNC5QoLVqu9yr7Z6Aj0LQE8+xNFldhFJR9g/up/VFat/o+DnatriF/tbp9mpg6fraq5jLDZGOqvJgjdVbcJsNFPhqKDUWUq1p5qDYwcv+twG0YDBZKDcUX7FQatwrkOSH/30zfXRE+ghkAxglsz4bX7e2fxOKtwVABTaChmPji8Yx8HrL099pcXpUr+fPx6ejk8zGBoknUvr7fpUNkVbURu9Jb24zW4iqQi31N/CRGyCjJLBZrBpu9ZD3wK0sWM8G+cjHR/hh0f+C1WWMUomqlyVNBY06ouGPDNDascOLfYFtOiXXA41Hic3MYHgdqNms4glJYg2m9aZMJmIWUV+fOzHC0aIBtFAKB3i4NhBNldvZiY+Q7GjmI6SDj65+pO0FLaQkBPYDBr5ey45R07NEUqF6Av1kc6mkWWZxWWL+d7h72mcP1sRqVyKMkcZK8tWcnjyMLFMTDekK7QWsrl684LvzsWua7vRrqlI7UVaB2f2tD4Oa/O3YRANFDuKUVQVh8mBIAiaYkyF6fgMJc4SEtmEphJTFE6Fe+lpV9jkX49HCpAOPg2CoIMdq8GKUTSyvHQ5S/1LteR1/xLWlq9dcKyGkhLELVvITU+jJpNIk5Nap+c80ANXJtB4rSUVFiJu2HBu02c0kkz2IIQseLDQUdKh8/oEBM1AMZdhSfESxmPj1HhqGAgOMJucxWly6p5jxfZi5pJzNBQ0UOYsY/fobqwGjSvotXipcldxZPIIoVSIW2pvoMPbjtm1GIfBRqXgBetSRkqCxOQELn8FtRVL9PDSh08+rN9fXWYXA6EBHCYHFqOFZDbJ0YmjvKv5XdzadCvJTBKbyUY4FWYuMadvehLZBKXOUr596Nv47X69U7WpahPP9T3HTGIGt1mbXPisPk7PnuZ7R77H/R33/8ad/X/ngM9XvvIVHnjgAf7gD/4AgK9+9as8++yzfPOb3+TLX/7yb/norq7yXYXh0DAJOUE4FWYwNIjVaMVv9/N3L/4dCgqqquKxelhbvppENsl4bAJJFDXPnnllMliwn5VpxrIxoukohxO9dGaGWFm/BoNkIp6N4TI6MWehv/8gI+lZBicjr6jm6ZrpYjA0SEbJEElHUBSFAaOTxrJSaicz2kJwNgPM1NGx4AZ0JZ2hueQcK8tWkpJTOIwO/A4/2wY1a39ZkRkMDnJg4gC/t+T3fuPz4tdSeUCUJ/5droO02L+YOm/dRbk2rwZ85DskFoOFrJLFZrTpfBdJkPjMus/wo2M/ovNQJ00FTfztNX/L8anjZ5PIHYTTYbK5LJ9c/cnXVanxSovTpX5vEk1Mx6bJKBni2bieadVS2MJQaIhTs6cYjYwyGhnFY/FoEuxMmD2je0hkE1S5q5BEiTpvHYqqUOeto9Dq4+nup7ih6jrMtTdhEc10FC6hvbQDt6dUixuYnDwHeuCceehZ8CP6fEj19cjDw+QGBpDKy0GWGap1MBYeueh7GY+No6IuWBAaChrYObyTWDam/wcahyeSjpDOasqz9y15H/+299+o9lSzd3Qvz0eeR1VVbEYbu0d28wfL/4CHjj+ErMjUeeu4t/3eV9wwDIYGebb3WXYM7WBl6UruXHQnph4TE9EJskoWj8WD1+KhwFLAUHAAj8mFKIgIosRIeBhBEEhkk9iNdmLZGJJkoMDhZyI7x5OkKDIXUeWp5tDkOT6cKIjcs/geTs6c5MfHf0yRvYgSRwkT0Qnuab1noTWFyUF1eTX2rIDc23vRjuFvUqAxnxMI4Jw6R8I2G8y6tcR0bBpJlPSOSvdcNzfV38Tz/c/TH+wnJado9bcyGhmlyl3FyemTKKrC2oq1DIYGKbYXo/pVEtkEfcE+zJKZidgEfnsxHdki7OkspCHPNWrBDtgxOuqQzn7mQ6Eh+oP9CwQWRtFIR0kHg8FB6rx1fGzlx/ju4e9ydOooIiIqKmsq1vDHq/6YMmcZBdYCzXBVNHBi+gSbqs9NWMpd5Wwf2o6IllmWV7PKiszp2dNk5Mxv3Nn/dwr4ZDIZDh06xP/6X/9rwc9vvPFGdu/efdHHpNNp0vN2kJFI5A09xqstp9mJ3Wxn6+BWzsyc4dTsKVRVpdnXzF9s+At2De9CFASy2TSxeIickqPSU4WiqgvUWyaDhRpfHUVnv3A5JccT3U/QF+hjWeVq/uvYDzkyeQSTZMIqWWgtauWPVnyMuJjjO6+g5hkNj7JjeAeT0UkeO/MYvcFebAYbzYXNbK7ezLXV12BSYJGxgtKpFEoopN8Uzg8AhQs7Q8cmj3Fw4iCDoUGMkhFFUegKdHFi+gQDwQFUVCZjk/TM9RDPxPnLDX/5pvEOupp6pQ5SfuRxKRB6teAjv3AW2YvIKTnNzVg0sqZ8Dbc3385AcIDF/sWUO8u5o/kOnut7jkg6opuW1XhquG/lfa97i1ry+xG93qtavAZDg5yePU0oFWI8Nk6BtYCcmqPKqUn83RY3o5FR9o3u4+7FdzMVm+Ll4Ze5qf4mbQeeDtPka+LF/heZS2lgcE3FGiwY6Shso72wlcqsjUo82AMyQnwY1VFALhSCdFqXJoMmsRYKC1FnNY6K6PFonJ9YDKm+HqmgALJZEoYQphyoinKBozOgg/x8nd8FzsdA5EGaoioU2YqYTc7isXg4PHGYsegYFoMFAUE3KNw3to/7lt5HTs2xuXIz9b76y34e+c5gIBmgyF7E4cnDNPua+WD7B1FRsRm09PRiSyEv9DxLInnuHiqZrdR4asjlcoxHRvXsrUJrIYcnD1PtrubQhDZ++f0lv8/S4qUcHD9IVsmytHgpJ2dOkslpaewWowVb2sa2wW2E0iHKHGUcnjys+2WVOku1DuWaNdroK08sVxSNGL98+Wvm97xaH6tL5dZllMwCkYOsyByZPMKa8jVcW3Mt5c5yvnjtF/nB0R+wfXA7GSWjq0bb/G1a5EQmxlRsSh8tVrmrqPLW4AgaUblI18tqXdB1z/PC2vxtVHuqsRvt/Pn6P2ckPILL7KLeV8+Pj/+Y3rleNlVt0kecDpPme+WxeLip/iYOjh9kMjapR66ABl7lnIyAoCsABUE4C4Q1ZWVSTv7Gnf1/p4DP7OwsuVyO4vPchYuLi5mcn0o+r7785S/zD//wD7+Jw3vFutiXKi2n+XX3rwklQ1S4K7AarByfPs5YdIzjU8eosBZzYHQ/AM2FLaTjYao85bgtblaWr6L/rKmUx+plRflKnVgbSAR4sutJ3tn8Tv51z79yePIIcI78eGLmBN888h2+cN0/0B/sv8Du3yAamI5N0zPbw7ahbfQH+3l5+GX6gn16XENPoIdgMkjPbA8Og5V4KsZfr/sL1pxtQV8QAHq25neGToZ6+NsX/5aT0ycJJAOkc2ne3fJu7CY7VoOVFWUryOayWAwW7Vz1/Jrbm25nTcWa3+An98bUcGiYzqlO5lJzFFgLaPO30VHSwZe3fPncdXJWSfRqOi75RdVhcmCWzNR762ksaGTP6B6e7nmanUM7qXJX8ZFlH2Hv2F6OTh4lmokyHh2n1lNLga2AFwdfvKAz9VpNDkWHA1N+8ZoHfs5XF+Y7ZMFkUJPhWrzc1nQbsXQMh9lBY0EjLw29RE7NsbZiLY+cegTQwiXf1fwu0rk0Zc4yPRW+J9BDXUEdGxwbaPO3cWT8CD2pGBWOMuxGOy1hO5y1EFCTSXJTU2R7ehAcjnPXsCShzMxgqKlBVlXUWEwzwEylMLa1aeTnUS2x2troxplQsGIkxUJCMmjcrfMXhHwXeCQ0QigdYs/oHmKZGOlcGqvBSjaXpdJVidPkpCvQpR2SIOmLIgKMR8epdFa+otIvX/mOQN5rSlZktg1uY/fobloKW/jEyk+wvGw5Nc5KoqkQs4lZomkN/FS7KllXvYFoIszuMU0NVGAt4PDkYZwmp96Zm03M8o393+CvN/01N9XfxHRimipXFT86/iMi6QgbKzfqXUmjaOQXJ3/Bu1reRe+c5mCf58jlibLWdeuYCo5yJjlMKBPFY1FoCY9RarO9qlE7vDYfq/mgdTg8zExcc4Yuc5axpXYL/cF+XeQgK7L+2TX7mnmx/0Xe1fwu3rfkfbo/kpyT+ccz/4hZMlPpqmRJ0RIySga/3U+RrYgyVznGoopLbirnd02dRidLipbw8sjLPN71uBa+7Cwjnonz0RUfZSo2RedUJx9s/yC7RnZxbPIYZsnM8pLluPwu5pJz9M31salqE8emjmGSTAQSARoLGukL9mGQDDrwMUgGJFEikU1oIAjhtyJp/50CPvk630J+fhje+fXXf/3XfPazn9X/HYlEqKysfEOP72J1/pfKYrBwb/u9bBvYxtaBrYAGSiqcFdzRfAeHJw4TTUUoLu7Qn8MgGkipKm7FTIWxkP+18X/xq+4nFqiJCqwFrC1fy5HJI4zHxklmk7qsEbQgC1nJgVHkTKCLmfjMBXb/+XKanIzFxnR/jb5gHyqqdhPKJpFVGVvWxlxqjpqSDvYOvsyX9/wLX7/la9RwYQDo/FKTScKhKR469hCd052oqorX4iWYCjIVnyIVTlHiKOGF/hd0MFZkK6KlsIXh0PBbHvjsGdmjh9Pmq83fxuc2fY51letel9HS/F2orMi8f8n7ear3KdZVrMPv8LOsZBlei5fGgkYKbFrGmNlgZi4xx3cOfod9o/twmBwMhYYoshdxZvoMKSXF9w5/j9HoqM4FejUmhwt4G+m0Njo4qy6MpqMcnzrO8anjiIKIy+RiODzMz07+jOHwMAAei4dNVZv4q41/xYMHHtRBz31L76N3rpefdP5ET/32WX0sLVnKY2ceI6tkuXvR3Xzz4DeJpiNMhMdY4l/CaHiEqop7qIhq/laqLGu2D8kkmM2Ifr827srlUBMJ5IEBRL8fadEiJK8XY1sb0XSU0QKZmMeIQ7JT5PBTNuslZZTokadIKWlNCSbL1Hnr2Vi0CgemC86N0+xEVmVeGHiBR049Qn+wXwcFq8tW0+hrRBXOdXsFQUBVVU3tpWogwWrSuCFX4qkyl5zTQQ+c45QBjEXGiGW0zkpNYT33tn2Qxd4WkkoGo2TALppRDQa+P/YQsqptmHJKDqfJyY0NN7JvdB+ziVkEBNZVreMfd/4jTQVNjERGuLbmWk1FZvXxeNfj5NQcLb4WiuxFBFNBXakGkJSTdM12YTVYGQz0kQnN8bW9X6N/+oz+NzXlrXx09ccxh+zYba6rWnBfDx+rGk8N11Rfw/P9z2tmgqImQX/k9CNcV3MdyWxSB3AAZY4y4tk4hyYPsXd8LyvLVvJc33MUWAu4e9HdGEUjQ+EhJFFiNjHLpqpNFNgKdNK9aHbq/mN5rtH8nMV8FdoLOTlzkv1j+/WOrkE0MBAaoHeul1JHKYuLFvNM3zO6ae67F72bnUM7eX7geRYXLabQVkitt5ZPrPwEm6s2c2LmBNfWXIskSkzGJqn11DKTmKHAWoDdaGc0MkqRrYjlpctZVrrsij6D17N+p4BPYWEhkiRd0N2Znp6+oAuUL7PZjPk3QHi7XF3sS3VdzXV86+C3yMgZckoOSdS+KL3BXp7o0iIQcnIGt8WjySANVpBlylwV3N54G+1iGTWORay+fs0FvJFTM6dIZBOA5hXitrghxbm8HwG9fZySUxfY/ecrmokSSUdIykmySlYfrRlEwwLllaIqyKoCkkTnTCcnQt3UFDddEAB6fg3HxnQjNkEQkBVZdyXe27uXd7W8CwGBrJJBBaYT0zCrJTm/1Wo+v0dRtJvhmdkzC/6mc7qT/73zf/ONW79Blee1E/Xn70LzZMv8zt5r8bKuYh1Ok5OvH/i67unhMDm4tvpaPrf5c3xlz1eYic8wEBrgK3u/QrOvmSe6n+DE9AksBovm6GpyvGqTQ9HhuGA0MRga5Gcnfqb5imRTWs6SW8s7653rpdRZisfsQVZl+oP9PNPzDPe3309rUSsrSlfQO9eLw6Tld/XP9dM9182+5D4GQgP86do/ZefITnaP7tZUJv4l5M7ul+KJME/0P8191e/CHs9qbsFuN4LFQm50FGN7u6bkOQt+OAtgjI2NCJJErzHKTzsfZSw8jEkw4lSMlJoKuWbJbQj92zC5PMymgyTTcapdldzXeA+V/UEyo0cvEARMxaY4OH6QR049wlB4SOPSoI0O9o/v5/ra66l0aZs3SZAWWCMU2gpxmLU4kB8e+yEGwaAbJXqtXs240dew4JznlNyC7/P8SsrJBR5HNf5GXhzeQSA4pp0DUcRgtfPOlndpqjlXOalsim1D2zg0foh4Jo6syKwoXcGOoR0MBAcodZTiMrtQUema7cJuslPlriKby1LsKNYVX3aTXe8k5I8lnAozHZnkob3fWgB60maJ3aN7mEkF+NDyj3BmsP+qPGReDx+rqdgU3z70bXYO7dTvpaIgUuep4/n+59lSu4Xmwmb9+3dNzTU82f0kDpODYkcx+8f2MxgaZDA0SCwd457F9/Dzkz8np+TwWDzIinyBfcX5XKOL1Ux8RvcSEwURRVXIKTnMkpm0nMZh0qw3Xhx8EYCNlZryLKfmaCtuw2Fy6PYG3z70bf549R/z9QNf5/SspgzzWDy8d/F76Zzu5OD4QYbCQyiqwqLCRXxq9ad+K07Ov1PAx2QysWLFCp5//nnuuusu/efPP/8873rXu36LR3b5utiXyma0cWL6BA0FDWRyGayiFVEQsRlt9AZ7uanhJqKZGM3OOv563V/ic/ixqhKlxgIqUhYcWQOix4PTbL6Ag2E32nWTNJvJRigVotBWiFE0klNzGEQtETyWiVFkL6LCXaHb/c+vOk8dTpNTV19cqvKgxWZ2kIyFCCa0Off5WWDnV+xsHES+DKIBRclhFI2YJBOyIjOfySQg4DA5MIkmTkyf+K25gr5SRWIBBqd7iaUjOC1uTDYHzw6+oM//u2e7OTlzkhvrb+S5vud05Qxo4KdzqvN1AT5wbnQyGBrku4e/SzAZpNRZSnNBM4Io8N8n/pux6JieEO8wOhiJjPDiwIv82bo/o3uum9Ozp+kP9rOsZBknprXrJCWnGI2MUuetwySZXheTw7ylwfN9zzMUHsIkmihxllBkK+LA+AFWla2ic7pTz7ASEAgkA6yrXEcml+HhUw+zb2wfiqqQklPUeGq4tfFWnux+UudVbKzcyLbBbZpfSl4+bPXiVcwEYtOMEKIFu5a4DggGA5LHg9zbi6GpCaG1FbJZBLcbqaSEpMvCyakT/OfJ7zARGkIWVKaTAUwGMy1WidTYdu7quId9c8eYi05hEUyQTvPiiV9jrb2RiqhCtreXyVofJ2ZPMZeaw260Y5AMep6SIAgYJSPZXJZENsFPO3/KP9/wz6wuW83JmZO6r0+hrZDlJcsptZdqDta2Ip7ve56RyAgGURtH7BzayV9u+EuaC5v18+4wOyhzlOmO2vOrzFGGw7yQh/Su1rsWqFEVNGn7bU23Ue2pZlv/Nh3U51Tt+7yiZAV2k51lJcto9jUzHh1nPDJOqbOUodAQy0uW0z3XTX9QC78ssBYwEh7BYXIQy8T0u0BGyZDMpRaAnpxRIpAKks1lODV1gvTZceVccu6KPWReDx+rk9MnF4Ae0DaF/aF+KlwV1HpqWVW+CpNowigZGQmPcGvjrZrlxIEHqfXW6o/rnutmPDpOtbuazdWbcZldLPYvZn3FpQOXL1WxbEwL7XWV48/5afI1Ue4qZ0XpCqrd1ZglMx6LR//7ak81c6k5ZuIzjEXHMEtmHCYHRsnI6rLVRFIRfRw/l5ojlUthFs1srtrMqrJVRDML/aF+G/U7BXwAPvvZz/LBD36QlStXsm7dOr7zne8wPDzMxz/+8d/2oV2youkoH+74MCoqkVQEj8VDjv+PvfeMk+su776/50zvMzs7O7uzvUtb1NtKsiy54V4AY4rBhBIIhPAJ5MkdyB1SCcn9hCcFSIAAJgQCBDC44YZkWdWyilVXu6tts312ZnZ6L+d5cTTHu1p1S7bJ7R8vsHbamZkz53/9r+tX5AIkmUvKre1iHpAX/5JUdEP9RlbVrMUTKpwjG1ehaW+7oPql3l7PMd8xPGYP+UKeG+puYP/EfsWrpOTeu656HV2uLjSihoHAAMPhebPtsx4ioiCiV+tRiSraytoU3yBASQW26+xMRaeIZKLc1HozBrWeJ08/gcdSRYPTjGkusSAeQ34PBiwWWTpbGnEBCJKcntxgb8BlcCGdNZITEGi0N3BT400EUgGePPPkm2JueDH44j5O+k7w+KnHiCTncIpmmk11HIycwmZ14TCXA/LO1Rvxwhgsr5TJnvMRypzf4+ZqYdFZSOfTuIwubqi/AaPGiMfs4eTsSfrn+hERcZvd1NvqGY+O4416GY+O47F4GAwNcmP9jahF9QIncZCLn0Q2gdYgd+Ber8lhydIglo3JfjLpkJIvpRE1TMYmiWQiSlZarpBjLjUnqyJzSUbCI6hEFcFEEI2okcnwuQRLy5eSLWSJZCIsq1zGB7o/QEEq4DF7GI+MY9OY0Ubk4iGeTyIYylFXV5MfGgJA0OtRlZcjRSLEzVom1AnSmgyqTIq+0304DA56GjYRr16JXq0nnonyeN/jDISHCJoidOc2MTUzRHJuZgHJ+cnhZ/hQ87s4Y03x66PfYyoxjValRSWoiKQi3NV2F08PPE2umEMURLQqrVzUFdL4U36+uOWLPN73ON6IF51Kh0pUYdFZuL3ldmbiM/z01E+ZiE0oHWVREFElVfzX8f/ijzb9kbKAGtVGJfNtfvHjMXu4uelmjGrjgu+pTl3OB923M5acIiFlsNhcNLhey1ibr07UqXT0NPewb2Ifzw49i11nZ7d3Nx6rh/We9Wyq3US1pZqp+BS+uE9ZoNdXr+fHJ39MjbWGJkcTsUyMXDGHRWvBqDOjFjXkz24YMmKRXOE1d/R49rXzdC41d1keMpfyqbocH6vZ5OyirjnIxc9YZIxELsHdNXcrf0/kErwy9Qoz8Rk0Kg3iOSrddEF2yK6x1tDoaKTaXH1VGz2zRt4s6tV6bqy/kV3eXewe241OpSOejfMH6/+AnpoeHu97XCG4T0QmSOaSmDQmYtkYZYYyMoUMpwKn8Kf8rNasZlvTNmCxmzrIBe+NDTe+aRvT/3GFz0MPPUQwGOSv/uqvmJ6epquri1//+tfU17+xrPErgVFr5Cv7vqLEHQD8xda/oLuim15/L8vdy5mOTy9oj1aaKpUdlFSRueQcdz4sOgub6jYhCAJDwSEe7HyQYCrIkekjaEQNKkFFg72Bh7sfxmFw4DF7eGDpA2TymUUeIuF0mJsbbubY7DHK9GUyeS86hlljpspSxYrKFVi1Vn51+lfc3X43YxEvPzr0KMFUEKPZweaaHt7nuoXqucIiv58Gg4o6Wx3ra9ZzYOKAXPxIEoViAZPWhFVn5T2d7yFfLKASRSLpKH2BPjbVbeLU5FGGff2k0zH+YP0fLAiEfCMRy8QYD48zm5xl+/BveHHwBcZD8vjOYXRSubyZ4TP9GKJTrGrqQac1Kt4c3oiXjbUbFz2nQ+e4pse4f3w/XzvwNZ4bek4Jpryr9S421m5EI2rIFXNUmirxRrxK8SJJcvaPRWvhif4n+ED3B9Br9JQZyhQn5HA6rBTs8PpNDqdiU6TyKURBJJQOLSjULToL/qSffDGPTqVTnJVLPAqn0Um5sZxAMoAkyUTfTCGDN+xlQ/UGMvkMq6tWs2N4B784/Qv0aj1WnZU2ZxurqlaR0YYoFHJY3XVoq1cAUJicVDhqgkbDZJmKJ4efIZieo1azmngwiVVv5e/2/h0vj79MkSJGtZGNNT081P1e/uw3/xtTfJKXxnaxpWkjhyb+m6Jei6CWL8vhZJABW5b/vfNLHJo5rBRFqypXsaFmA78e/DWrq1bz8qScEScIgpJkX2ep49jsMZa7l7PMvYx0Po3dYGdL7RbCZwnI+yb2Ec28psCy6qwYy2WfsF2ju8gWs9j1dpodzWQKGbbUb1HGYiWlWCqfWtB9zM/MkD1wAE0oREkrJjrSaNd7oFJe5OarE7UqLfvG9yEKIiaNCZdJDmQtSAWy+SwOg4O7Wu/Cn/Qz7hrHpDExFZ0ikU1Qaa5EJaoYDg0zEh6hrawNh97BL/sfZ23nLRw89RvyxRyF+en1goBZb8GffW0RvhwPmWthJaFX6S96u0618JpdEh+4TC5ana3EM3FlpARgUBloc7bJvkrzzDSvFPX2epocTejUOnZ5dzEelS0WMoUMbpObk76TdLg6uL3ldkVWX5AK6NQ68sU8Np2NVD5FIBlgNjHLXGqOR48+qowRX28G2vXA/7jCB+BTn/oUn/rUp97sw1BwsXypAf8Af7v7b8/ms7yG4zPHyRVzNDuaSeQS1NvqFRJvo6ORu9vuVi44lzPHPRcN9gacBicHJw/y9YNf58GOB/nwig+TyCbQq/Ukc0l+dOJHNDmaZLLkPE+RkodIqUAya8344j6WupaysXYjkUwElagilAzx7OCzvDi8g053B4OhM3hMHnxDJ8BsJBn2s0fai15r5GNL3os5Jy4o3CzAve33ArLyyJ/wk84maXQ0YdaZeaLvcTQqLQWpiCBANBPDYXCQz2aQkkmSJNl9ZgfvqNrCCm29nNiczcr29mo1gsWC6nW4SV8KpSgCh87B9179HrXWWnoDfRjUetSSQCgZxBsdI6cRIR0jnJjDrTXiNrupMFUwm5hdMOYCmeB8JSaFl8JYeIy/3f23hNIhClIBvVpPOp9mKjbFS6MvsaFmg7z7U+uIZCJKurNWpcVpcBJOhjFqjPQF+8gVcpTpyzjqO4pJY8Jtdisj0GthcqhT6+ip6UGr0so2+hoj2UKW2fgs9bZ6wukwOpVOIfMaNAbq7fVEs1EkJAQE7Hq74lWkFuX3UqDAzU0388LwC6TzaepsdfL5nolzbOYYerWee9ruIVvM0ljdoZwvmvZ2RTWTMKp5cvhxguk5VOXl2IwOIuEY3331u/T6exEEAVESSeaT7B7fQ1GS+MCKh3ns9C+ZS8/x7MjzdFQ0MD0zCGczvSqcdfz49H9zaOqg7A10FqORUVL5FEucS7DpbErhA3KExi2Nt7CiagUrqlacd7HZM7qH3kDvgqIHZLVbo6ORveN72T22W+H8NTua+diqj3F4+rASIxHJRBbxSYrx+CIlHpw/aqSkTjw0eYhAMoBGlJ2J51JzSMibm+n4NMvdy5lLz/Hz3p8zFh1DJahwm9wc9x3n/d3vJ11IK+eBRqVh99hubDoroWSItvoV9I4cVJykEQQ6q1egUy8sQC7HQ+ZaWEnU2+tpsjct6Jwrz2NvWlS4lMQHACsrV3Js5hhuk5uR8Ii8wRBVrKhcQZ2t7pKxNBdDKYLnucHneHLgydf+rrXQ6GhkedVy/uPof9BZ0SkToNNyDtdIeASr1opNZ1O4mM2OZuV7nD9GfD0ZaNcD/yMLn7cS5rf5NKKGGmsNr5yVn9sNdlwGFydnT2LUGEnmksoO+ekzT/OptZ8imArKZLazRUeTo4lPrvnkNSO3JnNJ5lJzPDP4zHnvMx2fZpVn1SIXaZWgormsmeHQMIVige8f+z4qQcWW+i38+MSP0YoaHl7xQTbVbeLGxhux6+z85MSPicSDFIp5RFGEfJ5kJMhQaJgJonTVLP5hnLtbMIl6PHNFTunCvDi0g0NTB1GrtYQzEdZXr+Ozaz/Do7u/Jj9YpSIZDTI9N0ZnWqI4OyvLiy0WyGQQzGY07e2oa2uvWuJ6IfQH+vn7vX/PcGiYdy19F7vGdnF/+30Iokgqn8akNiBKUCzkSUpZbKjJ5uV2vE1v44a6G9g9tnsBd6q7opsvbvniNeP3gJwxdmL2BC6jS3HB1qv1co5QdJzNdZs5NHWITCGjcEWMaiP1tnqMGiNmnZkXvS9i19vZPrydz2/8PABHfUeZTczS7my/ap+hc6FT6dg7tpeXJ1+WuzgGJ5XmSu5rv48NtRuYik3hS/gwqGQ+XHdFN7c238rh6cMsKZfTpGtttcSyMeLZOCKy30i1pRqPxcMPj/1QyerqC/SRK+aUXa1Fb8FlcOGNeJWNi2i3K6qZyfgwIV8Rlb0StUZ+DAIcmjqERtQsIOFmCrI7981NN9PoaGA6OoUoiHS6amFKJkWj1YJOh3f2bMr6PFVqOB1GI2rYUr8FQCZhn+2C9tT08JFVH1EWwfMtNtFcVLGtmI/VVavZMbIDQZCjB7KFLCaNiZn4DN898l0+seYTyqbIpDEt2rVfadSI2+zGaXIqkSA6tY6TsydJ5BKy/F7UUmmupNXZykR0QjkH1KIam8FGMi9vzm5puoVsPqs8bi4dwml0UlvRymnfKfQiaPRG2srb+ejq36U/NKAcw5V0Si7HSuJiVg4tZS18cPkH+c9j/7mINvDBFR+kpWwhqXy++ADAXGcmkAiwsmoltzXdhlalVcJtX2/3pMHewNLypdzceDOxbAxREBUejkljYiYxQ24mx/qa9ZQZynhgyQPsHtuNN+xVPvdmRzOb6zYrwcCXO0Z8M/B24XMdMT80USNqqLfX87VXvsbhqcMK/2WNZw1/fdNfyy7M6qJygRQQ+MGxH/Cde76DVWd93Z4tF4JGLS+spfmuUWNUnHmTuaQiSV5UgGhMPDf4HPlifsEIbjo2Tb29Hm/Ey3cO/ztIsKXhRiqNFfjiM9SoymRSc+lCXiySzaYu2m4+d7dQNIZZPzTEN7f+A6eSowQzIQRBRCoUeHT312R57dk8JCmbRaPVkz9xRlbi5POIkoRgsSDF4/KOXZLQGgzXrPMTy8T40fEfKTvDEvelZCKnU+koUERExB/3UWWpIhnyL1Cj1dpqeWT5I/RU97CpbhMOnYNud/c1LXoA5tJyIRtMBam3yd9bNBNlOj5NjaWGJnuTktcjIvO5VlWt4p1L30ksGyOSiZApZOQFMZ/kq/u+ykNdD/GerveQL+TpcHVcE/n9WHiM/3fv/yunlJ9VsMQyMWaTs+jUOr50w5e4q/Uubmq6CZAXtGAiyC7vLupt9WhEmSMxODfIysqVJHNJ4tk4tbZaXEYXwWSQens9J2dPIgoidbY6zFqZ1GvUGYln4gwFhzBpTTgNTrY2bqXB3qB0W5O5EWVRdxldBBIBEme5JNlCFoPGQLaQpVgKzKSIhMTG6h7+49Xvs7F2IxkNcsFT4ruJIka1QY64mFf4FKUi/qRfNiCs38K66nUUi0Xq7HV0uDou6akkFSUliX4kPKLct8pSxUvel1jqWiovfPMsLE75T7GkfAlatfaCSqiriRopdVt0ah0N9gYcegduk5t4Nk6umKOlrIUKUwVbG7YyEZ1AI2rIFDLMJGYU+bdW1DKXe210VZSKBNNBuiuXs9GzgXAmjEFnIlfIcSJwilwxh0pQ0VLWQpO9icPThwmn5MDVWmstrc7WCxYSbrP7gufypXx+LDoL2xq3ISAQSAYU2kC5sZxtDdvO+5pv5JiozFBGlaWKKqoW/D2dT6MW1TiNslO2RWth5+hOHAYH97ffj0alIZFLMBWd4tTsKdqdrxHj3+goisvF24XPdcT80MQaa41S9IC867PpbZycPUkgGeBTaz/F3+39uwWPL+2ySySx6wGP2UODtYENdRt49NVHOeY7pty2xrOGnpoe5d+lAiSWiXFo8hAqUW47V5mrlF3tidkT3NZ8GypRxdDcEEhFtKKGams1iXSU4PQIgtm8IEdHK6ivyLJctNvRdnXRFA7TqHXTm5/mKwe/ytScFyn7muxWymbx2Gup0jiRQiNyWnOhQDEaRWWTU7eleBzORmZc6bjwQvCGvQtIoCaNnH82HZ+hzlaHLzFL8ezidnTqVT6x/tOc0ryK3VSmPKY0RrjejqZlevk1i1KRydgkbpObOludEnrosXj47LrPUpAKDAQHkJDQq/XEsjEKUoF0Pk2zoxlREKm31ZMv5tkxsgOT1oRWpWWpa+k1KdRP+E5wwn9CcSf2WDzyhkKlIZVLcWz2GJlihl2juwinw3RUdFBjraHWVsv66vWkC2mqzFWk8imKUhG9Wk+9rZ5tjduIZ+PU2+pJ5pJYdVaFw+IyutCr9Tx95mlO+E4oXYcmexMSEu/ueLeyAM0/fyVk/pNZa5Y9xBBI5VLo1XqlADNpTLhNbn585Ae4zZXoBQ16NHJci9FIudXN8vq1nElP4ja7mU3MLvg8ilIRk8bECveKCxbDF1qI39/1fnwJH7e33M7O0Z2MhkeVwqrMUEZrWatMBj/HwiKZTxLPxS+ohLqaqJFzHY1tehutzlYOTR1CJag4MnMEs9rMhpoNvOR9iWMz8vXJpJX5QEvLly5Koy99PladdcG1M5aJ0eRsIZFLKBlZO0d38tSZpxRlW52tjluabuGB9geYic9c0oSzRGPwJWSLAb1arySvw2KfnwZ7A+/qeNcVFTJv1JjoQu7SerUeg9qA2+TGbXITTUd5sONBftb7M57yPyV7eAX6WFq+lIe6HiKeiaNWyaXFGx1Fcbl4u/C5jphf7abz6UU8nhJBtNffyweXfXDR49dXr6fLdX1P+AZ7Ax9Y9gH+ctdfLih6dCodU7Ep/unAP9HkaFIurqXR3XHfccU1tbOikw90f4AfnfgRZq2Z54eeZ7VnNZtrN8vqMM8a7GoLE/4hgibjgqLHoDWdd759KcznNTVmbNyz5F6ePPlLJlNn08uLRTz2Wu5tuZvq2GszfuA1n5WzkPL5S3oKXQniubjiwgpyeF9XRReHpw9zd9vdHJ0+gi86DRKY9VYK6RT/+6Y/Jy0U33DyX7e7m+6Kbk7MnlA6CSWUG8pZ41lDKp8ikUvQ6Ghkt3f3gvO63lZPS1kLByYP4DAsJl1fq9T2ufQcoiDiMrrQqXUKP8cX9zEZnWQ0PMqesT08sOQBVKKKroouOl2daEQNL0+9TDQb5d0d70aj0tAX6MOqt2JSmxgODWPT21jrWctsclb2tDoLrajlZ70/I5gKKq8HMBwe5j+P/ScrKlco5mvzF410Po037KW9vJ3VntXKIl5aDG06Gw32Bmai07hsVdSaPSwxNbC5ch1xWzvW6kYazsZIHAmc4IacPPacX/ysrlrNXW13XbDouZjh3v6J/ayqXMXh6cOsrFrJjQ03Kh2gscgYqZxcHJ6rQDKqjcRz8QuOMK4mauR8Ycx2vZ2bGm6is6KTmfgMBo2BanM1qVyK7opucsUcNp2N1rJWqq3VuIwuMoUMiWwCk8ZEIBlgODS8iFNm0VnotLcSCft4yvs8/ZEhdo7vZvxsQZsv5pmOTZPIJvjCji+QL+QXUAzONeGcT2MYCY3wkvclPBYP66vX85vh3wBygXaulcNbje9Swvm+C5BJ75vqNinnr8vswp/0c2frnZQZyhAEgUg6QkEq0O/vx6A1KBEib3QUxeXisgufiYkJampqruex/I/D/Gr3fDJGQRAIpUK4TK4F6heQi56/2vZXtLnaXtcxnC/2YP7F0qKzkCqkGI+MU2GqoCgVFUM0jajh6MxRxTdmLDzG/vH9qAU13RXdtJa14o14ORM8g+gUubvtbn7Z90tMGhPesBe9Ws+Hln+IZc6l+L193Fl/K0+eeZqp3FnLfq2JzfWbeXDZe1/XIm/RWdhYu5FiPk+kYoZ0PoVercMUybK26MEUy5BTqV4rds52W6RSxpIoXtJT6Epg1pix6W2KC+uLoy/yoWUf4gfHf8BTA09xS+Mt3Np0KyaNmc21G1lbtfpNU53V2ev44g1fPK9L9Be2fGFRjlOHq2PBbtWqs/LXu/560fkL1za1vUxfRrWlGm/ES76YRyWomIpN4dA76KjokCNMNAb2ju9lbfVaOl2d1NvrefToowviFsxaM+9c8k40ajnzbVXVKuU3ca9q4UW/KBWVEeBkbHLB8QyHh/GGvaysWomUyWAMJ7m7citPDj+DRtRyOnCaCmMFv7f69/iu6rsc9x1HQFDG23e23Mk3DnwdjajCjZn6qjrMaOlu3baAb1Yi91t1VnxxH+lCmnpbPR9e8eGLeqBczHDvJe9LfHHzFxVzyUAygFbUyrEc5Uvo9fcqI+4Smuyy6me+wOFciGYz2fUrGBk8TCwRwqIyUp3RYS6o0a5bd8GcrPONc1wmFz/r/RmhdIhQOoQ/4WddzTqy+SypfIoWRwtV5ipOBU7xjy//I0em5XBTnUrH5rrN/K9N/2tRh6aUCzgqBohEA2QzKaaDY6yuXY3rbOfaZZIX9QZbA1q1llenXyVXzC3q3MynMYC8sU3n07w6/Sr+hJ86Wx17x/di0sjmi+FM+HVHubwRuNBoLZgKLni/Fp0Fs8bMptpNpHNpXhh+gUwxg8PoUGgcN9a/eXL1S+GyC5+uri6+9rWv8cEPLu5MvI3zY/4u0KJdeALoVDpyBdnt2J/w0+Ro4r/e+V+E0iEcegddrq7XXfScG3tQlIp0ujr5441/jNvsptZWi0VnIZKOoFPplBC5UuFTUnWEMiGOzRxjx8gOvn3k24yEZNtyk9bExtqNrK5azeHpw3xs1cdYWbmSVD5Fs6OZbne38sM2V3diL+roWtfOVDZIvpinUuekzdONzVl1wfdwuWiwN+DscDLq6yfqG8ck6KlKJTEMTlKs0SFWVlKcmZGLHo0GikWkVArBapW5P+pr1/yst9dTZalSbPRT+RSP9T3GPW338KHlH8KmtVFhqrjmfK2rRU9tD9+48xuc8J0glAldlE90vt3qp9d9+poFp14IS8qXoFVpiWaiWHVWZXQUzoRpFBupMFZg1VmBs+Rrez3esJfp2LTyHejVeu5tu5fvHf0eJ2dP4ja7cRldtDnblN38/Iv+0NwQbpObydikIo+fj0whsyBk1yMIPGzezIQ5z7h7jNnELEatkc/3fJ5ELkEim8Cus+Myudjl3cVtre/AY6rEWFQzGBkhIKT4SOty5l8pLsXxuNBiejHPpHwxTzQT5RNrPrHoeVd5VvEvB/4FX9z32nd51rNrfhfgfCOM0fAoT3ifIJicoZhMQD6P01bFfWveQ6O78qLf7/nOq7vb7lYW21wxR1+gTxkBlxnKeHHkRb736vdkryWdTbl2nQ6c5ruvfpf28nbl/JufCxjXJUkX0hSkIre0vYN9Ey9j1ln5zchvyBVz5At5nEYnFq2FrQ1b2Tm6Uyl+Sp2b+TQGkKXqXa4uKs2V5It5pSh9ZfIVxiPjqEQVX9j+havK+Xqjcb7vwqKznPc8BHhq4Cmm49NMx6eVHMcqcxW9/l6aHE1vyeLnsq/2f/u3f8unP/1pfvWrX/Htb38bp/PN2aH+NmF+61Cv1rPas1ohNtv0NkIpuSW8rnodHeUdr7vQmY+STLlU9OSLeZK5JPsn9vPXu/6az238HL8Z+Q33tt9LtbWaB5Y+IMdTaE2YNWZm4jMk80l0Kh1VpiqGgkOkcik+vurjinlcOpcmlo0xEZng7ta7SefTRLNR7mm7Z1GLU7TbKTN0Yw+H6bxMv6ErhUVnobtuDZK7m0IwSFE/R76gpphMoq6pIZ/PUwyHER0OpejRtLUhmEzkh4YQzeZrcjzzv3eD2kAkHSFbzJLIJnhgyQO0lV+77/laoc5ed9XE6RWVK/jyxi/R6+8lkgpjM8gLcJWr4ZodXzqf5p72e4hn40zG5Hwoh8EhuxFXrVII5B6zh1ubb8WisxDPxZUoDpBjYH5w/AeKu7QkScQyMY7OHOXv9/w9f3/L3y8Y15UZypQwxXNh0VpwGcvJDQwQVxWYKC8yI0WJ5OKYcwbua7yDgYQXjVrLj0/+mKmYrNxym2S+zua6zZyZOyN3UdQ6MBkI5SLnHSFdaDRyMTLtpbyebDrbeZ+3pFw6NXuKwzOHESRB8ewqcWnOp4Sa3wERtFpU2rOmleR5cvRZHjLZ8Cf8iyw9Lmb1cbGi76TvJOF0mNOB06hEFQbRoBxLUSrS6+9dMF6anwtoVhvRq/TUOur55qvfodpSjT/h5+TsSTKFDKl8Skmc16g0rKpaxYFJ2WOtVFCWOl6ZfIZUNsW2xm0c9R1lJiabDfYH+gmnwzy87GEmohOoBbWSI1fC1Ua5vFk43/lywneCJ/ufXMBpzBQyDIYGSfbLI/5rab9xrXDZhc+nPvUp7rjjDj760Y/S2dnJt7/9be69997reWz/IzA/Tfmvtv4V//TyP3Fo6hChVAgJ6ZqNtM5FSaYM8oVg/gX8yMwRYpkYiWyCk7Mn+a/j/8X2ke0EU0HWeNZwV+tdLKtcxlhkDLvOTiKbYP/4fsqMZQzNDeFP+rHr7OQKOY76jnJ7y+2MRcaYiE7w0VUfveBc91y/oVgmhtd35pIhiVcKQadD7fFQNBqRikVUmQxSoYB21SqkYpGkUc1Yzk88n8RcjFGdyGLOSNeU4Px61RgXWxDeasiNj2PZvY+1syUOyixiRZjcDSo01yjwN5aLEcvEeG/Xe0lkE0zGJtGr9UiSxEh4hGXuZTzU+RACgkLYNmvMSgYRvBYDA/IOfZl7GQ69AwkJjajh0PQhgskgx33HMWvNrKxcyRrPGl6ZfGVBVpVFa2FL/RaWmhoYj4xzINHPzpF97J/YTywTxaAx8siq30GjMfDS2Et4I14yhQwmtYlyYznj0XH2j+/nzrY7lYDPEi5XBXOp0Mw/3fynV224V1IuNZU18UT/E4rvEbDAu2d+t0mr0jIWGcOsXdwJGg4N8+vBX+MNe1EJKux6OypBhcskq+lyxRzhdJiCVFiUn3Whoi+ei5+XPlBCQSos6HrN5/DVYsciGgiLRYKpAPcvvZ9vHvom4UwYk8akqC8TuQTbR7bz5zf+Oa9MvoKEpHDWzBoz4XSYobkhbmq8ie+8+h1OzZ4imUtSkAqsqlrFkvIlnJg9wSdWf4Jf9P6Cnpoe9k/sXzAWvhZRLleDazV2m4pPnTfKZP5tv9WFD0BjYyM7duzg61//Ou9617tYunQp6nNGBEeOHLmmB/g/ARadhQ53Bx3uDhptjZz0n7ymI63zoSRTBrnbc+6uNZKJ0Onq5O/2/B0DwQHane3kCjne0/EefnD8B/QH+rFoLbLM1NHA5zd8nr/f9/e8PPGaWdoS5xJuaryJ54ee55NrPslwaJjnhp7DY/FccpE+n435lYQGXgjnFgx1TdWYEjJ5WcpkGEvN8PiJxwjMehGsVgRRxGl0ck/rPdSn06iu+pUX42pJjOf7bMwaMzfU30A2n1UUQ0aNvCt9MwuiQjhMZvduOZxzHoqzs2R270a8805U18AjyawxU5AKsnw+n2E0PLqgGBEFEV/CR5mhTOlc1dvr8Zg9Cgm/1BWyaCz87prfJZAKyPEVKg2j4VGS2SQeqweQuymFYoF72+9VDNmKUhG1qKbeXs/HV38cQ17ghdAxXpo9wIHpQ8TOGgJ2ubv479M/54aGLQzODeI0yt3xTD7DdGyaJnsT6YIc/htMBpWOoFalRS/qL2tRulRo5lhk7HUb7l2seD+327SqahUvjrzI+pr1VJrlsVY8G8ef8DMVn6K1rBWX0YWAwM97fy7nqSErBy1aizJKu9z8LLPGvIg+UIJaVJMr5CgUC7w48qKcHj6Pw2dK5tnoWM6OXB+tzjZlZAryJlGr0srCk2Ief9KvBDW7zW6ay5o5MnWEudQcsUyMBlsDu727OeE7QaaQwaiRXe3D6TBTsSmWuZdx2n+aidgEwXSQNmcbA8EB2pxtWHVWsoUsoXSIWEYu4q52syNlMhTCYWKpCOOpGeJCFqvVRb1z8ajpUrL7K0Euf3FRSL6wmPv3VsAVExu8Xi+/+MUvKCsr47777ltU+LyNi6PN1XZdCp1zUdr1gtzSh7NRF+ZKrDorHrNHIeQ12BoIpUL8zsrf4SenfiI7zZ4lYuaKOQQE/vnAPyMVz0ZKnPUa6gv2YdHJJlcGjUFpiV/MtCqWiTEWHmPH6A6imahsvKYxyc7A6chlhwaeDxctptwNhH1jPH7klwRmvYhlZRR8PqREAh+j/HJqikfa3kOZWo26uvqKX/ta4VzSJMiGdQcmDrB/Yj91tjpenXlVyUl6cfRF7m67+03LIyv4fIuKnhKKs7MUfL5rUvjM58vp1DolxTqVT+Exe+ROzzlOwhadhQ8s+wATsQmGQ8OYNCY0oobfXfO7PDnwJEemjyjxGk32JjbVbOKpM0/xyIpHODF7gtOB0zQ6Gnmw40FyxZwipe+s6MRtdnN8+ACxYorp5KxS9AC4zG5eGN3BiqpV5It5MnnZuuIdze/AorWQK+TQa2S5/PNDzys5dA3WBqbiU3z15a8qHeGSU/vHV32c1Z7VymtcTmjmtqZtlzTcuxTmF++xTIzR8CjesJeR0Aidrk5MGhOnA6fRqrSE0iFemTjAlprNzGVCjEXHKUoSvoSPk7MnEQSBaDrKaGQUlaAikAxQaa5kODzML3p/wQNLHyCYCl6W8V29vZ7h0DBLy5dyOnBa+btRbaTR0Ui3u5vp2DSHpw+zZ2wP97bczRKTSXZtlyRqogJNrlpsWgtlhjK58ydJygYxmUuiEuRtkFpUU2ur5UMrPsQPT/yQ3d7daFVaaqw1GLQGZhLyeCtTyCAKImpRzWh4lDNzZ/BYPJg1ZtqcbRg1svFnh6uDX/T+QvFQiqVlw8CXJ1+WieYqraKKupyNYDEcJj8xgTc0yhNnniIYnQFRRLTZcDV2cN+yB5XnuFSncD55+3KKMI/Fo4g4zoVBbaDK/Pr5m9cDV1S1/Pu//zuf//znueWWWzh58iQul+t6HdfbeJ2YL1MWBAFREGl2NBNIBPjIio/wq/5fUWYoYzI6qVj869V6Dk4dVJ6jdLGvsdbwZP+TrK9Zv+h1vGEv97ffTzKbJJgM0uRoYnBukDNzZxbtVkfDo/z6zK+pNFfyvVe/x0R0Qg5dFFU02Zu4f+n9RNLn5zlcCucrGACmY9P8++F/Z1PtJgLJALmKMsrLypjrfVW+CJ5FMDLDeC6Aad8+xDvuuKAC5XqjRJpUCSpcRhepfIpULsXKypXMpeeosdZwYvYEU/Eptg9vZ0v9lksWixe7iL3ukVo6ffHbL2Fqd7k4V2pr19tZUbkCjajh1uZbKdPLnZ5zj729vJ0vbv6iEh3yyPJHODJ9RCl6Sm7KvoSP7aPbFWWjWlSzzL2M5wafI5KJ0FLWgkbUKM8/HhlnrhBCpdNTkBbuaksxI2qVnBMmCAL3td/Hfx7/T477jmPSmEjn02yp38IDSx7gsb7HKNOX8VDXQ3z9la+TyCXwJ/1Kh+p04DTesJc/v/HPsegslBvLZdO+1JySO2bQGBZI7ksjmYsZ7l0OSt2nUDqEWlQzFh2jP9BPIpdQRBE9NT2E02HqrbUUCwUOzRxhIDhANBNFq9bS5mzDY/YwFh1jx8gORSUkCiKSJI8ZJ6ITSvYaXHrkZ9FZWFa5jE+s+QTfOvQtTgdOY1Ab6KntYSA4wKnZU/y89+fki3lqrbUYNUbcre/CMSyLGpAkXGobxUKecDqMQ+9Y4Kbs0Duw6Cyst66n2dFMT3UPe8b2sNu7W/GCenHkRT6x+hNYdVasOjm6QSWoGI2Mki/mlYiUbDHL949+H51ax8aajcyl51juXs5EdAK73s7NzTfzrcPf4szcGSrNlahFtVJMXOq3LWUy5MbGiAQmeWL0bNEDUCxSjETwj57mcdUv+ciaj2HRWS7YKTSoDXS7upUQYIPagFFrVDpZF+rGt1jr2VS1lj3evXLxo1YjiCIGtYFNdZtodbZe5pn2xuKyC5/bb7+dV155ha9//et86EMfup7H9DauAebLlI/5jlFlrmI6Ns3nN36eF4ZeYP/Efh7qeoiZxAwmtQmHQU5A14pahRchCqKy6yzl56gEFUiyP4VercekMWHT2zBpTFSaK/nJyZ9g19sVRViphdrsaOaJ/idwGpz8+MSP8SV8pPIpOexOpaM/2M8ven/BXa13XZXb57kqC0CZwR+ZPsJMfAYBgTpbHXqTlfqe28jn0oTmpol4BxDjSRKFFMW57CJr/TcSpQw0j8XDk/1Pcmj6EHqVHrPOTJW5is11m7mn7R5+euqnnJk7Q09tz0V3yBfrgmXyGX50/EdMxaeueJepQH/x4EWuIXn9anlTLc4W3GY34+FxNCoNr0y+gkpQKQV/6dw9Mn2EhzofIlfI0eZsY5d3F8lckmprNQPBATKFjBzuOb6PrQ1bKTeWkygmMOqtC15PI2pApcKf9FNvq2dT3Sal6CnBrDUzFBriqYGn+P11v89EZAJ/ys9schZfwke+mEer0pIr5Ihn4+we282Loy8iCiLeiJdt9duw6+wcnz2OKIjYdDbcZjd6tf6a2QiURiJzyTk6Kjp4euBpfAkfDfYGjs8cp95Wx9bGbZwOnKbKVMk7W+/jZ32/IJSOEE1HkJBotDeytHwpPzv139zedgf+pJ+28jZyhRzJXJJMIYM/6Uer0iqFHlye8V0pb7DZ0cxIeIRCocBTZ55Cp9ZxOnBa4dKMR8f5Vd+v5LT3FWuVQOdU4gwfXfMJ9o/v567Wu3jqzFOMhEcwaUzY9XbsOjt3tN6h8H0G5waVzoZaVNNR0cFwZJgzwTOYtWb6A/3U2mqRJAmVoMKmt6FX6znuO87NTTdTaa6kzFBGKBUiV8hxS+MtrKleI/N8/L2oBJViollShBrUhotuBIvhMGQyTBRDrxU9yo1FpHSaYGhSeY5zO4VqUU23q5sNtRv46cmf8ljfY8yl5piOT7PCvYLP9XyOE7MnzjuCLIbD6AaGeK9jG9p4luH4GFkK6Mw2msvbeLDzwbcsL/GyC59CocDx48ff9vL5LcJ8mXIwFSSVSzGbnGX/xH4kJGbjcpbSQHAAVUaFQW2gzFCm7Hh1Kh0FqYBBbVDcbnUqHU6jk1AqRDQTJZVPkS6kCSQDHJ2R85kEQUAtqlGLaqWF+ocb/pC51BxGjZFAMkA0E8WsNRPNRAmnw4iCiD/pZ2XlygU7v8vFucVSJp9hJDTCkekjhNIhGuwNJHIJ/uPYfygXtypzJZ3ODrqalhKdHMGkMoCQu6T1/vVAqfMSyUTQqrT8+syveWXyFaqt1QyFhhgJj3DMd4xgMkiXu4v72+/n34/8OxPRCVK5lGw8l08Rz8qFU5mxDJfRdcEu2LcOfQur1qoQ4HPFHFqV9rJ2mfOhcrsRKyrOO+4SKyquGVm8hKvlTZV4dtFclBZni5LkLgoiuWJOViMhd0YFQcCqszIeHafF0cJ4ZByDxkA0HWVN1RqcRic2vY1MPsPSig56/acps1UylwiAIODPhGhyNDEaGuWBpQ9QZihTih6VoEKr0mLUGPEn/EiSxFxyjpnEDC5JNmeMZqIY1AZyhRyRTERZwH1xHwaNgRdHXqQ/0M/vrf09vnHwG5ycPUkkE0EURDbXbb4mNgLzRyKrK1ezy7uLvkAfSBKSJFFnq2M0PMrO0Z1sbdiKXWdjNjqNW1vGzS23MRQ4g0ZUE0qHeGbgaWK5BO/Xf0CON8gmyBQyVJgqSOaSgBzrkcqnEBCuyPjOorPI3W13N7/o/QXbR7af937j0XF8Sd8CgYXZF2agfx8b6jYgCiIOvYO8lFesB6ot1XS6OplJzFBhqlhAlBcQqLZU0+/vp85Wh1FjZCI6QbaQRSWqyBQyLKtYhlVrpbWslRdHX2THyA7KjeXMxGdoK2vjS1u/xIGJA4xFxxSfqHguTrWlGpteTjyPpCMX3QhKuRxSPk+8sHjUJN9BgmJReY75hqJqUc366vUUi0X+Zvff0Dvbi0VnQavS0uRo4pT/FM8OPsstTbcwEpYtTEbDo3S7uxfYA9QIIh/13MM4YVkwYrDR1PLmeZNdDi678HnhhReu53G8jeuEkkz55YmXOTh5kNnELHq1HkEQOO47zh2td4AEE9EJHHoHzWXNHJw8iE6tYyo+hVFtJFfIsc6zDoPaQIO9gXA6jEkr8yWaHE0025vpC/axf2I/K9wr6A304jQ4UWvl02s4NPzaPDsTU8Y4voSPdH7xqOTU7ClWVa26ot3CuTvESDpCPBsnmApSY61Br9Lzk5M/YSwyhoREJp8mlU+zb3wvqWyC9dVrqKhoRaWKg0qFlMlct9T2czG/K1NpqiRXyHHMdwy7wc5YZIxQOoSIiE6lYyA4QIuzhX3j+1hdtRq9Ws+OkR301Pbww+M/ZCo+hUFtoL28neWVyxkODWPX25XXCqfD9M72ki1maSlr4cXRF7HqrNTb6omkIwgIl9xlzofKbkd3ww2LCM5iRQW6LVuuCb/nWsKsMcsxK5aqBcViKeKguawZb9iLRqVBLaoxamW3YkmSuKXpFraPbmdobogOVwfDoWHuar2Ldy59J06Tkx0jO5Rcq4eXPcxUbIqJiPy7qjBVICBg0piQkGX0Jd+skjrJorVQlIp4LB5sOhu5Qg632U08E2cqNoVBY0Cr0qJT6RgJj+BL+Pi9Nb9HppAhmU0qo+VIMsIvT//ydal15o9E9Bo9o+FRxfgzlJLDXvNSnsG5M9zRcgfhbBS7zspwaBi13siz/U8DIAgiVqOdrJQnlU8qQZwaUcMy9zKl8G60NxJOh6kwVlx10nixuNh2QCtqlc85W8gSy8SU5y51C0vdFrPWrLiue8o8dFR0MBYZ467Wu4hlYgvc2DOFDM1lzaTzadZVr2Pn6E6aHc3YdDaa7E3Y9XbuaruLp/ufpi/Yx1R8CrvejoCAVqUlU8jwrwf/lS31WxYEEWfyGcYiY7SqW9Gr9WSL2Yt2vwSNBkGtxqwyXOAOskFr6Tk6KjoUtV+pq7mxdiOnZk8po1KTRo6b+cjKj7BzdCf+pJ/ZxCwSEmPRMT6h+wS1GYNiD4AkYUrkWIIJMEEGNIk8vDXTKoC3Iyv+r4FZYyZfzGPSykRigLyU59nBZ1lZuZKPrfoYO0Z28NGVH0UtqHl15lXMGjOCIAfqfenGL/F4/+NEs1GMGiNFqUittZZtjdvwxX1YdBalJVwyP9QV5WgBAYFMLoPb5MagMSCKIsvcy9g7tndB4WPX22lyNHHMd4wt4S1XtLM/N2cmW8wqXIslTjmZuz/YLxs1FmRmR1EqEs6EiRWS1DsaCURncGKmODtLNplEXVuL6jr7VZW4SdOxaSLpCNOxaZa5l6FT6dCoNITTYQRkLxWL1kIwGaTSXIkkSVRbq8kWsrxr6bt45swziqy01CavtlTTH+hnReUKdGodmXyG/kA/c2m5u1HqrEUzUbwRL26Tm4HgABWmiisaN2pqaxHvvJOCzydzes7uqt9qRQ+8Zi65zL0MtSB3JEqj2faydla4V+A0ODGoDYTTYSRJIpqJ0mhvVIoeQDH5nI5P89jpx/jAsg9wW/NtIEEoHaLcWM57O9/LwNwAM/EZ8sU8uUKO2YQcqlpuLCeVTykp2P6kH71az7KKZfyq/1eMR8aVLDSbzsa2hm0Mh4ZxGBw0OhpRiSoSmQRfO/A1xV9naflS3t3xbn588sdKl+hq1TrzRyL5Yh6R+SGphbMZZCI5KUe6kCaWjmLSGFlRtw5dHlymCjlIlSKBuB+jzkQym+JDyz5Eb6CXozNHOR04jcvoYkP1Bu5suxODWo46eGXiFQ5PHabCVEGrs/WyC7c6ex0OvUMhi5f8xrKFLA69g0whw6NHH1VGuefyxhL5BNlCFr1aT09tD2X6MsV9OJaJ0eRoYiQ8Qq6YY131OvaM7WH78HZO+E7gMrl4eNnDZAoZpmJTFAoFwqkwSyuWcmjmEGatmUQ2gcPgUDhZJ2dP8o7mdzAZnVTiQopSUek46dV6PGbPRbtfot0OPh81ogOntXLhuEsUEfR6nI5q5TncZrei9rPqrHgjsvu4WlRj1pppsMsWDTqVjqfPPE1/oB+9Wo9VZyWaiRJJyQKUD9XczcWG3NcyAuh64O3C5/8S1NvrsRvsnJk7Q621lvHoOCCPOI7MHKHGWkOvv5d0Ps1NjTdxT/s9JHNJjBojoZRsVujQO+ip6cEb8Sptz/+9439TY63hIys/QigVIplLymO1fIpkLonL6MJlcjGbnOWpgadYUr6EZC4pdxQquhT/jlL6b/9cPypBdcU8n3MvYlpRi0bU0Ghv5MaGGzk2cwxJkhRTRoPagElrQjS50QkaJiMTtBRECuNzFM+arxW8XnSbNqEqL7/m30cJ3rCXweAg3qiXdE5OQXYZXdTZ6kjlU5QbyxEEOeQymonS4eognUvz5MCTdFZ00hfo46MrP4ov4VPUdoAyNii1yyvMFYqZX7YgS6fnk2GjmSh1tjr8ST+xbOyKwwVVdvtbstA5Fxcyl6w0V3JP2z0KD8xlchHOhOnz9wFyeGap6LHpbCRzScxaM8lcksf6HmOpaynfP/Z9LFoLtzXfxuHpw7Q4Wuh2dxNIBKix1ijjrnReHg1XGGX3bq1aPt+imSjd7m6OTB+hN9BLoVhAQqLcWM7SiqVMRibp9fcyGBxkSfkSJEFia8NWnh96HgmJ/mA/zw09R5uzjV5/L3D1JnnzRyI6lQ4BAb1KR6qQPnuGgVpUYdFY8Jg9iOZqIqkQ+UIeS1HDGs8aDk4fYjI2hUQRl6GcWCbChur1hGN+atvuUcJaDRoDxWKRZwef5ZjvGIFkAIBaay33L7mfW5puuWg8Rwkdrg7ubrubpwaeIpFNLCh6bmq8iWw+u4ircrm8MYvOwrs73026kCaYDLLLu4t0Pi0XMmoth6cPc3L2JLc13caG2g08OfAkKpXcRYqkI9h0Nt7X9T4cegepQgqL1iKbxOaS+BN+Ntdt5sj0EfqD/YBcbDY5mnh42cMX7X4JOh2aujrsosi9mrsXq7oalnJ/5zsXPEfJpHLX6C7OBM9QbixHr9bjNDiZjE4yl5qjylLFK5OvkC1myRfzTEQnaLA3YNPbmEvNMZbxczFt8rWMALoeeLvw+b8EFp2FG2pvYN/YPrbUb2GXd5eSSFxuLMeoNdJc1kwgGeDJgScXhFUCtDpb2endiVVnZc/YHsXkqyAVmIhOIEkS7eXtqEQVoiDKKdTIfIlsIUssG6O1rJXh0DB3tNzBM4PPcHz2OHa9nenYNM1lzaysXElfoI+uiq6rSvWdfxGbS80xHh3nxVGZDyGKonK/QrEgczsKOaKZKJlCBr2owYwRQfvaTqUYCpE7fhxx06brNvYai4yxe2y3sksFsGqtmDQmIukIkUyEdD6NVqWVidkaPROxCSUrx2V0MRYZwxv20lLWsigY12P2kMqnmI3PEkwFMWlMFKUiRo2RQnFhqnXp3y6j6y0bLngtcLmL3b3t95LNZ+VdfkG2dbDqrNTZ6piOTyNJEoFkAIfBwVR8ikAyQCAZ4Pmh51lfs57huWGOTB/hjpY7eGT5I/zHsf9Qip9cIceyymV8YfMXMKjkEXIqm2L7yHbe1fEutiS3EEqFUAkqxiPj/MfR/+Az6z/Dz07/jFwxxy3Nt5DNZ9nl3UW7s53eQC8aUcNIaIQmR9OC93E1JnnzRyLBVPDsb3cIfyqITq0jlokiCCKrKleiRc23j3wbgD9c/1lG/YO4khIrXMtoc7ZRbqrgzpY7CMUDkEozNN3LVC5Ip2cFFeYKzFozu8Z2sWdsD0pVhczLeaL/CSxauZssIV1UeWjRWfjoqo9i0po4PnOc6fg0GlFDja2GzXWbmTgbRnquGOByeWMN9gY+u/6zHJg4gC/hQyWo0Kl1BBIBHHoHsWyMZ4aewW1ys6FmAxatrMBrdjTzQMcDPNb7GKf8p+QcRJWG1rJW/nLrXyJIAi+MvIDH4mHVWQuEVVWruLft3kVZeeeDaLejMRhoDLt4f30zp+MjhPNx7CYnne6u837vbrObDlcHKytX4jK52NawjWQuqdg+2PV2bHobNdoatKKWofiQ3Ik+Oy1IinkEw7xxF4AgkDCqGdckSKXOYJn1v2WNV98ufP4vQouzhT/a+Ef85MRPeEfzO2TnWyTKTeXUWGrYN74PCUlJv57vMFpaFLWiFpfRRSAZwKgxKu36k7Mnebj7YY76jjIRnaDaWk2hWKDF0cKW+i0c9x1nJDxCvb0eX8zHO5rfwcrKlXgsHlnhlUvRF+ijuaz5daX6zr+IjYZHSeaSHJg8QKFYkAmn4VHsejsOg4NAMoDNYKfSVIlTMlCTMwALW7TFePyaOjrPR8kXZX7RA7BvYh/3tt9LmaGM2eQso+FRMvkMzY5mKswVHJo8RL4gZ+KUFDHJfFLp9pTgi/vYVLeJE7Mn6A30ksjKMumWshbuabuHM8Ez1Nvq8Ua8AIqtwHs63nPdLlZXI58/9zEuo4tAIkAsF7sqCf7lHkODvYFPrPkEPbU99AX6eHXmVSLpCEOhISrNlehUOsWgcL5B6Eh4hJsabyJXzDEwN8Dtwu28OPIi7+t8Hx9a/iFSuRQmjYkOV8cCb56XJ15GrVKTysuhwUOhIUwak5Izdtp/mg01G+h2dbOyaiWziVmqLdU02BsUcrMv4SNbyC56L5fy/TkX80ci/cF+1tdsQCrkcRrLaXQ0EUwGWFu1hm5XF48e+ndyYgFBEJhKzHBz821UFg14CZEmf3YsJlFrrKR/5BAf2/AphhPjRLMxHHoHdoOdYDIoj1+LrwkLREGkKBUZCg2xd3wvjY5G4OJGpw32Bj699tPsm9hH72yvzGdEYCI6oYwE4fIdss+FRWfBrJN9eUpwGV2Um8rpC/SRyWcw6UzEs3G0Ki3drm4eWfEIPzz+Q/qD/QqfR5IkJmOTPHr0UW5tvlXJjcsVc9TZ6i676ClB0OmY0KV4YvSF18QMc3AycGrBZ1U69xO5BIVigZHwCD88/kNub72dA5MHEAURp8mJTqXDoXdQb68nk8+wsXYjucJr10azwYamvUYhOCOKeJ0ie0OvEk6nMOTMCAjslHa+qT5jF8Lbhc//ZWgvb+dzGz+3aLebzCVpsDfI5MSzXaBoOsoy9zLay9sxaow4DU5FMrt3fK+yoxIFkUpLJXW2OprKmnh/1/s55jtGOp8mm8/yzUPfxKQ1sbluM8d9x+mq6KIgyW18nUonXyRELV0VXVRZqq6a3HguGuwNvLfrvaysXIkv7mNd9TqeGXyGobkhAskAZq2ZTTUbeUfdTWxKVmCcji5+ElG8bvPqUmdq/ugRQELiv0/9N7+3+vf459v/mSPTR0jlU7hNbr5+4OuoRBUrq1aiElV0V3SjV+u5v/1+ygxlxLNxTBoTyUKSQCJAr7+Xu9vuZkXlCmKZGLFsjGKxSO9sLz11PWyu20wsG5MlyeYqzFrzVammzof5BYZFa0EtqNk/uZ9QKqQsSJe6MJaI35F0RPE1imaitJS1kMgm8CV82PS2RQvhhdyP5xPJSyT7g5qDeMweqq3Vi4ogi87CprpN1FprOTh1kKG5Iaot1ahVag5OHkSr0lJrrWUmvlBKnClklEUunUsTSAV4fODxBff58y1/vuDfpS5nOB0mX8wzEBwgmUtSb6vHaXByc+PN/Lz35zx95mkGQ4NKeOdqz2oSuQTPDT2HXq1flKwOC0dXl4vSSKR3tpdIJsIdzbdBNscB3xEG587gj/v4zsFvkVPJJOZaay2hbAS9wUxR0PHj/f/KPu8eEAQEQWBdzXo+2fMZvrr//+N0oBetSodKVLG6cjXrqtdxZPqIMvYWBRGnwYk34qW9vH0BF/BS7s4WnYVqczX7x/cTyUTO+96upqN8ocfq1DpqrDW4jC4i6QjLKpdRba5Wuoh9c32Kaqu0OXHoHTTYG9g+vJ172u/h0NQhALoruvnoqo9eUdEDF/Yxm/9ZBVNBnhp4CrWgxm6w8+zgswQSAZa4lvD84PPc0XoH8UycCnMF9fZ6Dk4d5LnB5yhSpMZSw02NNwGvZbWJOgvaFSsohsOcyUzy9wf+keGYF+Fsd71ksvrUwFM8svyRt1Tn5+3C57cEUiaj+E8IWi2izXbV45cLpe/Ot7g3a81sqd/CoclDZItZpmJT+BI+BudkfsES5xKWlC8hV8zRUtZCna2OX/b9kg90f4DvHPkOB6cOIggCerWeTD5Do6ORPWN76KzoVDgn5cZytjZs5bbm264qz+py3+ua6jWAfHHYUr9F2fHYdDaqzR7qomp0/UfhXFWIWo2g11+3eXU8F8cX9y0YPYK8020ua6bSWslMfIZWZyvZfPbs4rFO4Zgc9x0nmUtSZ6tjMjrJztGdSEj4k36aHE3c2XIn2UKWn574KVsbt5LOp/GGvewc3clUbIpELsEvTv+CNZ41/K/N/4twKkxPbc81+fzPLTAqTBU8NfAUgiAoiqZLXRhLF/NIOoLH4uG5oec4Mn2EfDGPRWthffV6emp7mIpNLVgIL2TJ/6k1n+KVqVeUIsqqs/LsmWfxp/wY1UaWupZe0Meozl7HJ9d8kq8d+BpTsSnUgpo6Wx0tZS3c2nwrBycP0lPTw6GpQzKHStSiKoJdZ0OnWvw7PZ/XTr29HrPGzIGJA9j1dlxGF5OxScaj46xqX8X3jn6PveN7qTJXkS/mCaVDTEQneG7wOVqdrZQZynAanUQz0Uu+1uXiXANEKZPBZirjxbGdnPCdALU8zq611rKlfguziVlq7XX8za6/Zjw0ikajI1/IYVQbed+KD/Hc8PM4jU621N9IIBng8NRhhsJDjEXHWF+znn3j+xAFURkjRTNRNKIGvXohlfZS7s7nih3m43whq1eCens95cZy1IIaCYl0Pq0U8nlrno01Gxecy9F0lBprDY32RgqS7IWWK+bwJXzYDbLS629u+hscOgfd7u6rCgs+n49ZCXOpOc4Ez7BvYh8GtYHtw9ups9exc3QnIKsJV1StYCwyxnhkHP+In/uX3M9az1qyhSxngmeYjk/z6vSrtDhaFmxMBZ2OpN3If+39FWdiI2TyGeU9jkXHFJPVqzGlvZ54u/D5LUAxHCY0dobxzCzxfBKL2kiNrgJHXavM6r9GmL/DyxQyPDHwBGVG+eIRzUS5sf5Gdozs4PD0YZa5lzEeGafKXMXGmo08P/Q8tzbdyssTL7PTu1Px57DpbFi0Fobmhqix1mDVWRXyYpmhjFZn6wIX4cG5QbxhL+lCmgpTBZ2uzmsW4GfRWVhZtZKVVSsX/L2gD5KxjVAMzRs5qdWoyssRLZZr+hnPh1ljxqwzc9x3nG53N5vqNinE42gmilalZa1nLYlcAovGgl6t54TvBLOJWY77juONeFlVtYrfDP+GSCYip5RnE7jNbnQqHX2BPtxmN13uLvLFPOWGcoxuI1atlR+f/DG5Yo6CVODA5AG+vOvL/OnmP100LrsanLv7dBldPHPmGU7MnsCitVBvqyeeiy9wnz7fhbF0Ma80VbJ9eDsjoRFl/BrLxpiOTyuPn0nM4A17cZlcF7Tk///2/398YNkHsOlsnPKf4me9P1Mcg206Gw6DA51ad8FuworKFXx63ad5ceRFjBqj7K00fYy/ePEv0Kq1WLVW/mDdHxBJh7FoLSxzd3NDwxbUkoCUzyOcjfe5UF6WRWfhhvobODJ9BF/Cx4aaDRyYPIBG1LCyciWPvfgYVaYq+XvOJIhmoth0Ns7MnWGJawl3tNxBtaWa34z8RnnOK8nmuhwIOh3dNav48i1f4ZnBZ5hNzCrn62xilk+v+zRjkTFGIqOo9UbKcRLJRPngqt/hycGn+M/j/6lkYTXYG7i95XbZnyoXZJl7mewDhoBZKxt21tvqSeVSuEyLUwIuNq46V+xQwrmxJlcDi87C5rrNF8y7Ove5HXqHcs07F2pRTaWpkrva77rq44FLj+6m49OoBTXbh7czFZ+i0lKp3BbLxpiITlBjqcFlcnHcd1wxfdxQs4F3LnknJp0JtaBmfc36RUWjN+xlODysqBfnv7d8Mc8N9Tdc9WjxeuHtwucNQqntn8ql0Gv1jIZGCafDlBnK6K64cJUvZTKMjJ/giYEnCcZf80lxmiu4V7iHJsO6a0q8Le3wXhx+UVGGgCz9PjB5gCXlS1ihXsFaz1oyhQwCAuPRce5fcj/HfMcYj40jnJW+llRFKlGFSlChUWmU3fC5F6DR8CgvjrzIfx77T8U63qKVF4LfXf27VyzHvRKonE50mzaRO36cYjyuyEBFiwVNe/t1IzaXpNUl+fn8vJsmRxM31t2otLyPzhzln/b+ExWmCgwaA31BmU9Qaa7k0NQh6mx1zMRn6PX30uZso8xQRjAZ5PbW29k3vo/+QD9qlRokmcvzxRu+SK+/V+GmHJw6SCAdeF1ZaSWcu/ss+X+AfJGdX1xNxaeQkBZdGEv8p4noBGatmbHo2AKOBsjKl9LjQb74+2f957XkFwWRRC7BZHSSHxz/Acvdyzk2cwyVqMKmsxFKhzg8dRijxqi8h3MLMV/cx9df+Tp6tZ5Ts6fIF/MMhYYIp8O4jC56ant4evBpTGojr04eotxUwbuWvJP3Nd7HGtcyImIOu95x0bwsrUrLuzreRTgdxqgx8sjyR8gWskzHp7mn/R4kSeK0/zTj0XFlNJzMJWm0N2LT29hYs5H11euvKJvrarrJyyuXU2muPG8O2C9P/xIAQa1Gb7Syum4DfaEBpuMz6FQ6REEEQSYvi4JIna2OaCZKhamCFkeLEo9RY62hzl6HP+4nmUuiETUKuRYuPa66WqfvSyGWibHLuwu3yY1eJXvtaEUtNr2NXd5dNDuaF7zG/Pigc9Fd0X1N0ssv9VkIgkA8G2c0MqoUyFatHLVRYapgLj0n8wZVampsNWRyGSRJ4uWJl9k3vg+73s7qqtXnPdZQSjbsbLQ1kiqkFCuI3wz/hkAyQDwbf12jxeuBtwufNwCltn8mn2FV1Sq+efibDIWG0Kv15Ao5LFoL/2vz/6KntmfRYyNhH0/0Lyx6AILxWZ7of5LfqajH7r7y1uilcD4yZL6Y5+TsSfxJP10VXQuUX4FUgFwhh11nRy2q0av15It58kU5C6fGWiPnK7lX0FXRtajTs3Nk54KiB+RFcrd3NwB/fuOfX7Nd6/mgKi9H3LTptQVAo0G026+rieGFpNUes4eHlz2sFD1j4TGeHXwWi86CRtRwc+PNxDIxssUsTY4mHAYHp/ynWFK+RAnFzBayVFur8cV9bB/erpxviVyCVoeclN3hWjj+iKajlxUQeSmcW8Sk82kl8BHk80gqFiGfB0kilYphEl8bZYyGR9k7tpdCsYBVZ0Ujaqi2VC8qaNSimkwho/A/zBoz07HpRccjIFBuKOfQ9CHWVa/j2MwxWUWVT6FVafEn/Rg1Rqbj00zHp7HqrMp7GAuPccJ3grn0HCatiW5XN6F0CG/EiyiIyghjSfkShkPDxNJRqpxuttTfiKoocXTkZRwZ2dnWXtdyUZL8/vH9/OVLf8lLoy8hIWdwdVV08em1n+bVqVc5OXsSp8GJVW9lqW4p5cZy5TemVWvpqelRDEsvF8VwmNypUxRCIXnUq1KhstvRdHZestN5oRyw+XwijVpLR2UXvzz9S0xaE5lCZkEBOxAcYGPtRl7yvkS1pZr3dr0XjUqDy+jCpDXx3OBzjEfHkZAUY0673n7Z46qrdfq+GEqFvU6to8JcseC28/1+5scHzS9+uiu6+eKWL17VaOtclMakw6FhuRA7G0FTEqqk87IM/wPdH+DRo48yNDdEUSqypHwJdbY6bm+5ncP+wwzNDRHLxfjw8g/z01M/JZmXO/fJbJKiVMShdyx67VQhxdMDT3Pcd1zZhHS6Onlf9/v48YkfY9KY3nIq0bcLn+uMUts/lonRU9PDl3Z+iX3j+5SsoEpzJSsqV/AP+/6Bf3zHPy76EYzFJxcVPSUE47OMxSevS+FzITJk6YdUMl0rIZVLoVFpGIuMUWmulE285smlM/kMHrOHTbWbFhH3vGEvgWRgQdFTQiwrd8quVI57NZhvZ/9G4VK70tHwKP/6yr+yY3QHGlGDgIBRY2QsMiargDrVimJFQM6eAmTHaksNo+FRhkKy/0ypEzcYGuRnp3/Gn235swXHYtVbmU3Ovu629Lm7O71ar5w3mXyGfDFPIDGLWlBjFLTYMeAJ5CgawyQMKvaN7+PpgacVY0Wb3kYsE2Nrw1aeG3yOdCGNRWtR3o9erUclqqi31+NP+Bcdj0ljIpAMEEwG0ag0SracQ+9Ao9IgSZKiUAylQkTSESwaC/vH9y9arCrNlfz+ut9HRJTfRzJAtpA9W/gMkU3GSegjpONh5THD8THGCWO7CEl+LDzG3+z6Gw5NHUIUROX7PDR1iH858C98cvUneWnsJQbnBhUOhUPvoMpSxZqqNdzZcucV/z6kTIbs8ePkx8aQslmlEC3OziLlcuh6eq6q8D/XHXhobkg230wFKTeW40v4lPsWpAKJXIIOVwfjkXGePvM0bc42+gJ9BJIB3tv1XsLpMNPxafLFPP2Bfm5uvJnbm29nLDx21cq+14NL/T7Od/v8+KBQJnTFfJ5LKRGDqSAeq4cj00cUI1OD2sCGmg1KOPW6mnV8efeXOTJ9BLWgZlPdJnr9vbwy9QonZ0+yzL2MmcQM7+16L/3Bfr5wwxc4HTiNL+ajL9BHubF8UejoWHiM7x75LhPRCWW0JSFxyn8KeuH93e9nZdXKtxSxGd4ufK47SruD1rJWXvK+xL7xfa+dIJLERHSCfDFPa1krR31HF/0Q5vIxApos2WIOrajBih5t7jUSbuJCGS2vE/MvXvOhFtVsqN6wIAYBwG6wky1kCafD9NT0sH9iPxPRCSXodK1nLb+/7vfPq1aI5+IKJ+h8yBfzVyzH/W3ChXalpaJ5PDrORHSCcDqMVqWlylJFrphjQ+0GpqJTNNobGZiT07CrLFUIgiB33wx2Ts2eQiXIo0ZRENGKWgpSgb5AH+nca0qZNZ41WLVy2ObrbUufSywVEKiz1pHIyhLa6cgEk9HJs6+7ls7qlZim0uT6+xmt0/NU/1NMxacQEGh0yFEGoXSInaM76ant4ejMUWpttcQyMTxmD3a9nXWedXjDXooUuaPlDrwRLwPBAeVCnMqnaC5rxqgxks6lyRaylBnKOB04jUpQKRdmm96GUWNEr9bzJ9v/RCl68sU8KkHFoalD/PL0L9lSv4UnBp7AqDEiSZJyO7DAGBIgW8wRzycvSpI/5jtGr78Xg9qAWWsmW8iSyCZQi2pemXqFj6/6ODc13sQu7y68ES9WnVVWlNlq+eiqj+I2u6/YKqAQDMpFTzqNlEwq5H4plSLX14eqoQFNQ8MVf//nugNH0hHyUp4TvhOsq1nHCd8JZhKvqeA8Fg9b6rbwyGMfIplPsqpyJZF0BLPWzMGpg6ysXMnyyuUUpSJOo5OVlSt5cfRFilIRAQF/0n9eZd/1wqV+Hxe6/Uq7cSVcLGi4wd6wQASwpX7LAsK1JMnxKL6ED5fJRX+gXzmWkdAI/qQfEZGB4AD3tN2DTq3jl32/ZC45R6OjkX3j+6iz1fGezvdwa/OtvDjyInW2OuW8GgwOYtfbeU/ne8jkMwyHhhXjw9nELF0VXdi0tit+z9cbbxc+1xml6j+VTzEVm0IlqJSLcQkz8Rk6XZ2MR8bxxX34E34lqXgwPkZvsE+5KBm0JtodLVgzAqjVmM1l1+W451+8zkfga3Y00+RoUroULpOLn/X+jAc7H+Rnp35Gg72BDTUbyBfz1FhreOfSd7LKs+q8r2XWmBVuxfmgFtVXJcf9bYc37GUsMsbg3KDchdBa0Gv0HJs5xk2NNxFMBTk+c5xN9ZvIFXMks0k21m3ktP80DfYGbm68mR8d/5EyeixIBTQqDYW83IkrERHXeNbwxxv/mFP+U69L8VIaC4XSIZnnoLWQK+QoUuTGhhtpdDSSyCY4NnkYm85KrbWOTTU9fPfgN/nzrt/HGUgxGfYrO1aQ/U7KjeU4DU7i2TirPasxaU3kCjk6Kzp5Z/s7seqtPD34tLIwzMRnmIxOsr56PQcmD5Av5qm31dNe3s7BiYOs8qzihaEX2NKwhVQ+pRgUlgIa72y9k75An1L0FKWi4mJuUBs4Mn2Ej6z8yIK/11hqwCN7Ypk1ZjSo8M2NcXr6BFpRg9lgu+Do6OjMUQbnBpmMTSqcK4PaIKe/n/VbiWVjPN73OOtq1nFn653Kd7SpdhP19vpLLo7ngxSLIWWzC4oe5bZ0muLcHFJV1RV3fXxxH6FkiNubb0cURLLFLDuGd2DVWzkydYSWshY6XZ3kijnq7fUsKVvCCd8Jkvkk6rOKJ4fBwWxillnfLOORcQRBwK63U2WuQiWomIpNoVFp0Kv0LClfwuDcIHvH9jKXnJPzra5jF+h6KsbOxeXI1Odz6uYXlJFMhInoBKurVlOQCswmZmWz2pwRu97O4Nwg0tn/iYiYtCb29+1nMDTIqspVaEQN3RXdqEQV07Fp8oU8T595mpVVK9lUt4nR8Cg/7/s5u7y75CgiQaTR3siXtn6JX/X9irnUHIFkgFuabrlmn8e1wtuFz3VGqfqPZWJoVVoE4bVxxHzkijnsejvfeOUbiKJIpalSJtCZ3ZS76gn4vVAsksom6A8NstzZQXVVGw1X6PdwJZiv8jofWfLcLkXJLv7dHe8mnU8rkRU3Nd500Tl7SR7aZG9aNO6yaC3U2+uvWo7724x4Lq4UwW6TG3/STzQTRULi2cFn+eSaT7KtcRsjcyN8as2nlALnlsZb8Fg8CAh4LB7mUnMKr0ItqjGoDTiNTiotlXzn3u9g1Vo55T+FSWu6asXLuWMhtajm5sabWVG5gqMzR4ln4viSPsr0Zby780Em57yEEgEef/Un5It5+pbMsAk7ubPmewICFp2FkZCcjVQsFlGJKsKpMNvqt6ESVXRVyK603zr0LUXRpVFpqDZX0+JoQS2q+eONf0yukCOcCbNrdBf7JvbxmfWfYWhuiJ/3/pwNNRvYXLcZi9aipGgncgm5u3Y24DJfzGPWmikUC5QbywmlQrK7ta2e8eg4na5OXCYXL429xPbRHYQSQQwaA2s9a9nSdhvmoprG2u7zFhClFPTVVasX/D2VTymu0FmNHKnx4ZUfxqq1olPr8CfkLkdpx//zUz/nzNwZYpkYoihi0VnI5DMXJ6ur1fJ46zzhniVcqXnnuVYCiWxCGQ+e8p/CG/EyFZ+iWCxSb6+jylTJNw9/k/va7+O25tuoMlexxLUUlahmKjbFLu8umRdULJDNy12EFZUr+NbhbwHQZG/inUvfyRrPGn5x+hfsGdujXJ8uVfhdLa6nYuxcjIZH0YgabDrbAjPGudQcE9EJDk0dWsCfKyGTz8idtnyeOludEpCqUWmwiTbUolqmW5yNuSkih/RORCcQEWXuXCHN4enDihrXn/STTIQ5PnGEZmuD0mXyJ/2EUiEkJI5MH2E4NMz9S+7n6698nQpTxVtuzAVvFz7XHaVF3W1yk81nubXpVsaiY0TTUTnq4Wznp71Mjntoc7bJ5mcqDXe03sFoaBRThYljZ3kRWkkkLUjoXZXcv+z6OeyWcCEC4/nQYG/gkeWPXLGKwqKzsLVxKxLSIlXXlvotfHz1x687v+diuBq34WsBs8Ysx4IUC/LiLxWRkOQdb3yK6fg0BrUBQRAYDY/iNrl5dvBZHlj6ACdmT7DEuYTbW27nmcFnFshp3Wa3bGroXkE0EyWei9PkaLpqxctYeGwRF8ahd7B9eDsaUcNNjTfhT/pJZVNIUoHTs72Qy3Jq6phy/3A2CtipMroxqA2oBBUjoRElNLLaUY3T4KQgFdg3sY8aSw06lY6JyAQveV+iw9XBL/t+yUh4BK1Ki0PvoNpazcqqlfTU9vAfx/6DLQ1b6A30ctp/mmprNetr1qMW1JQZyjg6fVRWvwX7eU/ne7DpbYQzYbKFrEIg1ql02PV2LDoLTqOTP9n8J+jVeoLJIM8PP49BbUCSJIoCJPIpDs0cxmks569u/EtszqrzfnalFPRuVzerq1ZzcOqgclsqn6KMMtZ41sjeL4Uc8VyceC6+YJHdO7aXXw/+mrHImNLFs2gttDnbSOVTFySrC0YjgtEoO+8KZ0NIzxZBgtUKWu0VmXeWirj5HWKdWsfpwGm+dehbfG7D59gzvodELiF3xBKz7Bh8gY3VPVQayvHHZjk4foDRyChHZl6l3FjOuzvezY6RHRg0BmYTs7hNbmWUqBJU9Af72TGyg2Q+ydGZo+jUOnRq+Xu6lNHh68H1UozNV9iNEeGnfT9mLhPGqrOSLWSx6+zUWGs4NH2IdD7N0Zmj2A12wumwQj8Ip8P0B/qRkHhgyQN8/ZWv0+vv5cMrPoxdb+e0/7QyLleLanLFHEucS5RRtEpU4TQ4KTOUsaV+C7lijpG5YZLZOFIqRTGZ4NT4YcYCw4xHxlnrWYvT4CRXzKFRaRiPjCtE6pWVKy/+ht8kvF34XGeUPB++9+r3eGbgGW5svJH+QD/RTJROVye9gV42123moa6HeHLgSY7NHFPM9dxmNxuqN2DSmqgwVTAeGcdmsOE0OFnjWfOWY8rD1asoGuwNvLvj3ayoXIE37CVTyOAyuuisuHY+PleKWCbGcd9xJV/pjeYT1NvrqbfVc2T6CIlcArPWjIREoVig3daOL+7DprPRWdHJRHQCX9xHtbWak76TOE1O/Ck/jyx/BJWoUj5TnUpHvb2eD6/48DVRkwCc8J1YJNU1a82sr16PSlTxzwf+mWMzx8gUMjgNTm5suJFb6rbRO3VcWajtWiuCZKCtooVNdZs4On2UTCGDWWtmZeVK9ozt4XD6MK9MvsJkbJLbmm4jnAlTbanGbXbz/NDzjIRHAMgWsoTSISRJLqSXlC/h7ra7ecn7Et3ubjpdnewZ20MkHSGRTeCNeClKRZa5l2HUGLHqrOQK8mJwfPa4QqLOFDKE02E21m7EoDFwaOoQTfYmTgdO88rkK4BMfm6wN1CUinIHTmMgLS2OkCihxF17fvh5Pr7q40hIiosvyMGbn13/WVrLWulwdSxaZGOZGK9Ov7qg6AFZFDAQHEBCOu9IphgOU4hEUDc2kstkKEZl00NBrUYwmdC0tUE6fUXmnaUibj5KLvAnZk/wHuk9JLIJpuPTUCzi0NlZXtbBjZ4NPDe6g3gqjA4V4bOGlYFkgCPTR+is6GRwbpBqazVrqtYwHhnHrpc5hTq1jkQuQTqXRqfWkcln6A/0s6JyBTq17pqoFC+Ea60YK4bDcgREOk3Qqef73p9jtpTxwsh2RsIjSJJEQSrQVdHFQ50P8fTA0xjUBgqFAnadnXwhT0EqKNYYd7TcwU9P/pSp+BSRTIR/O/hv/NmNf8b3Xv2ebJ6otxPLxKi11XJL4y2cCZ5BQqLSVEmluZIn+p9Q4k+6K7oxak14rDWQyRBOhQkmA3RXdHNw6iAvjr6o3LfR3sh9S+5jafnSa3aNudZ4u/C5zih5Ppg0JjbWbeTAxAFana3cYL4Bo8bI76z8HVZVruKpgaf4xelfkMgmcJlchNIh5lJzOI1ONtdsZjwiB4o+3vc4NzbcyA11N7zZb+2a40IGg9cDsUyMM8EzMldArVF8LYbnhskUZYl0NBNlODSML+FjIDhAhbGCm5tuXuQUfL1g0Vn40PIP0Rfowz/mJ1eUgzJrbbUsq1zG0ZmjFCniMDh4fuh5xqPjlBnKWFW1ijJDGXe13kW9vZ5aW+0Fx5XXAnNpeWEtxQzo1DqWVy5nLjnHy5MvE8/G5fDaokggGeCl0Zewaa00VC2lf/okrWWtLNHXomloRme2c3fb3YyERohn40rRE0wF8Zg9nPKfooic3zSbnOVzGz6HQW1gODSMUOpaIBc/EhLT8Wl6Z3vZ1rQNg9rAUHCI2cQsoiAyODdIUZJHaOV6WRre4erAprOxe2w3n1r7Kf714L9yzHdMGQl0uDr4zPrPcGxG7lal8qkF8uxzc9dqrDUXVQGVuGupfIqf9f6Mhzoe4oPLPihHj2hNrHCvYHnlcqXIKXUYvBEv9bZ6xsJjpPPpBUVPCbFsTHbSPSeMVspkyI+Pkx8YQLDbEcrK0DidcrSEyQQajfz/udwVmXdeSICgV+txm91ISHxizSeIZ+KoEDAkc5ye7cUXnaZ/6hh1Jg/Y6hC0Wk4Feqmx1iBJErc23crKypUcnDzIUwNPcV/7fczEZ5T3VWGqQC2q5U6QWv4sS+7wcPW5XG8kpExGKXomLEV+EznAmdgIc8Hj9AVOE88m0Kq0FKUix33H8Zg9bK7bzGxS5kA12BtY6lrK/rH9ih+YXW/Hl/Axl5pDkmSC/7cOfotbW26lylxFpbkSb0TmB/UH+6m313Nn653oVDpeHHlxwTnVYG/AojJxc/1WJiZPs6R6OVUWD0+PPKeQ7YtSEUmSiGQiHJk6Qrfr9fsTXS+8XfhcZ8z3fHCZXKyrXkcsE2MmPoNGpeGGuhuYTc7ywsgL5Ao5tCotY5ExJY14IjZBV0UXOrWOfDHPA0sewKgx0uvvZTg8TKOjkQZbAxad5ZrGWvxPxmh4lB8e/yF7x/YqIaudrk7cJjfJXJJdY7vo9fdi19vpdHUSz8bZWLuRA5MHFjkF19vrr+sYrMvdxZ9s/hM6BzrxJ/3oVDpm4jMcnTnKptpN/Gb4N7Q52xTnZ4vWwsaajaypXqMcx5WMK68GZfoyREGk2lKNN+IlmomysWYjeSnP4NwgNdYaBAS0Ki1pKY0/6ceXnKXaVIWjrIpPbP4DPFVdCDodsUyMPWN7uLX5Vux6O/W2evoCfVh1VqLZKB2uDopSkXJjOVOxKfLFPBqVRi5gzuE6mLQmBARlQXab3Xxk1Ud4rPcx7mm7R868mhvEqrfSYGtAp9LxwRUfREAgV8wxFBriE2s+QSqfIpaOKR2F4dAwmUJGJrLa6pVO0/mgV+svqgKar55M5VML8ryaHE082PEgFp2F/kA/Pzr+I6biU4pHS5WlipWVK8kWsovy3kpwmVyYdQtfv1DqLMTjSIkEgt0OKhUUCkiShKqqCsJhNG1tF71+zPc4cugdWLQW7mm9h4JUYDQyqqjq4DWH4rXVa5XHF8NhyiQ9z/r3I0kS8WQYRBFLWSUOvYOhuSF0ah0nZ0/KCfP+XipMFXgjXgQEJe9PI2pI59NoRa1slqc1ky2+1mV7q5nnnQ/FcBgplSJh0vDY+JP41WkanS08c+jfMKiNSMiWISpRRSafodZWy+DcIDtGdxBJy3lkNzbcyGfXf5bGskYlry1XzJEtyHE3KkFFIp/gRyd+RLaQ5U9v+FMlTsais9BW1ka5sZwfnfgRK6rkbL9Ts6dodDTywWUPU4xEmJg8jd3oZIm6kpOWKkZDIwiiuCAY16q10h/sP29Y7lsFbxc+1xml3cZMfIbDU4ept9dTYazAbXZj1VkxaUwkcgmS2aSszMkllaIHwJfwMRufZSg0RIO9gbWetYxFx9jp3QmATqVja8NWltnb8YxFZYXGWQgGA5r29usWufDbiBIRtFT0gExKfGbwGZodzVSZqxgODVOUiswmZskX87Q529jl3UW3u5tef6/y3UzFptgxuuOKlDRXg253NwPBAZwGp8z7MJRhUBv4zfBvqDRXEk6HFSn0zY03Lyh63gh0u7vpqelh99huopkoRamoqBJ1Kh2pXIqiVKQoFdGqtIp779qa9dyo3car/uN0VS2HTJZDk4c4OnOU1rJW+gJ9aFVaTs6epLNCVj16I150Kh2T0UnUKtnAsM3ZhlVvJZFNKMdk1VlpKWshmAwuUAQ22Bv4+OqPc8J3gg5XB8l8UuE2lBnK2NawjVgmBsiLxpm5M8pjM0mZMHrf0vvYWr9VCfc9OHXwvIWHQ+9gqWvpRUfS56onBQRMGhM1threvfTdBJNB5pJz/PMr/8xIaAS1qEZAoEhRJkAnAkqu3vy8N4Baay13tNyBUb1QMSnF40jxs12QYhFpbo7iPENJdU0NmuXLL1r0lMjsx3zHcJvcjIRHqLZU88CSB/j+0e+zsmolaz1rOTh1kHwxf968MNFup8mwjvUmkZPhfrJSHq3WgElnRq8xkC1kSefTiIJINBOlp6aHClMFPz75Y4Xv5tA7aHe2U2YoY7VnNdPxaSpMFTj1TrLFLDa97S1JCTgXJS7VOGGG42PYbBXkpQKxbJxcMY9ercdkNKFT61hWsYz9E/vJFXJE0hEa7A2oRBX+hJ9f9f2KntoezgTPUG+rX9TtyxayVBgraHQ04jK5GAuPUWWpwmPx8J0j3+G0/zRd7i7FCfyz6z/LgL8PkmlODu7DbnRyb9MdOEM5Gh11VFmq8CVmEQRBiRqps9WRyCUwaAxvxkd5WXi78LnOMGvMxLNxDk8dZl31OvaM7eE3w69l6YxFxnio8yHFc6G0cy1KRYrIRMOCVCCTz5DMJXlu6Dl+fPLHrKxaySsTr1BlqcKms0EiiVWowzTvtaVUilx/P9oVK97u/JyFN+xlODRMOp/GrJE5M7lCDofeoRD7ShcLAYHZxCydrk4Go4NsqtsEyBcPp0Hm0BSKBdwmt8L/uR6EyhL5+4n+J4jn4sSyMVL5FC1lLayqWsWByQMY1AY21W3iwc4H33AVRZ29jo+s/Igiu88VcuSLecoMZZQby5mJz2DQGMjlc5i0Jiw62XwwU8gwFpCjLI77jnN4+jCpXIrDU4cZj4yzxiMXcM1lzbKPUSaMXqVXFCYmjQlf3IdG1LDWs5ZAMqB8h6IgKuG4pQV3/qjIprdxc9PN+BP+8/JmzidX1ql1LHEtWRBCWVL4GDVGftX3K6XwcOgd3N12N+/ret8lv4/56sm59By+uE/JUCt1tl4ceZFMISO/ptZCo6ORgeAAHa4O6ux17B7bvSjvTSPKnbBFPIv84rGYIIqglbsEgkp1yU5PqeixaC2MhEcIp8OE02FEQeTBzgfZOboTk8bEzY03Mxwa5tPrPn3erqOg09FevYyl/uULPu9aWy0SEi6ji/bydlwmFyvcK3js9GN0VnSSysmblnJjuXxdHd/DsZljeCNeJT7k/iX3s6l201tSVXQuSlyqeD5JtpgjmgxRa2kHQBQE5tJzChHfaXSyy7uLjooOGuwNBFNBgskgerWecDqsFDJ6jZ5OVye7xnbJv5HqtTTaG2kua+bg5EF2jOygUCxQY63hXw/+K1MxmQv0wtALSmG5zrOWv7vpKxRmpmhe+k5qsWOKF5gw55mLzNJZ0Ul5wqVEiqhEFclcknXV66gwVVzsLb+p+K0ofEZHR/nrv/5rduzYwczMDB6Ph4cffpg//dM/RXv2xwowNjbGpz/9aXbs2IHBYOD9738///AP/7DgPm806u31iIjU2+vZM7YHb8Sr3GbVWRmcG2Tn6E421m3kR8d/pPieCAhoRA011hqyhSxFisSyMeKZONPxacQZkRWVKwimgoxGRllVtYrn0sM0udy0pi2Y4lmQJJmFf4WS1P/JiOfiZItZRSody8bQiBrGo+PU2+q5of4GJQpBFERl7AFywaMW1VSaK/nV6V8Rz8WRJNkHw2VycUfLHUTSEXwJ3zUnVJ6rItGKWjQqDdPxaTbWbqTKXLUgBuSNhllr5r1d7yWRTRDLxmhxtDAwN0CluZKCVECn0pHRyp+pTqXDY/W8RhrOZzjuO06vv5cygzw2Ox04zVRsij/c8Ifc1HATTw48icaoIVPI4E/6MagNrKxcSSAZwGl0clPjTfzq9K8Yjg5j0piotdVi09r4yPKPcGjyEMlcUnalzsaJZWKoVWqlO3fu93SlcuVSbtV6z3p8SR/FolxsdLg6Lvv7cJvdGDVGHj36qJJo3+pspc/fh0pQsaV+C7FMjMPTh4llY4yERqi31ZPMJqmz1rG+Zv2CLqbH7OGe9nvYWLtx0TEIFstrUvZzoVYjmC8+GiqR2fNnOxHhdBiQVVbHfce5s/VORsLyb2u1ZzWfXf/Zi/4Wzvd52/V2aiw1rK5azU9O/QSVoMKf9OM0OmlzthFOhzFpTVh1Vn544oecmj1FT00P5cZyKs2VlBvKmYpOUWa4Pj5n1xqi3Y5gMGAWjWhFDf0zp7iz+12sdK+gLyibDhakAg69A4PGgEpUoVPpGAgOkCvkFJ8utSgnxu8d38vGmo18bPXHSOfT1NpqOTh1EEmS2De+TymON9VtQi2qOTF7gmxB9j8qWa4IgoA3MsZMYpYqg5l4PMKEGsrLnDw9/DTachd6tQGL1oJRbSRXzGHUGGlzttHoaHxLd9p+Kwqfvr4+isUi3/rWt2hpaeHkyZN8/OMfJ5FI8A//8A8AFAoF7rrrLlwuF3v27CEYDPLII48gSRJf+9rX3rRjt+gsbG3YiuAVFnR6rDor9TbZCOuVyVd4/7L3s398PydnTwJysGOdtY672u5i7/he6qx1cptbkAuiRDYhZzepNKRyKYbDw/T5T3NQpafZ2sg7DB1U+zIgirJc9W0AcgdOI2oYCY2QyWfQiBpEQaTMUEaukCOYDLLGs4bdY7spUsSoMbK8YjntznY8Fg/tznbGo+OYtWaS+STD4WFi2Rj4YWhuiK0NW2mwNyijnmuJ86lIrkXA4bWASWNiNjHLRHSCUDrEUGiIdZ51bGvcxpP9TxLLxphLzVFnlXOBVnlWMR6RuyORdISEIcGOkR3KuPGY7xiBRID9E/tZ5l6mJJZrVBosWgu1tlrWeNYwEh5hW8M2aqw1rK1ay2xyVgn4LBQL/NnOP6POWodJayKZS1JtrabOWqfEeMzvzvniPoUE7tA7uL/9fmKZmByLcAm58rXgUZX4gCpBhcfi4TdDv+HpM0/LSr3Zk3SUd3Bb8208P/S8EvaaLWbxWDx8dv1nubPlTjmFW6XGY/bIhNTzHK/K6URdV0d+bGxh8aNWo66rQ+V0XvQ4S2T2ksoIZGJ7yZi1RLbOFXLEsjF2jO64pNT7QvJwgBP+E8rnEkqFOBM8wytTr6BX6/ngsg8yE5+h3l6PRqUhkpGNPivMFTIJ/Dopuq41BJ0OTXs7tWMiTeY6RiJe+qdP8PDyh9kztpe+oFwAGzVGjBojTY4mcoUciWwCk9akFKEmrQm7zo7b5KbZ0YxZa+bvbv07vnPkO9RYa1jvWc9Pe3+qGHYOzQ3R7mwnX8yTzstRMCV+kE6l4572e3jyzJMEkgEMaj1VehfNzlbK6lqZjE3xjpZ38MLQC3jDXkRRDgK2aC3X3M/oWuO3ovC5/fbbuf3225V/NzU10d/fz7/9278phc/zzz9Pb28v4+PjeDweAL761a/y4Q9/mC9/+ctYrdY35dgBjGpZIttV0aW04jP5DJOxScoMZbw68yrv7XovW+q2sLJqJelcGlEUyRfkwMnJ6KQ8ry0U8Ia9OPQOUvkU8Wycaks1O707GQgOEEgGSGYTNNubMHf/DneqPBhnIxTCYcRw+G2uD3IHzml0KjEY2UIWjaghno2zpHwJ6XyaGksNRo2RXCHHgx0Pcnj6MIOhQeqsdbhMLqKZKPe038PhY/LuG+SLRKuzlTZnG5FMRFHhtTnbsOgsC4igZYYyuisuP6fntwF6tZ6J6ITcjUQkkU2wZ2wPq6tW8yc3/AlqQU0sG6PSVEkgGWA8Mq4smhadhTNzZ5hNzBJKhfh/Nv0/9Af7GQmP8N8n/5vl7uU0OhpZX7OeXFHe3ZYMMpscTVRbq+l0dxLLxHj06KNoRS2Dc4PsHttNk72J3kAvh6YOoRbVMrfIs5b3dL6H6dg0c6k5WRlVSPPvR/59AY/GbXbzmfWfYUPNhjfkMyzxAV1GF9uHtzOXmsOgNih/K3WLl1cu59DUIfLFPB6zRykqLuSMfi4EnQ7tsmUIKtVr4aRqNaEGF/2aMJHhX2PX2+lwnV/9V6aXuyglwiygqN5APhdALoaMauNlS8ovJA8vdYP8ST83N93M3vG9jEZGERAUFZ3T4KQ/2I9NZ6PcVL7oM/1tgGi3U2ZYxrvLDGSNGvZM7ufujvtpcjTJ/L5CCpPGxMqqlZyePc10YlqOBJIk9Go9NdYaGmwNCAjo1DoMWgNra9Zy0ncSm84m3ybIHDKdQc7OS+VTGDQGxVS35BwuCiJbG7byzOAzWLVWxqPjZPIZ3tf1Pp4YfJr+YD/lxnLC6TC3NN3C+7reRzQbxaqzvmWtVubjt6LwOR8ikQhlZa+1Mffv309XV5dS9AC84x3vIJPJcPjwYbZt23be58lkMmQyGeXf0bN+FtcSSyuW8vLUy0xEJxbdlivmKEgFjs0cY4lLNpEaDY+SKWSYTkwzEZvgnvZ7WFG5gsnoJPFcnFpbLVOxKTpcHTze/zgj4RGWVSxjLjWHw+CQQygHn2D5kt+nLWmGXO5trs9ZWHQWbm68mV3eXUpYYq4oxx8sdy/nwOQB3t3xbkRB5B3N72AoNEQkE2FDzQYl9Vwtqumd7eUPNvwBqVxK3nEV8jzR/wTfP/p9OaU7E6OtvI3P93yeCmMF/2ff/1mczHzDF+mp7XmzPoprhlgmxq/P/Jr72u/jnw78EwcmDiiL4Fx6ji94voA/6SeQDGDRWpiIvfY7KDOU0V3XzR8+94eA/F0MBAaos9XRU9sjm6wJasxasxItUWmuxGPxoFPrFkQEeMNeIukIrc5WOcusZgOJjOx63WhrxKQzUSgWSOaSHJ4+zBLnEpL5JL6kj3/c/48Lvh+L1oIoinztwNf425v/9g3xkiqpj0oy/DJDGWatmaJUpLmsmUw+o8j6ARodjTy87OGr2lmLdjvaNWsUFejxwiRfO/INRiKjyn1K8TQrKlcseGy3u5vuim6O+Y6RzqcVPxiAroougqkgWpWWRkcjOrVOMV28WszvBiVyCdZXr+f9Xe9n3/g+HAYHx2aOMRmbxKazsb5mPWbta6O63wZF13wIOh1NNV181lXPmeAZfHEfHa4O5lJznA6cRkAgmo7yweUf5CXvS2TyGdSiGpPWRIOtQbHbgNfeezwXV5LkXSY59R5QNmYGtYE/WPcHCKJAsVhkOj5NJp+h2dFMf6Afo9ZImaGMBnsDL3lfIpQOEcvEqLZWkyvmeGbwGU7OnmSNZw3hdPi3wmrlt7LwGRoa4mtf+xpf/epXlb/NzMzgPofH4nA40Gq1zMzMnPsUCr7yla/wl3/5l9ftWEFug9/Rcgd7x/Yucre1aC2yH0d0jMf6HmNT7SbWeNagU+tYX7OeRnsjxWKRJ/qf4ODUQUbDo0SyEborurnXcS/esBenwUkkEyGZT1JGGXmpwGjEy4wQp6OpHSkWk1OX3+b6ACBIAl0VXWyo2aB012bjsxyZPkK2kKW9vJ3/c+v/QStq+d7R71FtqSaYDJIr5Ki11bJ3fC/bR7aTzqd5YfgFNlRvYHX1asVhtiAVaHA0cHTmKDtHdhLPxZVwwBJOzJ7gb3f/Ld+48xu/9Z0fb9iLWWvm6we/jllj5n3d7yOblwvEiegE3zj0Df6o54/Y1riNMkPZonFGf6Cfams1o2cX3cnYJFOxKfaO78WmsxFNR9nWsI1ULkUoHVpQ9MxvqSdyCTwWD88OPktfoE/hDm2o2cAN9TfwXyf+i2zxtQ7fptpNRENRxiPjiwwYSzyaYrFI72zvG1L4lDKg0vm0UvC0OluxaGWn6CpzFQ69A7POzIrKFbSUtVBlOb8j9OVA0OlQud344j6+vv1bC4oegOHQMP9y4F/4ys1fWfD+6+x1fPGGLyoE50Z7I2ORMdxmN+9c8k4ePfooKypXcF/7fQpn5/UWIOd2g7rcXXS7uzkTOMNg7SDhdFiW7s8reuYXxSVieyKXwKg1ksvniGfjFKQCZq2cFTg/fPPNxvk6eDc23Kj8diwaCxtrN7KuZh3hVFiJs5iKTVGQCgve+/zPXkDAY/Ywm5xlffV69oztYTQ0SiAVYCA4gMfioaemh1whhyAInJk7w0x8BgmJj62U+ULJbBKtSrtAMTYeHWdT3SY0ouYt3+2BN7nw+Yu/+ItLFh0HDx5kzZo1yr+npqa4/fbbefDBB/nYxz624L7zDcxKKJG0LoQvfOELfO5zn1P+HY1Gqa2tvdy3cNlYXrmcr9z8FX5w7Ad4I170aj0ukwub1kabs41vHvomuWKOl7wv8fzw87Q727FoLby/+/3826F/4+TsSZocTXS5uzjhO0EsE2NwbpAOVwcCAqf8p5TX8lircZurmFWl2asap93pxjmXvSL7+f/JMOlMhFOyBDxfzBNMBums6GRDzQaFJBhJRRAEgXA6jFpUky/mcRqdHJw6qFwIBEEgmonKSeChAe5qvYvto9sX8DQyBXlUWeqAzDf5KznTOgyOt8wF92oQz8UpUuTV6VcV48AS6RvkMc1MYoa11WvPO84wqA3c3XY3gWSA/mA/h6YOcU/bPbI3lSSRLWTxJ/3c1XaXIt09H+fGqDGyfXg7kUxElnxLRSw6C8d8x/DFfayvWc/usd2AXNgMzQ1RY60hlFpoOlhCiUdzIWO+a4Fz41DubLmTPeN7MGlNlOnL2D+xH5CYjE5Raa5EJarYULOBvkAfyyuXc9R39HXbJ8x3XM4X5fF6QSqgElQMBAfOW/j11PbwjTu/oYxvS3EJR2eO8pl1n1Fck89dhK8lSryqGnvNRYnopQDXyFlH6B0jO0jn04TSIYpSEY/Zw9aGreyWdlNvr6coFd90scD5cL7fzraGbTzR/4TSvYbFJPz5oaqlceFoeJSdozvJFXMEkgGyhSwtZS0ksgkmY5NUGCtkc1dRVpuVfgfT8Wnsejt6tV4ZwwJoRS1GtZE11WsYi4y9pYrI8+FNLXx+//d/n/e+970XvU9DQ4Py31NTU2zbto2enh6+/e1vL7hfZWUlBw4cWPC3UChELpdb1AmaD51Oh+4NGv90ubv4sxv/bNGOt5QTdHj6MIIgB0uatCZub7md2eQs6XyaVmcrhWKBfDHP1oatTEYn5eLJ6OIl70sUkWXwdbY6hkPDRNNRBgP9fPf0szSVt/GZlZ9kxRXYz/9PhlFt5MaGG3nmzDN4I15uabqFvWN7OTh5kCZHE96wF6veyj1t92BQG8gX86RyKSSDJBtPnpUJ69V60oW0YhN/V+tdJHNJREEklA4peTilnK1zTf4ADk8fZiw6pixe8wm2F+NZvJVg1phJZBOKBBZQfD0AVKKKeObCRNM6ex0Fb4H7l9zPbGKWWDaGXqXn5sab0av0rPKsotHeeEmCbK6QI5QOKeGLRo0RnUpHJBNhLDpGT22Pwn8oSkUEQaDR0chp/+kLPme+mF/gA3QtcaFE9VsbbyWQCPD9Y98nn5cDVm06K1PxKeIZuUuxwr2C/kA/BrVBIWgDV2WmWSrs0vk0wWRQKVwLUgGNqFmQ+D0fdfa6Bd3K0fAoI+ER5lJzymhr/iJ8rlu6x+JRzFdfDy6keJyJzxDLxjg0eQir1kqFqYIXhl4gU8gQSAYUz5+R8AiMgk1v4xsHvyHzKaUCm+o28fCyh697NM3rweVkhp2rmpuKTdFa1srx2eMY1UbOzJ1Br9ZTlGQxx2R0krWetYiCyMbajfT6ewmlQ4qoptxYjl6tp8xYhlFrVIjttfZa2VIgLDs5b6rb9Jb97N7Uwqe8vJzy8vJL3xGYnJxk27ZtrF69mkcffRRRFBfc3tPTw5e//GWmp6epqpLbv88//zw6nY7Vq1ef7ynfFJyvar+h4Qa+bfk2J2ZPEEqHMGqMHJk+wk7vTpa7lyvVvCiISEgYNUb6g/J4wGPxYNVZiWQitJS1MBoeBaDb1UkwMoMgCMwmZ/l2/494xPQ7WGf9b1jI5lsVOrWOQ1OH8Fg9bKnfws7RnWhVWupsdUzGJknmkvjiPvocfbQ6W5mITigqISRI5pMscS6Rvyu1EZ1ah0qQ/SuQeM2HSSqiETWKcsyuty8oekDuUsyl5nhq4Cl6anr4xsFvLMg7uhDP4q2EEmFcFMRFt+lUOiVp/UI8D4vOwt1td/NE/xOoUnIYZywTw6gx8u7ud9Pp7rys48gW5THlQHAAm94GgMPgwJ/0K3b6LpMLm85Gs6OZSnOl/B2pNDTZm5Rw3PmY7wN0LRHLxBYVPQBzqTm2j26nvbydaDJEhVk2B6w0VzEWGUOv1jPg72Nbw1bGomNE0hF0ap3igzSXmkMjamiwN3B46rCiWLwYmd6usyudT4BAMkA6n1ZuD6VCHJ46zGrPxa+jF1uEz3VLB1lyf1frXfQ4llGb0spSeosF1SUc5y8UGtzl7mI0PMqvz/wam85GOp9GLaopSjJVwGlw8qOTP8KqteIyuag0VypuyHvG93BX612k82nane1o1BqimSjbh7dzd9vdb+nNx+Vkhp373QQSATrKOxiPjhNOhxWHbZ1KR6W5ktnELN8/+n1+b+3v8fLkyyRyCURBpNnRjFVnpcnRpPhqSZJENBPlmYFnmIpPoRZlVaEgCDgNzrfkWvNbwfGZmppi69at1NXV8Q//P3vvHR/HQef9v2e2912ttCuterdkyZZ7T2+kEhJIQggEuNBCuecO7g645wfh4DiOdsA9d7QjR4cLcCFxOinucdwlW7Zk9bqrtr2X+f0x0cRySewkJLGZd/7Iy7ur0exK2vnst3w+3/gG09PTyn2lpaUAXHXVVbS2tnLXXXfx9a9/nbm5OT796U9zzz33vKkbXWeLx+qhKi2vrM+7Nxs1st29WWdWNlIkScKmt+Gz+TgweYAvXPIFEtkEwVQQp9FJZ6CTGns1631r2HrsCey2EgYjwxwZGqDR26IkO78RIZtvRaLpKI/3P87airU80f8Eeo2ebSPbcBldrCpfxcaqjRQKBaqd1YRSIdaWr+Xh+MMMRgfxWX3oNDrqrfWs9K3k2cFnSeQShFIhHEYHeo0eQZB9f0RBVDxryu3lDIWGMGgNRNIRREGk1FpKS3ELXouXdD6N3WDnx/t/fErI45nmLN5K2Aw2VpWtYl3lOrYNb1O2tQwaA26zmyWeJWgEzcvOebweaddWnRWn0clSr2yGF0wFWV62nGw+SygVwmVyUWQqosJewU2LbmIqPkWZtYzB0CC3tN7C77t/v0D8tHva+dDyD72m1/1MFbz51fXTMZOYocRYjM9Sis3kpMRcjPHF1PFMIYvw4ifsXCFHppBRZpnmRU+9q57/2PMfdE51otfocRqcNBc3n3GYvtXTSqWtEn/Mf4roWeJdwmhklM79nVTYK17xtTj5IhxNR+kKdPGLzl/QM9ujVOMkJMZDIzy8/9fkPGO8jUbM0xEEqxVdczPaysrTbqHOV8lGwiNMx6dJ5VJUO6p595J3oxW0HPAfwG1y82T/k0zGJjFpTRzwHyCWiXFn+50ICKTyKUVE1rpqiWfi2A12moqaqHXUss+/j5HwCBpRw/6J/YyERnj/8vef9++XJ/5sDgcOs2N0B9FMdEGsyHygcbm9HIBtw9uosFdQYa/AaXDypUu/xGN9j7F9ZDvBVJAiUxEllhLe1foufn7o5+i1erSilonYBJt7NtPuaX/LWG6cyHkhfJ588kn6+vro6+ujoqJiwX3za3gajYZHHnmEj33sY2zYsGGBgeFbnflPQwcmDyifVhOZBBfVXESqkFLCGefbCD6bj9aSViw6C0gSG6s2kC/kEQSRlpIWsrkM24a3YbQVMRgdJSqlEESRRE6Os/hzuAufLwyHhplJzMhbCbZyyqxlNLubua7pOh489iA7R3Zy06Kb+M7u7zAVn2JNxRrS2TSbqjaxxLOEdm87XVNdPHDkAYw6I0aNkeHQMDe33IyAvN67sWojjUWNlJhLWFW+inJrOSWWEiRJos5Vh8fsIZqJ4jK6+NH+H5HOp7mu8Tr8Mf+CteB5BoIDb9iA7auluaSZ+y65j69u/yrd093yayFqaHA1cNfSuwjEA6845/Fa065PnGUos5Vh0pkYDY9Sbi9nhW8Fta5abjHegl1v53DgMFajFb1Wz5V1V/LUwFPc0noLelFPKp/CrDPTWtxKo7vxVZ/PQf9BJYpinvkKXjqXfpmvBJvOjEk0ksqkiKYiFOwFud2KhF6jR4P8qbrOVUc6l0av0eM2uSk2FyuiB14Ka325YXqv1cuHV36YyM7Igs3TJd4lvKf9PXx/7/eVoNv538EzVV1OZF6k6EQdzww+w3RiWnGdjibDFOJxxlOzREtWMmZM0YQcp5Ht6UGSJPQm04LKz3yVrDtwhOdHdxFMzoEgsFt8nnA6jMvo4ujMUY7OHOX43HHWlq+ltqyW4dAwBQrEMjGcRrm6tbFqIz6bD5PWJGciRsYot5fzq65fsd+/H5DbnDa9jZHIyAX3flntrEYn6sjn89j0NnmeTZJ/t3RGHalsioaiBtwmN4lsgu7pbirtlcz1zLG0dCl1rjoS2QQmrYkXJl7g112/pq6ojoP+g5RaSxXxMxGbUIXPq+Xuu+/m7rvvfsXHVVVVsXnz5j//Cb2OzGdH7Z/cz/HZ4/J8g9bITHKGPeN78Nl88sU3L4cjNhc3Y9Qa5UDFJXdRorUzGRxDBDAZ+X97/5N4PomkFTDotMTyCWW426w1K+2Gs/XWuNCIZWOkc2m6p7tJ5pIYKgy0lLTwWN9jTMYmuaT6EraPbmc8Mk5OytE/10+2kGXX+C4Wlyzm85s+zyH/IURRJJqOUmIpob6onitqr2AmPsO3rv4WTw8+TSwTQytqOTB5gLQnjUFj4PjsceZS8uvuNDipc9axomwFmUIGk9akVCUyuQzxbHyBAPpzDti+XqypWMPXLv8ae/17CSVDshmaVk8gHuC6xuv+7BeNk2cZnEYnJq2J5uJmahw1dAW6SOQSPDv7LMXmYt7mfRv/e/R/cZlcXFN/DbPJWf5w9A/4Y370Gj37JvdRN1rHrYtvPedP+4FY4BTRAy9V8D6x+hMv+/UVpjIu9W1g32wXZbYyoukoLpOLWCZGW0kbHquHrSNb2T2+mwp7Bdc3XY/NYCMv5THpTLR52jg+e1wxFQR5k7Ar0HXalpfH7OG9S9/L5bWX4zA4EEWRSCpCIB5gXeU6ZpOzyu/gUGiIzb2bkSSJdC5NPBunyFTEKt8q7AY7brObqfgUvzr8K8KpMLXOWqUKOL8tV2XxEcnNgSSRKmSI55OA7AkkxWLwYuDyiVuow6FhRmYGeH54O8G43JYrCFBT3MDm3s1cXX81FfYKHup9CIBIOkI4FcaitxDNROmd7aW5uJnFJYvZMryFpwefxmV0kc6nWVa6DKPOyJahLSDICe8GjQGzzsxAcEBOMr+A3i9tBhtX1l9Jf7CfWrFWcbGvsFXQUNTAk/1PYtQZeXrwaQoUKDYVc13jdfTN9TEcGubIjLxMY9Vb2Tm6E4AVvhXKcLxWL0uLXP407uBvAc4L4XMhM58dlc6lFTO82eQs1Y5qgskg9UX1/Obwb7iu8To+uvKjyqrvRGScr23/F8yCgc+u+wwrpvTM6nUUa2xEszEEUVRKmAB1zjrFU2Oe88nc6/XCqrMSToWVOYNIOkKdq45dY7uIpCMYtAaOTB1BEAQuqb6E+qJ6REEWOWORMY7OHOUjqz7CezveSzgZxmqwUmYto2uqiyJzEXsn91KQCqwsW0k6n8ZhcvBY72PMpeYoNhWjFbTE8rKvyR+O/YFiczHPDT3Huxa/i57ZHpZ6lzIaGaXOVUc0HVUuWicO2L6VB6CbS5rx2X2vqWX1Wjhdy8xusDMaGkUURY7PHsdtchPLxtjcu5n6onolF6t/rp/OQKfyuwEwGBwklU/xqTWfOqfncOKm1MkMBAcIJoOnzQMDeSC4priOO2tuxCiJOCxFdE130VrcQkEqcG3DtfzP0d8RTAWx6+18eMWH+fcX/p1DgUPc1nYbW4a34LPJm0rT8WlMOhPpXJqh8BDB9Ok32CqdlWwb2cZ0Ypqfd/6caCaqrNTXuep4W8PbKDIUEU1H2dy7GQGBPxz9A71zvSSyCQpSgeWly/mHjf/AH4/9Ea/VSzqXxmFwYNFZFKNDkMUPVgFerNYbRT0WjQl4Kc1byuVO2UKNJkNMxQKK6AHIU8CkNRGIBUjmkmg1L13SREFUlj4MogGdqOODyz/I77p/h0bQKNYBuUKOaCbKb7t+y51L7uRXh3+FgEAmnyGajpK1yGGgF9r7ZZGxSPbcEeQ1d4veglVn5VvPf4tkLqksaMxvRgdTQSx6C+nCS9VKnahDr9GTyWeUaJ95kWvSmiizvnq7hT8nqvB5k5nPjsoVcgtWnfNSngZ3A4tLFtPmaaOxqJFHex9lKDxENB3lcKCLJd4l9M8e5au7vs731v8TZf4kn1j6Yf69+36GE+PYDXaMWiPltnKurr+ascjYgsTc883c6/Wg2lmNw+RQ/t0728u68nUksgkS2QS5Qg6dqOPWxbeyb3Ifzw49S6m1lInoBDXOGkrMJcQzcTkgsriVcDrM7vHdWHRy+Gb3VDfXN1/Pr7p+Rfd0N+9a/C4eOPoADoODjVUb6Q/2I0kS0UwUQRBoKW5BK8quxja9jYHgAGadWcliimVjC5Kt59snvbO9ytpxs7uZv133t6wsX3mmp/2G8lpbVq8FKZ3GHEqwKOtE0Hvoyo7x02M/5cn+J2nztPHrw79WXG6teis9Mz10lHYwl5xjn3/fAtED8if/HSM7uLbh2rN2RoZXrtCF0+GXzQOzW91YK9v4oGRgT36YIe9KzEYbNoONhJDDaXJiN9q5ovYKfrT/R3ROdcqzZYhYdVbGImMksgkq7ZVsH92O1+plqXcpRYZTs6vm21aN7kaeHXoWh8HBWGSMoZDsjtw/108qm+ILF3+B54aew6Ax8PTA00QyEVK5lOL22zXVxe+6f4fT5GTz8c2MRkYRBTlT8NrGa/nt4d+SysvzQzkpB4KAz1GJDQMVaSMnCh9Bq1WCO+exFHQL5o8ACpKkXHA1okaJW4CXKj71RfW0lrTy/Njz7BrdxXNDz6EVtbiMLto8bbLg9XcyGBzkc5s+R0EqyJUzrQmdRkc2nyVTyFwQ75cntij1oh6bQX7PyUt53Ca3stU1HB5esKwgCiJ6jZ54Oo5Rb1RuzxVyVNorGY2MKqvvGkGjhCa/llbxnxNV+LzJWHVWZf1yftU5k8uwqnwVGkFDhb2C8cg4/cF+ftb5M7KFLKUWL+urNpDNyUFzGq2W/dlhEqYIblz8w8a/ZzA2xuHpw9Q4axgIDvCj/T/CqreypmINpdbSP5u3xlsdm8HG25vfznBwmInYBLlCDo2oQSNoWFa6jFJrKVc1XMWeiT0cmzkGgE4j/0EPh4fZMbaD21pvw2vx8oN9P6A/2K9scC3xLOHeVffyb7v/je7pbkC2gM/kM0wlpjgyfYRKRyWhVIjB0CBmnRmrwYpFb2Hr0FZuaL6BozNHkSTZuVdCUmZCvFav0j7pnu5mJjGjVPR2je3ivi338Y0rv0FzSfOb88K+BSiEQvJ8yIvZdLPFRv6t89uUFlczGhmlubgZSZKIZ+IMh4apdlaTK+QIp8JY9VZS2dRpj5vMJZmMTZ7TubzSCrzT4HzFge75CAPfeEFuJ4gigtGIRqtnLCyn1V/feD0H/AcU24VgKojH6mF2ZpZAPEBbSRu5Qo6p2BRhR5haV+2C8zhxpd6qszIUHmIqPkWjuxGNoCFXyGHQGohm5KUAm96GIAgcnTmKRW+ho7SDQ/5DZAtZPBYPW4a3cNOimxAEgVwhh16jpzPQiUFj4Pqm63mw50FyhRxajZ7yohqur7qCNUIV5rGock6C1QoGwynDzVWGEqodVewe3aXcJr6YXVjnqmUsPCqbk5a04TK5qHXWYjPYuKXlFrYOb2UuIbc/y+3lCyo+xeZiTDoTkVQECQmtKDuFzy8o5KW8Eg1yvhKIBTgUOMShwCFEZBETSoUQBIH6onr65/oJpWQjxA1VG9AIGmXQXxREmoubKbOWkclncBgcmLQmJTapwl5Bua0cs9bM4pLFVNgraCxq5J2L3/mWnYlShc+bTLWzmjpXHcGUHL6Xy+fYVL2JXWO78Fq8/KrrVzza9ygfXflR1las5fmx55mM+9HMaNlYsQGvrZQ9E3t4rO9xtvT9iUw2xW3L7iJVSHNs5hirfKuYik+RLcgeJ7vHdnNb221v+RC5PyetJa1c13QdkbT8iVUn6jDqjBzwH6DcVk6Nq4ZHjz+KgKA4lAqCoOSliaLI74/+nuHIMOl8moJUIJvPss+/j5yUY3nZcvZN7gPkUrAS35Cco9ZZiyRJ5KQciWxC8cYQBIEtQ1u4rPYylpUtYzoxzRLPEtZVrlPaWN1T3Uom24ltTJA/be/1yyv6f4k/VymdXiB6AI7l/AxM9eCyyYPlGkGjDPtmM7JzbygVotZZi06jQytqSedPP3R8YgvlbGj1tFLnqjttu+vECt4rVccEg4Ha8laKp2uUypBZZ5YDSvMZ2UfqRZsFrajl8NRhLq25lGJTMcFUEFEUafO04TF76CjtYDA4SIunBVi4Uq8TddgMNsqsZbJdxkwPs8lZxYjSZXRxa+utBJNBBkODimGq1+JliXcJB/wH5GpBdJx0Lk06l8amtyl/H3sm9nBZ7WV8as2nyOaztHnbKNMX45vOYDg2IOeFwYKtrpNX2m1aC3c13srRmR66/AcB0CDiMrlY5lvGT/bfz2xijg+t/BA/7/w5P+/8ORadhc7STkRR5OtXfZ2+uT4Gg4M4jA6OzhzFpDXRUtLC4cBhbAYbJaYSGosaOTpzlIJUIFfI0VzU/KqjQd5sRkIjHPAfYCA4gITEbHyWh3oeotRayi2tt8i+PpEJ3r7o7cSzcfxRP9uGt9HuaWdT9SbyhTwGrYHZ5Cw/PfhTvn31t+mZ6yGZS9IzI//fqrdyU/NNJPNJrmm4hjJb2Rva3n41qMLnTcZmsHHr4lsJxAO8MP4CK3wr2DW2C71Gz6W1l/Lvu/8dgFAqxNGZo7R52uia6pLbMuTZObKTidgEGwsbCWeiOI1OErkED/duZoVvBbvHd9PubWdD1QYyeblCtLFi43n96eW1YjPY2FC1QXZzTYdxGp1cVnMZSLB1eCtrKtbgMrpI5VK4jC6MOqPScoxlY0RSEcWx9kT/C6/BS/d0N5uqNsnzBVKByegktc5aJqIT8gUhn8akM6ETddQ6a5lNzFKQCriMLspsZTw3/Bzt3nYKUoGGooYFszuhdIh0Ln2K6FHuT4YuqAHMc6EQCi0QPQChjOyXpBe0SIU8o5FRapw1smEdKIagkUwEi85CmbWMvmDfKcf2WX1KPtbZ4rV6+eSaT55xq+tcZrJOHto2aA1UOapI59MUGYtI59OYdWZ5U0ySq4xltjIqHZWU2crw2XzyGncuxWB4kJ6ZHnw2H3vH99IZ6MSqs7K6YjVHpo6gEWU/KpfRRbG5mGQuyWh4lNnkLMPhYZqKmhZUv/wxPza9jVJrKTpRbgvNXyib3E2MR8aJZqIUpIKc1WawcUvrLcr7j+RJky+tQorFiOlhtBAkLoaxZQSq05oFF0/R6aR51MSX1v8jT44+y1RcNhONZmIsKmrhopqLyOazfH/v9xXzPbfJrVSevrf7eywrW0Z9Ub3cKs7Lf4/DoWF8Nh9mvZljs8e4vPZyOko7yBayVDuqubXlVpqKm87p5/9mEk1HGQ2NMhGb4D/3/idbh7eSzqeJZ+IsK13Gh1Z8iB/u+yG/7/49N7fczGxyFgGBtRVrGQmN0OZpU7YCT6Td005LSQvrq9Yrdgz5Qh6rwYpZa6bK+dZ2az4RVfi8BXCb3KzwrUAURJrcTbhMLqx6K5IkceOiG9Fr9NgNdoqMRTiMDq6su5JiczFltjKMWiO5fI7Z+DTpfJpQNkKmkCUQD8glZVFLtaMas85MPBvHqrPK/fW/cE5sMyQyCR7pfYRVvlWU28vRaXS0lbSRl/JkC1nKbeVoRA2BeACb3kY4HSaVTylWCgDpfJqp+BRVjioyBXlWQSNoOOg/yNsXvZ3OqU46A51YdBZGw6OsLl/NUu9ShsPDtHnkdkQgHqDd045O1J22Fek0OJXBwdNh05/ZJPBC53RxLE697N8VSQTx2cvZM76HG5puAGAwNIhG1Mju56YSVvlWUWQqItGTYCI2oRzDZ/VxQ/MNr8rDpaO0g69e/tWXBtENTlo9r24Q/eSgzubiZn6w9weEkiFW+lbSFejCYXCwunw1zw0/x2BoEK/FS5Wjiq6AnENW66zl7YvezrNDzypDqfWueqw6Kz/c90Nubr6Zw1OH2T3+kgN+kbGIlpIWktkk+yf30+ZpI5FN0Ohu5PjscUCeV6pz1eEyuqh0VDKbmEUURBKZBNWOaqXiuaZ8DWsq1iy4OAoGA1qfb0GshNPoJJ1LIwkSS71LWepditfqRTAY0DU0sPj4cbzeKzmW8xPKRHCanDR4W1lZsZK+uT5+duhnaAT573Xn6E6qndU0uZs4EDiAQWvgqvqriKVj9If65dDPdITLai6jvqie7cPbubnlZhK5BOXGcq5puEapkJ0PzL+ObpObH+z9AUPhIcLpsFIl3O/fj4TE9c3X8z9H/kexVZh/3zgxh+2UUOWLPqdsBJ7vH65U4fMWYDg0TDAZZPf4bqrsVRQKBZ7oe4JENqHYxTe6GrlnxT3kpTz/ffC/ebTvUZqKmpiKT7G+cj0+ezl6nZFMIYtBI5eIRUHkHYvewc86f8bhqcPK97uq7iqcJudb2g34jeDENsPfrv9b/v2Ff+fXh39NvauekcgIyWySDVUb2Dm6k6n4lHyhKKpHEASKzcXEM7Kb6XxYXyqXQhREPGYP7R7Zu0KSJJ4beg6v1cuHln+IKmcVGyo3kM1n2TG2g2JTMTOJGUC+UF5dfzXJXPK0rchWTyvNRc3sGt/FybQUt6DX6i+IAcxXw8mDsACLtKXUFTfR4z/ChqaLSOZSPNz7MCt9K7ms9jI5MsFZQzwTB+T8qYJUUFqgRq0Ru8HO+sr1r/qT7Hye1OvBib+v0XSUicgEkXSEz2/6PD/c90OOzRzDaXIyFhnDa4GemEQAAImWSURBVPHS7mlnx8gOtKL8Nl9qK2X32G6+9fy3KDIVIQgCda46PrbyY9TYa7j/0P3c1HwT3dPdSuVrLjVHrVDLuxa/i+/v/T6xdIw943u4tulaDKKBofAQVr0Vg9aA3WDn6oar+Xnnzyk2FyOKIrFsTBl0PVn0zDPfcgunwhSZihYYSdr0NjZVb+JDKz5ER2mHnCq/ZAmloRDebAWCTofodCptsXg2ztLSpfTO9NI11UW+kFesJUDeKNs+vJ2GogbWV66nQAGz1kyts5YXJl7AbpTFcmNRI3aDnebi82dm7sTWpVln5lDgEDa9jVwhR0GSt9vyUp4D/gO8a/G7KEgFxdvtxPeNE3PYgukgLoOLdu+Znb/PR1Th8xYglo0pqbk+u49dY7sYDA3KbRaNnAfVF+xjc+9mrqi7ApvexrqKdVTaK+UE8KHnKLeVs6piNTtHdzKbmKW+qJ6Lqy8+RfQYtUbGomNveTfgV8vZGKudjnWV69CKWlqKW4ikI9y2+DYO+A/w2PHHlNJ+nauODZUbODp1FI/FQzKbVKpqEhJGjZEGVwOLihfRWNTI7vHdDIWGMOvM2I12Kh2V/H/P/H/47D4urb2Ue1feSzAd5AO2DyAgvGLJ2Gv18rfr/5b7tty34NNYS3ELf7XsrwgkXtkk8ESkF71SpGwWQa9HfIWogLcSJ5+7YLEgmM1IiYTyGPdchk8s+wjfO/QDdozupNHdqIiY1b7VhFIhZaNlvW49Nc4a3Cb3q1rFfyNey5HQiNJiLTIVsaZ8DVtGttA93c0n1nyC/rl+RETe3vx2QqkQeyb2UEA2PtxUuYm5xBwjEdmxOJlNEsvG5HkXg4NN1Zv4bfdvecH6AouKF7Gucp0S+eCP+plNzFJmK1PcoucrpFc3Xo1Fa2GJdwlVjiryhTzxbJyR0AiZQga9qKfOVXfKoGs0HaV7upuR0AgIcjUql89x0H+QInMRo5FRsoUs0Yz893zi+9V8qvzpmL+Ae61ePBYPgViAsfAY1zZei0lrQkQkU8iwd3IvOlGH2+xGkiQqHBXkCvLcXbGlmGwhi1bQsndi71vKLuLlONENPJqOKnl0IOfYzRsWAsp7l1lrRq/Vn/K+cXIO24WGKnzeAlh1ViU1N1fIkcnLrZJQKoTX6lV8Z9L5NOF0mOnENM3uZsYiY0TSETL5jDznU7URgEOBQ9zRdgd2g/0U0VNhr0Cv0Z8XbsDnyulCH606K5uqNwFg0VteVgjlJflNu2uqi/3+/by/4/2kcilSeXkAOpaO8czgM4RTYT6z4TNsGd7ClqEt5Ao5HEYHXpuXq+uv5icHfkKVo4rm4maKzcXkC3lEQeRPg39ihW8FFr2Fi6ouYjQ6ynWN152TWFlZvpJ/veJfOTR1SI7KMDiwGWyMRcbOySTw5A0oAMFkQtfcfNqogLcSZzp3TXU1+ZGRl8RPoUBbwsa/XPk1Dkf66A/2Y9Ka0Gv19Mz2KGvQJ7YVX80q/hvxWu4a3cV/7PkP+ub60Iga0rk0ZdYy/n7j3+MyuOiZ6+HI1BHqXHXs9++n0l7JSt9KsoUsZp0Zm97GwcBB1pSvIZlLks1nsRlsFKQCI+ER8oU8WlHLTGJGWYU3aA1IkoRRa2SJdwlOg1OpTmpFLSOREbQaLW6TG6fRSSQdoaWkhXtX3Xta8Tg/exJMB3nw2IM8evxR0vk0wWQQj8XDDc03oEHDSGiEq+qv4sn+J8kWsuQKubN+v5p37wbYVLWJbSPb8Mf8HA4cZrVvNRa9BbvBjvDif2a9GZ/Vh0Vnwa63U+WsIpQMsW9yH/3BfnKF3HmRlwcLfdlsBps8xF/IKhtYDoODbCFLXspj1Bqpc9VRbC7m0tpLz5vZnNcLVfi8Bah2VuMwOpiIyrMFF9dczI6RHUxEJ5hLzmHT26hz1eGz+dAIGmqdteyb2Ec6n2Z95Xo6A53MJGaQBNlyvNHdyBX1VzASGqHaUa1UJSx6ywKfi/PBDfhsOdFYzaqzynbqOhN6jZ6tw1vxWDzkpTy9s70s8Syhwd1wyjGsOrlk31zcTM9MD6ORUf7Y80cS2YRckXvx9c9JObaPbOfahmtZVyFnH82vf35565fxWD3Es3H2T+6nwl5Bu7ed/ZOyDb5eo1dmtubdds+FodAQTw0+xWR0knAqTKaQwWf1ceeSO89aQEViswwM7SNWCGOzmKnAiSWRQ0omyfb0oO/oeMtWfk63vQUgJZPkh4fRLV6MFI/LlZcX2yClBgOlJTU0hBpkYRw61Tfn1b7xS+k0k/5+jhkmCQkRXAY7zZpS3HPp1+217Ap08Y/P/KOyKShJEjaDDY2o4ctbv8y/XvWvVDuq8Vg98uCzvYq+YB+RdASX0cVMYob1levxWrwcnT1KOpfGqrcSSUfQa/RyuC4gCAJdgS4uqr6IzqlOAvEAWkGLTqPDprfxfy/+v/yp/0+KeIpn4hyfPY6tzMZ9W+5jU9UmdozsYG3lWtkM74SK67zbs8/q4+nBp3mi/wnimTjJXJJMPsNAcICHe+Q2ZKO7ke0j21laupS9E3uVbbszvV9F01GGQkOyPUU+x8qylewc3Umlo5LrGq8jEAvgNrm5ftH1bB/ezlxijjUVa+if68dldLGmYg2/6PwFRaYiisxFfP6Zz1Nhr+Cq+qvYN7nvvMjLg4XtKpPWREdpB/sm9lFiKWE2MSt7lGl0rC5bjd1g54uXfJE15advP17oqMLnLcCJWxuZfAZ/zM+m6k0ks3KVx6w147F4mIpPMRWf4qD/IDaDjWwqy87RnbR52lhcsphLay7l5kU30+HtoMpZRTKTxGVynfH7vpLXyPnESGhEcZMdCA1g0pq4tOZSDk8dRhAExXreZ/Nx06KbuDJ35Smp3yd+Wuwo7aDYXIxBYyBfyMt+SYKGTCGDy+jCY/Hw+6O/Z8vwFt7Z+k7+58j/YNQaSefTaDSy/1IgHiAQD9DkbsIf81PtqGY8Ok69q/6sW3AnujQ7jA4OBw6za2yXUmUqMZcgiiJP9D+Bz3b6Vfb59l88K8+ybO39E+GR48r9bquHG+reRkVUREomT4kKeCtxuu2teaRkEikeX3Du0XSU4cBxYtkYNr2N2xbfxnR8+nVzlT441ckT448TiPsxaPSE43Nkchk+tvQeFs/yml/LaDrKs4PPKqJn3hcqHouTyqVwGp0cnDxImbWMVC7F4anDXNd0HU/0P0H/XD/hdBidRqcEjP728G/JS3kK6QJGrRG9Rk/PTA/VjmpWlq3k2eFn2Tq8lXZvO0u9SxEFEZ/Nx6bqTZRZyvjrdX/No32PMhWbwh/zMxoZ5cn+JwHIFrJ0TnXyu6O/4/K6y7HqrRSZiri6/mqeGngKvahnNjHLQHCAodAQxeZiIumIEsA8GBpkRdkKvFYvjxx/RG5L6m0IyO2a071fDYWGeH7seToDncrWpMPgYIl3CRX2CjSiZsHPeX3FeqUalS/kSWQT9M31ce/qe9EKWj7/9OfJFrIMhgZ5sv9J1lSs4djMsfOiQn5iVt1QaIiPrfoY//7Cv3Ng8gDF5mLMejONrkY+vvrj5Av5v1jRA6rwecswv7UxFBpiJDJCOBmm3FaOQfvSp0WTziR7ayARTUex6C1oRS2jkVH5Ymqv5uLai5XHn62XyIVAJB1RhiINGgN1rjqeGXyG43PHcRqdrPCtwG6wcyhwiLnkHLPxWd6nfd+Cys/Ja8NWvZWO0g6OzRyT5yJedPVN59O4TC7ys3lcRhdajZxqHM/KKc+ziVmSuSQuo4tgKiivTKcjDIeHqXfV01LSclbVmXmX5vmLRDwTZzg8zJryNUzFp3DiJJVP4bV60Yt6RkIjp4i5E9t/FbYK9vv3MxGZAIOEQWPApbOTSc3x8ODjvLfqRizx7Gk3pN5s5sVbZG4SiyVDheACQWDMkGQsP0c8n8Kht+FLjlCTNitVhtM5I9/YfOPrspXS5e/k/z73/9E1fgBenKWotFdyUdUm/uPQj/jSkk/hfY2v5XBomOnENGadGZ2ow2VyYdQayeblFtC8Cd93dn+HNRVr5MpJ78O0lrRyUdVFhNNhfDYfRo2RX3T9glwhhyAIpPNp7AY7kiTR5m2jy9/F5y/6PJ59Ho7PHUcQBCaiExSbi7my7kr6gn2sq1zHcGiY4dAwg8FBtgxvUc5zpW8ljx5/FJvBRjAVZDo+jVVvZS45xy87f4nP5sNutLN7bLeyBAByVMK887NW1JInr7T6BUGQA03T0dO+X0XTUXaN7mIgOMBjxx9TbAoAmt3NfHjFh0+ZLZpvZc7/be2b2MdweBiQQ1k/ufaTfHPnN0nkEgyGBrms9jLla9/qFfKT378Gg4Pcs+we8svycltP9+LfRXiItzW87S9W9IAqfN5S2Aw22r3tfNjw4dO+Ya9tWMvz48/TFeiiZ7ZHKVE3u5t5R8s7KDYXLzje6+kl8lZnLjnHUHiIclu5EuNw0H8Qp9FJMBVEkiSGw8OUmEsYCA4QzUbZNroNr9W74A1gwZp7NsHnNn2OH+//Mf3B/pciIoqaWVO+hh/u/SHxbJx84aU363lH1HwhT52rjr65PmWjJJPPsNK3kjva7njFN52R0AhP9D1Bhb0Cn9WHKIhMxiZ5bug5qh3VOAwOft75c7SiFo/Fw0rfShZ7XhI90XSU47PH2T2+G52oo8JWgcPoYHPvZiYiE2gEEaPWSHNxM3WuOsYzEZbop+mgBOdpNqTeTE4UMEI8STFmNE4XVpODwalBuvyd7B/bg1Fn4uLGK7g8eQVmrRl/3I9e1CvbLCD/nrweSdvh2Ul+tu8ndI7uU8z3EARGI6NsHdlGu7uFYzk/pbralz/QKxDLxjDrzCSzSTxODyPhEYKpIFpBi0FrUDx8js0cQxREVvpWykOrOjNeq5fYdIwtw1vQClre3/F+JCT2jO9RqihLvEt4x6J38MLYCywvW86HV36Y/mA/4VQYh1F26J1LzSnzY/NzJCdHR5SYS/jTwJ9oKW455f6J2ARltjJimRiJbAKj1ki+kFfMEZ0GJwatQf7A4qyj2lHN+5a+j2Z3M8dnj1Prqj3t+9VwaJiCVOB/j/4vw+FhxXB0pW8lHouH7pluXhh/gdXlqxf8rE8MkM0VcggImHQmRkIjPNL7CF+85Iv877H/Ze/E3gWGludDhfx0buAllhJm4jNEs1GsOisXV1/8Fy16QBU+b0nOZGUP8MLEC9zedjupXIpENoFZZ8aoNaIRNaedwn89vUTeyuSkHI1FjQwEB1jqXYrP7uPKuisxao0EU0FmEjOEU2GqHFUQhVQ2hT/mP63h38kDrk3uplNev76ZPupcdRybPcZEZIJaZy2DoUEkSaLIVKR8ir289nLWVayj2lmNy+hifeX6V6z2DIWG2DW6i591/oyBObmCZTVYqXHWcM/ye3ig+wGurL9SNowrZIln4gwGB3mq/yk6SjuYTcrurMdnjpMnj8PgwG6wY9AauKT6Eo5MHyGUDFJkdjMQHKB3tpcqWyX7pg5xOJnjqqrb8A+8NUJQA7EAzw49S76Qp8xaRlGxiz8c+g0HejvJkcegNaIVNFzV9Da2DG/lmaFnsRsdNLobmYnPYNFbWFyymN7ZXsaj40oV4rUYPUrpNIOjXQyHhpVKj3yHhJTLMRoZZUPlesK52DkPN58cQKvX6PHH/KzwreDA5AEiqQhV9irsBnntenHJYqbiU6zwrWA2Mcu+yX2sKFvBH3v+yNrytfyy65fMJedwGB3yAkXt5dyx+A7mUnOyE3khx86hbby99Wb+bfe3mYz5afO04Ta7lVXyK+quUH7+83MkRq1xwXmfmJd18v06UUdBKpDKpah2yO2YI1NHiGailNvKmU3OohE1OIwO+ub6lA91WkHDP6z7O1oddZQ6Kk55rWLZGNF0lKMzR8lLeXSijhuab2D32G6eGXwGk87EWHiMI9NHuLH5RsWL6cQAWZ2oo9hcTCqXIlPI0D3TTTqfZjwyzg1NN2DWmoHzq0J+ugH9C+39/rWiCp+3KGfaLrm+6Xoe6nlIniURNaTzaSx6Czc03XBGFf96eom8VbHqrUzFp7i55WYe7nmYntkeDk/LG22L3It4d/u72Tm6U0lj1mv0JDKJ06Zjn8yZXr87l9zJLzt/yUH/Qa5vvh5REBEEQXGLrXZUc3nd5crQejAVxKQ1nXKcE4mmozw3+BwP9z7MwNyAMphekAocnZZt9OuL6klkE2TyGYxaI5IkYdAayBayDIWGeHboWcKpMLVFtTx49EEC8QCRdIQKewWSJHF94/Uksgli2RiLSxYzFBpkLjmHRmdAY3Pxd09/FkmSlE/3r7TV8nqnxc+3tSZjkzzU8xBjkTHFrTpXyNFWsphDM0cIRCdpLm7m+EwvGo2WJs8iii0l9Af7eajnIYbDw+QLeZrcTbyz9Z24jC4O+A9QX1T/moweC6EQsWQYo8aAIAhIGg28uCY8nzielXI4Hd5zGmyeb7+cWJ3dVLkJAYFbWm5hPDKOz+ZjLDLGSGSEpqImymxl/PfB/+YDyz7AE31P0FLcwubezQRTQXpme/BYPCSyCcKpMN3T3bLbrpRnXcU6Lq+5jEwsxJJl9/CVnf/K0EwfokbLM4NPkylkEQWR/mA/Bo2B3eO7EQWRErMc6ZDMvtTKBVlA2A120rk0LqOLEksJADOJGbqmunAYHRyZOoI/5qfMWsYn13yS3xz+DaXWUrxWLzqNjpbiFgQEfnP415h1ZjLJGJ2df6Kj6kYyhZlTtuT0op5IOqJU81aXr2bXqGwFIiAgCiI5KXdKle/ElpVWoyWfkUWTKIloRA2iILK6fDVHZ47S6G68ICvkf+mowuc845WCDf9ikWBj5Uae6HuCvrk+Kh2VFBmLCKbkbKEn+p/gusbrOD4nl87nc7LmzQfPFa/VyyU1l5DKpYhlYuTyOT615lM4jA6mYlMYdUYE5DmJ+TfmswmGHQ4NM5OYYSI6oVzsdRodkiQRTAXxx/xsrNpIviC7SpOT85JailswaA1MxORNwFJLKY/3PY4/5ieUDpHL5wilQpTby/lj7x+ptFfyeN/jirP3O1vfictWwi+6fslAaIDFJS+1zV5uq+V0F+vXsv47FBrihfEXKBQKyqxJQ1EDqWyKqcQUu8d3M5eao61sKSOxMQpIIIoMRUZ4e8s7eG7oOY7PyYPb+UIeCYme2R4e73+cdk87lY5KemZ60Iv6VziTMyNls1i1ZopFKy6zm2BiVhY/807eoojHWcHisiVnfcwT2y8n8sTAE1zbcC2hVIgbmm8glU0xnZzGqDESTUd57PhjDIVlsdtc3IxRY+T43HGqHFU8M/gM7136XtK5NGPRMTniwlSEVW/lgx0fYMWUHilu40/uKQ6MvYBeZySYDMofqrR6FhUvosRcwk8O/IS9k3sxaU14LB7WVqxlaelSYpkYL4y/QLWzmpbiFhLZBBPRCeqL6rHqrUzHp3lu6DmMWiODQTnfSyNoKEgFjk0f4yuXfYVfdP2C6cQ02XyWbcPbEASBlWUr+f2RB4h5Ygi2RYwKYRYlzadsyek0OoxaIw6Dg3A6TLm9XJk7mk8Tt+gsAAuqfPMtq3nfnpnEDLFMDLterooatUYurrmY1b7VVNgr+MCyD6ii5wJDFT7nIa/Ga+RCJxAPsKp8FQ90P6AMZja7m9Fr9BSkAp2BTtauWEswFWSpdym5Qo5YNobdaOdw4PA5Gx4CLC1dSqm19JQ2WDKXPO2M1tmsTcey8hxEMpfEaXQSy8QoFAokpSR6jZ5MPoNdbyeWkas1OlGH1+ZV5ruyObnlICExk5xBEAUy+Yw8OFrIM5eco3e2lxVlK8hJOfSCnunENEPhIWpdtYpj7sl5YKfbajnTxfrVrv9G01F2j+0mnUuz+fhmHup5iIJUoCAVaC1p5ZaWWzg8dZjR8Cgry1YiCCKiqEEQRSRJQqvRMpeaI5KO4DA60Iga5XkMhYZo97RjN9hxGV3oNOc2x3SiMaY5K1BiclOpdbO6dCUv+PcSTMwqba/2sqW8rfFt5/TcT2y/nIgkSfyy65d87YqvccB/gAe6HyBfyMsGhJkYPpvsQZPOpVnsWUwoFWJD5QZMWhNFpiImY5NcUX8FiUyCXCHH6vLVRNIRxHQGKS7/rgRTIfmbiaIy01JmLcVn8/HUwFNyZScZJKFNEE6HSWaTGLVGPrryo7yj5R1s7t3Mvsl9tHvaSWQTjIRHADg+e5wCBTq8HfxP9/9g0BootZaSyWfISTl+f/T3HPQfxGv1MpecI5aJ4Y/5yRfyrK/ayHB4mKOFfkKkAPMpG4eJbIIyaxmX1lzKs0PPvtRuEzTYDXYq7BVK5Qle8rmZX/roDHQyGZ2U56csHrlK6qpl/+R+Hu59mHe0vIMWT4sqei5AVOGjckFgM9g4MHkAo9ZIa0kruUIOURCpc9URz8Qx68y0FLdQYi7hgP8AU7EpPrbqY2zu2YwkvJS5Nb/1c7bZTGdqg73aqpxVZ8WsMzMdn6bOVUd/sF9xWXUanbKnU1Edn3/682hEDT6rj6WWpRi0BopMRfhsPphEcd01aAxyCw4Bm8GGP+aXt7mMLlqLW7HqrYRSIToDnayvXK+ch1bUEs/GlYFujaBhLrWwLXimizWcXii9EsOhYSx6C9974Xsvecu8OITbPd2N3WCno7SDbSPbyBfyeK1ektmkcr4GjYFic7HiPeMwOBgKDZF9sW2TLWTRa/RcXne5cvyz4cQcqRJzCYVCHiGVZlnLZWT7nsNauo6ZQoxUPk21s5r3rfggbaXtZ318OPPGkEFrQEIinU8jICj5cFpRK8/hGOSA0GQ2Kb9GejvPDT2HWWemzFbGlqEteK1elpUt44WxF6h1ycG45gojIIscl9EJoMylCQgUW0oUC4gNVRsU81RREJlJzOAyubio6iKOTB/BYXTgMDpI5pJcXns5Zp2ZcDpMk7uJp/qfYvPxzWQLWbKZLNPxaYpMRVQ6KtkyvIUj00eIZWIMhYdwGV00uZs4PnucZWXL6J3tZSA1TNIgQlyQZ6hO2JKz6Cz0zvVyffP1WPRyyGyVowoBAYPWwOKSxVj1L3nb2HSyieJ0fJq3L3o7NY4anh16lu7pbtl8sbiFO9rv4GvbvyZHf4TH+P3R3+M0Oalx1KhV9QsIVfionPcEYgEOBw7jMDqoc9VR4aiQL3KinsnoJKPhUTKFDKIgEogHqHHWUG4tZyA0QCqfWmAZ8Hpt/bzaqly1s5piczF1rjp6Znuw6q00uBqIZqLYDXbaPe2U28p5W+PbCCVDiIKofLq/qfkm2YTNVIROlCsaBo0Bq95KKpfCrDOTl/JEMhHi2TgT0QnF1NKIUWn7zef75Ao5DFrZx2h+aHUoNKSIwlda7z3X9d9YNkY4Febw1GEaimSbAUEQ0CBvZfXM9LDatxpREHGZXEo4p1bUsqlqE9l8lr65PmWrzqKz0FrSylhkTBYC1jIaXA2KJcDZcGKOlM/m4+mBp5lKTNHkbGAyNUNzaRPtxjWY0gWcWiu1le043GXn9LzhzBtDWlErV/MEaC5uxqa3Ec3IVhbF5mLsejs2g43p+DRl1jL2Teyj3F7OYHCQXCFHhb2CkcgIwqTANQ3XkMlnqHPVUWUtB2TRuthQSXtpBz3BXgQE7CYHmXyGVE62SphJzBDPxNFr9EhI5Ao5opkovXO9TEYnlb+fvJTHH/fjtXgZDA1SkArsGtuFRtAom3WpXAqHwUEgHiCdS8sbXlIeo8aobF/67D5ERESgzFpGKBUkbi7BEs8uyGSb/zAxGByko7RDifKZjsvr/6XWUuWxxeZitBot9x+8X6nEDswNUOmo5K+W/xWjkVHGw+N8bfvXqHRUMhoZpWuqC3/cT7O7mWcLz57TByKVtzaq8FE57+me6mb76HY+uvKjpAtpft75c+W+pqImbmm9hZ6ZHkUMyJ9oi9GKWqx6K/VF9WRyGaKZKDaDDb1Gz2holFbvG7/FYTPYuKT2EvJSnh/u+yF7J/YSSoYw6YzUu+pwGB18cvMnWFG+go1VG/FYPKyvXE+ju1ERajc238iOkR34rD5GIiPoNXrMWjMuk4uCVGCpZynTiWlW+lYyl5xjJjGDXqPHpDPRUtwi+8QUskTSEXl+qZCj0l5J31wfmXwGt0muNLzSeu+5rv9adVZiGbkdkcgmlNmNefGTzCWxGqxsqNjAouJF2Ayyo7nXIlfdjs8cp9ndzIHJA6QluUIxFhmj2lmNVtC+dFyj46xdrufzj0otpYroWVO+hq3DW5mJz/Ce9jsR9XqmtTkmNWnSyRFa09ZzFs0v57nVWtLKhooNRNIRbmy+kbHImCJ4JSSOzRyjwl5BJB3h6cGnua7pOvKFPMPhYUX4mLQmbmi+gb65Pt65+J04TF4ypkmkZJKyQIrPrvsMX9/zbQ4UDhJKh6kQqii1lNJQ1MCu0V2K4JnPpZuPfAinwnisngXnm8ql0Gv0jEfGqXZUMxwexqg1ksqlkJBbkg6Dg9nELMXmYgpSAYfRgZSSCKVD1DhrsBvs+EweNlVuJBSZZtTuocVUvGC4+UTfmtnkLKFUiMtqL2PH6A5lixHkKu7b6t/GI32PnLLMsLl3M8FkkGQ2yfbR7VTYKxiNjBJJRyizlqEVtaRyKcLp8OvygUjlrYEqfFTOe0LpEG2eNr605UuUWkupcdQwFZ9CQGA4PMwh/yE+t+lz3LflPuLZODa9jTXla2jztGGxW/jxgR/TM9uD2+TGoDVQaaukyFSE2+J+yeX3HOd/Xgs1zhretfhd1Dhq6AseJ5PL4ja7eX50F/+198cIAjw/spNFJYv44PIPnnIRnw/bbChq4MGeBwnEAswl5gjEA7SWtLLUu5SdozupclTJ+W2OCmqdteg0Oj615lP8aP+P2DO+h+nENBISbZ42rmm4hv8+8N+sqVyDz+ajyFyEyyQ7WPfP9SMIgpIAbdAaaHI3nfP6b7Wzmu7pbmWFu95Vz0h4RGmx6EQdZZYy3lb/NraPbmcuOYdJa2IiOsFzg89xed3l3NJyCwaNgYOBg0iSxBLvEtZWrMVpcOI2u0GADZUbzvrnOD8XIiExEZugtaSVrcNbmU3Mcu/qexmLjvGlbV9mLDKGTqOj0l7Jjc038sHlHzyn6sAreW7NW1XcY7hnwfzYWGSMMmsZl9ddzuN9j5MtZHmk9xFWlK1gQ+UG6lx1rK9cz3RimnQuzSdWf0J57rrmZiX+Y8WUnm+v/gIHsyMcm+ulzlUnD5pPvEBekg3wJOQ2m8PgoMxahllvJlPILHge6VyavC5PIBYgkopwSc0lPDf0nCJ+BEGgyl5Fpb0SjahhIjRBub2cjJTBaXCi0+ho87RR76pDSsQZnu6nvMRO3J5B19x8ypbcycseNp2N65uuP8Wd+8QAz3k8Vg8Vtgr8L67w68blzbTR8KjcVn7xdTJqjYTT4ddsg6Dy1kEVPirnPU6DE6PWyH7/fnSijnZPO3WuOqXdZdaZCcQDNBc3Y9VaWV6+nFQ2hUbQ8Hi/fLGoslcxFZvi0tpL8Zg9dAW6mIxOki/kmYxNki1kz3n+57VgM9hoNVXy090/oHv2KIgaWr3t3N3xXrL5LGXWMt696NYzVi5sBhtrKtbQWtKqvOknsgnyUp6Hjj1Eua2cSDqCUWtkdelqnCYngViAnx38Gbctvo1SSynpfBqdRoc/5ufH+3+MWWfmqf6nuLHpRu7ffz8dZR28d8l7lfBMg9ZAMBOkzdPGPSvuUeZ7ThwMfjkBaTPYWOpdyvrK9ewc3Ul/sJ9SaylVjiq0opZ2TztrKtbwhee+wK6xXWTzWSQk6lx1rK1Yy47RHWyo3MC1jddydcPV2PQ2+oP9iIJIKBUiU5CrVfMX8LNh3rdm3pDPbrAzHB7m9rbbOeg/yLaRbQyGBpUNwenENJt7N2PRW7h31b3nJJTPxnPr5At9MpOkZ7aHieiEUtHMFrI8P/48AHe03cFjfY8B8P6lC6sVotOJvqNDSZWv0unwJ9O8MLmX4dAw0XSU6xqvYzYxq7giO4wONlVt4uKai4mkIvisPkAeKDbpTOTzedL5NFWOKtaWr+WPvX/kxuYbcRjkGaAKewU+m48f7vshN7fczBN9T9A11UWptVQeLrbWsqJsBb85/BtqrZVc3nwV43PD2MtrF1R7Tmeh0GZ9SZCcPFt2OvsCq97K+qr1HJs+ht1gx6q3ohW1OI1OKh2V6DV6fFafMmd2puOonH+owkflvKfV08rWka2A/Ka/379fua/YVIzNYJPfVJ211Lvq+eG+H2LUGbm05lJimRiL3IswiAZqimr474P/zZHpI+QLedxmN9XOaj65+pMMhYZet/mfs8WjcfCppR/hewe+z8BML0NjXQwBdcVNvL/unVSKRa94jJNnjaLpKFWOKiXQscxaRjKT5Atbv8DbF72dcDrMoalD/Me+/1C+xqgxYjfYlRT4aCbK2qq1/Lzz5xybOsa729/NxuqNCIJAo6sRSZI4MHmAtpI2xUxx/tN2OpdGJ+q4sv5KikxFVDmqFryWzSXN/OOmf+SbO7/JkZkjSJJEQSrQ5G7iIys/wq+7fs3zY88TTUcVm4D+uX7imThLvEvQCBr8cT8+q4/J6CTPDD5DKpfCopfXmn1WH3qtXmnXvRLz+UfzoiKRTRDLxHAb3UxEJuib60NCQhRECvkCxoI8q3J0+uirqg6cjefWiT/TaDpK13QXeUke9p7P9AOodlQznZgGoN3TTrv31IFrwWBYkCVmC0wrjtDl9nJimRgfXvlhMvkM2XwWg9aAgMBUfAqXycWdS+7kqYGn0Ik6fnv4twyEBrDr7SwqXsTByYPc2X4nm3s2M5WYwmF08Njxx1hXsQ6dqOOBIw+wrmId1zdeT7qQxqgxkpNyaEQNdy65E52oYzIxjau4nBp3vXKOr8ZC4cQAzxMptZZi1Vu5pPoSAKbj02hFrSJ6TvThernjqJxfqMJH5bzHa/XSUdqByySv3c7jMrmodlbTNdWF3WjHYXTww30/pNpZzY6RHUxGJ+kMdGLUGvnM+s/wcO/DHPAfwKwzk86nkSSJfRP7+P7e73PXkrs4GDhIOpd+w8rdotNJ24iNr3T8DcdyfkKZCE69nUXaUooTmnN2BYaXYlFOvAj+79H/Vaz7R8IjrPatXtDaSOVTkIYGbQMGrQG7wc5/7PkPxiPj3Lv6XtxmN4lsAqtONpH0WOWL77yZ4rzoCaVC9Mz0kMwl6Zvr46Lqi8gUMqdU0VaWr+Tf3vZvp1Q+ZuIz9If6F5jWgTxUOxQaYm3FWqX1Yjfa+Xnnz5mMTS4Ycp2ITbC5Z/MZhcDpXq/5mSmPxUO+ILd9krkkeSmvzLtIkoQgCMoAbywTOytzzNfKiXMuAJuqNrFtZBsmrYmNVRt5sv9J2j3tfO6iz53W2f1kTgy6nEnMUGQqwm6w83jf44RSIZrcTTiMDopMRdzQdAPVzmqcRiff3PlNdBodi0sWIyAwk5xhmXcZvz38W/RaPVa9le7pbgKxAH1zffzV8r9CEAR2j++me7qb+qJ6ikxFNBc3MxQaUkTpyTYQr9ZC4cTndTJVjiourrmYi2suVmJegFflw6VyfqAKH5ULgraSNi6tuZTB4KCyfp3MJhkIDrC8bDl2vZ2pxBR6jZ4dIzsYi4xx15K7WFq6lHwhr2ySuE3ul1apX5xbOeA/wG1tt9E93a2kvr8RwkcwGNA1NlLc08OGpBNwQgIEk4CuufGcXIFfjvkhZIveQjgdZjoxTWNRI8fnji8QPxadhXZPOxpBw8DcAF++/Mv8eP+P2Tu5VznWKt8qvnTJl+TZmxfNFEGu9MyLHoDJ2CRmnRkpK/HY8cdYU75mwYD26Sofg6FBRMQFogfkDDST1qTEFgAkMgkmY5PyNo+48G1uIjbBRGzirIQPvDQzVWYtY9vINpaXLcesN6MRNAgIyvElJDkhnDQFqUB/qJ+qUNWfvTV6cvvrA8s+QDqbxp/wc23DtbR7289K9MCpQZfTiWnmknNc23gtNc6aU9LOQa6SzKXmSOfTC7KtdFod3TPdlFpLERDwx/wAZAoZfrT/R3x242dZXb6aRDZBu7edOmcdJZaSU+ZzTqzMvVoLhZOf1zwnC6vlvuUUmYtetQ+XyvmBKnxULgjq3fV8fNXHuW/Lfeyb3Kfcvsq3ir9e99d0+uXKTqm1lK3DW3lfx/t4YfwFpa01HB5mIjLBzYtu5oHuByhIBTK5F1OiEYhn4gAkc0nGY+NE09E35E3w5DkMQadDdDpfN9EDL20U5fI5mt3N7Jvcx0XVFyFJEkPhIQBcRhdltjKa3E0kcgm+euVX2dy7mVQ+RZW9irHIGAUK7JnYw3d2f4dPr/+04rEDEE6FFdEz7ynUF+zjmcFnSOfS7BjdQZ2rjjvb76S5uPm05znvcXS6T+7JXBKfzUdDUQPLfcsZDY1Sai1VREmukFvgSZTOpk/3Lc6IzWBTvGI+suIjTMQmsBqscj5caEAJyMzkM/isPnx2H+ls+g1rjb6epqbn6g4fy8ZO64SdyWeQJIlENnFKVEu2kKV7pptsPkutqxaPxaOc/8u1+l6LhcLZPi/VHf/CRxU+KhcMF9VcxA9tP6RrqotgKkiRsYh6dz39s/0vpVVnYlzTeA3PDD5D31wfxeZiYpkYOlHHYGiQHWM7WFe5jq5AFxPRCcV/5MQZkXT2jWt3walzGK838xtFfxr4E9c2XstjfY/x/Njz1LnqWF2xGqvOSl1RHU69kypnFb8/+ntcRhd/7PkjIFeMWkta6Z7upkCBw1OHmU3O0uBqgEn5e5y4/VNkKqKpqInW4la8Fi9OoxOT1sTPOn/GWGSMz238HA3uhlPOs9pZTY2zhraSNg5PH14gfpaVLqO5qBmfzUebtw29qMemt5HMJUlmk0pshyiIyu0nehKdDRadhYnYBBIS/XP9XFF7BV6Ll4d6HqJntod0Lo3X6uWG5hvYWLWRiegEeo1edo0+y+rSW4VzEVJWnVVJcp8XtwB6jV6pwp1cdQM53yuajirHOBteq4XC2T4v1R3/wkYVPioXFPXueupfHITcOrSVTz32KQ74D+A2ualyVOE2u7m4+mI2926mQIHpxDR2gx1RECm3lzMeGWd9xXo6/Z2YdXIyc2tJK+lcesGw44W23dFR2kGRsYj/3POf3Nh8IwbRQF7KIwoiiVyC6dg0a5rX8OP9PyYv5bEaXrpQhdIhiECFvYKZxIxscJeO0uhuVKozelGPgIDL5GKVbxXPDD3DzrGdDIeGGYuOsbZiLf+w4R/48YEfs210G16r95RP2DaDjTuX3MlsapZMIaOYLFY7qrmq/iqcJqcyg9HobmRD1Qb+NPAnhsPDC7ay1nrWohN1bO7dzPuWvu+sP8nPz4lIksRUfIofH/gxl9dezj9e9I/y6r8k4Ta7ORw4zA/2/UCJyxiJjPBhw4cvWPO7amc1ZbYykrnkgnZmJB2h3dPObHKWRDaB3WAnko7IX/Pi4LVFZzmn2ZmX8zs6nxLUVd5cBGneA10FgEgkgsPhIBwOY7fb3+zTUXmV9M/286HNH2Lf5D7MOjPxTJyCVODyussVn5htI9sAMGtll9cl3iUcnjrMpupNPDPwDAXkjKh7V91LIB4gl88xnZgmL+W5teXWC/IT4Xw8w+nmG2YTs/x4/4/JFrJUO6r50tYvKflIIFddZhOzJLNJfnrzT+VKSyqEIAggwZ8G/4RZZ+ZQ4NBLEQsGO5X2Snpme1hVvor/s+b/MBIZ4cq6K8/4+vbN9rF3Yi/hdBidqMOsNyNJEusr1y+4gPbM9PCvO/6VntkexX262FxMu6edoeAQG6o2sLFq4zn9HIdCQ2zu3YxJa+LpgaeZiE2wqXITTw0+xbqKdYyER5hNzi74mtbiVhaVLDovze/8oXG6A0cIpYI4TS5aPYspdZaf8rj535vJ6CThVJhMIUOlrZKrGq7iX7b9C13TXZTbyhkOD+MyuthYtZEXxl/gltZbuKPtjnMaGn69g3FVLhzO9vqtVnxULki6prqUWR+tqFWGLp8dfJZrGq6hw9uhGO/lC3limRhT8Sma3E1c23Atm6o2YdQasegsHJ46vGBo80Le7ni5+YbJ2KTi0mvSmejwdtAz26NsNulEHalciltab+Gp/qf4rwP/BchD0yvKVvCBZR9gJjHD0wNPMxIeoUCBUDqEGBXx2Xw8P/Y86VVyjMHLVdQa3A14rd5XnMHI5XPUOmspsZSQyWfQa/RE0hF2je0iV8ghIZ1z5a7GWcP7lr6PkdAIS7xLiKVjijFfiUXOgTsRk9aEw+g4L83vDozu4TvbvsHAVI9yW52nmU9t+jTLKlcteOzL/d586bIv8VjfY8wkZrhp0U3oNXrCqTD/csW/sLp89TmLwbPxO1JReTlU4aNyQXJixWI+fBEgnU8TSoVoKGqQ15OlPEatkUQmwdGZoywrXcay0mXUu+uVT7Eni54LfbvjTPMNJ85hJLIJbm+7nV90/YLu6W5AXiu/vul6fDYfv+76NXWuOiQkNIKGiegE39z1Te5Zfg9j0TFFLAEEU0Eq7BWA3B4REM7NL0U4/c3RbJSJ6ATdM92nvT+VS70qXxabwcZi7+IFt5XZy3js+GMLbjNpTTQXNyvRCedTe9QfGj9F9AAMTPXwnW3f4F+u/dYplZ8z/d4sLV1KqbX0dRUqZ+N3pKJyJlTho3JBUmR6ydxPFMQF9z0/9jwfXflRtgxvYe/EXsw6MwWpwIqyFXzxki8qM0LqdsdCTvRCyUt54tk4d7bfSTKbRBAElnqXYtAY+Pwzn2cmOcNMYkZZhy+zllFsLkYURPnnIUK+kFfun49FcJvcBOKBUypq/bP9dE11MZeco8hUhFFr5ID/gCJKT+eqPT90qxf1BFNBZaPLpDVhN9jxWD3MJec4PHX4NceR1DhrWFO+hq5AF5lCBr2ox2F0LAjAPZPIOp0L8Zt9Ue8OHDlF9MwzMNVDd+DIaVteZ0IVKipvJc474ZNOp1mzZg2HDh3iwIEDdHR0KPeNjIxw77338swzz2AymXj3u9/NN77xDfT6U1ctVS5s2j3trChbwb7JfXLKuMagXCQXexaTzCX5u/V/RzwbJ5VL4TK6aPe0K6JnHnW74yVO9kLJS3mimahSBat2VvPzgz9nMDTIbHJ2QTREOBUmmU2Sy+do97TTNdUF4kvVOJ2oY33lerwW7yntj61DWxWbAo2gIZPPcHnt5Xxw+QcZCg2hFbUICKcMK1c7q7HoLUqbLpqJIgoiVfYqClKByegkx2ePA3J69zX118jmg68ym63R3ciikkULvIumYlNkChl8Nh8llpIFjw/EAhwKHOKBIw8wk5hBI2qYS85R46x50+dVQqngy9//CmvlKipvZc474fN3f/d3+Hw+Dh06tOD2fD7PddddR0lJCdu3b2d2dpb3ve99SJLE9773vTfpbFXeLOrd9Xzh4i9w35b72D+5H4fRQTgVZrFnMR9f9XEGggPYDDblgq1ydpxYBZuKT5HMJtFqtAwGBzFqjRh1cqDjyXlY+UKeaD6KKIrc2nor+UKe7pluBAQcRgd1rjo+vvrjLCtbtkBs9M/2L/BmEgWRhqIGdozuYDA0yGW1l/HM4DM0uZu4puEaRkIjC9pQda46jk4fpdpRjYSEXqNHJ+p4Z+s7iWQiiIhYDVY8Zg9f2/41ii3FC1K9zyWb7URhOBAcoG+uD7vBjsvooq2kjW3D21hcspgWTwsH/Qd58OiD/LHnj0oOVrG5mOWlyxkKDb2sC/EbgdPoevn7X2FtXEXlrcx5JXwee+wxnnzySX7/+9/z2GML++lPPvkk3d3djI6O4vPJwXnf/OY3ufvuu/nKV76ibmj9BXKKr4+piAp7BflCniXeJX/RbavXgs1gIyfl+Omhn9I93a20kFpLWrmj7Q5aS1o5FFj4wSRdSLOidAUSEttHtvOuxe+SYzIEgXZPO4tLFp9SbYOFQ+oAHouHscgYs8lZZpIzXN90Pf3BfiZjk2RyGZZ4lyiPHQ4N0z/Xz6aqTUhIpHIpvBYvBQp86/lv0T3dTTKXxG6w0+Ru4vbFt3Nk6ggaUUOmkGEqPkUml+HDKz981r8nNc4ablt8G1uHt7KmfA3dU910z3Tzmac+QyQdYXnZcu675D5+0fkLLHqLInoAZhIz7Pfvp6O042VdiN8IWr2LqfM0n7bdVedppvWkGScVlfOJ80b4BAIB7rnnHh588EHMZvMp9+/atYu2tjZF9ABcffXVpNNp9u3bx6WXXvpGnq7KW4QTfX1UXh8CsQBf3/519vr3KqaAAgI7R3eyoXIDty++nYJUkNtZL9JW0saNzTcSz8R5Z+s7sRlsNBY1vqL4PNmh2aq3cnTmqFJRSuaS5Ao5IukI20e3K6GcIA8T56U8/rhfua3CVsHXd32dfRP75DTxQh6tqGX32G5yhRy3ttzKcHiY9pJ2slKWfCHPlqEtLPEuOevYh6HQEKFkiJ8c/AmdgU7qXHVU2CuUSIsf7PsBbZ42RiOjp3ztTGKGfEGO5DixnXS2CfevF6XOcj616dOn3er664s+c07zPSoqbzXOC+EjSRJ33303H/nIR1i5ciVDQ0OnPMbv9+M9yd3W5XKh1+vx+/2nPH6edDpNOv3S1k4kEnndzltF5UJk3+Q+nh56WjEFBNml12V0sWVoC9XOaq6ovYIbmm4glUth1MqJ5S9MvMDy0uVobBqWly0/JTV+ODRMIB4glUuhFbUYNAbcZveCwNT5Iej5f5u0JgwaAxISFr2FSCqixImcPEw8l5gjnotz0H+QAvJskYSEJMnp6gcmD3DvqnuZSc7w/X3fJ5VLYTfI4bZLvUu5qfkmfDYflY7KM4qOaDrKgz0PUmGroDPQSUdpB8fnjnNk+ggCAhpRw1hkjCvqrmAmMXPaY8zPos23k87krXQubbhXw7LKVfzLtd+SfXzmt7G8p/fxUVE5n3hThc8Xv/hF7rvvvpd9zJ49e9i5cyeRSITPfvazL/tYQTh1r3U+NflMfPWrX33Fc1BRUZGJpqMMBAcWiB6Qc5mCqSAH/Qe5o/0OXhh/gUf7HiWYDMoDxY4qrq6/mhJLCfFsfMFc1fyFvXu6m91ju5lNzlJuK2dD1QYWFS1iY9VGto9sV1bgNaIGqSDR5mljKj5FtpBV2pjpfJpjM8dYVb5qwRZaOpdmODJMnasOg9aAlJWUygogh2/qrUTTUR7pfQSD1qAIE62oZdfoLmbiM9y59E6eG35OCe08meHQMOFkGKfBSZ2rjuNzx5XjzJ9/JBPh6PRRXEYXtc7aBe0uAIPGQKm1lFZPK9F09BTRAzAZneQn+3/CDc03YNKZ/mwVoFJnuSp0VC443lTh8/GPf5zbb7/9ZR9TU1PDl7/8ZZ5//nkMJwUzrly5kjvvvJOf/vSnlJaWsnv37gX3B4NBstnsKZWgE/nsZz/L3/zN3yj/jkQiVFZWvopno6Jy4TMcGsaoNZ72vkw+Q6aQQULiMxs+w5V1V9I714uAgFlvJpKKEM/GuaHpBgAOBw6TzCV5uPdhoukoL4y/wHRimkRW9lRKZBP4o37etfhdFKQCO0Z3kMqlsOltVNoreefid/JE3xMsKl5EMBlkLjGHP+bnkeOP8E+X/hPNxc3KsPGx6WOksinZvdlUTESMEHxxc0lAwKQ1YdQa0Wv0xDNx4tk4PpuPscgYo5FRREGkZ/YYNa4aOko7zhh3EcvGcBgd2PQ2is3FbKzeSLmtnFQuhVlnZiIywR+O/gEJiVAqxFX1V/Fk/5MLBpyrndXc3XE3XquXw4HDp4ieUCqkREOU2coIxANKBchtcr+hLTEVlfORN1X4FBcXU1xc/IqP++53v8uXv/xl5d8TExNcffXV/Pa3v2XNmjUArFu3jq985StMTk5SVlYGyAPPBoOBFStWnPHYBoPhFEGloqJyemLZGCIibZ42Dk8dPuX+ZnczNc4abAYbm2o20VHWcYoP0mxylh/s/QEDwQFqXDU8dvwxdBodFp2FVC6lrLgPh4dZX7mer23/Gt9923e5Z/k9hNNhTDoTRwJH+MHeHzCbnCWdT1PrrOWaxmvo9HcyGBzkl52/5DMbPqNsoe0c28lQcIgSSwmtxa3s8+/DY/GgE3VIkoTD6KDKUUU8G8dusCMhMR4dJ5qJKpllkgQT0XGmYgFWla8+rROzVWfFoDVg09t4X8f7+Lfn/23BoPcy7zL+8aJ/ZDYxS7qQ5vmx51lTsYbLai/DpDOxoXIDy8uWK0PN86aHGkGDWWcmk8+Ql/I0uZsIpUKEUiHSuTRzyTl+0fkLap21HJ87rny/s2mJnegj5DK6qHPVEU1HiWajqnhSuSA5L2Z8qqoWDhVarXLvvr6+nooK2fH1qquuorW1lbvuuouvf/3rzM3N8elPf5p77rlH3ehSUXmdsOqsDIeGeX/H+7n/4P0LxE+bp42Prv7ogovsyT5I0XSUX3T+gh0jO0jmkhh1RqYT04iCSEEq4LF4mIhOKI/PFrLEsjGOzhzl4uqLafO2sW98H12BLm5dfCuTsUl0oo6CVECQBA74D1BkLmIiNqEIE5vBRrm1nMG5QR459gh3L7ub/IE824a3YTPYmIpPcVHVRdy76l52j+/GoDXg1riZDEyQm58pkgoIAuhFPcMz/awoW3FaJ+b59ppRa+Q3R36j+ATN0zvXy8O9D3N57eVsKNvA5TWXn9bNeH7mKZwOM5eYo9pZza+6fsVUfIqJ6ASiIHJF3RXctOgmBuYGKDIXEUqGSGQTC77fXHKOh3oe4v0d7wdYUA2y6+30zPbwwJEHiGVjFAoFErkEpZZSrmm8hp6ZHtL59BsyT6Si8kZyXgifs0Gj0fDII4/wsY99jA0bNiwwMFRRUXl9qHZW47a46Znp4eZFN3Pb4ttIZBOYdWYMGgOLiha9bHXg+OxxRfSAPBQNcrspEAuwrGwZyWwSjaghX8hTaiml3lWPw+hQhMaK8hVk8hn2+vcSTUfRa/TMJmZ5ov8J7EY7WlGLXtQvECbVzmqeG36O9dXrebz3cW5rvY27lt5FLB0jV8ihE3TkpBzJbBKvxctgaJC8VFBmipAkqh01zMSm0QoaUunYaZ2Y5718dozu4NjMMdxmN0VSEQWpgEbUUJAKPD/2PDe33Mxiz+JT1tWj6SidgU56Z3vRa/RU2CpYWb6SPxz9AxpBDlmdjk+zrGwZnYFO/mnLP1FqLWXn6E46Sjv4P2v/jzL3NE84FZbnp8Z3K/NO49FxRERWl69GEASeG3qOeCaOx+LhTwN/onumm89u/CwH/QcXiCe18qNyIXBeCp+amhpOFypfVVXF5s2b34QzUlH5y+BEk74Tk7h9Vh/vWfKeV7QOmIhOKKIH5GyuSnslk7FJDFoDWkHLTGKGeDZOrbOW7SPbyUk5Sswl2HUvVW7bvG0cmTnCQf9BxUeoyFyEVtQqwaAnChObwcb1TdezuXczqypWkcqnCKVDeKwedo/upshcxHRymg1VG2j3tvN43+P0z/UhAZJUYFFJC+vK17J7cAc+Uwkuo+uMxpc1zhr2jstRKDpRx0R0gnQ+rSxZGLVGrDrrKaJnKDTE7478jl1juxgMDvK2xrfxQPcDrChbwdMDT5MtZCk2F7OpehNHZ46SK+Q4FDhER2kHeSlP11QXPznwE9695N0cmzmmHLfEXMKDPQ9i0BgIpUIcnjrM4anDaEUteyb2sKxsGZfVXMbvj/4ef8xPsbmYvRN72Tm6k3ZvO8dmjp2XIasqKmfivBQ+Kioqbx6vJcNMp9Ut+HfvbC8XVV/EtuFtGDQGChQU0bOuYh2dgU42VG3g27u+zf+79v8pX2cz2Lik+hJ2ju5kIDig3D4fDFpmKztFmMwnq5943iWWEmYTs8wl58gWshybOUaZtYwPLf8Qi9yLmE3OIiAwGRlj9+AOKm3lFOudbCxf/7LP121yY9FbADDrzcQzcXKFHFpRi0VvocxatuDx89tb/cF+emd7WVexjiNTR9g+up0KewU6jQ67wf5i202iIBWYTkwjIZEtZBEQ0Gv0HJs5RiaXWXBsCYlwMozD6KBnpofp+DSpXAqLzsJIeISlpUvZPbabNeVr2DqyFY/FA8gitdndrBznfApZVVF5OVTho6Kics682gwzn9WHz+pjIibP8eQKOXaP76bN20atsxaNoOHtzW8nmUvij/mpK6rj4Z6HsegtHJs5tqCi1OBu4O83/D2/7PwlE7EJJRi0zFbGTc03nVaYnO68T84fG4uOkc4kuanqKv549A+MxiawiiZWejsoM3t4d9OtNBQ3vuzzbPW0UueqYyA4gF6jR296KS+wzlVHq6d1weOHQ8PMJeeIZqJEM1Ea3Y384dgfCKVCaEUt0XSUdC5NMpeUzRAlSfEy0ok6jFojbpObeDZONBM95XzmI1vmDR9Btv+QkMgVcgyGBllXsQ6QvZLmj3visV5Nkr2KylsRVfioqKi8YdQ4a7i++Xo292xeIH5CyRAVVRV8eeuXyeazSMhVDVEQMevMpPNpgulTgzObi5v5zIbPvKrq04nndLoKliWZpzZpZDQ9RSyXwKo1U2nw4CptRHiFTVCv1csn13yS7+7+7oKKVJ2rjk+u+eQpba75akqhIG+0FaQCoVQIgInIBC0lLfTM9KARNLIfkCBg0Vmoc9WRzCZxm9wYtUaimSgGrYF0Lo1Ba6DIVMQS7xIC8QCZglwJ0opa5XsYtUbl3/OCSCNoqHXVMpucxaa3MZ2YpshUpGbaqVwwqMJHRUXlDcNmsLG+cj2SJBFJRxRnZ7vBjlVvJZ6NL3j8fPUBwGU4fXDmq60+veIxDFBkWoIzFELKZhF0OkSn8xVFzzwdpR189fKvKqviJ25uzW9tzVeZsoUsU/EpzHqzPJz94tC3JEls7t3Mp9Z+ilwhx0h4hGg6isMgewVtqtrEo72PotPqmIxN0uHtwGP2kM1nWeJdomSX7Zvcx1RsSh7k1ujQiToi6Qgry1aSyCaQkNCIGmx6Gz6bjzZPG2ORMfRaPUWmojNW0FRUzkdU4aOiovKGUuOsWWi092KFJZgM0u5pX5DxNU+7p512b/sbfq6CwYDmZQxQXwmv1XvaIeb5BPd5I8JNVZvIF/KEUiFl/qehqIHe2V4kJH568KdcWnMp1zZei1VnZYVvBc8NPsdTA0+RyqeYTk7TUdrB2xe9nfsP3k+1s5psQRY/8wPpoWSIXWO7iGfjuEwuyrRlVDmrmIpN8fbmt9NS3EJDUYPsX5SK8un1n6bEVEJl45kjOlRUzkcE6XTrUX/BRCIRHA4H4XBY9f9RUXmD2TW6i3/e9s8LxE+7p53PXfQ5ZQblfCaajnL/wfuZjE5y0H9Q2XCz6q28p/09bB3Zij/mp9RcitvsZvfEbqLpKIlsAq2oxWV0cUX9FXT6O2lyN9HglsWRXW8nlUuxfXQ7qVwKk9ZER2kHd7bfSZu3jWg6ysO9D6MRNOwe2000E0VAYCQyQom5hDva7iCVSxFOyQaRS71LafG0vMmvlorKuXG212+14qOiovKWYV3lOv7ftf+PrkAXwXQQl8FFu7f9rJPR3+rMt7fmB41BXm+/selGvr/v+xSbiik1l7KhagMWvQW7wY5GoyGVTTESHgEBLDoLfXN9dE118a7F7+Kftv4TZdYy3CY3brMbkFPrw6mwMjs0HBqmK9CF0+hkIjpBiaWEbD6Lz+ojlArxlW1fYd/kPv5q+V/RO9tLpb2Sj636GCt8Z3a9V1E5X1GFj4qKyluKKmfVBSN0TmZeiMwPGgNcWnMpP+v8GV2BLto8bVxZfyUPdD/A3sm9FKQCWlFLlaOKK+uu5Dddv+HZwWe5vO5yAvEAOlGH2+QmlU0xI83gMDqUYeVMIaNsYo1Hx9k9vptaZy0P9jyITW8jmUtiN9iJZWLUuerIFXJMxafYN7EPf9TPF+Nf5F+v+Fe18qNywaEKHxUVlTeEEzOhnEYnrSWtp8y/XMjfH15aCdeLL623m3Vmuqe7aShq4KLqi/jhvh+i0+jwx/zkpTwmrYnxyDiRdITL6i7jB3t/wB1td1DtqGb7yHaa3c34Y35imRjpXBqtXn5b91l9VDuriaajjEZGGQmP0OBqkL+/Rs9Mcgab3kYql0JAIC/l0YpagqkgDUUNdE118ezQs1Q4KtQZH5ULClX4qKio/Nk56D94xtXujtKOC/77zzOf5ZXOpTFpTSRzSeLZOKXWUiaiEzgMDvrn+ql2VisbbflCHo2ooWemh2sbr+Wy2suoddUyGBwkmolS56ojlokhCiKpXAqD1kCTu4n3LHkPNoONw4HDzMZnKbOWMZucpdZVSygZko8t5XEZXSSyCWqdtYxFxuRA1hc9gmaSM6pjs8oFhyp8VFRUXjWvVEUJxAIcChziyNQRlpcup9ndzLNDz5Ir5DBqjTze9ziziVm8Vu/rmgI+vy4ey8YQEHiy/0l5RuYEBoIDfHf3d/nq5V99wyo/J0Z+JHNJemZ6sOgs2PQ2ArEAyVwSg9agRPKIiHLUhSQ7MMcyMWKZGNOJaf55+z/z7rZ388L4C3itXm5supFMIYPL5OJtDW+jqbgJkNtrA6EBLqq+iJ2jO7m4+mIO+g8ynZjGaXBiM9jI5rOs8K3gf4/+L3qNHo2gAcCsNauOzSoXHKrwUVFReVW8UhVl/v59E/sYDg8DcoL73UvvZjQyyjODz/Do8Uc5Wn2UJncT7Z529Bo9yVzyNbWi5tfF55JzAAwGBxkIyhf+3eO7FaM+kCMz9o7vxW1xY9VbX1fxdSZONEycS86hF/XsndjLaGQUq96KXqMnnU/jMXsIpULkC3kKUoECBfSiniXeJewZ20OZRR5o/sTqT5ApZCg2F+M0OpmMTrJtZBt1rjpsBhtWnVXe5hrfTUtJCy6jiw90fIDbF98uG0OmgvTM9PBI7yMIgoDD4CBbyFLnrMOgNaiOzSoXHKrwUVFROWcCsQDf3f1dRsIjtJa0YjfYyeQzGDQGHu55GJvOpoiiE4XG4anD7J3cSzwTZzQyCshuxc3uZv5z739yfO44pdZStKL2VbWioukovzvyOwaCA8SycvJ6Ipvg+OxxChRY6l1KZ6CTdC5NtpAllo4RTocZiYyQyqVwmVxsrNxIg7vh9X7JFnCyYWK6kGYyOonb5GZR8SK2DG9hUfEisoUs4VQYnUZHo7uRXCHH0tKlbBvexqfWfopfdP6Cb+/+NgICje5Gqh3V3LP8Hnpme5QWVbWzmjpXHYOhQbqnuwHYPb6bFWUr2DOxh42VGwnEA6TzaZxGJ3VFdRg1Rt7R8g4kJNWxWeWCQxU+Kioq50z3VDcj4RE52HJ4qyJiACrtlawoW6G0lua3jOZJ59LMJGbQiTqWli7lyvoreWHiBWpdtVj0FsYj42hF7atqRXUGOnl68GlmEjNk81m0Gi3ltnIyhQxHpo6wxrcGf8yPiEg8G+fq+qt5evBpjkwfwag1ArB1eCt/v+HvaS5ufoXv9vqxvGw5H1n5ER47/hh3d9xNKpdi99hufDYfFfYK6lx13Lb4NnaO7uSR3ke4sv5KftX1Kw5PyynrFp2FTD7Dnok9CILA3R13Ky0qm8HGrYtvJZVPsWNkh5LXNRGZ4K9X/zUmvYn1leuZjE0SToUpSAV0Gh0SEjc03aAONqtccKjCR0VF5ZwJpUM0uZtOET0Ao5FR/tjzR5rcTXRPd2PRWzBqjaRyKUDOhJKQuKr+KjoDnRydPkokHSGTz1DvqufSmkvZ3LuZZC7JQHCA7qnusxI+0XSUzkAnkXQErahlJDxCOB3GpDGxoXIDgiBQX1TPZzd+lmQuyXMDz9E714tRa2QmMaNUmgaCA/yy85d8ZsNn3rCLvs1gw2v1MhYd49eHf829q+/lHS3vIJgKYtQamYhM8FDPQ1TYK4hn44iCyEH/QXKFHBadhWJzMaFUiIJUoDPQSSaXWdCiqnHW8Kk1n+LahmuZjE2i1WjxWX3UOGuU53jiXNSryTxTUTlfUIWPiorKOeM0OLEb7KeIHr2oR0IimAxS6agkV8ih1+ipsFcwFhkjlUuhFbW0edo4OHmQS6ov4bnh59g5uhOQB3hX+Vbx3iXv5ScHf0Imn2EiNkE0HX3Fi/BwSJ4j0ok6js4cJZFNsKpsFZWOSvZO7GU6MU2ppZT7D97PyvKV/M3av+GXnb/k8PRhcoXcglXwidjEG77NpBE1dJR2EE6Fefz448QyMdwmN8l8Eo2god3Tznd2f4cyaxleq5dKRyUAmXyG8ei4UrGSJIlkLnlKi8pmsLHct/yM3//1yDxTUTkfUIWPiorKOdPqaWXryNYFtxk0BoKpIEXGIlpKWig2FRPNRLHqrCRyCcw6M5FUBI/Fg9vsptxWzu6J3RSkAi3FLYiiSDQd5YD/AF6Ll2Z3M4/2PUooFeI7u7/De5a8hxpnzWnPJ5qOMh4bRxRErqq/CoPGgFajJZ1L8+zQs/jjfuqcdYyER6hz1dE/18+usV1ISMoM0omBqHpR/4ZvM1l1VgxaAx6rh0AswL7JfUQzUQpSgVwhh01vQyNqMOrkRPXZxCw2g01pT81vguk1+jdkSFtF5XxFFT4qKirnjNfqZWPVRh489iDBVBC9qFdEz3uXvpeHeh+ixlHDaGSUWCZGrauWmxfdTJe/i9aSVqbiU6yuWM3/ffb/ksqlyOaz5KQcLqOLRe5FDIQGuKLuCto8bcQyMXaM7MCoMfLhlR8+5YI+FBrid0d+R9dUF4F4AKveik6jo8JewXB4GH/cT62zljUVa/hd9+8wao0UmYqYjk8vOM78CrdJa8JhdLzh20zzHj9zyTmyhewCr556Vz3xbJx6Vz0bqzYSiAVY7FnMkakjWPQWHKIDo9aIIAis9q1mWdmyN/TcVVTOJ1Tho6Ki8qpYXb6a29pu4+j0UeLZOJFUhGVly/hjzx/RaXQcChwinU8jCiKHpw4jCiKfXf9Zjs4dpcHVQO9cLzc03cBIeISuQBeRTIRgKogkSSzxLsGsNfPutnfzUO9DpHIpBoIDp7Sfoukov+j8BTtGdhDNROXBZUHEZ/URy8S4o/0OXCYXY5Exftf9O7KFLIVMgRJzCTOJGXw2nyJ4MvkMDtFBc3EzbpMbCYnnx55/w9bcT/T4mYpNEU1HqXZUU2ot5dLaSwmlQtgNdvZM7KHMWsb7O97P/Qfv5/DUYfQaPRadhRVlK/jb9X/7hjtSq6icT6jCR0VF5VVhM9i4ve12Hup5iM5AJzOJGfQaPXkpTywZwx/zKw7AFp2FSDrCgcAB/mPPf+C1eplLzrF3ci/1rnquariKx48/Tl7KoxE0OI1Omoub+d7u72E1yJWXTCFzSvvp+OxxZVNJK2opNhcTTsnr6YcCh7i64Wp+ffjXyuNFRKW99fzY89x/0/1EM1Emo5OIggjIpn1N7iZ2ju4kkU1g1Bo5ZDjEhqoNZ2y1vV7Me/wcnz3O7vHdAAgIDAQHyEt5JCSqHFXoNXpGQiN8oOMDiKKITtThtXhp97arokdF5RVQhY+KisqrZv5CvXd8LwcDB7HpbRSZitgzt0cRPQDltnKsOit/7Pkjk7FJTDoTEhIl5hL6g/1IksRS71L2Tu5FFEVlaylbyCrH0Iv6U9pPE9EJkrkkAgIWnUVxQc4X8ggIpLIpVpSuYJ9/HyLiS8fSyEaAU/EpsvksTUVN6LQ6zFozDqOD/ZP7eW74OeXxPqsPQRBwm9xvSOVnuW85ReaiBUaMIBtEXlN/Ddl8lmg2qm5fqai8ClTho6Kics4sWH3WW2n1tHJk5gh6jZ5oOrpA9IiCiEFrkHOjpg4jCAIaUcPeib2srViLXqNnKj7F5bWX0zPXg8/m4z3t7+HZoWdZW7GW/mA/OlFHnatuwaZSNB0lV8gRTUcpsZQwGBokno0D8sp8vpBHp9XxgWUfQDgocNB/kIJUwKwz01LcwodWfIjumW7ave3Y9DYiqQiP9j3KdGKae1fdu+D5TsQm2NyzmXZPO+3e9jfkNT7R4VldMVdRef1QhY+Kiso5cXIkBECRqYiLqi9iNDxKvaueozNHAVn0mHVmxW8mnA5j0BhIZpO4TC52je6iqbiJWmct9UX1vHfpeykUCvzh6B/YPrqdaxqv4abmm0hkE7SUtBBMBrEZbMo5eCweKh2V7J/cTywTw6wzoxW1aEXZuLB/rp+BuQGubbiWO9rvIJvPUuusxWf18Zk/fYbnx58H5HbS6vLV3N1xN1949guIgniKI3U4HWYyNvmGCR9QV8xVVP4cqMJHRUXlrImmozx6/FE8Fg9Og5NoRvbX0Wv07BzdyS0tt1BkKmImOUNnoBOtqEUURKod1dQV1THTNYNBa2A0PMpiz2K6p7s5NnOMGmcNA3MDHJk5wo1NNzIRneAjKz/Cs4PPsntsNyXmEn6w7wcsLlnMP2z8B7qmuphLzmHUGLmp6SYGg4NE0hES2QQWnYUKewWX1FzCXGKOdy5+p2xkqDWxY2QHgWiAY7PHFNEDsn/QIf8hJEniriV3UWYr46Geh05xpL6p+aY342VXUVF5HVGFj4qKylkzGhrFY/bwXwf+S6nqALQUt/DBZR9kNj7LhqoNfPuqb/Ps0LPMJGcwa82UWEo46D9Im7eNA5MHkJDYO7GX5uJm2r3tNBU1sdy3nAIFfrz/x6ypWMNvDv+GscgYRaYivBZ5YLdrqosvb/0y966+F3/MTyAewGfzscS7hPWV60nn01h0FkKpED2zPQSTQdq8bVxWexn7J/fzcO/D/NWKv6L7WDcGjYF0Pq08BwmJQ4FD3Lv6Xp4eePoUc8bJmBz+ub5yvdpuUlE5j1GFj4qKylmTzCf5rwP/Rc9sDyXmEgxaA/lCnmgmyu+6f8ffbfg7AFo8LVQ4KpT5FJvORrNbXhMPp8P0z/WTLWSZjk+zvnI91zVexz8+849MJ6YxaAyYtCa6prrk75lLUumopNxWznh0nIP+g0TTUUA2HcwWsgSTQWYSM0TSEYrNxeQLeeLZuDJr9ET/E6z2rWaFbwXZfJZwOozb5GY2OUs6n0YjaChIBUxaE0jQM9Oz4HlrRS1Vjiryhfwb7uisoqLy+qIKHxUVFYVoOkrfXB/DoWFS+RQei4fFJYuVFWl/1E/PbA+V9kqGQkOEUiFlDXw0PMpEdILlyLEIp5tP8dl8rKtYx1Riilwhh8/mo83Txr7xfUwnphUjxFQ+pXxNKpdCI2joC/fhtXgZz40TTodfOqgEdoOd43PHmU5M4zQ6lSFnn9WHgMBccg69Rs8K3wpcRhcaUYNOo8Ntcr94CAmdqEMjatCIGmwGGyWFEmW93mV00eppxaA1vOGOzioqKq8vqvBRUVEB5KHlZwef5eeHfs5AaAAAm97GRTUX8YGOD2DSmIikIzS7m5lLzuEwOhAQGIuMIYoigiBwePowq8pXndFLpspZRZWz6pTbNRoNlfZK5pJzrPKtYnHJYlpLWjFoDCwuWUylo3JB1cdtduOP+QGYTkxzed3lxDIxUrkUAgIgi57L6y5nIjoByD5At7fdzu6x3TS5mzgweQCr3opRa8SgNaATdTQXN1PjrGF52XLCqTCZQga9qMdhdGDQGgDecEdnFRWV1xdV+KioqBBNR3lu8LkFogcgno3TM93DV7d/lVtabmE4PMxB/0EC8QBaUYtVZ6Xd2y4b7BXyZPNZnh54mvVV68/J7M8gGris5jIkJH59+NckMgly+Rwry1bSNdXFCxMvEE6FMWgNtBS3UGGtYDYxiz/mJy/lmYhOcE3DNTiMDqVdJiAwEZ1QMrisOis1zhrcJjces4d/2/1vHJs5hkbUkCvkaChq4O83/j1tJW3sm9ynCJ0TKTIVnRL+qaKicn6hCh8VFRWGQ8PMJGYWiB4At8lN71wv6yrW8Xjf45j1Zqqd1fjjfgpSgWQuyWhkFLfJjUVvYSI6QTgdJp1Pc2vrrWc9BNziaWGffx9bh7di0poIZ8J8dOVH+fWRXzMeHSeZTZLOpykxlxBOhfnqtn/mK1f8MyKiYuRXYinhge4HCKVCpxz/RMFiM9i4tO5S6ovq6Qp0EUwHcRlctHvblWrUfHTEySv7NzXfpA42q6ic56jCR0VFhVg2RiKbOOV2g9agDAx3T3czl5zjxuYbCSaD9M31kZfyzCZnWVu+liZ3E48cf4Tb227nV12/oqO046zDMr1WLw1FDfz7C//OTGKGeDbOUu9SBATqXHVE0hEcBgfJbIKx4DDjs4NsG9rCXR3vWyBErm+6/qwFy5nabqCaB6qoXMiowkdFRQWrzopZZz7l9vnoh/ntqVQuxYNHH2SJdwmX1FxCvpAHAWocNXx565fpKOvg+MxxJCSGQ8OK8DnZ6fl0oZ9zyTlsehstJS1MxaawGWxkC1n2Te5DI2ioclThj/qx6a0YJZHpSICh2X7afR3KMV5PwaKaB6qoXJiowkdFRYVqZzXF5mLqnHUL2l0aUYPdYMemt5HKpRAFUZ6hCRnYMbqDXCHHdGKaO9ruoLaollW+VTzU8xCtJa2KR85QaIjNvZsREDBqjBh1Rg75D2HSmqhx1tDobsRmsOEyuhiJjBDJRJTsLZBDQ3OFHNl8lmw+Q0EqACJmjYFYbO6U56IKFhUVlZdDfOWHvHV45JFHWLNmDSaTieLiYt7xjncsuH9kZIQbbrgBi8VCcXExn/zkJ8lkMm/S2aqonD/YDDYuqb2Eu5beRZ2zTrldFESWly2n0lGJRWchlUtRZC5iNDxKlaOKRncjV9dfTYu7hTW+Ndx/4H4yL4qTEnMJ0XSUzb2bERHZNbKLvZN7+fKWf+IDf/wAn3jsE9y35T6+s/s7DIWGaPe0s6JsBUgwHB7m+OxxSi2lJHIJNKJGPi4SgiBQV9SAPiNh0ZjevBdNRUXlvOS8qfj8/ve/55577uGf//mfueyyy5Akia6uLuX+fD7PddddR0lJCdu3b2d2dpb3ve99SJLE9773vTfxzFVUzg9qnDXc2norHaUdDIeGSefTeMwedBodP973YzZWbWTr8FYC8QDltnK8Fi/xTJy2kjZ+dfhX8maXlMchOGh0N7LYs5jh0DCSJPH04J9Aktg3sYeB0CAAc4lZDk8dJpPPkMlnuHfVvXzh4i/wL9v/hanEFI8cf4T7Lr2PUDrESHgEf2QSnailyd3EOxreTmF2jipr+Zv8qqmoqJxvCJIkSa/8sDeXXC5HTU0N9913Hx/84AdP+5jHHnuM66+/ntHRUXw+HwC/+c1vuPvuu5mamsJut5/V94pEIjgcDsLh8Fl/jYrKhcyRwBG2jWxDEARMOhM6UUcsHaMv2IdFZ+EPR/9Az2wPEhJGrZH1Fev5p0v/iRXlK3h+7Hm2D2/jf4/8gaaSZn7V9StAriTlCjlMOhOLPW0UmYq4dfGtXFpzKeFkmGOzxxiLjGHWmqlyVrF3fC9zqTlcRieGvIA5kuH6xmupa1qFYDh17VxFReUvj7O9fp8XFZ/9+/czPj6OKIosW7YMv99PR0cH3/jGN1i8eDEAu3btoq2tTRE9AFdffTXpdJp9+/Zx6aWXnvbY6XSadPqlvJ5IJPLnfTIqKucZVc4qMkMZZVNKI8hmg6XWUn7X/TvqXHWsLl+NIAjUF9VzRd0VLC+T3ZutOivxdJy8lCNbyAIviZ4CEiCQL+TIFXKEkiEe6nmI2xbfxrbRbeg1euLZOAcm9lNlLafK6CWVirGyuI06jxtXZaMqelRUVM6Z80L4DAzIw5Zf/OIX+da3vkVNTQ3f/OY3ufjii+nt7aWoqAi/34/Xu9At1uVyodfr8fv9Zzz2V7/6Ve67774/6/mrqJzP2Ay2Bb42eSnPaGSURncj37jyGwTiAcVjZ7Fn8QLXZnlo2o1G0KATdcrtBSS0ggZJyqMRNWhFLUatkUA8wHR8WllLn4+HGAoPUSRauaH+WqqNXkSnUxU9Kioqr4o3Vfh88YtffEXRsWfPHgqFAgCf//znueWWWwC4//77qaio4IEHHuDDH/4wAIIgnPL1kiSd9vZ5PvvZz/I3f/M3yr8jkQiVlZXn/FxUVC5kXu2auM1g49LKi9gxvJ1IMkyds5bB8DBaQYNRa8SsM6EVtJRZy5SoiVg2Rpu3TfXRUVFR+bPwpgqfj3/849x+++0v+5iamhqiUTmJubW1VbndYDBQV1fHyMgIAKWlpezevXvB1waDQbLZ7CmVoBMxGAwY1E+OKiqvyKtdE28pXsTfLP84v+z5H6qLatgytIXe2R7MOhMtxa00uptYW7mWscgY8FIWlrqWrqKi8ufgTRU+xcXFFBcXv+LjVqxYgcFgoKenh40bNwKQzWYZGhqiulq2oV+3bh1f+cpXmJycpKysDIAnn3wSg8HAihUr/nxPQkVF5WURDAaWl7RTVrDQk5/k8upLCaXDZHIZtKKGZCHDWGSMvJRXs7BUVFT+7JwXMz52u52PfOQjfOELX6CyspLq6mq+/vWvA/DOd74TgKuuuorW1lbuuusuvv71rzM3N8enP/1p7rnnHnU7S0XlTUZ0OvGZFlMaKkfKZhmxhXh4+CmC2bDyGDULS0VF5Y3gvBA+AF//+tfRarXcddddJJNJ1qxZwzPPPIPL5QJAo9HwyCOP8LGPfYwNGzZgMpl497vfzTe+8Y03+cxVVFRArvxoXmw711HBB0qq1RkeFRWVN5zzwsfnjUT18VFRUVFRUTn/ONvr93kVWaGioqKioqKi8lpQhY+KioqKiorKXwyq8FFRUVFRUVH5i0EVPioqKioqKip/MajCR0VFRUVFReUvhvNmnV1FRUVF5bURiAXonuomlA7hNDppLWldkK2movKXgCp8VFRUVN5ECrEY+akppHSaWavA0cwY4Uz0dRcmB/0H+e7u7zIQHFBuq3PV8ck1n6SjtON1+R4qKucDqvBRUVFReZPI+f1kdu+mEI1ybJGL7+36EQNzfYh2O4Je/7oJk0AscIroARgIDvz/7d15dJzVff/x9zP7jDSaGe2LtdmWZRsJy7bwChhsloANJqRQaEjgNOWwxBh+JGlMkgZ6fmVJmvzCgQTC0hIgCy2kLWY1dgx43y1btrC8aZe1azbNPnN/fwgGhNnagmXPfF/nzMG6z52Z+31kpI/v3Oe5PLL9ER5c8qDM/Ii0IWt8hBBiHCT8fqLNzWgZGbhrK/n1od9xfPgYxGIkvF5UPJ4MJr3+3v/VezX1NZ0Uej5wfPg4TX1N/6vXF+JMIjM+QggxDuJ9fcSOHUN5vRw6J4+jrXtBr0ezWCAcRkUiaFZrMpgUZBbgC/s+3ObDlEm544tt8+EOu/9Xx4VIJRJ8hBDiFEv4/UQPHUL5fKDTMRzzjx6Ix1GhEJrJBIlEsr8n7KHV3crq5tV4Qh6cFifReBSXzUWONYcMvRWnPgOj3sSJkV6iWoLirBKqcqqwm+04zc7PHM/nHRcilUjwEUKIUyjhdtM23MaBYj/DTgvZZifFmblYjBmEoiMQj4NON/p4X641Nxl6sq3ZvHzoZapyqti0bxMnfN1MsE9gWu5U3P4hZuTXsK1lIya7g3MrF3HD2TcwPX86E10TP/HjromuiUzPn34qT4EQ40qCjxBCnCIqHGZb/14e2PIz9nfsGp3VUYr6Sefx7SV38dxfHiYUHUHTtNFZH0aDidFgZCg4RI41hz83/ZlsWzab2jfR6m5FJeIMhYbY0rmFSY5KNrRvpDZ/Ggd7GtnUuhGL3sIt9bewcu7KT72qSxY2i3QiwUcIIU6RNncbD2z+GY29+0YbdDpIJNh9fDPodHxj4d/yhw2/AbMZTa9PBpNQLARAOBbmuPs41bnVrDu+DpRCKUVcJejz9zI1ZypH+g6xsHQBJBIEQz6ODx+nzd1GXWEdqxas4kD/AYaCQ2TbsqnJrWFK3pRxPCNCnHoSfIQQ4hQ5MHSIxp4G0LTRh1Kg06GAPS1b+NsZN/GPy/4ZryGO0+Jiev508o1OGrsaSHi9jNhBKUU0EU2+pkKhoQEk25PHlSKSiBCMBtnasZUHNj5AY19j8rm1+bX86LwfMb90/qk6BUKMOwk+QghxigyHhkf/oBSawYCKxUbDD5BQCYaDQ1w++Wp0Tudom9tN5GADJboYrpiRiM5EKBocDT/xKHpNh81oI8+WS7Y1G7PBQll2JVMLarDoLYS0OKWucixGC/+w/h9o6m/CqDOioRFJRGjsa+SBjQ/wm8t/Q5mzbJzOihCnltzHRwghThGXLWd0pgeS4UczGkf/azLhsuclQ48Kh4k2N6OCQTLCirm1X8Mf8VOYUUDHcBuzi2ZTnVPNORPmEogF6Av08V7/eyidjj29e3HH/Kxr+QvuoJvtXdtZ37qeweAg/YF+3GE3Zr0ZgMa+Rhp7Gz9lxEKkHpnxEUKIU+TsgrOpLZlFY9ee0Zme92d70DRqi2dydsGMZN+E240KBgEYzLfx9NYHyTRm8KNz7+G4pxV32M2url1s79xGMBbEZclmomsi1dlT+LcDL1DqKuebM25gR9cObCYb0XgUk96EpmlE4hGGQ8M4zU4iiQjD4eHxOB1CjAsJPkIIcYqUOcv48aKfcP+G+2ns2TcafDSN2sIZ/HjRj8d83KSiH67jORTu5Ej36KyMUgq3LoQ76ufqaVczs2gWAGa9kUA0yHF3C4XOEiKJKC6Li3ZPO4srF6NQJFQCvaYHIBKPoBgNXi6z61SdAiHGnQQfIYT4CvjCPo4MHqHb143RYKTYXkyFo4L5pfN5bOljNPY2MhwexmV2UVtQe9IaG81oTP7ZHfIk/2y12nm58RWMBjNzJ8zl+YZnSaCwKQNBLU5eZj4ZpgyODh2lZ6SHNk8b3pCXusI6DvQdGPMeCZWgNr+W2oLar/ZkCHEakeAjhBBfslZ3K7/f/3s2t28mGBv9uKo4s5hl1ctYULqACmfF5y4m1jmdaFYrKhjEaXEk2yOJCAB1JbMYCAzgDrlxWl0kgLiKMxQcYiAwQGFmITaDjUg8wlN7nmLVuat4bv9zY8JPbX4tPzzvh7KwWaQVCT5CCPG/oMJh4oODo9tPGAyM2E28dPjf2dC6geHQMHEVR6/pafe282rzq0RiEWYXz2YkOvKZ+21pZjPG6mqizc1MNWdRVVyLWWdkUv5ULmYZ0/Jr6PR2UJ07laHAAHEVJ67iGHQG+gP9zJ8wH2/YyyWTLsEdHOb1I69zQ+0NGHR6/NERXBYX55aey6ScSeNw1oQYPxJ8hBDifyjhdhPZv59YezvEYgAcn5jJwd5GOjxtxFSChEqg03QYdAZCsRCTcyZjM9kIRUP4Ij6yrdnMKpxFdV71Sa+vczox1dVR6HZz66Lvsa71L7SOdJJjL6TF28rOzp3cds5t/Gnv8xz2HMdssGAz2qgvrmdZ9TKisQihWIhXevbTH+hnW/tmCm35XDHtKr4+9euUO8tP9SkTYtxJ8BFCiC+o199LU18T7rAbp8nBlLAdR3f3aOjR6QjkZNJmGWEwMkwoFiaqYgSjQeKJOGaDObmYeFf3Lv794L8nX7c2v5Z7F91LfUn9Se+pmc00xDv5x03/lz0ndhNLxNGASdmTWDLxIv6z8UUuqrqUGcEBNJ0OT8jDYGAQo2bk5SMv09R3gNr8WhZXLkanwKaZMMTBLD/+RZqSv/lCCPEFNPQ0jNnrSkUiVFqKWDH9b5l6OEF3gYVX2t4iYZlAr7+XnpEe9DoDmaZM3CE33ogXm9HGcHD00nGDZhjdkwuNxr5Gfrnllzx82cMn7ZvV6+/lt7t+y9bOrSTUhzu2Hxo4hFKK2cWzCSXC7Dqxm3ZPO+6QmzJHGXEV5+3W9diNdra0bybb4iJHb0efGA1f51UsotBZcorOnhCnDwk+QgjxOXr9vWNCTywRI6aiKIuZNz078Z09h/XvvUYoNow16sBlcZFpsjMQHCCeiGM32fFGvEx0TWQ4OEzfSB8DwQEATHoTLouL5qFmmvqaTgo+jb2NNPU3kVAJlBq9JP2DbSoODTZz6eSv0eXrYiAwwPll51PiKMFhchCNR5ldXE+3twsDOrJ0NvRxlXxdd9h9ys6fEKcTCT5CiLTmC/toc7fhj/o/dbFxU19TMvSEYiE8IQ8Xll/A5tYN/Neh/yK+8Aes6XyHbLOT2fqJXDH1SuaWzWcgMIAn7MFmGL2BYG1BLYcGDtHQ04BBM2DUG6krrKMkqwSrwcpwaBhf2Dfm/ftG+tA0jYRKEI1Hkx+XwfsBLBFjVtEsZhbO5N22d9ncvhlP2EOls4L+QB9Lpyxl7/EtY+4LBOA0O7+6kyrEaUyCjxAibbW6W1ndvJqh4FCyLduazZXVV1LhrEi2fTA7EkvEGAgMUFdYx+bOLbR62tDrDUSJUZBfyezi2ezo3klfcIDDg4eJqRhmvZkscxYVzgoqXBXc+/a9jMRGMOlMXFtzLbu7d/NO6zs4LU68YS+dvs4x75+XkceckjlMzp6MUopObyc7unYQTYyGIIfFgUVv4ZmGZ+jwdiTHHI5F8If8bGnfwuy86Rzs3pc8NjG/mukFZ32l51aI05Xs1SWESEu+sO+k0AMwFBxidfNqfGFfsu2D2ZFwLEwsESPPlkebpw2D0YxeZ2Ra3nQMeiPP738eg2Zga+dWNrZvZEvHFt5ufZs2dxsNJxp4ft/z/NX0vwJg7oS5bGrfRPNgMwadgWxrNjajjf29+3l6z9M09jayqW0Tbx17iy3tW1h3fB0vNb1Eu6edr0/7OkadkfrieuoK6kiQGBN6AFo9rcwuqScUDZJl+/DOzBPzq7nr/B/I+h6RtmTGRwiRltrcbQwFh0gEAqiRkdErs4xGNJuNofeP1xTU4Av7yM3IJT8jn/cC741+5JSIotf0hGIh7phzB5s7NlOcWcx/Nf8X55Wdz4a2DZj0JqLxKBaDBX/ET7Y1mzVH1/DI5Y+wv28/pVmlbGzfiIZGri2X2oJadnTuQKfT8W7oXbJMWSil2Nm9kwQJKp2VRONRRqIjNA80c8ecO5hdNIsDvY24bNlMzp48ekVXcJCESmA32SnMLGSSs5L64rnMLVuA0+xkesFZEnpEWpPgI4RIS/6on7jbTby9ncTIyGijUmg2G4aKCvxRP63uVja3byYQDfA3NX/D7xp+x6aOTeg1PQpFji2HMkcZP337p3x3zndxWVxEE1ECsQCZpkwMZgNZ5tEAE0vEsBqtbG7fzHll51HpqqTT1zm6cSgaB/sO0u3rRtM0HGYH/YF+NrVvYkbhDHZ27cQf97OwdCHekAejzkCVazLvdTWy/vAb3LjgdgLRACa9ifkT5mPUGcnNyCXTlAnAtIKzqCmoGcezLcTpQ4KPECIt2SIasZYWlM+HZjaDfnTzThIJ4l1dGOoUWzq28Nrh1+j2d2MxWLh2+rVcPOliMk2Z6HV6Dg8eZjA4SDQRpd3TzpLKJcybMA+j3ohJZ6I/0M/hwcMkVIJQLMRE10RcFheP7XqMG86+ge2d27my+koqXZUUZBYwd8Jc2txt7O7ejUlv4r2B95hVNAu9Tk8gHCARj6GLxUGv0ePtYsPhNSyoOI8svZUp2VX0BwYIxoKU5ZRhNpiB0TVLcqNCIT50xqzxOXz4MMuXLyc3N5esrCwWLlzI22+/PaZPe3s7V1xxBRkZGeTm5rJy5Uoikcg4jVgIcbpS4TAlITPZBjuazYaKxVAjI6MPv58cez7GhMbqhn+ns/8YKh4nFAvxxwN/pNvXzUtNLzF/wnzCsTBWgxWDzsCErAl0eDv49Y5fs7p5NU/tfYp9vftYWLoQk85ETI1egZVlzuLmWTcz2TWZVeeuotffy+M7H+cP+//AM3ufoWW4hRvrbiQcCwOj64qG/APYDTYi4QBB3zAD/j5MOiPXz/s7+qJufrf3d1RmVSQ3Ru0P9AOjoWd59fJP3BJDiHR1xsz4LF26lClTprB+/XqsVisPP/wwy5Yt49ixYxQWFhKPx1m6dCl5eXls2rSJwcFBbrzxRpRSPProo+M9fCHEaSThdpPhCXLlpMt5tW0txhwbWlYWoUSYnJxS5psm0zbQRmdHEyQSaGYzOoeDmAm2d21nSs4UijKLuLbmWkoyS7hpxk2sOboGi8GC1WhlVuEshkJDxBNx2jxtzC6ZjVKKCmcFLx58EXfYzeKKxYTio9tW+CP+5NgGg4McGTxCdU41WaYsjEojGg6QMGRSnJGN3unCml+E3erg+YZnOTZwBIC2kW4uqroYo85Iti2bJRVLqMqpktAjxMdoSin1+d3G18DAAHl5eWzYsIHzzjsPAJ/PR1ZWFuvWrWPJkiW88cYbLFu2jI6ODoqLiwF44YUXuOmmm+jr6yMrK+sLvZfX68XhcODxeL7wc4QQZ5ZYZyexnh6iDQ20VmbxbyfeotPTgdmagTNiZPKk2eRNmELvSC9Oi4Nsk5NjfYc56D7Me0OHiCVi/P2Cv2d6/nReP/I6+bZ8frT+RxRkFNDt62YkMoLNZMOkN2HUGfnBgh+wqX0T9cX1WAwWjg8fZ2ruVB7Z/ghGvZFIfHRPLZ2mYyQ6Qoeng7vn3U3zwCEcJgevNL9MhauS+dYpFFvyqZg8m97QAA09ezHpTfT5emjoP4DVnEG5o5wyRxm3n3O7rOsRaeWL/v4+I2Z8cnJymDZtGs899xyzZs3CbDbzxBNPUFBQwOzZswHYunUrNTU1ydADcOmllxIOh9m9ezcXXnjheA1fCHGa0YxGNKORYHkRbx74IzF3N4UoTIU5uKbU8tThf6OtoRObwUart5W5xXO4a97/IS8yjMuWzd6evRRmFlLhrOBbZ3+LDa0buLDiQhp6GoglYuh0OvxhP96wF71Ozwn/CUrsJbhDbiqcFcRVnMHAIC3uFvQ6PYWZhXR4OxgMDqJDh81ow2K0UJJRxAlvJ9+uu5Gz8qajfD4mFZ3Frzf/PzqigxzsPwhAhauSy6YsZe3xteh0o+Gpb6RvnM+yEKenMyL4aJrG2rVrWb58OXa7HZ1OR0FBAW+++SZOpxOAnp4eCgrG3urd5XJhMpno6en51NcOh8OEw+Hk116v9yupQQhx+tA5ndDezoniDIYa3ADodUYqZ1zAAfchJudOYWr+Weg0Hd0HutnevYOHt/2Km2bcxIH+g1xZfSVVOVUA2M12yp3l6DU9Rr0RvU7PYHCQWCKGUW9kefVy3ml9h4HAAOF4GIveQpmjjLrCOmYUzGB/336a+poothdTYi/BqDeSbc0mz5ZLBiZM6DDGFIHeLhJGA4/s/g39CS8mkxWj0YKmFJ3+Lta1rKPUUcpQcIj9vfuZljeNbFs2dYV143aehTgdjevi5vvuu290k77PeOzatQulFLfffjv5+fls3LiRHTt2sHz5cpYtW8aJEyeSr6dp2knvoZT6xPYPPPjggzgcjuSjtLT0K6lVCHH60MxmjFVV+KJ+dHl5mMorKDzvYtZ2vsPD2x/mTwdf4PnG52nqb+L62usx68zs7N6JQW/EYcxkauZEMqIf/lwpd5bjsDow6AzkZ+STY80ZvcFgUT0H+g9wdOgoDouDLFMWB/oP8E7bO7xx5A3mlMwhw5hBTUENLqsLm9FGMBrEHXSzvWMbJ7xdtPUdpdxaRM9gG0GTRmegB6slE03TqM6tJi+zAIPOSJunjbKsMgBKs0pp97TzyPZH6PX3jtdpFuK0NK4zPitWrOC66677zD4VFRWsX7+eV199leHh4eTndo899hhr167l2WefZdWqVRQWFrJ9+/Yxzx0eHiYajZ40E/RR99xzD3fffXfya6/XK+FHiDTQbwjjtsJRi5+pOdN4vXUtvnhgTJ82TxvDwSHOLz+Pd1reZiQ6giNmhLY2QkdDGM86C81gwGYysbzqStqG2+j2d1PqKMVpcTKvdB5bOrYQiAZQSrG3Zy8JlcAX9tHY18jXJn+N1468RoenI3n5eYWjgqVTlvJu6zucUzmLYkMODX37SFiNZBmNdHjaafMo+kf6ybHloNf0lDpKaRluAQ1ybbmclXcW27u2E0vEPnHjUyHS2bgGn9zcXHJzcz+3XyAw+sNIpxs7QaXT6UgkEgDMnz+f+++/nxMnTlBUVATAW2+9hdlsTq4D+iRmsxmz2fw/LUEIcQZq6GngV1t/hUFnoNXfQZbNxY7ePcwomIGGDohj0ZsJx8IcDfSxsOxcNE2Hw5CJPzFMhjGDeFs38aEh9EVFKJ+PqopiLq+8GF8iRCgWIpqIEowG2de7D5vBRoe3g7iKA2DQGXCYHYxER1hcuRiX1UU8EcdqsGI2mDk8cBh/dISgivBm61sEQz4uqL0Cd9ANmkamMQOb0UYo9v57xaNcOvlSLp50Mf6IH52mo9hezKGBQ3jCnnE910Kcbs6INT7z58/H5XJx44038tOf/hSr1cpTTz1FS0sLS5cuBeCSSy5h+vTpfOtb3+Kf//mfGRoa4vvf/z4333yzXJ0lhEjq9ffyi82/YFvXNjQ0Lpl0CQqFN+ylP9DPBMcE+kb6sJvsDLx/P5xYIsY5xfWYlA67ZqXEpyMxNATxOHqXi3h7O6bBQebOrOT1yH48UQ99/j6sRitZ5izKHGW0DLdg1o/+I6sqp4ouXxfukJvjw8cZ7B7EarBSnVuN1WAlpmLkZ+RzItCLIdNOhtlCTUEtzYPN1ObX0uPvwRP2EIvHKMoswm624w/7eeXQK/xn839iN9mZXzqfs/LOwmF2jOfpFuK0c0bcwDA3N5c333wTv9/P4sWLqa+vZ9OmTbz88svMmDEDAL1ez2uvvYbFYmHhwoVce+21XHXVVfziF78Y59ELIU4njb2NbOvaRiwRI5qI8taxt8i35XNW/lkYdAYWTFhAuaOcoeAQH9zro9Qxge/P+x4ObFQWVnMo3sPRahfBCfmMZBg4Um5lT3YAX18X15Zdxl9N+yuuq7mOeRPmMbtoNseGjhGNR7EarVS6KhkKDFGYWYiGxuVVl1OcWUwwFmR/736aB5vxhr1cVX0VO7t20u0/wddrr+GFgy/wwMYHKMgowBP24I/4KbIXEUuM3hixKqeK9a3rqc6pxhfxsbVjK/t69tHibhmz4aoQ6e6MmPEBqK+vZ82aNZ/Zp6ysjFdfffUUjUgIcSbqG+kjloglv44mojT2NRKOh2kZbqHMUca8CfOoya8hGAtS4azgr6deS8Q7yNvHXsUz0EVieBg9OqbOupgW90EC7x0klmnFa0rgiu7hyhnXkGPNIRgNckHFBbR72jnYfxClFBOdE8lx5XD11KsYCrnxhD2cX34+0USUDm8HNXk1BKIBNrVvYlreNKbmTmXPiT3Jy9P/eOCPnFd2HkWZRWSYMji74GzWHl/LhrYN9Af6iSaiFNuL6fH3EI6HCcfDyQ1XhRBnUPARQogvQ6Y586S2/b37WTJxCTp0WAwWNrZvZCAwQKWzkrNyp/P0tl8zs2Am/v5ueP9iroIJU3il9U3cUR9VxRM53PceQbefaLyTHQN7mVe2gHgiTo+vhzvmrECn6RkJ+8gwZbC9Yzutne9hy8hCs1joGemhz99H00ATRZlFyXU5Tf1NZJmzODp8FHfQjd1spz/Qz7bObQRiAQyagZ8u+inv9b+HpmmY9WYC0QCTsycTjoXRaTpCsRD+qP+kmoVIVxJ8hBBppdJZybTcabw38F6yLZqI8pfjf+Gas66h0llJXkYeZr2ZkegIu3v2YMbAwaZDLC+7kL7Ow2AwoLmyOTHYRzwepSM6QDDkJ2G1MBAcIhbsZ0bxTN5ueZuq7CrufetHlGaVUpszjSybi1eb/pNFFRdQNhBBX1iIZjAQSYzuK2gxWPCEPTgsDqwGK5F4BKPOSJevi8nZkwEIRANojN7yQ6fpmJQ9iW2d2zDqjQBoaOh1egw6AxaDhUzjyWFPiHQlwUcIkVYqnBXcUn8LT+x6Ykz4mZw9mTklc3i24VmGQ8NjnqPX6zk+0knMaUcfLUCXnU3YqFCBAGGbgWA0CHo9YbOeWDACBgPhWJg2TxsLSuaBUnR42llYugBvYJhSRxmheBhiFlQohJaZiUlnojizGO39KSWzwUx1bjUZhgxCsRA5thya+psod5STnZONL+zDoDOQY83BoI39Ua7X6bGb7BRlFpFlzpLd2YX4CAk+Qoi0YjfbqSus47b623CH3PgiPuwmO06Lk1gihjvkPuk5Bp0BTacjQAR9bi4Jnw+L0YaWkUFcH8NoshCyWEho7y+H1umS9+WJJqLJ14kmojT3HOT8SYuIqhgMeOD9W3JMdE2kJKuEo0NHk/2dFic51hzyMvIothezq3sXvSO9uMNuRiIjTM+bjklvoragloHgAIcGDpFpykSn6VhQuoALKi5gQekC2ahUiI+Q4COESDsVzgpyrDm0udvwR/1kGjMpd5azq2sXipP3bdbQsJvs2Aw2/FE/OrsdncFGSW4l3aE+UArNaESvxcBopMxRRjAaxGKwYNQZk69j1BmJJWL0err5Sf3deAr6CDqs2B35lDvLGQwO0h/oZyg49OF7axor56zkid1PUFtQSzwRJxKPUOmqZHbRbF5sepGJzoksn7Kc68+6nsLMQpxWJ0WZRZQ7yyX0CPExZ8Tu7KeS7M4uRPrq9fdyz1/u4fjw8THtGhrT8qYxp3gOrZ5WAPSanonOiRwZOMT29q0EogHieg2T3sz80vls79pOpjETh9nBO0feSq7xCUaCrJx5G9MH9WhmM6a6OrSP3ETVF/adFMgAVjevxhv2EoqFsBgs6DU9AEaDkUnOSWRbsyXoiLT2RX9/S/D5GAk+QqS3hp4GHtn+yJjwM9E1kZVzVzLJNekTQ8n+3v3s790PwEh0hHdb38VusrNk4hIODx4mEY9zYem5WGIa1foCcoYio/uFVVePbpj6BbS6W1ndvHrMbFC2NZvl1ctlDY8QSPD5H5PgI4To9ffS1NeEO+zGaXYyPX/65+539dGZGpPOhFFvJBANkGHMoNxZTiYmEm43KhpFMxrROZ1jZnq+iE+aDZIZHiFGSfD5H5LgI4QQQpx5vujv7zNiywohhBBCiC+DBB8hhBBCpA0JPkIIIYRIGxJ8hBBCCJE2JPgIIYQQIm1I8BFCCCFE2pDgI4QQQoi0IcFHCCGEEGlDgo8QQggh0oYEHyGEEEKkDcN4D+B088EOHl6vd5xHIoQQQogv6oPf25+3E5cEn48ZHBwEoLS0dJxHIoQQQoj/Lp/Ph8Ph+NTjEnw+Jjs7G4D29vbPPHGpyuv1UlpaSkdHR1pu0ir1p3f9IOdA6pf6z9T6lVL4fD6Ki4s/s58En4/R6UaXPTkcjjPum/5lysrKkvql/vEexrhK93Mg9Uv9Z2L9X2TCQhY3CyGEECJtSPARQgghRNqQ4PMxZrOZe++9F7PZPN5DGRdSv9SfzvWDnAOpX+pP9fo19XnXfQkhhBBCpAiZ8RFCCCFE2pDgI4QQQoi0IcFHCCGEEGlDgo8QQggh0oYEn484fPgwy5cvJzc3l6ysLBYuXMjbb789pk97eztXXHEFGRkZ5ObmsnLlSiKRyDiN+Mv32muvMXfuXKxWK7m5uVx99dVjjqd6/QDhcJi6ujo0TaOhoWHMsVStv7W1le985ztUVlZitVqZNGkS995770m1pWr9H3jssceorKzEYrEwe/ZsNm7cON5D+ko8+OCDnHPOOdjtdvLz87nqqqtobm4e00cpxX333UdxcTFWq5ULLriAgwcPjtOIv1oPPvggmqZx1113JdtSvf6uri5uuOEGcnJysNls1NXVsXv37uTxlK5fiaTJkyeryy+/XO3bt08dPnxY3X777cpms6kTJ04opZSKxWKqpqZGXXjhhWrPnj1q7dq1qri4WK1YsWKcR/7leOmll5TL5VKPP/64am5uVocOHVIvvvhi8niq1/+BlStXqssuu0wBau/evcn2VK7/jTfeUDfddJNas2aNOnbsmHr55ZdVfn6++t73vpfsk8r1K6XUCy+8oIxGo3rqqadUU1OTuvPOO1VGRoZqa2sb76F96S699FL1zDPPqAMHDqiGhga1dOlSVVZWpvx+f7LPQw89pOx2u/rzn/+sGhsb1V//9V+roqIi5fV6x3HkX74dO3aoiooKdfbZZ6s777wz2Z7K9Q8NDany8nJ10003qe3bt6uWlha1bt06dfTo0WSfVK5fgs/7+vv7FaA2bNiQbPN6vQpQ69atU0op9frrryudTqe6urqSff70pz8ps9msPB7PKR/zlykajaqSkhL19NNPf2qfVK7/A6+//rqaOnWqOnjw4EnBJx3q/6if//znqrKyMvl1qtc/Z84cdeutt45pmzp1qlq1atU4jejU6evrU4B69913lVJKJRIJVVhYqB566KFkn1AopBwOh/rtb387XsP80vl8PlVVVaXWrl2rFi1alAw+qV7/D3/4Q3Xuued+6vFUr18+6npfTk4O06ZN47nnnmNkZIRYLMYTTzxBQUEBs2fPBmDr1q3U1NSM2QDt0ksvJRwOj5kiPBPt2bOHrq4udDodM2fOpKioiMsuu2zM1GYq1w/Q29vLzTffzPPPP4/NZjvpeKrX/3Eejye5aS+kdv2RSITdu3dzySWXjGm/5JJL2LJlyziN6tTxeDzAh5s0t7S00NPTM+Z8mM1mFi1alFLn47vf/S5Lly7loosuGtOe6vWvXr2a+vp6rrnmGvLz85k5cyZPPfVU8niq1y/B532aprF27Vr27t2L3W7HYrHwq1/9ijfffBOn0wlAT08PBQUFY57ncrkwmUz09PSMw6i/PMePHwfgvvvu4yc/+QmvvvoqLpeLRYsWMTQ0BKR2/UopbrrpJm699Vbq6+s/sU8q1/9xx44d49FHH+XWW29NtqVy/QMDA8Tj8ZPqKygoOONr+zxKKe6++27OPfdcampqAJI1p/L5eOGFF9izZw8PPvjgScdSvf7jx4/z+OOPU1VVxZo1a7j11ltZuXIlzz33HJD69ad88LnvvvvQNO0zH7t27UIpxe23305+fj4bN25kx44dLF++nGXLlnHixInk62madtJ7KKU+sf108EXrTyQSAPz4xz/mG9/4BrNnz+aZZ55B0zRefPHF5Oulav2PPvooXq+Xe+655zNfL1Xr/6ju7m6+9rWvcc011/B3f/d3Y46dafX/d328jlSq7dOsWLGC/fv386c//emkY6l6Pjo6Orjzzjv5/e9/j8Vi+dR+qVp/IpFg1qxZPPDAA8ycOZNbbrmFm2++mccff3xMv1St3zDeA/iqrVixguuuu+4z+1RUVLB+/XpeffVVhoeHycrKAkav8Fi7di3PPvssq1atorCwkO3bt4957vDwMNFo9KRkfLr4ovX7fD4Apk+fnmw3m81MnDiR9vZ2gJSu/5/+6Z/Ytm3bSfvT1NfX881vfpNnn302pev/QHd3NxdeeCHz58/nySefHNPvTKz/i8rNzUWv15/0r9m+vr4zvrbPcscdd7B69Wo2bNjAhAkTku2FhYXA6L/8i4qKku2pcj52795NX19fchkDQDweZ8OGDfz6179OXuGWqvUXFRWN+VkPMG3aNP785z8Dqf/9l8XN71u9erXS6XTK5/ONaZ8yZYq6//77lVIfLu7s7u5OHn/hhRdSYnGnx+NRZrN5zOLmSCSi8vPz1RNPPKGUSu3629raVGNjY/KxZs0aBaiXXnpJdXR0KKVSu36llOrs7FRVVVXquuuuU7FY7KTjqV7/nDlz1G233Tambdq0aSm5uDmRSKjvfve7qri4WB0+fPgTjxcWFqqf/exnybZwOJwyi1u9Xu+Y/98bGxtVfX29uuGGG1RjY2PK13/99deftLj5rrvuUvPnz1dKpf73X4LP+/r7+1VOTo66+uqrVUNDg2publbf//73ldFoVA0NDUqpDy/nXbJkidqzZ49at26dmjBhQspcznvnnXeqkpIStWbNGnXo0CH1ne98R+Xn56uhoSGlVOrX/1EtLS2fejl7Ktbf1dWlJk+erBYvXqw6OzvViRMnko8PpHL9Sn14Ofu//Mu/qKamJnXXXXepjIwM1draOt5D+9LddtttyuFwqHfeeWfM9zoQCCT7PPTQQ8rhcKj/+I//UI2Njer6669PmcuZP8lHr+pSKrXr37FjhzIYDOr+++9XR44cUX/4wx+UzWZTv//975N9Url+CT4fsXPnTnXJJZeo7OxsZbfb1bx589Trr78+pk9bW5taunSpslqtKjs7W61YsUKFQqFxGvGXKxKJqO9973sqPz9f2e12ddFFF6kDBw6M6ZPK9X/UJwUfpVK3/meeeUYBn/j4qFSt/wO/+c1vVHl5uTKZTGrWrFnJy7tTzad9r5955plkn0Qioe69915VWFiozGazOv/881VjY+P4Dfor9vHgk+r1v/LKK6qmpkaZzWY1depU9eSTT445nsr1a0opNQ6fsAkhhBBCnHIpf1WXEEIIIcQHJPgIIYQQIm1I8BFCCCFE2pDgI4QQQoi0IcFHCCGEEGlDgo8QQggh0oYEHyGEEEKkDQk+QgghhEgbEnyEECkrHo+zYMECvvGNb4xp93g8lJaW8pOf/GScRiaEGC9y52YhREo7cuQIdXV1PPnkk3zzm98E4Nvf/jb79u1j586dmEymcR6hEOJUkuAjhEh5jzzyCPfddx8HDhxg586dXHPNNezYsYO6urrxHpoQ4hST4COESHlKKRYvXoxer6exsZE77rhDPuYSIk1J8BFCpIVDhw4xbdo0amtr2bNnDwaDYbyHJIQYB7K4WQiRFv71X/8Vm81GS0sLnZ2d4z0cIcQ4kRkfIUTK27p1K+effz5vvPEGP//5z4nH46xbtw5N08Z7aEKIU0xmfIQQKS0YDHLjjTdyyy23cNFFF/H000+zc+dOnnjiifEemhBiHEjwEUKktFWrVpFIJPjZz34GQFlZGb/85S/5wQ9+QGtr6/gOTghxyslHXUKIlPXuu++yZMkS3nnnHc4999wxxy699FJisZh85CVEmpHgI4QQQoi0IR91CSGEECJtSPARQgghRNqQ4COEEEKItCHBRwghhBBpQ4KPEEIIIdKGBB8hhBBCpA0JPkIIIYRIGxJ8hBBCCJE2JPgIIYQQIm1I8BFCCCFE2pDgI4QQQoi0IcFHCCGEEGnj/wMRVib+0ENPQwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_syba\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### PAINS t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hU5f237zO97sxs7xV22QWWBekICIhdQ7DEGCN2/aUYNInGJBpMjEZNMeY1pikaW4xGDYJYQBBp0llgYXfZ3vv0PnPePyZzZFhAVBCVc18XFzunPuecmXk+862CKIoiMjIyMjIyMjKnAYpTPQAZGRkZGRkZmc8LWfjIyMjIyMjInDbIwkdGRkZGRkbmtEEWPjIyMjIyMjKnDbLwkZGRkZGRkTltkIWPjIyMjIyMzGmDLHxkZGRkZGRkThtk4SMjIyMjIyNz2iALHxkZGRkZGZnTBln4yHxhGRwc5MorryQ9PR1BEFiwYAEAgiCwZMkSabu1a9ciCAJr166Vlr355psJ23zROPwaTmdeeOEFHn300VM9jGE8/fTTCILAtm3bEpb39/czceJETCYT7777LgBLlixBEIRPfa7Vq1czceJEjEYjgiDw+uuvf5ahfyrOOussxowZc8xtjnSdhYWFXHTRRZ/6vEf7nJ/ubNy4kSVLlmC320/1UL5yqE71AGRkjsavfvUrXnvtNZ566ilKSkpITk4GYNOmTeTm5h5z3zfffJPHH39cFhdfAl544QX27t3L4sWLT/VQPpb29nbmz59PT08Pq1atYurUqQDceOONnHfeeZ/qmKIocsUVV1BaWsqyZcswGo2UlZWdyGGfMD7LdR6No33OT3c2btzIfffdx7XXXovVaj3Vw/lKIQsfmROOz+dDr9d/5uPs3buXkpISvvWtbyUsj082pwKv14vBYDhl55c5ddTX13P22WcTCoV4//33GTt2rLQuNzf3Y8X40ejs7GRwcJCvf/3rzJs375jbnur332e5zqNxtM/54UQiEcLhMFqt9oSeX+b0Q3Z1yQwjbs7euXMnCxcuJCkpCYvFwtVXX01fX1/CtnEz96uvvsr48ePR6XTcd999AHR3d3PLLbeQm5uLRqOhqKiI++67j3A4fMzzNzc3IwgCq1atYv/+/QiCkODK+jg30bXXXsvjjz8ubRv/19zcDMR+Yf/5z3+mqqoKvV6PzWbjsssuo7GxMeE4cdP/unXrmD59OgaDgeuvvx4Ap9PJj370I4qKitBoNOTk5LB48WI8Hk/CMZxOJzfddBMpKSmYTCbOO+886urqjnn9AH19fWg0Gu65555h6w4cOIAgCDz22GNAbDKMj0Wn05GcnMzEiRN58cUXP/Y8RyIQCPDLX/6S8vJydDodKSkpzJkzh40bNwIfPZ+nn3562L6HP5u+vj5uvvlm8vLy0Gq1pKWlMWPGDFatWgXE7vGKFStoaWlJeFZxBgcH+c53vkNOTg4ajYbi4mJ+9rOfEQgEhp33e9/7HkuXLqWsrAy9Xs/EiRPZvHkzoijyyCOPUFRUhMlkYu7cuRw8ePAT3ZNdu3Zx5plnolKpWL9+fYLogWO7gN566y0mTJiAXq9n1KhRPPXUUwn7xYXEXXfdhSAIFBYWJhxzx44dXHbZZdhsNkpKSgDYtm0bV155JYWFhej1egoLC/nmN79JS0vLsLGvX7+eadOmodPpyMnJ4Z577uEf//hHwmfieDmWS++1116jsrISnU5HcXGx9P48Gsf6nMfXPfzww9x///0UFRWh1WpZs2YNfr+fH/7wh1RVVWGxWEhOTmbatGn897//HXYOu93ODTfcQHJyMiaTiQsvvJDGxsZh79P4dVVXV3P55ZdLx73jjjsIh8PU1tZy3nnnYTabKSws5OGHHx52ruP9Toi/V5999lnKy8sxGAyMGzeO5cuXJ4znxz/+MQBFRUXDvgPfe+89zjrrLFJSUtDr9eTn53PppZfi9XqPec9lYsgWH5mj8vWvf50rrriCW2+9lX379nHPPfdQU1PDhx9+iFqtlrbbsWMH+/fv5+c//zlFRUUYjUa6u7uZPHkyCoWCe++9l5KSEjZt2sT9999Pc3MzS5cuPep5s7Ky2LRpE9/5zndwOBw8//zzAFRUVBzXuO+55x48Hg+vvPIKmzZtSjguwC233MLTTz/NbbfdxkMPPcTg4CC//OUvmT59Ort37yYjI0Pap6uri6uvvpo777yTBx54AIVCgdfrZfbs2bS3t/PTn/6UyspK9u3bx7333suePXtYtWoVgiAgiiILFixg48aN3HvvvUyaNIkNGzZw/vnnf+w1pKWlcdFFF/HMM89w3333oVB89Btl6dKlaDQa6RfyHXfcwbPPPsv999/P+PHj8Xg87N27l4GBgeO6X4cSDoc5//zz+eCDD1i8eDFz584lHA6zefNmWltbmT59+ic63re//W127NjBr3/9a0pLS7Hb7ezYsUMa25///GduvvlmGhoaeO211xL29fv9zJkzh4aGBu677z4qKyv54IMPePDBB9m1axcrVqxI2H758uXs3LmT3/zmNwiCwF133cWFF17IokWLaGxs5P/9v/+Hw+Hgjjvu4NJLL2XXrl3HFZezfv16lixZQl5eHu+88470Pjoedu/ezQ9/+EN+8pOfkJGRwT/+8Q9uuOEGRowYwaxZs7jxxhsZN24cCxcu5Pvf/z5XXXXVMIvGwoULufLKK7n11lulSbS5uZmysjKuvPJKkpOT6erq4oknnmDSpEnU1NSQmpoKQHV1NfPnz6e0tJRnnnkGg8HAX/7yF5577rnjvobjYdeuXSxevJglS5aQmZnJ888/zw9+8AOCwSA/+tGPjrjPsT7ng4ODADz22GOUlpby29/+lqSkJEaOHEkgEGBwcJAf/ehH5OTkEAwGWbVqFQsXLmTp0qVcc801AESjUS6++GK2bdvGkiVLmDBhAps2bTqmq+6KK67g6quv5pZbbuHdd9/l4YcfJhQKsWrVKr7zne/wox/9iBdeeIG77rqLESNGsHDhQoDj/k6Is2LFCrZu3covf/lLTCYTDz/8MF//+tepra2luLiYG2+8kcHBQf70pz/x6quvSu+5iooKmpubufDCC5k5cyZPPfUUVquVjo4O3nrrLYLBoGyRPh5EGZnD+MUvfiEC4u23356w/PnnnxcB8bnnnpOWFRQUiEqlUqytrU3Y9pZbbhFNJpPY0tKSsPy3v/2tCIj79u372HHMnj1bHD169LDlgPiLX/xCer1mzRoRENesWSMt++53vyse6e29adMmERB/97vfJSxva2sT9Xq9eOeddyacHxBXr16dsO2DDz4oKhQKcevWrQnLX3nlFREQ33zzTVEURXHlypUiIP7xj39M2O7Xv/71sGs4EsuWLRMB8Z133pGWhcNhMTs7W7z00kulZWPGjBEXLFhwzGMdL//85z9FQPz73/9+1G2amppEQFy6dOmwdYdfl8lkEhcvXnzMc1544YViQUHBsOV/+ctfRED897//nbD8oYceGnZfADEzM1N0u93Sstdff10ExKqqKjEajUrLH330UREQq6urjzmupUuXioAIiBaLRezt7T3qtvHPzKEUFBSIOp0u4TPg8/nE5ORk8ZZbbpGWxe/nI488csRj3nvvvcccpyjG3hdut1s0Go0J77fLL79cNBqNYl9fn7QsEomIFRUVIiA2NTVJy4/2eTue6xQEQdy1a1fC8vnz54tJSUmix+M55jGPdN74PSkpKRGDweAx9w+Hw2IoFBJvuOEGcfz48dLyFStWiID4xBNPJGz/4IMPDnufxq/r8O+FqqoqERBfffVVaVkoFBLT0tLEhQsXJhzzeL4TRDH2Xs3IyBCdTqe0rLu7W1QoFOKDDz4oLXvkkUeGPaNDj3n4/ZY5fmRXl8xROdznfsUVV6BSqVizZk3C8srKSkpLSxOWLV++nDlz5pCdnU04HJb+xa0d77//PvCR3z7+LxqNnsQrio1LEASuvvrqhPNmZmYybty4hMwwAJvNxty5c4cdY8yYMVRVVSUc49xzz00wR8fv0+H38aqrrjqusZ5//vlkZmYmWMfefvttOjs7JZcbwOTJk1m5ciU/+clPWLt2LT6f73hvxzBWrlyJTqdLOP5nYfLkyTz99NPcf//9bN68mVAodNz7vvfeexiNRi677LKE5ddeey0Qy4Q6lDlz5mA0GqXX5eXlQOw+HvprO778SG6hI3HJJZfgcDhYvHgxkUjkuMcPUFVVRX5+vvRap9NRWlp63OcGuPTSS4ctc7vdktVBpVKhUqkwmUx4PB72798vbff+++8zd+5cyQIEoFAouOKKKz7RdXwco0ePZty4cQnLrrrqKpxOJzt27PjUx73kkksSrMtxXn75ZWbMmIHJZEKlUqFWq3nyySeHXTsw7Fq/+c1vHvV8h2enlZeXIwhCgpVWpVIxYsSIhGd4vN8JcebMmYPZbJZeZ2RkkJ6eflzvi6qqKjQaDTfffDPPPPPMMBe9zMcjCx+Zo5KZmZnwWqVSkZKSMsyFciTTf09PD2+88QZqtTrh3+jRo4FYSjDAvHnzEtafqAn3aPT09CCKIhkZGcPGtnnzZmlcH3dt1dXVw/Y3m82IoigdY2BgQLpnh3L4fT0aKpWKb3/727z22mtSSuvTTz9NVlYW5557rrTdY489xl133cXrr7/OnDlzSE5OZsGCBdTX13+SWwPEYnKys7MTXGufhZdeeolFixbxj3/8g2nTppGcnMw111xDd3f3x+47MDBAZmbmMHdUeno6KpVq2Pvw8GwgjUZzzOV+v/+4ruGee+7h3nvv5YUXXuDqq6/+ROLn8GcPoNVqP5E4PdJ78KqrruL//b//x4033sjbb7/Nli1b2Lp1K2lpaQnHHhgYSHDdxjnSss/Ckd7T8WWfxuUa50jX/uqrr3LFFVeQk5PDc889x6ZNm9i6dSvXX399wjONf/4Of/7HuvYjvVcMBgM6nW7Y8kPPdbzfCXE+y/uipKSEVatWkZ6ezne/+11KSkooKSnhj3/848fuKxNDjvGROSrd3d3k5ORIr8PhMAMDA8M+tEeKk0hNTaWyspJf//rXRzx2dnY2AH/9619xuVwJ+51MUlNTEQSBDz744IjZIYcvO9q16fX6hCDVw9dD7MvtSPfseCb9ONdddx2PPPII//rXv/jGN77BsmXLWLx4MUqlUtrGaDRy3333cd9999HT0yNZfy6++GIOHDhw3OeCWGzR+vXriUajRxU/8Ung8ADjI01wqampPProozz66KO0traybNkyfvKTn9Db28tbb711zLGkpKTw4YcfIopiwnPo7e0lHA6f9PfKodx3330IgsB9991HNBrl+eefR6X6fL4+D38POhwOli9fzi9+8Qt+8pOfSMvjsS+HkpKSQk9Pz7BjfpL34PFwpOPFlx1pkj9ejvT5e+655ygqKuKll15KWH/4+zH++RscHEwQNCf62uH4vxNOFDNnzmTmzJlEIhG2bdvGn/70JxYvXkxGRgZXXnnlCT3XVxHZ4iNzVOLBhnH+/e9/Ew6HOeussz5234suukhKU504ceKwf3HhU1ZWlrA8ntHyWYkLmMN/QV100UWIokhHR8cRx3V4ts7Rrq2hoYGUlJQjHiN+DXPmzAGG38cXXnjhuK+jvLycKVOmsHTpUl544QUCgQDXXXfdUbfPyMjg2muv5Zvf/Ca1tbWfOMvj/PPPx+/3HzFj69Bz6HQ6qqurE5YfKavmUPLz8/ne977H/PnzE9wfR/ulO2/ePNxu97Bifv/85z+l9Z8nS5Ys4b777uPf//43V1111cdmJ54s4oHzh4v0f/zjH8OsUbNnz+a9995LsDhEo1FefvnlEzqmffv2sXv37oRlL7zwAmazmQkTJpzQcwmCgEajSRA93d3dw95/s2fPBmJWx0P517/+dULHA8f/nfBJONp32KEolUqmTJkiZbF+Frfi6YRs8ZE5Kq+++ioqlYr58+dLWV3jxo07rviAX/7yl7z77rtMnz6d2267jbKyMvx+P83Nzbz55pv85S9/OeH1QA4lLmAeeughzj//fJRKJZWVlcyYMYObb76Z6667jm3btjFr1iyMRiNdXV1SmvL//d//HfPYixcv5j//+Q+zZs3i9ttvp7Kykmg0SmtrK++88w4//OEPmTJlCueccw6zZs3izjvvxOPxMHHiRDZs2MCzzz77ia7l+uuv55ZbbqGzs5Pp06cPK243ZcoULrroIiorK7HZbOzfv59nn32WadOmSRke//znP7n++ut56qmnpKyXI/HNb36TpUuXcuutt1JbW8ucOXOIRqN8+OGHlJeXc+WVV0oxUvGCc+PGjWPLli3DBJ3D4WDOnDlcddVVjBo1CrPZzNatW3nrrbekbJj4s3r11Vd54oknOOOMM1AoFEycOJFrrrmGxx9/nEWLFtHc3MzYsWNZv349DzzwABdccAFnn332J7qPJ4J7770XhULBPffcgyiKvPjii5+b5SdOUlISs2bN4pFHHiE1NZXCwkLef/99nnzyyWGF7n72s5/xxhtvMG/ePH72s5+h1+v5y1/+ImWHHW7VczqdvPLKK8POmZaWJgmJI5Gdnc0ll1zCkiVLyMrK4rnnnuPdd9/loYceOuFZRvHyGd/5zne47LLLaGtr41e/+hVZWVkJ7t3zzjuPGTNm8MMf/hCn08kZZ5zBpk2bJOF8oty5cPzfCZ+E+HfYH//4RxYtWoRaraasrIznn3+e9957jwsvvJD8/Hz8fr9kaToVn4kvJacwsFrmC0o8w2H79u3ixRdfLJpMJtFsNovf/OY3xZ6enoRtCwoKxAsvvPCIx+nr6xNvu+02saioSFSr1WJycrJ4xhlniD/72c8Ssm+OxmfJ6goEAuKNN94opqWliYIgDMuOeOqpp8QpU6aIRqNR1Ov1YklJiXjNNdeI27Zt+9jzi6Iout1u8ec//7lYVlYmajQa0WKxiGPHjhVvv/12sbu7W9rObreL119/vWi1WkWDwSDOnz9fPHDgwHFldcVxOByiXq8/arbVT37yE3HixImizWYTtVqtWFxcLN5+++1if3+/tE08Q+lImViH4/P5xHvvvVccOXKkqNFoxJSUFHHu3Lnixo0bE8Z04403ihkZGaLRaBQvvvhisbm5OeG6/H6/eOutt4qVlZViUlKSqNfrxbKyMvEXv/hFQqbP4OCgeNlll4lWq1V6VnEGBgbEW2+9VczKyhJVKpVYUFAg3n333aLf708YMyB+97vfTVh2tGyp+Pvl5ZdfPuZ9iN+zwzN1RPGjzLyFCxeKwWDwqNlOR/pszJ49W5w9e/bHjjN+zEMzsuK0t7eLl156qWiz2USz2Syed9554t69e8WCggJx0aJFCdt+8MEH4pQpU0StVitmZmaKP/7xj6XMOLvdnjAu/pfFdvi/+HiPdZ2vvPKKOHr0aFGj0YiFhYXi73//+yPe1yPdj6NldR1+T+L85je/EQsLC0WtViuWl5eLf//73484tsHBQfG6665L+Pxt3rx5WLbl0e71okWLRKPReFxjPt7vhCO9V0VRPOKzu/vuu8Xs7GxRoVBI33GbNm0Sv/71r4sFBQWiVqsVU1JSxNmzZ4vLli074r2SGY4giqL4OegrmS8RcZN+X1/f5xpHISMj8/lwzjnn0NzcfFzFNL9qvPDCC3zrW99iw4YNn7gulcxXA9nVJSMjI/MV5o477mD8+PHk5eUxODjI888/z7vvvsuTTz55qod20nnxxRfp6Ohg7NixKBQKNm/ezCOPPMKsWbNk0XMaIwsfGRkZma8wkUiEe++9l+7ubgRBoKKigmeffZarr776VA/tpGM2m/nXv/7F/fffj8fjISsri2uvvZb777//VA9N5hQiu7pkZGRkZGRkThvkdHYZGRkZGRmZ0wZZ+MjIyMjIyMicNsjCR0ZGRkZGRua0QQ5uPoxoNEpnZydms/mI5dJlZGRkZGRkvniIoojL5frYfoOy8DmMzs5O8vLyTvUwZGRkZGRkZD4FbW1tx+wMIAufwzCbzUDsxiUlJZ3i0cjIyMjIyMgcD06nk7y8PGkePxqy8DmMuHsrKSlJFj4yMjIyMjJfMj4uTEUObpaRkZGRkZE5bZCFj4yMjIyMjMxpgyx8ZGRkZGRkZE4b5BgfGRkZGZnTjkgkQigUOtXDkPkEqNVqlErlZz6OLHxkZGRkZE4bRFGku7sbu91+qoci8ymwWq1kZmZ+pjp7svCRkZGRkTltiIue9PR0DAaDXKj2S4Ioini9Xnp7ewHIysr61MeShY+MjIyMzGlBJBKRRE9KSsqpHo7MJ0Sv1wPQ29tLenr6p3Z7ycHNMjIyMjKnBfGYHoPBcIpHIvNpiT+7zxKfJQsfGRkZGZnTCtm99eXlRDw7WfjIyMjIyMjInDbIwkdGRuYrR4+7hzWNa3ht/2usaVpDj7vnVA9JRuYLS2FhIY8++uhnOsbatWsRBOEzZ8udiLF8HHJws4yMzFeKXd27eOzDx2gcapSWFduKuW3KbVRlVp26gcnIyHwhkC0+MjIyXxl63D3DRA9A41Ajj3342MdaflrtrayoXcGzu59lRd0KWu2tJ3O4MjIypwBZ+MjIyHxlqOmtGSZ64jQONVLTW3PUfTe1beK7b36X7678LvesuSf295vfZVPbppM1XJkvKWIgQKSnh3B7O5HeXsRA4OSfUxR5+OGHKS4uRq/XM27cOF555RVEUeTss8/mvPPOQxRFAOx2O/n5+fzsZz+T9l+2bBkTJ05Ep9ORmprKwoULj3ie5uZmBEFg165d0jK73Y4gCKxdu1Za9uabb1JaWoper2fOnDk0NzcPO9bGjRuZNWsWer2evLw8brvtNjwej7S+t7eXiy++GL1eT1FREc8///xnu0nHiSx8ZGRkvjLYA/aE1wICJrUJo9qIVqml19uLK+Aatl+rvZUHPniAPb17Epbv6d3DAx88IFt+ZCSidjvBXbsI7d9P+OBBQjU1BHftInqSK0H//Oc/Z+nSpTzxxBPs27eP22+/nauvvpp169bxzDPPsGXLFh577DEAbr31VjIyMliyZAkAK1asYOHChVx44YXs3LmT1atXM3HixE89lra2NhYuXMgFF1zArl27uPHGG/nJT36SsM2ePXs499xzWbhwIdXV1bz00kusX7+e733ve9I21157Lc3Nzbz33nu88sor/PnPf5YKFJ5M5BgfGRmZrwxWrVX6W0DArDXTNNSEKxgTO22ONpbuWsolZZdQaC2Utt3Ts2eY6JHW9e5hT88e8q35J3PoMl8CxECAUG0tos+XuNznI1Rbi6aqCkGrPeHn9Xg8/P73v+e9995j2rRpABQXF7N+/Xr++te/8sILL/DXv/6Vb3/72/T09PDGG2+wc+dO1Go1AL/+9a+58sorue+++6Rjjhs37lOP54knnqC4uJg//OEPCIJAWVkZe/bs4aGHHpK2eeSRR7jqqqtYvHgxACNHjuSxxx5j9uzZPPHEE7S2trJy5Uo2b97MlClTAHjyyScpLy//1OM6XmThIyMj85WhIr2CYlsxTUNN2PQ2GgYbcAVdKAUlxbZitCotA74BltUu47qq6zBrzQAM+gePedyhwNBJHbcr4KLF3oI75MakMVFgKZDGJvPFIWq3DxM9cUSfj6jdjjIj44Sft6amBr/fz/z58xOWB4NBxo8fD8Dll1/Oa6+9xoMPPsgTTzxBaWmptN2uXbu46aabTth49u/fz9SpUxNq6sQFWZzt27dz8ODBBPeVKIpEo1Gampqoq6tDpVIlWJ5GjRqF1Wo9YeM8GrLwkZGR+cqQYcrgtim38Zetf2Fv315qB2oBKEkuoSqzip1dO/GGvGhVWqbkTGFKbuyXZrIu+ZjHtWltJ23MzfZm/rX3X+zv248/7Een0lGeVs6VY65MsErJnHrEj6kW/HHrPy3RaBSIuaxycnIS1mn/Z2Hyer1s374dpVJJfX19wjbxVg/Hg0IRi4CJxwvB8CrJh6471phvueUWbrvttmHr8vPzqa2NfTZPRTFJWfjIyMh8pcgyZVFkK6IirYJRqaPQK/WYNCb6vH0IgkBJcgm1A7W80/AOWpWWqswqxmaMZWz62CO6u8amj2VsxtiTMlZXwMWTO55ked1yhvwfWZWqe6rxBD3cOeNO2fLzBUL4n+vo067/tFRUVKDVamltbWX27NlH3OaHP/whCoWClStXcsEFF3DhhRcyd+5cACorK1m9ejXXXXfdx54rLS0NgK6uLsmadGigc3w8r7/+esKyzZs3J7yeMGEC+/btY8SIEUc8T3l5OeFwmG3btjF58mQAamtrP3MdoONBFj4yMjJfKWp6a3jtwGuckXUG/z3wXy4qvYiVDStpGmpCpVCRb8nHoDYwv3g+j295nPvn3k++NZ+fzvwpD3zwAAf6DzAucxxphjSStEnMLpxNn6cPV9BFviX/hAqRXV27eHX/q/R6elEICjRKDUqFkiH/EMvrlnNR6UWSVUrm1KOwWhH0+iO6uwS9HsVJctOYzWZ+9KMfcfvttxONRjnzzDNxOp1s3LgRk8lEamoqTz31FJs2bWLChAn85Cc/YdGiRVRXV2Oz2fjFL37BvHnzKCkp4corryQcDrNy5UruvPPOYefS6/VMnTqV3/zmNxQWFtLf38/Pf/7zhG1uvfVWfve733HHHXdwyy23sH37dp5++umEbe666y6mTp3Kd7/7XW666SaMRiP79+/n3Xff5U9/+hNlZWWcd9553HTTTfztb39DpVKxePHiT2Sd+rTIWV0yMjJfKQZ8A/R7++nx9HD+iPPZ2LaRxqFGRETC0TAiIkP+IVYeXIlOpaO+v569PXsRBIG7z7ybv1/8d7JMWQz5h+h0dfK7jb/jd5t+x+b2zTyz+xma7c3HNQ5XwMXenr182P4he3r3sKNzB5vbN7O3dy+ugIvd3bvZ37+fhqFYHJIj4GDIP0QwEgRgyD80LJssfsxDj3MqOF3rHQlaLeqyMoTDJmdBr48tPwmBzXF+9atfce+99/Lggw9SXl7OueeeyxtvvEFhYSE33HADS5YsYcKECQD84he/IDs7m1tvvRWAs846i5dffplly5ZRVVXF3Llz+fDDD496rqeeeopQKMTEiRP5wQ9+wP3335+wPj8/n//85z+88cYbjBs3jr/85S888MADCdtUVlby/vvvU19fz8yZMxk/fjz33HMPWVlZ0jZLly4lLy+P2bNns3DhQm6++WbS09NP1C07KoJ4PM660win04nFYsHhcJCUlHSqhyMjc9rR4+6hprcGe8COVWelIq2CDFPGcQcAr6hdwXdXfhe1Qs2tE2/lN+t/w4BvQFo/IWsCepWeLncXi6cupn6gHps+FsPj8DsIRALMzJ+Jw+/AEXCwpnkN/rCfbFM2swpmEYwGEwKjj0SzvZlltctw+B3kJuXGaguJYNAYsOqsaJVaHAEHJo2J76/8fsK+KoUKm86GUqHkd+f8jksrLk045qDvo0DsZH3ysAy1k82mtk3DUv/Hpo/lpzN/yrS8acfY89Tj9/tpamqiqKgInU73qY8jBgKxQOdQCEGtjlmCTqLokfmIYz3D452/ZVeXjIzMKSUuaDwhD/6wn5f2vcT+vv2IxH6TFduKuWnCTezs3kmv56MaH0eb9DPNmZSnlrO/fz+1A7Uk65PJNmcTESMkaZPIT8pnS+cWUvQpNAw2YPfbseltdLu7Wd+ynnZXO5vaN3FWwVmolWoWjlpIm7ONAd8AgiAw6Bukxd7CmIwxR72euEDJNmXT6+5lbfNa2pxtqBQqMk2ZWLQWKjMqybPkUWQtosneJO0fjoYJRoKUWktJM6Sxs3MnA74B2l3tCKJAmiENpaCkz9vHoG9wWIbayeTj6h09fsHjp0Xav6DVnpTsLZnPB1n4yMjInDJq+2t5vvp5Ot2dFFuLWduyli5XF8W2YkLREOFImIbBBv6y7S9cX3U9GoWGLncXETFy1Elfr9Rzw/gbeHLnkygFJV3uLvxhP2mGNPKS8uhydxEVo2hVsV/oacY03EE32zu3U5JcwrS8aeQm5QKwsXUj/6n5D0W2IgLhADPyZqAUlLhD7qNeU4u9RbLKJOmSeLb6WdqcbWgUGkREHH4HQ74hBn2DTM+fzoJRC3j9wOsJ4iffks/FpRfT6+3lvab3+KD1A7Z3bcems1FoLcSgNnBOyTn0efo+VojFOREp83K9I5mvArLwkZGROakcbcI9OHCQhzY8JLWYsGgt7OreRYo+BXfQTbe7m2Z7M6FoiA1tGyi2FZOkTSIvKY82Z5skfg6f9POseaxtXcuiqkXolDqCkSB93j6cfie1A7Wk6FMAyE/KJ92YTiASoNXeyhnZZ/B+8/tU91TjCDhQKVRYtVYuKr2IDlcHHc4O1reuZ3bhbMzqowuGQ0WRN+ilzdmGVqmV4nf0Kj1RMUq7s51+Tz8jkkcwu3A2U8NTCUfDqBQqssxZlKWUsbFtIxvbN9Ll6kIpKOn19OINeUk1pPJyzctMyp6EGBKPKcTgxLnJTnW9IxmZE4EsfGRkZE4Yh4ocs8aMSqHi7Ya3pQk3EA6gVqg5d8S5VPdUU91TTVSMohSU+MN+gpEgaoWa+sF6ItEIETEiHbvP28eKuhVcUnYJaYY0uj3dAMMmfbPWzAUjL5BibKbnTWd142q8IS8z82cSCAeYUziHS8ou4f2W98k0ZpJtyua/tf9Fp9KRYcxgQ9sGssxZhMUwH7R8QFlKGR2uDgZ8AxRYCxifOf6o98CkNkl/ByNBtEot/rAflUIVy9oSlIQiIaJilH5vP53OToqsRRg1RiLRCMmGZAqTCvnn7n+SZc6izdmGTqXDH/YTESM4Ag7yLHk0DjVyZv6Z7O7ejUahOeYzOVz0AJ/KTXYq6x3JyJwoZOEjIyNzQohbFVwBFyXJJeiUOlbUr8AX8pFpziQcDVPTWxPLVnK0MrNgJhMyJ6AQFGhVWspSyhiZPBKLzoI9YEej1CAQK24mIJCkSSJKFIvWgkFjIJNM+rx9CUIjTqG1kOuqrpNihybnTCYUCRGMBjGpTaQZ0+h2dWPVWVlWu4yRKSN5p+EdRESKrEVMyJpAr6eXTlcnTfYmxmeOxx/2Y1AbEBF5u+Ftss3ZRxQMBdYCRiaPpN/bT7I+GVEU6XB1EBEjKFBg1pgxaU1kmDIIhAMk6ZJY1biKyTmTqe6pJicph/6UfrZ3b2eqaipapRaFoEClUBGJxIRgVIzGisiJcHHpxXS6OmnZ3yIFgxvUBkmA+kI+ulxdkmvvUI7XTRbnVNU7kpE5kcjCR0ZG5jPT4+5hTfMaRFFkVOoout3diKIoBRTb/XYGvAM02hvxh/ycVXgWa5vX8uLeF9Gr9JSllOEJecgwZtDqbKXH3YNZY8amt2H32RmfPZ6DgwfZ27uXPX176PP0kaJPYX7JfEKREK6Aa5gIMWvNR5zQ4wItEomwo2sHLY4Wci25aJQagpEgoWisSu1FIy9CEATCYpjy1HIGfAPs7N6JQWU4pmAY8A1wcPAgDYMNAIzLHIdGqUGlVBGJRhAEAbVCzZj0MQQjQQqsBdLfueZcutxdGDVGqjKrUKBgyD9Eij4Fi84iZZ0pBAVGtZFJ2ZP4Z/U/aXO2kaSNZbHkmnO5bPRl7O/bj01nQxAEavpqMGvM6NV61Eo1Fq1FEkIf5yaDREve9yZ/j3ca3mFZ7TLpXo1NH8tPZ/1Uju+R+VIgCx8ZGZnPRLO9mad2PMW61nWkG9IZ8g/hCDg4M+9MXtzzIqFoiNFpo5mRN4M2RxvJ1mTeb3kfpaCMiRudjXZXO/v69nHzGTdj0phoGGzAG/biC/uYlDOJ8VnjeWbXM+Ql5TE2fSy1/bWIiOzs2onD7+CDtg8+Nl4lPnlvbNvIs9XPMjp9NK8deI1MUyZWrZXcpFxC0RAlthIKrYW83/o+e3r3ICAwMXsi6YZ0vjHmGzj9TuDIgsEVcLG8bjlqhZpJOZOo6a3h/JHn81L0JbZ0bCESjVlsRqeN5oqKK2h1tuIL+9CpdNQN1PHPXf8k1ZiKN+QlSZfE10d9nfykfNwhN66AC6PGSK4ul1RDKjdPuJln9zxLdU81KYYUPEEPoWiIbnc3zoCT70z6Ds9WP8uI5BFsat9EOBom25zN2PSxmDQmNEoNoijiCXiOKBwPfb4bWjfgDDg/aqmRWs65xefS7+/HorEwNmOsLHpkvjTIwkdGRuZTE48f6XR3AqBSqqjuqZbq5kzJmcL6tvU0DjXiCXqYXzIfX9jHlv1bKE0tJTcpF51KR1dvF6FoiL9t/xt/vuDPjEweSZenC5VChUlj4rndz1GSXIJWqeXtg2+zo3sHKoWKAksB47PG0zPQc8x4lbiVJ92Yzkv7XmJP7x6KbEWEo2E6XZ1U91SjUWlI16Zj1VlZ37qeTlfsmixaC73uXtocbdh0NnQ2HQqF4ogutlZ7KwICq5tWM+AbwB1ws7xuOTPyZ/CdSd+htj/WnyhFn8LvN/8evUrP/v799Hv7KUst4/5597Ondw+BSACj2kifu49vj/u2FKOjVqjJMGVgUBmw6CxU91SjVqpx+B2IiPhCPjwhDw6/g35vP96Ql15vL6UppbQ6WskwZpBmSGNV4yqa7c1kmbLY3rWdTR2buLry6mHC0RVwsbFtIyvqVkjPGCDPnMcVY65gVMoogtEgzqDzmOJJRuaLhCx8ZGRkEnAFXNQP1NPh6iAqRlEr1GiUGjLNmcNSoOOp2/HgWn/YL4meg4MH+fqor7O+bT0ADfYGFmoW4gq4UCqU6FV6GgcbGZEygnRjOsFIEJVCRaerk/HZ4+mq66JuoC6WCWYtQK1UMyFrAq/WvCqdv83ZxsqDK5maM5VuT3eC+yleCDEYDbK6cTVRopjUJqnycjzIWKPUsL1rOxeVXoQv5MOoNlI3UIdFZyEvKY/cpFyahprwhX3s699HWWoZSbokCqwFw+6dM+DkPzX/kVxPJq2JBnsDy+uXs6NrBwXWAux+O52uTpxBJ4vGLWJP7x6iYpSKtAr+tOVPRKIRDvQfwBf2MTZ9LEvOWsKPp/2YQDRAp7uTHmcPFr2FhsEG+jx9sXgfRPQqPamGVNQKNVGiOANOrh9/PQcHD3JG1hlsbtuMRqXh3cZ36ff2Y9FayLPkMeQbYkPrBnRKHbdMvCXh+Tbbm1leuzxB9KgUKvKt+fx5658ptBaSYYrVszlSlpjcdV7mi8iXqmVFR0cHV199NSkpKRgMBqqqqti+fbu0XhRFlixZQnZ2Nnq9nrPOOot9+/adwhHLyHy5aLY388cP/8ivP/g1d757J9f99zruXn03K+pX8Octf2Z53fKElg1xd49FZ0Gv0kuuHIhNenqVHqvOKmVuBaNBUo2p5Jhz2Ny+GZPGRJI2Ca1Ki1qpRqlQUpJcwtKdSxnyDzHCNoJpudP4xphvUGAp4J2D7+AOufGGvLiDbsLRMH2ePqnYYXw8u7p3cffqu7lv3X2saV7Dv2v+zerG1XhCHhRC7Guv291NobWQqBglFA2xvG450/KmUZJcQmVGJSOTR5KiT2Fv714GfAM4AzEXl1al5WtlXzviBD7oG6TR3oiAQCgSQq2INa30hry0OltjxzSkYPfbUQpKvCEvUTHKtNxprG9Zz4cdH5KkTZKuZ0/vHl7Y8wIV6RXMLZpLkiaJkakj2dS+CZPGFAt4jkYQRRG1Uk2nq5MeTw+drk68IS//2vsvdnTt4Mdv/zhm+UkupchaRFlqGWmGNHrdvTFLUdhH41AjLfaWhOvpdHd+ZM1TqKhIq2DBqAV0uDoA6Pf20+vpJRAOSFli8TYacSvbB60fsKltEx+0fMCy2mXH3fJDJpGzzjqLxYsXn5BjLVmyhKqqqs98nMLCQh599NEvxFg+CV8ai8/Q0BAzZsxgzpw5rFy5kvT0dBoaGrAe0hTu4Ycf5ve//z1PP/00paWl3H///cyfP5/a2lrMZvlXhozMsXAFXLyy7xV2dO2gtr+WHk8PUTFKi6OF95reozKjMmY5EaOk6FMwa82Su0er0lKWWka3qxu9So8v7ENExBV0kWpIxag2YlAbmJA5gSH/EAXWAiJiBIPagEFlQKPQ0B/s58KRF7K5Y7OUNaRSqJgnzEOtULPy4EoyTZnSeOPWqKgYxR/2A7FU8h53D499+JhUH+jQ3leeoAejxogj4GBb5zYWjFpAk72JIV+s/syQb4gh/xDOgFMqfGjRWkgzpKEQFBRaC5mYNZECa0GCNUNAIBAO0O/rpzS5FG/Yi9PvJFmfjEFlwBv2EolG8IV9UvFEpRCzeunVeoqTi1nftp40QxpmrZnZBbOlzC1/2E/DYANpxjTqB+sxqU1s6dhCia2E0emj2dKxBaPKKAU+mzQmxmaMpdfbS6ujlVA0xMyCmezp2UOSNomd3TspSymjydWEUqHEoDGgUqgIRoPD4pZC4ZD0HKbkTGFj20ZKbCWsrF+JM+Ak25xNkjYJo8bIqNRRBMIBWuwtFFgLjugiyzZlIwiC9P6ROX5effVV1Cep+/vpxpdG+Dz00EPk5eWxdOlSaVlhYaH0tyiKPProo/zsZz9j4cKFADzzzDNkZGTwwgsvcMstt3zeQ5aR+VLRYm+hcaiRQDjAkH+IqBj9aJ2jhel502l1tOIMOCWXUoG1gGR9MoO+Qaw6KwICpSmldLm7yLfkY9KYyLfkE46GKUspI8uUxRu1b1CeVk6vt5emoSa8IS9lqWUUWgtZULaAn6z+CRCbbFMNqVT3VHNZxWWoFWoUxDqYB8IBzFozWeYsut3dqBQqkvXJFFgL2NaxTRI9ABrlRzVudnbvZFzGOJSCUso8yzBmkJeUh0FtIN2YjivgIt2Yjt1vl1Loo2KULHMWGcYMKtIrEgoCdru72di6EY1Sw1WVV1E3UAcCFFmL8If9FFgK8If9aFQaSmwl+EI+lIJSsia1O9txB9wk65JRKBT0enrZ3L4ZEZEkTRKjUkcx6B/EoDEAMesRwH8P/JcfTv8hUTFKq6MVT8iDSqGiMqOShaMWcs+ae6hIq0ClUJGkS5I6wLuCLrQqLVExijfgxRfyYdaa0Shi5QPWNK6R+qTZ9Db0Kj1FtiLWtawjw5RBw1ADzkBM1Nn9dob8Q5g0Jhx+B6UppbQ72+nz9HGg7wAF1gKseit1A3WxeCp3J8trl8up75+C5ORj11CSOX6+NK6uZcuWMXHiRC6//HLS09MZP348f//736X1TU1NdHd3c84550jLtFots2fPZuPGjUc9biAQwOl0JvyTkTkdcYfcBKPBWAfzI/QuDkVDhKNh/GG/ZBkwa81cUnYJyfrYl7JFZ6Eqs4rRaaOZVzSPtw++zdaOrXhDXkYkj+CPH/6RfGs+65rXMSFzArdMuIWvjfoaM/Jm8Ptzfk8oGsKsNZNmSCPTlIlOpSMQCbClYwtVmVWMTBnJ5JzJVGZUYtFaqOuvI1mfjD/kZ2b+TLZ1bKPZ3sw1lddw04SbmJozlRxzTiw1XFCwo2sHFakVTMiawLcqv0XjUCPbu7azt28vQ74h7l93P66gi5kFMymwFNDv62fQN0goGmJa7jRumXgLBrVBEj3uoJvNbZux++10ubuo6athTPoYwtEwvZ5eMowZjM0Yi1VnJducjVFjRKVQUZZaxuTcyWzt2EowEiTFkEIwEiQSjVWjFhFRoCAYCVI/WE+PuweDOiZ84v/7I35WNa5idsFs7pl1D3fNuItfnvVLFpQtYFXTKsakj0FEpN3ZTroxnYgYoc3RRq45l4gYQaVQISJK1aRTDCmsrF/Jnavu5FfrfsWd797Je43vUZVZRYouhTZnG2mGNHwhHyaNSXI1RsUo4WgYd9CNQlBQ3VvN49seZ2vnVqp7qun39DM9dzoqRex3dq+3lwHfwBeiy/ynxRVwfe7jP9TVVVhYyAMPPMD111+P2WwmPz+fv/3tbwnbt7e3c+WVV5KcnIzRaGTixIlH7ch+JDfaggULuPbaa6XXvb29XHzxxej1eoqKinj++eeHHcfhcEgd1pOSkpg7dy67d+9O2OY3v/kNGRkZmM1mbrjhBvx+/ye/GZ+RL43Fp7GxkSeeeII77riDn/70p2zZsoXbbrsNrVbLNddcQ3d3rIprxmGN4zIyMmhpaTnSIQF48MEHue+++07q2GVkvgyY1CY0Cg0qhQpBEIatVyvUqBQqdCpdQkbTocUC4zEuybpkdnfv5ryR56FVanEH3fxn/3+IRqN4ujyckX0G9QP17AnvodneTLY5mwmZE8gwZkj1aOIoBSU7unZwTsk5RMQI61vXo1PpsOqslKWWcU3lNWgVWta3ricSjeAJeVAqlIQjYfIt+fx121+5oPQCtEotWzu3UjtQy+ScyejVeg70HWBE8ggQY5YUb9jLawdeY3redBZPW0yvp5dQJISAwOTcyVRlVrG3Z69UBbnP04c75GbIP4Qv7OP56ue5b859NNobY1ldQTdGjZGpeVP5xuhv4Al6YjV0lFoe3/Y4IiJqhRp30E1VZhURMYIz4GRs+liUghJX0IVOpZPGkaxPRkCg2FqMK+iiuqearZ1bOatgNm/ULUcQBLRKLXZ/zGLjDropthVTmlzKlaOvRERkfvF8AOoH6mPPXWNicvZkzFozT+58El/YJ937F/a+wA3jb0CtVMeaoyqUDPmHKEsto7qnWoqXih9HEAQ2t22mpq8Gf8SPgECOOQeNUkNFagU1/TVMyZnCfw/8F4vOIu17KrrMf1pOVPuPz8rvfvc7fvWrX/HTn/6UV155hf/7v/9j1qxZjBo1CrfbzezZs8nJyWHZsmVkZmayY8cOotHoxx/4KFx77bW0tbXx3nvvodFouO222+jt/ahpsCiKXHjhhSQnJ/Pmm29isVj461//yrx586irqyM5OZl///vf/OIXv+Dxxx9n5syZPPvsszz22GMUFxefiFty3HxphE80GmXixIk88MADAIwfP559+/bxxBNPcM0110jbHf6FLYriEb/E49x9993ccccd0mun00leXt4JHr2MzBefAmsBxbZiuj3d2HQ2/GG/5O4qsBTgDrrJMmWRpB2e0RQvFri3Zy/vNb+Hz+hjdfNqab0n6MERcGDSmNjVvotCayFbOrdI63vcPQz6Bzkz/0yKbcUJriqtSouISKujlWvHXUuyLlmKP4pEI/R4ehAQeLY6VtNGFEUMagPjM8dz0xk38X+T/o81zWtIM6Rx54w7KU0uJd2YzsGhg7iCLimQONWQilVnxaA20OHqoN3RzqBvkAHfAK6gi3NHnAsk1u8JRGJBvXGxEIqGqO6pJtOYyfS86UzMmkh2UjZ5SXkEI0H8ET+OgIMntj7BJWWXsGDUAnwhH/mWfCxaC7/+4NdSlhdAVWYV3678Nts6thGMBrmk7BI2tm1kUdUiDg4epNfTS5+nD5VCzYiUEfhDfg4OHiQiRghGgrgCTvIt+bQ72/ln9T8ByEvK44rRV/DAvAcY9A0yOm00aoWam5ffnCB6AHxhH0/ufJLfnfs7JmVPIt+Sz/bO7cwvnh+LcXK0ICBg0Vqw6CxMzJrIvWvuRaPSEBWjUmPYdGM6I5JHUGQrIhgJYtPZUCqU6FQ6BAT6vH2fa5f5T8uJbP/xWbngggv4zne+A8Bdd93FH/7wB9auXcuoUaN44YUX6OvrY+vWrZKLbMSIEZ/6XHV1daxcuZLNmzczZcoUAJ588knKy8ulbdasWcOePXvo7e1Fq40Vx/ztb3/L66+/ziuvvMLNN9/Mo48+yvXXX8+NN94IwP3338+qVas+d6vPl0b4ZGVlUVFRkbCsvLyc//znPwBkZsaCHru7u8nKypK26e3tHWYFOhStVis9JBmZ0xmz1sxloy+TfqlHxSg9nh7ykvKYWzSXQDjAzIKZTM+bftQv97goiAcbx4mIEZSCknA0DCD9HycYCaJT6sgwZXDblNsSgpNVChVTc6ZyxegrWF63nLca3sIZcFJgKeDM/DPJMmax5P0l7OrZhU6lI0mXhDPgZE3LGgb9g3xrzLc40H+A3OJcSpNLmVs8FyAhGwwgGA4yPnM81T3VZJuyUQgKejw9ZJuz+VrZ1zg4eBCb3pZg7VKgIBAOJFyLQlCwsX0jm9o3Ma9oHmua1kjWjVZHK1mmLExaE3/e9meUgpKpuVO5tupaXtv/mlTocdA/iEpQ0e3u5p+7/8nFpRdLjVE7nZ00DjXiCDjocfeQYcxgXvE8MkwZ/GvPv3AH3SgVSkwaE9PzplOaUkrdYB2TsyfT4+2hIrWCTW2bqO6p5nuTv8eknEm8UfsGkWhEioeKW3Li4jISjTAqbRQahYYiaxG7e3YzMmUkM/JmYNKYpCrQNX01ZJgyGPIPEY6EOavwLLZ1bmNj+0ZGp4+mKqOKda3rsOqseIIeRESyTdnMK54Xa7vxCdpnnAriVs0j8Unbf3xWKisrpb8FQSAzM1OywOzatYvx48efsLig/fv3o1KpmDhxorRs1KhRCclF27dvx+12k5KSkrCvz+ejoaFBOs6tt96asH7atGmsWbPmhIzzePnSCJ8ZM2ZQW1ubsKyuro6Cgtgvz6KiIjIzM3n33XcZPz7WQDAYDPL+++/z0EMPfe7jlZH5MlJoLeQHU35A/UA9ne5OwtEwGoUGtVJNlimLAuux67DERYFOpUtYrhSUUqVmQIr3iDMmfQyZ5tiPl6rMKh6c9yA1vTWxIFutlYr0WP+pcDRMlFg2V5+3j3ca3mFq7lR29uwEwKg2ShWGBQSqe6q5cULs12WrozVh7BXpFQnWJRGRLlcX5404j109u/h3zb/p9/YjIFDbX8u3xn6L5XXLubzicimgW6+OxcbEix0WWYvocMZSvcdljmPAN4A35MWisxAIB/CFfLTaW6Xii5NzJrO/fz9bO7fyTuM7kmssx5xDk71JupfZSdmkGlN5ad9LuENu0k3pALGu8e6OWPuISIiylJHMKpyJQlBi0VrQq/U8suERytPKcQVdTMqaxP7+/aQZ0nAEHKgVasxaM0aNEXvATiQakZqhapVaLDoLoUiISDTC+MzxvNf0HrMLZ7O1YytbOrbQr+/HHrCjU+n4+qiv88LeFzBrzJTYSkjSJvF+y/v0efpIM6ZRnlLO5vbNNNubselsMStiyE2nu5PVjauZVTDruNpnnEo+bnyf5/gPz/ASBEFyZen1+k90LIVCMSyuLxQKSX/H1x3LexKNRsnKymLt2rXD1h0qkL4IfGmEz+2338706dN54IEHuOKKK9iyZQt/+9vfpIAuQRBYvHgxDzzwACNHjmTkyJE88MADGAwGrrrqqlM8ehmZLw9mrZkJ2ROYwISjbuMKuDg4eJAWewv+iJ90Yzqj00ZLWV4CAtmmbCmVOW4RyDbH0pm73d3SsSrTK7n5jJvRKz/6ss4wZUiF8Q5FqVCytnltgsXIE/RIf2uUGqmAYhxfyIdNb6PP24c78NHEdLh1KSpGybXkUjdQx7iMcbFaPNEQWoWWLk8XqxpXMT5rPP2efi4pu4RltcvodfcyOm00kWgEozoWy/Pa/tcoSynj/BHn0+3qlgK/HX4HrqALb8jL9LzpqBVq3m14l9qBWkqSSzBqjBjVRno8PVIgsTPgpDSllCJLEX2evgRrQ7x2ki/sY9A3SHlaOctql7Gvfz9alZYkTRLFycWExTChSIimoSbC0TCTsyfTONSIO+RmXes6CiwF+EI+ylPL2da5jYgYq8UUiARwBVyMzxxPi71FCtbWqXV8u/LbfGPMN1jfup5AJEC/p581TWsotBbSbG+m2d7MlWOuZF3rOkxqE2aNmVRjKo6AA5VCleBiDEaC7OvbR3laOQPegZgV6wjP/ovAkap1f5L1nxeVlZX84x//YHBw8LisPmlpaXR1dUmvI5EIe/fuZc6cOUDMuxIOh9m2bRuTJ08GoLa2FrvdLu0zYcIEuru7UalUCRnXh1JeXs7mzZsTwlM2b978Ka7ws/GlET6TJk3itdde4+677+aXv/wlRUVFPProo3zrW9+Strnzzjvx+Xx85zvfYWhoiClTpvDOO+/INXxkZE4gzfZm1jSt4dnqZ2l3tCMiYtQYmVUwi0XjFnFJ2SUsr1vOvOJ5rG5cTae7E7PGzOi00fS4e7h5QiyW5KYJNyEi4gw4CUaCeMLH7hkFsfiUfEs+rY5WSfwYNUZMahOekGfYr1a1Qo1RbQRAr9KjVCgT1h9qXepwdxCMBGkYbGBF/YqEQnsFlgJGjxqNIAi4Qi5GZ4zmuqrrqB+oZ0vnFi4tv5RQNCYubptyG06/kw5nB6WppbiDMbEVjAYJRUI025vxhXzcNuU2Dg4exKAxkJ+Uz7rwOvRqPfmWfEREKtIqMGvMZJuzyTJnDbMmxGsn1fbXEoqGEMXYvTSoDWiUmlgJgvzpsXitiB+NUoPD78ARcFA/WI+IyJBviN29u6nuqWbRuEX4wj6qe6oBEBAYkTyCmybcxJO7nuTS8kvp8fSAJyY2S5NLWdeyDq1SS7enG7vPzllFZ6EUlBwYOCBZBzJNmZSnleML+aTn4Av7pEywdmc7/rCfQd8gK+pX8PqB1/ne5O+hElR4w7FClUpBSbIh+ZRXfj60fMPhxMspfBH45je/yQMPPMCCBQt48MEHycrKYufOnWRnZzNt2rRh28+dO5c77riDFStWUFJSwh/+8IcEUVNWVsZ5553HTTfdxN/+9jdUKhWLFy9OsCydffbZTJs2jQULFvDQQw9RVlZGZ2cnb775JgsWLGDixIn84Ac/YNGiRUycOJEzzzyT559/nn379snBzcfioosu4qKLLjrqekEQWLJkCUuWLPn8BiUjcxrhCrhY27SWZ6ufpcPZwZB/CH/Yj4hIv7effk8/98y6h0XjFtFqb6UyoxJ3IBZzkqxPRikoeXX/qxTaCnl1/6usa12HO+jGoDZQkVbBpeWXMjZ9LMFIEIWgGDbZjUwZydyiuaxrXseQf4iIGKHf089ZhWfxQesHCIKAQlBIxQ2n5k7FFYxVkC5LLZOsL4cSty7t7dnLju4dvNf03rDqwi2OFta3rmdR1SKS1En0uHvY17uPPm8f6YZ0KR7KF/Ix6B8k25TN+SPOZ1XTKukY8Yy5eFHIhqEGWhwt1PTVoFfpSdLFjhsVoxjUBjxBD8n6ZLLMMRfjoVWVA+EADr+DYDRIoa2QTmcnk7In0e3upn6wnl1duwiLYYa8Q8wpnMPLNS9LLkJ/2I9erSfNkEaftw+7347db2d963rmF8/nioor8Ia9GNVGOpwd7OjaIZUxiJOsT2Zdyzqa7E3YdDb6PH2kGlJ5s+5NRqePZkrOFMamj+WWM24hy5RFj6eHFEMKCkEhpc8rBAX93n40Sg3J+mQmZE1ge+d2UvQpLFm7hHNKzuGDlg/odHdKz6/YVnxKs7/i5RuOlNV1tGrepwKNRsM777zDD3/4Qy644ALC4TAVFRU8/vjjR9z++uuvZ/fu3VxzzTWoVCpuv/12ydoTZ+nSpdx4443Mnj2bjIwM7r//fu655x5pvSAIvPnmm/zsZz/j+uuvp6+vj8zMTGbNmiXF2X7jG9+goaGBu+66C7/fz6WXXsr//d//8fbbb5+8m3EEBPFIBTtOY5xOJxaLBYfDQVJS0sfvICNzGrG3Zy9vHXyLv23/G66gi9Fpo8lOyiYUDUkT+4TMCcwunH3U/kyt9lbue/8+1reuxxV0oVaoY/V6wgFKkkuoyqgCoMnRRL4lf9hk12xv5pV9r9A41EgwGsSkMjGrcBYv7n2R/X376ff1E46GqUyv5Lrx17G9Yzt6jZ4sc9Yxs25cARfL6pZx96q7cQfdCQUcNUoNVq2V++bcx8jkkTy16yk+aPkAVzBWv6U0pZRLyy9ldNpobDqb1Kl86a6l0gQZCAeoHailfqAeg8bAhSMvZFntMvb27kWn1PGN0d9ga+dWGu2N6FV6JmRN4IysM7hhwg1Spehltcvo9nTT4exAQMDut9Pr6cUT9HBx2cU4/A4i0Qj1Q/VScPR5I8/jz1v/TJO9CavWyhlZZ+CP+BmXMY53Gt7hl3N+yeqm1WgUGqp7qwmEA0TECKFICEfAwVVjr2Jz+2a+MfobMYsPUGwtZlf3Ll49EOublm5Mp93ZjlapxawxY9VbuWPaHTy540m2dGwhEAlwVuFZUsxUPH1/f/9+wtEwKfoUrDqrZE2JilG8IS+e0EduTL1KT1Vm1cc+x2Ph9/tpamqiqKgInU738TschYQeZGrTx8a+yZw4jvUMj3f+/lJZfGRkZE4t8T5ZSoWS+SXz2dS2ibUta1EICnLMOUzImoBJa2Jf3z6GfEP0efuw6CwJwqVhsIFudzeBSACNUoNaoSYYCRKIBNjcvpm8pDz0aj31A/UICOhV+oRU4UJrIbdMvGXYxDMxeyJ7evYw6I9NnCqFimZ7M1aD9bh+kZu1ZpJ1yaToU6SJNypG0Sg12HQ2DGoDFq1lmOgBqBuo46W9L3HNuGu4tOJS6TyHWge0Ki35lnwyTZlkm7LZ07uHFH2KdL4NbRsYlTaKKblTsOlsVGZUMqdojhTvMuAbYH//fv6979/0emLZOwWWAq4ccyWuoIv3mt5jRPIIDg4eZFf3LrrcsZiNLHMWeUl5zMqfRZoxjWxzNvv79vNOwzuMSB6BWWsm2xQTr2aNWQo89wQ9WHXWWGsKUzYCMdeVWqHGprcxIWsCfd4+BrwDBCIBUvWpqJWxFiLnjzif95vfxxfyoVPpCEVD7OnZw3kjzmN/335Kkkvocsea0E7KnsQFIy+gpq+GkuQSett6KbGVsKJ+BWnGNOke+8I+HH4HWpX2lGd/xcs3yHw5kYWPjIzMcWNSmzCoDYxOH82mtk002ZswqAxcPe5q9Co9/rCfVkcrBdYCqrurmV00m253N2ub13L+iPPJMGVgD9gT0tr1Kj29nl4MagP+sJ9gNIgqqqI0pZRsczY6lQ5XwMX6lvXo1XrK08rJMGUMm3jMWrNkaYn/Ii9JLvlEv8jzkvKYkT+DPT17cAQciKKIUhHLRqvMqEQURVrsLQmiJ06jvZF+b3/CpHxocce4SEszptHl6qLQWohWFSu8+EHrBwz6BtnWuY1iazHXj7+eaXnTJNET76O2t3cvFq0lVok5GkGpUFI/WI8/5GfIP0QgHCA3KRelQsnWjq2xGkeCIO1XlVnFwxsepji5mBHJI7hx/I30enq5YswV7O3dS15SHiaNiXA0zPvN71NkK6JhsEFKN1cr1JSllPHkzidZ37KeS8ouocnehCfkoTKjkl3du0g3pDMqdRQb2zbSaG8k05RJqbaUcDRMk72JcZnjGJM+BmfAyTkl5+AL+qQ4pXiF6iJb0bDMQIjFScHnmz0l89VDFj4yMjLHTYG1gFRDKiOTR/L6gdfRKrV8b/L3WFa3jH19+1AKSgQEFpYv5Mz8M/nLtr9QllrGgf4DNA42cv2E67FqrbF2CaIoWXucwVhQrlKhRKvUUp5azjO7n+Gtg2+RZc6i3dnOuSXnMip1FM/veZ7vTv4uVZlVRx3np/1FXmAtoDSlFLPGLMXQaBQaLDoLWeYsVErVsBpEcaJiFGfQSf1gPQhILr4jjSXDlIFVb2V53XJGp43mjKwz8IV96FV6SlNKGZ0+OkGoxfuo+UI++rx9KAQFKfoUlAolHc4Ozsw/k15PL8FokNykXHQqHWaNmSRtEmcVnMXFpRejVqjZ27uXWybeQnlaOVExylBgiNLkUu5edTe7uncRjASJilHGZ43n7jPvxqg0Up9ST+NQIxExwsiUkTyz+xl63D2olCreqHuDidkTyTRlYtFZ+FrZ1+hwdqBWqLHoLFi0FpwBp+Qig5h1LEmbRKG1kIODB3ml5pXYPQOpSevotFicUE1/TcJ90yhidYa+KNlTMl9OZOEjIyNz3Ji1Zs4qOotgJEiqIZUz88/krYNvsa9vHypBhUJQEI6GqR+sp36gnlkFswhFQ/jDfjrdnSyrXcaFIy4k05RJi72FNmcbyfpkjGojIqI0aX/Y/iF1A3WoFWoi0Vh6dYerg1ZHK1Nyp/DYh4/x4LwHT3ja86HBq/EUfPgoeLVpsAmVoESMREAUQRBAEbvmeOHHuHVqrbiWi0ovOmogbqG1kEXjFh1XrEi8j5pKoZLcii2OFpwBJwpBwayCWQnbW3QWUgwplNhKODBwQEpRN6lNzCqYFcvEUxvRq/QsfnsxO7t3Sq49gC0dW7h/3f38v/P/H5eUXSKNccAzwJB/CIPGQG5SLu3Odja1b5LO+/D8h1lQvgCVoCLTlMm+3n34wj40Cg0iIlExGqv0rLOQokvhD3V/oGGoQdo/EAngcsVirRaNW5QgfPQqPRad5QuVPSXz5UQWPjIyMp+IQmsh47PG8/3J38eis8RcSrYS2p3thCIh1Eo1oiiyu2c3l4++nLrBOrpcXYxMHsnu7t3olDrmFs1FKSj5z/7/oBSUBCNBMowZzC+eT6Ypkyd3PokoxiZKpSJWjM8b8tLp6mRu0VwO9B+gprfmpNR7OZJ7Ki5ItCGRfH0mLYqDuAJOogKEFCLukIcRthEEw0E+7PiQId8Q84rnsbxuOYvGLTqqm+14LVPxPmoCArlJubQ6WjFpTKQbYxllerWe+SXzJWvcoeLgWMJqRe0Kqnuq0Sq16FS62P0WlETECDu7d7K7dze5llxpjK/tf02KATJpTBTbivEEPYSjYVQKFTatjarMKlwBF0aVkXxLPgpBQZuzjWAk5qYakz6GVENqzDo2UC9VixZFkVAkRJohjfqBerQqrVQLKp7VlWXOOiHZU3JOz5eXE/HsZOEjIyPziWi2N7O6aTWv175OVUYVe3r3YFQbGZU6igP9B7DqrNj9dkREfGEf0WiUQCRAMBJkfet6tCot/d5+zis5j2JbMWnGWKE+dyCWSdUw1CBNpHqVHqPaSIo+RXKHBCKxFhH2gP2kXeORBIkYCGBr7uPG8m8jCArWtL1Pn3cAb8hHsa2YyyouwxVw0eXuYsg3JFUjPhGBuPE+as2OZtKN6ehUOpwBJ96QlwJLQSyNfaCemQUziYrRBIFzrHMP+gcxqA10ujoTMqiMaiMZpgwcfkfC+K1aa8L+GqUGjV4jvU41pEr37+ySs+l0dzLkH6I0pZRINEKeJY8ZeTN4cc+LXFR6ETa9LSEtPC6qNEoNSpTcPu32hHIInzV7Kl7t2Ov1fuLqxjJfDLxeLzC8cvUnQRY+MjIyx008pbrV3kq2KRuzxoyAgDPgpN3ZTllKGWqlmt3duwGwaC0M+YbITcrF7rfjDDgRRZH9ffsZnTaahzY8xLXjrsUdcnNw8CAdzg6urbqWqswqtEotJo1Jcn1pFBpGpIzgjKwzyE3KRRCEz7XKb9RuR/R4GO1T8uMxtzC35GycYQ9hMYIYjbC59UNybLnMzJ9JOBJGr9aTa8nFG/KekPPPLJhJl7uLdmc7Q74havpqyLfGssTWNq9lUnas51aqIZXq3urjqndj09nodncniB4AT8hDj7uHNENaQiDx4W0+DqXYVkxF+kf9FJN1ycwrnkeKIYVgJIhGqcEZcPJG3RuEo2EEBNIMaVJto7ib1BlwYtbGKj1Pypn02W7aYSiVSqxWq9TTymAwHLMNg8wXB1EU8Xq99Pb2YrVaUSqVH7/TUZCFj4yMzDAS6pQcUosn3qQxGA3iDDhRKVWckX0GzfZmomKUJG0Se3r3oFFqmJI1hXRjOi2OFprtzSRlJ1FgKaDP24cr6MIT8jAhawICAivrVjIldwrFtmJC0RDZpmzane3s7N5JZUYlNr2NYlsxwUiQdS3r2NO7h2R9Mm/Vv8Wtk249ZqDziUKM9y6KRnE4etm17y1sWYW8WPsfPEEPt864jef3vkB1TzUGtYGoGOXMvDO568y7PtN5m+3NLKtdhsPvoNBaiFJQkmpI5YYJN2D32qkdrGVM+hi8QS/Zpmzg+LuFp+hTGJkykh1dO4atK00pJUmblBBIfKQmshATPbdNuS1BhOZb81nXuo7N7cNbEuhVegKRAFNzp7Ly4EqpujVAkjaJuUVzGZ02+pPdqOMk3tA6Ln5kvlxYrVbpGX5aZOEjI/M5cTQx8UUjPtEeXpn2krJLpF//GoUGV9DFS3tf4orRVzDkH6J5qFmqyntWwVlcMfoK7l51N46gA5PWRJYpi4q0Ct5teJc0QxoNgw2cW3Iuve5eRqSOYGPbRkREMk2ZXFZxGX3ePoqsRbiDbkqSS4hEIxTbinlp70toVVoODh6kfqAepaDkjml30OpojTU11VmpSKs44ZYg4RDTujscs+LolDq0qDhn7OWS6IGP4hDqh+r5x45/UJpS+qnGE7ewxZ/F/r79bG7fjEqpYmvnVkxqE+ta1wGxBqnfn/x9lMQawh5Pt/BeTy/Xjb8OURTZ2b1TWj4+czzXjLuGFkcLU3KnSGNpsbcQDAe5fdrt9Lh6cAVdUhPZw6/PrI2VAFhWuwxf2Cctj8fruINurhh9Be6gmxZHi5SeX2Ap4NaJt0qlCU40giCQlZVFenp6QiNOmS8+arX6M1l64sjCR0bmc+BYYuJUld8/EodPtHHiFoQz884EYn2inAEnjoCDf+7+J/OK5nFu8bmSQDFpTHzY8SHnjTwvVpfFWkSPp4ftXdslK5Ddb6emt4ZxmeP43qTvsapxFfv69tHj7uGRDY9wSdklTMubBiLkWfL4175/saJuBTq1jnA0jEJQ4Av5UCgUPLblMQ4OHpRigwqsBdx8xs0n1BKksFoR9HpEnw+TyhBbGAiQZ8ohIymTPf8TPRCbXLVKLVatNdaW4hiB2McSxHELW5xgNEiyPpkDAwcY8g3xw+k/JNucTTgaRqPU0OnqxKQxkWZIo9vT/bH1bpK0STyx/Qm+VvY1vjn2m3iCHgxqA0O+If6x/R88NP8hzFozzfZmltctRyWoEBHxh/3Y9DbOzDuTESkjjnr8yoxK5hXNk6psx0sDaFWxzu+TcyYzMnkke3r2MBQYwqa1MTZj7EkTPYeiVCpPyCQq8+VDFj4yMieZjxMT11VdhzEkEOntRQwEEHQ6lGlpKEyff62SwyfaQxn0DaJWqknWJ9M81EyGMQN/2I/D7+C1A69RaC1kVsEs8i35qJVq0o3puINuhvxDvHrgVTxBD9dVXccLe1/AH/ajU+oIi2Fana2IiCgFZay3l9WNSqGi3dnOkjVLKEku4bapt7GmaQ2BSCChjs6k/Emsa1lHljmLA/0HpOWtjlYAfjH7FyfM8iNotajLygjV1pKHmhRTOr0DrcwtmotLjKJRaqVYFbPGTIYpA706FkB7tEDsQwVxvP+WRW9hQdkCKtIqhgkXjUKDWqnGH/JzacWlbOvYxuqm1SgFJVnmLM7IPoNxmePQqDRkkolZfWyLYkV6BdnmbFY1rSIcDUvtKpSCkqqsKsZnjccVcLG8bjl6lV5qOhtnXcs67ppxF2WpZUc8vllr5rLRlx2zt9WhhSdlZD4PZOEjI3OSiYsJd9BNn6cvNumrdFI5/qaOfYzY00N0aEjaR2GzoZkyBdVn9GV/Uj7OQuANebmk7BIaBhvocHWQYcwgx5xDmiGNecXz2Ny+mVWNq6SmoVNyptDt6kav0jMqdRS9nl6KrEXMK5qHO+jGprPFMn98Q7EJXKHEE/TgD/vxhX0Y1Ab6ff1olVppQlYoFQgIiIjkWfN4r/k9ss3ZCeN0BV180PIB+3r3nVCXl8JqRVNVhdVu52vpV/NGw5t0Rx2MNI8i3ZgOxNK8jRqjlKEEw7OhIFEQD3oH6fH04A/7aXG0MOAZYE7RHFINqQTCAammkEVnQSEomJ4/nQ/bP5SE1ciUkXS7u1nVuIoOVweTsibhDDqZUzTnmBalw2N2VJrYmA+N2dnbsxeVoBomegAahxp5vvp5fjzjx0d12x6rPICMzKlAFj4yMicZd8hNp7OTjW0bGfANIAgCKoWKFH0Kk7Mn4WxrJDoUTNgnOjRE8MMPUcyb97lafj6uIq5RbaTQWsjl5ZejV+tjtVlEaHW28v+2/D9C0RAKQUF5WjnpxnSCkSDzp80nSZNEMBqkx91Dj6eHTlcnIiL7eveRpE1iX3QfKYYUfCEfXYEuVAoVaYY0gpEgJbYSLFoL+ZZ89vTukcaiUWgQRRGL1iJ1/Y6LjXA0TL+3ny53F66A64ROsoJWizIjg2IyuD6ziBZ7C4FIgIlZE2lztSUIHhie7RQnLoj7vf3UDdRxoP8Adr+dUCQk9fXyhXz4w/5Yp3ZDMlqVlgxTBlqllq0dW1EpVJQkl9Dn7SMUDeEL+WhztHF20dkgwMs1L1NkLZJKAcBwF2tVZhUPznuQmt6aWIzUYTE77pAbEVESPQICZo0ZrUpLMBKkpr+G9a3rmZA14agiU+5tJfNFQhY+MjInmUA4wNqWtVJjSQCFoCAqRvmwbTOLci4EgsP2iw4NEent/VyFT4G1QOqQfTiHFsUbmTqS3t29NA414gl66PP2SduVpZQRFaNSm4JUfao06e3t2UuGKYNAOMCu7l2oFCr29+9nTuEcGocamZw9mdykXCBW08Wqs6JT6uj19HJZ+WWEo2H29+9HKSgJRUOk6FMYlTaKLncXDr8DnUqHQlAQisaCVqNilKW7lp60WKpDJ/S7Zt51XNlOcdwhN4FwgKahJg70H8DhdxCKxMbtCXo4OHiQ9W3rua7qOp6rfo4oUVINqWQYM9AoNYxKHUW7s50scxbd7m4QYVL2JMxaM5nGTAosBQz5hwhFQxjVRkwaEwICfd6+YRlfGaaMo4oWk9qEP+wHYqLHorXQ6e7k4OBBvCEvBpWBabnT6HR1km5Mp8hW9IUN3JeRAVn4yMicVFwBF46AA70qsVhavPu3yZxHWH30j6EYCJzsISZwaMuGo8VkQKKLpG6gDpUi1sOqPLWcG8ffyIGBA9J+h7YXiAurA30H8IV9GNVGXEEXA94BpudOR0Skx91DVIziC/vwhrxUplfiCDhod7RzVuFZnD/ifHxhH2qFmgJrAc2OZja0biAqRvGEPGiV2pglxFaCWWOmYajhuFK7j4djuY0+znJyOCa1KdYPLBIrDRBvFxGOhmPtHYjS7+2n291NniWPitQKxqSPIVmfzJBviPWt6xGJVTtWCkom5U6ipq+GAe8AGcYMVtSvYGLWRK4bfx1bh7Zi0BjQqXQU24ppd7Yfd2HFAmsBVr0ViFn8OtwdNAw24A150Sg0fG3U1/ig5QN2dO+gxFbCGdlnkGnMZGbBzNg+GqMshGS+UMjCR+a052SkmceP2eHuoMXewvS86QC0OFqkbfKS8piWN51+Vw+gOOJxBK32iMtPJscbk3HoRN/r7SUshlEKSg4MHCAUDQ0TS/CRsOpydwGxSV6tUMe6qGtMPLP7Gfb370etUGPWmplTOIeKtAqeq36OQmsh+dpYwT5nwIlOrcMb8jIxcyLN9mZ6Pb1SMboRySP45phv0u/tBziu1O6Po9nezCv7XvkoQ0mpodhazGWjL5OsSceynBxOgbUAi94i9dESEaX/i6xFdDg7iIrRmDupr4ZgJMisglmMyRiDK+Di/BHnUz9Yj8PvIFmfzP7+/Qz6Bsm15NLr6SU3KZfNHZvp9nRTnlrOSzUvUZZahkltIsOYkRDPdazPgFlrZmbeTD5o+YAedw+ugAtvyIuAwPS86ezr24c76MYZcBKOhunz9LGvdx87unYwq2AW3Z7uL2QGo8zpiyx8ZE5rDk8zD4QDKBVKzsw7E4VCQZY5i0JL4ScSQs32mAXCFXRJroEOZwclySVMy5smTfZ93j7WtrzPuROnA65hx1HYbCjT00/UpX4ijjcm49CJPj55FloLjxnAWmgt5KoxV5GfFOvjFIgEWNe8jnZXO2mGNMaPGY8gCOhUOnQqHcFIkAHvADdNuIm/bv8rB/pj1iIRkbHpY/nVWb9iRt4Mzsw7k4gYwawxY9KYsOltUnYXfHzg9rFwBVw8V/0cG1o3JNSkaRpqwh/x84MpP5Cu9XiFtFlrZkHZAnrcPezq3iUFbBdZi5iWN401TWsYlzmOdGM6l5VfhkFtkKpAH5ot1eXqonaglkHfIAXWAiZlTWJH1w46XB2SIJmUM4kiWxFGtZFgNIhNb8OoNgIfvV+dAacUeL9bu5sZ+TMkoTIiZQR3zbiLJ7Y9QcNQA2qFGoWgYFTaKDa0bqDP00e2ORub3ka7s11qqcH/iiIfb0FFGZnPA1n4yJy2HJ5mbvfbqe6pptXRyvvN7zM2Yyx2n52Lyi5iet704/q16gq42NS2ibXNaxnwDeANelEIClQKFRathVdrXkWj0kgBsNNypjE6pwpF+94jZnWdipT2T8snCWAttBaypnkNGoUGp99JdU81Sbok1neul1KzB32DBCNBbjnjFirSKlhWuwxvyEuGKQNPMNZiwRVw8Y+d/2BM+hgGvAPo1XoyTBmkGWONLuPWFPj4wO1jUT9QP0z0APjCPja0buCCERcwIXvCJ67XVJFWwUUjLyIvKY82ZxsCAh3ODja0bkAQBAQEXtr3EpvbN8dq3qSMTLiHccvc9q7tZJmyaHe280bdGxTZivAEPYxJH0OLPdbF/YU9L9Bsb8amtzGvaB6TsiehUWrY2b2TFXUrEjK2sk3ZCIJAij5FEiplqWXcMP4GMowZkvgxqo0025sptBbS6miV3HYqhQqbzoZKUElNT0+E1U1G5kQgCx+Z05ZDa9YEwgFqemtodbQSjobpdndz+ejL6XR1cqDvAEpBiV6l/1g3Rou9hbXNa9neuZ12VzsqhQpfyEeBtQCdSsfknMlExEgsbkJr5eziszHZ0tHNm/dRHR+tFmV6+pdG9HwaV2Hc5bW8bnksS0mlxag2olXGCtvZ/XYi0QjBSJA+bx8VaRW83/I+vZ5eyfIRLwmwoW0DuUm5vNXwFtNzp5OkTUKtUCeInsNjjT4pna7OYaInji/sk7LHjlavaXndci6vuJw+T1/CfRrwDaAUlFh1Vja2baTV0YogCCgVSqoyq0jWJ7OsdhkGtYGDgweHVYGOi80+Tx9/3/F3XAEXSdoktEotuUm5tDhaMGqM9Hn7aLI3ISDg8DtosjdRbCvm+ernEzK2pOt1d7K8djlj08cyNmMsPe4eanprpFYlWzq24Aw4OX/E+aQZ02h1tOIJeTCqjbGeSiEv/rBfKnnQ7ekGPpvVTUbmRCELH5nTlkO/hB1+B0P+IckNdU7JOaxrWce2zm0AjE4bzb7efVw/4fpjWn463bG0dX/YTzASJBAOYNKYaBhsIBQJ8cuzfsmrB16l292NWlCzvm09Nf01MYtAcfHJvuQTTm1/Lc9XP0+nuxONUoNFayHLnHVc8RyF1kIWjVvEto5tTM2dSiQaIRQN4fA7cAfdUmq8UlDiCrnQqXRUpFVg0phQK9UMeAeoG6gjKkYJRUOMThvNpRWXEhWj1A3USec5UqzRJ0WtOnYnaJVSddTij3HR/PiWx1EoPorlMqlNjEgZwev7X8esM3Nx2cVExSh6lR5nwEltfy3vNLyDTqXDoI4FJu/p3cO2zm3MKpiVcD0V6RWUppRSN1CHJ+RBKSgxaAwcHDrI1Jyp1PbVSu4ppUIpFZ50Bp1SFt3hdLo76XR3EhEjH9X5UahibsX8M1nXvI4+bx+lyaWscqwiVZ+KXq1n0B+7B3lJedT01ZCsT064ZhmZU40sfGROWw79Eg5Gg5KFYFzmONa3rk+YWMLRMJ3uzo+NU/AEPOQm5RKKhiiyFeEKuNjXuw+dSodGqWFv315aHC1kmjIxaWPn/yzxD6ey/1dtXy2v1b6GO+QmzZCGI+Bgb+9efGHfcV+PWWtmYs5E9vTtYdA3SJIuiQ2tGwhGgigFJUXWIiLRCAVJBTyz6xkUgoJzS87FF/Zh09mYmD2RQCTAmflnMiZtjFRBeHTa6BNaLC/blE22KXuYZeTQde6QG6WgJM2QJrV10Kl0pBhSqOmtwaQ1EYqEUCvVhCNhavtreevgWxRYC9jZvVOqUTQmfQzLapcxIXMCNr0NURQZ8g/hCDhQKVQ025tpGGpIEJfxLLs/bPoD3qCXsBhGp9JRllLG3OK5/Hz1zwGkqtJapZZgNEg0GgueBqRMOL1aTyAcQKfSIUZFnt75ND3uHilbbnf3bopsRdx15l3oVDqUCiWBSIAWR4vUOiPLlMWZ+WfyTsM7VGZUAp/d6iYjc6KQhY/MacuhNWs0Cg1KIda3J82QxpaOLWiUGmlblUKFRqE5ZpzC7u7duEIufCEfaqWaId8QPe4epuZNZVPbJgRBwBP00O5sx6K14PA7SDfFgpc/TfzDwYGDfND2AXafHZ1Kh4DAWnEtF5VedNKzZ2r7a/nDh3/grYNvScvykvKYVTCL6p5q9Cr9cV/PoSn0ABWpFYiIZJuymV88n03tm6jurmZUyihaHC1olVpKU0pjqeDRINmmbM4fcX6CG/JEx5GkG9P5evnX+e+B/9Lj6UFEJBgOkpuUy8VlF8diXOytZJuzEyocqxQqLhh5AfWD9VIT1nA0TJohjQWjFvBG3RtS1eVUQyo6lQ6tMtYHLSJGCIQDDPgGJHGiEBToVXpana3DxKVVZ+Xbld+mYaiBYCRIqiGVFXUraBhoQKPSoBAUsf5hOitalTb2ntcqMapiVabHZ45n5cGV1A/Eih0a1AbC0TBTc6cSiAQQBIFeTy8Ngw1EibKrexf3zrqXkBgT+eMyxxGKhDBpTDQONfJOwzuEojGhZ9aaP7PVTUbmRCELH5nTlkMn3EA4gE1nY8g/hE6lo8BSQIerI7bd/6rUWnQW4MhxCh+2f8hPV/8UlaCiw9VBw1ADGcYMxqSP4UDfAcakjyHdmI4z6MSsMSMgEIwmFi080nHjsRWHdx2v7a/loQ0PJRTLyzZlM694HsvrlrNo3KKTNsm4Ai5WN64mRZ/C2cVno1Fq6PX0srt7N+ta1jE2Y2zMXfUJ4jkODdTtcnWxvm09+/r28diWx2KT5//cjza9TYoJSjelS26sE92J/VCa7c08V/0ce3r2oFFqGJE8Ap1Kx8jkWKBxujGddS3rYu03XJ30ensREDCqjZSllvHWwbeo6avBprPR6+klEAngDrpZ07yGyoxKRFGUYm9UBhWekIcia5HUlywueiAWDD3kHyIQDiSIZVfAxYbWDbxZ/yauoIs2RxtXjbmKId8QKoWK8tRyej29MXekzoJZY8ais5CiTyHPkkeaMY1VjavQqXQUWQvxBr0srLgUQRDY1rmNUamjeLfhXbrcXUzPm87Gto3kmHOwB+yMSB6B3Wenpq8GQLr20pRS0oxpTM+ZzriscbLokfnCIAsfmdMSV8BFs72ZLncXRbYiRqeO5ryS86gbrMMddPPf2v8SFaOYNWZKU0rJs+RJ/ZIOj1Pocffw+oHXKbAUEBWjzCmeQ3VXNa8eeJW9vXvJS8qjNKWU6XnTeWnfS5ILTKPQJBzn0OO6Ai52dO3g2d3P0uXuQkCITYi2Ir4z8TusrF+ZIHogFpOxunE1swpmndTsmZq+Gt46+Bb7+/dLFZsLLAWcU3IO7zS8w4z8GfR7+494n44k4uLEA3XHZIzBpDWxo2uHVIE5FA3R6erkwbMfxKAyfG49n1wBF6/se4UNrRvwh/0Y1cZYQ9FIAFfARXlaOX/68E/YA3YsOguCKDAzfya7e3bTONjIhOwJNA410uvpZW7hXBSCAn/Yj0FjwBlwkqRJQkSk19OLVqVFr9ZzcPAg5404T7KuqBVqzsg6g8qMSkqSS2gaaiJJm0REjEjiMp655fA7aHG04Aq6WLprKVePu5odnTuYWTCTXd27cAfdWLQWylLLyDJnMSlnEi9Wv4ggCKxpXoMoimSbs7lp4s28fuB1dnbvRERkcvZkLDpLrNO6vZHzRpxHTV8NVq2VQmshF5VdxPLa5XS6Y61I3CE32aZszi05VxY9Ml84ZOEjc9rRbG9mY9tG6YsaQK/SMyN/BpdXXI4v5KPV0Uqftw+zxiy5BtxBNwoUdLg6pEyjDFMGu3t2s/LgSvb27gVAgYJpedO4f9797OzcyezC2ejUOlL1qZTYSjg4eBCdSidZkCAW/5BmTGNvz17anG30enpZWb+ShqEGBnwDGNVGimxFNA018buNv2Nu0dwjXtuhE8/JwBVw8Xrt65IY0yg1BCPBWGHG1lh8VDAScz8dGs+xq3vXUds5VGVWDTvPtLxpPH7B4+zp2YM9YEev0mPWmul191JgK2B02ugTPpkeSZj1efpoHGqUMrrcITfhaJhwNMw7je+gVqolceYNeqkbqENEJNOUSTAcpNPZiSAKXDnmSvb37Wd3926iRBFFkbLUMr4/6ftSTJOISL+3n1R9KgICC8sXck7JOfjCPtY0rWFj+0aW7lpKKBrijKwzWFi+UOq+7g658Yf9iIi4grGaUN6wl6U7lzIucxxiVOS6qutI0iRh1ppJ1ieTpE3iV+t+xcHBg1RlVmHWmFArNYxOH83bDW9zoP+AVFQxEA6wqW0j7qAbvUqPL+xjdsFsKtIrMGvNTM+bjiiKCbWAkrRJTM+bLosemS8csvCROa2IuwQOr1sSr8eiU+q4ZeIt/GDqDxJSk7vd3XQ4O6jMqOSRjY8QjoYpthXzvUnf4z81/6HF/lFF5ihR1reup8vVRbGtmB5PDyOSR7Cze2cse0mMxFKO/2dBStYnM7tgNu81vcfqxtV82PEhswpm8d/a/5JqSKXQWkiHq4OmoSYKLAXUDtYyr2TeUa/RH/aftOyZFnsLDp8DrUqLiCi5B+PiZ3redNKN6SwctVCa8HrcPcNED8Q6ez/24WM8OO/BI7qq8q35DPoHeXHDi2zu2Ew4GgZgbPpYvj/l+5jVZjQqDd3ubnwhHymGlGFWpDgfFwR+NGG2YNSCYS7JeLd0Z8BJKBoiHA3jD/uJKqI4Ag5qB2rJNmcTESMEo0Eq0ivY0bUj9l4SQCEqCBGi1dHK3r69zC2ei81gQ6PUEIrE+o+dP/J83m54m2JbMU/teIrq3uqEMbQ6Wnnr4FtcXHoxELMW6lQ66R7FCUVDbOvcRou9heLkYopsRUzNnQrAmsY1UvNSEZEB3wAphlhmVm1/LUqFUjqOQqHAHfLQ7ermzIIzcQfd9Hh6MKgNQMxVmaJPOWq174+z9h0PrfZW9vTsYdA/SLI+mbHpY8m35n+iY8jIgCx8ZE4z4i6BI2Xn+MI+DgwcYF3zOkLREBMyJ6BWqvEEPWzp3IJCULChbQPuYOzXdY+7hwJLAb6QTypSGJ94BEGg0d7ImflnSrE+RbYizGozF5Ve9FE9F7WJNGMaq5tWs7x2OY6AA1fQlWABEASBDGMGfd4+RESUghJfyIdFZ8Ef8qNSqCRXmIiIVW89adkz7pBbihEJG8IMeAewaq2x3lJilJykHBaWLaQ0tVTap6a3ZpjoidM41EhNb82w6s/ukBsBgZX1K9netV26r2qFmnxLPo9uepRvjPkGL+59kbqBOjKNmWSYMsg0ZXJh6YXkmHIYkTICs9b8sUUFjybMWh2tdLo6Y0LnfxlNArEAdZ1Sh0VrIVmXzJB/SOpUn2nKRBRjzygYCdJmb2N81njea3oPi9ZCmiENiGUJphvT2dy+GaPGyKb2TQgIVKRV8I0x36A8rZzNHZvpcccCqZO0SbFKyIBGqYnFiQkCDYMN5FvzKbAWsLtnN3lJedQO1CZch0qhoshWhICASW2S7nG7qx1P0BOzZgbclCSXMOiLlXQQBOF/sUdg0yXjCXpiBQmVKpJ1yZSllhGOhmm1tzI6YzRw9AKWu7p38YdNf6Cmr4ZQNIQoioxKHcX3J3+fcZnH5wbb1LaJBz54QMp8g5gA/unMnzItb9rH7i8jcyiy8JH5SiIGAkTtdlxhD43hPlq8nQQisRRdQGoPcCjuoJuDgwdZ3byaHV07gNiv/oWjFvLWwbfwh/24g246XZ1S64D6wXpcARc5STl0ODvwhDwfiR8Ess3ZlKeWM+QbIiJGUApK+r39Cb+G9/bsxeF30OnuRKuMWYE0Sg2RaCy9fsA7QF5SHhCbMBWCAq1KS4+7h35vP+FoGLPGTJGtiDRDGrPyZp0094JJbUKr0lKWWkZtfy0qhYpAOCC1ipiVP4vStNKEfewB+zGPGV9/uEBpGmqibqCOuUVzpQyheKmBuUVzWbpzKQeHDlJiKyEqRtnetR1/2M/Wjq2MyxxHsi6Za6quYU3zmiMWFYxnRR1JmKkUKqbkTGF3927sPjsNQw3SfR6ZMpIedw8apYY9vXuoG6gjFA2Rb8nHrDEz4BsgFA2RpE1iVeMqzh1xLiXJJdQP1OML+0jSJmHRWkjSJtHqaKXb3U2roxWbzsae3j28ffBtKjMquaTsEl6ueVkqAphvyUcpKEkxpBCKhHAFXNK9M2vNzMifEWsi6upgf/9+6TrGZYyTSgDoVDqe2f0MKkGFRWdh0DeISqHCE/RwTsm5bOnYIj1TrUqLVqWl0FJIp6sTf9gvCfEdXTvwBD1HdFMeSo+7h99u+C2bOzbjD/vxhrxExShd7i78YT83TriRsRljj5mF2GpvHSZ6APb07uGBDx7g8Qsely0/Mp8IWfjIfOWI2u2E6upoU3tZ59/Ps3uep3GoAdRqSpJHMC1vGnq1Hl/IJ4mfYCRIu7OdEckjEtLYG4caqR+sP6LogZgFwhFwkG5IJxqNxmJsxNgx8y35lKWW8Xrt69T01eAL+6TMqzXNa6S083h8BiBNOm3ONoptxdQP1hOOhvGEPAQjQRSCgnRjOnnmPIqtxQnCw6gycsfUOyhJKTlp9zZeAgBiTUrjKeUahYZiWzHjs8YP28eqtR7zmFat9YhVj/1hP832ZrwhL+Myx7Gtcxtphlj2UYYxg+reavIt+XhDXno8PXiCHtxBNzu8OxiVNopn9zyLRWeh3dVOpilz2HnjWVFHEmalKaWsa1lHt7ubG8bfgEalYXfPbnxhH9s6tzE5ezJTc6by1sG36Pf24wv7CEVC5JhzGJcxjrKUMkaljGJC1oSYKyzkZ3zWeFQKFXqVHqPayJbOLbiCLixaC1atlUAkQKYmk1A0JAWnn5F5BuWp5YSjYcniNOQbkt63h97buLspJymHzR2bcfqdWHVWUgwp+MN+SqwlbGzfSKYxk+W1y5lVOIuRKSPZ07MHf9jP+83vMy13KvmWgpjrTozS7mijzdlGMBJErVAzNn0so1JGsbx+uRTUb9Vbj9rPbnfPbj5o/UDKUBP+17wrGAmyqX0TV4658mNrPu3p2TNM9Ejrevewp2ePLHxkPhGy8JH5SiEGAoRqa3ErwnzgrObZ2n/TOHgwtjIUwhV0cnDwIN6QVwrSBPAEPWiUGlINqZJLIU78F3E4Gk4QPQCdzk7yLfksq13G/OL5jEwZSSASwKg2olPpGPIN0WRvQqlQYtKYpInzrMKz2NC6gRR9ihSfARCIBABY1bCKqyuvRkSk2d6MWqFmSs4UpuRMIcOUwcHBg1w55spYJk/AgVlrRqPUSBPLyeLQEgCDvkGpDtGxqiNXpFdQbCs+orur2FZMRXrFEaseG9VGCq2FBCIBKS4lXmTSF/ZJNW0g5iLzhDyEoiEEBMLRMIO+QXo8PdT116FX6ROCyeO4Q+4jCrMkbRJtzjYA6gbqmF88n7MKz6LP28eAZ4DR6aNpHmomSZeEa8CFiEift485hXPITcrln7v+SVZSFteMu4ZudzclthJqB2rpcneRakjljOwziIpRSlNKiYgRLLpYl/bKjMqY6+l/wemj00eTYcqgcahRem8cfu8Ofz6TciYxKnUUrfZWBv2DvNvwLqFoiC3+LbQ6WomKURaMWsDLNS9zwYgLGPQOsqN7h1Qte0pOkK+XfZ3HNj9KIBJkSu4U7D47xcnFzC6YzfbO7WiUGmx6G3UDdaxvWc+a6Jph1bqb7c2xmLCAQ6rKrRSU6FS6WPxTJIgr4BpWw+rweKwB38Cw53MoQ4GhY66XkTkcWfjIfKWI2u2IPh9tRg/9EedHogdAFOl392HSmJmYNZE+b18sGwnQqXRMy51GaUopm9o3JRzTG/JSYithX9++YedzhVxcVXQV+3r30e/tl36J51vyGZs+lj09ezg4cBCFQsHErIkk65MJiSEUxGKCavtqKUsrY3fPbtKN6ezu3k2mKfar/7nq5zi7+GwuK7+MUWmj2Ny2meqearbt2kaGMQMBgWl506QYmGxTNjnmnJN3c//HoTV3jietPF5V+GhZXRmmDJrsTQTCAcmCJCCQYkhhTPoYydplUBmoSKsgx5xDqj4ViAkhBbE2EPHsKhERlaAiEo25Fu0BO032JnKTckk1pCaMzaQ2UWQtGibM4rVzbDobyYZkqddUbX8tm9o3ERJDrG5czZyiOZSmlMbaa6BgQvYEntz+JBOyJ7C7ZzdPbHuCDGMGE3MmIiIyLnMcUTFKt6sbs9bM+MzxrG1ai0FjYFL2JFIMKdK4jvfeHQmz1ky+NZ/Vu1ajUCjQKmKVmhFgyDfEi3tfJNOYyVM7n+Li0ou5fPTl+MN+skxZ5Jhz8Ia9/Gz2PYSiIZwBJ/v69lHdU83itxbjC/sosZVw/ojzOdB/INb+IuBIsNzELXgp+hTpmcSfVzzrKyJGMGpiHeLjQq/Z3szyuuWoBJVU/TonKUeqeH0kbFrbEZfLyBwNWfjIfKUQQ7HJzx324v2f++hQotEILY4WUg2pXFt1LSqlinAkFjfzZv2bbGrfNCwzZk3zGn447Yc8vuVxyQoAUJlRyZWjr+QPm/7AzPyZzCueFwsu1lrRqXSsqF/Bvr59KBQKzh9xPsvqlklF3tZmrGVkykiuqbwGX9hHobWQy8svp9/Tz+aOzWSbsxmRPIIkbRKj00fzzO5naLY3U5FWQbIumXZnO86AE3fQzeTcyRzoP0Cnu5N3G96NpSaf5BTiT9KJHWJusQfnPfhRZo/WSkX6R5k9kWiEXd27JAtcZXolm9o30eftIxCK1cwxa8wU24oZkTyCfl8/ZallBMIBlAplQrxWkbWIdmc7IiKDvkHykvJwB91saN3AzPyZJBtirrp4CwWz1jxMXGiUGmw6G1Nyp2DSfJQhF8+cinccP9B/gH29+4iKUcLRMCXJJZSnl7OrexcH+g9QmVFJQ7CBZbXLmJE3g6m5UxEREUWRxqFGXt3/KpmmTHQqHa2OVpL1yWSZsxKC0w+9d46AI5burhDocHTQ4+kh25x9RFfT4VY0jUIjBeFvbNvIN8Z8gwMDB6jbXIdJYyLVkEq+JZ+vlX2NHk9P7DlkVLK+dT1v1L0BgFKhRKvU0uJoYXndcmYXziZKFEisPh4/d7GtmDHpY9jdvVsaR0SMICIyJn2MZIWLB10vr1uOXqVnbdNazDozSdokcs25VGZUUjtQS1SMJlxjvImqjMwn4UsrfB588EF++tOf8oMf/IBHH30UAFEUue+++/jb3/7G0NAQU6ZM4fHHH2f06NGndrAynxuCOvar0KQyYPif+yhxA4GoGMUb8mJQGZhTPAeIBWG+XPPyMNEDkG3OpiyljNun3c78kvkM+AYwqAwM+Ab4y7a/xDpWB51My5smTeR7e/Yy6BvEF/YxOXtyguhRoCDVkMqGtg3UDdRx5egr8Uf8hCIh7ph2BwcGDkhxO/t69/Fh+4fs7d1LKBLCF/KhVCjpcnehFJS0OFqYUxS7Br1KnxAf8kUjw5Rx1FTzZnszNp0Nn9vHCNsIdnTvoLqnGoWgwKg2UjdQR0SMEBbDnF1yNhtbN7KochFv1r9Jr7c31gIk4KDYWsy03Gn8u+bfWHVWOlwdzC2aS8NQAwcHD9LijHUrzzJnJbjmDhdmafo0rDqrFHsVJ82YRmVGpVS4MSpG0av19Hn6GJkykl5vLyn6FBqGGkjSJuEKuFAoFJg0Jta1rsMf8TMmbQyvHXhNcg1FxAgqhQpf2IdaoT6iyzB+75rtzTyz6xnea3oPV9AV62dmK2LBqAVMz5ue4Go6vJaTQWMgKkZxB91ExIhkIYuKUTzBWGf1yoxKTBpTzI2o1mNQGuhydWHWmOn19KJUKCVx2mhv5Jvmb9Iw2IBFa0lw0cX/73Z1c/OEm/nbjr+xvXO7JFDHpI3hxgk30u3qlgRoi70FlaBibdNa8q35rGtZR5uzjeW1y/n+lO/zfPXzdHu6JWvc2PSx/HTWT+X4HplPzJdS+GzdupW//e1vVFZWJix/+OGH+f3vf8/TTz9NaWkp999/P/Pnz6e2thazWS6idTqgsFoR9HryUJOqTKI4ecRH7i5BAEWsSWOBtSAhPuLjXAr51nyiRBnyD7G8bnlC1syM3Bn8YOoP2N+7n41tG7HqrJTYSrDqrYiiiE1vo6avBq1Si1JQUppSSrO9GU/AQ5+nTxJbQ74hXj3wKgaVgeX1y6UxXFJ2CQ6/gxRDCoO+QWx6G1qllkAkgD/sJxAJoFfpKUstS5h8viy02FtoHGpkfsl86gfryTJm4Q3H3IuDvkH6vH3s6dlDsj6Z95vfZ2LWRDJNmUTECIuqFgHQ6eqkfrCe3V27ebnmZYxqI1NzppJtzmZz+2a+PurrsaDwpDwqUiuYmDPxqOIiTq41d1jAdb4ln4tLL+a3G3+LRqGhcaiRvKQ8imxFTMuZxtqWtVRmVKJX6SmwFnCg7wBGjZE8Sx6CMxZ7FBEjRMQIWzu2cs6Ic8g0ZqJUxGJfJmZPRKfSsabx/7P33oFx3WXe7+ecOdO7RtJIo96LbbnJJbYTpydOr7uhhMCyLJDAS7ssL/Aub7i7G254F3bZJexdWEoCgQBpJE4vdpy4xlW2Jav3Xqb3cu4fJ3MiWXJLQhJz9c0fsWako6MzM7/z/J7nW7bN8bwxaU30+/p5+OjDPNPxDDpJh0lrIp1JMxYa44WuFwBwGV3q36UTdUyEJhTyuUaHLMvoNDrVP0orKpsEAQGDZOD62utpnWjl6MRRpsJT6CU99a56KpwV6mYhW/ToNDqlYHnLzsGhd5DIJNQRXfb/o6FRSu2lfHTpR7m98XYC8YDCt9LblVFWOqYWeqFkCBkZq8GqFj2gFFH/sfc/uHP5neSb89FpdDj0Dpa5F318FvHOcN4VPqFQiI997GP87Gc/45/+6Z/Ux2VZ5t/+7d/49re/zS233ALAgw8+iNvt5re//S2f/exnP6hTXsT7CEGvR1tXh6Wzkw15q9FZHRwYO0gsGWEiOk23r4cNJRv4zOrPzOs+nGkck1XNVDmr6PX1Ek6EyTXlYpJM/PLwLxnyD6m76ApHBbc03MLxiePE03FMkkkpUHRGnEYnh8cPY9AYMEgGZaev0WLSmRiZGeHyJZczFZlSXZuNWiNWnZUqZxXhZBhJlKjLrUMraomlYngsHjVPDOZHavy5MNtQzmlwUuYoI5aMYdQZzyklPluoRRIRuma6aBlr4c2RN9FqtLiMLlYXrub4hMKvqnBUkGPMIS2nyTXmEklGaJtsY3Xhasod5ZQ7yrm44mLi6TiHRg8xFhrjpvqb+EPrH4ilYpQtKcOoM57VuZ2KywTwmVWfIZwMM+AfwKq3UmAuIJ6O05DXgEEysMK9gv0j++nz9iEIAoP+Qcod5bjNbgothawrWodG0NA62YpW1KKX9PjjfgLxAN985Ztq8S2JEluqt+CL+ajJqWHf8D70kp7BwCCRZARRUPhNg/5BLq+8XPXV6fP10TLewkhwhIHAABpBg06jw21xk2PMYX3xesaCY2hFLaIgcnH5xbRMtBCIB/BYPJh1ZmKpGIOBQcZD45TaS8k352PSmhAEgUQ6QTKdpN/fz2+O/obmwmbuWHaHen1mBwAP+AfIM+Wh0+gwSAZMWhOrPKswaAyUOkrV18KitRBLxeYQy2e/Rx5tfZTlBcv58rovfyg7mos4f3DeFT733HMP1157LZdffvmcwqe3t5exsTGuvPJK9TG9Xs/mzZvZtWvXKQufeDxOPP62WiIQCCz4fYs4fyA6HIxW5PBUyyN0BnoJpyPEUnHcVjefX3s3S/OXnpIUeqpxTBZWvVX1HWkZb6HP18erva9yaOwQ3TPd6k6439ePVtTykWUfIZ1Js613Gxk5QyAeYCI8oSqPMnIGs87MRHiC9ql2vDEvLWMtOIwOrs29ljxzHgXmAvq9/aqx4VRkioycYTw8Tp4pD4/Nw6B/kLScVscGf27MNpQTEGjIa2C5eznL8pcRSoY4MnaEjaUbzyol3qK1oNPoeKjlITpnOllduJrJyCRGychwcJh4Ks4FxReglbQcHDnI/pH9RFIRHjryEOFkmFWFq/hNy2/45IpP0lzUzHhonHAyzMeaPsaAb4BH2x5VC8Ssid/Z4lRcpqaCJp7rfI6Xel5iY8lGDo0e4oXuF5iOTCtxEAYbV1ZeyWebP8sfjv9BNR2UREktdmd36UDhD+0a3EWPt4dUJkU8FWdp/lIebX2USDLCZ1d/FkmUGPAP4I/71cgQQRDwxry0TbZRn1tPMB7kNy2/Ye/QXprcTUxHpxkMDKKX9ISTYaqcVXx82cd5uuNpluYvRSNqqHRWMhIcocpZRTAexCSZFNJyzE9aTlNkK2L/6H7GQmOqieZaz1oOjR5CEiX8cf+cTunJ6r8sOTzHmMO1tdcu+B4tc5ThMDrmFT2gFIDZRPnzraO5iA8fzqvC55FHHuHgwYO8+eab854bG1M+WG733JuW2+2mv79/3vdn8b3vfY/vfve77+2JLuIDRTAe5Detv+PN8TdpGW/BG1PkrjqNjpHgCN+9+LvvKs27z9fHo8cf5dmuZ2kubOaRY49g1BqpdFYy4BtgrWcthbZCEillxOA0OzHrzOwZ2gMo3ARJVFRHjXmNyBmZ9ql21WCuyFZEYDLAUHCIjJxhrWctf730r/nB7h9wYPQAAHqNYiJ4x9I7eL7zeS4uv5hEJnFKSfl7idmGchpBw8XlF7NrcBev9r5KoaVQcdKVFffq2aOXUyHPnEcynaR9ul0tCHNNSjdHQHHAvq7uOh459ggWnQWbwcYrba8wFBhSR0bL3Mt4pvMZXu19lY2lG9VxV7OnWS16Lqu8jGgqelaF4ZniEcod5awrWkcgFqDb280rva8o6epvWR8AvNr7Kms8a7it8TaOTxzHorNwZdWV1OfWKx2Tt7qDE6EJ7EY7G4o3cGT8CGuL1hJJRFhVuApJI2HT2yh3lOM0OllesJwCSwFDgSH2De8jI2fQCEq0RCwVIxQP0Tndyc6BnURTUfYO72WZexkbSzeqr0mFo4KHWh6i0llJmaOMdCZNbU4tL/e8zJHxIyTSCRLpBJIoUe4oxyAZyDXlsty9nHg6jjfqpchaxIqCFewb3cfKwpXU5NSQyqTm8MvOVf1n1Vu5sORCxkPjcx6XRIlcU66aKP9+dTQX8ZeL86bwGRwc5Etf+hIvvvgiBsMCpNW3IAhzfUxkWZ732Gx885vf5Ktf/ar6dSAQoKSk5N2f8CLeV8z2/ogkI7w5PLfoAUWivGtwFy/1vESBpeAdFT9ZmW7nTCcD/gH1ZpC14b9n7T083f40bb1t+GN+DoweIM+Ux7c2fYsf7P4BB0cPkpEzXFl5JdWuakptigFfY14jA/4BJRBVo1f9cQAMWoNq2veJpk+QzCTRiTp8cR/PdT3HhuIN1LnqFuSt/Dkw21BumXsZuwZ30evrBRRORzwVZzo6zdb2rWelupkKT+E0OrHpbYQSIYaDw1Q4KxgJKLEiqUwKEcWz5+LyiwnGFDK0JCrL12RkUiFARzvIyBk2spFVBauYic1wQckFNHuaERCIpqJcX3v9Ga/R2cYj1LhqODJxhD3De5iJziC8RZyPpqIgKPJ6u8HOkrwl1LpqMevMlNnKWOpeyjL3MlrGW2gZbwE7aAQNRyeOksqkKLGWIGkkgokggViASDLCj/f9mEJLIeFkmNbJVkrtpdzccDNPtz+NjEyZvYxYOoZG1DASHFG5OKlMSiXVCwjY9DYqnZXkGHLUx1cWrGQyMqmOsAA1cLTP10eBpQCHwcHfrPwbhgPDdE53EkwEeX3wdYySkQpHhap8O7kbc67qv2pXNTfW3siR0SO0z7SjETToJT1WnVVNlH8/OpqL+MvGeVP4HDhwgImJCVavXq0+lk6n2bFjBz/+8Y9pb1fyacbGxigsLFS/Z2JiYl4XaDb0ej16vf7Pd+KL+LMiGA/SOtnKk+1P4o/5sevtVDoq0Wq0VOdUq0VCJBmhfbqdRDrBZHhyTj7UuSAr0w3Gg6QyKbSiFp2o4+NNHyeZTvKD3T/gxNQJAHIMOTTkNfDmyJtMRaf4+oavMxIYwaK3sGtwFwdHDvKLQ7/Aprdh1Vm5vvZ6im3F6DQ6VS4NSjHhj/s5Mn5kjuosuxPOM+epvJVThXGeKaTzXDATe5vsm2fK43nf83OezxrtjYRGGAmNnLHwCSaDxFNx3GY3FY4KoqkoOYYcBARK7CUk0gmW5i/l8NhhXu19lUvKL8FusJORlZTzZEZRu2WlzvF0nFAyRGNuI4WWQlwm1xm7DVmcSzyCVW/FY/G87R8kyyTTSUVeL8tEEhEiyQiSKBFIKNYDiXSCycgkdbl1HBo7xFRkCoBiazEOg4OfvPkTxsPj+GN+QskQn1n5GeKpOKPBUcLJMM2eZrwxLwP+AQCaPc2Mhca4tOJSUukUOcYcounogn+bjFLMlDvK+eaF32QkNEIqnUKv0dM21UZ1TjUHRw+qWV0AgXiA9cXr8cV8WHVKqnufvw+7wU5jbiN2g10d1cF7wy9ryG/g3kvu5eGWhxkJjaATddgN9nlKvEUs4p3ivCl8LrvsMo4enbsYfepTn6K+vp5vfOMbVFZWUlBQwEsvvcTKlYptfiKR4LXXXuP+++//IE55Ee8RgvEgndOdjARH0Epa1bdkOjo9L2k9x5jD6sLVHBo9RI+vR+FBiDpurL+RKyqvYCo6xZK8JaftAp4O2R2tKIrq13+99K/Z3r+di8ouomv6bcPELPHWbXFzYOQA/f5+Widb6ZrpYsg/hKSRWJa/DJ1GRzAR5Mj4ESbCE0iipNzQ3uJFJFIJbDobBZYCVeae3QlLoqSmsZ+cdRVPxTFoDGwu38y2vm0k0ok5ifAnO+2eLXIMOeq/U/J8+b9eoyeEcp1S6fnPnwyL1oJWo8Wqs9Lj60Gv0aueNmatmZUFK8k15dLn6wNQU8wFQSCdSZPKpDBqjeSZ8kjLaTwWD3qNkjNVZi87p47DucYjFFmLyDHkYNKalEJYo1VsB1JRTJKJutw6Xux5kUeOPYJeo1c7QH+z8m8waJTOdVaS/v2d32coMITdYFfHZZlMhgJLAd+7/HtKerrRxYWlF/J81/NEkhGur72ejukOxkJjmLQmDJIBj8WDx+JZMIi30FJIgaWAZe63O3F7hvbgi/m4quoq0pk0R8aPkJEziIJIia2EK6uuRCNoGAoMkWfKU3hwZvecggd4T/lldbl1fH3j1896TLaIRZwLzpvCx2q1snTp3AXMbDbjcrnUx7/85S9z3333UVNTQ01NDffddx8mk4mPfvSjH8QpL+I9QJ+vj9+0/EblLAB4LB621GxBq9ESTATnLPAXllzI6wOvq613najjzuV38lrfazzd8TQeq4dXe19lSd4SHEbHgiGL46Hxt5Vdb8mJs92h7I7WqrNi09no8fZwU/1NvDHwBqAYvAmygF6jx6Kz0O/vp9nUjN1gVwoYvY1eb6/ip5IMYdfb6fX1EogrURofWfoRBvwDqt9JjjEHj9WjJqJn85rMWjMyMqlMCrfFjU1v4+DoQVXibNVb8UV8DAWHuH/n/WgEDRkyVDurSWVSDAWGmIpMcc+ae86587XMvUxxpZ44il6jR0BAEJRA1mwmlllrRi/pKbQUnuFoCqlVEARubbyVx1ofo8fXg01nI5lOUugs5BNNnyAtpym1l3Jg9AB9/j6KbEUMBYYQBZFCSyF6SY9ZZ8Zj8WDRWQglQ+/oRjy7m7UQTo5HyNoiHJ04ylhoTCElv9XxuqHuBrb1blPNANOyUqS1T7fzh+N/4JMrPkkoESLPnMdIcIQ9Q3vIyBmSmSTJTJJyWzmbyjfxoz0/os/Xhy/uQyNo2FS6idsbb+dnB37GSHCEPp/SgdlQsoHnu5/n9sbbua7uOra2b53z2fBYPFxfd/28YldAoGumi7bJNprym9hUuknhV71FmjZoDPT6elUfpf+x7n+wo3/HvLT797obc65jskUs4mxx3hQ+Z4O///u/JxqNcvfdd6sGhi+++OKih895imA8yKPHH51T9IAyQnms9TGWuZdRbCtWH5dECYfBwfP7n+eyystIpBNUOCp4re81Or2dOPQO6lxKPMRQcIh/3/vvfO+y78258R8eO3xKL58VBStUmW48Facxv5GWsRa8ES86jY58Uz4OvQNBEEhmkkSSEVKZFCk5hS/mo9ReisPgoC63DkmUGA+NMxwcBsCkNRFJRkhmkkqoZSqm3kyybr7RVJSO6Q4kUaLX20swEaTSUclEeII9Q3v45eFfsmdoD6IgEkvFWJq/lK9e8FVe7H6RypxKJEHi9YHXMevMSKJEn6+PZfnL1A7DyUXeqVDqKOVbF36L+16/j6nIFA25DUphl06gETRMhCdIZpLU5NRg09vO+Dpb9Vauq72OrR1bubnhZnVc5DA4KLGWMB4Z58TECT7b/Fl+tPdHvN7/Orc23ApAMp1kU+kmJiOTKoF5JDjyjm/Es7tZC+HkeASr3sodS+8gnAjzRNsT6utZ4ahgffF6njzxpCrFF976r8haxO6h3TTmNXJw9CAjwRFua7wNh0EJKs1Kz29bchu/PvJrDo8fxq63oxMVBVfrRCuP8ih3rbgLu96uFI4IjARHSMtppsPTrHSvJJlW4ib0GqUoFAWRDSUb5lyTw2OHebH7RXq8PQwGBtk1tEt1rC6wFOA2uVlesJxqV/WcrkuVs+qM3Zj3cry6iEW8lzivC5/t27fP+VoQBO69917uvffeD+R8FvHeImtsN7voyWIgMKAEOJrdrC9eTyqTosJRQSARoNffyzOdz9DsaebC0gvp9/ezNG8pgXgAX8xHgaUAnUYxn5vN9RkPjc8rekBJaJ9dJN1QdwOPHn+UvcN7WVGwQs38Gg2N4jK5aJ9uRxREZFlGr1HGUZdVXIaAQCARIBgPYpCUXbRdbyeejiOJEhadBbveTswcY4V7xRyyclYaLIkSbw4rHjcr3CvYUrMFm97GA28+QNdMFy6ji0QmoRzf28t/H/xvbqq/CRkZl9FFhoxqZCcIAn9s/SNtk22U2csIJUNzirzT4YKSC3jgmgc4Pn4cjaThX3b9C+3T7aqYoMndxE11N/Fiz4u4Le4z3vDKHeXctfwuBnwDiqR/XPGU2R3YzWR4kng6jiAIfHrFpxFEgXAizM31N2PVWzHpTOhEHVqNlkgywrqide94LDK7mzXvuVMQtcsd5fz9xr/n6uqr6ZrpUnLFtIpL8s7BnWpwqiiI5Jvz6ff3E4wH1dd9ODiMSWtiJjqDRtAQToZJy2mcRict4y0YNAYEBGRktKIWjajh0Ngh7lh6B4l0Qu0ogTI2GwmN8Ltjv2M8NK52BSucFXxm1WfmdMCy7/cB/wAXl1+sGBdGpkhn0nTNdFFiK+H2Jbcv2DU7UzcmO3b1x/zkmfKQkXmd12lyN9HkblosgBbxgeK8LnwW8ZeNUDKkBCvOgiRK1LpqMWlNFNuK6ZjpYMA3QI+vhyfanuBbF36LVYWriCajDAeHGQmNqIojgOqc6jlhh764T/1360TrggniwJwiqdxRzlXVV2HWmdFqtBwdO8rS/KVs7djKXSvuQkama6aLlJyiwFRAlbOKyyov4+Wel6nPq1cT4Nd41nBw9CBmrZlEJkGZvYyMnJlX9MDb0uD9w/spshZhkJSbYZYTNOAfwBfzERIV99uMnEGv0TMUGOKTKz7JoH+QR9sepd/Xj0bUcFHJRUzFptBrFG+X7Gjt5CLvdCh1lOI0Ovnhrh9SnVPNqsJVJNKKhD8QD/DkiSfZWLrxrCM0ssGaRzqO8MbAG4yERlQDvDJ7GdfUXMPBsYNzipJvXvhNNbn9vcDsbtY8Vddp4hGseisbSzfiNru574376PH28PGmjyMKIgICWo1SsJi0Jnp9vUpHS+9QvZeGAkPU59YzGhpVssBEjRr+WWgpJJ6Kk8qksOgsCILi3yMKosoDy8JhcPBo26N0e7vnPH5i6gQPvPnAnNc1+37Pjk8LLYUUWgpJZpJoRS0WrWVOBtpCWKirA6hFj8fq4ZWeV9SR21PtT3FZxWXctuS2d8QvW8Qi3gssFj6L+NDCorWgE3Xq15Iosa5oHdv6thGKh0CAaDJKka2Ia2uuZSY6w+HRw4STYXpmesjIGdZ41mDT2wjEAzgNTsU/J51Wj+nQO9R/zy6CFsLs58PJMOPhcex6O8enjrO5bDPxVJxfH/k1l1VcxnW11yGJEms8awjEA3TPdLNraBcPH32YWxtvpXWylWQmyarCVXTOdFJiKeGyisvQSTpuX3L7gjtiq96KUWfEH/fjj/uVc4r5sOqtTEWmVNfbcDKs+ruEEiFCiZDiGq0x4ov5SMtpdFodh3oP4bF6cBldc9RiJ3fCTod+Xz+DwUFaJ1sJJ8KkMikkUcKsMysxCcjnZDjX5+ubw02RZeXG2+/v59nOZ/n0qk/PKUjOhjx9rsh2s46OH8Ub9+LUO886HqHaVc03Nn6Dh1seBhkuLL2QvcN7SctptQskCiJL85di1pmx6qw4DA6eOvEUn2n+DM92PMv2/u3IyKrLcdaVO8eUQyqTwqQ1EU/F0Ut6VfmXhUbQMOQfWvDcTn5ds+/nWlct2/q2MRYaY3nBcvJMeSQzSYKJIDsHdp7Si+lkMj0oXJ91RevUTs/sogcgmorS4+2Zk+S+iEW831gsfBbxoUWZo4xKZyW9vl6iqSh1rjp2D+5mJDBCtauarukuAokAQ4Eh9Bo9brObw2OHub72el7pfYUTUycY8A+Qb87HprNRmVNJPPW2S3els3JOXtfsIuhkaEUtecY8NUNJp9GpLrmpTIoDowdYV7wOs9ZMPB3HaXAqZns6G0fGjvBM5zP0eHsQBZGtHVtp9ih5U+WOcv5u9d9h1ppxGpxUu6pPezOYLReOp+K0T7XTlN9ELBVTOkfpBAICeaY8fDEfo6FRkpkk9++8n5qcGm5tuJUnTzxJIp0gnAwTSoQotBYiiZJKyoUzF4FZhJKKRLvH2zMn0NMgGSi2FauKs7NFVgKfRbazkZEz9Pv756RzGyXjWZGn3wlKHaXvOAcqq0ga9A1SnVPNf+3/LzpmOpQcKp2Vpvwmbl9yOzPRGWx6GxadheMTx7lvx31877LvcXnV5URTUWpzarmg+ALap9uZic6gFRXl20xqhvXF6ym0FNLv61eLnxxjDm6Lm3AyfMpzC8QDqjljMB5kZcFKtStzZdWVvDHwBi/3vAxAmb2MJXlLqM6pZl3xujnHyfpZzS56QElof7L9ScpsZcjICyrLEpnEnCT3RSzi/cZi4bOIDy2seiu3LbmNWDrGrsFd5JpyaRlvwW6wIyCopmsWnQVfzEe5o5x+fz8/PfBT7lh6B5tKNyHLMjfW3ciB0QO0Traqrfssl2V2V6Mxv5FKZ+W8cZdW1HJd7XX85uhvODGtePSkMimcBiefWf0Zym3l9AX6VP8eo6Rka5l1ZmwGG3pJT7e3G42oOOwmM0l2D+0GoCG3gebCZi6tvPSsrsnsDCR/zE8sFUOr0dLkbqJjuoNkJolFZyEQD5DKpFhRsIJwIkw8FWcyMsmB0QNcVH4Reo2eRDqhxg8IzJX3n64InA0BJYdKp9HNKXxiqRhDgSHFtO8clFXJVHLO10atUU1ez8gZkmnleaNkZGPpRmpcNWd97PcTVr2VRncjjTTSkNcwJ//NG/MyGZnEorMo6kKDg31D+3Bb3Dze9jivDbyGTqPDY/HwuebPIYkSr/W/RigRwqg1Umov5c6mOzk+cZwrq5SIHrNWuc77h/efcjylETRIGol7nr2HoxNHqc6ppmO6g2trr+XSykvpmulCq9FS6axEr9Fj09sYDY3yZPuTNOY1zinIs35WC8Ef9SPb5HnJ9llku7iL0ROL+KCwWPgs4kONckc5X1r3Ja6ovIL9I/tZ5l6GSWtSSJhyGmTUsMZgIkggEcCus3NgVPHNMUgGWsZb+L82/F9cUXkF8XScPFOeQow+aZRzqoT2yysvp22qjfbpdvUxSZSYjEzyswM/4+7mu/l1y68ZCY2o+UtZs7VQXOmIZLsWJ0MraomlF75BLITZGUhDgSHMWjOHRw/z8aaP83jb47wx+AaSKOFNeVnpXslHl36UHQM7EAQBWVa4R+uK1jEaHKXSUamQnk0uvNG3Zdond8JOh2QqSUbOUGYvo9/fTyD+dtZddU41ja7GBTtYp1L8eKwejJJRJbRLooTb4kYURLSiFpveRmOuUqCeaiT4YcPs/Lf2qXZe6n2JHf071HGVQ+/gnrX3EE6EeabzGfLN+ciyTDQV5ZHjj/D3G/+ei8svJpwMU2wrZjI8qcrb9w7vnTMyOlXxDopD86s9r6qjwj5fH8vdyxERKXOU8XT700xFppBEJSbDZXRR4azAH/Wr3Zms1cNQcIhKZyU6jY7umW7VxBHAbrADStfvZBglo/r8YvTEIj4oLBY+i/jQw6q3YtYqctxQIkQsFSOYCKqdABkZURAVGbCow6K3MBIcYSI0wVL3Utpn2unx9iAIArFUjGgqSqm9dEEOy0IJ7WnSPN/1/LydtEEy4I15ycgZvnLBVwjFQ2hEjeofk3VMzjPlqXL12cWP0+DEoDWcUUJ9MmYTnTtmOkikExwZPcKNdTdyfd31aEUt0VSUocAQPz3wU1wmF7mmXAA15qF1spVbG29VCNFvdRL0Gj1ljjI+ueKTZ+3tMxWdYlPpJt4YeAO32U2pvZR0Jk2JvYSNJRuZjk7P+5nZih+HwUE8FUcWZJa7l1Pvqmdj6UZ2DuzEH/ervCG32c3FFRfTXNjMxpKN56WZXdd0F/fvvJ9eby8OvQNZr7yfHAYH/rgfh87B+uL12PQ2EukEFp2FAksB+4b28VjbY2TkDHc23UkwHmR54XLVObzP16eqzbLF+08P/JR+X7/KuSpzlHF55eU8eORBbm24lbScxqAx4DA6KLGV0DrZiiRKFJgLFINMUUMwEWTQP0itq5ZQMjTH6iGcCDMZmaQht4FPr/w07dPtavGjl/Q0uZvo8/XNMVKcHcr6foXpLmIRC2Gx8FnEeYFQMoSAQIWzgrHgGGOhMaqcVQz4BwgmggpBN53CqrdS5iijZayFqpwqRoOjrPGsoWVCyUXSaZQ2+47+HXxj4zeoy62b97tOTmh/ou2JU44PJFEikUmwpmjNgs9b9VYuKb+E57qeUyMnZFnGrrdT7arGbXafdXfl5OM2FzXTMdOBL+Yjz5LHk+2KZ8yWmi384fgfVA5R22QbywuW0+/rxxtTPIdyTbnUumrxx/wKMTodQ69RMpFOHnudDna9nb3De1mSv0S9YWdVXU93PM23N317zvdnuSH+mJ8cYw5/OvEnbAYbeaY8er291OTUcEXFFcRTcXYP7UaWZTSiRonmMOUhaaQPDS/kdEaXJyMYV7Ktsp2Y2WMevaQn6A9y/ZrrsYxZGAuOYdaZGQmMcGjsEFdUXqH6QOkkHYf6DzEYHFRjOk5MneCjyz6qjqMcBgdrPWupdFQSSUUwSSa1izQcGObZzmdJZpLU59Zj0Vq4rfE2fDEf/pgfg2TAprepUnu9pCeSUMJiZ3dCs67hbVNt/PzQz7lrxV1vR7UYc1TZenVOtRInE/Wr8RZ/DrPDRSziXLBY+CzivIBFa2EyMslVVVexo38Hg4FBur3dFFgK2FCygVsabmEmOsN4eJzDY4cJJUPoNDpqXDVU5lTydPvT2PQ2dEal8Onx9vBwy8N8fePXz7gAn4nvcqbnG/IbuPfie/nZwZ/R6+1V5cNus5svrvviO06Kt+qtLM1byhcPfJGp8BQ1OTV8fcPXQQZfpY/OmU7GQ+OYtCYcegeGXAObyzZzaeWlqkty50znvKJuIDBwVnJ2UEYrpfZSNfByNhYamWW5IS6jiz+d+BM1rpo5hNo8Ux6iIIKs5FDNLqSe6XyGoxNHz/rcThV18l7ccM9kdHky+n39+KK+U57nR5d+lAf2PUDLRAupTIpIMkKFo4IrKq/gsbbHuKrqKhpyG3iu8zlEQcQb9TIdmWYmNsNEeILJ8CTX1l5Ls6eZl3peUjPAQCmyLEkLPz/0cyYjiidSqa2UUDzEiakT1OXW4Y15KbIVMegfVDo/lgK1uLEb7SRTyTl/azYnbioyRdtUG4mUYjtxclGzrngdjXmNi9ETi/hQYbHwWcR5gTJHGXaDnZHgCBtLNiq8m8k2YqkYgUSAl7tfZiIyQbGtGI/VQyKTYFn+MhLpBP/55n+ik3RzJNugKIjORllyOt7E2fJhVntWU2wrnjNCa8w/s0vymRBIBPBGvYiCyBuDb7B3eC8bS5XrIwgCGlFD70wvqUyKUnsptzXcRqGlkNHQKB0zHQse81zk7KfiRS1EHoe3Ox3xVBybwcYbA2/Q7+9Xn88SmH915FeUOcrU0dy5ntupok6uq7uODSUb3pWHzNkaXc5GKBlakPMCSsr7tv5tDAeH1bwxAYFUJsWuwV1sLtvMqsJVykgQxXzSG/MSTobVrsxIaIRAPMDDLQ/jsXrm/Q4ZmR5fD06jk15fLwWWAvaP7ieWihFOhunz9rGxeCN7hD0MBgbJyBkkUcJj8XBz3c0MBgYJJ8JzcuIMkkHNjxNFkdsabluwqFmMnljEhw2Lhc8izgvMJvWOhEbQCBpK7aXotXpVMn5VzVXcu+1eurxKUKgkSmhFLSadSeXazIZO1J2VsuRcb+6nO867LXSyyJKDx0JjVDgqmAhPYJAMamhn13QXa4vWUu4oJ5lOUumsnEPoPlXRk8XZytnhbV7U8YnjTEYmVa5QlbNq3vdmCa2RZIQ8U57a6clCFEQiyQixVIx4Ko6km79EnencThd1srV9K7Isn9Kb5mxwtkaXs2HRWhAQFgwPteltdM10YdQakURJ7fiEEiH6/f2sL17PwdGDTEeneXP4TVwmxXepMbdRHUmBoqQbCY1QaJ0v8c8qrJwGJy6jC1EU1cdGg6MU2Yp4rus51havZUPJBvLMeRRaCrHpbeQYc+j0djIZmVSPl+34GCQDkk6iyFK0WNws4rzBYuGziPMGWVLvyW3zQd8gY6ExWsdbuaD4AtaXrCeZSbIkdwmJTAJfzIdJa8KsM6vHyqpLTlaWnEpttBDp+b3o2LwTtE+183DLw4yERljrWcuB0QMU24rZXL6Zelc92/u389iJx/BGvVxUdhF1uXU0FzXPOVen3snqgtWYdCZiqRhGyUg4EaZlooVkJnnWcvYsoqkoxyaPqRLnw+OHF0yAz8rxE6nEHCUQKJ49AgImrQlREOeZ82VxpnM7XdRJtjPybjxkzsXoMosyRxnb+7dzWeVl80z9jJKRImsRvb5eYqkYU5EpgvEgGlGDKIhMhCew6q0YNAb1GgXiAQYDg1TlVJFIK2Mmg2RAJ+oWlJEbJINiWyAILM1fikEyKHwuQeD4xHG+fdG3mQhPsH9kPwCbSjeRa8pljWcNz3c/T64pl4bcBtqm2gDFzmEqMkWBpYBaV+074qktYhEfFBYLn0WcV1iobV7iKEHulymyF7HSs5LfH/89g/5Ber293Fp/K2s8a/DH/SqxebbkfLaypH2qnV+3/JqemR5EUcSmt1FqL+WS8ksAMOvM86Ik3m9klUE93h4sWgvDgWEa8hqYjkyTb8pnz9AepiPTWHVWPBYPbrOb9qn2eSMYk87E4fHDHBg9oB67NqeW6+uuZ9A/eE43smA8yNaOrehEHW6zm1gqpkZqbO3Yyl3L71KvWbZzt713O3nRtztwOo0Op8FJPB0nnAizomDFgj4xZzNaXCjqZDZiqdi78pB5J5yv2UGsF5VdhIzic+MwOqh2VPNs17MMB4YZigypBPiMnMGsNWPVW+n19qpp94FEAAEBX8xHLBkjQ4ZSWykCAnaDHYfRoTp7ZyEg0JjXSDARJJQIYdVbsRvsBOIBCq2F7B3ay/KC5Ww2bEan0XFx2cWsKVrDgG+AqcgU/pifT6/8ND8/9PM5xU+JteScup6LWMSHAYuFzyLOa2RdaO16OzIyyXSSv1ryV0QSEaKpKBX2Cq6ovoLHWx9nJDSCTtRhN9hVn53sDblruot/fO0f2TO8h1QmhSiIVDoqeXP4TfYN7WNd0To6vZ14rB4+tuxjC6rBxkPjdE51Mh4ZJyNnKLWX0pjXSCQZOWv1z+lwsjIIAZ7pfIYvX/Blfrzvx0RSEfYM7yGZSVJiK2GZexljoTGF3zFrBDMeGue/DvwXekmP0+DEG1M8fDpmOtjet51/ufJfzun8BnwDGCUjr/S8wkxshkvKL1HUbukExbbiOXJrUDp3tzbeytHxoxyfOE7bVBsCgup4PR2d5vNrPs8TbU/M4f+c7Wjx5KiTk2GQDO/KQ+adcr6yQawndywBDo0fotRRymholGAiiCAohc0l5ZdQYC7gpwd+isfq4cqqKzk0doh+uZ94Ok4yk8RtdrO5fDNHx49ikAzUOGuIJCJEkhEl2wuBDIrlwtaOrewc2Ek8Fac2p5ZYOsbKgpUcGjuEFFI4PdfXXc+aojWKHUMyCCimm+3T7dy14i4SqQTBRBCrzkptTi3+iJ8n2p54V+/tRSzi/cRi4bOI8xa7B3fPCZPUiToa8xr5wtov0OhqpMRRohY2Vc6qUypLgvEg2/u3q0UPgMvoonOmk0Q6wXR0mgtKLiDXlEsoEeLJE09yU91N1OW9XfwcGTvCyz0v8+SJJxkMDAIKn+LKqisptBSytXOreuyzTUA/GScrgyRRYnP5Zh5rfYzl7uXUuGoY8A2g1WjZXLYZh8FBMp3EqDWq8RTHxo/R4+uhZbwFo2SkPreedCatBlNqRM0p1UenQjyjBGiu8qyiJqeG/9r/X+wZ3kNGzqDT6Lik/BK+eeE35/y9Vr2VDaUbuO+y+3joyEOq2WSeOY9SeykrC1ZyQfEF72i0eHLUyWx4LB5setu78pB5N5yvUxF9b6i7gbHQGGX2MtJymkgywkVlF7HcvZw9w3v42oavEU/GOTh2kDWeNVxdfTVTkSkachuYiczwQtcLhBIhbmm4hX/Y9g9EU1FyTbk4DU4qHBV8rEkp1qucVVxTfQ2joVFEQcQf8zMdnabSWalK2TeUbFA/G7MLxGgySr+3H0EUSKaTRJIRUpkUvz3223f93l7EIt5PLBY+izgvMeAbmJegncgkODx+mB/t/REPXPPAnJHU6ZQl/b5+xkPjc1RfeklPKKG4LlflVDEUGOJP7X9Sn+/19fKV9V+hLreO8dA4T7U/xYvdL6pFD8BUZIo/HP8Dm0o3UeuqVSXfJ6t/gvEgA74BIimF0KoRNOSYclR+URazlUGSKNFc2Mx4eJynO54G4I4ldzDgG+ArG77Cr4/8mhPTJzBIBjJyhuXu5TTkNvCn9j/hMDiYjEzOIahmrx+ZcyM2Hxg5wAP7HuDw+GFurr+Z773xPdom23Bb3ExFpkikE5yYOnFKtdNS91L+YfM/nLIofSfdg9lRJyeruq6vu37Ojf2dYiHOV1VOFaF4iD1De+bww84G5Y5yPrL0I5TYSgjEAtTk1vBU+1O83v+6YsYZnqAqp4pLKi6hdbKV1slWqpxVFFgKkGWZGlcNoiAqlgm+XtXdvNJRSbGtmBe6X8Bj9WDVW1nlWUUwHqRrugudqMOkUzhVHouHGlfNnHPOcrL6ff1YdVa2dm5lMDCIUTISS8VozGtkVcEq9o3sA06vbFvEB49TcRg/qON8UFgsfBZxXuLo+NE5Rc+c5yaOcnT86FmHTIaSIbQa7ZzH0pk0MjJui5t+Xz8NuQ1znu/19qo+QK0TrYST4TlFD0AinWAyMslUZIoiW9Gc57Kjp2gqytaOreqoaHbsRaWzcg45eLYyyGF08Fr/a3isHi4svZBiWzEVzgqaPc08cvwRjk8eRyNqFANAQcOxiWP87ODP+FjTx1TPldkE1dmy8bMlNrdNtHHv9nt5c+RN/DE/tzXexoGRAxgkA+OhcVwmF76YD0EQTitD/3PInbNRJ9nuhqRRxjjljvfGxwfmqvT6fH082f7kvKTyk8ndZzrn1/pfoyanhh/u/iH7R/YjIFCXW4c5aWY8PM5L3S9xVfVVDPmHWFO0hl5fL6F4iN8f/z1bqrfQ7e0G3o5x8ca8+GN+9JJeJXSfTuqfY8qZt2G4quoq/nD8D2phrxE0mHVmim3FjIeUsa7H4qHH14NBMpyTHcIi3j9kHdPfzXs0e5ztvduZikwRSUYw68y4jC4urrj4XdlEvJ9YLHwWcV5iJrZwQGIW3rh3ztenc9m1aC3IGZkSW4lavGSLBovOgllrniPlBaXjkvUB8sV9qrJmNrLxFMlMcsHnA4kAT7U/hU7UzVH6RFNR2qfaMUpGnmp/Ss1iyiqDrqi6glQ6hSRINOQ2YNVZOT5xnBe7XuQfL/1Hjk8cx6g1KkntgoBe0mPWmjk6cZREKoFO0qkKnVQmNUc2fjbk4WA8SJ+vj1d7X+XA6AH0Gj2byzZj0pqoc9UhiRKRZARBUBRaWlEpKs+lk/ReINvd+HPjdEnls1+/M8Gqt3J11dU81vaYqq6Skeme6abUXopNb0MrallduJpKRyVjwTE8Ng9joTGAOSq5jJwhlUmRltMq0TuUDL0jqX8qnaLMrvhoOQwOgokg8VScYxPHkJHxxX3cveZuhSdkkpBE6X1/rf//hnNxDYf37j0ajAfZ1ruNBw8/SMdMh0rCr3HVkEgnuLH+xvOi4F0sfBZxXuJM+VZOvVP995lcdsscZWg1Wi6ruIxXel9hMDBIPBXHYVByjIptxbzY/aL6s9lYh6wPkEPvUBVjsyEKIqAEkS70vCRIzERncJvd87xdoqnovJ16Vhm0e3A3Lw+8TNtUGy90v8BYaAyP1cOW2i1Kd0OUsOgsGLVGjJJR3fkDBBNBfAHfHIVOVjZ+NhyV7K5RK2oZCgyRTCe5uupq9gzvoc/Xx/Gp4wDkm/JpyGtgPDxOMpMknAhj1Z0/rfBzwemSymeiM+cknY+lYkSTUcw6M5lMBkEQEBAYDg4zFBhimXsZqUyKTaWbiKaiHBg9oL63sgVmFtluX5bobdFa6Jzu5OjEUcbD46oRYbbbdyqpfzAZZDo6jYDAYEBRS2pEDb6YD4BQIsRUZIomdxM93h4knXTOdgiLOHucq2s4QOd0JycmTxBPxxWPrLf8n+x6O/FU/Kzfo10zXfzy8C85NnEMASX7MC2nOTBygFgyhsfqYal76Ye+87NY+CzivMQy9zKW5S9bcNy1LH+ZqiI6W5fdWxpv4bdHf0uzp5mNpRtJZVI05DYgIPCPO/5RjXWw6qxUOCtIZVKqD1CFo4I3Bt+Y0zECRaJdaCkk15Q7J7UclIUqx6gUbwv5rgBzdupZuIwu+v1K5la2+LDpbfT7+0mkE6z1rMUf95PMJHEanTiNTsKJsPrzVp2VycikqtCJJqOIiOrootAy3/wui9m7RrvejkEy0OxpZvfQbnp9vYwGR2nIbeDE1Al8MR/9vn6cRicz0RkachuIJCP0+fo+9IviueJM0vhzkc5nORNGyTgv1FYjKoWKx+JhiaOGo8OHyYQjaGWBElsxk5FJyuxlqhIuaxFgN9jJMeZgkAy8OfIm09Fp/DE/oiAqNz+DXeV5LST1t2gtilGhKDHoHySejmMUjGhFLclMklgqxmR4kiX5S+ic6TxrN/NFnDveiWt4n6+PvcN76ff3M+AfYMA/QCqTUsnsTe4mRoIjZ1X49Pp65xU9oHQmj08eP+cO0geFxcJnEeclSh2lfOvCb80jOC/LX8a3LvqWyu85W5fdckc5X1z7RTqnO1VOSLGlGAS4qvqqORlbqUyKWlet6gOU9aYxaU1zVF25plyurLoSj8XDc93P0ZjXiE1vwygZ2VS6SfEJspWSZ87j1vpbSWQSSKLEcGCYQ2OH5uzUs+j39TPgGyCRUsZYaTmNP+7HrDUTTUUxSAY2lGygfaqddEZZlLK7+pqcGnSScsxkJsn2vu0MB4YpsZeoxOsz5U1lOxsGyUAkEWFJ3hK29W0D4JWeV/jkyk8iCAJ93j6CiSBFtiLcZjd/u/JvOTpxlD5/34d+UTxXnEkafy7SeYvWgl7SU5tTS5e3S/X0EQQBSZSoclaRq3Ows+VZ9DojtowWg+TGXHYVLwy8wqbSTTAA4+FxKpwV1OXWoRN1rC5czY6BHQwHhvHFfExHpwHUblF2RLWQ1L/MUcaR8SPkmnLVkW0sFcOisxBOhim1ldLj7aHcUU5dTt2ir8+fEefqGp7drNj0Nnq8PYwER4in46p9RDAR5OjEUSYjkwTjQfVzeapRWiShFOMLGYxmvanOtcv5QWCx8FnEeYlgPIhdZ+cfLvwHRkIjhJNhHHoHy9zL5pCaz8Vl91SckK+s/4rqlHwqH6DlBcspsBSwzrNO8fHJZCh1vO3js8y9jD+1/4nR4Ch55jx2De6i0qmkZ39/5/dpGW8hno5j19vZVLqJSysuJZwIk2PMmSO9zprzhZNh8kx56DV6dQED2De8j0+u+CS/OvwrgnHlMUmUWF+0nr9a8ldqkRhKhBj0D7Ikbwnb+7cjyzJ6SX/GvKksBAQmI5OsKlyFy+hiOjpNLB3j10d+zQ11N/CRJR8hkAiwLH8ZWo2WE9MnSGaS58WieK7IKp8WGned/PqdzbEEQVBDZHt8yk1OlmWW5DVyS+1NPLHtJ8STcQRRROfKp8ZZhTMY5u+W3EVcC5eUX4JZZ0ZAYCw8RiwZYzg4zG+O/IaNpRu5tPxSal21yLLMaHCUoxNHMevM1ObULij1t+qtbCzdiElrYt/wPjqmO5CRiafiNOU3sb5kPS93v0y5s5w7m+48a1HBIs4d5+oant2s2HQ2XCYXvb5edfOWzCSVcadGz3R0mpbxFjaWbjztKM1pcmLT29S1ZTbservqjv9uDELfDywWPos479Dn6+PZzmex6+1EU1GC8SAuk4tyZ/m8RffdJqsD1OXW8fWNXz9twnQwHmQyPIkkSdTl1s2Tdx6bPIbT6MSqs2LVWXEYHczEZnit9zWSmSSF1kLFITfuZ+fgTjJyhhvrbuSSikvmHCdrzpcdvZXYSggkAuouzKwz89Dhh/hE0ycod5YTToRVDxyT1kSls5JQMsR4aJxB/yBPnHhCJcVm5e2ny5vKYjIyyebyzYyHxym1l1KVU4WAgEVnQZZltvVtIy2nqXBUMB4en3OcD/uieK6YnSN3smJmdnF8tsfKOjzf3HAz8VScSCJMjt5Bja2SN1ueJzY9CaIIJhOJ6QkGMyJXVV1JMDiNLbeUiiJlzPTLw7+c06Fbmr+UP7X/SSGfJyIMBgYpshZxZdWVTEemTyv1L3eU44v6uKrqKi6puIRoMopW1DIWHuO5zucosZVQ5aia9/k732XPHzac63qW/awNBYbYVLKJmegMndOd6vpR5iijubCZ7plutKKWElsJD+x7AINkYH3xehLpBHqNHn/czwP7HuDzzZ9nc9lm3hh4g2jobXK8XW9nc/lmVTH6bgxC3w8sFj6LOK8QjAd5tvNZcgw5/GT/Tzg+cRwZGVmWafY0c+/F97KxdKP6/e9Fsjq8LbnOtoA7ZzrVFnA0FT2tTDS76wrGFbfbZzqfQRAEKhwVPH7icXUcFE1GcRldqp9Qqb103u47z5xHjikHs9ZMLBVjmXsZb468yVRkijJ7GUOBISqcFawtXrvguGqpeynBeJAjY0fYO7x3znOz5e2nypvKdjbScpqR4Ag1rhqW5C1hNDRKsa2YHGMO/piftJzGY/EgIMw7zod9UXwnOFWO3NkqZU4uDlSH56gfgy+MIEk8fvBh0tnLmckgRyJgsRDwjiFHozTH85B0RUh6K8fGj815P1p1Vl7pe4Veby/F1mKKbEWUOcrQaXToNXq+dsHXWOVZddrzrcqpYkXhCra2b2UgMEA8FSctp1mSt4TbGm9jSf6SOd8/O1NOp9Fh1yud0nOVTy/ibZzrepb9rBkkAy/3vky5o5xmT7NqWBpOhHm642k+sfwTABwbP0a+OZ8d/Tvm8BVLbCVcVHYR8USc25fcjizLdM50kswkEQWRYmsxW6q20Ofrw2V2vSuD0PcDi4XPIs4r9Pv6sevtatEzm2D3+sDr/POOf+b/XPl/1EX4nbrsLnQz6vH28KO9P5pznDJ7Gbc13ka+OR+TVkmBt+vt6CU9z3Y+y51NdxJKhoin4mTkDK/0vsJ4aBybwUY8E0dGxhv1kkglcJlcTEWmcOgdRJKReXlLfb4+jo4dZXXhaoYDw0yEJwjFQ6wvWo9Vb+XSikux6WysKFxxWo5Fv68fo2RElmXIZECWQRBAFFV5+6nypmZ3NtJyms7pTi6tvJQeb49asNkNdiqdlWws2chIcK5a7VxHP+8G73e34Z34EWVVcqPBUfwxP4lMQo1FWepeSnp8nGRfG/v1kwpnSztLuZXJQCoFOh2hVAQwI7z1/MldtQwZRgIjNOY2IgpKMns4GUYSJKYiU1xfe/28a7PQ9dtQsgFZlgnEA2omm01vY1Pppjk/3z7Zzr/u/dc53LgMGXWT8JfG83q/cK7rWXazIiDgMro4MHpAtT/Qa/SqqEEv6ZURmJxiR/8OxkJjrC5cjcvoIplJotPomI5OE0qFaHI3ISAQToQZCY6g1WhJpBO0TbVRbC8+5y7nB4HFwmcR5xVCyRDRVHRe0ZNFy0QL+0f2U2ovVT9855qsvpDRl0EyoBW1DPgH5nxv53QnbZNt7B/dP0fy3pTfxN1r7mbQN4hFa8Ef82Mz2FQDuHQmjSS8/fGbjk5TbCsmkU4gIyOJcyXBwXiQw2OH+fnBn2PSmliSv4SqnCqseis1zhrK7GWUOkrP6uYVTobRoaHRXkPrxLG3v1kQkLVaKpwVp82bynY2RoOjhJNhREQ2FG9AL+nRiBpVBfR89/NzXp93Mvp5p+jz9fHo8Ufp8faQyCTQaXRUOiq5bcltH5puQ5Z42uPtoXummxJ7ybxYlKqkwpmwSKa3f1Cng8RbvlCyrD4viEZEh0P5+qSuWigeYrl7OaIgcnTiKFPRKbUb5za7GQ4OzyG3ns7s7oa6G9T3lFVrJdecy2R4kj1De7DqrMiyzDOdz/B81/Pqz2bVkB3THRgl418cz+v9xLmsZ9nNytaOrVxWcZnS+el5mVgqht1gJ9eUy60Nt+KxehgKDFFgKWAsNMZllZexa3AXL/teRkZGQKDMUaZ261xGFwO+AdWtXCNq1E3Nh73ogcXCZxHnGSxaC8F4EBmZtJxGK2pZ41mDx+YhlUnhMDgQBIEB3wBL3G+33me77J4O2ZuRP+bHZXQpHItkhHQmTZ+vj4bchjkqspWFK3mo5SHsevuc47RMtPCTN3/Cv1zxLzTkN2A32tWuTzqTVvx0Yj5qc2rVYiqr4DHrzJQ5yuYUH32+Pn5+8OeU2kt5Y+ANXuh+QX1uVcEq7rv8vnkLzqluXmsL19DVsYe/abqLX7T8itYJxXsHWabRUcv/WPPFM+ZNBRNB/n3fv89X1F34LfWGdpdlfiDn+7EoBuPBec7EiXSCI2NHGAoOcVXVVeQYcyh3lDMVniKYDH4g/JNs8dg9002Tu2neeKHX18uXV3yOckGgRHBSW7qSYCZKzJ3EkIRMMMhkYBSnJZ8SfT7a0hoEvR6YT7iWNBJui5vX+l9jJjqDRtAAiteUL+aj29tN10wXKwtXnpXZXfY17vP18XLPy2oHqNBayEvdL5Fvzp/zs8FEkF5vL2X2Mvwx/18cz+v9wDyl1Vlm12XDcQd8AzTlN3Fj3Y2qB5NZZyacCDMUGMJusGPSmthQvIHdg7sVZeisjcuAf4BnO59ldeFq3Bb3nPX1fMNi4bOI8wrZBV2WZbSilr9q/Ct0kg69pCeRTmDRWpgITdDn6wOBOZ2fkzOxZFlGp9ERSUVIppMUWgrRarQE40FyjDlzVDVaUYukkfgfa/+H6ngMYNPbODF1gtWFq+eda8tECyOhEdaWrOWmupt4qfslUpmU4vocHKHQUsiWmi080/GMorYQBKx6KxeVXcTfrPybOYtar68XvaTnjYE35iSWAxwcO8gjxx5hSd6SOX/r7JtXKBFiMjxJ60Qrvd4eLmm8hB0nnudj9X9NegmEkmEsWjN2wcRS4+lHUQvlpIESFXLf6/fxwDUPqN2nD2JX3zndOafoCSVCeKNepiJTdM10kWPM4dHjj3JJ5SWsdK9kMDBIWk6/I/v+d4NQMoQ/5qfEXjKv6AElFuU37X/kds+VTKe9HJ7ood/bRyweQc6ksettXLfiRjYUrCMnr0otemD+WFKr0eI0OPFGvWo8S7bjU+4sp3O6k66ZLuLpONFkFJ2oUzqTJ3VUR4Oj7B/ej1FnxKKzcGj0EM91PqcacK4vXs8bA29wW+NtmLQmkumkSryPp+IgKP5U2Q1M53SnMi6RtHisHsrt712kyF8S9g/v5we7fkD7TLtqPFnrqj3rQFir3qoWKn2+Ph459ggdUx0UWgux6CzY9XaaC5vVz+zOoZ0UWAowSAYa8xqxG+xIgoRNZ6N9qh2T1nRek9YXC59FnFew6q00e5pp9jSjFbWU2kt55PgjnJg+ofreLMlbwh3L7mAgMEAyk+SGuhsA1EysV3tfJZqKUuGoYPfQboLxoGpK2JDbQLOnmV8e+iWDgUHWF63HZXKRzqRJpBP0+fqod9VzbFIZEWU9MWZnXQGKY65Ghz/u59jEMcod5SwvWM7llZczFBiixFaCN+Zle+92Lq28lGJrMXnmPHSijssrL5+njgnFQ+SZ8ni55+UFr8ugf3DO+GC2585YaIzdg7sZD48rMRayov5oKr+APx78DWXWYmxxAZcln02VW7AkxdO+Bu8mJ+394N2MBEfUWIWMnGEqMoUv5iOejhNPxxEFkaHgEM90PEMqk2JZ3jLGwmPvu/maRWshkUmQa8qdV/RkcWjsMOX2ch4+9CA9011YDDZKHKWEk1E81nJG49Pk5pXMKXqymD2WjCaj6Kv1vNb/mprnJSBQmVPJRaUX8eSJJ7mm9hq8Y170kh6HwYFVbyWeiqPVaIkmo7RPt9M62Uq+OR9/3E9NTg0/PfBTAvEAAgKiKBJOhAnEA3RMd1BoKeTA6AH1fHQaHSIiRZYiDJKBH+390YJ5YRtKNnxoxpEfNMZD4/TO9PKd177D0fGjeKwe9JKejJxh0D/Iv+/9d75ywVfOqWD0x/ykM2nWFa/jpZ6XGAuNoRW1tE21kWvKxWlwMhwYRiNouLnhZvaP7mcyPEk8FccgGZiJzdDt7WYoMKQWxu/3puHdYrHwWcR5hyX5S7j34nvp8fbw/+z8f+iY7lD5MnpJT8tEC+mWNN++8Nu0TrXy6PFHKbQWIgkSr/S8QiAewGl08nLPywwGBrHoLGobvsvbxVRkihxTDvW59bzS9wrdM93oNDoSqQTritfxuebPoRE1aEUt5c5yim3FxNNx9fw0ggYZGa1GSyqT4tHWR8kx5rC5bDObyzbz0JGHEAVRHQ8M+ge5qOQiwskwWo2Wbm83ekk/p+OTb86ft/vOQhREzFrznPFB9t+hRIhdg7sIJ8KYtWYMkgGNoMEfC/Cn0af4zAX30D/VxVpnE5VJK+ZgCqFIu+DvyeJcc9Ky6Jru4vXB1/FFfRgkAwIC2+XtXFd73Xu2YAbjQeLpOEXWInJNuaTlNLIs0z7Vzv6R/aRkxbH2ruV34Ta7kTQSdqMdh9FB90z3++ozVOYow2PxLDj2MWvN+ON+nAYn/kSAntAgaLWEUhGGgiOUOcsZDo2S91aI7qnON7uD7/P1MRgYZEn+Ei4ovkAlrM5EZ3jyxJMYJAMuo4uu6S6mo9P8qf1PDPgHsOlteKweVhWuosReQjKTxCAZ6Pf3Mx2Z5sj4EURBxKQ1qV3QtJzmpe6X+NL6LzEVmVI7lIl0ArvBzi2Nt/BU+1PnlBf258a5Zl+9Hzg8dpin25/GoXfwxsAb1LnqGAwMqqN3URDJn8nn6uqrea3vtbP6HA34Bniu6zmMWiOv9L5Cv6+f6eg0GTmDTW+jbbKNq2uuZkWBIpA4MHqAE1MnsOqsFFoLGQoMMRoc5ddHfs3NDTerRpjni2NzFouFzyLOS2ws3chwYJjR4ChWvRWNoCGWihFJRtAIGo5PHiecVKIaerw9qrHWSGgEs9aMRWdRF+RUJkUw8RZvKJ1mODjMFZVX8OCRB+ma6QIgmU7isXk4NnGMXx/5NTpJx/a+7VxddTVfXPtFfnX4V5Tby7m+7nrsejvhZJhcYy4lthLGQko34bX+17ip7iacRqcaGWCUjFj1Vv5r/3/R5e1Cr9EjI1PnquNrF3yN5qJmQIno2De8D1EQ58QYZKWk+Zb8OYTW7L8nQhPEU3EmI5NKXpbeil6jR9SIZASZJGkmBtvRWpZgDicRjG8TZE+Fc8lJy6J9qp0f7f0R/b5+ddxXaClkQ8kGtnZs5a7ld53zgjkeGuf4+DF84WkcejsFlgJeHthGlauGEnsJw8FhjJKRkcAIY6Exbqq/ibapNqqcVTxy9BEOjx/GprfhNDipddXy6ZWfpn26/Zz5J+/0pmnVW/lY08d44sQTcx/XWSmyFTESGMGitaARNQiCABqFlxNKR0AQiCYjZ8WXyY49C8wFGCUjL/e+rEaoaEQNZq2ZSyouIZ6O0+PrYdfgLvp8fYpJYTrOYGCQZCbJZGSSC4ovICNnEBDQilrMWjOiIGLT2wgnw4wGRym1lyrO3fEgH132URwGhyqfzjXlEoqF6PX2zil6sjhVXtifE4fHDvPAvgfQarTY9DYS6QT7hvdxdfXVLC9Y/r6cw8nIRlPkm/ORZRmP1cNgYJBAXPHsym6u/HE/bZNtuM3uOYXHQp3V6eg0P9n3E/7Q+ge2VG/hxe4XFcNKexmTkUmMWiO7BnchCiIl9hIKLYXsHdpLpaMSX8yHKIhUOCowaU1IooTb7CbHmING1Lzvm4Z3i8XCZxHnLaKpKMm04iORQUmjnm2lnrXXT2QSc/Kwsq6lWchvKWNSmRSJdAK32Y1G0NAx3aF+j8voUrsJ/rify4suVyS6coZ+fz831N2A2+Lm1y2/Zv/IfpwGJ/nmfMocZXxu9eeYikwxGholEA+wqnCVyr2oz63n3/f+O32+PiUnCeUmtntoN9997bv8yxX/Ql1eHW6Lm2trr2Xn4E4OjR1SYwzyTfmsK16HWVIiK45NHKPMXqZyoVpTrYyFxogkI2pmWI4xh33D+zg8dpj1Jeupqd/AmDZGSU4+zlkE2VPhbHPSsgjGgzx45EFe739ddZgGhSypETWsLlx9zgvm4bHD/GjnD+kePgaZDBaTA43eyF3Nn+ZHe36k5gZlTRTXeNbQMd3Bty/8Nv+x9985NHYIQRAQBRFREGmbauPnh37OXSvuOiefoXcSGDkbdbl13Fx3M32+vjnS70AiQLmzXBkhCfNHj9nuSpYvczrM9pG6qf4mkukkQ8EhRVn4VgF6W8Ntqq9Tn68PjahR+TnJdBKjZCSVSVGfW6/mc01FpkhlUkqwaiqKTWcjlozxhTVfQKPR8Frva1h0Fh4/8Tg9Mz2U2EsosZVQ7iinIqeCtum3uXKzsVBe2J8L46FxHtj3wILeNW8MvMH3LvveOb0v36tRbjaawmFwkGvMxaKzKK+LoFELT42gQZZlRRSBzEx0hgHfAGa9eR453aK14LEpyi1AXf8C8QD9/n7WF62ndbKV6eg0u4d28783/2+6vd2MhccwSSal45xJ47a6ebnnZaaiU+SZ8tBqtPT5+rhr+V3vaNPwQWGx8FnEeYs8cx5mnRlfzIdeo58zCnIYHFh0yg1BJ+rUEEZQHIpnJ1kLgqA+Hk6GEUURvUav7rYEQcAgGejz9ZFrylXN2Cqcyu4nmohybc213L/zfrxRL7WuWsKJsHIz8/XijXr5+PKP47F6CCfDLHUvVbkXPb4eJiOTCvdGEMg15qKX9KQzabwxL8cmj+GxeQDQClq+sfEbPHHiCUZDoxg0BlWVkWPK4b8P/jcaUaPKtm+ou4GumS7CSSUZPRAPUGgtZH3xeh5vfZx4Jk40GeO/TvyCa6u20K4b4EbyKMdx2ut+tjlpWXROd7Kjf8ecogcUpc+uwV1sLNl4TgvmeGicH+3+N7XoUV48idHIOL849HPMOjNajZYCSwGCIBBKhOjydlGfW08kFWHXwC4EFMK6TqNTSb7ZpPqz9Rl6J4GRC6Eur25eLIqM4pWzvmg9sVSMv17y10xHp9FpdEyEJ0imk8TTcTwWzxnPN3ttk5kkJ6ZOcFPDTSRSSuxJsa0Yf9zPaGhUfb/rNDpSmZQaZ1DhrGAyPIk35uXo+FGeOPEEeknPrQ23cnH5xWzv204kGeHSukuxGWy81PMSxyaOUWQrYu/wXmaiM+SZ8/BGvSTTSVxGFzv6dlDrqlUz4mZjobywPxdaJ1rRarQLksuPThzloSMP8Q+b/+GsipfTWQCc6yg3ayCa9c8pd5RzbLb1xFuoddUSSUTUjV0kFeGVvlfwx/wUmAvU/KyMnKFtso2G3AZ2De2as/4F4gHScppQ/O33Sft0OwWWApbmLcWis6DX6EnJKdqn2pmKTgHK5/fg6EGa3E3vaNPwQeK8KXy+973v8fjjj3PixAmMRiMbNmzg/vvvp66uTv0eWZb57ne/y09/+lO8Xi/r1q3jgQceYMmS81d2t4hTY2neUq6svJIXe14knAirKhSHwcFlFZepO+VKZ6WaL+OxeAjEA4QSIcrsZQwGBpFECavOqu6iLFoLZc4yBASVz+IyuhQpeNFa9o/sp9xRzu+O/Q6Aelc9m8o2cXzyOIWWQtJyGqvOSrGtmFAixLGJY2QyGV7peYW1RWuBt7kXnTOdCAjIyBRZi+j3989Jcj82oTipHhk/wlRkCo2goc5VR1NBE4XmQnp9vRydOMqDRx4kmVZ4G13TXcTSMb607ktcX3s9gFpIDQWG1KKnylGl3PQi45hNdqaj02c9p7+g5AIeuOYBjo4fxRv34tQ75+WkZTESHFEUPQsgmAgSTUXPacFsnWilZ7Lj7aIHhVeSa8nj8NgRLq28lAH/AHqNHpPWRJ4pj5noDLkmxW9GljPoNQqB16K1EM8onUFJlJAE6ax36OcaGHk6nByLohN1nJg+QSwZY2RGcT42aU3oRB2ltlJyTbn0+nr5eNPHz3i+s69ttvjRCBo8Vg9PtT/FWGiMYDxIMBHkwrILKbIV0TrRiiiK5Jvz6fZ2I8syeaY8NKIGX8yHP+7n8bbH+dtVf8tMdIZyRzmCILC9bzvNhc30+nppcjexrXebOp616qxEU1FEUSSSjOAyuOadq8fiWTAv7M8FX9yHTW87Jbm8399/Vt3IU6ko2ybbGPIP8YW1XzinDLOsh1cgHqBzupO7VtxF10wXndOd6vc05DZwY/2NbOvdRrWrGn/cTyiuKAU9Vg+v9Lyiqu0C8QBmrZnPNX+OPFMek5FJyuxl6rg/loqRzCSx6qzkm/MZ8A8wGhjFaXCi1Wjp9fVilIwk0glERMocikt850wnl5Zfyt7hvee0afigcd4UPq+99hr33HMPa9asIZVK8e1vf5srr7yS1tZWzGaFv/H973+fH/7wh/zqV7+itraWf/qnf+KKK66gvb0dq/XDT7h6v5CVdQfiAWZiM6QyKWx6Gw6Dg0Q6ofjInAfyxFJHKZ9f83lSmRR9vj4EQSCZSeKxeril4RZVunxj3Y3IyIqJV+VlvNr7KuFkmMsrL5+n6lpfvJ6VBStJpVNsqd7CRGSCMlsZTqOTUDJEKBFic9lmJkIT6nmcmD7BsfFj1OXWcWj0kLrYAOQac1lesJxoKoo3pux4Z8Ohd5CW07iMrnlFDwAy/Me+/+DS8ksB5QY/FlacV+PJOI+1PUbLeIs61hMFkZnoDCk5xTXV1yAiIiDQ7+vnua7nVDOyKkcVF5ZdSK+vl1xTrjpyONs5/XhonO6ZbhKZBEXWotPyWrSSVk2IX2i0YZSM57Rg+uI+1bgvC4vexmBklLScVlv/8XScWDpGNBml1F6quNRai6lyVqEXJPQZkZRGwKwzoxEl9JKefFP+wr/0VOeBMlKNJqOq+aRW1CKJEmPhsTmmgGfCyfJ/m97GM53P8FL3SxyfPI4kSmhEDfW59Xxs2cf4+gVfpza39ozHLXOUYdFa5pg5NuQ28ErPK4SSISbCE0RTUYySka5phdPmsXkYCY5g1pnp9/dj09uoclbhi/nIvFU4tk210e/vx2VycUXlFUxGJhEFkZqcGjYUKw7PMsooJp6OYxNt5BpyASV6Ideci1EyzlF1nS4v7M8Bh96hfnYWgkEynFU3MjtOlFMpxkJj7B3ehzfmBVFk7/Beckw5XF199VmNP+HtaIqO6Q7WFa1j39A+Lq+4nC3VW4imoupGbXvfdvJMeQgIKt8mz5Q3p+gBZV2YjEyyrW8b39j4Ddqm2iizlXFs8hjT0WmMkhFfzMfaorXUumr5/bHfc2P9jVh1Vgb8AwTjiu9YMpNkXfE6qnOq+ePxPwIQz8TPedPwQeO8KXyef/75OV//8pe/JD8/nwMHDnDRRRchyzL/9m//xre//W1uueUWAB588EHcbje//e1v+exnP/tBnPaHDn2+PrZ2bEVAUH1qKh2VzMSUBN/bGm+jc7oTi8HCTXU30ZjX+KF+M19QcgFF1iK18+DQO1QH5CV5S+aY5qkmXu4mta17c93NBJNBfFEfFr3iZ/Hzgz+n19/LFZVX4DK5eLbzWWKpGKlMCn/cz4biDeRZ8tCKWpIZpXVvM9jonulmIjyBiMI5ApS28DSU2kqpy60jkZm7yDbmN1KXU8dgcHBO0aMVtdxYfyM5phyKbEWYdWYqdZUM+hWiaTylkE6D8eCchTsjZ/DH/fT7+hkKDLGueB0PHXmIzWWbKbIVkcqk0IpaxsPjHBo9RFVOFQbJgEEyqBEZZ1roz5XX4rF4KLWVqllgs4ufSkclta7ac3qPOfQOJWJjFtJySk0Mz94UslCuV4xcvZNViXzWWOrpmTgBgM5oRNAaEXS6c8puy57HbI+grJO4VtSSY8xBROTBIw++I9VaMB5kLDjGH1v/yGBgEJveBig3sAH/AI+1Psam0k1ndazp6DQem4eDowfVm6HL4GI0NIrL5GIiPIFeo6fcXo4v5mONZw0jwRGGA8OIgohVZ6XSWclqz2paxlvIN+cTTAQxpo1IgsQt9bfwUo9SnHVMd1DprMQf83N51eU83fE0iXQCjaDBKBkxSAZ0og6HwcGFpRdyYemFjIZGkTQSHouHcsf76+PTmN/I3pG9Cz7nNDjJM+edsRvZMdlB62QrFp0Fm8WGXmvkje7tkEwq71OtFl/Ux/+7///lrqa7sBqsZ9xYzo6m2Du8l4bcBhryGtjRvwNBEBgJjuCNeim0FHJZ5WVEU1FurLtRNXedXfSEEiEG/YNEk1EycoY+Xx/BRJCNpRsptZcyFhpjiXsJNa4ajk8cp3umm7tW3MXhscNoBA1XVF2By+hCFpSxWTAe5MTUCQRBsfEwa80UWArOadPwQeO8KXxOht+vLNI5OYrCpLe3l7GxMa688kr1e/R6PZs3b2bXrl2LhQ9vt2MFBB5ve5yOmQ7sejvHJ48TT8fJNeXym5bfsNS9lFAwxHOdz3Fs4hj1ufU0uZsAPpSmVaWO0rNqI8828cri8NhhfnHkFwz4B7ix7kYeb3ucQ2OH0Ipa7Do7KTlFjlF5j+WZ8zg+cZwXe16kzF7G2qK1nJg6Qa2rVrVsFwRBJR+qkQAWNxadRR2tzIbb4uZrG77GD3f/UJ3ha0Utn1r5Kfp8fXxn23cIJ8PU59Zj0Vm4Z8099Pn6mIhNkGvOnUPSziIjK5lIGTmD2+LmKxu+wgtdL3B88jh9vj4ycga73k5dbh0ZOUORtWhOoXC6hf6d8FrKHeVcV3cdW9u3IomSGm5ZaitdMNzyTGjMb6Qyr5buwRZ13BVNhJHQUJdbRyqjvGa+mA9J0GCQDDTkNXBJTjPuQ0N8sekz/EfLz5TiRxBAls+Y3Zb922ertwosBeSZ8uic7pwTn5LMJCm2FatZWOcq881yRZwGp/qeyErGs35Rff4++n39rCxcedpjzXYiv6jsIpXzYdKayJ/JxxvzIiMTTobxxXxqEfKpFZ/i2ppr0Wq0dEx3cGj0ELuHdhNPxdFpdAwHhjFrzawtWssP9vyAQEwp2r0xL76oj3AyzDPtz3B97fU81vYYgFr82A12cow51LhqPvD1w21xs6V6CzsHds7hqzkNTtYVr1swKHg2tvVu497t99I508l4aByj1ki9q567L/wKP3n9X5WxpaAlkozwfNfzVDurCSVDZ8X9OTmawql3sqV6i9Kpj86QzqSx6C2YJJNqGBqMB3l94HU1cy+RThBMBDFIBm5puIVDY4eYCk8RT8c5NHqI+tx6rq6+mo7pDjaWbGTv0F4Ojx+mMqeS8fA40WSU4sliDowdYDI8STCujKZXFKzArDXjtriJpWLUumrPadPwQeO8LHxkWearX/0qmzZtYulSpTU8Nqa0/93uuQuX2+2mv79/3jGyiMfjxONv8w8CgcApv/d8R7Yda9Fa6PJ2EUlGKLAUEIgHsOqshBIhRoIj3LbkNh5ueZgnTjxBU34Tkkbi4rKLqXZV0z3Tfd6aVp2M2TfxxrxGBvwD7Bnag9PoJJKMkG/J5+GjD6t8kAJLAcFEkEJLIbFUjOaiZiLJiDp7v7L6SoKJIMcmjimJ8cg05DZwTfU19Hp7TxnQ2VzUzBfXfpEaVw3RZJQKZwXPdT5Hl7eLGlcNiXSCAksBw4Fh/nP/f/J3q/+OXl+vMsKxlS7IMymxl+AwOgCoclbR4Gogd0UuWzu2MhYaI5QIcWTsCJtKN3FD3Q2cmFI6IGcKET0VryVLGN85sJNwMkyOMYdl+cvUBflswy3PBm6Lmy9d8GV+lHlb1aURJEyijr9Z83c8eORByuxl1LnqSGWSFFuL+eLqu6k8MAKJBPUnvPxT7edobwoRII7DmseSouWnLXqOjB3hqfanCCfDJNIJ9Bo9zZ5mPrXiU0xHpzk8dlhVB64oWMHtS27nxZ4X2Vy2+ZxkvrO5IqZZ+VwZOUMkGcGis6jctdneUafCHCPLt0akoIxwfDEfyKgxKdFUlB5vDz3eHjwWD384/gfuWHoHh8YPEYwp4+BwQiFEjwRH2FCygZHQCPuG9lFiK8GsM+PQO+jz9bHUvZQT0ye4qvoqDoweYDoyjUlroi63jkJr4YcqyHJ5wXK+d9n3eOjIQ/T7+zFIBvLMeZTaS097nh2THdy7/V72Du/FqlPy6ZBlDowdgENw24qP8tvDD2E32Bl5S00VSUWAhX1vBnwDHB0/ykxsZs7n51z8hKx6qyqu8Ma8RJNRgokgdyy9QxVntE21MRQYIp6Oc2D0AEfGjvC/N/9vDo8f5qsbvkowHiSSjOCL+ujz9zEUHOLqqqt5ofsFhWwdmSaRTlDjqmFjyUZ8Md8ZNw0fNpyXhc8XvvAFWlpaeOONN+Y9J5zUAs+qck6F733ve3z3u999z8/xw4jsCCOSjJDKpMjIGVUOqdVoCcQD5Jvy6ZnpodvbjSRKJDNJhoPDtBha6Jju4I5ldzATmSGYULgLLWMt77vZ2HuF2Tdxm97GeGhcTUu36CxoRS1GyYggCBi1RpVgOhGeQCNo8Ea9TIQn0Gq0uM1utnZsZYV7BVuqtyhBoKKOsdAYDx5+kPsuv49l+ctOeS5L3UvZObiTmcgMkiBRm1uL0+hUOD2hMQ6MHEAQBMVnJJVAJ+qIp+NcUnEJvb7eOTEWZfYyrq+5nlyjwqfo8/XxyPFHmIhMUOuqpS63jmgy+vZ74K3cs7MJEc3yWmZDEiVWFqzkuS6lWGubbEOWZVYUrOB/XfS/2Fi6UQ02fK+yu1YUrOD/uer/cHz8GP7IDHaDnX7vAL3TPWypuUb1dDJpTeQbclkyJkDsLUuDVIqcsRAXVlZCKoWufPlpJfzjoXFe7nmZF7tfnEOCHQoMsapwFZdXXM5tjbcRSoQwSAZGA6Pct+M+VntWq9frbFVrswsVm8GGTW9TR6AZWbFs0Gl0WHVW8kx5wOkl1KFkiHgqji/mI5gIqiRjl9FFia2EXl+vwl97i4xr09twGp0MBAbIMeWwe3A360vWE4gH6JrpQqvRMh4aZ0PJBj614lM82/ksGlHDRGSCGkMNta5aOqY7ODp+lLrcOmRk7ll7j+pttdaz9kPR6TkZS91L+YfN/3BO789jk8dUC4BQPITT6CSeThBORTgwdoCPNn2UEmcZ9Tl1vNjzEohgkkzqe2F2Qbx7cPfCKskLv8UFJRec9d8RjAcZD4/T5G5Sx+ImrQmDxoA35mU4MMxkZJJ0Jo1Ja0KWZfaN7OPl3pfZWLqR/SP7AYVCYNErxVwqk+LQ2CEuKL4Ak9aEIAisLFiJVWfFoXfQkN9wXhU9cB4WPl/84hd56qmn2LFjB8XFxerjBQUFgNL5KSwsVB+fmJiY1wWajW9+85t89atfVb8OBAKUlJT8Gc78g0d2hJF9w2dNsGSUnaqMrBqRJdNJNIIGjaghmooSTystbl/Ux2RkkkgiQjwVZzoyTa4xlw1lGz7IP+0dYfZNPJFOqBJPGZlgIohGfOv6yLJ6PS4svZBdg7vwRr1YdVbsBjs1OTVcUHIBOwd28sdWhfBn0Vmw6W1KW7hwBS6jixe6X2DP8J4Fu2RWvZXbltzGrsFdPN/1PI+2Pko0FUUSJOrz6rm25lpV1ioIApvLN5NjzKFrpos7l99JKp2i19eLKIhoBA2Vzkq1czMSGlFn/rPlw9l2+OWVl3Nbw21nVYjMTozPospZxXNdz9E53YnH6iGSVHa1u4d2851t3+HHW35MQ37De57ddXLw7MlyYo2owawzc3nNleSkLaSsLuRoFEF6a9lLpdDW1p7Rt6hzqpMnTzw5T/kzFZnilZ5XEEWRnYM7CSfCaEUta4vWcl3ddRRYCrDr7KS1aazas7vRzymQZNhctpnX+l9Tix9ZlrHqlDy3JflL5vzNWlFLuaNcKZIRlPRtYy7d3m6OT7xt6CmJEr2+Xu5cfif0ogbntvnauLLySqpyqvjj8T/isXno9/XTNtnGdy/5LqOhUcXTR2vEprMxFBhClhUSeTqTpmW8hUpnJU3uJjSCBpPORLGtmK0dW4mlYhRZi9hUcu4dvvcL5/r+nInOqCNiWZDxxXzkmvIwSAaS6SR6jZ5luUt45sTTJDVQ5ahBL+nnOayfbfbd2aDf18/23u3Y9Xb2hfZh09s4NnEMu8GOXW+nNd6qdgrllIzBYECv0TMRniAYD+I2uxEQKLIU4bF4VAPXVCZF+3Q7oHD2wjlhVhasPC/MChfCeVP4yLLMF7/4RZ544gm2b99ORUXFnOcrKiooKCjgpZdeYuVKZe6dSCR47bXXuP/++095XL1ej/4MC9/5jNm8hDxTHulMmkgyQmNeI73eXprym1hbtJZUJkU6k1Z5BTKymtWTbYVXOCt4tO1RtnZsVY+/smAlTqOTKlfVeVf1z76JZ/0yKpwV9Hp7AfBGvark02l0kmtWOiirPasRECi1lbKlegtjoTHue/0+7llzDyk5xWv9rwFKRtZS91I+ueKTpDIpyuxlBBNBdg/uRkSct5i5jC5GAiPEkjEEBMxaM+lMmo6pDupcionhH4//kYnwBIfHDuMwOLip/iZe6XmFHJMSiTETnqE+rx6PzcPxyeNYdBZiyRgLQRIlJJ2EQTKc9QKWVZvMHncZtUY6pzvJNeWqRU8WB0YPcGTiCMX24j/7DW92NtVCu3bRYiHj8yEnkwhaLaLDccaiB2A8Mr6g3DmZSTIZm2Rz2WZ2DuzEoDFwQ/0N7Bnco1oemLQmyu3lXFl15QJHno/Z/KrOmc55hoNWnZVqVzWfWf0ZTFoTvz/+e7XoqXJW8ZM3f8Lh8cOIgohFZ2G5ezk3N9zM7oHdyIKsKut6vD3s6N3BJ5d/kme6nqE6p5rx8DixVAytoOUzqz9Dr7eXC4ouYCw0RtdMF//z5f+JTW/DpDVxc/3NLM1fykBggGpntcIdQyHOdnm7EBD4xPJP0DrZysHRg9xQe4MShjrTCQIfGn7gu4HT6FQ3RgApOcNYaIw8cx6hRAgRkc6pDpJyisqcem5tvHVe4r1Fa5mTfWeSTNxQdwM5phyiyShmrZk+X99ZFz4jwRG292/HG/XS7GlmS/UW9g3vozG/kVd7XyWWiqEX9W+7gYOqhBz0D/Js17NUOiu5pOISPtb0MYaCQ3M+6x6LRyVTny/S9YVw3hQ+99xzD7/97W/505/+hNVqVTk9drsdo1EZR3z5y1/mvvvuo6amhpqaGu677z5MJhMf/ehHP+Cz/2CQVd/0enux6q0M+ge5tuZahgJDrC9az7qidfyp/U+qRDWVSbGlZgtFtiLyTfkq49+ut1PvquePbX9UM7GyODR2iJ+8+RPqcurOu8Jn9k08SxjcXLYZeCsOYfI4m0o3kTuVS3VONalMio7pDqYj0yzJW8I/vf5PGLVGtTj61z3/yj9d8k/cufxOIokIyUwSi1Yx//rZwZ/RNtWm/u4Lii7gGxd+Y44KSvVw0eiw6CxMRiYREFhesJzX+l5T1BUmF0fGjjAUGCKYCPLEiSe4qe4mWqda6Zrp4o4ld/D6wOscnzquHrfeVT8v6iILo2Sk0FI47/FTYbbaJLsgxlNx8s35LM1fqrbKs9CKWjKZDDv6dpDIJP7sOUin27ULej2a03R/T4VMZv51A6XD1JjbSKm9lGJbMcW2YvYO7WUiMsGqwlXoNDqF05SO8ftjv+crF3zljDf7rOP2THRmnuFgNBWlylnFMvcy3BY3x8aPqTfSckc5P3nzJxwZP0IynURGxq63q9yjv9/09/zq8K8wSAYS6QQmrYml7qX4436SmSTBRJDnO5/n+ORxREFUu8BOg5N8Sz59vj5V/ZdjzCGZTqry+quqrmJb/zZaJ1uVm6msjEpuqL2BJ088yefXfJ6J0AQjwREiiYjagTif+YHtU+3oJT2rPavZPbhbddiWREldR1bmN1GwKofR+CTpt5yVZ5usZvl0h8YOAUrR83fNf8dvWn7D4bHD6vddU30NWo32rEZekWSEibBitXFw9CDritYxHBxGq9FSYivBKBkJJ8PEU3E0goZEOkG5vVzleRolIza9jRe6X+BTKz7FtzZ9a16+XjQV5fra68/rwvW8KXz+8z//E4CLL754zuO//OUv+eQnPwnA3//93xONRrn77rtVA8MXX3zx/5cePrOJuxatEsIZTAT5/fHfc1XVVawvWc+jrY9SZCuiwKJk+GTVGgCXVFzCtr5tOA1OanJq0IgaRoOj2PX2eb/ryNgRBoODXMDZz6I/DJh9E++Y7mBDyQZ2De5iTeEaGvMaSWaS5JnyuHvN3cRTcVVW+uSJJ3m642mSmSTJeJJ+fz9us5teXy9j4TGqc6qZCk+xc3AnywuWzyt6ANpn2uepoLItcEmUqM+th6m309+nolNIghIv8Obom0p0RsyvxgpU51QTT8VpnW6dxycJxAPU59bTNd01R05vlIxsLN1IjavmnK7byWoTWZY5MXWC/SP756jMtKKWZk8zHdMdPNXxlCrJPpdIhw8DSh2lOA1OxZdlFlKZFCPBEZbkLeG7F3+XWCrG7479jlWFqzgxdYLp6DSpTIoB/wB9vj42l29mc/nm0/4uq97KDXU3qOOrbPGT5V/N3mXPfp2jqSgtEy0qZwuUUZ9Ra2Tv8F5uabxFdcjOM+VRYi+hfbKd5QXLqXJWEYwH+WzzZ9k5uJPftvyWWFohoNe56rii6goePvowlc5KrHorG0s2sqN/B39s/SPf2fwdHjryELU5tVxcejGxdIwCSwFrPWt5c+RNvDEv/77n38mQQafRsapwFVdVXcVIcGRBtdt7Ffnw50QwHuThlodpmWjhf278n9y/8352Du5URobpNBtKNvCV9V8mX3KyrqGZ/ugoT7U/Bbxl0GhQeHoWnYXO6U6KLEVoRS031N0wr+gBpfN3tiMvAYEyexljoTHuWnEXgXiAHf07aJ1s5YdX/ZDOmU72Du1FRESWZSqcFaz2rGY4MEyuKZdyRzmhRIgTUyfonO5klWcV7reCcN8Lbt6HBedN4SOfZFi2EARB4N577+Xee+/985/QhxyzibtZzgoo7fmtnVtZV7yO3x37HRk5Q64pl5noDI15jaQzaQosBdS6apmKTGHUGim1l6oBdTnGHO5suhOdRkdGzuA0OlXn12xO1Pn0oZh9E/fH/Wyp2oJW0iIjz/mQHxs/xnh4HFmW2T20e84xAvGAeo0ycob1xes5Nn6M/aP7SaQS84oeUKS9J7v7ZsccueZcjk4cpcJRgdPoJJaK4Ta7seqsTEenSWeUXWM8HcdusCsJ74FBwskwRbYidKKOfn8/GlGDXW9nPDxOc2EzucZcpiJTiomdqPjW3L7k9nf0es3m1wz4BhRew0nS+rrcOoKJIJ0znWgEjcopOjx2mPvfuJ/7L7//nNxsPyg05jVyXe11bO3YOqf4cRqcbKnZwjL3Mn5//PfoNXpGgiOMh8dVTk525OSNeTkwcoBVhavOeL3PNLLLYvZYLBhXPt/Zokev0SMi4o/5kUSJYCyojLFELU+eeBKP1cOnVnyKV3te5c2RN4mmoqQzacod5Txw7QMM+YdwGp0UmAt4YP8DmLQmluUvo8JZwYBf8cJymVw83/0819Rcg91gJ5PJKOcow97hvbw+8DoCAik5hUEykGvKZSI8wSs9r3BR2UWMhcfmqN2yfKXR4Cj+mJ9EJoHH6uFjyz5GXW4d7ydOV4D1+/oZCY3gi/l45OgjfGHNF/hc8+fwx/zYDXbcJjfPdDxDu6uST+WVqK9n22Qbh8YO8cjRR5SNjChhlIw0e5q5a/ldGCTDvKLHorMgiRJHJ45ydPzoGT8vWlHLptJNaEUtL3W/hEPvoMxRhj/m582hN/nblX/LWs9aRkIj6DV6xkPjDAWG+Niyj9Hp7ZyzVmWNF8sd5ectl+dUOG8Kn0WcG3xxHxatRSUvF9uKFTJydJqMnFHHWxpBSXzOyBlaJ1spshYxHZmm3F7OppJNqj/NUGCIAf8AOo2O3xz9DUOBIW5rvI1Do4dIZ9KsLVrLYGDwvJS4n0ySXQjZ3bVVZ0Wn0c1ze83yL7JKm+zI4uR8KlA6OnpJ4ZbMJlhnfwYUHtHB0YOKQWEmgVVnpdvbjVlnnhP/YNQYcVvcTEen0Ut6YqkYOcYcPFYPw8FhJY1d1NM60arwRTLJc04RPxNKHaX8r4v+F9/Z9h0OjB5QH69z1WHVW3mp+yXMOjOjwVGiqSiyLDMWGmPHwA42sek9fa+c6oa10OOwsC/VQt/76VWfxqwz0zbZpsrxG/Ia+MjSj+C2uLmh7gZ29O1AL+kJxANoRS1ritZQYishLafRaXSKWso3MM9LaiGciWibNa50m5XXL2vamE1NFwQBSSMRCAWIpCJE01F+cfgXNLmbuLv5buLpOG8MvIEgCNTk1NDl7WIyPMnrA6/T5+vjkvJLFHO/ob3sHdrLDfU38FL3S1j0FrpmutR07i01W/g/u/4PyUwSp8HJP1/6zyQzSTaXbWYsNEaBpYA1RWtIy2mMkhF/3E/HdIdaoGU/V1kZf4+3h/apdqIpxQn7zeE3OTZxjK+u+yo1uTXvyzj9VIRxSZQoshbhi/loyG1QHN4zKf7v1/5vQsmQ4hguy9zeeDuRVITOqU4OjB5AlmUMGgOHxg+xvW87U9Ep4qk4ETlCOBFm79Be1hStUT/7WVh0FkpsJYQSyjXyxr0Lne4cLHUvZfvAdpblL0NGRhRErq+7nifan2AmPsMXnv0Cd6+9mzWeNaQyKRpyGxgJjvAvO/+Fu9fcrXLAjJKRKmcVe4f28nr/61j1VjxmDxa9hRJ7yXm1uV0Ii4XPXygsOgtOoxOLzqKS1/wxPxadhX5/Pw6DA1CIbRathS1NW8gz5RFLxzBKRjxWD5dUXqIeL+u6+mzns/T6ermw9EL2DO2h19eLQ++g29tNnlm56Z+rYdv5gOzuWi/pWVGwgsNjh+cUP0bJyKrCVSzJX6LeOOtcdfhiPsySmbrcOnJMOUqW2FuOv9lrl0V2zPHQ4YeYCE+QZ8pToh4EicsqLuPhlofRS3pyjDmqzfxfLf0rXuh6gd1Du7HpbUyEJxgNjlKfW88LXS8wEZmg2dPM51d/nn2j+7Dr7YwER0jLaY5OHH3PitSNpRv58ZYfc2TiCL6YD7vejlbU8p1t38GqtzIRnsAf98/hGY0ER/hNy2/40rovvSfvlVOFRF5UdhFtk234Yj7VvK/X2svhscOMBkfVGIdqZzWXVl7Kjv4dCwZN3rPmHlVunjWPCyVCBONByh3leN1eyu3lDPgG2FKzhT1De9g1uAtAzYqrzql+T/9OX8xH+1Q719Rew/ri9ewe2o1O1GHRW5gMTxJNRVldsJqJ0AQXl13MldVXsmNgB/W59ewb3ofD6FBucjlVSh5dOAdJlFjqXspLPS8xHhrnmppr2D24m5HgCLc23MrSvKUkMglMkolAPMAVlVfw+sDrZOQMA/4B7my6k6noFBtLN/J0+9McHj+snnuJrYSLyi5SPzvZz1W/r5/R4Kha9IQSIYYCQyTTSQYDg9S56rAN2riy6kpWe1a/62t4Ksz2UZpNGO+a6eKzqz/L93d+n+noNPnmfFonWmkuaubzaz7P99/4vkrsl0SJfl8/qwpX8avDv1LGnGWbSWVSHJ84rn4OJFFCFES8MS/F9mLWeNZQk1NDWk6jETRIokQoEVLXb7PWfMauegZlM/vQkYfYPbSbcDJMtbOaO5bcgcfmoXumm22920ikE+pGRBREgokgk9FJal219HqVDLh/3fOvHJ88TiQRISWnaMpv4u41d7O9fzvX1FxzXm1uT8Zi4fMXiGA8qN58WyZa0AgaYqkYpfZSLi6/mHxzPmbJzGrParqnu/nrpX/Nk+1PqlLnXFMu/b5+RFHkkgql+ImmohRYCpTOgkZPuaOcXYO7MGgMSKKktPhD49gN9nMybDtfkO3G+GI+bqy7EYBeb6/qgtxU0MQnV3ySaCqqKm1A6XrctuQ2nu54mpd6XiItp0mkE9S6armz6c45bqfBeJDx0DixdIxKZyXBeJASewnjoXFMWhNOo5Mebw9VOVXIyFxbcy19vj616GlyN3Fw9CBjoTF8MR8XlV3EK72vcGDkAA9pH+KeNffweNvj6phhIRO1d4OG/AaK7cVqt2Q6PK2qU04uekApFrf1buOa6mtY5Vn1rn73ySGRWYwGR/npgZ/iMDh4qfsl1a9IRGSZexkjwRG162bVWXmm/RlEUSSVSSnEdEmPP+ZXr5NFb+HVvlcXLIyqc6q5ufFmrHoruwZ3qd5KNr2NSkcl/b5+Xup+iRUFK97x9T7573QYHKwoWEH3VDd3Lb8Lo9ZI+1S72pW6pPwSPt70cQ6NHKLAWsDPD/6cocAQLpMLb8yLQWsAoHumm3JHOYOBQeLpON6olx5vD+FEmGtrrmVb3zZuabiFE9MnODx2WHWSLrGV8NnVn2UoqEjbXSYX0VQUk9bE9t7tFFoLqXYpwgCdqCOQCNA+3U6TuwlBEFTOUiiphGtmOz3ZoifriD0UGMKis3Dv9nv5/uXfpyG/4R1dvzNhto9SpbOSPx7/I0atkb9Z+Tf8qf1PdEx3oBEVUnCpo5QjY0eIJqN8pOkj/PTAT6lz1ZHMJHEYHLzY/SIFlgIlBFlvZcA3wFBgiERaKbQ1ogaTVjGpHA+N4zQ4qc6pniNrT2VSRJIRVrhXoNVoebT10VN21cdD4/zi4C+YjEySa8ql0lFJt7ebocAQj514jNsbb6fAUsALXS/gtrgx6ZQ1ZTo6zdL8pfT7+qlyVrHKvUrhMI23qIWXJEq0TLTwkzd/wmebP3veb24XC5+/QPT5+nis7TEseotKyjRIBgb8AxwcPci3L/w2xyeP87X1X+P4xHEePfGoWvTkmfKoc9WxtWMro6FRiixF1ObVEkqGiCajSiCeIGCQDDgMDmRZJpQIKWOW9Nuy6bM1bDtfcDLp9Pra6xWpvyCz3L2c5e7lmLQmfnn4l3NuipOhSQYDg0yGJ1XH3azPx0R4giOjR0BU+CJtk23s6N/By70voxW1TEensevtXFNzDa/2vspFpRdxU/1NhBIhGvIacJvd3L/zfupz60mmkyTSCbWb0zHTwYVlFxJJRiiyFSlBg4kgI6ERZGTFY8S9jGA8yKOtj5JvzledYt/tdcoWvOOhcWpdtbw5/Oa8omdp/lIiyQjRVJTR0Oi7+p0w94Y1G76Yj+1927m04lImI5OAUnAdGT/CdHSai8sv5sDoAbVj98+v/zNDgSH1fOtcdXxk2Ufwx/x0TnfyxuAb837P7AJyef5yJsOTHJ04SkNuAxpRo4Z0OgwOkpnkaTcFp3LvPd3fqZf06CU93d5uvrHhG7ROtaomm6PBUR5ve5yanBr0Gj39/n60ohatqPDYpiJTFFgK1IiTbGioVtSSTCvE/cHAIFtqttDj7aHCUcFy93L1e7Ijy2ZPM76oD62oJZQMoRf1VLuqeX3gdQ6PHSacCCMjU+Go4PLKy9GJujlmmRatRSXehxPhOUUPoJqpHp04yra+bX82e4TsuqUVtRgkA7FMjB5vD82eZg6PH0ZGRspISKKEXW9nLDTG8cnjfKzpY6wuXM1llZfx4OEHubRCSSx3GV3U5tYyGZ5E0khqhyUjZxBkQXXjzsgZwokwX1r3JX6878e0Tip+O9mi52sXfI2W8RZgYdfnPl8f2/q2sWNgB/BWcG4qSn1uPW1TbfR4exgJjnBx+cV0znQyGZ5EK2oZjgzTmNvIlVVX8lr/a6wtWkuOKYc9w3uw6CzE03HV3wygZaKFaCp63m9uFwufv0CMhEYYDg6TSCUosZdQZi8jg5KonJWtX197PWWOMkxaEy/3vsxaz1q1tXpg5AAIsG94Hy0TLSRkhQxr1BoZD48DkEwn1dkzKCROg8agfn2mYL/zEWcinc6WF2eRlQkvzV+KRW8hkoxglIwE4gEePPwgRsnI0YmjpDIpbqi9gT5/H6BwrrKBo893Pc/KwpXU5tYqxnR6O9XOaoYCirdLWk6rRpNpOa1yPbLtdFBujol0gtsabqPEUkKpvZQf7PoBB8cOYpSM6CX9GZ1ig/EgA74BIqkIwYTSVTRoDXisHsrtSrjkbN+oHEMOn139WYLx4BwfnKX5S/lE0yd4/MTjAEiad78MnarQDsQDjIfHVdM2vUbPGs8a1hWtI5FOsNy9HI/Vg07U8ftjv1fDJrNon27nd0d/xx1L72A0NLpgcQVzXXg7pjvQCBoi6QiajAa9pMeqs1KXWzfPwG42zsa993QbilAixMGxgwz4B2idauXI2BE1bqVrpovr665HQAmWDCfClNnLlA5PKo6kk0jLaepy6wjEA5h0Si5Ydr0waAxUOirZP7KfEnuJ2tmpcdVQk1NDOBFmdeFqRoIjWLQWoqkoR8aOcGzimOo2nZEzjARH2DeyjwuKL5jDaSlzlFFgKeDI2BFFySgo8vC0nKbCUcFYaEztcExFp/5sN12L1oJG0FCdU03HVAe7B3fjjXmJpCIKZwYRQRDUtc+itaAz6jBqjKwsXMmuwV3E03EMkoEyexnemBeb3kbXTBfl9nIqHBX0+/tVjlNGzmCQDJi0JqZiUwz6B7l9ye1qkK9Oo1Mc8sdb5kSUzH6/ZbuAWdFD9ufsBju+mI8SWwn9/n5iqRijwVFuqL1B5dwJgkA4GebxtseJpCKMhkbVc8pmDuo0OiXMWGMgJafQCBqaPc1Ek9H3/Pq/X1gsfP4CkUwl8cf8DPgHVLdWALPWTKm9FL2kVz8ww8Fh1Xb9ZIiCyHR0mkdbH6UmpwanwUmdq4726XbGQmNUOCro9fWi1+ix6+0q8fBMeU/nM05HOl3ophRNR4mmomzr20Zdbp2ym80kSWfS+ON+JiOT6CU9R0eOUp9bj0bQkJEz6i4rGzi6f2Q/RdYinHonSTnJr1t+TVN+k9rtseltmHQm9gzuIZFJoBE1SIKktLIj0/hjfgLxAP/8+j/z3Yu/y7bebSr3Imtkdjqn2D5fH1s7tmKSTOwd3suuwV1EU1G1pX5d3XVUOir5+aGfKyZ1b6HeVc/XN3ydKyqvwBvzYtKaiCQjPH7icWKpGB6LB4/F865fl1MV2ol0Qr2eeo2e2xpv4/mu5zk4dhCAnYM70Wq0fGvTtxh6K08p68mSNafrnFFCSLUa7YK/I4vs619qL2VDyQZVmaQTlZtQltC+0LmerXvv6TYU/pgf7EqRW2YrY8A3gDfmRStqGQ+P4za7sRvsiimev4+Lyi5iR/8OdY3IKv2urrqaRDrBioIV6qijJqeGBw8/yIrCFbw5/Cav9L6CgIBG1LDGs4avXPAVjo4fxW6wU+YoY//wfgYDg+g0OuVavhUdJIkS46FxUpnUnOJlOjpNc2EzB0YOMBOdIZQIIcsy9bn1NBcq3RazzgwoHbs+fx/DoWGSacVyQq/RMxIYwaQ3KQW/IJFjyjlnlWmZo4xKZyUvdb9EY36jquLLbuoEQSCdSZNBKQinolPIsozD6MARdXB74+0szV9KrimXP7X/CZfRRSKd4MjYETaXbeaammt4vut5hgJDaEUtF5ZdyKoCxfMplUlh09vo8faQltPE03HKbGWqY/Kp3m9ZfpTL6CIQD6ARlGLborOg0+gos5fRmNeo2CHYynil/xUGfEpxnIXNYKNAUnIbS2wlSKKEgBLV0+RuonWyVe2Yri9az+Gxw3xn83fO+rp+2LBY+PwFwq5XKv1EOsHGko0U2YpIZpLoRB3hZBi7TvHi6ff1L+jLk23zawRFDp0dZ7lMLj65/JP87tjvODBygOtqr0On0SEIAs2eZjV1+cMUQPh+YvZNSSNocBgcZOQMZY4yMnKGHINCHG2dbEUjaLDqrcgocRgAsVRM4U5IyuKdVY/JskxGzmDSmjDqjOwf2M+SvCU80/kMJ6ZPMB5SunCrPav5zOrP8N8H/5uqnCqGg8PMRGYQBIHl7uXEU3HqXfUICGzr24bL5FISzMW3l4GFZLPZHaVO1LFrcBd7h/eqarWpiCLLfaLtCUrtpfOKgxPTJ3jgzQe4s+lOfnHoF2p0BiieJtfXXf+ekCRnG//NhkEy0JjbiF1v53PNn+OVnlcU/xJ7BQOBAQRBYP/Ifn537HcsL1hOv79f5VWo3TNBIJ6O4zQ40QiaOSZ0s5F9/cscZRRaC9VCZzaymwI5Hn/bRVqno8XbMq/oyWL2a3KqvxPAbrSrEQo5phw2lm7k6PhRdBodBsmAjExjbqMalLl3eC//H3v/HR7XXeb9468zvWq6RhqVUS+WZcu92+k9JCGBLCQhWUL7BZa27YF9nl3as+w++12WZYEFFpaabAIJEJKQ4jhucS+xLcmyem+j6b3P74+TOZbcYhunwJX7unJdsaQZHZ0553Puz/t+l3ZnO3XmOvQqPWsq1izI0fqo+qOiD9DEAdZWrsVldHFg4gDj4XFpVKaWq3lt5jWe73+ejdUbpdBZuUx8+MoEGSq5asFxGlVGkcB8hqIrkorw8LKHGQgMMOgfJJVL4Yl66PP3sbZyLS8NvoTbJEqzj00f4+Xhl8VMtnScdmc7V9dczaP7HsUb99Jka6LKVEWdpe6SCPxGtZEacw3T0WnqLHXUW+oZDAwyG5ulzdFGr7eXHKLDfSqbYmPVRlZWiOhHIpug3FDOZHiSVDbFn7X9Gf6kH61CSyafYd/4PixaCw91PIRGocGisfDS4Es81/8ckXRE3NhoLNzafCtjwTE8UQ+FkvPbuBSvt8nIJMdmjlFrqUWv1DMeHkchU2DX2SXTyUZro4Tw39VyFz85/pMF71VtqmZ95XqOTB1BJsjocHbQ4+2h2da8oOlpsbcwE53h2Owx/mXvv1BnqfujsKQ4s95tfP4EK5PLsMK1AovGwo6RHVKEglquZn3VegkyjWbEZmZt5Vr2T+w/633WVq6l3FDO8/3P4ypx4Yl6sOltfHbdZynkxYye+5fej1ouWqCfOfqZP/Z4sx173wlVfCiFkiFcRhfP9D4jPjSzKUaCI5TqS2m0NSITZCRzSZY4lxBMBmmwNuAyuqgwVkiZaMOBYSyCyM8SBIFmWzMVJRWEk2EarA28OPgiw4FhGqwNaOQa0vk0o8FRStQl/MWav8AT9bBjZIf0sHtf2/v46s6vkivkFlgZ6JQ6iXtUrDNls0VeiVPvZDo6vUCiX/Tm6fP1YdfZMWnObqSLzcStTbeelc6+vmr9FWmSz+RgFavB0sCNDTfyjb3fYFXFKp4beA6AUl0pqytW4415ERAYD4+ztnKthGimc2kJ9bFqrLTYWtg9ups6S90CRKtY81HO8x1LcVOgT+RI9x6jkDg9KggYPBTyeQSZ7Kz3htOfyYXee23FWl4cfFH6ml1nZ33VeoLJoMgtQca9i+9l58hOpqJTZPNZhgPD1Jnr2Fy9mbnYHC8PvSzdqzXmGj6z5jP0N/Qz4B9giXMJr828Rom6RMqEKxJfQ6kQrfZW6RxYtVZa7C2EkqEF14tRZaTWUiv5ZMFC3lKPtwen3klZdRlHp49K6MVLgy9RYazgpsab2DO2hypTFdl8lrnYHIFkgHQ+TSwdw6azMRwcliTzWoX2kom4cpmcypJKfAkfm6s3IyDwy65f8vl1n+fp3qcZD49Ta66l3dnOgH+AsdAYz/c/j01no3O2k5UVK9k3vg+NUkMyk6TV3kqTtYmx8BhNtiYOTh7EoXdwcPIgoWSIAgVsWhuHpg5J48BPrv7kBUdJxestkhJ5e4lsgn5fP9fVXceu0V2MBEcIJoMYVUYRATS7eWHgBXKFHHadnTua7qC6pJpkVuRljoXGeLb/WbL5LE/3Ps0nV32SH732I0LJ0IKm59bGW/nFiV+gU+ronuu+KG+hd2K92/j8CdZ0bJrVrtU8P/A8sUxMIiQXfTSeOvUUqytXY1Aa2Dmyk7/b9Hf8393/d0Hzs65qHX+/5e959MSjtDha+GX3L+nx9oj5TjIFK8pX8LVrvnZePkgxLmN+zssfm2PvpVbxobRnbA/P9T3HWHiMSCrCTQ03cXDyIIenDqOSq6gz17GlZgvrKtcRSUcIJoPMxeb43uHv8cDSB5gMT9JibyGejSMX5DRaG7mp4SaGg8PYdDa8cS8jwRFAHMuUG8sxqU2k82LQ6oryFWjkGtZVrSOYCDIZmeRHR3+EQq5AXpCjUWqkB/t8tKdYFrVlwb+LO/NkNilxD+ZXUW6byWfO8jcqViKb4D3N73lTHWDPxcHSKrR8bffXiGVEcm0xciWeiRNIBMQgT52dfCGPXqlnLDSGVqGlrbQNpUwpKZeMaiOOvIMGSwOBZABv3Cv93nOhnOfjgxlQkT62sOkBsKjNkMlQUKmk0ePC75/+TM733gD7J/cvaIjUCjVOg5OKkgqcBidDgSE2uzdLHJMlziUYVAa+eeCbCxq6+ffqGQeXjAABAABJREFUcpc4ihkMDGJUGxdcA2qZGrvOjlltXuAK7ja7abG14E/4SWVTZPNZaXxiVBkxqowLFF3FyhVyTEWnkAtyKowVBJQBygxlNFgapEZtiXMJByYPkMqmJFJ2PBNnIjLBKtcqQOTWpbKiu7laob4kTpBBacCqtUrxGo22RjZWb2QqMsVXrvqKeC0VCuyZ2EOtuZa52BxVpioJpfEmvLSXttPr7RWR1/Akf7/l73lp8CWy+Sw31t+ITqkT3ZK1dvxJP9PRacmk94TnBD1zPVSWVNLubOfI9JFzNtBFY9VUJkWFsYJIOsJvT/2Wems9TbYmcoUcTp2T9VXrOTpzVEIqvXEvg4FBYumYNBnQKXUscS5Bp9ShlqvxxX18aMmHSOVStDvbUclVeKIenjz5JEq5UtosXYy30Dux3m18/gTLrDazN7SX2dgsLqOLfCGPTJARz8QZ8A/QYGlgNDiK2+xGr9IzG53lq1d/FU/MQzgZxqg2SllRNr1NanoACUo/Mn2E7x76LhXGirM6/vlxGfNrKDB0VkzDO7H+EKSqxlyDP+5nz9geWuwtBBIB+n394iJW2o5OqWNLzRZ+ePSH7BzdKZ7zVJhWeysPdjzIvvF9NNmbqDRWUlFSQZOtiQZrAyc9J8kX8hhUBjRKDXqlHovWglKuJJFN0D3XTSARQC6TY9FaiKajPLDkAf5269+iV+mlz18myPDGvbQ724mlY2cdf3tpO+3O9gVfK+7MNQrNORuloueIUqY8a6xRLLPafMXT2c9VZ/6O7UPb8SV8VJmqqDBWYNPaEASBdE5EyNqd7dJu+X9t+F8cmDzA9uHtpHIpZIKMalM1K10r+czzn0Gr1HJL4y18eNmHyeayRDIRVDIVSrmoboqkIws4JWcey2x0lkOT+wgIM1gsJTTLy7D505DP06auot25lE5fN8jlC/6mc30m5zuXF0KarFrrWc1SPBPnC9u+8Ib3qtvspsxYRpmhjFQ2JXnNFInbJo1pwajXqDZyT9s9JHNJ9oztIZVLkcqlcBlc3NZ02wKk71y8pVwhRyKbELPqSpeiVYmbNleJi58d/5kYqlzISc1CUQww3z08m89KzdilqEyLo8rR4Cg31N/Ac/3PSX5MkXSEbD7L+qr1jARH6PZ0Mxefo9HaSK+vF5PaRK6QEykEguhVVaovxawx89cb/pqx4Bj+pJ+943uJpqN0ebpIZBMoZArMGrOEAHkTXtwWN0ucS1jiXHLeDUM0E2UuPsd7mt/DT479hEAyIOXl1VvqKVGX8FjnY2yo3sBcfA6zxkwqm2I4MMzqitUMBYf4/uHvS+u7SW3i6pqrabI10ePtoc3RJsVtFGs+QnzmJumPpd5tfP4Eq93Zzu6x3UxFps76Xqm+FKfBSTQTxag2srF6I9879D2mIlNolVriGTFcs1RfynBwGI1cc1bkQjafRUCg399/TqhzflzGmXVmTMM7ra4EUpXOpyk1lKKWq9HKtTTaxKyzZCaJq8TF7/t/z4GJA9RZ64ilY+QLeU55T6FVarm18VZGQ6NMRaa4tfFWLDoL/3X0v9g1souh4BAdZR3UWepQyBRUlVQxEZ5gMjJ5OiIBcQRxeOow1aZq7mm7h0dPPCqZS+YLeR478Rj/Z8v/4cXBFzk6fVQ67vbSdr64+YtnfZ7FEZ6AQLmhXJLGw2kX6mISefE45ledpW6BX9G56s3KaAqmgmK6eXgCb8wrhnt6uiTVUCafIZaOsbpyNcFEkI8u/yj3tN4jIQkToQn+bd+/kSlkiGfj7BoV3Zk/ueqT6LP6czYZ5+KUFK+rwZkeCe2pszfxF8s+QZtPQflski+s+2u+fuhf6ZpHOj3fZ3K+eiPl4ZnN0uHJwxd1rxrVRjZVbWL36O4FP69VaGm2N1NuLD9L0FAcld3ScAvT0WkUcgUug4sac82Cz/ZCvKVyYzkrK1ZK6MaQf0hCnOTC6YRxmSBDJsgWSK8VMgUqmdiIX4rKdP440RP18L5F7yOPSJBfXr6cckM5ByYPcNJzUgoEFRAtPoKpIJm8GBKbzWdJZBOEkiFpva02V7Pt2DZJGRZJR1DL1SQyYmSIWWMmko5gUBmoNFSe93MrlkFpkMbXtZZalpYtlXyCkpkkByYOiOilXIlZY2Y2OsuAf4Aj00dI5pL0zPVg19lpc7QhCKK8/qWhl5iKTPHxlR+n2lxNe2n7Ofln52rI/1jq3cbnT7CqzdVcXXs1vz71a+nGBLHp2eTeJO3OIqkIe8f3ssm9ie8d/h7HZ49LSo02Rxt/uf4vmY6IHisCAka1EYVMISk0tAotvoTvrN8/P4bhXPVG33+76kohVQalgWwui1VnxaAy8LMTP5Ns/j+09EMcnT7K8vLlJHNJUX0hExflfl8/imYFlSWVAGQLWZ7sfpI9Y3tI59PYdXa6Pd2scq2iylQl8nRkcsKpsChTliuoMdUwHZmWDOiuqrmKFnuLZEMA4DK6SOfS/MPmf2AiPEEgFcCittDuPLePT/FB8Gzfs6yvWo9cJl+g6qouqeb25tuptdTyo6M/WvDaYtN4ofN2PsflK+EqbVKbGAoMMRub5amep/joio+SJ0+Xp0uS+6+uXM3n1nyOL277Ii32Fla4VjAcHObnJ34uxj+8fk+Y1CZ8CR9Hpo6wfXg7A4GBs0Z/5/JYWXBdzRtjDXn7+I/Xvsf/7fg8Nm+SFR4V377+m3QH+wmlQ5TpylAr1QgIl5SDdynI2qXcqw22Bv52w9/y6IlHGQ2NksllkMlkqGQqrq259pzHZlQbJXPKYnPbPde9oLl9I05U8X3dZjfHZ4/jMrjErCmFGq1CK7lxVxorJT5KkdtSFFxcqsr0jRrIkeAIcpkcm86GTJChVqhJZMWGNpaJoZFrJJuAdD59lkN1PC36a3V6OiVen0yQiWR8xyKceiflxvLzHl/xXBYb9HAqLHmxFcuus7Ouah1bB7fS5+vj5NxJgskg9dZ6bm64GbVczctDL6OUK3HoHAv8tIp+PRqZhi9u+uK5bRYuoSF/p9W7jc+faK2vWs+DSx+k29MtJi3LNTgNzgULwWhwFIPKwHcOfWfBzp+cuEN9svtJbmq4CaVMSYm6hGAyKBGjzRoz/oQfg1psoOYvevNjGM5Vb/T9t6uuFFLlNrtxGV0cnz3O7rHdjIfG0Sv15Ao5kpkko6FRImkx5sCus1OiLpEk1EVZa66QI5qKMhQYkhZUjUKDQqfg2b5nubPlTgZ8A5KTtkyQUWupZZVrFb/r/Z204/REPeJnKFeSzIiNVjwdxxPzUGetY2n50os6NzXmGh5c+iBjwTHane3c23avaFypVC/Yxdeaa0+PCdVmFpVeeEwYSUV4vOvxBRlYVzL6xKK1UKovZTY2Szwb57+O/Bd3tNzBbY23oZQrWVa2jEAiwE+P/5Sp6BT11nq0Ci2A5IdU9KHRKsWvZ/NZwqkwvriPOksd2XwWpUxJLB1jKDiEJ+aRkq3hjOtKoQCZDPKicnLI28ep7AwbMCOoVLjNbmqcTW9qMzi/LvVebbY3c/eiu3l+4Hk8MQ8quYpwKsw3D3yTT67+5HlR0aIdgkJQUKBAMpvEorWwsWojDbaGiwpmNaqNbKjegCAIPNv7LFPRKRx6B3ql/rSqq/NRjCqjpOoqN5Zftsr0Qg2kUq7ErrfT6+2VbD/MGrOIvJhrCaaCEqfGZXCd5VDd5+/j1sZbmY5Mc3z2uDSicxqc3NhwI0q58rzN2vxrQy7IcZvceONeEhmxCcrlc5TqS1laupSne5+m39/PxuqNBJNBQHTpVslUfHj5h8kX8kRSESm7DpDeI5aO4U/6abQ18p1bvkPnbOcbbpL+WOrdxuePpOaPAowqI3adnbnY3HlHA0a1kfuW3HfBXVQ0EyWZSS5sehAh5KJ9vVqh5rNrP8uhyUOSOsysMVNVUoVckNPv66fR2rgA8lxUuog6S905m4iLGXu8XXWlkCqjWiRudno6pXMgE2Tk8jn0Kj2BZACtQiu65GYSjARHJHnwTcmbqDHXkMgmRGv8/EKycJFj88LAC3xmzWdY5FjECc8JlDIlc/E5dozsQClXolao0Sv1LHct5+lTTzMZmZTew2Vw8dm1n73kh4FRbXzDgM2LCXydXwcnD/JE1xNnpZ6vqVwD8Acb1aVzad7X9j7SuTS9vl7i2TiPdz1OtamaWxpvYf/EflxGF1atFZVchdPgpN/Xj0ltwmV0USgUJC5JIBHArrOjlIsbgcNTh9k5upNcPoc37qWipIJraq/h8NThBcnW868bQSYDnY5CPC41P8F0GEFbjrK5GUGtPm/8xsVGjERSEUaCI0xFp8jkMrgMrgUy9fl1qffqbHSWfz/w7+f8+fOhopFUhGf7nkWv1DMUGJJI8J6Yh/HQOO9vez/N9uaLQqpqzDXYtDbaS9tFZVoui11nRy1XMx2Z5h+u+gfyeRHJK27w3gxrDbVMzZbqLSQzSck2os5Sh8wiY5FjEaOhUeSCnDpLHfcvuf8sh+psPsuLgy9y/5L72RzajDfuRSlTolfp8Sf8fHT5R8953GdeG7lCjpnoDMvLltPl6WI6Mo1WqaXf30+7s53p6DQmtYlUNoWAIFkQ+BI+lIKSTD6DRnHaeDaXz0luzaX6Ur6080tUm6r59JpPc2vzrVf8PL5d9W7j80dQ83dLCGJj4k/4RbfeTELKHzpzN/hGuyiD0nBWerhckNNR1kG/v58+Xx8rXSuZjkyTK+R4ZNUj7BzdSTAZRC7IuXvR3Wwb3kZHeceCxsdpcPLpNZ8+L1fmncrvuZJIVTwdRyFTUKovlZxQi6aSjdZGUtkU4VSYjy3/GCaNiVgmhlVrxa61s2NkB59f93kS2YTEUTizil4zgkxgyD/EUPD0edYpdVSWVOLQOwgmgmyq3iTtsosy8lbHm5N1dCk1Fhyjz9fHCtcKVHIV/oSfQqGAVWtFLogk7SLadbmlV+oJJUPc03oP8WyceCaOTqFjPDLO7/t+z0PLHiKcCnNr0604DU4sagtymZxgMkhFSQXemFckzeYy0uikxlzDgH+AwcAgOqWOudgcqVwKX8JHPBNndcVq4DRideZ1IygUYDBANguFAhZTGaqaDgS16PtzvvgNWOjYCwuJ+BaNBYfOwXHPcQkRyeZFp921lWu5u/VuWh2tCx6ol3qvXg4qOhocRSVTSRYLRRfvfCEvEc4z+cwljfLanSK/5MyIjzrzW+Mr01rays9O/IxF9kUsL19OJp9BISjQqXSYVCJBOJvPcpX7Kupt9dLr3GY3LoOLAf8AyWySp3ufpsnWhNPglIJyl5UvOy/ac65rw6a18bMTP6OypJJ4Ji76bKUiJLIJsvks7aXtKOSimalSJjY7kVSESDpCq72VHm8POqUOu85OIpOgQIE2RxvJjKji/GMRpVxKvdv4vMOruFvSKrRsG9pGOBWWRiV15jruXXyvlMj930f/m9ubb5cu4vmIUJuj7axFpUgqnF9FnxJf3IdcJhdljDEPkXQEnVLHp1Z/Cn/cj1qhZiY6A0A2d7bEuaOsg69f+/VLGntcybocsuyVQKqKv1cul2NQGUSCY+Z0AvLOkZ3ct+Q+xkJj3NV6F987/D2OTh9Fp9Rh1phptDby+XWfJ5VNSS6yw8HhsxoAl0FU691QdwNmtZmnTj7FWHhMbBg0FjbXbOa2ptt4dezVBdJruUwumcy9nTUSHOG7B7/L3om9dHm6UMqUPLDkAYaCQzzR/YRo/Ghy44v5cOgdlz3ecZvdmDQmTs6d5MjUEYLJIDatjdnYLGWGMikPKpgIMhuZpcnaxM9O/IylpUu5puYafnvqt4yGRKPPTDZDm6ONG+tv5IdHfygpHNO5tLSbHvQPcnPDzSSzSUKpEKPB0XNeV4JMBirRKbmtYqnU9MAbK5CK3z+TiL/IsQitQsugf5BgSkyi98a9ZPNZ/Ak/vriPq2uvZkP1hgXn81Lu1ctBRaOZKCWaEn5+4ucMB4clN22Afn8/vzr5K6w6K68Mv3JJo7yLifh4s8ppcPLxlR/nf7/yv9nbt5dcIYdSpmRp2VI+tORDHJ85zmfXfvasJqyIxE9EJhgKiETtk3MncRlcXFt3LeF0+IJ//znd4bMJDk0d4vjMcT624mOUqEvIFXJ0lHXwwsALHJ89jlPvJJfPkcwmpXMfT8d5f9v7eWHgBWKZGJFUhFAqxErXSj624mP89PhPpd/xThelXGq92/i8w2s0OIpCULBtaBtT0Sn0Sr2E0gwFh0THVPdGiWzqKnGhlCnZM76HEnUJZo0ZODc/wKg2stK1kjUVa6TYCoPKwMm5kyhkCprtzSQyCXQqHc32Zn7V/SsMagNdni4AWu2t3Nt273kjBy517HGl6lz8CLvOzrU114rJ5eeRqf+hSFXx90ZSEVpsLVSWVPL+tveTzWWZjc2yY2QH8Uyc7cPb+eaN3+TfD/47k+FJygxlFAoFYukYr828xr/t+zf+vxv/v7MkwcXmp+h4vL5qvcQn6ijrkKD/ckM5jbZGAPJ50RBNqVCeU1HzdlQRrh8NjZLKpihRl9DmaOP5gefxJ/yUGcqYikyJYa75zB/E9TGqjVxTcw1bB7dKxFdP3MPqitXUWer4dc+v2VKzhTlhjvcvfj/P9D5DKBni6MxRqk3VfHDxB5HLRHm5QWXg2OwxHu18FIvGQr2lnkg6Qq6Qk+IBjCrR+dcX9yEX5EQzURYbFvPZNZ9l/8R+UrkUsUxMzHiSq1hbufas6+qNFEgGpeGcRPwSdQmhZIj9k/upMddITQ+IMuzp6DThVPic5/Ni79XLQUUNSgPxdJx+fz+hZIhMPiM9fItxGolMQhrl3dsmbuYuNKq72IiPN7OS6STX1V3HXS13EcvE0Cq1ZLIZXhp8CV/Cx6B/8JzH0Gxv5osbv8ju8d0EE0E0Cg0CAolsgtubbr/gdX7mtZHKppjNiMnuGoWGicgE24a3kc1ncWgdWLVWfHEfU9Epmm3NzERnCCQDNFmbCKfCRCIR/u3Gf2M6Ms1MbAa5TE4+n+enx3+6IIsR3rmilMupdxufd3hFM1EKFJiKTqGUKWmxt1BjriGdS2NSm1hVsYpCocAtDbdg0pioNlXz2PHHGAoOoVVo6SjrQK1Qn5cf0O5s56tXf5V/evWfOOE5gSCICpZmezN3tdzF/on9rKlcwyvDrxBMifB/vaWekeAIg/5BOj2drHKt4r+P/jdWnZV2R/sCaPetrnPxI+SCHBkyvrb7a8Qz4rhDIVPgNrv52IqPLSBkXi5SFUlF2DO2B41CQ7mhnN+c+g0zsRkSmQT9/n6cBif3LbmPlwdfZolzCZFMhO0j2xEQFhiCAWLQZHCM5eXLL0oSPB/6L9aFyLFvd+NThOs1Cg2+hA+3yY3b7Gb7yHYAqkxVlKhLaLG3SNfuH8L18ca8VJmqaCttk6S+sXSMaDrKtXXXsqJsBa2OVtK5NDadjTUVa5iLzzEUGGI4OEwsHWM6Ms2fL/tzfnvqt9RZ6ljjWkOZoQx9So9NK0Z/ZPIZwqkwhyYPMRIa4QOLP4BRKZ7rPHl2j+3mxOwJycxviXMJqytXn3W8F5J323V2HHoHhycPc2zmmOSlo5ApSOfSZPJiqnksHTtLcZbNZxcgUZdzPi8HFXWb3ewZ3yM1PfOrOFYsXv+jwVFeHX+Vp7qfkuJNdEodayvWcmPDjQDoVXqGA8MXFfFxoToTFXboHHhjXiKZyEWhxP6UnxcGXkCv1EtiAo1CQ4OlgUZbIxORifOq8RpsDTgNzks29Dzz2oimojQ7mvEn/CwuXUypvpQN1RvQyrVMR6a5v/1+nup5iuOzxxkPj9Nsa6bGXMN7W9+LXqGntbRVWtu2D23ny7u+fN7ffa6m9s2yoXiz693G5x1eBqVBDEiUKdns3szWwa0cnDqITqHjL9b8Bd868C1SuRQnZk+QL+TZUr2Fz637HD987YcEk0FCyRClhlLgbH5AsTbXbKbCKEorQ6kQW9xbSGQS7J/Yj0FlIJwKi+qwbJJAMkAgEWCpcyklmhKOzRzjf7r/hydPPgnAivIV/MOWf2Bzzea3/FzBuWfgVq2VV8deZc/4HrRKrRgyWMgzHZlGKVPyxU1fPAv5uVSk6uTcSZ7re45yQzm7x3bT5+/DpDbRbGtmiXMJSpmSUDLEN2/6Jia1iU5Pp5RYXRyZFKs4FitWURI8f5EZDY2ed5EpjkcFBHG3nYmjV+kREHi271keXPrgZS1Ol7vInfm6RDaBXJDj0DswqU1MRibpKOuQ+FAWjQWjyiipu+DSDOjOrEAqcJbUd36tqVjDYudido3sYjo6zYnZE8QzcbxxrxQAu7hUvGeabc2YNWYMagOdnk70Kj093h7JLqDWXMt4eJzx0Dg7hnewvmo9+8b28dMTPyWQCGDVWiXX5PHw+Dm5E0WU6mfHf8ZoaFRSutWYa9hYvZEnup+QeH6AlMukkqskH5tsPotOqZMUOnKZXAyyVeoIpUKXfT7Ph4o2Whv51OpPMRebYzg4fJZcvbKkEqvWusBWocg3y+Qy6JQ6UtkU+UKeZ3qfkZqeYpr8b079hq65Lq6puYaZ2AzlhnIyOdEvp3g/F8+FUq58Q0fh+RuDVDbFXHyOYDLIKtcqMcNQY8KmtbHJvQkQmy2HzsF0eBpfwkcsKzaWZo2ZRCbBxuqNmDWiSefe8b34w34GA4Psm9hHnbmOe9ruOWuE9UZk7vMZqc6X/jsNTk7NneLu1rt5ZeQVfnT0R/gSPoLJII3WRipNlby35b28v+39Uup8u7P9nOvbpTa1vd5eHj3xKFPRKTENXm2i3Fh+xZWHb0a92/i8w8ttdmPWmllSuoRnep9hIjIhpUz/uufXdM114dA5JDO7Q1OH+Kc9/8Tn1nyO/zj0H2epgs634NXb6qm31TMbnWXn6E6GAkNYNVZOeU+hV+kJpoKU6krJ5XMUKEgyyFPeU6xwrZDe58j0Eb6888v8wPiDtwX5Odffp5Kp2DO+h1gmhkquIpUTF1hvwsu2oW3c1nQb1xuuv+TfVVyYQukQI8ERSjQlGNVG+vx9AIRSIU75TkkJzb64j2w+y77JfTh0DpQyJclsUoyaeB31kQkydEodVs1C7tWlyJvHgmMICPy659cM+PvJ5rLkC3ka7I28f9H7GQuOvaE668y6XHn1uV6Xz+cl8uaqilUcnT5KPp8nmo5KXJlmezMG1WlY/1IM6M6sixnPjARHmAhPsHNkJ4FkQHogZ/IZpqPTJLIJrq27lunoNLOxWW5pvAWbziZFYajlalxGF+uq1vFC/wtijlImwp7xPURTUV4YeEHKqYqkIlLzcy7uxLGZY3zn4HdQypXUWmrJ5rM02ZroKO3g1bFXiaQi1FnqWOlayfEZUQrtjXsJJoMICLhNbnKFHJPhSSl53aKxkC/kqS6pxhv3/kHn80xU1KK2YNfbeWXklfNeH/lCnmtqr+HQ5CFCKdGdOJ1Lk8vnWFuxlnQuTSgZokRTwlxsTnoPvVJEdyLpCMOBYQo14nkzqERhhlKmJJwKS9LxYv6cUXVh1Vvxmgwmg6Kj9tQhvHEv/b5+WuwtjIZG8SV87BjZwbV114r/jvu4quYqfnHiFwwHh7m75W58cR/3LbmPnxz7CRq5hrnEHL3eXkr1paypXMMp7ymGA8Mkc0k+s+YzF73heCMj1aJoZcA/QCgVYiI8wVxsjkQmQbVJRLrGQmMcmzlGNi96ij2w5IEL+hldyqh/wDfAP+/5Z/p8fZKTt1ElIs9Xwobiza53G593eBUdU70xL33+PgQETBoTDr2DrrkuBAT8CT8Vxgo0CjGDaf/EflKrUihkChotjZRoSk4repQlZykh2ktPezLMv/iDySDDwWFWuVZhVpsl19s8okrJrrNToLDALbVQKHBw8iDHZo+RyCXecujzXAt6MidC/xqlRkTBUiHpeyFFiInQxFleRG9U8xcmg8qAN+7FZXBxfe31XFN7jehx83p4azafpVAoUKIu4eTcScLpMHWWOpY6l3J89rj0EFTL1SjlSpY6ly4YW72R182dzXdKhFazxowMGU/1PCXKt1NR8nnxodA5dYx0JkW7Y/ElNT6XK68+3+sy+Qx7xvewyLGIifCE2AS+/ndH0hGqS6qRCTJS2RRqhfqyDOjm1xvtZOut9fy297eUqEooUZcQSAYk755iiKNFY0EhKIhn4tSYazgxe4Lbm24nV8hRZijDrDYTzUTp9/WzuUYM/PREPSQyCeIZMQ29+PB2m9wLGvT53IkzuTsKmYL1lesZDgzz0sBL7J/cT76Qp9XeSjaf5bq663h56GUy+QzHZ45zfd313NVyFztHd9Lr7aVAAbPGzOqK1ZQZyvju4e/y0eUfvejzeT6Ubz4qGklF+PGxH5/z+niy+0lubLiRXF58MFabqwkmxHwohVxBtamaZWXLEASBzTWbSWVT9MyddoovUJDQz1xBJOemsinkgpwlziWcmD0hNT3Fn1nsXIxapj7vPV1EhVPZFGOhMYKJoCQAKGaZ7RjZQa6QY0w+RoOtgZmIyA18cfBFrq29lqnoFKlcis+s+QzfOPANDk4e5KGOh9hzYo/0tx+ZOsLy8uUEkgH2jO3hloZbJG+nC9W5+FvpXJojU0f4ys6v8Dfr/4ZaSy2LnYvFkbFcw/7J/ZTqS1ErRMPLNRVrJPuMWxpvYU3lmota3y5m1B9JRdg9vpuTcycX8Mj8CT/hVBgZsj/YhuLNrncbnz+CKhp8lenLCKVCkteCQhADQ3OFHIIgGq1VllRiVBmJpqJ8YPEHyOVzdHo66fH2UKIuwaFz8IvOX3Bs5pj0/h1lHXxmzWfQK/XoVDrqLfV8/dqvs214GzqljiZrEx3ODnaN7SKPCCkXZ/UNlgZmoyJ8XZT9FijgjXvpPNn5ppiuXajOxY9QyVVolBrCqTDZfFaCxUF0WY2mo4wERy7afn3+wiQgiCOrfJ5cIccTJ58gnAxzYPIAMkGGXqmno7yDnSM7qSypZH3VeiKpCJ2znXx+3ef5xr5vcHRG9FESBIGlzqWSI2rxoTPgH+D5/ufF7KFcGl/Ch0ltYk3lGmajs8QzcV4YeEE6vvuX3M9YaIxEKiY1PcXqnethNjZDOOqjxGC7qL/3UuTVF/M6tUKNTqk7LclHYCw8xhb3Fnq8Pewe241JbUIlV7G+aj2rK1azfXg7lSWV5/WjuVC90U42koqIi3YyzPqq9eTJMxIYoVRfSq6Qw6YVeT99/j5sWhuLHYvp9nRj19nZXL2ZqpIqUVigdmFSmxgODjMZEUnrReLqBxZ/AJvWRjwTx6FzEE6H2T6ynWQ2uQCRKsrFFTIFTbYmWuwtTEem2T22m0KhID5YBBknZk+wqmIVXZ4uFpcu5rWZ10jlUkyEJ3hg6QPoleIDL5FNkMlmeG3mNZ48+eRpEvZFnMOLRfmKPlQmtUn6e+fic/gSPg5MHECv0lNlqhLdy+UKlpUvQy6Ti9L72eM83vU4NeYadozs4LNrP0uJqoQqnQu9Wk9eAHdJFZ64l8nIpGQL8Wzfs/zF6r/gOwe/w6vjr0rHsrpiNY+sfITfnvotlabKc16XxaYzlAxJQacgrl9FNNiX8Inr4esxLNPRaaLpKDtGdqBX6vnNqd/Q5mhjbdVaTs2dolRfKoWwFihIn8UixyKpeZ7vjHyhOtMyIJqOMhGeIJkVzU+vrrmaHxz9AZ9e82lsWhs6lQ6ZIJPI+3B6/FlnqcOgNmBUGy96VP1Go/7R4CjemHdB01OsQDLAaPj0ff+H5B6+mfVu4/NHUnatnQZrg0SiM6qMCIIg5sIUCmKKt62R6cg0Q4EhxsPjfPvgtykzlnFH8x1sqd5Ctamabx34Fqd8p6Q0ZbVcLc6k434+vvLj9Pv7pcVNjpwnTz6JSqbig+0fZDI6KSU4FwMcrWVWfnvqtxQKBanpAdHkcDo6fdGma1eqzmV/b1AZqLfUc3T66Fnp4fWWehLZBOPh8Qs2PvMXDV/chyfqQUBAr9SLqim5kgOTB1DL1dzWdBvbR7ajlCtJ5VJ0znZKWTiHJg9h0pgIp8J0ejr5/PrPSzJSp97JivIVVJurGQmO0DnbSZ+/j3haRBkmw5NMR6apKKlgMjLJ3vG9uE1uyVG4WHOxudd9ZzSkMnHKjOXoVHryhTxapY5sNsOoZ5D2i2x8LlZefSmvy+dFLs+9bfeKi3ZsjtnYLBathevqrsOkNpEnjz/h57+O/BenvKcoN5ZzTe013L/k/ktupOst9fzF6r9gNDhKKpfCoXPQVtqG0+Bk/8R+ABRyBb/u+TXLy5ezsnwl+UKeGnMNnpiH/RP7+WD7B/HEPByfPc6Gqg1olVpeGnqJV8delR46VSVVXFd3Hd64l+qSapQyJS6Liyd7npTCI4vp7x9aIsaXzOdOBFOiyufmhpvZM76H8dA4kXSEAf8AlSWV5PI5ZHIxY+zI1BHWV63n/W3v54b6Gyg3lFNvrWf/xH6+c/g7gDjmLY6mS9QlmDSmi/JGmo3Osn1kO7l8DqfeKTUzZ97PI8ERHut6jH3j+6TXugwuttRs4eDkQRLZBMlsks7ZTj695tN8Y983eK7/OVpsLTztfRqDysA1tdfwy+5fIhfkvDZ1lGXlyzg6eZju8aOotQY88TnqbA28v+1e5IJo6ulP+vnOoe/wydWf5P4l9xNLx9CrRMXrV3d8laXlS897/RVR4aKRYFG1l8vnyOVFWXqhUKBQOH3eerw9YvAoSA/78fA43ph3wfnMF/IIgoBCEJugTD6DL+7DaXCikF/c43Y+ApjOpaWmp1jxTFzy1vnSli9dVHjs5Yyqz9coJbIJrFor97bdi0VrIZ1NS2HJE+EJsQlEcUVyD9+serfx+SOpCmMFVaYqhgJDaBQaCe7unuvGqrOiUWgY843hS/hYXLqYWDqGTJAxE5lh6+BWbqi/AaVcyQnPCUCEkFUyFYFkgHQuLWWzwOkRxqryVSxyLOLk3Eke63yMLe4tXOW+ikw+Q52lDpvWxj/s+AdJnlpsela7VmPX2aVj/0NVOZda5zJuvGfRPcxEZxgMDEo/V2+p5/bm2zk6c5Rac+153+/MRUOGjOHgMFWmKrRKLT1jPaxwrWA2NosMGaX6UtxmN8PBYUpUJUxHp7mq5ioqSyr59sFv8/DyhwklQ6gVaulhCLCxaqOE9BybPsb3j3xfDIpVaOjydFFrrmWjeyP7xvdRY6qR+BuLSxdj19rZNbaLZDZJMpvEqS8lnomjlVcwFh5nMDiMRi4a8E1FJqkyVFz0+bwYefWlvi6dF71cZmOzOPVOXh5+mXQuzWR4kkw+Q7OtmZNzJwmlQnxg8QekTLhdI7vQyDV8fOXHL7qRPldcQiIrciGcBicGpUF8aORzNNua6fR00j3XLaKD+Tzrq9eL9gAF8drSq8T4kW5PN5F0hGZbMyD6qSSyCY5OH+XqmqtF5Z3KyPcOf4/Z6CwahYZkNokgiNlbT3Q/wTdu/MaCHbBFbeG2ptt4vOtxujxd3N50O9lCFpkgI5gIYlCJYge5THRXnwhPMOAfwBv3EsvEGAuNUW2qlozq5nP8cgWRBPxGnKeR4Aj/ffS/2TW2S/pa0WdmKjIl3c9us5vf9f6OUCK04PVT0Sme73+eKlMVJ+dOiihNKiQ1+rF0jHgmzv6J/WKG2smnxODj152sT8x24k2K91ohl0Oj0JJMxxme68OqtaCSqVDL1ag0Kn5y7Cfsm9i34PfrlDo0Cs15r78iKuyJelDIFJKlgjfupc5cSyBxmhhdU+Imno4TTAYla5Cie3qRQC4X5KjlagKJAG6Tm8Hg6TVGLsiRCTLsWvt5bT/OrPmfTywdW9D0FAoFNAoRvT4xe4ITsydosbVQVVLFeHhcOrb54bEOvYMnup+4pFH1+Rqlze7NPN/3PEdmjvDazGt4416uq72ODVUbmApPSYGrvpSP7x75LhORiQXv+04xQ3y38fkjqH3j+/h/e/6fSGCOTDDoH6TX28uHl32YZ/qeIZ1Lk8wkCSaDLHIs4p5F9/DLrl9Ks+/BwCCFQgGtUsuHl32YdDaNQW0gkAjw9Kmnpd8TTUeRC3LMGjOpbIpAMsDDyx7m8a7HOTx1mK3DWwHRKG1D1QZa7a0scS7hyPSRBU3P3236uwUPdPjDVDmXU2cqJmajs2xyb2JD1QYy+Yy0q0tn0/R6ezFpTed8n3PxVFQKFdPRaSLpCMvKlhFOh8nlc6jl4nx9IjxBk7WJzdWbRZlxPs3Gqo38/MTPsWqtpLPps0jn83ksxQd1j7cHpUxJNB3FrDEzHBxGQGBj9Ub2jO1hJDTChqoNbB/eTiwT44ElD/DYiUeJpqLIZXLqLfUM+PpRvu4gnctlKNM5mQlO8HIqynL3xc39LySvvhD/5kKvcxlckpqt2KwFkgEi6QgahQa5IMeXEL1wiiO+bD5LICmGr15sI32mAWhRLQSwa3QXf7vhb3Gb3WL+U9+zbKrehC8perCo5WqqTFUICNzZfCc93h60Si0N1gbsOjtP9z6Ny+CSMpDMGjMKmQKTxkSbo41+fz9uk5ser8hZsevsCAioFWrkgpxENoE/vvDc1Fnr2D66XfLKUsgUCAWBXD4noZIz0RmRyyXIGAmOMBQYYv/EfhLZBA3WBm5ruo07mu/gyZ4nzzofzdbmCxpxRlIRXh3ehV6uYXnpUlRyNeFMhD5/P9uGtrHZvZmZ2IyoLHx9lKlT6SgURC5OEW0YC4/R4mhZ8DmncikOTx2WxphPdD9x+hcXxPXDaXDy1MknubnxZpr01eQLeVQKDeG4n97J43SUL8OkMaFSqGi2NXNw8iB3tdwl5qXJlcxEZ5iNztLqaD3vdVlEhdPZNDOxGdEs1OSmwlhBg6WBgxMHsOvsVBorWFe5hn3j+5EJMuSCXPLCAUhkEqRyKVaUr2AsNMa+8X1cU3cNefIMB4cpN5QTS8cwqU3c0njLBZGVfl8/4+FxCoUCZYYyyg3ljIfHF4ySipvdmegMsXSMQDLASe9JvDEvd7bcyfaR7cTSMQnpKeaUTUWmsGgsyASZqEhUGujx9pDKpc7alBaP5cDkAXFNL0Cfrw+lXFSlHps5RntpO2OhMVa5VlFhrAABPDEPMpmMx7sep8xQRoOlgSPTR7DpbFIzVqx3ghniu43PO7zmG3V1ebpYW7mWP1/65+hVeowqI1+66kuEU2GiKVHi7I17eazzsQU3jEYuJv7+uufX/KLzF4AIgbfYW3h4+cP8suuXUvq3SqbiyZNPMhQcos3RxoryFaytXMvNDTeLJl0KLWWGMq6vvx632c0PbvsBnZ5OfAkfBpUBu87O4anDZ8Hpf4iK5EpUmaGMOnMds7FZYpmYlG11bPYYqytWn3c3diZPJZVNkcgkaLA0MBGZQCbIUMqUGFQGMrkMbrObAd8AO8Z2oBAU1FpqGQmMsLZiLW6zm46yDlrtrURSEdL5tBQ3Mj9IcSo6Jdn6y2VyxkJjIqpQAG/ciwwZ4VQYt8nNxuqN/POefxbVR5FpPr3qUzzV8xS3N7+HkcAwu0d2kXv9WmiyNXF7420cGN5Nu3vlRTcPF5uefSmvu6n+Jl4aegkQH+7euFcaLxhVRolDlivkpIUzXxB5VOl8+qIb6TMNQOfXUGCIR088yidXfxK3yY1BZeD5gedZUb6Cq9xXoVFoWFy6GKVMybcPfRuV/HR8SIezg2AySJmh7Cx+RTgV5t62ezFpTGdFwth0tgXZSGeawnnjXumaSmaTTEemsWqt1FhqeG36Nfp9/dRaaqkz13Fo6hAuo4tAMiBtcsaCYzze9Th/v/nv6Z7rlpouEF2N/2rDX51FVJ2fARiM+fld11P0hgaZjc4iEwTqzLVsqbuGA9OHKCCO1fVKPZPRSdRyNTlFjlUVq9g2tI25xBwKmQKjyohKrpJQIrkgcnqKCjilXNx4CMJCK4dMPkM+n0eWB7f3dS6ekKLU5CRit1NmLGdzw7VoFBr6/f3sHt3NtuFthFIhBATaS9v5xMpPcEP9DRds6mvMNXx85cdZV7WOfn8/U8EJyOcZi0yw0b2RVRWrGQsM88tjj+EwlWNSleA2uVnhWsHjXY8DYlDpL078gi9d9SW+f/j7PD/wPK+OvsptTbdRZ61Dq9ASz8RJZVM0W5vPeTwjwRF+ceIXvDL8CmOhMbL5LI3WRh5Z9Qg/Pf5TwskwICI9rfZW7mu/j/8++t8SUq9VaDk2c4x4Jk6lUbQMaLG3SKhzkRA9H71bU7mGv17311LzU7yXiijPqblTHJ05Sqm+VHQWL21jOjItuUy3O9q5vv56nu9/nmMzx5iJzpDMJrm18VY+tfpTBBIBcbNXvVEkiL/+d82vt9sM8d3G5x1enbOdklGXTJBRa65lKjLFM33PMBAYoNJYiUyQcVvTbVi1Vl4eelnKeFLJVaRzaW6ov4HfnPoNE+EJ7Fo7voRPgtsz+QyrKlYxGhpFJsh4beY1opmoZCi2d2IvTbYmbDob19ZeK91QxZu4KIMvKjvmL7TF+kNVOVeiqs3V1FpqGQoMMR2dlkzkVpSv4Kqaq857fGc+YEPJEAOBAe5qvYtfdv8SjUJDq72VYDLICtcKGqwN/PrkrxEQjSCj6Sjva3sfnZ5OHut8DKvWyoryFSwrX8atjbdiUBpQyBXMRGeIpMWU5GxWhNCVMiUKQYFWoaXP10e5zkmNtQ5XiYs/a/8zRoOjbB/eTiafQQCOTB2h199PIZ1h59AOPrLio9h1dvL5PEpBTiwe5MDwbhrKF6FW6S4JhbuY9OxLfZ1KoeJ3vb8jno5TbiiXkIxaSy2eqAcQfXGmwmLDUtx1q2Sqi26k5xuAFjlZRZ6cUq5kJjbD4cnD+OI+7my5E6VcyXhoHLlMTjgV5ulTT7O+av0C5SIAgii1BrEZnl/+hB8K8Ocdf86ukV1S9ljRaHB+zR9rjARHODB5gGQ2iUPvIF/IiyhPaTutjlZSmRT9/n4mw5OUG8qxaq0sL1vOC4MvSMeSzqcJJALMRGd4sONB0tk0kXQEs9bMqrJVNDmaFvy++U2pU+vg4MQBOn0nyebE8XUim6Lb20OeAh0VK0jlUtRb63lx4EX6/f2SS3B1STV3t94tbirkSrL5LEtKl5Av5KXMumLzuaxsGasrVvOB9g9IeVAquZKp0CQauWgA6ijoQAiT0aoIK7KkhThq1FQbKljsXEwkFeG3p36LWWPmxvobJVQQAfp9/dxYf+MbXhvFtPclziUMT/cwGRijwdqAL+Gne+QQuUKOu1rvosxciUqhJi9Az1wPG6s3ijElgkCdpY7l5cv52w1/y/X116NX6TkwfoDpyLSIKOfTWDXWBfyeYrMZSUX4be9v2TO+R9rQCAiMBkf54dEf8qGlH0ItVzMcGEYQBCYjk3xj3zcQBIFEJsHSsqWEk2GGgkMo5Uq65kSU8MGOB6koqWAkOMLfb/97js0eA0SRh1yQc3zmOP9+4N/5wsYvcGDygJjZOA/ZTmQTLCldwu6x3bw0+BImtQmbzoZFY2FJ6RKMaiO/PvVr/Ak/WqVWFNrIFCSyCZ7pewaXwUWvr5ftI9tZ4lzC9XXXc2DywILm51JyD9+MerfxeYdXNp/l5oabJd5DLB3juf7nGAgMAOIueC4+x4HJA1QaK2krbeO16ddI59NYNBYCyQD1lnoe7XqUQCJAs62Z4eAw09FpChTo9fbyZ21/xnLXcnYN7+I3p35DjbmGOnMdMkEmdfkn506yxrXmvAjB5aICb1UZ1UbWVa0jX8gTToUXBHaur1p/3uM78wGbzqdRyVT8svuXNNuaubftXiKZCIcmDtFR1sF3D3+XVD6FQWnAoDKw1LmUla6VfHHbF7FoLDTbm0lmk8xEZtg5upNac61EGE9lU2jkGla4VhBJRcjms/gSPuw6O56oh8noJDqNgZnoDIcnD1GqL2XA149KpiRfyJMtZJmLz9FY2kyF3oUvPseu0V3IkNFkaUApyGl3r0St0p3zb7uYc3g5PK3zva7YFO2b2EelqZJXx16l19vLTGSGAgU6nB0sKl3EM73PoJKrUMgUWDQW6ix1F91IFw1ABQSMaqPkCSMTZFQYKxgJjFBhrGDb0DZmYjMscizi5oabGfAPYNFYcJvc1FpqeXj5w0RSEYLJIPFMHIvWwtU1VzMdnZbQuWJVlVShkCvESJiKlXSUdbyhKVzxwaOUKQmlQti0Nul9nx94nlsab+Fz6z5HIBkglRXJ2Y91PsZLQy9hUBlI5U43X6lcCr1KT5uj7bxN6rlGuNlsmgH/IL6EH5PKiFljJpgMksql6PGeYmPNZsr0ZQwEBiTuSYWxglxBVJn2+npptjUzGBhELsg5On2UVC7FNTXX8ET3E0xFp9AqtKdVqTIF24a3SWqnRksDd7behUNtRRgcJlKiYjzjJZ3Nkc1Dla6aqeQcI8ERoqko0UyUUkMp+WieAxMHCCRFbs7hqcNYdVZuarjpoki0RrWRNq2bppE4yGT4rHU0NVQSTIcxq0poUZaTMul5dvIVyQwWTq9tToNT9NDJJnj61NM02hp5YeAFaTOpU+romevBrrejVqj5Xe/vGAoMYVQa2TO+h1Nzp9CpRANHu86OP+Fn34TI4ys3ltNR1sF/Hv5PXhl+hQIF0VixehP3LbmP/RP7uaH+BlQyFV1zXWTzWWaiM/zznn/m5oab2TuxF7VcVFEmMgmSBZEvtHN0Jw91PES9tR632b0A2a4sqeTJk08yHBwGRD+yKpPIIfIn/Gx2b2Y8PI5SrkRAQCbIqCypZCw0xkhwhOVlyxkKDlGqL2UkOMKu0V20O9slE9GLzT18M+vdxucdXCPBEXaM7uB/uv4HgLbSNjpKO0QPHa0dhUyBWqHGoXMwFZmizlxHe2k7/b5+/Ek/qVyKjrIOKk2VkgNqr6+Xems9VaYq8oW8CEEbHHzplS9xQ8MNkn18IBk4Sy30RvDk5aICb1XVmGuwaW2XdHxn8lSKKplAMsBkZJLdo7tZ7FxMl6eLcCrMgx0P8tHlHyWYDEpups/0PcMm9yZkyPAn/UzHpyk3lrNnbA82raisCiaD9Hp7qbXUsm14G3nylBnKEAQBb9yLVWNGIXewrGwZDp0djULDnpHdZAtZtEodCrmCVC6NTWujTGZidrwXZ1UL1Sa36Kyq0p61aF8OCnel5alGtRGXwcWBiQMsK1vGxuqNjARHMKgM5PI5fnLsJ8gFOTatjXJjOZtrNvO+tvdd9DVVNACdb4QHYqL1RHiCXCFHIpsQ1S9qA8dnjjMcGKbJ1oQn5qFUX0qjrZFtQ9uYjkyDAGX6MvK5PHe03MEPjvxggT1CVUkVm92bUcvE0NGLNYUrPnjK9GVEkhE2uzeza3QX4+FxjGojj3c/TuVYJQ8ufVA6ronwBPlCfsHvB0TXa91p1+v5xuBFtGEyOskp7ylMahNqhXisoXSYRDoqjuJkMlKpGCaVEWQm8oU8dr2DZnsz+yf3MxWZokxfxtrKtSSyCTEnLBHCG/fy655fY9KYyOQy1FvrqTBW0GpvxaAyoFPpyOfz/Pi1H5POieOQTD4jNv0KDd7wLA/Uv5dnYr/iVPgk/eERIpko1ZYayiwV/KrnKaI5cawDIi9xftNTLE/Mc0kkWpnZjKDVUkgksHmTbMAMmCEOghZUDY38ucN93rXDbXZj09mos9ZxdPoonpgHnVKHQqZAJVcxHhnn5yd+Tqu9lenINL3eXlodrWJwaC5JJpnBqDYyE51BJVdh09ooNZSiVYqjrIc7HuaammuIZ+M0WBvYM7aHTz33KfKIiFpHWQdrK9eyZ3wP8ZSo+iquWUWEsyhAKXKuQskQ4bQ4SpuP/mqVWqYiC8fC+UKebD4rhpmmIyhkCkkRp5QpcegdDPoHkQkycoUcI8ERseH3iwrjDdUbznndv131buPzDq3ijgygVF+KJ+Yhl8vhS/jwJXwS2VUpU5LMJdEpdGTyGUr1pXz16q+SzCXJ5XOo5CopRHE0OEq2kGU8NM5UdAqdQkc8G+fu1rvRq/WYNCb0Sj1yQY4n4aHMULbgmC4GnrxcVOCtqks9vjORLJPGBKHTD7gDkwdYWbGS12Ze4/jscX7X9zvJgdkX93H3orspUKDP17fgfWXIJKlvKpui19srPUCeOvkU9y+5n5eHXsamtVFvqSeXy+DWuvjIkg/T6T/J7c3v4fr669EqtUyGJ3iy+ylcZhehqJdSmYxcIc9ccIpr665l29C2BWTqy0Xh3ix5ajFBfSoqckGceic6pQ61Qs3/vfb/igusIL8sH5+iAeiBiQPSKEAmyKRmtsZcQzqblqIzHHoHMkHG2sq1vDjwIoVCgW/s+4YUa2BUGTGqjCTzSX7Z/UtuarhJ4luo5CrCqTCemIfW0lapyUhn03xu3eeYjcyKY6dzmMIVHzxz8Tmuqr2KHcM7aHe2s6F6Aw6dg5HgCGqFmqdOPSU234UCS8uWsm9i3wKejFFl5Nq6a5kITyzgdVi1VtZXrue5vucYj4xTa67lxOwJjCojzXYxhkMpU+KLzuG2uAlnoqRTcdKZ5OvnsYR2RxvRVFQatb009BID/gHkgpwqUxV6pZ6HOh7CrDETToXRKrVMhCd4pu8ZHlz6IKl8Ck/UQ4mmhNHQKCB62zTbmkWuSTrKpHaG2UKUFUtuxBxsZEXcSzQdJZQOc2DqENl8lmd7n+Ujyz8inq/Y3FlNj0yQ4S5xo1fq2Tq4lYqSijds0AW1GmVzM5neXgqJ0/xEQatF2dyMoFZjRH1BxNtlcOHQOpiOTkvNZNFPRyFTMBQYosJYQSgZEukIchVymRwBgVQuhUWwEEvHaHG10OPtodfXy2x0lqHAEA8ufZAWewvhVJjJ8CTBZJBsIYtSpqTaVE0un6Pf38/9S+7HH/ejkCmwakX3d7kgJ5aJIRfkKITTj3yL1oI/KZKb56O/6Wwak8Yk+hy9jiTKBJnozFzajlyQiyjj6xEjlSWVGJQGYukYcpmoYsvkMkTTUa6vv17KEbux7saLyj18K+rdxucdWsUdoEljYlP1JnaP7UYhV6BT6piNzrLIsQiNQiNJmuNZUXJp0VowqAw8euRRhoPD5Ao5NlRtwKgSYffDk4cXLJTLy5bjiXugAP64+CBQyBSoZKoFjqjvBHjy7aozkawt7i28OPiiNLdWypS0lbZJfjBKmRKlXIlcJsdtckujrGJZNBYJTSsashXJ4MWgyYOTB2l3tlOiLsGoMmJRliCb9pBJRHll6BVeHHpJ2q0tc3bwD1d/CV/US8/AARpsZgByQoGpyBSb3ZtptjWjVWkviHJdCM05l5ssXBl56pnNZbEBqiqpwqQxkU1nMaqNVJRUXFY2mNvk5t62e5mJzDAeHsehdxDPxDGoDCxyLOKpnqcwqU0o5ApOeU+RL+TZWLVR8s16efhlKasrko7Q5+ujVF+K0+CkQEH63EG8Tz6z5jMksgleHnr5rLHqhuoN51T3FB88uUKOqcgUG6o3SNJ7o8pIz1wPefIYVAaGA8P0+nq5telWGq2NUkZXnjwN1gY6yjqkxqJYA74Btg5ulYwE7To7M9EZsrosvd5eOso60KjUVJiqmAiMsrxiFQmtU+LClevLqCypYio2g4DAi4MvMuAfkDyC8oU8p7ynmInO8Pm1nyeYCqJVaClQ4PjMcanxTufTZ3lpFQNWjWojXXPd1FhqOTp9lPHwOO4SN5vcmzjW94zEEZmKTiGTic3rfJdnEB/Q6yrX0enp5MmeJ1lWtowChYtq0GVmM6qODvLBIIVMBkGpFJEgtfoNrzkQLUdKNKJJ7Hw/nSKvSylTolfpqbHUoFFqcOgcrK9az3RkmqnIFPlCHpfRxUhwRBozygQZD3U8xJMnn8QT89Bka2LP+B7WVa3jYys+xoHJA0yGJ+nx9qCWq8UA6cAI6yrXUWWsYmP1Ro7NHJOOofh5ralcI8V6RDNR2hxt0mbAorWQyWXQq/SYZOJmuKpEtFLZPbabu1rvosXWQiAZEN2i5WqmolOSUaWAQJOtCb1KTygVwmV00eHskLhZXbNdb3uo6buNzzu05kOPVaYqbm28FV/CR6FQoN4iZmAVmx4QDQ61Ci0OnYMfvvZDXhl5hXAqjMvoYs/YHm5tulWatY6FxtApdHSUd/D+Re/n+4e/TyQdYevQVh7qeIjO2U6CqaAUHFhrqX1HwJPw9qUBz0eKIqkIXZ4uUtkU6Xyag+MH+eKmL/KPu/+RAxMHALGB2VS9iRvqb+Do9FHpfSwaC2sq1yBDJkl956Mx85VDxZl4g7WBTEklLdUNfO/YD5ka66bBXEswEyGTyxBIBni293fcUXMLpVUbmAyJ3BBBo5FUUCsrVl7wPM3PhypRl5DOpTk4eZCbGm5iadnSs9xk59eVkKfOby5jGZE/8kT3E/Qc75GsEi7m4XUmYTeUFD1mNlVvYolzCbc3385oaBSHzsHO0Z083/+85BGUzqUl8UAql2LH6A7uarkLEM3tihVJR4ikIzRYG1jtWs0a15oF9v46pY5n+p7hub7nFpCqywxlKGQKAvEADbaGBZ9Htb4cS16DL+ohL5cznUkhKMTludRQSjInOjzPH9c91/ccK8pXcE3tNYTSIVaUrcCitfBs37MLNi2pbIrR8Cidnk7aSsWoknAqTLmhnOnoNAqZglAyhFyQc23jjRwc3UsiHiIaDwLgMldzbfONlBrLGAwOU1lSya9P/VrcQBWQlF73L7lfjMvJpSRn+FpLLbc13oZdayeaiuIyuCS59mxsFr1SL52fkcAIMpmMmegMx2aOSREfvqSPDy/7MD899lNpgxBPx3lP83uYCE1wYPKA9LcuL1tOhbGCHx/7MSA2G+l8+qIbdEGtRu68vOvYbXZj19vRq/Rnfc+oMrK8fDm7RnZxfPY4c/E5ZIKM1a7VfGT5R/ivI/9FvpDHqDaiK+hYU7GG4zPHuarmKp7qeUqKJ2p1tCIX5ByePIxSUErO3k69k0w+w2xslj0TexAEgVAyxOfWfo5/2/dv7BzbCYhI87qqdfz1+r+W1heD0rBg86GSqVhTsYZ9E/uQCTLKDeXsm9hHMptktWs1+8b3UW+tZ9/4PmajsywpW0IsE2Nd5TrWVK7h6VNPE06FsWgtlBvKMWvM9Pv6CSQDjIfHGfQPStfnW+3sX6x3G593aJ1JPDVpTETTUWLpGJvcm5gMT9Lp6cSoMlJmKGNj9UY6ykSJ7fbh7YRTYZptzYyHxxkJjtA9180dzXfw4WUfFsmZGgv+hJ/vH/k+gWSAla6VtNhbcBqclBnKuLPlTgSZQKOlUXK4fbtrJDjCk91PMhQYEknGctV5k4/fzDKqjdzTds+CB2znbCdfvfqrUvChRWNhsWMxJq2Jv9v0dzzd+zTBZBCH3oFBZcCgNFBRUsGAfwCV7HSzE06FabW3LkhsL34/p1YwkZhBZjajz+fRqKykyJHLZpgNTFK53E2//zC5bAa5zYagUFzUWGssOMZLgy/RUdbBq6OvSiaCJ2ZPMOgf5BMrP/GG/K4rIU8tNpez0Vm+sO0Ll4wunUnYHQ+Nc3DyIKFUiHgmzmx0llAqxK7RXayrWsdsdFYaAeQKOQLJABUlFVSbqpmLzTEUGBJHmyC5+xaryKsp1ZdKDXERMYumo+we3U06nxal3yqRX9Q110Wvr5fbGm9j9/huacEP+aYZHu+kyVTPtEJPIuLH45miYLVgs7hYVbaKbbZtzEZnF8jjM/kMnpiHVC5FLB2jVF9KNBNd0PSA2PwlXx9ZFdGWPl+fxCMqBuUq5CIf5ZF1n2YiMEoiExeRKp2FDTWb8ca8zMXnsOlsEiJRbH7WVq6l39fPazOvUWOukdCZfl8/z/Ecdp2dnrkeXhl5RULPGq2NaJVaQsmQmCRPHo1cw0xkhlAqJOVnvTL8CkudS7mz+U5+1fMrlDIlZYYyasw1fGr1p7DqrHhiHlRyFdUl1ZKpqkVjET+3/Onr5830jymOVXeP7l5w7WoVWrbUbOHo9FEi6YiEAmXzWQ5OHSSTz/CvN/4rwYR4PrvnuhnwDYiN0OtoH4gNpgwZ2UIWCjDgH+CWxlsoFAoksgl0Ch0N1ga2Dm6lQIHDM4c5MHmAz6/7PA8te4hgMkiJqgQBgePTx8kL+QVcvyJpeiw4xsPLH6bSVIkv7iOSjkjv3Whv5HenfoerxMXy8uXUmetwm9z4rD6qSqr43uHvEc/E+fCyD1NuLOfFgRfZN7GPXaO7qCyppMneRGVJJQqZAqVcyaB/8G0JNf2TbHy++93v8i//8i9MT0/T1tbGN7/5TTZt2vR2H9Yl1bnM35QyJfFsnGQ2yX1L7uO9i95LIBEglo6xf3w/T558kr/Z8DfYdeKuYzw8LpmrpXIpfnnyl9RZRLXWsrJlNNubcRldTEYm2Tq0ld1ju/En/OiVetZXrWdNxRqc+gvntlyoriQ6E0lF+MWJX7BnbM8Cj6DLST6+EnUpRG6nwSlaBpzxs76Ej7n4nOiwrNCSyCaIJCM8vOxhfnPqN0QzUbQKLSaNCavWKmazKdXwurJahvi/hXweslmS2SQPrvkI4zk/sXzyosjbI8ERvnvwuwwFhxgODKNVaiXfjUAiwKtjrzIWGuNTqz91wfNxJeWpl4suzVemhJIhDk8dZiw0RiqX4rHOx/iHq/6BocAQU5EpTsyeYIt7C7lCjonwBPF0HLkgp8IoNj47RnaIob/ZNItLFy+QrBd9auY/NA5PHuZf9/4rvf5eNlVv4rHOx3DoHaxyraJnrkdqWMbD4wgyQXLNvaX2Jp7Z9xN8AZFMmlbKUBtMXLf4dswFNbX1yykx2Pj0mk/z7QPfpnuuWzqOOnMddy+6W/qb/Qk/ubz49xiUBlZVrCKXz2FSm0TTufCYJMvP5rMcmDxAu7OdGnMNbY423Ca39Pec67reP7Ffcig2a8xUllSSL+SRCTLKDGXSvSkIAoXXDQmVciVzsTnmYnMsK1vGXHyObCHL1TVX89rMa6KR6OuIXnVJNQ3WBp7qeYpMLiPZcQBMRCZQyBS0l7Zj09lEJ21Em4qbGm6SxrA5V05qelodrSQyC/3E3mz/mAZbA3+74W959MSjoqhApsKkeV0OrrVg0VpIZBJkdVm8cS/5Ql60yPAPsG1oGxurN/L9I99HIVNQVVJFKB0SfZ0E0SIgV8hhVptJZBLc0ngLe8b38OLgi+QLYgRM0SZgODCML+EjnArzrYPfYmPVRslvDWCRfREtjhZpU1T0E9oztodaSy09cz0sL1vO8vLlRNNRrFork+FJnuh8ApVCxUhwBJkgI51LU2+tZyYqjkDrLfV8eNmH2TGyg593/pxB/yACAh9a+iH6fH38svuXOA1OjCojdp2dh5c9TK+v9y0PNf2Ta3yeeOIJPvvZz/Ld736XDRs28P3vf5+bb76ZkydPUl1d/XYf3kXXueThJo1J9HeRK/nZ8Z8xGhyl39+PTJChUWiwaq3kC3nGwmMsKV2yIJ6hWEq5uNBoFBoWOxeTzCb57anfksgksGltUi5Pn6+PSCoi5VddjJqn2OgUR3C7R3cvGNn9IbBmv69/QdNTDHEsUZcQToU5OHGQ1ZWr39Lm51KI0uf6WaPaKDVPV9dczWR0klRGlAVvqt6EWqmm0lBJubEct9nN4cnD53xvQSYDlQqLwYHZWY2Zi7vOiwhJcfQz6B+k39ePL+FDLVdTqivlPc3vodIkKmjsOjtTkakF4zi48vyvy0WX5l9rnpiHkeAIqVxKguuTmSTtjnYGygYwqU2Ek2Furr+Z6eg06XwanUIn7lqPfA8Qx47xTJyPLv8ovzjxC/wJP0q5knJDOY3WRumh0TvXy5d3flny20pkE6RzaTwxD0enj1JlqiKWibG0bCkOnQO1XMxRyuaz7BndJTU9AKpMnkIgwNHMLj7kvgN9LAsGMUj4k6s/SYu9hXg2jk4hkr/9CT+5Qo5gMshgcJBUJkU2m2WRaxE/OvojTBoTDp2DZC6Jy+BipWslR2eOEk1HJasKu9bOZvfmBffOua5rvVIvqkj1DqwaKz3eHslosr20HaVcSam+9PUsQQMCAkq5CqVMgSc6g1NfKq0Neyf2Um+p57am21DJxQiK7SPb+U3Pb6Sf0Sq0KGVKlpcvZ2npUjF5vXQxayvWLjjW+Ynic4k5js8cRy6Tk8gkpKaqWG+Ff0yzvZm/3vDXC5rHokNy8XiLvD4BgX5/P+lcmsXOxUxFp6gx1zAcGMab8ErXiUKmwKl34k/4abA24DK62DuxF61C5ApaNBaqTdW8NvMawWSQLTVbMKvNhK1hVDIV2XyW6+uul3hji0oXsb5yvRRe+mT3k9L6WqIuYTg4jEFlQKPUkMgkODZ9jDua7+CWpltIpBPoVDpCyRD+uF86p/FMnHJjOd8/8n1K9aUSUrWpehMvDb7EXHwOk1qcXNi0Nnq8PfzotR/xYMeDb7mz/59c4/ONb3yDhx9+mI98RGT9f/Ob3+TFF1/kP//zP/n617/+Nh/dpVURVRgLjhHPxgklQ4wER9AqtZTqS/k/r/wf8uQpFApYtBZWVawikopQqiuVDAjnV6OtUdyJCeJDIpKK4I17mY3Nck3tNegUOmLZGHqlnmQmyUtDLxFLxS5KzdM718tIcIR0XjRMy+ayuM1uktkkY6ExMvnMebNhLgYZ8if8rHStJJkVkYxSQynbR0Rr/2w+y0hghEPTh/izxX/2ls+L/5AqNkRF4t+FEKRFpYuos9S9oSfMxVYRIdEoNGTyGXRKnbQjlAtyPrvus/z8+M/pPNJJk7WJ/73lf3Ni9gTRtPg5hVIhMrkMn1z9ySs6Pnijh9P5vq+SqfBEPaTzaYknJJfJabG3MBoc5aT3JBPhCSbCE5g1ZlGCnQ6xb2If8UycalM1cpmcOksd+UKeeoto+/CDIz+gydbEEucStEot7aXtrChfgdvsJpKKcHjmsNT0FI+jqGwpElJvqL+BV8de5ZXhV1hTsYZENoFZbeae5vcil8kXcIgAfFEP4wQxZTLS1xqsDeweEzcTxf9A5PCEU2FSGVF5du/ie/m3/f+G2+xm/8R+toa3UigU0Cl17B3fy0eWf4SfnfgZ2XyWOksd9y+5/w03DCPBEV4ceJGdoztZWb6SO1vvRNWvYjoyTSafkc5nmaGMmdAkNrUYkZAqZJiLepDLFCgFOYV8HkEmqh6LI0gAk9pEOrcwykUmyLhn0T10z3XzixO/wKF3UGYoYzoyzT1t9yy0plAZWFmxkngmzgsDL1yxe+Ry68yNTtdsl/T/aoVaspbwRD3IZXIJUenz93Fj/Y1sHdrKUGCIZDZJW2kbE+EJqk3VdHu6yRfyrK1cy0hwBKfeSaG0QDwTZzAgxqxMR6cpN5RLSshizcRmpP+vMJwWCowGRxkKDC0QWChlSjrKOhgJjFBnqePjKz/OD4/+kGOzx5Aho0CBNZVr+NSqT+EyurBqraLhqkxBl6eLTe7TE5aKkgp2jO5AhphZVlSzZvNZerw9YoTSW+zs/yfV+KTTaY4cOcL/+l//a8HXb7jhBvbu3XvO16RSKVKp0zB2OBx+U4/xUsuoNqJX69k2so1Tc6c46T1JoVCg2SbuKvaM7ZGcPOdic3hjXm5tulXKkylWo62R9zS/h0Q2gVYpmog90/cMo4FRrq+7np8d/xlHZ46ilCnRKMSIi4+v+DhKmfIN1TwToQl2ju1kJjLDb079hsHAIBqFhhZbC5vcm9hYvVGKiRgJjiyANS8mNfj4zHEOTx9mJDiCUq4kn8/T6+uly9PFcGCYAgVmojP0+/uJpWP8zYa/ecd4B11KvRGCdLGeMBdbxQenQ+8gl89JCrU1FWu4rfk2hgPDLCpdhF1np8nWyL/v/3cMCi1atQGNXE2tpY4PrfzQFYeoL6fBGwmO0OPtIZgMMhWdwqq1kivkqDZWMxocxaQxMRGe4MDEAe5edDez0VleHXuVG+tvFHfgqRBNtiZeGXoFf1JsBq+puYZ8Ic/qCjF016q1SmjobGyWPzf8uWSmVwyjFBCYic3QYm/hlPcUIG5gdo3uYiY6w031N9FgbSCaiSIgMBwaocxew6TnbHQ2mo0jKE87Rp+JAhdjIPKFvNSsOXQOvAkvZo2Zo9NHmYxMolFoEBDElHRPJwcmD/ChpR8iV8ixuWoz9bb6C34eRWTQl/Dh0Ds4OnOUZlszDyx5gAIFdAod1aZqzBozT5/8Dcnk6d17SiYm3OdyOWT5AmSzyNSiD9nRmaO4TW6OTB8B4IOLP8hS51IOTx0mk8+w1LmU7rlu0jkxjV2j1KBL6dg+sp1gKojL4OLozFHJL6vcWM57mt/DZ9Z8hm8d+Baz0VnJw6bWUsvHln/sD27QL9fH6ny5del8eoHIIZvP8trMa6ypWMNVNVdRYazgK1d9hZ8c+wk7RnaQzqcl1Wh7abtkA1D8W1VyFdWmauosdedE/OFsD68iL6y9tB23WbQB+Kv1f8V4aJwSdQn1tnp+ceIXDPgH2FS9SRpxGlSi71XRPfvw1GFmojNS5AqIzWs2l0VAkBRlgiAgCIKkrExkE2+5s/+fVOPj9XrJ5XI4z2DlO51OZmZmzvmar3/963z5y19+Kw7vDetcN1Uqm+L3fb8nmAhSaapEq9BywnOCycgkx2aPYdPapHTiVnsrs7FZ1Ao1D3U8RI25hrn4HGq5mmQ2STQVFcm1SgO+uI9ne5/lPS3v4Rt7v8HRGVF5lMlnIAvdc9388LUf8pWrv8JQYOgsu3+FTIEn6qHf28/20e0MBYZ4dexVBgODklliv19k8vf5+kRYPu7nkVWPSLu8c7nHwsLU4NHgKP/7lf9Nt6cbX8JHKpfivS3vRa/So1VoWeFaQSaXQaPQiOeq//fc1nQbayrXvLUf3ptQoaCH0dleIskwRq0Jd2nTAlh/vpLochb04i7LoDJIUthGayP7JvbxfP/z7B7djavExd0td+NNeJEhEIx4GZjqZnPtVWjSeV4ZeeUsZOoPNTm82AaviJAFEgFRhquxcGvTrURTUQxqA43WRnaN7iJXyLG2ci1PnXwKEMMl72i+g1QuhcvoklLh+3391Fnr2GDYQHtpOwOBASbnRM+aVC6FN+6ViMP+hJ8Tsyd4tv9ZXAaXhJSp5CpOzZ1iS80WCgUxKsOmtRFMBvlA+wfo8nSxd0LchBUKBRos9Xx08UPMeEfOQn0MWhMys3nB14oo8HhwnGAqyL6JfUTTUVK5FFqFlkwuQ1VJFUaVkV5fLyCid8WHIgJMRaaoMla9odKvWEVEoOg1lc1n2T6ynb0Te2mxt/DIykdY7lpOubEcX3SOXYOvEEmJG8gGcy0b3FtQIadv9iQUCli1Vo7OHMWoMkrInDfu5TsHv8MXNn2BG+tvxBP3UF1Szc9P/JxwKszGqo0SKqmUKflV96+4o+UOBvyig32RI1dcN/5q3V9xwnNCVKvJ5JjUJkaDo1h11stGhP8QH6v5TetYaIy52BzJbBKX0cW1tdcyFBiSRAzZfFb67Jptzbwy9Ap3NN/BvYvvlfyRsrksXzv1NTFIt6SKxY7FpPNpSvWlOHQOqkqqaHW0XpSTvlFpZLFjMa+Ov8rTvU+TzWdxGV3E0jE+uuKjzEZn6Zzt5IElD7BnfA/HZ46jlqtZXracktIS/Ak/g/5BNlVv4vjscVRyFb64j0ZrI4OBQRRyhdT4KOQK5DI58UxcbIIQ3hZJ+59U41OsM4PvzhWGV6wvfOELfP7zn5f+HQ6HqaqqelOP71x15k2lUWi4f8n9bB/ezrbhbYAIQVYaK7m9+XaOTh8llAyxxLlEeg+5TE6+kCeVFVUem2s2i03TPDWRVWtlbcVaXpt5janoFIl0gu657gWjsWK+Tp+vj7nY3Fl2/8UyqoxMRidJZkXFyGBgkAIFcRHKJMgWsugyOgLJAEudS9kxsoPvHvou37r5W8DZAaDzy5/wMxIcEUctnk5xnPd6BMdsbJZUOEVlSSUvDr4IiHLjYkDfWHDsj77xGRrv5Le7f4TXMyJ9zV5aw52bHqauqv2KjJbm70Kz+SwfWPwBnht4jnWV6yg1lLKsbBl6pZ7FpYvxJ/2srliNVqElFA9wdPwQuYkJfCoVo8FRHHoHpzynSOaT/Ojoj5iITEhcoMsxObxQgxdJRTgxe4ITsyeQCTJKVCWMhcZ4vPtxxkJjgJiUvql6E3+78W/57qHvSk3Ph5Z+iAH/AI92PopMkGFQGbBpbSwtW8pvTv2GTD7D3a1385+H/5NcIcfJuZMsLl2MQ+fgnkX3MBWZEiMasilOzJ4glAhhVptZXCq6d6dzaTxxDzuGd9Ba2sp7W99LvaWe9y9+P0cmj9Dr6xUTx+UqSvWljIXHeWHsZVaVNuHxDFNqqwa1GhQKcpYSoqQxstBHxqg2ki1keXn4ZZ46+RRDgSGpKVjtWi2OtIXT3JYi2ThXyEFBbBK0KpEbcjGeKv6EX2p6QOTXKVTio2MyPEk0LSI8zfZmPrviU2wqW0MoE0UpV6AT1ASzURKZBHt7t4JGRS6fw6gyckPDDRyYOIA37kVAYF31Or62+2s0WZsYD49zVc1VoopMa+Pp3qfJFXK02Fpw6B0EkgFJqQYir6rX24tWoaXf189wcJjvHPwOJzwnFlxTj6x8BF/Mh1qpvqQH7pXwsaox17DFvYWtQ1tFM0GZgnwhz1M9T3F1zdUkMgmpgQNwGVzEMjGOzBxh/9R+VrpW8tLgS1i1Vu5uvRulTMloaBS5TI437mVT9SasOquE6MznEF5IgGHX2+me6+bg5EHCqbC0cR0ODjPgH6DcUM4ixyJeGHxBMs19b+t72T26m63DW1nkEFHhWkstj6x8hM3Vm+ma6+KqmquQy+TMRGeoNdcyF5/DqrWiV+qZCE/g0DlYXr6cZeXLLuozuJL1J9X42O125HL5WeiOx+M5CwUqllqtRn2RBlVvVp3rprq65mq+d/h7pLNpcvkccpl4owwEBnimV4xASGQTmDVmVHKVhHhUlVRxc+PNyGVyqgxVfO2ar5114Z+cOymhLt649yyXTkEQJPg4mU2eZfdfrEg6QjgVJpFNkMlnJCKhXCYnm52Xxvu614dDJ7qaToYn6SjveENC21R0SjJiEwSBbD4rKZx+3/977mi5Q1I6CAgEkgFOeU+hUqgu+L7vxJrP71HmBbp7dhPwTiz4Ga9nhN/u/hEP3/JFTObS87zTxdf8XWiRbFnc2Vs0FtZVrsOoMvLtQ9+WPD0MKgNX11zNHa13MLDnOXKxGMPBYb6x/xs025p5pu8ZujxdaBQa0dFVZbhsk0On4WxF4UhwhMe7Hhd9RTJJjGojtSYx72zAP0C5sRyz2ky2kGUoMMQL/S/w4JIHaXO0saJ8BQP+AQwqMb9ryD9En7+PA4kDDAeH+dzaz7F7fDd7J/YyGhxlVcUq0ea/UMAT87BtaBub3ZuZic2I/kAmUXCwf2I/H1ryIX524mdS85POp0llU9zceLNk8FbMN5ILcgRBIJgMYtKYCKbD4DJhNbbxwvDLhFIRljiXMDccxTpz8CxBwGx0lsNTh3nq5FNSHpSAODo4OHWQa2qvoapE3LzJBfkCawS7zo5BLcaB/PT4T1EIConwatFaRONGW8OCc57L5xYoKedXIptYgFQ12hux+RKMCx6i2TgGuY4qTStJs4ylV7cSlmdJ5zJsH93OkakjxNIxsvksK8pXsHN0J8OBYcoN5ZSoS6QsQb1KT7Wpmkwug9PglBzp9Sq9hCQUjyWUDDEZnuTf9//7gqZHLsg5NHmIf838K3+36e84OnP0ksQWV8LHajY6y/ePfJ/do7ultVQmyKgz17F1aCvX1l5Ls71Zuv+21Gzh2b5nMagMOA1ODk4eZCQ4Io1X71l0D090P0Eun8OsMZPNZ89CdC5GgDEXm5O4VTJBRr6QJ5fPoZarSWVTGFSi9cYrI68AsLFqI3vH94rjMWc7BpVBsjf4/pHv86nVn+Lbh75Nj1dUhpk1Zt6/6P10ejo5PHWY0dAo+UKeVnsrf7H6L94Wq5Q/qcZHpVKxYsUKtm7dyl133SV9fevWrdxxxx1v45FduM51U+mUOro8XTRYG0jn0mhlWinwbiAwwI0NNxJPi5k1f7Xur3AanOQLebRKLeFkmFgmRpW56pwXvl6pF/N4AJ1KRzAZxK6zo5QpyRVyKGRiIng0LY7GKk2Vkt3//Koz12FUGSX1xYUqmU0yG5tFJVNJY4E3IrRlshnpOOG0/btMkKGSi0qFomy2QEGU7mpMYmCfp+ttcwV9o5o/CrJoLNh1dl4ZeUVCv2a9o/jnJri2fgvjg8fIzUs19npGGJ3tZckVaHzg9OhkJDjCD4/+kEAiQLmxnGZrM4JM4LGux5iKiOGS8Uwcg9LAWGiMFwdf4K5172E0NEaPt4ehwBDLypbR5RGvk2Q2yUR4gjpLHSq56op4qBQtDbYObmU0NIpKpqLMWIZD5+DQ1CFWuVbR6emUMqwEBHwJH+uq1pHOpXny5JMcmDxAvpAnmU1SY67hlsZbeLbvWYlXsbFqI9tHtiNDJsVQFF22p6JT0kPWpDUhIKBWqHGb3Tw/8Dy3N93OvW33SkTpFWUrKC8p59TcKeZic5IBaSafQUBAp9ShVWpFx1+dmW1D28gLAiUaE0OhYRQK8Z56tu9Zbq6/mVPeU/iTot2EQq6Q8pQEQUApV5LJZYhn4jzW+Rj/7/r/x2rXarrnuqXxnF1nZ3nZcsr15aKDtc7B1sGtjIfHUcjEccTu0d38zYa/odneLJ13g9qAy+BiKrowvwlEVMKgPn0fC2o1lupGDL15CqkEpABSGLJarm7ejMxsZvvQdon/lCvkUMqUrChbgV6lF202bM1MRaaYCk9RbixnNDjK8rLl9Pn7GAqI4ZdWrZXx0DgGlYFoOip9LkVn6DObnmQ2Sa6Q4/jscUIp0dTyfGKLc9WV8LHq9nQvaHpARNeHgkNUllRSa65lVcUqVDIVSrmS8dA4tzTeIlpOHPoutZZa6XV9/j6mIlO4TW42uzdToi5ZoNS6lIpmomJob0kFpblSmmxNVJRUiAR+kxu1XI1ZY5Z+3m1240/6mYvNMRmZRC1XY1AZUMqVrHatJpwMS2itP+knmUuilqnZXL2ZVa5VRNIRjK+H4C4tW3pJx3ql6k+q8QH4/Oc/zwMPPMDKlStZt24dP/jBDxgbG+MTn/jE231o561IKsKfd/w5BQqEk2HMGjM5xAYknomL0PbrDz+FTIFBZUAQBDa4N7C2ci2DgUHRw2KeG+aFTOvcZjfHZ4/jMrjI5rJsqt7Evol9kldJ0b13dcVqFjsWo5Qp6fP2MRScN9t+3UOkKKWXy+Q0WZsYCY5IP6ORa9ApdWIOU3iKQqHAStdKAJ7pe4ZSnXiTzXfyLJZVa8VldOHQO6QRF4gjwHAqTI25BrvWftbfdW3ttXgTXp7pf+ZtMTe8UM1GZ+nydPGdQ99h0D+IXqWno6yD8dA4FSUVUjZaKptiKjTOtrGdbCxbxvTUwpyvaCpyrre/7DKqjSSzSRw6B5vcm9ApdbgMLro8XfT5+5Ahw2lw4ja5GQ+PMxoeZSI8TrWxkr7AABvdm1DIFAucxEFsfmLpGCqtiMD9oR4qRUuDSDoi+skkA+hVehKZBEqZksnIJKFUSMpKy+REJeFYcIx4Js5wcBi5TI4v5kMpU4pk+EyMVnsr6VyaUCrEkrIl3Nd+H7lCDpfBxWLHYvwJv4ROJrNJaVxcHLOaNWa0di2jwVEy+QzpXJolziUEU0H29+zHqrWywrWC6sFq4uk4uUIOb9yLSq7CqrXii/vIZrMM+AekaAGAXm8vq12rMalNPHHyCZEHIlchF+SEEiFubbqV5/qeI5PPSJuBfCFPMpdkLjHHFzd/kadPPc1oaBS1XI1cJseoNnJTw03MRGd4ovsJJiITEqIsE2TI43IeO/EYf7Xhr6T1Q6fQSZlv85sfl8HFtXXXolPoFnxOc4oU3fYowZgPs9pEq7mBMnOlFP0wn7yulqtZV7+OvRN7eWHwBcxqs8QtW+Naw4aqDVQYK5iKTjEbnZUe0Gsq1vA/Xf9DZUkldZY6IqkImXwGo8qIQW1AKVNKUvsChQXrS3E0B0gy8zdCRS5XaTi/PHHPWag5iM3PWGiMWCbGbZW3SV+PZWIcnDrITHQGpVx5llI3mUvy2sxrYtNkqV2g1LqUMigNqGTi1GCLewu7Rnexe2w3armaaDrKp9d8mnWV63j61NMSwX0iNEE8E0ev1BNJR7BqraRyKbq93cwl5lihXMHVdVcD5xaw5Ao5ttRseds2pn9yjc+9996Lz+fjK1/5CtPT0yxevJjf//73uN1vLWv8Ukqn0vH1vV+X4g4AvnTVl2gvbefk3EmWOpcyHZ1eAI+W6cu4telW3GY3baVtl5Q4blQb2VC9AUEQGPQN8r629+FL+Dg6Laq65IKcGnMN97ffj0VrwWVwcVfrXaSyqbM8RILJINfWXMtxz3GsGqtI3guPYVAaKDeUs7RsKXqVnqe6n+KOljsYCY3wvSPfw66zk8wkWVO5hkWORQz4B85q3KxaK9WmatZUrpESmIvqI41SbKruXXyvRLYOJUP0envZXC3ugDxxDy8OvMidLXe+bc7TkVSE8eA4nriHk3MneazrMQkV0Sg0rK1cK6EU19ZdKxKNXw84nAqNI1RtOOs9DVd4sdg3vo//OPAfvDj4orQzvrXxVtZXrZceIGWGMkaDo1Lzki8USBVEk7nf9f6O+9rvQ6MUvaSKTsjBZFBq2OEP91CZikyRyCaQCTICycCCRt2oNormePksarlaclYu8ihsOht2nR1v3EuhIBJ9U7kUo8FR1lasJZVNsaJ8Ba8MvcJTPU9J2VpNtiZubLiR8eA4iVyCDmcHKyvE5n3/5H5pMVcr1KgUKoa9w1g0FiLpCCc9JynRlPD1PV9HI9NgUBkoFAroVXrane10zXbx2vRrXFd3nXi9xjxYtVYJ5czkM9RZ6/jPw//JWGhMemAvL1vO2sq1/H7g96woX8H+STErTBAEKcm+2ljNcc9xljqXssS5hGQ2iVlrZnPVZoLJIN64l70TewmnTqtYS9Ql6OyiT9iukV2k82nMGjP1lnpSuRSb3ZulsVhRKZbIJqg2n/aNuhgC8HzyukquYu/4XmSCDL1Sj0MvBrLmCjnS2TQWrYVbG29lLj7HuGMcvVLPVHiKWDpGmaEMuUzOUGCI4eAwTdYmLBoLz/U9x3tb3suvT/1aHMEXTvOdih5Ks7FZ6WsX4yFzJawkNHLNBb+vli+kXBQRcYfeQaOtkWgqKo2UALRyLU22JtFX6Qyl1qWU2+ymzlKHWqFm1+guxsNi5E0ql8Kpd9I128UixyJuarhJktXnCjnUCrVIP1CbSGQTeONePDEP/oSfHx/7sTRGvBSz17eq/uQaH4BHHnmERx555O0+DKku5FPTN9fHP+7+R45MHVnwmhMzJ8jkM9Rb6ollYrhN7gXSzNuabpMWnMtJRK8x12DT2jg0eYhvH/o271v0Ph7qeIhYOoZGoSGeifNo56PUWepEsiQFaYEoeogUGySDysBsdJZWRyvrq9YTSoVQyBR4415+3/d7nu9/nuWu5QwGBrFqrewa3cWayjWMBEfIFrLoVXrubLmTWCZ21k3xnub3AKLyaC42JxpsqUS/kKd7n0atUJPL5xAEgUgqQqu9FU/Mw+Ndj0vmZ9l8lkZrI+Ul5cTTcbwxLwqFApfRRY2p5k27AQd8A+we341FbeG/X/tvttRs4cjUEWn3lswmJbfdQDLAXGwOg8qAyWBHpzcTjwVJ5hcGOtpLa3A7m8/zGy+9xoJj/OPufxSbykIOjUJDMptkKjLFzpGdrK1cK+3+QqkQSkEBiBwwm9aGL+5Hp9RxyneKTC6DVWPl2Owx9Eo9ToNTGoFeCQ8VtULNusp1qOQq0UZfqRPJxFEPbpObYDKIWq6WyLxapRa32U04HaZAAQEBs8YsjVqL6EqOHNfWXcvWoa0ks0mqTdXi9Z6KcnzmOBqFhtubbj8r82y+tDyVTUncjGvrrpXIxD967UecnDtJJpfhva3vZd/EPrrnuqkqqcKus6NVakXUNjiISW3CG/dKmV5Ntia2Dm7l6PRRSvWnR5sjoRES2QQtthZMapPU+IAYoXFd7XV0lHfQUd5xzofNqyOvctJ7ckHTA6LardZSy57xPewe2y1x/uot9Xxk+Uc4Mn1EipEIpUJnIcuXQgAuktcPTx7GG/eilInOxP6EXxpbT0enWepcij/p58mTTzIWHkMuyHHqnZyYPcEH2z9IMpeUrgOlXMnusd2UqEsIJoOsr1rPztGdkrBFLVezvmr9WfEjF+MhcyWsJNxmN3XmugXIufQ+5rqzGpei+ABgWdkyjs8cx6l3MhwcFjcYMjkdZR1Um6rfMJbmQlWM4Hlx4EWe6Xvm9NdVRmottSwtX8pPj/2UttI2kQCdFHO4hoPDlKhKRMXc61zMeku99DnOHyNezjPqzaw/ycbnnVTzYT6lTEllSSUHJw4CYNaacWgddHm60Cl1xDNxaYf8XP9zPLLqEXwJn0hme73pqLPU8YmVn1iwy7rcMqqNxDNx/Ak/zw88f86fmY5Os9y1/CwXabkgp95aL47Y8jl+cvwnyAU5m92b+Z/O/+G+9vtQKVVsqtnERvdGSvWl/PTYT+nydJHJZ6SFbiw0xnBgGAGBtZVrz/r9Z+4WVDIVff4+CoUCr4y8wtHpowgIpHIpNlVv4oGlD/DlHV9GKVNKAaH/deS/uLnxZro93UxHp3EZXVJI423Nt7G+av0VH4f1env55z3/zFBgiLtb72bX2C6Wly8HkOz4BUEQ/Tte53AV1XEajZ6W6mWcGnsNzbwcL3tpDXdu/sgVITYXq3O2k05PJw6dQ3LB1ig0ZPNZxsPjbKzeyOGpw6RyKXKFHDnE0UeNqQaNUotRbWTH6A7MGpGj8pfr/xKAY7PH8MQ8NNuaL9tn6MxSy9XsGdvD/sn9IoqjtVFmKOOO5jtYW7WWqcgUs7FZtHKRD9de2s719ddzZPoILXYxTbrKVEUkHSGajiJD9BupMFbgMrr4xfFfSFldp7ynyOQz0q7WqDHi0DoYDY1KG5f51+ZoaJRqU7Xo4xOdER9iAhyeOixd60+dfIrVlatZW7lWRPsq1nJ46jAvD71Mk62JWkstc5NzpLIpFCoFJeoSOmc7UcvVC5CzYDKIUqZks3szAItLF5PL59Cr9KyrXMeHl39Yegie62ETzoTPSkgHRMRr+BUEQYweSOfS6JV6ZqIz/Ojoj/j4yo9LmyK9Un/Wrv1SCcBOgxOb3iZFgqgVaro8XcQyMVF+L1NRZiij0dbIRHhCugYUMgUmrYl4VtycXVd3HelsWnpdIBnAqrHS7hQRc0EQyOQyNNoaeWjpQwwEBqRjuBSk5GKsJC5k5dBgbeCBpQ/w8+M/P4s28EDHAzRYF5LK54sPAAzVBrwxL8vKl3FD3Q2o5CocescVQU9qzDW02lu5tvZaIukIMkEm8XD0Sj0zsRkyMxnWVK7BqrVyV8td7B7bLTn1FxDDszdWb5SCgS92jPh21LuNz5tY831qlDIlbrOb/zj4HxyZOoJarkan1LHStZKvXvNV0YVZkZdUCgICPzv+M354+w/FHcwf6NlyvlK+TqAsznd1Sp3kzBvPxCVJ8pkNiF6p58WBF8nmswtGcNORadxmN6OhUYaDwwwFh3Cb3KyuWE2vrxe5IKdUXyrN34uvvxDcfOZuwaoTVV2fWPkJkpkk4XQYg8pAvbmev97610QzUVa5VnF89jgn506yxb2F3/eLsv5ENkG+kMdlFMmaz/Y+S6FQwKa1XTHkJ5KK8OiJR6WHQJH7UmwoiuMXuSBKPatN1czF5xYQuS0mJ9ctvYvNFZuJVq/GoDbidjZf0aYHwJ8UG1lfwofbJH5u4VSY6eg0lcZK6sx1Ul6PDJHPtbx8OXe13kUkHSGUEtWAGoWGeDbOv+79V+5dfC/vX/x+srksixyLWFe17g++ZseCY/zLnn8RU8pfV7BEUhE8cQ9qhZq/3/T33Np4K9fUXQOIDzRfzMeu0V24TW6UMhFlG/APsKxsGfFMnGg6SpWpCofOgS/uw2120+XpQibIqDZVY1CJpF6dWkc0FWXQJ/KybFobV9VeRY25Rro2o5koh6YOAVCmL8Mb8xJLi597OpdGq9SSzqXZPbYbgHJDOfWWevQqPQcmDqCSq7ip4SamI9PS9ZIv5NGr9Jg0JiKphYTYuficaEDo3szqitXk83mqzdUscix6Q0+lQr4gJdEPB4elny03lrNzdCetjlbxwTfPwqJ7rpsWewsqheq8SqjLIQAX0Ra1Qk2NuQaLxoJT7ySajpLJZ2iwNlCqL+WqmquYCE+glClJ5VLMxGYk+bdKpsKfOc0fyRfy+JN+ljqXsvLGlQRSAUrUJWRzWSlmQy7IabA2UGeu48j0ESkgtKqkikZb43nXgnMpDYv1RmM+o9rI1bVXIyDgjXsl2oBdZ+fqmqvP+TvfyjGRVWul3FhOOeULvp7MJlHIFNh0olO2UWVkx8gOLFoLdzbfiVKuJJaJMRWeotvTTbPtNCL9VkdRXGy92/i8iTXfp6aypFJqekCcn5o0Jro8XXjjXh5Z9Qj/tOefFry+uMsuksTejHIZXNSU1LC2ei0/fu3HHJ89Ln1vpWsl6yrXSf8uLvKRVITDk4eRy0TYudxQjlKmRECg09MpIS0bqjdIjZxZbcakNpEr5FjiXEKPt0d6X5kguyTL8hpzDQ8seUBaDOLpONtHtjPoH5QW12pTNS8NvkQ2n6XMUMb2ke2YNKIt/nh4nGqTiJhNRacIp8JXdGcyGhxdQALVK/UAzMZmJTfaogrl8NRhHljyAP3+fhx6h/Sa4hjhzXY0tWpEKD1fyDMZmcSpd1JtqpZCD11GF59Z/RlyhRx9vj4p5y2SjpAr5Ehmk9Rb6pEJMtwmN9l8lleGX0Gv0qOSq2h1tF6RRr1ztpPOuU7JndhldEnZWYlMguOe46TyKXaN7CKYDLKodBGVJZVUmapYU7GGZC5JuaFcanw1Cg1uk5ura68mmo7iNrmJZ+KUqEskDotD50Cj0PBc/3N0znZKqEOduY4CBe5ZdI/0AJp//RYokC1kJU6PgOisrlFopAasyGf54dEfSorMqcgU7c526sx16FV6as21JDNJhgPDZ42l8oU8eqWeDmfHedHf8z2IP7j4g8zGZrmp4SZ2jOxgJDgijYOsWiuN1kaRDH6GhUU8GyeaiZ5XCXU5BOAzHY1NGhONtkYOTx1GLsg5OnMUg8LA2sq17BzdyfEZcX3Sq8Tz12pvPUsYUTw/JrVpwdoZSUVosjURy8SkjKwdIzt4tv9ZSdlWbarmurrruKv5LmaiM29owlmkMczGRIsBjUIjJa/D2WO+GnMNdy+6+5I5mW8FanI+d2mNQoNWoRUDq/VOwskw71v0Pn518lc8O/es6OHlPUWrvZV7F99LNBVFIRdbi7c6iuJi693G502s+d1uMps8i8dTKIgL5Mm5kzyw5IGzXr+mYg2LHW/uBV9jruG+Jffx5V1fXtD0qOVqpiJTfPPAN6mz1EmLa3F0d2L2hOSa2lbaxn3t9/Fo56MYVAZeGnyJFa4V6BV6Prn6k7iMLjRyDblCjtHQKD3eHmlhMKqM55xvv1HNXwwiqQgzsRmG/KcX+FxBJEFrlVpyhRwFCpIqIp1LS4gTiJ/NldyZFEdyxYpn4iwuXcwTXU/wl+v/kl92/5KTcycB0fPIn/DztWu+hlyQv+Xkv3ZnO+2l7XR6OiUkoVh2rZ2VrpUksglimRi1ltqzgmfdJjcN1gYOTB7AorWc9f5XKhTSn/QjE2RiyKdCLfFzZqOzTIYnGQmO8OrYq9zVchdymZzFpYtpc7ShlCnZP7WfcDrMPYvuQSlXcsp7ihJNCXqFnqHAECaNiVWuVXjiHkwak/Q7VTIVvzr5K3wJ3wK11VBwiJ8f/zkdZR2S+dr8h0Yym2Q0OEqzvZkVrhXSQ7x4zZvUJmrMNcyERbTPaRAfKEucS/An/KypWCOlj/f5+4hlYuwe240n5pGOYUX5Cm5tuvW8Tc+F+Db7JvaxvGw5R6aPsKx8GVtqtkgI0FhojERGbA7PVCDpFDqimeh5RxiXQwA+VxizWWPmmppraCttYyY6I0r+DRUkMgnaS9vJ5DOY1CYarY1UlFTg0DlI5UTTVr1SjzfuZSgwdNbvM6qNuM1u+n39HJ89TiKTYCQ0IsX7ZPNZEXFLx/jCK18gm8suoBicacI5n8YwHBhm5+hOXEYXayrW8PLQy4DYoJ055nun8V2Kda7PAkTS+4bqDdL16zA4mIvPcUvjLWKMiyAQSobIFXL0zvWiVWmlCJG3OoriYuuiG5+JiQkqKyvf+AffLanmd7vnkjEKgkAgEcChdyyY4YPY9Hzl6q/Q5Gj6g45hLDhG52wn/qQfq9ZKe2n7gsXSqDaSyCUYD41Tqi8lX8hLhmhKmZJjM8fonO2k2lzNWHCMfeP7UAgK2kvbabQ2Mhoapd/Xj8wm47am2/jNqd+gV+oZDY6iUWhY5VpFo62RnaM7abI20efrW9D0bHZvvqiQxAuVUW1kfdV6DEoD19Vex3hYzJjRKrVoFBrR4FGukX5vUeURToUlB9UruTMxKA2YNCbJhXX7yHbJ4O5f9/4rDy9/WJJMN1obWVWx6m1TnVWbq/nipi/yj7v/cUHQZntpO1/Y/IWzcpwWORYt2K2WqEv46q6vnnX9wpUNhbRqrFQYKxgNjZLNZ5ELcqYiU1g0FhaVLhIjTJRa9ozvYVXFKtocbbjNbn587McL4hYMKgPvbXkvSoWY+ba8fLl0T7xHvnDRzxfy0ghwMjK54HiGgkOMBkdZVr6MSCrCWHCMZWXL2Dq0FYVMQY+3h1JdKf+/Ff8/fiT/ESdmT0jePStdK7ml4Ra+deBbCDIREV1RvoICBW5pvGXBw6JI7i9RlzAbnSWZS+I2uXmo46ELeqBciG+z8//P3n8HRnaX9/74a3qv0sxIo961Krur7d1e13W3scGmGAimBBzCN5DcUH4Jl9wkJPeSkFxM5wKhE7Ax9trGNlu83uLtRVqtujTq0zS9t98fhzmWdrXF6117DX7/Y69GmjlzZs7nPJ/neRfXS3x+0+dFc0lf3IdSqkSn0NFa2kqvt1cccRdRbxZUP/MFDmfDoXfw6OpH+e6x7zIaGBW9gRx6B59ce36jusXGOTadjV/1/opAMiAS/9dUriGdTZPIJmi0NFKuL+e07zRffeWrHJsRIndUMhWbqjfxtxv/dlHzy6f6n6LP24cr5CKUCpHIJHik6xFx/bPphJt6rakWpVzJ8ZnjZPKZczo3Z8ftJLNJktkkx2eO4415qTZVs29iHzqFYL4YTAVfd5TLG4Hzjdb8Cf+C92tQGdAr9Gys2kgyk+TFkRdJ5VNYtBaRxnFdzZsnV78YLrnw6ejo4Gtf+xoPP3xuZ+JtLI75u0CDcuEXQCVTkckJbsfemJd6Sz0/e8fPCCQDWNQWOmwdr7voOTBxYMENLV/I025r539s+B849A6qTILBYSgZQiVTiSFyxcKnqOoIpAKcnD3JztGdfOfYdxgNCLblOqWODVUbWFm+kqMzR/nwig/TVdZFIpugwdJAp+PVaIU1FWvI5XM8uuZR4um4uGtb7Vx90ZDES0FRpebQO3iy/0mkSGktbWUyPEk0HWVZ2TJOzJ4gX8ijVWjJ5XPMJeaoMlYRTAYX8GteL2rMNZQbykUb/UQ2wRN9T3BX811YNBZMShN2nf2K87UuF+ur1vP1279Ot7ubQCqARWWh09G5aDdhsd3qo2sevWLBqedDa2krSpmScCqMUWUUR0fBVJA6aR12rR2jyggInYkacw2uoIuZyIz4Gajlau5uvpvvn/g+PZ4eHHoHNq2N5pJmcTc/f9EfnhvGoXMwFZkS5fHzkcqlFuz6ZRIZTr0Tu97OMscyPDEPWqWWz6z/DLFMjFg6hlllxqazsce1h1ubbsWhE5yIJ0OTyCQyrE3WBa9xMY7H+W6mF+LbZPNZwqkwH1v1sXOed4VzhRjwWUTRs2t+F2CxjcJYcIwDkwdot7XTaGkkno1TqhH4K0vsSy74+S72vbqz+U7x3GbyGfp8fQusLnaN7uL7x7/PRGgCk8okrl1nfGf4f8f/Hy2lLQty3YrPVQwDlSBhqWMpT/Y9yZqKNfx+9Pdk8hmyuSwl2hIMSgPX117P7rHdYvFT7NycHbejlqnpsHVQpi8jm8+KRemhqUNMhCaQSWV8bsfnLivn643GYp/F+eIvQDDYnInOMBOdETmM5fpyer291Fvqr8ni55ILn3/+53/m0Ucf5cknn+Q73/kOJSUlV/O4/igwv3WolqtZ6VwpEptNahOBhGDKt6ZiDW2lba+70JmPoky5WPRk81nimTgHJg/wv/b8Lz694dP8fvT33N1yNxXGCu5bcp8QT6HUoVfomY3OEs/GUclUlOvKGfYPk8gk+MiKj4jmcclMkkg6wmRokjub7iSZFYjGdzXfdU6Ls1iYXE2SnkFleNUXyD/EEtsSXhx+EV/cx7rKdcSzccaD49RZ6vAn/FQZq7iz+U7sOju/G/4dH9B/4Iocz/zPXSPXEEqGSOfTxNIx7mu9j+bSK/c5XylUm6svWym4vGw5n93wWXq8Pcwl5rBqrXSUvv7CfT6S2SR3tdxFNB1lKiLkQ1k0guv1ivIVIiHYqXdyc8PNGFQGopmoGMUBQgxMMVYChM5fJBXhxOwJ/nXvv/KvN/3rgnGdVWMVwxTPhkFpoERbwlP9T+GJejCqjJjUJjL5jOBtVXcjnphAvP55z8+ZjkwjlUhx6Bx4Yh42VW9ieG4YjVyDSq6iRFdCNBNddIR0vtHIhci0FtW5Y8f5MKlMiz5vUbl02nOao7NHkRQkomfXfJ+ts6/v8wUOe+IeXhx9EavWijfmPcfS40JWHxcq+nrcPQSTQc74ziCTytBINeJr5gt5er29C8ZL8wsVpVSJXCqnzdbGztGdVBmrmI5M0+PpIZVLkcgmxMR5hUywxDg4JXisFQvKYscrlU2RSCfYWreVE+4TzEYEs8F+Xz/BZJD3LX0fk+FJ5BK5mCNXxOVGubxZWOz70u3u5un+pxdwGlO5FEOBIeL9woi/09H5Rh/qRXHJhc8nPvEJbrvtNh555BHa29v5zne+w9133301j+2PAvPTlP/h+n/gP175D45MHyGQCFCgcMVGWmejKFMGYSGYv4Afmz1GJBUhlo7R4+nhZ6d+xo7RHfgTflY5V3FH0x0sLVvKeGgcs8pMLB3jwMQBrForw3PDeONezCozmVyGE+4TbGvcxnhonMnwJI+seOS8c92zL5xIKnJJIYmvFQaVgS5nFxatRdzdpnNpPrbiY6RzaQwqgxhpEMvE8Ma8V5zg/HrVGBe6IVxrOLuzCMKo7PObP8/6qvUX+MtLRyQTIZKK8FDHQ8TSMaYiU6jlagqFAqPBUZY6lvJg+4NIkIiEbb1CL2YQwasxMCDs0Jc6lmJRWyhQQCFVcGTmCP64n1PuU+iVerrKuljlXMWhqUMLsqqKI1qHzsFzg89hUps4OnOUA5MHCKfCqGQqHlnxiOBCPP4yrpCLVC6FTq6jVFvKRHiCAxMHuL359gUuwnDpKpiLeeZ8YdMXLttwr6hcqrfW81T/U6LvESx0hZ/fbVLKlIyHxtErz+0EjQRGeHboWVxBFzKJDLPajEwiw6YT1HTFYjFXyJ2Tn3W+oi+aiS5KHygiV8gt6HrNP68mtQlVTIVJZWI6Ms072t7Bj0/+mGAqiE4h5H8ls0limRg7Rnfwxeu+yKGpQ6JIA4TvVjAZZHhumBvqbuB7x7/Hac9p4hnBmXtF+QpaS1vp9nTzsZUf4/Hex1lfuZ4DkwcWjIWvRJTL5eBKjd2mo9OLRpnMf+wtXfgA1NXVsXPnTh577DHuv/9+lixZgly+8CmOHTt2RQ/wjwEGlYE2RxttjjbqTHX0eHuu6EhrMRRlyiB0e87etYZSIdpt7fzL3n9hwD9AS0kLmVyGd7W9ix+d+hH9vn4MSoMgM7XU8pl1n+Ff9/8rr0y+apbWWtLKDXU38MLwC/z5qj9nJDDC88PP4zQ4L3qTXszG/LWEBp4PZxcMN9XfhC/mI5IRAlUDiQC/6v0VPZ4eKo2VKKQKSrWl3NF0B5HklY+CuJxCarFzo1fo2VyzmXQ2LSqGtAphV/pmFkRndxaL6PZ0888v/zNfv/3rV8RzSq/QkyvkBPl8VhgxzS9GpBIp7phbcPv+w+vVmGtw6p0iCb/YFTIoDHx01UfxJXxCfIVMwVhwjHg6jtPoBIRuSi6f4+6Wu0VDtnwhj1wqp8Zcw0dWfoRQIkS+kOfYzDGOzRwTlVcrylfwm77fcGPtjQzNDVGiFbrjqWyKmcgM9eZ6kjkh/Ncf94sdQaVMiVqqvqSb0sU8c8ZD46/bcO9CxfvZ3aYV5SvYNbqLtZVrxeiVaDqKN+ZlOjpNk7UJm9aGBAm/7v21kKeGoBw0KA3iKO1S87P0Cv059IEi5FI5mVyGXD7HrtFdgsRf8ervquQqqk3VSCVSrBorGplG9J7JF/IoZUpBeJLP4o17xaBmh95Bg7WBY9PHmEvMEUlFqDXV8rLrZbrd3aRyKbQKwdU+mAwyHZkWFKzeM0xGJvEn/TSXCDzH5pJmjCoj6VyaQDIg2hVc7manuO5NR6cJJUPolXoqTZWLGrReirv2pSKTzVzw8WzuXO7ftYDXrOpyuVw8/vjjWK1W7rnnnnMKn7dxYTTbmq9KoXM2irteeJXMK5VIKdOXYVQZceqdIiGv1lRLIBHgz7r+jF+c/oVg+vUHImYxUPE/D/4nhbzwPEWJep+/D4NKMLnSKDRiS/xCnZMiEXTn2E7CqbBgvKbQoZKrCCVDlxwauBguVEy1O9rpdnfzvWPfo8fTQ5O1iZPuk6JS5sj0Ee5qvguFXCFGErwZWGxkEEwGOTh5kAOTB6g2VXN89riYk7RrbBd3Nt/5puWRze8snvOYp1skxr9ezOfLqeQqMcU6kU3g1DuFTs8iydTvXfpeJiOTjARG0Cl0KKQKPrrqozw98DTHZo6J8Rr15no2Vm5k++B2PrD8A3R7ujnjO0OdpY53tr2TTD4jSunb7e049A52jexCJVfhi/sWyM2L9glRZ5RsPksqK1hX3NpwKwalgUwug1ohyOVfGH5BzKGrNdYyHZ3m3175N7EjXHRq/8iKj7DSuVJ8jUvxzNlav/WihnsXw9nqybHgGK6gi9HAKO22dnQKHWd8Z1DKlIRSIQb8A+TzeaKZqCD/Lwg2Dj2eHiQSCeFkmLHQGDKJTHSpHgmO8Hjv49y35D78Cf8lGd/VmGsYCYywpHTJAmsMrVxLnaWOTkcnM5EZjs4cZe/4Xu5oukOMLAFEYz61XI1RbUSr0IpZZyAoMWUSweFZLpVTZari/cvfz0+6f8LLrpdRypRUGivRKDXMxoTxViqXQiqRIpfKGQuOMTg3iNPgRK/Q01zSjFahpcZUQ5utjcd7Hxc9lCJJwTDwlalXxAy3oirqUjaCY8ExDkwcYPfYbvZP7CeSjiCXylnmWMb9bfcvMGi9VHftS+04Ow1OUcRxNjRyDeX68nN+fi3gNVUt3/3ud/nMZz7DTTfdRE9PDzab7eJ/9DbeFMyXKUskEqQSKQ2WBnwxHx9a/iGe7H8Sq8bKVHhKtPhXy9WiCRsgLvaVxkqe7n+atZVrz3kdV9DFvS33Ek/H8cf91FvqGZobYnBu8Jzd6lhwjGcHn6VMX8b3j3+fyfCkELoolVFvrufeJfcSSoYua+R0Po7BTGSG7x79LhurNuJPCDsuh9bBs0PPLpAHj4eEIMt/2/9v/Mdt//GmzdyLXASZRIZNayORTZDIJOgq62IuOUelsZJuTzfT0Wl2jOxgS82WixaLF1rECqkU+WCQQiaDRKlEajKJYZKXgvmdxcUQSAUu/c1fAGdLbc1qM8vLlqOQKri54WasaqHTc/Y5aClt4fObPi9Gh3xg2QfEDo1MIhP9lNwxNzvGdojKRrlUzlLHUp4fep5QKkSjtRGFVCE+/0RoAqlUilYuEOXno6g6U8gUwkhVIuGelnv48akfc8p9Cp1CRzKbZEvNFu5rvY8n+p7AqrbyYMeDPHboMWH8GveKHaozvjO4gi6+eN0XMagMlGpLBdO+xJyYO6ZRaBZI7osjmQsZ7l0Kit2nQDKAXCpnPDxOv6+fWCYmiiLWV64nko6w1rmWycgkR6aPMBoUvIe0Ci0tpS049U7Gw+PsHN0pqoSkEimFgjBmnAxPitlrcPGRn0FlYGnZUj626mN8+8i3OeM7g0auYX3Vegb8A5z2nObXvb8mm89SZaxCp9BxW+NtvDj6orhG5PI5Ko2VSJBgVBkXuClb1BaBM2hcS4OlgfUV69k7vpeXXS+LXlC7RnfxsZUfw6gyChwvlQmZRMZYaEwkT5vVZtL5ND888UNUchUbKjeI5oqT4UnMajM3NtzIt49+m8G5QTGupFhMXMq1vW98H7tGd3Fw6qA4/svms5x0n0QmlS0waD1fp1Aj19Bp6xRDgDVyDVqlVuxkna8bX2GsoKu8iz2uPaL7dvH4N1ZvFG0ZrjVccuGzbds2Dh06xGOPPcb73//+q3lMb+MKYL5M+aT7JOX6cmYiM3xmw2d4cfhFDkwe4MGOB5mNzaKT67BohAR0pVQp8iKkEqm46yzm58gkMigI/hRquRqdQnCW1Sl0lOnL+EXPLzCrzaIirNhCbbA08FT/U5RoSvh5989xx9wksgkh7E6mot/fz+O9j3NH0x2X5alztsoCEGfwx2aOMRudRYKEOnMdthIbf1nyl3hiHg5NHeLQ1CHkUjnJXJL+uf43ZeZeRDEDzWlw8nT/0xyZOYJapkavEkJfN1Vv4q7mu/jl6V8yODfI+qr1F9whX6gLZsmpGJ3oJpoIYZBrqcSMvqBA0dyM1Gy+pOOd31lcDBcj2b4WXC5vqrGkEYfewURwAoVMwaGpQ8gkMrHgL353j80c48H2B8nkMjSXNLPHtYd4Jk6FsYIB/wCpXEoI95zYz/W112PX2qkwVJzDa1HJVajlarxxLzWmGjZWbxSLniL0Sj3DgWG2D2znL9b8BZOhSbwJL564B3fMTTafRSlTkslliKajvDz+MrvGdiGVSHGFXGyt2YpZZeaU5xRSiRSTyoRD70AtV18xG4HiSGQuPkebvY3nBp+jUCjg0DtwR91UmapYUb6Cbk83K8tXUmeu4+c9PxcdvUHozLSWtPKr3l+xrWkb3riX5tJmMrkM8UycVC6FN+5FKVOKhR5cmvFdUTDRYGlgNDhKLpdj++B2VHLVAq+wifAEv+n7DWucaxZ8fyKpCB32DnaN7uKOpjvYPrid0eAoOoUOs9qMWWXmtqbbRL7P0NyQ2NmQS+W02dsYCY0w6B9Er9TT7+unylRFoVBAJpFhUptQy9Wccp/ixvobKdOXYdVYCSQCZHIZbqq7iVUVqwSej7cXmUQmmmgWFaEaueaCG0FX8FWn9bM5T9l8VjS/LD7H2Z1CuVROp62TdVXr+GXPL3mi7wnmEnPMRGdY7ljOp9d/mm5P96IjyLHgGNsHttNoacQT9TATnQGEYruttI13tr/zmuUlXnLhk8vlOHXq1NtePm8hzJcp+xN+EpkEnriHA5MHKFDAExWylAb8A8hSMjRyDVaNVdzxqmQqcoUcGrlGdLtVyVSUaEsIJAKEU2ES2QTJXBJf3MeJWSGfSSKRIJfKkUvlYgv1r9b9FXMJIdCyOBrQK/WEU2GCySBSiRRv3EtXWdeCnd+l4uxiKZVNMRoY5djMMQLJALXmWmKZGD88+UPGgmOo5CpKNaV02Dt4YMkDPNn/pJhMf7ExwtVAsSsTSoVQypQ8O/gsh6YOUWGsYDgwzGhwlJPuk/jjfjocHdzbci/fPfZdJsOTJDIJwXgumyCaFgonq9aKTWs7bxfsW4e/yWp7F7FUhAI54uFRdBIVGyzLqBoYQLls2SV1fuZ3Fs95zN55xYmNl8ubKvLswpkwjSWNYpK7VCIlk88wl5hDgtAZlUiEDsBEeIJGSyMToQk0Cg3hZJhV5aso0ZZgUguJ1FWmKurN9YLfTCKAVCIlmhKcoMcCY9y35D6sGqtY9MgkMpQyJVqFFm/MS6FQYC4+x2xsFltBMGcMp8Jo5BoyuQyhVEi8gbujbjQKDbtGd9Hv6+fjqz/O1w9/nR5PD6FUCKlEyqbqTVfERmD+SGRl2UpedglRG5ORSQbnBtEoNPR4e5iJzPCBrg+gkCg44zuDQWngxrobGZ4bRi6VM5ec4+mBp0lmk7yn8z1CvEE6RiqXwq6zE8/EAcFUNJFNIEHymozvDCqD8B10dPJ47+PsGN2x6O9NhCdwx90Lvj897h5+2/9b1latRSqRYlFbyBayovVAhaGCdls7s7FZ7Dr7AqK8BAkVhgr6vf1Um6rRKrRMhidJ59LIpDJSuRRL7UsxKo00WZvYNbaLnaM7KdWWMhudpdnazN9f//ccnDzIeHhc9ImKZqJUGCrE71coGbrgRjCaiZLMJhf10QJEd/Xic8w3FJVL5aytWEs+n+cfX/5Hej29GFQGlDIl9ZZ6TntP87uh33FT/U2MBgULk7HgGJ2OzgUddplExirnKgoUSGaTmDVmbm+8/ZpWql1y4fPiiy9ezeN4G1cJRZnyK5OvcHjqMJ6YB7VcjUQi4ZT7FLc13QYFmAxPYlFbaLA2cHjqMCq5iunoNFq5lkwuwxrnGjRyDbXmWoLJIDqlwJeot9TTYG6gz9/HgckDLHcsp9fXS4mmBLlS+HqNBEZenWenIuIYxx1zi8Gc83Hac5oV5Ste027h7B1iKBkimo7iT/ipNFailqn5Rc8vcIVcFCgIMtRsgn0T++i0d/LujndTZaxCJVcJ6d+pyBu2W5nflSnTlZHJZTjpPolZY2Y8NE4gGUCKFJVMxYB/gMaSRvZP7Gdl+UrUcjU7R3eyvmo9Pzn1E6aj02jkGlpKW1hWtoyRwAhmtVl8rWAySK+nl4nQOPFUjN/2/JoqUzVbqjfj8g4jUyixaJZhDgaROS6+cF3IAPHzWz5/Rfg9VxJ6hV6IWTGULygW84U8RpWRBmsDrqALhUyBXCpHqxTciguFAjfV38SOsR0Mzw3TZmtjJDDCHU138I7Wd6BWCJ9DJB3hpPsk71v6PqYj00yGhOvKrrMjQYJOoaOAIKMv+mYVd+oGpUHMkTOpTGRyGRx6B9FUlOnINBqFBqVMiUqmYjQ4ijvm5uOrPk4qlyKejouj5VA8xG/O/OZ1qXXmj0TUCiGYdCI8QTAZpFAoYFILvjnHZo9xffB6WktaSefSHJ4+jEKm4IXhF8QRUqm2lFAqRCYvdNIAFFIFSx1Lxe9MnbmOYDKIXWu/7KTxfP5c2wGlVCme53QuveC6LnYLi90WvVIvuq47rU7a7G2Mh8YF4UMqssCNPZVL0WBtIJlNsqZiDbvHdtNgacCkMlFvrsesNnNH8x080/8Mff4+pqPTmNVmJEhQypSkcim+cfgbbKnZgkKqePV5synGQ+M0yZtQy9Wk8+kLdr/0Cr0Yk7EYZBIZarlafI757trFruaGqg2c9pwWn0OnEOJmPtT1IXaP7cYb9+KJeShQYDw8zsdUHyOWir06MizkmI3Niq8ZSoXwxrx/HIXP23hrQ6/Qk81n0SkFIjFAtpDld0O/o6usiw+v+DA7R3fySNcjyCVyjs8eR6/QI5EIgXp/f93f89v+3xJOC3P7fCFPlbGKrXVbcUeFnVSxJVw0P1TlVaJ7ayqTwqFzoFFokEqlLHUsZd/4vgWFj1ltpt5Sz0n3SbYEt7ymnf3ZOTPp/KuxFK0lQjJ3v79f7GLlC3kKFITujkRITn55/GWqTdX0eHrwxr1sqtpEY0njBV719aO4c5qJzBBKhpiJzLDUsRSVTIVCpiCYDCJB8FIxKA34437K9GUUCgUqjBWkc2nuX3I/zw0+J8pKi23yCkMF/b5+lpctRyVXkcqm6Pf1M5ecwx/3E/+DlHoiNM6e8ZfpLFnC04PP0LGmBVPmwmqN+XgtBohvNormkksdS5FL5ASSAXE022JtYbljOSWaEjRyjXiTD6fC1JnrxKIHEE0+Z6IzPHHmCd679L3c0nALFCCQDFCqLeWh9ocYmBtgNjpLNp8lk8uI3j6l2lIS2YSYgl0MqV1qX8qT/U8yEZoQd+smlYmttVsZCYxg0Vios9Qhk8qIpWJ87eDXRH+dJaVLeKDtAX7e83OxA3C5ap35Xc9sPiuYRf7hfBQoiBlkefL4Yj7y1jwKqYISTQm5fE408gunwgSCAawaK6FkiIfaH2IiPMHBqYOc8Z3BprWxrmIdtzffjkYuRB0cmjzE0emj2HV2mkqaLvkGWm2uxqK2iGTxot9YOpfGoraQyqX4wYkfiFyVs3ljsWyMdC6NWq5mfdV6rGqr6D4cSUWot9QzGhwlk8+wpmINe8f3smNkB93ubmw6G+9b+j5SuRTTkWlyuRzBRJAl9iUcmT2CXqknlo5h0VhETlaPp4dbG25lKjwlxoXkC3mx46SWq3HqnRfsftWYa0Qqw3hofMG4Sy6VU2epw6gyis/h0DtEtZ9RZcQVEtzH5VI5eqWeWnMtE6EJVDIVzww+Q7+vXyCAq4yEU2FCCUGAMj/DcTFcq+GkRbxd+PyJoMZcg1ljZnBukCpjFRPhCUAgMB+bPUalsZJeby/JbJIb6m7grpa7iGfiaBVaAgnBrNCitrC+cj2ukEtse/7/dv7/qDRW8qGuDxFIBIhn4sJYLZsgnolj09qw6Wx44h62D2yntbSVeCYuzJztHaJ/RzH9t3+uX8ysei04exFTSpUopArqzHVcV3sdJ2dPUigUiGfjqGVqTCoTRpURrVyLVCIV1GahcVwhl8jZ2OPaw99u/FtaSlsu8uqXD1fQxZB/CFfYRTIjpCDbtDaqTdUksglKtaVIJELIZTgVps3WRjKT5OmBp2m3t9Pn6+ORrkdwx9yi2g4QxwbFdrldbxfN/NK5NKlcasFOcyI0zsaqDZyePsl02k+HQnG+Q14Ur8cA8Y3E+cwly/Rl3NV8FxIkVJuqselsBFNB+rx9gOD9Uix6TCoT8UwcvVJPPBPnib4nWGJbwg9P/hCD0sAtDbdwdOYojZZGOh2d+GI+Ko2V4rgrmRVGw3at4N6tlAudhHAqTKejk2Mzx+j19ZLLCxlzpdpSltiXMBWaotfby5B/iNbSVgqSAtfXXs8Lwy9QoEC/v5/nh5+nuaRZzIK7XJO8+SOR4mZBJpGRLWTF75hUIkUpVWJSm5AgwaKxYFQZGQuOsaZijeh/VFTceWNeLBoLapmah5c+LHSOFULUSD6f53dDv+Ok+6SovKoyVnFv673cVH/TBeM5imiztXFn851sH9hOLB1bUPTcUHcD6Wz6HK7KpfLGDCoDD7Q/QDKXxB/3s8e1h2Q2KRQyciVHZ47S4+nhlvpbWFe1jqcHnkYmE7pIoWQIk8rEuzvejUVtIZFLYFAaBJPYTBxvzMum6k0cmzlGv78fEIrNekv9ReN8DCoDG6s3IpVIkUll56i67mu9jw1VGxY8R9Gkcs/YHgb9g5RqS1HL1ZRoSpgKTzGXmKPcUM6hqUOiy/VkeJJacy0mtYm5xBzR1IXX52s1nLSItwufPxEYVAY2V21m//h+ttRsYY9rj5hIXKotRavU0mBtwBf38fTA0wvCKgGaSprY7dqNUWVk7/he0eQrV8gxGZ6kUCjQUtqCTCpDKpEKKdQIfIl0Lk0kHaHJ2sRIYITbGm/juaHnOOU5hVltZiYyQ4O1ga6yLvp8fXTYOy7rwpm/iM0l5pgIT7BrTOBDSKVS8feKvkYqmUrkMiVyCQoUFhBVRwIj/PTUT/mbjX9z1cZe46FxXh5/WdylAhiVRnQKHaFkiFAqRDKbRClTUm2qRq1QMxmZFLNybFqbULAFXTRaG88JxnXqnSSyCTxRD/6EH51CR76QR2ZtwDtP1QaIHbIs+UsmN78Vcak3u7tb7iadTQu7/FxGHN1Um6qZic5QKBTwxX1YNBamo9P44j58cR8vDL/A2sq1jMyNcGzmGLc13sYHln2A/zr5X2Lxk8llWFq2lM9t+hwamTBCTqQT7Bjdwf1t97MlvoVAIoBMImMiNMF/nfgvPrn2k/zqzK/I5DPc1HAT6WyaPa49tJS00OvrRSFVMBoYpd5Sv+B9XI5J3vyRiD/hp85cJ6q5VFIV6ZzAd2mztRHLxOj2dOM0Orm75W5+N/Q7AomAoLQzVeM0OLmx7kb6vH2c9pym29PNHc13EE6Gsevt6JV69ozvYe/4Xv5QUwECL+ep/qcwKIVucvH6PJ+02qAy8MiKR9ApdZyaPcVMdAaFVEGlqZJN1ZsEeT2cIwa4VN5YrbmWT639FAcnD+KOuZFJZIKdQcyHRW0hko7w3PBzOHQO1lWuw6AUFHgNlgbua7uPJ3qf4LT3tJCDKFPQZG3iS9d/CUlBwoujL+I0OFlRvoJsPsuK8hXc3Xz3JcX5FEneS+1LeU/ne/DEPGTzWRx6B+229kU/d4feQZutja6yLmw6G1trtxLPxEXbB7PajEltolJZiVKqZDg6LHSi/zAtkEll5yS5FykMKoVga9Lj6blmjVffLnz+hNBY0shfb/hrftH9C25tuFVwvqVAqa6USkMl+yf2U6AgShLnE+aKkl2lVIlNa8MX96FVaMV2fY+nh/d1vo8T7hNMhiepMFaQy+dotDSypWYLp9ynGA2OUmOuwR1xc2vDrXSVdeE0OAWFVyZBn6+PBmvD60r1nb+IjQXHiGfiHJw6SC6fo95Sz1hwDLPajEVjYSY6Q5m+DLvOzpB/aNG8runo9BV1dJ6Poi/K/KIHYP/kfu5uuRurxoon7mEsOEYqm6LB0oBdb+fI1BGyOSETp6iIiWfj4k68CHfUzcbqjXR7uun19RJLCzLpRmsjH+r6EN84+HWQSOAPPk8KqQKN2oDTWvOaJO2v9T2/VpO2s//GprWJppSX42p9qcdQa67lY6s+xvqq9fT5+jg+e5xQMsRwYJgyfRkqmUo0KJxvEDoaHOWGuhvI5DMMzA2wTbKNXaO7eHf7u3n/sveTyCTQKXS02doWePO8MvkKcpmcRFYIDR4ODKNT6MScsTPeM6yrXEenrZOu8i48MQ8VhgpqzbUiudkdc4tFyXy8VsL+/JFIv7+fu5vvZjoyzeDcIBa1hXgmTrutnRXOFewf30+1uZrfj/yeL239Eg3WBiRIRAFDLp8jm89Sa6llMjLJR1d+FJPKhDfuxaK2YNaY8cf9wkg8/6qwQSqRki/kGQ4Ms29iH3WWOuDCRqe15loeXf0o+yf30+vpFfiMSJgMT4ojQbj8UYxBZUCv0otcJQCb1kaprpQ+Xx+pbAqdSkc0HUUpU9Jp6+QDyz/AT079hH5/v9hlLRQKTEWm+MGJH3Bzw81iblwmn6HaVH3JRc/849KpdOwY2yEWI/3+fno8PQvOVfG7H8vEyOVzjAZH+cmpn7CtaRsHpw4ilUgp0ZWgkqmwqC3UmGtIZVNsqNpAJvfq+Lv4GRQ77AqpgpaSFoYCQxSSBZKZJBIk7C7sflN9xs6HtwufPzG0lLbw6Q2fPme3G8/EqTXXMhIYEbtA4WSYpY6ltJS2oFVoxRBQtVzNvol94o5KKpFSZiij2lRNvbWe93S8h5PukySzSdLZNN868i10Sh2bqjdxyn2KDnsHuYLQxlfJVMIiIVXSYe+g3FB+2eTGs1FrruWhjofoKuvCHXWzpmINzw09x/DcML64D71Sz6aqTawoX8FPun+yKEFQKVVetXl1sTM1f/QIUKDAf5/+bz6+8uP857b/5NjMMRLZBA6dg8cOPoZMKqOrvAuZVEanvRO1XM29Lfdi1ViJpqPoFDriuTi+mI9eby93Nt/J8rLlRFIRwskw3qib3/Q+zlJbB69MHgCJhGpzDSlJjs2tt9Bc3n5F3t/8AsOgNCCXyDkwdYBAIiDekC62MBaJ36FkSPQ1CqfCNFobiaVjuGNuTGrTOTfC87kfnx0qatPaOKw4jFPvpMJYcU4RVBwlVBmrODx9mOG5YSoMFchlcg5PHUYpU1JlrGI2OrvguOePEpOZJL6Ej98O/HbB73xxyxcX/LvY5Qwmg2TzWQb8A8QzcWpMNZRoSrix7kZ+3ftrnhl8hqHAkBjeudK5klgmxvPDz6OWq89JVoeFo6tLRXEk0uvpJZwK809b/4nTvtP0+/oJJAPMRmd52fUy6yrX8cLwC5Tpy9jj2sO7295NIp/gB8d/wAn3CSRIyBVyrKtcx/+39v/jq698lZHAiDieWVm2kjUVazg2c0wce0slUiHbL+SipbRlARfwYu7OBpWBCn0FByYOiLL6s/F6RjFn/61KrqLSWIlNayOUDLG0bCkV+gqxi9g31yeqtoqbE4vaQq25lh0jO7ir5S6OTB8BBFHAIyseec3BzefzMZt/rvwJP9sHtiOXyDFrzPxu6Hf4Yj5aba28MPQCtzXdRjQVxa63U2Ou4fD0YZ4fep48eSoNldxQdwPwalZbMbh0PDhOMBXksYOPMRGZENfRosnq9oHtfGDZlclBvFJ4u/B5i+BKZjedL313vsW9XqlnS80WjkwdIZ1PMx2Zxh1zMzQn8AtaS1ppLW0lk8/QaG2k2lTNb/p+w3s738v3jn2Pw9OHkUgkqOVqUtkUdZY69o7vpd3eLnJOSrWlXF97Pbc03HJVg0uLTsyRVIQtNVvEHY9JZaLKWMXR2aOLFj0auQaT2nTV5tXRTBR31L1g9AjCTrfB2kCZsYzZ6CxNJU2ks2kkEglrKteIHJNT7lPEM3GqTdVMhafYPbabAgW8cS/1lnpub7yddC7NL7t/yfV115PMJgmFvYy4jhPNRljXuoIhySnKLdXc3HIbOUmB+6+Q98bZBYZdZ2f7wHYkEomoaLrYwlhczEPJEE6Dk+eHn+fYzDGy+SwGpYG1FWtZX7We6cj0ghvh+Sz5P7HqExyaPiQWUUaVkd8N/g5vwotWrmWJbcl53XKrzdX8+ao/52sHv8Z0ZBq5RE61qZpGayM3N9zM4anDrK9cz8nZkywrW0aTtQmtQktjSSO15lqOzR5b0EFdzGunxlyDXqHn4ORBzGozNq2NqcgUE+EJVrSs4Psnvs++iX2U68vJ5rMEkgEmw5M8P/Q8TSVNWDVWSrQlC1ykz/dal4qzDRCXlS/jyNQRscjSKXVi0bOlZguemAeHwcE/7PkHXCEXIKh+tHItH1r+IXaO7cSus+M0OPHEPBydPspwcJjx8DhrK9eyf2K/UBD9YYwUToVRSBXndGMv5u58tthhPhYLWX0tqDHXUKotRS6RixLuYiGfNWbZULmQUxNOhqk0VlJnrhO5Upl8BnfMjVkjKL3+8YZ/fF2igMV8zIqYS8wx6B9k/+R+NHINO0Z2UG2uZvfYbkBQEy4vX854aJyJ0ATeUS/3tt7Laudq0rk0g/5BZqIzHJ85TqOl8Rx39GpzNb/c90smIhOksiniBcH1ejw8LpqsXq2u+eXi7cLnLYCx4Bj7xvcRToXFi+yk6iQbqzde0Rbi/B1eKpfiqYGnsGqFxSOcCnNdzXXsHN3J0ZmjLHUsZSI0Qbm+nA2VG3hh+AVurr+ZVyZfYbdrt+jPYVKZMCgNDM8NU2msxKgyiuRFq8ZKU0mTeBFFUhGG5oZwBV0kc0nsOvt5Z9SXA4PKQFd5F13lXQt+rlPq2Du+d8GNsigJfz1jt4tBr9CjV+k55T5Fp6OTjdUbSeeEzKZwKoxSpmS1czWxTAyDwoBarqbb3Y0n5uGU+xQToXFWlq9kx8gOgqmgkFKejuHQO1DJVPT5+nDoHXQ4Osjms9g1NqodNlYZWzk0tp/l5iXcsLYLbUaCJimjuqELC6bX/b7O3n3atDaeG3yObk83BqWBGlMN0Ux0gfv0YgtjcTEv05WxY2QHo4FRsXiIpCPMRGfEv5+NzeIKurDpbOe15P/3A//Oe5e+F5PKxGnvaX7V+yvRMdikMmHRWFDJVeftJiwvW86jax5l1+gutAqt4K00c5L/uet/opQrsaqt/MtN/0K3p5sB/wCFgnBTPDR1iLUVazk4dVAkrS7mtWNQGdhcs5ljM8dwx9ysq1zHwamDKKQKusq6eGLXE5TryoXPORUjnApjUpkYnBuk1dbKbY23UWGo4Pejvxef87Vkc10KDCoDW+u3YtVaeW7oOTQKDY3WRsKpMJ6Yh0fXPCqKBGw6mxiQ/NGVH+XZoWf5yamfiFlYteZatjVuE/ypMn6WOpYKPmBI0CsFw84aUw2JTAKb7tyUgAt1Ys8WOxRxdqzJ5Z6DTdWbzpt3dfZzW9QWcc07G3KpnDJdGXe03HHZxwMXH93NRGeQS+TsGNnBdHSaMkOZ+FgkHWEyPEmloRKbziasLeEJnux7knWV63hH6zvQqXTIJXLWVq49Zz10BV2MBEdE9eL895bNZ9lcs/maU3m9Xfi8QSh2bBKZBGqlmrHAGMFkEKvGSqf9/FV+JBVh/8R+nhl4ZkEKrlPvRCKRiFbkVwrFHd6ukV2iMgSE8L6DUwdpLW1luXw5q52rSeVSSJAwEZ7g3tZ7Oek+yURkAgkSAFFVJJPKRAv/dC6NUqo8ZwEaC46xa3QXPz75Y9E63qAUbgQfXfnR1yzHfS1oLGnkbzf+LT899VOmo9OiUuVKjt0WQ1FaXZSfz8+7qbfUc131dWLL+8TsCf5j339g19lRy9X0+/pI5zKUGco4Pn2UKlM13qiHXu9pGkuasWgs+ON+tjVtY//Efvp9/ShkcuQFGWqpguuXbKPBW6C+2yW+ptreTsbTj3L58tfF8Tl791n0/wBhkZ3PRZqOTlOgcM7CWOQ/TYYn0Sv1jIfHF3A0QCCpF/8ehMXf6/EuaskvlUiJZWJMhaf40akfscyxjJOzgqW/SWUikAxwdPooWoVWfA9nF2LuqJvHDj2GWq7mtOc02XyW4cAwwWQQm9bGfa338a2j32I2MstMdAatQsvGqo3c1nQb48Fx/mbD36CUKi+Yl6WUKbm/7X6CySBahZYPLPsA6VyamegMd7XcRaFQ4Iz3DBPhCXE0HM/EqTPXYVKb2FC5gbUVa19TNtfldJOXlS2jTF+2aA7Yb878BgC1XE2FsYLW0laGA8PiOLDIFen395PNZ8XCya6z02hpFOMxKo2VVJur8Ua9xDNxFFKFSK6Fi4+rLtfp+2KIpCLsce3BoXOglgleO8U1Y49rDw2WhgWv8UaYfF7sXEgkEqLpKGOhMbFANiqFqA27zs5cck7gDcrkVJoqSWVSFAoFXpl8hf0T+zGrzawsX7nosQYSAeot9dSZ6kjkEqIVxO9Hfo8v7iOajl5zKq+3C583AMW2fyqbYkX5Cr519FsMB4ZRy9VkchkMSgN/u+lvWV91rjfCWHCM7f3bFxQ9INwwtvdvvyruuLA4GTKbz4oeNx32jgXKL1/CRyaXwawyI5fKUcvVZPNZsvkswWSQSmOlkK/kWE6HveOcTs/u0d0Lih4QbpJFx9gvXvfFq2qI1VLawt9s/JsrvkheCOeTVjv1Tt639H1i0TMeHOd3Q78TjqUAN9fdRDwdI5PPUGuuw6KxMuztp7a0kWw+RzqbopDLUWGswB11s2NkB8OBYbRyDalMgkZLExZtCV22tcCMeDyFZBISCfKXaF54PpxdxCSzSTHwERC/F6lsilwhJ9oPFFHscObyOYwqIwqpggpDxTkFjVwqJ5VLifwPvULPTGSGsyFBQqmmlCMzR1hTsYaTsycFFVU2gVKmxBv3olVomYnOMBOdwagyiu9hPDhOt7ubueQcOqWOTlsngWQAV8iFVCIVRxitpa30+noZ9A9Soi2hxlyDVCLljO8MaoWaG2pvoMJQccF2/4GJA3zppS/x0thLFBAyuDrsHTy6+lGOTx+nx9NDiaYEo9rIEtUSSrWl4rlUypWsr1z/mm0FxoJj/Pr0rxkJjIgJ8fXmeh5of+Ci3eTz5YDN5xOp5WqWly3niTNPiIGw8zdGI4ER1lasFblTD3U8hEKmwKa1oVPqeH7oeSbCExQoiF1Ys9p8yeOqy3X6vhCKhb1KrsKuty94bLER3Bth8lkck87/HE0qkyhUSWYFGf57O9/LD078gOG5YfKFPK2lrVSbqtnWuI2j3qMMzw0TyUT44LIP8svTvySeFTr38XScfCGPRX1uBE0il+CZgWc45T4lbkLabe28u/Pd/Lz75+gUuqvWNb9cvF34XGUU2/6RVIT1lev5+91/z/6J/WJWUJm+jOVly/nK/q/w1Vu/es5FMB2dPqfoOfuxq1H4nI8MWbyQiqZrRSQyCRQyBeOhccr0ZYKJ17zwxlQ2hVPvZGPVxnOIe66gC1/ct6DoKSKSFnajb0R+1tVYJC+Gi+1Kx4JjfOPQN9g5thOFVEEun8WkMeEKjXN08hDydjkTkUnkhTwyBIWWFAmFRAK5QUiJHg4M/+HVhBvOcGCIX535NZu2rKR03rFI1GoK8TiF12BeuBjO3t2p5Wrxe5PKpsjms3hiHqQSqWgEeMZ3BqvWSommROxwhlNhXCEXJrWJSCrC9bXX8/zQ8yRzSQxKg3gDVcvVyKQyasw1eGPec45Hp9Dhi/vwx/0oZAoxW86itqCQKSgUCqJCMZAIEEqGMCgMHJg4cM7Nqkxfxl+s+QukSMnms/jiPtK5NK2lrYwFx8jkM2RymQXdqdHAKIXac7ta8zEeHOcf9/wjR6aPIJVIxQLhyPQR/u/B/8ufr/xzXhp/iaG5IZEnYlFbKDeUs6p81WVFBERSEX5y6idiMGWxED3tOU0sE+PT6z99WYX/2e7Aw3PDyCVygskAZboy3DE3IHQCpRIpeYQbsDfu5SXXS1QYKnjC9wS+uI+HOh4imAwyE50hm8/S7+vnxrob2dawjfHg+GUr+14PLja2Wezx12vyebGunD/hx2l0cmzmmHi/0Mg1rKtcJ4ZTr6lcwz+9/E8cmzmGXCJnY/VGer29HJo+RI+nh6WOpczGZnmo4yH6/f18bvPnOOM7gzvips/XR6m29JzQ0fHgOP/v2P9jMjwpjrYKFDjtPQ298J7O99BV3nVNEZvh7cLnqqO4O2iyNvGS6yX2T+x/9QtSKDAZniSbz9JkbeKE+8Q5F0IykySWjomLXfEGUkQ2t3hGy+vF/MVrPuRSOesq1i2IQQAwa8ykc2mCySDrK9dzYPIAk+FJMeh0tXM1f7HmLxZVK0QzUZETtBiy+eybkp/1RuF8BVexaJ4ITzAZnhScc/N5qk01pPNpVlWtZSY8Ta25lkn/CLFUlDJDGSqJAnI5zBozpz2nkUmEUaPgr6REWigw5htkNhMUX0vqdIJS6LpIXqN54dk4m1gqQUK1sVr4HudzAonyD0TuNc41rK1Yy6HpQ/j7/Wyu3ix2OCVIqLMIUQaBZIDdY7tZX7WeE7MnqDJVEUlFcOqdmNVm1jjX4Aq6yJPntsbbcIVcDPgHxIU4kU3QYG1Aq9CSzCRJ59JYNVbO+M4gk8jEhdmkNqFVaFHL1Xx2x2fFoqeYuH5k+gi/OfMbttRs4amBp9AqtBQKQpBvUcVVLFyKKDowX6jdf9J9kl5vLxq5Br1STzqXJpaOIZfKOTR9iI+s+Ag31N3AHtceXCEXRpVRUJSZqnhkxSM49I7XPLIa9A+yb3wfgWQAX9wn8jPmEnM82fckN9TewObaza/58z/bHTiUDJHNZ5gMTwkxFe7uBREHlcZKVjtX88hvHyFXyPFI1yOEkiH0Sj2Hpw/TVdbFsrJl5At5SrQldJV1sWtsF/lCHgkSvHHvosq+q4WLjW3O9/jlmnxeKGi41ly7QASwpWbLAsJ1oSDEo7hjbmw6G/2+fvFYRgOjeONepEgZ8A9wV/NdqOQqftP3G+bic9RZ6tg/sZ9qUzXvan8XNzfczK7RXVSbqsXv1ZB/CLPazLva30Uqm2IkMCIaH3piHjrsHZiUr583eKXxduFzlVGs/hPZBNORacH9NJ9dwHOYjc7SbmtnIjSBO+rGG/OKScWxdIxkNilakRel5mq5Go1cQ7m+/Koc9/zFazECX4OlgXpLvdilsOls/Kr3V7yz/Z386vSvqDXXsq5yHdl8lkpjJe9Y8g5WOFcs+lp6hV7kViwGuVR+WXLctzpcQRfjoXGG5oaELoTSgEIq59TsSa6v24o/4afX3cOm6s0cyhWIpKOsrV7LnHeSUrOdm+pu4qenfiqOHnOFHDKZHLJZoEDuD4aFUqcT1YYN5L1eJBrNZZsXFsdCgWRA4DkoDWRyGfLkua72OuosdcTSMQ5NHRLUIMZq1lSu4bHDj/Fgx4P0+fpwBV0LOpyFguBcXKIpIZqOstK5Ep1SRyaXod3ezjta3oFRbeSZoWfEG8NsdJap8NQCQnGNqYaW0hYOTx5mhXMFLw6/yJbaLSSyCdGgsBjQeHvT7fT5+sSip0jQ1Sq0aOQajs0c40NdH1rw80pDJXqlng5HB7l8DqVMyVRkSuARSWSYNebztvtPzJ5gaG6IqciU6AekkWso1ZaKfiuRdITf9v2WNZVruL3pdvG5NlZtpMZcc9Gb42KYjkwTSUcWFD1FBJIBBuYGWF6+/DXv1t1RN4F4gG0N25BKpKTzaeLpOOlsikFPH3XmWtrt7WRyGeot9Wyo3MD2/u3Es3HR/6dEW8JsdBaP28NEaAKJRIJZbaZcX45MImM6Mo1CpkAtU9Na2srQ3BD7xvcxF58T8q2uYhfoairGzsalyNTnc+rOzsyaDE+ysnwluUIOT8wjmNVmtJjVZobmhvhDAAlSpOiUOg70HWAoMMSKshUopAo67Z3IpDJmIjNkc1meGXyGrvIuNlZvFMakfb9mj2uPEEUkkVJnruPvr/97nux7krnEHL64j5vqb7pi5+NK4e3C5yqjWP1HUhGUMiUSiYRCoXDO72XyGcxqM18/9HWkUillOsETo9xQLtq/R9IRsb1eb65nY/XGc1qPVxLzVV6LkSXP7lIU7eIfaHuAZDYpRlbcUHfDBUdIRXlovbn+nHGXQWmgxlxz2XLctzKimahYBDt0DrxxL8lsEi9ekoNJ/nzVx7mx7kb8wRk2rPokSqmCErkRS50atcHMNBGcBif+hF/sQEikUgpyOTZtKWWGctR3rwSlUih6lEoULS2XRWw+eywkl8q5se5Glpct58TsCaKpKO64G4vawgPtDzAyN8JsbJYfHP8BmXyG+1rvAyCZE/g6EiQYVAZGA0I2Uj6fRyaVEUwE2VqzFZlURoe9A4fewbePfFtUdClkCir0FTRaGpFL5fyPDf+DTC5DMBVkz9ge9k/u55NrP8nw3DC/7v016yrXsal6EwalQUzRjmViBJNBMeAym8+KRnyl2lICiQA2rY0aUw0T4Qnabe3YdDb2jO/BHXMzG50ll8/RYe9gW+M2YukYW6q2LHoTLqagryxfueDniWxCdIVOK4RIjQ92fRCj0ohKrsIbE7ocxR3/r0//msG5QSKpCFKpFIPKQCqbuqDfjUKuEEePi0GC5DXLkM+2EoilY5Tpy/jEqo/z9f1fI6mOQT5PKBHEaaxgqaOT/z7934STIbbWbhV5UEq5ktJwKXtce0jlUuTyOdJZoYuwvGw53z76bQDqzfW8Y8k7WOVcxeNnHmfv+F5xfbpY4Xe5uJqKsbMxFhxDIVVgUpkWmDHOJeaYDE9yZPrIAv5cEalsSui0ZbNUm6rFgFSFTIFJakIulQt0iz/E3OQRQnonw5NIkQrcuVySozNHqTJWYdPZiGQiLLEtYTgwTJWxSuwyeeNeAokABQocmznGSGCEe1vv5bFDj2HX2a+5MRe8XfhcdRRv6g6dg3Q2zc31NzMeHiecDAtRD3/o/LRYhbiH5pJmwfxMpuC2ptsYC4yhU+hYal+KP+mnUCggl8pZWb6Sh5c+fNW/VOcjMC6GWnMtH1j2gddMEDaoDFxfdz0FCueourbUbOEjKz/ypib9XkkPpdcCvUIvxILkc8LN/w/dgDwFZqLTzMZmsWhMbKAac1BOta4C9ZAbxZIG8MQoLbFzW+M2nhl6doGc1qa3c2fznbQ7OpGn5BQyGSQWC1Kz+bKKnvHg+DlcGIvawo6RHSikCm6ouwFv3EsinSBXyNHr6SWaiYqmbYDY0bRr7WjkGmQSGaOBUTE0ssJSIQRgFnLsn9xPpaESlUzFZGiSl1wv0WZr4zd9v2E0OIpSpsSitlBhrKCrvIv1Vev5r5P/xZbaLfT6ejnjPUOFsYK1lWuRS+RYNVZOzJwQ1G/+ft7V/i5MahPBVJB0Li0SiFUyFWa1GYPKQIm2hM9u+ixquRp/3M8LIy+glquJp+No5BoUMgXuqBt3zM2XrvvSeQ3piinonbZOVpav5PD0YfGxRDaBFSurnKsE75dchmgmSjQTXXCT3Te+j2eHnmU8NC4WMQalgeaSZhLZxHmLF7vWjk1rYy4xJ3Kt0nnB9bnKWCUm018qikXc/A6xSq7ijO8M3zjyTT694a/Y79rLXMJPQSrDnwqwd2Q319Vcz2zKx1MDT3Fg8gDjoXFOeU5Rqi3lgbYH2Dm6E41CI3gE6RziqF8mkdHv72fn6E7i2TgnZk+gkqtQyYXP6WJGh68HV1MxVvQZA/ht328JpoIYVUbSuTRmlZlKYyVHZo6QzCY5MXsCs8ZMMBkU6QfBZJB+Xz8FCtzXeh+PHXqMXm8vH1z+QcxqM2e8Zyg3lJPJZ5BL5WTyGVpLWsVRtEwqo0RTglUjhLTqlXpOe05zzHqMJ848Qb+vn2gqyoBvgInQBKudqynRlJDJZ1DIFEyEJkQidVdZ1wXe7ZuHtwufq4yi58P3j3+f5wae47q66+j39RNOhWm3tdPr62VT9SYe7HiQpwee5uTsSdFcz6F3sK5iHTqljlJtKROhCUwaEyWaElY5V11zTHm4fIJwrbmWB9oeYHnZclxBF6lcCpvWRrv9yvn4vFZEUhFOuU+J+UpvNJ+gxlxDjamGYzPHiGVi6JV6CoU8+UKBOnMtvqibmKaMEttKWsJqCtEoBaORvNuNVKejNCHhz5Z9EIlUKp5TlUxFjbmGDy7/IGXmiitynN3u7nOkunqlnrUVa5FJZfznwf/k5OxJUrkUJZoSrqu9js3Vmzk6fVTMBzMoDeQKOdrt7Wys3siJmROkcin0Sj1dZV3sHd/L0eRRDk0dYioyxS31txBMBakwVODQO3hh+AVGg6MApHNpAskAhYJQSLeWtnJn85285HqJTkcn7bZ29o7vJZQMEUvHcIVc5At5ljqWolVoMaqMZHLCzeCU55RIok7lUgSTQTZUbUCj0HBk+gj15nrO+M5waOoQgOhsni/khcRrhf4cGf58FLlrL4y8wEdWfIQChQUFYZutjU+t/RRN1ibabG3n3GQjqQjHZ44vKHpAKCQH/AMUKCw6khkLjjEZmuSGuhsIpUJMhAUbCrVcjUPnELO0XosMuVjEzUdxNH/Gd4bJ2DSWnBKLtoqkXCD87hncwXBohJm4h1AyhFwqJ5AMUGmsxBPzcGzmGO32dobmhqgwVrCqfBUToQnMaoFTqJKriGViJDNJVHIVqWyKfl8/y8uWo5KrLmp0+HpwpcUQ813Km0qaBKNBUzU7RncwGhylUCiQKwidxAfbH+SZgWfQyDXkcjnMKjPZXJZcISdaY9zWeBu/7Pkl09FpQqkQ3zz8Tf7uur/j+8e/L5gnqs1EUhGqTFXcVHcTg/5BChQo05VRpi/jqf6nKNOXEUqFUMqUqGVqUVTgi/vwxD102js5PH2YXWO7xKiUOnMd97Tew5LSJddscPHbhc9VRtHzQafQsaF6AwcnD9JU0sRm/Wa0Ci1/1vVnrChbwfaB7Tx+5nFi6Rg2nY1AMsBcYo4SbQmbKjcxERKswH/b91vxxvHHhvMZDF4NRFIRBv2DAldArhB9LUbmRkjlBYl0OBVmJDCCO+ZmwD+AXWvnxvobz3EKvlowqAy8f9n76fP14R33kslnKOTz1BqrWeNYwaCnD7m6iagqRHZ4ikI4jESjQVZejkSjQdHUxHKzmc+ZKs47rrwSmEsKN9ZizIBKrmJZ2TLm4nO8MvUK0XRUCK/NS/HFfbw09hIGpYEV5Ss4PnOcBmsDZrWZ62qvw6F3cGfznYwGRommo2LR40/4ceqdnPaeJo+Q3+SJe/j0uk+jkWsYCYwgkUjEY0rn0hQoMBOdodfTy9b6rWjkGob9w6KibGhuSAhslcooVQvS8DZbGyaViZfHX+YTqz/BNw5/g5Puk+JIoM3WxifXfpKTsycBoSszv7A5O3et0lh5wa5JkbuWyCb4Ve+veLDtQR5e+rAQPaLUsdyxnGVly8Qip9hhcIVc1JhqGA+Ok8wmFx1XiUqt/MLCq+gN9tzAc9SYa2iyNtFc0oxUIsWhc6BT6LDr7MQysde0uTqfAEEtV1OmL0MhV7GydSvavByb2sKuqf34C1FqVKUcHjqMQ+eg2lSNTqFjcG6QSmMlhUKBm+tvpqusi8NTh9k+sJ17Wu4Rx4kAdp0duVQudILkwrksusPD5edyvZE426W839ePO+rGFXRxxneGWDqGUqYkX8hzyn0Kp97JpupNeOICB6rWXMsS2xIOjB8Q/cDMajPumJu5xByFgkDw//bhb3Nz482U68sp05fhCgn8oH5/PzXmGm5vuh2VTMWu0V1k81mMKiOukIu1FWtJZBPUWeqIpCIir+3F0ReZCE1gVBnJF/IUCgVCqRDHpo/RabvyauMrhbcLn6uM+Z4PNp2NNRVriKQizEZnUcgUbK7ejCfu4cXRF8nkMihlSsZD42Ia8WRkkg57Byq5imw+y32t96FVaOn19jISHKHOUketqfachfGNlni+lTAWHBNlvMWQ1XZbOw6dg3gmzp7xPfR6ezGrzbTb2ommo2yo2sDBqYPnOAXXmGuu6jnvcHTw2U2fpX2gHW/ciwIZ3sgsg54+7mm4E8+Zo2h17cgcDiTV1UiUSmSVlcgrKsSx1WsZV14OrGorUomUCkMFrpCLcCrMhsoNZAtZhuaGqDRWIkGCUqYkWUjijXvxxr2U6cqot9bz2U2fZUX5CvE7vHd8Lzc33IxZbabGVEOfrw+jykg4HabN1ka+kKdUW8p0ZFpQU8kUQgFzFtdBp9QhQSLekB16Bx9a8SGe6H2Cu5rvEjKv5oYwqo3UmmpRyVQ8vPxhJEjI5DMMB4b52KqPkcgmiCQjYkdhJDBCKpcSiKymGrHTtBjUcvUFuybz1ZOJbGJBnle9pZ53tgkRIv2+/lcNNv/g0VJuKKerrIt0Ln1O3lsRNp0NvWrh68/3BpuJzVBnrkMpUwpcmkKOZeXLGAuOcVfzXRf8Ls/3OLKoLRiUBu5quotcIcdYaExU1cGrDsXrajeKf79BqwS1kj5vH/lCHm/ci1wqp6mkCbPKzPDcMCq5ih5Pj5Aw7+3FrrPjCrnE/K8CBRRSBclsUsjVSwvXYXFkB68vl+uNwnyX8ueHn8esNtNqa+VbR76FRq4BBMsQmVRGKpuiylTF0NwQO8d2EkoKeWTX1V7Hp9Z+ijprnZjXlslnSOeEuBuZREYsG+On3T8lnUvzhc1fEONkDCoDzdZmSrWl/LT7pywvF7L9UtkULSUt3N50O73eXiKpiGhP4TQ4GQ2MIpfKFwTjGpVG+v39i4blXit4u/C5yijuNmajsxydPkqNuQa71o5D78CoMqJT6IhlYsTTcTL5DPFMXCx6ANwxN56oh+HAMLXmWlY7VzMeHme3azcAKpmKrbVbqTZXs8e15zWpOv4UUSSCFoseEM7Tc0PP0WBpoFxfzkhghHwhjyfmIZvP0lzSzB7XHjodnfR6e8XPZjoyzc6xnVf9nHc6OhnwD1CiKSGeiVFvrEURS+A5cxSzroTKpIq81wtyOYq6ugVFzxuBTkcn6yvX8/L4y4RTYfKFvMhRUMlUJDIJ8oU8+UIepUyJSqZCKpGyrnIdNyhv4LT3NCvKVxBJRTgydYQTsydosjbR5+tDKVPS4+mh3S6oHl0hFyqZiqnwFHKZYGDYXNKMUW0klo6Jx2RUGWm0NuKP+xcoAmvNtXxk5UfodnfTZmsjno2L3AarxsrW2q1EUgLfKJPPMDg3KP5tKi4QRu9Zcg/X11wvhvsenj68aOFhUVtYYltywa7J2epJCRJ0Ch2VpkoeWPIA/rifufgc/3noP8WbjAQJefICATrmE3P15ue9gcDTua3xNrTyhYrJ+d5g2XyWwbnBBYaS6yvXXzRUskhmP+k+iUPnYDQ4SoWhgvta7+OHJ35IV3kXq52rOTx9WIzpOFugUGuupURTQpmujJGgcM0ZlAYMKgNauVY0p5RKpIRTYdZXrseus/Pznp8L3QUKWNQWWkpasGqsrHSuZCY6g11np0RdQjqfxqQ2XZOUgLNRvE8UKDAaGGWVcxWFQoFoOko2n0Uj16DT6lDJVSy1L+XA5AEyuQyhZIhacy0yqQxvzMuTfU+yvmo9g/5Bakw153T70rk0dq2dOksdNp2N8eA45YZynAYn3zv2Pc54z9Dh6BCdwNdVrOO5oec44z3DbHQWtVxNS2kL4VSYems9ToMTb8yLRCIRo0aqTdXEMjE0Cs2bcSovCW8XPlcZeoWeaDrK0emjrKlYw97xvfx+5NUsnfHQOA+2Pyh6LhR3rvlCnjwCmTVXyAnhb5k4zw8/z897fk5XeReHJg9Rbiin0drIS66XhJvKPEv3q0nue6vCFXQxEhgRfVUKFMjkMljUFpHYV1wsJEjwxDy029oZCg+xsVrYraZzaUo0JXgTXnL5HA6dQ+T/XI1zXiR/P9X/lEBuTYbIR0OYLWXcXb4V7VQU5HLk1dUo2tvf0KIHBE+QD3V9SJTdZ3IZsvksVo2VUm0ps9FZNAoNmWwGnVKHQSXwBFK5FOM+IcrilPsUR2eOksgkODp9lInQBKucqzCoDDRYGwQfo1QQtUyNUWXEG/eiU+hwR90opApWO1fji/vEz1AqkYrhuMUb7vyOqElt4sb6G/HGvIvyZhaTK6vkKlptrQtCKIsKH61Cy5N9T4qFh0Vt4c7mO3l3x7sv+j2Yr56cS87hjrrJFXIcnDoodrZ2je4ilUsJr6k0UGepY8A/QJutjWpzNS+Pv3xO3ptCKnTCzuZZZLLnGlTKpXLkSuF2oJApLtrpKRY9BqWB0eAowWSQYDKIVCLlne3vZPfYbnQKHTfW3chIYIRH1zy6aNfRoDKwumI1Pd6eBee7ylRFgQI2rY2W0hZsOhvLHYIDdLu9nURG2LSUakuFdXViLydnTwoZYVob66vWc2/rvWys2viWWPuKXalkNkmukMMb91JpqASEEXIgGUAmkYlBtHtce2izt1FrrsWf8OOP+1HL1QSTQbGQUSvUtNva2TO+R7hGKlZTZ66jwdrA4anD7BzdSS6fo9JYyTcOf4PpiMAFenH4RbGwPDp9lE+v/zRP9z+NWW0Wfa7K9GVMhabosHfgiXnESBGZVEY8E2dNxRrsOvuF3vKbirdE4TM2Nsb/+l//i507dzI7O4vT6eR973sfX/jCF1AqX7W6Hx8f59FHH2Xnzp1oNBre85738JWvfGXB77zRqDHXIEVKjbmGveN7xcRiEHalQ3ND7B7bzYbqDfz01E9F3xMJEhRSBZXGStK5NHnyRNIRoqkoM9EZpLNSlpctx5/wc9pzmk01m0SJazqbxh1zi3EA11oy7puJaCZKOp8WpdKRdASFVMFEeIIaUw2bazaLUQhFpUuRgJvOpYWWvb6MJ888STQTpVAQfDBsOhu3Nd5GKBnCHXNf8XN+topEJ1VTJbOii2agKodEr0dWUvKGFz1F6JV6Hup4iFg6RiQdodHSyMDcAGX6MnKFHCqZipRSOKcqmQqn0fkqaTib4pT7FL3eXqwaqxj1MB2Z5q/W/RU31N7A0wNPo9AqSOVSeONeNHINXWVd+OI+SrQl3FB3A0+eeZKR8Ag6hY4qUxUmpYkPLfsQR6aOEM/E8cQ9RNNRIqkIcplc7M6d/Tm9VrlyMbdqrXMt7ribfF4oNtpsbZd803XoHWgVWn5w4gdion1TSRN93j5kEhlbarYQSUU4OnOUSDrCaGCUGlMN8XScamM1ayvXLuhiOvVO7mq5iw1VG845BqfBiUauWZANV8SleIMVyezZfFa82YKgsjrlPsXtTbczGhSurZXOlXxq7acueC0sdr7NajOVhkpWlq/kF6d/gUwiwxv3UqItobmkmWAyiE6pw6gy8pPun3Dac5r1lesp1ZZSpi+jVFPKdHgaq8Z6Sef/zUbRG0ghVSCTyDg5e5KHOx9muWM5A/4BQNgAW9QWNAoNMqkMlUzFgH+ATC4j+nTJpUJi/L6JfWyo3MCHV36YZDZJlamKw9OHKRQK7J/YLxbHG6s3IpfK6fZ0k84J/kdFyxWJRMJYcIxsLsv1tdczE51BLVdj0QiKzZbSFjRyDQal0KHL5DNoFVqaS5qps9Rd0522t0Th09fXRz6f59vf/jaNjY309PTwkY98hFgsxle+8hUAcrkcd9xxBzabjb179+L3+/nABz5AoVDga1/72pt27AaVgetrr0fikizo9BhVRmpMwpf90NQh3rP0PRyYOECPpwcQWp7VxmruaL6DfRP7qDZWC21uiVAQxdIxDCoDCpmCYDLIbHSWk7Mn0Sl0lBvKsaqtnPKcQiaVLarq+FOFXqFHIVUwGhgllU2hkCqQSqRYNVYyuQz+uJ9VzlW8PP4yefJoFVqW2ZfRUtKC0+CkpaSFifAEeqWeeDbOSHBEkGJ7YXhumOtrr6fWXCuOeq4kFlWRvHkq/wXQKXR4Yh4mw5MEkgGGA8Osca5ha91Wnu5/mkg6wlxijmqjkAu0wrmCiZDQHQklQ8Q0MXaO7hTHjSfdJ/HFfByYPMBSx1IxsVwhU2BQGqgyVbHKuYrR4Chba7cK7r/lq/HEPWLAZy6f4+92/x3Vxmp0Sh3xTJwKYwXVxmoxxmN+d84ddYskcIvawr0t9xJJRYRYhIvIla8Ej6rI85BJZDgNTn4//HueGXyGCmMFPZ4e2krbuKXhFl4YfkEMe03n0zgNTj619lPc3ni7kMItk+PUO6k11y56vE0lTWys3rigUAKh6LkUb7Aimb2oMgKhK1E0Zi2SrTO5DJF0hJ1jOy8q9T6fPByg29stnpdAIsCgf5BD04dQy9U8vPRhZqOz1JhrUMgUhFKC0addbxdI4G+RTV+x+Ns3vo86Sx3HZo5xbOYYDy97mP0T+0WHca1Ci1ahpd5STyaXIZaOoVPqxCJUp9RhVplx6Bw0WBrQK/X8y83/wveOfY9KYyVrnWv5Ze8vRcPO4blhWkpayOazJLNCFEyRH6SSqbir5S62D27Hn/CjlCkxKAx02DvYXL2Z6cg0tzbeyovDL+IKupBKhSBgg9JwVcOdrwTeEoXPtm3b2LZtm/jv+vp6+vv7+eY3vykWPi+88AK9vb1MTEzgdDoB+Ld/+zc++MEP8k//9E8YjcY35dgBtHJBItth7xBb8alsiqnIFFaNleOzx3mo4yG2VG+hq7yLZCaJVColmxPm7lPhKWFem8vhCrqwqC0ksgmi6SgVhgr2uAQyrifmIZgK0mht5KH2h1DKlHR7uhkODlMdrH6b64OwsyrRlogxGOlcGoVUQTQdpbW0lWQ2SaWhEq1CSyaX4Z1t7+TozFGGAkNUG6ux6WyEU2HuarmLoyePiv4zKpmKphJBHRNKhUQVXnNJMwaVYQER1Kqx0mm/9JyetwLUcjWT4UmhG4mUWDrG3vG9rCxfyWc3fxa5RE4kHaFMV4Yv7mMiNCHeNA0qA4Nzg3hiHgKJAH+z8W/o9/czGhzlv3v+m2WOZdRZ6lhbuZZMXtjdFg0y6y31VBgraHe0E0lF+MGJH6CUKhmaG+Ll8ZepN9fT6+vlyPQR5FI5UomU1c7VvKv9XcxEZphLzAnKqFyS7x777gIejUPv4JNrP8m6ynVvyDks8jxsWhs7RnYwl5gTia02rU3sFi8rW8aR6SNk81mceqdYVJzPGf1sGFQG3rf0fahlajHUUi/Xs6V2C1qFlt+P/B6z2kybbXH1n1UtdFGKhFlAVL2B8F0AoRjSyrWX3HU+nzy82A3yxr3cWH8j+yb2MRYaQ4JEVNGVaEro9/djUpko1b2aQPdWUHQVUeQ8NVob+e/T/03fXB/bGrZRZ67DqraSyCXQKXR0lXdxxnOGmdiMEAlUKKCWq6k0VlJrqkWCBJVchUapYXXlanrcPZhUJuExicAhU2mE6KNENoFGoRFNdYteYVKJlOtrr+e5oecwKo1MhCdIZVO8u+PdPDf0HP3+fkq1pQSTQW6qv4l3d7ybcDqMUWW8Zq1W5uMtUfgshlAohNX6ahvzwIEDdHR0iEUPwK233koqleLo0aNs3bp10edJpVKkUinx3+Fw+Iof6xL7El6ZfoXJ8OQ5j2XyQqDhydmTtNoEE6mx4BipXIqZ2AyTkUnuarmL5WXLmQpPEc1EqTJVMR2Zps3Wxm/7f8tYcIxOu5AarVfq6ff189zQc7yz/Z34435SmQs7uP4pwaAycGPdjexx7RHDEjN5If5gmWMZB6cO8kDbA0glUm5tuJXhwDChVIh1letIZVPiuKvX08tfrvtLEpmEsOPKZXmq/yl+eOKHjARGiKQiNJc285n1n8GutfO/9//vc5OZN3+e9VXr36xTccUQSUV4dvBZ7mm5h/84+B8cnDwo3gTnknN8zvk5vHEvvrgPg9LAZOTV68CqsdJZ3clfPf9XgPBZDPgGqDZVs75qvWCyJpGjV+rFaIkyfRlOgxOVXLUgIsAVdIkeKJl8hnWV64ilBNfrOlMdOpWOXD5HPBPn6MxRWktaiWfjuONuvnrgqws+H4PSgFQq5WsHv8Y/3/jPb4iXVJHnUZThWzVW9Eo9+UKeBmsDqWxKlPUD1FnqeN/S913WNV1rruVjqz6GK+ginomTyqX43rHvLRjFF+NplpctX/C3nY5OOu2dnHSfJJlNin4wAB32DrE7UGepQyVXiaaLl4v53aBYJsbairW8p+M97J/Yj0Vj4eTsSaYiU5hUJtZWrkWvfFXF9VZQdM2HQWVgbeVa2mxtDPoHcUfdtJS0MJeY44zvjBDpkQzz8LKHecn1EqlsCrlUjk6po9ZUK9ptwKvvPZqJiknyNp2Qeg+IGzONXMNfrvlLJFIJ+XyemegMqWyKBksD/b5+tEotVo2VWnMtL7leIpAMEElFqDBWkMlneG7oOXo8PaxyriKYDL4lrFbekoXP8PAwX/va1/i3f/s38Wezs7M4HAsXJ4vFglKpZHZ29uynEPHlL3+ZL33pS1ftWEFog9/WeBv7xved425rUBoEP47wOE/0PcHGqo2scq5CJVextnItdeY68vk8T/U/xeHpw4wFxwilQ3TaO7nbcjeuoAurxkosHSOVS2GWmilQwBVyIZfIxQshV8i9Zdq+VxuSgoQOewfrKteJ3TVPVDBLS+fStJS28L9v/t8opUq+f+L7VBgq8Mf9ZHIZqkxV7JvYx47RHSSzSV4ceZF1FetYWbFSdJjNFXLUWmo5MXuC3aO7iWaiYjhgEd2ebv755X/m67d//S3f+XEFXeiVeh47/Bh6hZ53d76bdFYoECfDk3z9yNf56/V/zda6rVg11nPGGf2+fiqMFYyFxgCYikwxHZlm38Q+TCoT4WSYrbVbSWQSBJKBBUXP/JZ6LBPDaXDyu6Hf0efrE7lD6yrXsblmMz/r/hnp/Ksdvo1VGwkHwkyEJs4xYCzyaPL5PL2e3jek8CnyPJLZpFjwNJU0YVAKTtHl+nIsagt6lZ7lZctptDZSbrj8rL5ih8UddfO5HZ9bUPQAjARG+L8H/y9fvvHLC95/tbmaz2/+vEhwrjPXMR4ax6F38I7Wd/CDEz9gedly7mm5Rxyzv94C5OxuUIejg05HJ4O+QYaqhggmg4J0f17RM78onu+IrFVqyWQzRNNRcoUceqWQFTg/fPPNxmIdvOtqrxOvHYPCwIaqDaypXEMwERTjLIpr/fz3Pv/cS5Dg1DvxxD2srVjL3vG9jAXG8CV8DPgHcBqcrK9cTyaXQSKRMDg3yGx0lgIFPtwl8IXi6ThKmXKBYmwiPMHG6o0opIprvtsDb3Lh8z//5/+8aNFx+PBhVq1aJf57enqabdu28c53vpMPf/jDC353voFZEUWS1vnwuc99jk9/+tPiv8PhMFVVVZf6Fi4Zy8qW8eUbv8yPTv4IV8iFWq7GprNhUppoLmnmW0e+RSaf4SXXS7ww8gItJS0YlAbe0/kevnnkm/R4eqi31NPh6KDb3U0kFWFobog2WxsSJJz2nkaKFKVMSaO1UbR2D6VCmNWCpflbqe17NaFT6QgmgvR6e8nms/jjftrt7ayrXCeSBEOJEBKJhGAyiFwqJ5vPUqIt4fD0YXEhkEiEQEVXyMVAYIA7mu5gx9iOBTyNVE4YVRY7IPNN/nxxH8dmjmHRWK6ZBfdyEM1EyZPn+Mxx0TiwSPoGYUwzG5tldcXqRccZGrmGO5vvxBf30e/v58j0EdFDplAokM6l8ca93NF8hyjdXYxzo1Vo2TGyg1AqJEi+C3kMKgMn3SdxR92srVzLy+MvA0JhMzw3TKWxkkBioelgEUUezfmM+a4Ezvbeur3xdvZO7EWn1GHT2BicGySUDHHaexqjyohCpqDR0shp72mWlS3jhPvE67ZPmO+4PF/WLpPIGPAPLFr4ra9az9dv/7o4vi3GJZyYPcEn13xSdE0++yZ8JVHkVVWaKy9IRJ/viOw0ONk5upNkNkkgGSBfyOPUO7m+9npeLrxMjbmGfCFPub5cKDqvoetysWtna+1Wnup/Suxew7kk/PmhqsVx4VhwjN1ju8nkM/jiPtK5NI3WRmLpGFORKexau2DuKlUAiNfBTHQGs9oshmQXoZQq0cq1rKpYxXho/JoqIhfDm1r4/MVf/AUPPfTQBX+ntrZW/P/p6Wm2bt3K+vXr+c53vrPg98rKyjh48OCCnwUCATKZzDmdoPlQqVSo3iAlTIejg7+77u/O2fEWc4KOzhxFIpHgNDjRKXVsa9yGJ+4hmU3SVNJELp8jmxcY9lPhKaF40tp4yfUSeQQZfKWxkpHACIFEgH5/P4+feZx6cz33t92PQXHtfhHfSGjlWq6rvY7nBp/DFXJxU/1N7Bvfx+Gpw9Rb6nEFXRjVRu5qvguNXEM2nyWRSVDQFATjyT/IhNVyNclcUrSJv6PpDuKZuCg/LebhFHO2zjb5Azg6c5Tx8Lh485pPsL0Qz+Jagl6hJ5aOiRJYQPT1AJBJZURT5yeaVpurybly3Nt6L56Yh0g6glqm5sa6G1HL1KxwrqDOXHdRgmwmlxFlvxIkaBVaVDIVoVSI8fA466vWi/yHfCGPRCKhzlLHGe+Z8z5nNp9d4AN0JXG+RPWb624mEA+we2w3A3MDeGIewfwxm0Sr0KKWqak119Lv60cj14hjbOCyzDSLhV0ym8Qf94uFa66QQyFVLEj8no9qc/WCbuVYcIzR4ChziTlxkzX/Jny2W7rT4BTNV18PziZGK6VKFDIFs9FZImnBG8qoNGLX2Xlx+EVSuRS+uE/0/BkNjsIYmNQmvn746wKfspBjY/VG3rf0fdc0N/JSMsPOVs1NR6ZpsjZxynMKrVzL4NygGLOiVWiZCk+x2rkaqUTKhqoN9Hp7CSQDoqimVFuKWq7GqrWiVWpFYnuVuUqwFAi6MKqMbKzeeM2euze18CktLaW0tPTivwhMTU2xdetWVq5cyQ9+8AOkUumCx9evX88//dM/MTMzQ3m50P594YUXUKlUrFy5crGnfFOwWNW+uXYz3zF8h25PN4FkAK1Cy7GZY+x27WaZY5lYzUslUgoU0Cq09PuF8YDT4MSoMhJKhWi0NjIWHAOg3dbOeGgcqURKJB3hlclXWGpfSo+n50/e0VklV3Fk+ghOo5MtNVvYPbYbpUxJtamaqcgU8Uwcd9RNn6WPppImJsOTokqIAsSzcVpLWoXPSq5FJVchkwj+FRR41YepkEchVYjKMbPavKDoAaFLMZeYY/vAdtZXrufrh7++IO/ofDyLawlFwrhUIj3nMZVMJSatn6/jaFAZuLP5Tp7qfwpZQgjjLNriP9D5AO2O9ks6jnReGFMO+AcwqU0AWDQWvHGvaKdv09kwqUw0WBoo05cJn5FMQb25XgzHnY/5PkBXEsWIgrMVl3OJOXaM7aDV1spXD35VVNvolXpCyRC5fI69E3v59PpPMxocJZQMoZKrRB+kucQcCqmCWnMtR6ePiorFC5HpzSqz2PkE8MV9JLNJ8fFAIsDR6aOsdF54Hb3QTfhst3QQJPe3Nd1Go6WRucQccrn8koqh8znUdzg6GAuO8ezgs5hUJpLZJHKpnHxBoAqUaEr4ac9PMSqN2HQ2yvRlohvy3om93NF0B8lskpaSFhRyBeFUmB0jO7iz+c5revNxKZlhZ382vpiPttI2JsITBJNB0WFbJVNRpi/DE/PwwxM/5OOrP84rU68Qy8SQSqQ0WBowqozUW+pFX61CoUA4Fea5geeYjk4jlwqqQolEQomm5Jq817wlOD7T09Ncf/31VFdX85WvfAWv1ys+VlZWBsAtt9xCW1sbDz/8MP/n//wf5ubm+Ou//ms+8pGPvKmKrkuFXW+nOiVI1ovuzWqZYHevVWhFRUqhUMCgNOA0ODk+c5wvXv9F4pk4gWQAs9pMt6ebKmMVK5wr+G3fb6kwVDATneHQ1CGWOZaJyc5/qo7OkVSE3w3/jnWV63h++HmUMiUvj7+MRW1hdcVqNlVvIp/PU2OuIZgMsq5iHU/HnmY0MopT70QhU9Cgb2CVcxW7RncRz8YJJoOY1CaUMiUSieD7I5VIRc+aCmMFY8ExVHIV4VQYqURKmb6MJaVLcOgcpHIpjCoj3zv2vXNCHs/Hs7iWYFAZWF2+mvVV63nZ9bKo1lLJVJRoS1hqX4pMIrsgz+NKpF3rFXrMajPLHMuYS8wRSAZYUb6CTC5DMBnEorFg1VipNFZyT+s9eGIeyvXljAZHub/tfh7vfXxB8dNp7+SjKz76us77+Tp4Ren6YvDFfVjVVrGrWLz+5VI5uUKOYDKIRCIhm8+SzqdFLlOx6GmwNPCNw9/glOcUSpkSs8pMS2nLecn0bfY2qgxVzEZnzyl6ljqWMhGe4NSxU1QaKy96Ls6+CUdSEbrd3fzk1E/o9/eL3bgCBUaCI3z32HdZal9Knjy93l6ceid3ttzJhqoNi65PxS7ZeGgcb8xLMpukxlTDe5a+B7lEzvHZ45RoSnhh+AVmojNo5BqOzx4nmo7y3s73IkFCMpdkPDSOWq6mzlJHLB3DqDLSbG2mzlTH0dmjjIfGkUllHJs+xnhwnD9b8Wdv+fVy/mfT4+5h38Q+IunIglgRmVSGK+iiwigEGL/seplKYyWVxkrMKjP/sPUfeG7oOfaO7yWQDGDVWLHpbLyr7V38+OSPUcqVyKVypqPTbO/fTqe9k07HtZfZ9ZYofF544QWGhoYYGhqisrJywWNFGZ5MJuOZZ57hE5/4BBs3blxgYHito7gbOj5zXNytxtNxttRuIZlPiuGMxTGC0+Ck3d5OqaYUo8rInc13kidPMpOkzdZGoVCg19dLm61N8FdASiqXIp6NA3/ajs6uoAtf3CeoEgwVlOvLaSlp4Y7mO3iy70n2j+/nntZ7+M+D/4kn5mFt5VpSmRSbqzez1L6UTkcn3Z5ufnX6V6gVatQyNa6gi/uW3IcEQd67qXoTTdYmbFobqytWU6GvwKazUSgUqLfUY9faiaQjWNQWvnvsu6RyKe5ouoPZ6OwCWXARI4GRN4xge7losbXwpeu/xJf3fpleb69wLqQyGi2NPLzsYdwx90V5Hq837Xo+l6HcUI5GoWEiNEGFsYKVzpXUWeq4X30/RqWRHncPerUepVzJzfU38+LIi9zfdj9KqZJkThgptZW2XdTT5kI4MXtCjKIootjBS2VTF/hLROflXD4n8KYKBdFIUyaRoZAqcOqd1FvqSWVTKGVKSjQllGpLxaIHXg1rvRCZ3qF38LFVHyO8P7xAebrUsZT3db6Pbx35FlWmqgXfwUvJBSwWKQqpgp2jO/HGvaLrdDARxBvzEkgGaLe1ix264g2zUCic0y2IpCJsH9guRowoZAp0Sh0jwRG+c+Q7GFVGzvjOcMZ3hsG5QdZVrKOuvA5X0EWePNF0FLNa6G5tqt4kGjkWKDAZnqTCWMHPun/GsdljgDDmNCgNjIfH/+jWyxpzjfD9yuUwKA0Cn61QEL53agXJTJJGa+MfYnLi9Hp7qTJWMdc/x7KyZdRb6oln4mjkGg5NH+Ln3T+n3lrPidkTlOnLxOJnOjr9duFzufjgBz/IBz/4wYv+XnV1Ndu3b7/6B3QFUcyOOjZzjEH/oMBvkKvxJXwcnjqM0+AUbr45IRyx6JZpVpnZWreVYf8wvb5e8uRZ61zLgH8Af8JPvpBHp9CJZmMgcFuK44Y/VUfnaCZKKpui19tLIptAValiiW0Jzw09x0x0hutrrmfvxF6mwlNkC1mG54bJ5DMcmDpAu62dL2z+AidnTyKVSomkIth0NhqsDdxUdxO+mI9/v/Xf2TG6g2g6ilwq5/jMcVL2FCqZikH/IHNJ4bybVWbqzfWsLF9JOp9GI9eIXYl0Nk0sE1tQAF1Ngu2VwtrKtfzrjf/KkdkjBBNBwQxNrsQdc3NH0x1X/aZxNpfBrDajkWtoKW2h1lRLt7ubeDbOLv8uSrWl3Oa4jd+c+Q0WjYVtDdvwJ/w8ceYJZqOzKGVKjs4cpX6ingfaH3jNu3131H1O0QOvdvA+ueaTF/z7Ml0ZK8pXcNpzGr1CTyqXQiPXkM6labO1UaopZcA/wMGpg1QaK7mz+U4MKgO5Qg6NQkOHvYNB/6BoKgiCkrDb3b3oyMuutfP+Ze/nxrobMalMSKVSwskw7pib9VXr8Sf84ndwLDjG9gGhOEllU8QyMawaK6udqzGqjJRoS/DEPPys52eEkiHqzHViF7ColnPoHCSyQoZbMUiziOnotCAaOGt9Gg+OI5PIeLLvSfr9gkqyUCjQ6eikVFOKP+6n0ljJUwNPARBOhQklQ+iUOiLpCAP+AVpKW2i3tfOS6yV2jO7AoraQyqXoKutCrVDz0thLIBES3lUyFVqFlpHAiJBk/ke0XhpUBm5uuJnhwDB10jrRxb7SUEmjtZEXhl9ArVCzY3QHefKUakq5o+kOhuaGcAVdnPadBgTH9v0T+wFY6VwpkuOL8SfZXPZNe48Xwlui8PljRjE7KpVNiWZ4/oSfGlMNgUSABmsDv+j5BXc03cHHV32cqcgUkVSE0eAof7fz7yjRlvDuzncLPhoSgaBYLHCKLUyAenO96KlRxJ+iykuvELgSRZ5BOBWm3lLPgckDhFNhVHIVpz2nkUgkXF9zPQ3WBoEnlYowGZ7kjO8Mf776z3n/8vcTSoTQq/SU68vp9nRj1Vo5MnOEfCHPqvJVpHIpTBoTzw08x1xyjlJNKXKJnGhO8DV5ou8JSrWl7B7bzbva30W/v59ljmVMhCeot9QTSUXEm9Z8gu21TIBusbXgNDpf18jq9WCxkZlRZWQiOIFUKmXQP0iJpoRoJsr2ge00WBvEXKzhuWFOuU8tcDMeDYySzCX51NpPvab3MF8pdTaK4oPF8sBAIAQ3lTZxf9v9yKQy+n39uGNubDobZpWZ9y97P788/UsCyQBGpZGPrfwYjx16jJPukzzY8SAvuV7CaRCUSt6YF41CQyqbYiw0RiC1uIKtylzFy+Mv4417+fGpHxNJR0RJfb2lntsab8OqsopdFwkSnjjzBANzA8QzcfKFPCvKVvDZTZ/lt32/xaF3kMqmMKlM6BQ60egQhOKnTF8mdusVUoXoFlxEMps8Z32KZ+NsH9guFj0gGO7NRGaYiczwns73LFA3SSVSUfShkqpQSBU8suIRft37azH3qugyHUlH+GX3L3nv0vfys56fIUFCOpcmkoqQ0QlhoH9s66VVbRU8dySCzF2n1KFX6Pn3V/6dRDYhCjSKyuhAMoBOqSOVf7VbWfzs0rm02JEsFrmXEn/yZuHtwudNRjE7KpvPLpA65wo5Gksaabe102HvoMnaxLMDzzIWGkMqkbJrbBcOnYN+fz8/7/45D3U8RDAZZFvjNro93Qz4BzCqjKjlaioMFdzacCuT4ckFiblvNXOvK4Eacw0mjUn894B/gPUV64ln4sQzcbL5LAqpggfaH+DozFF2je2iTF/GdGSaWnMtNq2NWDomBESWthFKhTg4dRCdQgjf7PX0cmfLnfys+2f0ent5V/u7+NWZX2FSmdhUvYnhwDCFQoFIOoJEImFJ6RLkUsHV2KA0MBIYQavQillM0Ux0QbJ1cXwy4B8QZcctJS18Zv1nWFWx6nxv+w3F6x1ZvR7MH8EYlAaS2ST/dfK/eGH4BTrsHfy85+eiy23R7HN52XLmEnMcnT16Tn5VIptg3/g+bm+8/ZKdkeHiHbpQKnTBPDCH3sGGqg0UCgWmnFPMxedQygXJcLWpmnQuTZ2ljpvqbuK7x77LKc8pgVuGFL1Cz2R4kngmTpWxir0Te3HoHSxzLMOqOje7qnjOmkqa2DW2C5PKxGR4krGg4I48PDdMMpPki9d9kd1ju1HJVOwY2UE4HSaZTYpuv92ebn7d+2vMGjPbB7czEZ5AKhEyBW9vup1f9vySZE7gD+UKOSQSCTUmYfw5n/APgvvz2etTNBUVxRtFFBDUZ+OhcTQKzYICqtjxabA20GZr45XJVzgwcYDdY7uRS+VY1BY67B1CwTt7itHAKJ/f/HnyhbzQOZNrUMgUZHIZwd36j2C9nH99KKVKDCphzckVcpRoSkRVlyvkWiBWkEoEq5RYKoZaqRZ/ns1nqTJWMRGeEKXvMonskuNP3iy8Xfi8ydAr9KL8sih1TmfTrK5YLcrTp8JTDAeG+dGpH5HJZ1jlXEWVsUr02ggmg0TTUY7NHEOv1PNI1yMks0l6vD3UmmsZCQgkQr1Sz9rKtZTpy66at8a1DoPKwL0t9+IKuJiOTpPNZ5FJZcgkMrrKuijTl3FL4y0cnj5Mn68PENKqAVwhF/sm9/Fg24M4dA6+ffTbDAeGRQXXUvtSHl39KP9x8D/o9fYCwo40nUvjiXs47T1NlamKYDLIaHAUrUKLXqVHp9SxZ2wPd7XcxRnfGQoFwbm3QEHkhDj0DnF80uvtxRf3iR29A5MH+NJLX+IrN3+FFlvLm3NirwGcLQ8vklxXlK9gIjxBS2kLhUKBWDqGK+iixlxDNp8llAyhV+pJZpKLPm8im2AmOvOajuViEnizynxRQncxwuDI1BFOuE+IJnVnfGeYCE0QTAW5s+lOjs8eF20XAskAdr0dv8+PO+amw9ZBNp/FE/UQMoWos9Sd95zpFXrGQmN4Yh6aSpqQSWRk81lUchWRtCAKMCgNSCTCMeiUOpaXLefk7Eky+Qx2nZ2XXC9xT+s9IvlaKVNyyn0KlUzFnc138mT/k8JzylQ0W5vZXL0ZiUTC/sn94jE59YJS9ez1SSaVYVabmYpMiT8r8uosagu+uI9QIkSHrQOLxkKduQ6DysD9S+5nj2sPc3Fh/FlhrFjQ8SnVlqJRaAgnwxQoIJcKTuFFgUKukBOjQd6qcEfdnHSf5KT7pOj3ViTJN1gbGJ4bJpgUjBA3Vm9EJpGJRH+pREpLaQvl+nLSuTQmlUkMuY2mo1QaK6kwVKCVa2m3tVNprKTJ2sQ72995zXKi3i583mTUmGuot9QTSArhe9lcls01mzkweQCHzsHPun/Gs0PP8vFVH2dd5TpemXyFZCaJN+6lxlSDXqlnKjzFgH+APa495Ao5VjtXMxQYos/Xx2rnajwxD5m84HFycPIgD3Y8eM2HyF1NtNnauKP5DsIpYceqkCpQK9Qcnz1OhaGCWkstzw4+iwSJ6FBa3J3mcjmkUimPn3kcV9hFKpcSeAq5DEdnj5ItZFlRvoKjM0cBoRUsxjck5qgz11EoFMgWssQzcdEbQyKR8NLYS9xQdwNd5V14416W2peyvmq9OMbq9fQy4B9YUPQU0e3p5sisINH/U/xcF5OHp7IpQeVoqkIpVSKTyESybyYtOPcGk0HqzHUoZArkUjmp3OKkY7nstS2VbfY26i31i4675nfwLtYdM6gMrKpYRbe3Wxzj6BV6IaA0lxZ8pP5gsyCXyunx9LC1diulmlICyQBSqZQOewd2rZ3lZcsZDYyyxL7knHOmkCowqAyU68sFuwxfP/6EXzSitKgtPND2AIFEgNHgKKe9AsfDoXOw1LGU47PHhW5BZIpUNkUqm8KgNIjXx+Hpw9xQdwOfWvspMrkMHY4OjEojp72nebLvSfH7fKFUeavGyjLHMrxxL56YBxBuymq5mtbSVkLJECdmT/DRVR/lx6d+zI9P/RidQsepslNIpVL+zy3/h6G5IUYDo5jUJs74zqCRa1hiW0KPuweDyoBNY6PJ2sQZ3xnyhTzZfJYWa8tlR4O82RgPjnN89jgjgREKFPDH/DzV/xRl+jLub7tf8PUJT3Nv673EMjFmI7O87HqZTnsnm2s2k8vnUMlV+BN+/uvEf/HVW79K/1w/iWyCfp/wX71Szz0t95DIJdjWuI1yQ/kbOt6+HLxd+LzJMKgMPND+AO6Ym0NTh1jpXMmByQMoZUq21m3lsYOPARBMBjnjO0OHvYNgMohOoSNXyDERmiCaiVIoCKnIraWtJLIJftv3W1Y6V3Jw6iCdjk42Vm8knUujlCnZVLnpLb17eb0wqAxsrN4ouLn+wdn6htoboAB7XHtYW7kWi9pCMpvEoragVqjFkWM0EyWcDIuOtfP9LxwqB73eXjZXbxb4BX/gH9SZ65iOTAs3hFwKjUKDQqqgzlyHPy4Q0S1qC+WGcna7dtPp6CRfyAsO3PO4O8FUkFQ2dU7RIz6eCP5RETBfCxaTh8czgoqxUCiQJ89EeIJac61gWAeiIWg4HUan0FGuL2coMHTOczv1TjEf61Lh0Dv4y7V/eV5V12vhZJ1N2lbJVVSbqknlUljVVlK5FFqFVlCKFYQuY7mhnCpTFeWGcpwGpyDjziYZDY3S7+vHaXByZOoIp9yn0Cv0rKlcw2nPaWRSwY/KorZQqi0lkU0wEZrAn/DjCrlotjYv6H7NRmcxKA2U6ctQSIWxUPFG2VzSzFR4ikg6Qr6QF7LaVAbub7tfXH/a7e10lXUxE51BIpFgVBhRK9RE01EiqciCm2eNuYZWWyt58gzNDRFLx8TA5057J2a1mTpLHd868i3RfK9EUyJ2nr528Gt0lXfRYG0QRsU54Xp0BV04DU60Si19/j5urLuR5WXLyeQz1JhqeGDJAzSXNr+mz//NRCQVYSI4wXR0mm8e+SZ7XHtI5VLE0jG6yrr46MqP8p2j3+Hx3se5b8l9+BN+JEhYV7mO8eA4HfYOURU4H532TpbYlrCheoN4veXyOfQqvTCCNV/bbs3z8Xbhcw2gRFPCSudKpBIpzSXNWDQW9Eo9hUKBu1vvRilTYlQZsaqtmNQmKgwVNFobSefTBJNBMrkMnpiHalM1K8pXMBYcwx1zk81nkUvl1Jhq0Cq0xDIx9Ao92cK1ybR/IzF/zBBPx3lm4BlWO1dTYaxAIVPQYesgV8iRyWeoMFQgk8pwx9wYlAZCqRDJXFIkZwKkcinxM0jnBYWKTCLjxOwJ7m29l1OeU5xyn0Kn0DERmmBNxRqWOZbhCrnosAvjCHfMTae9E4VUsego0qwyi8TBxWBQnt8k8I8di71vrUILgDfuxWlwcnjqMHc13wXAaHAUmVQmuJ9rbKx2rsaqsRLvjzMdnRafo9iBuBwPl+Vly/nyjV9+lYiuMtNmvzwi+tlBnS2lLXz7yLcJJoKscq6i292NSWViTcUadrt2MxoUlFPVpmq63UIOWZ25jntb72XX2C6RlNpgaUCv0POdo9/hvpb76PH0cHDqVQd8q9rKEtsSEpkEx2aO0WHvIJ6J01TSxKB/EBD4SvWWeixqC1WmKvxxP1KJlHg6To2pRux4rq1Yy9rKtee4Cq9wrlgQK2FWm0llUxQkBZY5lrHMsQyH3iEWgCCoieb7+Lx36XuRSWQMzg3yo5M/QiYRrtf9E/upMdfQXNLMcfdxVHIVtzTcQjQVZTg4LIR+psLcUHsDDdYG9rr2ct+S+4hn41SoK9jWuE3skL0VUDyPJZoSvn3k24yFxgilQmgVWgoUODZ7jAIF7my5k/8+/d+irULx+pmfw3ZOqPKWz4uKwLf65urtwucagCvoIpAIcHDqINXGavL5PM8PPU88Exft4pssTXxk5UfIFXL88MQPeXrwadpK20jlUqyvXM9tjbexc2wnT/Y9yUMdQgyIVCLlHa3v4EenfkSPp0d8vVvqb8GsMV/TbsBvBOaPGT6z4TM8dugxft7zcxosDYyHx0lkEmys3sj+if1ibECDtQGJREKptpRYWnAzLYb1JbNJpBIpdq2dTrvgXVEoFNg9thuH3sFHV3yUanM1G6s2ksll2De5j1JNKb64DxBulLc23Eoim1h0FNlmb6PF2sKBqQPnvJclpUtQypV/FATMy8Fi71slV1Fvrufk7Ene3fFuQskQTw88zSrnKm6ou0FwCTbXEkvHACF/Kl/IiyNQtVyNUWVcdOxyqSjmSV0JzP++RlIRpsOC7PsLm7/Ad45+hz5fH2aNmcnwJA6dg057J/vG9yGXCst8maGMg5MH+fdX/h2rxopEIqHeUs8nVn2CWmMtPzj5A+5puYdeb6/Y+ZpLzlEnqeNd7e/iW0e+RTQV5fDUYW5vvh2VVMVYaAy9Uo9KrsKoMnJr4638+NSPKdWWIpVKiWaiItH17KKniOLILZQMYdVYFxhJGpQGNtds5qMrP8rysuUX5UVFM1GWlS1jwDdAt6ebXD4nWkuAoCjb69pLo7WRDVUbyJNHK9dSZ67j0PQhjGrB7LbJ2oRRZaSl9K3DmZs/utQqtJx0n8SgNJDNZ8kXBHVbrpDj+Oxx3tX+LvKFvOjtNv/6mZ/DFkgFsKgsdDrO7/z9VsTbhc81gGgmKqbmOo1ODkweYDQ4KoxZZEIe1FBgiO0D27mp/iYMSgPrK9dTZazixOwJnjjzBAcnD9JY0kgmn8Ef99NgbeC6muvOKXrUcjWTkclr3g34cnEpxmqLYX3VeuRSOUtKlxBOhXmw/UGOzx7nucHnxNZ+vaWejVUbOeM5g11nJ56J44/7kUiFXCq9UketqZbW0laarE0cnDrIWHAMrUKLUW2kylTF3+/8e5xGJ1vrtvLoqkcJpAJ8yPAh4e8v0jJ26B18ZsNn+NJLX1qwG1tSuoQPd30Yd/ziJoFX4lxdCzj72G06G6XaV4tIEMbD97fdz++GfsehqUM0lTSJRcwa5xqCyaCoaNmg2CCSiS9Hiv9GnMvx4Lg4YrVqrKytWMtL4y/R6+3lk2s/yfDcMFKk3NtyL8FkkMPTh8mTJ5FJsLlqM3PxOcbDgmNxIpMgmokKfBeVic01m/ll7y85pD9Ea2kr66vWi5EPs5FZ/HE/5YZy0S262CG9telWdHIdSx1LqTZVk8vniGVijAfHSefTKKVK6i315xBdI6kIvd5exoPjIBG6UdlclhOzJ7BqrUyEJ8jkM0TSwnmdv15diBdVvIE79A7sOjvuqJvJ0CS3N92ORq5BipR0Ps2RmSMopApKtCUUCgUqTZVk8wLvrlRXSiafQS6Rc2T6yDVlF3EhzB/3RlIRMY8OhBy7omEhQCKTIJvPopVrUcqV56wbZ+ew/bHh7cLnGoBeoRdTc7P5rGjmFUwGcegdou9MKpcilPr/s/fm4XHV59n/58y+79JIo12yJEuWbNnyvgDGbAEMSSABQigkDSUJeWmbX9KEpG1ImqVpkjdN0qbN0tA0ZHsJDYvZgw3ebSwvkixb+77MaDT7vp3fHxMNFjZgCLGxOR8uLtDM0ZkzR9Kc+zzf57nvILOxWRrtjUyEJgglQ6SyKaYiU2ys3AjAMXf+DtekNp0mespN5ajkqgvCDfjNcqbQR4PSwKaqTQDoVfrXvSBlxfyHdpeni8Mzh/lI20dIZBIksvkG6Egywvbh7QQTQT6z/jO8MPwCfxh6nlwui13noNpSzXX11/GP2/+BTdWX0OhoxKFzkM1lkQky/jD8B9pd7ehVei6pvITx8DjX1V/3psTKyrKV/MsV/8Ixz7F8VIbajFFtZCI08aZMAl8rIPNCiDJ5rWO/pOoSdo/tLoifrJhFRORfrvgXJsP5yUitQotKoaJ3rrfgO3LqsuJbGcU/F+dy3/g+fvjyDxnwDRT6WkoNpXxu4+ewqq30+no57jlOrbWWwzOHqTBVsNK1knQujU6pw6gyctR9lDVla4hn4qSzaYxqIzkxx1hwjGwui0KmwBvzFkbh1Qo1oiiiUWhY6lyKRW0pnFuFTMFYaAyFXIFda8eisRBKhmgqauLeVfeeUTzO9574k34ePfkoT/U/RTKbxB/3U6wvZmvjVuTIGQuMcVXdVTw3+BzpXJpMLnPWn1fz7t0Amyo3sWtsFzORGbrd3ax2rUav0mNSmxD++I9OpcNlcKFX6jGpTFRaKgnEA3RMdzDoHySTy1wQeXmwcLnXqDbmm/hz6cIEllltJp1LkxWzaBQaaq21OHQONtdsvmBueN4uJOHzDqDKUoVZY2YqnO8tuLT6UvaM7WEqPIUv7sOoMlJrrcVldCEX5NRYauiY6iCZTbK+Yj2d7k68MS+ikLccr7fXc0XdFYwFxqgyVxV6ffQq/QKfiwvBDfhsOdVYzaA05O3U/+jrsXN0J8X6YrJilr65PpYWL2WRfdFp+zAo8yX7Rkcjvd5exkPjPNb7GLF0LF+R++P5z4gZvr3nW/zbtf/GFbVbSGfzd4dT4Sl+2/lLSoyl7Bnbw2hwlHJTOa3OVg5P523wVXJVoWdr3m33zTASGOH54eeZDk8TTARJ5VK4DC5uX3r7WQsod8TNzw7/jKnIFCq5CrPajFqhviCiTF4v3HPn6E5uWXILs9HZ0y66TcVNLAosyn9v4HTfnLf6fsPJMJ0znVjUFuSCHKPaiEquYtA3+Ladyy53F3+//e8Lk4KiKGJUG5HL5Hx151f5l6v+hSpzFcWG4nzjs6mSAf8AoWSoMOa9vmI9Tr2TE3MnSGaSGFQGQskQKrmq0AQuCAJd7i4uqbqETk8n7qgbhaBAKVdiVBn5h0v/gT8M/qEgnqKpKP1z/RhLjXz5pS+zqXITe8b2sLZibd4M75TK17zbs8vg4oXhF3h28FmiqSjxTJxUNsWQf4gnevPLkPX2enaP7WZZyTIOTR0qTNu91udVOBlmJDCSt6fIZlhZupK943upMFdwXf11uCNu7Fo71y++nt2ju/HFfKwpX8OgbxCrxsqa8jU81PkQNq0Nm87GF7d/kXJTOVfVXUXHdMcFkZcHC5ertAotbSVtdEx1UKQvYi42l/cokytZXboak9rEA5c9wJqyMy8/XuxIwucdwKlTG6lsipnIDJuqNhFP56s8OoWOYn0xnqgHT9TD0ZmjGNVG0ok0e8f30lLcwpKiJWyu3sz7Fr+PNmcblZZK4qk4Vq31NV/3jbxGLiTGAmMFN9mhwBBahZbN1Zvp9nQjCELBet5ldHHj4hu5MnPlaanfp94ttpW04dA5UMvVZHNZVPI/jkPnUlg1VvyxOSZD4xzsf4lG11Ie63uMBls9DlFPLpu34HdH3bijbhrsDcxEZqgyVzEZnqTOWnfWSyGnujSbNWa63d3sm9hHJpfBrDFTpCtCJpPx7OCzuIxnHmWfX4aJpvO9LF2eLnaO7Sw8Px/rYNFY3vFRJq8X7umL+5iNzp4Wktnt7i4YGr6WMHqrdHu6eXnyZaaj06jkKjxRD8lMkjuX3UnvXO+ffC7DyTA7hncURM+8L1Q0EiWRSWDRWDg6fZRSQ2neu8vTzXUN1/Hs4LMM+gYJJoMo5cpCwOhvu39LVsySS+YDUFVyFb3eXqrMVawsXcmO0R3sHN1Jq7OVZc5lyAQZLqOLTVWbKNWX8jfr/oanBp7CE/EwE5lhPDTOc4PPAZDOpen0dPK7E79jS+0WDCoDNq2Nq+uu5vmh51HJVMzF5hjyDzESGMGhcxBKhgoBzMOBYdpL23EanDzZ/2R+WVJlRCC/XHOmz6uRwAj7J/bT6e4sTE2a1WaWOpdSbipHLpMv+DmvL19fqEZlc1li6RgDvgHuXX0vCkHBF1/4IulcmuHAMM8NPsea8jWc9J68ICrkp2bVjQRG+OSqT/JvB/+NI9NHcOgc6FQ66q31fGr1p8jmsu9a0QOS8HnHMN+0NxIYYSw0RjAepMxYhlqhLmyjVWrz3hqIhJNh9Co9CpmC8dB4/mJqquLSmksL25+tl8jFQCgZKjRFquVqaq21bB/eTr+vH4vGQrurHZPaxDH3MXxxH3PROe5U3Lmg8vPqsWGDykBbSRsnvSfzfRF/dPVNZpOsL1vHcvtSUlNT6ORmSlIapvqPYTDamI5HSMny3if+hD8/Mp0MMRocpc5aR1NR01lVZ+ZdmucvEtFUlNHgKGvK1uCJerBgIZFN4DQ4UclUjAXGThNzpy7DlBvLOTxzGIvGwkxkBoWgQKPUkMllCg7Gr441eacwL976ff14oh7M6rz7diARKCz3ahQaRoOjhYvc6y1BvR3C7ujMUR548QEOTh5EEPJLJ+WmcjZWbuTnx37O7Utv/5PP5WhglNnYLDqlDqVMiVVrRaPQkM7ml4DmTfi+d+B7rClfk6+c9D1Bc1Ezl1ReQjAZxGV0oZFreKjrITK5DIIgkMwmMalNiKJIi7OFrpkuvnjJFynuKKbf148gCEyFp3DoHFxZeyUD/gHWVaxjNDDKaGCUYf8wL42+VDjOla6VPNX/FEa1EX/Cz2x0FoPKgC/u45edv8RldGHSmDgwcaAwBAB5A8J552eFTEGWbGGpXxAEaqw1hJPhM35ehZNh9o3vY8g/xNP9TxdsCgAa7Y3c037Pab1F80uZ839bHVMdjAZHgXwo631r7+M7e79DLBNjODDM5TWXF773nV4hf/Xn17B/mLuX3012eTa/rKfU5f8ugiO8Z9F73rWiByTh847CqDbS6mzlHvU9Z/zAXrtoLfsn99Pl7qJ3rrdQom60N/L+pvfj0DkW7O/t9BJ5p+OL+xgJjlBmLCvEOBydOYpFY8Gf8COKIqPBUYp0RQz5hwinw+wa31VolpxnwZh7OsYXNn2Bnx7+KYP+wVciImyNfHrFvVR0jLDPM01GpiAc+mNTrVqNzzOA3lZMrbWWAd9AYaIklU2x0rWS21pue8MPnZnAJM/2PkWZwUWpoZSsmMUb8/LiyItUmaswq838ovMXKGQKivXFrHStZEnxK6InnAzTP9fPgckDKGVKyo3lmDVmtvVt45LKS+if60chU+DQObBqrYSSIYr1xbF5H58AAHo+SURBVLiMrnfcZNipAubU7B+FTIFKrsKf8PPy5MsIgkBbaVuhSjoTnSkYF87bALxdy3kDcwP8uOPH7B3fuyA1fSI0we6x3dTb60ll/vSYg0g6gk6pI56OU2wpZiw4hj/hRyEoUCvUBQ+fk96TyAQZK10r802rSh1Og5PIbISXRl9CISj4SNtHEBHz5+qPVZSlzqW8f/H7OThxkBWlK7hn5T0M+gcJJoKYNXmHXl/CV+gfmxdyicxCl+siXRF/GPoDTY6m056fikxRaiwlkooQS8fQKDRkc9mCOaJFbUGtUOdvWCy1VJmruHPZnTTaG+mf66fGWnPGz6vRwCg5McfvT/ye0eBowXB0pWslxfpierw9HJw8yOqy1Qt+1qcGyGZyGQQEtEotY4Exnux7kgcue4Dfn/w9h6YOLTC0vBAq5GeaeivSF+GNegmnwxiUBi6tuvRdLXpAEj7vSF5rZBPg4NRBbm25lUQmQSwdQ6fUoVFokMvkZ+zCfzu9RN7JZMQM9bZ6hvxDLHMuw2VycWXtlWgUGvwJf97OPhGk0lwJYUikE8xEZs64FPHqBtcGe8Np58/mjRMPnWRr+RXsywzhslQwFRgnI2ZRqtSYFPkL3paaLawrX0eVpQqrxsr6ivVvWO3JBQKF3KNB/xAmrZlULk21pZq7V9zNwz0Pc2XdlXnDuFyaaCrKsH+Y5wefp62kjbl43p2139tPlixmtRmT2oRaoeayqsuQC3KWOpfiiXrwJ/zMxecwq/M9ZgqZAkEQ2DG04x0RguqOuNkxsoNsLkupoZRyUzlP9D3B/on9hRFdh87B1oatHJ89TsdkB96ol3p7Pd6oF71Kz5KiJfTN9TEZnixUIf6UJahwMi+aRwL53DwBoZAZlcgkmAhNsL5iPfFM/E0bhb46gFYlVzETmaHd1c6R6SOEEiEqTZWY1Pmx6yVFS/BEPbS72pmLzdEx3UF7aTuP9T7G2rK1/LLrl/jiPswac36AomYLty25DV/CR5WlCoPSwHBgmK1NW/ll9y+ZCE9QbizHqrUWRsmvqL2i8POfF3IahWbBcRfEn0x+2vNKmZKcmCt47ti0No57jhNOhSkzljEXn0Muk2PWmBnwDRRu6mSCjL9d+7e4jC7qrHWnnatIOm9yeMJ7gqyYRSlTsrVxKwcmDrB9eDtapZaJ4ATHZ48vaDQ/NUBWKVPi0DlIZBKkcil6vD0ks0kmQ5NsbdiKTpH3grqQKuRnatC/2D7v/1Qk4fMO5bWmS65vuJ7Hex8nmU3mpzuySfQqPVsbtr6min87vUTeqRhUBjxRD+9reh9P9D5B71wv3bP5ibbF9sV8qPVD7B3fW0hjVslVxFKx1+wXOZUznb8cEVQtLbi6u3mProaGlS08PvQ00wSJ5RIoVFrKzBVsqd1SaFr3J/xoFdozvUQBMZlkemaQX3T/kqHAMMlsklQ2jVKu5KT3JKIoUmerI5aOFZZ3RFFErVCTzqUZCYywY2QHwUSQGlsNj554FHfUTSgZotxUjiiKXN9wPStcK+ib6yOQCDAaHKV/rp8yYxlX1l7J32//e9LZdOHu/o2mWt7utPj5Za3pyDSP9z7ORGii4FadyWVYXbaaPm8fI8H8EuBwYBiT2sR7G9/LSGCEQX++sXg0OEo2l6XB3sAHmj+AVWPlyMwR6mx1f9IS1GhglEA8gFquRhCEQpDlvPiZ/++bHWmfX345tTq7qWITAgI3Nd3EZGgSl9HFRGiCsdAYDbYGSo2l/PfR/+ajyz/KswPP0uRoYlvfNvwJP71zvQXbhWAiSM9sT95tV8yyvnw9W6q38GT/kxhUBr6151v0zfVh1phJZVP0DfYBMOgfRC1Xc2DyADJBRpEuH+kQT8cLS7mQFxAmtYlkJolVY6VIXwSAN+aly9OFWWPmuOc4M5EZSg2l3LfmPn7T/RtKDCU4DU6UciVNjiYEBH5z/DdoFVpmIjP8suuXbKrcxM6xnadNyalkKkLJUKGat7psNfvG81YgAgIyQUZGzJxW5Tt1yUohV5BN5UWTTJQhl8mRCTJWl63mhPcE9fb6i7JC/m5HEj4XGG9k4PWuRYSNFRt5duBZBnwDVJgrsGls+BP5bKFnB5/luvrr6PflS+fzOVnz5oNvFpnBgKK6GjGTwZxKsSKapbHhowxponRE+kCpQCDfJzH/wXw2wbC5QICTiXGmI1MkMglEQKfSkcgkCCaCTIenuaT6ErK5vKs0mXxeUpOjCbVCzVQkPwlYoi/hmYFnmInMEEgGyGQzBBIBykxlPNr7KJXmSro93ZjVZkoNpTxw2QPYtXZ+3PFj+nx9LCl6Zdns9aZaznSx/lPGf0cCIxycPEgulyv0miyyLSKRTuCJeTgweQB/ws+l1ZdimDZgVpsJp8JEUhEyYoZ+Xz/9vryjcDaXFyG9c708M/gMrcWtVJgr6PX2opKp3uBIXptIOlKoss57B6nkKnJirhByWWOpYXnp8rPe56nLL6fy7NCzXLvoWgKJAFsbt+Zz+uKzaOQawskwT/c/zUgwL3YbHY1o5Br6ff1UmivZPrydv1j2FyQzSSbCE/mIC60Ng8rAXW130enpRK1UI5PJOOE9kXc7jriJpqKUGkoLzfM/O/IzDk0fQqvQUqwvZm35WpaVLCOSinBw8iBVliqaHE3E0jGmwlPU2eoKzsovjryIRqFh2J/P95ILcnJijpOzJ/na5V/joa6HmI3Nks6m2TW6C0EQWFm6kt8e/y3NRc2UmcpAOPMSpVKuRKPQYFabCSaDlJnKCn1H82nieqUeYEGVb37Jat63xxvzEklFMKnyVVGNQsOl1Zey2rWaclM5H13+UUn0XGRIwucC5K14jVzsuKNuVpWt4uGehwuNmY32xsIFqdPdydr2tfgTfpY5l5HJZYikI5g0psLUz5s1nlOUlCAzGMh6PIjJJGa1mpXFxRRnGs/Yo3U2Y9NiOk0gFSKbzWDS5Je4Mtk/BprKlcQzcUwqE5FUhCVFS1DKlDiNzkJ/VzqTX3IQEfHGvQgygVQ2lW8czWXxxX30zfXRXtqeT4hX6BgLjmHX2dlcvZk+X/5O/9V5YGeaanmti/VbHf8NJ8McmDhAMpNkW/82Hu99nJyYIyfmaC5q5qamm+j2dDMWHKO9tJ3+uX4aHY0M+AbyKd0yOb6Ej1AyhFljRi6TF97HSGCE1uJWTGoTVo0VpVx51sc1f2zzNxvxdH5aUqvQsqJkBYdnDuONeZEL+WWe9tJ2rq2/9k2991OXX05FFEV+2fVLvnnFNzkyc4SHex4mm8vmDQhTEVzGvAdNMpNkSfESAokAGyo2oFVosWltTEemuaLuCmKpWKFaFkqGCCVDhaDP+Wm/+UpVMBmkuagZu87O80PP5ys7cT8xRYxgMkg8HUej0PCJlZ/g/U3vZ1vfNjqmO2gtbiWWjjEWHAOgf66fHDnanG38v57/h1qhpsRQQiqbIiNmeOTEIxydOYrT4MQX9xFJRZiJzJDNZdlUuYmR4AgTwQnk5M/rq5coY+kYpYZSNldvZsfIjgW9Via1iXJTeaHyBK/43MwPfXS6O5kOT+f7p/TF+SqptYbD04d5ou8J3t/0fpqKmyTRcxEiCR+JiwKj2siR6SNoFBqai5rJ5DLIBBm11lqiqSg6pY4mRxNFuiKOzBzBE/HwyVWfZFvvNkThlcytN2s8JzMYkBkWNrBWY3jLVTlBqcSiMhGIzrHYsZgT3hMks0myuSxWjRW9Sk+drY4vvPAF5DI5LoOLZfplqBVqbFobLqMLpim47qrl6kIfilFtZCYyg1quxqqx0uxoxqAyEEgE6HR3sr5ifeE4FDIF0XS00NAtF/Ki4lRe62INZxZKb8RoYBS9Ss8PDv7gFW+ZPzbh9sz2YFKbaCtpY9fYLrK5LE6Dk3g6XjhetVyNQ+coeM+Y1WZGAiOkc2lkgox0Lo1KrmJL7ZbC/s+GU3OkinRFpHPpvCt00008PfA0y0uWk8llSGaTVFuquaf9HpaVLDvr/cNrTwypFWpERJLZZL6X6I/5cAqZArvOjlGdDwiNp+P5c6Qy8eLIi+iUOkqNpbw08hJOg5Plpcs5OHGQGms+GHdV+arCa8xXRU7NnlPJVQULiA2VGwrmqTJBhjfmxaq1cknlJRyfPY5ZY8asMRPPxNlSswWdUkcwGaTB3sDzg8+zrX8b6VyadCrNbHQWm9ZGhbmCl0Zf4vjscSKpCCPBEawaK432Rvrm+lheupyTcycJJAJ5z6JovkH91CVKvVJPn6+P6xuvR6/Kh8xWmisREFAr1CwpWoJB9crfplGZN1Gcjc7y3sXvpdpczY6RHfTM9uTNFx1N3NZ6G9/c/c189EdwgkdOPIJFa6HaXC1V1S8iJOEjccHjjrjpdndj1piptdZSbi7PX+RkKqbD04wHx0nlUsgEGe6om2pLNWWGMoYCQySyiQWWAW/X1M9brcrJLBYW+ytocDTSOddDibEUh9bBTGQarVLHYvtiyo3lbG3YijfuRYascHd/Y+ONeRM2rQ2lLF/RUMvVGFQGEpkEOqWOrJgllAoRTUeZCk8VTC01aArLfvP5PplcBrUi72M037Q6EhgpiMI3Gu99s+O/kXSEYCJIt6ebRba8zYAgCMjJX/R6vb2sdq1GJsiwaq2FcE6FTMGmyk2ks2kGfAMEEgGyuSx6pZ7momYmQhN5IWAoZZF1UcES4Gw4NUfKZXTxwtALeGIeaiw1BBNBVpSswKwxE06GUSqUbKrYRJ399EbcN+K1JobmJ+8QoNHRiFFlJJzKW1k4dA5MKhNGtZHZ6CylhlI6pjooM5Ux7B8mk8tQbipnLDSGMC1wzaJrSGVTeTPUU9LmNQpNfoLqj0uE871LiUzeKsEb8xJNRVHJVYiIZHIZwqkwfb4+psPThb+frJhlJjqDU+9kODBMTsyxb2IfckFemKxLZBKY1WbcUTfJTDI/4SVm0cg1helLlyl/bDkxR6mhFF/CR5GuiJnozIIpufmbiWH/MG0lbYUon9lofvy/xFBS2Nahc6CQK3jw6IOFSuyQb4gKcwUfW/ExxkPjTAYn+ebub1JhrmA8NE6Xp4uZ6AyN9kZ25HZcEK7mEmeHJHwkLnh6PD3sHt/NJ1Z+gmQuyS86f1F4rsHWwE3NN9Hr7S2IAQEBh96BQqbAoDJQZ6sjlUkRToULzrvjgXGaned+ikNQqyktqePTK+/j6x3f5fmh5wno/ASTIUqMJRTpi7jniXvYVL2Jy6ovw6axsb5iPfX2+oJQu6HxBvaM7cFlcDEWGsvfvSt0WLVWcmKOZcXLmI3NstK1El/cV+hR0Sq1NDma8j4xuTShZCjfO5PLUGGqYMA3QCqbwq7NVxreaLz3zY7/GpQGIqn8HX0sHSv0bsyLn3gmjkFtYEP5BhY7FmNU5x3Nnfp883m/t59GeyNHpo+QFPMVionQBFWWKhSC4pX9asxnPW01b5hYoi8piJ41ZWvYObqT2egst7fejkFlQKlQopar8ca9FCeL37Rofj3PreaiZjaUbyCUDHFD4w1MhCaQCXnBKyJy0nuSclM5oWSIF4Zf4LqG68jmsgXn8LHQGFqFlq2NWxnwDfCBJR8oCOT5JabbWm/jt92/pWe2p9AwX6IvYZFtEfvG9xUEj0KmQEQsRD4EE0GKDcULjjeRSaCSq5gMTVJlrmI0OIpGofljz5qIQq7ArDYzF5vDoXOQE3OYNWbEhEggGaDaUo1Zbcahc7ChYgOToUnKTeWn9cid6lszF58jkAhwec3l7BnfU5hihHwV9z117+HJgSdPG2bY1rcNf9xPPB1n9/huyk3ljIfGCSVDlBpKUcgU+f66ZPAd72oucfZIwkfigieQDNBS3MJXXvoKJYYSqs3VeKIeBARGg6McmznGFzZ9gS+/9GWi6ShGlZE1ZWtoKW5Bb9Lz0yM/pXeuF7vWjlqhpsJYgU1rw663v+Lyew5DPGUWC6u0a/lb5d+ytnwtiUyCcnM5h6cP85OOn5ARMzw3+Bw11hruXHbnaRfx+bDNRbZFPNr7KO6IG1/MhzvqprmomWXOZewd30uluTKf32Yup8ZSg1Ku5K/X/DU/OfwTXp58mdnYLCIiLcUtXLPoGv77yH+zpmINLqMLm86GVWulWF/MoG8QQRAK4+VqhZoGe8ObHv+tslTRM9tTGOGus9YxFhwrLLEoZUpK9aW8p+497B7fjS/uQ6vQMhWe4sXhF9lSu4Wbmm5CLVdz1H0UURRZ6lzK2vK1WNQW7Do7CLChYsNZ/xznl1ZERKYiUzQXNbNzdCdzsTk+tfpTTIQn+OqurzIRmkApV1JhquCGxhv4yxV/+aaqA2/kuTVvVXG3+u4F/WMToQlKDaVsqd3CMwPPkM6lebLvSdpL29lQsYFaay3rK9YzG5slmUnyf1b/nwUCeX5f4WSYDy75IJA3SrVpbQz7hzk4dZCsmC2M7AOFhnidSkcql1rwPpKZJFllFnfETSgR4rLqy3hx5MWC+BEEgUpTJRWmCuQyOVOBKcpMZaTEFBa1BaVcSWtxK1XmKmZjs/TM9tBU1ES5qfyMPXKvHvYwKo1c33D9ae7cZ3L8LjYUU24sZyYyQ0txC8rJ/GTaeHAci8ZSeC2NQkMwGXzHu5pLnD2S8JG44LGoLWgUGg7PHEYpy39w1lprC8tdOqUOd9RNo6MRg8LAirIVJNIJ5IKcZwbzF4tKUyWeiIfNNZsp1hXT5e5iOjxNNpdlOjJNOpc+pyGeglpNRszw6+5fMxubRS7IWV6ynFtbbyUjZjCrzdy8+ObXrFwY1UbWlK+huai58KEfS8fIilkeP/k4ZcYyQskQGoWG1SWrsWgtuCNu/ufo/3DLklso0ZeQzCZRypXMRGb46eGfolPqeH7weW5ouIEHDz9IW2kbf7H0LwrhmWqFGn/KT0txC3e3313o7znb5HKj2sgy5zLWV6xn7/heBv2DlBhKqDRXopApaC1uZU35Gr704pfYN7GvMEJea61lbfla9ozvYUPFBq6tv5arF12NUWVk0D+ITJARSARI5fLVqvkL+Nkwv7Qyb8hnUpsYDY5ya8utHJ05yq6xXQwHhgsTgrOxWbb1bUOv0nPvqnvflFA+G8+tV1/o46k4vXO9TIWnChXNdC7N/sn9ANzWchtPDzwNwEeWLaxWnGlCNJ6J89jJxwglQoSTYa6rv4652FzBFdmsMbOpchOXVl9KKBEqLJnJBTlapZZsNksym6TSXMnasrU81vcYNzTegFmd7wEqN5XjMrr4ccePeV/T+3h24Fm6PF2UGEryzcWGGlaUruA3x39Dib6ErY1bGfYNs6ZszYLf9TNZKLQYXhEkr+4tO5N9gUFlYH3lek7OnsSkNmFQGVDIFFg0FirMFajkKlwGV6HP7LX2I3HhIQkfiQue5uLmQvZUOpfm8MzhwnMOrQOj2pj/ULXUUGet48cdP0aj1LC5ejORVITF9sWoZWqqbdX899H/5vjscbK5LHadnSpLFfetvo+RwMg5D/F06p2sq1jHgYn8CHenpxM8FIIVLVrLG+7j1b1G4WSYSnNlIdCx1FBKPBXnSzu/xHsXv5dgMsgxzzF+2PHDwvdo5BpMalMhBT6cCrO2ci2/6PwFJz0n+VDrh9hYtRFBEKi31iOKIkemj9BS1FIwU5y/205mkihlSq6suxKb1kaluXLBuWwsauTvN/0939n7HY57jyOKIjkxR4O9gY+v/Di/7vo1+yf2E06GCzYBg75BoqkoS51LkQtyZqIzuAwupsPTbB/eTiKTQK/KN/C6DC5UClVhue6NmM8/mhcVsXSMSCqCXWNnKjTFgG8AERGZICOXzaHJ5XtVTsyeeEvVgbPx3Dr1ZxpOhuma7SIr5pu95zP9gELVBKC1uJVWZ+vr7gug292NQp4PBS0zlRFJRbhn5T2ksinS2TRqhRoBAU/Ug1Vr5falt/P80PMoZUp+2/1bhgJDmFQmFjsWc3T6KLe33s623m14Yh7MGjNP9z/NuvJ1KGVKHj7+MOvK13F9/fUkc0k0cg0ZMYNcJuf21ttRypTMxmapd9RTb68vHONbsVB4LQftEkMJBpWBy6ouA2A2OltwBHcZXAt8uF5vPxIXFpLwkbjgcRqctJW0YdXmx27nsWqtVFmq6PJ0YdKYMGvM/Ljjx1RZqtgztofp8DSd7k40Cg2fXf9Znuh7giMzR9ApdSSzSURRpGOqg/889J/csfQOjrqPkswkz1m5u8pSRXNRc8ETJZFJoFFoKNIXUWmufNOuwPBKLMqpF8Hfn/h9wbp/LDjGatfqBUsbiWwCkrBIsQi1Qo1JbeKHL/+QydAk966+F7vOTiwdw6DMm0gWG/IX33kzxXnRE0gE6PX2Es/EGfANcEnVJaRyqdOqaCvLVvKv7/nX0yof3qiXwcDgAtM6yDfVjgRGWFu+trD0YtKY+EXnL5iOTC9ocp2KTLGtd9trCoEzna/5nqlifTHZXH7ZJ56JF8wK56et5vtgcpk0iVSMSDz4pn8+b5ZT+1wANlVuYtfYLrQKLRsrN/Lc4HO0FrfyhUu+cEZn91dzatClN+bFprVhUpt4ZuAZAokADfYGzBozNq2NrQ1bqbJUYdFY+M7e76CUK1lStAQBAW/cy3Lncn7b/VtUChUGlYGe2R7cETcDvgE+tuJjCILAgckD9Mz2UGerw6a10ehoZCQwUhClr7aBeKsWCqe+r1dTaa7k0upLubT60kLMC/CWfLgkLgwk4SNxUdBS1MLm6s0M+4cL49fxdJwh/xArSldgUpnwxDyo5Cr2jO1hIjTBHUvvYFnJMrK5LC6TCxky7Fr7K6PUf+xbOTJzhFtabqFntqeQ+n4uhM+pF7VTx3LP1hPobJlvQtar9ASTwfxdtq2efl//AvGjV+ppLW5FLsgZ8g3x1S1f5aeHf8qh6UOFfa1yreIrl30l33vzRzNFyFd65kUPwHRkGp1Sh5gWebr/adaUrVnQoH2mysdwYBgZsgWiB/IZaFqFthBbABBLxZiOTOeneWQLP+amIlNMRabOSvjAKz1TpYZSdo3tYkXpCnQqHXJBjoBQ8EhSyZWI2SwZ0qhFOZpAlFwggMxiOavXeau8esnqo8s/SjKdZCY2w7WLrqXV2XpWogdOD7qcjc3ii/u4tv5aqi3Vp6WdQ75K4kv4SGaTC7KtlAolPd4eSgwlCAjMRGYASOVS/OTwT7h/4/2sLltNLB2j1dlKraWWIn3Raf05p/6ev1ULhVe/r3le/be0wrUCm872ln24JC4MJOEjcVFQZ6/jU6s+xZdf+jId0x2Fx1e5VvE36/6Gzpl8ZafEUMLO0Z3c2XYnBycPFpa1RoOjTIWmeN/i9/Fwz8PkxBypzB9TohGIpvImb/FMnMnIJOFk+Jx8CJ4Lp+75iaJMNkOjvZGO6Q4uqboEURQZCY4A+eW1UmMpDfYGYpkY37jyG2zr20Yim6DSVMlEaIIcOV6eepnvHfgen1n/mYLHDkAwESyInnlPoQH/ANuHt5PMJNkzvodaay23t95Oo6PxjMdpUBrQKXVnvHOPZ+K4jC4W2RaxwrWC8cA4JYaSgujJ5DILPImS6eSZXuI1MaqNBa+Yj7d/nKnIFAa1gXpbPQP+AeQyGWq5mmw2g9VQwmJTDRVpPeneXlRtbQhq9Ru/yJ/A22lq+mZ/5yLpyBmdsFPZFKIoEkvHTotqSefS9Hh7SGfT1FhrKNYXF47/9Zb6/hQLhbN9X5I7/sWPJHwkLhouqb6EHxt/TJenC3/Cj01jo85ex+Dc4Ctp1akI19Rfw/bh7Qz4BnDoHERSEZQyJcOBYfZM7GFdxTq63F1MhacK/iOn9ogk0+duuQv+/E7d8xNFfxj6A9fWX8vTA0+zf2I/tdZaVpevxqA0UGurxaKyUGmp5JETj2DVWHms9zEgXzFqLmqmZ7aHHDm6Pd3MxedYZF0E0/nXOHX6x6a10WBroNnRjFPvxKKxoFVo+Z/O/2EiNMEXNn6BRfZFpx1nlaWKaks1LUUtdM92LxA/y0uW02hrxGV00eJsQSVTYVQZiWfixNPxQmyHTJAVHj/Vk+hs0Cv1TEWmEBEZ9A1yRc0VOPVOHj35KEO+ATLZNE59Mdc3bOXyis2cDE9jkGupCrixOM+u4vJO4c38zhmUhkKS+7y4hbwJ4nwV7tVVN8jne4WT4cI+zoY/1ULhbN+X5I5/cSMJH4mLijp7XcFAbufITv766b/myMwR7Fo7leZK7Do7l1Zdyra+beTIMRubxaQ2IRNklJnKmAxNsr58PZ0zneiU+WTm5qJmkpnkgmbHi226o62kDZvGxn+8/B/c0HgDapmarJhFJsiIZWLMRmZZ07iGnx7+KVkxi0H9yoUqkAxACMpN5Xhj3rzBXTJMvb2+UJ1RyVQICFi1Vla5VrF9ZDt7J/YyGhhlIjzB2vK1fH7D5/npkZ+ya3wXToPztDtso9rI7UtvZy4xRyqXKpgsVpmruKruKixaS6EHo95ez4bKDfxh6A+MBkcXTGWtLV6LUqZkW9827lx251nfyc/3iYiiiCfq4adHfsqWmi383frPEk/HEBAo1hbhn5vi6Y7fFgwhi0LHuFH9oYvW/K7KUkWpsZR4Jr5gOTOUDNFa3MpcfI5YOoZJbSKUDOW/54+N13ql/k31zrye39GFlKAucX4RxFN9yiUIhUKYzWaCwSAmk+l8H47EW2RwbpC/2vZXdEx3oFPqiKai5MQcW2q3FHxido3tAkCnyLu8LnUupdvTzaaqTWwf2k6OfEbUvavuxR11k8lmmI3NkhWz3Nx080V5Rzgfz3Cm/oa52Bw/PfxT0rk0VeYqvrLzK4V8JMhXXeZic8TTcX7+vp/nKy2JAIIggAh/GP4DOqWOY+5jr0QsqE1UmCronetlVdkq/nbN3zIWGuPK2itf8/wOzA1waOoQwWQQpUyJTqVDFEXWV6xfcAHt9fbyL3v+hd653oL7tEPnoLW4lRH/CBsqN7CxcuOb+jmOBEbY1rcNrULLC0MvMBWZQiMqaNCUsdLZzmh0guScZ8H3yBwOHEWVF6T53VhgjC53F76ED5vWRmvxmfuF5n9vpsPTBBNBUrkUFcYKrlp0Ff+865/pmu2izFjGaHAUq8bKxsqNHJw8yE3NN3Fby21vqmn47Q7Glbh4ONvrt1Txkbgo6fJ0FXp9FDJFoelyx/AOrll0DW3OtoLxXjaXJZKK4Il6aLA3cO2ia9lUuQmNQoNeqafb072gafNinu54vf6G6ch0waVXq9TS5myjd663MNmklClJZBLc1HwTzw8+z38d+S8g3zTdXtrOR5d/FG/MywtDLzAWHCNHjkAygCwsw2V0sX9iP8lV+RiD16uoLbIvwmlwvmEPRiabocZSQ5G+iFQ2hUquIpQMsW9iH5lcBhHxTVfuqi3V3LnsTsYCYyx1LiWSjCBHwBRKkSZH39jhhd+gUCBoNBek+d2+8X18fdfX6fJ0FR5rLW7lC5u+wLqKdQu2fb3fm69c/hWeHngab8zLjYtvRCVXEUwE+ecr/pnVZavftBg8G78jCYnXQxI+Ehclp1YscmKu8P/JbJJAIsAi26L8eLKYRaPQEEvFOOE9wfKS5SwvWU6dva5wF/tq0XOxT3e8Vn/DqX0YsXSMW1tu5aGuh+iZ7QHyY+XXN1yPy+ji112/ptZai4iIXJAzFZ7iO/u+w90r7mYiPFEQSwD+hJ9yUzmQXx4REN6cX4pw5ofD6TBT4Sl6vD1nfD6RSbwlXxaj2sgS55IFj+UCAfb271i4oUKB3OFAUOQ/Zi+k5dGxwNhpogfyNxRf3/V1/v3afz+t8vNavzfLSpZRYih5W4XK2fgdSUi8FpLwkbgosWlthf+XCbIFz+2f2M8nVn6Cl0Zf4tDUIXRKHTkxR3tpOw9c9kChR0ia7ljIqV4oWTFLNB3l9tbbiafjCILAMucy1HI1X9z+RbxxL96YtzAOX2ooxaFzIBNk+Z+HDLK5bOH5+VgEu9aOO+o+raI2ODdIl6cLXzy/5KJRaDgyc6QgSs/kqj3fdKuSqfAn/IWJLq1Ci0ltothQjC/uo9vT/SfHkcgsFsxlNcjcDsjlQCZD0GgKomf+eM7EmVyIz/dFvcvddZroKTzn6aLL3XXWI/IgCRWJdxYXnPBJJpOsWbOGY8eOceTIEdra2grPjY2Nce+997J9+3a0Wi0f+tCH+Pa3v41KdfqopcTFTWtxK+2l7XRMd+RTxuXqwkVySfES4pk4f7f+74imoyQyCawaK63Fracla0vTHa/wai+UrJglnAoXqmBVlip+cfQXDAeGmYvPLYiGCCaCxNNxMtkMrcWt+Yuq7JVqnFKmZH3Fepx652nLHztHdhZsCuSCnFQ2xZaaLfzlir9kJDCCQqZAQDitWbnKUoVepS8s04VTYWSCjEpTJTkxx3R4mv65fCK5Q+fgmrprSGQSbzmbrdpeh6OocoF3UTDiI5VL4TK6KNIXLdjeHXFzzH2Mh48/jDfmRS6T44v7qLZUn/d+FV/idKO/U/En/a/7vITEO5kLTvj83d/9HS6Xi2PHji14PJvNct1111FUVMTu3buZm5vjzjvvRBRFfvCDH5yno5U4X9TZ6/jSpV/iyy99mcPThzFrzAQTQZYUL+FTqz7FkH8Io9pYuGBLnB2nVsE8UQ/xdByFXMGwfxiNQoNGmQ90fHUeVjaXJZwNI5PJuLn5ZrK5LD3eHgQEzBoztdZaPrX6UywvXb5AbAzODS7wZpIJMhbZFrFnfA/DgWEur7mc7cPbabA3cM2iaxgLjC1Yhqq11nJi9gRV5ipERFRyFUqZkg80f4BQKoQMGQa1gWJdMd/c/U0ceseCVO83k812qjAc8g8x4BvApDZh1VhpKWph1+gulhQtoam4iaMzR3n0xKM81vtYIQfLoXOwomQFI4GR13UhPhfYNLbXfd6qtp6jI5GQePu5oITP008/zXPPPccjjzzC008/veC55557jp6eHsbHx3G58sF53/nOd7jrrrv42te+Jk1ovQs5zddHa6PcVE42l2Wpc+m7etnqT8GoNpIRM/z82M/pme0pLCE1FzVzW8ttNBc1c8y98MYkmUvSXtKOiMjusd18cMkH8zEZgkBrcStLipacVm2DhU3qAMX6YiZCE8zF5/DGvVzfcD2D/kGmI9OkMimWOpcWth0NjDLoG2RT5SZERBKZBE69kxw5/u/+/0vPbA/xTByT2kSDvYFbl9zKcc9x5DI5qVwKT9RDKpPinpX3nPXvSbWlmluW3MLO0Z2sKVtDj6eHHm8Pn33+s4SSIVaUruDLl32ZhzofQq/SF0QPgDfm5fDMYdpK2l7Xhfhc0OpsfaUy9+rnzjLuQ0LincoFI3zcbjd33303jz76KDqd7rTn9+3bR0tLS0H0AFx99dUkk0k6OjrYvHnzuTxciXcIp/r6SLw9uCNuvrX7WxyaOVQwBRQQ2Du+lw0VG7h1ya3kxNyCi2ZLUQs3NN5ANBXlA80fwKg2Um+rf0Px+WqHZoPKwAnviUJFKZ6Jk8llCCVD7B7fXQjlhHwzcVbMMhOdKTxWbiznW/u+RcdURz5NPJdFIVNwYOIAmVyGm5tuZjQ4SmtRK2kxTTaX5aWRl1jqXHrWPS0jgREC8QA/O/ozOt2d1FprKTeVIyKSzCT5UcePaCluYTw0ftr3emPegv/PqS7EZ5tw/3ZRaankC5u+cOaprrPM/ZKQeKdyQQgfURS56667+PjHP87KlSsZGRk5bZuZmRmczoV3R1arFZVKxczMzGnbz5NMJkkmX5naCYVCb9txS0hcjHRMd/DCyAsFU0DIu/RaNVZeGnmJKksVV9RcwdaGrYVgVX/Cz8Gpg6woWYHcKGdF6YrTUuNHA6O4o24SmQQKmQK1XI1dZ18QmDrfBD3/tVahRS1XIyKiV+kJJUKFOJFXNxP7Yj6imShHZ46SI99bJCIiivl09SPTR7h31b14417+s+M/SWQSmNT5cNtlzmXc2HgjLqOLCnPFa4qOcDLMo72PUm4sp9PdSVtJG/2+fo7PHkdAQC6TMxGa4IraK/DGvGfcx3wv2rwL8Wt5K72ZZbi3wrqKdfz7tf9Ol7sLf9KPVW19U7lfEhLvVM6r8HnggQf48pe//LrbvPzyy+zdu5dQKMT999//utsKwulzraIonvHxeb7xjW+84TFISEjkCSfDDPmHFogeyOcy+RN+js4c5bbW2zg4eZCnBp7CH/fnG4rNlVxddzVF+iKi6eiCvqr5C3vPbA8HJg4wF5+jzFjGhsoNLLYtZmPlRnaP7S6MwMtlcsScSEtxC56oh3QuXVjGTGaTnPSeZFXZqgVTaMlMktHQKLXWWtQKNWJaLFRWgHz4pspAOBnmyb4nUSvUBWGikCnYN74Pb9TL7ctu58XRFwuhna9mNDBKMB7EorZQa62l39df2M/88YdSIU7MnsCqsVJjqVmw3AWglqspMZTQXNxMOBk+TfQATIen+dnhn7G1cStapfbPVgGqtFRKQkfiouO8Cp9PfepT3Hrrra+7TXV1NV/96lfZv38/6lcF/a1cuZLbb7+dn//855SUlHDgwIEFz/v9ftLp9GmVoFO5//77+fSnP134OhQKUVFR8RbejYTExc9oYBSNQnPG51LZFKlcChGRz274LFfWXkmfrw8BAZ1KRygRIpqOsrVhKwDd7m7imThP9D1BOBnm4ORBZmOzxNJ5T6VYOsZMeIYPLvkgOTHHnvE9JDIJjCojFaYKPrDkAzw78CyLHYvxx/34Yj5mIjM82f8k/7T5n2h0NBaajU/OniSRTuTdm7UOQrIQ/kR+MklAQKvQolFoUMlVRFNRoukoLqOLidAE46FxZIKMk3MnqbZW01bS9ppxF5F0BLPGjFFlxKFzsLFqI2XGMhKZBDqljqnQFP974n8REQkkAlxVdxXPDT63oMG5ylLFXW134TQ46XZ3nyZ6AolAIRqi1FiKO+ouVIDsWvs5XRKTkLgQOa/Cx+Fw4HA43nC773//+3z1q18tfD01NcXVV1/Nb3/7W9asWQPAunXr+NrXvsb09DSlpaVAvuFZrVbT3t7+mvtWq9WnCSoJCYkzE0lHkCGjpbiFbk/3ac832huptlRjVBvZVL2JttK203yQ5uJz/OjQjxjyD1Ftrebp/qdRypXolXoSmURhxH00OMr6ivV8c/c3+f57vs/dK+4mmAyiVWo57j7Ojw79iLn4HMlskhpLDdfUX0PnTCfD/mF+2flLPrvhs4UptL0Texnxj1CkL6LZ0UzHTAfF+mKUMiWiKGLWmKk0VxJNRzGpTYiITIYnCafChcwyUcw/Nh2ZZm3Z2jM6MRuUBtQKNUaVkTvb7uRf9//rgkbv5c7l/P0lf89cbI5kLsn+if2sKV/D5TWXo1Vq2VCxgRWlKwpNzfOmh3JBjk6pI5VNkRWzNNgbCCQCBBIBkpkkvriPhzofosZSQ7+vv/B6Z7MkdqqPkFVjpdZaSzgZJpwOS+JJ4qLkgujxqaxcWGo1GPJr93V1dZSX5x1fr7rqKpqbm7njjjv41re+hc/n4zOf+Qx33323NNElIfE2YVAaGA2M8pG2j/Dg0QcXiJ+W4hY+sfoTCy6yr/ZBCifDPNT5EHvG9hDPxNEoNczGZpEJMnJijmJ9MVPhqcL26VyaSDrCCe8JLq26lBZnCx2THXS5u7h5yc1MR6ZRypTkxByCKHBk5gg2nY2pyFRBmBjVRsoMZQz7hnny5JPctfwuskey7BrdhVFtxBP1cEnlJdy76l4OTB5ArVBjl9uZck+RETMICPn9C/lYjpPek7SXtp/RiXl+eU2j0PCb478p+ATN0+fr44m+J9hSs4UNpRvYUr3ljG7G8z1PwWQQX8xHlaWKX3X9Ck/Uw1R4Cpkg44raK7hx8Y0M+Yaw6WwE4gFi6diC1/PFfTze+zgfafsIwIJqkElloneul4ePP0wkHSGXyxHLxCjRl3BN/TX0entJZpPnpJ9IQuJcckEIn7NBLpfz5JNP8slPfpINGzYsMDCUkJB4e6iyVGHX2+n19vK+xe/jliW3EEvH0Cl1qOVqFtsWv251oH+uvyB6IN8UDfnlJnfEzfLS5cTTceQyOdlclhJ9CXXWOswac0FotJe1k8qmODRziHAyjEquYi42x7ODz2LSmFDIFKhkqgXCpMpSxYujL7K+aj3P9D3DLc23cMeyO4gkI2RyGZSCkoyYIZ6O49Q7GQ4MkxNzyJDle4pEkSpzFe6IG0EQCCVDZ3Rinvfy2TO+h5Pek9h1dmyijZyYQy6TkxNz7J/Yz/ua3seS4iWnjauHk2E63Z30zfWhkqsoN5azsmwl/3vif5EL+ZDV2egsy0uX0+nu5J9e+idKDCXsHd9LW0kbf7v2bwt9T/MEE8F8/9TkgUK/02R4EhkyVpetRhAEXhx5kWgqSrG+mD8M/YEebw/3b7yfozNHF4gnqfIjcTFwQQqf6upqzhQqX1lZybZt287DEUlIvDs41aTv1CRul8HFh5d++A2tA6bCUwXRA/lsrgpTBdORadQKNQpBgTfmJZqOUmOpYffYbjJihiJdESblK5XbFmcLx73HOTpztOAjZNPZUMgUaBVazBrzAmFiVBu5vuF6tvVtY1X5KhLZBIFkgGJDMQfGD2DT2ZiNz7KhcgOtzlaeGXiGAd8AkHeXbipqYk3ZGnYM78CqtWLSmF7T+LLaUs2hyXwUilKmZCo8RTKbLAxZaBQaDErDaaJnJDDC747/jn0T+xj2D/Oe+vfwcM/DtJe288LQC6RzaRw6B5uqNnHCe4JMLsMx9zHaStrIilm6PF387MjP+NDSD3HSe7Kw3yJdEY/2PopariaQCNDt6abb041CpuDlqZdZXrqcy6sv55ETjzATmcGhc3Bo6hB7x/fS6mzlpPfkBRmyKiHxWlyQwkdCQuL88adkmCkVygVf9831cUnVJewa3YVariZHriB61pWvo9PdyYbKDXx333f592v/vfB9RrWRy6ouY+/4Xob8Q4XHtQotjY5GSo2lpwmT+WT1U4+7SF/EXGwOX9xHOpfmpPckpYZS/mrFX7HYvhhv3IuAwHhonB3DOyg1lmJUGVlXtu51369da0ev0gOgU+mIpqJkchkUMgV6lZ5SQ+mC7eentwb9g/TN9bGufB3HPcfZPb6bclM5SrkSk9qUH+UXRXJijtnYLCIi6VwaAQGVXMVJ70lSmdSCfYuIBONBzBozvd5eZqOzJDIJ9Eo9Y8ExlpUs48DEAdaUrWHn2E6K9cVAXqQ22hsL+7mQQlYlJF4PSfhISEi8ad5qhpnL4MJlcDEVyffxZHIZDkweoMXZQo2lBrkg572N7yWeiTMTmaHWVssTvU+gV+k56T25oKK0yL6Iz234HL/s/CVTkSlUMhVmjZlSYyk3Nt54RmFypuN+df7YRHiCSCrChsoNPHLikUIfUauzFYfOwXUN19HoaDxt36fSXNxMrbWWIf8QKrkKlfaVvMBaay3Nxc0Lth8NjOKL+winwoRTYert9fzvyf8lkAigkCkIJ8MkM0nimXjeDFEUC15GSpkSjUKDXWsnmo4SToVPO575yJZ5w0fI23+IiGRyGYYDw6wrXwfkvZLm93vqvt5Kkr2ExDsRSfhISEicM6ot1VzfeD3berctED+BeIDyynK+uvOrpLNpRPJVDZkgQ6fUkcwmzxiM2eho5LMbPvuWqk+nHtOZKlhz8Tkui19GKBkqGDGa1CaWlyx/w/07DU7uW3Mf3z/w/QUVqVprLfetue+0Za75akoul59oy4k5AokAAFOhKZqKmuj19iIX5Hk/IEFAr9RTa60lno5j19rRKDSEU2HUCjXJTBK1Qo1Na2OpcynuqJtULl8JUsgUhdfQKDSFr+cFkVyQU2OtYS4+h1FlZDY2i01rkzLtJC4aJOEjISFxzjCqjayvWI8oiqcJCoPKQDQdXbD9fPUBXjsY861Wn95oH0a1caEvzpsUVW0lbXxjyzcKo+KnTm7NT23NV5nSuTSeqAedSpdvzv5j07coimzr28Zfr/1rMrkMY8ExwskwZnXeK2hT5Sae6nsKpULJdGSaNmcbxbpi0tk0S51LC9llHdMdeCKefCO3XIlSpiSUDLGydCWxdAwREblMjlFlxGV00VLcwkRoApVChU1re80KmoTEhYgkfCQkJM4p1ZbqMwoKf9z/jgvG/FNFldPgPGMT83yC+7wR4abKTWRzWQKJQKH/Z5FtEX1zfYiI/Pzoz9lcvZlr66/FoDTQ7mrnxeEXeX7oeRLZBLPxWdpK2njv4vfy4NEHqbJUkc7lxc98Q3ogHmDfxD6i6ShWrZVSRSmVlko8EQ/vbXwvTY4mFtkW5f2LEmE+s/4zFGmLqKh/7YgOCYkLEUE803jUu5hQKITZbCYYDEr+PxIS55h94/teMxhzvgflQiacDPPg0QeZDk9zdOZoYcLNoDLw4dYPs3NsJzORGUp0Jdh1dg5MHSCcDBNLx1DIFFg1Vq6ou4LOmU4a7A0ssufFkUllIpFJsHt8N4lMAq1CS1tJG7e33k6Ls4VwMswTfU8gF+QcmDhAOBVGQGAsNEaRrojbWm4jkUkQTOQNIpc5l9FU3HSez5aExJvjbK/fUsVHQkLiHcPFHow5v7w132gM+fH2Gxpu4D87/hOH1kGJroQNlRvQq/SY1CbkcjmJdIKx4BgIoFfqGfAN0OXp4oNLPsg/7fwnSg2l2LV27Do7kE+tDyaChd6h0cAoXe4uLBoLU+EpivRFpLNpXAYXgUSAr+36Gh3THXxsxcfom+ujwlTBJ1d9knbXa7veS0hcqEjCR0JC4h3FxRyMOS9E5huNATZXb+Z/Ov+HLncXLcUtXFl3JQ/3PMyh6UPkxBwKmYJKcyVX1l7Jb7p+w47hHWyp3YI76kYpU2LX2kmkE3hFL2aNudCsnMqlCpNYk+FJDkweoMZSw6O9j2JUGYln4pjUJiKpCLXWWjK5DJ6oh46pDmbCMzwQfYB/ueJfpMqPxEWHJHwkJCTOCadmQlk0FpqLmk/rf7mYXx9eGQlXyV4Zb9cpdfTM9rDItohLqi7hxx0/RilXMhOZIStm0Sq0TIYmCSVDXF57OT869CNua7mNKnMVu8d202hvZCYyQyQVIZlJolDlP9ZdBhdVlirCyTDjoXHGgmMssi7Kv75chTfuxagyksgkEBDIilkUMgX+hJ9FtkV0ebrYMbKDcnO51OMjcVEhCR8JCYk/O0dnjr7maHdbSdtF//rzzGd5JTNJtAot8UycaDpKiaGEqfAUZrWZQd8gVZaqwkRbNpdFLpPT6+3l2vprubzmcmqsNQz7hwmnwtRaa4mkIsgEGYlMArVCTYO9gQ8v/TBGtZFudzdz0TlKDaXMxeeosdYQiAfy+xazWDVWYukYNZYaJkIT+UDWP3oEeeNeybFZ4qJDEj4SEhJvmTeqorgjbo65j3Hcc5wVJStotDeyY2QHmVwGjULDMwPPMBebw2lwvq0p4PPj4pF0BAGB5wafy/fInMKQf4jvH/g+39jyjXNW+Tk18iOeidPr7UWv1GNUGXFH3MQzcdQKdSGSR4YsH3Uh5h2YI6kIkVSE2dgsX9/9dT7U8iEOTh7EaXByQ8MNpHIprFor71n0HhocDUB+eW0oMMQlVZewd3wvl1ZdytGZo8zGZrGoLRjVRtLZNO2udn5/4veo5CrkghwAnUInOTZLXHRIwkdCQuIt8UZVlPnnO6Y6GA2OAvkE97uW3cV4aJztw9t5qv8pTlSdoMHeQGtxKyq5ingm/ictRc2Pi/viPgCG/cMM+fMX/gOTBwpGfZCPzDg0eQi73o5BZXhbxddrcaphoi/uQyVTcWjqEOOhcQwqAyq5imQ2SbGumEAiQDaXJSfmyJFDJVOx1LmUlydeplSfb2j+P6v/D6lcCofOgUVjYTo8za6xXdRaazGqjRiUhvw01+QBmoqasGqsfLTto9y65Na8MWTCT6+3lyf7nkQQBMxqM+lcmlpLLWqFWnJslrjokISPhITEm8YdcfP9A99nLDhGc1EzJrWJVDaFWq7mid4nMCqNBVF0qtDo9nRzaPoQ0VSU8dA4kHcrbrQ38h+H/oN+Xz8lhhIUMsVbWooKJ8P87vjvGPIPEUnnk9dj6Rj9c/3kyLHMuYxOdyfJTJJ0Lk0kGSGYDDIWGiORSWDVWtlYsZFF9kVv9ylbwKv9gZK5JNPhaexaO4sdi3lp9CUWOxaTzqUJJoIo5Urq7fVkchmWlSxj1+gu/nrtX/NQ50N898B3ERCot9dTZa7i7hV30zvXW1iiqrJUUWutZTgwTM9sDwAHJg/QXtrOy1Mvs7FiI+6om2Q2iUVjodZWi0au4f1N70dElBybJS46JOEjISHxpunx9DAWHMsHW47uLIgYgApTBe2l7YWlpfkpo3mSmSTemBelTMmykmVcWXclB6cOUmOtQa/SMxmaRCFTvKWlqE53Jy8Mv4A35iWdTaOQKygzlpHKpTjuOc4a1xpmIjPIkBFNR7m67mpeGH6B47PH0Sg0AOwc3cnnNnzuDfO43k5WlK7g4ys/ztP9T3NX210kMgkOTBzAZXRRbiqn1lrLLUtuYe/4Xp7se5Ir667kV12/ons2n7KuV+pJZVO8PPUygiBwV9tdhSUqo9rIzUtuJpFNsGdsTyGvayo0xd+s/hu0Ki3rK9YzHZkmmAiSE3Mo5UpERLY2bJUamyUuOiThIyEh8aYJJAM02BtOEz0A46FxHut9jAZ7Az2zPehVejQKDYlMAshnQomIXFV3FZ3uTk7MniCUDJHKpqiz1rG5ejPb+rYRz8QZ8g/R4+k5K+ETTobpdHcSSoZQyBSMBccIJoNo5Vo2VGxAEATqbHXcv/F+4pk4Lw69SJ+vD41CgzfmLVSahvxD/LLzl3x2w2fP2UXfqDbiNDiZCE/w6+5fc+/qe3l/0/vxJ/xoFBqmQlM83vs45aZyoukoMkHG0ZmjZHIZ9Eo9Dp2DQCJATszR6e4klUktWKKqtlTz12v+mmsXXct0ZBqFXIHL4KLaUl14j6f2Rb2VzDMJiQsFSfhISEi8aSxqCya16TTRo5KpEBHxx/1UmCvI5DKo5CrKTeVMhCZIZBIoZApails4On2Uy6ou48XRF9k7vhfIN/Cucq3iL5b+BT87+jNS2RRTkSnCyfAbXoRHA/k+IqVMyQnvCWLpGKtKV1FhruDQ1CFmY7OU6Et48OiDrCxbyafXfppfdv6S7tluMrnMglHwqcjUOZ9mksvktJW0EUwEeab/GSKpCHatnXg2jlyQ01rcyvcOfI9SQylOg5MKcwUAqWyKyfBkoWIliiLxTPy0JSqj2sgK14rXfP23I/NMQuJCQBI+EhISb5rm4mZ2ju1c8Jharsaf8GPT2GgqasKhdRBOhTEoDcQyMXRKHaFEiGJ9MXadnTJjGQemDpATczQ5mpDJZISTYY7MHMGpd9Job+SpgacIJAJ878D3+PDSD1NtqT7j8YSTYSYjk8gEGVfVXYVarkYhV5DMJNkxsoOZ6Ay1llrGgmPUWmsZ9A2yb2IfImKhB+nUQFSVTHXOp5kMSgNqhZpiQzHuiJuO6Q7CqTA5MUcml8GoMiKXydEo84nqc7E5jGpjYXlqfhJMJVedkyZtCYkLFUn4SEhIvGmcBicbKzfy6MlH8Sf8qGSqguj5i2V/weN9j1NtrmY8NE4kFaHGWsP7Fr+Prpkumoua8UQ9rC5fzT/s+AcSmQTpbJqMmMGqsbLYvpihwBBX1F5BS3ELkVSEPWN70Mg13LPyntMu6COBEX53/Hd0ebpwR90YVAaUciXlpnJGg6PMRGeosdSwpnwNv+v5HRqFBpvWxmx0dsF+5ke4tQotZo35nE8zzXv8+OI+0rn0Aq+eOmsd0XSUOmsdGys34o64WVK8hOOe4+hVeswyMxqFBkEQWO1azfLS5ef02CUkLiQk4SMhIfGWWF22mltabuHE7Ami6SihRIjlpct5rPcxlHIlx9zHSGaTyAQZ3Z5uZIKM+9ffzwnfCRZZF9Hn62Nrw1bGgmN0ubsIpUL4E35EUWSpcyk6hY4PtXyIx/seJ5FJMOQfOm35KZwM81DnQ+wZ20M4Fc43LgsyXAYXkVSE21pvw6q1MhGa4Hc9vyOdS5NL5SjSFeGNeXEZXQXBk8qmMMvMNDoasWvtiIjsn9h/zsbcT/X48UQ8hJNhqsxVlBhK2FyzmUAigElt4uWplyk1lPKRto/w4NEH6fZ0o5Kr0Cv1tJe28/+t///OuSO1hMSFhCR8JCQk3hJGtZFbW27l8d7H6XR34o15UclVZMUskXiEmchMwQFYr9QTSoY44j7CD1/+IU6DE1/cx6HpQ9RZ67hq0VU80/8MWTGLXJBj0VhodDTygwM/wKDOV15SudRpy0/9c/2FSSWFTIFD5yCYyI+nH3Mf4+pFV/Pr7l8XtpchKyxv7Z/Yz4M3Pkg4FWY6PI1MkAF5074GewN7x/cSS8fQKDQcUx9jQ+WG11xqe7uY9/jpn+vnwOQBAAQEhvxDZMUsIiKV5kpUchVjgTE+2vZRZDIZSpkSp95Jq7NVEj0SEm+AJHwkJCTeMvMX6kOThzjqPopRZcSmtfGy7+WC6AEoM5ZhUBp4rPcxpiPTaJVaRESKdEUM+gcRRZFlzmUcmj6ETCYrTC2lc+nCPlQy1WnLT1PhKeKZOAICeqW+4IKczWUREEikE7SXtNMx04EM2Sv7kueNAD1RD+lsmgZbA0qFEp1Ch1lj5vD0YV4cfbGwvcvgQhAE7Fr7Oan8rHCtwKazLTBihLxB5DV115DOpgmnw9L0lYTEW0ASPhISEm+aBaPPKgPNxc0c9x5HJVcRToYXiB6ZIEOtUOdzozzdCIKAXCbn0NQh1pavRSVX4Yl62FKzhV5fLy6jiw+3fpgdIztYW76WQf8gSpmSWmvtgkmlcDJMJpchnAxTpC9iODBMNB0F8iPz2VwWpULJR5d/FOGowNGZo+TEHDqljiZHE3/V/lf0eHtodbZiVBkJJUI8NfAUs7FZ7l1174L3OxWZYlvvNlqLW2l1tp6Tc3yqw7M0Yi4h8fYhCR8JCYk3xasjIQBsWhuXVF3CeHCcOmsdJ7wngLzo0Sl1Bb+ZYDKIWq4mno5j1VrZN76PBkcDNZYa6mx1/MWyvyCXy/G/J/6X3eO7uab+Gm5svJFYOkZTURP+uB+j2lg4hmJ9MRXmCg5PHyaSiqBT6lDIFChkeePCQd8gQ74hrl10Lbe13kY6m6bGUoPL4OKzf/gs+yf3A/nlpNVlq7mr7S6+tONLyATZaY7UwWSQ6cj0ORM+II2YS0j8OZCEj4SExFkTToZ5qv8pivXFWNQWwqm8v45KrmLv+F5uaroJm9aGN+6l092JQqZAJsioMldRa6vF2+VFrVAzHhxnSfESemZ7OOk9SbWlmiHfEMe9x7mh4QamwlN8fOXH2TG8gwMTByjSFfGjjh+xpGgJn9/4ebo8XfjiPjRyDTc23Miwf5hQMkQsHUOv1FNuKuey6svwxXx8YMkH8kaGCi17xvbgDrs5OXeyIHog7x90bOYYoihyx9I7KDWW8njv46c5Ut/YeOP5OO0SEhJvI5LwkZCQOGvGA+MU64r5ryP/VajqADQ5mvjL5X/JXHSODZUb+O5V32XHyA68cS86hY4ifRFHZ47S4mzhyPQRREQOTR2i0dFIq7OVBlsDK1wryJHjp4d/ypryNfym+zdMhCawaW049fmG3S5PF1/d+VXuXX0vM5EZ3FE3LqOLpc6lrK9YTzKbRK/UE0gE6J3rxR/30+Js4fKayzk8fZgn+p7gY+0fo+dkD2q5mmQ2WXgPIiLH3Me4d/W9vDD0wmnmjNORfPjn+or10nKThMQFjCR8JCQkzpp4Ns5/Hfkveud6KdIVoVaoyeayhFNhftfzO/5uw98B0FTcRLm5vNCfYlQaabTnx8SDySCDvkHSuTSz0VnWV6znuvrr+Pvtf89sbBa1XI1WoaXL05V/zUycCnMFZcYyJsOTHJ05SjgZBvKmg+lcGn/cjzfmJZQM4dA5yOayRNPRQq/Rs4PPstq1mnZXO+lsmmAyiF1rZy4+RzKbRC7IyYk5tAotiNDr7V3wvhUyBZXmSrK57Dl3dJaQkHh7kYSPhIREgXAyzIBvgNHAKIlsgmJ9MUuKlhRGpGfCM/TO9VJhqmAkMEIgESiMgY8Hx5kKT7GCfCzCmfpTXEYX68rX4Yl5yOQyuIwuWopb6JjsYDY2WzBCTGQThe9JZBLIBTkDwQGceieTmUmCyeArOxXBpDbR7+tnNjaLRWMpNDm7DC4EBHxxHyq5inZXO1aNFblMjlKuxK61/3EXIkqZErlMjlwmx6g2UpQrKozXWzVWmoubUSvU59zRWUJC4u1FEj4SEhJAvml5x/AOfnHsFwwFhgAwqoxcUn0JH237KFq5llAyRKO9EV/ch1ljRkBgIjSBTCZDEAS6Z7tZVbbqNb1kKi2VVFoqT3tcLpdTYarAF/exyrWKJUVLaC5qRi1Xs6RoCRXmigVVH7vOzkxkBoDZ2CxbarcQSUVIZBIICEBe9Gyp3cJUeArI+wDd2nIrByYO0GBv4Mj0EQwqAxqFBrVCjVKmpNHRSLWlmhWlKwgmgqRyKVQyFWaNGbVCDXDOHZ0lJCTeXiThIyEhQTgZ5sXhFxeIHoBoOkrvbC/f2P0Nbmq6idHgKEdnjuKOulHIFBiUBlqdrXmDvVyWdDbNC0MvsL5y/Zsy+1PL1FxefTkiIr/u/jWxVIxMNsPK0pV0ebo4OHWQYCKIWqGmydFEuaGcudgcM5EZsmKWqfAU1yy6BrPGXFguExCYCk8VMrgMSgPVlmrsWjvFumL+9cC/ctJ7ErlMTiaXYZFtEZ/b+DlailromO4oCJ1TsWltp4V/SkhIXFhIwkdCQoLRwCjemHeB6AGwa+30+fpYV76OZwaeQafSUWWpYiY6Q07MEc/EGQ+NY9fa0av0TIWnCCaDJLNJbm6++aybgJuKm+iY6WDn6E60Ci3BVJBPrPwEvz7+aybDk8TTcVLZVMGZ+eu7vs7Xr/g6MmQFI78ifREP9zxMIBE4bf+nChaj2sjm2s3U2erocnfhT/qxqq20OlsL1aj56IhXj+zf2Hij1NgsIXGBIwkfCQkJIukIsXTstMfVCnWhYbhntgdf3McNjTfgj/sZ8A2QFbPMxedYW7aWBnsDT/Y/ya0tt/Krrl/RVtJ21mGZToOTRbZF/NvBf8Mb8xJNR1nmXIaAQK21llAyhFltJpaO0e/r56R4khdHXuSutrsWCJHrG64/a8HyWstuIJkHSkhczEjCR0JCAoPSgE6pO+3x+eiH+empRCbBoyceZalzKZdVX0Y2lwUBqs3VfHXnV2krbaPf24+IyGhgtCB8Xu30fKbQT1/ch1FlpKmoCU/Eg1FtJJ1L0zHdgVyQU2muZCo8hVaRj7uYCE3QP9fPCteKwj7eTsEimQdKSFycSMJHQkKCKksVDp2DWkvtguUuuUyOSW3CqDKSyCSQCbJ8D01AzZ7xPWRyGWZjs9zWchs1thpWuVbxeO/jNBc1FzxyRgIjbOvbhoCARq5Bo9RwbOYYWoWWaks19fZ6jGojVo2VsdAYoVSokL0F+dDQTC5DOpsmnU2jU+oQRRGVXMV0ZPq09yIJFgkJiddD9sabvHN48sknWbNmDVqtFofDwfvf//4Fz4+NjbF161b0ej0Oh4P77ruPVCp1no5WQuLCwag2clnNZdyx7A5qLbWFx2WCjBWlK6gwV6BX6klkEth0NsaD41SaK6m313N13dU02ZtY41rDg0ceJJVNkRNzFOmKCCfDbOvbhgwZBycOcnjmMF/d+VU+9vjHuO+Z+/jyS1/mewe+x0hghNbiVtpL20GE0eAo/XP9lOpLiWViyGVyUtkUIiICAg22BmKpGAq5dO8mISHx5rhgPjUeeeQR7r77br7+9a9z+eWXI4oiXV1dheez2SzXXXcdRUVF7N69m7m5Oe68805EUeQHP/jBeTxyCYkLg2pLNTc330xbSRujgVGS2STFumKUciU/7fgpGys3snN0J+6omzJjGU69k2gqSktRC7/q/lV+skvMYhbM1NvrWVK8hNHAKKIo8uLYi6SzafZO7GU4MAzAbHSWbk83qWyKVDbFvavu5UuXfol/3v3PeGIenux/kq9s/gq+pC/vERSaQiFTUG+v57r66+if68dlcJ3nsyYhIXGhIYiiKL7xZueXTCZDdXU1X/7yl/nLv/zLM27z9NNPc/311zM+Po7Llf8w/M1vfsNdd92Fx+PBZDKd1WuFQiHMZjPBYPCsv0dC4mLmuPs4u8Z2IQgCWqUWpUxJJBlhwD+AXqnnf0/8L71zvYiIaBQa1pev5582/xPtZe3sn9jP7tHdPNzzMI2ORn7V9SsA5EJ+hFyn1NFS3IJNa+PmJTezuXozwXiQk3MnmQhNoFfqqTBX8PLky3nvILWZjJhhMjTJe+rfw/UN10sNxxISEsDZX78viIrP4cOHmZycRCaTsXz5cmZmZmhra+Pb3/42S5YsAWDfvn20tLQURA/A1VdfTTKZpKOjg82bN59x38lkkmTylbyeUCj0530zEhIXGJWWSlIjqcKklFzImw2WGEr4Xc/vqLXWsrpsNYIgUGer44raK1hRmm84NigNhFNh0rk06VwayC+fZXKZQpxEJpchk8sQiAd4vPdxbllyC7vGd6GSq4ikIhyePoxNZ0Ov0hNNRam31tNS3CJlZklISLwlLgjhMzSUb7Z84IEH+L//9/9SXV3Nd77zHS699FL6+vqw2WzMzMzgdC50i7VarahUKmZmZl5z39/4xjf48pe//Gc9fgmJCxmj2rjA1yYrZhkPjVNvr+fbV34bd9RNMpukSFfEkuIlC1ybqyxVWDQWZIIMpUwJgICAiIhckJMVs8gEGQqZAo1CgzvqZjY6WxhLn4+HmA5Po5QpubLuSmwaG5WWSkn0SEhIvCXOq/B54IEH3lB0vPzyy+RyOQC++MUvctNNNwHw4IMPUl5ezsMPP8w999wDgCAIp32/KIpnfHye+++/n09/+tOFr0OhEBUVFW/6vUhIXMy81TFxo9rI+vL17BzdSSAeoMZSw1hwDLkgR6PQoFFokMvklBpKC1ETkXSEFmeL5KMjISHxZ+G8Cp9PfepT3Hrrra+7TXV1NeFwPom5ubm58Lharaa2tpaxsTEASkpKOHDgwILv9fv9pNPp0ypBp6JWq1GrT7eml5CQWMhbHRNvLm7m9tbbeWHoBWpttbw08hK9c71oFBoWOxbT5GhiXcU6JkITwCtZWNJYuoSExJ+D8yp8HA4HDofjDbdrb29HrVbT29vLxo0bAUin04yMjFBVlbehX7duHV/72teYnp6mtLQUgOeeew61Wk17e/uf701ISEi8Lka1kZVlK4mlY6SzadaXryeWiZHIJFDKlGRzWSZCE2TFrJSFJSEh8WfngujxMZlMfPzjH+dLX/oSFRUVVFVV8a1vfQuAD3zgAwBcddVVNDc3c8cdd/Ctb30Ln8/HZz7zGe6++25pOktC4jxTbanG3mRnNDBKNB0FYNforkIPD0hZWBISEueGC0L4AHzrW99CoVBwxx13EI/HWbNmDdu3b8dqtQIgl8t58skn+eQnP8mGDRvQarV86EMf4tvf/vZ5PnIJCQk4femquahZ6uGRkJA451wQPj7nEsnHR0JCQkJC4sLjbK/fF1RkhYSEhISEhITEn4IkfCQkJCQkJCTeNUjCR0JCQkJCQuJdgyR8JCQkJCQkJN41SMJHQkJCQkJC4l3DBTPOLiEhISHxp+GOuOnx9BBIBrBoLDQXNS/IVpOQeDcgCR8JCQmJ88ipYsSsMtGkdGGPgqDRIC8qQmYwvC2vc3TmKN8/8H2G/EOFx2qttdy35j7aStrelteQkLgQkISPhISExHniVDEiplLkQiFqbYv4P0vvZnGHH5nRiGrNGhQlJX/S67gj7tNED8CQf4jvH/g+39jyDanyI/GuQerxkZCQkDgPuCNunuh9gmJ9MSucy1lXuoqWkqWMeQf5QedP8Fc7yPn9pA4cIBeJvPEOX4ceT89pomeeIf8QPZ6eP2n/EhIXElLFR0JCQuI8cNxznOcGn2M8NI6YTiMmk1RaqtjUsJn9fTvoXRJkLZDz+8l6PMgMBsLJ8CsxHyoDVeazi/kIJAN/0vMSEhcTkvCRkJCQOMe4I24eOfkIU+EplDIlKGSkkinGAqPsAlpdrQTTYeY/osVkkpHACI/3Pk4wEcSisZDOprHqrNi1djRyDQpBgVKuzIsYAcoMZdTb6zGqjVjUltc9njd6XkLiYkISPhISEhLnkJHACD2eHhbbF2PX2tEpdcxGZnmh9xn8YQ9jgVE2lK/HrDQCcQCiWnlB9Ni0Nh47+Rj19np2H9vNZHiSEkMJzY5mPFEPS4qXsHd8L7XWWpaXLufDSz9Mc3EztdbaMy531VpraS5uPsdnQULi/CEJHwkJCYlzRDgZpmOqg58c/gl7x/eSyCTI5DK0Odv4i1V/yX/v/xGB2BxajZHGtBmII7NamVBE8MV92LV2Hul5BJvOxu6x3YwERkhmkwQTQfZP7qfSXMnusd3U2+vp9fYiIqKRa7hn5T3ct+a+15zqkhqbJd5NSMJHQkJC4hwx6Bvke/u/x0hwhFQ2hU6pI5aOcdR9FDpha+v72db9ezaWrsba5UVmtaJas4ZoZgSAZCbJUGCIRkcjfxj6AzkxR07MISIyHZ5msX0x3Z5u1les51DqUH57/xCjgVHaStr4/PrP0z3bjS/uw6az0eJooaGo4byeEwmJc40kfCQkJCTOEUP+ITo9neiUOtRyNYlMAo1Cg4DAgH+ACutfcWvrrazQ16Ner0VeXExUKRKfjGNWm9EpdKx0rSQrZgEQEQEQEABI59IL/pvJZUjlUsTTcfaN7+Pru75Ol6ercDytxa18YdMXWFex7lyeBgmJ84okfCQkJCTOEeFUGIB4Oo5ZYyaYCJLMJgvPp7NpPrTyI9gsVUC+H+jx448zHZ6m29NNjaUGl9FFs6OZw1OHCafCeGNeHDoHNq0NrUJLg62BZc5laOQa9Co9JYYSNEoN/7D9H+iZ7UEpUyIgkMql6PJ08fVdX+ffr/13Ki2V5+WcSEicayThIyEhIXGOsGvtqOQqUtkU4WQYvUqPWWYmJ+ZQypTUWGqo+qPoCSfDPN77OL64D51Sx+bqzfz+5O85PH2YLTVbsOvsKOVKmoubOTF7glAyRCARwGV0ccx9DAGBvYN72dqwlQOTB9g+sh2ZkLduU8lVWDVWktkkXZ4uutxdkvCReNcgGRhKSEhInCOWOpeyvmI9KrkKEZFYOkYoGSKVTbGsZBlLnUsL244GRvHFfQAYVAZ+2/Nbhv3D1FnrcBldrChdgUquYvfYbqbCUwgILLItYmnxUn53/HccmT7CLS230D3bzVxsjnQ2jSjml8ZS2RT+hB+VTAWAP+k/9ydDQuI8IVV8JCQkJM4RlZZKPrfhc3xzzzc57jlOTswhE2QsKV7C5zZ+bkHVJZJ+xa05kUnQ6+0FoK2kjX0T+0hn09zZdifLnMtQypXIBTmpbIrhwDDl5nLimThWjZWx4BiX11yOiEhOzCEX5EBe/Mz3CFnV1nN4FiQkzi+S8JGQkJD4MxBOhumf68+bFCqUuIwuqs3VrKtYx/ev+T5d7i78ST9WtZVWZ+tpS00G5SvhpNF0tPD/xfpinhl8hjJjGfF0nIe6HgIoiJoSQwl6lZ4B3wAz0RlGg6OEEiHaStro9nQveI2cmKO1uJVWZ+uf8UxISLyzkISPhISExNvMSGCEhzofYs/YHuKZvAmhy+Di+sbrWV+xnmpL9Rv21FRZqrBpbfjiPvRKfeHxdC6NWq6mtbiV2dgsgUQAq8aKXJCTE3PMxefwxryUGErQKXSksil+cvgnfH7j5/mfzv9ZIH5ai1v53KbPSf09Eu8qJOEjISEh8SdwpsrO0/1Ps3NkJ/6En6yYRS7IGQuNsa13G6lMinZXO9F09HXztoxqIzc03sDjvY+TzWVZUrQEk9rEMucyFHIFDbYGxkPjLHYsxhP1kBNzZMUsSpmS2dgs68rXEUlFeH/T+/HGvDw7+Cy3t96OXCYnlo5h1VjZWLGROnvdeThrEhLnD0n4SEhISLxFzlTZWWRbRK21lsnwJKlsqtDHo5ApSGQSLLIvQqfSkUgnCKfC2LQ2VpSsoLGo8bT9V1uq+UjbRxgPjLOqdBU7x3cyFZnCrrUzFhrj4MRB7l15Lz87+jPGgmMoFAp0yrzXz9bGrZjUJhLZBLtGdzEZnuTZwWdxGV3c1HQT71v8vsIEmYTEuwlJ+EhISEicJe6Imx5PD4FkgCJdES+NvsS+8X3EM3EEBPRKPbPRWYb9wyx2LObA5AHi6TjZXBa1Ql1oJj40dYj/d/z/FfbbWtzKly79EivLVp72mka1kXg2zjf2fIOO6Q4yuQwCAnW2Oq6svZJfdf+K6+qvYy4+h1wmJ5gIMhebw6gy8p+H/pNjM8doL23nkspLyAk5NHINqWyqYHooIfFuQxI+EhISEmfB0ZmjC7Ku1pavZVvvNpqLmklkEuhVeob9wzh0DnrnetlSs4VAIoBBZSCQCBBKhdApdfjj+dFxhaBAEAQEBLo8XXxn73f41/f862m5We6Im/889J/sm9hHTswVHj/pPYkoirS72knn0nRMdzAeHCeQCFBpzvfs7BrbhVquZvf4brRKLTqlruDlc3n15VJvj8S7Ekn4SEhISLwB7oh7gejJ5DLE03Fkggx31I3L6KJ3rpdkJkkym8zHUAgC0XSUbC6LUWUklApRa63FH/fjiXrwxr3AK2aCvb5eejw9pwmfLncXPbM9+UwuUSxkcwkI9M71cs2ia5gMTzIXm+OSyksoM5dhVpmJpqOsLV/LCc8JREFEo9AURA9I3j0S714k4SMhIfGuJpwMMxoYJZKOvGazcY+npyB6EpkEwUSQSnMlM9EZerw9bKjYwGhgFI1CQ7FQzGL7YtaWrcWoMhJMBtEpdKSzaVqdrZz0nuTozFEUggKlXElbSRtlpjK0Ci3+hJ9wMrzg9T1RD4IgkBNzeRPCPy6XQV6AZXIZVpSuYHnJcl4afYk9Y3sIJoM02BuYCc/w3qb3sn14eyHfax7Ju0fi3YokfCQkJN61jARGCrEQ89i0Nm5ovIFqS3XhsUAyAOSFhjfmpa2kjWMzx7Br7QQTQXJiDpvWhsvoYio8hc1ho3u2m2PuY6jlakxqE9WWaqqt1Xxpx5eIZqKoZCo+2PJBOqY6eHHkRSwaC6FkiInwxILXL9IXsbpsNYtsixBFkYnQBAcnD5LO5UWQWWNGI9fw4NEHGQ+NF45ZFEUS2QT7JvaxvHQ5h6YOFZ6TvHsk3s1IwkdCQuJdyalZWKfii/t4vPdxPtL2kULlxaK2AJDMJMnkMhTpivhdz++4ofEGBEGgSF/EbGyWTncn7aXt1Nnq+OHLPySVSwHQ5mwjEA8wGhjl5uab+Xnnz1lTvobdY7sZC46hVWixaW3olDo63Z14oh5uWXILwUSQ5wafY+/YXibCE/jjflxGF+9reh+/P/F7lpUso83ZxlhobIHoATjhPcH68vV0THdQpCsqPN5a3MoXLvmC1N8j8a5FEj4SEhLvSkYDo8TTcTZVbsIb8+aNALVW7Fo7h6YOMRoYpcXZQjgZxqF3UKwv5kTsRH7JKZcmJ+Z4pOcRvrL5K6RyKdpL2zk+e5xGWyP/dvDfEAQBGTI0Cg2RVASb1sazA8/y/Wu/T6enkwpTBbvGdiEg4NA5aHW2cnDiIDKZjJcSL2FSmRBFkZenXiZHjhpLDYiwpHgJxfpivnTZl6g2VzMTmUEpU7LItig/0RWfIyfm0Cv1WLVWrm+4ntWu1Wyo3PCaLtESEu8mJOEjISHxriSZTtJe2s63936bozNHEQSBdDZNc1Ez92+8n0Q6wUhghD1je4ilY3yo5UP899H/Zvf4buSCHBERk8aEQqbgKy99hXtX38szA88gLBIIpoIYVAYUagUmdV7AZHIZtEote8b2sKlyEzXWGibCE6jkKgQEjnuO58NGBQGz2sxsbJbdY7tZVrKMlydfJiEm+Piqj/P84PM8evJRlhQt4ankU2TFLH+z9m9IZVOo5CrWla9DKVPi0DswqPKxF63OVlqcLef5jEtIvDOQhI+EhMS7Exk88NIDHJw8SJmxDJPahEBe/Pyo40d8+dIvs3d8L0/2PclUZAqNQsMHmz/IlXVXYlAZkMvk9M31MRefI51LMxYcY0vNFtaWr0UpV6KSqZiNzdI310dOzJHIJKi11mLVWPnhoR/y4aUf5sDEAW5ovIEaaw1Og5M15WsYDYzSMdWBSq7ihPcEK0pXIJfJWWRdxEsjLzERmihMjI2FxnAZXbw48iJbarZwcPIg8UycSnslaoUayPcsSUaFEhKvIHvjTd4Z9PX1ceONN+JwODCZTGzYsIEdO3Ys2GZsbIytW7ei1+txOBzcd999pFKp83TEEhIS71TCyTCd7k5ennyZJkcTwWSQLk8XnZ5OjrmPATDgHyCYCHJF7RVcu+haAH7V/SumwlP8rud3rCtfRzKTRKvQopApKDeVMx4a598O/huP9z7OT478hGPuY2yo2IBKpiIj5iewTGoTd6+4m0XWRXx+4+dxR9z8x8v/wS87f8mDRx5k2D/MnW13kswkgfwUmTvixmlwMuQfIp1LE0/HkQtylhQtIZqK8uzgsxTriwvxGbOxWSAvem5svPGMkRgSEu9WLpiKz3XXXUdDQwPbt29Hq9Xyr//6r1x//fUMDg5SUlJCNpvluuuuo6ioiN27dzM3N8edd96JKIr84Ac/ON+HLyEh8Q5iNDCKL+6jwlTBRGiCQCIAgFKm5MbFN9Ix1cH3D36fidAEs9FZ1lWs46amm3jkxCMcmDxAg72BUkMpH2z5IGWGMu5adhfPDjyLRqFBq9SyomQFvoSPbC7LaHCU9rJ2RFGk2lLNw8cfJpAMcHn15SSy+diKSCpSOLa5+Bz9c/002hsxqoyIokgwGSSajqKUK1HKlVg0FlRyFZ3uTvyJvB/Pcc9xVpevRilTYtPZ2FK9hXp7vSR6JCRexQVR8fF6vQwMDPD5z3+epUuXUl9fzz//8z8Ti8U4fvw4AM899xw9PT089NBDLF++nCuuuILvfOc7/OQnPyEUCp3ndyAhIfFOIpKOYFQZMajzrsriH/9ZU76G/RP78549Ijj1TqxaK/1z/TzV/xS3NN8CQM9sD6lsiq0NW5mJzrCuYh2BZH4/4WSYbk83gUSAZDbJVHiKy6ouQylTUmoo5e82/B0fW/4xrq2/longBAaVgdVlq1nqXEpbSRtOg5MdIzvQKXWsKluFKObNCg1KAzJBhkltYm35WpqKmthYuZH3N72fdeXrAHh24Fm63F0M+4ZRyVWS6JGQOAMXRMXHbrfT1NTE//zP/7BixQrUajU/+tGPcDqdtLe3A7Bv3z5aWlpwuVyF77v66qtJJpN0dHSwefPm83X4EhIS7zAMSgMapYZaay2d7k4EBEREyk3l7BrbRamhlHgmTjwTZzQ4ik6hQ6PQIJfJWV++niMzRygxlFBtqeaOpXewc2Qnm6s3c3TmKJlcBplMRiQZIZQMIZfJmY5MU2YsI5AIUG2pJitmmYvNMRwYRi6TU2IoYTw0zlx8DhkydEodGqWGUn0pY6Ex7my7k7Xla/HFfDQVN/Hw8YeZic7gjeXdn5c6l3JJ1SWks2lkMhnRdBRP1HOez7KExDuTC0L4CILA888/z4033ojRaEQmk+F0OnnmmWewWCwAzMzM4HQutHq3Wq2oVCpmZmZec9/JZJJkMln4WqoOSUhc/FRZqtg5tpPbWm6jb66PntkelDIl1ZZqPrb8Y5jVZtxRNwqZgpPek8QyMdxRN4lMAl/cxw2NN1BvrwfyIaJVlirkghylXIlcJmcuPkcml0EpV3Jj4428OPIi3pg3H2ch11BprqStpI1lzmV0ejrp8fTgMrooM5ahlCuxaW04dA4EBHLkSGaS7B3fy6ryVTx68tH8sQkKZIIMi8aCgMBDnQ9RYa7AF/fR6e6kqagJm85GW0nb+T3ZEhLvMM7rUtcDDzyQD+l7nX8PHTqEKIp88pOfpLi4mF27dnHw4EFuvPFGrr/+eqanpwv7E4TT04ZFUTzj4/N84xvfwGw2F/6tqKj4s7xXCQmJdw5GtZFr669lLjbHDY03cP/G+/nuVd/FHXHzzMAzfHf/d3m452GOuY9xc/PNqGVq7Fo7Fo2F5qJmnHonsXSssL8qSxVmrRmFTEGxvhi71o5SpmRl6Uq6Z7sZ8A1g1pgxqUx0z3bz4uiLPN3/NKvLVqNX6mlxtmDVWtEpdcTTcQLxAPvG9zEeGqfb041Na6PH20MwEURAYEXpChY7FnNp1aXUWmoZC44xHBim0pT356kwVTAWHOP7B76PO+I+X6dZQuIdyXmt+HzqU5/i1ltvfd1tqqur2b59O9u2bcPv92MymQD44Q9/yPPPP8/Pf/5zPv/5z1NSUsKBAwcWfK/f7yedTp9WCTqV+++/n09/+tOFr0OhkCR+JCTeBWgVWhptjajkKoYDw/y/nv9HOpcmkUmglCsxqU0c9xwnmAhyy5Jb6PP3cWj6EDtHd5LOpllTvoZbltyCRqFBr9Lz/sXvZyIwwXh4nApzBRaNhbUVa9k7vpdYOoYoihyZOUJOzBFOhunydHHNomt4sv9JxoPjhfHzanM11zVcx46RHWyp2YJOoaPb002RtgiVQsXx2eOIiMxGZ7Hr7MgFOWWmMlL+FAjg0DlYUrSEA5MHyOQyZww+lZB4N3NehY/D4cDhcLzhdrFY/s5KJltYoJLJZORyOQDWrVvH1772NaanpyktLQXyDc9qtbrQB3Qm1Go1arX6rb4FCQmJC5CjM0f57r7v5pey5k5yRc0VxDNxHDoHGyo30OXuYiQwgoCAL+7DaXRi19kZ9A3mp6Y0Nl6eepkB3wArS1cyGZ6kwd7ATc034Y66iaVjhbHzY+5j6BQ6xkPjhaBQhUyBWZ1PUL+85nKsWivZXBatQotaoabP20csHSMn5tg+sh1/ws/trbcTjAcRBAG9Uo9OqSORSZDIJEhn01y96GqurLuSSCqCTJDhMro46T1JMBk8z2dbQuKdxQXR47Nu3TqsVit33nkn//iP/4hWq+UnP/kJw8PDXHfddQBcddVVNDc3c8cdd/Ctb30Ln8/HZz7zGe6+++5ClUhCQkLCHXHz7T3fZv/kfgQErqq7itnYLEemj7DYsZhkNkmZsYxGRyOJTAKDyoBapuaRnkdoKW7BoDTgjXsZ9A2Szqapt9aze2w3PbM9hFNhWotbmY5M44l40Cq1mNQmKs2VDPuHUcvzN1n19nomw5MEEgGG/EPMTc3lK1CORrQKLRkxQ7G+mNnYLCWGEsxqM8ucy+id66W1uJWZyAzBZJBMNkOpoRSj2kgkGeGJk0/w+97fY1QZWVexjiVFSzCrzef5jEtIvLO4IMbZHQ4HzzzzDJFIhMsvv5yVK1eye/duHnvsMZYtWwaAXC7nySefRKPRsGHDBj74wQ/y3ve+l29/+9vn+eglJCTeSXS5u9g/uZ9MLkM6l+a5weco1hWzpHgJCpmClaUrmY3N8vzg87w48iJDviG8cS8rSleAmO8Pmq8GZcUsoVQIf8LPgG+Ax08+TqmhlJubbubWlltZW76W9tL2gkjSKrXUWGvwxXyUGEoQELi2/lpcBhfxTJxOdye9c72EkiHe2/heXp58mZnIDB9q/RC/Of4bvr7r6zj1ToLJIJFUhFJjKZlc3hix3l7P9pHtNNobCafC7Bvfx7GZYwwHhgknw+f7tEtIvGO4ICo+ACtXruTZZ5993W0qKyvZtm3bOToiCQmJCxFP1EMmlyl8nc6l6fJ0kcwmGfYPU2muZG35WlqKW4hn4tRYanDqnczGZhn0D+IyuYikImRyGQQE5IK80MMz4B+g09PJurJ12LV24uk4l1VfxmRoEl/Ch0FlwKFz0ORo4rqG6xgNjBJMBvOj6Lk046FxWopaiKVj7B7bTVNRE4sdizk8fbgwnv6r7l+xqXITpYZS9Co9S51LeX7oeXaO7mQ2Nks6l8ZldDETmSGZTZLMJguBqxISEheQ8JGQkJB4OzCoDac91unuZEvtlkKa+q6xXXhjXmosNVxeczk7hneQyqaIZWLIBBlyQU5aTFNpqWQ0MApQ6N9JZVM82vto/rFcltnILF/c9EV6fb14Y17UcjUnvCd4su9Jrqi9gqnwFDPRGTwRDz3eHkoNpYW+nJ7ZHkxqEwP+AQLxAEa1kdnYLPsn9hPLxFAICv7x0n/kxOwJBEFALVcTS8dYZFtEMpNEJshIZBJE0pHT3rOExLsVSfhISEi8q6ix1NDkaOKE90ThsXQuzQtDL/CBJR+gxlJDkb4ItVxNNB3lucHnWFO2hueHnsepdyIX5Jg0JsqUZbS72nmk5xFExMK+c7kcs7FZDCoDO4Z3cG39tfzji/+IP+HHqXeiVqjp9nRTZa5CQOCSqkuYic6QyuVzBTUKDcFkELPGjFahJZVNoZQpmQxPssi2CIBYOoZA3vJDJsios9Wxf2I/SrkSIF+JkslRyBRoFBoMytPFnoTEuxVJ+EhISLyrqLZUc8/Ke/jRoR8tED+LbItYXbaanx/9eSH/ap5DU4coNZRydd3VJDIJbmy8kd1ju3m452HSuTQKmYIaSw3XNVzHoelDFOmKSGaSjAZHsWvtjAbzVaFKcyXJTBKT2kQml2EqMlUQTSqZCpfBhUDed0ytUNPoaESv0JPIJLDr7PTM9lBlrsJmtxFOhlHIFNi1dhTCwo9yuUyOUWWk1FCKSW2S0tklJE5BEj4SEhLvKoxqI20lbXxi5ScIJAKEU2GMKiMWjYVMLlMILH01HdMdLCtZhoCAXW/HrrPzgSUfIJVNoVVoSefSiKLISGAEgHJTOcACo8NsLstcfI4qcxU5MW/FkcgkAKi11lJmKmPAN1DY3qKxYNfaKdIX4TK6ODR1CHfUTSAZIJqK0lzUjEquotXZijfu5aT3JAZVPtNrfcV6Lqu+jPUV66XMLgmJU5CEj4SExLuOakt1vhITGCWSjmBQGqiyVHFo8lChAnMqAgJGlRGdQkckHWHEP8LlNZezf2I/05FpDEoDnqiHw9OHWVO2hp7ZHuxaOxqFBp1SV9iPXCYnJ+aIpqNcWnUpyUyS5uJmygxlVFmqmIvPMRubxRf3vfLagsB9q+/jRx0/otXZSjaXJZVNUWOtob20nYd7HqbWUsuNDTdy25LbKDGUYNFaKDWUUmWpkkSPhMSrEERRPP2v/F1MKBTCbDYTDAYl/x8JiXcZ7oib+1+4P5/OfgoCAk1FTaz+/9u7+5gqyz8M4NdB4fAiIC87HFBUVPqBIweCmsUklUFGzaZj6XRlMycqAstatNzgjwx0a21aEWgxzSabL1tkGIOV4pYBiehRB5jy/iIWxiFNEM7394dy4oCaNfLE/VyfjT+87xu8r+dMuXjO8/AEzENDdwMAwNHBEbP9ZqPF3HL39nad7u7v5em6irmT5qK8tRwTHCcgwhiBozVHrdf49Fv6MX/yfBgnGOHt4o3Xwl+zKSc9vT0jChkAFNYWwtxrxu3+23cfmKobd3cf4x0xY+IMeLt4s+iQpj3q928Wn2FYfIi0rbqjGrvKd9mUn+le05EyPwUzvGbct5Scv3Ye56+dBwDcvHMTJxtOwt3JHUumL8GVrisI9AxE3a91uPHHDfi6+WKC0wR4u3hj2f+WPfL1Nw2/NaCwttDmbNDf/RpEKmPx+YdYfIjo2u/XcKnzEn7r/Q0T9RMxyzDrL593NfRMjZODExzHOeLWnVtwc3SzFpPhpenvnp2539kgnuEhuovF5x9i8SEiIhp7HvX795h4ZAURERHRaGDxISIiIs1g8SEiIiLNYPEhIiIizWDxISIiIs1g8SEiIiLNYPEhIiIizWDxISIiIs1g8SEiIiLNYPEhIiIizRhv7w381ww+wcNsNtt5J0RERPSoBr9v/9WTuFh8hvn1118BAIGBgXbeCREREf1dPT098PT0fOA8i88w3t7eAICmpqaHHjhVmc1mBAYGorm5WZMPaWV+becHeAyYn/nHan4RQU9PDwICAh66jsVnGAeHu5c9eXp6jrkXfTR5eHgwP/Pbext2pfVjwPzMPxbzP8oJC17cTERERJrB4kNERESaweIzjF6vR0ZGBvR6vb23YhfMz/xazg/wGDA/86ueXyd/dd8XERERkSJ4xoeIiIg0g8WHiIiINIPFh4iIiDSDxYeIiIg0g8VniLq6Oixbtgy+vr7w8PDAM888g++//95mTVNTE1588UW4ubnB19cXKSkp6Ovrs9OOR98333yD+fPnw8XFBb6+vli+fLnNvOr5AaC3txfh4eHQ6XSorq62mVM1f0NDA9atW4egoCC4uLhgxowZyMjIGJFN1fyDPvnkEwQFBcHZ2RmRkZE4deqUvbf0r8jKysLcuXPh7u4Og8GAl156CbW1tTZrRASZmZkICAiAi4sLnn32WVy8eNFOO/53ZWVlQafTIS0tzTqmev7W1lasWbMGPj4+cHV1RXh4OM6cOWOdVzq/kNXMmTPl+eefl3PnzkldXZ1s2rRJXF1dpb29XURE+vv7JSwsTBYtWiRVVVVSUlIiAQEBkpycbOedj47Dhw+Ll5eX5OTkSG1trdTU1MihQ4es86rnH5SSkiJLly4VAHL27FnruMr5jx8/LmvXrpXi4mK5cuWKfPXVV2IwGGTr1q3WNSrnFxEpKCgQR0dH2bNnj1y6dElSU1PFzc1NGhsb7b21URcfHy/5+fly4cIFqa6uloSEBJkyZYr8/vvv1jXZ2dni7u4uR44cEZPJJC+//LL4+/uL2Wy2485HX0VFhUybNk1mz54tqamp1nGV83d1dcnUqVNl7dq1Ul5eLvX19VJaWio///yzdY3K+Vl87rl+/boAkLKyMuuY2WwWAFJaWioiIkVFReLg4CCtra3WNQcPHhS9Xi/d3d2Pfc+j6c6dOzJp0iTZu3fvA9eonH9QUVGRhISEyMWLF0cUHy3kH2rnzp0SFBRk/bPq+efNmydJSUk2YyEhIZKenm6nHT0+nZ2dAkBOnjwpIiIWi0WMRqNkZ2db19y+fVs8PT3l008/tdc2R11PT48EBwdLSUmJxMTEWIuP6vnffvttiY6OfuC86vn5Vtc9Pj4+CA0Nxf79+3Hz5k309/cjNzcXfn5+iIyMBACcPn0aYWFhNg9Ai4+PR29vr80pwrGoqqoKra2tcHBwQEREBPz9/bF06VKbU5sq5weAa9euYf369fjiiy/g6uo6Yl71/MN1d3dbH9oLqJ2/r68PZ86cQVxcnM14XFwcfvjhBzvt6vHp7u4G8OdDmuvr69HR0WFzPPR6PWJiYpQ6Hps3b0ZCQgJiY2NtxlXPX1hYiKioKCQmJsJgMCAiIgJ79uyxzquen8XnHp1Oh5KSEpw9exbu7u5wdnbGhx9+iG+//RYTJ04EAHR0dMDPz8/m87y8vODk5ISOjg477Hr0XL16FQCQmZmJbdu24dixY/Dy8kJMTAy6uroAqJ1fRLB27VokJSUhKirqvmtUzj/clStXsHv3biQlJVnHVM7/yy+/YGBgYEQ+Pz+/MZ/tr4gI3njjDURHRyMsLAwArJlVPh4FBQWoqqpCVlbWiDnV81+9ehU5OTkIDg5GcXExkpKSkJKSgv379wNQP7/yxSczMxM6ne6hHz/99BNEBJs2bYLBYMCpU6dQUVGBZcuW4YUXXkB7e7v16+l0uhF/h4jcd/y/4FHzWywWAMC7776LFStWIDIyEvn5+dDpdDh06JD166maf/fu3TCbzXjnnXce+vVUzT9UW1sbnnvuOSQmJuL111+3mRtr+f+u4TlUyvYgycnJOH/+PA4ePDhiTtXj0dzcjNTUVBw4cADOzs4PXKdqfovFgjlz5uD9999HREQENmzYgPXr1yMnJ8dmnar5x9t7A/+25ORkrFy58qFrpk2bhu+++w7Hjh3DjRs34OHhAeDuHR4lJSXYt28f0tPTYTQaUV5ebvO5N27cwJ07d0Y04/+KR83f09MDAJg1a5Z1XK/XY/r06WhqagIApfO/9957+PHHH0c8nyYqKgqrV6/Gvn37lM4/qK2tDYsWLcKCBQuQl5dns24s5n9Uvr6+GDdu3IifZjs7O8d8tofZsmULCgsLUVZWhsmTJ1vHjUYjgLs/+fv7+1vHVTkeZ86cQWdnp/UyBgAYGBhAWVkZPvroI+sdbqrm9/f3t/m/HgBCQ0Nx5MgRAOq//ry4+Z7CwkJxcHCQnp4em/EnnnhCtm/fLiJ/XtzZ1tZmnS8oKFDi4s7u7m7R6/U2Fzf39fWJwWCQ3NxcEVE7f2Njo5hMJutHcXGxAJDDhw9Lc3OziKidX0SkpaVFgoODZeXKldLf3z9iXvX88+bNk40bN9qMhYaGKnlxs8Vikc2bN0tAQIDU1dXdd95oNMqOHTusY729vcpc3Go2m23+vZtMJomKipI1a9aIyWRSPv+qVatGXNyclpYmCxYsEBH1X38Wn3uuX78uPj4+snz5cqmurpba2lp58803xdHRUaqrq0Xkz9t5lyxZIlVVVVJaWiqTJ09W5nbe1NRUmTRpkhQXF0tNTY2sW7dODAaDdHV1iYj6+Yeqr69/4O3sKuZvbW2VmTNnyuLFi6WlpUXa29utH4NUzi/y5+3sn332mVy6dEnS0tLEzc1NGhoa7L21Ubdx40bx9PSUEydO2LzWt27dsq7Jzs4WT09POXr0qJhMJlm1apUytzPfz9C7ukTUzl9RUSHjx4+X7du3y+XLl+XLL78UV1dXOXDggHWNyvlZfIaorKyUuLg48fb2Fnd3d3nqqaekqKjIZk1jY6MkJCSIi4uLeHt7S3Jysty+fdtOOx5dfX19snXrVjEYDOLu7i6xsbFy4cIFmzUq5x/qfsVHRN38+fn5AuC+H0Opmn/Qxx9/LFOnThUnJyeZM2eO9fZu1Tzotc7Pz7eusVgskpGRIUajUfR6vSxcuFBMJpP9Nv0vG158VM//9ddfS1hYmOj1egkJCZG8vDybeZXz60RE7PAOGxEREdFjp/xdXURERESDWHyIiIhIM1h8iIiISDNYfIiIiEgzWHyIiIhIM1h8iIiISDNYfIiIiEgzWHyIiIhIM1h8iEhZAwMDePrpp7FixQqb8e7ubgQGBmLbtm122hkR2Qt/czMRKe3y5csIDw9HXl4eVq9eDQB45ZVXcO7cOVRWVsLJycnOOySix4nFh4iUt2vXLmRmZuLChQuorKxEYmIiKioqEB4ebu+tEdFjxuJDRMoTESxevBjjxo2DyWTCli1b+DYXkUax+BCRJtTU1CA0NBRPPvkkqqqqMH78eHtviYjsgBc3E5EmfP7553B1dUV9fT1aWlrsvR0ishOe8SEi5Z0+fRoLFy7E8ePHsXPnTgwMDKC0tBQ6nc7eWyOix4xnfIhIaX/88QdeffVVbNiwAbGxsdi7dy8qKyuRm5tr760RkR2w+BCR0tLT02GxWLBjxw4AwJQpU/DBBx/grbfeQkNDg303R0SPHd/qIiJlnTx5EkuWLMGJEycQHR1tMxcfH4/+/n6+5UWkMSw+REREpBl8q4uIiIg0g8WHiIiINIPFh4iIiDSDxYeIiIg0g8WHiIiINIPFh4iIiDSDxYeIiIg0g8WHiIiINIPFh4iIiDSDxYeIiIg0g8WHiIiINIPFh4iIiDTj/7Si69eZPebmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_tsne_plots(filter_results, \"bool_pains\", tsne_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.2 Clustering\n", + "[Not used in the paper]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "fragment_library_reduced = utils.read_fragment_library(PATH_DATA / \"fragment_library_reduced\")\n", + "fragment_library_custom = utils.read_fragment_library(PATH_DATA / \"fragment_library_custom_filtered\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "smiles = pd.concat(fragment_library).smiles.tolist()\n", + "smiles_custom = pd.concat(fragment_library_custom).smiles.tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of molecules: 3505\n", + "Threshold: 0.6\n", + "Number of clusters: 529\n", + "# Clusters with only 1 molecule: 232\n", + "# Clusters with more than 5 molecules: 126\n", + "# Clusters with more than 25 molecules: 26\n", + "# Clusters with more than 100 molecules: 4\n" + ] + } + ], + "source": [ + "clusters = utils.cluster_molecules(pd.concat(fragment_library).ROMol, cutoff=0.6)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "cluster_indexes = []\n", + "for smi in smiles_custom: \n", + " ind = smiles.index(smi)\n", + " cluster_id = clusters[clusters.molecule_id == ind].cluster_id\n", + " cluster_indexes.append(int(cluster_id))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "102 clusters out of 529 clusters in total (19.28 %) are covered in customKinFragLib\n" + ] + } + ], + "source": [ + "print(f\"{len(set(cluster_indexes))} clusters out of {max(clusters.cluster_id)} clusters in total ({round(len(set(cluster_indexes))/max(clusters.cluster_id), 4) * 100} %) are covered in customKinFragLib\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2106 out of 3505 compounds (60.09%) have a common cluster representative in customKinFragLib\n" + ] + } + ], + "source": [ + "covered_comps = sum(clusters.cluster_id.isin(cluster_indexes))\n", + "print(f\"{covered_comps} out of {len(smiles)} compounds ({round(covered_comps/len(smiles) * 100, 2)}%) have a common cluster representative in customKinFragLib\")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "cluster_counts = Counter(clusters.cluster_id)\n", + "custom_cluster_counts = [cluster_counts[c] for c in list(set(cluster_indexes))]\n", + "custom_counts = [0, 0, 0, 0, 0]\n", + "custom_counts[0] = sum([1 for count in custom_cluster_counts if count == 1])\n", + "custom_counts[1] = sum([1 for count in custom_cluster_counts if count > 1])\n", + "custom_counts[2] = sum([1 for count in custom_cluster_counts if count > 5])\n", + "custom_counts[3] = sum([1 for count in custom_cluster_counts if count > 25])\n", + "custom_counts[4] = sum([1 for count in custom_cluster_counts if count > 100])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "fragment_counts = [0, 0, 0, 0, 0]\n", + "fragment_counts[0] = sum([1 for count in list(cluster_counts.values()) if count == 1])\n", + "fragment_counts[1] = sum([1 for count in list(cluster_counts.values()) if count > 1])\n", + "fragment_counts[2] = sum([1 for count in list(cluster_counts.values()) if count > 5])\n", + "fragment_counts[3] = sum([1 for count in list(cluster_counts.values()) if count > 25])\n", + "fragment_counts[4] = sum([1 for count in list(cluster_counts.values()) if count > 100])\n", + "#c_200 = sum([1 for count in list(cluster_counts.values()) if count > 100])" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "columns = ['1', '>1', '>5', '>25', '>100']\n", + "fraction = [c/f for (c, f) in zip(custom_counts, fragment_counts)]\n", + "df = pd.DataFrame(zip(columns, custom_counts, fragment_counts, fraction), columns=['Count', 'CustomKinFragLib', 'Pre-filtered fragment library', 'Coverage'])" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coverage per cluster size:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountCustomKinFragLibPre-filtered fragment libraryCoverage
0182320.03
1>1942970.32
2>5731260.58
3>2522260.85
4>100340.75
\n", + "
" + ], + "text/plain": [ + " Count CustomKinFragLib Pre-filtered fragment library Coverage\n", + "0 1 8 232 0.03\n", + "1 >1 94 297 0.32\n", + "2 >5 73 126 0.58\n", + "3 >25 22 26 0.85\n", + "4 >100 3 4 0.75" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(\"Coverage per cluster size:\")\n", + "df.round({'Coverage': 2})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.3 Average Tanimoto similarity " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def calc_avg_tanimoto_distance(molecules: list) -> float: # maybe add this to utils (?)\n", + " \"\"\"\n", + " Returns the mean tanimoto distance of a given list of molecules.\n", + "\n", + " Returns\n", + " -------\n", + " Mean tanimoto distance of given molecules\n", + "\n", + " Parameters\n", + " -----------\n", + " molecules: list\n", + " List of molecules (rdkit.Mol)\n", + " \"\"\"\n", + " # Generate fingerprints\n", + " fps = utils._generate_fingerprints(molecules)\n", + "\n", + " # Calculate Tanimoto distance matrix\n", + " distance_matrix = utils._get_tanimoto_distance_matrix(fps)\n", + "\n", + " return np.mean(distance_matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "mols = pd.concat(fragment_library).ROMol.tolist()\n", + "mols_custom = pd.concat(fragment_library_custom).ROMol.tolist()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Diversity of pre-filtered KinFragLib: 0.907\n", + "Diversity of CustomKinFragLib: 0.864\n" + ] + } + ], + "source": [ + "div = calc_avg_tanimoto_distance(mols)\n", + "div_custom = calc_avg_tanimoto_distance(mols_custom)\n", + "print(f'Diversity of pre-filtered KinFragLib: {round(div, 3)}')\n", + "print(f'Diversity of CustomKinFragLib: {round(div_custom, 3)}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.3.1 Average Tanimoto Similarity per Subpocket" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Avg. diversity per subpocket:\n", + "\n", + "Subpocket\tPre-filtered KinFragLib\t\tCustomKinFragLib\n", + "---------\t-----------------------\t\t----------------\n", + "AP\t\t0.857\t\t\t\t0.816\n", + "FP\t\t0.910\t\t\t\t0.883\n", + "SE\t\t0.899\t\t\t\t0.862\n", + "GA\t\t0.896\t\t\t\t0.841\n", + "B1\t\t0.909\t\t\t\t0.842\n", + "B2\t\t0.914\t\t\t\t---\n" + ] + } + ], + "source": [ + "print(f\"Avg. diversity per subpocket:\\n\")\n", + "print(f\"Subpocket\\tPre-filtered KinFragLib\\t\\tCustomKinFragLib\")\n", + "print(f\"---------\\t-----------------------\\t\\t----------------\")\n", + "for subpocket in fragment_library:\n", + " mols = fragment_library[subpocket].ROMol.tolist()\n", + " div = calc_avg_tanimoto_distance(mols)\n", + " try: \n", + " mols_custom = fragment_library_custom[subpocket].ROMol.tolist()\n", + " div_custom = calc_avg_tanimoto_distance(mols_custom)\n", + " print(f\"{subpocket}\\t\\t{div:.3f}\\t\\t\\t\\t{div_custom:.3f}\")\n", + " except KeyError:\n", + " # for empty subpockets, print Nan\n", + " print(f\"{subpocket}\\t\\t{div:.3f}\\t\\t\\t\\t---\")\n", + " continue" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.4 Standadized Shannon Entropy of Murcko Scaffolds " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Subpocket B2 not in CustomKinFragLib, skipping this.\n" + ] + } + ], + "source": [ + "# add murcko scaffolds to fragment library \n", + "for subpocket in fragment_library.keys():\n", + " PandasTools.AddMurckoToFrame(fragment_library[subpocket])\n", + " try: \n", + " PandasTools.AddMurckoToFrame(fragment_library_custom[subpocket])\n", + " except KeyError: \n", + " print(f\"Subpocket {subpocket} not in CustomKinFragLib, skipping this.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some fragments do not contain any rings and hence have an empty murcko scafold. Since the number of these fragments is rather low, and we cannot make any assumption on them, we exclude them in the following entropy calculations. " + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total numer of pre-filtered KinFragLib fragments: 3505\n", + "Number of pre-filtered KinFragLib fragments with empty scaffold: 307 (8.8%)\n", + "\n", + "Total numer of CustomKinFragLib fragments: 523\n", + "Number of CustomKinFragLib fragments with empty scaffold: 6 (1.1%)\n" + ] + } + ], + "source": [ + "num_fragments = pd.concat(fragment_library).shape[0]\n", + "num_fragments_custom = pd.concat(fragment_library_custom).shape[0]\n", + "\n", + "num_empty_scaffolds = sum((sum(fragments['Murcko_SMILES'] == \"\") for fragments in fragment_library.values()))\n", + "num_empty_scaffolds_custom = sum((sum(fragments['Murcko_SMILES'] == \"\") for fragments in fragment_library_custom.values()))\n", + "\n", + "print(f\"Total numer of pre-filtered KinFragLib fragments: {num_fragments}\")\n", + "print(f\"Number of pre-filtered KinFragLib fragments with empty scaffold: {num_empty_scaffolds} ({100 * num_empty_scaffolds/num_fragments:.1f}%)\\n\")\n", + "\n", + "print(f\"Total numer of CustomKinFragLib fragments: {num_fragments_custom}\")\n", + "print(f\"Number of CustomKinFragLib fragments with empty scaffold: {num_empty_scaffolds_custom} ({100 * num_empty_scaffolds_custom/num_fragments_custom:.1f}%)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def calc_sse(murcko_smiles: pd.Series) -> float:\n", + " \"\"\"\n", + " Returns the scaled Shannon Entropy of a given list of Murcko scaffold.\n", + "\n", + " Returns\n", + " -------\n", + " Scaled Shannon Entropy of a given list of Murcko scaffold\n", + "\n", + " Parameters\n", + " -----------\n", + " molecules: Pandas.Series\n", + " List of Murcko scaffolds as SMILES (str)\n", + " \"\"\"\n", + " p = murcko_smiles.shape[0]\n", + "\n", + " unique_scaffolds = murcko_smiles.value_counts()\n", + "\n", + " se = - sum((scaffold_count/p) * math.log2(scaffold_count/p) for scaffold_count in unique_scaffolds)\n", + " \n", + " return se / math.log2(unique_scaffolds.shape[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "murcko_smiles = pd.concat(fragment_library)[pd.concat(fragment_library)['Murcko_SMILES'] != \"\"]['Murcko_SMILES']\n", + "murcko_smiles_custom = pd.concat(fragment_library_custom)[pd.concat(fragment_library_custom)['Murcko_SMILES'] != \"\"]['Murcko_SMILES']" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SSE of pre-filtered KinFragLib: 0.779\n", + "SSE of CustomKinFragLib: 0.7\n" + ] + } + ], + "source": [ + "sse = calc_sse(murcko_smiles)\n", + "sse_custom = calc_sse(murcko_smiles_custom)\n", + "print(f'SSE of pre-filtered KinFragLib: {round(sse, 3)}')\n", + "print(f'SSE of CustomKinFragLib: {round(sse_custom, 3)}')" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SSE per subpocket:\n", + "\n", + "Subpocket\tPre-filtered KinFragLib\t\tCustomKinFragLib\n", + "---------\t-----------------------\t\t----------------\n", + "AP\t\t0.877\t\t\t\t0.891\n", + "FP\t\t0.807\t\t\t\t0.743\n", + "SE\t\t0.803\t\t\t\t0.698\n", + "GA\t\t0.647\t\t\t\t0.632\n", + "B1\t\t0.675\t\t\t\t0.887\n", + "B2\t\t0.675\t\t\t\t---\n" + ] + } + ], + "source": [ + "print(f\"SSE per subpocket:\\n\")\n", + "print(f\"Subpocket\\tPre-filtered KinFragLib\\t\\tCustomKinFragLib\")\n", + "print(f\"---------\\t-----------------------\\t\\t----------------\")\n", + "for subpocket in fragment_library:\n", + " murcko_smiles = fragment_library[subpocket][fragment_library[subpocket]['Murcko_SMILES'] != \"\"]['Murcko_SMILES']\n", + " try: \n", + " murcko_smiles_custom = fragment_library_custom[subpocket][fragment_library_custom[subpocket]['Murcko_SMILES'] != \"\"]['Murcko_SMILES']\n", + " sse = calc_sse(murcko_smiles)\n", + " sse_custom = calc_sse(murcko_smiles_custom)\n", + "\n", + " print(f\"{subpocket}\\t\\t{sse:.3f}\\t\\t\\t\\t{sse_custom:.3f}\")\n", + " except KeyError: \n", + " # subpocket not in CustomKinFragLib \n", + " print(f\"{subpocket}\\t\\t{sse:.3f}\\t\\t\\t\\t---\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "kinfraglib", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/custom_kinfraglib/README.md b/notebooks/custom_kinfraglib/README.md new file mode 100644 index 00000000..611ad9ea --- /dev/null +++ b/notebooks/custom_kinfraglib/README.md @@ -0,0 +1,26 @@ +# Custom KinFragLib notebooks +## 1. Custom filtering steps +### `1_1_custom_filters_unwanted_substructures.ipynb` +This notebook filters out unwanted substructures which are defined by PAINS +substructures and/or by the list from Brenk et al. +### `1_2_custom_filters_drug_likeness.ipynb` +This notebook filters out fragments not fulfilling the Rule of Three and the Quantitative Estimate +of Druglikeness (QED), which both reflect the molecular properties of the fragments. +### `1_3_custom_filters_synthesizability.ipynb` +This notebook filters the fragments for synthesizability using a buyable building block +filter and the SYnthetic Bayesian Accessibility (SYBA) score. +### `1_4_custom_filters_pairwise_retrosynthesizability.ipynb` +This notebook builds fragment pairs using only those fragments that passed all custom filtering steps. +Next, it uses the ASKCOS API to check if a one-step retrosynthetic route for this pair can be found and children, building this fragment pair, are returned from ASKCOS. +Finally, it will compare the children retrieved from ASKCOS with the fragments building the pair. If the fragments are +substructures of the children, then they pass this filter. +## 2. Custom filtering pipeline +### `2_1_custom_filters_pipeline.ipynb` +This notebook applies all the filtering steps explained before and gives the possibility to easily (de-)activate +single filtering steps and modify the parameters. +### `2_2_custom_filters_analysis.ipynb` +This notebook analyzes the custom-filtered fragment library and compares it with the pre-filtered and the reduced fragment set from the previous study. +### `2_3_custom_filters_paper.ipynb` +This notebook contains all the code used to generate figures for the CustomKinFragLib paper. +## Requirements +To successfully apply the pairwise retrosynthesizability filters in `1_4_custom_filters_pairwise_retrosynthesizability.ipynb` and `2_1_custom_filters_pipeline.ipynb`, the ASKCOS API might need to be installed following the [Documentation](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html). Note that for the data used in the notebooks, all results from ASKCOS are already precomputed and ASKCOS does not need to be installed to run the notebooks. However, if new data is added ASKCOS needs to be installed and run (using `make start` within the `askcos2_core` directory which is obtained following the [installation](https://askcos-docs.mit.edu/guide/1-Introduction/1.1-Introduction.html)). \ No newline at end of file diff --git a/notebooks/custom_kinfraglib/figures/n_fragments_filter_step.png b/notebooks/custom_kinfraglib/figures/n_fragments_filter_step.png new file mode 100644 index 00000000..e46eb8ae Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/n_fragments_filter_step.png differ diff --git a/notebooks/custom_kinfraglib/figures/n_fragments_filter_total.png b/notebooks/custom_kinfraglib/figures/n_fragments_filter_total.png new file mode 100644 index 00000000..66fff1f8 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/n_fragments_filter_total.png differ diff --git a/notebooks/custom_kinfraglib/figures/n_fragments_per_subpocket.png b/notebooks/custom_kinfraglib/figures/n_fragments_per_subpocket.png new file mode 100644 index 00000000..2d7042ae Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/n_fragments_per_subpocket.png differ diff --git a/notebooks/custom_kinfraglib/figures/old_vs_new_kinfraglib.png b/notebooks/custom_kinfraglib/figures/old_vs_new_kinfraglib.png new file mode 100644 index 00000000..0f1a5d24 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/old_vs_new_kinfraglib.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_bb.png b/notebooks/custom_kinfraglib/figures/tsne_bool_bb.png new file mode 100644 index 00000000..666810c8 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_bb.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_brenk.png b/notebooks/custom_kinfraglib/figures/tsne_bool_brenk.png new file mode 100644 index 00000000..f04514af Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_brenk.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_custom.png b/notebooks/custom_kinfraglib/figures/tsne_bool_custom.png new file mode 100644 index 00000000..4b5371c8 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_custom.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_pains.png b/notebooks/custom_kinfraglib/figures/tsne_bool_pains.png new file mode 100644 index 00000000..9b69d608 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_pains.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_qed.png b/notebooks/custom_kinfraglib/figures/tsne_bool_qed.png new file mode 100644 index 00000000..32cc31ff Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_qed.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_ro3.png b/notebooks/custom_kinfraglib/figures/tsne_bool_ro3.png new file mode 100644 index 00000000..bc7636f8 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_ro3.png differ diff --git a/notebooks/custom_kinfraglib/figures/tsne_bool_syba.png b/notebooks/custom_kinfraglib/figures/tsne_bool_syba.png new file mode 100644 index 00000000..d6f227d5 Binary files /dev/null and b/notebooks/custom_kinfraglib/figures/tsne_bool_syba.png differ diff --git a/notebooks/1_1_quick_start.ipynb b/notebooks/kinfraglib/1_1_quick_start.ipynb similarity index 99% rename from notebooks/1_1_quick_start.ipynb rename to notebooks/kinfraglib/1_1_quick_start.ipynb index d4347284..5c880d19 100644 --- a/notebooks/1_1_quick_start.ipynb +++ b/notebooks/kinfraglib/1_1_quick_start.ipynb @@ -60,7 +60,7 @@ "source": [ "# Path to library folder\n", "HERE = Path(_dh[-1])\n", - "PATH_TO_LIB = HERE / '..' / 'data' / 'fragment_library'" + "PATH_TO_LIB = HERE / '../..' / 'data' / 'fragment_library'" ] }, { diff --git a/notebooks/2_1_fragment_analysis_original_ligands.ipynb b/notebooks/kinfraglib/2_1_fragment_analysis_original_ligands.ipynb similarity index 99% rename from notebooks/2_1_fragment_analysis_original_ligands.ipynb rename to notebooks/kinfraglib/2_1_fragment_analysis_original_ligands.ipynb index 28a0ba05..d322c80b 100644 --- a/notebooks/2_1_fragment_analysis_original_ligands.ipynb +++ b/notebooks/kinfraglib/2_1_fragment_analysis_original_ligands.ipynb @@ -59,7 +59,7 @@ "outputs": [], "source": [ "HERE = Path(_dh[-1])\n", - "PATH_DATA = HERE / '../data'" + "PATH_DATA = HERE / '../../data'" ] }, { diff --git a/notebooks/2_2_fragment_analysis_statistics.ipynb b/notebooks/kinfraglib/2_2_fragment_analysis_statistics.ipynb similarity index 99% rename from notebooks/2_2_fragment_analysis_statistics.ipynb rename to notebooks/kinfraglib/2_2_fragment_analysis_statistics.ipynb index 8af47889..3429b2a7 100644 --- a/notebooks/2_2_fragment_analysis_statistics.ipynb +++ b/notebooks/kinfraglib/2_2_fragment_analysis_statistics.ipynb @@ -92,7 +92,7 @@ "outputs": [], "source": [ "HERE = Path(_dh[-1])\n", - "PATH_DATA = HERE / '../data'" + "PATH_DATA = HERE / '../../data'" ] }, { diff --git a/notebooks/2_3_fragment_analysis_most_common_fragments.ipynb b/notebooks/kinfraglib/2_3_fragment_analysis_most_common_fragments.ipynb similarity index 99% rename from notebooks/2_3_fragment_analysis_most_common_fragments.ipynb rename to notebooks/kinfraglib/2_3_fragment_analysis_most_common_fragments.ipynb index f82b2121..023f4b12 100644 --- a/notebooks/2_3_fragment_analysis_most_common_fragments.ipynb +++ b/notebooks/kinfraglib/2_3_fragment_analysis_most_common_fragments.ipynb @@ -77,7 +77,7 @@ "source": [ "HERE = Path(_dh[-1])\n", "# Path to library folder\n", - "PATH_TO_LIB = HERE / '../data/fragment_library'\n", + "PATH_TO_LIB = HERE / '../../data/fragment_library'\n", "# Path to output\n", "OUTPUT_PATH = HERE / 'figures'" ] diff --git a/notebooks/2_4_highlight_fragments_in_ligand.ipynb b/notebooks/kinfraglib/2_4_highlight_fragments_in_ligand.ipynb similarity index 99% rename from notebooks/2_4_highlight_fragments_in_ligand.ipynb rename to notebooks/kinfraglib/2_4_highlight_fragments_in_ligand.ipynb index e36a4e36..1c8383de 100644 --- a/notebooks/2_4_highlight_fragments_in_ligand.ipynb +++ b/notebooks/kinfraglib/2_4_highlight_fragments_in_ligand.ipynb @@ -79,7 +79,7 @@ "source": [ "# Path to library folder\n", "HERE = Path(_dh[-1])\n", - "PATH_TO_LIB = HERE / '../data/fragment_library'" + "PATH_TO_LIB = HERE / '../../data/fragment_library'" ] }, { diff --git a/notebooks/3_1_fragment_library_reduced.ipynb b/notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb similarity index 99% rename from notebooks/3_1_fragment_library_reduced.ipynb rename to notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb index 35d6bfb7..9cbf7660 100644 --- a/notebooks/3_1_fragment_library_reduced.ipynb +++ b/notebooks/kinfraglib/3_1_fragment_library_reduced.ipynb @@ -85,7 +85,7 @@ "source": [ "# Path to data\n", "HERE = Path(_dh[-1])\n", - "PATH_DATA = HERE / '../data'\n", + "PATH_DATA = HERE / '../../data'\n", "\n", "# Butina clustering: distance cutoff\n", "DISTANCE_CUTOFF = 0.6\n", @@ -123,11 +123,9 @@ " \n", " for subpocket, fragments in fragment_library_concat.groupby('subpocket'):\n", " \n", - " with open(path_output / f'{subpocket}.sdf', 'w') as f:\n", - " w = Chem.SDWriter(f)\n", + " with Chem.SDWriter(str(path_output / f\"{subpocket}.sdf\")) as w:\n", " for mol in fragments.ROMol_original:\n", - " w.write(mol)\n", - " w.close()" + " w.write(mol)" ] }, { diff --git a/notebooks/4_1_combinatorial_library_data.ipynb b/notebooks/kinfraglib/4_1_combinatorial_library_data.ipynb similarity index 97% rename from notebooks/4_1_combinatorial_library_data.ipynb rename to notebooks/kinfraglib/4_1_combinatorial_library_data.ipynb index dbe5e785..bc227ac8 100644 --- a/notebooks/4_1_combinatorial_library_data.ipynb +++ b/notebooks/kinfraglib/4_1_combinatorial_library_data.ipynb @@ -151,8 +151,8 @@ "outputs": [], "source": [ "HERE = Path(_dh[-1])\n", - "PATH_FRAGMENT_LIBRARY = HERE / '../data/fragment_library/'\n", - "PATH_COMBINATORIAL_LIBRARY = HERE / '../data/combinatorial_library/combinatorial_library_deduplicated.json'" + "PATH_FRAGMENT_LIBRARY = HERE / '../../data/fragment_library/'\n", + "PATH_COMBINATORIAL_LIBRARY = HERE / '../../data/combinatorial_library/combinatorial_library_deduplicated.json'" ] }, { @@ -301,6 +301,16 @@ "## 3. Save properties to `csv`/`json` files" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Takes up to 20 minutes\n", + "properties = get_properties(PATH_COMBINATORIAL_LIBRARY)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -344,7 +354,7 @@ "source": [ "# Takes a moment (20s)\n", "pd.DataFrame(properties['n_atoms']).to_csv(\n", - " '../data/combinatorial_library/n_atoms.csv',\n", + " '../../data/combinatorial_library/n_atoms.csv',\n", " index=None,\n", " header=None\n", ")" @@ -394,7 +404,7 @@ "outputs": [], "source": [ "ro5.to_csv(\n", - " '../data/combinatorial_library/ro5.csv',\n", + " '../../data/combinatorial_library/ro5.csv',\n", " header=None\n", ")" ] @@ -449,7 +459,7 @@ "subpockets = pd.DataFrame.from_dict(properties['subpockets'], orient=\"index\")\n", "subpockets = subpockets.rename(columns={0: 'count'})\n", "subpockets.to_csv(\n", - " '../data/combinatorial_library/subpockets.csv'\n", + " '../../data/combinatorial_library/subpockets.csv'\n", ")" ] }, @@ -587,7 +597,7 @@ "outputs": [], "source": [ "properties['original_exact'].to_json(\n", - " '../data/combinatorial_library/original_exact.json'\n", + " '../../data/combinatorial_library/original_exact.json'\n", ")" ] }, @@ -729,7 +739,7 @@ "outputs": [], "source": [ "properties['original_substructure'].to_json(\n", - " '../data/combinatorial_library/original_substructure.json'\n", + " '../../data/combinatorial_library/original_substructure.json'\n", ")" ] }, @@ -871,7 +881,7 @@ "outputs": [], "source": [ "properties['chembl_exact'].to_json(\n", - " '../data/combinatorial_library/chembl_exact.json'\n", + " '../../data/combinatorial_library/chembl_exact.json'\n", ")" ] }, @@ -971,7 +981,7 @@ "source": [ "# Takes a moment (20s)\n", "properties['chembl_most_similar'].to_json(\n", - " '../data/combinatorial_library/chembl_most_similar.json'\n", + " '../../data/combinatorial_library/chembl_most_similar.json'\n", ")" ] }, @@ -1113,7 +1123,7 @@ "outputs": [], "source": [ "properties['chembl_highly_similar'].to_json(\n", - " '../data/combinatorial_library/chembl_highly_similar.json'\n", + " '../../data/combinatorial_library/chembl_highly_similar.json'\n", ")" ] } diff --git a/notebooks/4_2_combinatorial_library_properties.ipynb b/notebooks/kinfraglib/4_2_combinatorial_library_properties.ipynb similarity index 99% rename from notebooks/4_2_combinatorial_library_properties.ipynb rename to notebooks/kinfraglib/4_2_combinatorial_library_properties.ipynb index 069d172b..123913be 100644 --- a/notebooks/4_2_combinatorial_library_properties.ipynb +++ b/notebooks/kinfraglib/4_2_combinatorial_library_properties.ipynb @@ -112,7 +112,7 @@ ], "source": [ "properties = pd.read_csv(\n", - " HERE / '../data/combinatorial_library/ro5.csv',\n", + " HERE / '../../data/combinatorial_library/ro5.csv',\n", " header=None,\n", " index_col=0\n", ").squeeze()\n", @@ -188,7 +188,7 @@ ], "source": [ "# Load SDF file\n", - "mol_supplier = Chem.SDMolSupplier(str(HERE / '../data/external/pkidb_2020-07-15.sdf'))\n", + "mol_supplier = Chem.SDMolSupplier(str(HERE / '../../data/external/pkidb_2020-07-15.sdf'))\n", "# Get SMILES for each molecule\n", "data_pkidb = pd.DataFrame([mol.GetProp('Canonical_Smiles') for mol in mol_supplier], columns=['Canonical_Smiles'])\n", "print(f'Number of PKIDB ligands: {data_pkidb.shape[0]}')" @@ -255,7 +255,7 @@ } ], "source": [ - "data_klifs = pd.read_json(HERE / '../data/fragment_library/original_ligands.json')\n", + "data_klifs = pd.read_json(HERE / '../../data/fragment_library/original_ligands.json')\n", "print(f'Number of original KLIFS ligands: {data_klifs.shape[0]}')\n", "# NBVAL_CHECK_OUTPUT" ] @@ -592,7 +592,7 @@ } ], "source": [ - "n_atoms = pd.read_csv(HERE / '../data/combinatorial_library/n_atoms.csv', header=None).squeeze()\n", + "n_atoms = pd.read_csv(HERE / '../../data/combinatorial_library/n_atoms.csv', header=None).squeeze()\n", "len(n_atoms)\n", "# NBVAL_CHECK_OUTPUT" ] @@ -813,7 +813,7 @@ } ], "source": [ - "subpockets = pd.read_csv(HERE / '../data/combinatorial_library/subpockets.csv', index_col=0)\n", + "subpockets = pd.read_csv(HERE / '../../data/combinatorial_library/subpockets.csv', index_col=0)\n", "subpockets['n_subpockets'] = [len(i.split('-')) for i in subpockets.index]\n", "subpockets\n", "# NBVAL_CHECK_OUTPUT" diff --git a/notebooks/4_3_combinatorial_library_comparison_klifs.ipynb b/notebooks/kinfraglib/4_3_combinatorial_library_comparison_klifs.ipynb similarity index 99% rename from notebooks/4_3_combinatorial_library_comparison_klifs.ipynb rename to notebooks/kinfraglib/4_3_combinatorial_library_comparison_klifs.ipynb index ce73a389..7d492ed3 100644 --- a/notebooks/4_3_combinatorial_library_comparison_klifs.ipynb +++ b/notebooks/kinfraglib/4_3_combinatorial_library_comparison_klifs.ipynb @@ -100,7 +100,7 @@ } ], "source": [ - "original_ligands = pd.read_json(HERE / '../data/fragment_library/original_ligands.json')\n", + "original_ligands = pd.read_json(HERE / '../../data/fragment_library/original_ligands.json')\n", "original_ligands['ROMol'] = original_ligands.inchi.apply(Chem.MolFromInchi)\n", "print(f'Number of original ligands: {original_ligands.shape[0]}')\n", "# NBVAL_CHECK_OUTPUT" @@ -161,7 +161,7 @@ } ], "source": [ - "fragment_library = utils.read_fragment_library(HERE / '../data/fragment_library_reduced/')\n", + "fragment_library = utils.read_fragment_library(HERE / '../../data/fragment_library_reduced/')\n", "fragment_library.keys()\n", "# NBVAL_CHECK_OUTPUT" ] @@ -256,7 +256,7 @@ } ], "source": [ - "exact_matches = pd.read_json(HERE / '../data/combinatorial_library/original_exact.json')[\n", + "exact_matches = pd.read_json(HERE / '../../data/combinatorial_library/original_exact.json')[\n", " ['bond_ids', 'fragment_ids', 'original_exact', 'original_substructure', 'inchi']\n", "]\n", "exact_matches['ROMol'] = exact_matches.inchi.apply(Chem.MolFromInchi)\n", @@ -539,7 +539,7 @@ "metadata": {}, "outputs": [], "source": [ - "substructure_matches = pd.read_json(HERE / '../data/combinatorial_library/original_substructure.json')\n", + "substructure_matches = pd.read_json(HERE / '../../data/combinatorial_library/original_substructure.json')\n", "substructure_matches['ROMol'] = substructure_matches.inchi.apply(Chem.MolFromInchi)" ] }, diff --git a/notebooks/4_4_combinatorial_library_comparison_chembl.ipynb b/notebooks/kinfraglib/4_4_combinatorial_library_comparison_chembl.ipynb similarity index 99% rename from notebooks/4_4_combinatorial_library_comparison_chembl.ipynb rename to notebooks/kinfraglib/4_4_combinatorial_library_comparison_chembl.ipynb index 84519db3..a9806b4c 100644 --- a/notebooks/4_4_combinatorial_library_comparison_chembl.ipynb +++ b/notebooks/kinfraglib/4_4_combinatorial_library_comparison_chembl.ipynb @@ -30,7 +30,7 @@ "1. How similar are recombined ligands to ChEMBL ligands?\n", "2. Which recombined ligands have exact matches in ChEMBL?\n", "\n", - "**Note** that the combinatorial library is stored as `json` file (11 M molecules). The data needed for this notebook was extracted previously in notebook `4_1_combinatorial_library_data.ipynb` for easy and fast access here. In order to run this notebook, download data from zenodo as instructed in `../data/combinatorial_library/README.md`." + "**Note** that the combinatorial library is stored as `json` file (11 M molecules). The data needed for this notebook was extracted previously in notebook `4_1_combinatorial_library_data.ipynb` for easy and fast access here. In order to run this notebook, download data from zenodo as instructed in `../../data/combinatorial_library/README.md`." ] }, { @@ -133,7 +133,7 @@ } ], "source": [ - "fragment_library = utils.read_fragment_library(HERE / '../data/fragment_library_reduced/')\n", + "fragment_library = utils.read_fragment_library(HERE / '../../data/fragment_library_reduced/')\n", "fragment_library.keys()" ] }, @@ -161,7 +161,7 @@ } ], "source": [ - "chembl = pd.read_csv(HERE / '../data/combinatorial_library/chembl_standardized_inchi.csv')\n", + "chembl = pd.read_csv(HERE / '../../data/combinatorial_library/chembl_standardized_inchi.csv')\n", "chembl.shape\n", "# NBVAL_CHECK_OUTPUT" ] @@ -248,7 +248,7 @@ } ], "source": [ - "chembl_most_similar = pd.read_json(HERE / '../data/combinatorial_library/chembl_most_similar.json')\n", + "chembl_most_similar = pd.read_json(HERE / '../../data/combinatorial_library/chembl_most_similar.json')\n", "chembl_most_similar.head()" ] }, @@ -464,7 +464,7 @@ "metadata": {}, "outputs": [], "source": [ - "exact_matches = pd.read_json(HERE / '../data/combinatorial_library/chembl_exact.json')" + "exact_matches = pd.read_json(HERE / '../../data/combinatorial_library/chembl_exact.json')" ] }, { @@ -692,8 +692,8 @@ "source": [ "original_ligand_matches = pd.concat(\n", " [\n", - " pd.read_json(HERE / '../data/combinatorial_library/original_exact.json'),\n", - " pd.read_json(HERE / '../data/combinatorial_library/original_substructure.json')\n", + " pd.read_json(HERE / '../../data/combinatorial_library/original_exact.json'),\n", + " pd.read_json(HERE / '../../data/combinatorial_library/original_substructure.json')\n", " ]\n", ")\n", "original_ligand_matches.shape\n", @@ -7509,7 +7509,7 @@ " 'standard_value': 'IC50 [nM]'\n", " }\n", ")\n", - "activities_active_kinases_5nm_paper.to_csv(HERE / '../data/combinatorial_library/combinatorial_library_active_kinase_targets_nm.csv', index=None)" + "activities_active_kinases_5nm_paper.to_csv(HERE / '../../data/combinatorial_library/combinatorial_library_active_kinase_targets_nm.csv', index=None)" ] }, { @@ -7547,7 +7547,7 @@ } ], "source": [ - "chembl_highly_similar = pd.read_json(HERE / '../data/combinatorial_library/chembl_highly_similar.json')\n", + "chembl_highly_similar = pd.read_json(HERE / '../../data/combinatorial_library/chembl_highly_similar.json')\n", "print(chembl_highly_similar.shape)\n", "# NBVAL_CHECK_OUTPUT" ] @@ -7979,7 +7979,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/notebooks/4_5_combinatorial_library_construct_ligands.ipynb b/notebooks/kinfraglib/4_5_combinatorial_library_construct_ligands.ipynb similarity index 99% rename from notebooks/4_5_combinatorial_library_construct_ligands.ipynb rename to notebooks/kinfraglib/4_5_combinatorial_library_construct_ligands.ipynb index 974deb77..65ed9f48 100644 --- a/notebooks/4_5_combinatorial_library_construct_ligands.ipynb +++ b/notebooks/kinfraglib/4_5_combinatorial_library_construct_ligands.ipynb @@ -52,8 +52,8 @@ "outputs": [], "source": [ "HERE = Path(_dh[-1])\n", - "PATH_FRAGMENT_LIBRARY_REDUCED = HERE / '../data/fragment_library_reduced/'\n", - "PATH_COMBINATORIAL_LIBRARY = HERE / '../data/combinatorial_library/combinatorial_library_deduplicated.json'" + "PATH_FRAGMENT_LIBRARY_REDUCED = HERE / '../../data/fragment_library_reduced/'\n", + "PATH_COMBINATORIAL_LIBRARY = HERE / '../../data/combinatorial_library/combinatorial_library_deduplicated.json'" ] }, { @@ -383,10 +383,11 @@ { "cell_type": "code", "execution_count": 10, + "id": "intensive-clearance", "metadata": {}, "outputs": [], "source": [ - "PATH_CONSTRUCTED_MOLECULES = HERE / \"../data/combinatorial_library_constructed\"\n", + "PATH_CONSTRUCTED_MOLECULES = HERE / \"../../data/combinatorial_library_constructed\"\n", "PATH_CONSTRUCTED_MOLECULES.mkdir(parents=True, exist_ok=True)" ] }, diff --git a/notebooks/kinfraglib/README.md b/notebooks/kinfraglib/README.md new file mode 100644 index 00000000..29763428 --- /dev/null +++ b/notebooks/kinfraglib/README.md @@ -0,0 +1,63 @@ +# KinFragLib notebooks +Overview of notebook content. + +## 1. Quick start + +### `1_1_quick_start.ipynb` + +This notebook contains an introduction on how to load and use the KinFragLib fragment library. + +## 2. Full fragment library + +### `2_1_fragment_analysis_original_ligands.ipynb` + +Based on the full fragment library, get all ligands from which these fragments originated from ("original ligands" from KLIFS dataset). + +### `2_2_fragment_analysis_statistics.ipynb` + +This notebook contains the code that was used to calculate most of the statistics as well as to generate the respective plots shown in the manuscript, for instance: + +- Ligand occupancy across subpockets +- Subpocket connectivity across subpockets +- Fragment occurrence per subpocket +- Fragment properties per subpocket +- Fragment similarity per subpocket +- Fragment promiscuity + +### `2_3_fragment_analysis_most_common_fragments.ipynb` + +This notebook contains the code that was used to analyze the most common fragments per subpocket as well as to generate the respective plots shown in the manuscript. + +- Find 50 most common fragments in each subpocket (if multiple fragments with same count are at cutoff, include all fragments). +- Cluster these fragments using Butina clustering. +- Draw 50 most common fragments per subpocket sorted by descending cluster size. + +## 3. Reduced fragment library + +### `3_1_fragment_library_reduced.ipynb` + +The fragment library resulting from the KinFragLib fragmentation procedure comprises about 3000 fragments. Ultimately, we want to demonstrate how this library can be used for recombining ligands. Before this can be done, we need to address two considerations: + +1. Remove all fragments that are not useful for recombination, i.e. duplicates, fragments in pool X, fragments without dummy atoms, and fragments with dummy atoms only connecting to pool X. Also remove all AP fragments that show no hydrogen bond donors and acceptors (not hinge-like). +2. Select a diverse set of fragments (per subpocket) for recombination to (i) save computational cost and (ii) avoid recombination of highly similar fragments. + +## 4. Combinatorial library + +### `4_1_combinatorial_library_data.ipynb` + +The aim of this notebook is to extract information from the combinatorial library (`json` file) about e.g. ligand sizes, Lipinski's rule of five compliance, and matches in ChEMBL and KLIFS. Since the `json` file holds multiple millions of ligands, we do this data processing once here at the beginning and save the results to separate files which will be used for analysis/visualization in the following notebooks. + +### `4_2_combinatorial_library_properties.ipynb` + +In this notebook, we want to analyze the properties of the combinatorial library, such as the ligand size and Lipinski's rule of five criteria. + +### `4_3_combinatorial_library_comparison_klifs.ipynb` + +In this notebook, we want to compare the combinatorial library to the original KLIFS ligands, i.e. the ligands from which the fragment library originates. We consider exact and substructure matches. + +### `4_4_combinatorial_library_comparison_chembl.ipynb` + +In this notebook, we want to compare the combinatorial library to the ChEMBL 33 dataset in order to find exact matches and the most similar ChEMBL molecule per recombined ligand. + +### `4_5_combinatorial_library_consrtuct_ligand.ipynb` +In this notebook, we showcase how the molecules described via fragment and bond indices from the combinatorial library can be built into `rdkit` molecule objects. \ No newline at end of file diff --git a/notebooks/figures/clustered_most_common_fragments_ap.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_ap.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_ap.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_ap.svg diff --git a/notebooks/figures/clustered_most_common_fragments_b1.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_b1.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_b1.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_b1.svg diff --git a/notebooks/figures/clustered_most_common_fragments_b2.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_b2.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_b2.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_b2.svg diff --git a/notebooks/figures/clustered_most_common_fragments_fp.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_fp.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_fp.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_fp.svg diff --git a/notebooks/figures/clustered_most_common_fragments_ga.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_ga.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_ga.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_ga.svg diff --git a/notebooks/figures/clustered_most_common_fragments_se.svg b/notebooks/kinfraglib/figures/clustered_most_common_fragments_se.svg similarity index 100% rename from notebooks/figures/clustered_most_common_fragments_se.svg rename to notebooks/kinfraglib/figures/clustered_most_common_fragments_se.svg diff --git a/notebooks/figures/combinatorial_library_active_kinase_targets.png b/notebooks/kinfraglib/figures/combinatorial_library_active_kinase_targets.png similarity index 100% rename from notebooks/figures/combinatorial_library_active_kinase_targets.png rename to notebooks/kinfraglib/figures/combinatorial_library_active_kinase_targets.png diff --git a/notebooks/figures/combinatorial_library_active_kinase_targets_activities.png b/notebooks/kinfraglib/figures/combinatorial_library_active_kinase_targets_activities.png similarity index 100% rename from notebooks/figures/combinatorial_library_active_kinase_targets_activities.png rename to notebooks/kinfraglib/figures/combinatorial_library_active_kinase_targets_activities.png diff --git a/notebooks/figures/combinatorial_library_most_similar_chembl_molecules.pdf b/notebooks/kinfraglib/figures/combinatorial_library_most_similar_chembl_molecules.pdf similarity index 100% rename from notebooks/figures/combinatorial_library_most_similar_chembl_molecules.pdf rename to notebooks/kinfraglib/figures/combinatorial_library_most_similar_chembl_molecules.pdf diff --git a/notebooks/figures/combinatorial_library_ro5.pdf b/notebooks/kinfraglib/figures/combinatorial_library_ro5.pdf similarity index 100% rename from notebooks/figures/combinatorial_library_ro5.pdf rename to notebooks/kinfraglib/figures/combinatorial_library_ro5.pdf diff --git a/notebooks/figures/descriptors.png b/notebooks/kinfraglib/figures/descriptors.png similarity index 100% rename from notebooks/figures/descriptors.png rename to notebooks/kinfraglib/figures/descriptors.png diff --git a/notebooks/figures/extreme_subpockets_one.png b/notebooks/kinfraglib/figures/extreme_subpockets_one.png similarity index 100% rename from notebooks/figures/extreme_subpockets_one.png rename to notebooks/kinfraglib/figures/extreme_subpockets_one.png diff --git a/notebooks/figures/extreme_subpockets_one_paper_b.png b/notebooks/kinfraglib/figures/extreme_subpockets_one_paper_b.png similarity index 100% rename from notebooks/figures/extreme_subpockets_one_paper_b.png rename to notebooks/kinfraglib/figures/extreme_subpockets_one_paper_b.png diff --git a/notebooks/figures/extreme_subpockets_one_paper_c.png b/notebooks/kinfraglib/figures/extreme_subpockets_one_paper_c.png similarity index 100% rename from notebooks/figures/extreme_subpockets_one_paper_c.png rename to notebooks/kinfraglib/figures/extreme_subpockets_one_paper_c.png diff --git a/notebooks/figures/extreme_subpockets_one_paper_d.png b/notebooks/kinfraglib/figures/extreme_subpockets_one_paper_d.png similarity index 100% rename from notebooks/figures/extreme_subpockets_one_paper_d.png rename to notebooks/kinfraglib/figures/extreme_subpockets_one_paper_d.png diff --git a/notebooks/figures/extreme_subpockets_six_fragments.png b/notebooks/kinfraglib/figures/extreme_subpockets_six_fragments.png similarity index 100% rename from notebooks/figures/extreme_subpockets_six_fragments.png rename to notebooks/kinfraglib/figures/extreme_subpockets_six_fragments.png diff --git a/notebooks/figures/extreme_subpockets_six_ligand.png b/notebooks/kinfraglib/figures/extreme_subpockets_six_ligand.png similarity index 100% rename from notebooks/figures/extreme_subpockets_six_ligand.png rename to notebooks/kinfraglib/figures/extreme_subpockets_six_ligand.png diff --git a/notebooks/figures/fragments_3w2s_altA_chainA.png b/notebooks/kinfraglib/figures/fragments_3w2s_altA_chainA.png similarity index 100% rename from notebooks/figures/fragments_3w2s_altA_chainA.png rename to notebooks/kinfraglib/figures/fragments_3w2s_altA_chainA.png diff --git a/notebooks/figures/highligh_fragments_in_ligand.png b/notebooks/kinfraglib/figures/highligh_fragments_in_ligand.png similarity index 100% rename from notebooks/figures/highligh_fragments_in_ligand.png rename to notebooks/kinfraglib/figures/highligh_fragments_in_ligand.png diff --git a/notebooks/figures/inkscape_svg2png.sh b/notebooks/kinfraglib/figures/inkscape_svg2png.sh similarity index 100% rename from notebooks/figures/inkscape_svg2png.sh rename to notebooks/kinfraglib/figures/inkscape_svg2png.sh diff --git a/notebooks/figures/ligands_3w2s.png b/notebooks/kinfraglib/figures/ligands_3w2s.png similarity index 100% rename from notebooks/figures/ligands_3w2s.png rename to notebooks/kinfraglib/figures/ligands_3w2s.png diff --git a/notebooks/figures/n_fragments_per_subpocket.png b/notebooks/kinfraglib/figures/n_fragments_per_subpocket.png similarity index 100% rename from notebooks/figures/n_fragments_per_subpocket.png rename to notebooks/kinfraglib/figures/n_fragments_per_subpocket.png diff --git a/notebooks/figures/n_subpockets.png b/notebooks/kinfraglib/figures/n_subpockets.png similarity index 100% rename from notebooks/figures/n_subpockets.png rename to notebooks/kinfraglib/figures/n_subpockets.png diff --git a/notebooks/figures/similarities_by_kinase_group.png b/notebooks/kinfraglib/figures/similarities_by_kinase_group.png similarity index 100% rename from notebooks/figures/similarities_by_kinase_group.png rename to notebooks/kinfraglib/figures/similarities_by_kinase_group.png diff --git a/notebooks/figures/similarities_by_subpocket.png b/notebooks/kinfraglib/figures/similarities_by_subpocket.png similarity index 100% rename from notebooks/figures/similarities_by_subpocket.png rename to notebooks/kinfraglib/figures/similarities_by_subpocket.png diff --git a/notebooks/figures/superfigure_ap.png b/notebooks/kinfraglib/figures/superfigure_ap.png similarity index 100% rename from notebooks/figures/superfigure_ap.png rename to notebooks/kinfraglib/figures/superfigure_ap.png diff --git a/notebooks/figures/superfigure_b1.png b/notebooks/kinfraglib/figures/superfigure_b1.png similarity index 100% rename from notebooks/figures/superfigure_b1.png rename to notebooks/kinfraglib/figures/superfigure_b1.png diff --git a/notebooks/figures/superfigure_b2.png b/notebooks/kinfraglib/figures/superfigure_b2.png similarity index 100% rename from notebooks/figures/superfigure_b2.png rename to notebooks/kinfraglib/figures/superfigure_b2.png diff --git a/notebooks/figures/superfigure_fp.png b/notebooks/kinfraglib/figures/superfigure_fp.png similarity index 100% rename from notebooks/figures/superfigure_fp.png rename to notebooks/kinfraglib/figures/superfigure_fp.png diff --git a/notebooks/figures/superfigure_ga.png b/notebooks/kinfraglib/figures/superfigure_ga.png similarity index 100% rename from notebooks/figures/superfigure_ga.png rename to notebooks/kinfraglib/figures/superfigure_ga.png diff --git a/notebooks/figures/superfigure_se.png b/notebooks/kinfraglib/figures/superfigure_se.png similarity index 100% rename from notebooks/figures/superfigure_se.png rename to notebooks/kinfraglib/figures/superfigure_se.png diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 00000000..ef8be7ec --- /dev/null +++ b/setup.cfg @@ -0,0 +1,10 @@ +# Helper file to handle all configs +[flake8] +# Flake8, PyFlakes, etc +max-line-length = 99 +ignore = F401, W503 + +[flake8_nb] +max-line-length = 99 +exclude = + docs/.ipynb_checkpoints \ No newline at end of file